Intelligent Agents

Outline

I. Agents and rational behavior

II. The nature of environments

III. The structure of agents

^{*} In part based on notes by Dr. Jin Tian.

I. Agents

Percept: perceptual inputs at any given instant.

Percept sequence: complete history of everything the agent has ever perceived.

Agent function (behavior):

reasoning
a percept sequence → an action

^{*} Illustration from https://www.doc.ic.ac.uk/project/examples/2005/163/g0516334/index.html.

Construction of the Agent Function

Tabulation?

- ♠ Very large, if not infinite table!
- Instead, implement the function internally by an agent program.
- ♦ The program runs on the agent's architecture to produce the function.

Construction of the Agent Function

Tabulation?

- ♠ Very large, if not infinite table!
- Instead, implement the function internally by an agent program.
- ◆ The program runs on the agent's architecture to produce the function.

Agent = architecture + program

Construction of the Agent Function

Tabulation?

- ♠ Very large, if not infinite table!
- Instead, implement the function internally by an agent program.
- ◆ The program runs on the agent's architecture to produce the function.

Abstract description vs concrete implementation!

The Vacuum-Cleaner World

- *Environment*: squares *A* & *B*
- Percepts: [A, Dirty]
 square the vacuum state of cleaner is in the square
- Actions: left, right, suck, nothing

Partial Tabulation

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
<u>:</u>	<u>:</u>
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
:	:

- Many way to fill in the right column
- What is the right way?

Good/bad, intelligent/stupid?

Rational Behavior?

if status == Dirty then return Suck else if location == A then return Right else if location == B then return Left

Is this agent rational?

No, needless oscillation once all the dirt is cleaned up!

improve

Do nothing when all the squares are clean.

Rationality

What is rational depends on four things:

- performance measure defining the criterion of success
- prior knowledge of the environment
- performable actions by the agent
- perceptual sequence to date

A rational agent should select an action expected to maximize its performance measure.

Performance Measure

Awards one point for each clean square at each time step.

Meanwhile, assume

- known environment
- unknown dirt distribution and agent's initial location
- only available actions: Left, Right, and Suck
- Left and Right having no effect if they would take the agent outside
- perfect sensing of location and dirt existence

Percept sequence	Action
[A, Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean], [A, Clean]	Right
[A, Clean], [A, Dirty]	Suck
:	:
[A, Clean], [A, Clean], [A, Clean]	Right
[A, Clean], [A, Clean], [A, Dirty]	Suck
:	:

This agent is rational.

Omniscience vs Rationality

 An omniscient agent knows the actual outcome of its actions.

Impossible in reality!

- Rationality maximizes the expected performance.
 - Learn as much as it perceives.
 - Does not require omniscience.
- Perfection maximizes actual performance.

Rationality \neq omniscience \neq perfection

Omniscience vs Rationality

 An omniscient agent knows the actual outcome of its actions.

Impossible in reality!

- Rationality maximizes the expected performance.
 - Learn as much as it perceives.
 - Does not require omniscience.
- Perfection maximizes actual performance.

Rationality \neq omniscience \neq perfection

II. Task Environment

To design a rational agent, we must specify its task environment:

- performance measure
- environment of the agent
- agent's actuators and sensors

PEAS

Automated Taxi Driver

Its task environment in the PEAS description:

Agent Type	Performance Measure	Environment	Actuators	Sensors
Taxi driver	Safe, fast, legal, comfortable trip, maximize profits, minimize impact on other road users	Roads, other traffic, police, pedestrians, customers, weather	Steering, accelerator, brake, signal, horn, display, speech	Cameras, radar, speedometer, GPS, engine sensors, accelerometer, microphones, touchscreen

PEAS for Other Agents

Agent Type	Performance Measure	Environment	Actuators	Sensors
Medical diagnosis system	Healthy patient, reduced costs	Patient, hospital, staff	Display of questions, tests, diagnoses, treatments	Touchscreen/voice entry of symptoms and findings
Satellite image analysis system	Correct categorization of objects, terrain	Orbiting satellite, downlink, weather	Display of scene categorization	High-resolution digital camera
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts; bins	Jointed arm and hand	Camera, tactile and joint angle sensors
Refinery controller	Purity, yield, safety	Refinery, raw materials, operators	Valves, pumps, heaters, stirrers, displays	Temperature, pressure, flow, chemical sensors
Interactive English tutor	Student's score on test	Set of students, testing agency	Display of exercises, feedback, speech	Keyboard entry, voice

PEAS for Other Agents

Agent Type	Performance	Environment	Actuators	Sensors
Medical diagnosis system	Measure Healthy patient, reduced costs	Patient, hospital, staff	Display of questions, te diagnoses, treatments	
Satellite image analysis system	Correct categorization of objects, terrain	Orbiting satellite, downlink, weather	Display of s categorizatio	
Part-picking robot	Percentage of parts in correct bins	Conveyor belt with parts; bins	Jointed arm and hand	Camera, tactile and joint angle sensors
Refinery controller	Purity, yield, safety	Refinery, raw materials, operators	Valves, pumps, heaters, stirrers, displays	Temperature, pressure, flow, chemical sensors
Interactive English tutor	Student's score on test	Set of students, testing agency	Display of exercises, feedback, speech	Keyboard entry, voice

Universal Robots ActiNav autonomous bin picking kit

Categorize task environments according to properties.

appropriate families of techniques for agent implementation

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock						
Poker Backgammon						
Taxi driving Medical diagnosis						
Image analysis Part-picking robot	-			-	-	
Refinery controller English tutor				-	-	+

Fully observable if the sensors can detect all aspects that are *relevant* to the choice of action.
 vs. partially observable

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock	Fully Fully					
Poker Backgammon	Partially Fully					
Taxi driving Medical diagnosis	Partially Partially					
Image analysis Part-picking robot	Fully Partially					
Refinery controller English tutor	Partially Partially			-	-	

Single-agent vs. multiagent

Task Environment	Observable	Agents Deterministic Episodic Static Discrete
Crossword puzzle Chess with a clock	Fully Fully	Single Multi ← competitive
Poker	Partially	Multi
Backgammon	Fully	Multi
Taxi driving	Partially	Multi ← cooperative
Medical diagnosis	Partially	Single
Image analysis	Fully	Single
Part-picking robot	Partially	Single
Refinery controller	Partially	Single
English tutor	Partially	Multi

Deterministic
 vs. stochastic

if the next state of the environment is completely determined by the current state and the action executed by the agent. otherwise.

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock	Fully Fully	Single Multi	Deterministic Deterministic			
Poker Backgammon	Partially Fully	Multi Multi	Stochastic ← Stochastic	unable to keep track of all the cards in opponents' hands; must be treated as nondeterministic		
Taxi driving Medical diagnosis	Partially Partially	Multi Single	Stochastic Stochastic			
Image analysis Part-picking robot	Fully Partially	Single Single	Deterministic Stochastic	-	-	
Refinery controller English tutor	Partially Partially	Single Multi	Stochastic Stochastic	-	-	

• Episodic

if the agent's experience is divided into atomic episodes, among which one does not depend on the actions taken in previous ones.

VS. Sequential if the current decision could affect all future decisions.

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle Chess with a clock	Fully Fully	Single Multi	Deterministic Deterministic	Sequential Sequential		
Poker Backgammon	Partially Fully	Multi Multi	Stochastic Stochastic	Sequential Sequential		
Taxi driving Medical diagnosis	Partially Partially	Multi Single	Stochastic Stochastic	Sequential Sequential	can ha	taneous actions ave long-term quences.
Image analysis Part-picking robot	Fully Partially	Single Single	Deterministic Stochastic	Episodic Episodic		
Refinery controller English tutor	Partially Partially	Single Multi	Stochastic Stochastic	Sequential Sequential		

Dynamic
 vs. semidynamic
 vs. static

if the environment can change while the agent is choosing an action.

if the environment changes under the agent's action only. otherwise.

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic	Sequential	Static	
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	
Poker	Partially	Multi	Stochastic	Sequential	Static	
Backgammon	Fully	Multi	Stochastic	Sequential	Static	
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	
Image analysis	Fully	Single	Deterministic	Episodic	Semi	
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	
English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	

Discretevs. continuous

The distinction applies to

- ◆ the environment's state
- ◆the way time is handled
- the agent's percepts and actions

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic	Sequential	Static	Discrete
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Image analysis	Fully	Single	Deterministic	Episodic	Semi	Continuous
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete

Discretevs. continuous

The distinction applies to

- ◆ the environment's state
- ◆the way time is handled
- ◆ the agent's percepts and actions

Task Environment	Observable	Agents	Deterministic	Episodic	Static	Discrete
Crossword puzzle	Fully	Single	Deterministic	Sequential	Static	Discrete
Chess with a clock	Fully	Multi	Deterministic	Sequential	Semi	Discrete
Poker	Partially	Multi	Stochastic	Sequential	Static	Discrete
Backgammon	Fully	Multi	Stochastic	Sequential	Static	Discrete
Taxi driving	Partially	Multi	Stochastic	Sequential	Dynamic	Continuous
Medical diagnosis	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
Image analysis	Fully	Single	Deterministic	Episodic	Semi	Continuous
Part-picking robot	Partially	Single	Stochastic	Episodic	Dynamic	Continuous
Refinery controller	Partially	Single	Stochastic	Sequential	Dynamic	Continuous
English tutor	Partially	Multi	Stochastic	Sequential	Dynamic	Discrete

III. The Structure of Agents

◆ The job of AI is to design an agent program that implements

Computing device, sensors & actuators

- All agent programs have the same skeleton:
 - input: current percepts
 - output: action
 - program: manipulates inputs to produce output

Table Lookup Agent

It retains complete percept sequence in memory.

Doomed to failure due to

- daunting table size (e.g., easily over 10¹⁵⁰ entries for chess)
- no storage space
- no time for construction
- no way for the agent to learn all the entries
- no guidance on how to fill the table entries

Basic Agent Types

Four basic types embody the principles underlying almost all intelligent systems:

- Simple reflex agents
- Model-based reflex agents
- ◆Goal-based agents
- Utility-based agents

All of them can be converted into

Learning-based agents

Simple Reflex Agent

Rectangles: agent's current internal state

Ovals: background information used in the process.

 Select actions based on the current percepts, and ignore the percept history.

E.g., the vacuum agent

 Implemented through conditionaction rule.

if dirty then suck

if car-in-front-is-braking then initiate-braking

Vacuum-Cleaner World (Revisited)

if status == Dirty then return Suck else if location == A then return Right else if location == B then return Left

Simple Reflex Agent

function SIMPLE-REFLEX-AGENT(percept) returns an action persistent: rules, a set of condition—action rules

```
state \leftarrow Interpret - Input(percept)
rule \leftarrow Rule-Match(state, rules)
action \leftarrow rule.Action
return\ action
```

Limited intelligence

It will work **only if** the correct decision can be made based on only the current percept, i.e., **only if** the environment is fully observable.

Model-based Reflex Agent

- Partially observable environment.
- Need to maintain some internal state.
- Update it using knowledge.

Model of the world

- How does the world change?
- How do actions affect the world?

How This Agent Works

function Model-Based-Reflex-Agent (percept) returns an action

persistent: state, the agent's current conception of the world state

transition_model, a description of how the next state depends on

the current state and action

sensor_model, a description of how the current world state is reflected

in the agent's percepts

rules, a set of condition—action rules

action, the most recent action, initially none

```
state \leftarrow \text{UPDATE-STATE}(state, action, percept, transition\_model, sensor\_model)
rule \leftarrow \text{Rule-Match}(state, rules)
action \leftarrow rule. \text{Action}
return\ action
```

- It is rarely possible to describe the exact current state of the environment.
- The maintained "state" does not have to describe the world.

Goal-Based Agent

- Needs also some goal information describing desirable situations.
- Search and planning
 - when a long sequence of actions is required to find the goal.
- Difference in taking the future into account.

Utility-Based Agent

- Different ways to achieve a goal sometimes.
- Use a utility function that maps a (sequence of states) to a real number (utility)

internal performance measure

- Maximize expected utility.
- Goal improvements:
 - selection among conflicting goals
 - selection based on likelihood of success and goal importance

Learning-Based Agent

- Preferred method for creating state-of-the-art AI systems:
 - Allow operation in initially unknown environments.
 - Adapt to changes in the environment --- robustness.

 Modifications of the four components to bring them in closer agreement with the available feedback

Better overall performance

Learning-Based Agent

- Learning element introduces improvements in performance element.
- Critic provides feedback on the agent's performance based on fixed performance standard.
- Performance element selects actions based on the precepts.
- Problem generator suggests actions that will lead to new and informative experiences.

Learning-Based Agent

- Learning element introduces improvements in performance element.
- Critic provides feedback on the agent's performance based on fixed performance standard.
- Performance element selects actions based on the precepts.
- Problem generator suggests actions that will lead to new and informative experiences.