COMP/ELEC 429/556 Introduction to Computer Networks

Inter-domain routing

Some slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang

Previous focus: Intra-Domain Routing

Intra-domain routing protocol aka Interior Gateway Protocol (IGP)

Inter-Domain Routing Considerations

- Global connectivity is at stake
- Inevitably leads to <u>one single protocol</u> that everyone must speak
 - Unlike many choices in intra-domain routing
- What are the requirements?
 - Scalability
 - Flexibility in choosing routes
- If you were to choose, link state based or distance vector based?

- Border Gateway Protocol (BGP)
 - A hybrid between link state and distance vector
 - "Path vector"

Border Gateway Protocol Part I: E-BGP

- Two types of routers
 - Border router, Interior router

Border Gateway Protocol Part II: I-BGP

- Two types of routers
 - Border router, Interior router

BGP Update Messages

• **Update**: Announcing new routes or <u>withdrawing</u> previously announced routes.

Update

=

Destination IP address prefix + attributes values (e.g. a routing path)

Part I: E-BGP, Share connectivity information across ASs

Part II: I-BGP, Carrying Info within an AS

eugeneng at cs.rice.edu

I-BGP used to disseminate learned routes to all routers in AS

Attributes are Used to Select Best Routes

Shorter Doesn't Always Mean better Is path 4 1 better than path <u>3 2 1?</u> **AS 4** AS 3 AS 2 **AS 1** AS can use custom policies other than shortest path

Benefits of BGP Design

- Path Vector style routing
 - Distance vector algorithm with extra information
 - For each route, store the complete path (ASs)
- Advantages:
 - can make policy choices (choose among many possible learned paths) based on set of ASs in path

eugeneng at cs.rice.edu

can easily avoid loops

Announcing and Choosing Routes

- BGP may learn many different paths for a destination network
- Learns only reachability information, no performance metrics
 - Not about optimizing anything
 - All about policy (business and politics)
- What a BGP speaker announces or not announces to a neighbor determines what routes may get used by that neighbor

eugeneng at cs.rice.edu

Router chooses among paths based on policy

Customers and Providers provider provider **(** customer customer IP traffic **Customer pays provider for access to the Internet**

Export Routes provider route **ISP** route **Customer route** peer route To **From** provider provider. To To peer peer To To customer customer filters block

How can routes be marked as "provider", "peer", "customer", "isp"?

Use "Community Attribute" in route announcement

eugeneng at cs.rice.edu

A community attribute is 32 bits

By convention, first 16 bits is **ASN** indicating who is giving it an interpretation community number

Used for signaling within and between **ASs**

Very flexible **BECAUSE** it has no predefined meaning

BGP Issues

- BGP designed for policy not performance
- Susceptible to router misconfiguration
 - Blackholes: announce a route you cannot reach
- Slow convergence time
 - Rate limiting and route flap dampening

Combining IGP and BGP

Life Cycle of a Packet in the Internet

- Address Resolution Protocol (ARP)
 - On the same subnet, need to map IP address to MAC (e.g. Ethernet) address
 - Host and router have ARP cache to store the IP-MAC pairs
 - In case of no match in ARP cache, broadcast an ARP request with the IP address in question and the device with the IP address will reply with its MAC address

Life Cycle of a Packet in the Internet

For each hop in the network, do the following steps:

- 1. Decapsulate the Ethernet frame to get the IP header (except no need to do this at the source)
- 2. Check routing table by the destination IP address, get the next-hop IP address and the network interface
- 3. Learn the MAC address of the next hop (look up in ARP cache or broadcast an ARP request)
- 4. Encapsulate the IP packet into an Ethernet frame with the destination MAC address
- 5. Send the Ethernet frame out from the next-hop network interface

