Sound

- Produced by vibration of an object
- Vibrations cause air molecules to oscillate
- Change in air pressure creates a wave

Mechanical wave

- Oscillation that travels through space
- Energy travels from one point to another
- The medium is deformed

Waveform

Waveform

- Carries multifactorial information:
 - Frequency
 - Intensity
 - Timbre

Periodic and aperiodic sound

Waveform

$$y(t) = A\sin(2\pi f t + \varphi)$$

Frequency

Frequency

Amplitude

Phase

Frequency and amplitude

higher frequency -> higher sound

Frequency and amplitude

larger amplitude -> louder

Hearing range

Hearing range

Pitch

- Logarithmic perception
- 2 frequencies are perceived similarly if they differ by a power of 2

440 Hz

440 Hz 880 Hz

Pitch-frequency chart

Mapping pitch to frequency

$$F(p) = 2^{\frac{p-69}{12}} \cdot 440$$

Mapping pitch to frequency

$$F(60) = 2^{\frac{60-69}{12}} \cdot 440 = 261.6$$

Mapping pitch to frequency

$$F(p+1)/F(p) = 2^{1/12} = 1.059$$

Cents

- Octave divided in 1200 cents
- 100 cents in a semitone
- Noticeable pitch difference: 10-25 cents

What's up next?

- Intensity, power, loudness
- Timbre