Combinatorial Fake Discriminatory Selections for dE/dx and Disappearing Track Signature Search

Aidan Gardner-O'Kearny, Laura Jeanty, Nathan Young

University of Oregon, Institute of Fundamental Science

Overview

Example Signal Processes (N. Young)

- Search for long-lived, massive charged particles
- Utilizing an ionization energy and disappearing track signature
- This study aims to understand the difference in tracklet properties between signal and background

Some Physics Background

The Standard Model

- Very good, one of the best physical theories we've come up with
- Describes
 - Ordinary matter
 - 3 of the 4 fundamental interactions
- 17ish particles
- Split into two families
 - Bosons; force carriers
 - Fermions; matter particles
- Makes extremely precise predictions

Standard Model of Elementary Particles

The Standard Model (Wikipedia)

Motivation for BSM Physics

Galactic rotation curve discrepancies (<u>Wikipedia</u> visualization of Corbelli. Salucci)

- Despite its precision, the SM fails to address some areas
 - Neutrino masses?
 - Cosmic CP violation?
 - Hierarchy problem?
 - Dark matter?
- All of this indicates that there should be something else out there...

Supersymmetry (SUSY)

- Supersymmetry (SUSY) is an extension to the Standard Model
- Designed to help resolve the hierarchy problem
- Introduces a superpartner for each Standard Model particle
 - Spin differs by ½ → Fermions become bosons and vice versa
- Also incidentally provides an excellent dark matter candidate

SUSY Particles (IFIC ATLAS)

dE/dx + Disappearing Track Analysis

dE/dx + Dissappearing Track Analysis

- Ongoing Run 3 analysis, combining two previous analysis strategies
- Previous Run 2 analysis excluded up to 660 GeV charginos in pure Wino case
- Targeting lifetime O(1 ns), mass O(1 TeV) charginos/staus for this analysis

Signature

- Disappearing Track
 - Targets particles with a short lifetime
 - Decays into soft and neutral secondaries
- dE/dx
 - Average ionization energy loss per path length
 - Measured through charge deposition in Pixel layers
 - Dependence on βy=p/m, so slow moving massive particles result in high dE/dx

Example Of Disappearing Track Signature (N. Young)

ATLAS Inner Detector And Analysis Selections

- Innermost layers of ATLAS detector
- Pixel detector
 - 4 Layers
 - Each layer measures dE/dx
- SCT
 - 4 double-sided strip layers
- Analysis Selections
 - Vetoing all SCT hits to ensure that track "disappears"
- Separated by ~17cm
 - Target for signal decay

ATLAS Inner Detector (ATLAS)

Charged Particle Scattering

- A potential background that dominated Run 2 disappearing track search
 - Collectively covers the leptonic + hadronic backgrounds
 - "Kinked" tracks; particle hits something in between Pixel and SCT
 - Rest of track not reconstructed
- Expect leptonic + hadronic backgrounds to be suppressed by dE/dx requirement

dE/dx Distribution For Signal And Background Sources

Combinatorial Fakes

- Another potential background
- Fake is a mis-constructed object in the detector
- Real hits from separate tracks grouped together
- Can be reconstructed as a high dE/dx tracklet by combining individual high dE/dx hits from low-p particles
- Motivates search for additional selections

Some Background Processes (ATLAS)

dE/dx Distribution For Signal And Background Sources

Understanding Background Behavior

How Do We Define Momentum?

- Tracklets are short, difficult to accurately reconstruct momentum
- Uncertainty in p_⊤ ∝1/L²
- Can choose to use a vertex constraint on events
 - Define all tracklets as coming from the primary vertex
 - Adds an additional "hit" to the tracklet, increasing length (~9 cm → ~12 cm)

Tracklet Lever Arm (R. Carney)

Vertex Constraint

- The physics motivated reasoning ends up helping us reject background!
- By applying a vertex constraint, our background is massively reduced without significantly reducing signal yield

dE/dx Distribution In Signal And Background

Tracklet Impact Parameters

- Reconstructed tracklets are defined by a set of parameters
- Two parameters, d₀, z₀ are of special interest to this analysis
 - Transverse and longitudinal impact parameters
- Would naturally expect pile-up to be spatially removed from primary interaction

Track Impact Parameters (A. Salzburger)

Background Composition By d₀

- d_0 is transverse impact parameter
- The increase in fakes is very immediate
- Suggests that almost all the tracklets with |d₀| greater than 1 mm are going to be fakes

Clusters!

Dropped layers in truncated mean calculations

- These are composed of individual hits within the detector, called clusters
 - Analysis team has put in a <u>lot</u> of work to make this information available
- Looking to utilize cluster level information as a potential discriminant between signal and background
 - For example, can see which individual layers get left out of dE/dx calculation

Summary

- Looking for long-lived, massive, charged particles using a disappearing track and dE/dx signature
- Identified the use of a vertex constraint as optimal for our analysis
- Identified behavior of background composition with respect to d₀
- Utilizing cluster information in novel way to understand background

Thank You For Your Attention

References

- [1] ATLAS Collaboration. Search for long-lived charginos based on a disappearing-track signature using 136 fb⁻¹ of pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector.
- [2] ATLAS Collaboration. Search for heavy, long-lived, charged particles with large ionisation energy loss in pp collisions at \sqrt{s} = 13 TeV using the ATLAS experiment and the full Run 2 dataset.
- [3] ATLAS Collaboration. The ATLAS Experiment at the CERN Large Hadron Collider: A description of the detector configuration for Run 3.
- [4] Carney, Rebecca. Silicon tracking and a search for long-lived particles.
- [5] Corbelli, Edvige. Salucci, Paolo. The Extended Rotation Curve and the Dark Matter Halo of M33.
- [6] IFIC ATLAS Group, SUSY Physics
- [7] Lory, Alexander. Search for new physics in signatures of soft unclustered energy patterns within the ATLAS detector
- [8] Particle Data Group PDG, Passage of particles through matter, Nuclear and Particle Physics, vol. 33, no. 27, pp. 258-270, July 2006.
- [9] Salzburger, Andreas, Track and vertex reconstruction.
- [10] Wikipedia, The Standard Model

Backup

Quick dE/dx Reminder

- Dependency on p/m
- Slow moving, massive particles will have anomalously high dE/dx
 - Decidedly non-Standard-Model-like signature

dE/dx Calculation

- Not a straight average, rather, a truncated mean
- Truncation pattern based on position of high dE/dx value and potential IBL overflow value
 - 0 = Overflow hit
 - C = Normal hit
 - X = Either

N_c	Cluster pattern	$n_{ m OF}^{ m IBL}$	Truncation pattern		n_{used}
1	X	0 or 1	X	N/A	1
2	X,X	0 or 1	X	X	1
3	C,C,X	0 or 1	C,C	X	2
3	C, O, X	1 or 2	С	O,X	1
3	O,X,X	1,2,3	0	X , X	1
4	C,C,C,X	0 or 1	C,C,C	X	3
4	C,C,O,X	1 or 2	C,C	O,X	2
4	C, O, X, X	1,2,3	C,0	X , X	2
4	O,X,X,X	$1, \cdots, 4$	O,X	X , X	2
≥ 5	X, X, X, X, X, \cdots	$0, \cdots, N_c$	X, X, X, \cdots	X , X	$N_c - 2$

dE/dx Truncation Pattern

Clusters

- Charged particles excite pixels as they move through them
- Excited pixels are grouped together by a clustering algorithm into clusters
 - Can extract dE/dx information from charge left behind in clusters

Charged particle moving through pixels (A. Lory)

Why Haven't We Used Clusters Before?

- Blows up file sizes
 - Potential resource limitations
- In order to get around this, we use event picking
 - Select events to add clusters to based on some criteria
 - Criteria tbd
 - ~1 million events

Background Composition By z₀

- Interested in how our background changes as a function of a number of variables
- z₀ is longitudinal impact parameter
 - Would expect to see more fakes from pileup at higher $|z_0|$
- Increase is slight but noticeable
- Tracklets with pdgid = 0 (low p_T tracklets) also display this slight increase

Pileup Effects

- Individually see a similar story as with just investigating z₀
- Pile up increases the amount of fakes relative to other tracklets as well as