- 1.写出表示下列语言的正则表达式。
 - $(1) \{0, 1\} *$
 - 解: 所求正则表达式为: (0+1)*。
 - $(2) \{0,1\}^+$
 - 解: 所求正则表达式为: (0+1)+。
 - (3) $\{x \mid x \in \{0,1\}^+$ 且 x 中不含形如 00 的子串 $\}$ 。
 - 解: 所求正则表达式为: 1*(01+)*(01+0+1)。
 - (4) { $x \mid x \in \{0, 1\} * \exists x$ 中不含形如 00 的子串 }。
 - 解:根据上题的结果,可得所求正则表达式为: $ε +1*(01^{+})*(01+0+1)$ 。
 - (5) $\{x \mid x \in \{0,1\}^{+}$ 且 x 中含形如 10110 的子串 $\}$ 。
 - 解: 所求正则表达式为: (0+1)*10110(0+1)*。
 - (6) $\{x \mid x \in \{0,1\}^+$ 且 x 中不含形如 10110 的子串 $\}$ 。
 - 解:根据第三章的习题,接受 x 的 FA 为:

要求该 FA 对应的正则表达式,分别以 q_0 、 q_1 、 q_2 、 q_3 、 q_4 为终结状态考虑:

- q_0 为终态时的正则表达式: $(0*(11*0(10)*(\epsilon+111*11*0(10)*)0)*)*$
- q₁为终态时的正则表达式: 0*1(1*(0(10)*111*1)*(0(10)*00*1)*)*
- q2为终态时的正则表达式: 0*11*0((10)*(111*11*0)*(00*11*0)*)*
- q_3 为终态时的正则表达式: 0*11*0(10)*1(11*11*0((10)*(00*11*0)*)*1)*
- q_4 为终态时的正则表达式: 0*11*0(10)*11(1*(11*0((00*11*0)*(10)*)*11)*)*
- 将以上5个正则表达式用"+"号相连,就得到所要求的正则表达式。
- (7) { x | x ∈ {0, 1}⁺ 且当把 x 看成二进制数时, x 模 5 与 3 同余和 x 为 0 时, | x | =1 且 x≠0 时, x 的首字符为 1}。
- 解:先画出状态转移图,设置 5 个状态 q_0 、 q_1 、 q_2 、 q_3 、 q_4 ,分别表示除 5 的余数是 0、1、2、3、4 的情形。另外,设置一个开始状态 q_0 由于要求 x 模 5 和 3 同余,而 3 模 5 余 3,故只有 q_3 可以作为终态。由题设,x=0 时, |x|=1,模 5 是 1,不符合条件,所以不必增加关于它的状态。下面对每一个状态考虑输入 0 和 1 时的状态转移。
 - q: 输入1,模5是1,进入q₁。
 - q₀: 设 x=5n。输入 0, x=5n*2=10n, 模 5 是 0, 故进入 q₀

输入 1, x=5n*2+1=10n+1, 模 5 是 1, 故进入 q1

- q_1 : 设 x=5n+1。输入 0,x=(5n+1)*2=10n+2,模 5 是 2,故进入 q_2
- 输入 1, x=(5n+1)*2+1=10n+3, 模 5 是 3, 故进入 q_3 q_2 : 设 x=5n+2。输入 0, x=(5n+2)*2=10n+4,模 5 是 4, 故进入 q_4
 - 输入 1, x=(5n+2)*2+1=10n+5, 模 5 是 0, 故进入 q₀
- q_3 : 设 x=5n+3。输入 0, x=(5n+3)*2=10n+6, 模 5 是 1, 故进入 q_1

输入 1,x=(5n+3)*2+1=10n+7,模 5 是 2,故进入 q_2 q_4 : 设 x=5n+4。输入 0,x=(5n+4)*2=10n+8,模 5 是 3,故进入 q_3 输入 1,x=(5n+4)*2+1=10n+9,模 5 是 4,故进入 q_4

则状态转移图如下:

则所求的正则表达式为: 1(010*1+(1+001*0)(101*0)*(0+110*1))*(1+001*0)(101*0)*

- (8) { $x \mid x \in \{0, 1\}^+$ 且 x 的第 10 个字符是 1 }。
- 解: 所求正则表达式为: (0+1)⁹1(0+1)*。
- 解: 所求正则表达式为: 0(0+1)*1。
- (10) $\{x \mid x \in \{0,1\}^+ \text{ 且 } x \text{ 中至少含两个 } 1\}$ 。
- 解: 所求正则表达式为: (0+1)*1(0+1)*1(0+1)*。
- (11) { $x \mid x \in \{0, 1\}*$ 和如果 $x \cup 1$ 结尾,则它的长度为偶数; 如果 $x \cup 0$ 结尾,则它的长度为奇数}。
- 解: 所求正则表达式为: $(0+1)^{2n+1}1+(0+1)^{2n}0$ $(n \in \mathbb{N})$

或
$$0+(0+1)((0+1)(0+1))*1+(0+1)(0+1)((0+1)(0+1))*0$$
。

(12) { x | x 是十进制非负实数 }。

解: 所求正则表达式为: (0+1+…+9)*. (0+1+…+9)*。

如果格式有严格要求,则应是

$$(1+\cdots+9)(0+1+\cdots+9)*+0+((1+\cdots+9)(0+1+\cdots+9)*+0).(0+1+\cdots+9)*(1+\cdots+9)$$

(13) Ф。

解: 所求正则表达式为: Φ。

(14) $\{ \epsilon \}_{\circ}$

解: 所求正则表达式为: ε。

5.构造下列正则表达式的等价 FA

$$(1)(0+1)^* + (0+11)^*$$

6、构造等价于下图所示 DFA 的正则表达式。

答案(之一): (01+(1+00)((1+00*1)0)*((1+00*1)1))* (ε+(1+00)((1+00*1)0)*00*) 预处理:

去掉 q_3 : (q2-q3-Y, q2-q3-q1)

去掉 q1:

去掉 q2:

去掉 q₀:

