4 An L-shaped steel rod was held horizontally in a stand clamped by its shorter end as shown.

Diagram not to scale

The end of the steel rod was at a height p above the bench.

A student attached a mass m to the end of the steel rod causing it to bend towards the bench. The end of the steel rod was then at a height q above the bench.

(a) (i) Describe two techniques she should use when measuring p and q.

(2)

(ii) The difference between p and q was recorded as $26 \,\mathrm{mm} \pm 1 \,\mathrm{mm}$.

Explain why the uncertainty in this value is given as 1 mm.

(2)

	Explain the most ap	ppropriate instr	rument the stud	lent should use	to measure d.	(2)
(ii) Explain one technique that she should use to measure <i>d</i> .						(2)
iii)	She recorded the fo	llowing measu	rements.			
(iii)	She recorded the fo	llowing measu	d/mm			
iii)	She recorded the fo	llowing measu		2.35	2.33	
(iii)		2.37	d/mm 2.34		2.33	(2)

(c) The shear modulus G is a measure of a material's resistance to bending, and is given by

$$G = \frac{32mglx^2}{\pi vd^4}$$

where m is the mass attached to the end of the rod and y is the vertical deflection.

l and *x* are the lengths as shown below.

Diagram not to scale

Determine a value of G for steel in N m⁻².

 $m = 100 \,\mathrm{g}$ with negligible uncertainty

 $l = 58.9 \,\mathrm{cm} \pm 0.1 \,\mathrm{cm}$

 $x = 10.3 \, \text{cm} \pm 0.1 \, \text{cm}$

 $y = 26 \,\mathrm{mm} \pm 1 \,\mathrm{mm}$

(2)

(d) The table shows values of ${\cal G}$ for different types of steel.

Type of steel	Structural steel	Carbon steel
$G/10^9{\rm N}{\rm m}^{-2}$	79.3	77.0

Deduce whether the data provided in part (c) would allow the student to determine the type of steel the rod was made from.

(Total for Question 4 = 16 marks)

(4)