Methanol synthesis: simplified ICI layout

A simplified layout of an ICI process for the methanol production consists of two reactors in series with intermediate quench. The fresh feed (1) with known composition and at T = 453 K is split in two streams: the first (2) is sent to the first adiabatic reactor (R-1) where CO and H_2 are converted to methanol.

The stream (4) leaving the reactor is mixed with the remaining feed (3) and with a make-up stream (9) consisting of pure CO₂ (at 453 K) to obtain a temperature of stream (5) equal to 520 K and sent to the second reactor (R-2). The stream (6) leaving the reactor is isoenthalpically laminated and sent to an isothermal methanol condenser (F-1).

By assuming:

- At 70 bar the gas mixture is ideal and consists of real gas. As a first approximation, a $K_{\phi}^{MeOH} = \frac{\phi_{MeOH}}{\phi_{H_2}^2\phi_{CO}} = 0.7$ and $K_{\phi}^{WGS} = \frac{\phi_{CO_2}\phi_{H_2}}{\phi_{H_2O}\phi_{CO}} = 1.2$ can be assumed for the evaluation of the K_p of the methanol synthesis and of the WGS, respectively. At 10 bar the vapor phase is an ideal mixture of ideal gas; the liquid mixture is ideal with negligible Poynting correction.
- The pressure in each reactor is equal to 70 bar and pressure drops are negligible, while the separator works at 10 bar.
- The reactor R-1 is designed to work with a conversion of CO equal to the 90% of the equilibrium one at the adiabatic temperature. CO₂ and H₂O are not present at the outlet of R-1.
- The molar fraction of CO₂ in stream (5) is equal to 0.15
- The reactor R-2 is designed to achieve thermodynamic equilibrium at the temperature of 570 K.
- The methanol condenser (F-1) is designed to obtain a recovery efficiency of methanol equal to 70 % in stream (8)

• As a first approximation, supercritical components can be assumed as not dissolved in the liquid.

It is required to evaluate:

- 1. The temperature and the composition (molar fractions) of the stream leaving reactor R-1
- 2. The ratio between stream (3) and stream (2) and the ratio between stream (9) and stream (2)
- 3. The composition (molar fractions) of the stream (6) leaving reactor R-2, the heat exchanged in the reactor per mol of stream (2) and the overall conversion of CO in the reacting section
- 4. The extent of vaporization, the flash temperature and the molar composition of the liquid and vapor streams leaving the flash
- 5. The state of stream (6) before the lamination valve (for this calculation consider the ideal gases hypothesis) and the heat removed per mole of stream (6) in condenser (F-1)

Data:

Molar fractions and temperature:

	CH ₄	H ₂	СО	CO ₂	T [K]
Stream (1)	0.05	0.75	0.20	0	453
Stream (9)	0	0	0	1	453

Thermodynamic data (reference state: ideal gas at 1 atm)

Methanol synthesis: $\Delta G_R^0(T) = -22828 + 56.02 \cdot T$ [cal/mol] where T in [K]

Water gas shift reaction: $\Delta G_{NWGS}^0(T) = -8514 + 7.71 \cdot T$ [cal/mol] where T in [K]

Species	∆H ⁰ _F (298K)	C_p^L	$\Delta h_i^{vap} @ T_{boil,n}$	\mathcal{C}^{V}_{p} coefficients				Antoine coefficients		
	[cal/mol]	[cal/mol/K]	[cal/mol]	а	b x 10 ³	c x 10 ⁶	d x 10 ⁹	A	В	С
H ₂	0			6.483	2.215	-3.298	1.826			
СО	-26420			7.373	-3.070	6.662	-3.037			
CO ₂	-94050			4.728	17.54	-13.38	4.097			
CH₄	-17890			4.598	12.450	2.860	-2.709			
H ₂ O	-57800	19.09	8395	7.701	0.4595	2.521	-0.859	6.2096	2354.731	7.559
CH₃OH	-48080	18.05	9436	5.062	16.94	6.179	-6.811	5.2041	1581.34	-33.50

$$C^v_{p,i}(T) = a_i + b_i \cdot T + c_i \cdot T^2 + d_i \cdot T^3$$
 [cal/mol/K] – gas phase

ANTOINE EQ: $log_{10} p^0(T) = A - \frac{B}{C+T}$, where: T [K] - $p^0(T)$ [bar]