Linear Programming COMS20010 2020, Video 8-1

John Lapinskas, University of Bristol

Linear programming is the single most fundamental technique for solving optimisation problems. It's used in:

Agriculture;

- Agriculture;
- Nutrition;

- Agriculture;
- Nutrition;
- Transport;

- Agriculture;
- Nutrition;
- Transport;
- Manufacturing;

- Agriculture;
- Nutrition:
- Transport;
- Manufacturing;
- Power provision;

- Agriculture;
- Nutrition:
- Transport;
- Manufacturing;
- Power provision;
- Approximation algorithms;

- Agriculture;
- Nutrition:
- Transport;
- Manufacturing;
- Power provision;
- Approximation algorithms;
- Planning entire economies.

- Agriculture;
- Nutrition:
- Transport;
- Manufacturing;
- Power provision;
- Approximation algorithms;
- Planning entire economies. (VERY BAD IDEA!)

Linear programming is the single most fundamental technique for solving optimisation problems. It's used in:

- Agriculture;
- Nutrition:
- Transport;
- Manufacturing;
- Power provision;
- Approximation algorithms;
- Planning entire economies. (VERY BAD IDEA!)

These two videos are a very basic overview of a deep and rich theory.

As an example problem: which Warhammer models should Games Workshop produce in order to make as much money as possible?

Example application: Warhammer

Let's consider a vastly simplified problem with just two models:

Example application: Warhammer

Let's consider a vastly simplified problem with just two models:

The noise marine...

Example application: Warhammer

Let's consider a vastly simplified problem with just two models:

The noise marine...

and the doomwheel.

ullet Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...

• Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...they require $5N + 100D \le 5000$.

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...they require $5N + 100D \le 5000$.
- Similarly, their metal plant can turn out 4kg of finished parts per day.
 One noise marine contains 60g of metal, and one doomwheel contains 10g, so...

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...they require $5N + 100D \le 5000$.
- Similarly, their metal plant can turn out 4kg of finished parts per day. One noise marine contains 60g of metal, and one doomwheel contains 10g, so...they require $60N + 10D \le 4000$.

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...they require $5N + 100D \le 5000$.
- Similarly, their metal plant can turn out 4kg of finished parts per day. One noise marine contains 60g of metal, and one doomwheel contains 10g, so...they require $60N + 10D \le 4000$.
- They believe they can sell up to 100 noise marines and 50 doomwheels per day, but no more, so...

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...they require $5N + 100D \le 5000$.
- Similarly, their metal plant can turn out 4kg of finished parts per day. One noise marine contains 60g of metal, and one doomwheel contains 10g, so...they require $60N + 10D \le 4000$.
- They believe they can sell up to 100 noise marines and 50 doomwheels per day, but no more, so...they require $N \le 100$ and $D \le 50$.

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...they require $5N + 100D \le 5000$.
- Similarly, their metal plant can turn out 4kg of finished parts per day. One noise marine contains 60g of metal, and one doomwheel contains 10g, so...they require $60N + 10D \le 4000$.
- They believe they can sell up to 100 noise marines and 50 doomwheels per day, but no more, so...they require $N \le 100$ and $D \le 50$.
- Games Workshop cannot produce a negative amount of miniatures, so...

- Games Workshop makes a profit of £4 per noise marine and £10 per doomwheel, so...they wish to maximise 4N + 10D.
- Their plastic plant can turn out 5kg of finished parts per day. One noise marine contains 5g of plastic, and one doomwheel contains 100g, so...they require $5N + 100D \le 5000$.
- Similarly, their metal plant can turn out 4kg of finished parts per day. One noise marine contains 60g of metal, and one doomwheel contains 10g, so...they require $60N + 10D \le 4000$.
- They believe they can sell up to 100 noise marines and 50 doomwheels per day, but no more, so...they require $N \le 100$ and $D \le 50$.
- Games Workshop cannot produce a negative amount of miniatures, so...they require $N, D \ge 0$.

More succinctly, the problem is:

$$4N+10D
ightarrow ext{max}, ext{ subject to}$$
 $5N+100D \le 5000;$ $60N+10D \le 4000;$ $N \le 100;$ $D \le 50;$ $N, D \ge 0.$

More succinctly, the problem is:

$$4N+10D
ightarrow ext{max}$$
, subject to $5N+100D \leq 5000$; $60N+10D \leq 4000$; $N \leq 100$; $D \leq 50$; $N, D \geq 0$.

We can write this in matrix form:

$$4N+10D \rightarrow \mathsf{max}, \text{ subject to}$$

$$\begin{pmatrix} 5 & 100 \\ 60 & 10 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} N \\ D \end{pmatrix} \leq \begin{pmatrix} 5000 \\ 4000 \\ 100 \\ 50 \end{pmatrix};$$

$$N,\ D \geq 0.$$

The formal definition

$$\begin{pmatrix} 4N+10D \rightarrow \mathsf{max}, \text{ subject to} \\ \begin{pmatrix} 5 & 100 \\ 60 & 10 \\ 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} N \\ D \end{pmatrix} \leq \begin{pmatrix} 5000 \\ 4000 \\ 100 \\ 50 \end{pmatrix};$$

$$N, D \geq 0.$$

The formal definition

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for **all** i, and similarly for $\vec{x} \geq \vec{y}$.

For example, $(2,0,1) \ge (0,0,0)$, but $(2,0,1) \ge (0,1,0)$.

The formal definition

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for **all** i, and similarly for $\vec{x} \geq \vec{y}$.

For example, $(2,0,1) \ge (0,0,0)$, but $(2,0,1) \not \ge (0,1,0)$.

Despite this, we **also** have $(2,0,1) \not\leq (0,1,0)$; they are incomparable.

John Lapinskas Video 8-1 6/9

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for **all** i, and similarly for $\vec{x} \geq \vec{y}$.

For example, $(2,0,1) \ge (0,0,0)$, but $(2,0,1) \ge (0,1,0)$. Despite this, we **also** have $(2,0,1) \le (0,1,0)$; they are incomparable.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} < \vec{b}$ and $\vec{x} > \vec{0}$.

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

We say a $\vec{x} \in \mathbb{R}^n$ is a **feasible** solution to a linear program if $\vec{x} \ge \vec{0}$ and $A\vec{x} \le \vec{b}$, and an **optimal** solution if $f(\vec{y}) \le f(\vec{x})$ for all feasible $y \in \mathbb{R}^n$.

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for **all** i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

We say a $\vec{x} \in \mathbb{R}^n$ is a **feasible** solution to a linear program if $\vec{x} \geq \vec{0}$ and $A\vec{x} \leq \vec{b}$, and an **optimal** solution if $f(\vec{y}) \leq f(\vec{x})$ for all feasible $y \in \mathbb{R}^n$.

Sometimes there is **no** optimal solution, for two reasons:

• Sometimes the constraints are so tight they rule out any feasible solutions at all, e.g. $x \to \max$ subject to $x \le -1$ and $x \ge 0$.

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

We say a $\vec{x} \in \mathbb{R}^n$ is a **feasible** solution to a linear program if $\vec{x} \geq \vec{0}$ and $A\vec{x} \leq \vec{b}$, and an **optimal** solution if $f(\vec{y}) \leq f(\vec{x})$ for all feasible $y \in \mathbb{R}^n$.

Sometimes there is **no** optimal solution, for two reasons:

- Sometimes the constraints are so tight they rule out any feasible solutions at all, e.g. $x \to \max$ subject to $x \le -1$ and $x \ge 0$.
- Sometimes the constraints are so loose that there are feasible solutions with $f(\vec{x})$ arbitrarily large, e.g. $x \to \max$ subject to $x \ge 0$. We call these problems **unbounded**.

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

We say a $\vec{x} \in \mathbb{R}^n$ is a **feasible** solution to a linear program if $\vec{x} \geq \vec{0}$ and $A\vec{x} \leq \vec{b}$, and an **optimal** solution if $f(\vec{y}) \leq f(\vec{x})$ for all feasible $y \in \mathbb{R}^n$.

Sometimes there is **no** optimal solution, for two reasons:

- Sometimes the constraints are so tight they rule out any feasible solutions at all, e.g. $x \to \max$ subject to $x \le -1$ and $x \ge 0$.
- Sometimes the constraints are so loose that there are feasible solutions with $f(\vec{x})$ arbitrarily large, e.g. $x \to \max$ subject to $x \ge 0$. We call these problems **unbounded**.

But these are the only two things that can go wrong — any bounded linear program with at least one feasible solution has an optimal solution.

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

This statement seems quite restrictive. What about:

• Minimisation problems?

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

This statement seems quite restrictive. What about:

- Minimisation problems?
- o = or > constraints?

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

This statement seems quite restrictive. What about:

- Minimisation problems?
- o = or > constraints?
- Allowing the variables to be negative?

Notation: We say $\vec{x} \leq \vec{y}$ iff $\vec{x_i} \leq \vec{y_i}$ for all i, and similarly for $\vec{x} \geq \vec{y}$.

Problem statement: We are given a linear objective function $f: \mathbb{R}^n \to \mathbb{R}$, an $m \times n$ matrix A, and an m-dimensional vector $\vec{b} \in \mathbb{R}^m$. The desired output is a vector $\vec{x} \in \mathbb{R}^n$ maximising $f(\vec{x})$ subject to $A\vec{x} \leq \vec{b}$ and $\vec{x} \geq \vec{0}$.

This statement seems quite restrictive. What about:

- Minimisation problems?
 - o = or > constraints?
 - Allowing the variables to be negative?

All of these can be implemented in the above framework, which is known as **standard form**.

As an example, let's turn the following LP into standard form:

$$4x - 5y + z \rightarrow \min$$
 subject to $x + y + z = 5$; $x + 2y \ge 2$; $x, z \ge 0$.

As an example, let's turn the following LP into standard form:

$$4x - 5y + z \rightarrow min$$
 subject to
 $x + y + z = 5;$
 $x + 2y \ge 2;$
 $x, z \ge 0.$

Minimisation problems: $f(\vec{x})$ is as small as possible if and only if $-f(\vec{x})$ is as large as possible.

So $4x - 5y + z \rightarrow \min$ is equivalent to $-4x + 5y - z \rightarrow \max$.

John Lapinskas Video 8-1 9/9

As an example, let's turn the following LP into standard form:

$$-4x + 5y - z \rightarrow \text{max subject to}$$

$$x + y + z = 5;$$

$$x + 2y \ge 2;$$

$$x, z \ge 0.$$

Minimisation problems: $f(\vec{x})$ is as small as possible if and only if $-f(\vec{x})$ is as large as possible.

So $4x - 5y + z \rightarrow \min$ is equivalent to $-4x + 5y - z \rightarrow \max$.

As an example, let's turn the following LP into standard form:

$$-4x + 5y - z \rightarrow \text{max subject to}$$

 $x + y + z = 5;$
 $x + 2y \ge 2;$
 $x, z \ge 0.$

= constraints: $\sum_i a_{ii} x_i = b_i$ if and only if $\sum_i a_{ii} x_i \ge b_i$ and $\sum_i a_i x_i \le b_i$. So x + y + z = 5 is equivalent to $x + y + z \le 5$ and $x + y + z \ge 5$.

Video 8-1 9/9

As an example, let's turn the following LP into standard form:

$$-4x + 5y - z \rightarrow \text{max}$$
 subject to
 $x + y + z \leq 5$;
 $x + y + z \geq 5$;
 $x + 2y \geq 2$;
 $x, z \geq 0$.

= constraints: $\sum_i a_{ii} x_i = b_i$ if and only if $\sum_i a_{ii} x_i \ge b_i$ and $\sum_i a_i x_i \le b_i$. So x + y + z = 5 is equivalent to $x + y + z \le 5$ and $x + y + z \ge 5$.

Video 8-1 9/9

As an example, let's turn the following LP into standard form:

$$-4x + 5y - z \rightarrow \text{max}$$
 subject to
 $x + y + z \leq 5$;
 $x + y + z \geq 5$;
 $x + 2y \geq 2$;
 $x, z \geq 0$.

 \geq constraints: $\sum_{j} a_{ij} x_{j} \geq b_{i}$ if and only if $-\sum_{j} a_{ij} x_{j} \leq -b_{i}$.

So $x+2y\geq 2$ is equivalent to $-x-2y\leq -2$, and $x+y+z\geq 5$ is equivalent to $-x-y-z\leq -5$.

John Lapinskas Video 8-1 9/9

As an example, let's turn the following LP into standard form:

$$-4x + 5y - z \rightarrow \text{max}$$
 subject to
 $x + y + z \le 5$;
 $-x - y - z \le -5$;
 $-x - 2y \le -2$;
 $x, z \ge 0$.

 \geq constraints: $\sum_{j} a_{ij}x_{j} \geq b_{i}$ if and only if $-\sum_{j} a_{ij}x_{j} \leq -b_{i}$.

So $x+2y\geq 2$ is equivalent to $-x-2y\leq -2$, and $x+y+z\geq 5$ is equivalent to $-x-y-z\leq -5$.

John Lapinskas Video 8-1 9 / 9

As an example, let's turn the following LP into standard form:

$$-4x + 5y - z \rightarrow \text{max}$$
 subject to $x + y + z \le 5$; $-x - y - z \le -5$; $-x - 2y \le -2$; $x, z \ge 0$.

Removing non-negativity: If y doesn't have to be non-negative, we can replace it by $y_1 - y_2$ where $y_1, y_2 \ge 0$. We think of y_1 as the positive part and y_2 as the negative part.

There will be feasible solutions with both $y_1 > 0$ and $y_2 > 0$, but this doesn't matter — any optimal solution of the old problem will be an optimal solution of the new one and vice versa.

As an example, let's turn the following LP into standard form:

$$-4x + 5(y_1 - y_2) - z \rightarrow \text{max subject to}$$

$$x + (y_1 - y_2) + z \le 5;$$

$$-x - (y_1 - y_2) - z \le -5;$$

$$-x - 2(y_1 - y_2) \le -2;$$

$$x, y_1, y_2, z \ge 0.$$

Removing non-negativity: If y doesn't have to be non-negative, we can replace it by $y_1 - y_2$ where $y_1, y_2 \ge 0$. We think of y_1 as the positive part and y_2 as the negative part.

There will be feasible solutions with both $y_1 > 0$ and $y_2 > 0$, but this doesn't matter — any optimal solution of the old problem will be an optimal solution of the new one and vice versa.

As an example, let's turn the following LP into standard form:

$$-4x + 5y_1 - 5y_2 - z \rightarrow \text{max}$$
 subject to

$$\begin{pmatrix} 1 & 1 & -1 & 1 \\ -1 & -1 & 1 & -1 \\ -1 & -2 & 2 & 0 \end{pmatrix} \begin{pmatrix} x \\ y_1 \\ y_2 \\ z \end{pmatrix} \le \begin{pmatrix} 5 \\ -5 \\ -2 \end{pmatrix};$$

$$x, y_1, y_2, x \geq 0.$$

The problem is now in standard form! And these techniques are fully general.

So we have **reduced** the problem of solving a general linear program, which might have a minimisation goal, = or \le constraints, and/or negative variables, to that of solving a linear program in standard form.

That makes it easier to find an algorithm!