LECTURE 9.5

RUNLIN ZHANG

CONTENTS

1. Step 2	1
1.1. Conclude the proof from here	2
1.2. How to conclude proof as in [Ra92]	2
2. Conditional expectations	3
3. More details on local invariant measures	4
References	4

1. Step 2

 $X = \operatorname{SL}_2(\mathbb{R})/\Gamma$ with Γ discrete. Let B be the subgroup $AU = \{a_t u_s, t, s \in \mathbb{R}\}$ and let $V = \{v_s, s \in \mathbb{R}\}$ be the lower triangular one-parameter unipotent flow. Now we come to Step 2.

Lemma 1.1. If B-invariant, U-ergodic probability measures μ on $SL_2(\mathbb{R})/\Gamma$ exist then Γ is a lattice and μ is equal to (normalized) m_X .

By the proof from Lec.8, we have the following

Lemma 1.2. Same assumption. The measure μ is ergodic (actually mixing) with respect to $a^{\mathbb{Z}}$ -action for every $a_{\neq id} \in A$.

Let μ be the B-invariant, a-ergodic measure. Here a is an element of A such that $a^n v a^{-n} \to id$ as $n \to +\infty$ for $v \in V$. Want to show μ coincides with the m_X (up to a scalar) and in particular, m_X is finite.

Fix some o in the support of μ . Choose neighborhoods of identity in B, V that are very small compared to the injectivity radius at o. "local B, V orbit" means with respect to these neighborhoods. Then choose $\delta > 0$ very small compared to these neighborhoods.

Consider $B_{\delta}(o)$. Let Gene (f, μ) be those $x \in X$ such that

$$\lim_{N\to +\infty}\frac{1}{N}\sum_{n=1}^N f(a^nx)=\int f(x)\mu(x).$$

Note that this set is $V \cdot A$ -stable. Let E_f be its intersection with $B_{\delta}(o)$.

Consider the σ -algebra \mathscr{A} on $B_{\delta}(o)$ defined by $x \sim y$ iff x and y are locally on the same B-orbit. Let $E'_f \subset E_f$ be those x such that the conditional measure $\mu_x^{\mathscr{A}}$ is the restriction of some (left-)B-invariant Haar measure (when we identify $[x]^{\mathscr{A}}$ as a subset of B via the orbit map). Then μ being B-invariant, E'_f is a conull set in E_f (use the uniqueness of

Date: 2022.04.

conditional measure). Then let \widetilde{E}_f be the subset of $B_{\delta,x}$ that is on the local V-orbit of some element in E'_f . Thus \widetilde{E}_f is conull in B_δ with respect to μ and m_X .

1.1. **Conclude the proof from here.** First assume $m_X < \infty$. Every point $x \in \widetilde{E}_f$ is generic for μ . But since the $a^{\mathbb{Z}}$ -action on m_X is also ergodic, and $m_X(\widetilde{E}_f) > 0$, we can find a point $x \in \widetilde{E}_f$ generic for m_X . Thus $\int f(x)\mu(x) = \int f(x)m_X(x)$. Since f is arbitrary we are done.

Now assume $m_X = \infty$. Then the associated unitary representation is absence of constants. Thus by mixing, for every (real-valued) $\phi, \psi \in L^2(X, m_X)$, we have

$$\lim_{n\to\infty}\int\phi(a^n.x)\psi(x)\mathrm{m}_X(x)=0.$$

Take $\phi = f$ and $\psi = 1_{\widetilde{E}_f}$, then

$$\lim_{n\to\infty}\int_{\widetilde{E}_f}f(a^n.x)\mathrm{m}_X(x)=\lim_{n\to\infty}\int f(a^n.x)\mathrm{1}_{\widetilde{E}_f}(x)\mathrm{m}_X(x)=0.$$

Let us compute

$$\mathrm{m}_X(\widetilde{E}_f)\int f(x)\mu(x) = \int_{\widetilde{E}_f} \left(\lim_N \frac{1}{N} \sum_{n=0}^{N-1} f(a^n.x)\right) \mathrm{m}_X(x)$$
 (bounded convergence thm) = $\lim_N \frac{1}{N} \sum_{n=0}^{N-1} \left(\int_{\widetilde{E}_f} f(a^n.x) \mathrm{m}_X(x)\right) = 0$,

which is impossible if f > 0. Hence $m_X = \infty$ leads to a contradiction.

1.2. How to conclude proof as in [Ra92]. See [Ra92, Page 27,28] Let $\Omega_f := a^{\mathbb{Z}} \widetilde{E}_f$ and $\Omega := a^{\mathbb{Z}} B_{\delta}(o)$. Note that Ω_f is conull in Ω w.r.t. both μ and m_X . Consider the following

$$\begin{split} \mathbf{m}_X(\Omega_f)\cdot\langle f,\mu\rangle &= \int_{x\in\Omega_f} \left(\lim\sum\frac{1}{N}\sum f(a^n.x)\right) \mathbf{m}_X(x) \\ &\stackrel{?}{=} \lim\left(\int_{x\in\Omega_f}\sum\frac{1}{N}\sum f(a^n.x)\mathbf{m}_X(x)\right) \\ (\Omega_f \text{ and } \mathbf{m}_X \text{ are } a\text{-stable}) &= \lim\left(\int_{x\in\Omega_f} f(x)\mathbf{m}_X(x)\right) = \langle f,\mathbf{m}_X\rangle. \end{split}$$

The $\stackrel{?}{=}$ would become a true = if $m_X|_{\Omega}$ were known to be finite. Assume f is nonnegative. Replacing Ω by a subset B with finite volume so that the equality goes through and then we take sup over all such B's. This proves that $\stackrel{?}{=}$ may be replaced by \leq (when f is non-negative). But this implies that

$$m_X(\Omega_f) \le \frac{\langle f, m_X \rangle}{\langle f, \mu \rangle} < \infty$$

with appropriate choice of f. Now we can go back to $\stackrel{?}{=}$ above and claim that it is a true equality, which implies that

$$\mathrm{m}_X(\Omega_f) = \frac{\langle f, \mathrm{m}_X \rangle}{\langle f, \mu \rangle} \Longrightarrow \frac{1}{\mathrm{m}_X(\Omega_f)} \cdot \mathrm{m}_X|_{\Omega_f} = \mu \Longrightarrow \frac{1}{\mathrm{m}_X(\Omega)} \cdot \mathrm{m}_X|_{\Omega} = \mu..$$

If m_X is finite, then we can show that a is ergodic w.r.t. m_X and the proof ends here. Otherwise, we are not far away.

LECTURE 9.5 3

Let $C:=\mathrm{m}_X(\Omega)=|\mu|$. Write $\Omega=\Omega_o$ (also depend on δ), then $\mathrm{m}_X(\cup\Omega_o)=C$ as o ranges over support of μ . Let $\cup\Omega_o=:\Omega_\mu$, then every $x\in X$ shares the same V-orbit with some $y\in\Omega_\mu$ or $w.x\in\Omega_\mu$ where w is the nontrivial Weyl. Indeed, $\mathrm{SL}_2(\mathbb{R})=VB\cup VwB=VB\cup wB$. So it suffice to show that $\mathrm{m}_X(v\Omega)=C$ for all $v\in V$ (then $|\mathrm{m}_X|\leq 2C$).

 $(\Omega := \Omega_{\mu} \text{ below})$

Note that $V \cdot \Omega = X$. As Ω is open, it suffices to show that for every $v \in V$, $m_X(v \cdot \Omega \cup \Omega) = m_X(\Omega)$.

Consider the $E_f(\Omega)$ be the (a,μ) -generic points in Ω , which is co-null with respect to μ . Similarly define $\widetilde{E_f}(\Omega)$ which is conull w.r.t. μ and m_X . Now we consider $v\cdot \widetilde{E_f}(\Omega)$ for a $v\in V$, which is conull in $v.\Omega$ (w.r.t. m_X). Let $\Omega_v:=a^{\mathbb{Z}}\cdot v.\widetilde{E_f}(\Omega)$. Same argument as before now shows that

$$\frac{1}{\mathrm{m}_X(\Omega_v)}\cdot\mathrm{m}_X|_{\Omega_v}=\mu.$$

This implies that

$$m_X(\nu.\widetilde{E_f}(\Omega) \cup \Omega) = m_X(\nu.\Omega \cup \Omega) = m_X(\Omega) = C.$$

So we are done.

2. CONDITIONAL EXPECTATIONS

As a reference, see [EW11, Ch.5] and [Cou16, Part IV and Ch.17].

Let X be a nice space and \mathscr{B}_X its Borel σ -algebra. Let $\mu \in \operatorname{Prob}(X)$. Let \mathscr{A} be a countably generated (equal to the smallest sub- σ -algebra containing certain countable collection of measurable sets, say $\mathscr{A}_0 := \{A_i\}$) sub- σ -algebra of \mathscr{B}_X . For convenience, assume the complement of every A_i is also contained in \mathscr{A}_0 . For $x \in X$, let the **atom** containing x be $[x]^{\mathscr{A}} := \bigcap_{x \in A_i} A_i$.

Theorem 2.1. (Conditional Expectations) Let (X, \mathcal{B}_X, μ) and \mathcal{A} as above.

1. Existence. There exists $X' \in \mathcal{A}$ of full measure such that we have a measurable map $X' \to \operatorname{Prob}(X)$ denoted as $x \mapsto \mu_x^{\mathcal{A}}$ such that $\mu_x^{\mathcal{A}}([x]^{\mathcal{A}}) = 1$ and

$$\int_{A} \int f(y) \mu_{x}^{\mathcal{A}}(y) \mu(x) = \int f(x) \mu(x)$$
 (1)

for every $A \in \mathcal{A}$ and $f \in L^1(X, \mathcal{B}_X, \mu)$.

2. Uniqueness. If $x \mapsto v_x^{\mathscr{A}}$ is another measurable map from a possibly different full measure set X'' to $\operatorname{Prob}(X)$ satisfying Equa. I for every compactly supp. cont. function f, then for some full measure set $X''' \subset X' \cap X''$ we have $\mu_x^{\mathscr{A}} = v_x^{\mathscr{A}}$ for $x \in X'''$.

Example 2.2. Let $\mathscr{A} = \mathscr{B}_X$. Then $[x]^{\mathscr{A}} = \{x\}$ and $\mu_x^{\mathscr{A}} = \delta_x$.

Example 2.3. Let \mathscr{A} be the sigma algebra generated by a finite partition $\{P_1,...,P_l\} \subset \mathscr{B}_X$ of X, then for $x \in P_i$, $[x]^{\mathscr{A}} = P_i$ and $\mu_x^{\mathscr{A}} = (\mu(P_i))^{-1}\mu|_{P_i}$.

Example 2.4. Let $X = [0,1] \times [0,1]$ and $\mu = \text{Leb}$ be the standard Lebesgue measure defined by $|\operatorname{dx} \wedge \operatorname{dy}|$. Let $\mathscr{A} := \{\{x\} \times [0,1] \mid x \in [0,1]\}$. Then $[(x,y)]_{(x,y)}^{\mathscr{A}} = \{x\} \times [0,1]$ and $\mu_{(x,y)}^{\mathscr{A}}$ is induced by $|\operatorname{dy}|$.

This example can be generalized to foliations on manifolds where X is a box where one has a local chart.

Example 2.5. Everything same as in the last example except let μ be the standard Lebesgue measure supported on $\operatorname{diag}(X) := \{(x,x), \ x \in X\}$. Then $[(x,y)]_{(x,y)}^{\mathscr{A}} = \{x\} \times [0,1]$ and $\mu_{(x,y)}^{\mathscr{A}} = \delta_y$.

RUNLIN ZHANG

4

Example 2.6. If you have a measurable measure preserving $\pi:(X,\mathcal{B}_X,\mu)\to (Y,\mathcal{B}_Y,\nu)$ with X,Y nice. Let $\mathcal{A}:=\pi^{-1}\mathcal{B}_Y$. And Equa. 1 can be viewed as a fibre integration formula (you can replace the μ on the LHS by ν). Then atoms are fibres of π . In some sense, in general all \mathcal{A} arises from such a π .

3. MORE DETAILS ON LOCAL INVARIANT MEASURES

Assume *G* is a Lie group. Let $U \subset G$ be an open subset. We say a measure μ on *U* is locally invariant under *G* iff for every measurable subset $A \subset U$ and $g \in G$ such that $gA \subset U$, we have $\mu(gA) = \mu(A)$.

Lemma 3.1. μ is the restriction of some left Haar measure on G.

Proof. Fix a countable set $(g_i)_{i \in \mathbb{Z}_{\geq 0}}$ in G such that $G = \cup g_i U$. Assume $g_0 = id$. Let $A_0 := U$, $A_1 := g_1 U \setminus U$, $A_2 := g_2 U \setminus (U \cup g_1 U)$ Then $G = \sqcup A_i$. Define an extension of μ' by

$$\mu'(E):=\sum_{i\geq 0}\mu(g_i^{-1}(E\cap A_i)).$$

Then one can prove that μ' is left G-invariant.

To check local-invariant, it is helpful to know

Lemma 3.2. Assume U is connected and $\delta > 0$. And μ is locally invariant only for $g \in B_{\delta}(id) \subset G$. Then U is locally invariant.

Proof. For every g, consider all possible finite words $(g_i)_{i=1}^n$ in $B_\delta(id)$ such that $g = g_n \cdot ... \cdot g_1$. For every $x \in U$, consider such words further satisfying $g_k \cdot ... \cdot g_1 \cdot x \in U$ for all k = 1, ..., n. This should solve the problem.

REFERENCES

- [Coul6] Yves Coudène, Ergodic theory and dynamical systems, Universitext, Springer-Verlag London, Ltd., London; EDP Sciences, [Les Ulis], 2016, Translated from the 2013 French original [MR3184308] by Reinie Erné. MR 3586310
- [EW11] Manfred Einsiedler and Thomas Ward, Ergodic theory with a view towards number theory, Graduate Texts in Mathematics, vol. 259, Springer-Verlag London, Ltd., London, 2011. MR 2723325
- [Ra92] Marina Ratner, Raghunathan's conjectures for SL(2, R), Israel J. Math. 80 (1992), no. 1-2, 1-31.
 MR 1248925