Series de Tiempo

(Fecha: 04/11/2024)

Tarea #4
Estudiante: Luciano Andres Juárez López

Problema 1

En el artículo escrito por Gonzalo y Granger (1995), se describe cómo realizar la descomposición P-T (permanente y transitoria), donde los componentes son considerados como I(1) e I(0), respectivamente. En particular, el componente permanente P_t representa la tendencia de largo plazo (no estacionaria), mientras que el componente transitorio T_t captura las fluctuaciones temporales (estacionarias).

Dicho modelo se presenta de la forma:

$$X_t = P_t + T_t$$

El artículo propone la siguiente descomposición de X_t :

$$X_t = A_1 \gamma_{\perp}' X_t + A_2 \alpha' X_t$$

donde:

$$A_1 = \alpha_{\perp} \left(\gamma_{\perp}' \alpha_{\perp} \right)^{-1}$$

$$A_2 = \gamma \left(\alpha' \gamma\right)^{-1}$$

Para realizar esta descomposición, es necesario estimar las matrices $\gamma, \gamma_{\perp}, \alpha_{\perp}, \alpha$, que capturan las relaciones de cointegración y sus complementos ortogonales.

La estimación de α se determina mediante una regresión de rango reducido, resolviendo el siguiente problema de eigenvalores:

$$|\lambda S_{11} - S_{10} S_{00}^{-1} S_{01}| = 0$$

Esto produce los eigenvalores $\hat{\lambda}_1 > \cdots > \hat{\lambda}_p$ y los eigenvectores $\hat{V} = (\hat{v}_1, \dots, \hat{v}_p)$, de modo que:

$$\hat{\alpha} = (\hat{v}_1, \dots, \hat{v}_r)$$

donde r es el rango de cointegración. Con esta estimación de α , se puede obtener la estimación de γ usando la siguiente fórmula:

$$\hat{\gamma} = S_{01}\hat{\alpha}$$

Para obtener el complemento ortogonal de α , consideramos que la matriz α es de dimensión $N \times N$ pero de rango r < N. Los $r + 1, \ldots, N$ eigenvectores, $\hat{W} = (\hat{w}_1, \ldots, \hat{w}_p)$, obtenidos de la descomposición en valores propios de la matriz $\hat{\alpha}\hat{\alpha}'$, generan α_{\perp} como sigue:

$$\alpha_{\perp} = (\hat{w}_{r+1}, \dots, \hat{w}_p)$$

La estimación de γ_{\perp} se obtiene resolviendo la siguiente ecuación:

$$|\lambda S_{00} - S_{01} S_{11}^{-1} S_{10}| = 0$$

Esto produce eigenvalores $\hat{\lambda}_1 > \cdots > \hat{\lambda}_p$ y eigenvectores $\hat{M} = (\hat{m}_1, \dots, \hat{m}_p)$, normalizados tal que $\hat{M}'S_{00}\hat{M} = I$. La selección de $\hat{\gamma}_{\perp}$ es ahora igual a $(\hat{m}_{r+1}, \dots, \hat{m}_p)$.

Implementación en R

Para obtener estas estimaciones en R, usamos la función ca.jo de la librería vars. En dicha función se resuelve $|\lambda S_{11} - S_{10}S_{00}^{-1}S_{01}| = 0$ de la siguiente manera:

```
valeigen <- eigen(Cinv %*% SKO %*% SOOinv %*% SOK %*% t(Cinv))
lambda <- valeigen$values
e <- valeigen$vector
V <- t(Cinv) %*% e
```

Por lo que para obtener $\hat{\alpha}, \alpha_{\perp}, \hat{\gamma}$, realizamos lo siguiente:

```
r <- arrsel - 1
alfa <- V[, c(1:r)]
gamma <- SOK %*% alfa
matriz_alfa <- alfa %*% t(alfa)
eivec_matriz_alfa <- eigen(matriz_alfa)$vector
alfa_co <- eivec_matriz_alfa[, c((r+1):ncol(eivec_matriz_alfa))]</pre>
```

Por lo que ahora, solo debemos de resolver la ecuación $|\lambda S_{00} - S_{01}S_{11}^{-1}S_{10}| = 0$, nos basamos en lo que ya estaba en la función ca.jo, obteniendo lo siguiente:

```
Ctemp_g <- chol(S00, pivot = TRUE)

pivot_g <- attr(Ctemp_g, "pivot")

oo_g <- order(pivot_g)

C_g <- t(Ctemp_g[, oo_g])

Cinv_g <- solve(C_g)

SKKinv <- solve(SKK)

valeigen_g <- eigen(Cinv_g %*% SOK %*% SKKinv %*% SKO %*% t(Cinv_g))

lambda_g <- valeigen_g$values

e_g <- valeigen_g$vectors

M <- t(Cinv_g) %*% e_g
```

De esta forma generamos γ_{\perp} , por lo que ya podriamos obtener el valor de A_1 y A_2 :

```
gamma_co <- M[, c((r+1):ncol(M))]
###-Obtenemos las matrices A1 y A2, para la descomposicion P-T-###

A1 <- alfa_co %*% solve( t(gamma_co) %*% alfa_co )
A2 <- gamma %*% solve( t(alfa) %*% gamma )

P_d <- x %*% ( A1 %*% t(gamma_co) )
T_d <- x %*% ( A2 %*% t(alfa) )</pre>
```

De esta manera ya hemos realizado la descomposición P-T.

Simulación de Series de Tiempo y Descomposición P-T

Se simularon tres series de tiempo Y_1 , Y_2 y Y_3 con un factor común, lo que establece un rango de cointegración r=1. Esto implica la existencia dos relaciones de cointegración, las cuales ya conocemos.

Figura 1: Series de tiempo simuladas

Utilizando las series de tiempo simuladas, se aplicó la descomposición P-T (Permanente-Transitoria) a cada una de ellas, lo que permitió obtener los componentes de largo plazo (Permanente) y los componentes transitorios (Transitoria). Los resultados de esta descomposición se presentan en la siguiente figura:

Cada gráfico contiene tres líneas de diferentes colores que representan: X es la serie de tiempo observada o total. P es el componente permanente de la serie, que representa la tendencia de largo plazo. y ell componente transitorio, que representa las fluctuaciones de corto plazo alrededor de la tendencia.

En cada serie, X muestra la trayectoria completa de la serie de tiempo original. La línea azul P representa el componente permanente, que muestra una tendencia más suave y persistente en el tiempo. Mientras T representa el componente transitorio, con fluctuaciones más volátiles alrededor de la serie total.

Conclusión

La metodología de descomposición P-T (Permanente-Transitoria) aplicada a estas series simuladas, permitio identificar de manera efectiva las tendencias comunes y separar los efectos permanentes de los transitorios en sistemas cointegrados, facilitando el análisis de sistemas con memoria larga.