Antiphon Train Precision

Distributional approach on subset data

		Distributional approach on subset data Showing mean *std.dev over 5 runs					
	neumes -	93.0 ^{±0.5}	87.3 ^{±2.0}	61.8 ^{±1.4}	51.5 ^{±1.4}	46.5 ^{±0.6}	
	syllables -	93.6 ^{±1.6}	88.4 ^{±1.1}	67.6 ^{±1.6}	57.0 ^{±0.5}	51.9 ^{±2.0}	
	words -	99.7 ^{±0.2}	99.6 ^{±0.4}	98.7 ^{±0.8}	96.9 ^{±1.1}	91.4 ^{±2.6}	
	1-mer	87.2 ^{±0.9}	55.7 ^{±0.9}	5.5 ^{±0.1}	22.2 ^{±6.5}	5.5 ^{±0.1}	
	2-mer	92.2 ^{±1.0}	80.0 ^{±1.3}	44.8 ^{±1.1}	25.4 ^{±1.2}	15.4 ^{±2.5}	
	3-mer	95.5 ^{±1.6}	91.9 ^{±0.6}	71.5 ^{±0.9}	41.6 ^{±4.2}	26.0 ^{±3.8}	
	4-mer	98.8 ^{±0.7}	98.3 ^{±1.6}	92.0 ^{±2.1}	52.1 ^{±0.6}	36.9 ^{±1.7}	
ion	5-mer	99.7 ^{±0.2}	99.4 ^{±0.4}	98.0 ^{±1.4}	68.1 ^{±1.7}	49.3 ^{±0.8}	
segmentation	6-mer	99.9 ^{±0.2}	99.8 ^{±0.3}	99.9 ^{±0.1}	83.2 ^{±1.8}	66.2 ^{±1.1}	
sed	8-mer	97.8 ^{±0.3}	97.9 ^{±0.4}	99.1 ^{±0.2}	99.5 ^{±0.7}	96.4 ^{±2.7}	
	10-mer -	95.3 ^{±0.4}	95.0 ^{±0.6}	96.0 ^{±0.6}	98.3 ^{±0.6}	99.0 ^{±0.4}	
	12-mer -	94.3 ^{±0.5}	93.5 ^{±0.5}	94.2 ^{±0.5}	94.2 ^{±0.9}	96.2 ^{±0.7}	
	14-mer -	92.6 ^{±0.7}	93.3 ^{±0.2}	93.7 ^{±0.5}	92.7 ^{±0.3}	91.9 ^{±2.2}	
	16-mer -	92.5 ^{±0.5}	92.8 ^{±0.5}	92.7 ^{±0.4}	91.3 ^{±1.6}	91.5 ^{±1.1}	
	poisson-3 -	98.5 ^{±2.4}	99.1 ^{±0.5}	96.1 ^{±2.4}	64.9 ^{±1.9}	35.5 ^{±12.4}	
	poisson-5 -	99.3 ^{±0.8}	99.3 ^{±0.3}	98.9 ^{±0.8}	85.4 ^{±6.2}	76.7 ^{±3.2}	
	poisson-7 -	97.9 ^{±0.6}	97.9 ^{±0.8}	98.1 ^{±0.7}	95.9 ^{±3.5}	90.7 ^{±2.8}	
						indep. contour	