最長旅程

IOI 2023 的組織者們遇到了大麻煩! 他們忘記了為即將到來的一天前往 Ópusztaszer 去計劃旅程。但現在也許還不算太晚...

Ópusztaszer 有 N 個地標,從 0 到 N-1 編號。當中有一些地標之間會有 *雙向的* **道路** 連接。每一對地標之間最多只有一條道路連接。但組織者們並 π 知道哪些地標之間有道路連接。

如果每 3 個不同的地標之間至少都有 δ 條道路,我們稱 Ópusztaszer 的道路網絡的**密度**至少為 δ 。換句話說,對於每個地標三元組 (u,v,w),其中 $0 \le u < v < w < N$,在地標對 (u,v),(v,w) 和 (u,w) 中至少有 δ 對地標有道路連接。

組織者們知道一個正整數 D,使得道路網絡的密度至少為 D。注意,D 的值不能大於 3。

組織者們可以通過打電話給 Ópusztaszer 的調度員來收集有關某些地標之間道路連接的信息。 在每次通話中,必須指定兩個非空的地標數組 $[A[0],\dots,A[P-1]]$ 和 $[B[0],\dots,B[R-1]]$ 。 這些地標必須兩兩不同,即,

- 對於每個i和j,滿足 $0 \le i < j < P$, $A[i] \ne A[j]$;
- 對於每個 i 和 j,滿足 $0 \le i < j < R$, $B[i] \ne B[j]$;
- 對於每個i和j,滿足 $0 \le i < P$ 和 $0 \le j < R$, $A[i] \ne B[j]$ 。

對於每次通話,調度員報告是否存在一條道路連接 A 中的一個地標和 B 中的一個地標。 更準確地說,調度員會迭代所有地標對 i 和 j,滿足 $0 \le i < P$ 和 $0 \le j < R$ 。 如果對於其中任何一個地標對 A[i] 和 B[j] 有道路連接,則調度程序返回"true"。否則,調度員返回"false"。

一個長度為 l 的**旅程**是一個由*不同*地標 $t[0],t[1],\ldots,t[l-1]$ 組成的序列, 其中對於每個 i, $0 \le i \le l-2$,地標 t[i] 和地標 t[i+1] 由一條道路相連。 如果不存在長度至少為 l+1 的旅程,則長度為 l 的旅程稱為**最長旅程**。

你的任務是通過向調度員打電話來幫助組織者們找到 Ópusztaszer 的最長旅程。

實現細節

你應該實現以下過程:

int[] longest_trip(int N, int D)

• *N*:Ópusztaszer 的地標數量。

- D: 道路網絡的保證最小密度。
- 這個過程應該返回一個數組 $t = [t[0], t[1], \dots, t[l-1]]$,表示一個最長旅程。
- 在每個測試用例中,這個過程可能被多次調用。

上述過程可以調用以下過程:

bool are_connected(int[] A, int[] B)

- *A*:一個非空的不同地標數組。
- B: 一個非空的不同地標數組。
- A和B應該是不相交的。
- 如果存在一個地標來自 A,一個地標來自 B,並且它們之間有一條道路相連,則這個過程返回 true。否則,返回 false。
- 在每次調用 longest_trip 中,這個過程最多可以被調用 $32\,640$ 次,總共最多可以被調用 $150\,000$ 次。
- 在所有調用中,傳遞給這個過程的數組 A 和 B 的總長度不能超過 1500000。

範例

範例1

考慮一個情境,其中N=5,D=1,道路連接如下圖所示:

以以下方式呼叫 longest_trip 函式:

longest_trip(5, 1)

函式可能會呼叫 are_connected 函式如下。

呼叫	由道路連接的對組	回傳值
are_connected([0], [1, 2, 4, 3])	(0,1)和 $(0,2)$	true
are_connected([2], [0])	(2,0)	true
are_connected([2], [3])	(2,3)	true
are_connected([1, 0], [4, 3])	無	false

在第四次呼叫之後,發現 $(1,4) \times (0,4) \times (1,3)$ 和 (0,3) 這四個對組都沒有被道路連接。 由於網路的密度至少為 D=1,我們可以看到從三元組 (0,3,4) 中,對組 (3,4) 必須被道路連接。 類似地,地標 0 和 1 必須被連接。

此時,可以得出 t=[1,0,2,3,4] 是一條長度為 5 的旅程,且不存在長度大於 5 的旅程。 因此,函式 longest_trip 可以回傳 [1,0,2,3,4]。

考慮另一個情境,其中N=4,D=1,地標之間的道路如下圖所示:

子程序會以下方式去調用 longest_trip 函式:

在這個情境中,最長旅程的長度為 2。因此,在對 are_connected 函式的幾次呼叫之後,函式 longest_trip 可以回傳其中一個 [0,1]、[1,0]、[2,3]或 [3,2]。

範例 2

子任務 0 包含一個額外的範例測試案例,其中 N=256 個地標。 這個測試案例包含在您可以從競賽系統下載的附件包中。

限制

- 3 < N < 256
- 所有對 $longest_trip$ 的呼叫中的 N 的總和不超過 $longest_trip$ 的呼叫中的 $longest_trip$
- $1 \le D \le 3$

子任務

- 1. (5 分) D = 3
- 2. (10分) D = 2
- 3. (25 分) D=1。令 l^* 表示最長旅程的長度。函式 longest_trip 不必回傳長度為 l^* 的旅程。相反,它應該回傳長度至少為 $\left\lceil \frac{l^*}{2} \right\rceil$ 的旅程。
- 4.(60分)D=1

如果在任何測試案例中,對函式 are_connected 的呼叫不符合實作細節中描述的限制,或者 $longest_trip$ 回傳的陣列不正確,則該子任務的您的解答得分將為 $longest_trip$ 回傳的

在子任務 4 中,您的得分基於在單次呼叫 longest_trip 中對函式 are_connected 的呼叫次數。 令 q 為在子任務的所有測試案例中,對 longest_trip 的每次呼叫中的呼叫數的最大值。 您在此子任務中的 得分根據以下表格計算:

條件	分數
$2750 < q \le 32640$	20
$550 < q \le 2750$	30
$400 < q \leq 550$	45
$q \leq 400$	60

範例評分程式

令 C 表示情境的數量,也就是對 longest_trip 的呼叫次數。 範例評分程式以下格式讀取輸入:

第1行: C

接下來是C個情境的描述。

範例評分程式以下格式讀取每個情境的描述:

- 第1行: N D
- 第1+i行($1 \leq i < N$): $U_i[0] \ U_i[1] \ \dots \ U_i[i-1]$

在這裡,每個 U_i $(1 \le i < N)$ 都是一個大小為 i 的陣列,描述了哪些地標之間有道路相連。 對於每個 i 和 j,滿足 1 < i < N 且 0 < j < i:

- 如果地標j 和i 之間有道路相連,則 $U_i[j]$ 的值應為1;
- 如果地標 j 和 i 之間沒有道路相連,則 $U_i[j]$ 的值應為 0。

在每個情境中,在呼叫 longest_trip 之前,範例評分程式會檢查道路網絡的密度是否至少為 D。 如果不滿足此條件,它會輸出訊息 Insufficient Density 並終止。

如果範例評分程式檢測到協議違規,則範例評分程式的輸出為 Protocol Violation: <MSG>,其中 <MSG> 是以下錯誤訊息之一:

- invalid array: 在呼叫 are_connected 時,至少有一個陣列 A 和 B
 - 。 是空的,或
 - \circ 包含一個不是介於 0 和 N-1 (包含) 之間的整數,或
 - 。 包含至少兩次相同的元素。
- non-disjoint arrays: 在呼叫 are_connected 時,陣列 A 和 B 不是不相交的。
- too many calls: 對 are_connected 的呼叫次數超過了當前對 longest_trip 的呼叫中的 $32\,640$ 次,或者總共超過了 $150\,000$ 次。
- too many elements: 在所有呼叫中,傳遞給 are_connected 的地標總數超過了 $1500\,000$ 。

否則,令某個情境中 longest_trip 返回的陣列的元素為 $t[0], t[1], \ldots, t[l-1]$,其中 l 是非負整數。 範例評分程式以以下格式為該情境打印三行:

- 第1行: l
- 第 2 行: t[0] t[1] ... t[l-1]
- 第3行:在該情境中對 are_connected 的呼叫次數

最後,範例評分程式打印:

• 第 $1+3\cdot C$ 行: 所有對 longest_trip 的呼叫中對 are_connected 的最大呼叫次數