Presentation Title

Samy Braik

April 30, 2025

We denote by p the target distribution and q an easy-to-sample distribution, for example a centered Gaussian.

Diffusion

Let $X_0 \sim p$. We want to add noise until we reach pure noise, and denoise it afterward. We choose an horizon of time $T \in \mathbb{N}^*$ and a noise schedule $\beta : [0, T] \to \mathbb{R}^*$, continuous and non decreasing.

Forward process

$$d\overrightarrow{X}_{t} = \frac{-\beta(t)}{2\sigma^{2}}\overrightarrow{X}_{t}dt + \sqrt{\beta(t)}dB_{t}, \quad \overrightarrow{X}_{0} \sim p$$

Backward process

$$d\overleftarrow{X}_{t} = \left(\frac{\beta(T-t)}{2\sigma^{2}}\overleftarrow{X}_{t} + \beta(T-t)\nabla\log p_{T-t}\left(\overleftarrow{X}_{t}\right)\right)dt + \sqrt{\beta(T-t)}dB_{t}, \quad \overleftarrow{X}_{0} \sim p_{T}$$

We learn the score by using score-matching techniques Score matching

$$\mathcal{L}_{\mathsf{score}}(heta) = \mathbb{E}\left[\left\| s_{ heta}\left(au, \overrightarrow{X}_{ au}
ight) - \log p_{ au}\left(\overrightarrow{X}_{ au}|X_{0}
ight)
ight\|^{2}
ight]$$

Plug it in the backward process and generate by discretizing the dynamics.

Let $X_0 \sim q$ and $f: \mathbb{R}^d \to \mathbb{R}^d$ an invertible and differentiable function an set $X_1 := f(X_0)$ such that $X_1 \sim p$. We can write the density of X_1 as

$$p_{X_1} = q(f^{-1}(x_1)) \left| \det \frac{\partial f^{-1}}{\partial x_1}(x_1) \right| \tag{1}$$

$$= p_{X_0}(f^{-1}(x_1)) \left| \det \frac{\partial f}{\partial x_0}(f^{-1}(x_1)) \right|^{-1}$$
 (2)

We can then write the log-likelihood as

$$\log p_{X_1}(x_1) = \log p_{X_0}(f^{-1}(x_1)) - \log \left| \det \frac{\partial f}{\partial x_0}(f^{-1}(x_1)) \right|$$
 (3)

Normalizing flow

Let $X_0 \sim q$ and $X_1 \sim p$. We want to learn f_θ such that $X_1 \simeq f_\theta(X_0) = Z \sim p_Z$. To do that, we set a structure on f_θ , with f_1, \ldots, f_k simpler function (all parametrized by θ) such that

$$f_{\theta} = f_1 \circ f_2 \circ \ldots \circ f_k$$

We determine f_{θ} by minimizing

$$\mathcal{L}_{\mathsf{NF}}(\theta) = \mathbb{E}\left[-\log p_{\mathsf{Z}}(f_{\theta}(x)) - \log \left|\det \frac{\partial f_{\theta}}{\partial x}(x)\right|\right]$$

Flow

A flow is time dependant function $\phi_t: [0,1] \times \mathbb{R}^d \to \mathbb{R}^d$. Using that we can define a flow model by applying a flow to (X_0, X_1)

$$X_t = \phi_t(X_0, X_1) \quad t \in [0, 1], X_0 \sim p, X_1 \sim q$$
 (4)

Alternatively, by introducing a velocity field $v_t:[0,1]\times\mathbb{R}^d\to\mathbb{R}^d$ the flow can be defined with the following ODE

$$\begin{cases} \partial_t \phi_t(x) &= v_t(\phi_t(x)) \\ \phi_0(x) &= x \end{cases}$$
 (5)

Flow matching

The framework is as follow:

We define a probability path p_t interpolating from $p_0=q$ to $p_1=1$. Then we learn a velocity field v_t^θ generating the path p_t by minimizing the flow matching loss

$$\mathcal{L}_{\mathsf{FM}}(\theta) := \mathbb{E}[\|v_t^{\theta}(X_t) - \dot{X}_t\|^2] + c \tag{6}$$

Finally, we can sample from p_1 by solving the ODE (5) with the learned velocity field v_t^{θ} and the initial condition $X_0 \sim q$.

Comparison

Pros	Cons
1.2	
Exact density estimation	Computationaly inte
Exact density estimation Simulation free training	test
r Flexible Easy to exploit	Slow rate of converg Hard to evaluate at new of Hard to choose tuning page
•	1.2 W Exact density estimation Exact density estimation Simulation free training