Cache Memories

Lecture 15

Memory "Access method"

- Based on the hardware implementation of the storage device
- Four types
 - Sequential
 - Direct
 - Random
 - Associative

COA, BESE 15 B, Asst Prof Athar Mohsin

Memory "Access method"

- Sequential Access Method
 - Start at the beginning and read through in order
 - Access time depends on location of data and previous location
 - Example: tape
- Direct Access Method
 - Individual blocks have unique address
 - Access is by jumping to vicinity then performing a sequential search
 - Access time depends on location of data within "block" and previous location
 - Example: hard disk

COA, BESE 15 B, Asst Prof Athar Mohsin

3

Memory "Access method"

- Random Access Method
 - Individual addresses identify locations exactly
 - Access time is consistent across all locations and is independent previous access
 - Example: RAM
- Associative Access Method
 - Addressing information must be stored with data in a general data location
 - A specific data element is located by a comparing desired address with address portion of stored elements
 - Access time is independent of location or previous access
 - · Example: cache

COA, BESE 15 B, Asst Prof Athar Mohsin

Mapping Functions

- A mapping function is the method used to locate a memory address within a cache
 - It is used when copying a block from main memory to the cache and it is used again when trying to retrieve data from the cache
- There are three kinds of mapping functions
 - Direct
 - Full Associative
 - Set Associative

COA, BESE 15 B, Asst Prof Athar Mohsin

Direct mapping Cache

- Direct mapped cache is not as expensive as other caches because:
 - The mapping scheme does not require any searching
 - Each main memory block has a specific location to which it maps in cache;
 - When a main memory address is converted to a cache address,
 - the CPU knows exactly where to look in the cache for that memory block by simply examining the bits in the block field.
 - Example: Dictionary

COA, BESE 15 B, Asst Prof Athar Mohsin

7

Fully Associative Cache

- Allowing a main memory block to be placed anywhere in cache.
 - The only way to find a block mapped this way is to search all of cache
 - requires the entire cache to be built from associative memory so it can be searched in parallel.
 - Compare the requested tag to all tags in cache to determine whether the desired data block is present in cache.
- The main memory address is partitioned into two pieces, the tag and the word.

COA, BESE 15 B, Asst Prof Athar Mohsin

Fully Associative

- Any block from main memory can map to any location in the cache
 - word id bits are used to identify which word in the block is needed,
 - The tag becomes all of the remaining bits.
- we could allow a block to go anywhere in cache.
- In this way, cache would have to fill up before any blocks are evicted.
 - This is how fully associative cache works.

Tag word id bits

COA, BESE 15 B, Asst Prof Athar Mohsir

Fully Associative Cache

- For example,
 - Memory configuration with 2¹⁴ words,
 - A cache with 16 blocks, and
 - Blocks of 8 words,

- The word field is 3 bits, but the tag field is 11 bits.
 - This tag must be stored with each block in cache
 - When the cache is searched for a specific main memory block, the tag field of the main memory address is compared to all the valid tag fields in cache;
 - · if a match is found, the block is found
 - If there is no match, we have a cache miss and the block must be transferred from main memory

COA, BESE 15 B, Asst Prof Athar Mohsin

Fully Associative Example

- Suppose a computer using fully associative cache has 216 words of main memory and a cache of 64 blocks, where each cache block contains 32 words.
 - a. How many blocks of main memory are there?
 - b. What is the format of a memory address as seen by the cache,
 i.e., what are the sizes of the tag and word fields?
 - c. To which cache block will the memory reference F8C9 map?
- Ans.
 - $a. 2^{16}/2^5 = 2^{11}$
 - b. 16 bit addresses with 11 bits in the tag field and 5 in the word field
 - c. Since it is associative cache, it can map anywhere

COA, BESE 15 B, Asst Prof Athar Mohsin

11

Problem with Direct & Fully Associative

- Owing to its speed and complexity, associative cache is very expensive.
- Direct mapping is inexpensive, it is very restrictive.
- To see how direct mapping limits cache usage:
 - suppose we are running a program on the architecture described in our class examples.
 - the program is using block 0, then block 16, then 0, then 16, and so on as it executes instructions.
 - which means the program would repeatedly throw out 0 to bring in 16, then throw out 16 to bring in 0,
 - Additional blocks in cache not being used
 - Fully associative cache remedies this problem by allowing a block from main memory to be placed anywhere.
 - However, it requires a larger tag to be stored with the block
 - · requiring special hardware for searching of all blocks
 - more expensive cache

COA, BESE 15 B, Asst Prof Athar Mohsin

N-way set associative cache mapping

- A combination of Direct and Fully Associative Mapping approaches.
 - Scheme is similar to direct mapped cache,
 - The address is used to map the block to a certain cache location
 - The important difference:
 - Instead of mapping to a single cache block, an address maps to a set of several cache blocks.
 - All sets in cache must be the same size.
- similar to the way in which fully associative cache works.
 - Instead of mapping anywhere in the entire cache, a memory reference can map only to the subset of cache slots.

COA, BESE 15 B, Asst Prof Athar Mohsin

13

Set Associative Mapping

- The number of cache blocks per set in set associative cache varies according to overall system design.
 - For example, in a 2-way set associative cache, there are two cache blocks per set,
 - Each set contains two different memory blocks.
 - set 0 contains two blocks, one that is valid and holds the data A, B, C, . . . , and another that is not valid.

Set	Tag	Block 0 of set	Valid	Tag	Block 1 of set	Valid
0	00000000	Words A, B, C,	1			0
1	11110101	Words L, M, N,	1			0
2			0	10111011	P, Q, R,	1
3			0	11111100	T, U, V,	1

COA, BESE 15 B, Asst Prof Athar Mohsin

Set Associative cache

- In set associative cache mapping, a memory reference is divided into three fields:
 - Tag, set, and word.
- As with direct-mapped cache,
 - The word field chooses the word within the cache block, and
 - The tag field uniquely identifies the memory address.
- The set field determines the set to which the memory block maps.

COA, BESE 15 B, Asst Prof Athar Mohsin

10

Set Associative Example

- Suppose we have a main memory of 2¹⁴ bytes.
 - This memory is mapped to a 2-way set associative cache having 16 blocks where each block contains 8 words.
 - Since this is a 2-way cache,
 - each set consists of 2 blocks, and there are 8 sets.
- If cache consists of a total of 16 blocks, and each set has 2 blocks, then there are 8 sets in cache.
- Thus, we need
 - 3 bits for the set, 3 bits for the word, giving 8 leftover

Example

- Suppose
 - A memory has 128M words. \rightarrow 2²⁷
 - Blocks are 64 words in length and →26
 - The cache consists of 32K blocks. \rightarrow 2¹⁵
- Show the format for a main memory address assuming a 2-way set associative cache mapping scheme.
- Ans.
 - Each address has 27 bits, and
 - there are 7 in the tag field,
 - 14 in the set field and

• 6 in the word field.

T- 7 bits

S- 14 bits

W- 6 bits

COA, BESE 15 B, Asst Prof Athar Mohsin

Next Class

• Block Replacement Policies

COA, BESE 15 B, Asst Prof Athar Mohsin