Apellido y Nombres:	 ,,,,,
_	Código Asignatura:
	Profesor:
Correo electrónico:	

Análisis Matemático III. Examen Integrador. Primera fecha. 12 de diciembre de 2022.

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de 3 (tres) ejercicios

Ejercicio 1. Demostrar la convergencia de $\int_0^\infty \frac{x^3}{1+x^5} dx$ y calcularla, usando variable compleja.

Ejercicio 2. Hallar la función potencial de un campo de fuerzas, u, que verifica:

$$\nabla^{2}u(x,y) = 0 \quad \text{para} \quad x^{2} + y^{2} < 1, \quad y > 0$$

$$u(x,0) = 0 \quad \text{para} \quad -1 \le x \le 0$$

$$u(x,0) = 1 \quad \text{para} \quad 0 \le x \le 1$$

$$u(x,y) = 0 \quad \text{para} \quad x^{2} + y^{2} = 1, \quad y > 0$$

y calcular las equipotenciales y y las líneas de fuerza.

Ejercicio 3. Obtener la serie de Fourier de senos de la función $f(t) = t(\pi - t)$ en $[0, \pi]$ y deducir el valor de las series numéricas $\sum_{n=1}^{\infty} \frac{(-1)^n}{(2n-1)^3}$ y $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6}$.

Ejercicio 4. Calcular la transformada inversa de Fourier de cada una de las siguientes funciones:

$$i) F_1(w) = \frac{1}{1+iw}$$
 $ii) F_2(w) = \frac{1}{4w^2+1}$ $iii) F_3(w) = \frac{1}{(1+iw)(4w^2+1)}$.

Ejercicio 5. Resolver el sistema:

$$\begin{cases} (x'*y)(t) + \operatorname{sh}(t)H(t) = tH(t) \\ (x*y)(t) + \operatorname{ch}(t)H(t) = H(t) \end{cases}$$

con $x(0^+)=1$ y H(t) la función de Heaviside.