Ответы к РК2

Кирилл Киселев

Октябрь 2022

1 Теорема о непрерывности собственного интеграла, зависящего от параметра.

Теорема 1. О непрерывности собственного интеграла зависящего от параметра

Пусть функция f(x,y) определна на прямоугольнике $[a,b] \times [c,d]$ и непрерывна по совокупности переменных. Тогда интеграл, зависящий от параметра

$$I(y) = \int_{a}^{b} f(x, y) dx$$

является непрерывной функцией на отрезке [c,d]

2 Правило Лейбница для вычисления производной собственного интеграла, зависящего от параметра

Теорема 2. Правило Лейбница

Пусть f определена и непрерывна на прямоугольнике $[a,b] \times [c,d]$ и непрерывна по x на отрезке [a,b] при каждом фиксированном $y \in [c,d]$. Также потребуем, чтобы функция $f_y'(x,y)$ существовала и была непрерывной на всем прямоугольнике $[a,b] \times [c,d]$. Тогда

$$I(y) = \int_{a}^{b} f(x, y) dx$$

Является дифференцируемой функцией параметра y на всем отрезке [c,d]. И производная I'(y) может быть найдена по правилу Лейбница:

$$I'(y) = \int_{a}^{b} f_y'(x, y) dx$$

т.е. с помощью дифферования по параметру под знаком дифференциала.

3 Интегрирование по параметру собственного интеграла, зависящего от параметра.

Теорема 3. Об интегрировании собственного интеграла, зависящего от параметра

Пусть функция f(x,y) непрерывна по совокупности переменных на прямоугольнике $[a,b] \times [c,d]$. Тогда

$$\int_{c}^{d} dy \int_{a}^{b} f(x,y)dx = \int_{a}^{b} dx \int_{c}^{d} f(x,y)dy$$

4 Дифференцирование интеграла по параметру в случае, когда и пределы интегрирования зависит от параметра.

Рассмотрим вопрос о дифференцировании интеграла, зависящего от параметра в случае , когда пределы интегрирования зависят от зависят от параметра. Пусть функция f(x,y) непрерывна в точках прямоугольника $[a,b] \times [c,d]$, и пусть кривые $x = \alpha(y)$ и $x = \beta(y)$, $c \le y \le d$, целиком лежат в этом прямоугольнике. Рассмотрим интеграл $I(y) = \int_{\alpha(y)}^{\beta(y)} f(x,y) dx$ в виде

 $I(y,u,v)=\int\limits_u^v f(x,y)dx$, где $u=\alpha(y),v=\beta(y)$ Тогда по правилу дифференцирования сложной функции

$$\frac{d}{dy}I(y,u,v) = \frac{\partial I}{\partial y} + \frac{\partial I}{\partial u} * \frac{\partial u}{\partial y} + \frac{\partial I}{\partial v} * \frac{\partial v}{\partial y} = \int_{\alpha(y)}^{\beta(y)} f'_y(x,y)dx - f(\alpha(y),y)\alpha'(y) + f(\beta(y),y)\beta'(y).$$

Т.о. получим требуемую формулу

$$\frac{d}{dy} \int_{\alpha(y)}^{\beta(y)} f(x,y) dx = \int_{\alpha(y)}^{\beta(y)} f'_y(x,y) dx - f(\alpha(y),y) \alpha'(y) + f(\beta(y),y) \beta'(y).$$

5 Определение равномерной сходимости несобственного интеграла, зависящего от параметра.

Пусть функция f(x,y) определена при $x \ge a$ и $y \in Y$. Пусть при каждом фиксированном $y \in Y$ существует несобственный интеграл:

$$I(y) = \int_{a}^{\infty} f(x, y) dx$$

Это означает, что существует конечный предел $\lim_{A\to +\infty}\int\limits_a^A f(x,y)dx$. Если обозначить $F(y,A)=\int\limits_a^A f(x,y)dx$, то $\lim_{A\to +\infty}F(y,A)=\int\limits_a^\infty f(x,y)dx$. Если при $A\to +\infty$ функция F(y,A) стремится к своему пределу равномерно относительно y, то говорят, что несобственный интеграл $\int\limits_a^\infty f(x,y)dx$ сходится равномерно относительно $y\in Y$. Это означает, что

orall arepsilon>0 $\exists A_0=A_0(arepsilon)$ такое, что при любом $A\geq A_0$ и при любом $y\in Y$ выполняется неравенство $|\int\limits_a^\infty f(x,y)dx-\int\limits_a^A f(x,y)dx|=|\int\limits_A^\infty f(x,y)dx|<arepsilon$

6 Критерий Коши равномерной сходимости несобственного интеграла, зависящего от параметра.

Пусть функция f(x,y) определена при $x\geq a$ и $y\in Y$. Интеграл $I(y)=\int\limits_a^\infty f(x,y)dx$ сходится равномерно относительно $y\in Y$ тогда и только тогда, когда $\forall\ \varepsilon>0\ \exists A_0=A_0(\varepsilon), A_0\geq a$ такое, что для любых A_1 и A_2 , $A_1\geq A_0,\ A_2\geq A_0$ выполняется неравенство $|\int\limits_a^{A_1}f(x,y)dx-\int\limits_a^{A_2}f(x,y)dx|=|\int\limits_{A_1}^{A_2}f(x,y)dx|<\varepsilon$

7 Признак Вейерштрасса равномерной сходимости интеграла, зависящего от параметра.

Пусть функция f(x,y) определена при $x \geq a$ и $y \in Y$. Пусть также выполняется неравенство $|f(x,y)| \leq \varphi(x)(\varphi$ - мажоранта) для всех $y \in Y$. Тогда если интеграл $\int\limits_a^\infty \varphi(x)dx$ сходится, то интеграл $\int\limits_a^\infty f(x,y)dx$ сходится равномерно относительно $y \in Y$

8 Примеры равномерно и неравномерно сходящегося несобственного интеграла, зависящего от параметра.

Пример 1.

Проверим, что интеграл $\int\limits_0^\infty \frac{\cos(\alpha x)}{1+x^2} dx$ сходится равномерно относительно $\alpha \in \mathbb{R}$. Т.к. при всех $x \geq 0$ и при всех $\alpha \in \mathbb{R}$ выполняется неравенство $\left|\frac{\cos(\alpha x)}{1+x^2}\right| \leq \frac{1}{1+x^2}$, и интеграл $\int\limits_0^\infty \frac{1}{1+x^2}$ сходится, то исходный интеграл сходится равномерно относительно $\alpha \in \mathbb{R}$ по теореме Вейерштрасса.

Пример 2.

 $\int\limits_{0}^{\infty} \frac{\cos(\alpha x)}{1+\alpha^{2}x^{2}}, \ \alpha \in (0,+\infty).$ Пусть выполнен критерий Коши сходимости интеграла, зависящего от параметра. Тогда $\forall \ \varepsilon > 0 \ \exists A_{0} > 0$ такое, что если $A_{1} > A_{0}, \ A_{2} > A_{0}, \ \text{то} \ |\int\limits_{A_{1}}^{A_{2}} \frac{\cos(\alpha x)}{1+\alpha^{2}x^{2}} dx| < \varepsilon$ при любом $\alpha \in (0,+\infty)$.

Преобразуем последний интеграл: $\int\limits_{A_1}^{A_2} \frac{\cos(\alpha x)}{1+\alpha^2 x^2} dx = \text{(замена: } \alpha x = t\text{)} =$

 $\int\limits_{\alpha A_1}^{\alpha A_2} rac{1}{lpha} rac{\cos(t)}{1+t^2} dt$. Пусть $A_1=2\pi n,\ A_2=2\pi n+rac{\pi n}{4},\ lpha=rac{1}{n}$. Тогда имеем такое неравенство:

$$\left| n \int_{2\pi}^{2\pi + \frac{\pi}{4}} \frac{\cos t}{1 + t^2} dt \right| < \varepsilon$$

Так как на отрезке $[2\pi, 2\pi + \frac{\pi}{4}]$ выполняется неравенство $cos(t) \ge \frac{\sqrt{2}}{2}$, то написанное неравенство не выполняется при достаточно большом значении n(ни при каком ε). Равномерной сходимости нет.

9 Теорема о непрерывности несобственного интеграла, зависящего от параметра.

Теорема 4. О непрерывности несобсвтенного интеграла, зависящего от параметра

Пусть функция f(x,y) определена и непрерывна по совокупности переменных на множестве $[a,+\infty] \times [c,d]$. Пусть далее интеграл $\int\limits_a^\infty f(x,y) dx$ сходится равномерно относительно $y \in [c,d]$. Тогда этот интеграл является непрерывной функцией на отрезке [c,d]

10 Теорема об интегрировании несобственного интеграла, зависящего от параметра.

Пусть функция f(x,y) непрерывна по совокупности переменных, как функция двух переменных на множестве $[a,+\infty] \times [c,d]$. Тогда если интеграл $\int\limits_a^\infty f(x,y)dx$ сходится равномерно относительно $y\in [c,d]$, то выполняется равенство

$$\int_{0}^{d} dy \int_{0}^{+\infty} f(x,y) dx = \int_{0}^{+\infty} dx \int_{0}^{d} f(x,y) dy$$

11 Теорема о дифференцировании несобственного интеграла, зависящего от параметра.

Пусть на множестве $[a,+\infty] \times [c,d]$ непрерывны функции f(x,y) и $f_y'(x,y)$. Пусть, далее, $\int\limits_a^\infty f(x,y) dx$ сходится при каждом $y \in [c,d]$, а интеграл

 $\int\limits_a^\infty f_y'(x,y)dx$ сходится равномерно относительно $y\in [c,d].$ Тогда выполняется равенство

$$\frac{d}{dy} \int_{a}^{\infty} f(x,y)dx = \int_{a}^{\infty} f'_{y}(x,y)dx$$

Последнее равенство подразумевает и существование производной из левой части.

- 12 Бесконечномерное евклидово пространство и норма в таком пространстве.
- 13 Ортогональные и ортонормированные системы в бесконечномерном евклидовом пространстве.

Пусть E - евклидово пространство. Последовательность $\{\varphi_n\}_{n=1}^{\infty}$ не нулевых элементов E называется ортогональной системой, если $(\varphi_k, \varphi_l) = 0$ при $k \neq l$. Ортогональные системы могут существовать только в бесконечномерных пространствах. Ортогональная система называется ортогонормированной, если нормы всех векторов этой системы равны 1. Из ортогональной системы $\{\varphi_n\}_{n=1}^{\infty}$ нетрудно получить ортогонормированную, перейдя к системе $\{\frac{\varphi_n}{\|\varphi_n\|}\}_{n=1}^{\infty}$

14 Коэффициенты Фурье и ряд Фурье по ортогональной системе.

Пусть $f \subset E$, по аналогии с конечномерным случаем вычислим коэффициенты Фурье элемента f по ортогональной системе $\{\varphi_n\}_{n=1}^{\infty}$

$$c_n = \frac{(f, \varphi_n)}{\|\varphi_n\|^2}, \quad n = 1, 2, 3...$$

Составим ряд Фурье элемента f по указанной ортогональной системе:

$$f \sim c_1 \varphi_1 + c_2 \varphi_2 + \dots + c_n \varphi_n + \dots = \sum_{n=1}^{\infty} c_n \varphi_n$$

15 Теорема о минимальном свойстве коэффициентов Фурье.

Теорема 5. о минимальном свойстве коэффициентов Фурье.

Пусть E - евклидово пространство. Последовательность $\{\varphi_n\}_{n=1}^{\infty}$ - ортогональная система в этом пространстве, и пусть $f \in E$. Тогда минимальное значение величины $\|f - \sum_{n=1}^{\infty} \alpha_n \varphi_n\|$, где $\alpha_1, \alpha_2, ..., \alpha_n$ - произвольные вещественные числа, достигается при $\alpha_k = c_k$, где $c_k = \frac{(f,\varphi_n)}{\|\varphi_n\|^2}$ - коэффициенты Фурье элемента f по ортогональной системе $\{\varphi_n\}_{n=1}^{\infty}$

16 Замечание к теореме о минимальном свойстве коэффициентов Фурье.

Замечание

По ходу доказательства теоремы установлено такое равенство

$$||f - \sum_{k=1}^{n} c_k \varphi_k|| = ||f||^2 - \sum_{k=1}^{n} c_k^2 ||\varphi_k||^2$$

Здесь левая часть неорицательна, и, следовательно,

$$||f||^2 \ge \sum_{k=1}^n c_k^2 ||\varphi_k||^2$$

В последнем неравенстве можно перейти к пределу при $n \to \infty$; в результате получаем неравенство

$$||f||^2 \ge \sum_{k=1}^{\infty} c_k^2 ||\varphi_k||^2$$

, которое называется неравенством Бесселя.

Если $\forall f \in E$ выполняется равенство

$$||f||^2 = \sum_{k=1}^{\infty} c_k^2 ||\varphi_k||^2$$

, то соответствуящая ортогональная система называется замкнутой. При этом последнее равенство называется равенством Парсеваля.

Из равенства

$$||f - \sum_{k=1}^{n} c_k \varphi_k|| = ||f||^2 - \sum_{k=1}^{n} c_k^2 ||\varphi_k||^2$$

следует, что ряд Фурье любого элемента $f \in E$ сходится к f по норме пространства E тогда и только тогда, когда ортогональная система $\{\varphi_n\}_{n=1}^{\infty}$ является замкнутой.

17 Неравенство Бесселя и равенство Парсеваля.Замкнутость ортогональной системы.

Неравенство Бесселя.

$$||f||^2 \ge \sum_{k=1}^{\infty} c_k^2 ||\varphi_k||^2$$

Равенство Парсеваля

$$||f||^2 = \sum_{k=1}^{\infty} c_k^2 ||\varphi_k||^2$$

Если $\forall f \in E$ выполняется равенство

$$||f||^2 = \sum_{k=1}^{\infty} c_k^2 ||\varphi_k||^2$$

то соответствуящая ортогональная система называется замкнутой.

18 Замкнутость ортогональной системы и сходимость соответствующего ряда Фурье

Если $\forall f \in E$ выполняется равенство

$$||f||^2 = \sum_{k=1}^{\infty} c_k^2 ||\varphi_k||^2$$

, то соответствуящая ортогональная система называется замкнутой. При этом последнее равенство называется равенством Парсеваля.

Из равенства

$$||f - \sum_{k=1}^{n} c_k \varphi_k|| = ||f||^2 - \sum_{k=1}^{n} c_k^2 ||\varphi_k||^2$$

следует, что ряд Фурье любого элемента $f \in E$ сходится к f по норме пространства E тогда и только тогда, когда ортогональная система $\{\varphi_n\}_{n=1}^{\infty}$ является замкнутой.

19 Пространство непрерывных функций и скалярное произведение в этом пространстве.

Рассмотрим множество всех непрерывных функций на отрезке [a, b]. На этом множестве (которое очевидным образом превращается в линейное пространство) введем скалярное произведение по формуле

$$(f,g) = \int_{a}^{b} f(x)g(x)dx$$

При этом выполняются все аксиомы скалярного умножения

- 1. (f,g) = (g,f)
- 2. $(\alpha f, g) = \alpha(f, g)$
- 3. $(f_1 + f_2, q) = (f_1, q) + (f_2, q)$

4.
$$(f, f) \ge 0$$
, $(f, f) = 0 \Longrightarrow f = \overrightarrow{0}$

Полученное пространство обозначается $C_2[a,b]$

20 Тригонометрическая система на отрезке $[-\pi,\pi]$. Проверка ортогональности и вычисление норм.

Важнейшим примерос ортогональной системы в этос пространстве является тригонометрическая система:

$$\{1, \cos(\frac{2\pi nx}{b-a}), \sin(\frac{2\pi nx}{b-a})\}, n = 1, 2, 3, \dots$$

Подробнее разберем случай отрезка $[-\pi,\pi]$. Тригонометрическая система на этом отрезке имеет вид: 1, cos(x), sin(x), ..., cos(nx), sin(nx), ... Проверим ортогональность этой системы:

$$(1, \cos(nx)) = \int_{-\pi}^{\pi} \cos(nx) dx = \frac{\sin(nx)}{n} \Big|_{-\pi}^{\pi} = 0$$

$$(1, \sin(nx)) = \int_{-\pi}^{\pi} \sin(nx) dx = -\frac{\cos(nx)}{n} \Big|_{-\pi}^{\pi} = 0$$

$$(\cos(mx), \cos(nx)) = \int_{-\pi}^{\pi} \cos(mx)\cos(nx)dx = \frac{1}{2}\int_{-\pi}^{\pi} (\cos((m+n)x) + \cos((m-n)x))dx = \frac{1}{2}\int_{-\pi}^{\pi} \cos(mx)\cos(nx)dx$$

$$= \frac{1}{2} \left(\frac{\sin((m+n)x)}{m+n} + \frac{\sin((m-n)x)}{m-n} \right) \Big|_{-\pi}^{\pi} = 0, \ m \neq n, \ m, \ n = 1, 2, \dots$$

Аналогично можно проверить равенства $\int_{-\pi}^{\pi} cos(mx)sin(nx)dx = 0$, $\int_{-\pi}^{\pi} sin(mx)sin(nx)dx = 0$, в последнем интеграле $m \neq n, m, n = 1, 2, ...$ Вычислим нормы элементов тригонометрической системы :

$$||1||^2 = \int_{-\pi}^{\pi} 1 * 1 dx = 2\pi$$

$$\|\cos(nx)\|^2 = \int_{-\pi}^{\pi} \cos^2(nx) dx = \int_{-\pi}^{\pi} \frac{1 + \cos(2nx)}{2} dx = \frac{1}{2} \left(x + \frac{\sin(2nx)}{2n}\right) \Big|_{-\pi}^{\pi} = \pi$$
$$\|\sin(nx)\|^2 = \int_{-\pi}^{\pi} \sin^2(nx) dx = \dots = \pi$$

21 Равенство Парсеваля для тригонометрической системы на отрезке $[-\pi,\pi]$.

Равенство Парсеваля в случае отрезка $[-\pi,\pi]$ выглаядит так:

$$\frac{1}{\pi} \int_{-\pi}^{\pi} f^2(x) dx = \frac{a_0^2}{2} + \sum_{n=1}^{\infty} (a_n^2 + b_n^2)$$

22 Сходимость в среднем квадратичном для тригонометрического ряда; определение сходимости в среднем квадратичном для последовательности функций.

Сходимость последовательности функций $f_n(x)$, заданных на отрезке [a,b] к функции f(x) по норме пространства $C_2[a,b]$ означает, что

$$\lim_{n \to \infty} \int_{a}^{b} (f_n(x) - f(x))^2 dx = 0$$

Все функции предполагаются непрерывными. Такая сходимость называется сходимостью в среднем квадратичном.

Для тригонометрического радя Фурье она обозначает, что

$$\lim_{n \to \infty} \int_{-\pi}^{\pi} (f(x) - (\frac{a_0}{2} + \sum_{k=1}^{\infty} (a_k \cos(kx) + b_k \sin(kx)))^2 dx = 0$$

23 Условия Дирихле и теорема Дирихле.

Если функция одновременно кусочно непрерывнаи кусочно монотонна на некотором отрезке, то говорят, что на этом отрезке функция удовлетворяет условиям Дирихле.

Теорема 6. Дирихле

Пусть функция $f: [-\pi, \pi] \to \mathbb{R}$ кусочно непрерывна и кусочно монотонна на отрезке $[-\pi, \pi]$. Тогда ряд Фурье этой функции по тригонометрической системе сходится в каждой точке $x \in \mathbb{R}$, и его сумма S(x) является 2π периодической функцией.

Если
$$x\in (-\pi,\pi)$$
, то $S(x)=\frac{1}{2}(f(x-0)+f(x+0))$, где $f(x-0)=\lim_{t\to x-0}f(t)$, $f(x+0)=\lim_{t\to x+0}f(t)$; в частности, в точке x непрерывности функции f сумма ряда $S(x)=f(x)$. Далее, $S(-\pi)=S(\pi)=\frac{1}{2}(f(-\pi+0)-f(\pi-0))$

24 Применение теоремы Дирихле для изучения поведения неполных рядов Фурье.

Пусть, например, дана функция $f:[0,\pi]\to\mathbb{R}$, и этой функции поставлен в соответствие ряд Фурье по синусам:

$$f \sim \sum_{n=1}^{\infty} b_n sin(nx),$$
где $b_n = \frac{2}{\pi} \int\limits_0^{\pi} f(t) sin(nt) dt$

Продолжим функцию f(x) на полуинтервал $[-\pi,0)$, положив f(-x) = -f(x). Продолженную таким образом на веь отрезок $[-\pi,\pi]$ также будем обозначать f(x). Для функции f(x) ряд Фурье будет иметь такое же вид, как и для исходной функции, и применение теоремы Дирихле здесь возможно (если только продолженная функция удовлетворяет требованиям этой теоремы). То же самое верно и для разложения в неполный ряд по косинусам.

$$f \sim \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos(nx)$$
, где $a_n = \frac{2}{\pi} \int_0^{\pi} f(t) cos(nt) dt$

25 Тригонометрический ряд Фурье на отрезке

Если дана функция $f:[-l,l]\to \mathbb{R}$, где l>0, то мы можем рассмотреть тригонометрическую систему:

1,
$$cos(\frac{\pi x}{l})$$
, $sin(\frac{\pi x}{l})$,..., $cos(\frac{n\pi x}{l})$, $sin(n\frac{\pi x}{l})$,...,

которая ортогональна на отрезке [-l,l]. Ряд Фурье функции f по такой системе имеет вид:

$$f \sim rac{a_0}{2} + \sum_{n=1}^{\infty} a_n cos(rac{n\pi x}{l}) + sin(rac{n\pi x}{l})$$
, где $a_n = rac{1}{l} \int\limits_{-l}^{l} f(t) cos(rac{n\pi t}{l}) dt$ $b_n = rac{1}{l} \int\limits_{-l}^{l} f(t) sin(rac{n\pi t}{l}) dt$

Ортонормированная тригонометрическая система на отрезке [-l, l] такова:

$$\frac{1}{\sqrt{2l}}, \frac{1}{\sqrt{l}}cos(\frac{\pi x}{l}), \frac{1}{\sqrt{l}}sin(\frac{\pi x}{l}), \dots, \frac{1}{\sqrt{l}}cos(\frac{\pi x n}{l}), \frac{1}{\sqrt{l}}sin(\frac{\pi x n}{l}), \dots,$$