INTRODUCTION TO DATA SCIENCE IN PYTHON

Week 1

Python

- Why Python? 1. It's easy to learn Now the language of choice for 8 of 10 top US computer science programs (Philip Guo, CACM) 2. Full featured
- Not just a statistics language, but has full capabilities for data acquisition, cleaning, databases, high performance computing, and more 3. Strong Data Science Libraries
- The SciPy Ecosystem

Course Outline

- 1. Prerequisite Python Knowledge
- 2. The pandas Toolkit
- 3. Advanced Querying and Manipulation with pandas
- 4. Basic Statistical Analysis with numpy and scipy, and project

Drew Conway perspective on data science:

- Hacking Skills
- Math and Statistics Knowledge
- Substantive Expertise
- Other data science perspectives:
- Skepticism, experimentation, simulation, and replication

"50 Years of Data Science"

- 1. Data Exploration and Preparation
- 2. Data Representation and Transformation
- 3. Computing with Data
- 4. Data Modeling
- 5. Data Visualization and Presentation
- 6. Science about Data Science Week

The map() function

The map() function executes a specified function for each item in a iterable. The item is sent to the function as a parameter.

Week 2

Pandas

- Created in 2008 by Wes McKinney
- Open source New BSD license
- 100 different contributors

Stack Overflow

- http://stackoverflow.com
- Massive knowledge forum of python and pandas related content
- Free to join and participate in
- Heavily used by pandas developers instead of a mailing list

Books

Python for Data Analyst

Learning the Pandas Library *Matt Harrison)

Blogs

Planet Python • http://planetpython.org/

- Excellent blog aggregator for python related news
- Significant number of data science and python tutorials are posted
- Great blend of applied beginner and higher level python postings

Podcast

Data Skeptic Podcast

- http://dataskeptic.com/
- Kyle Polich, created in 2014 Covers data science more generally, including: Mini educational lessons Interviews Trends Shared community project (OpenHouse)

NOC with Medals

Filer DF with bolean

Week 3

Pandas Data Structures

- Series Object (1 dimensional, a row)
- DataFrame Object (2 dimensional, a table)
- Querying
 - iloc[], for querying based on position
 - loc[], for querying rows based on label
 - Querying the DataFrame directly
 - Projecting a subset of columns
 - Using a boolean mask to filter data

Setting Data in Pandas

- To add new data
- df[column]=[a,b,c]
- To set default data (or overwrite all data):
- df[column]=2

Chain Indexing:

- df.loc["Washtenaw"]["Total Population"]
- Generally bad, pandas could return a copy of a view depending upon numpy
- Code smell
- If you see a][you should think carefully about what you are doing (Tom Augspurger)

(a,b) (c,d): Scales

- Ratio scale:
 - units are equally spaced
 - mathematical operations of +-/* are all valid
 - E.g. height and weight
- Interval scale: units are equally spaced, but there is no true zero
- Ordinal scale:
 - the order of the units is important, but not evenly spaced.
 - Letter grades such as A+, A are a good example
- Nominal scale:
 - categories of data, but the categories have no order with respect to one another.
 - E.g. Teams of a sport.

Week 4

- Distribution: Set of all possible random variables
- Example:
 - Flipping Coins for heads and tails
 - a binomial distribution (two possible outcomes)
 - discrete (categories of heads and tails, no real numbers)
 - evenly weighted (heads are just as likely as tails)
 - Tornado events in Ann Arbor
 - a binomial distribution
 - Discrete
 - evenly weighted (tornadoes are rare events)

Uniform Distribution (Continuous)

Value of Observation

Normal (Gaussian) Distribution

Chi Squared (χ2) Distribution

Chi Squared (χ^2) Distribution

- Left-skewed
- Degrees of freedom = 4

Bimodal distributions

Probability and Statistics for Programmers

- Allen B. Downey - Available for free under CC license at: http://greenteapress.com/thinkstats2/index.html

Hypothesis Testing

- Hypothesis: A statement we can test
 - Alternative hypothesis: Our idea, e.g. there is a difference between groups
 - Null hypothesis: The alternative of our idea, e.g. there is no difference between groups
- Critical Value alpha (α)
 - The threshold as to how much chance you are willing to accept
 - Typical values in social sciences are 0.1, 0.05, or 0.01

p-hacking • P-hacking, or Dredging

- Doing many tests until you find one which is of statistical significance
- At a confidence level of 0.05, we expect to find one positive result 1 time out of 20 tests
- Remedies:
 - Bonferroni correction
 - Hold-out sets
 - Investigation pre-registration