시각화 (Visualization) 과제

In [1]: ▶

!pip install pandas

Requirement already satisfied: pandas in c:\u00edusers\u00fcpc\u00fcanaconda3\u00fcenvs\u00fcdata_mining\u00fclib \u00fcsite-packages (1.2.3)

Requirement already satisfied: pytz>=2017.3 in c:\u00edusers\u00fcpc\u00fcanaconda3\u00fcenvs\u00fcdta_minin g\u00fclib\u00fcsite-packages (from pandas) (2021.1)

Requirement already satisfied: numpy>=1.16.5 in c:\u00edusers\u00fcpc\u00fc\u00fcanaconda3\u00fcenvs\u00fcdata_mining\u00fclib\u00fcsite-packages (from pandas) (1.20.1)

Requirement already satisfied: python-dateutil>=2.7.3 in c:\users\pc\underctanaconda3\underconda3\unde

Requirement already satisfied: six>=1.5 in c:\u00edusers\u00fcpc\u00fcwanaconda3\u00fcenvs\u00fcdata_mining\u00fclib lib\u00fcsite-packages (from python-dateutil>=2.7.3->pandas) (1.15.0)

In [2]: ▶

!pip install matplotlib

Requirement already satisfied: matplotlib in c:\u00edusers\u00ewpc\u00fcanaconda3\u00fcenvs\u00fcdata_mining \u00fclib\u00fcsite-packages (3.3.4)

Requirement already satisfied: python-dateutil>=2.1 in c:\u00e4users\u00fcpc\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcpc\u00fc\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcpc\u00fc\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcpc\u00fc\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcpc\u00fc\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcpc\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcpc\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcanaconda3\u00fcenvs\u00fcdateutil>=2.1 in c:\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcuser\u00fcanaconda3\u00fcusers\u00fcanaconda3\u00fcuser\u00fcanaconda3\u00fcuser\u00fcanaconda3\u00fcuser\u00fcanaconda3\u00fcuser\u00fcanaconda3\u00fcuser\u00fcanaconda3\u00fcuser\u00fcanaconda3\u00fcuser\u00fcanaconda3\u00fcanaconda3\u00fcuser\u00fcanacondaa0\u00fcanacondaa0\

Requirement already satisfied: cycler>=0.10 in c:\u00edusers\u00fcpc\u00fcanaconda3\u00fcenvs\u00fcdata_minin g\u00fclib\u00fcsite-packages (from matplotlib) (0.10.0)

Requirement already satisfied: pillow>=6.2.0 in c:\u00edusers\u00fcpc\u00fc\u00fcanaconda3\u00fcenvs\u00fcdata_mining\u00fclib\u00fcsite-packages (from matplotlib) (8.1.1)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.3 in c:\u00edusers \u00edpc\u00fcmanaconda3\u00edwenvs\u00fcdata_mining\u00fclib\u00ffsite-packages (from matplotlib) (2.4.7)

Requirement already satisfied: kiwisolver>=1.0.1 in c:\u00edusers\u00cbpc\u00fcanaconda3\u00fcenvs\u00fcdata_mining\u00fclib\u00fcsite-packages (from matplotlib) (1.3.1)

Requirement already satisfied: numpy>=1.15 in c:\u00edusers\u00ewpc\u00fcanaconda3\u00fcenvs\u00fcdata_mining \u00a4lib\u00fcste-packages (from matplotlib) (1.20.1)

Requirement already satisfied: six in c:\users\pc\anaconda3\undarements\pdot\data_mining\lib\undarementsit e-packages (from cycler>=0.10->matplotlib) (1.15.0)

다음 블로그에 있는 시각화 예시와 데이터셋을 이용해서 시각화를 구현해본다.

https://towardsdatascience.com/10-viz-every-ds-should-know-4e4118f26fc3 (https://towardsdatascience.com/10-viz-every-ds-should-know-4e4118f26fc3)

In [3]: ▶

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
```

1. 히스토그램 (Histograms)

1) 데이터 읽기

In [4]:

```
dataset_path = "data/thermostat_rebates_by_zip_1000.csv"
dataset = pd.read_csv(dataset_path)
dataset.tail()
```

Out[4]:

	zip- code	rebate- usd	lat	Ing	median- household- income	mean-household- income	population
995	40385	100	37.758499	-84.132959	43280	51428	3131
996	72433	100	36.030397	-91.049037	31934	36651	3067
997	90014	67	34.043478	-118.251931	13832	30121	7005
998	8021	90	39.807377	-75.002697	55858	63779	45515
999	68067	100	42.152506	-96.471658	39062	51461	1397

In [5]: ▶

```
rebate = dataset["rebate-usd"]
print(rebate)
```

```
0
        88
        88
1
2
       100
3
       100
       100
995
       100
       100
996
997
        67
998
        90
999
       100
Name: rebate-usd, Length: 1000, dtype: int64
```

2) 시각화

```
In [6]:
```

```
plt.hist(rebate, 8, facecolor='#2E495E', edgecolor=(0,0,0))
plt.title("Histogram of Thermostatic Rebates in USD")
plt.xlabel("Rebate USD")
plt.ylabel("Count")

plt.show()
```


2. 막대/파이 차트 (Bar/Pie charts)

1) 데이터 읽기

```
In [7]:

dataset_path = "data/drugs_data.csv"
dataset = pd.read_csv(dataset_path)

dataset.tail()
```

Out[7]:

	Age	Sex	ВР	Cholesterol	NA_to_K	Drug
195	56	F	LOW	HIGH	11.566830	drugC
196	16	М	LOW	HIGH	12.006286	drugC
197	52	М	NORMAL	HIGH	9.894478	drugX
198	23	М	NORMAL	NORMAL	14.019550	drugX
199	40	F	LOW	NORMAL	11.348969	drugX

```
In [8]:
```

```
BP = dataset["BP"].value_counts()
BP
```

Out[8]:

HIGH 77 LOW 64 NORMAL 59

Name: BP, dtype: int64

2) 시각화

막대 그래프

In [9]: ▶

```
BP_Names = BP.keys()
BP_Names
plt.bar(BP_Names, BP, facecolor='#2E495E', width=0.5)

plt.xticks(rotation=30)
plt.yticks(np.arange(0, 100, 20))
plt.ylim(0,80)

plt.show()
```


파이 그래프

In [10]: ▶

```
plt.figure(figsize=(9,9))
plt.pie(BP,labels=BP_Names, autopct='%.1f%%')
plt.legend(loc=1)

plt.show()
```


3. 산점도/직선 그래프 (Scatter/Line plots)

1) 데이터 읽기

```
In [11]:
```

```
dataset_path = "data/square-feet_and_house-price.csv"
dataset = pd.read_csv(dataset_path)
dataset.tail()
```

Out[11]:

	square-feet	house-price
70	14000.0	8.678987
71	14200.0	6.636067
72	14400.0	8.787156
73	14600.0	9.358178
74	14800.0	7.071544

2) 시각화

In [12]:

```
square_feet = dataset['square-feet']
house_price = dataset['house-price']

plt.title("Square Feet vs House Price (in Millions)")
plt.scatter(square_feet, house_price, facecolor='#2E495E')
plt.xlabel("square-feet")
plt.ylabel("house-price")
plt.xticks([3000*i for i in range(6)])
plt.xticks([2*i for i in range(6)])
plt.grid(True, linestyle='dotted')
plt.xlim(0,15000)
plt.ylim(0,10)
```


4. 시계열 그래프 (Time series plot)

1) 데이터 읽기

```
In [13]:

dataset_path = "data/tesla_stock.csv"
dataset = pd.read_csv(dataset_path)
```

dataset.tail()

Out[13]:

	Date	Open	High	Low	Close	Volume
749	2015-01-08	212.81	213.7999	210.0100	210.615	3442509.0
750	2015-01-07	213.35	214.7800	209.7800	210.950	2968390.0
751	2015-01-06	210.06	214.2000	204.2100	211.280	6261936.0
752	2015-01-05	214.55	216.5000	207.1626	210.090	5368477.0
753	2015-01-02	222.87	223.2500	213.2600	219.310	4764443.0

```
In [14]:
```

```
sorted_dataset = dataset.sort_values(by='Date')
sorted_dataset.tail()
```

Out [14]:

	Date	Open	High	Low	Close	Volume
4	2017-12-22	329.51	330.9214	324.82	325.20	4186131.0
3	2017-12-26	323.83	323.9400	316.58	317.29	4321909.0
2	2017-12-27	316.00	317.6800	310.75	311.64	4645441.0
1	2017-12-28	311.75	315.8200	309.54	315.36	4294689.0
0	2017-12-29	316.18	316.4100	310.00	311.35	3727621.0

2) 시각화

In [15]: ▶

```
date = sorted_dataset['Date']
close = sorted_dataset['Close']

plt.figure(figsize=(12,8))
plt.plot(date, close,color='#2E495E')
plt.xlabel('Date')
plt.ylabel('Close')
plt.xticks(['2015-01-02', '2015-06-30', '2016-03-04', '2016-11-07', '2017-07-13', '2017-12-29'])
plt.yticks(np.arange(100, 450, 50))
plt.xlim('2015-01-02', '2017-12-29')
plt.grid(True, linestyle='dotted')
plt.title('Tesla Stock Close Price in USD')
```

