Technische Universität München Fakultät für Informatik Prof. Tobias Nipkow, Ph.D. Dr. Werner Meixner, Alexander Krauss Sommersemester 2008 Lösungsblatt Mittelklausur 18. Juni 2008

Einführung in die Theoretische Informatik

Name			Vorname				Studiengang				Matrikelnummer		
						☐ Diplom ☐ Inform. ☐ Bachelor ☐ BioInf. ☐ Lehramt ☐ Mathe.							
Hörsaal			Reihe				Sitzplatz				Unterschrift		
			\mathbf{A}	llge	meir	ne H	inwe	eise					
• Bitte füllen	Sie c	bige	Felde	r in l	Druck	buchs	taben	aus u	nd un	iterschi	eiben	Sie!	
• Bitte schrei	ben S	Sie nie	cht m	it Bl	eistift	oder	in rote	er/grü	ner F	arbe!			
• Die Arbeits	szeit b	eträg	st 120) Min	uten.								
 Alle Antwo seiten) der Sie Nebenr werden, wir Es sind kein 	betref echnu rd abe	fende ingen er in o	en Au mac der R	fgabe hen. egel	en einz Der S nicht	zutrag Schmie bewer	gen. Ar erblati tet.	uf den tboger	n Schi n mus	mierbla ss eber	ittbog ifalls	en könn abgegeb	en en
Hörsaal verlasse	en		von		b	is		/	von		bis		
Vorzeitig abgege	eben		um		• •								
Besondere Bemo	erkun	gen:											
	A 1	1.40	4.9	A 4	AF	5	TZ .	.1 4 .					
	A1	A2	A3	A4	A5	Σ	Kori	rektor	_				
Erstkorrektur									_				
Zweitkorrektur									_				

Aufgabe 1 (8 Punkte)

Wahr oder falsch? Begründen Sie im Folgenden Ihre Antworten möglichst knapp!

- 1. $000 \in L(01^*(01)^*0)$.
- 2. Das Wortproblem für kontextfreie Sprachen ist in der Zeit $O(n^4)$ entscheidbar.
- 3. Die Menge aller regulären Sprachen über $\Sigma = \{0, 1\}$ ist überabzählbar.
- 4. Es gibt eine nicht-reguläre Sprache L, so dass L^* regulär ist.
- 5. Jede Sprache, die von einem NFA akzeptiert wird, ist kontextfrei.
- 6. Für beliebige endliche Sprachen A, B gilt |AB| = |A||B|.
- 7. Für alle Mengen A von Wörtern gilt die Implikation $A = AA \Longrightarrow A = A^*$.
- 8. Geben Sie die Antwort auf die folgende Frage mit kurzer Begründung. Sei $G=(\{S,T\},\{a,b,c\},\{S\to aT,T\to Sb\},S)$. Was ist L(G)?

Lösungsvorschlag

- 1. (f) 00 ist einziges Wort aus L ohne Zeichen 1.
- 2. (w) CYK-Algorithmus entscheidet Wortproblem in $O(n^3)$ laut Vorlesung. Somit auch in $O(n^4)$.
- 3. (f) Jede reguläre Sprache über Σ wird durch einen regulären Ausdruck $r \in \{0, 1, |, *, (,)\}^*$ dargestellt. Das sind nur abzählbar viele.
- 4. (w) Es gibt eine nicht-reguläre Sprache L über einem Alphabet Σ . Dann ist auch $L' = L \cup \{w \in \Sigma^* \mid |w| = 1\}$ nicht-regulär. Nun gilt aber $(L')^* = \Sigma^*$, damit ist $(L')^*$ regulär.
- 5. (w) Die von einem NFA akzeptierte Sprache ist regulär und damit auch kontextfrei.
- 6. (f) Gegenbeispiel $A = B = \{a, aa\}.$
- 7. (f) Gegenbeispiel $A = \emptyset$.
- 8. $L(G) = \emptyset$. Es gibt keine terminale Produktion.

Richtige Antwort: 0,5 Punkte

Begründung auch richtig/sinnvoll: 0,5 Punkte

Aufgabe 2 (9 Punkte)

Gegeben sei die Grammatik $G = (\{S, L, R, A\}, \{a, b\}, P, S)$ mit den Produktionen

$$\begin{array}{cccc} S & \rightarrow & LA \mid AR \,, \\ L & \rightarrow & aLb \mid \epsilon \,, \\ R & \rightarrow & bRa \mid \epsilon \,, \\ A & \rightarrow & Aa \mid \epsilon \,. \end{array}$$

Zeigen Sie:

- 1. Es gilt $a^m b^n a^n \in L(G)$ für alle $m, n \in \mathbb{N}$.
- 2. Es gilt $a^m b^k a^n \notin L(G)$ für alle $k, m, n \in \mathbb{N}$ mit k > m + n.
- 3. Es gibt keine linkslineare Grammatik G', die L(G) erzeugt.

Lösungsvorschlag

1.
$$S \rightarrow_G AR$$

 $\rightarrow_G AbRa \rightarrow_G^* Ab^n Ra^n$
 $\rightarrow_G Ab^n a^n$
 $\rightarrow_G^* a^m b^n a^n$. (3 P.)

2. Man zeigt die Aussage

$$w \in L(G) \implies \underbrace{\#_b(w) \le \#_a(w)}_{P(w)}$$

mit Induktion über die Erzeugung eines Worts. Daraus folgt dann sofort die zu beweisende Aussage.

Für eine Variable X sei $L(X) = \{w \in \{a, b\}^* \mid X \to_G^* w\}.$

L(A) ist induktiv definiert durch $\epsilon \in L(A)$ zusammen mit $w \in L(A) \Longrightarrow wa$.

- 1. $w = \epsilon$: Offenbar gilt sogar $\#_b(w) = \#_a(w)$.
- 2. Falls für $w \in L(A)$ gilt $\#_b(w) \leq \#_a(w)$, dann gilt $\#_b(wa) = \#_b(w) \leq \#_a(w) < \#_a(w) + 1 = \#_a(wa)$, d. h. für wa gilt die Eigenschaft ebenfalls.
- 3. Somit gilt die Eigenschaft P(w) für alle $w \in L(A)$.

Entsprechend gilt die Eigenschaft P auch für L(L) und L(R).

Wegen
$$L(G) = L(S) = L(L)L(A) \cup L(A)L(R)$$
 folgt $P(w)$ für alle $w \in L(G)$. (4 P.)

3. Man zeigt mit dem Pumping-Lemma, dass L(G) nicht regulär ist. Damit kann es also G' nicht geben.

Sei n eine Pumping-Lemma-Zahl und $z=a^nb^n$. Nach Aufgabenteil 1 ist $z\in L(G)$.

Sei z=uvw mit |v|>0, $|uv|\leq n$ und $z'=uv^iw\in L(G)$ für alle $i\in\mathbb{N}.$

Es folgt $v=a^k$ mit k>0 und $z'=uw\in L(G)$. Nun gilt aber $\#_a(z')<\#_a(z)=\#_b(z)=\#_b(z')$. Das ist ein Widerspruch zu Aufgabenteil 2.

(2 P.)

Aufgabe 3 (8 Punkte)

Sei $\Sigma = \{a, b\}$. Wir betrachten den folgenden DFA M:

- 1. Zeigen Sie, dass $q_3 \not\equiv_M q_4$ gilt.
- 2. Konstruieren Sie mit dem Standardverfahren einen minimalen DFA M' mit L(M') = L(M). Protokollieren Sie Ihre Vorgehensweise geeignet, so dass das angewendete Verfahren sichtbar wird.
- 3. Sei nun $\Sigma_n = \{a_1, \dots, a_n\}$ und

$$L_n = \{ w \in \Sigma_n^* \mid \forall a \in \Sigma_n. \ \#_a(w) = 1 \} \ .$$

Zeigen Sie, dass jeder DFA, der L_n akzeptiert, mindestens $2^n + 1$ Zustände haben muss. Betrachten Sie dazu die Äquivalenzklassen von \equiv_{L_n} .

Lösungsvorschlag

- 1. $\hat{\delta}(q_3, a) = q_3 \notin F$, aber $\hat{\delta}(q_4, a) = q_5 \in F$. Damit sind die Definition von Äquivalenz nicht erfüllt. Verweis auf die Ergebnisse der Minimierung wird auch akzeptiert, falls diese richtig ist. (1P.)
- 2. Minimierung nach Standardverfahren ergibt, dass die Zustände q_2 und q_5 , sowie q_3 und q_6 äquivalent sind. Man erhält also einen Automaten mit 5 Zuständen. (5P.)
- 3. Betrachte Äquivalenzklassen von \equiv_{L_n} . Für jede Teilmenge $A\subseteq \Sigma$ sei w_A ein beliebiges Wort, welches jedes Zeichen aus A genau einmal enthält.

Für beliebige $A, A' \subseteq \Sigma$ mit $A \neq A'$ gilt nun einerseits $w_A w_{\Sigma \setminus A} \in L_n$, aber andererseits $w_{A'} w_{\Sigma \setminus A} \notin L_n$. Damit ist $w_A \not\equiv_{L_n} w_{A'}$. Wir erhalten also für jede der 2^n Teilmengen von Σ eine Äquivalenzklasse in \equiv_{L_n} . Eine weitere Äquivalenzklasse hat den Repräsentanten $aa \ (a \in \Sigma)$, welches zu keinem der w_A äquivalent ist.

Da die Äquivalenzklassen die Zustände des kanonischen Minimalautomaten sind, ergibt sich daraus die untere Schranke $2^n + 1$ für die Anzahl der Zustände.

(2P., aber nur für formal sauberen Beweis)

Aufgabe 4 (8 Punkte)

Gegeben sei der deterministische endliche Automat $A = (\{q_0, q_1, q_f, q_\infty\}, \{a, b\}, \delta, q_0, \{q_f\})$ mit dem folgenden Zustandsübergangsgraph:

Die Menge aller Wörter w, die den Zustand p in den Zustand q transformieren, bezeichnen wir als $L_{p,q}$, d. h. $L_{p,q} = \{w \in \{a,b\}^* \mid \hat{\delta}(p,w) = q\}$.

- 1. Sei x ein Zeichen mit $x \notin \{a, b\}$. Geben Sie einen NFA an, der $L = L_{q_0,q_1}\{x\}L_{q_1,q_f}$ akzeptiert.
- 2. Sei $B = (Q, \Sigma, \delta, q_0, F)$ ein beliebiger DFA und x ein Zeichen, das nicht in Σ enthalten ist.

Konstruieren Sie einen endlichen Automaten B' (DFA, NFA oder ϵ -NFA), der die Sprache $L' = \{uxv \mid uv \in L(B)\}$ akzeptiert. Beschreiben Sie Ihre Konstruktionsidee zunächst informell und geben Sie dann den Automaten formal an.

Lösungsvorschlag

1. Man kopiert den Automaten und fügt einen Übergang wie folgt ein:

(3P.)

2. Konstruktionsidee: Man nimmt zwei Kopien des Automaten, und verbindet jeweils die korrespondierenden Zustände mit einem x-Übergang. Endzustände des neuen Automaten sind die Kopien der Endzustände. (2 P.)

Formale Beschreibung:

Sei $Q^c = \{q^c \mid q \in Q\}$ eine disjunkte Kopie von Q. Dann ist

$$B' = (Q \cup Q^c, \Sigma \cup \{x\}, \delta', q_0, F^c) .$$

Die Übergangsfunktion δ' ist definiert mit

$$\delta'(q, a) = \{\delta(q, a)\} \qquad \forall q \in Q, a \in \Sigma$$

$$\delta'(q, x) = \{q^c\} \qquad \forall q \in Q$$

$$\delta'(q^c, a) = \{(\delta(q, a))^c\} \qquad \forall q \in Q, a \in \Sigma$$

$$\delta'(q^c, x) = \{\} \qquad \forall q \in Q.$$

Die Endzustandsmenge ist $F^c = \{q^c \mid q \in F\}.$ (3 P.)

Alternativ kann man die Kopie mit Hilfe des Kreuzprodukts realisieren und $Q \times \{0,1\}$ als Zustandsmenge verwenden.

Aufgabe 5 (7 Punkte)

Gegeben sei folgender Automat $M = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$:

- 1. Berechnen Sie systematisch einen regulären Ausdruck α mit $L(\alpha) = L(M)$
- 2. Geben Sie eine kontextfreie Grammatik an für L(M).

Lösungsvorschlag

1. Gleichungssystem:

$$X_0 \equiv aX_2 \mid bX_1 \tag{1}$$

$$X_1 \equiv aX_1 \mid bX_2 \tag{2}$$

$$X_2 \equiv aX_1 \mid bX_0 \mid \epsilon \tag{3}$$

Gleichung (2) nach X_1 auflösen und in (1) und (3) einsetzen:

$$X_1 \equiv a^* b X_2 \tag{4}$$

$$X_0 \equiv aX_2 \mid ba^*bX_2 \equiv (a \mid ba^*b)X_2 \tag{5}$$

$$X_2 \equiv aa^*bX_2 \mid bX_0 \mid \epsilon \tag{6}$$

Gleichung (5) in (6) einsetzen und auflösen:

$$X_2 \equiv aa^*bX_2 \mid b(a \mid ba^*b)X_2 \mid \epsilon \tag{7}$$

$$\equiv (aa^*b \mid ba \mid bba^*b)^* \tag{8}$$

Einsetzen in (5):

$$X_0 \equiv \alpha \equiv (a \mid ba^*b)(aa^*b \mid ba \mid bba^*b)^* \tag{9}$$

- 1 P. für Gleichungssystem
- 1 P. für eine richtige Anwendung von Arden's Lemma
- 3 P. für richtigen Rest, ggfs. Teilpunkte.

2. Die Grammatik ist fast identisch mit dem Gleichungssystem. $G=(\{X_0,X_1,X_2\},\{a,b\},P,X_0)$ mit den Produktionen

$$X_0 \to aX_2 \mid bX_1 \tag{10}$$

$$X_1 \to aX_1 \mid bX_2 \tag{11}$$

$$X_2 \to aX_1 \mid bX_0 \mid \epsilon \tag{12}$$

(2 P.)

Alternativ kann man auch eine Grammatik aus dem regulären Ausdruck ablesen.