STŘEDOŠKOLSKÁ ODBORNÁ ČINNOST Obor č. 2: Fyzika

Mechanika rodin planetek s aplikací na rodinu Eunomia

Adam Křivka Jihomoravský kraj

Brno 2018

TODO: Ostatní nutné úvodní stránky pro SOČku...

Obsah

1	Úvo	d do nebeské mechaniky	5
	1.1	Pohybové rovnice	5
		1.1.1 Rovnice pro dvě tělesa	6
		1.1.2 Rovnice pro N těles	8
	1.2	Orbitální elementy	9
		1.2.1 Oskulační elementy	11
		1.2.2 Střední elementy	11
		1.2.3 Vlastní elementy	11
2	Pla	netky ve Sluneční soustavě	12
	2.1	Rodiny planetek	12
		2.1.1 Metody identifikace rodin	12
3	Vla	stnosti rodiny Eunomia	13
	3.1	Nejistoty pozorovaných dat	13
	3.2	Fyzikální model pro rodinu Eunomia	13
		3.2.1 Jarkovského jev	13
		3.2.2 YORP jev	13
		3.2.3 Náhodné srážky	13
		3.2.4 Nevratné děje při vývoji	13
	3.3	Simulace orbitálního vývoje	13
	3.4	Porovnání modelu a pozorování	13

OBSAH		
4	Aplikace v praxi	17
5	Budoucí možnosti výzkumu	18

Úvod do nebeské mechaniky

TODO: Úvod

1.1 Pohybové rovnice

Pohybová rovnice je matematicky zapsaný fyzikální vztah, který popisuje možné pohyby těles v daném prostředí [2]. Řešením pohybové rovnice je funkce, popisující polohu a rychlost každého zkoumaného tělesa v závislosti na čase. Přitom potřebujeme znát počáteční podmínky — polohy a rychlosti těles na začátku. Pohybová rovnice bývá ve tvaru diferenciální rovnice, což je rovnice, která vyjadřuje vztah mezi nějakou funkcí a jejími derivacemi, což je okamžitá změna hodnoty funkce při velmi malé změně argumentu, v našem případě času.

V následující části se pokusíme nalézt řešení pohybové rovnice pro tělesa ve sluneční soustavě. Zákony, jimiž se budou naše tělesa řídit, jsou Newtonův gravitační zákon a Newtonovy

pohybové zákony, které byly poprvé definovány již v roce 1687.

1.1.1 Rovnice pro dvě tělesa

Omezme se nyní na dvě tělesa a nalezněme řešení tzv. problému dvou těles, někdy také Keplerovy úlohy. To znamená, že se pokusíme odvodit funkci, popisující polohu a rychlost obou těles v závisloti na čase.

Nacházíme se v inerciální vztažné soustavě, což je taková vztažná soustava, kde platí první Newtonův zákon. Jako bod v klidu si zvolme těžiště soustavy. Pro síly působící na obě tělesa podle Newtonova gravitačního zákona a druhého a třetího pohybového zákona platí

$$\vec{F}_1 = +G \frac{m_1 m_2}{|\vec{r}|^3} \vec{r} = m_1 \vec{a}_1 \tag{1}$$

$$\vec{F}_2 = -G \frac{\dot{m}_1 \dot{m}_2}{|\vec{r}|^3} \vec{r} = m_2 \vec{a}_2, \tag{2}$$

kde G označuje gravitační konstantu, m_1 , m_2 hmotnosti zkoumaných těles, \vec{a}_1 , \vec{a}_2 vektory zrychlení těles (tj. druhé derivace polohových vektorů \vec{r}_1 , \vec{r}_2 podle času) a \vec{r} vektor udávající vzájemnou polohu těles, definovanou jako $\vec{r} = \vec{r}_2 - \vec{r}_1$. Součtem obou rovnic dostáváme

$$\vec{F_1} + \vec{F_2} = m_1 \vec{a_1} + m_2 \vec{a_2} = 0. {3}$$

Vektor popisující polohu těžiště soustavy je $\vec{R} \equiv \frac{m_1 \vec{r}_1 + m_2 \vec{r}_2}{m_1 + m_2}$. Jeho druhou derivací podle času dostáváme zrychlení

$$\frac{\mathrm{d}^2 \vec{R}}{\mathrm{d}t^2} = \frac{m_1 \vec{a_1} + m_2 \vec{a_2}}{m_1 + m_2} = 0,$$

které se podle (3) rovná nule, takže se těžiště soustavy pohybuje konstantní rychlostí.

Nyní se však přesuňme do soustavy neinerciální, kde je první z těles (běžně to hmotnější) nehybné. Řekněme, že nehybné těleso má index 1, tedy nově $\vec{r}_1' = 0$, $\vec{r}_2' = \vec{r}$ (tedy i $\vec{a}_2' = \vec{a}$) a $\vec{r}' = \vec{r}$. Provedli jsme tedy v podstatě transformaci, kdy jsme ke každému vektoru přičetli \vec{r}_1 . Rovnici (1) můžeme přepsat jako

$$\vec{a} = Gm_2 \frac{\vec{r}}{|\vec{r}|^3}$$

$$\frac{\mathrm{d}^2 \vec{r}}{\mathrm{d}t^2} - Gm_2 \frac{\vec{r}}{|\vec{r}|^3} = 0 \tag{4}$$

Často ještě definujeme gravitační paramter soustavy $\mu = Gm_2$.

I přesto, že tato diferenciální rovnice ještě není ve své konečné podobě vhodné k tomu, abychom z ní vyvodili následující vztah, prozradíme, že je jím funkce v polárních souřadnicích, popisující vzdálenost těles $r \equiv |\vec{r}|$ v závisloti na úhlu θ , který svírá přímka procházející oběma tělesy a nějaká zvolená referenční přímka.

$$r(\theta) = \frac{p}{1 + e\cos(\theta - \omega)} \tag{5}$$

kde p se nazývá paramter elipsy, jehož velikost je určena hodnotou μ , e, resp. ω jsou integrační konstanty a nazývají se excentricita, resp. argument pericentra. K rovnici (5) a jejím důsledkům se vrátíme v sekci 1.2, zatím vězme, že jsme dostali obecnou funkci kuželosečky, z nichž nás bude nejvíce zajímat případ elipsy. Zmíněné konstanty budou určovat její tvar, rozhodně ale nestačí k úplnému popsání orientace trajektorie (orbity) tělesa v prostoru.

Uvědomme si, že jsme neodvodili závislost polohy tělesa na čase. Tuto závislost určuje Keplerova rovnice:

$$M = E + e \sin E \tag{6}$$

kde M označuje střední anomálii, E excentrickou anomálii a e excentricitu elipsy (viz obrázek). Obě anomálie mají úhlové jednotky, úhel M ale nemůžeme zkonstruovat, nicméně je významný tím, že je lineárně závislý na čase. Pokud známe E, můžeme pomocí snadno spočítat M. Problém spočívá v tom, že nemůžeme vyjádřit E v závisloti na M konečným

výrazem, ale pouze nekonečnou řadou nebo jej můžeme aproximovat numerickými metodami.

1.1.2 Rovnice pro N těles

Jak vidíme, už i pro dvě tělesa se musíme k získání polohy tělesa v čase uchýlit k numerickým metodám. Ukazuje se, že obecný problém N těles je analyticky neřešitelný¹ a jediné aplikovatelné metody jsou metody přibližné analytické nebo numerické.

Uvažujme nyní N těles — respektive hmotných bodů, které na sebe vzájemně gravitačně působí v souladu s Newtonovým gravitačním zákonem. Pro libovolné těleso, označené indexem $j \in \{1, 2, ..., N\}$, je celková síla F_j , která na něj působí, výslednicí všech gravitačních sil způsobených ostatními tělesy, jak ukazuje následující rovnice.

$$\vec{F}_{j} = m_{j}\vec{a}_{j} = \sum_{\substack{i=1\\i\neq j}}^{N} G \frac{m_{i}m_{j}}{|\vec{r}_{i} - \vec{r}_{j}|^{3}} (\vec{r}_{i} - \vec{r}_{j})$$

$$(7)$$

$$\vec{a}_{j} = \sum_{\substack{i=1\\i\neq j}}^{N} \frac{Gm_{i}}{|\vec{r}_{i} - \vec{r}_{j}|^{3}} (\vec{r}_{i} - \vec{r}_{j})$$
(8)

kde $\vec{r_i} - \vec{r_j}$ označuje vektor určující vzájemnou polohu těles i a j, konkrétně jde o vektor s počátkem v tělese j a vrcholem v tělese i; ostatní veličiny jsou definované analogicky jako v předchozí části.

Eulerova metoda

I přesto, že se následující metoda v přesných numerických výpočtech zřídka používá, uvádíme ji zde z didaktických důvodů, neboť názorně ilustruje použití numerických metod pro řešení problému N těles. Jak název napovídá, poprvé s ní v 18. století přišel švýcarský matematik Leonhard Euler.

Princip algoritmu spočívá v tom, že v libovolném čase můžeme z (8) vypočítat zrychlení každého tělesa. Pak, po zvolení určitého časového kroku, odpovídajícím způsobem změníme

¹existují ale nějaká zajímavá speciální řešení, viz [1].

vektor rychlosti. Následně necháme všechna tělesa po dobu časového kroku pohybovat se po přímce konstantní rychlostí. Následuje přesný popis algoritmu a k němu příslušná ilustrace na obrázku 1.1.

Mějme zmiňovaných N hmotných bodů, pro které platí (8). Zaměřme se na jeden hmotný bod v čase t_0 a označme jeho počáteční polohu $\vec{r}(t_0)$ a počáteční rychlost $\vec{v}(t_0)$. K použití Eulerovy metody potřebujeme znát i počáteční polohy a rychlosti všech ostatních těles v systému. Dále vhodně zvolme velikost časového kroku h. V následujícíh třech krocích si ukažéme jednu iterace algoritmu. Pokud bychom chtěli počítat v čase t_0 , dosadili bychom k=0.

- 1. Nechť je v čase t_k poloha zvoleného bodu $\vec{r}(t_k)$ a rychlost $\vec{v}(t_k)$. Z (8) vypočítáme zrychlení $\vec{a}(t_k)$.
- 2. Položme t(k+1) = t(k) + h a vypočítejme $\vec{v}(t_{k+1}) = \vec{v}(t_k) + h \cdot \vec{a}(t_k)$.
- 3. Vypočítejme $\vec{r}(t_{k+1}) = \vec{r}(t_k) + h \cdot \vec{v}(t_k)$ a vraťme se ke kroku 1, tentokrát počítaje v čase t_{k+1} .

Jak můžeme vidět na obrázku 1.1, vypočtená dráha se od té reálné značně vzdaluje. To by samozřejmě vyřešila volba menší kroku h, ale pro velký počet těles a velkou požadovanou přesnost je algoritmus velmi pomalý (tedy konverguje pomalu) a dnešní počítače na něj nestačí.

TODO: O ostatních integračních metodách, udělám až budu víc chápat WHM, RMVS, ... Swift obecně.

1.2 Orbitální elementy

TODO: Zavedení šesti základní elementů

 $^{^2}$ Můžeme porovnat se vzorcem pro rovnoměrný přímočarý pohyb, dobře známým ze středoškolského učiva: $v=v_0+at,$ podobně v kroku 3 $s=s_0+vt$

Obrázek 1.1: Ilustrace Eulerovy metody pro dvě tělesa, kdy větší těleso s pozicí \vec{R} a hmotností M (velká tečka vlevo nahoře) gravitačně působí na menší těleso (malé tečky vpravo). Jsou ukázány iterace t_0 , kdy vycházíme z počátečních hodnot veličin $\vec{r_0}$ a $\vec{v_0}$, a t_1 , t_2 . Algoritmus byl reálně aplikován, se zjednodušenými hodnotami: h=0,4 s, M=0,3 kg, G=1, $r=R-r_0=1.15$ m, $v_0=0,51$ ms⁻¹ a obrázek byl mírně upraven pro lepší viditelnost. Šedá křivka naznačuje ideální dráhu tělesa.

1.2.1 Oskulační elementy

TODO: Popis, efemeridy

1.2.2 Střední elementy

1.2.3 Vlastní elementy

TODO: Význam, nastínění výpočtu

Planetky ve Sluneční soustavě

2.1 Rodiny planetek

2.1.1 Metody identifikace rodin

Rezonance středního pohybu

Rezonance sekulární

Vlastnosti rodiny Eunomia

- 3.1 Nejistoty pozorovaných dat
- 3.2 Fyzikální model pro rodinu Eunomia
- 3.2.1 Jarkovského jev
- 3.2.2 YORP jev
- 3.2.3 Náhodné srážky
- 3.2.4 Nevratné děje při vývoji
- 3.3 Simulace orbitálního vývoje
- 3.4 Porovnání modelu a pozorování

Obrázek 3.1: TODO

Obrázek 3.2: TODO

Obrázek 3.3: TODO

Obrázek 3.4: TODO

Obrázek 3.5: TODO

Obrázek 3.6: TODO

Obrázek 3.7: TODO

Aplikace v praxi

Budoucí možnosti výzkumu

Bibliografie

- [1] Adrian Cohan. "A Figure Eight And other Interesting Solutions to the N-Body Problem". In: (2012). URL: https://sites.math.washington.edu/~morrow/336_12/papers/adrian.pdf.
- [2] Wikipedie. Pohybová rovnice Wikipedie: Otevřená encyklopedie. [Online; navštíveno 28. 11. 2018]. 2018. URL: %5Curl%7Bhttps://cs.wikipedia.org/w/index.php?title=Pohybov%C3%A1_rovnice&oldid=16695434%7D.