Analyzing CMS Open Collider Data through Topic Modeling

Radha Mastandrea

in collaboration with Patrick Komiske, Eric Metodiev, Preksha Naik, and Jesse Thaler

7/25/2019

Can we decompose a measured sample of jets into its components?

The CERN Open Data portal went live in 2014... opendata.cern.ch

...and since then, several exploratory studies have been conducted on the data

Jet Substructure Studies

Larkoski, Marzani, Thaler, Tripathee, Xue [arxiv:1704.05066]
Tripathee, Xue, Larkoski, Marzani, Thaler [arxiv:1704.05842]

Machine Learning Studies (on simulated data)

Madrazo, Cacha, Iglesias, Marco de Lucas [arxiv:1708.07034]
Andrews, Paulini, Gleyzer, Poczos [arxiv:1807.11916]
Andrews et al. [arxiv:1902.08276]

New Physics Searches

Cesarotti, Soreq, Strassler, Thaler, Xue [arxiv:1902.04222] Lester, Schott [arxiv:1904.11195]

Standard Model Studies

Apyan et al. [arxiv:1907.08197]
Mehdiabadi, Fahim [arxiv:1907.08842]

This analysis focuses on moderate- p_{τ} jets

CMS Run 2011A || Jet Primary Dataset || Jet300 Trigger 2.3 fb⁻¹ || 7 TeV pp collisions || anti-kT || R = 0.5 || $p_T \in [375, 425]$ GeV

Mixtures of jets can be decomposed using topic modeling

Relevant Studies

Demix [[arxiv:1710.01167]]

- Metodiev, Thaler [arxiv:1802.00008]
- Komiske, Metodiev, Thaler [arxiv:1809.01140]
- ATLAS Collaboration [arxiv:1906.09254]

LDA

- Dillon, Faroughy, Kamenik [arxiv:1904.04200]

Requirements:

- 1. different quark fractions
- 2. sample independence
- 3. anchor bins (AKA mutual irreducibility)

^{*}see backup slides for explicit formulas

Jet rapidity is an effective quark lever arm

Substructure of track-only quark-gluon jets is rapidity-invariant

"Anchor bins" define pure quark and gluon phase space regions

The topics algorithm recovers quark and gluon jet observable distributions

Summary

- Topic modeling has proven itself to be an effective unsupervised machine learning algorithm for decomposing jet mixtures through substructure
- Open data is a valuable tool for exploratory studies, and HEP research is just starting to scratch its surface
- There is incredible potential for both established researchers and new scientists to learn from the CMS open data

Backup slides

CMS AOD files have been translated to MOD files

BeginEvent Version 6 CMS 2011A Data Jet

#	# /home/cms-opendata/MITOpenDataProject/eos/op_ndata/cms/Run2011A/Jet/MOD/12Oct2013-v1/20000/000D4260-D23E-E311-A850-02163E008D77.mod												
#	Cond	RunNum	EventNum	EventNum LumiBl		lock NPV		nestamp	msOffset				
	Cond	160578	38142433		366 4		1300	254008	84656				
#	Trig		95	Name	Prescale_1 Presca		cale_2		Fired?				
	Trig		HLT_DiJetAve30	U_v4	1		15		0				
	Trig		HLT_DiJetAve50	_	1		3		1				
	Trig		HLT_DiJetAve70	_	1		1		0				
	Trig		HLT_Jet11	_	1		1		1				
	Trig		HLT_Jet15	60_v1	1	1		0					
									_				
#	AK5	рж 40 52110105	ру	000 4606	pz	energy		jec	no_of_	const	chrg_multip		
	AK5	-48.53112195		922.4620		25796767		5373647		14	0		
	AK5 AK5	27.14014056 6.87947531		176.2465 127.7124		60830433 89105131	100,000,000	L999369 3558543		14 10	9		
	AK5 AK5	-1.21714232		-26.8705		71690560	100,000,000	1206147		10	3		
	AKS	-1.21/14232	-9.77138690	-20.8703	20.	/1690360	1.14	4206147	J	0	2		
#	PFC	х	ру		pz	energy		pdgId		PV?			
	PFC	3.05231479		-18.0872		48433020		211		1			
	PFC	7.15976356		-46.8692		01232034		22		0			
	PFC	1.88167876	-1.89435884	-12.6039	99834 12.	88371393		130		0			
	PFC	0.40022073	-0.42509065	-2.4763	31023 2.	54420735		22		0			
	PFC	5.19161920	-18.85569567	-84.8428	39283 87.	06793964		-211		0			
	PFC	0.41414809	-0.59229172	-2.2732	28073 2.	38540005		130		0			
	PFC	-0.35573217	-0.03071949	-1.1469	96234 1.	20933513		-211		3			
	PFC	0.18477403	-0.39789019	-3.4541	12354 3.	48187127		130		0			
EndEvent													

The Jet 2011 dataset contains many single-jet triggers

We can cross-check trigger efficiencies with CMS simulated data

There is good agreement between detected and simulated CMS data

We can pick out the most robust jet observables using simulated data

Charged hadron subtraction is necessary to mitigate pileup

The topics algorithm is summarized in a few equations

Definitions $\mathbf{x} = \text{jet observable}$ $p(\mathbf{x}) = \text{jet observable distribution}$ $f_q = \text{quark fraction}$ $f_q = \text{gluon fraction}$ $\mathcal{L} = \text{log-likelihood ratio}$

Theory
$$\kappa(M_1|M_2) = \frac{1-f_q^{(1)}}{1-f_q^{(2)}}$$

$$\kappa(M_2|M_1) = \frac{f_q^{(2)}}{f_a^{(1)}}$$

Setup $p(\mathbf{x}) = f_q p_q(\mathbf{x}) + f_g p_g(\mathbf{x})$ $f_q = 1 - f_q$ $f_q^{(1)} > f_q^{(2)}$

Topic determination

$$p_{T_1}(\mathbf{x}) = \frac{p_{M_1}(\mathbf{x}) - \kappa(M_1|M_2)p_{M_2}(\mathbf{x})}{1 - \kappa(M_1|M_2)}$$
BOSTON

 $\kappa(M_1|M_2) = \exp(-\mathcal{L}(\text{upper anchor bin}))$

 $\kappa(M_2|M_1) = \exp(\mathcal{L}(\text{lower anchor bin}))$

Jet quark fraction is dependent on rapidity

Quark and gluon anchor bins are determined quantitatively

Topic recovery is robust with respect to an η gap

