AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application.

(Currently Amended) A composition comprising at least one <u>water-soluble</u> phthalocyanine photocatalyst of formula 1(b)[[(4)]]

$$[(4)]]$$
 $\frac{[Me]_q[PC][so_3-Y_3]_r}{[me]_q[PC][so_3-Y_3]_r}$

$$[Me]_{q}[PC][Q_{2}]_{r}$$

in which

PC is the phthalocyanine ring system;

Me is Zn; Fe(II); Ca; Mg; Na; K; Al-Zı; Si(IV); P(V); Ti(IV); Ge(IV); Cr(VI); Ga(III); Zr(IV); In(III); Sn(IV) or Hf(VI);

Z₁ is a halide; sulfate; nitrate; carboxylate; alkanolate; or hydroxyl ion;

q is 0; 1; or 2;

Y2 is hydrogen; an alkali metal ion or ammonium ion; and

r is any number from 1 to 4;

Q₂ is hydroxyl; C₁-C₂, alkyl; branched C₂-C₂, alkenyl; branched C₃-C₂, alkenyl and mixtures thereof; C₁-C₂, alkoxy; a carboxyl radical; a radical of the formula

$$-\text{SO}_2 \times_4 \underbrace{ \begin{array}{c} R_{11} \\ R_{12} \end{array}}_{R_{12}} - \frac{R_{13}}{R_{14}} - \frac{-(T_1)_\sigma (CH_2)_\sigma}{R_{12}} \underbrace{ \begin{array}{c} R_{13} \\ N - \\ R_{17} \end{array}}_{R_{17}} \quad Z_2 - \frac{-CH_2 \cdot Y_2}{R_{12}} \underbrace{ \begin{array}{c} R_{11} \\ R_{12} \end{array}}_{R_{12}}$$

H&H Ref. No.: 065556.00015

a branched alkoxy radical of the formula

an alkylethyleneoxy unit of the formula $-(T_1)_d$ - $(CH_2)_h$ ($OCH_2CH_2)_a$ - B_3 or an ester of the formula $COOR_{18}$ in which

 B_2 is hydrogen; hydroxyl; C_1 - C_{30} alkyl; C_1 - C_{30} alkoxy; - CO_2 H; CH_2COOH ; - $PO_3^2M_1$; - $OPO_3^2M_1$ and mixtures thereof;

B₃ is hydrogen; hydroxyl; -COOH; or C₁-C₆alkoxy;

M₁ is a water-soluble cation;

T₁ is -O- or -NH-;

X₁ and X₄ independently of one another are -NH- or N-C₁-C₅alkyl;

 R_{11} and R_{12} independently of one another are hydrogen; a carboxyl group and salts thereof or a hydroxyl group; at least one of the radicals R_{11} and R_{12} being a carboxyl group or salts thereof.

Y2 is -O-; -S-; -NH- or N-C1-C5alkyl;

R₁₃ and R₁₄ independently of one another are hydrogen; C₁-C₆alkyl; hydroxy-C₁-C₆alkyl; cyano-C₁-C₆alkyl; sulfo-C₁-C₆alkyl; carboxy or halogen-C₁-C₆alkyl; unsubstituted phenyl or phenyl substituted by halogen, C₁-C₄alkyl or C₁-C₄alkoxy; carboxyl, or R₁₃ and R₁₄ together with the nitrogen atom to which they are bonded form a saturated 5- or 6-membered heterocyclic ring which may additionally also contain a nitrogen or oxygen atom as a ring member:

R₁₅ and R₁₆ independently of one another are C₁-C₆alkyl or aryl-C₁-C₆alkyl radicals;

R₁₇ is hydrogen; an unsubstituted C₁-C₆alkyl or C₁-C₆alkyl substituted by halogen, hydroxyl, cyano, phenyl, carboxyl, carb-C₁-C₆alkoxy or C₁-C₆alkoxy;

R₁₈ is C₁-C₂₂alkyl; branched C₂-C₂₂alkyl; C₁-C₂₂alkenyl or branched C₂-C₂₂alkenyl; C₂-C₂₂alkovy; branched C₃-C₂₂alkovy; and mixtures thereof;

M is hydrogen; or an alkali metal ion or ammonium ion;

Z₂ is a chlorine; bromine; alkylsulfate or aralkylsulfate ion;

<u>a is 0 or 1; b is from 0 to 6; c is from 0 to 100; d is 0 or 1; e is from 0 to 22; v is an integer from 2</u> to 12; w is 0 or 1;

where the phthalocyanine ring system may also comprise further solubilising groups:

and at least one azo dyestuff and/or at least one triphenylmethane dyestuff, which produce a relative hue angle of 220 - 320°, wherein the dyestuff component is degraded when the composition is exposed to sunlight and wherein the degradation rate of the azo dyestuff(s) and/or triphenylmethane dyestuff(s) is at least 1 % per 2 hours.

2-5. (Cancelled).

6. (Previously Presented) A composition according to claim 1, comprising at least one azo dyestuff of formula

$$(HO_3S)_n \xrightarrow{\qquad \qquad (Z)_m \qquad \qquad Y \qquad \qquad OH \qquad \qquad H \qquad \qquad H \qquad \qquad H \qquad \qquad N \stackrel{P_\alpha}{\longrightarrow} \qquad \text{or} \qquad \qquad \qquad \text{or} \qquad \qquad \text$$

$$(HO_3S)_n \xrightarrow{(Z)_m} N = N \xrightarrow{Y} N = N \xrightarrow{QH} N \xrightarrow{R_\alpha} R_\alpha$$

wherein

X and Y, independently of one another, are each hydrogen; C₁-C₄-alkyl or C₁-C₄-alkoxy, Rα is hydrogen or aryl,

Z is C₁-C₄-alkyl; C₁-C₄-alkoxy; halogen; hydroxyl or carboxyl,

n is 1 or 2 and

H&H Ref. No.: 065556.00015

m is 0, 1 or 2, as well as the corresponding salts thereof and mixtures thereof.

7. (Previously Presented) A composition according to claim 1, comprising at least one azo dyestuff of formula

8. (Previously Presented) A composition according to claim 1, comprising at least one triphenylmethane dyestuff of formula

$$SO_3Na$$
 CH_3CH_2
 CH_3
 C

- (Previously Presented) A composition according to claim 1, wherein at least one fluorescent whitening agent is comprised.
- 10. (Previously Presented) A granular formulation comprising a composition according to claim
- 11. (Previously Presented) A granular formulation according to claim 10, comprising
- a) from 2 to 75 wt-% of at least one water-soluble phthalocyanine photocatalyst and at least one azo dyestuff and/or at least one triphenylmethane dyestuff, based on the total weight of the granulate.
- b) from 10 to 95 wt-% of at least one further additive, based on the total weight of the granulate, and
- c) from 0 to 15 wt-% water, based on the total weight of the granulate.
- 12. (Previously Presented) A liquid formulation comprising a composition according to claim 1.
- 13. (Withdrawn) A detergent washing agent formulation comprising
- I) from 5 to 70 wt-% A) of at least one anionic surfactant and/or B) at least one non-ionic surfactant, based on the total weight of the washing agent formulation,
- II) from 5 to 60 wt-% C) of at least one builder substance, based on the total weight of the washing agent formulation,
- III) from 0 to 30 wt-% D) of at least one peroxide and, optionally, at least one activator, based on the total weight of the washing agent formulation, and
- IV) from 0.001 to 1 wt-% E) of at least one granulate which contains
 - a) from 2 to 75 wt-% of at least one water-soluble phthalocyanine photocatalyst and at least one azo dyestuff and/or at least one triphenylmethane dyestuff as defined in claim 1, based on the total weight of the granulate,

- b) from 10 to 95 wt-% of at least one further additive, based on the total weight of the granulate, and
- c) from 0 to 15 wt-% water, based on the total weight of the granulate,
- V) from 0 to 60 wt-% F) of at least one further additive, and
- VI) from 0 to 5 wt-% G) water.
- 14. (Withdrawn) A softener composition comprising
- (a) a composition comprising at least one photocatalyst and at least one azo dyestuff and/or at least one triphenylmethane dyestuff, as defined in claim 1, and
- (b) a fabric softener.
- 15. (Withdrawn) A shading process, which comprises contacting textile material with a composition as claimed in claim 1.
- 16. (Previously Presented) Textile material treated with a composition as claimed in claim 1.