A dynamical study of the pentaquark Θ^+ state A. R. Haghpayma*

Department of Physics, Ferdowsi University of Mashhad
Mashhad, Iran
Department of Physics, Azad University of Mashhad, Mashhad, Iran.

Abstract

Although the Θ^{+} has been listed as a three star resonance in the 2004 PDG, its existence is still not completely establisheed, Whether the Θ^{+} exist or not, but it is still of interest to see what QCD has to say on the subject. for example, we should know why the Θ^+ width is extremely narrow. Assuming a conventional correlated perturbative chiral quark model (CPXQM), we suggest that the Θ^{+} baryon is a bound state of two vector diquarks and a single antiquark, the spatially wave function of these diquarks has a P- wave and a S- wave in angular momentum in the first and second version of our model respectively, as the result of these considerations we construct the orbital - colour - flavour - spin symmetry of $q^4\overline{q}$ contribution of quarks and by imposing considerations such as HF interactions and suitable diquark currents we leads to a conventional pentaquark interpolating field which may be used for QSR analysis. In order to get an idea of the general features of the spectrum we have calculated the mass spectrum of exotic pentaguark states with the Gürsey Radicati mass formula. In order to have a realisation of the pentaguark structure in our model we search for a variational solution of a conventional Hamiltonian containing Kinitic energy - binding and hyperfine interaction . We suppose that the small Decay widths of Θ^+ is due to tunneling of one of the quarks between the two diquarks, according to our model we find $\Gamma_{\Theta^+ \simeq 1.30}$ MeV for Θ^+ width. We extend our diquark model, which previously formulated to describe exotic baryon to dibaryons. Because of the importance of the Θ ⁺magnetic moment to encode imformation of its quark gluon structure and underlying dynamics, we calculated the Θ^+ magnetic moment in our model. Another approach to calculating the mass and stability of the pentaguark is based on our diquark - diquark antiquark picture of our model in which we have used a long - range nonperturbative binding ene rgy for the confinement interaction between two diquarks (QQ), by using a shrödinger - like equ ation for the QQ system we estimate the mass and the width of the Θ^+ pentaquark.

I. INTRODUCTION

The year 2003 will be remembered as a renaissance of hadron spectroscopy at the early's of that year (LEPS) collaboration , T. Nakano et al. "reported the first evidence of a sharp resonance Z+renamed to Θ^+ at $\stackrel{M}{=} \simeq 1.54 \pm 0.01 \text{GeV}$ with a width smaller than Fe < 25 MeV

The experiment performed at the Spring - 8 facility in Harima, japan and this particle was identified in the K^+N invariant mass spectrum in the photo- production reaction $\gamma^n - K^- + \Theta^+$, which was induced by a Spring - 8 tagged photon beam of energy up to 2.4 GeV

The existence of Θ^+ was soon confirmed by various groups in several photo—punclear reactions including V . V Barmin etal. Fig. 12EP (DIANA) JLAB (CLAS) and ELSA (SAPHIR).

Perhaps the simplest data coms from SAPHIR detector at ELSA where the Θ^+ is photo—produced off a simple target. The final state contains $nK^+K_s^0$ and the relevant system is identified in the missing mass spectrum of the K_s^0 . The K_s^0 is reconstructed from its two π decay,preferentially in the forward direction.these authors conclude the Θ^+ is an isoscalar due to the absence of a Θ^+ in the $\gamma p \to pK^+K^-$ channel.

After the jefferson lab confirmation , it was observed in several different experiences, with a mass of 1540 $^{\pm}$ 10 MeV and a decay width of 15 $^\pm$ 15 MeV.

Since 2003 , january there have been several reports of exotics: see table $1^{\mid b \mid};$

Because of the observation of such states in various reaction channels, the existence of pentaquark baryons was become widely accepted, meanwhile for negative reports see table2:

Such states are believed to belong to a multiplet of states where the possible observability of the other members has to be, worked out

This discovery has triggered an intense experimental and theoretical activity to understand the structure of the state

With the conventional constituent quark model, the conservation rules guarantee that it has a strangeness S=1, baryon number B=1 and charge Q=1, thus the hypercharge is Y=B+S=2 and the third component of isospin is I=0. no corresponding pK^+ (I=1) state is observed at the same mass , due to absence of a G++ in the $\gamma p - pK^+K^-$ channel , and thus the isospin of Θ^+ is the same I=0 and it also seems important that no S=1 baryonstates has been observed below the NK threshold, and this state seems to be, the ground state

We have two decays Λ (1540)—K N and Λ (1600)— K N above the threshold but both decays need qq pair production from vaccum , but we have for Θ^+ decay: $\Theta^+ \to K^+ N$ and it seems that no need qq pair production if Θ^+ is not a more complicated object.

All known baryons with B=1 carry negative or zero strangeness. a baryon with strangeness S=1, it should contain at least one \tilde{s} , can not consist of three quarks, but must contain at least four quarks and an antiquark; in other words, must be a pentaquark or still more complicated object now its called Θ^+ pentaquark in literature.

From the charge and the strangeness. \vec{u} \vec{d} \vec{s} is a possibility as the content of Θ^+ , which called the minimum quark content, such state is exotic; in general states with the \vec{q} having different flavour, than the other four quarks and their quantum numbers cannot be defined by 3 quarks alone are called exotics thus we have an exotic Θ^+

The discovery of φ^+ was followed by the discovery of yet another exotic baryon, \equiv^{--} , found by the NA40 group at CERN with M=1862 $^\pm$ 0.02 MeV, the particle (sd 2 u) is another manifestly exotice baryon whose decay at $\equiv^{-}\pi^-$ has been observed at the mass M=1.862 GeV with a width Fe18 MeV and the unddc pentaquarkwas D P(3100) observed at Hl $^{|\mathbb{N}|}$, its mass 3099 $^\pm$ 3 $^\pm$ 5 MeV and width compatible with experimental resolution, decaying to D P which search for but not seen by Zeus $^{|\mathbb{N}|}$.

search for but not seen by Zeus[®]. Another report from WA89 colaboration shows no evidence for Ξ (1860) in Σ^{-} nucleus collisions[®], however higher statistics experiments are required to firmly establish the observed states¹⁰⁰.

The possibility and the interest for $\,S=1$ baryons (or Z baryons) has been recorded for many years by the $\,^{\circ}$ PDG $\,^{\circ}$ up to 1986 . but subsequently it was dropped because of lack of clear evidence for their existence.

The efforts to search for pentaquark baryons until 1980's were summarized in Ref [11].

However this exotic baryon with such a low mass and so narrow a width impose a big challenge to hadron theories and its discovery shall be one of the most important events in hadron physics .

If it is really a pentaquark state it will be the first multi - quark states people found . Theoretical interest in exotic baryons has continued both for heavy and light quarks [12]. The first prediction of the mass of Θ^+ is $M_z = 1530$ MeV by Mpreszalowicz at 1987 and the first prediction of width of Θ^+ is $\Gamma_v < 15$ MeV by M.Polyakov,

D.Diakonov , V . Petrov. at 1997.

The averaged mass value $M_{\Theta}=1536$.2 $^{\pm}$ 2.6 MeV and $\Gamma_{\Theta}=12\pm9\pm3$ MeV and the world average is $M_{\Theta}\simeq 1538$ MeV The mass and the width of Θ^+ and other exotic pentaquark baryons has predicted by several hadron models . Its width ($\Gamma<10$ MeV) is exceptionally narrow as for a hadron resonance located at 110 MeV a bove the NK threshold usually refered to narrow width puzzle.

There is no direct measurement of its spin S and Isospin I and its angular momentum J and parity P are different in various theoretical works, however most of them postulated its angular momentum J to be J=1/2 but the possibility of J=3/2 and S=1/2 and P=+ is rather plausible.

If some of theoretical models is correct, there should be new pentaquark states waiting for discovery. Are these new states existe the answer is experiment but in the experiments we see a variety of mass for Θ^+ , are they same particle and the differences are due to experimental errors.

Where else to look for Θ^+ pentaquark production.

- 1. Nucleon- nucleon collisions:
- 2. Photon nucleon collisions:
- 3. Pion nucleon collisions:

Measurement of parity is crucial to test theories and there are many suggestions on detecting the parity , another test is measurement of the isospin and spin of pentaquark states .

If Θ^{\dagger} confirmed and established, a new landscape of multi-quark hadrons is emerging from the horizon. we must answer whats the underlying dynamics leading to its low mass, narrow width and special prioduction mechanism?

Do other multiquark hadrons exist? 4q ,6q ,7q , ... , Nq, is there an upper limit for N? study of these issues will deepen our understandig of the low- energy sector of QCD.

QCD as the underlying theory of hadron theories predicts beyond 3q or $q\bar{q}$ also multiquark states - quark gluon hybrids - glueballs and so on but it is unperturbative at low - energy , thus we need to understand the underlying dynamics of these states and concepts such as confined quarks and gluones or fundamental concepts such as spin and mass of a confined quark and a free quark or the width of decay of a hadron.

Although the Θ⁺ has been listed as a three star resonance in the 2004 PDG, its existence is still not completely established:

Whether the Θ^+ exist or not, but it is still of interest to see what QCD has to say on the subject. At the next chapters we deal with this question.

The beginning: Spring-8: LEPS - ⊕*(1540) production off a carbon target

Background processes for Θ^+ Production in $\gamma p \longrightarrow \pi^+ K^- K^+ n$

May 14th, 2004

Table .1

Experi	ments Cian	ned the O	oservanc	on or o
Experiment	Mass(MeV)	Width(MeV)	Reaction	Production
SPring-8	1540 ± 10	< 25	γn	nK^+
DIANA	1539 ± 2	< 9	K^+Xe	$nK^+ \rightarrow pK_s^0$
CLAS-1	1542 ± 5	< 21	γd	nK^+
SAPHIR	$1540{\pm}4\pm2$	< 25	γp	nK^+
ITEP	$1533\!\pm\!5$	< 20	$\nu CC, \overline{\nu}CC$	pK_s^0
CLAS-2	$1555\!\pm\!10$	< 26	γp	nK^+
ALICE	1532±-	< -	CC	pK_s^0
HERMES	$1528{\pm}2.6{\pm}2.1$	$17\pm9\pm3$	γd	pK_s^0
COSY-TOF	1530 ± 5	$< 18 \pm 4$	pp	$\Sigma^+ p K_s^0$
SVD-2	$1526 \pm 3 \pm 3$	< 24	pN	pK_s^0
JINR-1	$1545.1\!\pm\!12.0$	16.3 ± 3.6	pC_3H_3	pK_s^0
ZEUS	$1521.5\!\pm\!1.5^{+2.8}_{-1.7}$	$6.1 \pm 1.6^{+2.0}_{-1.4}$	ep	$pK_s^0 \overline{p}K_s^0$
JINR-2	1541 ± 4	8 ± 4	np	nK^+
NA49	$1535\pm$ -	-	pp	pK_s^0

Table .2

Summary of Null Results

Experiment	⊖ ⁺ (1540)	Ξ(1862)	$D^{*-}p(3100)$	Reaction
	$(uudd\overline{s})$	$(ddss\overline{s})$	$(uudd\overline{c})$	
HERA-B	NO	NO		$pA \rightarrow \Theta^{+}X, \Xi^{}X$
NA49	?	YES		$pp \rightarrow \Theta^{+}X$
E690	NO	NO		$pp \rightarrow \Theta^{+}X, \Xi^{}X$
CDF	NO	NO	NO	$p\overline{p} \rightarrow \Theta^{+}X, \Xi^{}X, \Theta^{c}$
HyperCP	NO			$\pi, K, p \rightarrow \Theta^{+}X$
BaBar	NO	NO		$e^+e^- \rightarrow \Theta^+X, \; \Xi^{}X$
ZEUS	yes	NO	NO	$ep \rightarrow \Theta^{+}X, \Xi^{}X, \Theta^{c}X$
H1	NO?		yes	$ep \rightarrow \Theta^c X$
ALEPH	NO	NO	NO	$e^+e^- \rightarrow \Theta^+X$
DELPHI	NO			$e^+e^- \rightarrow \Sigma^+K^0p$
PHENIX	NO			$AuAu \rightarrow \Theta^{+}X$
FOCUS			NO	$\gamma A \rightarrow \Theta^c X$
BES	NO			$e^+e^- \rightarrow J/\Psi \rightarrow \Theta^+\overline{\Theta^-}$

Theories of positive parity for ⊕+

- Chiral Soliton Models (old version)
 - Diakonov-Petrov-Polyakov, ZPA359(1997)305
 - Analysis in Quark Model Stancu-Riska, PLB575(2003)242
 - Diquark Cluster Model .
 - Jaffe-Wilczek, PRL91(2003)232003
 - Diquark-Triquark Model •
- Karliner-Lipkin, PLB575(2003)249
 Inherent Nodal Structure Analysis
 - Y.-x.Liu, J.-s.Li, and C.-g. Bao, hep-ph/0401197

Theories of negative parity for Θ^+

- Naive Quark Model
 - Jaffe (1976)
- Some Quark Models •
- Capstick-Page-Roberts, PLB570(2003)185
 - QCD Sum Rules •
- Zhu, PRL91(2003)232002, Sugiyama-Doi-Oka, hep-ph/0309271
 - Lattice QCD •

Sasaki, hep-ph/0310014, Csikor et al, hep-ph/0309090, but we heard difference voices recently

Summary of sightings of the Θ

Experiment	Reaction	Mass	Width	σ_{std}
LEPS	$\gamma C \rightarrow K^+ K^- X$	$1540~\pm~10$	< 25	4.6
Diana	$K^+Xe \rightarrow K^0pX$	$1539~\pm~2$	< 9	4.4
CLAS	$\gamma d \rightarrow K^+ K^- p(n)$	$1542~\pm~5$	< 21	5.2
SAPHIR	$\gamma p \rightarrow K^+ K^0(n)$	$1540~\pm~6$	< 25	4.8
ITEP	$vA \rightarrow K^0 pX$	1533 ± 5	< 20	6.7
CLAS	$\gamma p \rightarrow \pi^+ K^- K^+(n)$	$1555~\pm~10$	< 26	7.8
HERMES	$e^+d \rightarrow K^0pX$	$1528~\pm~3$	13 ± 9	\sim 5
ZEUS	$e^+p \rightarrow e'K^0pX$	$1522~\pm~3$	8 ± 4	\sim 5
COSY	$pp \rightarrow K^0 p \sum^+$	$1530~\pm~5$	< 18	4 - 6

Properties of reported exotic baryons and related states.

Name	Mass (MeV)	Width (MeV)	Spin ^{parity}	Isospin	Decays	Minimal $SU(3)_f$ Irrep
Θ^{+}	1520 - 1540	< 1 , < 6 - 10	$1/2^{?[3]}$	0	K^+n , K_Sp	10
Φ	1860	< 18	?	$\geq 3/2$	$\Xi^{-}(1320)\pi^{-}$	10
$\Phi^{0}/\Xi^{0[]}$	1860	< 18	?	$\ge 1/2$	$\Xi^{-}(1320)\pi^{+}$	$\overline{\bf 10}$ if Φ , 8 if Ξ
Φ^-/Ξ^-	1855	< 18	?	$\ge 1/2$	$\Xi^{*0}(1530)\pi^{-}$	$\overline{\bf 10}$ if Φ , 8 if Ξ
$\{uudd\bar{c}\}$	3099	< 12	?	≥ 0	$pD^{*-} \& \bar{p}D^{*+}$	6

II. NARROW WIDTH PUZZLE

The pentaquark width ($\Gamma \! < \! 10$) is exceptionally –narrow as for a hadron resonanc located at 110 MeV a bove the NK⁺threshold both ⊕ + and Ξ are very narrow states. Θ^+ is so narrow that most of the experimental results show only an upper bound around $20~{
m MeV}$ or from the recent KN scattering is less than several Mev [13].

While the width of conventional exited hadrons always are around one hundred MeV or even bigger, if they lie 100 MeV a bove threshold and decay through S -wave or P -wave.

For comparison the S= 1 hyperon Λ (1520) D_{qs} state J=3/2 and in the same mass region as the Θ^+ , has dominant two - body decay D - wave with final states NK, with a smaller phase space and higher partial wave, and its width is 15.6 - MeV^[14] while space and higher partial wave, and its width is $15.6 \cdot \text{MeV}^{\text{ev}}$ while θ^+ lies above $100 \, \text{MeV}$ threshold and decays S - wave or P -wave with a total width less than several MeV, corresponding to negative or positive parity respectively. Λ (1520) decay to KN through D - wave and its width is $7 \, \text{MeV}$ also Δ (1600) decay to KN through P - wave and its width is $100 \, \text{MeV}$ this two decays need $q\bar{q}$ creation and θ^+ is in the same phase space but its width is smaller than $10 \, \text{MeV}$, there is a puzzle.

The question is the origin of narrow width of the pentaquark which is the most negularifeature of this new resonance in other words.

is the most peculair feature of this new resonance. in other words is there a mysterious selection rule which is absent from the conventional hadron intraction?

Since there is no known selection rule from symmetry to make the width naturally small, the narrow width should have dynamical origin. Can low - energy QCD describe the underlying dynamical forces between quarks and gluons in such states and generate their mass and width correctly ?.

There have been several attempts to explain the narrow width from combinational suppression from the spin - flavor and color factors or from the special spatial structure due to diquark correlations and from the theories which describe the behaviour of quarks and gluons like chiral soliton and instanton liquid models.

Several attempts performed on confinement, however, no difinite conclusion has been reached vet.

A conventional dynamical mechanism for the long life time of the A conventional dynamical mechanism for the long life time of the pentaquark state is treating its hadronic decay on the basis of the constituent quark model which is supported by QCD as underlying theory and molecular dynamics. this mechanism suppose that the constituent quarks are well mixed in the colors space inside the pentaquark and rearrangement of their colors, flavors, spins and spatial positions into two color- white clusters i. e. the Nucleon N and the Kaon K takes a long time and thus gives a narrow width for the pentaguark decay.

This rearrangement or regrouping is goverend by the strong interactions among quarks and is not simply related to the distance in color - flavor - space between the initial and final states.

This method is called color molecular dynamics (CMD). In this method for example the wave function of a single quark as a constituent one is parametrized by a gaussion wave pocket in coordinate space and by a color coherent state in the $\ \, SU_{\boldsymbol{C}}(3) \ \,$ and so on then by using of Hamiltonian commonly used in the standard constituent quark models^[15], the time - dependent dynamics of the multiquark systems in their clustres and decays are explained .

Because of the importance of strong forces in QCD, color and spatial coordinates is more interesting and spin-flavours and sometimes are neglacted, however antisymmetrization effects on the width and mass of a state are not important in QCD. Recently there have been several attempts to explain the narrow idth of the Θ^+ pentaquark [17]. width of the Θ +

quarks to regroup with each other into a three - quark baryon and For the Θ^+ the most efficient decay mechanism is for the 5 quarks to regroup with each other into a three - quark baryon and a meson, that is in contrust to the 3P decay models of the ordinary hadrons $^{[18]}$.

Carlson et al. constructed a spacial pentaquark wave function which is totally symmetric in the flavor-spin part and anti-symmetric in the color-orbital part [19], with this wave function they found the overlap probability between the pentaquark and the nucleon kaon system is 5/94.

Taking into account of orbital wave function in JW s diquark model further reduces the overlap probability to 5/594.

The small overlap probability might be responsible for the narrow width of pentaquark.

Another approach to this puzzle is a SUSY based model in which we use a broken dynamical supersymmetry between an antiquark and a diquark by replacing two antiquarkes in an antibaryon by two diquarks to form a pentaquark and relating their mass to each

other. Using this technique, we find that the mass of an exotic pentaquark with strangeness S=1 is at least $200\;\mathrm{MeV}$ larger than that of the reported Θ^+ pentaquark.

Furthermore, there is no reason for the pentaquark to be narrow, and the pentaquark should have such a broad width as to make it hard to observe as a resonance, even in the case with orbital angular momentum $\ell=0$. It seems if

angular momentum t=0. It seems if we use another unknown dynamical interactions between quarks in diquark after replacing it, we will be able to decrease the mass and decay width of the pentaquark, if this replacement ocure in color space only, we can use the QCD based behaviour of spin, flavors and antisymmetrization of diquarks to describe such dynamical interactions.

A few years a go similar ideas were used to predict the masses of exotic mesons and baryons but not for the properties of pentaquarks [16]

The standard constituent quark model is the next approach to this puzzle, at the symmetry limit the selection rules are exact and the narrow width of the pentaquarks come from the symmetry breaking.

Buccella and sorba suggested [20] that the four quarks are in the L=1 state and the anti- quark is in the S - wave state inside the Θ

There are four anti - symmetric four quark $\mathrm{SU}_\mathrm{fs}(6)$ wave functions that

$$[4]_{f_8}$$
 $[31]_{f_8}$ $[22]_{f_8}$ $[211]_{f_8}$
(JW) the four quarks are not—completly—a

in the diquark model (JW) the four quarks are not completly symmetric, thus the thired one correspond to this model . The narrow width of Θ^+ pentaquark may favor the last two functions Θ^+

pentaquark may favor the last two wave

The reason is as follows; when the anti-quark picks up a quark to form a meson, two of the other three quarks remain in the ${
m SU}_{\rm fs}$ (6) totally symmetric representation [3] fs for the nucleon octet.

If $SU_{\!\scriptscriptstyle fg}(6)$ symmetry is exact, the $\bar{1}0$ pentaquarks will not decay at all, this selection rule is exact in the symmetry limit, the narrow width of the Θ^+ and Ξ^{--} pentaquarks come from the SU(3) and Ξ pentaquarks come from the SU(3)symmetry breaking.

In order to refine our understanding of quark dynamics energy where it is not perturbative we review some general features of the dynamics of a K⁺N resonance.,

Θ lies a bout 100 MeV above K N threshold at a center of momentum K=270 MeV, the characteristic parameter KR is a bout 6.4 if we use a typical Range R = 1 F for this interaction. assuming isospin zero with KR $\,\simeq\,$ 1.4 only the S or P - wave is likely and the spin S = 1/2 is pleasible.

QCD features are:

1- because of low center of mass momentum and no other hadronic channels coupling to K † Nbelow K Δ threshold at 1725 MeV we are at nonrelativistic region.

2- Θ⁺ is an exotic particle and in its scattering to K^TN there is no quark- antiquark annihilation graphs, thus we no have confined states that couple by qq anihilation.

3- the wave function of K⁺ and N or final states differ from the Θ in space, color, and spin.

Acording to this features of QCD in the region of Θ^{+} we lead to a nonrelativistic potential scattering description of it, but this description cannot reproduce its mass and width semeaultaneously correctly the reason is as follows:

The resonance are related through the range and depth of the potential, for a simple attractive potential of Range 1 F, the width of a P- wave resonance 100 MeV a bove threshold is above 175 MeV and for a width of order $10~\mathrm{MeV}$ our range must be $0.05~\mathrm{F}$ but this range of a potential brings in a high energy scale, far from thΘ⁺ from $th\Theta^+$ P - wave resonance. Thus one can choos the potential Range to be 1 F and decrease

the mass of Θ + by some additional dynamics beyond nonrelativistic potential scattering, for example: interactions such as flavour-spin and color-spin is between quarks inside the Θ^+ and confinement effects. hyperfine interactions

Although this is our understanding of quark dynamics at low

energy there is various attempts to refine it.

We can produce the mass of Θ by decoupling of decay modes through mass matrix diagonalization between pentaquark state for example two degenerate pentaquark octet and antidecouplet. (JW).

However in JW's model Θ^+ is not the lightest pentaquark due to the ideal mixing between the octet and anti-decuplet the ideal mixing will split the spectrum and produce two nucleon - like states ($\rm N_s($ 1710) , $\rm N_l($ 1440)) wilczek identified $\rm N_l$ as the well - known Ropper resonance N (1440) which is a very broad four - star resonance [32] with a width around (250 to 450 MeV).

However, it will be very demanding to explain Ropers larg decay width and O+ 's extremely narrow width simultanously excludes N_1 (1440) as a pentaquark state, N_s (1710) has a large excluded as a branching ratio into $\pi\Delta$ channel, and it should be pure antidecuplet state.

This is because, within SU(2) symmetry, antidecouplet does not couple to decouplet and meson octet, therefor mixing with other multiplets is required if one want to identify N $_{\rm S}(-1710^{\circ})$ as pentaquark Crypto-exotic $^{\rm [22-28]}$ states.

III MULTIHARK THEORIES

QCD is believed to be the underlying theory of the strong interaction which has three fundamental properties: asymptotic freedom, color confinement, approximate chiral symmetry and its spontanous breaking; in high energy level QCD has been tested up to 0.01 level.

The behaviour of QCD in the low energy is nonperturbative and

the ${\rm SU_c(3~)}$ color group structure is non- abelian. However, besides conventional mesons and baryons, QCD itself does not exclude the existance of the nonconventional states such as glueballs (gg , ggg , $\underline{\hdots$) hybrid mesons (qq g) , and other multi - quark states ($qq\bar{q}\bar{q}$, $qqqq\bar{q}$).

It is very difficult to calculate the whole hadron spectrum from first principles in QCD, under such a circumstance, various models which are QCD - based or incorporate some important properties of QCD were proposed to explain the hadron spectrum and other low- energy properties.

We will explain and discus some features of them:

1- Lattice Calculations

With the rapied development of new ideas and computing power, lattice gauge theory may provide the final solution to the spectrum problem in future.

Lattice QCD simulation may play a very important role eventually but right now, lattice simulation of pentaquarks by several groups has not converged yet, for example, one lattice calculation favors positive parity for pentaquarks $^{[8]}$, while two previous lattice simulations favor negative parity $^{[8]}$, some lattice simulations did not observe any bound pentaquark state in either I=0 J $^{[9]}=1/2^{\pm}$ or I=1 J $^{[9]}=1/2^{\pm}$

Soon after the first experimental reports of Θ^+ the first lattice studies of it appeared [35].

There was confusion a both parity but both groups have found evidences for the KN threshold and for a state in the undds $J^{=}=1/2$ channel. They also reported evidence for a state in the 1/2 channel. but at a higher mass .

Although kentucky group does not find a state in either parity

For negative parity we have only one local source qqqqq. but for positive parity we have eight local sources and the full correlation matrix with the eight local sources must be done to show the optimize overlape with possible positive parity state.

We may favour positive parity to negative one to resolve Θ width puzzle, for this reason we can use diquark ideas and operatores [38] and do our calculations in the chiral limit (hyperfine interactions between quarks).

The goal of such ideas is diquark correlations [13,32] (scaler diquarks vector diquarks -)

Because of we are dealing with nearly massless quarks we are in the relativistic limit, but in lattice calculations the sources may classified according to their properties in the , non - relativisticlimit and by replacing Dirac quark fields by pauli fields.

The negative parity state observed in Ref [37,35] will turn out to have an enormous width and the state has exactly the same spin , color, and flavour wavefunction as KN in the S-wave therefore should be very broad and there is a single $\bar{10}$ with either J=1/2 or $J^p=3/2$ and uncorrelated quarks in comparison to four octet with $J^p=3/2$.

Thus the lattice calculations are at the beginning of their way. 2- Sum Rules.

The basic object in Sum Rule analysis are correlation functions for example: $\Pi(p) = i \int d^4x \ e^{ipx} \langle 0|T\{\eta(x)\bar{\eta}(0)\}|0\rangle \,, \label{eq:potential}$

Where $\eta(x)$ represents the interpolating field of the pentaguark under investigation.

Several interpolating fields has intended for a lattice search of which are suitable for QSR analysis due to the QCD - based quark picture of pentaquark [39]

In (j' w diquark model) we have for $\eta(x)$: $\eta(x) = \left(\epsilon^{abd}\delta^{ec} - \epsilon^{abc}\delta^{de}\right)\left[Q_{ab}\left(D^{\mu}Q_{cd}\right) - \left(D^{\mu}Q_{ab}\right)Q_{cd}\right]\gamma_{5}\gamma_{\mu}C\tilde{s}_{e}^{T}, \ \ (2)$ in which $D^{\mu} = \partial^{\mu} - ig\lambda_{e}^{\dagger}A^{\mu}$ (gluon exchange between diquarks and $Q^{*}(x) = \epsilon^{abc}Q_{ab}(x) = \epsilon^{abc}\left[u_{e}^{\dagger}C\gamma_{5}d_{b}\right](x).$ (3) C is charge conjugation matrix and a, b, c, are color index In this model we have two scalar diquarks and there is electromagnetic interaction between s and diquarks $^{[a0]}$

The diquarks have a particularly strong attraction in the flavour antisymmetric $J^p=0^+$ channel, this attraction comes from hyperfine interactions between quarks, in a scalar diquark interactions are flavour - spin and color - spin interactions there is exchanged gluons and mesons between two quarks in a diquark , the distance between two quarks is about $0.5 \mathrm{~f}$ and this calculations are chiral and relativistic. The two diquarks must be in a p- wave to satisfy Bose statistics, therefor the current contains a derivative to generate one unite angular momentum. diquarks couple to a 3 in colour to form the current $\eta(x)$, the parity is positive.

In fact QSR calculations not pridict Θ ⁺ pentaguark, but if it exist accomodate its mass

It would be interesting to see if lattice calculations could confirm these findings. first lattice calculations exist^[40]which, however, are based on different interpolating currents and whose results are not vet conclusive.

3- Larg N QCD ($\chi\,\mathrm{SM}\,\text{-}\,\mathrm{SKM}\text{-}\,\mathrm{non}\text{-}\,\mathrm{Correlated}$ P\(\chi_\mathbb{QM})

The prediction of the mass, width and reaction channel of θ^+ from the chiral soliton model was the first $_{p}$ prediction a bout it $^{[u]}$. In this model there is a resonance S =1 J =1/2 $^+$ at 1530 MeV with

a width less than 15 Mev and Θ^+ is the lightest member of the anti- decuplet in the third rotational state of the chiral soliton

The mass of Θ^+ has predicted by assuming that the N (1710) is a member of the anti- decuplet and by symmetry considerations of the model.

This will lead to a E -- pentaquark mass 210 MeV higher than that observed by NA49 collaboration [41]

Another reanalysis explain a fairly good description of both of and E -- masses in this model .

In χ SM the narrow width of pentaquark coms from the cancellation between the coupling constant in the leading order, next-leading order and next-next-lading order large N expansion [42].

The foundation of treatment of the pentaquarks is challenged by the N_c formalism in Ref [43].

That prediction for a light collective Θ^+ baryon state S = 1 based on the collective quantization of chiral soliton models are shown to be inconsistent with large N_c QCD.

Since collective quantization is legitimate only for excitations which vanish as N → ∞

In the large N_c limit, the rotational degree of freedom decouples from the vibration mode, for example the nucleon octet and the Δ decuplet have a mass spliting of order O ($1/N_c$) while the excitation energy of the vibration mode of the hedgehag is O (1).

In chiral soliton model the predictions of octet and decuplet multiplets are more reliable and in contrast the mass splitting between the anti-decuplet and octet is also O (1). This means that the rotation and vibration motions are not orthogonal.

They will mix each other, which invalidate the collective quantization of the rotational degree of freedom and the prediction of Θ^+ properties may be fortuitous.

If Θ^+ exist as a member of an antidecuplet large N_c technique may be used to predict the existence of the other members of the same multiple thus this technique dosent predict the existence of Θ + pentaguark, but accommodate its properties.

The investigation of the relationship between the bound states and SU (3) rigid rotator approaches to strangeness in the skyrme model has found that the exotic state may be an artifact of the rigid rotator approach to skyrm model for large N and small m.

In skyrm model we can introduce a free quark lagrangian \mathcal{L}_0^{κ} and a lagrangian \mathcal{L}_1 contains meson fields π^A between quarks to have a chiral lagrangian.

quarks have no mass and chiral symmetry breaking can generate their dynamical mass in nucleons:

$$\mathcal{L}_{0} = \bar{q} (i \partial_{-M}) q$$
(4)

$$\mathcal{L}_1 = \bar{q} \left[i \partial \!\!\!/ - M \exp \left(i \gamma^5 \pi^A \lambda^a \right) \right] q$$
 (5)

All of the quarks in a baryon are in a π^A mean-field , thus one can say that baryons are solitons, for example solitons of the self consistent electrostatic field $U_c(\mathbf{x})$ [44]

Then by use of the concept of SU (3) rigid rotator we can transform $U_c(\mathbf{x})$ into $U(\mathbf{x},t)$:

$$U(\boldsymbol{x}, t) = A(t)U_c(\boldsymbol{x})A^{\dagger}(t),$$
 (6)

Thus we are in the rotational mode of the χ SM and there is no vibrational mode.

By expanding the total lagrangian in terms of momentum P and 1/ Nc and considering low powers of P and high powers of No, we would have an effective lagrangian density at large N_cQCD expansion which is chiral and there is a chiral soliton field with its rotational mode; collective quantization of such rotational modes and relating of rotational tensor to N and SU (3) degrees of freedom which leads to SU (3) multiplets are the next steps of $\chi_{\rm SM}$ in the way to the prediction of the properties of the and other parteners in their multiplets.

In this model there are a $~\Theta^+~$ singlet with I= 0 J= 1/2 (baryon octet) and a triplet with I= 1 , J= 3/2^{[45,4]} and a new anti-decuplet, identifying $~P_{\!_{11}}($ 1710) as member of anti-decuplet . predictions of this model for Θ^+ are as follow:

$$M = 1.53 \text{ GeV}$$
 , $\Gamma < 15 \text{ MeV}$, $I = 0$, $S = 1$, $j = 1/2$ with $Θ^+ → K_0 P$ or K_D^+ .

^- For baryons with spin 1/2 and + parity there is no N around, and a weak evidence for Σ (1770), so Diakonov and petrov suggested a missing N around 1650 - 1690 MeV .

Noting is Exotic in the chiral soliton picture, baryons are solitons in the chiral meson field no baryon is exotic except that it has different quantum numbers compared to other baryons.

Assuming that chiral forces are essential in binding of quarks one gets the lowest baryon multiplets:

whose properties are relating by symmetry.

Effective field theories are not just models, they represent very general principles such as analyticity, unitarity, cluster decomposition of quantum field theory and the symmetries of the systems [46].

The chiral $\,$ perturbation theory ($\chi_{\rm PT}$), for example, $\,$ represents the low- energy behaviour of QCD (at least in the meson sector).

Although baryons in Large -N limit behave like solitons, it is not clear in what theory they appear. A natural condidate is the XPT it seems that if baryons may appear as solitons, they should appear in the χ PT, with infinitely many operators, but we may systematically expand the results with respect to the typical momentum scale P and keep a few operators at low- energy.

Thus one can say a general skyrm- witten soliton theory may be a systematic expansion of the soliton sector of the χ PT with respect to

With a conventional χ_{PT} if we consider group theoretical clustering between quarks [32] and hyperfine QCD interactions between them, we have an correlated χ PT between quarks or correlated P χ QM. In other case we are working with non- correlated theories [48].

In fact, because of unconstraint number of degrees of freedom the uncorrelated five - body approaches lead to a larger number of degres of possible configurations of constituents than correlated ones.

On the other hand uncorrelated models cover a wide spectrum of possibilities for the possible pentaquark structure of the Θ + baryon. Moreover, in this treatment the quark fermi statistics can be imposed strictly, while in the correlated approaches it is only exactly fulfilled when the diquark is really a pointlike particle.

In an conventional model the baryons are described by their fermions $\psi(x)$ valence quarks as relativistic moving in an external field (static potential):

$$V_{\text{eff}}(r) = S(r) + \gamma^0 V(r) \tag{7}$$

 $V_{\text{eff}}(r) = S(r) + \gamma^0 V(r)$ for example a confinement potential [49] with : $r = |\vec{x}| \qquad S(r) = cr \qquad V(r) = \text{constant} = V_0$

The valence quark core is supplemented in the flavor SU (3)version by a claud of goldstone bosons $(\pi, K, \eta) \Phi(x)$ according to the chiral symmetry requirement,

Treating also goldstone field as small flactuations around the valence quark core, one can drive the linearized effective lagrangian [49]:.

$$\mathcal{L}_{\text{eff}}(x) = \bar{\psi}(x) \left[i \partial \!\!\!/ - V_{\text{eff}}(r) \right] \psi(x) + \frac{1}{2} \sum_{i=1} [\partial_{\mu} \Phi_{i}(x)]^{2} - \frac{1}{4} F_{\mu\nu}^{a} F^{a\mu\nu} \\ - \bar{\psi}(x) \left\{ S(r) i \gamma^{5} \frac{\Phi(x)}{F} + g_{s} \gamma^{\mu} A_{\mu}^{a}(x) \right\}_{2}^{a} \psi(x) + \mathcal{L}_{\chi SB}(x)$$
(8)

where F = 88 MeV is the pion decay constant in the chiral limit [51] g_s is the quark gluon coupling constant, $A^a_\mu(x)$ is the quantum component of gluon field and $F^a_{\mu\nu}$ is its conventional field strengh tensor.

 $\hat{\Phi} = \sum_{i=1} \Phi_i \lambda_i = \sum_P \Phi_P \lambda_P \quad \text{the} \quad \text{octet matrix} \quad \text{of} \\ \text{scalar} \quad \text{mesons} \quad \text{with} \quad P = \pi^\pm, \pi^0, K^\pm, K^0, \bar{K}^0, \eta \ .$ pseudo

The term $\mathcal{L}_{\chi SB}(x)$ contins the mass contributions both for quarks and mesons, which explicitly break chiral symmetry.

$$\mathcal{L}_{\chi SB}(x) = -\bar{\psi}(x)\mathcal{M}\psi(x) - \frac{B}{2}Tr[\hat{\Phi}^2(x)\mathcal{M}].$$
 (9)

here, $\mathcal{M} = \text{diag}\{m_u, m_d, m_s\}$ is the mass matrix of current quarks, $B = -\langle 0|\bar{u}u|0\rangle/F^2$ is the quark condensate constant.

Perturbation theory is formulated by the expansion respect to $\hat{\Phi}(x)/F \sim 1/\sqrt{N_c^{[52]}}$ and all calculations are performed at one loop or at order of accuracy $o(1/F^2,\hat{m},m_s)$.

The explicit form of the ground state quark wave function is set up

$$u_0(\vec{r}) = \begin{pmatrix} g(r) \\ \frac{1}{2} f(r) \vec{z} & \hat{x} \end{pmatrix} Y_0^0(\hat{r}) \chi_s \chi_f \chi_c, \tag{10}$$

as:
$$u_0(\vec{r}) = \begin{pmatrix} g(r) \\ -if(r)\vec{\sigma} \cdot \hat{r} \end{pmatrix} Y_0^0(\hat{r})\chi_s\chi_f\chi_c, \tag{10}$$
 and for an antiquark we have:
$$v_0(\vec{r}) = \begin{pmatrix} -l(r)\vec{\sigma} \cdot \hat{r} \\ ik(r) \end{pmatrix} Y_0^0(\hat{r})\chi_s\chi_f\chi_c \;, \tag{11}$$

By using of the interaction lagrangian, i.e the 4-th term of the total lagrangian of Eq (8).

The interaction lagrangian includes effects of the meson and gluon corrections to the baryon by applying Wicks theorm with appropriate propagators for quarks, mesons and gluons in the following equation we can find the energy shift of pentaquark valence particles interacting with pseudoscalar mesons and quantum gluon fields.

quantum gluon fields. $_{2}^{2}$ $i^{n} \int i\delta(t_{1})d^{4}x_{1} \dots d^{4}x_{n}T[\mathcal{L}_{I}(x_{1})\dots\mathcal{L}_{I}(x_{n})]|\phi_{0}\rangle_{c}^{B}$ and c referes to connected graphs only. According to this calculations the contribution of pion- exchange

flavour - spin interaction (FS) between two quarks and between a quark and an antiquark to the pentaquark mass shift is proportional to:

(13)

and

$$\langle B | \sum_{i < ja=1}^{4} \lambda_i^{(a)} \lambda_j^{(a)} \vec{\sigma}_i \cdot \vec{\sigma}_j | B \rangle,$$

$$\langle B | \sum_{i=1}^{4} \sum_{a=1}^{3} \lambda_i^{(a)} \lambda_5^{(a)} \vec{\sigma}_i \cdot \vec{\sigma}_5 | B \rangle$$

$$(13)$$

and the contribution of gluon exchange color - spin interaction (C S) between two quarks to the pentaquark mass shift is proportional to:

portional to: $\langle B | \sum_{i < j}^4 \vec{\lambda}_i^C \cdot \vec{\lambda}_j^C | B \rangle$ If we discus on an correlated P^{\chi_Q}M with explicit symmetry on configuration, this hyperfin interactions (FS, CS) would be considered on the four-quark subsystems which is used by many clustered quark models $^{[53]}$, and a special form of confining potential. In such models the model parameters, i.e the confining potential and the effective quark - gluon coupling, are set up and constrained such as to give a reasonable fit to mass shifts in multiplet (octet or decuplet) sector of conventional baryons. In fact in such models $(\hat{\chi} PQM)$ we keep only the terms which are of leading order in N_c in the power counting expansions and our calculation is a systematic expansion in powers of δm , and we are unable to complete the perturbative calculation, because our calculational methods does not allows us to include representations beyond first a few ones.

From the restricted calculations, we see that the mixings among representations are large, it implies that the inclusion of more representations is important, and possible breakdown of the perturbative treatment.

Width calculations in such models shows differences between first and second order results and maybe second order calculations account for fine structures

Thus it seems that we should complete the perturbative calculations including he mixing with an arbitrary many representations or using a completely different method [54].

4- Instanton - Liquid Model (ILM).

QCD instantons are known to produce deeply bound diquarks and it may be used as building blocks in the formation of multiquark states, in particular in dibaryons and pentaquarks. in this manner a new symmetry

of quarks appear, in particular the 3 - body pentaquarks can be naturally related to some excited baryons which leads to light dibaryon H as a limitation of this model.

This approach is based on correlation functions of nonlocal operators with 2 or 4 or 6 or light diquarks and the effective interaction between diquarks have a repulsive core, due to pauli principle.

In this technique we start with the pairing first and follow small Noideology a gainst large \hat{N}_c ideology in which we works on pseudoscalar mesons as clusters and uses of HF interactions χ_{PQM} belowe of the confining scale ≈ 200 MeV and restricting of the interactions between quarks to simple one- gluon and scalar meson exchange .

This HF interactions are between two quarks, whatever other quarks do quite differently, an instanton can serve one quark (per flavour) at time only, due to pauli principle for t'Hooft zero modes.

Thus the instantons significantly contribute to clustering (both qq and qq)at small quark densities, however are much less able to do so for high density environment, and this creates quite significant repulsive interactions between diquarks, a typical repulsive scale 300 MeV with an approximatly instanton radius $\rho = 0.35$ fm^[55], reminiscent of nuclear core, and rather heavy multiquark states.

This interaction bound diquarks such as (scalar - vector - tensor) ones and because of similar mass and quantum numbers such as color charge, the diquarks may be considered on equal footing with constituent quarks.

Certain approximate symmetries then appear [56] relating states with different number of quarks but the same number of bodies.

Pentaguarks and dibaryons are in this model treated as 3 - body objects with two correlated diquarks plus an antiquark, are thus related to decuplet baryons; $\Theta^*(1540) = (ud)\{ud\}s = \underline{ss}$ is an analogue of anti - Ω and is thus the top of the antidecuplet (the conjugate of the decuplet).

CXPQM needs clustering justification a interactions in clusters can help to this problem. and instanton induced

The instantons, strong flactuations of gluon fields in the vacuum. play a crucial role in the realization of spantaneous chiral symmetry breaking in QCD.

The instantons induce the t'Hooft interaction between the which has strong flavour and spin dependence, a behavour explains many features observed in the hadron spectrum and in hadronic reactions^[57].

For example this interaction prefer scalar diquarks to other ones with an interaction strength comparable to the pion channel pauli - Gursey symmetry and only one - half weaker in the realistic N = 3 case $|^{56}|$, thus favors correlated quark models by governing instanton induced interaction between quarks at intermediat distances, i. e. $r \approx \rho_c \approx 0.3 f \rho_c$ is the average instanton size in the QCD vacuum^[58] and is much smaller than the large confinement region R=1 fm.

The most important non- perturbative instanton induced interaction among several approaches $^{[59]}$ is the multiquark t Hooft interaction which arises from the quark zero modes in the instanton field $^{[60]}$

In the limit of small instanton size the effective two and three body point - like interactions are [59]:

$$\begin{array}{ll} \mathcal{H}^{(2)}_{eff}(r) &=& -V_2 \sum_{i \neq j} \frac{1}{m_i m_j} \bar{q}_{iR}(r) q_{iL}(r) \bar{q}_{jR}(r) q_{jL}(r) \left[1 + \frac{1}{32} (\lambda_u \lambda_d + \mathrm{perm.}) + \frac{9}{32} (\vec{\sigma_u} \cdot \vec{\sigma_d} \lambda_u^a \lambda_d^a + \mathrm{perm.}) \right] + (R \longleftrightarrow L), \end{array} \tag{15} \\ \mathcal{H}^{(3)}_{eff}(r) &=& -V_3 \prod_{i=u,d,s} \bar{q}_{iR}(r) q_{iL}(r) \left[1 + \frac{3}{32} (\lambda_u^a \lambda_d^a + \mathrm{perm.}) + \frac{9}{32} (\vec{\sigma_u} \cdot \vec{\sigma_d} \lambda_u^a \lambda_d^a + \mathrm{perm.}) - \frac{9}{320} d^{abc} \lambda^a \lambda^b \lambda^c (1 - 3(\vec{\sigma_u} \cdot \vec{\sigma_d} + \mathrm{perm.})) - \frac{9f^{abc}}{64} \lambda^a \lambda^b \lambda^c (\vec{\sigma_u} \times \vec{\sigma_d}) \cdot \vec{\sigma_s} \right] + (R \longleftrightarrow L), \\ \text{where m is the effective quark mass,} & q_{RL} &= (1 \pm \gamma_5) q(x)/2 \end{aligned} \tag{16} \\ \mathcal{H}^{(2)}_{eff} = - \sum_{i \neq j} \frac{a}{m_i m_j} \left[1 - \frac{3}{32} (\lambda_u^a \lambda_s^a + \mathrm{perm.}) + \frac{9}{32} (\vec{\sigma_u} \cdot \vec{\sigma_s} \lambda_u^a \lambda_s^a + \mathrm{perm.}) \right], \\ &= \frac{1}{32} (\vec{\sigma_u} \cdot \vec{\sigma_s} \lambda_u^a \lambda_s^a + \vec{\sigma_s} - \vec{\sigma_s}) + \frac{1}{32} (\vec{\sigma_u} \cdot \vec{\sigma_s} \lambda_u^a \lambda_s^a + \vec{\sigma_s} - \vec{\sigma_s}) \right], \\ &= -\lambda^*, \quad \sigma_q^- = -\sigma^*, \quad \sigma_q^- = -\sigma^* \end{aligned} \tag{17}$$

The perturbative OGE hyperfine interactions (HFI) between quark and confinement in this clusters (CS, FS) are the residual interactions and one can include them to this (ILI) interactions.

Once calculating the mass shift of hadron states by means of these interactions one can use a conventional quark model mass formula for obtaining the masses of hadron multiplet [61]

In order to capture correctly the physics of QCD between the confinement scale and the chiral symmetry breaking scale one can use of diquark chiral effective theory $^{(c2)}$

The relevant degrees of freedom of the diquark chiral effective theory are constituent quarks, diquarks, gluons, and pions

When the diquarks are absent or infinitly heavy, the effective lagrangian should reduce to the chiral quark effective theory of Georgi and Manuher. In such models we can calculate QCD-based quark - diquark bound state energy insted of consideration l=1 angular momentum between them in a scattering potential.

Since the diquark masses (e.x.scalar or tensor,) are smaller than the constituents, they are stable a gainst decay near mass shell, in such a configuration, the diquarks are nearby and tunneling of one of the quarks between the two diquarks may take place.

4-1-Decay widths.

In $\Theta^+_{\longrightarrow} K^*N$ decay a d quark tunnels from a diquark ud to the other diquark to form a nucleon udd and an off-shell u quark, which is annihilated by the anti-strange quark . (if u were to tunnel, the decay is to K^0P with a comparable decay width.).

The decay width is therefor given as:

$$\Gamma = \lim_{n \to \infty} \sigma(\bar{s} + \phi_{ud} + \phi_{ud} \to K^+ + n) v |\psi(0)|^2,$$
(18)

where v is the velocity of \overline{s} in the rest frame of the target diquark and ψ is the 1S wave function of the quark - diquark inside the pentaquark.

The differential cross section for the annihilation process is then:

$$d\sigma = \frac{(2\pi)^4 |\mathcal{M}|^2}{4\sqrt{(p_1 \cdot p_2)^2 - m_g^2 M_{ud}^2}} 4 e^{-2S_0} d\Phi(p_1 + p_2; k_1, k_2), \tag{19}$$

in which e^{-2S_0} is tunneling probability.

If we insert annihilation amplitude $|\mathcal{M}|$ and phase space $d\Phi$ and integrate over the $d\Phi$ and taking $v \to 0$ we find:

$$\Gamma_{\Theta^+} \, \simeq \, 5.0 \; e^{-2S_0} \, \frac{g^2 g_A^2}{8\pi f_K^2} \; |\psi(0)|^2 \, . \tag{20} \label{eq:epsilon}$$

by using the WKB approximation for e^{-2S_0} :.

$$e^{-S_0} = \langle n \mid T e^{i \int d^4 x \, \mathcal{L}_{\rm int}} \left| d , \varphi_{ud} \rangle \right. \approx e^{-\Delta E \, r_0}, \tag{21}$$

where $\Delta E = (m_u + m_d) - M_{ud}$

and for r_0 we have:

$$M_{\Theta^{+}} = 2M_{ud} + m_{\bar{s}} + \frac{2}{M_{ud} r_{0}^{2}},$$
 (22)

where the third contribution is the rotational energy of diquarks in a p - wave.

The 1 S wave function of the quark - diquark at the origin can be written as:

 $\psi(0) = \frac{2}{a_0^{3/2}} \frac{1}{\sqrt{4\pi}},\tag{23}$

where a_0 is the Bohr radius of the quark - diquark bound state. Assuming they are non-relativistic we get by the dimentional analysis $a_0 \simeq (2 \overline{m} \, B)^{-1/2}$. where $\overline{m} = 250$ MeV is the reduced mass and B is binding energy

where $\overline{m} = 250$ MeV is the reduced mass and B is binding energy of quark - diquark bound state.

Taking B = $100\sim 200$ MeV , comparable to the pentaquark binding energy, g^2 =3.03 and $g_A=0.75$ from the quark model , one can find the Θ^+ width .

5- Susy Model.

According to QCD, an approximate dynamical supersymmetry exist between an antiquark and a diquark, the first person to point out a supersymmetry between antiquarks and diquark was Miyazawa [89].

The point is that both a diquark and an antiquark belong to an antidecuplet of SU(3), and to the first approximation the interaction of QCD depends only on color.

Thus using the framework of the constituent quark model and according to QCD this supersymmetry (diquark - antiquark) exist which pointed out by Catto and Gürsey $^{[64]}$ they mensioned that mesons and baryons have Regge trajectories with approximately the same slop and it is because of existing this kind of supersymmetry. but this supersymmetry is broken because of different mass, spin, and size of a diquark and its partner antiquark, the mass of an antiquark is smaller than diquark .

Although the mass of a diquark is smaller than the mass of its constituent quarks because of the interactions between the quarks which are OCD based.

No one knows how to reduce the mass of a diquark and reach the mass of an antiquark (unknown mechanism).

Because of different spins of a diquark and an antiquark they would have different QCD-based interactions with other particles,

A diquark may be almost the size of a hadron, a current quark is assumed to be pointlike, however a constituent quark is certainly not pointlike and there are cloud of gluons and quark - antiquark pairs around it.

Now one can consider a conventional anti-baryon $\bar{\Lambda}=\bar{u}$ \bar{d} \bar{s} and replace \bar{u} and \bar{d} antiquarks by [ds] and [su] diquarks and reach to pentaquark $dssu\bar{s}$).

By assuming that diquarks are in 3 in SU(3) - color, we have for example: ($J'W \bmod e$).

In the J W diquark model diquarks are in $\bar{3}_{i}$ in SU(3) - flavour and this replacing are in both color - flavour space.

(FS) interactions lower the mass of diquarks and in this model the difference between the mass of a diquark and an antiquark is smaller than the models in which diquarks are not in 3 configuration in SU(3)-flavor space.

If one consider $m_0 \simeq m_0 \simeq m_s = 1/3$ m_N , and consider pentaquark (dsus) as Θ^+ (udds), its mass would be greater than experimental limits $|\Theta|$

In the model there is noting to prevent of a very broad width for Θ^+ and there is another unknown mechanism to be discovered to explain the experimental results for the width of Θ^+ . 6. constituent quark model.

Pentaquark baryons may be pure exotic or Crypto- exotic the pure exotic states can easily be identified by their unique quantum numbers, but the crypto- exotic states are hard to be identified as their quantum numbers can also be generated by three - quark states. Therefore, it is crucial to have careful analyses for their decay channels.

Quark models have provided a cornerstone for hadron physics and one can studying the structure of pentaquark baryons in a naive constituent quark model $^{(66)}$.

In Ref [53] karliner and lipkin suggested a triquark - diquark model where , for example, $\quad \Theta^+$ is a system of (ud) - (uds̄).

In Ref [32] jaffe and wilczek presented a diquark - diquark - antiquark model so Θ^+ is (ud) - (ud) - \bar{s} , in this model they also considered the mixing of the pentaquark antidecuplet with the pentaquark octet, which makes it different from the SU(3) soliton models where the octet describes the normal three-quark baryon octet.

More predictions based on quark models can be found in Ref [66].

In order to investigate mass, width, reaction channels and other properties of pentaquarks a set of its wave functions in quark model is requierd $^{[6]}$.

By introducing the quark and antiquark operators and by taking direct product of two diquarks and one antiquark the θ^+ state can be represented by SU (3) tensors.

The SU_f (3) symmetric lagrangian for pentaquark baryons and their interactions with other multiplets can be constructed by imposing dynamical interactions between quarks, the symmetry breaking can be included.

We denote a quark with q_i and antiquark with q^i in which $i{=}1,2,3$ denote u , d , s and impose normalization relations as :

 $(q_i,q_j)=\delta_{ij}, (q^i,q^j)=\delta^{ij}, (q_i,q)=0$ and in (p,q) notation we consider a tensor $T^{b_1,\dots,b_q}_{a_1,\dots,a_p}$ which is completely symmetric in upper and lower indices and traceless on every pair of indices.

indices and traceless on every pair of indices. We introduce $S_{jk} = \frac{1}{\sqrt{2}}(q_jq_k + q_kq_j)$ and $A_{jk} = \frac{1}{\sqrt{2}}(q_jq_k - q_kq_j)$ then for a quark and an antiquark we would have

$$\begin{array}{lll} {\rm quark}: 3: & T_i & i=1,2,3 \\ & {\rm antiquark}: \bar{3}: & T^i_{}=\epsilon^{ijk}A_{jk}, & ijk=1,2,3 \end{array}$$

we have

$$(T^{i}, T^{j}) = 4\delta^{ij}$$
. $(T_{i}, T_{j}) = 4\delta_{ij}$. $(S_{jk}, S_{lm}) = \delta_{jl}\delta_{km} + \delta_{jm}\delta_{kl}$, $(S_{jk}, T^{i}) = 0$

for
$$q^4$$
 we have: (24)

$$\begin{array}{ll} (3 \otimes 3 \otimes 3 \otimes 3) \! = \! (6 \oplus \overline{3}\,) \otimes (6 \oplus \overline{3}\,) = (6 \otimes 6\,) \oplus (6 \otimes \overline{3}\,) \oplus (\overline{3} \otimes 6\,) \oplus (\overline{3} \otimes \overline{3}\,) \\ = (15_1 \oplus 15_2 \oplus \overline{6}\,) \oplus (15_2 \oplus 3\,) \oplus (15_1 \oplus 3) \\ \text{and for } q^4 \overline{q} \text{ we have:} \\ & \oplus (\overline{6} \oplus 3\,) \end{array}$$

The tensor notation of all of these multiplets $% \left(T_{i}\right) =T_{i}$ can be constructed as T_{i} and T^{i} .

For example the tensor notations for 10 and 8 are [68]

$$\begin{split} \overline{10}: \quad & T^{ijk} = \frac{c_1}{\sqrt{3}} \left(S^{ij}\overline{q}^k + S^{jk}\overline{q}^i + S^{ki}\overline{q}^i \right) + \frac{c_2}{\sqrt{3}} \left(T^{ij}\overline{q}^k + T^{jk}\overline{q}^i + T^{ki}\overline{q}^i \right), \end{aligned} \tag{26} \\ 8: \quad & P^i_j = \frac{c_1}{\sqrt{2}} \left(T_j\overline{q}^i - \frac{1}{3}\delta^i_j T_m\overline{q}^m \right) + \frac{c_2}{\sqrt{2}} \left(Q_j\overline{q}^i - \frac{1}{3}\delta^i_j Q_m\overline{q}^n \right) + \frac{c_3}{\sqrt{2}} \left(\widetilde{Q}_j\overline{q}^i - \frac{1}{3}\delta^i_j \widetilde{Q}_m\overline{q}^n \right) \\ & \quad + \frac{c_4}{\sqrt{3}} \epsilon_{jab} S^{ia}\overline{q}^b + \frac{c_5}{\sqrt{3}} \epsilon_{jab} T^{ia}\overline{q}^b + \frac{c_5}{\sqrt{15}} T^{i}_{jk}\overline{q}^k + \frac{c_7}{\sqrt{15}} \widetilde{T}^i_{jk}\overline{q}^k + \frac{c_8}{\sqrt{15}} S^{ij}_{jk}\overline{q}^k \right). \tag{27} \\ \widetilde{Q}_m &= \frac{1}{\sqrt{8}} T^l S_{ml}, & \widetilde{T}^i_{jk} &= T^l S_{jk} - \frac{1}{\sqrt{2}} \left(\delta^i_j \delta^k_k + \delta^i_k \delta^m_j \right) \widetilde{Q}_m. \\ T^{ij} &= \frac{1}{\sqrt{6}} \epsilon^{iabc} \delta^{icd} S_{ac} S_{bd}, & \widetilde{Q}_m &= \frac{1}{\sqrt{8}} T^{il} S_{lk}, \\ S^i_{jk} &= \frac{1}{\sqrt{2}} \epsilon^{idm} \left(S_{jl} S_{km} + S_{kl} S_{jm} \right), & T^i_{jk} &= S_{jk} T^i - \frac{1}{\sqrt{2}} \left(\delta^i_j \delta^m_k + \delta^i_k \delta^m_j \right) Q_m, \\ & T^i_{jk} &= S_{jk} T^i - \frac{1}{\sqrt{2}} \left(\delta^i_j \delta^m_k + \delta^i_k \delta^m_j \right) Q_m, \end{aligned}$$

The nomenclature for pentaquark states based on hypercharge is

which in the notation
$$T^{k_1,\dots,k_2}_{a_1,\dots,a_p}$$
 we have $^{[69]}$:
$$Y=p_1-q_1+p_2-q_2+\frac{3}{2}(p-q),$$

$$I_3=\frac{1}{2}(p_1-q_1)-\frac{1}{2}(p_2-q_2).$$
 $p_1+p_2+p_3=p$ and $q_1+q_2+q_3=q$
$$Q=I_3+Y/2$$

We can construct the SU (3) symmetry lagrangians for example:

$$\mathcal{L}_{\overline{10}-8_3} = g_{\overline{10}-8_3} \epsilon^{ilm} \overline{T}_{ijk} B_l^j M_m^k + (H.c.).$$
 (28)

And mass terms, for example:

$$H_8 = a\overline{P}_i^i P_i^j + b\overline{P}_i^i y_i^l P_l^j + c\overline{P}_i^i y_l^j P_i^l. \qquad (29)$$

$$H_{\overline{10}} = a\overline{T}_{ijk}T^{ijk} + b\overline{T}_{ijk}Y_l^kT^{ijl}, \qquad (30)$$

for pentaquark octet and antidecuplet respectively.

The pentaquark wave function contains contributions connected to the spatial degrees of freedom and the internal degrees of freedom of colour, flavour and spin, the pentaquark wave function should be a colour singlet as all physical states, and should be antisymmetric permutation of the four under (pauli principle)

In order to classify $\;{\rm quark}\;$ and antiquark in ${\rm SU}_{_{\rm f}}(\;3\;)$, ${\rm SU}_{_{\rm g}}(\;2\;)$ we introduce the notations:

Thus by taking the outer product of quark and antiquark representations we have:

For q SU_c (6):

One can decompose these multiplets:

Spin-flavour decomposition of q 4 states

D_3	T_d	$SU_{\rm sf}(6)$	O	$SU_{\rm f}(3)$	8	$SU_{\rm s}(2)$
A_1	A_1	[4] ₁₂₆		$[4]_{15}$ $[31]_{15}$ $[22]_{6}$	⊗ ⊗	$[4]_5$ $[31]_3$ $[22]_1$
$A_1 + E$	F_2	$[31]_{210}$			⊗ ⊗ ⊗ ⊗ ⊗	$ \begin{bmatrix} 31]_3 \\ [4]_5 \\ [31]_3 \\ [22]_1 \\ [31]_3 \\ [22]_1 \\ [31]_3 \end{bmatrix} $
E	E	[22] ₁₀₅		$ \begin{array}{c} [4]_{15} \\ [31]_{15} \\ [22]_{6} \\ [22]_{6} \\ [211]_{3} \end{array} $	⊗ ⊗ ⊗ ⊗	
$E + A_2$	F_1	$[211]_{105}$		$ \begin{array}{c} [31]_{15} \\ [31]_{15} \\ [22]_{6} \\ [211]_{3} \\ [211]_{3} \\ [211]_{3} \end{array} $	⊗ ⊗ ⊗ ⊗ ⊗	$[31]_3$ $[22]_1$ $[31]_3$ $[4]_5$ $[31]_3$ $[22]_1$
A_2	A_2	[1111] ₁₅		$[22]_{6}$ $[211]_{3}$	⊗ ⊗	$[22]_1$ $[31]_3$

For $\overset{4}{q}$ $\overset{-}{q}$ $SU_{c}(6)$:

$$\begin{split} [1]_6 \,\otimes\, [1]_6 \,\otimes\, [1]_6 \,\otimes\, [1]_6 \,\otimes\, [11111]_6 &=& [51111]_{700} \,\oplus\, 4\, [411111]_{56} \,\oplus\, 3\, [42111]_{1134} \\ & & \oplus\, 8\, [321111]_{70} \,\oplus\, 2\, [33111]_{560} \,\oplus\, 3\, [32211]_{540} \\ & & \oplus\, 4\, [222111]_{20} \,\oplus\, [22221]_{70} \;. \end{split}$$

For qq SU (3) :

$$[1]_3 \otimes [1]_3 \otimes [1]_3 \otimes [1]_3 \otimes [11]_3 = [51]_{35} \oplus 3[42]_{27} \oplus 2[33]_{\overline{10}}$$

 $\oplus 4[411]_{10} \oplus 8[321]_8 \oplus 3[222]_1$. (33)

For qq SU (2):

$$[1]_2 \otimes [1]_2 \otimes [1]_2 \otimes [1]_2 \otimes [1]_2 = [5]_6 \oplus 4[41]_4 \oplus 5[32]_2,$$
 (34)

This results are in agreement with the reduction of the color-spin $SU_{cs}\left(6\right)$ algebra of Ref [70].

The spin - flavour part has to be combined with the colour part and orbital part in such a way that the total pentaquark wave function is a $[222]_4$ color - singlet state, and that the four quarks obey the pauli principle, i.e. are antisymmetric under any permutation of the four quarks, because of the colour wave function of antiquark that is a [11] anti-triplet, the colour wave function of the four quark configuration is a [211] triplet, the total q4wave function is antisymmetric, thus the orbital - spin - flavour part is a [31] state which is obtained from the colour part by interchanging rows and columns, now if 4 - quarks are in a p - wave state, there are several allowed SU_{fs} (6) representations which are:

Thus the total orbital - color - flavor - spin wave function of q is ${[1111]}_{\rm ocfs}$

For the explicit pentaquark wave functions see Ref [71].

Now we can impose an specific dynamical model to this general constituent quark model.

Assuming a conventional correlated perturbative chiral quark model (CP χ QM), we suggest that the Θ^+ baryon is a bound state of two diquarks and a single antiquark, the spatially wave function of these diquarks has a p - wave and a s - wave in angular momentum in the first and second version of our model

The [2] flavour symmetry of each diquark leads to [22] flavour symmetry for q^4 , the [2] spin symmetry of each diquark leads to [22] and [31] spin symmetry for q^4 in the first version and second version of our model respectively.

The color symmetry of each diquark is [11] and for the first version of our model we assume [2] for one of the diquark pairs this leads to [211] color symmetry for q⁴.

The orbital symmetry of each diquark is [2] and for the first version we assume [11] for one of the diquark pairs, this leads to [31] and [4] orbital symmetry for q in the first and second version of our model respectively.

As the result of these considerations we would have for ${}_{f_{3}}^{f_{4}}$ contribution of quarks ,([1111] and [4] s) and (s [211], [31]) for the first and second versions; and [1111] for ${}_{f_{3}}^{f_{4}}$ is the same for the two versions and lead to a totally antisymmetric wave function for ${}_{f_{3}}^{f_{4}}$ to the two versions and lead to a totally antisymmetric wave function for ${}_{f_{3}}^{f_{4}}$ to repulsive the second versions. for q⁴ due to pauli principle.

The flavour symmetry contribution for q4 configuration comes from the decomposition formula (25) q q , in which we have two 6, second one is used in J'W model and the first one is used in our model due to vector diquark contribution of it.

Thus the tensor notations for 10 in our model comes from Eq (26) with (C₁=0 and C₂ \neq 0) also the tensor notations for 8 in our model comes from Eq (27) with C_i = 0 i \neq 5, C₅ \neq 0). Thus inserting $\bar{10}$ tensor notation into $\mathcal{L}_{\overline{10}-8_1}$ symmetry lagrangian

leads to SU (3) symmetry interactions which experimental evidence of them would be explored.

Morever inserting $8_{\rm f}$ and $10_{\rm f}$ tensor notations into conventional quark model mass formulas (29) and (30) respectively leads to 10, and 8 mass terms and spacing rules for the introduced particles in these multiplets in terms of experimental parameters of(a,b, and c) of the model.

In our model the diquarks are in 6 and 3 symmetry configurations and the hyperfine interactions (color - spin and flavour - spin) leads to a diquark mass that is greater than the masses which predicted in the models that the diquarks are in $\bar{3}$ and 3symmetry configurations.

Thus the difference between the mass of a diquark and an antiquark in our model is larger than the models which based on scalar diquark instead of vector ones, and thus leads to the current experimental perspective in which no one has found the supersymmetry partners of pentaquark states.

In our model we have used diquark ideas in the chiral limit diquark correlations in the relativistic region . The first version of the model yelds the positive parity for pentaquarks and this is in agree with lattice calculations in which there are attempts to find that states which have the maximom overlape with the positive parity.

In addition to usual HF interactions between quarks in a diquark, these interactions exist between $\,$ the antiquark $\,$ \bar{s} and each of diquarks due to vector configuration of them in our model, these interactions are absent in the scalar diquark models in which there is only electromagnetic interaction between antiquark and each diquark in a pentaquark.

By imposing considerations such as these HF interactions and suitable diquark currents we leads to a conventional pentaquark

interpolating field which may be used for QSR analysis. For example for a diquark with $\begin{bmatrix}2\end{bmatrix}^s$ and $\begin{bmatrix}2\end{bmatrix}^t$ spin - flavour configurations and $\ell = 0$ angular momentum one can use:

$$\frac{1}{\sqrt{2}} \left[u^{T}(x)Cd(x) + d^{T}(x)Cu(x) \right]; \ u^{T}(x)Cu(x); \ d^{T}(x)Cd(x),$$
(35)

and if the diquark angular momentum is
$$\ell = 1$$
 one can use:

$$\frac{1}{\sqrt{2}} \left[u^T(x) C \gamma_\mu d(x) + d^T(x) C \gamma_\mu u(x) \right] ; u^T(x) C \gamma_\mu u(x) ; d^T(x) C \gamma_\mu d(x). \tag{36}$$
as diquark currents

Thus for the first and second version of our model we can consider the following interpolating fields respectively.

$$\begin{split} I_{1} &= \sum_{T_{C-T_{C}^{\prime},T_{C}^{\prime\prime},t_{C}^{\prime\prime},t_{C}^{\prime\prime},t_{C}^{\prime\prime},t_{C}^{\prime\prime},t_{C}^{\prime\prime}} \mathbf{b}_{1}^{00}{}_{T_{C-1}-T_{C}}^{00} \left\{ \sqrt{1/6} \, \mathbf{b}_{00}^{\,1\,T_{C}} \quad \mathbf{b}_{1\,T_{C}^{\prime}\,1\,T_{C}^{\prime\prime}}^{00} \, \mathbf{b}_{1\,T_{C}^{\prime\prime}}^{\,1\,T_{C}} \, \mathbf{b}_{1\,T_{C}^{\prime\prime}}^{\,1\,T_{C}} \\ &+ \sqrt{5/6} \, \mathbf{b}_{2_{C-1}^{\prime\prime},t_{C}^{\prime\prime}}^{\,1\,T_{C}^{\prime\prime}} \, \mathbf{b}_{1T_{C-1}^{\prime\prime},t_{C}^{\prime\prime}}^{\,1\,t_{C}^{\prime\prime}} \, \mathbf{b}_{1,t_{C-1}^{\prime\prime},t_{C}^{\prime\prime}}^{\,1\,t_{C}^{\prime\prime}} \, \mathbf{b}_{1}^{\,1\,t_{C}^{\prime\prime}} \, \mathbf{b}_{1}^{\,1\,t_{C}^{\prime\prime}}^{\,1\,t_{C}^{\prime\prime}} \, \mathbf{b}_{1}^{\,1\,t_{C}^{\prime\prime}} \, \mathbf{b}_{1}^{\,1\,t_{C}^{\prime\prime}} \, \mathbf{b}_{1}^{\,1\,t_{C}^{\prime\prime}}^{\,1\,t_{C}^{\prime\prime}} \, \mathbf{b}_{1}^{\,1\,t_{C}^{\prime\prime}} \, \mathbf{b}_{1$$

$$\begin{split} I_{2} &= \sum_{T_{C} \ T_{C}^{\prime} \ T_{C}^{\prime} \ L_{C}^{\prime} \ L_{C}^{\prime\prime}} \mathbf{b}_{1}^{00} \mathbf{b}_{1}^{10} \mathbf{c}_{1} - T_{C} \left\{ \sqrt{1/6} \mathbf{b}_{00}^{1}^{1} T_{C} - \mathbf{b}_{1}^{00} \mathbf{c}_{1}^{\prime\prime} \mathbf{c}_{1}^{\prime\prime} \mathbf{b}_{1}^{1} T_{C}^{\prime\prime} - \mathbf{b}_{1}^{00} \mathbf{c}_{1}^{\prime\prime\prime} \mathbf{c}_{1}^{\prime\prime\prime} \mathbf{b}_{1}^{1} \mathbf{c}_{1}^{\prime\prime\prime} \mathbf{c}_{1}^{\prime\prime\prime} \right\} \\ & \left[u_{TC}^{T} \ C \gamma_{5} \ d_{TC}^{\prime\prime} \right] \left[u_{LC}^{\prime\prime} \ C - \ d_{LC}^{\prime\prime\prime} \right] \bar{\mathbf{s}}_{-TC}. \end{split} \tag{38}$$

Considering flavour configuration of q4, one can see that there are 15₁and 15₀multiplets which coms from 6 ⊗ 6 normal and this leads to two 45 multiplets for flavour configurations of $q\bar{q}$

in which there is octet, decuplet , 27 plet and 35 plet. The tensor notations of 15₁ and 15₂ are
$$T_{jklm}$$
 and S^i_{jk} respec
$$T_{jklm} = \frac{1}{\sqrt{6}} (S_{jk}S_{lm} + S_{lk}S_{jm} + S_{jm}S_{kl} + S_{lj}S_{km} + S_{km}S_{jl} + S_{lm}S_{jk}),$$

$$S^i_{jk} = \frac{1}{\sqrt{2}} e^{ilm} (S_{jl}S_{km} + S_{kl}S_{jm}),$$
(39)

Thus by multiplying to tensor notation of $\bar{\bf q}$, T^i we leads to tensor notations of (8 , 10 , 27 , 35) plets.

In fact there is noting in quark model to prevent us constructing such multiplets in which they have vector diquarks will be evidence supporting the diquark and the discovery of them

Briefly the spin - flavour - color and parity of our model for the first version and second one are as follows:

is second one are as follows: (40)

$$[\langle QQ \rangle^{\ell=1,3,\overline{c}_i} e_{ij}^{-j} = \frac{1}{2},\overline{3},\overline{3}_i \rangle^{J^{11}} = (\frac{1}{2} + \oplus \frac{1}{2} +),1,.,(\overline{10}_i \oplus 8_i)$$

$$[\langle QQ \rangle^{\ell=0,3,\overline{c}_i} e_{ij}^{-j} = \frac{1}{2},\overline{3},\overline{3}_i \rangle^{J^{11}} = (\frac{1}{2} \oplus \frac{1}{2} -),1,.,(8_i \oplus \overline{10}_i)$$
(41)

We have considered [4 $\frac{1}{120}$ and [31] $\frac{1}{210}$ for the flavour - spin configurations of $\frac{1}{4}$ in the first and second version of our model respectively, this leads to [51111] and not [42111] and for the flavour - spin configurations of $\frac{1}{4}$ 0, but if one assume the angular momentum $\ell=1$ for the four quarks $\frac{1}{4}$ 4 there are several allowed SU₁₈(6) representations for $\frac{1}{4}$ 7 which are [51111] $\frac{1}{120}$ [42111] $\frac{1}{120}$ [33111], [32211] based on [4] $\frac{1}{1}$ 8, [31] $\frac{1}{8}$ 9, [22] $\frac{1}{8}$ 8 and [211] $\frac{1}{1}$ 8 SU₁₈(6) representations for $\frac{1}{4}$ 8 representations of $\frac{1}{4}$ 8 representations of $\frac{1}{4}$ 9 representations

In order to get an idea of the general features of the spectrum we have calculated the mass spectrum of exotic pentaquark states with the Gürsey - Radicati mass formula $^{[72]}$:

$$M = M_0 + M_{orb} + M_{sf}$$
 (42)

in which:

$$M_{\text{sf}} = -A C_{2SU_{\text{ef}}(6)} + B C_{2SU_{\text{f}}(3)} + C s(s+1) + DY + E [I(I+1) - \frac{1}{4}Y^2].$$
(43)

The first two terms represent the quadratic Casimir operators of $SU_{fS}(6)$ spin - flavour and $SU_{f}(3)$ flavour groups and S , Y , and Idenote the spin , hypercharge and isospin respectively.

The last two terms in Eq. (43) correspond to the Gell- Mann -Okubo mass formula that describes the splitting with in a flavour multiplet.

Neglacting the hyperfine interaction radial dependence the matrix element of these interactions depends on the Casimirs of the $SU_s(6)$, $SU_f(3)$ and the $SU_s(2)$ groups^[73], also the spatial dependence of the SU_{fS}(6) breaking part has been neglected in

The cofficients B , C , D and E are determined from the three - quark spectrum^[75] .

B = 21.2 MeV, C = 38.3 MeV, D = -197.3 MeV, E = 38.5 MeVThe eigenvalues of the Casimirs for the qqq or qqqqq systems are as follows:

Eigenvalues of the $C_{2SU_{ef}(6)}$ and $C_{2SU_{f}(3)}$ Casimir operators

spin-flavour	$C_{2SU_{\rm sf}(6)}$	flavour	$C_{2SU_{f}(3)}$
[51111] ₇₀₀	81/4	[51] ₃₅	12
[411111] ₅₆	45/4	$[42]_{27}$	8
$[42111]_{1134}$	65/4	$[33]_{10}$	6
$[321111]_{70}$	33/4	$[411]_{10}$	6
$[33111]_{560}$	57/4	$[321]_8$	3
$[32211]_{540}$	49/4	$[222]_1$	0
$[222111]_{20}$	21/4		
$[22221]_{70}$	33/4		

Table 3

If we neglect $M_{
m orb}$ and $A\,C_{2SU_{sf}(6)}$ in Eq. (42) and using M_0 in order to normalize the energy scale to the observed mass of the Θ^+ (1540), We find that a flavour anti-decuplet [33] $_{1}^{f}$ state with spin S=1/2 and isospin I=0 which has [4] $_{128}^{fg}$ q $_{1}^{4}$ flavour - spin configuration based on q [22] $_{1}^{f}$ flavour and [22] $_{2}^{s}$ spin configuration and lead to [51111] $_{1}^{fg}$ for $_{1}^{4}$ q which we have introduced in the first version of our model is the lowest pentaquark state.

The state is in agreement with the available experimental data which indicate that Θ^+ (1540) is an isosingle, this means that the contributions of $M_{\rm orb}$ and $A\,C_{2SU_{\rm sf}(6)}\,{\rm SU}_{\rm f}(6)\,$ terms in Eq.(42) must be camparable and this is a good test for the values of exciting energy of the orbital degrees of freedom for q and the underlying dynamical structure.

However, one can see by neglecting this two terms the mass spectrum of all [51111]^{fs}₇₀₀[33111]^{fs}₆₆₀ [32211]^{fs}₅₄₀ q⁴q multiplets are degenerate, this is of because that the only term which split the mass spectrum between these configurations and depends on the flavour- spin structure of them is $AC_{2SU_d(6)}$ in general the coficients C, D ,E depends on the internal structure of pentaquark and we are not allowed to use of the corresponding three quark values.

The hyperfine interactions between two quarks in diquarks and the confinement between quarks are the underlying interactions which have ignored in this general study of the structure of spectrum.

We have mentioned that one find (8 , 10 , 27 , 35) multiplets by decomposition of 45 multiplets for flavour configurations of $q^4\bar{q}$.

The SU_f (3) configurations of these multiplets are [321]₈, [411]₉ [42] and [51] and the SU₁₈(6) configurations of them are :

$${[\ 33111]}_{560}, {[\ 321111]}_{70}, {[\ 41111]}_{56} \ {\rm and} \ {[\ 51111]}_{700}$$

We do not give the full list of these pentaguark masses and one can read them directly from the results presented in Table .3 $C_{2SU_f(3)}$ and $C_{2SU_{sf}(6)}$ and by finding their quantum numbers [69] according to tensor notations of them and using of Eq (43) for their masses

However, observation of other pentaquark states in higher multiplets will help us to understand the structure of baryons specially diquark- diquark - antiquark models.

In order to have a realisation of the pentaquark structure in our model we search for a variational solution of a conventional Hamiltonian containing Kinitic energy - binding and hyperfine interaction .

$$H(q^4\bar{q}) = T(q^4\bar{q}) + V(q^4\bar{q}) + V(q^4\bar{q})$$
(44)

$$V_{(q_i q_j)}^{\text{bin}} = a \frac{\vec{\lambda}_i}{2} \cdot \frac{\vec{\lambda}_j}{2} (\vec{r}_i - \vec{r}_j)^2.$$
 (45)

$$V(q_iq_j) = -b\frac{\tilde{\lambda}_i}{2} \cdot \frac{\tilde{\lambda}_j}{2} \tilde{S}_i \cdot \tilde{S}_j \qquad (46)$$

We have neglected confinement and flavour - spin interactions and considered V^{cs}as a noncontact interaction.

Now in the $q^4\overline{q}$ rest frame, we define the internal variables :

Thus we would have for the Kinetic energy: $\vec{r}_{q} = \frac{\mu}{m_{q}} \vec{\mathbf{r}}_{1}$ $T(q^{4}\vec{q}) = \frac{\vec{\nabla}_{h_{1}}^{2}}{2m} + \frac{\vec{\nabla}_{h_{2}}^{2}}{2m} + \frac{\vec{\nabla}_{h_{2}}^{2}}{2m} + \frac{\vec{\nabla}_{h_{2}}^{2}}{2m}, \quad (6)$

$$T(q^4\bar{q}) = \frac{\vec{\nabla}_{R_1}^2}{2\mu} + \frac{\vec{\nabla}_{R_2}^2}{2m} + \frac{\vec{\nabla}_{R_3}^2}{2m} + \frac{\vec{\nabla}_{R_4}^2}{2m},$$
 (48)

The orbital wave function is:
$$\psi_m = N[a_{\tilde{k}_2}Y_{lm}(\hat{\hat{k}_2})e^{-\hat{d}^2\hat{k}_2^2/2}][Y_{00}(\hat{k})e^{-\hat{\beta}^2\hat{k}_3^2/2}][Y_{00}(\hat{k})e^{-\hat{\beta}^2\hat{k}_3^2/2}][Y_{00}(\hat{k})e^{-\hat{\beta}^2\hat{k}_3^2/2}][Y_{00}(\hat{k})e^{-\hat{\gamma}^2\hat{k}_3^2/2}]$$

Thus:
$$(49) \\ \langle V (q^1) \rangle_{q}^{\vec{q} \cdot \vec{q}} = \frac{5}{3} a(R_3^2 + R_4^2) + \frac{2}{3} aR_3^2 \\ \langle V (\vec{q}^1) \rangle_{q}^{\vec{q} \cdot \vec{q}} = \frac{5}{3} a(R_3^2 + R_4^2) + \frac{2}{3} aR_3^2 \\ \langle V (\vec{q}^1) \rangle_{q}^{\vec{q} \cdot \vec{q}} = \frac{1}{3} a(R_3^2 + R_4^2) + \frac{1}{3} aR_1^2 + \frac{4}{3} aR_1^2 \\ \langle V (\vec{q}^1) \rangle_{q}^{\vec{q} \cdot \vec{q}} = \frac{1}{3} b(\vec{S}_1 \cdot \vec{S}_2 + \vec{S}_3 \cdot \vec{S}_4) \\ \langle V (\vec{q}^1) \rangle_{q}^{\vec{q} \cdot \vec{q}} = \frac{1}{3} b(\vec{S}_1 \cdot \vec{S}_3 + \vec{S}_1 \cdot \vec{S}_4 + \vec{S}_2 \cdot \vec{S}_3 + \vec{S}_2 \cdot \vec{S}_4)$$

$$(50) \\ \langle V (\vec{q}^1) \rangle_{q}^{\vec{q} \cdot \vec{q}} = \frac{1}{3} b(\vec{S}_1 \cdot \vec{S}_3 + \vec{S}_1 \cdot \vec{S}_4 + \vec{S}_2 \cdot \vec{S}_3 + \vec{S}_2 \cdot \vec{S}_4)$$

$$(50)$$

This leads to a minimum value for H and then a pentaquark mass which is grater than the sum of the constituent quark masses of it.

This is because of the vector spin structure of diquarks in model

Now we consider this solution for the second version of our model the mass of a vector diquark from color-spin arguments is $M_{ud} \simeq 520 Mev$ assuming $m_s \simeq 450 Mev$ and $T \simeq 50 \text{MeV}$ resulted mass of Θ^+ pentaguark would be 1540 Mev.

We suppose that the small Decay widths of Θ^+ due to tunneling of one of the quarks between the two diquarks.

Thus in the decay process Θ⁺→K⁺N a d quark tunnels from a diquark ud to the other diquark to form a nucleon udd and an off- shell u quark which is annihilated by the anti- strange quark. The decay width of this process is :

$$\Gamma_{\Theta^{+}} \simeq 5.0 \; e^{-2S_{0}} \frac{g^{2} g_{A}^{2}}{8\pi f_{K}^{2}} \left| \psi(0) \right|^{2}.$$
 (51)

Which we have used WKB approximation for the tunneling amplitude and $\Delta E = (m_u + m_d) - M_{ud}$ the $\psi(0)$ is the 1S wave function of quark - diquark at the origin and can be written as:

$$\psi(0) = \frac{2}{a_o^{3/2}} \frac{1}{\sqrt{4\pi}},$$
 (52)

Where $a_0^{}$ is the Bohr radius of the quark - diquark bound state and is $a_0^{}\simeq (2\overline{m}\,B)^{-1/2}$ where $\overline{m}^{}=250$ MeV is the reduced mass and B is the

 $18 \, a_0 \simeq (2m \, B)$ where m = 200 MeV is the reduced mass binding energy of the quark - diquark bound state. According to our model the Kenitic energy $T \simeq \frac{\vec{\nabla}_{02}^2}{2m} = \frac{3a^2}{4m} \simeq 50 \text{ MeV}$ this leads to a=148 and then:

$$r_0 = \langle_{R_a} \rangle = \sqrt{\frac{5}{2a^2}} \simeq 0.010 \text{ MeV}^{-1}$$
 (53)

 $r_0=(s_1)=\sqrt{\frac{5}{2}}$ (53) $g^2=3/03$, $g_A=0.75$ from the quark model and $\Delta E=(m_u+m_d)-M_{ud}$ where $M_{ud}^2\simeq 520$ Mev in our model.

Inserting this values into Eq (51) we find: $\Gamma_{\Theta^+} \simeq 1.30 \text{ MeV}$

Which is unusually narrow and camparable with the experimental $\label{eq:continuity} {\rm limit}^{[62]} \; \Gamma_{\Theta^+} \, \simeq \, 1 \; {\rm Mev}.$

In our model we have favoured [31] fs for the anti - symmetric four quark SU_{fs} (6) wave function, this can explain the origin of the narrow width of the pentaquark based on the symmetry breaking as we mentioned in the chapter 2 .

In fact the narrow width would be explained by the OFCS overlapes between initial and final wave functios in the decay process and regrouping of the pentaquark representations.

The magnetic moment is an internsic observable of particles which may encode important imformation of its quark gluon structure and underlying dynamics.

Different magnetic moments will affect both the total and different cross sections in the photo-or electro production pentaquarks. Hence, knowledge of the pentaquark magnetic moments will help us unviel the mysterious curtain over the pentaquarks at present and deepen our understanding of the underlying quark structure and dynamics.

For the magnetic moment of a particle we have:

$$\overrightarrow{\mu} = g \overrightarrow{S}$$
 (54)

Where $\overrightarrow{\mu}$ is magnetic moment, g is gyromagnetic ratio and \overrightarrow{s} is spin operator, this leads to $\mu_{\pmb{z}} = g \, S_{\pmb{z}}$, for the quarks we have:

$$g_{\mathbf{q}} = g_{\mathbf{g}} \mu_{\mathbf{q}}^{\mu} = 2\mu_{\mathbf{q}}^{\mu} = 2\frac{Q_{\mathbf{q}}}{2m_{\mathbf{q}}} = \frac{Q_{\mathbf{q}}}{m_{\mathbf{q}}}$$
 (55)

in which $\mu_{\mathbf{q}}$ is quark magneton, and $Q_{\mathbf{q}}$, m are quarks charge and

If the particle has angular momentum 7 the magnetic moment would be:

$$\overrightarrow{\mu} = g\overrightarrow{S} + g\overrightarrow{l}$$
 (56)

We conclude that for the pentaquark we have :

$$\boldsymbol{\mu}_{\mathbf{z}} = <\boldsymbol{\psi}_{\mathrm{fs}} \mid \sum_{i} \; \boldsymbol{g}_{i} \boldsymbol{S}_{\mathbf{z}}^{i} + \boldsymbol{g}_{l_{i}}^{i} \boldsymbol{I}_{\mathbf{z}}^{i} \mid \boldsymbol{\psi}_{\mathrm{fs}}> \tag{57}$$

in which ψ_{fs} is the flavour-spin wave function of the pentaquark For the second term we have:

$$\begin{split} &\mu_{\mathbf{z}} = <\psi_{\mathrm{fS}} \mid \sum_{i} g_{l_{i}}^{i} \mathbf{z} \mid \psi_{\mathrm{fS}}> \\ &+ <\psi_{\mathrm{fS}} \mid \sum_{i} g_{l_{i}}^{i} \mathbf{z} \mid \psi_{\mathrm{fS}}>^{\mathrm{diquark2}} \\ &+ <\psi_{\mathrm{fS}} \mid \sum_{i} g_{l_{i}}^{i} \mathbf{z} \mid \psi_{\mathrm{fS}}>^{\mathrm{H}} + <\psi_{\mathrm{fS}} \mid g_{l_{\mathbf{z}}}^{\bar{\mathcal{S}}} \mid \psi_{\mathrm{fS}}>^{\bar{\mathcal{S}}} \end{split} \tag{58}$$

The contribution of the \overline{s} - term would be zero and for the first and second term we have:

$$1.\text{term} + 2.\text{term} = \langle \mu_l l_{\mathbf{z}}^l \stackrel{\text{diquark1}}{>} + \langle \mu_l l_{\mathbf{z}}^2 \stackrel{\text{qiquark2}}{>} = \langle \mu_l l_{\mathbf{z}}^r \stackrel{\text{relative}}{>}$$
 (59)

$$\mu_l = \frac{m_2 \mu_1}{m_1 + m_2} + \frac{m_1 \mu_2}{m_1 + m_2}$$

Where $m_1 \cdot \mu_1$ and $m_2 \cdot \mu_2$ are the masses and magnetic moments for the first and second diquarks respectively.

For the first version of our model in which the two diquarks are in l = 1 P- wave we have:

$$\mu_{l} < l_{\mathbf{z}} > \stackrel{\text{relative}}{=} \mu_{l} \langle 11\frac{1}{2} - \frac{1}{2} \mid \frac{1}{2}\frac{1}{2} \rangle^{2}$$
 (60)

But for the second version of our model in which the two diquarks are in l = 0 S - wave we have:

$$\mu < l_z \stackrel{\text{relative}}{>} = 0$$
 (61)

The contribution of \overline{s} in the first term of Eq (57) is:

$$\frac{\mu}{8} \langle 10 \frac{1}{2} \frac{1}{2} | \frac{1}{2} \frac{1}{2} \rangle^2$$
 (62)

$$\frac{\mu}{8} \left\langle 10\frac{1}{2}\frac{1}{2} \left| \frac{1}{2}\frac{1}{2} \right\rangle^2 - \frac{\mu}{8} \left\langle 11\frac{1}{2} - \frac{1}{2} \left| \frac{1}{2}\frac{1}{2} \right\rangle^2 \right.$$
 (63)

and for the first version of our model we have: $\frac{\mu_{s}}{|s|} \left(\frac{10}{2} \frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \right)^{2} \qquad (62)$ and for the first version of our model we have: $\frac{\mu_{s}}{|s|} \left(\frac{10}{2} \frac{1}{2} \right) \frac{1}{2} \frac{1}{2} \right)^{2} - \frac{\mu_{s}}{|s|} \left(\frac{11}{2} - \frac{1}{2} \right) \frac{11}{2} \frac{1}{2} \right)^{2} \qquad (63)$ for the contribution of \overline{s} in the first term of Eq. (57) due to relative angular momentum between S anddiquarks.

We avoided introducing a rotational contribution ($l \neq 0$) to the mass by choosing vector diquarks in our model, but if we consider color-spin interactions only, the contribution of it, is higher than the models in which there are scaler diquarks.

In order to have a realisation of this concept we calculate the mass of Θ⁺ pentaquark in the second version of our model use only color - spin as the hyperfine interactions in each diquark. We use of the mass formula:

$$M = \sum m_i + \Delta E_{cs}$$
 (64)

in which m_i are constituent quark masses, these masses are model - dependent, we will use the constituent masses which fit the low - lying hadron spectrum^[76].

Table .4 Constituent quark masses (in MeV) for low-lying hadrons.

ĺ	Flavor	Baryon masses	Meson masses
ĺ	u, d	363	310
	S	538	483
	С	1704	1662

We use the masses for mesons in our effective model. The ΔE_{cs} would be:

$$\Delta E_{cs} = m(N, N_s) \sum_{i} \frac{\vec{\lambda}_i}{2} \cdot \frac{\vec{\lambda}_j}{2} \cdot \vec{S}_i \cdot \vec{S}_j$$
 (65)

Where $m(N, N_s)$ is the strength of the interaction and N, N_s are the number of quarks and strange quarks respectively for $m(N, N_s)$ we have[77] :

Table .5 The strength $m(N, N_S)$ of the colormagnetic interaction in MeV

N_S	0	1	2
2	85.1	70.2	58.2
3	74.4	64.3	55.5
4	67.6	60.1	53.3
5	62.7	56.8	51.2

Now we use the group theoretical factor Δ which may be calculated exactly from the spin and color representations of the quark clusters instead of the actual interaction energy ΔE_{cs} ,the group theoretical factor for many multi - quark systems has already been calculated [78]

The group theoretical configuration for our vector diquark $|Q^2\rangle = 6_F \otimes 3_S \otimes \overline{3}_C \rightarrow \Delta = +\frac{2}{3}$ structures is : (66)

Thus by using of this group theoretical factor Δ and tables 4 and 5 for the constituent quark masses and the strength of the interaction between vector ud diquarks, from Eq (64) we have:

$$M_{\Omega^{+}} = 1836 \text{ MeV}$$
 (67)

We extend our diquark model, which previously formulated to describe exotic baryon Θ^+ to dibaryons . We consider H dibaryon $^{[79]}$ which composed of uuddss, three vector

ud - ud - ss diquarks, each of which is a color antitriplet and is symmetric in flavour and spin and orbital space, this leads to a six - quark state which is color singlet, we ignor the pauli principle for quarks in different diquarks in the limit that diquarks are pointlike, but two quarks in each diquark satisfy this principle

The masses of the vector diquarks have already been calculated for example Ref [80].

If we take over the results and consider a $T=450~{\rm MeV}~{\rm Kinetic}$ energy as the binding energy for the H dibaryon the mass of it would be equal to the sum of the Ξ^0 and N masses.

With the assumption that H dibaryon decays into Ξ^0 and N by tunneling of one d quark to ud diquark, the decay width of it would $\Gamma \simeq 45 \text{ MeV}.$

Thus the H dibaryon which is constructed by vector diquarks is unstable.

There is other channels for H dibaryon decay into two Λ baryons and one can estimate the decay width for them.

Another approach to calculating the mass and stability of the Θ^+ pentaquark is based on our diquark - diquark - antiquark picture of our model in which we have used a long-range nonperturbative binding energy for the confinement interaction between two diquarks (QQ) in the form: $V\left(\right. r_{i},\ r_{j}\right) = a\mid \vec{r_{i}} - \vec{r_{j}}\mid^{2}$

where a is the binding streanth.

In our model the two light quarks compose in this case a bound diquark system in the antitriplet color state with HF (CS , FS) interactions between quarkpairs; now we suppose each diquark as a localized color source in which the light quarks moves; interaction forces between diquarks (Q's) then lead to the formation of a two - particle bound state of a QQ system, the scale of which is determined by the quantity 1 / np which is smaller than the QCD scale 1 $/\Lambda_{\rm QCD}(\Lambda_{\rm QCD})$ is 200 ~ 400 MeV).

We assume the light antiquark influence on the diquark (Q) dynamics is small due to universal nature of diquarks [81]

Thus we use a shrödinger - like equation for the QQ system as:

and E is the total binding energy of the system , this lead to E = a/m if we consider $\psi(r)=N\,e^{-a\,r^2}$ for the wave function of the system . the expectation value of potential < V> = 3a / 4a .

Now for the second version of our $\,$ model $\,$ we have $M_{\rm ud} \simeq \, 520 {\rm MeV}$ and m_o $\simeq 450~{\rm MeV}$, thus if we $~{\rm consider~E} \simeq ~50~{\rm MeV}, ~{\rm the}~{\rm resulted}$ and $m_s \equiv 400$ MeV. The mass of Θ^+ pentaquark would be 1540 MeV. Finding a from Eq E \equiv a/m and inserting it into: $< r^2 > = 3/4$ a

$$< r^2 > = 3/4$$
a $< r_0 > \simeq 0.0076$ for the relative distance of diquarks in the QQ

system

This result is in agreement to our previous one Eq (53) and lead to $\Gamma \simeq 1.30~{\rm MeV}$ width for $\,\Theta^{\,+}\,$ pentaquark.

IV. DISCUSSION AND CONCLUSIONS

In the high temperature case, it is evident that the strongly interacting matter exists in the form of a quark - gluon plasma, but at low temperature case where the baryon density is high, bosonic states - diquarks and even longer quark clusters- may play an important role, at this region of energy the diquarks form a Bose condensate and also there is a possibility of pentaquark.

At 2 GeV/200 MeV hadronic systems can undergo a phase transition from hadronic to deconfined state of quarks and gluons (QGP) , where quarks behave like free fermi gas.

Thus diquarks may play an important role in hadronic physics particularly near the phase transitions (chiral, deconfinement points).

There is hyperfine interactions between quarks in a diquark which indeed is induced by instantons, and besides of these interactions there is confinement interactions between them, the hyperfine enrgy lies between deconfinment and asymptotic freedom regions.

Current lattice QCD determinations of baryon charge distributions do not support the concept of substantial u - d scalar diquark clustering as an appropriate description of the internal structure of the nucleon .

Although there is several models in which there is scalar and or vector, tensor diquarks and sucsesfully describe properties.

In fact the notion of diquark is as old as the quark model itself, Gell- Mann mentioned the possibility of diquarks in his original paper on quarks.

From the description of baryons as composed of a constituent diquark and quark by Ida and Kobayashi [82] Lichtenberg and Tassie [83] to now many articles have been written on this subject [84,79].

The microscopic origin of diquarks is not completely clear and its connection with the fundamental theory (QCD) not fully understood, apart from the cold asymptatic high dense baryon case, in which the quarks form a fermi surface and perturbative gluon interactions support the existence of a diquark BCS state known as color superconductor [85,81].

Although the existence of Θ ⁺ pentaquark is still not completely established, there are interests to discuss a bout its properties and dynamical structure according to QCD - based theories.

Assuming a (CPXQM) effective field theory , we suggested that the Θ^+ baryon is a bound—state of two vector diquarks and a single a tiquark, the spatially wave function of these extended massles Goldston bosons (diquarks) has a P-wave and a S -wave in angular momentum in the first and second version of our model respectively.

At the first we constructed the total OCFS symmetry of $q^4\bar{q}$ contribution of quarks, we discussed a bout $\bar{10}_t$ and 8_t SU_t(3) multiplets $\mathcal{L}_{\overline{10}\text{-}8_3}$ symmetry lagrangian, SU(3) symmetry interactions of them and mass terms and spacing rules for the introduced particles in these multiplets according to a our conventional quark model.

Then by using of diquark ideas in the chiral limit diquark correlations in the relativistic region and imposing HF interactions between quarks in a diquark, we led to introducing interpolating fields, also we discussed a bout other flavour multiplets such as 27, 35, plets in which there are vector diquarks and the discovery of them will be evidence supporting the diquark model.

According to a conventional mass formula we studied the structure of the pentaquark spectrum.

After that we searched for a variational solution of a conventional Hamiltonian considered noncontact color - spin interactions between quarks, and neglected confinement and flavour - spin interactions and cocluded that the scalar diquarks are more favourable., but for the second version of our model and considerations on flavour - spin and Kinetic energy term we led $to\Theta^+$ pentaquark mass. According to these considerations we calculated the average

distance between two diquarks which leds to a reasonable width for the Θ^+ due to tunneling model.

We extended our diquark model to dibaryons especially we calculated some estimations of the mass and width of the H

limits.

dibaryon. In order to have a realization of the importance of the FS eractions between quarks in our diquarks, for the second sion of our model we calculated the mass of the Θ^+ interactions version of according to a mass formula using of group theoretical pentaquark which we considered CS interactions the factors, in only QCD - based interactions between our vector diquarks , and found that the Θ^{+} pentaguark mass is greater than the experimental

After the calculation of the Θ^+ magnetic moment in our model which has useful imformation a bout the underlying structure of pentaquark and in an another approach by using of a shrödinger like equation for the Q Q system in or model, we calculated the mass and the width of the Θ^+ pentaquark., our results in this approach, for example the average distance between diquarks, are in agreement with our previous ones.

We conclude that by avoiding introducing a rotational contribution $\ell \neq 0$) to the Θ^+ pentaquark mass by choosing vector $(\ell \neq 0)$ to the Θ^{+} diquarks, one can reach to a good description of Θ^+ pentaquark properties in several approaches.

References

- T. Nakano et al., Phys. Rev. Lett. 91, 012002 (2003).
- S.Stepanyan et al., CLAS Collaboration, Phys. Rev. Lett. 91, 252001 (2003). hep-ex/0307018; V. V. Barmin et al., DIANA Collaboration, Phys. Atom. Nucl. 66, 1715 (2003) [Yad. Phys. 66, 1763 (2003)], hep-ex/0304040; J. Barth et al., SAPHIR Collaboration, Phys. Lett. B572, 127 (2003), hep-ex/0307083; A. E. Asratyan et al., hep-ex/0309042, to be published in Phys. Atom. Nucl.; V. Kubarovsky et al., CLAS Collaboration, Phys. Rev. Lett. 92 (2004) 032001; A. Airapetian et al., HERMES Collaboration, hep-ex/0312044; A. Aleev et al., SDV Collaboration, hep-ex/0401024.
- V.V. Barmin et al., Phys. Atom. Nucl. 66, 1715 (2003); Yad. Fiz. 66, 1763 (2003).
- DIANA collaboration, V.V. Barmin, et al., Phys. Atom. Nuc l 66 (2003), 1715.
- CLAS collaboration, S. Stepanyan, et al., Phys. Rev. Lett 91 (2003), 252001.
- [6] J. Barth et al [SAPHIR Collaboration] arXiv:hep-ex/0307083. SAPHIR Collaboration, J. Barth et al., Phys. Lett. B 572 (2003), 127.
- NA49 Collaboration, C. Alt et al., Phys. Rev. Lett. 92 (2004), 042003. C. Alt et al., NA49 Collaboration, Phys. Rev. Lett. 92 042003 (2004), hep-ex/0310014.
- H1 Collaboration, A. Aktas et al., hep-ex/0403017.
- WA89 Collaboration, M. I. Adamovich et al. , hep-ex/0405042.
- [10] J. Pochodzalla, hep-ex/0406077.
- [11] E. Golowich, Phys. Rev. D4, 262 (1971). Particle Data Group, M. Aguilar-Benitez et al. , Phys. Lett. B 170, 1 (1986). H. Gao and B.-Q. Ma, Mod. Phys. Lett. A 14, 2313 (1999).
- [12] H. Högaasen and P. Sorba, Nucl. Phys. B 145, 119 (1978); M. de Crombrugghe, H. Högaasen and P. Sorba, Nucl. Phys. B 156 , 347 (1979). A.V. Manohar, Nucl. Phys. B 248, 19 (1984).
 - M. Chemtob, Nucl. Phys. B 256 , 600 (1985). M. Praszalowicz, in Skyrmions and Anomalies (M. Jezabek and M. Praszalowicz, eds.), World Sci-entific (1987), 112-131; M. Praszalowicz, Phys. Lett. B 575
- [13] S. Nussinov, hep-ph/0307357; R. A. Arndt, I.I. Strakovsky, R. L. Workman, Phys. Rev. C 68, 042201 (R) (2003); J.Haidenbauer and G. Krein, hep-ph/0309243; R. N. Cahnand G. H. Trilling, hep-h/0311245.
- [14] ParticleDataGroup, Phys. Rev. D66,010001 (2002)
- [15] See, e.g. M.Oka and K.Yazaki, inuarks and Nuclei, ed. W.Weise (World Scientific Singapore, 1984), p.489.
- [16] D.B. Lichtenberg, R. Roncaglia, and E. Predazzi, J. Phys. G Nucl. PartPhys. 23, 865
- [17] M. karliner and H.J. Lipkin, hep-ph/0410072.
- [18] A. hang et al., hep ph / 0403210.
- [19] C. E. Carlson et al, hep-ph / 0312325.
- $\left[20\right]$ F.Buccella and P.Sorba, hep ph / 0401083
- [21] CLAS collaboration, B. Mckinnon ,et al ,arXiv:hep-ex/0603028 V1 14 Mar 2006
- [22] T. Hirose, K. Kanai, S. Kitamura, and T. Kobayashi, Nuov o Cim. 50A, 120 (1979)
 - C.Fukunaga, R. Hamatsu, T. Hirose, W. Kitamura, and T. Yamagata, Nuovo Cim. 58A
- [23] V.M.Karnaukhov, V.I.Moroz, C.Coca, and A.Mihul, Phys. Lett. B 281, 148 (1992).
 [24] A.V.Arefev, et al., Yad. Fiz. 51, 414 (1990) [Sov. J. Nucl. Phys. 51, 264 (1990)].
- [25] J.Amirzadeh, et al. , Phys. Lett. 89B, 125 (1979).
- [26]B.M.Abramov, et al., Yad. Fiz. 53, 179 (1991) [Sov. J. Nucl. Phys. 53, 114 (1991)].
 [27]D.Aston, et al., Phys. Rev. D 32, 2270 (1985).
- [28] L.G. Landsberg, Phys. Rep. 320, 223 (1999); SPHINX Collaboration, Yu. M. Antipov, et al., Yad. Fiz. 65, 2131 (2002) Phys. Atom. Nucl. 65, 2070 (2002)].
- [29] S.Catto and F.G"ursey, Nuovo Cimento 86, 201 (1985).
- [30] M.Anselmino et al., Rev. Mod. Phys. 65 1199 (1993)
- $\left[31\right]$ F.Buccella and P.Sorba, hep ph / 0401083
- [32] R. Jaffe and F. Wilczek, Phys. Rev. Lett. 91, 232003 (2003).
- [33] F. E. Close and J. J. Dudek, Phys. Lett. B 586, 75 (2004). S. H. Lee, H. Kim, and Y. Oh, hep-ph/0402135.
- [34] T.-W. Chiu, T.-H. Hsieh, hep-ph/0403020
- [35] F. Csikor et al., hep-lat/0309090; S. Sasaki, hep-lat/0310014.
- [36] N.Mathur et al., hep-ph/0406196.
- [37] N. Mathur et al , arXiv:hep-ph/0406196.
- [38] R. Jaffe and F. Wilczek, arXiv:hep-ph/0401034.
- [39] L. Ya. Glozman, ariv:hep-ph/0308232.
- [40] Markus Eidemuller arXiv:hep-ph/0404126.
- [41] D. Diakonov et al., Z. Phys. A 359, 305 (1997).
- [42] M. Praszałowicz, Phys. Lett. B 583, 96 (2004) [arXiv:hep-ph/0311230].
- [43] R. L. Jaffe, Eur. Phys. J. C 35, 221 (2004) [arXiv:hep-ph/0401187].
- [44] E. Witten, Nucl. Phys. B 223, 433 (1983). Wess and B. Zumino, Phys. Lett. B37, 95 (1971).
 - E. Witten, Nucl. Phys. B 223, 422 (1983).

[13]

- [45] Borisyuk, arXiv:hep-ph/0404126.
- [46] S. Weinberg, Physica A 96, 327 (1979).
- [47] Koji Harada . et al, arXiv:hep-ph/0410145.
- [48] T. Inoue et al , arXiv:hep-ph/0407305.
- [49] T. Inoue, V. E. Lyubovitskij, T. Gutsche and A. Faessler, [arXiv:hep-ph/0404051].
- [50] H. Leutwyler, Nucl. Phys. B 179, 129 (1981); D. Diakonov and V. Y. Petrov, Nucl. Phys. B 245, 259 (1984); G. V. Efimov and M. A. Ivanov, The Quark Confinement Model of Hadrons (IOP Publishing, Bristol & Philadelphia, 1993).
- [51] J. Gasser, M. E. Sainio and A. Svarc, Nucl. Phys. B 307, 779 (1988).
- [52] V. E. Lyubovitskij, T. Gutsche and A. Faesslerw, Phys. Re v. C 64, 065203, (2001)[arXiv:hep-ph/0105043].
- [53] M. Karliner and H. J. Lipkin, arXiv:hep-ph/0307243.
- [54] H. Yabu and K. Ando, Nucl. Phys. B 301, 601 (1988).
- [55] Edward Shuryak , arXiv:hep-ph/0505011.
- $[56]\,$ E. Shuryak and I. Zahed, hep-ph/0310270
- T. Schäfer and E.V. Shuryak, Rev. Mod. Phys. **70** (1998) 1323.
 D. Diakonov, Prog. Par. Nucl. Phys. **51** (2003) 173.
 - A.E.Dorokhov, N.I.Kochelev and Yu.A. Zubov, Int. J. Mod. Phys. 8A (1993) 603.
- [58] E.V. Shuryak, Nucl. Phys. B203, 93; 116; 140 (1982).
- [59] A.E. Dorokhov and N.I.Kochelev, Preprint JINR-E2-86-847 (1986), available from KEK library.
 - A.E. Dorokhov, N.I.Kochelev, Yu.A. Zubov, Yad. Fiz. 50 (1989) 1717 (Sov. J. Nucl. Phys. 50 (1989) 1065), Z. Phys. C65 (1995) 667; N.I. Kochelev, JETP Lett. 70 (1999) 491.
 - S. Takeuchi and M. Oka, Phys. Rev. Lett. 66 (1991) 1271.
- [60] M.A.Shifman, A.I.Vainshtein, A.I.Zakharov, Nucl. Phys. B163, 43 (1980).
- [61] E.V. Shuryak and J.L. Rosner, Phys.Lett. B218 (1989) 72.
- Volker D. Burkert, Int. J. Mod.Phys. A 21,1764 (2006), hep-ph/0510309 v2 7 Nov (2005).
 A. G. Oganesian, hep-ph/0608031 v1 3 Aug (2006).
 V. V. Barmin et al. [DIANACollaboration], hep-ex/0603017 v2 21 Apr (2006).
- [63] H. Miyazawa, Prog. Theor. Phys.36, 1266 (1966).
- [64] S. Catto and F. Gürsey, Nuovo Cimento 86, 201 (1985).
- [65] D.B. Lichtenberg, arXiv:hep-ph/0406198.
- [66] R. Bijker, M. M. Giannini, and E. Santopinto, hep-ph/0310281.
 - Fl. Stancu and D. O. Riska, Phys. Lett. B 575, 242 (2003).
 - C. E. Carlson, C. D. Carone, H. J. Kwee, and V. Nazaryan, Phys. Lett. B 573, 101 (2003).
 - C. E. Carlson, C. D. Carone, H. J. Kwee, and V. Nazaryan, Phys. Lett. B 579, 52 (2004).
 - S. M. Gerasyuta and V. I. Kochkin, hep-ph/0310227.
 - N. I. Kochelev, H. J. Lee, and V. Vento, hep-ph/0404065.
- [67] F. E. Close and J. J. Dudek, Phys. Lett. B 586, 75 (2004).
 - S. H. Lee, H. Kim, and Y. Oh, hep-ph/0402135.
 - D. Diakonov and V. Petrov, hep-ph/0310212.
 - R. Bijker, M. M. Giannini, and E. Santopinto, hep-ph/0310281.
 - Fl. Stancu and D. O. Riska, Phys. Lett. B 575, 242 (2003).
 - C. E. Carlson, C. D. Carone, H. J. Kwee, and V. Nazaryan, Phys. Lett. B 573, 101 (2003).
 - C. E. Carlson, C. D. Carone, H. J. Kwee, and V. Nazaryan, P hys. Lett. B 579, 52 (2004).
- [68] Yongseok Oh et al , arXiv:hep-ph/0405010.
- [69] F. E. Low, Symmetries and Elementary Particles, (Gordon and Breach, New York, 1967).
- [70] H. Högassen and P. Sorba, Nucl. Phys. B 145, 119 (1978);
 M. de Crombrugghe, H. Högassen and P. Sorba, Nucl. Phys. B 156, 347 (1979).

- [71] R. Bijker, M.M. Giannini and E. Santopinto, in preparation.
 - E. Santopinto, F. Iachello and M.M. Giannini, Eur. Phys 1 J. A, 307 (1998).
- [72] F. Gürsey and L.A. Radicati , Phys. Rev. Lett. 13 , 173 (1964).
 R. Bijker, F. Iachello and A. Leviatan, Ann. Phys. (N.Y) 236 , 69 (1994);
 R. Bijker, F. Iachello and A. Leviatan, Ann. Phys. (N.Y) 284 , 89 (2000).
- [73] C. Helminen and D.O. Riska, Nucl. Phys. A 699, 624 (2002).
- [74] B.K. Jennings and K. Maltman, hep-ph/0308286.
- [75] M.M. Giannini, E. Santopinto and A. Vassallo, to be published.
- [76] S. Gasiorowicz and J. L. Rosner, Am. J. Phys. 49 (1981) 954.
- [77] P. J. Mulders, A. T. M. Aerts and J. J. de Swart, Phys. Rev. D 19 (1979) 2635.
- [78] D. Strottman, J. Math. Phys. 20 (1979) 1643.
- [79] M. Anselmino, E. Predazzi, S. Ekelin, S. Fredriksson, and D.B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993). W. Brodowski et al., Z. Phys. A 355 (1996) 5.
- [80] R. L. Jaffe, Exotica Phys. Rept. (2005) 1-45, [409]. hep-ph/0409065
- [81] R. L. Jaffe, Phys. Rep.409, 1 (2005).
- [82] M. Ida and R. Kobayashi, Progr. Theor. Phys. 36, 846 (1966).
- [83] D. B. Lichtenberg and L. J. Tassie, Phys. Rev. 155, 1601 (1967).
- [84] For a review, see M. Anselmino, E. Predazzi, S. Ekelin, S. Frederksson and D. B. Lichtenberg, Rev. Mod. Phys. 65, 1199 (1993); M. Kirchbach, M. Moshinsky and Y. F. Smirnov, Phys. Rev. D 64, 114005 (2001).
 F. Wilczek, hep-ph/0409168; R. L. Jaffe, Phys. Rept. 409 (2005) 1; R. L. Jaffe and
 - F. Wilczek,

 5 D. Bailing and A. Love, Phys. Rept. 107, 325 (1984); M.C. Alford
- [85] D. Bailing and A. Love, Phys. Rept. 107, 325 (1984); M.G. Alford,
 K. Rajagopal and F.Wilczek, Nucl. Phys. B 537, 443 (1999).