Controllable text generation with small data using auxiliary in-domain enrichment

Беляев Станислав Научный руководитель: Брыксин Тимофей

Санкт-Петербургский Академический Университет stasbelyaev96@gmail.com

23 марта 2018

Введение

Обзор

"If a typical person can do a mental task with less than one second of thought, we can probably automate it using AI either now or in the near future."

Andrew Ng, 2017

Машины умеют:

- Различать формы и объекты
- Имитировать стиль изображений
- Отвечать на простые вопросы

Машины НЕ умеют:

- Хорошо подражать высшей нервной деятельности
- Понимать и обощать сложные категории
 - Этика (юмор, мораль, норма, ...)
 - Эстетика (книги, картины, ...)

Введение

Постановка задачи

МООС платформам нужна генерация контента:

- Дешево
- Быстро
- Ультимативная защита от списывания

Особенности:

- Generic характер генерации
- Примеров готового контента мало
- Набор текстовых свойств для единицы контента (курс, тема, тэги, сложность, ...)

Задача: По набору свойств $f = \{f_i \in F\}$ сгенерировать новые примеры текстовых данных из генеральной совокупности X, соответствующих f. Возьмем в качестве X условия задачек по программированию.

Введение

Данные в DL

"Data is the New Oil."

- Andrew Ng, 2017

Введение

Проблема данных

Если мы не знаем паттерна для генерации и хотим уметь обощать, то будем использовать DL и больше данных (Mikolov et al., 2010).

Но что делать, есть данных мало?

- Мы не сможем обобщать
- Мы скорее всего переобучимся
- При генерации новые сэмплы будут слишком похожи на старые

 $\underline{\text{Решение}}$: Искать похожие $X_{ ext{aux}} \sim X$ in-domain данные из смежных областей.

Данные

Условия задачек

Данные Stackoverflow

Данные Docstring

Данные

$$X_{\text{data}} = X_1 \cup X_2 \cup X_3$$

Условия задачек

- **HackerRank**
- $|X_1 \in X| = 5k$
- Тэги (f) уже проставлены
- Собран вручную, но будет готовый

Stackoverflow

- Берем вопросы с тэгом python
- $|X_2 \in X_{aux}| = 600 \text{k}$
- Тэги уже проставлены
- Предобработка

Docstring

def tem_factions, "Wedst"
"Write a between to mode to goods to greated. If an, a see table
If the table curren, the between will be appended. If an, a see table
if the table curren, the between will be appended. If an, a see table
if the table current is an interest to the properties, by
the table current is a sharest two order.

The state of the between table current is the bedween
point "seat"

Docsettings

Scouttings

Scouttings

Docsettings

- Return a copy of the string S converted to lowercase.

 Type: builtin_function_or_method
- $\bullet |X_3 \in X_{aux}| = 150k$
- Тэги = Entities
- Предобработка

Введение

Изображения vs текст

Изображения

$$f: R^2 -> R^M$$

- Непрерывное пространство
- Набор всевозможных преобразований как дифференцируемых функций
- Понятно, куда распространять градиент

Текст

... an efficient method for learning high quality distributed vector ...

- Дискретное пространство
- Переменная длинна
- Нет устойчивости к шуму
- Long-term зависимости
- Омонимия и контекст

Введение

Генерация текста

(Mikolov et al., 2011)

(Bowman et al., 2016; Hu et al., 2018)

(Yu et al., 2017; Fedus et al., 2018)

RNN

Обзор и применение

Обзор и применение

TODO: Написать

13 / 21

GAN

Обзор и применение

Оценивание

Метрики

Как можно оценить результат генерации? (Salimans et al., 16)

- Perplexity
- Assessors evaluation
 - MTurk, Я.Толока
 - DCG, MAP
- Самому
 - Generic-генерация
 - Генерация по заданным темам

Оценивание

Определение perplexity

 $X_{ ext{train}}, X_{ ext{test}}$ - разбили датасет $X_{ ext{data}} \subset X \cup X_{ ext{aux}}.$

Есть языковая модель M, обученная на $X_{\rm train}$. Как оценить эффективность? Посчитаем вероятность предложений $W \in X_{\rm test}$.

Perplexity

$$PP(W) = P(w_1 w_2 w_3 \dots w_{|W|})^{-\frac{1}{|W|}}$$

Chain rule

$$PP(W) = \left[\prod_{i=1}^{|W|} \frac{1}{P(w_i|w_1...w_{i-1})}\right]^{\frac{1}{|W|}}$$

- Нижний терм в произведении \Leftrightarrow очередной шаг алгоритма
- ullet Чем меньше perplexity, тем больше P(W), т.е. тем лучше
- ullet Отдельно посчитаем для $X_{ ext{test}}\cap X$ (это реально важная метрика)

Оценивание

Таблица perplexity

Test	RNN	VAE	CVAE	GAN
PTB	38.93	NaN	NaN	39.12
CMC	29.10	NaN	NaN	29.09
$X_{ ext{test}}$ $X_{ ext{test}} \cap X$	30.29	NaN	NaN	NaN
	40.10	NaN	NaN	NaN

Таблица: Perplexity

Оценивание

Примеры

RNN (20 эпох)

```
generate_text(60, seed=['user', 'server'], beam=5) # prefix = 'user, server | '
'Takes a user and service the service connection to server to'
```

Выводы

Результаты

- Анализ state-of-the-art методов генерации текста
 - Модификации для наших данных
 - Сравнение подходов
- Анализ влияние данных на генерацию
 - Какого влияние X_{aux} на генерацию?
 - Как соотносятся X и $X_{\rm aux}$ в терминах латентных представлений?
- Метрики и эмпирические проверки, позволяющие оценить сложность задачи

Выводы

Будущая работа

- Попытаться проинтерпретировать важной свойств
 - Seed для RNN
 - ullet Латентное подпростванство для $X_{ ext{test}} \cap X$ из VAE
- Больше данных ⇒ выделить паттерн для генерации?
- Попробовать GAN'ы
 - WC-GAN
 - SeqGAN
 - GumbelSoftmax
- Генерировать код по условию задачи

Ссылки

Статьи, код и контакты

- Antonio Valerio Miceli Barone (2017)
 A parallel corpus of Python functions and documentation strings for automated code documentation and code generation
- Warpathy, Andrej (2015). "The Unreasonable Effectiveness of Recurrent Neural Networks".
- Samuel R. Bowman (2016)
 Generating Sentences from a Continuous Space
- Zhiting Hu (2018)
 Toward Controlled Generation of Text
- Heng Wang (2017) Text Generation Based on Generative Adversarial Nets with Latent Variable
- https://github.com/stasbel/task-gen (Генерация)
- https://github.com/stasbel/bachelor-thesis (Презентация)
- https://t.me/stasbel