A Complete Recipe for Stochastic Gradient MCMC

-Summary-

Suggested SDE

• Consider the following SDE: $(z \in \mathbb{R}^d)$

$$dz = f(z)dt + \sqrt{2D(z)}dW(t)$$

where f(z): deterministic drift, W(t): d-dimensional Brownian motion, D(z): P.S.D diffusion matrix

• [Idea] Set $f(z) = -[D(z) + Q(z)]\nabla H(z) + \Gamma(z)$, where $\Gamma(z)_i \coloneqq \sum_{j=1}^d \frac{\partial}{\partial z_j} \Big(D_{ij}(z) + Q_{ij}(z) \Big)$ where Q(z) is skew-symmetric ($\Leftrightarrow Q^T = -Q$)

Theorems related to given SDE

• [Theorem] $p^s(z) \propto \exp(-H(z))$ is a stationary distribution of the given dynamics if f(z) is restricted to $f(z) = -[D(z) + Q(z)]\nabla H(z) + \Gamma(z)$ with D(z): P.S.D, Q(z): skew-symmetric. (Furthermore, li D(z) is P.D or ergodicity can be shown, then $p^s(z)$ is unique)

- Proof sketch:
 - By Fokker-Planck description of the dynamics, it follows that:

$$\partial_t p(\mathbf{z}, t) = -\sum_i \frac{\partial}{\partial \mathbf{z}_i} (\mathbf{f}_i(\mathbf{z}) p(\mathbf{z}, t)) + \sum_{i,j} \frac{\partial^2}{\partial \mathbf{z}_i \partial \mathbf{z}_j} (\mathbf{D}_{ij}(\mathbf{z}) p(\mathbf{z}, t)).$$

Theorems related to given SDE

- Proof sketch:
 - By Fokker-Planck description of the dynamics, it follows that:

$$\partial_t p(\mathbf{z}, t) = -\sum_i \frac{\partial}{\partial \mathbf{z}_i} (\mathbf{f}_i(\mathbf{z}) p(\mathbf{z}, t)) + \sum_{i,j} \frac{\partial^2}{\partial \mathbf{z}_i \partial \mathbf{z}_j} (\mathbf{D}_{ij}(\mathbf{z}) p(\mathbf{z}, t)).$$

• When Q is skew-symmetric, the following holds:

$$\partial_t p(\mathbf{z}, t) = \nabla^T \cdot \Big(\left[\mathbf{D}(\mathbf{z}) + \mathbf{Q}(\mathbf{z}) \right] \left[p(\mathbf{z}, t) \nabla H(\mathbf{z}) + \nabla p(\mathbf{z}, t) \right] \Big).$$

• Note that $p(\mathbf{z}, t) \nabla H(\mathbf{z}) + p(\mathbf{z}, t) = 0$ when $p(\mathbf{z}) \propto \exp(-H(\mathbf{z}))$, which proves the stationary of target distribution.

Completeness of the framework

• Question: what portion of samplers defined by continuous Markov processes with the target invariant distribution can we define by given SDE with certain D(z) and Q(z)?

• By chapman-Kolmogorov equation, any continuous Markov process with stationary distribution $p^s(z)$ can be described by SDE: (which determines D(z).)

$$dz = f(z)dt + \sqrt{2D(z)}dW(t)$$

Completeness of the framework

• [Theorem] Suppose $p^s(z)$ uniquely exists, and that $f_i(z)p^s(z) - \sum_{j=1}^d \frac{\partial}{\partial \theta_j} \Big(D_{ij}(z)p^s(z) \Big)$ is integrable with respect to Lebesgue measure, the there exists a skew-symmetric Q(z) such that $f(z) = -[D(z) + Q(z)] \nabla H(z) + \Gamma(z)$, where $\Gamma(z)_i \coloneqq \sum_{j=1}^d \frac{\partial}{\partial z_j} \Big(D_{ij}(z) + Q_{ij}(z) \Big)$ holds.

• This theorem implies that there exists a bijection between the set of all continuous Markov processes with $p^s(z) \propto \exp(-H(z))$ and the SDE representation of $dz = f(z)dt + \sqrt{2D(z)}dW(t)$, where $f(z) = -[D(z) + Q(z)]\nabla H(z) + \Gamma(z)$.

Algorithm for generic SGMCMC

• To realize the continuous SDE, use ϵ -discretization (Full-data update version):

$$z_{t+1} \leftarrow z_t - \epsilon_t \big[\big(D(z_t) + Q(z_t) \big) \nabla H(z_t) + \Gamma(z_t) \big] + N \big(0.2 \epsilon_t D(z_t) \big)$$

• As we did in SGLD, SGHMC, use approximation (unbiased estimate) of $U(\theta)$:

$$\widetilde{U}(\theta) = -\frac{|\mathcal{S}|}{|\hat{\mathcal{S}}|} \sum_{x \in \hat{\mathcal{S}}} \log p(x|\theta) - \log p(\theta)$$

• Now, we should consider noise from stochastic gradient. From the central limit theorem, assume $\nabla \widetilde{U}(\theta) = \nabla U(\theta) + N(0, V(\theta))$, which results $\nabla \widetilde{H}(z) = \nabla H(z) + \left[N(0, V(\theta)), 0\right]^T$ (Assuming $z = [\theta, r]$)

Algorithm for generic SGMCMC

• Then, the stochastic gradient variant of the above sampler becomes as follows:

$$z_{t+1} \leftarrow z_t - \epsilon_t \Big[\Big(D(z_t) + Q(z_t) \Big) \nabla \widetilde{H}(z_t) + \Gamma(z_t) \Big] + N \left(0, \epsilon_t \Big(2D(z_t) - \epsilon_t \widehat{B}_t \Big) \right)$$

where \hat{B}_t is the estimate of the variance of $(D(z_t) + Q(z_t))N(0,V(\theta))$ with a condition $2D(z_t) - \epsilon_t \hat{B}_t \ge 0$.

• Note that as $\epsilon_t^2 \to 0$ faster than ϵ_t , the discrepancy induced by estimate \hat{B}_t approaches zero as $\epsilon_t \to 0$.

<HMC>

• The discrete Hamiltonian dynamics used on HMC:

$$\begin{cases} \theta_{t+1} \leftarrow \theta_t + \epsilon_t M^{-1} r_t \\ r_{t+1} \leftarrow r_t - \epsilon_t \nabla U(\theta_t) \end{cases}$$

where θ = position, r = momentum, M = mass / environment = frictionless surface

• To match HMC with suggested framework, set $z = (\theta, r), H(\theta, r) = U(\theta) + \frac{1}{2}r^TM^{-1}r$, and

$$Q(\theta,r) = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$
 and $D(\theta,r) = \mathbf{0}$.

[Double check]:

Theory:
$$z_{t+1} \leftarrow z_t - \epsilon_t [(D(z_t) + Q(z_t))\nabla H(z_t) + \Gamma(z_t)] + N(0.2\epsilon_t D(z_t))$$

Note:
$$Q(\theta, r) = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$
 and $D(\theta, r) = \mathbf{0}$.

1.
$$\nabla H(z) = [\nabla U(\theta)^T, M^{-1}r]^T$$
 and $\Gamma(z)_i = \sum_{j=1}^d \frac{\partial}{\partial z_j} (D_{ij}(z) + Q_{ij}(z)) = 0$

2.
$$(D(z) + Q(z))\nabla H(z) + \Gamma(z) = {\binom{-M^{-1}r}{\nabla U(\theta)}} + 0$$

$$3. \quad N(0,2\epsilon D(z)) = 0$$

<SGHMC>

• The discrete dynamics used on Naïve-SGHMC:

$$\begin{cases} \theta_{t+1} \leftarrow \theta_t + \epsilon_t M^{-1} r_t \\ r_{t+1} \leftarrow r_t - \epsilon_t \nabla U(\theta_t) + N(0, \epsilon_t^2 V(\theta_t)) \end{cases}$$

• Note that the above equation cannot be converted to the suggested theory!, which means the target distribution is not stationary.

• This is the reason we are required to impose friction term ${\cal C}$ to achieve stationary target distribution.

<SGHMC>

• The discrete 2nd order Langevin dynamics used on SGHMC (w/ friction term C):

$$\begin{cases} \theta_{t+1} \leftarrow \theta_t + \epsilon_t M^{-1} r_t \\ r_{t+1} \leftarrow r_t - \epsilon_t \nabla \widetilde{U}(\theta_t) - \epsilon_t C M^{-1} r_t + N \left(0, \epsilon_t \left(2C - \epsilon_t \ \widehat{B}_t \right) \right) \end{cases}$$

where \hat{B}_t is an estimate of $V(\theta_t)$.

• To match HMC with suggested framework, set $z=(\theta,r), H(\theta,r)=U(\theta)+\frac{1}{2}r^TM^{-1}r$, and

$$Q(\theta,r) = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$
 and $D(\theta,r) = \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix}$.

[Double check]:

Theory:
$$z_{t+1} \leftarrow z_t - \epsilon_t \left[\left(D(z_t) + Q(z_t) \right) \nabla \widetilde{H}(z_t) + \Gamma(z_t) \right] + N \left(0, \epsilon_t \left(2D(z_t) - \epsilon_t \widehat{B}_{ext,t} \right) \right)$$

Note:
$$Q(\theta, r) = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}$$
 and $D(\theta, r) = \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix}$.

1.
$$\nabla \widetilde{H}(z) = \left[\nabla \widetilde{U}(\theta)^T, M^{-1}r\right]^T \text{ and } \Gamma(z)_i = \sum_{j=1}^d \frac{\partial}{\partial z_j} \left(D_{ij}(z) + Q_{ij}(z)\right) = 0$$

2.
$$(D(z) + Q(z))\nabla \widetilde{H}(z) + \Gamma(z) = \begin{pmatrix} -M^{-1}r \\ \nabla \widetilde{U}(\theta) + CM^{-1}r \end{pmatrix} + 0$$

3.
$$N\left(0,\epsilon(2D(z)-\epsilon\hat{B}_{ext})\right)=N\left(0,\epsilon(2C-\epsilon\hat{B})\right)$$
 [dimension reduction]

<SGLD>

• The discrete 1st order Langevin dynamics used on SGLD:

$$\theta_{t+1} \leftarrow \theta_t - \epsilon_t D \nabla \widetilde{U}(\theta_t) + N(0, 2\epsilon_t D)$$

• To match HMC with suggested framework, set $z=\theta, H(\theta)=U(\theta)$, and $Q(\theta)=0$ and $D(\theta)=D$ and $\hat{B}_t=0$.

[Double check]:

Theory:
$$z_{t+1} \leftarrow z_t - \epsilon_t \left[\left(D(z_t) + Q(z_t) \right) \nabla \widetilde{H}(z_t) + \Gamma(z_t) \right] + N \left(0, \epsilon_t \left(2D(z_t) - \epsilon_t \widehat{B}_{ext,t} \right) \right)$$

Note: $Q(\theta) = 0$ and $D(\theta) = D$.

1.
$$\nabla \widetilde{H}(z) = \nabla \widetilde{U}(\theta)$$
 and $\Gamma(z)_i = \sum_{j=1}^d \frac{\partial}{\partial z_j} \left(D_{ij}(z) + Q_{ij}(z) \right) = 0$

2.
$$(D(z) + Q(z))\nabla \widetilde{H}(z) + \Gamma(z) = D\nabla \widetilde{U}(\theta) + 0$$

3.
$$N\left(0, \epsilon(2D(z) - \epsilon \hat{B}_{ext})\right) = N(0, 2\epsilon D)$$

<SGRLD (Stochastic Gradient Riemannian Langevin Dynamics)>

• It is a generalized version of SGLD by adopting adaptive diffusion matrix $D(\theta) = G^{-1}(\theta)$,

where
$$G(\theta)_{ij} = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta_i} \log p(x|\theta) \right) \left(\frac{\partial}{\partial \theta_j} \log p(x|\theta) \right) \right]$$
 is the fisher information matrix.

The discrete dynamics used on SGRLD:

$$\theta_{t+1} \leftarrow \theta_t - \epsilon_t \left[G(\theta_t)^{-1} \nabla \widetilde{U}(\theta_t) + \Gamma(\theta_t) \right] + N(0.2\epsilon_t G(\theta_t)^{-1})$$

where
$$\Gamma(\theta)_i = \sum_{j=1}^d \frac{\partial D_{ij}(\theta)}{\partial \theta_j}$$

• To match HMC with suggested framework, set $z=\theta, H(\theta)=U(\theta)$, and $Q(\theta)=0$ and $D(\theta)=G^{-1}(\theta)$ and $\hat{B}_t=0$.

[Double check]:

Theory:
$$z_{t+1} \leftarrow z_t - \epsilon_t \left[\left(D(z_t) + Q(z_t) \right) \nabla \widetilde{H}(z_t) + \Gamma(z_t) \right] + N \left(0, \epsilon_t \left(2D(z_t) - \epsilon_t \widehat{B}_{ext,t} \right) \right)$$

Note: $Q(\theta) = 0$ and $D(\theta) = G^{-1}(\theta)$.

1.
$$\nabla \widetilde{H}(z) = \nabla \widetilde{U}(\theta)$$
 and $\Gamma(z)_i = \sum_{j=1}^d \frac{\partial}{\partial z_j} \left(D_{ij}(z) + Q_{ij}(z) \right) = \sum_{j=1}^d \frac{\partial G(\theta)^{-1}}{\partial \theta_j}$

2.
$$(D(z) + Q(z))\nabla \widetilde{H}(z) + \Gamma z = G^{-1}(\theta)\nabla \widetilde{U}(\theta) + \Gamma(\theta)$$

3.
$$N\left(0,\epsilon\left(2D(z)-\epsilon\widehat{B}_{ext}\right)\right)=N(0,2\epsilon G(\theta)^{-1})$$

<SGNHT (Stochastic Gradient Nose-Hoover Thermostat)>

- It is augmented version of SGHMC with additional scalar variable ζ .
- The discrete dynamics used on SGNHT:

$$\begin{cases} \theta_{t+1} \leftarrow \theta_t + \epsilon_t r_t \\ r_{t+1} \leftarrow r_t - \epsilon_t \nabla \widetilde{U}(\theta_t) - \epsilon_t \zeta_t r_t + N\left(0, \epsilon_t \left(2A \cdot I - \epsilon_t \, \widehat{B}_t\right)\right) \\ \zeta_{t+1} \leftarrow \zeta_t + \epsilon_t \left(\frac{1}{d} r_t^T r_t - 1\right) \end{cases}$$

• To match HMC with suggested framework, set $z=(\theta,r,\zeta)$, $H(\theta,r,\zeta)=U(\theta)-\frac{1}{2}r^Tr+\frac{d}{2}(\zeta+A)^2$, and

$$Q(\theta, r, \zeta) = \begin{pmatrix} 0 & +I & 0 \\ I & 0 & r/d \\ 0 & +r^T/d & 0 \end{pmatrix} \text{ and } D(\theta, r, \zeta) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & A \cdot I & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ where } \theta, r \in \mathbb{R}^d, \zeta \in \mathbb{R}$$

[Double check]:

Theory:
$$z_{t+1} \leftarrow z_t - \epsilon_t \left[\left(D(z_t) + Q(z_t) \right) \nabla \widetilde{H}(z_t) + \Gamma(z_t) \right] + N \left(0, \epsilon_t \left(2D(z_t) - \epsilon_t \widehat{B}_{ext,t} \right) \right)$$

Note:
$$Q(\theta, r, \zeta) = \begin{pmatrix} 0 & +I & 0 \\ I & 0 & r/d \\ 0 & +r^T/d & 0 \end{pmatrix}$$
 and $D(\theta, r, \zeta) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & A \cdot I & 0 \\ 0 & 0 & 0 \end{pmatrix}$.

1.
$$\nabla \widetilde{H}(z) = \left[\nabla \widetilde{U}(\theta)^T, -r^T, d(\zeta + A)\right]^T \text{ and } \Gamma(z) = [0,0,1]^T$$

2.
$$(D(z) + Q(z))\nabla \widetilde{H}(z) + \Gamma(z) = \left[-r^T, \nabla \widetilde{U}(\theta)^T - A \cdot r^T + r^T(\zeta + A), -\frac{r^T r}{d}\right]^T + [\mathbf{0}, \mathbf{0}, 1]^T$$

3.
$$N\left(0,\epsilon\left(2D(z)-\epsilon\hat{B}_{ext}\right)\right)=N\left(0,\epsilon\left(2A\cdot I-\epsilon\hat{B}\right)\right)$$

Devising new samplers

<SGRHMC (Stochastic Gradient Riemann Hamiltonian Monte Carlo)>

- Intuition: Let's take into account underlying target distribution geometry on SGHMC
 - How to?: (SGHMC → SGRHMC)

$$z = (\theta, r), \qquad H(\theta, r) = U(\theta) + \frac{1}{2}r^T M^{-1}r, \qquad Q(\theta, r) = \begin{pmatrix} 0 & -I \\ I & 0 \end{pmatrix}, \qquad D(\theta, r) = \begin{pmatrix} 0 & 0 \\ 0 & C \end{pmatrix}$$

$$\downarrow \downarrow$$

$$z = (\theta, r), \qquad H(\theta, r) = U(\theta) + \frac{1}{2}r^T r, \qquad Q(\theta, r) = \begin{pmatrix} 0 & -G(\theta)^{-1/2} \\ G(\theta)^{-1/2} & 0 \end{pmatrix}, \qquad D(\theta, r) = \begin{pmatrix} 0 & 0 \\ 0 & G(\theta)^{-1} \end{pmatrix}$$

where
$$G(\theta)_{ij} = \mathbb{E}_{\theta} \left[\left(\frac{\partial}{\partial \theta_i} \log p(x|\theta) \right) \left(\frac{\partial}{\partial \theta_j} \log p(x|\theta) \right) \right]$$
 is the fisher information matrix.

• When $G(\theta)$ is any positive definite matrix, then it is called gSGRMHC (generalized SGRHMC).

Devising new samplers

<(g)SGRHMC (Stochastic Gradient Riemann Hamiltonian Monte Carlo)>

• Then, we have following discrete dynamics:

$$\begin{cases} \theta_{t+1} \leftarrow \theta_t + \epsilon_t G(\theta_t)^{-1/2} r_t \\ r_{t+1} \leftarrow r_t - \epsilon_t \left[G(\theta_t)^{-\frac{1}{2}} \nabla \widetilde{U}(\theta_t) + \nabla \left(G(\theta_t)^{-\frac{1}{2}} \right) - G(\theta_t)^{-1} r_t \right] + N \left(0, \epsilon_t \left(2G(\theta_t)^{-1} - \epsilon_t \widehat{B}_t \right) \right) \end{cases}$$

Note:
$$\nabla \left(G(\theta)^{-\frac{1}{2}} \right)_i = \sum_{j=1}^d \frac{\partial}{\partial \theta_j} \left(G(\theta)^{-\frac{1}{2}} \right)_{ij}$$

Algorithm 1: Generalized Stochastic Gradient Riemann Hamiltonian Monte Carlo

```
initialize (\theta_0, r_0)

for t = 0, 1, 2 \cdots do

optionally, periodically resample momentum r as r^{(t)} \sim \mathcal{N}(0, \mathbf{I})

\theta_{t+1} \leftarrow \theta_t + \epsilon_t \mathbf{G}(\theta_t)^{-1/2} r_t, \quad \Sigma_t \leftarrow \epsilon_t (2\mathbf{G}(\theta_t)^{-1} - \epsilon_t \hat{\mathbf{B}}_t)

r_{t+1} \leftarrow r_t - \epsilon_t \mathbf{G}(\theta_t)^{-1/2} \nabla_{\theta} \widetilde{U}(\theta_t) - \epsilon_t \nabla_{\theta} (\mathbf{G}(\theta_t)^{-1/2}) + \epsilon_t \mathbf{G}(\theta_t)^{-1} r_t + \mathcal{N}(0, \Sigma_t)

end
```

[Double check]:

Theory:
$$z_{t+1} \leftarrow z_t - \epsilon_t \left[\left(D(z_t) + Q(z_t) \right) \nabla \widetilde{H}(z_t) + \Gamma(z_t) \right] + N \left(0, \epsilon_t \left(2D(z_t) - \epsilon_t \widehat{B}_{ext,t} \right) \right)$$

Note:
$$Q(\theta, r) = \begin{pmatrix} 0 & -G(\theta)^{-1/2} \\ G(\theta)^{-1/2} & 0 \end{pmatrix}$$
 and $D(\theta, r) = \begin{pmatrix} 0 & 0 \\ 0 & G(\theta)^{-1} \end{pmatrix}$.

1.
$$\nabla \widetilde{H}(z) = \left[\nabla \widetilde{U}(\theta)^T, r^T\right]^T \text{ and } \Gamma(z) = \left[0, \nabla \left(G(\theta)^{-\frac{1}{2}}\right)^T\right]^T$$

2.
$$(D(z) + Q(z))\nabla \widetilde{H}(z) + \Gamma(z) = \begin{pmatrix} -G(\theta)^{-1/2}r \\ G(\theta)^{-\frac{1}{2}}\nabla \widetilde{U}(\theta) + G(\theta)^{-1}r \end{pmatrix} + \begin{pmatrix} 0 \\ \nabla (G(\theta)^{-\frac{1}{2}}) \end{pmatrix}$$

3.
$$N\left(0,\epsilon\left(2D(z)-\epsilon\hat{B}_{ext}\right)\right)=N\left(0,\epsilon\left(2G(\theta)^{-1}-\epsilon\hat{B}\right)\right)$$
 [dimension reduction]

Experiments

- KL divergence of two simulated 1D distribution for several SGMCMC algorithms
 - Two 1D distributions : $U(\theta) = \theta^2/2$ (one peak), $U(\theta) = \theta^4 2\theta^2$ (two peaks)

Note:

- SGHMC is still strong sampler compared to SGRMHC.
- SGMHC ≅ gSGRHMC ≥ SGLD on this experiment
- $G(\theta)^{-1} = 1.5\sqrt{|\widetilde{U}(\theta) + 0.5|}$ on this experiment.

Experiments

KL divergence of a simulated 2D distribution for several SGMCMC algorithms

• Target Distribution
$$U(\theta_1,\theta_2)=\frac{\theta_1^4}{10}+\frac{\left(4\cdot(\theta_2+1.2)-\theta_1^2\right)^2}{2}$$
 (having strong correlation)

Note:

- SGHMC and gSGRHMC can efficiently explores the distribution.
- gSGRHMC shows better KL divergence compared to SGHMC on this experiment.