Relativistische Merkurbahn mit modifizierter Gravitation

1 Grundgleichungen der Weber-Gravitation

Weber-Gravitationskraft

$$F = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2} \right) \tag{1}$$

Bewegungsgleichung in Polarkoordinaten

$$m(\ddot{r} - r\dot{\phi}^2) = -\frac{GMm}{r^2} \left(1 - \frac{\dot{r}^2}{c^2} + \frac{r\ddot{r}}{2c^2} \right) \eqno(2)$$

2 Herleitung der Winkelgeschwindigkeit

Drehimpulserhaltung

$$h = r^2 \dot{\phi} = \text{konstant} \quad \Rightarrow \quad \dot{\phi} = \frac{h}{r^2}$$
 (3)

Diese fundamentale Beziehung bleibt auch in der Weber-Gravitation gültig.

Radialgleichung mit Weber-Korrektur

Nach Substitution von u = 1/r und Linearisierung:

$$\frac{d^2u}{d\varphi^2} + u = \frac{GM}{h^2} + \frac{3GM}{c^2}u^2 - \frac{GM}{2c^2h^2} \left(\frac{du}{d\varphi}\right)^2 \tag{4}$$

3 Lösung für die Winkelgeschwindigkeit

Exakte Winkelgeschwindigkeit

$$\dot{\phi}(\varphi) = \frac{h}{r(\varphi)^2} \tag{5}$$

wobei $r(\varphi)$ aus der modifizierten Radialgleichung zu bestimmen ist.

Näherungslösung für kleine Störungen

Für $r(\varphi)$ in erster Ordnung:

$$r(\varphi) \approx \frac{a(1-e^2)}{1+e\cos\varphi} \left[1 + \frac{3GM}{c^2a(1-e^2)} \varphi e\sin\varphi \right]$$
 (6)

Daraus folgt die Winkelgeschwindigkeit:

$$\dot{\phi}(\varphi) \approx \frac{h(1 + e\cos\varphi)^2}{a^2(1 - e^2)^2} \left[1 - \frac{6GM}{c^2a(1 - e^2)} \varphi e\sin\varphi \right]$$
 (7)

4 Anwendung auf Merkur

Parameter	Wert
Große Halbachse a	$5.79 \times 10^{10} \text{ m}$
Exzentrizität e	0.2056
Spezifischer Drehimpuls h	$2.713 \times 10^{15} \text{ m}^2/\text{s}$

Tabelle 1: Merkur-Bahnparameter

Winkelgeschwindigkeit im Perihel ($\varphi = 0$)

$$\dot{\phi}(0) = \frac{2.713 \times 10^{15}}{(4.69 \times 10^{10})^2} \approx 1.23 \times 10^{-6} \,\text{rad/s}$$
(8)

Mit Weber-Korrektur:

$$\dot{\phi}_{\text{Weber}}(0) \approx 1.23 \times 10^{-6} \left[1 - 2.1 \times 10^{-8} \right] \text{ rad/s}$$
 (9)

5 Zusammenfassung

Die korrekte Winkelgeschwindigkeit unter Weber-Gravitation ist:

$$\dot{\phi}(\varphi) = \frac{h}{r(\varphi)^2} \tag{10}$$

wobei $r(\varphi)$ aus der modifizierten Weber-Gleichung zu bestimmen ist. Die Weber-Kraft führt zu einer kleinen Modulation der klassischen Kepler-Geschwindigkeit.