DSC 257R - UNSUPERVISED LEARNING

MEASURING DEPENDENCE BETWEEN VARIABLES

SANJOY DASGUPTA, PROFESSOR

COMPUTER SCIENCE & ENGINEERING
HALICIOĞLU DATA SCIENCE INSTITUTE

Independent Random Variables

Random vars X, Y are **independent** if Pr(X = x, Y = y) = Pr(X = x)Pr(Y = y).

Independent or not? $X, Y \in \{-1, 0, 1\}$, with these probabilities:

			Y	
		-1	0	1
	-1	0.4 0.05 0.05	0.16	0.24
X	0	0.05	0.02	0.03
	1	0.05	0.02	0.03

Testing Independence

Suppose you are given samples (X, Y) from a bivariate distribution:

$$(x_1, y_1), \dots, (x_n, y_n) \in \mathbb{R}^2$$

How would you test whether *X* and *Y* are independent?

Dependence

Example: For a person chosen at random from a population, take

$$H = \text{height}$$

 $W = \text{weight}$

Independence would mean

$$Pr(H = h, W = w) = Pr(H = h)Pr(W = w).$$

This is unlikely to be true. Why?

Correlation

Height and weight are positively correlated.

Based on body measurements of 507 people at https://ww2.amstat.org/publications/jse/datasets/body.txt

Types of Correlation

H, W positively correlated This also implies $\mathbb{E}[HW] > \mathbb{E}[H] \mathbb{E}[W]$

X, Y negatively correlated $\mathbb{E}[XY] < \mathbb{E}[X] \mathbb{E}[Y]$

X, Y uncorrelated $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$

Correlation Coefficient: Pictures

Covariance & Correlation

Covariance

$$cov(X,Y) = \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])]$$
$$= \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y]$$

Maximized when X = Y, in which case it is var(X).

In general, it is at most std(X)std(Y).

Correlation

$$corr(X,Y) = \frac{cov(X,Y)}{std(X)std(Y)}$$

This is always in the range [-1, 1].

Example

Find cov(X, Y) and corr(X, Y)

$\boldsymbol{\mathcal{X}}$	\mathcal{Y}	Pr(x, y)
1	4	1/4
1	-4	1/4
- 1	4	1/8
-1	-4	3/8

Independent ≢ Uncorrelated