

## Simple Quantum Algorithms: Simon and Bernstein-Vazirani

Physics 90045 Lecture 6





| Example: Linear                         | Boolean fund        | ction |
|-----------------------------------------|---------------------|-------|
|                                         | x                   | f(x)  |
|                                         | 000                 | 0     |
| Example:                                | 001                 | 1     |
| $f(x) = x \cdot 5 \mod 2$               | 010                 | 0     |
|                                         | 011                 | 1     |
|                                         | 100                 | 1     |
| Remember, in binary, 5 = 101.           | 101                 | 0     |
|                                         | 110                 | 1     |
|                                         | 111                 | 0     |
| Given a black-box which calculates this | function, find s=5. |       |































| PHYC90045 Introduction to Quantum Computing  Recall: Hadamard applied to a general state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Į. |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| $ x\rangle = \frac{\mathbf{H}}{\mathbf{H}} \qquad \qquad \mathbf{Amplitude  a_z \cdot >  how  many  times  does  the  binary  representation  of  z  and  x  have  1's  in  the  same  location  decorated and \mathbf{H} in the same location \mathbf{H} in the same location \mathbf{H} in the same location, we get a sign change \mathbf{H} in the same location, we get a sign change \mathbf{H} in the same location, we get a sign change \mathbf{H} in the same location, we get a sign change \mathbf{H} in the same location, we get a sign change \mathbf{H} in the same location, we get a sign change \mathbf{H} in the same location \mathbf{H} in the same location, we get a sign change \mathbf{H} in the same location \mathbf{H} in the same location$ |    |
| Hadamards applied to a general state (n qubits, N = 2°): $\mathrm{H}^{\otimes n}\ket{x}=\frac{1}{\sqrt{N}}\sum_{z=0}^{N-1}(-1)^{x\cdot z}\ket{z}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |









|                                                                                                                                                                           | YC90045 Introduction to Quantum Computing                              |         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|---------|
| $f(x)=f(x\oplus a)$ Find a. Unlike the previous two examples, here the range of $f(x)$ is $Z$ , integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup | Simon's Problem                                                        | MELBOUR |
| $f(x)=f(x\oplus a)$ Find a. Unlike the previous two examples, here the range of $f(x)$ is $Z$ , integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup |                                                                        |         |
| $f(x)=f(x\oplus a)$ Find a. Unlike the previous two examples, here the range of $f(x)$ is $Z$ , integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup |                                                                        |         |
| $f(x)=f(x\oplus a)$ Find a. Unlike the previous two examples, here the range of $f(x)$ is $Z$ , integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup |                                                                        |         |
| $f(x)=f(x\oplus a)$ Find a. Unlike the previous two examples, here the range of $f(x)$ is $Z$ , integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup |                                                                        |         |
| Find a. Unlike the previous two examples, here the range of $f(x)$ is $Z$ , integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup                     | Given a 2-to-1 function, f, such that                                  |         |
| Unlike the previous two examples, here the range of $f(x)$ is $Z$ , integers.  Simon's algorithm is an example of a "Hidden (Abelian) subgroup                            | $f(x) = f(x \oplus a)$                                                 |         |
| integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup                                                                                                 | Find a.                                                                |         |
| integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup                                                                                                 |                                                                        |         |
| integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup                                                                                                 |                                                                        |         |
| integers. Simon's algorithm is an example of a "Hidden (Abelian) subgroup                                                                                                 |                                                                        |         |
| Simon's algorithm is an example of a "Hidden (Abelian) subgroup                                                                                                           |                                                                        |         |
|                                                                                                                                                                           | =                                                                      |         |
| problem" (HSP) and was the inspiration for Shor's factoring algorithm.                                                                                                    |                                                                        |         |
|                                                                                                                                                                           | problem" (HSP) and was the inspiration for Shor's factoring algorithm. |         |

| PHYC90045 Introduction to Quant |    |     | a hidden | a MELDONIANE           |
|---------------------------------|----|-----|----------|------------------------|
|                                 |    |     |          |                        |
|                                 |    | Х   | f(x)     |                        |
|                                 |    | 000 | 0        | We would like to find  |
|                                 | 1  | 001 | 1        | the hidden 'a' s.t.    |
|                                 |    | 010 | 2        | $f(x) = f(x \oplus a)$ |
|                                 |    | 011 | 3        |                        |
| f(001) = f(111)                 |    | 100 | 2        |                        |
|                                 |    | 101 | 3        | In this case:          |
|                                 |    | 110 | 0        | a=110 <sub>2</sub> =6  |
|                                 | 31 | 111 | 1        |                        |
|                                 |    |     |          |                        |











| PHYC90045 Introduction to Quantum Computing  Example: Measuring function                                                                                                                                                                               | on                       | MILIOURNE                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---------------------------|
| $\begin{split}  \psi\rangle &= \frac{1}{\sqrt{N}} \sum_{x}  x\rangle  f(x)\rangle \\ &= \frac{1}{\sqrt{8}} \left(  0\rangle  0\rangle +  1\rangle  1\rangle +  2\rangle  2\rangle +  3\rangle  3\rangle +  4\rangle  2\rangle +  5\rangle \end{split}$ | $ 3\rangle +  6\rangle $ | $\ket{0}+\ket{7}\ket{1})$ |
| If we measure the second register, and measure obtain "3", the state collapses to only those states compatible with this measurement: $ \psi'\rangle = \frac{ 3\rangle 3\rangle +  5\rangle 3\rangle}{\sqrt{2}}$                                       | x<br>000<br>001<br>010   | f(x)<br>0<br>1<br>2       |
| $=\frac{ 3\rangle+ 5\rangle}{\sqrt{2}}\otimes 3\rangle$                                                                                                                                                                                                | 100<br>101<br>110        | 3                         |
| First register: $\ket{\psi}=rac{\ket{x_0}+\ket{x_0\oplus a}}{\sqrt{2}}$                                                                                                                                                                               | 111                      | 1                         |





| PHYC90045 Introduction to Quantum Computing                                                                                                                                                                                                                                                                                            |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Simon's algorithm                                                                                                                                                                                                                                                                                                                      | MELBOURNE |
| $\begin{split}  \psi\rangle &= H^{\otimes n} \frac{ x_0\rangle +  x_0 \oplus a\rangle}{\sqrt{2}} \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_y \left( (-1)^{x_0 \cdot y} + (-1)^{(x_0 \oplus a) \cdot y} \right)  y\rangle \\ &= \frac{1}{\sqrt{2^{n+1}}} \sum_y (-1)^{x_0 \cdot y} \left( 1 + (-1)^{a \cdot y} \right)  y\rangle \end{split}$ |           |
| The amplitude of any state, y, is zero unless:                                                                                                                                                                                                                                                                                         |           |
| $a \cdot y = 0 \mod 2$                                                                                                                                                                                                                                                                                                                 |           |
| Therefore, the state therefore becomes:                                                                                                                                                                                                                                                                                                |           |
| $ \psi\rangle = \frac{1}{\sqrt{2^{n-1}}} \sum_{a \cdot y = 0} (-1)^{x_0 \cdot y}  y\rangle$                                                                                                                                                                                                                                            |           |









