Université de Picardie Jules Verne

Année 2024-2025.

Master de Mathématiques : M1-Analyse Fonctionnelle

TD_{6}

Exercice 1

Soit K le corps \mathbb{R} ou C et $(E, \|.\|)$ un K-espace vectoriel normé. La norme $\|.\|$ est dite hilbertienne s'il existe un produit scalaire sur E, noté (.,.) tel que

 $\forall x \in E, \ \sqrt{(x,x)} = ||x||.$

- 1. Démontrer que la norme $\|.\|$ n'est pas une norme hilbertienne sur C([0,1],K).
- 2. Soit $p \in [1, +\infty[$, $p \neq 2$. Démontrer que la norme $\|.\|_p$ n'est pas hilbertienne sur l_K^p .
- 3. Démontrer que la norme duale $\|.\|_{H'}$ sur H' est une norme hilbertienne.

Remarque : Réciproquement, on peut montrer que si E est un espace vectoriel normé muni de la norme $\|.\|_E$ et que cette norme satisfait l'identité du parallélogramme, alors cette norme est hilbertienne.

Exercice 2

Les questions A et celles du B. sont indépendantes.

A. Déterminer

$$\inf_{a,b,c} \int_{-1}^{1} (x^3 - (ax^2 + bx + c))^2 dx$$

Indication : on pourra introduire l'espace de Hilbert $L^2(]-1,1[)$ et appliquer le théorème de projection sur un convexe fermé convenablement choisi.

B. Soit Ω un ouvert de $I\!\!R^n$. On considère l'espace $L^2_{I\!\!R}(\Omega)$ muni du produit scalaire usuel.

On considère l'ensemble C défini par

$$C = \{ v \in L^2_{\mathbb{R}}(\Omega) | |v(x)| \le 1, \ p.p. \text{sur } \Omega \}.$$

- 1. Démontrer que C est un convexe non vide de $L^2_{\mathbb{R}}(\Omega)$.
- 2. Démontrer que C est fermé dans $L^2_{\mathbb{R}}(\Omega)$.

3. Pour tout $f \in L^2_{\mathbb{R}}(\Omega)$, justifier qu'il existe une unique solution du problème (P): trouver $u \in C$ tel que

$$||u - f|| = \inf_{v \in C} ||f - v||.$$

- 4. Pour tout $f \in L^2_{\mathbb{R}}(\Omega)$, déterminer u puis calculer d(f, C).
- 5. Déterminer C^{\perp} .

Exercice 3

A. Soient H un espace de Hilbert sur \mathbb{R} et a une forme bilinéaire définie sur $H \times H$, à valeurs réelles, coercive et continue sur H.

Énoncer le théorème de Lax-Milgram, puis donner les grandes étapes de la démonstration du théorème. On introduira un opérateur A défini sur H à valeurs dans H satisfaisant la relation

$$a(u, v) = (Au, v), \ \forall u, v \in H.$$

puis on établira que cet opérateur est bijectif.

B. On considère l'application T définie sur l'espace de Hilbert $H=L^2(0,1)$ par

$$T(u) = \frac{1}{2} \int_0^{\frac{1}{2}} u(x)dx - \frac{1}{2} \int_{\frac{1}{2}}^1 u(x)dx.$$

- 1. Montrer que T est une forme linéaire continue sur H.
- 2. Déterminer $u_0 \in L^2(0,1)$ tel que $T(u) = (u_0, u)$ pour tout u, puis donner le noyau de T et son image. Que vaut ||T|| ?
- 3. Soit u(x) = 2x. Calculer la projetion de u sur ker T (justifier rigoureusement qu'elle existe).
- 4. On considère

$$a(u,v) = \frac{1}{2} \int_0^{\frac{1}{2}} u(x)v(x)dx + \int_{\frac{1}{2}}^1 u(x)v(x)dx.$$

Montrer qu'il existe un unique $u \in H$ tel que

$$a(u, v) = T(v) \quad \forall v \in H.$$

5. Déterminer explicitement l'élément défini à la question 4.