Probabilidades

- Oscilación Estándar
- Decaimiento Invisible (Inv. Decay)
- Violación de Principio de Equivalencia (VEP)
- Interacción no Estandar (NSI)
- Ejemplos numéricos

OSCILACIÓN ESTÁNDAR

 El cálculo de la probabilidad de oscilación estándar requiere los siguientes elementos:

Matriz de Mezcla

$$U_{PMNS} = \begin{pmatrix} U_{11} & U_{12} & U_{13} \\ U_{21} & U_{22} & U_{23} \\ U_{31} & U_{32} & U_{33} \end{pmatrix} = U_{PMNS}(\theta_{12}, \theta_{13}, \theta_{23}, \delta, s) \equiv U , ... (1)$$

```
\begin{split} & \text{donde } \theta_{12}, \theta_{13}, \theta_{23}, \delta \in IR \text{ y } s \in \{-1,1\} \text{ y :} \\ & U_{11} = \cos\theta_{12}\cos\theta_{13} \text{ , } U_{12} = \cos\theta_{13}\sin\theta_{12} \text{ , } U_{13} = e^{-i\delta s}\sin\theta_{13} \text{ ,} \\ & U_{21} = -\cos\theta_{23}\sin\theta_{12} - e^{-i\delta s}\cos\theta_{12}\sin\theta_{13}\sin\theta_{23} \text{ ,} \\ & U_{22} = \cos\theta_{23}\cos\theta_{12} - e^{-i\delta s}\sin\theta_{12}\sin\theta_{13}\sin\theta_{23} \text{ ,} \\ & U_{23} = \cos\theta_{13}\sin\theta_{23} \text{ ,} \\ & U_{23} = -e^{-i\delta s}\cos\theta_{12}\cos\theta_{23}\sin\theta_{13} + \sin\theta_{12}\sin\theta_{23} \text{ ,} \\ & U_{31} = -e^{-i\delta s}\cos\theta_{12}\cos\theta_{23}\sin\theta_{13} - \cos\theta_{12}\sin\theta_{23} \text{ ,} \\ & U_{32} = -e^{-i\delta s}\cos\theta_{23}\sin\theta_{12}\sin\theta_{13} - \cos\theta_{12}\sin\theta_{23} \text{ ,} \\ & U_{33} = \cos\theta_{13}\cos\theta_{23} \text{ .} \end{split}
```

 El cálculo de la probabilidad de oscilación estándar requiere los siguientes elementos:

(Hamiltoniano)
$$H = \frac{1}{2E \times 10^9} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m^2_{21} & 0 \\ 0 & 0 & \Delta m^2_{31} \end{pmatrix} (U^*)^T + \begin{pmatrix} A_m & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$H \equiv H(E, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m_{21}^2, \Delta m_{31}^2)$$
, ... (2)

$$A_m = \rho \times 7.63247 \times 0.5 \times 10^{-14}$$
,
 $[\rho] = g/cm^3$,
 $[E] = GeV = 10^9 eV$,
 $[\Delta m^2_{21}] = [\Delta m^2_{31}] = eV$.

 El cálculo de la probabilidad de oscilación estándar requiere los siguientes elementos:

$$[v_1^T \ v_2^T \ v_3^T] H [v_1^T \ v_2^T \ v_3^T]^{-1} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix},$$

$$VHV^{-1} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{pmatrix} , \dots (3)$$

donde v_i y λ_i son los autovectores y autovalores de H respectivamente, además:

$$v_i = (v_{i1} \ v_{i2} \ v_{i3}) \text{ con } i \in \{1, 2, 3\}$$
 y $V = \begin{pmatrix} v_{11} & v_{21} & v_{31} \\ v_{12} & v_{22} & v_{32} \\ v_{13} & v_{23} & v_{33} \end{pmatrix}$.

 El cálculo de la probabilidad de oscilación estándar requiere los siguientes elementos:

$$S = V \begin{pmatrix} e^{-i\lambda_1 L^*} & 0 & 0 \\ 0 & e^{-i\lambda_2 L^*} & 0 \\ 0 & 0 & e^{-i\lambda_3 L^*} \end{pmatrix} V^{-1} , \dots (4)$$

$$P_{(\nu_{\alpha} \to \nu_{\beta})} \equiv P_{\alpha\beta} = S_{\beta\alpha}(S_{\beta\alpha})^* = \left\| S_{\beta\alpha} \right\|^2 , \quad \dots (5)$$

(Matriz de Probabilidad)

$$P = \begin{pmatrix} ||S_{11}||^2 & ||S_{21}||^2 & ||S_{31}||^2 \\ ||S_{12}||^2 & ||S_{22}||^2 & ||S_{32}||^2 \\ ||S_{13}||^2 & ||S_{32}||^2 & ||S_{33}||^2 \end{pmatrix} = P(E, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m_{21}^2, \Delta m_{31}^2, L), \dots (6)$$

$$L^* = \frac{L \times 10^9}{C_{GeVtoKm}} \quad , \quad [L] = Km \quad , \quad C_{GeVtoKm} = h \times c \times 10^{15} \quad , \quad h = 6.58211928 \times 10^{-25} \quad , \quad c = 299792458 \; .$$

DECAIMIENTO INVISIBLE

Formulación matemática (Inv. Decay)

El cálculo de la probabilidad de oscilación estándar requiere los siguientes elementos:

(Hamiltoniano)
$$H = \frac{1}{2E \times 10^9} U \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & \Delta m^2_{21} - i\alpha_2 & 0 \\ 0 & 0 & \Delta m^2_{31} - i\alpha_3 \end{pmatrix} (U^*)^T + \begin{pmatrix} A_m & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$H \equiv H(E, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m^2_{21}, \Delta m^2_{31}, \alpha_2, \alpha_3) \quad , \qquad \dots (7)$$

$$P_{InvDcy} \equiv P(E, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m^2_{21}, \Delta m^2_{31}, L, \alpha_2, \alpha_3) \quad , \qquad \dots (8)$$

$$A_m = \rho \times 7.63247 \times 0.5 \times 10^{-14}$$
,
 $[\rho] = g/cm^3$,
 $[E] = GeV = 10^9 eV$,
 $[\Delta m^2_{21}] = [\Delta m^2_{31}] = eV$,
 $[\alpha_2] = [\alpha_3] = eV$.

VIOLACIÓN DE PRINCIPIO DE EQUIVALENCIA (VEP)

Formulación matemática (VEP)

 El cálculo de la probabilidad de oscilación estándar requiere los siguientes elementos:

$$(\text{Hamiltoniano}) \\ H = \frac{1}{2E \times 10^9} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m^2_{21} & 0 \\ 0 & 0 & \Delta m^2_{31} \end{pmatrix} (U^*)^T + 2E \times 10^9 U_g \begin{pmatrix} 0 & 0 & 0 \\ 0 & \gamma_2 & 0 \\ 0 & 0 & \gamma_3 \end{pmatrix} (U_g^*)^T + \begin{pmatrix} A_m & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ H \equiv H \left(E, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m^2_{21}, \Delta m^2_{31}, \gamma_2, \gamma_3 \right) \quad , \qquad ... (9) \\ P_{VEP} \equiv P \left(E, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m^2_{21}, \Delta m^2_{31}, L, \gamma_2, \gamma_3 \right) \quad , \qquad ... (10)$$

$$A_{m} = \rho \times 7.63247 \times 0.5 \times 10^{-14} ,$$

$$[\rho] = g/cm^{3} ,$$

$$[E] = GeV = 10^{9} eV ,$$

$$[\Delta m^{2}_{21}] = [\Delta m^{2}_{31}] = eV ,$$

$$[\gamma_{2}] = [\gamma_{3}] = 1 .$$

INTERACCIÓN NO ESTÁNDAR (NSI)

Formulación matemática (NSI)

 El cálculo de la probabilidad de oscilación estándar requiere los siguientes elementos:

$$\begin{split} H &= \frac{1}{2E \times 10^9} U \begin{pmatrix} 0 & 0 & 0 \\ 0 & \Delta m^2_{21} & 0 \\ 0 & 0 & \Delta m^2_{31} \end{pmatrix} (U^*)^T + A_m \begin{pmatrix} \epsilon_{ee} & |\epsilon_{e\mu}| e^{i\phi_{e\mu}} & |\epsilon_{e\tau}| e^{i\phi_{e\tau}} \\ |\epsilon_{e\mu}| e^{-i\phi_{e\mu}} & \epsilon_{\mu\mu} & |\epsilon_{\mu\tau}| e^{i\phi_{\mu\tau}} \\ |\epsilon_{e\tau}| e^{-i\phi_{e\tau}} & |\epsilon_{\mu\tau}| e^{-i\phi_{\mu\tau}} \end{pmatrix} + \begin{pmatrix} A_m & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ H &= H \left(E, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m^2_{21}, \Delta m^2_{31}, \epsilon_{ee}, \epsilon_{\mu\mu}, \epsilon_{\tau\tau}, \epsilon_{e\mu}, \phi_{e\mu}, \epsilon_{e\tau}, \phi_{e\tau}, \epsilon_{\mu\tau}, \phi_{\mu\tau} \right) , \quad \dots (11) \\ P_{VEP} &= P \left(E, \rho, \theta_{12}, \theta_{13}, \theta_{23}, \delta, s, \Delta m^2_{21}, \Delta m^2_{31}, L, \epsilon_{ee}, \epsilon_{\mu\mu}, \epsilon_{\tau\tau}, \epsilon_{e\mu}, \phi_{e\mu}, \epsilon_{e\tau}, \phi_{e\tau}, \epsilon_{\mu\tau}, \phi_{\mu\tau} \right) , \quad \dots (12) \\ \text{donde:} \\ \epsilon_{ee}, \epsilon_{\mu\mu}, \epsilon_{\tau\tau} &\in IR, \; [\epsilon_{ee}] = \left[\epsilon_{\mu\mu} \right] = \left[\epsilon_{e\tau} \right] = \left[\epsilon_{e\tau} \right] = \left[\epsilon_{e\tau} \right] = 1 , \quad A_m = \rho \times 7.63247 \times 0.5 \times 10^{-14}, \\ \left[\rho \right] &= g/cm^3, \\ \left[E \right] &= GeV = 10^9 eV , \\ \left[\Delta m^2_{21} \right] &= \left[\Delta m^2_{31} \right] = eV . \end{split}$$

Probabilidades

EJEMPLOS NUMÉRICOS

Ejemplos Numéricos

• Parámetros de entrada: $(s=1, \rho=2.956740, L=1300, \alpha=2, \beta=1, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

Osc. Estándar: $\theta_{12} = 0.59$, $\theta_{13} = 0.15$, $\theta_{23} = 0.84$, $\delta = -1.57$, $\Delta m^2_{21} = 7.4 \times 10^{-5}$, $\Delta m^2_{31} = 2.5 \times 10^{-3}$.

Dec. Invisible: $\alpha_2 = 0$, $\alpha_3 = 5 \times 10^{-5}$.

VEP: $U_g = U$, $\gamma_2 = 0$, $\gamma_3 = 2 \times 10^{-24}$.

NSI: $\epsilon_{ee} = \epsilon_{\mu\mu} = \epsilon_{\tau\tau} = \epsilon_{e\tau} = \epsilon_{\mu\tau} = 0 \text{ , } |\epsilon_{e\mu}| = 0.05 \text{ , } \varphi_{e\mu} = -1.55 \text{ .}$

Cálculos: Tiempo: 0.517s

E	P	P_{InvDcy}	P_{VEP}	P_{NSI}
0.1	0.333905	0.395235	0.333614	0.337769
0.5	0.137072	0.114237	0.13702	0.137292
1.0	0.0379297	0.0357768	0.039078	0.034009
2.5	0.0884374	0.083406	0.089026	0.0809008
5.0	0.0337275	0.0327747	0.0384718	0.0238453
7.5	0.0153735	0.0150987	0.0210784	0.00832915
10	0.00858383	0.0084758	0.0148167	0.00345215

Ejemplos Numéricos

• Parámetros de entrada: $(s=-1, \rho=2.956740, L=1300, \alpha=2, \beta=1, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e})$

Osc. Estándar: $\theta_{12} = 0.59$, $\theta_{13} = 0.15$, $\theta_{23} = 0.84$, $\delta = -1.57$, $\Delta m^2_{21} = 7.4 \times 10^{-5}$, $\Delta m^2_{31} = 2.5 \times 10^{-3}$.

Dec. Invisible: $\alpha_2 = 0$, $\alpha_3 = 5 \times 10^{-5}$.

VEP: $U_g = U$, $\gamma_2 = 0$, $\gamma_3 = 2 \times 10^{-24}$.

NSI: $\epsilon_{ee} = \epsilon_{\mu\mu} = \epsilon_{\tau\tau} = \epsilon_{e\tau} = \epsilon_{\mu\tau} = 0 \text{ , } |\epsilon_{e\mu}| = 0.05 \text{ , } \varphi_{e\mu} = -1.55 \text{ .}$

Cálculos: Tiempo: 0.462s

E	P	P_{InvDcy}	$P_{V\!EP}$	P_{NSI}
0.1	0.376591	0.280198	0.376686	0.375439
0.5	0.00148157	0.00013892	0.00150681	0.00269040
1.0	0.0212623	0.0169972	0.02123725	0.0165287
2.5	0.0183922	0.0169995	0.0178917	0.0166096
5.0	0.0171108	0.0164888	0.0187842	0.0107013
7.5	0.00987711	0.00962959	0.0128519	0.00454936
10	0.00617523	0.00605487	0.00996336	0.00201899