FINITE FIELDS

KEITH CONRAD

This handout discusses finite fields: how to construct them, some algebraic properties, and their Galois groups. We write $\mathbf{Z}/(p)$ and \mathbf{F}_p interchangeably for the field of size p.

1. Construction

Theorem 1.1. For a prime p and a monic irreducible $\pi(x)$ in $\mathbf{F}_p[x]$ of degree n, the ring $\mathbf{F}_p[x]/(\pi(x))$ is a field of order p^n .

Proof. The cosets mod $\pi(x)$ are represented by remainders

$$c_0 + c_1 x + \dots + c_{n-1} x^{n-1}, \quad c_i \in \mathbf{F}_n,$$

and there are p^n of these. Since the modulus $\pi(x)$ is irreducible, the ring $\mathbf{F}_p[x]/(\pi(x))$ is a field using the same proof that $\mathbf{Z}/(m)$ is a field when m is prime.

Example 1.2. Two fields of order 8 are $\mathbf{F}_{2}[x]/(x^{3}+x+1)$ and $\mathbf{F}_{2}[x]/(x^{3}+x^{2}+1)$.

Example 1.3. Two fields of order 9 are $\mathbf{F}_3[x]/(x^2+1)$ and $\mathbf{F}_3[x]/(x^2+x+2)$.

Example 1.4. The polynomial $x^3 - 2$ is irreducible in $\mathbf{F}_7[x]$, so $\mathbf{F}_7[x]/(x^3 - 2)$ is a field of order $7^3 = 343$.

The concrete construction of finite fields in the form $\mathbf{F}_p[x]/(\pi(x))$ does not cover all possible constructions. For instance, $\mathbf{Z}[i]/(3)$ is a field of size 9. We will see that every finite field is isomorphic to a field of the form $\mathbf{F}_p[x]/(\pi(x))$, so these polynomial constructions give us working models of any finite field.

Theorem 1.5. Any finite field has prime power order.

Proof. For any commutative ring R there is a unique ring homomorphism $\mathbf{Z} \to R$, given by

$$m \mapsto \begin{cases} \underbrace{1+1+\cdots+1}_{m \text{ times}}, & \text{if } m \ge 0, \\ -(\underbrace{1+1+\cdots+1}_{|m| \text{ times}}), & \text{if } m < 0. \end{cases}$$

We apply this to the case when R = F is a finite field. The kernel of $\mathbf{Z} \to F$ is nonzero since \mathbf{Z} is infinite and F is finite. Write the kernel as $(m) = m\mathbf{Z}$ for an integer m > 0, so $\mathbf{Z}/(m)$ embeds as a subring of F. Any subring of a field is a domain, so m has to be a prime number, say m = p. Therefore there is an embedding $\mathbf{Z}/(p) \hookrightarrow F$. Treating F as a $\mathbf{Z}/(p)$ -vector space, it is finite-dimensional since F is even a finite set. Letting $n = \dim_{\mathbf{Z}/(p)}(F)$, the elements of F can be written in terms of a basis $\{e_1, \ldots, e_n\}$ over $\mathbf{Z}/(p)$ as unique linear combinations

$$c_1e_1 + \dots + c_ne_n, \quad c_i \in \mathbf{Z}/(p).$$

The number of these linear combinations is p^n .

Lemma 1.6. If F is a finite field, the group F^{\times} is cyclic.

Proof. Let N be the largest order of a number in the group F^{\times} . It is a theorem from group theory that in any finite abelian group, all orders of elements divide the maximal order, so every t in F^{\times} satisfies $t^{N} = 1$. Therefore all numbers in F^{\times} are roots of $x^{N} - 1$.

Let q = #F. The number of roots of a polynomial over a field is at most the degree of the polynomial, and $x^N - 1$ has q - 1 roots in F, so $q - 1 \le N$. Since N is the order of an element in F^{\times} , which is a group with order q - 1, N|(q - 1), so $N \le q - 1$. Therefore N = q - 1, so there are elements of F^{\times} with order q - 1, which means F^{\times} is cyclic. \square

Example 1.7. In the field $\mathbf{F}_3[x]/(x^2+1)$, the nonzero numbers are a group of order 8. The powers of x are

$$x$$
, $x^2 = -1 = 2$, $x^3 = 2x$, $x^4 = 2x^2 = -2 = 1$,

so x is not a generator. But x + 1 is a generator: its successive powers are in the table below.

Example 1.8. For any prime p, the group $(\mathbf{Z}/(p))^{\times}$ is cyclic: there is an $a \not\equiv 0 \mod p$ such that $\{a, a^2, a^3, \dots, a^{p-1} \mod p\} = (\mathbf{Z}/(p))^{\times}$. The proof of this is not constructive, and in fact there is no simple algorithm for constructing a generator of $(\mathbf{Z}/(p))^{\times}$.

Theorem 1.9. Every finite field is isomorphic to $\mathbf{F}_p[x]/(\pi(x))$ for some prime p and some monic irreducible $\pi(x)$ in $\mathbf{F}_p[x]$.

Proof. Let F be a finite field. By Theorem 1.5, F has a prime power order, say p^n , and there is a field embedding $\mathbf{F}_p \hookrightarrow F$. The group F^{\times} is cyclic by Lemma 1.6. Let γ be a generator of F^{\times} . We get a ring homomorphism $\varphi \colon \mathbf{F}_p[x] \to F$ by evaluating polynomials at $\gamma \colon \varphi(f(x)) = f(\gamma)$. Since every number in F is 0 or a power of γ , φ is onto $(0 = \varphi(0))$ and $\gamma^r = \varphi(x^r)$ for any $r \geq 0$. Therefore $\mathbf{F}_p[x]/\ker \varphi \cong F$. The kernel of φ is a maximal ideal in $\mathbf{F}_p[x]$, so it must be $(\pi(x))$ for some monic irreducible $\pi(x)$ in $\mathbf{F}_p[x]$.

Theorem 1.9 does not assure us fields of all prime power orders exist. It only tells us that if a field of order p^n exists then it is isomorphic to some $\mathbf{F}_p[x]/(\pi(x))$. In the next section we will show a field of any prime power order exists.

2. Finite fields as splitting fields

We can describe any finite field as a splitting field of a polynomial depending only on the size of the field.

Lemma 2.1. A field of prime power order p^n is a splitting field over \mathbf{F}_p of $x^{p^n} - x$.

Proof. Let F be a field of order p^n . From the proof of Theorem 1.5, F contains a subfield isomorphic to $\mathbf{Z}/(p) = \mathbf{F}_p$. Explicitly, the subring of F generated by 1 is a field of order p. Every $t \in F$ satisfies $t^{p^n} = t$: if $t \neq 0$ then $t^{p^n-1} = 1$ since $F^{\times} = F - \{0\}$ is a multiplicative group of order $p^n - 1$, and then multiplying through by t gives us $t^{p^n} = t$, which is also true when t = 0. The polynomial $x^{p^n} - x$ has every element of F as a root, so F is a splitting field of $x^{p^n} - x$ over the field \mathbf{F}_p .

Theorem 2.2. Any two finite fields of the same size are isomorphic.

Proof. The size of a finite field must be a prime power, say p^n . By Lemma 2.1, any field of order p^n is a splitting field of $x^{p^n} - x$ over \mathbf{F}_p .

By field theory, any two splitting fields of a fixed polynomial over \mathbf{F}_p are isomorphic, so any two fields of order p^n are isomorphic.

The analogous theorem for finite groups and finite rings is false: having the same size does not imply isomorphism. For instance, $\mathbf{Z}/(4)$ and $\mathbf{Z}/(2) \times \mathbf{Z}/(2)$ both have order 4 and they are nonisomorphic as additive groups and also as commutative rings.

Using splitting fields, we can now show finite fields of any prime power order exist.

Theorem 2.3. For any prime power p^n , a field of order p^n exists.

Proof. Taking our cue from the statement of Lemma 2.1, let F be a field extension of \mathbf{F}_p over which $x^{p^n} - x$ splits completely. General theorems from field theory guarantee there is such a field.

Inside F, the roots of $x^{p^n} - x$ form the set

$$S = \{t \in F : t^{p^n} = t\}.$$

This set has size p^n since the polynomial $x^{p^n} - x$ is separable: $(x^{p^n} - x)' = p^n x^{p^n - 1} - 1 = -1$ since p = 0 in F, so $x^{p^n} - x$ has no roots in common with its derivative. It splits completely over F and has degree p^n , so it has p^n roots in F.

We will show S is a field. It is easily closed under multiplication and (for nonzero solutions) inversion. It remains to show S is an additive group. Since p=0 in F, so $(a+b)^p=a^p+b^p$ for all a and b in F (the intermediate terms in $(a+b)^p$ coming from the binomial theorem have coefficients $\binom{p}{k}$ that are all multiples of p). Therefore $t\mapsto t^p$ on F is additive, so its n-th iterate $t\mapsto t^{p^n}$ is also additive. The fixed points of an additive map are a group under addition, so S is a group under addition.

Corollary 2.4. For any prime p and positive integer n, there is a monic irreducible of degree n in $\mathbf{F}_p[x]$.

Proof. By Theorem 2.3, an abstract field of order p^n exists. By Theorem 1.9, the existence of an abstract field of order p^n implies the existence of a monic irreducible $\pi(x)$ in $\mathbf{F}_p[x]$ of degree n.

We write \mathbf{F}_{p^n} for a finite field of order p^n . By the proof of Theorem 1.5, $[\mathbf{F}_{p^n}:\mathbf{F}_p]=n$. All fields of order p^n are isomorphic to each other and they each contain \mathbf{F}_p in only one way (the subfield generated by 1 is isomorphic to \mathbf{F}_p).

Theorems 1.9 and 2.3 tell us there is a monic irreducible $\pi(x)$ such that $x \mod \pi(x)$ is a generator of the nonzero numbers in $\mathbf{F}_p[x]/(\pi(x))$. For instance, fields of size 9 that are of the form $\mathbf{F}_p[x]/(\pi(x))$ need p=3 and $\deg \pi(x)=2$. The monic irreducible quadratics in $\mathbf{F}_3[x]$ are x^2+1 , x^2+x+2 , and x^2+2x+2 . In the fields

$$\mathbf{F}_3[x]/(x^2+1)$$
, $\mathbf{F}_3[x]/(x^2+x+2)$, $\mathbf{F}_3[x]/(x^2+2x+2)$,

x is not a generator of the nonzero numbers in the first field but is a generator of the nonzero numbers in the second and third fields. So although the field $\mathbf{F}_3[x]/(x^2+1)$ is the simplest choice among these three examples, it's not the one that would come out of the proof of Theorem 1.9 when we look for a "polynomial model" of fields of order 9.

Theorem 2.5. The subfields of \mathbf{F}_{p^n} have order p^d where d|n, and there is one such field for each d.

Proof. Let F be a field with $\mathbf{F}_p \subset F \subset \mathbf{F}_{p^n}$. Set $d = [F : \mathbf{F}_p]$, so $\#F = p^d$ and d divides $[\mathbf{F}_{p^n} : \mathbf{F}_p] = n$. We will describe F in a way that only depends on #F, so F is the only subfield of its size in \mathbf{F}_{p^n} .

Since F^{\times} has order $p^d - 1$, for any $t \in F^{\times}$ we have $t^{p^d - 1} = 1$, so $t^{p^d} = t$, and that holds even for t = 0. The polynomial $x^{p^d} - x$ has at most p^d roots in \mathbf{F}_{p^n} , and since F is a set of p^d different roots,

$$F = \{ t \in \mathbf{F}_{p^n} : t^{p^d} = t \}.$$

This shows F is unique, since the right side depends on F only through its size.

To prove for each d|n there is a subfield of \mathbf{F}_{p^n} with order p^d , the set

$$\{t \in \mathbf{F}_{p^n} : t^{p^d} = t\}$$

is a field by the same proof that S is a field in the proof of Theorem 2.3. To show its size is p^d we find p^d-1 nonzero numbers in \mathbf{F}_{p^n} satisfying the condition $t^{p^d-1}=1$. Let γ be a generator of $\mathbf{F}_{p^n}^{\times}$, so γ has multiplicative order p^n-1 . Since d|n, $(p^d-1)|(p^n-1)$, so $\alpha:=\gamma^{(p^n-1)/(p^d-1)}$ has order p^d-1 . The powers α^k $(0 \le k \le p^d-2)$ all satisfy $t^{p^d-1}=1$. \square

In the diagram below we list all the subfields of $\mathbf{F}_{p^{12}}$. It resembles the lattice of divisors of 12.

3. Galois groups

The numbers in \mathbf{F}_{p^n} are a full set of roots of $x^{p^n} - x$, so \mathbf{F}_{p^n} is the splitting field over \mathbf{F}_p of this separable polynomial. Therefore $\mathbf{F}_{p^n}/\mathbf{F}_p$ is a Galois extension. It is a fundamental feature of finite fields that the Galois group is cyclic, with a canonical generator.

Theorem 3.1. The Galois group $Gal(\mathbf{F}_{p^n}/\mathbf{F}_p)$ is cyclic and a generator is the p-th power map $\varphi_p \colon t \mapsto t^p$.

Proof. Any $a \in \mathbf{F}_p$ satisfies $a^p = a$, so the function $\varphi_p \colon \mathbf{F}_{p^n} \to \mathbf{F}_{p^n}$ fixes \mathbf{F}_p pointwise. Also φ_p is a field homomorphism and it is injective (all field homomorphisms are injective), so φ_p is surjective since \mathbf{F}_{p^n} is finite. Therefore $\varphi_p \in \operatorname{Gal}(\mathbf{F}_{p^n}/\mathbf{F}_p)$.

The size of the group $Gal(\mathbf{F}_{p^n}/\mathbf{F}_p)$ is $[\mathbf{F}_{p^n}:\mathbf{F}_p]=n$. We will show φ_p has order n, so it generates the Galois group.

For $r \geq 0$, $\varphi_p^r(t) = t^{p^r}$. So if φ_p^r is the identity then $t^{p^r} = t$ for all $t \in \mathbf{F}_{p^n}$. The polynomial $x^{p^r} - x$ has at most p^r roots in a field, so $p^n \leq p^r$, so $n \leq r$. Thus φ_p has order at least n in $\mathrm{Gal}(\mathbf{F}_{p^n}/\mathbf{F}_p)$. Since the Galois group has order n, the order of φ_p in the Galois group has to be n.

Corollary 3.2. If $\pi(x) \in \mathbf{F}_p[x]$ is irreducible with degree d and it has a root α in some extension field of \mathbf{F}_p then its full set of roots is $\alpha, \alpha^p, \alpha^{p^2}, \ldots, \alpha^{p^{d-1}}$.

Proof. We have seen already that any finite field of p-power order is Galois over \mathbf{F}_p . The field $\mathbf{F}_p(\alpha)$ is finite, so it is Galois over \mathbf{F}_p and the roots of $\pi(x)$ can be obtained from α by applying $\operatorname{Gal}(\mathbf{F}_p(\alpha)/\mathbf{F}_p)$ to this root. Since the Galois group is generated by the p-th power map, the roots of $\pi(x)$ are $\alpha, \alpha^p, \alpha^{p^2}, \ldots$. Once we reach α^{p^d} we have cycled back to the start: $\alpha^{p^d} = \alpha$ since $\mathbf{F}_p(\alpha) \cong \mathbf{F}_p[x]/(\pi(x))$ has order p^d . The polynomial $\pi(x)$ is separable because its roots lie in a Galois extension $\mathbf{F}_p(\alpha)$ of \mathbf{F}_p . Since its degree is d, its different roots must be $\alpha, \alpha^p, \alpha^{p^2}, \ldots, \alpha^{p^{d-1}}$.

Example 3.3. The polynomial $T^3 + T^2 + 1$ is irreducible in $\mathbf{F}_2[T]$. In the field $F = \mathbf{F}_2[x]/(x^3 + x^2 + 1)$, one root of $T^3 + T^2 + 1$ is x. The other two roots are x^2 and x^4 .

Since $x^3 + x^2 + 1 = 0$ in F, we get $x^3 = x^2 + 1$ (since -1 = 1), so $x^4 = x^3 + x = (x^2 + 1) + x = x^2 + x + 1$. Therefore, the roots of $T^3 + T^2 + 1$ in F can be written as x, x^2 , and $x^2 + x + 1$.

In F, x+1 is a root of T^3+T+1 . The other two roots of this polynomial are $(x+1)^2=x^2+1$ and $(x+1)^4=(x^2+1)^2=x^4+1=(x^2+x+1)+1=x^2+x$.

Example 3.4. In the field $\mathbf{F}_7[x]/(x^3-2)$, x^2+x+2 has minimal polynomial T^3+T^2+6T+5 over \mathbf{F}_7 . The other roots of this polynomial are $(x^2+x+2)^7$ and $(x^2+x+2)^{49}$. Using the relation $x^3=2$, those powers can be simplified: $(x^2+x+2)^7=2x^2+4x+2$ and $(x^2+x+2)^{49}=4x^2+2x+2$.

4. General finite base fields

Let's replace the base field \mathbf{F}_p with a general finite field \mathbf{F}_q of size q. The number q is a prime power. Since every $a \in \mathbf{F}_q$ satisfies $a^q = a$, the role of the p-th power map on finite extensions of \mathbf{F}_p is taken over by the q-th power map on finite extensions of \mathbf{F}_q . Here are analogues over \mathbf{F}_q of some results over \mathbf{F}_p . Proofs are left to the reader.

Theorem 4.1. For any positive integer n, there is a monic irreducible of degree n in $\mathbf{F}_q[x]$.

Theorem 4.2. Between \mathbf{F}_q and \mathbf{F}_{q^n} there is one field of each order q^d where d|n. The field of order q^d inside \mathbf{F}_{q^n} can be described as $\{t \in \mathbf{F}_{q^n} : t^{q^d} = t\}$.

Theorem 4.3. For any integer $n \ge 1$, $\mathbf{F}_{q^n}/\mathbf{F}_q$ is a Galois extension and the Galois group $\mathrm{Gal}(\mathbf{F}_{q^n}/\mathbf{F}_q)$ is cyclic with generator the q-th power map $\varphi_q \colon t \mapsto t^q$.

Theorem 4.4. If $\pi(x) \in \mathbf{F}_q[x]$ is irreducible with degree d and it has a root α in some extension field of \mathbf{F}_q then its full set of roots is $\alpha, \alpha^q, \alpha^{q^2}, \ldots, \alpha^{q^{d-1}}$.