

Aux colleurs

Merci d'avoir accepté de coller cette année en MPI/MPI*.

68 Équations différentielles linéaires

Généralités Équation différentielle linéaire (vectorielle) :

$$x' = a(t) \cdot x + b(t)$$

où $a:I\to\mathcal{L}(E)$ et $b:I\to E$ sont continues. Équation homogène associée. Traduction matricielle, système différentiel linéaire.

Principe de superposition.

Problème de Cauchy. Forme intégrale.

Représentation d'une équation différentielle scalaire linéaire d'ordre n.

Ensemble des solutions d'une équation différentielle linéaire Théorème de Cauchy-linéaire, traduction matricielle.

L'ensemble S_H des solutions de l'équation homogène est un espace vectoriel de dimension dim E, traduction matricielle, cas des équations scalaires d'ordre n.

L'ensemble des solutions de l'équation complète est un espace affine de direction S_H , traduction matricielle, cas des équations scalaires d'ordre n.

69 Résolution pratique des équations différentielles linéaires

Équations différentielles linéaires scalaires d'ordre 1 Position du problème, structure des solutions. Résolution pratique, variation de la constante ou changement de fonction inconnue. Cas d'une équation non normalisable sur l'intervalle de résolution, raccordement des solutions.

Équations différentielles linéaires scalaires d'ordre 2 Position du problème, structure des solutions. Étude de l'équation homogène, système fondamental de solutions, wronskien.

Méthode de variations des constantes.

Recherche de solutions développables en série entière.

Systèmes différentiels linéaires homogènes à coefficients constants Position du problème, structure des solutions.

Résolution théorique à l'aide de l'exponentielle de matrice.

Problème de Cauchy, théorème de Cauchy-linéaire.

Résolution effective lorsque la matrice du système est diagonalisable.

Autres exemples de résolution effectives en dimension 2.

66 Intégration

Révision

67 Intégrales à paramètre

Révision

Exercices et résultats classiques à connaître

69.1

On considère sur]0,1[l'équation :

$$x(1-x)y'' + (1-3x)y' - y = 0$$

- (a) Déterminer une solution non nulle, développable en série entière, notée y_0 .
- (b) Résoudre l'équation en effectuant le changement de fonction inconnue :

$$y(x) = z(x)y_0(x)$$

69.2

Résoudre sur \mathbb{R} l'équation :

$$(1 + e^x)y'' + 2e^xy' + (2e^x + 1)y = e^x$$

en effectuant le changement de fonction inconnue :

$$z(x) = (1 + e^x)y(x)$$

69.3

Résoudre sur $]0, +\infty[$ l'équation :

$$x^2y'' + 3xy' + y = 0$$

en effectuant le changement de variable $x = e^t$.

Exercices du CCINP à travailler

0.4

GNP 31

- 1. Déterminer une primitive de $x \mapsto \cos^4 x$.
- 2. Résoudre sur \mathbb{R} l'équation différentielle : $y'' + y = \cos^3 x$ en utilisant la méthode de variation des constantes.

0.5

GNP 32

Soit l'équation différentielle : x(x-1)y'' + 3xy' + y = 0.

- 1. Trouver les solutions de cette équation différentielle développables en série entière sur un intervalle]-r,r[de \mathbb{R} , avec r>0.
 - Déterminer la somme des séries entières obtenues.
- 2. Est-ce que toutes les solutions de x(x-1)y'' + 3xy' + y = 0 sur]0;1[sont les restrictions d'une fonction développable en série entière sur]-1,1[?

0.6

 \bigcirc 42

On considère les deux équations différentielles suivantes :

$$2xy' - 3y = 0 \qquad (H)$$

$$2xy' - 3y = \sqrt{x} \quad (E)$$

- 1. Résoudre l'équation (H) sur l'intervalle $]0, +\infty[$.
- 2. Résoudre l'équation (E) sur l'intervalle $]0, +\infty[$.
- 3. L'équation (E) admet-elle des solutions sur l'intervalle $[0, +\infty[$?