Computer Vision Homework #2

TA: Syahrul Munir (Moon)

Email: t111999406@ntut.org.tw

Robot Vision Lab (Room 1421)

Homework Assignment

- 2023/10/03 Homework 1 assigned, due 10/17
- 2023/11/07 Homework 2 assigned, due 11/21
- 2023/11/28 Homework 3 assigned, due 12/12
- 2023/12/19 Homework 4 assigned, due 01/02

Note

- What is considered to be "main part of the homework"
- Do the homework according to the instructions. If you have another method, you can show it in the report, but don't ignore/replace the original instructions.
- Don't forget the zero padding, check your image size result
- Please check again your zip files content before submit
- Don't forget to use the correct input image
- Please follow the rule to name your file
- Introduce "Coding Style" score for next HW
 - More "original" code will have more score
 - Less function from library used will have more score
- Don't copy other code and/or report

Homework 2

Given 2 images with **noise** (noise1.png and noise2.png) for testing as follow:

- Mean Filter: decide the kernel size, stride, and zero-padding size by yourself. Use the same setting for all the noise images.(save as noise1_q1.png and noise2_q1.png)
- Median Filter: decide the kernel size, stride, and zero-padding size by yourself. Use the same setting for all the noise images.(save as noise1_q2.png and noise2_q2.png)
- 3. Image Histogram: accumulate the number of each pixel value, then draw a histogram for each image, and explain the histogram result in your report (save as: noise1_his.png, noise1_q1_his.png, noise1_q2_his.png, noise2_his.png, noise2_q1_his.png, noise2_q2_his.png)

Output3

Output3

Output3

Example for the rules in using OpenCV or other Lib

□Allow use Opency for C/C++

Read, load, save, show: cvLoadImage, cvShowImage ...

Define size of image: cvSize, cvGetSize

Define image: Mat

■Not Allow use

Cannot use the function of OpenCV Lib to do the main part of homework, only allowed to use if I said it/agree with it.

Not limited to the OpenCV library only

Example:

```
✓ cvtColor(image, gray, CV_RGB2GRAY); // convert RGB to Gray
```

- ✓ cv2.filter2D //directly use convolution
- ✓ np.Convolve2D //directly use convolution

Mean Filter and Median Filter

Noisy image

Filtered by Mean Filter

Filtered by Median Filter

Example: 3*3 Mean Filter

As the kernel size increases, the image will become more blurry.

ımage

mage						
152	124	252	163	32	67	
128	40	220	190	142	216	
68	157	24	30	140	36	
81	7	25	149	155	41	
22	33	100	131	75	67	
69	44	44	167	231	161	

* Please implement the mean algorithm by yourself.

*

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

$$\left| \frac{1}{9} (152 + 124 + 252 + 128 + 40 + 220 + 68 + 157 + 24) \right| = 129$$

Example: 3*3 Median Filter

It's a nonlinear filter.

152	124	252	163	32	67	
128	40	220	190	142	216	
68	157	24	30	140	36	
81	7	25	149	155	41	
22	33	100	131	75	67	
69	44	44	167	231	161	

Sorting: 24, 40, 68, 124, 128, 152, 157, 220, 252

128		

image

* Please implement the sorting algorithm by yourself.

Image Histogram

Count the number of each pixel's intensity $(0\sim255)$

Create a table to record the number of each pixel's intensity.

You can draw the histogram by using the library of matplotlib or others. (exception)

Example: Image Histogram

1	3	7	3	0	7
5	2	3	9	1	4
4	9	4	7	7	6
2	7	8	5	6	0
1	9	0	4	2	1
0	3	8	9	8	9

statistics

value	0	1	2	3	4	5	6	7	8	9
#num	5	2	3	4	4	1	2	5	3	7

draw histogram

image

* The sum of #num must be equal to width of image * height of image

Grading

- Program (75%)
 - > Mean Filter (25%)
 - Median Filter (25%)
 - > Image Histogram (15%)
 - > Coding Style (10%)
- Report (25%)
 - Please explain your code.
 - > For each test image, compare the result images that were generated by two different filters and describe what you observe.
 - > For each test image, please describe the difference between three histograms (original, mean filter output, and median filter output), and explain the reason.
 - > Please paste 10 output images in your report.

Folder Structure

Write your report in **English (PDF)**

Explaining how your main function working, shown the results on your report, and explain the image result.

Python

```
111999406 hw2/
   test_img/
      noise1.png
     - noise2.png
   result_img/
     -noisel ql.png
     -noise1 q2.png
     -noise1 his.png
      noisel q1 his.png
      noise1 q2 his.png
      noise2 q1.png
      noise2 q2.png
      noise2 his.png
     -noise2 q1 his.png
     - noise2 q2 his.png
    111999406 hw2.py
   111999406 hw2.pdf
   Readme.txt
```

```
C/C++
111999406 hw2/
   project hw2/
     - test_img/
        - noise1.png
        - noise2.png
      result_img/
        -noisel ql.png
        -noise1 q2.png
        -noise1 his.png
        -noise1 q1 his.png
        noise1 q2 his.png
        -noise2 q1.png
        - noise2 q2.png
        - noise2 his.png
        -noise2 q1 his.png
        - noise2 q2 his.png
      include/
      — func.h
      func.cpp
     - main.cpp
   111999406 hw2.pdf
   Readme.txt
```

Homework #2

- Please compress your files (program and report)
 - StudentID_hw2(for example: 111999406_hw2.zip)
- Please submit to iStudy, in Homework 2 Assignment.
- Deadline: 2023/11/21 23:59:59
- For each hour late, 10% of the total score will be deducted.
- Don't share your code and your report with other students. Do it by yourself.

Thanks for your attention