1 Bisection algorithm for simplical meshes

- Serial algorithm
- \bullet Longest edge splitting with propagation front
- For 2D meshes with triangles isosceles the number of congruence classes is 1
- The algorithm works directly for 3D and 4D.

Figure 1: Steps of the bisection algorithm.

Figure 2: Result for sphere refinement pattern. Left: 2D. Right: 3D.

Figure 3: Quality of the elements for several iterations of the adaptive refinement shown in Figure 1. The x axis represent the total number of elements in the mesh. The y axis the quality criterion (lower is better). Left: 3D. Right: 4D.

Aspect ratio measure	Value for a equilateral tetrahedron	Used in
$\beta = \frac{CR}{IR}$	β * = 3.0	[1]
$r = \frac{IR}{\frac{S_{\text{max}}}{IR}}$	$\sigma^* = 4.898979$	[2]
$\omega = \frac{CR}{S_{\text{max}}}$	$\omega^* = 0.612507$	[2]
$r = \frac{S_{\text{max}}}{S_{\text{min}}}$	$\tau^* = 1.0$	[2]
$x = \frac{V^4}{\left[\sum_{i=1}^{i=4} SA^2\right]^3}$	$\kappa^* = 4.58457e - 04$	[3]
$\alpha = \frac{S_{\text{avg}}^3}{V}$	$\alpha^* = 8.479670$	[4]
$v = \frac{S_{\text{rms}}^3}{V}$	$\gamma^* = 8.479670$	[5]
$(i = 16)$, $S_{\min} = \min(S_i)$ $(i = 16)$ root mean square (S_i) $(i = 16)$	ed sphere, IR = radius of the inscribed sphere, $S_i = 1$ =16), SA = surface area of a triangular facet, S_{av} .6), V = volume of the tetrahedron, and $IR = \frac{4V}{\sum_{i=1}^{I-4} SA}, \qquad S_{rms} = \sqrt{\sum_{i=1}^{I-6} S_i^2}.$	ength of any edge i , $S_{\text{max}} = \max_{g} \{g = \text{average } (S_i) \ (i = 1 6), \ S_{\text{rm}} \}$

Figure 4: Quality metics. We used "Alpha" and "Tau".