Analysis of RAD51 and TP53

Introduction

We separate the cell lines into two groups according to their WGD status (WGD+ and WGD-) in order to study the differential expression of genes of interest. In particular, we focus on P53, a tumor suppressor gene, and RAD51, which is involved in DNA repair. This comparison aims to determine whether the presence of a Whole Genome Duplication influences the expression of these key genes.

Methode

```
!/usr/bin/env python3
```

-*- coding: utf-8 -*-

шш

Created on Thu Sep 4 10:41:12 2025

@author: malos

.....

Code

import pandas as pd

df = pd.read_csv ("/Users/malos/Desktop/hugoinfo/OmicsSignaturesProfile.csv")

Explanation

We import the pandas library, which allows us to manipulate and analyze data in tabular form. We then create a DataFrame (data table) by reading the CSV file, which enables us to open, read, and study the dataset.

Code

```
df_wgd_oui = df[df ["WGD"] == 1.0]
df_wgd_non = df[df ["WGD"] == 0.0]
```

Explanation

Here, we separate the cell lines into two groups according to the value of the "WGD" attribute: df_wgd_oui contains the lines where WGD = 1.0 (presence of WGD), and df_wgd_non contains the lines where WGD = 0.0 (absence of WGD).

Code

```
Print ("Lignées WGD = oui :")

Print (df_wgd_oui)

Print ("\nLignées WGD = non :")

Print (df_wgd_non)
```

Explanation

This script successively displays two subsets of the original table: first, the cell lines where the **WGD** column = 1.0, corresponding to lines with a Whole Genome Duplication (WGD), and then the cell lines where **WGD** = 0.0, corresponding to lines without a Whole Genome Duplication. For better readability, a title is displayed before each subset, and a line break separates the two outputs.

Code

```
df_wgd_oui. to_csv ("cell_lines_WGD_oui.csv", index=False)

df_wgd_non. to_csv ("cell_lines_WGD_non.csv", index=False)
```

Explanation

This script saves the two data subsets into separate CSV files: cell_lines_WGD_oui.csv contains the cell lines for which WGD = 1.0 (presence of a Whole Genome Duplication), and cell_lines_WGD_non.csv contains the cell lines for which WGD = 0.0 (absence of a Whole Genome Duplication). The parameter index=False ensures that the DataFrame row index is not included in the file, so that only the relevant columns are saved.

Code

```
Print ("Fichiers créés :")

Print ("cell_lines_WGD_oui.csv")

Print ("cell_lines_WGD_non.csv")
```

Explanation

This code displays a confirmation message on the screen, indicating that the two CSV files have been generated: cell_lines_WGD_oui.csv (containing the lines with WGD) and cell_lines_WGD_non.csv (containing the lines without WGD), thereby informing the user that the data export was successful.

Code

import pandas as pd

import matplotlib.pyplot as plt

Explanation

Here, this code imports the libraries **pandas** (to manipulate and analyze tabular data) and **matplotlib.pyplot** (to create graphs and visualize the results).

Code

```
df_final = pd.read_csv("/Users/malos/Desktop/hugoinfo/merged_TP53_RAD51_WGD_norm.csv")
print (df_final.columns.tolist())
```

Explanation

Here, this code reads the CSV file merged_TP53_RAD51_WGD_norm.csv into a DataFrame named **df_final**, and then displays the list of column names in this table to verify the imported data.

Code

```
df_oui = df_final[df_final ["WGD"] == "oui"]

df_non = df_final[df_final ["WGD"] == "non"]
```

Explanation

Here, this code separates the data into two subsets: **df_oui** contains the cell lines where the WGD column is equal to "oui" (presence of WGD), and **df_non** contains the cell lines where the WGD column is equal to "non" (absence of WGD).

Code

```
plt.figure (figsize=(6, 5))

plt.scatter(df_oui["p53"], df_oui["RAD51"], alpha=0.6, color="blue")

plt.xlabel("Expression RAD51")

plt.ylabel("TP53 gene effect")

plt.title("RAD51 expression vs TP53 knockout (CRISPR) WGD +")

plt.grid (True, linestyle="--", alpha=0.5)
```

Explanation

Here, this code creates a scatter plot representing the WGD+ cell lines: the x-axis corresponds to RAD51 expression, the y-axis corresponds to the TP53 gene effect (CRISPR knockout), and each blue point represents a cell line. The plot is formatted with a title, axis labels, and a grid to facilitate readability.

Code

```
plt.figure (figsize=(6, 5))

plt.scatter(df_non["p53"], df_non["RAD51"], alpha=0.6, color="red")

plt.xlabel("Expression RAD51")

plt.ylabel("TP53 gene effect")

plt.title("RAD51 expression vs TP53 knockout (CRISPR) WGD -")

plt.grid (True, linestyle="--", alpha=0.5)
```

Explanation

Here, this code creates a scatter plot representing the WGD- cell lines: the x-axis corresponds to RAD51 expression, the y-axis corresponds to the TP53 gene effect (CRISPR knockout), and each red point represents a cell line. The plot is formatted with a title, axis labels, and a dashed grid to improve readability.

Result

Figure 1: Relationship between RAD51 expression and TP53 knockout (CRISPR) effect in WGD+ cell lines.

This scatter plot shows the relationship between RAD51 expression (x-axis) and the effect of TP53 knockout by CRISPR (y-axis) in cell lines presenting a Whole Genome Duplication (WGD+). Each blue point represents a cell line.

<u>Figure 2: Relationship between RAD51 expression and TP53 knockout (CRISPR) effect in WGD- cell lines.</u>

This scatter plot shows the relationship between RAD51 expression (x-axis) and the effect of TP53 knockout by CRISPR (y-axis) in cell lines without a Whole Genome Duplication (WGD-). Each red point represents a cell line.

Code python

```
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
Created on Thu Sep 4 10:41:12 2025
import pandas as pd
df = pd.read csv("/Users/malos/Desktop/hugoinfo/OmicsSignaturesProfile.csv")
df_wgd_oui = df[df["WGD"] == 1.0]
df_wgd_non = df[df["WGD"] == 0.0]
print("Lignées WGD = oui :")
print(df_wgd_oui)
print("\nLign√@es WGD = non :")
print(df_wgd_non)
df_wgd_oui.to_csv("cell_lines_WGD_oui.csv", index=False)
df_wgd_non.to_csv("cell_lines_WGD_non.csv", index=False)
print("Fichiers crv@v@s :")
print(" cell lines WGD_oui.csv")
print(" cell lines WGD_oui.csv")
print(" cell_lines_WGD_non.csv")
import pandas as pd
import matplotlib.pyplot as plt
df_final = pd.read_csv("/Users/malos/Desktop/hugoinfo/merged_TP53_RAD51_WGD_norm.csv")
print(df final.columns.tolist())
df_oui = df_final[df_final["WGD"] == "oui"]
df_non = df_final[df_final["WGD"] == "non"]
plt.figure(figsize=(6, 5))
plt.scatter(df_oui["p53"], df_oui["RAD51"], alpha=0.6, color="blue")
plt.xlabel("Expression RAD51")
plt.ylabel("TP53 gene effect")
plt.title("RAD51 expression vs TP53 knockout (CRISPR) WGD +") plt.grid(True, linestyle="--", alpha=0.5)
plt.figure(figsize=(6, 5))
plt.scatter(df_non["p53"], df_non["RAD51"], alpha=0.6, color="red")
plt.xlabel("Expression RAD51")
plt.xlabel("TP53 gene effect")
plt.title("RAD51 expression vs TP53 knockout (CRISPR) WGD -")
plt.grid(True, linestyle="--", alpha=0.5)
```

Copier coller dans python