

Graph Theory

DP on Directed Graphs

DP on Trees

Ans (4) = f (Ans [5] , Ans [6]

Problem 1

Shortest Path from Source to Destination in O(n+m) in DAG

Problem Part 1 - DAG

A game has n rooms and m tunnels between them. Each room has a certain number of coins. What is the maximum number of coins you can collect while moving through the tunnels when you can freely choose your starting and ending room?

Input:

The first input line has two integers n and m: the number of rooms and tunnels. The rooms are numbered 1,2,...,n.

Then, there are n integers k1,k2,...,kn: the number of coins in each room.

Finally, there are m lines describing the tunnels. Each line has two integers a and b: there is a tunnel from room a to room b. Each tunnel is a one-way tunnel.

Output:

Print one integer: the maximum number of coins you can

collect. Problem Source: CSES-1686

deside man coins you can pide s.t. de(i) = coins [i] + man f de [child] de (i) = (oivs/i) tor i not hoving any children

Problem Part 2 - Normal Graph

A game has n rooms and m tunnels between them. Each room has a certain number of coins. What is the maximum number of coins you can collect while moving through the tunnels when you can freely choose your starting and ending room?

Input:

The first input line has two integers n and m: the number of rooms and tunnels. The rooms are numbered 1,2,...,n.

Then, there are n integers k1,k2,...,kn: the number of coins in each room.

Finally, there are m lines describing the tunnels. Each line has two integers a and b: there is a tunnel from room a to room b. Each tunnel is a one-way tunnel.

Output:

Print one integer: the maximum number of coins you can

collect. Problem Source: CSES-1686

Second Rest minimum spanning tree