分 数

分数是上海市六年级上学期数学教育中很重要的一课。

要求:掌握分数的四则运算;分数的大小比较;分数与无限循环小数的互化;分数计算常用方法。

- 1、**裂项法:** 是计算中需要发现规律、利用公式的过程, 裂项与通项归纳是密不可分的, 本 讲要求学生掌握裂项技巧及寻找通项进行解题的能力;
- 2、错项法:通过交叉相减得到更简便的结果;
- 3、换元法: 让学生能够掌握等量代换的概念,通过等量代换将复杂算式变成简单算式:
- 4、**循环小数与分数拆分**:掌握循环小数与分数的互化,循环小数之间简单的加、减运算, 涉及循环小数与分数的主要利用运算定律进行简算的问题;

4、通项归纳法

通项归纳法也要借助于代数,将算式化简,但换元法只是将"形同"的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将"形似"的复杂算式,用字母表示后化简为常见的一般形式。

一、裂项法

1.1 "裂差"型运算

(1)对于分母可以写作两个因数乘积的分数,即 $\frac{1}{a \times b}$ 形式的,这里我们把较小的数写在前面,

即
$$a < b$$
,那么有 $\frac{1}{a \times b} = \frac{1}{b - a} (\frac{1}{a} - \frac{1}{b})$

(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即:

$$\frac{1}{n\times(n+1)\times(n+2)}, \frac{1}{n\times(n+1)\times(n+2)\times(n+3)}$$
形式的,我们有:
$$\frac{1}{n\times(n+1)\times(n+2)} = \frac{1}{2} \left[\frac{1}{n\times(n+1)} - \frac{1}{(n+1)(n+2)} \right]$$
$$\frac{1}{n\times(n+1)\times(n+2)\times(n+3)} = \frac{1}{3} \left[\frac{1}{n\times(n+1)\times(n+2)} - \frac{1}{(n+1)\times(n+2)\times(n+3)} \right]$$

1.2 裂差型裂项的三大关键特征:

- (1)分子全部相同,最简单形式都是1的,复杂形式可都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算;
 - (2) 分母上均为几个自然数的乘积形式,并且满足相邻 2 个分母上的因数"首尾相接";
 - (3) 分母上几个因数间的差是一个定值。

1.3 "裂和"型运算:

常见的裂和型运算主要有以下两种形式:

(1)
$$\frac{a+b}{a \times b} = \frac{a}{a \times b} + \frac{b}{a \times b} = \frac{1}{b} + \frac{1}{a}$$
 (2) $\frac{a^2 + b^2}{a \times b} = \frac{a^2}{a \times b} + \frac{b^2}{a \times b} = \frac{a}{b} + \frac{b}{a}$

裂和型运算与裂差型运算的对比:

裂差型运算的核心环节是"两两抵消达到简化的目的", 裂和型运算的题目不仅有"两两抵消"型的, 同时还有转化为"分数凑整"型的, 以达到简化目的。

1.4 整数裂项:

(1)
$$1 \times 2 + 2 \times 3 + 3 \times 4 + \dots + (n-1) \times n = \frac{1}{3}(n-1) \times n \times (n+1)$$

(2)
$$1 \times 2 \times 3 + 2 \times 3 \times 4 + 3 \times 4 \times 5 + \dots + (n-2) \times (n-1) \times n = \frac{1}{4} (n-2)(n-1)n(n+1)$$

1.5 基本题型,T1 计算:
$$\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \cdots$$
 $\frac{1}{2\times 10} \times 2011$ $= (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + \cdots$ $\frac{1}{2\times 10} - \frac{1}{2011}$

$$= (1 - \frac{1}{2011}) = \frac{2010}{2011}$$

1.6 课堂练习,T2 计算:
$$\frac{1}{1\times4} + \frac{1}{2\times5} + \cdots$$
 $\frac{1}{2000} \times 2009$
$$= \frac{1}{3} \times \left[(1 - \frac{1}{4}) + (\frac{1}{2} - \frac{1}{5}) + (\frac{1}{3} - \frac{1}{6}) + (\frac{1}{4} - \frac{1}{7}) + \cdots \right] - \frac{1}{2008} + (\frac{1}{2006} - \frac{1}{2009})$$

$$=\frac{1}{3}\left(1+\frac{1}{2}+\frac{1}{3}-\frac{1}{2007}-\frac{1}{2008}-\frac{1}{2009}\right)$$

1.7 拓展训练, T3 计算:
$$\frac{1}{1+2} + \frac{1}{1+2+3} + \cdots$$
 $\frac{1}{1+4} + \frac{1}{1+3+\cdots}$

通项为
$$\frac{2}{n(n+1)} = 2(\frac{1}{n} - \frac{1}{n+1})$$
,故原式= $2(\frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \cdots)$ $\frac{1}{100}) = 1 - \frac{1}{50} = \frac{49}{50}$

T4 计算:
$$\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \cdots$$
 $\frac{1}{2 \times 3 \times 4} + \cdots$

通项为
$$\frac{1}{(n-1)n(n+1)} = \frac{1}{2} \left[\frac{1}{(n-1)n} - \frac{1}{n(n+1)} \right]$$
,故
原式= $\frac{1}{2} \left(\frac{1}{1 \times 2} - \frac{1}{2 \times 3} + \frac{1}{2 \times 3} - \frac{1}{3 \times 4} + \cdots \right) = \frac{1}{99 \times 100}$

$$=\frac{1}{2}(\frac{1}{2}-\frac{1}{9900})=\frac{4949}{19800}$$

T5 计算: 从 1, 2, 3, …, 100 中取 10 个不同的数, 使它们的倒数和等于 1, 这 10 个数可以是: 2, 6, 12, 20, 30, 42, 56, 72, 90, 10

T6 计算:
$$\frac{5}{1 \times 2 \times 3} + \frac{7}{2 \times 3 \times 4} + \frac{9}{3 \times 4 \times 5} + \cdots$$

T7 计算:
$$\frac{1}{2} + \frac{2}{2 \times 3} + \frac{3}{2 \times 3 \times 4} + \frac{4}{2 \times 3 \times 4 \times 5} + \cdots$$
 $\frac{9}{2 \times 3 \times 4 \times \cdots} + \frac{1}{2 \times 3 \times 4 \times \cdots}$

提示: 从最后两项相加开始,逐项向前相加,最后结果为1.

二、错项法

2.1 基本题型,T8 计算:
$$\frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots$$
【分析】等比数列,公比为 $\frac{1}{2}$ 。设 $S = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots$ 设,不难得到
$$\frac{1}{2}s = \frac{1}{2^2} + \frac{1}{2^3} + \cdots$$
 上 $\frac{1}{2^{101}}$ 从而 $S - \frac{1}{2}S = \frac{1}{2} - \frac{1}{2^{101}}$, $S = 1 - \frac{1}{2^{100}}$

2.2 课堂练习, T9 计算: 7+7²+7³+...+7¹00
【分析】公比为 7 的等比数列。S=7+7²+7³+...+7¹00
7S=7²+7³+...+7¹0¹; 两式交叉相减得到: (7-1) S=7¹0¹-7, S= (7¹0¹-7) /6

2.3 拓展训练,**T10** 计算:
$$\frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots$$

【分析】分子是等差数列,分母是等比数列。

$$\mathbf{S} = \frac{1}{2} + \frac{2}{2^2} + \frac{3}{2^3} + \cdots$$

$$\frac{1}{2}S = \frac{1}{2^2} + \frac{2}{2^3} + \frac{3}{2^4} + \cdots$$

两式相減得到:
$$\frac{1}{2}S = \frac{1}{2} + \frac{1}{2^2} + \frac{1}{2^3} + \cdots$$
 $\frac{n}{2^{n+1}}$

$$S = 1 + \frac{1}{2} + \cdots$$
 $\frac{n}{2} - \frac{n}{2^n} = \frac{1 - \frac{1}{2}}{1 - (\frac{1}{2})^n} - \frac{n}{2^n}$

$$=\frac{2^{n-1}}{2^n-1}-\frac{n}{2^n}$$

T11 计算:
$$(1+\frac{1}{2})(1+\frac{1}{2^2})(1+\frac{1}{2^4})(1+\frac{1}{2^8})+\frac{1}{2^{15}}$$

【分析】乘以一个($1-\frac{1}{2}$)就可以了。

原式=
$$\frac{(1-\frac{1}{2})(1+\frac{1}{2})...(1+\frac{1}{2^8})}{(1-\frac{1}{2})} + \frac{1}{2^{15}} = \frac{1-\frac{1}{2^{16}}}{\frac{1}{2}} + \frac{1}{2^{15}} = 2$$

2.4 延伸说明

等比数列求和, a, aq, aq², ..., aqⁿ⁻¹, 该数列是比值为 q 的等比数列。 其和 $S_n=a$ (1+q+q²+...+qⁿ⁻¹) =a(1-qⁿ)/(1-q), (q \neq 1) 就是用错项相减得到的。

三、换元法与公式应用

【分析】设
$$a = (\frac{1}{2} + \frac{1}{3} + \cdots)$$
, 原式= $a(1 + a - \frac{1}{2002}) - (1 + a)(a - \frac{1}{2002})$

3.2 课堂练习, T13 计算:

$$(\frac{531}{135} + \frac{579}{357} + \frac{753}{975}) \times (\frac{579}{357} + \frac{753}{975} + \frac{135}{531}) - (\frac{531}{135} + \frac{579}{357} + \frac{753}{975} + \frac{135}{531}) \times (\frac{579}{357} + \frac{753}{975})$$

【分析】找出同类项。设
$$a=\frac{579}{357}+\frac{753}{975}$$
, $b=\frac{531}{135}$

原式=
$$(b+a)\times(a+\frac{1}{b})-(b+a+\frac{1}{b})\times a$$
 =1

3.3 拓展训练

(1) 大小比较

T14 比较
$$\frac{778899}{778901}$$
与 $\frac{777776}{777778}$ 的大小?

【分析】设 a=778899,b=777776,显然 a>b. 求差 $\frac{a}{a+2} - \frac{b}{b+2} = \frac{2(a-b)}{(a+2)(b+2)} > 0$;

求比:
$$\frac{a}{a+2} \div \frac{b}{b+2} = \frac{ab+2a}{ab+2b} > 1$$

T15 若 A=
$$\frac{1}{1998^2 - 1998 + 1}$$
, B= $\frac{1}{1998^2 - 1997 \times 1998 + 1997^2}$,比较 A 与 B 的大小。
【分析】B= $\frac{1}{1998 + 1997^2} = \frac{1}{1998^2 - 1998 + 1} = A$

T16 试比较
$$\frac{1}{2} \times \frac{3}{4} \times \frac{5}{6} \times \cdots$$
 与 $\frac{1}{10}$ 的大小。

2/3>1/2, 4/5>3/4,....,98/99>97/98,1>99/100

所以 0<A<B,

另外 AxB=1/100, 故 A²<AxB=1/100, 所以 A<1/10

(2) 估值取整

T17 求
$$\frac{1}{\frac{1}{1339} + \frac{1}{1340} + \cdots}$$
 的整数部分是 $\frac{2}{200}$ 。

【解】设原式为 S,则:

$$\frac{1}{S} = \frac{1}{1339} + \frac{1}{1340} + \cdots$$

因为
$$\frac{1}{2007} < \frac{1}{n} < \frac{1}{1339} (1339 < n < 2007)$$

故
$$\frac{669}{2007} < \frac{1}{S} < \frac{669}{1339}$$
 , $\frac{1339}{669} < S < \frac{2007}{669}$, [不等式缩小范围]

所以
$$2\frac{1}{669} < S < 3$$
, S 的整数部分是 2.

T18 求证:
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \cdots$$

【分析】通项分析法
$$\frac{1}{n^2} < \frac{1}{(n-1)n} = \frac{1}{n-1} - \frac{1}{n}$$
 为

所以左边<1+(1-1/2)+(1/2-1/3)+...+(1/2007-1/2008)=2-1/2008<2

T19 设 A=
$$48 \times \left(\frac{1}{3^2 - 4} + \frac{1}{4^2 - 4} + \cdots\right)$$
, 求 A 的整数部分(2005 年全国初中数

学竞赛题)

12x2.0429292929<A<12x2.044117647059, 即 24.5151515<A<24.529, A 的整数部分是 24

四、循环小数与分数拆分

4.1 循环小数化分数结论

	纯循环小数	混循环小数
分子	循环节中的数字所组成 的数	循环小数去掉小数点后的数字所组成的数与不循环部分数字所组 成的数的差
分母	n 个 9, 其中 n 等于循环 节所含的数字个数	按循环位数添 9,不循环位数添 0,组成分母,其中 9 在 0 的左侧

$$0.a = \frac{a}{9}$$
; $0.ab = \frac{\overline{ab}}{99}$; $0.0ab = \frac{\overline{ab}}{99} \times \frac{1}{10} = \frac{\overline{ab}}{990}$; $0.abc = \frac{\overline{abc} - a}{990}$,

证明:设 S=0. aaaa···,则 10S=a. aaaaa···=a+0. aaaaa···=a+S,所以 9S=a, S = a/9 同理:S = 0. ababab···=0. ab+0. 00abab···, 100S=ab+0. abab···=ab+S, 99S=ab, S=ab/99

4.2 单位分数的拆分

分析:分数单位的拆分,主要方法是:

从分母 N 的约数中任意找出两个 m 和 n,有:

$$\frac{1}{N} = \frac{1(m+n)}{N(m+n)} = \frac{m}{N(m+n)} + \frac{n}{N(m+n)} = \frac{1}{A} + \frac{1}{B} \quad (\text{All })$$

从分母 N 的约数中任意找出两个 m 和 n (m > n), 有:

$$\frac{1}{N} = \frac{m-n}{N(m-n)} = \frac{m}{N(m-n)} - \frac{n}{N(m-n)} = \frac{1}{A} - \frac{1}{B}$$
 (差)

4.3 基本题型

T20 **(9):**
$$\frac{1}{10} = \frac{1}{20} + \frac{1}{20} = \frac{1}{()} + \frac{1}{()} = \frac{1}{()} + \frac{1}{()} = \frac{1}{()} + \frac{1}{()} = \frac{1}{()} + \frac{1}{()}$$

本题 10 的约数有:1,10,2,5.

例如: 选1和2, 有:

$$\frac{1}{10} = \frac{1(1+2)}{10(1+2)} = \frac{1}{10(1+2)} + \frac{2}{10(1+2)} = \frac{1}{30} + \frac{1}{15}$$

从上面变化的过程可以看出,如果取出的两组不同的m和n,它们的数值虽然不同,但是如果m和n的比值相同,那么最后得到的A和B也是相同的.本题中,从 10 的约数中任取两个数, 共有 $C_4^2=6$ 种,但是其中比值不同的只有 5 组:(1, 1);(1, 2);(1,

5); (1, 10); (2, 5), 所以本题共可拆分成5组. 具体的解如下:

$$\frac{1}{10} = \frac{1}{20} + \frac{1}{20} = \frac{1}{11} + \frac{1}{110} = \frac{1}{12} + \frac{1}{60} = \frac{1}{14} + \frac{1}{35} = \frac{1}{15} + \frac{1}{30}$$

T21 计算:
$$0.54+0.36=$$
______; $1.2\times1.24+\frac{19}{27}=$ ______;

【分析】化成分数再计算。 $0.5\overset{\bullet}{4} = \frac{54-5}{90} = \frac{49}{90}, 0.\overset{\bullet}{3}\overset{\bullet}{6} = \frac{36}{99} = \frac{4}{11}, \quad \frac{49}{90} + \frac{4}{11} = \frac{899}{990} = 0.9\overset{\bullet}{08}$

同理,
$$1.\overset{\bullet}{2} = 1 + 0.\overset{\bullet}{2} = 1 + \frac{2}{9} = \frac{11}{9}$$
, $1.\overset{\bullet}{24} = 1 + \frac{24}{99} = \frac{123}{99}$

$$1.2 \times 1.24 + \frac{19}{27} = \frac{11}{9} \times \frac{123}{99} + \frac{19}{27} = \frac{41}{27} + \frac{19}{27} = \frac{20}{9} = 2.2$$

T22 某学生将1.2 乘以一个数a时,把1.2 误看成 1.23,使乘积比正确结果减少 0.3.则正确结果该是多少?

【解】由题意得: 1.23a-1.23a=0.3,即: 0.003a=0.3,所以有: $\frac{3}{900}a=\frac{3}{10}$. 解得a=90,所以 $1.23a=1.23\times90=\frac{111}{90}\times90=111$

4.4 课堂练习

T23 将 $\frac{1}{15}$ 写成分母不同而分子是 1 的两个单位分数之和,最多有几种?

【分析】15 的约数有 1,3,5,15, 共 4 个。每次取两个, 共 6 种取法, 另外, 比例相同的两个数, 结果一样, 故不考虑, 总共有效的组合只有 4 种。它们是(1,3)(1,5)(1,15)(3,5),

$$\frac{1}{15} = \frac{1+3}{15(1+3)} = \frac{1}{60} + \frac{1}{20} = \frac{1+5}{15(1+5)} = \frac{1}{90} + \frac{1}{18} = \frac{1+15}{15(1+15)} = \frac{1}{240} + \frac{1}{16}$$

$$=\frac{3+5}{15(3+5)}=\frac{1}{40}+\frac{1}{24}$$

T24 将循环小数 0. 与 0. 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?

【分析】 0.
$$\times$$
 0.
$$= \frac{27}{999} \times \frac{179672}{999999} = \frac{1}{37} \times \frac{179672}{999999} = \frac{4856}{999999} = 0.$$

循环节有 6 位, $100 \div 6=16$ ······4,因此第 100 位小数是循环节中的第 4 位 8,第 101 位是 5. 这样四舍五入后第 100 位为 9.

T25
$$0.\dot{d} \ 2\dot{5} = \frac{n}{810}$$
,求正整数 n=_____。

【分析】
$$0.\dot{d}\,2\dot{5} = \frac{\overline{d25}}{999} = \frac{n}{810}$$

所以
$$\frac{\overline{d25}}{37} = \frac{n}{30}, d = 9, n = 750$$

4.5 拓展训练

T26 已知: 真分数 $\frac{a}{7}$ 化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是 1992,那么a 是多少?

T27 已知: 真分数 $\frac{a}{7}$ 化成循环小数之后,小数点后第 2009 位数字为 7,则 a 是多少?

【分析】我们知道形如 $\frac{a}{7}$ 的真分数转化成循环小数后,循环节都是由 6 位数字组成, 2009÷ 6= 33·······,因此只需判断当a 为几时满足循环节第 5 位数是 7,经逐一检验得 a=3 。 **T28** 如果 $\frac{1}{2009} = \frac{1}{A} - \frac{1}{B}$, A,B 均为正整数,则 B 最大是多少?

【分析】公式 $\frac{1}{N} = \frac{m-n}{N(m-n)} = \frac{m}{N(m-n)} - \frac{n}{N(m-n)} = \frac{1}{A} - \frac{1}{B}$, 如果要让B尽可能地大,实际上就是让上面的式子中的n尽可能地小而m尽可能地大,因此应当m 取最大的约数,而n应取最小的约数,因此m=2009,n=1,所以 $B=2009 \times 2008$.

T29 填空
$$\frac{1}{10} = \frac{1}{()} - \frac{1}{()} - \frac{1}{()} = \frac{1}{()} + \frac{1}{()} + \frac{1}{()}$$
 (2个扩充到 3个)

【分析】10的约数有四个,1,2,5,10,任取3个配对,如(10-5-2)(10-5-1)(10-2-1)(5-2-1)。凑成和也有四种(1+2+5)(1+2+10)(2+5+10)(1+5+10)