

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»

КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»

Отчет по лабораторной работе №4

Название _	Моделирование системы массового обслуживания
Дисциплин	на Моделирование
Студент За	олотухин А. В.
Группа <u>ИУ</u>	7-74Б
Оценка (ба	ллы)
Преподава	тель Рудаков И. В.

1 Задание

Промоделировать работу системы массового обслуживания, определить минимальный размер буфера памяти, при котором не будет потерянных заявок.

Управляющую программу реализовать по двум принципам: Δt и событийному. Время появления заявок распределено по равномерному закону, время обработки заявки обслуживающим аппаратом — по гиперэкспоненциальному закону. С заданной вероятностью обработанная заявка возвращается обратно в очередь на обслуживание.

2 Теоретические сведения

2.1 Равномерное распределение

Функция плотности распределения f(x) случайной величины X, имеющей равномерное распределение на отрезке [a,b] ($X \sim R(a,b)$), где $a,b \in R$, имеет следующий вид:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & \text{иначе.} \end{cases}$$
 (1)

Соответствующая функция распределения $F(x) = \int_{-\infty}^x f(t) dt$ принимает вид:

$$F(x) = \begin{cases} 0, & x < a, \\ \frac{x-a}{b-a}, & x \in [a,b] \\ 1, & x > b \end{cases}$$
 (2)

2.2 Гиперэкспоненциальное распределение

Функция плотности распределения f(x) случайной величины X, имеющей гиперэкспоненциальное распределение порядка n ($X \sim H_n(\lambda_1, \dots, \lambda_n, p_1, \dots, p_n)$) имеет следующий вид:

$$f(x) = \begin{cases} 0, & x < 0 \\ \sum_{i=1}^{n} \lambda_i p_i e^{-\lambda_i x} & x \ge 0 \end{cases},$$
 (3)

где $\sum_{i=1}^n p_i = 1$, $\lambda_i p_i \geq 0$ для всех $i = \overline{1,n}$.

Соответствующая функция распределения принимает вид:

$$F(x) = \begin{cases} 0, & x < 0 \\ 1 - \sum_{i=1}^{n} p_i e^{-\lambda_i x} & x \ge 0 \end{cases}$$
 (4)

2.3 Принципы реализации управляющей программы

Управляющая программа реализуется по следующим стандартным принципам.

1. Принцип Δt . Данный принцип заключается в последовательном анализе состояний всех блоков системы в момент $t + \Delta t$ по заданному состоянию блоков в момент времени t. При этом новое состояние блоков определяется в соответствии с их алгоритмическим описанием с учетом действия случайных факторов. В результате анализа принимается решение о том, какие общесистемные события должны имитироваться на данный момент времени. Основные недостатки: значительные затраты вычислительных ресурсов при малых Δt и вероятность пропуска отдельных событий при слишком больших Δt , что исключает возможность получения правильных результатов моделирования.

2. Событийный принцип. При использовании данного принципа состояния всех блоков имитационной модели анализируются лишь в момент появления какого либо события. Момент поступления следующего события определяется минимальным значением из списка будущих событий, представляющего собой совокупность моментов ближайшего изменения состояния каждого из блоков системы

3 Результаты работы программы

Рисунок 1 – Результаты исследования программы