Algorytmy macierzowe

Laboratorium 3 Sprawozdanie

Algorytmy rekurencyjnej kompresji i dekompresji macierzy

Adam Naumiec

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Wydział Informatyki Grudzień MMXXIII

Algorytmy macierzowe Laboratorium 3

Adam Naumiec

Grudzień 2023

Spis treści

0	Abs	strakt	3		
1	Stre	eszczenie wykładu	4		
2	Zad	ania zrealizowane w ramach laboratorium	5		
	2.1	Zadania	5		
	2.2	Raporty	5		
3	Pseudokody algorytmów i fragmenty kodu				
	3.1	Pseudokod: Tworzenie drzewa - CreateTree	6		
	3.2	Pseudokod: Kompresja macierzy - CompressMatrix	7		
	3.3	Fragmenty kodu programu realizującego zadanie	7		
		3.3.1 Klasa MatrixTree - MatrixTree	7		
	3.4	Metoda kompresująca - compress	8		
		3.4.1 Metoda dekompresująca - decompress	8		
		3.4.2 Metoda obliczająca rank macierzy - get_rank	8		
		3.4.3 Funkcja rysująca drzewo macierzy - $draw_tree$	8		
4	Testy wydajnościowe i czas działania oraz pomiar błędu				
	4.1	Czasy obliczeń	11		
	4.2	Porównanie wyniku - obliczenie sumy różnicy kwadratów de-			
		konstrukcji macierzy gęstej z macierzy skompresowanej	12		
5	Wa	rtości osobliwe σ dla macierzy	13		

6	H-n	nacierze dla różnych parametrów	13
	6.1	$b=1, \delta=\sigma_2 \ldots \ldots \ldots \ldots \ldots$	14
		6.1.1 99% zer	14
		6.1.2 98% zer	14
		$6.1.3 95\% \text{ zer } \dots \dots \dots \dots \dots \dots \dots$	14
		$6.1.4 90\% \text{ zer } \dots \dots \dots \dots \dots \dots \dots$	14
		6.1.5 80% zer	15
	6.2	$b=1, \delta=\sigma_{2^{k-1}} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
		6.2.1 99% zer	15
		$6.2.2 98\% \text{ zer } \dots \dots \dots \dots \dots \dots \dots$	15
		$6.2.3 95\% \text{ zer } \dots \dots \dots \dots \dots \dots$	15
		$6.2.4 90\% \text{ zer } \dots \dots \dots \dots \dots \dots$	16
		6.2.5 $80%$ zer	16
	6.3	$b=1, \delta=\sigma_{2^k} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	16
		6.3.1 99% zer	16
		6.3.2 98% zer	16
		6.3.3 95% zer	17
		6.3.4 90% zer	17
		6.3.5 80% zer	17
	6.4	$b=4, \delta=\sigma_2 \ldots \ldots \ldots \ldots \ldots$	17
		6.4.1 99% zer	17
		6.4.2 98% zer	18
		6.4.3 95% zer	18
		6.4.4 90% zer	18
		6.4.5 80% zer	18
	6.5	$b=4, \delta=\sigma_{2^{k-1}} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	19
		6.5.1 99% zer	19
		6.5.2 98% zer	19
		6.5.3 95% zer	19
		6.5.4 90% zer	19
		6.5.5 80% zer	20
	6.6	$b=4, \delta=\sigma_{2^k} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	20
		6.6.1 99% zer	20
		6.6.2 98% zer	20
		6.6.3 95% zer	20
		6.6.4 90% zer	21
		6.6.5 80% zer	21
	6.7	Macierz, którą powiesiłbym w salonie	22

7	$\mathbf{W}\mathbf{n}$	ioski	23
	7.1	Refleksje płynące z laboratirum	23
	7.2	Wykorzystanie kompresji macierzy	23
	7.3	Ogólny wniosek	24
${f Li}$	terat	ura	25

0 Abstrakt

NINIEJSZY dokument jest sprawozdaniem z wykonania Laboratorium 3 z przedmiotu Algorytmy macierzowe prowadzonego przez Pana prof. dr hab. Macieja Paszyńskiego w roku akademickim 2023/2024 na piątym semestrze studiów pierwszego stopnia na kierunku Informatyka prowadzonego na Akademii Górniczo-Hutniczej im. Stanisława Staszica w Krakowie na Wydziale Informatyki.

Rysunek 1: Wizualizacja mnożenia macierzy w rozkładzie wartości osobliwych (2)

1 Streszczenie wykładu

Trzeci wykład skupiony był wokół kompresji i dekompresji maciwrzy. Poruszane były tematy:

- idea hierarchinczej (bezstratnej) kompresji macierzy
- warunek dopuszczalności
- rekurencyjna kompresja macierzy za pomocą algorytmu SVD
- przykłady hierarchicznej kompresji macierzy
- arytmetyka macierzy skompresowanych za pomocą SVD

Zaprezentowane zostało także wykorzystanie i znaczenie tych algorytmów w praktyce oraz historia wykorzystania, postrzegania i zastosowania macierzy na przestrzeni wieków, a także matematyczne, inofmratyczne i algorytmiczne podstawy operacji na macierzach.

2 Zadania zrealizowane w ramach laboratorium

W ramach laboratorium zrealizowano zadanie polegające na implementacji, wykonaniu testów wydajnościowych i przygotowaniu sprawozdania.

2.1 Zadania

- 1. Proszę wybrać ulubiony język programowania.
- 2. Proszę wygenerować macierze losowe z wartościami z przedziału (0,1) które będą posiadać określony procent wartości niezerowych
- 3. Proszę napisać rekurencyjną kompresje macierzy z wykorzystaniem częściowego SVD (20 punktów) dla wybranych parametrów δ =najmniejsza wartość osobliwa (wyrzucamy mniejsze) b = maksymalny rank (liczba wartości osobliwych)
- 4. Proszę zaimplementować rysowacz (10 punktów)

2.2 Raporty

- 1. Proszę opisać pseudo-kod swojego rekurencyjnego algorytmu.
- 2. Proszę umieścić wybrane najbardziej istotne fragmenty kodu.
- 3. Proszę wybrać rozmiar macierzy $2^k \times 2^k$ dla dużego k.
- 4. Proszę wylosować 5 macierzy dla 1 procent wartości niezerowych, 2, 5, 10 i 20 procent (czyli 99 procent zer, 98, 95, 90, 80 procent).
- 5. Dla każdej macierzy proszę podać czas kompresji oraz
 - Proszę uruchomić SVD dla całej macierzy iznaleźć wartości osobliwe tej macierzy $\sigma_1, ..., \sigma_{2^k}$ i narysować je na wykresie
 - Dla b=1 oraz $\delta=\sigma_1$ narysować H-macierz.
 - Dla b=1 oraz $\delta=\sigma_{2^k}$ narysować H-macierz.
 - Dla b=1 oraz $\delta=\sigma_{2^{k-1}}$ narysować H-macierz.
 - Dla b=4 oraz $\delta=\sigma_1$ narysować H-macierz.
 - Dla b=4 oraz $\delta=\sigma_{2^k}$ narysować H-macierz.

- Dla b=4 oraz $\delta=\sigma_{2^{k-1}}$ narysować H-macierz.
- Proszę napisać dekonstrukcję macierzy gęstej z macierzy skompresowanej i porównać z wynikiem licząc sumę różnicy kwadratów

$$||A - B||^2 = \sum_{i,j} (a_{ij} - b_{ij})^2$$

.

3 Pseudokody algorytmów i fragmenty kodu

Przygotowano pseudokody testowancyh algorytmów oraz przedstawiono wybrane najważniejsze fragmenty kodu zaimplementowanych algorytmów w języku programowania wysokiego poziomu.

3.1 Pseudokod: Tworzenie drzewa - CreateTree

Pseudokod tworzenia drzewa macierzy skompresowanej i wywoływania rekurencyjnej kompresji z wykorzystaniem częściowego SVD

Algorithm 1 CreateTree Function

```
1: procedure CreateTree(t_{\min}, t_{\max}, s_{\min}, s_{\max}, r, \epsilon)
           Require: 1 \leqslant t_{\min} \leqslant t_{\max} \leqslant n, 1 \leqslant s_{\min} \leqslant s_{\max} \leqslant m where n \times m is
      the size of the matrix block, r, \epsilon are compression and threshold
           [U, D, V] \leftarrow \text{truncatedSVD}(A(t_{\min} : t_{\max}, s_{\min} : s_{\max}), r + 1)
 3:
           if D(r+1,r+1) < \epsilon then
 4:
                v \leftarrow \text{CompressMatrix}(t_{\min}, t_{\max}, s_{\min}, s_{\max}, U, D, V, r)
 5:
 6:
           else
 7:
                create new node v
                Append(v, \text{CreateTree}(t_{\min}, t_{\text{newmax}}, s_{\min}, s_{\text{newmax}}))
 8:
                Append(v, \text{CreateTree}(t_{\min}, t_{\text{newmax}}, s_{\text{newmax}} + 1, s_{\max}))
 9:
10:
                Append(v, \text{CreateTree}(t_{\text{newmax}} + 1, t_{\text{max}}, s_{\text{min}}, s_{\text{newmax}}))
                Append(v, \text{CreateTree}(t_{\text{newmax}} + 1, t_{\text{max}}, s_{\text{newmax}} + 1, s_{\text{max}}))
11:
           end if
12:
           RETURN v
13:
14: end procedure
```

3.2 Pseudokod: Kompresja macierzy - CompressMatrix

Pseudokod kompresji macierzy - podejście rekurencyjne z wykorzystaniem częściowego SVD

```
Algorithm 2 CompressMatrix Function
```

```
function CompressMatrix(t_{\min}, t_{\max}, s_{\min}, s_{\max}, U, D, V, r)
 2:
           Require: t_{\min}, t_{\max}, s_{\min}, s_{\max} - range of indexes of the block,
            [U, D, V] \leftarrow \text{truncatedSVD}(A(t_{\min}: t_{\max}, s_{\min}: s_{\max}, r+1))
           if block (t_{\min}, t_{\max}, s_{\min}, s_{\max}) consists of zeros then
 4:
                 create new node v
                 v.\text{rank} \leftarrow 0
 6:
                 v.\text{size} \leftarrow \text{size}(t_{\min}, t_{\max}, s_{\min}, s_{\max})
                 return v
 8:
           end if
           \sigma \leftarrow \operatorname{diag}(D)
10:
           rank \leftarrow r
           create new node v
12:
           v.\mathrm{rank} \leftarrow \mathrm{rank}
           v.\text{singular} \text{values} \leftarrow \sigma(1:\text{rank})
14:
           v.U \leftarrow U(*, 1 : rank)
           v.V \leftarrow D(1: \text{rank}, 1* \text{rank}) \cdot V(1: \text{rank}, *)
16:
           v.\text{sons} \leftarrow \emptyset
           v.\text{size} \leftarrow \text{size}(t_{\min}, t_{\max}, s_{\min}, s_{\max})
18:
           return v
20: end function
```

3.3 Fragmenty kodu programu realizującego zadanie

3.3.1 Klasa MatrixTree - MatrixTree

```
class MatrixTree(object):
    def __init__(self, matrix, row_min, row_max, col_min, col_max):
        self.matrix = matrix
        self.row_min = row_min
        self.row_max = row_max
        self.col_min = col_min
        self.col_max = col_max
        self.rank = None
        self.u = None
        self.s = None
        self.v = None
        self.v = None
        self.leaf = False
        self.children = []
```

3.4 Metoda kompresująca - compress

```
def compress(self, r: int, eps: float) -> None:
    M = self.matrix[self.row_min:self.row_max, self.col_min:self.col_max]
    U, Sigma, V = randomized_svd(M, n_components=r + 1, random_state=0)
    if self.row_min + r == self.row_max or Sigma[r] <= eps:</pre>
        self.leaf = True
        if not M.anv():
            self.rank = 0
        else:
            self.rank = len(Sigma)
            self.u = U
            self.s = Sigma
            self.v = V
    else:
       self.children = []
        new_row_max = (self.row_min + self.row_max) // 2
        new_col_max = (self.col_min + self.col_max) // 2
        self.children.append(MatrixTree(self.matrix, self.row_min, new_row_max, self.col_min, new_col_max))
        self.children.append(MatrixTree(self.matrix, self.row_min, new_row_max, new_col_max, self.col_max))
        self.children.append(MatrixTree(self.matrix, new_row_max, self.row_max, self.col_min, new_col_max))
        self.children.append(MatrixTree(self.matrix, new_row_max, self.row_max, new_col_max, self.col_max))
        for child in self.children:
            child.compress(r, eps)
```

3.4.1 Metoda dekompresująca - decompress

```
def decompress(self, matrix: np.ndarray) -> None:
    if self.leaf:
        if self.rank:
            sigma = np.zeros((self.rank, self.rank))
            np.fill_diagonal(sigma, self.s)
            M = self.u @ sigma @ self.v
            matrix[self.row_min:self.row_max, self.col_min:self.col_max] = M
    else:
            M = self.matrix[self.row_min:self.row_max, self.col_min:self.col_max]
            matrix[self.row_min:self.row_max, self.col_min:self.col_max] = M
    else:
        for child in self.children:
            child.decompress(matrix)
```

3.4.2 Metoda obliczająca rank macierzy - qet_rank

```
def get_rank(self) -> int:
    if self.leaf:
        return self.rank
    else:
        return sum([child.get_rank() for child in self.children])
```

3.4.3 Funkcja rysująca drzewo macierzy - draw_tree

```
def draw_tree(root: "MatrixTree", title: str="") -> None:
    image = np.ones(root.matrix.shape) * 255
Q = deque()
Q.append(root)
while Q:
    v = Q.pop()
    if v.leaf:
        image[v.row_min:v.row_max, v.col_min:v.col_min + v.rank] = np.zeros((v.row_max - v.row_min, v.rank))
```

```
image[v.row_min:v.row_min + v.rank, v.col_min:v.col_max] = np.zeros((v.rank, v.col_max - v.col_min))
    image[v.row_min, v.col_min:v.col_max] = np.zeros((1, v.col_max - v.col_min))
    image[v.row_max - 1, v.col_min:v.col_max] = np.zeros((1, v.col_max - v.col_min))
    image[v.row_min:v.row_max, v.col_min] = np.zeros(v.row_max - v.row_min)
    image[v.row_min:v.row_max, v.col_max - 1] = np.zeros(v.row_max - v.row_min)
    else:
        for child in v.children:
            Q.append(child)
plt.imshow(image, cmap="gist_gray", vmin=0, vmax=255)
plt.title(title)
plt.xticks([])
plt.yticks([])
plt.yticks([])
```

4 Testy wydajnościowe i czas działania oraz pomiar błędu

Przygotowano testy wydajnościowe omawainych algorytmów w celu prezentacji czasu obliczeń. Czynność ta pozwoliła na praktyczne przetestowanie algorytmów oraz konformantacji ich teoretycznych złozoności obliczeniowych wraz z danymi empirycznymi oraz sprawdzenie poprawności impelentacji algorytmów.

4.1 Czasy obliczeń

Dokonano pomiaru czasu kompresji maciery dla różnych parametrów, wyniki przedstawiono w tabeli.

Tabela 1: Czasy obliczeń dla różnych parametrów

#	# Niezerowe		σ	Czas
1	1%	1	σ_1	0.021960
2	1%	1	$\sigma_{2^{k-1}}$	0.577161
3	1%	1	σ_{2^k}	20.231883
4	1%	4	σ_1	0.028359
5	1%	4	$\sigma_{2^{k-1}}$	0.717139
6	1%	4	σ_{2^k}	6.833700
7	2%	1	σ_1	0.023493
8	2%	1	$\sigma_{2^{k-1}}$	0.544299
9	2%	1	σ_{2^k}	29.033727
10	2%	4	σ_1	0.025757
11	2%	4	$\sigma_{2^{k-1}}$	0.258863
12	2%	4	σ_{2^k}	8.499308
13	5%	1	σ_1	0.022849
14	5%	1	$\sigma_{2^{k-1}}$	0.221370
15	5%	1	σ_{2^k}	64.627048
16	5%	4	σ_1	0.023469
17	5%	4	$\sigma_{2^{k-1}}$	0.238199
18	5%	4	σ_{2^k}	15.988675
19	10%	1	σ_1	0.021120
20	10%	1	$\sigma_{2^{k-1}}$	0.217040
21	10%	1	σ_{2^k}	114.064481
22	10%	4	σ_1	0.024118
23	10%	4	$\sigma_{2^{k-1}}$	0.257509
24	10%	4	σ_{2^k}	26.809606
25	20%	1	σ_1	0.020499
26	20%	1	$\sigma_{2^{k-1}}$	0.198258
27	20%	1	σ_{2^k}	199.693175
28	20%	4	σ_1	0.022919
29	20%	4	$\sigma_{2^{k-1}}$	0.234090
30	20%	4	σ_{2^k}	48.766644

4.2 Porównanie wyniku - obliczenie sumy różnicy kwadratów dekonstrukcji macierzy gęstej z macierzy skompresowanej

Dokonano pomiaru sumy różnicy kwadratów dekonstrukcji macierzy gęstej z macierzy skompresowanej używając wzoru: $\|A-B\|^2=\Sigma_{i,j}(a_{ij}-b_{ij})^2$.

Tabela 2: Błąd - suma różnicy kwadratów - dla różnych parametrów

biqu suma fozincy kwadratow dia fozitych p				
#	Niezerowe	b	σ	Błąd
$\overline{\parallel 1 \parallel}$	1%	1	σ_1	5.875743×10^{1}
$\parallel 2 \mid$	1%	1	$\sigma_{2^{k-1}}$	5.102409×10^{1}
3	1%	1	σ_{2^k}	8.500174×10^{-15}
$\parallel 4 \mid$	1%	4	σ_1	5.838015×10^{1}
5	1%	4	$\sigma_{2^{k-1}}$	4.558788×10^{1}
6	1%	4	σ_{2^k}	4.074786×10^{-14}
7	2%	1	σ_1	8.286845×10^{1}
8	2%	1	$\sigma_{2^{k-1}}$	7.606209×10^{1}
9	2%	1	σ_{2^k}	1.244579×10^{-14}
10	2%	4	σ_1	8.237188×10^{1}
11	2%	4	$\sigma_{2^{k-1}}$	7.485865×10^{1}
12	2%	4	σ_{2^k}	6.550157×10^{-14}
13	5%	1	σ_1	1.298218×10^{2}
14	5%	1	$\sigma_{2^{k-1}}$	1.264752×10^2
15	5%	1	σ_{2^k}	2.026586×10^{-14}
16	5%	4	σ_1	1.290964×10^2
17	5%	4	$\sigma_{2^{k-1}}$	1.200415×10^2
18	5%	4	σ_{2^k}	1.131958×10^{-13}
19	10%	1	σ_1	1.792990×10^2
20	10%	1	$\sigma_{2^{k-1}}$	1.752112×10^2
21	10%	1	σ_{2^k}	2.877998×10^{-14}
$\parallel 22 \mid$	10%	4	σ_1	1.783093×10^{2}
23	10%	4	$\sigma_{2^{k-1}}$	1.669733×10^2
24	10%	4	σ_{2^k}	2.318141×10^{-3}
$\parallel 25 \mid$	20%	1	σ_1	2.430412×10^2
26	20%	1	$\sigma_{2^{k-1}}$	2.379345×10^{2}
27	20%	1	σ_{2^k}	4.155036×10^{-14}
28	20%	4	σ_1	2.416912×10^2
29	20%	4	$\sigma_{2^{k-1}}$	2.273164×10^{2}
30	20%	4	σ_{2^k}	8.446529×10^{-4}

5 Wartości osobliwe σ dla macierzy

D^{OKONANO} pomiaru wartości osobliwych macierzy $\sigma_1, ..., \sigma_{2^k}$ i przedstawiono je na wykresie.

Rysunek 2: Wartości osobliwe σ

6 H-macierze dla różnych parametrów

 \mathbf{Z}^{A} pomocą zaimplementowanego rysowacza przedstawiono H-macierze dla różncyh wartości parametrów. Macierze były rozmairu $2^k\times 2^k,$ gdzie k=10.

6.1
$$b = 1, \delta = \sigma_2$$

$$6.1.1$$
 99% zer

6.1.3 95% zer

6.1.2 98% zer

6.1.4 90% zer

6.1.5 80% zer

6.2.2 98% zer

- **6.2** $b = 1, \delta = \sigma_{2^{k-1}}$
- 6.2.3 95% zer

6.2.1 99% zer

$$6.2.4 \quad 90\% \text{ zer}$$

6.3
$$b = 1, \delta = \sigma_{2^k}$$

6.3.1 99% zer

H-matrix 10% non-zero | b=1 | $\delta=\sigma_{2^k-1}$

H-matrix
1% non-zero $|b=1|\delta=\sigma_{2^k}$

6.2.5 80% zer

6.3.2 98% zer

6.3.3 95% zer

6.3.5 80% zer

6.3.4 90% zer

6.4
$$b = 4, \delta = \sigma_2$$

6.4.1 99% zer

H-matrix 2% non-zero $b=4$ $\delta=\sigma_1$	

6.4.3 95% zer

6.4.5 80% zer

6.5
$$b = 4, \delta = \sigma_{2^{k-1}}$$
 6.5.3 95% zer

6.5.1 99% zer

H-matrix 1% non-zero | $b = 4 \mid \delta = \sigma_{2^{k-1}}$

H-matrix 5% non-zero | b=4 | $\delta=\sigma_{2^{k-1}}$

6.5.4 90% zer

6.5.2 98% zer

6.5.5 80% zer

6.6.2 98% zer

6.6 $b = 4, \delta = \sigma_{2^k}$

6.6.3 95% zer

6.6.1 99% zer

6.6.4 90% zer

6.6.5 80% zer

H-matrix
10% non-zero $|b=4|\delta=\sigma_{2^k}$

6.7 Macierz, którą powiesiłbym w salonie

 $Ta\ macierz\ wydaje\ się\ najbardziej\ majestatyczna,\ intrygująca\ i\\ tajemnicza...$

H-matrix 5% non-zero | b=1 | $\delta=\sigma_{2^k}$

7 Wnioski

L ABORATORIUM wykazało istotność zagadnienia kompresji i dekompresji macierzy oraz parametryzacji tych operacji oraz wykorzystania tej wiedzy w praktyce.

7.1 Refleksje płynące z laboratirum

- 1. Generowanie macierzy losowych:
 - Parametr sparsity wpływa na stopień zagęszczenia macierzy poprzez kontrolowanie procentowej ilości wartości niezerowych.
 - Generowanie macierzy losowych o kontrolowanej sparsity jest istotne w kontekście symulowania rzeczywistych danych, które często posiadają struktury rzadkie.
- 2. Częściowy rozkład wartości osobliwych (SVD):
 - SVD jest używane do rozkładu macierzy na iloczyn trzech macierzy: U, Σ , i V.
 - Częściowy SVD pozwala na przybliżenie macierzy oryginalnej za pomocą ograniczonej liczby wartości osobliwych, co może być przydatne w redukcji wymiarów danych.
- 3. Rekurencyjna kompresja macierzy:
 - Rekurencyjna kompresja macierzy przy użyciu częściowego SVD umożliwia eliminację małych wartości osobliwych, co prowadzi do skutecznej kompresji dla macierzy rzadkich.
 - Wybór progu kompresji (threshold) wpływa na ilość wartości osobliwych uwzględnionych w kompresji. Niższy próg może prowadzić do większej kompresji kosztem dokładności.

7.2 Wykorzystanie kompresji macierzy

- Kompresja obrazów: Hierarchiczna kompresja może być stosowana w kontekście kompresji obrazów, gdzie szczegółowe informacje o teksturze są zachowywane na różnych poziomach hierarchii.
- Analiza danych: W analizie danych, hierarchiczna kompresja może pomóc w redukcji wymiarów danych hierarchicznie, zaczynając od ogólnych cech.

7.3 Ogólny wniosek

W praktyce, eksperymentowanie z różnymi wartościami parametrów, takimi jak sparsity, k w częściowym SVD, oraz próg kompresji, pozwala na dostosowanie metody do konkretnych danych i celów analizy. Częściowe SVD i rekurencyjna kompresja są używane w dziedzinach takich jak analiza obrazów, redukcja wymiarów danych oraz kompresja danych, gdzie istnieje potrzeba zachowania istotnych cech danych przy jednoczesnym zmniejszeniu ich rozmiaru.

Literatura

[1] Wykłady i laboratoria prowadzone przez Pana prof. dr hab. Macieja Paszyńskiego

[2] Wikipedia: SVD

 $[3]\,$ Wikipedia: macierze ortogonalne

[4] Wikipedia: matrix sqrt

[5] Wikipedia: wskaźnik uwarunkowania
