ASSIGNMENT # 4

MATH 660, DIFFERENTIAL GEOMETRY

- (1) (a) Show that every connected totally geodesic submanifold of \mathbb{R}^n (flat metric) is contained in some linear (affine) subspace.
 - (b) Show that every connected totally geodesic submanifold of $S^n(1)$ is contained in some great k-sphere $S^k(1) \subset S^n(1)$.
 - (c) If $A: M \to M$ is an isometry, show that $Fix(A) = \{p \in M | A(p) = p\}$ is a union of totally geodesic submanifolds. Hint: Prove and use the fact that $A(\exp_p v) = \exp_{A(p)}(dA_p(v))$.
 - (d) Give an example where Fix(A) has components of different dimensions.
- (2) Let M be a surface in \mathbb{R}^3 .
 - (a) Assume that M is ruled, i.e. for every point $p \in M$, there exists a line of \mathbb{R}^3 through p which is contained in M. What can you say about the second fundamental form and the Gauss curvature of M?
 - (b) If a surface in \mathbb{R}^3 is given by a parametrization $(x_1, x_2) \to f(x_1, x_2) \in \mathbb{R}^3$, show that the Gauss curvature is equal to $\det(h_{ij})/\det(g_{ij})$, where $g_{ij} = \langle f_{x_i}, f_{x_j} \rangle$ and $h_{ij} = \langle f_{x_i, x_j}, N \rangle$ with $N = (f_{x_1} \times f_{x_2})/||f_{x_1} \times f_{x_2}||^2$ a normal to the surface.
 - (c) Compute the Gauss curvature of the following examples:
 - (i) the tangent surface of a curve $\gamma(t)$ in \mathbb{R}^3 : $f(t,s) = \gamma(t) + s\gamma'(t)$.
 - (ii) the hyperboloid $f(t,s) = (\cos s \mp t \sin s, \sin s \pm t \cos s, t)$.
- (3) Consider the hyperbolic metric $ds^2 = \frac{dx^2 + dy^2}{y^2} = \frac{dzd\bar{z}}{\operatorname{Im}(z)^2}$ on the upper half space $\{z \in \mathbb{C} \mid \operatorname{Im}(z) > 0\} \subset \mathbb{C}$ with Gauss curvature -1.
 - (a) Show that the fractional linear transformations $z \to \frac{az+b}{cz+d}$ with $a, b, c, d \in \mathbb{R}$, ad-bc=1, are isometries of ds^2 .
 - (b) Compute the full isometry group of ds^2 . (Hint:What are the isometries fixing i.)
 - (c) Show that the geodesics are precisely the circles perpendicular to the x-axis.
 - (d) Show that ds^2 is complete.
 - (e) What are the distance circles in this metric with center $i \in \mathbb{C}$.
- (4) Show that the metric $ds^2 = \frac{dx_1^2 + ... + dx_n^2}{(1 + \frac{c}{4}(x_1^2 + ... + x_n^2))^2}$ has constant sectional curvature equal to c, and is complete on the domain where it is defined.
- (5) Show that if $M^n \subset \mathbb{R}^{n+1}$, $n \geq 3$, has constant positive sectional curvature, then it is a portion of a round sphere. What if n=2?
 - *Hint*: First show that all points are umbilic, i.e. all principal curvatures are the same.
- (6) (a) Show that the catenoid $x(u,v) = (\cosh v \cos u, \cosh v \sin u, v)$ is a surface of revolution and a minimal surface (in fact the only one).
 - (b) Show that the helicoid $y(u, v) = (\sinh v \cos u, \sinh v \sin u, u)$ is a ruled surface and a minimal surface (in fact the only one).
 - (c) Show that $(\cos t)x + (\sin t)y$ is a one parameter family of minimal surfaces and that they are all isometric to each other.