J f (x) de J generalize les mh. de con al detond parameters

SF1685: Calculus

Computing volume and area when rotating a graph

De + (x4) of

Lecturer: Per Alexandersson, perale@kth.se

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Rotational volume around the x-axis

Rotating the curve f(x) around the x-axis, creates a solid. It has volume

Example

Compute the of the cone created as the line y = x/2 is rotated around the x-axis, on the interval [0,2]. Verify that this agrees with the formula you learned in high-school.

Rotational volume around the y-axis

Rotating the curve x = f(y) around the y-axis creates a solid between the curve and the y-axis. It has volume

$$V = \int_{a}^{b} \pi f(y)^{2} dy$$

Here, a and b are points on the y-axis as well.

Example

The function $y = \sqrt{x}$ is rotated around the y-axis, $0 \le x \le 4$, and determines a solid between the curve and the y-axis. Find its volume.

Volume is

$$\frac{1}{\pi} \int_{0}^{2} (y^{2})^{2} dy$$
 $\frac{1}{\pi} \int_{0}^{2} y^{4} dy$
 $\frac{1}{\pi} \left[\frac{y^{2}}{3} \right]_{0}^{2} = \frac{\pi}{5} \cdot 32$

Rotational volume around the *y*-axis (shell method)

We can also compute volume created *under* f, when rotated around the y-axis, by cutting the shape into thin shells. The formula is

Example

The function $y = \sin(x)$ is rotated around the y-axis, $0 \le x \le \pi$, and determines a solid under the curve. Find its volume.

Volume of a sphere

Let's compute the volume of a sphere with radius 1. Compare the two methods (shell vs. rotation around x-axis).

NE use X2+52=1 2=1-x2 = 5-11-x2 to Single in: TT [x-x37] = TT (3 - (-2/3)) = 4/7 (totation around x-axis)

Volume of a sphere, continuation

$$\frac{7}{2} = 2\pi \int_{0}^{1} x \cdot \sqrt{1-x^{2}} dx = 2\pi \int_{0}^{1} \sqrt{1-(\frac{-dx}{2})} = \pi \left[\frac{2u}{3}\right]_{0}^{3/2}$$

$$= \frac{2\pi}{3}$$

$$= \frac{2\pi}{3}$$

$$= \frac{2\pi}{3}$$

$$= \frac{2\pi}{3}$$

$$= \frac{2\pi}{3}$$
So volume is $\frac{4\pi}{3}$

Surface area, when rotating around x-axis

The outer surface area of the solid created when f is rotated around the x-axis is

$$A = 2\pi \int_{a}^{b} f(x) \cdot \sqrt{1 + (f'(x))^{2}} dx.$$

Trick: Consider a small segment on the x-axis, with length Δx , starting at x. The approximate length from (x, f(x)) to $(x + \Delta x, f(x + \Delta x))$ is

Surface area of a sphere

$$S.A = 2\pi \int_{-1}^{1} \sqrt{1 - x^{2}} dx$$

$$= 2\pi \int_{-1}^{1} \sqrt{1 - x^{2}} dx$$

Gabriel's horn — A pain to paint?

Gabriel's horn is the long hollow tube obtained by rotating the graph $\frac{1}{x}$ around the x-axis, on the interval $[1,\infty)$. Estimate its surface area and compute the volume it encloses. Can you paint its inside?

Volume:

Fractule:

Finite area

Koch Snow Hake

Surfice are

Flowing water

A cup is determined by the curve $y=x^2$ rotated around the y-axis. Water rises in the cup at the rate 1cm/s, starting with an empty cup at t=0. How much water is in the cup at t=4? How much water (cm³) is entering the cup each second, at t=4?

Volume at tour is
$$V(u) = 8\pi$$

Notice at tour is $V(u) = 8\pi$

Notice at tour is $V(u) = 8\pi$

Note, is $V'(u) = \pi \cdot t$,

N'(u) = $4\pi \cdot t$.

So $V'(u) = 4\pi \cdot t$.

Exercise

Find the surface area of the volume when $y = 4 + 3x^2$ is rotated around the *x*-axis, with $0 \le x \le 1$.

Exercise

Find the volume of the under the curve $f(x) = e^{-x^2}$ as it rotates around the y-axis.

Sholl method:
$$V = 2\pi \int_{-\infty}^{\infty} x \cdot e^{-x^2} dx$$

$$= \pi \int_{-\infty}^{\infty} e^{-u} du$$

$$= \pi \left[-e^{-u} \int_{0}^{\infty} -\pi \left(0 - (-1) \right) \right] = \pi$$

$$= \pi \left[-e^{-u} \int_{0}^{\infty} -\pi \left(0 - (-1) \right) \right] = \pi$$

$$= \pi \left[-(\sqrt{3} \ln(\sqrt{3} - \sqrt{3})) \right] = \pi \left((1 - 6) \right) = \pi$$

$$= \pi \left[-(\sqrt{3} \ln(\sqrt{3} - \sqrt{3})) \right] = \pi \left((1 - 6) \right) = \pi$$

$$= \pi \left[-(\sqrt{3} \ln(\sqrt{3} - \sqrt{3})) \right] = \pi \left((1 - 6) \right) = \pi$$

$$= \pi \left[-(\sqrt{3} \ln(\sqrt{3} - \sqrt{3})) \right] = \pi \left((1 - 6) \right) = \pi$$

Volume of a torus

Compute the volume of torus, with "big" radius R, and "small" radius r.

Parametric curves — brief intro