ABSTRACT

iron-based rare-earth nanocomposite magnet of the present invention has a composition $T_{100-x-y-z-n}Q_xR_yTi_zM_n$, where T is Fe or a transition metal element in which Fe is partially replaced by Co and/or Ni; Q is B and/or C; R is at least one rare-earth element including substantially no La or Ce; and M is at least one metal element selected from Al, Si, V, Cr, Mn, Cu, Zn, Ga, Zr, Nb, Mo, Ag, Hf, Ta, W, Pt, Au and Pb. x, y, z and n satisfy $5 \le x \le 10$ at%, $7 \le y \le 10$ at%, $0.1 \le z \le 5$ at% and $0 \le n \le 10$ at%, respectively. The magnet includes R₂Fe₁₄B-type compound phases and α -Fe phases forming a magnetically coupled nanocomposite magnet structure. The R₂Fe₁₄B-type compound phases have average crystal grain size of 30 nm to 300 nm and the α -Fe phases have an average crystal grain size of 1 nm to 20 nm. magnet has magnetic properties including a coercivity of at least 400 kA/m and a remanence of at least 0.9 T.