Deep Reinforcement Learning for Robotic Grasping from Octrees Learning Manipulation from Compact 3D Observations

Andrej Orsula Robotics

Master's Thesis

Department of Electronic Systems

Aalborg University https://es.aau.dk

AALBORG UNIVERSITY

STUDENT REPORT

Titl	e:	

Deep Reinforcement Learning for Robotic Grasping from Octrees

Theme:

Master's Thesis

Programme:

Robotics

Author:

Andrej Orsula¹

Supervisor:

Simon Bøgh

Number of Pages:

12

Submission Date:

April 12, 2021

TODO: Abstract

¹aorsul16@student.aau.dk

Contents

Re	esumé	:		V		
Pr	eface			vi		
1	Introduction					
2	Related Work					
	2.1	Roboti	ic Grasping	2		
		2.1.1	Empirical Approaches			
		2.1.2	Learning-Based Approaches	2		
	2.2	Learni	ing from 3D			
		2.2.1	3D Data Representations	2		
3	Bacl	kground	d	3		
	3.1	_	-Free Reinforcement Learning			
		3.1.1	Markov Property			
		3.1.2	Markov Chain			
		3.1.3	Markov Decision Process			
		3.1.4	Q-Learning	3		
		3.1.5	Value-Based Reinforcement Learning			
		3.1.6	Policy-Based Reinforcement Learning			
	3.2	Actor (Critic	3		
		3.2.1	Deep Deterministic Policy Gradient (DDPG)	3		
		3.2.2	Twin Delayed Deep Deterministic (TD3)			
		3.2.3	Soft Actor Critic (SAC)			
		3.2.4	Truncated Quantile Critics (TQC)	3		
	3.3	Function	on Approximation	3		
		3.3.1	Neural Networks	3		
4	Prob	olem Fo	ormulation	4		
	4.1	Observ	vation Space	4		
		4.1.1	Observation Stacking	4		
	4.2	Action	1 Space	4		
	4.3	Reward	d Function	4		
5	Met	hods		5		
	5.1	Currici	ulum Learning	5		
	5.2		nstration Bootstrapping			
	5.3		in Pandamization	5		

6	Imp	lementation	6					
	6.1	Simulation Environment	6					
		6.1.1 Selection	6					
		6.1.2 Simulating with Ignition Gazebo	6					
	6.2	OpenAI Gym Environment	6					
		6.2.1 Gym-Ignition	6					
	6.3	Stable Baselines3	6					
	6.4	Network Architecture	6					
		6.4.1 PyTorch	6					
		6.4.2 Feature Extractor	6					
		6.4.3 Actor Critic Networks	6					
	6.5	Hyperparameter Optimisation with Optuna	6					
7	Experimental Evaluation							
	7.1	Experimental Setup	7					
	7.2	Results	7					
	7.3	Ablation Studies	7					
8	Discussion							
9	Con	clusion	9					
10	Future Work 1							
Bil	bliogr	raphy	11					
Аp	pend	lices	12					
Î	A		12					
	В		12					
	C		12					
	D		12					

Resumé

TODO: Resumé in Danish

Preface

This Master's Thesis is written by Andrej Orsula as the final work of M.Sc. programme in Robotics at Aalborg University during the academic year 2020/21.

Acknowledgements

Special thanks goes to Simon Bøgh for his supervision, guidance and numerous discussions throughout the whole process that helped to shape this project. Moreover, I must express a very profound gratitude to my mum, dad, sister and brother for their love and everlasting support.

Additional Resources

The primary source code developed during this project is available on the following *GitHub* repository.

• https://github.com/andrejorsula/drl_grasping

All readers interested in reproducing the results from this work are welcome to use pre-built *Docker* images that can be found inside the *Docker Hub* repository below.

https://hub.docker.com/r/andrejorsula/drl_grasping

This manuscript and additional resources such as raw data acquired during the testing can be accessed using the following *GitHub* repository.

• https://github.com/andrejorsula/master thesis

Glossary

2D Two-dimensional **3D** Three-dimensional **MDP Markov Decision Process** RLReinforcement Learning DRL Deep Reinforcement Learning **DDPG** Deep Deterministic Policy Gradient TD3 Twin Delayed Deep Deterministic **SAC** Soft Actor Critic **Truncated Quantile Critics TQC CNN** Convolutional Neural Network

TD Temporal Difference

1 Introduction

2 Related Work

- 2.1 Robotic Grasping
- 2.1.1 Empirical Approaches
- 2.1.2 Learning-Based Approaches
- 2.2 Learning from 3D
- 2.2.1 3D Data Representations

Mesh

Point Cloud

Voxel Grid

Octree

3 Background

- 3.1.1 Markov Property
- 3.1.2 Markov Chain

(Sutton and Barto, 2018)

- 3.1.3 Markov Decision Process
- 3.1.4 Q-Learning
- 3.1.5 Value-Based Reinforcement Learning
- 3.1.6 Policy-Based Reinforcement Learning
- 3.2 Actor Critic
- 3.2.1 Deep Deterministic Policy Gradient (DDPG)
- 3.2.2 Twin Delayed Deep Deterministic (TD3)
- 3.2.3 Soft Actor Critic (SAC)
- 3.2.4 Truncated Quantile Critics (TQC)
- 3.3 Function Approximation
- 3.3.1 Neural Networks

4 Problem Formulation

- 4.1 Observation Space
- 4.1.1 Observation Stacking
- 4.2 Action Space
- 4.3 Reward Function

5 Methods

- 5.1 Curriculum Learning
- 5.2 Demonstration Bootstrapping
- 5.3 Domain Randomization

6 Implementation

\sim 4	0:			
6.1	Simi	IIATIAN	$ \mathbf{n}$	onment
U. I	JIIIL	паноп		/I II I I I G I I L

6.1.1 Selection

Mu.JoCo

PyBullet

Gazebo Classic

Ignition Gazebo

6.1.2 Simulating with Ignition Gazebo

Controller

Middleware - ROS 2

Motion Planning - MoveIt 2

6.2 OpenAl Gym Environment

- 6.2.1 Gym-Ignition
- 6.3 Stable Baselines3
- 6.4 Network Architecture
- 6.4.1 PyTorch
- 6.4.2 Feature Extractor
- 6.4.3 Actor Critic Networks
- 6.5 Hyperparameter Optimisation with Optuna

7 Experimental Evaluation

- 7.1 Experimental Setup
- 7.2 Results
- 7.3 Ablation Studies

8 Discussion

9 Conclusion

10 Future Work

Bibliography

Richard S. Sutton and Andrew G. Barto. 2018. *Reinforcement Learning: An Introduction*. A Bradford Book, Cambridge, MA, USA.

Appendices

- **A** Low-Level Controller
- **B** Dataset
- **C** Hyperparameters
- **D** Full Results