Pregunta 1

Selecciona todas las matrices que sean estocásticas. Justifica tus respuestas.

b)
$$\begin{pmatrix} 0.25 & 0.35 & 0.60 \\ 0 & 0 & 1 \\ 0.85 & 0.15 & 0.05 \end{pmatrix}$$

c)
$$\begin{pmatrix} 0.25 & 0.25 & 0.50 \\ 0.10 & 0.20 & 0.70 \end{pmatrix}$$

d)
$$\begin{pmatrix} 0.13 & 0.27 & 0.30 & 0.30 \\ 1 & 0 & 0 & 0 \\ 0.10 & 0.30 & 0.50 & 0.10 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

Son matrices cuadradas, la suma de sus filas son la probabilidad de 1 y son números no negativos que pertenecen a los reales.

Pregunta 3

Si tienes el siguiente vector inicial (0.01, 0.21, 0.78), y la siguiente matriz estocástica:

0.50	0.25	0.25
0.03	0.07	0.90
0.74	0.01	0.25

¿Cuál sería la distribución del vector después de una generación?

Supón que un investigador ha identificado las probabilidades de que una persona cambie de humor (Feliz, Apático, Triste) a otro de manera diaria. Ha identificado que pasar de Feliz a a)Apático en un día ocurre el 70% de las veces y b) a Triste el 10%. Estar Apático y c) encontrarse igual ocurre el 50% de las veces, y d) sentirse Feliz el 30%. Finalmente, sentirse Triste y e) después Feliz el 1% de las ocasiones, y e) Apático el 30%.

Si hoy es Lunes y la persona se siente triste, ¿cuál es la probabilidad de que el próximo Viernes se sienta Apático?

O 44.93%
O 41.24%
O 36.40%
43.62%

Pregunta 6

Elige todas las matrices estocásticas que sean no regulares. Justifica tu respuesta.

- A. $\begin{pmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{pmatrix}$
- B. $\begin{pmatrix} 0.5 & 0.5 \\ 1 & 0 \end{pmatrix}$

C.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0.25 & 0.5 & 0.25 \\ 0 & 1 & 0 \end{pmatrix}$$
D. $\begin{pmatrix} 0 & 0.1 & 0.9 \\ 0.7 & 0.0 & 0.30 \\ 1 & 0 & 0 \end{pmatrix}$
E. $\begin{pmatrix} 0 & 1 & 0 \\ 0.5 & 0.0 & 0.5 \end{pmatrix}$

1

0

En ambos casos cumplen con la condición de que tienen al menos 2 estados que no tienen una probabilidad positiva de transición hacia otros estados.

Elige todas las matrices que representen Cadenas de Markov Absorbentes. Justifica tu respuesta.

B.
$$\begin{pmatrix} 0.2 & 0 & 0.8 \\ 0 & 1 & 0 \\ 0.7 & 0 & 0.3 \end{pmatrix}$$

c.
$$\begin{pmatrix} 1 & 0 & 0 \\ 0.01 & 0.09 & 0.90 \\ 0.33 & 0.33 & 0.34 \end{pmatrix}$$

D.
$$\begin{pmatrix} 0 & 1 & 0 \\ 0.5 & 0.0 & 0.5 \\ 0 & 1 & 0 \end{pmatrix}$$

Dada la matriz estocástica

0.30	0.70	
0.25	0.75	

Encuentra el estado estable utilizando cada uno de los siguientes vectores iniciales por separado:

- (0.40, 0.60)
- (0.10, 0.90)

En este caso, ¿el estado estable depende del vector inicial?

Falso porque el estado estable puede ser calculado de forma independiente al vector inicial.

