Junheng Li

☑ junhengl@usc.edu

in Linkedin

7 Google Scholar

Education

2022 – present Ph.D., University of Southern California in Mechanical Engineering.

- Advisor: Prof. Quan Nguyen

2020 – 2021 M.S., University of Southern California in Mechanical Engineering.

2016 – 2020 **B.S., Loyola Marymount University** in Mechanical Engineering.

Employment History

2020 – present Research Assistant, Dynamics Robotics and Control Lab, University of Southern California.

August 2023 - May 2024,

Spring 2025

- **Teaching Assistant,** Aerospace and Mechanical Engineering, University of Southern California.
 - AME 451: Linear Control Systems I

Research Experiences

2020 – present Dynamics Robotics and Control Lab, University of Southern California.

- Advisor: Quan Nguyen, Ph.D.
- Dynamic humanoid locomotion and loco-manipulation control via MPC.
- Project Lead on HECTOR humanoid project https://github.com/DRCL-USC/Hector_Simulation.

2019 – 2020 Sch

- Schaal's Group, UROP, Loyola Marymount University.
 - Advisor: Natalie Schaal, Ph.D.
 - Analyzed and visulized data collected from rate-and-state fault model based earthquake simulations
 - Debugged and transferred simulation code of rate-and-state fault model based earthquakes.

Summer 2018

- SURP, Loyola Marymount University.
 - Advisor: Pezhman Hassanpour, Ph.D.
 - Studied and investigated control strategies for linear inverted pendulums
 - Established controllers via PID control in Arduino platform
 - Design and built inverted pendulum hardware platform

Research Publications

Preprint

- Z. Gu, J. Li, W. Shen, et al., Humanoid locomotion and manipulation: Current progress and challenges in control, planning, and learning, 2025.
- L. Krishna, S. Cheng, J. Li, Q. Chen, N. Hovakimyan, and Q. Nguyen, Diffcotune: Differentiable co-tuning for enhanced cross-domain robot control, 2025.

- J. Li, Z. Duan, J. Ma, and Q. Nguyen, Gait-net-augmented implicit kino-dynamic mpc for dynamic variable-frequency humanoid locomotion over discrete terrains, 2025.
- Q. Chen, J. Li, S. Cheng, N. Hovakimyan, and Q. Nguyen, Autotuning bipedal locomotion mpc with grfm-net for efficient sim-to-real transfer, 2024.
- J. Li, O. Kolt, and Q. Nguyen, Continous dynamic bipedal jumping via adaptive-model optimization, 2024.
- J. Li, J. Ma, O. Kolt, M. Shah, and Q. Nguyen, Dynamic loco-manipulation on hector: Humanoid for enhanced control and open-source research, 2023.

Journal Articles

J. Li and Q. Nguyen, "Dynamic walking of bipedal robots on uneven stepping stones via adaptive-frequency mpc," *IEEE Control Systems Letters*, vol. 7, pp. 1279–1284, 2023.

Conference Proceedings

- A.-C. He, J. Li, J. Park, et al., "A novel telelocomotion framework with com estimation for scalable locomotion on humanoid robots," in 2025 IEEE International Conference on Robotics and Automation (ICRA), 2025, accepted and to appear.
- J. Li, Z. Le, J. Ma, and Q. Nguyen, "Adapting gait frequency for posture-regulating humanoid push-recovery via hierarchical model predictive control," in 2025 IEEE International Conference on Robotics and Automation (ICRA), 2025, accepted and to appear.
- J. Li and Q. Nguyen, "Kinodynamic pose optimization for humanoid loco-manipulation," in 2023 IEEE-RAS 22nd International Conference on Humanoid Robots (Humanoids), 2023, pp. 1–8.
- J. Li and Q. Nguyen, "Multi-contact mpc for dynamic loco-manipulation on humanoid robots," in 2023 American Control Conference (ACC), 2023.
- J. Li, J. Ma, and Q. Nguyen, "Balancing control and pose optimization for wheel-legged robots navigating high obstacles," in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2022, pp. 8835–8841.
- J. Li and Q. Nguyen, "Force-and-moment-based model predictive control for achieving highly dynamic locomotion on bipedal robots," in 2021 60th IEEE Conference on Decision and Control (CDC), IEEE, 2021, pp. 1024–1030.

Services

2025	Registration Coordinator of Robotics: Science and Systems Conference	
2024- 2025	Reviewer of IEEE Robotics and Automation Letters	
2024	Reviewer of IEEE Control System Letters	
	Reviewer of International Journal of Robotics and Automation	
2023-2024	Reviewer of Robotics and Autonomous Systems	
2022	Reviewer of IEEE/ASME Transactions on Mechatronics	
	Reviewer of Autonomous Robots	
2022-2025	Reviewer of IEEE International Conference on Robotics and Automation (ICRA)	
2022-2024	Reviewer of IEEE International Conference on Intelligent Robots and Systems (IROS)	
2021-2024	Reviewer of IEEE Conference on Decision and Control (CDC)	