LISTING OF CLAIMS

The listing of claims below replace all prior versions, and listings, of claims:

1	1.	(Original) A method comprising:
2		storing first tuples in a first table in a database system;
3		storing second tuples in a second table in the database system;
4		partitioning the first and second tuples into plural portions;
5		redistributing the first and second tuples to plural nodes according to the
6	partitioning;	and
7		hash joining the first and second tuples to produce result tuples as the first and
8	second tuples	s are being redistributed to the plural nodes.
1	2.	(Original) The method of claim 1, further comprising:
2		retrieving the result tuples once the hash join is performed.
l	3.	(Original) The method of claim 1, further comprising:
2		retrieving the result tuples at random.
1	4.	(Original) The method of claim 1, hash joining the first and second tuples to
2	produce resu	It tuples as the first and second tuples are being redistributed to the plural nodes
3	further comprising:	
4		producing result tuples at one of the plural nodes; and
5	,	simultaneously producing result tuples at a second of the plural nodes.
1	5.	(Original) The method of claim 1, wherein redistributing the first and second
2	tuples to plur	al nodes comprises redistributing based on split vectors containing predefined
3	ranges.	
1	6.	(Original) The method of claim 5, wherein partitioning the first and second tuples
2	into plural po	ortions comprises:
3		partitioning first and second tuples into hash tables in each node.

1	7.	(Original) The method of claim 6, wherein hash joining the first and second tuples
2	comprises:	
3		allocating a portion of a memory to a first hash table;
4		allocating a second portion of the memory to a second hash table; and
5		hash joining first tuples in the first hash table with second tuples in the second
6	hash table.	
1	8.	(Original) The method of claim 7, wherein hash joining the first and second tuples
2	comprises:	
3	·	determining that the portion of the memory allocated to the first hash table is full;
4		allocating a stable storage to the first hash table; and
5		storing first tuples in the stable storage.
1	, 9.	(Original) The method of claim 8, further comprising:
2		continuing to store second tuples in the second hash table; and
3		hash joining second tuples in the second hash table with first tuples in the first
4	hash table.	
1	10.	(Original) The method of claim 9, further comprising:
2		determining that the second portion of the memory allocated to the second hash
3	table is full;	
4		allocating a second stable storage to the second hash table;
5		storing second tuples in the second stable storage; and
6	•	hash joining second tuples in the second stable storage with first tuples in the first
7	hash table.	

1	. 11.	(Original) The method of claim 10, wherein hash joining the first and second
2	tuples compr	rises:
3		generating a third hash table once all first tuples and second tuples are
4	redistributed to each node;	
5		retrieving one of the first tuples from the stable storage;
б		hash joining the one of the first tuples with tuples in the second hash table; and
7		storing the one of the first tuples in the third hash table.
1	12.	(Original) The method of claim 11, further comprising:
2		retrieving one of the second tuples from the second stable storage; and
3		hash joining the one of the second tuples with tuples in the third hash table.
1	13.	(Previously Presented) A database system comprising:
2		a plurality of nodes; and
3		instructions for enabling the database system to:
4		store first tuples in a first table distributed across the plurality of
5	nodes;	
6		store second tuples in a second table distributed across the plurality
7	of nodes;	
8		partition the first and second tuples into plural portions;
9		redistribute the first and second tuples to the plurality of nodes according
10	to the partitioning; and	
_11		hash join the first and second tuples to produce result tuples as the first
12	and second t	uples are being redistributed to the plurality of nodes.
1	14.	(Previously Presented) The database system of claim 13, wherein the result tuples
2	are available	once the hash join is performed
1	15.	(Previously Presented) The database system of claim 13, wherein the result tuples
2	are available	at random.

1	16.	(Previously Presented) The database system of claim 13, wherein each node	
2	comprises a	memory, and wherein the instructions further partition the first and second tuples	
3	into plural portions by:		
4		partitioning first tuples into first hash tables; and	
5		partitioning second tuples into second hash tables, wherein the hash tables	
6	are in the me	mory.	
1	17.	(Previously Presented) The database system of claim 16, wherein the instructions	
2	further:		
3		allocate a portion of the memory to the first hash table;	
4		allocate a second portion of the memory to the second hash table; and	
5		hash join first tuples in the first hash table with second tuples in the second hash	
6	table.		
1	18.	(Previously Presented) The database system of claim 17, wherein the instructions	
2	further:		
3		determine that the portion of the memory allocated to the first hash table is full;	
4	and		
5		store first tuples in a stable storage.	
1	19.	(Previously Presented) The database system of claim 18, wherein the instructions	
2	further:		
3		continue to store second tuples in the second hash table; and	
4		hash join second tuples in the second hash table with first tuples in the first hash	
5	table.		

1	20.	(Previously Presented) The database system of claim 19, wherein the instructions
2	further:	
3		determine that the second portion of the memory allocated to the second hash
4	table is full;	· ·
5		allocate a second stable storage to the second hash table;
6		store second tuples in the second stable storage; and
7		hash join second tuples in the second stable storage with first tuples in the first
8	hash table.	
1	21.	(Previously Presented) The database system of claim 20, wherein the instructions
2	further:	
3		generate a third hash table once all first tuples and second tuples are redistributed
4	to each node;	
5		retrieve one of the first tuples from the stable storage;
6		hash join the one of the first tuples with tuples in the second hash table; and
7		store the one of the first tuples in the third hash table.
1	22.	(Previously Presented) The database system of claim 21, wherein the instructions
2	further:	
3		retrieve one of the second tuples from the second stable storage; and
4		hash join the one of the second tuples with tuples in the third hash table.
1	23.	(Previously Presented) An article comprising a medium storing instructions for
2	enabling a pro	ocessor-based system to:
3	•	store first tuples in a first table in a database system;
4		store second tuples in a second table in the database system;
5		partition the first and second tuples into plural portions;
6		redistribute the first and second tuples to plural nodes of the database system
7	according to	the partitioning; and
8		hash join the first and second tuples to produce result tuples as the first and
9	second tuples	are being redistributed to the plural nodes.

i	24.	(Original) The article of claim 23, further storing instructions for enabling a	
2	processor-based system to:		
3		retrieving the result tuples once the hash join is performed.	
1	25.	(Original) The article of claim 24, further storing instructions for enabling a	
2	processor-bas	eed system to:	
,3		redistribute based on split vectors containing predefined ranges.	
1	26.	(Original) The article of claim 25, further storing instructions for enabling a	
2	processor-bas	ed system to:	
3		partition first and second tuples into hash tables in each node.	
1	27.	(Original) The article of claim 26, further storing instructions for enabling a	
2	processor-bas	ed system to:	
3		allocate a portion of a memory to a first hash table;	
4		allocate a second portion of the memory to a second hash table; and	
5		hash join first tuples in the first hash table with second tuples in the second hash	
6	table.		
1	28.	(Original) The article of claim 27, further storing instructions for enabling a	
2	processor-bas	sed system to:	
3		determine that the portion of the memory allocated to the first hash table is full;	
4	and		
5		store first tuples in a stable storage.	
1	29.	(Original) The article of claim 28, further storing instructions for enabling a	
2	processor-bas	sed system to:	
3		continue to store second tuples in the second hash table; and	
4		hash join second tuples in the second hash table with first tuples in the first hash	
5	table.		

l	30.	(Original) The article of claim 29, further storing instructions for enabling a
2	processor-bas	ed system to:
3		determine that the second portion of the memory allocated to the second hash
4	table is full;	
5		allocate a second stable storage to the second hash table;
6		store second tuples in the second stable storage; and
7		hash join second tuples in the second stable storage with first tuples in the first
8	hash table.	
l	31.	(Original) The article of claim 30, further storing instructions for enabling a
2	processor-bas	ed system to:
3 .		generate a third hash table once all first tuples and second tuples are redistributed
4	to each node;	
5		retrieve one of the first tuples from the stable storage;
6		hash join the one of the first tuples with tuples in the second hash table; and
7		store the one of the first tuples in the third hash table.
1	32.	(Original) The article of claim 31, further storing instructions for enabling a
2	processor-bas	ed system to:
3	•	retrieve one of the second tuples from the second stable storage; and
4		hash join the one of the second tuples with tuples in the third hash table.
1	33.	(Previously Presented) The method of claim 1, wherein storing the first tuples in
2	the first table	comprises distributing the first tuples across the plural nodes of the database
3	system, and w	herein storing the second tuples in the second table comprises distributing the
4	tuples across	the plural nodes.
1	34.	(Previously Presented) The method of claim 33, wherein redistributing the first
2	and second tu	ples comprises redistributing the first and second tuples to the plural nodes of the
3	database syste	em.

- 1 35. (Previously Presented) The article of claim 23, wherein storing the first tuples in
- 2 the first table comprises storing the first tuples in the first table distributed across the plural
- 3 nodes of the database system, and wherein storing the second tuples in the second table
- 4 comprises storing the second tuples distributed across the plural nodes of the database system.