PolyChord & the future of nested sampling Tools for sampling, Parameter Estimation and Bayesian Model Comparison

Will Handley wh260@cam.ac.uk

Supervisors: Anthony Lasenby & Mike Hobson Astrophysics Group Cavendish Laboratory University of Cambridge

Monday 9th May, 2016

Parameter estimation & model comparison

Metropolis Hastings

Nested Sampling

PolyChord

PolyChord 2.0

Examples

▶ Nested sampling is an alternative sampling approach.

- Nested sampling is an alternative sampling approach.
- Unlike traditional methods, it does not sample from the posterior directly.

- Nested sampling is an alternative sampling approach.
- Unlike traditional methods, it does not sample from the posterior directly.
- Instead it gradually compresses the prior onto the posterior.

- Nested sampling is an alternative sampling approach.
- Unlike traditional methods, it does not sample from the posterior directly.
- Instead it gradually compresses the prior onto the posterior.
- ▶ In doing so, it circumvents many issues (dimensionality, topology, geometry) that beset normal approaches.

- Nested sampling is an alternative sampling approach.
- Unlike traditional methods, it does not sample from the posterior directly.
- Instead it gradually compresses the prior onto the posterior.
- ▶ In doing so, it circumvents many issues (dimensionality, topology, geometry) that beset normal approaches.
- Similar to simulated annealing, but automatically picks the "correct" annealing schedule.

Parameter estimation

Bayes' theorem Parameter estimation

What does data tell us about the params Θ of our model M?

$$P(\Theta|D,M) = \frac{P(D|\Theta,M)P(\Theta|M)}{P(D|M)}$$

Parameter estimation

What does data tell us about the params Θ of our model M?

$$\mathrm{P}(\Theta|D,M) = \frac{\mathrm{P}(D|\Theta,M)\mathrm{P}(\Theta|M)}{\mathrm{P}(D|M)}$$

$$\mathsf{Posterior} \ = \frac{\mathsf{Likelihood} \times \mathsf{Prior}}{\mathsf{Evidence}}$$

Parameter estimation

What does data tell us about the params Θ of our model M?

$$P(\Theta|D, M) = \frac{P(D|\Theta, M)P(\Theta|M)}{P(D|M)}$$

$$Posterior = \frac{Likelihood \times Prior}{Evidence}$$

$$P(\Theta) = \frac{\mathcal{L}(\Theta)\pi(\Theta)}{\mathcal{Z}}$$

Model comparison

Bayes' theorem Model comparison

What does data tell us about our model M_i ?

Bayes' theorem Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

Bayes' theorem Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$
$$P(M_i|D) = \frac{\mathcal{Z}_i \mu_i}{\sum_{k} \mathcal{Z}_k \mu_k}$$

Model comparison

What does data tell us about our model M_i ?

$$P(M_i|D) = \frac{P(D|M_i)P(M_i)}{P(D)}$$

$$P(M_i|D) = \frac{\mathcal{Z}_i \; \mu_i}{\sum_k \mathcal{Z}_k \; \mu_k}$$

Model averaging:

Multiple models with posterior on the same parameter: $P(y|M_i, D)$

$$P(y|D) = \sum_{i} P(y|M_i, D)P(M_i|D)$$

Metropolis-Hastings, Gibbs, Hamiltonian...

► Turn the *N*-dimensional problem into a one-dimensional one.

- ► Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length

- ► Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length
 - 3. If uphill, make step...

- Turn the *N*-dimensional problem into a one-dimensional one.
- Explore the space via a biased random walk.
 - 1. Pick random direction
 - 2. Choose step length
 - 3. If uphill, make step...
 - 4. ... otherwise sometimes make step.

MCMC in action

MCMC in action

Burn in

Burn in

Tuning the proposal distribution

Tuning the proposal distribution

Multimodality

Multimodality

Phase transitions

The real reason...

The real reason...

► MCMC does not give you evidences!

The real reason...

MCMC does not give you evidences!

$$\mathcal{Z} = P(D|M)$$

MCMC fundamentally explores the posterior, and cannot average over the prior.

When MCMC fails

The real reason...

MCMC does not give you evidences!

$$Z = P(D|M)$$
$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

- MCMC fundamentally explores the posterior, and cannot average over the prior.
- Simulated annealing gives one possibility for computing evidences.

When MCMC fails

The real reason...

► MCMC does not give you evidences!

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

$$= \int \mathcal{L}(\Theta)\pi(\Theta)d\Theta$$

- MCMC fundamentally explores the posterior, and cannot average over the prior.
- Simulated annealing gives one possibility for computing evidences.
 - Suffers from similar issues to MCMC, especially phase transitions

When MCMC fails

The real reason...

► MCMC does not give you evidences!

$$Z = P(D|M)$$

$$= \int P(D|\Theta, M)P(\Theta|M)d\Theta$$

$$= \int \mathcal{L}(\Theta)\pi(\Theta)d\Theta$$

$$= \langle \mathcal{L} \rangle_{\pi}$$

- MCMC fundamentally explores the posterior, and cannot average over the prior.
- Simulated annealing gives one possibility for computing evidences.
 - Suffers from similar issues to MCMC, especially phase transitions

John Skilling's alternative to MCMC!

John Skilling's alternative to MCMC!

New procedure:

John Skilling's alternative to MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

John Skilling's alternative to MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate n samples from the prior π .

John Skilling's alternative to MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate *n* samples from the prior π .

 S_{n+1} : Delete the lowest likelihood sample in S_n , and replace it with a new sample with higher likelihood

John Skilling's alternative to MCMC!

New procedure:

Maintain a set S of n samples, which are sequentially updated:

 S_0 : Generate *n* samples from the prior π .

 S_{n+1} : Delete the lowest likelihood sample in S_n , and replace it with a new sample with higher likelihood

Requires one to be able to sample from the prior, subject to a *hard likelihood constraint*.

Unimodal

Unimodal

Multimodal

When NS suceeds

Multimodal

Graphical aid

lacktriangle

•

$$\mathcal{Z} = \int \mathcal{L}(heta)\pi(heta)d heta$$

► Transform to 1 dimensional integral

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta$$

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta$$

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta = \int \mathcal{L}(X)dX$$

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta = \int \mathcal{L}(X)dX$$

X is the prior volume

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta = \int \mathcal{L}(X)dX$$

X is the prior volume

$$X(\mathcal{L}) = \int_{\mathcal{L}(\theta) > \mathcal{L}} \pi(\theta) d\theta$$

▶ Transform to 1 dimensional integral $\pi(\theta)d\theta = dX$

$$\mathcal{Z} = \int \mathcal{L}(\theta)\pi(\theta)d\theta = \int \mathcal{L}(X)dX$$

X is the prior volume

$$X(\mathcal{L}) = \int_{\mathcal{L}(\theta) > \mathcal{L}} \pi(\theta) d\theta$$

▶ i.e. the fraction of the prior which the iso-likelihood contour £ encloses.

Nested Sampling Calculating evidences

Calculating evidences

Exponential volume contraction

At each iteration, the likelihood contour will shrink in volume by a factor of $\approx 1/n$.

- At each iteration, the likelihood contour will shrink in volume by a factor of $\approx 1/n$.
- Nested sampling zooms in to the peak of the posterior exponentially.

- At each iteration, the likelihood contour will shrink in volume by a factor of $\approx 1/n$.
- Nested sampling zooms in to the peak of the posterior exponentially.

$$\mathcal{Z} \approx \sum_{i} \mathcal{L}_{i}(X_{i-1} - X_{i}) \tag{1}$$

- At each iteration, the likelihood contour will shrink in volume by a factor of $\approx 1/n$.
- Nested sampling zooms in to the peak of the posterior exponentially.

$${\mathcal Z}$$

$$\mathcal{Z} \approx \sum_{i} \mathcal{L}_{i}(X_{i-1} - X_{i}) \tag{1}$$

$$X_{i+1} \approx \frac{n}{n+1} X_i, \qquad X_0 = 1 \tag{2}$$

Parameter estimation

Parameter estimation

▶ NS can also be used to sample the posterior

Nested sampling

Parameter estimation

- ▶ NS can also be used to sample the posterior
- ► The set of dead points are posterior samples with an appropriate weighting factor

Sampling from a hard likelihood constraint

"It is not the purpose of this introductory paper to develop the technology of navigation within such a volume. We merely note that exploring a hard-edged likelihood-constrained domain should prove to be neither more nor less demanding than exploring a likelihood-weighted space."

— John Skilling

Sampling from a hard likelihood constraint

"It is not the purpose of this introductory paper to develop the technology of navigation within such a volume. We merely note that exploring a hard-edged likelihood-constrained domain should prove to be neither more nor less demanding than exploring a likelihood-weighted space."

— John Skilling

► Most of the work in NS to date has been in attempting to implement a hard-edged sampler in the NS meta-algorithm.

Sampling within an iso-likelihood contour

Previous attempts

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Suffers in high dimensions

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

► Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

Requires gradients and tuning

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

► Requires gradients and tuning

Diffusion Nested Sampling B. Brewer et al. (2009).

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

Requires gradients and tuning

Diffusion Nested Sampling B. Brewer et al. (2009).

Very promising

Rejection Sampling MultiNest; F. Feroz & M. Hobson (2009).

Suffers in high dimensions

Hamiltonian sampling F. Feroz & J. Skilling (2013).

► Requires gradients and tuning

Diffusion Nested Sampling B. Brewer et al. (2009).

- Very promising
- Too many tuning parameters

"Hit and run" slice sampling
Key points

"Hit and run" slice sampling Key points

▶ This procedure satisfies detailed balance.

"Hit and run" slice sampling Key points

- ► This procedure satisfies detailed balance.
- Need N reasonably large $\sim \mathcal{O}(n_{\mathrm{dims}})$ so that x_N is de-correlated from x_1 .

Correlated distributions

1. Does not deal well with correlated distributions.

- 1. Does not deal well with correlated distributions.
- 2. Need to "tune" w parameter.

Correlated distributions

► We make an affine transformation to remove degeneracies, and "whiten" the space.

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points
- Cholesky decomposition is the required skew transformation

- ► We make an affine transformation to remove degeneracies, and "whiten" the space.
- Samples remain uniformly sampled
- We use the covariance matrix of the live points and all inter-chain points
- Cholesky decomposition is the required skew transformation
- $\triangleright w = 1$ in this transformed space

Multimodality

Issues with Slice Sampling Multimodality

1. Although it satisfies detailed balance practically this isn't good enough.

Issues with Slice Sampling Multimodality

- 1. Although it satisfies detailed balance practically this isn't good enough.
- 2. Affine transformation is useless.

Multimodality

Multimodality

1. Identifies separate modes via clustering algorithm on live points.

PolyChord's solutions Multimodality

- 1. Identifies separate modes via clustering algorithm on live points.
- 2. Evolves these modes "semi-independently"

PolyChord's Additions

PolyChord's Additions

Parallelised up to number of live points with openMPI.

PolyChord's Additions

- Parallelised up to number of live points with openMPI.
- Implemented in CosmoMC, as "CosmoChord", with fast-slow parameters.

PolyChord vs. MultiNest

Gaussian likelihood

► Well tested.

- ► Well tested.
- ► arXiv:1502.01856

- ► Well tested.
- ► arXiv:1502.01856
- ► arXiv:1506.00171

- ► Well tested.
- arXiv:1502.01856
- arXiv:1506.00171
- ccpforge.cse.rl.ac.uk/gf/project/polychord/

Scaling with dimensionality

▶ Perfect nested sampling has $N_{\mathcal{L}} \sim \mathcal{O}(D^2)$

- ▶ Perfect nested sampling has $N_{\mathcal{L}} \sim \mathcal{O}(D^2)$
- ▶ PolyChord 1.0 has $N_{\mathcal{L}} \sim \mathcal{O}(D^3)$

- ▶ Perfect nested sampling has $N_{\mathcal{L}} \sim \mathcal{O}(D^2)$
- ▶ PolyChord 1.0 has $N_{\mathcal{L}} \sim \mathcal{O}(D^3)$
 - ▶ Need $\sim \mathcal{O}(D)$ to de-correlate at each step

- ▶ Perfect nested sampling has $N_{\mathcal{L}} \sim \mathcal{O}(D^2)$
- ▶ PolyChord 1.0 has $N_{\mathcal{L}} \sim \mathcal{O}(D^3)$
 - ▶ Need $\sim \mathcal{O}(D)$ to de-correlate at each step
 - ▶ Forced to throw $\sim \mathcal{O}(D)$ inter-chain points away.

Inter-chain evaluations

► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- ▶ MCMC-like approaches generate many (correlated) samples

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- At each iteration:

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- At each iteration:
 - ▶ Throw away n_{chain} samples.

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- At each iteration:
 - ▶ Throw away n_{chain} samples.
 - Generate n_{chain} new (correlated) samples to replace them.

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- MCMC-like approaches generate many (correlated) samples
- At each iteration:
 - ▶ Throw away n_{chain} samples.
 - Generate n_{chain} new (correlated) samples to replace them.
- ▶ If $n_{\text{chain}} \sim \mathcal{O}(D)$ (as required), then overall $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.

- ► Traditional nested sampling requires the ability to easily generate a single sample at each iteration.
- ▶ MCMC-like approaches generate many (correlated) samples
- At each iteration:
 - ▶ Throw away n_{chain} samples.
 - Generate n_{chain} new (correlated) samples to replace them.
- ▶ If $n_{\text{chain}} \sim \mathcal{O}(D)$ (as required), then overall $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.
- Need to be able to quantify degree of correlation for correct inference.

► In his original paper, John Skilling noted that nested sampling runs can be merged.

- ► In his original paper, John Skilling noted that nested sampling runs can be merged.
- ► Take two complete nested sampling runs generated by $n_{\text{live}}^{(1)}$ and $n_{\text{live}}^{(2)}$ live points.

- ► In his original paper, John Skilling noted that nested sampling runs can be merged.
- ► Take two complete nested sampling runs generated by $n_{\text{live}}^{(1)}$ and $n_{\text{live}}^{(2)}$ live points.
- Combining the two runs in likelihood order gives a new run generated by $n_{\text{live}}^{(1)} + n_{\text{live}}^{(2)}$ live points.

Aside: Unweaving nested sampling runs

Aside: Unweaving nested sampling runs

► The reverse is also true.

Aside: Unweaving nested sampling runs

- ► The reverse is also true.
- Figure Given a nested sampling run with n_{live} points, there is a unique way of separating it into n_{live} single-point runs (threads).

Handling correlations

▶ Unweave the run into n_{live} threads.

- ▶ Unweave the run into n_{live} threads.
- ► Each thread is a "true" nested sampling run, although threads are correlated.

- Unweave the run into n_{live} threads.
- ► Each thread is a "true" nested sampling run, although threads are correlated.
- Can use traditional techniques on threads to quantify correlation

- ▶ Unweave the run into n_{live} threads.
- ► Each thread is a "true" nested sampling run, although threads are correlated.
- Can use traditional techniques on threads to quantify correlation
 - Batch means
 - Jacknifing
 - Bootstrapping

Handling correlations

- Unweave the run into n_{live} threads.
- Each thread is a "true" nested sampling run, although threads are correlated.
- Can use traditional techniques on threads to quantify correlation
 - Batch means
 - Jacknifing
 - Bootstrapping
- With this in hand, can produce correct inferences from correlated runs.

PolyChord 2.0 vs. MultiNest

Gaussian likelihood

Correlated distributions

Correlated distributions

► Correlated distributions are hard

Correlated distributions

▶ The optimal exploration technique is be affine invariant.

- ▶ The optimal exploration technique is be affine invariant.
- ▶ Treat distribution P(x) and P(Rx) the same.

- ▶ The optimal exploration technique is be affine invariant.
- ▶ Treat distribution P(x) and P(Rx) the same.
- No need to worry about correlations.

- ▶ The optimal exploration technique is be affine invariant.
- ▶ Treat distribution P(x) and P(Rx) the same.
- No need to worry about correlations.
- Good example: Now highly successful emcee (MCMC hammer).
 - Important: emcee is not unique (or necessarily best)

Skillings affine invariant ideas

Leapfrog

Affine invariance

Subspace collapse

Affine invariance

Subspace collapse

► The main problem that besets these techniques is "subspace collapse".

Solution

Subspace collapse Solution

▶ Need to use $\sim \mathcal{O}(D)$ points to avoid this.

Other variations

► Generalise guided walk to *D* dimensions (slice through the mean of *D* other points).

- ► Generalise guided walk to *D* dimensions (slice through the mean of *D* other points).
- ▶ Slice through a "random" linear combination of *D* points.

- ► Generalise guided walk to *D* dimensions (slice through the mean of *D* other points).
- ▶ Slice through a "random" linear combination of *D* points.
- Slice through a "random" linear combination of all points

- ► Generalise guided walk to *D* dimensions (slice through the mean of *D* other points).
- ▶ Slice through a "random" linear combination of *D* points.
- Slice through a "random" linear combination of all points
- ► There are lots of variations: This is an underused area of the field.

▶ Using intermediate points so $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.

- ▶ Using intermediate points so $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.
- Unweaving runs to quantify correlations

- ▶ Using intermediate points so $\sim \mathcal{O}(D^3) \rightarrow \sim \mathcal{O}(D^2)$.
- Unweaving runs to quantify correlations
- Affine invariant sampling

Toy problem

Evidences

Evidences

▶ $\log Z$ ratio: -251:-156:-114:-117:-136

Evidences

- ▶ $\log Z$ ratio: -251:-156:-114:-117:-136
- ightharpoonup odds ratio: $10^{-60}:10^{-19}:1:0.04:10^{-10}$

Bayes Factors

Marginalised plot

