滑らかな常微分方程式の計算量

太田浩行 * 河村彰星 [†] マルチン・ツィーグラー [‡] カルステン・レースニク [§]

2012/1/31

概要

- 1 導入
- 2 準備
- 2.1 表記

(二進) 自然数の集合を ${\bf N}$, 整数の集合を ${\bf Z}$, 実数の集合を ${\bf R}$, 有理数の集合を ${\bf Q}$ と表記する. 一変数関数 f の i 階の導関数を $\mathcal{D}^{(i)}f$ と表記する. 同様に二変数関数 g の第一引数にたいして i 階,第二引数に対して j 階の導関数を $\mathcal{D}^{(i,j)}g$ と表記する.

2.2 実数の名

精度を与えると、ある実数の近似値を返す関数をその実数の名と呼ぶ.

定義 2.1 (実数の名). 関数 $\phi: \{0^{\mathbf{N}}\} \to \mathbf{Z}$ が実数 $x \in [0,1]$ の名であるとは, $\phi(0^n) = |x \cdot 2^n|$ または $\phi(0^n) = [x \cdot 2^n]$ を満たすこと.

2.3 計算可能実関数,多項式時間実関数

実数は無限の長さを持つため、文字列にエンコードすることができない. そこで実関数を計算する機械を、入力となる実数の名を神託としてもつ神託機械として定義する.

^{*}東京大学

[†]第1著者に同じ

[‡]ダルムシュタット工科大学

[§]第1著者に同じ

定義 2.2. 神託機械 M が実関数 $f:A\to \mathbf{R}$ を計算するとは、任意の実数 $x\in A$ 、任意のx の名 ϕ_x にたいして、 M_x^ϕ が f(x) の名であること.

ある実関数が計算可能であるとは、その関数を計算する神託機械が存在することである。同様に、ある実関数が多項式時間計算可能であるとは、その関数を計算する多項式時間神託機械が存在することである。

多項式時間計算可能な関数は、多項式連続度という概念を導入することで、 神託機械を用いない同値な定義を構成できる.

$$\phi_f: \mathbf{Q} \times \{0^{\mathbf{N}}\} \to \mathbf{Q}, m_f: \{0^{\mathbf{N}}\} \to \{0^{\mathbf{N}}\} \text{ it}$$

$$|\phi_f(d,0^n) - f(d)| \le 2^{-n} \quad |x - y| \le 2^{-p_f(m)} \Rightarrow |f(x) - f(y)| \le 2^{-m} \quad (2.1)$$

をみたす関数とする. 計算可能な ϕ_f, m_f が存在することと f が計算可能であることは同値である. 多項式時間計算可能な ϕ_f, m_f が存在することと f が多項式時間計算可能であることは同値である.

定義 **2.3** (多項式連続度). f の多項式連続度 (polynomial modulus of continuity) を持つとは任意の $x_0,x_1\in[0,1],\ m\in N$ に対して $|x_0-x_1|\leq 2^{-p(m)}$ ならば $|f(x_0)-f(x_1)|\leq 2^{-m}$ を満たすような多項式 p が存在すること.

補題 2.4. 実関数 $f:[0,1]\to \mathbf{R}$ の多項式連続度を持ち多項式時間関数 $F:([0,1]\cap \mathbf{Q})\times \mathbf{N}\to \mathbf{Q}$ で任意の $d\in([0,1]\cap \mathbf{Q}),\,n\in \mathbf{N}$ にたいして

$$|F(d,0^n) - f(d)| \le 2^{-n} \tag{2.2}$$

を満たすものが存在することと、fが多項式時間計算可能であることは同値である.

2.4 完全性

定義 ${f 2.5}$ (還元). 言語 L が実関数 f に還元可能であるとは, 任意の文字列 u にたいして, 以下を満たす実数 x_u 多項式時間計算可能な関数 R,S,T が存在すること.

- S(u,·) は実数 x_u の名;
- 任意の $f(x_u)$ の名 ϕ にたいして

$$L(u) = R(u, \phi(T(u))).$$

計算量 C にたいして、関数 f が C 困難であるとは、任意の C に含まれる言語が f に還元可能であることである。 さらに f が C に含まれるとき、つまり C に対応する神託機械で f を計算するものが存在するとき、f は C 完全であると定義する.

3 微分可能関数と常微分方程式

以下のような常微分方程式を考える.

$$h(0) = 0,$$
 $\mathcal{D}^{(1)}h(t) = g(t, h(t)) \quad (t \in [0, 1])$ (3.1)

定理 3.1. 多項式時間実関数 g(t,y) で、微分可能かつ $\mathcal{D}^{(0,1)}g$ が連続であり、g の常微分方程式 (3.1) の解 h が PSPACE 完全であるものが存在する.

3.1 離散初期値問題

初期値問題の離散バージョンが PSPACE 完全であるところから始める. 河村の論文において以下のように定義されるフィードバックの弱い計算が PSPACE 完全であることが示されている.

補題 3.2 (補題 4.7. [Kaw10]). 任意の言語 $L \in \mathbf{PSPACE}$, 任意の文字列 u にたいして、以下を満たす定数 $d \geq 2$ 多項式 P,Q、関数族 $(G_u)_u$ 、 $(H_u)_u$ で、 $(G_u)_u$ は多項式時間計算可能, $H_u(P(|u|)+1,2^{Q(|u|)})=L(u)$ であるものが存在する.

- (i) $G_u: [P(|u|)] \times [2^{Q(|u|)}] \times [d] \to \{-1, 0, 1\};$
- (ii) $H_u: [P(|u|) + 1] \times [2^{Q(|u|)} + 1] \to [d];$
- (iii) 任意の $i \in [P(|u|)], T \in [2^{Q(|u|)}]$ にたいして
 - $H_u(i,0) = H_u(0,T) = 0$
 - $H_u(i+1,T+1) = H_u(i+1,T) + G_u(i,T,H_u(i,T)).$

もと論文では d=4 であったが、後の議論との統一のために一般化する. (図、より直感的でわかりやすい説明を入れる)

3.2 離散初期値問題を模倣する関数族

任意の言語 $L \in \mathbf{PSPACE}$, 文字列 u にたいして、上記の計算を模倣しL(u) を計算する微分可能な実関数 g_u を構成する.

補題 3.3. 任意の言語 $L\in \mathbf{PSPACE}$, 多項式 λ にたいして、多項式 ρ 、関数 族 $(g_u)_u, (h_u)_u$ で、 $(g_u)_u$ は多項式時間計算可能であり、各二進文字列 u にたいして以下を満たすものが存在する.

- (i) $g_u: [0,1] \times [-1,1] \to \mathbf{R}, \quad h_u: [0,1] \to [-1,1];$
- (ii) 任意の $y \in [-1,1]$ にたいして $g_u(0,y) = g_u(1,y) = 0$;

- (iii) h_u は g_u の常微分方程式の解;
- (iv) $\mathcal{D}^{(0,1)}g$ は連続;
- (v) $|\mathcal{D}^{(0,1)}g| \le 2^{-\lambda(|u|)-|u|}$;
- (vi) $h_u(1) = 2^{-\rho(|u|)}L(u)$.

この補題の証明の前に、葛によって示されている滑らかな多項式時間実関数 $f:[0,1] \to \mathbf{R}$ を導入する.

補題 ${\bf 3.4}$ (補題 3.6. $[{
m Ko}91]$). 以下を満たす多項式時間無限回微分可能実関数 $f:[0,1]
ightarrow {f R}$ が存在する.

- (i) f(0) = 0, f(1) = 1;
- (ii) 任意の $n \ge 1$ で $f^{(n)}(0) = f^{(n)}(1) = 0$;
- (iii) f は [0,1] で単調増加;
- (iv) 任意の n > 1 で $f^{(n)}$ は多項式時間実関数.

補題 3.3 の証明. $d,P,Q,(G_u)_u,(H_u)_u$ を補題 3.2 と同様に定義する. 各ステップを P(u) 個に分割することで, $G_u(i,T,Y)\neq 0$ を満たす i を各 T にたいしてたかだか 1 つにすることができる. そのような i のことを $j_u l(T)$ と表現する. 任意の i で $G_u(i,T,Y)=0$ ならば $j_u(T)$ は任意の値を取るとする. さらに以下のように仮定できる.

$$H_u(i, 2^{Q(|u|)}) = \begin{cases} L(u) & (i = P(|u|)) \\ 0 & (i < P(|u|)) \end{cases}$$
(3.2)

$$G_u(i, 2 \cdot 2^{Q(|u|)} - 1 - T, Y) = \begin{cases} 0 & (i = P(|u|) - 1) \\ -G_u(i, T, Y) & (i < P(|u|) - 1) \end{cases}$$
(3.3)

$$H_u(i, 2 \cdot 2^{Q(|u|)} - T) = \begin{cases} H_u(P(|u|), 2^{Q(|u|)}) & (i = P(|u|)) \\ H_u(i, T) & (i < P(|u|)) \end{cases}$$
(3.4)

補題 3.4 の f にたいして,定数 c を任意の $x \in [0,1]$ にたいして $|\mathcal{D}^{(\cdot)}1f(x)| \leq 2^c$ を満たす最小の自然数と定める.定数 $d' = \lceil \log(4d+1) \rceil$, $B = 2^{\lambda(|u|) + Q(|u|) + |u| + c + d'}$ とおき,各 $(t,y) \in [0,1] \times [-1,1]$ にたいして,自然数 N, $\theta \in [0,1]$,整数 Y, $\eta \in [-1/4,3/4]$ を $t = (T+\theta)2^{-Q(|u|)}$, $y = (Y+\eta)B^{-j_u(T)}$ を満たすように定める.

そのとき,

$$g_u^*(t,Y) = \frac{2^{Q(|u|)}\pi \sin(\theta\pi)}{2B^{j_u(T)+1}} G_u\left(j_u(T), T, Y \bmod 2^{d'}\right)$$
(3.5)

とおき g_u, h_u を以下のように定義する.

$$g_u(t,y) = \begin{cases} g_u^*(t,Y) & (\eta \le \frac{1}{4}) \\ (1 - f(2\eta - 1/2))g_u^*(t,Y) + f(2\eta - 1/2)g_u^*(t,Y+1) & (\eta > \frac{1}{4}) \end{cases}$$
(3.6)

$$h_u(t) = \sum_{i=0}^{P(|u|)} \frac{H_u(i,T)}{B^i} + \frac{1 - \cos(\theta \pi)}{2} \cdot \frac{G_u(j_u(T), T, H_u(j_u(T), T))}{B^{j_u(T)+1}}$$
(3.7)

上記のように定義した g_u,h_u が補題 3.3 で求める性質を満たすことを示す. (i) , (ii) は自明. $(g_u)_u$ が多項式時間計算可能であることは補題によって示される.

 h_u は g_u の常微分方程式の解であることを示す。まず h_u について解析する。(3.7) の一つ目の項において $i \leq j_u(T)$ の合計は $B^{j_u(T)}$ の倍数。 $i > j_u(T)$ の合計は、

$$\sum_{i>j_u(T)} \frac{H_u(i,T)}{B^i} \le \sum_{i>j_u(T)} \frac{d-1}{B^i} = \sum_{i>j_u(T)} \frac{d-1}{B^{i-j_u(T)}} B^{-j_u(T)}$$

$$\le \sum_{i>j_u(T)} \frac{(d-1)}{(4d+1)^{i-j_u(T)}} B^{-j_u(T)}$$

$$= \frac{d-1}{4d} B^{-j_u(T)}$$

二つ目の項の絶対値は

$$\left| \frac{1 - \cos(\theta \pi)}{2} \cdot \frac{G_u(j_u(T), T, H_u(j_u(T), T))}{B^{j_u(T) + 1}} \right| \le \frac{1}{B^{j_u(T) + 1}} \le \frac{B^{-j_u(T)}}{4d + 1} \quad (3.8)$$

よって $h_u(t)=(Y+\eta)B^{-j_u(T)}$ を満たす $\eta\in[-1/4,1/4]$ が存在する. このとき、

$$Y = \sum_{i=0}^{j_u(T)} H_u(i, T) \cdot B^{j_u(T) - i}.$$
 (3.9)

B は $2^{d'}$ の倍数なので, $Y \mod 2^{d'} = H_u(j_u)$. $(3.6) \land Y と \eta$ を代入すると,

$$g_u(t, h_u(t)) = \frac{2^{Q(|u|)} \pi \sin(\theta \pi)}{2B^{j_u(T)+1}} G_u(j_u(T), T, H_u(j_u(T), T))$$
$$= \mathcal{D}^{(1)} h_u(t).$$

よって h_u は g_u の常微分方程式の解.

 g_u は y に関して微分可能であり、

$$\mathcal{D}^{(0,1)}g(t,y) = \begin{cases} 0 & (\eta \le \frac{1}{4}) \\ 2B^{j_u(T)}\mathcal{D}^{(1)}f(2\eta - 1/2) \cdot (g_u^*(t,Y+1) - g_u^*(t,Y)) & (\eta > \frac{1}{4}) \end{cases}$$
(3.10)

よって $\mathcal{D}^{(0,1)}g$ は連続.

$$|g_u^*(t,Y)| \leq 2^{Q(|u|)} \pi/(2B^{j_u(T)+1}) \leq 2^{Q(|u|)+1}/B^{j_u(T)+1} \text{ if } \mathcal{G},$$

$$\left| \mathcal{D}^{(0,1)} g \right| \leq 2B^{j_u(T)} \cdot \left| \mathcal{D}^{(1)} f(2\eta - 1/2) \right| \cdot 2 \cdot \frac{2^{Q(|u|)+1}}{B^{j_u(T)+1}}
\leq \frac{2B^{j_u(T)} \cdot 2^c \cdot 2^{Q(|u|)+2}}{B^{j_u(T)+1}}
= \frac{2^{Q(|u|)+c+3}}{B} \leq 2^{-\lambda(|u|)-|u|}$$
(3.11)

(vii) は

$$h_{u}(1) = \frac{H_{u}(P(|u|), 2^{Q(|u|)})}{B^{P(|u|)}}$$

$$= \frac{L(u)}{2^{P(|u|)(\lambda(|u|) + Q(|u|) + |u| + c + d')}}$$
(3.12)

より,
$$\rho(k)=P(k)(\lambda(k)+Q(k)+|u|+c+d')$$
 とおくと成り立つ.

3.3 定理 3.1 の証明

証明. L を PSPACE 完全な言語, $\lambda(k)=2k+2$ とおく. PSPACE 完全な言語 L にたいして補題 3.3 を用いて, ρ , $(g_u)_u$, $(h_u)_u$ を得る. $(g_u)_u$ は多項式時間実関数族なので, $|g_u(t,y)| \leq 2^{\gamma(|u|)-|u|}$ を満たすような多項式 γ が存在する. 各 u にたいして

$$\Lambda_u = 2^{\lambda(|u|)}, \quad \Gamma_u = 2^{\gamma(|u|)} \tag{3.13}$$

$$c_u = 1 - \frac{1}{2|u|} + \frac{2\bar{u} + 1}{\Lambda_u}, \quad l_u^{\mp} = c_u \mp \frac{1}{\Lambda_u}$$
 (3.14)

とおく. ただし $\bar{u}\in\{0,\dots,2^{|u|}-1\}$ は u を二進数として解釈した数. 関数 g,h を $t\in[0,1],y\in\mathbf{R}$ にたいして、下のように定義する.

$$g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, \frac{y}{\Lambda_{u}\Gamma_{u}}\right) = \begin{cases} \pm \frac{1}{\Gamma_{u}} \left(g_{u}(t, 1) + \mathcal{D}^{(0, 1)}g_{u}(t, 1)(y - 1)\right) & (1 < y) \\ \pm \frac{g_{u}(t, y)}{\Gamma_{u}} & (-1 \le y \le 1) \\ \pm \frac{1}{\Gamma_{u}} \left(g_{u}(t, -1) + \mathcal{D}^{(0, 1)}g_{u}(t, -1)(y + 1)\right) & (y < -1) \end{cases}$$

$$(3.15)$$

$$h\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right) = \frac{h_u(t)}{\Lambda_u \Gamma_u}.\tag{3.16}$$

任意の $y \in \mathbf{R}$ にたいして g(1,y) = h(1) = 0 と定義する.

q と h が定理 3.1 で求める関数の性質を満たすことを示す.

まず g が多項式時間計算可能であることを示す。補題 1 を用いて示す。各有理数 T,Y について g(T,Y) を求めるとき, $T=l_u^\mp\pm t/\Lambda_u$, $Y=y/\Lambda_u\Gamma_u$ を満たすような $u,\pm(\mp),t,y$ は,多項式時間で計算可能である。

次に g が y に関して微分可能であり、導関数は y, t に関して連続になっていることをしめす。各区間で第二引数に関して微分すると、

$$\mathcal{D}^{(0,1)}g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{y}{\Lambda_u \Gamma_u}\right) = \begin{cases} \pm \Lambda_u \mathcal{D}^{(0,1)}g_u(t,1) & (1 < y) \\ \pm \Lambda_u \mathcal{D}^{(0,1)}g_u(t,y) & (-1 < y < 1) \\ \pm \Lambda_u \mathcal{D}^{(0,1)}g_u(t,-1) & (y < -1). \end{cases}$$
(3.17)

よって $\mathcal{D}^{(0,1)}g(t,1)=\pm \Lambda_u\mathcal{D}^{(0,1)}g_u(t,1),$ $\mathcal{D}^{(0,1)}g(t,-1)=\pm \Lambda_u\mathcal{D}^{(0,1)}g_u(t,-1)$ であり, y に関して微分可能. $\mathcal{D}^{(0,1)}g_u$ は連続であるため, y に関して連続は自明.

t 軸方向への連続性について、任意の [0,1) の数はある u と $t\in[0,1]$ が存在して $l_u^\mp\pm t/\Lambda_u$ の形で表せる、 $t\in(0,1)$ においては $\mathcal{D}^{(0,1)}g_u(t,y)$ は連続であるため、t 軸方向へ連続、t=0,1 のとき、 $y\in[-1,1]$ にたいして $g_u(0,y)=g_u(1,y)=0$ より $\mathcal{D}^{(0,1)}g_u(0,y)=\mathcal{D}^{(0,1)}g_u(1,y)=0$ よって t=0,1 においても連続、g(1,y)=0 より $\mathcal{D}^{(0,1)}g(1,y)=0$. また $|\mathcal{D}^{(0,1)}g_u|\leq 2^{\lambda(|u|)-|u|}$ より、

$$\lim_{t \to 1-0} \left| \mathcal{D}^{(0,1)} g \right| = \lim_{|u| \to \infty} \left| \Lambda_u \mathcal{D}^{(0,1)} g_u \right| \le \lim_{|u| \to \infty} \left| 2^{-|u|} \right| = 0. \tag{3.18}$$

よって $\mathcal{D}^{(0,1)}q$ は連続.

h が g の常微分方程式の解であることを示す. $h(0)=0,\quad \mathcal{D}^{(1)}h(1)=0=g(1,h(1))$ は自明.

$$h'(l_u^{\mp} \pm t/\Lambda_u)$$

$$= \pm \frac{h'_u(t)}{\Lambda_u \Gamma_u}$$

$$= \pm \frac{g_u(t, h_u(t))}{\Gamma_u}$$

$$= g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{h_u(t)}{\Lambda_u \Gamma_u}\right)$$

$$= g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, h\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right)\right). \tag{3.19}$$

L は h に還元可能であることを示す.

$$h(c_u) = \frac{h_u(1)}{\Lambda_u \Gamma_u} = \frac{L(u)}{2^{\lambda(|u|) + \gamma(|u|) + \rho(|u|)}}$$
(3.20)

 $^{^1}$ 準備で導入

つまり R, S, T を以下のように定義することで、還元可能.

$$R(u,v) = v (3.21)$$

$$S(u,0^n) = |2^n c_u|$$
 を表す文字列, (3.22)

$$T(u) = 0^{\lambda(|u|) + \gamma(|u|) + \rho(|u|)}$$

$$(3.23)$$

П

L は PSPACE 完全であるため、h も PSPACE 完全.

4 任意回微分可能関数と常微分方程式

任意回微分可能な関数の常微分方程式の解も、ある仮定のもと PSPACE 完全でありうることを証明する.

定理 **4.1.** 仮定 4.2 のもと、任意の自然数 $k \geq 2$ にたいし、多項式時間実関数 g(t,y) で、 $\mathcal{D}^{(0,k)}g$ が連続であり、g の常微分方程式 (3.1) の解 h が **PSPACE** 完全であるものが存在する.

仮定については次の章で導入する.

4.1 フィードバックの弱い計算

フィードバックの弱い計算を定義する。フィードバックの弱い計算とは定数 d, 関数 $P: \mathbf{N} \to \mathbf{N}$, 多項式 $Q: \mathbf{N} \to \mathbf{N}$, 関数族 $(G_u)_u, (H_u)_u$ で、5 つ組 $M = \langle d, P, Q, (G_u)_u, (H_u)_u \rangle$ である。

- (G_u)_u は多項式時間計算可能;
- P(x) = O(log x) かつ多項式時間計算可能;
- $G_u: [P(|u|)] \times [2^{Q(|u|)}] \times [d] \to \{-1, 0, 1\};$
- $H_u: [P(|u|) + 1] \times [2^{Q(|u|)}] \to [d];$
- 任意の $i \in [P(|u|)], T \in [2^{Q(|u|)}]$ にたいして
 - $H_u(i,0) = H_u(0,T) = 0$
 - $H_u(i+1,T+1) = H_u(i+1,T) + G_u(i,T,Hu(i,T)).$

フィードバックの弱い計算 M が言語 L を認識するとは任意の文字列 u で $H_u(P(|u|),2^{Q(|u|)})=L(u)$ を満たすこと.

仮定 4.2. 任意の言語 $L \in \mathbf{PSPACE}$ に対して L を認識するフィードバックの弱い計算が存在する.

つまりフィードバックの弱い計算が PSPACE 完全であることを仮定する.

4.2 離散初期値問題を模倣する関数族

証明の流れは1 回微分可能の時と変わらない。任意の言語 $L \in \mathbf{PSPACE}$ 、文字列 u にたいして、上記のフィードバックの弱い計算を模倣し L(u) を計算する任意回微分可能な実関数 g_u を構成する.

補題 4.3. 仮定 4.2 のもと、任意の自然数 $k\geq 2$ 、任意の言語 $L\in \mathbf{PSPACE}$ 、任意の多項式 λ にたいして、関数 $\rho: \mathbf{N}\to \mathbf{N}$ と関数族 g_u,h_u で、 $\rho,(g_u)_u$ は 多項式時間計算可能であり、各二進文字列 u にたいして以下を満たすものが存在する.

- (i) $g_u: [0,1] \times [-1,1] \to \mathbf{R}, \quad h_u: [0,1] \to [-1,1];$
- (ii) 任意の $y \in [-1,1]$ にたいして $g_u(0,y) = g_u(1,y) = 0$;
- (iii) h_u は g_u の常微分方程式の解;
- (iv) $\mathcal{D}^{(0,k)}q_u$ は連続;
- (v) 任意の $i \in \{0, ..., k\}$ にたいして $|\mathcal{D}^{(0,i)}g_u(t,y)| \leq \Lambda_u^{-i}2^{-|u|}$;
- (vi) $h_u(1) = 2^{-\rho(|u|)}L(u)$.

ただし $\Lambda_u = 2^{\lambda(|u|)}$.

証明. 仮定 4.2 より L を認識する $M=\langle d,P,Q,(G_u)_u,(H_u)_u \rangle$ を得る. さらに以下のように仮定する.

$$H_u(i, 2^{Q(|u|)}) = \begin{cases} L(u) & (i = P(|u|)) \\ 0 & (i < P(|u|)). \end{cases}$$
(4.1)

補題 3.4 の f にたいして,定数 c を任意の $i\in\{0,\dots,k\}$,任意の $x\in[0,1]$ にたいして $|\mathcal{D}^{(i)}f(x)|\leq 2^c$ を満たす最小の自然数と定める. 定数 $d'=\lceil\log(4d+1)\rceil$, $B=2^{Q(|u|)+k\lambda(|u|)+(k-1)+|u|+c+d'+k}$ とおき,各 $(t,y)\in[0,1]\times[-1,1]$ にたいして,自然数 $N,\,\theta\in[0,1]$,整数 $Y,\,\eta\in[-1/4,3/4]$ を $t=(T+\theta)2^{-Q(|u|)},\,y=(Y+\eta)B^{-(k+1)^{j_u(T)}}$ を満たすように定める. そのとき,

$$g_u^*(t,Y) = \frac{2^{Q(|u|)}\pi \sin(\theta\pi)}{2B^{(k+1)(j_u(T)+1)}} G_u\left(j_u(T), T, Y \bmod 2^{d'}\right)$$
(4.2)

とおき g_u, h_u を以下のように定義する.

$$g_{u}(t,y) = \begin{cases} g_{u}^{*}(t,Y) & (\eta \leq \frac{1}{4}) \\ (1 - f(2\eta - \frac{1}{2})g_{u}^{*}(t,Y) + f(2\eta - \frac{1}{2})g_{u}^{*}(t,Y+1) & (\eta > \frac{1}{4}) \end{cases}$$

$$(4.3)$$

$$h_u(t) = \sum_{i=0}^{P(|u|)} \frac{H_u(i,T)}{B^{(k+1)i}} + \frac{1 - \cos(\theta\pi)}{2} \cdot \frac{G_u(j_u(T), T, H_u(j_u(T), T))}{B^{(k+1)(j_u(T)+1)}}$$
(4.4)

上記のように定義した g_u,h_u が補題 4.3 で求める性質を満たすことを示す. (i) 、(ii) は自明. $(g_u)_u$ が多項式時間計算可能であることは補題によって示される.

 h_u は g_u の常微分方程式の解であることを示す。まず h_u について解析する。(4.4) の一つ目の項において $i\leq j_u(T)$ の合計は $B^{(k+1)^{j_u(T)}}$ の倍数。 $i>j_u(T)$ の合計は,

$$\sum_{i>j_u(T)}^{P(|u|)} \frac{H_u(i,T)}{B^{(k+1)^i}} \le \sum_{i>j_u(T)}^{\infty} \frac{d-1}{B^{(k+1)^i}}$$

$$\le \sum_{i>j_u(T)}^{\infty} \frac{d-1}{B^i} = \sum_{i>j_u(T)} \frac{d-1}{B^{i-j_u(T)}} B^{-j_u(T)}$$

$$\le \sum_{i>j_u(T)} \frac{(d-1)}{(4d+1)^{i-j_u(T)}} B^{-j_u(T)}$$

$$= \frac{d-1}{4d} B^{-j_u(T)}$$

二つ目の項の絶対値は

$$\left| \frac{1 - \cos(\theta \pi)}{2} \cdot \frac{G_u(j_u(T), T, H_u(j_u(T), T))}{B^{(k+1)(j_u(T)+1)}} \right| \le \frac{1}{B^{j_u(T)+1}} \le \frac{B^{-j_u(T)}}{4d+1} \quad (4.5)$$

よって $h_u(t)=(Y+\eta)B^{-j_u(T)}$ を満たす $\eta\in[-1/4,1/4]$ が存在する. このとき,

$$Y = \sum_{i=0}^{j_u(T)} H_u(i,T) \cdot B^{j_u(T)-i}.$$
 (4.6)

B は $2^{d'}$ の倍数なので, $Y \mod 2^{d'} = H_u(j_u)$. $(4.3) \land Y \ \ \ \ \ \eta$ を代入すると,

$$g_u(t, h_u(t)) = \frac{2^{Q(|u|)} \pi \sin(\theta \pi)}{2B^{j_u(T)+1}} G_u(j_u(T), T, H_u(j_u(T), T))$$

$$= \mathcal{D}^{(1)} h_u(t). \tag{4.7}$$

よって h_u は g_u の常微分方程式の解.

$$\mathcal{D}^{(0,i)}g(t,y) = \tag{4.8}$$

$$\begin{cases} 0 & (\eta \leq \frac{1}{4}) \\ 2^{i}B^{i\cdot(k+1)^{j_{u}(T)}} \cdot \mathcal{D}^{(i)}f\left(2\eta - \frac{1}{2}\right) \cdot (g_{u}^{*}(t,Y+1) - g_{u}^{*}(t,Y)) & (\eta > \frac{1}{4}) \end{cases}$$

よって
$$\mathcal{D}^{(0,i)}g$$
 は連続
$$(\mathrm{v}) \ \mathbf{を示す}. \ |g_u^*| \leq \left| \frac{2^{Q(|u|)}\pi\sin(\theta\pi)}{2B^{(k+1)}(j_u(T)+1)} \right| \leq \frac{2^{Q(|u|)+1}}{B^{(k+1)}(j_u(T)+1)} \ \mathrm{より}, \ i=0 \ \mathrm{において}$$

$$|\mathcal{D}^{(0,0)}g| = |g| \le \frac{2^{Q(|u|)+1}}{B^{(k+1)(j_u(T)+1)}} \le \frac{2^{Q(|u|)+1}}{B^{(k+1)}} \le 2^{-|u|}$$
(4.9)

 $i \in \{1, \dots, k\}$ において、

$$\begin{split} |\mathcal{D}^{(0,i)}g| &\leq 2^{i} \cdot B^{i \cdot (k+1)^{j_{u}(T)}} \cdot 2^{c} \cdot \left(g_{u}^{*}(t,Y+1) - g_{u}^{*}(t,Y)\right) \\ &\leq 2^{c+k} \cdot B^{k(k+1)^{j_{u}(T)}} \cdot 2 \cdot \frac{2^{Q(|u|)+1}}{B^{(k+1)(j_{u}(T)+1)}} \\ &\leq \frac{2^{Q(|u|)+c+k+2}}{B} \leq 2^{-i\lambda(|u|)-|u|} = \Lambda_{u}^{-i} 2^{-|u|} \end{split} \tag{4.10}$$

(vii) は

$$h_{u}(1) = \frac{H_{u}(P(|u|), 2^{Q(|u|)})}{B^{(k+1)^{P(|u|)}}}$$

$$= \frac{L(u)}{2^{(k+1)^{P(|u|)}(Q(|u|) + k\lambda(|u|) + |u| + c + d' + k)}}$$
(4.11)

より, $\rho(x) = (k+1)^{P(x)}(Q(x) + k\lambda(x) + x + c + d' + k)$ とおく. P(|u|) = $O(\log |u|)$ かつ P は多項式時間計算可能により, ho は多項式時間計算可能. \qed

定理 4.1 の証明 4.3

証明. L を PSPACE 完全な言語, $\lambda(k) = 2k + 2$ とおく. PSPACE 完全な 言語 L にたいして補題 4.3 を用いて, ρ , $(g_u)_u$, $(h_u)_u$ を得る.

$$c_u = 1 - \frac{1}{2|u|} + \frac{2\bar{u} + 1}{\Lambda_u}, \qquad l_u^{\pm} = c_u \pm \frac{1}{\Lambda_u}$$
 (4.12)

とおく. ただし $\bar{u} \in \{0, \dots, 2^{|u|} - 1\}$ は u を二進数として解釈した数. 関数 g,h を $t \in [0,1], y \in \mathbf{R}$ にたいして、下のように定義する.

$$g\left(l_{u}^{\mp} \pm \frac{t}{\Lambda_{u}}, \frac{y}{\Lambda_{u}}\right) = \begin{cases} \pm g_{u}(t, 1) \pm \mathcal{D}^{(0, 1)}g_{u}(t, 1)(y - 1) & (1 < y) \\ \pm g_{u}(t, y) & (-1 \le y \le 1) \\ \pm g_{u}(t, -1) \pm \mathcal{D}^{(0, 1)}g_{u}(t, -1)(y + 1) & (y < -1) \end{cases}$$

$$(4.13)$$

$$h\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right) = \frac{h_u(t)}{\Lambda_u}.\tag{4.14}$$

任意の $y \in \mathbf{R}$ にたいして g(1,y) = h(1) = 0 と定義する.

g と h が定理 3.1 で求める関数の性質を満たすことを示す.

まず g が多項式時間計算可能であることを示す. 補題 2 を用いて示す. 各有 理数 T,Y について g(T,Y) を求めるとき, $T=l_u^\mp\pm t/\Lambda_u$, $Y=y/\Lambda_u$ を満 たすような $u, \pm(\mp), t, y$ は、多項式時間で計算可能である.

²準備で導入

次に g が y に関して微分可能であり、導関数は y,t に関して連続になっていることをしめす。各区間で第二引数に関して微分すると $i \in 1,\ldots,k$ で

$$\mathcal{D}^{(0,i)}g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{y}{\Lambda_u}\right) = \begin{cases} \pm \Lambda_u^i \mathcal{D}^{(0,i)} g_u(t,1) & (1 < y) \\ \pm \Lambda_u^i \mathcal{D}^{(0,i)} g_u(t,y) & (-1 < y < 1) \\ \pm \Lambda_u^i \mathcal{D}^{(0,i)} g_u(t,-1) & (y < -1). \end{cases}$$
(4.15)

よって $\mathcal{D}^{(0,i)}g(t,1)=\pm \Lambda_u^i\mathcal{D}^{(0,i)}g_u(t,1),$ $\mathcal{D}^{(0,i)}g(t,-1)=\pm \Lambda_u^i\mathcal{D}^{(0,i)}g_u(t,-1)$ であり、y に関して i 回微分可能かつ i 階の導関数は連続.

t 軸方向への i 階の導関数の連続性について. 任意の [0,1) の数はある u と $t\in [0,1]$ が存在して $l_u^\mp\pm t/\Lambda_u$ の形で表せる. $t\in (0,1)$ においては $\mathcal{D}^{(0,i)}g_u(t,y)$ は連続であるため, t 軸方向へ連続. t=0,1 のとき, $y\in [-1,1]$ にたいして $g_u(0,y)=g_u(1,y)=0$ より $\mathcal{D}^{(0,i)}g_u(0,y)=\mathcal{D}^{(0,i)}g_u(1,y)=0$ よって t=0,1 においても連続. g(1,y)=0 より $\mathcal{D}^{(0,i)}g(1,y)=0$. また $|\mathcal{D}^{(0,i)}g_u|\leq \Lambda_u^{-i}2^{-|u|}$ より,

$$\lim_{t \to 1-0} \left| \mathcal{D}^{(0,i)} g \right| = \lim_{|u| \to \infty} \left| A_u^i \mathcal{D}^{(0,i)} g_u \right| \le \lim_{|u| \to \infty} \left| 2^{-|u|} \right| = 0. \tag{4.16}$$

よって $\mathcal{D}^{(0,i)}q$ は連続.

h が g の常微分方程式の解であることを示す. $h(0)=0,\quad \mathcal{D}^{(1)}h(1)=0=g(1,h(1))$ は自明.

$$h'(l_u^{\mp} \pm t/\Lambda_u)$$

$$= \pm \frac{h'_u(t)}{\Lambda_u}$$

$$= \pm g_u(t, h_u(t))$$

$$= g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, \frac{h_u(t)}{\Lambda_u}\right)$$

$$= g\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}, h\left(l_u^{\mp} \pm \frac{t}{\Lambda_u}\right)\right). \tag{4.17}$$

L は h に還元可能であることを示す.

$$h(c_u) = \frac{h_u(1)}{\Lambda_u} = \frac{L(u)}{2^{\lambda(|u|) + \rho(|u|)}}$$
(4.18)

つまり R, S, T を以下のように定義することで、還元可能、

$$R(u,v) = v (4.19)$$

$$S(u,0^n) = \lfloor 2^n c_u \rfloor$$
 を表す文字列, (4.20)

$$T(u) = 0^{\lambda(|u|) + \rho(|u|)}$$
 (4.21)

L は PSPACE 完全であるため, h も PSPACE 完全.

5 結論

5.1 課題

t に関する微分.

参考文献

- [Kaw10] A. Kawamura. Lipschitz continuous ordinary differential equations are polynomial-space complete. *Computational Complexity*, 19(2):305–332, 2010.
- [Ko91] K.I. Ko. Complexity theory of real functions. Birkhauser Boston Inc., 1991.