Variations d'une fonction

Hypothèse. Soit f une fonction définie sur un intervalle I et à valeurs dans \mathbb{R} .

Définition. f est **croissante sur** I si : Pour tous $x, x' \in I$, si $x \le x'$ alors $f(x) \le f(x')$

Autrement dit la sortie f(x) augmente quand on augmente l'entrée x dans I.

Définition. f est décroissante sur I si : Pour tous $x, x' \in I$, si $x \le x'$ alors $f(x) \ge f(x')$

Autrement dit la sortie f(x) diminue quand on augmente l'entrée x dans I.

Définitions. **Etudier les variations d'une fonction**, c'est dire si elle est croissante / décroissante, et sur quels intervalles. On représente les variations d'une fonction avec un **tableau de variations**.

Exemple. Soit la fonction f définie sur [-3; 4] par le graphe ci-contre : Son tableau de variations est :

f est décroissante sur [-3; -1], croissante sur [-1; 2] et décroissante sur [2; 4].

Définition. Une fonction **affine** est de la forme f(x) = ax + b pour $x \in \mathbb{R}$. (a et b sont des constantes).

Propriétés. La courbe représentative d'une

fonction affine est une droite.

Si a > 0 alors f est croissante sur \mathbb{R} .

Si a < 0 alors f est décroissante sur \mathbb{R} .

Si a = 0 alors f est constante sur \mathbb{R} .

Exemple. $x \mapsto 4x - 3$ est affine et croissante car a = 4 > 0.

Exemple. $x \mapsto -2x + 8$ est affine et décroissante car a = -2 < 0.

Hypothèse. Soit f une fonction définie sur un intervalle I.

Définition. On dit que f a un maximum en $a \in I$ si pour tout $x \in I$, $f(x) \le f(a)$

Dans ce cas, on dit que le **maximum** vaut f(a).

Définition. On dit que f a un minimum en $b \in I$ si pour tout $x \in I$, $f(x) \ge f(b)$

Dans ce cas, on dit que le **minimum** vaut f(b).

Exemple. Soit la fonction définie sur \mathbb{R} par $f(x) = (x-3)^2 + 5$.

Un carré est toujours positif donc pour tout $x \in \mathbb{R}$, $(x-3)^2 \ge 0$ donc $f(x) \ge 5$.

Pour tout $x \in \mathbb{R}$, $f(x) \ge f(3) = 5$. Donc f admet un minimum en 3 qui vaut 5.

Remarque. Une fonction peut n'avoir ni maximum, ni minimum. (Par exemple $x \mapsto x^3$ sur \mathbb{R})

Signe d'une fonction

Définition. **Étudier le signe d'une fonction** ou d'une expression f(x) c'est déterminer les valeurs de x pour lesquelles f(x) est strictement positif, nul ou strictement négatif.

Le signe est souvent présenté sous la forme d'un tableau de signes.

Exemples. La fonction f définie sur [-3; 3] par le graphe ci-contre admet le tableau de

signes suivant:

La fonction définie par $g: \mathbb{R} \to \mathbb{R}: x \mapsto x^2$ vérifie : Pour tout $x \in \mathbb{R}, \ g(x) \ge 0$. Donc son tableau de signe est :

Soit la fonction définie par $h: \mathbb{R}^* \to \mathbb{R}: x \mapsto \frac{1}{x}$.

Pour tout $x \in \mathbb{R}^*$, $\frac{1}{x}$ a le même signe que x. Donc :

х	-∞	0			+∞
x^2		+	0	+	

х	$-\infty$	()	+∞
1				
_		_		+
\boldsymbol{x}				

Remarque. Résoudre l'inéquation " $f(x) \ge 0$ " revient à étudier le signe du terme " f(x) "

Propriété. Soit a et b deux nombres réels avec $a \neq 0$.

La fonction affine $f: x \mapsto ax + b$ s'annule et change de signe exactement une fois sur \mathbb{R} en $x = -\frac{b}{a}$.

Exemple. Dresser le tableau de signes de la fonction $g: \mathbb{R} \to \mathbb{R}: x \mapsto -3x + 4$. g est affine et a = -3 < 0. g est décroissante, s'annule en $\frac{4}{3}$, g est positive sur $]-\infty; \frac{4}{3}]$ et g est négative sur $[\frac{4}{3}; +\infty[$.

Règle. Pour déterminer le signe d'un produit ou d'un quotient on étudie le signe de chacun des facteurs séparément, puis on compose les tableaux en utilisant la règle des signes.

Exemple. Déterminer le signe de $h: \mathbb{R} \to \mathbb{R}: x \mapsto (3x+4)(-2x+6)$

x	- ∞	$-\frac{4}{3}$		3		+∞
3 <i>x</i> + 4	_	0	+		+	
- 2 <i>x</i> + 6	+		+	0	-	
h(x)	_	0	+	0	_	

Exemple. Déterminer le signe de

$$k: \mathbb{R} \to \mathbb{R}: x \mapsto \frac{3x-5}{2x+7}$$

	2.3. 1 7					
x	-∞	$-\frac{7}{2}$		$\frac{5}{3}$		+∞
3 <i>x</i> – 5	-		-	0	+	
2 <i>x</i> + 7	-	0	+		+	
k(x)	+		_	0	+	

Remarque. Une double barre symbolise une valeur interdite (Pour un quotient, un zéro au dénominateur devient une valeur interdite puisqu'on ne peut pas diviser par zéro).