Mason Blanford

CS-225: Discrete Structures in CS

Assignment 5, Part 1

Exercise Set 5.2

Page 1

Problem 14

Prove the statement by induction.

$$\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2 \text{ for every integer } n \ge 0$$

In the statement, the property P(n) is the equation:

$$P(n) = \sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2$$

We must prove P(n) is true for every integer n > 0.

1. Base Case: We must prove P(2) is true.

LHS: $P(2) = \sum_{i=1}^{1} i \cdot 2^{i} = (1) \cdot 2^{(1)}$, by substitution **LHS:** $P(2) = 1 \cdot 2 = 2$, by order of operations

RHS: $P(2) = \sum_{i=1}^{0} = n \cdot 2^{n+2} + 2 = (0) \cdot 2^{(0)+2} + 2$, by substitution **RHS:** $P(2) = 0 \cdot 2^2 + 2 = 0 \cdot 4 + 2 = 0 + 2 = 2$, by order of operations

$$\sum_{i=1}^{n+1} 2 = 2$$

As 2=2, P(2) is true.

2. Inductive Hypothesis: Let k be any integer where $k \geq 0$. Suppose P(k) is true.

$$\sum_{i=1}^{(k)+1} i \cdot 2^i = (k) \cdot 2^{(k)+2} + 2$$
, by inductive hypothesis substitution

We must show P(k+1) is true.

$$\sum_{i=1}^{(k+1)+1} i \cdot 2^i = (k+1) \cdot 2^{(k+1)+2} + 2$$
, by substitution

$$\sum_{i=1}^{k+2} i \cdot 2^i = (k+1) \cdot 2^{k+3} + 2,$$
 by combining like terms

Mason Blanford CS-225: Discrete Structures in CS Assignment 5, Part 1

Page 2

Problem 14 (Continued)

3. Inductive Step:

Exercise Set 5.2

LHS: $\sum_{i=1}^{k+2} i \cdot 2^i = \sum_{i=1}^{k+1} i \cdot 2^i + (k+2) \cdot 2^{(k+2)}$, by adding the last term

RHS: $\sum_{i=1}^{k+2} k \cdot 2^{k+2} + 2 = \sum_{i=1}^{k+1} k \cdot 2^{k+2} + 2 + (k+2) \cdot 2^{(k+2)}$, by inductive hypothesis substitution

RHS: = $k \cdot 2^{k+2} + 2 + k \cdot 2^{k+2} + 2 \cdot 2^{k+2}$, by distribution **RHS:** = $k \cdot 2^{k+2} + 2 + k \cdot 2^{k+2} + 2^{k+3}$, by multiplying $2^1 \cdot 2^{k+2}$ **RHS:** = $2(k \cdot 2^{k+2}) + 2 + 2^{k+3}$, by combining like terms **RHS:** = $k \cdot 2^{k+3} + 2 + 2^{k+3}$, by product of $2^1 \cdot (k \cdot 2^{k+3})$ **RHS:** = $k \cdot 2^{k+3} + 2^{k+3} + 2$, by associative property

RHS: = $(k+1) \cdot 2^{k+3} + 2$, by factoring (k+1)

With the base case and inductive hypothesis proven,

$$\sum_{i=1}^{n+1} i \cdot 2^i = n \cdot 2^{n+2} + 2$$

must be true for every integer $n \geq 0$.

Mason Blanford

CS-225: Discrete Structures in CS

Assignment 5, Part 1

Exercise Set 5.2

Page 3

Problem 16

Prove the statement by induction.

Statement:

$$(1-\frac{1}{2^2})(1-\frac{1}{3^2})$$
 ... $(1-\frac{1}{n^2})=\frac{n+1}{2n}$, for every integer $n\geq 2$

The property P(n) is the equation:

$$(1 - \frac{1}{2^2})(1 - \frac{1}{3^2}) \dots (1 - \frac{1}{n^2}) = \frac{n+1}{2n}$$

We must prove the P(n) is true for every integer $n \geq 2$.

1. Base Case: We must prove P(2) is true.

LHS: $P(2) = (1 - \frac{1}{2^2})(1 - \frac{1}{3^2}) \dots (1 - \frac{1}{n^2}) = 1 - \frac{1}{(2)^2}$ by substitution

LHS: $P(2) = (1 - \frac{1}{2^2})(1 - \frac{1}{3^2}) \dots (1 - \frac{1}{4})$ by exponentiation, then subtraction **LHS:** $P(2) = (1 - \frac{1}{2^2})(1 - \frac{1}{3^2}) \dots (\frac{3}{4})$ by exponentiation, then subtraction

RHS: $P(2) = \frac{n+1}{2n} = \frac{(2)+1}{2(2)}$, by substitution **RHS:** $P(2) = \frac{3}{4}$, by addition and multiplication

$$\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(\frac{3}{4}\right) = \frac{3}{4}$$

As $\frac{3}{4} = \frac{3}{4}$, P(2) is true.

2. Inductive Hypothesis: Let k be any integer where $k \geq 2$. Suppose P(k) is true.

$$\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)$$
 ... $\left(1-\frac{1}{(k)^2}\right)=\frac{(k)+1}{2(k)}$, by inductive hypothesis substitution

We must show P(k+1) is true.

$$\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \dots \left(1 - \frac{1}{(k+1)^2}\right) = \frac{(k+1)+1}{2(k+1)}$$
, by substitution
$$1 - \frac{1}{(k+1)^2} = \frac{k+2}{2(k+1)}$$
, by combining like terms

Mason Blanford

CS-225: Discrete Structures in CS

Assignment 5, Part 1

Exercise Set 5.2

Page 4

Problem 16 (Continued)

3. Inductive Step:

LHS:
$$(1-\frac{1}{2^2})(1-\frac{1}{3^2})$$
 ... $(1-\frac{1}{n^2})(1-\frac{1}{(k+1)^2})$, by adding the last term

RHS:
$$\frac{k+1}{2k} (1 - \frac{1}{(k+1)^2})$$
, by inductive hypothesis substitution RHS: $\frac{k+1}{2k} (\frac{1 \cdot (k+1)^2}{1 \cdot (k+1)^2} - \frac{1}{(k+1)^2})$ RHS: $\frac{k+1}{2k} \left(\frac{(k+1)^2-1}{(k+1)^2}\right)$ RHS: $\frac{k+1}{2k} \left(\frac{(k+1)-1}{k+1}\right)$

RHS:
$$\frac{k+1}{2k} \left(\frac{1 \cdot (k+1)^2}{1 \cdot (k+1)^2} - \frac{1}{(k+1)^2} \right)$$

RHS:
$$\frac{k+1}{2k} \left(\frac{(k+1)^2 - 1}{(k+1)^2} \right)$$

RHS:
$$\frac{k+1}{2k} \left(\frac{(k+1)-1}{k+1} \right)^{k}$$

Problem 12

Prove the statement by induction.

Statement:

For any integer $n \ge 0$, $7^n - 2^n$ is divisible by 5.

Proof:

The property P(n) is the sentence " $7^n - 2^n$ is divisible by 5." We must prove P(n) is true for any integer $n \ge 0$.

1. Base Case: First, we must show P(0) is true.

$$P(n) = 7^n - 2^n = 7^0 - 2^0$$
, by substitution $P(n) = 1 - 1 = 0$, by difference

As 0 is divisible by 5, where $0 = 5 \cdot 0$, then P(0) is true.

2. Inductive Hypothesis: Let k be any integer with $k \ge 0$. Suppose P(k) is true, and $7^k - 2^k$ is divisible by 5.

$$7^k - 2^k = 5p$$
, where p is some integer $7^k = 5p + 2^k$, by transposition

We must show P(k+1) is true, where $7^{k+1} - 2^{k+1}$ is divisible by 5.

$$7^{k+1} - 2^{k+1}$$

= $7^k \cdot 7^1 - 2^{k+1}$, by separating exponents
= $7^k \cdot 7 - 2^{k+1}$, as $7^1 = 7$

Now, $7k = 5p + 2^k$.

$$7^{k}(7) - 2^{k+1}$$

= $(5p + 2^{k})(7) - 2^{k+1}$, by substitution
= $35p + 2^{k} \cdot 7 - 2^{k+1}$, by distribution
= $35p + 2^{k} \cdot 7 - 2^{k} \cdot 2$, by separating exponents, as $2^{1} = 2$
= $35p + (7-2) \cdot 2^{k}$, by factoring 7 and 2
= $35p + 5 \cdot 2^{k}$, by difference
= $5(7p + 2^{k})$, by factoring 5

As $7p + 2^k$ is an integer under closure properties, $7^n - 2^n$ is divisible by 5 by the definition of divisibility.

Problem 15

Prove the statement by induction.

Statement:

 $n(n^2+5)$ is divisible by 6, for each integer $n \ge 0$

Proof

The property P(n) is the sentence " $n(n^2 + 5)$ is divisible by 6." We must prove P(n) is true for each integer $n \ge 0$.

1. Base Case: First, we must show P(0) is true.

$$P(n) = n(n^2 + 5) = (0)((0)^2 + 5)$$
, by substitution $P(n) = 0(0 + 5) = 0(5) = 0$, by order of operations

As 0 is divisible by 6, where $0 = 6 \cdot 0$, then P(0) is true.

2. Inductive Hypothesis:

Let k be any integer with $k \ge 0$. Suppose P(k) is true, and $n(n^2 + 5)$ is divisible by 6.

 $n(n^2 + 5) = 6p$, where p is some integer

We must show P(k+1) is true, where $(n+1)((n+1)^2+5)$ is divisible by 6.

$$(k+1)((k+1)^2+5)$$
, by substitution $= (k+1)((k^2+k+k+1)+5)$, by foiling $= (k+1)(k^2+2k+6)$, by combining like terms $= k^3+2k^2+6k+k^2+2k+6$, by distribution $= k^3+2k^2+k^2+6k+2k+6$, by associative property $= k^3+3k^2+8k+6$, by combining like terms $= k(k^2+5)+3(k^2+k+2)$, by factoring $(k+3)$

Now,
$$k(k^2 + 5) = 6p$$
.

$$=6p+3(k^2+k+2)$$
, by substitution
= $6p+3k^2+3k+6$, by distribution
= $3(2p+k^2+k+2)$, by factoring 3

As $(2p + k^2 + k + 2)$ is an integer under closure property, let $r = (2p + k^2 + k + 2)$, where r is some integer and $n(n^2 + 5) = 3r$. As 3 is a factor of 6, $n(n^2 + 5)$ is divisible by 6, for each integer $n \ge 0$.

Problem 23b

Solve the statement by induction.

Statement:

 $n! > n^2$, for each integer $n \ge 4$

Proof:

The property P(n) is the inequality $n! > n^2$. We must prove P(n) is true for each integer $n \ge 4$.

1. Base Case: First, we must prove P(4) is true.

$$P(4) = n! > n^2 = (4)! > (4)^2$$
, by substitution

P(4) = 24 > 16, by factorization and exponentiation

As 24 > 16, P(4) is true.

2. Inductive Hypothesis:

Let k be any integer where $k \ge 4$. Suppose P(k) is true, and $k! > k^2$.

We must prove P(k+1) is true.

$$(k+1)! > (k+1)^2$$
, by substitution

 $(k+1)k! > (k+1)^2$, by the definition of factorials

Problem 23b (Continued)

3. Inductive Step:

 $(k+1)k! > k^2(k+1)$, by inductive hypothesis substitution

$$k^2(k+1)$$

= $k^3 + k^2$, by distribution

Now, we must prove $k^3 + k^2 > (k+1)^2$.

$$k^3 + k^2 > k^2 + 2k + 1$$
, by foiling $k^3 > 2k + 1$, by derivation of k^2 $k^2 - 2k > 1$, by transposition

We know $k \geq 4$.

 $(4)^2 - 2(4) > 1$, by substitution

16-8>1, by product, and 8>1, by difference, which is true

Now, we've proven $k^3 > 2k + 1$. So:

$$k^{2}(k+1) > (k+1)^{2}$$

 $(k+1)k! > k^{2}(k+1)$

With the basis case and inductive hypothesis proven, P(k+1) must be true for every integer $n \ge 4$.