

Trobability of patine 12 12 12 12 1

• 0.2 X 0.3 X 0.3 = 0.018

Other paths: 1-> 1-> 1: 0.09

Probability of path 1->2->1->2:

• 0.6 X 0.2 X 0.5 = 0.06

Other paths: 1->1->1: 0.09 2->2->2: 0.018

© Eric Xing @ CMU, 2005-2014

Probability of path 1->1->2->2:

• 0.4 X 0.55 X 0.3 = 0.066

Other paths: 1->1->1: 0.09 2->2->2: 0.018

© Eric Xing @ CMU, 2005-201->2: 0.06

Most Likely Path: 1-> 1-> 1

• Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

· why?

© Eric Xing @ CMU, 2005-2014

Most Likely Path: 1-> 1-> 1

- State 1 has only two transitions but state 2 has 5:
 - Average transition probability from state 2 is lower
 © Eric Xing @ CMU, 2005-2014

Label bias problem in MEMM:

• Preference of states with lower number of transitions over others

Solution: Do not normalize probabilities locally

From local probabilities

Solution: Do not normalize probabilities locally

From local probabilities to local potentials

• States with lower transitions do not have an unfair advantage! © Eric Xing @ CMU, 2005-2014

From MEMM

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \prod_{i=1}^{n} P(y_i|y_{i-1}, \mathbf{x}_{1:n}) = \prod_{i=1}^{n} \frac{\exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))}{Z(y_{i-1}, \mathbf{x}_{1:n})}$$

From MEMM to CRF

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF is a partially directed model
 - Discriminative model like MEMM
 - Usage of global normalizer Z(x) overcomes the label bias problem of MEMM
 - Models the dependence between each state and the entire observation sequence (like MEMM)

Conditional Random Fields

General parametric form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$
$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

where
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

CRFs: Inference

• Given CRF parameters λ and μ , find the y^* that maximizes P(y|x)

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

- Can ignore Z(x) because it is not a function of y
- Run the max-product algorithm on the junction-tree of CRF:

• Given $\{(\mathbf{x}_d, \mathbf{y}_d)\}_{d=1}^N$, find λ^* , μ^* such that

$$\begin{split} \lambda*, \mu* &= & \arg\max_{\lambda,\mu} L(\lambda,\mu) = \arg\max_{\lambda,\mu} \prod_{d=1}^N P(\mathbf{y}_d|\mathbf{x}_d,\lambda,\mu) \\ &= & \arg\max_{\lambda,\mu} \prod_{d=1}^N \frac{1}{Z(\mathbf{x}_d,\lambda,\mu)} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_d) + \mu^T \mathbf{g}(y_{d,i},\mathbf{x}_d))) \\ &= & \arg\max_{\lambda,\mu} \sum_{d=1}^N (\sum_{i=1}^n (\lambda^T \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_d) + \mu^T \mathbf{g}(y_{d,i},\mathbf{x}_d)) - \log Z(\mathbf{x}_d,\lambda,\mu)) \end{split}$$

Computing the gradient w.r.t λ:

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$\nabla_{\lambda}L(\lambda,\mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left(P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d)\right)\right)$$

© Eric Xing @ CMU, 2005-2014

$$\nabla_{\lambda}L(\lambda,\mu) = \sum_{d=1}^{N} (\sum_{i=1}^{n} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_d) - \underbrace{\sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_i,y_{i-1},\mathbf{x}_d)))}_{\mathbf{y}}$$
Computing the model expectations:

- Requires exponentially large number of summations: Is it intractable?

$$\sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^n \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d)) = \sum_{i=1}^n (\sum_{\mathbf{y}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(\mathbf{y}|\mathbf{x}_d))$$

$$= \sum_{i=1}^n \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1}|\mathbf{x}_d)$$

Expectation of f over the corresponding marginal probability of neighboring nodes!!

- Tractable!
 - Can compute marginals using the sum-product algorithm on the chain

Computing marginals using junction-tree calibration:

• Junction Tree Initialization: $\alpha^0(y_i,y_{i-1}) = \exp(\lambda^T \mathbf{f}(y_i,y_{i-1},\mathbf{x}_d) + \mu^T \mathbf{g}(y_i,\mathbf{x}_d))$

After calibration:

on: Also called forward-backward algorithm $P(y_i,y_{i-1}|\mathbf{x}_d) \propto lpha(y_i,y_{i-1})$

$$\Rightarrow P(y_i, y_{i-1} | \mathbf{x}_d) = \frac{\alpha(y_i, y_{i-1})}{\sum_{y_i, y_{i-1}} \alpha(y_i, y_{i-1})} = \alpha'(y_i, y_{i-1})$$

© Eric Xing @ CMU, 2005-2014

Computing feature expectations using calibrated potentials:

$$\sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1} | \mathbf{x}_d) = \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) \alpha'(y_i, y_{i-1})$$

• Now we know how to compute $r_{\lambda}L(\lambda,\mu)$:

$$\begin{split} \nabla_{\lambda}L(\lambda,\mu) &= \sum_{d=1}^{N}(\sum_{i=1}^{n}\mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) - \sum_{\mathbf{y}}(P(\mathbf{y}|\mathbf{x}_{\mathbf{d}})\sum_{i=1}^{n}\mathbf{f}(y_{i},y_{i-1},\mathbf{x}_{d}))) \\ &= \sum_{d=1}^{N}(\sum_{i=1}^{n}(\mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) - \sum_{y_{i},y_{i-1}}\alpha'(y_{i},y_{i-1})\mathbf{f}(y_{i},y_{i-1},\mathbf{x}_{d}))) \end{split}$$

Learning can now be done using gradient ascent:

$$\begin{array}{lll} \boldsymbol{\lambda}^{(t+1)} & = & \boldsymbol{\lambda}^{(t)} + \eta \nabla_{\boldsymbol{\lambda}} L(\boldsymbol{\lambda}^{(t)}, \boldsymbol{\mu}^{(t)}) \\ \boldsymbol{\mu}^{(t+1)} & = & \boldsymbol{\mu}^{(t)} + \eta \nabla_{\boldsymbol{\mu}} L(\boldsymbol{\lambda}^{(t)}, \boldsymbol{\mu}^{(t)}) \end{array}$$

© Eric Xing @ CMU, 2005-2014

 In practice, we use a Gaussian Regularizer for the parameter vector to improve generalizability

$$\lambda*, \mu* = \arg\max_{\lambda,\mu} \sum_{d=1}^{N} \log P(\mathbf{y}_{d}|\mathbf{x}_{d}, \lambda, \mu) - \frac{1}{2\sigma^{2}} (\lambda^{T}\lambda + \mu^{T}\mu)$$

- In practice, gradient ascent has very slow convergence
 - Alternatives:
 - Conjugate Gradient method
 - Limited Memory Quasi-Newton Methods

CRFs: some empirical results

Comparison of error rates on synthetic data

Data is increasingly higher order in the direction of arrow

CRFs achieve the lowest error rate for higher order data

CRFs: some empirical results

· Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM ⁺	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF+ > MEMM+ >> HMM

Other CRFs

- So far we have discussed only 1dimensional chain CREs
 - Inference and learning: exact
- We could also have CRFs for arbitrary graph structure
 - E.a: Grid CRFs
 - Inference and learning no longer tractable
 - Approximate techniques used
 - MCMC Sampling
 - Variational Inference
 - Loopy Belief Propagation
 - We will discuss these techniques soon

Content

- Sequence labeling problems
- Word window classification
- Hidden Markov models (HMMs)
- Graphical models for sequence labeling