Documentatie Invatare Automata

~ Zoo Animal Classification ~

Studenta:Brânzea Ana-Maria

Grupa 40317A

CUPRINS

Analiza bazei de date	
Modelul Perceptron	
Modelul Naive Bayes	
Modelul Knearest Neighbors	
Modelul Support Vector Machine	
Modelul arbori de decizie	12
Concluzii	15

Analiza bazei de date

Baza de date utilizată este <u>Zoo Animal Classification</u> disponibilă pe platforma Kaggle și este formată din 101 înregistrări. Descrierea parametrilor este următoarea:

- animal_name: Numele animalului.
- hair: Prezenţa părului (1 Da, 0 Nu).
- feathers: Prezența penei (1 Da, 0 Nu).
- eggs: Tipul de reproducere (1 Ouă, 0 Altele).
- milk: Secretare de lapte (1 Da, 0 Nu).
- airborne: Capacitatea de a zbura (1 Da, 0 Nu).
- aquatic: Trăiește în apă (1 Da, 0 Nu).
- predator: Este un prădător (1 Da, 0 Nu).
- toothed: Are dinţi (1 Da, 0 Nu).
- backbone: Are coloană vertebrală (1 Da, 0 Nu).
- breathes: Respiră (1 Da, 0 Nu).
- venomous: Este veninos (1 Da, 0 Nu).
- fins: Prezența înotătoarelor (1 Da, 0 Nu).
- legs: Numărul de picioare (valori numerice- 0,2,4,5,6,8).
- tail: Prezența cozii (1 Da, 0 Nu).
- domestic: Este domestic (1 Da, 0 Nu).
- catsize: Dimensiunea similară cu cea a unei pisici (1 Da, 0 Nu).
- class_type: Tipul de clasă (nominal- [1,7]): Mammal, Bird, Fish, Amphibian, Reptile, Bug, Invertebrate.

Baza de date nu conține valori lipsă, motiv pentru care nu s-au realizat modificări asupra datelor inițiale. Distribuția datelor pentru cele 7 clase este următoarea:

- Clasa 0 (Amphibian) : 4 inregistrari
- Clasa 1 (Bird): 20 de inregistrari
- Clasa 2 (Bug) : 8 inregistrari
- Clasa 3(Fish): 13 inregistrari
- Clasa 4(Invertebrate):10 inregistrari
- Clasa 5(Mammal):41 de inregistrari
- Clasa 6(Reptile): 5 inregistrari

Cele cinci modele utilizate pe această bază de date sunt: Perceptronul, Clasificatorul Naive Bayes, Clasificatorul K-Nearest Neighbors, Mașina de Vectori Suport (SVM) și Arborii de Decizie.

Modelul Perceptron

Fiecare informație are o pondere asociată. În interiorul neuronului, se calculează suma ponderilor, iar pe baza unei probabilități, se determină care rezultat este mai apropiat de cel așteptat. După efectuarea acestei comparații și stabilirii legăturii din neuron care ar putea fi întărită, se modifică ponderea și se recalculează eroarea.

Pentru modelul Perceptron, parametrii utilizați sunt:

- Parametrul k- numarul de folduri folosite
- Eta0- rata cu care se ajustează ponderile modelului în timpul antrenamentului
- Max_iter- numărul maxim de iterații sau pași de antrenament pe care algoritmul de învățare le va efectua în timpul antrenamentului
- Early_stopping- un indicator care controlează dacă antrenamentul ar trebui să se oprească devreme în funcție de anumite criterii (ia valorile True/False)

Experimentele modelului <u>Perceptron</u>:

Nume experi ment	Parametr ul k	Rata de invatare(eta 0)	Epoci (max_iter)	Valoare early_stoppi ng	Acuratete medie	Matricea de confuzie
Exp1	5	0.05	40	true	0.88	[[2 0 0 0 0 0 2] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [3 2 1 0 4 0 0] [0 0 0 0 0 41 0] [2 0 0 0 0 2 1]]
Exp2	5	0.02	60	true	0.88	[[2 0 0 0 0 2 0] [0 20 0 0 0 0 0 0] [0 0 7 0 1 0 0] [0 0 0 13 0 0 0] [1 2 1 0 6 0 0] [0 0 0 0 0 41 0] [4 0 0 0 0 1 0]
Ехр3	5	0.01	60	false	0.90	[[2 0 0 0 0 2 0] [0 20 0 0 0 0 0] [0 0 7 0 1 0 0] [0 0 0 13 0 0 0] [1 2 1 0 6 0 0] [0 0 0 0 0 41 0] [4 0 0 0 0 1 0]]
Exp4	5	0.01	60	true	0.88	[[2 0 0 0 0 0 2] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [3 2 1 0 4 0 0] [0 0 0 0 0 41 0] [2 0 0 0 0 2 1]]
Ехр5	10	0.05	50	true	0.88	[[3 0 0 0 1 0 0] [0 20 0 0 0 0 0] [0 0 4 0 4 0 0] [0 0 0 13 0 0 0] [0 0 2 0 7 1 0] [0 0 0 0 0 41 0] [2 1 0 0 1 0 1]
Ехр6	10	0.08	30	True	0.87	[[2 0 0 0 2 0 0] [0 20 0 0 0 0 0] [0 0 4 0 4 0 0] [0 0 0 13 0 0 0] [1 1 0 0 6 0 2] [0 0 0 0 0 41 0] [1 0 0 0 1 1 2]]
Ехр 7	10	0.06	100	False	0.93	[[4 0 0 0 0 0 0] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [0 1 3 0 6 0 0] [0 0 0 0 0 41 0] [0 0 0 0 0 3 2]
Exp 8	10	0.06	100	True	0.87	[[4 0 0 0 0 0 0] [1 19 0 0 0 0 0] [0 0 4 0 4 0 0]

Exp 9	15	0.03	150	False	0.94	$ \begin{bmatrix} 0 & 0 & 0 & 13 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 6 & 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 41 & 0 \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix} $ $ \begin{bmatrix} [4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & 20 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 7 & 0 & 1 & 0 & 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & 0 & 7 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 13 & 0 & 0 & 0 \end{bmatrix} $ $ \begin{bmatrix} 0 & 0 & 1 & 0 & 8 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 41 & 0 \end{bmatrix} $ $ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 2 & 2 \end{bmatrix} $
Ехр 10	15	0.1	50	True	0.95	$ \begin{bmatrix} 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 20 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 8 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 13 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 8 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 41 & 0 \\ 0 & 0 & 0 & 1 & 0 & 2 & 2 \end{bmatrix} $
Exp 11	30	0.08	100	True	0.91	[[4 0 0 0 0 0 0] [0 20 0 0 0 0 0] [0 0 7 0 1 0 0] [1 0 0 12 0 0 0] [1 2 0 0 7 0 0] [0 0 0 0 0 41 0] [3 0 0 0 0 1 1]]
Exp 12	100	0.03	50	True	0.91	[[1 0 0 0 1 2 0] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [0 2 1 0 7 0 0] [0 0 0 0 0 41 0] [0 0 0 1 2 0 2]]

Modelul Naive Bayes

Modelul Naive Bayes este o metodă de învățare automată bazată pe probabilități, care funcționează prin calcularea probabilității asociate cu fiecare clasă pentru o instanță dată. Apoi, folosind aceste probabilități calculate, modelul clasifică instanța într-o anumită clasă. Numele "Naive" provine din faptul că acest model presupune independența între caracteristicile (datele) utilizate în clasificare, ceea ce este o simplificare puternică a realității.

- Gaussian Naive Bayes potrivit pentru date continue care sunt distribuite normal (gaussian). Algoritmul presupune că caracteristicile sunt independente între ele, iar distribuția datelor pentru fiecare clasă este gaussiană
- Multinomial Naive Bayes- folosit pentru caracteristici care reprezintă frecvența cu care anumite evenimente apar într-un set de date
- Bernoulli Naive Bayes- similar cu Multinomial Naive Bayes, dar este folosit pentru variabile binare (0 sau 1)
- Categorical Naive Bayes- similar cu Multinomial Naive Bayes, dar este potrivit pentru caracteristici cu un număr fix de categorii discrete. Acesta consideră frecvența cu care apar anumite categorii în setul de date

Experimentele modelului Naive Bayes:

Nume experiment	Valoarea parametrului k	Acuratete medie	Matricea de confuzie
Gaussian	10	0.95	[[3 0 0 0 0 0 1] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [0 0 0 0 9 0 1] [0 0 0 0 40 1] [0 0 0 1 1 0 3]]
Multinomial	10	0.87	[[2000200] [02000000] [008000] [00013000] [0212500] [02020390] [1102001]
Bernoulli	10	0.95	[[3 0 0 0 0 0 1] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [0 0 1 0 8 0 1] [0 0 0 0 0 41 0] [0 1 0 1 0 0 3]
Categorical	10	0.96	[[3 0 0 0 0 0 1] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0]

Modelul Knearest Neighbors

Principiul de bază al KNN constă în compararea instanței curente cu ceilalti vecini din setul de date în funcție de o măsură de distanță specificată (euclidean, minkowski,manhattan). Vecinii sunt determinați pe baza valorilor lor de caracteristici și sunt considerați în funcție de clasele din care fac parte.

Procesul de clasificare în KNN constă în următorii pași:

- Se calculează distanța între instanța curentă și fiecare instanță din setul de date.
- Se identifică cei mai apropiați K vecini (K fiind un parametru specificat).
- Se examinează clasele acestor vecini și se determină clasa predominantă sau cea mai comună.
- Instanța curentă este clasificată în acea clasă predominantă.

Parametrii folositi sunt:

• Parametrul k- numarul de fold-uri

- N_neighbors numărul de vecini apropiați utilizați pentru a determina clasa unei instanțe noi
- P controlează puterea metricii utilizate
- Metric- metrica specificată pentru a calcula distanța între puncte
- Algorithm- algoritmul folosit pentru a calcula vecinii apropiați în KNN (ball_tree, kd_tree, brute,auto)

Experimentele modelului Knearest Neighbors:

Nume experime nt	Paramet rul k	Numar de vecini (n_neig hbors)	Para metr ul p	Formul a aleasa (metric)	Valoare parametru algorithm	Acu ratet e	Matricea de confuzie
KN 1	5	5	2	minko wski	Ball_tree	0.91	[[4 0 0 0 0 0 0] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [0 0 3 0 7 0 0] [0 0 0 1 0 40 0] [3 1 0 1 0 0 0]
KN 2	5	10	1	minko wski	Kd_tree	0.85	[[1 0 0 1 1 0 1] [0 20 0 0 0 0 0 0] [0 0 5 0 3 0 0] [0 0 0 13 0 0 0] [0 0 3 0 7 0 0] [0 0 0 1 0 40 0] [0 2 0 3 0 0 0]]
KN 3	5	10	2	manhat tan	Brute	0.85	[[1 0 0 1 1 0 1] [0 20 0 0 0 0 0 0] [0 0 5 0 3 0 0] [0 0 0 13 0 0 0] [0 0 3 0 7 0 0] [0 0 0 1 0 40 0] [0 2 0 3 0 0 0]]
KN 4	5	10	2	chebys hev	auto	0.67	[[0 0 0 1 0 3 0] [0 17 0 0 0 3 0] [0 0 3 2 3 0 0] [0 0 0 11 0 2 0] [0 0 3 0 0 7 0] [0 0 0 4 0 37 0] [0 0 0 0 0 5 0]]
KN 5	5	10	1	euclide an	auto	0.83	[[0 0 0 1 0 3 0] [0 17 0 0 0 3 0] [0 0 3 2 3 0 0] [0 0 0 11 0 2 0] [0 0 3 0 0 7 0] [0 0 0 4 0 37 0] [0 0 0 0 0 5 0]]
KN 6	5	8	2	minko wski	Auto	0.86	[[1 0 0 1 1 0 1] [0 20 0 0 0 0 0]

							[0 0 7 0 1 0 0] [0 0 0 13 0 0 0] [0 0 3 0 7 0 0] [0 0 0 2 0 39 0] [1 2 0 1 0 1 0]]
KN 7	10	1	1	manhat tan	Auto	0.97	$ \begin{bmatrix} 3 & 0 & 0 & 0 & 0 & 0 & 1 \\ [& 0 & 20 & 0 & 0 & 0 & 0 & 0 \\ [& 0 & 0 & 8 & 0 & 0 & 0 & 0 \\ [& 0 & 0 & 0 & 13 & 0 & 0 & 0 \\ [& 0 & 0 & 0 & 0 & 9 & 0 & 1 \\ [& 0 & 0 & 0 & 0 & 0 & 41 & 0 \\ [& 0 & 1 & 0 & 0 & 0 & 0 & 4 \end{bmatrix} $

Modelul Support Vector Machine

Acest model SVM se bazează pe identificarea unor vectori de suport în setul de date, care sunt apoi folosiți pentru a genera hiperplane de separare între clase, cu margini cât mai mari posibil pentru a maximiza precizia clasificării.

Parametrii utilizati pentru SVM sunt:

- Parametrul k- numarul de folduri
- Kernel- funcție matematică utilizată pentru a transforma datele într-un spațiu de dimensiuni superioare
- Gamma- responsabilă de transformarea datelor de intrare într-un spațiu dimensional superior
- C-controlează cât de mult este permisă violarea marginii de separare
- Probability- controlează dacă modelul SVM trebuie să calculeze probabilități pentru predicțiile sale

Experimentele modelului <u>Support Vector Machine:</u>

Nume experime nt	Parame trul k	Parametrul ui kernel	Parametr ul gamma	Parame trul C	Parametr ul probabili ty	Acuratet e	Matricea de confuzie
SVM 1	5	linear	scale	0.1	True	0.93	[[3 0 0 0 0 0 1] [0 20 0 0 0 0 0] [0 0 7 0 1 0 0] [0 0 013 0 0 0] [0 0 3 0 7 0 0] [0 0 0 0 041 0] [0 1 0 1 0 0 3]]
SVM 2	5	poly	Scale	0.5	True	0.88	[[0 0 0 0 0 4 0] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 013 0 0 0] [0 0 0 0 7 3 0] [0 0 0 0 041 0] [0 0 0 0 0 5 0]]
SVM 3	5	rbf	Scale	0.1	True	0.62	[[0 0 0 0 0 4 0] [0 18 0 0 0 2 0] [0 0 0 0 0 8 0] [0 0 0 4 0 9 0] [0 0 0 0 0 10 0] [0 0 0 0 0 41 0] [0 0 0 0 0 5 0]]
SVM 4	5	sigmoid	Scale	0.5	False	0.73	[[0 0 0 2 0 2 0] [0 20 0 0 0 0 0] [0 4 0 0 4 0 0] [0 0 0 13 0 0 0] [0 6 1 2 1 0 0] [0 0 0 1 0 40 0] [0 2 0 2 0 1 0]]
SVM 5	5	poly	auto	1.0	True	0.88	[[0 0 0 0 0 3 1] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 013 0 0 0] [0 0 0 0 7 3 0] [0 0 0 0 041 0] [0 0 0 0 0 5 0]]
SVM 6	10	Linear	Auto	0.1	True	0.95	[[3 0 0 0 0 0 1] [0 20 0 0 0 0 0] [0 0 7 0 1 0 0] [0 0 013 0 0 0] [0 0 2 0 8 0 0] [0 0 0 0 041 0] [0 0 0 1 0 0 4]]
SVM 7	10	Poly	Auto	0.8	False	0.91	[[0 0 0 0 0 3 1] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0]

SVM 8	10	Rbf	Auto	0.9	False	0.93	[0 0 0 13 0 0 0] [0 0 0 0 9 1 0] [0 0 0 0 0 41 0] [0 0 0 0 0 4 1]] [[1 0 0 0 0 0 3] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 12 0 0 1] [0 0 1 0 9 0 0] [0 1 0 1 0 0 3]] [[1 0 0 0 0 0 3]
SVIVI 9	10	Siginola	auto	1	rdise	0.91	[0 20 0 0 0 0 0] [0 20 0 0 0 0 0] [0 0 7 0 1 0 0] [0 0 013 0 0 0] [0 0 3 0 7 0 0] [0 0 0 0 041 0] [0 1 0 1 0 0 3]
SVM 10	50	rbf	auto	0.4	True	0.90	[[0 0 0 0 1 3 0] [0 20 0 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [0 0 1 0 9 0 0] [0 0 0 0 0 41 0] [0 1 0 0 0 4 0]

Modelul arbori de decizie

Arborii de decizie sunt modele de învățare automată care clasifică sau fac predicții pe baza unor reguli de decizie reprezentate sub formă de structuri de tip arbore. Aceste modele stabilesc relații între caracteristicile din setul de date prin efectuarea unor comparații și decizii succesive pe baza valorilor acestor caracteristici.

Parametrii folositi ai arborilor de decize sunt:

- Parametrul k- nr de folduri
- Max_depth- adâncimea maximă a arborelui de decizie. Arborele nu va fi extins dincolo de această adâncime maximă.
- Min_samples_leaf- numărul minim de eșantioane necesare pentru a fi considerate o frunză (nod terminal) a arborelui. Acesta controlează creșterea arborelui prin stabilirea condițiilor minime pentru divizarea nodurilor. Poate lua valori de tip float din intervalul (0.0, 1.0) si int in intervalul [1,inf].

Experimentele modelului Arbori de decizie:

Nume experiment		Parametrul criterion	Parametrul max_depth	Parametrul min_samples_leaf	Acuratetea	Matricea de confuzie
Arbore1	5	entropy	None	1	0.92	[[2 0 0 0 0 0 2] [0 20 0 0 0 0 0] [0 0 7 0 1 0 0]

Arbore2	5	Entropy	5	0.2	0.73	[0 0 0 13 0 0 0] [0 0 2 0 8 0 0] [0 0 0 0 0 41 0] [3 0 0 0 0 0 2]] [[0 1 0 3 0 0 0]
		,				[02000000] [0800000] [0800000] [00013000] [0433000] [0000410] [0203000]
Arbore3	5	gini	None	5	0.85	[[0 0 1 0 0 0 3] [0 20 0 0 0 0 0] [0 0 8 0 0 0 0] [0 0 0 13 0 0 0] [0 0 4 0 5 1 0] [1 0 0 0 0 40 0] [3 0 1 0 0 1 0]]
Arbore4	5	gini	10	0.1	0.78	[[0 0 0 0 4 0 0] [0 20 0 0 0 0 0] [0 0 4 0 4 0 0] [0 0 0 13 0 0 0] [0 0 7 0 2 1 0] [0 0 0 0 140 0] [0 0 2 0 2 1 0]
Arbore5	10	Gini	None	3	0.92	[[3 0 0 0 0 0 1] [0 20 0 0 0 0 0] [0 0 5 0 3 0 0] [0 0 0 13 0 0 0] [0 0 2 0 8 0 0] [0 0 0 0 0 41 0] [2 0 0 0 0 0 3]
Arbore6	10	entropy	None	1	0.94	[[3 0 0 0 0 0 1] [0 20 0 0 0 0 0 0] [0 0 7 0 1 0 0] [0 0 0 13 0 0 0] [0 0 0 0 10 0 0] [0 0 0 0 140 0] [1 1 0 1 0 0 2]]
Arbore7	6	Log_loss	10	0.7	0.41	[[0 0 0 0 0 4 0] [0 0 0 0 0 20 0] [0 0 0 0 0 8 0] [0 0 0 0 0 13 0] [0 0 0 0 0 10 0] [0 0 0 0 0 41 0] [0 0 0 0 0 5 0]]
Arbore8	6	gini	10	1	0.86	[[0 0 1 0 0 0 3] [0 20 0 0 0 0 0 0] [0 0 7 0 1 0 0] [0 0 0 13 0 0 0] [0 0 5 0 5 0 0] [0 0 0 0 0 41 0] [2 0 2 0 0 0 1]]

Daca milk<=0.5 atunci

Daca toothead<=0.5 atunci

Daca Backbone<=0.5 atunci

Daca airbone<=5 atunci

Daca predator<=0 atunci

Daca legs<=3 atunci class4(Invertebrate)

Altfel class 2(bug)

Altfel class 3(Inverebrate)

Altfel class 2(Bug)

Altfel class 1(Bird)

Altfel daca fins<=0.5 atunci

Daca legs<=2 atunci

Class 6(reptile)

Altfel class O(Amphibian)

Altfel class 4(Fish)

Altfel class5 (mammal)

Concluzii

Din punct de vedere al performanței, modelul "KN7" (K-Nearest Neighbors) este cel mai eficient în acest context, urmat de modelul "Categorical" (Categorical Naive Bayes), "Exp10" (Perceptron), "SVM6" (Support Vector Machine) și "Arbore6" (arbore de decizie).

Model	Acuratete
Exp10	0.95
Categorical	0.96
KN7	0.97
SVM6	0.95
Arbore6	0.94

Experimentul "Arbore7" în cadrul modelelor de arbori de decizie a obținut cea mai scăzută performanță, având o acuratețe de doar 0.41.