Configurations du plan

Table des matières

1	Problèmes de longueur et d'angles	1
2	Configurations du plan	3
3	Droites remarquables du triangle	6
4	Projeté orthogonal d'un point sur une droite	7

1 Problèmes de longueur et d'angles

1.1 Calculer des longueurs

Propriété 1. Pythagore. Dans tout triangle ABC rectangle en A on a la relation de Pythogore :

$$BC^2 = AB^2 + AC^2$$

Réciproquement, lorsque les côtés d'un triangle vérifient la relation $BC^2 = AB^2 + AC^2$ alors le triangle ABC est rectangle en A.

Remarque. Si $BC^2 \neq AB^2 + AC^2$ alors le triangle n'est pas rectangle en A.

Exemple.

Dans le triangle DEF rectangle en E, d'après le théorème de Pythagore, on a :

$$DF^{2} = ED^{2} + EF^{2}$$

$$\Leftrightarrow 5^{2} = 4^{2} + EF^{2}$$

$$\Leftrightarrow 25 = 16 + EF^{2}$$

$$\Leftrightarrow EF^{2} = 25 - 16$$

$$\Leftrightarrow EF^{2} = 9$$

$$\Leftrightarrow EF = \sqrt{9} = 3$$

Propriété 2. Thalès

On considère l'une des configurations ci-contre, dite de Thalès.

Si les droites (AB) et (CD) sont parallèles, alors les longueurs des triangles SAB et SDC sont proportionnelles et on a $\frac{SA}{SC} = \frac{SB}{SD} = \frac{AB}{CD}$.

Réciproquement, si les côtés des triangles SAB et SDC sont proportionnels, alors les droites (AB) et (CD) sont parallèles.

1.2 Calculer des angles

Propriété 3.

Dans un triangle ABC rectangle en A, les côtés et les angles sont liés par des relations trigonométriques

$$\cos \hat{B} = \frac{AB}{BC}$$
; $\sin \hat{B} = \frac{AC}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Exemple.

Dans le triangle DEF retangle en E, on a :

$$\cos \hat{D} = \frac{ED}{FD}$$

$$\cos \hat{D} = \frac{4}{5}$$

$$\hat{D} = \cos^{-1} \left(\frac{4}{5}\right) \approx 36.9^{\circ}$$

Remarque. La trigonométrie permet de calculer des longueurs ou des angles.

Propriété 4. Pour tout angle aigu α d'un triangle rectangle, on a la relation trigonométrique suivante

$$\cos^2\alpha + \sin^2\alpha = 1$$

Propriété 5. Dans un triangle la somme des angles fait 180° .

Propriété 6.

Deux droites parallèles et une sécante engendrent des angles alternes-internes et correspondants, de même mesure.

2 Configurations du plan

2.1 Quadrilatères particuliers

On peut reconnaître les quadrilatères particuliers à l'aide des critères suivants.

	Les côtés	Les diagonales	Les symétries	
Parallélogramme				
D C	$\bullet (AB)//(DC)$ et $(AD)//(BC)$ $\bullet (AB)//(DC)$ et $AB = DC$	ullet Les diagonales $[AC]$ et $[BD]$ ont même milieu O .	• O est le centre de symétrie	
Rectangle	C'est un parallélogramme et			
D C B	$\bullet(AB)\perp(AC)$	ullet AC = BD	• Les médiatrices de $[AD]$ et de $[AB]$ sont des axes de symétrie.	
Losange	C'est un parallélogramme et			
D O B	ullet AB = AD	$ullet$ $(AC) \perp (BD)$	 Les diagonales sont des axes de symétrie 	
Carré	C	C'est un parallélogramme et		
D C C	$\bullet(AB) \perp (AD)$ $AB = AD$	$\bullet (AC)(BD)$ $AC = BD$	• Les médiatrices de $[AD]$ et $[AB]$ ainsi que les diagonales sont des axes de symétrie	

Exemple.

Le quadrilatère ABCD est un parallélogramme car ses diagonales [AC] et [BD] se coupent en leur milieu. Ses diagonales ont la même longueur donc c'est un rectangle.

Remarque. Un carré est à la fois un rectangle et un losange.

2.2 Cercles et angles

Définition 1. O est un point et r est un nombre réel strictement positif. L'ensemble des points M du plan vérifiant OM = r est le cercle de centre O et de rayon r.

Vocabulaire:

- [OA] est un rayon
- [BB'] est un diamètre
- $\widehat{BB'A}$ est un angle inscrit
- ullet \widehat{BOA} est un angle au centre
- \bullet [AB] est une corde
- \widehat{AB} est un arc

Propriété 7.

Lorsqu'un angle incrit α intercepte le même arc qu'un angle au centre β alors :

$$\beta = 2\alpha$$

Exemple.

Puisque l'angle au centre \widehat{BOC} intercepte le même arc que \widehat{CB} que l'angle inscrit \widehat{BDC} alors :

$$\widehat{BDC} = \frac{1}{2}\widehat{BOC} = 25^o$$

Définition 2.

La tangente à un cercle $\mathcal C$ de centre O en un point M est la droite passant par M et perpendiculaire au rayon [OM].

Elle coupe le cercle $\mathcal C$ en l'unique point M.

3 Droites remarquables du triangle

3.1 Médiatrices

Définition 3. La médiatrice d'un segment est l'ensemble des points du plan équidistants des extrémités de ce segment.

Propriété 8. C'est la droite passant par le milieu et perpendiculaire à ce segment.

Propriété 9. Les trois médiatrices d'un triangles sont concourantes en un point O appelé centre du cercle circonscrit au triangle.

Exemple.

Remarque. Lorsque le triangle est rectangle le centre du cercle circonscrit est le milieu de l'hypothénuse.

3.2 Autres droites remarquables du triangle

Définition 4.

- Une hauteur est une droite passant par un sommet du triangle et perpendiculaire au côté opposé à ce sommet.
- Une médiane est une droite passant par un sommet du triangle et le milieu du côté opposé à ce sommet.
- La bissectrice d'un angle est la demi-droite passant par un sommet de cet angle et qui le coupe en deux angles égaux.

Propriété 10. Dans un triangle, les trois hauteurs sont concourantes en un point appelé *orthocentre du triangle*, les trois médianes sont concourantes en un point appelé *centre de gravité du triangle*, les trois bissectrices sont concourantes en un point appelé *centre du cercle inscrit au triangle*,

Propriété 11. Dans ABC isocèle en en A, la médiane et la hauteur issue de A, la bissectrice de \widehat{A} et la médiatrice de [BC] sont confondues.

4 Projeté orthogonal d'un point sur une droite

Soit D une droite du plan et A un point.

Définition 5. On appelle projeté orthogonal de A sur D le point d'intersection de la droite D avec la perpendiculaire à D passant par A.

Exemple. H est le projeté orthogonal de A sur D.

Propriété 12. La distance du point A à la droite D est la plus petite distance séparant un point de D avec A. Elle est égale à AH où H est le projeté orthogonal du point A sur D.

Démonstration.

Notons d la distance entre A et D. Soit M un point de D, distinct de H.

Le triangle AHM est rectangle en H.

Grâce au théorème de Pythagore, on peut affirmer que l'hypothénuse [AM] est le plus grand des côtés du triangle AHM. Donc AM > AH.

Ainsi, la plus petite distance séparant A d'un point de D est égale à AH.

On en déduit que AH = d.