Nonlinear compressive reduced basis approximation for PDE's

Hassan Ballout

CSMI Master's program. University of Strasbourg

September 2024

- Project Plan

Project Plan

Objectives

Project Plan

- Etudier la méthode des bases réduites classique et ses limitations.
- Explorer le potentiel de la réduction de modèle non linéaire.
- Etudier la méthode "Nonlinear compressive reduced basis approximation for PDE's".
- Implémenter la méthode et la tester.
- Rédiger un article basé sur ce travail.

- Contexte

Réduction d'ordre de modèle.

Contexte

Objective:

- Réduire la dimension d'un modèle.
- Réduire le coût de calcul en préservant une précision acceptable.
- Modèle d'intérêt: EDP paramétriques.

For a given parameter $\mu \in \mathcal{P} \in \mathbb{R}^P$ (the parameter space), find $u(\mu) \in X$ such that:

$$\mathcal{R}(u(\mu);\mu)=0$$

Méthodes numériques

- Méthodes haute fidélité: volumes finis, éléments finis, . . .
 - Précision élevée.

Contexte

- Coût de calcul élevé.
- Non adapté pour faire un grand nombre de simulations.
- Méthodes de réduction d'ordre: bases réduites, POD, . . .

Méthodes numériques

- Méthodes haute fidélité: volumes finis, éléments finis, . . .
 - Précision élevée.
 - Coût de calcul élevé.
 - Non adapté pour faire un grand nombre de simulations.
- Méthodes de réduction d'ordre: bases réduites, POD, ...
 - Coût de calcul réduit.
 - Précision acceptable.
 - ullet Adapté pour faire un grand nombre de simulations (optimisation, contrôle, \dots).

Méthode de bases réduites

Contexte

In practice: using FEM discretization

- $X \to X_h \subset X$, de dimension N_h .
- $u(\mu) \in X \to u_h(\mu) \in X_h$.
- $u_N(\mu)$ est une projection de $u_h(\mu)$ sur X_N de dimension $N \ll N_h$.

Barrière de Kolmogorov

Problématique: Dans quelles mesures \mathcal{M} peut être approximé par le meilleur sous-espace de dimension N.

Mesure: Kolmogorov *N*-width $d_N(\mathcal{M}) = \inf_{\mathcal{V}_N} \max_{v \in \mathcal{M}} \min_{w \in \mathcal{V}_N} \|v - w\|$.

- Pour les problèmes elliptiques : $d_N(\mathcal{M}) \sim \mathcal{O}(e^{-\alpha N})$.
- Pour certains problèmes hyperboliques: $d_N(\mathcal{M}) \sim \mathcal{O}(N^{-1/2})$.

Curse of dimensionality: du domaine et de l'espace des paramètres.

Solution: Méthodes non linéaires.

•00

- Cas test

Problème multiparamétrique

$$\begin{cases} -k^i \Delta u = 0 \text{ in } \Omega^i, i = 0, \dots, N_f \\ +BC \end{cases}$$

- Un paramètre est donné par $\mu = (k^1, \dots, k^{N_f}, Bi)$.
- La formulation faible: trouver $u(\mu) \in X$ tel que:

$$\overbrace{\sum_{i=0}^{N_f} \int_{\Omega^i} k^i (\nabla u(\mu), \nabla v) dx + B_i \int_{\Gamma_{ext}} u(\mu) \, v \, ds}^{\vartheta(u(\mu), v; \mu)} = \overbrace{\int_{\Gamma_{root}} v \, ds}^{f(v; \mu)}, \quad \forall v \in X$$

• La dimension de l'espace des paramètres P peut varier de 1 à $N_f + 1$.

Haute fidélité

On considère le cas test avec $N_f = 5$, avec un maillage de $N_{el} = 43622$ éléments. Une méthode d'éléments finis d'ordre 2 est utilisée ce qui donne $N_h = 89745$ DOF.

Figure 1: High fidelity solutions for Bi=0.01(left), Bi=0.1(middle) and Bi=1(right)

L'erreur L^2 de l'approximation FEM est de l'ordre de 10^{-4} par rapport à une approximation de référence d'ordre 3 avec $N_{ref} = 200050$ DOF.

- RBM classique

Méthode de bases réduites classique

• On cherche une approximation de $u(\mu)$ dans un sous-espace de dimension N:

$$\underbrace{\|u(\mu) - u_N(\mu)\|_X}_{\text{total error}} \leq \underbrace{\|u(\mu) - u_h(\mu)\|_X}_{\text{FEM error}} + \underbrace{\|u_h(\mu) - u_N(\mu)\|_X}_{\text{RB error}}$$

- On construit une base reduite $V = \text{span}\{\zeta_1, \dots, \zeta_N\}$ avec une méthode POD.
- Par un approche Galerkin, on obtient un système linéaire:

$$\mathsf{A}^\mu_\mathsf{N}\mathsf{u}^\mu_\mathsf{N}=\mathsf{f}^\mu_\mathsf{N}$$

• L'efficacité est assurée par la decomposition onligne/offline et la decomposition affine.

Résultats

Figure 2: FEM(left) and RB with N = 8(right) solutions for Bi = 0.001

Figure 3: Relative error vs the number of modes for P = 1

Challenges

Р	N_{max}	Online time	FEM time	Max L2 error	Mean L2 error
1	8	1.98e-04	5.18e-01	3.17e-05	6.37e-06
6	63	6.42e-04	5.18e-01	2.29e-05	3.68e-06

Table 1: Comparison between P = 1 and P = 6

- Nonlinear compressive RBM

Encodeur-Decodeur

Une méthode d'approximation basée sur m paramètres repose sur 2 applications continues :

- L'encodeur : $E: X \to \mathbb{R}^m$
- Le décodeur : $D: \mathbb{R}^m \to X$

L'approximation de u est alors donnée par la composition encodeur-décodeur :

$$u \approx D(E(u))$$

Notion de width

L'epaisseur (width) de ${\mathcal M}$ est donnée par

$$\inf_{E,D} \max_{v \in \mathcal{M}} \|v - D(E(v))\|$$

En particulier,

- Si on choisit D linéaire, on obtient le Kolmogorov m-width $d_m(\mathcal{M})$.
- Si on choisit E linéaire et D non linéaire, on obtient le sensing number $s_m(\mathcal{M})$.

Nonlinear compressive RB

Dans le cas où :

- $d_m(\mathcal{M})$ decroit lentement. (1)
- $s_m(\mathcal{M})$ decroit beaucoup plus rapidement. (2)

Pour atteindre une précision ϵ :

- (1) $\implies u \approx \sum_{i=1}^{N} \hat{u}_i \zeta_i$ avec $N = N(\epsilon)$ grand.
- (2) $\implies u \approx D(\lambda_1(u), \dots, \lambda_n(u)) \text{ avec } n = n(\epsilon) \ll N.$

Idée: $\lambda_i(u) \approx \hat{u}_i$ for $i = 1, \ldots, n \to \hat{u}_k = \phi_k(\hat{u}_1, \ldots, \hat{u}_n) \approx \hat{\phi}_k(\hat{u}_1, \ldots, \hat{u}_n)$ pour $k = n + 1, \ldots, N$. Avec $\hat{\phi}_k$ sont des modèles non linéaires appris offline.

$$u \approx \sum_{i=1}^{n} \hat{u}_{i} \psi_{i} + \sum_{k=n+1}^{N} \hat{\phi}_{k}(\hat{u}_{1}, \dots, \hat{u}_{n}) \psi_{k} \to \mathsf{A}_{n}^{\mu} \mathsf{u}_{n}^{\mu} = \mathsf{f}_{n}^{\mu} - \mathsf{B}^{\mu} \hat{\phi}(\mathsf{u}_{n}^{\mu})$$

Choix de n

Problème inverse: Combien de coefficients $\{\hat{u}_i^{\mu}\}_{i=1}^n$ pour reconstruire μ ? Si $\mu = R(E(u(\mu))) = R(\hat{u}_1^{\mu}, \dots, \hat{u}_n^{\mu})$, alors $Id_{\mathcal{M}} = u \circ R \circ E$. Dans ce cas,

$$s_n(\mathcal{M})=0$$

Numeriquement, on a trouvé que pour $P \leq 3$, n = P est suffisant pour reconstruire μ . En pratique, on choisit donc $n \approx P$.

Phase offline

Algorithm 1 Nonlinear compressive reduced basis offline phase

Compute the reduced basis of size N using POD, or RB.

Assemble offline RB quantities.

Choose a train set of size $M: \{\mu_1, \ldots, \mu_M\}$.

Compute corresponding reduced basis approximations $\{u_i\}_{i=1}^M$.

Choose $n \ll N$.

for
$$k = n + 1$$
 to N do

Learn
$$\phi_k = \arg\min_{\phi \in F} \left\{ \sum_{i=1}^{M} \left| u_i^k - \phi(u_i^1, \dots, u_i^n) \right|^2 \right\}.$$

Algorithm

Algorithm 2 Nonlinear compressive reduced basis online phase (Picard iteration)

- 1: Initialization: $\mathbf{u_n^0} = \mathbf{u_0}$, s.t. $\mathbf{A}_n^{\mu} \mathbf{u_0} = \mathbf{f}_n^{\mu}$.
- 2: Iteration k:
- 3: Compute $\phi(\mathbf{u_n^{k-1}})$.
- 4: Solve $\mathbf{A}_n^{\mu}\mathbf{u}_{\mathbf{n}}^{\mathbf{k}} = \mathbf{f}_n^{\mu} B^{\mu}\phi(\mathbf{u}_{\mathbf{n}}^{\mathbf{k}-1}).$
- 5: Stopping criterion: $\|\mathbf{u}_{\mathbf{n}}^{\mathbf{k}} \mathbf{u}_{\mathbf{n}}^{\mathbf{k}-1}\| < \epsilon$.

Regression

Nonlinear compressive RBM in action

P=1

Model	Mean Energy Error	Mean L2 Error	Max L2 Error
Classical RBM (with 8 modes)	1.22×10^{-5}	$6.80 imes 10^{-6}$	$3.86 imes 10^{-5}$
Classical RBM (with 1 mode)	$5.96 imes 10^{-1}$	$6.33 imes 10^{-1}$	2.68×10^{0}
Spline	$1.22 imes 10^{-5}$	$6.80 imes 10^{-6}$	$3.86 imes 10^{-5}$
Decision tree	1.22×10^{-5}	$6.84 imes 10^{-6}$	$3.87 imes 10^{-5}$

P=2

Model	Mean Energy Error	Mean L2 Error	Max L2 Error
Classical RBM (with 22 modes)	$7.46 imes 10^{-6}$	2.59×10^{-6}	5.12×10^{-6}
Classical RBM (with 6 modes)	2.35×10^{-2}	1.14×10^{-2}	1.98×10^{-2}
Classical RBM (with 2 modes)	2.42×10^{-1}	$1.67 imes 10^{-1}$	3.49×10^{-1}
Degree 4 (n=6) regression	7.46×10^{-6}	2.59×10^{-6}	5.12×10^{-6}
Decision tree (n=2)	$1.55 imes 10^{-3}$	$6.74 imes 10^{-4}$	2.84×10^{-3}

- References

- [1] A. Cohen, C. Farhat, A. Somacal, and Y. Maday, "Nonlinear compressive reduced basis approximation for PDE's," Mar. 2023, working paper or preprint. [Online]. Available: https://hal.science/hal-04031976
- [2] J. L. Barnett, C. Farhat, and Y. Maday, "Neural-network-augmented projection-based model order reduction for mitigating the kolmogorov barrier to reducibility of cfd models." 2022.

Thank You