Stat 145, Mon 8-Mar-2021 -- Mon 8-Mar-2021 Biostatistics Spring 2021

Monday, March 8th 2021

Wk 6, Mo

Topic:: Hypothesis test intro

Read:: Lock5 4.1

HW:: PS06

HW:: PS07 Ellenberg

Hypothesis test

- another inference procedure
- idea cultivated using single proportion
 multiple choice test, 5 answers available
 let p = proportion you would get correct over full population of questions

If you were guessing, you'd expect p = 1/5

You hope your performance provides evidence against this conclusion State corresponding null and alternative hypotheses

Say, in 50 questions, you get 18 correct. this provides sample data identify possible sample statistics

- construction of approximate null distribution
 similar to bootstrapping
 slips in bag are given proportion equal to value in null hypothesis
- look at appropriate sampling distribution
 Lock's call this the randomization distribution
 Also goes by the name null distribution
- repeat this example using R
 manyRuns <- do(5000) * rflip(50, prob=.2)</pre>

Statistical significance

SAT: n=50 questions (sample size) Let p = proportion (among all grustions in population) you would get correct Want to show p \$ 0.2 (1/5) Two running hypotheses $H_p: p = 0.2$ (nall hypothesis)

$$H_p: p = 0.2$$
 (null hypothesis)
 $H_a: p \neq 0.2$ (alternative hypothesis)

Other scenaries

1. Suppose a coin is to be tested for "fairness". Consider p = presportion (over all possible fl=ps) of "Heads" H. : p = 0.5 Ha: p + 0.5

2. Looking at p = proportion of "Rock" chosen in Rock -Paper - Scissors. Test whether "Rock" comes up one thin! of time for a particular child. Let p = proportion of Rock Ho: p = 1/3 Ha: P + 1/3

Ho: MM-MF=0 Ha: MM-MF =0

Have sample data: $\overline{X} = 9.4$ $\overline{X} - \overline{X} = 3$ $\overline{X} = 12.4$