Course 4 - Sampling and probabilities

September 27, 2016

1 Course 4: Probabilities and sampling

In this worksheet, we will play with various probability measures introduced in the Lecture 3 of the course of J. Nzabanita.

- Bernoulli Ber(p)
- binomial B(n, p)
- geometric Geom(p)
- Poisson $Pois(\lambda)$
- uniform $\mathcal{U}(a,b)$
- normal or Gaussian $N(\mu, \sigma^2)$

We will also experiment and illustrate the limit theorems of Lecture 4.

1.1 Plotting discrete probability measures

We will mainly be using the Python libraries numpy, matplotlib.pyplot and scipy.stats. The conventional way to import them is given by the code below

```
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
```

Exercise: - Copy the above cell and execute it.

We recall that these import statements should be done only once in the whole worksheet!

Exercise: - Do you remember how to access the documentation of a function or a module? - Have a look at the documentation of stats. - Could you find the name of the distributions we are interested in (Bernoulli, binomial, geometric, uniform, Poisson and normal)?

```
In [ ]: # to access documentation we use the question mark '?'
     # we can also access the list of functions available in the module stats us
     stats.
```

```
In [2]: stats?
```

In order to construct a probability distribution the syntax is close to the mathematical one

```
P1 = stats.binom(10, 0.3) # the distribution Binom(10, 0.3)
P2 = stats.poisson(2.3) # the distribution Pois(2.3)
```

Exercise: - Construct the probabilities P1 and P2 given in the code above - Construct the probability P3 that corresponds to Geom(0.3). - Construct the probability P4 that corresponds to Ber(0.7). - For each of P1, P2, P3 and P4 print their mean and their variance (hint: use tabcompletion)

If you have doubts about the mean and variance of a random variable, they were defined in Lecture 2 of J. Nzabanita.

```
In [3]: P1 = stats.binom(10, 0.3)
                                    # binomial
       P2 = stats.poisson(2.3)
                                   # Poisson
       P3 = stats.geom(0.3)
                                    # geometric
       P4 = stats.bernoulli(0.7) # Bernoulli
In [29]: # the mean and variance of P1
        print(P1.mean(), P1.var())
3.0 2.1
In [50]: discrete_probas = [[P1, 'Binom(10,0.3)'], [P2, 'Pois(2.3)'], [P3, 'Geom(0.3)']
In [52]: # all at once with a for loop
        print("%14s %5s %5s" % ("name", "mean", "variance"))
         for P, name in discrete_probas:
            print("%14s %.3f %.3f" % (name, P.mean(), P.var()))
         name
                mean variance
Binom(10,0.3) 3.000 2.100
     Pois(2.3) 2.300 2.300
     Geom(0.3) 3.333 7.778
     Ber(0.7) 0.700 0.210
In [ ]:
```

We will now be interested in graphical representation of the probabilities P1, P2, P3 and P4. We will be using two methods: - pmf: for the probability mass function (i.e. the function $k \mapsto P(\{k\})$) - cdf: for the cumulative density function (i.e. the function $k \mapsto P((-\infty, k])$).

Exercise: - Copy, paste and execute the code below to get a graphical representation of P1

```
x1 = np.arange(-2, 10, 1.0)
x2 = np.arange(-2, 10, 0.1)
y = P1.pmf(x1)
z = P1.cdf(x2)
plt.plot(x1, y, 'or', label='pmf')
plt.plot(x2, z, '-b', label='cdf')
plt.legend(loc=5)
plt.ylim(-0.1, 1.1)
plt.show()
```

If there are some functions that you do not know in the above code, I recall that you can access their documentation with the question mark?. - Could you interpret what you see on the graphics? - Reproduce similar graphics for P2, P3 and P4 - Add the titles "Binom(10, 0.3)", "Poisson(2.3)", "Geom(0.4)" and "Ber(0.7)". - Save these graphics to four files called respectively binomial.pdf, poisson.pdf, geometric.pdf and bernoulli.pdf (*hint: look at the function plt.savefig) - Do you know how you could include these file into a latex document?

```
In [48]: x1 = np.arange(-2, 10, 1.0)
    x2 = np.arange(-2, 10, 0.1)
    for P, name in discrete_probas:
        y = P.pmf(x1)
        z = P.cdf(x2)
        plt.plot(x1, y, 'or', label='pmf')
        plt.plot(x2, z, '-b', label='cdf')
        plt.legend(loc=5)
        plt.title(name)
        plt.ylim(-0.1, 1.1)
        plt.show()
```


In []:

1.2 Plotting continuous probability measure

For continuous probability measures the main methods are - pdf: probability density function - cdf: cumulative density function (also called cumulative distribution function in Lecture 2 of J. Nzabanita)

Exercise: - Set U to be the uniform probability measure on [0,5]. Plot on the same graphics its density (in red) and its cumulative density function (in lue). - Let N be the standard normal distribution ($\mu=0$ and $\sigma^2=1$). Plot on the same graphics its density (in red) and its cumulative density function (in blue). - On both graphics add a black vertical dashed line at the position of the mean.

```
In [53]: U = stats.uniform(0, 5)
        N = stats.norm(0, 1)
        continuous_probas = [[U, "U(0,5)"], [N, "N(0, 1)"]]
In [60]: x = np.linspace(-6, 6, 1000)
        for P, name in continuous_probas:
            plt.plot(x, P.pdf(x), 'r', label='pdf')
            plt.plot(x, P.cdf(x), 'b', label='cdf')
            m = P.mean()
            plt.plot([m, m], [0, 1], '--k')
            plt.title(name)
            plt.legend()
            plt.show()
```


In []: