Прогнозирование маршрутов передвижения пассажиров Московского метрополитена

на основании данных о валидации транспортных карт

Старт обучения: август 2021 Дата защиты: 10 июня 2023

Описание задачи

время повторной валидации (регрессия) → **R2** метрика

основной файл (размер 1 091 021 х 12)

дополнительный файл (размер 2 991 571 х 16)

Анализ таргетов

Гистограмма распределения станций повторной валидации

Время между валидациями

- несбалансирован
- слабая корреляция с признаками
- + 5-11 часов между валидациями
- + точное число в минутах

Станция второй валидации

- несбалансирован
- многоклассовая
 классификация на 276 классов
- плохая связь с признаками
- + конкретная информация о месте назначения

Моделирование

DecisionTreeRegressor

DecisionTreeClassifier

DataFrame (label encoder)

Поиск модели

- ☐ AutoML:
 - AutoKeras
 - Auto-sklearn
 - ☐ Optuna + LGBM
- Decision Tree (sklearn)

Подбор формата датасета

- DataFrame:
 - Преобразованные данные (label encoder)
 - Непреобразованные данные
- O Numpy:
 - Преобразованные данные (normalize, ohe)

Генерация новых признаков

Источники для создания признаков:

- □ Фичи по ticket_id (каждый билет ездил ~ 3.25 раз.)
- Между валидациями 300 660 минут
- Типы билетов описывают категорию пассажира (резидент, студент, сотрудник МВД, персонал т.п.)
- Дата валидации
- Номер станции (label)
- Линия станции
- Дополнительный датасет

Генерация новых признаков

будний или выходной

час первой валидации и час второй валидации

категории пассажиров

фичи по id билета

средняя и максимальная продолжительность маршрута от станции начала

'class' станции назначения

линия станции назначения

Частное от номеров станций (конец/начало)

удаление избыточных фичей

Результаты

Модели регрессии:

- 1.Autokeras, r2 = 0.83
- 2.DecisionTreeRegressor, r2 = 0.99

Модели классификации:

- 1.Autokeras, recall < 0.1
- 2.LGBM + Optuna, recall < 0.1
- 3. Auto-sklean, recall < 0.1
- 4.DecisionTreeClassifier, recall = 0.99

Выводы

- О1 Генерация признаков, коррелирующих с таргетом
- O2 Всегда чистить данные (label encoder, ohe, normalize)
- 03 Использовать классические алгоритмы ML
- **04** С нейронными сетями использовать callbacks
- 05 Визуализация данных (обязательно хитмап, графики целевых переменных)

Ресурсы и инструменты

01 Collab (9.99\$)

02 Библиотеки:

- pandas
- numpy
- matplotlib
- seaborn
- autokeras
- optuna
- lightgbm
- auto-sklearn
- sklean
- joblib
- keras

03 Материалы:

- 1. Документация библиотек
- 2. Общедоступные источники

Заключение

- 01 Ещё модели для стабильности:
 - LinearRegression
 - RandomForestRegressor
 - ExtraTreesRegressor
 - GradientBoostingRegressor
 - Ridge
 - Lasso
- 02 Библиотеки:
 - xgboost
 - sklean
- ОЗ Дополнить датасет из <u>портала</u> <u>открытых данных</u>
- 04 Рассмотреть вариант решения через TimeSeries методы

