第四章 补充作业

习题 4.1. 在宇称守恒的条件下某可观测量 x 的取值大于零和小于零的概率均为 0.5。现在对 x 作了 1000 次观测,其中 560 次 x>0, 440 次 x<0。根据这组观测,试问宇称守恒的假设合理吗?请用假设检验给出显著性水平 $\alpha=0.05$ 下的结论。

习题 4.2. 设 $x_1, x_2, ..., x_n$ 是来自 $N(\mu, 1^2)$ 的样本,考虑如下假设检验问题:

$$H_0: \mu = 2$$
 vs $H_1: \mu = 3$.

检验的拒绝域选为 $W = \{\overline{x} \geq 2.6\}$ 。

- (a) 当n=20时, 求该检验犯第一类错误和第二类错误的概率;
- (b) 如果要使得该检验犯第二类错误的概率 $\beta \leq 0.01$,则 n 最小应该取多少?
- (c) 证明: 当 $n \to \infty$ 时, $\alpha \to 0$ 且 $\beta \to 0$ 。

习题 4.3. 设 x_1, x_2, \ldots, x_n 是来自正态总体 $N(\mu, 2^2)$ 的样本,考虑如下假设检验问题:

$$H_0: \mu = 6$$
 vs $H_1: \mu \neq 6$.

检验的拒绝域取为 $W=\{|\overline{x}-6|\geq c\}$ 。 试求 c 使得检验的显著性水平为 0.05,并求该检验在 $\mu=6.5$ 处犯 第二类错误的概率。取 n=16。

习题 4.4. 根据某理论,观测到流星表示幸运事件。根据以往的统计,某人每年平均观测到 10 颗流星。2022 年某人观测到 5 颗流星。我们能据此说 2022 年对于这个人来说不是幸运年吗?请在 $\alpha=0.05$ 的显著性水平下给出结论。

习题 4.5. 如果对某个假设进行了几个独立的显著性检验,给出了显著性水平 P_1 , P_2 ,..., P_n , 总的显著性水平不能通过将这些概率相乘得到。为什么呢?

如果 X 是在 0 和 1 之间均匀分布的随机变量,证明 $-2\ln X$ 是自由度为 2 的 χ^2 变量。我们可以利用这个结果来合并独立的显著性检验的结果。如果三个检验的显著性水平分别为 0.145、0.263 和 0.087,我们应当如何评估总的显著性?