Campi Finiti e Applicazioni

Luca Amata

Università degli Studi di Messina

SEMINARIO PER LAUREA TRIENNALE IN MATEMATICA

Dicembre 2018

Introduzione

Il seminario si divide in due blocchi:

▶ Campi Finiti

- Teoremi di esistenza e unicità
- Costruzione
- Gruppo moltiplicativo
- Sottocampi
- Polinomi irriducibili

▶ Crittografia

- Protocollo asimmetrico di Diffie-Hellman
- Sistema di *ElGamal* (logaritmo discreto)
- Curve Ellittiche

Introduzione

Il seminario si divide in due blocchi:

▶ Campi Finiti

- Teoremi di esistenza e unicità
- Costruzione
- Gruppo moltiplicativo
- Sottocampi
- Polinomi irriducibili

▶ Crittografia

- Protocollo asimmetrico di Diffie-Hellman
- Sistema di *ElGamal* (logaritmo discreto)
- Curve Ellittiche

Struttura dei Campi Finiti

- ► Sia F campo e P il suo sottocampo fondamentale
 - Se char(F) = p, primo, allora $P \cong \mathbb{Z}_p$
 - Se char(F) = 0 allora $P \cong \mathbb{Q}$
- ► Se F campo finito allora e
- \triangleright Dati comunque un primo p e un intero positivo n

Struttura dei Campi Finiti

- ► Sia F campo e P il suo sottocampo fondamentale
 - Se char(F) = p, primo, allora $P \cong \mathbb{Z}_p$
 - Se char(F) = 0 allora $P \cong \mathbb{Q}$
- ► Se F campo finito allora e
 - char(F) = p, p primo
 - $|F| = p^n = q$, $n \in \mathbb{N}^+$
- \triangleright Dati comunque un primo p e un intero positivo n

Struttura dei Campi Finiti

- ► Sia F campo e P il suo sottocampo fondamentale
 - Se char(F) = p, primo, allora $P \cong \mathbb{Z}_p$
 - Se char(F) = 0 allora $P \cong \mathbb{Q}$
- ► Se F campo finito allora e
 - char(F) = p, p primo
 - $|F| = p^n = q, n \in \mathbb{N}^+$
- ▶ Dati comunque un primo p e un intero positivo n
 - Esiste un campo con $q = p^n$ elementi
 - È unico a meno di isomorfismi

Tale campo viene identificato dal simbolo \mathbb{F}_q

Costruzione di \mathbb{F}_9 (1/2)

Costruzione del campo finito con 9 elementi \mathbb{F}_9

- Come campo di spezzamento di un polinomio
 - Sia $x^9 x \in \mathbb{Z}_3[x]$, scomposto in fattori irriducibili $x^9 x = x(x-1)(x+1)(x^2+1)(x^2+x-1)(x^2-x-1)$
 - Considerare le rispettive radici $\mathbb{F}_9 = \{0,1,2,lpha_1,lpha_2,eta_1,eta_2,\gamma_1,\gamma_2\}$
- ► Come quoziente dell'anello dei polinomi
 - $-\mathbb{Z}_3[x]/(x^2+x-1)=\{a+bx: a,b\in\mathbb{Z}_3,\ x^2=-x+1\}$ campo
 - rappresentazione elementi $\{0,1,2,x,1+x,2+x,2x,1+2x,2+2x\}$
 - Considerati eta,lpha tali che $eta^2+eta-1=$ 0, $lpha^2+1=$ 0, vale

$$\mathbb{Z}_3(\beta) = \mathbb{Z}_3[x]/(x^2 + x - 1) \cong \mathbb{Z}_3[x]/(x^2 + 1) = \mathbb{Z}_3(\alpha)$$

con φ : $\mathbb{Z}_3(\beta) \to \mathbb{Z}_3(\alpha)$ tale che $\beta \mapsto \alpha + 1$

Costruzione di \mathbb{F}_9 (1/2)

Costruzione del campo finito con 9 elementi \mathbb{F}_9

- Come campo di spezzamento di un polinomio
 - Sia $x^9 x \in \mathbb{Z}_3[x]$, scomposto in fattori irriducibili $x^9 x = x(x-1)(x+1)(x^2+1)(x^2+x-1)(x^2-x-1)$
 - Considerare le rispettive radici $\mathbb{F}_9=\{0,1,2,lpha_1,lpha_2,eta_1,eta_2,\gamma_1,\gamma_2\}$
- ► Come quoziente dell'anello dei polinomi
 - $\mathbb{Z}_3[x]/(x^2+x-1) = \{a+bx : a, b \in \mathbb{Z}_3, x^2 = -x+1\}$ campo
 - rappresentazione elementi $\{0,1,2,x,1+x,2+x,2x,1+2x,2+2x\}$
 - Considerati β, α tali che $\beta^2 + \beta 1 = 0$, $\alpha^2 + 1 = 0$, vale

$$\mathbb{Z}_3(\beta) = \mathbb{Z}_3[x]/(x^2 + x - 1) \cong \mathbb{Z}_3[x]/(x^2 + 1) = \mathbb{Z}_3(\alpha)$$

con φ : $\mathbb{Z}_3(\beta) \to \mathbb{Z}_3(\alpha)$ tale che $\beta \mapsto \alpha + 1$.

Costruzione di \mathbb{F}_9 (2/2)

Con
$$g_1 = 0$$
, $g_2 = x$, $g_3 = 2x$, $g_4 = 1$, $g_5 = 1 + x$, $g_6 = 1 + 2x$, $g_7 = 2$, $g_8 = 2 + x$, $g_9 = 2 + 2x$

(a) Somma (b) Prodotto

Figura: Tavole delle operazioni di \mathbb{F}_9

Luca Amata Dicembre 2018 Campi Finiti e Applicazioni 5 / 20

Automorfismi e Gruppo Moltiplicativo

- ▶ Sia F un campo di caratteristica p. La mappa $\Phi: F \to F$ definita da $a \mapsto a^p$ è detta omomorfismo di Frobenius.
 - Φ è sempre iniettivo
 - Se F è finito allora Φ è un automorfismo, $F = F^p$
 - Se \mathbb{F}_q , $q=p^n$, si ha Φ^r : $a\mapsto a^{p^r}$, $r\geq 1$
- ▶ Il **Gruppo Moltiplicativo** di un campo finito \mathbb{F} è ciclico.
 - Un elemento *u* che lo genera è detto elemento primitivo
 - Se char(F) = p allora $F = \mathbb{Z}_p(u)$
 - In $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ la classe 1+x è un elemento primitivo
 - ! In (\mathbb{Q}^*,\cdot) si ha o(-1)=2, ma \mathbb{Z} non possiede tale elemento

Luca Amata Dicembre 2018 Campi Finiti e Applicazioni 6

Automorfismi e Gruppo Moltiplicativo

- ▶ Sia F un campo di caratteristica p. La mappa $\Phi: F \to F$ definita da $a \mapsto a^p$ è detta **omomorfismo di Frobenius**.
 - Φ è sempre iniettivo
 - Se F è finito allora Φ è un automorfismo, $F = F^p$
 - Se \mathbb{F}_q , $q=p^n$, si ha Φ^r : $a\mapsto a^{p^r}$, $r\geq 1$
- ▶ Il **Gruppo Moltiplicativo** di un campo finito \mathbb{F} è ciclico.
 - Un elemento u che lo genera è detto elemento primitivo
 - Se char(F) = p allora $F = \mathbb{Z}_p(u)$
 - In $\mathbb{F}_9 = \mathbb{Z}_3[x]/(x^2+1)$ la classe 1+x è un elemento primitivo
 - ! In (\mathbb{Q}^*,\cdot) si ha o(-1)=2, ma \mathbb{Z} non possiede tale elemento

Sottocampi

Classificazione dei **Sottocampi** di un Campo Finito

- ► Se $m \mid n$ allora $x^{p^m} x \mid x^{p^n} x$
 - Ad esempio $x(x+1)(x-1) = x^3 x | x^9 x$
- ▶ K è sottocampo di Fq, $q=p^n$, se e solo se $|K|=p^m$ con $m\mid n$! Il campo \mathbb{F}_{16} non ha sottocampi di cardinalità 8
- l sottocampi di $\mathbb{F}_{p^{30}}$, p primo, rispettano la seguente struttura

Sottocampi

Classificazione dei **Sottocampi** di un Campo Finito

- Se $m \mid n$ allora $x^{p^m} x \mid x^{p^n} x$
 - Ad esempio $x(x+1)(x-1) = x^3 x \mid x^9 x$
- ▶ K è sottocampo di Fq, $q = p^n$, se e solo se $|K| = p^m$ con $m \mid n$! Il campo \mathbb{F}_{16} non ha sottocampi di cardinalità 8
- l sottocampi di $\mathbb{F}_{p^{30}}$, p primo, rispettano la seguente struttura

Sottocampi

Classificazione dei **Sottocampi** di un Campo Finito

- Se $m \mid n$ allora $x^{p^m} x \mid x^{p^n} x$ - Ad esempio $x(x+1)(x-1) = x^3 - x \mid x^9 - x$
- K è sottocampo di Fq, q = pⁿ, se e solo se |K| = p^m con m | n
 ! Il campo F₁₆ non ha sottocampi di cardinalità 8
- l sottocampi di $\mathbb{F}_{p^{30}}$, p primo, rispettano la seguente struttura

Polinomi Irriducibili

Classificazione dei Polinomi Irriducibili su un Campo Finito

▶ In $\mathbb{F}_p[x]$ si ha $x^{p^n} - x = \prod p(x)$ al variare di tutti i polinomi monici p(x) irriducibili su F_p di grado m tale che $m \mid n$

-
$$x^9 - x \in \mathbb{Z}_3[x]$$
 si decompone in $\mathbb{Z}_3[x]$ come
 $x^9 - x = x(x^8 - 1) = x(x^4 - 1)(x^4 + 1) =$
= $x(x^2 - 1)(x^2 + 1)(x^2 + x - 1)(x^2 - x - 1) =$
= $x(x - 1)(x + 1)(x^2 + 1)(x^2 + x - 1)(x^2 - x - 1).$

ln \mathbb{F}_{81} considerare il numero delle radici dei polinomi

- $-x^{80} 1$ ha 80 radici
- $x^{81} 1$ ha 1 radice
- $-x^{88} 1$ ha 8 radic

Polinomi Irriducibili

Classificazione dei Polinomi Irriducibili su un Campo Finito

- In $\mathbb{F}_p[x]$ si ha $x^{p^n} x = \prod p(x)$ al variare di tutti i polinomi monici p(x) irriducibili su F_p di grado m tale che $m \mid n$
 - $x^9 x \in \mathbb{Z}_3[x]$ si decompone in $\mathbb{Z}_3[x]$ come $x^9 - x = x(x^8 - 1) = x(x^4 - 1)(x^4 + 1) =$ = $x(x^2 - 1)(x^2 + 1)(x^2 + x - 1)(x^2 - x - 1) =$ = $x(x - 1)(x + 1)(x^2 + 1)(x^2 + x - 1)(x^2 - x - 1).$
- ightharpoonup In \mathbb{F}_{81} considerare il numero delle radici dei polinomi
 - $-x^{80} 1$ ha 80 radici
 - $x^{81} 1$ ha 1 radice
 - $-x^{88} 1$ ha 8 radici

Crittografia

La Crittografia, scrittura nascosta: comunicare con sicurezza.

- Parleremo di sistemi crittografici caratterizzati da
 - Un algoritmo, noto, per codificare/decodificare
 - Alcune Chiavi
- Simmetrici
 - La Chiave di codifica/decodifica è unica
 - ! Serve un metodo sicuro per scambiare la Chiave
- Asimmetrici
 - La Chiave pubblica serve per la codifica
 - La Chiave privata serve per la decodifica

Crittografia

La Crittografia, scrittura nascosta: comunicare con sicurezza.

- Parleremo di sistemi crittografici caratterizzati da
 - Un algoritmo, noto, per codificare/decodificare
 - Alcune Chiavi
- ► Simmetrici
 - La Chiave di codifica/decodifica è unica
 - ! Serve un metodo sicuro per scambiare la Chiave
- Asimmetrici
 - La Chiave pubblica serve per la codifica
 - La Chiave privata serve per la decodifica

Luca Amata Dicembre 2018 Campi Finiti e Applicazioni 9 / 20

Crittografia

La Crittografia, scrittura nascosta: comunicare con sicurezza.

- Parleremo di sistemi crittografici caratterizzati da
 - Un algoritmo, noto, per codificare/decodificare
 - Alcune Chiavi

Simmetrici

- La Chiave di codifica/decodifica è unica
- ! Serve un metodo sicuro per scambiare la Chiave

Asimmetrici

- La Chiave pubblica serve per la codifica
- La Chiave privata serve per la decodifica

Complessità Computazionale

La complessità computazionale studia le risorse minime necessarie (tempo e memoria) per la risoluzione di un problema (algoritmo)

- ightharpoonup Problemi risolvibili in un tempo **polinomiale** T_r
 - $T_r \leq an^b$, per certi $a \in \mathbb{R}_{>0}$, $b \in \mathbb{R}_{>1}$ e $n \in \mathbb{N}$ (istanza iniziale)
 - Tali problemi sono detti trattabili
- Problemi risolvibili in un tempo **esponenziale** T_r
 - $T_r \leq ab^n$, per certi $a \in \mathbb{R}_{>0}$, $b \in \mathbb{R}_{>1}$ e $n \in \mathbb{N}$ (istanza iniziale
 - ! Tali problemi sono detti intrattabili
- ► Il problema del logaritmo discreto
 - Gruppo $G(+) = \langle g \rangle$, |G| = n, sia $h \in G$
 - ? trovare $t \in \mathbb{Z}_n$ tale che h = tg, $t = \log_{\sigma} h$
 - Se $G = \mathbb{Z}_n$ tale problema è trattabile (Euclide)
 - ! Esistono Gruppi per cui tale problema è intrattabile

Luca Amata Dicembre 2018 Campi Finiti e Applicazioni

Complessità Computazionale

La complessità computazionale studia le risorse minime necessarie (tempo e memoria) per la risoluzione di un problema (algoritmo)

- ► Problemi risolvibili in un tempo **polinomiale** *T_r*
 - $T_r \leq an^b$, per certi $a \in \mathbb{R}_{>0}$, $b \in \mathbb{R}_{>1}$ e $n \in \mathbb{N}$ (istanza iniziale)
 - Tali problemi sono detti trattabili
- ightharpoonup Problemi risolvibili in un tempo esponenziale T_r
 - $T_r \leq ab^n$, per certi $a \in \mathbb{R}_{>0}$, $b \in \mathbb{R}_{>1}$ e $n \in \mathbb{N}$ (istanza iniziale)
 - ! Tali problemi sono detti intrattabili
- ▶ Il problema del logaritmo discreto
 - Gruppo $G(+) = \langle g \rangle$, |G| = n, sia $h \in G$
 - ? trovare $t \in \mathbb{Z}_n$ tale che h = tg, $t = \log_{\sigma} h$
 - Se $G = \mathbb{Z}_n$ tale problema è trattabile (Euclide)
 - ! Esistono Gruppi per cui tale problema è intrattabile

Luca Amata Dicembre 2018 Campi Finiti e Applicazioni 10 /

Complessità Computazionale

La complessità computazionale studia le risorse minime necessarie (tempo e memoria) per la risoluzione di un problema (algoritmo)

- ightharpoonup Problemi risolvibili in un tempo **polinomiale** T_r
 - $T_r \leq an^b$, per certi $a \in \mathbb{R}_{>0}$, $b \in \mathbb{R}_{>1}$ e $n \in \mathbb{N}$ (istanza iniziale)
 - Tali problemi sono detti trattabili
- ightharpoonup Problemi risolvibili in un tempo **esponenziale** T_r
 - $T_r \leq ab^n$, per certi $a \in \mathbb{R}_{>0}$, $b \in \mathbb{R}_{>1}$ e $n \in \mathbb{N}$ (istanza iniziale)
 - ! Tali problemi sono detti intrattabili
- ► Il problema del logaritmo discreto
 - Gruppo $G(+) = \langle g \rangle$, |G| = n, sia $h \in G$
 - ? trovare $t \in \mathbb{Z}_n$ tale che h = tg, $t = \log_{\sigma} h$
 - Se $G = \mathbb{Z}_n$ tale problema è trattabile (Euclide)
 - ! Esistono Gruppi per cui tale problema è intrattabile

Luca Amata Dicembre 2018 C

Protocollo di Diffie-Hellman

Il protocollo di Diffie-Hellman è asimmetrico

- Noto l'algoritmo e le funzioni φ, ψ , la comunicazione avviene:
 - Chiave pubblica k resa disponibile dal proprietario
 - La funzione di codifica φ cifra il messaggio: $c = \varphi(m, k)$
 - ! φ "computazionalmente difficile" da invertire (one-way)
 - ! φ invertibile con informazioni addizionali (trapdoor-one-way)
 - La chiave privata s permette, tramite ψ , la decodifica $m=\psi(c,s)$

Bob invia un messaggio ad Alice, Eve prova a leggerlo

$$m = \psi(c, s)$$
 $c = \varphi(m, k)$
 $c = \varphi(m, k)$

Protocollo di Diffie-Hellman

Il protocollo di Diffie-Hellman è asimmetrico

- Noto l'algoritmo e le funzioni φ, ψ , la comunicazione avviene:
 - Chiave pubblica k resa disponibile dal proprietario
 - La funzione di codifica φ cifra il messaggio: $c = \varphi(m, k)$
 - ! φ "computazionalmente difficile" da invertire (one-way)
 - ! φ invertibile con informazioni addizionali (trapdoor-one-way)
 - La chiave privata s permette, tramite ψ , la decodifica $m=\psi(c,s)$

Bob invia un messaggio ad Alice, Eve prova a leggerlo

Sistema di ElGamal (1/3)

- Il **Sistema di ElGamal** implementa il protocollo di Diffie-Hellman (la funzione trapdoor-one-way è legata al DLP)
- È necessario fissare i seguenti elementi
 - Gruppo ciclico G di ordine n
 - Una funzione $f: G \longrightarrow \{0,1\}^r$ (stringhe binarie di lunghezza r)

Parametri

- Alice sceglie un generatore del gruppo $g(\langle g \rangle = G)$
- Sceglie un intero casuale a tale che $1 \leq a \leq n-1$
- La coppia (ag, a) rappresenta la coppia di chiavi (pubblica, privata)
- Pubblica i parametri per la comunicazione: (G, +, f, g, ag)

Sistema di ElGamal (1/3)

- Il **Sistema di ElGamal** implementa il protocollo di Diffie-Hellman (la funzione trapdoor-one-way è legata al DLP)
- È necessario fissare i seguenti elementi
 - Gruppo ciclico G di ordine n
 - Una funzione $f: G \longrightarrow \{0,1\}^r$ (stringhe binarie di lunghezza r)

Parametri:

- Alice sceglie un generatore del gruppo $g(\langle g \rangle = G)$
- Sceglie un intero casuale a tale che $1 \le a \le n-1$
- La coppia (ag, a) rappresenta la coppia di chiavi (pubblica, privata)
- Pubblica i parametri per la comunicazione: (G, +, f, g, ag)

Luca Amata Dicembre 2018 Campi Fin

Sistema di ElGamal (2/3)

Codifica:

- Bob vuole inviare il messaggio $m \in \{0,1\}^r$ ad Alice
- Sceglie un intero casuale b tale che $1 \le b \le n-1$
- Calcola bg e codifica il messaggio: c = m + f(b(ag))
- Invia ad Alice la coppia (bg, c)

Decodifica:

- Alice riceve (bg, c)
- Osserva che a(bg) = (ab)g = (ba)g = b(ag)
- Calcola m = c f(b(ag)), messaggio non cifrato

Intercettazione

_ 777

Luca Amata Dicem

Sistema di ElGamal (2/3)

Codifica:

- Bob vuole inviare il messaggio $m \in \{0,1\}^r$ ad Alice
- Sceglie un intero casuale b tale che $1 \le b \le n-1$
- Calcola bg e codifica il messaggio: c = m + f(b(ag))
- Invia ad Alice la coppia (bg, c)

Decodifica:

- Alice riceve (bg, c)
- Osserva che a(bg) = (ab)g = (ba)g = b(ag)
- Calcola m = c f(b(ag)), messaggio non cifrato

Intercettazione

777

Luca Amata

Sistema di ElGamal (2/3)

Codifica:

- Bob vuole inviare il messaggio $m \in \{0,1\}^r$ ad Alice
- Sceglie un intero casuale b tale che $1 \le b \le n-1$
- Calcola bg e codifica il messaggio: c = m + f(b(ag))
- Invia ad Alice la coppia (bg, c)

Decodifica:

- Alice riceve (bg, c)
- Osserva che a(bg) = (ab)g = (ba)g = b(ag)
- Calcola m = c f(b(ag)), messaggio non cifrato

Intercettazione:

- ???

Sistema di ElGamal (3/3)

Schema della comunicazione

- Considerazioni:
 - Tale sistema è sicuro fintanto che il DLP (ottenere a da ag e b da bg senza chiavi) è intrattabile
 - La *chiave* di codifica/decodifica è b(ag) che Alice e Bob possiedono

Luca Amata Dicembre 2018 Campi Finiti e Applicazioni

Sistema di ElGamal (3/3)

Schema della comunicazione

▶ Considerazioni:

- Tale sistema è sicuro fintanto che il DLP (ottenere a da ag e b da bg senza chiavi) è intrattabile
- La chiave di codifica/decodifica è b(ag) che Alice e Bob possiedono

Luca Amata Dicembre 2018 Campi Finiti e Applicazioni

Curve Ellittiche (1/3)

- Proprietà geometriche di una Curva Ellittica E sul campo \mathbb{F}_q :
 - Forma di Weierstrass: E/\mathbb{F}_q : $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ dove $a_i \in \mathbb{F}_q$ e il discriminante è non nullo.
 - Sia $\operatorname{Supp}(E) \subset \mathbb{F}_q \times \mathbb{F}_q$ il supporto
 - Sia O il punto proiettivo di E
 - Si definisca l'insieme $E(\mathbb{F}_q) := \operatorname{Supp}(E) \cup \mathcal{O}$
- ▶ $(E(\mathbb{F}_q), +)$ è un gruppo abeliano con elemento neutro \mathcal{O} . Siano $P_1, P_2 \in E(\mathbb{F}_q)$, si definisce $P_1 + P_2 := R \in E(\mathbb{F}_q)$:
 - tracciare la retta r passante per essi
 - individuare il terzo punto di intersezione $r \cap E$, sia esso P_3
 - tracciare la retta s passante per P_3 e \mathcal{O}
 - individuare il terzo punto di intersezione $s \cap E$, sia esso R

Curve Ellittiche (1/3)

- Proprietà geometriche di una Curva Ellittica E sul campo \mathbb{F}_q :
 - Forma di Weierstrass: E/\mathbb{F}_q : $y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6$ dove $a_i \in \mathbb{F}_q$ e il discriminante è non nullo.
 - Sia $\operatorname{Supp}(E) \subset \mathbb{F}_q \times \mathbb{F}_q$ il supporto
 - Sia O il punto proiettivo di E
 - Si definisca l'insieme $E(\mathbb{F}_q) := \operatorname{Supp}(E) \cup \mathcal{O}$
- ▶ $(E(\mathbb{F}_q),+)$ è un gruppo abeliano con elemento neutro \mathcal{O} . Siano $P_1,P_2 \in E(\mathbb{F}_q)$, si definisce $P_1+P_2:=R \in E(\mathbb{F}_q)$:
 - tracciare la retta *r* passante per essi
 - individuare il terzo punto di intersezione $r \cap E$, sia esso P_3
 - tracciare la retta s passante per P_3 e \mathcal{O}
 - individuare il terzo punto di intersezione $s \cap E$, sia esso R

Curve Ellittiche (2/3)

La curva $E: y^2 = x^3 - x + 1$ su \mathbb{F}_7 , non singolare con $\mathcal{O}[0, 1, 0]$.

$$P_1 \neq P_2$$

- $P_3 = r \cap E$
- s retta per P_3 , \mathcal{O} s retta per P_3 , \mathcal{O} tangente s in \mathcal{O}
- $R = s \cap E$

$$P_1 = P_2$$

$$P_1 = -P_2$$

- r retta per P_1, P_2 tangente r in P_1 r retta per P_1, P_2

Curve Ellittiche (2/3)

La curva $E: y^2 = x^3 - x + 1$ su \mathbb{F}_7 , non singolare con $\mathcal{O}[0, 1, 0]$.

 $-R = s \cap E$ $-R = s \cap E$

Curve Ellittiche (2/3)

La curva $E: y^2 = x^3 - x + 1$ su \mathbb{F}_7 , non singolare con $\mathcal{O}[0, 1, 0]$.

Curve Ellittiche (3/3)

Gli elementi di $E(\mathbb{F}_7)$ si possono così determinare:

$$-x=0 \Rightarrow y^2=1 \Rightarrow y=1,6$$

$$-x = 3 \implies y^2 = 4 \implies y = 2,5$$

$$-x=4 \Rightarrow y^2=5 \Rightarrow \nexists y \in \mathbb{F}_7$$

Curve Ellittiche (3/3)

Gli elementi di $E(\mathbb{F}_7)$ si possono così determinare:

$$-x = 0 \Rightarrow y^2 = 1 \Rightarrow y = 1, 6$$

$$-x = 3 \implies y^2 = 4 \implies y = 2,5$$

$$-x=4 \Rightarrow y^2=5 \Rightarrow \nexists y \in \mathbb{F}_7$$

- ► Considerazioni sul problema del logaritmo discreto:
 - Sia $G = E(\mathbb{F}_q)$ il gruppo dei punti razionali di una curva ellittica
 - Sia q un valore abbastanza grande
 - Il problema del logaritmo discreto ha complessità esponenziale
 - Il Sistema di ElGamal su G può considerarsi sicuro

Bibliografia I

No. 73 in Graduate Texts in Mathematics, New York: Springer-Verlag, 1974.

I. Herstein, *Algebra*.

University Press, Roma: Editori Riuniti, 1982.

- G. Piacentini Cattaneo, *Algebra un approccio algoritmico*. Padova: Decibel-Zanichelli, 1996.
- Z. Wan, Lectures on Finite Fields and Galois Rings. World Scientific, 2003.
- C. Shannon, "A mathematical theory of communication," *The Bell System Technical Journal*, vol. 27, pp. 379–423, 623–656, 1948.
- I. Blake, G. Seroussi, and N. Smart, *Elliptic Curves in Cryptography*. New York, NY, USA: Cambridge University Press, 1999.
- W. Diffie and M. Hellman, "New directions in cryptography," *IEEE Trans. Inf. Theor.*, vol. 22, pp. 644–654, Sept. 2006.

Luca Amata Dicembre 2018 Campi Finiti e Applicazioni 18 / 20

Bibliografia II

T. ElGamal, "A public key cryptosystem and a signature scheme based on discrete logarithms," in Proceedings of CRYPTO 84 on Advances in cryptology, (New York), pp. 10–18, Springer-Verlag, 1985.

E. Barker, W. Barker, W. Burr, W. Polk, and M. Smid, "Recommendation for key management - part 1: General (revised)," in NIST Special Publication, 2006.

Fine

Grazie per l'attenzione