Lagrangian density
$-t_1 \; \omega_{,\alpha}^{\;\;\alpha\prime} \;\; \omega_{\kappa\alpha}^{\;\;\kappa} - t_1 \; \omega_{,\kappa}^{\;\;\kappa\lambda} \;\; \omega_{\kappa\lambda}^{\;\;\prime} + r_1 \; \partial_{\iota} \omega_{\kappa\lambda}^{\;\;\kappa\lambda} \;\; \partial^{\iota} \omega_{\lambda}^{\;\;\alpha} - \frac{2}{3} \; r_1 \; \partial^{\beta} \omega_{\mu}^{\;\;\beta\alpha} \;\; \partial^{\beta} \omega_{\alpha\beta}^{\;\;\kappa} - \frac{1}{3} \; \sigma_{\mu}^{\;\;\alpha\beta} \;\; \partial^{\beta} \omega_{\alpha\beta}^{\;\;\kappa} - \frac{1}{3} \;\; \partial^$
$\frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{\beta} \partial_\kappa \omega^{\alpha\beta\theta} + \frac{2}{3} r_1 \partial_\theta \omega_{\alpha\beta}^{\beta} \partial_\kappa \omega^{\theta\alpha\beta} + r_1 \partial_\alpha \omega_{\lambda}^{\alpha} \partial_\kappa \omega^{\theta\kappa\lambda} -$
$r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\theta \kappa \lambda} + r_1 \partial_\alpha \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} - 2 r_1 \partial_\theta \omega_\lambda^{\ \alpha} \partial_\kappa \omega^{\kappa \lambda \theta} -$
$\frac{1}{2}t_1\partial^{\alpha}\!f_{\theta\kappa}\partial^{\kappa}\!f_{\alpha}^{\ \ \theta}\!-\!\frac{1}{2}t_1\partial^{\alpha}\!f_{\kappa\theta}\partial^{\kappa}\!f_{\alpha}^{\ \ \theta}\!-\!\frac{1}{2}t_1\partial^{\alpha}\!f^{\lambda}_{\ \ \kappa}\partial^{\kappa}\!f_{\alpha\lambda}+$
$t_1\;\omega_{\kappalpha}^{\;$
$2t_1 \omega_{\iota \kappa \theta} \partial^{\kappa} f^{\iota \theta} - t_1 \omega_{\iota \alpha}^{\ \alpha} \partial^{\kappa} f^{\iota}_{\ \kappa} - t_1 \omega_{\iota \lambda}^{\ \lambda} \partial^{\kappa} f^{\prime}_{\ \kappa} + \frac{1}{2} t_1 \partial^{\alpha} f^{\lambda}_{\ \kappa} \partial^{\kappa} f_{\lambda \alpha} +$
$\frac{1}{2}t_1\partial_\kappa f_{\theta}^{\lambda}\partial^\kappa f_{\theta}^{\lambda} + \frac{1}{2}t_1\partial_\kappa f^{\lambda}_{\theta}\partial^\kappa f_{\lambda}^{\theta} - t_1\partial^\alpha f^{\lambda}_{\alpha}\partial^\kappa f_{\lambda\kappa} +$
$\frac{2}{3} r_1 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_1 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_1 \partial^{\beta} \omega_{\alpha}^{\ \alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\ \prime} -$
$rac{8}{3}r_1\partial^{eta}\omega_{,}{}^{\lambdalpha}\partial_{\lambda}\omega_{lphaeta}{}^{\prime}$ - $r_1\partial_{lpha}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}{}_{\kappa}+r_1\partial_{ heta}\omega_{\lambda}{}^{lpha}\partial^{\lambda}\omega^{ heta\kappa}{}_{\kappa}$
Added source term: $ f^{\alpha\beta} _{L} + \omega^{\alpha\beta\chi} _{\mathcal{J}}$

							, ,
${\mathfrak r}_{1^-}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1^{-}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_1+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2r_1+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_1-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{\alpha\beta}$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
	$\sigma_{1}^{\#1} + \alpha^{\beta}$	$\sigma_{1}^{\#2} + \alpha \beta$	$\tau_{1}^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_1^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} +^{\alpha}$

	$\omega_0^{\#1}$	$f_{0^{+}}^{#1}$	$f_{0}^{#2}$	$\omega_{0}^{#1}$
$\omega_{0^{+}}^{\#1}$ †	-t ₁	$i\sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\sharp 1}$ †	0	0	0	-t ₁
,				

	$\omega_{2}^{\#1}{}_{\alpha\beta}$	$f_{2}^{\#1}_{\alpha\beta}$	$\omega_{2^{-}\alpha\beta\chi}^{\#1}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	$k^2 r_1 + \frac{t_1}{2}$

0

 $\frac{4k^2}{(1+2k^2)^2t_1}$

0

 $\sigma_{2}^{#1} + ^{\alpha eta \chi}$

Source constraints	
SO(3) irreps	#
$\tau_{0^{+}}^{\#2} == 0$	1
$\tau_{0^{+}}^{\#1} - 2 \bar{\imath} k \sigma_{0^{+}}^{\#1} == 0$	1
$\tau_{1}^{\#2\alpha} + 2 i k \sigma_{1}^{\#2\alpha} == 0$	3
$\tau_{1}^{\#1\alpha} == 0$	3
$\tau_{1+}^{\#1\alpha\beta} + i k \sigma_{1+}^{\#2\alpha\beta} == 0$	3
$\frac{\tau_{2+}^{\#1}\alpha\beta}{\tau_{2+}^{\#1}\alpha\beta} - 2\bar{l}k\sigma_{2+}^{\#1}\alpha\beta} == 0$	5
Total #:	16

$\sigma_{0}^{\#1}$	0	0	0	$-\frac{1}{t_1}$
$\tau_{0}^{\#2}$	0	0	0	0
${\tau_0^\#}_+^1$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	$-\frac{2k^2}{(1+2k^2)^2t_1}$	0	0
$\sigma_{0^+}^{\#1}$	$-\frac{1}{(1+2k^2)^2t_1}$	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	0
,	$\sigma_{0}^{\#1}$ †	$\tau_{0}^{\#1}$ †	$\tau_0^{\#2} \dagger$	$\sigma_{0}^{\#1}$ \dagger

$f_{1^-}^{\#2}{}_{lpha}$	0	0	0	$\vec{i} k t_1$	0	0	0
$f_{1^-}^{\#1} \alpha$	0	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
$f_{1}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_{1}^{\#2}{}_{\alpha\beta}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
$\omega_1^{\#1}{}_+\alpha\beta$	$k^2 r_1 - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}}$	0	0	0	0
·	$\omega_{1}^{\#1} + \alpha^{\beta}$	$\omega_1^{\#2} + \alpha^{\beta}$	$f_1^{#1} + \alpha \beta$	$\omega_{1^{\text{-}}}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$f_1^{#2} + \alpha$

	Massive particl	е
? $J^P = 2^-$	Pole residue:	$-\frac{1}{r_1} > 0$
?	Polarisations:	5
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Square mass:	$-\frac{t_1}{2r_1} > 0$
:	Spin:	2
	Parity:	Odd

$r_1 < 0 && t_1 > 0$	Unitarity conditions	(No massless particles
		S