N_1 Variable aléatoire discrète et loi discrète de probabilité

D N Variable aléatoire discrète

Soit $\Omega = \{e_1; e_2; \dots; e_p\}$ l'univers fini d'une expérience aléatoire. Son cardinal vaut p. Une variable aléatoire discrète X sur Ω est une fonction qui à chaque issue élémentaire e_i $(1 \le i \le p)$ associe un nombre réel x_j $(1 \le j \le n)$.

L'évènement "X prend la valeur x_j " est noté $(X=x_j)$ et est formé de toutes les issues élémentaires e_i de Ω ayant pour image x_j .

D Loi discrète de probabilité

Soit X une variable aléatoire discrète prenant les valeurs $\{x_1; x_2; \cdots; x_n\}$. Lorsqu'à chaque valeur x_j ($1 \le j \le n$) on associe la probabilité de l'évènement $(X = x_j)$, on définit la **loi de probabilité** de X. On représente généralement une loi de probabilité sous forme de tableau :

x_j	x_1	x_2	•••	x_n
$P(X=x_j)$	p_1	p_2	•••	p_n

Il faut vérifier que $p_1+p_2+\cdots+p_n=\sum_{j=1}^{j=n}p_i=1$

- Une urne contient cinq jetons indiscernables au toucher numérotés de 1 à 5. Un joueur participe à la loterie en payant 2 €, ce qui lui donne le droit de prélever au hasard un jeton dans l'urne.
 - Si le numéro est pair, il gagne en euros le double de la valeur indiquée par le jeton.
 - Si le numéro est impair, il perd sa mise.

Soit X la variable aléatoire égale au "gain algébrique". Déterminer la loi de probabilité de X (sous forme de tableau).

- On lance deux dés équilibrés à $\bf 6$ faces et on note $\bf S$ la variable aléatoire donnant la somme des deux résultats obtenus. Déterminer la loi de probabilité de $\bf S$ sous forme de tableau.
- Une boulangerie industrielle utilise une machine pour fabriquer des pains devant peser normalement $500 \ g$. Seuls les pains pesant au moins $490 \ g$ vont être commercialisés. On note X la variable aléatoire donnant les masses possibles des pains en grammes. On donne la loi de probabilité de X:

	<u>•</u>	<u>•</u>			•
x_{j}	480	490	500	510	520
$P(X=x_j)$	0,08	0,29	0,41	0, 12	0,1

- a) Quelle est la probabilité qu'un pain pèse au moins 500 g?
- b) Quelle est la probabilité qu'un pain soit commercialisé ?

N₂ | Espérance

D Espérance mathématique

Soit X une variable aléatoire discrète prenant les valeurs $\{x_1; x_2; \cdots; x_n\}$ associées aux probabilités $\{p_1; p_2; \cdots; p_n\}$. L'espérance ou moyenne de X, notée E(X), est :

$$oxed{E(X) = p_1 x_1 + p_2 x_2 + \dots + p_n x_n = \sum_{i=1}^{i=n} p_i x_i}$$

Lorsque X désigne le gain dans un jeu de hasard par exemple, E(X) est le gain moyen que l'on peut **espérer**. Un jeu est **équitable** lorsque l'espérance du gain vaut 0 et **défavorable** quand elle est négative.

Le tableau suivant donne la loi de probabilité du gain algébrique X (variable aléatoire) d'un jeu de hasard :

x_j	-2	-1	0	1	2
$P(X=x_j)$	0,1	0,25	0,4	0, 2	0,05

Calculer E(X) et donner la nature de ce jeu.

N_3 | Variance et écart-type

Soit X une variable aléatoire discrète prenant les valeurs $\{x_1;x_2;\cdots;x_n\}$ associées aux probabilités $\{p_1;p_2;\cdots;p_n\}$. La **variance** de X, notée V(X), est :

$$V(X) = p_1(x_1 - E(X))^2 + \dots + p_n(x_n - E(X))^2 = \sum_{i=1}^{i=n} p_i(x_i - E(X))^2 = E(X^2) - E(X)^2$$

L'écart-type de X, notée $\sigma(X)$, est :

$$\sigma(X) = \sqrt{V(X)}$$

On donne les lois de probabilités du gain algébrique X et Y (variables aléatoires) de deux jeux :

$oxed{x_j}$	-5	-1	0	1	3
$P(X=x_j)$	0,2	0,3	0,1	0,1	0,3
y_j	-3	-1	0	1	2
$P(Y=y_j)$	0,1	0,4	0, 2	0,2	0,1

Quel jeu peut-on conseiller au joueur ?

T₄ Transformation affine

Soient X une variable aléatoire discrète prenant les valeurs $\{x_1; x_2; \cdots; x_n\}$. Pour $a \in \mathbb{R}$ et $b \in \mathbb{R}$, on peut définir une autre variable aléatoire, en associant à chaque issue donnant la valeur x_j , le nombre $ax_j + b$. On note cette variable aléatoire aX + b.

P Propriétés

$$E(aX+b)=aE(X)+b$$
 et $V(aX+b)=a^2V(X)$

- Pour une variable aléatoire X, on donne E(X)=3 et V(X)=16. On pose la variable aléatoire Y=-2X+5. Calculer E(Y), V(Y) et $\sigma(Y)$.
- Un coiffeur se déplace à domicile. On note X le nombre de rendez-vous sur une journée. X est une variable aléatoire dont la loi de probabilité est donnée par :

x_{j}	0	1	2	3	4	5
$P(X=x_j)$	3%	9%	15%	38%	18%	17%

Chaque rendez-vous lui rapporte $30 \in$, et ses frais de fonctionnement quotidiens s'élèvent à $15 \in$. On note Y son gain journalier. Y est une variable aléatoire.

- a) Calculer E(X) et V(X).
- **b)** Quelle relation lie X et Y? Calculer E(Y), V(Y) et $\sigma(Y)$.

$n^{\circ}1$ Bons d'achat

On distribue au hasard 150 bons d'achat à la sortie d'une parfumerie. Parmi les bons d'achat offerts :

- 5 donnent droit à 20 € de réduction;
- 10 donnent droit à 10 € de réduction;
- 40 donnent droit à 5 € de réduction;
- les autres donnent droit à 2 € de réduction.

Soit X la variable aléatoire qui donne le montant de la réduction offerte pour un bon d'achat distribué.

Donner la loi de probabilité de X puis calculer E(X) et V(X).

n°2 Espérance et variance

La loi de probabilité d'une variable aléatoire X est donnée par le tableau ci-dessous.

x_j	2	2,5	3	3,5
$P(X=x_j)$	0,3	$oldsymbol{p}$	20%	$\frac{3}{10}$

Calculer p puis calculer E(X) et V(X).

n°3 Roulette

La roulette comporte **37** cases numérotées de **0** à **36**. Les entiers pairs sont sur des cases noires, les entiers impairs sont sur des cases rouges mais **0** est sur une case verte. Un joueur veut participer, il a deux stratégies possibles.

- **Stratégie 1**: Le joueur mise **5** euros sur un numéro entre **1** et **36**. S'il gagne il remporte **35** fois sa mise et récupère sa mise, sinon il perd sa mise.
- **Stratégie 2**: Le joueur mise $\mathbf{5}$ euros sur une couleur (noir ou rouge). S'il gagne il remporte $\mathbf{1}$ fois sa mise et récupère sa mise, sinon il perd sa mise.

Calculer l'espérance et l'écart-type du gain du joueur dans les deux cas. Commenter.

n°4 Deux jeux

On propose deux jeux dont les règles sont décrites ci-dessous.

- Jeu $n^{\circ}1$: On lance un dé cubique équilibré numéroté de 1 à 6. Si on obtient 5 ou 6, on gagne 2 euros, sinon on perd 1 euro. Ensuite on lance une pièce équilibrée, si on obtient pile on gagne 1 euro, sinon on ne gagne rien.
- Jeu $n^{\circ}2$: On lance un dé tétraédrique équilibré numéroté de 1 à 4. Si on obtient 4, on gagne 3 euros, sinon on perd 1 euro. Ensuite, on lance une pièce équilibrée, si on obtient pile on gagne 2 euros, sinon on perd 1 euro.
 - Déterminer les lois de probabilité des variables aléatoires $m{X}$ et $m{Y}$ donnant le gain de chacun de ces jeux.
 - Quel est le meilleur jeu à choisir pour un joueur ?

n°5 Réponses au hasard

Un exercice est composé de cinq questions pour lesquelles, on doit répondre obligatoirement par "vrai" ou "faux". Une réponse juste rapporte ${\bf 2}$ points, une réponse fausse retire ${\bf 1}$ point. En cas de score final négatif, la note est ramenée à zéro. On note ${\bf X}$ la variable aléatoire qui donne la note d'un candidat ayant répondu au hasard.

- Déterminer la loi de probabilité de $oldsymbol{X}$.
- Quelle note peut espérer le candidat ?
- 3 On décide de ramener la note de chaque candidat sur 20. Quelle note peut espérer alors le candidat ?

n°6 Vente de fauteuils

Un commerçant vend entre $\mathbf{0}$ et $\mathbf{5}$ fauteuils d'un modèle donné par jour. Soit X la variable aléatoire qui indique le nombre de fauteuils vendus quotidiennement. X suit la loi de probabilité suivante :

x_i	0	1	2	3	4	5
$P(X=x_i)$	0,1	18%	0,23	$\frac{4}{10}$	a	0,05

- Calculer a puis E(X).
- Le vendeur perçoit une commission de 100 € par fauteuil. De plus, il a des frais qui s'élèvent à 25 € par jour. Déterminer le salaire qu'il peut espérer sur un mois où il travaille 20 jours.

n°7 Un dé truqué

Un dé tétraédrique a été truqué de telle sorte que $p_2 = p_4 = 2p_1 = 2p_3$ (où p_i est la probabilité d'apparition du résultat i). Un joueur lance ce dé. S'il obtient un résultat pair, il perd x euros, sinon il gagne y euros. Calculer x et y pour que le jeu soit équitable et que la variance du gain soit égale à x.

n°8 | Plusieurs pièces

- Un jeu consiste à lancer $\bf 3$ fois une pièce parfaitement équilibrée. Le joueur gagne $\bf 100$ euros s'il obtient trois fois pile. Sinon il perd $\bf 1$ euro. Soit $\bf X$ la variable aléatoire donnant le gain algébrique du joueur.
 - a) Représenter à l'aide d'un arbre les issues de cette expérience aléatoire.
 - **b)** Donner la loi de probabilité de X.
 - c) Le jeu est-il favorable au joueur?
- Dans cette question, la pièce est lancée n fois, n étant un nombre entier naturel non nul. Le joueur gagne 100 euros s'il obtient n fois pile ; sinon le joueur perd n euro. On note n la variable aléatoire donnant le gain algébrique du joueur.
 - $^{f a)}$ Démontrer que $P(X_n=100)=rac{1}{2^n}$ puis donner la loi de probabilité de X_n .
 - **b)** Calculer $E(X_n)$.
 - c) À l'aide de la calculatrice, déterminer le plus petit entier naturel n tel que le jeu soit défavorable au joueur.

n°9 | Feux tricolores

Paul effectue en voiture le même trajet tous les jours. Sur sa route, il y a trois feux. Une étude statistique, portant sur le nombre X de feux rouges a permis d'établir les résultats suivants :

x_{j}	0	1	2	3
$P(X=x_j)$	$\frac{1}{10}$	0,3	0,4	20%

- Calculer E(X) et V(X).
- Le trajet sans aucun arrêt dure $15 \ min$ et chaque feu rouge rallonge la durée du trajet de $2 \ min$. Soit T la variable aléatoire qui donne la durée du trajet de Paul.
 - a) Quelle relation lie X et T?
 - **b)** En déduire E(T) et V(T).

n°10 Dans un parc d'attraction

Un parc d'attractions propose une carte d'entrée pour la journée au prix de $30 \in$. Cette carte donne accès à des attractions avec un prix unique de $2 \in$ par attraction. Une étude statistique a permis d'obtenir le tableau suivant :

Nombre d'attractions	2	3	4	5	6
% de clients	10	25	35	25	5

Soit X la variable aléatoire qui donne le nombre d'attractions choisies par un visiteur pris au hasard. On note S la variable aléatoire qui donne la somme totale qu'il dépense.

- 1 Quelle relation lie X et S?
- $oxed{2}$ Calculer E(X) et en déduire E(S).
- Le parc a des frais d'organisation qui s'élèvent en moyenne à $25 \in$ par client. Avec 200 visiteurs par jour, quel bénéfice peut espérer le gérant sur un an, en ouvrant le parc 365 jours ?