Problem (Problem 1): Let R be a ring in which every element a satisfies $a^2 = a$. Show that

- (a) $2\alpha = 0$ for every $\alpha \in R$, so $\alpha = -\alpha$;
- (b) R is commutative.

Solution:

(a) Let $a \in R$. We see that, since $a + a \in R$, $(a + a)^2 = a + a$, so that

$$a + a = (a + a)^{2}$$

$$= (a + a)(a + a)$$

$$= a^{2} + a^{2} + a^{2} + a^{2}$$

$$= a + a + a + a,$$

and since R is a ring, we see that a + a = 0, or that a = -a.

(b) Similarly, if $a, b \in R$, then since $(a + b)^2 = a + b$, we have

$$a + b = (a + b)^{2}$$

$$= (a + b)(a + b)$$

$$= a^{2} + b^{2} + ab + ba$$

$$= a + b + ab + ba,$$

so ab = -ba, but since -ba = ba by the previous part, we have ab = ba, and so R is commutative.

Problem (Problem 2): Let R be a ring with identity, and let R^{\times} be the set of invertible elements of R. Show that R^{\times} is a group under multiplication. What is $\mathbb{Z}[i]^{\times}$.

Solution: First, R^{\times} is nonempty, as R contains a multiplicative identity. Next, if $a, b \in R^{\times}$, we see that ab admits the inverse $b^{-1}a^{-1}$, as

$$(ab)(b^{-1}a^{-1}) = a(bb^{-1})a^{-1}$$
$$= aa^{-1}$$
$$= 1.$$

and similarly,

$$(b^{-1}a^{-1})(ab) = b^{-1}(a^{-1}a)b$$

= $b^{-1}b$
= 1,

so R^{\times} is closed under multiplication. Similarly, since $(b^{-1})^{-1} = b$ for any $b \in R^{\times}$, every element of R^{\times} has a multiplicative inverse, so R^{\times} is a group.

To understand the picture of $\mathbb{Z}[i]^{\times}$, we try to understand when, given $a + bi \in \mathbb{Z}[i]$, $\frac{1}{a+bi} \in \mathbb{Z}[i]$. Doing the hand calculations, we see that

$$\frac{1}{a+bi} = \frac{1}{a^2+b^2}(a-bi).$$

Therefore, we see that this holds if and only if $a = \pm 1$ and b = 0, or $b = \pm 1$ and a = 0, meaning that $\mathbb{Z}[i]^{\times} = \{1, i, -1, -i\}$.

Problem (Problem 3): Fix an integer n > 1. Recall that for $a, b \in \mathbb{Z}$, we write $a \equiv b$ modulo n if a - b is divisible by n. Show that this relation is an equivalence relation on \mathbb{Z} . Furthermore, show that if $a \equiv b$

modulo n, and $c \equiv d$ modulo n, then

 $a + c \equiv b + d \mod n$, and $ac \equiv bd \mod n$.

Solution: Since 0 is divisible by n, it is clear that $a \equiv a \mod n$, so the relation is reflexive.

If $a \equiv b \mod n$, then since $n \mid (a - b)$, we must also have $n \mid (b - a)$, so $b \equiv a \mod n$, so the relation is symmetric.

Finally, if $a \equiv b \mod n$ and $b \equiv c \mod n$, then since n|a-b and n|b-c, by adding, we see that n|(a-b)+(b-c), so n|a-c and $a \equiv c \mod n$, so the relation is transitive.

Now, if $a \equiv b \mod n$, and $c \equiv d \mod n$, then since $n \mid (a - b)$ and $n \mid (c - d)$, by adding, we see that $n \mid (a + c) - (b + d)$, so $a + c \equiv b + d \mod n$. To see the last equivalence, we rewrite a = b + kn, $c = d + \ell n$, where $k, \ell \in \mathbb{Z}$. Thus, multiplying things out, we see that

$$ac = (b + kn)(d + ln)$$

$$= bd + nkd + lnb + kln^{2}$$

$$= bd + (kd + lb + kln)n,$$

and since $kd + \ell b + k\ell n \in \mathbb{Z}$, we have $ac \equiv bd \mod n$.

Problem (Problem 4): Show that a finite commutative ring with 1 and without zero divisors is a field.

Solution: Let $a \in R$, and consider the map $\phi_a \colon R \setminus \{0\} \to R \setminus \{0\}$ given by $b \mapsto ab$. We see that if ab = ac, then a(b-c) = 0, and since $a \neq 0$, we see that b = c, so ϕ_a is injective. Since ϕ_a is an injective self-map of a finite set, ϕ_a is surjective, so ϕ_a is bijective, and thus $\phi_a^{-1}(1)$ is well-defined, so $a\phi_a^{-1}(1) = 1$, meaning a has a right-inverse. Since R is commutative, we have $\phi_a^{-1}(1)a = 1$, so R is a field.

Problem (Problem 5): Let $R = \operatorname{Mat}_n(\mathbb{R})$ be the ring of real $n \times n$ matrices. Show that if A satisfies $\det(A) = 0$, then there exist nonzero B, $C \in R$ such that $AB = \mathbf{0}_n$ and $CA = \mathbf{0}_n$.

Solution: If A is the zero matrix, then the problem is trivial, so we assume the matrix is not the zero matrix. We notice that, since 0 is an eigenvalue of A, as can be seen by plugging in 0 for the characteristic polynomial of A, the minimal polynomial $m_A(t)$ factors as $m_A(t) = tp(t)$ for some monic polynomial $p \in \mathbb{R}[t]$ with strictly lesser degree than $m_A(t)$. Since $m_A(t)$ is the minimal polynomial of A, it must mean that $p(A) \neq 0$, so by setting B = p(A), since A commutes with all powers of itself, we see that AB = BA = 0.

Problem (Problem 6): An element $x \in R$ is called *nilpotent* if there exists n > 0 such that $x^n = 0$.

Assume R is a commutative ring with identity. Show that if $x \in R$ is nilpotent, then

- (a) rx is nilpotent for any $r \in R$;
- (b) 1 + x is invertible.

Solution:

(a) We see that, since R is commutative,

$$(rx)^{n} = (rx)(rx) \cdots (rx)$$
$$= r^{n}x^{n}$$
$$= 0.$$

so rx is nilpotent.

(b) We see that if a is nilpotent, then

$$1 = 1 - a^n$$

$$= (1-\alpha)(1+\alpha+\cdots+\alpha^{n-1}),$$

meaning that 1 - a is invertible. Furthermore, we note that if a is nilpotent, then so is -a, as -a = (-1)a, allowing us to apply part (a). Thus, 1 + x = 1 - (-x) is invertible if x is nilpotent.

Problem (Problem 7): Let $R = Mat_n(\mathbb{F})$, where \mathbb{F} is a field. Show that if I is a nonzero 2-sided ideal of R, then I = R.

Solution: We show that if I is a nonzero two-sided ideal in $Mat_n(\mathbb{F})$, then $I_n \in I$.

Since I is nonzero, there is some matrix $(a_{ij})_{i,j} \in I$ such that at particular indices i_0 and j_0 , $a_{i_0j_0} \neq 0$. Since $a_{ij} \in \mathbb{F}$ for all i, j, we have that $a_{i_0j_0}^{-1}$ exists.

Let e_{ij} be the matrix unit with a position 1 at index (i, j) and zero elsewhere. Then, via some matrix algebra, we see that

$$a_{i_0j_0}e_{kk}=e_{ki_0}ae_{j_0k}$$

which is necessarily in I, as I is a two-sided ideal. Therefore, since \mathbb{F} is a field, we see that $(e_{kk})_{i,j} \in I$ for each k, so $\sum_{k=1}^{n} (e_{kk})_{i,j} \in I$, so $I_n \in I$, meaning I = R.

Problem (Problem 8): Let $n \in \mathbb{N}$ and consider \mathbb{Z}^n as a ring with component-wise addition and multiplication.

- (a) Prove that $\operatorname{aut}_{\operatorname{group}}(\mathbb{Z}^n) \cong \operatorname{GL}_n(\mathbb{Z})$.
- (b) Prove that $\operatorname{aut_{ring}}(\mathbb{Z}^n) \cong \operatorname{Sym}(n)$.

Solution: Before we start, we first notice that every element of \mathbb{Z}^n can be written as

$$v = a_1e_1 + a_2e_2 + \cdots + a_ne_n,$$

where e_j are the standard basis of \mathbb{Z}^n and $a_j \in \mathbb{Z}$ for each j. Therefore, if φ is any automorphism as either a group or a ring, we may write $\varphi(v)$ as some integer linear combination of $\varphi(e_j)$, where the e_j are the standard basis vectors for \mathbb{Z}^n .

(a) Let $\varphi \in \operatorname{aut}_{\operatorname{group}}(\mathbb{Z}^n)$. If $v \in \mathbb{Z}^n$ is some vector, then

$$\varphi(v) = \varphi(a_1 e_1 + a_2 e_2 + \dots + a_n e_n)$$

= $a_1 \varphi(e_1) + a_2 \varphi(e_2) + \dots + a_n \varphi(e_n)$.

Since a linear transformation may be specified uniquely via a basis, we may specify a matrix element $A_{\varphi} \in Mat_n(\mathbb{Z})$ by

$$A_{\varphi}e_{j} = \varphi(e_{j})$$

for each j. Note that since each φ is invertible, each A_{φ} may have A_{φ}^{-1} defined by $A_{\varphi}^{-1}e_{j} = \varphi^{-1}(e_{j})$, so each $A_{\varphi} \in GL_{n}(\mathbb{Z})$. Similarly, we see that if ψ , $\varphi \in aut_{group}(\mathbb{Z}^{n})$, then

$$\psi \circ \varphi(e_{j}) = A_{\psi}(\varphi(e_{j}))$$

$$= A_{\psi}(A_{\varphi}e_{j})$$

$$= A_{\psi}A_{\varphi}e_{j}.$$

Therefore, the map $\varphi \mapsto A_{\varphi}$ is an isomorphism, so $\operatorname{aut}_{\operatorname{group}}(\mathbb{Z}^n) \cong \operatorname{GL}_n(\mathbb{Z})$.

(b) Let $\varphi \in \operatorname{aut}_{ring}$; notice that $\operatorname{aut}_{ring} \subseteq \operatorname{aut}_{group}$ meaning that we know already that φ can be written as some element of $\operatorname{GL}_n(\mathbb{Z})$. Suppose that, for some e_k , we may write

$$\varphi(e_k) = \sum_{k=1}^n \alpha_k e_k.$$

Notice then that, since $e_i e_j = \delta_{ij}$, where δ_{ij} is the Kronecker delta symbol, we get

$$\varphi(e_k^2) = \varphi(e_k)\varphi(e_k)$$
$$= \sum_{k=1}^n \alpha_k^2 e_k$$
$$= \sum_{k=1}^n \alpha_k e_k,$$

meaning in particular that $a_k = 0$ or $a_k = 1$, seeing as the a_k are elements of \mathbb{Z} .

If $\varphi(e_k) = e_{k_1} + \dots + e_{k_i}$ and $\varphi(e_{\ell}) = e_{\ell_1} + \dots + e_{\ell_i}$, then

$$\varphi(e_{k}e_{\ell}) = (e_{k_{1}} + \dots + e_{k_{i}})(e_{\ell_{1}} + \dots + e_{\ell_{j}})$$

$$= \sum_{m=1}^{i} \sum_{n=1}^{j} e_{k_{m}} e_{\ell_{n}}$$

$$= \sum_{m=1}^{n} \sum_{n=1}^{j} \delta_{k_{m}\ell_{n}} e_{k_{m}}$$
(*)

Yet, since $\varphi(0) = 0$, we have $e_k e_\ell = \delta_{k\ell} e_k = \delta_{k\ell} e_\ell$, meaning

$$\begin{split} \phi(e_k e_\ell) &= \delta_{k\ell} \phi(e_k) \\ &= \delta_{k\ell} (e_{k_1} + \dots + e_{k_i}) \\ &= \delta_{k\ell} \phi(e_\ell) \\ &= \delta_{k\ell} (e_{\ell_1} + \dots + e_{\ell_i}). \end{split} \tag{\dagger}$$

Now, notice that the expression in (*) can pick out at most one basis vector, and that this basis vector depends on the equivalence of i and j, following from (†) and (‡).

Thus, for any standard basis vector e_i , $\varphi(e_i) = e_j$ for some j. Furthermore, no distinct e_i and e_j can map to the same element, or else we would get $\varphi(e_ie_j) = 0 = e_k$, which is a contradiction. Thus, the map $\{e_1, \ldots, e_n\} \to \{\varphi(e_1), \ldots, \varphi(e_n)\}$ is an injective self-map of a finite set, hence surjective, so it is a permutation of $\{1, \ldots, n\}$. Thus, $\operatorname{aut}_{ring}(\mathbb{Z}^n) \cong S_n$.