Package 'llrRcpp'

May 3, 2021

Type Package
Title Local linear regression
Version 1.0
Date 2020-10-26
Author chengwei
Maintainer chengwei <e0002969@u.nus.edu></e0002969@u.nus.edu>
Description This package provides an implementation of multivariate local linear regression using kd-tree implementation. Both an exact and approxiate algorithm for using the kd-tree are present. The package also provides a binned method for the implementation of up to 2d.
License GPL (>= 2)
Encoding UTF-8
Imports Rcpp, methods, metaheuristicOpt
LinkingTo Rcpp, RcppEigen
RoxygenNote 7.1.1
Suggests rmarkdown, knitr, testthat
VignetteBuilder knitr
R topics documented:
autoloocv.llr
bin
cv.llr
get_num_procs
llr
loocv.llr
set_num_threads
Index 10

2 autoloocv.llr

autoloocv.llr

Auto selection of bandwidth using metaheuristic algorithms

Description

Auto selection of bandwidth using metaheuristic algorithms

Usage

```
autoloocv.llr(
    x,
    y,
    weight,
    kernel = "epanechnikov",
    bw_range = c(0.01, 0.5),
    approx = FALSE,
    epsilon = 0.05,
    control = list(numPopulation = 15, maxIter = 75, Vmax = 2, ci = 1.49445, cg =
        1.49445, w = 0.729),
    algorithm = "PSO",
    seed = 1
)
```

Arguments

X	a numeric vector or matrix of x data
у	a numeric vector of y data corresponding to x data
weight	a numeric vector of length(x) for weight of each data point
kernel	kernel type used; supported are 'epanechnikov', "rectangular", "triangular", "quartic", "triweight", "tricube", "cosine", "gauss", "logistic". "sigmoid" and "silverman".
bw_range	range of bandwidth for the metaheuristic algorithm to search
approx	boolean flag: if true kdtree approximation is used.
epsilon	margin of error allowed for llr approximation using kdtree. Only used when approx = TRUE.
control	control parameter from R package metaheuristicOpt
algorithm	algorithm parameter from R pacakage metaheuristicOpt
seed	seed to use for algorithm

Examples

```
## Not run:
n <- 1000
x <- runif(n, 0 , 1)
y <- sin(x) + rnorm(n, 0, 0.2)
w <- rep(1/n , n)
## Optimization using Grasshopper Optimisation Algorithm
algorithm <- 'GOA'
control <- list(numPopulation = 10, maxIter = 100)</pre>
```

bin 3

```
h <- autoloocv.llr(x, y, w, control = control , algorithm = algorithm)
## End(Not run)</pre>
```

bin

Splitting the data into bins

Description

Splitting the data into bins

Usage

```
bin(x, y, bins = 400, weight)
```

Arguments

x	numeric vector or matrix of 2 dimensons of x data
У	numeric vector of y data with length corresponding to x
bins	number of bins to split the data
weight	numeric vector corresponding to weight of each observation

Value

```
returns an S3 object of the class 'bin' containing
x a numeric vector of x data of size bins
y a numeric vector of y data corresponding to 'bin' class x
weight weight corresponding to 'bin' class x
```

Examples

```
n <- 1000
x <- seq(0,10,length.out = n)
x1 <- rnorm(n,0,0.2)
y <- sin(x) + x1
w <- rep(1/n, n)
binned <- bin(x,y,bins=400, w)</pre>
```

4 cv.llr

cv.llr

Bandwidth selection using k-fold cross validation

Description

Bandwidth selection using k-fold cross validation

Usage

```
cv.llr(
    x,
    y,
    weight,
    kernel = "epanechnikov",
    bandwidth,
    kdtree = FALSE,
    approx = FALSE,
    epsilon = 0.05,
    N_min = 1,
    k = 5
)
```

Arguments

X	a numeric vector or matrix of x data
У	a numeric vector of y data corresponding to x data
weight	a numeric vector of length(x) for weight of each data point.
kernel	kernel type used; supported are 'epanechnikov', "rectangular", "triangular", "quartic", "triweight", "tricube", "cosine", "gauss", "logistic". "sigmoid" and "silverman".
bandwidth	a numeric vector or matrix of bandwidth considered for selection.
kdtree	boolean flag: If TRUE, a kdtree is used for computation of local linear regression.
approx	boolean flag: if TRUE kdtree approximation is used.
epsilon	margin of error allowed for llr approximation using kdtree. Only used when kdtree = TRUE and approx = TRUE.
N_min	minimum number of points stored in the kd-tree. Only used when kdtree = $TRUE$ and $approx = TRUE$.
k	number of folds used for cross validation

Value

returns a single numeric value or vector of bandwidth that gives the smallest mean square error from cross validation.

get_num_procs 5

Examples

```
n <- 1000
x <- seq(0, 10, length.out = n)
x1 <- rnorm(n, 0, 0.2)
y <- sin(x) + x1
w <- rep(1 / n, n)
binned <- bin(x, y, bins = 400, w)
bandwidth <- seq(0.02, 0.3, by = 0.02)
## Bandwidth selection of binned data
h_bin <- cv.llr(binned$x, binned$y, binned$weight, bandwidth = bandwidth)
## Bandwidth selection of exact local linear regression
h_exact <- cv.llr(x, y, w, bandwidth = bandwidth)
## Bandwidth selection of exact local linear regression with kdtree
h_kdexact <- cv.llr(x, y, w, kdtree = TRUE, approx = FALSE, bandwidth = bandwidth)
## Bandwidth selection of approx local linear regression with kdtree
h_kdapprox <- cv.llr(x, y, w, kdtree = TRUE, approx = TRUE, bandwidth = bandwidth)</pre>
```

get_num_procs

Get number of processors

Description

Get number of processors

Usage

```
get_num_procs()
```

Value

number of processors

llr

Local linear regression (Regular and binned version)

Description

Local linear regression (Regular and binned version)

Usage

```
llr(x, ...)
## Default S3 method:
llr(
   x,
   y,
   xpred,
   kernel = "epanechnikov",
   bandwidth,
```

6 11r

```
weight,
  kdtree = FALSE,
  approx = FALSE,
  epsilon = 0.05,
  N_{min} = 1,
## S3 method for class 'bin'
llr(x, xpred, kernel = "epanechnikov", bandwidth, ...)
```

Arguments

bin object Х further arguments to be passed a numeric vector of y data corresponding to x. ٧ a numeric vector or matrix of same dimension as x. x values to be predicted. xpred kernel type used; supported are 'epanechnikov', "rectangular", "triangular", "quarkernel tic", "triweight", "tricube", "cosine", "gauss", "logistic". bandwidth a numeric vector or single number of same dimension as x. weight a numeric vector of length(x) for weight of each data point. boolean flag: If TRUE, kdtree is used for computation of local linear regression. kdtree boolean flag: If TRUE, kdtree approximation is used. Only used when kdtree = approx TRUE. margin of error allowed for llr approximation using kdtree. Only used when epsilon both kdtree = TRUE and approx = TRUE.

N_min

minimum number of points stored in the kd-tree. Only used when both kdtree

= TRUE and approx = TRUE. Currently not in use.

Value

returns a S3 object of class "llr" containing

- x sorted numeric vector or matrix of xpred
- y estimated values corresponding to 'llr' class x

Examples

```
## Not run:
n <- 1000
x \leftarrow seq(0, 10, length.out = n)
x1 <- rnorm(n, 0, 0.2)
y \leftarrow sin(x) + x1
w \leftarrow rep(1 / n, n)
binned <- bin(x, y, bins = 400, w)
## local linear regression for exact without kdtree
llr_exact <- llr(x, y, x, bandwidth = 0.2, weight = w)
## local linear regression for kdtree exact
llr_kdexact \leftarrow llr(x, y, x, bandwidth = 0.2, weight = w, kdtree = TRUE)
## local linear regression for kdtree approximation
llr_kdapprox <- llr(x, y, x, bandwidth = 0.2, weight = w, kdtree = TRUE, approx = TRUE)</pre>
```

loocv.llr 7

```
## local linear regression for data after binning.
llr_bin <- llr(binned, x, bandwidth = 0.2)
## End(Not run)</pre>
```

loocv.llr

Bandwidth selection using leave one out cross validation

Description

Bandwidth selection using leave one out cross validation

Usage

```
loocv.llr(
    x,
    y,
    weight,
    kernel = "epanechnikov",
    approx = FALSE,
    epsilon = 0.05,
    N_min = 1,
    bandwidth
)
```

Arguments

X	a numeric vector or matrix of x data
У	a numeric vector of y data corresponding to x data
weight	a numeric vector of length(x) for weight of each data point.
kernel	kernel type used; supported are 'epanechnikov', "rectangular", "triangular", "quartic", "triweight", "tricube", "cosine", "gauss", "logistic". "sigmoid" and "silverman".
approx	boolean flag: if true kdtree approximation is used.
epsilon	margin of error allowed for llr approximation using kdtree. Only used when $\operatorname{approx} = TRUE.$
N_min	minimum number of points stored in the kd-tree. Only used when $approx = TRUE$.
bandwidth	a numeric vector or matrix of bandwidth considered for selection.

Value

returns a single or numeric vector of bandwidth that gives the smallest mean square error.

plot.llr

Examples

```
## Not run:
n <- 1000
x <- seq(0, 10, length.out = n)
x1 <- rnorm(n, 0, 0.2)
y <- sin(x) + x1
w <- rep(1 / n, n)
bandwidth <- seq(0.02, 0.4, by = 0.01)
binned <- bin(x, y, bins = 400, w)
## Bandwidth selection of binned data
h_bin <- gcv.llr(binned$x, binned$y, binned$weight, bandwidth = bandwidth)
## Bandwidth selection of exact local linear regression
h_exact <- gcv.llr(x, y, w, bandwidth = bandwidth)
## Bandwidth selection of approx local linear regression with kdtree
h_kdapprox <- gcv.llr(x, y, w, approx = TRUE, bandwidth = bandwidth)
## End(Not run)</pre>
```

plot.llr

Plot class 'llr' object

Description

```
Plot class 'llr' object
Plot 'bin' object
```

Usage

```
## S3 method for class 'llr'
plot(x, xorig, yorig, ...)
## S3 method for class 'bin'
plot(x, ...)
```

Arguments

```
x a object of class 'bin'
xorig initial numeric vector x
yorig initial numeric vector y
... for consistency
```

set_num_threads 9

set_num_threads

Set number of threads to use

Description

Set number of threads to use

Usage

set_num_threads(threads)

Arguments

threads

number of threads to use

Value

number of threads set

Index

```
autoloocv.llr, 2
bin, 3
cv.llr, 4
get_num_procs, 5
llr, 5
llr-class(llr), 5
llr.bin(llr), 5
llr.default(llr), 5
loocv.llr, 7
plot.bin(plot.llr), 8
plot.llr, 8
set_num_threads, 9
```