AVEGORIA: DIMOSTRA DIMOSTRA CHE ESISTE UNA MAT POR U PROBUSTA

Il problema dell'accettazione

Il problema dell'accettazione

AUTOMA A STAM ECULA DOTOMISTICO

■ Problema dell'accettazione: testare se un DFA accetta una stringa

 $A_{DFA} = \{ \langle B, w \rangle \mid \underline{B} \ \dot{\mathbf{e}} \ \text{un DFA che accetta la stringa } w \}$

- B accetta w se e solo se $\langle B, w \rangle$ appartiene ad A_{DFA}
- Mostrare che il linguaggio è decidibile equivale a mostrare che il problema computazionale è decidibile

■ Problema dell'accettazione: testare se un DFA accetta una

 $A_{DFA} = \{\langle B, w \rangle \mid B \text{ è un DFA che accetta la stringa } w\}$

- B accetta w se e solo se $\langle B, w \rangle$ appartiene ad A_{DFA}
- Mostrare che il linguaggio è decidibile equivale a mostrare che il problema computazionale è decidibile

Teorema: *A_{DFA}* è decidibile

MDT

Idea: definire una TM che decide ADFA

 $M = \text{"Su input } \langle B, w \rangle$, dove $B \in \text{un DF}$

- Simula B su input w
- 2 Se la simulazione termina in uno stato finale, accetta. Se termina in uno stato non finale, rifiuta.'

Dimostrazione:

- la codifica di B è una lista dell componenti Q, Σ, δ, q_0 e F
- fare la simulazione è facile

10/DEA WEALOR

Teorema: *A_{NFA}* è decidibile

Teorema: *A_{REX}* è decidibile

 $A_{NFA} = \{ \langle B, w \rangle \mid B \text{ è un } \varepsilon\text{-NFA che accetta la stringa } w \}$

Idea: usiamo la TM M che decide A_{DFA} come subroutine

Dimostrazione:

Altri:

 $N = \text{"Su input } \langle B, w \rangle$, dove $B \in \text{un } \varepsilon\text{-NFA e } w \text{ una stringa:}$

- Trasforma B in un DFA equivalente C usando la costruzione per sottoinsiemi
- **2** Esegui M con input $\langle C, w \rangle$
- 3 Se M accetta, accetta; altrimenti, rifiuta."

N è un decisore per A_{NFA} , quindi A_{NFA} è decidibile

ALTO LYUSUA A P

 $A_{REX} = \{\langle R, w \rangle \mid R \text{ è una espressione regolare che genera la stringa } w\}$

Idea: usiamo la TM N che decide A_{NFA} come subroutine

Dimostrazione:

P = "Su input $\langle R, w \rangle$, dove R è una espressione regolare e w una

- I Trasforma R in un ε -NFA equivalente C usando la procedura di conversione
- **2** Esegui *N* con input $\langle C, w \rangle$
- 3 Se N accetta, accetta; altrimenti, rifiuta."

P è un decisore per A_{REX} , quindi A_{REX} è decidibile

MPT DECIDE LZ DECISORE - N

 $EQ_{DFA} = \{ \langle A, B \rangle \mid A \in B \text{ sono DFA } \in L(A) = L(B) \}$

 $A_{CFG} = \{\langle G, w \rangle \mid G \text{ è una CFG che genera la stringa } w\}$

- 2. (12 punti) Una variabile A in una grammatica context-free G è persistente se compare in ogni derivazione di ogni stringa w in L(G). Data una grammatica context-free G e una variabile A, considera il problema di verificare se A è persistente.
 - (a) Formula questo problema come un linguaggio $PERSISTENT_{CFG}$.
 - (b) Dimostra che $PERSISTENT_{CFG}$ è decidibile.

2. (12 punti) Una variabile A in una grammatica context-free G è persistente se compare in ogni derivazione di ogni stringa w in L(G). Data una grammatica context-free G e una variabile A, considera il problema di verificare se A è persistente.

OUTPUT

- (a) Formula questo problema come un linguaggio $PERSISTENT_{CFG}$.
- (b) Dimostra che $PERSISTENT_{CFG}$ è decidibile.

(a) $PERSISTENT_{CFG} = \{(G,A) | G \text{ is una CFG}, A \text{ is una variable persistente}\}$

(b) La seguente macchina N usa la Turing machine M che decide E_{CFG} per decidere $PERSISTENT_{CFG}$

N = "su input $\langle G, A \rangle$, dove G è una CFG e A una variabile:

- 1. Verifica che A appartenga alle variabili di G. In caso negativo, rifiuta.
- Costruisci una CFG G' eliminando tutte le regole dove compare A dalla grammatica G.
- 3. Esegui M su input $\overline{\langle G' \rangle}$, e ritorna lo stesso risultato di M."

Mostriamo che N è un decisore dimostrando che termina sempre e che ritorna il risultato corretto. Verificare che una variabile appartenga alle variabili di G è una operazione che si può implementare scorrendo la codifica di G per controllare se A compare nella codifica. Il secondo passo si può implementare copiando la codifica di G senza riportare le regole dove compare A. Di conseguenza, il primo ed il secondo step terminano sempre. Anche il terzo step termina sempre perché sappiamo che $E_{\rm CFG}$ è un linguaggio decidibile. Quindi N termina sempre la computazione.

Vediamo ora che N dà la risposta corretta:

- Se $\langle G,A \rangle \in PERSISTENT_{CFG}$ allora A è una variabile persistente, quindi compare in ogni derivazione di ogni stringa $w \in L(G)$. Se la eliminiamo dalla grammatica, eliminando tutte le regole dove compare A, allora otteniamo una grammatica G' dove non esistono derivazioni che permettano di derivare una stringa di soli simboli terminali, e di conseguenza G' ha linguaggio vuoto. Quindi $\langle G' \rangle \in E_{CFG}$, e l'esecuzione di M terminerà con accettazione. N ritorna lo stesso risultato di M, quindi accetta.
- Viceversa, se $\langle G,A\rangle \in PERSISTENT_{CFG}$ allora A non è una variabile persistente, quindi esiste almeno una derivazione di una parola $w \in L(G)$ dove A non compare. Se eliminiamo A dalla grammatica, eliminando tutte le regole dove compare, allora otteniamo una grammatica G' che può derivare w, e di conseguenza G' ha linguaggio vuoto. Quindi $\langle G' \rangle \not\in E_{CFG}$, e l'esecuzione di M terminerà con rifiuto. N ritorna lo stesso risultato di M, quindi rifiuta.