МАТЕРИАЛ КУРСА

 λ -исчисление, 2024

Содержание

1. Конверсия и редукция	. 2
1.1. Основные понятия	. 2
1.2. Оператор подстановки и $\beta\eta$ -конверсия	. 3
1.3. Комбинаторы и согласованность	. 5
1.4. Нормальные формы	. 5
1.5. Редукция	. 6
1.6. Теорема Чёрча-Россера	. 7
1.7. Редукционные стратегии	11
2. λ -представимость	11

1. Конверсия и редукция

1.1. Основные понятия

Определение 1.1.1. Рассмотрим счётное множество $V = \{v, v', v'', ...\}$. Элементы этого множества будут называться *переменными*. Множество λ -выражений, Λ , — это наименьшее множество, удовлетворяющее следующим условиям:

- $x \in V \Rightarrow x \in \Lambda$;
- $x \in V, M \in \Lambda \Rightarrow (\lambda xM) \in \Lambda;$

(абстракция, морально: определение функции)

• $M \in \Lambda$, $N \in \Lambda \Rightarrow (MN) \in \Lambda$.

(комбинация, морально: применение функции к аргументу)

<u>Пример 1.1.1.</u> λ -выражения в формальной нотации:

$$v'; \ (vv'); \ (\lambda v(v'v)); \ ((\lambda v(v'v))v''); \ (((\lambda v(\lambda v'(v'v)))v'')v''');$$

Нотация

- x, y, z, ... обозначают произвольные переменные из множества V.
- M, N, K, ... обозначают произвольные λ -выражения из Λ .
- Внешние скобки опускаются: $(\lambda x(yz)) \to \lambda x(yz)$.
- Многократная абстракция сокращается:

$$\lambda x_1(\lambda x_2(\lambda...(\lambda x_n M)...)) \to \lambda x_1, x_2, ..., x_n. \ M \to \lambda \vec{x}. \ M$$

• Многократная комбинация сокращается:

$$((...((M_1M_2)M_3)...)M_n)N \to M_1M_2...M_nN \to \overrightarrow{M}N$$

• Комбинация берёт приоритет над абстракцией: $\lambda x.\ yz = \lambda x.\ (yz)$

Определение 1.1.2. Пусть $M-\lambda$ -выражение. Множества $\mathrm{TV}(M),\ \mathrm{FV}(M),\ \mathrm{BV}(M)\subset V$ определяются индуктивно:

M	$\mathrm{TV}(M)$	$\operatorname{FV}(M)$	BV(M)
$x \in V$	$\{x\}$	$\{x\}$	Ø
$\lambda x. N$	$\{x\} \cup \mathrm{TV}(N)$	$\mathrm{FV}(N)\lambda\{x\}$	$\{x\} \cup \mathrm{BV}(N)$
NK	$\mathrm{TV}(N) \cup \mathrm{TV}(K)$	$\mathrm{FV}(N) \cup \mathrm{FV}(K)$	$\mathrm{BV}(N) \cup \mathrm{BV}(K)$

Замечание 1.1.1. В данный момент существуют не вполне осмысленные λ -выражения. Так, в выражении $(\lambda x.\ xy)x$ переменная x выступает одновременно связанной и свободной, а в выражении $\lambda x.\ \lambda x.\ xx$ переменная x связывается дважды. Обе этих проблемы можно исправить заменой связанных переменных: $(\lambda x.\ xy)x \to (\lambda u.\ uy)x,\ \lambda x.\ \lambda x.\ xx \to \lambda x.\ \lambda u.\ uu$. Сейчас мы формализуем эту идею.

<u>Определение 1.1.3.</u> Пусть □ — бинарное отношение на множестве Λ . Тогда □ называется совместимым с операциями, если:

$$M \sqsubset N \Rightarrow \lambda x. \ M \sqsubset \lambda x. \ N,$$

 $M \sqsubset N \Rightarrow ZM \sqsubset ZN,$
 $M \sqsubset N \Rightarrow MZ \sqsubset NZ.$

<u>Определение 1.1.4.</u> Тождественное равенство (\equiv) обозначает полностью идентичный состав символов: $\lambda x. \ xy \not\equiv \lambda u. \ uy.$

<u>Определение 1.1.5.</u> Отношение α -конгруэнтности ($\stackrel{\alpha}{=}$) на Λ — это наименьшее подмножество $\Lambda \times \Lambda$, удовлетворяющее следующим условиям:

- $M \stackrel{\alpha}{=} M$;
- $\lambda x.\ M \stackrel{\alpha}{=} \lambda y.\ (M[x \to y]),$ при условии что $y \notin \mathrm{TV}(M);$
- $\stackrel{\alpha}{=}$ совместимо с операциями.

Определение 1.1.6. Пусть $M-\lambda$ -выражение. M называется *корректным* в следующих случаях:

- (1) $M \equiv x \in V$;
- (2) $M \equiv \lambda x.\ N$, причём N корректно, а также $x \notin \mathrm{BV}(N)$;
- (3) $M \equiv NK$, причём N, K корректны, а также $\mathrm{BV}(N) \cap \mathrm{FV}(K) = \varnothing$ и $\mathrm{FV}(N) \cap \mathrm{BV}(K) = \varnothing$.

<u>Упражнение</u> Доказать, что если M корректно, то $\mathrm{FV}(M) \cap \mathrm{BV}(M) = \varnothing$, $\mathrm{FV}(M) \cup \mathrm{BV}(M) = \mathrm{TV}(M)$.

<u>Упражнение</u> Пусть $M-\lambda$ -выражение. Доказать, что существует корректное λ -выражение N, такое, что $M\stackrel{\alpha}{=} N$.

<u>Договорённость</u> (Правило переменных): Пусть λ -выражения $M_1, M_2, ..., M_n$ выступают с едином контексте. Тогда мы будем предполагать, что выражение $M_1 M_2 ... M_n$ — корректное.

Определение 1.1.7. λ -выражение M называется *замкнутым* (или *комбинатором*), если $\mathrm{FV}(M) = \varnothing$. Λ^0 обозначает множество всех замкнутых λ -выражений.

Определение 1.1.8. *М* является *подвыражением* N ($M \subset N$), если M лежит во множестве Sub(N):

N	$\mathrm{Sub}(N)$
$x \in V$	$\{x\}$
$\lambda x. K$	$\{\lambda x.\ K\} \cup \operatorname{Sub}(K)$
K_1K_2	$\operatorname{Sub}(K_1) \cup \operatorname{Sub}(K_2) \cup \{K_1K_2\}$

Определение 1.1.9. Пусть $F,M\in\Lambda$. Тогда

- $F^0M \equiv M$; $F^{n+1}M \equiv F(F^nM)$
- $FM^{\sim 0} \equiv F$; $FM^{\sim n+1} \equiv (FM^{\sim n})M$

1.2. Оператор подстановки и $\beta\eta$ -конверсия

Определение 1.2.1. Пусть $M \in \Lambda$, $x \notin \mathrm{BV}(M)$. Пусть также $N \in \Lambda$. Результат подстановки N вместо x, M[x := N], определяется индуктивно:

$$x[x \coloneqq N] \equiv N;$$
 $y[x \coloneqq N] \equiv y, \; \text{если} \; y \not\equiv x;$ $(\lambda y. \; M')[x \coloneqq N] \equiv \lambda y. \; (M'[x \coloneqq N]);$ $(M_1 M_2)[x \coloneqq N] \equiv (M_1[x \coloneqq N])(M_2[x \coloneqq N]).$

<u>Замечание 1.2.1.</u> Рассмотрим $M \equiv \lambda y.\ x,\ N \equiv yy.$ Тогда по предыдущему определению мы получаем $M[x:=N]=\lambda y.\ yy,$ что настораживает, ведь $M \equiv \lambda y.\ x \stackrel{\alpha}{=} \lambda u.\ x \equiv M',$ тогда как

$$M[x := N] = \lambda y. \ yy \stackrel{\alpha}{\neq} \lambda u. \ yy = M'[x := N].$$

Однако заметим, что такая ситуация некорректна, ведь $\mathrm{BV}(M)\cap\mathrm{FV}(N)=\{y\}\neq\varnothing.$

Упражнение Доказать, что оператор подстановки уважает α -конгруэнтность, если рассматриваемые выражения соблюдают правило переменных. Иначе говоря,

$$\left. \begin{array}{l} M \stackrel{\alpha}{=} M' \\ N \stackrel{\alpha}{=} N' \end{array} \right\} \, \Rightarrow \, M[x \coloneqq N] \stackrel{\alpha}{=} M'[x \coloneqq N'].$$

<u>Лемма 1.2.1.</u> (о подстановке): Пусть $M,N,L\in\Lambda$. Тогда если $x\not\equiv y$ и $x\notin\mathrm{FV}(L)$, то

$$(M[x := N])[y := L] \equiv (M[y := L])[x := N[y := L]]$$

 $\underline{\textit{Доказательство}}$: Индукция по структуре λ -выражения M.

- (1) База: $M \equiv u \in V$. Тогда рассмотрим три случая:
 - $u \equiv x$. Тогда обе части тождественно равны $N[y \coloneqq L]$, так как $x \not\equiv y$.
 - $u \equiv y$. Тогда обе части равны L, так как $L[x \coloneqq ...] = L$, ведь $x \notin \mathrm{FV}(L)$.
 - $u \not\equiv x, y$. Тогда обе части равны u.
- (2) Переход.
 - $M \equiv \lambda z.\ M'$. По правилу переменых и определению оператора подстановки мы имеем $z \notin \mathrm{FV}(NL)$ и $z \not\equiv x,y$. Тогда по предположению индукции

$$\begin{split} (\lambda z.\ M')[x \coloneqq N][y \coloneqq L] &\equiv \lambda z.\ M'[x \coloneqq N][y \coloneqq L] \\ &\equiv \lambda z.\ M'[y \coloneqq L][x \coloneqq N[y \coloneqq L]] \\ &\equiv (\lambda z.\ M')[y \coloneqq L][x \coloneqq N[y \coloneqq L]]. \end{split}$$

• $M\equiv M_1M_2$. Доказательство аналогично.

q.e.d.

<u>Определение 1.2.2.</u> ($\beta\eta$ -конверсия): Отношение $\beta\eta$ -конверсии (\simeq) — это наименьшее подмножество $\Lambda \times \Lambda$, удовлетворяющее следующим условиям:

• $(\lambda x. M)N = M[x := N];$

 $(\beta$ -конверсия)

• λx . Mx = M, при условии что $x \notin \mathrm{TV}(M)$;

 $(\eta$ -конверсия)

- \simeq отношение эквивалентности;
- \simeq совместимо с операциями.

Если $M\simeq M$, мы говорим, что «M равно N», или «M конвертируется в N». Запись « $\lambda\vdash M\simeq N$ » означает, что конверсию $M\simeq N$ можно вывести из вышеуказанных правил.

Теорема 1.2.1. (о неподвижной точке): $\forall F \in \Lambda : \exists X \in \Lambda : FX = X$.

Доказательство: Пусть $W \equiv \lambda x$. F(xx) и $X \equiv WW$. Тогда имеем

$$X \equiv WW \equiv (\lambda x. F(xx))W \simeq F(xx)[x := W] \equiv F(WW) \equiv FX,$$

q.e.d.

Утверждение 1.2.1. (fallacy): $\forall M, N \in \Lambda$: $\lambda \vdash M \simeq N$

Доказательство: Рассмотрим $F \equiv \lambda x, y. \ yx.$ Тогда для любых M, N имеем

$$FMN \equiv ((\lambda x. (\lambda y. yx))M)N \simeq (\lambda y. yM)N \simeq NM.$$

В частности, $Fyx \simeq xy$. Однако

$$Fyx \equiv ((\lambda x. (\lambda y. yx))y)x \simeq (\lambda y. yy)x = xx.$$

Тогда $xy \simeq xx$, а значит $F_1 \equiv \lambda x, y. \ xy \simeq \lambda x, y. \ xx \equiv F_2$. Теперь для любого $M \in \Lambda$ имеем

$$M \simeq (\lambda x.\ x) M \simeq F_1(\lambda x.\ x) M \simeq F_2(\lambda x.\ x) M \simeq (\lambda x.\ x) (\lambda x.\ x) \simeq (\lambda x.\ x),$$

I и по транзитивности $M\simeq (\lambda x.\ x)\simeq N$ для любых $M,N\in\Lambda.$ В чём ошибка?

<u>Лемма 1.2.2.</u> Оператор подстановки уважает конверсию. Иначе говоря, если $M \simeq M', \ N \simeq N',$ то $M[x := N] \simeq M'[x := N'].$

<u>Доказательство</u>: Упражнение.

1.3. Комбинаторы и согласованность

Определение 1.3.1.

- $\mathbf{I} \equiv \lambda x. x$
- $\mathbf{K} \equiv \lambda x, y. \ x$
- $\mathbf{K}_* \equiv \lambda x, y. y$
- $S \equiv \lambda x, y, z. \ xz(yz)$
- $\mathbf{Y} \equiv \lambda f. \ (\lambda x. \ f(xx))(\lambda x. \ f(xx))$ комбинатор неподвижной точки: $\forall F \in \Lambda: F(\mathbf{Y}F) = \mathbf{Y}F.$ Этот комбинатор позволяет моделировать простую рекурсию. РАссмотрим λ -выражение M, определённое рекуррентной формулой:

$$Mx \equiv FxM$$
.

Определим $G \equiv \lambda y$. λx . Fxy. Тогда M приобретает явную форму: $M \equiv \mathbf{Y}G$ (упражнение).

Определение 1.3.2.

- Выражение вида $M \simeq N$ называется равенством;
- Равенство $M \simeq N$ называется замкнутым, если $M, N \in \Lambda^0$;
- Пусть \mathcal{T} формальная теория, т.е. набор правил, с помощью которых можно выводить равенства (наподобие λ -теории). Тогда \mathcal{T} называется согласованной (нотация $\mathrm{Con}(\mathcal{T})$) если \mathcal{T} не доказывает все замкнутые равенства. В противном случае \mathcal{T} называется противоречивой.
- Если \mathcal{T} это набор равенств, то $\lambda + \mathcal{T}$ обозначает теорию, полученную добавлением равенств из \mathcal{T} к стандартному списку аксиом $\beta\eta$ -конверсии.

<u>Определение 1.3.3.</u> Пусть $M, N \in \Lambda$. Тогда M и N называются *несовместимыми* (нотация M # N), если теория $\lambda + (M \simeq N)$ противоречива.

<u>Пример 1.3.1.</u> I # K

<u>Доказательство</u>: Имеем $IMN \simeq KMN$ для любых $M,N \in \Lambda$. По определению комбинаторов I и K, имеем $MN \simeq M$. Подставляя $M \equiv I$, получаем $N \simeq I \ \forall N \in \Lambda$.

1.4. Нормальные формы

Определение 1.4.1.

- λ -выражение M называется $\beta\eta$ -нормальной формой, если оно **не** имеет подвыражений вида $(\lambda x.\ M)N$ или $\lambda y.\ (My)$ (где $y\notin \mathrm{TV}(M)$).
- M имеет нормальную форму N, если $M \simeq N$ и N нормальная форма.

Пример 1.4.1.

- І находится в нормальной форме;
- **KI** имеет нормальную форму λy . **I**;
- Комбинатор $\Omega = (\lambda x. \ xx)(\lambda x. \ xx)$ не имеет нормальной формы (доказательство позже).

Воспоминания о будущем.

- Если M и N различные $\beta\eta$ -нф, то $\lambda \not\vdash M \simeq N$;
- M может иметь максимум одну нормальную форму;
- $\Omega = (\lambda x. \ xx)(\lambda x. \ xx)$ не имеет нормальной формы;
- λ согласованная теория.

1.5. Редукция

Замечание 1.5.1. В правилах конверсии есть определённая асимметрия. Так, о конверсии

$$(\lambda x. x^2 + 1)3 \simeq 10$$

можно сказать, что «10 является результатом упрощения выражения $(\lambda x.\ x^2+1)3$ », но никак не в обратную сторону. Сейчас мы формализуем эту асимметрию.

Определение 1.5.1.

- (1) Отношение \rightarrow (редукция за один шаг) это наименьшее подмножество $\Lambda \times \Lambda$, такое что:
 - $(\lambda x.\ M)N \to M[x := N];$
 - $\lambda x. Mx \to M$, если $x \notin \mathrm{TV}(M)$;
 - \rightarrow совместимо с операциями.
- (2) Отношение \rightarrow (редукция) это замыкание \rightarrow до предпорядка: \rightarrow = Preord(\rightarrow);
- (3) Отношение \simeq (конгруэнтность или эквивалентность) это замыкание \twoheadrightarrow до отношения эквивалентности: \simeq = Equiv(\twoheadrightarrow)

Определение 1.5.2.

- λ -выражения вида $(\lambda x.\ M)N$ называются β -редексами; соотв. отношения: $\underset{\beta}{\rightarrow}, \underset{\beta}{\twoheadrightarrow}, \underset{\beta}{\simeq}$
- λ -выражения вида $\lambda x.\ Mx$ называются η -редексами. соотв. отношения: $\underset{\eta}{\rightarrow}, \overset{\sim}{\rightarrow}, \overset{\sim}{\gamma}$
- M нормальная форма (или в нормальной форме), если M не содержит редексов.
- Пусть Δ редекс в выражении M. Запись $M \stackrel{\Delta}{\to} N$ означает, что N получается из M сокращением редекса Δ : $N \equiv M[\Delta \to \Delta']$
- Редукционный путь это последовательность (конечная или бесконечная) вида

$$M_0 \overset{\Delta_0}{\to} M_1 \overset{\Delta_1}{\to} M_2 \to \dots$$

Пример 1.5.1.

• Определим $\omega_3 \equiv \lambda x. \; xxx$. Это выражение порождает бесконечный редукционный путь:

$$\omega_3\omega_3 \stackrel{\omega_3\omega_3}{\to} \omega_3\omega_3\omega_3 \stackrel{\omega_3\omega_3}{\to} \omega_3\omega_3\omega_3 \stackrel{\omega_3\omega_3}{\to} \dots$$

• Редекс не всегда однозначно задаётся редукцией:

$$\mathbf{I}(\mathbf{I}x) \overset{\mathbf{I}x}{\rightarrow} \mathbf{I}x, \quad \mathbf{I}(\mathbf{I}x) \overset{\mathbf{I}(\mathbf{I}x)}{\rightarrow} \mathbf{I}x$$

Утверждение 1.5.1. Пусть M — нормальная форма. Тогда:

- (1) $\nexists N: M \rightarrow N$;
- (2) $M \rightarrow N \Rightarrow M \equiv N$.

<u>Доказательство</u>:

- (1) Очевидно.
- (2) По определению \twoheadrightarrow , условие $M \twoheadrightarrow N$ влечёт два случая:
 - $M \rightarrow K_1 \rightarrow K_2 \rightarrow ... \rightarrow N$ невозможно по (1);
 - $M \equiv N$ искомый.

q.e.d.

Определение 1.5.3. *Редукционный граф* выражения M (нотация Gr(M)) — это граф, в котором:

$$V = \{ N \in \Lambda \mid M \twoheadrightarrow N \}, \quad E = \{ (N, K) \in V^2 \mid N \to K \}$$

<u>Определение 1.5.4.</u> Пусть □ — произвольное отношение на множестве X. □ обладает свойством Чёрча-Россера (нотация $\mathrm{CR}(\square)$), если

$$\forall x, x_1, x_2 \in X : (x \supset x_1) \land (x \supset x_2), \quad \exists z \in X : (x_1 \supset z) \land (x_2 \supset z).$$

<u>**Теорема 1.5.1.**</u> Пусть \Box рефлексивно и обладает свойством Чёрча-Россера. Тогда для отношения \sim = Equiv(\Box) справедливо:

$$x \sim y \Rightarrow \exists z : (x \supset z) \land (y \supset z)$$

<u>Доказательство</u>: Индукция по определению отношения \sim . Пусть $x \sim y$. Тогда возникают три случая:

- $x \sim y \Leftarrow x \supset y$. Тогда положим $z \equiv y$.
- $x \sim y \Leftarrow y \sim x$. Тогда возьмём z по предположению индукции.
- $x\sim y \Leftarrow (x\sim L) \land (L\sim y)$. Тогда рассмотрим $z_1,z_2\in \Lambda:(z_1\sqsubset x,L) \land (z_2\sqsubset L,y)$. Поскольку $\mathrm{CR}(\sqsupset)$, найдётся λ -выражение z, такое, что $(z_1\sqsupset z) \land (z_2\sqsupset z)$. Оно искомое.

q.e.d.

1.6. Теорема Чёрча-Россера

Сначала мы докажем, что отношение $\underset{\beta}{\rightarrow}$ обладает свойством Чёрча-Россера.

<u>Лемма 1.6.1.</u> Пусть \Box — бинарное отношение на множестве X и пусть \Box' = $\mathrm{Trans}(\Box)$ — его транзитивное замыкание. Тогда $\mathrm{CR}(\Box)$ \Rightarrow $\mathrm{CR}(\Box')$.

<u>Доказательство</u>: Пусть $x\sqsupset' x_1,\ x\sqsupset' x_2$. Тогда для каждого отношения возможны два случая, и все четыре можно представить на диаграмме:

q.e.d.

<u>Определение 1.6.1.</u> Рассмотрим бинарное отношение *→*, определённое индуктивно следующим образом:

- $M \rightsquigarrow M$;
- $M \rightsquigarrow M' \Rightarrow \lambda x. M \rightsquigarrow \lambda x. M';$
- $M \rightsquigarrow M'$, $N \rightsquigarrow N' \Rightarrow MN \rightsquigarrow M'N'$;
- $M \rightsquigarrow M', N \rightsquigarrow N' \Rightarrow (\lambda x. M)N \rightsquigarrow M'[x := N'].$

<u>Лемма 1.6.2.</u> Если $M \rightsquigarrow M'$ и $N \rightsquigarrow N'$, то $M[x := N] \rightsquigarrow M'[x := N']$.

<u>Доказательство</u>: Индукция по определению $M \rightsquigarrow M'$.

(1) $M \rightsquigarrow M' \Leftarrow M \rightsquigarrow M$. Тогда требуется доказать, что $M[x \coloneqq N] \rightsquigarrow M[x \coloneqq N']$. Проведём индукцию по структуре M:

M	Правая часть	Левая часть	Комментарий
x	N	N'	ОК
y	y	y	ОК
PQ	P[]Q[]	P[']Q[']	предп. инд.

M	Правая часть	Левая часть	Комментарий
$\lambda y. P$	$\lambda y. P[]$	$\lambda y. P[']$	аналогично

- (2) $M \rightsquigarrow M' \Leftarrow \lambda y. \ P \rightsquigarrow \lambda y. \ P'$, прямое следствие $P \rightsquigarrow P'$. По предположению индукции имеем $P[x := N] \rightsquigarrow P'[x := N']$, а тогда $\lambda y. \ P[x := N] \rightsquigarrow \lambda y. \ P'[x := N']$, что и требовалось доказать.
- (3) $M \rightsquigarrow M' \Leftarrow PQ \rightsquigarrow P'Q'$, где $P \rightsquigarrow P'$ и $Q \rightsquigarrow Q'$. Тогда имеем

$$\begin{split} M[x\coloneqq N] &\equiv P[x\coloneqq N]Q[x\coloneqq N]\\ &\rightsquigarrow P'[x\coloneqq N']Q'[x\coloneqq N']\\ &\equiv M'[x\coloneqq N']. \end{split}$$

(4)
$$M \rightsquigarrow M' \Leftarrow (\lambda y. P)Q \rightsquigarrow P'[x := Q']$$
, где $P \rightsquigarrow P', Q \rightsquigarrow Q'$. Тогда

$$\begin{split} M[x \coloneqq N] &\equiv (\lambda y. \ P[x \coloneqq N])(Q[x \coloneqq N]) \\ &\rightsquigarrow P'[x \coloneqq N'][y \coloneqq Q'[x \coloneqq N']] \\ &\equiv P'[y \coloneqq Q'][x \coloneqq N'] \\ &\equiv M'[x \coloneqq N']. \end{split}$$

q.e.d.

Лемма 1.6.3.

- (1) $\lambda x. M \rightsquigarrow N$ влечёт $N \equiv \lambda x. M'$, где $M \rightsquigarrow M'$;
- (2) $MN \rightsquigarrow L$ влечёт либо
 - $L \equiv M'N'$, где $M \rightsquigarrow M'$ и $N \rightsquigarrow N'$, либо
 - $M \equiv \lambda x. P, L \equiv P'[x := N'], \text{ ede } P \rightsquigarrow P', N \rightsquigarrow N'.$

<u>Доказательство</u>: Очевидно.

Лемма 1.6.4. → удовлетворяет свойству Чёрча-Россера.

<u>Доказательство</u>: Пусть $M \rightsquigarrow M_1, M \rightsquigarrow M_2$. Проводим индукцию по определению $M \rightsquigarrow M_1$.

- (1) $M \rightsquigarrow M_1 \Leftarrow M \equiv M_1$. Тогда положим $Z \equiv M_2$.
- (2) $M\rightsquigarrow M_1 \leftarrow (\lambda x.\ P)Q\rightsquigarrow P'[x\coloneqq Q']$, где $P\rightsquigarrow P',\ Q\rightsquigarrow Q'$. <u>Лемма 1.6.3</u> позволяет рассмотреть два подслучая:
 - $M_2 \equiv (\lambda x.\ P'')Q''$, где $P \rightsquigarrow P'',\ Q \rightsquigarrow Q''$. По предположению индукции существуют λ -выражения Z_P,Z_Q , такие, что

$$P' \rightsquigarrow Z_P, \ P'' \rightsquigarrow Z_P, \ Q' \rightsquigarrow Z_Q, \ Q'' \rightsquigarrow Z_Q.$$

<u>Лемма 1.6.2</u> позволяет взять $Z \equiv Z_P \big[x \coloneqq Z_Q \big]$ в качестве искомого (упражнение).

- $M_2 \equiv P''[x\coloneqq Q'']$ аналогично.
- (3) $M \rightsquigarrow M_1 \Leftarrow PQ \rightsquigarrow P'Q'$, где $P \rightsquigarrow P', Q \rightsquigarrow Q'$. Снова два подслучая:
 - $M_2 \equiv P''Q''$, причём $P \rightsquigarrow P''$, $Q \rightsquigarrow Q''$. Тогда аналогично берём $Z \equiv Z_P \big[x \coloneqq Z_Q \big]$.
 - $P \equiv (\lambda x.\ P_1),\, M_2 \equiv P_{1''}[x\coloneqq Q'']$ и $P_1 \rightsquigarrow P_{1''},\, Q \rightsquigarrow Q''.$ Лемма 1.6.3 гарантирует, что $P' \equiv \lambda x.\ P_{1'}$, где $P_1 \rightsquigarrow P_{1'}$. Применяя предположение индукции, берём $Z = Z_P\big[x\coloneqq Z_Q\big].$
- (4) $M \rightsquigarrow M_1 \Leftarrow \lambda x.\ P \rightsquigarrow \lambda x.\ P'$, где $P \rightsquigarrow P'$. Тогда $M_2 \equiv \lambda x,\ P''$. По предположению индукции возьмём $Z = \lambda x.\ Z_P$.

q.e.d.

<u>Лемма 1.6.5.</u> \rightarrow_{β} — это транзитивное замкание \rightsquigarrow .

<u>Доказательство</u>: Очевидно по определению.

Теорема 1.6.1. (Чёрча-Россера):

(1)
$$\underset{\beta}{\rightarrow}$$
 удовлетворяет свойству Ч.-Р.;
(2) $M \underset{\beta}{\simeq} N \Rightarrow \exists Z: \left(M \underset{\beta}{\rightarrow} Z\right) \wedge \left(N \underset{\beta}{\rightarrow} Z\right).$

<u>Доказательство</u>: Упражнение.

Следствие 1.6.1.1.

- (1) Если M имеет β -нормальную форму N, то $M \overset{*}{\to} N$.
- (2) M может иметь максимум одну нормальную форму.

<u>Доказательство</u>:

- (1) Пусть $M \cong N$, где $N-\beta$ -нормальная форма. Тогда существует λ -выражение Z, такое, что $M \overset{\rightarrow}{\to} Z$ и $N \overset{\rightarrow}{\to} Z$ (<u>Теорема 1.5.1</u>). Однако раз N- нормальная форма, мы заключаем, что $N \equiv Z$ (<u>Утверждение 1.5.1</u>), и $M \overset{\rightarrow}{\to} N$. (2) Пусть $N_1, N_2 - \beta$ -нормальнае формы выражения M. Тогда $N_1 \overset{\rightarrow}{\to} Z$ и $N_2 \overset{\rightarrow}{\to} Z$ для начатарога Z. Станарога $N_1 = Z = N$
- некоторого Z. Следовательно, $N_1 \equiv Z \equiv N_2$. q.e.d.

Теперь мы перейдём к η -редукции.

Определение 1.6.2. Пусть $\Box_1, \Box_2, \Box_3, \Box_4$ — бинарные отношения на множестве X. Следующая диаграма,

$$\sqsupset_2 \qquad \sqsupset_3 \qquad \sqsupset_4$$

означает « $\forall x, x_1, x_2 \in X: (x \sqsupset_1 x_1) \land (x \sqsupset_2 x_2), \ \exists z \in X: (x_2 \sqsupset_3 z) \land (x_1 \sqsupset_4 z)$ ».

Замечание 1.6.1. Свойство Чёрча-Россера можно переформулировать в этой нотации.

<u>Определение 1.6.3.</u> Пусть \square_1 и \square_2 — два бинарных отношения на X. Мы говорим, что \square_1 и \square_2 коммутируют, если

$$\Box_1$$
 \Box_2 \Box_1

Замечание 1.6.2. Отношение ⊐ обладает свойством Ч.-Р. ⇔ ⊐ коммутирует само с собой.

<u>Утверждение 1.6.1.</u> (лемма Хиндли-Росена): Пусть \square_1 , $\square_2 \subset X \times X$ таковы, что

- (1) $CR(\square_1), CR(\square_2);$
- $(2) \supset_1 u \supset_2$ коммутируют.

Тогда $\operatorname{Trans}(\beth_1 \cup \beth_2)$ также обладает свойством Чёрча-Россера.

<u>Доказательство</u>: Упражнение.

<u>**Пемма 1.6.6.**</u> Пусть \beth_1, \beth_2 — бинарные отношения на множестве X. Допустим также, что

Тогда отношения $\operatorname{Preord}(\square_1)$ и $\operatorname{Preord}(\square_2)$ коммутируют.

<u>Доказательство</u>: Диаграммный поиск (лень рисовать).

<u>Пемма 1.6.7.</u> \xrightarrow{n} удовлетворяет свойству Чёрча-Россера.

 $\underline{\mathit{Доказательство}}\colon \mathsf{Tak}\ \mathsf{kak} \twoheadrightarrow = \mathsf{Preord}(\underset{\eta}{\to}) = \mathsf{Trans}(\mathsf{Refl}(\underset{\eta}{\to})),$ достаточно доказать утверждение для отношения $\mathsf{Refl}(\underset{\eta}{\to}) =: (\leadsto)$ ((Лемма 1.6.1). Предположим теперь, что $M \rightsquigarrow M_1$ и $M \rightsquigarrow M_2$. Без ограничения общности, допустим, что все три выражения M, M_1, M_2 различны (иначе очевидно). Индукция по определению $M \rightsquigarrow M_1$:

- (1) $M \rightsquigarrow M_1 \Leftarrow \lambda x.\ Px \rightsquigarrow P.$ Тогда $M_2 = \lambda x.\ P'x$, где $P \rightsquigarrow P'$. Положим $Z \equiv P'$ и дело в шляпе.
- (2) $M\rightsquigarrow M_1 \Leftarrow KP\rightsquigarrow KP'$, где $P\rightsquigarrow P'$. Тогда если $M_2\equiv K'P, K\rightsquigarrow K'$, то положим $Z\equiv K'P'$. Если же $M_2\equiv KP'', P'\rightsquigarrow P''$, то воспользуемся предположением индукции: $\exists Z_P:P',P''\rightsquigarrow Z_P$. Положим $Z=KZ_P$.
- (3) $M \rightsquigarrow M_1 \Leftarrow PK \rightsquigarrow P'K$, где $P \rightsquigarrow P'$. Аналогично с предыдущим случаем.
- (4) $M \rightsquigarrow M_1 \Leftarrow \lambda x.\ P \rightsquigarrow \lambda x.\ P'$, где $P \rightsquigarrow P'$.
 - (a) $M_2 \equiv \lambda x.\ P'', P \rightsquigarrow P''.$ Тогда положим $Z \equiv \lambda x.\ Z_P$, где Z_P взято из предположения индукции.
 - (b) $P\equiv P_0x,\, M_2\equiv P_0.$ Тогда $P'\equiv P_0'x,\,$ и мы можем положить $Z\equiv P_0'.$

q.e.d.

<u>Пемма 1.6.8.</u> $\underset{\beta}{\longrightarrow}$ коммутирует $c \xrightarrow{\eta}$.

Доказательство к следующей диаграмме:

Упражнение.

Теорема 1.6.2. (теорема Чёрча-Россера для $\beta\eta$ -редукции):

- (1) удовлетворяет свойству Чёрча-Россера;
- (2) $M \simeq N \Rightarrow \exists Z : (M \twoheadrightarrow Z) \land (N \twoheadrightarrow Z).$

<u>Доказательство</u>: Упражнение.

Следствие 1.6.2.1.

- Если M имеет $\beta\eta$ -нормальную форму N, то $M \twoheadrightarrow N$;
- M может иметь максимум одну нормальную форму;
- Теория $\lambda\beta\eta$ согласованна;

- λ -выражение $\Omega = (\lambda x. xx)(\lambda x. xx)$ не имеет нормальной формы.
- Доказательство: Очевидно, применяя Утверждение 1.5.1.

1.7. Редукционные стратегии

Определение 1.7.1. (редукционная стратегия): Отображение $F:\Lambda \to \Lambda$ называется *редукционной стратегией*, если для любого $M\in \Lambda$ выполняется редукция

$$M \twoheadrightarrow F(M)$$
.

<u>Определение 1.7.2.</u> Редукционная стратегия F называется *нормализующей*, если лдя любого $M \in \Lambda$, имеющего нф, $F^n(M)$ находится в нормальной форме для некоторого $n \in \mathbb{N}$.

Определение 1.7.3. *Крайняя левая редукционная стратегия,* F_l , определяется следующим образом:

- $F_l(M)=M$, если M в нормальной форме.
- $F_l(M)=M'$, если $M\stackrel{\Delta}{ o} M'$, где Δ крайний левый (внешний) редекс в M.

Теорема 1.7.1. (о нормализации): F_l — нормализующая стратегия.

<u>Доказательство</u>: Без доказательства.

2. λ -представимость