

Elements on Basic Case Studies - Consumption

Iragaël Joly

Génie Industriel

2017

- Income and Substitution effect
 - Normal Good
 - Income and Substitution effect
 - Inferior Good
 - Giffen Good
 - Conclusion
 - Exercises
- 2 Elasticity
- 3 Why students don't study more

Case ? ? 0 00000

Income and Substitution effect

In case of Normal good:

If the X_1 price increases then the demand for X_1 will decrease due to :

- and Substitution effect arises upon the relative price variation
- Income effect appends upon the budget constraint

These two effects are negative

loty Adv.Eco. 3/45

Initial situation

École nationale supérieure de génie industriel

Case 1

Case ? ?

Substitution effect

- Assuming the compensatory variation of income:

 an income variation compensating the change in price in order to keep utility constant
- A new bundle is chosen at the new price ratio $\frac{p_2}{p_1}$ (E_2),
- located on the same indifference curve (same utility level)

oly Adv.Eco. 5/45

Initial situation

École nationale supérieure de génie industriel

Income effect

- In the same time, the increase of price reduces available income for consumption
- The budget constraint is modified :

Joly

Adv.Eco.

Income effect

Case ? ? 0 00000

Income effect

- In the same time, the increase of price reduces available income for consumption
- The budget constraint is modified
- A new choice comes (E₃)

Joly

Adv Eco

Income and Substitution effect

Income and Substitution effect

Income and Substitution effect

École nationale supérieure de génie industriel

Income and Substitution effect

In the normal good case

• the two effects on X_1 demand are in the same direction

Joly

Adv.Eco.

Case 1

Case ? ? 0 00000

Inferior Good

In the Inferior good case

- Substitution effect and Income effect are in opposite direction
- Substitution effect (-) dominates income effect (+)
- The demand decreases with price increase

oly Adv.Eco. 14/45

0 00000

Giffen Good

Some conditions must be met

- The Giffen good is an inferior good associated to a large income effect
- Substitution effect is small
- the share of income devoted to the Giffen good is large

In the Giffen good case,

- Substitution effect and Income effect are in opposite direction
- Income effect (+) dominates substitution effect (-)
- The demand decreases with price increase

Joly Adv.Eco.

Case ? ? 0 00000

Conclusion (1)

Type of Good	Substitution Effect	Income Effect	Total Effect
Normal	Increase	Increase	Increase
Inferior (but not Giffen)	Increase	Decrease	Increase
Giffen	Increase	Decrease	Decrease

Joly

Adv.Eco.

O 00000

Conclusion (2)

Finally three demand theorems to which the Marshalian law of demand is special case :

- demand varies inversely with price decrease if income effect is positive or null
- demand varies inversely with price decrease if income effect is negative, but lower than substitution effect (on abs. value)
- demand varies with price decrease if income effect is negative, but greater than substitution effect (on abs. value)
- for 1. and 2. Marshalian law holds: normal and inferior goods.

Joly

Adv.Ecc

We can discuss some graphics from the internet

We can discuss some graphics on the internet

École nationale supérieure de génie industriel

We can discuss some graphics on the internet

We can discuss some graphics on the internet

École nationale supérieure de génie industriel

- 1 Income and Substitution effect
- 2 Elasticity
 - Two Definitions
 - Economic Elasticity
 - Measure of Elasticity
 - Exercises
- 3 Why students don't study more

Case 1

Case ? ?

Case ? ? 0 00000

Two Definitions (1)

- General meaning of Elasticity:
 Elasticity measures the sensitivity of a variable with respect to another variable.
- we can found two definitions of elasticity
- one general economic elasticity precising a general trend between to variables
- one precise economic elasticity measure precising the sensitivity of a function

loly Adv.Eco. 23/4

Case ? ? 0 00000

General Elasticity

Elasticity can be used to describe and compare two relations. For example, the elasticity of demand (or supply) on a market can be elastic or inelastic:

Case ? ? 0 00000

General Elasticity (1)

- We can distinguish elastic vs inelastic cases
- In the relation of Q with respect to price :

3	Description	1% of price \Rightarrow % Q	
0	Perfect inelasticity: Vertical line	$0\% \Rightarrow \text{constat } Q$	
]0;1[Inelastic	< 1%	
1	Unitary elasticity	= 1%	
> 1	Elastic	> 1%	
∞	Perfect elasticity: horizontal line	$\infty\%:Q\longrightarrow 0$	

Joly

Adv.Eco

Case 1

Case ? ? 0 00000

General Elasticity (2)

Depending on elasticities of demand and supply:

- Market equilibrium varies slowly or not in case of taxes, floor/cap prices, etc.
- Pricing strategy of the firm differs depending on demand sensitivity

loly Adv.Eco.

Measure of Elasticity Definition (1)

Economic Elasticity

Elasticity measures the sensitivity of a variable with respect to another variable.

- This sensitivity is measured in relative terms (in %) (by opposition to absolute term (in unit)
- Classic interpretation : For a given elasticity measure $\varepsilon_{Y|X}$: if X varies by 1%, Y will varies by $\varepsilon_{Y|X}$ %.

oly Adv.Eco. 27/4

Measure of Elasticity Definition (2)

General Definition

$$\epsilon_{f(a)}(a) = \frac{a}{f(a)} f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} \frac{a}{f(a)}$$

$$= \lim_{x \to a} \frac{f(x) - f(a)}{f(a)} \frac{a}{x - a} = \lim_{x \to a} \frac{1 - \frac{f(x)}{f(a)}}{1 - \frac{x}{a}}$$

$$= \frac{\% \Delta f(a)}{\% \Delta a} = \frac{d \log f(x)}{d \log x}$$

• ratio of relative change (%) in the function output f(x)

loly

Adv Eco

Measure of Elasticity Definition (3)

- to relative change in its input x
- for infinitesimal change from point (a, f(a))

Joly Adv.Eco.

Measure of Elasticity Definition (4)

Taking the example of the study of the sensitivity of demand function $(x(I, p_i, p_j))$ on market with respect to prices changes, we can define Direct price elasticity $\varepsilon_{x_i|p_i}$ and Cross price elasticity $\varepsilon_{x_i|p_i}$.

Joly

Adv.Eco.

Measure of Elasticity Definition (5)

Direct price elasticity

 Percent change in demand x_i resulting form a 1 % change in price p_i

$$\epsilon_{x_i|p_i} = \frac{\text{\% of change in} x_i}{\text{\% of change in} p_i} = \frac{\Delta x_i/x_i}{\Delta p_i/p_i} = \frac{\Delta x_i}{\Delta p_i}/\frac{x_i}{p_i}$$

Asymptotically

$$\varepsilon_{x_i p_i} = \frac{p_i}{x_i (I, p_i, p_j)} \frac{\partial x_i (I, p_i, p_j)}{\partial p_i}$$

Joly

Adv.Eco

Measure of Elasticity Definition (6)

Cross price elasticity

 Percent change in demand x_i resulting form a 1 % change in price p_i

$$\varepsilon_{x_i|p_j} = \frac{p_j}{x_i(I,p_i,p_j)} \frac{\partial x_i(I,p_i,p_j)}{\partial p_i}$$

Some remarks:

- Elasticity level depends on the point at which it is evaluated : see the ratio $\frac{p_j}{r}$
- We can define an Income elasticity of demand

loly

Exercises (1)

Exercises

Characterize elasticity $\varepsilon_{y|x}$ of the two following forms :

- Linear form : y = f(x) = -10x + 1000
- Cobb-Douglas form : $y = f(x) = Cx^{\alpha}$, with C > 0 a constant.

.lolv

Exercises (2)

FIGURE: Elasticity of linear form

LinearForm

Inmpact of +1% of x:

- In point $A: \Delta x = 0.1$; $\Delta v = -1, v = 10899$ % change %y = 1/11000and $\varepsilon_{v|x} = \frac{1}{11000}$
- In point $B: \Delta x = 1$; $\Delta y = -10, y = 9990$ % change %y = 1/1000 and $\varepsilon_{v|x} = \frac{1}{1000}$
- In point $C: \Delta x = 10$; $\Delta v = -100, v = 900$ % change of %y = 1/10 and

Exercises (3)

The Cobb-Douglas form : $y = Cx^{\alpha}$

- Elasticity can be calculted using $\varepsilon_{f(x)|x} = \frac{\% \Delta f(a)}{\% \Delta a} = \frac{d \log f(x)}{d \log x}$
- $\bullet \log f(x) = K + \alpha \log(x)$
- Hence, $\varepsilon_{f(x)|x} = \alpha$
- The Cobb-Douglas function is a constant elasticity function,
- which representation is a curve

Joly

Adv.Eco

- 1 Income and Substitution effect
- 2 Elasticity
- 3 Why students don't study more
 - Two Perspectives
 - Allocation of time

Two Perspectives (1)

In this case two economic notions can be discussed:

- Daily allocation of time problem
- Intertemporal choice between short and long terms

Joly Adv.Eco.

Allocation of time

First model 24h a day have to be spend in activities : *studying* vs *partying*

Case 1
o 0000

Allocation of time (1)

Second model

- In short term: Labor-Leisure trade-off determine the consumption level through income
- Leisure is 24- Labor
- Hourly wage is w
- General consumption price is p

oly Adv.Eco. 41/

Case 1

Case ? ? 0 00 Case??

Allocation of time (2)

Joly

Adv Eco

Case??

Allocation of time

Third model: Intertemporal model Consumption and savings

• Two periods : t_1 and t_2

• Consumption in $t_1: x_1$ and $t_2: x_2$

• Income in $t_1: y_1$ and $t_2: y_2$

• s is saving from t_1 to t_2 , r: interest rate

•

$$\max_{x_1, x_2} U(x_1, x_2) \text{s.t.}$$

 $x_1 + s < y_1 \text{ and } x_2 < y_2 + s(1+r)$

• intertemporal Budget Constraint :

$$x_1 + \frac{x_2}{1+r} = y_1 + \frac{y_2}{1+r}$$

Joly

Adv.Eco

Case??

Allocation of time

Fourth model: Modigliani model

• $\max_{c_t} U(c_t)(1+\gamma)^{-1}$ s.t.

$$\sum_{t} c_{t} (1+r)^{-1} \leq \sum_{t} y_{t} (1+r)^{-1} + w_{0}$$

ullet where γ is the rate of time preference

Joly

Adv.Eco.

Case ? ?

Allocation of time

Fifth model: Becker model

- Household produces a composite good Z_i
- f the production function of the composite good : $Z_i = f(X_i, T_i)$
- X_i and T_i are consumption goods and time dedicated to the composite good Z_i
- W: the work time and w is the wage rate
- τ is available time
- $\max_{X,T} U(Z_1,\ldots,Z_n)$ s.t.

$$\sum_{i} p_i X_i \leq I + wW$$

and

$$\sum T_i = \tau + W$$