MATH 8320 HOMEWORK

PETE L. CLARK

0. Problem Set 0

Exercise 0.1. There three notions of finite generation in play for a field extension l/k: (i) l is finitely generated as a k-module (equivalently, finite-dimensional as a k-vector space) – we also say that l/k has finite degree – (ii) l is finitely generated as a k-algebra: there are $x_1, \ldots, x_n \in l$ such that $l = k[x_1, \ldots, x_n]$: every element of l can be expressed as a polynomial in x_1, \ldots, x_n with coefficients in k. (iii) l/k is finitely generated as a field extension.

- a) Show: l/k finitely generated as a module implies l/k finitely generated as a k-algebra implies l/k finitely generated as a field extension.
- b) Let k(t) be the rational function field over k the fraction field of the polynomial ring k[t]. Show: k(t)/k is finitely generated as a field extension but is not finitely generated as a k-algebra.
- c) Show: k[t]/k is finitely generated as a k-algebra but not as a k-module. (However k[t] is not a field!)
- d) Can you exhibit a field extension l/k such that l is finitely generated as a k-algebra but not as a k-vector space?
 - (Hint: no, you can't this is a famous result of commutative algebra!)
- e) Suppose l/k is algebraic and finitely generated as a field extension. Show that l/k has finite degree.

Exercise 0.2. Show that every finitely generated field extension $K = k(x_1, ..., x_n)$ is the fraction field of a quotient of $k[t_1, ..., t_n]$ by a (not necessarily principal) prime ideal.

Exercise 0.3. Let k be a field, and let k(a,b) be a field extension of k of transcendence degree 1.

- a) Let k[x,y] be the polynomial ring in two variables. Let $f: k[x,y] \to k(a,b)$ be the unique k-algebra homomorphism such that f(x) = a and f(y) = b. Show that the kernel $\mathfrak p$ of f is a prime ideal, and let K be the fraction field of $k[x,y]/\mathfrak p$. Show that f induces a k-algebra isomorphism $K \to k(a,b)$.
- b) Show: p is generated by an irreducible polynomial, and deduce that there is an irreducible polynomial f ∈ k[x,y], unique up to scaling by an element of k[×], such that f(a,b) = 0 and k(a,b) is the fraction field of k[x,y]/(f).
 (Suggestion: by [CA, Cor. 12.17], the prime ideal p has height 0, 1 or 2. Rule out the possibilities of height 0 and height 2, and then find and use a fact about height one prime ideals in a UFD.)
- c) Show that if K/k is a separable one variable function field, then K = k(a,b) for some a and b. (Remark: In the third lecture I mention that in this case we can actually take the polynomial f to be geometrically irreducible.)

Exercise 0.4. Let k be a field, let G be a finite group of order n, and let $G \hookrightarrow S_n$ be the Cayley embedding. Permutation of variables gives a natural action of S_n and hence also G on $k(t_1, \ldots, t_n)$. Put $l := k(t_1, \ldots, t_n)^G$, so $k(t_1, \ldots, t_n)/l$ is a finite Galois extension with automorphism group G. Notice that this is an instance of the Lüroth problem.

a) Let $k = \mathbb{Q}$. Show: if l/\mathbb{Q} is purely transcendental, then G occurs as a Galois group over \mathbb{Q} . Thus: an affirmative answer to the Lüroth problem yields an affirmative answer to the Inverse Galois Problem over \mathbb{Q} .

(Suggestion: This holds whenever k is a Hilbertian field.)

b) Alas, l/\mathbb{Q} need not be purely transcendental. Explore the literature on this – the first example was due to Swan, where G is cyclic of order 47.

Exercise 0.5. Let R_1 and R_2 be two k-algebras that are also domains, with fraction fields K_1 and K_2 . Show that $R_1 \otimes_k R_2$ is a domain iff $K_1 \otimes_k K_2$ is a domain.

Exercise 0.6. a) Let l/k be an algebraic field extension. Show: $l \otimes_k l$ is a domain iff l = k.

b) Let l/k be any field extension. Show: $k(t) \otimes_k l$ is always a domain with fraction field l(t). It is already a field iff l/k is algebraic.

Exercise 0.7. Describe the \mathbb{R} -algebra $\mathbb{C}(t) \otimes_{\mathbb{R}} \mathbb{C}$.

Exercise 0.8. a) Show: k(t)/k is regular.

- b) Show: every purely transcendental extension is regular.
- c) Show: every extension K/k is regular iff k is algebraically closed.
- d) Show: K/k is regular iff every finitely generated s subextension is regular.

Exercise 0.9. Let k be a field, let $d \geq 2$ be such that $4 \nmid d$, and let $p(x) \in k[x]$ be a polynomial of positive degree. In $\overline{k}[t]$ we factor p as $(x - a_1)^{e_1} \cdots (x - a_r)^{e_r}$ with a_1, \ldots, a_r distinct elements of \overline{k} and $e_1, \ldots, e_r \in \mathbb{Z}^+$. Suppose that there is some $1 \leq i \leq r$ such that $d \nmid e_i$. Show that the

$$f(x,y) = y^d - p(x) \in k[x,y]$$

is geometrically irreducible and thus the fraction field of $k[x,y]/(y^d-p(x))$ is a regular one variable function field over k.

(Suggestion: use [?, Thm. 9.21].)

Exercise 0.10. Let k be a field of characteristic different from 2.

- a) Show that the function field K_f attached to $f(x,y) = x^2 y^2 1$ is rational: i.e., there is $z \in K$ such that $K_f = k(z)$.
- b) Show that the function field K_f attached to $f(x,y) = x^2 + y^2 1$ is rational.
- c) If $k = \mathbb{C}$, show that the function field K_f attached to $f(x, y_f) = x^2 + y^2 + 1$ is rational.
- d) If $k = \mathbb{R}$, is the function field attached to $f(x,y) = x^2 + y^2 + 1$ rational? (Answer: it is not, but at the moment we have precisely no tools to show that a regular function field is not rational, so I don't know how you could prove this. But keep it in mind as we develop more theory, it will become possible, then easy, then clear.)

Exercise 0.11. Give a purely algebraic proof of the Lüroth Theorem: for any field k, if K is a field such that $k \subseteq K \subset k(t)$, then K = k(f) for some $f \in K$.

Exercise 0.12. Fix $n \in \mathbb{Z}^+$. Exhibit a finite degree field extension l/k such that needs n+1 generators: that is, $l \neq k(x_1, \ldots, x_n)$ for any $x_1, \ldots, x_n \in l$.

I do not know how to do the following exercise:

Exercise 0.13. a) For each $n \in \mathbb{Z}^+$, find a one variable function field K/k that needs n+1 generators or show that no such exists.

(Idea: As in Exercise 0.12, there is a finite degree field extension l/k that needs n+1 generators. It seems likely that l(t)/k also needs n+1 generators!)

b) Prove or disprove: every one variable function field K/k with $\kappa(K) = k$ is 2-generated.

References

- [CA] P.L. Clark, Commutative Algebra. http://math.uga.edu/~pete/integral2015.pdf
- [FT] P.L. Clark, Field Theory. http://math.uga.edu/~pete/FieldTheory.pdf