

课程目标

- □ 掌握逻辑代数基础,具有利用逻辑代数原理及 基本逻辑门构造典型逻辑组合部件的能力
- 掌握组合逻辑电路的分析方法及设计方法,具有利用基本逻辑部件及中规模芯片构造组合逻辑电路的能力;
- 掌握时序逻辑电路的分析方法及设计方法,具有利用触发器、逻辑门、基本逻辑部件及中规模芯片构造时序逻辑电路的能力;
- □ 了解可编程逻辑器件的基本工作原理,具有利用可编程逻辑器件设计逻辑电路的能力。
- 培养自主学习的能力,通过查阅器件资料及参考文献,能利用各种基本逻辑部件、中规模芯片及可编程逻辑器件设计一个较为复杂的完整的数字系统.

数字逻辑的应用

☞・数字通讯、数字控制、数字测量·······

- ・ 从天上到陆地,从陆地到海洋……
 - 大到卫星、飞船,小到玩具、手表……

数字逻辑课与其他硬件课程的耦合

▲本节中的几个问题

- >何为数字逻辑?
- ▶数字系统中的开关器件
- ▶数字系统中的"0"和"1"

Logical Design?

数字电路

Design of Digital Systems

- 划分成子系统
- 确定各子系统特性

Example: 计算机的系统设计

- 存储单元,运算单元,输入输出设备…….
- 各个子系统之间的互连及控制

Design of Digital Systems

- 实现各子系统的逻辑功能
 - 将各个功能模块互连

Example: 寄存器设计

• 如何用逻辑门和触发器设计实现?

Design of Digital Systems

System Design

Logic Design

Circuit Design

■ 确定特定逻辑器件的实 现和连接

Example: 逻辑门、触发器设计

• 二极管、三极管、电阻…

• 各逻辑器件的互连

■ 模拟信号:数值的变化在时间上是连续的如:语音信号

■ 数字信号:数值的变化在时间上是不连续的

数字系统使用的是具有两种状态的开关器件

如:二极管、三极管

二极管由PN结组成,具有单向导电性

- ■利用三极管的饱和、截止状态作开关
- ■三极管开关的通、断受基极B的电位高低控制

由于大多数开关器件只能取两个不同的值, 所以数字系统内部使用二进制也就很自然了。

4. 数字逻辑中的"0"和"1"

■ 代表两种状态

0 低电平

1 高电平

■ 在开关电路中

0: 开关断开

1: 开关闭合

问题: 为何使用二进制?

- 电路简单
- 对电器元件要求不高
- 可靠稳定
- 精确
- 存储
- 计算机处理

1.2 二进制编码

本节中的几个问题

- **▶ BCD码**
- > 余3码
- > 格雷码

1.2 二进制编码

变色龙,拱猪,接龙 ……

玩法N多,本质上,就是54张牌在不同游 戏规则下的组合而已

- ■二进制编码
 - **▶BCD码**
 - >余3码
 - ▶格雷码

编法N多,本质上,就 是0和1在不同编码规 则下的组合而已。

BCD 码

1. BCD 码(Binary-Coded Decimal)

- 也叫二-十进制编码
- 用4位二进制数表示1位十进制数
- 每位二进制数都带有权值
 - 根据权值不同,称其为:

8421BCD

2421BCD

4221BCD

Decimal	8421BCD
0	0000
1	0001
2	0010
3	0011
4	0100
5	0101
6	0110
7	0111
8	1000
9	1001

BCD 码

Decimal	8421BCD	2421BCD	4221BCD	5421BCD
0	0000	0000 (0000)	0000 (0000)	0000 (0000)
1	0001	0001 (0001)	0001 (0001)	0001 (0001)
2	0010	0010 (1000)	0010 (0100)	0010 (0010)
3	0011	0011 (1001)	0011 (0101)	0011 (0011)
4	0100	0100 (1010)	0110 (1000)	0100 (0100)
5	0101	1011 (0101)	1001 (0111)	1000 (0101)
6	0110	1100 (0110)	1100 (1010)	1001 (0110)
7	0111	1101 (0111)	1101 (1011)	1010 (0111)
8	1000	1110 (1110)	1110 (1110)	1011 (1011)
9	1001	1111 (1111)	1111 (1111)	1100 (1100)

2. 余3码(Excess-3 code)

Decimal	8421BCD	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

0+3

- ■无权码
- ■自补码
- 8421code + "0011"

3. 典型格雷码(Gray code)

Decimal	Binary	Gray code 🗸
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111

■ 无权码

Decimal	Binary	Gray code
11	1011	1110
12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

怎样计算任意给定的二进制数对应的典型格雷码?

1) 计算法

- ■复制最高位
- 从最高位开始,俩俩比较相邻位:
 - ▶ 二者相同取 0
 - ▶ 二者不同取 1
- 转换前后数据的位宽不变

如何由n位典型格雷码写n+1位典型格雷码

2) 反射法

	0	0	0	
3位	0	0	1	
	0	1	1	
	0	1	0	
	1	1	0	
	1	1	1	
	1	0	1	
	1	0	0	

Gray Code

3) 图形法

2位格雷码

00, 01, 11, 10

3位格雷码

000、001、011、 010、110、111、 101、100

Gray Code

4位格雷码

Gray Code

Example 十进制: 3→4

Gray Code ——连续变化时,比较可靠

思考题

- 1) 已知某数的余3码为100010101001,求出与之对应的二进制数,并将所得二进制数转换为典型GRAY码。
- 2) 2421码11001110,对应的十进制数是(),对应的二进制数为().

