Radar Based Driver Assistance Systems

Radar Based Driver Assistance Systems Agenda

▶ Driver Assistance Systems

- Basic Terms and Definitions
- ▶ Radar Basics
- Sensor Data Fusion
- ► SW Development

▶ What can we achieve mainly with a radar sensor?

- ▶ Adaptive Cruise Control
- Automatic Emergency Brake

Radar Based Driver Assistance Systems Driver Assistance Systems (DAS)

Basic terms

- Enhanced safety and driving comfort (Active safety)
- Accident-free driving
- Supports the driver at the best possible rate, especially in critical situations
- Sensors survey the surroundings and the interior of the vehicle
- Control units monitor and analyze the data of the sensors in real time

Goal:

reliable support with validation by fusion of several sensors to achieve injury, accident free and comfortable driving

Radar Based Driver Assistance Systems Use cases addressing end customers needs

Predictive safety

Driver comfort & information

Radar Based Driver Assistance Systems What do we want to measure?

- ► Azimuth, range, [radial velocity]
- Traditionally the RADAR always uses a polar coordinate system
- ► Equivalent to a Cartesian coordinate system [r,Θ] <=> [x,y]
- ▶ We only measure the radial velocity

▶ the two components of the velocity vector in a Cartesian coordinate system can

not be reconstructed (measured)

Radar Based Driver Assistance Systems Distance Measurement Principle

► We measure the time elapsed between the transmitted pulse and the received echo

C

 $t_d = 2 \times \frac{D}{c} \Leftrightarrow D = t_d \times \frac{c}{2}$

Radar Based Driver Assistance Systems Radial Velocity Measurement Principle

$$f_d = \frac{2v_r f_{tx}}{c}$$

- ightharpoonup f_{tx} = is the transmitters frequency
- ► c = is the speed of the light
- \triangleright v_r = is the radial speed of the aim

© 2009 Christian Wolff

→ We know our transmit frequency, and the frequency we received from this we can measure the speed of the target object!

Radar Based Driver Assistance Systems Radial Velocity Measurement Principle FMCW

$$f = \frac{c}{\lambda} \qquad \qquad f_d = \frac{2D}{c} \cdot \frac{\Delta f}{\Delta t} + \frac{2 \, v_r \, f_{tx}}{c} = \frac{2D}{c} \cdot \frac{\Delta f}{\Delta t} + \frac{2 \, v_r}{\lambda_{tx}}$$

- ► f_d = frequency difference of the emitted and received signals
- \blacktriangleright $\Delta f/\Delta t$ = variance of modulation in time
- \triangleright v_r = is the radial speed of the aim
- $\blacktriangleright \lambda_{tx}$ = frequency of emitted signal (77 GHz)

Radar Based Driver Assistance Systems FMCW Principle

Frequency-Matching: 2 targets, 3 ramps

- → Using three ramps, the method is capable of multi-target scenarios
- → Using four ramps, ghost targets can be efficiently suppressed

Radar Based Driver Assistance Systems Sensor Data Fusion

- ▶ Sensor Data Fusion consists of 3 elements:
 - ▶ Data fusion
 - Environment Model
 - Situation Interpretation
- ► Video / Radar / Navigation based joint architecture

Camera

Lane markings

Objects

Radar

Moving objects

Stationary objects

Digital Map

..... Roadway Attribute

Radar Based Driver Assistance Systems ACC

Radar Based Driver Assistance Systems Adaptive Cruise Control

► Goal

▶ Blue vehicle should always keep a secure distance to the yellow vehicle while keeping the set speed, or the speed of the yellow vehicle

▶ Inputs

- ▶ Radar data
- Additional video data
- ► Ego car data

▶ Reaction

- Acceleration or deceleration within secure limits.
- Achieve comfortable driving through automatic longitudinal control

Radar Based Driver Assistance Systems Radar points

▶ Object types

- Stationary objects
- Dynamic objects

▶ Road estimation is based on

- ▶ the connection of stationary objects
- the tracking of moving objects(+ ego)
 - Creating lanes based on the object and ego movement history

Radar Based Driver Assistance Systems Radar-Video Fusion

- ▶ Road estimation in the case of video fusion
 - Use of road markings (lines) from video based driver assistance systems
 - Object classification by video

Radar Based Driver Assistance Systems Object classification

- ► Classification of objects in both sensors:
 - Radar classification based on the behavior of the objects
 - Video classification based image features
- ► Fusion of video based information and radar based information in one system in order to get reliable data

Radar Based Driver Assistance Systems Parallel lanes

- ▶ Yellow vehicle remains the ACC target object because
 - Connection of stationary objects (reflector posts, guardrail)
 - ► Video line detection and lane recognition
 - ► Tracking of red and brown vehicle
 - the target object position, direction and trajectory
- ► The information coming from target object(position, trajectory)
- ► The information from the ego vehicle(yaw angle, s.w. angle)
- Road topology
 - ->Indicates how the road ahead looks like

Radar Based Driver Assistance Systems

Radar Based Driver Assistance Systems Automatic Emergency Breaking

▶ Goal

► Fast reaction to avoid collision (or mitigate a collision)

▶ Input

- ▶ Ego Motion
- Object type classification(ped., cyclist, etc.)
- Motion model for various object types
- Calculate time to collision
- Additional information from the driver
 - Driver monitoring to estimate the level of attention:
 - intention to brake, intention to evade

▶ Reaction

- Collision avoidance/mitigation with braking/steering
- Achieve safer driving through automatic braking

Radar Based Driver Assistance Systems Pedestrian Protection

▶ Goal

Fast reaction to avoid collision

▶ Input

- ▶ Ego Motion
- ▶ Object type classification
- Micro Doppler information
- Calculate time to collision
- Trajectory overlap

▶ Reaction

Collision avoidance/mitigation with braking/steering

Radar Based Driver Assistance Systems System Approach

- ► Data Fusion from different sources (e.g. Radar, Video, Ultrasonic)
 - ▶ Objects, line, lane, road signs etc.
- **►** Environmental Hypothesis
 - ► E.g.: Parallel Lanes, Object-Lane association
- **▶** Situation Analysis
 - ► Criticality of the situation, Driver Activity
- **▶** Decision
 - Warning, Partial Braking, Brake Support, Full Emergency Braking

Predictive Pedestrian Protection

www.bosch.com

This movie shows proprietary Bosch technology.

The vehicle shown was chosen soley as a carrier for demonstration purposes.

Radar Based Driver Assistance Systems

