

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

FACULTAD DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICA

Profesor: Mauricio Bustamante – Estudiante: Benjamín Mateluna

Topología Algebraica - MAT2850 Tarea 2 07 de septiembre de 2025

Problema 3

Por simplicidad del argumento, denotaremos los morfismos $A_i \to A_{i+1}$ y $B_i \to B_{i+1}$ como ∂ . Debido a que ambas secuencias son exactas, resulta que $\partial^2 a = \partial \circ \partial(a) = 0$. Veamos que $\ker f_3 = 0$. Sea $a \in \ker f_3$, notemos que

$$0 = \partial f_3(a) = f_4 \partial(a)$$
 entonces $\partial a = 0$

Como $a \in \ker \partial$, existe $a' \in A_2$ tal que $\partial a' = a$, luego $\partial f_2(a') = f_3\partial(a') = f_3(a) = 0$. Por exactitud, existe $b' \in B_1$ tal que $\partial b' = f_2(a')$, puesto que f_1 es isomorfismo, existe $a'' \in A_1$ tal que $b' = f_1(a'')$, usando que los diagramas conmutan vemos que

$$a'' = f_1^{-1}(b')$$
 entonces $\partial a'' = \partial f_1^{-1}(b') = f_2^{-1}\partial(b')$

recordemos que $\partial b' = f_2(a')$, es decir, $\partial a'' = a'$, luego $0 = \partial^2 a'' = \partial a' = a$.

Sea $b \in B_3$, consideramos $\partial b \in B_4$, entonces $f_4^{-1}(\partial b) \in A_4$, por commutatividad del diagrama, se sigue que $\partial f_4^{-1}(\partial b) = f_5^{-1}(\partial^2 b) = 0$, luego, por exactitud, existe $a \in A_3$ tal que $\partial a = f_4^{-1}(\partial b)$. Observemos que,

$$\partial (f_3(a) - b) = \partial f_3(a) - \partial b = f_4 \partial (a) - \partial b = 0$$

Así, existe $b' \in B_2$ tal que $\partial b' = f_3(a) - b$, definimos $a' = f_2^{-1}(b') \in A_2$, de este modo,

$$f_3(a) - b = \partial b' = \partial f_2(a') = f_3(\partial a')$$

En resumen, $f_3(a - \partial a') = b$. Concluimos que f_3 es isomorfismo.

Problema 4

Sea Ω una colección finita de 2-simplices, decimos que Ω se pega bien si cumple lo siguiente

- (1) Para todo $\sigma, \tau \in \Omega$ se tiene que $\sigma \cap \tau$ es vacío o una cara de ambos simplices.
- (2) Para todo $\sigma \in \Omega$, existe $\tau \in \Omega$ tal que $\sigma \cap \tau$ es un 1-simplice.
- (3) Existe $\sigma \in \Omega$ tal que existe un único $\tau \in \Omega$ de modo que $\sigma \cap \tau$ es un 1-simplice. Además, se tiene que $\Omega \setminus \{\sigma\}$ se pega bien o consiste de un solo elemento.

Observación: Por la primera propiedad, a cada colección finita de 2—simplices que se pega bien, le podemos asignar un complejo simplicial. Adicionalmente, se tiene que dicho complejo simplicial es conexo gracias a la segunda propiedad.

Lema 0.1: Sea Ω una colección finita de 2-simplices que se pega bien. Sea K el complejo simplicial asociado a Ω , entonces $H_0(K) = \mathbb{Z}$ y es trivial en otro caso.

Demostración. Procederemos por inducción sobre el número de 2-simplices en la colección. Para n=1 ya esta probado. Supongamos que se cumple para n-1, por definición, existe $\sigma \in \Omega$ tal que $\Omega \setminus \{\sigma\}$ se pega bien, sea M el complejo simplicial asociado. Sea N el complejo simplicial que consiste en las caras de σ .

Como Ω se pega bien, existe un único 2-simplice $\tau \in \Omega$ tal que $\sigma \cap \tau$ es un 1-simplice, entonces $M \cap N = \{\mu : \mu \leq \sigma \cap \tau\}$, que resulta ser conexo como complejo simplicial. Usando Mayer-Vietoris, para i > 1, es directo que $H_0(K) = 0$. Por otro lado, para i = 1, se sigue que

$$0 \longrightarrow 0 \longrightarrow H_1(K) \longrightarrow \mathbb{Z} \stackrel{\varphi}{\longrightarrow} \mathbb{Z}^2$$

Notemos que el generador en $M \cap N$ se mapea a un generador tanto en M como en N, vía el morfismo inducido por la inclusión. Entonces, $\varphi = (1,1)$, lo que implica que $H_1(K) = 0$, ya que $\ker \varphi = 0$, lo que concluye la demostración.

Asignamos el orden a los vértices tal que i < i + 1. Usaremos R para denotar a los anillos \mathbb{Z}, \mathbb{Z}_2 y \mathbb{Q} . El lema anterior es válido para R.

(1) **Definición:** Notemos que el complejo simplicial es conexo, dado que el argumento presentado en el problema 5 es invariante del anillo utilizado, se sigue que $H_0(K) \cong R$. Adicionalmente, $C_i = 0$ para i > 2, ya que no hay i-simplices. Basta calcular $H_i(K)$ para i = 1, 2. Tenemos el complejo de cadenas,

$$0 \longrightarrow C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_0 \longrightarrow 0$$

Para encontrar los grupos de homología basta calcular $\ker \partial_2$, $\operatorname{im} \partial_2$ y $\ker \partial_1$. A cada vértice en $C_0(K)$ le asignamos el vector canónico como sigue $i = e_{i+1}$. A cada 1-simplice le asignamos un vector de la siguiente manera,

$$\begin{array}{llll} \langle 0,1\rangle = e_1 & \langle 0,5\rangle = e_5 & \langle 1,5\rangle = e_9 & \langle 3,4\rangle = e_{13} \\ \langle 0,2\rangle = e_2 & \langle 1,2\rangle = e_6 & \langle 2,3\rangle = e_{10} & \langle 3,5\rangle = e_{14} \\ \langle 0,3\rangle = e_3 & \langle 1,3\rangle = e_7 & \langle 2,4\rangle = e_{11} & \langle 4,5\rangle = e_{15} \\ \langle 0,4\rangle = e_4 & \langle 1,4\rangle = e_8 & \langle 2,5\rangle = e_{12} \end{array}$$

Luego, la acción de ∂_1 esta representado por la matriz

Usando SAGE, se obtiene que $ker \partial_1 \cong R^{10}$. Queda estudiar el morfismo ∂_2 . Realizamos la siguiente identificación

$$\begin{array}{lll} \langle 0,1,3\rangle = e_1 & \langle 0,2,4\rangle = e_4 & \langle 1,2,5\rangle = e_7 \\ \langle 0,2,3\rangle = e_2 & \langle 0,4,5\rangle = e_5 & \langle 1,3,4\rangle = e_8 \\ \langle 0,1,5\rangle = e_3 & \langle 1,2,4\rangle = e_6 & \langle 2,3,5\rangle = e_9 \\ & \langle 3,4,5\rangle = e_{10} \end{array}$$

Junto con la identificación de los generadores de $C_1(K)$, el morfismo ∂_2 está representado por la matriz

Nuevamente, usando SAGE, se obtiene que $\ker \partial_2 = 0$ si $R = \mathbb{Z}, \mathbb{Q}$, pero en \mathbb{Z}^2 se tiene que $\ker \partial_2 = \mathbb{Z}_2$. Además, $\operatorname{im} \partial_2 = \mathbb{Z}_2^9$ cuando $R = \mathbb{Z}_2$, mientras que para \mathbb{Z} tenemos que $\operatorname{im} \partial_2 = 2\mathbb{Z} \oplus \mathbb{Z}^9$ y para \mathbb{Q} , $\operatorname{im} \partial_2 = \mathbb{Q}^{10}$. Entonces,

$$H_i(K; \mathbb{Z}_2) = \begin{cases} \mathbb{Z}_2 & \text{si } i = 0, 1, 2 \\ 0 & \text{si } i \neq 0, 1, 2 \end{cases} \qquad H_i(K; \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{si } i = 0 \\ \mathbb{Z}_2 & \text{si } i = 1 \\ 0 & \text{si } i \neq 0, 1 \end{cases} \qquad H_i(K; \mathbb{Q}) = \begin{cases} \mathbb{Q} & \text{si } i = 0 \\ 0 & \text{si } i \neq 0 \end{cases}$$

(2) Mayer-Vietoris: Consideramos los siguientes subcomplejos simpliciales,

Por el lema, se tiene que $H_0(M) = R$ y es trivial en otro caso, además, vemos que $H_i(M \cap N) = R$ para i = 0, 1 y es cero en otro caso. Por otro lado, para N, consideramos la subdivisión en complejos simpliciales como sigue,

Nuevamente, por el lema, se sigue que $H_0(N_m) = H_0(N_n) = R$ y es trivial en otro caso. Por otro lado, $H_0(N_m \cap N_n)$ consiste en la unión disjunta de dos 1-simplices, luego, $H_0(N_m \cap N_n) = R^2$ y es cero en otro caso. Entonces, usando Mayer-Vietoris resulta que

$$0 \longrightarrow 0 \longrightarrow H_i(N) \longrightarrow 0$$

donde i > 1. Por lo tanto, $H_i(N) = 0$ cuando i > 1. Veamos cuando i = 1, se tiene la siguiente secuencia exacta

$$0 \longrightarrow 0 \longrightarrow H_1(N) \longrightarrow R^2 \stackrel{\varphi}{\longrightarrow} R^2$$

Como $N_m \cap N_n$ posee dos componentes conexas, es generado por dos elementos, por ende, cada generador se mapea a un generador tanto en $H_0(N_m)$ como en $H_0(N_n)$ vía el morfismo inducido por la inclusión, lo que implica que

$$\varphi = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$$

Por exactitud, $H_1(N) = R$, puesto que $ker \varphi \cong R$. Para i = 0 sabemos que el complejo es conexo, entonces $H_0(N) = R$. Volviendo al Mayer-Vietoris original, tenemos que

$$0 \longrightarrow 0 \longrightarrow H_2(K) \longrightarrow R \xrightarrow{\psi} R \xrightarrow{\phi} H_1(K)$$

$$R \xrightarrow{\varphi} R^2 \longrightarrow H_0(K) \longrightarrow 0$$

Notemos que el mapeo $H_1(M \cap N) \to H_1(M)$ es trivial, mientras que el generador en $H_1(M \cap N)$, a saber,

$$\tau = \langle 1, 4 \rangle - \langle 0, 4 \rangle + \langle 0, 5 \rangle + \langle 2, 5 \rangle - \langle 2, 3 \rangle - \langle 1, 3 \rangle$$

se mapea dos veces al generador en $H_1(N)$ que es $\sigma = \langle 0,1 \rangle + \langle 1,2 \rangle - \langle 0,2 \rangle$. En efecto, notemos que

$$\partial_2(\langle 0, 2, 3 \rangle + \langle 0, 1, 3 \rangle - \langle 0, 2, 4 \rangle + \langle 0, 1, 5 \rangle + \langle 1, 2, 5 \rangle - \langle 0, 2, 3 \rangle) = 2\sigma - \tau$$

De este modo, $\ker \psi = 0$ para \mathbb{Z} y \mathbb{Q} , mientras que $\ker \psi = \mathbb{Z}_2$ para \mathbb{Z}_2 . Luego, $\operatorname{im} \psi = 2\mathbb{Z}$, $\operatorname{im} \psi = \mathbb{Q}$ y finalmente $\operatorname{im} \psi = 0$ cuando vemos los coeficientes en \mathbb{Z} , \mathbb{Q} y \mathbb{Z}_2 respectivamente. Por otro lado, por la misma razón que antes, $\varphi = (1,1)$, es decir, $\ker \varphi = 0$ para R y entonces φ es sobreyectivo. Por primer teorema de isomorfismo y exactitud, concluimos que

$$H_{i}(K; \mathbb{Z}_{2}) = \begin{cases} \mathbb{Z}_{2} & \text{si } i = 0, 1, 2 \\ 0 & \text{si } i \neq 0, 1, 2 \end{cases} \qquad H_{i}(K; \mathbb{Z}) = \begin{cases} \mathbb{Z} & \text{si } i = 0 \\ \mathbb{Z}_{2} & \text{si } i = 1 \\ 0 & \text{si } i \neq 0, 1 \end{cases} \qquad H_{i}(K; \mathbb{Q}) = \begin{cases} \mathbb{Q} & \text{si } i = 0 \\ 0 & \text{si } i \neq 0 \end{cases}$$

Problema 5

Sea K un complejo simplicial finito y sean $v, w \in V_K$, decimos que $v \sim_p w$ si y solo si v esta conectado a w ó v = w, es decir, si existe una sucesión de 1-simplices $\langle w_0, w_1 \rangle, \dots, \langle w_{k-1}, w_k \rangle$ tales que $w_0 = v$ y $w_k = w$.

Por definición resulta que $x \sim_p x$, además, notemos que si $v \sim_p w$ entonces $w \sim_p v$ basta tomar $\omega_i := w_{k-i}$. Por otro lado, si $v \sim_p w$ y $w \sim_p u$, entonces la sucesión

$$\langle w_0, w_1 \rangle, \cdots, \langle w_{k-1}, w_k \rangle, \langle \omega_0, \omega_1 \rangle, \cdots, \langle \omega_{i-1}, \omega_i \rangle$$

donde $w_0 = v$, $w_k = w$, $\omega_0 = w$ y $\omega_j = u$ es una sucesión que conecta v con u, en otras palabras, $v \sim_p u$.

Definición (Componente Conexa): Sea K un complejo simplicial finito $y \ v \in V_K$, definimos su componente conexa como

$$[v]_c := \{ \sigma \in K : \sigma = \langle v_0, v_1, \cdots, v_r \rangle \quad y \quad v \sim_p v_i \}$$

Observación: Si $[v]_c = K$, entonces el complejo simplicial es conexo. Sea $w \in V_K$ tal que $w \in [v]_c$, entonces $v \sim_p w$. Luego, dado $\sigma = \langle v_0, \cdots, v_r \rangle \in [w]_c$ se tiene que $v \sim_p v_i$, se sigue que $[w]_c \subseteq [v]_c$, de manera similar obtenemos que $[v]_c \subseteq [w]_c$. Por lo tanto $[w]_c = [v]_c$.

Veamos que dado $v \in V_K$, se tiene que $[v]_c$ es un subcomplejo simplicial de K. En efecto, sea $\sigma \in [v]_c$ y $\tau \leq \sigma$, si v_i es un vértice de τ entonces es vértice de σ , luego $v \sim_p v_i$, lo que implica que $\tau \in [v]_c$. La segunda propiedad se cumple trivialmente. Por lo tanto, una componente conexa es un subcomplejo simplicial conexo de K y la unión de dos componentes conexas también es subcomplejo simplicial, puesto que un simplice esta en una componente conexa o en la otra, pero no en ambas.

Como \sim_p es una relación de equivalencia, particiona el conjunto de vértices, junto con lo anterior hemos probado que las componentes conexas particionan al complejo simplicial.

Debemos probar lo siguiente:

(1) Si K es conexo, entonces |K| arcoconexo. Sean $x, y \in |K|$, existen $\sigma_x, \sigma_y \in K$ tales que $x \in \sigma_x$ e $y \in \sigma_y$, sean $v_x \in \sigma_x$ y $v_y \in \sigma_y$ vértices de K. Existe una sucesión

$$\langle w_0, w_1 \rangle, \cdots, \langle w_{k-1}, w_k \rangle$$

tal que $w_0 = v_x$ y $w_k = v_y$, consideramos la función $f_i : [0,1] \to |K|$ dada por $f_i(t) := (1-t)w_i + tw_{i+1}$ que esta bien definida por que $\langle w_i, w_{i+1} \rangle$ es convexo y es continua. Del mismo modo, como σ_x es convexo, la función $f_x : [0,1] \to |K|$ dada por $f_x(t) := (1-t)x + tv_x$ esta bien definida. De manera análoga, definimos f_y , pero $f_y(0) = v_y$ y $f_y(1) = y$. Luego,

$$f := f_x \cdot f_0 \cdot f_1 \cdot \cdots \cdot f_{k-1} \cdot f_u$$

donde • es la operación de concatenación. Es una función continua, por lema del pegamiento, tal que f(0) = x y f(1) = y. Concluimos que |K| es arcoconexo.

(2) **Probar que** $H_0(K) \cong \mathbb{Z}^{\#\text{componentes conexas}}$. Como K es finito, hay finitas componentes conexas, procederemos por inducción en el número de componentes conexas.

Supongamos que K tiene una componente conexa, entonces K es conexo. Dado $v \in V_K$, basta probar que [v] = [w] en $H_0(K)$ para todo $w \in V_K$. Como K es conexo, existe una sucesión

$$\langle w_0, w_1 \rangle, \cdots, \langle w_{k-1}, w_k \rangle$$

tal que $w_0 = v$ y $w_k = w$, entonces

$$\partial \left(\sum_{i=0}^{k-1} \langle w_i, w_{i+1} \rangle \right) = \sum_{i=0}^{k-1} \partial \langle w_i, w_{i+1} \rangle = \sum_{i=0}^{k-1} w_{i+1} - w_i = w_k - w_0 = w - v$$

luego $w - v \in im \ \partial$. Entonces $H_0(K) \cong \mathbb{Z}$.

Sea n el número de componentes conexas. Sean M_i las componentes conexas de K, consideramos los subcomplejos simpliciales

$$M = M_n$$
 y $N = \bigcup_{i=1}^{n-1} M_i$

Por Mayer-Vietoris, se tiene la siguiente secuencia exacta

$$0 \longrightarrow H_0(M) \oplus H_0(N) \longrightarrow H_0(K) \longrightarrow 0$$

entonces

$$H_0(K) \cong H_0(M) \oplus H_0(N) \cong \mathbb{Z} \oplus \mathbb{Z}^{n-1} \cong \mathbb{Z}^n$$