Chapter 1 Introduction

Courtesy to the textbooks' authors and Pearson Addison-Wesley because many slides are adapted from the following textbooks and their associated slides.

Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach", 7th Edition, Pearson, 2016.

Jim Kurose, Keith Ross, "Computer Networking: A Top Down Approach", 8th Edition, Pearson, 2020. All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved

Chapter 1: introduction

Chapter goal:

- Get "big picture" and "feelings"
 - Introduction to terminology
 - more depth, detail later in course
- Use Internet as an example

Overview/roadmap:

- What is the Internet?
 - Network edge: hosts, access network, physical media
 - Network core: packet/circuit switching, internet structure
 - What is a protocol?
- Performance
 - loss, delay, throughput
- Protocol layers, service models
- Security
- History

The Internet: a "nuts and bolts" view

Billions of connected devices:

- end systems = hosts
- running network apps at Internet's "edge"

"Fun" Internet-connected devices

Tweet-a-watt: monitor energy use

bikes

Security Camera

Internet phones

Slingbox: remote control cable TV

Gaming devices

smart watch

scooters

The Internet: a "nuts and bolts" view

Billions of connected devices:

- end systems = hosts
- running network apps at Internet's "edge"

Routers/switches: forward packets (chunks of data)

routers, switches

Communication links

- fiber, copper, radio, satellite
- transmission rate: bandwidth

Networks

collection of hosts, routers, links: managed by an organization

The Internet: a "nuts and bolts" view

- Internet: "network of networks"
 - Interconnected ISPs
- protocols are everywhere
 - control sending and receiving of messages, ...
 - e.g., HTTP (Web), streaming video, Skype, TCP, IP, WiFi, 4G, Ethernet
- Internet standards
 - IETF: Internet Engineering Task Force
 - RFC: Request for Comments
 - IEEE: Institute of Electrical and Electronics Engineers

What's a protocol?

A human protocol and a computer network protocol:

What's a protocol?

Human protocols:

- "what's the time?"
- "I have a question"
- introductions

Rules for:

- ... specific messages sent
- ... specific actions taken when message received, or other events

Network protocols:

- computers (devices) rather than humans
- all communication activity in Internet governed by protocols

Protocols define the format, order of messages sent and received among network entities, and actions taken on message transmission, receipt

Chapter 1: roadmap

- What *is* the Internet?
- What is a protocol?
- Network edge: hosts, access network, physical media
- Network core: packet/circuit switching, internet structure
- Performance: loss, delay, throughput
- Security
- Protocol layers, service models
- History

Network edge vs. network core

Network edge:

- hosts: clients and servers
 - servers often in data centers
- access network
 - the network that physically connects an end system to the first router (aka edge router)
 - wired, wireless communication links

Network edge vs. network core

Network edge:

- hosts: clients and servers
 - servers often in data centers
- access network
 - the network that physically connects an end system to the first router (aka edge router)
 - wired, wireless communication links

Network edge vs. network core

Network edge:

- hosts: clients and servers
 - servers often in data centers
- access network
 - the network that physically connects an end system to the first router

Network core:

- interconnected routers
- network of networks

Access networks

Q: How to connect end systems to edge router?

- residential access networks
 - DSL (digital subscriber line)
 - Cable
 - with multiple wired and wireless devices
- institutional access networks (school, company)
- mobile access networks (WiFi, 4G/5G)

Access networks: cable-based access

- cable Internet access makes use of existing cable TV infrastructure
- *frequency division multiplexing (FDM):* different channels transmitted in different frequency bands
- homes share access network to cable headend and ISP

Access networks: cable-based access

- HFC: hybrid fiber coax
 - asymmetric: up to 40 Mbps 1.2 Gbps downstream transmission rate, 30-100 Mbps upstream transmission rate
- network of cable and fiber attaches homes to ISP router
 - homes share access network to cable headend

Access networks: digital subscriber line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- 24-52 Mbps dedicated downstream transmission rate for each line
- 3.5-16 Mbps dedicated upstream transmission rate for each line

Access networks: home networks

Wireless access networks

Shared wireless access network connects end system to router

via base station aka "access point"

Wireless local area networks (WLANS)

- typically within or around building (~100 ft)
- 802.11b/g/n/ac/ax (WiFi): 11, 54, 450, 1560, 2400 Mbps tx rate

Wide-area cellular access networks

- provided by mobile, cellular network operator (10's km)
- 10's or 100's Mbps (5G peak: 20Gbps)
- 4G/5G cellular networks (6G coming)

Access networks: enterprise networks

- companies, universities, etc.
- mix of wired, wireless link technologies, connecting a mix of switches and routers (we'll cover differences shortly)
 - Ethernet: wired access at 100Mbps, 1Gbps, 10Gbps
 - WiFi: wireless access points at 11, 54, 450, 1560, 2400 Mbps

Access networks: data center networks

 high-bandwidth links (10s to 100s
Gbps) connect hundreds to thousands of servers together, and to Internet

Courtesy: Massachusetts Green High Performance Computing Center (mghpcc.org)

Links: wired media

- Twisted pair (TP)
 - two insulated copper wires
 - Category 5 (CAT. 5): 100 Mbps, 1 Gbps Ethernet
 - CAT. 6: 10 Gbps Ethernet
 - CAT. 8: 25/40 Gbps Ethernet

4 twisted pairs (8 insulated copper wires)

RJ45 connector

Coaxial cable

- high-speed operation:
 - 10's-100's Gbps
 - low error rate
- slow attenuation
- immune to electromagnetic noise

Links: wireless media

Wireless radio

- signal carried in various "bands" in electromagnetic spectrum
- no physical "wire"
- broadcast
 - is often "half-duplex" (sender to receiver)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference
 - noise

Radio link types include:

- wireless personal area network (e.g., Bluetooth)
 - cable replacement
 - short distances
 - limited rates
- wireless local area network or WLAN (e.g., WiFi)
 - rate: 10-1000's Mbps
 - coverage: 10's of meters
- wireless wide-area network or WWAN (e.g., 4G/5G)
 - rate: 10's Mbps
 - coverage: 10's Km
- satellite
 - long end-to-end propagation delay
 - except for LEO satellites