Лабораторная работа 1.1.4 "Измерение интенсивности радиационного фона"

Белов Михаил Б01-302

22 сентября 2023 г.

Аннотация:

Получены гистограммы для частоты фиксации числа космических частиц за различные равные промежутки времени. Также расчитана средняя мощьность для каждого промежутка и исследованы зависимости основных статических величин для этих промежутков.

Для регистрации космических частиц используется счётчик Гейгера-Мюллера СТС-6. Он в течении 4000 секунд ргеистрирует количество прилетающих частиц.

Цель работы:применение методов обработки экспериментальных данных для изучения статистичексих закономерностей при измерении итнесивности радиационного фона.

В работе используется: счетчик Гейгера-Мюллера (СТС-6), блок питания, компьютер с интерфейсом связи со счётчиком.

Теоретические сведения:

Принцип работы счётчика Гейгера-Мюллера СТС-6:

Счётчик представляет сосбой наполненный газом сосуд с двумя электродами. Существует несколько типов таких счётчиков. Используемый в работе представляет собой тонкостенный металлический цилиндр, который является катодом. Анодом является тонкая нить, натянутая вдоль оси цилиндра. Чтобы счетчик работал в режиме счёта частиц, неоходимо подать напряжение 400 В. Частицы космических лучей ионизируют газ, которым наполнен счетчик, а также выбивают электроны из его стенок. Образовавшиеся элестроны, ускоряясь в сильном электрическом поле между электродами счётчика, соударяются с молекулами газа и выбивают из них новые вторичные электроны. Эти элеткроны ускоряются электрическим полем и затем ионизируют молекулы газа. В результате образуется целая лавина электронв, и через счётчик резко увеличивается ток.

Рис. 1: Схема включения счетчика

Постоянное напряжение подётся на счётчик от блока питания через сопротивление R. В исходном состоянии электроды СТС-6 и конденсатор C_1 заряжены до напряжения 400 B, так как сопротивление резистора R много меньше

спортивления утечки СТС-6 и конденсатора C_1 . Разделительный конденсатор C_2 не пропускает постоянное напряжение источника питания в интерфейсные схемы компьютера.

При возникновении тока через счётчик заряд на СТС-6 и конденсаторе C_1 обеспечивает развитие электронной лавины на короткое время. В процессе разряда энергия поступает от заряженного конденсатора C_1 , подсоединённого параллельно счётчику. Разряд в счётчике прекратится, когда напряжение на счётчике уменьшается до занчения, при котором разность потенциалов внутри счётчика на длине свободного пробега элетрона не превышает потенциала ионизации. За время порядка нескольких $R \cdot C_1$ схема приходит в исходное сотсояние, при этом через конденсатор C_2 в электронную схему интерфейса будет предан короткий импульс.

Базовые статистические понятия:

В данной работе измеряется величина, которая меняется со временем случайным образом. Методы обработки результатов те же, что и для расчета случайных погрешностей.

Для простоты будем считать, что все ошибки, кроме статистических, пренебрежимо малы и рассматривать их не будем. Наиболее важной характеристикой измерения является выборочное среднее значение числа измерений:

$$\langle n \rangle \equiv \frac{1}{n} \cdot \sum_{i=1}^{N} n_i$$

При увеличении количества измерений, выборочное среднее будет стремиться к некоторому конечному пределу, который можно назвать "истинным" средним значением числа регистрируемых частиц:

$$\overline{n} = \lim_{N \to \infty} \langle n \rangle$$

Однако, поскольку реальное число измерений конечно, то и значение среднего всегда содержит погрешность.

Кроме среднего значения важно знать на сколько сильно флуктуируют значения n_i . Эта величина называется средним квадратом отклонения, или же выборочной дисперсией:

$$\delta_n^2 \equiv \frac{1}{N} \cdot \sum_{i=1}^N (n_i - \langle n \rangle)^2$$

Что можно проще записать:

$$\delta_n^2 \equiv \langle (n - \langle n \rangle)^2 \rangle$$

Аналогично при $N \to \infty$ выборочная дисперсия стремится некоторому предельному значению:

$$\delta^2 = \lim_{N \to \infty} \delta_n^2 = \overline{(n - \overline{n})^2}$$

Погрешность среднего значения $\langle n \rangle$ при независимых измерениях связана с погрешностью отдельного измерения по формуле:

$$\delta_{\langle n \rangle} = \frac{\delta_n}{\sqrt{N}}$$

Таким образом, при увеличиении количества измерений N, погрешность среднего значения убывает как $\frac{\delta_n}{\sqrt{N}}$. Иными словами, при увеличении количества измерений, среднее значение приближается к «истинному» \overline{n} . При конечном N можно сказать, что истинное среднее с высокой вероятностью лежит в интервале:

$$\overline{n} = \langle n \rangle \pm \frac{\delta_n}{\sqrt{N}}$$

Пауссоновский процесс:

Если события однородны во времени(то есть не меняют своей средней интенсивности) и каждое следующее событие не зависит от прошлого, то последовательность таких событий называют пуассоновский процессом.

Для пуассоновского процесса может быть получено теоретическое распределение вероятностей — распределение Пуассона. Одним из наиболее характерным свойств распределения Пуассона является связь между его дисперсией и средним значением. А именно, справедливо равенство:

$$\delta n = \sqrt{\overline{n}}$$

На практике можно ожидать приближённое равенство для выборочных значений:

$$\delta n \approx \sqrt{\langle n \rangle}$$

Погрешнсоть эксперимента:

Рассмотрим опыт, в котором интервал измерения разбит на $N=\frac{t}{\tau}$ промежутков, длительностью τ . В качестве основного результата опыта нас прежде всего интересует среднее число частиц, регистрируемое за данный промежуток времени. Из основного свойства распределения Пуассона получим среднеквадратичную погрешность определения среднего:

$$\delta_{\langle n \rangle} = \frac{\delta_n}{\sqrt{N}} = \sqrt{\frac{\langle n \rangle}{N}}$$

Обычно больший интерес представляет не абсолютное, а относительное значение погрешности. Для него находим:

$$\epsilon_{\langle n \rangle} = \frac{\delta_{\langle n \rangle}}{\langle n \rangle} = \frac{1}{\sqrt{\langle n \rangle \cdot N}}$$

В знаменателе полученного выражения, стоит полное число частиц, зарегистрированных за всё время измерений. То есть относительная погрешность опыта не зависит от интервалов разбиения, и убывает обратно пропорционально корню из общего числа частиц.

Таким образом, единственный способ увеличить точность опыта — увеличивать общее число регистрируемых частиц за счёт увеличения совокупного времени измерений.

Интенсивность регистрации:

Среднюю интенсивность регистрируемых частиц в секунду и её погрешность можно посчитать по формулам:

$$\begin{array}{l} j = \frac{\langle n \rangle}{\tau} \\ \delta j = \frac{\delta_n}{\tau \cdot \sqrt{N}} \end{array}$$

Методика измерений:

- 1. Основной эксперимент идёт в течении 4000 с. В его резуьлтате мы имеем количесвто частиц прилетающих в течении каждой секунды.
- 2. Параллельно запускаем симуляцию с настройками по умолчанию и убеждаемся в соответствии теории с практикой. А именно, заметим, что флуктуация среднего числа зарегистрированных частиц $\langle \mathbf{n} \rangle$ и среднеквадратичного отклонения δ_n потепенно уменьшается, а затем значение выходит на постоянную величину.
- 3. Обработаем результаты, построим графики.

Результаты измерений:

Рассмотрим частоту фиксации различных значений за равные промежутки времени τ и сравним их с распредением Гаусса и Пуассона на основе данных полученных на симуляции.

При увеличении τ максимальная доля случаев уменьшается (в силу увеличения количества групп). График распределения Гаусса и Пуассона принимает более округлый вид.

Построим подобные гистограммы для частоты фиксации частиц на основе данных эксперимента:

По приведённым выше формулам вычислим:

Для каждого τ вычислим средее число регистрируемых частиц $\langle n \rangle$:

	$\tau = 10 \text{ c}$	$ au=20~{ m c}$	$\tau = 40 \mathrm{\ c}$	$\tau = 80 \text{ c}$
$\langle n \rangle$	12,28	24,56	48,87	97,74

Для каждого τ вычислим среднеквадратичное отклонение δ_n :

	$ au=10~{ m c}$	$ au=20~{ m c}$	$ au=40~{ m c}$	$ au=80~{ m c}$
δ_n	4,34	$5,\!22$	7,86	12,02

Для каждого τ вычислим погрешность среднего значения $\delta_{\langle n \rangle}$:

ſ		$\tau = 10 \mathrm{\ c}$	$\tau = 20 \mathrm{\ c}$	$\tau = 40 \text{ c}$	$\tau = 80 \text{ c}$
Ì	$\delta_{\langle n \rangle}$	0,22	0,26	0,39	0,60

Наложим поверх экспериментальных гистограмм теоретические распределения Пуассона и Гаусса:

Экспериментальные гистограммы согласуются с распределениями Пуассона и с несколько меньшей точностью с распределением Гаусса.

Проверим справедливость основного свойства распределения Пуассона:

$$\begin{array}{l} \sqrt{\langle n \rangle} = \delta_n \\ \sqrt{\langle n \rangle} \approx 1, 10 \end{array}$$

$$\delta_n \approx 1,09$$

Определим доли случаев, когда отклонение числа отсчётов n от среднего значения не превышает одного, двух и трёх стандартных отклонений:

$$|n - \langle n \rangle| \le \delta_n$$

$$w1 = 0.57$$

$$|n - \langle n \rangle| \le 2 \cdot \delta_n$$

$$w2 = 0.96$$

$$|n - \langle n \rangle| \le 3 \cdot \delta_n$$

$$w3 = 0.99$$

Для каждого вычислим среднюю интенсивность регистрируемых частиц в секунду:

	T = 10 c	T=20~c	T = 40 c	T = 80 c
m	1,223	1,223	1,223	1,222
dm	0,007	0,006	0,006	0,007

Обсуждение результатов и вывод:

Таким образом мы исследовали случайные значения на примере регистрации космических частиц. Заметим, что при большом числе экспериментов, значения получается близкими к нормальному распределению Гаусса и ещё ближе к распределению Пуассона, что согласуется с теорией. При этом основной свойство Пуассона выполнилось с погрешностью менее 1%. Заметим , что при увеличении промежутка τ частота фиксации отдельных велечин уменьшается, а среднеквадратичное отклонение и его погрешность увеличиваются. Заметим, что средняя интенсивность регистрируемых частиц в секунду не зависит от величины интервала τ и числа точек $N=\frac{t}{\tau}$.

Погрешности измерений потока частиц с помощью счетчиков Гейгера-Мюллера малы по сравнению с изменениями само-го потока. Поэтому погрешности измерений определяются в основном временем, в течение которого восстанавливаются нормальные условия в счетчик после срабатывания счетчика.