Sample

April 22, 2021

```
[1]: import pandas as pd
  import matplotlib.pyplot as plt
  import re
  import numpy as np
  from matplotlib import gridspec
  import matplotlib
```

1 Helper functions

These are borrowed from the Convert.ipynb file.

```
[2]: headings = ['Building Identifier',
                  'Country',
                   'City',
                   'Quality / Stage of Data',
                   'Construction Date',
                   'Building Type',
                   'Gross Floor Area']
[3]: df = pd.read_excel('../Dataset/dataset.xlsx',header=1).drop('Unnamed: 0',axis=1)
[4]: df
[4]:
         Building Identifier Country City Quality / Stage of Data
     0
                            1
                                   CA
                                       TOR
                                                               OOIFC
     1
                            2
                                   CA
                                       TOR
                                                               OOIFC
     2
                                       TOR
                            3
                                   CA
                                                               OOIFC
     3
                            4
                                   CA
                                       TOR
                                                               OOIFC
     4
                            5
                                   CA
                                       TOR
                                                               00IFC
     5
                            6
                                   CA
                                       TOR
                                                               OOIFC
     6
                            7
                                   CA
                                       TOR
                                                               00IFC
     7
                            8
                                   CA
                                       TOR
                                                               OOIFC
                                       TOR
     8
                            9
                                   CA
                                                               OOIFC
     9
                                       TOR
                           10
                                   CA
                                                               OOIFC
                                       TOR
     10
                           11
                                   CA
                                                               00IFC
     11
                           12
                                   CA
                                       TOR
                                                               00IFC
     12
                           13
                                   CA
                                       TOR
                                                               OOIFC
```

13	14	CA	TOR	OOIFC
14	15	CA	TOR	OOIFC
15	16	CA	TOR	OOIFC
16	17	CA	TOR	OOIFC
17	18	CA	TOR	OOIFC
18	19	CA	TOR	OOIFC
19	20	CA	TOR	OOIFC
20	21	CA	TOR	OOIFC
21	22	CA	TOR	OOIFC
22	23	CA	TOR	OOIFC
23	24	CA	TOR	OOIFC
24	25	CA	TOR	OOIFC
25	26	CA	TOR	OOIFC
26	27	CA	WIN	OOIFC
27	28	CA	TOR	OOIFC
28	29	CA	TOR	OOIFC
29	30	CA	TOR	OOIFC
30	31	CA	TOR	OOIFC
31	32	CA	TOR	OOIFC
32	33	CA	TOR	OOIFC
33	34	CA	TOR	OOIFC
34	35	CA	TOR	OOIFC
35	36	CA	TOR	OOIFC
36	37	CA	TOR	OOIFC
37	38	CA	TOR	OOIFC
38	39	CA	TOR	OOIFC
39	40	US	NEW	OOIFC
40	41	CA	TOR	OOIFC
41	42	CA	TOR	OOIFC
42	43	CA	TOR	OOIFC
43	44	CA	TOR	OOIFC
44	45	CA	TOR	OOIFC
45	46	CA	TOR	OOIFC
46	47	CA	TOR	OOIFC
47	48	CA	RIC	OIARC
48	49	CA	TOR	OOIFC
49	50	CA	TOR	OOIFC
50	51	CA	TOR	OOIFC
51	52	CA	TOR	OOIFC
52	53	CA	TOR	OOIFC
53	54	CA	TOR	OOIFC
54	55	CA	TOR	OOIFC
55	56	CA	TOR	OOIFC
56	57	CA	TOR	OOIFC
57	58	CA	TOR	OOIFC
58	59	CA	TOR	OIFBP
59	60	CA	TOR	OIFBP

	Construction	Date	Building	Туре	Gross	Floor Area	١
0		2021		SND		521.18	
1		2021		SND		389.24	
2		2021		SND		411.64	
3		2021		SND		269.56	
4		2011		OFF		11248.00	
5		2011		APB		11317.00	
6		2021		SND		445.99	
7		2021		SND		438.45	
8		2021		SND		714.07	
9		2021		SND		343.24	
10		2009		OFF		73083.00	
11		1917		SMD		199.93	
12		2021		SND		226.89	
13		2021		SND		611.73	
14		2021		SND		343.44	
15		2021		SND		613.38	
16		1969		SND		413.72	
17		1969		SND		333.49	
18		2021		SND		178.38	
19		2021		SND		323.80	
20		2020		SND		837.56	
21		2021		SND		587.86	
22		2021		SND		568.21	
23		2021		SMD		234.73	
24		2021		SND		294.84	
25		2021		SND		496.77	
26		2007		OFF		73600.00	
27		2021		SND		643.30	
28		2021		SND		701.61	
29		2021		SMD		257.75	
30		2021		SND		378.70	
31		2021		SND		324.16	
32		2020		SND		533.53	
33		2020		SMD		254.05	
34		2021		SND		423.03	
35		2021		SND		328.16	
36		2021		SND		421.59	
37		2020		SND		628.59	
38		2021		SND		464.51	
39		2017		EDU		8983.00	
40		2021		SND		346.14	
41		1913		SND		161.08	
42		2021		SND		891.97	
43		2021		SND		525.61	
44		2021		SND		502.87	

45 46 47 48 49 50 51 52	2021 SND 2021 SND 2016 EDU 2020 SND 2021 SND 1988 INS 2018 APB 2018 MIX	379.18 549.65 6819.00 393.82 648.14 21934.00 53146.02 33975.25
53	2017 APB	69784.00
54 55	2017 APB 2016 APB	39409.04 53871.00
56	2010 AT B 2020 LNW	137.23
57	2020 LNW	144.92
58	2019 LNW	83.10
59	2021 LNW	234.79
0	000_G2010.20.000_03 00 00.00_kg_1	000_B1010.20.000_03 00 00.00_kg_1 \
2	NaN NaN	NaN NaN
3 4	NaN 13704.0	NaN 1.776816e+06
5	NaN	1.514400e+06
6	NaN	NaN
7	NaN	NaN
8	NaN	NaN
9	NaN	NaN
10	58008.0	4.029264e+06
11 12	NaN NaN	NaN NaN
13	NaN	NaN
14	NaN	NaN
15	NaN	NaN
16	NaN	NaN
17	NaN	NaN
18	NaN	NaN
19	NaN Na N	NaN NaN
20 21	NaN NaN	NaN NaN
22	NaN	NaN
23	NaN	NaN
24	NaN	NaN
25	NaN	NaN
26	NaN	4.480680e+06
27	NaN	NaN
28	NaN	NaN
29	NaN	NaN

30	NaN		NaN	
31	NaN		NaN	
32	NaN		NaN	
33	NaN		NaN	
34	NaN		NaN	
35	NaN		NaN	
36	NaN		NaN	
37	NaN		NaN	
38	NaN		NaN	
39	NaN		2.191431e+04	
40	NaN		NaN	
41	NaN		NaN	
42	NaN		NaN	
43	NaN		NaN	
44	NaN		NaN	
45				
	NaN		NaN	
46	NaN		NaN	
47	NaN		3.756000e+04	
48	NaN		NaN	
49	NaN		NaN	
50	NaN		NaN	
51	NaN		NaN	
52	NaN		NaN	
53	NaN		NaN	
54	NaN		NaN	
55	NaN		NaN	
56	NaN		NaN	
57	NaN		NaN	
58	NaN		NaN	
59	NaN		NaN	
				,
	000_C1010.10.000_04 22 00.00_kg_1	•••	000_B2010.10.000_07 46 16.00_kg_2	\
0	NaN	•••	NaN	
1	NaN	•••	NaN	
2	NaN	•••	NaN	
3	NaN	•••	NaN	
4	19397.560000	•••	NaN	
5	53877.650000	•••	NaN	
6	NaN	•••	NaN	
7	NaN		NaN	
8	NaN		NaN	
9		•••		
	NaN	•••	NaN Na N	
10	562574.500000	•••	NaN	
11	NaN	•••	NaN	
12	NaN	•••	NaN	
13	NaN	•••	NaN	
14	NaN	•••	NaN	

15	NaN	•••	NaN
16	NaN	•••	NaN
17	NaN	•••	NaN
18	NaN	•••	NaN
19	NaN	•••	NaN
20	NaN	•••	NaN
21	NaN	•••	NaN
22	NaN	•••	NaN
23	NaN	•••	NaN
24	NaN	•••	NaN
25	NaN	•••	NaN
26	354208.227500	•••	NaN
27	NaN	•••	NaN
28	NaN	•••	NaN
29	NaN	•••	NaN
30	NaN	•••	NaN
31	NaN	•••	NaN
32	NaN	•••	NaN
33	NaN	•••	NaN
34	NaN	•••	NaN
35	NaN	•••	NaN
36	NaN	•••	NaN
37	NaN	•••	NaN
38	NaN	•••	NaN
39	8666.292723	•••	NaN
40	NaN	•••	NaN
41	NaN	•••	NaN
42	NaN	•••	NaN
43	NaN	•••	NaN
44	NaN	•••	NaN
45	NaN	•••	NaN
46	NaN	•••	NaN
47	NaN	•••	NaN
48	NaN	•••	NaN
49	NaN	•••	NaN
50	NaN	•••	NaN
51	8194.250000	•••	NaN
52	191988.905000	•••	NaN
53	82694.400000	•••	NaN
54	46298.790000	•••	NaN
55	422839.793489	•••	NaN
56	NaN	•••	NaN
57	NaN	•••	NaN
58	NaN	•••	NaN
59	NaN	•••	67.3

 $001_B2010.80.000_07\ 27\ 00.00_kg_2\ 001_B2010.80.000_07\ 21\ 13.00_kg_2\ \backslash$

0	NaN	${\tt NaN}$
1	NaN	NaN
2	NaN	NaN
3	NaN	NaN
4	NaN	NaN
5	NaN	NaN
6	NaN	NaN
7	NaN	NaN
8	NaN	NaN
9	NaN	NaN
10	NaN	NaN
11	NaN	NaN
12	NaN	NaN
13	NaN	NaN
14	NaN	NaN
15	NaN	NaN
16	NaN	
		NaN
17	NaN	NaN
18	NaN	NaN
19	NaN	NaN
20	NaN	NaN
21	NaN	NaN
22	NaN	NaN
23	NaN	NaN
24	NaN	NaN
25	NaN	NaN
26	NaN	NaN
27	NaN	NaN
28	NaN	NaN
29	NaN	NaN
30	NaN	NaN
31	NaN	NaN
32	NaN	NaN
33	NaN	NaN
34	NaN	NaN
35	NaN	NaN
36	NaN	NaN
37	NaN	NaN
38	NaN	NaN
39	NaN	NaN
40	NaN	NaN
41	NaN	NaN
42	NaN	NaN
43	NaN	NaN
44	NaN	NaN
45	NaN	NaN
46	NaN	NaN

47	NaN	NaN	
48	NaN	NaN	
49	NaN	NaN	
50	NaN	NaN	
51	NaN	NaN	
52	NaN	NaN	
53	NaN	NaN	
54	NaN	NaN	
55	NaN	NaN	
56	NaN	NaN	
57	NaN	NaN	
58	NaN	NaN	
59	37.3	112.67	
	001_B2010.10.000_09 24 23.00_kg_2	OB1_A5020.10.000_06 11 00.00_kg_2 \	
0	NaN	NaN	
1	NaN	NaN	
2	NaN	NaN	
3	NaN	NaN	
4	NaN	NaN	
5	NaN	NaN	
6	NaN	NaN	
7			
	NaN Nan	NaN Nan	
8	NaN	NaN	
9	NaN	NaN	
10	NaN	NaN	
11	NaN	NaN	
12	NaN	NaN	
13	NaN	NaN	
14	NaN	NaN	
15	NaN	NaN	
16	NaN	NaN	
17	NaN	NaN	
18	NaN	NaN	
19	NaN	NaN	
20	NaN	NaN	
21	NaN	NaN	
22	NaN	NaN	
23	NaN	NaN	
24	NaN	NaN	
25	NaN	NaN	
26	NaN	NaN	
27	NaN	NaN	
28	NaN	NaN	
29	NaN	NaN	
30	NaN	NaN	
31	NaN	NaN	

32		
	NaN	NaN
33	NaN	NaN
34	NaN	NaN
35	NaN	NaN
36	NaN	NaN
37	NaN	NaN
38	NaN	NaN
39	NaN	NaN
40	NaN	NaN
41	NaN	NaN
42	NaN	NaN
43	NaN	NaN
44	NaN	NaN
45	NaN	NaN
46	NaN	NaN
47	NaN	NaN
48	NaN	NaN
49	NaN	NaN
50	NaN	NaN
51	NaN	NaN
52	NaN	NaN
53	NaN	NaN
54	NaN	NaN
55	NaN	NaN
56	NaN	NaN
57	NaN	NaN
	nan	
58		
58 59	NaN	NaN
58 59		
	NaN 2655.54	NaN 277.59
59	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \
59 0	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1 NaN	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \ NaN
59 0 1	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1 NaN NaN	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \ NaN NaN NaN
59 0 1 2	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1 NaN NaN NaN	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \ NaN NaN NaN NaN NaN
59 0 1 2 3	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \ NaN NaN NaN NaN NaN NaN NaN
59 0 1 2 3 4	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1 NaN NaN NaN	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \ NaN NaN NaN NaN NaN
59 0 1 2 3	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \ NaN NaN NaN NaN NaN NaN NaN
59 0 1 2 3 4	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \ NaN
59 0 1 2 3 4 5	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 \ NaN
59 0 1 2 3 4 5 6	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1
59 0 1 2 3 4 5 6 7 8	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1
59 0 1 2 3 4 5 6 7 8 9	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1
59 0 1 2 3 4 5 6 7 8 9 10	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na
59 0 1 2 3 4 5 6 7 8 9 10 11	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na
59 0 1 2 3 4 5 6 7 8 9 10 11 12	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na
59 0 1 2 3 4 5 6 7 8 9 10 11 12 13	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na
59 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1
59 0 1 2 3 4 5 6 7 8 9 10 11 12 13	NaN 2655.54 OB1_A5020.10.000_06 11 00.00_kg_1	NaN 277.59 OB1_A5020.10.000_09 21 16.00_kg_1 NaN NaN NaN NaN NaN NaN NaN NaN NaN Na

17	NaN	NaN	
18	NaN	NaN	
19	NaN	NaN	
20	NaN	NaN	
21	NaN	NaN	
22	NaN	NaN	
23	NaN	NaN	
24	NaN	NaN	
25	NaN	NaN	
26	NaN	NaN	
27	NaN	NaN	
28	NaN	NaN	
29	NaN	NaN	
30	NaN	NaN	
31	NaN	NaN	
32	NaN	NaN	
33	NaN	NaN	
34	NaN	NaN	
35	NaN	NaN	
36	NaN	NaN	
37	NaN	NaN	
38	NaN	NaN	
39	NaN	NaN	
40	NaN	NaN	
41	NaN	NaN	
42	NaN	NaN	
43	NaN	NaN	
44	NaN	NaN	
45	NaN	NaN	
46	NaN	NaN	
47	NaN	NaN	
48	NaN	NaN	
49	NaN	NaN	
50	NaN	NaN	
51	NaN	NaN	
52	NaN	NaN	
53	NaN	NaN	
54	NaN	NaN	
55	NaN	NaN	
56	NaN	NaN	
57	NaN	NaN	
58	NaN	NaN	
59	889.66	854.98	
55	003.00	004.90	
	000_C1010.10.000_07 21 13.00_kg_1	00R_B3010.90.000_07 21 13.00_kg_1	\
0	NaN	NaN	`
1	NaN	NaN	
-	nan	Ivaiv	

2	NaN	NaN
3	NaN	NaN
4	NaN	NaN
5	NaN	NaN
6	NaN	NaN
7	NaN	NaN
8	NaN	NaN
9	NaN	NaN
10	NaN	NaN
11	NaN	NaN
12	NaN	NaN
13	NaN	NaN
14	NaN	NaN
15	NaN	NaN
16	NaN	NaN
17	NaN	NaN
18	NaN	NaN
19	NaN	NaN
20	NaN	NaN
21	NaN	NaN
22	NaN	NaN
23	NaN	NaN
24	NaN	NaN
25	NaN	NaN
26	NaN	NaN
27	NaN	NaN
28	NaN	NaN
29	NaN	NaN
30	NaN	NaN
31	NaN	NaN
32	NaN	NaN
33	NaN	NaN
34	NaN	NaN
35	NaN	NaN
36	NaN	NaN
37	NaN	NaN
38	NaN	NaN
39	NaN	NaN
40	NaN	NaN
41	NaN	NaN
42	NaN	NaN
43	NaN	NaN
44	NaN	NaN
45	NaN	NaN
46	NaN	NaN
47	NaN	NaN
48	NaN	NaN

49	NaN	NaN
50	NaN	NaN
51	NaN	NaN
52	NaN	NaN
53	NaN	NaN
54	NaN	NaN
55	NaN	NaN
56	NaN	NaN
57	NaN	NaN
58	NaN	NaN
59	127.47	420.29
	00R_B1020.20.000_07 51 13.00_kg_1	
0	NaN	
1	NaN	
2	NaN	
3	NaN	
4	NaN	
5	NaN	
6	NaN	
7	NaN	
8	NaN	
9	NaN	
10	Nan Nan	
11	Nan Nan	
12	NaN	
13	Nan Nan	
14	Nan Nan	
15 16	NaN NaN	
16		
17	NaN Na N	
18	NaN	
19	NaN Na N	
20	NaN Na N	
21	NaN Na N	
22	NaN	
23	NaN	
24	NaN	
25	NaN	
26	NaN	
27	NaN Na N	
28	NaN	
29	NaN	
30	NaN	
31	NaN	
32	NaN	
33	NaN	

```
34
                                        NaN
     35
                                        NaN
     36
                                        NaN
     37
                                        NaN
     38
                                        NaN
     39
                                        NaN
     40
                                        NaN
     41
                                        NaN
     42
                                        NaN
     43
                                        NaN
     44
                                        NaN
     45
                                        NaN
     46
                                        NaN
     47
                                        NaN
     48
                                        NaN
     49
                                        NaN
     50
                                        NaN
     51
                                        NaN
     52
                                        NaN
     53
                                        NaN
     54
                                        NaN
     55
                                        NaN
     56
                                        NaN
     57
                                        NaN
     58
                                        NaN
     59
                                     315.22
     [60 rows x 2090 columns]
[5]: name_conversion = pd.read_csv('name_conversion.csv')
     building_name_conversion = pd.read_csv('building_type_name_conversion.csv')
[6]: building_name_map = {k['Building Code']:k['Building Type'] for _,k in_
      →building_name_conversion.iterrows()}
[7]: name_map = {k.Code:k.Category for _,k in name_conversion.iterrows()}
[8]: additional_categories_map = {v:k for k,v in {
         'Continuous Footings':'OCF',
         'Foundation Walls':'OFW',
         'Spread Footings':'OSF',
         'Column Piers':'OCP',
         'Columns Supporting Floors':'CSF',
         'Floor Girders and Beams': 'FGB',
         'Floor Trusses':'OFT',
         'Floor Joists':'OFJ',
         'Columns Supporting Roofs': 'CSR',
```

```
'Roof Girders and Beams': 'RGB',
    'Roof Trusses':'ORT',
    'Roof Joists':'ORJ',
    'Parking Bumpers':'OPB',
    'Precast Concrete Stair Treads': 'PCS',
    'Roof Curbs':'ORC',
    'Exterior Wall Construction': 'EWC',
    'Composite Decking':'CPD',
    'Cast-in-Place concrete':'CIC',
    'Floor Structural Frame': 'FSF',
    'Associated Metal Fabrications': 'AMF',
    'Floor Construction Supplementary Components': 'FCS',
    'Roof Construction Supplementary Components':'RCS',
    'Residential Elevators':'ORE',
    'Vegetated Low-Slope Roofing':'VLR',
    'Swimming Pools':'SWP',
    'Excavation Soil Anchors': 'ESA',
    'Floor Trusses':'FTS',
    'Roof Window and Skylight Performance': 'RWS',
    'Rainwater Storage Tanks':'RST',
    'Gray Water Tanks': 'GWT'}.items()
}
additional_categories_map['OFT'] = 'Floor Trusses'
```

2 1. Plot sample figures

Here we plot building material mass, and volume histograms.

```
[9]: plt.hist(df[[c for c in df.columns if 'kg' in c]].sum(axis=1));
    plt.title('Histogram of total building material mass')
    plt.xlabel('Kilogrammes')
    plt.ylabel('Count');
```

[9]: Text(0, 0.5, 'Count')

3 2. Investigate a specific material

In this example, we select only columns that match the MasterFormat code for Structural Concrete. Then, we aggregate based on Level 2 UniFormat code.

```
[10]: cols = [d for d in df.columns if '03 31 00' in d]
[11]: f = lambda x: re.split('[_\.\]',x)[1][0:3]
      concrete_df = pd.concat([df[headings],df[cols].groupby(f,axis=1).sum()],axis=1).
       →rename(columns=name_map)
[12]:
      concrete_df
[12]:
          Building Identifier Country City Quality / Stage of Data \
      0
                                    CA
                                        TOR
                                                                OOIFC
      1
                             2
                                    CA
                                        TOR
                                                                OOIFC
                             3
      2
                                    CA
                                        TOR
                                                                OOIFC
      3
                             4
                                    CA
                                        TOR
                                                                OOIFC
      4
                             5
                                    CA
                                        TOR
                                                                OOIFC
      5
                             6
                                        TOR
                                                                OOIFC
                                    CA
      6
                             7
                                    CA
                                        TOR
                                                                OOIFC
      7
                                        TOR
                             8
                                    CA
                                                                OOIFC
                             9
                                    CA
                                        TOR
                                                                OOIFC
```

9	10	CA	TOR	OOIFC
10	11	CA	TOR	OOIFC
11	12	CA	TOR	OOIFC
12	13	CA	TOR	OOIFC
13	14	CA	TOR	OOIFC
14	15	CA	TOR	OOIFC
15	16	CA	TOR	OOIFC
16	17	CA	TOR	OOIFC
17	18	CA	TOR	OOIFC
18	19	CA	TOR	OOIFC
19	20	CA	TOR	OOIFC
20	21	CA	TOR	OOIFC
21	22	CA	TOR	OOIFC
22	23	CA	TOR	OOIFC
23	24	CA	TOR	OOIFC
24	25	CA	TOR	OOIFC
25	26	CA	TOR	OOIFC
26	27	CA	WIN	OOIFC
27	28	CA	TOR	OOIFC
28	29	CA	TOR	OOIFC
29	30	CA	TOR	OOIFC
30	31	CA	TOR	OOIFC
31	32	CA	TOR	OOIFC
32	33	CA	TOR	OOIFC
33	34	CA	TOR	00IFC
34	35	CA	TOR	00IFC
35	36	CA	TOR	00IFC
36	37	CA	TOR	OOIFC
37	38	CA	TOR	OOIFC
38	39	CA	TOR	00IFC
39	40	US	NEW	OOIFC
40	41	CA	TOR	OOIFC
41	42	CA	TOR	OOIFC
42	43	CA	TOR	OOIFC
43	44	CA	TOR	OOIFC
44	45	CA	TOR	OOIFC
45	46	CA	TOR	00IFC
46	47	CA	TOR	00IFC
47	48	CA	RIC	OIARC
48	49	CA	TOR	OOIFC
49	50	CA	TOR	OOIFC
50	51	CA	TOR	OOIFC
51	52	CA	TOR	OOIFC
52	53	CA	TOR	00IFC
53	54	CA	TOR	00IFC
54	55	CA	TOR	OOIFC
55	56	CA	TOR	OOIFC

56 57 58 59		57 CA 58 CA 59 CA 60 CA	TOR TOR			00IFC 00IFC 0IFBP 0IFBP	
0 1 2 3 4 5 6 7 8 9 10 11	Construction Date 2021 2021 2021 2021 2021 2011 2011 2021 2021 2021 2021 2021 2021 2020 2020 2020		SND SND SND OFF APB SND	Gross	Floor Area 521.18 389.24 411.64 269.56 11248.00 11317.00 445.99 438.45 714.07 343.24 73083.00 199.93 226.89	Foundations 1.709236e+05 1.082862e+05 1.909299e+05 6.736923e+04 0.000000e+00 1.295202e+05 1.174431e+05 1.927680e+05 9.564723e+04 0.000000e+00 9.927316e+04 5.835472e+04	\
13 14 15 16 17 18	2021 2021 2021 1969 1969 2021		SND SND SND SND SND SND		611.73 343.44 613.38 413.72 333.49 178.38	2.061282e+05 1.436814e+05 1.789777e+05 9.293583e+04 1.186380e+05 6.408230e+04	
19 20 21 22 23	2021 2020 2021 2021 2021		SND SND SND SND SMD		323.80 837.56 587.86 568.21 234.73	4.733438e+04 2.605656e+05 2.455371e+05 1.415184e+05 8.560216e+04	
242526272829	2021 2021 2007 2021 2021 2021		SND SND OFF SND SND SMD		294.84 496.77 73600.00 643.30 701.61 257.75	7.580863e+04 1.205336e+05 0.000000e+00 9.718853e+04 1.810933e+05 8.183304e+04	
30 31 32 33 34 35	2021 2021 2020 2020 2021 2021		SND SND SND SMD SND SND		378.70 324.16 533.53 254.05 423.03 328.16	1.477228e+05 1.188635e+05 1.627046e+05 8.882102e+04 9.980270e+04 1.238544e+05	
36 37 38 39 40	2021 2020 2021 2017 2021		SND SND SND EDU SND		421.59 628.59 464.51 8983.00 346.14	1.760423e+05 2.298828e+05 1.886381e+05 0.000000e+00 9.748630e+04	

41		1913	SND	161.08	5.362299e+04
42		2021	SND	891.97	2.157609e+05
43		2021	SND	525.61	2.567725e+05
44		2021	SND	502.87	1.372402e+05
45		2021	SND	379.18	1.437386e+05
46					
		2021	SND	549.65	1.435894e+05
47		2016	EDU	6819.00	0.000000e+00
48		2020	SND	393.82	7.294707e+04
49		2021	SND	648.14	2.216331e+05
50		1988	INS	21934.00	0.000000e+00
51		2018	APB	53146.02	1.115822e+07
52		2018	MIX	33975.25	4.220040e+06
53		2017	APB	69784.00	7.912944e+06
54		2017	APB	39409.04	9.350736e+06
55		2016	APB	53871.00	1.627512e+06
56		2020	LNW	137.23	3.111394e+04
57		2020	LNW	144.92	3.241172e+04
58		2019	LNW	83.10	3.347723e+04
59		2021	LNW	234.79	8.400714e+04
					0.100.110.01
	Subarada	Enclosures	Slabs-On-Grade	Substructure	Interior \
^	pubgrade			Dubbulactare	•
0		0.0	6.721219e+04		0.0
1		0.0	3.576043e+04		0.0
2		0.0	3.246461e+04		0.0
3		0.0	1.595211e+04		0.0
4		0.0	0.000000e+00		0.0
5		0.0	0.000000e+00		0.0
6		0.0	3.521918e+04		0.0
7		0.0	4.289057e+04		0.0
8		0.0	8.446873e+04		0.0
9		0.0	2.033114e+04		0.0
10		0.0	0.000000e+00		0.0
11		0.0	1.971760e+04		0.0
12		0.0	1.435987e+04		0.0
13		0.0	1.4339076+04		0.0
		0.0	4.140039e+04		0.0
		0.0	4.140039e+04		0.0
14		0.0	4.140039e+04 2.246836e+04		0.0
14 15		0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04		0.0 0.0 0.0
14 15 16		0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04		0.0 0.0 0.0 0.0
14 15 16 17		0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04		0.0 0.0 0.0 0.0 0.0
14 15 16 17 18		0.0 0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04		0.0 0.0 0.0 0.0 0.0
14 15 16 17		0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04		0.0 0.0 0.0 0.0 0.0
14 15 16 17 18		0.0 0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04		0.0 0.0 0.0 0.0 0.0
14 15 16 17 18 19		0.0 0.0 0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04		0.0 0.0 0.0 0.0 0.0 0.0
14 15 16 17 18 19 20 21		0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04 6.344851e+04 6.865710e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 15 16 17 18 19 20 21 22		0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04 6.344851e+04 6.684690e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 15 16 17 18 19 20 21 22 23		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04 6.344851e+04 6.865710e+04 1.294360e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 15 16 17 18 19 20 21 22		0.0 0.0 0.0 0.0 0.0 0.0 0.0	4.140039e+04 2.246836e+04 4.219445e+04 3.376814e+04 2.622366e+04 2.343862e+04 2.368485e+04 6.344851e+04 6.684690e+04		0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

26	0.0	0.00000e	+00	0.0
27	0.0	5.230228e	+04	0.0
28	0.0	6.233222e	+04	0.0
29	0.0	1.211886e	+04	0.0
30	0.0	3.514722e	+04	0.0
31	0.0	2.011968e	+04	0.0
32	0.0	3.674638e	+04	0.0
33	0.0	1.160387e	+04	0.0
34	0.0	3.329286e	+04	0.0
35	0.0	1.931159e	+04	0.0
36	0.0	3.304437e	+04	0.0
37	0.0	5.528816e	+04	0.0
38	0.0	2.866777e	+04	0.0
39	0.0	0.00000e	+00	0.0
40	0.0	2.237098e	+04	0.0
41	0.0	1.235658e	+04	0.0
42	0.0	5.949332e	+04	0.0
43	0.0	3.378685e	+04	0.0
44	0.0	3.951047e		0.0
45	0.0	2.913799e		0.0
46	0.0	3.506390e		0.0
47	0.0	0.00000e		0.0
48	0.0	3.364275e		0.0
49	0.0	6.099032e		0.0
50	0.0	0.000000e		0.0
51	2728008.0	3.647520e		11033448.0
52	1705680.0	3.834720e		5400288.0
53	3246168.0	1.407000e		14052000.0
54	3567720.0	9.045840e		7607280.0
55 56	3438168.0	7.174800e		22907184.0
56	0.0	1.439848e		0.0
57 50	0.0	2.000253e		0.0
58 50	0.0	5.412759e+ 1.962799e+		0.0
59	0.0	1.9627996	FU4	0.0
	Substructure Related A	Activities	Superstructure	\
0	Substitution netated is	0.0	1.938810e+03	`
1		0.0	1.397610e+03	
2		0.0	1.528710e+02	
3		0.0	1.212090e+01	
4		0.0	0.000000e+00	
5		0.0	0.000000e+00	
6		0.0	5.332590e+02	
7		0.0	1.970790e+03	
8		0.0	4.049670e+03	
9		0.0	9.440170e+02	
10		0.0	0.000000e+00	

11	0.0	0.000000e+00
12	0.0	9.785830e+02
13	0.0	5.381500e+02
14	0.0	0.000000e+00
15	0.0	0.000000e+00
16	0.0	0.000000e+00
17	0.0	7.514840e+03
18	0.0	0.000000e+00
19	0.0	2.111800e+03
20	0.0	3.270810e+03
21	0.0	2.533580e+03
22	0.0	6.016340e+02
23		1.827610e+03
	0.0	
24	0.0	5.977480e+02
25	0.0	2.540900e+03
26	0.0	0.000000e+00
27	0.0	7.189470e+02
28	0.0	2.276420e+02
29	0.0	1.587900e+03
30	0.0	1.096510e+04
31	0.0	5.530400e+03
32	0.0	1.360980e+03
33	0.0	2.177290e+03
34	0.0	6.524310e+02
35	0.0	3.944150e+03
36	0.0	4.401230e+02
37	0.0	8.518740e+02
38	0.0	2.593160e+03
39	0.0	0.000000e+00
40	0.0	2.360810e+02
41	0.0	0.000000e+00
42	0.0	8.599660e+02
43	0.0	1.038810e+03
44	0.0	4.881840e+02
45	0.0	1.267510e+03
46	0.0	1.154890e+03
47	0.0	0.000000e+00
48	0.0	1.835120e+02
49	0.0	1.041320e+03
50	0.0	0.000000e+00
51	133464.0	2.780006e+07
52	112872.0	2.226535e+07
53	169896.0	3.204622e+07
54	276264.0	1.483577e+07
55	93048.0	3.239134e+07
56	0.0	0.000000e+00
57	0.0	0.000000e+00
٠.	5.0	1.300000.00

58 59				.0		00000e+00 00000e+00		
	Exterior	Vertical	Enclosures	Exte	rior	Horizontal	Enclosures	\
0			0.0				0.0	·
1			0.0				0.0	
2			0.0				0.0	
3			0.0				0.0	
4			0.0				0.0	
5			0.0				0.0	
6			0.0				0.0	
7			0.0				0.0	
8			0.0				0.0	
9			0.0				0.0	
10			0.0				0.0	
11			0.0				0.0	
12			0.0				0.0	
13			0.0				0.0	
14			0.0				0.0	
15 16			0.0				0.0	
17			0.0				0.0	
18			0.0				0.0	
19			0.0				0.0	
20			0.0				0.0	
21			0.0				0.0	
22			0.0				0.0	
23			0.0				0.0	
24			0.0				0.0	
25			0.0				0.0	
26			0.0				0.0	
27			0.0				0.0	
28			0.0				0.0	
29			0.0				0.0	
30			0.0				0.0	
31			0.0				0.0	
32			0.0				0.0	
33			0.0				0.0	
34			0.0				0.0	
35 36			0.0				0.0	
36 37			0.0				0.0	
38			0.0				0.0	
39			0.0				0.0	
40			0.0				0.0	
41			0.0				0.0	
42			0.0				0.0	

43		0.0			0.0		
44			0.0		0.0		
45			0.0		0.0		
46			0.0		0.0		
47			0.0		0.0		
48			0.0		0.0		
49			0.0		0.0		
50			0.0		0.0		
51		72	7896.0		537984.0		
52		40	5408.0		392400.0		
53		32	8032.0		799872.0		
54		11	9088.0		0.0		
55		15	9336.0		0.0		
56			0.0		0.0		
57			0.0		0.0		
58			0.0		0.0		
59			0.0		0.0		
	Interior	Construction		Plumbing	-	\	
0		0.0	0.0	0.0	0.0		
1		0.0	0.0	0.0	0.0		
2		0.0	0.0	0.0	0.0		
3		0.0	0.0	0.0	0.0		
4		0.0	0.0	0.0	0.0		
5		0.0	0.0	0.0	0.0		
6		0.0	0.0	0.0	0.0		
7		0.0	0.0	0.0	0.0		
8 9		11307.2	0.0	0.0	0.0		
		0.0	0.0	0.0	0.0		
10 11		0.0	0.0	0.0	0.0		
12		0.0	0.0	0.0	0.0		
13		0.0	0.0	0.0	0.0		
14		0.0	0.0	0.0	0.0		
15		0.0	0.0	0.0	0.0		
16		0.0	0.0	0.0	0.0		
17		0.0	0.0	0.0	0.0		
18		0.0	0.0	0.0	0.0		
19		0.0	0.0	0.0	0.0		
20		0.0	0.0	0.0	0.0		
21		0.0	0.0	0.0	0.0		
22		0.0	0.0	0.0	0.0		
23		0.0	0.0	0.0	0.0		
24		0.0	0.0	0.0	0.0		
25		0.0	0.0	0.0	0.0		
26		0.0	0.0	0.0	0.0		
27		0.0	0.0	0.0	0.0		
				0.0	0.0		

28	0.0	0.0	0.0	0.0
29	0.0	0.0	0.0	0.0
30	0.0	0.0	0.0	0.0
31	0.0	0.0	0.0	0.0
32	0.0	0.0	0.0	0.0
33	0.0	0.0	0.0	0.0
34	0.0	0.0	0.0	0.0
35	0.0	0.0	0.0	0.0
36	0.0	0.0	0.0	0.0
37	0.0	0.0	0.0	0.0
38	0.0	0.0	0.0	0.0
39	0.0	0.0	0.0	0.0
40	0.0	0.0	0.0	0.0
41	0.0	0.0	0.0	0.0
42	0.0	0.0	0.0	0.0
43	0.0	0.0	0.0	0.0
44	0.0	0.0	0.0	0.0
45	0.0	0.0	0.0	0.0
46	0.0	0.0	0.0	0.0
47	0.0	0.0	0.0	0.0
48	0.0	0.0	0.0	0.0
49	0.0	0.0	0.0	0.0
50	0.0	0.0	0.0	0.0
51	6816696.0	2494560.0	0.0	80592.0
52	5893176.0	1829328.0	48816.0	62280.0
53	9050592.0	2304480.0	172032.0	0.0
54	5180976.0	861888.0	130152.0	0.0
55	5604960.0	1664448.0	0.0	220992.0
56	0.0	0.0	0.0	0.0
57	0.0	0.0	0.0	0.0
58	0.0	0.0	0.0	0.0
59	0.0	0.0	0.0	0.0

Site Improvements

	1
0	0.0
1	0.0
2	0.0
3	0.0
4	0.0
5	0.0
6	0.0
7	0.0
8	0.0
9	0.0
10	0.0
11	0.0
12	0.0

13	0.0
14 15	0.0
16	0.0
17	0.0
18 19	0.0
20	0.0
21	0.0
22 23	0.0
24	0.0
25 26	0.0
27	0.0
28	0.0
29 30	0.0
31	0.0
32	0.0
33 34	0.0
35	0.0
36	0.0
37 38	0.0
39	0.0
40 41	0.0
42	0.0
43	0.0
44 45	0.0
46	0.0
47	0.0
48 49	0.0
50	0.0
51	0.0
52 53	0.0 18384.0
54	97560.0
55 56	0.0
57	0.0
58	0.0
59	0.0

[13]: Text(0.5, 0, 'Floor Code')

Now, we will aggregate to Level 3 MasterFormat codes, and display these values for the first three entries.

```
[14]: f = lambda x: name_map[re.split('[_\.\]',x)[1][0:3]] #This function takes in a_
       \rightarrow full column name and returns only the Level 3 MasterFormat code.
      concrete_df = df[cols].groupby(f,axis=1).sum()
```

```
[15]: concrete_df.mean().sort_values(ascending=False)
```

```
[15]: Superstructure
                                         2.156826e+06
      Substructure Interior
                                         1.016670e+06
      Foundations
                                         6.750260e+05
                                         5.426285e+05
      Interior Construction
      Subgrade Enclosures
                                         2.447624e+05
      Conveying
                                         1.525784e+05
      Slabs-On-Grade
                                         9.043012e+04
     Exterior Vertical Enclosures
                                         2.899600e+04
     Exterior Horizontal Enclosures
                                         2.883760e+04
     Substructure Related Activities
                                         1.309240e+04
     Special Construction
                                         6.064400e+03
     Plumbing
                                         5.850000e+03
     Site Improvements
                                         1.932400e+03
      dtype: float64
```

3.1 Pie chart version A: on-pie chart labels for all > 1%

```
[16]: def my_autopct(pct):
          return ('%.2f' % pct) if pct > 1 else ''
      to plot = concrete df.mean().sort values(ascending=False)
      to_plot.plot.pie(figsize=(12,12),colormap='tab20',autopct=my_autopct,labels=[ku
      →if v > 30000 else '' for k,v in to_plot.items()])
      plt.ylabel('')
      plt.title('Percentage of total steel used in each function');
      # plt.legend(loc='center left',bbox_to_anchor=(-0.20, 0.75));
      plt.tight_layout();
```


3.2 Pie version B: external legend with slice labels

```
[17]: fig = plt.figure(figsize=(16,12))
    gs = gridspec.GridSpec(2, 2, width_ratios=[3, 1])
    ax0 = plt.subplot(gs[:,0])

def my_autopct(pct):
        return ('%.2f' % pct) if pct > 1 else ''
    to_plot = concrete_df.mean().sort_values(ascending=False)
    to_plot.plot.pie(ax=ax0,colormap='tab20',autopct=my_autopct,labeldistance=None)
    plt.ylabel('')
    plt.legend(loc='center left',bbox_to_anchor=(-0.20, 0.75));
    plt.tight_layout();

ax1 = plt.subplot(gs[0,1])
```

```
f = lambda x: \
   additional_categories_map[re.split('[_\.\]',x)[3]] \
   re.split('[_\.\]',x)[3] != '000' \
   else \
   name_map['.'.join(re.split('[_\.\]',x)[1:3])]
superstructure_df = df[[c for c in cols if 'B10' in c]].groupby(f,axis=1).sum()
to_plot = superstructure_df.mean().sort_values(ascending=False)
def my autopct(pct):
   return ('%.2f' % ((pct * 0.4335))) if pct > 1 else ''
to_plot.plot.pie(ax=ax1,colormap='Paired',autopct=my_autopct,labeldistance=None)
plt.ylabel('')
plt.legend(loc='center right',bbox_to_anchor=(1, -0.65));
plt.tight_layout();
transFigure = fig.transFigure.inverted()
coord1a = transFigure.transform(ax0.transData.transform([1,0]))
coord2a = transFigure.transform(ax1.transData.transform([0,-0.72]))
coord1b = transFigure.transform(ax0.transData.transform([-0.91,0.35]))
coord2b = transFigure.transform(ax1.transData.transform([0,0.72]))
linea = matplotlib.lines.Line2D((coord1a[0],coord2a[0]),(coord1a[1],coord2a[1]),
                               transform=fig.transFigure,c='black',alpha=0.7)
lineb = matplotlib.lines.Line2D((coord1b[0],coord2b[0]),(coord1b[1],coord2b[1]),
                                transform=fig.transFigure,c='black',alpha=0.7)
fig.lines = linea,lineb,
plt.savefig('concrete_breakdown_pie.pdf')
```


We can produce a pie chart for a single building, also.

5

```
[18]: mf_codes = pd.read_csv('mf_name_conversion.csv')
[19]: steel_codes = mf_codes[mf_codes.Title.str.lower().str.contains('steel')].Code.
       -values
[20]: f = lambda x: mf_codes[mf_codes.Code == str.replace(re.split('_',x)[2],'00','').
       →strip('.')].values[0][0]
      steel_df = df[[c for c in df.columns if any('_'+code in c for code in_
       →steel_codes)]].groupby(f,axis=1).sum()
      \# concrete_df = pd.concat([df[headings],df[cols].groupby(f,axis=1).
       \hookrightarrow sum()], axis=1).rename(columns=name_map)
[21]: steel_df
[21]:
          Galvanized Reinforcement Steel Bars
                                                Steel Decking Steel Joist Framing \
      0
                                     404.82300
                                                      0.000000
                                                                            0.000000
      1
                                      39.11950
                                                      0.000000
                                                                            0.000000
      2
                                     279.76886
                                                      0.000000
                                                                            0.000000
                                                                            0.000000
      3
                                     268.61530
                                                      0.000000
      4
                                       0.00000
                                                  36463.770000
                                                                        32390.637801
                                       0.00000
```

1065.400000

0.000000

6	38.46761	0.000000	0.000000
7	44.00918	0.000000	0.000000
8	1571.63651	0.000000	0.000000
9	46.05571	0.000000	0.000000
10	0.00000	20121.360000	0.000000
11	60.92610	0.000000	0.000000
12	19.15980	0.000000	0.000000
13	75.60890	0.000000	0.000000
14	0.00000	0.000000	0.000000
15	3279.60820	0.000000	0.000000
16	13.82180	0.000000	0.000000
17	202.99950	0.000000	0.000000
18	0.00000	0.000000	0.000000
19	54.21826	0.000000	0.000000
20	86.47600	0.000000	0.000000
21	1453.94520	0.000000	0.000000
22	145.83870	0.000000	0.000000
23	29.07493	0.000000	0.000000
24	46.33040	0.000000	0.000000
25	2315.14960	0.000000	0.000000
26	0.00000	119243.083000	0.000000
27	305.86314	0.000000	0.000000
28	2608.80655	0.000000	0.000000
29	186.48870	0.000000	0.000000
30	3631.90365	0.000000	0.000000
31	1876.27340	0.000000	0.000000
32	65.21890	0.000000	0.000000
33	179.64820	0.000000	0.000000
34	54.73736	0.000000	0.000000
35	1898.51116	0.000000	0.000000
36	87.26520	0.000000	0.000000
37	2358.28100	0.000000	0.000000
38	110.96350	0.000000	0.000000
39	0.00000	91742.730862	0.000000
40	18.11669	0.000000	0.000000
41	342.79680	0.000000	0.000000
42	166.77610	0.000000	0.000000
43	1672.16739	0.000000	0.000000
44	726.32664	0.000000	0.000000
45	1908.83810	0.000000	0.000000
46	57.80600	0.000000	0.000000
47	0.00000	15013.230000	1080.899186
48	49.97006	0.000000	0.000000
49	956.68180	0.000000	0.000000
50 51	0.00000	2134.201117	645.920732
51 52	0.00000	169.830000	0.000000
52	0.00000	0.000000	143.934000

53	0.00000	0.000000	0.000000
54	0.00000	0.000000	0.000000
55	0.00000	0.000000	0.000000
56	0.00000	0.000000	0.000000
57	0.00000	0.000000	0.000000
58	0.00000	0.000000	0.000000
59	0.00000	0.000000	0.000000

	C+ool Ciding	C+ruc+uro1	C+ool Eroming
0	0.000000	Structurar	Steel Framing 833.719844
1	0.000000		
2	0.000000		86.750700 77.569800
3	0.000000		16.902960
4	0.000000		355263.964465
5	0.000000		13137.294500
6	0.000000		882.529100
7	0.000000		0.000000
8	0.000000		0.000000
9	0.000000		0.000000
10	0.000000		468399.372253
11	0.000000		0.000000
12	0.000000		0.000000
13	0.000000		216.126000
14	0.000000		8.212260
15	0.000000		0.000000
16	0.000000		165.249000
17	0.000000		195.051000
18	0.000000		119.592000
19	0.000000		18.239000
20	0.000000		203.157000
21	0.000000		0.000000
22	0.000000		0.000000
23	0.000000		124.000000
24	0.000000		215.085000
25	0.000000		111.731000
26	0.000000		178012.680000
27	0.000000		307.121000
28	0.000000		309.208000
29	0.000000		125.600000
30	0.000000		125.036000
31	0.000000		0.000000
32	0.000000		277.451000
33	0.000000		147.359000
34	0.000000		0.000000
35	0.000000		0.000000
36	0.000000		0.000000
37	0.000000		12784.293000

```
0.000000
      38
                                        63.017700
      39
              0.000000
                                   765899.330235
      40
              0.000000
                                         0.000000
     41
                                       318.008000
              0.000000
      42
              0.000000
                                         0.000000
      43
              0.00000
                                       266.210000
      44
              0.00000
                                         0.000000
      45
              0.00000
                                         0.000000
      46
              0.00000
                                      1047.606600
      47
              0.00000
                                     16456.940000
      48
              0.00000
                                       900.873980
      49
              0.00000
                                      1749.015000
      50
              0.00000
                                     11709.756098
      51
              0.000000
                                     39205.071773
      52
              0.00000
                                     12684.312817
      53
              0.000000
                                      6532.207000
      54
                                      2600.046000
              0.00000
      55
              0.000000
                                     65443.840000
      56
            373.820000
                                         0.000000
      57
            761.226866
                                         0.000000
      58
              0.00000
                                         0.000000
      59
              0.00000
                                       122.850000
[22]: BUILDING ID = 47
      total_steel = steel_df.loc[BUILDING_ID,:].sum()
      def my_autopct(pct):
          return ('%.2f' % (pct * total_steel/100)) if pct > 1 else ''
      to_plot = steel_df.loc[BUILDING_ID,:].sort_values(ascending=False)
      to_plot.plot.pie(figsize=(12,12),colormap='tab20',autopct=my_autopct)
     plt.ylabel('')
     plt.title(f'Amount of total steel used in each function for building
      →{BUILDING_ID} (kg)');
     plt.tight_layout();
```


Or an entire class of building:

plt.tight_layout();

Percentage of total structural concrete used in each function for building type LNW

We can also calculate the average for each Level 3 MasterFormat code by year of construction:

```
[24]: concrete_df = pd.concat([df[headings[1:]],df[cols].groupby(f,axis=1).

→sum()],axis=1)

concrete_df.groupby('Construction Date').mean()
```

[24]:		Gross Floor Area	Structural Concrete
	Construction Date		
	1913	161.080000	6.597957e+04
	1917	199.930000	1.189908e+05
	1969	373.605000	1.395402e+05
	1988	21934.000000	0.00000e+00

2007	73600.000000	0.000000e+00
2009	73083.000000	0.000000e+00
2011	11282.500000	0.000000e+00
2016	30345.000000	3.441223e+07
2017	39392.013333	3.814654e+07
2018	43560.635000	5.329740e+07
2019	83.100000	3.888999e+04
2020	418.528571	1.602031e+05
2021	445.404444	1.760668e+05

We can get the average amount of steel in KG used per building type:

```
[25]: concrete_df.groupby('Building Type').sum().mean(axis=1).

→rename(index=building_name_map).plot(kind='bar',figsize=(12,12))

plt.ylabel('Average amount of structural concrete used (KG)')

plt.title('Average amount of structural concrete used in a building by buildingL

→type');
```

[25]: Text(0.5, 1.0, 'Average amount of structural concrete used in a building by building type')

4 3. Uncertainty by Building Type

In this section, we look at the uncertainty code associated with each column. We collect these by building type and then report the number of each value per type of building.

```
[26]: uncertainty_level = {}
      for k,v in df.iterrows():
          #Initialise empty lists for each building type as they occur
          if v['Building Type'] not in uncertainty_level.keys():
              uncertainty_level[v['Building Type']] = []
          #Append the uncertainty value for each column that is non-NaN
          for key in v[~v.isna()].keys()[7:]:
              uncertainty_level[v['Building Type']].append(key.split('_')[-1])
[27]: from collections import Counter
[28]: for k,v in uncertainty_level.items():
          uncertainty_level[k] = Counter(v) #Construct a Counter object per building_
       \hookrightarrow type
[29]: uncertainty_level
[29]: {'SND': Counter({'1': 1720, '2': 711, '4': 349}),
       'OFF': Counter({'1': 494, '3': 307}),
       'APB': Counter({'1': 1171, '2': 1, '3': 971}),
       'SMD': Counter({'1': 191, '2': 61, '4': 27}),
       'EDU': Counter({'1': 93, '3': 24, '2': 6}),
       'INS': Counter({'1': 90, '3': 77, '2': 1}),
       'MIX': Counter({'1': 363, '3': 276}),
       'LNW': Counter({'2': 46, '1': 142, '4': 19})}
     Next, we aggregate columns by use code and uncertainty combined, and report the average by
     building type.
[30]: f = lambda x: name map[re.split('[ \. ]',x)[1][0]] + '/' + x.split(' ')[-1].
       →split('.')[0] #From a full code, return only the use code and uncertainty ⊔
       ⇔code.
      by_function_df = pd.concat([df[headings[1:]],df[cols].groupby(f,axis=1).
       \rightarrowsum()],axis=1)
[31]: by_function_df.groupby('Building Type').mean().rename(index=building_name_map)
[31]:
                                               Construction Date Gross Floor Area \
      Building Type
                                                                       45505.412000
      Apartment building
                                                          2015.80
      Educational building (University)
                                                         2016.50
                                                                        7901.000000
      Institutional (Police Headquarters)
                                                          1988.00
                                                                       21934.000000
     Laneway Suite
                                                         2020.00
                                                                         150.010000
      Mixed Use (Residential, Office & Cafe)
                                                         2018.00
                                                                       33975.250000
      Commercial (Office)
                                                         2009.00
                                                                       52643.666667
      Semi detached
                                                         1994.75
                                                                         236.615000
                                                          2015.60
      Single detached
                                                                         465,227000
```

D :11: M	Interiors/1	Services/1	Shell/1	\
Building Type	F220644 00	1505510 0	0 104010-107	
Apartment building	5330644.80	1525512.0	2.194912e+07 0.000000e+00	
Educational building (University)	0.00			
Institutional (Police Headquarters)	0.00 0.00	0.0	0.000000e+00 0.000000e+00	
Laneway Suite Mixed Use (Residential, Office & Cafe)		1878144.0	2.306316e+07	
Commercial (Office)	0.00		0.000000e+00	
Semi detached	0.00		1.398200e+03	
	282.68		1.618852e+03	
Single detached	202.00	0.0	1.0100520+03	
	Shell/2 Sit	ework/1 \		
Building Type				
Apartment building	0.0000	23188.8		
Educational building (University)	0.0000	0.0		
Institutional (Police Headquarters)	0.0000	0.0		
Laneway Suite	0.0000	0.0		
Mixed Use (Residential, Office & Cafe)	0.0000	0.0		
Commercial (Office)	0.0000	0.0		
Semi detached	0.0000	0.0		
Single detached	12.2046	0.0		
	Special Cons	truction And	Demolition/1	\
Building Type	•			
Apartment building			60316.8	
Educational building (University)			0.0	
Institutional (Police Headquarters)			0.0	
Laneway Suite			0.0	
Mixed Use (Residential, Office & Cafe)			62280.0	
Commercial (Office)			0.0	
Semi detached			0.0	
Single detached			0.0	
	Substructure	/1 Substruc	ture/2 \	
Building Type				
Apartment building	2.053918e+	07 0.	000000	
Educational building (University)	0.000000e+	00 0.	000000	
Institutional (Police Headquarters)	0.000000e+	00 0.	000000	
Laneway Suite	5.821718e+	04 44.	805527	
Mixed Use (Residential, Office & Cafe)	1.182235e+		000000	
Commercial (Office)	0.000000e+	00 0.	000000	
Semi detached	1.007531e+		215000	
Single detached	1.743097e+		852125	
	Substructure	/4		

38

Building Type

Apartment building	0.0000
Educational building (University)	0.0000
Institutional (Police Headquarters)	0.0000
Laneway Suite	1850.9675
Mixed Use (Residential, Office & Cafe)	0.0000
Commercial (Office)	0.0000
Semi detached	0.0000
Single detached	0.0000

Next, we report the total amount of material falling under each uncertainty code by year of construction.

```
[32]: f = lambda x: x.split('_')[-1].split('.')[0] #Select only the uncertainty code.
pd.concat([df[headings[1:]],df[cols].groupby(f,axis=1).sum()],axis=1).

→groupby('Construction Date').mean()
```

[32]:	Gross Floor	Area	1	2	4
Constru	ction Date				
1913	161.08	30000 6.169	9728e+04 428	32.290000	0.00000
1917	199.93	30000 1.100	0899e+05 890	00.860000	0.00000
1969	373.60)5000 1.126	6800e+05 2686	80.270500	0.00000
1988	21934.00	0.000	0000e+00	0.000000	0.00000
2007	73600.00	0.000	0000e+00	0.000000	0.00000
2009	73083.00	0.000	0000e+00	0.000000	0.00000
2011	11282.50	0.000	0000e+00	0.000000	0.00000
2016	30345.00	00000 3.441	1223e+07	0.000000	0.00000
2017	39392.03	L3333 3.814	1654e+07	0.000000	0.00000
2018	43560.63	35000 5.329	9740e+07	0.000000	0.00000
2019	83.10	00000 3.871	1077e+04 17	79.222109	0.00000
2020	418.52	28571 1.550	0909e+05 511	2.262857	0.00000
2021	445.40)4444 1.713	3452e+05 451	5.933278 20	5.663056

5 4. Material Intensity

We can easily calculate material intensity by dividing columns which are measured in kilograms by the Gross Floor Area:

```
[33]: kilogram_columns = [d for d in df.columns if 'kg' in d]
df_mi = df[kilogram_columns].div(df['Gross Floor Area'],axis=0)
```

```
[34]: kilogram_columns = [d for d in df.columns if 'kg' in d]

df_mi = df[kilogram_columns].div(df['Gross Floor Area'],axis=0)

f = lambda x: name_map[re.split('[_\.\]',x)[1][0:3]]

pd.concat([df[headings[1:]],df_mi[kilogram_columns].groupby(f,axis=1).

→sum()],axis=1)[df['Building Type'] == 'SND']
```

[34]:	Country	City Qual:	ity / Stage	of Data (Construction	n Date Buil	ding	Type	\
0	CA	•	,	OOIFC		2021	O	SND	
1	CA	TOR		OOIFC		2021		SND	
2	CA	TOR		OOIFC		2021		SND	
3	CA	TOR		OOIFC		2021		SND	
6	CA	TOR		OOIFC		2021		SND	
7	CA	TOR		OOIFC		2021		SND	
8	CA	TOR		OOIFC		2021		SND	
9	CA	TOR		OOIFC		2021		SND	
12				OOIFC		2021		SND	
13				OOIFC		2021		SND	
14				OOIFC		2021		SND	
15				OOIFC		2021		SND	
16				OOIFC		1969		SND	
17				00IFC		1969		SND	
18				OOIFC		2021		SND	
19		TOR		00IFC		2021		SND	
20		TOR		00IFC		2020		SND	
21				00IFC		2021		SND	
22		TOR		00IFC		2021		SND	
24 25		TOR TOR		00IFC 00IFC		2021 2021		SND SND	
25 27				001FC 001FC		2021		SND	
28		TOR		001FC 001FC		2021		SND	
30				001FC 001FC		2021		SND	
31				001FC		2021		SND	
32				001FC		2021		SND	
34		TOR		OOIFC		2021		SND	
35				OOIFC		2021		SND	
36				OOIFC		2021		SND	
37				OOIFC		2020		SND	
38		TOR		OOIFC		2021		SND	
40	CA	TOR		OOIFC		2021		SND	
41	CA	TOR		OOIFC		1913		SND	
42	CA	TOR		OOIFC		2021		SND	
43	CA	TOR		OOIFC		2021		SND	
44	CA	TOR		OOIFC		2021		SND	
45	CA	TOR		OOIFC		2021		SND	
46	CA	TOR		OOIFC		2021		SND	
48	CA	TOR		OOIFC		2020		SND	
49	CA	TOR		OOIFC		2021		SND	
	Gross 1	Floor Area	Conveying	Exterior	Horizontal	Enclosures	; \		
0		521.18	0.0			11.137992			
1		389.24	0.0			5.461939)		
2		411.64	0.0			3.786074	Ŀ		
3		269.56	0.0			6.503479)		

6		445.99	0.0		11.933511	
7		438.45	0.0		12.707195	
8		714.07	0.0		12.865930	
9		343.24	0.0		4.300619	
12		226.89	0.0		12.424245	
13		611.73	0.0		5.140200	
14		343.44	0.0		6.494467	
15		613.38	0.0		13.090524	
16		413.72	0.0		6.437864	
17		333.49	0.0		7.176775	
18		178.38	0.0		9.782438	
19		323.80	0.0		9.824569	
20		837.56	0.0		13.521848	
21		587.86	0.0		6.949783	
22		568.21	0.0		12.754287	
24		294.84	0.0		3.650542	
25		496.77	0.0		5.352985	
27		643.30	0.0		11.769043	
28		701.61	0.0		11.799093	
30		378.70	0.0		5.522739	
31		324.16	0.0		5.361174	
32		533.53	0.0		8.494907	
34		423.03	0.0		11.102019	
35		328.16	0.0		10.234937	
36		421.59	0.0		12.223172	
37		628.59	0.0		10.408758	
38		464.51	0.0		4.118745	
40		346.14	0.0		11.787081	
41		161.08	0.0		8.266350	
42		891.97	0.0		10.710312	
43		525.61	0.0		18.918490	
44		502.87	0.0		6.014586	
45		379.18	0.0		6.169302	
46		549.65	0.0		11.310711	
48		393.82	0.0		16.116861	
49		648.14	0.0		9.684756	
	Exterior	Vertical	Enclosures	Foundations	 Interior Finishes	\
0			136.939623	335.649367	 8.309413	
1			69.018253	281.318698	 6.490936	
2			101.450370	464.462195	 4.574905	
3			188.215196	255.359136	 8.510443	
6			61.325975	295.116668	 6.391063	
7			130.552921	269.468463	 6.584780	
8			104.310510	276.917123	 6.563894	
9			210.632241	283.893850	 8.940907	
12			186.668275	261.874926	 6.134611	

13		102.332008	343.714248	7.638991
14		147.104280	424.099610	7.860800
15		156.986570	298.537712	8.068881
16		104.759146	224.634608	5.373842
17		121.363560	355.746799	4.610513
18		112.523711	371.149916	9.551856
19		186.570501	148.769711	9.483653
20		91.689386	317.583491	7.152371
21		94.557055	428.185321	6.754074
22		83.789887	255.012975	7.860492
24		127.856507	261.274626	4.807604
25		89.883144	251.725837	5.921358
27		83.949693	156.365248	8.492430
28		53.418023	266.164355	7.952623
30		164.214896	403.602589	7.221059
31		190.512918	377.853541	6.597902
32		68.518430	309.062696	6.648595
34		154.072547	243.607664	4.717349
35		184.202156	388.744353	5.648226
36		158.716507	424.443503	5.625641
37		136.076590	369.744859	5.699975
38		151.068033	412.845205	7.621364
40		146.479339	287.564257	7.916204
41		58.430002	345.135557	4.455575
42		213.677214	245.205806	7.577250
43		109.529933	498.010299	7.954358
44		91.481074	278.679758	4.564488
45		172.418003	391.303861	6.339432
46		127.866168	266.468237	6.701647
48		140.069509	188.980245	10.629628
49		131.118584	347.187490	5.089382
	Plumbing	_		Special Construction \
0	0.0	0.0	273.972401	0.0
1	0.0	0.0	192.874465	0.0
2	0.0	0.0	170.733356	0.0
3	0.0	0.0	124.186526	0.0
6	0.0	0.0	153.061618	0.0
7	0.0	0.0	211.910108	0.0
8	0.0	0.0	266.709576	0.0
9	0.0	0.0	138.510228	0.0
12	0.0	0.0	129.263543	0.0
13	0.0	0.0	165.513154	0.0
14	0.0	0.0	129.532248	0.0
15	0.0	0.0	166.414337	0.0
16	0.0	0.0	166.704176	0.0
17	0.0	0.0	177.790288	0.0

18	0.0	0.0	223.398638	0.0
19	0.0	0.0	158.178114	0.0
20	0.0	0.0	143.282268	0.0
21	0.0	0.0	237.918968	0.0
22	0.0	0.0	199.364347	0.0
24	0.0	0.0	131.174185	0.0
25	0.0	0.0	242.284758	0.0
27	0.0	0.0	152.407914	0.0
28	0.0	0.0	169.419640	0.0
30	0.0	0.0	179.868896	0.0
31	0.0	0.0	132.696247	0.0
32	0.0	0.0	135.390288	0.0
34	0.0	0.0	147.458950	0.0
35	0.0	0.0	128.887840	0.0
36	0.0	0.0	147.225241	0.0
37	0.0	0.0	186.334547	0.0
38	0.0	0.0	145.273403	0.0
40	0.0	0.0	139.821081	0.0
41	0.0	0.0	191.028748	0.0
42	0.0	0.0	138.994603	0.0
43	0.0	0.0	139.646277	0.0
44	0.0	0.0	182.059329	0.0
45	0.0	0.0	158.446049	0.0
46	0.0	0.0	154.805714	0.0
48	0.0	0.0	198.860705	0.0
49	0.0	0.0	199.209464	0.0
	Subgrade Enclosures	Substruct	cure Interior \	
0	9.652903	Dubberuce	0.000000	
1	6.851955		0.000000	
2	11.298572		0.000000	
3	4.351465		0.000000	
6	9.478642		0.054452	
7	4.218921		0.000000	
8	8.902623		0.000000	
9	9.601245		0.000000	
12	3.818403		0.935612	
13	7.722754		0.000000	
14	9.135529		0.000000	
	0.100020		0.00000	

4.868508

9.729092

11.222919

0.000000

4.617006

7.131170

7.959752

6.339651

15

16

17

18

19

20

21

22

0.467438

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

24	7.469048	0.000000
25	9.448689	0.078017
27	0.000000	0.096759
28	11.919460	0.000000
30	7.509119	0.330172
31	5.073992	0.000000
32	8.867868	0.000000
34	0.00000	0.000000
35	4.762839	0.000000
36	9.538939	0.000000
37	6.039206	1.461249
38	9.071017	0.000000
40	7.568785	0.394416
41	5.419045	0.000000
42	4.540919	0.371810
43	6.720435	0.000000
44	6.092739	0.000000
45	9.489156	0.195110
46	6.042229	0.499896
48	6.057127	1.647329
49	7.221222	1.208104
	Substructure Related Activities	Superstruc
^	0.0	

	Substructure Related	Activities	Superstructure	Water And	Gas Mitigation
0		0.0	30.228003		0.0
1		0.0	26.271523		0.0
2		0.0	23.756286		0.0
3		0.0	30.517748		0.0
6		0.0	39.906513		0.0
7		0.0	39.907474		0.0
8		0.0	38.291591		0.0
9		0.0	35.370538		0.0
12		0.0	35.355314		0.0
13		0.0	33.388004		0.0
14		0.0	39.370016		0.0
15		0.0	40.958564		0.0
16		0.0	46.688433		0.0
17		0.0	51.425780		0.0
18		0.0	63.006044		0.0
19		0.0	36.597047		0.0
20		0.0	28.734226		0.0
21		0.0	37.457583		0.0
22		0.0	36.265538		0.0
24		0.0	30.389475		0.0
25		0.0	43.728928		0.0
27		0.0	35.393414		0.0
28		0.0	39.408113		0.0
30		0.0	82.392236		0.0

```
46.380703
                                  0.0
                                                                                0.0
31
32
                                  0.0
                                             25.469871
                                                                                0.0
34
                                  0.0
                                             35.666107
                                                                                0.0
35
                                                                                0.0
                                  0.0
                                             49.404111
36
                                  0.0
                                             34.035382
                                                                                0.0
37
                                  0.0
                                             47.065025
                                                                                0.0
                                  0.0
38
                                             37.921434
                                                                                0.0
40
                                  0.0
                                             27.740220
                                                                                0.0
                                  0.0
                                                                                0.0
41
                                             22.962391
42
                                  0.0
                                             29.045531
                                                                                0.0
43
                                  0.0
                                                                                0.0
                                             33.265489
44
                                  0.0
                                             37.265275
                                                                                0.0
45
                                  0.0
                                             46.860447
                                                                                0.0
46
                                  0.0
                                                                                0.0
                                             31.152827
48
                                  0.0
                                             49.899420
                                                                                0.0
49
                                  0.0
                                             38.021046
                                                                                0.0
```

[40 rows x 21 columns]

```
[35]: master_format_convert = {v:k for k,v in {
```

```
[36]: f = lambda x: master_format_convert[re.split('[_\.\ ]',x)[4]] toplot = pd.concat([df[headings[1:]],df_mi[kilogram_columns].groupby(f,axis=1).

→sum()],axis=1).sort_values(['Building Type'])
```

```
[37]: types_to_keep = ['APB','SND','SMD','ADU','SEC','ROW','LNW']
toplot = toplot[toplot['Building Type'].isin(types_to_keep)]

building_type_map = {
    'APB':'Mid to high-rise buildings',
    'SND':'Single family dwellings',
    'SMD':'Single family dwellings',
    'ADU':'Single family dwellings',
    'SEC':'Single family dwellings',
    'ROW':'Single family dwellings',
```

```
'LNW':'Laneway Houses'
}
```

```
[38]: fig, ax = plt.subplots(figsize=(10,7))
      cols = toplot.columns[6:]
      margin_bottom = np.zeros(len(toplot))
      cmap = plt.get_cmap('tab10')
      for num, col in enumerate(cols):
          values = toplot[col].values
          toplot[col].plot.bar(x='Year',y='Value', ax=ax, stacked=True,
                                           bottom = margin_bottom, color=cmap(num),__
       →label=col)
          margin_bottom += values
      plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
      plt.ylabel('Material Intensity (kg/m^2)')
      plt.xlabel('Building ID ')
      ax2 = ax.twiny()
      ax2.set_xlim(0, len(toplot))
      ax2.set_xticks([k for k,v in enumerate(toplot['Building Type'].values) if
       →building_type_map[v] != building_type_map[toplot['Building Type'].
      \rightarrow values [k-1]] or k==0])
      for tick in ax2.get_xticklabels():
          tick.set rotation(90)
      ax2.set_xticklabels([building_type_map[v] for k,v in enumerate(toplot['Building_
       →Type'].values) if building_type_map[v] != building_type_map[toplot['Building_type_map
       \rightarrowType'].values[k-1]] or k==0])
      ax2.set_xlabel("Building Type")
      plt.grid(color='black',linewidth=2)
      plt.show()
```



```
[39]: df_mi = df[kilogram_columns].div(df['Gross Floor Area'],axis=0)
```

```
[40]: df_mi = df[kilogram_columns].div(df['Gross Floor Area'],axis=0)
      df_mi = df_mi.div(df_mi.sum(axis=1),axis=0) * 100
      f = lambda x: name_map[re.split('[_\.\]',x)[1][0]]
      toplot = pd.concat([df[headings[1:]],df_mi[kilogram_columns].groupby(f,axis=1).
      →sum()],axis=1).sort_values('Building Type')
      toplot = toplot[toplot['Building Type'].isin(types_to_keep)]
      fig, ax = plt.subplots(figsize=(10,7))
      cols = toplot.columns[6:]
      margin_bottom = np.zeros(len(toplot))
      cmap = plt.get_cmap('tab10')
      for num, col in enumerate(cols):
          values = toplot[col].values
          toplot[col].plot.bar(x='Year',y='Value', ax=ax, stacked=True,
                                          bottom = margin_bottom, color=cmap(num),__
       →label=col)
          margin_bottom += values
```

```
plt.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
plt.xlabel('Building ID')
plt.ylabel('Building element category contribution (%) to material intensity')
ax2 = ax.twiny()
ax2.set_xlim(0, len(toplot))
ax2.set_xticks([k for k,v in enumerate(toplot['Building Type'].values) if
→building_type_map[v] != building_type_map[toplot['Building Type'].
\rightarrow values [k-1]] or k==0])
for tick in ax2.get_xticklabels():
    tick.set_rotation(90)
ax2.set_xticklabels([building_type_map[v] for k,v in enumerate(toplot['Building_
→Type'].values) if building_type_map[v] != building_type_map[toplot['Building_
\rightarrowType'].values[k-1]] or k==0])
ax2.set_xlabel("Building Type")
plt.grid(color='black',linewidth=2)
plt.show()
```



```
[41]: df_mi = df[kilogram_columns].div(df['Gross Floor Area'],axis=0)
df_mi = df_mi.div(df_mi.sum(axis=1),axis=0)
f = lambda x: name_map[re.split('[_\.\]',x)[1][0]] + '/' + re.split('[_\.\]

→]',x)[-1]
toplot = df_mi[kilogram_columns].groupby(f,axis=1).sum()
```

```
for k,v in toplot.iteritems():
         toplot[k] = v * int(k.split('/')[1])
     f = lambda x: x.split('/')[0]
     toplot = pd.concat([df['Building Type'],toplot.groupby(f,axis=1).sum()],axis=1).
      # toplot['index'] = toplot['index'].astype('str')
[42]: toplot['Total'] = toplot[['Interiors', 'Services', 'Shell', 'Sitework', 'Special_
      →Construction And Demolition', 'Substructure']].sum(axis=1)
     toplot = toplot[['Interiors', 'Shell', 'Substructure', 'Total']].reset index()
[43]: from matplotlib.lines import Line2D
     fig, ax = plt.subplots(figsize=(7,15))
     ax.set_xlim(0,5)
     ax.set_yticks(toplot.index)
     handles = []
     for v,m,c in ...
      →[('Interiors','o','blue'),('Shell','X','green'),('Total','*','red'),('Substructure','s','or
         toplot.plot.scatter(x=v,y='index', ax=ax, marker=m, color=c, s=75)
         handles.append(
             Line2D([0], [0], marker=m, color='w', label=v,
                                   markerfacecolor=c, markersize=15)
     plt.legend(handles=handles)
     plt.ylabel('Building Identifier')
     plt.xlabel('Average Uncertainty by MI')
     plt.grid()
```


[]:[