Lab 6

Filip Jędrzejewski

April 25, 2023

Zadanie 1

Opis problemu

Celem zadania było wyznaczanie wartości π wykorzystując następujący wzór:

$$\int_0^1 \frac{4}{1+x^2} \, dx = \pi \tag{1}$$

Całkę po lewej stronie równosci wyznaczano numerycznie otrzymując przybliżone wartości π , na podstawie których badano różne metody całkowania numerycznego.

Całkowanie numeryczne

Całkę z równania (1) wyznaczano korzystając ze złożonych kwadratur prostokątów, trapezów i Simpsona. Na przedziale całkowania rozmieszczono $n=2^m+1$ równoodległych węzłów. Na każdym przedziale pomiędzy dwoma sąsiednimi węzłami wyznaczno wartość całki, w zależności od metody, korzystając ze wzorów:

$$M(f) = (b-a) \cdot f\left(\frac{a+b}{2}\right) \tag{2}$$

$$T(f) = \frac{b-a}{2} \cdot (f(a) + f(b)) \tag{3}$$

$$S(f) = \frac{b-a}{6} \cdot \left[f(a) + 4 \cdot f\left(\frac{a+b}{2}\right) + f(b) \right] \tag{4}$$

przy czym: M(f) - metoda średnich prostokątów, T(f) - metoda trapezów, S(f) - metoda Simpsona, a - początek pojedynczego przedziału, b - koniec pojedynczego przedziału.

W kolejnych próbach m zwiększano o 1 (między każde dwa sąsiednie węzły dodawany był nowy węzeł). Przyjęto zakres wartości m od 1 do 25.

Wykresy

Dla każdej metody stworzono wykres wartości bezwzględnej błędu względnego w zależności od m. Wyniki przedstawiono na wspólnym wykresie, użwając skali logarytmicznej na osi y.

Analiza wyników

Zauważono, że dla każdej zastosowanej metody całkowania numerycznego, istnieje pewna wartość m_{min} , dla której kwadratura ma najmniejszy błąd względny. Dla $m>m_{min}$ błąd kwadratury znów zaczyna rosnąć. Wartości m_{min} odpowiada pewna długość kroku h_{min} wyznaczona z zależności:

$$h = \frac{1}{2^m} = 2^{-m} \tag{5}$$

Wartości m_{min} oraz h_{min} dla każdej z kwadratur przedstawiono w tabeli:

Kwadratura	m_{min}	h_{min}
Prostokątów	20	$9,54 \cdot 10^{-7}$
Trapezów	21	$4,77 \cdot 10^{-7}$
Simpsona	13	$1,22 \cdot 10^{-4}$

Podczas laboratorium 1 otrzymano następującą teoretyczną wartość h_{min} :

$$h_{min-teoretyczne} = 1,48 \cdot 10^{-8} \tag{6}$$

Wartości h_{min} dla kwadratur prostokątów i trapezów większe od wartości $h_{min-teoretyczne}$ około 50 - 100 razy większe. Natomiast $h_{min-Simpsona}$ jest około 10000 razy większe od $h_{min-teoretyczne}$.

Rzędy zbieżności

Dla każdej metody wyznaczono empiryczny rząd zbieżności dla każdej pary h_1 , h_2 następujących po sobie długości kroków. W tym celu korzystano ze wzoru:

$$p \approx \frac{\log\left(\frac{E(h_2)}{E(h_1)}\right)}{\log\left(\frac{h_2}{h_1}\right)} \tag{7}$$

przy czym: p - empiryczny rząd zbieżności, E(h) - błąd względny kwadratury dla danej długości kroku, h_1 , h_2 - długości kroków ($h_1 > h_2$). Aby obliczenia miały sens, wartości h_1 i h_2 wybierano z przedziału, gdzie błąd metody przeważał nad błędem numerycznym. Wartości rzędów zbieżności przedstawiono na wspólnym wykresie:

Zadanie 2

Opis problemu

Celem zadania było obliczenie wartości całki:

$$\int_0^1 \frac{4}{1+x^2} \, dx \tag{8}$$

metodą Gaussa-Legendre'a.

Całkowanie numeryczne

Domyślnie kwadratura Gaussa-Legendre'a działa na przedziale [-1,1], zatem na początku należało ją przeskalować na przedział [0,1].

Na potrzeby skalowania wag użyto wzoru:

$$w_{new} = \frac{b-a}{2} \cdot w_{old} \tag{9}$$

Natomiat na potrzeby skalowania węzłów użyto zależności:

$$x_{new} = \frac{(b-a) \cdot x_{old} + a + b}{2} \tag{10}$$

Wzór kwadratury Gaussa-Legendre'a:

$$\int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} w_{i} f(x_{i})$$
(11)

W celu obliczenia całki (8) połączono wzory (9), (10) i (11) w pojedynczą funkcję:

```
import scipy.special as scis
def gaussLegendreQuadrature(f, a, b, n):
    roots, weights = scis.roots_legendre(n)

#obliczanie wartosci calki
    result = 0
    for i in range(len(roots)):
        x = ((b-a) * roots[i] + a + b) / 2
        w = (b-a) * weights[i] / 2
        result += w * f(x)

#return wyniku
```

return result

Wykresy

Na podstawie funkcji z poprzedniej sekcji wyznaczano wartości całki (8) dla n z zakresu od 1 do 499. Za pomocą tych wartości i znanego oczekiwanego wyniku (π) , obliczano wartość bezwzględną błędu względnego dla każdego n. Na podstawie tych danych stworzono wykres:

W celu dołączenia danych z tego zadania do wykresu z zadania 1, należało przeliczyć liczbę ewaluacji n na m za pomocą wzoru:

$$m = \log_2(n-1) \tag{12}$$

W tej formie dodano wyniki z tego zadania do wykresu z zadania 1:

Na wykresie dobrze widać, jak błąd numeryczny zaczyna przeważać nad błędem metody Gaussa-Legendre'a.