

Exam results analysis

Data mining project

Our team

Sultan Kamliyev

Team Lead

Dias Kosmagul

Senior Developer

Daulet Seitzhaparov

Team Spirit Keeper

Jupyter

Useful notebook that is really comfortable for work with datasets

Kaggle

Open platform that consists many datasets

Stack overflow

question and answer website for professional and enthusiast programmers

Used materials

Basic	Libraries				
Python	Seaborn	Numpy			
Statistics	Matplotlib	Sklearn			
Machine learning	Pandas				
5€	10€	15€			

Few words about dataset

The dataset includes scores from three exams and a variety of personal, social, and economic factors that have interaction effects upon them.

Exams are:

- Mathematics
- Reading
- Writing

1,000

Number of students

Dataset info

- Gender = Gender
- Ethnicity = Group
- Parent education = Parental degree of education (college, bachelor, master etc.)
- Lunch = Did the student get lunch before exams
- Preparation = Did students complete preparation for the exams
- Math = Result for math exam
- Reading = Results for reading exam
- Writing = Results for writing exam

Dataset info

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):
    Column
                    Non-Null Count Dtype
                1000 non-null object
  gender
 1 ethnicity
               1000 non-null
                                 object
   parent_education 1000 non-null
                                 object
   lunch
                 1000 non-null
                                 object
   preparation 1000 non-null
                                 object
 5 math
                1000 non-null
                                 int64
    reading 1000 non-null
                                  int64
    writing 1000 non-null
                                  int64
dtypes: int64(3), object(5)
memory usage: 62.6+ KB
```

Dataset head

	gender	ethnicity	parent_education	lunch	preparation	math	reading	writing
0	female	group B	bachelor's degree	standard	none	72	72	74
1	female	group C	some college	standard	completed	69	90	88
2	female	group B	master's degree	standard	none	90	95	93
3	male	group A	associate's degree	free/reduced	none	47	57	44
4	male	group C	some college	standard	none	76	78	75

Performance for each field by gender

```
fig, ax = plt.subplots()
fig.subplots_adjust(hspace=1, wspace=1, left = 0.2, right = 1)
for i in range(3):
    plt.subplot(1,3, i+1)
    gender_df = df.groupby("gender")[list(df.columns[-3:])[i]].describe()
    sns.barplot(x = gender_df.index,y = gender_df.loc[:,"mean"].values)
    plt.ylabel("score")
    plt.title(list(df.columns[-3:])[i])
plt.show()
```

Performance for each field by gender

Performance of each group

```
fig, ax = plt.subplots()
fig.subplots adjust(hspace=0.8, wspace=0.8, left = 0.2, right = 1.2)
for i in range(3):
    plt.subplot(1,3, i+1)
    ethn_df = df.groupby("ethnicity")[list(df.columns[-3:])[i]].mean()
    sns.barplot(x = ethn df.index, y = ethn df.values)
    plt.xlabel("Group")
    plt.ylabel("Mean score")
    plt.xticks(rotation=90)
    plt.title(list(df.columns[-3:])[i])
plt.show()
```

Performance of each group

Comparison results and preparation

```
for i in df.columns[-3:]:
    sns.boxplot(x=df["preparation"], y=df[i])
    plt.title(i+" vs pre test", loc="left")
    plt.show()
```


Comparison results and lunch


```
for i in df.columns[-3:]:
    sns.boxplot(x=df["lunch"], y=df[i])
    plt.title(i+" vs lunch", loc="left")
    plt.show()
```


What is Clustering?

Clustering loosely defined as groups of data objects that are more similar to other objects in their cluster than they are to data objects in other clusters. Clustering **helps identify two qualities** of data:

- 1. Meaningfulness
- 2. Usefulness

Examples:

- 1. Partitional clustering
- 2. Hierarchical clustering
- 3. Density-based clustering

K-Means Clustering

K-Means Clustering method is an unsupervised machine learning technique used to identify clusters of data objects in dataset.
 K-Means is one the oldest and most approachable. So these traits male implementing k-mean clustering in Python reasonably straightforward.

The **first step** is randomly select **k centroids**, where k is equal to the number of clusters of your choose. **Centroids** are data points representing the center of a cluster. Initialization of the centroids is an **important step**.

Expectation - Maximization

SSE an measure of clustering performance

Analysis and Graphs

group B

high school free/reduced

38

none

60

Conclusion

Education from parents can be helpful, but we can't count it as the most important

Completing the entire course is very important

One of the most significant things to the students is the lunch

it doesn't matter who you are, a girl or a boy. the effect on correlation is zero

in the end, we want to note that in order to get a good grade for a student, it is important to eat well and study carefully

Questions

- Dataset: <u>http://roycekimmons.com/tools/generated_data/exams/</u>
- Pandas: https://pandas.pydata.org/
- Numpy: https://numpy.org/
- Sklearn: https://scikit-learn.org/stable/
- Seaborn: https://seaborn.pydata.org/
- Matplotlib: https://matplotlib.org/

