COLLE 18 = DÉNOMBREMENT

Connaître son cours:

- 1. Montrer que toute partie de l'ensemble [1, n] pour $n \in \mathbb{N}^*$ est finie.
- 2. Soit $p, q \in \mathbb{N}^*$, montrer qu'il existe une injection de [1, p] dans [1, q] si, et seulement si, $p \leq q$.
- 3. Soit E et F deux ensembles finis. Alors, $E \cup F$ est fini et $|E \cup F| = |E| + |F| |E \cap F|$.

Exercices:

Exercice 1. (*)

Combien les mots suivants possèdent-ils d'anagrammes?

1. "ABRACADABRA".

2. "LIPSCHITZIENNE".

Niveau: Première année de PCSI

Exercice 2. (**) (Nombres de Bell)

Soit E_n un ensemble fini de cardinal $n \ge 1$. On appelle partition de E_n , tout ensemble de parties de E_n non vides, deux à deux disjointes, et dont la réunion est égale à E_n . On note B_n le nombre de partitions de E_n et on convient que $B_0 = 1$. Les $B_n, n \in \mathbb{N}$ sont appelés nombres de Bell.

- 1. Calculer B_1, B_2 et B_3
- 2. Etablir la relation, dite d'Aitken, $\forall n \in \mathbb{N}, B_{n+1} = \sum_{i=0}^{n} \binom{n}{i} B_i$
- 3. Démontrer par récurrence forte que $\forall n \in \mathbb{N}, B_n = \sum_{i=0}^{+\infty} e^{-it} \frac{i^n}{i!}$

Exercice 3. (*)

On appelle diagonale d'un polygone convexe tout segment joignant deux de ses sommets non consécutifs. Si un polygone possède autant de diagonales que de côtés, combien possède-t-il de côtés?

Exercice 4. (***) (Nombres de Stirling de première espèce)

Soit n et k deux entiers strictement positifs.

- 1. Montrer qu'il n'existe qu'un nombre fini de partitions de l'ensemble $\{1, \ldots, n\}$ en k parties. Dans la suite, on notera S(n, k) le nombre de ces partitions. On pose de plus S(0, 0) = 1 et S(n, 0) = S(0, k) = 0.
- 2. Que vaut S(n,k) pour k > n?
- 3. Que vaut S(n,1)?
- 4. Démontrer que S(n,k) = S(n-1,k-1) + kS(n-1,k).
- 5. Rédiger une fonction récursive Python permettant de calculer S(n,k).