Fast and simple constant-time hashing to the BLS12-381 elliptic curve

(and other curves, too!)

Riad S. Wahby, Dan Boneh

Stanford

December 3rd, 2019

Our initial motivation: BLS signatures [BLS01]

Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, OPRFs, PAKEs, IBE, ...

Our initial motivation: BLS signatures [BLS01]

Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

Our initial motivation: BLS signatures [BLS01]

Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

 Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding

Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, fixed-modulus arithmetic only
Why simple and constant time?

 Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding

Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, fixed-modulus arithmetic only
Why simple and constant time?

- Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding
- Fixed modulus: an order of magnitude less code

Our initial motivation: BLS signatures [BLS01]

• Also: VRFs, fixed-modulus arithmetic only
Why simple and constant time?

- Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding
- Fixed modulus: an order of magnitude less code
- Embedded systems often have fixed-modulus hardware acceleration but slow generic bigint

Our initial motivation: BLS signatures [BLS01]

Also: VRFs, OPRFs, PAKEs, IBE, . . .

Why simple and constant time?

- Avoids side channels (e.g. Dragonblood [VR19]), without requiring randomized blinding
- Fixed modulus: an order of magnitude less code
- Embedded systems often have fixed-modulus hardware acceleration but *slow* generic bigint

Why the BLS12-381 pairing-friendly elliptic curve?

Widely used curve for ≈120-bit security level
 Will (probably) be an IETF standard soon

1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in \{0, 1728\}$ (Recall: pairing-friendly curves often have j = 0)

- 1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in \{0, 1728\}$ (Recall: pairing-friendly curves often have j = 0)
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation✓ On par with the fastest existing maps

- 1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in \{0, 1728\}$ (Recall: pairing-friendly curves often have j=0)
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 ✓ On par with the fastest existing maps
 ✓ Fast impls are simple and constant time

- 1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in \{0, 1728\}$ (Recall: pairing-friendly curves often have j = 0)
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 - ✓ On par with the fastest existing maps
 - ✓ Fast impls are simple and constant time
 - ✓ Applies to essentially any elliptic curve

- 1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in \{0, 1728\}$ (Recall: pairing-friendly curves often have j = 0)
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 - ✓ On par with the fastest existing maps
 - ✓ Fast impls are simple and constant time
 - ✓ Applies to essentially any elliptic curve
- 3. Impl and eval of 34 hash variants for BLS12-381

- 1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in \{0, 1728\}$ (Recall: pairing-friendly curves often have j = 0)
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 - ✓ On par with the fastest existing maps
 - ✓ Fast impls are simple and constant time
 - ✓ Applies to essentially any elliptic curve
- 3. Impl and eval of 34 hash variants for BLS12-381
 - ✓ 1.3–2× faster than prior constant-time hashes,
 - \leq 9% slower than *non*-CT deterministic maps

- 1. "Indirect" maps via isogenies, sidestepping limitations of existing maps when $j \in \{0, 1728\}$ (Recall: pairing-friendly curves often have j=0)
- 2. An optimization to the map of [BCIMRT10] that reduces its cost to 1 exponentiation
 ✓ On par with the fastest existing maps
 ✓ Fast impls are simple and constant time
 ✓ Applies to essentially any elliptic curve
- Impl and eval of 34 hash variants for BLS12-381
 ✓ 1.3-2× faster than prior constant-time hashes,
 ≤ 9% slower than non-CT deterministic maps
 □ Open-source impls in C, Rust, Python, . . .

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

4. IETF standardization efforts

 $H_p:\{0,1\}^\star \to \mathbb{F}_p$ and $H_q:\{0,1\}^\star \to \mathbb{F}_q$ are hash functions modeled as random oracles

 $H_p: \{0,1\}^* \to \mathbb{F}_p \text{ and } H_q: \{0,1\}^* \to \mathbb{F}_q \text{ are hash functions modeled as random oracles, e.g.,}$

- 1. Seed a PRG with the input
- 2. Extract a 2 log *p*-bit integer
- 3. Reduce mod *p*

 $H_p:\{0,1\}^\star \to \mathbb{F}_p$ and $H_q:\{0,1\}^\star \to \mathbb{F}_q$ are hash functions modeled as random oracles

 $E(\mathbb{F}_p)$ is the elliptic curve group with identity \mathcal{O} and points $\{(x,y): x,y\in \mathbb{F}_p, y^2=x^3+ax+b\}$ additive notation, $[\alpha]P$ for scalar multiplication

 $H_p:\{0,1\}^\star \to \mathbb{F}_p$ and $H_q:\{0,1\}^\star \to \mathbb{F}_q$ are hash functions modeled as random oracles

 $E(\mathbb{F}_p)$ is the elliptic curve group with identity \mathcal{O} and points $\{(x,y): x,y\in \mathbb{F}_p, y^2=x^3+ax+b\}$ additive notation, $[\alpha]P$ for scalar multiplication

 $\mathbb{G} \subseteq E(\mathbb{F}_p)$ is a subgroup of prime order q. $\#E(\mathbb{F}_p) = hq$; h is the *cofactor*.

 $H_p:\{0,1\}^\star \to \mathbb{F}_p$ and $H_q:\{0,1\}^\star \to \mathbb{F}_q$ are hash functions modeled as random oracles

 $E(\mathbb{F}_p)$ is the elliptic curve group with identity \mathcal{O} and points $\{(x,y): x,y\in \mathbb{F}_p, y^2=x^3+ax+b\}$ additive notation, $[\alpha]P$ for scalar multiplication

$$\mathbb{G} \subseteq E(\mathbb{F}_p)$$
 is a subgroup of prime order q . $\#E(\mathbb{F}_p) = hq$; h is the *cofactor*.

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$, $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$, $\mathbb{G}_T \subset \mathbb{F}_{p^{12}}^{\times}$, and $e : \mathbb{G}_1 \times \mathbb{G}_2 \to \mathbb{G}_T$ s.t.

$$e([\alpha]P_1, [\beta]P_2) = e(P_1, P_2)^{\alpha \cdot \beta}$$
 $\alpha, \beta \in \mathbb{F}_q$

Attempt #1: random scalar

For some distinguished point $\hat{P} \in \mathbb{G}$,

 $\mathsf{HashToCurve}_{\mathsf{RS}}(\mathsf{msg}) :$

 $x \leftarrow H_q(\text{msg})$

return $[x]\hat{P}$

Attempt #1: random scalar

For some distinguished point $\hat{P} \in \mathbb{G}$,

HashToCurve_{RS}(msg):

$$x \leftarrow H_q(\text{msg})$$

return $[x]\hat{P}$

Informally: need a point with unknown discrete log known dlog breaks security of most protocols (e.g., BLS signatures)

BLS signatures

For $H: \{0,1\}^{\star} \to \mathbb{G}_1, \ \hat{Q} \in \mathbb{G}_2$: KeyGen() \to (pk, sk): $r \overset{\mathbb{R}}{\leftarrow} \mathbb{Z}_q$; return ($[r]\hat{Q}, r$)

BLS signatures

```
For H: \{0,1\}^* \to \mathbb{G}_1, \ \hat{Q} \in \mathbb{G}_2:

KeyGen() \to (pk, sk):

r \overset{\mathbb{R}}{\leftarrow} \mathbb{Z}_q; return ([r]\hat{Q}, r)

Sign(sk, \text{msg}) \to \text{sig}:

return [sk]H(\text{msg})
```

BLS signatures

```
For H: \{0,1\}^* \to \mathbb{G}_1, \ \hat{Q} \in \mathbb{G}_2:
```

$$\mathsf{KeyGen}() o (pk, sk): \ r \overset{\mathbb{R}}{\leftarrow} \mathbb{Z}_q; \ \mathsf{return} \ ([r]\hat{Q}, r)$$

$$Sign(sk, msg) \rightarrow sig:$$
 return $[sk]H(msg)$

return
$$[sk]H(msg)$$

Verify
$$(pk, msg, sig) \rightarrow \{True, False\}:$$

 $e(H(msg), pk) \stackrel{?}{=} e(sig, \hat{Q})$

BLS signatures and HashToCurve_{RS}

```
For HashToCurve<sub>RS</sub>: \{0,1\}^* \to \mathbb{G}_1, \ \hat{Q} \in \mathbb{G}_2:
\mathsf{KeyGen}() \to (pk, sk):
      r \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_q; return ([r]\hat{Q}, r)
Sign(sk, msg) \rightarrow sig:
      return [sk]HashToCurve<sub>RS</sub>(msg)
Verify(pk, msg, sig) \rightarrow {True, False}:
      e(\mathsf{HashToCurve}_{\mathsf{RS}}(\mathsf{msg}), pk) \stackrel{?}{=} e(\mathsf{sig}, \hat{Q})
         sig_1 = Sign(sk, msg_1) = [sk \cdot H_a(msg_1)]\hat{P}
```

BLS signatures and HashToCurve_{RS}

```
For HashToCurve<sub>RS</sub>: \{0,1\}^* \to \mathbb{G}_1, \ \hat{Q} \in \mathbb{G}_2:
\mathsf{KeyGen}() \to (pk, sk):
     r \stackrel{\mathbb{R}}{\leftarrow} \mathbb{Z}_a; return ([r]\hat{Q}, r)
Sign(sk, msg) \rightarrow sig:
     return [sk]HashToCurve<sub>RS</sub>(msg)
Verify(pk, msg, sig) \rightarrow \{True, False\}:
     e(HashToCurve_{RS}(msg), pk) \stackrel{?}{=} e(sig, \hat{Q})
        sig_1 = Sign(sk, msg_1) = [sk \cdot H_a(msg_1)]\hat{P}
Trivial existential forgery:
    Sign(sk, msg_2) = |H_a(msg_2) \cdot H_a(msg_1)^{-1}|sig_1|
```

```
Attempt #2: hash and check
     HashToCurve_{H\&C}(msg):
           ctr \leftarrow 0
           v \leftarrow \bot
           while y = \bot:
                x \leftarrow H_p(\text{ctr} || \text{msg})
                 \mathsf{ctr} \leftarrow \mathsf{ctr} + 1
                 vSa \leftarrow x^3 + ax + b
                 y \leftarrow \operatorname{sqrt}(ySq) // \perp if ySq is non-square
```

// map to \mathbb{G} via cofactor mul

 $P \leftarrow (x, y)$ return [h]P

```
Attempt #2: hash and check
     HashToCurve_{H\&C}(msg):
           ctr \leftarrow 0
           v \leftarrow \bot
           while y = \bot:
                 x \leftarrow H_p(\text{ctr} || \text{msg})
                 \mathsf{ctr} \leftarrow \mathsf{ctr} + 1
                 vSa \leftarrow x^3 + ax + b
                 y \leftarrow \operatorname{sqrt}(ySq) // \perp if ySq is non-square
           P \leftarrow (x, y)
```

// map to \mathbb{G} via cofactor mul

return [h]P

HashToCurve_{H&C}(msg): ctr \leftarrow 0 $v \leftarrow \bot$ while $y = \bot$: $x \leftarrow H_p(\operatorname{ctr} || \operatorname{msg})$ $ctr \leftarrow ctr + 1$ $vSa \leftarrow x^3 + ax + b$ $v \leftarrow \operatorname{sqrt}(vSq)$ // \perp if vSq is non-square $P \leftarrow (x, y)$ return [h]P// map to \mathbb{G} via cofactor mul

$$E(\mathbb{F}_p) = \{(x, y) : x, y \in \mathbb{F}_p, y^2 = x^3 + ax + b\}$$

```
Attempt #2: hash and check
     HashToCurve_{H\&C}(msg):
           ctr \leftarrow 0
           v \leftarrow \bot
           while y = \bot:
                 x \leftarrow H_p(\text{ctr} || \text{msg})
                 \mathsf{ctr} \leftarrow \mathsf{ctr} + 1
                 vSa \leftarrow x^3 + ax + b
                 y \leftarrow \operatorname{sqrt}(ySq) // \perp if ySq is non-square
           P \leftarrow (x, y)
```

// map to \mathbb{G} via cofactor mul

return [h]P

```
HashToCurve_{H\&C}(msg):
      ctr \leftarrow 0
     v \leftarrow \bot
     while y = \bot:
            x \leftarrow H_p(\operatorname{ctr} || \operatorname{msg})
            \mathsf{ctr} \leftarrow \mathsf{ctr} + 1
            vSa \leftarrow x^3 + ax + b
            y \leftarrow \operatorname{sqrt}(ySq) // \perp if ySq is non-square
      P \leftarrow (x, y)
      return [h]P
                                          // map to G via cofactor mul
```

Not constant time; "bad" inputs are common.

```
HashToCurve_{H\&C}(msg):
      ctr \leftarrow 0
      v \leftarrow \bot
      while y = \bot:
            x \leftarrow H_p(\operatorname{ctr} || \operatorname{msg})
            \mathsf{ctr} \leftarrow \mathsf{ctr} + 1
            vSa \leftarrow x^3 + ax + b
            y \leftarrow \operatorname{sqrt}(ySq) // \perp if ySq is non-square
      P \leftarrow (x, y)
      return [h]P
                                           // map to \mathbb{G} via cofactor mul
```

Not constant time; "bad" inputs are common. Loop a fixed number of times?

 $HashToCurve_{H\&C}(msg)$: $ctr \leftarrow 0$ $v \leftarrow \bot$ while $y = \bot$: $x \leftarrow H_p(\operatorname{ctr} || \operatorname{msg})$ $\mathsf{ctr} \leftarrow \mathsf{ctr} + 1$ $vSa \leftarrow x^3 + ax + b$ $y \leftarrow \operatorname{sqrt}(ySq)$ // \perp if ySq is non-square $P \leftarrow (x, y)$ return [h]P // map to G via cofactor mul

✗ Loop a fixed number of times? Slow; well-meaning "optimization" breaks CT.

Not constant time; "bad" inputs are common.

, , ,	-	•
Map M	Restrictions	Cost
[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp

Map M	Restrictions	Cost
[BF01	$p \equiv 2 \bmod 3, a = 0$	1 exp

P	()	,			
Map M		Restri	ctions		Cost
	[BF01]	n = 1	2 mod 3	a = 0	1 exp

iviap <i>ivi</i>	Restrictions	Cost
[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
[SW06]	none	3 exp
		•

ρ (ρ),		,
Map M	Restrictions	Cost
[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp

	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 ехр

Map M	Restrictions	Cost
[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
[SW06]	none	3 exp

$p \equiv 2 \mod 3$, $a = 0$	1 exp
none	3 exp
$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
$p \equiv 2 \mod 3$	1 exp
	none $p \equiv 3 \mod 4$, $ab \neq 0$

$M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Deterministic maps to elliptic curves

Map M	Restrictions	Cost
[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
[SW06]	none	3 ехр

[Ulas07] SWU $p \equiv 3 \mod 4$, $ab \neq 0 \mid 3 \exp$ $[lcart09] p \equiv 2 \mod 3 1 \exp$ [BCIMRT10] | $p \equiv 3 \mod 4$, $ab \neq 0 \mid 2 \exp$ S-SWU

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 ехр
CVV/LL	[[]]	$n = 2 \mod 4 \mod 7$	2

5**VV**U |UlasU*1*| $p \equiv 3 \mod 4$, $ab \neq 0$ 3 exp

[lcart09] $p \equiv 2 \mod 3$ 1 exp

S-SWU [BCIMRT10] $p \equiv 3 \mod 4$, $ab \neq 0$ 2 exp

Elligator [BHKL13] $b \neq 0, 2 \mid \#E(\mathbb{F}_p)$ 1 exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0, 2 \mid \#E(\mathbb{F}_p)$	1 exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0$, $2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		$ab \neq 0$	1 exp
		none	1 ⁺ exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0$, $2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		ab eq 0	1 exp
		none	1 ⁺ exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0$, $2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		ab eq 0	1 exp
		none	1 ⁺ exp

[SS04,Ska05,FSV09,FT10a,FT10b,KLR10,CK11,Far11,FT12,FJT13,BLMP19...]

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$\nearrow p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$\nearrow p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0, 2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		$ab \neq 0$	1 exp
		none	1 ⁺ exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$\nearrow p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$\nearrow p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	\not $b \neq 0, 2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		ab eq 0	1 exp
		none	1 ⁺ exp

[CCO4 CL-05 FCV00 FT10- FT10b I/I D10 CI/11 F---11 FT10 F IT12 DI MD10]

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	✓ none	3 exp
SWU	[Ulas07]	$\nearrow p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$\nearrow p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	\not $b \neq 0, 2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		$ab \neq 0$	1 exp
		none	1 ⁺ exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3, a = 0$	1 exp
	[SW06]	✓ none	3 exp
SWU	[Ulas07]	$\nearrow p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	\not $b \neq 0, 2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		X $ab eq 0$	1 exp
		✓ none	1 ⁺ exp

The Shallue-van de Woestijne map [SW06] (high level)

$$E: y^2 = f(x) = x^3 + ax + b$$

Idea #1 (Skałba): For $X_1, X_2, X_3, X_4 \neq 0$, let $V(\mathbb{F}_p) : f(X_1) \cdot f(X_2) \cdot f(X_3) = X_4^2$

The Shallue–van de Woestijne map [SW06] (high level)

$$E: y^2 = f(x) = x^3 + ax + b$$

Idea #1 (Skałba): For $X_1, X_2, X_3, X_4 \neq 0$, let $V(\mathbb{F}_n): f(X_1) \cdot f(X_2) \cdot f(X_3) = X_4^2$

One of
$$f(X_i)$$
, $i \in \{1, 2, 3\}$ must be square

 \Rightarrow that X_i must be an x-coordinate on $E(\mathbb{F}_p)$

The Shallue-van de Woestijne map [SW06] (high level)

$$E: y^2 = f(x) = x^3 + ax + b$$

Idea #1 (Skałba): For $X_1, X_2, X_3, X_4 \neq 0$, let $V(\mathbb{F}_p): f(X_1) \cdot f(X_2) \cdot f(X_3) = X_4^2$

Idea #2: Construct a map
$$\mathbb{F}_p \mapsto V(\mathbb{F}_p)$$
, yielding polynomials $X_1(t), X_2(t), X_3(t)$.

The Shallue-van de Woestijne map [SW06] (high level)

$$E: y^2 = f(x) = x^3 + ax + b$$

Idea #1 (Skałba): For $X_1, X_2, X_3, X_4 \neq 0$, let $V(\mathbb{F}_p): f(X_1) \cdot f(X_2) \cdot f(X_3) = X_4^2$

Idea #2: Construct a map $\mathbb{F}_p \mapsto V(\mathbb{F}_p)$, yielding polynomials $X_1(t), X_2(t), X_3(t)$.

$$\mathsf{SW}(t) \triangleq \begin{cases} (X_1(t), \sqrt{f(X_1(t))}) & \text{if } f(X_1(t)) \text{ is square, else} \\ (X_2(t), \sqrt{f(X_2(t))}) & \text{if } f(X_2(t)) \text{ is square, else} \\ (X_3(t), \sqrt{f(X_3(t))}) & \end{cases}$$

$E: y^2 = f(x) = x^3 + ax + b$

The Shallue-van de Woestijne map [SW06] (high level)

Idea #1 (Skałba): For
$$X_1$$
, X_2 , X_3 , $X_4 \neq 0$, let $V(\mathbb{F}_p)$: $f(X_1) \cdot f(X_2) \cdot f(X_3) = X_4^2$

Idea #2: Construct a map $\mathbb{F}_p \mapsto V(\mathbb{F}_p)$, yielding polynomials $X_1(t), X_2(t), X_3(t)$.

$$\mathsf{SW}(t) \triangleq \begin{cases} (X_1(t), \sqrt{f(X_1(t))}) & \text{if } f(X_1(t)) \text{ is square, else} \\ (X_2(t), \sqrt{f(X_2(t))}) & \text{if } f(X_2(t)) \text{ is square, else} \\ (X_3(t), \sqrt{f(X_3(t))}) & \end{cases}$$

constant-time cost dominated by 3 exps (recall: Legendre symbol in \mathbb{F}_p ops is 1 exp)

Compose H_p and M in a natural way:

 $\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg})$:

Compose H_p and M in a natural way:

 $\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg})$:

Compose H_p and M in a natural way:

$$\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg})$$
:

$$\begin{array}{ll} t \leftarrow H_p(\mathsf{msg}) & // \; \{0,1\}^\star \mapsto \mathbb{F}_p \\ P \leftarrow M(t) & // \; \mathbb{F}_p \mapsto E(\mathbb{F}_p) \\ \mathsf{return} \; [h]P & // \; E(\mathbb{F}_p) \mapsto \mathbb{G} \end{array}$$

Compose H_p and M in a natural way:

 $\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg})$:

$$t \leftarrow H_p(\mathsf{msg})$$
 // $\{0,1\}^* \mapsto \mathbb{F}_p$
 $P \leftarrow M(t)$ // $\mathbb{F}_p \mapsto E(\mathbb{F}_p)$
return $[h]P$ // $E(\mathbb{F}_p) \mapsto \mathbb{G}$

Compose H_p and M in a natural way:

```
\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg}):
```

```
t \leftarrow H_p(\mathsf{msg}) // \{0,1\}^* \mapsto \mathbb{F}_p

P \leftarrow M(t) // \mathbb{F}_p \mapsto E(\mathbb{F}_p)

return [h]P // E(\mathbb{F}_p) \mapsto \mathbb{G}
```

- Can use a faster method for cofactor clearing:
 - via endomorphisms [GLV01,SBCDK09,FKR11,BP18]
 - via subgroup structure [S19 (see WB19, §5)]

Compose H_p and M in a natural way:

 $\mathsf{HashToCurve}_{\mathsf{NU}}(\mathsf{msg})$:

$$t \leftarrow H_p(\mathsf{msg}) \hspace{1cm} // \; \{0,1\}^\star \mapsto \mathbb{F}_p$$
 $P \leftarrow M(t) \hspace{1cm} // \; \mathbb{F}_p \mapsto E(\mathbb{F}_p)$
 $\mathsf{return} \; [h]P \hspace{1cm} // \; E(\mathbb{F}_p) \mapsto \mathbb{G}$

Possible issue: M is not a bijection: $\#E(\mathbb{F}_p) \neq p$ \bowtie output distribution is nonuniform

Compose H_p and M in a natural way:

HashToCurve_{NU}(msg):
$$t \leftarrow H_p(\text{msg}) \qquad // \{0,1\}^* \mapsto \mathbb{F}_p$$

$$P \leftarrow M(t) \qquad // \mathbb{F}_p \mapsto E(\mathbb{F}_p)$$
 return $[h]P \qquad // E(\mathbb{F}_p) \mapsto \mathbb{G}$

Possible issue: M is not a bijection: $\#E(\mathbb{F}_p) \neq p$ \bowtie output distribution is nonuniform

This *could* be OK—but what if we need uniformity?

```
HashToCurve_{OTP}(msg):
P_1 \leftarrow M(H_p(msg))
x \leftarrow H_q(msg)
P_2 \leftarrow [x]\hat{P}
P \leftarrow P_1 + P_2
return [h]P
```

```
HashToCurve<sub>OTP</sub>(msg):

P_1 \leftarrow M(H_p(\text{msg}))

x \leftarrow H_q(\text{msg})

P_2 \leftarrow [x]\hat{P}

P \leftarrow P_1 + P_2

return [h]P
```

```
\begin{aligned} \mathsf{HashToCurve}_{\mathsf{OTP}}(\mathsf{msg}) : \\ P_1 &\leftarrow M(H_p(\mathsf{msg})) \\ x &\leftarrow H_q(\mathsf{msg}) \\ P_2 &\leftarrow [x] \hat{P} \\ P &\leftarrow P_1 + P_2 \\ \mathsf{return} \ [h] P \end{aligned}
```

```
HashToCurve<sub>OTP</sub>(msg):
P_1 \leftarrow M(H_p(\text{msg}))
x \leftarrow H_q(\text{msg})
P_2 \leftarrow [x]\hat{P}
P \leftarrow P_1 + P_2
\text{return } [h]P
```

For some distinguished point $\hat{P} \in \mathbb{G}$:

```
HashToCurve_{OTP}(msg):
P_1 \leftarrow M(H_p(msg))
x \leftarrow H_q(msg)
P_2 \leftarrow [x]\hat{P}
P \leftarrow P_1 + P_2
return [h]P
```

 $[x]\hat{P}$ acts as a "one-time pad"

$$\mathsf{HashToCurve}_{\mathsf{OTP}}(\mathsf{msg})$$
 : $P_1 \leftarrow M(H_p(\mathsf{msg}))$ $x \leftarrow H_q(\mathsf{msg})$ $P_2 \leftarrow [x]\hat{P}$ $P \leftarrow P_1 + P_2$ return $[h]P$

- $[x]\hat{P}$ acts as a "one-time pad"
- HashToCurve_{OTP} is *indifferentiable* from RO [MRH05]

For some distinguished point $\hat{P} \in \mathbb{G}$:

```
\begin{aligned} & \text{HashToCurve}_{\text{OTP}}(\text{msg}): \\ & P_1 \leftarrow M(H_p(\text{msg})) \\ & x \leftarrow H_q(\text{msg}) \\ & P_2 \leftarrow [x] \hat{P} & // \textbf{\textit{X}} \text{ expensive} \\ & P \leftarrow P_1 + P_2 \\ & \text{return } [h] P \end{aligned}
```

 $[x]\hat{P}$ acts as a "one-time pad"

■ HashToCurve_{OTP} is *indifferentiable* from RO [MRH05]

Faster uniform hashing from deterministic maps

Problem: point multiplication is usually much more expensive than evaluating M.

Faster uniform hashing from deterministic maps

Problem: point multiplication is usually much more expensive than evaluating M.

```
Idea [BCIMRT10,FFSTV13]:
```

```
HashToCurve(msg): P_1 \leftarrow M(H_p(0 || \text{msg}))
P_2 \leftarrow M(H_p(1 || \text{msg}))
P \leftarrow P_1 + P_2
\text{return } [h]P
```

Faster uniform hashing from deterministic maps

Problem: point multiplication is usually much more expensive than evaluating M.

```
Idea [BCIMRT10,FFSTV13]:
```

```
HashToCurve(msg): P_1 \leftarrow M(H_p(\mathbf{0} \mid\mid \mathsf{msg})) P_2 \leftarrow M(H_p(\mathbf{1} \mid\mid \mathsf{msg})) P \leftarrow P_1 + P_2 \mathsf{return} \ [h]P
```

Faster uniform hashing from deterministic maps

Problem: point multiplication is usually much more expensive than evaluating M.

```
Idea [BCIMRT10,FFSTV13]:
```

```
\begin{aligned} \mathsf{HashToCurve}(\mathsf{msg}) : \\ P_1 \leftarrow \mathcal{M}(\mathcal{H}_p(0 \,|| \, \mathsf{msg})) \\ P_2 \leftarrow \mathcal{M}(\mathcal{H}_p(1 \,|| \, \mathsf{msg})) \\ P \leftarrow P_1 + P_2 \\ \mathsf{return} \ [h] P \end{aligned}
```

Indifferentiable from RO if M is well distributed✓ All of the M we've seen are well distributed.

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

4. IETF standardization efforts

$$E: y^2 = f(x) = x^3 + ax + b, \quad ab \neq 0$$

Idea: pick x s.t. $f(ux) = u^3 f(x)$.

For u non-square $\in \mathbb{F}_p$, f(x) or f(ux) is square.

$$E: y^2 = f(x) = x^3 + ax + b, \quad ab \neq 0$$

Idea: pick x s.t. $f(ux) = u^3 f(x)$.

For u non-square $\in \mathbb{F}_p$, f(x) or f(ux) is square.

$$u^3x^3 + aux + b = u^3(x^3 + ax + b)$$

$$\therefore \qquad x = -\frac{b}{a}\left(1 + \frac{1}{u^2 + u}\right)$$

$$\therefore \qquad x = -\frac{a}{a} \left(1 + \frac{1}{u^2 + u} \right)$$

$$E: y^2 = f(x) = x^3 + ax + b, \quad ab \neq 0$$

Idea: pick x s.t. $f(ux) = u^3 f(x)$.

For u non-square $\in \mathbb{F}_p$, f(x) or f(ux) is square.

$$u^{3}x^{3} + aux + b = u^{3}(x^{3} + ax + b)$$
$$x = -\frac{b}{a}\left(1 + \frac{1}{u^{2} + u}\right)$$

$$\therefore \qquad \qquad x = -\frac{1}{a} \left(1 + \frac{1}{u^2 + u} \right)$$

If $p \equiv 3 \mod 4$, $u = -t^2$ is non-square

$$E: y^2 = f(x) = x^3 + ax + b, \quad ab \neq 0$$

Idea: pick x s.t. $f(ux) = u^3 f(x)$.

For u non-square $\in \mathbb{F}_p$, f(x) or f(ux) is square.

$$u^{3}x^{3} + aux + b = u^{3}(x^{3} + ax + b)$$

$$x = -\frac{b}{a}\left(1 + \frac{1}{u^{2} + u}\right)$$

If $p \equiv 3 \mod 4$, $u = -t^2$ is non-square, so:

$$X_0(t) \triangleq -rac{b}{a}\left(1+rac{1}{t^4-t^2}
ight) \qquad X_1(t) \triangleq -t^2X_0(t)$$

S-SWU(t)
$$\triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

S-SWU(t)
$$\triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

Attempt #1 (assume $p \equiv 3 \mod 4$):

$$x_0 \leftarrow X_0(t)$$
 $y_0 \leftarrow f(x_0)^{\frac{p+1}{4}}$ // x expensive
 $x_1 \leftarrow -t^2x_0$ // a.k.a. $x_1(t)$
 $y_1 \leftarrow f(x_1)^{\frac{p+1}{4}}$ // x expensive
if $y_0^2 = f(x_0)$: return (x_0, y_0)
else: return (x_1, y_1)

S-SWU(t)
$$\triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

Attempt #1 (assume
$$p \equiv 3 \mod 4$$
):
$$x_0 \leftarrow X_0(t)$$

$$y_0 \leftarrow f(x_0)^{\frac{p+1}{4}} \qquad // \text{ χ expensive}$$

$$x_1 \leftarrow -t^2 x_0 \qquad // \text{ a.k.a. } X_1(t)$$

$$y_1 \leftarrow f(x_1)^{\frac{p+1}{4}} \qquad // \text{ χ expensive}$$
 if $y_0^2 = f(x_0)$: return (x_0, y_0) else: return (x_1, y_1)

S-SWU(t)
$$\triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

Attempt #1 (assume
$$p \equiv 3 \mod 4$$
):
$$x_0 \leftarrow X_0(t)$$

$$y_0 \leftarrow f(x_0)^{\frac{p+1}{4}}$$
 // x expensive
$$x_1 \leftarrow -t^2x_0$$
 // a.k.a. $x_1(t)$
$$y_1 \leftarrow f(x_1)^{\frac{p+1}{4}}$$
 // x expensive if $y_0^2 = f(x_0)$: return (x_0, y_0) else: return (x_1, y_1)

S-SWU(t)
$$\triangleq \begin{cases} (X_0(t), \sqrt{f(X_0(t))}) & \text{if } f(X_0(t)) \text{ is square} \\ (X_1(t), \sqrt{f(X_1(t))}) & \text{otherwise} \end{cases}$$

```
Attempt #1 (assume p \equiv 3 \mod 4): x_0 \leftarrow X_0(t)
y_0 \leftarrow f(x_0)^{\frac{p+1}{4}} \qquad // \text{ $x$ expensive}
x_1 \leftarrow -t^2 x_0 \qquad // \text{ a.k.a. } X_1(t)
y_1 \leftarrow f(x_1)^{\frac{p+1}{4}} \qquad // \text{ $x$ expensive}
if y_0^2 = f(x_0): return (x_0, y_0)
else: return (x_1, y_1)
```

Requires two exponentiations! Can we do better?

Recall: $f(x_1) = -t^6 f(x_0)$. So:

$$f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$$

Recall: $f(x_1) = -t^6 f(x_0)$. So:

$$f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$$
$$= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$$

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:

$$f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$$

$$= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$$

We have $f(x_0)^{\frac{p+1}{4}}$. Can we use this?

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:

$$f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$$

$$= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$$

$$\left(f(x_0)^{\frac{p+1}{4}}\right)^2 = f(x_0)^{\frac{p+1}{2}} = f(x_0) \cdot f(x_0)^{\frac{p-1}{2}}$$

We have $f(x_0)^{\frac{p+1}{4}}$. Can we use this?

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:

$$f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$$

$$= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$$

We have $f(x_0)^{\frac{p+1}{4}}$. Can we use this?

$$\left(f(x_0)^{\frac{p+1}{4}}\right)^2 = f(x_0)^{\frac{p+1}{2}} = f(x_0) \cdot f(x_0)^{\frac{p-1}{2}}$$
Legendre symbol!

Recall:
$$f(x_1) = -t^6 f(x_0)$$
. So:

$$f(x_1)^{\frac{p+1}{4}} = (-t^6 f(x_0))^{\frac{p+1}{4}}$$

$$= t^3 (-f(x_0))^{\frac{p+1}{4}} = t^3 \sqrt{-f(x_0)}$$

We have $f(x_0)^{\frac{p+1}{4}}$. Can we use this?

$$\left(f(x_0)^{\frac{p+1}{4}}\right)^2 = f(x_0)^{\frac{p+1}{2}} = f(x_0) \cdot f(x_0)^{\frac{p-1}{2}}$$

= $-f(x_0)$ if $f(x_0)$ is non-square

✓ $f(x_0)^{\frac{p+1}{4}}$ is $\sqrt{-f(x_0)}$ when $f(x_0)$ is non-square!

Evaluating the S-SWU map—faster!

Attempt #2 (assume
$$p \equiv 3 \mod 4$$
):
$$x_0 \leftarrow X_0(t)$$

$$y_0 \leftarrow f(x_0)^{(p+1)/4} \qquad // \times \text{ expensive}$$

$$x_1 \leftarrow -t^2 x_0 \qquad // \text{ a.k.a. } X_1(t)$$

$$y_1 \leftarrow t^3 y_0 \qquad // \checkmark \text{ cheap!}$$
if $y_0^2 = f(x_0)$: return (x_0, y_0)
else: return (x_1, y_1)

Evaluating the S-SWU map—faster!

```
Attempt #2 (assume p \equiv 3 \mod 4):
     x_0 \leftarrow X_0(t)
     y_0 \leftarrow f(x_0)^{(p+1)/4}
                                                // X expensive
     x_1 \leftarrow -t^2 x_0
                                               // a.k.a. X_1(t)
     v_1 \leftarrow t^3 v_0
                                               // ✓ cheap!
     if y_0^2 = f(x_0): return (x_0, y_0)
     else: return (x_1, y_1)
```

✓ Prior work [BDLSY12] lets us avoid inversions.

Evaluating the S-SWU map—faster!

```
Attempt #2 (assume p \equiv 3 \mod 4):
     x_0 \leftarrow X_0(t)
     y_0 \leftarrow f(x_0)^{(p+1)/4}
                                                // X expensive
     x_1 \leftarrow -t^2 x_0
                                               // a.k.a. X_1(t)
     v_1 \leftarrow t^3 v_0
                                               // ✓ cheap!
     if y_0^2 = f(x_0): return (x_0, y_0)
     else: return (x_1, y_1)
```

- ✓ Prior work [BDLSY12] lets us avoid inversions.
- ✓ Straightforward to generalize to $p \equiv 1 \mod 4$.

-1 is square in $\mathbb{F}_p \Rightarrow \text{need } u = \xi t^2 \text{ for } \xi \text{ nonsquare.}$

-1 is square in $\mathbb{F}_p \Rightarrow \text{need } u = \xi t^2 \text{ for } \xi \text{ nonsquare.}$

Recall Atkin's square-root trick:

$$\left(z^{\frac{p+3}{8}}\right)^2 = z \cdot \left(z^{\frac{p-1}{2}}\right)^{\frac{1}{2}}$$

-1 is square in $\mathbb{F}_p \Rightarrow \text{need } u = \xi t^2 \text{ for } \xi \text{ nonsquare.}$

Recall Atkin's square-root trick:

$$\left(z^{\frac{p+3}{8}}\right)^2 = z \cdot \left(z^{\frac{p-1}{2}}\right)^{\frac{1}{2}}$$
Legendre symbol!

-1 is square in $\mathbb{F}_p \Rightarrow \text{need } u = \xi t^2 \text{ for } \xi \text{ nonsquare.}$

Recall Atkin's square-root trick:

-1 is square in $\mathbb{F}_p \Rightarrow \text{need } u = \xi t^2 \text{ for } \xi \text{ nonsquare.}$

Recall Atkin's square-root trick:

$$\left(z^{\frac{p+3}{8}}\right)^2 = z \cdot \left(z^{\frac{p-1}{2}}\right)^{\frac{1}{2}}$$
 $z^{\frac{p+3}{8}} \cdot 1^{-\frac{1}{4}} = \sqrt{z}$

So we want:

$$\sqrt{f(x_1)} = \sqrt{\xi^3 t^6 f(x_0)}$$

$$= t^3 \left(\xi^3 f(x_0)\right)^{\frac{p+3}{8}} \cdot 1^{-\frac{1}{4}}$$

-1 is square in $\mathbb{F}_p \Rightarrow \text{need } u = \xi t^2 \text{ for } \xi \text{ nonsquare.}$

Recall Atkin's square-root trick:

So we want:

$$egin{aligned} \sqrt{f(x_1)} &= \sqrt{\xi^3 t^6 f(x_0)} \ &= t^3 \left(\xi^3 f(x_0)\right)^{rac{
ho+3}{8}} \cdot 1^{-rac{1}{4}} \end{aligned}$$

 ξ is fixed, so we can preompute $(\xi^3)^{\frac{p+3}{8}}$

Issue: S-SWU still does not work with ab = 0.

Rules out pairing-friendly curves [BLS03,BN06,...]

Issue: S-SWU still does not work with ab = 0.

Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E' having $ab \neq 0$ and an efficiently-computable homomorphism to E.

Issue: S-SWU still does not work with ab = 0.

 \blacksquare Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E' having $ab \neq 0$ and an efficiently-computable homomorphism to E.

Specifically: Find $E'(\mathbb{F}_p)$ d-isogenous to E, d small. \blacksquare Defines a degree $\approx d$ rational map $E'(\mathbb{F}_p) \to E(\mathbb{F}_p)$

Issue: S-SWU still does not work with ab = 0.

■ Rules out pairing-friendly curves [BLS03,BN06,...]

Idea: map to a curve E' having $ab \neq 0$ and an efficiently-computable homomorphism to E.

Specifically: Find $E'(\mathbb{F}_p)$ d-isogenous to E, d small. \blacksquare Defines a degree $\approx d$ rational map $E'(\mathbb{F}_p) \to E(\mathbb{F}_p)$

Then: S-SWU to $E'(\mathbb{F}_p)$, isogeny map to $E(\mathbb{F}_p)$. \checkmark Preserves well-distributedness of S-SWU.

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

4. IETF standardization efforts

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

For \mathbb{G}_1 and \mathbb{G}_2 , we implement:

Maps: hash-and-check; [SW06]; this work
Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

For \mathbb{G}_1 and \mathbb{G}_2 , we implement:

Maps: hash-and-check; [SW06]; this work

Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

For \mathbb{G}_1 and \mathbb{G}_2 , we implement:

Maps: hash-and-check; [SW06]; this work

Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or frequency scaling); Linux 5.2; GCC 9.1.0.

Implementation, baselines, setup, method

BLS12-381 defines $\mathbb{G}_1 \subset E_1(\mathbb{F}_p)$ and $\mathbb{G}_2 \subset E_2(\mathbb{F}_{p^2})$.

For \mathbb{G}_1 and \mathbb{G}_2 , we implement:

Maps: hash-and-check; [SW06]; this work

Styles: full bigint; field ops only, non-CT and CT

Hashes: non-uniform; uniform

In total: 34 hash variants, 3520 lines of C.

Setup: Xeon E3-1535M v6 (no hyperthreading or frequency scaling); Linux 5.2; GCC 9.1.0.

Method: run each hash 10^6 times; record #cycles.

BLS12-381 \mathbb{G}_1 , uniform hash function 1000 965 time, kCycles (lower is better) 800 712 564 600 496 456 459 389 400 348 319 Full bigint 200 Field ops (non-CT) Field ops (CT) H&C H&C This work SW (worst 10%)

Roadmap

1. Hash functions to elliptic curves

2. Optimizing the map of [BCIMRT10]

3. Evaluation results

4. IETF standardization efforts

hash-to-curve

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0$, $2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		$ab \neq 0$	1 exp
		none	1 ⁺ exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[Icart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0$, $2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		$ab \neq 0$	1 exp
		none	1 ⁺ exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[leart00]	$p \equiv 2 \mod 3$	1 evn
	[icartos]	'	1 CVb
S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0$, $2 \mid \#E(\mathbb{F}_p)$	1 exp
This work		$ab \neq 0$	1 exp
		none	1 ⁺ exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
-S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0$, $2 \mid \#E(\mathbb{F}_p)$	1 exp
	(+ tweaks to	$ab \neq 0$	1 exp
avoid infringing patents)		none	1 ⁺ exp

Map M		Restrictions	Cost
	[BF01]	$p \equiv 2 \mod 3$, $a = 0$	1 exp
	[SW06]	none	3 exp
SWU	[Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
	[lcart09]	$p \equiv 2 \mod 3$	1 exp
-S-SWU	[BCIMRT10]	$p \equiv 3 \mod 4$, $ab \neq 0$	2 exp
Elligator	[BHKL13]	$b \neq 0$, $2 \mid \#E(\mathbb{F}_p)$	1 exp
This work (+ tweaks to avoid infringing patents)		$ab \neq 0$	1 exp
		none	1 ⁺ exp

 $M: \mathbb{F}_p \to E(\mathbb{F}_p)$, where $E: y^2 = x^3 + ax + b$ and p > 5:

Map M	Restrictions	Cost
[BF01] ???	$p \equiv 2 \mod 3$, $a = 0$	1 exp
[SW06]	none	3 exp
SWU [Ulas07]	$p \equiv 3 \mod 4$, $ab \neq 0$	3 exp
[lcart09]	$p \equiv 2 \mod 3$	1 exp
S-SWU [BCIMRT10]	$p \equiv 3 \bmod 4, ab \neq 0$	2 exp
Elligator [BHKL13]	$b \neq 0, 2 \mid \#E(\mathbb{F}_p)$	1 exp
This work (+ tweaks to	$ab \neq 0$	1 exp
avoid infringing patents)	none	1 ⁺ exp

₩ What about supersingular maps [BF01,BLMP19]?

Contributions:

- ✓ Optimizations to the map of [BCIMRT10]
- ✓ "Indirect" approach to expand applicability
- ✓ Fast impls are simple and constant time

Contributions:

- ✓ Optimizations to the map of [BCIMRT10]
- ✓ "Indirect" approach to expand applicability
- ✓ Fast impls are simple and constant time

Result: hash-to-curve costs 1⁺ exponentiation for essentially any prime-field elliptic curve.

Contributions:

- ✓ Optimizations to the map of [BCIMRT10]
- ✓ "Indirect" approach to expand applicability
- ✓ Fast impls are simple and constant time

Result: hash-to-curve costs 1⁺ exponentiation for essentially any prime-field elliptic curve.

State of the art for BLS, BN, NIST, secp256k1, and other curves not covered by Elligator or Icart.

Contributions:

- ✓ Optimizations to the map of [BCIMRT10]
- ✓ "Indirect" approach to expand applicability
- ✓ Fast impls are simple and constant time

Result: hash-to-curve costs 1⁺ exponentiation for essentially any prime-field elliptic curve.

State of the art for BLS, BN, NIST, secp256k1, and other curves not covered by Elligator or Icart.

```
https://bls-hash.crypto.fyi
https://github.com/kwantam/bls12-381_hash
https://github.com/cfrg/draft-irtf-cfrg-hash-to-curve
rsw@cs.stanford.edu
```