Processus de Naissance et de Mort

- ▶ Une chaîne de Markov est un processus de Naissance et de Mort si et seulement si, pour tout état n, les seules transitions possibles amènent aux états n-1 et n+1, si ces états existent.
- La transition de l'état n à l'état n+1 est une Naissance.
- La transition de l'état n à l'état n-1 est une Mort.
- \blacktriangleright λ_n (resp. μ_n) est le taux de Naissance (resp. de Mort) à l'état n.

Continuous Time Birth-Death Process (contd.

The state diagram of the birth-death process is given as

The generator matrix Q can be shown to be as

Copyright © 2006 by K.S. Trivedi

Equilibre Stationnaire

ightharpoonup Ecrivons l'équation d'équilibre stationnaire pour X_t :

$$\pi(n)[\mu_n 1_{\{n>0\}} + \lambda_n] = \pi(n-1)\lambda_{n-1} 1_{\{n>0\}} + \pi(n+1)\mu_{n+1}$$
 (1)

▶ Pour résoudre, considérons l'équation à l'état 0 pour obtenir $\pi(1)$ en fonction de $\pi(0)$.

$$\pi(0)\lambda_0 = \pi(1)\mu_1 \tag{2}$$

► Examinons maintenant l'équation à l'état 1.

$$\pi(1)[\mu_1 + \lambda_1] = \pi(0)\lambda_0 + \pi(2)\mu_2 \tag{3}$$

• Après simplification : $\pi(1)\lambda_1 = \pi(2)\mu_2$

ightharpoonup Par récurence sur n:

$$\pi(n)\lambda_n = \pi(n+1)\mu_{n+1} \tag{4}$$

► Soit :

$$\pi(n) = \pi(0) \frac{\prod_{i=0}^{n-1} \lambda_i}{\prod_{i=1}^{n} \mu_i}$$
 (5)

Si on peut normaliser :

$$\sum_{n=1}^{\infty} \frac{\prod_{i=0}^{n-1} \lambda_i}{\prod_{i=1}^{n} \mu_i} < \infty \tag{6}$$

alors,

$$\pi(0) = \left[1 + \sum_{n=1}^{\infty} \frac{\prod_{i=0}^{n-1} \lambda_i}{\prod_{i=1}^n \mu_i} \right]^{-1}$$
 (7)

Processus de Naissance et de Mort simple

- ▶ Description par une file d'attente (capacité = stockage dans la file, nombre de serveurs = puissance du service).
- ► Capacité Infinie, 1 serveur
- Capacité Infinie, m serveurs
- Capacité Finie, 1 serveur
- Capacité Finie, m serveurs
- Capacité Infinie, Infinité de serveurs

La file M/M/1

- ► Arrivées Poisson, Service iid Exponentiel, 1 Serveur, Capacité infinie pour garder les clients.
- ▶ On note μ le taux de service et λ le taux d'arrivées.
- ► C'est un processus de Naissance et de Mort avec les taux de transition :

$$\begin{cases} \lambda_i = \lambda & \forall i \\ \mu_i = \mu & \forall i \end{cases}$$
 (8)

▶ Posons $\rho = \lambda/\mu$.

M/M/1 Queue

Arrivals process is Poisson, i.e., *interarrival* times are all *i.i.a* $EXP(\lambda)$.

Poisson arrival
Process with rate \(\lambda \)

Service times are i.i.d, EXP(μ).

total #customer at t

N(t) is a birth-death process, with $\lambda_k = \lambda$; $\mu_k = \mu$.

Define, $\rho = \lambda/\mu$ (traffic intensity, in Erlangs)

► Equation d'équilibre global :

$$\pi(x)[\mu 1_{\{x>0\}} + \lambda] = \pi(x-1)\lambda 1_{\{x>0\}} + \pi(x+1)\mu$$
 (9)

- Condition d'ergodicité :
 - ▶ la chaine est ergodique si et seulement si $(\rho < 1)$. Dans ce cas la solution stationnaire est $\pi(x = k) = (1 \rho)\rho^k$.
 - ▶ Lorsque $\rho = 1$ le processus est récurent nul.
 - Si $\rho > 1$ le processus est transitoire.
- ▶ Par la suite on suppose que le processus est ergodique

Statistiques Simples

La moyenne du nombre de clients E(N) dans la file :

$$E(N) = \sum_{i=1}^{\infty} i\pi(x=i) = \frac{\rho}{1-\rho}$$
 (10)

- ▶ La probabilité que la file soit vide est (1ρ)
- Le taux d'utilisation de la file U vaut donc ρ .
- ▶ Variance V(N) du nombre de clients dans la file :

$$V(N) = E(N^2) - (E(N))^2 = \sum_{i=1}^{\infty} i^2 \pi (x=i) - (E(N))^2 = \frac{\rho}{(1-\rho)^2}$$
(11)

- ▶ Probabilité qu'il y ait au moins n clients dans la file : ρ^n .
- ▶ Formule de Little : $E[N] = E[R].\lambda$

$$E[R] = \frac{1}{\mu - \lambda}$$

Effet d'échelle

- ▶ Un système avec beaucoup de clients est plus efficace qu'un système avec peu de clients.
- ▶ Sur un exemple :
- Arrivées : 5 clients/h. Service moyen de 6mn.
- ightharpoonup Donc la charge est 0.5 et le temps moyen de réponse est de 12mn.
- ▶ Mais si on double le taux d'arrivées tout en divisant par deux le temps de service (les clients sont plus petits mais plus nombreux, ou le serveur est plus rapide)
- \blacktriangleright La charge reste 0.5 mais le temps moyen de réponse devient 6mn.

Effet d'échelle

A combien peut-on faire monter le taux d'arrivées tout en gardant le délai initial de 12mn

$$12 = \frac{1}{\mu - \lambda}$$

$$\lambda = 15 \text{ clients/h}$$

▶ Un serveur rapide peut fournir des performances supérieures en temps moyen de réponse avec un effet plus que linéaire.

Capacité et Dimensionnement

- ► Choisir le taux de service pour assurer un temps moyen de service pour un taux d'arrivée donné.
- ▶ Soit R le temps de réponse,
- lacktriangle La capacité C est le débit nominal du serveur $=\mu$

$$R = \frac{1}{C - \lambda}$$

- ▶ Donc, $C = \lambda + 1/R$
- $C \ge \lambda$ assure la stabilité du système, le terme 1/R est le cout pour obtenir les performances demandées sur un système aléatoire simple.

Analyse M/M/m

C'est un processus de Naissance et de Mort caractérisé par :

$$\begin{cases} \lambda_i = \lambda & \forall i \\ \mu_i = i\mu & si \quad i \le m \\ \mu_i = m\mu & si \quad i > m \end{cases}$$
 (12)

- \blacktriangleright La probabilité qu'il y ait au moins m clients dans le système est une quantité importante notée γ
- C'est donc aussi la probabilité qu'un client entrant soit contraint d'attendre avant de commencer son service

$$\gamma = \frac{(m\rho)^m}{m!(1-\rho)}\pi_0 \tag{13}$$

M/M/m queue

• *m*-servers service the queue.

Copyright © 2006 by K.S. Trivedi

La file M/M/m		
Caractéristiques Spatiales		
Charge	$\rho = \lambda/(m\mu)$	
Probabilité système vide	$\pi_0 = \left(1 + \frac{(m\rho)^m}{m!(1-\rho)} + \sum_{i=1}^{m-1} \frac{(m\rho)^i}{i!}\right)^{-1}$	
Probabilité d'avoir k clients	si $k < m$ $\pi_0 \frac{(m\rho)^k}{k!}$	
	sinon $\pi_0 \frac{m^m \rho^k}{m!}$	
Probabilité d'attente	$\gamma = \frac{(m\rho)^m}{m!(1-\rho)}\pi_0$	
Nombre moyen de clients	$E(N) = m\rho + \frac{\rho\gamma}{1-\rho}$	
Variance du nombre de clients	$V(N) = m\rho + \rho\gamma \left(m + \frac{1+\rho-\rho\gamma}{(1-\rho)^2}\right)$	
Nombre moyen de clients en attente	$E(N) = \frac{\rho \gamma}{(1-\rho)}$	
Variance du nombre de clients en attente	$V(N) = \frac{\rho\gamma(1+\rho-\rho\gamma)}{(1-\rho)^2}$	

La file M/M/m		
Caractéristiques Temporelles		
Temps de réponse Moyen	$E(R) = \frac{1}{\mu} \left(1 + \frac{\gamma}{m(1-\rho)} \right)$	
Variance du temps de réponse	$V(R) = \frac{1}{\mu^2} \left(1 + \frac{\gamma(2-\gamma)}{m^2(1-\rho)^2} \right)$	
Temps d'attente moyen	$E(W) = \frac{\gamma}{m\mu(1-\rho)}$	
Variance du temps d'attente	$V(W) = \frac{\gamma(2-\gamma)}{m^2\mu^2(1-\rho)^2}$	

La file M/M/m/B

- ▶ If y a B places et m serveurs. Donc B > m.
- Le processus du nombre de clients est encore un processus de naissance et de mort dont les taux sont :

$$\begin{cases}
\lambda_i = \lambda & \forall i < B \\
\lambda_B = 0 & \\
\mu_i = i\mu & si \quad i \le m \\
\mu_i = m\mu & si \quad m < i \le B
\end{cases}$$
(14)

- Puisque la chaîne a un nombre fini d'états, le système est toujours stable.
- Les probabilités stationnaires sont obtenues simplement :

$$\pi_n = \begin{cases} \frac{\pi_0 \lambda^n}{n! \ \mu^n} & \forall \ n < m \\ \frac{\pi_0 \lambda^n}{m! \ m^{n-m} \ \mu^n} & \forall \ n \ge m \end{cases}$$
 (15)

• et π_0 est obtenu par normalisation.

- ► Toutes les arrivées qui se produisent pendant que le buffer est dans l'état B sont perdues.
- ▶ Charge : $\rho = \lambda/(m\mu)$
- $\pi_0 = \left(1 + \frac{(m\rho)^m (1 \rho^{B+1-m})}{m!(1-\rho)} + \sum_{i=1}^{m-1} \frac{(m\rho)^i}{i!}\right)^{-1}$
- ▶ Probabilité d'avoir k clients si $k \le m$ $\pi_0 \frac{(m\rho)^k}{k!}$ sinon $\pi_0 \frac{m^m \rho^k}{m!}$
- Nombre moyen de clients : $E(n) = \sum_{i=1}^{B} i\pi_i$
- ▶ Nombre moyen de clients en attente : $E(q) = \sum_{i=m+1}^{B} (i-m)\pi_i$
- ► Taux d'arrivée réel : $\lambda(1 \pi_B)$
- Utilisation moyenne d'un serveur : $\rho(1-\pi_B)$
- ▶ Taux de perte : $\lambda \pi_B$

La file M/M/m/B		
Caractéristiques Temporelles		
Temps de réponse moyen $E(R) = \frac{E(n)}{\lambda(1-\pi_B)}$ Temps d'attente moyen $E(W) = \frac{E(q)}{\lambda(1-\pi_B)}$		

Chaînes de Markov en temps discret

- On travaille sur un processus à valeur dans un espace d'états dénombrable.
- ► Définition (Markov)

Un processus X_t est Markovien si et seulement si

$$Pr(X_{t+1} = j | x_t = i_t, x_{t-1} = i_{t-1} \dots, x_0 = i_0) = Pr(X_{t+1} = j | X_t = i_t)$$
(16)

- On note $Pr(X_{t+1} = j | X_t = i_t) = P_{i,j}(t)$.
- ► Définition (Chaîne homogène)

Une chaine de Markov est homogène si et seulement si $P_{i,j}(t)$ est indépendant de la date t. Cette probalilité, noté $P_{i,j}$, est la probabilité de transition de i vers j.

DTMC, Matrice Stochastique

Par construction, la matrice P vérifie les propriétés suivantes :

- ▶ tous les éléments de *P* sont positifs ou nuls
- pour tout i, $\sum_{j} P_{i,j} = 1$

Trajectoire

- ▶ Supposons qu'à l'instant 0, le processus soit connu (valeur de la probabilité à l'instant 0 $Pr(X_0 = i)$ $\forall i$)
- Appliquons le théorème de conditionnement

$$Pr(X_1 = j) = \sum_{i} Pr(X_1 = j | X_0 = i) Pr(X_0 = i) = \sum_{i} P_{i,j} Pr(X_0 = i)$$
(17)

▶ Soit $\pi(t)$ le vecteur des probabilités $Pr(X_t = i)$.

$$\pi(1) = \pi(0)P$$
 et $\pi(k) = \pi(0)P^k$ (18)

Ce qui donne un algorithme simple de calcul de la distribution à la date k.

Problèmes d'absorption, de transitoires et de stationnaire

- Existence d'une limite au vecteur $\pi(t)$ lorsque le temps t temps vers l'infini?
- Que vaut $\pi(t)$ à une date quelconque?
- La chaîne est elle absorbée?
- La chaîne revient elle toujours dans certains états?
- ▶ Etablir une classification des états et des chaînes.
- ► Tenir compte de la taille

Premier Exemple : probabilités limites

Convergence des puissances

Δ2

ı	0,16	0,17	0,27	0,4
ı	0,14	0,07	0,12	0,67
	0,13	0,16	0,22	0,49
	0,1	0,04	0,05	0,81

.

0,137	0,125	0,185	0,553
0,117	0,082	0,115	0,686
0,128	0,106	0,157	0,609
0,106	0,053	0,072	0,769

^20

0,112339	0,068141	0,095766	0,723754
0,112338	0,068140	0,095765	0,723756
0,112339	0,068141	0,095765	0,723755
0,112339	0,068140	0,095764	0,723758

Deuxième exemple : être absorbé en 4

0,1	0,4	0,5	0
0	0,2	0,3	0,5
0,3	0,1	0,2	0,4
0	0	0	1

Classification des Etats

On définit pour chaque état quatre quantités liées aux dates de retour à cet état.

- f_j^n est la probabilité de l'événement "(le premier retour en j à lieu en n transitions)".
- f_j est la probabilité de retour en $j:f_j=\sum_{n=1}^\infty f_j^n$
- $lackbox{ } M_j$ est le temps moyen de retour en $j: M_j = \sum_{n=1}^\infty n imes f_j^n$
- \blacktriangleright γ est le pgcd des valeurs de n telles que f_j^n est non nulle. γ est la période de retour.

Transience ou Récurence

- ▶ Si $f_j < 1$ l'état est transitoire.
- ▶ Si $f_i = 1$ l'état est récurent :
 - si $M_i = \infty$, l'état est recurent nul.
 - si $M_j < \infty$, l'état est recurent non nul.

De plus,

- si $\gamma > 1$, l'état est périodique de période γ .
- si $\gamma=1$, l'état est apériodique.

Classification des chaines

Nécessaire d'examiner leur structure.

▶ Définition

Un sous ensemble A d'états est fermé si et seulement si il n'y a pas de transition entre cet ensemble et son complémentaire.

$$\sum_{i \in A} \sum_{j \in \overline{A}} P_{i,j} = 0$$

► Définition (Etat absorbant)

un état absorbant est un sous ensemble fermé ne comprenant qu'un seul élément.

▶ Définition

Une chaine est irréductible si et seulement si le graphe orienté de la chaine est fortement connexe. C'est à dire si il existe un suite de transitions menant de i à j pour tous les états i et j.

▶ Pour analyser une chaine réductible, il faut la décomposer en composantes fortement connexes.

▶ Théorème

Soit une chaine de Markov irréductible, tous les états sont :

- tous transitoires
- ou tous récurents non nuls
- ou tous récurents nuls

De plus, si un état est périodique, alors tous les états le sont avec la même période.

Existence d'une limite

Théorème

Soit une chaine de Markov, irréductible et apériodique, alors la distribution limite $\pi=lim_{t\to\infty}\pi(t)$ existe et est indépendante de la distribution initiale $\pi(0)$ (on dit qu'elle est ergodique). De plus,

- soit tous les états sont transitoires ou récurents nuls et dans ce cas $\pi(j)=0$, pour tout j.
- \blacktriangleright soit tous les états sont récurents non nuls et π est solution unique des deux équations :

$$\begin{cases} \pi = \pi P \\ \pi e = 1 \end{cases} \tag{19}$$

où e est un vecteur colonne dont tous les éléments sont 1. De plus, on a $\pi(j)=1/M_j$

Chaîne Finie

Plus simple : pas de récurrence nulle.

▶ Théorème

Toute chaine finie, irréductible et apériodique est ergodique.

Résoudre le stationnaire

- Analytiquement (voir plus loin)
- Numériquement (pourquoi pas?)
- Simulation (en faisant très attention)

Résoudre états absorbants

- ▶ Probabilité d'être absorbée sachant que l'on commence en i
- ▶ Temps moyen avant d'être absorbée sachant que l'on commence en i
- Hypothèse : il y a plusieurs points absorbants et pas de classes récurentes (pretraitement pour fusionner chaque classe récurente en un sommet).

Pb des points absorbants

- On suppose que l'espace des états est partitionné : les états absorbants sont en tête.
- La matrice P peut être décomposée en bloc $\left\lceil \begin{array}{c|c} Id & 0 \\ \hline R & Q \end{array} \right\rceil$
- \blacktriangleright On peut prouver que $P^2 = \left[\begin{array}{c|c} Id & 0 \\ \hline R+QR & Q^2 \end{array} \right]$
- ▶ Et que, pour tout n, $P^n = \begin{bmatrix} Id & 0 \\ \hline (\sum_{j=0}^{n-1} Q^j)R & Q^n \end{bmatrix}$

Matrice Fondamentale

- $ightharpoonup P^n$ est la matrice de transition pour n sauts successifs.
- ▶ $lim_{n\to\infty}P^n[i,j]$ est la probabilité d'être en j à l'infini sachant que l'on a débuté en i.
- ▶ La matrice $M = (Id Q)^{-1}$ existe si Q ne contient pas de classe récurrente et elle vaut $\sum_{j=0}^{\infty} Q^{j}$.
- Et donc,

$$\lim_{n \to \infty} P^n = \left[\begin{array}{c|c} Id & 0 \\ \hline MR & 0 \end{array} \right]$$

▶ M est la matrice fondamentale.

Probabilités d'être absorbé

- L'entrée [i,j] de la matrice produit M*R donne la probabilité d'être absorbé en j sachant que le point initial est i (point non absorbant).
- ightharpoonup Si π_O est la distribution initiale la probabilité d'être absorbé en j s'obtient par conditionnement sur l'état initial

$$\mu(absorbe\ en\ j) = \sum_{i} (MR)[i,j]\pi_0(i)$$

▶ Si il y a un seul point, la proba est 1 (inutile de faire des calculs).

Temps Moyen avant d'être absorbé

- Soit X_{i,j} le nombre de visite achant que l'on a débuté en i avant d'être absorbé.
- ▶ On calcule dans un premier temps $E[X_{i,j}]$.
- Le temps moyen avant d'être absorbé sachant que l'on a débuté en i est alors : $\sum_{i} E[X_{i,j}]$.
- Le temps moyen avant d'être absorbé sachant la distribution initiale π_0 est alors : $\sum_i \sum_i \pi_0(i) E[X_{i,j}]$.
- ▶ On regoupe tous les points d'absorbtion en un seul (de numéro 1).

$$E[X_{i,j}]$$

► Théorème

$$E[X_{i,j}] = M(i,j)$$

▶ On retouve la matrice fondamentale.

Preuve

- ▶ Posons $\delta_{i,j}$ le symbole de Kronecker,
- En conditionnant sur la première étape on a

$$X_{i,j} = \begin{cases} \delta_{i,j} & avec \ proba \ P(i,1) \\ X_{k,j} + \delta_{i,j} & avec \ proba \ P(i,k) \end{cases}$$

En passant aux espérances :

$$E[X_{i,j}] = \delta_{i,j}P(i,1) + \sum_{k>1} (E[X_{k,j}] + \delta_{i,j})P(i,k)$$

Apres regroupement :

$$E[X_{i,j}] = \delta_{i,j} + \sum_{k>1} E[X_{k,j}]P(i,k)$$

Preuve - suite et fin

- Posons $E[X_{i,j}] = Z[i,j]$.
- ▶ En passant à une formulation matricielle :

$$Z = I + QZ$$

 $\blacktriangleright \ \ {\rm Et\ donc},\ Z=(I-Q)^{-1}=M$