1. 用单纯形法求解以下线性规划问题,并从单纯形表中判断是否存在多个最优解。 若存在,请将所有最优解用参数化形式表示。

max
$$2x_1 + 3x_2 + x_3$$

s.t. $x_1 + x_2 + x_3 \le 4$
 $x_1 + 2x_2 \le 7$
 $x_i \ge 0, i = 1,2,3$

引入松弛变量压:

max 2x1+3x2+73+0(74+x5)

	٠ لا	χ2	χ_{3}	χ_{ψ}	χ_{5}	_
7/4	1		I		0	Ψ
ገ ሃታ	1	2	0	0	1	7
	2	3	1	ð	0	Z

71.进巷、70出

	١ ٪ ،	χ	χ_{3}	χ_{ψ}	χ_{5}	_
יע	1	١	1	1	0	Ψ
ሂኦ) X,	1	-1	- 1	1	3
	0	1	- 1	-2	0	7-8

分進、25出:

	٠ لا	χι	χ_{3}	χ_{ψ}	χ_{5}	
۱,	1	0	2	χ _ν 2	-1	1
×2	0	1	-1	-1	1	3
	0	0	0	-1	-1	Z-11

非提变量对 检验数为 0 , 故有无穷最低解。

观察驯肠约束相加为 max 已 ≤ 1]

$$|\alpha|: \ \chi_1 = \frac{7-\alpha}{2} \ , \ \gamma_3 = \frac{1-\alpha}{2} \ , \ \text{ that } z = 11 \ .$$

故: 最批解: $(\alpha, \frac{7-\alpha}{2}, \frac{1-\alpha}{2})^{\mathsf{T}}$ $\alpha \in [0,1]$

2. 将以下线性规划问题转化为标准形式

max
$$3x_1 + 2x_2 - x_3$$

s. t. $x_1 - 2x_2 + 3x_3 \ge 4$
 $2x_1 + 5x_2 - x_3 \le 7$
 $0 \le x_1 \le 3$
 $-2 \le x_2 \le 6$

i
$$\hat{\chi}_{1} = \chi_{2} + 1$$
, $\chi_{3} = \hat{\chi}_{3} - \chi_{4}$, $\hat{\chi}_{3}$, $\chi_{4} \ge 0$
max $\hat{z} = 3\chi_{1} + 2\hat{\chi}_{2} - \hat{\chi}_{3} + \chi_{4} - 4$
s.t. $-\chi_{1} + 2\hat{\chi}_{1} - 3\hat{\chi}_{3} + 3\chi_{4} \le 0$
 $2\chi_{1} + 5\hat{\chi}_{1} - \hat{\chi}_{3} + \chi_{4} \le 1$
 $\chi_{1} \le 3$
 $\hat{\chi}_{2} \le 8$

$$\chi_1$$
, $\hat{\chi}_2$, $\hat{\chi}_3$, $\chi_{\psi} \geqslant 0$

再引入松弛变量得到:

max
$$z = 3x_1 + 2\hat{x}_2 - \hat{x}_3 + x_4 - 4$$

5.t. $-x_1 + 2\hat{x}_1 - 3\hat{x}_3 + 3x_4 + x_5 = 0$
 $2x_1 + t\hat{x}_2 - \hat{x}_3 + x_4 + x_6 = 1$
 $x_1 + x_7 = 3$
 $\hat{x}_2 + x_8 = 8$
 $x_1, \hat{x}_2, \hat{x}_3, x_4, x_5, x_6, x_7, x_8 > 0$

3. 把线性规划问题

记为 P,

- (1) 用单纯形算法解 P:
- (2) 写出 P 的对偶 D;
- (3) 写出 P 的互补松紧条件,并利用它们解对偶 D。通过计算 P 和 D 的最优值,检查你的答案。

(1) 引入松弛变量得别:

况进, 难出

			χ_3	ሻፋ	
$\overline{\gamma_2}$	1/2	1	0	•	5/2
γ_3	- 1/4 5/4	0	1	-1/4	7/4
	\$/ ₄	0	0	1/φ	2-7/4

Y=(0, 号, 子, 0)时取最小值子

(2)

在P中引入松弛变量后:

$$\mathcal{D}: \max_{\substack{1 \\ 2 \\ 1/2 \\ 1 \\ 1 \\ 0}} 5y_1 + 3y_2$$

$$\begin{pmatrix}
1 & 0 \\
2 & 1/2 \\
0 & 1 \\
1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
y_1 \\
y_2
\end{pmatrix} \leq \begin{pmatrix}
1 \\
0 \\
1 \\
0
\end{pmatrix}$$

(3) 原间题解: $\hat{\beta} = (0, \frac{1}{2}, \frac{7}{4}, 0)^{T}$ 至科松独条件: $(\hat{Y}^{T}A - C^{T})\hat{X} = 0$, $\forall j$ 取p: $[(y_{1}, y_{1})(\frac{12}{0 + 1}, \frac{1}{0}) - (1010)](\frac{5}{7}, \frac{1}{4}) = 0$ $\Rightarrow y_{1} = -\frac{1}{4}, y_{2} = 1$ TH入得: $Z = -\frac{1}{4} + 3 = \frac{7}{4} \Rightarrow P - 34$.

4. 用单纯形法直接求解如下线性规划问题

$$\max z = 5x_1 + x_2 + 2x_3$$
s.t. $x_1 + x_2 + x_3 \le 6$

$$6x_1 + x_3 \le 8$$

$$x_2 + x_3 \le 2$$

$$x_j \ge 0, j = 1, 2, 3$$

其最优单纯形表如下:

BV	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	RHS
x_4	0	1/6	0	1	-1/6	-5/6	3
<i>x</i> ₁	1	-1/6	0	0	1/6	-1/6	1
<i>x</i> ₃	0	1	1	0	0	1	2
	0	-1/6	0	0	-5/6	-7/6	z-9

- 1) 从表中直接读出该问题对偶问题的最优解和最优值。
- 2) 若目标函数中 x_1 的系数变为 c_1 ,求能够使当前基保持最优的 c_1 的取值范围。

(1)

记对偶问题最优解:
$$\hat{Y}^T = (y_1, y_1, y_3)$$
 首先观察得到,最优值 $\min z^* = \max z = 9$

由至补松弛定理:转置后1,3,4行为紧约束.

$$\Re P: \begin{pmatrix} 1 & 6 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix} \implies \begin{cases} = 10 & \frac{1}{2} & \frac{7}{4} \end{cases}^7$$

经检验: 飞= 亡 x 8 + 2 x 2 = 9 为最彻堡.

(1)

$$max \ Z = CX_1 + X_2 + 2X_3 \Rightarrow max \ Z + (S \cdot C) X_1 = 5 X_1 + 2X_2 + 2X_3$$

协可将 $(S - C) X_1$ 计入最终单纯型表:

BV
$$x_1$$
 x_2 x_3 x_4 x_5 x_4 RHS x_4 0 1/6 0 1 -1/6 -5/6 3 x_1 1 -1/6 0 0 1/6 -1/6 1 x_3 0 1 1 0 0 1 2 x_4 0 0 -5/6 -1/6 2.9

BV
$$\chi_1$$
 χ_2 χ_3 χ_4 χ_5 χ_4 RHS χ_4 0 1/6 0 1 -1/6 -5/6 3 χ_1 1 -1/6 0 0 1/6 -1/6 1 χ_3 0 1 1 0 0 1 2 χ_4 0 χ_5 0 0 χ_6 0 0 χ_6 χ_7 χ_8 0 χ_8 0 0 χ_8 χ

为使基不变,检验豹血磁压 0 ≤ 0

$$\therefore \begin{cases} \frac{c-b}{b} \leq 0 \\ -\frac{c}{c} \leq 0 \end{cases} \Rightarrow C \in [0, 6]$$

5. 请用切平面方法求解如下整数线性规划问题

$$\max 11y_1 + 4y_2$$
s. t. $-y_1 + 2y_2 \le 4$

$$5y_1 + 2y_2 \le 16$$

$$2y_1 - y_2 \le 4$$

$$y_1, y_2 \ge 0, y_1, y_2 \in \mathbb{Z}$$

	y,	y 2	y ₃	y ₄	y 5	
y,	-1	2 2 -I	1	0	0	¥
yy	}-	2	0	1	0	16
ys	2	-1	O	0	1	4
	 	4	0	0	0	7

y,进. ys出:

	y,	y2	y ₃	y ₄	y 5	
کئ	0	3/2	1	0	-12	6
yy	0	3/2 9/2 -12 9/2	0	ı	- 1/2	6
y,	1	-1/2	0	0	1	2
	0	19	0	D	- 11	7-12

Yz进 , Y4出

	y,	y ₂	y,	yφ	y 5	
y,	0	0	1	-1	4/3	Ψ
yz	0	1	0	2	-5/9	4/3
y,	1	0	0		2/9	8/3
	0	0	0	-19	-219	7-13

$$y = (\frac{9}{3}, \frac{4}{3}, 4, 0, 0)^{T}$$

选 $y_2 + 2y_4 - \frac{1}{7}y_5 = \frac{1}{3}$ 构造割平面. $-\frac{1}{7}y_5 \leq -\frac{1}{3}$

	y,	y ₂	y ₃	yφ	y 5	y,	
y,	o	0	1	-1	4/3	0	4
yı	O	1	0	2	-5/9	O	4/3
	Ī	O	0	1	2/9	0	8/3
	0	0	0	0	-1	1	-3/4
	O	0	0	-19	-2/9	0	z - 104 3.

Ys进 Y6出

	y,	yz	y ₃	y_{ψ}	y 5	y,_	
у,	0	0	1	-1	O	4/3	3
		1	0	2	0	-5/9	7/4
y,	1	0	0	1	0	2/9	t/2
ys	0	0	0	0	1	-1	3/4
I		0	0	-19	0	-2/9	Z-69

和 用 $y_1 + y_4 + \frac{2}{9}y_6 = \frac{1}{2}$ 物造 $-\frac{2}{9}y_6 \le -\frac{1}{2}$ $2y_1 - y_2 \le 1$

	y,	yz	y ₃	yφ	y 5	y,	У¬	
у,	0	0	1	-1	O	4/3	0	3
yı	o	1	0	2	0	-5/9	0	7/4
y,	ı	1 0 0	0	1	0	2/9	0	1/2
ys	0	0	0	0	1	-1	0	3/4
Уı	0	D	U	0	0	-1	1	-9/4
	0	0	0	-19	0	-2/9	0	Z- 69

86进, 岁出:

	y ₋	yz	y 3	y ₄	y s	yı	У¬	_
y,	0	0		1	0	n	4/2	0
yı	0	0 0 0	0	2	0	0	-5/9	3
y,	1	0	0	1	0	0	2/9	2
ys	0	Ø	0	0	1	0	-1	3
y ₆	0	D	0	D	0	1	-1	9/4
	0	o O	D	-19	0	0	-2/9	Z-34.