Notes of Physical Challenges of Quantum Computation

Taper

September 3, 2016

Abstract

This is a note to the dissertation [1] by professor MH Wong in SUSTC.

Contents

1 Chapter 1 Overview		
	1.1 1.1 Introduction to quantum computing	1
	1.2 1.3 Physical implementations and challenges of quan-	
	tum computing	1
2	License	9

1 Chapter 1 Overview

1.1 1.1 Introduction to quantum computing

Here he presents some differences between the classical and quantum computers. Keywords: quantum parallelism, reversible computation process, simulation of quantum dynamics.

1.2 1.3 Physical implementations and challenges of quantum computing

These two parts do as the title suggests. The methods are summarized in the following table:

Table 1: Different Quantum Computing Approaches
Name Method Error Prevention

gate model	$U \text{Input}\rangle = \text{Output}\rangle$	quantum error correc-
		tion, analogous to its
		classical counterparts.
adiabatic model	Keep the quantum	Prevent thermalization.
	states of qbits in	
	ground state.	
one-way quantum	Initialized in cluster	High quality cluster
computing/measurement	- state. Computation	state. Precision in
based quantum com-	achived via a series	measurement.
puting	of adaptive measure-	
	ments.	

It should be noted that the above classification is not exclusive, there are certainly overlap between the three approaches.

References

[1] From UIUC: https://www.ideals.illinois.edu/bitstream/handle/2142/14565/yung_manhong.pdf?sequence=1&isAllowed=y

2 License

The entire content of this work (including the source code for TeX files and the generated PDF documents) by Hongxiang Chen (nicknamed we.taper, or just Taper) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at mailto:we.taper[at]gmail[dot]com.