FIC - Ta Dang Khoa

Nội dung

- Thế nào là tuyến tính
- Bài toán ví dụ
- Thuật toán Linear regression
 - Định nghĩa mô hình
 - Normal equation
 - Gradient descent
- Code ví dụ

Thế nào là tuyến tính

Ánh xạ tuyến tính

$$T(u+v) = T(u) + T(v), \quad T(av) = aT(v)$$

Phương trình tuyến tính

$$f(x_1, x_2, \dots, x_n) = a_1x_1 + a_2x_2 + \dots + a_nx_n + b = 0$$

Bài toán ví dụ

Dự đoán giá nhà

Định nghĩa

Hàm dự đoán h(x) có dạng:

$$h_{\theta}(x^{(i)}) = \theta_0 x_0^{(i)} + \theta_1 x_1^{(i)} + \dots + \theta_k x_k^{(i)}$$

Hàm tính toán sai số có dạng:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right)^{2}$$

Ta sẽ tìm cách làm nhỏ nhất hàm sai số.

Normal equation

Hàm loss sẽ có dạng sau (ví dụ với trường hợp cụ thể)

Điểm tối ưu sẽ đạt được khi đạo hàm của làm loss đạt giá trị 0

=> Tìm được bằng cách giải phương trình

$$\theta = (X^T X)^{-1} X^T y$$

Gradient descent

Gradient descent

Đạo hàm hàm loss

$$\frac{\partial J(\theta)}{\partial \theta_j} = \frac{2}{m} \sum_{i=1}^{m} \left(h_{\theta} \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$

Cập nhật tham số

$$\theta_{j} = \theta_{j} - \eta \frac{\partial J(\theta)}{\partial \theta_{j}}$$

Gradient descent

Ví dụ sử dụng gradient descent với một hàm số cụ thể

Bài tập

- Đọc hiếu lại công thức Linear Regression và cách vector hóa trong code ví dụ.
- f = wT.x là một hàm tuyến tính theo cả w và x. Trên thực tế ta có thể áp dụng mô hình chỉ tuyến tính theo w. Nêu ví dụ?
- Thử mô hình với một data có nhiễu (1 vài điểm sai khác hoàn toàn với đường linear). Sau đó đưa ra nhân xét.