Lecture 2: Decision Tree

Course Teacher: Md. Shariful Islam Bhuyan

Example: samples

Sample	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Туре	Est	Goal
<i>x</i> 1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0—10	yı = Yes
<i>x</i> 2	Yes	No	No	Yes	Full	\$	No	No	Thai	30–60	y2 = No
<i>x</i> 3	No	Yes	No	No	Some	\$	No	No	Burger	0—10	$y_3 = Yes$
<i>x</i> 4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	y4 = Yes
<i>x</i> 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	y5 = No
<i>x</i> 6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0—10	y6 = Yes
<i>x</i> 7	No	Yes	No	No	None	\$	Yes	No	Burger	0—10	y7 = No
<i>x</i> 8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0—10	y8 = Yes
<i>x</i> 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	y9 = No
<i>x</i> 10	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	1talian	10-30	y10 = No
X11	No	No	No	No	None	\$	No	No	Thai	0—10	y11 = No
X12	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	y12 = Yes

Decision tree

Which is better split?

Better Attribute

- Divides example into sets with
 - less uniform distribution or less entropy
- Entropy is a measure of the uncertainty of a random variable
 - For binary variable $B(q) = -q \log_2 q (1-q) \log_2 (1-q)$
- Information gain $G(A) = B\left(\frac{p}{p+n}\right) \sum_{k=1}^{d} \frac{p_k}{p_k + n_k} B\left(\frac{p}{p+n}\right)$

Inducing decision trees from examples

- Four cases for subproblems
 - 1. All positive (or all negative): we are done
 - 2. Some positive and some negative: choose next important attribute (greedy)
 - 3. No examples left: unobserved case, use prior knowledge/plurality
 - 4. No attributes left: error, noise, partial information, inherent uncertainty

Decision tree pseudocode

```
function DECISION-TREE-LEARNING(examples, attributes, parent examples) returns a tree if examples is empty then return PLURALITY-VALUE(parent examples) else if all examples have the same classification then return the classification else if attributes is empty then return PLURALITY-VALUE(examples) else A \leftarrow \underset{a \in attributes}{\text{IMPORTANCE}(a, examples)}  tree \leftarrow \text{ a new decision tree with root test } A for each value \ v_k \text{ of } A \text{ do} exs \leftarrow \{e: e \in examples \text{ and } e.A = v_k\} subtree \leftarrow \text{ DECISION-TREE-LEARNING}(exs, attributes - A, examples) add a branch to tree with label (A = v_k) and subtree subtree return tree
```

Assignment 1

- In Python
 - https://www.quora.com/How-should-1-learn-Python-for-machine-learning-and-artificial-intelligence
- Decision tree implementation
- Adaboost implementation
- Performance measure: Accuracy, Precision, Recall, F1-score
 - https://en.wikipedia.org/wiki/Confusion matrix
- Detect overfitting: Training-test split

Overfitting

- Generate a large tree when there is actually no pattern to be found
 - Example: roll of a die will come up as 6 or not.
- Irrelevant attribute: color, weight, time, is fingers crossed
- For fair dice, learn a tree with a single node that says "NO"
- Overfitting: 2 rolls of a 7-gram blue die with fingers crossed
- More likely as the number of input attributes grows
- Less likely as we increase the number of training examples.