1

Assignment 10

Sri Harsha CH

Abstract—This document explains the concept of finding the distance between a given point and a plane using Singular Value Decomposition.

Download all python codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment10 /code

and latex-tikz codes from

https://github.com/harshachinta/EE5609-Matrix-Theory/tree/master/Assignments/Assignment10

1 Problem

Find the distance of the given point $\begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix}$ from the plane $\begin{pmatrix} 2 & -1 & 2 \end{pmatrix} \mathbf{x} = 3$.

2 EXPLANATION

Let us consider orthogonal vectors $\mathbf{m_1}$ and $\mathbf{m_2}$ to

the given normal vector **n**. Let, $\mathbf{m} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$, then

$$\mathbf{m}^{\mathbf{T}}\mathbf{n} = 0 \tag{2.0.1}$$

$$\implies \left(a \quad b \quad c\right) \begin{pmatrix} 2\\-1\\2 \end{pmatrix} = 0 \tag{2.0.2}$$

$$\implies 2a - b + 2c = 0 \tag{2.0.3}$$

Let a=1 and b=0 we get,

$$\mathbf{m_1} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \tag{2.0.4}$$

Let a=0 and b=1 we get,

$$\mathbf{m_2} = \begin{pmatrix} 0 \\ 1 \\ \frac{1}{2} \end{pmatrix} \tag{2.0.5}$$

Let us solve the equation,

$$\mathbf{M}\mathbf{x} = \mathbf{b} \tag{2.0.6}$$

Substituting (2.0.4) and (2.0.5) in (2.0.6),

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -1 & \frac{1}{2} \end{pmatrix} \mathbf{x} = \begin{pmatrix} 3 \\ -2 \\ 1 \end{pmatrix} \tag{2.0.7}$$

To solve (2.0.7), we will perform Singular Value Decomposition on \mathbf{M} as follows,

$$\mathbf{M} = \mathbf{U}\mathbf{S}\mathbf{V}^T \tag{2.0.8}$$

Where the columns of V are the eigen vectors of M^TM , the columns of U are the eigen vectors of MM^T and S is diagonal matrix of singular value of eigenvalues of M^TM .

$$\mathbf{M}^T \mathbf{M} = \begin{pmatrix} 2 & \frac{-1}{2} \\ \frac{-1}{2} & \frac{5}{4} \end{pmatrix} \tag{2.0.9}$$

$$\mathbf{M}\mathbf{M}^{T} = \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & \frac{1}{2} \\ -1 & \frac{1}{2} & \frac{5}{4} \end{pmatrix}$$
 (2.0.10)

Substituting (2.0.8) in (2.0.6),

$$\mathbf{USV}^T\mathbf{x} = \mathbf{b} \tag{2.0.11}$$

$$\implies \mathbf{x} = \mathbf{V}\mathbf{S}_{+}\mathbf{U}^{\mathbf{T}}\mathbf{b} \tag{2.0.12}$$

Where S_+ is Moore-Penrose Pseudo-Inverse of S. Let us calculate eigen values of $\mathbf{M}\mathbf{M}^T$,

$$\left|\mathbf{M}\mathbf{M}^{T} - \lambda \mathbf{I}\right| = 0 \tag{2.0.13}$$

$$\implies \begin{pmatrix} 1 - \lambda & 0 & -1 \\ 0 & 1 - \lambda & \frac{1}{2} \\ -1 & \frac{1}{2} & \frac{5}{4} - \lambda \end{pmatrix} = 0 \qquad (2.0.14)$$

$$\implies \lambda^3 - \frac{13}{4}\lambda^2 + \frac{9}{4}\lambda = 0 \qquad (2.0.15)$$

From equation (2.0.15) eigen values of $\mathbf{M}\mathbf{M}^T$ are,

$$\lambda_1 = \frac{9}{4} \quad \lambda_2 = 1 \quad \lambda_3 = 0$$
 (2.0.16)

The eigen vectors of $\mathbf{M}\mathbf{M}^T$ are,

$$\mathbf{u}_{1} = \begin{pmatrix} -\frac{4}{5} \\ \frac{2}{5} \\ 1 \end{pmatrix} \quad \mathbf{u}_{2} = \begin{pmatrix} \frac{1}{2} \\ 1 \\ 0 \end{pmatrix} \quad \mathbf{u}_{3} = \begin{pmatrix} 1 \\ -\frac{1}{2} \\ 1 \end{pmatrix} \quad (2.0.17)$$

Normalizing the eigen vectors in equation (2.0.17)

$$\mathbf{u}_{1} = \begin{pmatrix} -\frac{4}{3\sqrt{5}} \\ \frac{2}{3\sqrt{5}} \\ \frac{\sqrt{5}}{2} \end{pmatrix} \quad \mathbf{u}_{2} = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \\ 0 \end{pmatrix} \quad \mathbf{u}_{3} = \begin{pmatrix} \frac{2}{3} \\ -\frac{1}{3} \\ \frac{2}{3} \end{pmatrix} \quad (2.0.18)$$

Hence we obtain **U** as follows,

$$\mathbf{U} = \begin{pmatrix} -\frac{4}{3\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{2}{3} \\ \frac{2}{3\sqrt{5}} & \frac{2}{\sqrt{5}} & -\frac{1}{3} \\ \frac{\sqrt{5}}{3} & 0 & \frac{2}{3} \end{pmatrix}$$
 (2.0.19)

After computing the singular values from eigen values $\lambda_1, \lambda_2, \lambda_3$ we get **S** as follows,

$$\mathbf{S} = \begin{pmatrix} \frac{9}{4} & 0\\ 0 & 1\\ 0 & 0 \end{pmatrix} \tag{2.0.20}$$

Now, lets calculate eigen values of $\mathbf{M}^T \mathbf{M}$,

$$\left|\mathbf{M}^{T}\mathbf{M} - \lambda \mathbf{I}\right| = 0 \tag{2.0.21}$$

$$\implies \begin{pmatrix} 2 - \lambda & -\frac{1}{2} \\ -\frac{1}{2} & \frac{5}{4} - \lambda \end{pmatrix} = 0 \tag{2.0.22}$$

$$\implies \lambda^2 - \frac{13}{4}\lambda + \frac{9}{4} = 0 \tag{2.0.23}$$

Hence eigen values of $\mathbf{M}^T\mathbf{M}$ are,

$$\lambda_1 = \frac{9}{4} \quad \lambda_2 = 1$$
 (2.0.24)

Hence the eigen vectors of $\mathbf{M}^T \mathbf{M}$ are,

$$\mathbf{v}_1 = \begin{pmatrix} -2\\1 \end{pmatrix} \quad \mathbf{v}_2 = \begin{pmatrix} \frac{1}{2}\\1 \end{pmatrix} \tag{2.0.25}$$

Normalizing the eigen vectors,

$$\mathbf{v}_1 = \begin{pmatrix} -\frac{2}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} \end{pmatrix} \quad \mathbf{v}_2 = \begin{pmatrix} \frac{1}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} \end{pmatrix} \tag{2.0.26}$$

Hence we obtain V as,

$$\mathbf{V} = \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix} \tag{2.0.27}$$

From (2.0.6), the Singular Value Decomposition of **M** is as follows,

$$\mathbf{M} = \begin{pmatrix} -\frac{4}{3\sqrt{5}} & \frac{1}{\sqrt{5}} & \frac{2}{3} \\ \frac{2}{3\sqrt{5}} & \frac{2}{\sqrt{5}} & -\frac{1}{3} \\ \frac{\sqrt{5}}{3} & 0 & \frac{2}{3} \end{pmatrix} \begin{pmatrix} \frac{9}{4} & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} -\frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \\ \frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \end{pmatrix}^{T}$$

$$(2.0.28)$$

Now, Moore-Penrose Pseudo inverse of ${\bf S}$ is given by,

$$\mathbf{S}_{+} = \begin{pmatrix} \frac{2}{3} & 0 & 0\\ 0 & 1 & 0 \end{pmatrix} \tag{2.0.29}$$

From (2.0.12) we get,

$$\mathbf{U}^T \mathbf{b} = \begin{pmatrix} -\frac{11}{3\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \\ \frac{10}{3} \end{pmatrix}$$
 (2.0.30)

$$\mathbf{S}_{+}\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} -\frac{22}{9\sqrt{5}} \\ -\frac{1}{\sqrt{5}} \end{pmatrix}$$
 (2.0.31)

$$\mathbf{x} = \mathbf{V}\mathbf{S}_{+}\mathbf{U}^{T}\mathbf{b} = \begin{pmatrix} \frac{7}{9} \\ -\frac{8}{9} \end{pmatrix}$$
 (2.0.32)

Verifying the solution of (2.0.32) using,

$$\mathbf{M}^T \mathbf{M} \mathbf{x} = \mathbf{M}^T \mathbf{b} \tag{2.0.33}$$

Evaluating the R.H.S in (2.0.33) we get,

$$\mathbf{M}^T \mathbf{M} \mathbf{x} = \begin{pmatrix} 2 \\ -\frac{3}{2} \end{pmatrix} \tag{2.0.34}$$

$$\implies \begin{pmatrix} 2 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{5}{4} \end{pmatrix} \mathbf{x} = \begin{pmatrix} 2 \\ -\frac{3}{2} \end{pmatrix} \tag{2.0.35}$$

Solving the augmented matrix of (2.0.35) we get,

$$\begin{pmatrix} 2 & -\frac{1}{2} & 2 \\ -\frac{1}{2} & \frac{5}{4} & -\frac{3}{2} \end{pmatrix} \stackrel{R_1 = \frac{R_1}{2}}{\longleftrightarrow} \begin{pmatrix} 1 & -\frac{1}{4} & 1 \\ -\frac{1}{2} & \frac{5}{4} & -\frac{3}{2} \end{pmatrix}$$
(2.0.36)

$$\stackrel{R_2=R_2+\frac{R_1}{2}}{\longleftrightarrow} \begin{pmatrix} 1 & -\frac{1}{4} & 1\\ 0 & \frac{9}{8} & -1 \end{pmatrix} \quad (2.0.37)$$

$$\stackrel{R_2 = \frac{8}{9}R_2}{\longleftrightarrow} \begin{pmatrix} 1 & -\frac{1}{4} & 1\\ 0 & 1 & -\frac{8}{9} \end{pmatrix} \qquad (2.0.38)$$

$$\stackrel{R_1=R_1+\frac{R_2}{4}}{\longleftrightarrow} \begin{pmatrix} 1 & 0 & \frac{7}{9} \\ 0 & 1 & -\frac{8}{9} \end{pmatrix} \qquad (2.0.39)$$

From equation (2.0.39), solution is given by,

$$\mathbf{x} = \begin{pmatrix} \frac{7}{9} \\ -\frac{8}{9} \end{pmatrix} \tag{2.0.40}$$

3 Solution

Comparing results of \mathbf{x} from (2.0.32) and (2.0.40), we can say that the solution is verified.