E 232 Section A Group 4

Cross Over Network

By Carlos Arce Sanchez,

Eugene Kozlakov,

and Sophia Turci

Table of Contents

Title	Slide 1
Table of Contents	Slide 2
Problem Statement	Slide 3
Quality Functional Deployment	tSlide 4
Hypothesis	Slide 5
Butterworth HP Analysis	Slide 6
Butterworth LP Analysis	Slide 7
Chebyshev HP Analysis	Slide 8
Chebyshev LP Analysis	Slide 9
Chebyshev-Amplifier Setup	Slide 10
Butterworth-Amplifier Setup	Slide 11
Biasing Resistor Load Choices.	Slide 12
Test Results	.Slides 13-18
Test Summary Data	Slide 19
Final Conclusion	

Problem Statement

This Project Entails:

- The design and simulation of filter/amplifier circuits that optimize and equalize the performance of a speaker system consisting of a Woofer and Mid-Range.
- Crossover frequency: 100-125Hz
- Filter Slope: -12dB/octave minimum.
- Quality Functional Deployment: Cost not a priority.
- Woofer Resistance: 3.35 Ohms.
- Mid-Range Resistance: 4 Ohms.

Quality Functional Deployment (QFD)

Hypothesis

- Based on theory: Butterworth is well rounded to meet design needs
- Chebyshev is a strong second contender.

Images Src.: Dr. Kevin Ryan's Design IV Lecture Slides, Chapter 3, Slides 58 & 60.

Butterworth Highpass Filter Analysis (5th Order)

The Gain vs. Frequency graph above has a slope of approximately: 10.1 dB/Octave in the stopband.

Butterworth Lowpass Filter Analysis (5th Order)

The Gain vs. Frequency graph above has a slope of approximately: -27.2 dB/Octave in the stopband.

Chebyshev Highpass Filter Analysis (5th Order)

The Gain vs. Frequency graph above has a slope of approximately: 17.93 dB/Octave in the stopband.

Chebyshev Lowpass Filter Analysis (5th Order)

The Gain vs. Frequency graph above has a slope of approximately: -11.54 dB/Octave in the stopband.

Chebyshev-Amplifier Setup

Butterworth-Amplifier Setup

Biasing Resistor Load Choices

R2		R1	Req	C (microFarads)
	10	80.90909	181.8182	0.043767609
	20	161.8182	363.6364	0.021883805
	30	242.7273	545.4545	0.014589203
	40	323.6364	727.2727	0.010941902
	50	404.5455	909.0909	0.008753522
	55	445	1000	0.007957747

Test Results

Final Test Summary Data

Butterworth-Amplifier

- High Pass Current Gain (200 Hz):10.937 dB
- High Pass Attenuation (200 Hz): -11.626 dB
- Low Pass Current Gain (50 Hz): 10.74 dB
- Low Pass Attenuation (50 Hz): -30.543 dB

Chebyshev-Amplifier

- High Pass Current Gain (200 Hz): 11.609 dB
- High Pass Attenuation (200 Hz): -22.237 dB
- Low Pass Current Gain (50 Hz): 12.640 dB
- Low Pass Attenuation (50 Hz): -29.293 dB

Final Conclusion

As you can see, the Chebyshev system provides overall better Gain, and decent attenuation of unwanted frequencies when compared to the Butterworth.

Thus, the team sides with the Chebyshev crossover network.

Questions? Comments?