Digital Integrators

- An important component in many applications
- Ideal digital integrator frequency response

$$H_{INT}(e^{j\omega}) = \frac{1}{i\omega}$$

 $H_{INT}(e^{j\omega}) = \frac{1}{j\omega}$ • Practical digital integrators are designed to have a frequency response approximating the above expression and are based on numerical integration methods

Copyright © 2010, S. K. Mitra

First-Order IIR Digital Integrators

Forward Rectangular Integrator is based on forward rectangular method of integration

• Its time-domain input-output relation is

$$y[n] = y[n-1] + T \cdot x[n-1]$$

where T is the sampling period

• Its transfer function is given by

$$H_{FR}(z) = T \left(\frac{z^{-1}}{1 - z^{-1}} \right)$$

First-Order IIR Digital Integrators

Backward Rectangular Integrator is based on backward rectangular method of integration

• Its time-domain input-output relation is

$$y[n] = y[n-1] + T \cdot x[n]$$

• Its transfer function is given by

• Note:
$$H_{BR}(z) = T\left(\frac{1}{1-z^{-1}}\right)$$

$$\left|H_{FR}(e^{j\omega})\right| = \left|H_{BR}(e^{j\omega})\right|$$

First-Order IIR Digital Integrators

Trapezoidal Integrator is based on the trapezoidal method of integration

• Its time-domain input-output relation is

$$y[n] = y[n-1] + \frac{T}{2} \cdot (x[n] + x[n-1])$$
• Its transfer function is given by

$$H_{TR}(z) = \frac{T}{2} \left(\frac{1+z^{-1}}{1-z^{-1}} \right)$$

Copyright © 2010, S. K. Mitra

First-Order IIR Digital Integrators

• The magnitude response of the ideal integrator is between those of the rectangular integrator and the trapezoidal integrator

Copyright © 2010, S. K. Mitra

Second-Order IIR Digital Integrators

Simpson integrator is based on the Simpson method of integration and provides an improved numerical result

- Its time-domain input-output relation is $y[n] = y[n-2] + \frac{T}{3} \cdot (x[n] + 4x[n-1] + x[n-2])$
- Its transfer function is given by

$$H_{SI}(z) = \frac{T}{3} \left(\frac{1 + 4z^{-1} + z^{-2}}{1 - z^{-2}} \right)$$

Digital Differentiators

- Employed to perform the differentiation operation on the discrete-time version of a continuous-time signal
- · Frequency response of an ideal discretetime differentiator is given by

 $H(e^{j\omega}) = j\omega$ for $0 \le |\omega \le \pi|$ which has a linear magnitude response from dc to $\omega = \pi$

Copyright © 2010, S. K. Mitra

Digital Differentiators

• A practical discrete-time differentiator is used to perform the differentiation operation in the low frequency range and is thus designed to have a linear magnitude response from dc to a frequency smaller than p

Copyright © 2010, S. K. Mitr.

Simple FIR Digital Differentiators

First-Difference Differentiator is a first-order FIR discrete-time system with a timedomain input-output relation given by

$$y[n] = x[n] - x[n-1]$$

• Its transfer function is given by

$$H_{FD}(z) = 1 - z^{-1}$$

which is same as that of a first-order FIR highpass filter described earlier

Copyright © 2010, S. K. Mitra

Simple FIR Digital Differentiators

• Main drawback of the first-difference differentiator is that it also amplifies the high frequency noise often present in many signals

Ideal differentiator

Copyright © 2010, S. K. Mitra

Simple FIR Digital Differentiators

Central-Difference Differentiator avoids the noise amplification problem of the firstdifference differentiator

• Its time-domain input-output relation is

$$y[n] = \frac{1}{2}(x[n] - x[n-2])$$

• Its transfer function is given by

$$H_{CD}(z) = \frac{1}{2}(1-z^{-2})$$

• It has a linear magnitude response in a very small low-frequency range

Copyright © 2010, S. K. Mitra

Higher-Order FIR Digital Differentiator

• The time-domain input-output relation of a higher-order FIR digital differentiator is given by

$$y[n] = -\frac{1}{16}x[n] + x[n-2] - x[n-4] + \frac{1}{16}x[n-6]$$
• Its transfer function is given by

$$H_{ID}(z) = -\frac{1}{16} + z^{-2} - z^{-4} + \frac{1}{16}z^{-6}$$

10

Higher-Order FIR Digital Differentiator

- Its magnitude response, scaled by a factor 0.6 is shown below
- The frequency range of operation of this differentiator is from dc to $\omega = 0.34\pi$

DC Blockers

- In some applications it is necessary to remove the dc bias present in a signal before other signal processing algorithms can be applied
- The ideal dc blocker has an infinite attenuation at dc ($\omega=0$) and passes all input signals with non-zero frequencies

Copyright © 2010, S. K. Mitra

DC Blockers

- As a result, a dc blocker is essentially a highpass filter with a transfer function having at least one zero at z = 1 and unity magnitude response for ω ≠ 0
- We describe next several simple FIR and IIR filters that can be used as dc blockers

15

Copyright © 2010, S. K. Mitra

DC Blockers

Simple FIR DC Blocker

• The simple first-order FIR differentiator $H_{FD}(z) = 1 - z^{-1}$

has a zero at z = 1 and thus blocks the dc component of a signal quite well

• However, very low-frequency spectral components close to $\omega = 0$ are also attenuated as can be seen from its magnitude response plot in Slide No. 13

16

Copyright © 2010, S. K. Mitra

DC Blockers

Simple IIR DC Blocker

• To boost the dropping magnitude of the simple FIR dc blocker $H_{FD}(z)$ near dc, one solution is to cascade it with an all-pole first-order IIR filter with a transfer function

$$G(z) = \frac{1}{1 - \alpha z^{-1}}$$

where α is real and $0 < \alpha < 1$

Copyright © 2010, S. K. Mitra

DC Blockers

- The IIR filter *G*(*z*) is often called a leaky integrator
- The magnitude response of the nonlinearphase cascaded differentiator/integrator

$$H(z) = G(z)H_{FD}(z) = \frac{1-z^{-1}}{1-\alpha z^{-1}}$$

is shown in the next page for various values of $\boldsymbol{\alpha}$

Copyright © 2010, S. K. Mitra

3

DC Blockers

• Note: The transfer function F(z) is the same as that of the first-order IIR highpass filter $H_{HP}(z)$ except for the scale factor $(1+\alpha)/2$

Copyright © 2010, S. K. Mitra

DC Blockers

Higher-Order FIR DC Blocker

- A linear-phase dc blocker can be implemented by a delay-complementary Type 1 moving average filter
- A recursive form of the transfer function of an M-point (M odd) moving average filter is given by $H_{MA}(z) = \frac{1}{M} \left(\frac{1 - z^{-M}}{1 - z^{-1}} \right)$

DC Blockers

• The transfer function of the linear-phase dc blocker is thus given by

$$F(z) = z^{-(M-1)/2} - H_{MA}(z)$$

• Its schematic representation is shown below

21

Copyright © 2010, S. K. Mitra

DC Blockers

- If *M* is a power-of-2 integer, then the scaling factor $\frac{1}{M}$ can be implemented using binary shift-and-add operations, avoiding the multiplication operation
- However, in this case the delay unit $z^{-(M-1)/2}$ develops a fractional delay making it difficult to synchronize the two sequences at the output of the adder

22

Copyright © 2010, S. K. Mitra

DC Blockers

• One way to avoid this problem is to form the delay-complementary of the cascade of two moving average filters as indicated below

Copyright © 2010, S. K. Mitra

DC Blockers

- The modified structure requires a delay unit $_{7}$ –(M–1) and provides an integer-valued delay
- Gain response of this dc blocker for M = 32is shown below
- It has an infinite attenuation at dc and a peak passband ripple of about 0.42 dB

Comb Filters

- The simple filters discussed so far are characterized either by a single passband and/or a single stopband
- There are applications where filters with multiple passbands and stopbands are required
- The **comb filter** is an example of such filters

25

Copyright © 2010, S. K. Mitra

Comb Filters

- In its most general form, a comb filter has a frequency response that is a periodic function of ω with a period $2\pi/L$, where L is a positive integer
- If H(z) is a filter with a single passband and/or a single stopband, a comb filter can be easily generated from it by replacing each delay in its realization with *L* delays resulting in a structure with a transfer function given by $G(z) = H(z^L)$

Comb Filters

- If $|H(e^{j\omega})|$ exhibits a peak at ω_n , then $|G(e^{j\omega})|$ will exhibit L peaks at $\omega_p k/L$, $0 \le k \le L-1$ in the frequency range $0 \le \omega < 2\pi$
- Likewise, if $|H(e^{j\omega})|$ has a notch at ω_{α} , then $|G(e^{j\omega})|$ will have L notches at $\omega_0 k/L$, $0 \le k \le L - 1$ in the frequency range $0 \le \omega < 2\pi$
- A comb filter can be generated from either an FIR or an IIR prototype filter

Copyright © 2010, S. K. Mitra

Copyright © 2010, S. K. Mitra

FIR Comb Filters

• For example, the comb filter generated from the prototype lowpass FIR filter $H_0(z)$ = $\frac{1}{2}(1+z^{-1})$ has a transfer function

$$G_0(z) = H_0(z^L) = \frac{1}{2}(1+z^{-L})$$

• $|G_0(e^{j\omega})|$ has L notches at $\omega = (2k+1)\pi/L$ and Lpeaks at $\omega = 2\pi k/L$, $0 \le k \le L-1$, in the frequency range $0 \le \omega < 2\pi$

FIR Comb Filters

• For example, the comb filter generated from the prototype highpass FIR filter $H_1(z)$ = $\frac{1}{2}(1-z^{-1})$ has a transfer function $G_1(z) = H_1(z^L) = \frac{1}{2}(1-z^{-L})$

$$G_1(z) = H_1(z^L) = \frac{1}{2}(1 - z^{-L})$$

• $|G_1(e^{j\omega})|$ has L peaks at $\omega = (2k+1)\pi/L$ and L° notches at $\omega = 2\pi k/L$, $0 \le k \le L-1$, in the frequency range $0 \le \omega < 2\pi$

FIR Comb Filters

- Depending on applications, comb filters with other types of periodic magnitude responses can be easily generated by appropriately choosing the prototype filter
- For example, the *M*-point moving average filter

$$H(z) = \frac{1-z^{-M}}{M(1-z^{-1})}$$

has been used as a prototype

FIR Comb Filters

- This filter has a peak magnitude at $\omega = 0$, and M-1 notches at $\omega = 2\pi \ell / M$, $1 \le \ell \le M-1$
- The corresponding comb filter has a transfer function

$$G(z) = \frac{1-z^{-LM}}{M(1-z^{-L})}$$

 $G(z) = \frac{1-z^{-LM}}{M(1-z^{-L})}$ whose magnitude has L peaks at $\omega = 2\pi k/L$, $0 \le k \le L-1$ and L(M-1) notches at $\omega = 2\pi k/LM, 1 \le k \le L(M-1)$

31

Copyright © 2010, S. K. Mitra

IIR Comb Filters

• The transfer functions of the simplest forms of the prototype IIR filter are given by

$$H_0(z) = K \frac{1 - z^{-1}}{1 - \alpha z^{-1}}, \quad H_1(z) = K \frac{1 + z^{-1}}{1 - \alpha z^{-1}}$$

where $|\alpha|$ < 1 for stability

• Note: $H_0(z)$ is a highpass filter with a zero at z = 1 and $H_1(z)$ is a lowpass filter with a zero at z = -1

Copyright © 2010, S. K. Mitra

IIR Comb Filters

- For a maximum gain of 0 dB, the scale factor K of $H_0(z)$ should be set equal to $(1+\alpha)/2$ and the scale factor K of $H_1(z)$ should be set equal to $(1-\alpha)/2$
- The corresponding transfer functions of the comb filters of order L are

$$G_0(z) = K \frac{1-z^{-L}}{1-\alpha z^{-L}}, \quad G_1(z) = K \frac{1+z^{-L}}{1-\alpha z^{-L}}$$

33

Copyright © 2010, S. K. Mitra

IIR Comb Filters

• Gain responses of the IIR comb filters generated from $H_0(z)$ and $H_1(z)$ for L=8are shown below

34