# MDA Assignment No. 2

## Aditya Kunar(5074274)

#### December 18 2019

#### Likelihood

Consider the Poisson regression model which is a basic model for count-data. So we assume data  $\{(x_i,y_i)\}_{i=1}^n$ , where  $y_i \in \{0,1,2,...\}$  and  $x_i \in \mathbb{R}^p$ . The model is given by  $y_i \sim Pois(\mu_i)$ , where  $log\mu_i = x_i^T\theta$  for an unknown parameter vector  $\theta \in \mathbb{R}^p$ . Hence, for  $k \in \{0,1,2,...\}$  we have  $\mathbb{P}(Y_i = k) = \frac{e^{-\mu_i}\mu_i^k}{(k!)}$ .

(1) Give the loglikelihood, assuming all  $y_i$  are independent.

The likelihood is defined as follows -:

$$\begin{split} L(\theta|Y) &= \mathbb{P}(Y|\theta) = \prod_{i=1}^{n} \mathbb{P}(y_{i}|\theta) \\ \mathbb{P}(Y|\theta) &= \prod_{i=1}^{n} \frac{e^{-\mu_{i}} \mu_{i}^{y_{i}}}{(y_{i}!)} \\ log \mathbb{P}(Y|\theta) &= log \prod_{i=1}^{n} \frac{e^{-\mu_{i}} \mu_{i}^{y_{i}}}{(y_{i}!)} \\ &= \sum_{i=1}^{n} log \frac{e^{-\mu_{i}} \mu_{i}^{y_{i}}}{(y_{i}!)} \\ &= \sum_{i=1}^{n} y_{i} log \mu_{i} - \mu_{i} - log(y_{i}!) \end{split}$$

#### Gradient

(2) Derive an expression for the gradient and hessian of the loglikelihood

The gradient is defined as follows -:

$$LogL(\theta|Y) = \sum_{i=1}^{n} y_i log\mu_i - \mu_i - log(y_i!)$$

As 
$$log\mu_i = x_i^T \theta$$

$$\therefore LogL(\theta|Y) = \sum_{i=1}^{n} y_i x_i^T \theta - e^{x_i^T \theta} - log(y_i!)$$

$$\nabla LogL(\theta|Y) = \frac{\partial}{\partial \theta} \sum_{i=1}^{n} y_i x_i^T \theta - e^{x_i^T \theta} - log(y_i!)$$

$$= \sum_{i=1}^{n} y_i x_i - x_i e^{x_i^T \theta}$$

#### Hessian

The hessian is defined as follows -:

$$\frac{\partial^2 log L(\theta|Y)}{\partial \theta \partial \theta^T} = \frac{\partial}{\partial \theta^T} \sum_{i=1}^n y_i x_i - x_i e^{x_i^T \theta}$$
$$= \sum_{i=1}^n -x_i x_i^T e^{x_i^T \theta}$$

# Laplace Approximation

(3) In the following we consider the dataset dataexercise2.csv. We take a Bayesian point of view, where we assume  $y_i | \theta \stackrel{ind}{\sim} Pois(\mu_i)$ , where  $log\mu_i = x_i^T \theta$ ,  $\theta \sim N(0, \tilde{\sigma}^2)$ . Assume the prior standard deviation is given by  $\tilde{\sigma} = 5$ . Implement a Newton algorithm for computing the Laplace approximation to the posterior distribution. Report mean and covariance matrix of the approximation.

The mean and covariance for the Laplace Approximation are as follows -:

$$mean = \begin{bmatrix} 1.12649475 & 0.42890301 & 0.01506197 & -0.05408826 \end{bmatrix}$$
 
$$Covariance = \begin{bmatrix} 0.0313 & -0.0081 & 0.0011 & -0.0013 \\ -0.0081 & 0.0030 & -0.0003 & 0.0006 \\ 0.0011 & -0.0003 & 0.01480 & -0.0014 \\ -0.0013 & 0.0006 & -0.0014 & 0.0117 \end{bmatrix}$$

#### M-H Algorithm

(4) Implement a random-walk Metropolis Hastings algorithm to sample from the posterior. Take proposals of the form  $\theta^{\circ} := \theta + \sigma_{proposal} N(0, I_p)$ . Tune  $\sigma_{proposal}$  to achieve an acceptance rate of about 25% – 50%. Make a plot of the iterates where you plot  $\theta 2$  versus  $\theta 1$ , with colour indicating the iteration number. Report the Monte-Carlo estimate of the posterior mean (where you "throw away" burnin samples, i.e. initial samples where the chain has not reached its stationary region).

The tuned value of  $\sigma_{proposal}=0.067$  Monte-Carlo estimate of the posterior mean:  $\begin{bmatrix} 1.07563637 & 0.43882114 & 0.01468655 & -0.0550479 \end{bmatrix}$ 



Figure 1: Scatter Plot of  $\theta 2$  vs.  $\theta 1$  ( $\sigma_{proposal} = 0.067$ ).

## Gibbs Sampling

(5) The results may be sensitive to the choice of  $\tilde{\sigma}$ . For that reason we add an extra layer to the hierarchical model in the following way:

$$y_i | \theta \stackrel{ind}{\sim} Pois(\mu_i)$$
, where  $log \mu_i = x_i^T \theta$ ,  $\theta | \tilde{\sigma} \sim N(0, \tilde{\sigma}^2 I_p)$ ,  $\tilde{\sigma}^2 \sim IG(\alpha, \beta)$ 

Here  $IG(\alpha, \beta)$  denotes the inverse Gamma distribution with parameters  $\alpha$  and  $\beta$  (its density function is given in exercise 3.12 in RG). Take  $\alpha = \beta = 0.1$ . Implement a Gibbs sampler that iteratively samples from the full conditionals of  $\theta$  and  $\tilde{\sigma}$ . Include a derivation for the update-step for  $\tilde{\sigma}^2$  in your report. Also include a traceplot of the posterior samples of  $\tilde{\sigma}^2$  (a traceplot is a plot of iterate value versus iterate number).

The derivation for the update step for  $\tilde{\sigma}^2$  is as follows-:

$$\mathbb{P}(\tilde{\sigma}^2|Y,\theta) \propto \mathbb{P}(\theta|\tilde{\sigma}^2)\mathbb{P}(\tilde{\sigma}^2|\alpha,\beta)$$
 And

$$\theta | \tilde{\sigma} \sim N(0, \tilde{\sigma}^2 I_p),$$

$$\tilde{\sigma}^2 \sim IG(\alpha, \beta).$$

$$\begin{split} &IG(\alpha,\beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{-\alpha-1} e^{-\frac{\beta}{x}} \\ & \therefore \mathbb{P}(\tilde{\sigma}^2 | Y, \theta) \propto \bigg( (2\pi)^{-\frac{k}{2}} \det(\tilde{\sigma}^2 I_p)^{-\frac{1}{2}} e^{(-\frac{1}{2}\theta \Sigma^{-1}\theta^T)} \bigg) \bigg( \frac{\beta^{\alpha}}{\Gamma(\alpha)} (\tilde{\sigma}^2)^{-\alpha-1} e^{-(\frac{\beta}{\tilde{\sigma}^2})} \bigg) \\ & \mathbb{P}(\tilde{\sigma}^2 | Y, \theta) \propto \tilde{\sigma}^{-p} (\tilde{\sigma}^2)^{-\alpha-1} e^{(-\frac{1}{\tilde{\sigma}^2} (\frac{\theta\theta^T}{2} + \beta))} \\ & \mathbb{P}(\tilde{\sigma}^2 | Y, \theta) \propto (\tilde{\sigma}^2)^{-(\alpha + \frac{p}{2}) - 1} e^{(-\frac{1}{\tilde{\sigma}^2} (\frac{\theta\theta^T}{2} + \beta))} \end{split}$$

Therefore we see that this results in a new inv-gamma distribution with the following parameters -:

$$\mathbb{P}(\tilde{\sigma}^2|Y,\theta) \sim IG(\alpha^{\circ},\beta^{\circ})$$
 where  $\alpha^{\circ} = \alpha + \frac{p}{2}$  and  $\beta^{\circ} = \beta + \frac{\theta\theta^T}{2}$ 



Figure 2: Trace Plot of  $\tilde{\sigma}^2$