IDENTIFYING AND LOCATING MULTIPLE SCLEROSIS (MS) LESIONS IN BRAIN MRI SCANS

W.MSCIDS_CVI03.F2 Computer Vision - Group 2
Adrian Imfeld, adrian.imfeld@stud.hslu.ch
Robin Portmann, robin.portmann@stud.hslu.ch
Emir Odic, emir.odic@stud.hslu.ch

AGENDA

- Introduction
- Objective
- Dataset
- Methodology
- Evaluation
- Conclusion

INTRODUCTION

- MS affects function in cognitive, emotional, motor, sensory, or visual areas.
- A person's own immune system attacks their brain and spinal cord.
- According to Walton et al. (2020), MS prevalence has increased in every world region since 2013, with an estimated number of 2.8 million people with MS in 2020 worldwide.

INTRODUCTION

- Volumetric brain MR imaging, as shown in Figure 1, as a common method to treating MS patients.
- The figure only shows one layer this approach results in hundreds of images, making detection or changes very time-consuming.
- Diagnosis also influenced by Inter- and Intra-observer
 Variability (Conti et al., 2023).

Figure 1. Layer of MRI scan with lesion segmentation (Zhao et al., 2017)

Intra-observer Variability

Consistency of a single expert

Lesion

Inter-observer Variability

Differences between experts

OBJECTIVE

- Develop an automated machine learning model for accurate segmentation of multiple sclerosis (MS) lesions from MRI scans.
- Evaluation by using the **Dice similarity coefficient**, which measures the overlap between predicted segmentation and ground truth.
 - Commonly used in medical image applications, which helps with comparison of results

DATASET

- Primary dataset by Muslim et al. (2022)
- Brain MRI scans from 60 patients, confirmed to have MS including manual lesion segmentation
- Provided by Baghdad Teaching Hospital, Iraq
- Each patient folder contains:
 - The patient's brain-scans (T1, T2, Flair)
 - Corresponding lesion segmentation for each of the brain-scans

Figure 2. Layer from MRI scan represented in multiple sequences: Flair, T2 and T1 (Ma et al., 2022)

DATASET - EDA

Insights regarding MRI scan properties

- Unique Voxel Dimensions: 1
- Unique Image Shapes (HxW): 13
- Unique Scan Orientations: 3

Distribution of Scan Orientation

Figure 3. Distribution of scan orientation in dataset

Figure 4. Statistical analysis regarding slice properties

PREPROCESSING

- Brain extraction (Deepbet)
- Resize slices to 256x256
- Min-max normalization to 0-1 within scan
- Select only slices with lesions
- Paired data augmentation: rotation, shift, zoom, flip, shear, noise

Figure 5. Top: Brain extraction, Bottom: Augmented slice-mask pairs

U-NET

- CNN, optimized for medical image segmentation
- Input: 256x256 slice
 Output: Segmentation
- Encoder (left): Pretrained ResNet50, MaxPool 2x2
- Decoder (right): Upsampling 2x2
- Skip Connections: preserve fine spatial details and better gradient flow

Figure 6. U-Net architecture by Hitziger et al. (2022)

TRAINING

- Train-test split: 41 vs. 10 scans
- Dice coefficient: better for imbalanced segmentation than IoU
- Combined loss: dice and crossentropy loss
- Prevent overfitting:
 - Decreasing learning rate
 - L2 regularization
 - Dropout
 - Batch normalization
 - Layer freezing
- Early stopping

Figure 7. Comparison of IoU and Dice Coefficient (Fakecan, 2023)

BASE MODEL

Figure 8. Training using default ResNet50 architecture

Model overfits after a couple of epochs

PARAMETER TUNING

- Optimizing the following Params:
 - Dropout
 - Regularization (L2)
 - Learning rate

Parameter	Value
Dropout	0.1
Regularization (L2)	2.3e-5
Learning rate	2.2e-4

Table 1. Optimal parameters for final model

Figure 9. Tensorboard tuning overview

Good Predictions

Lesion Mask

Predicted Lesion

Overlap (correct prediction)

Potential for Improvement

 Wrong predictions around the eyes and the ventricles

MODEL PERFORMANCE COMPARISON

Model	Dice Coefficient
DeepScan (McKinley et al., 2020)	0.6
CLAIMS (La Rosa et al., 2022)	0.49
Segmentation of multiple sclerosis lesions using deep neural networks (Sasko, 2021)	0.6
Best model from our group	0.59

Table 2. DSC study comparison

CONCLUSION

signature

CONCLUSION

- Complex MRI scan preprocessing represented a critical challenge in this project
- We successfully trained a U-net model to predict MS lesions on MRI scans
- The quality as well as the quantity of MRI scans makes a big difference
 - Model tends to overfit on small amount of training data
 - Difficult to acquire a large amount of high- quality MS MRI scans
 - Large differences between scans adds another difficulty (e.g. voxel sizes, masks)

THANK YOU

References

- Bell, D. & Moore, C. (2020). Dice similarity coefficient. Radiopaedia.org. https://doi.org/10.53347/rid-75056
- Conti, A., Treaba, C. A., Mehndiratta, A., Barletta, V. T., Mainero, C., & Toschi, N. (2023). An Interpretable Machine Learning Model to Predict Cortical Atrophy in Multiple Sclerosis. *Brain sciences*, *13*(2), 198. https://doi.org/10.3390/brainsci13020198
- Fakecan. (2023, 3. Juli). IOU와 dice coefficient. not bad한 개발자 일기. https://fakecan.tistory.com/64
- Harrison, D. M., Roy, S., Oh, J., Izbudak, I., Pham, D., Courtney, S., Caffo, B., Jones, C. K., van Zijl, P., & Calabresi, P. A. (2015). Association of Cortical Lesion Burden on 7-T Magnetic Resonance Imaging With Cognition and Disability in Multiple Sclerosis. JAMA neurology, 72(9), 1004–1012. https://doi.org/10.1001/jamaneurol.2015.1241
- Hitziger, S., Ling, W. X., Fritz, T., D'Albis, T., Lemke, A., and Grilo, J. (2022). Triplanar u-net with lesion-wise voting for the segmentation of new lesions on longitudinal mri studies. Front. Neurosci. 16:964250. https://doi.org/10.3389/fnins.2022.964250
- La Rosa, F., Beck, E. S., Maranzano, J., Todea, R. A., van Gelderen, P., de Zwart, J. A., Luciano, N. J., Duyn, J. H., Thiran, J. P., Granziera, C., Reich, D. S., Sati, P., & Bach Cuadra, M. (2022). Multiple sclerosis cortical lesion detection with deep learning at ultra-high-field MRI. NMR in biomedicine, 35(8), e4730. https://doi.org/10.1002/nbm.4730
- Ma, Y., Zhang, C., Cabezas, M., Song, Y., Tang, Z., Liu, D., ... & Wang, C. (2022). Multiple sclerosis lesion analysis in brain magnetic resonance images: techniques and clinical applications. *IEEE Journal of Biomedical and Health Informatics*, 26(6), 2680-2692.
- McKinley, R., Wepfer, R., Grunder, L., Aschwanden, F., Fischer, T., Friedli, C., Muri, R., Rummel, C., Verma, R., Weisstanner, C., Wiestler, B., Berger, C., Eichinger, P., Muhlau, M., Reyes, M., Salmen, A., Chan, A., Wiest, R., & Wagner, F. (2020). Automatic detection of lesion load change in Multiple Sclerosis using convolutional neural networks with segmentation confidence. Neurolmage. Clinical, 25, 102104. https://doi.org/10.1016/j.nicl.2019.102104
- Muslim, A. M., Mashohor, S., Gawwam, G. A., Mahmud, R., Hanafi, M. B., Alnuaimi, O., Josephine, R., & Almutairi, A. D. (2022). Brain MRI dataset of multiple sclerosis with consensus manual lesion segmentation and patient meta information. Data in brief, 42, 108139. https://doi.org/10.1016/j.dib.2022.108139
- Walton, C., King, R., Rechtman, L., Kaye, W., Leray, E., Marrie, R. A., Robertson, N., La Rocca, N., Uitdehaag, B., van der Mei, I., Wallin, M., Helme, A., Angood Napier, C., Rijke, N., & Baneke, P. (2020). Rising prevalence of multiple sclerosis worldwide: Insights from the Atlas of MS, third edition. Multiple sclerosis (Houndmills, Basingstoke, England), 26(14), 1816–1821. https://doi.org/10.1177/1352458520970841
- World Health Organization: WHO & World Health Organization: WHO. (2023, 7. August). Multiple sclerosis. https://www.who.int/news-room/fact-sheets/detail/multiple-sclerosis
- Yeap, P. L., Wong, Y. M., Ong, A. L. K., Tuan, J. K. L., Pang, E. P. P., Park, S. Y., Lee, J. C. L., & Tan, H. Q. (2023). Predicting dice similarity coefficient of deformably registered contours using Siamese neural network. *Physics in medicine and biology*, 68(15), 10.1088/1361-6560/ace6f0. https://doi.org/10.1088/1361-6560/ace6f0
- Thao, Y., Guo, S., Luo, M., Liu, Y., Bilello, M., & Li, C. (2017). An energy minimization method for MS lesion segmentation from T1-w and FLAIR images. Magnetic resonance imaging, 39, 1–6. https://doi.org/10.1016/j.mri.2016.04.003