12.1 Protocols in the IP Protocol Suite

Internet Protocol	IP is the main protocol used on the internet. IP is a connectionless protocol that makes routing path
(IP)	decisions. It also handles logical addressing issues through the use of IP addresses.
	TCP provides services that ensure accurate and timely delivery of network communications between
Transmission	two hosts. TCP is a connection-oriented protocol. It provides the following services to ensure
Control Protocol	message delivery:
(TCP)	Sequencing of data packets
(ICF)	Flow control
	Error checking
User Datagram	UDP is a connectionless protocol. It is a host-to-host protocol like TCP. However, UDP does not
Protocol (UDP)	include mechanisms for ensuring timely and accurate delivery. Because it has less overhead, it offers
Protocor (ODP)	fast communications, but at the expense of possible errors or data loss.
	ICMP works closely with IP to provide error and control information. This protocol allows hosts to
	exchange packet status information, which helps move the packets through the internetwork. Two
Internet Control	common management utilities, ping and traceroute, use ICMP messages to check network
Message Protocol	connectivity. ICMP also works with IP to send notices when destinations are unreachable and when
(ICMP)	devices' buffers overflow. It works with IP to send notices of whether devices can communicate
	across the network as well. Additionally, ICMP relays information about the route and hops that
	packets take through the network.
Internet Group	IGMP is a protocol for defining host groups. All group members can receive broadcast messages
Membership	intended for the group (called multicasts). Multicast groups can be composed of devices within the
Protocol (IGMP)	same network or across networks (connected with a router).
· · · · · · · · · · · · · · · · · · ·	HTTP is used by web browsers and web servers to exchange files (such as web pages) through the
HyperText	world wide web and intranets. HTTP can be described as an information requesting and responding
Transfer Protocol	protocol. It is typically used to request and send web documents but is also used as the protocol for
(HTTP)	communication between agents using different IP protocols.
HTTP over SSL	
(HTTPS)	HTTPS is a secure form of HTTP that uses SSL to encrypt data before it is transmitted.
·	SSL secures messages being transmitted on the internet. It uses RSA for authentication and
Secure Sockets	encryption. Web browsers use SSL (Secure Sockets Layer) to ensure safe web transactions. URLs that
Layer (SSL)	begin with https:// trigger your web browser to use SSL.
	TLS is an improved version of SSL. It ensures that messages being transmitted on the internet are
Transport Layer	private and tamper-proof. TLS is implemented through two protocols.
Security (TLS)	TLS Record provides connection security with encryption (e.g., with DES).
5000110y (125)	TLS Handshake provides mutual authentication and choice of encryption method.
	FTP provides a generic method of transferring files. It can include file security through usernames
File Transfer	and passwords, and it allows file transfer between dissimilar computer systems. FTP can transfer
Protocol (FTP)	both binary and text files, including HTML, to another host. FTP URLs are preceded by ftp://. To log in
11010001(111)	to an FTP server, use:ftp://username@servername
Trivial File	TFTP is similar to FTP. It lets you transfer files between a host and an FTP server. However, this
Transfer Protocol	protocol provides no user authentication and no error detection. Because it doesn't perform error
(TFTP)	detection, TFTP is faster than FTP but might be subject to transmission errors.
Secure File	SFTP is a secure version of FTP that uses Secure Shell (SSH) to encrypt data transfers. SSH ensures that
Transfer Protocol	SFTP transmissions use encrypted commands and data, which prevent data from being transmitted
(SFTP)	over the network in clear text.
	SCP allows you to copy files between systems. Like SFTP, SCP relies on SSH to ensure that data and
Secure Copy	• • • • • • • • • • • • • • • • • • • •
Protocol (SCP)	passwords are not transmitted over the network in cleartext.
Simple Mail	SMTP is used to route electronic mail through the internetwork. SMTP is used in the following ways:
Transfer Protocol	Between mail servers for sending and relaying mail Death and leichte to an election.
(SMTP)	By all email clients to send mail
Internet Message	IMAP is an email retrieval protocol designed to enable users to access their email from various
Access Protocol	locations without the need to transfer messages or files back and forth between computers.
(IMAP)	Messages remain on the remote mail server and are not automatically downloaded to a client
	system. An email client that uses IMAP for receiving mail uses SMTP for sending mail.
Post Office	POP3 retrieves email from a remote server to a local client over a TCP/IP connection. With POP3,
Protocol 3	email messages are downloaded to the client. An email client that uses POP3 for receiving mail uses
(POP3)	SMTP for sending mail.
Dynamic Host	DHCP is a protocol that automatically assigns addresses and other configuration parameters to
Configuration	network hosts. Using a DHCP server, hosts receive configuration information at startup. This reduces
Protocol (DHCP)	the amount of manual configuration required on each host.

Section 12. Networking

Domain Name System (DNS)	DNS is a system that is distributed throughout the internetwork to provide address and name resolution. For example, the name www.mydomain.com would be identified with a specific IP address.
Network Time Protocol (NTP)	NTP communicates time synchronization information between systems on a network.
Lightweight	LDAP allows you to search and update a directory service. The LDAP directory service follows a
Directory Access	client-server model. One or more LDAP servers contain the directory data. The LDAP client connects
Protocol (LDAP)	to an LDAP server to make a directory service request.
Simple Network	SNMP is a protocol designed for managing complex networks. SNMP lets network hosts exchange
Management	configuration and status information. This information can be gathered by management software
Protocol (SNMP)	and used to monitor and manage the network.
Remote Terminal Emulation (Telnet)	Telnet allows an attached computer to act as a dumb terminal with data processing taking place on the TCP/IP host computer. Telnet uses unsecured data transmissions and should be avoided. SSH provides the same
(Telliet)	functionality but does so securely using encryption.
Secure Shell	SSH allows secure interactive control of remote systems. SSH is a secure and acceptable alternative
(SSH)	to Telnet. SSH uses public-key cryptography for both connection and authentication.

12.1 IPv4 Rules and Concepts

IPv4 Address Rules

- Each host must have a unique IPv4 address.
- Each host on the same logical network must have the same network address.
- Hosts can only communicate directly with other hosts on the same logical network.

Concept	Description		
Host	A host (also known as a network host) is a computer or device (such as a router) on a network.		
IP address	The IP address is a nur	nber assigned to identify hosts and other devices on a network.	
Network address	The network address (also referred to as the network ID) is the portion of the IP address that	
Network address	identifies a specific ne	twork.	
Host address	The host address (also	referred to as a host ID) is the remaining portion of the IP address that	
nost address	identifies the specific	host or other device on the network.	
Subnet mask	A subnet mask identif	es the portion of the IP address that defines the network address and the	
Subhet mask	portion of the IP addre	ess that defines the specific host.	
Address class	IPv4 addresses are div	ided into classes. The address class identifies the range of IPv4 addresses	
Addiess class	and a default subnet r	nask used for the range.	
	A default subnet mask	is assigned to Classes A - C as follows:	
Default	• 255.0.0.0	is the default subnet mask for Class A networks.	
subnet mask	• 255.255.0.0	is the default subnet mask for Class B networks.	
	• 255.255.255.0	is the default subnet mask for Class C networks.	
Broadcast address	The broadcast address	s is the last address in the IP address range and is used to send messages to	
bioaucast audiess	all hosts on the netwo	rk.	
	The default gateway is	a device that performs routing and enables a host to communicate with hosts	
	on other networks through the routing process.		
	A default gateway address must be configured on each host to allow internetwork		
Default gateway	communication. Without the default gateway, hosts can only communicate with devices		
	within the same subnet.		
	The default gateway address must be on the same subnet as the host computer.		
	• Routers have multiple network interface cards attached to multiple networks.		
	∘ When confi	guring the default gateway, choose the address on the local subnet.	

12.1 Classless Inter-Domain Routing (CIDR)

Class	Address Range	First Octet Range	Default Subnet Mask	CIDR Notation
Α	1.0.0.0 to 126.255.255.255	1-126 (0000000101111110 binary)	255 .0.0.0	/8
В	128.0.0.0 to 191.255.255.255	128-191 (1000000010111111 binary)	255.255 .0.0	/16
С	192.0.0.0 to 223.255.255.255	192-223 (1100000011011111 binary)	255.255.255 .0	/24
D	224.0.0.0 to 239.255.255.255	224-239 (1110000011101111 binary)	n/a	n/a
E	240.0.0.0 to 255.255.255.255	240-255 (1111000011111111 binary)	n/a	n/a

12.1 Address Assignment

Method	Uses
	DHCP is a method used to automatically assign IPv4 addresses and other TCP/IPv4 configuration
	parameters to hosts. Client computers contact a DHCP server to receive TCP/IPv4 configuration
	information.
Dynamic Host	Use DHCP:
Configuration	 For small, medium, or large networks.
Protocol (DHCP)	For automatic host configuration.
	 To automatically deliver additional configuration parameters such as default gateway and DNS servers.
	By default, all Windows computers try to use DHCP for TCP/IPv4 configuration information.
	APIPA is an automatic configuration method where hosts automatically select their own
	IPv4 address within a specific range.
	When using APIPA:
	Windows computers will use APIPA if a DHCP server cannot be contacted.
	Hosts select an IPv4 address in the 169.254.0.1 to 169.254.255.255 range with a mask of
Automatic Private	255.255.0.0. After choosing the address, the host verifies that no other host on the network
IPv4 Addressing	is using the selected address.
(APIPA)	 APIPA sets only the IPv4 address and mask. Because it does not assign a default gateway,
	APIPA can be used on a single subnet, but cannot be used if communication with other
	subnets is required.
	Use APIPA for small single-subnet networks that do not use DNS servers or do not have internet
	or connectivity outside of the local subnet.
	Static/manual IPv4 address assignment means that you manually enter in the required IPv4
	address and associated IP information for a host.
	When you configure a static IPv4 address, you must also configure the subnet mask and
	default gateway.
	When you configure a static IPv4 address, you disable DHCP and APIPA.
	If you use DHCP, you can also assign DNS server addresses manually.
	Use static addressing:
Static (manual)	For small networks that do not often change or grow.
assignment	If your network does not have a DHCP server or if you want to eliminate DHCP traffic from
g	your network.
	For specific hosts that must have the same address each time (such as servers). You can use
	DHCP on the rest of the network and use static addressing for only a few hosts. However,
	before you use static addressing, explore the possibility of using a DHCP server to assign
	the same IPv4 address to specific hosts each time an address is requested.
	For non-DHCP hosts (hosts that cannot accept an IPv4 address from DHCP).
	Ensure that duplicate addresses are not assigned to hosts on the same network.
	When an alternate IPv4 configuration is enabled, the host attempts to use DHCP for TCP/IPv4
	configuration information. If a DHCP server cannot be contacted, the alternate IPv4 values
	are used.
	Use an alternate configuration:
Alternate IPv4	For computers (such as a laptop) that connect to two networks: one with a DHCP server and
configuration	another without a DHCP server.
	To provide values to properly configure the computer in the event that the DHCP server
	is unavailable.
	When you configure an alternate IPv4 address, APIPA will never be used.

12.1 Well-Known Internet Services Ports

12.1 Well-known interne	St Selvices Forts
Port(s)	Service
20 TCP	File Transfer Protocol (FTP)
21 TCP	The Hansier Protocol (FIF)
22 TCP and UDP	Secure Shell (SSH)
23 TCP	Telnet
25 TCP	Simple Mail Transfer Protocol (SMTP)
53 TCP and UDP	Domain Name Server (DNS)
67 UDP	Dynamic Host Configuration Protocol (DHCP)
68 UDP	Dynamic Host Comiguration Protocol (Difer)
69 UDP	Trivial File Transfer Protocol (TFTP)
80 TCP	HyperText Transfer Protocol (HTTP)
110 TCP	Post Office Protocol (POP3)
119 TCP	Network News Transport Protocol (NNTP)
123 UDP	Network Time Protocol (NTP)
137 UDP	
138 UDP	NetBIOS
139 TCP	
143 TCP and UDP	Internet Message Access Protocol (IMAP4)
161 TCP and UDP	Simple Network Management Protocol (SNMP)
162 TCP and UDP	Simple Network Management Protocol (SMMP)
389 TCP and UDP	Lightweight Directory Access Protocol (LDAP)
443 TCP and UDP	HTTP with Secure Sockets Layer (SSL)
465 TCP	Simple Mail Transfer Protocol over TLS/SSL (SMTPS)
514 UDP	Syslog (used for remote system logging)
636 TCP and UDP	Lightweight Directory Access Protocol over TLS/SSL (LDAPS)
993 TCP	Internet Message Access Protocol over TLS/SSL (IMAPS)
995 TCP	Post Office Protocol 3 over TLS/SSL (POP3S)

12.2 Network Configuration Files

File or Directory	Description
	This directory contains network configuration files. For example, each network interface in the
	system is configured using a configuration file in this directory named ifcfg-device_name (for
	example, ifcfg-ens192). Edit the appropriate device file in this directory to modify the
/etc/sysconfig/network-scripts	following settings:
	 Boot protocol (static, DHCP, or BootP)
	 Autoconfiguration information
	 IP address, mask, and default router (for static configurations)
/var/lib/dhcpcd/dhcpclientn	These files contain DHCP lease information. The specific file used will vary between
/var/lib/dhcpcd/dhclient.leases	distributions.
/var/lib/dhclient/dhclient.leases	
	This directory contains the *.yaml file that defines the network configuration parameters, such as:
	 On/off toggle for DHCP4 and DHCP6
	Static IP address
/etc/netplan	Gateway IP address
	• IP addresses of nameservers
	You can test the configuration using sudo netplan try. Once you confirm the configuration is
	accurate, use sudo netplan apply to apply the configuration.
	This configuration file defines dhclient parameters, such as:
	Protocol timing
/etc/dhcp/dhclient.conf	 Information requested from the server
	• Information required from the server
	 Preinitialized addresses for networks without DHCP servers

12.2 Network Configuration Commands

12.2 Network Configuration Comm	nands		
Command	Function		
/etc/init.d/network			
/etc/rc.d/init.d/network	Starts, restarts, or stops networking services on init-based distributions.		
service network			
systemctl command network	Manages network se	ervices on systemd-based distributions.	
ifconfig ifconfiginterface	Views network inter	face information. Use the -a option to display the status of all interfaces.	
	Creates a static IP co	onfiguration for the specified interface. Common ifconfig parameters include	
	the following:		
	address	sets the IP address	
ifconfig interface parameters	netmask	sets the subnet mask	
	 broadcast 	sets the broadcast address	
	• up	activates the interface	
	• down	deactivates the interface	
ifup interface	Starts a network into	erface.	
ifdown interface	Stops a network into	erface.	
	Displays the current	networking information for a network interface. Omitting the interface	
	from the command displays networking information for all interfaces in the system. Common		
	ip addr show parameters include the following:		
ip addr show interface	• inet	shows the IPv4 address with the subnet mask in CIDR notation.	
	• brd	shows the broadcast address.	
	• up or down	shows the interface status.	
	• inet6	shows the IPv6 IP address.	
ip addr add ip_address dev interface	Adds an additional II	P address to a network interface.	
ip addr del ip_address dev	Removes an IP addre	ess from a network interface.	
interface			
ip link set interface down	Stops and starts the	specified interface	
ip link set interface up	Stops and starts the	specified interface.	
	Lists and changes Et	hernet card properties such as supported modes, auto-negotiation, speed,	
ethtool	wake on, duplex, lin	k detection status, and port. You can also use it to list and change	
	driver settings.		
iwconfig	Displays and change	s the parameters of the wireless network interfaces.	
brctl	Sets up, maintains, a	and inspects the Ethernet bridge configuration in the Linux kernel.	

12.2 Network Interface Bonding (table parameters)

configuration file: etc/sysconfig/network-scripts/ifcfg-bondn

(where n is a number that identifies the interface)

Commands: insmod and modprobe

Commands:	insmod and modprobe			
Parameters	Description			
DEVICE	Specifies a number to	Specifies a number to identify the bond.		
TYPE	Specifies driver type.			
	Specifies when the d	river will be started. The options are onboot and manual.		
STARTMODE	 onboot activates the bond when the system is started. 			
	 manual require 	es the boot to be started.		
USERCTL	Allows or prohibist sy	ystem users from making changes to the bond.		
NM_CONTROLLED	Indicates whether th	e bond will be controlled by NetworkManager.		
MTU		ım transmission unit (MTU).		
	Determines the prote	ocol type to initialize the device. There are three options:		
	• dhcp	causes the system to search for the DHCP server.		
BOOTPROTO	• bootp	indicates the boot protocol looks for a DHCP server.		
	• static or none	indicates DHCP will not be used.		
IPADDR	Specifies the IP addre	ess for the bond.		
SLAVE	•	nterfaces for the bonding.		
	Bonding options incl	<u>- </u>		
	arp_interval	specifies the ARP link monitoring frequency in milliseconds.		
	• downdelay	specifies the time, in milliseconds, to wait before disabling a slave after a link		
		failure has been detected. This option is valid only for the milmon link monitor.		
		The downdelay value should be a multiple of the milmon value or it will be		
		rounded down to the nearest multiple. The default value is 0.		
	• lacp rate	specifies the rate to transmit LACPDU (LACP data unit) packets in 802.3ad mode.		
	· lucp_rute	Slow, or 0, transmits LACPDUs every 30 seconds. Fast, or 1, transmits LACPDUs		
		every second. Slow is the default setting.		
	• maxbonds	specifies the number of bonding devices to create for this instance of the		
	Illaxbollus			
		bonding driver.		
	• miimon	specifies the MII link monitoring frequency in milliseconds. This determines		
		how often the link state of each slave is inspected for link failures. A value of		
		zero disables MII link monitoring.		
	• mode	specifies if the links function as either hot standby or load balancing services.		
		The behavior of the single logical bonded interface is specified by the bonding		
		driver mode. The default parameter is balance-rr. Modes can be specified by		
		numbers as follows:		
		Balance Round Robin (balance-rr): this mode transmits network packets in		
		equential order from the first available network interface (NIC) slave through the		
		ast. This mode provides load balancing and fault tolerance.		
BONDING_OPTS	∘ mode=1	Active backup: only one NIC slave in the bond is active. A different slave becomes		
_		active if the active slave fails. This mode provides fault tolerance.		
	∘ mode=2	Balance XOR: this mode transmits network packets based on a hash of the packet's		
	S	source and destination. The same NIC slave is used for each destination MAC		
	â	address, IP address, or IP address and port combination. This mode provides load		
	k	palancing and fault tolerance.		
	∘ mode=3	Broadcast: this mode transmits network packets on all slave network interfaces.		
	1	This mode provides fault tolerance.		
	∘ mode=4	802.3ad Dynamic link aggregation: each aggregation group shares the same speed		
	ā	and duplex settings. This mode is similar to the XOR mode and supports the same		
	k	palancing policies. The link is set up dynamically between two LACP-supporting peers.		
	∘ mode=5	Adaptive transmit load balancing (balance-tlb): This mode does not require any		
	S	special network switch support. The outgoing network packet traffic is distributed		
	â	according to the current load on each network interface slave.		
	∘ mode=6	Adaptive load balancing (balance-alb): this mode includes balance-tlb plus receive		
	I	oad balancing (rlb) for IPV4 traffic. It does not require any special network switch		
	S	upport. The receive load balancing is achieved by ARP negotiation.		
	primary	specifies which slave is the primary device. The primary device will always be the		
	•	active slave while it is available. Only when the primary is offline will another		
		device be used.		
	• updelay	specifies the time, in milliseconds, to wait before enabling a slave after a link		
		recovery has been detected. The updelay value should be a multiple of the		
		miimon value.		
<u> </u>				

12.2 Slave Configuration

Parameter	Description		
DEVICE	Specifies a name to ide	entify the interface.	
USERCTL	Allows or prohibit syste	em users from making changes to the interface.	
ONBOOT	Specifies whether the	interface will be started at boot.	
MASTER	Identifies the master a	ssociated with the slave interface.	
SLAVE	Specifies that the inter	Specifies that the interface is a slave.	
	Determines the protocol type to initialize the device. The protocol must be the same of the		
	protocol specified for the master. There are three options:		
BOOTPROTO	 dhcp causes the system to search for the DHCP server. 		
	• bootp	indicates the boot protocol looks for a DHCP server.	
• static or none indicates DHCP will not be used.		indicates DHCP will not be used.	

12.3 The nmcli Utility

Commands	Description	
nmcli -t -f RUNNING general	Checks whether NetworkManager is running	
nmcli general	Shows the state of connections	
nmcli status	Lists devices and their statuses	
nmcli con show	Lists available connections	
nmcli hostname	Displays the hostname	
nmcli general hostname	Updates the hostname	
<newhostname></newhostname>	opuates the hostilanie	
nmcli con add con-name		
eth2 type ethernet ifname	Creates a new Ethernet connection that uses DHCP	
eth2 ipv4.method auto		
nmcli con mod eth2		
ipv4.method manual	Reconfigures a connection from DHCP to a static IP address	
ipv4.address 192.168.82.5/24		
ipv4.gateway 192.168.82.1		

12.4 IPv6 Address Types

12.4 IPv6 Addre Address Type	Description
Address Type	
Link-local	Link-local addresses are addresses that are valid on only the current subnet.
	• Link-local addresses have a FE80::/10 prefix. This includes any address beginning
	with FE8, FE9, FEA, or FEB.
	 All nodes must have at least one link-local address, although each interface can have
	multiple addresses.
	 Routers never forward packets destined for link-local addresses to other subnets.
	 Link-local addresses are used for automatic address configuration, neighbor discovery, or for
	subnets that have no routers.
	Unique local addresses are private addresses used for communication within a site or between a
	limited number of sites. In other words, unique local addressing is commonly used for network
	communications within an organization that do not cross a public network. They are the equivalent
	of private addressing in IPv4.
	 Unique local addresses have a FC00::/7 prefix. Currently, however, the 8th bit is always set
	to 1 to indicate that the address is local (and not global). Thus, addresses beginning with
	FC or FD are unique local addresses.
	 Following the prefix, the next 40 bits are used for the global ID. The global ID is generated
Jnique local	randomly so that there is a high probability of uniqueness on the entire internet.
	 Following the global ID, the remaining 16 bits in the prefix are used for subnet information.
	Unique local addresses are likely to be globally unique, but are not globally routable. Unique
	local addresses might be routed between sites by a local ISP.
	Earlier IPv6 specifications defined a site-local address that was not globally unique and had a
	FECO::/10 prefix. The site-local address has been replaced with the unique local address.
	Because unique local addresses are not registered with IANA, they cannot be used on a public
	network (such as the internet) without address translation.
	The process for designing a network addressing scheme when using unique local addresses is similar
	to that used for global unicast addresses. The key difference is how the prefix is defined. Because the
	address range is not registered, a global routing prefix does not have to be requested from an ISP.
	Instead, each organization defines the prefix to be used for their organization. However, there are
	several requirements that need to be observed when doing so. As with global unicast addressing,
	using this addressing scheme allows organizations to define a large number (216) of IPv6 subnets.
Clabal	Global unicast addresses are addresses that are assigned to individual interfaces that are globally
Global unicast	unique (unique throughout the entire internet). Global unicast addresses are any addresses that are
	not link-local, unique local, or multicast addresses.
	Originally, ISPs assigned global unicast addresses with a 2000::/3 prefix (this includes any address
	beginning with a 2 or a 3). However, this was later amended so that all IPv6 addresses that haven't
	been specifically reserved for other purposes are defined as global unicast addresses. The global
	routing prefix assigned to an organization by an ISP is typically 48 bits long (/48). However, it could

Loopback

The local loopback address for the local host is 0:0:0:0:0:0:0:1 (also identified as ::1 or ::1/128). The local loopback address is not assigned to an interface. It can be used to verify that the TCP/IP protocol stack has been properly installed on the host.

be as short as /32 or as long as /56, depending upon the ISP. Using this addressing scheme allows

organizations to define a large number (216) of IPv6 subnets.

12.4 IPv6 Configuration Methods

Method	Description
Static full	Static full assignment is where the entire 128-bit IPv6 address and all other configuration information
assignment	is statically assigned to the host.
Static partial	Static partial assignment is where the prefix is statically assigned and the interface ID uses the
assignment	modified EUI-64 format derived from the MAC address.
	Stateless autoconfiguration is where clients automatically generate the interface ID and learn the
	subnet prefix and default gateway through Neighbor Discovery Protocol (NDP). NDP uses the
	following messages for autoconfiguration:
	 Router solicitation (RS) is a message sent by the client to request that the routers respond.
	 Router advertisement (RA) is a message sent by the router periodically and in response to RS
Stateless	messages to inform clients of the IPv6 subnet prefix and the default gateway address.
autoconfiguration	NDP is also used by hosts to discover the address of other interfaces on the network, replacing the
	need for Address Resolution Protocol (ARP).
	Even though NDP provides enough information for the addressing of the client and for clients to
	learn the addresses of other clients on the network, NDP does not provide the client with DNS server
	information or other IP configuration information besides the IP address and the default gateway.
	IPv6 uses an updated version of DHCP (called DHCPv6) that operates in one of two different modes:
	 Stateful DHCPv6 is used when the DHCP server provides each client with the IP address, default
	gateway, and other IP configuration information (such as the DNS server IP address). The DHCP
DHCPv6	server tracks the status (or state) of the client.
	• Stateless DHCPv6 does not provide the client with an IP address and does not track the status of
	each client, but rather is used to supply the client with the DNS server IP address. Stateless
	DHCPv6 is most useful when used in conjunction with stateless autoconfiguration.

12.5 Commands to Configure Routing

Command	Function		
	Adds a static route in	n the routing table. Use the following options:	
	 default gw 	creates a route for the default router	
route add	• -net	specifies a network address	
	• -host	specifies a single host on the network	
	• reject	installs a blocking route	
route del	Deletes a static route in the routing table.		
route	Views the routing table, including the default gateway address.		
ip route show	Views routes in the routing table.		
	Adds a route to the	outing table. Use the following options:	
	network	specifies the address of the remote network. Be sure to include the prefix of	
ip route add		the network using CIDR notation	
	via router_IP	specifies the router to which packets addressed to the remote route should be sent	
	• dev interfac e	specifies the network interface to which the new route will be applied	
ip route del	Removes a route from the routing table. Replace network with the network address of the route to be		
network	removed. Be sure to include the prefix of the network using CIDR notation.		

12.6 Name Resolution Settings Configuration

Command	Function
	When a host needs to resolve a hostname into an IP address, it reads this file first by default. If
/etc/hosts	it finds a mapping for the hostname, it uses it and the name resolution process ends. If it does
	not find a mapping, it sends the name resolution request to a DNS server.
	Provides the system with the address of a DNS server that can be used for name resolution. Up
	to three servers can be listed, and the servers are accessed in the order specified. The file can
/etc/resolv.conf	also specify a fully qualified domain name that will be appended to hostnames that are missing
/ etc/resolv.com	a domain name.
	In recent versions of many Linux distributions, the resolv.conf file is generated from other files
	and is modified there, not directly in resolv.conf.
/etc/nsswitch.conf	Specifies whether the computer's hosts file or the DNS server takes precedence.
/etc/hostname	Defines the host and domain names.
host	Finds the IP address for a domain name.
hostname	Displays or sets the name of the local host for the current session.
	Domain Information Groper (dig) is a command line tool that lets you query Domain Name
	System (DNS) name servers and displays the answers that are returned from the name server(s)
dig	that are queried. dig is useful for verifying and troubleshooting DNS problems. It can also be
	used to perform DNS lookups to display the answers that are returned from the name server
	that were queried.
	This is a program to query internet domain name servers. The nslookup command has
	two modes, called interactive and non-interactive. Interactive mode allows the user to query
	name servers for information about various hosts and domains or to print a list of hosts in a
	domain. Non-interactive mode allows the user to print just the name and requested
nslookup	information for a host or domain. You use non-interactive mode when the name or internet
Пзюскир	address of the host you want to look up is the first argument. To use nslookup:
	1. Enter nslookup at the shell prompt.
	2. Enter the hostname or IP address, such as 192.168.1.1
	3. The DNS server should respond with the requested mapping.
	4. Type exit when finished.

12.8 Network Communications Troubleshooting Tools

oing	Ping a hoIf younetwIf you	tivity between hosts within the network. Is st using its IP address. If there is no response, try to ping another host. Our computer cannot communicate with any other computer, check the Our cable, the network interface card, or the IP address configuration on your computer.	
ing	∘ If you netw ∘ If you	ur computer cannot communicate with any other computer, check the vork cable, the network interface card, or the IP address configuration on your computer.	
ning	netw ∘ If you	ork cable, the network interface card, or the IP address configuration on your computer.	
oing	∘ If yo		
oing	com	ur computer can communicate with computers on the local network, but can't	
oing	COIII	municate with remote computers (such as the internet), verify the default gateway	
		iguration on your computer.	
		computers on the local network cannot communicate with any remote computer,	
		bleshoot the router's connection to the remote network.	
	• Ping a ho	st using its DNS name. If a ping by IP address works, but a ping by DNS name fails, there	
		oly a name resolution problem.	
	• Use the -c option to specify how many ICMP echo requests to send to the destination.		
	IPv6 communic	ations can be tested using ping, but the ping6 command must be used.	
	Displays a list o	f network connections (e.g., sockets), the routing table, and information about the	
	network interfa	nce. A socket is an endpoint of a bidirectional communication flow across a computer	
	network. Use th	ne following options for additional information:	
	-a lists l	ooth listening and non-listening ports.	
netstat	-i displ	ays a table of all network interfaces.	
icisiai	-l lists l	istening sockets.	
	- s displa	ays statistics for each protocol.	
	-r displa	ays the routing table, which includes the IP address of the default gateway.	
	The netstat con	nmand is being replaced by ss, ip route (for netstat -r), ip -s link (for netstat -i), and	
	ip maddr (for n	etstat -g)	
		cations between network hosts. The netcat (nc or ncat) command establishes a TCP	
		tion between two computers. The procedure for using nc is to:	
	•	stening TCP or UDP socket on one host. The syntax is nc -I port_number . The -I option	
		at to wait and listen for incoming connections. If no protocol is specified, TCP is used by	
ıc		o use UDP instead of TCP, include the -u option in the command.	
cat		to the listening socket on the first host from another host. The syntax is nc <i>ip_address</i>	
	port_nun		
	After the connection is established, text entered at the prompt of the second computer should		
	appear on the screen of the first computer.		
	•	the appropriate ports in the host firewalls of both systems.	
		ity between devices and shows the path between them. The traceroute command:	
	· •	track down which router (known as a hop) in the route is not working correctly.	
traceroute		the round trip time (RTT) for each hop. The RTT is the time difference between when	
racepath	-	was sent from traceroute and the time the response arrived for each packet.	
	=	nilar to traceroute , but does not require super user privileges.	
		Iting, use the traceroute6 or tracepath6 commands instead of traceroute.	
		esolution request. To use nslookup:	
		lookup at the shell prompt.	
nslookup		e hostname or IP address (such as 192.168.1.1). server should respond with the requested mapping.	
		it when finished.	
		command is being replaced by the host and dig commands.	
	•	esolution request and receives extensive information about the hostname or	
		sider the following options:	
	• a	resolves a record information.	
	• ptr	resolves a PTR record.	
lig	• cname	resolves CNAME record information.	
-0	• p	queries a specific port on the host.	
	• in	resolves internet record information.	
	• mx	resolves MX record information.	
	• soa	resolves start of authority information.	
	♥ 50a	resolves start of authority information.	

	Dumps socket statistics and provides detailed information about communication with other hosts,
	networks, services, network connections, networking protocol statistics, and Linux socket
	connections. Consider the following options:
	-a displays all sockets.
SS	-t displays only TCP sockets.
33	-u displays only UDP sockets.
	-I displays listening sockets.
	-m shows socket memory usage.
	-p shows process using socket.
	ss > ss_output sends the output to a file.
	Controls NetworkManager and get its status from the command line. Use nmcli as a complementary
	utility to nm-applet or other similar clients. Its main usage is on servers, headless machines, or for
	power users. Consider the following options:
nmcli	-t displays terse output. The output is suitable for scripts.
	-p displays pretty output that is easily readable by humans.
	-m specifies mode (tabular or multiline).
	-f specifies column names.
	Provides a text-base interface for controlling NetworkManager. Consider the following options:
	-edit displays a connection editor that supports adding, modifying, viewing, and
nmtui	deleting connections.
	-connect displays a list of available connections with options to activate or deactivate them.
	-hostname sets the system hostname.
	Listens to network traffic on a named interface. If no interface is named, it listens on the first
	interface that looks like an external interface. Be aware that ifhop:
	 Displays a table of current bandwidth usage by pairs of hosts.
	 Must be run with sufficient permissions to monitor all network traffic on the interface.
	• Looks up the hostnames associated with addresses it finds in packets. This can cause substantial
	traffic. You can suppress the display of DNS traffic by using filter codes or switch it off with
iftop	the -n option.
псор	Includes some of the following options:
	 -r suppresses display of DNS traffic when the program is running.
	-h prints a summary of usage.
	 -N suppresses resolving port number to service names.
	-p runs in promiscuous mode. It counts traffic that does not pass directly through the
	specified interface.
	-f allows you to specify filters.
	Performs network throughput measurements. To perform an iperf test, the user must establish both
	a server (to discard traffic) and a client (to generate traffic). With iperf:
	-f specifies report format: [kmKM] Kbits, Mbits, KBytes, MBytes.
iperf	-i pauses n seconds between periodic bandwidth reports.
iheii	-I sets length read/write buffer (default 8 KB).
	-o specifies output filename for the report or error message.
	-p sets server port to listen on/connect to (default 5001).
	-u uses UDP rather than TCP.
	Dumps traffic on a network. Options include:
	-A prints each packet without the link level header in ASCII.
	-B sets the operating system capture buffer size.
tondum	-c exits after receiving count packets.
tcpdump	-d dumps the compiled packet-matching code in a human readable form to standard output
	and stops.
	-dd dumps packet-matching code as a C program fragment.
	-D prints the list of the network interfaces available on which tcpdump can capture packets.
	Sets up, maintains, and inspects IP sets in the Linux kernel. Consider the following options:
	• -n creates a set identified with setname and specified type.
ipset	• add adds a given entry to the set.
	• del deletes the specified entry from a set.
	• test tests whether an entry is set or not.
	·
	• -x destroys specified set or all sets if no set is specified.

		s the functionality of the traceroute and ping commands in a single network diagnostic tool.
	Consider	the following options:
	-r	puts mtr into report mode, causing it to run for the number of cycles specified by
		the -c option, print statistics, and exit.
mtr	-t	forces mtr to use the curses based terminal interface if it is available.
	-n	forces mtr to display numeric IP numbers and not try to resolve the host names.
	-u	uses UDP datagrams instead of ICMP ECHO.
	-4	uses IPv4 only.
	-6	uses IPv6 only.
	Displays a	and modifies the internet-to-Ethernet address translation tables used by the Address
	Resolutio	n Protocol, or ARP. Consider the following options:
	-a	displays all of the current ARP entries.
	-d	deletes the entry for the specified hostname. When combined with -a, this option deletes
arp		all entries and automatically disables hostname lookups.
aip	-f	processes entries in the specified file to be set in the ARP tables.
	-F	overwrites entries for a given host when used with -f.
	-s	creates an ARP entry for the specified host and Ethernet address. This option is used with
		the -f option.
	The arp co	ommand is being replaced by ip n.
	Looks up	records in the databases maintained by several network information centers (NICs) Consider
	the follow	ving options:
	-a	uses the American Registry for Internet Numbers (ARIN) database.
whois	-d	uses the US Department of Defense database.
Wilois	-g	uses the US non-military federal government database, which contains points of contact
		for subdomains of .GOV.
	-h	uses the specified host instead of the default NIC. Either a hostname or an IP address may
		be specified.
	Tracks, in	tercepts, and logs network traffic. It can also generate a customized report from captured
	data. Use	a CLI version of the Wireshark packet analyzer. Consider the following options:
	-i	specifies the name or index number of the interface.
Wireshark	-s	specifies the packet snapshot length.
tshark	-у	specifies the link type.
LSHAIR	-c	stops capture after a specified number of packets.
	-i	specifies a file to read from.
	-i	specifies a file to output to.
	-2	performs two-pass analysis.