Question Number	Answer					Mark
18a	Use of $n\lambda = d \sin \theta$ $\theta_2 = 29^{\circ}$				(1) (1)	2
	(For MP1, allow calculation of $d/\lambda = 4.13$ or $\lambda/d = 0.242$)					
	Example of calculation $\sin 14.0^{\circ} = 0.242$ (when $n = 1$) $n = \frac{d}{\lambda} \sin \theta$, so if d and λ are the same, when $n = 2$, $\sin \theta$ is doubled so $\sin \theta_2 = 0.242 \times 2 = 0.484$ $\sin^{-1} 0.484 = 28.9^{\circ}$					
18b	Suitable graph suggested (see table below) Calculate/determine gradient Correct method for determining λ from gradient of graph				(1) (1) (1)	3
	(MP2 do not award without any suggestion of the graph to be plotted) (MP2 do not award if either of the axes involves λ)				1	
				_	-	
	y-axis n	$\frac{x-axis}{d\sin\theta}$	gradient = $1/\lambda$	$0r \lambda = 1/gradient$	-	
	$\frac{h}{d\sin\theta}$	$\frac{u\sin \theta}{n}$	λ	gradient	-	
	$\frac{u \sin \sigma}{n}$	$\sin \theta$	d/λ	d/gradient	1	
	$\sin \theta$	n	λId	gradient $\times d$		
	$\sin \theta$	n/d	λ	gradient	1	
	n/d	$\sin \theta$	1/λ	1/gradient	1	
18c	Use of tan to calculate θ_2 (allow Pythagoras to find hypotenuse and then using sin or cos)				(1)	
	Use of $n\lambda = d\sin\theta$ with $n = 2$				(1)	
	Use number of lines per $m(m) = 1 / d$				(1)	
	Number of lines per mm = 149, so labelling incorrect Or $d = 3.33 \times 10^{-6}$ m, not 6.69×10^{-6} m, so labelling incorrect				(1)	4
	Example of calculation Tan $\theta = 0.397 \text{ m} / 2.00 \text{ m} = 0.199, \ \theta = 11.2^{\circ}$ $n\lambda = d\sin\theta$, so $d = n\lambda$ / $\sin\theta = 2 \times 650 \times 10^{-9} \text{ m}$ / $\sin(11.2^{\circ})$ $d = 6.69 \times 10^{-6} \text{ m}$ number of lines per metre = $1/d = 1$ / $6.69 \times 10^{-6} \text{ m} = 149,000 \text{ m}^{-1}$ = 149 mm^{-1}					
	Total for question	n 18				9