FCC PART 15.247

EMI MEASUREMENT AND TEST REPORT For

Xiamen Trust Information Tech Co.,Ltd.

Room 202, No. 19, Wanghai Road, Xiamen, China

FCC ID:2ADY9WI-200

WI-200, WI-100, WI-300

This Report Concerns: Equipment Type: Original Report Indoor Air Detector Lisa Chan Test Engineer: Lisa Chen Report No.: BSL20150112-1 January 02, 2015 / Receive EUT Date/Test Date: January 02- January 12, 2015 dukemoo Reviewed By: Mike moo **BSL Testing Co.,LTD.** NO. 24, ZH Park, Nantou, Shenzhen, 518000 China Prepared By: Tel: 86-755-26508703 Fax: 86-755-26508703

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of BSL Testing Co.,LTD. This report must not be used by the client to claim product certification, approval,or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

1.	GEN	ERAL INFORMATION	4
	1.1.	Report information	4
	1.2.	Measurement Uncertainty	
2.	PRO	DUCT DESCRIPTION	
	2.1.	EUT Description	
	2.2.	Block Diagram of EUT Configuration	
	2.3.	Support Equipment List	
	2.4.	Test Conditions	6
3.		Γ RESULTS SUMMARY	
		fications	
4.	TEST	Γ EQUIPMENT USED	8
5.	§15.2	203 - ANTENNA REQUIREMENT	9
	5.1.	Standard Applicable	9
	5.2.	Antenna Connector Construction	
	5.3.	Result	9
6.	§15.2	207 - CONDUCTED EMISSIONS	10
	6.1.	Applicable Standard	10
	6.2.	Test Procedure	
	6.3.	Conducted Power line Emission Limits	10
	6.4.	Block Diagram of Test Setup.	
	6.5.	Conducted Power Line Test Result	11
7.	§15.2	209, §15.205, §15.247(D) - SPURIOUS EMISSIONS	13
	7.1.	Test Equipment	13
	7.2.	Test Procedure	13
	7.3.	Radiated Test Setup	
	7.4.	Radiated Emission Limit.	
	7.5.	Radiated Emission Test Result	
	7.6.	Conducted Emission Method	
	7.7.	Test Requirement:	
	7.8.	Limit:	
	7.9.	Test Setup	
_	7.10.		
8.		247(A) (2) – 6DB BANDWIDTH TESTING	
	8.1.	Test Equipment	
	8.2.	Test Procedure	
	8.3.	Applicable Standard	
	8.4.	Test Result:Pass.	
9.	-	247(B) (3) - MAXIMUM PEAK OUTPUT POWER	
	9.1.	Test Equipment	
	9.2.	Test Procedure	
	9.3.	Applicable Standard	
4.0	9.4.	Test Result	
10.	§15.2	247(D) – 100 KHZ BANDWIDTH OF FREQUENCY BAND EDGE	28

	10.1.	Test Equipment	2
	10.2.	Test Procedure	2
	10.3.	Applicable Standard	2
	10.4.	Test Result	2
l .	§15.24	47(E) - POWER SPECTRAL DENSITY	3
	11.1.	Test Equipment	3
	11.2.	Test Procedure	3
	11.3.	Applicable Standard	3
	114	Test Result	3

1. GENERAL INFORMATION

1.1. Report information

- 1.1.1. This report is not a certificate of quality; it only applies to the sample of the specific product/equipment given at the time of its testing. The results are not used to indicate or imply that they are application to the similar items. In addition, such results must not be used to indicate or imply that BSL approves recommends or endorses the manufacture, supplier or use of such product/equipment, or that BSL in any way guarantees the later performance of the product/equipment.
- 1.1.2. The sample/s mentioned in this report is/are supplied by Applicant, BSL therefore assumes no responsibility for the accuracy of information on the brand name, model number, origin of manufacture or any information supplied.
- 1.1.3.Additional copies of the report are available to the Applicant at an additional fee. No third part can obtain a copy of this report through BSL, unless the applicant has authorized BSL in writing to do so.

Test Facility -

The test site used to collect the radiated data is located on the address of

BSL Testing Co.,LTD.

(FCC Registered Test Site Number: 191509) on

NO. 24, ZH Park, Nantou, Shenzhen, 518000 China

The Test Site is constructed and calibrated to meet the FCC requirements.

1.2. Measurement Uncertainty

The reported uncertainty of measurement y \pm U, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty
1	Conducted Emission Test	+/-1.25dB
2	RF Power, Conducted	+/-0.20dB
3	Spurious emissions, conducted	+/-0.33dB
4	All emissions, radiated (<1G)	+/-3.47dB
5	All emissions, radiated (>1G)	+/-3.82dB
6	Temperature	+/-0.5°CdB
7	Humidity	+/-2%

2. PRODUCT DESCRIPTION

2.1. EUT Description

Applicant : Xiamen Trust Information Tech Co.,Ltd.

Address : Room 202, No. 19, Wanghai Road, Xiamen, China

Manufacturer : Xiamen Trust Information Tech Co.,Ltd.

Address : Room 202,No.19,Wanghai Road,Xiamen,China

EUT Description : Indoor Air Detector

Modulation : 802.11b: DSSS(11/5.5/2/1Mbps) Wi-fi Frequency : IEEE 802.11b:2412-2462MHz

Band

Number of : IEEE 802.11 b: 11 Channels.

Channels

Model Number : WI-200, WI-100, WI-300

Power Supply : 5V By Adapter

Antenna gain : 0dBi

Antenna type : PCB Antenna

The series products, model name: WI-200,WI-100,WI-300 have the same circuit diagram,PCB layout, software, RF Module, Features and functionality. The differences are the model name, so, we select WI-200 to test.

2.2. Block Diagram of EUT Configuration

Figure 1 EUT Setup

2.3. Support Equipment List

Table 2 Ancillary Equipment

Name	Model No	S/N	Manufacturer	Used (Y/N)
Adapter	SK12G-0500100C	N/A	SIMSUKIAN	Y

2.4. Test Conditions

Temperature: 23~25 C Relative Humidity: 50~63 %

After the preliminary test, we found to emit the worst emissions and therefore had been tested under operating condition.

For 802.11b mode, 11 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437	/	/

For 802.11b mode, EUT was tested with Channel 1, 6 and 11.

IEEE 802.11b:1Mbps data rate were chosen for full testing.

The EUT configured to transmit continuously(duty cycle=100%, average correction factor=0).

3. TEST RESULTS SUMMARY

FCC 15 Subpart C,Paragraph 15.247:2013

FCC Rules	Description of Test	Result
FCC§15.203	Antenna Requirement	Compliance
FCC§15.207 (a)	AC Line Conducted Emissions	Compliance
FCC§15.247(d)	Spurious Emissions at Antenna Port	Compliance
FCC§15.205, §15.209, §15.247(d)	Spurious Emissions	Compliance
FCC§15.247 (a)(2)	6dB Bandwidth	Compliance
FCC§15.247(b)(3)	Maximum Peak Output Power	Compliance
FCC§15.247(d)	100 kHz Bandwidth of Frequency Band Edge	Compliance
FCC§15.247(e)	Power Spectral Density	Compliance

Modifications

No modification was made.

4. TEST EQUIPMENT USED

EQUIPMENT/FACI LITIES	MANUFACTUR ER	MODEL	SERIAL NO.	DATE OF CAL.	CAL. INTE RVAL
3m Semi-Anechoic Chamber	Chengyu Electron	9 (L)*6 (W)* 6 (H)	BSL086	Aug. 23 2014	1 Year
EMI Test Receiver	Rohde & Schwarz	ESCI3	BSL001	Sep. 28 2014	1 Year
BiConiLog Antenna	Rohde & Schwarz	HL562 (30MHz— 3GHz)	BSL009	Sep. 28 2014	1 Year
Double -ridged waveguide horn	Rohde & Schwarz	BBHA9120D (1-18GHz)	BSL008	Aug. 27 2014	1 Year
Horn Antenna	AHS	SAS-574 (18GHz— 40GHz)	BSL072	Dec. 28 2014	1 Year
Cable	PUTIANLE	BSL045	BSL045	Aug. 27 2014	1 Year
Cable	PUTIANLE	BSL046	BSL046	Aug. 27 2014	1 Year
Cable	PUTIANLE	BSL047	BSL047	Aug. 27 2014	1 Year
Amplifier(100kHz-40 GHz)	R&S	SMR40	BSL007	Sep. 28 2014	1 Year
Band filter	Amindeon	82346	BSL049	Aug. 27 2014	1 Year
Active Loop Antenna	Schwarzbeck	FMZB1519 (9 kHz - 30 MHz)	BSL011	Sep. 28 2014	1 Year
Coaxial Switch	YUANFANG	TA218B	BSL004	Aug. 27 2014	1 Year
Spectrum analyzer	Rohde & Schwarz	FSP40	BSL049	Sep. 28 2014	1 Year
Shielding Room	zhongyu Electron	7.0(L)x3.0(W)x3 .0(H)	BSL085	Sep. 28 2014	1 Year
EMI Test Receiver	R&S	ESPI	BSL002	Sep. 28 2014	1 Year
10dB Pulse Limita	R&S	BSL003	BSL003	Sep. 28 2014	1 Year
Coaxial Switch	PUTIANLE	TA218B	BSL004	Aug. 27 2014	1 Year
LISN	Rohde & Schwarz	ESH3-Y5	BSL005	Sep. 28 2014	1 Year
Coaxial Cable	PUTIANLE	BSL048	BSL048	Aug. 27 2014	1 Year
EMI TEST SOFTWARE	AUDIX	E3	N/A	N/A	N/A
Power Meter	R&S	NRVS	GTS216	Apr. 6, 2014	1 Year
Power Sensor	R&S	NRV-Z33	GTS220	Apr. 6, 2014	1 Year

5. §15.203 - ANTENNA REQUIREMENT

5.1. Standard Applicable

According to § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited. The structure and application of the EUT were analyzed to determine compliance with section §15.203 of the rules. §15.203 state that the subject device must meet the following criteria:

- a. Antenna must be permanently attached to the unit.
- b. Antenna must use a unique type of connector to attach to the EUT.

Unit must be professionally installed, and installer shall be responsible for verifying that the correct antenna is employed with the unit.

And according to FCC 47 CFR section 15.247 (b), if the transmitting antennas of directional gain greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.2. Antenna Connector Construction

The antenna used for this product is a PCB Antenna. The antenna is permanently attached. Refer to the product photo.

5.3. Result

Compliance

6. §15.207 - CONDUCTED EMISSIONS

6.1. Applicable Standard

The specification used was with the FCC Part 15.207 limits.

6.2. Test Procedure

During the conducted emission test, the EUT was connected to the outlet of the LISN. Maximizing procedure was performed on the six (6) highest emissions of the EUT. All data was recorded in the Quasi-peak and average detection mode.

6.3. Conducted Power line Emission Limits

FCC Part 15 Paragraph 15.207 (dBuV)						
Frequency Range Class A Class B						
(MHz)	QP/AV	QP/AV				
0.15-0.5	79/66	65-56/56-46				
0.5-5.0	73/60	56-46				
5.0-3.0	73/60	60-50				

Note: In the above table, the tighter limit applies at the band edges.

6.4. Block Diagram of Test Setup

6.5. Conducted Power Line Test Result

Pass.

Link Mode

	Free	Level	Limit Line	Over	Remark	Pol/Phase
	rreq	rever	Line	Limit	Nemar K	rolyrnase
_	MHz	dBuV	dBuV	dB		
1	0.150	35.1	56.0	-20.9	Average	LINE
2 3 4 5	0.156	29.7	55.6	-25.9	Average	LINE
3	0.172	29.9	54.9	-25.0	Average	LINE
4	0.307	31.3	50.1	-18.8	Average	LINE
5	0.325	29.1	49.6	-20.5	Average	LINE
6 Max	0.356	31.1	48.8	-17.7	Average	LINE
7	0.385	29.7	48.2	-18.5	Average	LINE
8	0.431	33.8	47.2	-13.4	Average	LINE
8	0.461	30.0			Average	LINE
10	1.888	28.9	46.0	-17.1	Average	LINE

Condition: : RBW:9.000KHz VBW:30.000KHz

	Freq	Level	Limit Line	Over Limit	Remark	Pol/Phase
_	MHz	dBuV	dBuV	dB		
1	0.153	43.9	65.8	-21.9	QP	LINE
2	0.172	43.9	64.9	-21.0	QP	LINE
3	0.219	43.0	62.9	-19.9	QP	LINE
4 5	0.336	45.3	59.3	-14.0	QP	LINE
5	0.360	45.8	58.7	-12.9	QP	LINE
6 Max	0.426	48.0	57.3	-9.3	QP	LINE
7	1.781	41.1	56.0	-14.9	QP	LINE
8	2.396	40.3	56.0	-15.7	QP	LINE

Condition:

: RBW:9.000KHz VBW:30.000KHz Limit Over

	Freq	Level	Line	Limit	Remark	Pol/Phase
	MHz	dBuV	dBuV	dB		
1	0.150	34.0	56.0	-22.0	Average	NEUTRAL
2	0.169	30.1	55.0	-24.9	Average	NEUTRAL
3 Max	0.417	35.0	47.5	-12.5	Average	NEUTRAL
4	0.862	29.3	46.0	-16.7	Average	NEUTRAL
5	1.000	30.7	46.0	-15.3	Average	NEUTRAL
6	1.094	31.6	46.0	-14.4	Average	NEUTRAL
7	1.888	28.9	46.0	-17.1	Average	NEUTRAL.

Condition: : RBW:9.000KHz VBW:30.000KHz Limit Over

	Freq	Level	Line	Limit	Remark	Pol/Phase
_	MHz	dBuV	dBuV	dB		
1	0.169	45.7	65.0	-19.3	QP	NEUTRAL
2	0.192	44.1	63.9	-19.8	QP	NEUTRAL
3 Max	0.417	47.6	57.5	-9.9	QP	NEUTRAL
4	0.839	41.7	56.0	-14.3	QP	NEUTRAL
5	1.000	43.8	56.0	-12.2	QP	NEUTRAL
6	1.071	45.3	56.0	-10.7	QP	NEUTRAL
6 7	1.585	45.1	56.0	-10.9	QP	NEUTRAL

7. §15.209, §15.205, §15.247(D) - Spurious Emissions

7.1. Test Equipment

Please refer to section 5 this report.

7.2. Test Procedure

The EUT and its simulators are placed on a turntable, which is 0.8 meter high above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. EUT is set 3.0 meters away from the receiving antenna, which is mounted on an antenna tower. The antenna can be moved up and down between 1.0 meter and 4 meters to find out the maximum emission level.

Calibrated Loop antenna is used as receiving antenna for frequencies below 30MHz, Calibrated Bilog antenna is used as receiving antenna for frequencies between 30 MHz and 1 GHz, Calibrated Horn antenna is used as receiving antenna for frequencies above 1000MHz. Both horizontal and vertical polarizations of the antenna are set on measurement. In order to find the maximum emission levels, all of the interface cables must be manipulated according to ANSI C63.4: 2003 on radiated emission measurement.

The bandwidth of test receiver is set at 9kHz in below 30MHz. and set at 120kHz in 30-1000MHz, and 1MHz in above 1000MHz.

The frequency range from 9kHz to 25GHz is checked.

The final measurement in band 9-90kHz, 110-490kHz and above 1000MHz is performed with Peak detector and Average detector. Except those frequency bands mention above, the final measurement for frequencies below 1000MHz is performed with Quasi Peak detector.

7.3. Radiated Test Setup

(A) Radiated Emission Test Set-Up, Frequency Below 30MHz

(B) Radiated Emission Test Set-Up, Frequency Below 1000MHz

(C) Radiated Emission Test Set-Up, Frequency above 1000MHz

7.4. Radiated Emission Limit

Frequency (MHz)	Field Strength of Quasi-peak Value (microvolts/m)	Field Strength of Quasi-peak Value (dBµV/m)	Measurement distance (m)	The final measurement in band 9-90kHz,
0.009 - 0.490	2400/F(kHz)	/	300	110-490kHz and above 1000MHz is
0.490 - 1.705	24000/F(kHz)	/	30	performed with
1.705-30	30	29.5	30	Average detector. Except those
30 - 88	100	40	3	frequency bands mention above, the
88 - 216	150	43.5	3	final measurement for frequencies
216 - 960	200	46	3	below 1000MHz is performed with
Above 960	500	54	3	Quasi Peak detector.

Note: (1) RF Voltage (dBuV)=20 log Voltage(uV)

⁽²⁾ In the Above Table, the tighter limit applies at the band edges.

⁽³⁾ Distagnce refers to the distance in meters between the measuring instrument antenna and the closed point of any part of the device or system.

7.5. Radiated Emission Test Result

For below 9kHz-30MHz Spurious

Freq. (MHz)	Emission(dBuV/m) PK / AV	Limits(dBuV/m) PK / AV	Margin (dB)
-	-	-	-
-	•	-	1

Note:

Emissions attenuated more than 20 dB below the permissible value are not reported.

For 30M-1000MHz Spurious

The worst test mode: WiFi Tx 802.11b 2412MHz

Corrected Factor = Antenna Factor + Cable Loss – Amplifier Gain

Condition : FCC CLASS-B 3m HORIZONTAL : RBW:120.000KHz VBW:300.000KHz SWT:Auto

	Freq	Line	Level	Limit Kemark	rol/rhase
	MHz	$\overline{dBuV/m}$	$\overline{dBuV/m}$	dB	
1 2 max 3 4 5 6 7	31, 955 38, 346 145, 351 601, 427 711, 674 872, 183 958, 794	40.0 40.0 43.5 46.0 46.0 46.0	30. 1 27. 4 29. 7 32. 3 30. 0	-11.0 QP -9.9 QP -16.1 QP -16.3 QP -13.7 QP -16.0 QP -13.7 QP	HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL HORIZONTAL

For 1000MHz-25000MHz Spurious

802.11b Mode:

Evaguanay	Receiver		Turntabl	Rx Antenna		Correcte	Corrected	FCC Part 15.247/205/209		
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/Ave.	e Degree	Height (m)	Polar (H/V)	d Factor (dB)	Amplitude (dBμV/m)		Margin (dB)	
	Low Channel (2412 MHz)									
9648.0	29.12	Ave.	12	1.0	V	19.29	48.41	54	-5.59	
7236.0	29.47	Ave.	320	1.3	V	16.62	46.09	54	-7.91	
4824.0	32.58	Ave.	234	1.1	Н	12.40	44.98	54	-9.02	
9648.0	41.63	PK	12	1.0	V	19.29	60.92	74	-13.08	
4824.0	48.1	PK	234	1.1	Н	12.40	60.5	74	-13.5	
7236.0	42.99	PK	320	1.3	V	16.62	59.61	74	-14.39	
2365.1	31.72	Ave.	74	1.3	Н	5.48	37.2	54	-16.8	
2485.6	29.85	Ave.	111	1.2	V	7.21	37.06	54	-16.94	
2338.5	29.8	Ave.	88	1.0	V	5.48	35.28	54	-18.72	
2485.6	43.85	PK	111	1.2	V	7.21	51.06	74	-22.94	
2365.1	45	PK	74	1.3	Н	5.48	50.48	74	-23.52	
2338.5	43.21	PK	88	1.0	V	5.48	48.69	74	-25.31	

Enganonav	Re	eceiver	Turntabl	Rx An	itenna	Correcte d Factor (dB)	Corrected Amplitude (dBµV/m)		C Part /205/209
Frequency (MHz)	Reading (dBµV)	Detector (PK/QP/Ave.	e Degree	Height (m)	Polar (H/V)			Limit (dBµV/m	Margin (dB)
Middle Channel (2437 MHz)									
9748.0	25.38	Ave.	32	1.1	V	19.40	44.78	54	-9.22
7311.0	27.13	Ave.	22	1.2	V	16.49	43.62	54	-10.38
9748.0	44.25	PK	32	1.1	V	19.40	63.65	74	-10.35
4874.0	29.8	Ave.	201	1.3	Н	12.46	42.26	54	-11.74
4874.0	47.21	PK	201	1.3	Н	12.46	59.67	74	-14.33
7311.0	42.74	PK	22	1.2	V	16.49	59.23	74	-14.77
2488.3	29.35	Ave.	187	1.1	Н	7.21	36.56	54	-17.44
2386.1	27.7	Ave.	98	1.2	V	6.13	33.83	54	-20.17
2368.4	27.68	Ave.	25	1.3	V	5.48	33.16	54	-20.84
2386.1	44.51	PK	98	1.2	V	6.13	50.64	74	-23.36
2488.3	42.1	PK	187	1.1	Н	7.21	49.31	74	-24.69
2368.4	42.86	PK	25	1.3	V	5.48	48.34	74	-25.66
			Hig	h Chann	el (246)	2 MHz)			
9848.0	26.17	Ave.	177	1.2	Н	19.39	45.56	54	-8.44
7386.0	27.04	Ave.	333	1.3	V	15.91	42.95	54	-11.05
4924.0	28.09	Ave.	207	1.1	Н	12.50	40.59	54	-13.41
9848.0	39.49	PK	177	1.2	Н	19.39	58.88	74	-15.12
7386.0	41.98	PK	333	1.3	V	15.91	57.89	74	-16.11
4924.0	44.75	PK	207	1.1	Н	12.50	57.25	74	-16.75
2491.3	29.98	Ave.	326	1.5	Н	7.21	37.19	54	-16.81
2368.7	30.59	Ave.	74	1.1	V	5.48	36.07	54	-17.93
2488.5	29.04	Ave.	11	1.3	V	7.21	36.25	54	-17.75
2488.5	43.39	PK	11	1.3	V	7.21	50.6	74	-23.4
2491.3	42.63	PK	326	1.5	Н	7.21	49.84	74	-24.16
2368.7	42.3	PK	74	1.1	V	5.48	47.78	74	-26.22

7.6. Conducted Emission Method

Please refer to section 5 this report.

7.7. Test Requirement:

FCC Part15 C Section 15.247 (d)

7.8. Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

7.9. Test Setup

7.10.Test Result

Test plot as follows:

802.11b Low Channel 2412 MHz 30MHz~25GHz

802.11b Middle Channel 2437 MHz 30MHz~25GHz

802.11b High channel 2462 MHz 30MHz~25GHz

8. §15.247(A) (2) – 6DB BANDWIDTH TESTING

8.1. Test Equipment

Please refer to Section 5 this report.

8.2. Test Procedure

- Set EUT in the transmitting mode.
 Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the spectrum analyzer.
- 3. Set the spectrum analyzer as RBW=100KHz,VBW>=3RBW,Span=40MHz,Sweep=auto.
- 4. Mark the peak frequency and -6dB(upper and lower)frequency.
- 5. Repeat until all the rest channels are investigated.

8.3. Applicable Standard

Systems using digital modulation techniques may operate in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

8.4. Test Result: Pass.

Please refer to the following tables

Channel	Channel Frequency (MHz)	Frequency Data Rate (Mbps) Bandwidth		FCC Part 15.247 Limit (kHz)					
	802.11b mode								
Low	2412	1	8.06	>500					
Middle	2437	1	8.06	>500					
High	2462	1	8.06	>500					

Low Channel 6dB Bandwidth

Middle Channel 6dB Bandwidth

9. §15.247(B) (3) - Maximum Output Power

9.1. Test Equipment

Please refer to Section 4 this report.

9.2. Test Procedure

1. The EUT was directly connected to the PK power meter

9.3. Applicable Standard

According to §15.247(b) (3), for systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

9.4. Test Result

Pass

Channel	Frequency (MHz)	Data Rate (Mbps)	Reading PK Power (dBm)	Reading AV Power (dBm)	Limit (dBm)	Result
			802.11b mode			
Low	2412	1	16.89	16.27	30	Pass
Middle	2437	1	16.93	16.31	30	Pass
High	2462	1	16.69	16.07	30	Pass

10. §15.247(D) – 100 KHZ Bandwidth of Frequency Band Edge

10.1.Test Equipment

Please refer to Section 4 this report.

10.2.Test Procedure

- 1, Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2, Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3, Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.

Note: For Rdstricted Band

RBW=1MHz

VBW=1 MHz

- 4, Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5, Repeat above procedures until all measured frequencies were complete.

10.3. Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

10.4. Test Result

Pass

Please refer to following plots.

802.11b: Band Edge, Right Side High Channel

11. §15.247(E) - Power Spectral Density

11.1. Test Equipment

Please refer to Section 4 this report.

11.2.Test Procedure

- 1. Connect EUT test port to spectrum analyzer
- 2. Set the EUT to transmit maximum output power at 2.4GHz.
- 3. Then set the EUT to transmit at high, middle and low frequency and measure the conducted band edge spurious separately.

11.3. Applicable Standard

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

11.4.Test Result

PASS

Channel	Frequency (MHz)	Data Rate (Mbps)	Correct Power spectral density (dBm)	Limit (dBm)	Result					
	802.11b mode									
Low	2412	1	-7.14	≤8	Pass					
Middle	2437	1	-7.51	≤8	Pass					
High	2462	1	-7.31	≤8	Pass					
				-	_					

Please refer to the following plots

Power Spectral Density, 802.11b Low Channel

Power Spectral Density, 802.11b Middle Channel

Power Spectral Density, 802.11b High Channel

