Syms $g_1 d_2$ Syms $g_1 d_2$ $M = \begin{bmatrix} smp_1 \\ sin(p_2) \\ ... \end{bmatrix}$ $M = \begin{bmatrix} d_1 ff(M(1,1), g_1) \times g_1 d_2 \\ ... \end{bmatrix} + d_1 ff(M(1,1), g_2) + g_2 d_2 + ...$ $C = \begin{bmatrix} ... \\ g_1 d_2 \\ 1 \\ 1 \end{bmatrix}$

 $S = Mdot - 2 \times C;$ $test = [x_1 \times 2] \times S \times [x_1 \times 2];$ Shiplify (test) Shiplify (test)

$$\frac{1}{100} \frac{1}{100} \frac{1}$$

$$V = \frac{1}{2}m(lo)^2 + mgl(1-coso)$$

V is positive-definite in (-TT, TT) X IR

$$\dot{V} = ml^{2} \frac{300 + mglsino o}{0}$$

$$\dot{O} = \frac{-g}{l} \frac{300 - b}{ml^{2}} \frac{300}{0}$$

$$\dot{V} = ml^{2} \frac{3}{0} \left[-\frac{g}{l} \frac{3000 - b}{ml^{2}} \frac{3}{0} \right] + mgl \frac{3000}{0}$$

$$= -mglsin00 - b0^2 +$$

$$\dot{V} = -b\dot{\delta}^2$$

$$0 = -mg(s(n))$$

$$0 = 0$$

$$0 = -mg(s(n))$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 = 0$$

$$0 =$$

The only invariant set contained in D
is (0,0)

Shank
$$x = x(q) = 1$$

Shank $x = x(q) = 1$
 $x = x(q) = 1$

: Mg+Cg+7= W

Suppose
$$v = 0$$
 => $\tilde{q} = 0$ (=> $\tilde{q} = 0$)

then $u = -K_{p}\tilde{q}$
 $M_{\tilde{q}}^{2} + C_{p}^{2} = -K_{p}\tilde{q}^{2}$

if $\tilde{q} \neq 0$ > robot accelerates away from $(\tilde{q} = 0)$

by basalle: $q(t) \rightarrow q^{d}$ as $t \rightarrow \infty$

PD + granty comparation:

 $u = -K_{p}\tilde{q} - K_{p}\tilde{q}^{2} + q(\tilde{q})$
 $Cross-coupled$

term.

 $M_{\tilde{q}}^{2} + C_{\tilde{q}}^{2} + S_{\tilde{q}}^{2} = -K_{p}\tilde{q}^{2} - K_{p}\tilde{q}^{2} + S_{\tilde{q}}^{2}$

term.

 $M_{\tilde{q}}^{2} + C_{\tilde{q}}^{2} + S_{\tilde{q}}^{2} = -K_{p}\tilde{q}^{2} - K_{p}\tilde{q}^{2} + S_{\tilde{q}}^{2}$

w/s. srev. com.