

Steps of Query Processing

1. Parsing and translation

- Parser to check syntax, verify relation names, etc.
- Translate query into internal form (~ relational algebra)

2. Optimization

- 1. Equivalent expression trees
- 2. Best evaluation plan

3. Evaluation

Outline

- Query Optimization
- Generation Equivalent Expressions
 - Equivalence Rules
- Cost Estimation of Expressions

- Single relational algebra expression ~ many equivalent expressions
 - Equivalent expressions trees might involve different computational cost

SELECT salary FROM instructor WHERE salary < 75000

$$\sigma_{salary < 75000}(\prod_{salary}(instructor)) \ \prod_{salary}(\sigma_{salary < 75000}(instructor))$$

(b) Transformed expression tree

- Different algorithms can be used to evaluate the same relational algebra operation
 - Evaluation primitive: A relational algebra operation annotated with instructions on how to evaluate it
 - Evaluation plan: Sequence of primitives to evaluate a query
 - Feed to the query-evaluation engine

- Query optimization: To select the most efficient evaluation plan among all the possible ones to process a query
 - User is not expected to write the most efficient query!
- Worth taking some time to select a good plan!
 - Cost difference may be huge... From seconds to days!
- Steps for query optimization:
 - 1. Generate equivalent expression trees using equivalence rules
 - Expected to find (better) expressions at relational-algebra level
 - 2. Annotate resultant expressions to get alternative evaluation plans
 - Detailed strategy for processing the query (algorithms, indices, etc.)
 - 3. Choose the cheapest evaluation plan based on estimated costs

- Do you want to see the actual query evaluation plan?
 - Use explain <query> to display plan chosen by query optimizer, along with cost estimates
 - Syntax in your DBMS may change!
 - Use explain analyse <query> to see actual runtime statistics found by running the query

- Two relational algebra expressions are equivalent if both generate the same set of tuples on every legal DB instance
 - The order is irrelevant
 - SQL considers multisets of tuples
 - Two expressions are equivalent if both generate the same multiset of tuples on every legal DB instance.

- The optimizer uses equivalence rules to obtain equivalent expressions
 - An equivalence rule states that expressions of two forms are equivalent

Equivalence Rules: some examples

1. Conjunctive selection is similar to sequence of selections:

$$\sigma_{\theta_1 \wedge \theta_2}(\mathsf{E}) \equiv \sigma_{\theta_1}(\sigma_{\theta_2}(\mathsf{E}))$$

2. Selection operation is *commutative*:

$$\sigma_{\theta_1}(\sigma_{\theta_2}(\mathsf{E})) \equiv \sigma_{\theta_2}(\sigma_{\theta_1}(\mathsf{E}))$$

3. In a sequence of projections, only the last one matters:

$$\prod_{\text{where } L_1} (\prod_{L_2} (\dots (\prod_{L_n} (E)) \dots)) \equiv \prod_{L_1} (E)$$

4. Selections can be combined into Cartesian products and theta joins.

$$\begin{array}{cccc} \sigma_{\theta} \left(\mathsf{E}_1 \ \mathsf{x} \ \mathsf{E}_2 \right) & \equiv & \mathsf{E}_1 \bowtie_{\theta} \mathsf{E}_2 \\ \sigma_{\theta_1} \left(\mathsf{E}_1 \bowtie_{\theta_2} \mathsf{E}_2 \right) & \equiv & \mathsf{E}_1 \bowtie_{\theta_1 \land \theta_2} \mathsf{E}_2 \end{array}$$

Equivalence Rules: some examples

5. Theta (and natural) join is commutative:

$$E_1 \bowtie E_2 \equiv E_2 \bowtie E_1$$

6. a) Natural join is associative:

$$(E_1 \bowtie E_2) \bowtie E_3 \equiv E_1 \bowtie (E_2 \bowtie E_3)$$

b) Theta join is associative only when:

$$(E_1 \bowtie_{\theta_1} E_2) \bowtie_{\theta_2 \wedge \theta_3} E_3 \equiv E_1 \bowtie_{\theta_1 \wedge \theta_3} (E_2 \bowtie_{\theta_2} E_3)$$

where θ_2 involves attributes from only E_2 and E_3 .

Equivalence Rules: some examples

7. The selection operation *distributes* over the theta join when all the attributes in θ_s come from a single join expression:

$$\sigma_{\theta_s}(\mathsf{E}_1 \bowtie_{\theta_j} \mathsf{E}_2) \equiv (\sigma_{\theta_s}(\mathsf{E}_1)) \bowtie_{\theta_j} \mathsf{E}_2$$

8. The projection operation *distributes* over the theta join if the join condition θ involves only attributes from $L_1 \cup L_2$:

$$\prod_{\mathsf{L}_1 \,\cup\, \mathsf{L}_2} (E_1 \bowtie_{\theta} E_2) \quad \equiv \quad \prod_{\mathsf{L}_1} (E_1) \bowtie_{\theta} \prod_{\mathsf{L}_2} (E_2)$$

where L_1 and L_2 are attributes from E_1 and E_2 , respectively.

And many more...

- How is all this useful?
- Consider join associativity:

$$(r_1 \bowtie r_2) \bowtie r_3 \equiv r_1 \bowtie (r_2 \bowtie r_3)$$

We can decide to compute first joins that lead to smaller intermediate relations

E.g.,

$$\Pi_{name, title}(\sigma_{dept_name=\text{"Music"}}(instructor) \bowtie teaches \bowtie \Pi_{course_id, title}(course))$$

Only a few instructors belong to *Music* dept., so start with

$$(\sigma_{dept_name=\text{'Music''}}(instructor) \bowtie teaches)$$

E.g., "Find all instructors' names of Music dept. who taught a course in 2017, and the title of these courses"

$$\Pi_{name, \ title}(\sigma_{dept_name = \ "Music" \land year = 2017} (instructor \bowtie (teaches \bowtie \Pi_{course_id, title}(course))))$$

By join associativity (ER 6a):

$$\Pi_{name, \ title}(\sigma_{dept_name= \ "Music" \land year = 2017} \ (instructor \bowtie teaches)$$
 $\bowtie \Pi_{course_id, \ title} \ (course))$

■ By "conjunctive selection to sequence of selections" (ER 1) and "selection distribution on join" (ER 7):

$$\Pi_{name, \ title}(\ (\sigma_{dept_name=\ "Music"}\ (instructor) \bowtie \sigma_{year=\ 2017}\ (teaches)) \ \bowtie \ \Pi_{course_id, \ title}\ (course))$$

 $\prod_{name, title}$

instructor

teaches

instructor

teaches

dept name = Music

course

 \prod_{course_id}

course

 $\wedge vear = 2017$

- Query optimizers perform systematic enumeration of equivalent expressions
 - Simplest approach (expensive!!):

```
genAllEquivExpressions(E):
1. T ← {E}
2. while T grows then
1. Check equivalence rules R<sub>j</sub> in expressions E<sub>i</sub> in T
2. if any subexpression e<sub>i</sub> of E<sub>i</sub> matches one side of R<sub>j</sub> then
1. E' = E<sub>i</sub> - R<sub>j</sub><sup>1</sup> + R<sub>j</sub><sup>2</sup> //E<sub>i</sub> but substituting R<sub>j</sub> sides
2. if E' not in T then T ← T ∪{E'}
3. return T
```

- Two improvements:
 - Use shared subexpressions to reduce space requirements
 - Use cost estimates to avoid certain expressions

Now what? Or which?

Now we know how to generate tons of equivalent expressions...

What's next?

Can we tell which expression is better?

Let's estimate their cost

Less cost = more efficient query processing

Cost Estimation of Expressions

- Cost of an expression depends on the size of the input relation(s) and other statistics.
 - We use approximated values, and so is the cost
 - Recomputed after each DB modification (expensive!!)
 - Recomputed during idle time on specific events or under demand (outdated values used!!)
- In an expression tree, estimation of relevant statistics starts from the leaves up to the root.

Statistics:

- n_r : no. tuples in relation r
- I_r : size of tuples of relation r
- $v_{r(A)}$: no. distinct values of the (set of) attribute(s) A in relation r
- b_r : no. blocks that contain tuples of relation r
- f_r : blocking factor of relation r (no. tuples of r that fit into a block)
 - If tuples are physically stored together: $b_r = [n_r/f_r]$
- Info about indices (e.g., tree depth, no. leaves)

15

Cost Estimation of Expressions

- Histograms are usually stored too on numeric attributes
 - Equal-width vs Equal-depth
 - Frequency
 - No. distinct values
 - Without no. distinct values, cost estimates assume uniform distribution

- Many DB systems store the N most-frequent values with their counts
 - Histogram is built only on remaining values

Size Estimation of Selection

- A single equality comparison: σ_{A=a}(r)
 - $c = n_r/v_{r(A)}$: no. records that would satisfy the selection No information \rightarrow uniformity
 - c = 1: if A is a key attribute
 - $c = f_{h_a}/v_{h_a}$: Use histogram when available
- A single comparison: $\sigma_{A \le a}(r)$

 $[\sigma_{A\geq a}(r)$ is symmetric]

- If $min_{r(A)}$ and $max_{r(A)}$ are stored in our statistic's catalog:
 - c = 0, if $a < min_{r(A)}$
 - $c = n_r$, if $a \ge max_{r(A)}$
 - $c = n_r \cdot (a min_{r(A)})/(max_{r(A)} min_{r(A)})$, otherwise
- Use histograms when available
- $c = n_r/2$: if value a is unknown or in absence of statistical information

Size Estimation of Join

- Cartesian product $(r \times s)$:
 - $n_x = n_r \cdot n_s$ tuples, where each tuple takes $l_x = l_r + l_s$ bytes
- Natural join $(r \bowtie s)$: Let us assume r(R) and s(S)
 - If $R \cap S = \emptyset$, then $(r \bowtie s) \equiv (r \times s)$
 - If $R \cap S$ is a foreign key in S referencing R, then no. tuples in $(r \bowtie s) = \text{no. tuples in } s$
 - If $R \cap S = \{A\}$ is not a key in any case, assuming value uniformity: $n_{\bowtie} = \min(n_r \cdot n_s / v_{r(A)}; n_r \cdot n_s / v_{s(A)})$

■ Theta join $(r \bowtie_{\theta} s)$: calculate it from $(r \bowtie_{\theta} s) \equiv \sigma_{\theta}(r \times s)$

With histograms, these estimates can be improved

Number of Distinct Values Estimation

- Selection: $\sigma_{\theta}(r)$
 - If θ forces A to take a specific value (e.g., $\theta \equiv (A = 3)$):

$$V_{\sigma_{\theta}(r)(A)} = 1$$

- If θ forces A to take a value on a set (e.g., $\theta \equiv (A = 1) \lor (A = 3)$): $V_{\sigma_{\theta}(r)(A)} = \text{size of the given value set}$
- If $\theta \equiv (A \ op \ r)$:

** op = comparison operator

$$V_{\sigma_{\Omega}(r)(A)} = V_{r(A)} \cdot s$$

- In general: $v_{\sigma_{\Omega}(r)(A)} = \min(v_{r(A)}, n_{\sigma_{\Omega}(r)})$
- Join: $r \bowtie s$
 - If all attributes in A are from r:

$$V_{(r\bowtie s)(A)}=\min(V_{r(A)};n_{(r\bowtie s)})$$

• If A contains attributes A_r and A_s from r and s:

$$V_{(r\bowtie s)(A)}=\min(V_{r(A_r)}\cdot V_{s(A_S-A_r)};V_{r(A_r-A_S)}\cdot V_{s(A_S)};n_{r\bowtie s})$$

 $A \equiv attribute(s)$ obtained after the join

Cost Estimation of Expressions

- Cost of an expression depends on the size of the input relation(s) and other statistics.
 - We use approximated values, and so is the cost
 - Recomputed after each DB modification (expensive!!)
 - Recomputed during idle time on specific events or under demand (outdated values used!!)
- In an expression tree, estimation of relevant statistics starts from the leaves up to the root.

Statistics:

- n_r : no. tuples in relation r
- I_r : size of tuples of relation r
- $v_{r(A)}$: no. distinct values of the (set of) attribute(s) A in relation r
- b_r : no. blocks that contain tuples of relation r
- f_r : blocking factor of relation r (no. tuples of r that fit into a block)
 - If tuples are physically stored together: $b_r = \lceil n_r / f_r \rceil$
- Info about indices (e.g., tree depth, no. leaves)

