이글루 파렛트를 통한 콜드체인시스템 효율 향상 방안

2021.5.28

동명대학교 항만물류시스템학과

심관우 강명조 이채민 이자한 김민상 이광우

韓國海運物流學會

CONTENTS

서론

- 1.1 배경
- 1.2 Consolidation

부 본론

2.1 Smart Igloo 2.2 컨테이너 원격 관리

2.3 온도조절방법 2.4 관리대상

3 결론 3.1 기대 효과

^{서론} **1.1 배경**

등급	온도	저장식품		
С3	-2°C ~ +10°C	장조림, 우유, 어류/육류가공품, 계란, 청과물		
C2	-10°C ~ -2°C	생선, 날고기, 유제품, 자반, 건어		
C1	-20°C ~ -10°C	냉동식빵, 냉동어류, 육류가공품		
F1	-30°C ~ -20°C	일반아이스크림, 버터, 냉동식품/육류/채소		
F2	-40°C ~ -30°C	고급아이스크림		
F3	-50°C ~ -40°C	일반 참치/회		
F4	-50°C 이하	고급 참치/회		

<사진 1> 일본 냉장·냉동창고 온도 표준 등급

출처 : 丹下博文, 『일본 현황과 콜드체인 물류 정책』, 2013

서론

1.2 Consolidation

<그림 1> Smart Igloo 냉동컨테이너 적입

본론

2.1 Smart Igloo

<그림 2> Smart Igloo

• 파레트 단위의 소형화된 냉동 컨테이너

사용 재질	스테인레스	알루미늄		우레탄폼 (단열)	
제작 방식	터닝지그를 통한 용접 및 공정설비 이용 (기존 냉동컨테이너 제작방식)				
온도조절범위	-70°C ~ +10°C				
동력원	냉동컨테ㅇ 발전기]너	차량전력		
동력공급방법	냉동컨테이너 내부의 전선 연결				
전체 부피	1100 * 1100 * 1100 mm³				

<표 1> Smart Igloo 제원

^{본론} 2.2 컨테이너 원격 관리

<사진 2> 원격 컨테이너 관리 (Remote Container Management : RCM)

출처 : maersk

^{본론} 2.3 온도조절방법

<그림 3> 냉동사이클 원리

본론

2.3 온도조절방법

압축기

압축기 내의 피스톤이 냉매 가스를 압축하여 고온고압의 기체를 만드는 장치이며, 심장 역할

응축기

고온고압의 냉매 기체를 응축, 액화하는 장치이며, 에어컨의 실외기 역할

팽창밸브

응축된 냉매를 팽창시켜 냉매의 온도를 떨어뜨리고 무화 시킴으로써 냉매의 증발을 돕는 장치

증발기

팽창밸브의 무화증기를 증발시켜 실제 냉동효과를 달성하는 장치이며, 에어컨의 실내기 역할

^{본론} **2.4** 관리대상

