MODUL V RANGKAIAN TERINTEGRASI DAN BEBERAPA APLIKASI

I. TUJUAN

- 1. Memahami prinsip dasar Operational Amplifier (OpAmp).
- 2. Melihat beberapa aplikasi rangkaian elektronika

II. TUGAS PENDAHULUAN

1. Dapatkan sebuah artikel pendek dari internet atau dari mana saja tentang perkembangan teknologi IC (mikroelektronika) dan buat resumenya (maksimal 1 halaman ditulis tangan).

III. DASAR TEORI

A. Rangkaian Terintegrasi (Integrated Circuit atau IC)

Dengan kemajuan teknologi, transistor dan komponen yang lain seperti diode, resistor, capacitor, dan induktor dapat dibuat sangat kecil dan ditaruh dalam satu tempat (*substrate*) yang sama. Rangkaian mini dari komponen-komponen tersebut yang disusun sehingga membentuk fungsi tertentu disebut rangkaian terintegrasi atau *integrated circuit* (IC) atau *chip*. Salah satu contoh rangkaian terintegrasi adalah IC LM741 yang rangkaian skematikanya terlihat pada gambar 1 dibawah.

Gambar 1: Skematika Op-Amp

Rangkaian terintegrasi diatas dikemas menjadi sebuah komponen yang disebut IC Operational Amplifier (Op - Amp) seperti yang terlihat pada gambar 2. Sedangkan simbol untuk Op-Amp.

Gambar 2: Komponen Op-Amp.

Gambar 3: Simbol Sebuah Op-Amp

IV. REFERENSI

Boylestad, R., Nashelsky, L., 1996, "Electronic Devices and Circuit Theory", Englewood Cliffs, New Jersey, Prentice Hall.

V. PERALATAN DAN KOMPONEN YANG DIPERLUKAN

- 1. Resistor
- 2. Lm741 dan LM 31 7
- 3. Capacitor

VI. PERCOBAAN

A. Konfigurasi Dasar Penguat Op-Amp Inverting

1. Rangkaian Percobaan

2. Langkah Percobaan

- 1. Buat rangkaian seperti pada gambar 4. Gunakan $R1 = 10k\Omega$ dan $RF = 100k\Omega$.
- 2. Berikan sinyal input sebuah sinyal sinus dengan f = 1 kHz dan amplitude 400mV (peak-to-peak).
- 3. Gambarkan dengan detail pada laporan pendahuluan sinyal input dan output yang tampak pada osiloskop.
- 4. Dapatkan penguatan (gain) dari data pada nomor 2 diatas.
- 5. Bandingkan penguatan hasil pengukuran dengan hasil perhitungan untuk rangkaian tersebut.

B. Konfigurasi Dasar Penguat Op-Amp Non-Inverting

1. Rangkaian Percobaan

2. Langkah Percobaan

1. Buat rangkaian seperti pada gambar 5. Gunakan R1 = $10k\Omega$ dan RF = $100k\Omega$.

- 2. Berikan sinyal input sebuah sinyal sinus dengan f = 1 kHz dan amplitude 400mV (peak-to-peak).
- 3. Gambarkan dengan detail pada laporan pendahuluan sinyal input dan output yang tampak pada osiloskop.
- 4. Dapatkan penguatan (gain) dari data pada nomor 2 diatas.
- 5. Bandingkan penguatan hasil pengukuran dengan hasil perhitungan untuk rangkaian tersebut.

3. Tugas Kelompok

- 1. Simulasikan percobaan-percobaan di atas! Bandingkan hasilnya dengan hasil pada praktikum!
- 2. Sebutkan dan jelaskan karakteristik dari operational amplifier!
- 3. Buatlah rangkaian fullwave dan halfwave rectifier dengan menggunakan opamp! Simulasikan!

C. Regulator Tegangan

1. Rangkaian Percobaan

Gambar 6

2. Langkah Percobaan

- 1. Buat rangkaian gambar 6. Pilih R1 = 270Ω dan R2= $5K\Omega$.
- 2. Berikan tegangan input sebesar 15 Volt.
- 3. Putar R2 dari minimum sampai maksimum, amati tegangan output.

3. Tugas Kelompok

- 1. Pelajari datasheet LM317 dan dapatkan formula untuk mendapatkan tegangan output.
- 2. Berikan penjelasan mengenai cara kerja rangkaian pada percobaan ini.
- 3. Buatlah rangkaian yang menggunakan transistor BD 139 berupa alarm yang dikontrol cahaya, dengan phototransistor dengan kondisi tertutup dan terbuka dengan software simulasi dan jelaskan cara kerjanya

VII.Tugas Individu

- 1. Turunkan rumus mencari Vout dan Gain pada percobaan A!
- 2. Buat rangkaian penguat instrumentasi dan jelaskan cara kerjanya!
- 3. Tuliskan rumus matematis untuk mencari nilai Iadi pada percobaan B!