Conversione Analogico/Digitale

- Le grandezze fisiche che vogliamo misurare variano con continuità in un dato intervallo ed in funzione del tempo: sono descrivibili come una funzione continua di variabile continua x(t)
- I sistemi di calcolo e controllo operano su base numerica (digitale)
- È necessario disporre di dispositivi per la realizzazione delle interfacce fra i misuratori (e controlli) di grandezze fisiche e gli impianti di calcolo e controllo: ADC (Analog to Digital Converter) e DAC (Digital to Analog Converter)

Sistema di DAQ semplice

Esempio di sistema di DAQ

Esempio di sistema di DAQ

ADC (I)

- Dal punto di vista funzionale gli ADC sono dei classificatori:
 - L' intervallo di variabilità del segnale V_x viene diviso in *n* intervalli, detti *canali*, di ampiezza costante K. Definiamo quindi V_i = K i + V_o
 - Il segnale in ingresso V_x viene classificato nel canale i-esimo se è verificata la relazione

$$V_{i-1} < V_{x} < V_{i}$$

ADC (2)

ADC (I)

- Dal punto di vista funzionale gli ADC sono dei classificatori:
 - L' intervallo di variabilità del segnale V_x viene diviso in *n* intervalli, detti *canali*, di ampiezza costante K. Definiamo quindi V_i = K i + V_o
 - Il segnale in ingresso V_x viene classificato nel canale i-esimo se è verificata la relazione

$$V_{i-1} < V_{x} < V_{i}$$

- Inevitabilmente si ha un errore di quantizzazione

Istogramma

L'istogramma è la rappresentazione grafica di una distribuzione in classi di un carattere continuo.

(1, 2, 5, 12, 10, 19, 27, 13, 6, 4, 0, 1)

Istogramma

L'istogramma è la rappresentazione grafica di una distribuzione in classi di un carattere continuo.

(1, 2, 5, 12, 10, 19, 27, 13, 6, 4, 0, 1)

E' stato "inventato" da Karl Pearson, nella sua rappresentazione grafica a rettangoli. La rappresentazione di destra è ovviamente "logicamente" equivalente.

ADC (3)

- Ogni ADC è caratterizzato da:
 - Range: l'intervallo di tensione che l'ADC può accettare in ingresso
 - Numero di canali in cui è diviso il range. E' definito dal numero n di bit: ADC # = 2ⁿ
 - Sensibilità: Il minimo segnale rivelabile è dato, in condizion ideali, da range/ADC #

Esempio: un ADC a 12 bit, con range di 4 Volts ha una sensibilità di 4000/4096 ~ 0.98 mV

ADC (4)

- Ogni ADC è caratterizzato da:
 - Sampling time: il tempo impiegato per effettuare la misura (campionamento)
 - Sampling rate: la velocità massima a cui si possono effettuare le misure (campionature)

Tenere il tempo (f_c)

- I sistemi operativi dei PC sono asincroni
- I sistemi di DAQ sono dotati di clock interno, buffer (FIFO) e accesso diretto alla memoria (DMA)
- Nelle acquisizioni bufferizzate i campioni vengono immagazzinati nel buffer in modo sincrono rispetto al campionamento
- II PC accede alla memoria (tramite DMA) ed in modo asincrono rispetto al campionamento

Acquisizione a buffer circolare

- Al momento dell' inizializzazione viene definita la dimensione del buffer, dove vengono scritti i dati
- La CPU accede alla scheda, mentre continua l'acquisizione, e legge i dati
- Esaurito il buffer la scheda continua a scrivere all'inizio del buffer, sovrascrivendo i dati esistenti
- Occorre che la lettura dei dati sia sufficientemente veloce per evitare perdite di dati

Buffer circolare

6023 E della NI

Figure 3-1. PCI-6023E, PCI-6024E, PCI-6025E, and PXI-6025E Block Diagram

Modalità di acquisizione

- Continua: a partire da un certo t_o il sistema acquisisce campioni ad una frequenza fissata
- Con trigger: il sistema acquisisce una quantità definita di campioni, ad una frequenza fissata, a partire da un segnale di trigger
- La sequenza di campioni può essere relativa a:
 - lo stesso segnale a tempi diversi
 - Diversi segnali allo stesso istante di tempo (necessità di un sample&hold e di un multiplexer)

Dal tempo continuo al tempo discreto

Rivelatore di particelle

Qualche dettaglio

Multiplexer

multiplexer è un dispositivo capace di selezionare un singolo segnale elettrico fra diversi segnali in ingresso in base al valore degli ingressi di selezione.

6023E (2)

Analog Input

Input Characteristics

Board Gain (Software-Selectable)	Range
0.5	±10 V
1	±5 V
10	±500 mV
100	±50 mV

1 Not available on the 6023E

Figure 4-1. I/O Connector Pin Assignment for the 6023E/6024E

6023E (3)

Table 3-1. Available Input Configurations

Configuration	Description
DIFF	A channel configured in DIFF mode uses two analog input lines. One line connects to the positive input of the programmable gain instrumentation amplifier (PGIA) of the device, and the other connects to the negative input of the PGIA.
RSE	A channel configured in RSE mode uses one analog input line, which connects to the positive input of the PGIA. The negative input of the PGIA is internally tied to analog input ground (AIGND).
NRSE	A channel configured in NRSE mode uses one analog input line, which connects to the positive input of the PGIA. The negative input of the PGIA connects to analog input sense (AISENSE).

Figure 4-4. Summary of Analog Input Connections

Introduzione a LabVIEW

- Front Panel
 - Contiene gli oggetti visibili/accessibili all' utente, cioè la GUI
- Block Diagram
 - Contiene il codice disegnato dal programmatore
- Finestre di strumenti:
 - Tool palette
 - Function palette (per il Front Panel)
 - Controls palette (per il Block Diagram)

G. Ambrosi, UniPG

LabView

Un nuovo programma

- Un programma nel linguaggio di LabView è chiamato VI: Virtual Instrument
- Le strutture presenti in un programma sono:
 - Nodi
 - Wires: le linee che collegano i nodi
 - Data Packets: le informazioni che circolano fra i nodi tramite i wires. (per 'vedere muovere' i Data Packets si usa la lampadina)

Formato dei dati numerici interi

Integer Type	Abbr.	Range
Signed 32 bit	I32	-2.147.483.648 to 2.147.483.647
Signed 16 bit	I16	-32.768 to 32.767
Signed 8 bit	I8	-128 to 127
Unsigned 32 bit	U32	0 to 4.294.967.295
Unsigned 16 bit	U16	0 to 65535
Unsigned 8-bit	U8	0 to 255

Formato dei dati numerici floating

Float. Type	Abbr.	Bits		Range
			digits	
Extended- precision floating-point	EXT	128	varies from 15 to 33 by platform	Minimum positive number: 6.48e-4966 Maximum positive number: 1.19e+4932 Minimum negative number: -6.48e-4966 Maximum negative number: -1.19e+4932
Double-precision floating-point	DBL	64	15	Minimum positive number: 4.94e-324 Maximum positive number: 1.79e+308 Minimum negative number: -4.94e-324 Maximum negative number: -1.79e+308
Single-precision floating-point	SGL	32	6	Minimum positive number: 1.40e-45 Maximum positive number: 3.40e+38 Minimum negative number: -1.40e-45 Maximum negative number: -3.40e+38

Ancora sul formato dei dati

- I nodi accettano in ingresso, o producono in uscita, dati che possono essere:
 - Singoli numeri (interi, virgola mobile, caratteri ..)
 - Vettori (Arrays)
 - I vettori sono insiemi omogenei di dati
 - Clusters
 - I clusters sono insiemi eterogenei di dati

Simbologia per i tipi di dati

Colore	Tipo di dati
Blu	Intero (Numerico)
Arancione	Virgola mobile (Numerico)
Magenta	Cluster che contiene tipi di dati non numerici(Booleani, clusters, arrays)
Verde	Booleani
Marrone	Cluster con dati solo numerici

Il Control Panel

- Serve per mettere nel Front Panel i controlli e gli indicatori accessibili all' utente
- Ad ogni controllo/indicatore corrisponde un nodo nel Block Diagram

Il Function Panel

- Serve per mettere nel Block Diagram i veri nodi che regolano il funzionamento del VI
- Gli oggetti inseriti utilizzando il Function Panel esistono solo nel Block Diagram: non sono accessibili/modificabili dal Front Panel

File I/O (1)

File I/O semplice

File I/O medio

File I/O avanzato

File I/O (2)

File I/O(3)

Analog input

Analog Input semplice

Analog Input medio

Analog Input avanzato

Analog Input semplice

Per acquisire un singolo campione ad un tempo t fissato dal PC (cosa avviene se usato in un loop?)

Analog Input medio (1)

G. Ambrosi, UniPG

Analog Input medio (2)

Acquisizione dei campioni nella CPU

Stop alla scheda e rilascio delle risorse

Quale fra CONFIG, START, READ, CLEAR può (deve) essere messo in un loop?

G. Ambrosi, UniPG

Digital I/O

Figure 4-1. I/O Connector Pin Assignment for the 6023E/6024E