

Man on wire (Robot alto)

Felipe Bartolucci, Julio Echavarría, Antonia Martínez, Franco Ruiz ME4250 2025-1

Introducción

El proyecto consiste en el diseño y fabricación de un robot auto balancín alto, el cual debe mantener el equilibrio dinámico mediante controladores PID que actúan sobre las ruedas. El robot busca estabilizarse continuamente frente a perturbaciones externas, lo cual implica un desafío debido a su mayor altura, que aumenta el momento de inercia. El diseño incluye tanto el Desarrollo mecánico como la implementación de sensores, motores y un microcontrolador para el control en tiempo real.

Objetivos del proyecto

- Diseñar un robot auto-balancín alto, cumpliendo la relación geométrica H=1,5 A.
- Integrar sensores, motores y microcontrolador para mantener el equilibrio dinámico.
- Evaluar la estabilidad estructural y la respuesta del sistema frente a perturbaciones.
- Fabricar un prototipo functional y diferenciado en su estética, en este caso con el tema de man on wire.

Propuesta

El robot fue diseñado con una estructura vertical estilizada, cumpliendo con las condiciones:

- Altura H = 1.5 A, con A como ancho del cuerpo.
- Radio mínimo de rueda: R ≥ 60 mm.
- Dos ruedas controladas por motores Stepper Nema 17.
- Sensor MPU6050 (acelerómetro y giroscopio) para medir la inclinación.
- · Controlador PID ajustado empíricamente.
- · Microcontrolador ESP32 para gestionar el sistema.
- Fuente de energía: batería LiPo.

Se diseñó una base robusta con bajo centro de masa, y se realizaron simulaciones estructurales para validar rigidez y resistencia.

Placa PCB utilizada en el robot equilibrista.

Robot equilibrista

Resultados & Discusión

Se fabricó y probó el prototipo bajo distintas configuraciones de control:

- El robot logra estabilizarse por periodos prolongados.
- La altura introduce más oscilación angular, pero se controló con ajuste fino del PID.
- La condición H = 1.5 A afecta el momento de inercia, lo que hace más exigente la respuesta del controlador.
- La simulación estructural (FUSION) mostró desplazamientos bajos (<1 mm) y concentraciones de esfuerzo dentro de márgenes seguros.

Modelo en Fusion del robot equilibrista

Diagrama PID del robot equilibrista

Conclusiones

El robot alto es más desafiante de controlar, pero permite probar estrategias avanzadas de control. El diseño cumplió con los requerimientos geométricos y funcionales del proyecto. El ajuste del PID y la elección adecuada de ruedas y materiales fueron claves para lograr estabilidad. La estructura propuesta es viable y resistente, pero podría mejorarse con refuerzos si se desea aumentar la altura.

Referencias

Requerimientos de Diseño – Proyecto Robot Auto-Balancín, ME4250 Otoño 2025.