Due: Tuesday 03/31/2020

- 2.23 Let \mathcal{T} be the collection of subsets of \mathbb{R} consisting of the empty set and every set whose complement is countable.
 - (a) Show that $\mathcal T$ is a topology on $\mathbb R$. (It is called the countable complement topology.)
 - (b) Show that the point 0 is a limit point of the set $A = \mathbb{R} \{0\}$ in the countable complement topology.
 - (c) Show that in $A = \mathbb{R} \{0\}$ there is no sequence converging to 0 in the countable complement topology.
- 2.26 Determine the boundary of each of the following subsets of \mathbb{R}^2 in the standard topology:
 - (a) $A = \{(x, 0) \in \mathbb{R}^2 | x \in \mathbb{R} \}$
 - (b) $B = \{(x, y) \in \mathbb{R}^2 | x > 0, y \neq 0\}$
 - (c) $C = \left\{ \left(\frac{1}{n}, 0\right) \in \mathbb{R}^2 | n \in \mathbb{Z}_+ \right\}$
 - (d) $D = \{(x, y) \in \mathbb{R}^2 | 0 \le x^2 y^2 < 1\}$
- *PG*: 2.28 Prove Theorem 2.15 : Let A be a subset of a topological space X.
 - (a) ∂A is closed.
 - (b) $\partial A = Cl(A) \cap Cl(X A)$
 - (c) $\partial A \cap \operatorname{Int}(A) = \emptyset$
 - (d) $\partial A \cup \operatorname{Int}(A) = Cl(A)$
 - (e) $\partial A \subset A$ if and only if A is closed.
 - (i) $\partial A \cap A = \emptyset$ if and only if A is open.
 - (g) $\partial A = \emptyset$ if and only if A is both open and closed.
- *PN*: 3.01 Let $X = \{(x,0) \in \mathbb{R}^2 | x \in \mathbb{R}\}$, the x-axis in the plane. Describe the topology that X inherits as a subspace of \mathbb{R}^2 with the standard topology.

Due: Tuesday 03/31/2020

PN: 3.02	Let $Y =$	= [-1, 1]	have the	standard	topology.	Which	of the	following	sets a	are (open i	n
	Y and v	which ar	e open in	\mathbb{R} ?								

$$A = (-1, -1/2) \cup (1/2, 1)$$

$$B = (-1, -1/2] \cup [1/2, 1)$$

$$C = [-1, -1/2) \cup (1/2, 1]$$

$$D = [-1, -1/2] \cup [1/2, 1]$$

$$E = \bigcup_{n=1}^{\infty} \left(\frac{1}{1+n}, \frac{1}{n}\right)$$

PB: 3.03 Prove Theorem 3.4 : Let X be a topological space, and let $Y \subset X$ have the subspace topology. Then $C \subset Y$ is closed in Y if and only if $C = D \cap Y$ for some closed set D in X.

Proof. \Box

PN: 3.15 Prove Theorem 3.9: Let X and Y be topological spaces, and assume that $A \subset X$ and $B \subset Y$. Then the topology on $A \times B$ as a subspace of the product $X \times Y$ is the same as the product topology on $A \times B$, where A has the subspace topology inherited from X, and B has the subspace topology inherited from Y.

Proof. \Box

- **PB**: 3.16 Let S^2 be the sphere, D be the disk, T be the torus, S^1 be the circle, and I = [0,1] with the standard topology. Draw pictures of the product spaces $S^2 \times I$, $T \times I$, $S^1 \times I \times I$, and $S^1 \times D$
- *PN*: 3.18 Show that if X and Y are Hausdorff spaces, then so is the product space $X \times Y$.

Proof.

PB: 3.19 Show that if A is closed in X and B is closed in Y, then $A \times B$ is closed in $X \times Y$.

Proof.