

Figure 1: DNA and protein sequence of *A. calcoaceticus* s-GDH
(without signalpeptide)

5 1 GATGTTCCCTCTAACTCCATCTCAATTGCTAAAGCGAAATCAGAGAACCTT 50
 |||||||
 1 AspValProLeuThrProSerGlnPheAlaLysAlaLysSerGluAsnPh 17

10 51 TGACAAGAAAGTTATTCTATCTAATCTAAATAAGCCGCACCGCGTTGTAT 100
 |||||||
 18 eAspLysLysValIleLeuSerAsnLeuAsnLysProHisAlaLeuLeuT 34

15 101 GGGGACCAGATAATCAAATTGGTTAACTGAGCGAGCAACAGGTAAAGATT 150
 |||||||
 35 rpGlyProAspAsnGlnIleTrpLeuThrGluArgAlaThrGlyLysIle 50

20 151 CTAAGAGTTAACATCCAGAGTCGGGTAGTGAAAAACAGTTTTTCAGGTAC 200
 |||||||
 51 LeuArgValAsnProGluSerGlySerValLysThrValPheGlnValPr 67

25 201 AGAGATTGTCAATGATGCTGATGGCAGAATGGTTATTAGGTTTGCCT 250
 |||||||
 68 oGluIleValAsnAspAlaAspGlyGlnAsnGlyLeuLeuGlyPheAlaP 84

30 251 TCCATCCTGATTAAAATAATCCTTATATCTATATTTCAGGTACATT 300
 |||||||
 85 heHisProAspPheLysAsnAsnProTyrIleTyrIleSerGlyThrPhe 100

35 301 AAAAATCCGAAATCTACAGATAAAGAATTACCGAACCAAACGATTATCG 350
 |||||||
 101 LysAsnProLysSerThrAspLysGluLeuProAsnGlnThrIleIleAr 117

40 351 TCGTTATACCTATAATAACAGATAACGCTCGAGAAGCCAGTCGATT 400
 |||||||
 118 gArgTyrThrTyrAsnLysSerThrAspThrLeuGluLysProValAspL 134

45 401 TATTAGCAGGATTACCTTCATCAAAAGACCATCAGTCAGGTGCTTGTC 450
 |||||||
 135 euLeuAlaGlyLeuProSerSerLysAspHisGlnSerGlyArgLeuVal 150

50 451 ATTGGGCCAGATCAAAAGATTATTACGATTGGTACCAAGGGCGTAA 500
 |||||||
 151 IleGlyProAspGlnLysIleTyrTyrThrIleGlyAspGlnGlyArgAs 167

55 501 CCAGCTTGCTTATTGTTCTGCCAATCAAGCACACATCGCCAACCTC 550
 |||||||
 168 nGlnLeuAlaTyrLeuPheLeuProAsnGlnAlaGlnHisThrProThrG 184

60 551 AACAAAGAACTGAATGGTAAAGACTATCACACCTATATGGGTAAAGTACTA 600
 |||||||
 185 lnGlnGluLeuAsnGlyLysAspTyrHisThrTyrMetGlyLysValLeu 200

65 601 CGCTTAAATCTGATGGAAGTATTCCAAAGGATAATCCAAGTTAACGG 650
 |||||||
 201 ArgLeuAsnLeuAspGlySerIleProLysAspAsnProSerPheAsnG1 217

70 651 GGTGGTTAGCCATATTACACTTGGACATCGTAATCCGCAGGGCTTAG 700
 |||||||
 218 yValValSerHisIleTyrThrLeuGlyHisArgAsnProGlnGlyLeuA 234

75 701 CATTCACTCCAAATGGTAAATTATTGCAGTCTGAACAAAGGCCAAACTCT 750
 |||||||
 235 laPheThrProAsnGlyLysLeuLeuGlnSerGluGlnGlyProAsnSer 250

Figure 1: Continued (second and last page)

751 GACGATGAAATTAAACCTCATTGTCAAAGTGGCAATTATGGTTGGCCGAA 800
5 |||||
251 AspAspGluIleAsnLeuIleValLysGlyGlyAsnTyrGlyTrpProAs 267

801 TGTAGCAGGTTATAAAGATGATAGTGGCTATGCTTATGCAAATTATTCAG 850
10 |||||
268 nValAlaGlyTyrLysAspAspSerGlyTyrAlaTyrAlaAsnTyrSerA 284

851 CAGCAGCCAATAAGTCATAAGGATTAGCTAAAATGGAGTAAAAGTA 900
15 |||||
285 laAlaAlaAsnLysSerIleLysAspLeuAlaGlnAsnGlyValLysVal 300

901 GCCGCAGGGTCCCTGTGACGAAAGAATCTGAATGGACTGGTAAAAACTT 950
20 |||||
301 AlaAlaGlyValProValThrLysGluSerGluTrpThrGlyLysAsnPh 317

951 TGTCCCACCATTAAAAACTTTATACCGTTCAAGATACTACAACATA 1000
25 |||||
318 eValProProLeuLysThrLeuTyrThrValGlnAspThrTyrAsnTyrA 334

1001 ACGATCCAACCTGTGGAGAGATGACCTACATTGCTGGCAACAGTTGCA 1050
30 |||||
335 snAspProThrCysGlyGluMetThrTyrIleCysTrpProThrValAla 350

1051 CCGTCATCTGCCTATGTCTATAAGGGCGTAAAAAGCAATTACTGGTG 1100
35 |||||
351 ProSerSerAlaTyrValTyrLysGlyGlyLysAlaIleThrGlyTr 367

1101 GGAAAATACATTATTGGTTCATCTTAAACGTGGTGTCAATTTCGTA 1150
40 |||||
368 pGluAsnThrLeuLeuValProSerLeuLysArgGlyValIlePheArgI 384

1151 TTAAGTTAGATCCAACCTATAGCACTACTTATGATGACGCTGTACCGATG 1200
45 |||||
385 leLysLeuAspProThrTyrSerThrThrTyrAspAspAlaValProMet 400

1201 TTTAAGAGCAACAACCGTTATCGTGATGTGATTGCAAGTCCAGATGGAA 1250
50 |||||
401 PheLysSerAsnAsnArgTyrArgAspValIleAlaSerProAspGlyAs 417

1251 TGTCTTATATGTATTAACACTGATACTGCCGGAAATGTCCAAAAGATGATG 1300
45 |||||
418 nValLeuTyrValLeuThrAspThrAlaGlyAsnValGlnLysAspAspG 434

1301 GCTCAGTAACAAATACATTAGAAAACCCAGGATCTCTCATTAAGTTCAAC 1350
50 |||||
435 lySerValThrAsnThrLeuGluAsnProGlySerLeuIleLysPheThr 450

1351 TATAAGGCTAAG 1362
45 |||||
451 TyrLysAlaLys 454

Figure 2: Amino acid sequences of *A. calcoaceticus* (top) and *A. baumannii* (bottom)

5 1 DVPLTPSQFAKAKSENFDKKVILSNLNKPHELLWGPDNQIWLTERATGKI 50
 | : | | . |
 1 DIPLTTPAQFAKAKTENFDKKVILSNLNKPHELLWGPDNQIWLTERATGKI 50

10 51 LRVNPESGSVKTVFQVPEIVNDADGQNGLLGFAFHPDFKNNPYIYISGTF 100
 |
 51 LRVNPVSGSAKTVFQVPEIVSDADGQNGLLGFAFHPDFKHNPYIYISGTF 100

15 101 KNPKSTDKELPNQTIIIRRRTYNKSTDTEKPV DLLAGLPSSKDHQSGRLV 150
 |
 101 KNPKSTDKELPNQTIIIRRRTYNKTTDTFEKPIDLIAGLPSSKDHQSGRLV 150

20 151 IGPDQK IYYTIGDQGRNQLAYLFLPNQAQHTPTQQELNGKDYHTYMGKVL 200
 |
 151 IGPDQK IYYTIGDQGRNQLAYLFLSNQAQHTPTQQELNSKDYHTYMGKVL 200

25 201 RLNL DGSIPKDNPSFNGVVSHIYTLGHHRNPQGLAFTPNGKLLQSEQGPNS 250
 |
 201 RLNL DGSIPKDNPSFNGVVSHIYTLGHHRNPQGLAFAPNGKLLQSEQGPNS 250

30 251 DDEINLIVKG GNYGWP NVAGYKDDSGYAYAN YSAAANKS.IKDLAQNGVK 299
 |
 251 DDEINLVLKG GNYGWP NVAGYKDDSGYAYAN YSAAATNKSQIKDLAQNGIK 300

35 300 VAAGVPVTKESEWTGKNFV PPLK TLYTVQDT NYNDPTCGEMTYICWPTV 349
 |
 301 VATGVPVTKESEWTGKNFV PPLK TLYTVQDT NYNDPTCGEMAYICWPTV 350

40 350 APSSAYVYKG KKAI TG WENT LLVPSL KRG VIFRI KLDPTY STTYDDAVP 399
 |
 351 APSSAYVYTGGKAI PG WENT LLVPSL KRG VIFRI KLDPTY STT LDDAIP 400

45 400 MFKSNNRYRDVIA SPDG NVLYV LTD TAGNV QKDDG SVNT LENPGSLIKF 449
 |
 401 MFKSNNRYRDVIA SP EGNT LYV LTD TAGNV QKDDG SVTH LENPGSLIKF 450

50 450 TYKAK 454
 | | |
 451 T YNGK 455

Figure 3: Schematic diagram of the plasmide with gene for s-GDH

Figure 4: Nucleotide (DNA) sequence of the pACSGDH vector

1 CACTAACTGA TTACGCACCG CATGTAACCG TTTTCAATCT GTGAGTAAAT
5 51 TCACAGTTA TTAACATTGT GATAGCTATG ATGACAACGT TTGTCGCACT
10 101 GTAACTAACG TGTAACAGTT AGTTGTCAGT TTTGCTGGGG TATTCGCTT
15 151 ATAAAAACCG TTATCACAAT ATCCCGCAC TACCGGACAA AAATAAAGAG
20 201 TTGAATAAGA GCTTATCCA TTAGGGCTAT TTTACTTGCC ATTTTGGACC
25 251 TGGGCAGTGC TCGCCAAAAC GCGTTAGCGT TTTGAACGCG CTAGCGCGG
30 301 CCCGAAGGGC GAGCGTAGCG AGTCAAACCT CACGTACTAC GTGTACGCTC
35 351 CGGTTTTTGC GCGCTGTCCG TGTCCAAACT GCTGCGCAA TAACGCCCTGG
40 401 TGGGATAGGC TCTAAATACG CTTCGCGTT CAGTAACACG CGTTAACGTG
45 451 CTGAACAGCC GGGCATTTTT TTACGCTATA CCCTACATAA TAAAACCGGA
50 501 GCTACCATGA ATAAGAAGGT ACTGACCCCTT TCTGCCGTGA TGGCAAGTCT
55 551 GTTATTCGGC GCGCACGCGC ATGCCGCCGA TGTTCCCTCTA ACTCCATCTC
60 601 AATTGCTAA AGCGAAATCA GAGAACTTTG ACAAGAAAGT TATTCTATCT
65 651 AATCTAAATA AGCCGCACGC GTGTTATGG GGACCGAGATA ATCAAATTG
70 701 GTTAACTGAG CGAGCAACAG GTAAGATTCT AAGAGTTAAT CCAGAGTCGG
75 751 GTAGTGTAAA AACAGTTTTT CAGGTACCAAG AGATTGTCAA TGATGCTGAT
80 801 GGGCAGAATG GTTTATTAGG TTTTGCCTTC CATCCTGATT TTAAAAATAA
85 851 TCCTTATATC TATATTCAG GTACATTAA AAATCCGAAA TCTACAGATA
90 901 AAGAATTACC GAACCAAACG ATTATTCGTC GTTATACCTA TAATAAATCA
95 951 ACAGATACGC TCGAGAAGCC AGTCGATTTA TTAGCAGGAT TACCTTCATC
100 1001 AAAAGACCAT CAGTCAGGTC GTCTTGTCA TGGGCCAGAT CAAAAGATTT
105 1051 ATTATACGAT TGGTGACCAA GGGCGTAACC AGCTTGCTTA TTTGTTCTTG
110 1101 CCAAATCAAG CACAACATAC GCCAACTCAA CAAGAACTGA ATGGTAAAGA
115 1151 CTATCACACC TATATGGGT AAGTACTACG CTTAAATCTT GATGGAAGTA
120 1201 TTCCAAAGGA TAATCCAAGT TTTAACGGGG TGTTAGCCA TATTTATACA
125 1251 CTTGGACATC GTAATCCGCA GGGCTTAGCA TTCACTCCAA ATGGTAAATT
130 1301 ATTGCAGTCT GAACAAGGCC CAAACTCTGA CGATGAAATT AACCTCATTG
135 1351 TCAAAGGTGG CAATTATGGT TGGCCGAATG TAGCAGGTTA TAAAGATGAT
140 1401 AGTGGCTATG CTTATGCCAA TTATTCAAGCA GCAGCCAATA AGTCAATTAA
145 1451 GGATTTAGCT CAAAATGGAG TAAAAGTAGC CGCAGGGGTC CCTGTGACGA
150 1501 AAGAATCTGA ATGGACTGGT AAAAACTTG TCCCACCATT AAAAACTTA

Figure 4: Continued (second out of three pages)

1551 TATACCGTTC AAGATAACCA CAACTATAAC GATCCAAC TT GTGGAGAGAT
5 1601 GACCTACATT TGCTGGCCAA CAGTTGCACC GTCATCTGCC TATGTCTATA
1651 AGGGCGGTAA AAAAGCAATT ACTGGTTGGG AAAATACATT ATTGGTTCCA
10 1701 TCTTTAAAAC GTGGTGTCA TTTCCGTATT AAGTTAGATC CAACTTATAG
1751 CACTACTTAT GATGACGCTG TACCGATGTT TAAGAGCAAC AACCGTTATC
1801 GTGATGTGAT TGCAAGTCCA GATGGGAATG TCTTATATGT ATTAACGTAT
15 1851 ACTGCCGGAA ATGTCCAAA AGATGATGGC TCAGTAACAA ATACATTAGA
1901 AAACCCAGGA TCTCTCATTA AGTTCACCTA TAAGGCTAAG TAATACAGTC
20 1951 GCATTAAAAA ACCGATCTAT AAAGATCGGT TTTTTTAGTT TTAGAAAAGA
2001 ATTCACTGGC CGTCGTTTA CAACGTCGTG ACTGGGAAAA CCCTGGCGTT
2051 ACCCAACTTA ATCGCCTTGC AGCACATCCC CCTTCGCCA GCTGGCGTAA
25 2101 TAGCGAAGAG GCCCGCACCG ATCGCCCTTC CCAACAGTTG CGCAGCCTGA
2151 ATGGCGAATG GCGCCTGATG CCGTATTTTC TCCTTACGCA TCTGTGCGGT
30 2201 ATTCACACCC GCATATGGTG CACTCTCAGT ACAATCTGCT CTGATGCCGC
2251 ATAGTTAACGC CAGCCCCGAC ACCCGCCAAC ACCCGCTGAC GCGCCCTGAC
2301 GGGCTTGTCT GCTCCCGGCA TCCGCTTACA GACAAGCTGT GACCGTCTCC
35 2351 GGGAGCTGCA TGTGTCAGAG GTTTTCACCG TCATCACCGA AACGCGCGAG
2401 ACGAAAGGGC CTCGTGATAC GCCTATTTTT ATAGGTTAAT GTCATGATAA
40 2451 TAATGGTTTC TTAGACGTCA GGTGGCACTT TTCGGGGAAA TGTGCGCGGA
2501 ACCCCTATTT GTTTATTTTT CCAAATACAT TCAAATATGT ATCCGCTCAT
2551 GAGACAATAA CCCTGATAAA TGCTTCAATA ATATTGAAAA AGGAAGAGTA
45 2601 TGAGTATTCA ACATTTCCGT GTCGCCCTTA TTCCCTTTTG TGCGGCATT
2651 TGCCTTCCTG TTTTGCTCA CCCAGAAACG CTGGTGAAAG TAAAAGATGC
50 2701 TGAAGATCAG TTGGGTGCAC GAGTGGTTA CATCGAACTG GATCTCAACA
2751 GCGGTAAGAT CCTTGAGAGT TTTCGCCCCG AAGAACGTTT TCCAATGATG
2801 AGCACTTTA AAGTTCTGCT ATGTGGCGCG GTATTATCCC GTATTGACGC
55 2851 CGGGCAAGAG CAACTCGGTC GCCGCATACA CTATTCTCAG AATGACTTGG
2901 TTGAGTACTC ACCAGTCACA GAAAAGCATC TTACGGATGG CATGACAGTA
2951 AGAGAATTAT GCAGTGCTGC CATAACCAG AGTGATAACA CTGCGGCCAA
60 3001 CTTACTTCTG ACAACGATCG GAGGACCGAA GGAGCTAACCC GCTTTTTGC
3051 ACAACATGGG GGATCATGTA ACTCGCCTTG ATCGTTGGGA ACCGGAGCTG

Figure 4: Continued (third and last page)

3101 AATGAAGCCA TACCAAACGA CGAGCGTGAC ACCACGATGC CTGTAGCAAT
5 3151 GGCACAAACG TTGCGCAAAC TATTAACTGG CGAACTACTT ACTCTAGCTT
3201 CCCGGCAACA ATTAATAGAC TGGATGGAGG CGGATAAAGT TGCAGGACCA
10 3251 CTTCTGCGCT CGGCCCTTCC GGCTGGCTGG TTTATTGCTG ATAAATCTGG
3301 AGCCGGTGAG CGTGGGTCTC GCGGTATCAT TGCAAGCACTG GGGCCAGATG
3351 GTAAGCCCTC CCGTATCGTA GTTATCTACA CGACGGGGAG TCAGGCAACT
15 3401 ATGGATGAAC GAAATAGACA GATCGCTGAG ATAGGTGCCT CACTGATTAA
3451 GCATTGGTAA CTGTCAGACC AAGTTTACTC ATATATACTT TAGATTGATT
20 3501 TAAAACTTCA TTTTTAATT AAAAGGATCT AGGTGAAGAT CCTTTTGAT
3551 AATCTCATGA CAAAATCCC TTAACGTGAG TTTTCGTTCC ACTGAGCGTC
3601 AGACCCCGTA GAAAAGATCA AAGGATCTTC TTGAGATCCT TTTTTCTGC
25 3651 GCGTAATCTG CTGCTTGCAA ACAAAAAAAC CACCGCTACC AGCGGTGGTT
3701 TGTTGCCGG ATCAAGAGCT ACCAACTCTT TTTCCGAAGG TAACTGGCTT
3751 CAGCAGAGCG CAGATACCAA ATACTGTCCT TCTAGTGTAG CCGTAGTTAG
30 3801 GCCACCACTT CAAGAACTCT GTAGCACCGC CTACATACCT CGCTCTGCTA
3851 ATCCTGTTAC CAGTGGCTGC TGCCAGTGGC GATAAGTCGT GTCTTACCGG
35 3901 GTTGGACTCA AGACGATAGT TACCGGATAA GGCGCAGCGG TCGGGCTGAA
3951 CGGGGGGTTTC GTGCACACAG CCCAGCTTGG AGCGAACGAC CTACACCGAA
40 4001 CTGAGATACC TACAGCGTGA GCTATGAGAA AGCGCCACGC TTCCCGAAGG
4051 GAGAAAGGCG GACAGGTATC CGGTAAGCGG CAGGGTCGGA ACAGGAGAGC
4101 GCACGAGGGA GCTTCCAGGG GGAAACGCCT GGTATCTTA TAGTCCTGTC
45 4151 GGGTTTCGCC ACCTCTGACT TGAGCGTCGA TTTTTGTGAT GCTCGTCAGG
4201 GGGCGGGAGC CTATGGAAA ACGCCAGCAA CGCGGCCTTT TTACGGTTCC
50 4251 TGGCCTTTG CTGGCCTTT GCTCACATGT TCTTTCTGC GTTATCCCCT
4301 GATTCTGTGG ATAACCGTAT TACCGCCTT GAGTGAGCTG ATACCGCTCG
4351 CCGCAGCCGA ACGACGGGGC CCG