Laboratorio II

Implementación de Amplificador Lock-In Dígital

Horst, Raúl Tomás

ROQUETA, MATÍAS DANIEL

Centro Atómico Bariloche y Instituto Balseiro, Comisión Nacional de Energía Atómica

Resumen

Introducción

Un amplificador lock in es un dispositvo electrónico capaz de extraer la fase y amplitud de una señal de banda angosta medida en un ambiente ruidoso.

El funcionamiento del lock in equiere información de la dependencia temporal de la señal de interés, que es aportada por una señal de referencia. Según la implementación, la señal de referencia puede ser inyectada al lock in de una fuente externa o generada internamente.

El lock in recupera la señal de interés multiplicando a esta por la referencia en fase y cuadratura, y aplicando un filtro pasa bajo al producto de señales. Este proceso es llamado demodulación coherente.

Figura 1: Una señal de entrada v(t) es inyectada al lock in. Posterior a la demodulación coherente, se extrae la señal de interés z(t)=x(t)+jy(t)

La figura 1 presenta un circuito lock in típico. El bloque transformada de Hilbert para una referencia senoidal corresponde a un desfasaje de 90°. La señal de salida se obtiene en forma de parte real e imaginaria, pero típicamente se expresa en forma amplitud y fase

$$z(t) = x(t) + jy(t) = R(t)e^{j\Phi(t)}$$

Donde la amplitud y fase se obtienen de las ecuaciones

$$R(t) = \sqrt{x^2(t) + y^2(t)} \qquad \qquad \Phi(t) = \arctan \frac{y(t)}{x(t)}$$

Para comprender el comportamiento esperando del demodulador coherente resulta útil visualizar las señales involucradas en el dominio de la frecuencia, análisis que se realiza en la figura 2.

Figura 2: Realización en ausencia de ruido de las señales presentes en la figura 1 representadas en el dominio de la frecuencia, incluida la respuesta en frecuencia del filtro.

La salida z(t) del demodulador coherente se puede interpretar como la entrada v(t) transportada a banda base. Por este motivo la frecuencia de corte del filtro pasa bajos se debe elegir tal que acepte el ancho de banda de la señal a medir.

Implementación

La aplicación del amplificador lock in correspondiente a la práctica realizada es de medición de impedancias. Esto se realiza midiendo la transferencia de un circuito divisor de tensión con una impedancia incógnita.

Figura 3: Circuito a medir, R_S es una resistencia de valor conocido, y Z_L una impedancia supuesta incógnita.

En estas condiciones, se mide

$$H = \frac{v(t)}{r(t)} = \frac{Z}{R+Z} \longrightarrow Z = \frac{HR}{1-H}$$
 (1)

La relación v(t) = Hr(t) con $H \in \mathbb{C}$ implica que el ancho de banda de la señal a medir puede considerarse arbitrariamente chico.

El filtro elegido fue un FIR digital por su simplicidad de implemntación. Aplicar el filtro de orden N se reduce a un único producto interno vectorial

$$y_i = \sum_{j=0}^{N} h_j x_{i-j} = \begin{bmatrix} x_i & \cdots & x_{i-N} \end{bmatrix} \begin{bmatrix} h_0 \\ \vdots \\ h_N \end{bmatrix}$$
 (2)

El filtro FIR es generado con la función firwin perteneciente a scipy.signal que garantiza fase constante, lo que permite fácilmente conocer su retardo de grupo a frecuencia de muestreo f_s

$$\tau = \frac{N-1}{2f_s} \tag{3}$$

Ya que lo que interesa medir en nuestro circuito es transferencia, resulta útil normalizar los valores a fin de independizar la medición de la tensión de alimentación del circuito y medir la transferencia diréctamente. El lock in implementado corresponde a la figura 4

Figura 4: Lock In implmentado para medición de impedancias. El módulo $\times 2$ aplicado a la referencia contrarresta un efecto de la demodulación visto en la figura 2 donde la mitad de la amplitud de la señal de interés es transportada a alta frecuencia y filtrada.

Método Experimental

En primer lugar se midió la frecuencia máxima de sampleo que permitía el dispositivo de medición.

Luego se ensambló el circuito de la figura 3, en donde ZL era de carácter puramente resistivo, y se pudo obtener el valor de la resistencia de carga RL = ZL para comprobar el funcionamiento del lock in en el caso de impedancias reales.

Se utilizaron dos generadores de señal RIGOL DG4102 para poder generar la señal de referencia y el ruido. Para sumar éstas dos señales se tuvo que "flotar" [1] la tierra de uno de los generadores dado que éstos no

poseen tierra propia, sino que utilizan la de la red eléctrica.

Para la realización del lock in se implementó un script en python como se puede ver en el apéndice. En el código se importó la librería del dispositivo de medición, el conversor analógico dígital USB-1408FS de la línea MEASUREMENT COMPUTING, para poder calibrarlo y realizar las mediciones.

Se implementaron las etapas de la figura 4, en donde se optó por utilizar filtros FIR dada su versatilidad y sencillez.

El programa toma la señal v(t) y la normaliza utilizando su máximo valor de amplitud, siendo ésta la tensión de referencia. Además se mide la señal r(t) y se le aumenta la amplitud en un factor de 2 por el desarrollo que se necesita [Apéndice]. Se genera la señal p(t) mediante la multiplicación de las dos señales tomadas. Luego se genera la señal q(t) desfasando 900 la señal mediante la transformada de Hilbert. Por último se aplican filtros pasa bajos, obteniendo respectivamente las salidas x(t) e y(t), necesarias para obtener los valores de amplitud y fase de la señal v(t).

Resultados

Falta analizar que puntos usar de las gráficas y reportar el valor $RL = \dots +/- \dots$, $CL = \dots +/- \dots$

Se determinó que la frecuencia máxima de muestreo es de aproximadamente 500Hz, con una frecuencia máxima medible de 250Hz, según el teorema de muestreo de Nyquist[2].

Se midió el valor de RL en función de la relación señal a ruido en la entrada para tres filtros FIR de distinto orden. Se puede apreciar que el filto óptimo es el de mayor orden, dado que se utilizan mayor cantidad de mediciones para generar las señales medidas.

Figura 5: RvsSNR

Para comprobar que el límite de funcionamiento del lock in no está limitado por el orden del filtro elegido sino por la SNR a la entrada se realizaron distintas mediciones sobre el valor $RL({\rm dada\ la\ simpleza\ del\ circuito})$ para un valor de SNR a la entrada de -22.5dB para distintos filtros como se explaya en la figura 6. Se aprecia un valor mas acercado al tabulado cuando se aumenta el orden del filtro, sin embargo está lejos de entrar en la cota del error tabulado, y ésto asegura que el limitante en éste lock in es el ruido a la entrada.

Cabe aclarar que los valores de resistencia que estamos midiendo están dos ordenes de magnitud por de bajo de la impedancias de entrada del dac, y al estar en una conexión en paralelo predomina el valor de la resistencia que deseamos obtener.

Figura 6: RORDEN

Por último se armó el circutio de la figura 7 . Con ésto se midió el valor de la capacidad CL para poder comprobar el funcionamiento del lock in en impedancias complejas.

Figura 7: RvsSNR

Discusión

Discusión o trabajo a futuro:

- -Frecuencia de muestreo ¿usar otro dac?
- -Orden del filtro
- -Pq tuvimos que flotar
- -Hacer más mediciones en el capacitor entre -5dB y 15db, porque en la resistencia llega hasta -12dB como mínimo. Con respecto a ésto, ¿descartamos 4 puntos en el gráfica de la capacitancia?, nos quedaría sólo 1...

Conclusiones

Si bien los amplificadores lock in comerciales resuelven mediciones con SNR de 1:1000, se encuentra satisfactorio el rendimiento del lock in digital desarrollado, con una implementación relativamente sencilla.

Se concluye que la mínima SNR de entrada para el correcto funcionamiento del lock in implementado es de aproximadamente unos 6dB por ejemplo".(VER BIEN QUE CRITERIO UTILIZAR PARA DAR EL VALOR, y si conviene en dB o en 1:10 por ejemplo)

3

Referencias

Apéndices

Apéndice 1 - Medición de SNR de Entrada

A la entrada del lock in se mide v(t) = s(t) + n(t). Es de interés para la práctica conocer la relación señal ruido, definida por la relación entre medias cuadráticas

Sin embargo, se desconocen las componentes individuales s(t), n(t) únicamente se conoce su suma y la frecuencia de s(t).

$$SNR = \frac{E\left[s^2(t)\right]}{E\left[n^2(\,t)\right]}$$

Esto permite aproximar s(t) y n(t) usando filtros muy selectivos a frecuencia central f_0 .