```
In [1]: #Importing Necessary Libraries.
import pandas as pd
import matplotlib.pyplot as plt
import pandas as np
```

In [2]: #Reading the Data.
data=pd.read_csv("diabetes.csv")

In [3]: data

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction
0	6	148	72	35	0	33.6	0.627
1	1	85	66	29	0	26.6	0.351
2	8	183	64	0	0	23.3	0.672
3	1	89	66	23	94	28.1	0.167
4	0	137	40	35	168	43.1	2.288
763	10	101	76	48	180	32.9	0.171
764	2	122	70	27	0	36.8	0.340
765	5	121	72	23	112	26.2	0.245
766	1	126	60	0	0	30.1	0.349
767	1	93	70	31	0	30.4	0.315

768 rows × 9 columns

EXPLORING THE DATA

In [4]: #Checking Null Values for further steps.
data.isnull().sum()

Out[4]: Pregnancies 0 Glucose 0 BloodPressure 0 SkinThickness 0 0 Insulin BMI 0 DiabetesPedigreeFunction 0 Age 0 0 Outcome dtype: int64

```
In [5]: data.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 768 entries, 0 to 767
        Data columns (total 9 columns):
        Pregnancies
                                     768 non-null int64
        Glucose
                                     768 non-null int64
        BloodPressure
                                     768 non-null int64
        SkinThickness
                                     768 non-null int64
        Insulin
                                     768 non-null int64
        BMI
                                     768 non-null float64
                                     768 non-null float64
        DiabetesPedigreeFunction
                                     768 non-null int64
        Age
        Outcome
                                     768 non-null int64
        dtypes: float64(2), int64(7)
        memory usage: 54.1 KB
```

In [6]: data.describe()

Out[6]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesP _€
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	
4							>

From the above dataset the min value and when we look at the data we can find zeros which basically means not available and it is not shown as a null value so here we have to fix it.

```
So here I have fixed by taking the mean and replacing it
```

```
In [8]: columns=['Glucose' ,'BloodPressure' ,'SkinThickness', 'Insulin' ,'BMI']
```

In [10]: data.describe()

Out[10]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPe
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	_
mean	3.845052	121.681605	72.254807	26.606479	118.660163	32.450805	
std	3.369578	30.436016	12.115932	9.631241	93.080358	6.875374	
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	
25%	1.000000	99.750000	64.000000	20.536458	79.799479	27.500000	
50%	3.000000	117.000000	72.000000	23.000000	79.799479	32.000000	
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	

In [25]: data

Out[25]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunc
0	6	148.0	72.0	35.000000	79.799479	33.6	0
1	1	85.0	66.0	29.000000	79.799479	26.6	0
2	8	183.0	64.0	20.536458	79.799479	23.3	0
3	1	89.0	66.0	23.000000	94.000000	28.1	0
4	0	137.0	40.0	35.000000	168.000000	43.1	2
763	10	101.0	76.0	48.000000	180.000000	32.9	0
764	2	122.0	70.0	27.000000	79.799479	36.8	0
765	5	121.0	72.0	23.000000	112.000000	26.2	0
766	1	126.0	60.0	20.536458	79.799479	30.1	0
767	1	93.0	70.0	31.000000	79.799479	30.4	0

768 rows × 9 columns

In [22]: import seaborn as sns
 corrmat=data.corr()
 top_corr_features=corrmat.index
 plt.figure(figsize=(20,20))
 #plotting the heatmap
 g=sns.heatmap(data[top_corr_features].corr(),annot=True,cmap="RdYlGn")


```
In [23]: data.hist(figsize=(20,15))
         C:\Users\fathi\anaconda3\lib\site-packages\pandas\plotting\_matplotlib\tools.p
         y:307: MatplotlibDeprecationWarning:
         The rowNum attribute was deprecated in Matplotlib 3.2 and will be removed two m
         inor releases later. Use ax.get subplotspec().rowspan.start instead.
           layout[ax.rowNum, ax.colNum] = ax.get visible()
         C:\Users\fathi\anaconda3\lib\site-packages\pandas\plotting\ matplotlib\tools.p
         y:307: MatplotlibDeprecationWarning:
         The colNum attribute was deprecated in Matplotlib 3.2 and will be removed two m
         inor releases later. Use ax.get subplotspec().colspan.start instead.
           layout[ax.rowNum, ax.colNum] = ax.get visible()
         C:\Users\fathi\anaconda3\lib\site-packages\pandas\plotting\ matplotlib\tools.p
         y:313: MatplotlibDeprecationWarning:
         The rowNum attribute was deprecated in Matplotlib 3.2 and will be removed two m
         inor releases later. Use ax.get_subplotspec().rowspan.start instead.
           if not layout[ax.rowNum + 1, ax.colNum]:
         C:\Users\fathi\anaconda3\lib\site-packages\pandas\plotting\ matplotlib\tools.p
         y:313: MatplotlibDeprecationWarning:
         The colNum attribute was deprecated in Matplotlib 3.2 and will be removed two m
         inor releases later. Use ax.get subplotspec().colspan.start instead.
           if not layout[ax.rowNum + 1, ax.colNum]:
Out[23]: array([[<AxesSubplot:title={'center':'Age'}>,
                 <AxesSubplot:title={'center':'BMI'}>,
                 <AxesSubplot:title={'center':'BloodPressure'}>],
                [<AxesSubplot:title={'center':'DiabetesPedigreeFunction'}>,
                 <AxesSubplot:title={'center':'Glucose'}>,
                 <AxesSubplot:title={'center':'Insulin'}>],
                 [<AxesSubplot:title={'center':'Outcome'}>,
                 <AxesSubplot:title={'center':'Pregnancies'}>,
                 <AxesSubplot:title={'center':'SkinThickness'}>]], dtype=object)
```


SPLITTING THE DATA

```
In [11]: x= data[data.columns[:-1]]
y= data['Outcome']
#we will predict the outcome of the diabetes.
```

In [12]: x

Out[12]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunc
0	6	148.0	72.0	35.000000	79.799479	33.6	0
1	1	85.0	66.0	29.000000	79.799479	26.6	0
2	8	183.0	64.0	20.536458	79.799479	23.3	0
3	1	89.0	66.0	23.000000	94.000000	28.1	0
4	0	137.0	40.0	35.000000	168.000000	43.1	2
763	10	101.0	76.0	48.000000	180.000000	32.9	0
764	2	122.0	70.0	27.000000	79.799479	36.8	0
765	5	121.0	72.0	23.000000	112.000000	26.2	0
766	1	126.0	60.0	20.536458	79.799479	30.1	0
767	1	93.0	70.0	31.000000	79.799479	30.4	0

768 rows × 8 columns

```
In [13]: y
Out[13]: 0
                 1
                 0
          1
          2
                 1
                 0
                 1
          763
                 0
          764
                 0
          765
                 0
          766
                 1
          767
          Name: Outcome, Length: 768, dtype: int64
```

In [15]: from sklearn.model_selection import train_test_split
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_s

```
In [54]: x_train.shape
```

Out[54]: (614, 8)

In [16]: from sklearn.preprocessing import StandardScaler

In [17]: sc = StandardScaler()

In [18]: x_train = sc.fit_transform(x_train)
x_test = sc.fit_transform(x_test)

```
In [19]: from sklearn.linear model import LogisticRegression
In [20]: #Creating the model.
         logmodel = LogisticRegression()
         logmodel.fit(x_train, y_train)
         prediction1 = logmodel.predict(x test)
In [27]: from sklearn.metrics import accuracy_score, confusion_matrix
In [28]: |accuracy_score(y_test, prediction1)
Out[28]: 0.8116883116883117
In [29]: confusion_matrix(y_test, prediction1)
Out[29]: array([[97, 10],
                 [19, 28]], dtype=int64)
In [79]: print('Confusion Matrix:\n', confusion_matrix(y_test, prediction1))
         print('\n')
         print('Classification Report:\n', classification_report(y_test, prediction1))
         Confusion Matrix:
          [[97 10]
          [19 28]]
         Classification Report:
                        precision
                                      recall f1-score
                                                         support
                             0.84
                                       0.91
                                                 0.87
                                                            107
                    0
                    1
                             0.74
                                       0.60
                                                 0.66
                                                             47
             accuracy
                                                 0.81
                                                            154
                             0.79
                                                 0.76
            macro avg
                                       0.75
                                                            154
         weighted avg
                             0.81
                                                 0.81
                                                            154
                                       0.81
In [31]: #Saving the Model
         import pickle
         pickle_out = open("logmodel.pkl", "wb")
         pickle.dump(logmodel, pickle out)
         pickle out.close()
```

```
In [33]: import streamlit as st
         import pandas as pd
         import numpy as np
         #import plotly.express as px
         #from plotly.subplots import make subplots
         #import plotly.graph objects as go
         import matplotlib.pyplot as plt
         import seaborn as sns
         import pickle
In [34]: | st.sidebar.header('Diabetes Prediction')
         select = st.sidebar.selectbox('Select Form', ['Form 1'], key='1')
         if not st.sidebar.checkbox("Hide", True, key='1'):
             st.title('Diabetes Prediction(Only for females above 21years of
                                                                                 Age)')
             name = st.text_input("Name:")
             pregnancy = st.number input("No. of times pregnant:")
             glucose = st.number input("Plasma Glucose Concentration :")
             bp = st.number_input("Diastolic blood pressure (mm Hg):")
             skin = st.number_input("Triceps skin fold thickness (mm):")
             insulin = st.number_input("2-Hour serum insulin (mu U/ml):")
             bmi = st.number input("Body mass index (weight in kg/(height in m)^2):")
             dpf = st.number input("Diabetes Pedigree Function:")
             age = st.number input("Age:")
         submit = st.button('Predict')
         if submit:
                 prediction = classifier.predict([[pregnancy, glucose, bp, skin, insulin,
                 if prediction == 0:
                     st.write('Congratulation',name,'You are not diabetic')
                 else:
                     st.write(name," we are really sorry to say but it seems like you are
         2021-08-13 03:56:33.778
           Warning: to view this Streamlit app on a browser, run it with the following
           command:
             streamlit run C:\Users\fathi\anaconda3\lib\site-packages\ipykernel launche
         r.py [ARGUMENTS]
 In [ ]:
 In [ ]:
In [69]: from sklearn.linear model import LogisticRegression
         LR=LogisticRegression()
         LR.fit(x train,y train)
         from sklearn.metrics import accuracy score,confusion matrix
         print("Train Set Accuracy:"+str(accuracy_score(y_train,LR.predict(x_train))*100))
         print("Test Set Accuracy:"+str(accuracy score(y test,LR.predict(x test))*100))
         Train Set Accuracy: 76.8729641693811
         Test Set Accuracy:81.16883116883116
```

```
In [38]: from sklearn.svm import SVC
    svm=SVC()
    svm.fit(x_train,y_train)

print("Train Set Accuracy:"+str(accuracy_score(y_train,svm.predict(x_train))*100)
    print("Test Set Accuracy:"+str(accuracy_score(y_test,svm.predict(x_test))*100))
```

Train Set Accuracy:76.71009771986971 Test Set Accuracy:79.22077922077922