Eine Data Science-Architektur für die Analyse und Visualisierung von Rechenzentrumsdaten der Bundesagentur für Arbeit

The Architecture Gathering 2019
München, 17. Oktober 2019, Matthias Seßler, Eldar Sultanow, Frank Pelzel, Oliver Weiß

Alltag im Betrieb von IT-Infrastruktur: Die Prüfung von Systemausfällen ist zeitintensiv und nicht verlässlich vorhersagbar

Die Infrastruktur eines der größten IT-Entwicklers und -Betreibers Deutschlands ist das Herzstück zum Betrieb der Kundenservices

2019-02

2019-02

2019-02

2019-02

2019-02

2019-02

2019-02

2019-02

2019-02

2019-02

2019-03

Bundesagentur für Arbeit

- Zentraler Dienstleister am Arbeitsmarkt
- Körperschaft des öffentlichen Rechts mit Selbstverwaltung
- Ca. 95.000 Beschäftigte im Bundesgebiet
- BA mit:
 - Zentrale
 - 10 Regionaldirektionen
 - >150 Agenturen für Arbeit
 - Ca. 600 Geschäftsstellen
 - 303 Jobcenter (gE)
 - 12 Bildungs- und Tagesstätten (BTS)
 - 7 besondere Dienststellen in
 - 1.600 Liegenschaften

BA-Informationstechnik

Kurzprofil

Hauptsitz: Nürnberg

IT-Mitarbeiter: 2.000

Vernetzte PC: 170,000

Server: 10.000

Systemlandschaft

- Über 100 eigene IT-Verfahren
- Drei hochverfügbare zentrale Rechenzentren
- 17 regionale IT-Stützpunkte

Output (monatlich)

E-Mail-Volumen: 49 Mio. E-Mails

17 Mio. Überweisungen Überweisungen:

(8 Mrd. Euro)

Postsendungen: 12 Mio. Sendungen

Druckseiten: 58 Mio. Seiten

IT-Systemhaus

5624,59

450105

18

12

12

12

Die Zeitreihenanalyse findet in einer bewährten Analytics-Umgebung statt

1. Ziel: Analyse der Auslastung und Verhaltensmuster von Infrastrukturen

Korrelationsmatrix des Verlaufs der CPU Auslastung für ausgewählte Server:

1. Ziel: Analyse der Auslastung und Verhaltensmuster von Infrastrukturen

Stark korrelierte, standardisierte Auslastungsverläufe mit ausgewähltem Server:

2. Ziel: Vorhersage der Auslastung und Verhaltensmuster von Infrastrukturen

Zerlegung der Zeitreihe eines ausgewählten Servers in seine Komponenten:

2. Ziel: Vorhersage der Auslastung und Verhaltensmuster von Infrastrukturen

Vorhersage der Auslastung:

3. Ziel: Erkennen und Vorhersage von ungeplantem Verhalten (Peaks, Ausfälle,...)

Zusätzliche Informationen können ungeplantes Verhalten sichtbar/vorhersagbar machen:

Agenda Zeitreihenanalyse von Rechenzentrums-Ressourcen Prototypische Umsetzung einer Visualisierung Referenzarchitektur Live-Demo Seite 11 Bundesagentur für Arbeit

Ziel des Prototyps ist ein schneller Überblick über den Betriebszustand eines Datacenters

Die Visualisierung von Zeitreihen zu Rechenzentrums-Ressourcen bilden den Kern der Anforderungen

Use Case	Funktionale Anforderung	Qualitätsanforderung
Datenquelle ändern	Freie Wahl aus mehreren Quellen	Portabilität Datenanbindung
Visualisierung anpassen	Parameter wie z.B. Größe der Blöcke einstellbar	Portabilität Visualisierung, Performance Darstellung
Zeitpunkt wählen	Freie Wahl des Zeitpunkts, Veränderung über die Zeit sichtbar machen	Benutzbarkeit Oberflächen, Performance Darstellung
Filter anwenden	Einschränken der darzustellenden Informationen	Benutzbarkeit Oberflächen, Performance Darstellung

Ein erster Prototyp verwendet die Technologien Angular, Typescript, Material, Node.js, D3_3d.js und Solr

Die Nachteile des Prototyps sind schlechte Skalierbarkeit und fehlende Integrationsoptionen in Bestandsprodukte

Die Evolution der Architektur zur Erfüllung der Qualitätsanforderungen ist mit einigen Hindernissen versehen

Vega

- Kibana IntegrationModulare Datenquellen
- Keine z-Achse / kein 3DZukünftige Unterstützung

Sanddance

- © Web.gl
- Integration +Standalone
- Kaum Doku vorhanden
- Zukünftige Unterstützung offen
- Baut auf sehr alter Vega Version auf

Three.js

- Web.gl
- Integration +Standalone
- Uiele Nutzer + Contrib.
- Ausführliche Doku
- Aufwendiger Umbau auf React.js

offen

Agenda Zeitreihenanalyse von Rechenzentrums-Ressourcen Prototypische Umsetzung einer Visualisierung Referenzarchitektur Live-Demo Seite 17 Bundesagentur für Arbeit

Es gibt eine unübersichtliche Vielzahl an Data Science Tools und Frameworks

/bixabay.com/de/photos/puzzleteile-puzzle-spiel-puzzeln-59278

Es gibt eine unübersichtliche Vielzahl an Data Science Tools und Frameworks

Exemplarischer Ausschnitt des Anwender-Layers

Agenda Zeitreihenanalyse von Rechenzentrums-Ressourcen Prototypische Umsetzung einer Visualisierung Referenzarchitektur **Live-Demo** Seite 21 Bundesagentur für Arbeit

Live Demo: Die 3D-Visualisierungsmethodik erlaubt die Ableitung übergreifender Erkenntnisse zum Zustand der IT-Infrastruktur

Vorführung der Visualisierung

- Die Visualisierung bildet den Zustand der Rechenzentren ab (hier 2 RZ mit jeweils 2 Clustern)
- Jeder Balken repräsentiert eine Serverinstanz und die Höhe des Balkens repräsentiert die Auslastung
- Die interaktive GUI ermöglicht Zeitreisen: Mit dem Slider kann man die Auslastungssituationen vor- und zurückspulen

Vielen Dank für Ihre Aufmerksamkeit. Für Fragen stehen wir Ihnen jederzeit zur Verfügung!

Matthias Seßler

Bundesagentur für Arbeit IT-Systemhaus

Tafelhofstraße 4 90443 Nürnberg, Germany

E: matthias.sessler@arbeitsagentur.de

Eldar Sultanow

Capgemini

Capgemini

Bahnhofstraße 11C 90402 Nürnberg, Germany

E: eldar.sultanow@capgemini.com

Oliver Weiß

Capgemini

Mainzer Landstraße 178-190 60327 Frankfurt, Germany

E: oliver.weiss@capgemini.com

Frank Pelzel

Bundesagentur für Arbeit IT-Systemhaus

für Arbeit

Südwestpark 26 90449 Nürnberg, Germany

E: frank.pelzel@arbeitsagentur.de

für Arbeit

Bundesagentur für Arbeit IT-Systemhaus

Südwestpark 26 90449 Nürnberg, Germany Bundesagentur für Arbeit

für Arbeit

E: martina.hofmann4@arbeitsagentur.de

Martina Hofmann