Guess the limit

Here are some sample values of a function:

x	f(x)
2.	0.25
1.1	0.460829
1.01	0.49586
1.001	0.499584
1.0001	0.499958
1.00001	0.499996
0.99999	1.99999
0.9999	1.9999
0.999	1.999
0.99	1.99
0.9	1.9
0.	1.

Determine

$$\lim_{x\to 1^-} f(x)$$

and

$$\lim_{x \to 1^+} f(x).$$

Also decide if the limit $\lim_{x\to 1} f(x)$ exists.

Guess the limits

The figure below depicts the graph of f. Use it to calculate the following values.

- 1. $\lim_{x\to -2^-} f(x)$
- 2. $\lim_{x \to -2^+} f(x)$
- 3. $\lim_{x \to 1^{-}} f(x)$
- 4. $\lim_{x\to 1^+} f(x)$
- 5. $\lim_{x\to 3^-} f(x)$
- 6. $\lim_{x\to 3^+} f(x)$
- 7. $\lim_{x \to 1.5^+} f(x)$
- 8. $\lim_{x\to 1.5^-} f(x)$

Limit laws

Assuming all the limits on the right hand side exist:

- 1. If b is a constant, then $\lim_{x\to c} (bf(x)) = b \lim_{x\to c} f(x)$ (contant multiple law)
- 2. $\lim_{x \to c} (f(x)g(x)) = \lim_{x \to c} f(x) \lim_{x \to c} g(x)$ (product law)
- 3. $\lim_{x \to c} (f(x) + g(x)) = \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$ (sum law)
- 4. $\lim_{x \to c} (f(x)/g(x)) = \lim_{x \to c} f(x)/\lim_{x \to c} g(x)$, provided $\lim_{x \to c} g(x) \neq 0$ (quotient law)
- 5. $\lim_{x\to c} [f(x)]^n = [\lim_{x\to c} f(x)]^n$ if n is a positive integer (power law)
- 6. $\lim_{x\to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x\to c} f(x)}$ provided f(x) > 0 for n even (root law)
- 7. $\lim_{x\to c} x = c$, $\lim_{x\to c} k = k$ for any constant k.
- 8. $\lim_{x \to \infty} \frac{1}{x^n} = 0 \text{ for } n > 0$

Theorem 1. If f(x) is a polynomial or rational function and x = c is in the domain of f, then

$$\lim_{x \to c} f(x) = f(c).$$

Theorem 2. A limit exists if and only if the left and right hand limits are equal:

•
$$\lim_{x \to c} f(x) = L$$
 means that $\lim_{x \to c^+} f(x) = L = \lim_{x \to c^-} f(x)$

Theorem 3 (Squeeze theorem). Suppose that f(x), g(x), h(x) are three functions, and the following two conditions hold:

- $f(x) \le g(x) \le h(x)$ for all x on the domain
- $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$.

Then $\lim_{x\to c} g(x) = L$ as well.

(The squeeze theorem is also true for one-sided limits.)