标准大气参数计算公式

北京林业大学

2019年3月1日

标准大气(standard atmosphere),又称"参考大气 (reference atmosphere)"。能够表示垂直方向上气温、气压、湿度等大气参数平均分布的一种模式大气。

在模型中,假定大气是静止的、空气为干洁的理想气体,在给定温度-高度廓线及海平面上的温度、压力和密度初始值后,通过对大气静力方程及气体状态方程进行积分,获得温度、气压和密度等数据。另外,在标准大气模型中还对各高度上大气的成分、标高、重力加速度、空气质点数密度、质点平均速度、平均碰撞频率、平均自由程、平均分子量、音速、粘滞系数、热传导率等有所规定。它可作为计算流体力学数值模拟、压力测高表校准、航空器性能计算、飞机和火箭设计、弹道查算表和气象图表制作的依据。

(1) 主要常数的符号及数值

计算中用到的主要常数符号及数值在表一、表二中给出:

表一 标准大气参数计算中的主要符号

10	你在八 (多数7) 并下的工女们 了		
符号	释义		
g_n	标准重力加速度		
M	海平面上的空气摩尔质量		
N_A	阿伏伽德罗常数		
p_n	海平面气压		
R^*	通用气体常数		
R	空气气体常数		
r	地球半径		
$S\& \beta_s$	萨瑟兰在动态粘度方程中的经验值		
T_{0}	平均海平面的冰点温度		
T_n	平均海平面的标准热力冰点温度		
t_0	平均海平面冰点温度摄氏		
t_n	平均海平面的冰点温度		
k	绝热指数		
ρ_n	标准空气密度		

σ	空气分子的有效碰撞直径
a_n	标准声速
μ_n	标准运动粘度
H	重力位势高度
Z	几何高度
Li	动态温度梯度

表二 标准大气计算中采用的主要常数

符号	数值	单位
g_n	9.80665	m/s ²
M	28.964420	kg/kmol
N_A	$602.257*10^{24}$	k/mol
p_n	101325.0	[Pa] or $[N/m^2]$
R^*	8314.32	$J \cdot K^{-1} \cdot kmol^{-1}$
R	287.05287	$J \cdot K^{-1} \cdot kmol^{-1}$
r	6356766	m
S	110.4	K
T_{θ}	273.15	K
T_n	288.15	K
t_0	0.00	$^{\circ}\mathrm{C}$
t_n	15.00	$^{\circ}\mathrm{C}$
β_s	1.458*10 ⁻⁶	$kg \cdot s^{-1} \cdot m^{-1} \cdot K^{-1/2}$
k	1.4	无量纲
ρ_n	1.225	kg·m ⁻³
σ	0.365*10 ⁻⁹	m

(2) 计算步骤

a. 基本方程的建立

由于大气层相对地球是静止的,所以它受到地心引力的作用,空气静力平衡条件与静压 p、密度 p、重力加速度 g、高度 h 有关:

$$-dp = \rho g dh$$

通过理想气体定律建立温度和密度之间的关系:

$$p = \frac{\rho R^* T}{M}$$

在国际标准中: $\frac{R^*}{M}$ = 常数 = R, 故:

$$p = \rho RT$$

利用牛顿引力定律,通过计算离心加速度,可以精确地求得标准大气下的重力加速度:

$$g = g_n \, \left(\frac{r}{r+Z} \right)$$

首先引入重力位势高度 H,用它代替几何高度(海拔高度) Z,这样可以 把重力场随高度变化造成的影响考虑进去。重力位势高度的计算公式如下:

$$H = \frac{Z}{1 + \frac{Z}{r}}$$

为了计算标准大气参数,现在主要采用插值法和公式计算法,本计算软件采用了公式计算的方法计算标准大气参数。

大气温度 T 随重力位势高度 H 的变化呈现线性变化,在-2~86 km 范围内的大气满足完全气体的条件,可以通过流体静力学平衡方程和理想气体方程进行积分,得出该范围内的标准大气参数计算方程。利用流体静力学平衡方程和理想气体方程加上适当的修正因子,可以计算出 86~1000 km 范围内标准大气参数计算公式。

b. 温度和垂直温度梯度:

在压力为 101325.0 Pa, $T_0=273.15$ K 时, 热力学温度的计算公式如下:

$$T = T_0 + t$$

根据温度变化把-2~86 km 的大气层分为 9 层(如表三所示)。在计算标准 大气时,每一层的温度随重力势高度的变化函数为:

$$T = T_i + L_i \quad (H - H_i)$$

其中, L_i 是每一层之内的温度变化率: $L_i = \frac{dT}{dH}$

为方便计算,我们引入一个中间参数 A 进一步简化计算公式:

$$\begin{cases} A = \frac{T_i + L_i \ (H - H_i)}{T_i} \ (L \neq 0) \\ A = \frac{g_n(H_i - H)}{RT_i} \ (L = 0) \end{cases}$$

故而,温度变化规律可用以下公式表示:

$$\begin{cases} T = T_i * A \ (L \neq 0) \\ T = T_i \ (L = 0) \end{cases}$$

表四 各层温度的起始温度、压力以及温度梯度

层	Z_{i}	T _i	pi	Li
	-2	301.154	127783	
Z_1	0	288.150	101325	-6.50
Z_2	11.1019	216.650	22632	-6.50
Z_3				+0.0
\mathbb{Z}_4	20.062	216.650	5474.87	+1.0
Z_5	32.162	228.650	868.014	+2.8
	47.351	270.650	110.906	+0.0
Z_6	51.413	270.650	66.938	
\mathbb{Z}_7	71.802	214.650	3.9564	-2.8
Z_8	86	186.870	3.7338×10^{-1}	-2.0
\mathbb{Z}_9			1.8359×10^{-1}	+2.0
Z_{10}	91	186.870		0.0
Z_{11}	110	240.00	7.1042×10^{-3}	
Z_{12}	120	86.65	2.5382×10^{-3}	10.0
212	500	999.24	3.0236×10^{-7}	12.0
Z_{13}	1000	1000.00	7.5138×10^{-9}	

c. 压力:

假设压力在各层之内也是随温度变化线性改变的,由静压公式和理想气体 定律可得:

$$\begin{cases} lnp = lnp_i - \frac{g_n}{RL_i} lnA \not \exists p = p_i \cdot A^{-\frac{g_n}{RL_i}} \ (L \neq 0) \\ lnp = lnp_i + A \not \exists p = p_i expA \ (L = 0) \end{cases}$$

d. 其他参数的计算:

通过理想气体定律可以计算空气密度(air density):

$$\rho = \frac{p}{RT}$$

比重 γ (单位体积的空气重量):

$$\gamma = \rho g$$

压力标高(pressure scale height):

$$H_p = \frac{R^*}{M} \cdot \frac{T}{g} = \frac{RT}{g}$$

空气粒子数量(air number density):

$$n = \frac{N_A p}{R^* T}$$

平均空气粒子速度(mean air particle speed):

$$\bar{z} = \left(\frac{8}{\pi}RT\right)^{\frac{1}{2}} = 1.595769\sqrt{RT}$$

空气粒子平均自由程(mean free path of air particle):

$$I = \frac{R^*}{\sqrt{2}\pi N_A \sigma^2} \cdot \frac{T}{p} = \frac{1}{\sqrt{2}\pi n \sigma^2}$$

大气粒子碰撞频率(air-particle collision frequency):

$$\omega = 4\sigma^2 N_A \left(\frac{\pi}{R^* M} \right)^{\frac{1}{2}} \cdot \frac{p}{T^{\frac{1}{2}}} = 0.944407 \times 10^{-18} n \sqrt{RT}$$

声速(speed of sound):

$$a = (\kappa RT)^{\frac{1}{2}} = 20.046796\sqrt{T}$$

其中,
$$\kappa = \frac{c_p}{c_v} = 1.4$$

热导率 (单位: W·m⁻¹·K⁻¹, thermal conductivity)

$$\lambda = \frac{2.648151 \times 10^{-3} \cdot T^{\frac{3}{2}}}{T + [245.4 \times 10^{-\binom{12}{T}}]}$$

动力粘度(dynamic viscosity):

动力粘度运用 Sutherland 公式进行计算,该公式在极高、极低以及 90 km 以上的大气无效。

$$\mu = \frac{\beta_s T^{\frac{3}{2}}}{T + S}$$

运动粘度(kinematic viscosity):

$$v = \frac{\mu}{\rho}$$

水蒸气分压(vapour pressure of water):

水蒸气分压可以通过饱和相对湿度 U 和水汽压 Ew 计算。

$$E = U \times E_w$$

附加水蒸气分压之后,总压 $p_t=p+E$ 。