Modified Wilson current source

Problem: All transistors in the MOSFET modified Wilson current source are identical. The parameters are: $V_{TN}=1$ V; $K_n=0.2$ mA/V^2 , and $\lambda=0$. If $I_{REF}=250$ μA , determine I_O and V_{GS} for each transistor. (Ans. IO=IREF = 250 μ A, VGS=2.12 V)

• Modified Wilson current source: $I_{REF} = I_O = 250 \mu A$

•
$$I_D = I_{REF} = K_n (V_{GS} - V_{TN})^2 (1 + \lambda V_{DS})$$

$$250\mu = 0.2m(V_{GS} - 1)^2 (1 + 0)$$

- $V_{GS} = 2.12V$
- Since all drain currents are same, All have same K_n , V_{TN} values, therefore

Two transistor current source and Cascode current sources

Problem: Two transistor current source and Cascode current sources are such that: $I_{REF} = I_0 = 100 \mu A$ and $\lambda = 0.01 V^{-1}$ and $g_m = 0.5 mA/V$. Compare output resistances of both the current source circuits

 Two transistor current source: Output Resistance

$$r_0 = \frac{1}{\lambda I_{REF}} = \frac{1}{0.01 (100 \times 10^{-6})} = 1 \text{M}\Omega$$

Note: output resistance of identical **MOSFETS** are

 $r_{02} = r_{04} = r_0 = 1 \text{M}\Omega$ (output resistance from two transistor current source also)

Cascode current source:

Cascode current source:
$$R_{0} = r_{04} + r_{02}(g_{m}r_{04} + 1)$$

$$= 1M + 1M(0.5m(1M) + 1)$$

$$= 1M + 501M$$

$$= 502M\Omega$$

Comparison of output resistance of Cascode MOSFET current source to that of two transistor current source:

• Two transistor current source:

Output Resistance
$$r_0 = \frac{1}{\lambda I_{REF}}$$

Cascode MOSFET Current source

$$R_0 = r_{04} + r_{02}(g_m r_{04} + 1)$$

• Output resistance of Cascode is much larger than basic two transistor circuit. Also cascode is more stable against variations in output voltages as $dI_0 \propto 1/R_0$

MOSFET Differential Amplifier with Basic current Mirror

Problem: With bias current $I_0 = 0.587 mA$ (as found before), and with $\lambda = 0.01 V^{-1}$ for M_4 MOSFET, $K_{n1} = K_{n2} = 0.1 mA/V^2$ and $K_{n3} = K_{n4} = 0.3 mA/V^2$, find differential mode voltage gain A_d , Common-mode voltage gain A_{cm} , and CMRR for the given DiffAmp

• For the current mirror(M3 and M4), output resitance at M4:

$$R_o = \frac{1}{\lambda I_Q} = \frac{1}{(0.01)(0.587 \times 10^{-3})} = 170k\Omega$$

$$R_{o} = \frac{1}{\lambda I_{Q}} = \frac{1}{(0.01)(0.587 \times 10^{-3})} = 170k\Omega \qquad \text{With } I_{DQ} = \frac{I_{Q}}{2}$$

$$\bullet g_{m} = 2\sqrt{K_{n}I_{DQ}} = \sqrt{2K_{n}I_{Q}} = \sqrt{2(0.1m)(0.587m)} \qquad I_{D1} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D2} \qquad I_{1} \downarrow \begin{cases} R_{1} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D2} \qquad I_{1} \downarrow \begin{cases} R_{1} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D2} \qquad I_{D3} \qquad I_{D4} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text{ k}\Omega \end{cases} \qquad I_{D4} \downarrow \begin{cases} R_{D} = 10 \\ 16 \text$$

$$A_d = \frac{g_{m}R_D}{2} = 0.3426m \times \frac{16k}{2} = 2.741$$

$$A_{cm} = -\frac{g_m R_D}{2g_m R_o + 1} = -\frac{0.3426m \times 16k}{2(0.3426m)(170K) + 1} = -0.0467$$

$$CMRR_{dB} = 20 \log_{10} \left| \frac{A_d}{A_{cm}} \right| = 20 \log_{10} \left| \frac{2.741}{0.0467} \right| = 35.38 dB$$

MOSFET Differential Amplifier with cascode current mirror

Increase output resistance of current Diff-amp

Using Cascode current mirror:

$$R_0 = r_{04} + r_{02}(1 + g_m r_{o4})$$
 with $r_{02} = r_{04} = 170k\Omega$

- $R_0 > 20 M\Omega$ (several times over R_o of two MOSFET current source)
- $A_d = \frac{g_m R_D}{2}$ remains the same
- $A_{cm} = -\frac{g_m R_D}{2g_m R_O + 1}$ decreases drastically
- $CMRR_{dB} = 20 \log_{10} \left| \frac{A_d}{A_{cm}} \right|$ will also be far greater
- Hence it is necessary to improve the current source's output resistance to increase performance of diff-amp

MOSFET Differential Amplifier with cascode active load

Problem: Calculate the differential-mode voltage gain of a MOSFET diffamp with a cascode active load. Note: $(W/L)_n = 10$; $I_{DQ} = 0.1 mA$; $k'_n = 0.1 mA$

$$80\mu A/V^2$$
; $V_{TN} = 0.5V$; $\lambda_n = 0.02V^{-1}$; $V_{TP} = -1V$;

$$k_p' = 40\mu A/V^2$$
; $\lambda_p = 0.02V^{-1}$;

- $g_m = 0.4mA/V$ $r_0 = 500k\Omega$
- Cascode active load output resistance:

$$R_0 = r_{04} + r_{06}(1 + g_m r_{04})$$

$$= 500k + 500k(1 + 0.4m(500k))$$

$$= 500k + 500k(201)$$

$$= 101000k = 101M\Omega$$

Diff mode voltage gain: $A_d = \frac{v_0}{v_d} = g_m(r_{02} \parallel R_0)$

$$A_d = 0.4m(500k \parallel 101000k) = 200$$

