Terrinos 6

@ Pale derivata de ordinal men a fe de mai jos si precisati multimea pe case aceste fe. ment indefinit desirabile.

a) &(x)= vim x $\psi'(x) = \cos \infty$ $\psi''(\infty) = -\sin \infty$ $\psi''(\infty) = -\cos \infty$ $\psi''(\infty) = \sin \infty$

I indefinit derivabilà pe R.

Relatüle deținute pt. derivata de ordin n se dem. pein inductie.

p) \$(x)= lm (x+2) x+620 =) x(e (-2100)

$$\mathcal{L}_{1}(x) = \frac{x+1}{1} = (x+1)_{-7}$$

$$\xi''(\alpha) = -1 \cdot (\alpha + 1)^{-2}$$

$$\xi_{(x)} = (-7) \cdot (-5) \cdot (x+7)_{-3}$$

 $\varphi^{(m)}(\infty) = (-1) \cdot (m-1)! \cdot (\infty + 1) \quad \rightarrow \text{ inductive pt. dom.}$ 4 indef. desir. pe (-1,0), +m21. 4- = (4-) (2-1) = (2) 7

E) &(x=x).ex

4 indef. des. Pe R.

Vom determina desirata de ordinal n folorind Tormula lui

Libria :

(m. a) = 2 Cw. m. (w-k)

unde u=u(x), n=v(x), (a) u(x)= desivota de ordink a fc. u.

duam u fc. care devine dupà câtiva pari 1 puri $v(x) = e^{x}$ (are acceans durinata pt. orice In casul motion u(x)= x2 x $\left((3\xi_{5} \times) \cdot 6_{3\xi} \right) = C_{0}^{m} \cdot (3\xi_{5} \times 3) \cdot (6_{3\xi})_{(m)} + C_{1}^{m} (3\xi_{5} \times 3) \cdot (6_{3\xi})_{(m-7)} + C_{2\xi}^{m} (3\xi_{5} \times 3) \cdot (6_{3\xi})_{(m-7)} + C_{2\xi}^{m} (3\xi_{5} \times 3) \cdot (6_{3\xi})_{(m)} + C_{2\xi}^{m} (3\xi_{5} \times 3) \cdot (6_{3\xi}$ + Cm (x2 x).(ex)(m2)+ Cm (x2 x).(ex)(m-0)+... = $(\alpha^2 - \infty) \cdot e^{-\alpha} + \frac{m!}{m!} \cdot (2\alpha - 1) \cdot e^{-\alpha} + \frac{m!}{\alpha! \cdot (m-2)!} \cdot 2 \cdot e^{-\alpha} +$ de ain toți termenii vor fi 0, pt. că (x2-2x)(+)=0, 4 & 23 = (x2-x).ex + m (2x-Dex + m(m-2)ex = ex (22 + (2m-1) 2x+m2-2m) 4 me M, many w=0: $t_{(0)}(x) = e_{x}(x_{5} + (-1) \cdot x) = e_{x}(x_{5} - x) = t(x)$ w=T; &,(x) = 6x (x+ vx+1-5.0)= 6x(x+x-0) [x(x)]= (x2-x). ex+(x2-x).(ex)= ex(2x-1+x2-x) = ex (x2+x-2) d) x(x) = Jx-x , x \$1 4(x)= (1-x) t 4,(x)= = (1-x)-1/5 -(-7) $\xi_{11}(x) = \frac{9}{7} \cdot \left(-\frac{9}{7}\right) \cdot \left(-\frac{9}{2}\right)_{-9|5} \cdot \left(-7\right)_{5} = \frac{5}{7} \cdot \left(-7\right)_{3} \cdot \left(-\frac{3}{2}\right)_{-9|5}$ $\not= \frac{3}{2} \cdot (-7)_{3} \cdot \left(-\frac{5}{3}\right) \cdot \left(1-\frac{5}{3}\right) \cdot \left(1-\frac$ $\varphi^{(m)}(x) = \frac{1 \cdot 3 \cdot (-2)^5 \cdot (-\frac{5}{2}) \cdot (1 - x)^{-\frac{3}{2}} \cdot (-1)^2 \cdot (-1)^2 \cdot (-1)^2 \cdot (1 - x)^{-\frac{3}{2}}}{2^{m-2}} \cdot (-1)^{\frac{3}{2}} \cdot (-1)^{\frac{3}{2}} \cdot (1 - x)^{-\frac{3}{2}}$ $\varphi^{(m)}(x) = \frac{1 \cdot 3 \cdot 5 \cdot (-2)^5 \cdot (-2)^{-\frac{3}{2}} \cdot (-1)^2 \cdot (1 - x)^{-\frac{3}{2}} \cdot (-1)^{\frac{3}{2}} \cdot (1 - x)^{-\frac{3}{2}}$

$$\frac{1}{2m}(x) = \frac{(2m-3)!!}{2m} \cdot (1-x) - \frac{2m-1}{2}, m \ge 2$$
inductie... $\frac{1}{2}$ indep. der. $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

inductie.

2) Pt. Fc. de la va. anterior, pet. 20=0 mi ma. men det.

a) Polinomul lui Taylor de grad on associat function of in pot. 26. Pol. lui Taylor: $(T_m \varphi)(x) = \sum_{k=1}^{\infty} \frac{(x-x_k)^k}{k!} \cdot \varphi^{(k)}(x_0)$

a) \$(x)= vin x

$$= \frac{x}{x^{2}} - \frac{x^{3}}{x^{3}} + \frac{x^{5}}{x^{5}} - \frac{x^{7}}{x^{1}} + \frac{x^{9}}{y^{1}} - \dots + \frac{x^{1}}{y^{1}} + \frac{x^{9}}{y^{1}} - \dots + \frac{x^{1}}{y^{1}} + \frac{x^{9}}{y^{1}} - \dots + \frac{x^{1}}{y^{1}} + \frac{x^{1}}{y^{1}} + \frac{x^{1}}{y^{1}} - \dots + \frac{x^{1}}{y^{1}} + \frac{x^{1}}{y^{1}} + \frac{x^{1}}{y^{1}} - \dots + \frac{x^{1$$

$$t_{(m)}(0) = (-7) \cdot (m-7) \cdot \frac{1}{7} \cdot m^{3}$$

$$+ ... + (-1)^{\frac{1}{2}} \cdot (m-1)! \cdot \frac{x_{1}}{x_{2}} = \frac{3!}{x_{2}} \cdot (-1)^{\frac{1}{2}} \cdot \frac{3!}{x_{2}} \cdot (-1)^{\frac{1}{2}} \cdot 2! + \frac{3!}{x_{2}} \cdot 2! + \frac{3!}{x_{2}} \cdot (-1)^{\frac{1}{2}} \cdot 2! + \frac{3!}{x_{2}} \cdot 2! + \frac{3!}{x_{$$

$$= \frac{3}{34} + \frac{3}{32} + \frac{3}{32} - \dots + (-3) \cdot \frac{3}{34}$$

c)
$$\varphi(x) = (x^2 - x) \cdot e^{x}$$
 ?

 $\varphi^{(m)}(x) = e^{x}(x^2 + (2m - x)x + m^2 - 2m)$ $\gamma^{(m \in N)}$
 $\varphi^{(m)}(x) = e^{x}(x^2 + (2m - x)x + m^2 - 2m)$ $\gamma^{(m \in N)}$
 $\varphi^{(m)}(x) = e^{x}(x^2 + (2m - x)x + m^2 - 2m)$ $\gamma^{(m \in N)}$
 $\varphi^{(m)}(x) = e^{x}(x^2 + (2m - x)x + m^2 - 2m)$ $\gamma^{(m \in N)}(x) = e^{x}(x^2 + x^2 + x$

Peria Taylor
$$\frac{\infty}{\xi}(-1)^{m+1}$$
. $\frac{\infty}{m}$ e serie de puteu. Ji studiem consequența. Consideram s.t. p $\frac{\infty}{m-1}(-1)^{m+1}$. $\frac{\infty}{m} = \frac{1}{m-1}$

* D>1 (=) 12/ (1 (-) DEE(-1,1)

D=T (=) 10=1=T

Seria e: $\sum_{m=1}^{\infty} (-1)^{m+1} \cdot \frac{1}{m}$ care e seria armanica alternant ni e consugentà (conform cuit. L'erbniz)

Doz=1

Some
$$e: \sum_{m=1}^{\infty} (-1)^{m+1} \cdot \frac{(-1)^m}{m} = \sum_{m=1}^{\infty} (-1)^{2m+1} \cdot \frac{1}{m} = -\sum_{m=1}^{\infty} \frac{1}{m}$$

care e divergentà, deparer e resia armonicà.

Lour folosind boradorisarea mult, de convergentà a unei serii de puteri

* Staca $J \subseteq \mathbb{R}$ moteorrà must, de comungența a unei seui de putei centrată în so, atunei $\exists !$ re $[o, \infty]$ ar. seua e also. cons. + xe (xo - 1, xo + 1) oi seua e divergentă f $xe (-a, xo - 1) \cup (xo + 1, \infty)$.

Teorema mu preciseared matura seriei in x=xo-2 ni x=x

Calculul rassei de cono.: 5 am. (x-x6) serie de puteri cu

rasa de cons. re[0,00]. Atanci n= lim ants.

The
$$\sum_{n=1}^{\infty} (-1)^{n+1} \cdot \frac{x^n}{n}$$
 awarm $a_{m} = (-1)^{m+1} \cdot \frac{1}{n}$

The lim $(-1)^{m+1} \cdot \frac{1}{n} \cdot \frac{m+1}{1} \cdot (-1)^{m+2} = \frac{m+1}{n} = 1$

There can be $(-1)^{m+1} \cdot \frac{1}{n} \cdot \frac{m+1}{1} \cdot (-1)^{m+2} = \frac{m+1}{n} = 1$

There can be $(-1)^{m+1} \cdot \frac{1}{n} \cdot \frac{m+1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n} = 1$

There is a sum of $(-1)^{m+1} \cdot \frac{1}{n}$

$$1 = \lim_{m \to \infty} \left| \frac{a_m}{a_{m+1}} \right| = \lim_{m \to \infty} \frac{m-2}{m-1}. \quad \frac{m!}{m-1} = \lim_{m \to \infty} \frac{m^2 - 2m}{m-1} = 0$$

$$\Rightarrow 9 = \mathbb{R}.$$

d)
$$f(x) = \sqrt{1-x}$$
 $1-\frac{x}{2} - \frac{x}{2} = \frac{x^{m}}{m!} \cdot \frac{(2m-3)!!}{2m} = \frac{2m-3)!!}{m! \cdot 2^{m}}$
 $1-\frac{x}{2} - \frac{x}{m} = \frac{x^{m}}{m!} \cdot \frac{(2m-3)!!}{2m} = \frac{2m+2}{2m-4} = 1$
 $1-\frac{x}{2} - \frac{x}{2} = \frac{x^{m}}{m!} \cdot \frac{(2m-3)!!}{2m} = \frac{2m+2}{2m-4} = 1$

$$D = \lim_{m \to \infty} \frac{3m-3}{2m-3} = 1$$

$$D = \lim_{m \to \infty} \frac{3m+3}{2m-3} = 1$$

$$\sum_{m \to \infty} \frac{m! \cdot 2m}{(2m-3)!!}$$

$$R = \lim_{m \to \infty} m \left(\frac{2m+2}{2m-1} - 1 \right) = \lim_{m \to \infty} \left(\frac{2m+2-2m+1}{2m-1} \right) \cdot m = \lim_{m \to \infty} \frac{3m}{2m-1} = \frac{3}{2} 71$$

-) serie compridenta. $\frac{3}{2} - \frac{5}{2} = \frac{3}{4} - \frac{3}{4} = \frac{3}$ Jeria e also. como. (or obtine ca la x=1), deci cono. =)]=[-1'V] 3 Utilisand operații au suii de puteri, justificații egalitățile: a) \(\gamma\) \((m+1) \cdot \pi = \frac{1}{1} \) 5 xm = 1-x , +xe(-1,1) $\frac{\partial}{\partial x}(-\infty)^{2} = \frac{\partial}{\partial x}(-1)^{2} = \frac{1}{2}$, $f \propto \varepsilon(-1)^{2}$ | durinarm 1.(-1) $\sum_{m} (-7)_{m} \cdot w \cdot x_{m-7} = \frac{(7+x_{3})_{5}}{-7}$ 5 (-7) . w. x = (7+x) duam m=m-1 £ (-D). (m+x). x= 1/2+2 * doen acceptif lastà de convergenta: 1=1. * $re = \pm 1$ va fi divergentà. $\int_{-\infty}^{\infty} (-1)^m \cdot (m+1) \cdot (\pm 1)^m$ b) 2+ 2 (2m-1)!! . xm = 1 - 1 - 2+x = [-1,1) $\frac{\pi}{2} \propto^m \cdot \frac{(2m-3)!!}{(2m-3)!!} = 1 - \frac{\pi}{2} - \sqrt{2-x} + \pi \in [-1, 1]$ | desiram $\sum_{n=0}^{\infty} w_n \propto \frac{w_n! \cdot s_n}{(2m-3)!!} = -\frac{1}{2} - \frac{5}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}$ \[\lambda \cdot \frac{1}{2} \ldot \frac{1}{1-2} \cdot \ldot \cdot \frac{1}{2} \ldot \frac{1}{1-2} \cdot \ldot \frac{1}{2} \ldot \frac{1}{1-2} \cdot \frac{1}{2} \ldot \frac{1}{2

 $\sum_{p} \frac{(w-p)! \cdot 5w_{p}}{(5w-3)!!} \cdot x_{w-p} = -7 + \frac{1}{1}$ 7+ \(\frac{2}{5} \left(\frac{(w-7)}{5} \right) \frac{2}{5} \\ \frac{1}{5} \\ \f (w-r)(. 5w-r= 7.5.9... (w-r). 2.2.2. 2 $= 5.7 + 5.5 \cdot 5.3 \cdot ... \cdot 5(w-7) = (5w-5) / i$ m=2 (2m-3)!! $x^{m-1} = \frac{1}{\sqrt{1-x}}$ w = w - 7W=7 (5w)// $3w = \frac{1}{1}$ (-1,2) CJ * \(\sigma = 1\) 1+\(\left(2m-1) \). $D = \lim_{m \to \infty} \frac{(5m-1)!}{(5m+1)!} \cdot \frac{(5m+1)!}{(5m+1)!} = \lim_{m \to \infty} \frac{5m+1}{5m+2} = 7$ $R = lum \left(\frac{2m+2}{2m+2} - \frac{1}{2}\right) \cdot m = lim \frac{m}{2m+1} = \frac{1}{2} < 1 = 0$ divergentà * x=-1: $\frac{2m}{2m} = \frac{(2m)!!}{(2m+2)!!} = \frac{2m+2}{2m+2} > 1 = n/2 descentator$ Julmis

Serie convergenta

y= (-2,2)

Determinati multimea de consergență a seriei de putai E # (x-2)

 $\Omega_m = \frac{1}{m^2}$ $\alpha_0 = 1$.

$$3 = \lim_{m \to \infty} \left| \frac{1}{m^2} \right| = \lim_{m \to \infty} \frac{m^2 + 2m + 1}{m^2} = 1$$

DE T. (-2)

Sevie absolut commugentà desource $\left(\frac{\sum_{m=1}^{\infty}(-1)^m}{\sum_{m=2}^{\infty}}\right)$ consequatà : sevie aumonicà generalizatà en p=2.71.

*
$$x=2$$
 $\sum_{m=1}^{\infty} m^2$
 $m=1$

C (sevie aumonică gen. $p=2.74$)