Name: JIANG Guarlin

Student Number: 22349090012

3.1.

(a)
$$P(T=0|S=1, R=1)$$
 and $P(T=1|S=1, R=1)$

$$= \frac{P(T=0, S=1, R=1)}{P(R(S=1, R=1))}$$

$$t_0(T) \qquad t_0(A) = \sum_{i=1}^{n} t_1(A, L) \times t_2(L)$$

$$t_1(F) \qquad t_2(T, F, A) \qquad t_3(F) \times t_3(F) \times t_1(T, F)$$

$$t_3(F) \qquad t_4(A, C)$$

$$t_5(C)$$
and $P(T=1|S=1, R=1)$

$$t_6(A) = \sum_{i=1}^{n} t_1(A, L) \times t_2(L)$$

$$t_7(T, F) = \sum_{i=1}^{n} t_7(A, L) \times t_7(T, F)$$

$$t_7(T, F, A) \qquad t_7(T, F) = t_8(T) \times t_7(T, F)$$

t8:

T	Values	<i>t</i> 9:	T	values
	0.005999		0	0.005879
1	0.008604		-	0.000 72

$$P(T|S=|,R=1): T | values 0 | P(T=0|S=1,R=1) \Rightarrow P(A=0|T=0,F=1) = 0.971564 | P(T=1|S=1,R=1) \Rightarrow P(A=1|T=1,F=1) = 0.029436$$

(b)

0	#divisions
0	0
2	0
4	0
2	0
0	0
1	Z
9	2
	2 4 2 0

(0)	Phase of algorithm	#multiplications	#addititions	# divisions
	Compute P(T=95=1,R=1)		1	0
	compute P(T=1,5=1,R=1)	1	1	0
	ND over T	0	1	2
	total	2	3	2

3.2. :- Tree and polytree . Not Polytree

(i) (i) (j) (i) (i)

Y	Y2	Y3	Y	P(Y X=0)	P(Y X=1)	P(Z=1 Y)	P(3=1 Y)
0	0	0	1	0.15× 0.70×0.5 =0.0525	0.75×0.65×0.3 = 0.14625	0.8	0.2
1	0	0	2	0.2075	0.04075	0.7	0.3
0	1	0	3	0.0225	0.07075	0.6	0.4
0	0	1	4	0.0525	0.34/25	0.5	0.5
1	1	0	5	0.1275	0.02625	0.4	V. 6
1	0	1	6	0.2975	0.11375	0.3	6.7
0	1	1	7	0.0225	0-10375	0.2	0.8
)	1	1	8	0.1275	0.06175	0-1	0-9

$$P(Y_{1}=0|X) = 1 - P(Y_{1}=1|X) = 1 - 0.85 = 0.15$$

$$P(Y_{2}=0|X) = 1 - P(Y_{2}=1|X) = 1 - 0.3 = 0.7$$

$$P(Y_{3}=0|X) = 1 - P(Y_{3}=1|X) = 1 - 0.5 = 0.5$$

$$P(Y_{1}=0|X) = 1 - P(Y_{1}=1|X=1) = 1 - 0.25 = 0.75$$

$$P(Y_{2}=0|X=1) = 1 - P(Y_{2}=1|X=1) = 1 - 0.35 = 0.65$$

$$P(Y_{3}=0|X=1) = 1 - P(Y_{3}=1|X=1) = 1 - 0.7 = 0.3$$

$$P(Z_{3}=0|X=1) = P(Z_{3}=1|X=1) = 1 - 0.7 = 0.3$$

$$P(Z_{3}=0|X=1) = P(Z_{3}=1|X=1) = 1 - 0.7 = 0.3$$

$$L(p) = \sum_{k=1}^{n} C_{k} log p_{k}$$

$$L(p) = \prod_{k=1}^{n} P_{r}(X^{(l)} = n^{(l)}) = \prod_{k=1}^{n} (P_{k})^{C_{k}}$$

$$log R(p) = log \left(\prod_{k=1}^{n} (P_{k})^{C_{k}}\right)$$

$$L(p) = \sum_{k=1}^{n} log (P_{k})^{C_{k}} = \sum_{k=1}^{n} C_{k} log (P_{k})$$

$$q_{k} = \frac{G_{k}}{T}$$

$$T = \sum_{k \in I} C_{k}$$

$$KL(q, p) = \sum_{k \in I} c_{k} \log q_{k} - \frac{\Gamma(p)}{T}$$

$$KL(q, p) = \sum_{k \in I} c_{k} \log \left(\frac{B(n)}{P(n)}\right)$$

$$= \sum_{k \in I} c_{k} \log \left(\frac{g_{k}}{p_{k}}\right)$$

$$= \sum_{k \in I} c_{k} \log (c_{k}) - \log (c_{k})$$

$$= \sum_{k \in I} c_{k} \log (c_{k}) - \sum_{k \in I} c_{k} \log (c_{k})$$

$$= \sum_{k \in I} c_{k} \log (c_{k}) - \sum_{k \in I} c_{k} \log (c_{k})$$

$$= \sum_{k \in I} c_{k} \log (c_{k}) - \sum_{k \in I} c_{k} \log (c_{k})$$

$$= \sum_{k \in I} c_{k} \log (c_{k}) - \sum_{k \in I} c_{k} \log (c_{k})$$

$$= \sum_{k \in I} c_{k} \log (c_{k}) - \sum_{k \in I} c_{k} \log (c_{k})$$

$$= \sum_{k \in I} c_{k} \log (c_{k}) - \sum_{k \in I} c_{k} \log (c_{k})$$

$$F(q,p) = \sum_{k=1}^{n} q_k \log q_k - \frac{L(p)}{T}$$
to miniming kl (P, q)
reed to maximing L(p)

for Maximine I(P), we need $p_k = q_k$ Maximum likelihood estimate of p_k is $p_k = q_k = \frac{Ck}{T}$.