

People Gender Image Classification and Age Estimation using Ensemble Learning

Big Data Challenge 2021

OUTLINE

- O1 Problem Definition
- O2 Analytics Process & Algorithm
- 03 Result
- 04 Insight & Recommendation
- 05 Conclusion

PROBLEM DEFINITION

Age Estimation

Age Estimation

Data Understanding

Shared with me > Data > Training > 1 - **

Name	↑	Owner	Last modified	File size
A	1_1.jpg 🐣	usthuanah aisyah	Sep 13, 2021 usthuanah aisyah	74 KB
	1_2.jpg 🐣	usthuanah aisyah	Sep 13, 2021 usthuanah aisyah	145 KB
A	1_3.jpg 🐣	usthuanah aisyah	Sep 13, 2021 usthuanah aisyah	78 KB

Training Image

770 Folder, each folder consists of 3 image files (Foldername_n.jpg), each folder contains information about one person

Shared with me > Data > Testing - ::

Name	↑	Owner	Last modified	File size
1	0a4b579b-6f5c-453a-8d4b-389e6fc6ec36.jpg	Perisai Zidane Hanapi	Sep 12, 2021 Perisai Zidane H	165 KB
	0a59a0b9-aa41-4f21-bd25-a4a8bdd362c4.jpg 🐣	Perisai Zidane Hanapi	Sep 12, 2021 Perisai Zidane H	227 KB
0	0b1b8d0e-8a2b-47c5-aa40-f2a452c08413.jpg 🚢	Perisai Zidane Hanapi	Sep 13, 2021 Perisai Zidane H	153 KB

Test Image

990 image files that gender and age will be predict

Data Understanding

	nomor	jenis	kelamin	usia
0	1		0	27
1	2		1	24
2	3		0	29
3	4		1	23

Train.csv

770 rows of data containing information about gender and age

id

- 0 005093b2-8c4b-4ed7-91c3-f5f4d50f8d27
- 1 0052554e-069e-4c43-beb0-0885e8f7684e
- 2 0092b954-1143-4a95-a17b-1edfa6af3b01

Submission.csv

990 rows of data contain file names in the testing folder, we will add gender and or age columns to make predictions

Data Understanding

count

Gender Distribution

Age Distribution

<matplotlib.axes._subplots.AxesSubplot at 0x7f560bcbf550>

	,,,,,,,,,,,
mean	26.098701
std	5.294266
min	5.000000
25%	23.000000
50%	26.000000
75%	28.000000
max	50.000000
Name:	usia, dtype: fl

770.000000

time: 460 ms (started: 2021-11-04 04:12:01 +00:00)

Data Preprocessing

Training Image (1)

• Face Cropping (MTCNN Face Detector)

Data Preprocessing

Training Image (2)

• Face Similarity (DeepFace with threshold < 0.22)

Face 1

Face 1

Face 2

Face 3

Face 4

Face 5

Distance	Face 1	Face 2	Face 3	Face 4	Face 5
Face 1		52	< 0.22	< 0.22	
Face 2					
Face 3	< 0.22			< 0.22	
Face 4	< 0.22		< 0.22		
Face 5					

Face 4

Face 3

Data Preprocessing

Training Image (3)

Manual Checking (1)

Wrong when cropping face → Manual Cropping

• There are 2 or more different faces extracted → Delete Irrelevant Face

Manual Checking (2)

• Confusing Folder (ex : 552) \rightarrow Delete Irrelevant Face

Labeling Error by the Committee → Relabeling

Data Preprocessing

Training Image (Gender Classification)

• Splitting face image with mapping between filenames and gender column in train.csv (0 for female and 1 for male)

BDC	SatriaData	>	Train_Cleaned_Gender •	
Name	↑			
	0			
	1			

• Face Augmentation (Image Data Generator) → Rotate, flip, shear, zoom, shift

Data Preprocessing

Training Image (Age Estimation)

• Mapping between filename and age column in train.csv then make filenames are indexes in mapping_age.csv

	idx	jenis	kelamin	usia
0	69		1	25
1	284		0	23
2	601		0	32
3	741		1	29

• Convert age column to months (add variety so it's not too discrete)

Example age in year is 28. If we want convert it to months, it will be random value between 330 (27 years 6 months) to 341 (28 years 5 months)

Data Preprocessing

Testing Image

• Face Cropping (MTCNN Face Detector) & Face Alignment

Gender Classification

- 1 Deep Learning Modelling for Gender
- 2 Feature Extraction with model_VGG_200_tl
- 3 Handling Imbalance Training Data (SMOTETomek)
- 4 Support Vector Machine Classifier
- **5** Random Forest Classifier

- **6** Result Each Model
- 7 Ensemble Learning for Gender (Soft Voting)
- **8** Handling Two or More Face
- **9** Submission History

Gender Classification

Deep Learning Modelling for Gender

VGG 16 + SGD Optimizer (learning_rate = 0.001 [First 200 Epochs] and 0.0001 [After First 200 Epochs])

Gender Classification

Deep Learning Modelling for Gender

VGG 16 Training Result (1)

Gender Classification

Deep Learning Modelling for Gender

VGG 16 Training Result (2)

loss: 0.0292

accuracy: 0.9893

val_loss: 0.0839

val_accuracy: 0.9747

This model we save and give it name model_VGG_200_tl

Gender Classification

2 Feature Extraction with model_VGG_200_tl

224 x 224 x 3 to 7 x 7 x 512

Each image have 25088 feature after extraction for ML modelling

Gender Classification

3 Handling Imbalance Training Data (SMOTETomek)

Oversampling for handling imbalance training data

Gender Classification

Support Vector Machine Classifier

Hyperparameter Tuning

```
{'C': 1000, 'gamma': 0.01, 'kernel': 'rbf'}
SVC(C=1000, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma=0.01, kernel='rbf',
    max_iter=-1, probability=False, random_state=None, shrinking=True,
    tol=0.001, verbose=False)
time: 1h 56min 56s (started: 2021-10-29 10:25:27 +00:00)
```

SVMC Result (Training Data)

	precision	recall	f1-score	support
Perempuan	1.00	1.00	1.00	1180
Laki-laki	1.00	1.00	1.00	1180
accuracy			1.00	2360
macro avg	1.00	1.00	1.00	2360
reighted avg	1.00	1.00	1.00	2360

time: 10.6 s (started: 2021-10-30 15:35:36 +00:00)

Gender Classification

5 Random Forest Classifier

Hyperparameter Tuning

RFC Result (Training Data)

	precision	recall	f1-score	support
Perempuan	1.00	1.00	1.00	1180
Laki-laki	1.00	1.00	1.00	1180
accuracy			1.00	2360
macro avg	1.00	1.00	1.00	2360
weighted avg	1.00	1.00	1.00	2360

time: 14.5 ms (started: 2021-10-30 15:44:30 +00:00)

Gender Classification

6 Result Each Model

The three models should not be overfitting because:

- For VGG 16 we can see that the visualization of the model does not show any severe overfitting
- For SVM and Random Forest it should not be overfitting because when performing Hyperparameter Tuning, it is already using cross-validation. Train some of the training data and predict some of the others, but the validation score is not showing

	Accuracy
VGG 16	0.9893
SVM	1.00
RF	1.00

Gender Classification

7 Ensemble Learning for Gender (Soft Voting)

Gender Classification

Handling Two or More Face

Ensemble Predict Male 97%

Ensemble Predict Female 93%

Win! Prediction for 10.jpg is male

Gender Classification

9 Submission History

No	Face Cropping	Face Similarity	Manual Checking	Face Align (Test Data)	VGG 16	Ensemble Learning	Double Face Handling	Submission Score (F1_Score)
1	~				>			0.852459
2	~	~	~		Y			0.916335
3	~	>	~		>	VGG16+SVM 🜌	~	0.922667
4	1	Y	~	Y	Double Learning <	VGG16+SVM+RF	~	0.933687

Age Estimation

- 1 Feature Extraction with VGG_Face
- 2 Support Vector Machine Regressor
- 3 Lasso Regressor
- 4 Ensemble Learning for Age (Stacking Lasso)

Age Estimation

1 Feature Extraction with VGG_Face

Age Estimation

2 Support Vector Machine Regressor

Hyperparameter Tuning

```
(C=1000, cache_size=200, coef0=0.0, degree=3, epsilon=0.1, gamma=0.01,
kernel='rbf', max_iter=-1, shrinking=True, tol=0.001, verbose=False)
e: 1h 26min 8s (started: 2021-11-03 00:38:48 +00:00)
```

SVMR Result (Training Data)

MSE in months = 2624.544 ± 360.051

MSE in years (estimation) = 18.226 ± 2.500

Age Estimation

3 Lasso Regressor

$$\widehat{y_i} = w_0 + \sum_{j=1}^{m} X_{ij} w_j$$

$$J(w) = \sum_{i=1}^{n} (y_i - \widehat{y_i})^2 + \alpha \sum_{j=1}^{m} |w_j| \sum_{i=1}^{\infty} |w_i|^2$$

$$||w||^2 = \sum_{j=1}^{m} |w_j|^2$$

alphas2 = [5e-05, 0.0001, 0.0002, 0.0003, 0.0004, 0.0005, 0.0006, 0.0007, 0.0008]
lasso = make_pipeline(RobustScaler(),

LassoCV(alphas=alphas2,

random_state=42, cv=5))

Age Estimation

Ensemble Learning for Age (Stacking Lasso)

Base : SVMR

Meta : Lasso Regressor

MSE in months = 2613.59 ± 357.74

MSE in years (est) = 18.15 ± 2.48

	MSE (months)
SVMR	2624.544
SVMR + Lasso	2613.59
Improvisation	10.954

PREDICTION RESULT

Prediksi Jenis Kelaminnya adalah Laki-laki Prediksi Usianya adalah 24 tahun

Prediksi Jenis Kelaminnya adalah Perempuan Prediksi Usianya adalah 24 tahun

Prediksi Jenis Kelaminnya adalah Laki-laki Prediksi Usianya adalah 31 tahun

Prediksi Jenis Kelaminnya adalah Perempuan Prediksi Usianya adalah 26 tahun

SUBMISSION RESULT

Gender Classification

F1 Score = 0.9337 (10th in Standings)

Age Estimation

MSE (years) = 24.3525 (1st in Standings)

INSIGHT & RECOMMENDATIONS

• Double anchor face in training data => When collecting data, it is better if the data train 1 folder contains only 1 anchor face so that there is no need to do manual checks

• Double Face in testing data => It's better if there is only one person in the face data testing because in the submission of the output, only one is requested => Double Face Handling

INSIGHT & RECOMMENDATIONS

• Imbalance Data (Gender) => SMOTETomek Oversampling

Improving model to 0.9337 in F1_score

• Age Estimation is Subjective and based solely on appearance => Why we not trying turn into age brackets classification problem?

Folder 40: 24 Years Old

Folder 37: 31 Years Old

CONCLUSION

By conducting ensemble learning soft voting for gender classification and stacking for age estimation, we managed to get an F1 score of 0.9337 and an MSE of 24.3525 years (RMSE 4.934 years)

When compared with the DeepFace* library which got an F1 score of 0.9566 and an MAE of 4.65 years, it can be said that the ensemble learning model is quite effective for gender classification and age estimation.

^{*)} DeepFace library is better because it uses more data [Uses IMDB (7 GB) and Wikipedia (1 GB) datasets]

TERIMA KASIH

