

2020 IEEE International Symposium on Circuits and Systems
Virtual, October 10-21, 2020

Saptarsi Das, Arnab Roy, Kiran Kolar Chandrasekharan, Ankur Deshwal

SAIT, Samsung R&D Institute India-Bangalore, India

Email: saptarsi.das, arnab.roy, kiran.kc, a.deshwal@samsung.com

Sehwan Lee

SAIT, Samsung Electronics, South Korea

Email: sehwan.b.lee@samsung.com

2020 IEEE International Symposium on Circuits and Systems Virtual, October 10-21, 2020

Content

- Motivation & Background
- Design & Implementation of the Proposed Accelerator
- Experimental Results
- Conclusions

Motivation & Background

Why Accelerate CONV?

- Convolution Neural Networks (CNN) are ubiquitous in modern AI systems.
- Power efficient execution of CNN models is crucial especially in mobile phones and other hand held devices.
- In CNN models, the most compute intensive parts are convolution operations (CONV).

Motivation & Background

Why Use Systolic Array?

- Systolic arrays have a long history
- Have largely been off the mainstream
- Offers scalability, structural simplicity, ability to exploit parallelism and data reuse
- Renewed interest as candidate architecture for neural net accelerators

Why A New Systolic Array?

- Typically systolic arrays use scalar Processing Elements (PE)
- Cost of accumulation is high
- To mitigate this we propose a systolic array with inner-product units as the PEs

High Level View of the Accelerator

Primary Components of the Accelerator

- A Top Level Control Unit
- A Depth-wise Unit + Non-Linear Functions Unit
- A CONV Data-path
- A Global SRAM Buffer

Dataflow of CONV

- We follow an Output Stationary Traversal (OS)
- The Output Feature Map (OFM) 3D tensor is tiled as shown in Fig 1.
- Fig 2. shows delivery of Input Feature Map (IFM) & kernel into the systolic array

Fig. 1

- The IFM streams flow through a rows and get reused
- The kernel streams flow through columns and get reused

Features of the Accelerator

- Hierarchical vector units in PEs
- Channel-major data layout
- Overlapping of computation and communication
- Software-controlled scratch-pad SRAM with configurable logical buffers

Hierarchical vector units in PEs

- Each PE houses a multiplicity of vector units (VU)
- We implement two systolic arrays using Samsung 10 nm library (at 800 MHz)
 - One with scalar PEs
 - One with PEs consisting of 4 VUs. Each VU performs inner-product on vectors of length 4
 - Peak throughput of both arrays = 4096 INT8
 Multiply-Accumulate (MAC)/cycle

	Scalar Array	Hierarchical Vector Array
Power-Efficiency (TOPs/W)	7.1	14.2
Area-Efficiency (TOPs/mm²)	10.7	21.8

IFM & Kernel Dataflow through a 4x4 Array

Channel-major Data Layout

- We employ a channel-major data layout
- The IFM and kernel tensors are fetched as 1x1x64 vectors (in a 16x16 array)
- We measure memory read efficiency as #Bytes Used/#Bytes Read
- We set the length of channel vector in channel-major storage to 64 and dimension of 2D tile to 4x4 in the XY-major storage.

Network Models	Memory read efficiency		
	Channel-major	XY-major	
InceptionV3	78.89%	17.79%	
Resnet50	99.13%	10.88%	
Inception-Resnet	90.63%	15.96%	

Overlapping of Computation & Communication

- Each OFM tile generation involves computation & write-back
- To improve performance we overlap next tile computation with current tile writeback
- Data hazard is prevented through software-controlled mode selection

	TOPs			
Network Models				
	Non-overlapped	Overlapped	% Increase	
InceptionV3	3.2974	4.16	26.1	
Inception-Resnet	3.8859	4.84	24.5	
Resnet50	3.3467	3.77	12.6	

Software-controlled Scratchpad SRAM

- Software-controlled scratchpad memory
- Configurable logical buffers
 - Minimal hardware overhead
 - Support for variable size IFM, kernel,
 OFM tensors
 - Logic synthesis performed using Samsung 10 nm library (at 800 MHz)

	Area (mm²)		
Total Area	Combinational Area	Sequential Area	SRAM Bank Area
0.785442	0.01068	0.001243	0.774739
100.00%	1.35%	0.15%	98.50%

Area & Power Results

	Area		Peak Power	
Module	mm²	Percentage	W	Percentage
SRAM	0.785442	67.72%	0.1147	19.56%
Systolic Array	0.3008	25.93%	0.416	70.97%
Support Logic	0.073505	6.33%	0.0555	9.47%
Total	1.159747		0.5864	

	Module-wise Power Breakup		
Module	InceptionV3	Resnet50	Inception-Resnet
SRAM	19.60%	17.05%	18.34%
Systolic	71.00%	73.53%	72.78%
Support	9.40%	9.42%	8.88%

Table 2

Comparison with Other Accelerators

	Google TPU	Samsung NPU	Our Proposal
Technology	28 nm	8 nm	10 nm
	Weight-stationary	Wide-SIMD with	Output-stationary
Architecture	Systolic Array	zero-skipping	systolic array
Network	InceptionV1	InceptionV3	InceptionV3
TOPs/mm ²	0.28	1.25	3.6
TOPs/W	2.3 (peak)	3.4 (avg)	8.95 (avg)

Concluding Remarks

- In this presentation we presented a systolic dataflow based CNN accelerator
- Features like hierarchical vector units in PEs and channel major data layout are effective for improving energy efficiency
- Computation-communication overlap improves performance
- Software controlled scratch-pad memory makes SRAM more area efficient
- Effective clock gating further improves energy efficiency

Thank You!