✓ | Checked

เรื่องที่ 1 แรงโน้มถ่วงระหว่างดวงอาทิตย์กับดาวบริวาร

ขนาดของแรงโน้มถ่วงขึ้นอยู่กับ มวลของวัตถุทั้งสอง(m1,m2) และระยะห่างระหว่างมวลของวัตถุ

สูตรหาขนาดของแรงโน้มถ่วง

$$F = \frac{Gm_1m_2}{r^2}$$

F แทน ขนาดของแรงโพ้มถ่วง มีหน่วยเป็นพิวตัน (N) m1, m2 แทน มวลของวัตถุมีหน่วยเป็นกิโลกรัม (Kg) r แทน ระยะห่างระหว่างจุดศูนย์กลางของวัตถุมีหน่วยเป็นเมตร(m) G แทน ค่าแรงโพ้มถ่วงสากล ประมาณ 6.67 x 10⁻¹¹Nm²/Kq²

การโคจร (orbit)

การโคจรมีลักษณะเป็นการเคลื่อนที่แบบวงกลม รอบจุดศูนย์กลาง ถ้าอัตราเร็วของวัตถุน้อยกว่าอัตราเร็วในวงโคจร = จะตกลงสู่พื้น อัตราเร็วของวัตถุเท่ากับอัตราเร็วในวงโคจร = จะลอยตัวไม่ตกลงสู่พื้น อัตราเร็วของวัตถุมากกว่าอัตราเร็วในวงโคจร = จะนลุดวงโคจร

แรงโน้มถ่วงระหว่างโลกกับดวงจันทร์

m1 = โลก , m2 = ดวงจันทร์ ดวงจันทร์มีอัตราเร็วโดจรเท่ากับกับโลก *ดวงจันทร์ทวนเข็มนาพิ๊กา

เรื่องที่ 2 ปรากฎการณ์ที่เกิดจากการเคลื่อนที่ของโลก

โลก/ดวงจ์นทร์และดวงดาวอื่นๆจะหมุนรอบตัวเองในทิศทางทวนเข็มนาพิ๊กาและโลกจะมีเส้นตรงสมมติที่ลากจากขั้วโลกเหนือไป ยังขั้วโลกใต้เรียกว่า แกนโลก และโลกจะเอียงประมาณ 2.3.5 องศา

โลกมีลักษณะคล้ายทรงกลมทำให้บนโลกได้รับแสงจากดวงอาทิตย์ที่ต่างกัน

บางบริเวณจะได้รับแสงตกตรงหรือตกตั้งฉากและแสงตกเฉียง บริเวณที่ได้รับแสงตกตั้งฉาก จะได้รับพลังงานแสงต่อหนึ่งหน่วยมากทำให้มีอุณหภูมิที่มากกว่าบริเวณที่เกิดแสงตกเฉียง

สรุปโดบง่ายๆ แสงตกตั้งฉาก = ได้รับพลังงานมาก = อุณหภุมิสูง แสกตกเฉียง = ได้รับพลังงานน้อย = อุณหภุมิต่ำ ฤดุร้อน > ใบไม้ร่วง > หนาว > ใบไม้พลิ

Socorocals cocorocals cocorocal cocorocals c

การที่โลกโดจรรอบดวงอาทิตย์ในลักษณะที่แกนโลกเอียงดงที่ทำให้พื้นที่ต่างๆได้รับ แสงอาทิตย์เปลี่ยนแปลงไปทำให้เกิดเป็นฤดูกาลต่างๆ

School - Subsequent ### Sc

เมื่อซีกโลกเหนือเอียงเข้าหาดวงอาทิตย์มากที่สุด แสงจะตกตั้งฉากบริเวณซีกโลกเหนือทำให้มี อุณหภูมิสูง ซีกโลกเหนือจึงเป็นฤดูร้อน และเมื่อโลกโดจรรอบดวงอาทิตย์ต่อแกนโลกจะค่อยๆเบน ออกแสงจะตกเฉียงมากขึ้นและอุณหภูมิก็จะลดลงทำให้เปลี่ยนฤดูเป็นใบไม้ร่วงและเมื่อแกนโลก เบนออกมากที่สุดอุณหภูมิก็จะลดลงจนเป็นฤดูหนาวและเมื่อโดจรต่อแล้วอุณหภูมิก็จะค่อยๆเพิ่มขึ้น เพราะเอียงหาดวงอาทิตย์เพิ่มและจะกลายเป็นฤดูใบไม้ผลิและกลายเป็นฤดูร้อนในที่สุด

*ฤดูในซีกโลกใต้จะตรงข้ามกับซีกโลกเหนือ

ฤดูร้อน > ใบไม้ร่วง > นนาว > ใบไม้พลิ ใบไม้ร่วง ความชื้นจะลดลงค์นไม้จะสลัคใบทั้งเพื่อเก็บควา ใบไม้พลิ อากาศเริ่มขึ้นใบไม้จอกในม่

ให้ในช่วงแต่ละช่วงมีเวลากลางวันและกลาง ดีนไม่เท่ากัน โดยช่วงที่ Sun path เอียงเข้านาทิศใต้จะมีเวลา เช้าน้อนกว่ากลางดีน

ร้อน = มีเวลาเช้ามาก , หนาว = มีเวลาเช้าน้อย ใบไม้ผลิและร่วง = เท่ากัน

2.3.5 2.3.5 2.3.5 Paraduroles Person Chroniclardes Person Chroniclard

เส้นทางการเคลื่อนที่ปรากฎของควงอาทิตย์ (sun path)

ในช่วง 20-21 มิถุนายน Sun Path จะเอียงเข้าหาทิศเหนือ (ฤดูร้อน)

ในช่วง 20-21 มีนาคมและ 22-23กันยายน Sun Path จะอยู่ตรงเส้นศุนย์สูตร ในช่วง 21-22 ธันวาคม Sun Path จะเอียงเข้านาทิศใต้ (ฤคุนนาว)

แต่ละช่วงจะน่างกันประมาณ 2.3.5 องศาและการเคลื่อนที่จะทุกช่วงจะเอียงเข้านาทิศใต้ตามรูป

เรื่องที่ 3 ปรากฎการณ์ที่เกิดจากปฏิสัมพันธ์ระหว่างดวงจันทร์ โลก และดวงอาทิตย์

ข้างขึ้นข้างแรม (Moon phases) เกิดจากการเปลี่ยนตำแหน่งของดวงจันทร์ เนื่องจากดวง จันทร์โคจรรอบโลก

ปรากฎการณ์ที่ผู้สังเกตบนโลกมองเห็นด้านสว่างของดวงจันทร์เปลี่ยนแปลงรูปร่างบาง วันจะเห็นพระจันทร์เสี้ยวบางวันเห็นพระจันทร์เต็มดวงหรือบางวันไม่เห็นพระจันทร์

ดวงจันทร์ไม่สีแสงในตัวเองในการจะมองเห็นดวงจันทร์แสงจากดวงอาทิตย์จะตกกระทบและสะท้อนมายังโลก ดวงจันทร์จะมีการเคลื่อนที่ 2 ลักษณะคือ หมุนรอบตัวเองและโคจรรอบโลกโดยจะหมุนทวนเข็มนาฟิกา การที่ดวงจันทร์เปลี่ยนตำแหน่งไปในแต่ละวันจะทำให้ดวงจันทร์ปรากฏที่ขอบฟ้าทางด้านทิศตะวันออกช้าขึ้นทุกวันประมาณ 50 นาที

| เป็นแบบคนับสามารถโลร | รับ รล่ง | โดย เก็บคนาร | คลระร
| เป็นแบบคนารถาบโลก | รับ รล่ง | โดย เก็บคนารถาบโลก | โดย เก็บคน

น้ำขึ้นน้ำลง

้น้ำขึ้นน้ำลงเกิดจากผลของแรงไทด์ล (tidal force) ซึ่งเป็นแรงที่เกิดจากแรงโน้มถ่วงหรือแรงดึงดูดระหว่างโลกและดวง

เรื่องที่ 4 เทคโนโลยีอวกาศ

กล้องโทรทรรศน์ (telescope) เป็นอุปกรณ์ที่ผลิตขึ้นเพื่อขยายขอบเขตการมองเห็นด้วยสายตามมนุษย์ให้สามารถใช้ สังเกตุวัตถุท้องฟ้าที่อยู่ไกลจากโลก สามารถแบ่งออกเป็น 2 ประเภทคือ

กล้องโทรทรรศพ์แบบหักเหแสง (Refraction telescope) มีเลนส์นูน 2 ชุดตือเลนส์ใกล้วัตถุและเลนส์ใกล้ตา เพื่อแสงผ่านเลนส์ ใกล้วัตถุจะเกิดการหักเหไปรวมกันทำให้เกิดภาพจริงที่จุดโฟกัส ภาพนี้ จะเป็นวัตถุของเลนส์ใกล้ตาทำให้เป็นภาพเสมือนขนาดขยาย

กล้องโทรทรรศน์แบบสะท้อนแสง (Reflection telescope) เกิดภาพจริงที่จุดโฟก์สของกระจกเงาเว้าและหากต้องการให้ภาพมีขนาด ในญ่มากขึ้นและคมชัดสามารถทำได้โดยการใช้กระจกเงาเว้าที่มีขนาด ในญ่เพื่อให้สามารถรวมแสงได้มากขึ้น

แสงที่เราเห็นจากดวงดาวในตอนกลางดืนไม่ได้มีเพียงแสงที่ตามองเห็นได้เท่านั้นแต่วัตถุบนท้องฟ้าอาจปล่อยพลังงาน ในรูปคลื่นแม่เหล็กที่มีความถี่แตกต่างกัน กล้องโทรทรรศน์อวกาศจันทราช่วยให้เราสามารถมองเห็นได้

คลื่นแม่เหล็กไฟฟ้าบางความถี่เท่านั้นที่จะสามารถผ่านชั้น บรรยากาศของโลกมายังพื้นดินได้แต่บางความถี่จะถูกดูด กลืนโดยชั้นบรรยากาศของโลก เช่น รังสีแกมมา รังสีเอกซ์

เทคโนโลยีอวกาศที่สำคัญอีกอย่างคือจรวจและสถานนีอวกาศนานาชาติ

สถาพื่อวกาศนานาชาติ ใช้เพื่อนำไปโคจรรอบโลกเปรียบเสมือนบ้านของนักบินอวกาศนอกจากนี้สร้างขึ้นเพื่อใช้กันงานทดลอง และงานวิจัยที่ไม่สามารถทดลองได้บนโลก

ดาวเทียม (artificial satellite) ซึ่งเป็นอุปกรณ์หรือสิ่งที่มนุษย์สร้างขึ้นมาแล้วส่งขึ้นไปโคจรรอบโลกเพื่อวัตถุประส่งค์ต่างๆ

ด้านอุตินิยมวิทยา

เพื่อประโยชน์ในการพยากรณ์อากาศของโลกได้ อย่างถูกต้องแม่นยำ รวมถึงวิเคราห์และศึกษา ปรากฏการณ์ต่างๆ ซึ่งนักพยากรณีจะรายงานสถา พอากาศและพยากรณ์อากาศให้กับประชาชน ทั่วไปได้รับทราบ โดยมีดาวเทียมเช่น ดาวเทียมโน อา ดาวเทียมจีโออีเอส เป็นต้น

ด้านการสื่อสาร

เพื่อเชื้อมโยงการติดต่อสื่อสารจากทั่วทุกมุมโลกเข้า ด้วยกัน ใช้ประโยชน์ในการติดต่อระยะไกล ดาวเทียมเช่น ดาวเทียมไทยคม ดาวเทียมอินเทลแซต

ด้านการกำหนดตำแหน่ง

ดาวเทียมนี้ใช้ระบุตำแหน่งของผู้ใช้งานได้ถูกต้อง ณ จุดที่สามารถรับส่ญญาณได้ทั่วโลกและในทุกสภาพ อากาศ เรียกว่า GPS รวมถึงสามารถดำนวณความเร็ว และทิศทางเพื่อนำมาใช้ร่วมากับแฟนที่เรียกว่า GNSS ดาวเทียมเช่น NAVSTAR navigation satellite และ ดาวเทียม GLONASS navigation satellite เป็นต้น

ด้านการสำรวจทร์พยากร

เพื่อติดตามทรัพยากรและสิ่งแวดล้อมต่างๆเช่นเกษตร (วิเคราห์ปริมาณการใช้น้ำในการปลูกพื้นและอื่นๆ) การป้องกันภัยพิบุ์ติ (วิเคราห์และติดตามเหตุการณ์ภัย พิบัติต่างๆ เพื่อหาแนวทางป้องกันและแก้ไข)

ด้านดาราศาสตร์

เพื่อใช้ในการส่งเกตดาวเคราห์ในกาแล็กซีและวัตถุท้องฟ้าอื่นๆในอวกาศ เช่นกล้องโทรทรรศน์อวกาศฮับเบิล และกลอัง James webb เป็นต้น

การสำรวจดวงจันทร์

สหพาพโซเวียดส่ง สปุตพิกเป็นจุดเริ่มต้น

โครงการลูนาของสหภาพโซเวียได้ส่งยาน ไปสำรวจดวงจันทร์หลายลำและหลายวิธี

โครงการ Apollo ของนาซาประสบความ สำเร็จในการส่งมนุษย์ไปสำรวจดวงจันทร์

การสำรวจดาวอังดาร

นาซาได้ส่งยนไปสำรวจมากที่สุด โดยมียานเช่น ยานออปุพอร์ทูนิตี สำหรับ การสำรวจหินและดิสเพื่อศึกษาร่องรอย ยานดิวริออซิตี ศึกษาสภาพเอื้อต่อการ ดำรงชีวิต ยานอินไซต์ศึกษาโครงสร้างภายในของ ยานมังคลายานุของอินเดียเพื่อทดลอง

ศึกษาธรณีและชั้นยรรยากาศ

การสำรวจดวงอาทิตย์

นาซาส่งยานอวกาศ ปาร์กเกอร์โซลาร์โพรบ แข้าใกล้พื้นผิวของดวงอาทิตย์มากที่สุด เพื่อการเก็บข้อมูลและทำความเข้าใจควง อาทิตย์ (ชั้นบรรยากาศ) และองค์การอีเอส เอส่งยานโซลาร์ ออร์บิเทอร์ เพื่อศึกษาชั้น ยรรยากาศเช่นก์น

การสำรวจดาวเคราห์น้อย

โตรงการโอไซริส เร็กซ์ จากองค์การนาซามี วัตถุประสงค์เพื่อการเก็บตำอย่างจากดาวเคราห์ น้อย

การสำรวจดาวเคราห์ชั้นนอก

มวลส่วนใหญ่ของท้องฟ้าทั้งหมดในระบบสุริยะคือควงอาทิตย์ที่เหลือรองลงมาคือ ดาวพฤหัสบดีและดาวเสาร์ โดยมียาน Juno ของนาซาเพื่อเป็นยานสำรวจลักษณะ ทางกายภาพของดาวพฤหัสบดี เป็นต้น

ยานวอยเอเจอร์ 1 และ 2 ออเดินทางสำรวจดาวเดราห์ชั้นนอก (นอกกว่าระบบสุริยะ)

Good Luck on the test 🐆