# Введение в искусственный интеллект. Машинное обучение Тема: Бустинг

Бабин Д.Н., Иванов И.Е., Петюшко А.А.

кафедра Математической Теории Интеллектуальных Систем







AdaBoost





- AdaBoost
- AnyBoost



- AdaBoost
- AnyBoost
- 3 GB / SGB



- AdaBoost
- AnyBoost
- 3 GB / SGB
- TreeBoost



Обозначим взвешенную сумму выходов базовых классификаторов  $b_t(x)$  как  $a(x) = \sum_{t=1}^T \alpha_t b_t, \alpha_t \in \mathbb{R}$ .





Обозначим взвешенную сумму выходов базовых классификаторов  $b_t(x)$  как  $a(x) = \sum_{t=1}^T \alpha_t b_t, \alpha_t \in \mathbb{R}$ .

#### AdaBoost

- Базовые алгоритмы  $b_t(x)$  принимают значения из дискретного множества (например,  $\{-1,+1\}$ ),
- Функция потерь:  $e^{-y_i a(x_i)}$





Обозначим взвешенную сумму выходов базовых классификаторов  $b_t(x)$  как  $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}$ .

#### AdaBoost

- Базовые алгоритмы  $b_t(x)$  принимают значения из дискретного множества (например,  $\{-1,+1\}$ ),
- Функция потерь:  $e^{-y_i a(x_i)}$

## AnyBoost

- Базовые алгоритмы  $b_t(x)$  принимают значения из  $\mathbb{R}$ ,
- ullet Функция потерь  $L: \mathbb{R} o \mathbb{R}$  гладкая функция от  $y_i a(x_i)$

Обозначим взвешенную сумму выходов базовых классификаторов  $b_t(x)$  как  $a(x) = \sum_{t=1}^{T} \alpha_t b_t, \alpha_t \in \mathbb{R}$ .

#### AdaBoost

- Базовые алгоритмы  $b_t(x)$  принимают значения из дискретного множества (например,  $\{-1,+1\}$ ),
- Функция потерь:  $e^{-y_i a(x_i)}$

## AnyBoost

- ullet Базовые алгоритмы  $b_t(x)$  принимают значения из  $\mathbb{R}$ ,
- ullet Функция потерь  $L: \mathbb{R} o \mathbb{R}$  гладкая функция от  $y_i a(x_i)$

## **Gradient Boosting**

- Базовые алгоритмы  $b_t(x)$  принимают значения из  $\mathbb{R}$ ,
- Функция потерь  $L: \mathbb{R}^2 \to \mathbb{R}$  гладкая функция от пары  $(y_i, a(x_i))$





ullet Базовый алгоритм  $b_t:X o\{-1,+1\}$ 

- ullet Базовый алгоритм  $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты)  $W^m = (w_1, \dots, w_m)$ :  $w_i = e^{-y_i \sum_{t=1}^{T-1} lpha_t b_t(x_i)}$



- ullet Базовый алгоритм  $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты)  $W^m = (w_1, \dots, w_m)$ :  $w_i = e^{-y_i \sum_{t=1}^{T-1} lpha_t b_t(x_i)}$
- ullet Нормировка:  $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_j} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$



- ullet Базовый алгоритм  $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты)  $W^m = (w_1, \dots, w_m)$ :  $w_i = e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)}$
- ullet Нормировка:  $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_i} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$
- ullet Вероятностный вектор  $U^m = (u_1, \dots, u_m)$ :  $\sum_{i=1}^m u_i = 1, u_i \geq 0$ ,





- ullet Базовый алгоритм  $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты)  $W^m = (w_1, \dots, w_m)$ :  $w_i = e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)}$
- ullet Нормировка:  $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_i} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$
- ullet Вероятностный вектор  $U^m = (u_1, \dots, u_m)$ :  $\sum_{i=1}^m u_i = 1, u_i \geq 0$ ,
- Взвешенное число правильных классификаций алгоритма b(x) по вектору  $U^m$ :  $P(b; U^m) = \sum_{i=1}^m u_i [b(x) = y_i]$
- Взвешенное число ошибочных классификаций алгоритма b(x) по вектору  $U^m$ :  $N(b; U^m) = \sum_{i=1}^m u_i [b(x) = -y_i]$



- ullet Базовый алгоритм  $b_t: X o \{-1, +1\}$
- ullet Вектор весов (взвешиваем объекты)  $W^m = (w_1, \dots, w_m)$ :  $w_i = e^{-y_i \sum_{t=1}^{T-1} \alpha_t b_t(x_i)}$
- ullet Нормировка:  $\widetilde{w_i} = rac{w_i}{\sum_{i=1}^m w_i} \Rightarrow \sum_{i=1}^m \widetilde{w_i} = 1, 0 \leq \widetilde{w_i} \leq 1$
- ullet Вероятностный вектор  $U^m = (u_1, \dots, u_m)$ :  $\sum_{i=1}^m u_i = 1, u_i \geq 0$ ,
- Взвешенное число правильных классификаций алгоритма b(x) по вектору  $U^m$ :  $P(b; U^m) = \sum_{i=1}^m u_i [b(x) = y_i]$
- Взвешенное число ошибочных классификаций алгоритма b(x) по вектору  $U^m$ :  $N(b; U^m) = \sum_{i=1}^m u_i [b(x) = -y_i]$
- P + N = 1.





# Классический AdaBoost – теорема

Пусть A – достаточно богатое семейство базовых алгоритмов.

## Теорема

Если для любого нормированного вектора  $U^m$  существует алгоритм  $b \in A$ , т.ч.  $N(b; U^m) < \frac{1}{2}$ , то минимум аппроксимированного Э.Р.  $\widetilde{R}_T$  достигается на:

# Классический AdaBoost – теорема

Пусть A – достаточно богатое семейство базовых алгоритмов.

## Теорема

Если для любого нормированного вектора  $U^m$  существует алгоритм  $b \in A$ , т.ч.  $N(b; U^m) < \frac{1}{2}$ , то минимум аппроксимированного Э.Р.  $\widetilde{R}_T$  достигается на:

• 
$$b_T = \operatorname{arg\,min}_{b \in A} N(b; \widetilde{W}^m)$$



# Классический AdaBoost – теорема

Пусть A – достаточно богатое семейство базовых алгоритмов.

## Теорема

Если для любого нормированного вектора  $U^m$  существует алгоритм  $b \in A$ , т.ч.  $N(b; U^m) < \frac{1}{2}$ , то минимум аппроксимированного Э.Р.  $\widetilde{R}_T$  достигается на:

- $b_T = \operatorname{arg\,min}_{b \in A} N(b; \widetilde{W}^m)$
- $\alpha_T = \frac{1}{2} \ln \frac{1 N(b; \widetilde{W}^m)}{N(b; \widetilde{W}^m)}$





## Алгоритм

• Инициализация весов:  $w_i = \frac{1}{m}, i = 1, \dots, m$ ,

<sup>&</sup>lt;sup>1</sup>Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

## Алгоритм

ullet Инициализация весов:  $w_i = rac{1}{m}, i = 1, \dots, m$ ,

## $oxedsymbol{D}$ ля $t=1,\ldots,T$

• Обучение базового алгоритма  $b_t = \arg\min_{b \in A} N(b; \widetilde{W}^m)$ ,

<sup>&</sup>lt;sup>1</sup>Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

## Алгоритм

ullet Инициализация весов:  $w_i = \frac{1}{m}, i = 1, \dots, m$ ,

## $oxedsymbol{D}$ ля $t=1,\ldots,T$

- ullet Обучение базового алгоритма  $b_t = rg \min_{b \in A} \mathcal{N}(b; \widetilde{W}^m)$ ,
- ullet Вычисление нового веса  $lpha_t = rac{1}{2} \ln rac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)}$ ,

<sup>&</sup>lt;sup>1</sup>Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

## Алгоритм

ullet Инициализация весов:  $w_i = \frac{1}{m}, i = 1, \dots, m$ ,

## $oxedsymbol{\mathbb{Z}}$ Для $t=1,\ldots,T$

- ullet Обучение базового алгоритма  $b_t = \mathop{\sf arg\,min}_{b \in \mathcal{A}} N(b; \widetilde{W}^m)$ ,
- ullet Вычисление нового веса  $lpha_t = rac{1}{2} \ln rac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)}$ ,
- Обновление весов  $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m,$

<sup>&</sup>lt;sup>1</sup>Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"

## Алгоритм

ullet Инициализация весов:  $w_i = \frac{1}{m}, i = 1, \dots, m$ ,

## $oxedsymbol{\mathbb{Z}}$ Для $t=1,\ldots,T$

- ullet Обучение базового алгоритма  $b_t = \mathop{
  m arg\,min}_{b \in \mathcal{A}} N(b; \widetilde{W}^m)$ ,
- ullet Вычисление нового веса  $lpha_t = rac{1}{2} \ln rac{1 N(b_t; \widetilde{W}^m)}{N(b_t; \widetilde{W}^m)},$
- ullet Обновление весов  $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m,$
- ullet Перенормировка весов  $w_i := rac{w_i}{\sum_{i=1}^m w_i}, i=1,\ldots,m.$

<sup>&</sup>lt;sup>1</sup>Freund Y. and Schapire R.E (1997). "A decision-theoretic generalization of on-line learning and an application to boosting"





**Замечание** относительно шага обновления весов  $w_i := w_i e^{-\alpha_t y_i b_t(x_i)}, i = 1, \dots, m.$ 

ullet в ошибается на объекте  $x_i \Rightarrow y_i 
eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$ 





- ullet bt ошибается на объекте  $x_i \Rightarrow y_i 
  eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект  $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$



- ullet  $b_t$  ошибается на объекте  $x_i \Rightarrow y_i 
  eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект  $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку  $N(b;U^m)<rac{1}{2}$  для любого нормированного  $U^m$ , то  $lpha_t=rac{1}{2}\lnrac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>rac{1}{2}\lnrac{\frac{1}{2}}{rac{1}{2}}=rac{1}{2}\ln 1=0$



- ullet  $b_t$  ошибается на объекте  $x_i \Rightarrow y_i 
  eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект  $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку  $N(b;U^m)<rac{1}{2}$  для любого нормированного  $U^m$ , то  $lpha_t=rac{1}{2}\lnrac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>rac{1}{2}\lnrac{1}{rac{1}{2}}=rac{1}{2}\ln 1=0$
- ullet Вес объекта  $x_i$  увеличивается в  $e^{lpha_t}$  раз, когда  $b_t$  допускает на нем ошибку,



- ullet  $b_t$  ошибается на объекте  $x_i \Rightarrow y_i 
  eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект  $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- Поскольку  $N(b;U^m)<rac{1}{2}$  для любого нормированного  $U^m$ , то  $lpha_t=rac{1}{2}\lnrac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>rac{1}{2}\lnrac{1}{rac{1}{2}}=rac{1}{2}\ln 1=0$
- ullet Вес объекта  $x_i$  увеличивается в  $e^{lpha_t}$  раз, когда  $b_t$  допускает на нем ошибку,
- ullet Вес объекта  $x_i$  уменьшается в  $e^{lpha_t}$  раз, когда  $b_t$  правильно его классифицирует,



- ullet bt ошибается на объекте  $x_i \Rightarrow y_i 
  eq b_t(x_i) \Rightarrow y_i b_t(x_i) = -1$
- ullet правильно классифицирует объект  $x_i \Rightarrow y_i = b_t(x_i) \Rightarrow y_i b_t(x_i) = +1$
- ullet Поскольку  $N(b;U^m)<rac{1}{2}$  для любого нормированного  $U^m$ , то  $lpha_t=rac{1}{2}\lnrac{1-N(b_t;\widetilde{W}^m)}{N(b_t;\widetilde{W}^m)}>rac{1}{2}\lnrac{1}{rac{1}{2}}=rac{1}{2}\ln 1=0$
- ullet Вес объекта  $x_i$  увеличивается в  $e^{lpha_t}$  раз, когда  $b_t$  допускает на нем ошибку,
- ullet Вес объекта  $x_i$  уменьшается в  $e^{lpha_t}$  раз, когда  $b_t$  правильно его классифицирует,
- Т.о. наибольший вес будет у тех объектов, которые чаще неправильно классифицировались предыдущими алгоритмами (т.е. классификатору прежде всего нужно сосредоточиться именно на них!).



• После построения некоторого количества базовых алгоритмов (например,  $T=10\dots 30$ ) можно проанализировать распределение весов объектов:

- После построения некоторого количества базовых алгоритмов (например,  $T=10\dots 30$ ) можно проанализировать распределение весов объектов:
  - ullet Объекты с максимальными весами  $\widetilde{w}_i$ , скорее всего, являются шумовыми выбросами

- После построения некоторого количества базовых алгоритмов (например,  $T=10\dots 30$ ) можно проанализировать распределение весов объектов:
  - ullet Объекты с максимальными весами  $\widetilde{w_i}$ , скорее всего, являются шумовыми выбросами
  - Их нужно исключить из выборки

- После построения некоторого количества базовых алгоритмов (например,  $T=10\ldots 30$ ) можно проанализировать распределение весов объектов:
  - ullet Объекты с максимальными весами  $\widetilde{w}_i$ , скорее всего, являются шумовыми выбросами
  - Их нужно исключить из выборки
  - После чего начать построение композиции заново



- После построения некоторого количества базовых алгоритмов (например,  $T=10\dots 30$ ) можно проанализировать распределение весов объектов:
  - ullet Объекты с максимальными весами  $\widetilde{w}_i$ , скорее всего, являются шумовыми выбросами
  - Их нужно исключить из выборки
  - После чего начать построение композиции заново
- Бустинг можно использовать как универсальный метод фильтрации выбросов перед применением любого другого метода классификации



# Обобщающая способность бустинга: эмпирические замечания

 Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
  - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
  - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Теоретическое обоснование "на пальцах": взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов

- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
  - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Теоретическое обоснование "на пальцах": взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов
  - Т.к. стараемся увеличить величины  $y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)$



- Во многих экспериментах тестовая ошибка практически постоянно уменьшалась по мере увеличения числа алгоритмов в композиции
  - Часто тестовая ошибка уменьшалась даже после достижения нулевой ошибки на обучающей выборке!
- Теоретическое обоснование "на пальцах": взвешенное голосование не увеличивает эффективную сложность алгоритма (т.о. не переобучаемся), а сглаживает ответы базовых алгоритмов
  - Т.к. стараемся увеличить величины  $y_i \sum_{t=1}^{T} \alpha_t b_t(x_i)$
  - Тем не менее, бустинг не идеален: иногда получается его переобучить



ullet Пусть семейство базовых алгоритмов A конечно:  $|A|<\infty$ ,

ands"

<sup>&</sup>lt;sup>2</sup>R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods" a

- ullet Пусть семейство базовых алгоритмов A конечно:  $|A|<\infty$ ,
- Ансамбль  $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$  (без sign!),



<sup>2</sup>R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods" of

- ullet Пусть семейство базовых алгоритмов A конечно:  $|A|<\infty$ ,
- Ансамбль  $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$  (без sign!),
- D вероятностное распределение над  $X \times \{-1, +1\}$ ,



<sup>&</sup>lt;sup>2</sup>R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods" of

- ullet Пусть семейство базовых алгоритмов A конечно:  $|A|<\infty$ ,
- Ансамбль  $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$  (без sign!),
- D вероятностное распределение над  $X \times \{-1, +1\}$ ,
- S-m независимых примеров из D (например, множество  $X^m$ ). Тогда верна

- Пусть семейство базовых алгоритмов A конечно:  $|A| < \infty$ ,
- Ансамбль  $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$  (без sign!),
- D вероятностное распределение над  $X \times \{-1, +1\}$ .
- S-m независимых примеров из D (например, множество  $X^m$ ). Тогда верна

#### Теорема

Для  $\forall \theta > 0$ ,  $\forall 0 < \delta < 1$  с вероятностью  $1 - \delta$  верно следующее:

$$\mathsf{P}_D(ya(x) \leq 0) \leq \mathsf{P}_S(ya(x) \leq \theta) + \mathsf{O}\left(\sqrt{\frac{\ln m \ln |A|}{m\theta^2} + \frac{1}{m} \ln \frac{1}{\delta}}\right)$$



- ullet Пусть семейство базовых алгоритмов A конечно:  $|A|<\infty$ ,
- Ансамбль  $a(x) = \sum_{t=1}^{T} \alpha_t b_t(x)$  (без sign!),
- ullet D вероятностное распределение над  $X imes \{-1,+1\}$ ,
- S-m независимых примеров из D (например, множество  $X^m$ ). Тогда верна

#### Теорема

Для  $\forall \theta > 0$ ,  $\forall 0 < \delta < 1$  с вероятностью  $1 - \delta$  верно следующее:

$$\mathsf{P}_D(ya(x) \le 0) \le \mathsf{P}_S(ya(x) \le \theta) + \mathsf{O}\left(\sqrt{\frac{\ln m \ln |A|}{m\theta^2}} + \frac{1}{m} \ln \frac{1}{\delta}\right)$$

**Вывод**. Верхняя оценка не зависит от T: с увеличением T растет значение  $ya(x) \Rightarrow$  увеличивая  $\theta$ , уменьшим верхнюю оценку и в итоге улучшим обобщающую способность

<sup>&</sup>lt;sup>2</sup>R. Schapire et al (1998). "Boosting the margin: A new explanation for the effectiveness of voting methods" of

• Что использовать в качестве базовых классификаторов:



- Что использовать в качестве базовых классификаторов:
  - Чаще всего используют решающие деревья

- Что использовать в качестве базовых классификаторов:
  - Чаще всего используют решающие деревья
  - Также используют совсем вырожденные случаи т.н. "пни":  $b(x) = [f_j(x) \leqslant r_j]$ , где  $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$



- Что использовать в качестве базовых классификаторов:
  - Чаще всего используют решающие деревья
  - Также используют совсем вырожденные случаи т.н. "пни":  $b(x) = [f_j(x) \leqslant r_j]$ , где  $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
  - SVM используется редко (обучается достаточно долго, прироста большого не дает)

- Что использовать в качестве базовых классификаторов:
  - Чаще всего используют решающие деревья
  - Также используют совсем вырожденные случаи т.н. "пни":  $b(x) = [f_j(x) \leqslant r_j]$ , где  $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
  - SVM используется редко (обучается достаточно долго, прироста большого не дает)
- Если вдруг при обучении получается нулевая ошибка (N=0), то формула для выбора оптимального коэффициента приобретает вид  $lpha=rac{1}{2}\lnrac{1-N+rac{1}{m}}{N+rac{1}{m}}=rac{1}{2}\ln(m+1)$

- Что использовать в качестве базовых классификаторов:
  - Чаще всего используют решающие деревья
  - Также используют совсем вырожденные случаи т.н. "пни":  $b(x) = [f_j(x) \leqslant r_j]$ , где  $x = (f_1(x), \dots, f_n(x)) \in \mathbb{R}^n$
  - SVM используется редко (обучается достаточно долго, прироста большого не дает)
- Если вдруг при обучении получается нулевая ошибка (N=0), то формула для выбора оптимального коэффициента приобретает вид  $\alpha=\frac{1}{2}\ln\frac{1-N+\frac{1}{m}}{N+\frac{1}{m}}=\frac{1}{2}\ln(m+1)$
- Нужно периодически производить фильтрацию выбросов в обучающей выборке

### Визуализация работы основных методов классификации

Посмотрим результаты работы основных классификаторов на трех разных задачах<sup>3</sup>.

<sup>&</sup>lt;sup>3</sup>https:

**Ø** 

 $<sup>//</sup> scikit-learn.org/stable/auto\_examples/classification/plot\_classifier\_comparison.html ~ \texttt{main} and a science of the scien$ 

## Визуализация работы основных методов классификации

Посмотрим результаты работы основных классификаторов на трех разных задачах $^3$ .



<sup>3</sup>https:



//scikit-learn.org/stable/auto\_examples/classification/plot\_classifier\_comparison.html

#### Плюсы

• Хорошая обобщающая способность (сложно переобучить)



#### Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации



#### Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов

#### Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

#### Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

#### Минусы

• Чувствителен к выбросам





#### Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

#### Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема





#### Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

#### Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема
- Базовые алгоритмы должны быть достаточно простыми, и их должно быть много (а лучше бы наоборот)





#### Плюсы

- Хорошая обобщающая способность (сложно переобучить)
- Простота реализации
- Время обучения ансамбля (веса) на порядок меньше времени обучения базовых алгоритмов
- Можно фильтровать выбросы

#### Минусы

- Чувствителен к выбросам
- Композиция совершенно неинтерпретируема
- Базовые алгоритмы должны быть достаточно простыми, и их должно быть много (а лучше бы наоборот)
- Необходимость в достаточно большой обучающей выборке (т.к. нет процедуры бутстрэпа)





### Время для вопросов





## $AnyBoost^4 - обоснование$

Перейдём к более общему случаю:

<sup>15 / 27</sup> 

<sup>&</sup>lt;sup>4</sup>Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent" a control of the Бабин Д.Н., Иванов И.Е., Петюшко А.А. Бустинг

Перейдём к более общему случаю:

ullet Недискретным ответам базовых алгоритмов, т.е.  $b_t: X o \mathbb{R}$ 

ent"

<sup>&</sup>lt;sup>4</sup>Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent"

#### Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е.  $b_t:X o\mathbb{R}$
- ullet Функции потерь  $L(h_T)$ , гладкой от величины  $h_T(x_i) = y_i \sum_{t=1}^T \alpha_t b_t(x_i)$



Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е.  $b_t:X o\mathbb{R}$
- ullet Функции потерь  $L(h_T)$ , гладкой от величины  $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного  $\mathfrak{I}.P.$ :

$$R_T \leq \tilde{R}_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$



# $AnyBoost^4$ — обоснование

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е.  $b_t:X o\mathbb{R}$
- ullet Функции потерь  $L(h_T)$ , гладкой от величины  $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq \widetilde{R}_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки  $x_0$ :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$



# $AnyBoost^4$ — обоснование

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е.  $b_t:X o\mathbb{R}$
- ullet Функции потерь  $L(h_T)$ , гладкой от величины  $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного  $\mathfrak{I}.P.$ :

$$R_T \leq R_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки  $x_0$ :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

• Пусть 
$$x = h_{T-1}(x_i) + \alpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$$



# $AnyBoost^4$ — обоснование

Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е.  $b_t:X o\mathbb{R}$
- ullet Функции потерь  $L(h_T)$ , гладкой от величины  $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного  $\mathfrak{I}.P.$ :

$$R_T \leq \tilde{R}_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки  $x_0$ :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

- Пусть  $x = h_{T-1}(x_i) + \alpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$
- ullet Тогда  $\widetilde{R}_T pprox \sum_{i=1}^m L(h_{T-1}(x_i)) + lpha_T \sum_{i=1}^m L'(h_{T-1}(x_i)) y_i b_T(x_i)$



Перейдём к более общему случаю:

- ullet Недискретным ответам базовых алгоритмов, т.е.  $b_t:X o\mathbb{R}$
- ullet Функции потерь  $L(h_T)$ , гладкой от величины  $h_T(x_i) = y_i \sum_{t=1}^T lpha_t b_t(x_i)$

Принцип минимизации аппроксимированного Э.Р.:

$$R_T \leq \tilde{R}_T = \sum_{i=1}^m L(h_{T-1}(x_i) + \alpha_T y_i b_T(x_i)) \rightarrow \min_{\alpha_T, b_T}$$

Вспомним разложение Тейлора функции f(x) в окрестности точки  $x_0$ :

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0).$$

Воспользуемся этим разложением для аппроксимированного Э.Р.:

- Пусть  $x = h_{T-1}(x_i) + \alpha_T y_i b_T(x_i), x_0 = h_{T-1}(x_i)$
- ullet Тогда  $\widetilde{R}_T pprox \sum_{i=1}^m L(h_{T-1}(x_i)) + lpha_T \sum_{i=1}^m L'(h_{T-1}(x_i)) y_i b_T(x_i)$
- $m{\Theta}$  Обозначив за  $w_i = -L'(h_{T-1}(x_i))$ , получаем  $\widetilde{R}_T pprox \sum_{i=1}^m L(h_{T-1}(x_i)) lpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$



<sup>&</sup>lt;sup>4</sup>Mason, L., Baxter, J., Bartlett, P. L., and Frean, M. R. (2000). "Boosting algorithms as gradient descent" and

### AnyBoost – обоснование

$$\widetilde{R}_T \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав  $\alpha_T$ , переходим от задачи двумерной оптимизации  $\widetilde{R}_T \to \min_{\alpha_T,b_T}$  к одномерной (по алгоритму):



#### AnyBoost – обоснование

$$\widetilde{R}_T \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав  $\alpha_T$ , переходим от задачи двумерной оптимизации  $\widetilde{R}_T \to \min_{\alpha_T,b_T}$  к одномерной (по алгоритму):

$$\sum_{i=1}^m w_i y_i b_T(x_i) \to \max_{b_T}$$



#### AnyBoost – обоснование

$$\widetilde{R}_T \approx \sum_{i=1}^m L(h_{T-1}(x_i)) - \alpha_T \sum_{i=1}^m w_i y_i b_T(x_i)$$

Зафиксировав  $\alpha_T$ , переходим от задачи двумерной оптимизации  $\widetilde{R}_T \to \min_{\alpha_T,b_T}$  к одномерной (по алгоритму):

$$\sum_{i=1}^m w_i y_i b_T(x_i) \to \max_{b_T}$$

Затем определяем  $lpha_{\mathcal{T}}$ , подставив найденный  $b_{\mathcal{T}}$ .



#### Алгоритм

• Инициализация:  $h_0(x_i) = 0, i = 1, \dots, m$ ,



#### Алгоритм

• Инициализация:  $h_0(x_i) = 0, i = 1, \dots, m$ ,

#### $oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

• Вычисление весов  $w_i = -L'(h_{t-1}(x_i)),$ 



#### Алгоритм

• Инициализация:  $h_0(x_i) = 0, i = 1, \dots, m$ ,

#### $\H$ Для $t=1,\ldots,T$

- Вычисление весов  $w_i = -L'(h_{t-1}(x_i)),$
- Обучение нового базового алгоритма  $b_t = \arg\max_{b \in A} \sum_{i=1}^m w_i y_i b(x_i)$ ,





#### Алгоритм

• Инициализация:  $h_0(x_i) = 0, i = 1, \dots, m$ ,

#### $oxedsymbol{\mathbb{Z}}$ Для $t=1,\ldots,T$

- Вычисление весов  $w_i = -L'(h_{t-1}(x_i)),$
- ullet Обучение нового базового алгоритма  $b_t = rg \max_{b \in \mathcal{A}} \sum_{i=1}^m w_i y_i b(x_i)$ ,
- ullet Вычисление нового веса  $lpha_t = rg \min_{lpha} \sum_{i=1}^m L(h_{t-1}(x_i) + lpha y_i b_t(x_i)),$



#### Алгоритм

• Инициализация:  $h_0(x_i) = 0, i = 1, \dots, m$ ,

#### $\Box$ ля $t=1,\ldots,T$

- Вычисление весов  $w_i = -L'(h_{t-1}(x_i)),$
- ullet Обучение нового базового алгоритма  $b_t = rg \max_{b \in \mathcal{A}} \sum_{i=1}^m w_i y_i b(x_i)$ ,
- Вычисление нового веса  $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(h_{t-1}(x_i) + \alpha y_i b_t(x_i)),$
- Обновление  $h_t(x_i) = h_{t-1}(x_i) + \alpha_t y_i b_t(x_i)$ .





# Градиентный бустинг – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a, y). Функционал качества:  $\widetilde{R}_T = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$ .



<sup>&</sup>lt;sup>5</sup>Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine".

# Градиентный бустинг<sup>5</sup> – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a,y). Функционал качества:  $\widetilde{R}_T = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$ . Обозначения:

• Приближение для объекта  $x_i$  на шаге t:  $f_t(x_i)$ ,



# Градиентный бустинг<sup>5</sup> – обозначения

Рассмотрим самый общий случай – произвольную функцию потерь L(a,y). Функционал качества:  $\widetilde{R}_T = \sum_{i=1}^m L(\sum_{t=1}^{T-1} \alpha_t b_t(x_i) + \alpha_T b_T(x_i), y_i) \to \min_{\alpha_T, b_T}$ . Обозначения:

- Приближение для объекта  $x_i$  на шаге t:  $f_t(x_i)$ ,
- Тогда функционал качества примет вид:

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$



$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$



$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:





$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$ullet$$
  $f_{\mathcal{T}}(x_i) = f_{\mathcal{T}-1}(x_i) - \eta g_i$ , где  $g_i = L'(f_{\mathcal{T}-1}(x_i), y_i)$ 

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$\bullet$$
  $f_T(x_i) = f_{T-1}(x_i) - \eta g_i$ , где  $g_i = L'(f_{T-1}(x_i), y_i)$ 

Сравните с итерацией бустинга:

• 
$$f_T(x_i) = f_{T-1}(x_i) + \alpha_T b_T(x_i)$$

$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$ullet$$
  $f_T(x_i) = f_{T-1}(x_i) - \eta g_i$ , где  $g_i = L'(f_{T-1}(x_i), y_i)$ 

Сравните с итерацией бустинга:

• 
$$f_T(x_i) = f_{T-1}(x_i) + \alpha_T b_T(x_i)$$



$$\widetilde{R}_T = \sum_{i=1}^m L(f_{T-1}(x_i) + \alpha_T b_T(x_i), y_i) \rightarrow \min_{\alpha_T, b_T}$$

Применение градиентного спуска для данной задачи:

$$\bullet$$
  $f_T(x_i) = f_{T-1}(x_i) - \eta g_i$ , где  $g_i = L'(f_{T-1}(x_i), y_i)$ 

Сравните с итерацией бустинга:

• 
$$f_T(x_i) = f_{T-1}(x_i) + \alpha_T b_T(x_i)$$



#### Основная идея градиентного бустинга

Поиск нового базового алгоритма  $b_T$  для приближения антиградиента  $(-L'(f_{T-1}(x_i), y_i))$ , т.е. минимизация квадратичной ошибки:

$$b_T = \arg\min_{b \in A} \sum_{i=1}^m (b(x_i) - (-L'(f_{T-1}(x_i), y_i)))^2$$
.

#### Алгоритм

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,



#### Алгоритм

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,

#### $\Box$ ля $t=1,\ldots,T$

ullet Обучение нового базового алгоритма  $b_t = rg \min_{b \in \mathcal{A}} \sum_{i=1}^m \left( b(x_i) + L'(f_{t-1}(x_i), y_i) \right)^2$ ,

#### Алгоритм

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,

#### $oxed{Д}$ ля $t=1,\ldots,T$

- ullet Обучение нового базового алгоритма  $b_t = rg \min_{b \in A} \sum_{i=1}^m \left( b(x_i) + L'(f_{t-1}(x_i), y_i) 
  ight)^2$ ,
- Вычисление нового веса  $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(f_{t-1}(x_i) + \alpha b_t(x_i), y_i),$



#### Алгоритм

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,

#### $oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

- ullet Обучение нового базового алгоритма  $b_t = rg \min_{b \in \mathcal{A}} \sum_{i=1}^m \left( b(x_i) + L'(f_{t-1}(x_i), y_i) 
  ight)^2$ ,
- Вычисление нового веса  $\alpha_t = \arg\min_{\alpha} \sum_{i=1}^m L(f_{t-1}(x_i) + \alpha b_t(x_i), y_i),$
- ullet Обновление приближений  $f_t(x_i) = f_{t-1}(x_i) + \alpha_t b_t(x_i), i = 1, \dots, m.$





## Связь градиентного бустинга с другими вариантами бустинга

На самом деле, градиентный бустинг – наиболее общий вариант бустинга:



# Связь градиентного бустинга с другими вариантами бустинга

На самом деле, градиентный бустинг – наиболее общий вариант бустинга:

ullet Если положим  $L(y_i,a(x_i))=L(-y_ia(x_i))$ , то получим AnyBoost,



## Связь градиентного бустинга с другими вариантами бустинга

На самом деле, градиентный бустинг – наиболее общий вариант бустинга:

- ullet Если положим  $L(y_i,a(x_i))=L(-y_ia(x_i))$ , то получим AnyBoost,
- ullet Если положим  $L(y_i,a(x_i))=e^{-y_ia(x_i)}$  и ограничим  $b_t(x_i)\in\{-1,+1\}$ , то получим AdaBoost.



Используем не всю обучающую выборку, а случайное подмножество объектов.

Используем не всю обучающую выборку, а случайное подмножество объектов.

#### Алгоритм SGB<sup>6</sup>

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,



Используем не всю обучающую выборку, а случайное подмножество объектов.

#### Алгоритм SGB<sup>6</sup>

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,

#### $oxedsymbol{\mathcal{L}}$ Для $t=1,\ldots,T$

ullet Выбор случайного подмножества  $I\subseteq\{1,\ldots,m\}$ ,



Используем не всю обучающую выборку, а случайное подмножество объектов.

#### Алгоритм SGB6

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,

#### $\int$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества  $I \subseteq \{1, \dots, m\}$ ,
- ullet Обучение нового базового алгоритма  $b_t = rg \min_{b \in \mathcal{A}} \sum_{i \in I} \left( b(x_i) + L'(f_{t-1}(x_i), y_i) \right)^2$ ,



Используем не всю обучающую выборку, а случайное подмножество объектов.

#### Алгоритм SGB6

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,

#### $oxedsymbol{\mathbb{Z}}$ Для $t=1,\ldots,T$

- ullet Выбор случайного подмножества  $I\subseteq\{1,\ldots,m\}$ ,
- ullet Обучение нового базового алгоритма  $b_t = rg \min_{b \in \mathcal{A}} \sum_{i \in I} \left( b(x_i) + L'(f_{t-1}(x_i), y_i) 
  ight)^2$ ,
- ullet Вычисление нового веса  $lpha_t = rg \min_{lpha} \sum_{i \in I} \mathcal{L}(f_{t-1}(x_i) + lpha b_t(x_i), y_i),$



Используем не всю обучающую выборку, а случайное подмножество объектов.

#### Алгоритм SGB6

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,

#### $oxedsymbol{\mathcal{L}}$ ля $t=1,\ldots,T$

- ullet Выбор случайного подмножества  $I\subseteq\{1,\ldots,m\}$ ,
- ullet Обучение нового базового алгоритма  $b_t = rg \min_{b \in \mathcal{A}} \sum_{i \in I} \left( b(x_i) + L'(f_{t-1}(x_i), y_i) \right)^2$ ,
- ullet Вычисление нового веса  $lpha_t = rg \min_{lpha} \sum_{i \in I} \mathcal{L}(f_{t-1}(x_i) + lpha b_t(x_i), y_i),$
- ullet Обновление приближений  $f_t(x_i) = f_{t-1}(x_i) + lpha_t b_t(x_i), i \in I.$



Используем не всю обучающую выборку, а случайное подмножество объектов.

#### Алгоритм SGB<sup>6</sup>

ullet Инициализация приближений:  $f_0(x_i) = 0, i = 1, \dots, m$ ,

#### $oxedsymbol{\mathcal{L}}$ ля $t=1,\ldots,T$

- ullet Выбор случайного подмножества  $I\subseteq\{1,\ldots,m\}$ ,
- ullet Обучение нового базового алгоритма  $b_t = rg \min_{b \in \mathcal{A}} \sum_{i \in I} \left( b(x_i) + L'(f_{t-1}(x_i), y_i) 
  ight)^2$ ,
- ullet Вычисление нового веса  $lpha_t = rg \min_{lpha} \sum_{i \in I} \mathit{L}(\mathit{f}_{t-1}(\mathit{x}_i) + lpha \mathit{b}_t(\mathit{x}_i), \mathit{y}_i),$
- ullet Обновление приближений  $f_t(x_i) = f_{t-1}(x_i) + lpha_t b_t(x_i), i \in I.$

Замечание. Последние два шага можно делать и для всей выборки, но это медленнее (хотя и точнее).



<sup>&</sup>lt;sup>6</sup>Friedman, J. H. (1999). "Stochastic gradient boosting".

#### Плюсы SGB

• Уменьшение времени обучения



#### Плюсы SGB

- Уменьшение времени обучения
  - Меньше объектов на каждом шаге



#### Плюсы SGB

- Уменьшение времени обучения
  - Меньше объектов на каждом шаге
- Ускорение сходимости



#### Плюсы SGB

- Уменьшение времени обучения
  - Меньше объектов на каждом шаге
- Ускорение сходимости
  - Меньше шагов



## Градиентный бустинг на решающих деревьях

Пусть каждый базовый алгоритм – это CART-дерево  $b_t(x) = \sum_{j=1}^{J^t} r_j^t[x \in R_j^t]$ , где



<sup>&</sup>lt;sup>7</sup>Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine". (2) (1999).

## Градиентный бустинг на решающих деревьях

Пусть каждый базовый алгоритм – это CART-дерево  $b_t(x) = \sum_{j=1}^{J^t} r_j^t[x \in R_j^t]$ , где

ullet Пространство делится на  $J^t$  непересекающихся областей (листов)  $R_1^t,\dots,R_{J^t}^t,$ 



<sup>&</sup>lt;sup>7</sup>Friedman, J. H. (1999). "Greedy function approximation: a gradient boosting machine". (2) (2) (2)

Пусть каждый базовый алгоритм – это CART-дерево  $b_t(x) = \sum_{j=1}^{J^t} r_j^t [x \in R_j^t]$ , где

- ullet Пространство делится на  $J^t$  непересекающихся областей (листов)  $R_1^t,\dots,R_{J^t}^t,$
- Значение  $r_j^t$  в листе  $R_j^t$  это среднее значение по обучающим примерам из этой области:  $r_j^t = \frac{\sum_{i=1}^m y_i[x_i \in R_j^t]}{\sum_{i=1}^m [x_i \in R_i^t]}$



Пусть каждый базовый алгоритм – это CART-дерево  $b_t(x) = \sum_{j=1}^{J^t} r_j^t [x \in R_j^t]$ , где

- ullet Пространство делится на  $J^t$  непересекающихся областей (листов)  $R_1^t,\dots,R_{J^t}^t,$
- Значение  $r_j^t$  в листе  $R_j^t$  это среднее значение по обучающим примерам из этой области:  $r_j^t = \frac{\sum_{i=1}^m y_i[x_i \in R_j^t]}{\sum_{i=1}^m [x_i \in R_i^t]}$

Варианты бустинга на деревьях $^7$ :



Пусть каждый базовый алгоритм – это CART-дерево  $b_t(x) = \sum_{j=1}^{J^t} r_j^t [x \in R_j^t]$ , где

- ullet Пространство делится на  $J^t$  непересекающихся областей (листов)  $R_1^t,\dots,R_{J^t}^t,$
- Значение  $r_j^t$  в листе  $R_j^t$  это среднее значение по обучающим примерам из этой области:  $r_j^t = \frac{\sum_{i=1}^m y_i [x_i \in R_j^t]}{\sum_{i=1}^m [x_i \in R_i^t]}$

Варианты бустинга на деревьях $^7$ :

• Общего вида. На каждом шаге находится ровно один параметр  $\alpha_t$ :  $f_t(x_i) = f_{t-1}(x_i) + \alpha_t b_t(x_i)$ ,



Пусть каждый базовый алгоритм – это CART-дерево  $b_t(x) = \sum_{j=1}^{J^t} r_j^t [x \in R_j^t]$ , где

- ullet Пространство делится на  $J^t$  непересекающихся областей (листов)  $R_1^t,\dots,R_{J^t}^t,$
- Значение  $r_j^t$  в листе  $R_j^t$  это среднее значение по обучающим примерам из этой области:  $r_j^t = \frac{\sum_{i=1}^m y_i [x_i \in R_j^t]}{\sum_{i=1}^m [x_i \in R_i^t]}$

Варианты бустинга на деревьях<sup>7</sup>:

- Общего вида. На каждом шаге находится ровно один параметр  $\alpha_t$ :  $f_t(x_i) = f_{t-1}(x_i) + \alpha_t b_t(x_i),$
- Улучшенный. На каждом шаге находятся  $J^t$  параметров  $\alpha_j^t$ :  $f_t(x_i) = f_{t-1}(x_i) + \sum_{i=1}^{J^t} \alpha_i^t r_i^t [x_i \in R_i^t].$



• Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,



- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Бэггинг лучше всего параллелится,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Бэггинг лучше всего параллелится,
- Бустинг позволяет фильтровать выбросы,

- Бэггинг (благодаря процедуре бутстрэпа) может работать на небольших выборках,
- Бустинг лучше работает на больших выборках (но и ошибка, скорее всего, будет меньше),
- Стековое обобщение можно использовать как средство "выжимания" последних долей процента,
- Бэггинг лучше всего параллелится,
- Бустинг позволяет фильтровать выбросы,
- Метод случайных подпространств (бутстрэп на признаках) необходим, когда у нас признаков очень много (или много шумовых).

## Время для вопросов



#### Источники

Ha основе материалов сайта http://www.machinelearning.ru.

