

Samuel Santos

csamuelssm@alu.ufc.br

UFC Universidade Federal do Ceará

December 2024

Restricting infections on graph classes

Supervised by Ana Karolinna Maia de Oliveira and Carlos Vinícius Gomes Costa Lima

Several phenomena happen in a contagion-like manner.

> Spreading of pathogens, like viruses or bacteria;

Several phenomena happen in a contagion-like manner.

- > Spreading of pathogens, like viruses or bacteria;
- > The diffusion of innovation, (mis-)information, and memes.

1 Information

Studies found that most people adopt innovative ideas based on the experience of their neighbors or community.

- >> The adoption of hybrid seed corn among farmers (Ryan and Gross 1950);
- >> The adoption of tetracycline by physicians (Coleman, Katz, and Menzel 1957).

Several phenomena happen in a contagion-like manner.

- > Spreading of pathogens, like viruses or bacteria;
- > The diffusion of innovation, (mis-)information, and memes.
- > Even bedbugs seem to spread from hotel to hotel via travelers (Barabási and Pósfai 2016).

- Compartments are states;
- > Each agent/individual belongs to one state.

- Compartments are states;
- > Each agent/individual belongs to one state.

Example (SIR)

- Compartments are states;
- > Each agent/individual belongs to one state.

Definition (Homogeneous Mixing Hypothesis)

The assumption that every individual from one compartment has the same chance of interacting with an individual from another compartment.

- Compartments are states;
- > Each agent/individual belongs to one state.

Definition (Homogeneous Mixing Hypothesis)

The assumption that every individual from one compartment has the same chance of interacting with an individual from another compartment.

> The homogeneous mixing hypothesis is false.

- Compartments are states;
- > Each agent/individual belongs to one state.

Definition (Homogeneous Mixing Hypothesis)

The assumption that every individual from one compartment has the same chance of interacting with an individual from another compartment.

- > The homogeneous mixing hypothesis is false.
- > The structure of the contact network is what facilitates the contagion.
 - Information

Studies have shown that the airport mobility network provides reliable information for the prediction and control of airborne epidemics like H1N1 (Soriano-Paños et al. 2022).

- Let's consider each vertex as an individual.
 - >> A vertex is either active (infected) or inactive (susceptible).

- > Let's consider each vertex as an individual.
 - >> A vertex is either active (infected) or inactive (susceptible).
- > The individuals change their state based on their neighbors' state.
 - >> A threshold value represents how susceptible an individual is to the contagious agent.
 - >>> Smaller thresholds: early adopters / low immunity;

- > Let's consider each vertex as an individual.
 - >> A vertex is either active (infected) or inactive (susceptible).
- > The individuals change their state based on their neighbors' state.
 - >> A threshold value represents how susceptible an individual is to the contagious agent.
 - >> Smaller thresholds: early adopters / low immunity;

s.

- > Let's consider each vertex as an individual.
 - >> A vertex is either active (infected) or inactive (susceptible).
- > The individuals change their state based on their neighbors' state.
 - >> A threshold value represents how susceptible an individual is to the contagious agent.
 - >> Smaller thresholds: early adopters / low immunity;
 - >> Bigger thresholds: laggards / greater resistance.

In the threshold model, we are given:

 \rightarrow A graph G = (V, E);

- \triangleright A graph G = (V, E);
- **>** A threshold function $t:V(G) \to \mathbb{N}$;

- \triangleright A graph G = (V, E);
- **>** A threshold function $t:V(G) \to \mathbb{N}$;
- ▶ A set of initial infected vertices the seed set $S \subseteq V(G)$.

- \rightarrow A graph G = (V, E);
- **>** A threshold function $t:V(G) \to \mathbb{N}$;
- ▶ A set of initial infected vertices the seed set $S \subseteq V(G)$.
- > The diffusion happens in discrete time steps.

- \rightarrow A graph G = (V, E);
- **>** A threshold function $t:V(G) \to \mathbb{N}$;
- ▶ A set of initial infected vertices the seed set $S \subseteq V(G)$.
- > The diffusion happens in discrete time steps.

- \rightarrow A graph G = (V, E);
- **>** A threshold function $t:V(G)\to\mathbb{N}$:
- ▶ A set of initial infected vertices the seed set $S \subseteq V(G)$.
- > The diffusion happens in **discrete time steps**.
- Once a vertex is infected, it stays infected we call it a t-irreversible process.

Several computational problems arise from the Threshold Model.

> Influence Maximization (IM) (Kempe, Kleinberg, and Tardos 2003): find a seed set of bounded cardinality that maximizes the number of infected vertices.

Several computational problems arise from the Threshold Model.

- **Influence Maximization** (IM) (Kempe, Kleinberg, and Tardos 2003): find a seed set of bounded cardinality that maximizes the number of infected vertices.
 - >> Decision version is NP-complete even for bipartite graphs.

Several computational problems arise from the Threshold Model.

- ▶ Influence Maximization (IM) (Kempe, Kleinberg, and Tardos 2003): find a seed set of bounded cardinality that maximizes the number of infected vertices.
 - >> Decision version is NP-complete even for bipartite graphs.
 - **>>** NP-complete even for k-regular graphs if we require S to infect all vertices of G **Target Set Selection** (TSS) (Dreyer and Roberts 2009).

Variations of these problems:

- Directed version:
- ▶ Majority version: $t(v) = \lceil \frac{d(v)}{2} \rceil \quad \forall v \in V(G);$
- > TSS with maximum activation time (Keiler et al. 2023; Flocchini et al. 2003; Marcilon and Sampaio 2018);
- > TSS with activation time equal to 1 (Araújo and Sampaio 2023);

Immunization problems:

> Firefighter;

Restricting infections on graph classes

Problems arising from the Threshold Model

- > Firefighter;
 - >> A fire breaks at some vertex and will spread;

- > Firefighter;
 - >> A fire breaks at some vertex and will spread;
 - >> The goal is to place firefighters to protect the vertices from the fire.

- > Firefighter;
 - >> A fire breaks at some vertex and will spread;
 - >> The goal is to place firefighters to protect the vertices from the fire.

- > Firefighter;
 - >> A fire breaks at some vertex and will spread;
 - >> The goal is to place firefighters to protect the vertices from the fire.

- > Firefighter;
 - >> A fire breaks at some vertex and will spread;
 - >> The goal is to place firefighters to protect the vertices from the fire.
 - >> NP-complete even for trees! (And a bunch of other classes)

- > Firefighter;
 - >> A fire breaks at some vertex and will spread;
 - >> The goal is to place firefighters to protect the vertices from the fire.
 - >> NP-complete even for trees! (And a bunch of other classes)
- Influence Immunization Bounding (IIB);
 - >> A generalization of Firefighter? No, but sort of...

Restricting infections on graph classes

Influence Immunization Bounding

First, we need to define what it means to **immunize a vertex**.

> Option 1: raise the vertex threshold above its degree;

Influence Immunization Bounding

First, we need to define what it means to immunize a vertex.

Option 1: raise the vertex threshold above its degree;

Remark (Option 1)

Infected vertices can also be immunized. In this option, the immunized infected vertices still **can infect others**.

Restricting infections on graph classes

Influence Immunization Bounding

First, we need to define what it means to **immunize a vertex**.

> Option 1: raise the vertex threshold above its degree;

Remark (Option 1)

Infected vertices can also be immunized. In this option, the immunized infected vertices still can infect others.

Influence Immunization Bounding

First, we need to define what it means to **immunize a vertex**.

- > Option 1: raise the vertex threshold above its degree:
- Option 2: make the vertex invisible remove it.

Remark (Option 2)

In this option, immunized vertices do not infect nor get infected.

Restricting infections on graph classes

Influence Immunization Bounding

First, we need to define what it means to **immunize a vertex**.

- > Option 1: raise the vertex threshold above its degree:
- > Option 2: make the vertex invisible remove it.

Remark (Option 2)

In this option, immunized vertices do not infect nor get infected.

Influence Immunization Bounding

Given:

> A graph G = (V, E) with thresholds $t : V(G) \to \mathbb{N}$;

Influence Immunization Bounding

Given:

- ▶ A graph G = (V, E) with thresholds $t : V(G) \to \mathbb{N}$;
- ▶ A seed set $S \subseteq V(G)$;

Remark

Notice that $S = \{a, e, h\}$ is a *target set* for this graph.

Influence Immunization Bounding

Given:

- ▶ A graph G = (V, E) with thresholds $t : V(G) \to \mathbb{N}$;
- ▶ A seed set $S \subseteq V(G)$;

Remark

Notice that $S = \{a, e, h\}$ is a *target set* for this graph.

Influence Immunization Bounding

Given:

- ▶ A graph G = (V, E) with thresholds $t : V(G) \to \mathbb{N}$;
- ▶ A seed set $S \subseteq V(G)$;

Remark

Notice that $S = \{a, e, h\}$ is a *target set* for this graph.

Influence Immunization Bounding

Given:

- **>** A graph G = (V, E) with thresholds $t : V(G) \to \mathbb{N}$;
- ▶ A seed set $S \subseteq V(G)$;
- ➤ Naturals k and l.

Influence Immunization Bounding

Given:

- **>** A graph G = (V, E) with thresholds $t : V(G) \to \mathbb{N}$;
- **>** A seed set $S \subseteq V(G)$;
- Naturals k and l. Let k = 3 and l = 2.

We want to find a immunizing set $Y \subseteq V(G)$ such that:

 $|Y| \leq I$; and

Influence Immunization Bounding

Given:

- **>** A graph G = (V, E) with thresholds $t : V(G) \to \mathbb{N}$;
- ▶ A seed set $S \subset V(G)$;
- Naturals k and l. Let k = 3 and l = 2.

We want to find a immunizing set $Y \subset V(G)$ such that:

- Y | Y | < I; and
- **>** By immunizing Y at time $\tau = 0$, the **infection gets** restricted to at most k vertices.

Remark

Notice that we must have $k \geq |S|$.

But before we proceed...
A little of Parameterized Complexity.

We can define a (classical) decision problem as follows:

> Let Σ be a finite alphabet, and $Q \subset \Sigma^*$.

Input: $x \in \Sigma^*$.

Question: Decide whether $x \in Q$.

We can define a (classical) decision problem as follows:

▶ Let Σ be a finite alphabet, and $Q \subset \Sigma^*$.

Input: $x \in \Sigma^*$.

Question: Decide whether $x \in Q$.

Definition

A parameter is a function $\kappa: \Sigma^* \to \mathbb{N}$ that takes the input of a problem to the naturals.

Example

A parameter for SAT can be $\kappa(\varphi)=$ "Number of variables of φ ", where φ is a CNF formula.

Now we can define a parameterized problem.

Definition

A parameterized problem is a pair (P, κ) , such that P is a decision problem and κ is a parameter for P.

Parameterized Complexity

Now we can define a parameterized problem.

Definition

A parameterized problem is a pair (P, κ) , such that P is a decision problem and κ is a parameter for P.

p-Independent-Set

Input: A graph G and $k \in \mathbb{N}$.

Question: Decide whether G has an independent set of cardinality k.

Parameter: k.

But what is the motivation behind this?

 \triangleright NP-hard problems cannot have all instances solved in polynomial time, unless P = NP.

But what is the motivation behind this?

- \triangleright NP-hard problems cannot have **all instances** solved in polynomial time, unless P = NP.
- > But in practice, **only a subset** of them is relevant.
 - >> VLSI design: the number of circuit layers is usually < 10:
 - >> Computational biology: real instances of DNA chain reconstruction have special properties, e.g., treewidth ≤ 11 ;
 - **>>** Robotics: the number of degrees of freedom in motion planning problems is usually ≤ 10 .

But what is the motivation behind this?

- \triangleright NP-hard problems cannot have **all instances** solved in polynomial time, unless P = NP.
- > But in practice, **only a subset** of them is relevant.
 - >> VLSI design: the number of circuit layers is usually < 10:
 - >> Computational biology: real instances of DNA chain reconstruction have special properties, e.g., treewidth ≤ 11 ;
 - \gg Robotics: the number of degrees of freedom in motion planning problems is usually < 10.
- This means that parameters of the problem matter for its tractability.

Let $x \in \Sigma^*$ be an instance of a parameterized problem (P, κ) .

Definition (XP)

 (P, κ) is **slicewise polynomial** if it admits an algorithm which running time is

$$O(|x|^{\kappa(x)})$$

➤ CLIQUE is in XP parameterized by k: enumerate all subsets of k vertices and check if they form a clique.

Let $x \in \Sigma^*$ be an instance of a parameterized problem (P, κ) .

Definition (XP)

 (P,κ) is slicewise polynomial if it admits an algorithm which running time is

$$O(|x|^{\kappa(x)})$$

Definition (FPT)

 (P, κ) is **fixed-parameter tractable** if it admits an algorithm which running time is

$$O(f(\kappa(x)) \cdot poly(|x|))$$

➤ VERTEX COVER is in FPT parameterized by k.

- > The class FPT is the parameterized analogous to the class P;
- > The class para-NP is the parameterized analogous to the class NP;

- > The class FPT is the parameterized analogous to the class P;
- > The class para-NP is the parameterized analogous to the class NP;
- **>** *k*-CLIQUE is the parameterized analogous to 3-SAT;
 - >> No one has managed to find a FPT algorithm;

- > The class FPT is the parameterized analogous to the class P;
- > The class para-NP is the parameterized analogous to the class NP;
- **▶** *k*-CLIQUE is the parameterized analogous to 3-SAT;
 - No one has managed to find a FPT algorithm;
 - \rightarrow Hypothesis: k-Clique is not in FPT.

- > The class FPT is the parameterized analogous to the class P;
- > The class para-NP is the parameterized analogous to the class NP;
- **▶** *k*-CLIQUE is the parameterized analogous to 3-SAT;
 - No one has managed to find a FPT algorithm;
 - >> Hypothesis: k-Clique is not in FPT.
- ightharpoonup The W[t]-hardness is the parameterized analogous of NP-hardness.
 - >> k-CLIQUE is W[1]-hard;

- > The class FPT is the parameterized analogous to the class P;
- > The class para-NP is the parameterized analogous to the class NP;
- ▶ k-CLIQUE is the parameterized analogous to 3-SAT;
 - No one has managed to find a FPT algorithm;
 - >> Hypothesis: *k*-Clique is not in FPT.
- ightharpoonup The W[t]-hardness is the parameterized analogous of NP-hardness.
 - >> k-CLIQUE is W[1]-hard;
 - >> HITTING SET and DOMINATING SET are W[2]-hard;

- > The class FPT is the parameterized analogous to the class P;
- ➤ The class para-NP is the parameterized analogous to the class NP;
- ▶ k-CLIQUE is the parameterized analogous to 3-SAT;
 - No one has managed to find a FPT algorithm;
 - >> Hypothesis: k-Clique is not in FPT.
- ightharpoonup The W[t]-hardness is the parameterized analogous of NP-hardness.
 - >> k-CLIQUE is W[1]-hard;
 - >> HITTING SET and DOMINATING SET are W[2]-hard;
 - ightharpoonup We can show other problems are W[t]-hard by using FPT-reductions.

Influence Immunization Bounding was introduced by (Cordasco, Gargano, and Rescigno 2023).

Parameter	Hardness	
k	W[1]-hard	$t(v) = 1 \forall v$
1	$W[1] ext{-}hard$	$t(v) = 1 \forall v$
k + l	FPT	
S + I	W[2]-hard	Bipartite graphs
k + S	FPT	
$\Delta(G) + I$	W[2]-hard	$t(v) \leq 2 \forall v$
tw(G)	$W[1] ext{-}hard$	
nd(G)	$W[1] ext{-}hard$	
k + nd(G)	FPT	
I + nd(G)	FPT	
$\min(\Delta(G), k) + tw(G) + I$	FPT	

Influence Immunization Bounding (cont.)

Let G = (V, E) be a graph with thresholds $t : V(G) \to \mathbb{N}$ and seed set $S \subseteq V(G)$.

Definition

Let $Y \subseteq V(G)$. If, by immunizing the vertices of Y, the infection in (G, t) is restricted to at most k vertices, we say that Y is a k-immunizing set.

Definition

The k-immunization number of (G, t), denoted by

, is size of a **mimimum** k-immunizing set of (G, t).

Consider the graph on the right.

Example

 $Y = \{c, h\}$ is a 3-immunizing set of (G, t).

$$Im(G, t, k = 3) = 2.$$

Consider the graph on the right.

Example

 $Y = \{c, h\}$ is a 3-immunizing set of (G, t).

Im(G, t, k = 3) = 2.

Definition

If k = |S|, then we say that Im(G, t, k = |S|) is the **inhibition number of** (G, t), and denote it by ln(G, t).

Example

ln(G, t) = lm(G, t, k = 3) = 2.

Consider the graph on the right.

Example

 $Y = \{c, h\}$ is a 3-immunizing set of (G, t).

Im(G, t, k = 3) = 2.

Definition

If k = |S|, then we say that Im(G, t, k = |S|) is the **inhibition number of** (G, t), and denote it by In(G, t).

Example

ln(G, t) = lm(G, t, k = 3) = 2.

Remark

For any suitable k, we have that

 $\operatorname{Im}(G, t, k) \leq \operatorname{In}(G, t)$

We can also define a **restricted version** of IIB, which we call R-IIB.

Restricted Influence Immunization Bounding (R-IIB)

Input: A graph G = (V, E) with thresholds $t : V(G) \to \mathbb{N}$, seed set $S \subseteq V(G)$, and $k, l \in \mathbb{N}$.

Question: Decide whether there exists $Y \subseteq V(G) \setminus S$ such that |Y| < I and Y is a k-immunizing set of G.

ightharpoonup R-IIB is also W[1]-hard when parameterized by k or by l.

Consider the graph on the right.

Definition

 $Y \subset V(G)$ is a **restricted** k-immunizing set of (G, t) if Y is a k-immunizing set of (G, t) and $Y \cap S = \emptyset$.

> $Y = \{c, h\}$ is <u>not</u> a restricted *k*-immunizing set of (G,t).

Consider the graph on the right.

Definition

 $Y \subseteq V(G)$ is a **restricted** k-immunizing set of (G, t) if Y is a k-immunizing set of (G, t) and $Y \cap S = \emptyset$.

- > $Y = \{c, h\}$ is <u>not</u> a restricted k-immunizing set of (G, t)..
- > $Y = \{c, g\}$ is a restricted k-immunizing set of (G, t).

Definition

The restricted k-immunization number of (G, t), denoted by

$$Im_r(G, t, k)$$

, is the size of a **mimimum restricted** k-immunizing set of (G, t).

- ▶ The **restricted inhibition number** $In_r(G, t)$ is analogous.
- > But why study the restricted version?

The restricted version gives an upper bound for the original problem.

Remark

For any suitable k, we have that

$$\operatorname{Im}(G, t, k) \leq \operatorname{Im}_r(G, t, k)$$

 \triangleright A restricted k-immunizing set for (G, t) is also a (unrestricted) k-immunizing set for (G, t).

Section 6: Our Results

Paths and Complete Graphs with t(v) = c

Polynomial Algorithm for the *k*-**Immunization Number in Trees**

Polynomial Algorithm the Inhibition Number when t(v) = 1

Hardness for Chordal Graphs

Hardness for Bipartite Graphs

Hardness for Planar Bipartite Subcubic Graphs

Pathwidth Based Bounds