$\tilde{\chi}_1^{\pm}(100) \to W^{\pm} \tilde{\chi}_1^0(0)$ (ATLAS_2014_I1286761 (1403.5294))

• Process: $\tilde{\chi}_1^+ \tilde{\chi}_1^- : \tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$.

• The number of events: $5 \cdot 10^4$.

• Event Generator: Herwig++ 2.5.2.

#	cut name	$\epsilon_{ m Exp}$	$\epsilon_{ ext{Atom}}$	Atom Exp	$\frac{\text{(Exp-Atom)}}{\text{Error}}$	#/?	$R_{\rm Exp}$	$R_{ m Atom}$	Atom Exp	(Exp-Atom) Error
0	= 2 OSlep $p_T > 35, 20$: SF	100.0 ± 0.32	100.0 ± 3.92			-1	±	±		
1	Jet Veto: SF	49.5 ± 0.22	68.02 ± 3.24	1.37	5.7	0	0.49 ± 0.0	0.68 ± 0.03	1.37	5.7
2	Z Veto: SF	40.81 ± 0.2	53.67 ± 2.88	1.31	4.45	1	0.82 ± 0.0	0.79 ± 0.04	0.96	-0.84
3	WWa: $p_T(\ell\ell) > 80$: SF	6.85 ± 0.08	7.96 ± 1.11	1.16	0.99	2	0.17 ± 0.0	0.15 ± 0.02	0.88	-0.94
4	WWa: METrel > 80 : SF	4.06 ± 0.06	5.46 ± 0.92	1.34	1.51	3	0.59 ± 0.01	0.69 ± 0.12	1.16	0.81
5	WWa: $m_{\ell\ell} < 120$: SF	2.77 ± 0.05	4.21 ± 0.81	1.52	1.77	4	0.68 ± 0.01	0.77 ± 0.15	1.13	0.6

Table 1: The cut-flow table for the same flavour channel.

#	cut name	$\epsilon_{ m Exp}$	$\epsilon_{ ext{Atom}}$	Atom Exp	$\frac{\text{(Exp-Atom)}}{\text{Error}}$	#/?	R_{Exp}	R_{Atom}	Atom Exp	$\frac{\text{(Exp-Atom)}}{\text{Error}}$
0	$= 2 \text{ OSlep } p_T > 35, 20: \text{ DF}$	100.0 ± 0.32	100.0 ± 3.9			-1	±	±		
1	Jet Veto: DF	49.93 ± 0.22	65.23 ± 3.15	1.31	4.84	0	0.5 ± 0.0	0.65 ± 0.03	1.31	4.84
2	Z Veto: DF	49.93 ± 0.22	65.23 ± 3.15	1.31	4.84	1	1.0 ± 0.0	1.0 ± 0.05	1.0	0.0
3	WWa: $p_T(\ell\ell) > 80$: DF	7.69 ± 0.09	6.46 ± 1.0	0.84	-1.23	2	0.15 ± 0.0	0.1 ± 0.02	0.64	-3.57
4	WWa: METrel > 80: DF	4.82 ± 0.07	3.69 ± 0.75	0.77	-1.48	3	0.63 ± 0.01	0.57 ± 0.12	0.91	-0.47
5	WWa: $m_{\ell\ell} < 120$: DF	3.29 ± 0.06	3.08 ± 0.69	0.93	-0.31	4	0.68 ± 0.01	0.83 ± 0.19	1.22	0.8

Table 2: The cut-flow table for the different flavour channel.