Termodinámica - Clase 11

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Contenido

Conceptos en esta clase

Una banda elástica

Sistemas magnéticos

Radiación de un cuerpo negro

Cosmología

Agujeros negros

Resumen

Conceptos en esta clase

- La termodinámica aplicada a otros sistemas:
 - Una banda elástica
 - Sistemas magnéticos
 - Radiación de un cuerpo negro
 - Cosmología
 - Agujeros negros

Contenido

Conceptos en esta clase

Una banda elástica

Sistemas magnéticos

Radiación de un cuerpo negro

Cosmología

Agujeros negros

Resumer

- Por la aplicación de una fuerza F la banda se extiende.
- Dos contribuciones al trabajo hecho al sistema:

 \$\delta W = \mathcal{F} dL - P dV\$.

- Típicamente $-PdV \ll \mathcal{F}dL$
- La primera ley para esta sistema:

$$dU = d\bar{Q} + \mathcal{F}dL$$

Se puede reemplazar V por L y P por $-\mathcal{F}$ en todas las ecuaciones que ya tenemos. Por ejemplo:

$$\left(\frac{\partial S}{\partial V}\right)_T = \left(\frac{\partial P}{\partial T}\right)_V \qquad \left(\frac{\partial S}{\partial L}\right)_T = -\left(\frac{\partial \mathcal{F}}{\partial T}\right)_L$$

7

Las moleculas en la banda elástica son como cadenas.
Aumentando la longitud de la banda a temperatura constante, las moléculas se ponen más ordenadas ⇒ la entropía disminuye.

Entonces, en la relación anterior:

$$\left(\frac{\partial S}{\partial L}\right)_T = -\left(\frac{\partial \mathcal{F}}{\partial T}\right)_L$$

tenemos $(\partial S/\partial L)_T < 0$, así que $(\partial \mathcal{F}/\partial T)_L > 0$.

Ahora usamos una relación entre derivadas parciales que vimos antes:

$$\left(\frac{\partial z}{\partial y}\right)_{x} = -\left(\frac{\partial z}{\partial x}\right)_{y} \left(\frac{\partial x}{\partial y}\right)_{z}$$

De esta relación tenemos

$$\left(\frac{\partial L}{\partial T}\right)_{\mathcal{F}} = -\left(\frac{\partial L}{\partial \mathcal{F}}\right)_{T} \left(\frac{\partial \mathcal{F}}{\partial T}\right)_{L}$$

La longitud de la banda obviamente aumenta con mayor fuerza, así que $(\partial L/\partial \mathcal{F})_T > 0$ y ahora sabemos que $(\partial \mathcal{F}/\partial T)_L > 0$. Por lo tanto

$$\left(\frac{\partial L}{\partial T}\right)_{\mathcal{F}} < 0.$$

Este signifíca que calentado la banda elástica (a fuerza constante) disminuye su longitud!

La banda elástica tiene un coeficiente de expansión lineal (dilatación térmica) negativo: $\alpha_L = (1/L)(\partial L/\partial T)_{\mathcal{F}} < 0$.

Contenido

Conceptos en esta clase

Una banda elástica

Sistemas magnéticos

Radiación de un cuerpo negro

Cosmología

Agujeros negros

Resumer

Momento magnético del electrón

Dominios magnéticos

Sustancia no magnética

Sustancia magnética

Imán

Sustancias paramagnéticas

Sustancia sin magnetización.

Aplicando un campo magnético ${\rm externo} \ \vec{H} \ {\rm en} \ {\rm la} \ {\rm dirección} \ {\rm vertical} \ {\uparrow}.$

Eliminando el campo magnético \vec{H} , la magnetización es cero.

Sustancias ferromagnéticas

Sustancia sin magnetización.

Aplicando un campo magnético ${\rm externo} \ \vec{H} \ {\rm en} \ {\rm la} \ {\rm dirección} \ {\rm vertical} \ {\uparrow}.$

Eliminando el campo magnético \vec{H} , la magnetización se mantiene.

Magnetización

$$\vec{B} = \mu_0(\vec{H} + \vec{M})$$

donde \vec{H} es el campo magnético, \vec{B} es la inducción magnética y \vec{M} es la magnetización de la materia (momento magnético por unidad de volúmen). La permeabilidad magnética del vacio es μ_0 .

Campo magnético externo \vec{H} en la dirección vertical \uparrow .

Energía potencial magnética

La densidad de energía potencial magnética es

$$-\mu_0 \vec{H} \cdot \vec{M} \approx -BM$$

donde suponemos que el campo está alineado con los dípolos magnéticos en la materia.

Típicamente $|\vec{M}| \ll |\vec{H}|$ así que $\vec{B} \approx \vec{B}_0 = \mu_0 \vec{H}$.

Campo magnético externo \vec{H} en la dirección vertical \uparrow .

Trabajo magnético

- El campo B alinea los dípolos magnéticos de la sustancia, que resulta en un campo magnético neto en la sustancia.
- \vec{B} juega un rol similar a la presión P en un fluido, y \vec{M} juega un rol similar al volúmen V.

$$du = Tds + BdM$$

Campo magnético externo \vec{H} en la dirección vertical \uparrow .

Trabajo magnético

- Por lo tanto, el trabajo magnético (intensivo) es dw = BdM.
- Si los cambios en volúmen son despreciables, tenemos solamente trabajo magnético:

$$du = Tds + BdM$$

Campo magnético externo \vec{H} en la dirección vertical \uparrow .

Termodinámica de un sistema magnético

Se puede obtener las relaciones de Maxwell para sistemas magnéticos reemplazando P por -B y V por M:

$$\left(\frac{\partial S}{\partial B}\right)_T = \left(\frac{\partial M}{\partial T}\right)_B$$

Ahora hay que incluir la energía magnética con la energía interna:

$$e_{tot} = -BM + u \quad \Rightarrow \quad de_{tot} = Tds - MdB$$

 e_{tot} es el análogo de la entalpía para sistemas magnéticos. También se puede obtener G y F para sistemas magnéticos.

- Magnetización isotérmica: el campo externo está aplicado, los dípolos magnéticos alinean y la entropía magnética se reduce.
- Desmagnetización
 adiabática: se apaga el
 campo externo, la entropía
 magnética aumenta a
 expensas de la entropía
 térmica → la temperatura
 disminuye.

etot es el análogo a la entalpía, entonces:

$$c_{B} = \left(\frac{\partial e_{tot}}{\partial T}\right)_{B} = -B\left(\frac{\partial M}{\partial T}\right)_{B} + \left(\frac{\partial u}{\partial T}\right)_{B}$$

Si podemos despreciar la parte no magnética (i.e. suponemos que $c_B = 0$ en B = 0):

$$\left(\frac{\partial M}{\partial T}\right)_B = -\frac{c_B}{B}$$

Por lo tanto tenemos:

$$\left(\frac{\partial T}{\partial B}\right)_s = \frac{T}{B} \quad \Rightarrow \quad \frac{dT_s}{T} = \frac{dB_s}{B}$$

$$\int_{T_i}^{T_f} \frac{dT_s}{T} = \int_{B_i}^{B_f} \frac{dB_s}{B} \quad \Rightarrow \quad \frac{T_f}{T_i} = \frac{B_f}{B_i}$$

En principio parece que podemos llegar a $T_f = 0$ con $B_f = 0$. En la práctica este no es posible por la tercera ley.

Contenido

Conceptos en esta clase

Una banda elástica

Sistemas magnéticos

Radiación de un cuerpo negro

Cosmología

Agujeros negros

Resumen

Cuerpo negro

Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda la energa radiante que incide sobre él. Se puede realizar un cuerpo negro (aproximado) con una cavidad de radiación, donde tratamos la radiación como un gas de fotones.

Distribución de Planck

La distribución de la energía de la radiación:

Distribución de Planck

Teoría cinética: presión de un gas

but this can be related to the average:

$$\overline{v_x^2} = \frac{\left[v_{1x}^2 + v_{2x}^2 + v_{3x}^2 + \dots \quad v_{Nx}^2\right]}{N}$$

Teoría cinética: presión de un gas

En la dirección x tenemos:

$$\bar{F}_x = \frac{Nm\bar{v_x^2}}{L}$$

Para velocidades isotrópicas:

$$\bar{v_x^2} = \bar{v_y^2} = \bar{v_z^2} \quad \Rightarrow \quad \bar{v^2} = \bar{v_x^2} + \bar{v_y^2} + \bar{v_z^2} = 3\bar{v_x^2}$$

Por lo tanto:

$$\bar{v_x^2} = \frac{\bar{v^2}}{3} \quad \Rightarrow \quad \bar{F} = \frac{Nm\bar{v^2}}{3L}$$

Teoría cinética: presión de un gas

La presión es la fuerza dividida por el área:

$$P = \frac{\bar{F}}{L^2} = \frac{Nm\bar{v^2}}{3L^3} = \frac{Nm\bar{v^2}}{3V} = \frac{1}{3}nm\bar{v^2}$$

donde n = N/V es la densidad de número de las partículas.

Presión de un gas de fotones

- Para radiación reemplazamos v por c (velocidad de la luz).
- Según la física relativísta, masa es equivalente a energía: $E = mc^2$.
- La masa (energía) por unidad de volúmen es nm, y nm = u/c².
- Por lo tanto, la presión de un gas de fotones es:

$$P = \frac{1}{3}u$$

La catástrofe ultravioleta

- Mecánica clásica: teorema de equipartición: en equilibrio la energía total se reparte en partes iguales entre sus varias formas.
- Radiación del cuerpo negro: la energía debería repartirse en partes iguales entre todas las frecuencias.
- Electromagnetismo: las frecuencias son continuas → número infinito de frecuencias posibles... energía infinita?!

La catástrofe ultravioleta

- Planck resolvió el problema de la catástrofe ultravioleta aplicando ideas de la física cuántica.
- Veremos como obtener esta distribución con la física estadística.

$$u(\nu, T) = \frac{2h\nu^3}{c^2} \frac{1}{\exp(h\nu/k_B T) - 1}$$

La ley de Stefan-Boltzmann

La ley de Stefan-Boltzmann dice que la densidad de energía total de la radiación del cuerpo negro depende mucho de la temperatura: $u \propto T^4$. La energía total es la integral de la distribución de Planck:

$$u = \int_0^\infty u(\lambda, T) d\lambda$$

Podemos obtener la ley de Stefan-Boltzmann directamente con la termodinámica clásica.

La ley de Stefan-Boltzmann

Con la ecuación central y una relación de Maxwell:

$$\left(\frac{\partial U}{\partial V}\right)_T = T \left(\frac{\partial P}{\partial T}\right)_V - P$$

Usamos P = (1/3)u, U = uV, u = u(T):

$$u = \frac{1}{3}T\frac{du}{dT} - \frac{1}{3}u \quad \Rightarrow \quad 4\frac{dT}{T} = \frac{du}{u} \quad \Rightarrow \quad u = \left(\frac{4\sigma}{c}\right)T^4$$

donde $\sigma = 5.670373 \times 10^{-8} \ \mathrm{W \ m^{-2} \ K^{-4}}$ es la constante de Stefan-Boltzmann.

La entropía de la radiación

$$C_V = \left(\frac{\partial U}{\partial T}\right)_V = 4aVT^3$$

donde $a = (4\sigma/c)$ y U = uV. Entonces:

$$S = \int \frac{C_V dT}{T} = \frac{4}{3} aV T^3.$$

La entropía crece con el volúmen de la cavidad (cantidad extensiva).

La energía libre de Gibbs

$$G = uV - TS + PV = aVT^4 - \frac{4}{3}aVT^4 + \frac{1}{3}aVT^4 = 0$$

La energía libre está en su mínimo en equilibrio (T y P constante en el entorno), y dG = 0 para todo proceso espontáneo.

 La segunda ley permite creación y destrucción espontáneo de los fotones (absorción y emisión espontánea de las paredes de la cavidad).

Contenido

Conceptos en esta clase

Una banda elástica

Sistemas magnéticos

Radiación de un cuerpo negro

Cosmología

Agujeros negros

Resumer

Contenido del Universo

Contenido del Universo

En la cosmología representamos los componentes del Universo como **fluidos**:

- Radiación: gas (relativísta) de fotones.
- Materia oscura: fluido no relativista sin presión.
- Energía oscura: densidad de energía homogénea constante.

Modelamos el Universo como un volúmen esférico V que se expande. El volúmen de una esféra con radio a está dado por:

$$V = \frac{4\pi}{3}a^3$$

donde a = a(t) se llama el **factor de escala**.

La energía total dentro del volúmen está dada por $U=mc^2$, donde $m=\rho(t)V$. $\rho(t)$ es la densidad de la materia (fluido) en el Universo. Por lo tanto:

$$U = V\rho c^2 = \frac{4\pi}{3}a^3\rho c^2.$$

Tomando la derivada con respecto al tiempo, tenemos:

$$\frac{dU}{dt} = 4\pi a^2 \rho c^2 \frac{da}{dt} + \frac{4\pi}{3} a^3 \frac{d\rho}{dt} c^2$$

El cambio en el volúmen en el tiempo está dado por

$$\frac{dV}{dt} = 4\pi a^2 \frac{da}{dt}$$

Ahora usamos la ecuación central de la termodinámica:

$$dU + PdV = TdS \quad \Rightarrow \quad \frac{dU}{dt} + P\frac{dV}{dt} = T\frac{dS}{dt}$$

Supongamos que la expansión del Universo es adiabático (no hay un "entorno" fuera del Universo) y reversible: dS=0.

Tenemos:

$$\frac{dU}{dt} + P\frac{dV}{dt} = 0$$

que se puede escribir como

$$4\pi a^2 \rho c^2 \frac{da}{dt} + \frac{4\pi}{3} a^3 \frac{d\rho}{dt} c^2 + P4\pi a^2 \frac{da}{dt} = 0$$
$$\rho \frac{da}{dt} + \frac{1}{3} a \frac{d\rho}{dt} + \frac{P}{c^2} \frac{da}{dt} = 0$$
$$\dot{\rho} + 3 \frac{\dot{a}}{a} \left(\rho + \frac{P}{c^2} \right) = 0$$

Esta es la ecuación de conservación.

Las densidades de los fluidos que compuestan el Universo tienen que cumplir con la ecuación de conservación:

$$\dot{\rho} + 3\frac{\dot{a}}{a}\left(\rho + \frac{P}{c^2}\right) = 0$$

- Materia oscura: P = 0, $\rho \propto a^{-3}$.
- Radiación: $P = (1/3)\rho c^2$, $\rho \propto a^{-4}$.
- Energía oscura: $P=ho c^2$, $ho \propto$ una constante.

Contenido

Conceptos en esta clase

Una banda elástica

Sistemas magnéticos

Radiación de un cuerpo negro

Cosmología

Agujeros negros

Resumer

Agujeros negros

- Regiones del espacio-tiempo curvo donde la luz no puede escapar.
- Su existencia fue predicho por la teoría de la relatividad general.
- Observaciones con el EHT han confirmado directamente que existen.

Agujeros negros

Observaciones del EHT:

Agujeros negros

En los 60 y principios de los 70 los físicos encontraron similitudes entre las propiedades de los agujeros negros (según la teoría) y la termodinámica clásica. Formularon las 4 leyes de la termodinámica de los agujeros negros:

Ley cero:

La **gravedad de su superficie** κ toma un valor constante en todo el horizonte de eventos.

Otra forma de la ley cero de la termodinámica: la temperatura de un objeto es constante en equilibrio térmico. Entonces, para agujeros negros, $T \propto \kappa$.

Primera ley:

$$dM = \kappa dA/8\pi G + \Omega dJ$$

donde Ω es la rotación del agujero negro, J es el momentum angular, A es el área del horizonte de eventos, M es la masa. Entonces, $S \propto A$.

Segunda ley:

En cualquier proceso físico, el área del horizonte de eventos siempre aumenta.

Por ejemplo, en la colisión de 2 agujeros negros, el área A del horizonte de eventos del agujero negro resultante es **mayor** que la suma de los dos áreas originales.

- Las leyes de la dinámica de los agujeros negros parecen análogas a las leyes de la termodinámica clásica.
- En los 60 y principios de los 70 pensaron que no era nada más que algo análogo...
- ...pero en 1973 Hawking "descubrió" que los agujeros negros radian!
- Hoy en día el efecto se llama radiación de Hawking.

Entropía: el misterio de los agujeros negros

- Ahora sabemos que los agujeros negros son sistemas termodinámicos.
- Si tienen entropía, ¿como se puede identificar los microestados que corresponden a esta entropía?
- Además, tenemos S

 A, pero entropía es extensiva, debería ser proporcional al volúmen, no al área!

Entropía: el misterio de los agujeros negros

 Teoría de cuerdas: un agujero negro de hecho es un conjunto de muchas cuerdas fundamentales (se llama un fuzzball).

Entropía: el misterio de los agujeros negros

- Teoría de cuerdas: un agujero negro de hecho es un conjunto de muchas cuerdas fundamentales (se llama un fuzzball).
- La gravedad es holográfico: se puede describir los grados de libertad del sistema con una dimensión espacial menos.

Contenido

Conceptos en esta clase

Una banda elástica

Sistemas magnéticos

Radiación de un cuerpo negro

Cosmología

Agujeros negros

Resumen

Resumen

- Se puede aplicar la termodinámica a **cualquier** sistema físico con temperatura.
- Hemos visto:
 - Banda elástica
 - Sistema magnético
 - Radiación de un cuerpo negro
 - Cosmología
 - Agujeros negros