KOMPENDIJ FIZIKE (Fizika 1 i Fizika 2) ZA FER U FORMULAMA

KINEMATIKA SITNOG TIJELA

Gibanje po pravcu

$$\vec{v} = \frac{d\vec{s}}{dt}, \ \vec{a} = \frac{d^2 \vec{s}}{dt^2}, \ s = \int_{t_0}^{t_2} v(t) dt, \ v = \int_{t_0}^{t_2} a dt$$

Jednoliko gibanje

$$\vec{s} = \vec{v} \cdot t + \vec{s}$$

Jednoliko ubrzano gibanje

$$\vec{s} = \frac{1}{2}\vec{a} \cdot t^2 + \vec{v}_0 \cdot t + \vec{s}_0 \qquad v^2 = 2a \cdot s + v_0^2$$
$$\vec{v} = \vec{v}_0 + \vec{a} \cdot t$$

Gibanje po kružnici

$$\begin{split} \omega &= \frac{\mathrm{d}\, \phi}{\mathrm{d}\, t} \qquad \quad \alpha = \frac{\mathrm{d}^2\, \phi}{\mathrm{d}\, t^2} \\ \vec{v} &= \vec{\omega} \times \vec{r} \qquad \quad \vec{a}_r = \vec{\omega} \times \vec{v} \qquad \quad \vec{a}_r = \vec{\alpha} \times \vec{r} \end{split}$$

Jednoliko gibanje po kružnici

$$\varphi = \omega t + \varphi_0$$

Jednoliko ubrzano gibanje

$$\varphi = \frac{1}{2} \alpha t^2 + \omega_0 t + \varphi_0 \qquad \omega^2 = 2 \alpha \varphi + \omega_0^2$$

$\omega = \alpha \cdot t + \omega_0$

Kosi hitac

$$v_x = v_{0x} = v_0 \cos \alpha$$
 $v_y = v_{0y} - gt = v_0 \sin \alpha - gt$
 $x = v_0 t \cos \alpha$ $y = v_0 t \sin \alpha - \frac{1}{2} gt^2$

$$y = x \tan \alpha - \frac{gx^2}{2v_0^2 \cos^2 \alpha} \qquad t_H = \frac{v_0 \sin \alpha}{g},$$

$$H = \frac{v_0^2 \sin^2 \alpha}{2g} \qquad X = \frac{v_0^2 \sin 2\alpha}{g}.$$

DINAMIKA ČESTICE

Newtonovi zakoni gibanja

$$\vec{p} = m \cdot \vec{v} \qquad \qquad \vec{F} = \frac{\mathrm{d}(m \cdot \vec{v})}{\mathrm{d}t} = \frac{\mathrm{d}\vec{p}}{\mathrm{d}t}$$

$$\vec{F} = m\vec{a} \ (m = konst.) \qquad \vec{G} = m \cdot \vec{g}$$

$$\vec{F}_{TR} = \mu N, \qquad \qquad \vec{I} = \int_{t_1}^{t_2} \vec{F} \, \mathrm{d}t = \vec{p}_2 - \vec{p}_1$$

Centar mase

$$\vec{r}_{\rm CM} = \frac{\sum\limits_{i=1}^{n} m_i \vec{r}_i}{\sum\limits_{i=1}^{n} m_i} \qquad \qquad \vec{r}_{\rm CM} = \int \!\! \frac{\vec{r} \, \mathrm{d} \, m}{m} \label{eq:cm_cm}$$

Centripetalna sila

$$|\vec{F}_{\rm CP}| = -m\omega^2 \vec{r}$$
, $|\vec{F}_{\rm CP}| = m\omega^2 r = m \frac{v^2}{r}$

RAD I ENERGIJA. SUDARI

$$\begin{split} W &= \int \vec{F} \cdot \mathrm{d}\,\vec{s} & \qquad \vec{P} = \frac{W}{t} \\ E_k &= \frac{mv^2}{2} & E_p = mgh \qquad E_p = \frac{1}{2}ks^2 \qquad \eta = \frac{W_D}{W}. \end{split}$$

Elastični sraz

$$\begin{split} & m_1 \vec{\mathbf{v}}_1 + m_2 \vec{\mathbf{v}}_2 = m_1 \vec{\mathbf{v}}_1' + m_2 \vec{\mathbf{v}}_2' \\ & \frac{m_1 \mathbf{v}_1^2}{2} + \frac{m_2 \mathbf{v}_2^2}{2} = \frac{m_1 \mathbf{v}_1'^2}{2} + \frac{m_2 \mathbf{v}_2'^2}{2} \\ & \vec{\mathbf{v}}_1' = \frac{(m_1 - m_2) \vec{\mathbf{v}}_1 + 2 m_2 \vec{\mathbf{v}}_2}{m_1 + m_2} \\ & \vec{\mathbf{v}}_2' = \frac{(m_2 - m_1) \vec{\mathbf{v}}_2 + 2 m_1 \vec{\mathbf{v}}_1}{m_1 + m_2} \end{split}$$

Neelastični sraz

$$\begin{split} m_{1}\vec{v}_{1}+m_{2}\vec{v}_{2}&=(m_{1}+m_{2})\vec{v}' \qquad \vec{v}'=\frac{m_{2}\vec{v}_{2}+m_{1}\vec{v}_{1}}{m_{1}+m_{2}}\\ \vec{v}_{1}-\vec{v}_{2}&=-(\vec{v}_{1}'-\vec{v}_{2}') \qquad q=-\frac{1}{2}\frac{m_{1}\cdot m_{2}}{m_{1}+m_{2}}(\vec{v}_{1}-\vec{v}_{2})^{2}\\ Koeficijent\ restitucije:\ k&=\frac{\vec{v}_{1}'-\vec{v}_{2}'}{\vec{v}_{1}'-\vec{v}_{2}'} \end{split}$$

VRTNJA KRUTOG TIJELA

$$\begin{split} \vec{M} &= \vec{r} \times \vec{F} & I = \int r^2 \, \mathrm{d} \, m \qquad I = I_{CM} + m \cdot d^2 \\ \vec{L} &= \vec{r} \times \vec{p} = \vec{r} \times m \vec{v} \qquad \vec{M} = \frac{\mathrm{d} \, \vec{L}}{\mathrm{d} \, t} \end{split}$$

Vrtnja oko glavnih osi inercije

$$\vec{L} = I \cdot \vec{\omega}$$
 $\vec{M} = I \cdot \vec{\alpha}$ ($I = konst.$)
Snaga i energija pri vrtnji

$$W = \int_{0}^{\varphi} M \, d \, \varphi \qquad \qquad W = M \cdot \varphi \, (M = konst.)$$

$$P = M\omega$$

$$E_k = \frac{1}{2}I \cdot \omega^2$$

$$E_k = \frac{1}{2}m \cdot v_{CM}^2 + \frac{1}{2}I_{CM} \cdot \omega^2$$

The second secon		and the second second
Tijelo	I	Položaj osi
tanki prsten	m·r²	1 na ravninu
		prstena
okrugla ploča	$(m \cdot r^2)/2$	1 na ravninu
	Marine Harris	ploče
puni valjak	$(m \cdot r^2)/2$	uzdužna os
		valjka
tanki šuplji	m·r²	uzdužna os
valjak		valjka
šuplji valjak	$m \cdot (r_1^2 + r_2^2)/2$	uzdužna os
		valjka
kugla	$(2m \cdot r^2)/5$	kroz središte
		kugle
tanka šuplja	$(2m \cdot r^2)/3$	kroz središte
kugla		kugle
čunj (stožac)	$(3mr^2)/10$	uzdužna os
		stošca
tanki štap	$(m \cdot l^2)/12$	L na središte
duliina 1	. 11 2	24

ZVRK

Slobodni zvrk:
$$\vec{M} = 0 = \frac{d\vec{L}}{dt} \Rightarrow \vec{L} = I\vec{\omega}$$

$$\widetilde{C}unj nutacije: \widetilde{L}_A = I_0 \widetilde{\omega}_0 + I_1 \widetilde{\omega}_1$$

Precesija:
$$\vec{M} = \vec{\Omega} \times \vec{L}$$
 $\Omega = \frac{d\varphi}{dt} = \frac{M}{L}$

INERCIJSKI I NEINERCIJSKI SUSTAVI

Galilejeve transformacije

$$x = x' + \nu t$$
 $y = y'$ $z = z'$ $t = t'$
 $\nu = \nu'_x + \nu_0$ $\nu_y = \nu'_y$ $\nu_z = \nu'_z$ $a = a$

Inercijalne sile

$$\begin{split} \boldsymbol{m} \cdot \vec{\boldsymbol{a}} &= \vec{F} + \vec{F}_i \\ \vec{F}_{\rm CF} &= \boldsymbol{m} \cdot \boldsymbol{\omega}^2 \cdot \vec{r}' \end{split} \qquad \begin{split} \vec{F}_i &= -m \vec{a}_0 \\ \vec{F}_{\rm CGR} &= 2 \cdot \boldsymbol{m} \cdot \vec{v}' \times \vec{\boldsymbol{\omega}} \end{split}$$

KLASIČNA GRAVITACIJA

$$\begin{split} \vec{F} &= -G \cdot \frac{m_1 \cdot m_2}{r^2} \vec{r}_0 \qquad \vec{\gamma} = -G \cdot \frac{m}{r^2} \vec{r}_0 \\ E &= -G \cdot \frac{m_1 \cdot m_2}{r} \qquad \phi = -G \cdot \frac{m}{r} \\ \vec{F}(\vec{r}) &= -\frac{d}{d\vec{r}} E_p(\vec{r}) = -\vec{\nabla} E_p(\vec{r}) \end{split}$$

RELATIVISTIČKA MEHANIKA

Lorentzove transformacije

$$x' = \frac{x - vt}{\sqrt{1 - \beta^2}} \qquad y = y' \qquad z = z' \qquad t' = \frac{t - \frac{v}{c^2} \cdot x}{\sqrt{1 - \beta^2}}$$
$$l = l_0 \sqrt{1 - \beta^2} \qquad \Delta t = \frac{\Delta t_0}{\sqrt{1 - \beta^2}} \qquad \beta = \frac{v}{c}$$

Slaganje brzina

$$\begin{split} u_x' &= \frac{u_x - v}{1 - \frac{v}{c^2} \cdot u_x} \\ u_z' &= \frac{u_y \sqrt{1 - \beta^2}}{1 - \frac{v}{c^2} \cdot u_x} \\ u_z' &= \frac{u_z \sqrt{1 - \beta^2}}{1 - \frac{v}{2} \cdot u_x} \end{split}$$

Energija

$$\begin{split} p &= \frac{m v}{\sqrt{1-\beta^2}} & E = \frac{m c^2}{\sqrt{1-\beta^2}} \\ E_{\mathbf{k}} &= E - m c^2 = m c^2 \bigg(\frac{1}{\sqrt{1-\beta^2}} - 1\bigg) & \vec{v} = \frac{c^2}{E} \, \vec{p} \\ E &= c \sqrt{p^2 + m^2 c^2} & p c = \sqrt{E_{\mathbf{k}}^2 + 2 m c^2} E_{\mathbf{k}} \end{split}$$

STATIKA TEKUĆINA

$$p = \frac{\mathrm{d}\,F}{\mathrm{d}\,S} \qquad p = p_0 + \rho g h \qquad F_u = \rho g V$$
Površinska napetost: $\sigma = \frac{\Delta W}{\Delta S} = \frac{F}{2\ell}$
Laplaceova formula: $\Delta p = \sigma(\frac{1}{R_1} + \frac{1}{R_2})$
Kapilarne pojave: $h = \frac{2\sigma\cos\theta}{2}$

Barometarska formula

$$p = p_0 e^{-\frac{D_0}{P_0} p_0}, T = konst., p_0 = 101325 Pa,$$

$$\rho_0 = 1.225 kg/m^3$$

$$\frac{\Delta T}{\Delta h} = -6.5 \frac{K}{km} \qquad p = p_0 \left(1 - \frac{0.0065 \cdot h/m}{288}\right)^{5.255}$$

DINAMIKA (STRUJANJE) TEKUĆINA

$$Q = Sv = konst.$$
 $p + \rho gh + \frac{\rho \cdot v^2}{2} = konst.$ $F_{TR} = \eta \cdot S \cdot \frac{dv}{dz}$ $Re = \frac{\rho \cdot v \cdot I}{\eta}$

Poiseuilleov zakon:

$$v = \frac{p_1 - p_2}{4\eta l} (R^2 - r^2) \qquad Q = \frac{\pi}{8\eta} \frac{p_1 - p_2}{l} R^4$$

Stokesov zakon: $F_{TR} = 6\pi nRv$

Turbulentno strujanje: $F_{\text{OT}} = \frac{1}{2} C_0 S \rho v^2$

TOPLINA I TEMPERATURA

Rastezanje čvrstih tijela

$$\begin{split} & l_t = l_0 (1 + \alpha \Delta T) & \alpha = \frac{l_t - l_0}{l_0 \cdot t} = \frac{l_0}{l_0} \cdot \frac{\Delta l}{\Delta T} \\ & V_t = V_0 \cdot (1 + \gamma \Delta T) & \gamma = \frac{V - V_0}{V_0 \cdot t} = \frac{1}{V_0} \cdot \frac{\Delta V}{\Delta T} = 3\alpha \end{split}$$

Jednadžba stanja idealnog plina

$$pV = nRT = \frac{m}{M}RT$$

$$pV = konst. T = konst.$$

$$V = V_0 \frac{T}{T_0} p = konst.$$

$$P = P_0 \frac{T}{T_0} V = konst.$$

Širenje topline

$$\begin{split} & Q = mc\Delta T \\ & Q = -\lambda \frac{\Delta T}{\Delta x} St \qquad R = \frac{\Delta T}{\Phi} \\ & q = h_{\rm c}(T_{\rm p} - T_{\rm f}) \end{split} \qquad R = \frac{\Delta x}{\lambda S} \label{eq:Q}$$

TERMODINAMIKA

Prvi zakon termodinamike

$$\delta Q = dU + \delta W \qquad U = n \frac{i}{2} RT$$

Molarni toplinski kapaciteti

$$\begin{aligned} C_{\rm V} &= \frac{1}{n} \left(\frac{\mathrm{d}\, \mathcal{Q}}{\mathrm{d}\, T} \right)_{\nu = \mathrm{hosst.}} & C_{\rm p} &= \frac{1}{n} \left(\frac{\mathrm{d}\, \mathcal{Q}}{\mathrm{d}\, T} \right)_{p = \mathrm{hosst.}} \\ C_{\rm p} - C_{\rm V} &= R & \kappa &= \frac{C_{\rm p}}{C} \end{aligned}$$

Specifični toplinski kapaciteti

$$c_{p} = \frac{C_{p}}{M}$$

$$c_{V} = \frac{C_{V}}{M}$$
Rad plina: $W = \int_{V_{p}}^{V_{p}} p \, dV$

Poissonove jednadžbe (đQ = 0)

$$\frac{\underline{p_1}}{p_2} = \left(\frac{\underline{v_2}}{V_1}\right)^{\kappa}, \qquad \frac{\underline{T_1}}{T_2} = \left(\frac{\underline{v_2}}{V_1}\right)^{\kappa-1}, \qquad \frac{\underline{T_1}}{T_2} = \left(\frac{\underline{p_1}}{p_2}\right)^{\frac{\kappa-1}{\kappa}}$$

Rad plina pri adijabatskoj promjeni

$$W = \frac{nR}{\kappa - 1} \left(T_1 - T_2 \right) = \frac{nRT_1}{\kappa - 1} \left(1 - \frac{T_2}{T_1} \right) = \frac{pV}{\kappa - 1} \left(1 - \frac{T_2}{T_1} \right)$$

$$T = konst.: W = nRT \ln \frac{V_2}{V_1} = nRT \ln \frac{p_2}{p_1}$$

Toplinski (Carnotov) stroi

$$W = Q_1 + Q_2 = |Q_1| - |Q_2| = Q_1 \left(1 - \frac{T_2}{T_1}\right)$$

$$\eta = \frac{\textit{W}}{\textit{Q}_1} = \frac{\left|\textit{Q}_1\right| - \left|\textit{Q}_2\right|}{\textit{Q}_1} \qquad \quad \epsilon = \frac{\textit{Q}_2}{\textit{W}}, \label{eq:eta_sigma}$$

Entropija

$$S_2 - S_1 = \int_1^2 \frac{\partial Q}{T}$$
 $S = k \cdot \ln P$

KINETIČKO-MOLEKULARNA TEORIJA TOPLINE

$$\begin{split} p &= \frac{1}{3} \frac{N}{V} m \overline{v^2} = \frac{1}{3} \rho \cdot v_{ef}^2 \\ v_{ef} &= \sqrt{\overline{v^2}} = \sqrt{\frac{3pV}{m}} = \sqrt{\frac{3RT}{M}} \\ E_k &= \frac{3}{2} kT \qquad U = \frac{i}{2} NkT = \frac{i}{2} nRT \end{split}$$

Maxwellova razdioba

$$\begin{split} N_{\rm v} &= \frac{\mathrm{d}\,N}{\mathrm{d}\,\mathrm{v}} = \frac{4N}{\sqrt{\pi}} \left(\frac{m}{2kT}\right)^{\frac{3}{2}} v^2 \exp\!\left(-\frac{mv^2}{2kT}\right) \\ v_{\rm max} &= \sqrt{\frac{2kT}{m}} = \sqrt{\frac{2kT}{M}} \qquad \overline{v} = \sqrt{\frac{8kT}{\pi \cdot m}} = \sqrt{\frac{8RT}{\pi \cdot m}} \end{split}$$

Maxwell-Boltzmannova razdioba

$$\begin{split} N_{\rm E} &= \frac{\mathrm{d}\,N}{\mathrm{d}\,E} = \frac{2\,N}{\sqrt{\pi\cdot k^3 T^3}} \sqrt{E}\,\exp\!\left(-\frac{E}{kT}\right) \\ E_{\rm max} &= \frac{kT}{2} \qquad \qquad \overline{E} = \frac{3}{2}\,kT \end{split}$$

Molarni toplinski kapaciteti

$$C_{\rm v} = \frac{i}{2}R \qquad \qquad C_{\rm p} = \frac{i+2}{2}R$$

Van der Waalsova jednadžba

$$\left(p + n^2 \frac{a}{V^2}\right)(V - nb) = nRT$$

$$a = \frac{27}{64} \frac{R^2 T_e^2}{p_e} \qquad b = \frac{RT_e}{8p_e}$$

TITRANJE

Elastičnost materijala

$$\frac{F}{S} = E \frac{\Delta x}{r}$$

$$M = 1$$

$$M = D\vartheta \qquad D = \frac{\pi}{2} \frac{r^4}{l} G$$

Harmonički oscilator

$$m\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + ks = 0 \qquad s = A \sin(\omega \cdot t + \varphi_0)$$

$$T = 2\pi \sqrt{\frac{m}{k}} \qquad E = \frac{1}{2} kA^2$$

Matematičko njihalo

$$\frac{d^2 \vartheta}{dt^2} = -\frac{g}{l} \vartheta \qquad T = 2\pi \sqrt{\frac{l}{g}}$$

$$T_g = T(1 + \frac{1}{4} \sin^2 \frac{\vartheta}{2})$$

Fizičko njihalo

$$I\frac{\mathrm{d}^2\,\vartheta}{\mathrm{d}\,t^2} + mgL\vartheta = 0\,,\ T = 2\pi\sqrt{\frac{I}{mgL}}\,\,,\ l_r = \frac{I}{mL}$$

Prigušeno titranje

$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + 2\delta \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0^2 s = 0$$

$$s(t) = A \cdot e^{-\delta \cdot t} \sin(\omega \cdot t + \varphi), \ \omega = \sqrt{\omega_0^2 - \delta^2}, \ \lambda = \delta \cdot T$$

Prisilno titranje

$$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} + 2\delta \frac{\mathrm{d}s}{\mathrm{d}t} + \omega_0^2 s = A_0 \sin \omega t, \ A_0 = \frac{F}{m}$$

$$s(t) = A(\omega) \sin(\omega t + \varphi)$$

$$A(\omega) = \frac{A_0}{\sqrt{\left(\omega_0^2 - \omega^2\right)^2 + 4\delta^2 \omega^2}}, \quad \tan \varphi = \frac{2\delta\omega}{\omega_0^2 - \omega^2},$$

$\omega_r = \sqrt{\omega_0^2 - 2\delta^2}$

Frekvencija udara

$$\omega = \frac{\omega_1 + \omega_2}{2} \qquad f = \frac{\omega_1 - \omega_2}{2\pi}$$

MEHANIČKI VALOVI

$$v = \lambda f, \frac{\partial^2 s}{\partial x^2} - \frac{\mu}{F} \frac{\partial^2 s}{\partial t^2} = 0$$

$$s = A \sin(\omega \cdot t - kx), \ k = \frac{2\pi}{\lambda}, \ \overline{P} = \frac{A^2}{2} k\omega F$$

Transverzalni stojni valovi na užetu

$$v = \sqrt{\frac{F}{\mu}}$$
, $s_n = 2A \sin(k_n x) \cos(\omega_n t)$, $\lambda_n = \frac{2l}{n}$

čvrst-čvrst:

 $\lambda_n = 2L/n$ $\lambda_n = \frac{4L}{2n-1}$

čvrst-slobodan: slobodan-slobodan:

 $\lambda_n = 2L/n, n = 1, 2, 3, \dots$

Longitudinalni valovi

u čvrstom tijelu:
$$v = \sqrt{\frac{E}{\Omega}}$$

$$u \text{ kapljevini:}$$
 $v = \sqrt{\frac{1}{K\rho}}$

v =
$$\sqrt{\frac{\kappa \cdot p}{\rho}} = \sqrt{\kappa \frac{RT}{M}}$$

Zvuk. Dopplerova pojava

$$L = 10 \cdot \log \frac{I}{I_0} = 20 \cdot \log \frac{\Delta P_{\text{max}}}{(\Delta P_{\text{max}})_0}, I_0 \rightleftharpoons 10^{-12} \text{ Wm}^{-2}$$

$$f_p = f_i \frac{v - \vec{r}_0 \cdot \vec{v}_p}{v - \vec{r}_0 \cdot \vec{v}_s}$$

Optički Dopplerov efekt

$$T' = T \sqrt{\frac{1 + v/c}{1 - v/c}}$$
 $f' = f \sqrt{\frac{1 - v/c}{1 + v/c}}$

relativni pomak z:
$$z = \frac{\lambda - \lambda_0}{\lambda_0} = \frac{\Delta \lambda}{\lambda_0}$$

$$z = v/c = \beta$$
 (za male brzine)

$$z = \sqrt{\frac{1 + v/c}{1 - v/c}} + 1$$
 (relativistički)

ELEKTRICITET I MAGNETIZAM

Coulombov zakon

1. Sila između dva točkasta naboja: $\vec{F}_2 = k \frac{q_1 q_2}{r^2} \vec{r}_{21}$,

$$gdje\ je\ k = \frac{1}{4\pi\epsilon_0} \approx 9\cdot 10^9 \ \text{Nm}^2\text{C}^{-2}, \ \vec{r}_{21} \ jedinični$$

vektor usmjeren od naboja 1 prema naboju 2, a \vec{F}_2 sila koja djeluje na naboj 2. Električni naboji q1 i q2 su skalarne veličine s predznakom i jedinicom

 Ukupna sila n točkastih naboja koji djeluju na naboj q, kojem poznajemo položaj (koordinate x, y

$$\vec{F}_{0} = kq_{0}\sum_{i=1}^{n}\frac{q_{i}}{r_{0i}^{2}}\hat{r_{0i}} = kq_{0}\sum_{i=1}^{n}\frac{q_{i}}{\left|\vec{r_{0}}-\vec{r_{i}}\right|^{3}}\left(\vec{r_{0}}-\vec{r_{i}}\right),\,gdje\,je$$

 \vec{r}_{oi} vektor od i-tog naboja sustava do točke (x, y, z), a \vec{r}_{oi} pripadni jedinični vektor. $(\vec{r}_{oi} \cdot \vec{r}_{oi} = r_{oi}^2)$.

Jakost električnog polja

$$\vec{E} = \frac{\vec{F}}{O}$$

Jakost električnog polja na udaljenosti r od naboja Q:

$$\vec{E} = \frac{1}{4\pi\epsilon} \frac{Q}{r^2} \vec{r}_0.$$
 Izraz vrijedi i za polje nabijene kugle

polumjera R, u području $r \ge R$. Dielektrična konstanta iznosi $\varepsilon = \varepsilon_0 \cdot \varepsilon_n$, gdje je ε_r relativna dielektrična konstanta.

Električno polje sustava naboja:

$$\vec{E} = \sum_{i=1}^{n} \frac{1}{4\pi\epsilon} \frac{q_i}{r_{0i}^2} \hat{\mathbf{r}}_{0i}, \ gdje \ je \ \vec{r}_{0i} \ \ vektor \ od \ i-tog \ naboja$$

sustava do točke (x, y, z), a $\hat{\mathbf{r}}_{0l}$ pripadni jedinični vektor.

Polje vrlo dugog ravnog vodiča:

$$\vec{E} = \frac{\lambda}{2\pi\epsilon} \vec{r_0}$$
, λ – linijska gustoća naboja; $\vec{r_0}$ – jedinični vektor

Polje ravnomjerno nabijene beskonačne ravnine:

$$\vec{E} = \frac{\sigma}{2\epsilon} \vec{x}_{o}$$
; σ -plošna gustoća naboja na ravnini,

 \vec{x}_0 – jedinični vektor okomit na ravnimi. Izraz vrijedi i za slučaj ravnomjerno raspoređenog naboja po zamišljenoj ravnini, koji stvara električno polje s obje strane.

Polje ravnomjerno nabijene beskonačne metalne ploče:

$$\vec{E} = -\frac{\sigma}{c} \vec{x}_0$$
; σ – plošna gustoća naboja na jednoj

strani ploče, \vec{x}_0 – jedinični vektor okomit na nabijenu ploču i okrenut prema dielektriku. Izraz vrijedi i za polje u neposrednoj blizini metalne elektrode proizvoljnog oblika, ali tada za σ , koja se sada mijenja po elektrodi, treba uzeti vrijednost na mjestu elektrode tik uz promatranu točku u dielektriku.

Polje između dviju ravnomjerno i suprotno nabijenih paralelnih ravnina:

$$\vec{E} = \frac{\sigma}{c} \vec{x}_0$$

Proporcionalnost između vektora električnog pomaka i jakosti električnog polija: $\vec{D} = \epsilon \cdot \vec{E}$ Električni dipolni moment: $\vec{p} = \vec{d} \cdot Q$ Moment para sila na dipol u homogenom električnom polju: $\vec{M} = \vec{p} \times \vec{E}$ Potencijalna energija dipola: $U = -\vec{p} \cdot \vec{E}$

Gaussov zakon

$$\iint_{\mathcal{S}} \vec{D} \cdot \mathrm{d} \, \vec{S} = \left(\sum_{i} q_{i} \right)_{\mathcal{S}}, \, odnosno \, tok \, vektora$$

električnog pomaka \vec{D} kroz bilo koju zatvorenu plohu, tj integral $\iint \vec{D} \cdot d\vec{S}$ po toj plohi, jednak je ukupnom električnom naboju obuhvaćenom tom plohom.

Električni potencijal

Definicija:
$$V(P) = \frac{E_{\mathfrak{p}}(P)}{q} = -\int_{P}^{P} \vec{E} \cdot d\vec{s} + V(P_0); gdje$$

 $je\ P_0$ referentna točka, a P točka u kojoj računamo potencijal.

Razlika potencijala između dvije točke P₁ i P₂:

$$V(P_2) - V(P_1) = -\int_0^{P_2} \vec{E} \cdot d\vec{s}$$

Potencijal točkastog naboja:
$$V = \frac{1}{4\pi\epsilon_0} \frac{q}{r}$$

Električno polje je gradijent potencijala:

$$\vec{E} = -\operatorname{grad} V = -\left(\frac{\partial V}{\partial x}\vec{i} + \frac{\partial V}{\partial y}\vec{j} + \frac{\partial V}{\partial z}\vec{k}\right), \ (\vec{i}, \vec{j}, \vec{k}) \ -$$

jedinični vektori

Potencijal izolirane metalne kugle polumjera R:

$$V = \frac{1}{4\pi\epsilon_0} \frac{Q}{R}$$

Potencijalna energija sustava naboja:

Gustoća energije u električnom polju: $u = \frac{1}{2} \varepsilon_0 E^2$

Kapacitet vodiča: $C = Q/\Delta V$

Kapacitet **pločastog** kondenzatora: $C = \varepsilon_0 \varepsilon_r \frac{S}{d}$

Kapacitet cilindričnog kondenzatora:

$$C = \frac{2\pi\epsilon_0 l}{\ln(r_2/r_1)}; l - duljina \ cilindra, r - radius$$

cilindra, $r_2 > r_1$

Kapacitet kuglastog kondenzatora:

$$C = 4\pi\varepsilon_0 \frac{r_1 r_2}{r_2 - r}; r - radius kugle, r_2 \ge r_1$$

Paralelni spoj: $C = C_1 + C_2 + C_3 + \dots$ Serijski spoj: $1/C = 1/C_1 + 1/C_2 + 1/C_3 + \dots$ Električno polje u dielektriku između paralelnih

ploča:
$$\vec{E} = \frac{1}{\varepsilon_r} \vec{E}_0$$

Energija kondenzatora: $W = \frac{C \cdot U^2}{2} = \frac{Q^2}{2C} = \frac{Q \cdot U}{2}$

Gustoĉa energije u dielektriku: $w = \frac{1}{2} \varepsilon_0 \varepsilon_r E^2$

Električna struja, Ohmov zakon:

Ohmov zakon: $I = \frac{U}{R}$

Pad napona: U = RI

Električna struja: $I = \frac{\mathrm{d} q}{\mathrm{d} t}$

Gustoća struje: $j = \frac{I}{S}$

Serijski spoj otpora: $R = R_1 + R_2 + R_3 + ...$ Paralelni spoj otpora: $1/R = 1/R_1 + 1/R_2 + 1/R_3 + ...$

Električni otpor: $R = \rho \frac{l}{S}$

Ovisnost otpora o temperaturi: $R_2 = R_1 (1 + \alpha \Delta T)$

Veza između vodljivosti i otpornosti: $\sigma = \frac{1}{\rho}$; $G = \frac{1}{R}$

Električno polje u homogenoj žici: E = U/l

Napon na stezaljkama izvora: $U = E - R_0 I$

Snaga električne struje: P = UISnaga na omskome vodiču: $P = I^2R$

Kirchhoffova pravila:

- I. Zbroj jakosti struja koje ulaze u čvorište jednak je zbroju jakosti struja koje izlaze iz čvorišta.
- II. U svakoj zatvorenoj petlji zbroj svih elektromotornih sila jednak je zbroju svih padova napona na otpornicima: $\sum E_i = \sum R_i I_i$

Istosmjerna struja

RC strujni krug s baterijom: $I = \frac{E}{R} e^{-t/RC}$

Izbijanje kondenzatora preko otpornika R:

 $I = \frac{dQ}{dt} = -\frac{E}{R} e^{-i/RC}$

Vremenska konstanta RC kruga: T = R·C

Izmjenične struje

Efektivna vrijednost periodički promjenjive veličine, npr. struje i(t), definirana je kao

$$I_{\text{ef}} = \sqrt{\frac{1}{T}} \int_{0}^{T} i^{2}(t) \cdot dt$$

Efektivna vrijednost sinusoidalnog napona i struje:

$$U_{\rm ef} = \frac{U_{\rm max}}{\sqrt{2}}$$
; $I_{\rm ef} = \frac{I_{\rm max}}{\sqrt{2}}$

Induktivni otpor: $R_L = \omega L$

Kapacitivni otpor: $R_C = \frac{1}{\omega C}$

Impedancija: $Z = \sqrt{R^2 + (R_L - R_C)^2}$

Admitancija: $Y = \sqrt{G^2 + \left(\frac{1}{\omega L} - \omega C\right)^2}$

Ohmov zakon za izmjeničnu struju: $I = \frac{U}{Z} = U \cdot Y$

Radna snaga izmjenične struje: P = UI cos o

Jalova snaga: $Q = UI \sin \varphi$

Prividna snaga: $S = \sqrt{P^2 + Q^2}$

Faktor snage: $\cos \varphi = \frac{R}{Z}$

Rezonantna frekvencija: $f = \frac{1}{2\pi\sqrt{LC}}$

Transformatorski omjer: $U_1: U_2 = I_2: I_1 = N_1: N_2$

Trofazni sustav

 $U_{\rm R} = U_{\rm R_{\rm max}} \sin \omega t$

Trofazni napon: $U_S = U_{S_{max}} \sin(\omega t + 2\pi/3)$

$$U_{\rm T} = U_{\rm T_{\rm max}} \sin(\omega t + 4\pi/3)$$

$$I_{\rm R} = I_{\rm R_{\rm max}} \sin \omega t$$

Trofazna struja: $I_S = I_{S_{max}} \sin(\omega t + 2\pi/3)$

$$I_{\rm T} = I_{\rm T_{\rm max}} \sin(\omega t + 4\pi/3)$$

Simetrični trofazni sustav u spoju zvijezda

Linijski napon (napon između dvije faze, npr. R i S)

$$U_{\rm RS} = \sqrt{3} \cdot U_{\rm R_{\rm max}} \sin(\omega t - \pi/6)$$

Odnos faznih i linijskih napona:

 $U_{\rm RS} = U_{\rm RT} = U_{\rm ST} = \sqrt{3} \cdot U$, gdje je

 $U = U_{OR} = U_{OS} = U_{OT}$ fazni napon. Za trokutni spoj

Snaga trofaznih sustava jednaka je zbroju snaga pojedinih faza, a u slučaju simetričnog sustava vrijedi P = 3·U·I, gdje su s U i I označeni fazni napon i fazna struja.

MAGNETIZAM

Magnetsko polje

Magnetska sila između dva naboja koji se gibaju:

$$\vec{F} = \frac{\mu_0}{4\pi} \frac{q \cdot q'}{r^2} \vec{v} \times (\vec{v}' \times \vec{r})$$

Magnetsko polje točkastog naboja:

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q'}{r^2} (\vec{v}' \times \vec{r})$$

Gaussov zakon za magnetizam: $\oint \vec{B} \cdot d\vec{S} = 0$

Biot-Savartov zakon: $d\vec{H} = \frac{1}{4\pi} \frac{I d\vec{l} \times \frac{\vec{r}}{r}}{r^2}$

Jakost magnetskog polja na osi prstena

postavljenog u x-y ravnini: $H_z = \frac{b^2 I}{2(b^2 + z^2)^{3/2}}$

gdje je b polumjer prstena. Jakost polja u središtu prstena dobije se uvrštavajući z=0 u gornju jednadžbu. akost mas soleno Jakost magnetskog polja cilindrične zavojnice -

solenoida:
$$H_z = \frac{I \cdot n}{2} (\cos \theta_1 - \cos \theta_2)$$
, gdje je n broj

zavoja po jedinici duljine duž zavojnice.

Jakost magnetskog polja na udaljenosti a od ravnog

vodiča:
$$H = \frac{I}{2\pi \cdot a}$$

Sile po jedinici duljine između dvaju paralelnih vodiča kroz koje teku struje I_1 i I_2 udaljenih za a:

$$F = \left(\frac{\mu_0}{4\pi}\right) \left(\frac{2I_1I_2}{a}\right)$$

Ampereov zakon: $\oint \vec{H} \cdot d\vec{l} = \sum I$

Kružna staza u magnetskom polju: $r = \frac{p}{aB}$

Ciklotronska frekvencija:
$$f = \frac{qB}{2\pi m}$$

Lorentzova sila:
$$\vec{F} = q\vec{E} + q\vec{v} \times \vec{B}$$

Sila na segment vodiča: $d\vec{F} = I d\vec{l} \times \vec{B}$ Veza između jakosti magnetskog polja i magnetske

indukcije:
$$H = \frac{B}{\mu}$$
, gdje je $\mu = \mu_0 (1 + \chi_m)$

magnetska permeabilnost.

Elektromagnetska indukcija

Inducirana EMS u vodljivom štapu duljine l koji se giba u magnetskom polju B brzinom v okomitom i na B i na l: U_{ind} = vBl

Faradayev zakon:

$$U_{\text{ind}} = -\frac{\mathrm{d}\,\Phi_{\scriptscriptstyle B}}{\mathrm{d}\,t}$$
, integralni oblik

$$\oint_{\text{zatvoreni put}} \vec{E} \cdot d\vec{s} = -\frac{d\Phi_{\scriptscriptstyle B}}{dt}$$

Magnetski tok:
$$\Phi_B = \iint \vec{B} \cdot d\vec{S}$$

Međuvodička indukcija:
$$U_{21} = -M_{21} \frac{dI_1}{dt}$$

Samoindukcija:
$$U_s = -L \frac{dI}{dt}$$

Samoinduktivitet zavojnice po jedinici duljine: $\mu_0 n^2 \pi \cdot b^2$, gdje je n broj zavoja po jedinici duljine, a b radius solenoida.

Samoinduktivitet toroidalne zavojnice.

$$L = \frac{\mu_0}{2\pi} N^2 h \ln \left(\frac{b}{a}\right)$$

Samoinduktivitet ravnog vodiča:

$$L = 2\mu \cdot l(\ln(2l/r) - 0.75); r - radius vodiča, l -$$

duljina vodiča, l » r

Samoinduktivitet koaksijalnog kabela:

$$L = 2\mu \cdot l \left(\ln(r_v/r_u) - 0.25 \right); r_v - vanjski radius, r_u - unutarnji radius, $l - duljina \ kabela$
Magnetska energija u zavojnici: $W_L = \frac{1}{2} L I^2$$$

Gustoća magnetske energije: $w_B = \frac{1}{2\mu_0} B^2$

Istosmjerni RL strujni krug

Uključivanje:
$$I = \frac{E}{R} \left(1 - e^{-\frac{R}{L}t} \right)$$

Isključivanje:
$$I = \frac{E}{D}e^{-\frac{R}{L}t}$$

Vremenska konstanta RL kruga: T = L/R

MAXWELLOVE JEDNADŽBE

$$\iint \vec{D} \, d\vec{S} = \iiint \rho \, dV$$

$$\iint \vec{B} \, d\vec{S} = 0$$

$$\oint \vec{E} \, d\vec{s} = -\frac{\partial}{\partial t} \oiint \vec{B} \, d\vec{S}$$

$$\oint_{K} \vec{H} \, d\vec{s} = \iint_{S} \vec{J} \, d\vec{S} + \frac{\partial}{\partial t} \iint_{S} \vec{D} d\vec{S}$$

$$\operatorname{div} \vec{D} = \rho$$

$$\operatorname{div} \vec{B} = 0$$

$$\operatorname{rot} \vec{E} = -\frac{\partial \vec{B}}{\partial t}$$

$$\operatorname{rot} \vec{H} = \vec{J} + \frac{\partial \vec{L}}{\partial t}$$

$$w_{\rm el} = \frac{1}{2} \varepsilon \cdot E^2, \ w_{\rm m} = \frac{1}{2} \mu \cdot H^2$$

ELEKTROMAGNETSKI VALOVI

Valna jednadžba za električno polje \vec{E} .

$$\Delta \vec{E} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

 $\Delta \vec{E} = (\nabla^2)\vec{E}$ je Laplaceov operaror koji djeluje na vektor \vec{E} :

$$\Delta \vec{E} = \Delta E_{,i} + \Delta E_{,j} + \Delta E_{,k}$$

$$= \left(\frac{\partial^2 E_x}{\partial x^2} + \frac{\partial^2 E_x}{\partial y^2} + \frac{\partial^2 E_x}{\partial z^2}\right) \vec{i} +$$

$$+\left(\frac{\partial^2 E_y}{\partial x^2} + \frac{\partial^2 E_y}{\partial y^2} + \frac{\partial^2 E_y}{\partial z^2}\right)\vec{j} +$$

$$+\left(\frac{\partial^2 E_z}{\partial x^2} + \frac{\partial^2 E_z}{\partial y^2} + \frac{\partial^2 E_z}{\partial z^2}\right) \vec{k}$$

$$v = \frac{1}{\sqrt{\varepsilon_{\mu}}}$$
, $c = \frac{1}{\sqrt{\varepsilon_{\mu}\mu_{\mu}}}$

$$\begin{split} \vec{E} &= \vec{E}_0 \sin \left(\omega \cdot t - \vec{k} \cdot \vec{r}\right), \ \vec{B} = \vec{B}_0 \sin \left(\omega \cdot t - \vec{k} \cdot \vec{r}\right), \\ E_0 &= vB_0, \ \vec{E} = \frac{1}{\sqrt{c_0}} \left(\vec{B} \times \vec{u}\right), \ \frac{E_0}{H} = \frac{377 \ \Omega}{\sqrt{c_0}} \end{split}$$

Ukupna gustoća energije: $w = \frac{1}{2} \varepsilon \cdot E^2 + \frac{1}{2u} B^2$

Poytingov vektor: $\vec{S} = \vec{E} \times \vec{H}$ $\vec{w} = \frac{1}{2} \mathcal{E}_o \hat{\mathcal{E}}_o^2$ $\vec{S} = \frac{1}{2} \mathcal{E}_o \hat{\mathcal{E}}_o^2 \mathcal{E}_o \hat{\mathcal{E}}_o \hat{\mathcal{E}}_o \hat{\mathcal{E}}_o^2$ $\vec{S} = \frac{1}{2} \mathcal{E}_o \mathcal{H}_o$

GEOMETRIJSKA OPTIKA 11)=771

Zakon loma

$$\frac{\sin u}{\sin l} = \frac{n_2}{n_1}, \quad n = \frac{c}{v}, \quad \sin u_g = \frac{n_2}{n_1}$$

Sferno zrcalo. Povećanje

$$\frac{1}{a} + \frac{1}{b} = \frac{2}{r} = \frac{1}{f}, m = -\frac{b}{a}$$

Planparalelna ploča

$$\Delta = d \sin u \left[1 - \frac{\cos u}{\sqrt{n^2 - \sin^2 u}} \right]$$

Prizma

$$\delta = u_1 - l_1 + u_2 - l_2$$
, $A = l_1 + l_2$, $n = \frac{\sin\left(\frac{\delta_{\min} + A}{2}\right)}{\sin\frac{A}{2}}$

Sferni dioptar. Tanka leća

$$\frac{n_1}{a} + \frac{n_2}{b} = \frac{n_2 - n_1}{r}, \ m = -\frac{n_1}{n_2} \cdot \frac{b}{a},$$

$$f_b - f_a = r \qquad \frac{f_b}{f_a} = \frac{n_2}{n_1}$$

$$\frac{1}{a} + \frac{1}{b} = \frac{n_2 - n_1}{n_1} \cdot \left(\frac{1}{r_1} - \frac{1}{r_2}\right) = \frac{1}{f} = J$$

FIZIKALNA OPTIKA

Interferencija

Uvjet za konstruktivnu interferenciju: optička razlika puta = $m\lambda$, m = 1, 2, 3,...Uvjet za destruktivnu interferenciju:

optička razlika puta = $(2m-1)\frac{\lambda}{2}$, m=1,2,3,...

Youngov pokus: $\frac{dy}{dt} = m\lambda$

Tanka ploča: $2d\sqrt{n^2-\sin^2 u}=(2m+1)\frac{\lambda}{2}$

Newtonovi kolobari

$$d = \frac{r^2}{2R} \cdot n \quad \text{(sredstvo } n \text{ u klinu)}$$

Svijetli kolobar (reflektirana svjetlost):

$$r_s = \sqrt{R(2m-1)\frac{\lambda}{2}}, m = 1, 2, 3,...$$

Tamni kolobar (reflektirana svjetlost):

$$r_i = \sqrt{Rm\lambda}, m = 0, 1, 2, 3, ...$$

Uvjeti (formule) su obratni za transmitiranu

Ogib (Difrakcija)

$$I(\alpha) = I_0 \frac{\sin^2 y}{v^2}, \ y = \frac{d\pi}{\lambda} \sin \alpha$$

uvjet za minimum: $d \sin\alpha = n\lambda$, $n = \pm 1, \pm 2, \pm 3,...$

$$I_D(\alpha) = I_0 \left[\frac{\sin \left(\frac{\pi \, d}{\lambda} \sin \alpha \right)}{\frac{\pi \, d}{\lambda} \sin \alpha} \right]^2 \left[\frac{\sin \left(\frac{2\pi \, D}{\lambda} \sin \alpha \right)}{\sin \left(\frac{\pi \, D}{\lambda} \sin \alpha \right)} \right]^2$$

$$I(\alpha) = I_0 \left[\frac{\sin \left(\frac{\pi \, b}{\lambda} \sin \alpha \right)}{\frac{\pi \, b}{\lambda} \sin \alpha} \right]^2 \left[\frac{\sin \left(\frac{N \pi \, d}{\lambda} \sin \alpha \right)}{\sin \left(\frac{\pi \, d}{\lambda} \sin \alpha \right)} \right]^2$$

uvjet za maksimum: $d \sin\alpha = m\lambda$, $m = 0, \pm 1, \pm 2,...$ moć razlučivanja rešeteke, disperzija spektra:

$$\frac{\Delta \lambda}{\lambda} = \frac{1}{mN}, \ \frac{d\alpha}{d\lambda} = \frac{m}{d\cos\alpha}$$

Polarizaciia

Brewsterov zakon: $\tan u_B = (n_2/n_1)$ Malusov zakon:

 $I = I_0 \cos^2 \varphi$

Polaroid: $I = \frac{1}{2}I_0$

FOTOMETRIJA

$$d\Phi = I d\omega, E = \frac{d\Phi}{dS} = \frac{I}{r^2} \cos\beta$$

$$d\Phi' = d\Phi \frac{r^2}{r^2} \qquad \mathcal{I} = \frac{\Phi}{4\pi}$$

$$dI = \frac{d^2 \Phi}{d\Omega} = L dA \cos \alpha = I_0 \cos \alpha$$

$$d\Omega = \frac{dS}{r^2} = \sin \alpha \cdot d\alpha \cdot d\varphi, \ \Delta\Omega = \frac{\Delta S}{r^2}$$

$$L = \frac{d^2\Phi}{dQdA\cos\alpha} \qquad R = \frac{d\Phi}{dA}$$

KVANTNA PRIRODA SVJETLOSTI

Stefan-Boltzmannov zakon

$$I = \int_{0}^{\infty} f(\lambda, T) d\lambda, I = \sigma T^{4}$$

Wienov zakon: $\lambda_{\rm m}T = 2,898 \cdot 10^{-3} \text{ mK}$

Planckov zakon zračenja

$$f(\lambda, T) = \frac{2\pi hc^2}{\lambda^5} \cdot \frac{1}{\exp(\frac{hc}{\lambda kT}) - 1}$$

$$\mathbf{f}(f,T) = \frac{2\pi h}{c^2} \cdot \frac{f^3}{\exp(\frac{hf}{kT}) - 1}$$

$$\overline{E} = \frac{hf}{e^{\frac{hf}{kT}} - 1}$$

Fotoelektrični efekt

$$E = h \cdot f, \ \frac{mv^2}{2} \le hf - W_i$$

$$W_i = h \cdot f_{gr} = h \cdot \frac{c}{\lambda_{gr}}$$

Comptonov efekt

$$hf + mc^2 = hf' + ymc^2,$$

 $(\gamma mv)^2 = \left(\frac{hf}{c}\right)^2 + \left(\frac{hf'}{c}\right)^2 - \frac{2h^2ff'}{c^2}\cos\theta$

$$\gamma = (1 - v^2/c^2)^{-\frac{1}{2}}$$

$$\Delta \lambda = \lambda' - \lambda = \frac{2h}{mc} \sin^2 \frac{\theta}{2}, \quad \frac{h}{mc} = 2,42 \cdot 10^{-12} \text{ m}$$

STRUKTURA ATOMA

Bohrov model

$$\frac{1}{\lambda} = R\left(\frac{1}{k^2} - \frac{1}{n^2}\right), \ r_n = \frac{\varepsilon_0 h^2}{\pi \, mZc^2} \, n^2 \, \text{ as } n = 1, 2, 3, \dots$$

$$E_n = -\frac{Z^2 me^4}{\varepsilon_0 k^2 c^2} \cdot \frac{1}{n^2}, \ h v = E_n - E_k$$

Magnetski dipolni moment elektrona s orbitalnim kutnim momentom količine gibanja

$$\mu_L = \frac{e}{2m}L = \frac{e\hbar}{2m}\sqrt{\ell(\ell+1)}$$

Magnetski spinski moment elektrona sa spinskim kutnim momentom količine gibanja

$$\mu_s = \frac{e}{m} L_s = \frac{e}{m} \hbar \sqrt{s(s+1)}$$

Zeemanov efekt

$$E_{\scriptscriptstyle n,l,m} = -\frac{Z^2 m e^4}{8 h^2 \varepsilon_0^2} \cdot \frac{1}{n^2} + \mu_{\scriptscriptstyle B} \cdot m \cdot B$$

$$za m = 0, \pm 1, \pm 2, ... \pm \ell$$

Moseleyev zakon

$$hf = E_n - E_k = 13,6(Z - a)^2 \cdot (\frac{1}{k^2} - \frac{1}{n^2})$$
 [eV]

K–serija a ≈ 1

$$f = cR\left(1 - \frac{1}{n^2}\right)(Z - a)^2$$

L-serija a ≈ 7,4

$$f = cR \left(\frac{1}{2^2} - \frac{1}{n^2}\right) (Z - a)^2$$

Braggov zakon

$$2d \sin \vartheta = n\lambda, n = 1, 2, 3,...$$

De Broglieve relacije

$$\gamma mc^2 = hf, \ p = \gamma \ mv = \frac{h}{\lambda}$$

ATOMSKA JEZGRA

Defekt mase

$$\Delta m = Zm_{\rm p} + Nm_{\rm n} - m_{\rm A}$$

Energija vezanja

$$E_{b} = [Zm_{p} + (A - Z)m_{n} - m_{A}] \cdot c^{2}$$

$$E_{b} = [Zm_{H} + (A - Z)m_{n} - m_{X}] \cdot c^{2}$$

Zakon radioaktivnog raspada

$$A = -\frac{\mathrm{d} N}{\mathrm{d} t} = \lambda N, \ N = N_0 \exp(-\lambda t), \ \lambda = \frac{\ln 2}{T_{02}}, \ \overline{T} = \frac{1}{\lambda}$$

Svojstva jezgre

$$R = r_0 \cdot A^{1/3} \quad r_0 \approx 1 \, fm = 10^{-15} \, m$$

Nuklearne reakcije (a +X → Y + b). Udarni presjek

$$Q = (m_{\rm X} + m_{\rm a}) \cdot c^2 - (m_{\rm Y} + m_{\rm b}) \cdot c^2, \ \ \sigma = \frac{\Delta N}{nN\Delta x}$$

$$\alpha$$
 - raspad:

$$_{z}^{A}X \rightarrow_{z-2}^{A-4}Y +_{2}^{4}\alpha$$

$$\beta^{\pm}$$
- raspad:

$${}_{z}^{A}X \rightarrow {}_{z+1}^{A}Y + \beta^{-} + \overline{\upsilon}_{e} \left({}_{0}^{1}n \rightarrow {}_{1}^{1}p + e^{-} + \overline{\upsilon}_{e} \right)$$

$${}_{z}^{A}X \rightarrow {}_{z-1}^{A}Y + \beta^{+} + \nu_{e} \left({}_{1}^{1}p \rightarrow {}_{0}^{1}n + e^{+} + \nu_{e} \right)$$

$$_{z}^{A}X^{*} \rightarrow _{z}^{A}X + \gamma$$

Rutherfordov diferencijalni udarni presjek za raspršenje čestice (bez spina) mase m i naboja q = ze na jezgri (naboj Q = Ze)

$$\sigma(9) = \frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega} = \frac{z^2 Z^2 e^4}{\left(4\pi\varepsilon_0\right)^2 4m^2 v^4} \cdot \frac{1}{\sin^4\frac{9}{2}}$$

TABLICA ELEMENATA

Z	X	A	Z	X	A	Z	X	A	Z	X	A	Z	X	A
1.	H	1,0079	23.	V	50,9415	45.	Rh	102,9055	67.	Но	164,9303	89.	Ac	_
2.	He	4,0026	24.	Cr	51,9961	46.	Pd	106,42	68.	Er	167,26	90.	Th	227,027
3.	Li	6,941	25.	Mn	54,9381	47.	Ag	107,8682	69.	Tm	168,9342	91.	Pa	232,038
4.	Be	9,0122	26.	Fe	55,847	48.	Cd	112,411	70.	Yb	173,04	92.	U	231,035
5.	В	10,811	27.	Co	58,9332	49.	In	114,82	71.	Lu	174,967	93.		238,028
6.	C	12,011	28.	Ni	58,69	50.	Sn	118,710	72.	Hf	178,49	94.	Np	237,048
7.	N	14,0067	29.	Cu	63,546	51.	Sb	121,75	73.	Ta	180,9479	95.	Pu	(244)
8.	0	15,9994	30.	Zn	65,39	52.	Te	127,60	74.	W	183,85	96.	Am	(243)
9.	F	18,9984	31.	Ga	69,723	53.	1	126,9045	75.	Re	186,207	97.		(247)
10.	Ne	20,1797	32.	Ge	72,61	54.	Xe	131,29	76.	Os	190,2	98.	Bq Cf	(247)
11.	Na	22,9898	33.	As	74,9216	55.	Cs	132,9054	77.	lr	192,22	99.	Es	(251)
12.	Mg	24,3050	34.	Se	78,96	56.	Ba	137,327	78.	Pt	195,08	100.	Fm	(252)
13.	Al	26,9815	35.	Br	79,904	57.	La	138,9055	79.	Au	196,9665	101.	Md	(257)
14.	Si	28,0855	36.	Kr	83,80	58.	Ce	140,115	80.	Hg	200,59	101.	No	(258)
15.	P	30,9738	37.	Rb	85,4678	59.	Pr	140,9077	81.	TI	204,3833	103.	Lr	(259) (260)
16.	S	32,066	38.	Sr	87,62	60.	Nd	144,24	82.	Pb	207,2	104.	Rf	(261)
18.	Ar	35,4527	39.	Y	88,9059	61.	Pm	(145)	83.	Bi	208,9804	105.	На	(262)
19.	K K	39,948	40.	Zr	91,224	62.	Sm	150,36	84.	Po	(209)	106.	****	(263)
20.	Ca	39,0983	41.	Nb	92,9064	63.	Eu	151,965	85.	At	(210)	107.		(262)
21.	Sc	40,078 44,9559	42.	Mo	95,94	64.	Gd	157,25	86.	Rn	(222)	108.		(265)
22.	Ti		43.	Tc	(98)	65.	Tb	158,9253	87.	Fr	(223)	109.		(266)
		47,88	44.	Ru	101,07	66.	Dy	165,50	88.	Ra	226,0254			

Z - redni broj

X - simbol kemijskog elementa

A - atomska masa

Temeljnih 12 fermiona u Standardnome modelu fizike čestica

Generacija (Pokoljenje)	Vrsta	Čestica (Simbol)	Masa (MeV/c^2)	Čestica (Simbol)	Masa (MeV/c²)
Prva Druga Treća	lepton lepton lepton	elektron (e ⁻) mion (μ ⁻) tau (τ ⁻)	0,511 105,66 1777,1	elektronski neutrino (ν_e) mionski neutrino (ν_{μ}) tau neutrino (ν_{τ})	<3x10 ⁻⁶ <0,19 <18,2
Prva Druga Treća	kvark kvark kvark	donji (d) strani (s) dubinski (b)	~ 6 ~ 120 ~ 4200	gornji (u) čarobni (c) vršni (t)	~3 ~1250 ~173 000

Mase kvarkova su strujne mase, a za neutrina su gornje granice njihovih masa uz granicu pouzdanosti 90 %. Jedinica mase jest 1 $MeV/c^2 = 1.78 \cdot 10^{-30} \text{ kg}$.

Čestice polja (bozoni) koje prenose temeljne sile između čestica u Standardnome modelu

SILA/POLJE	ČESTICA – PRIJENOSNICA (Simbol)	MASA (GeV/c²)	NABOJ / SPIN
gravitacijska	graviton (G)	0?	0/2
slaba nuklearna	W ⁺ i W ⁻ vektorski bozon (W) Z ⁰ vektorski bozon (Z)	80,399 91,187	±1/1 0/1
ektromagnetska	foton (γ)	0	0/1
jaka nuklearna	Gluon (g)	0	0/1

VAŽNIJE FIZIKALNE KONSTANTE

brzina svjetlosti u vakuumu	$c = 2,99792458 \cdot 10^8 \text{ m/s}$
elementarni električni naboj	$e = 1,602 \cdot 10^{-19} \mathrm{C}$
dielektrična konstanta vakuuma	$\varepsilon_0 = 8,854 \cdot 10^{-12} \text{F/m}$
permeabilnost vakuuma	$\mu_0 = 4\pi \cdot 10^{-7} \text{H/m}$
gravitacijska konstanta	$G = 6,6742 \cdot 10^{-11} \mathrm{Nm^2 kg^{-2}}$
Planckova konstanta	$h = 6,626069 \cdot 10^{-34} \text{Js}$
reducirana Planckova konstanta	$h = 1,054571 \cdot 10^{-34} \mathrm{Js}$
Boltzmannova konstanta	$k = 1,38065 \cdot 10^{-23} \text{J/k}$
plinska konstanta	$R = 8,314 \mathrm{Jmol}^{-1}\mathrm{K}^{-1}$
Avogadrov broj	$N_{\rm A} = 6.02214 \cdot 10^{23} \rm mol^{-1}$
normirani molarni volumen plina	$V_{mo} = 22,4\cdot10^{-3} \mathrm{m}^3\mathrm{mol}^{-1}$
Loschmidtov broj	$n_{\rm L} = 2.687 \cdot 10^{25} {\rm m}^{-3}$
Stefan-Boltzmannova konstanta	$\sigma = 5.67 \cdot 10^{-8} \text{Wm}^{-2} \text{K}^{-4}$
Rydbergova konstanta	$R_{\infty} = 1,0974 \cdot 10^7 \mathrm{m}^{-1}$
Rydbergova energija	$hcR_{\infty} = 13.605 \text{ eV}$
masa mirovanja elektrona	$m_{\rm e} = 9.1094 \cdot 10^{-31} \rm kg$
masa mirovanja protona	$m_{\rm p} = 1,6726 \cdot 10^{-27} \rm kg$
masa mirovanja neutrona	$m_{\rm n} = 1,6749 \cdot 10^{-27} \rm kg$
atomska masena konstanta	$m_{\rm u} = 1.66054 \cdot 10^{-27} \rm kg$
energijski ekvivalent atomske masene konstante	$\Delta E_{\rm u} = 931,494 {\rm MeV}$
pretvorbena konstanta.	$\hbar c = 197,327 \text{ MeV} \cdot \text{fm}$
standardna akceleracija slobodnog pada	$g = 9,80665 \mathrm{ms}^{-2}$
Faradayeva konstanta	F = 96485,31 C/mol
Comptonova valna duljina elektrona	$\lambda_{\rm C} = 2,4263 \cdot 10^{-12} {\rm m}$
Bohrov polumjer	$r_0 = 0.529177 \cdot 10^{-10} \mathrm{m}$
konstanta fine strukture	$\alpha = 7,297353 \cdot 10^{-3} = 1/137$
srednji polumjer Zemlje	6,37·10 ⁶ m
masa Zemlje	5,96·10 ²⁴ kg
polumjer Sunca	6,95·10 ⁸ m
masa Sunca	1,98·10 ³⁰ kg
polumjer Mjeseca	1,74·10 ⁶ m
masa Mjeseca	7,33·10 ²² kg
srednja udaljenost središta Zemlje i Sunca	1,49·10 ¹¹ m
srednja udaljenost središta Zemlje i Mjesecaophodno vrijeme Zemlje oko Sunca	3,84·10 ⁸ m
ophodno vrijeme Mjeseca oko Zemlje	365,25 dana
kutna brzina vrtnje Zemlje oko svoje osi	$27,32 \text{ dana} = 2,36 \cdot 10^6 \text{ s}$ $7,272 \cdot 10^{-5} \text{ rads}^{-1}$
Tanje Dennije oko svoje osi	7,272·10 rads