Espaces vectoriels

Structure d'espace vectoriel

Exercice 1 [01680] [Correction]

Soit E un \mathbb{R} -espace vectoriel.

On munit le produit cartésien $E \times E$ de l'addition usuelle

$$(x,y) + (x',y') = (x+x',y+y')$$

et de la multiplication externe par les complexes définie par

$$(a+ib).(x,y) = (a.x - b.y, a.y + b.x).$$

Montrer que $E \times E$ est alors un \mathbb{C} -espace vectoriel. Celui-ci est appelé complexifié de E.

Sous espaces vectoriels

Exercice 2 [01681] [Correction]

Les parties suivantes sont-elles des sous-espaces vectoriels de \mathbb{R}^2 ?

(a)
$$\{(x,y) \in \mathbb{R}^2 \mid x \le y\}$$

(d)
$$\{(x,y) \in \mathbb{R}^2 \mid x+y=1\}$$

(b)
$$\{(x,y) \in \mathbb{R}^2 \mid xy = 0\}$$

(b)
$$\{(x,y) \in \mathbb{R}^2 \mid xy = 0\}$$
 (e) $\{(x,y) \in \mathbb{R}^2 \mid x^2 - y^2 = 0\}$

(c)
$$\{(x,y) \in \mathbb{R}^2 \mid x=y\}$$

(f)
$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 0\}$$

Exercice 3 [01682] [Correction]

Soient $F = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0\}$ et $G = \{(a - b, a + b, a - 3b) \mid a, b \in \mathbb{R}\}.$

- (a) Montrer que F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
- (b) Déterminer $F \cap G$.

Exercice 4 [01683] [Correction]

Les parties suivantes sont-elles des sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

- (a) $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ born\'ee}\}$ (c) $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ convergente}\}$
- (b) $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ monotone} \}$
- (d) $\{(u_n) \in \mathbb{R}^{\mathbb{N}} \mid (u_n) \text{ arithmétique} \}$

Exercice 5 [01684] [Correction]

Soit $F = \{(u_n) \in \mathbb{R}^{\mathbb{N}^1} | \forall n \in \mathbb{N}, u_{n+2} = nu_{n+1} + u_n \}$ Montrer que F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Exercice 6 [01685] [Correction]

Les parties de $\mathcal{F}(\mathbb{R},\mathbb{R})$ suivantes sont-elles des sous-espaces vectoriels?

- (a) $\{f: \mathbb{R} \to \mathbb{R} \mid f \text{ est monotone}\}$
- (c) $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ s'annule}\}$
- (b) $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ s'annule en } 0\}$ (d) $\{f : \mathbb{R} \to \mathbb{R} \mid f \text{ est impaire}\}.$

Exercice 7 [01686] [Correction]

Montrer que les parties de $\mathcal{F}([a;b],\mathbb{R})$ suivantes sont des sous-espaces vectoriels :

- (a) $F = \{ f \in \mathcal{C}^1([a;b], \mathbb{R}) \mid f'(a) = f'(b) \}$
- (b) $G = \left\{ f \in \mathcal{C}^0([a;b], \mathbb{R}) \mid \int_a^b f(t) dt = 0 \right\}$

Exercice 8 [01687] [Correction]

Soit $\omega \in \mathbb{C}$. On note $\omega \mathbb{R} = \{\omega x \mid x \in \mathbb{R}\}.$

Montrer que $\omega.\mathbb{R}$ est un sous-espace vectoriel de \mathbb{C} vu comme \mathbb{R} -espace vectoriel. À quelle condition $\omega.\mathbb{R}$ est-il un sous-espace vectoriel de \mathbb{C} vu comme \mathbb{C} -espace vectoriel?

Exercice 9 [01688] [Correction]

Soient u_1, \ldots, u_n des vecteurs d'un \mathbb{K} -espace vectoriel E. Montrer que l'ensemble $F = \{\lambda_1 u_1 + \cdots + \lambda_n u_n \mid \lambda_1, \dots, \lambda_n \in \mathbb{K}\}$ est un sous-espace vectoriel de E contenant les vecteurs u_1, \ldots, u_n .

Exercice 10 [01689] [Correction]

Soient $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$, \mathcal{C} l'ensemble des fonctions de E croissantes et

$$\Delta = \{ f - g \mid f, g \in \mathcal{C} \}.$$

Montrer que Δ est un sous-espace vectoriel de E.

Exercice 11 [01690] [Correction]

Démontrer que le sous-ensemble constitué des suites réelles périodiques est un sous-espace vectoriel d'une structure que l'on précisera.

Opérations sur les sous-espaces vectoriels

Exercice 12 [01691] [Correction]

Soient F et G des sous-espaces vectoriels de E. Montrer

$$F \cap G = F + G \iff F = G.$$

Exercice 13 [00160] [Correction]

Soient F, G et H des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Comparer :

- (a) $F \cap (G+H)$ et $(F \cap G) + (F \cap H)$.
- (b) $F + (G \cap H)$ et $(F + G) \cap (F + H)$.

Exercice 14 [00161] [Correction]

À quelle condition la réunion de deux sous-espaces vectoriels est-elle est un sous-espace vectoriel?

Exercice 15 [01694] [Correction]

Soient F, G et H trois sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Montrer que

$$F \subset G \implies F + (G \cap H) = (F + G) \cap (F + H).$$

Exercice 16 [01695] [Correction]

Soient F,G,F',G' des sous-espaces vectoriels de E tels que $F\cap G=F'\cap G'$. Montrer que

$$(F + (G \cap F')) \cap (F + (G \cap G')) = F.$$

Espaces engendrés par une partie

Exercice 17 [01696] [Correction]

Comparer $Vect(A \cap B)$ et $Vect(A) \cap Vect(B)$.

Exercice 18 [01625] [Correction]

On considère les vecteurs de \mathbb{R}^3

$$u = (1, 1, 1)$$
 et $v = (1, 0, -1)$.

Montrer

$$Vect(u, v) = \{(2\alpha, \alpha + \beta, 2\beta) \mid \alpha, \beta \in \mathbb{R} \}.$$

Exercice 19 [01626] [Correction]

Dans \mathbb{R}^3 , on considère x = (1, -1, 1) et y = (0, 1, a) où $a \in \mathbb{R}$. Donner une condition nécessaire et suffisante sur a pour que u = (1, 1, 2) appartienne à Vect(x, y). Comparer alors Vect(x, y), Vect(x, u) et Vect(y, u).

Espaces supplémentaires

Exercice 20 [01698] [Correction]

Soient $F = \{ f \in \mathcal{C}^1(\mathbb{R}, \mathbb{R}) \mid f(0) = f'(0) = 0 \}$ et $G = \{ x \mapsto ax + b \mid (a, b) \in \mathbb{R}^2 \}$. Montrer que F et G sont des sous-espaces vectoriels supplémentaires de $\mathcal{C}^1(\mathbb{R}, \mathbb{R})$.

Exercice 21 [01699] [Correction]

Soient
$$F = \left\{ f \in \mathcal{C}([-1;1],\mathbb{C}) \mid \int_{-1}^{1} f(t) dt = 0 \right\}$$
 et

 $G = \{ f \in \mathcal{C}([-1;1], \mathbb{C}) \mid f \text{ constante} \}.$

Montrer que F et G sont des sous-espaces vectoriels supplémentaires de $\mathcal{C}([-1\,;1],\mathbb{C})$.

Exercice 22 [01700] [Correction]

Soient

$$H = \{(x_1, x_2, \dots, x_n) \in \mathbb{K}^n \mid x_1 + x_2 + \dots + x_n = 0\}$$

et $u = (1, \ldots, 1) \in \mathbb{K}^n$.

Montrer que H et $\mathrm{Vect}(u)$ sont des sous-espaces vectoriels supplémentaires de \mathbb{K}^n .

Exercice 23 [01701] [Correction]

Dans l'espace $E = \mathcal{C}([0;\pi],\mathbb{R})$ on considère les parties

$$F = \{ f \in E \mid f(0) = f(\pi/2) = f(\pi) \} \text{ et } G = \text{Vect(sin, cos)}.$$

Montrer que F et G sont des sous-espaces vectoriels supplémentaires de E.

Exercice 24 [01702] [Correction]

Soit $F = \{ f \in \mathcal{F}(\mathbb{R}, \mathbb{R}) \mid f(0) + f(1) = 0 \}.$

- (a) Montrer que F est un sous-espace vectoriel.
- (b) Déterminer un supplémentaire de F dans $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Familles de vecteurs

Exercice 25 [01627] [Correction]

Les familles suivantes de vecteurs de \mathbb{R}^3 sont-elles libres?

Si ce n'est pas le cas, former une relation linéaire liant ces vecteurs :

- (a) (x_1, x_2) avec $x_1 = (1, 0, 1)$ et $x_2 = (1, 2, 2)$
- (b) (x_1, x_2, x_3) avec $x_1 = (1, 0, 0), x_2 = (1, 1, 0)$ et $x_3 = (1, 1, 1)$
- (c) (x_1, x_2, x_3) avec $x_1 = (1, 2, 1), x_2 = (2, 1, -1)$ et $x_3 = (1, -1, -2)$
- (d) (x_1, x_2, x_3) avec $x_1 = (1, -1, 1), x_2 = (2, -1, 3)$ et $x_3 = (-1, 1, -1)$.

Exercice 26 [01628] [Correction]

On pose $f_1, f_2, f_3, f_4 : [0; 2\pi] \to \mathbb{R}$ les fonctions définies par : $f_1(x) = \cos x, f_2(x) = x \cos x, f_3(x) = \sin x$ et $f_4(x) = x \sin x$. Montrer que la famille (f_1, f_2, f_3, f_4) est libre.

Exercice 27 [01629] [Correction]

Pour tout entier $0 \le k \le n$, on pose $f_k : \mathbb{R} \to \mathbb{R}$ la fonction définie par $f_k(x) = e^{k \cdot x}$.

Montrer que la famille $(f_k)_{0 \le k \le n}$ est une famille libre de $\mathcal{F}(\mathbb{R}, \mathbb{R})$.

Exercice 28 [01632] [Correction]

Soit $(\vec{x}_1, \ldots, \vec{x}_n)$ une famille libre de vecteurs de E et $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$. On pose

$$\vec{u} = \alpha_1 \cdot \vec{x}_1 + \dots + \alpha_n \cdot \vec{x}_n$$
 et $\forall 1 \leq i \leq n, \vec{y}_i = \vec{x}_i + \vec{u}$.

À quelle condition sur les α_i , la famille $(\vec{y_1}, \dots, \vec{y_n})$ est-elle libre?

Exercice 29 [01633] [Correction]

Soit (e_1, \ldots, e_p) une famille libre de vecteurs de E.

Montrer que pour tout $a \in E \setminus \text{Vect}(e_1, \dots, e_p)$, la famille $(e_1 + a, \dots, e_p + a)$ est libre.

Exercice 30 [02464] [Correction]

Soit $(a, b, c) \in \mathbb{R}^3$. Les fonctions $x \mapsto \sin(x+a), x \mapsto \sin(x+b)$ et $x \mapsto \sin(x+c)$ sont-elles linéairement indépendantes?

Exercice 31 [00167] [Correction]

Pour $a \in \mathbb{R}$, on note f_a l'application de \mathbb{R} vers \mathbb{R} définie par $f_a(x) = |x - a|$. Montrer que la famille $(f_a)_{a \in \mathbb{R}}$ est une famille libre d'éléments de l'espace $\mathcal{F}(\mathbb{R}, \mathbb{R})$

Exercice 32 [00169] [Correction]

Pour $a \in \mathbb{R}_+$, on note f_a l'application de \mathbb{R} vers \mathbb{R} définie par

$$f_a(t) = \cos(at).$$

Montrer que la famille $(f_a)_{a\in\mathbb{R}_+}$ est une famille libre d'éléments de l'espace de $\mathcal{F}(\mathbb{R},\mathbb{R})$.

Exercice 33 [00171] [Correction]

Soit E l'ensemble des applications $f: [-1;1] \to \mathbb{R}$ continues telles que les restrictions $f|_{[-1;0]}$ et $f|_{[0;1]}$ soient affines.

- (a) Montrer que E est un \mathbb{R} -espace vectoriel.
- (b) Donner une base de E.

Somme d'un nombre fini de sous-espaces

Exercice 34 [00190] [Correction]

Soient F, G, F', G' des sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E vérifiant

$$F \oplus G = F' \oplus G' = E \text{ et } F' \subset G.$$

Montrer

$$F \oplus F' \oplus (G \cap G') = E$$
.

Exercice 35 [00217] [Correction]

Soient $n \in \mathbb{N}$ et $E = \mathbb{R}_n[X]$.

Pour tout $i \in [0; n]$, on note

$$F_i = \{ P \in E \mid \forall j \in [0; n] \setminus \{i\}, P(j) = 0 \}.$$

Montrer que les F_i sont des sous-espaces vectoriels et que

$$E = F_0 \oplus \cdots \oplus F_n$$
.

Exercice 36 [00220] [Correction]

Pour $d \in \mathbb{N}$, notons H_d l'ensemble formé des fonctions polynomiales de \mathbb{R}^2 vers \mathbb{R} homogènes de degré d i.e. pouvant s'écrire comme combinaison linéaire de fonction monôme de degré d.

Montrer que $(H_d)_{0 \le d \le n}$ est une famille de sous-espaces vectoriels en somme directe.

Exercice 37 [00222] [Correction]

Soient E_1, \ldots, E_n et F_1, \ldots, F_n sous-espaces vectoriels de E tel que $E_i \subset F_i$ et

$$\bigoplus_{i=1}^{n} E_i = \bigoplus_{i=1}^{n} F_i.$$

Montrer que $E_i = F_i$.

Sous espaces affines

Exercice 38 [01727] [Correction]

À quelle condition simple le sous-espace affine $V = \vec{a} + F$ est-il un sous-espace vectoriel?

Exercice 39 [01728] [Correction]

Soient $V = \vec{a} + F$ et $W = \vec{b} + G$ deux sous-espaces affines d'un \mathbb{R} -espace vectoriel E.

Montrer que

$$V \cap W \neq \emptyset \iff \vec{b} - \vec{a} \in F + G.$$

L'espace des polynômes

Exercice 40 [02146] [Correction]

Soient $P_1 = X^2 + 1$, $P_2 = X^2 + X - 1$ et $P_3 = X^2 + X$. Montrer que la famille (P_1, P_2, P_3) est une base de $\mathbb{K}_2[X]$.

Exercice 41 [02147] [Correction]

Pour $k \in \{0, ..., n\}$, on pose $P_k = (X+1)^{k+1} - X^{k+1}$. Montrer que la famille $(P_0, ..., P_n)$ est une base de $\mathbb{K}_n[X]$.

Exercice 42 [02150] [Correction]

Soit E l'espace vectoriel des applications de \mathbb{R} dans \mathbb{R} .

On considère F la partie de E constituée des applications de la forme :

$$x \mapsto P(x)\sin x + Q(x)\cos x \text{ avec } P, Q \in \mathbb{R}_n[X].$$

- (a) Montrer que F un sous-espace vectoriel de E.
- (b) Montrer que F est de dimension finie et déterminer dim F.

Exercice 43 [02151] [Correction]

Soient $n \in \mathbb{N}$ et $A \in \mathbb{K}_n[X]$ un polynôme non nul.

Montrer que $F = \{P \in \mathbb{K}_n[X] \mid A \mid P\}$ est un sous-espace vectoriel de $\mathbb{K}_n[X]$ et en déterminer la dimension et un supplémentaire.

Exercice 44 [02665] [Correction]

Montrer, pour tout $n \in \mathbb{N}$, qu'il existe un unique $P_n \in \mathbb{R}_{n+1}[X]$ tel que $P_n(0) = 0$ et $P_n(X+1) - P_n(X) = X^n$.

Exercice 45 [01761] [Correction]

- (a) Montrer que la famille $(X+k)^n$ pour $k \in \{0,\ldots,n\}$ constitue une base de $\mathbb{R}_n[X]$.
- (b) Redémontrer la formule donnant l'expression du déterminant de Vandermonde

Corrections

Exercice 1 : [énoncé]

Il est aisé de constater que l'addition sur $E \times E$ est commutative, associative, possède un neutre $(0_E, 0_E)$ et que tout élément est symétrisable dans $(E \times E, +)$, le symétrique de (x, y) étant (-x, -y).

Ainsi $(E \times E, +)$ est un groupe abélien.

Soient $\lambda, \mu \in \mathbb{C}$ et $u, v \in E \times E$. On peut écrire $\lambda = a + \mathrm{i}b, \mu = a' + \mathrm{i}b'$ avec $a, b, a', b' \in \mathbb{R}$ et u = (x, y), v = (x', y') avec $x, y, x', y' \in E$. On a

$$\lambda.(u+v) = (a+ib).(x+x', y+y') = (ax + ax' - by - by', ay + ay' + bx + bx') = \lambda.u + \lambda.v.$$

$$(\lambda + \mu) \cdot u = ((a + a') + i(b + b')) \cdot (x, y)$$

= $(ax + a'x - by - b'y, ay + a'y + bx + b'x) = \lambda \cdot u + \mu \cdot u$.

$$\lambda.(\mu.u) = (a+ib)(a'x - b'y, a'y + b'x) = ((aa' - bb')x - (ab' + a'b)y, (aa' - bb')y + (ab' + a'b)x) = (\lambda\mu).u$$

 $_{
m et}$

$$1.u = u.$$

On peut donc conclure que $(E \times E, +, .)$ est un \mathbb{C} -espace vectoriel.

Exercice 2 : [énoncé]

- (a) non : pas stable par multiplication scalaire : (0,1) appartient mais pas -(0,1)
- (b) non: pas stable par addition: (1,0) + (0,1)
- (c) oui
- (d) non: ne passe pas par (0,0).
- (e) non: pas stable par addition: (1,1) + (1,-1)
- (f) oui (c'est l'espace nul!)

Exercice 3: [énoncé]

- (a) $F \subset \mathbb{R}^3$, $\vec{o} = (0,0,0) \in F$ car 0+0-0=0 et pour tout $\lambda, \mu \in \mathbb{R}$, $\vec{u}, \vec{v} \in F$, on peut écrire $\vec{u} = (x,y,z)$ et $\vec{v} = (x',y',z')$ avec x+y-z=0 et x'+y'-z'=0. On a alors $\lambda \vec{u} + \mu \vec{v} = (\lambda x + \mu x', \lambda y + \mu y', \lambda z + \mu z')$ avec $(\lambda x + \mu x') + (\lambda y + \mu y') (\lambda z + \mu z') = \lambda (x+y-z) + \mu (x'+y'-z') = 0$ donc $\lambda \vec{u} + \mu \vec{v} \in F$. $G \subset \mathbb{R}^3$, $\vec{o} = (0,0,0) \in G$ car (0,0,0) = (a-b,a+b,a-3b) pour a=b=0. Pour tout $\lambda, \mu \in \mathbb{R}$, $\vec{u}, \vec{v} \in G$, on peut écrire $\vec{u} = (a-b,a+b,a-3b)$ et $\vec{v} = (a'-b',a'+b',a'-3b')$ avec $a,b,a',b' \in \mathbb{R}$. On a alors $\lambda \vec{u} + \mu \vec{v} = \ldots = (a''-b'',a''+b'',a''-3b'')$ avec $a'' = \lambda a + \mu a'$ et $b'' = \lambda b + \mu b'$ donc $\lambda \vec{u} + \mu \vec{v} \in G$. Finalement F et G sont des sous-espaces vectoriels de \mathbb{R}^3 .
- (b) $\vec{u} = (x, y, z) \in F \cap G$ si, et seulement s'il existe $a, b \in \mathbb{R}$ tels que

$$\begin{cases} x = a - b \\ y = a + b \\ z = a - 3b \end{cases} \iff \begin{cases} x = a - b \\ y = a + b \\ z = a - 3b \end{cases} \iff \begin{cases} x = -4b \\ y = -2b \\ z = -6b \\ a = -3b. \end{cases}$$

Ainsi $F \cap G = \{(-4b, -2b, -6b) \mid b \in \mathbb{R}\} = \{(2c, c, 3c) \mid c \in \mathbb{R}\}.$

Exercice 4: [énoncé]

- (a) oui
- (b) non
- (c) oui
- (d) oui.

Exercice 5 : [énoncé]

 $F \subset \mathbb{R}^{\mathbb{N}}, \ 0 = (0)_{n \in \mathbb{N}} \in F \text{ car } \forall n \in \mathbb{N}, 0 = n.0 + 0.$ Soient $\lambda, \mu \in \mathbb{R}$ et $(u_n), (v_n) \in F$. On a

$$\lambda(u_n) + \mu(v_n) = (\lambda u_n + \mu v_n)$$

avec pour tout $n \in \mathbb{N}$,

 $\lambda u_{n+2} + \mu v_{n+2} = \lambda (nu_{n+1} + u_n) + \mu (nv_{n+1} + v_n) = n(\lambda u_{n+1} + \mu v_{n+1}) + \lambda u_n + \mu v_n$

donc $\lambda(u_n) + \mu(v_n) \in F$.

Ainsi, F est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Exercice 6: [énoncé]

- (a) non
- (b) oui
- (c) non
- (d) oui.

Exercice 7: [énoncé]

(a) $F \subset \mathcal{F}([a;b],\mathbb{R})$ et $\tilde{0} \in F$. Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in F$. La fonction $\lambda f + \mu g$ est de classe \mathcal{C}^1 sur [a;b] et

$$(\lambda f + \mu g)'(a) = \lambda f'(a) + \mu g'(b) = \lambda f'(b) + \mu g'(b) = (\lambda f + \mu g)'(b)$$

donc $\lambda f + \mu g \in F$.

(b) $G \subset \mathcal{F}([a;b],\mathbb{R})$ et $\tilde{0} \in G$. Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in G$. La fonction $\lambda f + \mu g$ est continue sur [a;b] et

$$\int_{a}^{b} (\lambda f + \mu g)(t) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt = 0$$

donc $\lambda f + \mu g \in G$.

Exercice 8 : [énoncé]

 $\omega \mathbb{R} \subset \mathbb{C} \text{ et } 0 \in \omega \mathbb{R} \text{ car } 0 = \omega \times 0.$

Soient $\lambda, \mu \in \mathbb{R}$ et $z, z' \in \omega.\mathbb{R}$ on peut écrire $z = \omega x$ et $z' = \omega x'$ avec $x, x' \in \mathbb{R}$ et on a $(\lambda z + \mu z') = \omega(\lambda.x + \mu x')$ avec $\lambda x + \mu x' \in \mathbb{R}$ donc $\lambda z + \mu z' \in \omega \mathbb{R}$. Ainsi $\omega \mathbb{R}$ est un sous-espace vectoriel du \mathbb{R} -espace vectoriel \mathbb{C} . Si $\omega \mathbb{R}$ est un sous-espace vectoriel du \mathbb{C} -espace vectoriel \mathbb{C} alors puisque $\omega = \omega \times 1 \in \omega \mathbb{R}$ et $i \in \mathbb{C}$, on a $i.\omega \in \omega \mathbb{R}$. Cela n'est possible que si $\omega = 0$. Inversement, si $\omega = 0$ alors $\omega \mathbb{R} = \{0\}$ est un sous-espace vectoriel du \mathbb{C} -espace

vectoriel \mathbb{C} .

Exercice 9: [énoncé]

 $F \subset E$ et $0_E \in F$ car

$$0_E = 0.u_1 + \dots + 0.u_n$$

Soient $\alpha, \beta \in \mathbb{K}$ et $x, y \in F$. On peut écrire

$$x = \lambda_1 u_1 + \dots + \lambda_n u$$
 et $y = \mu_1 u_1 + \dots + \mu_n u_n$

avec $\lambda_i, \mu_i \in \mathbb{K}$. On a alors

$$\alpha x + \beta y = (\alpha \lambda_1 + \beta \mu_1)u_1 + \dots + (\alpha \lambda_n + \beta \mu_n)u_n$$

avec $\alpha \lambda_i + \beta \mu_i \in \mathbb{K}$ donc $\alpha x + \beta y \in F$. Ainsi F est un sous-espace vectoriel de E. De plus

$$\forall i \in \{1,\ldots,n\}, u_i = \lambda_1 u_1 + \cdots + \lambda_n u_n$$

avec

$$\lambda_j = \delta_{i,j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon.} \end{cases}$$

Ainsi $u_i \in F$.

Exercice 10: [énoncé]

 $\Delta \subset E$. 0 = 0 - 0 avec $0 \in \mathcal{C}$ donc $0 \in \Delta$.

Soient $h, h' \in \Delta$. On peut écrire h = f - g et h' = f' - g' avec $f, g, f', g' \in \mathcal{C}$. On a alors h + h' = (f + f') - (g + g') avec $(f + f'), (g + g') \in \mathcal{C}$.

Soit $h \in \Delta$. On peut écrire h = f - g avec $f, g \in \mathcal{C}$.

 $\forall \lambda \geq 0$, on a $\lambda h = \lambda f - \lambda g$ avec $\lambda f, \lambda g \in \mathcal{C}$.

 $\forall \lambda < 0$, on a $\lambda h = (-\lambda)g - (-\lambda f)$ avec $(-\lambda)g, (-\lambda)f \in \mathcal{C}$.

Dans les deux cas $\lambda h \in \Delta$.

Exercice 11: [énoncé]

Montrons que l'ensemble F étudié est un sous-espace vectoriel de l'ensemble E des suites réelles.

Assurément $F \subset E$. La suite nulle est périodique donc $0 \in F$. Pour $u,v \in F$ et $\lambda, \mu \in \mathbb{R}$, on peut affirmer que $\lambda u + \mu v$ est TT'-périodique (et même $\operatorname{ppcm}(T,T')$ -périodique) en notant T et T' des périodes non nulles de u et v. Ainsi, $\lambda u + \mu v \in F$.

Exercice 12 : [énoncé]

(←) ok

 (\Longrightarrow) Supposons $F\cap G=F+G.$ $F\subset F+G=F\cap G\subset G$ et de même $G\subset F$ et F=G.

Exercice 13 : [énoncé]

(a) Soit $x \in (F \cap G) + (F \cap H)$, on peut écrire x = u + v avec $u \in F \cap G$ et $v \in F \cap H$.

Comme $u, v \in F$ on a $x \in F$ et comme $u \in G$ et $v \in H$ on a $u + v \in G + H$. Par suite $(F \cap G) + (F \cap H) \subset F \cap (G + H)$.

L'égalité n'est pas possible, prendre F,G,H trois droites distinctes d'un même plan.

(b) Soit $x \in F + (G \cap H)$, on peut écrire x = u + v avec $u \in F$ et $v \in G \cap H$. Comme $u \in F$ et $v \in G$ on a $x \in F + G$ et de même $x \in F + H$ donc $x \in (F + G) \cap (F + H)$.

L'égalité n'est pas possible, prendre à nouveau trois droites distinctes d'un même plan.

Exercice 14: [énoncé]

Soient F et G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E. Si $F \subset G$ ou $G \subset F$ alors $F \cup G$ vaut F ou G et est évidemment un sous-espace vectoriel de E.

Inversement, supposons que $F \cup G$ soit un sous-espace vectoriel de E et $F \not\subset G$. Il existe $x \in F$ tel que $x \notin G$. Pour tout $y \in G$, $x + y \in F \cup G$ par stabilité du sous-espace vectoriel $F \cup G$. Si $x + y \in G$ alors $x = (x + y) - y \in G$ ce qui est exclu. Il reste $x + y \in F$ et alors $y = (x + y) - x \in F$. Ainsi $G \subset F$.

Exercice 15: [énoncé]

 $F+(G\cap H)\subset F+G$ et $F+(G\cap H)\subset F+H$ donc

 $F + (G \cap H) \subset (F + G) \cap (F + H).$

Supposons de plus $F \subset G$.

Soit $\vec{x} \in (F+G) \cap (F+H)$. On a $\vec{x} \in F+G=G$ et $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in F$ et $\vec{v} \in H$.

 $\vec{v} = \vec{x} - \vec{u} \in G \text{ donc } \vec{v} \in G \cap H \text{ puis } x \in F + (G \cap H).$

Exercice 16: [énoncé]

 \supset : ok

Soit $\vec{x} \in (F + (G \cap F')) \cap (F + (G \cap G'))$.

On peut écrire $\vec{x} = \vec{u} + \vec{v}$ avec $\vec{u} \in F$ et $\vec{v} \in G \cap F'$ et $\vec{x} = \vec{u}' + \vec{v}'$ avec $\vec{u}' \in F$ et $\vec{v}' \in G \cap G'$.

 $\vec{u} - \vec{u}' = \vec{v}' - \vec{v} \in F \cap G = F' \cap G'$. $\vec{v} = -(\vec{v}' - \vec{v}) + \vec{v}' \in G'$ donc $\vec{v} \in G \cap F' \cap G' = F \cap G \subset F$ puis $\vec{x} = \vec{u} + \vec{v} \in F$. Ainsi $(F + (G \cap F')) \cap (F + (G \cap G')) \subset F$ puis l'égalité

Exercice 17 : [énoncé]

 $A \cap B \subset \operatorname{Vect}(A) \cap \operatorname{Vect}(B)$ et $\operatorname{Vect}(A) \cap \operatorname{Vect}(B)$ est un sous-espace vectoriel donc

$$\operatorname{Vect}(A \cap B) \subset \operatorname{Vect}(A) \cap \operatorname{Vect}(B)$$
.

L'inclusion réciproque n'est pas vraie : prendre $A=\{u\}$ et $B=\{2u\}$ avec $u\neq 0_E$

Exercice 18: [énoncé]

On peut écrire

$$\{(2\alpha, \alpha + \beta, 2\beta) \mid \alpha, \beta \in \mathbb{R}\} = \text{Vect}(x, y)$$

avec x = (2, 1, 0) et y = (0, 1, 2).

On a $u = \frac{1}{2}(x+y)$ et $v = \frac{1}{2}(x-y)$ donc $u, v \in Vect(x,y)$ puis

 $Vect(u, v) \subset Vect(x, y)$.

Aussi x=u+v et y=u-v donc $x,y\in \mathrm{Vect}(u,v)$ puis $\mathrm{Vect}(x,y)\subset \mathrm{Vect}(u,v).$

Par double inclusion l'égalité.

Exercice 19: [énoncé]

On a

$$u = \lambda x + \mu y \iff \begin{cases} \lambda = 1 \\ -\lambda + \mu = 1 \\ \lambda + a\mu = 2 \end{cases} \iff \begin{cases} \lambda = 1 \\ \mu = 2 \\ a = 1/2. \end{cases}$$

Ainsi

$$u \in \operatorname{Vect}(x, y) \iff a = 1/2$$

et alors u = x + 2y.

 $x, u \in \operatorname{Vect}(x, y) \operatorname{donc} \operatorname{Vect}(x, u) \subset \operatorname{Vect}(x, y).$

 $x, y \in \text{Vect}(y, u) \text{ donc } \text{Vect}(x, y) \subset \text{Vect}(y, u).$

 $y, u \in \text{Vect}(x, u) \text{ donc } \text{Vect}(y, u) \subset \text{Vect}(x, u).$

Finalement les trois espaces sont égaux.

Exercice 20 : [énoncé]

 $F \subset \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et $\tilde{o} \in F$.

Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in F$,

$$(\lambda f + \mu g)(0) = \lambda f(0) + \mu g(0) = 0$$

 $_{
m et}$

$$(\lambda f + \mu q)'(0) = \lambda f'(0) + \mu q'(0) = 0$$

donc $\lambda f + \mu g \in F$.

 $G \subset \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ et $\tilde{o} \in G$ (en prenant a = b = 0). Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in G$, il existe $a, b, c, d \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}, f(x) = ax + b \text{ et } g(x) = cx + d$$

et on a alors

$$(\lambda f + \mu g)(x) = ex + f$$

avec

$$e = \lambda a + \mu c \in \mathbb{R}$$
 et $f = \lambda b + \mu d \in \mathbb{R}$

donc $\lambda f + \mu g \in G$.

Soit $h \in F \cap G$. Il existe $a, b \in \mathbb{R}$ tels que

$$\forall x \in \mathbb{R}, h(x) = ax + b$$

car $h \in G$. Or $h \in F$ donc h(0) = b = 0 et h'(0) = a = 0 puis h(x) = 0 i.e. $h = \tilde{o}$. Ainsi

$$F \cap G = \{\tilde{0}\}.$$

Soit $h \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$. Posons $a = h'(0) \in \mathbb{R}$, b = h(0), $g \colon x \mapsto ax + b$ et f = h - g. Clairement $g \in G$ et h = f + g.

De plus f(0) = h(0) - b = 0 et f'(0) = h'(0) - a = 0 donc $f \in F$.

Ainsi

$$F + G = \mathcal{C}^1(\mathbb{R}, \mathbb{R}).$$

Finalement, F et G sont supplémentaires dans $\mathcal{C}^1(\mathbb{R}, \mathbb{R})$.

Exercice 21 : [énoncé]

 $F \subset \mathcal{C}([-1;1],\mathbb{C})$ et $\tilde{0} \in F$ car $\int_{-1}^{1} 0 \, \mathrm{d}t = 0$. Soient $\lambda, \mu \in \mathbb{C}$ et $f, g \in F$, on a

$$\int_{-1}^{1} (\lambda f + \mu g)(t) dt = \lambda \int_{-1}^{1} f(t) dt + \mu \int_{-1}^{1} g(t) dt = 0$$

donc $\lambda f + \mu g \in F$.

 $G \subset \mathcal{C}([-1;1],\mathbb{R})$ et $\tilde{0} \in G$ car c'est une fonction constante.

Soient $\lambda, \mu \in \mathbb{C}$ et $f, g \in G$. On a $\lambda f + \mu g \in G$ car il est clair que c'est une fonction constante.

Soit $h \in F \cap G$. On a h constante car $h \in G$. Posons C la valeur de cette constante. Puisque $h \in F$, on a

$$\int_{-1}^{1} h(t) dt = \int_{-1}^{1} C dt = 2C = 0$$

et donc $h = \tilde{0}$. Ainsi

$$F \cap G = \{\tilde{0}\}.$$

Soit $h \in \mathcal{C}([-1;1],\mathbb{C})$. Posons $C = \int_{-1}^{1} h(t) dt$, g la fonction constante égale à $\frac{1}{2}C$ et f = h - g.

Clairement $g \in G$ et f + g = h. De plus $\int_{-1}^{1} f(t) dt = \int_{-1}^{1} h(t) dt - C = 0$ donc $f \in F$.

Ainsi

$$F + G = \mathcal{C}([-1;1], \mathbb{C}).$$

Finalement F et G sont supplémentaires dans $\mathcal{C}([-1;1],\mathbb{C})$.

Exercice 22: [énoncé]

 $H \subset \mathbb{K}^n$, $\vec{0} = (0, \dots, 0) \in H$ car $0 + \dots + 0 = 0$. Soient $\lambda, \mu \in \mathbb{K}$ et $x = (x_1, \dots, x_n) \in H$, $\vec{y} = (y_1, \dots, y_n) \in H$. On a

$$\lambda x + \mu \vec{y} = (\lambda x_1 + \mu y_1, \dots, \lambda x_n + \mu y_n)$$

avec

$$(\lambda x_1 + \mu y_1) + \dots + (\lambda x_n + \mu y_n) = \lambda (x_1 + \dots + x_n) + \mu (y_1 + \dots + y_n) = 0$$

donc $\lambda x + \mu \vec{y} \in H$.

 $Vect(u) = \mathbb{K}u$ est un sous-espace vectoriel.

Soit $v \in H \cap \text{Vect}(u)$. On peut écrire $v = \lambda u = (\lambda, \dots, \lambda)$ car $v \in \text{Vect}(u)$. Or $v \in H$ donc $\lambda + \dots + \lambda = 0$ d'où $\lambda = 0$ et donc v = 0. Ainsi

$$H \cap \operatorname{Vect}(u) = \{0\}$$
.

Soit $v = (v_1, \dots, v_n) \in \mathbb{K}^n$. Posons $\lambda = \frac{1}{n}(v_1 + \dots + v_n), \ \vec{y} = \lambda u$ et $x = v - \vec{y}$. Clairement $x + \vec{y} = v, \ \vec{y} \in \text{Vect}(u)$. De plus $x = (x_1, \dots, x_n)$ avec

$$x_1 + \dots + x_n = (v_1 - \lambda) + \dots + (v_n - \lambda) = (v_1 + \dots + v_n) - n\lambda = 0$$

donc $x \in H$. Ainsi

$$H + Vect(u) = \mathbb{K}^n$$
.

Finalement, H et Vect(u) sont supplémentaires dans \mathbb{K}^n .

Exercice 23 : [énoncé]

 ${\cal F}$ et ${\cal G}$ sont clairement des sous-espaces vectoriels de ${\cal E}.$

Soit $f \in F \cap G$. On peut écrire $f = \lambda \cdot \sin + \mu \cdot \cos$.

De plus $f(0) = f(\pi/2) = f(\pi)$ donne : $\mu = \lambda = -\mu$ d'où $\lambda = \mu = 0$ puis f = 0.

Soit $f \in E$. Posons $\lambda = \frac{2f(\pi/2) - f(0) - f(\pi)}{2}$, $\mu = \frac{f(0) - f(\pi)}{2}$, $h = \lambda \sin + \mu \cos \theta$ g = f - h.

On a f = g + h avec $g \in F$ et $h \in G$.

Ainsi F et G sont supplémentaires dans E.

Exercice 24: [énoncé]

- (a) sans peine
- (b) L'ensemble des fonctions constantes convient.

Exercice 25 : [énoncé]

(a) oui b) oui c) non $x_3 = x_2 - x_1$ d) non $x_3 = -x_1$.

Exercice 26: [énoncé]

Supposons

$$af_1 + bf_2 + cf_3 + df_4 = 0$$

On a

$$\forall x \in [0; 2\pi], (a+bx)\cos x + (c+dx)\sin x = 0.$$

Pour x = 0 et $x = \pi$ on obtient le système :

$$\begin{cases} a = 0 \\ a + b\pi = 0 \end{cases}$$

d'où a = b = 0.

Pour $x = \frac{\pi}{2}$ et $x = \frac{3\pi}{2}$ on obtient le système

$$\begin{cases} c + d\pi/2 = 0\\ c + 3d\pi/2 = 0 \end{cases}$$

d'où c = d = 0.

Finalement ; la famille étudiée est libre.

Exercice 27: [énoncé]

Supposons $\lambda_0 f_0 + \cdots + \lambda_n f_n = 0$.

On a

$$\forall x \in \mathbb{R}, \lambda_0 + \lambda_1 e^x + \dots + \lambda_n e^{nx} = 0.$$

Quand $x \to -\infty$, en passant la relation ci-dessus à la limite, on obtient $\lambda_0 = 0$.

On a alors

$$\forall x \in \mathbb{R}, \lambda_1 e^x + \dots + \lambda_n e^{nx} = 0$$

9

donc

$$\lambda_1 + \lambda_2 e^x + \dots + \lambda_n e^{(n-1)x} = 0.$$

En reprenant la démarche ci-dessus, on obtient $\lambda_1 = 0$, puis de même $\lambda_2 = \ldots = \lambda_n = 0.$

Exercice 28 : [énoncé]

Supposons $\lambda_1 \vec{y_1} + \cdots + \lambda_n \vec{y_n} = \vec{0}$. On a

$$(\lambda_1 + \alpha_1(\lambda_1 + \dots + \lambda_n)) \cdot \vec{x}_1 + \dots + (\lambda_n + \alpha_n(\lambda_1 + \dots + \lambda_n)) \cdot \vec{x}_n = \vec{0}$$

donc

$$\begin{cases} (\lambda_1 + \alpha_1(\lambda_1 + \dots + \lambda_n)) = 0 \\ \vdots \\ (\lambda_n + \alpha_n(\lambda_1 + \dots + \lambda_n)) = 0. \end{cases}$$

En sommant les équations on obtient :

$$(\lambda_1 + \dots + \lambda_n)(1 + (\alpha_1 + \dots + \alpha_n)) = 0.$$

Si $\alpha_1 + \cdots + \alpha_n \neq -1$ alors $\lambda_1 + \cdots + \lambda_n = 0$ puis, par le système,

 $\lambda_1 = \dots = \lambda_n = 0.$

Si $\alpha_1 + \dots + \alpha_n = -1$ alors $\alpha_1 \vec{y}_1 + \dots + \alpha_n \vec{y}_n = \vec{0}$.

Finalement, la famille $(\vec{y}_1, \dots, \vec{y}_n)$ est libre si, et seulement si,

$$\alpha_1 + \dots + \alpha_n \neq -1$$
.

Exercice 29 : [énoncé]

Supposons

$$\lambda_1(e_1+a)+\cdots+\lambda_p(e_p+a)=0_E.$$

On a $\lambda_1 e_1 + \dots + \lambda_p e_p = -(\lambda_1 + \dots + \lambda_p).a.$

Si
$$\lambda_1 + \dots + \lambda_p \neq 0$$
 alors

$$a = -\frac{\lambda_1 e_1 + \dots + \lambda_p e_p}{\lambda_1 + \dots + \lambda_p} \in \text{Vect}(e_1, \dots, e_p).$$

C'est exclu.

Si
$$\lambda_1 + \cdots + \lambda_p = 0$$
 alors $\lambda_1 e_1 + \cdots + \lambda_p e_p = 0_E$ puis $\lambda_1 = \ldots = \lambda_p = 0_E$

Exercice 30: [énoncé]

Non car ces trois fonctions sont combinaisons linéaires des deux suivantes

$$x \mapsto \sin x \text{ et } x \mapsto \cos x.$$

Exercice 31: [énoncé]

Soient $a_1, \ldots, a_n \in \mathbb{R}$ des réels deux à deux distincts. Supposons $\lambda_1 f_{a_1} + \cdots + \lambda_n f_{a_n} = 0$. Pour tout $i \in \{1, \ldots, n\}$, si $\lambda_i \neq 0$ alors $\lambda_1 f_{a_1} + \cdots + \lambda_n f_{a_n}$ n'est pas dérivable en a_i alors que la fonction nulle l'est. Nécessairement $\lambda_i = 0$ et la famille étudiée est donc libre.

Exercice 32: [énoncé]

Montrons que toute sous-famille finie à n éléments de $(f_a)_{a \in \mathbb{R}_+}$ est libre. Par récurrence sur n > 1.

Pour n = 1: ok

Supposons la propriété établie au rang $n \ge 1$.

Soient a_1, \ldots, a_{n+1} des réels positifs distincts et supposons

$$\lambda_1 f_{a_1} + \dots + \lambda_{n+1} f_{a_{n+1}} = 0$$
 (1)

En dérivant 2 fois cette relation :

$$a_1^2 \lambda_1 f_{a_1} + \dots + a_{n+1}^2 \lambda_{n+1} f_{a_{n+1}} = 0$$
 (2)

La combinaison $a_{n+1}^2(1) - (2)$ donne

$$\lambda_1(a_{n+1}^2 - a_1^2)f_{a_1} + \dots + \lambda_n(a_{n+1}^2 - a_n^2)f_{a_n} = 0.$$

Par hypothèse de récurrence et en exploitant que les a_i^2 sont deux à deux distincts, on obtient $\lambda_1 = \ldots = \lambda_n = 0$ puis ensuite aisément $\lambda_{n+1} = 0$. Récurrence établie.

Exercice 33: [énoncé]

- (a) E est un sous-espace vectoriel de $\mathcal{C}([-1;1],\mathbb{R})$.
- (b) $x \mapsto 1$, $x \mapsto x$ et $x \mapsto |x|$ forment une base de E.

Exercice 34: [énoncé]

Supposons x+x'+y=0 avec $x\in F,\ x'\in F'$ et $y\in G\cap G'$. Puisque $x'\in F'\subset G$ et $y\in G\cap G'\subset G$, on a $x'+y\in G$. Or F et G sont en somme directe donc x+(x'+y)=0 avec $x\in F$ et $x'+y\in G$ entraı̂ne x=0 et x'+y=0.

Sachant x'+y=0 avec $x\in F',\,y\in G'$ et F',G' en somme directe, on a x'=y=0.

Finalement x=x'=y=0 et on peut affirmer que les espaces F,F' et $G\cap G'$ sont en somme directe.

Soit $a \in E$. Puisque $E = F \oplus G$, on peut écrire a = x + b avec $x \in F$ et $b \in G$.

Sachant $E = F' \oplus G'$, on peut écrire b = x' + y avec $x' \in F'$ et $y \in G'$.

Or y = b - x' avec $b \in G$ et $x' \in F' \subset G$ donc $y \in G$ et ainsi $y \in G \cap G'$.

Finalement, on obtient a = x + x' + y avec $x \in F$, $x' \in F'$ et $y \in G \cap G'$.

On peut conclure $E \subset F \oplus F' \oplus (G \cap G')$ puis $E = F \oplus F' \oplus (G \cap G')$.

Exercice 35 : [énoncé]

Les F_i sont clairement des sous-espaces vectoriels.

Supposons $P_0 + \cdots + P_n = 0$ avec $P_i \in F_i$.

 P_i possède par définition n racines et $(P_0 + \cdots + P_n)(i) = 0$ donc $P_i(i) = 0$ ce qui fournit une n + 1ème racine. Par suite $P_i = 0$ car deg $P_i \le n$.

Soit $P \in E$.

Analyse: Supposons $P = P_0 + \cdots + P_n$ avec $P_i \in F_i$.

On a $P(i) = P_i(i)$ car $P_j(i) = 0$ pour $j \neq i$.

Par suite

$$P_i = P(i) \prod_{j=0, j \neq i}^{n} \frac{(X-j)}{(i-j)}.$$

Synthèse : Les P_i précédemment proposés conviennent car $P_i \in F_i$ par construction et $P = P_0 + \cdots + P_n$ puisque $P - (P_0 + \cdots + P_n)$ est le polynôme nul car de degré $\leq n$ et possédant au moins n+1 racines : $0, 1, \ldots, n$.

Exercice 36: [énoncé]

 H_d est définit comme le sous-espace vectoriel engendré par les monômes de degré d, c'est donc un sous-espace vectoriel. Si $\sum_{k=0}^n P_k = 0$ avec $P_k \in H_k$ alors l'unicité de l'écriture d'un polynôme en somme de monôme permet de conclure $P_k = 0$ pour tout $k \in \{0, \ldots, n\}$. La famille $(H_d)_{0 \le d \le n}$ est donc bien une famille de sous-espaces vectoriels en somme directe.

Exercice 37 : [énoncé]

Soit $x \in F_i$.

Puisque a $x \in \bigoplus_{i=1}^n F_i = \bigoplus_{i=1}^n E_i$, on peut écrire $x = x_1 + \cdots + x_n$ avec $x_i \in E_i$.

On a alors

$$x_1 + \dots + (x_i - x) + \dots + x_n = 0_E$$

avec $x_1 \in F_1, ..., x_i - x \in F_i, ..., x_n \in F_n$.

Or les espaces F_1, \ldots, F_n sont en somme directe, donc les vecteurs précédents sont nuls et en particulier

$$x = x_i \in E_i$$
.

Exercice 38: [énoncé]

Si $\vec{a} \in F$ alors $V = \vec{a} + F = F$ est un sous-espace vectoriel.

Inversement, si V est un sous-espace vectoriel alors $\vec{o} \in V$ donc il existe $\vec{b} \in F$ tel que $\vec{o} = \vec{a} + \vec{b}$.

On a alors $\vec{a} = -\vec{b} \in F$. La condition cherchée et $\vec{a} \in F$.

Exercice 39: [énoncé]

 (\Longrightarrow) Supposons $V\cap W\neq\emptyset$. Soit $\vec{x}\in V\cap W$. On peut écrire $\vec{x}=\vec{a}+\vec{u}=\vec{b}+\vec{v}$ avec $\vec{u}\in F$ et $\vec{v}\in G$.

On a alors $\vec{b} - \vec{a} = \vec{u} + (-\vec{v}) \in F + G$.

(\iff) Inversement, si $\vec{b} - \vec{a} \in F + G$ alors on peut écrire $\vec{b} - \vec{a} = \vec{u} + \vec{v}$ avec $\vec{u} \in F$ et $\vec{v} \in G$.

On alors $\vec{x} = \vec{a} + \vec{u} = \vec{b} - \vec{v} \in V \cap W$.

Exercice 40 : [énoncé]

Supposons $\lambda_1P_1+\lambda_2P_2+\lambda_3P_3=0$. Par égalité de coefficients de polynômes :

$$\begin{cases} \lambda_1 - \lambda_2 = 0 \\ \lambda_2 + \lambda_3 = 0 \\ \lambda_1 + \lambda_2 + \lambda_3 = 0. \end{cases}$$

Après résolution $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

La famille (P_1, P_2, P_3) est une famille libre formée de $3 = \dim \mathbb{K}_2[X]$ polynômes de $\mathbb{K}_2[X]$, c'est donc une base de $\mathbb{K}_2[X]$.

Exercice 41 : [énoncé]

On remarque que deg $P_k = k$ donc $P_k \in \mathbb{K}_n[X]$.

Supposons $\lambda_0 P_0 + \cdots + \lambda_n P_n = 0$.

Si $\lambda_n \neq 0$ alors $\deg(\lambda_0 P_0 + \dots + \lambda_n P_n) = n$ car

 $\deg(\lambda_0 P_0 + \dots + \lambda_{n-1} P_{n-1}) \le n - 1 \text{ et } \deg \lambda_n P_n = n$

Ceci est exclu, donc $\lambda_n = 0$.

Sachant $\lambda_n = 0$, le même raisonnement donne $\lambda_{n-1} = 0$ et ainsi de suite $\lambda_{n-2} = \ldots = \lambda_0 = 0$.

La famille (P_0, \ldots, P_n) est une famille libre de $n+1 = \dim \mathbb{K}_n[X]$ éléments de $\mathbb{K}_n[X]$, c'est donc une base de $\mathbb{K}_n[X]$.

Exercice 42: [énoncé]

- (a) $F \subset E$ et la fonction nulle appartient à F (en prenant $P = Q = 0 \in \mathbb{R}_n[X]$) Soient $f, g \in F$ et $\lambda, \mu \in \mathbb{R}$. On peut écrire $f(x) = P(x) \sin x + Q(x) \cos x$ et $g(x) = \hat{P}(x) \sin x + \hat{Q}(x) \cos x$ avec $P, Q, \hat{P}, \hat{Q} \in \mathbb{R}_n[X]$. On a alors $\lambda f + \mu g = (\lambda P + \mu \hat{P})(x) \sin x + (\lambda Q + \mu \hat{Q})(x) \cos x$ avec $\lambda P + \mu \hat{P}, \lambda Q + \mu \hat{Q} \in \mathbb{R}_n[X]$ donc $\lambda f + \mu g \in F$ et finalement F est un sous-espace vectoriel de E.
- (b) Posons $f_k(x) = x^k \sin x$ et $g_k(x) = x^k \cos x$ avec $k \in \{0, ..., n\}$. Les fonctions $f_0, ..., f_n, g_0, ..., g_n$ sont des fonctions de F formant clairement une famille génératrice.

Supposons $\lambda_0 f_0 + \dots + \lambda_n f_n + \mu_0 g_0 + \dots + \mu_n g_n = 0$ alors pour tout $x \in \mathbb{R}$ on a: $(\lambda_0 + \lambda_1 x + \dots + \lambda_n x^n) \sin x + (\mu_0 + \mu_1 x + \dots + \mu_n x^n) \cos x = 0$.

Pour $x = \pi/2 + 2k\pi$ avec $k \in \mathbb{Z}$, on obtient une infinité de racine au polynôme $\lambda_0 + \lambda_1 X + \cdots + \lambda_n X^n$.

Ceci permet d'affirmer $\lambda_0 = \lambda_1 = \ldots = \lambda_n = 0$.

Pour $x = 2k\pi$ avec $k \in \mathbb{Z}$, on peut affirmer $\mu_0 = \mu_1 = \ldots = \mu_n = 0$.

On peut conclure que $(f_0, \ldots, f_n, g_0, \ldots, g_n)$ est libre et donc une base de F puis dim F = 2(n+1).

Exercice 43: [énoncé]

 $F \subset \mathbb{K}_n[X], \ 0 \in F \text{ car } A \mid 0.$

Soient $\lambda, \mu \in \mathbb{K}$ et $P, Q \in F$.

 $A \mid P \text{ et } A \mid Q \text{ donc } A \mid (\lambda P + \mu Q) \text{ puis } \lambda P + \mu Q \in F.$

Ainsi, F est un sous-espace vectoriel de $\mathbb{K}_n[X]$.

Notons $p = \deg(A)$. On a

$$F \oplus \mathbb{K}_{p-1}[X] = \mathbb{K}_n[X]$$

ce qui détermine un supplémentaire de F et donne dim F = n + 1 - p.

Exercice 44: [énoncé]

Considérons l'application $\varphi \colon \mathbb{R}_{n+1}[X] \to \mathbb{R}_n[X]$ définie par $\varphi(P) = P(X+1) - P(X)$. L'application φ est bien définie, linéaire et de noyau

 $\mathbb{R}_0[X]$. Par le théorème du rang elle est donc surjective et les solutions de l'équation $\varphi(P)=X^n$ se déduisent les unes des autres par l'ajout d'un élément de $\mathbb{R}_0[X]$ c'est-à-dire d'une constante. Ainsi il existe une unique solution vérifiant P(0)=0.

Exercice 45 : [énoncé]

(a) La matrice de la famille étudiée dans la base canonique de $\mathbb{R}_n[X]$ a pour coefficient général

 $a_{i,j} = \binom{n}{i} j^i \text{ avec } 0 \le i, j \le n.$

En factorisant par ligne le déterminant de cette matrice est

$$\prod_{i=0}^{n} \binom{n}{i} V_{n+1}(0,1,\ldots,n) \neq 0$$

avec $V_{n+1}(a_0, \ldots, a_n)$ déterminant de Vandermonde.

(b) cf. cours.