38.DataFrame

38.1 创建方法

```
In [2]: import numpy as np import pandas as pd dfl=pd.DataFrame(np.arange(10).reshape(2,5)) dfl
```

Out [2]:

	0	1	2	3	4
0	0	1	2	3	4
1	5	6	7	8	9

```
In [3]: df2 = pd.read_csv('bc_data.csv')
    df2.shape
```

Out [3]: (569, 32)

```
In [4]: df2=df2[["id","diagnosis","area_mean"]] df2.head()
```

Out [4]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
3	84348301	M	386.1
4	84358402	M	1297.0

38.2DataFrame中的行/列

```
In [5]: df2.index
Out [5]: RangeIndex(start=0, stop=569, step=1)
In [6]: df2.index.size
Out [6]: 569
```

```
In [7]: df2.columns
```

```
Out [7] : Index(['id', 'diagnosis', 'area_mean'], dtype='object')
```

In [8]: df2.columns.size

Out[8]: 3

```
Out [9]: (569, 3)
In [10]: | print("行数为:", df2.shape[0])
          print("列数为:", df2.shape[1])
          行数为: 569
          列数为: 3
          38.3 访问元素的方法
In [13]: df2["id"].head()
Out[13]: 0 842302
              842517
          2 84300903
          3 84348301
          4 84358402
          Name: id, dtype: int64
In [14]: df2.id.head()
Out[14]: 0 842302
              842517
          2 84300903
          3 84348301
          4 84358402
          Name: id, dtype: int64
In [15]: df2["id"][2]
Out[15]: 84300903
In [16]: df2.id[2]
Out[16]: 84300903
In [17]: df2["id"][[2,4]]
Out[17]: 2 84300903
          4 84358402
          Name: id, dtype: int64
In [18]: df2.loc[1,"id"]
Out[18]: 842517
In [19]: df2.iloc[1,0]
Out[19]: 842517
In [20]: df2.ix[[1],["id"]]
          C:\Anaconda\lib\site-packages\ipykernel_launcher.py:3: DeprecationWarnin
          .ix is deprecated. Please use
          .loc for label based indexing or
```

In [9]: df2.shape

.iloc for positional indexing

See the documentation here:

 $\verb|http://pandas.pydata.org/pandas-docs/stable/indexing.html#ix-indexer-is-deprecated|$

This is separate from the ipykernel package so we can avoid doing imports until

Out [20]:

	id
1	842517

In [21]: df2.ix[[1,5],["id"]]

Out [21]:

	id
1	842517
5	843786

In [22]: df2.ix[1:5,["id"]]

Out [22]:

	id
1	842517
2	84300903
3	84348301
4	84358402
5	843786

In [23]: df2[["area_mean","id"]].head()

Out[23]:

	area_mean	id
0	1001.0	842302
1	1326.0	842517
2	1203.0	84300903
3	386.1	84348301
4	1297.0	84358402

38.4 index操作

In [24]: df2.index

Out [24]: RangeIndex(start=0, stop=569, step=1)

In [25]: df2.columns

```
Out [25]: Index(['id', 'diagnosis', 'area_mean'], dtype='object')
```

```
In [26]: df2["id"].head()
```

Out[26]: 0 842302

1 842517

2 84300903

3 84348301

4 84358402

Name: id, dtype: int64

```
In [27]: df2.reindex(index=["1","2","3"],columns=["1","2","3"]) df2.head()
```

Out [27]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
3	84348301	М	386.1
4	84358402	М	1297.0

In [28]: df2.reindex(index=[2,3,1], columns=["diagnosis","id","area mean"])

Out [28]:

		diagnosis	id	area_mean
1	2	М	84300903	1203.0
[3	М	84348301	386.1
	1	М	842517	1326.0

In [29]: df3=df2.reindex(index=[2,3,1], columns=["diagnosis","id","area_mean","MyNewColumn"],fill_value=100) df3

Out[29]:

	diagnosis	id	area_mean	MyNewColumn
2	М	84300903	1203.0	100
3	М	84348301	386.1	100
1	М	842517	1326.0	100

38.4 删除或过滤行列

```
In [30]: import pandas as pd
    df2 = pd.read_csv('bc_data.csv')

    df2=df2[["id","diagnosis","area_mean"]]
    df2.head()
```

Out[30]:

id	diagnosis	area_mean

0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
3	84348301	М	386.1
4	84358402	М	1297.0

In [31]: df2.drop([2]).head()

Out[31]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
3	84348301	М	386.1
4	84358402	М	1297.0
5	843786	М	477.1

In [32]: df2.head()

Out[32]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
3	84348301	М	386.1
4	84358402	М	1297.0

In [33]: import pandas as pd

df2 = pd.read_csv('bc_data.csv') df2=df2[["id","diagnosis","area_mean"]]

df2.drop([3,4], axis=0, inplace=**True**) df2.head()

Out[33]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
5	843786	М	477.1
6	844359	М	1040.0

In [34]: import pandas as pd

df2 = pd.read_csv('bc_data.csv') df2=df2[["id","diagnosis","area_mean"]] df2.drop([3,4], axis=0, inplace=**False**)

df2.head()

Out[34]:

	id	diagnosis	area_mean
0	842302	М	1001.0
1	842517	М	1326.0
2	84300903	М	1203.0
3	84348301	М	386.1
4	84358402	М	1297.0

```
In [35]: import pandas as pd
            df2 = pd.read csv('bc data.csv')
            df2=df2[["id","diagnosis","area_mean"]]
            del df2["area_mean"]
            df2.head()
```

Out[35]:

	id	diagnosis
0	842302	М
1	842517	М
2	84300903	М
3	84348301	М
4	84358402	М

```
In [36]: import pandas as pd
            df2 = pd.read csv('bc data.csv')
            df2=df2[["id","diagnosis","area_mean"]]
            df2.drop(["id","diagnosis"], axis=1, inplace=True)
            df2.head()
```

Out[36]:

	area_mean
0	1001.0
1	1326.0
2	1203.0
3	386.1
4	1297.0

```
In [37]: import pandas as pd
            df2 =pd.read_csv('bc_data.csv')
            df2=df2[["id","diagnosis","area_mean"]]
            df2[df2.area_mean> 1000].head()
```

Out[37]:

	id	diagnosis	area_mean
0	842302	М	1001.0

1	842517	М	1326.0
2	84300903	М	1203.0
4	84358402	М	1297.0
6	844359	М	1040.0

In [38]: df2[df2.area_mean> 1000][["id","diagnosis"]].head()

Out[38]:

	id	diagnosis
0	842302	М
1	842517	М
2	84300903	М
4	84358402	М
6	844359	М

38.5 算术运算

In [39]:

df4=pd.DataFrame(np.arange(6).reshape(2,3))

Out[39]:

	0	1	2
0	0	1	2
1	3	4	5

In [40]: df5=pd.DataFrame(np.arange(10).reshape(2,5))

df5

Out[40]:

	0	1	2	თ	4
0	0	1	2	3	4
1	5	6	7	8	9

In [41]:

df4+df5

Out[41]:

		0	1	2	3	4
Ī	0	0	2	4	NaN	NaN
Ī	1	8	10	12	NaN	NaN

In [42]:

df6=df4.add(df5,fill_value=10)

Out[42]:

Ш	ш				
0	0	2	4	13.0	14.0
1	8	10	12	18.0	19.0

In [43]: s1=pd.Series(np.arange(3))

Out[43]: 0 0

dtype: int32

In [44]: df6-s1

Out[44]:

	0	1	2	3	4
0	0.0	1.0	2.0	NaN	NaN
1	8.0	9.0	10.0	NaN	NaN

In [45]: df5=pd.DataFrame(np.arange(10).reshape(2,5))

s1=pd.Series(np.arange(3))

df5-s1

Out[45]:

	0	1	2	3	4
0	0.0	0.0	0.0	NaN	NaN
1	5.0	5.0	5.0	NaN	NaN

In [46]: df5=pd.DataFrame(np.arange(10).reshape(2,5))

s1=pd.Series(np.arange(3))

df5.sub(s1,axis=1)

Out[46]:

	0	1	2	3	4
0	0.0	0.0	0.0	NaN	NaN
1	5.0	5.0	5.0	NaN	NaN

In [47]: df5=pd.DataFrame(np.arange(10).reshape(2,5))

s1=pd.Series(np.arange(3))

df5.sub(s1,axis=0)

Out[47]:

	0	1	2	3	4
0	0.0	1.0	2.0	3.0	4.0
1	4.0	5.0	6.0	7.0	8.0
2	NaN	NaN	NaN	NaN	NaN

In [48]: df7=pd.DataFrame(np.arange(20).reshape(4,5))

Out[48]:

	0	1	2	3	4
0	0	1	2	3	4
1	5	6	7	8	9
2	10	11	12	13	14
3	15	16	17	18	19

In [49]:

Out[49]:

	0	1	2	3	4
0	2	3	4	5	6
1	7	8	9	10	11
2	12	13	14	15	16
3	17	18	19	20	21

In [50]: print(df7) print("df7.cumsum=",df7.cumsum())

> 0 1 2 3 4 0 0 1 2 3 4 1 5 6 7 8 9 2 10 11 12 13 14 3 15 16 17 18 19 df7.cumsum= 0 1 2 3 4 0 0 1 2 3 4 1 5 7 9 11 13 2 15 18 21 24 27 3 30 34 38 42 46

In [51]: df7

Out[51]:

ı						
		0	1	2	3	4
	0	0	1	2	3	4
	1	5	6	7	8	9
	2	10	11	12	13	14
	3	15	16	17	18	19

In [52]: df7.rolling(2).sum()

Out[52]:

	0	1	2	3	4
0	NaN	NaN	NaN	NaN	NaN
1	5.0	7.0	9.0	11.0	13.0
2	15.0	17.0	19.0	21.0	23.0
3	25.0	27.0	29.0	31.0	33.0

```
In [53]: | df7.rolling(2,axis=1).sum()
```

Out [53]:

	0	1	2	3	4
0	NaN	1.0	3.0	5.0	7.0
1	NaN	11.0	13.0	15.0	17.0
2	NaN	21.0	23.0	25.0	27.0
3	NaN	31.0	33.0	35.0	37.0

```
In [54]: df7.cov()
```

Out[54]:

	0	1	2	3	4
0	41.666667	41.666667	41.666667	41.666667	41.666667
1	41.666667	41.666667	41.666667	41.666667	41.666667
2	41.666667	41.666667	41.666667	41.666667	41.666667
3	41.666667	41.666667	41.666667	41.666667	41.666667
4	41.666667	41.666667	41.666667	41.666667	41.666667

```
In [55]: df7.corr()
```

Out [55]:

	0	1	2	3	4
0	1.0	1.0	1.0	1.0	1.0
1	1.0	1.0	1.0	1.0	1.0
2	1.0	1.0	1.0	1.0	1.0
3	1.0	1.0	1.0	1.0	1.0
4	1.0	1.0	1.0	1.0	1.0

```
In [56]: import pandas as pd
    df2 = pd.read_csv('bc_data.csv')

    df2=df2[["id","diagnosis","area_mean"]][2:5]
    df2.T
```

Out[56]:

	2	3	4
id	84300903	84348301	84358402
diagnosis	М	М	М
area_mean	1203	386.1	1297

38.6 大小比较运算

```
In [57]: print(df6)
```