1. Solution

The sample size, *n*, is 54. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 54 \rceil$	14	54.41
Q2	$\lceil 0.5 \times 54 \rceil$	27	54.81
Q3	$\lceil 0.75 \times 54 \rceil$	41	55.28

We determine the IQR.

$$IQR = Q3 - Q1$$

= 55.28 - 54.41
= 0.87

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $54.41 - 1.5 \times 0.87$
= 53.105
upper boundary = Q3 + $1.5 \times IQR$
= $55.28 + 1.5 \times 0.87$
= 56.585

We determine the outliers.

outliers =
$$\{52.99\}$$

We identify the ends of the whiskers: 53.6 and 56.48. We plot the boxplot.

2. Solution

The sample size, *n*, is 27. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 imes 27 ceil$	7	51.36
Q2	$\lceil 0.5 \times 27 \rceil$	14	51.51
Q3	$\lceil 0.75 \times 27 \rceil$	21	51.64

We determine the IQR.

$$IQR = Q3 - Q1$$

$$= 51.64 - 51.36$$

$$= 0.28$$

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $51.36 - 1.5 \times 0.28$
= 50.94
upper boundary = Q3 + $1.5 \times IQR$
= $51.64 + 1.5 \times 0.28$
= 52.06

We determine the outliers.

outliers =
$$\{50.92\}$$

We identify the ends of the whiskers: 51.04 and 52.02. We plot the boxplot.

