Open the IBM Cloud Dashboard and Go to the Resource list and click on it

Then go to AI/Machine Learning, there you can see the location in front of Watson Studio. Write it on the Notepad

Step 1:- click on the search bar and search Watson Machine Learning

Step 2:- Click on Watson machine learning service

Step 3: You have to select the same location which you have selected in Watson Studio. If you have selected Frankfurt in Watson Studio then you have to select the same here or if you have selected London then you have to select London here.

Step 4:- select free version and then click the box of terms and conditions and then create

Step 5:- click Launch in

Step 6:- click on Cancel when it ask for Build and Manage Models

Step 7:- Click on Plus sign in projects to create a new project

Step 8 :- give name to the project and then click on create

Step 9:- Go to Assets and click on New Asset

Step 10:- Go to Automated builders and click on AutoAl

Step 11:- give name and then click on associate a machine learning instance

Step 12:- tick on the box of Watson machine learning and then click on associate

Step 13:- Now click on Create

Step 14:- click on browse and select the dataset

Configure AutoAI experiment

PREDICTING_ATTRITION_RATE <a>\rightarrow

Step 15:- click on No in Time series Analysis

Configure AutoAI experiment

PREDICTING_ATTRITION_RATE <a>\rightarrow

Step 16:- Select column which you want to predict in this case select Attrition

range. Data must be structured and sequential. L Browse Select data from project What do you want to predict? Prediction column (i) Select prediction column HR-Employee-Attrition-Training Data Set.c... Age INT Attrition STR BusinessTravel STR DailvRate INT

Step 17:- click on run experiment

Step 18:- On this screen experiment is going on and it will take some minutes to complete it

Step 19:- Now machine has been trained in this dataset

Step 20:- Scroll down on the page and as you can see pipeline 4 is giving the highest accuracy

≡ II	IBM Watson St u	udio Q S	Search in your workspaces	Upgrade	② 🗘 Vishal K	Kumar's Account 🗸	Frankfurt VK III
Projects / HR-ATTRITION PREDICTION / PREDICTING_ATTRITION_RAT			CTION / PREDICTING_ATTRITION_RATE	Ē			① B 0 F 01
Experiment summary			Pipeline comparison		★ Rank by:	Accuracy (Optimized)	Cross validation score
	Rank ↑	Name	Algorithm	Accuracy (Optimized) Cross Validation	Enhancements	Build time	
*	1	Pipeline 4	XGB Classifier	0.878	HPO-1 FE HPO-2	00:00:46	
	2	Pipeline 2	 XGB Classifier 	0.872	HPO-1	00:00:08	
	3	Pipeline 1	 XGB Classifier 	0.872	None	00:00:02	
	4	Pipeline 3	 XGB Classifier 	0.871	HPO-1 FE	00:00:33	
	5	Pipeline 8	 Snap Random Forest Classifier 	0.863	HPO-1 FE HPO-2	00:00:38	
	6	Pipeline 6	 Snap Random Forest Classifier 	0.862	HPO-1	00:00:04	•

Step 21:- We can save this pipeline by clicking on save as

≡ 1	BM Watson St ı	ıdio Q	Search in your workspaces		Upgrade	?	\$	Vishal K	(umar's A	ccount	~	Frank	furt ∨	VK	:::	•
Proje	ects / HR-ATTI	RITION PREDI	CTION / PREDICTING_ATTRITION_RAT	E					<u>=</u>	©	\triangleright	(i)			01 00	
Exp	eriment summa	ary	Pipeline comparison				*	Rank by:	Accuracy	/ (Optim	ized)	Cross			- ≎-	
	Rank ↑	Name	Algorithm	Accuracy (Opt	imized)	Enhancen	nents		Build t	ime						
*	1	Pipeline 4	 XGB Classifier 	0.878		HPO-1	FE HI	PO-2	00:00:	46			Save	as		
	2	Pipeline 2	XGB Classifier	0.872		HPO-1			00:00:	08						
	3	Pipeline 1	 XGB Classifier 	0.872		None			00:00:	02						
	4	Pipeline 3	 XGB Classifier 	0.871		HPO-1	FE		00:00:	33						
	5	Pipeline 8	 Snap Random Forest Classifier 	0.863		HPO-1	FE HI	PO - 2	00:00:	38						
	4	Dinalina 6	Span Dandom Forget Classifier	0.862		НР∩ ₋1			00.00.	04					,	•

Step 22:- click on model and then create it

Step 23:- now your model has been saved successfully and click on view in project

Step 24:- click on promote to deployment space

Step 25:- In target Space, click on create a new deployment space

Step 26:- give name PROJECT ATTRITION and then scroll down and go to select machine learning service

Step 27:- select Watson Machine Learning and then click on create

Step 28:- Now you space is ready. Close this pop-up

Step 29:- Now click on promote

Step 30:- In the Right side, there is a green pop-up box. Click on the deployment space in that

Step 31:- Now go to the Assets part and click on the three dots and select deploy

Step 32:- Select Batch and Give name Attrition_Prediction and then click on create

Step 33:- click on New Job

Step 34:- Give name to it and then click next

Step 35:- configuration should be the same as below and then click next

Step 36:- Schedule will be off and click next

Step 37:- Notifications will be off and then click next

Step 38:- Now select Inline Data

Step 39:- Select Input with form

Step 40:- You can give age as 30, BusinessTravel as Travel_Rarely and DailyRate as 500. Make sure that you have written exactly the same and click on Next

Step 41:- click on create and run

Step 42:- A new job has been created

