HASHING

- implementation of the hash table ADT
- used for performing insertions, deletions and finds in constant average time.

Hash Table data structure

- array of some fixed size containing the keys
- typically a key is a string with some associated value
- let size denote the size of the hash table
- each key is mapped into some number in the range 0 to size-1 and placed in the appropriate cell
- the mapping is called a hash function
- the hash function should be simple enough to compute and should ensure than any two distinct keys get different cells.

Problems:

- choosing a function → most of the time hash(key) = key % size
- what to do when two keys hash to the same value → collision
- how to choose the correct table size (we normally choose a prime number).

Example: Suppose that size = 7 and our hash function is hash(key) = key % size

key 10 will be stored in slot 3 key 7 will be stored in slot 0

key 14 will be stored in a lot 0 causing a collision.

Strategies for solving collisions

- use open hashing technique
 - use a list to store all items that hash to the same value
- use closed hashing
 - try alternate cells in the array during collision

The Hash Table Operations

- add, remove, contains

Closed Hashing Implementation of the Hash Table ADT

 in the implementation of closed hashing, keys that map to the same slot are stored in a linked-list.

To illustrate:

- Suppose that the hash table size is 7 and we use the function hash(key) = key % size.
- Suppose that we want to insert the following values in sequence

14 16 21 9 12 10 7 24

Closed Hashing

- if a collision occurs, alternate cells are tried until an empty cell is found
- formally, cells h0(x), h1(x), h2(x) are tried where hi(x) = (hash(x) + f(i)) % size with f(0) = 0

Three common collision resolution strategies

Linear probing

- f is a linear function of i typically f(i) = i
- this amounts to trying cells sequentially with wrap-around in search of an empty cell.
- suffers from primary clustering

To illustrate:

- Suppose that the hash table size is 7 and we use the function hash(key) = key % size.
- Suppose that we want to insert the following values in sequence
- Suppose further that we want to use linear probing

	14	16	21	9	7	13
	hi(x) =	= (hash()	() + i) %	size		
i=0 i=0 i=1 i=1 i=0 i=1 i=2 i=3 i=4 i=0 i=1 i=2 i=3	((16 %) ((21 %	6 7) + 0) 6 7) + 0) 6 7) + 1) 6 7) + 0) 6 7) + 1) 6 7) + 0) 6 7) + 1) 6 7) + 2) 6 7) + 3) 6 7) + 4) 6 7) + 0) 6 7) + 1)	% 7 = 0 % 7 = 2 % 7 = 0 % 7 = 1 % 7 = 2 % 7 = 3 % 7 = 0 % 7 = 1 % 7 = 2 % 7 = 3 % 7 = 4 % 7 = 3 % 7 = 4 % 7 = 5			okey, 14 is placed at slot 0 okey, 16 is placed at slot 2 collision okey, 21 is placed at slot 1 collision okey, 9 is placed at slot 3 collision collision collision collision collision okey, 7 is placed in slot 4 collision collision collision collision collision okey, 2 is placed in slot 5
	• • •	, ,				• • •

Slot#	14	16	21	9	7	2
0	14	14	14	14	14	14
1			21	21	21	21
2		16	16	16	16	16
3				9	9	9
4					4	4
5						2
6						

Quadratic probing

- f is a quadratic function of i typically f(i) = i²
- suffers from secondary clustering

To illustrate:

- Suppose that the hash table size is 7 and we use the function hash(key) = key % size.
- Suppose that we want to insert the following values in sequence
- Suppose further that we want to use linear probing

	14	16	21	9	7	2
	hi(x) =	(hash(x)	+ i*i) %	size		
i=0 i=0 i=1 i=0 i=1 i=0 i=1 i=2 i=0 i=1 i=2	((16 % ((21 % ((21 % ((9 % ((7 % ((7 % ((7 % ((2 %	7) + 0) 6 7) + 0) 6 7) + 0) 6 7) + 1) 6 7) + 1) 6 7) + 1) 6 7) + 1) 6 7) + 4) 6 7) + 1) 6 7) + 4) 6	% 7 = 2 % 7 = 0 % 7 = 1 % 7 = 2 % 7 = 3 % 7 = 0 % 7 = 1 % 7 = 4 % 7 = 2 % 7 = 3			okey, 14 is placed at slot 0 okey, 16 is placed at slot 2 collision okey, 21 is placed at slot 1 collision okey, 9 is placed at slot 3 collision collision okey, 7 is placed in slot 4 collision collision okey, 2 is placed in slot 6

Slot#	14	16	21	9	7	2
0	14	14	14	14	14	14
1			21	21	21	21
2		16	16	16	16	16
3				9	9	9
4					7	7
5						
6						2