1 硫及其化合物

1.1 单质硫

1.1.1 S_8 : α -正交硫, β -单斜硫和 γ -单斜硫

Substance 正交 α -S₈

硫最常见的,也是热力学上最稳定的单质为正交 α -S₈(简称正交硫).这是一种黄色固体,具有优良的绝缘性和绝热性.

正交硫中含有 D_{4d} 点群的 S_8 分子,其结构颇像皇冠.

图 1: S₈分子的立体结构

加热 α -S₈至95.3°C可使其转变为 β -单斜S₈.将硫熔融后缓慢冷却可以得到 γ -单斜S₈.这两种晶型中都由S₈分子组成,区别只在于排列方式不同.

1.1.2 S_6 : ε -硫

 ε -硫由 S_6 分子构成,其颜色为橙红色,分子构象与环己烷的椅式六元环一致.这种同素异形体可以由下面的反应制得:

$$H_2S_4 + S_2Cl_2 \xrightarrow{\operatorname{Et}_2O} S_6 + 2\operatorname{HCl}$$

1.1.3 S的小分子:S2与S3

低压高温的硫蒸汽中存在 S_2 与 S_3 分子 S_3 分子呈现樱桃红色,结构与 O_3 类似. S_2 分子呈现紫色,结构与 O_2 类似.

1.2 - 2氧化态

$1.2.1 H_2S$

我们照例从氢化物开始.

Substance H_2S

硫化氢,化学式为 H_2S ,是无色的具有恶臭的剧毒气体. H_2S 在空气中燃烧时发出浅蓝色的火焰. H_2S 易溶于水,室温下在纯水中的溶解度大约为 $1 \text{ mol} \cdot \text{L}^{-1}$.

 H_2S 是较弱的酸,并且是一种中等强度的还原剂.将 H_2S 溶液置于空气中,溶液将缓慢地变浑浊,其中生成了S单质沉淀.

1.2.2 金属元素的硫化物

自然界有许多重要矿物以及金属元素的矿石是硫化物,这些矿石最重要的用途是自其中冶炼出金属.这些矿物中比较重要的列举如下:

名称	理想化学式	名称	理想化学式	名称	理想化学式
辉钼矿	MoS_2	方铅矿	PbS	雄黄	As_4S_4
雌黄	As_2S_3	黄铁矿	FeS_2	白铁矿	FeS_2
辉锑矿	$\mathrm{Sb_2S_3}$	黄铜矿	CuFeS_2	砷黄铁矿	FeAsS
辉铜矿	Cu_2S	闪锌矿	ZnS	朱砂	HgS

所有硫化物矿中以黄铁矿丰度最大,这也是硫单质的主要来源.这些硫化物的性质将在对应元素的章节提及.

1.3 多硫阴离子

多硫阴离子 S_n^{2-} (n=2,3,4,5)可以由 S^{2-} 与S单质反应得到.这些离子为黄色,并且颜色随着n的增加而加深.

有关多硫离子,值得提到的一点是石硫合剂.它是 $Ca(OH)_2$ 与S单质反应得到的,通常以红黄色水溶液的形式用作病虫害防治.

另一个有趣的配合物,也是无机化合物中鲜有的具有手性的例子,是 Pt^{IV} 与 S_5^{2-} 的配离子.它的结构如下所示.

图 2: PtS₁₅²⁻的结构

1.4 +4氧化态

1.4.1 SO₂

 SO_2 是硫的常见氧化物.

Substance SO₂

二氧化硫,化学式为 SO_2 ,是无色,有窒息性臭味的有毒气体. SO_2 的熔点为 -75.5° C,沸点为 -10.0° C. SO_2 气体易溶于水.

工业上大规模制备 SO_2 是由硫或 H_2 S在空气中燃烧,或锻烧黄铁矿. SO_2 也是一种常见的大气污染物.工业上生产的 SO_2 主要用来制备硫酸其他如漂白,杀菌,食物保存,冷冻或作为非水溶剂等.

1.4.2 亚硫酸及其盐

亚硫酸仅存在于低浓度的 SO_2 水溶液中,难以作为纯物质被单独分离.亚硫酸盐则稳定得多,各种阳离子都能与它们形成稳定的盐.

亚硫酸氢根 HSO_3 有两种互变异构体.占主要的那种是具有 C_{3v} 对称性的 HSO_3 而非 $HOSO_2$.

$$\begin{bmatrix} HO & O \end{bmatrix} = \begin{bmatrix} H & H \\ O & O \end{bmatrix}$$

图 3: HSO3-的两种互变异构体的结构

HSO3⁻和SO3²⁻为中等强度的还原剂.它们与I2能发生定量的反应:

$$HSO_3^- + I_2 + H_2O \Longrightarrow HSO_4^- + 2H^+ + 2I^-$$

在强还原剂的存在下,它也能被还原:

$$2 \, \mathrm{SO_3}^{2-} + 2 \, \mathrm{H_2O} + 2 \, \mathrm{Na(Hg)} \longrightarrow \mathrm{S_2O_4}^{2-} + 4 \, \mathrm{OH^-} + 2 \, \mathrm{Na^+}$$
$$2 \, \mathrm{SO_3}^{2-} + 4 \, \mathrm{HCOO^-} \longrightarrow 2 \, \mathrm{S_2O_3}^{2-} + 2 \, \mathrm{C_2O_4}^{2-} + 2 \, \mathrm{OH^-} + \mathrm{H_2O}$$

$1.4.3 \quad H_2S_2O_5$

与H₂SO₃一样,H₂S₂O₅也没有得到纯的化合物.S₂O₅²⁻的盐可以容易地由亚硫酸氢盐浓缩制得:

$$2 \operatorname{HSO_3}^- \Longrightarrow \operatorname{S_2O_5}^{2-} + \operatorname{H_2O}$$

与HSO₃一样,S₂O₅²的结构也不同寻常,其中的两个S并不等价,而是由一根S-S键相连.

$$\begin{bmatrix}
0 & 0 \\
0 & 0 \\
0 & 0
\end{bmatrix}^{2-}$$

图 4: S₂O₅²⁻的结构

1.5 +6氧化态

$1.5.1 \quad SO_3$

SO₃也是硫的常见氧化物.

Substance SO₃

三氧化硫,化学式为SO₃,是无色针状固体或液体,有刺激性气味.SO₃的熔点为16.9℃,沸点为45℃,极易溶于水.

气态的 SO_3 为平面型分子.液态的 SO_3 主要为其三聚体 S_3O_9 ,其结构如下.

图 5: SO₃的三聚体的结构

固态 SO_3 有两种晶型,一种是由 S_3O_9 构成的 γ - SO_3 ;当微量水存在时,可以结晶为针状的 β - SO_3 ,其中含有长链聚合物 $HO(SO_3)_n$ H.另一种更稳定的晶型 α - SO_3 中有复杂的交联结构 1 .

 $^{^1}$ 同一温度下这三种晶型的蒸气压大小顺序为 $\alpha<\beta<\gamma$,因此加热 α -SO $_3$ 至熔化时会导致其蒸气压突然升高,巨大的压力可以冲破加热它的玻璃管.这一现象称为 α 爆炸.

工业上制备 SO_3 通常在催化剂(例如 V_2O_5)的存在下氧化 SO_2 得到;随后一般被通入98.3%硫酸中吸收,这就是工业制硫酸的方法.

1.5.2 SO₄

这种化合物中含有过氧键,实际上可以写作 $SO_2(O_2)$.

$1.5.3 \quad H_2SO_4$

硫酸是一种重要的物质.

Substance H_2SO_4

硫酸,化学式为H₂SO₄.无水硫酸为无色粘稠的液体,与水以任意比例混溶,混合过程放出大量的热.

在无水硫酸中存在一系列平衡:

$$2 \operatorname{H}_2 \operatorname{SO}_4 \Longrightarrow \operatorname{H}_3 \operatorname{SO}_4^+ + \operatorname{HSO}_4^-$$

$$2 \operatorname{H}_2 \operatorname{SO}_4 \Longrightarrow \operatorname{H}_3 \operatorname{O}^+ + \operatorname{HS}_2 \operatorname{O}_7^-$$

$$\operatorname{H}_3 \operatorname{O}^+ + \operatorname{HSO}_4^- \Longrightarrow \operatorname{H}_2 \operatorname{SO}_4 + \operatorname{H}_2 \operatorname{O}$$

$$\operatorname{HS}_2 \operatorname{O}_7^- + \operatorname{H}_3 \operatorname{SO}_4^+ \Longleftrightarrow \operatorname{H}_2 \operatorname{S}_2 \operatorname{O}_7 + \operatorname{H}_2 \operatorname{SO}_4$$

$$\operatorname{H}_2 \operatorname{S}_2 \operatorname{O}_7 \Longrightarrow \operatorname{H}_2 \operatorname{SO}_4 + \operatorname{SO}_3$$

因此,无水硫酸中事实上至少含有七种组分.这也经常被用于考察平衡计算.无水硫酸的许多性质也是由这些物种造成的.

大多数物质在无水 H_2SO_4 中都作为碱存在.少数物质,例如 $H_2S_2O_7$, HSO_3F 等可以作为酸将 H_2SO_4 质子化.另一个特殊的例子是硼酸溶于无水硫酸形成的四硫酸氢硼酸:

$$H_3BO_3 + 3H_2S_2O_7 \longrightarrow H_3SO_4^+ + [B(HSO_4)_4]^- + H_2SO_4$$

需要说明的是,如果某一反应在浓硫酸体系生成H2O,那么最好将其写作H3OHSO4或H2O·nH2SO4的形式.

稀硫酸的性质,主要是 SO_4^{2-} 和 H^+ 的性质.这部分内容已经在高中化学中学过,这里就不作介绍了.

1.5.4 H_2SO_5 与 $H_2S_2O_8$

无水过一硫酸 H_2SO_5 (亦被称作Caro酸)可由无水过氧化氢和氯磺酸反应值得,然而此物质少有用处,主要作为电解法制备 $H_2S_2O_8$ 及其盐的副产物而出现.

过二硫酸 $H_2S_2O_8$ 为无色固体,可以以任意比例混溶于水中;熔点为 65° C,熔化时分解. $(NH_4)_2S_2O_8$ 和 $K_2S_2O_8$ 是过二硫酸的两种最重要的盐,它们都易溶于水(但 $K_2S_2O_8$ 溶解得十分缓慢).这些盐比酸更容易制备,它们都已实现工业化生产,其法是由相应的硫酸盐进行阳极氧化.

过二硫酸及其盐常被用作强氧化剂.除去少数物质,例如 F_2 , $H_2N_2O_2$,O和OH等,电对 $S_2O_8^{2-}/HSO_4^-$ 的电极电势比其它水溶液中的电对都要高.

1.6 硫代硫酸及其盐

游离的硫代硫酸遇水即发生迅速而复杂的分解2.一种典型的分解方式为

$$H_2S_2O_3 \longrightarrow H_2S + SO_2$$

²这也是碘量法需要控制溶液pH在近中性的原因

硫代硫酸盐则相对稳定得多,可以由HS-与HSO3-反应制得:

$$2 \, \mathrm{HS^-} + 4 \, \mathrm{HSO_3}^- \longrightarrow 2 \, \mathrm{S_2O_3}^{2-} + 3 \, \mathrm{H_2O}$$

也可以由SO₃²⁻与硫单质的反应制得:

$$8 \operatorname{Na_2SO_3} + \operatorname{S_8} \longrightarrow 8 \operatorname{Na_2S_2O_3}$$

 $S_2O_3^{2-}$ 的结构与 SO_4^{2-} 极为相似,只是把其中一个端基O替换为S即可.

Substance $Na_2S_2O_3 \cdot 5H_2O$

海波/大苏打,即五水合硫代硫酸钠,化学式为 $Na_2S_2O_3 \cdot 5H_2O$,是一种无色晶体,熔点48.5°C,易溶于水.

海波在照相业3中用作定影剂,用于溶解未反应的AgBr,反应的方程式为

$$AgBr + 3S_2O_3^{2-} \longrightarrow \left[Ag(S_2O_3)_3\right]^{5-} + Br^{-}$$

此外,硫代硫酸钠是一种中等强度的还原剂. $S_2O_3^{2-}$ 与 I_2 定量地发生反应,这是碘量法的理论基础:

$$2 S_2 O_3^{2-} + I_2 \longrightarrow S_4 O_6^{2-} + 2 I^-$$

更强的氧化剂可以将其直接氧化为SVI:

$$S_2O_3^{2-} + 4Cl_2 + 5H_2O \longrightarrow 2HSO_4^{-} + 8H^{+} + 8Cl^{-}$$

 Br_2 的氧化性介于 I_2 和 Cl_2 之间,根据不同条件, $S_2O_3^{2-}$ 可作为单电子或八电子还原剂.用也 $S_2O_3^{2-}$ 和 Br_2 的浓溶液进行滴定,然后将两种溶液各稀释100倍再进行滴定,将发现 $S_2O_3^{2-}$ 的滴定度正好增加为8倍.

1.7 连硫酸及其盐

1.7.1 连二硫酸及其盐

连二硫酸盐通常可由亚硫酸盐进行氧化制得.工业上由水合 MnO_2 或 Fe_2O_3 的悬浊液对 SO_2 的水荣溶液进行氧化即得相应的连二硫酸盐:

$$2\operatorname{MnO}_2 + 3\operatorname{SO}_2 \xrightarrow{\operatorname{aq},0^{\circ}C} \operatorname{MnSO}_4 + \operatorname{MnS}_2O_6$$
$$\operatorname{Fe}_2O_3 + 3\operatorname{SO}_2 \xrightarrow{\operatorname{aq},0^{\circ}C} \operatorname{FeSO}_3 + \operatorname{FeS}_2O_6$$

通过复分解反应即可制备其它连二硫酸盐.

1.7.2 连多硫酸 $H_2S_nO_6$

连多硫酸及其盐具有悠久历史和系统的化学研究工作.1808年John Dalton将 H_2 S与SO₂水溶液作用的研究,其中含有各种连硫酸.1846年,H.W.F.Wackenroder对这类溶液又进行了系统的研究,因此该体系以他的名字命名.除了这种方法之外,各种连多硫酸盐还可以通过以下方法制备:

$$2 \operatorname{Na_2S_2O_3} + 4 \operatorname{H_2O_2} \longrightarrow \operatorname{Na_2S_3O_6} + \operatorname{Na_2SO_4} + 4 \operatorname{H_2O}$$

 $2 \operatorname{Na_2S_2O_3} + \operatorname{I_2} \longrightarrow \operatorname{Na_2S_4O_6} + 2 \operatorname{NaI}$

连五硫酸和连六硫酸盐的制备过程较复杂,这里就不再介绍了.

³尽管这一行业现在已经很少用这种古老的办法摄影了.

1.8 连二亚硫酸及其盐

连二亚硫酸的无水盐是稳定的,但在酸性条件下将发生分解:

$$2 S_2 O_4^{2-} + H_2 O \longrightarrow S_2 O_3^{2-} + 2 HSO_3^{-}$$

强碱性条件下亦将发生分解:

$$2 S_2 O_4^{2-} + 6 OH^- \longrightarrow 5 SO_3^{2-} + S^{2-} + 3 H_2 O$$

连二亚硫酸盐加热时也将发生分解,分解方式和酸性条件下的歧化类似:

$$2\operatorname{Na_2S_2O_4} \xrightarrow{\Delta} \operatorname{Na_2S_2O_3} + \operatorname{Na_2SO_3} + \operatorname{SO_2}$$

 $S_2O_4^{2-}$ 具有明显的重叠式结构,并且S-S键明显偏长.事实上, $S_2O_4^{2-}$ 的水溶液中也有少量 $SO_2^{\bullet-}$ 存在.

用 Z_n 粉等还原剂或电解还原 SO_3^2 -即可制得 $S_2O_4^{2-}$.连二亚硫酸盐在工业上广泛用作还原剂;它还可以还原各种重金属离子.这类反应较多地被用于净化污水.

1.9 次硫酸及其盐

次硫酸盐H₂SO₂极不稳定,只能以盐的形式存在.用锌作用于SO₂Cl₂的乙醚溶液,可制得次硫酸锌:

$$2\operatorname{Zn} + \operatorname{SO_2Cl_2} \longrightarrow \operatorname{ZnSO_2} + \operatorname{ZnCl_2}$$

将Co(OAc)2与Na2S2O4溶液反应,然后加入过量的NH3,即可得到棕色的次硫酸钴晶体:

$$Co(OAc)_2 + Na_2S_2O_4 \longrightarrow CoS_2O_4 + 2 NaOAc$$

 $CoS_2O_4 + 2 NH_3 + H_2O \longrightarrow CoSO_2 + (NH_4)_2SO_3$

甲醛次硫酸氢钠 $NaHSO_2 \cdot CH_2O \cdot 2H_2O$ 就是俗称的雕白粉,具有很强的还原性,例如将 I_2 还原为 I^- :

$$NaHSO_2 \cdot CH_2O \cdot 2\,H_2O + 2\,I_2 \longrightarrow 4\,HI + NaHSO_4 + CH_2O$$

甲醛次硫酸氢钠在印染工业中常用作拔染剂,在制糖工业中则常作为漂白剂.

1.10 硫的卤化物与卤氧化物

1.10.1 硫的氟化物

硫的氟化物的性质和其它卤素的卤化物有一定程度的区别,因此分开讨论.

$1 S_2F_2$

硫和AgF在干燥的容器中氟化可以得到FSSF.在有碱金属氟化物存在时,这种物质容易异构化形成 SSF_2 .这是一个简单的键合异构的例子.当然, SSF_2 本身也可以由 SO_2 溶剂中的KF与 S_2Cl_2 反应得到:

$$2\,\mathrm{KSO_2F} + \mathrm{S_2Cl_2} \xrightarrow{\mathrm{SO_2}} \mathrm{SSF_2} + 2\,\mathrm{KCl} + 2\,\mathrm{SO_2}$$

两者的结构示意如下.

图 6: 两种S2F2的结构

2 SF₂

 SF_2 的稳定性并不如与它相似的 H_2S 或 SCl_2 ,因而难以得到.这种化合物需要KF对 SCl_2 氟化后的一系列硫的氟化物中分离制得.

3 SF₄

相比前面几种物质,SF₄是一种稳定得多的氟化物,SF₄最好由下面的方法制备:

$$3 \operatorname{SCl}_2 + 4 \operatorname{NaF} \xrightarrow{\operatorname{MeCN}} \operatorname{S_2Cl}_2 + \operatorname{SF}_4 + 4 \operatorname{NaCl}$$

它具有经典的跷跷板结构,其中的四个F是不断流变的.有关 SF_4 的有趣的衍生结构是 $(H_2C)SF_4$,它和 SOF_4 一样具有三角双锥结构,轴向的F向远离端基O或 CH_2 的方向偏移.值得注意的是, CH_2 中的两个H与轴向F共平面,这是由于 π 键对轨道方向的要求决定的,尽管此时看起来位阻更大.

图 7: SF₄及其衍生物的结构

 SF_4 遇潮气迅速分解,并立即水解生成 $HF和SO_2$.尽管如此,在无机和有机合成中,它仍是具有高度选择性的强氟化剂,用途颇为广泛.

4 SF₆

六氟化硫SF₆可由硫在氟气氛中燃烧制得.它是无色,无臭,无味,无毒的气体⁴,无反应性和可燃性,也无溶解性.正由于它突出的稳定性和优良的绝缘性,广泛用作高压发电机和开关装置中的绝缘气体.

近年来的最新观点认为 SF_6 中的S并非VSEPR理论所认为的 d^2sp^3 杂化,而是采取sp杂化与两个F成键,其余四个F则与S通过电性作用结合.经过平均化后,形成了正八面体的 SF_6 分子.

$5 \ \mathbf{S_2F_{10}}$

对硫的不完全氟化可以得到 S_2F_{10} 分子.它的结构可以看作是两个 SF_6 各自去掉一个F后两个S相连的结果.由于没有特别的轨道作用,为了避免位阻, S_2F_{10} 采取交错式结构,其中的 S_-S 键也较长且弱.

 S_2F_{10} 的反应性介于 SF_4 与 SF_6 之间.。它不为水所水解,甚至不为稀酸或稀碱所水解,这一点和 SF_4 不同;它作为剧毒物质也不同于 SF_6 . S_2F_{10} 在15℃时迅速发生歧化,分解生成 SF_4 和 SF_6 .

 S_2F_{10} 可以在丙酮溶液中氧化KI而析出 I_2 .一个小把戏是还原产生的 SF_4 可以对丙酮进行氟化,因此反应的方程式应当为:

$$S_2F_{10} + 2KI + 4Me_2CO \longrightarrow 2SO_2 + 2KF + I_2 + 4Me_2CF_2$$

下面是 SF_6 和 S_2F_{10} 的结构.

图 8: SF₆和S₂F₁₀的结构

⁴少量吸入SF6可以让声音变得粗犷,这和吸入He使得声音变细正好相反.请勿自行尝试此实验,以避免窒息风险.

1.10.2 硫的氯化物

在剩余的硫的卤化物中,我们主要讨论最常见的SCl2和S2Cl2,它们都是重要的化工产品.

Substance SCl₂

二氯化硫,化学式为SCl₂,是有毒且有恶臭味的樱桃红色液体,易挥发,熔点为-122°C,沸点为59°C.

Substance S_2Cl_2

二氯化二硫,化学式为S₂Cl₂,是有毒且有恶臭味的金黄色液体,熔点为-76℃,沸点为138℃.

 S_2Cl_2 在热力学上比 SCl_2 更稳定.因此,如果某一反应应当生成硫的氯化物,在没有其它提示的情况下你可以优先考虑 S_2Cl_2 的生成. SCl_2 最著名的反应是对乙烯的硫代氯化:

$$SCl_2 + C_2H_4 \longrightarrow S(CH_2CH_2Cl)_2$$

产物即臭名昭著的芥子气.

1.10.3 硫的氯氧化物

硫可以形成两个主要系列的卤氧化物,即 $S^{IV}OX_2$ 和 $S^{VI}O_2X_2$.我们主要介绍亚硫酰氯 $SOCl_2$ 和硫酰氯 SO_2Cl_2 .

Substance SOCl₂

亚硫酰氯,化学式为SOCl₂,是无色易挥发的液体,熔点为-101℃,沸点为76℃.

Substance SO₂Cl₂

硫酰氯,化学式为SO。Cl。,也是无色易挥发的液体,熔点为-54℃,沸点为69℃.

 $SOCl_2$ 可以由 SO_2 氯化得到,亦可以由 SCl_2 被 SO_3 氧化得到:

$$SO_2 + PCl_5 \longrightarrow SOCl_2 + POCl_3$$

 $SCl_2 + SO_3 \longrightarrow SOCl_2 + SO_2$

 $SOCl_2$ 能与 H_2O 剧烈作用,,可以对容易水解的无机卤化物进行脱水.以 $FeCl_3 \cdot 6 H_2O$ 为例:

$$FeCl_3 \cdot 6 H_2O + 6 SOCl_2 \longrightarrow FeCl_3 + 6 SO_2 + 6 H_2O$$

与DMSO一样,SOCl2也可以作为溶剂使用.

工业上用活性炭或FeCl₃为催化剂,将SO₂直接氯化就可以得到SO₂Cl₂.这也是一种有用的氯化试剂.

1.11 硫的氮化物

1.11.1 二元硫氮化合物

这类物质中最重要的是 S_4N_4 .这是一种橙黄色的晶体,在空气中稳定,但受到撞击或迅速加热时会发生爆炸.它可以通过下面几种方法制备:

$$\begin{split} 6 \, S_2 C l_2 + 16 \, NH_3 &\xrightarrow{80^{\circ} C} S_4 N_4 + 8 \, S + 12 \, NH_4 C l \\ 6 \, S C l_2 + 16 \, NH_3 &\longrightarrow S_4 N_4 + 2 \, S + 12 \, NH_4 C l \\ 6 \, S_2 C l_2 + 4 \, NH_4 C l &\xrightarrow{160^{\circ} C} S_4 N_4 + 8 \, S + 16 \, HC l \end{split}$$

S₄N₄具有耐人寻味的结构.

图 9: S₄N₄的立体结构

 S_4N_4 分子隶属 D_{2d} 点群, S_-N 键长小于单键键长,表明杂环中有一定的离域效应.跨环的 S_-S 有一定的成键作用. S_4N_4 在碱中水解,水解产物与碱的浓度有关:

$$\begin{split} 2\,S_4N_4 + 6\,OH^- + 9\,H_2O & \xrightarrow{\vec{R}\vec{W}} S_2{O_3}^{2-} + 2\,S_3{O_6}^{2-} + 8\,NH_3 \\ S_4N_4 + 6\,OH^- + 3\,H_2O & \xrightarrow{\vec{X}\vec{W}} S_2{O_3}^{2-} + 2\,S{O_3}^{2-} + 4\,NH_3 \end{split}$$

1.12 硫的多原子阳离子

为了保持连续性,这部分内容将和Se,Te的多原子阳离子一起介绍.