Ministério da Ciência e Tecnologia Observatório Nacional

$Investiga \tilde{\varsigma ao} \ do \ uso \ da \ norma \ L_1 \ no \ ajustamento \ de$ $redes \ gravim\'{e}tricas \ relativas$

Por

Francismar Rimoli Berquó

Orientador

Dr. Mauro Andrade de Sousa

RIO DE JANEIRO - BRASIL JUNHO DE 2009

"INVESTIGAÇÃO DO USO DA NORMA L_1 NO AJUSTAMENTO DE REDES GRAVIMÉTRICAS RELATIVAS"

FRANCISMAR RIMOLI BERQUÓ

DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DO PROGRAMA DE PÓS-GRADUAÇÃO EM GEOFÍSICA DO OBSERVATÓRIO NACIONAL COMO PARTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE MESTRE EM GEOFÍSICA.

Aprovada por:

Dr. Mauro Andrade de Souse

Dr. Mauro Andrade de Sousa - ON/MCT

Dr. Iris Pereira Escobar - ON/MCT

Dr. José Carlos Penna de Vasconcellos - UERJ

B532 Berquó, Francismar Rimoli

Investigação do uso da norma L_1 no ajustamento de redes gravimétricas relativas.- Rio de Janeiro: ON, 2009. 90p.

Dissertação (Mestrado em Geofísica) – Observatório Nacional, Rio de Janeiro, 2009.

1. Método da Soma Mínima(gravimetria) 2. Investigação de algoritmos de ajustamento. I. Observatório Nacional. II. Título.

CDU 550.312

AGRADECIMENTOS

O autor agradece:

Ao Professor Dr. Mauro Andrade de Sousa não somente pela forma em que me recebeu no Ministério da Ciência e Tecnologia - Observatório Nacional, mas por toda a dedicação que teve no decorrer da orientação acadêmica.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior por financiar a bolsa de estudos do mestrado durante o período de março de 2007 a fevereiro de 2009.

Ao Dr. Iris Pereira Escobar pelas inúmeras conversas mantidas durante o período de realização do projeto de mestrado.

Aos pesquisadores do Observatório Nacional que contribuíram diretamente e indiretamente para o meu crescimento profissional.

Ao técnico Alcides Antônio dos Santos por estar sempre disposto a ajudar neste projeto de mestrado e nos trabalhos de campo.

Aos colegas de mestrado da Coordenação de Geofísica do Observatório Nacional pela convivência e o carinho dispensado ao longo desta etapa acadêmica.

À minha mãe Maria de Lourdes Rimoli Berquó, ao meu irmão Francisco José Rimoli Berquó e à minha namorada Lourdes Ferreira da Cunha por me transmitirem todo o amor, respeito, o carinho e os valores morais que possuo.

RESUMO

O objetivo deste trabalho é investigar o uso de um algoritmo de ajustamento baseado no Método da Soma Mínima (MSM), também conhecido como norma L₁, em redes gravimétricas relativas. Como estudo de caso, foi utilizada a rede gravimétrica relativa implantada com o gravímetro LaCoste & Romberg G61, onde foi testada a viabilidade do uso deste algoritmo. O MSM é baseado no critério de minimização da soma dos valores absolutos dos resíduos. Os resíduos são correções calculadas no ajustamento, a partir de um sistema de equações. Soluções desse sistema de equações podem ser obtidas através de equações normais ou pelo algoritmo computacional SIMPLEX, por exemplo. Na mesma rede gravimétrica foi executado um ajustamento clássico através do Método dos Mínimos Quadrados (MMQ), utilizando o modelo paramétrico, para obter uma solução que pudesse servir como base de comparação com a solução do algoritmo de ajustamento. Nesta investigação foram realizadas as seguintes etapas: (i) Realização do ajustamento com injunção mínima para calcular a precisão da rede gravimétrica em estudo; (ii) Utilização de um algoritmo de ajustamento via norma L₁, representado por uma expressão de equações normais, baseado no método paramétrico, tomando os valores de gravidade das estações gravimétricas da International Gravity Standardization Net-1971 (IGSN71) como fixos; e (iii) Utilização de um número adequado de reprocessamentos, a partir dos valores de gravidade ajustados via norma L₁, para encontrar os valores dos desvios absolutos medianos. Esses reprocessamentos são realizações a partir de inclusão de erros aleatórios nos intervalos gravimétricos.

INVESTIGATION USE OF L1 NORM IN ADJUSTMENT OF GRAVITY NETWORKS

ABSTRACT

The proposed aim of the present work is to analyze the use of on adjustment algorithm based on the Least Sum Method (LSM), or L₁ norm as it is sometimes known in adjustment relative gravity networks. As a case study, the gravity network established with for the LaCoste & Romberg G61 meter was used to test the viability of the adjustment algorithm. The MSM is based on the criterion of minimizing the sum of the absolute values of the residuals. The solution of this system of linear observation equations can be obtained from normal equations or using a SIMPLEX Linear Programming algorithm either. A conventional Least Squares Method adjustment was performed to obtain a solution that could serve as the comparison base with the solution of the adjustment algorithm based on the MSM. For this research the following steps were carried out: (i) Using the minimum constraint adjustment to find the precision of the gravity network; (ii) Using an algorithm for adjustment by L_1 norm, represented by a closed analytical expression, based on parametric method, and taking the values of gravity of the gravity stations of the International Gravity Standardization Net-1971 (IGSN-71) as fixed; and (iii) Using an appropriate number of reprocessing from the values of gravity adjusted based L₁ norm to find the values of median absolute deviations. These reprocessing are achievements from inclusion of random errors in the gravity intervals.

SUMÁRIO

Agradecimentos	1
Resumo	ii
Abstract	iii
Sumário	iv
Lista de Figuras	vi
Lista de Tabelas	vii
Capítulo 1 Introdução	
1 . 1 - Objetivo	01
1 . 2 - Contribuições do projeto	02
1 . 3 - Descrição da dissertação.	03
Capítulo 2 Modelos de ajustamento de redes gravimétricas relativas	
2 . 1 - Introdução	04
2 . 2 - Modelos matemáticos de ajustamento	05
2 . 3 - Condicionamento do sistema	14
2 . 4 - O Método da Soma Mínima	16
Capítulo 3 Estudo de caso: Rede gravimétrica LC & R G61	
3 . 1 - Introdução	20
3 . 2 - Datum gravimétrico	21
3 . 3 - Princípio de funcionamento do gravímetro LaCoste&Romberg	23
3 . 4 - A rede gravimétrica LaCoste & Romberg G61	25
3 . 5 - Algumas estatísticas da rede G61	27

Ajustamento da rede LC & R G61 segundo a norma L ₂
4 . 1 - Ajustamento com injunção mínima da rede gravimétrica LC&R G6133
4 . 2 - Ajustamento da rede gravimétrica LC&R G6135
4 . 3 - Critério de confiabilidade da rede gravimétrica LC&R G6139
Capítulo 5 Ajustamento da rede LC & R G61 segundo a norma L_1
5 . 1 - Ajustamento da rede gravimétrica LC&R G61
Capítulo 6 Resultados e Discussões
6 . 1 - Comparações entre os valores de gravidade ajustados
6 . 2 - Avaliando as incertezas dos valores da gravidade ajustamentos
6 . 3 - Avaliando os resíduos nos ajustamentos
Capítulo 7 Conclusões
7 . 1 - Conclusões
Referências bibliográficas
Apêndice I
Valores de gravidade ajustados e respectivas incertezas da rede LC&R G61, segundo as
normas L ₁ e L ₂

LISTA DE FIGURAS

3.1	As estações da <i>IGSN71</i> coincidentes com a rede G61
3.2	Mostra esquematicamente a parte interna do gravímetro LC&R modelo G24
3.3	Mostra o gravímetro LC&R modelo G com suas identificações
3.4	A rede G61 contém 1513 estações gravimétricas, onde cinco estações gravimétricas
	coincidem com a rede <i>IGSN71</i>
3.5	Circuito gravimétrico totalizando 17 estações gravimétricas: 15 estações a ajustar e 2
	da <i>IGSN71</i>
3.6	A distribuição dos 105 circuitos gravimétricos independentes da rede G6127
3.7	O histograma dos desvios dos intervalos gravimétricos em relação às médias. Os
	desvios variam entre -0,356 a 0,574 mGal
3.8	O histograma dos erros de fechamento. Os valores variam entre -0,959 a
	0,335 mGal31
4.1	Os valores dos resíduos variam entre -0,221 a 0,256 mGal com uma média da
	distribuição igual a 0.00 ± 0.02 mGal
5.1	Os valores dos resíduos variam entre -0,221 a 0,256 mGal com uma média da
	distribuição igual a 0.00 ± 0.02 mGal

LISTA DE TABELAS

2.1	Classificação de condicionamento
3.1	As estações gravimétricas da <i>IGSN71</i> coincidentes com a rede G6122
3.2	Mostra os valores dos erros de fechamento em mGal
3.3	Mostra o valor do erro de fechamento, em mGal, do circuito 63 após a neutralização
	do "salto" ocorrido com o gravímetro diferencial
4.1	Mostra a distribuição dos 27 intervalos gravimétricos dentro do seu respectivo nível de
	tolerância
5.1	Mostra a distribuição dos 27 intervalos gravimétricos dentro do seu respectivo nível de
	tolerância44
6.1	Mostra as 35 estações gravimétricas coincidentes
6.2	Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente
	as estações 010476 e RJ17U50
6.3	Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente
	as estações 121282 e 26Y50
6.4	Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente
	as estações SGE 03 e SGE 0251
6.5	Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente
	as estações SP 29 e SP 2751
6.6	Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente
	as estações 317O e 317R

Capítulo 1

Introdução

O presente trabalho consiste em investigar um algoritmo de ajustamento via norma L₁ em redes gravimétricas relativas. Como estudo de caso, a rede gravimétrica LaCoste & Romberg G61, que se estende desde Porto Alegre até Fortaleza, foi utilizada para testar a viabilidade deste algoritmo de ajustamento. Seus intervalos gravimétricos foram medidos com o gravímetro LaCoste & Romberg G61 durante o período de 1968 a 1979. A seção 1.1 apresenta a proposta que foi desenvolvida durante o projeto de mestrado. A contribuição deste projeto é detalhada na seção 1.2, e na seção 1.3 é feita uma descrição resumida desta dissertação de mestrado.

1.1- Objetivos

Uma rede gravimétrica relativa, como a do G61, possui circuitos gravimétricos independentes onde a soma dos intervalos gravimétricos deveria se anular. As leituras instrumentais de campo são realizações experimentais, isto é, são afetadas pelos inevitáveis erros provenientes de diversas fontes. Consequentemente, os circuitos gravimétricos não se anulam e essas discrepâncias são chamadas de erros de fechamento. É necessário compensar esses erros observacionais a partir da realização do ajustamento da rede gravimétrica relativa. Uma rede gravimétrica relativa pode ser ajustada a outra rede gravimétrica de precisão superior. Dentre as redes gravimétricas de precisão superior disponíveis para o presente

estudo temos: a *International Gravity Standardization Net-1971 (IGSN71)* e a *Rede Gravimétrica Fundamental Brasileira (RGFB)*. A *IGSN71* foi adotada como datum e escala no ajustamento por ser um datum gravimétrico mundial e também por ter sido utilizada num trabalho de pós-graduação no início dos anos 90 que serviu de comparação para o resultado do presente projeto.

Desconhecendo qualquer referência sobre a real distribuição que governa os erros cometidos nas leituras instrumentais, não há por que se admitir que esta seja Gaussiana. Sendo assim, não há qualquer garantia de que a solução do problema de ajustamento de uma rede gravimétrica via norma L_2 seja a mais apropriada. Então, para que a solução de ajuste envolvendo esses erros observacionais não influencie no resultado, aplicam-se algoritmos de ajustamento baseados no MSM. Esses algoritmos obtêm soluções que não obedecem aos critérios para a aplicação do MMQ. Ainda ao final do projeto, haverá uma conclusão da viabilidade deste algoritmo de ajustamento, em estudo, baseado no MSM.

1.2- Contribuições do projeto

As contribuições deste projeto foram:

- 1) Realizar um ajustamento com injunção mínima para avaliar a consistência dos dados.
- Avaliar a viabilidade do emprego de um algoritmo de ajustamento baseado na norma
 L₁ em redes gravimétricas relativas. Para tanto:
 - 2.1) Realizar um ajustamento clássico, com o mesmo tipo de ponderação, para fins de comparação.
 - 2.2) Apresentar uma estimativa de precisão associada aos parâmetros ajustados.
- 3) Avaliar a confiabilidade da rede gravimétrica relativa do G61.

1.3 - Descrição da dissertação

No Capítulo 2 apresenta-se um tratamento preliminar das leituras instrumentais de campo e discute-se os modelos matemáticos utilizados em ajustamento; discute-se os critérios de avaliação e a correlação entre os intervalos gravimétricos; mostra-se a expressão das equações normais que foi utilizada no ajustamento segundo a norma L_1 e propõe-se os procedimentos a serem adotados para estimar as incertezas dos parâmetros ajustados, segundo a norma L_1 .

No Capítulo 3 apresenta-se o acervo de dados referente à rede gravimétrica relativa implantada pelo gravímetro relativo G61 que foi utilizada como estudo de caso para a aplicação do algoritmo baseado via norma L₁; ilustra as estações gravimétricas referente à *IGSN*71, coincidentes com a rede G61, que foram utilizadas como datum e escala; descreve, resumidamente, o gravímetro diferencial LaCoste&Romberg G61; e por último discute-se uma estatística da rede do G61 para a aplicação do algoritmo de ajustamento via norma L₁.

No Capítulo 4 apresentam-se as seguintes etapas: (i) A aplicação do ajustamento com injunção mínima para identificar a precisão da rede em estudo; (ii) O ajustamento clássico tradicional do MMQ que serviu como base de comparação para a solução via norma L₁; e (iii) A estimativa da confiabilidade do ajustamento, utilizando o teste global baseado na distribuição de qui-quadrado.

No Capítulo 5 apresenta-se o resultado do algoritmo de ajustamento baseados na norma $L_1. \,$

No Capítulo 6 discutem-se os resultados finais dos algoritmos de ajustamento, segundo as normas $L_1 \ e \ L_2.$

No capítulo 7 apresentam-se as conclusões da aplicação do algoritmo de ajustamento via norma L₁ na rede gravimétrica relativa implantada com o gravímetro LC&R G61.

O Apêndice I mostra os valores de gravidade ajustados e seus respectivos desvios, segundo as normas L_1 e L_2 .

Capítulo 2

Modelos de ajustamento de redes gravimétricas relativas

2.1 - Introdução

As redes gravimétricas são realizações conduzidas pelo homem e que se caracterizam por possuírem erros de medidas. Para ter-se uma medida de confiança reúnem-se dados de forma redundante a fim de garantir uma melhor qualidade. Cria-se então um novo problema: como extrair um resultado único para os parâmetros ajustados a partir desta superabundância de observação? Portanto, se faz necessário o ajustamento deste acervo redundante de observações, utilizando modelos matemáticos adequados, para extrair um resultado único dos parâmetros com suas respectivas estimativas de precisão.

Assumindo-se a existência de erros observacionais nos intervalos gravimétricos (diferença das leituras instrumentais médias entre uma estação e a estação seguinte) implica em encontrar valores diferentes da gravidade em cada estação gravimétrica percorrendo trajetórias distintas. Sabendo-se que uma rede gravimétrica deve reportar um e somente um valor de gravidade para cada estação gravimétrica, existe a necessidade de compensar os erros observacionais. Dentre as soluções lineares de ajustamento existentes, e admitindo-se que:

- (i) Os erros observacionais sigam uma distribuição normal; e
- (ii) As condições do teorema de Gauss-Markov, que são:
 - (ii.1) Todos os erros experimentais estão concentrados no vetor de observação.
 - (ii.2) A média dos desvios é nula.

- (ii.3) A covariância entre as observações é nula.
- (ii.4) A solução do MMQ é dada pelos melhores estimadores lineares não tendenciosos. sejam satisfeitas, demonstra-se que a solução aproximada baseada na minimização dos quadrados dos resíduos é a solução aproximada que possui variância mínima.

2.2 - Modelos matemáticos de ajustamento

O modelo das equações de observação, que foi utilizado na investigação de um algoritmo de ajustamento em uma rede gravimétrica relativa entre as estações i e j, tem a seguinte forma:

$$\Delta l_{ij} + v_{ij} - (D_j - D_i) - (M_j - M_i) = K^{-1} (g_i - g_j)$$
 (2.1)

onde Δl_{ij} representa o valor do intervalo gravimétrico convertido em mGal; v_{ij} representa o resíduo deste intervalo gravimétrico; D_i , D_j representam as correções das derivas instrumentais nas leituras convertidas das estações i e j respectivamente; M_i , M_j representam as correções de maré luni-solar nas leituras convertidas das estações i e j respectivamente; g_i , g_j representam os valores de gravidade nas estações gravimétricas i e j respectivamente e K é o coeficiente linear residual de escala do gravímetro.

Segundo a Equação (2.1), os intervalos gravimétricos apresentam erros observacionais, a compensação desses inevitáveis erros observacionais pode ser realizada a partir de modelos matemáticos. Segundo GEMAEL (1994), os modelos matemáticos que são aplicáveis em ajustamento de redes e que possuem expressões analiticamente fechadas são:

- (i) O modelo combinado;
- (ii) O modelo das equações de condição ou dos correlatos; e
- (iii) O modelo das equações de observação ou paramétrico

Segue uma descrição destes modelos:

O modelo combinado

O modelo matemático que representa o modelo combinado é expresso da seguinte forma (ESCOBAR, 1986):

$$F(X_a, L_a) = 0 (2.2)$$

onde F é um funcional associando os parâmetros ajustados com os valores dos intervalos gravimétricos ajustados podendo ser linear ou não-linear. No caso não-linear o modelo deve ser linearizado a fim de que se possa obter a solução do sistema, essa linearização é dada pela expansão em série de Taylor.

O vetor dos intervalos gravimétricos ajustados L_a é a soma vetorial dos intervalos gravimétricos observados L_b com o vetor dos resíduos V. O vetor dos parâmetros ajustados X_a é a soma vetorial dos valores aproximados dos parâmetros X_o com o vetor de correção X. Esses vetores são representados da seguinte forma:

$$L_a = L_b + V (2.3)$$

$$X_a = X_a + X \tag{2.4}$$

onde:

 X_a : vetor de dimensão $m \times 1$ dos parâmetros ajustados;

 X_o : vetor de dimensão $m \times 1$ dos parâmetros aproximados;

X: vetor de dimensão $m \times 1$ de correção dos parâmetros;

 $L_{\boldsymbol{a}}$: vetor de dimensão \boldsymbol{n} \boldsymbol{x} \boldsymbol{l} dos intervalos gravimétricos ajustados;

 $L_{\boldsymbol{b}}$: vetor de dimensão n x I dos intervalos gravimétricos observados; e

V: vetor de dimensão $n \times 1$ dos resíduos.

Então, o sistema é definido por:

$$AX + BV + W = 0 (2.5)$$

onde:

A: matriz dos coeficientes dos parâmetros, também conhecida como matriz 'design', que é representada por: $\frac{\partial F}{\partial X_a}\Big|_{X_a=X_a}$

B: matriz dos coeficientes dos intervalos gravimétricos ajustados que é representada por: $\left.\frac{\partial F}{\partial L_a}\right|_{L_a=L_h}$

W: vetor dos erros de fechamento que é representado por: $F(X_o, L_b)$.

Deseja-se, então, resolver o sistema dado pela Equação (2.5). Com esse objetivo Lagrange definiu a função.

$$\Phi = V^T P V + 2 \kappa^T (AX + BV + W)$$
 (2.6)

onde κ representa o vetor dos multiplicadores de Lagrange ou dos correlatos; e P representa a matriz dos pesos.

Anulando as derivadas parciais em relação à X , V e κ , então teremos as seguintes expressões:

$$\kappa = -(BP^{-1}B^{T})^{-1}(AX + W)$$
(2.7)

$$V = P^{-1}B^{T}\kappa \tag{2.8}$$

$$X = -\left(A^{T} \left(B P^{-1} B^{T}\right)^{-1} A\right)^{-1} \left(A^{T} \left(B P^{-1} B^{T}\right)^{-1} W\right)$$
(2.9)

Somando a Equação (2.8) com o vetor dos intervalos gravimétricos observados, encontra-se o vetor dos intervalos gravimétricos ajustados. Enquanto isso, os parâmetros ajustados são obtidos a partir do somatório do vetor dos parâmetros aproximados com o vetor de correção representado pela Equação (2.9).

O modelo dos correlatos ou das equações de condição

O modelo matemático é estabelecido por equações de condição ligando os intervalos gravimétricos. A matriz dos coeficientes dos parâmetros será nula na Equação (2.5), obtendo o modelo condicionado, ou das equações de condição, que envolve apenas os intervalos gravimétricos. O sistema é apresentado em termos dos valores ajustados e recebe o nome de sistema de equações de condição. O problema consiste em obter os melhores estimadores das grandezas observadas, com a condição de que a soma dos intervalos gravimétricos que constituem um circuito fechado seja igual a zero. A forma apresentada para o método condicionado é (ESCOBAR, 1980, MOREIRA, 1990, GEMAEL, 1994, SOUSA *et al.*, 1993):

$$F(L_a) = 0 \tag{2.10}$$

A forma linear do modelo, uma vez que não existem parâmetros, é estabelecido pela seguinte relação:

$$BV + W = 0 \tag{2.11}$$

O número de equações de condição que ligam os intervalos gravimétricos pode ser especificado pelos parâmetros, os quais são determinados a partir dos intervalos gravimétricos ajustados. Portanto, o número de equações de condição é determinado a partir do grau de liberdade.

A condição do método dos mínimos quadrados para resolver a Equação (2.11) é:

$$\Phi = V^T P V + 2 \kappa^T (BV + W)$$
 (2.12)

Impondo que as derivadas parciais da função Φ em relação à V e K sejam nulas, teremos as seguintes expressões:

$$\kappa = -\left(BP^{-1}B^{T}\right)^{-1}W\tag{2.13}$$

$$V = P^{-1}B^T \kappa \tag{2.14}$$

O ajustamento pelo modelo dos correlatos fornece os intervalos gravimétricos ajustados entre as estações que compõem os circuitos gravimétricos, isto é, o somatório do vetor dos resíduos que é representado pela Equação (2.14) com o vetor dos intervalos gravimétricos observados. Isso significa que, após o ajustamento, qualquer que seja o percurso utilizado para se calcular o intervalo de gravidade entre duas estações quaisquer, o resultado será o mesmo.

O modelo paramétrico ou das equações de observação

Um dos objetivos do ajustamento de redes gravimétricas relativas é a determinação dos valores de gravidade em cada estação gravimétrica. A utilização do modelo paramétrico possibilita calcular quantidades indiretamente, se estas se vinculam matematicamente a outras medidas que são obtidas de forma direta. Em geral, os parâmetros têm valores aproximados no início do ajustamento e obtêm-se melhores estimativas ao final do procedimento. Estes parâmetros representam incógnitas funcionais e são tratados como variáveis aleatórias.

Tomando-se $A \neq 0$, B = -I e W = L na Equação (2.5), obtemos uma expressão que representa o método paramétrico. Tratando-se do modelo paramétrico que é caracterizado pela aplicação de um modelo matemático tal que permita explicitar os intervalos gravimétricos ajustados em função dos parâmetros ajustados (ESCOBAR, 1980, MOREIRA, 1990, GEMAEL, 1994):

$$L_a = F(X_a) \tag{2.15}$$

O problema consiste na determinação dos valores mais prováveis da gravidade nas estações gravimétricas e do coeficiente linear residual de escala do instrumento. Satisfazendo a condição de ajustamento, a um vetor X_a corresponderá um vetor ajustado L_a dos intervalos

gravimétricos. Logo temos:

$$AX_a = L_a \tag{2.16}$$

Os elementos da matriz dos coeficientes dos parâmetros são representados numericamente por: $-k_o$ e k_o para as correções aos valores aproximados de g_o , e Δg_i para a correção ao valor aproximado do coeficiente linear residual de escala do gravímetro.

A forma prática das equações de observação que foram utilizadas no ajustamento é:

$$g_{ai} - g_{aj} = K L_{ajj} (2.17)$$

A Equação (2.17) representa o sistema de equações lineares que foi utilizado no ajustamento. Utilizando um procedimento algébrico nesta equação, temos:

$$\frac{1}{K} (g_{ai} - g_{aj}) = L_{aji}$$
 (2.18)

Substituindo $\frac{1}{K}$ por k e a Equação (2.3) na Equação (2.18), temos:

$$k g_{ai} - k g_{aj} = L_{bji} + v_{ji} (2.19)$$

sendo $k = k_o + x_k$; o valor estipulado inicialmente para k_o foi igual a 1 e x_k a correção a ser estimada no ajustamento referente a este valor inicial.

Substituindo a expressão de k e a Equação (2.4) na Equação (2.19) e chamando $L_{ji} = k_o \left(g_{oi} - g_{oj} \right) - L_{bji} \text{ encontraremos a seguinte expressão:}$

$$k_{o}x_{i} - k_{o}x_{i} + x_{b}(g_{oi} - g_{oi}) + L_{ii} = v_{ii}$$
(2.20)

Escrevendo a Equação (2.20) em notação matricial, teremos:

$$AX + L = V (2.21)$$

Portanto, querendo a melhor solução aproximada possível para os parâmetros ajustados, uma alternativa é minimizar a função objetivo que representa a condição dos Mínimos Quadrados (ESCOBAR, 1980; ROSIER, 1979):

$$\Phi = V^T P V = m inimo \tag{2.22}$$

Substituindo a Equação (2.21) na Equação (2.22) e impondo que a derivada parcial sobre os elementos da função Φ em relação a todos os elementos do vetor X, deva ser nula, encontraremos as equações normais que representam um sistema consistente de dimensão $m \times m$.

$$X = -\left(A^{T} P A\right)^{-1} \left(A^{T} P L\right) \tag{2.23}$$

Segundo GEMAEL (1994), antes do ajustamento é necessário estimar a precisão dos intervalos gravimétricos para compor a matriz covariância dos valores observados e, a partir da variância da unidade de peso *a priori* σ_o^2 , chegar à matriz pesos. Como a covariância, geralmente, é admitida nula, como no presente trabalho, a matriz peso é tratada como uma matriz diagonal de ordem n.

A matriz peso é de grande importância para o ajustamento de observação, isto é, uma má ponderação fornecerá um resultado incoerente. A análise específica sobre as matrizes peso nos ajustamentos foge ao objetivo principal deste trabalho, mas é farto na literatura específica, onde pode ser aprofundada. No presente trabalho, o critério de peso utilizado no ajustamento da rede gravimétrica relativa foi representado da seguinte forma:

$$p_1 \sigma_1^2 = p_2 \sigma_2^2 = \dots = p_n \sigma_n^2 = \sigma_o^2 \quad \Rightarrow \quad p_i = \frac{\sigma_o^2}{\sigma_i^2}$$
 (2.24)

A matriz peso é descrita da seguinte forma:

$$P = \sigma_o^2 \sum_{lb}^{-1}$$
 (2.25)

$$P = \sigma_o^2 \begin{bmatrix} \frac{1}{\sigma_1^2} & 0 & \dots & 0 & 0 \\ 0 & \frac{1}{\sigma_2^2} & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & \frac{1}{\sigma_n^2} \end{bmatrix} = \begin{bmatrix} p_1 & 0 & \dots & 0 \\ 0 & p_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & p_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & p_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & p_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & p_2 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots \\ 0$$

Portanto, o valor de σ_i no ajustamento foi representado pela incerteza padrão dos respectivos intervalos gravimétricos observados distintos. Segundo FARRET *et al.* (2006), a matriz peso é de grande importância para a qualidade do ajustamento. Uma escolha inadequada para a ponderação das observações pode prejudicar o ajustamento superestimando ou subestimando os parâmetros.

Segundo SOUSA *et al.* (1993), para melhorar as estimativas dos valores aproximados empregam-se iterações, sendo utilizados os primeiros resultados obtidos como valores aproximados melhorados na solução seguinte, e assim sucessivamente até que o processo iterativo atinja, caso exista, uma convergência a valores estacionários.

$$X_i^a \rightarrow X_{i+1}^o$$
, (i = 1, 2, 3,..., número de iterações) (2.26)

O instrumento utilizado na aquisição dos dados foi o gravímetro relativo LaCoste & Romberg G61, com precisão de 10 μGal. O valor estipulado para sinalizar a convergência do processo iterativo com uma certa margem de segurança foi de 5 μGal.

Após a obtenção dos parâmetros ajustados é necessário indicar uma estimativa da incerteza desses parâmetros. A estimativa de um conjunto de valores (parâmetros) deve vir acompanhada de um indicador da qualidade dos mesmos, que no caso será dada pela Matriz Variância Covariância dos parâmetros ajustados - MVC (Σ), é expressa por (GEMAEL, 1994):

$$\sum_{Xa} = \sigma_0^2 N^{-1} \tag{2.27}$$

onde σ_0^2 é o fator de variância *a priori* estabelecido no início do ajustamento.

Após o ajustamento pode-se calcular o fator de variância a posteriori:

$$\hat{\sigma}_o^2 = \frac{V^T P V}{n - m} \tag{2.28}$$

A fim de inspecionar o ajustamento, a variância de uma observação de peso *a priori*, sob um nível de significância α, deve ser testada estatisticamente com a variância de uma observação de peso *a posteriori*. Este teste é efetuado a partir do teste global baseado na distribuição de qui-quadrado. No presente trabalho, foi aplicada esta estatística, utilizando um nível de significância de 5%. Os procedimentos são:

(i) $\sigma_o^2 = \hat{\sigma}_o^2$: hipótese básica

(ii) $\sigma_o^2 \neq \hat{\sigma}_o^2$: hipótese alternativa

A distribuição de qui-quadrado é empregada para testar se a diferença entre as variâncias, citada acima, é ou não significativa. A rejeição da hipótese básica significa que o ajustamento apresenta algum(s) problema(s).

Se o ajustamento for aceito no teste estatístico, este valor é aceitável comparando com o valor estimado para o fator de variância *a priori* (σ_o^2) , arbitrado no início do ajustamento. Assim, pode-se resumir que (AKU, 2007; SANTOS JÚNIOR, 2005):

$$\sum_{X_a} = \hat{\sigma}_0^2 N^{-1} \tag{2.29}$$

Segundo FARRET et~al.~(2006), a aplicação do teste global baseado na distribuição de qui-quadrado é para analisar a discrepância entre a variância da unidade de peso a~priori e a variância da unidade de peso a~posteriori no ajustamento. Caso a hipótese básica seja rejeitada, isto aponta problemas na qualidade do ajustamento. Segundo GEMAEL (1994), a base do problema é um V^TPV muito elevado, cuja primeira suspeita recai na possibilidade de presença de erros grosseiros, os quais provocariam grandes resíduos que atuariam diretamente no cálculo da forma quadrática ponderada dos resíduos. Também podem existir outras causas que devem ser investigadas que são: a matriz peso, um sistema mal condicionado, modelo matemático inadequado, erros de cálculos ou problema na linearização.

2.3 - Condicionamento do sistema

É fácil compreender o perigo que os sistemas mal condicionados oferecem, pois um pequeno erro nos coeficientes ou no termo independente, mesmo de arredondamento, pode ser amplificado. O risco existe mesmo no caso de coeficientes exatos, pois a conversão do sistema decimal para o binário e vice-versa, pode gerar erros em si insignificantes, mas cuja dilatação, através do mau condicionamento, poderá comprometer seriamente a solução do problema.

Segundo GEMAEL (1994), não temos recursos *a priori* para conhecer o condicionamento de uma dada matriz. Existem os números de condição que podem servir de indicadores do condicionamento de uma matriz.

(i) Número de Turing

$$T_1 = \frac{t t'}{n}$$
, onde: $t^2 = tr(N^T N)$ e $t'^2 = tr[(N^{-1})^T N^{-1}]$

$$T_2 = n \max \left| N_{ij} \right| \max \left| N_{ij}^{-1} \right|$$

No número T_1 , "tr" significa o "traço" da matriz produto; o número T_2 resulta do produto dos maiores elementos (módulos) de N e N^{-1} entre si, e pela ordem da matriz.

(ii) Número de TODD

$$P = \frac{\left|\lambda \max\right|}{\left|\lambda \min\right|}$$

onde λ_i representa os valores próprios da matriz N

(iii) Número de condição H

$$H = \sqrt{\frac{|U \max|}{|U \min|}}$$

onde U_i representa os valores próprios da matriz $N^T N$

Apesar de pouco divulgados, existem testes que determinam o grau de condicionamento de uma matriz, através da aplicação de cinco desigualdades impostas aos números de condição (VASCONCELLOS, 2003). São elas:

$$T_{1} \leq T_{2}$$

$$T_{2} \leq n^{2} T_{1}$$

$$T_{1} \leq H$$

$$H \leq n T_{1}$$

$$P \leq H$$

A classificação do condicionamento da matriz se dá de acordo com a quantidade de desigualdades satisfeitas, conforme a Tabela 2.1.

 Tabela 2.1
 Classificação de condicionamento

Desigualdades satisfeitas	Grau de condicionamento
Cinco	Fortemente condicionada
Quatro	Bem condicionada
Três	Relativamente condicionada
Duas	Suficientemente condicionada
Uma	Fracamente condicionada
Zero	Mal condicionada

2.4 - O Método da Soma Mínima

Se os erros observacionais que são registrados durante o levantamento gravimétrico não seguem uma distribuição Gaussiana, nem obedecem as condições do Teorema de Gauss-Markov, aplicam-se procedimentos robustos que são menos sensíveis a erros observacionais que não seguem essas condições. Um dos procedimentos robustos é baseado na minimização dos valores absolutos dos resíduos ou Método da Soma Mínima (MSM).

O MSM é um método muito utilizado para lidar com possíveis valores anômalos, ou seja, não é restrito a uma distribuição Gaussiana. Essa não restrição é devido à presença de valores anômalos mascarados nos intervalos gravimétricos. Para encontrar a melhor solução possível para o vetor de correção X, a Equação (2.21) tem que obedecer ao critério de minimização dos valores absolutos dos resíduos, que é representado da seguinte forma:

$$\Psi = |V| \longrightarrow m\text{inimo} \tag{2.30}$$

Uma forma de obter a solução aproximada é a partir do algoritmo de ajustamento baseado no método SIMPLEX (BRANHAM, 1990), que tradicionalmente é empregado em ajustamento para estimar os valores dos parâmetros. O método SIMPLEX é um algoritmo que permite resolver problemas de programação linear. A idéia básica do método SIMPLEX consiste em resolver repetidas vezes um sistema de equações lineares para obter uma sucessão de Soluções Básicas Admissíveis (SBA), cada uma melhor que a anterior, até se chegar a uma SBA ótima. Essa pesquisa da solução ótima é realizada apenas entre as SBA num processo iterativo efetuado de modo que o valor da função objetivo decresça em cada iteração. O algoritmo SIMPLEX requer uma SBA inicial, isto é, zerando todos os elementos da função a ser minimizada. As variáveis nulas são consideradas variáveis não-básicas e as outras são chamadas de variáveis básicas. As variáveis não-básicas, inicialmente, são as correções a serem estimadas para os parâmetros ajustados e as variáveis básicas são os resíduos que serão

a solução inicial. Assumindo que todos os parâmetros ajustados possuam correções, o número de resíduos nulos é da ordem do número de correções estimado para os parâmetros.

Outra forma alternativa emprega uma modificação no critério de peso mencionado anteriormente. Segundo CSAPÓ *et al.* (2003), pode-se estimar o vetor de correção dos parâmetros a partir das equações normais. Reescrevendo Equação (2.30), em forma dos seus elementos, pode-se aplicar a condição de extremos e, igualando a zero, encontrar uma expressão para as equações normais que foi descrito dá seguinte forma por CSAPÓ *et al* (2003).

$$\psi(x) = \sum_{i=1}^{n} \left| l_i + \sum_{j=1}^{m} a_{ij} x_j \right| \longrightarrow m\text{inimo}$$
 (2.31)

$$\frac{\partial \psi(x)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\sum_{i=1}^n \left| l_i + \sum_{k=1}^m a_{ik} x_k \right| \right) = 0$$
 (2.32)

$$\frac{\partial \psi(x)}{\partial x_{i}} = \sum_{i=1}^{n} \operatorname{sgn}(v_{i}) \sum_{k=1}^{m} a_{ik} \, \delta_{kj} = 0$$
 (2.33)

$$\delta_{kj} = \begin{cases} 1 ; \text{se } k = j \\ \\ 0 ; \text{se } k \neq j \end{cases}$$

onde δ_{ki} é a função delta de Dirac.

$$\frac{\partial \psi(x)}{\partial x_{i}} = \sum_{i=1}^{n} \frac{1}{|v_{i}|} \left(l_{i} + \sum_{k=1}^{m} a_{ik} x_{k} \right) a_{ik} = 0$$
 (2.34)

Introduzindo os elementos da diagonal principal da matriz peso (w_{ii}) na Equação (2.34), encontraremos uma expressão para o vetor de correção representada por:

$$\sum_{i=1}^{n} \sum_{k=1}^{m} a_{ik} w_{ii} a_{ik} x_{k} = -\sum_{i=1}^{n} a_{ik} w_{ii} l_{i}$$
 (2.35)

Transformando a Equação (2.35) à forma matricial e utilizando alguns procedimentos algébricos, encontraremos o conjunto de equações normais do problema:

$$(A^T W A)X = -A^T W L (2.36)$$

$$W = diag(w_{ii}), \qquad i = 1, 2, 3, ..., n$$

$$X = -(A^{T} W A)^{-1} (A^{T} W L)$$
 (2.37)

Antes de deixar as duas formas alternativas de ajustamento baseado no MSM, devemos abordar o problema de estimar as incertezas dos parâmetros ajustados. No MMQ, a Matriz Variância-Covariância dos parâmetros ajustados (\sum_{xa}) é utilizada para estimar uma qualidade da precisão para os parâmetros ajustados. Porém, no MSM não existe nenhuma expressão analiticamente fechada que possa estimar a precisão dos parâmetros após o ajustamento como é realizado no MMQ, a partir da Matriz Variância-Covariância dos parâmetros ajustados. No MSM existe algo semelhante à Matriz Variância-Covariância para encontrar as incertezas dos parâmetros ajustados?

O que existem são formas alternativas de estimar a precisão dos parâmetros ajustados, dentre elas:

- (i) BRANHAM (1990) admite que os erros no vetor das incógnitas advenham somente do vetor das observações experimentais, e realiza a estimativa dos erros por meio de uma expressão; e
- (ii) Adicionando ruídos aleatórios nos intervalos gravimétricos originais e executando ao menos vinte simulações de soluções. O desvio absoluto mediano (MAD) é uma estimativa da incerteza dos parâmetros ajustados.

Utilizando a segunda alternativa, os valores foram estimados tomando-se sorteios de números aleatórios no limite de tolerância de -3 a 3. Portanto, os números sorteados foram multiplicados com o desvio absoluto mediano dos intervalos gravimétricos observados e

somados com os próprios intervalos gravimétricos observados. Esse processo foi realizado vinte vezes, isto é, um número razoável para que não ocorram grandes flutuações estatísticas nas incertezas dos parâmetros ajustados.

Capítulo 3

Estudo de caso: A rede gravimétrica LC & R G61

3.1 - Introdução

O Observatório Nacional iniciou levantamentos gravimétricos terrestres em 1955, utilizando primeiramente, o gravímetro Worden W 178 e, posteriormente, os gravímetros LaCoste & Romberg G61 e G257, mais estáveis e precisos. No final da década de 60, o Observatório Nacional a rede gravimétrica relativa implantada pelo gravímetro LC & R G61 que tinha como objetivo dotar o Brasil de uma rede gravimétrica de alta precisão. O gravímetro LC & R G61 foi cedido pelo serviço norte-americano *Inter American Geodetic Survey (IAGS)*.

Durante o período de 1968 a 1979, logrou-se um acervo de 1580 estações gravimétricas distribuídas desde Porto Alegre (RS) até Fortaleza (CE) e desde o Rio de Janeiro (RJ) até Cuiabá (MT) com 12276 leituras instrumentais originais, 4092 leituras instrumentais médias e 3518 intervalos gravimétricos observados, 1685 dos quais são distintos.

GAMA (1972) realizou o ajustamento das regiões centro e sul do Brasil tomando como estação de referência a estação do Rio de Janeiro "A", no Observatório Nacional, com valor da gravidade de 978805,000 mGal, referido ao datum de Potsdam. GAMA (1973) realizou um novo ajustamento da rede estendendo-a até a região do nordeste.

MOREIRA (1990) realizou o ajustamento de um conjunto particular de dados da rede G61, tomando como datum e escala nove estações gravimétricas da *IGSN71* que coincidem com estações gravimétricas da rede estudada. Esse tratamento foi executado em duas etapas de processamentos:

- (i) utilizando a técnica dos polígonos correlatos; e
- (ii) utilizando o método paramétrico para encontrar a unicidade dos valores de gravidade. A ponderação utilizada no ajustamento foi única para todos intervalos gravimétricos.

3.2 - Datum gravimétrico

Qualquer uso de dados gravimétricos na Geofísica, pressupõe que estes dados possam ser comparados entre si. Portanto, os levantamentos gravimétricos devem estar referidos a um mesmo "datum", a fim de poder estabelecer comparações entre eles. Na rede G61, onze estações gravimétricas referentes à *IGSN71* coincidem com as estações gravimétricas da própria rede. Somente cinco estações gravimétricas da *IGSN71* foram utilizadas no ajustamento devido à retirada de ramais isolados.

Essas estações gravimétricas possuem valores de gravidade conhecidos, logo foram tratados como valores fixos e adotados como datum e escala no ajustamento. As estações gravimétricas da *IGSN71* estão representadas com o seu código, nome, e respectivos valores de gravidade e desvio padrão na Tabela 3.1. A Figura 3.1 mostra a localização das cinco estações gravimétricas referente à *IGSN71*.

Tabela 3.1 As estações gravimétricas da *IGSN71* coincidentes com a rede G61.

Estações da IGSN71				
Código da <i>IGSN-71</i>	Nome da estação	Valor absoluto de gravidade (mGal)		
32884J	Recife "J"	978151,250 ± 0,034		
40123A	Rio de Janeiro "A"	978789,900 ± 0,027		
40100B	Vitória "B"	978641,830 ± 0,042		
43801B	Porto Alegre "B"	979305,000 ± 0,041		
43812B	Pelotas "B"	979466,630 ± 0,039		

Figura 3.1 As estações da *IGSN71* coincidentes com a rede G61.

3.3 - Princípios de funcionamento do gravímetro LaCoste&Romberg

O gravímetro LaCoste&Romberg G61 possui pequenas variações, graças a essas pequenas variações que suas funções de escala sofrem com o decorrer do tempo, apresentam derivas instrumentais reduzidas e bastantes regulares. Além de ser um equipamento de fácil locomoção, seu sistema encontrasse numa câmara vedada, na qual sua temperatura interna é mantida constante através da ação de um termostato. Ele consiste essencialmente de uma mola muito sensível (mola de comprimento nulo) e um mecanismo delicado que contém um sistema de dial capaz de captar a menor mudança da força atuante sobre a mola pela variação do seu comprimento. As leituras no gravímetro são dadas em unidades instrumentais, que correspondem a um determinado número de contagens dadas pelo passo do parafuso de medida (dial). Isso corresponde ao movimento realizado pelo dial para, após a mola ter-se deformado com a ação da força de gravidade, retomá-la a sua posição original (linha de leitura). A força aplicada ao equipamento deve corresponder à mesma força de gravidade que provocou a deformação da mola. As Figuras 3.2 e 3.3, mostram de uma forma simplificada o gravímetro LaCoste&Romberg modelo G. A mola principal, a chamada "mola de comprimento nulo" (1), é solidária à alavanca (2) que, por sua vez, é ligada diretamente a estrutura do gravímetro mediante a mola (3). Essa mola é chamada de "mola de absorção de choques" e funciona também como uma articulação, já que forma um pivô flutuante que elimina os atritos e possibilita à alavanca efetuar um movimento de rotação segundo um plano vertical (plano da figura), com um grau de liberdade. O fio de leitura (fiel) tem sua imagem projetada por uma fonte luminosa sobre um anteparo translúcido provido de uma escala graduada (4), encontra-se fixo à alavanca, permitindo observar a posição dessa última através de um microscópio que aumenta a imagem da escala.

O centro de massa do pêndulo é representado pelo ponto (5), cujas variações no módulo da aceleração da gravidade provocam deslocamentos da alavanca (2), cuja posição pode ser controlada através da ação manual do botão micrométrico (6), ligado ao parafuso de

medida (7). O movimento do parafuso de medida é transmitido a alavanca com o auxílio do sistema de barras de conexão (8), e a um contador digital, situado no painel do instrumento (9).

As baterias recarregáveis asseguram o fornecimento da energia elétrica necessária para o funcionamento do termostato e a iluminação da escala graduada. Os parafusos calantes, em número de três e em conjunto com dois níveis de bolha situados no painel do gravímetro, permitem efetuar o nivelamento do equipamento.

Figura 3.2 Mostra esquematicamente a parte interna do gravímetro LC&R G61.

Figura 3.3 Mostra o gravímetro LC&R modelo G com suas identificações.

3.4 - A rede gravimétrica LaCoste & Romberg G61

Na rede G61, apenas 67 estações gravimétricas formavam ramais isolados e foram descartadas do ajustamento. O tratamento dos dados foi realizado tomando como base os circuitos gravimétricos fechados. Portanto, os intervalos gravimétricos observados que foram classificados como ramais isolados referentes às estações gravimétricas também foram retirados do acervo de dados, totalizando 1618 intervalos gravimétricos observados distintos.

A Figura 3.2 mostra as 1513 estações gravimétricas da rede G61 que foram tratadas no ajustamento. Essas estações gravimétricas estão localizadas mais na região costeira do Brasil por alguns motivos, dentre eles a segurança, tanto do gravímetro como do técnico responsável pela aquisição dos dados, e a falta de acesso a muitas áreas ou regiões.

Figura 3.4 A rede G61 contém 1513 estações gravimétricas, onde cinco estações gravimétricas coincidem com a rede *IGSN71*.

Na formação dos circuitos gravimétricos independentes os critérios utilizados para a sua construção foram:

- 1 Encontrar todas as estações nodais da rede G61, isto é, estações gravimétricas que ligam no mínimo outras três estações gravimétricas;
- 2 Separar as estações nodais por estados ou áreas, para evitar ambigüidade;
- 3 Os circuitos gravimétricos independentes obedeceram na sua formação ao sentido horário; e
- 4 Utilizou-se o critério de menor perímetro entre os circuitos gravimétricos.

A formação dos circuitos gravimétricos independentes tem como característica o início e término na mesma estação nodal e consiste na ocupação sucessiva de um número finito de estações, como exemplifica a Figura 3.3.

Figura 3.5 Circuito gravimétrico totalizando 17 estações gravimétricas: 15 estações a ajustar e 2 da *IGSN71*.

Os critérios permitiram definir 105 circuitos gravimétricos independentes da rede G61. Esses circuitos serviram como base para a formação das equações de observação no ajustamento. A Figura 3.4 mostra a distribuição de todos os circuitos gravimétricos independentes da rede G61.

Figura 3.6 A distribuição dos 105 circuitos gravimétricos independentes da rede G61.

3.5 - Algumas estatísticas da rede G61

Suponhamos que a distribuição dos desvios dos intervalos gravimétricos em relação às suas médias siga uma distribuição Gaussiana, isto é, se superpõe a uma curva Gaussiana de mesmo valor médio e desvio padrão da distribuição. A Figura 3.5 mostra o histograma da distribuição dos desvios com a curva Gaussiana, em vermelho, de mesmo valor médio e

desvio padrão da distribuição igual a 0,00 ± 0,03 mGal, que melhor se superpõe à distribuição, com valores de referência para a curtose igual a 3 e obliquidade nula. Os valores calculados referentes a curtose e obliquidade foram respectivamente: 60 e 2. Note-se a discrepância entre a distribuição dos desvios com a curva Gaussiana superposta. Então, a partir dessa discrepância supõem-se que há possíveis valores anômalos presentes nos intervalos gravimétricos observados.

Figura 3.7 O histograma dos desvios dos intervalos gravimétricos em relação às médias. Os desvios variam entre -0,356 a 0,574 mGal.

A rede gravimétrica do G61 não se encontra ajustada, isto é, a soma de todos os intervalos gravimétricos observados de cada circuito não se anula. Esses valores não nulos denominam-se erros de fechamento. A partir desses erros de fechamento nota-se uma incoerência em um dos circuitos gravimétricos independentes. Esta incoerência foi indício de um "salto" que o gravímetro diferencial sofreu durante a aquisição das leituras instrumentais.

Este "salto" foi de aproximadamente 1 mGal, ocorrido no dia 21 de novembro de 1969. Assim, foi realizada uma tentativa de neutralizar este salto ocorrido com o gravímetro, onde o correto seria realizar uma nova leitura na última estação isenta do "salto". Esta tentativa foi aplicada, abrindo uma nova campanha entre a última estação isenta do "salto" com a primeira estação que sofreu este "salto" na leitura instrumental.

A Tabela 3.2 mostra os valores dos erros de fechamento para os circuitos gravimétricos antes do "salto" que o gravímetro diferencial adquiriu.

Tabela 3.2 Mostra os valores dos erros de fechamento em mGal.

Circuito	Erro de	Número de	Circuito	Erro de	Número de
gravimétrico	fechamento	intervalos	gravimétrico	fechamento	intervalos
1	-0.016	017	34	0.065	033
2	-0.013	012	35	0.063	073
3	0.129	015	36	0.040	055
4	0.014	003	37	-0.034	065
5	-0.279	006	38	-0.069	137
6	-0.231	003	39	-0.022	003
7	-0.022	008	40	-0.024	007
8	-0.061	006	41	0.018	003
9	-0.097	007	42	-0.053	003
10	0.012	007	43	-0.042	005
11	0.105	003	44	-0.041	037
12	0.136	003	45	0.000	003
13	0.090	005	46	0.021	013
14	-0.040	003	47	-0.067	017
15	0.065	004	48	0.070	003
16	0.168	003	49	0.012	004
17	0.110	007	50	0.022	003
18	0.059	004	51	0.053	033
19	-0.025	003	52	0.054	005
20	-0.034	012	53	0.036	061
21	-0.069	005	54	0.025	005
22	-0.390	003	55	-0.003	003
23	-0.098	007	56	-0.011	003
24	0.044	006	57	0.097	014
25	0.070	007	58	-0.025	006
26	0.179	010	59	0.120	075
27	-0.056	005	60	-0.050	069
28	0.331	005	61	0.031	014
29	0.100	003	62	-0.085	017
30	0.042	003	63	-0.509	018
31	-0.012	003	64	0.092	049
32	-0.025	003	65	-0.311	034
33	-0.089	003	66	-0.050	006

Circuito gravimétrico	Erro de fechamento	Número de intervalos	Circuito gravimétrico	Erro de fechamento	Número de intervalos
67	0.072	005	87	0.130	063
68	0.063	007	88	-0.049	067
69	0.064	006	89	-0.036	094
70	0.068	007	90	0.086	006
71	0.007	003	91	-0.026	005
72	-0.045	003	92	-0.082	008
73	0.061	003	93	0.005	003
74	-0.059	003	94	0.025	009
75	0.335	007	95	-0.108	012
76	-0.162	081	96	0.048	003
77	-0.066	003	97	-0.053	004
78	-0.149	133	98	-0.031	271
79	0.034	019	99	-0.013	006
80	0.125	023	100	0.064	008
81	-0.031	005	101	0.030	007
82	0.111	067	102	0.108	292
83	-0.092	003	103	0.018	003
84	0.058	003	104	0.004	030
85	-0.082	004	105	0.025	172
86	-0.039	004			. "

O circuito 63 exibiu um "salto", ocorrido com o gravímetro diferencial LC&R G61, que pode ser detectado. Realizando a tentativa de neutralizar este "salto", os valores dos erros de fechamento dos outros circuitos gravimétricos permaneceram inalterados. Assim, a Tabela 3.3 mostra o valor do erro de fechamento após a retirada do "salto" ocorrido com o gravímetro diferencial.

Tabela 3.3 Mostra o valor do erro de fechamento, em mGal, do circuito 63 após a neutralização do "salto" ocorrido com o gravímetro diferencial.

Circuito gravimétrico	Erro de fechamento	Números de intervalos
63	-0.959	18

O valor do erro de fechamento aumentou, em módulo, devido ao intervalo gravimétrico que foi perdido para abrir uma nova campanha. Assim, o valor médio deste intervalo diminuiu, isto é, fazendo com que o erro de fechamento aumentasse em módulo.

A Figura 3.6 mostra a distribuição dos erros de fechamento com um erro médio igual a 0.00 ± 0.14 mGal superposta com a curva Gaussiana, em vermelho, de mesmo valor médio e desvio padrão dos erros de fechamento, com valores de referência para curtose igual a 3 e obliquidade nula. Os valores calculados referentes a curtose e obliquidade foram respectivamente: 24 e -3. Note-se a discrepância entre a distribuição e a curva Gaussiana

Figura 3.8 O histograma dos erros de fechamento. Os valores variam entre -0,959 a 0,335 mGal.

A partir da discrepância entre a distribuição dos erros de fechamento e da curva Gaussiana, que se superpõe à distribuição, e da análise do histograma dos desvios, vistos anteriormente, supõe-se a existência de valores anômalos nos intervalos gravimétricos da rede G61. Portanto, querendo a unicidade do valor de gravidade para cada estação gravimétrica, o método mais aconselhável a ser aplicado no ajustamento, que possa lidar melhor com esses

eventuais valores anômalos, é o método robusto, mais precisamente, o Método da Soma Mínima, como é proposto no presente trabalho. Isso não quer dizer que o Método dos Mínimos Quadrados não possa ser utilizado no ajustamento da rede gravimétrica relativa do G61. Entretanto, na utilização do MMQ esses eventuais valores anômalos seriam distribuídos durante o ajustamento gerando uma incoerência com a unicidade dos valores de gravidade.

Capítulo 4

Ajustamento da rede LC & R G61 segundo a norma L₂

4.1 - O ajustamento com injunção mínima da rede gravimétrica LC&R G61

Nesta primeira etapa do projeto de pós-graduação, utiliza-se o ajustamento com injunção mínima para verificar a qualidade dos dados. Este processo foi realizado fixando uma estação gravimétrica da rede G61 coincidente com a *IGSN71*, isto é, a estação 010176 que fica localizada no Observatório Nacional, Rio de Janeiro "A". O valor de gravidade desta está representado na Tabela 3.1, onde o seu código é representado por 40123A.

Segundo MOREIRA (1990), a verificação da qualidade dos dados também pode ser encontrada a partir de um modelo matemático onde se utiliza somente os intervalos gravimétricos. Este modelo matemático é representado pelo método das equações de condição, também conhecido como métodos dos correlatos. Assim, a variância da unidade de peso *a posteriori* para os intervalos gravimétricos ajustados pode ser avaliada da seguinte maneira:

$$\sigma^2 = \frac{1}{N} \sum_{i} v_i \, v_i$$

onde N é o número de intervalos gravimétricos e v_i o resíduo associado a cada intervalo gravimétrico ajustado.

Após realizar o ajustamento com injunção mínima, os resíduos foram calculados e introduzidos nos intervalos gravimétricos observados δg_b obtendo-se os intervalos gravimétricos ajustados $\hat{\delta} g_a$. A variância da unidade de peso *a posteriori* pode ser avaliada pela seguinte expressão:

$$\hat{\sigma}_o^2 = \frac{1}{r} \sum_i \left(\hat{\delta} g_{ai} - \delta g_{bi} \right)^2 \tag{4.1}$$

onde r é o número de graus de liberdade.

A variância da unidade de peso *a posteriori* encontrada pela Equação (4.1) foi:

$$\hat{\sigma}_o^2 = \frac{1}{106} (0.231) = 0.0022 \text{ mGal}^2$$

Então, a partir do desvio padrão, é possível encontrar a precisão da rede gravimétrica G61, que é:

$$\hat{\sigma}_{o} = \pm 0.047 \,\mathrm{mGal}$$

A obtenção da variância *a posteriori*, nesta primeira etapa do projeto, permite avaliar os intervalos gravimétricos a partir dos resíduos. Esta avaliação foi realizada a partir de níveis de tolerância utilizando a precisão da rede G61.

Realizando um reprocessamento, do ajustamento com injunção mínima, mas utilizando uma ponderação diferente para os intervalos gravimétricos, onde esta ponderação foi representada pelo quadrado da precisão da rede G61 sobre o quadrado da incerteza padrão, o valor calculado para a variância *a posteriori* foi:

$$\hat{\sigma}_{o}^{2} = 0.0020 \text{ mGal}^{2}$$

Comparando este valor calculado com a variância *a priori* conclui-se que a ponderação foi adequada no ajustamento.

4.2 - Ajustamento da rede gravimétrica G61

Realizada a etapa do modelo matemático adotado e do acervo de dados que será utilizado na investigação do algoritmo de ajustamento via norma L_1 , resta encontrar os melhores valores aproximados que representam os parâmetros envolvidos no ajustamento que serviram de base de comparação para a investigação do algoritmo em estudo.

Para obter a solução aproximada para os parâmetros ajustados utilizou-se o método paramétrico. Os parâmetros iniciais que foram utilizados na primeira iteração são os valores de gravidade calculados pelo programa *GRR* (SOUSA, 2006) a partir da estação gravimétrica 40123A, e valor unitário para o coeficiente linear residual de escala do gravímetro G61. A cada processo iterativo, os melhores valores aproximados calculados para os parâmetros, a partir do MMQ, serviram de valores iniciais para a próxima iteração e assim sucessivamente até ocorrer a convergência dos valores. A solução dos melhores valores aproximados para os parâmetros foi alcançada após ter realizado duas iterações, para que a soma dos quadrados dos resíduos convergisse em relação ao critério de parada de 5 μGal.

Embora as leituras instrumentais do gravímetro G61 tenham sido corrigidas pelo fator de escala fornecido pela tabela do fabricante, devemos admitir que a escala da *IGSN71* seja diferente daquela utilizada pelo fabricante do gravímetro G61. Assim, o coeficiente linear residual de escala do gravímetro G61 foi inserido como um parâmetro a ser estimado. Tal coeficiente foi aplicado aos valores dos intervalos gravimétricos de modo a reduzi-lo à escala da *IGSN71*.

A condição do MMQ para estimar os melhores valores possíveis para os parâmetros foi tratada como condição ponderada, representada pela Equação (2.22). A matriz peso tem grande importância no ajustamento, isto é, ponderação inadequada gera valores incoerentes para os parâmetros e para suas respectivas incertezas. Sabendo da importância da ponderação no ajustamento, os valores representativos dos pesos foram representados pelo quadrado da precisão da rede G61 sobre o quadrado da incerteza padrão de cada intervalo gravimétrico.

Para obter os melhores valores dos parâmetros ajustados foi preciso realizar algumas iterações como menciona SOUSA *et al.*(1993). A cada iteração realizada os valores dos parâmetros ajustados melhorados iam tornando-se valores iniciais para a próxima iteração. Então, a cada iteração a condição dos Mínimos Quadrados ponderada convergia para o valor estipulado de 5μGal.

Foram realizadas duas iterações, isto é, a convergência estimada de 5μ Gal foi alcançada na segunda iteração a partir da comparação com a terceira iteração. Sabendo que o coeficiente linear residual de escala do gravímetro G61 foi tratado como um dos parâmetros a ser estimado, seu valor ajustado foi de $1,00032 \pm 0,000085$. Os outros valores dos parâmetros ajustados estão indicados no Apêndice I.

A partir dos valores dos parâmetros ajustados foi possível encontrar os valores dos resíduos satisfazendo a Equação (2.21). A Figura 4.1, mostra uma curva Gaussiana, em azul, com o mesmo valor médio e desvio padrão da distribuição que melhor superpõe à própria distribuição, tendo como valores de referências: curtose igual a 3 e obliquidade nula. Os valores da curtose e obliquidade que foram calculados são, respectivamente: 97 e 3.

Figura 4.1 Os valores dos resíduos variam entre -0,221 a 0,256 mGal com uma média da distribuição igual a 0.00 ± 0.02 mGal.

A avaliação dos resíduos permite as seguintes afirmações:

- I. No nível de tolerância acima de um desvio padrão: 27 intervalos gravimétricos observados seriam rejeitados;
- II. No nível de tolerância entre um e dois desvios padrão: 17 intervalos gravimétricos observados seriam rejeitados;
- III. No nível de tolerância entre dois e três desvios padrão: 5 intervalos gravimétricos observados seriam rejeitados; e
- IV. No nível de tolerância acima de três desvios padrão: 5 intervalos gravimétricos observados seriam rejeitados.

Estes intervalos gravimétricos observados, a rigor, deveriam ser novamente medidos. Sabendo, que o gravímetro diferencial G61, emprestado pelo *Inter American Geodetic* Survey (*IAGS*) ao Observatório Nacional, não se encontra mais disponível desde 1979, torna-se impossível a realização de novas medidas nestes intervalos gravimétricos. Portanto, estes intervalos gravimétricos observados foram considerados no ajustamento para realizar a investigação do algoritmo de ajustamento via norma L₁.

A Tabela 4.1 mostra estes intervalos gravimétricos observados que ficaram acima do nível de tolerância e que deveriam ser, a rigor, novamente medidos.

Tabela 4.1 Mostra a distribuição dos 27 intervalos gravimétricos dentro do seu respectivo nível de tolerância.

Intervalo gravimétrico	entre 1σ e 2σ	entre 2 σ e 3 σ	acima 3σ	Resíduo (mGal)
SGE 03 - SGE 02	-	-	X	0.216
SP 27 - 40Y	-	X	-	0.100
RJ16Q - RJ17U	X	-	-	0.064
167N - 126S	X	-	-	0.071
010176 - RJ 01	X	-	-	0.055
RJ17U - 010476	-	-	X	0.256
126S - MG 06	X	-	-	0.056
317R - 317T	X	-	-	0.083
317O - 317R	-	-	X	0.159
317M - 317O	-	X	-	0.125
317G - 317H	X	-	-	0.053
317F - 317G	X	-	-	0.086
317E - 317F	X	-	-	0.094
316Z - 317A	-	X	-	0.135
316S - 316U	X	-	-	0.083

Intervalo gravimétrico	entre 1σ e 2σ	entre 2σ e 3σ	acima 3σ	Resíduo (mGal)
322P - 322S	X	-	-	0.086
322L - 322M	-	X	-	0.109
375C - 374T	X	-	-	0.052
121282 - 26Y	-	-	X	-0.222
SP 27 - SP 29	-	-	X	-0.162
RJ17U - SGE 01	-	X	-	-0.104
242O - 240L	X	-	-	-0.051
012376 - 69M	X	-	-	-0.053
305C - BA 14	X	-	-	-0.064
324X - 324Y	X	-	-	-0.054
360E - 349S	X	-	-	-0.055
322G - 322S	X	-	-	-0.088

A partir da Tabela 4.1, foram identificados 27 intervalos gravimétricos observados que possuíram resíduos acima da precisão da rede G61. Será que esses intervalos gravimétricos observados aparecem numa análise via norma L_1 ?

4.3 - Critério de confiabilidade da rede gravimétrica LC & R G61

No presente trabalho, os erros grosseiros foram corrigidos e o problema de linearização é descartado, pois o modelo é linear. Esses itens se prestam de forma adequada para uma possível verificação e correção de eventuais problemas. O mesmo não pode ser dito em relação à ponderação e ao condicionamento. Este dois critérios inicialmente serão avaliados a partir do teste global, com base na distribuição de qui-quadrado.

Para detectar esses possíveis problemas, depois de concluído o ajustamento, se faz uma comparação entre a variância *a priori* (σ_o^2) e a variância *a posteriori* $(\hat{\sigma}_o^2)$. Neste

processo, o teste de hipótese global bilateral, baseado na distribuição de qui-quadrado χ^2 , constata se há uma discrepância significativa a certo nível de confiança (GEMAEL, 1994, SANTOS JUNIOR, 2005). A fórmula utilizada é:

$$\chi^{*2} = \frac{V^T P V}{\sigma_O^2} = \frac{\hat{\sigma}_o^2}{\sigma_O^2} r \tag{4.1}$$

onde,

 $\hat{\sigma}_{o}^{2}$: representa a variância de unidade de peso *a posteriori*

 σ_a^2 : representa a variância de unidade de peso *a priori*

r: representa o grau de liberdade da rede gravimétrica LaCoste & Romberg G61

A Equação 4.1 estatisticamente segue uma distribuição qui-quadrado com r graus de liberdade. A variância de uma observação de peso unitário a priori σ_o^2 , ao nível de significância α , deve ser comparada estatisticamente com a variância de uma observação de peso unitário a posteriori $\hat{\sigma}_o^2$ mediante as hipóteses abaixo:

(i)
$$\sigma_o^2 = \hat{\sigma}_o^2$$
: hipótese nula (H_o)

(ii)
$$\sigma_o^2 \neq \hat{\sigma}_o^2$$
: hipótese alternativa (H_1)

O critério de ponderação foi tratado como o quadrado da precisão da rede G61 sobre o quadrado da incerteza padrão. O valor para a variância de peso unitário *a posteriori* foi igual a $0,0021~\text{mGal}^2$. Este valor deve ser comparado estatisticamente com o valor estipulado inicialmente para a variância de peso unitário *a priori* σ_o^2 , que foi tratada com o valor de $0,0022~\text{mGal}^2$. Substituindo na Equação (4.1) os valores estipulados para as variâncias e para o grau de liberdade da rede G61, temos:

$$\chi^{*2} = \frac{V^T P V}{\sigma_o^2} = \frac{\hat{\sigma}_o^2}{\sigma_o^2} r = \frac{0,0021}{0,0022} 109 = 104,00$$
 (4.2)

Utilizando nível de significância (α) de 5% e tabela de qui-quadrado mediante interpolação:

$$\chi^2_{109,0,025} = 82,00$$

 $\chi^2_{109,0,975} = 139,77$

$$\chi_{109, 0025}^2 \le \chi^{*2} \le \chi_{109, 0975}^2$$

$$82,00 \le 104,00 \le 139,77 \tag{4.3}$$

Tomando-se o resultado do teste global, a hipótese básica não é rejeitada ao nível de significância de 5%. Com isso, é possível supor que a ponderação utilizada no ajustamento teve um bom desempenho e o sistema parece ser bem condicionado. Esta incerteza será esclarecida a partir do teste de condicionamento. Utilizando o teste de condicionamento, os valores encontrados foram:

$$T_1 = 3.0 \cdot 10^7$$
;

$$T_2 = 2.5 \cdot 10^{11};$$

$$P = 4,030 \cdot 10^{10}$$
; e

$$H = 4.027 \cdot 10^{10}$$

A partir da Tabela 2.1, o grau de condicionamento é classificado como bem condicionado obedecendo quatro das cinco desigualdades apresentadas. As desigualdades que foram obedecidas são: $T_1 \le T_2$; $T_2 \le n^2 T_1$; $T_1 \le H$; e $H \le n T_1$. Assim, a matriz das equações normais possui inversa e a solução é perfeitamente confiável.

Capítulo 5

Ajustamento da rede LC & R G61 segundo a norma L₁

5.1 - Ajustamento da rede gravimétrica LC & R G61

Admitindo-se que os erros observacionais sigam uma distribuição normal, e que as condições do teorema de Gauss-Markov são satisfeitas, demonstra-se que os estimadores de localização e dispersão baseados na minimização dos quadrados dos resíduos provêem a solução do ajustamento. Entretanto, se os erros observacionais não satisfazem as condições acima, não há porque supor que a solução de Mínimos Quadrados seja melhor, se comparada a outro critério como é o caso do MSM.

Neste ajustamento, os intervalos gravimétricos observados não foram tratados com a mesma precisão, isto é, cada intervalo gravimétrico observado teve seu respectivo peso no ajustamento. Assim, foi possível realizar o ajustamento utilizando a expressão de equações normais desenvolvida por CSAPÓ *et al.* (2003). Em todos os ajustamentos realizados na rede G61, inclusive este, os intervalos gravimétricos observados não foram correlacionados, ou seja, as covariâncias foram tratadas como nulas. Portanto, os elementos da diagonal principal da matriz peso, considerada nesta expressão, foram representados através do quadrado da precisão da rede G61 sobre o quadrado dos desvios absolutos medianos.

O valor ajustado para o coeficiente linear residual de escala do gravímetro foi de $1,00032 \pm 0,000062$ e os outros valores de gravidade estão indicados no Apêndice I.

A Figura 5.1 mostra a distribuição dos valores dos resíduos superposta a uma curva Gaussiana, em azul, com o mesmo valor médio e desvio padrão da distribuição igual a $0,00 \pm 0,02$ mGal, tendo como valores de referência para curtose igual a 3 e obliquidade nula. Os valores calculados para a curtose e para a obliquidade, na distribuição dos resíduos, foram respectivamente: 97 e 3. A partir dos valores de curtose e obliquidade pode-se classificar a distribuição dos resíduos como uma distribuição leptocúrtica deslocada para a direita.

Figura 5.1 Os valores dos resíduos variam entre -0,221 a 0,256 mGal com uma média da distribuição igual a $0,00 \pm 0,02$ mGal

Fazendo uma análise dos resíduos a partir de níveis de tolerância, onde estes níveis de tolerância são encontrados a partir da precisão da rede gravimétrica relativa G61. Então, estes níveis de tolerância ficaram divididos dá seguinte forma:

- I. No nível de tolerância acima de um desvio padrão: 27 intervalos gravimétricos observados seriam rejeitados;
- II. No nível de tolerância entre um e dois desvios padrão: 16 intervalos gravimétricos observados seriam rejeitados;
- III. No nível de tolerância entre dois e três desvios padrão: 6 intervalos gravimétricos observados seriam rejeitados; e
- IV. No nível de tolerância acima de três desvios padrão: 5 intervalos gravimétricos observados seriam rejeitados.

A Tabela 5.1 mostra os intervalos gravimétricos observados que ficaram classificados acima da precisão da rede gravimétrica G61. Comparando estes intervalos gravimétricos observados com os do Capítulo 4, observa-se que são os mesmos intervalos que apresentaram resíduos acima da precisão da rede G61.

Tabela 5.1 Mostra a distribuição dos 27 intervalos gravimétricos observados dentro dos níveis de tolerância.

Intervalo gravimétrico	entre 1σ e 2σ	entre 2σ e 3σ	acima 3σ	Resíduo (mGal)
121282 - 26Y	-	-	X	-0.221
SGE 03 - SGE 02	-	-	X	0.215
SP 27 - 40Y	-	X	-	0.100
SP 27 - SP 29	-	-	X	-0.163
RJ16Q - RJ17U	X	-	-	0.063
RJ17U - SGE 01	-	X	-	-0.104

Intervalo gravimétrico	entre 1σ e 2σ	entre 2σ e 3σ	acima 3σ	Resíduo (mGal)
167N - 126S	X	-	-	0.071
010176 - RJ 01	X	-	-	0.055
RJ17U - 010476	-	-	X	0.256
126S - MG 06	X	-	-	0.056
242O - 240L	X	-	-	-0.052
012376 - 69M	X	-	-	-0.052
305C - BA 14	X	-	-	-0.065
317R - 317T	X	-	-	0.083
317O - 317R	-	-	X	0.160
317M - 317O	-	X	-	0.126
317G - 317H	X	-	-	0.053
317F - 317G	X	-	-	0.086
317E - 317F	-	X	-	0.095
316Z - 317A	-	X	-	0.135
316S - 316U	X	-	-	0.083
324X - 324Y	X	-	-	-0.055
322P - 322S	X	-	-	0.086
322L - 322M	-	X	-	0.110
360E - 349S	X	-	-	-0.055
322G - 322S	X	-	-	-0.088
375C - 374T	X	-	-	0.052

Os intervalos gravimétricos observados que ficaram acima de três vezes a precisão da rede G61 foram estudados para verificar se existe alguma incoerência entre suas determinações, respectivamente.

Capítulo 6

Resultados e Discussões

6.1 - Comparações entre os valores da gravidade ajustados

Os valores de gravidade ajustados, segundo as normas L_1 e L_2 , são comparados à partir de níveis de tolerância. Esta comparação foi realizada a partir dos desvios padrão calculados à partir da Matriz Variância-Covariância dos parâmetros ajustados. A partir dessas comparações pode-se inicializar a investigação da utilização do algoritmo de ajustamento baseados na norma L_1 na rede gravimétrica relativa G61.

As estações gravimétricas que tiveram uma discrepância entre seus valores de gravidade, segundo as normas L_1 e L_2 , e ficaram no limite de tolerância de até 3 desvios padrão foram classificadas em concordância com seus valores de gravidade ajustados. Por outro lado, as que foram classificadas acima deste limite de tolerância apresentaram uma discordância com seus valores de gravidade ajustados. Nessa análise estatística, com os valores de gravidade ajustados, foi observado que 100% das estações gravimétricas tiveram concordância com seus valores de gravidade ajustados. Com isso, as estações gravimétricas tiveram seus valores de gravidade coerentes, segundo as normas L_1 e L_2 . Essa coerência é mostrada no Apêndice I a partir da discrepância apresentada pelos valores de gravidade ajustados de cada estação gravimétrica.

6.2 - Avaliando as incertezas dos valores da gravidade ajustados

Tendo uma concordância de 100% com os valores de gravidade ajustados, segundo as normas L_1 e L_2 , a investigação do algoritmo de ajustamento via norma L_1 não se limita somente à discrepância entre os valores de gravidade ajustados de cada estação gravimétrica. Então, a investigação deste algoritmo será avaliada também à partir das incertezas associadas aos valores de gravidade ajustados.

Realizando uma comparação entre as incertezas dos valores de gravidade ajustados, via norma L_1 , com a precisão da rede gravimétrica relativa pode-se identificar a partir de níveis de tolerâncias os seguintes resultados:

- i. Até 0,047 mGal: 71 estações gravimétricas;
- ii. Entre 0,047 e 0,094 mGal: 637 estações gravimétricas;
- iii. Entre 0,094 e 0,141 mGal: 546 estações gravimétricas; e
- iv. Acima de 0,141 mGal: 254 estações gravimétricas.

Fazendo esta mesma análise de comparação, agora via norma L_2 , obteve-se os seguintes resultados:

- v. Até 0,047 mGal: 51 estações gravimétricas;
- vi. Entre 0,047 e 0,094 mGal: 578 estações gravimétricas;
- vii. Entre 0,094 e 0,141 mGal: 671 estações gravimétricas; e
- viii. Acima de 0,141 mGal: 208 estações gravimétricas.

Comparando as estações gravimétricas que concordaram até 0,047 mGal, segundo as normas L₁ e L₂, verificou-se que 35 estações gravimétricas coincidiram. Assim, realizando este estudo a partir da incerteza dos valores de gravidade ajustados, o algoritmo de ajustamento, via norma L₁, apresentou 36 estações gravimétricas a mais que segundo a norma L₂, que ficando acima da precisão da rede G61. Essa diferença dos números de estações gravimétricas pode ter ocorrido devido à má distribuição das estações gravimétricas da *IGSN71*.

A Tabela 6.1 mostra as estações gravimétricas coincidentes até 0,047 mGal, segundo as normas L_1 e L_2 .

 Tabela 6.1
 Mostra 35 estações gravimétricas coincidentes.

Código da	Norma	L ₁ (mGal)	Norma L ₂	(mGal)
estação	Valor de "g" ajustado	Desvio absoluto mediano	Valor de "g" ajustado	Desvio padrão
RJ16Q	978640.312	0.024	978640.312	0.020
SGE 01	978633.562	0.039	978633.562	0.015
RJ 01	978721.125	0.012	978721.125	0.014
013476	978368.562	0.045	978368.562	0.042
167N	978457.688	0.039	978457.688	0.038
RJ 07	978662.875	0.014	978662.875	0.018
RJ15E	978636.250	0.034	978636.250	0.028
615G	978348.875	0.045	978348.875	0.045
139B	978350.750	0.046	978350.750	0.045
151684	978126.688	0.036	978126.688	0.034
151784	978128.938	0.036	978128.938	0.033
151884	978158.188	0.046	978158.188	0.026
201286	978151.312	0.042	978151.312	0.039
SP 27	978597.000	0.038	978597.000	0.044
010976	978636.562	0.046	978636.562	0.041
SP 29	978691.188	0.044	978691.188	0.041
379M	978146.875	0.043	978146.875	0.037
SP 36	978581.000	0.042	978581.000	0.046
SP 37	978597.000	0.044	978597.000	0.044
121282	978763.500	0.039	978763.500	0.045

Código da	Norma	L ₁ (mGal)	Norma L ₂	(mGal)
estação	Valor de "g" ajustado	Desvio absoluto mediano	Valor de "g" ajustado	Desvio padrão
29V	978702.688	0.038	978702.688	0.041
19J	978810.875	0.045	978810.875	0.042
SGE 08	979047.000	0.037	979047.000	0.030
SGE 09	979278.500	0.034	979278.500	0.007
130182	979015.188	0.033	979015.188	0.030
130482	979105.438	0.027	979105.438	0.027
130682	979146.062	0.025	979146.062	0.024
130982	979220.938	0.014	979220.938	0.019
SGE 12	979000.375	0.032	979000.375	0.042
140883	979315.688	0.027	979315.688	0.033
141083	979349.812	0.016	979349.812	0.029
141283	979384.375	0.018	979384.375	0.027
SGE 15	979386.500	0.018	979386.500	0.013
142083	979389.750	0.005	979389.750	0.009
SGE 16	979313.688	0.017	979313.688	0.018

6.3 - Avaliando os resíduos nos ajustamentos

Sabendo que a discrepância entre os valores de gravidade ficaram até 0,007 mGal suspeitava-se inicialmente que os resíduos não iriam apresentar nenhuma discrepância significativa, segundo as normas L_1 e L_2 . Nos Capítulos 4 e 5, foram apresentadas Tabelas avaliando os intervalos gravimétricos observados que tiveram resíduos acima da precisão da rede G61. A avaliação dos resíduos apresentados nestas Tabelas reforçou o raciocínio anterior da discrepância muito pequena entre os valores de gravidade ajustados.

A análise dos intervalos gravimétricos que tiveram seus resíduos classificados acima de três vezes a precisão da rede G61 mostrou incoerências com seus valores observáveis. As Tabelas abaixo mostram as incoerências apresentadas nos intervalos gravimétricos.

Tabela 6.2 Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente as estações 010476 e RJ17U

Intervalo gravimétrico	Data	Número de determinações	Valor do intervalo gravimétrico (mGal)	Valor médio (mGal)
	22 / 06 / 1968	02	41,988	
010476 - RJ17U	227 007 1700	02	42,056	42,172
	17 / 02 / 1971	01	42,298	72,172
	03 / 03 / 1971	01	42,346	

Na Tabela 6.2 verifica-se uma incoerência entre os valores do intervalo gravimétrico 010476 - RJ17U, ou seja, os valores referentes à data 22/06/1968 estão muito diferentes dos outros valores medidos. Com isso, não há possibilidade de saber qual desses pares de intervalos gravimétricos estão corretos.

Tabela 6.3 Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente as estações 121282 e 26Y.

Intervalo gravimétrico	Data	Número de determinações	Valor do intervalo gravimétrico (mGal)	Valor médio (mGal)
121282 - 26Y	07 / 05 / 1970	01	50,193	50,128
	09 / 05 / 1970	01	50,062	

O intervalo gravimétrico 121282 - 26Y apresenta-se com duas determinações em datas distintas. Essas determinações possuem valores diferentes, referente ao intervalo gravimétrico. Com isso, não há possibilidade de saber qual dos dois valores é o correto.

Tabela 6.4 Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente as estações SGE 03 e SGE 02.

Intervalo gravimétrico	Data	Número de determinações	Valor do intervalo gravimétrico (mGal)	Valor médio (mGal)
	03 / 05 / 1970	01	36,958	
SGE 03 - SGE 02	09 / 08 / 1971	01	37,293	37,186
	24 / 08 / 1971	01	37,307	

A Tabela 6.4 mostra o intervalo gravimétrico SGE 03 - SGE 02 com três determinações, onde o valor referente à data 03/05/1970 encontra-se com valor incorreto comparado aos outros valores.

Tabela 6.5 Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente as estações SP 29 e SP 27.

Intervalo gravimétrico	Data	Número de determinações	Valor do intervalo gravimétrico (mGal)	Valor médio (mGal)	
SP 27 – SP 29	19 / 08 / 1969	01	94,108	93,990	
	20 / 08 / 1969	01	94,069		
	10 / 05 / 1970	01	93,791		

A Tabela 6.5 mostra o intervalo gravimétrico SP 27 - SP 29, com três determinações, onde o valor referente a data 10/05/1970, encontra-se com valor incorreto comparado aos outros valores.

Tabela 6.6 Mostra a incoerência apresentada entre os valores do intervalo gravimétrico referente as estações 317R e 317O.

Intervalo gravimétrico	Data	Número de determinações	Valor do intervalo gravimétrico (mGal)	Valor médio (mGal)
317R – 317O	08 / 11 / 1969	01	10,902	10,950
31710	12 / 11 / 1969	01	10,999	10,550

O intervalo gravimétrico 317R - 317O possui duas determinações em datas distintas. Essas determinações possuem valores diferentes de aproximadamente 0,1 mGal. Com isso, não há possibilidade de saber qual dos dois valores é o correto.

Capítulo 7

Conclusões

7.1 - Conclusões

A avaliação da variância de peso unitário *a posteriori*, a partir do teste estatístico global, mostra que o modelo matemático e a ponderação dos intervalos gravimétricos distintos foram adequados; o sistema foi considerado um sistema relativamente condicionado e não houve erros grosseiros nas observações.

Observa-se na topologia da rede (Figura 3.1), que as estações referência da *IGSN71* não estão bem distribuídas, localizando-se exclusivamente nas cidades costeiras. Isto impossibilita a obtenção de uma melhor estimativa para as incertezas dos parâmetros ajustados.

Ao realizar a comparação dos resultados dos ajustamentos pode-se verificar que as estações gravimétricas, nas quais as leituras instrumentais originais tinham um acréscimo de aproximadamente 1 mGal devido ao "salto" ocorrido com o gravímetro relativo G61 durante a aquisição dos dados, não sofreram discordância entre seus valores de gravidade ajustados, segundo as normas L₁ e L₂. Então, pode-se concluir que a realização de "abrir" uma nova campanha, inicializando na estação gravimétrica 316S e terminando na estação gravimétrica 317X referente ao dia 12 de novembro de 1969 para compensar o "salto" apresentado pelo gravímetro G61, foi de grande importância para a qualidade do ajustamento.

O algoritmo de ajustamento de redes gravimétricas relativas via norma L_1 foi ineficiente em dois aspectos: (*i*) em termos computacionais, o algoritmo de ajustamento precisa de cerca de 240 minutos para calcular os valores dos parâmetros ajustados com seus respectivos desvios absolutos medianos; e (*ii*) as análises, utilizadas para investigar a viabilidade deste algoritmo, apresentaram valores muito idênticos aos encontrados via norma L_2 .

A partir da concordância dos valores de gravidade ajustados, segundo as normas L_1 e L_2 , até uma incerteza padrão mostra que esses algoritmos estão convergindo. Mas, a partir da discrepância entre os valores de gravidade ajustados, que se encontra entre: 0,000 e 0,007 mGal, não se pode identificar nenhuma estação "problemática", isto é, estação que apresente valores de gravidade ajustados incoerentes.

As estações gravimétricas que compõem o circuito 63, tiveram incertezas próximas de 0,100 mGal, constatando possível incoerência em suas leituras instrumentais originais como foi previsto na etapa do estudo dos circuitos gravimétricos. Com isso, o algoritmo de ajustamento via norma L_1 e o procedimento adotado para encontrar as incertezas destas estações gravimétricas foram eficientes.

A partir das incertezas dos valores de gravidade ajustados, o algoritmo via norma L_1 foi mais eficiente comparada com o algoritmo via norma L_2 , isto é, mostrando 36 estações gravimétricas que a norma L_2 não tinha classificado no nível de até 0,047 mGal. Portanto, o algoritmo e o procedimento adotados para encontrar o desvio absoluto mediano foram eficientes comparados com os procedimentos via norma L_2 neste caso.

Referências bibliográficas

- AKU, M. O. Statistical Estimation of Absolute Gravity Values, Science World Journal, v.2, n. 1, 2007.
- BRANHAM JR., R.L. "Scientific data analysis. An introduction to overdetermined systems", *Springer-Verlag, Inc.*, 138 pp. 1990.
- CSAPÓ, G., KIS, M., VÖLGYESI, L. Different adjustment methods for the Hungarian part of the unified European gravity network, XXIII general assembly of the International Union of Geodesy and Geophysics, June 30 July 11, 2003.
- ESCOBAR, I. P. Métodos de Levantamento e Ajustamento de observações Gravimétricas visando a implementação da Rede Gravimétrica Fundamental Brasileira Resultados preliminares, Publicação do ON n. 1, Rio de Janeiro, 1980.
- ESCOBAR, I. P. Injunções relativas em ajustamento gravimétrico. Publicação do Observatório nacional, Dissertação de mestrado, UFPR, Curitiba, PR, Brasil, No. 2, 1986.
- FARRET, J. C., MORAES, C. V., SCHÜNEMANN, A. L., SANTOS, R. S. Uma matriz dos pesos alternativa para o ajustamento dos nivelamentos diretos, Bol. Ciênc. Geod., sec. Artigos, Curitiba, v. 12, no. 1, p. 65-86, janeiro-junho, 2006.
- GAMA, L.I. Valores da gravidade nas regiões centro e sul do Brasil, Relatório Interno nº 4 ON-MEC, 78 pp., 1972.
- GAMA, L.I., Extensão da rede do nordeste, Relatório Interno nº 6 ON-MEC, 37 pp., 1973.
- GEMAEL, C. Introdução ao ajustamento de observações, Ed. UFPR, Curitiba, 2004.
- MOREIRA, E. M. Recuperação dos dados da antiga rede gravimétrica do Observatório Nacional obtido com o gravímetro G-061. Dissertação de mestrado, ON/MCT, Rio de Janeiro, RJ, Brasil, 1990.
- PINÃ, W. H. S., SOUSA, M. A. O estado da base de dados gravimétricas do Observatório Nacional (BDG-ON) situação em junho. Brazilian Journal of Geophysics, Vol. 19(3), 2001.

- ROSIER, F. A. Medidas diferenciais da gravidade: ajustamento de uma sub-rede de estações gravimétricas e determinação de coeficientes de escala para os gravímetros LaCoste & Romberg modelo G no. 41, 372 e 454. Tese de M. Sc. UFPR, Curitiba, PR, Brasil, 1979.
- SANTOS JÚNIOR, G. dos. Rede gravimétrica: novas perspectivas de ajustamento, análise de qualidade e integração de dados gravimétricos. Tese D.Sc. UFPR, Curitiba, PR, Brasil, 2005.
- SOUSA, M. A., MOREIRA E. M., SANTOS, A. A. The L₂ adjustment of the LC&R 61 data set to the IGSN 71/absolute datum, n. 13, Rio de Janeiro, 1993.
- SOUSA, M.A. Gravity Reduction Routines, Computers & Geosciences, submitted, 2006.
- VASCONCELLOS, J. C. P.; BLITZKOW, Denizar. Ajustamento de redes geodésicas de densificação ou extensão. In: XXI Congresso Brasileiro de Cartografia, 2003, Belo Horizonte. XXI Congresso Brasileiro de Cartografia, 2003.

Apêndice I

Valores de gravidade ajustados e suas respectivas incertezas, da rede LC & R G61, segundo as normas L_1 e L_2 . Datum: *IGSN71*.

Código da Norma L ₁ (mGal)		(mGal)	Norma L ₂	Diagram ân sia	
_	Valor de Des. abs.		Valor de Desvio		Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
RJ16Q	978640.302	0.023	978640.301	0.020	0.001
RJ17U	978648.012	0.059	978648.011	0.053	0.001
SGE 01	978633.557	0.039	978633.556	0.015	0.001
010476	978605.571	0.043	978605.570	0.033	0.001
RJ 01	978721.112	0.011	978721.112	0.014	0.000
ES 02	978638.227	0.061	978638.227	0.054	0.000
041478	978554.084	0.094	978554.084	0.083	0.000
190J	978464.370	0.083	978464.370	0.085	0.000
013476	978368.541	0.044	978368.540	0.042	0.001
126S	978473.907	0.047	978473.907	0.041	0.000
167N	978457.697	0.039	978457.696	0.038	0.001
MG 04	978392.266	0.067	978392.265	0.043	0.001
179Q	978434.231	0.062	978434.230	0.081	0.001
MG 05	978322.990	0.051	978322.990	0.051	0.000
189I	978334.326	0.053	978334.324	0.054	0.002
199A	978212.149	0.057	978212.147	0.064	0.002
204S	978229.891	0.076	978229.890	0.064	0.001
144U	978313.642	0.091	978313.641	0.064	0.001
166M	978383.597	0.086	978383.596	0.061	0.001
040978	978110.917	0.060	978110.917	0.066	0.000
090180	978197.987	0.050	978197.986	0.061	0.001
292S	978329.438	0.102	978329.437	0.056	0.001
050179	978253.124	0.063	978253.124	0.060	0.000
MG 06	978350.151	0.038	978350.150	0.059	0.001
RJ 07	978662.901	0.013	978662.901	0.018	0.000
119K	978555.458	0.053	978555.458	0.040	0.000
143V	978306.171	0.108	978306.170	0.072	0.001
RJ15E	978636.277	0.034	978636.277	0.028	0.000
121T	978403.588	0.049	978403.587	0.044	0.001
615G	978348.861	0.045	978348.860	0.045	0.001
022977	978264.848	0.066	978264.847	0.053	0.001
626V	978207.089	0.067	978207.088	0.059	0.001
602T	978096.142	0.060	978096.140	0.071	0.002
139B	978350.740	0.045	978350.739	0.045	0.001
040378	978231.524	0.090	978231.523	0.057	0.001
MG 08	978296.254	0.072	978296.252	0.056	0.002
BA 09	978362.632	0.067	978362.632	0.052	0.000
BA 10	978446.162	0.069	978446.162	0.048	0.000
BA 11	978446.810	0.087	978446.809	0.054	0.001
014578	978473.373	0.048	978473.372	0.041	0.001
80O	978380.008	0.076	978380.007	0.049	0.001
69M	978261.434	0.065	978261.433	0.059	0.001
012376	978356.193	0.071	978356.192	0.058	0.001
023977	978298.438	0.083	978298.437	0.061	0.001
57R	978212.143	0.059	978212.142	0.068	0.001
024077	978156.081	0.073	978156.080	0.072	0.001
023877	978363.042	0.049	978363.041	0.045	0.001

Cádigo do	Código da Norma L ₁ (mGal)		Norma L ₂	Discrepância	
estação	Valor de Des. abs.		Valor de Desvio		(mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
45S	978474.381	0.059	978474.380	0.053	0.001
305C	978139.703	0.056	978139.702	0.068	0.001
BA 14	978092.777	0.073	978092.776	0.076	0.001
303H	978033.835	0.063	978033.834	0.078	0.001
BA 15	977968.066	0.066	977968.066	0.083	0.000
317X	978076.040	0.083	978076.040	0.074	0.000
319D	978081.791	0.080	978081.790	0.069	0.001
PE 16	978055.839	0.070	978055.838	0.072	0.001
352H	977998.794	0.087	977998.792	0.074	0.002
352Q	977945.317	0.055	977945.316	0.076	0.001
375J	977941.815	0.063	977941.815	0.075	0.000
374T	977965.950	0.065	977965.949	0.069	0.001
376K	977989.571	0.033	977989.571	0.059	0.000
378X	978100.260	0.051	978100.261	0.051	-0.001
291Q	978223.760	0.093	978223.760	0.063	0.000
294M	978165.125	0.131	978165.125	0.070	0.000
295E	978136.144	0.115	978136.145	0.072	-0.001
295X	978086.670	0.094	978086.670	0.075	0.000
322G	978106.050	0.068	978106.050	0.074	0.000
322S	978194.669	0.075	978194.669	0.078	0.000
323H	978212.958	0.083	978212.958	0.075	0.000
150484	978238.706	0.088	978238.706	0.072	0.000
150584	978208.091	0.092	978208.090	0.074	0.001
329M	978202.810	0.092	978202.810	0.072	0.000
150784	978199.871	0.062	978199.872	0.081	-0.001
330Y	978155.928	0.059	978155.928	0.082	0.000
150884	978177.978	0.055	978177.979	0.081	-0.001
364H	978183.182	0.063	978183.182	0.081	0.000
241087	978122.405	0.062	978122.405	0.058	0.000
151284	978160.287	0.062	978160.287	0.058	0.000
151484	978141.693	0.057	978141.693	0.047	0.000
151684	978126.714	0.044	978126.714	0.034	0.000
151784	978128.957	0.047	978128.957	0.033	0.000
151884	978158.162	0.047	978158.162	0.026	0.000
359F	978092.574	0.074	978092.574	0.060	0.000
356H	978077.818	0.062	978077.817	0.065	0.001
354R	977989.201	0.064	977989.201	0.073	0.000
361A	978013.376	0.068	978013.375	0.072	0.001
AL 18	978080.883	0.073	978080.882	0.070	0.001
266V	978318.539	0.057	978318.538	0.055	0.001
296N	978070.731	0.067	978070.730	0.077	0.001
296Н	978064.962	0.086	978064.962	0.077	0.000
SE 19	978128.982	0.082	978128.981	0.073	0.001
SE 20	978135.838	0.077	978135.838	0.073	0.000
328G	978167.407	0.082	978167.407	0.073	0.000
201286	978151.339	0.041	978151.340	0.039	-0.001
201086	978135.539	0.038	978135.539	0.052	0.000

Cádigo do	Código da Norma L ₁ (mGal)		Norma L ₂	Discrepância	
estação	Valor de Des. abs.		Valor de Desvio		(mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
396I	978146.814	0.043	978146.814	0.053	0.000
438N	978114.330	0.036	978114.329	0.053	0.001
450U	978121.454	0.034	978121.454	0.054	0.000
200986	978111.384	0.062	978111.384	0.066	0.000
452L	978104.989	0.089	978104.988	0.095	0.001
200786	978100.118	0.061	978100.117	0.103	0.001
200586	978033.186	0.053	978033.185	0.106	0.001
444Y	978051.599	0.073	978051.597	0.108	0.002
442J	978084.476	0.057	978084.475	0.108	0.001
429A	978077.543	0.095	978077.542	0.112	0.001
462S	978091.779	0.094	978091.777	0.112	0.002
170884	978055.453	0.093	978055.451	0.113	0.002
170784	978065.657	0.083	978065.655	0.115	0.002
170684	978067.898	0.082	978067.895	0.120	0.003
351J	977997.305	0.052	977997.304	0.075	0.001
350Q	977981.828	0.059	977981.828	0.083	0.000
350H	977965.195	0.080	977965.195	0.086	0.000
338E	978000.779	0.064	978000.779	0.087	0.000
PE 21	978002.290	0.087	978002.290	0.089	0.000
422V	977983.810	0.072	977983.810	0.096	0.000
CE 22	977976.555	0.095	977976.555	0.100	0.000
422B	977977.665	0.050	977977.664	0.105	0.001
500T	977977.483	0.061	977977.484	0.106	-0.001
500H	977963.401	0.063	977963.401	0.107	0.000
497E	977964.301	0.078	977964.301	0.108	0.000
500A	977964.710	0.076	977964.710	0.108	0.000
492T	977926.998	0.069	977926.998	0.110	0.000
492B	978012.919	0.064	978012.919	0.108	0.000
491N	978017.851	0.087	978017.851	0.110	0.000
424M	978016.021	0.083	978016.022	0.117	-0.001
171484	978029.478	0.142	978029.477	0.121	0.001
CE 23	978050.800	0.149	978050.799	0.120	0.001
CE 24	978075.584	0.074	978075.583	0.114	0.001
49G	978393.885	0.032	978393.884	0.056	0.001
74S	978424.653	0.137	978424.652	0.057	0.001
MG 25	978492.594	0.048	978492.593	0.044	0.001
98G	978446.004	0.074	978446.003	0.057	0.001
98X	978393.492	0.089	978393.491	0.069	0.001
40Y	978496.344	0.037	978496.343	0.050	0.001
99P	978516.614	0.034	978516.613	0.049	0.001
110281	978523.274	0.048	978523.273	0.050	0.001
SP 26	978546.456	0.046	978546.454	0.048	0.002
SP 27	978597.017	0.035	978597.016	0.044	0.001
010976	978636.589	0.046	978636.589	0.041	0.000
SP 28	978666.903	0.029	978666.902	0.052	0.001
SP 29	978691.201	0.039	978691.199	0.041	0.002
304U	978132.902	0.077	978132.901	0.085	0.001

Cádica da	Código da Norma L ₁ (mGal)		Norma L ₂	Diagram ân sia	
estação	Valor de Des. abs.		Valor de Desvio		Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
304L	978129.762	0.068	978129.761	0.088	0.001
304K	978129.606	0.060	978129.604	0.095	0.002
304J	978119.673	0.086	978119.671	0.097	0.002
304I	978125.845	0.065	978125.843	0.098	0.002
304G	978137.333	0.085	978137.331	0.100	0.002
304F	978136.163	0.124	978136.161	0.100	0.002
304E	978139.012	0.122	978139.010	0.100	0.002
304D	978139.923	0.121	978139.921	0.100	0.002
304C	978133.715	0.140	978133.714	0.098	0.001
304B	978127.097	0.144	978127.096	0.099	0.001
304A	978118.783	0.127	978118.782	0.097	0.001
303S	978086.883	0.061	978086.882	0.077	0.001
303R	978070.902	0.061	978070.901	0.078	0.001
303Q	978036.702	0.058	978036.701	0.080	0.001
303J	978028.594	0.072	978028.593	0.079	0.001
315Q	977971.872	0.070	977971.871	0.090	0.001
315P	977982.094	0.126	977982.093	0.092	0.001
3150	977970.351	0.153	977970.351	0.117	0.000
315M	977987.654	0.141	977987.653	0.121	0.001
315L	977995.592	0.126	977995.592	0.122	0.000
315K	978002.450	0.131	978002.450	0.121	0.000
315J	978008.567	0.146	978008.567	0.121	0.000
315G	978007.039	0.149	978007.038	0.121	0.001
315D	978047.619	0.110	978047.618	0.116	0.001
315C	978047.755	0.140	978047.754	0.115	0.001
315B	978071.412	0.107	978071.412	0.096	0.000
314X	978081.953	0.139	978081.952	0.088	0.001
317Y	978077.455	0.079	978077.454	0.079	0.001
318C	978074.005	0.080	978074.005	0.103	0.000
318F	978056.062	0.228	978056.061	0.122	0.001
318G	978064.701	0.159	978064.700	0.127	0.001
318H	978057.384	0.162	978057.383	0.127	0.001
318K	978057.462	0.151	978057.461	0.125	0.001
318N	978068.827	0.143	978068.826	0.123	0.001
3180	978064.206	0.135	978064.206	0.123	0.000
318Q	978072.154	0.155	978072.154	0.112	0.000
318R	978066.207	0.096	978066.207	0.112	0.000
318T	978084.634	0.113	978084.633	0.091	0.001
318U	978087.130	0.106	978087.129	0.089	0.001
318V	978086.540	0.087	978086.540	0.070	0.000
318X	978089.183	0.081	978089.182	0.070	0.001
BA 30	978086.935	0.081	978086.934	0.069	0.001
360H	978079.843	0.066	978079.842	0.074	0.001
360G	978071.871	0.074	978071.870	0.084	0.001
360E	978066.154	0.072	978066.153	0.086	0.001
349S	978054.151	0.065	978054.150	0.073	0.001
349P	978052.401	0.067	978052.401	0.073	0.000

Cádigo do	Código da Norma L ₁ (mGal)		Norma L ₂	Digaranânaia	
estação	Valor de Des. abs.		Valor de Desvio		Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
349O	978051.442	0.081	978051.441	0.088	0.001
349M	978056.044	0.096	978056.044	0.106	0.000
349K	978052.838	0.096	978052.837	0.116	0.001
349J	978046.777	0.091	978046.776	0.121	0.001
349H	978026.719	0.114	978026.717	0.125	0.002
349G	978023.671	0.100	978023.670	0.129	0.001
349F	978012.836	0.116	978012.836	0.130	0.000
349C	977993.083	0.142	977993.082	0.130	0.001
349B	977997.894	0.139	977997.893	0.130	0.001
348Z	977987.910	0.141	977987.908	0.129	0.002
348Y	977954.708	0.155	977954.707	0.126	0.001
348V	977947.288	0.139	977947.287	0.124	0.001
348T	977949.206	0.117	977949.205	0.124	0.001
348S	977959.806	0.115	977959.804	0.124	0.002
348R	977955.201	0.112	977955.200	0.122	0.001
348P	977943.985	0.128	977943.984	0.120	0.001
348O	977941.856	0.106	977941.854	0.119	0.002
348N	977938.815	0.134	977938.814	0.108	0.001
348M	977941.219	0.088	977941.218	0.094	0.001
348L	977971.975	0.084	977971.974	0.089	0.001
352F	978000.057	0.081	978000.056	0.092	0.001
352D	977989.539	0.102	977989.538	0.104	0.001
352C	977988.980	0.110	977988.978	0.105	0.002
352B	977993.840	0.118	977993.839	0.124	0.001
352A	977992.742	0.138	977992.742	0.130	0.000
351Z	977992.652	0.125	977992.651	0.130	0.001
351Y	977988.491	0.121	977988.491	0.130	0.000
351X	977990.485	0.124	977990.485	0.133	0.000
351V	977988.209	0.127	977988.209	0.133	0.000
351U	977984.819	0.126	977984.818	0.133	0.001
351Q	977979.365	0.123	977979.364	0.133	0.001
351P	977977.970	0.135	977977.970	0.132	0.000
3510	977975.335	0.109	977975.333	0.132	0.002
352J	977969.374	0.115	977969.373	0.132	0.001
352L	977969.254	0.133	977969.253	0.128	0.001
352M	977964.683	0.159	977964.682	0.119	0.001
352O	977955.686	0.106	977955.686	0.110	0.000
375X	977925.021	0.068	977925.021	0.087	0.000
375T	977947.263	0.064	977947.263	0.086	0.000
375Q	977955.377	0.053	977955.376	0.082	0.001
375C	977951.590	0.057	977951.589	0.075	0.001
374H	977990.867	0.092	977990.867	0.085	0.000
376V	978010.168	0.045	978010.168	0.059	0.000
378I	978021.264	0.051	978021.264	0.057	0.000
379G	978134.264	0.048	978134.265	0.051	-0.001
379M	978146.855	0.046	978146.855	0.037	0.000
84B	978374.600	0.082	978374.599	0.049	0.001

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
240L	978191.679	0.086	978191.678	0.062	0.001
2410	978177.299	0.083	978177.298	0.064	0.001
242O	978155.173	0.087	978155.171	0.066	0.002
040878	978165.173	0.083	978165.173	0.063	0.000
BA 31	978199.408	0.077	978199.407	0.075	0.001
290O	978254.468	0.102	978254.468	0.063	0.000
293J	978254.659	0.114	978254.658	0.065	0.001
150184	978239.575	0.109	978239.574	0.066	0.001
294D	978210.789	0.096	978210.789	0.064	0.000
BA 32	978175.549	0.106	978175.550	0.083	-0.001
295M	978099.513	0.073	978099.514	0.076	-0.001
322D	978093.631	0.088	978093.632	0.081	-0.001
322J	978112.899	0.052	978112.899	0.075	0.000
322L	978117.376	0.047	978117.376	0.076	0.000
322M	978111.722	0.093	978111.722	0.085	0.000
322N	978129.082	0.075	978129.083	0.085	-0.001
322P	978164.767	0.074	978164.768	0.083	-0.001
322Y	978204.122	0.052	978204.122	0.085	0.000
322Z	978200.176	0.082	978200.177	0.085	-0.001
323C	978211.558	0.069	978211.558	0.085	0.000
323F	978220.992	0.090	978220.992	0.082	0.000
323J	978226.387	0.105	978226.388	0.074	-0.001
323L	978231.429	0.100	978231.429	0.073	0.000
323P	978236.938	0.094	978236.938	0.072	0.000
324X	978232.923	0.077	978232.923	0.074	0.000
324Y	978233.980	0.114	978233.980	0.095	0.000
324Z	978233.921	0.116	978233.921	0.095	0.000
325A	978231.537	0.098	978231.536	0.086	0.001
325B	978226.815	0.112	978226.814	0.079	0.001
325G	978219.200	0.090	978219.200	0.074	0.000
317T	978093.587	0.083	978093.587	0.084	0.000
317R	978090.115	0.112	978090.115	0.101	0.000
3170	978101.227	0.122	978101.227	0.121	0.000
317M	978106.921	0.089	978106.921	0.127	0.000
317K	978107.571	0.101	978107.572	0.128	-0.001
317I	978102.887	0.114	978102.888	0.128	-0.001
317H	978104.327	0.109	978104.328	0.128	-0.001
317G	978110.471	0.111	978110.472	0.128	-0.001
317F	978114.756	0.144	978114.757	0.126	-0.001
317E	978118.918	0.121	978118.918	0.120	0.000
317B	978130.385	0.114	978130.385	0.118	0.000
317A	978122.422	0.083	978122.422	0.116	0.000
316Z	978122.161	0.104	978122.162	0.097	-0.001
316Y	978125.628	0.093	978125.628	0.096	0.000
316U	978118.968	0.087	978118.968	0.095	0.000
316S	978117.314	0.090	978117.313	0.075	0.001
316M	978139.065	0.087	978139.065	0.093	0.000

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
316K	978156.657	0.090	978156.657	0.097	0.000
328V	978157.877	0.109	978157.878	0.083	-0.001
328S	978149.300	0.074	978149.300	0.078	0.000
328O	978154.118	0.065	978154.118	0.076	0.000
328L	978149.776	0.080	978149.776	0.082	0.000
328I	978161.362	0.088	978161.362	0.091	0.000
328E	978167.861	0.093	978167.862	0.077	-0.001
328D	978170.750	0.079	978170.751	0.081	-0.001
328B	978165.569	0.109	978165.569	0.092	0.000
327Z	978164.314	0.105	978164.315	0.092	-0.001
327Y	978167.684	0.109	978167.685	0.091	-0.001
360M	978078.053	0.078	978078.052	0.070	0.001
360N	978078.645	0.123	978078.643	0.091	0.002
360O	978074.751	0.081	978074.750	0.103	0.001
360P	978076.083	0.088	978076.081	0.096	0.002
360Q	978077.274	0.104	978077.273	0.094	0.001
360U	978078.085	0.068	978078.083	0.070	0.002
360X	978063.987	0.073	978063.985	0.071	0.002
361J	978031.799	0.059	978031.799	0.071	0.000
354T	978013.851	0.075	978013.850	0.073	0.001
354V	978021.372	0.079	978021.370	0.078	0.002
355P	978041.369	0.088	978041.367	0.081	0.002
355R	978061.061	0.092	978061.059	0.095	0.002
355S	978060.984	0.083	978060.982	0.097	0.002
355T	978066.912	0.061	978066.910	0.101	0.002
355U	978075.179	0.099	978075.177	0.100	0.002
355V	978077.066	0.084	978077.064	0.100	0.002
355X	978076.036	0.088	978076.035	0.093	0.001
356A	978056.099	0.082	978056.098	0.091	0.001
356C	978062.096	0.086	978062.095	0.089	0.001
356E	978068.097	0.055	978068.096	0.080	0.001
356G	978077.941	0.050	978077.940	0.074	0.001
356L	978069.639	0.083	978069.639	0.070	0.000
356O	978077.616	0.084	978077.616	0.071	0.000
356V	978082.163	0.098	978082.163	0.075	0.000
356Y	978093.737	0.097	978093.736	0.077	0.001
356Z	978089.031	0.097	978089.031	0.082	0.000
357A	978090.348	0.107	978090.348	0.083	0.000
357C	978085.920	0.092	978085.920	0.090	0.000
AL 33	978090.451	0.094	978090.451	0.092	0.000
357F	978101.407	0.079	978101.407	0.081	0.000
359D	978092.264	0.086	978092.263	0.070	0.001
364E	978105.326	0.105	978105.325	0.078	0.001
364D	978114.107	0.097	978114.106	0.079	0.001
364C	978109.150	0.093	978109.150	0.080	0.000
363Z	978115.668	0.080	978115.668	0.078	0.000
363X	978117.823	0.052	978117.823	0.074	0.000

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
363V	978117.292	0.077	978117.292	0.072	0.000
363S	978114.310	0.067	978114.310	0.065	0.000
283K	978161.280	0.129	978161.279	0.082	0.001
283L	978159.100	0.116	978159.099	0.095	0.001
283M	978155.588	0.150	978155.587	0.096	0.001
283N	978159.529	0.122	978159.528	0.101	0.001
283O	978169.141	0.138	978169.140	0.095	0.001
283P	978162.879	0.140	978162.878	0.096	0.001
283Q	978161.748	0.144	978161.746	0.097	0.002
28I	978676.861	0.055	978676.859	0.056	0.002
26Y	978713.553	0.052	978713.551	0.053	0.002
SGE 02	978670.084	0.063	978670.083	0.054	0.001
SGE 03	978707.498	0.088	978707.496	0.055	0.002
38Y	978498.062	0.038	978498.061	0.051	0.001
SP 36	978580.991	0.030	978580.990	0.046	0.001
SP 37	978596.971	0.035	978596.970	0.044	0.001
SP 38	978544.594	0.045	978544.593	0.048	0.001
283S	978172.984	0.133	978172.982	0.097	0.002
284A	978182.004	0.124	978182.003	0.097	0.001
284E	978166.066	0.109	978166.065	0.098	0.001
284H	978151.472	0.120	978151.470	0.099	0.002
284I	978148.891	0.092	978148.890	0.101	0.001
284J	978147.532	0.113	978147.531	0.102	0.001
284K	978143.861	0.112	978143.859	0.102	0.002
BA 39	978137.621	0.113	978137.620	0.103	0.001
284O	978131.276	0.081	978131.274	0.104	0.002
284U	978034.677	0.092	978034.675	0.108	0.002
284V	978027.704	0.085	978027.703	0.108	0.001
284Y	978030.553	0.087	978030.551	0.108	0.002
284Z	978023.965	0.093	978023.963	0.108	0.002
285A	978019.385	0.091	978019.383	0.109	0.002
285C	978002.693	0.081	978002.692	0.109	0.001
285E	977975.917	0.077	977975.916	0.111	0.001
285G	977958.570	0.078	977958.569	0.111	0.001
285H	977956.001	0.085	977956.000	0.111	0.001
285M	977952.047	0.113	977952.047	0.112	0.000
285N	977949.855	0.117	977949.855	0.112	0.000
285O	977952.245	0.139	977952.245	0.111	0.000
285P	977955.294	0.137	977955.294	0.111	0.000
285Q	977957.873	0.126	977957.873	0.111	0.000
285R	977958.126	0.121	977958.126	0.110	0.000
285T	977972.958	0.117	977972.958	0.109	0.000
285U	977973.114	0.116	977973.114	0.109	0.000
285V	977969.465	0.131	977969.465	0.109	0.000
285Y	977976.967	0.127	977976.967	0.109	0.000
285Z	977979.806	0.127	977979.805	0.107	0.001
286A	977979.952	0.128	977979.952	0.107	0.000

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
286B	977982.920	0.123	977982.920	0.106	0.000
286C	977984.832	0.111	977984.833	0.106	-0.001
286D	977991.944	0.130	977991.944	0.104	0.000
286E	977996.156	0.129	977996.156	0.103	0.000
286J	978014.879	0.128	978014.879	0.102	0.000
286P	978021.273	0.135	978021.273	0.102	0.000
286S	978070.506	0.141	978070.506	0.099	0.000
286T	978112.334	0.146	978112.334	0.097	0.000
286U	978126.196	0.127	978126.196	0.096	0.000
273C	978113.281	0.130	978113.280	0.097	0.001
273R	978124.355	0.129	978124.355	0.096	0.000
BA 40	978111.454	0.119	978111.453	0.092	0.001
050279	978160.756	0.119	978160.755	0.089	0.001
276O	978158.098	0.117	978158.097	0.089	0.001
276R	978168.303	0.119	978168.302	0.089	0.001
276S	978158.680	0.113	978158.679	0.090	0.001
276T	978161.730	0.112	978161.730	0.090	0.000
276U	978159.900	0.107	978159.899	0.090	0.001
276V	978171.561	0.118	978171.560	0.090	0.001
276Y	978181.721	0.093	978181.719	0.088	0.002
276Z	978189.241	0.070	978189.239	0.087	0.002
277B	978178.997	0.071	978178.996	0.088	0.001
277D	978183.206	0.058	978183.203	0.085	0.003
277G	978193.151	0.066	978193.149	0.081	0.002
277H	978195.647	0.064	978195.644	0.081	0.003
277J	978186.838	0.065	978186.836	0.081	0.002
277K	978186.384	0.082	978186.382	0.080	0.002
2770	978173.288	0.084	978173.286	0.080	0.002
277Q	978179.879	0.081	978179.877	0.079	0.002
277X	978190.808	0.072	978190.806	0.076	0.002
277Y	978192.665	0.086	978192.663	0.075	0.002
277Z	978192.548	0.085	978192.546	0.074	0.002
278A	978196.438	0.069	978196.436	0.073	0.002
278B	978199.045	0.073	978199.043	0.073	0.002
278C	978199.086	0.052	978199.084	0.071	0.002
278F	978201.127	0.054	978201.125	0.071	0.002
278H	978199.263	0.052	978199.262	0.070	0.001
278I	978203.030	0.051	978203.029	0.069	0.001
BA 41	978200.393	0.054	978200.392	0.069	0.001
278M	978206.042	0.052	978206.041	0.068	0.001
278Q	978205.690	0.063	978205.690	0.066	0.000
121282	978763.475	0.039	978763.473	0.045	0.002
32V	978741.326	0.032	978741.325	0.048	0.001
27N	978696.129	0.031	978696.127	0.050	0.002
29V	978702.681	0.038	978702.679	0.041	0.002
19J	978810.894	0.046	978810.893	0.042	0.001
SGE 05	978892.931	0.050	978892.929	0.040	0.002

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
SGE 06	978892.588	0.065	978892.587	0.043	0.001
SGE 07	978949.452	0.070	978949.451	0.039	0.001
SGE 08	979047.019	0.038	979047.018	0.030	0.001
SGE 09	979278.480	0.037	979278.480	0.007	0.000
130182	979015.204	0.033	979015.202	0.030	0.002
130482	979105.454	0.026	979105.454	0.027	0.000
130682	979146.087	0.025	979146.087	0.024	0.000
130982	979220.959	0.014	979220.960	0.019	-0.001
26X	978726.925	0.065	978726.924	0.049	0.001
PR 42	978800.836	0.088	978800.835	0.050	0.001
PR 43	978811.663	0.052	978811.661	0.053	0.002
132082	978864.591	0.046	978864.590	0.056	0.001
SGE 11	978916.631	0.040	978916.630	0.053	0.001
SGE 12	979000.384	0.032	979000.383	0.042	0.001
SGE 13	979088.699	0.061	979088.699	0.052	0.000
SGE 14	979238.258	0.054	979238.258	0.045	0.000
140883	979315.676	0.029	979315.677	0.033	-0.001
141083	979349.805	0.018	979349.806	0.029	-0.001
141283	979384.402	0.018	979384.403	0.027	-0.001
SGE 15	979386.480	0.018	979386.480	0.013	0.000
142083	979389.746	0.005	979389.746	0.009	0.000
SGE 16	979313.710	0.017	979313.710	0.018	0.000
131582	979042.058	0.051	979042.057	0.037	0.001
SGE 19	979015.912	0.057	979015.911	0.038	0.001
SGE 20	978951.175	0.068	978951.174	0.040	0.001
249U	978273.094	0.056	978273.094	0.057	0.000
BA 44	978267.459	0.064	978267.459	0.057	0.000
260687	978362.549	0.066	978362.548	0.052	0.001
260887	978446.094	0.064	978446.094	0.050	0.000
BA 45	978190.495	0.053	978190.494	0.068	0.001
BA 46	978190.856	0.068	978190.855	0.068	0.001
090480	978150.148	0.062	978150.147	0.072	0.001
305Z	978122.330	0.066	978122.330	0.074	0.000
090580	978031.796	0.068	978031.795	0.079	0.001
307Q	977997.604	0.063	977997.603	0.083	0.001
308I	978036.945	0.054	978036.944	0.081	0.001
308U	978038.617	0.056	978038.617	0.081	0.000
335G	978042.003	0.066	978042.001	0.081	0.002
090680	978040.979	0.045	978040.978	0.084	0.001
336B	978031.694	0.053	978031.693	0.087	0.001
336O	978018.029	0.056	978018.029	0.088	0.000
343E	978015.659	0.056	978015.659	0.088	0.000
343F	978024.515	0.052	978024.514	0.088	0.001
343H	978021.926	0.056	978021.925	0.089	0.001
343I	978016.961	0.068	978016.959	0.097	0.002
343K	978017.706	0.103	978017.704	0.099	0.002
343N	978018.040	0.107	978018.038	0.099	0.002

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
343O	978022.890	0.071	978022.889	0.101	0.001
343Q	978022.369	0.090	978022.368	0.101	0.001
343S	978025.303	0.090	978025.302	0.100	0.001
343V	978030.226	0.087	978030.225	0.099	0.001
344B	978018.553	0.075	978018.553	0.097	0.000
344D	978026.665	0.068	978026.664	0.096	0.001
344E	978021.243	0.070	978021.242	0.096	0.001
344H	978027.897	0.074	978027.895	0.095	0.002
344K	978020.415	0.092	978020.413	0.090	0.002
344M	978018.339	0.092	978018.337	0.090	0.002
344S	978002.219	0.094	978002.218	0.090	0.001
344U	978009.151	0.096	978009.150	0.090	0.001
345D	977986.037	0.101	977986.036	0.090	0.001
345E	977976.947	0.093	977976.946	0.091	0.001
345F	977981.255	0.094	977981.255	0.090	0.000
511C	978011.975	0.125	978011.974	0.090	0.001
511D	978009.041	0.112	978009.039	0.091	0.002
511E	978014.354	0.115	978014.352	0.091	0.002
511F	978014.440	0.107	978014.439	0.092	0.001
511H	978008.863	0.104	978008.862	0.094	0.001
511J	978001.434	0.102	978001.434	0.095	0.000
511L	978005.439	0.101	978005.439	0.095	0.000
511N	977989.259	0.101	977989.259	0.096	0.000
511P	978004.858	0.098	978004.857	0.096	0.001
511S	978003.166	0.117	978003.166	0.096	0.000
511T	977999.853	0.119	977999.852	0.096	0.001
511U	978002.521	0.107	978002.521	0.098	0.000
511X	977999.119	0.113	977999.119	0.100	0.000
512A	977998.966	0.111	977998.965	0.100	0.001
511A	977996.522	0.076	977996.521	0.102	0.001
510X	977984.581	0.079	977984.580	0.103	0.001
510U	977980.066	0.080	977980.065	0.104	0.001
510T	977982.209	0.070	977982.208	0.108	0.001
510S	977974.369	0.071	977974.368	0.113	0.001
510R	977974.293	0.073	977974.292	0.113	0.001
510P	977975.873	0.068	977975.872	0.113	0.001
PE 47	977973.112	0.072	977973.112	0.114	0.000
510M	977971.025	0.068	977971.024	0.114	0.001
510L	977970.709	0.073	977970.708	0.115	0.001
510J	977973.075	0.069	977973.074	0.115	0.001
510H	977961.730	0.074	977961.729	0.116	0.001
510G	977961.985	0.070	977961.984	0.116	0.001
510F	977957.635	0.087	977957.635	0.119	0.000
510D	977951.326	0.090	977951.326	0.119	0.000
510B	977944.278	0.091	977944.278	0.120	0.000
499Z	977952.636	0.091	977952.636	0.120	0.000
499T	977954.567	0.101	977954.567	0.120	0.000

Cádica da	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Diamon ân sia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
499S	977955.861	0.123	977955.861	0.122	0.000
499P	977935.699	0.133	977935.699	0.123	0.000
499J	977921.972	0.099	977921.972	0.125	0.000
499E	977963.129	0.110	977963.129	0.124	0.000
499C	977972.840	0.109	977972.839	0.124	0.001
499B	977985.554	0.123	977985.554	0.123	0.000
499A	977974.043	0.124	977974.042	0.124	0.001
498Z	977981.944	0.102	977981.943	0.124	0.001
498X	977975.521	0.095	977975.520	0.124	0.001
498V	977978.306	0.094	977978.305	0.124	0.001
498U	977978.645	0.102	977978.643	0.124	0.002
498S	977990.852	0.101	977990.850	0.123	0.002
498R	977973.139	0.098	977973.138	0.124	0.001
498P	977988.185	0.091	977988.183	0.123	0.002
583P	977994.638	0.096	977994.637	0.123	0.001
583N	977983.497	0.096	977983.495	0.126	0.002
583M	977990.079	0.099	977990.078	0.126	0.001
583L	977997.351	0.086	977997.348	0.127	0.003
583J	978001.051	0.119	978001.048	0.127	0.003
583H	978000.147	0.113	978000.145	0.127	0.002
583G	978002.842	0.115	978002.839	0.127	0.003
583F	978003.473	0.109	978003.470	0.128	0.003
583E	977998.432	0.108	977998.429	0.128	0.003
583D	977994.612	0.113	977994.609	0.129	0.003
583C	977997.236	0.116	977997.234	0.129	0.002
583B	978000.816	0.100	978000.813	0.129	0.003
583A	978003.424	0.105	978003.421	0.129	0.003
582Z	977996.812	0.102	977996.809	0.130	0.003
582X	977998.569	0.112	977998.567	0.131	0.002
582V	978008.662	0.108	978008.659	0.137	0.003
582U	978016.032	0.121	978016.029	0.137	0.003
582T	978014.650	0.115	978014.648	0.138	0.002
582S	978018.357	0.119	978018.354	0.138	0.003
582R	978019.152	0.124	978019.149	0.138	0.003
090880	978018.762	0.123	978018.760	0.139	0.002
582G	977939.815	0.118	977939.813	0.141	0.002
582D	977982.298	0.119	977982.297	0.141	0.001
582B	977974.360	0.119	977974.358	0.141	0.002
582A	977983.064	0.123	977983.062	0.142	0.002
581V	977952.644	0.098	977952.642	0.143	0.002
581U	977958.810	0.089	977958.808	0.143	0.002
581T	977972.864	0.143	977972.862	0.146	0.002
PI 48	977969.755	0.144	977969.754	0.147	0.001
581P	977948.735	0.137	977948.734	0.147	0.001
581N	977946.368	0.175	977946.367	0.147	0.001
581M	977950.577	0.145	977950.576	0.149	0.001
581L	977963.441	0.144	977963.441	0.149	0.000

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
581J	977972.258	0.140	977972.258	0.149	0.000
581H	977974.046	0.139	977974.046	0.149	0.000
581G	977975.875	0.173	977975.874	0.151	0.001
581F	977970.039	0.176	977970.039	0.151	0.000
581E	977960.015	0.142	977960.015	0.152	0.000
581D	977951.569	0.139	977951.569	0.153	0.000
581C	977947.369	0.138	977947.369	0.153	0.000
581B	977944.357	0.141	977944.357	0.153	0.000
581A	977945.026	0.190	977945.027	0.154	-0.001
580Z	977951.286	0.184	977951.285	0.155	0.001
580X	977961.571	0.217	977961.570	0.156	0.001
580V	977968.768	0.226	977968.767	0.158	0.001
090980	977975.106	0.198	977975.104	0.158	0.002
571R	977990.319	0.202	977990.317	0.158	0.002
571S	977995.269	0.201	977995.267	0.158	0.002
571T	978000.717	0.191	978000.715	0.158	0.002
571X	978012.168	0.201	978012.166	0.158	0.002
571Z	978013.930	0.202	978013.928	0.158	0.002
572A	978017.815	0.202	978017.813	0.158	0.002
572C	978025.528	0.205	978025.525	0.158	0.003
572L	978012.062	0.211	978012.059	0.158	0.003
PI 49	978017.750	0.209	978017.748	0.158	0.002
PI 50	978019.113	0.207	978019.111	0.158	0.002
572X	978002.348	0.213	978002.345	0.160	0.003
573B	978000.511	0.240	978000.507	0.160	0.004
573D	977994.142	0.225	977994.138	0.160	0.004
573F	978002.571	0.225	978002.568	0.160	0.003
PI 51	978003.253	0.236	978003.250	0.160	0.003
PI 52	977994.827	0.237	977994.824	0.161	0.003
091080	977980.675	0.240	977980.672	0.161	0.003
573V	977972.088	0.247	977972.085	0.161	0.003
PI 53	977998.494	0.208	977998.490	0.162	0.004
574D	978007.285	0.205	978007.282	0.162	0.003
574E	978005.860	0.202	978005.857	0.162	0.003
574G	978008.401	0.193	978008.397	0.162	0.004
574H	978005.397	0.188	978005.394	0.162	0.003
574J	978001.980	0.195	978001.975	0.162	0.005
574L	978007.892	0.212	978007.888	0.162	0.004
574N	978003.470	0.222	978003.466	0.162	0.004
574P	978006.688	0.225	978006.684	0.162	0.004
PI 54	978008.671	0.233	978008.666	0.162	0.005
PI 55	978016.031	0.223	978016.026	0.162	0.005
574Z	978017.416	0.176	978017.412	0.162	0.004
575A	978014.900	0.175	978014.896	0.162	0.004
091180	978017.388	0.198	978017.383	0.162	0.005
562E	978014.736	0.203	978014.731	0.162	0.005
562D	978014.922	0.204	978014.917	0.162	0.005

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
562C	978014.570	0.190	978014.565	0.161	0.005
562B	978009.834	0.191	978009.829	0.162	0.005
562A	978009.278	0.175	978009.273	0.161	0.005
561V	977997.505	0.183	977997.499	0.162	0.006
SGE 21	977985.707	0.170	977985.702	0.162	0.005
561M	977989.972	0.170	977989.967	0.162	0.005
561L	977991.782	0.158	977991.777	0.162	0.005
561H	977993.999	0.153	977993.995	0.161	0.004
561G	977998.155	0.146	977998.151	0.161	0.004
561F	977996.410	0.140	977996.405	0.161	0.005
561E	977999.582	0.157	977999.578	0.160	0.004
561D	978000.658	0.157	978000.654	0.160	0.004
561C	977999.203	0.164	977999.198	0.160	0.005
560Z	977998.680	0.164	977998.676	0.160	0.004
560X	977997.849	0.159	977997.845	0.160	0.004
170184	977998.116	0.155	977998.111	0.160	0.005
543C	978001.227	0.143	978001.222	0.159	0.005
543B	978000.575	0.152	978000.570	0.159	0.005
543A	977996.878	0.147	977996.872	0.158	0.006
542Z	977994.953	0.144	977994.947	0.158	0.006
542T	977999.132	0.131	977999.126	0.156	0.006
542P	977999.393	0.132	977999.387	0.156	0.006
542G	977998.085	0.142	977998.078	0.156	0.007
PI 56	978000.344	0.144	978000.337	0.155	0.007
542D	978000.072	0.147	978000.065	0.154	0.007
PI 57	978008.642	0.168	978008.636	0.152	0.006
PI 58	978001.762	0.170	978001.755	0.153	0.007
541H	978019.941	0.150	978019.934	0.150	0.007
541G	978022.889	0.138	978022.883	0.149	0.006
PI 59	978022.807	0.152	978022.801	0.148	0.006
541E	978021.909	0.154	978021.902	0.148	0.007
541D	978018.812	0.153	978018.806	0.148	0.006
541C	978015.329	0.152	978015.323	0.148	0.006
541A	978014.061	0.150	978014.056	0.148	0.005
529B	977999.674	0.153	977999.669	0.148	0.005
529A	977997.575	0.150	977997.570	0.147	0.005
528Z	977985.186	0.157	977985.181	0.144	0.005
528V	977976.455	0.131	977976.450	0.143	0.005
528T	977949.055	0.118	977949.051	0.143	0.004
528S	977922.286	0.138	977922.282	0.142	0.004
528R	977901.998	0.134	977901.994	0.143	0.004
SACS01	977887.196	0.156	977887.193	0.143	0.003
528D	977875.725	0.158	977875.722	0.143	0.003
170384	977872.657	0.150	977872.654	0.142	0.003
520P	977865.451	0.142	977865.448	0.142	0.003
520L	977939.616	0.141	977939.614	0.141	0.002
520G	977998.242	0.141	977998.240	0.140	0.002

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
520F	977995.979	0.123	977995.977	0.140	0.002
520E	977999.829	0.129	977999.827	0.139	0.002
520D	977998.490	0.134	977998.488	0.139	0.002
520C	978005.701	0.131	978005.700	0.139	0.001
519Z	978005.475	0.128	978005.473	0.139	0.002
519X	978003.974	0.127	978003.973	0.139	0.001
519S	978005.499	0.132	978005.498	0.139	0.001
519P	978009.823	0.134	978009.822	0.139	0.001
519N	978006.932	0.140	978006.931	0.139	0.001
519H	978009.755	0.137	978009.754	0.139	0.001
519G	978011.376	0.138	978011.375	0.138	0.001
519F	978002.425	0.135	978002.424	0.138	0.001
519E	978004.819	0.124	978004.819	0.138	0.000
170484	978006.531	0.122	978006.530	0.138	0.001
518U	977998.678	0.104	977998.677	0.138	0.001
518T	977998.146	0.098	977998.146	0.137	0.000
518S	977998.914	0.103	977998.914	0.137	0.000
518P	977994.903	0.133	977994.902	0.137	0.001
518M	977992.736	0.132	977992.735	0.137	0.001
518L	977992.453	0.137	977992.453	0.137	0.000
518F	977991.619	0.135	977991.618	0.137	0.001
CE 60	978001.924	0.107	978001.923	0.135	0.001
CE 61	978001.985	0.099	978001.984	0.135	0.001
508G	977998.888	0.113	977998.887	0.135	0.001
508H	977997.959	0.112	977997.957	0.135	0.002
508J	977998.438	0.112	977998.437	0.135	0.001
508M	977995.767	0.114	977995.766	0.135	0.001
CE 62	978000.844	0.110	978000.843	0.135	0.001
508R	977996.433	0.099	977996.432	0.135	0.001
508S	977990.461	0.091	977990.460	0.135	0.001
508T	977987.231	0.104	977987.230	0.134	0.001
170584	977985.776	0.100	977985.775	0.134	0.001
509A	977996.995	0.108	977996.994	0.134	0.001
CE 63	978007.740	0.109	978007.740	0.133	0.000
509E	978024.258	0.112	978024.258	0.132	0.000
509F	978028.422	0.112	978028.423	0.132	-0.001
509G	978028.676	0.112	978028.676	0.131	0.000
509H	978033.129	0.110	978033.128	0.131	0.001
509J	978039.342	0.111	978039.341	0.131	0.001
CE 64	978040.668	0.122	978040.667	0.129	0.001
509M	978038.676	0.102	978038.676	0.128	0.000
509P	978046.875	0.106	978046.874	0.127	0.001
509S	978047.210	0.100	978047.208	0.126	0.002
509U	978044.032	0.122	978044.030	0.125	0.002
509V	978046.503	0.125	978046.501	0.125	0.002
509Z	978048.581	0.120	978048.579	0.125	0.002
515N	978051.538	0.128	978051.536	0.125	0.002

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
515R	978058.969	0.108	978058.967	0.124	0.002
515S	978062.482	0.107	978062.480	0.124	0.002
CE 65	978066.115	0.111	978066.113	0.124	0.002
516A	978061.344	0.110	978061.342	0.124	0.002
516B	978061.284	0.111	978061.282	0.123	0.002
516C	978052.788	0.108	978052.786	0.123	0.002
516D	978057.813	0.110	978057.811	0.123	0.002
516E	978061.706	0.116	978061.704	0.122	0.002
516F	978061.909	0.108	978061.907	0.122	0.002
516J	978065.448	0.106	978065.446	0.122	0.002
516L	978070.055	0.088	978070.053	0.122	0.002
516P	978071.503	0.104	978071.501	0.120	0.002
63N	978292.598	0.088	978292.598	0.063	0.000
62U	978260.402	0.087	978260.401	0.065	0.001
MG 66	978304.205	0.085	978304.204	0.062	0.001
MG 67	978294.551	0.041	978294.550	0.066	0.001
MG 68	978267.464	0.040	978267.463	0.067	0.001
83H	978355.071	0.065	978355.070	0.053	0.001
82P	978351.718	0.067	978351.717	0.053	0.001
81Q	978358.167	0.062	978358.166	0.051	0.001
512C	977993.193	0.106	977993.192	0.102	0.001
512D	977995.726	0.107	977995.725	0.103	0.001
512E	977993.012	0.100	977993.011	0.103	0.001
512F	977993.966	0.106	977993.966	0.104	0.000
512J	977995.825	0.103	977995.825	0.104	0.000
512M	977994.800	0.125	977994.800	0.105	0.000
512N	977987.816	0.123	977987.817	0.105	-0.001
512P	977986.146	0.128	977986.147	0.106	-0.001
512R	977981.222	0.129	977981.223	0.106	-0.001
512S	977978.642	0.131	977978.643	0.106	-0.001
512T	977979.057	0.116	977979.058	0.107	-0.001
PE 69	977977.988	0.093	977977.988	0.107	0.000
512V	977973.987	0.089	977973.987	0.108	0.000
513D	977965.346	0.104	977965.347	0.108	-0.001
513F	977955.889	0.105	977955.889	0.108	0.000
513G	977948.198	0.083	977948.199	0.109	-0.001
513J	977908.653	0.090	977908.653	0.110	0.000
513L	977871.864	0.065	977871.865	0.111	-0.001
513M	977872.790	0.067	977872.791	0.111	-0.001
513N	977875.071	0.076	977875.072	0.111	-0.001
513P	977880.891	0.075	977880.892	0.111	-0.001
513R	977877.219	0.077	977877.220	0.111	-0.001
513S	977875.026	0.079	977875.027	0.111	-0.001
513T	977872.184	0.089	977872.185	0.111	-0.001
496C	977870.344	0.093	977870.345	0.111	-0.001
496D	977869.703	0.093	977869.704	0.112	-0.001
496E	977870.442	0.085	977870.443	0.112	-0.001

Cádigo do	Norma L ₁ (mGal) Norm			(mGal)	Discrepância
Código da estação	Valor de	Des. abs.	Valor de	Desvio	(mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
496F	977869.944	0.087	977869.945	0.112	-0.001
496G	977870.935	0.088	977870.936	0.112	-0.001
496H	977871.294	0.090	977871.295	0.112	-0.001
496J	977872.971	0.105	977872.972	0.112	-0.001
496L	977874.653	0.107	977874.654	0.112	-0.001
496M	977868.940	0.098	977868.941	0.113	-0.001
496N	977867.142	0.073	977867.143	0.113	-0.001
CE 70	977869.841	0.081	977869.842	0.112	-0.001
496P	977871.771	0.073	977871.772	0.112	-0.001
496S	977865.667	0.074	977865.667	0.112	0.000
CE 71	977908.719	0.074	977908.719	0.110	0.000
100281	977964.057	0.068	977964.056	0.108	0.001
496A	977868.605	0.103	977868.605	0.115	0.000
495Z	977867.247	0.101	977867.246	0.115	0.001
495X	977868.699	0.082	977868.698	0.116	0.001
495V	977868.351	0.091	977868.349	0.116	0.002
495U	977870.373	0.092	977870.371	0.116	0.002
495S	977890.427	0.090	977890.426	0.116	0.001
495R	977928.846	0.103	977928.845	0.116	0.001
495N	977949.766	0.118	977949.765	0.116	0.001
495L	977945.965	0.114	977945.963	0.116	0.002
495J	977939.141	0.114	977939.139	0.117	0.002
495H	977950.290	0.092	977950.288	0.118	0.002
495F	977954.063	0.108	977954.060	0.118	0.003
495E	977957.486	0.125	977957.482	0.118	0.004
495D	977951.013	0.126	977951.009	0.119	0.004
495C	977959.811	0.112	977959.806	0.119	0.005
495B	977954.150	0.136	977954.145	0.119	0.005
495A	977964.462	0.071	977964.458	0.120	0.004
100181	977968.569	0.069	977968.566	0.122	0.003
497M	977962.194	0.080	977962.190	0.122	0.004
497N	977963.021	0.052	977963.017	0.122	0.004
497P	977960.030	0.085	977960.027	0.124	0.003
497R	977962.098	0.054	977962.096	0.124	0.002
497S	977960.930	0.056	977960.929	0.124	0.001
497T	977960.523	0.062	977960.521	0.124	0.002
497U	977978.806	0.048	977978.804	0.124	0.002
497V	977988.171	0.047	977988.169	0.124	0.002
PI 72	977988.311	0.093	977988.310	0.124	0.001
498A	977988.217	0.092	977988.215	0.124	0.002
498B	977986.378	0.095	977986.376	0.124	0.002
498C	977983.878	0.084	977983.876	0.124	0.002
498D	977988.749	0.081	977988.748	0.124	0.001
498E	977986.918	0.083	977986.916	0.124	0.002
498F	977988.184	0.085	977988.183	0.124	0.001
498H	977993.031	0.080	977993.030	0.123	0.001
498L	977989.723	0.095	977989.722	0.123	0.001

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
498M	977985.986	0.100	977985.985	0.123	0.001
493D	977975.611	0.069	977975.610	0.108	0.001
493C	977986.499	0.082	977986.499	0.108	0.000
493A	977976.833	0.078	977976.834	0.109	-0.001
492X	977980.664	0.075	977980.664	0.109	0.000
492M	978001.737	0.069	978001.736	0.109	0.001
CE 73	978007.060	0.066	978007.059	0.109	0.001
CE 74	978008.216	0.074	978008.215	0.110	0.001
CE 75	978013.818	0.075	978013.818	0.110	0.000
492D	978003.647	0.067	978003.647	0.111	0.000
492C	978009.785	0.078	978009.785	0.110	0.000
491Z	978008.068	0.083	978008.069	0.111	-0.001
491X	978010.500	0.080	978010.500	0.111	0.000
491V	978009.327	0.085	978009.327	0.111	0.000
491U	978011.743	0.092	978011.744	0.111	-0.001
491T	978008.701	0.093	978008.701	0.111	0.000
309B	978040.220	0.066	978040.218	0.082	0.002
309D	978043.502	0.060	978043.500	0.083	0.002
309E	978041.195	0.065	978041.193	0.084	0.002
309G	978039.881	0.056	978039.879	0.085	0.002
309I	978039.456	0.062	978039.453	0.087	0.003
309K	978039.157	0.064	978039.155	0.087	0.002
309L	978037.722	0.054	978037.720	0.088	0.002
309M	978035.118	0.055	978035.116	0.088	0.002
309N	978031.057	0.056	978031.054	0.090	0.003
309O	978032.146	0.044	978032.142	0.090	0.004
309P	978031.193	0.041	978031.189	0.091	0.004
309Q	978034.318	0.051	978034.315	0.092	0.003
309R	978037.758	0.076	978037.754	0.094	0.004
309S	978039.391	0.102	978039.388	0.095	0.003
309T	978029.836	0.102	978029.832	0.097	0.004
298T	978034.336	0.102	978034.332	0.097	0.004
298X	978050.481	0.101	978050.477	0.096	0.004
298Z	978051.266	0.092	978051.263	0.099	0.003
299A	978046.941	0.101	978046.937	0.099	0.004
299B	978047.343	0.102	978047.340	0.100	0.003
299C	978044.554	0.097	978044.551	0.100	0.003
299D	978037.253	0.092	978037.251	0.103	0.002
299E	978034.833	0.084	978034.830	0.103	0.003
299F	978032.116	0.081	978032.114	0.103	0.002
299G	978028.293	0.086	978028.291	0.105	0.002
299Н	978024.541	0.085	978024.539	0.106	0.002
299I	978024.461	0.079	978024.459	0.106	0.002
299K	978016.731	0.087	978016.730	0.107	0.001
299L	978021.366	0.059	978021.365	0.108	0.001
299M	978031.626	0.061	978031.625	0.108	0.001
299N	978038.924	0.058	978038.923	0.107	0.001

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
2990	978044.166	0.079	978044.166	0.107	0.000
299Q	978053.091	0.089	978053.090	0.106	0.001
299S	978059.101	0.064	978059.100	0.106	0.001
299T	978059.271	0.083	978059.269	0.105	0.002
299V	978056.173	0.082	978056.171	0.105	0.002
299X	978055.489	0.082	978055.487	0.103	0.002
299Y	978059.124	0.086	978059.121	0.102	0.003
299Z	978051.798	0.090	978051.795	0.102	0.003
320A	978055.818	0.069	978055.816	0.101	0.002
320B	978059.694	0.068	978059.691	0.101	0.003
320C	978053.298	0.082	978053.296	0.100	0.002
320D	978051.557	0.063	978051.556	0.099	0.001
320G	978058.704	0.066	978058.703	0.099	0.001
320H	978055.905	0.093	978055.904	0.093	0.001
298S	978048.969	0.073	978048.969	0.090	0.000
298Q	978052.323	0.063	978052.322	0.090	0.001
298P	978055.543	0.069	978055.541	0.090	0.002
298J	978048.755	0.064	978048.753	0.090	0.002
298H	978049.766	0.059	978049.764	0.090	0.002
298G	978049.953	0.062	978049.952	0.090	0.001
298F	978049.777	0.061	978049.775	0.090	0.002
298E	978048.691	0.071	978048.690	0.098	0.002
298D	978046.614	0.073	978046.612	0.088	0.002
298B	978045.145	0.075	978045.143	0.087	0.002
298A	978049.917	0.073	978049.916	0.087	0.002
297Y	978058.353	0.068	978058.351	0.086	0.002
297X	978052.550	0.071	978052.548	0.086	0.002
297U	978057.325	0.071	978057.324	0.086	0.002
297T	978065.655	0.072	978065.654	0.085	0.001
297S	978080.884	0.072	978080.883	0.083	0.001
297P	978091.674	0.072	978091.673	0.083	0.001
297O	978096.305	0.062	978096.304	0.003	0.001
300L	978118.164	0.052	978118.163	0.077	0.001
289V	978064.321	0.063	978064.320	0.073	0.001
289S	978064.668	0.069	978064.667	0.082	0.001
289Q	978068.433	0.063	978068.433	0.085	0.000
289G	978062.667	0.064	978062.667	0.085	0.000
288A	978082.007	0.058	978086.458	0.085	0.000
287W	978115.216	0.055	978115.216	0.083	0.000
286X	978129.194	0.053	978129.193	0.085	0.000
279Z	978124.147	0.079	978124.146	0.086	0.001
279Y	978124.147	0.079	978136.180	0.086	0.001
279X	978130.182	0.062	978122.006	0.088	0.002
279V	978122.007	0.063	978124.351	0.088	0.001
279U	978124.532	0.069	978124.331	0.089	0.001
279T	978135.769	0.009	978135.768	0.089	0.002
279S	978133.590	0.076	978133.590	0.009	0.000
4190	710133.370	0.070	710133,370	0.090	0.000

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
279R	978138.699	0.073	978138.698	0.090	0.001
279P	978133.872	0.067	978133.871	0.090	0.001
279N	978135.707	0.069	978135.706	0.090	0.001
279M	978134.825	0.068	978134.824	0.091	0.001
279L	978137.135	0.065	978137.134	0.090	0.001
279Н	978140.301	0.072	978140.299	0.091	0.002
279G	978146.229	0.075	978146.227	0.090	0.002
279F	978138.071	0.077	978138.069	0.091	0.002
BA 76	978142.194	0.074	978142.193	0.090	0.001
279E	978142.387	0.110	978142.386	0.090	0.001
279C	978156.384	0.111	978156.383	0.089	0.001
279B	978157.129	0.110	978157.129	0.089	0.000
494U	977968.550	0.073	977968.547	0.122	0.003
494T	977955.734	0.070	977955.731	0.124	0.003
494S	977953.014	0.078	977953.010	0.124	0.004
494R	977953.806	0.070	977953.802	0.126	0.004
494N	977959.799	0.060	977959.795	0.126	0.004
494M	977955.170	0.074	977955.166	0.127	0.004
494L	977955.479	0.073	977955.475	0.127	0.004
494J	977950.300	0.069	977950.297	0.127	0.003
494F	977968.755	0.066	977968.752	0.127	0.003
494E	977953.146	0.064	977953.143	0.127	0.003
494D	977955.460	0.087	977955.456	0.128	0.004
494C	977964.116	0.074	977964.112	0.129	0.004
494B	977967.605	0.099	977967.602	0.131	0.003
494A	977969.524	0.102	977969.521	0.131	0.003
493Z	977969.447	0.109	977969.444	0.132	0.003
493X	977975.112	0.107	977975.109	0.133	0.003
493V	977970.490	0.106	977970.486	0.133	0.004
CE 77	977994.392	0.112	977994.389	0.133	0.003
493S	977994.435	0.111	977994.432	0.133	0.003
493R	977992.141	0.090	977992.138	0.133	0.003
493P	977994.287	0.103	977994.283	0.134	0.004
493N	977994.232	0.098	977994.228	0.134	0.004
493M	977990.294	0.098	977990.290	0.134	0.004
493L	977993.036	0.106	977993.032	0.135	0.004
493J	977992.558	0.116	977992.554	0.135	0.004
493H	977995.579	0.123	977995.575	0.135	0.004
493G	977990.758	0.116	977990.754	0.138	0.004
493F	978003.687	0.117	978003.684	0.138	0.003
489T	978001.058	0.125	978001.055	0.138	0.003
489S	978001.701	0.123	978001.698	0.138	0.003
489R	977974.615	0.115	977974.611	0.139	0.004
489P	977973.812	0.118	977973.809	0.139	0.003
489N	977961.904	0.119	977961.900	0.140	0.004
489M	977954.910	0.112	977954.907	0.140	0.003
489J	977958.790	0.113	977958.787	0.140	0.003

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
489H	977963.527	0.123	977963.524	0.140	0.003
489G	977965.499	0.124	977965.496	0.141	0.003
CE 78	977975.023	0.122	977975.020	0.141	0.003
489E	977967.240	0.113	977967.237	0.141	0.003
489B	977990.580	0.120	977990.576	0.141	0.004
489A	977985.467	0.134	977985.464	0.142	0.003
488Z	977989.929	0.136	977989.925	0.142	0.004
488X	977983.202	0.163	977983.198	0.143	0.004
488V	977977.912	0.151	977977.909	0.143	0.003
488U	977992.408	0.156	977992.405	0.143	0.003
488T	977994.649	0.158	977994.646	0.144	0.003
488S	977996.925	0.144	977996.921	0.144	0.004
488R	977996.966	0.130	977996.962	0.144	0.004
488P	977997.615	0.124	977997.612	0.144	0.003
488N	977993.531	0.116	977993.527	0.144	0.004
488L	977986.797	0.126	977986.794	0.145	0.003
488J	977990.688	0.148	977990.685	0.145	0.003
488H	977989.830	0.145	977989.827	0.145	0.003
488G	977989.909	0.144	977989.906	0.145	0.003
488E	977977.236	0.121	977977.233	0.146	0.003
488D	977974.123	0.138	977974.120	0.146	0.003
488C	977957.996	0.128	977957.993	0.147	0.003
488B	977973.586	0.129	977973.583	0.147	0.003
488A	977975.780	0.133	977975.777	0.147	0.003
487Z	977977.446	0.127	977977.444	0.147	0.002
487X	977975.627	0.131	977975.624	0.148	0.003
487V	977976.804	0.131	977976.802	0.148	0.002
487T	977965.558	0.128	977965.555	0.148	0.003
501F	977960.587	0.131	977960.584	0.148	0.003
501G	977959.015	0.127	977959.012	0.148	0.003
501H	977961.672	0.130	977961.669	0.148	0.003
501J	977964.646	0.157	977964.643	0.149	0.003
501L	977961.944	0.153	977961.941	0.150	0.003
501M	977965.139	0.143	977965.135	0.150	0.004
501N	977966.498	0.154	977966.495	0.150	0.003
501P	977963.611	0.147	977963.608	0.150	0.003
501R	977957.702	0.149	977957.698	0.150	0.004
501S	977953.715	0.147	977953.712	0.150	0.003
501T	977949.488	0.157	977949.485	0.151	0.003
501U	977954.676	0.163	977954.673	0.151	0.003
501V	977950.819	0.164	977950.815	0.151	0.004
501X	977946.695	0.165	977946.692	0.151	0.003
501Z	977950.473	0.158	977950.469	0.151	0.004
502A	977961.620	0.141	977961.617	0.151	0.003
CE 79	977960.146	0.139	977960.143	0.151	0.003
502C	977960.558	0.173	977960.555	0.151	0.003
502D	977956.345	0.170	977956.342	0.151	0.003

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
502E	977960.142	0.183	977960.139	0.151	0.003
502F	977960.415	0.193	977960.412	0.151	0.003
502G	977962.169	0.184	977962.166	0.151	0.003
502H	977955.136	0.165	977955.133	0.151	0.003
502J	977955.654	0.160	977955.652	0.151	0.002
502L	977955.891	0.153	977955.889	0.151	0.002
502P	977950.398	0.153	977950.395	0.151	0.003
502R	977954.777	0.162	977954.775	0.151	0.002
503H	977955.168	0.164	977955.165	0.151	0.003
503J	977955.725	0.160	977955.722	0.151	0.003
503L	977954.679	0.168	977954.676	0.151	0.003
503M	977956.132	0.152	977956.130	0.151	0.002
503N	977957.492	0.179	977957.489	0.151	0.003
503P	977954.581	0.172	977954.578	0.151	0.003
503R	977956.844	0.175	977956.841	0.151	0.003
503S	977961.222	0.201	977961.220	0.151	0.002
503T	977960.995	0.200	977960.993	0.151	0.002
503U	977958.811	0.210	977958.808	0.151	0.003
503V	977964.789	0.212	977964.786	0.151	0.003
503X	977964.826	0.208	977964.823	0.151	0.003
503Z	977961.007	0.205	977961.004	0.151	0.003
504B	977964.164	0.211	977964.162	0.150	0.002
504C	977974.649	0.212	977974.647	0.150	0.002
504D	977973.714	0.196	977973.712	0.150	0.002
504E	977972.657	0.178	977972.654	0.150	0.003
504F	977975.785	0.180	977975.783	0.150	0.002
504U	977954.454	0.182	977954.452	0.150	0.002
523U	977956.305	0.179	977956.302	0.150	0.003
523T	977958.416	0.171	977958.413	0.150	0.003
523S	977962.047	0.177	977962.044	0.150	0.003
523R	977960.858	0.185	977960.855	0.150	0.003
523N	977961.918	0.181	977961.915	0.150	0.003
523M	977963.281	0.180	977963.279	0.150	0.002
523L	977962.431	0.196	977962.429	0.150	0.002
523J	977960.600	0.199	977960.597	0.150	0.003
523H	977959.547	0.199	977959.545	0.150	0.002
523F	977966.858	0.195	977966.855	0.149	0.003
523E	977964.932	0.203	977964.930	0.149	0.002
523C	977968.423	0.204	977968.421	0.149	0.002
522X	977970.560	0.176	977970.558	0.149	0.002
522V	977972.486	0.183	977972.484	0.148	0.002
522U	977965.874	0.182	977965.872	0.149	0.002
522S	977968.386	0.159	977968.384	0.148	0.002
522P	977943.479	0.157	977943.477	0.148	0.002
522N	977911.131	0.188	977911.129	0.149	0.002
522M	977884.010	0.176	977884.007	0.149	0.003
522L	977882.754	0.198	977882.752	0.149	0.002

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Disavanância
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
522J	977852.029	0.197	977852.027	0.150	0.002
522H	977839.030	0.188	977839.028	0.150	0.002
522G	977833.843	0.186	977833.840	0.150	0.003
522F	977834.134	0.205	977834.131	0.148	0.003
SACS02	977829.883	0.168	977829.880	0.148	0.003
522C	977827.108	0.153	977827.104	0.147	0.004
522B	977828.602	0.154	977828.599	0.147	0.003
522A	977837.139	0.156	977837.136	0.147	0.003
521Z	977833.352	0.172	977833.349	0.146	0.003
521X	977841.027	0.169	977841.024	0.146	0.003
521V	977850.150	0.170	977850.147	0.145	0.003
521U	977841.232	0.168	977841.228	0.146	0.004
521S	977839.978	0.168	977839.975	0.145	0.003
521P	977835.695	0.155	977835.692	0.145	0.003
521H	977850.190	0.160	977850.187	0.144	0.003
521C	977859.644	0.159	977859.641	0.144	0.003
521A	977853.913	0.154	977853.910	0.144	0.003
520Z	977857.388	0.148	977857.385	0.143	0.003
520V	977865.236	0.156	977865.233	0.143	0.003
313J	978054.024	0.071	978054.024	0.090	0.000
313K	978060.320	0.058	978060.320	0.090	0.000
BA 80	978062.926	0.067	978062.925	0.090	0.001
313M	978055.812	0.074	978055.811	0.090	0.001
313Q	978048.301	0.082	978048.300	0.090	0.001
313T	978025.651	0.133	978025.650	0.091	0.001
313U	978028.501	0.124	978028.501	0.090	0.000
313V	978029.975	0.118	978029.975	0.090	0.000
BA 81	978030.565	0.109	978030.564	0.090	0.001
313X	978033.292	0.104	978033.291	0.089	0.001
313Y	978035.009	0.071	978035.008	0.089	0.001
313Z	978037.730	0.076	978037.730	0.088	0.000
314A	978037.773	0.096	978037.773	0.088	0.000
314C	978039.064	0.102	978039.064	0.088	0.000
314D	978039.184	0.092	978039.183	0.087	0.001
314E	978038.401	0.090	978038.401	0.087	0.000
314F	978038.895	0.090	978038.894	0.086	0.001
314G	978038.481	0.098	978038.481	0.086	0.000
314I	978043.874	0.091	978043.874	0.086	0.000
314J	978043.063	0.075	978043.063	0.085	0.000
314K	978043.219	0.079	978043.218	0.085	0.001
314M	978043.572	0.074	978043.572	0.085	0.000
314N	978044.055	0.080	978044.055	0.084	0.000
314O	978044.851	0.084	978044.850	0.084	0.001
314P	978042.551	0.082	978042.551	0.084	0.000
314Q	978037.198	0.085	978037.198	0.083	0.000
314R	978037.976	0.090	978037.976	0.081	0.000
314S	978040.050	0.086	978040.050	0.080	0.000

Cádica da	Norma L ₁	Norma L ₂	(mGal)	Diagram ân sia	
Código da	Valor de	Des. abs.	Valor de	Desvio	Discrepância
estação	"g" ajustado	mediano	"g" ajustado	padrão	(mGal)
314T	978049.176	0.088	978049.176	0.080	0.000
314U	978053.544	0.090	978053.543	0.079	0.001
314V	978070.608	0.091	978070.608	0.078	0.000
643L	978346.308	0.065	978346.308	0.059	0.000
643J	978348.504	0.079	978348.503	0.062	0.001
643F	978354.702	0.094	978354.701	0.069	0.001
643D	978342.882	0.071	978342.881	0.070	0.001
643C	978340.031	0.071	978340.030	0.072	0.001
643B	978333.800	0.071	978333.799	0.072	0.001
642Z	978331.514	0.090	978331.514	0.075	0.000
642X	978313.147	0.092	978313.146	0.076	0.001
642V	978312.501	0.032	978312.500	0.077	0.001
642U	978315.974	0.079	978315.972	0.076	0.001
642T	978330.710	0.075	978330.707	0.076	0.002
642S	978330.710	0.073	978329.737	0.076	0.003
642R	978329.739	0.081	978314.334	0.076	0.002
642Q	978294.980	0.094	978294.979	0.070	0.002
642P	978294.980	0.104	978294.979	0.077	0.001
642N	978283.540	0.101	978283.539	0.078	0.002
642M	978283.340	0.102	978283.339	0.078	0.001
642L	978281.239	0.102	978281.238	0.078	0.001
642L 642H	978296.390	0.083	978296.390	0.077	0.000
642G	978290.390	0.087	978290.390	0.076	0.000
642F	978302.062	0.087	978302.062	0.075	0.000
642E	978302.002	0.080	978302.002	0.075	0.000
642D	978298.696	0.087	978298.695	0.073	0.001
642C	978298.090	0.093	978293.819	0.073	0.001
642B	978293.820	0.090	978293.819	0.073	0.001
641Z	978290.393	0.060	978290.393	0.073	0.000
641X	978302.300	0.061	978302.339	0.072	0.001
MG 82	978284.858	0.061	978284.857	0.070	0.001
641T	978291.876	0.079	978291.875	0.067	0.001
020177	978279.898	0.077	978279.897	0.064	0.001
640Z	978264.554	0.088	978264.554	0.065	0.001
MG 83	978314.214	0.093	978204.334	0.063	0.000
640P	978295.043	0.069	978295.043	0.068	0.000
MG 84	978302.423	0.067	978302.423	0.069	0.000
GO 85	978330.608	0.074	978330.608	0.069	0.000
640G	978330.008	0.074	978330.008	0.009	0.000
GO 86	978323.607	0.001	978323.606	0.071	0.001
GO 87	978323.007	0.111	978323.000	0.071	0.000
639U	978262.305	0.119	978262.304	0.074	0.000
0390	978262.303	0.114	978262.304	0.075	0.001
639H	978256.677	0.121	978256.678	0.075	-0.001
639F	978254.251	0.109	978254.252	0.070	-0.001
639E	978247.356	0.094	978234.232	0.079	0.000
639D	978247.330	0.093	978252.802	0.080	0.000
037D	910232.002	0.117	910434,004	0.001	0.000

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
639B	978238.564	0.104	978238.564	0.082	0.000
639A	978253.196	0.140	978253.197	0.082	-0.001
GO 88	978268.517	0.143	978268.518	0.081	-0.001
GO 89	978271.715	0.139	978271.715	0.081	0.000
638T	978235.427	0.134	978235.428	0.083	-0.001
GO 90	978251.906	0.126	978251.907	0.082	-0.001
638Q	978228.440	0.125	978228.441	0.084	-0.001
638N	978217.960	0.129	978217.963	0.085	-0.003
GO 91	978204.703	0.124	978204.706	0.085	-0.003
GO 92	978214.795	0.143	978214.797	0.085	-0.002
638C	978199.612	0.132	978199.614	0.086	-0.002
638B	978193.016	0.130	978193.017	0.086	-0.001
637X	978189.662	0.124	978189.663	0.086	-0.001
637V	978192.472	0.127	978192.473	0.086	-0.001
637S	978193.928	0.129	978193.929	0.085	-0.001
GO 93	978202.602	0.122	978202.603	0.084	-0.001
637Q	978186.373	0.121	978186.374	0.085	-0.001
GO 94	978201.108	0.127	978201.108	0.084	0.000
637H	978182.352	0.082	978182.351	0.080	0.001
637G	978178.182	0.053	978178.181	0.075	0.001
637E	978182.161	0.055	978182.160	0.074	0.001
637D	978181.335	0.053	978181.334	0.072	0.001
636Z	978175.422	0.053	978175.420	0.072	0.002
636X	978174.802	0.076	978174.801	0.071	0.001
636V	978173.401	0.071	978173.400	0.071	0.001
636U	978165.130	0.083	978165.129	0.071	0.001
636T	978157.839	0.087	978157.837	0.070	0.002
636J	978109.855	0.084	978109.853	0.072	0.002
022177	978109.800	0.082	978109.797	0.071	0.003
510	978394.891	0.068	978394.890	0.059	0.001
643U	978408.461	0.063	978408.460	0.059	0.001
643V	978410.097	0.064	978410.095	0.059	0.002
643X	978412.934	0.071	978412.933	0.063	0.001
643Z	978416.668	0.100	978416.666	0.063	0.002
644A	978419.634	0.099	978419.632	0.064	0.002
644B	978421.283	0.091	978421.281	0.064	0.002
MG 95	978455.367	0.104	978455.366	0.073	0.001
644G	978454.368	0.117	978454.367	0.073	0.001
644H	978447.786	0.115	978447.786	0.077	0.000
644L	978442.030	0.133	978442.029	0.080	0.001
644M	978450.044	0.111	978450.044	0.083	0.000
644N	978446.717	0.099	978446.717	0.087	0.000
644P	978435.839	0.105	978435.839	0.088	0.000
644Q	978446.174	0.103	978446.174	0.093	0.000
644R	978438.586	0.103	978438.586	0.094	0.000
644S	978449.199	0.104	978449.200	0.094	-0.001
644T	978451.063	0.108	978451.064	0.094	-0.001

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Discrepância
Código da estação	Valor de	Des. abs.	Valor de	Desvio	(mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
644U	978456.713	0.121	978456.714	0.095	-0.001
644V	978456.643	0.134	978456.644	0.102	-0.001
644X	978453.602	0.131	978453.602	0.102	0.000
645A	978447.581	0.132	978447.581	0.102	0.000
645B	978458.252	0.130	978458.252	0.101	0.000
645C	978452.876	0.139	978452.876	0.101	0.000
645D	978446.216	0.142	978446.216	0.102	0.000
645E	978447.906	0.149	978447.906	0.101	0.000
645F	978448.353	0.139	978448.353	0.101	0.000
645G	978449.806	0.143	978449.806	0.100	0.000
645J	978452.199	0.097	978452.199	0.098	0.000
645P	978442.938	0.090	978442.939	0.098	-0.001
645Q	978440.305	0.084	978440.306	0.098	-0.001
645R	978436.923	0.084	978436.924	0.097	-0.001
645S	978425.847	0.071	978425.848	0.097	-0.001
645T	978421.776	0.112	978421.777	0.097	-0.001
645U	978417.858	0.107	978417.858	0.096	0.000
645X	978412.909	0.111	978412.910	0.096	-0.001
645Z	978410.908	0.112	978410.908	0.096	0.000
646A	978423.193	0.111	978423.194	0.095	-0.001
646E	978413.809	0.100	978413.809	0.094	0.000
646F	978415.582	0.081	978415.582	0.089	0.000
646G	978414.211	0.089	978414.211	0.088	0.000
646H	978414.933	0.084	978414.932	0.088	0.001
646L	978415.379	0.084	978415.378	0.088	0.001
646M	978414.380	0.076	978414.379	0.086	0.001
646Q	978425.867	0.083	978425.866	0.085	0.001
646S	978438.913	0.046	978438.912	0.083	0.001
646T	978433.260	0.051	978433.259	0.083	0.001
646U	978428.328	0.061	978428.327	0.082	0.001
646V	978432.992	0.062	978432.992	0.080	0.000
647A	978421.335	0.060	978421.335	0.081	0.000
647B	978419.391	0.069	978419.391	0.079	0.000
647C	978422.762	0.045	978422.761	0.076	0.001
647D	978425.266	0.053	978425.265	0.076	0.001
647E	978425.951	0.044	978425.951	0.075	0.000
647G	978429.170	0.045	978429.170	0.073	0.000
647H	978427.573	0.083	978427.572	0.073	0.001
647J	978431.146	0.067	978431.145	0.071	0.001
647N	978428.948	0.073	978428.947	0.070	0.001
647U	978431.237	0.074	978431.236	0.070	0.001
647V	978429.547	0.074	978429.546	0.069	0.001
MG 96	978422.330	0.076	978422.329	0.059	0.001
MG 97	978441.717	0.074	978441.717	0.057	0.000
MG 98	978445.341	0.070	978445.341	0.053	0.000
GO 99	978443.260	0.075	978443.260	0.055	0.000
715M	978431.233	0.076	978431.232	0.056	0.001

Cádigo do	Norma L ₁	Norma L ₂	(mGal)	Digaranânaia	
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
715L	978419.006	0.069	978419.005	0.065	0.001
715J	978414.008	0.069	978414.007	0.067	0.001
715H	978405.462	0.058	978405.461	0.069	0.001
715F	978411.228	0.078	978411.227	0.073	0.001
715E	978404.315	0.086	978404.313	0.076	0.002
715D	978400.780	0.088	978400.778	0.076	0.002
715C	978404.577	0.095	978404.576	0.077	0.001
715B	978397.465	0.101	978397.463	0.078	0.002
715A	978396.157	0.097	978396.155	0.078	0.002
714Z	978398.538	0.099	978398.536	0.079	0.002
714X	978394.411	0.084	978394.409	0.081	0.002
714V	978389.090	0.082	978389.087	0.083	0.003
714U	978388.268	0.091	978388.265	0.083	0.003
714T	978379.519	0.117	978379.517	0.086	0.002
714S	978369.019	0.085	978369.018	0.091	0.001
714R	978374.266	0.084	978374.265	0.091	0.001
714N	978375.345	0.081	978375.343	0.091	0.002
714M	978363.981	0.107	978363.979	0.094	0.002
714J	978375.333	0.110	978375.330	0.094	0.003
714H	978361.613	0.096	978361.611	0.095	0.002
714G	978375.575	0.101	978375.574	0.095	0.001
714F	978369.730	0.089	978369.728	0.098	0.002
714E	978364.923	0.108	978364.920	0.100	0.003
714D	978356.119	0.102	978356.116	0.100	0.003
714C	978363.801	0.096	978363.798	0.102	0.003
714B	978355.636	0.095	978355.633	0.104	0.003
713Z	978350.680	0.111	978350.676	0.104	0.004
713X	978346.646	0.112	978346.642	0.104	0.004
713V	978356.602	0.106	978356.598	0.104	0.004
713U	978343.247	0.128	978343.243	0.106	0.004
713T	978338.925	0.129	978338.921	0.106	0.004
713S	978340.029	0.123	978340.025	0.106	0.004
713P	978344.624	0.127	978344.620	0.106	0.004
713N	978344.902	0.131	978344.898	0.106	0.004
713M	978335.042	0.148	978335.037	0.109	0.005
713L	978323.175	0.136	978323.170	0.109	0.005
713J	978321.291	0.135	978321.286	0.109	0.005
713H	978325.845	0.147	978325.840	0.110	0.005
713G	978322.812	0.154	978322.807	0.111	0.005
713F	978306.194	0.147	978306.190	0.111	0.004
713E	978318.223	0.150	978318.219	0.111	0.004
713D	978308.046	0.144	978308.042	0.112	0.004
713C	978301.160	0.137	978301.156	0.114	0.004
713B	978306.472	0.138	978306.468	0.114	0.004
713A	978313.790	0.128	978313.786	0.113	0.004
712Z	978314.900	0.120	978314.896	0.114	0.004
712X	978304.464	0.137	978304.460	0.114	0.004

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Digaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
712V	978316.532	0.137	978316.528	0.114	0.004
712U	978309.883	0.140	978309.879	0.114	0.004
712S	978299.420	0.138	978299.416	0.114	0.004
712R	978288.053	0.139	978288.049	0.115	0.004
712P	978282.769	0.148	978282.765	0.115	0.004
712N	978284.948	0.147	978284.944	0.115	0.004
712M	978292.686	0.142	978292.683	0.115	0.003
712L	978283.037	0.146	978283.034	0.115	0.003
712J	978303.787	0.130	978303.784	0.114	0.003
712H	978287.095	0.143	978287.091	0.115	0.004
712G	978285.521	0.124	978285.517	0.114	0.004
712F	978303.780	0.129	978303.777	0.113	0.003
712E	978281.818	0.120	978281.815	0.114	0.003
712D	978291.145	0.123	978291.143	0.114	0.002
070679	978284.679	0.122	978284.677	0.114	0.002
706L	978224.693	0.065	978224.692	0.067	0.001
706N	978207.251	0.057	978207.250	0.070	0.001
706P	978197.339	0.066	978197.338	0.071	0.001
706R	978187.313	0.074	978187.311	0.075	0.002
706S	978184.827	0.083	978184.825	0.077	0.002
706V	978205.669	0.085	978205.666	0.077	0.003
706X	978223.371	0.089	978223.369	0.076	0.002
706Z	978228.020	0.082	978228.018	0.076	0.002
707A	978225.520	0.075	978225.518	0.079	0.002
707C	978235.143	0.103	978235.141	0.085	0.002
707E	978264.818	0.115	978264.816	0.088	0.002
GO 100	978259.283	0.104	978259.281	0.091	0.002
707G	978258.534	0.110	978258.531	0.091	0.003
707J	978275.756	0.110	978275.753	0.091	0.003
707L	978276.490	0.109	978276.486	0.092	0.004
707R	978270.181	0.122	978270.177	0.097	0.004
707S	978278.088	0.125	978278.084	0.100	0.004
707T	978277.363	0.120	978277.359	0.101	0.004
707U	978273.828	0.121	978273.825	0.101	0.003
707V	978279.212	0.122	978279.208	0.101	0.004
707X	978280.644	0.121	978280.641	0.102	0.003
708D	978284.721	0.117	978284.718	0.103	0.003
708E	978286.141	0.107	978286.138	0.104	0.003
708G	978304.128	0.117	978304.125	0.104	0.003
708J	978316.174	0.126	978316.171	0.104	0.003
708L	978313.119	0.123	978313.117	0.105	0.002
708M	978306.468	0.114	978306.466	0.106	0.002
708N	978307.912	0.116	978307.909	0.107	0.003
708P	978316.285	0.146	978316.281	0.107	0.004
708R	978324.865	0.138	978324.860	0.107	0.005
708S	978335.007	0.136	978335.002	0.108	0.005
708X	978338.979	0.134	978338.974	0.108	0.005

Cádigo do	Norma L ₁	(mGal)	Norma L ₂	(mGal)	Disaranânaia
Código da estação	Valor de	Des. abs.	Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
709A	978346.355	0.145	978346.350	0.108	0.005
709B	978348.164	0.145	978348.159	0.108	0.005
709D	978342.009	0.157	978342.005	0.109	0.004
709G	978335.583	0.153	978335.578	0.109	0.005
709H	978332.357	0.154	978332.353	0.109	0.004
709J	978328.341	0.159	978328.336	0.110	0.005
709L	978321.569	0.134	978321.564	0.110	0.005
709R	978318.499	0.129	978318.494	0.110	0.005
709S	978317.372	0.169	978317.366	0.111	0.006
709U	978314.514	0.162	978314.508	0.111	0.006
709V	978309.045	0.136	978309.039	0.112	0.006
710B	978298.501	0.160	978298.496	0.113	0.005
710C	978296.351	0.138	978296.346	0.114	0.005
710D	978290.077	0.137	978290.072	0.114	0.005
710E	978298.336	0.128	978298.331	0.114	0.005
710F	978291.921	0.115	978291.916	0.115	0.005
710G	978294.809	0.128	978294.804	0.115	0.005
710J	978277.861	0.126	978277.856	0.115	0.005
070779	978289.420	0.140	978289.415	0.115	0.005
710N	978286.794	0.124	978286.790	0.115	0.004
710P	978282.749	0.107	978282.745	0.115	0.004
710R	978288.091	0.122	978288.088	0.115	0.003
710U	978277.166	0.110	978277.163	0.116	0.003
710X	978262.113	0.113	978262.110	0.116	0.003
710Z	978264.320	0.115	978264.317	0.116	0.003
711A	978259.755	0.110	978259.752	0.116	0.003
711B	978256.091	0.156	978256.089	0.116	0.002
711C	978253.285	0.148	978253.284	0.116	0.001
711D	978253.244	0.111	978253.243	0.116	0.001
GO 101	978274.324	0.123	978274.322	0.115	0.002
711N	978263.876	0.121	978263.875	0.115	0.001
711P	978254.500	0.139	978254.499	0.116	0.001
711R	978257.015	0.142	978257.014	0.115	0.001
711T	978289.217	0.131	978289.216	0.114	0.001
711U	978279.935	0.125	978279.932	0.114	0.003
711V	978276.573	0.128	978276.571	0.114	0.002
711X	978291.549	0.126	978291.546	0.114	0.003
711Z	978270.591	0.125	978270.589	0.114	0.002
690G	978222.898	0.071	978222.897	0.072	0.001
690L	978210.042	0.076	978210.041	0.076	0.001
690P	978208.058	0.110	978208.057	0.097	0.001
690T	978222.711	0.119	978222.710	0.097	0.001
691B	978230.746	0.120	978230.745	0.097	0.001
691E	978228.714	0.128	978228.713	0.098	0.001
691J	978235.790	0.118	978235.789	0.098	0.001
691P	978228.631	0.137	978228.630	0.101	0.001
691T	978268.670	0.128	978268.669	0.100	0.001

Cádica da	Norma L ₁ (mGal)		Norma L ₂ (mGal)		Discrepância
Código da	Valor de Des. abs.		Valor de		
estação	"g" ajustado	mediano	"g" ajustado	padrão	(mGal)
691V	978285.167	0.114	978285.165	0.105	0.002
GO 102	978283.341	0.119	978283.340	0.106	0.001
692F	978276.508	0.118	978276.507	0.115	0.001
692L	978291.020	0.072	978291.019	0.123	0.001
692P	978301.730	0.072	978301.728	0.123	0.002
692U	978319.221	0.092	978319.220	0.125	0.001
GO 103	978313.879	0.073	978313.878	0.126	0.001
693F	978313.553	0.084	978313.552	0.126	0.001
693H	978313.705	0.085	978313.704	0.127	0.001
693R	978321.326	0.087	978321.324	0.126	0.002
GO 104	978321.777	0.092	978321.775	0.127	0.002
694B	978286.228	0.072	978286.227	0.129	0.001
694D	978285.954	0.078	978285.952	0.130	0.002
694E	978286.089	0.077	978286.087	0.130	0.002
694H	978282.427	0.077	978282.425	0.130	0.002
694M	978295.128	0.076	978295.126	0.130	0.002
694R	978296.516	0.070	978296.515	0.130	0.002
694V	978290.310	0.079	978303.130	0.130	0.001
694Z	978309.280	0.079	978309.279	0.130	0.002
695F	978316.465	0.101	978316.463	0.130	0.001
695L	978310.403	0.101	978310.403	0.131	0.002
695E	978309.068	0.100	978309.067	0.131	0.002
695T	978309.008	0.125	978309.007	0.131	0.001
695V	978318.004	0.123	978318.002	0.131	0.001
695Z	978319.213	0.122	978319.212	0.131	0.002
696E	978316.139	0.142	978316.138	0.132	0.001
696H	978324.272	0.159	978324.270	0.132	0.001
696M	978324.072	0.149	978324.070	0.132	0.002
696R	978302.631	0.139	978302.629	0.132	0.002
696V	978302.031	0.139	978280.443	0.133	0.002
697A	978285.467	0.140	978285.465	0.135	0.002
697E	978291.742	0.136	978291.740	0.135	0.002
697J	978291.742	0.130	978304.965	0.136	0.002
697L	978309.525	0.128	978309.524	0.136	0.002
735M	978302.113	0.128	978302.112	0.130	0.001
735H	978293.028	0.003	978293.027	0.137	0.001
735E	978291.604	0.093	978291.603	0.137	0.001
735B	978278.631	0.094	978278.629	0.137	0.001
734X	978292.073	0.093	978292.072	0.137	0.002
734T	978291.821	0.092	978291.820	0.137	0.001
734P	978276.417	0.068	978276.416	0.138	0.001
734M	978289.115	0.049	978289.114	0.138	0.001
734H	978271.426	0.057	978271.425	0.139	0.001
734E	978266.071	0.059	978266.069	0.139	0.002
734A	978234.381	0.050	978234.380	0.140	0.002
733V	978230.415	0.052	978230.414	0.140	0.001
733S	978240.173	0.052	978240.172	0.140	0.001
1550)10270.11J	0.037	710270.112	0.170	0.001

Cádigo do	Norma L ₁ (mGal)		Norma L ₂ (mGal)		Discrepância
Código da estação	Valor de Des. abs.		Valor de	<u>- \ </u>	
estação	"g" ajustado	mediano	"g" ajustado	padrão	(mGal)
733M	978242.746	0.060	978242.744	0.140	0.002
733H	978240.851	0.053	978240.850	0.140	0.001
733E	978233.493	0.060	978233.491	0.140	0.002
733B	978231.273	0.060	978231.271	0.141	0.002
732X	978227.641	0.067	978227.639	0.141	0.002
732T	978232.095	0.086	978232.094	0.141	0.001
732N	978235.929	0.075	978235.928	0.141	0.001
732J	978228.485	0.082	978228.483	0.141	0.002
732F	978217.124	0.092	978217.122	0.141	0.002
732C	978209.166	0.072	978209.164	0.141	0.002
731Z	978217.371	0.073	978217.369	0.141	0.002
731T	978234.826	0.070	978234.824	0.140	0.002
731R	978225.636	0.070	978225.634	0.141	0.002
731M	978221.302	0.081	978221.300	0.141	0.002
731H	978215.432	0.083	978215.431	0.141	0.001
731E	978201.687	0.087	978201.685	0.141	0.002
731B	978197.879	0.128	978197.877	0.141	0.002
730X	978197.905	0.122	978197.902	0.141	0.003
730S	978198.906	0.093	978198.904	0.141	0.002
730L	978199.021	0.088	978199.019	0.141	0.002
730E	978198.649	0.084	978198.647	0.141	0.002
730B	978205.379	0.130	978205.378	0.140	0.001
729X	978205.234	0.131	978205.233	0.140	0.001
729T	978201.715	0.135	978201.714	0.140	0.001
729P	978200.501	0.147	978200.499	0.140	0.002
729L	978209.974	0.151	978209.972	0.140	0.002
729G	978206.341	0.145	978206.339	0.140	0.002
729B	978216.768	0.141	978216.766	0.139	0.002
728X	978214.741	0.142	978214.739	0.138	0.002
728T	978218.472	0.155	978218.470	0.137	0.002
728P	978224.671	0.139	978224.669	0.136	0.002
728L	978219.761	0.122	978219.759	0.135	0.002
726J	978209.482	0.134	978209.480	0.130	0.002
726R	978254.208	0.118	978254.205	0.129	0.003
727A	978346.631	0.113	978346.629	0.125	0.002
727D	978339.205	0.102	978339.202	0.123	0.003
727G	978346.509	0.096	978346.506	0.120	0.003
727M	978356.310	0.128	978356.307	0.117	0.003
727S	978349.295	0.162	978349.293	0.115	0.002
727V	978353.584	0.156	978353.582	0.113	0.002
070279	978347.349	0.151	978347.347	0.113	0.002
600A	978099.820	0.082	978099.818	0.072	0.002
600B	978105.074	0.076	978105.072	0.074	0.002
600C	978110.530	0.075	978110.528	0.075	0.002
600D	978121.391	0.075	978121.389	0.075	0.002
600E	978128.839	0.070	978128.837	0.076	0.002
600F	978134.925	0.073	978134.923	0.076	0.002

Cádica da	Norma L ₁ (mGal)		Norma L ₂ (mGal)		D:
Código da	Valor de Des. abs.		Valor de	Desvio	Discrepância (mGal)
estação	"g" ajustado	mediano	"g" ajustado	padrão	(IIIGai)
600H	978153.571	0.079	978153.569	0.076	0.002
600J	978170.486	0.079	978170.484	0.075	0.002
600M	978167.458	0.078	978167.456	0.076	0.002
600P	978165.146	0.078	978165.144	0.077	0.002
600Q	978156.904	0.080	978156.902	0.078	0.002
600R	978142.093	0.078	978142.091	0.079	0.002
600U	978142.796	0.073	978142.794	0.079	0.002
600V	978138.192	0.073	978138.190	0.081	0.002
601C	978104.456	0.076	978104.454	0.083	0.002
601D	978104.430	0.077	978106.256	0.087	0.002
601E	978106.236	0.077	978106.127	0.087	0.002
601J	978108.583	0.033	978108.581	0.089	0.003
GO 105	978108.546	0.074	978104.544	0.089	0.002
601M	978104.340	0.079	978104.344	0.089	0.002
601N	978117.078	0.008	978117.076	0.089	0.002
601Q	978110.737	0.119	978110.733	0.091	0.002
601R	978090.156	0.101	978090.154	0.082	0.002
601S	978077.900	0.107	978077.898	0.081	0.002
601T	978058.134	0.108	978058.133	0.082	0.001
601U	978056.403	0.114	978056.401	0.082	0.002
602Q	978074.023	0.098	978074.021	0.078	0.002
021477	978090.350	0.068	978090.348	0.073	0.002
603X	978090.267	0.062	978090.265	0.072	0.002
603Z	978086.905	0.070	978086.904	0.073	0.001
604A	978091.811	0.067	978091.810	0.072	0.001
DF 106	978111.185	0.064	978111.185	0.071	0.000
GO 107	978144.743	0.065	978144.743	0.069	0.000
604J	978141.387	0.069	978141.387	0.070	0.000
604L	978132.062	0.063	978132.063	0.071	-0.001
604N	978145.478	0.064	978145.479	0.071	-0.001
604P	978128.055	0.050	978128.055	0.074	0.000
604Q	978122.661	0.052	978122.661	0.075	0.000
604R	978112.014	0.057	978112.015	0.075	-0.001
604X	978122.984	0.050	978122.985	0.075	-0.001
605C	978143.299	0.061	978143.300	0.073	-0.001
GO 108	978151.511	0.061	978151.512	0.073	-0.001
021277	978139.347	0.063	978139.347	0.073	0.000
705G	978137.981	0.074	978137.982	0.075	-0.001
705F	978142.320	0.074	978142.321	0.076	-0.001
705E	978146.066	0.083	978146.066	0.077	0.000
705C	978180.122	0.077	978180.122	0.079	0.000
704X	978218.838	0.078	978218.838	0.073	0.000
704U	978224.808	0.065	978224.808	0.071	0.000
704S	978199.578	0.069	978199.577	0.072	0.001
704R	978223.073	0.068	978223.072	0.070	0.001
021177	978218.791	0.061	978218.790	0.068	0.001
704M	978223.278	0.059	978223.277	0.067	0.001

Código da	Norma L ₁ (mGal)		Norma L ₂ (mGal)		Discrepância
estação	Valor de "g" ajustado	Des. abs. mediano	Valor de "g" ajustado	Desvio padrão	(mGal)
070179	978353.971	0.136	978353.968	0.113	0.003
070379	978359.924	0.156	978359.922	0.112	0.002
070479	978246.735	0.111	978246.733	0.116	0.002
070579	978258.984	0.121	978258.982	0.115	0.002