

- Installing Packages: Use install.packages() to install packages only once for your system (or when updates are available). install.packages("regclass")
- Loading Libraries: Use library() every time you start a new session to load the required package(s). library(regclass)
 - o **dplyr** Data manipulation and transformation.
 - o **ggplot2** Data visualization using the grammar of graphics.
 - o tidyr Data tidying and reshaping.
 - o plotly Interactive and dynamic data visualization.
 - o **shiny** Building interactive web applications and dashboards.
 - o readr Efficient importing and exporting of data.
 - o **flextable** Creating professional and customizable tables.
- Understanding Data Management in R Studio
 - Read Data: Use functions like read.csv() or read_excel() to import data.
 - data <- read.csv("file.csv")</p>
 - Save Data: Use write.csv() or similar functions to export data.
 - write.csv(data, "output.csv")
 - Explore Data: Use these commands to understand your dataset:
 - head(data) # First 6 rows
 - str(data) # Structure of the data
 - summary(data) # Summary statistics
- It is important to create a working directory because this is the location where your files are saved and read from.
 - Copy and paste the link below to learn more about working directories
 - https://www.youtube.com/watch?v=dc8GMV3BPM0&list=PLblpDu7mdw0dyQJgWw23xnqfm7FOUqNB&index=4

Please enjoy this R Studio help sheet and please let me know if you have any questions!

Histogram

hist(SURVEY10\$GPA,

main = "GPA Distribution",

xlab = "GPA",

ylab = "Frequency",

col = "orange",

border = "black")

Bar Chart

barplot(table(SURVEY10\$Gender),
 main = "Gender Distribution",
 xlab = "Gender",
 ylab = "Count",
 col = c("lightpink", "lightblue"))

Box Plot

boxplot(SURVEY10\$GPA,

main = "Boxplot of GPA",

ylab = "GPA",

col = "orange")

Scatter Plot

pch = 19)

SURVEY10\$Weight,

main = "Height vs Weight",

xlab = "Height",

ylab = "Weight",

col = "orange",

plot(SURVEY10\$Height,

GPA Distribution

Gender Distribution

Height vs Weight

Side by Side Box Plots

boxplot(SURVEY10\$GPA ~
SURVEY10\$Gender,
 main = "GPA by Gender",
 xlab = "Gender",
 ylab = "GPA",
 col = c("lightpink", "lightblue"))

Mosaic Plot

mosaicplot(table(SURVEY10\$Gender, SURVEY10\$SigificantOther),

main = "Mosaic Plot: Gender vs Significant Other", xlab = "Gender", ylab = "Significant Other", color = TRUE)

Simple Linear Regression

model <- lm(GPA ~ Height, data = SURVEY10)
visualize_model(model)
summary (model)
check_regression(model)

GPA by Gender

Mosaic Plot: Gender vs Significant Other

Scatterplot, fitted line, and confidence/prediction intervals

Logistic Regression

Fit the logistic regression model logit_model <- glm(Gender ~ GPA + Height,

data = SURVEY10,

family = binomial)

summary(logit_model)

visualize_model(logit_model)

confusion_matrix(logit_model)

Implicit lines relating probability of Male to GPA

Call:
glm(formula = Gender ~ GPA + Height, family = binomial, data = SURVEY10)

Coefficients:

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Predicted Female Predicted Male Total
Actual Female 346 40 386
Actual Male 49 264 313
Total 395 304 699

Adding Gridlines

plot(SURVEY10\$Height, SURVEY10\$GPA,

main = "Height vs GPA with Gridlines",

xlab = "Height",

ylab = "GPA",

col = "blue",

pch = 19

grid()

Height vs GPA with Gridlines

Color Points by Group

19)

```
plot(SURVEY10$Height, SURVEY10$GPA,
    col = ifelse(SURVEY10$Gender ==
"Male", "blue", "pink"),
    main = "Height vs GPA by Gender",
    xlab = "Height",
    ylab = "GPA",
    pch = 19)
legend("topright", legend = c("Male",
"Female"), col = c("blue ", "pink"), pch =
```

Height vs GPA by Gender

