COMP2010 Data Structures and Algorithms

Lecture 17: Connected Components, Directed Graphs, Topological Sort

Department of Computer Science & Technology
United International College

Graph Application: Connectivity

Connectivity

A graph is connected if and only if there exists a path between every pair of distinct vertices.

- A graph is connected if and only if there exists a simple path between every pair of distinct vertices
 - since every non-simple path contains a cycle, which can be bypassed
- How to check for connectivity?
 - Run BFS or DFS (using an arbitrary vertex as the source)
 - If all vertices have been visited, the graph is connected.
 - ◆ Running time? O(n + m)

Connected Components

Subgraphs

A graph $H(V_H, E_H)$ is a *subgraph* of $G(V_G, E_G)$ if and only if $V_H \subset V_G$ and $E_H \subset E_G$.

Connected Components

- Formal definition
 - A connected component is a maximal connected subgraph of a graph
- The set of connected components is unique for a given graph

3 components: C1, C2, and C3

Finding Connected Components

```
Algorithm DFSConn(G)
Input: a graph G
Output: the connected components
    for each vertex v
2.
        do flag[v] := false;
                         For each vertex
    for each vertex v
3.
                             If not visited
        do if flag[v] = false
4.
              then output "A new connected com-
5.
                                                    This will find all vertices
                   ponent:";
                   RDFS(v); |Call DFS
                                                    connected to "v" => one
6.
                                                    connected component
Algorithm RDFS(v)
     flag[v] := true;
```

```
    output v;
    for each neighbor w of v
```

4. **do if** flag[w] = false

5. then RDFS(w);

Basic DFS algorithm

Time Complexity

Running time for each i connected component

$$O(n_i + m_i)$$

Running time for the graph G

$$\sum_{i} O(n_{i} + m_{i}) = O(\sum_{i} n_{i} + \sum_{i} m_{i}) = O(n + m)$$

- Reason: Can two connected components share
 - the same edge?
 - the same vertex?

Trees

Tree arises in many computer science applications

A graph G is a tree if and only if it is connected and acyclic

(Acyclic means it does not contain any simple cycles)

- The following statements are equivalent
 - G is a tree
 - ◆ G is connected and has exactly n-1 edges

Tree Example

- Is it a graph?
- Does it contain cycles? In other words, is it acyclic?
- How many vertices?
- How many edges?

Directed Graph

- A graph is directed if direction is assigned to each edge.
- Directed edges are denoted as arcs.
 - Arc is an ordered pair (u, v)

- Recall: for an undirected graph
 - An edge is denoted {u,v}, which actually corresponds to two arcs (u,v) and (v,u)

Representations

- The adjacency matrix and adjacency list can be used
 - 1. Adjacency Matrix

	a	b	c	d	e
a	0	0	1	0	0
b	0	0	0	0	0
c	0	0	0	0	1
d	1	0	0	0	0
e	1	0	0	1	0

2. Adjacency List

Directed Acyclic Graph

- A directed path is a sequence of vertices (v_0, v_1, \ldots, v_k)
 - Such that (v_i, v_{i+1}) is an arc

A directed cycle is a directed path such that the first and last vertices are the same.

 A directed graph is acyclic if it does not contain any directed cycles

Indegree and Outdegree

- Since the edges are directed
 - We can't simply talk about Deg(v)
- Instead, we need to consider the arcs coming "in" and going "out"
 - ◆ Thus, we define terms Indegree(v), and Outdegree(v)
- Each arc(u,v) contributes count 1 to the outdegree of u and the indegree of v

$$\sum_{\text{vertex } v} \text{indegree}(v) = \text{outdegree}(v) = m$$

Calculate Indegree and Outdegree

- Outdegree is simple to compute
 - Scan through list Adj[v] and count the arcs

- Indegree caculation
 - First, initialize indegree[v]=0 for each vertex v
 - Scan through adj[v] list for each v
 - For each vertex w seen, indegree[w]++;
 - Running time: O(n+m)

Example

Indeg(2)?

Indeg(8)?

Outdeg(0)?

Num of Edges?

Total OutDeg?

Total Indeg?

Directed Graphs Usage

- Directed graphs are often used to represent orderdependent tasks
 - That is we cannot start a task before another task finishes
- We can model this task dependent constraint using arcs
- An arc (i,j) means task j cannot start until task i is finished

Task j cannot start until task i is finished

Clearly, for the system not to hang, the graph must be acyclic

University Example

CS departments course structure

Topological Sort

- Topological sort is an algorithm for a directed acyclic graph
- Linearly order the vertices so that the linear order respects the ordering relations implied by the arcs

For example:

0, 1, 2, 5, 9

0, 4, 5, 9

0, 6, 3, 7?

Topological Sort Algorithm

Observations

- Starting point must have zero indegree.
- If it doesn't exist, the graph would not be acyclic.

Algorithm

- 1. A vertex with zero *indegree* is a task that can start right away. So we can output it first in the linear order.
- 2. If a vertex *i* is output, then its outgoing arcs (*i*, *j*) are no longer useful, since tasks *j* does not need to wait for *i* anymore- so remove all *i*'s outgoing arcs.
- 3. With vertex *i* removed, the new graph is still a directed acyclic graph. So, repeat steps 1-2 until no vertex is left.

Topological Sort

```
Algorithm TSort(G)
Input: a directed acyclic graph G
Output: a topological ordering of vertices
     initialize Q to be an empty queue;
    for each vertex v
2.
                                    Find all starting points
         do if indegree(v) = 0
3.
               then enqueue(Q, v);
4.
5.
     while Q is non-empty
6.
        do v := dequeue(Q);
7.
           output v;
                                 Reduce indegree(w)
           for each arc (v, w)
8.
9.
               do indegree(w) = indegree(w) - 1;
10.
                   if indegree(w) = 0
                                        Place new start
                     then enqueue(w) vertices on the Q
11.
```

The running time is O(n+m).

Example

Indegree

0	0	
1	1	
2	2	
3	1	
4	1	
5	2	
6	1	
7	1	
8	2	
9	2	

start

Indegree

0	0	
1	1	-1
2	2	
3	1	
4	1	-1
5	2	
6	1	-1
7	1	
8	2	
9	2	

Decrement 0's neighbors, which are 6, 1 and 4.

-> remove 0's arcs – adjust indegrees of neighbors (6, 1, 4)

Q = { 6, 1, 4 } Enqueue all starting points

Indegree

0	0	
1	0	←
2	2	
3	1	
4	0	├ ──
5	2	
6	0	├ ──
7	1	
8	2	
9	2	

OUTPUT: 0

Enqueue all new starting points

Indegree

0	0	
1	0	
2	2	-1
3	1	-1
4	0	
5	2	
6	0	
7	1	
8	2	
9	2	

Adjust indegrees of neighbors, which are 3 and 2

OUTPUT: 06

Enqueue new starting point, which is 3 alone.

Indegree

		-
0	0	
1	0	
2	1	-1
3	0	
4	0	
5	2	
6	0	
7	1	
8	2	
9	2	

OUTPUT: 0 6 1

Adjust indegree of neighbor, which is 2 alone.

OUTPUT: 061

Enqueue new starting point, which is 2 alone.

OUTPUT: 0614

0 0 1 0 2 0 3 0 4 0 5 2 -1 6 0 7 1

Indegree

Adjust 4's neighbor, which is 5

Indegree

0	0
1	0
2	0
3	0
4	0
5	1
6	0
7	1
8	2
9	2

NO new starting point

Indegree

0	0	
1	0	
2	0	
3	0	
4	0	
5	1	
6	0	
7	1	
8	2	
9	2	-1

Dequeue 3 Q = { 2 }
Adjust 3's neighbor, which is 8 alone.

Dequeue 3 Q = { 2 } No new starting point found

Indegree

Dequeue 2 Q = { } Adjust 2's neighbors, which are 7 and 5.

Indegree

_		
0	0	
1	0	
2	0	
3	0	
4	0	
5	1	-1
6	0	
7	1	-1
8	1	
9	2	

Dequeue 2 Q = { 7, 5 } Enqueue 7, 5

Indegree

		_
0	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	—
8	1	
9	2	

Indegree

		_
0	0	
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	1	
9	2	-1

Dequeue 7 Q = { 5 }
Adjust indegree of neighbor, which is 8.

Dequeue 7 Q = { 5, 8 }

Adjust indegree of neighbor, which is 8.

Indegree

Indegree

Dequeue 5 Q = { 8 }
Adjust indegree of neighbor, which is 9.

Indegree

0	0
1	0
2	0
3	0
4	0
5	0
6	_
7	0
8	0
9	0
	1

6

3

4

5

6

5

Indegree

Dequeue 8 Q = { 9 } Enqueue 9.

Indegree

9

Dequeue 9 Q = { }
STOP – no neighbors

Indegree

0	0
1	0
2	0
3	0
4	0
5	0
6	0
7	0
8	0
9	0

OUTPUT: 0614327589

Is output topologically correct?

Topological Sort: Complexity

We never visited a vertex more than one time.

- For each vertex,
 - we had to examine all outgoing edges,
 - it took time proportional to outdegree(v) + 1.

Since it is summed over all vertices, the running time is O(n + m) if there are n vertices and m arcs.