## Faster Shortest Path Computation for Traffic Assignment

Boshen Chen Supervised by: Dr. Andrea Raith, Olga Perederieieva

> Department of Engineering Science University of Auckland

> > July 17, 2013

• transportation network with supply and demand nodes

- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects

- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
- all-or-nothing assignment

- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
- all-or-nothing assignment
  - send traffic all at once to a node via the shortest path

- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
- all-or-nothing assignment
  - send traffic all at once to a node via the shortest path

- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
  - all-or-nothing assignment
    - send traffic all at once to a node via the shortest path

Initialise: all-or-nothing assignment on shortest path with free flow travel times

- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
- all-or-nothing assignment
  - send traffic all at once to a node via the shortest path

Initialise: all-or-nothing assignment on shortest path with free flow travel times

Update arc travel times

- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
- all-or-nothing assignment
  - send traffic all at once to a node via the shortest path



- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
- all-or-nothing assignment
  - send traffic all at once to a node via the shortest path



- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
- all-or-nothing assignment
  - send traffic all at once to a node via the shortest path



- transportation network with supply and demand nodes
- arcs have non-linear costs for capturing congestion effects
- all-or-nothing assignment
  - send traffic all at once to a node via the shortest path



## The Graph - 93,135 Origin-Destinations Pairs

















#### Dijkstra's Algorithm - Priority Queue

- Pointer based Heap (C++ boost library)
  - Binomial
  - Pairing
  - Binary
  - Ternary
  - Skew
  - Fibonacci
- (red-black) binary search tree (C++ STL <set>)
- array based Heap (C++ STL <pri>ority\_queue>)

#### Dijkstra's Algorithm - Priority Queue

- Pointer based Heap (C++ boost library)
  - Binomial
  - Pairing
  - Binary
  - Ternary
  - Skew
  - Fibonacci
- (red-black) binary search tree (C++ STL <set>)
- $\bullet \ \, \mathsf{array} \ \, \mathsf{based} \ \, \mathsf{Heap} \, \left(\mathsf{C} ++ \, \mathsf{STL} \, <\! \mathsf{priority\_queue} \! > \right) \leftarrow \mathsf{winner} \\$

























#### Bidirectional A\* search



#### Bidirectional A\* search

















preprocessing

- preprocessing
  - A\* search combined with landmark distances

- preprocessing
  - A\* search combined with landmark distances
- use information from previous iteration

- preprocessing
  - A\* search combined with landmark distances
- use information from previous iteration
  - Incremental heuristic search Lifelong Planning A\*