Análisis I - Análisis Matemático I - Matemática I - Análisis II (C)

2do. cuatrimestre 2020

Primer Parcial - 21/10/2020

Justifique todas sus respuestas.

Entreque todas las hojas escaneadas y en orden.

Ejercicio 1: Sea C la curva que se obtiene al intersecar las superficies $9 = x^2 + 9y^2$ y 2 = z - x.

- (a) Hallar una función r(t) cuya imagen sea la curva \mathcal{C} .
- (b) Probar que P = (3, 0, 5) pertenece a \mathcal{C} y hallar la ecuación de la recta tangente a \mathcal{C} en el punto P.

Ejercicio 2: Hallar todos los $a \in (0, +\infty)$ tales que el siguiente límite existe:

$$\lim_{(x,y)\to(0,0)} \frac{xy^a}{x^2+y^2}.$$

Ejercicio 3: Sea $f: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \frac{x^3 \cos(y) + 3xy^2}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0). \end{cases}$$

Analizar la diferenciabilidad de f en (0,0).

Ejercicio 4: Sea $f: \mathbb{R}^2 \to \mathbb{R}$ una función diferenciable tal que el plano tangente a su gráfico en el punto (2, 1, f(2, 1)) es

$$-x + 2y + z = 3.$$

Si x = sen(t) + 2 e $y = s^2 + t$ y definimos F(s,t) = f(x,y), calcular la derivada direcciónal de F en la dirección del vector v = (3,1) en el punto $(s_0,t_0) = (1,0)$.