

## Introdução

Tal como anteriormente referido, as tabelas de verdade constituem outra forma de representar funções lógicas.

Numa tabela deste tipo, apresentam-se todas as combinações possíveis das variáveis, juntamente com os valores assumidos pela função para cada uma dessas combinações.

#### Características das tabelas de verdade

- Fáceis de obter a partir de uma formulação verbal
- Fácil obtenção das expressões nas formas canónicas
- Ponto de partida para métodos gráficos e tabulares de simplificação
- Permitem a implementação directa de funções lógicas com certos componentes



### **Exemplo:**

| Α                       | В                 | С                                                         | F                                                  |
|-------------------------|-------------------|-----------------------------------------------------------|----------------------------------------------------|
| 0                       | 0                 | 6                                                         | 0                                                  |
| $\langle \circ \rangle$ | 0                 | $\left( -\right)$                                         | 1                                                  |
| 0                       | 1                 | 0                                                         | 1                                                  |
| 0                       | 1                 | $\left( \begin{array}{c} \rightarrow \end{array} \right)$ | 0                                                  |
| 1                       | 0                 | $\langle \circ \rangle$                                   | 0                                                  |
| 1                       | 0                 | 1                                                         | 0                                                  |
| 1                       | 1                 | 0                                                         | 1                                                  |
| 1                       | 1                 | 1                                                         | 0                                                  |
|                         | 0 0 0 0 1 1 1 1 1 | 0 0<br>0 1<br>0 1<br>1 0                                  | 0 0 0<br>0 0 1<br>0 1 0<br>0 1 1<br>1 0 0<br>1 1 1 |

Esta tabela indica que a função assume o valor 1 para as combinações de variáveis assinaladas a vermelho e o valor 0 para as combinações assinaladas a azul.



## Obtenção de uma função nas formas canónicas

A partir da Tabela de Verdade é possível obter a função **F**, quer na forma canónica **Soma de Produtos**, quer na forma canónica **Produto de Somas**.

A primeira obtém-se somando todos os produtos lógicos que dão à função o valor 1.

As variáveis aparecem nos termos de forma negada quando o seu valor é **0**.

A segunda obtém-se multiplicando todas as somas lógicas que dão à função o valor 0.

Neste caso as variáveis aparecem negadas quando o seu valor é 1.



| Sistemas Digitais 2023/2024 | 5 |
|-----------------------------|---|
| •                           |   |
|                             |   |

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 0 |

Assim, no exemplo anterior a função F pode escrever-se na forma de **Soma de Produtos** como:

$$F(A,B,C) = \overline{A}.\overline{B}.C + \overline{A}.B.\overline{C} + A.B.\overline{C}$$

E na forma de **Produto de Somas** como:

$$F(A,B,C) = (A+B+C).(A+\overline{B}+\overline{C}).(\overline{A}+B+C).$$
$$.(\overline{A}+B+\overline{C}).(\overline{A}+\overline{B}+\overline{C})$$