Problems in Elementary Inequality

Nguyễn Quản Bá Hồng*

Ngày 19 tháng 5 năm 2023

Tóm tắt nội dung

A problem set for elementary inequality.

Muc luc

1	Cauchy-Schwarz Inequality – Bất Đẳng Thức Cauchy-Schwarz	1
2	Miscellaneous	2
Tà	ài liêu	2

1 Cauchy-Schwarz Inequality – Bất Đẳng Thức Cauchy-Schwarz

The most basic inequality: $x^2 \ge 0$, $\forall x \in \mathbb{R}$. $x^2 = 0 \Leftrightarrow x = 0$. $x^2 > 0 \Leftrightarrow x \ne 0$.

Bài toán 1 (Bất đẳng thức Cauchy–Schwarz cho 2 số không âm). Chứng minh:

$$a+b \ge 2\sqrt{ab}, \ \forall a,b \in \mathbb{R}, \ a,b \ge 0.$$

Đẳng thức xảy ra khi nào?

Bài toán 2. Với m, n, p nào thì bất đẳng thức $ma + nb \ge p\sqrt{ab}$ luôn đúng: (a) $\forall a, b \in \mathbb{R}, \ a, b \ge 0$. (b) $\forall a, b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Bài toán 3 (Bất đẳng thức Cauchy-Schwarz cho 3 số không âm). Chứng minh:

$$a+b+c \geq 3\sqrt[3]{abc}, \ \forall a,b,c \in \mathbb{R}, \ a,b,c \geq 0.$$

Đẳng thức xảy ra khi nào?

Bài toán 4. Với m, n, p, q nào thì bất đẳng thức $ma + nb + pc \ge q\sqrt[3]{abc}$ luôn đúng: (a) $\forall a, b, c \in \mathbb{R}$, $a, b, c \ge 0$. (b) $\forall a, b, c \in \mathbb{R}$. Dẳng thức xảy ra khi nào?

Bài toán 5 (Bất đẳng thức Cauchy–Schwarz cho n số không âm). *Chứng minh:*

$$\sum_{i=1}^{n} a_{i} \geq n \sqrt[n]{\prod_{i=1}^{n} a_{i}}, i.e., a_{1} + a_{2} + \dots + a_{n} \geq \sqrt[n]{a_{1}a_{2} \cdots a_{n}}, \forall n \in \mathbb{N}^{*}, \forall a_{i} \in \mathbb{R}, a_{i} \geq 0, \forall i = 1, 2, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 6. Với bộ $(m, m_1, m_2, ..., m_n)$ nào thì bất đẳng thức:

$$\sum_{i=1}^{n} m_{i} a_{i} \geq m \sqrt[n]{\prod_{i=1}^{n} a_{i}}, i.e., m_{1} a_{1} + m_{2} a_{2} + \dots + m_{n} a_{n} \geq m \sqrt[n]{a_{1} a_{2} \cdots a_{n}}, \forall n \in \mathbb{N}^{*},$$

đúng với: (a) $\forall a_i \in \mathbb{R}, \ a_i \geq 0, \ \forall i = 1, 2, \dots, n.$ (b) $\forall a_i \in \mathbb{R}, \ \forall i = 1, 2, \dots, n.$ Đẳng thức xảy ra khi nào?

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

^{*}Independent Researcher, Ben Tre City, Vietnam

2 Miscellaneous

Bài toán 7 ([Sơn+21], Bổ đề 1.1, p. 5). Chứng minh: $4ab \le (a+b)^2 \le 2(a^2+b^2)$, hay có thể viết dưới dạng $\frac{a^2+b^2}{2} \ge \left(\frac{a+b}{2}\right)^2$, $ab \le \frac{(a+b)^2}{4}$, $\forall a,b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Bài toán 8 ([Sơn+21], Bổ đề 1.2, p. 5). Chứng minh: $3(ab+bc+ca) \le (a+b+c)^2 \le 3(a^2+b^2+c^2)$, hay có thể viết dưới dạng $ab+bc+ca \le \frac{1}{3}(a+b+c)^2$, $\forall a,b,c \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Bài toán 9 ([Sơn+21], Bổ đề 1.3, p. 6). Chứng minh: $\frac{1}{a} + \frac{1}{b} \ge \frac{4}{a+b}$, hay có thể viết dưới dạng $\frac{1}{a+b} \le \frac{1}{4} \left(\frac{1}{a} + \frac{1}{b} \right)$, $\forall a, b > 0$. Dằng thức xảy ra khi nào?

Bài toán 10 ([Sơn+21], Bổ đề 1.4, p. 6). Chứng minh: $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \ge \frac{9}{a+b+c}$, hay có thể viết dưới dạng $\frac{1}{a+b+c} \le \frac{1}{9} \left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c} \right)$, $\forall a, b, c > 0$. Đẳng thức xảy ra khi nào?

Bài toán 11 ([Son+21], Mở rộng Bổ đề 1.3–1.4, p. 6 cho n số). Chứng minh:

$$\frac{1}{a_1} + \ldots + \frac{1}{a_n} \ge \frac{n^2}{a_1 + \cdots + a_n}, \ i.e., \ \frac{1}{a_1 + \cdots + a_n} \le \frac{1}{n^2} \left(\frac{1}{a_1} + \cdots + \frac{1}{a_n} \right), \ \forall a_i > 0, \ \forall i = 1, \ldots, n,$$

hay có thể được viết gọn lại như sau:

$$\sum_{i=1}^{n} \frac{1}{a_i} \ge \frac{n^2}{\sum_{i=1}^{n} a_i}, i.e., \frac{1}{\sum_{i=1}^{n} a_i} \le \frac{1}{n^2} \sum_{i=1}^{n} \frac{1}{a_i}, \forall a_i > 0, \forall i = 1, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 12 ([Sơn+21], Bổ đề 1.5, p. 7). Chứng minh: $\sqrt{a+b} \le \sqrt{a} + \sqrt{b} \le \sqrt{2(a+b)}$, $\forall a,b \ge 0$. Dẳng thức xảy ra khi nào?

Bài toán 13 ([Sơn+21], Mở rộng Bổ đề 1.5, p. 7). Chứng minh: $\sqrt{a+b+c} \le \sqrt{a} + \sqrt{b} + \sqrt{c} \le \sqrt{3(a+b+c)}$, $\forall a,b,c \ge 0$. Dắng thức xảy ra khi nào?

Bài toán 14 ([Sơn+21], Mở rộng Bổ đề 1.5, p. 7 cho n số). Chứng minh: $\sqrt{a_1 + \cdots + a_n} \le \sqrt{a_1} + \cdots + \sqrt{a_n} \le \sqrt{n(a_1 + \cdots + a_n)}$, $\forall a_i \ge 0, \ \forall i = 1, \dots, n, \ hay \ có \ thể \ dược viết gọn lại như sau:$

$$\sqrt{\sum_{i=1}^{n} a_i} \le \sum_{i=1}^{n} \sqrt{a_i} \le \sqrt{n \sum_{i=1}^{n} a_i}, \ \forall a_i \ge 0, \ \forall i = 1, \dots, n.$$

Đẳng thức xảy ra khi nào?

Bài toán 15 ([Sơn+21], Bổ đề 1.6, p. 7). Chứng minh: $a^3 + b^3 \ge ab(a+b)$, $\forall a,b \in \mathbb{R}$, $a+b \ge 0$. Đẳng thức xảy ra khi nào? Bài toán 16 ([Sơn+21], Mở rộng Bổ đề 1.6, p. 7). Chứng minh: $a^4 + b^4 \ge ab(a^2 + b^2)$, $\forall a,b \in \mathbb{R}$. Đẳng thức xảy ra khi nào?

Tài liệu

[Sơn+21] Nguyễn Ngọc Sơn, Chu Đình Nghiệp, Lê Hải Trung, and Võ Quốc Bá Cẩn. *Các Chủ Đề Bất Đẳng Thức Ôn Thi Vào Lớp 10*. Tái bản lần thứ 3. Nhà Xuất Bản Đại Học Quốc Gia Hà Nội, 2021, p. 143.