Large-scale Instance Retrieval

Computer Vision

James Hays

Multi-view matching

VS

Matching two given views for depth

Search for a matching view for recognition

Inverted file index

 Database images are loaded into the index mapping words to image numbers

Inverted file index

 New query image is mapped to indices of database images that share a word.

Inverted file index

- Key requirement for inverted file index to be efficient: sparsity
- If most pages/images contain most words then you're no better off than exhaustive search.
 - Exhaustive search would mean comparing the word distribution of a query versus every page.

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?
- How to score the retrieval results?

Comparing bags of words

 Rank frames by normalized scalar product between their (possibly weighted) occurrence counts---nearest neighbor search for similar images.

$$sim(d_j, q) = \frac{\langle d_j, q \rangle}{\|d_j\| \|q\|}$$

$$= \frac{\sum_{i=1}^{V} d_j(i) * q(i)}{\sqrt{\sum_{i=1}^{V} d_j(i)^2} * \sqrt{\sum_{i=1}^{V} q(i)}}$$

for vocabulary of V words

Comparing bags of words

Other common histogram comparisons:

Histogram intersection

$$rac{\sum_{j=1}^n min(I_j, M_j)}{\sum_{j=1}^n M_j}$$

- Chi squared

$$\sum_{i=1}^n rac{(x_i-y_i)^2}{(x_i+y_i)}$$

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?
- How to score the retrieval results?

Vocabulary size

Results for recognition task with 6347 images

Influence on performance, sparsity

Nister & Stewenius, CVPR 2006 Kristen Grauman

Recognition with K-tree

Vocabulary trees: complexity

Number of words given tree parameters: branching factor and number of levels

branching_factor^number_of_levels

Word assignment cost vs. flat vocabulary

O(k) for flat

O(log_{branching_factor}(k) * branching_factor)

Is this like a kd-tree?

Yes, but with better partitioning and defeatist search.

This hierarchical data structure is lossy – you might not find your true nearest cluster.

Slide Credit: Nister

Slide Credit: Nister

Slide Credit: Nister

Higher branch factor works better (but slower)

Visual words/bags of words

- + flexible to geometry / deformations / viewpoint
- + compact summary of image content
- + provides fixed dimensional vector representation for sets
- + very good results in practice
- background and foreground mixed when bag covers whole image
- optimal vocabulary formation remains unclear
- basic model ignores geometry must verify afterwards, or encode via features

Instance recognition: remaining issues

- How to summarize the content of an entire image? And gauge overall similarity?
- How large should the vocabulary be? How to perform quantization efficiently?
- Is having the same set of visual words enough to identify the object/scene? How to verify spatial agreement?
- How to score the retrieval results?

Can we be more accurate?

So far, we treat each image as containing a "bag of words", with no spatial information

