Carbon = Popn · E/porces · C/E

Edemand grows 1.5%/yr/person C/E grows 1%/yr Popo grows 1.5%/yr

 $l = P_0 e \cdot E_0 e \cdot l_0 e$ $l = P_0 E_0 l_0 e^{0.01 t}$

a) how long until double current production $2 = e^{0.04t}$ $\ln 2 = 0.04t$ $\ln 2 = 0.04t$

5) Fructional increase E/person? $\frac{Y}{V_0} = 0.015(17.32)$ $\frac{Y}{V_0} = 1.296$ $\frac{Y-Y_0}{Y_0} = 1.296 - 1 = .296$ $\therefore 29.6\%$ in E/person

c) Fractional Increase total energy domina?

E/person: 4E

Y = 0.025t Y 1.54

Y = c 0.025t Y = 1.54 : 54% increase in

CIVE 1331 Problem 3.7
$$C(kg c/y_{-}) = P \cdot \frac{E(kJ/y_{-})}{P} \cdot \frac{Carbon(kg c)}{E(kJ)}$$

$$P_0 = 250.10^6 \qquad E_0 = 320.10^6 \qquad C_0 = 15.10^{-6}$$

$$r = 0.6\% \qquad r = 0.5\% \qquad r = -0.3$$

$$t_0 = 1990$$

a)
$$C(\frac{19}{9}/\frac{1}{9})$$
 in 2020 $t-t_0 = 30 \text{ yr}$

$$C = \frac{0.006(30)}{1 - 0.005(20)} = 0.005(20)$$

$$C = \frac{1.52 \cdot 10^{12} \text{ kg C/yr}}{1 - 0.005(20)}$$

b) Carbon emmitted ones 30 yr period
$$Q = \int_{3}^{30} C_{0} e^{rt} = \frac{C_{0}}{r} (e^{rt} - 1)$$

$$= \frac{P_{0}E_{0}C_{0}}{0.008} \left(e^{0.008(30)} - 1 \right) = 1.909 \cdot 10^{14} - 1.5 \cdot 10^{14} = 4.10^{13} \text{ Myz}$$

c) Total Energy Demand

P. E =
$$P_0 E_0 e^{0.008(30)} = 1.01 \cdot 10^{17} \text{ kJ/yr}$$

d) Per Capila Carbon Emmision

E. C = $E_0 C_0 C^{0.002(30)} = 5.1 \cdot 10^{3} \text{ kg c/person}$

CIVE 3331 PROBLEM 3.12

Sewage drifting downstream decomposes as first order delay at rote K=0.2 /day Fraction remaining ofter 5 days? Hast 1,16=?

$$\frac{l}{l_0} = e^{-K(5)} = e^{-0.2(5)} = 0.36$$
 : 36% remains after 5 days.

PROBLEM 3.15

Stack pooled with 100 tish, popn. follows logishe curve up to stable population of 2000 tish. a) Population size for maximim sustained fish yield?

 $N^* = \frac{K}{2} = 1000 \text{ fish.}$

Yield = $\gamma N(1 - \frac{N}{\nu})$ Need r (in problem we are hold population doubles every year for first caple of years)

Estimate rate using exponential growth

No = 100

2=er/ N, = 200

4=0 -2 N2 = 400

 $l_n(2) = r = 0.69/gr$. $l_n 4 = r = 0.69/gr$.

 $Y = (0.69)(1000)(1 - \frac{1000}{2000}) = 346 \text{ hishly} \text{ harvest}$

b) Y at N=1500 Fish?

 $Y = (0.69)(1500)(1 - \frac{1500}{2000}) = 258 \text{ fish/yr harvest}$

CIVE 3331 PAUBLEM 3.17

K=10,000 fish, Harvest 2000/yr. Popn 4000 steady.

If you want to maximize the sostained yield what

Popn Size & yield should be used.

$$Y = r(4000)(1 - \frac{4000}{10000}) = 2000$$

Colve For 2

$$\gamma = \frac{2000}{2400} = 0.83$$

: Harvest 2075 hish/yr; Popn = 5000 fish.

CIVE 333/

PROBLEM 3.20

Population age structure

Current have replacement level forbling project age structure in 25 years, 50 years, 75 years.

8 9 , 1.5E6 1.5E6 2 .1E6 1E6 0.5E6 0.5E6 6.10 b people

Replacement forthly = 1 child/poson 2 child / woman

t25

1.5E6	1.5E6	2					
1.5E6	1.5E6	3					
156	156	2					
8.16 people							

£50

1.5 EG	1.5 E 6		tz-	1.5E6	1.5E6
1.5 E 6	1.586	3	75		
	1.5E6	3		1.5E6	1.586
	10 people			9.1	o people

UVE3331 PROBLEM 3.23/3.24

Age & Survival Data for China in 1980. Supposie TFR=1.0. Estimate population in 10 years, 20 years, 50 years.

Age	P(milliar)	Lx+10/L	6x
0-9	234	0.957	0
10-19	224	0.987	0.25
20-29	182	0.980	0.25
30-39	124	0.964	0
40-49	95	0.924	6
50-59	69	0.826	0
60-69	42	0.633	0
70-79	24	0.316	0
80-89	6	0	0
Total	1001	0	

See attached spreadsheet

_	,	Vesr.50	2030	45.4	1 20	75.4	4.00	00.2	90.0	183.8	109.4	18.7	817.5
		Year-40	Ę	50.6	76.3	105.3	2.00	0.100	102.7	124.0	2.1.2	2 7 .0 7 7.0	932.4
I		Year-30	⊆	79.8	106.7	95.9	247.5	0.000	158.0	01.0	45.9	114	1016.2
Ð		Year-20	9	1115	97 1	222.0	216.7	1710	1105	70.5	36.1	84	1046.6
ш	ina	Year-10	1990	101.5	224.9	2211	178.4	110 1	2.00	57.0	26.6	2.6	1024.3
Е	tality for Ch	Year-0	980	235	224	182	124	9.5	66	42	24	9	1001
۵	ction - Age Structure and Mortality for China		birth/P	0	0.25	0.25	0	C	0	0	0	0	Total
ပ	Age Struct		L+/L	0.957	0.987	0.98	0.964	0 924	0.826	0.633	0.316	0	
60	Projection -		P(millions)	235	224	182	124	95	69	42	24	9	
٧	Population Project		Age	6-0	10-19	20-29	30-39	40-49	9 50-59	69-09	70-79	80-89	
	1	2	က	4	5	6	/	ω	တ	9	7	12	13

7 8 3