

Auction Mechanisms for Distributed Spectrum Sharing

Jianwei Huang Randall A. Berry Michael L. Honig

Dept. of ECE, Northwestern University

Dynamic Spectrum Sharing

- Current command-and-control model is out of date.
 - Only licensees can operate in a licensed band.
 - Rigidity; patterns of over- and under-allocation
- Advances in radio technologies enables flexible use:
 - Software-defined radio → Cognitive radio
- Usage models being considered:
 - Exclusive use (ownership) model
 - Commons model

Interference Temperature

- An interference criterion proposed by the FCC.
- Definition: RF power measured at the receiver antenna per unit bandwidth.
 - Different from the traditional criterion on the transmit power.
- For fixed total bandwidth:
 - Maximum interference temperature constraint

Maximum total received power constraint

Problem Statement

- Exclusive use model
 - Agency (or service provider) owns a single block of spectrum with bandwidth B.
 - M secondary (spread spectrum) users share spectrum with the spectrum owner (primary user).
 - Total received power (interference temperature) constraint at a single measurement point.
 - No transmission power constraints.
- How should the spectrum owner allocate resource (received power) among secondary users?
 - Objectives: efficiency, fairness, scalability
 - Approach: auction mechanisms

Related Work

- Auction mechanisms for network resource allocation:
 - Johari, Titsiklis (2004), Alpcan, Basar (2003)
 - Sun, Zheng, Modiano (2003)
- CDMA uplink power control:
 - Saraydar, Mandayam, Goodman (2002)
 - Shroff, Xiao, Chong (2001)
 - Heikkinen (2002)
- We consider auction mechanisms for allocating a constrained resource (total received power) among users with mutual interference.

System Models

Measurement Point

T_i: transmitter

R_i: receiver

p_i: transmission power

h_{ii}: channel gain

Non-collocated receivers

Co-located receivers

(discussed in WiOpt'04)

- The measurement point corresponds to the primary user.
- User i's received power $p_i h_{i0}$: the power received at the measurement point from user i.

• Interference temperature constraint
$$\sum_{i=1}^{M} p_i h_{i0} \leq P$$
• User i's SINR $\gamma_i = \frac{p_i h_{ii}}{n_0 + \frac{1}{B} \left(\sum_{j \neq i} p_j h_{ji}\right)}$ (at user i's receiver)

9/30/2004 Allerton Conference

Utility Functions

- User *i* receives utility $U_i(\gamma_i) = U(\theta_i; \gamma_i)$
 - Strictly concave, increasing in SINR γ_i with $\lim_{\gamma_i \to \infty} U_i'(\gamma_i) = 0$
 - User-dependent priority parameter θ_i
 - Examples:
 - log utility: $\theta_i \ln(\gamma_i)$
 - Rate utility: $\theta_i \ln(1 + \gamma_i)$
- "Fair" allocation: resource allocation are based on utilities and not on network topology.
- Socially optimal allocation achieves $\max_{\{p_i\}} \sum_{i=1}^M U_i(\gamma_i)$
 - Typically non-convex due to interference.
- How to allocate the divisible resource (received power) when utility functions are private information?

Auction Mechanisms

 Manager (auctioneer) specifies mechanism (set of rules) for allocating resource.

Users (bidders) submit bids for the resource.

Manager determines allocations and payments.

Vickrey-Clarke-Groves (VCG) Auction

- Channel gains are known a priori.
- Users asked to submit utility functions $\{U_i(\gamma_i)\}$.
- The manager
 - Computes $U_{\max} = \max_{\{p_i\}} \sum_{i=1}^{M} U_i(\gamma_i)$ and allocate $\{p_i\}$ accordingly.
 - For each user *i*, computes $U_{\text{max/i}} = \max_{\{p_i\}/p_i} \sum_{j \neq i} U_j(\gamma_j)$.
- Each user i pays $U_{\text{max}} U_{\text{max/i}}$.
- Achieves socially optimal solution.
- Disadvantages:
 - Large information exchange.
 - Computational complexity.

Share Auction

- Mechanism for allocating a perfectly divisible good.
- The manager announces a reserve bid $\beta > 0$ and a unit price $\pi > 0$.
 - $-\beta$ ensures unique outcome.
 - π is for unit SINR or received power.
- Users submit one-dimensional bids $b_i \geq 0, i = 1, 2, ..., M$
- Manager allocates received powers proportional to bids:

$$p_{i}h_{i0} = \frac{b_{i}}{\sum_{j=1}^{M} b_{i} + \beta} P$$

Pricing Schemes

- SINR auction (pricing for QoS): user i's payment = $\pi^s \gamma_i$
- Power auction (pricing for interference): user i's payment = $\pi^p p_i h_{i0}$
- Payments are generally not the same as bids.
- Pricing improves auction outcome (total utility).

Nash Equilibrium (NE)

- Users are playing a non-cooperative game
 - Strategy = bid
 - Payoff = utility payment
- User i's best response (bid):

$$\mathcal{B}(\underbrace{b_{-i}}) = \arg\max_{b_i} \left(\underbrace{U_i(\gamma_i(b_i;b_{-i})) - \pi^s \gamma_i(b_i;b_{-i})}_{\text{Payoff}}\right) \quad (\text{SINR})$$

• A set of bids $\vec{b}^* = \{b_i^*\}_i$ is an NE if $b_i^* = \mathcal{B}(b_{-i}^*)$ for each i

Fixed point for all users' best response functions.

Information and Convergence

- One-shot game with complete information
 - All utility functions, channel gains are known to all users.
 - The NE bids can be computed by each user.
- Iterative algorithm with partial information
 - Utility functions are private information.
 - Limited (local) channel knowledge.
 - Distributed bid updates converges to NE.

SINR Auction: Uniqueness of NE

• Prop. The SINR auction has a unique NE if and only if $\pi^s > \pi^s_{th}$ (threshold price).

Proof (main idea):

Best response (matrix form) NE is a fixed point
$$\vec{B}(\vec{b}) = \vec{K}\vec{b} + \vec{k}_0\beta$$
 (1) $\rightarrow \vec{b}^* = \vec{K}\vec{b}^* + \vec{k}_0\beta$ (2) depend on $\{\theta_i\}$ and $\{h_{ij}\}$

use Perron-Frobenius theorem

SINR Auction: Properties of NE

• As $\pi^s \to \pi^s_{th}$, the system usage

$$\eta = \frac{\sum_{i=1}^{M} p_i^* h_{i0}}{P} \rightarrow 1$$

i.e., there is no loss from the reserve bid β .

- The SINR allocations are independent on the network topology:
 - With log utility functions, users' SINR are weighted max-min fair w.r.t. {θ_i}:

$$\gamma_i^* = \frac{\theta_i}{\pi^s}$$

Power Auction: Properties of NE (WiOpt'04)

Co-located receivers

• SINR
$$\gamma_i(p_i h_{i0}) = \frac{p_i h_{i0}}{n_0 + \frac{1}{B}(P - p_i h_{i0})}$$

•
$$\frac{\left|U_{i}''(\gamma_{i})\right|}{U_{i}'(\gamma_{i})}(\gamma_{i}+B) > 2, \ \forall \gamma_{i} \in [0, P/n_{0}] \ (\heartsuit)$$

• Prop. The total utility at the power auction NE approaches the socially optimal solution if condition (\heartsuit) is satisfied, and π^p approaches a threshold price π^p_{th} .

Revenue Comparison

- Revenue = total payments collected from the users
 - SINR auction: $R^s = \pi^s \sum_{i=1}^M \gamma_i$
 - Power auction: $R^p = \pi^p \sum_{i=1}^M p_i h_{i0}$
- Prop. With co-located receivers, if users have log utility functions, then $R^p > R^s$, and $R^p / R^s \to 1$ as $M \to \infty$.
- Same results hold if users have the same utility function $U(\gamma_i)$, and η is the same in both auctions.

Numerical Comparisons

- (b) Utility Comparison
- Rate utility $\theta_i \ln(1 + \gamma_i)$, θ_i uniformly distributed in [1,100].
- Condition (\heartsuit) is satisfied when $Bn_0/(P+2n_0)>0$ dB.

Myopic Bid Update

- With SINR auction, log utilities functions:
 - Update with full information (at each time slot t)

$$\vec{\boldsymbol{b}}^{(t)} = \mathbf{K}\vec{\boldsymbol{b}}^{(t-1)} + k_0\beta \tag{1}$$

– Update with limited information (equivalent to the above):

$$b_i^{(t)} = \frac{\frac{\theta_i}{\pi^s} - \gamma_i^{(t-1)} \varphi_i}{\gamma_i^{(t-1)} - \gamma_i^{(t-1)} \varphi_i} b_i^{(t-1)}, \quad \forall i$$
 (2)

where

$$\varphi_i = n_0 \theta_i / \left(\frac{h_{ii}}{h_{i0}} P \pi^s \right)$$

- Only need to measure channel gains h_{ii}/h_{i0} and SINR $\gamma_i^{(t-1)}$.
- Global and geometric convergences to the unique NE.
- Similar argument applies to general utility functions.

Convergence Example

(a) Convergence of bids

- SINR auction
- Same log utility function
 - ⇒ Same SINRs at the NE

(b) Convergence of transmit power

Conclusions

- Auction mechanisms can be applied to distributed spectrum sharing with non-collocated receivers.
- Properties of the Nash Equilibrium
 - SINR auction with log utility: weighted max-min fair
 - Power auction: socially optimal for large BW (♥).
 - Power auction generates more revenue.
- Distributed myopic bid updating algorithm
 - Requires only local information.
 - Global and geometric convergence.

Thank You!