Double Oracle Algorithm

Tomáš Kroupa and Tomáš Votroubek

Al Center

2025

Solving Large Two-Player Zero-Sum Games

- 1. Matrix Games
- 2. Classical Approach: Linear Programming
- 3. Scalable Approach: Double Oracle Algorithm
- 4. DO Algorithm Beyond Matrix Games

Matrix Games

Two-Player Zero-Sum Games

Two-player zero-sum game is a triple (A_1, A_2, u) where

- A_1 and A_2 are strategy sets,
- $u, -u : A_1 \times A_2 \to \mathbb{R}$ are utility functions of Player 1 and Player 2, respectively.

Matrix game is a two-player zero-sum game in which A_1 and A_2 are finite.

Mixed Strategies

For k = 1, 2:

Mixed strategy of Player k is a probability distribution $\pi_k \in \Pi_k$ on \mathcal{A}_k .

Pure strategy of Player k is an element $a_k \in \mathcal{A}_k$.

Expected utility of Player 1 under a mixed strategy profile (π_1, π_2) is

$$u(\pi_1, \pi_2) := \sum_{a_1 \in \mathcal{A}_1} \sum_{a_2 \in \mathcal{A}_2} u(a_1, a_2) \cdot \pi_1(a_1) \pi_2(a_2).$$

Optimal Strategies

Minimax Theorem

$$\max_{\pi_1 \in \Pi_1} \min_{\pi_2 \in \Pi_2} u(\pi_1, \pi_2) = \min_{\pi_2 \in \Pi_2} \max_{\pi_1 \in \Pi_1} u(\pi_1, \pi_2) =: v.$$

The following are equivalent for a mixed strategy profile (π_1^*, π_2^*) .

• (π_1^*, π_2^*) is equilibrium,

$$\min_{\pi_2 \in \Pi_2} u(\pi_1^*, \pi_2) = v = \max_{\pi_1 \in \Pi_1} u(\pi_1, \pi_2^*).$$

• $u(\pi_1^*, \pi_2^*) = v$.

Classical Approach: Linear Programming

Computing Equilibrium

```
Player 1 solves
```

$$\max_{\pi_1 \in \Pi_1} \min_{a_2 \in \mathcal{A}_2} u(\pi_1, a_2)$$

as a primal LP:

Maximize v_1

subject to

$$u(\pi_1, a_2) \ge v_1 \quad \forall a_2 \in \mathcal{A}_2$$

$$\pi_1 \in \Pi_1$$

$$v_1 \in \mathbb{R}$$

Player 2 solves

$$\min_{\pi_2 \in \Pi_2} \max_{a_1 \in \mathcal{A}_1} u(a_1, \pi_2)$$

as the dual LP:

Minimize v_2

subject to

$$u(a_1, \pi_2) \leq v_2 \quad \forall a_1 \in \mathcal{A}_1$$

$$\pi_2 \in \Pi_2$$

$$V_2 \in \mathbb{R}$$

Numerical Experiments

- Julia + JuMP + Gurobi, randomly generated matrix games
- Number of strategies vs Solve time

Routing-Ambush on a Grid

Routing-Ambush Game (1)

Player 1 chooses a monotone path $p \in A_1$ from the NW to the SE corner of a 21×21 grid, where each edge e is assigned a detection probability d_e :

$$|\mathcal{A}_1| = \binom{40}{20} \approx 10^{11}$$

Player 2 chooses an edge $e \in A_2$ of the grid to ambush: $|A_2| = 2 \cdot 21 \cdot 20 = 840$.

Utility function of Player 1 is

$$u(p,e) := \begin{cases} -d_e & \text{if } e \in p \\ 0 & \text{otherwise} \end{cases}$$

Routing-Ambush Game (2)

The payoff matrix contains approximately 10¹³ entries, making its explicit construction infeasible and the computation of optimal strategies intractable

However, the following expected utilities can be computed efficiently:

• The expected utility of a path $p \in A_1$ and a mixed strategy π_2 ,

$$u(p,\pi_2) = -\sum_{e \in p} \pi_2(e) \cdot d_e.$$

• The expected utility of a mixed strategy π_1 and an edge $e \in \mathcal{A}_2$,

$$u(\pi_1, e) = -d_e \cdot \sum_{p \ni e} \pi_1(p).$$

Why LP Can Struggle at Scale

- Large strategy spaces ⇒ huge numbers of constraints/variables
- State-of-the-art LP solvers (Gurobi, MOSEK, CPLEX) can handle extremely large problems with millions of variables in case that the matrix is structured/sparse
- However, many strategies never appear in equilibrium support!

Opportunity: target only the relevant strategies

Scalable Approach: Double Oracle Algorithm

Double Oracle: Main Ideas

H. B. McMahan, G. J. Gordon, and A. Blum. *Planning in the Presence of Cost Functions Controlled by an Adversary*, Proceedings of the 20th International Conference on Machine Learning (ICML-03). 2003.

- Maintain only restricted sets of strategies
- Solve the restricted game (subgame) to get an equilibrium
- Each player computes a best response to the opponent's mix
- Add violating strategies; repeat until no violations

Subgames

Let (A_1, A_2, u) be a matrix game. A subgame of (A_1, A_2, u) is a matrix game (A'_1, A'_2, u)

such that $\mathcal{A}'_1 \subseteq \mathcal{A}_1$ and $\mathcal{A}'_2 \subseteq \mathcal{A}_2$ and u is restricted to $\mathcal{A}'_1 \times \mathcal{A}'_2$.

An example of a 3×2 subgame of the 4×5 matrix game:

2	9	-5	0	7
8	1	9	2	2
9	-1	0	0	8
-2	1	3	-4	7

Best Response

Given mixed strategies (π_1, π_2) , the players can compute their best response maps,

$$\mathsf{BR}_1(\pi_2) \coloneqq \underset{a_1 \in \mathcal{A}_1}{\mathsf{arg\ max}\ u(a_1, \pi_2)} \quad \text{and} \quad \mathsf{BR}_2(\pi_1) \coloneqq \underset{a_2 \in \mathcal{A}_2}{\mathsf{arg\ min}\ u(\pi_1, a_2)}.$$

Adding best responses to the pure strategies for the row and the column player:

2	9	-5	0	7
8	1	9	2	2
9	-1	0	0	8
-2	1	က	-4	7

2	9	-5	0	7
8	1	9	2	2
9	-1	0	0	8
-2	1	3	-4	7

2	9	-5	0	7
8	1	9	2	2
9	-1	0	0	8
-2	1	3	-4	7

BR Oracles in the Routing-Ambush Games

1. Given a mixed strategy $\pi_2 \in \Pi_2$, Player 1 solves

Minimize
$$\sum_{e \in p} \pi_2(e) \cdot d_e$$
 subject to $p \in \mathcal{A}_1$

to find the optimal path (Dijkstra's algorithm).

2. Given a mixed strategy $\pi_1 \in \Pi_1$, Player 2 solves

Maximize
$$d_e \cdot \sum_{p \ni e} \pi_1(p)$$
 subject to $e \in \mathcal{A}_2$

to find the optimal edge (scan over edges).

DO Algorithm

```
Input: (A_1, A_2, u), A_1^1 \subseteq A_1, A_2^1 \subseteq A_2, and i = 0
```

```
1 repeat
    |i \leftarrow i + 1|
Compute an equilibrium (\pi_1^i, \pi_2^i) for the subgame (\mathcal{A}_1^i, \mathcal{A}_2^i, u)
4 Select best responses a_1^{i+1} \in BR_1(\pi_2^i) and a_2^{i+1} \in BR_2(\pi_1^i)
5 A_1^{i+1} \leftarrow A_1^i \cup \{a_1^{i+1}\} \text{ and } A_2^{i+1} \leftarrow A_2^i \cup \{a_2^{i+1}\}
6 until a_1^{i+1} \in \mathcal{A}_1^i and a_2^{i+1} \in \mathcal{A}_2^i
7 return \left(\pi_1^i, \pi_2^i\right)
```

Bounds for the Value

• At iteration *i*, compute

$$v_{\ell}^{i} := u\left(\pi_{1}^{i}, a_{2}^{i+1}\right)$$
 and $v_{u}^{i} := u\left(a_{1}^{i+1}, \pi_{2}^{i}\right)$

• Those are lower and upper bounds for the unknown value v of the initial game,

$$V_{\ell}^{i} \leq V \leq V_{u}^{i}$$

• Exploitability of (π_1^i, π_2^i) is defined as

$$\exp\left(\pi_1^i, \pi_2^i\right) := \frac{1}{2} \left(v_u^i - v_\ell^i\right)$$

Termination Based on Exact Equlibrium Conditions

Proposition

The following are equivalent:

1.
$$a_1^{i+1} \in \mathcal{A}_1^i$$
 and $a_2^{i+1} \in \mathcal{A}_2^i$.

2.
$$A_1^{i+1} = A_1^i$$
 and $A_2^{i+1} = A_2^i$

3.
$$\exp\left(\pi_1^i, \pi_2^i\right) = 0.$$

If one of the above conditions is satisfied at iteration i, the current strategy pair (π_1^i, π_2^i) is an equilibrium of the initial matrix game $(\mathcal{A}_1, \mathcal{A}_2, u)$.

Approximate Equilibrium

Let $\varepsilon \geq 0$. A strategy pair (π_1^*, π_2^*) is an ε -equilibrium if

$$\max_{\pi_1 \in \Pi_1} u(\pi_1, \pi_2^*) - \varepsilon \le u(\pi_1^*, \pi_2^*) \quad \text{and} \quad u(\pi_1^*, \pi_2^*) \le \min_{\pi_2 \in \Pi_2} u(\pi_1^*, \pi_2) + \varepsilon.$$

Equivalently:

- $\max_{a_1 \in \mathcal{A}_1} u(a_1, \pi_2^*) \varepsilon \le u(\pi_1^*, \pi_2^*)$ and $u(\pi_1^*, \pi_2^*) \le \min_{a_2 \in \mathcal{A}_2} u(\pi_1^*, a_2) + \varepsilon$.
- $expl(\pi_1^*, \pi_2^*) \leq \varepsilon$

DO Algorithm for Approximate Equilibrium

Input: (A_1, A_2, u) , $A_1^1 \subseteq A_1$, $A_2^1 \subseteq A_2$, i = 0, and $\varepsilon > 0$

```
1 repeat
   |i \leftarrow i + 1|
Compute the optimal strategies (\pi_1^i, \pi_2^i) for the subgame (\mathcal{A}_1^i, \mathcal{A}_2^i, u)
4 Select best responses a_1^{i+1} \in BR_1(\pi_2^i) and a_2^{i+1} \in BR_2(\pi_1^i)
5 A_1^{i+1} \leftarrow A_1^i \cup \{a_1^{i+1}\} \text{ and } A_2^{i+1} \leftarrow A_2^i \cup \{a_2^{i+1}\}
6 until \exp\left(\pi_1^i, \pi_2^i\right) \leq \varepsilon
7 return \left(\pi_1^i, \pi_2^i\right)
```

Termination Based on Exploitability

Proposition

DO algorithm terminates in finitely-many steps and returns an ε -equilibrium of the original matrix games.

- Worst-case additions of strategies $\leq |A_1| + |A_2|$
- The worst-case scenario corresponding to the solution of the original matrix game can actually occur...

Worst-case Example

- Both players pick an integer from 1 to *n*. The higher number wins, and a tie occurs if they choose the same.
- The game has a unique ε -equilibrium "pick n" for any $0 \le \varepsilon < 1$.

0	-1	-1	-1
1	0	-1	-1
1	1	0	-1
1	1	1	0

• Starting from $a_1 = a_2 = 1$ and selecting best responses by the smallest index, the DO algorithm converges in n steps (R. Horčík).

Iterations and convergence criterion for 300 ×300 games

The size of matrix and iterations

Small-Support ε -Equilibria Exist in Matrix Games

Theorem Let $\varepsilon > 0$. Every $n \times n$ matrix game has an ε -equilibrium in which each player mixes among at most

$$\frac{\log n}{\varepsilon^2}$$
 pure strategies.

- Althöfer, Ingo. On sparse approximations to randomized strategies and convex combinations. Linear Algebra and its Applications 199 (1994): 339-355.
- Lipton, Richard J., and Neal E. Young. Simple strategies for large zero-sum games with applications to complexity theory. Proceedings of the 26th annual ACM symposium on Theory of computing, 1994.

DO Algorithm Beyond Matrix Games

Beyond Matrix Games

A two-player zero-sum game (A_1, A_2, u) can have infinite strategy sets A_1 and A_2 :

- Resource allocation problems
- Colonel Blotto game
- Routing/Ambush games in a continuous domain
- Normalized auction models
- Adversarial ML problems

Continuous Games

A two-player zero-sum game (A_1, A_2, u) is continuous if

- the strategy sets $A_1 \subseteq \mathbb{R}^m$ and $A_2 \subseteq \mathbb{R}^n$ are compact and
- the utility function u is continuous over $A_1 \times A_2$.

Mixed Strategies in Continuous Games

A mixed strategy of Player k in a continuous game (A_1, A_2, u) is a Borel probability measure π_k over A_k , where k = 1, 2.

The expected utility $u(\pi_1, \pi_2)$ of Player 1 under a strategy pair (π_1, π_2) is the Lebesgue integral of u over $\mathcal{A}_1 \times \mathcal{A}_2$ with respect to $\pi_1 \times \pi_2$,

$$u(\pi_1, \pi_2) = \int_{\mathcal{A}_1 \times \mathcal{A}_2} u \, d(\pi_1 \times \pi_2).$$

How to Compute the Expected Utility?

• If π_1 and π_2 are point-supported measures corresponding to pure strategies a_1 and a_2 , respectively, then

$$u(\pi_1, \pi_2) = u(a_1, a_2).$$

• If each π_k has finite support $\left\{a_k^1,...,a_k^{\ell(k)}\right\} \subseteq \mathcal{A}_k$, then

$$u(\pi_1, \pi_2) = \sum_{i=1}^{\ell(1)} \sum_{j=1}^{\ell(2)} u(a_1^i, a_2^j) \cdot \pi_1(a_1^i) \pi_2(a_2^j).$$

Equilibria in Continuous Games

Minimax Theorem was extended to continuous games:

Glicksberg's Theorem (1952)

Every continuous game has an equilibrium (π_1^*, π_2^*) in mixed strategies.

Caveat: the equilibrium strategies may have infinite support!

Proposition Let $\varepsilon > 0$. Every continuous game has an ε -equilibrium (π_1^*, π_2^*) in mixed strategies, where both π_1^* and π_2^* have finite supports.

DO Algorithm for Continuous Games

The DO algorithm can be used to approximate equilibria in continuous games with finite supports. Yet:

- Best responses require global optimization in continuous domains.
 - ► LP
 - MILP
 - Polynomial optimization
- Convergence is harder to analyze due to probability measures living in an infinite-dimensional simplex.

DO Algorithm for Continuous Games: Example

DO Algorithm for Continuous Games: Initialization

DO Algorithm for Continuous Games: Step 1

DO Algorithm for Continuous Games: Step 2

DO Algorithm for Continuous Games: Step 3

DO Algorithm for Continuous Games: Convergence

Theorem (L. Adam, R. Horčík, T. Kasl, and TK)

- Let $\varepsilon > 0$. The DO algorithm converges to a finitely-supported ε -equilibrium of a continuous game in finitely-many steps.
- Let $\varepsilon = 0$. If the DO algorithm stops at step i, then $\left(\pi_1^i, \pi_2^i\right)$ is an equilibrium.

Blotto Games

- Two players simultaneously allocate forces across *n* battlefields
- Strategy spaces are standard *n*-simplices
- The utility function is

$$u(\mathbf{x},\mathbf{y}) := \sum_{j=1}^{n} a_j \cdot f(x_j - y_j)$$

where $a_1, ..., a_n > 0$ are weights of battlefields and f is a continuous PL function measuring the performance of the first army on a battlefield

Best response computation can be formulated as an MILP

Blotto Games: ε -equilibrium

Outlook

- Stochastic best response oracles may improve behavior of DO algorithm for matrix games (R. Horčík)
- The convergence of DO algorithm is an open problem for games in which
 - strategy sets are unbounded (for example, \mathbb{R}^n) or
 - utility function u is discontinuous.

Both cases occur naturally: ML models often involve unbounded parameter spaces, and auction models become discontinuous because of tie-breaking.

References

- 1. H. B. McMahan et al. *Planning in the Presence of Cost Functions Controlled by an Adversary*, Proceedings of ICML. 2003.
- 2. L. Adam et al. *Double oracle algorithm for computing equilibria in continuous games*. Proceedings of the AAAI Conference on Artificial Intelligence, 2021.
- 3. Kroupa, T.; Votroubek, T. Multiple Oracle Algorithm to Solve Continuous Games. In: Decision and Game Theory for Security. Springer International Publishing, 2023. p. 149-167. LNCS. vol. 13727.
- 4. B. Bošanský et al. An exact double-oracle algorithm for zero-sum extensive-form games with imperfect information. JAIR, 2014.
- 5. Xu, Lily, et al. Robust reinforcement learning under minimax regret for green security. Uncertainty in Artificial Intelligence. PMLR, 2021.
- 6. Li, Z. and Wellman, M. P. Evolution strategies for approximate solution of Bayesian games. Proceedings of the AAAI, 2021.
- 7. E. Giboulot et al. *The non-zero-sum game of steganography in heterogeneous environments*. IEEE Transactions on Information Forensics and Security, 2023.