

11-24-05

553, 706

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

**(19) World Intellectual Property Organization
International Bureau**

**(43) International Publication Date
28 October 2004 (28.10.2004)**

PCT

(10) International Publication Number
WO 2004/092408 A2

(51) International Patent Classification⁷: C12Q 1/68

[CA/CAL] 6688 Jean-Paul L'epage, L-1, Q-6, V-7

(21) International Application Number:

535 (CA). UBALLJORO, Eliane [CA/CA]; 175 rue Leech, Les Cedres, Québec J7T 1K3 (CA).

(22) International Filing Date: 19 April 2004 (19.04.2004)

Ottawa, Ontario K1P 5P9 (CA).

(25) Filing Language: English

Designated States (unless otherwise indicated, for every kind of action, the State in which the action is taken)

(26) Publication Language: English

AI, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN,
CO, CR, CU, CT, DE, DK,

(30) Priority Data:

GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE,
KG, KR, LT, LV

(71) Applicant (for all designated States except US):

MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM

RESEARCH INC. [CACA], 3885 Industriel Blvd., Laval, Québec H7L 4S3 (CA).

Dominant States and ZW.

(72) Inventors; and
(75) Inventors/Applicants (*for US only*); PLANTE, Daniel

*D*esignated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TE, UC, TUN).

[Continued on next page]

(54) Title: POLYNUCLEOTIDES FOR THE DETECTION OF *SALMONELLA* SPECIES

		20	*	40	*	60	*	80
1. <i>B. halodur</i>		GTGACGCTTAAACGCCAATTTAATCCTGACACAGTCAGGCGCTGGACGACCATAAGCTGCGAC		TGACCC-TCCTTGCCGACAACT				
2. <i>B. subtil</i>		GTCGACCTCTTFFAACGCAACATTGTTGGACGCGGCTGGAGCTATGAGTCGATFACCGCGCTCGGAT		-GGGGAA-AGAACGCACTGAA				80
3. <i>C. acetob</i>		CTAACTTGGTAACGAAATTAAATTAATGGGGGCAATGATTAATAGGAGAACGCTGGTATAAATGGCA		-GGGGAA-AGAACGCACTGAA				80
4. <i>E. coli</i>		CGTCGACCAACCTTAAGATTCAGATCAGGAGCTGGTGZCATCGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
5. <i>E. coli</i>		CGTCGACCAACCTTAAGATTCAGATCAGGAGCTGGTGZCATCGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
6. <i>E. coli</i>		CGTCGACCAACCTTAAGATTCAGATCAGGAGCTGGTGZCATCGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
7. <i>E. coli</i>		CGTCGACCAACCTTAAGATTCAGATCAGGAGCTGGTGZCATCGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
8. <i>L. innoc</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
9. <i>L. innoc</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
10. <i>L. mon</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
11. <i>L. mon</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
12. <i>M. lepr</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
13. <i>M. lepr</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
14. <i>P. aerob</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
15. <i>S. typhi</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
16. <i>S. typhi</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
17. <i>S. enter</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
18. <i>S. enter</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
19. <i>S. typh</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
20. <i>S. typh</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
21. <i>S. typhi</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
22. <i>S. aureus</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
23. <i>S. aureus</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
24. <i>S. pneu</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
25. <i>Y. pseud</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
26. <i>Y. pesti</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
27. <i>Y. pesti</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80
28. <i>Y. pseud</i>		GTCGACCGTTCGTCGATTTAAATGGGGGAAAGCTGGGTTGATGAGZGACGTCGATGAGCGAAAGATCCAA		-GGGGAA-AGAACGCACTGAA				80

	100	120	140	160
1. <i>S. halodru</i>	AGCTTAAGACCCAAAGCTTGTATTTTGATGACCTGTCACCTGAAATGCGGACTCCGAGTGCAGTGATGAAACAC			
2. <i>B. subtilis</i>	AAGCGGAAAAGACGGAAACCTGATTGTTGCTCCGTATGAGCTGCTTCCAAAATGGCCAGGAACTGAGAAGGAGCGAGCAGC			160
3. <i>C. acetob</i>	AATTTGAAAGG2GAAGATAATTTGATTTGATGAAATATGAGCAAAATGCTGCTTCAAGGCTTCAAGGAAATGCTGCTTCAAGGCTTCAAGGAA			160
4. <i>E. coli</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
5. <i>B. coli</i>	TCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
6. <i>B. coli</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
7. <i>B. coli</i>	TCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
8. <i>L. innoc</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
9. <i>L. innoc</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
10. <i>L. sono</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
11. <i>L. sono</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
12. <i>M. lisp</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
13. <i>H. tubo</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
14. <i>G. aerurg</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
15. <i>S. typhi</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
16. <i>S. typhi</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
17. <i>S. enter</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
18. <i>S. enter</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
19. <i>S. typh</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
20. <i>S. typh</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
21. <i>S. typhi</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
22. <i>S. aureus</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
23. <i>S. aureus</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
24. <i>S. pnu</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
25. <i>X. pseud</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
26. <i>X. pesti</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
27. <i>X. pesti</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160
28. <i>X. pseud</i>	TCCTCAAGAACATTAACCCGGATAATGCCATTGCTGCTTCAAGGCTTCAAGGAACTGCGCTTCAAGGCTTCAAGGAA			160

(57) Abstract: Polynucleotide primers and probes for the amplification and detection of *Salmonella* species in samples are provided. The primers and probes can be used in real time diagnostic assays for rapid detection of one or more *Salmonella* species in a variety of situations. Kits comprising the primers and probes are also provided.

Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

- *without international search report and to be republished upon receipt of that report*