Interrogation écrite n°13

NOM:	Prénom :	Note:	
1. Montrer que les fonctions sin et co	os n'admettent pas de limite en $+\infty$.		
2. Soit f une fonction continue et de	croissante sur $\mathbb R$. Montrer que f admet ui	a unique point fixe.	
3. Montrer que sin est 1-lipschitzien	ne sur $\mathbb R$.		
1			

5. On pose
$$u_n=\sum_{k=1}^n\frac{n}{n^2+k^2}$$
 pour $n\in\mathbb{N}^*.$ Déterminer la limite de la suite $(u_n).$

6. Citer la formule de Taylor avec reste intégral avec ses hypothèses.

7. Citer l'inégalité de Taylor-Lagrange avec ses hypothèses.