Alpha Go Nature Paper

Perfect Information Game

perfect information games + perfect play - optimal value function $v^*(s)$ go $b\sim250 d\sim150 => exhaustive search infeasible$

Reducing search space

reduce depth

- position evaluation where subtree is replaced by $v(s) \sim v^*(s)$
- s = board state

reduce breadth

- use policy p(a|s) probability distribution over move 'a' in 's'
- Monte Carlo rollouts (READUP)
 - weak amateur
 - search to maximum depth by sampling long sequences of actions for both players for policy p
 - Averaging over roll outs yields position evaluation
- Monte Carlo Tree Search (MCTS)
 - strong amateur
 - Uses Monte Carlo rollout to estimate value of each state in a search tree
 - More simulations => more accuracy
 - Asymptotically the policy converges to optimal play and evaluations converge to v*
- Deep CNN
 - 19*19 image for board position
 - Convolutional Layers to represent the position
 - Value network
 - policy network

First Stage Policy Networks

Policy Network pσ(a|s) SL

- supervised learning from expert human moves
- s = board state, a = legal moves over s
- pσ(a|s) = weights σ, [128-256 filter convolution layer + rectifier layer]*n + softmax layer => probablity distribution over 'a'
- trained on samples (s,a) pairs using stochastic gradient ascent to maximize likelihood of human move
 - $-\Delta\sigma \propto \partial \log p (a|s) / \partial\sigma$
- 13 layer policy network using 30 million KGS Go Server positions
- Accuracy of 57% using all input features

- 55.7% using board position and move history in 3ms
- Larger networks => better accuracy | Slower evaluation
- Fast efficient learning learning updates, immediate feedback, high quality gradients

Fast policy $p\pi(a|s)$

- faster, less accurate compared to pσ
- pπ(a|s) = weights π, [linear softmax]*n using small features => 24.3% accuracy in 2μs
- Used to sample actions during roll outs

Second Stage Policy Networks

Policy network pp(a|s) RL

- Policy Gradient Reinforcement learning, For goal of winning rather than maximizing predictive accuracy
- identical to $p\sigma(a|s)$, including initial weights $\rho = \sigma$
- play against random previous iteration (to stabilize and prevent overfitting)
- reward function, r(s) = 0 for non-terminal time steps t<T understand?</p>
- outcome/terminal reward, $zt = \pm r(sT) =$ win/loss ~ +1/-1
- weights are updated at each time step 't' by stochastic gradient ascent in the direction of max outcome
- Δρ \propto (∂log p (at |st)/∂p)zt
- move $a@t \sim p (\cdot | s@t)$
- win 80% of games against SL
- win 85% of games against pachi (strongest open source MCST)

Value Network $v\theta(a|s)$

- Reinforcement Learning to estimate value function vp(s) that predicts outcome from position 's' using policy 'p'
 - $vp(s) = E[zt|st = s, a@t...T \sim p]$
- similar to policy nw but single prediction instead of probability distribution
- value
 - v*(s) perfect play
 - vpρ(s) RL pp network
 - $v\theta(s)$ = value network with weight θ
- trained by regression on state-outcome pairs (s.z) using stochastic gradient descent to minimize MSE between prediction and actual outcome
- $-\Delta\theta \propto (\partial v(s)/\partial\theta)(z-v\theta(s))$
- To avoid overfitting RL policy nw was played with itself.
- $-v\theta(s)$ ~ accuracy of MonteCarle rollouts using RL pp network using 15000 times less computation
- Predicts winner of games played by RL against itself

Searching Policy and Value networks

- node (s, a)
 - action value Q(s,a)
 - visit count N(spa)
 - prior probability P(spa)
- traversal by simulation (descending without backup)
 - at time step 't' 'at' is selected from 'st'
 - $-a@t = \operatorname{argmax.a}(Q(st,a) + u(st,a))$
 - where $u(s, a) \propto P(s, a) / (1+N(s,a))$, decays with repeated visits
- leaf sL at step L is processed once by pσ
 - output probabilities for each a, $P(s,a) = p\sigma(a|s)$
- leaf node evaluated in 2 ways
 - $-v\theta(sL)$
 - zL outcome of random rollout until terminal step T using fast rollout policy $\mbox{p}\pi$
 - $-V(sL) = (1 \lambda)v\theta(sL) + \lambda zL$
- at end of simulation
 - visit count, $N(s,a) = \sum I(s,a,i)$
 - action value $Q(s,a)=1/N(s,a) \sum I(s,a,i) V(siL)$
- SL policy pσ performed better than stronger RL policy pp ~ diverse beam of promising moves
- However, $v\theta(s) \sim vpp(s)$ performed better

AlphaGo efficiently combines policy and value networks with MCTS to select actions by lookahead search.

- async multi-threaded search on CPUs, policy and value networks in parallel on GPUs
- Single node 48CPU, 8GPU alphaGO
- Distributed 1202 CPU, 176 GPU alpha go

Performance

- with mixed networks (λ =0.5) performed best winning 95% of games
- value nw approximated outcomes of games played by strong but slow pp
- rollouts evaluate games played by weaker but faster $p\pi$