Given sentence is

$$\phi_{eq} = \forall x [R_1(x, x)]$$

$$\wedge \forall x, y [R_1(x, y) \leftrightarrow R_1(y, x)]$$

$$\wedge \forall x, y, z [(R_1(x, y)) \land R_1(y, z) \rightarrow R_1(x, z)]$$

 $\phi_{_{qq}}$ gives three conditions of equivalence relations i.e., Reflexive relation, Symmetric relation and Transitive relations.

Let R_{11} and R_{12} are two equivalence relations on some set, definition of R_1 by

$$\forall x, y \lceil R_1(x, y) \equiv R_{11}(x, y) \land R_{12}(x, y) \rceil$$

Where x, y are elements from set.

Reflexive relation: $\forall x \lceil R_1(x,x) \rceil$

 $\equiv \{\text{definition of } R_1\}$

$$R_{11}(x,x) \wedge R_{12}(x,x)$$

- $\equiv \{R_{11}, \text{being an equivalence relation, is reflexive}\}\$
- similarly R_{12}
- $\equiv \{true\} \land \{true\}$
- ≡ true

Symmetric relation: $\forall x, y [R_1(x, y) \leftrightarrow R_1(y, x)]$

 $\equiv \{\text{definition of } R_1\}$

$$R_{11}(x,y) \wedge R_{12}(x,y)$$

- $\equiv \{R_{11}, \text{being an equivalence relation, is symmetric}\}$
- similarly R_{12}
- $\equiv \{\text{definition of } R_1\}$
- $R_1(y,x)$

Transitive relation: $\forall x, y, z \left[\left(R_{\mathbf{I}} \left(x, y \right) \right) \land R_{\mathbf{I}} \left(y, z \right) \rightarrow R_{\mathbf{I}} \left(x, z \right) \right]$

 $\equiv \{\text{definition of } R_1\}$

$$(R_{11}(x,y) \wedge R_{12}(x,y)) \wedge (R_{11}(y,z) \wedge R_{12}(y,z))$$

= {rearranging the conjucts}

$$(R_{11}(x,y) \wedge R_{11}(y,z)) \wedge (R_{12}(x,y) \wedge R_{12}(y,z))$$

- $\equiv \{R_{11}, \text{being an equivalence relation, is transitive}\}$
- similarly R_{12}
- $\equiv \{\text{definition of } R_1\}$
- $R_1(x,z)$

A model (U, R_i) , where U is universe and R_i is equivalence relation over U, is a model of ϕ_{co}