Теоретические сведения к индивидуальным практическим работам

Общие сведения о метриках сложности программ

Качество программных средств во многом зависит от сложности их кодов. Например, чем сложнее программа, тем ниже ее надежность и сопровождаемость. Поэтому при оценке качества программ обычно оценивается и их сложность.

Метрики сложности программ принято подразделять на *три основные группы* [2]:

- метрики размера программ;
- метрики сложности потока управления программ;
- метрики сложности потока данных программ.

Метрики размера программ

Метрики этой группы основаны на анализе исходных текстов программ. Существуют различные метрики, с помощью которых может быть оценен размер программы.

К наиболее простым метрикам размера программы относятся количество строк исходного текста программы и количество операторов программы.

Из метрик размера программ широкое распространение получили *метрики Холстеда* [3].

Основу метрик Холстеда составляют *шесть базовых метрик* программы:

- $-\eta_1$ словарь операторов (число уникальных операторов программы);
- $-\eta_2$ словарь операндов (число уникальных операндов программы);
- $-N_{I}$ общее число операторов в программе;
- $-N_2$ общее число операндов в программе;
- $-f_{Ij}$ число вхождений j-го оператора, $j=1,\,2,\,...,\,\eta_1;$
- $-f_{2i}$ число вхождений i-го операнда, $i = 1, 2, ..., \eta_2$.

Справедливы следующие соотношения:

$$N_1 = \sum_{i=1}^{\eta_1} f_{1j}$$

$$N_2 = \sum_{i=1}^{\eta_2} f_{2i}$$

Базовые метрики определяются непосредственно при анализе исходных текстов программ. На основе базовых метрик Холстед предложил

рассчитывать ряд производных метрик программы. Среди них рассмотрим следующие:

 словарь программы (общее число уникальных операторов и операндов программы):

$$\eta = \eta_1 + \eta_2$$

– длина программы (общее количество операторов и операндов программы):

$$N = N_1 + N_2$$

– объем программы (число битов, т.е. логических единиц информации, необходимых для записи программы):

$$V = N \log_2 \eta$$
.

Операнды программы представляют собой используемые в ней переменные и константы.

Под операторами программы в метриках Холстеда подразумеваются входящие в ее состав символы операций, символ присваивания, символыразделители точка и точка с запятой, круглая скобка (пара из открывающей и закрывающей скобок считается одним оператором), управляющие операторы, составной оператор, а также имена процедур и функций.

Несколько служебных слов, входящих в состав одного оператора (например, If...Then...Else), считаются одним оператором.

Метки не относятся ни к операторам, ни к операндам.

Очевидно, что совокупность операторов программы и их количество зависят от языка программирования, на котором написана программа.

Операторы языка Паскаль в интерпретации Холстеда приведены в табл. 1. При подсчете количества операторов и операндов в программе, написанной на языке Паскаль, следует анализировать только ее раздел операторов, а также разделы операторов процедур и функций пользователя.

Таблица 1 Операторы языка Паскаль в интерпретации Холстеда

Обозначение оператора	Назначение оператора				
+	плюс (сложение, объединение множеств, сцепление строк)				
_	минус (изменение знака, вычитание, разность множеств)				
*	звездочка (умножение, пересечение множеств)				
/	наклонная черта, слэш (знак деления, результат всегда имеет вещественный тип)				
<	меньше				
>	больше				

=	равно				
	точка (признак конца программы и				
	модуля)				
;	точка с запятой (разделитель				
	операторов программы)				
()	левая и правая скобки при				
	выделении подвыражений				
<=	меньше или равно				
>=	больше или равно				
<>	не равно				
:=	операция присваивания				
^	знак карата (обращение к				
	динамической переменной)				
And	операция поразрядного				
	логического сложения (И)				
Not	операция поразрядного дополнения				
	(HE)				
Or	операция поразрядного				
	логического сложения (ИЛИ)				
Xor	операция поразрядного				
	логического исключающего ИЛИ				
Div	целочисленное деление				
Mod	остаток от целочисленного деления				
Shl	операция сдвига влево				
Shr	операция сдвига вправо				
In	операция проверки вхождения				
D 1 D 1	элемента в множество				
BeginEnd	составной оператор				
Break	оператор безусловного выхода из				
	цикла				
Continue	оператор передачи управления на				
C + M	конец тела цикла				
Goto <metka></metka>	оператор безусловного перехода				
CaseOfElseEnd	оператор варианта				
IfThenElse	оператор условного перехода				
RepeatUntil	оператор цикла с постусловием				
WhileDo	оператор цикла с предусловием				
ForToDo	оператор цикла с параметром (с				
E D (D	увеличением параметра)				
ForDowntoDo	оператор цикла с параметром (с				
W//I D	уменьшением параметра)				
WithDo	оператор присоединения				

Пример 1. Расчет метрик Холстеда для программы, вычисляющей значение функции

$$Y = sin X$$

через разложение функции в бесконечный ряд

$$Y = \sin X = X - X^3 / 3! + X^5 / 5! - X^7 / 7! + ...$$

с точностью Eps = 0.0001.

Текст программы, написанной на языке Паскаль, приведен ниже.

```
Program Sin1;
 Const
   eps = 0.0001;
 Var
   y, x: real; n: integer; vs: real;
 Begin
   Readln (x);
   y := x; {Начальные установки}
   n := 2;
   vs := x;
   Repeat
      vs := -vs * x * x/(2 * n-1)/(2 * n-2); {Формирование слагаемого}
      n := n + 1;
      y := y + vs
   Until abs(vs) < eps; {Выход из цикла по выполнению условия}
    Writeln(x, y, eps)
End.
```

Расчет базовых метрик Холстеда для данной программы приведены в табл. 2.

Таблица 2

j	Оператор	f_{1j}	i	Операнд	f_{2i}
1.	;	7	1.	X	6
2.	:=	6	2.	n	5
3.	*	4	3.	VS	5
4.	_	3	4.	y	4
5.	/	2	5.	2	4
6.	()	2	6.	1	2
7.	+	2	7.	eps	2
8.	BeginEnd	1			
9.	Readln ()	1			
10.	RepeatUntil	1			
11.	abs()	1			
12.	<	1			
13.	Writeln ()	1			
14.	•	1			
$\eta_1 = 14$		$N_1 = 33$	$\eta_2 = 7$		$N_2 = 28$

Словарь программы $\eta = 14 + 7 = 21$. Длина программы N = 33 + 28 = 61. Объем программы $V = 61\log_2 21 = 268$