Simulation stochastique et méthodes bayésiennes pour le traitement du signal - 2018

TD3 : Estimation bayésienne Yann Traonmilin

Exercice 1. Soit X une v.a. telle que $X \sim \mathcal{N}(\theta_0, \sigma^2)$ où θ_0 est un paramètre inconnu.

- 1. Donner l'estimateur de maximum de vraisemblance de θ_0 . Déterminer le risque quadratique moyen de cet estimateur.
- 2. Si X_1 et X_2 sonts deux variables iid suivant la même loi $\mathcal{N}(\theta_0, \sigma^2)$. Donner l'estimateur de maximum de vraisemblance de θ_0 . Déterminer le risque quadratique moyen de cet estimateur.
- 3. Généraliser à n v.a. iid gaussiennes.

Exercice 2. Soit X une v.a. suivant une loi Bernouilli de paramètre θ , où θ est une v.a dont la loi a priori est définie par

$$\mathbb{P}(\theta = \theta_1) = p \text{ et } \mathbb{P}(\theta = \theta_2) = 1 - p.$$

- 1. Exprimer la loi $\pi(\theta|X=x)$.
- 2. Pour la fonction de coût $C(x,y) = |x-y|^2$, et l'estimateur défini par $\Delta(0) = \mu_1$ et $\Delta(1) = \mu_2$. Donner l'expression la fonction $\rho_C(\pi, \Delta | X = x)$, c'est à dire des deux valeurs $\rho_C(\pi, \Delta | X = 0)$ et $\rho_C(\pi, \Delta | X = 1)$. On posera $\lambda = \pi(\theta = \theta_1 | X = 1)$.
- 3. En déduire l'estimateur bayésien Δ^{π} .
- 4. On considère la fonction de coût définie par C(x,y)=0 si x=y et 1 sinon. Que vaut la fonction ρ_C si $\lambda > \frac{1}{2}$ et que vaut Δ^{π} ? Qu'en est il si $\lambda < \frac{1}{2}$? et si $\lambda = \frac{1}{2}$?.

Exercice 3. Soit X une v.a. suivant une loi normale $X \sim \mathcal{N}(\theta, 1)$ où la loi a priori sur θ est la même que dans l'exemple précédent.

- 1. Exprimer la loi $\pi(\theta|X=x)$.
- 2. Donner une expression de $\rho_C(\pi, \Delta | X = x)$ dans ce cas pour le coût $C(x, y) = |x y|^2$. En déduire comme dans l'exemple précédent une expression de Δ^{π} .
- 3. Reprendre la question pour la fonction de coût dite 0-1 de l'exemple précédent.

Exercice 4. Soit X suivant une loi de Bernoulli de paramètre θ où $\theta \sim \mathcal{U}[0,1]$.

- 1. Exprimer la loi $\pi(\theta|X=x)$.
- 2. Donner une expression de $\rho_C(\pi, \Delta | X = x)$ dans ce cas pour le coût $C = |\cdot|^2$. En déduire comme dans les exemples précédents une expression de Δ^{π} .

Exercice 5. On considère le coût

$$C(x,y) = ||x - y||_2^2. (1)$$

Montrer que

$$\Delta^{\pi}(x) = \mathbb{E}_{\pi}(\theta|x).$$

Exercice 6. Calculer l'estimateur bayésien pour le coût quadratique dans les cas suivants :

- 1. $X \sim \mathcal{N}(\theta, \sigma^2)$ et $\theta \sim \mathcal{N}(\mu, \tau^2)$.
- 2. $X \sim \mathcal{P}(\theta)$ et $\theta \sim Ga(\alpha, \beta)$.
- 3. $X \sim Ga(\nu, \theta)$ et $\theta \sim Ga(\alpha, \beta)$.
- 4. $X \sim B(n, \theta)$ et $\theta \sim Be(\alpha, \beta)$.

On rappelle que si $X \sim Ga(\alpha, \beta)$ alors $\mathbb{E}(X) = \frac{\alpha}{\beta}$ et si $X \sim Be(\alpha, \beta)$ alors $\mathbb{E}(X) = \frac{\alpha}{\alpha + \beta}$

Exercice 7. Soit (on utilise le modèle linéaire du cours)

$$\hat{\theta} = \arg \max_{\theta} \pi(\theta|y) = \arg \min_{\theta} \frac{\|y - M\theta\|_{2}^{2}}{2\sigma^{2}} + \frac{\|\theta\|_{2}^{2}}{2\mu^{2}}$$
(2)

Montrer que

$$\hat{\theta} = (M^T M + \lambda^2 I)^{-1} M^T y \tag{3}$$

où l'on déterminera λ .