Complejidad Computacional

Santiago Figueira

Departamento de Computación - FCEN - UBA

clase 12

Clase 12

Las clases NC_{nu} y AC_{nu} Uniformidad: las clases NC y ACP-completitud

Las clases NC_{nu} y AC_{nu}

Clase 12

Las clases NC_{nu} y AC_{nu}

Uniformidad: las clases NC y AC

P-completitud

Las clases NC_{nu} y AC_{nu}

Clase de complejidad: NC_{nu}^d y NC_{nu}

- $\mathbf{NC}_{\mathrm{nu}}^d$ es la clase de lenguajes decidibles por una familia de circuitos $(C_n)_{n\in\mathbb{N}}$ tal que
 - $|C_n|$ es polinomial en n y
 - $\operatorname{prof}(C_n) = O(\log^d n)$
- $\mathbf{NC}_{\mathrm{nu}} = \bigcup_{i \geq 0} \mathbf{NC}_{\mathrm{nu}}^i$

Las clases NC_{nu} y AC_{nu}

Clase de complejidad: NC_{nu}^d y NC_{nu}

- $\mathbf{NC}_{\mathrm{nu}}^d$ es la clase de lenguajes decidibles por una familia de circuitos $(C_n)_{n\in\mathbb{N}}$ tal que
 - $|C_n|$ es polinomial en n y
 - $\operatorname{prof}(C_n) = O(\log^d n)$
- $NC_{nu} = \bigcup_{i \geq 0} NC_{nu}^i$

Clase de complejidad: $\mathbf{AC}_{\mathrm{nu}}^d$ y $\mathbf{AC}_{\mathrm{nu}}$

- $\mathbf{AC}^d_{\mathrm{nu}}$ se define igual que $\mathbf{NC}^d_{\mathrm{nu}}$ pero permitimos nodos \wedge y \vee con fan-in arbitrario.
- $\mathbf{AC}_{\mathrm{nu}} = \bigcup_{i \geq 0} \mathbf{AC}_{\mathrm{nu}}^i$

(en el nombre, 'nu' es por 'no uniforme')

- NC_{nu}^0 es muy limitado porque solo depende de una cantidad finita de bits de entrada
- AC_{nu}^0 no tiene esa misma limitación, por ejemplo

$$\{1^n \colon n \ge 1\} \in \mathbf{AC}_{\mathrm{nu}}^0.$$

- NC_{nu}^0 es muy limitado porque solo depende de una cantidad finita de bits de entrada
- AC_{nu}^0 no tiene esa misma limitación, por ejemplo

$$\{1^n \colon n \ge 1\} \in \mathbf{AC}_{\mathrm{nu}}^0.$$

Problema: Cantidad impar de 1s

 $\mathsf{PARITY} = \{x \colon x \text{ tiene una cantidad impar de 1s}\}$

- NC_{nu}^0 es muy limitado porque solo depende de una cantidad finita de bits de entrada
- AC_{nu}^0 no tiene esa misma limitación, por ejemplo

$$\{1^n \colon n \ge 1\} \in \mathbf{AC}_{\mathrm{nu}}^0.$$

Problema: Cantidad impar de 1s

 $PARITY = \{x : x \text{ tiene una cantidad impar de 1s} \}$

Proposición

 $\mathsf{PARITY} \in \mathbf{NC}^1_{nu}.$

- NC_{nu}^0 es muy limitado porque solo depende de una cantidad finita de bits de entrada
- AC_{nu}^0 no tiene esa misma limitación, por ejemplo

$$\{1^n \colon n \ge 1\} \in \mathbf{AC}_{\mathrm{nu}}^0.$$

Problema: Cantidad impar de 1s

 $PARITY = \{x : x \text{ tiene una cantidad impar de 1s} \}$

Proposición

 $\mathsf{PARITY} \in \mathbf{NC}^1_{nu}.$

Proposición (no lo vamos a probar)

 $\mathsf{PARITY} \notin \mathbf{AC}^0_{\mathrm{nu}}.$

Demostración de PARITY $\in \mathbf{NC}_{nu}^1$.

Sumamos (módulo 2) todos los bits de x.

En general, $\operatorname{prof}(C_n) = O(\log n)$

 $\operatorname{prof}(C_5) = 3$

La suma en binario

Problema: Suma en binario

$$\mathsf{SUMA} = \{xyz \colon |x| = |y| = i, |z| = i+1, x+y = z, i \geq 1\}$$

Proposición

 $\mathsf{SUMA} \in \mathbf{AC}^0_{\mathrm{nu}}.$

Entrada: $x_n, ..., x_1, y_n, ..., y_1, z_{n+1}, z_n, ..., z_1$.

Entrada: $x_n, ..., x_1, y_n, ..., y_1, z_{n+1}, z_n, ..., z_1$.

Calculamos el $carry c_i$ de esta forma:

$$c_1 = 0$$
 y $c_{i+1} = \bigvee_{i \ge j \ge 1} \left((x_j \land y_j) \land \bigwedge_{i \ge k > j} (x_k \lor y_k) \right)$

Entrada: $x_n, ..., x_1, y_n, ..., y_1, z_{n+1}, z_n, ..., z_1$.

Calculamos el $carry c_i$ de esta forma:

$$c_1 = 0$$
 y $c_{i+1} = \bigvee_{i \ge j \ge 1} \left((x_j \land y_j) \land \bigwedge_{i \ge k > j} (x_k \lor y_k) \right)$

Cada circuito para c_i tiene profundidad 3.

Entrada: $x_n, ..., x_1, y_n, ..., y_1, z_{n+1}, z_n, ..., z_1$.

Calculamos el $carry c_i$ de esta forma:

$$c_1 = 0$$
 y $c_{i+1} = \bigvee_{i \ge j \ge 1} \left((x_j \land y_j) \land \bigwedge_{i \ge k > j} (x_k \lor y_k) \right)$

Cada circuito para c_i tiene profundidad 3. Calculamos la suma de la forma usual: $s_i = x_i \oplus y_i \oplus c_i$ y $s_{n+1} = c_{n+1}$. Finalmente, la salida es

$$\bigwedge_{n+1 > j > 1} z_i = s_i$$

y lo calculamos con un circuito de profundidad constante.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}. \text{ Por lo tanto, } \mathbf{AC}_{\mathrm{nu}} = \mathbf{NC}_{\mathrm{nu}}.$

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}. \text{ Por lo tanto, } \mathbf{AC}_{\mathrm{nu}} = \mathbf{NC}_{\mathrm{nu}}.$

Demostración.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d$ es trivial.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$. Por lo tanto, $\mathbf{AC}_{\mathrm{nu}} = \mathbf{NC}_{\mathrm{nu}}$.

Demostración.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d$ es trivial. Veamos $\mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$. Supongamos que $\mathcal{L} \in \mathbf{AC}_{\mathrm{nu}}^d$. Existe una familia de circuitos con \wedge, \vee de fan-in arbitrario $(C_i)_{i \in \mathbb{N}}$ que decide \mathcal{L} ,

$$|C_n| = O(n^c)$$
 y $\operatorname{prof}(C_n) = O(\log^d n)$.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$. Por lo tanto, $\mathbf{AC}_{\mathrm{nu}} = \mathbf{NC}_{\mathrm{nu}}$.

Demostración.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d$ es trivial. Veamos $\mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$. Supongamos que $\mathcal{L} \in \mathbf{AC}_{\mathrm{nu}}^d$. Existe una familia de circuitos con \wedge, \vee de fan-in arbitrario $(C_i)_{i \in \mathbb{N}}$ que decide \mathcal{L} ,

$$|C_n| = O(n^c)$$
 y $\operatorname{prof}(C_n) = O(\log^d n)$.

Simulamos el fan-in arbitrario con un circuito con fan-in binario de profundidad $O(\log n)$.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$. Por lo tanto, $\mathbf{AC}_{\mathrm{nu}} = \mathbf{NC}_{\mathrm{nu}}$.

Demostración.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d$ es trivial. Veamos $\mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$.

Supongamos que $\mathcal{L} \in \mathbf{AC}^d_{\mathrm{nu}}$. Existe una familia de circuitos con \wedge, \vee de fan-in arbitrario $(C_i)_{i \in \mathbb{N}}$ que decide \mathcal{L} ,

$$|C_n| = O(n^c)$$
 y $\operatorname{prof}(C_n) = O(\log^d n)$.

Simulamos el fan-in arbitrario con un circuito con fan-in binario de profundidad $O(\log n)$.

Definimos C'_n como el reemplazo en C_n de todo nodo de fan-in arbitrario con el subcircuito de profundidad $O(\log n^c) = O(\log n)$.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$. Por lo tanto, $\mathbf{AC}_{\mathrm{nu}} = \mathbf{NC}_{\mathrm{nu}}$.

Demostración.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d$ es trivial. Veamos $\mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$.

Supongamos que $\mathcal{L} \in \mathbf{AC}^d_{\mathrm{nu}}$. Existe una familia de circuitos con \wedge, \vee de fan-in arbitrario $(C_i)_{i \in \mathbb{N}}$ que decide \mathcal{L} ,

$$|C_n| = O(n^c)$$
 y $\operatorname{prof}(C_n) = O(\log^d n)$.

Simulamos el fan-in arbitrario con un circuito con fan-in binario de profundidad $O(\log n)$.

Definimos C'_n como el reemplazo en C_n de todo nodo de fan-in arbitrario con el subcircuito de profundidad $O(\log n^c) = O(\log n)$. Es claro que $(C'_i)_{i \in \mathbb{N}}$ decide \mathcal{L} .

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$. Por lo tanto, $\mathbf{AC}_{\mathrm{nu}} = \mathbf{NC}_{\mathrm{nu}}$.

Demostración.

 $\mathbf{NC}_{\mathrm{nu}}^d \subseteq \mathbf{AC}_{\mathrm{nu}}^d$ es trivial. Veamos $\mathbf{AC}_{\mathrm{nu}}^d \subseteq \mathbf{NC}_{\mathrm{nu}}^{d+1}$. Supongamos que $\mathcal{L} \in \mathbf{AC}_{\mathrm{nu}}^d$. Existe una familia de circuitos con \wedge, \vee de fan-in arbitrario $(C_i)_{i \in \mathbb{N}}$ que decide \mathcal{L} ,

$$|C_n| = O(n^c)$$
 y $\operatorname{prof}(C_n) = O(\log^d n)$.

Simulamos el fan-in arbitrario con un circuito con fan-in binario de profundidad $O(\log n)$.

Definimos C'_n como el reemplazo en C_n de todo nodo de fan-in arbitrario con el subcircuito de profundidad $O(\log n^c) = O(\log n)$. Es claro que $(C'_i)_{i \in \mathbb{N}}$ decide \mathcal{L} .

- C_n tiene profundidad $O(\log^d)$
- C'_n tiene profundidad $O(\log n \cdot \log^d n) = O(\log^{d+1} n)$
- $|C'_n|$ es polinomial

Uniformidad: las clases NC y AC

Clase 12

Las clases NC_{nu} y AC_{nu}

Uniformidad: las clases NC y AC

P-completitud

Puede parecer extraño que lenguajes indecidibles estén en $\mathbf{P}_{/\mathbf{poly}}$. El origen de este fenómeno es la no uniformidad del modelo de circuitos.

Definición

Una familia de circuitos $(C_n)_{n\in\mathbb{N}}$ es **P-uniforme** si existe una máquina determinística tal que

- M corre en tiempo polinomial
- $M(1^n) = \langle C_n \rangle$

Teorema

 \mathcal{L} es decidible por una familia **P**-uniforme de circuitos sii $\mathcal{L} \in \mathbf{P}$.

Teorema.

 \mathcal{L} es decidible por una familia **P**-uniforme de circuitos sii $\mathcal{L} \in \mathbf{P}$.

Demostración.

 \subseteq Sea M una máquina determinística que corre en tiempo polinomial tal que para todo $n, M(1^n) = \langle C_n \rangle$ y para todo $x \in \{0,1\}^n$:

$$x \in \mathcal{L}$$
 sii $C_n(x) = 1$.

Teorema

 \mathcal{L} es decidible por una familia P-uniforme de circuitos sii $\mathcal{L} \in \mathbf{P}$.

Demostración.

 \subseteq Sea M una máquina determinística que corre en tiempo polinomial tal que para todo $n, M(1^n) = \langle C_n \rangle$ y para todo $x \in \{0,1\}^n$:

$$x \in \mathcal{L}$$
 sii $C_n(x) = 1$.

Definimos la máquina determinística M' que con entrada x hace esto:

Simular $M(1^{|x|}) = \langle C \rangle$ Evaluar C(x) y devolver su salida

Teorema

 \mathcal{L} es decidible por una familia P-uniforme de circuitos sii $\mathcal{L} \in \mathbf{P}$.

Demostración.

 \subseteq Sea M una máquina determinística que corre en tiempo polinomial tal que para todo $n, M(1^n) = \langle C_n \rangle$ y para todo $x \in \{0,1\}^n$:

$$x \in \mathcal{L}$$
 sii $C_n(x) = 1$.

Definimos la máquina determinística M' que con entrada x hace esto:

Simular
$$M(1^{|x|}) = \langle C \rangle$$

Evaluar C(x) y devolver su salida

La simulación y la evaluación lleva tiempo polinomial.

Teorema

 \mathcal{L} es decidible por una familia P-uniforme de circuitos sii $\mathcal{L} \in \mathbf{P}$.

Demostración.

 \subseteq Sea M una máquina determinística que corre en tiempo polinomial tal que para todo $n, M(1^n) = \langle C_n \rangle$ y para todo $x \in \{0,1\}^n$:

$$x \in \mathcal{L}$$
 sii $C_n(x) = 1$.

Definimos la máquina determinística M' que con entrada x hace esto:

Simular
$$M(1^{|x|}) = \langle C \rangle$$

Evaluar C(x) y devolver su salida

La simulación y la evaluación lleva tiempo polinomial.

Como
$$M'(x) = C_{|x|}(x) = \chi_{\mathcal{L}}(x)$$
, concluimos que $\mathcal{L} \in \mathbf{P}$.

Teorema.

 \mathcal{L} es decidible por una familia **P**-uniforme de circuitos sii $\mathcal{L} \in \mathbf{P}$.

Demostración.

 \subseteq Sea M una máquina determinística que corre en tiempo polinomial tal que para todo $n, M(1^n) = \langle C_n \rangle$ y para todo $x \in \{0,1\}^n$:

$$x \in \mathcal{L}$$
 sii $C_n(x) = 1$.

Definimos la máquina determinística M^\prime que con entrada x hace esto:

Simular
$$M(1^{|x|}) = \langle C \rangle$$

Evaluar $C(x)$ y devolver su salida

La simulación y la evaluación lleva tiempo polinomial. Como $M'(x) = C_{|x|}(x) = \chi_{\mathcal{L}}(x)$, concluimos que $\mathcal{L} \in \mathbf{P}$.

 \supseteq Seguir la demostración $\mathbf{P} \subseteq \mathbf{P}_{/\mathbf{poly}}$. La familia que se construye es, de hecho, \mathbf{P} -uniforme.

Circuitos L-uniformes

Definición

Una familia de circuitos $(C_n)_{n\in\mathbb{N}}$ es **L-uniforme** si existe una función $f:\{0,1\}^* \to \{0,1\}^*$ computable implícitamente en **L** tal que

$$f(1^n) = \langle C_n \rangle.$$

Teorema

 \mathcal{L} es decidible por una familia de circuitos L-uniforme sii $\mathcal{L} \in \mathbf{P}$.

Teorema

 \mathcal{L} es decidible por una familia de circuitos L-uniforme sii $\mathcal{L} \in \mathbf{P}$.

Idea de la demostración.

- \subseteq es consecuencia de que $\mathbf{L} \subseteq \mathbf{P}$ y de que si \mathcal{L} es decidible por una familia de circuitos \mathbf{P} -uniforme entonces $\mathcal{L} \in \mathbf{P}$.
- \supseteq Ver que en la demostración de $\mathbf{P} \subseteq \mathbf{P}_{/\mathbf{poly}}$ podemos construir los circuitos usando espacio logarítmico, gracias a que la máquina es *oblivious*.

Ejercicio

Demostrarlo.

Las clases NC_{nu} y AC_{nu} generadas L-uniformemente

Clase de complejidad: NC

- \mathbf{NC}^d es la clase de lenguajes decidibles por una familia **L**-uniforme $(C_n)_{n\in\mathbb{N}}$ de circuitos tal que
 - $|C_n|$ es polinomial en n y
 - $\operatorname{prof}(C_n) = O(\log^d n)$
- NC = $\bigcup_{i>0}$ NCⁱ

Clase de complejidad: AC

- \mathbf{AC}^d se define igual que \mathbf{NC}^d pero permitimos nodos \wedge y \vee con fan-in arbitrario.
- $AC = \bigcup_{i>0} AC^i$

Resultados ya vistos se adaptan a la uniformidad

Proposición

 $\mathsf{PARITY} \in \mathbf{NC}^1$.

Proposición

 $\mathsf{SUMA} \in \mathbf{AC}^0.$

Proposición

 $\mathbf{NC}^d \subseteq \mathbf{AC}^d \subseteq \mathbf{NC}^{d+1}$. Por lo tanto, $\mathbf{AC} = \mathbf{NC}$.

Observación

 $\mathbf{AC} = \mathbf{NC} \subseteq \mathbf{P}$

Cómputo paralelo

Un problema tiene una solución paralela eficiente si puede ser resuelto para entradas de tamaño n usando una computadora paralela con una cantidad polinomial $(n^{O(1)})$ de procesadores en tiempo polilogarítmico $(\log^{O(1)} n)$.

Teorema

 \mathcal{L} tiene una solución paralela eficiente si
i $\mathcal{L} \in \mathbf{NC}.$

Ejemplos de problemas en **NC**

- en enteros: suma, multiplicación y división
- en matrices: suma y multiplicación, determinante, inversa, rango
- en grafos: camino mínimo, spanning tree mínimo
- ...

 $\mathbf{NC}^1 \subseteq \mathbf{L}$.

 $\mathbf{NC}^1 \subseteq \mathbf{L}$.

Demostración.

Sea $\mathcal{L} \in \mathbf{NC}^1$ y sean

- $(C_n)_{n\in\mathbb{N}}$ una familia de circuitos tal que
 - $|C_n|$ es polinomial en n,
 - $\operatorname{prof}(C_n) = O(\log n)$ y
 - $x \in \mathcal{L} \text{ sii } C_{|x|}(x) = 1$
- M una máquina determinística que computa implícitamente en \mathbf{L} la función $1^n \mapsto \langle C_n \rangle$

 $\mathbf{NC}^1 \subseteq \mathbf{L}$.

Demostración.

Sea $\mathcal{L} \in \mathbf{NC}^1$ y sean

- $(C_n)_{n\in\mathbb{N}}$ una familia de circuitos tal que
 - $|C_n|$ es polinomial en n,
 - $\operatorname{prof}(C_n) = O(\log n)$ y
 - $x \in \mathcal{L} \sin C_{|x|}(x) = 1$
- M una máquina determinística que computa implícitamente en \mathbf{L} la función $1^n \mapsto \langle C_n \rangle$

Definimos la siguiente función $g(1^n, x, u)$ recursivamente:

- si u es la codificación del k-ésimo $(1 \le k \le n)$ nodo de entrada de C_n , devolver x(k-1)
- si u es la codificación de un nodo * (con $* \in \{\land, \lor\}$) de C_n , con hijos v_1, v_2 , devolver $g(1^n, x, v_1) * g(1^n, x, v_2)$
- si u es la codificación de un nodo \neg de C_n , con hijo v, devolver $\neg g(1^n, x, v)$

Tenemos

$$C_{|x|} = 1$$
 sii $g(1^{|x|}, x, u_0) = 1$,

donde u_0 es la codificación de la salida (sink) de $C_{|x|}$.

Tenemos

$$C_{|x|} = 1$$
 sii $g(1^{|x|}, x, u_0) = 1$,

donde u_0 es la codificación de la salida (sink) de $C_{|x|}$.

Sea n = |x|.

Podemos computar $g(1^n, x, u_0)$ en espacio $O(\log n)$: para resolver la recursión necesitamos

- llevar cuenta del camino desde la salida en C_n : $u_0 \to \cdots \to u_i$, con $i \in O(\log n)$. Cada camino se codifica con una palabra en $\{0,1\}^i$ (espacio $O(\log n)$):
 - 0 significa 'hijo izquierdo' o 'único hijo'
 - 1 significa 'hijo derecho'
- simular $M(1^n)$ para averiguar el tipo de nodo u_i : (espacio $O(\log n)$)

ᆜ

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados:

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: ε

0

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: $\varepsilon \\ 0$

00

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: ε 0
00
000

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x_1 y x_2 . Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a *M* los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: ε 0
00
000
000[x_1]

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a *M* los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: ε 0
00
000
000[x_1]
00[x_1]

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a *M* los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: ε 0
00
000
000[x_1]
00[x_1]

 $0[\neg x_1]$

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x_1 y x_2 . Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a *M* los nodos a medida que se necesitan para no usar más que espacio logarítmico

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: ε

000

 $000[x_1]$ $00[x_1]$ $0[\neg x_1]$

 $0[\neg x_1]1$

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x_1 y x_2 . Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a *M* los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados:

 ε 0
00
000
000[x_1]
00[x_1]

 $0[\neg x_1]$ $0[\neg x_1]$ $0[\neg x_1]$

 $0[\neg x_1]1[x_2]$

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados:

 ε 0
00
000
000[x_1]
00[x_1]
0[x_1]
0[x_1]

 $0[\neg x_1]1[x_2]$

 $0[\neg x_1][x_2]$

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x_1 y x_2 . Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: ε

00

 $000 \ 000[x_1] \ 00[x_1]$

 $0[\neg x_1]$

 $0[\neg x_1]1 \\
0[\neg x_1]1[x_2]$

 $0[\neg x_1][x_2]$

 $[\neg x_1 \wedge x_2]$

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x_1 y x_2 . Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: 00 000 $000[x_1]$ $00[x_1]$ $0[\neg x_1]$ $0[\neg x_1]1$ $0[\neg x_1]1[x_2]$ $0[\neg x_1][x_2]$ $[\neg x_1 \wedge x_2]$ $[\neg x_1 \wedge x_2]1$

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x_1 y x_2 . Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

Estados: 00 000 $000[x_1]$ $00[x_1]$ $0[\neg x_1]$ $0[\neg x_1]1$ $0[\neg x_1]1[x_2]$ $0[\neg x_1][x_2]$ $[\neg x_1 \wedge x_2]$ $[\neg x_1 \wedge x_2]1$ $[\neg x_1 \wedge x_2]10$

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x_1 y x_2 . Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

00 000 $000[x_1]$ $00[x_1]$ $0[\neg x_1]$ $0[\neg x_1]1$ $0[\neg x_1]1[x_2]$ $0[\neg x_1][x_2]$ $[\neg x_1 \wedge x_2]$ $[\neg x_1 \wedge x_2]1$ $[\neg x_1 \wedge x_2]10$ $[\neg x_1 \land x_2]10[x_1]$

Estados:

- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x₁ y x₂. Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

```
Estados:
00
000
000[x_1]
00[x_1]
0[\neg x_1]
0[\neg x_1]1
0[\neg x_1]1[x_2]
0[\neg x_1][x_2]
[\neg x_1 \wedge x_2]
[\neg x_1 \wedge x_2]1
[\neg x_1 \wedge x_2]10
[\neg x_1 \wedge x_2] 10[x_1]
[\neg x_1 \wedge x_2]1[x_1]
```


- Es un recorrido DFS.
- Entre [] hay 1 bit que depende de los valores de x_1 y x_2 . Ahí va calculando operaciones intermedias.
- Cada estado usa espacio O(h), donde h es la profundidad del circuito
- No entra todo el circuito en memoria: hay que ir pidiendo a M los nodos a medida que se necesitan para no usar más que espacio logarítmico

```
Estados:
00
000
000[x_1]
00[x_1]
0[\neg x_1]
0[\neg x_1]1
0[\neg x_1]1[x_2]
0[\neg x_1][x_2]
[\neg x_1 \wedge x_2]
[\neg x_1 \wedge x_2]1
[\neg x_1 \wedge x_2]10
[\neg x_1 \wedge x_2] 10[x_1]
[\neg x_1 \wedge x_2]1[x_1]
```

Sea $\mathcal{L} \in \mathbf{NSPACE}(S(n))$. Existe una familia de circuitos $(C_n)_{n \in \mathbb{N}}$ y una máquina determinística M tal que para todo n y $x \in \{0,1\}^n$

- $x \in \mathcal{L} \sin C_n(x) = 1$
- $M(1^n) = \langle C_n \rangle$
- C_n puede usar compuertas \wedge y \vee de fan-in arbitrario
- $|C_n| = 2^{O(S(n))}$
- $\operatorname{prof}(C_n) = O(S(n))$

Demostración.

Sea N una máquina no-determinística que usa espacio O(S(n)) tal que $x \in \mathcal{L}$ sii existe un cómputo aceptador de N(x).

Demostración.

Sea N una máquina no-determinística que usa espacio O(S(n)) tal que $x \in \mathcal{L}$ sii existe un cómputo aceptador de N(x). Consideramos el grafo de configuraciones $G_{N,x}$, que tiene $m = 2^{c \cdot S(|x|)}$ nodos para alguna constante c.

Demostración.

Sea N una máquina no-determinística que usa espacio O(S(n)) tal que $x \in \mathcal{L}$ sii existe un cómputo aceptador de N(x).

Consideramos el grafo de configuraciones $G_{N,x}$, que tiene $m=2^{c\cdot S(|x|)}$ nodos para alguna constante c.

Sea $A_x \in \{0,1\}^{m \times m}$ la matriz de adyacencia de $G_{N,x}$

- $(A_x)_{ij} = 1$ sii i evoluciona en un paso en j.
- $B_x = A_x \vee I$: $(B_x)_{ij} = 1$ sii j es alcanzable desde i en ≤ 1 pasos.
- $(B_x^{\ell})_{ij} = 1$ sii j es alcanzable desde i en $\leq \ell$ pasos. Consideramos una multiplicación \otimes de matrices donde \vee juega de + y \wedge juega de \cdot

En general para $C, D \in \{0, 1\}^{m \times m}$:

$$(C \otimes D)_{ij} = \bigvee_{1 \le k \le m} C_{ik} \wedge D_{kj}$$

(circuito de profundidad constante gracias al fan-in arbitrario)

Sea n = |x|. C_n hace esto:

- calcula A_x : profundidad constante.
- calcula B_x : idem.
- calcula $D_x = B_x^m = B_x^{2^{c \cdot S(n)}}$: profundidad $O(\log m) = O(\log 2^{c \cdot S(n)}) = O(S(n))$. Ejemplo: $B_x^{2^3} = ((B_x \cdot B_x) \cdot (B_x \cdot B_x)) \cdot ((B_x \cdot B_x) \cdot (B_x \cdot B_x))$
- la salida es $(D_x)_{1,2}$ (suponemos que la configuración inicial es 1 y la final es 2)

Sea n = |x|. C_n hace esto:

- calcula A_x : profundidad constante.
- calcula B_x : idem.
- calcula $D_x = B_x^m = B_x^{2^{c \cdot S(n)}}$: profundidad $O(\log m) = O(\log 2^{c \cdot S(n)}) = O(S(n))$. Ejemplo: $B_x^{2^3} = ((B_x \cdot B_x) \cdot (B_x \cdot B_x)) \cdot ((B_x \cdot B_x) \cdot (B_x \cdot B_x))$
- la salida es $(D_x)_{1,2}$ (suponemos que la configuración inicial es 1 y la final es 2)

Tenemos

• $C_n(x) = 1 \sin N \text{ acepta } x$

Sea n = |x|. C_n hace esto:

- calcula A_x : profundidad constante.
- calcula B_x : idem.
- calcula $D_x = B_x^m = B_x^{2^{c \cdot S(n)}}$: profundidad $O(\log m) = O(\log 2^{c \cdot S(n)}) = O(S(n))$. Ejemplo: $B_x^{2^3} = ((B_x \cdot B_x) \cdot (B_x \cdot B_x)) \cdot ((B_x \cdot B_x) \cdot (B_x \cdot B_x))$
- la salida es $(D_x)_{1,2}$ (suponemos que la configuración inicial es 1 y la final es 2)

Tenemos

- $C_n(x) = 1 \sin N \text{ acepta } x$
- $\operatorname{prof}(C_n) = O(S(n))$

Sea n = |x|. C_n hace esto:

- calcula A_x : profundidad constante.
- calcula B_x : idem.
- calcula $D_x = B_x^m = B_x^{2^{c \cdot S(n)}}$: profundidad $O(\log m) = O(\log 2^{c \cdot S(n)}) = O(S(n))$. Ejemplo: $B_x^{2^3} = ((B_x \cdot B_x) \cdot (B_x \cdot B_x)) \cdot ((B_x \cdot B_x) \cdot (B_x \cdot B_x))$
- la salida es $(D_x)_{1,2}$ (suponemos que la configuración inicial es 1 y la final es 2)

Tenemos

- $C_n(x) = 1 \sin N \text{ acepta } x$
- $\operatorname{prof}(C_n) = O(S(n))$
- $|C_n| = 2^{O(S(n))}$

Sea n = |x|. C_n hace esto:

- calcula A_x : profundidad constante.
- calcula B_x : idem.
- calcula $D_x = B_x^m = B_x^{2^{c \cdot S(n)}}$: profundidad $O(\log m) = O(\log 2^{c \cdot S(n)}) = O(S(n))$. Ejemplo: $B_x^{2^3} = ((B_x \cdot B_x) \cdot (B_x \cdot B_x)) \cdot ((B_x \cdot B_x) \cdot (B_x \cdot B_x))$
- la salida es $(D_x)_{1,2}$ (suponemos que la configuración inicial es 1 y la final es 2)

Tenemos

- $C_n(x) = 1 \sin N$ acepta x
- $\operatorname{prof}(C_n) = O(S(n))$
- $|C_n| = 2^{O(S(n))}$
- La construcción es uniforme, es decir, existe una máquina determinística M tal que $M(1^n) = \langle C_n \rangle$

Ejemplo del circuito para $c \cdot S(n) = 3$

- |x| = n
- $|A_x| = |B_x| = |D_x| = (2^{c \cdot S(n)})^2 = 2^{O(S(n))}$
- En total, el circuito tiene $2^{O(S(n))}$ nodos y profundidad O(S(n))

Corolario

 $\mathbf{NL} \subseteq \mathbf{AC}^1$.

Corolario

 $NL \subseteq AC^1$.

Demostración.

Sea $\mathcal{L} \in \mathbf{NSPACE}(\log n)$. Existe una familia de circuitos $(C_n)_{n \in \mathbb{N}}$ y una máquina determinística M tal que para todo $n \geq 1$ y $x \in \{0,1\}^n$

- $x \in \mathcal{L} \sin C_n(x) = 1$
- $M(1^n) = \langle C_n \rangle$
- C_n puede usar compuertas \wedge y \vee de fan-in arbitrario
- $|C_n| = 2^{O(\log n)} = n^{O(1)}$
- $\operatorname{prof}(C_n) = O(\log n)$

Solo falta ver que la familia $(C_n)_{n\in\mathbb{N}}$ es **L**-uniforme. Alcanza con ver que $1^n \mapsto \langle C_n \rangle$ es computable implícitamente en **L** por M.

P-completitud

Clase 12

Las clases NC_{nu} y AC_{nu}

Uniformidad: las clases NC y AC

 $\mathbf{P}\text{-}\mathrm{completitud}$

NC vs P

- $\mathbf{i}\mathbf{NC} = \mathbf{P}$ o $\mathbf{NC} \subsetneq \mathbf{P}$? Es una pregunta abierta.
- ¿Cualquier problema factible tiene solución paralela eficiente?
- Sabemos que $NC^1 \subsetneq PSPACE$ porque $NC^1 \subseteq L$ y $L \subsetneq PSPACE$.
- No sabemos $NC \stackrel{?}{=} P$.
- Ni siquiera sabemos $\mathbf{NC}^1 \stackrel{?}{=} \mathbf{PH}$.

NC vs P

- $\mathbf{i}\mathbf{NC} = \mathbf{P}$ o $\mathbf{NC} \subsetneq \mathbf{P}$? Es una pregunta abierta.
- ¿Cualquier problema factible tiene solución paralela eficiente?
- Sabemos que $NC^1 \subsetneq PSPACE$ porque $NC^1 \subseteq L$ y $L \subsetneq PSPACE$.
- No sabemos $NC \stackrel{?}{=} P$.
- Ni siquiera sabemos $\mathbf{NC}^1 \stackrel{?}{=} \mathbf{PH}$.

Clase de complejidad: P-completo

 \mathcal{L} es **P-completo** si $\mathcal{L} \in \mathbf{P}$ y $\mathcal{L}' \leq_{\ell} \mathcal{L}$ para todo $\mathcal{L}' \in \mathbf{P}$.

Si apostamos a que $NC \neq P$, entonces los problemas **P-completos** son los que, a pesar de ser factibles, no tienen una solución paralela eficiente.

Problema: Evaluación de un circuito

$$\mathsf{CIRC\text{-}EVAL} = \{\langle C, x \rangle \colon \begin{array}{l} C \text{ es un circuito con } n \text{ entradas con \'unica} \\ \text{salida}, \ x \in \{0,1\}^n, \ \text{y } C(x) = 1. \end{array} \}$$

Problema: Evaluación de un circuito

$$\mathsf{CIRC\text{-}EVAL} = \{ \langle C, x \rangle \colon \begin{array}{l} C \text{ es un circuito con } n \text{ entradas con \'unica} \\ \text{salida}, \ x \in \{0,1\}^n, \ \text{y } C(x) = 1. \end{array} \}$$

Proposición

CIRC-EVAL es **P-completo**.

Problema: Evaluación de un circuito

$$\mathsf{CIRC\text{-}EVAL} = \{\langle C, x \rangle \colon \begin{array}{l} C \text{ es un circuito con } n \text{ entradas con única} \\ \mathrm{salida}, \ x \in \{0,1\}^n, \ \mathrm{y} \ C(x) = 1. \end{array} \}$$

Proposición

CIRC-EVAL es **P-completo**.

Demostración.

Es claro que $\mathsf{CIRC}\text{-}\mathsf{EVAL} \in \mathbf{P}.$

Problema: Evaluación de un circuito

$$\mathsf{CIRC\text{-}EVAL} = \{ \langle C, x \rangle \colon \begin{array}{l} C \text{ es un circuito con } n \text{ entradas con \'unica} \\ \mathrm{salida}, \ x \in \{0,1\}^n, \, \mathrm{y} \ C(x) = 1. \end{array} \}$$

Proposición

CIRC-EVAL es **P-completo**.

Demostración.

Es claro que CIRC-EVAL $\in \mathbf{P}$.

Supongamos $\mathcal{L} \in \mathbf{P}$ y sea M una máquina determinística que corre en tiempo polinomial y $\mathcal{L}(M) = \mathcal{L}$. Ya vimos que \mathcal{L} es decidible por una familia **L**-uniforme de circuitos.

Problema: Evaluación de un circuito

$$\mathsf{CIRC\text{-}EVAL} = \{ \langle C, x \rangle \colon \begin{array}{l} C \text{ es un circuito con } n \text{ entradas con única} \\ \mathrm{salida}, \ x \in \{0,1\}^n, \ \mathrm{y} \ C(x) = 1. \end{array} \}$$

Proposición

CIRC-EVAL es P-completo.

Demostración.

Es claro que CIRC-EVAL $\in \mathbf{P}$.

Supongamos $\mathcal{L} \in \mathbf{P}$ y sea M una máquina determinística que corre en tiempo polinomial y $\mathcal{L}(M) = \mathcal{L}$. Ya vimos que \mathcal{L} es decidible por una familia **L**-uniforme de circuitos.

Existe una función $f: \{0,1\}^* \to \{0,1\}^*$ computable implícitamente en L tal que $f(1^n) = \langle C_n \rangle$.

$$x \in \mathcal{L}$$
 sii $C_{|x|}(x) = 1$ sii $\langle f(1^{|x|}), x \rangle \in \mathsf{CIRC}\text{-EVAL}.$

 $x \mapsto \langle f(1^{|x|}), x \rangle$ es computable implícitamente en **L**.

Entonces $\mathcal{L} \leq_{\ell} \mathsf{CIRC}\text{-EVAL}$.

P-completitud

Ejercicio

Si $\mathcal{L} \in \mathbf{NC}$ y $\mathcal{L}' \leq_{\ell} \mathcal{L}$, entonces $\mathcal{L}' \in \mathbf{NC}$.

\mathbf{P} -completitud

Ejercicio

Si $\mathcal{L} \in \mathbf{NC}$ y $\mathcal{L}' \leq_{\ell} \mathcal{L}$, entonces $\mathcal{L}' \in \mathbf{NC}$.

Teorema

Supongamos que \mathcal{L} es **P-completo**.

- 1. $\mathcal{L} \in \mathbf{NC} \sin \mathbf{P} = \mathbf{NC}$
- 2. $\mathcal{L} \in \mathbf{L} \sin \mathbf{P} = \mathbf{L}$

P-completitud

Ejercicio

Si $\mathcal{L} \in \mathbf{NC}$ y $\mathcal{L}' \leq_{\ell} \mathcal{L}$, entonces $\mathcal{L}' \in \mathbf{NC}$.

Teorema

Supongamos que \mathcal{L} es **P-completo**.

- 1. $\mathcal{L} \in \mathbf{NC} \operatorname{sii} \mathbf{P} = \mathbf{NC}$
- 2. $\mathcal{L} \in \mathbf{L} \sin \mathbf{P} = \mathbf{L}$

Ejercicio

Probar el ítem 2.

Demostración del ítem 1.

 \Leftarrow es trivial.

Veamos que si $\mathcal{L} \in \mathbf{P}$ -completo y $\mathcal{L} \in \mathbf{NC}$ entonces $\mathbf{P} \subseteq \mathbf{NC}$ (ya sabemos que $\mathbf{NC} \subseteq \mathbf{P}$).

$\mathcal{L} \in \mathbf{P}$ -completo y $\mathcal{L} \in \mathbf{NC}$, entonces $\mathbf{P} \subseteq \mathbf{NC}$ (idea)

Como $\mathcal{L} \in \mathbf{NC}$, existe e y una familia **L**-uniforme $(C_n)_{n \in \mathbb{N}}$ de circuitos tal que $|C_n| = O(n^e)$, prof $(C_n) = O(\log^e n)$, y para todo $x \in \{0,1\}^n$

$$C_n(x) = 1$$
 sii $x \in \mathcal{L}$.

$\mathcal{L} \in \mathbf{P}$ -completo y $\mathcal{L} \in \mathbf{NC}$, entonces $\mathbf{P} \subseteq \mathbf{NC}$ (idea)

Como $\mathcal{L} \in \mathbf{NC}$, existe e y una familia **L**-uniforme $(C_n)_{n \in \mathbb{N}}$ de circuitos tal que $|C_n| = O(n^e)$, prof $(C_n) = O(\log^e n)$, y para todo $x \in \{0,1\}^n$

$$C_n(x) = 1$$
 sii $x \in \mathcal{L}$.

Sea $\mathcal{L}' \in \mathbf{P}$. Existe $f' : \{0,1\}^* \to \{0,1\}^*$ computable implícitamente en \mathbf{L} tal que para todo $x \in \{0,1\}^n$,

$$x \in \mathcal{L}'$$
 sii $f'(x) \in \mathcal{L}$.

Existe c tal que $|f'(x)| \le c \cdot n^c$. Por simplicidad, supongamos que $|f'(x)| = c \cdot n^c$.

$\mathcal{L} \in \mathbf{P}$ -completo v $\mathcal{L} \in \mathbf{NC}$, entonces $\mathbf{P} \subseteq \mathbf{NC}$

(idea) Como $\mathcal{L} \in \mathbf{NC}$, existe e y una familia L-uniforme $(C_n)_{n \in \mathbb{N}}$ de

circuitos tal que $|C_n| = O(n^e)$, prof $(C_n) = O(\log^e n)$, y para todo $x \in \{0, 1\}^n$

$$C_n(x) = 1$$
 sii $x \in \mathcal{L}$.

Sea $\mathcal{L}' \in \mathbf{P}$. Existe $f': \{0,1\}^* \to \{0,1\}^*$ computable implicitamente en L tal que para todo $x \in \{0,1\}^n$,

$$x \in \mathcal{L}'$$
 sii $f'(x) \in \mathcal{L}$.

Existe c tal que $|f'(x)| \leq c \cdot n^c$. Por simplicidad, supongamos que $|f'(x)| = c \cdot n^c$.

Como $\mathbf{L} \subseteq \mathbf{NC}$, existe d y una familia \mathbf{L} -uniforme $(C'_n)_{n \in \mathbb{N}}$ de circuitos tal que $|C'_n| = O(n^d)$, prof $(C'_n) = O(\log^d n)$, y para todo $x \in \{0,1\}^n$ $C'_n(x) = f'(x)$ (En realidad $\mathbf{L} \subseteq \mathbf{NC}$ lo vimos para lenguajes pero vale funciones computables implícitamente en L, como f'.)

$\mathcal{L} \in \mathbf{P}$ -completo y $\mathcal{L} \in \mathbf{NC}$, entonces $\mathbf{P} \subseteq \mathbf{NC}$

Como $\mathcal{L} \in \mathbf{NC}$, existe e y una familia **L**-uniforme $(C_n)_{n \in \mathbb{N}}$ de circuitos tal que $|C_n| = O(n^e)$, prof $(C_n) = O(\log^e n)$, y para todo $x \in \{0,1\}^n$

$$C_n(x) = 1$$
 sii $x \in \mathcal{L}$.

Sea $\mathcal{L}' \in \mathbf{P}$. Existe $f' : \{0,1\}^* \to \{0,1\}^*$ computable implicitamente en \mathbf{L} tal que para todo $x \in \{0,1\}^n$,

$$x \in \mathcal{L}'$$
 sii $f'(x) \in \mathcal{L}$.

Existe c tal que $|f'(x)| \le c \cdot n^c$. Por simplicidad, supongamos que $|f'(x)| = c \cdot n^c$.

Como $\mathbf{L} \subseteq \mathbf{NC}$, existe d y una familia \mathbf{L} -uniforme $(C'_n)_{n \in \mathbb{N}}$ de circuitos tal que $|C'_n| = O(n^d)$, $\operatorname{prof}(C'_n) = O(\log^d n)$, y para todo $x \in \{0,1\}^n$ $C'_n(x) = f'(x)$ (En realidad $\mathbf{L} \subseteq \mathbf{NC}$ lo vimos para lenguajes pero vale funciones computables implícitamente en \mathbf{L} , como f'.) Entonces

$$x \in \mathcal{L}'$$
 sii $f'(x) \in \mathcal{L}$ sii $C_{c \cdot n^c}(f'(x)) = 1$ sii $C_{c \cdot n^c}(C'_n(x)) = 1$

La composición de los circuitos C y C' tiene tamaño polinomial, profundidad polilogarítmica, y se construyen uniformemente a partir de 1^n . Esto prueba que $\mathcal{L}' \in \mathbf{NC}$.

(idea)