

4.0.1 GATE Overflow Test Series | Mock GATE | Test 3 | Question: 59

If the function $f(x) = \begin{cases} \alpha \sqrt{x+1} & ; 0 \le x \le 3 \\ \beta x+2 & ; 3 < x < 5 \end{cases}$ is differentiable, then the value of $\alpha - \beta$ is

go2025-mockgate-3 numerical-answers calculus

Answer key 🖟

4.1

Continuity (8)

4.1.1 Continuity: GATE CSE 1996 | Question: 3

$$f(x) = egin{cases} x^2 & ext{for } x \leq 1 \ ax^2 + bx + c & ext{for } 1 < x \leq 2 \ x + d & ext{for } x > 2 \end{cases}$$

Find the values for the constants a, b, c and d so that f is continuous and differentiable everywhere on the real

gate1996 calculus differentiation continuity

Answer key 🖗

Answer key 🖗

4.1.2 Continuity: GATE CSE 1998 | Question: 1.4

Consider the function y = |x| in the interval [-1, 1]. In this interval, the function is

- A. continuous and differentiable
- C. differentiable but not continuous
- gate1998 calculus continuity differentiation
- 4.1.3 Continuity: GATE CSE 2007 | Question: 1

Consider the following two statements about the function f(x) = |x|:

- P. f(x) is continuous for all real values of x.
- Q. f(x) is differentiable for all real values of x.

Which of the following is **TRUE**?

- A. *P* is true and *Q* is false.
- C. Both P and Q are true.

- D. Both P and Q are false.
- B. P is false and Q is true.

B. continuous but not differentiable

D. neither continuous nor differentiable

gatecse-2007 calculus continuity differentiation easy

Answer key 🖟

4.1.4 Continuity: GATE CSE 2013 | Question: 22

Which one of the following functions is continuous at x = 3?

$$A. \ f(x) = \begin{cases} 2, & \text{if } x = 3 \\ x - 1 & \text{if } x > 3 \\ \frac{x + 3}{3} & \text{if } x < 3 \end{cases}$$

$$B. \ f(x) = \begin{cases} 4, & \text{if } x = 3 \\ 8 - x & \text{if } x \neq 3 \end{cases}$$

$$C. \ f(x) = \begin{cases} x + 3, & \text{if } x \leq 3 \\ x - 4 & \text{if } x > 3 \end{cases}$$

$$D. \ f(x) = \begin{cases} \frac{1}{x^3 - 27} & \text{if } x \neq 3 \end{cases}$$

gatecse-2013 calculus continuity normal

Answer key 🖗

4.1.5 Continuity: GATE CSE 2014 Set 1 | Question: 47

A function f(x) is continuous in the interval [0,2]. It is known that f(0) = f(2) = -1 and f(1) = 1. Which one of the following statements must be true?

- A. There exists a y in the interval (0,1) such that f(y) = f(y+1)
- B. For every y in the interval (0,1), f(y) = f(2-y)
- C. The maximum value of the function in the interval (0,2) is 1
- D. There exists a y in the interval (0,1) such that f(y) = -f(2-y)

gatecse-2014-set1 calculus continuity norma

Answer key 🖗

4.1.6 Continuity: GATE CSE 2015 Set 2 | Question: 26

Let $f(x) = x^{-(\frac{1}{3})}$ and A denote the area of region bounded by f(x) and the X-axis, when x varies from -1 to 1. Which of the following statements is/are TRUE?

- I. f is continuous in [-1,1]
- II. f is not bounded in [-1,1]
- III. A is nonzero and finite
- A. II only
- B. III only
- C. II and III only
- D. I, II and III

gatecse-2015-set2 continuity functions normal

Answer key 🖗

4.1.7 Continuity: GATE CSE 2021 Set 2 | Question: 25

Suppose that $f: \mathbb{R} \to \mathbb{R}$ is a continuous function on the interval [-3,3] and a differentiable function in the interval (-3,3) such that for every x in the interval, $f'(x) \leq 2$. If f(-3) = 7, then f(3) is at most

gatecse-2021-set2 numerical-answers calculus continuity 1-mark

Answer key 🖗

4.1.8 Continuity: GATE2010 ME

The function y = |2 - 3x|

- A. is continuous $\forall x \in R$ and differentiable $\forall x \in R$
- B. is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at $x = \frac{3}{2}$
- C. is continuous $\forall x \in R$ and differentiable $\forall x \in R$ except at $x = \frac{5}{3}$

D. is continuous $\forall x \in R$ except x = 3 and differentiable $\forall x \in R$

calculus gate2010me engineering-mathematics continuity

Answer key 🖗

4.2

Convergence (2)

4.2.1 Convergence: GATE CSE 1993 | Question: 01.6

Which of the following improper integrals is (are) convergent?

A.
$$\int_0^1 \frac{\sin x}{1-\cos x} dx$$
 C.
$$\int_0^\infty \frac{x}{1+x^2} dx$$

B.
$$\int_0^\infty \frac{\cos x}{1+x} dx$$

D.
$$\int_0^1 \frac{1-\cos x}{\frac{x^5}{2}} dx$$

gate1993 calculus integration convergence out-of-gatecse-syllabus multiple-selects

Answer key 🖗

4.2.2 Convergence: GATE CSE 1993 | Question: 02.2

The radius of convergence of the power series

$$\sum^{\infty} \frac{(3m)!}{(m!)^3} x^{3m}$$

is:

gate1993 calculus convergence normal out-of-gatecse-syllabus fill-in-the-blanks

4.3

Definite Integral (3)

4.3.1 Definite Integral: GATE CSE 2023 | Question: 21

The value of the definite integral

$$\int_{-3}^{3} \int_{-2}^{2} \int_{-1}^{1} (4x^{2}y - z^{3}) dz dy dx$$

is . (Rounded off to the nearest integer)

gatecse-2023 calculus definite-integral numerical-answers 1-mark

Answer key 🖗

4.3.2 Definite Integral: GATE CSE 2024 | Set 2 | Question: 6

Let f(x) be a continuous function from $\mathbb R$ to $\mathbb R$ such that

$$f(x) = 1 - f(2 - x)$$

Which one of the following options is the CORRECT value of $\int_0^2 f(x)dx$?

A. 0

B. 1

C. 2

D. **-1**

gatecse2024-set2 calculus definite-integral

Answer key 🖗

4.3.3 Definite Integral: GATE Overflow Test Series | Mock GATE | Test 6 | Question: 31

The value of $\int_0^{\frac{\pi}{2}} \sin^4 x \cos^4 x dx$ is _____

A.
$$\left(\frac{3\pi}{256}\right)$$

B.
$$\left(\frac{5\pi}{768}\right)$$

C.
$$\left(\frac{7\pi}{768}\right)$$

C.
$$\left(\frac{7\pi}{768}\right)$$
 D. $\left(\frac{3\pi}{384}\right)$

go2025-mockgate-6 calculus definite-integral

Answer key 🖗

4.4

Differential Equation (1)

4.4.1 Differential Equation: GATE CSE 1993 | Question: 01.2

The differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} + \sin y = 0$ is:

- A. linear
- B. non-linear
- C. homogeneous
- D. of degree two

calculus differential-equation easy out-of-gatecse-syllabus multiple-selects

Answer key 🖟

4.5 **Differentiation (6)**

4.5.1 Differentiation: GATE CSE 1996 | Question: 1.6

The formula used to compute an approximation for the second derivative of a function f at a point x_0 is

C.
$$\frac{f(x_0+h)+2f(x_0)+f(x_0-h)}{h^2}$$

B.
$$\frac{f(x_0+h)-f(x_0-h)}{2h}$$

D.
$$\frac{f(x_0+h)-2f(x_0)+f(x_0-h)}{h^2}$$

gate1996 calculus differentiation norma

Answer key 🖗

4.5.2 Differentiation: GATE CSE 2014 Set 1 | Question: 46

The function $f(x) = x \sin x$ satisfies the following equation:

$$f''(x) + f(x) + t\cos x = 0$$

The value of t is

gatecse-2014-set1 calculus easy numerical-answers differentiation

Answer key 🖗

4.5.3 Differentiation: GATE CSE 2014 Set 1 | Question: 6

Let the function

$$f(\theta) = \begin{vmatrix} \sin \theta & \cos \theta & \tan \theta \\ \sin(\frac{\pi}{6}) & \cos(\frac{\pi}{6}) & \tan(\frac{\pi}{6}) \\ \sin(\frac{\pi}{3}) & \cos(\frac{\pi}{3}) & \tan(\frac{\pi}{3}) \end{vmatrix}$$

where

 $heta \in \left[rac{\pi}{6}, rac{\pi}{3}
ight] \; ext{ and } f'(heta)$ denote the derivative of f with respect to θ . Which of the following statements is/are TRUE?

- I. There exists $\theta \in (\frac{\pi}{6}, \frac{\pi}{3})$ such that $f'(\theta) = 0$ II. There exists $\theta \in (\frac{\pi}{6}, \frac{\pi}{3})$ such that $f'(\theta) \neq 0$
- A. I only
- B. II only
- C. Both I and II
- D. Neither I nor II

gatecse-2014-set1 calculus differentiation

Answer key 🖗

4.5.4 Differentiation: GATE CSE 2016 Set 2 | Question: 02

Answer key 🖗

4.5.5 Differentiation: GATE CSE 2017 Set 2 | Question: 10

A. $\frac{2}{\pi}$ and $\frac{16}{\pi}$

B. $\frac{2}{\pi}$ and 0 C. $\frac{4}{\pi}$ and 0

D. $\frac{4}{\pi}$ and $\frac{16}{\pi}$

gatecse-2017-set2 engineering-mathematics calculus differentiation

Answer key 🖗

4.5.6 Differentiation: GATE CSE 2024 | Set 1 | Question: 1

Let $f:\mathbb{R} \to \mathbb{R}$ be a function such that $f(x) = \max\left\{x, x^3\right\}, x \in \mathbb{R}$, where \mathbb{R} is the set of all real numbers. The set of all points where f(x) is NOT differentiable is

A. $\{-1,1,2\}$

B. $\{-2,-1,1\}$ C. $\{0,1\}$

D. $\{-1,0,1\}$

gatecse2024-set1 calculus differentiation

Answer key 🖗

4.6 GO Mockgate 1 (1)

4.6.1 GO Mockgate 1: GATE Overflow | Mock GATE | Test 1 | Question: 19

Evaluate the limit:

$$\lim_{x \to -3} \frac{\sqrt{2x + 22} - 4}{x + 3}$$

A. $\frac{1}{2}$

B. $\frac{1}{4}$

C. $\frac{1}{8}$

D. $\frac{1}{16}$

go-mockgate-1 limits calculus

Answer key 🖗

4.7.1 Integration: GATE CSE 1993 | Question: 02.6

The value of the double integral $\int_0^1 \int_0^{\frac{1}{x}} \frac{x}{1+y^2} dx dy$ is_

gate1993 calculus integration normal fill-in-the-blanks

Answer key 🖗

4.7.2 Integration: GATE CSE 1998 | Question: 8

a. Find the points of local maxima and minima, if any, of the following function defined in $0 \le x \le 6$.

$$x^3 - 6x^2 + 9x + 15$$

b. Integrate

$$\int_{-\pi}^{\pi} x \cos x dx$$

gate1998 calculus maxima-minima integration normal descriptive

Answer key 🖗

4.7.3 Integration: GATE CSE 2000 | Question: 2.3

Let $S = \sum_{i=3}^{100} i \log_2 i$, and $T = \int_2^{100} x \log_2 x dx$.

Which of the following statements is true?

- A. S > T
- C. S < T and 2S > T

- B. S = TD. $2S \le T$

gatecse-2000 calculus integration normal

Answer key 🖗

4.7.4 Integration: GATE CSE 2009 | Question: 25

- $\int_0^{\pi/4} (1 \tan x) / (1 + \tan x) \, dx$
- A. 0

B. 1

- C. $\ln 2$
- D. $1/2 \ln 2$

gatecse-2009 calculus integration normal

Answer key 🖗

4.7.5 Integration: GATE CSE 2011 | Question: 31

Given $i = \sqrt{-1}$, what will be the evaluation of the definite integral $\int_{0}^{\pi/2} \frac{\cos x + i \sin x}{\cos x - i \sin x} dx$?

A. 0

B. 2 normal

- C. -i
- D. i

Answer key 🖗

gatecse-2011 calculus integration

4.7.6 Integration: GATE CSE 2014 Set 3 | Question: 47

$$\int_{0}^{\pi} x^{2} \cos x \, dx$$

A. -2π

B. π

D. 2π

gatecse-2014-set3 calculus limits integration normal

Answer key 🖗

4.7.7 Integration: GATE CSE 2014 Set 3 | Question: 6

gatecse-2014-set3 calculus integration limits numerical-answers

Answer key 🖗

4.7.8 Integration: GATE CSE 2015 Set 1 | Question: 44

Compute the value of:

$$\int\limits_{\frac{1}{\pi}}^{\frac{2}{\pi}}\frac{\cos(1/x)}{x^2}dx$$

gatecse-2015-set1 calculus integration normal numerical-answers

Answer key 🖗

4.7.9 Integration: GATE CSE 2015 Set 3 | Question: 45

If for non-zero x, $af(x) + bf(\frac{1}{x}) = \frac{1}{x} - 25$ where $a \neq b$ then $\int_{1}^{2} f(x) dx$ is

C.
$$\frac{a-b}{a^2-b^2} \left[a(2\ln 2 - 25) + \frac{47b}{2} \right]$$

Answer key 🖗

4.7.10 Integration: GATE CSE 2018 | Question: 16

The value of $\int_0^{\pi/4} x \cos(x^2) dx$ correct to three decimal places (assuming that $\pi=3.14$) is _____

gatecse-2018 calculus integration normal numerical-answers 1-mark

Answer key 🖗

4.7.11 Integration: GATE IT 2005 | Question: 35

What is the value of $\int_0^{2\pi} (x-\pi)^2 (\sin x) dx$

B. 0

C. 1

D. π

gateit-2005 calculus integration normal

Answer key 🖟

4.7.12 Integration: GATE Overflow Test Series | Mock GATE | Test 1 | Question: 12

Assuming $i = \sqrt{-1}$ and t is a real number,

$$I=\int_0^{rac{\pi}{3}}e^{it}dt$$

A.
$$\frac{\sqrt{3}}{2} + i\frac{1}{2}$$

C. $\frac{1}{2} + i\frac{\sqrt{3}}{2}$

B.
$$\frac{\sqrt{3}}{2} - i\frac{1}{2}$$

D. $\frac{1}{2} + \left(1 - \frac{\sqrt{3}}{2}\right)$

go2025-mockgate-1 integration calculus

Answer key 🖗

4.8 Limits (13)

4.8.1 Limits: GATE CSE 1993 | Question: 02.1

$$\lim_{x\to 0}\frac{x(e^x-1)+2(\cos x-1)}{x(1-\cos x)} \text{ is } \underline{\hspace{1cm}}$$

gate1993 limits calculus normal fill-in-the-blanks

Answer key 🖗

4.8.2 Limits: GATE CSE 1995 | Question: 7(B)

Compute without using power series expansion $\lim_{x\to 0} \frac{\sin x}{x}$.

gate1995 calculus limits numerical-answers

Answer key 🖗

4.8.3 Limits: GATE CSE 2008 | Question: 1

$$\lim_{x\to\infty}\frac{x-\sin x}{x+\cos x} \text{ equals }$$

A. 1

B. **-**1

C. ∞

D. $-\infty$

gatecse-2008 calculus limits easy

Answer key 🖗

4.8.4 Limits: GATE CSE 2010 | Question: 5

What is the value of $\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^{2n}$?

Α. (

B. e^{-2}

C. $e^{-1/2}$

D. 1

gatecse-2010 calculus limits normal

Answer key 🖗

4.8.5 Limits: GATE CSE 2015 Set 1 | Question: 4

$$\lim_{x o \infty} x^{rac{1}{x}}$$
 is

gatecse-2015-set1 calculus limits normal

Answer key 🖗

4.8.6 Limits: GATE CSE 2015 Set 3 | Question: 9

The value of $\lim_{x \to \infty} (1+x^2)^{e^{-x}}$ is

A. 0

B. $\frac{1}{2}$

C. 1

D. ∞

gatecse-2015-set3 calculus limits normal

Answer key 🖗

4.8.7 Limits: GATE CSE 2016 Set 1 | Question: 3

$$\lim_{x\to 4}\frac{\sin(x-4)}{x-4}=\underline{\hspace{1cm}}$$

gatecse-2016-set1 calculus limits easy numerical-answers

Answer key 🖗

4.8.8 Limits: GATE CSE 2017 Set 1 | Question: 28

The value of $\lim_{x\to 1} \frac{x^7 - 2x^5 + 1}{x^3 - 3x^2 + 2}$

- A. is 0
- B. is -1
- C. is 1
- D. does not exist

gatecse-2017-set1 calculus limits normal

Answer key 🖗

4.8.9 Limits: GATE CSE 2019 | Question: 13

Compute $\lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3}$

- A. 1
- C. 108/7

- B. 53/12
- D. Limit does not exist

gatecse-2019 engineering-mathematics calculus limits 1-mark

Answer key 🖗

4.8.10 Limits: GATE CSE 2021 Set 1 | Question: 20

Consider the following expression.

$$\lim_{x \to -3} \frac{\sqrt{2x+22}-4}{x+3}$$

The value of the above expression (rounded to 2 decimal places) is . .

gatecse-2021-set1 calculus limits numerical-answers 1-mark

Answer key 🖗

4.8.11 Limits: GATE CSE 2022 | Question: 24

The value of the following limit is

$$\lim_{x\to 0^+}\frac{\sqrt{x}}{1-e^{2\sqrt{x}}}$$

gatecse-2022 numerical-answers calculus

Answer key 🖗

4.8.12 Limits: GATE DS&AI 2024 | Question: 50

Evaluate the following limit:

$$\lim_{x o 0}rac{\lnig(ig(x^2+1ig)\cos xig)}{x^2}=$$

gate-ds-ai-2024 numerical-answers engineering-mathematics

Answer key 🖗

4.8.13 Limits: GATE Data Science and Artificial Intelligence 2024 | Sample Paper | Question: 5

 $\lim_{x\to 2} \frac{\sqrt{x}-\sqrt{2}}{x-2}$

A. 0

B. $\sqrt{2}$

C. $\frac{1}{2\sqrt{2}}$

D. $\frac{1}{\sqrt{2}}$

gateda-sample-paper-2024 limits

Answer key 🖗

4.9

Maxima Minima (13)

4.9.1 Maxima Minima: GATE CSE 1987 | Question: 1-xxvi

- A. There must be a root of f(x) between x_i and x_{i+1}
- B. There need not be a root of f(x) between x_i and x_{i+1}
- C. There fourth derivative of f(x) with respect to x vanishes at x_i
- D. The fourth derivative of f(x) with respect to x vanishes at x_{i+1}

gate1987 calculus maxima-minima

Answer key 🖗

4.9.2 Maxima Minima: GATE CSE 1995 | Question: 1.21

In the interval $[0,\pi]$ the equation $x = \cos x$ has

maxima-minima

- A. No solution
- C. Exactly two solutions

gate1995 calculus normal

- B. Exactly one solution
- D. An infinite number of solutions

4.9.3 Maxima Minima: GATE CSE 1995 Question: 25a

Find the minimum value of $3 - 4x + 2x^2$.

gate1995 calculus maxima-minima easy descriptive

Answer key 🖗

4.9.4 Maxima Minima: GATE CSE 1997 | Question: 4.1

What is the maximum value of the function $f(x) = 2x^2 - 2x + 6$ in the interval [0,2]?

A. 6

B. 10

- C. 12
- D. 5.5

gate1997 calculus normal maxima-minima

Answer key 🖗

4.9.5 Maxima Minima: GATE CSE 2008 | Question: 25

A point on a curve is said to be an extremum if it is a local minimum or a local maximum. The number of distinct extrema for the curve $3x^4 - 16x^3 + 24x^2 + 37$ is

A. 0

B. 1

C. 2

D. 3

gatecse-2008 calculus maxima-minima

Answer key 🖗

4.9.6 Maxima Minima: GATE CSE 2012 | Question: 9

Consider the function $f(x) = \sin(x)$ in the interval $x = \begin{bmatrix} \frac{\pi}{4}, \frac{7\pi}{4} \end{bmatrix}$. The number and location(s) of the local minima of this function are

- A. One, at $\frac{\pi}{2}$
- C. Two, at $\frac{\pi}{2}$ and $\frac{3\pi}{2}$

- B. One, at $\frac{3\pi}{2}$ D. Two, at $\frac{\pi}{4}$ and $\frac{3\pi}{2}$

gatecse-2012 calculus maxima-minima normal

Answer key 🖗

4.9.7 Maxima Minima: GATE CSE 2015 Set 2 | Question: GA-3

Consider a function f(x) = 1 - |x| on $-1 \le x \le 1$. The value of x at which the function attains a maximum, and the maximum value of the function are:

- A. 0, -1
- B. -1,0
- C. 0,1
- D. -1,2

gatecse-2015-set2 set-theory&algebra functions normal maxima-minima

Answer key 🖗

4.9.8 Maxima Minima: GATE CSE 2020 | Question: 1

Consider the functions

II.
$$x^2 - \sin x$$

III.
$$\sqrt{x^3+1}$$

Which of the above functions is/are increasing everywhere in [0,1]?

gatecse-2020 engineering-mathematics calculus maxima-minima 1-mar

Answer key 🖗

4.9.9 Maxima Minima: GATE CSE 2023 | Question: 18

Let

$$f(x) = x^3 + 15x^2 - 33x - 36$$

be a real-valued function.

Which of the following statements is/are TRUE?

- A. f(x) does not have a local maximum.
- B. f(x) has a local maximum.
- C. f(x) does not have a local minimum.
- D. f(x) has a local minimum.

gatecse-2023 calculus maxima-minima multiple-selects 1-mark

Answer key 🖗

4.9.10 Maxima Minima: GATE DS&AI 2024 | Question: 5

For any twice differentiable function $f: \mathbb{R} \to \mathbb{R}$, if at some $x^* \in \mathbb{R}$, $f'(x^*) = 0$ and $f''(x^*) > 0$, then the function f necessarily has a _____ at $x = x^*$.

Note: \mathbb{R} denotes the set of real numbers.

A. local minimum

B. global minimum

C. local maximum

D. global maximum

gate-ds-ai-2024 calculus maxima-minima

Answer key 🖗

4.9.11 Maxima Minima: GATE IT 2008 | Question: 31

If f(x) is defined as follows, what is the minimum value of f(x) for $x \in (0,2]$?

A. 2

- B. $2\frac{1}{12}$
- C. $2\frac{1}{6}$
- D. $2\frac{1}{2}$

gateit-2008 calculus maxima-minima normal

Answer key 🖗

4.9.12 Maxima Minima: GATE Overflow Test Series | Mock GATE | Test 2 | Question: 18

The minimum value of the function

$$f(x) = \frac{x^2}{2} - x$$

occurs at (Mark all the appropriate choices)

- A. x = -1
- B. x = 1
- C. x = 0
- D. $x = \frac{1}{\sqrt{2}}$

go2025-mockgate-2 maxima-minima multiple-selects

Answer key 🖟

4.9.13 Maxima Minima: GATE Overflow Test Series | Mock GATE | Test 4 | Question: 21

The minimum value of the function

$$f(x) = \frac{x^4}{4} - x^2 - 3$$

occurs at

A.
$$x = 1$$

B.
$$x = \sqrt{2}$$

C.
$$x = 0$$

D.
$$x = \frac{1}{\sqrt{4}}$$

go2025-mockgate-4 maxima-minima calculus

Answer key 🖗

4.10

Out of Gatecse Syllabus (4)

4.10.1 Out of Gatecse Syllabus: GATE CSE 1993 | Question: 01.5

Fourier series of the periodic function (period 2π) defined by

$$f(x) = \left\{ egin{aligned} 0, -p < x < 0 \ x, 0 < x < p \end{aligned}
ight. \ is \ rac{\pi}{4} + \sum \left[rac{1}{\pi n^2} (\cos n\pi - 1) \cos nx - rac{1}{n} \cos n\pi \sin nx
ight]$$

But putting $x = \pi$, we get the sum of the series

$$1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \cdots$$
 is

A.
$$\frac{\pi^2}{4}$$

B.
$$\frac{\pi^2}{6}$$

C. $\frac{\pi^2}{8}$

gate1993 calculus normal out-of-gatecse-syllabus multiple-selects

Answer key 🖗

4.10.2 Out of Gatecse Syllabus: GATE CSE 1993 | Question: 01.7

The function $f(x,y) = x^2y - 3xy + 2y + x$ has

- A. no local extremum
- (2,3) 2 3 223 2 2 3
- C. one local maximum but no local minimum
- B. one local minimum but no local maximum
- D. one local minimum and one local maximum

gate1993 calculus maxima-minima normal out-of-gatecse-syllabus multiple-selects

Answer key 🖗

4.10.3 Out of Gatecse Syllabus: GATE CSE 1993 | Question: 02.8

Given $\vec{v} = x \cos^2 y \hat{i} + x^2 e^z \hat{j} + z \sin^2 y \hat{k}$ and S the surface of a unit cube with one corner at the origin and edges parallel to the coordinate axes, the value of integral $\int_{-\infty}^{1} \int_{s} \vec{V} \cdot \hat{n} dS$ is _____.

4.10.4 Out of Gatecse Syllabus: GATE CSE 1995 | Question: 2.18

The solution of differential equation y'' + 3y' + 2y = 0 is of the form

A.
$$C_1 e^x + C_2 e^{2x}$$

C.
$$C_1e^{-x} + C_2e^{-2x}$$

gate1995 calculus out-of-gatecse-syllabus

B. $C_1e^{-x} + C_2e^{3x}$

D.
$$C_1e^{-2x} + C_2e^{-x}$$

Answer key 🖗

4.11

Polynomials (2)

4.11.1 Polynomials: GATE CSE 1987 | Question: 1-xxii

The equation $7x^7 + 14x^6 + 12x^5 + 3x^4 + 12x^3 + 10x^2 + 5x + 7 = 0$ has

A. All complex roots

C. Four pairs of imaginary roots

D. None of the above

gate1987 calculus polynomials

Answer key 🖗

4.11.2 Polynomials: GATE CSE 1995 | Question: 2.8

If the cube roots of unity are $1, \omega$ and ω^2 , then the roots of the following equation are

$$(x-1)^3 + 8 = 0$$

A.
$$-1, 1+2\omega, 1+2\omega^2$$

C.
$$-1, 1-2\omega, 1-2\omega^2$$

gate1995 calculus normal polynomials

Answer key 🖗

(x -	_ +/	+ 0 $-$ 0	

B.
$$1, 1 - 2\omega, 1 - 2\omega^2$$

B.
$$1, 1 - 2\omega, 1 - 2\omega^2$$

D. $-1, 1 + 2\omega, -1 + 2\omega^2$

Answer Keys

4.0.1	1.2	4.1.1	N/A
4.1.5	Α	4.1.6	С
4.2.2	N/A	4.3.1	0
4.5.1	D	4.5.2	-2
4.5.6	D	4.6.1	В
4.7.4	D	4.7.5	D
4.7.9	Α	4.7.10	0.288 : 0.289
4.8.2	1	4.8.3	Α
4.8.7	1	4.8.8	С
4.8.12	0.5	4.8.13	С
4.9.4	В	4.9.5	В
4.9.9	B;D	4.9.10	Α
4.10.1	С	4.10.2	Α
4.11.2	С		

4.1.2	В
4.1.7	19 : 19
4.3.2	В
4.5.3	С
4.7.1	N/A
4.7.6	Α
4.7.11	В
4.8.4	В
4.8.9	С
4.9.1	Α
4.9.6	D
4.9.11	В
4.10.3	N/A

4.1.3	Α
4.1.8	С
4.3.3	Α
4.5.4	9
4.7.2	N/A
4.7.7	4
4.7.12	Α
4.8.5	С
4.8.10	0.25 : 0.25
4.9.2	В
4.9.7	С
4.9.12	В
4.10.4	С

4.1.4	Α
4.2.1	Q-Q
4.4.1	Α
4.5.5	С
4.7.3	Α
4.7.8	-1
4.8.1	1
4.8.6	С
4.8.11	-0.5
4.9.3	1
4.9.8	Α
4.9.13	В
4.11.1	В