Лабораторная работа 2.5.1 Измерение коэффициента поверхностного натяжения жидкости

Симанкович Александр Б01-104

23.03.2022

Цель работы

Измерение коэффициента поверхностного натяжения исследуемой жидкости при разной температуре с использованием известного коэффициента поверхностного натяжениядругой жидкости

Определение полной поверхностной энергиии теплоты, необходимой для изотермического образования единицы поверхности жидкости.

Оборудование и приборы

Прибор Ребиндера с термостатом, исследуемые жидкости, стаканы.

Теоретическое введение

Наличие поверхностного слоя приводит к различию давлений поразные стороны от искривленной границы раздела двух сред. Для сферического пузырька внутри жидкости избыточное давление дается формулой Лапласа

$$\Delta P = P_{\text{внутри}} - P_{\text{снаружи}} = 2\sigma/r.$$

Эта формула лежит в основе предлагаемого метода определения коэффициента поверхностного натяжения жидкости. Измеряется давление, необходимое для выталкивания в жидкость пузырька газа.

Экспериментальная установка

Исследуемая жидкость наливается в сосуд B. Дистиллированная вода наливается в сосуд E. Сосуды закрыты пробками. Через пробку сосуда, в котором проводятся измерения, проходит полая металлическая игла , нижний конец которой погружен в жидкость, а верхний открыт в атмосферу. Если другой сосуд герметично закрыт, то в сосуде с иглой создается разрежение, и пузырьки воздуха начинают пробулькивать через жидкость. Поверхностное натяжение можно найти по величине разрежения, необходимого для прохождения пузырьков. При приоткрытом кране K_1 из аспиратора A по каплям вытекает вода, создавая разрежение, которое измеряется наклонным спиртовым манометром . Показания манометра, умноженные на зависящий от наклона коэффициент, дают давление в кгс/м². Чтобы пополнить запас воды, достаточно при

помощи крана K_2 соединить нижнюю часть аспиратора с атмосферой и предварительно заполненной водой верхней частью. Через рубашку D непрерывно прогоняется вода из термостата для стабилизации температуры исследуемой жидкости.

Рис. 1: Схема установки

Ход работы

Спирт

Коэффициент пересчета столба спиртового манометра в давление:

$$K = 0.2 \cdot 9.81 \cdot 0.8095 = 1.588 \, \Pi \text{a/mm}$$

Поместим иглу в сосуд со спиртом, закроем пробками сосуды, открыв кран аспиратора добьемся пробулькивания пузырьков воздуха.

Таблица 1: Давление пробулькивания, спирт, игла на поверхности

$$p = (72.4 \pm 1.4) \, \Pi a$$

Воспользовавшись табличным значением поверхностного натяжения для спирта:

$$\sigma_{\rm cn} = (22 \pm 2) {\rm MH/MM}$$

Значения диаметра иглы, измеренные с помощью микроскопа и косвенно:

$$d_{\text{mukp}} = (1.05 \pm 0.05) \text{ mm} \qquad d_{\text{kocb}} = \frac{4\sigma}{p} = (1.22 \pm 0.11) \text{ mm}$$

Вода

Измерим давления, при которых начинается пробулькивание.

Таблица 2: Давление пробулькивания, вода, игла на поверхности

$$h_{deep}$$
, MM | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | 189 | p_{deep} , Πa | 300.18 | 300.18 | 300.18 | 300.18 | 300.18 | 300.18 | 300.18 | 300.18 | 300.18 |

Таблица 3: Давление пробулькивания, вода, игла на глубине

$$\Delta h = h_1 - h_2 = (15.0 \pm 0.5) \; \text{mm}$$

$$\Delta h = rac{p_2 - p_1}{
ho q} = (13.7 \pm 0.3) \; \mathrm{mm}$$

Формула для определения σ :

$$\sigma = \frac{pr}{2}$$

Погрешности измерения:

$$\Delta p = 1.6 \text{ Ha}$$
 $\Delta T = 0.2 \text{ K}$ $\Delta \sigma = \sigma \sqrt{(\Delta p/p)^2 + (\Delta r/r)^2} = 2 \text{ H/M}$

Измерим зависимость давления от температуры.

$T,^{\circ}$ C	$p_{av}, \Pi a$	$p_1, \Pi a$	$p_2, \Pi a$	$p_3, \Pi a$	$p_4, \Pi a$	$p_5, \Pi a$	$p_6, \Pi a$	$p_7, \Pi a$	$p_8, \Pi a$	$p_9, \Pi a$	$p_{10}, \Pi a$
20.7	153.0	300.2	300.2	300.2	300.2	300.2	300.2	300.2	300.2	300.2	300.2
25.0	151.1	297.0	298.6	297.0	298.6	298.6	298.6	298.6	298.6	298.6	298.6
30.0	156.0	301.8	303.4	303.4	303.4	303.4	303.4	303.4	303.4	303.4	303.4
35.0	162.4	308.1	309.7	309.7	309.7	309.7	309.7	309.7	309.7	309.7	309.7
40.0	161.9	308.1	309.7	309.7	309.7	308.1	309.7	308.1	309.7	308.1	309.7
50.0	159.4	306.5	306.5	306.5	306.5	306.5	306.5	306.5	306.5	306.5	306.5
60.0	154.0	301.8	301.8	300.2	301.8	300.2	301.8	301.8	300.2	301.8	300.2

Таблица 4: Зависимость p(T)

T,° C	$p, \Pi a$	σ , м $H/$ м
20.7	153.0	46.7
25.0	151.1	46.1
30.0	156.0	47.6
35.0	162.4	49.5
40.0	161.9	49.4
50.0	159.4	48.6
60.0	154.0	47.0

Таблица 5: Зависимость $\overline{p}(T)$

Построим график.

Рис. 2: Зависимость $\sigma(T)$

По методу наименьших квадратов, предполагая зависимость линейной (y = ax + b):

\overline{x}	σ_x^2	\overline{y}	σ_u^2	r_{xy}	a	Δa	b	Δb
4.62e + 01	9.22e + 01	48.62	$1.04 \mathrm{e} {+00}$	-9.46e+00	-0.10	0.02	53.37	0.91

Таблица 6: Параметры регрессии $\sigma(T)$

Также построим графики:

- 1) теплоты образования единицы поверхности жидкости $q=-T\frac{d\sigma}{dT}$. 2) поверхностной энергии U единицы площади $F\colon \frac{U}{F}=\sigma-T\frac{d\sigma}{dT}$.

$T,^{\circ}$ C	q , мДж/м 2	U/F , мДж/м 2
35.0	3.59	53.1
40.0	4.11	53.5
50.0	5.13	53.7
60.0	6.16	53.1

Таблица 7: Зависимости $q(T),\ U/F(T)$

Рис. 3: Зависимость q(T)

Рис. 4: Зависимость U/F(T)

Вывод

Данные, собранные в эксперименте, плохо подчиняются теоретической модели. В процессе эксперимента было обнаружена негерметичность установки (при закрывании аспиратора происходило падение давления). Предполагаются корректными последние 4 точки на зависимости. Для наглядности на графике $\sigma(T)$ приведены точки, при которых была течь.

Значение $\sigma_{\text{табл}} = 73 \text{ мH/м}$ не сходится с экспериментальным $\sigma_{\text{эксп}} = 48 \text{ мH/м}$. Отклонение может возникнуть вследствие попадания спирта в пробирку с водой из-за нетщательной просушки иглы в предыдущих экспериментах (спирт имеет $\sigma_{\text{сп}} = 22 \text{ мH/м}$, поэтому поверхностное натяжение смеси ниже).

Значение $(d\sigma/dT)_{\text{табл}} = -0.15 \frac{\text{мH}}{\text{м·K}}$ (рассчитано по правилу Этвёша) не сходится с экспериментальным $(d\sigma/dT)_{\text{эксп}} = -(0.10 \pm 0.02) \frac{\text{мH}}{\text{м·K}}$. Предположительно ошибка связана с малым количеством экспериментальных данных и с попаданием спирта в пробирку с водой.