Martin の公理, 範疇定理, 小さな基数

石井大海

2014-05-30

1 Martin の公理と範疇定理

 $\mathrm{MA}(\kappa)$ は「任意の c.c.c. poset $\mathbb P$ に対し $\mathrm{MA}_{\mathbb P}(\kappa)$ 」という主張だった。この「c.c.c.」というのは落とせない、というのが次の補題:

補題 1. $\neg MA_{\mathbb{P}}(\aleph_1)$ となるような non-c.c.c. poset \mathbb{P} が存在する.

Proof. 前回のゼミの際に $\operatorname{Fn}(I,J)$ が c.c.c. を持つことと $I=\emptyset \lor |J| \le \aleph_0$ であることが同値なことを見た。 そこで, $I=\omega,J=\omega_1$ の場合を考えれば, $\mathbb{P}=\operatorname{Fn}(\omega,\omega_1)$ は c.c.c. を持たない.ここで,次の集合を考える:

$$D_n := \{ p \in \mathbb{P} \mid n \in \text{dom}(p) \} (n < \omega) \qquad E_\alpha := \{ p \in \mathbb{P} \mid \alpha \in \text{rng}(p) \} (\alpha < \omega_1)$$

 $p\in\mathbb{P}$ が有限であることから、各 E_n,D_n は \mathbb{P} で稠密.そこで $\mathrm{MA}_{\mathbb{P}}(\omega_1)$ とすれば、 $\{D_n,E_\alpha\}$ -ジェネリックなフィルター $G\subseteq\mathbb{P}$ が取れる.特に、 $f_G=\bigcup G$ とおくと $f_G:\omega \xrightarrow{\mathrm{onto}} \omega_1$ となる.これは $\omega<\omega_1$ に反する.

ここでの \mathbb{P} は c.c.c. でない poset の一例に過ぎない。c.c.c. よりも弱い条件しか満たしていなくても、 $\mathrm{MA}_{\mathbb{P}}(\aleph_1)$ は成り立ちうる。例えば「c.c.c.」という条件を「proper」という条件に弱めた PFA という公理は ZFC と無矛盾で, $\mathrm{MA}(\aleph_1)$ から独立な多くの命題を導くことが知られている。

まず初めに見る MA の応用は,Baire の範疇定理の一般化:

補題 2. $\mathrm{MA}(\kappa)$ を仮定する。 X: c.c.c. コンパクト Hausdorff 空間, $X_{\alpha}\subseteq X$: 閉疎集合 $(\alpha<\kappa)$

$$\Longrightarrow \bigcup_{\alpha < \kappa} X_{\alpha} \neq X$$

Proof.~X は c.c.c. を満たすので、空でない開集合の成す poset \mathbb{O}_X も c.c.c. を満たすことに注意する.

補集合を取れば、結局示すべき事は次と同値である:

$$U_{\alpha}$$
: 稠密開集合 $(\alpha < \kappa) \Rightarrow \bigcap_{\alpha < \kappa} U_{\alpha} \neq \emptyset$

 $G\subseteq \mathbb{O}_X$ をフィルターとすると、G は有限交叉性を持つ。ここで、 $F_G:=\bigcap_{p\in G}\bar{p}$ とおけば、 F_G は空でない。もし $F_G=\emptyset$ だったとすると、 $\bigcup_{p\in G}p^e=X$ は X の開被覆である。よって X のコンパクト性より、 $p_0,\dots,p_n\in G$ があって $X=p_0^e\cup\dots\cup p_n^e$ と出来る。すると、 $p_0\cap\dots\cap p_n\subseteq \bar{p_0}\cap\dots\bar{p_n}=\emptyset$ となり、 $p_i\in G$ に反する。

ここで, $D_{\alpha}:=\{p\in\mathbb{O}_X\mid \bar{p}\subseteq U_{\alpha}\}\quad (\alpha<\kappa)$ と置くと,各 D_{α} は稠密である.それを示すため, $p\in\mathbb{O}_X$ を取ろう. U_{α} は稠密開集合なので, $p\cap U_{\alpha}\in\mathbb{O}_X$ である.今,X はコンパクト Hausdorff 空間なので特に正則空間となり, $\bar{q}\subseteq p\cap U_{\alpha}$ となるような空でない開集合 $q\in\mathbb{O}_X$ を取ることが出来る.この時取り方から明らかに $q\leq p$ かつ $q\in D_{\alpha}$.よって各 D_{α} は \mathbb{O}_X で稠密である.

そこで、 $\operatorname{MA}(\kappa)$ により、 $\{D_{\alpha}\}$ -ジェネリックなフィルター $G\subseteq \mathbb{O}_X$ を取る。先程の議論より $F_G=\bigcap_{p\in G}\bar{p}\neq\emptyset$ である。特に、 $G\cap U_{\alpha}\neq\emptyset$ より各 α について $\bigcap_p\bar{p}\subseteq\bar{p}\subseteq U_{\alpha}$ となるような $p\in G$ が存在する。よって、

$$\bigcap_{\alpha < \kappa} U_{\alpha} \supseteq \bigcap_{p \in G} \bar{p} \neq \emptyset$$

ジェネリックフィルターの補題より $\kappa=\omega$ の場合は c.c.c. 性を落として,一般のコンパクト Hausdorff 空間について成り立つことになる.最初にも述べたように,これは Baire の範疇定理の拡張になっていて,ここで $\mathrm{MA}(\kappa)$ を使ってジェネリックフィルターを取っている部分が通常の証明で開集合の ω -列を取る所と対応している.実際にはこの形の命題は $\mathrm{MA}(\kappa)$ と同値である事が後の節でわかる.

この定理は、もし X が孤立点を持つなら $MA(\kappa)$ など仮定しなくても自明に成立する(孤立点は一点で開集合になるので).これは、 $\mathbb P$ が**アトム**を持つ時に $\mathrm{MA}_{\mathbb P}(\kappa)$ が自明に成立するのと似ている.

Def. 1. $r \in \mathbb{P}$ が \mathbb{P} のアトム $\stackrel{\text{def}}{\Longleftrightarrow} \forall p,q \leq r [p \parallel q]$

特に、Hausdorff 空間の場合、 $r \in \mathbb{O}_X$ がアトム $\Leftrightarrow |r| = 1$ である.

補題 3. • $r \in \mathbb{P}$ がアトムなら、 $\forall \kappa \operatorname{MA}_{\mathbb{P}}(\kappa)$

• \mathbb{P} がアトムを持たないなら, $\neg MA_{\mathbb{P}}(2^{|\mathbb{P}|})$

Proof. 証明は前回やったのでもうやらない.

もしも $\mathbb P$ がアトムを持たないなら、任意の $r\in \mathbb P$ について、それより下に少なくとも可算濃度の反鎖が存在することがわかる:

補題 4. \mathbb{P} がアトムを持たない $\Rightarrow \forall r \in \mathbb{P} \exists A \subseteq \downarrow r [|A| \geq \aleph_0 \land A$ は反鎖]

Proof. 下図の通り:

2 Martin **の公理と小さな基数**

Def. 2. m を $\neg MA(\kappa)$ となる最小の κ とする.

今までの結果を纏めると、 $\aleph_1 \leq \mathfrak{m} \leq \mathfrak{c}$ となるこれは第一節で議論した小さな基数たちの範囲と同じだが、特に \mathfrak{m} は今まで議論した中で最小なことがわかる.この記号を使えば $MA \Leftrightarrow \mathfrak{m} = \mathfrak{c}$ だから,MA の下ではこれらの基数は全て \mathfrak{c} と一致することになる.今回は特に $\mathfrak{m} \leq \mathfrak{p}$ を示す.

Def. 3. • 集合族 \mathcal{E} が**強有限交叉性** (Strong Finite Intersection Property; *SFIP*) を持つ $\stackrel{\mathrm{def}}{\Longleftrightarrow} \forall \mathcal{F} \in [\mathcal{E}]^{<\omega} \mid \bigcap \mathcal{F} \mid \geq \aleph_0$

- K が $\mathcal{E} \subseteq [\omega]^{\omega}$ の擬共通部分 (pseudointersecion) である $\stackrel{\text{def}}{\Longleftrightarrow} |K| = \aleph_0 \land \forall Z \in \mathcal{E} [K \subseteq^* Z]$
- \mathfrak{p} =SFIP を持つが擬共通部分を持たないような $[\omega]^\omega$ の部分集合の最小濃度

第一節で議論した髭文字系の小さな基数の中で p は最小だった.以下では m ≤ p を示す:

補題 5. ⋒ ≤ ₽

Proof. $\kappa < \mathfrak{m} \to \kappa < \mathfrak{p}$ を示そう。即ち, $\mathrm{MA}(\kappa)$ を仮定し, $\mathcal{E} \subseteq [\omega]^\omega$ を SFIP を持つ濃度 κ の族とした時, \mathcal{E} は擬共通部分 K を持つことを示す。

 $\mathbb{P}:=\{p=\langle s_p,\mathcal{W}_p\rangle: s_p\in [\omega]^{<\omega}\wedge\mathcal{W}_p\in [\mathcal{E}]^{<\omega}\}$ と置く.気持ちとしては各 s_p が K の下からの有限近似であり, \mathcal{W}_p は s_p の差を除いて K を含むことが保証された \mathcal{E} の元の一覧になっている.その気持ちを念頭において, \mathbb{P} 上に次のように順序を定める:

$$p \leq q \iff \begin{cases} s_p \supseteq s_q & (s_p \ \mathrm{tt} \ s_q \mathrm{tt} \ \mathrm{tt} \ \mathrm{tt}) \mathrm{tt} \mathrm{t$$

これにより、 $\langle \mathbb{P}, \leq, \langle \emptyset, \emptyset \rangle \rangle$ が forcing poset となるのは明らか。 $\mathrm{MA}(\kappa)$ を使いたいので、 \mathbb{P} が c.c.c. を満たすことを示さなくてはならない。ここで、

$$s_p = s_q \longrightarrow s_p \parallel s_q \tag{*}$$

が成立する。なぜならこの時, $r=\langle s_p, \mathcal{W}_p \cup \mathcal{W}_q \rangle$ とおけば明らかに $r \leq p,q$ となるからである。特に各 $s \in [\omega]^{<\omega}$ は可算個しかないから,もし $A \subseteq \mathbb{P}$ が非可算集合であったとすると,必ず $s_p = s_q$ となる $p,q \in A$ があり $s_p \parallel s_q$ となるので,A は反鎖ではない。よって \mathbb{P} は c.c.c. を満たす。

 $G\subseteq \mathbb{P}$ をフィルターとするとき, $K_G:=\bigcup_p s_p$ により $K_G\subseteq \omega$ を定める.この時, K_G が $\mathcal E$ の擬共通部分となるようにしたい.より具体的には,次の二条件を満たすようにしたい:

- (a) $|K_G| \geq \aleph_0$
- (b) $\forall Z \in \mathcal{E} \, \exists s \in [\omega]^{<\omega} \, [K_G \setminus s \subseteq Z]$

まず (a) を成立させるには、G を次の各集合と交わるように取ればよいことがわかる:

$$D_n := \{ q \in \mathbb{P} : |q| \ge n \} \ (n < \omega)$$

ここで、 $\mathcal E$ が SFIP を持つことから各 D_n は稠密集合となる事がわかる。これを示すため、 $p\in\mathbb P$ を任意に取る。この時 $\mathcal W_p$ は $\mathcal E$ の元からなる有限集合であり、 $\mathcal E$ が SFIP を持つことから $\bigcap \mathcal W_p$ は無限集合となる。よって $t\in [\bigcap \mathcal W_p]^n$ が取れ、 $r=\langle s_p\cup t,\mathcal W_p\rangle$ とおけば、 $D_n\ni r\leq p$ となる。よって D_n の全体は可算個しかないので、 $G\cap D_n\neq\emptyset$ となるようにできる。

次に (b) を成り立たせたい。各 $Z \in \mathcal{E}$ に対し $E_Z := \{q \in \mathbb{P}: Z \in \mathcal{W}_q\}$ の形の集合を考えると,これは \mathbb{P} の稠密集合である。これは, $p \in \mathbb{P}$ に対し $r = \langle s_p, \mathcal{W}_p \cup \{Z\} \rangle$ とおけば $r \leq p$ かつ $r \in E_Z$ となること から明らかである。このような E_Z は $|\mathcal{E}| = \kappa$ 個しかなく,今 $\mathrm{MA}(\kappa)$ を仮定しているので,フィルター G を各 E_Z と交わるように取ることが出来る。この時 (b) が成立することは,次のようにしてわかる。適当な $Z \in \mathcal{E}$ を取れば, $G \cap E_Z \neq \emptyset$ より $Z \in \mathcal{W}_p$ を満たすような $p \in G$ が存在する。この時,任意の $q \in G$ に対し $s_q \setminus s_p \subseteq Z$ となることが示せれば十分である。何故ならこのとき $K_G \setminus s_p = \bigcup_q (s_q \setminus s_p) \subseteq Z$ となるからである。G はフィルターなので, $r \leq p, q$ となるような $r \in G$ が存在する。特に順序の定義から $s_r \supseteq s_q$ かつ $s_r \setminus s_p \subseteq Z \in \mathcal{W}_p$ となっているので, $s_q \setminus s_p \subseteq Z$ が云える。以上より K_G は \mathcal{E} の擬共通部分である。

上の議論では (★) の条件が本質的な役割を果している. MA を用いた議論ではしばしばこれに類似の論法が使われるので、それをちょっと詳しく見てみよう:

• \mathbb{P} が σ -centered $\stackrel{\text{def}}{\Longleftrightarrow} \mathbb{P}$ は可算個の centered 部分集合の和である.

 $C \subseteq \mathbb{P}$ が centered であるというのは、有限交叉性の一般化になっている。例えば、位相空間 X に対し \mathbb{O}_X を考えると、 $C \subseteq \mathbb{O}_X$ が centered であることと C が有限交叉的であることは同値である。

実際, 上の補題が実際に使っているのは $MA(\kappa)$ を σ -centered な集合に制限したものである. より強く, 次が成り立つ:

補題 6. 補題 5 で用いた poset は可算個のフィルターの和で表せる. 特に σ -centered である.

Proof. 各 $s \in [\omega]^{<\omega}$ に対し, $C_s := \{ p \in \mathbb{P} : s_p = s \}$ とおけば $\mathbb{P} = \bigcup_s C_s$ である.特に, $p,q \in C_s$ ならば $r \in C_s$ の範囲で $r \leq p,q$ となるものが取れる.よって C_s はフィルター基になっており, $\mathcal{F}_s = \uparrow C_s$ とおけば \mathcal{F}_s はフィルターとなり, $\mathbb{P} = \bigcup_s C_s = \bigcup_s \mathcal{F}_s$ となる.

上の証明では、各 C_s を拡張する際に各 p_i の下界が再び C_s に属することを使っているが、一般の σ -centered 集合でそうなっている訳ではない。 実用上殆んどの場合は σ -centered な poset はフィルターの可算和で書けるが、そうでないような例も知られている。また、これも後で見ることだが、 $\kappa < \mathfrak{p}$ であることと、 $\mathrm{MA}_{\mathbb{P}}(\kappa)$ が σ -centered な物について成立することは同値となる。

centered な集合の二元は両立してしまうため、反鎖は各 centered 集合の元を高々一つしか持たないことがわかる. これは、正しく先程の証明の論法を一般化したものになっている:

補題 7. \mathbb{P} が σ -centered $\Rightarrow \mathbb{P}$ は c.c.c. を持つ

一般に逆は不成立である:

演習問題 1. X をコンパクト Hausdorff 空間とすると,次は同値:

- (1) X は可分
- (2) \mathbb{O}_X $l \sharp \sigma$ -centered
- (3) \mathbb{O}_X はフィルターの可算和

特に、 $\kappa > \mathfrak{c}, X = \kappa_2$ とすると、 \mathbb{O}_X は c.c.c. だが σ -centered でない順序集合の例になっている.

П

Proof. \mathbb{O}_X では centered 性と有限交叉性は同値であったので、centered 集合から生成されるフィルターを考えれば $(2) \Leftrightarrow (3)$ は OK. そこで $(1) \Leftrightarrow (3)$ を示す。

- (⇒) を示そう. $D = \{d_n : n < \omega\} \subseteq X$ を X の可算な稠密集合とする. この時 $\mathcal{U}_n := \{p \in \mathbb{O}_X : d_n \in p\}$ とおけば、各 \mathcal{U}_n はフィルターとなる. この時 D の稠密性より空でない開集合は d_i のいずれかを元にもつので、 $\mathbb{O}_X = \bigcup_n \mathcal{U}_n$ となる.
- (\Leftarrow) を示す. フィルター \mathcal{F}_n により $\mathbb{O}_X = \bigcup_n \mathcal{F}_n$ と書けているとする. この時超フィルターの補題によって各フィルターを超フィルター $\mathcal{F}_n \subseteq \mathcal{U}_n$ に拡張する. X はコンパクトなので各 \mathcal{U}_n は必ず収束点を持ち、Hausdorff 性よりその収束先は一意に来まる. そこで、

$$D = \{ d_n = \lim \mathcal{U}_n : n < \omega \}$$

と置き,D が X の稠密集合であることを示す. $U \in \mathbb{O}_X$ を任意にとれば,X はコンパクト Hausdorff 空間 なので正則空間となり, $V \in \mathbb{O}_X$ で $\bar{V} \subseteq U$ を満たすものが取れる.すると仮定より $V \in \mathcal{U}_n$ となるよう な $n < \omega$ が存在する.今 \mathcal{U}_n は d_n に収束するので,位相空間の一般論より $d_n \in \bar{V} \subseteq U$ となる.よって $U \cap D \neq \emptyset$.

 $\kappa > \mathfrak{c}$ の時 $X = \kappa_2$ が σ -centered でない c.c.c. poset の例になっていることは次のようにしてわかる。まず 2 は可分なので,教科書の系 III.2.10 よりその直積 κ_2 は c.c.c. となり, \mathbb{O}_X も c.c.c. となる。ところで,教科書の補題 III.2.11 によれば, X_i が二点以上持つ Hausdorff 空間で $|I| > \mathfrak{c}$ の時, $\prod_{i \in I} X_i$ は可分ではない。よって κ_2 は可分ではない。 Tychonoff の定理より X はコンパクトであり,Hausdorff 性も明らか。よって上の結果より, \mathbb{O}_X は σ -centered ではない。

参考文献

- [1] Kenneth Kunen. Set Theory. Vol. 34. Mathematical Logic and Foundations. College Publications, 2011.
- [2] 酒井克郎. 位相空間の基礎概念. 2012. URL: https://sites.google.com/site/ksakaiidtopology/ri-ben-yunopeji/basic-topology.
- [3] 松坂和夫. **集合·位相入門**. 岩波書店, 1986.