Bayesian Theory Workshop 4

(20 marks total)

1. (5 marks.) A simple random sample of size n=8 was taken and yielded the following data, y:

$$0.2, -0.1, -0.5, 1.3, -1.0, 0.6, 1.2, 0.4.$$

The data are known to be independent and have a $N(\mu, \sigma^2)$ distribution, where $\sigma^2 = 1$. We specify the prior: $\mu \sim N(0, 1)$.

- (a) Calculate the posterior distribution for μ , $p(\mu|\mathbf{y})$.
- (b) Calculate 90% and 95% HPDIs for μ .
- (c) Calculate the posterior predictive distribution for Y^{new} , $p(Y^{new}|\mathbf{y}^{old})$.

Hint: Lecture Notes 3 might be useful.

2. (2 marks.) Consider the general hypothesis testing problem, where we have,

$$H_0: \theta \in \Theta_0 \quad \text{vs} \quad H_1: \theta \in \Theta_1,$$

such that the union of $\Theta_0 \cup \Theta_1 = \Theta$, the complete parameter space. Letting p_0 and p_1 denote the prior probabilities for the null hypothesis and alternative hypothesis, respectively, show that the posterior probability of H_0 is given by,

$$\Pr(H_0|\mathbf{y}) = \Pr(\theta \in \Theta_0|\mathbf{y}) = \frac{p_0}{p_0 + p_1/BF_{01}},$$

where BF_{01} denotes the Bayes factor of H_0 to H_1 .

3. (5 marks.) We observe data $\mathbf{y} = \{y_1, \dots, y_n\}$, such that, $Y_i \stackrel{iid}{\sim} N(\mu, \sigma^2)$, where σ^2 is known. We wish to test the two simple hypotheses,

$$H_0: \mu = \mu_0 \quad \text{vs} \quad H_1: \mu = \mu_1.$$

(a) Show that the Bayes factor is given by,

$$BF_{01} = \exp\left(-\frac{n(\mu_0 - \mu_1)(\mu_0 + \mu_1 - 2\bar{y})}{2\sigma^2}\right).$$

- (b) Calculate BF_{01} for H_0 against H_1 , when $\mu_0 = 0$, $\mu_1 = 1$, $\sigma^2 = 1$, n = 9 and $\bar{y} = 0.645$.
- (c) Interpret the result.
- (d) What happens as n increases but all other numerical terms retain the same values?

Hint: Lecture Notes 5.2 might be helpful.

- 4. (8 marks.) We have random variables $Y_1, \ldots, Y_n \stackrel{iid}{\sim} N(\mu, \sigma^2)$ where both μ and σ^2 are unknown. We specify the priors: $\mu \sim N(0, \sigma_o^2)$ and $\sigma \sim U[0, T]$, where T is "large".
 - (a) Using a transformation of variables, calculate the corresponding prior on σ^2 . (Section 4.2 of Lecture Notes might be helpful.)
 - (b) Calculate the posterior conditional distributions of μ and σ^2 (i.e. the posterior distribution for μ treating σ^2 as fixed; and the posterior distribution of σ^2 , assuming μ is fixed).

Hint: To find the conditional for μ , write down the joint posterior distribution for μ and σ^2 , then remove all terms in the joint posterior distribution not involving μ , and you will see a recognizable kernel for the distribution of μ . Likewise for σ^2 .