Fundamentals of Solid State Physics

Semiconductors - General

Xing Sheng 盛 兴

Department of Electronic Engineering Tsinghua University

xingsheng@tsinghua.edu.cn

Further Reading

- Ashcroft & Mermin, Chapter 28
- Solid State Electronic Devices by Streetman, Chap.3

Electronic Properties of Materials

CMOS transistor

- Complementary Metal-Oxide-Semiconductor

SiO₂

Silicon

Insulator, conductor, semiconductor

Semiconductor

Conductor

$$E_g \sim 0.5-5 \text{ eV}$$

Semiconductors - General Concepts

- Band diagram
- Band gap E_g
- Effective mass m*
- Holes
- Density of States (DOS) g(E)
- Density of Carriers
 - Mass Action Law
- Intrinsic and Extrinsic

Semiconductors - Applications

semiconductors are the basis of electronics and photonics

integrated circuits

Semiconductor 半导体

T = 0 K
CB is empty, VB is full insulator

T>0 K
thermalization 热激发
CB and VB are partly filled
conductor 8

Band Structure / Diagram 能带图

Free electrons

energy

$$E(k) = \frac{\hbar^2 k^2}{2m}$$

velocity

$$v = \frac{\hbar k}{m} = \frac{1}{\hbar} \frac{dE(k)}{dk}$$

momentum

$$p = \hbar k$$

electron mass

$$\frac{1}{m} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

E-k diagram (energy dispersion curve)

Band Structure / Diagram 能带图

energy

E(k)

band gap

 $|E_g|$

crystal momentum (not electron momentum)

 $\hbar k$

group velocity

$$v_g = \frac{1}{\hbar} \frac{dE(k)}{dk}$$

or

$$\mathbf{v} = \frac{1}{\hbar} \nabla_{\mathbf{k}} E(\mathbf{k})$$

E-k diagram (energy dispersion curve)

Band Gap E_g

$$E_g = 2V_1$$

the nearly free electron model

					2 Hę
5	6	7	8	9	10
B	C	N	O	F	Ne
13	14	15	16	17	18
Al	Si	P	Տ	CI	Ar
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
49	50	51	52	53	54
In	Sn	Sb	Te		Xe
81	82	83	84	85	86
TI	Pb	Bi	Po	At	Rn

at T = 300 K

	a (Å)	E_g (eV)
C (diamond)	3.57	5.5
Si	5.43	1.1
Ge	5.66	0.66
α-Sn	6.49	80.0

Q: Why?

Band Gap E_g

					2 He
5	C 6	7	0	9	10
B		N	8	F	Ne
13	14	15	16	17	18
Al	Si	P	S	CI	Ar
31	32	33	34	35	36
Ga	Ge	As	Se	Br	Kr
49	50	51	52	53	54
In	Sn	Sb	Te		Xe
81	82	83	84	85	86
TI	Pb	Bi	Po	At	Rn

Si > Ge AlAs > GaAs > InAs GaP > GaAs > GaSb larger atoms

- -> smaller V₁
- -> smaller E_g

Direct and Indirect Gaps

Direct and Indirect Gaps

Silicon - indirect

GaAs - direct

Measurement of Band Gaps

temperature dependence of carrier concentration (or conductivity)

$$n_i \propto T^{3/2} \cdot e^{-E_g/2k_BT}$$

$$\ln n_i \sim -\frac{E_g}{2k_B T}$$

T > 0 K
thermalization 热激发
CB and VB are partly filled
conductor 15

© Bart Van Zeghbroeck 2007

Measurement of Band Gaps

wavelength dependent optical absorption

Zn₂SnO₄ nanoparticles

D. Kim, et al, Nanoscale 4, 557 (2011)

Measurement of Band Gaps

$$\left| E_g = \frac{hc}{\lambda_g} \right| \longrightarrow$$

$$E(eV) = \frac{1240}{\lambda(nm)}$$

	E_g (eV)	
Si	1.1	
Ge	0.66	
GaAs	1.43	

effective mass

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

The mass that an electron "seems" to have in a solid

For 3D solids, a tensor form

$$\frac{1}{\mathbf{M}^*} = \frac{1}{\hbar^2} \begin{bmatrix} \frac{\partial^2 E}{\partial k_x^2} & \frac{\partial^2 E}{\partial k_x \partial k_y} & \frac{\partial^2 E}{\partial k_x \partial k_z} \\ \frac{\partial^2 E}{\partial k_y \partial k_x} & \frac{\partial^2 E}{\partial k_y^2} & \frac{\partial^2 E}{\partial k_y \partial k_z} \\ \frac{\partial^2 E}{\partial k_z \partial k_x} & \frac{\partial^2 E}{\partial k_z \partial k_y} & \frac{\partial^2 E}{\partial k_z^2} \end{bmatrix}$$

The actual effective mass is a tensor, depending on the location (k_x, k_v, k_z)

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

Approximation is taken for different calculations.

The actual effective mass is a tensor, depending on the location (k_x, k_v, k_z)

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

Approximation is taken for different calculations:

- Density of states calculations
- Conductivity / mobility calculations

The actual effective mass is a tensor, depending on the location (k_x, k_v, k_z)

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

Approximation is taken for different calculations.

	Symbol	Germanium	Silicon	Gallium Arsenide
Smallest energy bandgap at 300 K	E_g (eV)	0.66	1.12	1.424
Effective mass for density of states calculations				
Electrons	$m_{e^*,dos}/m_0$	0.56	1.08	0.067
Holes	$m_{h^*,dos}/m_0$	0.29	0.57/0.811	0.47
Effective mass for conductivity calculations				
Electrons	me*,cond/m0	0.12	0.26	0.067
Holes	mh*,cond/mo	0.21	0.36/0.3861	0.34
Free electron mass	$m_{\theta}(\mathrm{kg})$		9.11 x 10 ⁻³¹	

Table 2.3.4 Effective masses for both density of states and conductivity calculations.

effective mass

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

mobility

$$\mu = \frac{v}{E} = e \frac{\tau}{m^*}$$

conductivity
$$\sigma = ne\mu = ne^2 \frac{\tau}{m^*}$$

effective mass

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

close to band minimum parabolic approximation

$$E(k) \approx E_0 + \frac{\hbar^2}{2m^*} (k - k_0)^2$$

3D DOS

$$g(E) = \frac{dn}{dE} = \frac{1}{2\pi^2} \left(\frac{2m^*}{\hbar^2}\right)^{3/2} (E - E_0)^{1/2}$$

effective mass

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

inverse curvature of the parabolic curve

Q:
$$m_1 > m_2$$

or $m_1 < m_2$?

effective mass

$$\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2}$$

hole 空穴

$$m_h^* = -m_e^*$$

We conventionally use *holes* to analyze the electron behaviors in VB

We conventionally use *holes* to analyze the electron behaviors in VB

We conventionally use *holes* to analyze the electron behaviors in VB

air bubbles in water

Carriers 载流子

Particles that conduct electrical current: electrons in CB and holes in VB

in CB

 $m_e^* > 0$

in VB

$$m_h^* > 0$$

electron mobility

$$\mu_e = \frac{e^2 \tau}{m_e^*}$$

hole mobility

$$\mu_h = \frac{e^2 \tau}{m_h^*}$$

We conventionally use *holes* to analyze the electron behaviors in VB

effective mass

$$m_h^* = -m_e^*$$

charge

$$q_h = -e$$

wavevector

$$\mathbf{k}_h = -\mathbf{k}_e$$

energy

$$E_h = -E_e$$

group velocity

$$|\mathbf{v}_h = \mathbf{v}_e|$$

Carriers 载流子

Particles that conduct electrical current: electrons in CB and holes in VB

Q: How to calculate: m_e^* in CB m_h^* in VB?

$$\begin{vmatrix} \frac{\hbar^2}{2m} (k - g)^2 - E & -V_1 \\ -V_1 & \frac{\hbar^2}{2m} k^2 - E \end{vmatrix} = 0$$

$$\qquad \qquad \left[\frac{\hbar^2}{2m} (k - g)^2 - E \right] \left[\frac{\hbar^2}{2m} k^2 - E \right] - V_1^2 = 0$$

$$|E_1(k), E_2(k)|$$

$$V_1 \neq 0$$

Nearly Free electron
$$\longrightarrow$$
 $V_1 \neq 0$ and $V_1 \ll \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2$

$$\left[\frac{\hbar^{2}}{2m}(k-g)^{2}-E\right]\left[\frac{\hbar^{2}}{2m}k^{2}-E\right]-V_{1}^{2}=0$$

$$E_{\pm}(k) = \frac{(A+B) \pm \sqrt{(A-B)^2 + 4V_1^2}}{2}$$

$$A = \frac{\hbar^2}{2m}k^2$$

$$A = \frac{\hbar^2}{2m}k^2$$

$$B = \frac{\hbar^2}{2m}(k-g)^2$$

$$V_1 \neq 0$$

Nearly Free electron
$$\longrightarrow$$
 $V_1 \neq 0$ and $V_1 \ll \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2$

$$\left[\frac{\hbar^{2}}{2m}(k-g)^{2}-E\right]\left[\frac{\hbar^{2}}{2m}k^{2}-E\right]-V_{1}^{2}=0$$

when $k = \pi/a$

$$E_{+}\left(k = \frac{\pi}{a}\right) = \frac{\hbar^{2}}{2m}\left(\frac{\pi}{a}\right)^{2} + |V_{1}|$$

$$E_{-}\left(k = \frac{\pi}{a}\right) = \frac{\hbar^2}{2m}\left(\frac{\pi}{a}\right)^2 - |V_1|$$

Nearly Free electron

$$V_1 \neq 0$$

$$\left[\frac{\hbar^{2}}{2m}(k-g)^{2}-E\right]\left[\frac{\hbar^{2}}{2m}k^{2}-E\right]-V_{1}^{2}=0$$

when $k \sim \pi/a$, $(A-B) \sim 0$, take the first order approximation

$$E_{\pm}(k) = \frac{(A+B) \pm \sqrt{(A-B)^2 + 4V_1^2}}{2}$$

$$E_{\pm}(k) \approx \frac{A+B}{2} \pm V_1 \left[1 + \frac{1}{2} \frac{(A-B)^2}{4V_1^2} \right]$$

$$E_{\pm}(k) \approx \frac{A+B}{2} \pm V_1 \left[1 + \frac{1}{2} \frac{(A-B)^2}{4V_1^2} \right]$$

$$\left| \frac{1}{m^*} = \frac{1}{\hbar^2} \frac{d^2 E(k)}{dk^2} \right|$$

$$C = \frac{\hbar^2 g^2}{4m}$$

$$\begin{cases} \frac{m_e^*}{m_0} \approx \frac{1}{C/V_1 + 1} \\ \frac{m_h^*}{m_0} \approx \frac{1}{C/V_1 - 1} \end{cases}$$

For many semiconductors, V_1 is very small ($C/V_1 \sim 1-10$)

- Effective mass is smaller than real electron mass m₀
- m_e^* in CB is smaller than m_h^* in VB
- small V₁ ----> small m* ----> large mobility μ

Examples

m_e* in CB is smaller than m_h* in VB (electrons have more freedom than holes)

Examples

	a (Å)	E_g (eV)	m_e^*/m_0	m_h^*/m_0	μ_{e}	μ_{h}
					(cm ² /V/s)	(cm²/V/s)
Si	5.43	1.1	0.26	0.38	1350	450
Ge	5.66	0.66	0.12	0.23	3900	1900
-	-	-	-	-	-	-
GaAs	5.65	1.42	0.067	0.45	8500	400
InAs	6.06	0.35	0.022	0.40	33000	450

* effective mass for conductivity

1. large a ----> small
$$V_1$$
 ----> small E_g ----> small m^* ----> large mobility μ

2.
$$m_e^* < m_h^* < m_0^*$$

3.
$$\mu_e^* > \mu_h^*$$

Examples

	a (Å)	E_g (eV)	m_e^*/m_0	m_h^*/m_0	μ_{e}	μ_{h}
					(cm ² /V/s)	(cm ² /V/s)
Si	5.43	1.1	0.26	0.38	1350	450
Ge	5.66	0.66	0.12	0.23	3900	1900
-	-	-	-	-	-	-
GaAs	5.65	1.42	0.067	0.45	8500	400
InAs	6.06	0.35	0.022	0.40	33000	450

* effective mass for conductivity

larger atoms

----> electrons have more freedom

----> smaller m*, move faster

Carriers 载流子

Particles that conduct electrical current: electrons in CB and holes in VB

electrical conductivity

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

Q: How to calculate carrier densities?

 n_c and p_v (#/cm³)

Band Diagram of Semiconductors

The peaks and valleys of VB and CB can be approximately by *parabolic functions*

Band Diagram of Semiconductors

electrons and holes can be approximated using

free electron gas

- modify the Sommerfeld Model

$$E_c - E_v = E_g$$

$$E(k) = E_c + \frac{\hbar^2 k^2}{2m_e^*}$$

$$E(k) = E_{v} - \frac{\hbar^{2}k^{2}}{2m_{h}^{*}}$$

The peaks and valleys of VB and CB can be approximately by *parabolic functions*

Density of States (DOS) 态密度

$$g(E) = \frac{dn}{dE}$$

DOS - number of energy states/levels per unit energy in [E, E+dE], per unit volume

free electrons in 3D

$$E = \frac{\hbar^2 k^2}{2m_e}$$

$$E = \frac{\hbar^2 k^2}{2m_e}$$

$$g(E) = \frac{dn}{dE} = \frac{1}{2\pi^2} \left(\frac{2m_e}{\hbar^2}\right)^{3/2} E^{1/2}$$

replace mass m with effective mass m*

Density of States (DOS) 态密度

$$g(E) = \frac{dn}{dE}$$

DOS - number of energy states/levels per unit energy in [E, E+dE], per unit volume

DOS for electrons in CB

$$g_c(E) = \frac{1}{2\pi^2} \left(\frac{2m_e^*}{\hbar^2}\right)^{3/2} (E - E_c)^{1/2}$$

DOS for holes in VB

$$g_{\nu}(E) = \frac{1}{2\pi^2} \left(\frac{2m_h^*}{\hbar^2}\right)^{3/2} (E_{\nu} - E)^{1/2}$$

Density of electrons = DOS * probability f

Density of holes = DOS * (1-f)

$$f(E) = \frac{1}{e^{(E-\mu)/k_B T} + 1}$$

$$1 - f(E) = 1 - \frac{1}{e^{(E-\mu)/k_B T} + 1} = \frac{1}{e^{(\mu - E)/k_B T} + 1}$$

For pure semiconductors (intrinsic), the chemical potential μ (Fermi level E_F) lie within the band gap.

Fermi Energy E_F - A Little Note

In metals, Fermi energy/level E_F is the highest occupied state of electrons at T = 0 K.

In semiconductors, Fermi energy/level E_F is referred to the chemical potential μ , which is inside the gap. No electrons at E_F !

"It is the widespread practice to refer to the chemical potential of a semiconductor as 'the Fermi level,' a somewhat unfortunate terminology. ... The term 'Fermi level' should be regarded as nothing more than a synonym for 'chemical potential,' in the context of semiconductors.

---- Ashcroft & Mermin, p573

Number of Carriers = DOS * Probability

Intrinsic

electrons in CB

$$n_c = \int_{E_c}^{+\infty} g_c(E) \cdot f(E) dE$$

If μ is in the gap, assume

$$E_c - \mu \gg k_B T$$

$$f(E) = \frac{1}{e^{(E-\mu)/k_B T} + 1}$$

$$\approx e^{-(E-\mu)/k_B T}$$

holes in VB

$$p_{v} = \int_{-\infty}^{E_{v}} g_{v}(E) \cdot [1 - f(E)] dE$$

$$|\mu - E_v \gg k_B T|$$

$$1 - f(E) = \frac{1}{e^{(\mu - E)/k_B T} + 1}$$

$$\approx e^{-(\mu - E)/k_B T}$$

Non-Degenerate semiconductors (非简并半导体):
Fermi-Dirac is approximated by Maxwell-Boltzma

Fermi-Dirac is approximated by Maxwell-Boltzmann distribution not valid for high temperature or small band gap

electrons in CB

$$n_{c} = \int_{E_{c}}^{+\infty} g_{c}(E) \cdot f(E) dE$$

$$= \int_{E_{c}}^{+\infty} \frac{1}{2\pi^{2}} \left(\frac{2m_{e}^{*}}{\hbar^{2}} \right)^{3/2} (E - E_{c})^{1/2} \cdot e^{-(E - \mu)/k_{B}T} dE$$

$$= \frac{1}{4} \left(\frac{2m_{e}^{*}k_{B}T}{\pi\hbar^{2}} \right)^{3/2} e^{-(E_{c} - \mu)/k_{B}T}$$

$$= N_{c}(T) e^{-(E_{c} - \mu)/k_{B}T}$$

$$N_c(T) = \frac{1}{4} \left(\frac{2m_e^* k_B T}{\pi \hbar^2} \right)^{3/2} = 2.5 \left(\frac{m_e^*}{m_0} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

note here we use the integral

$$\int_0^{+\infty} x^{1/2} \cdot e^{-x/a} dx = \frac{\sqrt{\pi}}{2} a^{3/2}$$

SO

$$\int_{E_c}^{+\infty} (E - E_c)^{1/2} \cdot e^{-(E - \mu)/k_B T} dE$$

$$= \frac{\sqrt{\pi}}{2} (k_B T)^{3/2} e^{-(E_c - \mu)/k_B T}$$

holes in VB

$$p_{v} = \int_{-\infty}^{E_{v}} g_{v}(E) \cdot [1 - f(E)] dE$$

$$= \int_{-\infty}^{E_{v}} \frac{1}{2\pi^{2}} \left(\frac{2m_{h}^{*}}{\hbar^{2}}\right)^{3/2} (E_{v} - E)^{1/2} \cdot e^{-(\mu - E)/k_{B}T} dE$$

$$= \frac{1}{4} \left(\frac{2m_{h}^{*}k_{B}T}{\pi\hbar^{2}}\right)^{3/2} e^{-(\mu - E_{v})/k_{B}T}$$

$$= P_{v}(T)e^{-(\mu - E_{v})/k_{B}T}$$

$$P_{v}(T) = \frac{1}{4} \left(\frac{2m_{h}^{*}k_{B}T}{\pi\hbar^{2}} \right)^{3/2} = 2.5 \left(\frac{m_{h}^{*}}{m_{0}} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

$$N_c(T) = \frac{1}{4} \left(\frac{2m_e^* k_B T}{\pi \hbar^2} \right)^{3/2} = 2.5 \left(\frac{m_e^*}{m_0} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

$$P_{\nu}(T) = \frac{1}{4} \left(\frac{2m_h^* k_B T}{\pi \hbar^2} \right)^{3/2} = 2.5 \left(\frac{m_h^*}{m_0} \right)^{3/2} \left(\frac{T}{300 \text{ K}} \right)^{3/2} \times 10^{19} \text{ cm}^{-3}$$

effective density of states (有效态密度)
no physical meaning, just two constants

when T = 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} = 0$$

$$p_{\nu} = P_{\nu}(T)e^{-(\mu - E_{\nu})/k_B T} = 0$$

insulator

when T > 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} > 0$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T} > 0$$

conductivity

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

T > 0 K thermalization 热激发 CB and VB are partly filled conductor 56

when T > 0 K

$$n_c = N_c(T)e^{-(E_c - \mu)/k_B T} > 0$$

$$p_{v} = P_{v}(T)e^{-(\mu - E_{v})/k_{B}T} > 0$$

mass action law

Carriers in Semiconductors

- For calculations here, we go back to classical physics, assume:
 - Carriers are much fewer than DOS

$$f(E) \ll 1$$

- Carriers are non-Degenerate (Boltzmann Distribution)
- □ Carriers are almost in the same energies (E_c and E_v)
- Carriers have the same velocities and motilities

$$\sigma = n_c e \mu_e + p_v e \mu_h$$

Mass Action Law - A Little Notion

 The product of electron and hole concentrations is a constant, at a fixed temperature

$$n_c p_v = n_i^2 = N_v(T) P_v(T) e^{-E_g/k_B T}$$

In water, the product of H⁺ and OH⁻ concentrations is also a constant

$$[H^+][OH^-] = K_w = 10^{-14} (\text{mol/L})^2 \text{ (at 25 °C)}$$

 Both are originated from classical statistics (nondegenerate, Maxwell-Boltzmann distribution), not related to quantum mechanics

Thank you for your attention