Sections over Vector Bundles and the Serre-Swan Theorem

Robbert Liu

April 14, 2022

1 / 12

2 / 12

• Vector bundles, family of finite dimensional vector spaces continuously parametrized by a base space. Locally looks like a "bundle of vectors spaces".

Robbert Liu Short title April 14, 2022 2/12

- Vector bundles, family of finite dimensional vector spaces continuously parametrized by a base space. Locally looks like a "bundle of vectors spaces".
- Sections, continuous choice of a vector at each vector space. Can be added and scaled by continuous functions.

2 / 12

- Vector bundles, family of finite dimensional vector spaces continuously parametrized by a base space. Locally looks like a "bundle of vectors spaces".
- Sections, continuous choice of a vector at each vector space. Can be added and scaled by continuous functions.
- Recurring theme: algebraic vs geometric perspective.

2/12

- Vector bundles, family of finite dimensional vector spaces continuously parametrized by a base space. Locally looks like a "bundle of vectors spaces".
- Sections, continuous choice of a vector at each vector space. Can be added and scaled by continuous functions.
- Recurring theme: algebraic vs geometric perspective.
- The Serre-Swan provides a way to switch between these two perspectives.

Robbert Liu Short title April 14, 2022 2/12

3 / 12

• Let $K \in \{\mathbb{R}, \mathbb{C}\}$. A topological K-vector bundle is a continuous surjective map $p: E \to B$ between topological spaces such that

Robbert Liu Short title April 14, 2022 3/12

- Let $K \in \{\mathbb{R}, \mathbb{C}\}$. A topological K-vector bundle is a continuous surjective map $p: E \to B$ between topological spaces such that
 - ▶ Each fiber $p^{-1}(x)$ is a finite dimensional vector space over K.

3 / 12

- Let $K \in \{\mathbb{R}, \mathbb{C}\}$. A topological K-vector bundle is a continuous surjective map $p: E \to B$ between topological spaces such that
 - ▶ Each fiber $p^{-1}(x)$ is a finite dimensional vector space over K.
 - ▶ Each $x \in B$ has a neighbourhood U and a homeomorphism $h: p^{-1}(U) \to U \times K^n$, such that h is linear when restricted to each fiber.

3/12

- Let $K \in \{\mathbb{R}, \mathbb{C}\}$. A topological K-vector bundle is a continuous surjective map $p: E \to B$ between topological spaces such that
 - ▶ Each fiber $p^{-1}(x)$ is a finite dimensional vector space over K.
 - Each $x \in B$ has a neighbourhood U and a homeomorphism $h: p^{-1}(U) \to U \times K^n$, such that h is linear when restricted to each fiber.
 - \blacktriangleright h is called a "local trivialization" around x.

3/12

- Let $K \in \{\mathbb{R}, \mathbb{C}\}$. A topological K-vector bundle is a continuous surjective map $p: E \to B$ between topological spaces such that
 - ▶ Each fiber $p^{-1}(x)$ is a finite dimensional vector space over K.
 - Each $x \in B$ has a neighbourhood U and a homeomorphism $h: p^{-1}(U) \to U \times K^n$, such that h is linear when restricted to each fiber.
 - \blacktriangleright h is called a "local trivialization" around x.
- Remark. the dimension $n(x) = \dim p^{-1}(y)$ of fibers around x is locally constant, so dimension is constant on connected components.

3/12

- Let $K \in \{\mathbb{R}, \mathbb{C}\}$. A topological K-vector bundle is a continuous surjective map $p: E \to B$ between topological spaces such that
 - ▶ Each fiber $p^{-1}(x)$ is a finite dimensional vector space over K.
 - Each $x \in B$ has a neighbourhood U and a homeomorphism $h: p^{-1}(U) \to U \times K^n$, such that h is linear when restricted to each fiber.
 - \blacktriangleright h is called a "local trivialization" around x.
- Remark. the dimension $n(x) = \dim p^{-1}(y)$ of fibers around x is locally constant, so dimension is constant on connected components.
- A map between vector bundles $p_1: E_1 \to B, p_2: E_2 \to B$ is a continuous map $f: E_1 \to E_2$ sending $p_1^{-1}(x)$ to $p_2^1(x)$, which restricts to a linear map on each fiber.

◆ロト ◆団 ト ◆ 重 ト ◆ 電 ・ り へ ②

• The trivial bundle: $p: B \times U^k \to B$.

4 / 12

- The trivial bundle: $p: B \times U^k \to B$.
- The tangent bundle $p: TS^n \to S^n$ of S^n in \mathbb{R}^{n+1} , containing elements $(x,v) \subseteq S^n \times \mathbb{R}^{n+1}$ such that v is tangent to x.

4 / 12

- The trivial bundle: $p: B \times U^k \to B$.
- The tangent bundle $p: TS^n \to S^n$ of S^n in \mathbb{R}^{n+1} , containing elements $(x,v) \subseteq S^n \times \mathbb{R}^{n+1}$ such that v is tangent to x.
- The normal bundle $p: NS^n \to S^n$ of S^n in \mathbb{R}^{n+1} , containing elements (x, tx).

4/12

- The trivial bundle: $p: B \times U^k \to B$.
- The tangent bundle $p: TS^n \to S^n$ of S^n in \mathbb{R}^{n+1} , containing elements $(x,v) \subseteq S^n \times \mathbb{R}^{n+1}$ such that v is tangent to x.
- The normal bundle $p: NS^n \to S^n$ of S^n in \mathbb{R}^{n+1} , containing elements (x, tx).
- The Möbius strip $p: \mu \to S^1$ and the annulus $p: \alpha \to S^1$.

4/12

- The trivial bundle: $p: B \times U^k \to B$.
- The tangent bundle $p: TS^n \to S^n$ of S^n in \mathbb{R}^{n+1} , containing elements $(x,v) \subseteq S^n \times \mathbb{R}^{n+1}$ such that v is tangent to x.
- The normal bundle $p: NS^n \to S^n$ of S^n in \mathbb{R}^{n+1} , containing elements (x, tx).
- The Möbius strip $p: \mu \to S^1$ and the annulus $p: \alpha \to S^1$.
- The canonical line bundle $p: E \to \mathbb{R}P^n$. $\mathbb{R}P^n$ can be viewed as the space of lines in \mathbb{R}^{n+1} intersecting 0; $E \subseteq \mathbb{R}P^n \times \mathbb{R}^{n+1}$ contains elements (ℓ, v) , where $v \in \ell$.

4/12

• Given $p: E \to B$ and $U \subseteq B$, a section over U is a continuous choice $s: U \to E$ of a vector at each fiber of U. Sections over B are simply called sections.

5 / 12

• Given $p: E \to B$ and $U \subseteq B$, a section over U is a continuous choice $s: U \to E$ of a vector at each fiber of U. Sections over B are simply called sections.

5 / 12

- Given $p: E \to B$ and $U \subseteq B$, a section over U is a continuous choice $s: U \to E$ of a vector at each fiber of U. Sections over B are simply called sections.
- (Lemma 1.6) Using a local trivialization around $x \in B$, we can pull back a basis of $B \times \mathbb{R}^n$ to sections s_1, \ldots, s_n over $U \ni x$ which are a basis at every fiber of $y \in U$.

5/12

- Given $p: E \to B$ and $U \subseteq B$, a section over U is a continuous choice $s: U \to E$ of a vector at each fiber of U. Sections over B are simply called sections.
- (Lemma 1.6) Using a local trivialization around $x \in B$, we can pull back a basis of $B \times \mathbb{R}^n$ to sections s_1, \ldots, s_n over $U \ni x$ which are a basis at every fiber of $y \in U$.
- (Lemma 1.7) Sections which are linearly independent at x remain linearly independent around x.

5/12

- Given $p: E \to B$ and $U \subseteq B$, a section over U is a continuous choice $s: U \to E$ of a vector at each fiber of U. Sections over B are simply called sections.
- (Lemma 1.6) Using a local trivialization around $x \in B$, we can pull back a basis of $B \times \mathbb{R}^n$ to sections s_1, \ldots, s_n over $U \ni x$ which are a basis at every fiber of $y \in U$.
- (Lemma 1.7) Sections which are linearly independent at x remain linearly independent around x.
- The set $\Gamma(E)$ of sections of $p:E\to B$ has a natural module structure over C(B).

5/12

• If $p: E \to B, p: E' \to B$ are vector bundles such that $E' \subseteq E$, then E' is a subbundle of E.

6 / 12

- If $p: E \to B, p: E' \to B$ are vector bundles such that $E' \subseteq E$, then E' is a subbundle of E.
- Question. If $f: E_1 \to E_2$ is a bundle map, are im f, ker f always subbundles?

6 / 12

- If $p: E \to B, p: E' \to B$ are vector bundles such that $E' \subseteq E$, then E' is a subbundle of E.
- Question. If $f: E_1 \to E_2$ is a bundle map, are im f, ker f always subbundles?
- No!

6 / 12

- If $p: E \to B, p: E' \to B$ are vector bundles such that $E' \subseteq E$, then E' is a subbundle of E.
- Question. If $f: E_1 \to E_2$ is a bundle map, are im f, ker f always subbundles?
- No!
- Take $f:[0,1]\times\mathbb{R}\to[0,1]\times\mathbb{R}$ defined by $(t,x)\mapsto(t,tx)$, where $p:[0,1]\times\mathbb{R}\to[0,1]$ is a trivial bundle.

6/12

- If $p: E \to B, p: E' \to B$ are vector bundles such that $E' \subseteq E$, then E' is a subbundle of E.
- Question. If $f: E_1 \to E_2$ is a bundle map, are im f, ker f always subbundles?
- No!
- Take $f:[0,1]\times\mathbb{R}\to[0,1]\times\mathbb{R}$ defined by $(t,x)\mapsto(t,tx)$, where $p:[0,1]\times\mathbb{R}\to[0,1]$ is a trivial bundle.
- (Proposition 1.10) The fibers of im f have locally constant dimension \iff im f is a subbundle \iff ker f is a subbundle \iff the fibers of ker f have locally constant dimension.

6/12

• If $p_1: E_1 \to B, p_2: E_2 \to B$ are vector bundles, we can construct their direct sum $p: E_1 \oplus E_2 \to B$.

<ロ > < 部 > < き > < き > き 9 < の

Robbert Liu Short title April 14, 2022 7/12

- If $p_1: E_1 \to B$, $p_2: E_2 \to B$ are vector bundles, we can construct their direct sum $p: E_1 \oplus E_2 \to B$.
- Fibers are direct sums $p_1^{-1}(x) \oplus p_2^{-2}(x)$, and p projects to x.

Robbert Liu Short title April 14, 2022 7/12

- If $p_1: E_1 \to B, p_2: E_2 \to B$ are vector bundles, we can construct their direct sum $p: E_1 \oplus E_2 \to B$.
- Fibers are direct sums $p_1^{-1}(x) \oplus p_2^{-2}(x)$, and p projects to x.
- Local trivializations are products of local trivializations for E_1, E_2 .

<ロ > < 回 > < 回 > < 直 > < 直 > 至 9 < で

Robbert Liu Short title April 14, 2022 7/12

- If $p_1: E_1 \to B, p_2: E_2 \to B$ are vector bundles, we can construct their direct sum $p: E_1 \oplus E_2 \to B$.
- Fibers are direct sums $p_1^{-1}(x) \oplus p_2^{-2}(x)$, and p projects to x.
- Local trivializations are products of local trivializations for E_1, E_2 .
- Anomalous example: direct sum of a trivial bundle and nontrivial bundle which is trivial.

4□ > <部 > <き > <き > < き < の < </p>

7/12

- If $p_1: E_1 \to B, p_2: E_2 \to B$ are vector bundles, we can construct their direct sum $p: E_1 \oplus E_2 \to B$.
- Fibers are direct sums $p_1^{-1}(x) \oplus p_2^{-2}(x)$, and p projects to x.
- Local trivializations are products of local trivializations for E_1, E_2 .
- Anomalous example: direct sum of a trivial bundle and nontrivial bundle which is trivial.
- Question. is a subbundle of a vector bundle always a summand?

7/12

Inner product.

• An inner product on $p: E \to B$ is a continuously varying map $\langle , \rangle : E \oplus E \to K$ which restricts to inner product on each fiber.

8 / 12

Inner product.

- An inner product on $p: E \to B$ is a continuously varying map $\langle , \rangle : E \oplus E \to K$ which restricts to inner product on each fiber.
- We can use an inner product on E to construct a projection $f: E \to E'$, if $E' \subseteq E$ is a subbundle.

8 / 12

Inner product.

- An inner product on $p: E \to B$ is a continuously varying map $\langle , \rangle : E \oplus E \to K$ which restricts to inner product on each fiber.
- We can use an inner product on E to construct a projection $f: E \to E'$, if $E' \subseteq E$ is a subbundle.
- Existence of an inner product is guaranteed if B is paracompact.

Robbert Liu Short title April 14, 2022 8/12

Inner product.

- An inner product on $p: E \to B$ is a continuously varying map $\langle , \rangle : E \oplus E \to K$ which restricts to inner product on each fiber.
- We can use an inner product on E to construct a projection $f: E \to E'$, if $E' \subseteq E$ is a subbundle.
- \bullet Existence of an inner product is guaranteed if B is paracompact.
- ullet Theme: vector bundles decompose and coalesce nicely if B is nice.

<ロ > ← □

• Recall that $\Gamma(E)$ is the set of sections of $p:E\to B$, which is a C(B)-module.

<ロ > < 部 > < き > < き > き 9 < 0

9 / 12

Robbert Liu Short title April 14, 2022

- Recall that $\Gamma(E)$ is the set of sections of $p:E\to B$, which is a C(B)-module.
- $\Gamma: \mathrm{VECT}_B \to \mathrm{Mod}_{C(B)}$ is a functor, with $F(f): s(x) \mapsto fs(x)$.

<ロ > < 部 > < き > < き > き 9 < 0

- Recall that $\Gamma(E)$ is the set of sections of $p: E \to B$, which is a C(B)-module.
- $\Gamma: \text{VECT}_B \to \text{Mod}_{C(B)}$ is a functor, with $F(f): s(x) \mapsto fs(x)$.
- Γ respects the finite additive structures of Vect_B and Mod_{C(B)}: $\Gamma(E_1 \oplus E_2) = \Gamma(E_1) \oplus \Gamma(E_2)$.

◆ロ ト ◆ 個 ト ◆ 重 ト ◆ 重 ・ り へ ⊙

9/12

Robbert Liu Short title April 14, 2022

- Recall that $\Gamma(E)$ is the set of sections of $p: E \to B$, which is a C(B)-module.
- $\Gamma: \text{VECT}_B \to \text{Mod}_{C(B)}$ is a functor, with $F(f): s(x) \mapsto fs(x)$.
- Γ respects the finite additive structures of VECT_B and Mod_{C(B)}: $\Gamma(E_1 \oplus E_2) = \Gamma(E_1) \oplus \Gamma(E_2)$.
- Quick computation: $\Gamma(B \times K^n) = \Gamma(\bigoplus_{i=1}^n B \times K) = \bigoplus_{i=1}^n \Gamma(B \times K) = C(B)^n$.

<ロ > < 回 > < 回 > < 直 > < 直 > 至 9 < で

• A projective C(B)-module M is such that $M \oplus N = C(B)^n$.

- A projective C(B)-module M is such that $M \oplus N = C(B)^n$.
- (Theorem 1) If B is normal, then $\Gamma : \text{mor}(E_1, E_2) \to \text{mor}(\Gamma(E_1), \Gamma(E_2))$ is an isomorphism on sets of morphisms.

- A projective C(B)-module M is such that $M \oplus N = C(B)^n$.
- (Theorem 1) If B is normal, then $\Gamma : \text{mor}(E_1, E_2) \to \text{mor}(\Gamma(E_1), \Gamma(E_2))$ is an isomorphism on sets of morphisms.
- (Theorem 2) If B is compact Hausdorff, then Γ is an isomorphism onto the subcategory of finitely generated projective modules.

- A projective C(B)-module M is such that $M \oplus N = C(B)^n$.
- (Theorem 1) If B is normal, then $\Gamma : \text{mor}(E_1, E_2) \to \text{mor}(\Gamma(E_1), \Gamma(E_2))$ is an isomorphism on sets of morphisms.
- (Theorem 2) If B is compact Hausdorff, then Γ is an isomorphism onto the subcategory of finitely generated projective modules.
- Conclusion: both perspectives study essentially the same thing.

• Injectivity: if $\Gamma(f)$, $\Gamma(g)$ coincide on sections $s: B \to E$, we want to show that f, g coincide on vectors $g \in E$.

- Injectivity: if $\Gamma(f)$, $\Gamma(g)$ coincide on sections $s: B \to E$, we want to show that f, g coincide on vectors $g \in E$.
 - **1** Idea. Construct a section s such that s(p(y)) = y.

- Injectivity: if $\Gamma(f)$, $\Gamma(g)$ coincide on sections $s: B \to E$, we want to show that f, g coincide on vectors $g \in E$.
 - **1** Idea. Construct a section s such that s(p(y)) = y.
 - 2 Construct s locally.

- Injectivity: if $\Gamma(f)$, $\Gamma(g)$ coincide on sections $s: B \to E$, we want to show that f, g coincide on vectors $g \in E$.
 - **1** Idea. Construct a section s such that s(p(y)) = y.
 - 2 Construct s locally.
 - **3** use a Urysohn function to extend s to all of E.

- Injectivity: if $\Gamma(f)$, $\Gamma(g)$ coincide on sections $s: B \to E$, we want to show that f, g coincide on vectors $g \in E$.
 - **1** Idea. Construct a section s such that s(p(y)) = y.
 - 2 Construct s locally.
 - 3 use a Urysohn function to extend s to all of E.
- Surjectivity: for $F: \Gamma(E_1) \to \Gamma(E_2)$, find f such that $\Gamma(f) = F$.

◆□ ▶ ◆昼 ▶ ◆ 昼 ▶ ○ 昼 ● りへ@

- Injectivity: if $\Gamma(f)$, $\Gamma(g)$ coincide on sections $s: B \to E$, we want to show that f, g coincide on vectors $g \in E$.
 - **1** Idea. Construct a section s such that s(p(y)) = y.
 - 2 Construct s locally.
 - **3** use a Urysohn function to extend s to all of E.
- Surjectivity: for $F: \Gamma(E_1) \to \Gamma(E_2)$, find f such that $\Gamma(f) = F$.
 - I Idea. $\Gamma(E_1)_x$: the submodule of $\Gamma(E_1)$ of sections vanishing at x.

(ロ) (団) (重) (重) (重) の(の

- Injectivity: if $\Gamma(f)$, $\Gamma(g)$ coincide on sections $s: B \to E$, we want to show that f, g coincide on vectors $g \in E$.
 - **1** Idea. Construct a section s such that s(p(y)) = y.
 - 2 Construct s locally.
 - **3** use a Urysohn function to extend s to all of E.
- Surjectivity: for $F: \Gamma(E_1) \to \Gamma(E_2)$, find f such that $\Gamma(f) = F$.
 - I Idea. $\Gamma(E_1)_x$: the submodule of $\Gamma(E_1)$ of sections vanishing at x.
 - **2** F induces maps $f_x: \Gamma(E_1)/\Gamma(E_1)_x \to \Gamma(E_2)/\Gamma(E_2)_x$ at each x.

◆□ ト ◆□ ト ◆ ■ ト ◆ ■ り へ ○

- Injectivity: if $\Gamma(f)$, $\Gamma(g)$ coincide on sections $s: B \to E$, we want to show that f, g coincide on vectors $g \in E$.
 - **1** Idea. Construct a section s such that s(p(y)) = y.
 - 2 Construct s locally.
 - **3** use a Urysohn function to extend s to all of E.
- Surjectivity: for $F: \Gamma(E_1) \to \Gamma(E_2)$, find f such that $\Gamma(f) = F$.
 - I Idea. $\Gamma(E_1)_x$: the submodule of $\Gamma(E_1)$ of sections vanishing at x.
 - **2** F induces maps $f_x: \Gamma(E_1)/\Gamma(E_1)_x \to \Gamma(E_2)/\Gamma(E_2)_x$ at each x.
 - 3 $\Gamma(E_1)/\Gamma(E_1)_x \cong p_1^{-1}(x)$.

The Serre-Swan theorem II (Vect_B \cong Mod_{C(B)},).

• Let $p: E \to B$ be a vector bundle over a compact Hausdorff > paracompact, normal) space.

The Serre-Swan theorem II (Vect_B \cong Mod_{C(B)},).

- Let $p: E \to B$ be a vector bundle over a compact Hausdorff > paracompact, normal) space.
- (⊆).

The Serre-Swan theorem II (VECT_B \cong MoD_{C(B)}^{f.g.p.}).

- Let $p: E \to B$ be a vector bundle over a compact Hausdorff > paracompact, normal) space.
- (⊆).
 - **1** Compactness $\implies \exists$ surjection $f: B \times K^n \to E$, so

$$\Gamma(E) \oplus \Gamma(\ker f) = \Gamma(B \times K^n) = C(B)^n.$$

The Serre-Swan theorem II (Vect_B \cong Mod_{C(B)},).

- Let $p: E \to B$ be a vector bundle over a compact Hausdorff > paracompact, normal) space.
- (⊆).
 - **1** Compactness $\implies \exists$ surjection $f: B \times K^n \to E$, so

$$\Gamma(E) \oplus \Gamma(\ker f) = \Gamma(B \times K^n) = C(B)^n.$$

2 Local basis around each $x \in E \implies s_1, \ldots, s_n \in \Gamma(E)$ spans each fiber.

The Serre-Swan theorem II (VECT_B \cong MoD_{C(B)}^{f.g.p.}).

- Let $p: E \to B$ be a vector bundle over a compact Hausdorff > paracompact, normal) space.
- (⊆).
 - **1** Compactness $\implies \exists$ surjection $f: B \times K^n \to E$, so

$$\Gamma(E) \oplus \Gamma(\ker f) = \Gamma(B \times K^n) = C(B)^n.$$

- 2 Local basis around each $x \in E \implies s_1, \ldots, s_n \in \Gamma(E)$ spans each fiber.
- (⊇).

The Serre-Swan theorem II (VECT_B \cong MoD $_{C(B)}^{\text{f.g.p.}}$).

- Let $p: E \to B$ be a vector bundle over a compact Hausdorff > paracompact, normal) space.
- (⊆).
 - **1** Compactness $\implies \exists$ surjection $f: B \times K^n \to E$, so

$$\Gamma(E) \oplus \Gamma(\ker f) = \Gamma(B \times K^n) = C(B)^n.$$

- **2** Local basis around each $x \in E \implies s_1, \ldots, s_n \in \Gamma(E)$ spans each fiber.
- (⊇).
 - **1** Take f.g.p M which is a summand of $C(B)^n$.

The Serre-Swan theorem II (VECT_B \cong MoD_{C(B)}.).

- Let $p: E \to B$ be a vector bundle over a compact Hausdorff > paracompact, normal) space.
- (⊆).
 - **1** Compactness $\implies \exists$ surjection $f: B \times K^n \to E$, so

$$\Gamma(E) \oplus \Gamma(\ker f) = \Gamma(B \times K^n) = C(B)^n.$$

- **2** Local basis around each $x \in E \implies s_1, \ldots, s_n \in \Gamma(E)$ spans each fiber.
- (⊇).
 - **1** Take f.g.p M which is a summand of $C(B)^n$.
 - **2** Projection $F: C(B)^n \to C(B)^n$ onto M is uniquely induced by endomorphism f on $B \times K^n$.

The Serre-Swan theorem II (VECT_B \cong Mod_{C(B)}.).

- Let $p: E \to B$ be a vector bundle over a compact Hausdorff > paracompact, normal) space.
- (⊆).
 - **1** Compactness $\implies \exists$ surjection $f: B \times K^n \to E$, so

$$\Gamma(E) \oplus \Gamma(\ker f) = \Gamma(B \times K^n) = C(B)^n.$$

- **2** Local basis around each $x \in E \implies s_1, \ldots, s_n \in \Gamma(E)$ spans each fiber.
- (⊇).
 - **Take f.g.p** M which is a summand of $C(B)^n$.
 - 2 Projection $F: C(B)^n \to C(B)^n$ onto M is uniquely induced by endomorphism f on $B \times K^n$.
 - Show im f is a subbundle, implying $\Gamma(f: B \times K^n \to \operatorname{im} f) = F: C(B)^n \to \Gamma(\operatorname{im} f).$