Preliminary Specification
Final Specification

Module	23.0" FHD Color TFT-LCD
Model Name	G230HAN01.1

Customer	Date
Approved by	
Customer's si	gn back page

Checked & Approved by	Date				
Crystal Hsieh	<u>2017.04.10</u>				
Prepared by					
Jimmy Tsai	<u>2017.04.10</u>				
General Display Business Unit / AU Optronics corporation					

document version 1.0 1/25

Record of Revision

Version & Date	Page	Old Description	New Description
V0.1 & 2015/10/06	All	Frist Edition	
V0.2 & 2016/04/11	6	Luminance Uniformity. [%]- 9 Points- 75- 85-	Luminance Uniformity φ [%] φ 9 Points φ 75 φ 80 φ
	10	Old Block Diagram	Updated Black Diagram
	11	With Temp-Humility drawing	Without Temp-Humility drawing
	13	LED Life Times	LTLED→ LED Life Time→ 30,000→ Hrs→ Is=60 mA, Ta= 25°C→
	18		Signal Item Symbol Min Typ Max Unite
		Power Sequence Timing	Power Sequence Timing ∘
	19	Value Units Min.e Typ.e Max.e Units T1e 0.5e e 10e T2e 30e 40e 50e T1fe 0e 16e 50e T12e e 10e	Parameter ∘ Value ∘ Units ∘ T1 ∘ 0.5 ∘ ∘ 10 ∘ T2 ∘ 30 ∘ 40 ∘ 50 ∘ T3 ∘ 0 ∘ 16 ∘ 50 ∘ T4 ∘ ∘ ∘ 10 ∘
		T13¢ 1000¢¢¢	T50 1000000
	21	7.2.1 Connector. Connector Name / Designation. Light Bar Connector. Manufacturer. E&T. Type 7182K-F08N-003 (6 Pin FFC Type)	7.2.1 Connector→ Connector Name / Designation→ Light Bar Connector→ Manufacturer→ E&T→ Type → 7182K-F06N-00L (6 Pin FFC Type
V0.3 & 2017/01/11	6	Red x TDD	Red x/- Red x/-
V1.0 & 2017/04/10	5	Power Consumption=	Power Consumption- [Walt]- 22.0 W (max)- (BL: 15.8 (W) + Cell: 5.4 (W))-
	11	Weight- (Grams)- 1600 (Typ)-	Veignt V
	12	90%	90%+++ 5.0V
	17	Pin1 location Drawing of connectors	VCC rising time Updated drawing

document version 1.0 2/25

Contents

1.	Handling Precautions	4
2.	General Description	5
	2.1 Display Characteristics	5
	2.2 Optical Characteristics	6
3.	Functional Block Diagram	.10
4.	Absolute Maximum Ratings	.11
	4.1 Absolute Ratings of TFT LCD Module	. 11
	4.2 Absolute Ratings of Backlight Unit	.11
	4.3 Absolute Ratings of Environment	. 11
5.	Electrical characteristics	.12
	5.1 TFT LCD Module	12
	5.2 Backlight Unit	13
6.	Signal Characteristic	.14
	6.1 Pixel Format Image	14
	6.2 The Input Data Format	15
	6.3 Signal Description	16
	6.4 Interface Timing	18
	6.5 Power ON/OFF Sequence	19
7.	Connector & Pin Assignment	.20
	7.1 TFT LCD Module	20
	7.2 Backlight Unit	21
8.	Reliability Test	.22
9.	Shipping Label and Packaging	.23
	9.1 Shipping Label	23
	9.2 Packaging	23
40	Machanical Characteristic	24

1. Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- 2) Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- 5) Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open or modify the Module Assembly.
- 8) Do not press the reflector sheet at the back of the module to any directions.
- 9) In case if a Module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of LED light bar edge. Instead, press at the far ends of LED light bar edge softly. Otherwise the TFT Module may be damaged.
- 10) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT Module.
- 11) After installation of the TFT Module into an enclosure, do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT Module from outside. Otherwise the TFT Module may be damaged.
- 12) Small amount of materials having no flammability grade is used in the LCD module. The LCD module should be supplied by power complied with requirements of Limited Power Source (IEC60950 or UL1950), or be applied exemption.
- 13) Don't display the fixed pattern for a long time to avoid image sticking. If the fixed pattern is displayed on the screen, use a screen saver.
- 14) Avoid stressing front bezel position when doing mechanical design. This product must be installed by using mounting holes without undue such as bending or twist. Also do not add undue stress to any portion, ex: near bezel area. Bending or twist may cause this display mura or light leakage. Recommended installing method: The plane "A" is defined from one mounting hole to other mounting holes. Plane A must be the same plane within +/-0.3 mm.

15) Do not operate or store in high temperature, high humidity, dewdrop atmosphere or corrosive gases. Keep the product in packing box with antistatic package in room temperature to avoid dusts when store the product.

document version 1.0 4/25

2. General Description

G230HAN01.1 is a Color Active Matrix Liquid Crystal Display composed of a TFT-LCD panel, a driver circuit, and a backlight system. The screen format is intended to support the FHD (1920(H) x 1080(V)) screen and 16.7M colors. All input signals are 2-channel LVDS interface compatible.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 $^{\circ}\text{C}$ condition:

Items	Unit	Specifications
Screen Diagonal	[mm]	584.211 (23.0")
Active Area	[mm]	509.184 (H) x 286.416 (V)
Resolution		1920(x3) x 1080
Pixel Pitch	[mm]	0.2652 (per one triad) x 0.2652
Pixel Arrangement		R.G.B. Vertical Stripe
Display Mode		Normally Black
White Luminance	[cd/m ²]	300 (center, Typ) @60mA
Contrast Ratio		1000 : 1 (Typ)
Optical ResponseTime	[msec]	14 (Gray to Gray)
Nominal Input Voltage	[Volt]	+5.0 V (Typ)
Power Consumption	[Watt]	22.0 W (max) (BL: 15.6 (W) + Cell: 6.4 (W))
Weight	[Grams]	1,500 (Typ) +/-150g
Physical Size	[mm]	533.2 (H) x 312.0 (V) x 10.5 (D) (Typ)
Electrical Interface		Dual channel LVDS
Surface Treatment		Anti-Glare treatment
Support Color		16.7M colors (True 8 bits)
Temperature Range Operating Storage (Non-Operating)	[°C]	0 to +50 -20 to +60
RoHS Compliance		RoHS Compliance

document version 1.0 5/25

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25°C (Room Temperature):

Item	Unit	Condi	tions	Min.	Тур.	Max.	Note
Viouing Angle	[degree]	Horizontal CR = 10	(Right) (Left)	80 80	89 89	-	4
Viewing Angle		Vertical CR = 10	(Up) (Down)	80 80	89 89	-	1
Luminance Uniformity	[%]	9 Points		75	80	-	2
		Gray to Gray		_	14	25	
Optical Pagagon Time	[msec]	Rising		_	8	18	2.4.5
Optical Response Time	[msec]	Falling		_	8	18	3,4,5
		Rising + Fallin	ng	_	16	36	
		Red x			0.643		
		Red y			0.335		
		Green x			0.306		
Color / Chromaticity Coordinates		Green y Blue x		-0.05	0.607		3
(CIE)					0.155	+0.05	
		Blue y			0.062		
		White x			0.313		
		White y			0.329		
White Luminance (At LED= 80mA)	[cd/m ²]			240	300	-	3
Contrast Ratio				600	1000	-	3
Color gamut (CG, CIE1931)	[%]				72		

document version 1.0 6/25

Note 1: Definition of viewing angle, measured by ELDIM (EZContrast 88)

Viewing angle is the measurement of contrast ratio \geq 10, at the screen center, over a 180° horizontal and 180° vertical range (off-normal viewing angles). The 180° viewing angle range is broken down as follows; 90° (θ) horizontal left and right and 90° (Φ) vertical, high (up) and low (down). The measurement direction is typically perpendicular to the display surface with the screen rotated about its center to develop the desired measurement viewing angle.

Note 2: The luminance uniformity of 9 points is defined by dividing the maximum luminance values by the minimum test point luminance. The luminance is measured by TOPCON SR-3. Detail 9 points position is as below.

document version 1.0 7/25

Note 3: Measurement method

The LCD module should be stabilized at given temperature for 30 minutes to avoid abrupt temperature change during measuring. In order to stabilize the luminance, the measurement should be executed after lighting Backlight for 30 minutes in a stable, windless and dark room.

Note 4: The output signals of photo detector are measured when the input signals are changed from "Gray level A" to "Gray level B" (falling time, T_F), and from "Gray level B" to "Gray level A" (rising time, T_R), respectively. The response time is interval between the 10% and 90% of optical response. The gray to gray response time is defined as the following table.

document version 1.0 8/25

Gray Level to Gray Level		Falling Time					
Gray Level to C	Gray Level to Gray Level		G63	G127	G191	G255	
	G0						
	G63						
Rising Time	G127						
	G191						
	G255						

T_{GTG_typ} is the total average time at rising time and falling time of gray to gray.

Note 5: Definition of response time, measured by WESTAR TRD-100A

The output signals of photo detector are measured when the input signals are changed from "Full Black" to "Full White" (rising time), and from "Full White" to "Full Black" (falling time), respectively. The response time is interval between the 10% and 90% of amplitudes. Please refer to the figure as below.

document version 1.0 9/25

3. Functional Block Diagram

The following diagram shows the functional block of the 23 inches wide Color TFT-LCD Module:

I/F PCB Interface:

FI-XB30SSRLA-HF16 (JAE)

Mating Type:

FI-X30HL (Locked Type)

FI-X30H (Unlocked Type)

FI-X30C2L (Manufactured by JAE) or Equivalent

document version 1.0 10/25

4. Absolute Maximum Ratings

Absolute maximum ratings of the module are as following:

4.1 Absolute Ratings of TFT LCD Module

Item	Symbol	Min.	Max.	Unit	Conditions
Logic/LCD Drive Voltage	VCC	-0.3	+5.5	[Volt]	Note 1, 2

4.2 Absolute Ratings of Backlight Unit

Item	Symbol	Min.	Max.	Unit	Conditions
LED Power Current	lled	-	1.7	[A] rms	Note 1, 2

4.3 Absolute Ratings of Environment

ino i moderatio i tatamigo di miniminanti								
Item	Symbol	Min.	Max.	Unit	Conditions			
Operating Temperature	TOP	0	+50	[°C]				
Operation Humidity	HOP	5	90	[%RH]	Note 3			
Storage Temperature	TST	-20	+60	[°C]	Note 5			
Storage Humidity	HST	5	90	[%RH]				

Note 1: With in Ta= 25°C

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality performance, please refer to AUO IIS (Incoming Inspection Standard).

document version 1.0 11/25

5. Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows:

Symble	Parameter	Min.	Тур.	Max.	Unit	Condition
VCC	Logic/LCD Drive Voltage	4.5	5.0	5.5	[Volt]	±10%
ICC	Input Current	-	1.17	1.27	[A]	Vin=5V, White Pattern, at 75Hz
IRush	Inrush Current	-	2.7	3.4	[A]	Note 1
PCC	VCC Power	-	5.85	6.35	[Watt]	Vin=5V, White Pattern, at 75Hz
VCCrp	Allowable Logic/LCD Drive Ripple Voltage	-	-	300	[mV] p-p	With panel loading

VCC rising time

document version 1.0 12/25

5.2 Backlight Unit

Following characteristics are measured under a stable condition at 25 °C (Room Temperature):

Symbol	Parameter	Min.	Тур.	Max.	Unit	Remark
I _F	LED Forward Current		60		mA	Ta = 25°C
V F LED	Forward Voltage		57.6	64.8	Volt	I _F =60 mA, Ta = 25°C
P _{LED}	LED Power Consumption	-	13.8	15.6	Watt	I _F =60 mA, Ta = 25°C
LTLED	LED Life Time	30,000			Hrs	I _F =60 mA, Ta= 25°C

Note 1: Ta means ambient temperature of TFT-LCD module.

Note 2: P_{LED}, I_F are defined for LED B/L.(100% duty of PWM dimming)

Note 3: I_F , V_F are defined for one channel LED.

Note 4: If module is driven by high current or at high ambient temperature & humidity condition. The operating life will be reduced.

Note 5: LED life means brightness goes down to 50% initial brightness.

Note 6: Two kind types for adjusting brightness: PWM and Analog.

Note 7: Each LED light bar consists of 72 pcs LED package (4 strings x 18 pcs / string).

document version 1.0 13/25

6. Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

	1	2		191	9	192	20
1st Line	R G B	R G B		R G	В	R G	В
				•		•	
			•	•		•	
	:	:	•	•		•	
			•	•		•	
	:	:	•			•	
			•	•		•	
	:	:	•	•		•	
		•	•	•		•	
1080 Line	R G B	R G B		R G	В	R G	В

document version 1.0 14/25

6.2 The Input Data Format

Note1: Normally DE mode only. VS and HS on EVEN channel are not used.

Note2: Please follow VESA.

Note3: 8-bit in

document version 1.0 15/25

6.3 Signal Description

The module using a pair of LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels

while the second LVDS port(RxExxx) transmits even pixels.

PIN#	SIGNAL NAME	port(RxExxx) transmits even pixels. DESCRIPTION
1	RxOIN0-	Negative LVDS differential data input (Odd data)
2	RxOIN0+	Positive LVDS differential data input (Odd data)
3	RxOIN1-	Negative LVDS differential data input (Odd data)
4	RxOIN1+	Positive LVDS differential data input (Odd data)
5	RxOIN2-	Negative LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
6	RxOIN2+	Positive LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
7	VSS	Power Ground
8	RxOCLKIN-	Negative LVDS differential clock input (Odd clock)
9	RxOCLKIN+	Positive LVDS differential clock input (Odd clock)
10	RxOIN3-	Negative LVDS differential data input (Odd data)
11	RxOIN3+	Positive LVDS differential data input (Odd data)
12	RxEIN0-	Negative LVDS differential data input (Even data)
13	RxEIN0+	Positive LVDS differential data input (Even data)
14	VSS	Power Ground
15	RxEIN1-	Negative LVDS differential data input (Even data)
16	RxEIN1+	Positive LVDS differential data input (Even data)
17	VSS	Power Ground
18	RxEIN2-	Negative LVDS differential data input (Even data)
19	RxEIN2+	Positive LVDS differential data input (Even data)
20	RxECLKIN-	Negative LVDS differential clock input (Even clock)
21	RxECLKIN+	Positive LVDS differential clock input (Even clock)
22	RxEIN3-	Negative LVDS differential data input (Even data)
23	RxEIN3+	Positive LVDS differential data input (Even data)
24	VSS	Power GND
25	NC	NC
26	NC	NC
27	PWM_OUT	PWM_OUT
28	VCC	+5.0V Power Supply
29	VCC	+5.0V Power Supply
30	VCC	+5.0V Power Supply

document version 1.0 16/25

Note1:

- Note 2: All GND(ground) pins should be connected together and to be Vss which should also be connected to the LCD's metal frame.
- Note 3: All Vcc (power input) pins should be connected together.
- Note 4: Input level of LVDS signal is based on the IEA 664 Standard.
- Note 5: PWM_OUT signal controls the burst frequency of an inverter.

This signal is synchronized with vertical frequency.

Its frequency is 3 times of vertical frequency, and duty ratio is 50%.

If not use this pin then no connection

Note 6: Input signals of odd and even clock shall be the same timing.

Note 7: Please follow VESA.

document version 1.0 17/25

6.4 Interface Timing

6.4.1 Timing Characteristics

Signal	Item	Symbol	Min	Тур	Max	Unit
	Period	Tv	1090	1100	1200	Th
Vertical	Active	Tdisp(v)	1080	1080	1080	Th
Section	Blanking	Tbp(v)+Tfp(v)+PWvs	10	20	120	Th
	Period	Th	1000	1088	1200	Tclk
Horizontal	Active	Tdisp(h)	960	960	960	Tclk
Section	Blanking	Tbp(h)+Tfp(h)+PWhs	40	128	240	Tclk
	Period	Tclk	11.76	13.89	15.38	ns
Clock	Frequency	Freq.	60	72	87.5	MHz
Frame Rate	Frequency	1/Tv	49	60	75	Hz
Horizontal Frequency	Frequency	Fh	49	65.28	90	kHz

Note 1: Only DE mode operation.

The input of Hsync & Vsync signal does not have an effect upon the LCD normal operation.

Note 2: The performance of the electro-optical characteristics may be influenced by variance of the vertical refresh rates.

Note 3: Horizontal period should be even.

6.4.2 Timing Diagram

6.5 Power ON/OFF Sequence

VCC power on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when VCC is off.

Power Sequence Timing

Power Sequence Timing						
Damamatan		l luite				
Parameter	Min.	Тур.	Max.	Units		
T1	0.5		10			
T2	30	40	50			
Т3	0	16	50	ms		
T4			10			
T5	1000					

document version 1.0 19/25

7. Connector & Pin Assignment

Physical interface is described as for the connector on module. These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

7.1.1 Connector

Connector Name / Designation	LVDS Connector
Manufacturer	JAE
Type Part Number	FI-XB30SSRLA-HF16
Mating Housing Part Number	FI-X30HL (Locked Type) FI-X30H (Unlocked Type) FI-X30C2L (JAE) or Equivalent

7.1.2 Pin Assignment

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	VSS	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	VSS
15	RxEIN1-	16	RxEIN1+
17	VSS	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	VSS
25	NC	26	NC
27	PWM_OUT	28	VCC
29	VCC	30	VCC

document version 1.0 20/25

7.2 Backlight Unit

7.2.1 Connector

Connector Name / Designation	Light Bar Connector		
Manufacturer	E&T		
Туре	7182K-F06N-00L (6 Pin FFC Type)		

7.2.2 Pin Assignment

<u> </u>	
Pin no.	Signal name
1	Current Feedback
2	Current Feedback
3	VLED (voltage in)
4	VLED (voltage in)
5	Current Feedback
6	Current Feedback

document version 1.0 21/25

8. Reliability Test

Environment test conditions are listed as following table.

Items	Required Condition	Note
Temperature Humidity Bias (THB)	Ta= 50°C, 80%RH, 300hours	
High Temperature Operation (HTO)	Ta= 50°C, 300hours	
Low Temperature Operation (LTO)	Ta= 0°C, 300hours	
High Temperature Storage (HTS)	Ta= 60°C, 300hours	
Low Temperature Storage (LTS)	Ta= -20°C, 300hours	
Vibration Test (Non-operation)	Acceleration: 1.5 G Wave: Random Frequency: 10 - 200 - 10 Hz Sweep: 30 Minutes each Axis (X, Y, Z)	
Shock Test (Non-operation)	Acceleration: 50 G Wave: Half-sine Active Time: 20 ms Direction: ±X, ±Y, ±Z (one time for each Axis)	
Drop Test	Height: 60 cm, package test	
Thermal Shock Test (TST)	-20 °C /30min, 60/ °C 30min, 100 cycles	1
On/Off Test	On/10sec, Off/10sec, 30,000 cycles	
ESD (Electrostatic Discharge)	Contact Discharge: \pm 8KV, 150pF(330 Ω) 1sec, 9 points, 25 times/ point.	_ 2
ESD (Electrostatic Discharge)	Air Discharge: ± 15KV, 150pF(330Ω) 1sec 9 points, 25 times/ point.	
Altitude Test	Operation:10,000 ft Non-Operation:30,000 ft	

Note 1: The TFT-LCD module will not sustain damage after being subjected to 100 cycles of rapid temperature change. A cycle of rapid temperature change consists of varying the temperature from -20°C to 60°C, and back again. Power is not applied during the test. After temperature cycling, the unit is placed in normal room ambient for at least 4 hours before power on.

Note 2: According to EN61000-4-2, ESD class B: Some performance degradation allowed. No data lost. Self-recoverable. No hardware failures.

Note 3:

- Water condensation is not allowed for each test items.
- Each test is done by new TFT-LCD module. Don't use the same TFT-LCD module repeatedly for reliability test.
- The reliability test is performed only to examine the TFT-LCD module capability.
- To inspect TFT-LCD module after reliability test, please store it at room temperature and room humidity for 24 hours at least in advance.
- No function failure occurs.

document version 1.0 22/25

9. Shipping Label and Packaging

9.1 Shipping Label

The label is on the panel as shown below:

Note 1: For Pb Free products, AUO will add for identification.

Note 2: For RoHS compatible products, AUO will add RoHS for identification.

Note 3: For China RoHS compatible products, AUO will add 60 for identification.

Note 4: The Green Mark will be presented only when the green documents have been ready by AUO Internal Green Team.

9.2 Packaging

Max capacity: 8 PCS TFT-LCD module per carton

Max weight: 15.5 kg per carton

Outside dimension of carton: 620mm(L)* 220mm(W)*415mm(H)

Pallet size: 980 mm * 740 mm * 132mm

Box stacked

Module by air: (1*4) *3 layers, one pallet put 12 boxes, total 96pcs module

Module by sea: One pallet (1 *4) *3 layers + One pallet (1 *4) *1 layers, total 128 pcs module Module by sea_ HQ: One pallet (1 *4) *3 layers + One pallet (1 *4) *1 layers, total 128 pcs module

document version 1.0 23/25

G230HAN01.1

AU OPTRONICS CORPORATION

10. Mechanical Characteristic

document version 1.0 24/25

Product Specification AU OPTRONICS CORPORATION

G230HAN01.1

document version 1.0 25/25