

The title

Your name

Supervisor: Dr. A Anon

Submitted in partial fulfilment of the requirements for the degree of BSc Creative Computing of the University of London.

Department of Computing Goldsmiths, University of London

April 2020

I certify that this dissertation, and the research to which it refers, are the result of my own work.

Abstract

Aim for around 200–300 words to highlight the main points and contributions of your project.

Acknowledgements

Contents

1	Intr	oduction	8
	1.1	Motivation	8
	1.2	Aim	8
	1.3	Thesis structure	8
	1.4	Contributions	8
2	Bacl	kground	9
	2.1	Background	9
	2.2	Literature review	9
3	Spec	cification and design	10
	3.1	System design	10
4	Imp	lementation	11
	4.1	System architecture	11
	4.2	Software implementation	11
5	Soft	ware testing	13
	5.1	Unit testing	13
		5.1.1 Results	13
	5.2	Load testing	13
		5.2.1 Results	13
6	Eval	luation	14
	6.1	User testing	14
	6.2	Results	14
7	Con	clusions and further work	15
	7.1	Summary of contributions	15
	7.2	Further work	15
Α	Not:	ational conventions	17

List of Tables

5.1	This is some example data															13

List of Figures

6.1	User ratings																																				1	4
-----	--------------	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	---

List of abbreviations

XXX something

Introduction

- 1.1 Motivation
- 1.2 Aim
- 1.3 Thesis structure

Chapter 7

1.4 Contributions

Contributions of this thesis are:

• Blah

Background

- 2.1 Background
- 2.2 Literature review

Foo (2017) propose...

Specification and design

3.1 System design

Diagrams would be good here.

Implementation

4.1 System architecture

4.2 Software implementation

Only include code where it is essential to make a point, e.g. a clever optimisation trick you implemented. Do not copy and paste lots of boilerplate code in your report, refer to your git repository.

Listing 1 Example of typesetting code. Keep code snippets short!

```
# Generate example data.
np.random.seed(13)
                                 # Seed the random number generator.
                                 # Number of observations.
n=50
happiness_levels = ['very sad', 'sad', 'neutral', 'happy',
                     'very happy']
happiness_prob = [0.05, 0.2, 0.3, 0.35, 0.1]
s = pd.Series(np.random.choice(happiness_levels, n,
                                p=happiness_prob),
              name='happiness')
# Set correct data type.
s = s.astype(
    pd.api.types.CategoricalDtype(
        ordered=True,
        categories=happiness_levels))
# Compute percentages.
pc = s.value_counts(sort=False, normalize=True) * 100
# Plot.
ax = pc.plot.bar(rot=0)
ax.yaxis.set_major_formatter(
    mpl.ticker.PercentFormatter(decimals=0))
ax.set_xlabel('happiness raitings')
plt.show()
```

Software testing

- 5.1 Unit testing
- 5.1.1 Results

Table 5.1: This is some example data

id	a	b
0	1	2
1	3	4
total	4	6

- 5.2 Load testing
- 5.2.1 Results

Evaluation

6.1 User testing

6.2 Results

Figure 6.1 shows...

Figure 6.1: User ratings

Conclusions and further work

- 7.1 Summary of contributions
- 7.2 Further work

Bibliography

Appendix A

Notational conventions

```
S = {...}
                               the set S
S \times S'
                               the Cartesian product of S and S'
|S|
                               the cardinality of S
                               the empty set
\mathbb{R}
                               real numbers
\mathbb{R}^+
                               positive real numbers
\mathbb{R}^k
                               k-dimensional real vector space
\mathbb{Z}
                               integer numbers
\mathbb{Z}^+
                               positive integer numbers
\mathbb{N}
                               non-negative integer numbers
                               inclusive real-number interval between x and y
[x, y]
                               inclusive integer-number interval between \boldsymbol{x} and \boldsymbol{y}
[x..y]
\mathbf{v} = \langle ... \rangle
                               the vector \mathbf{v}
\mathbf{M} = [m_{ij}]
                               the matrix M
\mathbf{m}_{i}^{j} = \left\langle e_{1}, e_{2}, \dots, e_{j} \right\rangle
                              the ordered sequence of length j \in \mathbb{Z}^+, indexed by i \leq j
                               tuple concatenation: \langle 0, 1 \rangle \| \langle 2, 3 \rangle \rightarrow \langle 0, 1, 2, 3 \rangle
                               the symbol denoting undefined
```