Modelling Unmanned Aerial Swarms Using Unreal Game Engine and AirSim Simulator

Presented By: Naimah-Joy Chapman, Elijah Keck, Dillion Mead, and John Mueller

Introduction

This system uses Unreal Engine AirSim Simulator to simulate UAVs in a realistic three-dimensional environment. The UAV swarm will be autonomous with a unified behavior. The mission is to be able to collect data from its environment.

Benefits:

- Safe use in dangerous environments
- Easy to use autonomously
- Perfect for time constrained missions
- Minimizes human error
- Allows user to focus on other aspects

Previous Work

- Lidar implemented on individual UAV
- Objects within range detected
- Collision Detection
 - Executes continuously
 - Initiates Avoidance Module
- Swarm Pathing
 - Executes continuously
 - Mark waypoint as visited

Design Considerations

- Assumptions
 - Camera Sensor is oriented in the direction of movement
 - Lidar Sensor is oriented in the direction of movement
 - There is no interference with the sensors
 - UAV will only move in forward direction
 - There are no adversarial actors
 - Only small UAV
 - No landing or water FAA Right of Way scenarios

- Dependencies
 - Microsoft AirSim Simulator
 - Unreal Engine 4
 - Visual Studio 2019
 - Utilizes Python Environment
- Design Constraints
 - Limited to Unreal Engine 4/ AirSim environments

Collision Avoidance System

FAA Right of Way Rules

Collision Avoidance Behavior

- 1. Head-On Approach
- 2. Overtaking Approach
- 3. Converging Approach

Head-On Approach

Overtaking Approach

Converging Approach

UAV Movement & Heading

Demonstrations

Turn Towards Waypoint

Right Turn Avoid

Overtaking

Converging

Camera Sensor

Lessons Learned

- Multiple drones actors may need multiple "clients" to handle their behavior
- The increase of sensors greatly affects performance
- Limited options with additional sensor

Sprint Timeline

- Implement Lidar Sensor
- Object Detection
- Collision Detection
 - Executes continuously
 - Initiates Avoidance Module
- Swarm Pathing
 - Executes continuously
 - Moves swarm to next unvisited waypoint
 - Mark waypoints as visited

Sprint 1 Completed

- Lidar implemented on individual UAV
- Objects within range detected
- Collision Detection
 - Executes continuously
 - Initiates Avoidance Module
- Swarm Pathing
 - Executes continuously
 - Mark waypoint as visited

- Fix AirSim msg_pack bug Fix UAV avoidance movement response
- Implement iteration & comparison of distance array
- Implement right turn avoid maneuver Implement right-of-way rules

Sprint 2 Completed

- Fixed AirSim msg pack bug
- Fixed UAV avoidance movement response
- Included vector calculation
- Implemented iteration & comparison of distance array
- Implemented right turn avoid maneuver
- Implemented right-of-way rules

Sprint 3 Goals

- Increase size of swarm
 - Implement collision avoidance on each UAV
- Run multitude of simulation scenarios
- Use scenario data for statistical analysis

Thank You

Any Questions?