

Accelerating the Big Data and cloud storage with Intel® Non-Volatile Memory Technologies

—Intel® Optane™ and Intel® 3D NAND SSDS

Jack Zhang Storage Solution Architect Intel Corp

Agenda

- Intel Non-Volatile Memory Technologies
- Solid Stat Devices (SSD) on Apache Spark
- All Flash Ceph for big data
- Summary

Intel Non-Volatile Memory Technologies

Intel® 3D NAND SSDs and OPTANE

SSDs. Deliver disruptive value to the data center. SSDs. Deliver disruptive value to the data center.

Intel® Optane™ SSD Use Cases

^{*}Other names and brands names may be claimed as the property of others

Innovation for Cloud STORAGE: Intel® Optan_

Intel® 3D NAND SSDs

 New Storage Infrastructure: enable high performance and cost effective storage:

- Openstack/Ceph:
 - Intel Optane™ as Journal/Metadata/WAL (Best write performance, Lowest latency and Best QoS)
 - Intel 3D NAND TLC SSD as data store (cost effective storage)
 - Best IOPS/\$, IOPS/TB and TB/Rack

Solid Stat Devices (SSD) on Apache Spark

Apache Hadoop Architecture

Apache Spark

Shuffle with SSD in Big Data

For MapReduce or Spark, shuffle process will spill temp files on local disk when memory is not enough to hold all the data. To place the temp data on SSD, it is expected to achieve better performance for MapReduce or Spark workload.

Benchmark Configurations & Workloads

Nodes	Master	Slave	
Roles	Hadoop Name Node, Spark Master	Hadoop Data Node, Spark Slaves	
Services	Name Node, Resource Manager	Data Node, Node Manager	
Numbers	1 7		
Processer	Intel Xeon E5-2650 v3 (HSW) / Intel Xeon E5-2680 v4 (BDW) (Dual Socket / node)		
Memory	256GB 256GB		
Storage	OS Disk: 480GB SSD	OS Disk: 480GB SSD Data Disk: 1TB SATA HDD x 8 / Data Disk: Intel S3520 SSD x 8 / Data Disk: Intel P3600 SSD x 3	
Network	10Gb	10Gb	

Hadoop/Spark Configuration yq.aliyu		
Hadoop version	2.7.3	
Spark version	2.1.0	
Executor memory	25~40 GB	
Executor Cores	8 – 10 / executors	
Executor Number	5 / nodes	
Spark Mode	yarn-client	
JDK Version	1.8.0_112	
m emory. Overhead	10% Executor Memory	
Shuffle Partition #	200	
Broadcast threshold	30MB	
broadcastTimeout	3600 sec	
GC	Parallel GC	

Workload (TPC-DS)		
Queries	19,42,43,52,55,63,68,72,98	
Data Scale (Raw Data)	10 TB	
Data Format	Parquet	
Compression Codec	Snappy	
Data Size	~3TB	

Latest Intel's Platform powers Apache Spark (SQ)

DISK is the bottleneck other than CPU for SQL queries; we can observe 2.8x performance gain when upgrade the 8 * HDD -> 8 * S3520 SSD, and another ~35% performance while upgrade the E5 2650 v3 + 8*S3520 SSD -> E5 2680v4 + 3 P3600 SSD. We believe the more PCI-E SSD may give even better acceleration.

TCO Model (Sequential)

	Intel HSW(2650v3)			Intel BDW(2680v4)
Disk Types	HDD(1TB SATA)	SATA SSD(s3520)	PCIe SSD(p3600)	PCIe SSD(p3600)
Numbers of Drives	8	8	3	3
Total Capacity	1TB x 8	1.2TB x 8	1.6TB x 3	1.6TB x 3
Performance Gain	1x	~2.65x	~2.83x	~3.64x
Latest Intel's Platform powers Apache Spark (SQL)				
Cooling Cost	\$505	\$82	\$42	\$42
Enclosure Cost	\$3943	\$3943	\$0	\$0
Reliability	\$1008	\$339	\$287	\$287
Total Cost	\$6677	\$8656	\$5146	\$5146
Cost (per GB)	1x	1.08x	-	-
Perf (per Dollar)	1.0x	~2.4x	1.0x	~1.28x

All Flash Ceph for big data

About Ceph

RADOS

A software-based, reliable, autonomous, distributed object store comprised of self-healing, self-managing, intelligent storage nodes and lightweight monitors

- Open-source, object-based scale-out storage
- Object, Block and File in single unified storage cluster
- Highly durable, available replication, erasure coding
- Runs on economical commodity hardware
- 10 years of hardening, vibrant community

- Scalability CRUSH data placement, no single POF
- Replicates and re-balances dynamically
- Enterprise features snapshots, cloning, mirroring
- Most popular block storage for Openstack use cases
- Commercial support from Red Hat

Who is using Ceph?

Telcom

CSP/IPDC

OEM/ODM

Enterprise, FSI, Healthcare, Retailers

GE imagination at work

Bloomberg

Ceph* performance trend with SSD - 4K Random Write云栖社区

38x performance improvement in Ceph all-flash array!

Suggested Configurations for Ceph* Storage Node

Standard/good (baseline):

Use cases/Applications: that need high capacity storage with high throughput performance

 NVMe*/PCIe* SSD for Journal + Caching, HDDs as OSD data drive

Better IOPS

Use cases/Applications: that need higher performance especially for throughput, IOPS and SLAs with medium storage capacity requirements

 NVMe/PCIe SSD as Journal, High capacity SATA SSD for data drive

Best Performance

Use cases/Applications: that need highest performance (throughput and IOPS) and low latency/QoS (Quality of Service).

A11 NVMe/PCIe SSDs

More information at Ceph.com (new RAs update soon!)
http://tracker.ceph.com/projects/ceph/wiki/Tuning_for_All_Flash_Deployments

	yq.aliyun.c
	Ceph* storage nodeGood
CPU	Intel(R) Xeon(R) CPU E5-2650v3
Memory	64 GB
NIC	10GbE
Disks	1x 1.6TB P3700 + 12 x 4TB HDDs (1:12 ratio) P3700 as Journal and caching
Caching software	Intel(R) CAS 3.0, option: Intel(R) RSTe/MD4.3

Ceph* Storage nodeBetter		
CPU	Intel(R) Xeon(R) CPU E5-2690	
Memory	128 GB	
NIC	Duel 10GbE	
Disks	1x Intel(R) DC P3700(800G) + 4x Intel(R) DC S3510 1.6TB Or 1xIntel P4800X(375GB) + 8x Intel® DC S3520 1.6TB	

Ceph* Storage nodeBest		
СРИ	Intel(R) Xeon(R) CPU E5-2699v4	
Memory	>= 128 GB	
NIC	2x 40GbE, 4x dual 10GbE	
Disks	1xIntel P4800X (375GB) + 8x Intel® DC P4500 4TB	

Intel® SSD DC P4800X + Intel® SSD DC P4500云栖社区

Performance Results:

	Throughput	Latency (avg.)	99.99% latency
4K Random Read	2876K IOPS	0.9 ms	2. 25
4K Random Write	610K IOPS	4.0 ms	25. 435
64K Sequential Read	27.5 GB/s	7.6 ms	13. 744
64K Sequential Write	13.2 GB/s	11.9 ms	215

Excellent performance on Optane cluster, performance was throttled by HW bottlenecks

Ceph* Performance - Performance improvement

- The breakthrough high performance of Optane eliminated the WAL & rocksdb bottleneck
 - 1 P4800X or P3700 covers up to 8x P4500 data drivers as both WAL and rocksdb

Ceph* Performance - latency improvement

- Significant tail latency improvement with Optane
 - 20x latency reduction for 99.99% latency

Big Data On Ceph

- Separate Compute and Storage for stability
- > HDFS backend with Ceph

Summary

- Storage Innovations: Optane + 3D TLC SSDs = high performance + cost effective storage
- Better performance on Spark SQL with SSDs
- All flash Ceph is being used as backend storage for high IOPS/SLA sensitive workloads such as OLTP, SQL DB etc
- Big data over Ceph for scalability and performance

THANK YOU!

乙天・智能