Advanced Machine Learning: Auto-Regressive Models

Week 3

So Far, Discriminative Models

- Mature field
- Defining the learning task was straight forward
- Mainly served us for motivating neural architecture
- Main challenges are:
 - architecture selection
 - hyparameter-tuning
 - But mostly, data collection and labeling

Next: Generative Models

- Previously minor goal: put the world into buckets
- Grand goal: generating the world
- Much harder task!
- Learn a model that can generate the world
- Reconsider ImageNet
- Discrimanative model: how like is this image to contain a dog?
- Generative model: how likely is this image to be a dog image?

Generative Modeling Tasks

- Generative models: P(x)
 - Estimation: find density function Q that approximates P
 - Sampling: draw samples from P
 - Point estimation: compute the probabilty density of sample x

Example: ImageNet without generalization

- Estimation: Q(x) that assigns:
 - 1/N to every imagenet training image
 - 0 otherwise
- Sampling: sample a random ImageNet training image
- Point estimation: query Q for image x

Example: Non-Gen Results on Test Set

- Sampling: cannot sample test set images
- Point estimation: test set images give 0 probability

Example: ImageNet with generalization

- Estimation: Q(x) true distribution that generated ImageNet
- Sampling: from the true distribution, i.e. new ImageNet images
- Point sampling: How likely is x in the true distribution of ImageNet

Conditional Generative Models

- Model P(x|y) rather than P(x)
- Conditionining can be class labels, text prompt etc.

Example: Class-conditioned ImageNet

- Sampling:
 - sample a new image, given its class is Dalmatian
- Point estimation:
 - how likely is this image to come from the Dalmatian dog distribution

Why Do We Care About This?

- World models e.g., GPT (this week)
- Human-guided creativity e.g., Text-to-image (in a few weeks)

Several Paradigms for Probability Estimation

- Auto-regressive / Non-AR (this week)
- Variational
- Adversarial
- Flow-based
- Score-based / Diffusion

Why Learn So Many Paradigms

- All have pros and cons
- Sometimes a combination works best
- Need to choose different paradigms for situation

Tower Rule of Probability

- $\bullet P(X, Y) = P(X|Y)P(Y)$
 - This is always true. Independence is when P(X|Y) = P(X)
- In the case of N variables, this implies the following decomposition:

$$P(X_1, X_2, \dots X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)\dots$$
$$= \prod_{i=1}^n P(X_i|X_1, \dots, X_{i-1})$$

Turning This into an ML Task

- We would like to estimate $P(x_{i+1}|x_1,x_2..x_i)$
- Assume that X_i is a categorical variable
- Learn $Q(x_{i+1}|x_1, x_2..x_i)$
- Estimate Q via cross-entropy:

$$\ell(P(x), Q(x)) = -\sum_{j} P(j|x_1, x_2..x_i) \log(Q(j|x_1, x_2..x_i))$$

Example: Language Modeling

- Input: a set of sentences decomposed into tokens
 - Here: token = word
- Estimation task: learn model that predict next token, given previous
- We **do not** observe the true $P(j|x_1, x_2..x_i)$
- We **do** observe finite samples from $P(j|x_1, x_2..x_i)$

Example: Language Modeling (2)

- Sample: "the","cat","sat","on","the","mat"
- Q("on" | "the","cat","sat") high likelihood
- Q("mat" | "the","cat","sat","on","the") high likelihood
- Q("ate" | "the","cat","sat","on","the") low likelihood

Learning in Practice

- Given a set S containing sequences ($(x_1, x_2..x_i)$, y)
- Learn classifer:

$$L = -\sum_{(x_1, x_2..x_i), y \in S} \sum_{j} 1_{y=j} \log(Q(j|x_1, x_2..x_i))$$

• Or more simply:

$$L = -\sum_{(x_1, x_2..x_i), y \in S} \log(Q(y|x_1, x_2..x_i))$$

Language Modeling (2)

- In our example, we had a large set of (sentence, next word)
- Define each word as a class
- Learn a classifier that takes a sequence of words and returns class
- It should handle different sequence lengths 0<i<=N

$$L = -\sum_{(x_1, x_2..x_i), y \in S} \log(Q(y|x_1, x_2..x_i))$$

Running Example

- The training sample "the cat sat on the mat"
- Transform to Q(y|"the","cat","sat","on","the")
- Many possible classes: "the","cat","sat","on","ate","apple","dog" etc.
- Objective: loss cross entropy with (0,1,0,0,0,0,0,0,...)

$$L = -\sum_{(x_1, x_2..x_i), y \in S} \sum_{j} 1_{y=j} \log(Q(j|x_1, x_2..x_i))$$

Sampling from an AR Model

- Assume we trained an AR model $Q(j|x_1, x_2..x_i)$
- We want to generate a new token sequence $x_1...x_N$
- Objective: generate the most likely sequences
- Option 1: select the most likely token
 - Lacks diversity

Sampling New Data (2)

- To sample multiple likely sequence, we need stochasticity
- Option 2: sample according to the distribution of $Q(j|x_1,x_2..x_i)$
 - high diversity, but maybe too much
- Option 3: sample from the top-K tokens
 - K can tune the amount of diversity

Point Estimation

- Provided a model, point estimation is quite easy with AR models
- The point probability is simply:

$$Q(X) = \prod_{i=1}^{N} P(x_i|x_1, x_2..x_{i-1})$$

• Evaluating log probability is more numerically stable

Extension to Conditional AR Models

- The framework is easy extended to conditional probs.
- The tower rule in this case:

$$Q(X|c) = \prod_{i=1}^{N} P(x_i|x_1, x_2..x_{i-1}, c)$$

Model estimation, sampling, point estimation: virtually unchanged

Perplexity: Measure of Model Quality

• Test perplexity: the geometric mean of Q on the test set

$$\prod_{m=1}^{M} Q(X^m)^{-\frac{1}{M}}$$

- Intuition: samples of real data should have high likelihood
- In our example:
 - Test sentences: high probability
 - Garbled sentences: low probability

Simple Example: Linear Language Model

- Every token t is described by a one-hot vector \mathbf{e}_t
- A linear layer **W** transforms each token into a dense vector **We**_t
- Features of all tokens are average pooled into a fixed representation
- The average vector is linearly classified to the next word matrix V

$$soft \max(V^T W \sum_{t=1}^N \frac{e_t}{N})$$

Intuition: Word Representations

- Matrix W embeds words into a common vector space
- Matrix V maps representations into words
- The columns of W correspond to the embeddings of each word
- These can be semantic

Transformer Language Models

- Modern language models use huge transformers
- Much more expressive that the simple linear model
- Can look at huge context sizes (next word given last 4000 words)
- Take word order into account

GPT3 (OpenAI)

Similar to what is used in ChatGPT

Context: 2048 tokens

Parameter number: 175B

• Transformer block number: 96

Training data: 0.5 Tn words crawled from the internet

Are LMs the key to Sentient Machines?

 "Once LMs can predict all sentences, we can ask them virtually any question and get the correct answer, making them practically sentient" – what do you think?

Conditional LMs: Machine Translation

Predict next word given previous words + source language sentence

$$Q(X|c) = \prod_{i=1}^{N} P(x_i|x_1, x_2..x_{i-1}, c)$$

- About the same solution as before
- The paper that started transformers:
 - "Attention is all you need", Google 2017

Transformer Implementation

- Transformer encoder of source sentence
- Transformer decoder over encoding + previous words in target sentence
- Why not a decoder over source sentence + previous target sentence words?

Output

Applying the Same Idea to Continuous Data

- LM presented so far apply to discrete multivariate data
- How can we apply this to continuous data? E.g. images
- Idea: quantization
 - Learn encoder that maps image to a small number of discrete variables
 - Need to also have a decoder that maps discrete tokens back to image
 - Then everything else applies as before

Parti: LM for Text-to-Image Translation

Parti (Google)

Effect of Number of Parameters

Current models have poor sample and compute complexity

A portrait photo of a kangaroo wearing an orange hoodie and blue sunglasses standing on the grass in front of the Sydney Opera House holding a sign on the chest that says Welcome Friends!

Code Example

https://github.com/karpathy/minGPT

Neural Scaling Laws

- Imagine you are a manager in a large company developing LMs
- You want: best LM in the world
- Have resources but they are finite
- Where would you invest them?
 - Architecture and optimization research?
 - More data?
 - More compute?
 - More memory?

Power Law

- Power law: simple way of representating a relation between variable
- Product of powers of the variables
- Scale invariant

$$f(cx)=a(cx)^{-k}=c^{-k}f(x)\propto f(x),$$

Example: GPT4

- How can we know the accuracy of GPT4 on a small budget?
- Idea: train a set of smaller models, estimate the power law

$$L(C) = aC^b + c,$$

GPT4 Results

- Power law predicted true accuracy very accurately
- Prediction extrpolating 10000X

Other Findings in Previous Papers

- Only total compute matters doesn't matter if it is in depth or width
- Larger models require fewer training step to reach given loss

What Should You Invest In?

- Given a compute budget:
 - Scale model a lot
 - Increase dataset size a little
 - Moderately increase batch

Conclusion

- Language models are a very simple but effective density estimator
- Can be conditional or unconditional
- Given massive compute, can achieve amazing resultsNot suitable for all types of data
- Scaling laws predict their performance very well