

FINAL PRESENTATION

SMELLS LIKE TEAM SPIRIT

DATA SCIENTIST TEAM

OUR COMPANY

ANTERIN DONG adalah sebuah perusahaan e-commerce Indonesia yang berdiri sejak tahun 2018. Kami memiliki 3 jalur pengiriman barang, yaitu melalui jalur udara, laut, dan darat. Motto kami adalah "Your order is our happiness, and your happiness is our pride".

Proyeksi Penjualan E-Commerce di Asia Tenggara

Berdasarkan data dari *katadata.co.id* social distancing menyebabkan penjualan retail melalui *e-commerce* dari enam negara di **Asia Tenggara** diperkirakan **mencapai US\$ 45,07 miliar** pada 2021. Dari jumlah itu, **Indonesia** menempati posisi pertama dengan proyeksi penjualan senilai **US\$ 20,21** atau sekitar **44.8**%

Tren Pengguna E-Commerce

Statista mencatat jumlah pengguna e-commerce di Indonesia naik secara signifikan setiap tahunnya dan diproyeksikan akan mencapai **212,2 juta pada 2023**.

APAKAH ADA DAMPAK TREN TERSEBUT PADA PERUSAHAAN ANTERIN DONG?

ADA DONG

LATE SHIPMENT

BUSINESS UNDERSTANDING

Problem

Anterin dong memiliki rate keterlambatan pengiriman barang sebanyak 59,6% dari total jumlah pengiriman barang.

Business Metrics

- Persentase keterlambatan
- Customer Care Calls (Jumlah telepon ke customer care)

Goals

Mengurangi rate keterlambatan pengiriman barang menjadi 20% dari total jumlah pengiriman barang.

Objective

 Membuat model machine learning untuk memprediksi ketepatan pengiriman barang.

Impact of Poor eCommerce Shipping & Logistics Experience

- Company may Loose Customer's Loyalty
- A Negative Impact on the Brand Image
- This Will Lead to Increased Logistics Cost
- More Pressure on the Customer Support Team
- Increase in Negative Reviews on the Website
- Bad Reputation on Social Media Platforms

DATA SCIENCE PROCESS

DESCRIPTIVEINSIGHTS

Dengan menggunakan reached on time sebagai target kolom, berikut beberapa insight yang kami dapatkan dari fitur numerik dan categorical

df[nums].describe()							
	ID	Customer_care_calls	Customer_rating	Cost_of_the_Product	Prior_purchases	Discount_offered	Weight_in_gms	Reached.on.Time_Y.
count	10999.00000	10999.000000	10999.000000	10999.000000	10999.000000	10999.000000	10999.000000	10999.00000
mean	5500.00000	4.054459	2.990545	210.196836	3.567597	13.373216	3634.016729	0.59669
std	3175.28214	1.141490	1.413603	48.063272	1.522860	16.205527	1635.377251	0.49058
min	1.00000	2.000000	1.000000	96.000000	2.000000	1.000000	1001.000000	0.00000
25%	2750.50000	3.000000	2.000000	169.000000	3.000000	4.000000	1839.500000	0.00000
50%	5500.00000	4.000000	3.000000	214.000000	3.000000	7.000000	4149.000000	1.00000
75%	8249.50000	5.000000	4.000000	251.000000	4.000000	10.000000	5050.000000	1.00000
max	10999.00000	7.000000	5.000000	310.000000	10.000000	65.000000	7846.000000	1.00000

	Warehouse_block	Mode_of_Shipment	Product_importance	Gender
count	10999	10999	10999	10999
unique	5	3	3	2
top	F	Ship	low	F
freq	3666	7462	5297	5545

Mean dan median pada customer care calls dan customer rating sudah sama (bell distribution)

Tidak ada missing value dan duplicated value

Tidak terdapat kejanggalan dalam nilai minimum setiap kolom

Ditemukan gap nilai yang cukup jauh antara percentile 75% dan 100% pada kolom Prior_purchase dan Discount_offered Mode of shipment tertinggi dengan ketimpangan adalah "*Ship*" dengan frekuensi 7462 dari total 10999

Pada kasus ini, kami menjadikan reached on time sebagai target kolom kami, berikut distribusinya

Perbandingan <u>discount offered dan product weight</u> <u>terhadap target kolom.</u>

Hubungan Numerik ke Numerik

Produk kemungkinan tepat waktu

- Diskon produk berada pada 0% 10 %
- Berat berada pada 1kg 2kg dan 4kg 6kg.

Hubungan Mode of Shipment ke Target

Jalur pengiriman (mode_of_shipment) yang paling banyak digunakan adalah **ship**.

Hubungan Product Importance ke Target

Mayoritas tingkat kepentingan produk adalah **low** dan **medium**.

Seharusnya tingkat kepentingan produk high memiliki persentase keterlambatan yang lebih kecil.

Insight

- (Asumsi 1) Event besar yang memberikan **diskon tinggi** berdampak pada pembelian produk yang banyak pada waktu yang bersamaan. **Solusi:** Persiapan seluruh tim ketika ada event diskon yang tinggi.
- (Asumsi 2) Perbedaan penanganan untuk produk di atas 2kg dan di bawah 4kg membuat pesanan dengan kategori berat tersebut tidak ada yang sampai tepat waktu. Solusi: Penanganan produk 2kg - 4kg harus lebih diperhatikan
- (Asumsi 3) **Kepentingan produk seharusnya diutamakan** agar sampai tepat waktu. **Solusi:** Adanya perbaikan pada manajemen pengiriman untuk memperhatikan kepentingan produk.

DATAPRE-PROCESSING

Data set : E-Commerce Shipping Data

Jumlah Feature: 12

Jumlah Baris Data: 10.999

Data Cleansing = 0 Missing Value = 0

Duplicate Value = 0

No	Feature	Information	Action
1	ID	Number of Customers	Drop
2	Reached.on.Time_Y.N	It is the target variable, where 1 Indicates that	Rename: 'Late' 0 = On
		the product has NOT reached on time and 0	Time, 1 = Late
		indicates it has reached on time	
3	Weight_category1	It is the weight in grams	Transfrom Log, Lamda, Label Encoding
4	Gender	Male and Female	Label Encoding
5	Product_importance	The company has categorized the product in	Label Encoding
		the various parameter such as low, medium,	
		high	
6	Discount_offered	Discount offered on that specific product	Transfrom Log
7	Prior_purchases	The Number of Prior Purchase	Transfrom Log
8	Customer_care_calls	The number of calls made from enquiry for enquiry of the shipment	Transfrom Log
9	Mode_of_Shipment	The Company Ships the products in multiple way such as Ship, Flight and Road	One-hot Encoding
10	Warehouse_block	The Company have big Warehouse which is	One-hot Encoding
		divided in to block such as A,B,C,D,E	
11	Cost_of_the_Product	Cost of the Product in US Dollars	Numeric int ke Numeric float
12	Customer_rating	The company has rated from every customer. 1 is the lowest (Worst), 5 is the highest (Best)	Numeric int ke Numeric float

MODELING EVALUATION

Pemodelan machine learning untuk memprediksi keterlambatan produk.

MODEL SELECTION

Random Forest

XGBoost

Pemodelan dilakukan dengan membandingkan 3 algoritma machine learning: Logistic Regression, Random Forest Classifier, dan XGBoost.

MODEL PERFORMANCE

Metrics yang akan menjadi tolak ukur pada kasus ini adalah AUC dan recall. Jadi, berdasarkan performa di atas model yang direkomendasikan adalah **XGBoost.**

POTENTIAL IMPACT

Confusion Matrix

Late = 1 (pos); On Time = 0 (neg)

Scenario

- Model diterapkan untuk internal perusahaan.
- Setiap shipment diprediksi apakah akan sampai tepat waktu atau tidak.
- Asumsi: Barang yang diprediksi terlambat akan diantisipasi sehingga jadi tepat waktu.

POTENTIAL IMPACT

Scenario

- Model diterapkan untuk customer service.
- Ketika customer menelepon,
 CS sudah bisa memberitahu kemungkinan barang sampai tepat waktu atau tidak.
- Asumsi threshold pelanggan tidak puas: customer_care_calls>3.

Customer Care Calls

POTENTIAL IMPACT

Metrics	Before	After
Persentase produk on time	40.4%	82.2%
Potensi churn pelanggan	59,6%	17.8%
Potensi Kerugian	\$ 412,772	\$123,806

Penghematan = \$288,966

Penurunan rate keterlambatan = 41,77%

BUSINESSRECOMMENDATION

Rekomendasi untuk kemajuan Anterin Dong kedepannya.

OUR RECOMMENDATION

- Penerapan model machine learning ke sistem pengiriman perusahaan, sehingga perusahaan dapat mengantisipasi produk-produk yang diprediksi akan sampai terlambat sehingga dapat sampai tepat waktu.
- Buat sistem menggunakan model machine learning di mana pelanggan dapat selalu up-to-date dengan status pengiriman sesuai konteks model machine learning yang dibuat.
 Output yang diharapkan: pelanggan tahu apakah barangnya sampai tepat waktu atau tidak.
- Buat perbaikan pada sistem estimasi pengiriman, karena mayoritas pengiriman tidak sesuai dengan jadwal. Ada kemungkinan bahwa estimasi yang digunakan sudah tidak valid.
- Penambahan feature/data seperti lokasi tujuan /zona wilayah, tanggal order, estimasi waktu dll dengan tujuan agar mempermudah analisa selanjutnya yang lebih akurat.

THANKS!

Any questions?

