

Analysis of the Film Industry for Business Expansion

Project Overview

In response to the growing trend of major corporations producing original content, our company is launching a data-driven initiative to establish a successful movie studio. Given our limited experience in film production, this project relies on a comprehensive analysis of film industry datasets to extract actionable insights.

Our primary goal is to understand which aspects of the film industry—genres, directors, languages, and markets—are most closely associated with critical acclaim and financial success. These insights will inform a strategy that aligns creative projects with business objectives.

Business Objective

The film production landscape is increasingly influenced by streaming platforms, international markets, and digital distribution. To navigate this complexity, we must identify the key factors behind successful films using reliable, data-backed evidence.

Through this analysis, we aim to:

- · Identify genres consistently praised by critics.
- · Determine genres with the highest Return on Investment (ROI) potential.
- Recognize directors whose films perform well in international markets.
- Discover languages most commonly associated with successful films.

Strategic Impact

By answering these core questions, we will equip our studio team with the knowledge to:

- · Prioritize projects that are both critically and commercially promising.
- Invest wisely in film concepts with high audience appeal and strong market potential.
- Build a foundation for long-term success in the competitive entertainment industry.

Let's begin by exploring the data and uncovering the stories behind the numbers.

Loading and Exploring Datasets

Before diving into analysis, it is essential to thoroughly explore each of the datasets and database tables we are working with. Our data sources span multiple reputable platforms, providing a comprehensive view of the film industry from both commercial and critical perspectives.

Datasets in Use:

- Box Office Mojo
- IMDb
- Rotten Tomatoes (Movies)
- Rotten Tomatoes (Critic Reviews)
- TheMovieDB
- The Numbers
- im.db (SQLite database)

Why Data Exploration Matters

Data exploration is a critical step in any data-driven project. It helps us:

- Understand the **structure**, **quality**, **and characteristics** of each dataset.
- Identify and address issues such as missing values, duplicates, and inconsistent formatting
- Analyze distributions and relationships between variables to uncover initial patterns.
- Develop an informed plan for data cleaning, transformation, and integration.

By doing this, we reduce the risk of errors.

```
In [11]:  # import the necessary libraries
  import numpy as np
  import pandas as pd
  import sqlite3
  import matplotlib.pyplot as plt
  import seaborn as sns
```

Load all datasets into pandas dataframes

```
In [12]:
bom_df = pd.read_csv("bom.movie_gross.csv")
bom_df.head()
```

ut[12]:						title studio	o d	omestic_gross	toreign_gross	year	_				
	0				Toy Sto	ory 3 B	V	415000000.0	652000000	2010					
	1		Alice	in Wond	erland (2	2010) BY	V	334200000.0	691300000	2010					
	2 Ha	arry Po	tter and the	Deathly H	allows P	art 1 WI	В	296000000.0	664300000	2010					
	3				Incer	otion WI	В	292600000.0	535700000	2010					
	4			Shrek	Forever	After P/DV	V	238700000.0	513900000	2010					
in [13]:			s_df = pd. s_df.head(("rotto	en_tomatoes	s_cr	itic_reviews.c	esv")						
Out[13]:	ro	tten_t	omatoes_lin	ık criti	c_name	top_critic	ŗ	oublisher_name	review_type	review	_score	review_date		rev	iew_content
	0		m/081425	55 Ai	ndrew L. Urban	False		Urban Cinefile	Fresh		NaN	2010-02-06		-	dventure that mythology
	1		m/081425	55 Louis	se Keller	False		Urban Cinefile	Fresh		NaN	2010-02-06			n as Medusa, with a coiff
	2		m/081425	55	NaN	False		FILMINK (Australia)	Fresh		NaN	2010-02-09			otch cast and g special eff
	3		m/081425	55 M	Ben Eachen	False		Sunday Mail (Australia)	Fresh		3.5/5	2010-02-09			ences will get The Lightnin
	4		m/081425	55 Eth	an Alter	True		Hollywood Reporter	Rotten		NaN	2010-02-10		-	acking in The tning Thief i
[n [14]:		_df = _df.h	pd.read_c ead()	sv('tmdt	.movie	s.csv')									
Out[14]:	U	nnam	ed: 0 genre	ids	id oriç	ginal_langua	ge	original_title	popularity	releas	e_date	title	vote_aver	age	vote_count
												Harry Potter			
	0		0 [12, 107		44		en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010	-11-19	and the Deathly Hallows: Part 1		7.7	10788
	1		1 [14, 12, 1 107		91		en	How to Trair Your Dragor	28 734	2010	-03-26	How to Train Your Dragon		7.7	7610
	2		2 [12,	28, 378] 101	38		en	Iron Man 2	2 28.515	2010	-05-07	Iron Man 2		6.8	12368
	3		3 [16, 107		62		en	Toy Story	28.005	1995	-11-22	Toy Story		7.9	10174
	4		4 [28, 8	378, 12] 272	05		en	Inception	27.920	2010	-07-16	Inception		8.3	22186
[n [15]:		oudget oudget		ead_csv('tn.mo	vie_budgets	s.cs	v')							
Out[15]:		id	release_dat	e				movie pro	duction_budge	et do	mestic_	gross worldv	vide_gross		
	0	1	Dec 18, 200	9				Avatar	\$425,000,00	00	\$760,50	7,625 \$2,7	76,345,279		
	1	2	May 20, 201	1 Pirates	of the 0	Caribbean: Oi	n Str	anger Tides	\$410,600,00	00	\$241,06	3,875 \$1,0	45,663,875		
	2	3	Jun 7, 201	9			D	ark Phoenix	\$350,000,00	00	\$42,76	2,350 \$1	49,762,350		
	3	4	May 1, 201	5		Avenger	rs: Ag	ge of Ultron	\$330,600,00	00	\$459,00	5,868 \$1,4	03,013,963		
	4	5	Dec 15, 201	7	Sta	ar Wars Ep. V	/III: T	he Last Jedi	\$317,000,00	00	\$620,18	1,382 \$1,3	16,721,747		
	5777	78	Dec 31, 201	8				Red 11	\$7,00	00		\$0	\$0		
	5778	79	Apr 2, 199	9				Following	\$6,00	00	\$4	8,482	\$240,495		
	5779	80	Jul 13, 200	5	Re	turn to the L	and	of Wonders	\$5,00	00	\$	1,338	\$1,338		
	5780	81	Sep 29, 201	5		A Pla	gue	So Pleasant	\$1,40	00		\$0	\$0		
	5781	82	Aug 5, 200	5		Му	Date	With Drew	\$1,10	00	\$18	1,041	\$181,041		
	5782 r	ows ×	6 columns												

							9			
_	0	m/0814255	Percy Jackson & the Olympians: The Lightning T	Always trouble- prone, the life of teenager Per	Though it may seem like just another Harry Pot	PG	Action & Adventure, Comedy, Drama, Science Fic	Chris Columbus	Craig Titley, Chris Columbus, Rick Riordan	Le Br T. Ja Alex
	1	m/0878835	Please Give	Kate (Catherine Keener) and her husband Alex (Nicole Holofcener's newest might seem slight i	R	Comedy	Nicole Holofcener	Nicole Holofcener	Cat K Ar
	2	m/10	10	A successful, middle- aged Hollywood songwriter	Blake Edwards' bawdy comedy may not score a pe	R	Comedy, Romance	Blake Edwards	Blake Edwards	Mod An Ro
	3	m/1000013-12_angry_men	12 Angry Men (Twelve Angry Men)	Following the closing arguments in a murder tr	Sidney Lumet's feature debut is a superbly wri	NR	Classics, Drama	Sidney Lumet	Reginald Rose	E
	4	m/1000079- 20000_leagues_under_the_sea	20,000 Leagues Under The Sea	In 1866, Professor Pierre M. Aronnax (Paul Luk	One of Disney's finest live-action adventures,	G	Action & Adventure, Drama, Kids & Family	Richard Fleischer	Earl Felton	Di Pr
										·
	17707	m/zoot_suit	Zoot Suit	Mexican- American gangster Henry Reyna (Daniel	NaN	R	Drama, Musical & Performing Arts	Luis Valdez	Luis Valdez	1
	17708	m/zootopia	Zootopia	From the largest elephant to the smallest shre	The brilliantly well-rounded Zootopia offers a	PG	Action & Adventure, Animation, Comedy	Byron Howard, Rich Moore, Jared Bush	Jared Bush, Phil Johnston	Sir (
	17709	m/zorba_the_greek	Zorba the Greek	Traveling to inspect an abandoned mine his fat	NaN	NR	Action & Adventure, Art House & International,	NaN	NaN	A Pap
	17710	m/zulu	Zulu	In 1879, the Zulu nation hands colonial Britis	Zulu patiently establishes a cast of colorful	PG	Classics, Drama	Cy Endfield, Cyril Endfield	Cy Endfield, John Prebble	H: Jaco
	17711	m/zulu_dawn	Zulu Dawn	Sir Henry Bartle Frere's (John Mills) vastly o	NaN	PG	Action & Adventure, Art House & International,	Douglas Hickox	Cy Endfield, Anthony Storey	Lar C
1	7712 rc	ows × 22 columns								
•	-)						•
[17]:	path =	ablish a connection to the = ("Data\im.db\im.db") = sqlite3.connect(path)	database							

Data Exploration.

To begin our analysis, we used two powerful Visual Studio Code extensions—**Data Wrangler** and **SQLite Viewer**—to streamline initial data understanding and cleaning.

Data Wrangler

- Visual summaries of column distributions and data types
- Automatic detection of missing values, duplicates, and outliers
- Quick, no-code filtering, sorting, and grouping
- Dataset profiling with cleaning/transformation suggestions

SQLite Viewer

- Instant previews of table structures, columns, and sample data
- Easy navigation between related tables
- Hands-on insight into schemas, data completeness, and record volumes

Outcome: With these tools, we rapidly uncovered key patterns, inconsistencies, and relationships—without manual coding.

Selected Columns for Analysis

Rotten Tomatoes

movie_title, genres, tomatometer_rating, audience_rating - to assess both critic and audience reception across genres

TMDB

• language , popularity – to explore how film language impacts engagement and potential reach

The Numbers

• movie , production_budget , worldwide_gross - to calculate ROI and investigate profitability trends

IM.db

Data extracted from directors, persons, and movie_akas - to match directors with films for evaluating worldwide box-office impact

These fields exhibit minimal to no missing values and have high entry uniqueness, ensuring data reliability.

Important Notes on Data Usage

- Rotten Tomatoes Dataset: we replaced the original rotten tomato datasets with a more complete version from Kaggle due to missing
 movie_title in the original dataset which was a requirement in our analysis.
- Excluded Datasets
 - Box Office Mojo: Data overlap with The Numbers movie budget dataset, which has more comprehensive financials.
 - Rotten Tomatoes Critic Reviews: Unnecessary, as essential rating data is present in the Movies Info dataset.

Data Preparation & Cleaning

Before conducting meaningful analysis, it is essential to prepare and clean the data appropriately. Although our earlier exploration suggests

that the datasets are relatively high quality, they originate from diverse sources and therefore require alignment for consistency and accuracy.

Data preparation involves:

- · Filtering relevant columns
- Renaming fields for consistency
- Handling duplicates or inconsistencies
- · Parsing multi-value fields
- · Merging datasets where necessary

This step ensures that our analysis is based on a reliable, well-structured foundation.

Preparing Rotten Tomatoes Ratings and Genres Data

To explore the relationship between **movie genres**, **ratings**, and **success metrics**, we focus first on preparing the **Rotten Tomatoes Movies** dataset. This dataset offers rich metadata for a wide array of films, including elements crucial to understanding **audience perception** and **genre trends**.

Our objectives here are to:

- · Extract key attributes that reflect critical and audience reception
- · Standardize genre information for analytical use
- · Enable cross-comparison with financial and market performance data

Extracting Ratings and Genres

We will extract and clean the following key columns from the dataset:

- movie_title The title of the movie as listed on Rotten Tomatoes.
- genres A comma-separated list of genres assigned to each movie (e.g., Drama, Comedy, Action).
- audience_rating The average rating given by audiences, usually on a scale of 0 to 100.
- tomatometer_rating The percentage of positive critic reviews (Tomatometer score).

Note: Since many movies belong to **multiple genres**, genre parsing must be handled carefully to allow accurate aggregation and trend analysis.

By preparing this data effectively, we enable deeper insights into how **genre** and **reception** correlate with **film success**, supporting the strategic decision-making goals of our new studio.

```
In [21]: # Extracting the relevant columns
    df_rt = rt_info_df[["movie_title","genres","audience_rating","tomatometer_rating"]].copy()

# Convert the comma-separated string into a list
    df_rt['genres'] = df_rt['genres'].str.split(', ')
    # Expanding the genres
    rt_movies_expanded = df_rt.apply(
        lambda x: pd.Series(x['genres']), axis=1
    ).stack().reset_index(level=1, drop=True).to_frame('genres').join(
        df_rt.drop('genres', axis=1), how='left'
    ).reset_index(drop=True)
    rt_movies_expanded.head()
```

Out[21]:		genres	movie_title	audience_rating	tomatometer_rating	
	0	Action & Adventure	Percy Jackson & the Olympians: The Lightning T	53.0	49.0	
	1	Comedy	Percy Jackson & the Olympians: The Lightning T	53.0	49.0	
	2	Drama	Percy Jackson & the Olympians: The Lightning T	53.0	49.0	
	3	Science Fiction & Fantasy	Percy Jackson & the Olympians: The Lightning T	53.0	49.0	
	4	Comedy	Please Give	64.0	87.0	

By using apply() with pd.Series and reset_index(drop=True), we effectively transform a DataFrame with list-like entries in a column into a more analysis-friendly format with one entry per row and a clean index.

```
In [22]: # Comparing the number of rows for main df and the expanded df
print(f"main: {rt_info_df.shape[0]} rows")
print(f"expanded: {rt_movies_expanded.shape[0]} rows")
```

main: 17712 rows expanded: 39369 row

By comparing the row counts before and after expanding the DataFrame's list-like column, we can verify that each movie's multiple genres have been successfully separated into individual rows. A higher row count in the expanded version confirms the transformation worked as intended.

```
In [23]: # Seeing if the number of unique movie_title values matches with the main
print(f"expanded: {len(rt_movies_expanded['movie_title'].unique())} unique values")
print(f"main df: {len(rt_info df!'movie_title'] unique())} unique values")
```

```
expanded: 17087 unique values
main df: 17106 unique values
```

DATA CLEANING

Our data exploration confirms that there are no duplicates and each column has distinct values, indicating a well-structured dataset. There are some missing values, but since they are minimal, we can remove the affected rows without compromising data integrity. Dropping these few records is unlikely to impact the overall accuracy of our cleaned dataset.

```
In [24]:
         # Checking if missing values align with data exploration findings
          missing_counts = rt_movies_expanded.isna().sum()
          total rows = rt movies expanded.shape[0]
          missing_percentages = (missing_counts / total_rows) * 100
          # Using info() method (shows similar info)
          rt_movies_expanded.info()
          # Round to 4 decimal places
          (rt_movies_expanded.isna().sum()/len(rt_movies_expanded)*100).round(4)
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 39369 entries, 0 to 39368
       Data columns (total 4 columns):
                                Non-Null Count Dtype
        # Column
        ---
        0
            genres
                                39369 non-null object
            movie title
                                39369 non-null object
            audience rating
                                38880 non-null float64
           tomatometer_rating 39277 non-null float64
        dtypes: float64(2), object(2)
        memory usage: 1.2+ MB
Out[24]: genres
                               9.9999
                               0.0000
         movie_title
         audience_rating
                               1.2421
         tomatometer_rating
                               0.2337
         dtype: float64
```

Our check confirms that the missing values 0% to 1%. We can now proceed with dropping the rows containing missing values.

```
In [25]: # Dropping rows with missing values under'audience_rating' and 'tomatometer_rating'
rt_movies_expanded_cleaned = (
    rt_movies_expanded
        .dropna(subset=[ "audience_rating", "tomatometer_rating"])
        .reset_index(drop=True)
)
# Checking if there are any missing values left
rt_movies_expanded_cleaned.isna().sum()
```

Out[25]: genres 0
movie_title 0
audience_rating 0
tomatometer_rating 0
dtype: int64

0

Standardizing text columns

To prevent mismatches during grouping, filtering, or searching—such as treating "Comedy" and "comedy" as different categories—we standardize text by converting both the movie_title and genres columns to lowercase.

```
In [26]: # Making sure to work on a copy to avoid the SettingWithCopyWarning
    rt_movies_expanded_cleaned = rt_movies_expanded_cleaned.copy()

# Standardizing columns to lowercase
    rt_movies_expanded_cleaned["genres"] = rt_movies_expanded_cleaned["genres"].str.lower()
    rt_movies_expanded_cleaned["movie_title"] = rt_movies_expanded_cleaned["movie_title"].str.lower()
    rt_movies_expanded_cleaned.head()
```

Out[26]:		genres	movie_title	audience_rating	tomatometer_rating
	0	action & adventure	percy jackson $\&$ the olympians: the lightning t_{\cdots}	53.0	49.0
	1	comedy	percy jackson & the olympians: the lightning $t_{\cdot\cdot\cdot}$	53.0	49.0
	2	drama	percy jackson & the olympians: the lightning $t_{\cdot\cdot\cdot}$	53.0	49.0
	3	science fiction & fantasy	percy jackson & the olympians: the lightning $t_{\cdot\cdot\cdot}$	53.0	49.0
	4	comedy	please give	64.0	87.0

Aggregating Ratings by Genre

We grouped the cleaned DataFrame by genre and calculated the mean audience and Tomatometer ratings. This gives us insight into genre-level trends and preferences, rather than individual movie performance—revealing which genres resonate most with critics and audiences

Out[27]:		genres	audience_rating	tomatometer_rating
	0	action & adventure	57.9	54.2
	1	animation	65.7	64.1
	2	anime & manga	75.0	75.4
	3	art house & international	66.5	71.0
	4	classics	71.0	78.4
	5	comedy	58.4	55.1
	6	cult movies	55.8	60.5
	7	documentary	73.3	80.9
	8	drama	63.1	63.2
	9	faith & spirituality	70.3	63.9
1	0	gay & lesbian	61.5	57.6
1	1	horror	46.4	51.6
1	2	kids & family	60.3	55.7
1	3	musical & performing arts	70.9	71.0
1	4	mystery & suspense	54.0	55.3
1	5	romance	63.4	60.5
1	6	science fiction & fantasy	56.7	55.9
1	7	special interest	72.0	77.7
1	8	sports & fitness	73.4	71.0
1	9	television	66.8	72.4
2	20	western	64.6	68.5

```
In [28]: # Confirming no genres were Lost after aggregation
len(rt_movies_expanded_cleaned['genres'].value_counts()) == len(genre_rating_df)
```

Out[28]: True

Genre and ROI data.

We begin by preparing two key dimensions: genre and Return on Investment (ROI). Genre data—sourced from rt_movies, while ROI derived from tn.movie_budgets using production budgets and worldwide gross—measures each movie's profitability. We will merge the tn.movie_budgets dataset (which contains production budgets and worldwide gross revenue) with the rt_movies dataset (which includes genre information). By merging these tables on movie title, we create a comprehensive dataset that enables us to analyze which genres are most financially successful and guide strategic decisions for future productions.

```
In [29]: # Prepare movie titles for better matching (remove special characters, lower case)
tn_budget_df['movie'] = tn_budget_df['movie'].str.strip().str.lower()
rt_info_df['movie_title'] =rt_info_df['movie_title'].str.strip().str.lower()

# Merge the datasets on the appropriate columns
merged_df = tn_budget_df.merge(rt_info_df[['movie_title', 'genres']], left_on='movie', right_on='movie_title', how='left')

# Drop duplicate movie_title column if you want
merged_df = merged_df.drop(columns=['movie_title'])
merged_df.head()
```

Out[29]:		id	release_date	movie	production_budget	domestic_gross	$worldwide_gross$	genres
	0	1	Dec 18, 2009	avatar	\$425,000,000	\$760,507,625	\$2,776,345,279	Action & Adventure, Comedy, Mystery & Suspense
	1	2	May 20, 2011	pirates of the caribbean: on stranger tides	\$410,600,000	\$241,063,875	\$1,045,663,875	Action & Adventure, Comedy, Science Fiction &
	2	3	Jun 7, 2019	dark phoenix	\$350,000,000	\$42,762,350	\$149,762,350	Action & Adventure, Drama, Science Fiction & F

3	4	May 1, 2015	avengers: age of ultron	\$330,600,000	\$459,005,868	\$1,403,013,963	Action & Adventure, Science Fiction & Fantasy
4	5	Dec 15, 2017	star wars ep. viii: the last iedi	\$317.000.000	\$620.181.382	\$1.316.721.747	NaN

ROI Calculation

ROI (Return on Investment) is a vital financial metric that measures the movie's profitability relative to its production cost.By computing ROI for each film, we can understand the most financially successful movies and use those insights to guide future production decisions. The calculation of ROI will be based on the formula below:

ROI = (Worldwide Gross - Production Budget) ÷ Production Budget × 100

```
In [30]: # Clean up the dollar signs and commas and convert columns to numeric
    merged_df['production_budget'] = merged_df['production_budget'].replace([r'[\$,]'], '', regex=True).astype(float)
    merged_df['worldwide_gross'] = merged_df['worldwide_gross'].replace([r'[\$,]'], '', regex=True).astype(float)

# Calculate ROI
    merged_df['ROI (%)'] = ((merged_df['worldwide_gross'] - merged_df['production_budget']) / merged_df['production_budget']) * 1

# Round ROI to nearest whole number
    merged_df['ROI (%)'] = merged_df['ROI (%)'].round()

# Group by 'movie' and calculate the mean ROI (though each movie is unique here)
    roi_grouped = merged_df.groupby('movie')[['ROI (%)']].mean().reset_index()

# Final table: Comparison between genres and the grouped movie ROI, while keeping the production_budget and worldwide_gross of final_table = merged_df[['genres', 'movie', 'production_budget', 'worldwide_gross']].merge(roi_grouped, on='movie')

final_table.head()

# Out[30]:
ROI
```

	genres	movie	production_budget	worldwide_gross	(%)
0	Action & Adventure, Comedy, Mystery & Suspense	avatar	425000000.0	2.776345e+09	553.0
1	Action & Adventure, Comedy, Science Fiction &	pirates of the caribbean: on stranger tides	410600000.0	1.045664e+09	155.0
2	Action & Adventure, Drama, Science Fiction & F	dark phoenix	350000000.0	1.497624e+08	-57.0
3	Action & Adventure, Science Fiction & Fantasy	avengers: age of ultron	330600000.0	1.403014e+09	324.0
4	NaN	star wars ep. viii: the last jedi	317000000.0	1.316722e+09	315.0

Checking for missing values

Because the genres column has 1,264 missing values and is essential to our analysis we will drop those rows. Removing them won't significantly impact our dataset's integrity or our ability to draw meaningful insights.

```
In [32]: final_table.dropna(subset=['genres'], inplace=True)
```

Expanding movies into individual genres

We expand each movie's genre information into separate rows—one per genre—to analyze how individual genres influence a film's success. Since movies often span multiple genres, this breakdown allows us to assess performance at the genre level. This approach helps us identify which genres are the most financially rewarding and supports strategic decisions on what types of films to prioritize in the future.

```
In [33]:
    def expanded_genres_manual(df):
        # Initialize empty list to store all the new rows
        new_rows = []

# Iterate through each row in the original DataFrame
# idx = index, row = pandas Series containing the row data
for idx, row in df.iterrows():

# Split the genres column by comma and remove whitespace from each genre
# Example: "Action, Comedy, Drama" becomes ["Action", "Comedy", "Drama"]
        genres_cleaned = [genre.strip() for genre in row['genres'].split(',')]

# For each individual genre, create a new row
for genre in genres cleaned:
```

```
# Convert the pandas Series to a dictionary to make it mutable

# This copies all the original column values

new_row = dict(row)

# Replace the original comma-separated genres with the single genre

new_row['genres'] = genre

# Add this new row to our collection

new_rows.append(new_row)

# Convert the list of dictionaries back into a pandas DataFrame

return pd.DataFrame(new_rows)

# Call the function to explode the genres in final_table

# This will transform rows with multiple genres into multiple rows with single genres

expanded_table = expanded_genres_manual(final_table)

expanded_table
```

Out[33]:		genres	movie	production_budget	worldwide_gross	ROI (%)
	0	Action & Adventure	avatar	425000000.0	2.776345e+09	553.0
	1	Comedy	avatar	425000000.0	2.776345e+09	553.0
	2	Mystery & Suspense	avatar	425000000.0	2.776345e+09	553.0
	3	Science Fiction & Fantasy	avatar	425000000.0	2.776345e+09	553.0
	4	Action & Adventure	pirates of the caribbean: on stranger tides	410600000.0	1.045664e+09	155.0
	10904	Mystery & Suspense	following	6000.0	2.404950e+05	3908.0
	10905	Comedy	my date with drew	1100.0	1.810410e+05	16358.0
	10906	Documentary	my date with drew	1100.0	1.810410e+05	16358.0
	10907	Special Interest	my date with drew	1100.0	1.810410e+05	16358.0
	10908	Television	my date with drew	1100.0	1.810410e+05	16358.0

10909 rows × 5 columns

Cleaning, Grouping ROI by Genre

We begin by cleaning the data—removing any rows with missing or invalid values to ensure reliable results—then group the movies by genre to calculate each genre's average Return on Investment (ROI). Finally, we sort the genres by their mean ROI to reveal the top performers and inform future production strategies.

```
Out[34]:
                               ROI (%) production_budget worldwide_gross
                   genres
               Cult Movies 4669.958333
                                            2.545846e+07
                                                             8.253467e+07
                   Horror 975.298217
                                            2.464406e+07
                                                             7.716784e+07
         2 Special Interest 932.209677
                                            1.217236e+07
                                                             3.201614e+07
                                            1.323879e+07
                                                             3.199423e+07
             Documentary
                           868.586466
                   Classics
                           839.873684
                                             3.186409e+07
                                                             1.034252e+08
```

Normalizing ROI Percentages

To make genres' ROI values comparable, we normalize them so their percentages sum to 100%. This is done by dividing each genre's ROI by the total ROI across all genres and then multiplying by 100 letting us see each genre's share of the overall ROI.

```
In [35]: # Normalize ROI values: divide each ROI by the sum of all ROIs, then multiply by 100
# This converts absolute ROI values to relative percentages that sum to exactly 100%
grouped_table['normalized_ROI'] = (grouped_table['ROI (%)'] / grouped_table['ROI (%)'].sum()) * 100
grouped_table
```

35]:	genres	ROI (%)	production_budget	worldwide_gross	normalized_ROI
0	Cult Movies	4669.958333	2.545846e+07	8.253467e+07	31.341139
1	Horror	975.298217	2.464406e+07	7.716784e+07	6.545445
2	Special Interest	932.209677	1.217236e+07	3.201614e+07	6.256269
3	Documentary	868.586466	1.323879e+07	3.199423e+07	5.829279
4	Classics	839.873684	3.186409e+07	1.034252e+08	5.636581
5	Sports & Fitness	740.619048	2.526810e+07	7.822937e+07	4.970461
6	Television	695.370370	2.903874e+07	8.745679e+07	4.666787
7	Faith & Spirituality	652.086957	1.010326e+07	1.855955e+07	4.376302
8	Animation	527.445783	8.096078e+07	2.969315e+08	3.539807
9	Musical & Performing Arts	509.462766	2.771714e+07	1.086628e+08	3.419119
10	Art House & International	481.818966	1.573763e+07	3.106344e+07	3.233595
11	Kids & Family	470.620985	6.421716e+07	2.164677e+08	3.158443
12	Mystery & Suspense	411.601010	3.389579e+07	9.521296e+07	2.762347
13	Science Fiction & Fantasy	410.494911	6.863892e+07	2.086122e+08	2.754924
14	Romance	385.595156	2.982921e+07	9.788020e+07	2.587816
15	Drama	317.076129	3.055283e+07	8.072119e+07	2.127969
16	Comedy	309.905467	3.164979e+07	9.370029e+07	2.079845
17	Action & Adventure	281.021448	6.156793e+07	1.755505e+08	1.885998
18	Western	197.364865	3.417673e+07	6.077859e+07	1.324560
19	Gay & Lesbian	171.000000	4.833333e+06	2.155033e+07	1.147619
20	Anime & Manga	53.000000	1.100000e+08	1.679107e+08	0.355695

Preparing Language and Popularity Data

To help the company identify the most successful film types at the box office, we focus on two key features from The Movie DB dataset: original_language and popularity. The original_language field gives insight into which language markets (e.g., English, Spanish) perform best commercially, supporting decisions on which languages to target for wider or niche audience reach. Meanwhile, the popularity column reflects audience engagement and interest—making it a strong indicator of a film's appeal and public traction.

Before proceeding, we reviewed the dataset using the Data Wrangler tool to examine these columns. This initial exploration confirmed that both original_language and popularity are complete, with no missing values. As a result, no additional cleaning is needed.

We'll keep the dataset as-is and apply specific filters during analysis to extract relevant insights while preserving the original data structure.

Tn [37]·	
III [37].	# checking the first five rows of the data set
	# checking the first five rows of the data set tmdb_df.head()

Out[37]:		Unnamed: 0	genre_ids	id	original_language	original_title	popularity	release_date	title	vote_average	vote_count
	0	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter and the Deathly Hallows: Part 1	7.7	10788
	1	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	7.7	7610
	2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	6.8	12368
	3	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	Toy Story	7.9	10174
	4	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	Inception	8.3	22186

Preparing Directors and Foreign Gross Data

To analyze the connection between directors and their films' worldwide gross earnings, we begin by aligning two datasets: the im.db tables and the movie budgets dataset. Based on prior data exploration, we've confirmed that these datasets contain no missing values in the relevant fields, allowing us to proceed without any imputation. Since they come from different sources with varied structures, careful filtering

and merging are necessary to maintain accuracy.

Extracting Director and Movie Title Data

Our first step is to extract a refined dataset containing each director's name alongside their associated movie title from the im.db database. The challenge here is that the directors table doesn't directly store names—instead, it references the persons table for director names. Likewise, movie titles are located in the movie_akas table, which maps movies to their alternate regional titles.

To ensure data integrity and eliminate duplication caused by variations in title entries, we use a DISTINCT query. This helps us obtain unique director—movie pairs based solely on original movie titles, minimizing redundancy and improving the quality of our analysis.

```
In [38]:
          # Connect to the database
          conn = sqlite3.connect('Data\im.db\im.db')
          # Updated query with DISTINCT
          query = '''
SELECT DISTINCT
              p.primary_name AS director_name,
              ma.title AS movie_title,
              mb.start_year
          FROM directors d
           JOIN persons p ON d.person_id = p.person_id
           JOIN movie_akas ma ON d.movie_id = ma.movie_id
          JOIN movie_basics mb ON d.movie_id = mb.movie_id
          WHERE ma.is_original_title = 1
          # Execute the query and load into a DataFrame
          directors_df = pd.read_sql_query(query, conn)
          # Close connection
          conn.close()
          directors_df.head()
```

Out[38]:	director_name		movie_title	start_year	
	0	Colin Trevorrow	Jurassic World	2015	
	1	Andrew Stanton	John Carter	2012	
	2	Marc Jampolsky	Versailles Rediscovered - The Sun King's Vanis	2019	
	3	Sam Zubrycki	Miguelito - Canto a Borinquen	2019	
	4	Henning Beckhoff	Thing I Don't Get	2018	

Merge Directors with Worldwide Gross Data

At this point, we will combine the director information with the worldwide gross earnings. This will ensures that each movie in our dataset is matched with both its director and its revenue performance, this will help in having meaningful analysis.

Out[39]:		movie	director_name	$worldwide_gross$	start_year
	0	akira	A.R. Murugadoss	\$19,585	2016
	1	bully	Aaron Alon	\$1,381,824	2017
	2	restless	Aaron Boltz	\$2,772,511	2012
	3	circle	Aaron Hann	\$10,024	2015
4 2443 2444 2445		teen titans go! to the movies	Aaron Horvath	\$51,620,593	2018
		along the roadside	Zoran Lisinac	\$3,234	2013
		prophecy	Zuri Rinpoche	\$22,673,340	2015
		perfectos desconocidos	Álex de la Iglesia	\$31,166,312	2017
	2446	9	Éric Tessier	\$48,559,999	2016
	2447	hallerina	Éric Warin	\$96 892 829	2016

2448 rows × 4 columns

Aggregating Worldwide Gross by Director

Since a director may have multiple films, we consolidate their worldwide gross earnings by summing the gross across all their movies. This aggregation produces a director-level total revenue figure, giving us a clearer view of each director's overall box office impact.

```
In [40]: # Remove commas, dollar sign and convert to float for calculation
    directors_fgross_df['worldwide_gross'] = directors_fgross_df['worldwide_gross'].replace(r',', '', regex=True)
    directors_fgross_df['worldwide_gross'] = directors_fgross_df['worldwide_gross'].replace(r'\$', '', regex=True).astype(float)

# Group by director_name and sum worldwide_gross
    agg_directors_df = directors_fgross_df.groupby('director_name', as_index=False)['worldwide_gross'].sum()

# Sort by worldwide_gross in descending order
    agg_directors_df = agg_directors_df.sort_values(by='worldwide_gross', ascending=False).reset_index(drop=True)

# Format numbers with commas
    agg_directors_df['worldwide_gross'] = agg_directors_df['worldwide_gross'].apply(lambda x: f"{int(x):,}")
    agg_directors_df
```

Out[40]:		director_name	worldwide_gross
	0	Anthony Russo	3,902,605,502
	1	Joe Russo	3,902,605,502
	2	Pierre Coffin	3,713,745,331
	3	Christopher Nolan	3,086,180,484
	4	Joss Whedon	2,992,084,614
	•••		
	1683	Christian Sesma	0
	1684	Deepak Rauniyar	0
	1685	Russell Friedenberg	0
	1686	Katie Aselton	0
	1687	Brandon Trost	0

1688 rows × 2 columns

DATA ANALYSIS.

Understanding Genre-Rating Relationships

Exploring how genres correlate with critics' and audiences' ratings is essential for making informed content decisions. By identifying which genres consistently earn high praise, studios can prioritize productions likely to achieve both critical acclaim and commercial success.

```
In [41]:
           sns.set(style='darkgrid')
           # Calculate the average rating of the two columns
genre_rating_df['average_rating'] = genre_rating_df[['audience_rating', 'tomatometer_rating']].mean(axis=1)
           top_genres_df = genre_rating_df.sort_values('average_rating', ascending=False)
           # Reshape the data to long format for easy plotting with Seaborn
long_df = pd.melt(top_genres_df, id_vars='genres', value_vars=['audience_rating', 'tomatometer_rating'],
                                var_name='rating_type', value_name='rating')
           # Set up the plot
           plt.figure(figsize=(14, 8))
           # Define the custom colors from the Blues d palette
           custom_palette = {'audience_rating': '#89CFF0', 'tomatometer_rating': '#0047AB'} # Light blue for audience, dark blue for cr
            # Plot the horizontal barplot with custom colors
           sns.barplot(y="\verb|genres"|, x="rating"|, hue="rating_type"|, data=long_df|, palette=custom_palette|, errorbar=None|, alpha=0.7|
           # Customize the plot
plt.title('Top Genres by Average Rating (Audience vs Critic)', fontsize=16, weight='bold')
           plt.xlabel('Rating', fontsize=12)
plt.ylabel('Genres', fontsize=12)
            # Move the legend to the right side of the grid and update legend labels
           plt.legend(title='Rating Type', labels=['Audience', 'Critic'], loc='center left', bbox_to_anchor=(1, 0.5))
            sns.despine(left=True, bottom=True) # Remove top and right spines for a cleaner look
            # Adjust layout to make room for the legend
           plt.tight_layout()
            # Show the plot
           plt.show()
```


The bar chart provides a comparison of average audience and critic ratings across various genres. Key insights include:

- · Documentaries stand out as the highest-rated genre by critics, and they also perform very well with audiences.
- Anime & Manga, Special Interest, and Classics are also among the top genres appreciated by both critics and audiences, indicating strong dual-market appeal.
- Television receives relatively high audience ratings but lower critic scores, suggesting it may appeal more to popular tastes than to critical standards.
- Faith & Spirituality and Western tend to score lower across both metrics, potentially indicating limited broad appeal or niche
- Sports & Fitness shows an interesting case where audience ratings surpass critic scores, implying mass appeal despite critical reservations.

Below we are checking whether there is a Correlation Between Audience and Critic Ratings;

45 50 55 60 65 70 7. Audience Rating

Genre-Ratings Correlation & Strategic Insights

The scatter plot shows a clear positive relationship between audience and critic ratings:

- Positive correlation: The regression line slopes upward, indicating that genres favored by viewers often receive strong critic reviews, supporting the idea that appealing to audiences and critics can go hand in hand.
- Noticeable variance: Even with similar audience scores, critic ratings vary—highlighting the importance of considering both metrics rather than relying on audience sentiment alone.

Strategic Implications

- Focus on dual-appeal genres: Prioritize genres like Documentary, Classics, and Anime & Manga, which consistently outrank the others in both audience and critic reception.
- Leverage niche strengths: Films in Special Interest and Musical & Performing Arts may cater to smaller audiences but show high satisfaction among both critics and fans.
- Be mindful of underperformers: Genres such as Faith & Spirituality and Western tend to score low across the board—investments here
 carry greater risk.
- Blend genres carefully: Combining high-performing genres (e.g., a documentary-style classic or anime) can be powerful, but requires
 cautious execution to maintain genre strengths.
- Capitalize on audience-driven genres: While Television and Sports & Fitness may not please critics, they often generate solid box office returns when marketed to enthusiastic fans.

Understanding Genre and ROI

For any new studio or film investor, knowing which genres deliver the highest ROI is essential for making profitable, risk-aware choices. Unlike total box-office takings, ROI incorporates both revenue and cost—offering a clearer picture of financial efficiency

```
In [43]:
           # Use seaborn's built-in theming (works with all versions)
sns.set_theme(style="darkgrid") # Use set_theme instead of set
           plt.figure(figsize=(15, 8))
           grouped_sorted = grouped_table.sort_values('normalized_ROI', ascending=False)
           # Create barplot
           ax = sns.barplot(data=grouped_sorted, x='normalized_ROI', y='genres',
                             palette='Blues_d', alpha=0.8)
           for i, (roi, genre) in enumerate(zip(grouped_sorted['normalized_ROI'], grouped_sorted['genres'])):
               ax.text(roi + 1, i, f'{roi:.1f}%', va='center', ha='left', fontsize=10, color='black')
           plt.title('Normalized ROI per Genre', fontsize=16, weight='bold')
           plt.xlabel('Normalized ROI (%)', fontsize=12)
           plt.ylabel('Genres', fontsize=12)
           # Remove spines
           sns.despine(left=True, bottom=True)
           plt.tight_layout()
           plt.show()
```


Genre ROI Insights & Strategic Guidance

Key Observations from the Normalized ROI Chart

- Cult Movies dominate with a significantly high normalized ROI (~31.3%), suggesting that niche appeal and dedicated fanbases can drive exceptional returns despite lower budgets.
- Genres like Horror (6.5%), Special Interest (6.3%), and Documentary (5.8%) also deliver strong ROI, benefiting from focused audiences and
 manageable production costs. -Traditional blockbusters—Action & Adventure, Comedy, and Drama—have modest normalized ROI (~2%),
 likely due to significant production expenditures diluting profitability. -Surrounding the lower end are genres such as Western, Gay &
 Lesbian, and Anime & Manga, which show minimal ROI, indicating limited appeal or return relative to investment.

Strategic Implications

- Embrace High-ROI Genres Cult, horror, and documentary films provide cost-effective, high-return entry points—ideal for new studios building financial momentum.
- Balance Artistic Vision and Budget While dramas or action titles might have strong creative appeal, early-stage studios may benefit more
 from genres with proven ROI and lower costs.
- Use Niche Genres Selectively Low-ROI genres might still serve branding or critical acclaim goals—but should be pursued with caution and supported by targeted audience research.
- Stay Adaptive to Trends ROI performance can shift due to cultural changes or streaming trends; regular reassessment ensures alignment
 with emerging opportunities.
- Leverage Audience-Driven Genres for Commercial Success Genres with mass appeal (like certain television and sports-themed content)
 may not win critical acclaim but can be profitable if marketed strategically.

Core Insight

Targeting genres with strong ROI and loyal niche audiences allows studios to craft a sustainable production strategy—achieving alignment between artistic goals and financial health.

Relationship between Language and Popularity

When launching a new movie studio, it is important to analyze the relationship between a film's language and its popularity. Language plays a major role in determining audience reach, cultural accessibility, and commercial success. By identifying which languages dominate film production and how those languages relate to popularity, stakeholders can make informed decisions about language selection in content creation.

Which Languages Dominate Movie Production?

To start, we analyze the languages with the highest volume of movie production—an important indicator of a large audience base, mature distribution networks, and well-established infrastructure for casting, marketing, and localization.

The bar plot below displays the top 15 most common movie languages by production volume

```
In [44]: language_counts = tmdb_df['original_language'].value_counts().head(15)

# Create the plot
plt.figure(figsize=(14, 7))
sns.set_palette('Blues_d')
ax = sns.barplot(x=language_counts.index, y=language_counts.values)

# Customize the plot
plt.title('Top 15 Most Common Movie Languages by Production Volume', fontsize=16, pad=20)
plt.xlabel('Language Code', fontsize=12)
plt.ylabel('Number of Movies', fontsize=12)
plt.xticks(rotation=45, ha='right')
plt.show()
```

Top 15 Most Common Movie Languages by Production Volume

From the chart, we observe that:

- English (en) dominates with over 20,000 movies, far exceeding any other language.
- French (fr) and Spanish (es) follow as the second and third most common languages.

This trend indicates that most studios tend to produce content in English, which may be due to its global acceptance, availability of talent, and ease of distribution. For a new studio, prioritizing English-language productions may align with industry norms and maximize early traction.

Popularity Distribution by Language: Beyond Just Volume

While production volume tells us what studios are doing, it doesn't necessarily reflect what audiences prefer. To gain deeper insight, we analyze how popularity scores vary across languages using a box plot, which also helps us detect outliers — movies that achieve exceptional popularity.

Why focus on outliers?

Languages with frequent or extreme outliers may occasionally produce global blockbusters.

Outliers highlight potential for breakout success, even in languages with low production volume.

```
In [45]:
           # Get top 20 Languages by frequency in the dataset
top_languages = tmdb_df['original_language'].value_counts().head(20).index
           # Create data dictionary mapping each language to its popularity values
           lang_data = {lang: tmdb_df[tmdb_df['original_language'] == lang]['popularity'].values
                         for lang in top_languages}
           # Convert nested dictionary data to a flat DataFrame format suitable for seaborn
           plot data = []
           for lang, popularity_values in lang_data.items():
                # Create a row for each movie's popularity score within each language
                for pop in popularity_values:
                    plot_data.append({'original_language': lang, 'popularity': pop})
           # Convert list of dictionaries to DataFrame
           plot_df = pd.DataFrame(plot_data)
           # Create the visualization
           plt.figure(figsize=(12, 6)) # Set figure size for better readability
           # Create boxplot showing popularity distribution for each language
           sns.boxplot(data=plot_df, x='original_language', y='popularity', palette='Blues_d')
           # Add title and formatting
           plt.title("Popularity Distribution by Top 20 Languages")
           plt.yscale('log') # Use logarithmic scale for better visualization of wide range
plt.xticks(rotation=45) # Rotate x-axis labels for better readability
           plt.tight_layout() # Adjust spacing to prevent label cutoff
           # Display the plot
           plt.show()
```


Language & Popularity Insights

From the chart, we draw several key observations:

- English (en) leads in production and popularity, with numerous high-performing outliers—indicating its dominance and capacity to
 produce globally resonant films. academia.edu
- Japanese (ja), Spanish (es), French (fr), and Russian (ru) also exhibit strong outliers, suggesting that despite smaller overall production volumes, they can produce standout popular films. academia.edu

Strategic Takeaways

- Lead with English: Leveraging English-language production remains the most reliable route for reaching broad audiences and achieving high popularity at scale.
- Invest in international outliers: Languages like French, Spanish, Japanese, and Russian are capable of producing high-impact, niche successes—it's worthwhile for the studio to explore occasional multilingual or international projects.
- Stay adaptive: Popularity trends evolve—tracking language-based audience preferences ensures the studio continually aligns content
 with emerging demand.
- By aligning production strategy with both market saturation and popularity impact, the studio can achieve global appeal and a strong
 competitive advantage right from the outset.

Understanding the Link: Directors & Worldwide Gross Earnings

"To inform our production strategy, we assess how a director's involvement affects a film's financial success. Directors shape the creative vision, which can significantly influence both audience reception and global box office revenue." academia.edu

Why This Matters

Directors often guide the narrative and tone—factors that can heavily impact a film's commercial appeal.

By analyzing worldwide gross totals per director, we can identify filmmakers who consistently deliver strong financial performance.

Strategic Takeaway

By focusing collaborations on directors with proven high-grossing track records, the studio aligns its output with box office success—advancing its goal of maximizing ROI from the start.

```
In [47]:
          import plotly.express as px
          # Select top 10 directors and sort from highest to lowest gross
          # Note: Remove iloc[::-1] since we want highest to lowest order
          top_10_directors = agg_directors_df.head(10)
           # Sort explicitly by worldwide_gross in descending order to ensure highest to lowest
          top_10_directors = top_10_directors.sort_values('worldwide_gross', ascending=False)
           # Create interactive bar chart using Plotly Express
          fig = px.bar(
              top_10_directors.
                                                    # DataFrame containing the data
                                                   # Column for x-axis (director names)
              x='director name'
                                                    # Column for y-axis (gross earnings)
              v='worldwide gross',
              title='Top 10 Directors by Worldwide Gross', # Chart title
                                              # Color bars based on gross values
, # Use blue color gradient
# Show gross value on hover
              color='worldwide_gross'
              color_continuous_scale='Blues',
              hover_data=['worldwide_gross']
          # Customize the layout and appearance
          fig.update_layout(
              width=1000,
                                                  # Set chart width in pixels
              height=600,
                                                  # Set chart height in pixels
              xaxis_title='Director Name',
                                                  # Label for x-axis
              yaxis_title='Worldwide Gross ($)', # Label for y-axis with currency symbol
               font=dict(size=12),
                                                  # Set default font size
              title_font_size=16,
                                                  # Make title larger
              xaxis_tickangle=-45
                                                  # Rotate x-axis labels for better readability
          # Format y-axis to show currency values in billions/millions
          fig.update_layout(
              yaxis=dict(
                   tickformat='$,.0f',
                                                  # Format as currency with commas
                   title_standoff=25
                                                  # Add space between axis and title
              )
          )
           # Update hover template to show formatted currency
          fig.update_traces(
              hovertemplate='<b>%{x}</b><br>' + # Director name in bold
                             'Worldwide Gross: $%{y:,.0f}<br>' + # Formatted gross amount
                             '<extra></extra>'
                                                   # Remove default trace box
          # Display the interactive chart
          fig.show()
```

The bar chart highlights the ten most commercially successful directors based on worldwide gross revenue. Key observations include:

- Joe Russo and Anthony Russo dominate the chart, both nearing or exceeding the \$3.9 billion mark. This reflects their significant contributions to blockbuster franchises, particularly within the Marvel Cinematic Universe.
- Pierre Coffin, known for animated films like Despicable Me and Minions, ranks just below, indicating the strong earning potential of animated family films.
- Christopher Nolan stands out as the only director in the top tier known for original, high-concept blockbusters, suggesting that originality
 paired with cinematic scale can also yield massive returns.
- Directors like Michael Bay, Joss Whedon, and Jon Favreau reflect the commercial power of action-heavy, effects-driven films and franchise-building.
- Overall, the data shows a clear trend: franchise integration, visual spectacle, and genre appeal (especially action, animation, and superhero films) consistently lead to high global box office success including amazing directors.

Strategic Implications:

- Leverage Proven Commercial Directors: Prioritize collaboration with or emulation of directors who have a proven track record of
 generating high worldwide gross, such as the Russo brothers, Christopher Nolan, and Michael Bay.
- Recognize the Value of Director Branding: Certain directors—especially those associated with major box office hits—carry brand equity that can drive audience interest and investment potential.
- Explore High-Grossing Collaboration Models: The presence of both Russo brothers individually suggests that co-directing or creative
 partnerships can lead to significant commercial outcomes when well executed.
- Balance Franchise Experience and Standalone Success: While many directors on the list gained success through major franchises,
 Christopher Nolan's presence indicates that original content with strong direction can also achieve global financial success.
- Monitor Talent That Aligns With Studio Goals: For a new studio, targeting rising or mid-tier directors with similar styles or genres to those
 on the list could be a scalable and cost-effective way to replicate success patterns.

We should also explore the yearly gross revenues of the top 5 directors to assess whether their commercial success is driven by past achievements or if they are maintaining, declining, or improving over time. This analysis will provide insights into the sustainability of their success and how their recent films compare to earlier ones, highlighting whether their box office appeal remains consistent.

```
In [48]:
          # Data Preparation for Over Time Analysis of Directors
           # Get top 5 directors (first 5 entries from already sorted agg_directors_df)
          top_5_directors = agg_directors_df.head(5)['director_name'].tolist()
           # Filter directors_fgross_df for top 5 directors
          filtered_df = directors_fgross_df[directors_fgross_df['director_name'].isin(top_5_directors)].copy()
           # Clean 'worldwide_gross' column (remove $ and commas, convert to float)
          filtered_df['worldwide_gross'] = (
              filtered_df['worldwide_gross']
.replace({r'\$': '', ',': ''}, regex=True)
               .astype(float)
          # Group by director and start_year
          grouped = (
              filtered df
               .groupby(['director_name', 'start_year'])['worldwide_gross']
               .sum()
               .reset index()
           # Plot the line chart
           plt.figure(figsize=(12, 6))
           sns.lineplot(
              data=grouped,
              x='start vear'
              y='worldwide_gross',
              hue='director_name',
              palette='tab10',
               marker='o'
          # customize
          plt.title('Yearly Worldwide Gross for Top 5 Directors', fontsize=16)
          plt.xlabel('Year', fontsize=12)
          plt.ylabel('Worldwide Gross (USD)', fontsize=12)
          plt.legend(title='Director', loc='upper left')
          plt.grid(True)
          plt.tight_layout()
          plt.show()
```

Yearly Worldwide Gross for Top 5 Directors Director Anthony Russo Christopher Nolan Joe Russo Joss Whedon Pierre Coffin

Yearly Gross Trends: Director Insights & Strategy

Key Observations

• Franchise Peaks

The **Russo Brothers** and **Joss Whedon** see sharp revenue spikes during Marvel film releases, confirming that franchise titles consistently drive blockbuster earnings.

. Animation's Reliable Growth

Directors like **Chris Coffin** demonstrate steady, year-over-year revenue increases, showcasing how animated sequels offer predictable, low-volatility returns unlike many live-action projects.

• Director Consistency

Christopher Nolan delivers consistently strong annual box office performance with original films, proving that non-franchise movies can still yield high revenue.

• Strategic Release Timing

Noticeable revenue dips between franchise film releases (e.g., gaps between Russo Bros' Marvel movies) underscore the importance of planned release schedules to maintain audience momentum.

Strategic Takeaways

1. Invest in A-List Directors for Tentpoles

Franchise talents like the Russo Brothers and Nolan demand high fees but offer reliable blockbuster returns.

2. Leverage Mid-Tier Directors for Steady Growth

Mid-tier directors specializing in sequels and genre films provide strong returns at more accessible budgets.

3. Balance the Slate

A mixed strategy—combining tentpole franchise films with recurring mid-market titles—builds brand strength and financial stability.

Core Insight

By analyzing yearly box office trends—franchise-driven peaks, animated stability, and consistent originals—studios can align talent and production schedules to optimize box office impact and financial sustainability.

4. Business Recommendations

Entering the entertainment industry demands strategic, data-driven investment. Our analysis of global film trends in genre performance, language strategy, and creative talent offers a playbook for building a profitable and sustainable production slate.

Focus on High-Impact Genres

Findings

- Top Ratings: Documentary, Classics, Anime & Manga consistently receive strong critical and audience acclaim.
- Strong ROI: Cult Films, Horror, and Documentaries deliver excellent returns on smaller budgets.
- Niche Success: Special Interest and Musical & Performing Arts perform well in targeted segments.
- Underperformers: Faith & Spirituality and Westerns lag in both ratings and revenue.

Recommendations

- Prioritize genres with both critical and financial strength (e.g., Documentaries, Cult Films).
- Use cost-effective, high-ROI genres like Horror for early-stage projects.
- Skip low-impact genres unless they uniquely serve branding or niche demand.
- Experiment with genre hybrids to innovate while preserving appeal.

Language Strategy for Global Reach

Findings

- English dominates global cinema.
- French, Spanish, Japanese, and Russian produce impactful films despite smaller output.

Recommendations

- Start with English-language production to maximize global exposure.
- Plan multilingual or subtitled content to enter regional markets.
- Monitor language trends to stay adaptive in shifting markets.

Leverage Proven Directorial Talent

Findings

 Directors such as the Russo Brothers, Nolan, and Michael Bay consistently generate top box office results through both franchise and original films.

Recommendations

- Partner with high-grossing directors or study their methods for faster success.
- · Leverage director branding in marketing to attract investors and audiences.
- Cultivate emerging talent with potential for similar impact at a lower cost.
- · Track director-level performance to identify long-term winners.

Balance Ratings with Financial Returns

Findings

- High ratings don't always equate to strong ROI.
- Some low-rated genres (e.g., Horror) deliver excellent profits due to cost efficiency and fan loyalty.

Recommendations

- Evaluate genres through both critical acclaim and ROI before greenlighting.
- Blend high-ROI genres with well-reviewed genres to balance credibility and revenue.
- Stay agile by updating your genre mix as market and rating trends evolve.

5. Limitations of Our Analysis

Coverage & Bias

• Some genres, directors, and languages were underrepresented, affecting generalizability.

Assumed Correlations

We inferred connections between popularity, ratings, and ROI without access to profit or return data—future work should incorporate
actual financials.

Genre Attribution

· We treated multi-genre films equally across all genres. More nuanced weighting could improve accuracy.

Metadata Gaps

• Terms such as "popularity" lacked clear definitions, leading to interpretive assumptions.

Integration Constraints

• Inconsistent identifiers across sources limited our ability to analyze director-genre success correlations.

Further Areas for Exploration

- Incorporate audience demographics and regional preferences for segmentation
- Analyze the impact of marketing budgets and distribution channels on ROI
- Study creative contributions from writers, actors, and producers
- Track temporal shifts (e.g., post-pandemic release trends) in viewing behavior