Micro-optimization for competitive programming

Nont Suphap

IPST Computer Olympiad Camp

19 October 2023

Special Thanks

This Slide adapt from UMN CSCI2021 lecture slide by Christopher Kauffman

What Computer actually did when compile and run C file ?

How to optimize?

- Algorithm and Data Structure
- Remove unnecessary work
- Memory Utilization
- Micro Optimization

Algorithm and Data Structure

```
void sort(vector<int>arr ,int N) {
    bubble_sort(arr, N);
}
```

Remove unnecessary work

```
bool is_palindrome(char *s) {
    for(int i = 0; i < strlen(s); i++) {
        if(s[i] != s[strlen(s) - i - 1])
            return false;
    }
    return true;
}</pre>
```

Remove unnecessary work

```
bool is_palindrome_opt1(char *s) {
    int n = strlen(s);
    for(int i = 0; i < n; i++) {
        if(s[i] != s[n - i - 1])
            return false;
    }
    return true;
}</pre>
```

Remove unnecessary work

```
bool is_palindrome_opt2(char *s) {
    int n = strlen(s);
    for(int i = 0; i < n / 2; i++) {
        if(s[i] != s[n - i - 1])
            return false;
    }
    return true;
}</pre>
```

Benchmark

Memory Utilization

Y86-64 SEQ sequential

Memory Reference

```
void sum_1()
    int s = 0;
    for(int i = 0; i < SIZE; i++)s += arr[i];
    return:
void sum_2()
    int s1 = 0:
    int *ptr = \&s1;
    for (int i = 0; i < SIZE; i++)
        *ptr += arr[i];
    return:
```

Operation

Modulo and division is very slow.

Pipeline and Superscalar

Loop unroll.

Branching Prediction

inline function

function stack

problem 1

Find diagonal sum.

Solution

Unroll loop cache

problem 2

Matrix Square.

Let matrix A alter 1,000 × 1,000 Attach
$$A^2$$

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad A^2 = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$$

Solution

Strassen algorithm.