Stochastic Gradient Descent (SGD)

Definition:

Stochastic Gradient Descent is a variant of gradient descent where **weights are updated using only one randomly selected training sample at a time**, rather than the entire dataset.

Update rule:

$$w = w - \eta \cdot
abla L(x_i, y_i)$$

- (x_i, y_i) = one random sample
- η = learning rate
- ∇L = gradient of the loss function

Pros of SGD

1. Faster Updates per Step

o Only one sample is used → much faster computation per iteration.

2. Works Well with Large Datasets

o You don't need to load the entire dataset into memory.

3. Can Escape Local Minima

 The randomness in updates helps jump out of local minima and saddle points.

4. Suitable for Online Learning

Can learn from streaming data — ideal for real-time updates.

X Cons of SGD

1. High Variance in Updates

 Weight updates are noisy, which can make the loss function zigzag and unstable.

2. Harder to Converge

o May not settle near the exact minimum due to fluctuations.

3. Sensitive to Learning Rate

o A bad learning rate can cause divergence or very slow progress.

4. May Require More Epochs

 Because of noisy updates, it might take longer (more epochs) to reach a good solution.

Summary Table

Aspect	Explanation
Speed	Faster per update (one sample at a time)
Noise	Updates are noisy and fluctuate
Memory	Very memory-efficient
Convergence	Less stable, may oscillate near minima
Best Use	Large-scale or online learning scenarios