

Tema 2: Diseño conceptual de Sistemas de Información

Metodología para el diseño conceptual Herramientas para el modelado

Material desarrollado por ...

Fernando Berzal

Ignacio J. Blanco

Francisco J. Cabrerizo

Jesús Campaña

Carlos Cruz

María José Martín

Daniel Sánchez

El modelo Entidad-Relación (E-R)

- Modelo de datos más extendido para el diseño conceptual:
 - Posee una gran capacidad expresiva
 - Es riguroso
 - Simple y fácil de emplear
- Sirve para especificar las necesidades de información de una organización
 - Diseño apropiado
 - Diseño de calidad
 - Diseño fácil de transmitir

El modelo construido debe:

- Reflejar fielmente las necesidades de información de una organización:
 - Será usado como base para el desarrollo de un sistema
- Ofrecer un diseño independiente del posterior almacenamiento de los datos y sus métodos de acceso
 - Así se permite tomar decisiones objetivas acerca de la implementación más idónea.

Definición 4.1 (Modelo E-R). El modelo E-R es un mecanismo formal para representar y manipular información de manera general y sistemática.

- Claves para hacer uso del modelo E/R:
 - Datos
 - Recurso de la empresa de gran valía
 - Hay que analizarlos con detenimiento
 - Control de datos ventaja para el negocio
 - Convenciones
 - Aplicar una notación rigurosa y normalizada
 - Seguir una línea de actuación sistemática
 - Redundancia mínima
 - Cualquier dato o concepto debe ser modelado de una única manera

Definición 4.2 (Entidades). Una entidad se define como un objeto que existe y que es distinguible de los demás. Por ejemplo, un empleado, un libro, un departamento...

Conjuntos de entidades:

- Entidades que tienen las mismas cualidades
- Ejemplos:
 - Empleados
 - Libros
 - Departamentos
- Algunos autores los denominan tipos.

Empleado

Definición 4.3 (Atributos). Son las propiedades que caracterizan un conjunto de entidades.

- Ejemplos:
 - Conjunto de entidades empleados:
 - DNI
 - Nombre
 - Sueldo
 - · ...
- Conceptos relevantes:
 - Dominio
 - Conjunto de valores permitidos para un determinado atributo
 - Identificador
 - Atributo o conjunto de atributos cuyos valores sirven para identificar unívocamente a cada una de las entidades de un conjunto.
 - Ejemplos:
 - Empleados: DNI
 - Libros: ISBN

 Atributos e identificadores (notación)

Atributo compuesto (notación)

Entidades fuertes y débiles

Definición 4.4 (Dependencia existencial). Sean A y B dos conjuntos de entidades. Decimos que **B depende existencialmente de A** si cumple:

- 1. $\exists T \in A \times B / \forall b \in B \Longrightarrow \exists a \in A / (a, b) \in T, y$
- 2. Es imposible identificar a b sin identificar previamente a a.

Entidad fuerte	Entidad débil
Cuenta corriente	Movimientos
Factura	Líneas de detalle
Historia clínica	Ingresos
Avión	Asientos

Definición 4.5 (Asociaciones o relaciones). Una relación es una conexión semántica entre dos o más conjuntos de entidades.

Relaciones

- Cardinalidad: Número máximo de entidades de un conjunto que se conecta o relaciona con una entidad de otro y viceversa.
- En el caso de las relaciones binarias:
 - Muchos a muchos (n:m)
 - Libros Autores
 - Uno a muchos (m:1)
 - Departamento Empleados
 - Uno a uno (1:1)
 - Persona Partida Nacimiento

Relaciones (notación)

Relaciones (lectura)

Un empleado trabaja en un departamento

Relaciones (lectura)

En un departamento trabajan muchos empleados

Relaciones

- Participación: Número mínimo de entidades de un conjunto que se conecta o relaciona con las entidades del otro.
- En el caso de las relaciones binarias:
 - parcial, 0: es posible que ninguna entidad de un lado se conecte con una o varias del otro; se lee como "puede"
 - total, 1: una entidad de un lado tiene que conectarse con una o varias del otro; se lee como "tiene que"

Relaciones (lectura)

Un cliente **puede** tener varios vehículos

Relaciones (lectura)

Un vehículo **tiene que** pertenecer a un cliente

- Las relaciones también pueden tener atributos que nos permitan caracterizarlas
 - Venta: cantidad, fecha
 - Matrícula: calificación
 - ...

 Atributos en las relaciones (notación)

Definición 4.6 (Especialización). Formalmente, diremos que el conjunto de entidades A es una especialización del conjunto de entidades B, si $\forall a \in A \Longrightarrow a \in B$. Es decir, el conjunto de entidades A está incluido en el conjunto de entidades B.

26

Otros elementos del modelo: EE/R

Generalización/especialización (notación)

- Generalización/especialización:
 - Obligatoriedad:
 - parcial, p: puede haber entidades en el conjunto generalizado que no pertenezcan a ningún conjunto especializado
 - total, t: toda entidad del conjunto generalizado tiene que pertenecer a algún conjunto especializado

- Generalización/especialización:
 - Exclusividad:
 - exclusiva, e: una entidad de un conjunto especializado no puede pertenecer a otro conjunto especializado
 - solapada, s: una entidad de un conjunto especializado puede pertenecer a varios conjuntos especializados

Otros elementos del modelo: EE/R

Combinaciones:

- {t,e}: todo A es B oC, pero no ambos
- {t,s}: todo A es B oC, o ambos
- {p,e}: algunos A son B o C, pero no ambos
- {p,s}: algunos Ason B o C, o ambos

Agregación:

- Sirve para expresar relaciones entre:
 - Relaciones y conjuntos de entidades
 - Relaciones y relaciones
- Puede resultar interesante considerar la agregación como una entidad genérica sin especificar su estructura interna:
 - Caja negra de la cual sólo deben conocerse las claves primarias de los conjuntos de entidades a los que integra.

- Grado de una relación:
 - Número de entidades que están involucradas en la conexión. Normalmente, binarias.
 - Puede ser que sea necesario emplear relaciones de orden mayor:
 - Ternarias
 - Tetrarias
- La cardinalidad en una relación n-aria se analiza por partes:
 - El extremo de cada arista que acaba en un conjunto de entidades se obtiene fijando una entidad genérica de cada uno de los otros tipos de entidades que intervienen.

- Ejemplo: Tres conjuntos de entidades.
 - Proveedores, Piezas y Proyectos
 - Relación de suministro entre ellos

En cualquier caso, las relaciones de grado alto:

- Complican el diagrama
- Pueden esconder un mal diseño
 - Un conjunto de entidades que no se ha tenido en cuenta

- Ciclos
 - La aparición de ciclos en los diagramas es normal
 - Deben analizarse cuidadosamente porque puede esconder situaciones peligrosas:
 - Reflejar información redundante

Heurísticas de modelado

- ¿Qué se puede esconder tras una agregación?
 - Las agregaciones son un elemento de abstracción potente.
 - No debemos abusar de ellas.
 - A veces una agregación oculta un conjunto de entidades que no se ha tenido en cuenta en el modelado.

- El proceso de creación de un diagrama entidadrelación complejo puede no ser abordable en un solo paso.
- Es más deseable poder representar conceptos de manera más genérica para ir refinándolos posteriormente.

 Supón que en una fase temprana del diseño, se representa la siguiente situación:

 Pero en un análisis más profundo de los requisitos, descubrimos que el cliente compra artículos en grupos, de modo que puede comprar el mismo artículo varias veces:

 A primera vista, los dos esquemas parecen estar relacionados:

 De hecho, los dos describen el mismo problema a distintos niveles de abstracción:

 Al proceso de pasar de un esquema entidadrelación a otro relacionado con él siguiendo ciertas normas, se le conoce como refinamiento

 A dos vistas distintas en un proceso de refinamiento, se les conoce como niveles de refinamiento

 A la transformación que permite refinar una parte de un entidad-relación, se le conoce como primitiva de refinamiento

 Supón que en una fase temprana del diseño, se representa la siguiente situación en una empresa:

 Sin embargo, nos dicen que hay dos tipos de empleados: conductores y operadores de máquina

 ... que como equipos tenemos camiones y máquinas

 ... y que los camioneros conducen camiones y los operadores operan máquinas

 Si ponemos el refinamiento de los tres elementos juntos:

 Llamamos transformación al conjunto de primitivas aplicadas a la vez al conjunto de primitivas aplicadas sobre elementos del mismo esquema.

Primitivas para el diseño conceptual: esquema inicial

• Al esquema original en la transformación, se le denomina esquema inicial.

Primitivas para el diseño conceptual: esquema resultante

• Al esquema original en la transformación, se le denomina esquema resultante.

 Si dos elementos en el esquema inicial están conectados entre sí, sus transformados tienen que estar conectados entre sí.

 A la línea discontinua que envuelve al refinamiento de un elemento mediante primitiva, se le llama frontera.

 Preservación de frontera del refinamiento: si entre dos elementos sin refinar hay una conexión, dicha conexión la hereda uno sólo de los elementos del esquema refinado.

 Preservación semántica: la semántica de un elemento sin refinar y la de su refinamiento, difieren únicamente en el grado de abstracción.

- Según si permiten un diseño analítico o sintético, existen dos tipos básicos:
 - Primitivas descendentes
 - Primitivas ascendentes

 Permiten llegar desde una visión genérica y abstracta de los datos de un sistema hasta una versión concreta o específica (como hemos visto en los dos ejemplos anteriores)

Visión genérica

Visión específica

T1: de entidad a entidades relacionadas

T2: de entidad a especialización

62

• T3: de entidad a entidades no relacionadas

T4: de relación a relaciones paralelas

T5: de relación a entidad con relaciones

T6: desarrollo de atributos

T7: desarrollo de atributos compuestos

T8: refinamiento de atributos

Propiedades:

- No son mínimas, es decir, algunas son redundantes (se puede conseguir la T5 a partir de la T1)
- No son completas, es decir, no se puede generar cualquier diagrama sino sólo los basados en conexiones en serie y en paralelo. No todos los esquemas son producibles descendentemente.

 Permiten llegar desde una visión concreta o específica de los datos de un sistema hasta una versión conectada del sistema.

B1: de generación de entidad

B2: de generación de relación

Primitivas para el diseño conceptual: primitivas ascendentes

B3: de generación de generalización

Primitivas para el diseño conceptual: primitivas ascendentes

B4: de agregación de atributos

Primitivas para el diseño conceptual: primitivas ascendentes

B5: de agregación de atributo compuesto

- Son mínimas, es decir, no hay ninguna redundante.
- Son *completas*, es decir, se puede generar cualquier diagrama.
- Todos los esquemas son *producibles* ascendentemente.

- Son de dos tipos:
 - Descendente: consiste en aplicar las primitivas descendentes a todos los elementos de un refinamiento conceptual (a un *nivel de refinamiento*), y aplicarlo a cada refinamiento hasta que todos los requisitos queden representados.
 - Ascendente: consiste en aplicar las primitivas ascendentes a todos los elementos de un refinamiento conceptual (a un *nivel de refinamiento*), y aplicarlo a cada refinamiento hasta que todos los requisitos queden representados.

Primitivas para el diseño conceptual: Estrategia de diseño descendente

No es posible porque no todos los elementos se refinan a la vez.

- Todos los conceptos están presentes en todos los pasos de refinamiento.
- El proceso termina cuando todos los requisitos han quedado representados explícitamente en el sistema.

Primitivas para el diseño conceptual: Estrategia de diseño ascendente

- Permite pasar de conceptos sencillos a conceptos complejos.
- Es sencillo inicialmente y permite versiones preliminares del esquema.
- Requiere mucha reestructuración de esquema, que es difícil en esquemas complejos.

Primitivas para el diseño conceptual: Estrategia de diseño centrífuga

 Modificación de la estrategia de diseño ascendente que permite centrarse en una serie de conceptos, modelarlos y pasar al siguiente de conceptos conectados con los primeros.

Primitivas para el diseño conceptual: Estrategia de diseño centrífuga

Primitivas para el diseño conceptual: Estrategia de diseño centrífuga

- Permite aplicar un orden en la aplicación de los refinamientos.
- Requiere un grado de abstracción similar en cada refinamiento.

- Combina las estrategias ascendente y descendente:
 - Dividir los requisitos en dos conjuntos.
 - Se produce un esquema armazón que aglutine todos los requisitos y las conexiones entre las dos particiones.
 - Se modela cada partición usando las primitivas descendentes.
 - Se conecta el modelado de cada partición con las demás usando las primitivas ascendentes, siguiendo las instrucciones del armazón.

Primitivas para el diseño conceptual: Estrategia de diseño mixta

Primitivas para el diseño conceptual: Estrategia de diseño mixta

Primitivas para el diseño conceptual: Estrategia de diseño mixta

- Descendente: para entornos altamente estructurados y niveles de estructura iguales.
- Ascendente: para organizaciones informales.
- La mixta permite una mayor flexibilidad.