

NEURAL NETWORK

1. Neural network

Neural network được xây dựng từ ý tưởng mô phỏng mang neuron sinh học

1. Mạng neural network được xây dựng dựa trên ý tưởng mô phỏng cấu trúc và hoạt động của mạng neuron sinh học

- ► Cấu trúc của mạng neural network.
- Concepts: perceptron, weights, bias, activation function, layers
- Xây dựng một perceptron
- ► Back-propagation
- ► Các mô hình neural networks
- ► Sử dụng neural network model trong sklearn

BIOLOGICAL NEURAL NETWORK

Biological neural network là mạng lưới của các neurons

PERCEPTRON

Perceptron là một processing unit trong mạng artifical neural network

Perceptron mô phỏng cấu trúc và hoạt động của neuron

Figure 11.1 Simple perceptron. $x_j, j = 1, ..., d$ are the input units. x_0 is the bias unit that always has the value 1. y is the output unit. w_j is the weight of the directed connection from input x_j to the output.

$$y - \text{output}$$
 $y - \text{output}$
 $w - \text{weight}$
 $w_0 - \text{bias (b)}$
 $y = wx + b$

$$\begin{array}{c} \mathbf{x} \\ \mathbf{x}_{1} \\ \mathbf{x}_{2} \\ \mathbf{w}_{3} \\ \mathbf{x}_{3} \\ \mathbf{w}_{3} \\ \mathbf{x}_{3} \\ \mathbf{w}_{n} \\ \mathbf{v}_{n} \\ \mathbf{v}_{n}$$

f(u) is a non-linear function. E.g. sigmoid, tanh ... f is called activation function

$$u = wx + b$$

$$f(u) = \frac{1}{1 + e^{-x}}$$

$$y = f(u) = \frac{1}{1 + e^{-u}} = \frac{1}{1 + e^{wx + b}}$$

NEURAL NETWORK

Artificial neural network (ann) là mạng lưới của các perceptron (mô phỏng một neuron)

Figure 3 Simple feedforward artificial neural networks.

- Neural network được xây dựng lên từ nhiều các perceptron
- Các perceptron nhận cùng một input tạo lên một tầng (layer)
- Mạng neural network có thể gồm 1 tầng (one-layer) hay nhiều tầng (multi-layer)

Feed forward Neural network

Feedback Neural network

RBF radial basis function

CNN convolution neural network

SOM self organizing map

RNN recurrent neural network

BACK PROPAGATION

Artificial neural network (ann) là mạng lưới của các perceptron (mô phỏng một neuron)

Train a perceptron

► Regression

$$E_{N}^{t}(\boldsymbol{w}|\boldsymbol{x}^{t}, r^{t}) = \frac{1}{2}(r^{t} - y^{t})^{2} = \frac{1}{2}[r^{t} - (\boldsymbol{w}^{T}\boldsymbol{x}^{t})]^{2}$$

Error

$$\Delta w_j^t = \eta(r^t - y^t) x_j^t$$

Update value

► Classification

$$r_i^t = 1$$
 if $\mathbf{x}^t \in C_1$ and $r_i^t = 0$ if $\mathbf{x}^t \in C_2$

Target value

$$y^t = sigmoid(\mathbf{w}^T \mathbf{x}^t)$$

$$E^t(\boldsymbol{w}|\boldsymbol{x}^t,r^t) = -r^t\log y^t - (1-r^t)\log(1-y^t)$$

Cross-entropy

$$\Delta w_j^t = \eta(r^t - y^t) x_j^t$$

Update value

Multi-layer perceptrons

$$y_i = \mathbf{v}_i^T \mathbf{z} = \sum_{h=1}^H v_{ih} z_h + v_{i0}$$

$$z_h = \operatorname{sigmoid}(\boldsymbol{w}_h^T \boldsymbol{x}) = \frac{1}{1 + \exp\left[-\left(\sum_{j=1}^d w_{hj} x_j + w_{h0}\right)\right]}, \ h = 1, \dots, H$$

Back propagation

$$\frac{\partial E}{\partial w_{hj}} = \frac{\partial E}{\partial y_i} \frac{\partial y_i}{\partial z_h} \frac{\partial z_h}{\partial w_{hj}}$$

Gradient descent

$$y^t = \sum_{h=1}^H \nu_h z_h^t + \nu_0$$

$$E(\mathbf{W}, \boldsymbol{\nu} | \mathcal{X}) = \frac{1}{2} \sum_t (r^t - y^t)^2$$

$$\Delta v_h = \eta \sum_t (r^t - y^t) z_h^t$$

Back propagation

$$\Delta w_{hj} = -\eta \frac{\partial E}{\partial w_{hj}}$$

$$= -\eta \sum_{t} \frac{\partial E^{t}}{\partial y^{t}} \frac{\partial y^{t}}{\partial z_{h}^{t}} \frac{\partial z_{h}^{t}}{\partial w_{hj}}$$

$$= -\eta \sum_{t} \underbrace{-(r^{t} - y^{t})}_{\partial E^{t}/\partial y^{t}} \underbrace{v_{h}}_{\partial y^{t}/\partial z_{h}^{t}} \underbrace{z_{h}^{t}(1 - z_{h}^{t})x_{j}^{t}}_{\partial z_{h}^{t}/\partial w_{hj}}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) v_{h} z_{h}^{t} (1 - z_{h}^{t})x_{j}^{t}$$