Leibniz Universität Hannover Wirtschaftswissenschaftliche Fakultät Institut für Produktionswirtschaft Prof. Dr. Stefan Helber

Hausarbeit im Rahmen der Veranstaltung Entwicklung von Anwendungssystemen im WiSe 2014/2015 (Veranstaltungs-Nr. 173610)

RCPSP RCPSP

Andreas Hipp Robert Matern

Ungerstr. 24 Plathnerstr. 49

30451 Hannover 30175 Hannover

Matr.-Nr. 3027520 ??? Matr.-Nr. 2798160

Abgabedatum: 24.03.2015

Inhaltsverzeichnis

\mathbf{A}	bbildungsverzeichnis	iii
Ta	abellenverzeichnis	iii
\mathbf{A}	bkürzungsverzeichnis	iv
$\mathbf{S}\mathbf{y}$	ymbolverzeichnis	v
1	Einleitung	1
2	Mathematische Modellformulierung des ressourcenbeschränkten Projekt- planungsproblems	2
3	Implementierung des RCPSP mittels Ruby on Rails	4
4	Kritische Würdigung des Anwendungssystems	5
5	Fazit	5
Li	teratur	6
\mathbf{A}	Anhang	7
	A.1 GAMS-Implementierung des Beispiels	7
	A.2 Ruby on Rails Programmcode	7

${\bf Abbildung sverzeichnis}$

Tabellenverzeichnis

\circ	1 1	• 1	•
(.)11eL	${f lcodeverz}$	zeich	nis
Que.			1110

1	Beispielcode																																1	1
1	Deispielcode	 •	•	•	 •	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	٠	•	٠	4	Ł

${\bf Abk\"{u}rzungsverzeichnis}$

RCPSP Resource-Constrained Project Scheduling

RoR Ruby on Rails

SGS Schedule Generation Scheme

Symbolverzeichnis

 d_i Dauer von Vorgang i

 FE_i frühestes Ende von Vorgang i

i,h=1,...,I Vorgänge

 k_{ir} Kapazitätsbedarf von Vorgang i auf Ressource r

 kp_r verfügbare Kapazität von Ressource r je Periode

 \mathcal{N}_i Menge der direkten Nachfolger von Vorgang i

r = 1, ..., R Ressourcen

 SE_i spätestes Ende von Vorgang i

 $t, \tau = 1, ..., T$ Perioden

 V_i Menge der direkten Vorgänger von Vorgang i

 $X_{jt} \in \{0,1\}$ gleich 1, falls Vorgang j in Periode t endet, sonst 0

1 Einleitung

Aufgrund seiner Schwierigkeit und Bedeutung bedarf es bei einem Projekt meist einer gesondertes Planung, da es sich um eine zeitlich befristete, relativ innovative und risikobehaftete Aufgabe von erheblicher Komplexität handelt.¹ Dementsprechend von großer Bedeutung ist die Planung von Projekten.² Projektplanung ist die Planung aller Arbeitsgänge eines Projekts durch Zuweisung eines Startzeitpunktes, so dass die Zeitbeziehung zwischen den Vorgängen eingehalten und knappe Ressourcenkapazitäten nicht überschritten werden.² Durch das Zerlegen des Projekts in einzelne Arbeitsgänge wird versucht die Komplexität zu reduzieren und eine geordnete Abfolge der Arbeitsgänge zu erstellen, um das Projektziel zu erreichen.³ Projektziele können unterschiedlich kategorisiert werden, z. B. in Sach-, Terminoder Kostenziele.⁴

Nach DIN 69900 hat ein Arbeitsgang oder ein einzelner Vorgang eines Projekts einen definierten Anfang sowie ein definiertes Ende und dient für das Projekt als Ablaufelement zur Beschreibung eines bestimmten Geschehens.⁵ Trotz der Zerlegung besitzen die einzelnen Arbeitsgänge des Projekts eine Beziehung, mit der die Reihenfolge der Ablauffolge bestimmbar ist.⁶ Oft wird zur Darstellung der Vorgangsbeziehung ein Vorgangsknoten-Netzplan verwendet.⁷ Ein Arbeitsgang ist i. d. R. verbunden mit dem Einsatz von Ressourcen, welche wiederum mit Kosten verbunden sind. Eine Möglichkeit, das Projektziel unter minimaler Ressourcenverwendung zu erreichen, ist die effiziente Planung der Ablauffolge der Arbeitsgänge eines Projekts.⁸ Damit ist es möglich, mehrere Projekte bei einer gegebenen Zeitvorgabe unter Einhaltung von Ressourcenrestriktionen fertigzustellen bzw. bei konstanter Ressourcenkapazität ein Projekt in kürzerer Zeit abzuschließen.

Zur Bestimmung der optimalen Ablauffolge der einzelnen Arbeitsgänge eines Projekts kann ein Optimierungsmodell verwendet werden, bei der für eine festgelegten Ablauffolge eines Projekts und unter Berücksichtigung der Ressourcenbeschränkung die Fertigstellungszeit minimiert wird. Im Kapitel 2 wird eine solche Modellformulierung für das ressourcenbeschränkte Projektplanungsproblem vorgestellt. Bezeichnet wird das Projektplanungsproblem unter Einhaltung der Ressourcenbeschränkung oft mit der englischen Bezeichnung des Resource-Constrained Project Scheduling Problem (RCPSP). Bei dem RCPSP handelt es sich um eine abstrakte mathematische Modellformulierung. Ziel der vorliegenden Arbeit ist es das RCPSP in Ruby on Rails (RoR) zu implementieren. Bei RoR handelt es sich um ein

¹Vgl. Voigt und Schewe (2014)

²Vgl. Zimmermann et al. (2006), S. VI

³Vgl. Zimmermann et al. (2006), S. 4

⁴Vgl. Felkai und Beiderwieden (2011), S. 52

⁵Vgl. DIN 69900 (2009), S. 15

⁶Vgl. Kellenbrink (2014), S. 6-7

⁷²²²²

⁸Vgl. Bartels (2009), S. 11-12

Framework zur Entwicklung von Webdokumenten bzw. Internetseiten. Es baut auf der Programmiersprache Ruby auf und ist ursprünglich von David Heinemeier Hansson entwickelt. Die Implementierung bedarf einer Verknüpfung von RoR und GAMS¹¹. Unter GAMS wird eine algebraische Modellierungssprache für mathematische Optimierungsprobleme verstanden, mit der das RCPSP gelöst wird. Im Kapitel 3 wird die Entwicklung des Anwendungssystems zum Lösen des RCPSP ausführlich beschrieben. Ergänzt wird diese Arbeit durch eine kritische Würdigung des Anwendungssystems in Kapitel 4 sowie einem Fazit in Kapitel 5.

2 Mathematische Modellformulierung des ressourcenbeschränkten Projektplanungsproblems

Ein Großteill an Projekten besitzt die Eigenschaft eines beschränkten Ressourcenkontingents. Soll demgemäß die vorgegebene Terminierung des Projektes als zuvor festgesetztes Ziel erreicht werden, muss neben der Reihenfolgerestriktion auch der Ressourcenbedarf der unterschiedlichen Arbeitsgänge sichergestellt werden. Mit der Einhaltung des Ressourcenbedarfs ist es möglich, alle zur Erfüllung des Projektes notwendigen Arbeitsgänge auszuführen und somit letztendlich das Projekt abzuschließen. Neben limitierten Ressourcen, die während des gesamten Projekts nur ein Mal zur Verfügung stehen, wie bspw. das Projektbudget, gibt es Ressourcen, die nach einer bestimmten Anzahl von Perioden erneuert werden können. Erneuerbare Ressourcen sind bspw. die Produktionskapazität einer Maschine oder der Personaleinsatz für ein Projekt. In dieser Arbeit wird der Fokus auf diese erneuerbaren Ressourcen gelegt.

Zur Lösung des ressourcenbeschränkten Projektplanungsproblems kann das Modell RCPSP genutzt werden. Das RCPSP legt durch Fixierung der Aktivitätsstartzeitpunkte den Projektgrundablauf zur Zielerreichung der Minimierung der Projektdauer fest. Dies geschieht unter Einhaltung der Startzeitpunkt- bzw. der Vorrangsbedingung der einzelnen Arbeitsgänge sowie der Kapazitätsbeschränkung der erneuerbaren Ressourcen. Die im folgenden aufgestellte Zielfunktion des RCPSP zur Minimierung der Projektdauer ist die gängige Version, andere Variationen sind aber ebenfalls möglich.

Nachfolgend wird das deterministische RCPSP in diskreter Zeit formuliert. 18 Charakteris-

⁹???

^{10???}

¹¹General Algebraic Modeling System

¹²⁷⁷⁷

¹³Vgl. Kellenbrink (2014), S. 11

¹⁴Vgl. Neumann-Braun et al. (2003), S. 21-22

¹⁵Vgl. Demeulemeester und Herroelen (2011), S. 23

¹⁶Vgl. Drexl et al. (1997), S. 98

¹⁷Vgl. Talbot (1982), S. 1200

^{18????}

tisch für eine mathematische Modellformulierung in diskreter Zeit sind die Zeiteinheiten, die den Perioden t, τ entsprechen.

Modell RCPSP

$$\min Z = \sum_{t=FE_I}^{SE_I} t \cdot X_{I,t} \tag{1}$$

unter Beachtung der Restriktionen

$$\sum_{t=FE_i}^{SE_i} X_{it} = 1 i = 1, ..., I (2)$$

$$\sum_{t=FE_h}^{SE_h} t \cdot X_{ht} \le \sum_{t=FE_i}^{SE_i} (t - d_i) \cdot X_{it}$$
 $i = 1, ..., I; h \in \mathcal{V}_i$ (3)

$$\sum_{i=1}^{I} \sum_{\tau=\max(t,FE_i)}^{\tau=\min(t+d_i-1,SE_i)} k_{ir} \cdot X_{i\tau} \le kp_r \qquad r = 1,...,R; \ t = 1,...,T \quad (4)$$

$$X_{it} \in \{0, 1\}$$
 $i \in \mathcal{I}; \ t \in \{FE_i, ..., SE_i\}$ (5)

Es wird ein Projekt betrachtet, dass aus I unterschiedlichen Arbeitsgängen besteht. Jeder Arbeitsgang i hat eine definierte Menge von zu erledigenden Vorgängerarbeitsgängen $h \in \mathcal{V}_i$. Des Weiteren ist für die Fertigstellung des Projekts die Abarbeitung der Arbeitsgänge in topologischer Reihenfolge notwendig. D. h. der Vorgänger h hat stets eine kleinere Ordnungszahl als sein Nachfolger i (h < i) und muss zur Fortsetzung des Projektverlaufs beendet sein. Die Bearbeitungsdauer eines Arbeitsgangs i wird mit dem Parameter d_i festgelegt. Bei dem RCPSP in diskreter Zeit wird die Annahme getroffen, dass die Dauer durch einen ganzzahligen Parameter abgebildet wird. Der Startzeitpunkt des Projekts ist t = 0 und erstreckt sich über einen Gesamtzeitraum von T Perioden. Um die Reihenfolgebedingungen einzuhalten, werden einem Projekt zwei Dummy-Arbeitsgänge "Beginn" (i = 1) und "Ende" (i = I) hinzugefügt, welche mit einer Dauer von 0 Zeiteinheiten bewertet werden. Dadurch wird der Projektbeginn und das Projektende exakt terminiert. k_{ir} stellt die benötigten Kapazitäten der erneuerbaren Ressource r bei der Durchführung von Arbeitsgang i dar. Die Ressourcen $r \in R$ sind in einer Periode innerhalb des Umfangs ihrer Kapazität kp_r nutzbar. Da es sich um erneuerbare Ressourcen handelt, stehen diese zu jeder neuen Periode in vollem

 $^{^{19}}$ Vgl. Zimmermann et al. (2006), S. 66

Umfang erneut zur Verfügung. Ungenutzte Ressourcen sind jedoch nicht auf nachfolgende Arbeitsgänge und Perioden übertragbar.²⁰ Um den Fertigstellungszeitpunkt der einzelnen Arbeitsgänge i festlegen zu können, wird der Modellformulierung in diskreter Zeit die binäre Entscheidungsvariable X_{it} hinzugefügt.²¹ Diese Binärvariable nimmt den Wert 1 an, falls der Arbeitsgang i zum Zeitpunkt t beendet wird.

Mittels der Zielfunktion (1) wird der Fertigstellungszeitpunkt des Projekts minimiert. Dafür wird der Zeitraum zwischen dem frühesten und spätesten Fertigstellungszeitpunkt FE_I und SE_I aller durchzuführenden Arbeitsgänge I betrachtet. Nebenbedingung (2) stellt sicher, dass ein Arbeitsgang i zwischen dem jeweiligen für diesen Arbeitsgang geltenden frühesten und spätesten Fertigstellungszeitpunkt nur exakt ein Mal durchgeführt wird. Die Reihenfolgerestriktion wird mit der Nebenbedingung (3) eingehalten. Sie stellt sicher, dass jeder Vorgänger $h \in \mathcal{V}_i$ beendet ist, bevor der Arbeitsgang i startet. Der Term $(t-d_i)$ garantiert für den Arbeitsgang i, dass dieser erst beginnt, sobald der Vorgänger h mit der Dauer d_i abgeschlossen ist. Der Parameter kp_r spiegelt die Kapazitätsgrenze für eine erneuerbare Ressource r je Periode t wieder. In Nebenbedingung (4) findet zum einen eine formale Darstellung dieser Kapaiztätsbegrenzung statt. Zum anderen wird der Ressourcenverzehr während der gesamten Bearbeitungsdauer der Fertigstellung beachtet, in dem der Kapazitätsbedarf k_{ir} aller Arbeitsgänge I summiert wird. Eben diese Summe wird schließlich durch kp_r beschränkt. Mit der Nebenbedingung (5) wird die Binärvariable X_{it} für den Zeitraum $t = \{FE_i, ..., SE_i\}$ formal definiert. Aufgrund der Reihenfolgebeziehung (3) darf der jeweils betrachtete Arbeitsgang nur in diesem Zeitraum fertiggestellt werden. Die gemischtganzzahlige Modellformulierung lässt sich durch Standard-Lösungsverfahren exakt lösen.²²

3 Implementierung des RCPSP mittels Ruby on Rails

```
$ Put your code here.
>> Put your code here.
```

Quellcode 1 Beispielcode

```
if draw
    print([outputpath, 'mygraph.eps'], '-depsc')
end
```

²⁰Vgl. Kellenbrink (2014), S. 12

²¹Vgl. Pritsker et al. (1969), S. 94

²²z. B. mittels eines Branch-and-Bound-Verfahrens, Vgl. Kellenbrink (2014), S. 14

- 4 Kritische Würdigung des Anwendungssystems
- 5 Fazit

Literatur

- Bartels, J.H. (2009): Projektplanung–Grundlagen und Anwendungsbeispiele. In: Anwendung von Methoden der ressourcenbeschränkten Projektplanung mit multiplen Ausführungsmodi in der betriebswirtschaftlichen Praxis. Springer, S. 7–42.
- Demeulemeester, E. und Herroelen, W. (2011): Robust project scheduling. Bd. 3. Now Publishers Inc.
- DIN 69900 (2009): Projektmanagement Netzplantechnik; Beschreibung und Begriffe. In: Berlin: Beuth.
- Drexl, A.; Kolisch, R. und Sprecher, A. (1997): Neuere Entwicklungen in der Projektplanung. In: Schmalenbachs Zeitschrift für betriebswirtschaftliche Forschung, S. 95–120.
- Felkai, R. und Beiderwieden, A. (2011): Analysieren und Formulieren von Projektzielen. In: Projektmanagement für technische Projekte. Springer, S. 45–64.
- Hering, E. (2014): Projektmanagement für Ingenieure. Springer-Verlag.
- Kellenbrink, C. (2014): Einführung in die ressourcenbeschränkte Projektplanung. In: Ressourcenbeschränkte Projektplanung für flexible Projekte. Springer, S. 5–18.
- Neumann-Braun, K.; Schwindt, C. und Zimmermann, J. (2003): Project scheduling with time windows and scarce resources: temporal and resource-constrained project scheduling with regular and nonregular objective functions. Springer.
- Pritsker, A.A.B.; Waiters, L.J. und Wolfe, P.M. (1969): Multiproject scheduling with limited resources: A zero-one programming approach. In: Management science. Bd. 16, Nr. 1, S. 93–108.
- Talbot, F.B. (1982): Resource-constrained project scheduling with time-resource tradeoffs: The nonpreemptive case. In: Management Science. Bd. 28, Nr. 10, S. 1197–1210.
- Voigt, K.I. und Schewe, G. (2014): Definition Projekt Version 7 Gabler Wirtschaftslexikon.
- Zimmermann, J.; Stark, C.; Rieck, J. et al. (2006): Projektmanagement. In: Projektplanung. Springer Berlin Heidelberg, S. 1–113.

- A Anhang
- A.1 GAMS-Implementierung des Beispiels
- A.2 Ruby on Rails Programmcode