Higher Category Theory

Assignment 9

Exercise 1

Proof. (1) It is enough show that any two $i, j: \Delta^0 \to \Delta^n$ are Δ^1 -homotopic. For this, define a map $\Delta^1 \cong \Delta^0 \times \Delta^1 \to \Delta^n$ by $h: [1] \to [n]$, where h(0) := i(0) and h(1) := j(1). Then it is a Δ^1 -homotopy connecting i and j.

(2) Let us consider $i, j \in \{0, \dots, n\}$. Then by (1) we know that there is a Δ^1 -homotopy connecting i and j. Then the composite $\Delta^1 \xrightarrow{h} \Delta^n \xrightarrow{s} X$ gives a Δ^1 -homotopy connecting si and sj. Hence [si] = [sj].

(3) Let us denote by C the functor $\mathbf{Set} \to \mathbf{sSet}$ sending a set E to the constant presheaf with value E. To show the adjunction $\pi_0 \dashv C$, it suffices to check that for each simplicial set X, the functor $\mathrm{Hom}_{\mathbf{sSet}}(X, C(-))$ is represented by $\pi_0(X)$. We define a map

$$\Phi \colon \operatorname{Hom}_{\mathbf{Set}}(\pi_0(X), E) \to \operatorname{Hom}_{\mathbf{sSet}}(X, C(E))$$

by sending each $f: \pi_0(X) \to E$ to the simplicial map $\Phi(f)$ given by $\Phi(f)_n: X_n \to C(E)_n = E$, $(s: \Delta^n \to X) \mapsto f([si])$, where $i \in \{0, \dots, n\}$ is arbitrary. Its well-definedness comes from (ii). We assert that Φ has an inverse

$$(g_*: \pi_0(X) \to \pi_0(C(E)) \cong E) \longleftrightarrow (g: X \to C(E)) : \Psi$$

To check Ψ well-defined, it suffices to see that $\pi_0(C(E)) \cong E$, while this is obvious, since C(E) is constant with value E and so $\pi_0(C(E)) \cong \operatorname{colim}_{\Delta^{\operatorname{op}}} C(E) \cong E$. Verifying Φ and Ψ being mutually inverse is straightforward. For example, for any $f \colon \pi_0(X) \to E$ and $s \in X_0$, we have

$$(\Psi\Phi(f))([s]) = \Phi(f)_*([s]) = (\Phi(f) \circ s)_0(0) = \Phi(f)_0(s_0(0)) = \Phi(f)_0(s) = f([s(0)]) = f([s]),$$

where the first equality is seen by noting that $[\Delta^0, C(E)] = \pi_0(C(E)) \cong E$ is explicitly given by $[s] \mapsto s_0(0)$. It remains to show that the bijection Φ is functorial in E, while this is obvious via the definition of Ψ .

(4) Let us first recall that by Yoneda, we have

$$\operatorname{Hom}_{\mathbf{sSet}}(\Delta^0, \underline{\operatorname{Hom}}(X, Y)) \cong \underline{\operatorname{Hom}}(X, Y)_0 = \operatorname{Hom}_{\mathbf{sSet}}(X, Y)$$

which sends any $f: \Delta^0 \to \underline{\text{Hom}}(X,Y)$ to $f_0(0)$. Hence to prove $\pi_0(\underline{\text{Hom}}(X,Y)) = [X,Y]$, it is enough to show that $f \sim g$ if and only if $f_0(0) \sim g_0(0)$ for any simplicial maps

 $f,g: \Delta^0 \to \underline{\mathrm{Hom}}(X,Y)$. Since the equivalence relation "~" is generated by the (reflexive and symmetric) relation "connected by a Δ^1 -homotopy", $f \sim g$ if and only if there are f_1, \dots, f_n for some integer n and Δ^1 -homotopies from f to f_1, \dots , from f_{n-1} to f_n , and from f_n to g. Thus the case is reduced to prove that f and g are connected by a Δ^1 -homotopy if and only if $f_0(0)$ and $g_0(0)$ are so. However, this can be seen by using Yoneda again, as follows:

$$\operatorname{Hom}_{\mathbf{sSet}}(\Delta^{1}, \underline{\operatorname{Hom}}(X, Y)) \stackrel{\sim}{=\!\!\!=\!\!\!=\!\!\!=} \operatorname{Hom}_{\mathbf{sSet}}(\Delta^{1} \times X, Y)$$

$$\downarrow_{1_{*}} \downarrow_{0_{*}} \downarrow_{0_{*}}$$

$$\operatorname{Hom}_{\mathbf{sSet}}(\Delta^{0}, \underline{\operatorname{Hom}}(X, Y)) \stackrel{\sim}{=\!\!\!=\!\!\!=\!\!\!=} \operatorname{Hom}_{\mathbf{sSet}}(X, Y)$$

If there is a Δ^1 -homotopy $h: \Delta^1 \to \underline{\mathrm{Hom}}(X,Y)$ with $h_0 = f$ and $h_1 = g$, then by Yoneda we get a simplicial map $h': \Delta^1 \times X \to Y$, and from the diagram above one sees that $h'_0 = f_0(0)$ and $h'_1 = g_0(0)$, and vice versa.

(5) Denote by \mathcal{F} the class of maps inducing a bijection after applying π_0 . First of all, we observe that \mathcal{F} is stable under retracts. Indeed, if $f \colon K \to L$ is in \mathcal{F} and admits a retract $g \colon X \to Y$, then applying π_0 yields a commutative diagram

$$\begin{array}{ccc}
\pi_0(X) & \xrightarrow{s} & \pi_0(K) & \xrightarrow{p} & \pi_0(X) \\
\downarrow^{g_*} & & \downarrow^{f_*} & & \downarrow^{g_*} \\
\pi_0(Y) & \xrightarrow{t} & \pi_0(L) & \xrightarrow{q} & \pi_0(Y)
\end{array}$$

where ps = id, qt = id and f_* is a bijection. From $pf_*^{-1}tg_* = ps = id$, one gets that g_* is injective, while from $g_*pf_*^{-1}t = qt = id$, it follows that g_* is surjective. Hence g_* is a bijection, i.e. $g \in \mathcal{F}$.

Moreover, we claim that \mathcal{F} is closed under colimits, and hence under pushouts, coproducts and countable compositions. For this, take any $f_i \colon K_i \to L_i$ indexed by some small category I with $f_i \in \mathcal{F}$. By Exercise 1(i) of Sheet 7, we have $[\Delta^0, X] = \operatorname{colim}_{\Delta^{op}} X$ for any simplicial set X (because any $s, t \in X_0$ being connected by a Δ^1 -homotopy is the same as saying that there is a path in X_1 connecting s and t). Then we get a bijection

$$\operatorname{colim}_{I} f_{i*} = \operatorname{colim}_{I} \operatorname{colim}_{\Delta^{\operatorname{op}}} f_{i} = \operatorname{colim}_{\Delta^{\operatorname{op}}} \operatorname{colim}_{I} f_{i} = (\operatorname{colim}_{I} f_{i})_{*}$$

so that $\operatorname{colim}_I f_i \in \mathcal{F}$. Therefore the class \mathcal{F} is saturated.

It remains to show that $\{i\} \times K \subset \Delta^1 \times K$ lies in \mathcal{F} for any simplicial set K. That is, to prove that the induced map

$$[\Delta^0, \{i\} \times K] \to [\Delta^0, \Delta^1 \times K]$$

is a bijection. For this, it is enough to show that any two maps $\Delta^0 \to \Delta^1 \times K$ represented by (0,k) and (1,k) $(k \in K_0)$ respectively are Δ^1 -homotopic. However, this is obvious, since $(\mathrm{id}_{[1]}, s_1^0(k)) \colon \Delta^1 \to \Delta^1 \times K$ gives a Δ^1 -homotopy from (0,k) to (1,k).

Now use Gabriel-Zisman, and we know that anodyne extensions are in \mathcal{F} .

Exercise 2

Proof. (1) Remembering that the map $I \times A \cup \{0\} \times B \to I \times B$ induced by the monomorphism i is a (I, S)-anodyne extension, we construct the square

which is possible since $h|_{\{0\}\times A}=h_0=f\cdot i=f|_A$. It commutes because

$$p \cdot (h \cup f) = (p \cdot h) \cup (p \cdot f)$$

$$= (p \cdot a \cdot pr_2) \cup b$$

$$= (b \cdot i \cdot pr_2) \cup b$$

$$= (b \cdot pr_2 \cdot (\operatorname{id}_I \times i)) \cup b$$

$$= b \cdot ((pr_2 \cdot (\operatorname{id}_I \times i)) \cup \operatorname{id}_B)$$

$$= b \cdot pr_2 \cdot j,$$

hence there is a filling $s: I \times B \to X$ as pictured. We now choose $g = s|_{\{1\} \times B}$. By construction,

$$p \cdot g = p \cdot s|_{\{1\} \times B}$$
$$= b \cdot pr_2|_{\{1\} \times B}$$
$$= b$$

and

$$\begin{split} g \cdot i &= s|_{\{1\} \times B} \cdot i \\ &= s \cdot (\mathrm{id}_I \times i)|_{\{1\} \times A} \\ &= h|_{\{1\} \times A} \\ &= h_1 \\ &= a, \end{split}$$

which proves that the g we constructed has the desired properties.

(2) We first construct a constant homotopy h' from a to a by setting $h' := a \cdot pr_2 \colon I \times A \to X$. Seeing $\partial I \times A$, $\partial I \times B$ as $A \sqcup A$, $B \sqcup B$, we can construct the diagram

$$I \times A \cup \partial I \times B \xrightarrow{h' \cup (f_0 \cup f_1)} X$$

$$\downarrow j \qquad \qquad \downarrow p,$$

$$I \times B \xrightarrow{pr_2} B \xrightarrow{b} Y$$

which is possible because $h'|_{\partial I \times A} = a \sqcup a = f_0 \sqcup f_1|_{\partial I \times A}$ by definition. It also commutes because

$$p \cdot (h' \cup (f_0 \sqcup f_1)) = (p \cdot h') \cup ((p \cdot f_0) \cup (p \cdot f_1))$$

$$= (p \cdot a \cdot pr_2) \cup (b \sqcup b)$$

$$= (b \cdot i \cdot pr_2) \cup (b \sqcup b)$$

$$= b \cdot ((i \cdot pr_2) \cup (\mathrm{id}_B \sqcup \mathrm{id}_B))$$

$$= b \cdot ((pr_2 \cdot (\mathrm{id}_I \times i)) \cup (\mathrm{id}_B \sqcup \mathrm{id}_B))$$

$$= b \cdot pr_2 \cdot j$$

Recall now that, since i is a (I, S)-anodyne map, so is j, hence our square admits the depicted filling $h: I \times B \to X$, which will be our desired homotopy from f_0 to f_1 . Indeed, $h|_{\partial I \times B} = f_0 \sqcup f_1$ and $h|_{I \times A} = h'$, that is it is constant on A. We still have to show that it is also constant over Y, but this follows again by construction from $p \cdot h = b \cdot pr_2$, hence the thesis.

Exercise 3

Proof. First of all remember that, fixed a monomorphism $i: K \to L$ in $\mathbf{Set} \cong \widehat{[1]}$, for $\epsilon = 0, 1$ the induced map $I \times K \cup \{\epsilon\} \times L \to I \times L$ is (I, S)-anodyne. This map comes from the pushout square

inducing the pictured factorization.

Since $I \cong 2$, studying the pushout we get $I \times K \cup \{\epsilon\} \times L = (K \sqcup K) \cup (\emptyset \sqcup L) = K \sqcup L$ for $\epsilon = 1$ from a previous exercise and $I \times L = L \sqcup L$. Also, the map $j : K \sqcup L \to L \sqcup L$ is simply the inclusion $i \sqcup \mathrm{id}_L$. Assuming that $\emptyset \neq K \subset L$, we will now show that i is a retract of this map. In order to do this, fix $k \in K$ and construct the diagram

$$\begin{array}{ccc} K & \xrightarrow{in_0} K \sqcup L & \xrightarrow{\mathrm{id}_K + k} K \\ \downarrow & & \downarrow \sqcup \mathrm{id}_L \downarrow & & \downarrow \downarrow \\ L & \xrightarrow{in_0} L \sqcup L & \xrightarrow{\mathrm{id}_L + k} L \end{array} ,$$

which proves our claim.

Since (I, S)-anodyne maps form a saturated class, it follows that i is one as well when K (and therefore L) is not the empty set. Notice that we didn't mention the small set S at all.