Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «МЕТОДЫ ОПТИМИЗАЦИИ» «РЕШЕНИЕ ЗАДАЧ ОДНОМЕРНОЙ МИНИМИЗАЦИИ»

Выполнили студенты группы 3630102/80201

Деркаченко А. О. Хрипунков Д. В. Войнова А. Н.

Руководитель к. ф.-м. н., доц.

Родионова Елена Александровна

Санкт-Петербург 2021

Содержание

1	Постановка задачи	2
2	Исследование применимости метода	2
3	Описание алгоритма 3.1 Алгоритм метода дихотомии	3 3 4
4	Практическое решение задач	4
5	Обоснование результатов	5
6	Дополнительные исследования	6
7	Выводы	7
8	Приложения	7

1 Постановка задачи

Пусть дана функция $f(x) = x^6 + 3x^2 + 6x - 1$, где $x \in [-1, 0]$. Необходимо:

- 1. Найти минимум данной функции методом дихотомии и полиномиальной аппроксимации второго порядка (методом парабол)
- 2. Проиллюстрировать унимодальность функции графиком
- 3. Сравнить аналитическую оценку числа обращений к вычислению функции цели, требуемое для достижения заданной точности, с значением счетчика данных обращений в программе
- 4. Произвести вычисления с точностью $0.1,\,0.01,\,0.001$

2 Исследование применимости метода

Zu	пито чтобы миноды динотомими и парабы
	american a fewer appointment
Juguer	, mediciones que eganomount funda
fucuem	ой другикуше
Onp:	рункуна віх) назоваения уминозання
• eence g	na x \in La, b \(\tag{y} \) cyuyecnekyene egunanekerereas
morka hour l	motanemoro umumuyua, eneba om como
mouno	с) моноточно ублвает, а еправа - монд-
	bozpaeneaem.
	yunyun fix) = x6 + 3x2+8x-1, 2ge x=[-1,0]
te magni	ik muliger HR pur. 1, Komptoner geneverm
	намише единенивенного минимумей,
mun cun	ин доказован унинодальности оружкуми.

Рис. 1: График заданной функции

3 Описание алгоритма

3.1 Алгоритм метода дихотомии

- 1. Вводим константу различимости $\alpha = \frac{b-a}{100}$
- 2. На каждом шаге процесса поиска делим отрезок [a,b] пополам, $x=\frac{a+b}{2}$ координата середины отрезка [a,b]
- 3. Вычисляем значение функции F(x) в окрестности $\pm \alpha$ вычисленной точки x, т.е.

$$F_1 = F(x - \alpha), \ F_2 = F(x + \alpha) \tag{1}$$

- 4. Сравниваем F_1 и F_2 и отбрасываем одну из половинок отрезка [a,b]
 - Если $F_1 < F_2$, то отбрасываем отрезок [x,b], тогда b=x
 - Иначе отбрасываем отрезок [a,x], тогда a=x
- 5. Деление отрезка [a,b] продолжается, пока его длина не станет меньше заданной точности ε , т.е. $|b-a| \le \varepsilon$

3.2 Алгоритм метода парабол

- 1. Определить начальные точки $x_1 = a, x_2 = \frac{a+b}{2}, x_3 = b$
- 2. Вычислить значение функции цели f_1, f_2, f_3 в этих точках
- 3. Вычислить коэффициенты $a_0=f_1, a_1=\frac{f_2-f_1}{x_2-x_1}, a_2=\frac{1}{x_3-x_2}*(\frac{f_3-f_1}{x_3-x_1}-\frac{f_2-f_1}{x_2-x_1})$
- 4. Вычислить новое значение точки минимума $x_* = 0.5*(x_2+x_1-\frac{a_1}{a_2})$ и значение функции цели $f_*(x_*)$
 - Если расстояние между новым значением точки минимума и полученным на прошлой итерации меньше заданной точности, получаем результат
 - Если расстояние больше точности, то вычисляем новые точки x1, x2, x3 (обращений к функции цели нет, потому что используются $f1, f2, f3, f_*$) и возвращаемся к пункту 2

4 Практическое решение задач

ε	x_{result}	$f(x_{result})$	число обращений
0.1	-0.78125	-3.62907	8
0.01	-0.75391	-3.6347	14
0.001	-0.75439	-3.63471	20

Таблица 1: Результат решения методом дихотомии

ε	x_{result}	$f(x_{result})$	число обращений
0.1	-0.72027	-3.62562	4
0.01	-0.74924	-3.63446	6
0.001	-0.75449	-3.63471	9

Таблица 2: Результат решения методом парабол

5 Обоснование результатов

Ratigen unimumyan gyungung $f(x) = x^6 + 3x^2 + 6x$	-1
tge $x \in L-1$, of c nouver macuveckoro nagarga	
$f'(x) = 6x^5 + 6x + 6 = x^5 + x + 1 = 0 <= >$	1
$(x^{2}+x+1)(x^{3}-x^{2}+1)=0$	1
=> 6 ompeger [-1,0] brogum egunembernoui	
корень x*= -0, 75488. Tronga f(x*)= -3, 63471	
Канноге значения подтвертовает фасрик функ	-
un fix) wa here 1	1
your fix) ma pue 1.	
Memog guxomanem Memog napawon	
E X *- Xresult H*- frenut X *- Xresult 14 *- frenut	
0,1 0,02637 0,0564 0,03461 0,00909	+
0,01 0,00097 0,00001 0,00564 0,00025	
0,001 0,00049 0 0,00039 0	10000
	6
Голученная погрешность регультать удовлетве) +
рает условию при заганный тохности	
and been cryrael hencences recourse of marin	
рает условию при заданный пиосностие для всех спучаев решения задачи. А значит, результить найдены корректно.	-
77	

6 Дополнительные исследования

Уроведене сравнение анапипической суский чест обращений к вышенению функции дели, перебушье дна доспижения заданской точности, с зна чениеме оченина данных обращений в прозрание 6.1. Оценка для шетога дикоточний Oyeneen rucho unichayin gas goonnemenen zagan HOU NECKHOOMER & MEMORDEN UNGGREGIEU GAS EG. 8.7 $5.u.: x_1 = 6-a$ Умина инпервала не завишет от результата сравнения значений орунизми, поэтому 490 будене войнрать левую часть апрежа $x_2 = x_1 - a = b - a = a = b - 3a$ $x_3 = \frac{9x_0 - a}{2} = \frac{b - 3a^2 - a}{4} = \frac{b - 7a}{8}$ $\mathcal{U}.\Pi: \ x_{k} = x_{k-1} - a = b - 12^{k} - 1)a$ $= 7|x_{k-1} - x_{k}| = |b - (2^{k-1} + 1)a| - b - (2^{k} - 1)a| = 2^{k}$ $=2^{\kappa} \cdot |26-2^{\kappa}a+2a-6+2^{\kappa}a-a|=\frac{1}{2^{\kappa}}|6+a| \leq \varepsilon$

egeranu b	oceanougenu orbos mus	el aupyres	openaus	reprimire	uen
ogenanu b kanegori u	melayun	moughasi	mea gl	amgo	
The orner				annureccus	
0,1	111	8		8	
0,01		14		14	
0,001	The land	20	14-1	20	

7 Выводы

Для решения задачи одномерной минимизации использовались методы дихотомии и парабол. Оба из них являются итерационными и позволяют регулировать точность нахождения решения. Также эти методы являются достаточно простыми в реализации.

Стоит сказать, что при заданной точности решение методом дихотомии находится немного точнее, чем методом парабол, но требует более чем в два раза большего количества обращений к вычислению функции цели. То есть для функций большой вычислительной сложности более практически выгоден метод парабол.

8 Приложения

URL: Выполненная лабораторная работа на GitHub

https://github.com/ThinkingFrog/OptimizationMethods/tree/main/OneDimMinimization				