An algorithm for finding factorizations of complete graphs

A. J. W. Hilton and Matthew Johnson
Department of Mathematics
University of Reading
Whiteknights
P.O. Box 220
Reading
RG6 6AX

Abstract

We show how to find a decomposition of the edge set of the complete graph into regular factors where the degree and edge-connectivity of each factor is given.

Let $t, n, k_1, k_2, \ldots, k_t, l_1, l_2, \ldots, l_t$ be nonnegative integers such that $\sum_i k_i = n-1$, if n is odd then each k_i is even, and for $1 \leq i \leq t$, $l_i \leq k_i$ and $l_i = 0$ if $k_i = 1$. We shall show how to find a factorization of K_n that contains an l_i -edge-connected k_i -factor, $1 \leq i \leq t$.

In the case where each $k_i = l_i = 2$, these factorizations are Hamiltonian decompositions, and there is an ancient and well-known method of construction. This method can be extended in a fairly obvious way to k-regular k-connected factorizations of K_{kn+1} , as shown in [1]; the only difficulty is showing that the k-factors are k-connected. Being k-connected, they are a fortiori k-edge-connected. The method is further extended in [3] to the

case where the factors have different degrees; see also [2]. Our algorithmic method is completely different. Perhaps the most interesting case is again the classical one where each $k_i = l_i = 2$, and even in this case we believe our method is new.

Let an edge between vertices u and v of K_n be denoted uv. Let $\mathcal{F} = (F_1, \ldots, F_t)$ be a collection of graphs on $V(K_n)$ such that for $1 \leq i \leq t$, F_i is l_i -edge-connected and k_i -regular. The graphs may have multiple edges but not loops. It is not difficult to construct such graphs; see, for example, [1]. Let f(uv) be the number of times that uv appears in the graphs of \mathcal{F} . Let the discrepancy of \mathcal{F} be denoted and defined by

$$\delta(\mathcal{F}) = \sum_{uv \in E(K_n)} |f(uv) - 1|.$$

The graphs of \mathcal{F} form a factorization of K_n if and only if $\delta(\mathcal{F}) = 0$. If $\delta(\mathcal{F}) > 0$, then we will find $\mathcal{G} = (G_1, \dots, G_t)$, another collection of graphs on $V(K_n)$ such that for $1 \leq i \leq t$, G_i is l_i -edge-connected and k_i -regular, with $\delta(\mathcal{G}) < \delta(\mathcal{F})$. By repetition, a factorization is found.

Note that

$$\sum_{u \in V(K_n) \setminus \{v\}} f(uv) = n - 1. \tag{1}$$

Thus the existence of an edge ac_1 such that $f(ac_1) > 1$ implies and is implied by the existence of an edge bc_1 such that $f(bc_1) < 1$. So there is no loss of generality in assuming that

$$f(ac_1) > 1, (2)$$

and

$$f(bc_1) < 1. (3)$$

For each graph $F_i \in \mathcal{F}$, we can find k_i neighbours of a and k_i neighbours of b in F_i by counting a vertex u as a neighbour of a more than once if

there is more than one edge au. We create k_i (a,b)-pairs in F_i by pairing off the neighbours of a with the neighbours of b in the following way. First, since F_i is l_i -edge-connected we can find l_i edge-disjoint a-b paths: let these be $au_j \cdots v_j b$, $1 \leq j \leq l_i$, and let (u_j, v_j) be an (a, b)-pair. Then for each edge ab in F_i , let (b, a) be an (a, b)-pair. Finally, pair off any remaining neighbours of a and b arbitrarily.

Assertion 1 There exists a sequence of vertices of K_n , $c_1, c_2, \ldots c_m$, $m \geq 2$, such that

- (I) $c_i \notin \{a, b\}, 1 \le j \le m$,
- (II) $c_j \neq c_h \text{ if } j \neq h$,
- (III) either $f(ac_m) = 0$ or $f(bc_m) > 1$ (possibly both), and
- (IV) for $1 \leq j \leq m-1$, there is a graph $F_{i_j} \in \mathcal{F}$ such that (c_j, c_{j+1}) is an (a, b)-pair in F_{i_j} .

Before we prove the Assertion, we find \mathcal{G} . For $1 \leq j \leq m-1$, in F_{i_j} delete the edges ac_j and bc_{j+1} and replace them with the edges ac_{j+1} and bc_j (as $c_j \notin \{a,b\}$, $1 \leq j \leq m$, we are not adding any loops). We call this an (a,b)-swap of c_j and c_{j+1} . Note that as the F_{i_j} are not necessarily distinct we may make several changes to a single graph. For $1 \leq i \leq t$, let G_i be the same as F_i except for these alterations; this yields \mathcal{G} .

It is clear that for $1 \leq i \leq t$, G_i is a k_i -regular graph on $V(K_n)$. We must show that it is l_i -edge-connected. Let F_i be a graph in \mathcal{F} . Recall that F_i contains the paths $au_j \cdots v_j b$, $1 \leq j \leq l_i$. Therefore any graph obtained from F_i by (a,b)-swaps also contains l_i edge-disjoint a-b paths since it contains either $au_j \cdots v_j b$ or $av_j \cdots u_j b$, $1 \leq j \leq l_i$. We use induction to show that any graph obtained from F_i by (a,b)-swaps is l_i -edge-connected. We know that F_i is l_i -edge-connected. Suppose that after some number of (a,b)-swaps we have obtained a graph L_1 that is l_i -edge-connected, and then we (a, b)-swap an (a, b)-pair (u, v) to obtain a graph L_2 . That is, au and bv are deleted in L_1 and replaced by av and bu to obtain L_2 . If L_2 is not l_i -edge connected, then we can find a minimal separating set of edges E such that $|E| < l_i$. We show that this implies that L_1 has a separating set of edges of the same size as E, a contradiction. Let L_3 and L_4 be the two connected components of $L_2 - E$. In L_2 there are l_i edge-disjoint a-b paths so a and b must be in the same component of $L_2 - E$, say L_3 . If u and v were both in L_3 as well, then we could reverse the (a, b)-swap of u and v to obtain $L_1 - E$ which would also have two components, a contradiction. If u and v were both in L_4 , then av and bu must both be in E. Thus $(E \setminus \{av, bu\}) \cup \{au, bv\}$ would be a separating set of L_1 , a contradiction. Finally, suppose that u is in L_3 and v is in L_4 . Then $av \in E$ and $bu \in L_3$. Let $E' = (E \setminus \{av\}) \cup \{bv\}$ and $L'_3 = (L_3 - \{bu\}) \cup \{au\}$. Thus $L_1 - E'$ has two connected components, L'_3 and L_4 . This final contradiction shows that G_i is l_i -edge-connected.

We show that \mathcal{G} has a smaller discrepancy than \mathcal{F} . For $2 \leq j \leq m-1$, ac_j is added to $F_{i_{j-1}}$ but removed from F_{i_j} so $f(ac_j)$ is unchanged; similarly $f(bc_j)$ is unchanged. The edge ac_1 is deleted from F_{i_1} (and not added to any other graph) and bc_1 is added to F_{i_1} . Also ac_m is added to $F_{i_{m-1}}$ and bc_m is removed from $F_{i_{m-1}}$. Thus

- $f(ac_1)$ is reduced by 1,
- $f(bc_1)$ is increased by 1,
- $f(ac_m)$ is increased by 1, and
- $f(bc_m)$ is reduced by 1.

By (2) and (3), the changes in $f(ac_1)$ and $f(bc_1)$ will cause the discrepancy to be reduced by 2. By (III), the changes in $f(ac_m)$ and $f(bc_m)$ either have

no effect on the discrepancy or cause it to be further reduced by 2. So the discrepancy of \mathcal{G} is at least 2 less than the discrepancy of \mathcal{F} . It only remains to prove the Assertion.

The first term of the sequence is known already. By (2), we can find a graph $F_{i_1} \in \mathcal{F}$ that contains ac_1 and so there is an (a, b)-pair (c_1, u) in F_{i_1} . As there are no loops $u \neq b$, and since for each edge ab we formed an (a, b)-pair (b, a), $c_1 \neq b$ implies that $u \neq a$. If $u = c_1$, then (3) is contradicted. So we can let $c_2 = u$.

Suppose that we have found the first s terms of the sequence and that this sequence satisfies (I), (II) and (IV) with m = s. If for some $h \in \{2, ..., s\}$ either $f(ac_h) = 0$ or $f(bc_h) > 1$, then we choose the smallest such h and let the complete sequence be $c_1, c_2, ..., c_h$. Otherwise for $2 \le j \le s$,

$$f(ac_j) \geq 1,$$

$$f(bc_j) \leq 1.$$

In fact, considering also (IV), for $2 \le j \le s$,

$$f(bc_i) = 1. (4)$$

Now we find c_{s+1} . As $f(ac_s) \geq 1$ we can find a graph $F_{i_s} \in \mathcal{F}$ that contains ac_s and hence an (a,b)-pair (c_s,v) ; $v \notin \{a,b\}$ for if $ab \in F_{i_s}$ then (b,a) is an (a,b)-pair. By (4), there is exactly one graph in \mathcal{F} that contains c_jb , $2 \leq j \leq s$, and, by (IV), c_j belongs to the (a,b)-pair (c_{j-1},c_j) ; thus $c_s \neq c_{j-1}$ implies that $v \neq c_j$. By (3), no graph in \mathcal{F} contains c_1b so $v \neq c_1$. So we can let $c_{s+1} = v$.

The sequence must terminate since there is a finite number of vertices and, by (1) and (2), there is at least one vertex w such that f(aw) < 1.

References

- H. Fleischner, A. J. W. Hilton and W. R. Johnstone, r-regular, r-connected decompositions of complete graphs, J. Combin. Designs, 8 (2000), 15-21.
- [2] A. J. W. Hilton and W. R. Johnstone, Some problems about r-factorizations of complete graphs, J. Combin. Math and Combin. Comput., 35 (2000), 3-49.
- [3] W. R. Johnstone, Decompositions of complete graphs, *Bull. London Math. Soc.*, **32** (2000), 141-145.