

Sample Preparation for Illumina MiSeq Dual Index Amplicon Sequencing 🖘

Forked from illumina MiSeq Dual Index Amplicon Sequencing Sample Preparation

Scientific Reports

Máté Vass¹, Anna Székely¹

¹Uppsala University

1 Works for me

dx.doi.org/10.17504/protocols.io.468gzhw

Máté Vass 🚱

ABSTRACT

Amplicon sequencing sample preparation for bacteria and microeukaryotes

EXTERNAL LINK

https://doi.org/10.1038/s41598-020-59182-1

THIS PROTOCOL ACCOMPANIES THE FOLLOWING PUBLICATION

Vass M, Székely AJ, Lindström ES, Langenheder S, Using null models to compare bacterial and microeukaryotic metacommunity assembly under shifting environmental conditions. Scientific Reports doi: 10.1038/s41598-020-59182-1

MATERIALS

NAME ~	CATALOG #	VENDOR V
Q5 High-Fidelity DNA Polymerase - 100 units	M0491S	New England Biolabs
STEPS MATERIALS		
NAME Y	CATALOG # ~	VENDOR V
Q5 High-Fidelity DNA Polymerase - 500 units	M0491L	New England Biolabs

BEFORE STARTING

Put pipettes and tips in the UV chamber for 10 mins.

Clean bench with MQ and EtOH.

Perform the first PCR (duplicates of each sample) using Illumina adaptor attached primers that target the gene of your choice. Here we present the protocol using the bacterial primers 341F and 805RN, and eukaryotic primers 574*f and 1132r.

Bacterial primers (Herlemann et al., 2011):

Illumina adapter-N4-341F:

5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCCTACGGGNGGCWGCAG-3'

Illumina adapter-805R:

5'-AGACGTGTGCTCTTCCGATCTGACTACHVGGGTATCTAATCC-3'

Eukaryotic primers (Hugerth et al., 2014):

Illumina adapter-4N-574*f:

5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCTNNNNCGGTAAYTCCAGCTCYV-3'

Illumina adapter-1132r:

5'-AGACGTGTGCTCTTCCGATCTCCGTCAATTHCTTYAART-3'

First PCR reactions

Component	Working	Final conc.	1 reaction	(N) reactions
s	conc.		(20 µl)	
5xQ5	5X	1X	4 μΙ	
Reaction				
Buffer				
Forward	10 µM	0.25 μM	0.5 μΙ	
Primer				
Reverse	10 μΜ	0.25 μΜ	0.5 μΙ	
Primer				
dNTPs	2 mM	200 μΜ	2 µl	
Q5 HF DNA	2 U/µl	0.02 U/µl	0.2 μΙ	
polymerase				
Template			1 µl	
DNA				
Nuclease-			11.8 µl	
Free water				
Σ			20 µl	

First PCR program for bacteria

STEP	TEMP.	TIME
Initial Denaturation	98°C	30 seconds
	98°C	10 seconds
20 cycles		
Annealing temp.	48°C*	30 seconds
	72°C	30 seconds/kb
Final elongation	72°C	2 minutes
Hold	6°C	∞

First PCR program for eukaryote

STEP	TEMP.	TIME
Initial Denaturation	98°C	1 minute
20 cycles	98°C	10 seconds
Annealing temp.	51°C	30 seconds
	72°C	1 minute/kb
Final elongation	72°C	2 minutes
Hold	6°C	∞

- 2 Check PCR products with Agarose gel electrophoresis (1%) optional
- 3 Pool PCR duplicate samples together Optional: run Agarose gel electrophoresis (1%)
- 4 Second PCR is conducted for attaching standard illumina handles and index primers

Multiplex_fwd

Multiplex_rev

CAAGCAGAAGACGCATACGAGAT-[i7 index]-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

(In total 20 different forward index/barcode primers and 20 different reverse index/barcode primers. By combining both primers (20X20), it can possible to generate 400 tags in one final pool for sequencing)

Second PCR reactions

Components	Working conc.	Final conc.	1 reaction (20 µI)	(N) reactions	
5xQ5 Reaction Buffer	5X	1X	4 μΙ		
Forward index (i5, illu-N501-N508)	5 μΜ	0.25 μΜ	1 μΙ		
Reverse index (i7, illu-N701-N712)	5 μΜ	0.25 μΜ	1 μΙ		
dNTPs	2 mM	200 μΜ	2 µl		
Q5 HF DNA polymerase	2 U/µl	0.02 U/µl	0.2 μΙ		
Template from 1st PCR			2 μΙ		
Nuclease-Free water			9.8 μΙ		
Σ			20 μΙ		

Second PCR program for both bacteria and eukaryote

STEP	TEMP.	TIME
Initial Denaturation	98°C	30 seconds
	98°C	10 seconds
15 cycles		
	66°C	30 seconds
	72°C	30 seconds/kb
Final Elongation	72°C	2 minutes
Hold	6°C	∞

5 Check second PCR products with Agarose gel electrophoresis (1%)

© 00:01:00

- 6 Perform purification with magnetic beads (Agencourt AMPure) and run Agarose gel electrophoresis (1%)
- 7 Quantification: PicoGreen assay (Quant-iT PicoGreen dsDNA Assay Kit, Invitrogen)

- 8 Calculate PCR samples concentration and volume before pooling
- 9 Pool the PCR samples in equal DNA amount (mg) or for unequal length amplicons, in equal molecule amount (mol). You will get one-one tube with a mix of all the samples (bacteria and eukaryote separately) in it.

To calculate the volume of each sample to be pooled (DNA amount mixing):

- Use the lowest concentration sample to define the minimum amount of DNA (ng) that you have available from a single sample: the DNA concentration (ng/ μ L) of the lowest concentration sample multiplied with its volume (μ L). This will be your **target DNA amount** for each sample.
- Calculate how many μLs of each sample you need to achieve the target DNA amount: divide the target DNA amount with the concentration of each sample.
- Pipette into one tube the calculated volume of each sample. Aim to use the same pipette for all samples (dilute or pipette multiple times) to avoid pipette calibration errors.
- 10 Requantify with PicoGreen before submitting to sequencing facility.

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited