Sentence representation via Recursive Nerual Networks

Zhe Han iampkuhz@gmail.com

2015年1月9日

Outline

- 3 个表示句子向量的模型
 - (展开的) 递归自编码机解决复述问题 (2011NIPS)
 - 递归自编码机 + 解决情感分析问题 (2011EMNLP)
 - 基于语义依存树构建的递归神经网络解决图像描述问题 (2014TACL)
- 不同句子向量模型的分析比较
 - 穿插在模型介绍中

socher's paper: www.socher.org

- Dynamic pooling and unfolding recursive autoencoders for paraphrase detection
- Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions
- Grounded Compositional Semantics for Finding and Describing Images with Sentences

Zhe Han (icst@pku) RNN 2015 年 1 月 9 日 2 / 23

socher

- stanford 毕业的博士
 - Chris Manning 和 Andrew Ng 的学生, 创业公司 MetaMind 的 CTO
- 此人非常喜欢用递归神经网络 (Recursive Nerual Network)
 - 罗炳峰: 2014NIPS Global Belief Recursive Neural Networks

Motivation

- 为什么要表示句子的语义向量
 - 单词的语义向量以及有比较好的表示了 (word2vec)
 - 中文维基百科谓词归一

```
Word: 出生 Position in vocabulary: 345

Word Cosine distance

生于 0.773387
出生地 0.622590
出身 0.605404
現居 0.595559
移居 0.585317
旅居 0.570838
大 0.570293
他的父亲 0.560490
```

Word: 坐标 Position in vocabulary: 1986		
	Word	Cosine distance
	座标 向量	0.692477 0.664867
	原点 矢量	0.659200 0.653525
	法向量	0.646993

Motivation

- 为什么要表示句子的语义向量
 - 单词的语义向量以及有比较好的表示了 (word2vec)
 - 中文维基百科谓词归一
 - 1500/16000 谓词含有 word2vec 向量, 其余为低频词或组合词
 - 利用客体的语义信息提取特征
 - 客体一般是短语 or 句子, 需要从词向量提取短语向量

复述检测

socher 2011NIPS

• Dynamic pooling and unfolding recursive autoencoders for paraphrase detection

- definition
 - 给定一组句子, 判断其是否是复述
 - binary classification
- Microsoft Research Paraphrase Corpus (MSRP)
 - train: 4,076 sentence pairs (2,753 positive: 67.5 %)
 - test: 1,725 sentence pairs (1,147 positive: 66.5 %)
 - 2 个标注者, 83% 的一致性, 第三个人更正

Sample data

- Sentence 1: Amrozi accused his brother, whom he called "the witness", of deliberately distorting his evidence.
- Sentence 2: Referring to him as only "the witness", Amrozi accused his brother of deliberately distorting his evidence.
- Class: 1 (true paraphrase)

- 常用方法
 - 提取词汇特征, 语义特征
 - n-gram features, skip-gram fatures; POS tag, wordnet similarity, dependency tree relation, ...
 - SVM 分类
 - 或是投票分类
- Challenge
 - 没有提取句子的全局信息 (dependency features 利用不足)
 - 对句子涵义的特征提取不足 (没有真正理解句子)

socher 的方法

- 利用 NYT 新闻训练每个单词的向量 (100 维)
- 对于每个句子 (多个单词向量) 采用训练一个递归的自动编码机, 得到一个句子级别的语义向量.
- 通过判断两个句子的语义向量的相似性得到语义相似性特征

- 递归的自动编码机 (Unfolding Recursive Autoencoder)
 - 抽取句子的语义向量,得到语法数上每个节点 (单词,短语)的向量
- Dynamic Pooling
 - 对于长度变化的两个句子, 抽取固定维数的特征

Unfolding Recursive Autoencoder

- Autoencoder
 - 希望压缩的特征 (L2 层) 能表示原数据 (L1 层)
 - 能表示等价于可以还原 (L3 层向量约等于 L1 层向量)
- Recursive Autoencoder
 - Autoencoder in recursive structure
 - Pollack 提出 (1990)
 - 词向量没有压缩: (0, ..., 0, 1, 0, ..., 0)
 - 进一步的, 对于深层的网络 (语法树), 递归使用同一个简单的 Autoencoder

RNN

Unfolding Recursive Autoencoder

Recursive Autoencoder	Unfolding Recursive Autoencoder
V_{d} V_{e}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- Recursive Autoencoder
- Comparison (on $y_2 > x_1 y_1$)
 - Neural network
 - minimum $\parallel y_2' y_2 \parallel$
 - Recursive Autoencoder
 - minimum $||[x_1'; y_1'] [x_1; y_1]||$
 - Unfolding Recursive Autoencoder
 - minimum $||[x'_1; x'_2; ...; x'_i] [x_1; x_2; ...; x_i]||$

Dynamic Pooling(简要了解)

- motivation
 - 如何对两个长度变化的句子抽取固定维数的特征?
 - ◆ 长度为 n 的句子, cTree 有(2n-1) 个节点
 - 把不同长度的句子压缩(扩张)到相同的维数

- QA
 - 为何使用 uRAE 而不是 RAE 或者两个子节点的向量平均?
 - 多个单词组成的句子/短语(高层节点),需要更多的单词信息,RAE 只关心最近的2个儿子节点
 - 向量平均: 两个儿子向量的平均忽视了结构关系
 - 实验证明,向量平均找不出来;RAE对2个单词组成的短语,识别其近义词效果很好;uRAE对于2-3个单词组成的短语的效果很好,甚至5个单词组成的短语有些也可以正确找到。

Center Phrase	Recursive Average	RAE	Unfolding RAE	
the U.S.	the U.S. and German	the Swiss	the former U.S.	
suffering low	suffering a 1.9 billion baht	suffering due to no fault of	suffering heavy casual-	
morale	UNK 76 million	my own	ties	
to watch	to watch one Jordanian bor-	to watch television	to watch a video	
hockey	der policeman stamp the Is-			
	raeli passports			
advance to the	advance to final qualifying	advance to the final of the	advance to the semis	
next round	round in Argentina	UNK 1.1 million Kremlin		
		Cup		
a prominent po-	such a high-profile figure	the second high-profile op-	a powerful business fig-	
litical figure		position figure	ure	
Seventeen peo-	"Seventeen people were	Fourteen people were	Fourteen people were	
ple were killed	killed, including a prominent	killed	killed	
_	politician "			
conditions of	"conditions of peace, social	conditions of peace, social	negotiations for their	
his release stability and political h		stability and political har- release		
	mony "	mony		

情感分析

socher 2011EMNLP

• Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions

- identification
 - 给定一段话, 判断其情感极性 (积极/消极, 正面评价/负面评价)
 - 给定一段话, 判断其评分分布 (1-5 颗星)
- Experience project dataset(Potts, 2010)
 - 31,676 个段子, 74,859 条评分
 - 选取点评次数大于等于 4 次的段子

Sample data

KL	Predicted&Gold	V.	Entry (Shortened if it ends with)
.03	3 6		I reguarly shoplift. I got caught once and went to jail, but I've found that this was not a deterrent. I don't buy
	n trada		groceries, I don't buy school supplies for my kids, I don't buy gifts for my kids, we don't pay for movies, and I
	.16 .16 .16 .33 .16		dont buy most incidentals for the house (cleaning supplies, toothpaste, etc.)
.03	.03 i am a very succesfull buissnes man.i make good money but i have bee		i am a very succesfull buissnes man.i make good money but i have been addicted to crack for 13 years.i moved 1
	Land III		hour away from my dealers 10 years ago to stop using now i dont use daily but once a week usally friday nights.
	.38 .04 .06 .35 .14		i used to use 1 or 2 hundred a day now i use 4 or 5 hundred on a friday.my problem is i am a funcational addict
.05		7	Hi there, Im a guy that loves a girl, the same old bloody story I met her a while ago, while studying, she Is so
	terlar Ha		perfect, so mature and yet so lonely, I get to know her and she get ahold of me, by opening her life to me and so
	.14 .28 .14 .28 .14		did I with her, she has been the first person, male or female that has ever made that bond with me,

- Unsupervised Recursive Autoencoder for Structure
 - 贪心的构造二叉树
 - 每次计算当前状态任意一对相邻节点的合并代价,取代价最小的一对合并,直到结束
 - $p = f(W^{(1)}[c1:c2] + b^{(1)}), [c'_1:c'_2] = W^{(2)}p + b^{(2)}$
 - 考虑两个子节点的块大小
 - 块越大越重要. 体现在重构误差中
 - $E_{rec}([c_1:c_2];\theta) = \frac{n_1}{n_1+n_2} \parallel c_1 c_1' \parallel^2 + \frac{n_2}{n_1+n_2} \parallel c_2 c_2' \parallel^2$

- Semi-supervised Recursive Autoencoder for Structure
 - 扩展向量, 加入情感分布向量 d(维数为分类的个数)
 - 预测分布: $d(p; \theta) = softmax(W^{label}p)$
 - 真实分布: t
 - 采用交叉熵估计损失: $E_{cE}(p,t;\theta) = -\sum_{k=1}^{K} t_k \log d_k(p;\theta)$
 - 总体的损失函数为:

$$E([c_1:c_2]_s, p_s, t, \theta) = \alpha E_{rec}([c_1:c_2]; \theta) + (1 - \alpha) E_{cE}(p, t; \theta)$$

- 对比之前的 RNN 模型
 - 加入了情感分布特征
 - 单纯的语言模型是不带情感极性的: good 和 bad 词向量很像
 - 没有使用句法树作为递归结构
 - 采用贪心的方法逐次向上递归
 - 句子的情感极性和句法结构并没有必然联系 (情感性一般蕴含于修饰词)

理解图像描述问题

socher 2014TACL

 Grounded Compositional Semantics for Finding and Describing Images with Sentences

Finding and Describing Images with Sentences

- definition
 - 给定一段描述 (一个句子), 找出其描述的图片
 - 给定一张图片. 找出描述他的句子
- Rashtchian et al., 2010 dataset
 - 1000 images, each with 5 sentences

Sample data

- 1. A woman and her dog watch the cameraman in their living with wooden floors.
- 2. A woman sitting on the couch while a black faced dog runs across the floor.
- 3. A woman wearing a backpack sits on a couch while a small dog runs on the hardwood floor next to her.
- 4. A women sitting on a sofa while a small Jack Russell walks towards the camera.
- 5. White and black small dog walks toward the camera while woman sits on couch, desk and computer seen in the background as well as a pillow, teddy bear and moggie toy on the wood floor.

DT-RNN

● 语义表征: 自底向上求解

•
$$h_c = g_\theta(x_c) = f(W_v x_c)$$

•
$$h_2 = g_\theta(x_2, h_1, h_3, h_4) = f(W_v x_2 + W_{l1} h_1 + W_{r1} h_3 + W_{r2} h_4)$$

•
$$W_{r} = (W_{r1}, \ldots, W_{rk_r}), W_{l} = (W_{l1}, \ldots, W_{lk_l})$$

• 测试集如果
$$W_{rk_t}$$
 有 $k_t > k_r \rightarrow W_{rk_t} = I$

• 加权: 越大的子块越重要

•
$$h_i = f(\frac{1}{l(i)}(W_v x_i + \sum_{i \in C(i)} l(i) W_{pos(i,j)} h_j))$$

- SDT-RNN: Semantic Dependency Tree RNNs
 - 递归矩阵和节点在语法树上的关系类型有关
 - 和在语法树的左右或位置无关: $W_r, W_l \rightarrow W_{sui}$

Describing Images

- 模型缺点
 - 中心动词缺失导致结果差别大
 - A blue and yellow airplane flying straight down while emitting white smoke
 - Airplane in dive position

Describing Images

- 对比之前的模型
 - 与传统 RNN 模型区别
 - 叶节点和中间节点不要求维数相同 (通过 W_v 转换)
 - 可以接受多元子节点 (dependency tree vs constituency tree)
 - CTree 的上层节点的重要性明显高, 不平均
 - CTree 更适合情感分析, DTree 更适合提取句子的语义表征
 - 非实词 ("but") 在 CTree 位于较高节点
 - CTree 更能把握句子的中心语义 (中心动词, 主体, 客体)