Operational amplifier

Kevin Mika kevin.mika@tu-dortmund.de no

 ${\bf Noah~Krystiniak}\\ {\bf noah.krystiniak}\\ {\bf @tu-dortmund.de}$

Execution: 13.11.2018

TU Dortmund – Faculty of Physics

Contents

1 Execution 1

1 Execution

In order to determine the frequency response, a negative feedback operation amplifier as shown in Figure 1 is set up, which is adjusted via the negative feedback branch. The output voltage and the input voltage are graphically displayed on an oscilloscope. To

Figure 1: Feedback inverting linear amplifier.

determine the terminal voltage, use the circuit shown in Figure 1 and a non-inverting electrometer amplifier shown in Figure 2. The circuitry is then used to determine the terminal voltage. Circuit 3 is constructed to integrate input signals using the operational

Figure 2: Non-inverting electrometer amplifier.

amplifier. In order to differentiate an input signal, the resistor and capacitor in Figure 3

Figure 3: Reverse integrator.

are swapped according to Figure 4. The Schmitt trigger which works as a switch because

Figure 4: Reverse integrator.

the output voltage changes its sign when the input voltage falls under the following condition:

 $\frac{-R_1}{R_P}U_B \tag{1}$

Figure 5: Schmitt-trigger