

北京航空航天大學

《信号与系统》实验指导书

北京航空航天大学电子工程系 二零零七年十二月

目 录

实验一	连续时间系统卷积的数值计算	1
一,	实验目的	1
=,	基本原理	1
三、	实验内容	2
四、	实验要求	2
实验二	信号的矩形脉冲抽样与恢复	3
– ,	实验目的	3
=,	基本原理	3
三、	实验内容	5
四、	实验要求	5
实验三	连续时间系统的频率响应	6
— ,	实验目的	6
	基本原理	6
三、	实验内容	7
四、	实验要求	8
实验四	DSB-AM 调制与解调实验	9
一,	实验目的	9
	基本原理	9
	1、双边带调幅(DSB-AM)的调制	9
	2、双边带调幅(DSB-AM)的解调	9
	3、连续时间傅里叶变换的数值计算方法	10
三、	实验内容	11
四、	实验要求	12
实验五	离散时间系统特性分析	13
一,	实验目的	13
	基本原理	13
三、	实验内容	13
四、	实验要求	14
实验六	利用数字滤波器实现对模拟信号的滤波	15
一,	实验目的	15
	基本原理	15
三、	实验内容	17
四、	实验要求	17
实验七	自主设计型实验	18
一,	基本目的	18
<u> </u>	实验内容	18
三、	实验要求	21

实验一 连续时间系统卷积的数值计算

一、实验目的

- 1. 加深对卷积概念及原理的理解;
- 2. 掌握借助计算机计算任意信号卷积的方法。

二、基本原理

卷积积分不仅可以通过直接积分或查表的方法来求解,还可以用积分的数值 计算方法来求解。在线性系统的分析过程中,有时会遇到复杂的激励信号,或者 有时只是一组测试数据或曲线,冲激响应也可能出现同样的情况。显然,此时直 接计算积分或查表都有困难,而采用近似的数值计算方法可以解决这个问题,求 得卷积积分。

1. 卷积的定义

卷积积分可以表示为

$$f(t) = f_1(t) * f_2(t) = \int_{-\infty}^{+\infty} f_1(\tau) f_2(t - \tau) d\tau = \int_{-\infty}^{+\infty} f_2(t - \tau) f_1(\tau) d\tau$$

2. 卷积计算的几何算法

卷积积分的计算从几何上可以分为四个步骤:翻转→平移→相乘→叠加。

3. 卷积积分的应用

卷积积分是信号与系统时域分析的基本手段,主要用于求系统零状态响应, 它避开了经典分析方法中求解微分方程时需要求系统初始值的问题。

设一个线性零状态系统,已知系统的单位冲激响应为h(t),当系统的激励信

号为e(t)时,系统的零状态响应为

$$r(t) = e(t) * h(t) = \int_0^t e(\tau)h(t-\tau)d\tau = \int_0^t e(t-\tau)h(\tau)d\tau$$

由于计算机技术的发展,通过编程的方法来计算卷积积分已经不再是冗繁的工作,并可以获得足够的精度。因此,信号的时域卷积分析法在系统分析中得到了广泛的应用。

卷积积分的数值运算实际上可以用信号的分段求和来实现,即:

$$r(t) = e(t) * h(t) = \int_0^t e(\tau)h(t-\tau)d\tau = \lim_{\Delta t_1 \to 0} \sum_{t_1=0}^t e(t_1) \cdot h(t-t_1) \cdot \Delta t_1$$

如果我们只求当 $t = n\Delta t_1$ (n为正整数, $n\Delta t_1$ 记为 t_2)时 r(t)的值,则由上式可以得到:

$$r(t_2) = \lim_{\Delta t_1 \to 0} \sum_{t_1=0}^{t_2} e(t_1) h(t_2 - t_1) \Delta t_1$$

当 Δt_1 足够小时, $r(t_2)$ 就是e(t)和h(t)卷积积分的数值近似,由上面的公式可以得到卷积数值计算的方法如下:

- 1. 将信号取值离散化,即以 Ts 为周期,对信号取值,得到一系列宽度间隔为 Ts 的矩形脉冲原信号的离散取值点,用所得离散取值点矩形脉冲来表示原来的连续时间信号;
- 2. 将进行卷积的两个信号序列之一反转,与另一信号相乘,并求积分,所得为 t=0 时的卷积积分的值。以 Ts 为单位左右移动反转的信号,与另一信号相乘求积分,求的 t<0 和 t>0 时卷积积分的值:
- 3. 将所得卷积积分值与对应的 t 标在图上,连成一条光滑的曲线,即为所求卷积积分的曲线。

三、实验内容

已知进行卷积的两个信号分别为:

$$f_1(t) = u(t+2) - u(t-2)$$

$$f_2(t) = t \lceil u(t) - u(t-2) \rceil + (4-t) \lceil u(t-2) - u(t-4) \rceil$$

令 Ts = 0.1,用数值计算法计算 $f_1(t) * f_2(t)$ 。

用 C 语言编制相应的计算程序进行计算。 将所得结果用表格列出,并画出相应的曲线。

四、实验要求

- 1. 借助图示的方法,说明实验原理;
- 2. 画出程序的流程图:
- 3. 所得结果用表格列出;
- 4. 画出所得卷积积分的曲线。

要求用C语言编程。

实验二 信号的矩形脉冲抽样与恢复

一、实验目的

- 1. 加深对抽样定理的原理、物理意义,以及抽样过程和信号恢复的频谱变换特性的理解。
 - 2. 掌握借助计算机对信号抽样进行频域分析的方法。

二、基本原理

图 2.1 为连续信号 f(t) 的抽样与恢复的示意图

图 2.1 信号的抽样与恢复

设输入信号 f(t) 为带限信号(当 $|\omega|>\omega_{\max}$ 时, $F(\omega)=0$),如图 2.2 所示。

图 2.2 输入信号 f(t) 的时域波形和频谱

对 f(t) 进行矩形脉冲抽样。假设矩形抽样脉冲 p(t) 的脉冲幅度为 E,脉宽为 τ ,周期为 T_s (抽样频率 $\omega_s=\frac{2\pi}{T_s}$),则其频谱为 $P(\omega)$,即

$$P(\omega) = E\tau\omega_S \sum_{n=-\infty}^{+\infty} \text{Sa}(\frac{n\omega_S\tau}{2})\delta(\omega-n\omega_S)$$
 , $\sharp + \omega_S = \frac{2\pi}{T_S}$

图 2.3 给出了抽样脉冲 p(t) 的时域波形及其频谱。

图 2.3 抽样脉冲 p(t) 的时域波形和频谱

对f(t)进行矩形脉冲抽样后得到信号 $f_s(t)$,其对应的频谱为

$$F_s(\omega) = \frac{E\tau}{T_s} \sum_{n=-\infty}^{+\infty} \text{Sa}(\frac{n\omega_s \tau}{2}) F(\omega - n\omega_s)$$
, $\sharp + \omega_s = \frac{2\pi}{T_s}$

如图 2.4 所示。

图 2.4 矩形抽样信号的频谱

当 $f_s(t)$ 通过如图 2.5 所示的理想低通滤波器 $H(\omega)$ 时,可从 $f_s(t)$ 中恢复出原信号,所得恢复信号记作 f'(t) 。

图 2.5 矩形抽样信号通过理想低通滤波器

其中理想低通滤波器 $H(\omega)$ 的频谱特性为

$$H(\omega) = \begin{cases} \frac{T_s}{\tau} & |\omega| < \omega_c \\ 0 & \text{ } \sharp \dot{\Xi} \end{cases},$$

$$\perp \omega_{\text{max}} < \omega_{c} < \omega_{S} - \omega_{\text{max}}$$
, $\omega_{S} = \frac{2\pi}{T_{S}}$.

恢复信号 f'(t) 的频谱为 $F'(\omega) = F(\omega) \times \frac{E\tau}{T_S} \times \frac{T_S}{\tau} = F(\omega) \times E$ 。 当 E=1 时,可得 $F'(\omega) = F(\omega)$ 。

三、实验内容

给定带限信号 f(t), 其频谱为 $F(\omega) = \begin{cases} \cos(\omega) & -0.5\pi < \omega < 0.5\pi \\ 0 & \text{其它} \end{cases}$ (π 用 3.14 代替, ω 的单位:rad)。

- 1. 画出此信号的频谱图(ω 的取值: $-0.5\pi < \omega < 0.5\pi$, 精度取 0.01rad)。
- 2. 对此频域信号进行傅里叶逆变换,得到相应的时域信号,画出此信号的时域波形 f(t) (t) 的取值: -20s < t < 20s; 精度取 0.1s)。
- 3. 分别用三种不同抽样频率 f=0.2Hz,0.5 Hz,1.0 Hz 的周期矩形脉冲信号(矩形脉冲的幅度 E 取 1,宽度 τ 取 0.01s)对 f(t)进行抽样,画出抽样后的信号的频谱图($\omega(=2\pi f)$ 的取值: $-10rad < \omega < 10rad$,精度取 0.01rad)。
 - 4. 针对 3 中抽样所得的矩形抽样信号,用滤波器

$$H(\omega) = \begin{cases} \frac{T_s}{\tau}, & -0.5\pi < \omega < 0.5\pi \\ 0, & 其它 \end{cases}$$

对所得信号进行滤波,所得恢复信号 f'(t) 的频谱记为 $F'(\omega)$,与原信号的频谱 $F(\omega)$ 进行比较(ω 的取值: $-2rad < \omega < 2rad$,精度取 0.01rad)。

四、实验要求

- 1. 给出程序及流程图。
- 2. 给出下列时域波形图: 原信号时域波形 f(t), 三种抽样频率下矩形脉冲抽样信号的时域波形 $f_s(t)$;
- 3. 给出下列频谱图: 原信号频谱图 $F(\omega)$, 三种抽样频率下矩形脉冲抽样信号的频谱图 $F_s(\omega)$, 和恢复信号 $f^{'}(t)$ 的频谱图 $F^{'}(\omega)$;
 - 4. 对所得结果进行分析,根据抽样定理说明抽样频率对信号恢复的影响。 要求用 C 语言编程。

实验三 连续时间系统的频率响应

一、实验目的

- 1. 加深对连续时间系统频率响应理解;
- 2. 掌握借助计算机计算任意连续时间系统频率响应的方法。

二、基本原理

连续时间系统的频率响应可以直接通过所得表达式计算,也可以通过零极点 图通过用几何的方法来计算,而且通过零极点图可以迅速地判断系统的滤波特性。

根据系统函数 H(s) 在 s 平面的零、极点分布可以绘制频响特性曲线,包括幅频特性 $|H(j\omega)|$ 曲线和相频特性 $\phi(\omega)$ 曲线。这种方法的原理如下:

假定,系统函数H(s)的表达式为

$$H(s) = \frac{K \prod_{j=1}^{m} (s - z_j)}{\prod_{i=1}^{n} (s - p_i)}$$

当收敛域含虚轴时,取 $s=j\omega$,也即在s平面中,s沿虚轴从 $-j\infty$ 移动到 $+j\infty$ 时,得到

$$H(j\omega) = \frac{K \prod_{j=1}^{m} (j\omega - z_j)}{\prod_{i=1}^{n} (j\omega - p_i)}$$

容易看出,频率特性取决于零、极点的分布,即取决于 z_j 、 p_i 的位置,而式中K是系数,对于频率特性的研究无关紧要。分母中任一因子 $(j\omega-p_i)$ 相当于由极点 p_i 引向虚轴上某点jw的一个矢量;分子中任一因子 $(j\omega-z_j)$ 相当于由零点 z_j 引至虚轴上某点 $j\omega$ 的一个矢量。在右图示意画出由零点 z_j 和极点 p_i 与 $j\omega$ 点连接构成的两个矢量,图中 N_j 、 M_i 分别表示矢量的模, ψ_j 、 θ_i 表示矢量的

辐角 (矢量与正实轴的夹角, 逆时针为正)。

如图 3.1 所示,对于任意零点 z_j 、极点 p_i ,相应的复数因子(矢量)都可表示为:

$$j\omega - z_{j} = N_{j}e^{j\psi_{j}}$$

$$j\omega - p_{i} = M_{i}e^{j\theta_{i}}$$

$$j\omega$$

$$p_{i}$$

图 3.1 零、极点图示

于是,系统函数可以改写为

$$H(j\omega) = K \frac{\prod_{j=1}^{m} N_{j} \exp j \left[\sum_{j=1}^{m} \psi_{j} \right]}{\prod_{i=1}^{n} M_{i} \exp j \left[\sum_{j=1}^{n} \theta_{i} \right]} = |H(j\omega)| e^{j\varphi(\omega)}$$

式中:

$$|H(j\omega)| = K \frac{\prod_{j=1}^{m} N_j}{\prod_{i=1}^{n} M_i}, \quad \varphi(\omega) = \sum_{j=1}^{m} \psi_j - \sum_{i=1}^{n} \theta_i$$

当 ω 延虚轴移动时,各复数因子(矢量)的模和辐角都随之改变,于是得出幅频特性曲线和相频特性曲线。这种方法称为s平面几何分析。通过零极点图进行计算的方法是:

- 1. 在s平面上标出系统的零、极点位置;
- 2. 选择 *s* 平面的坐标原点为起始点,沿虚轴向上移动,计算此时各极点和零点与该点的膜模和夹角;
- 3. 将所有零点的模相乘,再除以各极点的模,得到对应频率处的幅频特性的值;
 - 4. 将所有零点的幅角相加,减去各极点的幅角,得到对应频率处的相角。

三、实验内容

用 C 语言编制相应的计算程序进行计算,要求程序具有零极点输入模块,可以手工输入不同数目的零极点。

1. 假设系统 1 的零极点为: 零点 z_1 =0;

极点 p_1 = -1-j, p_2 = -1+j。

2. 假设系统 2 的零极点为: 零点 z₁= 2+1.5j, z₂=2-1.5j;

极点 p_1 = -0.5-0.7j, p_2 = -0.5+0.7j; p_3 = -2.5-2j, p_2 = -2.5+2j。

计算频率从 0~5 频段的频谱, 计算步长为 0.1, 分别计算上面两个系统的幅频特性和相频特性, 将所得结果用表格列出, 并画出相应的幅频特性曲线和相频特性曲线。

判断所给系统的滤波特性,对于带通滤波器,计算出 3dB 带宽的起始频点和结束频点;对于低通或高通滤波器,计算出 3dB 带宽的截止或开始的频率。

四、实验要求

- 1. 画出试验系统的零极点图;
- 2. 画出程序的流程图;
- 3. 所得幅频和相频特性结果用表格列出;
- 4. 画出相应的幅频和相频特性曲线:
- 5. 对于带通滤波器,在幅频曲线上标出 3dB 带宽的起始频点和结束频点;对于低通或高通滤波器,在幅频曲线上标出 3dB 带宽的截止或开始的频率。要求用 C 语言编程。

实验四 DSB-AM 调制与解调实验

一、实验目的

- 1. 加深对调制与解调原理及过程和滤波器特性的理解;
- 2. 掌握借助计算机计算傅里叶变换的方法。

二、基本原理

1、双边带调幅(DSB-AM)的调制

被调制信号与载波信号相乘得到调制信号,如图 4.1 所示,

$$s(t) = A_c f(t) \cos(\omega_c t) \tag{1}$$

图 4.1 DSB-AM 信号的调制

其中载波为 $c(t) = A_c \cos(\omega_c t)$, 被调制信号为f(t)。

调制信号的傅里叶变换为

$$S(\omega) = \frac{A_c}{2} F(\omega - \omega_c) + \frac{A_c}{2} F(\omega + \omega_c)$$
 (2)

其中 $F(\omega)$ 为 f(t) 的傅里叶变换,且设输入信号 f(t) 为带限信号(即当 $|\omega| > \omega_{\max}$ 时, $F(\omega) = 0$)。

2、双边带调幅(DSB-AM)的解调

DSB-AM 信号的解调需要一个频率与相位都和载波相同的信号。系统框图 如图 4.2 所示,

图 4.2 DSB-AM 信号的解调

其中

$$y(t) = A_c f(t) \cos(\omega_c t) \cos(\omega_c t) = \frac{A_c}{2} f(t) + \frac{A_c}{2} f(t) \cos(2\omega_c t)$$
 (3)

则 y(t) 的傅里叶变换为

$$Y(\omega) = \frac{A_c}{2} F(\omega) + \frac{A_c}{4} F(\omega - 2\omega_c) + \frac{A_c}{4} F(\omega + 2\omega_c)$$
 (4)

低通滤波器的频率响应为

$$H(\omega) = \begin{cases} \frac{2}{A_c}, & |\omega| \le \omega_s \\ 0, & \text{其它} \end{cases}$$
 (5)

对于带限信号 f(t) (即当 $|\omega|>\omega_{\max}$ 时, $F(\omega)=0$), $\omega_{\rm s}$ 需满足 $\omega_{\max}<\omega_{s}<2\omega_{c}-\omega_{s}$ 。

解调输出信号的频谱 $F'(\omega) = Y(\omega)H(\omega) = F(\omega)$ 。

3、连续时间傅里叶变换的数值计算方法

下面讨论连续傅里叶变换的数值计算方法的理论依据。傅里叶变换可以表示为:

$$F(j\omega) = \int_{-\infty}^{+\infty} f(t)e^{-j\omega t} dt = \lim_{\tau \to 0} \sum_{n=-\infty}^{\infty} f(n\tau)e^{-j\omega n\tau} \tau$$

对于绝大多数信号, 当τ足够小时,上式的近似情况可以满足实际需要。

当信号 f(t) 是时限的,或当|t|大于某个给定值时, f(t) 的值已衰减得很厉害,可以近似地看成时限信号时,则上式中n的取值就是有限的,即 $0 \le n \le M$,则可得到:

$$F(j\omega) = \tau \sum_{n=0}^{M} f(n\tau) e^{-j\omega n\tau}$$

对上式中的角频率 ω 进行离散化,得到N个角频率采样点,即:

$$\omega_k = \frac{2\pi}{N\tau}k \qquad 0 \le k \le N - 1$$

则得到离散的傅里叶变换为

$$F(k) = \tau \sum_{n=0}^{M} f(n\tau) e^{-j\omega_k n\tau} \qquad 0 \le k \le N - 1$$

将其表示成矩阵形式

$$\begin{bmatrix} F[0] \\ F[1] \\ F[2] \\ \vdots \\ F(N-1) \end{bmatrix} = \tau \begin{bmatrix} 1 & \exp(-j\omega_0\tau) & \exp(-j2\omega_0\tau) & \dots & \exp(-jM\omega_0\tau) \\ 1 & \exp(-j\omega_1\tau) & \exp(-j2\omega_1\tau) & \dots & \exp(-jM\omega_1\tau) \\ 1 & \exp(-j\omega_2\tau) & \exp(-j2\omega_2\tau) & \dots & \exp(-jM\omega_2\tau) \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & \exp(-j\omega_{N-1}\tau) & \exp(-j2\omega_{N-1}\tau) & \dots & \exp(-jM\omega_{N-1}\tau) \end{bmatrix} * \begin{bmatrix} f(0) \\ f(\tau) \\ f(2\tau) \\ \vdots \\ f(M\tau) \end{bmatrix}$$

在实际编程时,F(k)和 $f(n\tau)$ 用行向量表示,上式又可以表示成:

$$[F(k)]^T = [f(n\tau)]^T [e^{-j\omega_k n\tau}]^T \tau$$
 $0 \le k \le N-1$ $0 \le n \le M$

将离散傅里叶变换 F(k) 的各个样值连成曲线,即可近似表示 F(jw)。这便是连续时间傅里叶变换数值近似的理论依据。

上述过程编程实现时,算法步骤如下:

- 1) 生成 f(t)的 M 个样本 $f(n\tau)$, $0 \le n \le M$;
- 2) 对 ω 离散化,得到 $e^{-j\omega_k n\tau}$, $0 \le k \le N-1$, $0 \le n \le M$;
- 3) 将 $f(n\tau)$ 和 $e^{-j\omega_k n\tau}$ 进行内积,得到离散傅里叶变换 F(k);
- 4) 将F(k)的各个样值连接起来,得到 $F(j\omega)$ 的近似表示。

在实现算法时,还应注意时间采样间隔 τ 的确定。其依据是 τ 需小于奈科斯特采样周期。如果对于某个信号 f(t),它不是严格的带限信号,则可根据实际计算的精度要求来确定一个适当的频率 ω_m 为信号的带宽,以此确定奈奎斯特采样周期。

三、实验内容

编制相应的程序计算 f(t)、s(t)、y(t)和解调输出信号 f'(t)的傅里叶变换, 并画出 f'(t)的时域波形。

假设被调制信号为

$$f(t) = \begin{cases} 1, & 0 \le t < t_0 / 3 \\ -2, & t_0 / 3 \le t < 2t_0 / 3 \end{cases}, \quad \text{且 } t_0 = 0.15s$$

载波 $c(t) = \cos(\omega_c t)$, $\omega_c = 500\pi \ rad \ / \ s$; 低通滤波器的截止频率 $\omega_{\max} = 300\pi$ (这里近似取 f(t) 的截取频率 $\omega_{\max} = 300\pi$)。

四、实验要求

- 1. 给出程序及流程图;
- 2. 给出下列频谱图: $F(\omega)$, $S(\omega)$, $Y(\omega)$, $F'(\omega)$;
- 3. 给出时域波形图 f'(t);
- 4. 对所得结果进行分析,说明最终恢复信号 f'(t) 与原始信号 f(t) 之间的差异。

其中 $F(\omega)$, $S(\omega)$, $Y(\omega)$ 根据傅里叶变换定义,由时域信号 f(t)、s(t)、y(t) 计算而得。 f'(t) 采用傅里叶逆变换由 $F'(\omega)$ 计算得到。

要求用C语言编程。

实验五 离散时间系统特性分析

一、实验目的

- 1. 深入理解单位样值响应, 离散系统的频率响应的概念;
- 2. 掌握通过计算机进行求得离散系统的单位样值响应,以及离散系统的频率响应的方法。

二、基本原理

对于离散系统的单位样值而言,在实际处理过程中,不可能选取无穷多项的 取值。往往是选取有限项的取值,当然这里会产生一个截尾误差,但只要这个误 差在相对小一个范围里,可以忽略不计。

另外,在一些实际的离散系统中,往往不是事先就能得到描述系统的差分方程的,而是通过得到系统的某些相应值,则此时系统的分析就需借助计算机的数值处理来进行,得到描述系统的某些特征,甚至进而得到描述系统的数学模型。

本实验首先给出描述系统的差分方程,通过迭代的方法求得系统的单位样值响应,进而求得该离散系统的频率响应。限于试验条件,虽然给出了系统方程,但处理的方法依然具有同样的实际意义。

具体的方法是:

- 1. 在给定系统方程的条件下,选取激励信号为 $\delta(n)$,系统的起始状态为零状态,通过迭代法,求得系统的单位样值响应h(n) (n=0,...,N)。
 - 2. 利用公式

$$H\left(e^{j\Omega}\right) = \sum_{n=0}^{N} h(n)e^{-jn\Omega}$$

其中 Ω 的取值范围为 $0\sim 2\pi$ 。计算系统的频率响应。

三、实验内容

1. 已知系统的差分方程为

$$y(n)-1.3y(n-1)+0.4y(n-2)=x(n-1)$$

利用迭代法求得系统的单位样值响应,取N=10。

2. 利用公式

$$H\left(e^{j\Omega}\right) = \sum_{n=0}^{N} h(n) e^{-jn\Omega}$$

其中 Ω 的取值范围为 $0\sim 2\pi$ 。计算系统的频率响应,计算时 Ω 的步长为 0.1π 。 编制相应的计算程序。

四、实验要求

- 1. 画出程序的流程图;
- 2. 将计算所得结果列于表格中;
- 3. 画出系统的幅频特性和相频特性曲线,并说明离散系统频谱的特点;
- 4. 说明系统的滤波特性。

要求用C语言编程。

实验六 利用数字滤波器实现对模拟信号 的滤波

一、实验目的

- 1. 了解利用数字滤波器实现模拟信号滤波的一般过程和系统结构:
- 2. 加深对抽样、恢复, A/D, 量化, D/A 信号的频谱上的变化的关系的理解。

二、基本原理

随着通信和计算机技术的不断发展,借助数字滤波器对模拟信号的处理的方法,应用得越来越广泛。这可以利用数字处理的优势,完成对信号更精细和准确的处理。

利用数字滤波器处理连续信号的一般系统框图如图 6.1 所示:

图 6.1 数字滤波器处理连续信号的系统框图 (简单)

更为细致的框图如图 6.2 所示。

图 6.2 数字滤波器处理连续信号的系统框图 (详细)

其中

$$x_{d}(n) = x_{c}(nT) \tag{1}$$

$$y_d(n) = y_c(nT) \tag{2}$$

T为抽样信号的抽样周期。

下面具体分析信号频谱的变化。对于连续时间信号的频率这里用 ω 表示,对于离散时间信号的频率这里用 Ω 表示,两者的物理意义都是频率,只不过这里用来表示不同类型的信号而已。

抽样信号 $x_p(t)$ 可以表示为

$$x_{p}(t) = \sum_{n=-\infty}^{\infty} x_{c}(nT)\delta(t-nT)$$
(3)

由于 $\delta(t-nT)$ 的傅里叶变换是 $e^{-j\omega nT}$, 所以得到

$$X_{p}(j\omega) = \sum_{n=-\infty}^{\infty} x_{c}(nT)e^{-j\omega nT}$$
(4)

现在考虑 $x_d(n)$ 的离散时间傅里叶变换,即

$$X_{d}\left(e^{j\Omega}\right) = \sum_{n=-\infty}^{\infty} x_{d}\left(n\right)e^{-j\Omega n} \tag{5}$$

由(1)式有

$$X_d\left(e^{j\Omega}\right) = \sum_{n=-\infty}^{\infty} x_c \left(nT\right) e^{-j\Omega n} \tag{6}$$

将(3)式和(6)式对比,可得 $X_d(e^{j\Omega})$ 和 $X_p(j\omega)$ 之间的关系如下:

$$X_{d}\left(e^{j\Omega}\right) = X_{p}\left(j\Omega/T\right) \tag{7}$$

另外,由连续信号与其抽样信号的傅里叶变换的关系可得:

$$X_{p}(j\omega) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_{c}(j(\omega - k\omega_{s}))$$
 (8)

其中 $\omega_s = \frac{2\pi}{T}$ 。由此得到:

$$X_d\left(e^{j\Omega}\right) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c\left(j(\Omega - 2\pi k)/T\right)$$
(9)

到此,建立了离散信号 $x_d(n)$ 与对应的连续信号 $x_c(t)$ 频谱之间的关系。离散信号 $y_d(n)$ 与对应的连续信号 $y_c(t)$ 频谱之间的关系也是同样如此,即将(9)是中的 x 换作 y 即可。具体各信号频谱的关系请参见 A.V.Oppenheim 等编著的《信号与系统》第二版第七章第四节。

由此可以将整个图 6.2 所示系统等效为一个模拟系统,则该系统的频率响应为:

$$H_{c}(j\omega) = \begin{cases} H_{d}(e^{j\omega T}) & |\omega| < \omega_{s}/2 \\ 0 & |\omega| > \omega_{2}/2 \end{cases}$$
 (10)

三、实验内容

1. 给定连续时间信号 $x_c(t)$ 为

$$x_c(t) = \begin{cases} 1 - 2|t| & (|t| < 1/2) \\ 0 & (|t| > 1/2) \end{cases}$$

利用傅里叶变换的定义,计算 $-4\pi \sim 4\pi$ 频段的幅度频谱,频率的步长为 0.4π ,将所得频谱特性计算结果列于表格,并画出曲线。

2. 假设抽样信号的频率为 8π ,利用式(6)计算离散序列 $x_d(n)$ 的频谱,频率的变化范围为 $-\pi \sim \pi$,计算步长为 0.1π 。将所得频谱特性计算结果列于表格,并画出曲线。

编制程序完成上述的计算。

四、实验要求

- 1. 画出程序的流程图;
- 2. 将计算所得结果列于表格中;
- 3. 画出相应的曲线;
- 4. 假设数字滤波器的频率响应为:

$$H_{d}(e^{\mathrm{j}\Omega}) = \begin{cases} 1 & \left|\Omega\right| < \pi/2 \\ 0 & \pi/2 < \left|\Omega\right| < 2\pi \end{cases}$$

5. 通过理论分析,画出所得 $y_d(n)$, $y_p(t)$ 的幅度频谱曲线。 要求用 C 语言编程。

实验七 自主设计型实验

一、基本目的

- 1. 加强对所学知识综合应用能力:
- 2. 培养独立思考、分析、解决问题的能力。

二、实验内容

- 1. 从以下四个题材中任选一个自行设计实验并实现。
- 2. 写出实验目的,实验中所用到的基本原理,实验内容,实验方法、过程或步骤,实验结果,附实验程序。

一)设计语音加密器

有一语音信号的频谱带限于 $-\omega_M < \omega < \omega_M$ 。

(1)利用放大器、乘法器、相加器、振荡器以及你认为必要的理想滤波器,设计一个语音加密器,使得加密后的信号频谱为:

$$Y(j\omega) = X[j(\omega - \omega_{M})], \omega > 0$$
$$Y(j\omega) = X[j(\omega + \omega_{M})], \omega < 0$$

(2) 设计解密器解密信号。

要求:

- 1. 画出加密器实现框图,并编程实现。
- 2. 画出解密器框图,并编程实现。

二)设计超外差接收机

无线电与电视信号的准确解复用——解调通常是利用一种称为超外差接收机的系统来实现的,它等效于一种可变协调器,其基本组成系统如图 7.1(a)所示。

图 7.1(a) 超外差接收机系统基本组成图

输入信号 y(t)由已经频分多路复用过的众多调幅信号叠加而成,每一路信号都占有一个不同频率的信道。考虑这样一个信道,它包括幅度已调信号 $y_1(t) = x_1(t)\cos\omega_c t$,其频谱 $Y_1(j\omega)$ 如图 7.1(b)所示。

要求_1: 利用图 7.1(a)的系统对 $y_1(t)$ 先解复用,再解调以便恢复调制信号 $x_1(t)$,画出框图。

(1) 设计粗调谐滤波器, 使得其输出的频谱如图 7.1(c)所示:

图 7.1(c) 粗调谐滤波器输出信号

(2) 粗协调滤波器输出信号之后经过如图 7.1(a)所示的振荡器,再经固定选频滤波器。固定选频滤波器的输出信号为 $r(t) = x_1(t)\cos\omega_t t$,且其频谱不失真。

要求 2: 设计该固定选频滤波器实现之。画出框图。

要求 3: 编程实现整个超外差接收机的过程。

三)设计消除多径效应的均衡器

电视信号无线传播的一个重要问题是多径效应,主要是信号经过不同的多径反射而造成的。例如,某时刻较强的主信号到达,一个较弱的信号随后到达,从而导致电视图像的重影。因此,若传输信号为x(t),接收到的信号则为

$$s(t) = x(t) + \alpha x(t - T_0)$$
, $\sharp + \alpha < 1$.

其中假定 x(t) 为带限信号 (即 $X(j\omega) = 0, |\omega| > \omega_M$)。

为了恢复原信号x(t),设计一个均衡器如图 7.2 所示。该均衡器首先将s(t)转换成一个序列,然后采用适当的数字滤波器h[n]对序列进行处理。

理想低通滤波器

 $s_c(t) = x(t) + \alpha x(t - T)$ 次 $s_p(t)$ 冲击串到序 s[n] 》 h[n] 》 $p(t) = \sum_{t=0}^{+\infty} \delta(t - kT)$

图 7.2 信号均衡器系统图

要求:

- 1: 确定采样周期 T,理想低通滤波器的增益 A,设计数字滤波器 h(n),画出其波形。
 - 2: 编程实现整个均衡器。

四)设计削波漂移放大器

由于偏置电压的热漂移无法从信号中识别,因此极低频率的电子放大器很难实现。常见的低频放大器的实现方式是采用削波漂移补偿放大器。

削波漂移补偿放大器通过周期性的开断,对输入信号进行削波。这种处理等效于如下的脉冲幅度调制:用于调制的脉冲序列是占空比为 50%的方波,其峰值在 0 与 1 之间交替变化。削波处理后的信号通过带通滤波器,去除第一个滤波器的热漂移信号。所得结果放大后,再按照前面方法进行削波处理,得到的信号进一步放大。最后,对最后一级放大器的信号进行滤波,恢复出放大了的原始信号(上述原理进行了简化,但已经能够说明削波漂移放大期的基本特点)。

图 7.3 削波漂移补偿放大器系统图

要求 1: 设计削波漂移放大器, 其参数为:

- (1) 削波频率=50Hz;
- (2) 第一级放大器增益=100V/V;
- (3) 带通滤波器=单位增益,理想的,0相位,通带为250<|f|<750;
- (4) 第二级放大器增益=10V/V:
- (5) 低通滤波器=单位增益,理想的,0相位,带宽为100Hz;
- (6) 设输入电压信号为 100Hz。

要求2:编程实现上述削波漂移放大器整个工作过程。

三、实验要求

- 1. 写出具体实验的目的;
- 2. 阐述实验中所用到的基本原理;
- 3. 说明具体的实验内容,实验方法、过程或步骤;
- 4. 给出相应的实验结果,以及实验程序。

要求用 C 或 MATLAB 语言编程。