

<0.4 Ω CMOS 1.8 V to 5.5 V SPST Switches

Data Sheet

ADG801/ADG802

FEATURES

0.4 Ω maximum on resistance at 125°C
0.08 Ω maximum on resistance flatness at 125°C
1.8 V to 5.5 V single supply
Automotive temperature range from -40°C to +125°C
400 mA current-carrying capability
Tiny 6-lead SOT-23 and 8-lead MSOP packages
35 ns switching times
Low power consumption
TTL-/CMOS-compatible inputs
Pin compatible with ADG701/ADG702

APPLICATIONS

Power routing
Cellular phones
Modems
PCMCIA cards
Hard drives
Data acquisition systems
Communications systems
Relay replacement
Battery-powered systems

GENERAL DESCRIPTION

The ADG801 and ADG802 are monolithic CMOS, single-pole, single throw (SPST) switches with on resistance of less than 0.4 Ω . These switches are designed using an advanced submicron process that provides extremely low on resistance, high switching speed, and low leakage currents.

The low on resistance of <0.4 Ω makes these parts ideal for applications where low on resistance switching is critical.

The ADG801 switch is normally open (NO), while the ADG802 is normally closed (NC). Each switch conducts equally well in both directions when on.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

PRODUCT HIGHLIGHTS

- 1. Low on resistance (0.25 Ω typical).
- 2. 1.8 V to 5.5 V single-supply operation.
- 3. Tiny 6-lead SOT-23 and 8-lead MSOP packages.
- 4. 400 mA current-carrying capability.
- 5. Automotive temperature range from -40°C to +125°C.
- 6. Pin compatible with ADG701 (ADG801) and ADG702 (ADG802).

TABLE OF CONTENTS

reatures
Applications
Functional Block Diagram
General Description
Product Highlights
Revision History
Specifications
Absolute Maximum Ratings
REVISION HISTORY
1/10 D 4 D D
1/12—Rev. A to Rev. B
-,
Deleted 6-Ball WLCSP PackageUniversal
Deleted 6-Ball WLCSP PackageUniversal Added Table Title to Table 3; Renumbered Sequentially
Deleted 6-Ball WLCSP PackageUniversal Added Table Title to Table 3; Renumbered Sequentially
Deleted 6-Ball WLCSP Package

ESD Caution	
Pin Configurations and Function Descriptions	6
Typical Performance Characteristics	7
Terminology	9
Test Circuits	10
Outline Dimensions	12
Ordering Guide	13

SPECIFICATIONS

 V_{DD} = 5 V \pm 10%, GND = 0 V, unless otherwise noted. The automotive temperature range is -40° C to $+125^{\circ}$ C.

Table 1.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C1	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (RoN)	0.25			Ωtyp	$V_S = 0 \text{ V to V}_{DD}$, $I_S = 100 \text{ mA}$; see Figure 13
	0.3	0.35	0.4	Ω max	$V_S = 0 \text{ V to V}_{DD}$, $I_S = 100 \text{ mA}$; see Figure 13
On Resistance Flatness (R _{FLAT(ON)})	0.05			Ωtyp	$V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
		0.07	0.08	Ω max	
LEAKAGE CURRENTS					$V_{DD} = 5.5 \text{ V}$
Source Off Leakage, I _s (Off)	±0.01			nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}; \text{ see Figure 14}$
	±0.25	±3	±30	nA max	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}$; see Figure 14
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}; \text{ see Figure 14}$
	±0.25	±3	±30	nA max	$V_S = 4.5 \text{ V/1 V}, V_D = 1 \text{ V/4.5 V}; \text{ see Figure 14}$
Channel On Leakage, ID, Is (On)	±0.01			nA typ	$V_S = V_D = 1 \text{ V, or 4.5 V; see Figure 15}$
	±0.25	±3	±30	nA max	$V_S = V_D = 1 \text{ V, or } 4.5 \text{ V; see Figure } 15$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, V _{INL}			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	35			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	45	50	55	ns max	$V_S = 3 V$; see Figure 16
toff	9			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	15	18	21	ns max	$V_S = 3 V$; see Figure 16
Charge Injection	50			pC typ	$V_S = 2.5 \text{ V}, R_S = 0 \Omega; C_L = 1 \text{ nF}; \text{ see Figure 17}$
Off Isolation	-61			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; $f = 100 kHz$; see Figure 18
Bandwidth –3 dB	12			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 19
Cs (Off)	180			pF typ	f = 1 MHz
C _D (Off)	180			pF typ	f = 1 MHz
C_D , C_S (On)	420			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 5.5 \text{ V}$
I_{DD}	0.001			μA typ	Digital inputs = 0 V or 5.5 V
		1.0	2.0	μA max	

 $^{^1}$ On resistance parameters tested with l_S = 10 mA. 2 Guaranteed by design, not subject to production test.

 $V_{\rm DD}$ = 2.7 V to 3.6 V, GND = 0 V, unless otherwise noted. The automotive temperature range is -40°C to +125°C.

Table 2.

Parameter	25°C	-40°C to +85°C	-40°C to +125°C1	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0V$ to V_{DD}	V	
On Resistance (Ron)	0.4			Ωtyp	$V_S = 0 \text{ V to } V_{DD}$, $I_S = 100 \text{ mA}$; see Figure 13
	0.6	0.65	0.7	Ω max	$V_S = 0 \text{ V to } V_{DD}$, $I_S = 100 \text{ mA}$; see Figure 13
On Resistance Flatness (R _{FLAT(ON)})	0.1	0.1	0.1	Ωtyp	$V_S = 0 \text{ V to } V_{DD}, I_S = 100 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 \text{ V}$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_S = 3.3 \text{ V/1 V}, V_D = 1 \text{ V/3.3 V}; \text{ see Figure 14}$
	±0.25	±3	±30	nA max	$V_S = 3.3 \text{ V/1 V, } V_D = 1 \text{ V/3.3 V; see Figure 14}$
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_S = 3.3 \text{ V/1 V}, V_D = 1 \text{ V/3.3 V}$; see Figure 14
	±0.25	±3	±30	nA max	$V_S = 3.3 \text{ V/1 V}, V_D = 1 \text{ V/3.3 V}$; see Figure 14
Channel On Leakage, ID, Is (On)	±0.01			nA typ	$V_S = V_D = 1 \text{ V, or 3.3 V; see Figure 15}$
	±0.25	±3	±30	nA max	$V_S = V_D = 1 \text{ V, or } 3.3 \text{ V; see Figure } 15$
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±0.1	μA max	
C _{IN} , Digital Input Capacitance	5			pF typ	
DYNAMIC CHARACTERISTICS ²					
ton	40			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	55	60	65	ns max	V _s = 1.5 V; see Figure 16
toff	9			ns typ	$R_L = 50 \Omega$, $C_L = 35 pF$
	15	18	21	ns max	V _s = 1.5 V; see Figure 16
Charge Injection	10			pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF; see Figure 17}$
Off Isolation	-61			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 18
Bandwidth –3 dB	12			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 19
C _s (Off)	180			pF typ	f = 1 MHz
C _D (Off)	180			pF typ	f = 1 MHz
C_D , C_S (On)	420			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 3.6 \text{ V}$
I _{DD}	0.001			μA typ	Digital inputs = 0 V or 3.6 V
		1.0	2.0	μA max	

 $^{^1}$ On resistance parameters tested with I_S = 10 mA. 2 Guaranteed by design, not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25$ °C, unless otherwise noted.

Table 3.

Table 3.	
Parameter	Rating
V _{DD} to GND	−0.3 V to +7 V
Analog Inputs ¹	−0.3 V to VDD + 0.3 V or
	30 mA, whichever occurs first
Digital Inputs ¹	-0.3 V to VDD + 0.3 V or
	30 mA, whichever occurs first
Continuous Current, Pin S or Pin D	400 mA
Peak Current, Pin S or Pin D	800 mA, pulsed at 1 ms,
	10% duty cycle max
Operating Temperature Range Automotive	−40°C to +125°C
Storage Temperature Range	−65°C to +150°C
Junction Temperature (T _{JMAX})	150°C
Package Power Dissipation	$(T_{JMAX} - T_A)/\theta_{JA}$
MSOP	
θ_{JA} Thermal Impedance	206°C/W
θ _{JC} Thermal Impedance	44°C/W
SOT-23 (4-Layer Board)	
θ_{JA} Thermal Impedance	119°C/W
θ_{JC} Thermal Impedance	91.99°C/W
Lead Temperature, Soldering (10 sec)	300°C
IR Reflow, Peak Temperature	235°C
(<20 sec)	233 C
Reflow Soldering (Pb-Free)	
Peak Temperature	260(+0/-5)°C
Time at Peak Temperature	10 sec to 40 sec
	<u> </u>

¹Overvoltages at Pin IN, Pin S, or Pin D are clamped by internal diodes. Current should be limited to the maximum ratings provided.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Truth Table

ADG801 (Pin IN)	ADG802 (Pin IN)	Switch Condition
0	1	Off
1	0	On

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 6-Lead SOT-23 (RJ-6)

Figure 3. 8-Lead MSOP (RM-8)

Table 5. Pin Function Descriptions

Pin Number			
SOT-23	MSOP	Mnemonic	Description
1	1	D	Drain Terminal. Can be an input or an output.
2	8	S	Source Terminal. Can be an input or an output.
3	7	GND	Ground (0 V) Reference.
4	6	IN	Logic Control Input.
5	2, 3, 5	NC	No Connect. Do not connect to this pin.
6	4	V_{DD}	Most Positive Power Supply Potential.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. On Resistance vs. V_D (V_S)

Figure 5. On Resistance vs. V_D (V_S) for Different Temperatures

Figure 6. On Resistance vs. V_D (V_S) for Different Temperatures

Figure 7. Leakage Current vs. Temperature

Figure 8. Charge Injection vs. Source Voltage

Figure 9. ton/toff Times vs. Temperature

Figure 10. Off Isolation vs. Frequency

Figure 11. On Response vs. Frequency

Figure 12. Logic Threshold Voltage vs. Supply Voltage

TERMINOLOGY

 \mathbf{V}_{DD}

The most positive power supply potential.

 I_{DD}

Positive supply current.

GND

Ground (0 V) reference.

S

The source terminal can be an input or an output.

D

The drain terminal can be an input or an output.

IN

Logic control input.

 $V_D(V_S)$

Analog voltage on Terminal D and Terminal S.

 \mathbf{R}_{ON}

Ohmic resistance between Terminal D and Terminal S.

R_{FLAT(ON)}

The difference between the maximum and minimum value of on resistance as measured over the specified analog signal range.

I_s (Off)

Source leakage current with the switch off.

I_D (Off)

Drain leakage current with the switch off.

 I_D , I_S (On)

Channel leakage current with the switch on.

 V_{INL}

Maximum input voltage for Logic 0.

 \mathbf{V}_{INH}

Minimum input voltage for Logic 1.

 $I_{INL}(I_{INH})$

Input current of the digital input.

Cs (Off)

The off switch source capacitance is measured with reference to ground.

C_D (Off)

The off switch drain capacitance is measured with reference to ground.

C_D, C_s (On)

The on switch capacitance is measured with reference to ground.

 C_{IN}

Digital input capacitance.

ton

The delay between applying the digital control input and when the output switches on. See Figure 16.

toff

The delay between applying the digital control input and when the output switches off.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response

The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.

TEST CIRCUITS

Figure 13. On Resistance

Figure 14. Off Leakage

Figure 15. On Leakage

Figure 16. Switching Times

Figure 17. Charge Injection

Figure 18. Off Isolation

Figure 19. Bandwidth

OUTLINE DIMENSIONS

Figure 20. 6-Lead Small Outline Transistor Package [SOT-23] (RJ-6) Dimensions shown in millimeters

Figure 21. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding ²
ADG801BRM	−40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SLB
ADG801BRM-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SLB
ADG801BRM-REEL7	−40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SLB
ADG801BRMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S06
ADG801BRMZ-REEL	−40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S06
ADG801BRMZ-REEL7	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S06
ADG801BRT-500RL7	−40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SLB
ADG801BRT-REEL7	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SLB
ADG801BRTZ-500RL7	−40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S06
ADG801BRTZ-REEL	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S06
ADG801BRTZ-REEL7	−40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S06
ADG802BRM	−40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SMB
ADG802BRM-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SMB
ADG802BRM-REEL7	−40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SMB
ADG802BRMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	SOF
ADG802BRMZ-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S0F
ADG802BRMZ-REEL7	−40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	S0F
ADG802BRT-500RL7	-40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	SMB
ADG802BRTZ-500RL7	−40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S0F
ADG802BRTZ-REEL	−40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S0F
ADG802BRTZ-REEL7	−40°C to +125°C	6-Lead Small Outline Transistor Package [SOT-23]	RJ-6	S0F

 $^{^1}$ Z = RoHS Compliant Part. 2 Branding on SOT-23 and MSOP packages is limited to three characters due to space constraints.

ADG801/ADG802

NOTES

NOTES

ADG801/ADG802		
---------------	--	--

NOTES

