Source: My Sources > Patent Law > Patents > U.S. Patents, European Patents, Patent Abstracts of Japan, PCT Patents, and U.K. Terms: patno is 2002155944 (Edit Search | Suggest Terms for My Search)

2000352024 2002155944

COPYRIGHT: 2002, JPO & Japio

PATENT ABSTRACTS OF JAPAN

2002155944

◆ Get Exemplary Drawing Access PDF of Official Patent * Check for Patent Family Report PDF availability *

* Note: A transactional charge will be incurred for downloading an Official Patent or Patent Family Report. Your acceptance of this charge occurs in a later step in your session. The transactional charge for downloading is outside of customer subscriptions; it is not included in any flat rate packages.

May 31, 2002

FLUID BEARING DEVICE

INVENTOR: ONO HIDEAKI; ASADA TAKAFUMI

APPL-NO: 2000352024

FILED-DATE: November 20, 2000

ASSIGNEE-AT-ISSUE: MATSUSHITA ELECTRIC IND CO LTD

PUB-TYPE: May 31, 2002 - Un-examined patent application (A)

PUB-COUNTRY: Japan (JP)

IPC-MAIN-CL: F 16C033#10

IPC ADDL CL: C 10M105#36, C 10M129#10, C 10M135#10, C 10M137#4, F 16C017#10

CORE TERMS: acid, lubricant, generating, grooves, thrust, sleeve, fluid, shaft

ENGLISH-ABST:

PROBLEM TO BE SOLVED: To provide a fluid baring device of such a lower torque loss than conventional devices that outflow of lubricant will not occur even in use conditions such as high speed rotation.

SOLUTION: Dynamic pressure generating grooves 5 and 6 are formed in facing surfaces of a shaft 1 and at least either of a sleeve 2 and a thrust plate 3, and lubricant 7 is filled in gaps between the shaft 1 and the sleeve 2 and the thrust plate 3 having the dynamic pressure generating grooves 5 and 6 in this fluid bearing device. As the lubricant 7, di-1-octylester or di-2- ethylhexylester of dicarboxylic acid selected among oxalic acid, malonic acid, succinic acid, and glutaric acid.

Source: My Sources > Patent Law > Patents > U.S. Patents, European Patents, Patent Abstracts of Japan, PCT Patents, and U.K.

Terms: patno is 2002155944 (Edit Search | Suggest Terms for My Search)

View: Full

Date/Time: Thursday, December 22, 2005 - 12:23 PM EST

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号 特開2002-155944

(P2002-155944A) (43)公開日 平成14年5月31日(2002.5.31)

(51) Int. C1. 7	識別記号	FΙ				テーマコート・	(参考)	
F16C 33/10		F16C 33/10	F16C 33/10			Z 3J011		
C10M105/36	C10M105/3	C10M105/36			4H104			
129/10		129/10						
135/10		135/10)					
137/04		137/04	1					
	審査請求	未請求 請求	項の数 2	OL	(全5頁)	最終頁	に続く	
(21)出願番号	特願2000-352024(P2000-352024)	(71)出願人	00000582	1				
			松下電器	産業株	式会社			
(22)出願日	平成12年11月20日(2000.11.20)	² 成12年11月20日(2000.11.20) 大阪府門真市大字門真1006番地						
		(72)発明者	大野 英田	明				
			大阪府門	真市大	字門真1006	野地 松下	電器	
			産業株式	会社内				
		(72)発明者	浅田 隆	文				
			大阪府門	真市大	字門真1006都	番地 松下	電器	
			産業株式会	会社内				
		(74)代理人	100068087	7				
			弁理士 着	森本 義	義弘			
						最終頁	に続く	

(54) 【発明の名称】流体軸受装置

(57) 【要約】

【課題】 かつトルク損失が従来よりも低く、高速回転 等の使用条件下でも潤滑剤の流出が起きない流体軸受装 置を提供する。

【解決手段】 軸1とスリーブ2,スラスト板3の少なくとも一方の対向面に動圧発生溝5,6を形成し、前記動圧発生溝5,6が開口した軸1とスリーブ2,スラスト板3の隙間に潤滑剤7を充填した流体軸受装置において、前記潤滑剤7として、シュウ酸、マロン酸、コハク酸、およびグルタル酸から選ばれるジカルボン酸のジ1ーオクチルエステルまたはジ2ーエチルヘキシルエステルを基油とするものを用いる。

2 …スリープ 3 …スラスト板 4 …ペース 5 …ラジアル側ಮ圧発生滞 6 …スラスト側ಮ圧発生滞 7 …観滑利

【特許請求の範囲】

【請求項1】 軸受部材と軸部材の少なくとも一方の対 向面に動圧発生溝を形成し、前記動圧発生溝が開口した 軸受部材と軸部材との隙間に潤滑剤を充填した流体軸受 装置において、

前記潤滑剤が、シュウ酸、マロン酸、コハク酸、および グルタル酸から選ばれるジカルボン酸のジ1-オクチル エステルまたはジ2-エチルヘキシルエステルを基油と することを特徴とする流体軸受装置。

【請求項2】 潤滑剤は、純度99.5%以上の基油 に、炭素数10までのアルキルまたは置換-あるいは非 置換-フェニルを有したリン酸トリエステルと、バリウ ムスルフォネートとカルシウムスルフォネートとカルシ ウムフェネートの内の少なくとも1種とが添加されてな ることを特徴とする請求項1記載の流体軸受装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ポリゴンミラー回 転駆動装置が用いられている高速デジタル複写機、レー ザープリンタ、ハードディスクドライブ、ビデオテープ 20 レコーダーの回転磁気ヘッド装置等に用いられている、 軸受部材と軸部材との隙間に充填する潤滑剤を圧力発生 流体として利用する流体軸受装置に関するものである。 [0002]

【従来の技術】流体軸受装置は、軸受部材と軸部材との 隙間に潤滑用の流体を充填するとともに、前記軸受部材 の内周面と軸部材の外周面の少なくとも一方に前記流体 の圧力を高める動圧発生溝を形成していて、それにより 軸受部材または軸部材の回転時に動圧発生溝で圧力上昇 いる。

【0003】潤滑剤は、流出を防止するために、極性基 を含む分子構造の物質を基油として用いることが多く、 このような基油として従来、セバシン酸ジー2-エチル ヘキシル、アゼライン酸ジー2-エチルヘキシル、アジ ピン酸ジー2-エチルヘキシル等のジエステルが多く用 いられてきた。

[0004]

【発明が解決しようとする課題】ところが、流体軸受装 置において最も大きい損失トルクは流体の粘性抵抗に依 40 るものであり、上記したようなジエステルを基油とする 従来の潤滑剤では、現在求められているレベルまで損失 トルクを低減できないという問題がある。

【0005】本発明は上記問題を解決するもので、高速 回転等の使用条件下でも潤滑剤の流出が起きず、かつト ルク損失が従来よりも低い流体軸受装置を提供すること を目的とするものである。

[0006]

【課題を解決するための手段】上記課題を解決するため に、本発明の流体軸受装置は、軸受部材と軸部材の少な 50 くポンピング作用が働き、ヘリングポーン形状の中央部

くとも一方の対向面に動圧発生溝を形成し、前記動圧発 生溝が開口した軸受部材と軸部材との隙間に潤滑剤を充 填した流体軸受装置において、前記潤滑剤が、シュウ 酸、マロン酸、コハク酸、およびグルタル酸から選ばれ るジカルボン酸のジ1-オクチルエステルまたはジ2-エチルヘキシルエステルを基油とすることを特徴とす る。

【0007】このようなジエステルを基油とした潤滑剤 を用いることで、従来の潤滑剤を用いるのに比べて、軸 10 受損失トルクを低減できる。軸受部材および軸部材とし ては、軸とスリーブとの組み合わせ、軸と軸端面を受け るスラスト板との組み合わせ、等が挙げられる。

【0008】好ましくは、潤滑剤を、純度99.5%以 上の基油に、(A) 炭素数10までのアルキルまたは置換 あるいは非置換-フェニルを有したリン酸トリエステ ルと、(B) バリウムスルフォネートとカルシウムスルフ オネートとカルシウムフェネートの内の少なくとも1種 とが添加されてなるものとする。

【0009】このことにより、潤滑剤の耐加水分解性を 向上することができ、潤滑剤の流出、劣化を防止し、運 転安定性を確保できる。これらの添加剤は基油に対して 5%以下の配合量で十分な効果が得られる。

【0010】必要に応じて、酸化防止剤、油性向上剤、 極圧剤、防錆剤等の公知の各種添加剤を配合することも 出来る。

[0011]

【発明の実施の形態】以下、発明の実施の形態を図面を 参照しながら説明する。 図1はハードディスクドライブ に使用される流体軸受装置を示し、この流体軸受装置 を生じさせ、両部材を非接触状態に維持するようにして 30 は、従来のものと同様の構成を有していて、軸1をラジ アル方向に支承するスリーブ2と、軸1の端面1aに当 接し軸1をスラスト方向に支承するスラスト板3とを備 えている。

> 【0012】スリープ2は、ペース4と一体に構成さ れ、軸受部として機能する小径部2aが2箇所に形成さ れるとともに大径部2bが一端部に形成されていて、こ の大径部2 bを閉塞するように上記スラスト板3が取り 付けられている。軸1には、大径部内に配置されこの軸 1を抜け止めする鍔部1bが形成されている。

> 【0013】スリープ2の小径部2aの内周面には、へ リングボーン形状のラジアル側動圧発生溝5が形成され ている。また軸1に対向するスラスト板3の内側面に は、スパイラル形状のスラスト側動圧発生溝6が形成さ れている。これらラジアル側動圧発生溝5,スラスト側 動圧発生溝6が開口した軸1の周囲の隙間には潤滑剤7 が満たされている。

> 【0014】このような流体軸受装置において、ベース 4を固定した状態で軸1をその軸心廻りに回転させる と、ラジアル側動圧発生溝5でヘリングボーン形状に基

で潤滑剤7の圧力が上昇し、それにより軸1がラジアル 方向に押圧されて、スリープ2に対して非接触状態に維

【0015】また、スラスト側動圧発生溝6で曲折形状 に基くポンピング作用が働き、曲折部で潤滑剤7の圧力 が上昇し、それにより軸1に浮上力が働いて、軸1はス ラスト板3に対して非接触状態に維持される。その結 果、軸受損失トルクは低いものとなり、軸1は長時間に わたり安定して回転する。

【0016】なお、ラジアル側動圧発生溝5は、軸1の 10 外周面、あるいは軸1の外周面とスリープ2の内周面の 両者に形成するようにしてもよく、スラスト側動圧発生 溝6は、軸1の端面、あるいは軸1の端面とスラスト板 3の内側面の両者に形成するようにしてもよい。また、 ラジアル側動圧発生溝5,スラスト側動圧発生溝6と も、対向面間の間隙で潤滑剤8の圧力が上昇する形状で あればよく、上記したように屈折部を持たせたり、深さ を変えるなど、種々可能である。スリープ2が回転し、 軸1が固定される流体軸受装置であってもよい。

【0017】ここで、本発明の流体軸受装置の特徴は潤 20 滑剤7にあるので、以下に実施例を挙げて説明する。

(実施例1~実施例4) 下記の表1に示すように、シュ ウ酸、マロン酸、コハク酸、グルタル酸のいずれかを酸 成分とし、オクチルアルコール (すなわち1-オクチル アルコール) または2-エチルヘキシルアルコールをア ルコール成分としたジエステルをそれぞれ潤滑剤とし て、実施例1~実施例4の流体軸受装置を構成した。

【0018】ただし、純度99.5%以下(ガスクロマ トグラフフィー、面積比較による)のシュウ酸ジオクチ ルエステル、マロン酸ジオクチルエステル、コハク酸ジ オクチルエステルは、全酸価測定時に試薬としてのKO H水溶液により加水分解を起こし初期特性の評価も出来 ない状態であり、99.5%以上の純度で評価が可能と なったので、全てのジエステルに、純度99.5%のも のを用いた。また、急激な酸化を防止するための添加剤 として、ペンタエリスリチル〔3-3,5-ジ-t-ブ チルー4ーヒドロキシフェニル〕プロピオネート0.5 %、メチルベンゾトリアゾール0.2%を配合した。配 合量%はジエステルに対する質量%を示す(以下、同 様)。

(比較例1~比較例3) アジピン酸ジ2-エチルヘキシ ル、アゼライン酸ジ2-エチルヘキシル、セバシン酸ジ 2-エチルヘキシルをそれぞれ潤滑剤として、比較例1 ~比較例3の流体軸受装置を構成した。各ジエステルに は、実施例1~実施例4と同様に添加剤を配合した。

(評価) 実施例1~実施例4、比較例1~比較例3の流 体軸受装置のトルク損失を測定し、上記した従来のジエ スエル系潤滑剤の内で最も粘度が低いアジピン酸ジ2-エチルヘキシルを用いた比較例1の流体軸受装置のトル ク損失を100とした時の、各流体軸受装置のトルク損 失を求めた。結果は表1に示す通りである。

[0019]

【表1】

	実施 例						比較例				
	1		2		3		4		1	2	3
酸成分	シュ	シュウ酸 マロン酸 コハク酸		ク酸	グルタル酸		DOA	00Z	DOS		
アルコール 成分	DA	2ена	OA	2ЕНА	DA	2ЕНА	DA	2EHA			
lill) 損失比	58	62	70	72	80	83	82	85	100	135	155

OA: 1-オクチルアルコール

2EHA: 2-エチルヘキシルアルコール

DOA : アジピン酸ジ-2-エチルヘキシル

DOZ:アゼライン酸ジー2-エチルヘキシル

DOS:セパシン酸ジ-2-エチルヘキシル

表1からわかるように、実施例1~実施例4の流体軸受 装置では、比較例1~比較例3の流体軸受装置に比べて 損失トルクが低減されている。

【0020】なお、実施例1~実施例4で用いたシュウ 酸、マロン酸、コハク酸、またはグルタル酸のジオクチ ルエステルまたはジ2-エチルヘキシルエステルは、比 較例1で用いたアジピン酸ジ-2-エチルヘキシルエス テルに比べて耐加水分解性が劣る傾向にある。しかし、 基油としてのこれらのジエステルの純度を上記したよう

ルまたは置換-あるいは非置換-フェニルを有したリン 酸トリエステルを5%以下、バリウムスルフォネートと カルシウムスルフォネートとカルシウムフェネートの少 なくとも一種を5%以下、配合することにより、アジピ ン酸ジー2-エチルヘキシルと同等の耐加水分解性を確 保することが可能となる。このことを以下の実施例によ り説明する。

(実施例5) 純度99.5%のシュウ酸ジオクチルを基 油とし、トリデシルフォスフェート(以降TDPと記 に99.5%以上とし、かつ、炭素数10までのアルキ 50 す)5%とトリヘキシルフォスフェート (THP)2%

とバリウムスルフォネート (BaS) 3%と上記添加剤 とを配合した潤滑剤を用いて、実施例5の流体軸受装置 を構成した。

(実施例6) 純度99.5%のシュウ酸ジオクチルを基 油とし、トリオクチルフォスフェート(TOP)3%と トリクレシルフォスフェート (TCP) 2%とカルシウ ムフェネート (CaF) 5%と上記添加剤とを配合した 潤滑剤を用いて、実施例6の流体軸受装置を構成した。

(実施例7) 純度99.5%のシュウ酸ジオクチルを基 バリウムスルフォネート(BaS)2%とカルシウムス ルフォネート(CaS) 2%と上記添加剤とを配合した 潤滑剤を用いて、実施例7の流体軸受装置を構成した。

(比較例4) 純度99.5%のシュウ酸ジオクチルを基 油とし、トリヘキシルフォスフェート (THP) 3%と 上記添加剤とを配合した潤滑剤を用いて、比較例4の流 体軸受装置を構成した。

(比較例5) 純度99.5%のシュウ酸ジオクチルを基 油とし、カルシウムフェネート(CaF)5%と上記添 加剤とを配合した潤滑剤を用いて、比較例5の流体軸受 20 装置を構成した。

(比較例6) 市販のDOAを基油とし上記添加剤を配合 した潤滑剤を用いて、比較例6の流体軸受装置を構成し た。

(評価) 実施例5~実施例7、比較例4~比較例6の流 体軸受装置をそれぞれ、60℃、相対温度90%、50 00 r pm (潤滑剤にかかるせん断応力 2×10's⁻ 1) で連続運転して、その状況を観察し、不良発生まで の時間を測定した。不良発生は、腐食等により磨耗粉が 生じ回転ムラが確認された時点とした。結果を以下の表 30 2に示す。

[0021]

【表2】

	不良発生時間				
実施例 5	2000時間以上				
実施例 6	2000時間以上				
実施例 7	2000時間以上				
比較例4	800時間				
比較例5	1200時間				
比較例6	1600時間				

表2から、実施例5~7の流体軸受装置は比較例4~6 の流体軸受装置に優れ、運転が長時間にわたり安定して いることがわかる。この結果は、実施例5~7の流体軸 受装置の潤滑剤が劣化しなかったこと、すなわち比較例 4~6の流体軸受装置に少なくとも匹敵する耐加水分解 性を有することを示している。

[0022]

【発明の効果】以上のように本発明によれば、 シュウ 酸、マロン酸、コハク酸、またはグルタル酸の1-オク 油とし、トリヘキシルフォスフェート(THP)3%と10 チルエステルまたは2-エチルヘキシルエステルを基油 とした潤滑剤を用いることにより、高速回転等の使用条 件下でも潤滑剤の流出劣化が起きず、かつ低トルク損失 の流体軸受装置を実現できる。

【図面の簡単な説明】

【図1】本発明の一実施形態における流体軸受装置の断 面図

【符号の説明】

- 1 軸
- 2 スリープ
- 3 スラスト板
 - 4 ペース
 - 5 ラジアル側動圧発生溝
 - 6 スラスト側動圧発生溝
 - 潤滑剤

【図1】

3 …スラスト板 4 …ペース 5 …ラジアル側趾圧発生消 6 …スラスト側趾圧発生消 7 …透滑剤

フロントページの続き

(51) Int. Cl. 7	識別記号	FI		テーマコード(参考)
F 1 6 C 1	7/10	F 1 6 C	17/10	Α
// C10N 1	0:04	C 1 0 N	10:04	
3	0:00		30:00	Z
4	0:02		40:02	

F 夕一ム(参考) 3J011 AA06 BA02 BA10 CA02 JA02 KA02 KA03 MA22 4H104 BB05C BB33A BG06C BH03C FA02 LA20 PA01