Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Факультет Программной инженерии и компьютерной техники

Расчет защитного заземления

Безопасность жизнедеятельности

Выполнил

Ореховский А., группа Р3317

Преподаватель

Слободянюк А. А.

Расчет защитного заземления

Необходимо рассчитать параметры заземляющего устройства для защитного заземления электроустановок по следующим данным:

- Вид заземлителя уголок
- Вид соединительной полосы труба
- Длина заглубления заземлителя h = 0.6 м
- Ширина полки уголка $b_{
 m ny} = 40$ мм = 0.04 м
- Диаметр трубы $d_{\mathrm{TP}} = 40 \; \mathrm{мм} = 0.04 \; \mathrm{м}$
- Расстояние между соседними заземлителями а = 5 м
- Коэффициент, учитывающий промерзание грунта, $k_{\text{ces}} = 1,4$
- Коэффициент взаимного экранирования заземлителей $\eta_3 = 0.75$
- Коэффициент экранирования соединительной полосы $\eta_{\pi} = 0.25$
- Удельное сопротивление грунта $\rho = 40~\mathrm{Om} \cdot \mathrm{m}$

Допустимое сопротивление заземляющего устройства R_3 , согласно требованию правил устройства электроустановок, примем равным 4 Ом. Для начала, определим сопротивление одного вертикального заземлителя растеканию тока в земле

$$\begin{split} R_0 &= R_{\rm yr} = \frac{\rho_{\rm p}}{2\pi l_0} \bigg(\ln \frac{4l_0}{0.95b_{\rm ny}} + \frac{1}{2} \ln \frac{4t + l_0}{4t - l_0} \bigg) \\ &= \frac{56}{2 \cdot 3.14 \cdot 2.9} \bigg(\ln \frac{4 \cdot 2.9}{0.95 \cdot 0.04} + \frac{1}{2} \ln \frac{4 \cdot 2.05 + 2.9}{4 \cdot 2.05 - 2.9} \bigg) \approx 17,596 \; {\rm Om} \end{split}$$

Здесь $\rho_{\rm p}=\rho\cdot k_{\rm ces}=56~{\rm Om\cdot m}$ — расчетное удельное сопротивление грунта; $t=h+{l_0}/{2}=2$,05 м расчетный параметр.

Далее определяем необходимое число вертикальных заземлителей n

$$n = \frac{R_0}{R_3 \eta_3} = \frac{17,596}{4 \cdot 0,75} \approx 5,865$$

Данной значение необходим округлить вниз, n = 5.

Рассчитаем длину соединительной полосы

$$l = 1,05 an = 1,05 \cdot 5 \cdot 5 = 26,25$$
 м

Определяем сопротивление соединительной полосы

$$R_{\rm II} = \frac{\rho_{\rm p}}{2\pi l_0} \ln \frac{l^2}{d_{\rm Tp}h} = 3,487 \text{ OM}$$

Полное сопротивление заземляющего устройства растеканию тока:

$$R_{\rm 3y} = \frac{R_0 \cdot R_{\rm II}}{R_{\rm TD} \eta_{\rm II} + n R_{\rm II} \eta_{\rm 3}} = \frac{17,596 \cdot 3,487}{17,596 \cdot 0,25 \cdot 5 \cdot 3,487 \cdot 0,75} = 3,511 \, {\rm Om}$$

Так как данное сопротивление соответствует требованию ПУЭ, то оно – искомое.