AD		

Award Number: DAMD17-00-1-0516

TITLE: Pain Transmission In Humans: The Role of Novel Sensory

Ion Channels

PRINCIPAL INVESTIGATOR: Stephen R. Ikeda, M.D., Ph.D.

CONTRACTING ORGANIZATION: Donald Guthrie Foundation

for Education and Research Sayre, Pennsylvania 18840

REPORT DATE: May 2001

TYPE OF REPORT: Annual

PREPARED FOR: U.S. Army Medical Research and Materiel Command

Fort Detrick, Maryland 21702-5012

DISTRIBUTION STATEMENT: Approved for Public Release; Distribution Unlimited

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation.

Form Approved REPORT DOCUMENTATION PAGE OMB No. 074-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Searching existing this collection of information. Searching existing the data needed, and completing and reviewing this collection of information. And comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 3. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE Annual (1 May 00 - 30 Apr 01) May 2001 5. FUNDING NUMBERS 4. TITLE AND SUBTITLE DAMD17-00-1-0516 The Role of Novel Sensory Ion Pain Transmission In Humans: Channels 6. AUTHOR(S) Stephen R. Ikeda, M.D., Ph.D. 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Donald Guthrie Foundation for Education and Research Sayre, Pennsylvania 18840 E-Mail: sikeda@inet.guthrie.org 10. SPONSORING / MONITORING 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) AGENCY REPORT NUMBER U.S. Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012

11. SUPPLEMENTARY NOTES

This report contains colored photos

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

The primary accomplishments of the previous funding period were: 1) cloning and expression of the mouse isoform of Scn10a gene product (SNS; TTX-resistant sodium channel); 2) functional heterologous expression and initial biophysical characterization of the mouse Scn10a gene product in sympathetic neurons; 3) cloning and sequencing of 4 Kbp of upstream genomic DNA; and 4) identification of BAC (bacterial artificial chromosome) clones harboring the mouse Scn10a gene. The nucleotide sequence of the mouse Scn10a cDNA obtained in these studies deviates significantly (170 discrepancies in 5874 bases) from a previously published cDNA sequence derived from genomic DNA (GenBank accession number Y09108) and thus represents new information. Heterologous expression of the Scn10a cDNA in sympathetic neurons revealed a significant depolarizing shift in the biophysical properties of the expressed channel when compared with natively expressed channels. These findings indicate that an accessory protein may influence the behavior of the channel. A candidate promoter region for the Scn10a channel has been cloned and identified in BAC clones. Taken together, these results provide the experimental foundation for our future studies aimed at identifying new potential therapeutic targets that modify the function and expression of sodium channels involved in pain transmission.

14. SUBJECT TERMS			15. NUMBER OF PAGES 54
			16. PRICE CODE
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATION	20. LIMITATION OF ABSTRACT
OF REPORT	OF THIS PAGE	OF ABSTRACT	
Unclassified	Unclassified	Unclassified	Unlimited

Table of Contents

Cover	1
SF 298	2
Table of Contents	3
Introduction	4
Body	4
Key Research Accomplishments	13
Reportable Outcomes	14
Conclusions	15
References	16
Appendices	

- B. Nucleotide formatted alignments
- C. Protein formatted alignments
- D. Activation/inactivation properties of Scn10a channels heterologously expressed in sympathetic neurons
- E. Activation/inactivation properties of TTX-R sodium channels in mouse DRG neurons
- F. 5' flanking region
- G. Primers for 5' Rapid Amplification of cDNA Ends
- H. LM-PCR primers: used for LM-PCR into the first intron
- I. LM-PCR primers: used for LM-PCR out (upstream) from the RACE products
- J. Primers for genomic screening of mouse library:

Introduction

The Scn10a gene product encodes a tetrodotoxin-resistant sodium channel (SNS/PN3) expressed exclusively in a subset of primary sensory neurons (e.g., dorsal root and nodose ganglia) believed to be involved in pain transmission (Akopian et al., 1996). Thus, it is important to understand mechanisms contributing to both the function of the protein and the exquisite specificity of gene expression. The overall research plan is detailed in the flowchart depicted to the right. During the last funding period, we have made significant progress on both the genomic (left branch) and proteomic (right branch) sections of the research plan.

Specifically, we have cloned and sequenced the full length mouse Scn10a cDNA. Moreover, we have demonstrated that the cDNA is functionally expressed in neurons and have initiated biophysical characterization of the expressed channels. With regard to progress toward better understanding the regulation of Scn10a transcription, the putative transcription start site has been identified using 5' rapid amplification of cDNA ends (RACE) and 4 Kbp of upstream genomic region has been sequenced using ligation-mediated PCR (LM-PCR). Finally, bacterial artificial chromosome (BAC) clones containing the full length mouse Scn10a gene have been identified.

Body

A. Cloning of mouse Scn10a cDNA

In order to obtain a murine Scn10a clone, dorsal root ganglion (DRG) neurons were enzymatically dissociated from adult CD1 mice and polyA mRNA isolated by standard techniques. A full length mScn10a clone was amplified from this material by RT-PCR using oligonucleotide primers based on the genomic sequence data provided in Souslova et al. (1997). The open reading frame was subcloned into the mammalian expression vector pCI (Promega) and sequenced with an ABI 377 automated sequencer (Appendix A). The sequence of the Scn10a clone was verified by sequencing the PCR product from several different mRNA preparations.

The nucleotide sequence of mouse Scn10a cDNA, when compared with sequence (#Y09108) derived from mouse genomic data (Souslova et al., 1997), revealed 170 discrepancies of 5874 total bp (Appendix B). About 50% of the changes do not alter the primary sequence (i.e., are silent mutations). About 1/3 of the "polymorphisms" are A to G changes (genomic to cDNA). An alignment of the primary amino acid sequence of our

clone compared with #Y09108 is shown in Appendix C. The reason for these discrepancies is unclear.

The derived primary sequence of mouse Scn10a is 93, 82, and 81% identical to the rat (X92184), human (AF117907), and dog (U60590) Scn10A sodium channel, respectively. When conserved substitutions are taken into account (ClustalW analysis), the sequence similarity is 95, 89, and 88%, respectively.

Figure 2, Mouse Scn10a primary amino acid sequence

Putative transmembrane segments are shown in shaded boxes with each color representing one of four homologous domains. The serine residue shown to be involved in TTX insensitivity in the rat ortholog (Sivilotti et al., 1997) is marked with a star. Putative intron/exon boundaries are from Souslova et al., 1997. Ambiguous residues are those not confirmed by sequencing of different clones.

B. Expression of Scn10a cDNA clone in rat sympathetic neurons

Rat sympathetic neurons isolated from superior cervical ganglion (SCG) were used as a host for Scn10a expression. Previous studies have shown that natively expressed sodium channels in SCG neurons are completely suppressed by tetrodotoxin (Schofield & Ikeda, 1988). Scn10a (0.1–0.2 μ g/ μ l) and EGFP (Clontech, 0.05 μ g/ μ l) cDNAs were co-injected into the nucleus of SCG neurons using an Eppendorf microinjection system (Ikeda, 1996, 1997). Patch clamp recordings were made following 12-18 hours of incubation at 37 C. Successfully injected cells were identified by EGFP fluorescence using an inverted microscope (Nikon) equipped with an epifluorescence unit.

Voltage-clamp recordings were made at room temperature (23–25 °C) using the whole-cell variant of the patch-clamp technique. Solutions designed to isolate tetrodotoxin resistant (TTX-R) currents were as follows: external (mM): TEA-Cl 120, NaCl 50, HEPES 10, MnCl₂ 2, and glucose 10. TTX (1 µM) was added to suppress sensitive

currents. The pH of the solution was adjusted to 7.4 with TEA-OH. The osmolality of the solution was 327 mosm/kg. Internal (mM): CsCl 115, NaCl 10, EGTA 11, CaCl₂ 1,HEPES 10, MgATP 4, GTP 0.1, and diTRIS phosphocreatine, 5. The pH of the solution was adjusted to 7.2 with TEA-OH. The osmolality of the solution was 303 mosm/kg. Current-voltage (I-V) and activation curves were derived from currents evoked by a 20 msec test pulse to various potentials from a holding potential of -80 mV. Conductance calculations were made using the chord conductance equation assuming a reversal potential of +40 mV. Inactivation was determined using a 1 sec conditioning pulse followed by a test pulse to 0 mV. Parameters for activation and inactivation curves were determined by fitting the normalized conductance curve to a Boltzmann function using a non-linear regression program. An example of currents and activation and inactivation analysis is shown in Figure 3.

Figure 3. TTX-resistant sodium currents recorded from rat sympathetic neurons expressing Scn10a channels.

Upper right: Family of currents evoked by depolarizing pulses. Lower left: Current voltage relationship. Upper right: Currents evoked with the inactivation voltage protocol. Lower right: Steady state activation and inactivation curves.

Figure 4. TTX-resistant sodium currents recorded from mouse DRG neurons

Upper right: Family of currents evoked by depolarizing pulses. Lower left: Current voltage relationship. Upper right: Currents evoked with the inactivation voltage protocol. Lower right: Steady state activation and inactivation curves.

Tetrodotoxin-resistant sodium currents were also recorded from acutely isolated mouse DRG neurons. The goal of these studies was to compare the heterologously expressed channels with natively expressed channels. An example of such currents is shown above (Figure 4.)

Comparison of heterologously and natively expressed TTX-resistant sodium channels revealed that depolarizing shifts in both the activation and inactivation curves of the cloned channels. Analyses of individual neurons are included in the Appendix (D and E). Mean activation and inactivation curves are depicted in Figure 5.

Figure 5. Mean activation and inactivation curves for natively and heterologously expressed TTX-R Na⁺ channels.

Activation and inactivation curves were fit to the following equation:

$$G(V) = \frac{Gmax}{1 + exp[(V-Vh)/k]}$$

A summary of the mean activation and inactivation parameters derived from the nonlinear regression analyses is show in Table 1.

Table 1.

	Activ	ation	Inactiv	/ation
	Vh _{act} (mV)	k _{act} (mV)	Vh _{inact} (mV)	k _{inact} (mV)
DRG	-4.3 ± 0.9 (9)	$5.0 \pm 0.2 (9)$	-34.0 ± 0.6 (9)	4.3 ± 0.2 (9)
Scn10a	9.4 ± 1.1 (9)**	6.4 ± 0.4 (9)**	-25.2 ± 2.2 (4)	5.6 ± 0.5 (4)

C. Identification of BAC (bacterial artificial chromosome) clones harboring the Scn10a gene

The absolute size of the promoter for the Scn10a gene is unknown. Since other Na⁺ channel genes are regulated by promoters that span greater than 50 kb of genomic DNA, we reasoned that the Scn10a gene promoter may also be very large. To increase the likelihood of isolating the entire promoter, we chose to screen a mouse genomic BAC library prepared by Incyte Genomics. BAC (<u>Bacterial Artificial Chromosome</u>) libraries

are constructed in specialized plasmid vectors that stably maintain greater than 125 kb of contiguous cloned genomic DNA, and are well-suited for cloning projects where large stretches of genomic DNA need to be examined. Three BAC clones (#26462, #26463, and #26464) were identified in a PCR-based screen using oligonucleotide primers specific to exon 1 of the Scn10a gene.

The clones are currently being analyzed to determine the extent of 5'-flanking DNA (which contains the promoter) carried on each. Preliminary analysis of the three BAC clones by restriction endonuclease analysis indicates that the clones contain contiguous overlapping stretches of mouse genomic DNA containing an undetermined amount of exonic/intronic DNA and 5'-flanking DNA of the Scn10a gene. Pulsed field gel electrophoresis (PFGE) of the clones shows that they are similar, but not identical, in size and are greater than 150 kb (Figure 6). To determine the extent of 5'-untranslated DNA carried on each BAC clone, we are in the process of modifying each clone to contain a unique restriction site, SwaI and/or CeuI, just upstream of the ATG translation codon of the Scn10a gene. Digestion of the modified BAC clones at the unique NotI site in the pBeloBAC II cloning vector and the SwaI and/or CeuI site will release a segment of the BAC DNA corresponding to the 5'-flanking DNA, which will then be sized by PFGE. Incorporation of the SwaI and CeuI sites into each BAC clone is being done using a modified protocol first described in Yang et al. (1997).

Figure 6. Restriction enzyme digestion of BAC DNA. Digestion of the three BAC clones with BamHI or SalI is shown. Lane 1 contains high-molecular weight λ markers

The modification of the BAC clones will also allow us to examine the Scn10a gene promoter in transfected primary neurons as the coding sequence for the enhanced green fluorescent protein (EGFP) will simultaneously be placed immediately downstream of the 5'-flanking region. Expression of the EGFP gene under control of the Scn10a gene promoter is expected to provide a very sensitive read-out of this promoter's activity. In this protocol, a specialized shuttle vector is first constructed *in vitro* that carries a small segment of the 5'-flanking sequence of the Scn10a gene fused to the EGFP gene in the shuttle vector PLD53PA (Figure 7). The shuttle vector is next recombined *in vivo*

adjacent to the 5'-flanking sequence of the Scn10a gene on the BAC clone, creating a Scn10a promoter-IRES I EGFP fusion in the BAC clone. We have determined the DNA sequence of approximately 900 bp of the 5-flanking region of the Scn10a gene by direct sequence analysis of one of the BACs (Appendix F). We have constructed appropriate pairs of forward and reverse oligonucleotide primers that will be used to amplify by the PCR an approximately 600 bp subfragment (Figure 8). This 600 bp subfragment will be subcloned into the multiple cloning site of the shuttle vector PLD53PA via the NotI and SwaI sites incorporated into the forward and reverse primers. Recombination of the shuttle vector into the BAC DNA will occur at the second IRES I EGFP-PA sequence in PLD53PA. The SacB gene in this vector provides for sucrose-counterselection to select for BAC recombinants that have undergone a recombination event resulting in a final BAC clone containing a stably-integrated Scn10a promoter-EGFP fusion. The resulting BAC clones will retain whatever 5'-flanking DNA that was carried on the unmodified BACs, only fused to IRES I EGFP.

Figure 7. Map of the shuttle vector PLD53PA. The NotI/SwaI sites within PLD53PA for insertion of Scn10a DNA is shown.

Figure 8. Schematic of the 900 bp 5'-flanking DNA and location of PCR primers. Sets of forward and reverse primers to amplify a 600 bp subregion for insertion into PLD53PA are shown. The specific restriction sites incorporated into each primer is indicated.

5' RACE Analysis was performed on mRNA isolated using the cellulose based SV total RNA and polyAtract® mRNA isolation systems from Promega. The mRNA was reverse transcribed to first strand cDNA using the AdvantageTM RT for PCR kit from Clontech. The cDNA was then and used in the SMARTTM RACE cDNA Amplification kit (Clontech) in which the general first strand cDNA synthesis step was followed by a single round of PCR with a universal adaptor primer and a gene specific primer. The gene specific primer was designed to include a portion of the coding sequence for verification

of the authenticity of the product by sequence comparison. Products were visualized and fractionated from a 2.0 % agarose gel stained with ethidium bromide and cloned into the sequencing vector pGEM-T EasyTM (Promega) as per the manufacturer's directions. Sequencing was performed using an ABI 310 and 377 automated sequencer. The reactions produced a number of fragments possibly depending on the number of transcription start sites and the integrity of the cDNA or the mRNA from which it was constructed. The sequences of the resulting RACE products and primers are found in appendix G. A schematic of the two longest clones (B and I) aligned to the 5' end of the Scn10a coding sequence is shown in figure 9.

Figure 9: Alignment of the RACE products B and I to the 5' end of the Scn10a coding sequence

LM-PCR was performed with the use of the GenomewalkingTM kit from Clontech. Primers (custom made by Gibco/BRL) were designed to extend into regions of genomic DNA in a 5' direction from the end of the Scn10a gene. The kit supplies genomic DNA cut with blunt end restriction enzymes to which an adaptor has been ligated. The kit supplies primers directed to that adaptor. The adaptor primers are used with gene specific primers in primary and nested PCR reactions. A polymerase mix consisting of Tth polymerase and a proofreading polymerase allow

for the high fidelity amplification of fragments up to 6 kb. PCR fragments from the library or libraries yielding a significant size and purity were further purified from agarose gels and cloned into a sequencing vector (pGEM-T easy™ vector (Promega)) as per the manufacturer's directions. Sequencing was performed using an ABI 310 and 377 automated sequencers. LM-PCR was performed outward from the first protein coding exon about 920 bp into an intron located upstream from this exon and from the upstream ends of the RACE reaction products about 4.0 kb into what we hope is the promoter region of the Scn10a gene. The resulting sequences and primers for the LM-PCR into the 5'UTR intron and the LM-PCR out from the RACE product sequences can be found in appendices H and I respectively. The 4.0 kb fragment was constructed in two steps as shown in figure 10 and is currently being cloned into the EGFP-N1 reporter vector (Clontech) for screening promoter activity. Figure 10 also shows orientation of the 4.0kb fragment with respect to the coding sequence and the 5' RACE products.

Figure 10: Schematic of RACE followed by 2 rounds of LM-PCR (upstream 5' UTR intron has been bypassed: LM-PCR = genomic sequence/RACE and Scn10a cds are mRNA based.)

Genomic screening was performed through Incyte Genomics (Palo Alto, CA). The screening was of a mouse genomic library constructed in bacterial artificial chromosomes. The method of screening was PCR based, and primers were designed to the 5' coding sequence (first coding exon) from previously reported sequence information on the mouse genomic sequence (Souslova *et al.*). The screening process identified three unique BAC clones. Many introns have been identified in the mouse genomic Scn10a clone. Introns, generally, are regions of DNA sequence that interrupt the protein-coding portion of a gene. They are spliced out following transcription to yield a continuous coding mRNA. Coding exons on the 5' and 3' ends of the Scn10a gene were used as separate templates for secondary screening of the positives clones we received. The identification of clones yielding positive results for each primer set indicated the presence of the intact coding portion of the gene plus any introns in all three clones. The primers used to PCR screen the mouse genomic library and the sequence of the resulting PCR product are shown in appendix J.

Genomic sequencing was performed on the three clones upon arrival. Clones were supplied as glycerol stocks. The stocks were plated and individual clones were selected with the primers used for the screening protocol to ensure a homogeneous population for future work. We have found that extensive sequencing of the BAC clones is possible with only minor modifications to the protocol supplied with the Perkin Elmer Sequencing kit designed for the ABI 310 and 377 sequence analyzer. The modification involves an increase (10 fold) of DNA template concentration. Initial sequencing with primers directed toward distant regions of the gene such as the 3' and 5' ends were performed as mentioned above to establish the extent of the gene contained in the insert. We have also identified the ends of our RACE reaction and LM-PCR from the RACE reaction products in all three clones indicating that a fair amount of genomic sequence is present beyond the coding exons. Restriction mapping of the BAC clones is also currently underway using a combination of blotting and PCR. Figure 11 contains primer information (A) and alignments of the various regions upon which we have focused in characterizing how intact our BAC clones are with respect to the Scn10a gene. Figure 11 B and C shows sequencing into the 5'UTR intron from both downstream and upstream directions. Figure 11 D shows the direct sequencing of the 3' end of the coding sequence and 11 E shows the direct sequencing of the 5' end of the LM-PCR from RACE products. These figures combined show the presence of the entire coding region of the gene on our BAC clones as well as at least ~4.0 kb above the RACE ends or putative transcriptional start site.

Figure 11: Direct sequencing of BAC clones 26462/26463/26464:

A: Primers:

GTGTAAGTTTCGCAGAGCTGGGGTC-RT B in TCATGGACAAAGCGTAAGTGC- Scn10a Intron-in1 CCTGCATGCTCTACCAAGTCG- Scn10a Intron-in2 GGTGACAGCCTGACCACTGC- Scn10a Intron-out1 GCTTTGTAAGAAGCTCCATCC- Scn10a Intron-out2 CCTGTGTGTGCTGTAAAAAAGGATC - 3' EX-1

B: Sequencing direct in into 5'UTR intron

C: Sequencing direct out into 5'UTR intron

D: 3' end of coding sequence found in all three BAC clones (only BAC clone #26463 shown-sequenced twice txt and txt2)

Q	1000	2000	3000	4000	5000	6000	7000	800	
						2646	Scn10acd 3 #1 Scn		txt2 ◀
							63 #1 Scn		

E: 5' end of combined LM-PCR from RACE products (only BAC clone #26463 shown-sequenced twice txt and txt2)

Key Research Accomplishments

- Cloning and sequencing of the mouse Scn10a cDNA
- Functional heterologous expression of mouse Scn10a cDNA in sympathetic neurons
- Biophysical characterization of sodium currents arising from Scn10a expression
- Cloning and sequencing of 4 Kbp of upstream genomic DNA containing putative promoter elements
- Identification of BAC (bacterial artificial chromosome) clones harboring the Scn10a gene

Reportable Outcomes

Abstracts:

- 1. Ikeda, S.R., King, M.M., Aronstam, R.S. and Puhl, H.L. Cloning and expression of cDNA encoding a tetrodotoxin-resistant (TTX-R) sodium channel (Scn10a) from mouse dorsal root ganglion neurons. *Experimental Biology Meeting*, 2001.
- 2. Puhl, H.L., King, M.M., Aronstam, R.S. and Ikeda, S.R. Cloning and functional characterization of mouse cDNA encoding a tetrodotoxin-resistant (TTX-R) sodium channel (Scn10a). *Soc. Neurosci. Abstr.*, 2001.

Conclusions

- a. A murine ortholog of the TTX-resistant sodium channel Scn10a (SNS/PN3) was cloned from mouse DRG neuron mRNA using the PCR.
- b. The predicted protein sequence is highly homologous to the rat, dog, and human Scn10a gene product. Surprisingly, the nucleotide sequence deviates significantly from a published mouse genomic sequence perhaps suggesting a gene duplication.
- c. Intranuclear injection of the cloned cDNA into rat sympathetic neurons results in robust TTX-R sodium currents with kinetics characteristic of TTX-R sodium currents recorded from mouse DRG neurons.
- d. Steady-state inactivation and activation curves for the heterologously expressed Scn10a sodium current were shifted toward more positive potentials when compared with native DRG TTX-R sodium currents. This suggests that accessory proteins or post-translational modifications may be required to recapitulate the native phenotype.

References

- Akopian, A.N, Sivilotti, L. and Wood, J.N. A tetrodotoxin-resistant voltage-gated sodium channel expressed in sensory neurons. *Nature* **379**:257–262, 1996.
- Ikeda, S.R. Voltage-dependent modulation of N-type calcium channels by G protein βγ-subunits. *Nature* **380**: 255–258, 1996.
- Ikeda, S.R. Heterologous expression of receptors and signaling proteins in adult mammalian sympathetic neurons by microinjection. In *Methods in Molecular Biology Volume 83: Receptor Signal Transduction Protocols* (Ed. Challis, R.A.J.), Humana Press Inc., Totowa, NJ, pg. 191–202, 1997.
- Schofield, G.G. and Ikeda, S.R. Sodium and calcium currents of acutely isolated adult rat superior cervical ganglion neurons. *Pflügers Archiv* **411**:481–490, 1988.
- Sivilotti L., Okuse K., Akopian A.N., Moss S. and Wood J.N. A single serine residue confers tetrodotoxin insensitivity on the rat sensory-neuron-specific sodium channel SNS *FEBS Lett.* **409**:49-52, 1997
- Souslova, V.A., Fox, M., Wood, J.N. and Akopian, A.N. Cloning and characterization of a mouse sensory neuron tetrodotoxin-resistant voltage-gated sodium channel gene, Scn10a. *Genomics* **41**:201–209, 1997.
- Yang, X.W., Model, P. and Heintz. Homologous recombination based modifications in *Escherichia coli* and germline transmission in transgenic mice of a bacterial artificial chromosome. *Nature Biotechnology* **15**:859-865, 1997.

Appendix A Mouse Scn10a cDNA nucleotide sequence

ATG M	GAG E		10 CCC P	TTT F	GGG G	20 TCC S	GTG V	GGA G	30 ACT T	ACC T	AAC N		40 AGA R	CGG R	TTC F	50 ACT T	CCA P	GGG G	60 TCG S>
CTG L	GCA A		70 ATC I	GAG E	AAG K	80 CAG Q	ATC I	GCT A	90 GCC A	CAC H	CGC R		00 GCC A	AAG K		110 GGC G	AGA R	CCT P	120 AAG K>
CAA Q	AGA R		30 CAG Q	AAG K		140 AAG K	AGT S	GAG E	150 AAG K	CCC P	AGG R		60 CAG Q	TTG L		170 TTG L	AAG K	GCC A	180 TGT C>
AAC N	CAG Q		90 CCC P	AGG R		200 TAT Y	GGC G	GAG E	210 CTC L	CCA P	GCA A		20 CTG L	GTC V		230 GAG E	CCC P	CTG L	240 GAG E>
GAC D	CTG L		50 CCT P	TTC F		260 AGC S	ACA T	CAC H	270 CGG R	ACA T	TTC F		80 GTG V	TTG L		290 AAA K	AGC S	AGG R	300 ACC T>
ATT I	TCC S		10 TTC F	AGT S		320 ACT T	TGG W	GCT A	330 CTG L	TGG W	CTC L		40 AGT S	CCC P		350 AAC N	CTG L	ATC I	360 AGA R>
AGA R	ACA T		70 ATC I	AAA K		380 TCC S	GTC V	CAC H	390 TCC S	TGG W	TTC F		00 ATA I	TTT F		410 ACT T	GTC V	ACT T	420 ATT I>
TTG L	GTC V		30 TGT C	GTG V		140 ATG M	ACC T	CGA R	450 ACT T	GAT D	CTT L		60 GAG E	AAA K		470 GAG E	TAT Y	GCC A	480 TTC F>
ACT T	GTT V	49 GTT V		ACC T		500 GAG E	GCT A	CTG L	510 ATA I	AAG K	ATA I		20 GCA A	AGA R		530 TTT F	TGT C	CTA L	540 AAT N>
GAA E	TTC F		50 TAT Y	CTT L		GAT D	CCC P	TGG W	570 AAC N	TGG W	CTG L		80 TTC F	AGT S		590 ATT I	ACC T	CTG L	600 GCG A>
TAT Y	GTG V		10 GCA A	GCG A		GAC D	CTC L	CGA R	630 GGA G	ATC I	TCA S		40 CTG L	CGG R		650 TTC F	CGA R	GTT V	660 CTC L>
AGG R	GCC A		70 AAG K	ACT T		80 TCT S	GTG V	ATC I	690 CCA P	GGA G	CTG L		00 GTC V	ATC I		710 GGA G	GCC A	CTG L	720 ATC I>
CAC H	TCA S	73 GTG V	30 AGG R	AAG K	CTG	740 GCC A	GAC D	GTG V	750 ACC T	ATC I	CTC L	ACA	60 GTC V	TTC F	TGC	770 CTG L	AGT S	GTC V	780 TTT F>
GCC A		GTG		CTG	CAG	CTC	TTC	AAG	GGG	AAC	CTC	AAG	AAT	AAA	TGC	0 88 TTA I	AAG		
ACA T		CCG		AAG	GCT A	GAC			TCA	TCT	GAA	ATG	GCA	GGA	GAC	890 ATC I	TTC	ATC	900 AAG K>
CCC P		ACT		GAT	CCC P	TTG	TTG	TGT	GGC	AAT		TCT	40 GAT D	GCT	GGC	950 CAC H	TGC	CCT	960 AAT N>
GAT D		GTC	TGC		AAA	ACT		GAC	AAC	CCG	GAT	TTT		TAC	ACC	010 AGC S	TTT	GAT	

TTC GCG TGG GCG TTC CTC TCA CTG TTC CGT CTC ATG ACG CAG GAC TCC TGG GAA CGG CTG FLSLFRLMTQDSWERL> TAC CAG CAG ACA CTC CGG GCT TCC GGG AAA ATG TAC ATG GTC TTT TTT GTG CTG GTC ATC Y Q Q T L R A S G K M Y M V F F V L V I> TTC CTT GGA TCA TTC TAC CTG GTC AAT TTG ATC TTG GCT GTG GTC ACC ATG GCA TAT GAG F L G S F Y L V N L I L A V V T M A Y E> GAA CAG AGC CAG GCA ACA ATT GCA GAA ATC GAA GCC AAG GAG AAG AAG TTC AAG GAA GCC EOSOATIAEIEAKEKKF CTC GAG GTG CTG CAG AAA GAA CAG GAG GTG CTG GCA GCG CTG GGC ATT GGC ACA ACC TCG V L Q K E Q E V L A A L G I G T T S> CTC TAT TCC CAC AAC GGA TCA CCC TTA GCC CCC AAA AAC GCC AAT GAG AGA AGA CCC AGG LYSHNGSPLAPKNANERRPR> GTG AAA TCA AGG ATG TCA GAA GGC TCG ACA GAT GAC AAC AGA TCA CTA CAA TCC GAC CCT TAC AAC CAG CGC AGG ATG TCT TTC CTA GGC CTT TCT TCT GGA AGA CGC AGG GCT AGC CAC SFLGLSSGRRRASH> ORRM AGC AGT GTG TTC CAC TTC CGA GCA CCC AGC CAA GAC GTC TCA TTT CCT GAT GGG ATC TTG S S V F H F R A P S Q D V S F P D G I L> GAT GAC GGG GTC TTT CAT GGA GAT CAG GAA AGC CGT CGA AGT TCC ATA TTG CTG GGC AGG GGT GCC GGG CAG GCA GGT CCT CTC CCC AGG AGT CCA CTG CCT CAG TCC CCC AAC CCT GGC G Q A G P L P R S P L P Q S P N P G> CCT AGA CGT GGA GAA GAG GGA CAG CGT GGA GTG CCC ACT GGT GAG CTT GCC ACT GGA GCG PRRGEEGQRGVPTGELATGA> CCT GAA GGC CCG GCA CTC GAT GCT GCA GGA CAG AAG AAC TTC CTG TCT GCA GAC TAC TTG PEGPALDAAGQKNFLSADYL> AAT GAA CCT TTC CGA GCA CAG AGG GCA ATG AGT GTT GTC AGT ATT ATG ACT TCT GTC ATT PFRAQRAMSVVSIMTSVI> GAG GAG CTG GAA GAG TCT AAG CTG AAG TGC CCA CCC TGC TTG ATC AGC TTA GCC CAG AAG EELEESKLKCPPCLISLAQK> TAC CTG ATA TGG GAG TGC TGC CCC AAG TGG AAG AAA TTC AAG ATG GTG CTC TTC GAG CTG Y L I W E C C P K W K K F K M V L F E L> GTG ACT GAC CCC TTC GCA GAG CTC ACC ATC ACC CTG TGC ATT GTG GTG AAT ACC GTC TTC FAELTITLCIVVNTVF> ATG GCC ATG GAA CAC TAC CCC ATG ACT GAT GCC TTC GAT GCC ATG CTC CAA GCC GGC AAC

ATT GTC TTT ACT GTG TTT TTT ACA ATG GAG ATG GCC TTC AAG ATC ATT GCC TTC GAC CCC FFTMEMAFKIIAFDP> FТV TAC TAC TAC TTC CAG AAG AAG TGG AAC ATC TTC GAC TGT GTC ATC GTC ACC GTG AGC CTG Y F O K K W N I F D C V I V T V S L> CTG GAG CTG AGC ACA TCC AAG AAG GGC AGC TTG TCT GTG CTC CGC ACC TTC CGC TTG CTT CGG GTC TTC AAG CTG GCC AAG TCC TGG CCC ACC CTG AAC ATG CTC ATC AAG ATC ATC GGG F K L A K S W P T L N M L I K I AAC TCT GTG GGG GCC CTG GGC AAC CTG ACC TTC ATC CTG GCC ATC ATC GTC TTT ATC TTC V G A L G N L T F I L A I I V F I F> GCC CTG GTG GGA AAG CAG CTC CTC TCA GAG AAC TAT GGG TGC CGC AGG GAT GGC ATC TCC ALVGKQLLSENYGCRRDGIS> GTG TGG AAT GGT GAG AGG CTG CGC TGG CAC ATG TGT GAC TTC TTC CAT TCC TTC CTC GTC V W N G E R L R W H M C D F F H S GTC TTC CGG ATC CTC TGC GGG GAG TGG ATC GAG AAC ATG TGG GTC TGC ATG GAG GTC AGC RILCGEWIENMWVCMEVS> CAG GAC TAC ATC TGC CTC ACC CTC TTC TTG ACA GTG ATG GTG CTA GGC AAC CTG GTG GTG CTC AAC CTA TTC ATC GCT TTA CTG CTG AAC TCC TTC AGT GCG GAC AAC CTC ACA GCC CCA GAG GAT GAC GGG GAG GTG AAC AAC TTG CAG GTA GCA CTG GCC CGG ATT CAG GTA TTT GGC D G E V N N L Q V A L A R I Q V F G> CAT CGG GCC AGT CGG GCC ATT ACC AGT TAC ATC AGA AGC CAC TGC CGG CTC CGC TGG CCC HRASRAITSYIRSHCRLRWP> AAG GTG GAG ACC CAG CTG GGG ATG AAA CCC CCA CTC ACC AGC TGC AAA GCT GAG AAC CAC K V E T Q L G M K P P L T S C K A E N H> ATT GCT ACT GAT GCT GNC AAT GCT GCA GTG GGG AAC CAG GCA AAG CCA GCT CTT GGT GGC T D A X N A A V G N Q A K P A L G G> CCC AAG GAG AAC CAC GGG GAC TTC ATC ACT GAT CCT AAC GTG TGG GTC TCT GTG CCC ATT ENHGDFITDPNVWVSVPI> GCT GAG GGG GAG TCC GAC CTT GAT GAG CTC GAG GAA GAT GTG GAG CAT GCT TCT CAG AGC A E G E S D L D E L E E D V E H A S TCC TGG CAG GAA GAG AGC CCC AAA GGG CAG GAG CTG CTG CAG CAA GTC CAA AAG TGT GAA Q E E S P K G Q E L L Q Q V Q K C E> GAT CAC CAG GCA GCC CGA AGC CCA CCC TCC GGG ATG TCC TCT GAG GAC CTG GCT CCA TAC

D H Q A A R S P P S G M S S E D L A P Y>

CTG GGG GAG AGA TGG CAG AGG GAG GAG AGC CCT CGG GTC CCT GCC GAG GGA GTG GAT GAC ERWQREESPRVPAEGVDD> ACA AGC TCC TCC GAG GGC AGC ACG GTG GAC TGC CCG GAC CCA GAG GAG ATC CTG AGG AAG SSEGSTVDCPDPEEILRK> ATC CCT GAG CTG GCG GAG GAG CTG GAC GAG CCC GAT GAC TGT TTC CCA GAA GGC TGC ACT I P E L A E E L D E P D D C F P E G C T> CGC CGC TGT CCC TGC TGC AAA GTG AAC ACC AGT AAG TTT CCT TGG GCC ACG GGC TGG CAG CCKVNTSKFPWATGWQ> GTG CGC AAA ACC TGT TAC CGC ATT GTG GAG CAC AGC TGG TTT GAG AGT TTC ATT ATC TTC V R K T C Y R I V E H S W F E S F I I F> ATG ATC CTG CTC AGC AGT GGA GCG CTG GCC TTT GAG GAT AAC TAC CTG GAA GAA AAG CCC MILLSSGALAFEDNYLEEKP> CGA GTG AAG TCT GTG CTG GAG TAC ACT GAC AGA GTG TTC ACT TTC ATC TTT GTA TTC GAG RVKSVLEYTDRVFTF ATG TTG CTC AAG TGG GTA GCT TAT GGC TTC AAA AAA TAT TTC ACC AAT GCC TGG TGC TGG K W V A Y G F K K Y F T N A W C W> CTG GAC TTC CTC ATC GTG AAT ATC TCC CTC ACA AGC CTC ATA GCC AAG ATC CTC GAG TAT T. D.F. T. V.N.T.S.L.I.A.K.I.L.E.Y> TCA GAC GTG GCG TCC ATC AAA GCC CTT CGG ACT CTC CGT GCC CTC CGG CCG CTG CGG GCT V A S I K A L R T L R A L R P L R A> CTG TCT CGA TTC GAA GGC ATG AGG GTA GTG GTG GAT GCC TTG GTG GGC GCC ATT CCC TCC EGMRVVVDALVGAIPS> ATC ATG AAC GTC CTC CTC GTC TGC CTC ATC TTC TGG CTC ATC TTC AGC ATC ATG GGT GTG AAC CTC TTC GCC GGG AAA TTT TCG AGA TGT GTC GAC ACC AGA AGC AAC CCA TTT TCC GTC FAGKFSRCVDTRSNPFSV> GTG AAT TCG ACA TTC GTG ACT AAC AAG TCT GAC TGT TAC AAT CAA AAC AAT ACT GGC CAC STFVTNKSDCYNQNNTGH> TTC TTC TGG GTT AAC GTC AAA GTC AAC TTC GAC AAC GTT GCT ATG GGC TAC CTC GCG CTT W V N V K V N F D N V A M G Y L A L> CTC CAG GTG GCA ACC TTC AAA GGC TGG ATG GAC ATT ATG TAT GCA GCT GTC GAT TCT CGA L Q V A T F K G W M D I M Y A A V D GAT ATC AAC AGT CAG CCC AAT TGG GAG GAG AGC CTG TAC ATG TAC CTA TAC TTC GTC GTC S Q P N W E E S L Y M Y L Y F V V> TTC ATC ATT TTC GGT GGC TTC TTC ACG CTG AAT CTC TTT GTC GGG GTC ATC ATT GAC AAC FIIFGGFFTLNLFVGVIIDN>

TTC AAT CAA CAG AAA AAA AAG CTA GGG GGC CAG GAC ATC TTC ATG ACA GAG GAG CAG AAG QQKKKLGGQDIFMTEEQK> AAG TAC TAC AAT GCC ATG AAG AAG CTG GGC TCC AAG AAA CCC CAG AAG CCC ATC CCA CGG Y N A M K K L G S K K P Q K P I CCT TTG AAT AAG TAC CAG GGC TTC GTG TTT GAC ATT GTG ACC AGG CAA GCA TTT GAC ATC PLNKYQGFVFDIVTRQAFDI ATC ATC ATG GCT CTC ATC TGC CTC AAC ATG ATC ACC ATG ATG GTG GAG ACC GAC AAT CAG II M A L I C L N M I T M M V E T D N Q> AGC GAG GAG AAG ACG AAG GTC CTG GGC AGA ATC AAC CAG TTC TTC GTG GCC GTC TTC ACG EKTKVLGRINQFFVAV GGC GAG TGT GTG ATG AAG ATG TTC GCC CTT CGG CAG TAT TAC TTC ACC AAC GGC TGG AAT C V M K M F A L R Q Y Y F T N G W N> G E GTG TTC GAC TTC ATT GTG GTG ATT CTG TCC ATT TCT AGT CTG TTG TTT TCT GCG ATC CTT V F D F I V V I L S I S S L L F S A I L> AGC TCA CTA GAA AGT TAC TTC TCC CCC ACG CTC TTA CGC GTC ATC CGT CTG GCC AGG ATC S S L E S Y F S P T L L R V I R L A R GGC CGC ATC CTC AGG CTG ATT CGA GCA GCC AAG GGG ATT CGC ACG CTG CTC TTC GCC CTC G R I L R L I R A A K G I R T L L F A L> ATG ATG TCC CTG CCC GCC CTC TTC AAC ATC GGC CTC CTC CTC CTC CTC GTC ATG TTC ATC M M S L P A L F N I G L L L F L V M F I> TAC TCC ATC TTC GGC ATG ACC AGC TTC GCT AAT GTC ATA GAT GAG GCT GGC ATC GAC GAC $\begin{smallmatrix} Y & S & I & F & G & M & T & S & F & A & N & V & I & D & E & A & G & I \\ \end{smallmatrix}$ ATG TTC AAC TTC AAG ACC TTT GGC AAC AGC ATG CTG TGC CTT TTC CAG ATC ACC ACG TCG N F K T F G N S M L C L F Q I T T S> GCT GGC TGG GAT GGC CTC CTC AGC CCC ATC CTC AAC ACA GGA CCC CCC TAC TGC GAC CCC A G W D G L L S P I L N T G P P Y C D P> AAC CGG CCC AAC AGC AAT GGC TCC AAG GGG AAT TGT GGA AGC CCA GCG GTG GGC ATC CTC N R P N S N G S K G N C G S P A TTC TTC ACC ACC TAC ATC ATC ATC TCC TTC CTC ATC GTG GTC AAC ATG TAC ATT GCA GTG IIISFLIV V N M Y I A V> т т ү ATT CTG GAG AAC TTC AAT GTG GCC ACA GAA GAG AGC ACG GAG CCC CTG AGC GAG GAC GAC I L E N F N V A T E E S T E P L S E D D> TTT GAC ATG TTC TAT GAG ACC TGG GAG AAG TTT GAC CCG GAG GCC ACC CAG TTC ATT GCC F D M F Y E T W E K F D P E A T Q F TTT TCT GCC CTC TCA GAC TTT GCA GAC ACA CTC TCT GGC CCT CTT AGA ATC CCA AAA CCT FSALSDFADTLSGPLRIPKP>

5360 5370 5380 AAT CAG AAT ATA TTA ATC CAG ATG GAC CTG CCG TTG GTC CCC GGA GAT AAG ATC CAC TGT N Q N I L I Q M D L P L V P G D K I H C> TTG GAC ATC CTC TTT GCC TTC ACA AAG AAT GTC TTG GGA GAA TCT GGG GAG TTG GAT TCT L D I L F A F T K N V L G E S G E L D S> CTG AAG ACT AAT ATG GAA GAG AAG TTT ATG GCA ACT AAT CTT TCC AAA GCA TCC TAT GAA L K T N M E E K F M A T N L S K A S Y E> CCA ATA GCA ACC ACC CTC CGG TGC AAG CAG GAA GAC ATC TCA GCC ACC ATT ATT CAA AAG GCC TAT CGG AAC TAC ATG TTG CAA CGC TCC TTG ATG CTC TCC AAC CCC CTG CAT GTG CCC AYRNYMLQRSLMLSNPLHVP> AGG GCT GAG GAG GAT GGC GTG TCA CTC CCC AGG GAA GGC TAT GTT ACA TTC ATG GCA AAT GAC AAC GGT GGG CTC CCA GAC AAA TCG GAA ACT GCT TCT GCT ACG TCT TTC CCA CCA TCC DNGGLPDKSETASATSFPPS> TAT GAC AGC GTC ACC AGG GGC CTG AGT GAC AGG GCC AAC ATT AGC ACA TCT AGC TCA ATG CAA AAT GAA GAT GAA GTC ACT GCT AAG GAA GGG AAG AGC CCT GGA CCT CAG TGA Q N E D E V T A K E G K S P G P Q *>

Appendix B

								10										20									3	30									4	0
Y09108-cds	АТ																																					
mScn10a cds (GRI)	A T	G	<u>G</u>	<u>A</u>	G '	ΓΤ	C	С	С	C	<u>T</u>	T	T	G	G	G	T	С	C	G	T	G	G	G	Α_	<u>A</u>	С	T	A	C	C	<u>A</u>	<u>A</u>	C	<u>T</u>	<u>T</u>	C	A
								50	_			_	_	. 1	_			50	_	_		_	_		_	_		70		_	_	_	_	_				80
Y09108-cds mScn10a cds (GRI)	G A	C	G	G	T .	T (; Α : Δ	C C	T	C	C	Α	G	A G	G	T	C	G	C	I T	G	G	C	A A	G	A A	G	A	Ť	C	G	A	G	A	A	G	C	Ä
1110011100 000 (0111)	<u></u>				•					<u> </u>	<u> </u>			- 1																								
								90									1	20									11	ın									12	20
Y09108-cds	G A	T	С	G	C ·	T C	i C	С	С	Α	С	C	G	С	G	С	C	G	С	С	Α	Α	G	A	Α	G	G	G	С	Α	G	Ā	Α	C	T	Α	Α	G
mScn10a cds (GRI)		\ T	С	G	C.	r c	C	С	С	Α	С	Ç	G	С	G	С	С	G	С	C	Α	A	G	A	A	G	G	G	С	A	G	Α	ျင	C	T	Α	Α	G
								130										40										50									16	
Y09108-cds	C A	A	A	G	A	G	A	С	A	G	A	A	G	G	Ā	Ç	A	A	G	A	G	T	G	A	G	A	A	G	C	C	C	A	G	G	C	C	T	C
mScn10a cds (GRI)	C A	<u>. A</u>	<u> </u>	G	Α (GG	A	C	<u>A</u>	G	<u>A</u>	<u>A</u>	G	G	A	C	<u>A</u>	Α	G	A	G	1	G	<u>A</u>	G	A	<u>A</u>	u	U	<u>U</u>	C	<u> </u>	<u>G</u>	<u>u</u>	<u> </u>	<u> </u>		드
Y09108-cds	A C	. .		Ġ	C	A (170	G	_	^	-	-	~	_	T		30 T	_	Λ	_	~	Δ	G	<u> </u>	T		90 C	<u></u>	C	Δ	G	G	-	Ŧ	c	20 T	
mScn10a cds (GRI)	A	ı ç 3 T	Ť	G	G	м (, , ; T	Ť	G	A	A	G	G	C	c	Ť	G	Ť	A	A	c	C	Ā	G	C	Ť	G	C	c	C	Ā	G	Ğ	Ť	Ť	č	Ť	A
,	L																,																					
								210									2	20									23	30									24	10
Y09108-cds	TO	i G	С	G	A	G C	; T	C	C	С	Α	G	С	Α	G	Α	G	С	T	G	G	Т	С	G	G	G	G	A	G	С	С	С	С	T	G	G	Α	G
mScn10a cds (GRI)	T	i G	C	G	Α (G C	; T	C	C	С	Α	G	C	Α	G	A	G	С	T	G	G	T	С	G	G	G	G	A	G	С	С	С	c	T	G	G	Α	G
								250										50							_		27										28	
Y09108-cds mScn10a cds (GRI)	G A	, C	C	T	G	G A	T	C	C	T	T	T		T	Α	C	Α	G	C	Α Δ	C	Α	C	A A	C	A	G	G	Α	C	Α	T T	T T	C	A	T T	A	C G
mscritta cus (GNI)	<u>u , </u>			-	u ·	<u>u -</u>	<u> </u>		<u> </u>	<u>.</u>	•	ٺ	Υl	<u>.</u>		<u> </u>		<u> </u>	<u> </u>		Ť	_	<u> </u>			٠Į	<u> </u>	<u>~</u>		<u> </u>		•					انت.	_
							,	200									2	00									31	10									32	20
Y09108-cds	TO	T	Ŧ	G	АΠ	A T		290 A	Α	Α	G	С	A	G	G	Α			A	T	Т	т	С	С	Α	G			T	С	A	G	T	G	c	С		
mScn10a cds (GRI)	TG	i T	T	G	G	A 7	Α	Α	Α	Α	G	С	Α	G	G	Α	С	С	Α	T	T	T	С	C	A	G	Α	T	T	C	Α	G	T	G	C	С	A	С
								330										10										50									36	
Y09108-cds	TT	G	G	G	Ċ.	r	; T	G	T	G	G	C	T	C	T	T	C	A	G	T	C	C	C	T	T	C	A	A	C	C	T	G	A	T	C	A	G	A
mScn10a cds (GRI)	T 1	G	<u>G</u>	G	C	Γ (; T	G	T	G	G	С	1	C			C	A	G		C	<u>C</u>	C	1	1	<u>U</u>	A	<u>A</u>	U	<u>U</u>		G	<u> </u>		<u> </u>	A	G	A
V00400 ada	A G			_	Α .	^ ^		370	-	_	_	Α.		_	-	_		30	_	G	-	_	_	٨	_	-	39		7	6	G	Ŧ	-	_	_	_	40	
Y09108-cds mScn10a cds (GRI)	A	Αί	A	C	A	GC	, c	A	T	c	A	A	A	G	†	G	T	C	c	G	T	C	C	A	Ċ	T	C	C	Ť	G	G	Ť	Ť	C	Ť	c	C	Â

							4	110									4.	20									43	30									44	10
Y09108-cds	TA	T	T	T	Α.	ГС	; A	С	T	G	Т	С	Α	С	T	Α	Т	Т	T	T	G	G	T	С	Α	A	c	T	G	T	G	T	G	T	G	С	A	T
mScn10a cds (GRI)	T A	T	<u>T</u>	T	Α.	T C	; A	С	T	G	T	С	A	С	T	A	T	T	T	T	G	G	T	С	A	Α	C	T	G	T	G	T	G	<u>T</u>	G	C	A	T

								4	190									5	00									51	0									520)
Y09108-cds																																						G	
mScn10a cds (GRI)	A	С	<u>T</u>	G 1	7		3 T	<u> </u>	<u> T</u>	<u>A</u>	<u>C</u>	Α	С	<u></u>	<u>T</u>	<u>T</u>	С	G	Α	G	G	C	T	C	<u>T</u>	G	<u>A</u>	<u>T</u>	<u>A</u>	<u>A</u>	<u>A</u>	G	Α_	T	Α_	C	<u>T</u>	G	ᆁ
Y09108-cds	<u></u>	_		~ .					530	-	_	-	_	_	Ŧ.	l - 1	A		40 T	_	٨	Λ.	-	Ŧ	_	۸	~	55 T		Λ	T	_	T	т	~	6	Λ	560 G A	
mScn10a cds (GRI)	C	A	A I	G /	4 C	э (Э (3 6	я і Э Т	Ť	+ T	Ť	G	T	C	T	A	A	A	Ť	G	A	A	†	Ť	c	A	C	Ť	, T	A	Ť	C	T	Ť	C	G	A	GA	
,	L	-,														'																							_
								,	570									5	80									59	00									600)
Y09108-cds	T	С	С	C 1	· (3 (3 A	A	С	T	G	G	С	Т	G	G	Α	C	T	T	С	Α	G	T	G	T	С	A	Т	T	Α	Ç	С	Т	T	G	G	CA	٩
mScn10a cds (GRI)	T	С	C	C 1	r (3 (3 <i>P</i>	A	С	T	G	G	С	T	G	G	Α	C	T	T	С	A	G	T	G	T	C	Α	T	T	Α	С	С	C	T	G	G	c	à
	-								310	_					- 1				20		_		_				_	63		_				_	_	_	_	640	
Y09108-cds mScn10a cds (GRI)	T	A		G 1 G 1		3 (3 (3 6	3 T	G	C	Α	G	C	G	G A	T	A	G	A	C	C	T	C	C	G G	A	G G	G G	A	A	T	C	T	C	A	G	G	CC	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Ŀ							<u> </u>		Ť	<u></u>				۱٬۱۱	<u> </u>			<u></u> -																				
									550									6	60									67	'n									680	7
Y09108-cds	T	G	C	G (à A	\ () A	T	T	С	C	G	A	G	Т	Т	С	T	С	Α	G	G	G	С	С	С	T	G	A	Α	G	A	С	T	G	T	T	T C	7
mScn10a cds (GRI)	T	G	C	G (3 <i>P</i>	1 () A	<u> T</u>	T	С	С	G	Α	G	T	T	С	T	С	Α	G	G	G	С	Ç	C	T	G	A	A	G	Α	C	T	G	T	T	T C	2
									390										00									71										720	
Y09108-cds																																						T C	
mScn10a cds (GRI)	Ŀ	G		<u> </u>	1 !			, ,		G	u				G	^		<u> </u>	G	-			-		<u>u</u>	<u>-</u>	<u>u</u>	<u>u</u>	<u>u</u>	_	<u> </u>	<u> </u>			1	<u> </u>	_	<u> </u>	
								_	700									-7	40									7.	٠,									761	.
Y09108-cds	C	Α	<u>c</u> .	T (- A	· (i i		730 A	G	G	Α	Α	G	С	Ť	G		40 C	С	G	Α	С	G	Т	G	A	75 C		A	T	С	c	T	С	Ā	C	760 A G	
mScn10a cds (GRI)																																						A G	
									770										80									79										800	
Y09108-cds	T	C	T	T) T	. (3 C	; C	T	G	A	G	T	G	T	č	T	T	T	G	C	C	T	T	G	G	T	G	G	G	C	C	T	G	C	A	G	CT	
mScn10a cds (GRI)	Ľ.	C	1	1 (<u>ا ز</u>		<i>a</i> C	<i>;</i> C		G	A	G		G	1	Ü	_			G	<u> </u>	<u></u>	<u>'</u>		G	G	<u>. </u>	G	<u>u</u>	u	<u> </u>	C		G	<u> </u>	<u> </u>	u	CT	١
																		_																				0.46	•
Y09108-cds	C	T	т (C 4	Δ Δ	. (÷ (310 G	Δ	Δ	С	С	т	С	Δ	Δ		20 A	Α	Ť	Α	A	A	T	G	c	83 A		T	A	A	G	Α	A	С	G	840 G C	
mScn10a cds (GRI)																																						G C	
									350										60									87										880	
Y09108-cds	4																																					GG	
mScn10a cds (GRI)	LA_	ن	A	G /	<u>۱</u>			, G	C	A	<u>.</u>	A	A	G	u	Ü	<u> </u>	G	<u> </u>	U	A	A	<u> </u>	U	ı	U	1	<u>. </u>	<u> </u>		<u></u>		u	A	A	A		GG	<u> </u>
																												_	_										
Y09108-cds	<u></u>	Δ	टा	۵ Γ		-			390 T	_	т	T	_	Δ	T	<u></u>	Δ		00 G	C	C	C	G	G	Ť	Δ	c	91 T		Ċ	G	G	Δ	т	c	С	С	920 T T	
mScn10a cds (GRI)																																						ΤŢ	
, ,				-																																			_
								٤	930									9.	40									95	0									960)
Y09108-cds	G	T	T	G 1	•	٦ آ		G	С	Α	A	T	G	G	G	T	С	T	G	Α	T	G	С	Ť	G	G	С	С	A	C	T	G	С	C	C	T	A	АТ	7
mScn10a cds (GRI)	G	T	T (G 7	· (ì 1	. G	G	С	Α	A	T	G	G	Α	T	C	T	G	A	T	G	С	T	G	G	С	С	A	C	T	G	С	C	С	T	A	A T	

					1010							102								103									040
Y09108-cds mScn10a cds (GRI)	A C	TAC	C A C	C C	A G A G	C T	ГТ	T T	G G	A 1	TT	C	C 7	T	C	G G	C	G T	G	G G	G C	G	T	T	C	C C	T T	C T	C
					1050							106	50							107	0							10	080
Y09108-cds mScn10a cds (GRI)	A C	r G 1	T	C C	G T G T	C	C	A	T T	G /	A C	G G	C A	G	G	A	C .	T C	C	T	GC	G G	A	A	C	G G	G G	C T	G
	1																,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Y09108-cds	TAG	C C A	G	C A	1090 G A	C /	A C	T	C	C	G G	110		- т	С	С	G	G G	A	111 A		\ T	G	T	A	С	Α '		120 G
mScn10a cds (GRI)	1																												
					1130							114	10							115	0							1	160
Y09108-cds mScn10a cds (GRI)	T C				GT																								
meen ou des (en n)		<u> </u>											٠ ـــ																
Y09108-cds	GG	ГСА	\ A ·		1170 T G	Α 7	ГС	Ť	т	G (3 C	118 T		· G	G	Т	C	A C	С	119 A		G G	С	Α	T	A	Т		200 G
mScn10a cds (GRI)	GG																												
					1210							122	20							123	0							1:	240
Y09108-cds mScn10a cds (GRI)	G A A																												
	L																												
Y09108-cds	A A	AAA	A		1250 T T	c] (CA	G	G	A /	A G	126 C		. T	С	G	A (G G	T	127 G		G	С	Α	Αſ	Α	Α .		280 A
mScn10a cds (GRI)	A G	AAG	A	A G	TT	<u>c</u>] /	AA	G	G	A /	A G	С	C C	; T	С	G	A (G G	T	G	C T	G	С	Α	G	A	A	A G	Α
					1290							130								131									320
Y09108-cds mScn10a cds (GRI)	ACA																												
																	_												
Y09108-cds	TTT	TA	T -	ГС	1330 C C	A (A]G[С	G	A £	134 T	C A	C	С	С	T	ГΑ	G	135 C	CT	C	С	Α	Α	Α	A	A C	360 G
mScn10a cds (GRI)	CIT	TA	T -	ГС	СС	Α (A] A [C	G (3 A	T	C A	C	С	C	T 7	ГА	G	C	<u>c</u>]c	C	C	A	Α	A	Α,	A C	G
					1370							138								139									100
Y09108-cds mScn10a cds (GRI)	CCA	T A <i>P</i>	G	A G A G	A G A G	AA	G	A	C	CC	A C A	G G	GG	T	G G	A A	A /	4 T 4 T	C C	A	A G	G	G A	T	G G	T T	C .	A G	A
																					_								
Y09108-cds	A G C	G С Т	C		1410 C A	G A	\ T	G	Α	C A	AA	142 C		A	T	C	A (A	143 C		T	C	Ç	G	A	C		140 T
mScn10a cds (GRI)	AGO	G C T	(C](3 A	CA	G A	T	G	Α	C A	<u> </u>	C	A G	A	<u>T</u>	C	<u>A (</u>	CJT	A	C	A A	T	<u></u>	<u>c</u>	G	A	C	C C	T
	-				1450				_			146				_				147					_				180
Y09108-cds mScn10a cds (GRI)	TAC	CAA	00	JA CA	G C G C	GC	; A ; A	G	G	A 1	G	T T	C T	T	T	C	C	ΓΑ	G	G	0 0	, T	T	T	C	T	T (CT	G

Y09108-cds mScn10a cds (GRI)		1530 A G C C A A G A C G T A G C C A A G A C G T			
Y09108-cds mScn10a cds (GRI)	GACGATGG	1570 G G G T C T T T C A T G G G T C T T T C A T	1580 FGGAGATCA FGGAGATCA	1590 A G G A A A G C (A G G A A A G C (1600 CGTCGAA CGTCGAA
Y09108-cds mScn10a cds (GRI)	A TTCCATA G TTCCATA	1610 A T T G C T G G G C A A T T G C T G G G C A	1620 A G G G G T G C C A G G G G T G C C	1630 C G G C C A G G G C G G C A G G	1640 C A G G T C C C A G G T C C
Y09108-cds mScn10a cds (GRI)	T C T C C C C A	1650 A G A G T C C A C T A G G A G T C C A C T	1660 FGCCTCAGT FGCCTCAGT	1670 CCCCCAA(1680 C C C T G G C C C C T G G C
Y09108-cds mScn10a cds (GRI)	C G T A A A C A	1690 A T G G A A A A G A G G T G G A G A A G A G	1700 G G G A C A G C G G G A C A G C	1710 T G G A A T G G T G G A G T G G	1720 C C C A C T G C C C A C T G
Y09108-cds mScn10a cds (GRI)	GTGAACTT	1730 T G C C G C T G G A A T G C C A C T G G A G	1740 ACGCCTGAA GCGCCTGAA	1750 A G G C C C G G G A G G C C C G G G	1760 C A C T C G A C A C T C G A
Y09108-cds mScn10a cds (GRI)	T G C T G C A G	1770 G G A C A G A A G A A G G A C A G A A G A A	1780 A C T T C C T G T A C T T C C T G T	1790 CTGCAGG CTGCAGA	CTACTTG CTACTTG
Y09108-cds mScn10a cds (GRI)		1810 CTTTCCGAGCA CTTTCCGAGCA			
Y09108-cds mScn10a cds (GRI)	GTATCATG	1850 G A C T T C T G T C A G A C T T C T G T C A	1860 A T T G A G G A A T T G A G G A	1870 CTGGAAGA CTGGAAGA	A A T C T A A G T C T A A
Y09108-cds mScn10a cds (GRI)	G C T G A A G T	1890 F G C C C A C C C T G F G C C C A C C C T G	1900 GCTTGATCA GCTTGATCA	1910 GCTTCGCG GCTTAGCG	1920 C C A A A A C C A G A A G
Y09108-cds mScn10a cds (GRI)	TATCTGAT	1930 T A T G G G A A T G C T A T G G G A G T G C	1940 C T G C C C C A A C T G C C C C A A	1950 G T G G A G A G G T G G A A G	1960 A A A T T C A A A A T T C A
Y09108-cds mScn10a cds (GRI)	A A A T G G T G A G A T G G T G	1970 GCTCCTCGAAC GCTCTTCGAGC	1980 C T G G T G A C T C T G G T G A C T	1990 GACCCCTT GACCCCTT	2000 T C G C A G A T C G C A G A

			205	0						206	0						2	2070								2080	
Y09108-cds A T	GGC	CA	T G	G A	Α (CA	С	T /	A C	С	СС	Α	Ť	G A	С	Т	G /	A T	G	C	Τſ	T	r (0 (G A	TG	1
mScn10a cds (GRI) A T	GGC	CA	T G	G A	Α (CA	С	T /	A C	С	c c	Α	T	G A	С	T	G /	A T	G	С	c[T -	<u> </u>	0 (3 A	TG]
			209							210								2110								2120	
Y09108-cds C C	A T G	CT	СС	A A	G	C	G	G	CA	A	CA	T	T	GT	C	T	T	CA	C	T	G :	T (3 7	[]	T	TT	
mScn10a cds (GRI) C C	ATG	CT	СС	A A	G	CC	G	G	CA	Α_	C A	Т.	T	G T	С	<u> </u>	IJ	I A	C	<u>T</u>	G	1 (<u>i i</u>			1 1	_
			213							214								2150								2160	
Y09108-cds T A	CAA	TG	G A	G A	T (GG	C	C	T	C	AA	G	Α :	T C	A	T	T (GC	T	T	T (C	3 A	A (CG	
mScn10a cds (GRI) T A	CAA	TG	GA	G A	1 (G G	C	C	1 1	<u> </u>	A A	G	A	<u> </u>	A	1	-	G C	յ֊լ	<u>'</u>			3 F	4 (<u> </u>	
			217							218								2190								2200	
Y09108-cds T A																											
mScn10a cds (GRI)	CTA	CT	A C	TT	C	CA	G	A /	A G	Α_	A G		G	G A	A	C	<u>A</u>	<u> </u>	<u>'</u>	<u>_</u>	<u> </u>	<u>u</u> /	1 (ا ر	<u> </u>	1 1 6	
			221							222					,			2230								2240	
Y09108-cds T C	ATT	GT	CA	CC	G :	r G	Α	G	CC	T	GC	T	G	G A	G	Ç	T (G A	G	T	G	C /	\ T	Γ (r <i>(</i>	0 0	; A A	
mScn10a cds (GRI) T C	A T C	GT	CA	CC	G	I G	A	G	<u>, c</u>		GC	- 1	G	G A	G	<u> </u>	1 '	G A	9	C	ΑĽ	<u> </u>	1 1		<i>,</i> (, A A	J
			225	0	_					226	0			_				2270								2280	
	A G G	GC	A G	c c	T/	A T	C	T (G T	G	CT	C	C	GT	T	C	Č.	T	A	C	G (C .	[]	r (G (; T T	
mScn10a cds (GRI) GA	AGG	GC	A G	Ç] I	Ш	i∐	С	1 (G I	G	C I	C	C	GC	А	C	C		lel	Ç	G	<u>. </u>			<u>а</u> (, 1 1	j
			229							230								2310								2320	
Y09108-cds C G			T C	A A						Α	A G						C	СС								CA	
Y09108-cds C G mScn10a cds (GRI) C G			T C	A A						Α	A G						C	СС								CA	
			T C	A A						Α	A G						C	СС								CA	
mScn10a cds (GRI) C G	GGT	СТ	T C T C	A A A A	G	C T	G	G (<u>c</u> c	A A	A G A G	T	С	СТ	G	G	C (C C C C	Α	C	C	<u>c -</u>	<u>r c</u>	<u>G</u> #	Α Α	2360	
mScn10a cds (GRI) C G (Y09108-cds T G (GGT	CT	T C T C	A A A A BO A G	G (ГС	G	G (C C	A A 234 G	A G A G	T	C ·	т с	G T	G	C (C (C C C C	G	C G	C (C (r c	G /	r G	2360 G G G	
mScn10a cds (GRI) C G	GGT	CT	T C T C	A A A A BO A G	G (ГС	G	G (C C	A A 234 G	A G A G	T	C ·	т с	G T	G	C (C (C C C C	G	C G	C (C (r c	G /	r G	2360 G G G	
mScn10a cds (GRI) C G (Y09108-cds T G (GGT	CT	T C T C	A A A A BO A G	G (ГС	G	G (C C	A A 234 G	A G A G	T	C ·	т с	G T	G	C (C (C C C C	G	C G	C (C (r c	G /	r G	2360 G G G	
mScn10a cds (GRI) C G Y09108-cds mScn10a cds (GRI) T G	G G T	CT	233 C A C A	A A A BO A G A G	A A	T C	A A	T (T)	C G	234 G G	A G A G G A G A	A	C ·	T C	T T	G G	C (C	2350 G G G G	G G	G G	G (C C	c c	G #	T G	2360 G G G G G G	
mScn10a cds (GRI) C G Y09108-cds mScn10a cds (GRI) T G Y09108-cds	G G T	CT	233 C A C A	A A A BO A G A G	A T	T C	A A	T (T (C)	C G	234 G G	A G A G G A G A	AAA	C	С Т Т С Т С	TT	G G	2 T ()	2350 G G G G	G G	G G	GG	c ·	CCC	G / C 1	r G	2360 G G G G G G T T T	
mScn10a cds (GRI) C G Y09108-cds mScn10a cds (GRI) T G	G G T	CT	233 C A C A	A A A BO A G A G	A T	T C	A A	T (T (C	C G	234 G G	A G A G G A G A	AAA	C	С Т Т С Т С	TT	G G	2 T ()	2350 G G G G	G G	G G	GG	c ·	CCC	G / C 1	r G	2360 G G G G G G T T T	
mScn10a cds (GRI) C G Y09108-cds mScn10a cds (GRI) T G Y09108-cds	G G T	CT	233 C A C A	A A A BO A G A G	A T	T C	A A	T (T (C	C G	234 G G	A G A G G A G A	AAA	C	С Т Т С Т С	TT	G G	2 T ()	2350 G G G G	G G	G G	GG	c ·	CCC	G / C 1	r G	2360 G G G G G G	
Y09108-cds mScn10a cds (GRI) T G T G T G T G T G T G T G T G T G T	G G T CC	CT AT AT	233 C A C A 237 A C A C	A A A A A G A G T C T T C T	A T	T C T C	A A T T	T (C	C C G	234 G G G 238 G G	A G A G A G A G C G C G C C G C C C C C	AAA	C C	T C	T T	G G T T	2 T (C	C C C C C C C C C C C C C C C C C C C	G G C C	G G T T	G G	CCC	C C C	G A	T G	2360 G G G G G T T T C	
MScn10a cds (GRI) C G Y09108-cds T G MScn10a cds (GRI) T G Y09108-cds C A MScn10a cds (GRI) C A Y09108-cds G C	C T CC T CC A C C	CT AT AT	233 C A C A 237 A C A C	A A A A G A G C T C T C T G G G G	A T	C T C C A C A	A A T T	C (C	C C G G C T C T	234 G G G G	A G A G G A G A G C G C	AAA	C C	T C T C T C T C	T T A A	G G T T	2 T (C	C C C C C C C C C C C C C C C C C C C	G G C C	G G T T	G G	C	CCC	G A	T G	2360 G G G G G G 2400 T T C	
Y09108-cds mScn10a cds (GRI) T G T G T G T G T G T G T G T G T G T	C T CC T CC A C C	CT AT AT	233 C A C A 237 A C A C	A A A A G A G C T C T C T G G G G	A T	C T C C A C A	A A T T	C (C	C C G G C T C T	234 G G G G	A G A G G A G A G C G C	AAA	C C	T C T C T C T C	T T A A	G G T T	2 T (C	C C C C C C C C C C C C C C C C C C C	G G C C	G G T T	G G	C	CCC	G A	T G	2360 G G G G G G 2400 T T C	
MScn10a cds (GRI) C G Y09108-cds T G MScn10a cds (GRI) T G Y09108-cds C A MScn10a cds (GRI) C A Y09108-cds G C	C T CC T CC A C C	CT AT AT	233 C A C A 237 A C A C	A A A A G A G C T C T C T G G G G	A T	C T C C A C A	A A T T	C (C	C C G G C T C T	234 G G G G	A G A G G A G A G C G C	AAA	C C	T C T C T C T C	T T A A	G G T T	2 T (C	C C C C C C C C C C C C C C C C C C C	G G C C	G G T T	G G	C	CCC	G A	T G	2360 G G G G G G 2400 T T C 2440 G G T	
Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds GRI) GCA Y09108-cds GRI)	G G T CC	CT AT AT	233 C A C A 237 A C A C T G T G	A A A A G G G G G G G G G G G G G G G G	A T	C A A A A	A A T T	C (C	C G G G G A G	234 G G G 238 G G C C	A G A G A G A G A G A G A G A G A G A G	AAA	C ·	T C T C T C T C T	T T A A	G G T T	2 T (C	2350 G G G G T G T 2430 A G A G	G G C C	G G T T	GGG	CCCC	C C C C	G A	T G	2360 G G G G G G T T T C	
Y09108-cds T G mScn10a cds (GRI) T G Y09108-cds T G MScn10a cds (GRI) C A Y09108-cds C G mScn10a cds (GRI) G C Y09108-cds G C Y09108-cds G C	G G T CC T CC C C C C C C C C C C C C C C C C C C	CT AT AT GG GG	233 C A C A 237 A C A C 241 T G T G	A A A GO C T C T C T G G G G G G G A T	A A A A A	C A A A A A A	A A T T	G (C	C G G G G G G G G G G G G G G G G G G G	234 G G G 238 C C C C	A G G A G G A G G C G C G C G C G C G G C G G C G G C G G C G G C G	AAA	C · C · A · T · C · G · C · C · C · C · C · C · C · C	T C T C T C T C T C T C T C T C T C T C	T T A A C C C	G G T T	2 T (C	2350 G G G G T G T G T G T G T G T G T G T	G G A A A	G G T T	G G G	CCCCCTTT	C C C C C C C C C C C C C C C C C C C	G # CT CT C	A A A F G	2360 G G G G G G C T T C 2440 G G T G G T	
Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds mScn10a cds (GRI) Y09108-cds GRI) GCA Y09108-cds GRI)	G G T CC T CC C C C C C C C C C C C C C C C C C C	CT AT AT GG GG	233 C A C A 237 A C A C 241 T G T G	A A A GO C T C T C T G G G G G G G A T	A A A A A	C A A A A A A	A A T T	G (C	C G G G G G G G G G G G G G G G G G G G	234 G G G 238 C C C C	A G G A G G A G G C G C G C G C G C G G C G G C G G C G G C G G C G	AAA	C · C · A · T · C · G · C · C · C · C · C · C · C · C	T C T C T C T C T C T C T C T C T C T C	T T A A C C C	G G T T	2 T (C	2350 G G G G T G T G T G T G T G T G T G T	G G A A A	G G T T	G G G	CCCCCTTT	C C C C C C C C C C C C C C C C C C C	G # CT CT C	A A A F G	2360 G G G G G G C T T C 2440 G G T G G T	
Y09108-cds T G mScn10a cds (GRI) T G Y09108-cds T G MScn10a cds (GRI) C A Y09108-cds C G mScn10a cds (GRI) G C Y09108-cds G C Y09108-cds G C	G G T CC T CC C C C C C C C C C C C C C C C C C C	CT AT AT GG GG	233 C A C A 237 A C A C 241 T G T G	A A A GO C T C T C T G G G G G G G A T	A A A A A	C A A A A A A	A A T T	G (C	C G G G G G G G G G G G G G G G G G G G	234 G G G 238 C C C C	A G G A G G A G G C G C G C G C G C G G C G G C G G C G G C G G C G	AAA	C · C · A · T · C · G · C · C · C · C · C · C · C · C	T C T C T C T C T C T C T C T C T C T C	T T A A C C C	G G T T	2 T (C	2350 G G G G T G T G T G T G T G T G T G T	G G A A A	G G T T	G G G	CCCCCTTT	C C C C C C C C C C C C C C C C C C C	G # CT CT C	A A A F G	2360 G G G G G G G G G G G G C T T C	
Y09108-cds T G MScn10a cds (GRI) T G Y09108-cds T G MScn10a cds (GRI) C A Y09108-cds C A MScn10a cds (GRI) G C Y09108-cds G C MScn10a cds (GRI) G C Y09108-cds G C MScn10a cds (GRI) G C	G G T CC T CC C C C C C C C C C C C C C	CT AT AT GGGGGGGAAG	233 C A C A C A C A C A C A C A C A C A C A	A A A A G G G G G G G G A T A T	A A A A A A A A A A A A A A A A A A A	C A A A A A A A A A A A A A A A A A A A	G A A A G G G	G (C (C (C (T (C	C C G G C G G G G G G G G G G G G G G G	234 G G G 238 G G C C C	G A G C G C G C G G G C G G G C G G G C G G G C G G G C G G G C G G C G G C G G C G G C G G C G G C G G C G G C G G C G G C G G G C G G G C G G G C G	A A C C C T T T	C C C G G G	T CTCTCTCTT	T T A A C C C	G G G T T	2 2 C C C C C C C C C C C C C C C C C C	C C C C C C C C C C C C C C C C C C C	G G C C G G G	G G T T	G G G G G G	C C C T	C C C C C C C C C C C C C C C C C C C	G A A	A A A A A A A A A A A A A A A A A A A	2360 G G G G G G G G G C T T C 2440 G G T G G T C T C T	
Y09108-cds T G MScn10a cds (GRI) T G Y09108-cds T G MScn10a cds (GRI) C A Y09108-cds C A MScn10a cds (GRI) G C Y09108-cds G C MScn10a cds (GRI) G C Y09108-cds G C MScn10a cds (GRI) G C	G G T C C T C C C T C C C T C C C T C C C T C	CT AT AT GG GG	233 C A C A C A C A C A C A C A C A C A C C A C C A C	A A A A G G G G G G G G G G G G G G G G	A A A A A A A A A A A A A A A A A A A	C A A A A A A A A A A A A A A A A A A A	G A A A G G G	C (C	C G G G G G G G G G G G G G G G G G G G	234 G G G G 238 G G C C C	G A G C G C G C G G G C G G G C G G G C G G G C G G G C G G G C G G C G G C G G C G G C G G C G G C G G C G G C G G C G G C G G G C G G C G G G C G G G C G G G C G G G C G G G C G G G C G G G C G G G C G G G C G G G C G G G G C G G G G C G G G G C G G G G C G G G G C G G G G C G G G G C G G G G C G G G G G C G G G G G G G C G	A A A C C C C C C C	C · C · A · A · A · T · T · G · G · G · T · · · T · · · ·	T C T C T C T C T C T C T C T C T C T C	T T A A C C C	G G G T T	2 C C C C C C C C C C C C C C C C C C C	C C C C C C C C C C C C C C C C C C C	G G C C C	G G T T T	G G G G G G G G G G G G G G G G G G G	CCCCTT	C C C C C C C C C C C C C C C C C C C	G A C	A A A C C T C T C T C T C T C T C T C T	2360 2360 3 G G G 3 G G G 400 T T T C 2440 3 G T T C 2480 3 C T T C T C	

	_								257		_	_		_	_	_	_		25				_	1 . 1		_	_		259			_	-		_	_	-		260	
Y09108-cds	G	G	G	T	C	T	G	C	A	T	G	G	A	G	G	T	C	Α	G	C	C	A	G	A	A	C	T	A	C	A	T	C	T	G	C	C	Ţ	0	A A	
mScn10a cds (GRI)	G	G	G		<u> </u>		G	C	A		G	G	A	G	G		C	A	G	<u></u>	<u> </u>	A	u	اما	<u> </u>		<u> </u>	<u> </u>	<u></u>	_	<u> </u>	<u> </u>	<u>.</u>	u	<u> </u>	<u> </u>	<u> </u>			의
									261										26.										263										264	
Y09108-cds	C	С	T	С	T	T	С	T	T	G	Α	С	A	G	T	Ğ	Α	T	G	G	T	G	С	T	A	G	G	С	Α	A	С	C	T	G	G	T	G	G	T	G
mScn10a cds (GRI)	C	С	T	C	T	T	C	T	T	G	Α	c	A	G	T	G	Α	T	G	G	T	G	С	T	A	G	G	C	A	A	C	C	T	G	G	T	G	G	T	G
									265	50									26	60									267	0									268	30
Y09108-cds	ГĊ	Т	C	A	A	С	С	Т	тſ	T	T	тΓ	Ā	T	C	G	С	T	T	Т	Α	С	T	G	C	T	G	Α	Α	т[T	С	С	T	T	Т	Α	G	T	G
mScn10a cds (GRI)	C	T	C	A	Α	C	C	Т	Α	Т	τ	cl	Α	Т	С	G	С	T	T	T	A	C	T	G	С	T	G	Α	Α	င	T	C	C	T	T	С	Α	G	T	G
, ,	_				_				٠																				_											
																			^~										074										271	20
V00400 - 4-	[_	_				Α.		269		_	Α	\overline{a}	اء	_	_	_	_	27		G	Λ	G	G	Α	T	6		271		G	G	G	Λ	<u></u>	G	Ŧ	<u>_</u>	272 A	
Y09108-cds mScn10a cds (GRI)		G	G	A A	C	Α	Α	Ċ	C	T	C	A A		Δ	G	C	C	C	C	Δ	G	Δ	G	G	Δ	Ť	G	Ā	C	G	G	G	G	Â	G	G	Ť	G	A	A
mocritoa cas (GNI)								Ŭ	<u> </u>	<u>.</u>	<u> </u>	_		^ ŧ	<u>~</u>	_	Ť	Ť	Ť		_	<u></u>	<u> </u>	<u> </u>	<u></u>	-			_	_										لتت
									273	30	_								27				. ,	,					275						!			_	276	
Y09108-cds	C	A	A	C	T	T	G	C	A	G	Ţ	T	A	G	C	A	C	T	G	G	C	C	A	G	G	A	T	T	C	A	G	G	T	A	C	T	T	G	G	C
mScn10a cds (GRI)	C	<u>A</u>	<u>A</u>	_ <u>c</u>	<u> T</u>	T	G	С	Α	G	G	T	<u>A</u>	G	C	A	<u>C</u>		G	G	C	C		G	G	<u>A</u>		-	<u></u>	<u>A</u>	G	G		A	۱' ا			<u>u</u>	G	드
									277										27										279										280	
Y09108-cds																																							С	
mScn10a cds (GRI)	(C	Α	T	<u></u>	G	G	G	C	С	A	G	T	C	G	G	G	С	C	Α	T	T	Α	C	С	Α	G	T	T	A	C	<u>A</u>	T	С	Α	G	<u>A</u>	<u>A</u>	G	C	C
									281	10									28	20									283	30									284	10
Y09108-cds	Α	ìт	T	G	C	С	G	G	T	T	С	С	G	тΙ	T	G	G	c			A	A	G	G	T	G	G	A			C	С	С	Α	G	С	T	G	G	
mScn10a cds (GRI)	A	c	T	G	C	C	G	G	Ċ	T	Ċ	C	G	С	Т	G	G	C	C	С	Α	Α	G	G	T	G	G	A	G	A	С	С	С	Α	G	С	T	G	G	G
, ,	1		_																																					
																													00-	7.0									201	20
V00400 - 4-	<u> </u>	_	_	_	_			_	285		~	^		_	_		_	_	28		-	_	7	G	_	Λ	Λ.	^	287		Ŧ	6	Λ.	Ġ	_	_	_	_	288 A	
Y09108-cds mScn10a cds (GRI)	ا	A	T	G	· A · A	A	Α	0	C	C	C	C	A A	C	T	C	Α	C	C	Α	G	C	Ť	G	C	Δ	Α	Α	G	င်	T	G	A	G	A	A	C	C	Â	c
modifica cus (GNI)	<u> </u>	_						<u> </u>	<u> </u>	<u> </u>	_	<u> </u>		Ť	<u> </u>	ŭ	_	<u> </u>	Ť		<u>~</u>	<u> </u>	÷			<u></u>		<u></u>		٠,	-									ت
	_								289										29					_					291			_				_	_	1_	292	
Y09108-cds									T																													1 1	G	
mScn10a cds (GRI)	A	T	T	_G	C	<u>T</u>	<u>A</u>	<u>C</u>	<u> </u>	G	A	<u> </u>	G	C		G	N	Ç	Α	А		G	<u> </u>		G	<u></u>	A	G		G	G	G	<u>u</u>	<u> </u>			C	JA	G	G
									293										29										298										296	
Y09108-cds	C	Α	Α	A	G	C	C	Α	G	С	T	С	T	T	Α	G	T	G	G	С	С	С	С	Α	A	G	G	A	G	A	A	Т	С	Α	C	G	G	G	G	A
mScn10a cds (GRI)) <u> </u> C	Α	Α	. A	G	C	С	Α	G	С	T	С	T	T	G	G	T	G	G	C	С	С	C	Α	Α	G	G	A	G	A	Α	C	С	A	<u>c</u>	G	G	G	G	Α
									297	70									29	80									299	90									300	20
Y09108-cds	C	T	T		Δ	т	C	Δ			G	Α	T	С	С	T	Α	Α			T	G	Т	G	G	G	T	C			Т	G	T	G	c	С	c	A	T	
mScn10a cds (GRI)		Ť	Ť	c	A	T	C	A	č	Ť	G	Â	Ť	Č	Č	Ť	A	A	Č	G	Ť	G	Ť	G	G	G	T	Ċ	T	Ç	T	G	T	Ğ	Ć	C	Ć	A	T	т
	تــا				_						····																_													
																																							00	40
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>				<u> </u>				30			_	-	_	_	_			30			_		-	_	<u> </u>	_	~	300		_	^	_	•	^	^	_		304 T	
Y09108-cds	G	C	T	G	. A	G	G	G	G	G G	Α Δ	G	I T	C	C	G	A	C	C	T	T	G	A	T	G	A	G	C	Ť	C	G	Α	G	G	Δ	A	G	Α	Ť	G
mScn10a cds (GRI)	<u> </u>	U			. A	u	u	<u>u</u>	9	<u>u</u>		<u>u</u>	<u>.</u>	U		<u> </u>		<u> </u>			-		_	<u> </u>	u		<u> </u>	<u> </u>				_	<u>~</u>	<u> </u>	_		<u>~</u>		<u> </u>	ت

									30	90									31	00									311	9								3120
Y09108-cds	С	Α	Α	Α	G	G	G	С	Α	G	С	Α	G	G	Α	G	С	T	G	С	T	G	C	С	Α[С	A	A	G ·	۲ (C	Α	Α	Α	Α	G	T	GT
mScn10a cds (GRI)	С	A	<u>A</u>	Α	G	G	G	С	Α	G	N	Ν	N	G	Α	G	С	T	G	С	T	G	С	Α	G[C	Α	A	G 1	<u> </u>	; <u>C</u>	Α.	A	<u>A</u>	Α	G	<u>T</u>	GT
									31										31								_		315									3160
Y09108-cds	G	A	A	Α	Α	T	C	A	C	C	A	G	G	C	A	G	C	C	A	G	A	A	G	C	C	C	A	A	C	ר די			G	G	G	A	T	G T G T
mScn10a cds (GRI)	<u> </u>	A	A	G	A		<u></u>	A	<u></u>	<u> </u>	<u>A</u>	G	G	<u></u>	A	G			JC	u		<u> </u>	G				^	٧L	<u> </u>	<u>, </u>							<u>-</u>	u i
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>	_		_				۱.	31	70			_	_	_	_	_		31		_	_	_	_	-	_	_		319		_	٠ ۸	-		-	-	C	3200 A A
Y09108-cds mScn10a cds (GRI)	C	C	T	C	Ť	G	A	G	G	A	C	C	T	G	G	C	+ T	C	c	A	Ť	A	C	C	T	G	G	G	G	3 F	G	iΑ	G	A	Ť	G	G	C A
	L							,																														
									32	10									32	20									323	า								3240
Y09108-cds	АΓ	Α	G	G	lΑ	A	G	G	Α	ΙТΙ	Α	АΙ	C	С	C	Т	С	A	G	G	Ť	С	С	С	T	G	С	c	G /	4 (G	G	A	G	Ť	G	G	AT
mScn10a cds (GRI)	G	Α	G	G	G	A	G	G	Α	G	Α	G	С	С	С	T	С	G	G	G	T	С	C	С	T	G	С	С	G /	4 (G	G	A	G	Т	G	G	AT
									32	50									32	60									327)								3280
Y09108-cds																																						GG
mScn10a cds (GRI)	G	A	С	A	С	Α	A	G	C	T	С	С	T	С	C	G	Α	G	G	G	c	Α	G	С	A	<u>c</u>	G	G	T	3 (A	C	T	G	<u></u>	C	<u> </u>	G G
									32										33										331									3320
Y09108-cds	A	C	C	C	A	G	A	G	G	A	G	A	T	C	C	T	G	A	G	G	A	A	G	A	T	C	C	C	T (3 A	G	C	T	G	G	C	G	G A G A
mScn10a cds (GRI)	IA_	C	·	<u> </u>	<u> </u>	G		G	<u>u</u>	<u> </u>	<u> </u>	<u> </u>	<u>.</u>	<u> </u>		<u> </u>	<u>u</u>	^	G	<u>u</u>		^	<u>u</u>	^_	1		<u> </u>		-	3 r			<u> </u>	<u> </u>	<u> </u>		-	<u>u </u>
																														_								
Y09108-cds	G	G	Δ	 T	<u> </u>	Ŧ	<u> </u>	G	33		G	Δ	G	_	c	C	G	Δ	33		Δ	C	Ŧ	G	T .	т	т .		3350 A [7		G	Δ	Δ	G	G	c	_	3360 G C
mScn10a cds (GRI)	G	G	Â	G	C	Ť	G	G	Â	C	G	Ā	G	Č	C	Č	G	A	Ť	G	Α	č	Ť	G	T	Ť	T ·	c	c) A	G	Α	Α	G	G	Č	Ť	GC
	1																																					
									33	70									33	80									3390)								3400
Y09108-cds									C	T									Т	G								A	A () A								GT
mScn10a cds (GRI)	Α	Ç	T	С	G	С	С	G	С	T	G	T	С	С	С	T	G	C	T	G	C	Α	A	Α	G	T	G .	A	A () A	C	C	Α	G	T	Α	<u>A</u>	GT
	_								34										34										3430									3440
Y09108-cds	Ç	T	C	C	T	T	G	G	G	C	C	A	C	Α	G	G	C	T	G	G	C	A	G	G	T T	G	C	G	C	A A	A	. A	C	C	T	G	T	TA
mScn10a cds (GRI)	' [<u></u>	<u></u>			G	G	G	·	<u> </u>	<u> </u>	<u></u>	G	G	<u> </u>	<u>_</u>	-	<u> </u>	G	·	<u> </u>	G	u		G		<u>.</u>	<u> </u>	<u> </u>								<u>, </u>
Y09108-cds	[_	C	_	^	-	-		34		G	٨	G	_	٨	~	٨	C	34		G	<u>-</u>	τ	-	T	G	Δ .		3470 A (T	т	7-	Δ	T	lei	<u> </u>	3480 T C
mScn10a cds (GRI)	C	C	G	c	Ã	Ť	÷	G	Ť	G	G	A	G	C	Â	C	A	G	C	Ť	G	G	Ť	Ť	T ·	G	A	G	A	3 T	Ť	Ť	c	A	Ť	Т	A	T C
	L																																_					· · · · · · · · · · · · · · · · · · ·
									34.	an									35	വ									3510	2								3520
Y09108-cds	T	Т	С	A	T	G	A	T			Т	G	С	T	С	Α	G	С			T	G	G	A	АΓ	C	G		T (C	С	Т	T	T	G		GG
mScn10a cds (GRI)	T	T	С	Α	T	G	A	T	С	С	T	G	С	T	С	Α	G	С	Α	G	T	G	G	Α	G	C	G	C	T	3 6	C	С	T	T	T			GG
									35										35										355									3560
Y09108-cds	A	T	A	A	С	T	Α	С	C	T	G	G	A	A	G	Α	G	Α	Α	A	C	C	C	C	G	A	G '	T	G /	\ A	G	T	C	T	G	T	G	CT
mScn10a cds (GRI)	Α	T	Α	Α	С	T	Α	С	С	T	G	G	Α	A	G	Α	ΑĮ	Α	Α	G	С	C	С	С	G	A	G '	T	G /	\ A	G	T	<u></u>	T	G		G	СТ

							3610	,								362	20							3	630									3640
Y09108-cds	G A	G	A T	G	T	T	GC	T	С	Α	Α	G	T	G	G	G	Τ /	A (G C)C	T	A	T (G (a C	T	T	С	Α	Α	A	A	Α	AT
mScn10a cds (GRI)	G A	G	A T	G	T	T	GC	<u> </u>	С	Α	Α	G	T	G	G	G '	Τ /	A (G C	ĮΤ	T	A	T	G (3 C	T	T	С	Α	Α	Α	A	A	A T
							3650	,								366	0							3	670									3680
Y09108-cds	AT	Т	T C	: A	С	С	A A	Т	G	С	С	T	G	G	T	G	C.	T (G G	C	T	G	G /	4 (T	T	C	С	T	С	Α	T	С	GT
mScn10a cds (GRI)	АТ	T	T C	A	С	С	A A	T	G	С	С	T	G	G	T	G	С.	Τ (G G	C	T	G	G /	4 (<u>T (</u>	T	C	C	T	С	A	T	C	GT
							3690	,								370	n							.3	710									3720
Y09108-cds	GA	Δ	СΙΆ	T	С				Т	C	A	C	Α	Α				T (C A	T	Α	G	C			G	A	T	С	С	T	C		A G
mScn10a cds (GRI)	G A	A	T A	T	C	T	c c	C	T	C	Α	C	Α	A	G	С	c -	T (C A	T	Α	G	C	C /	A	G	Α	T	С	С	T	С	G	A G
, ,	t		٠																															
							222									274	10							9	750									3760
Y09108-cds	TA	T	TC	. Λ	G		3730		G	G	C	G	т	c	С	374 A		c /	Δ Δ	Α	G	С	C			C	G	G	A	C	T	С		CC
mScn10a cds (GRI)	TA																																	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	<u> </u>																																	
																								_	700									2000
1/00/00	<u> </u>			_			3770		_	_	_	_	+		_	378		~ /	~ 7		-	_	+ /		790	<u></u>	Λ	7	Ŧ	~	G	^		3800 G G
Y09108-cds mScn10a cds (GRI)	GT	G	o t	: C	T	C	CC	i G	C	C	G	C	T	G	C	G	G	G	יט דכ	. c	Ť	G	Ť	י כוכ	C	G	A	Ť	T	C	G	A	A	GG
macirroa cus (Ora)	<u>u .</u>	<u> </u>	-			_				Ŭ	<u>~</u>	<u> </u>	•	<u>~</u>	<u> </u>				<u> </u>	_	•	<u> </u>	•					<u> </u>	<u> </u>	<u> </u>				
							3810			_	_	_			_	382						_			830		_	_	_		- -	٦٠		3840
Y09108-cds	C A	T	GA	G	G	G	T #	G	T	G	G	T	G	G	A	T	G	C (C T	· T	G	G	1 (T (3 (i G	0	G	C	C	A	+	$_{T}^{T}$	C	C C
mScn10a cds (GRI)	U A		G F		<u>u</u>	<u>u</u>	1 /			G	G	<u> </u>	u	<u>u</u>	^	<u>'</u>	<u>u</u> ,		<u> </u>			<u>u</u>		<u></u>				_	_			٠ ٢	<u> </u>	
							3850								_	386						_			870			_			_	_		3880
Y09108-cds	TC																																	GC
mScn10a cds (GRI)	1 0		AI	U	A		GF	<u> </u>		u		C	<u></u>	<u> </u>	<u> </u>	C		<u> </u>	9 1			<u>u</u>	<u> </u>	ا ب			<u> </u>			<u> </u>		<u>.</u>	<u>u</u>	<u>u </u>
		-					3890									390									910									3920
Y09108-cds	TC	A	TC	; T	T	C	A	C	A	T	C	A	T	G	G	G	T (G T	7 (A	A	C	C	[(T	Ţ	C	G	C	C	G	G	G	AA
mScn10a cds (GRI)	T C	; A	1 (<i>;</i> 1	1	C	A	i C	A	<u> </u>	C	A		G	G	G	-	<u> </u>	1 (2 A	<u> </u>	U	C		<u>, </u>			<u>u</u>	<u> </u>		<u>u</u>	G	<u>u</u>	A A
							3930									394								_	950									3960
Y09108-cds		T	TT	C	G	A	G A	T	G	T	G	T	C	G	Α	C	A (C	C A	G	A	Α	G		A	C	C	C	A	T	T	T	T	CC
mScn10a cds (GRI)	A T	<u> T</u>	T T	<u> </u>	G	A	G A	<u> </u>	G	T	G	T	С	G	<u>A</u>	C	A (<u>C (</u>	C A	G	<u>A</u>	Α	G	<i>3 </i>	A A	C	C	C	A	1	<u> </u>	<u>!</u>	<u>.</u>	<u>C</u> C
							3970)								398									990									4000
Y09108-cds	G T	C	G T	G	Α	Α	TI	С	G	A	С	A	T	T	С	G	T	G /	A A	\ T	Α	A	C	4 /	\ G	T	C	T	G	A	C	T	G	TC
mScn10a cds (GRI)	G T	C	G T	G	Α	Α	T 7	С	G	A	C	Α	T	<u>T</u>	С	G	T (G /	A) C		<u> </u>	A	C /	4 /	A G	T	C	T	G	A	C	<u>T</u>	G	T T
							4010)								402	20							4	030									4040
Y09108-cds	A C	A	A T	C	Α	Α	A A	C	Α	Α	T	A	С	c[G	G	C	C /	A C	; T	T	С	T	Γ (T	G	G	G	T	T	Α	A	C	GT
mScn10a cds (GRI)		; A	АТ	<u> </u>	Α	A	A A	C	Α	Α	T	Α	С	т	G	G	C	<u>C /</u>	A (; T	T	С	T	<u>r (</u>) T	G	G	G	T	T	A	A	C	G T
							4050	,								406	60							4	070									4080
Y09108-cds	CA	Α	A G	T	С	Α	A (; T	Т	С	G	Α	C	A	A	С	G .	T	c [C	à C	T	Α	T (G (G	С	T	Α	С	С	T	С	G	CG
mScn10a cds (GRI)		A	A C	T	С	Α	A C	; T	Т	С	G	Α	С	Α	Α	С	G .	<u>r</u>]-	T [c	C	T	Α	T (G (3 G	С	T	Α	С	C	T	С	G	CG

		4130		4140	4150	4160
Y09108-cds mScn10a cds (GRI)	T G T A T G T G T A T G	C A G C T G T C A G C T G T	CGATT	CTCGAGA	T A T C A A C T A T C A A C	A G T C A G C C A G T C A G C C
		4170		4180	4190	4200
Y09108-cds mScn10a cds (GRI)	CAATTG	GGAGGAG	A G C C T	T G T A C A T G	TACCTAT	A C T T C G T C A C T T C G T C
modified das (ON)	<u>U A A I I U</u>	<u>uunuun</u>	<u> </u>			
Y09108-cds	GTCTTC	4210 A T C A T T T	TCGGT	4220 F G G C T T C T	4230 T C A C G C T	4240 G A A T C T C T
mScn10a cds (GRI)		ATCATTT	TCGGT	GGCTTCT	TCACGCT	GAATCTCT
		4250		4260	4270	4280
Y09108-cds mScn10a cds (GRI)	T T G T C G T T G T C G	G G G T C A T G G G T C A T	CATCG CATTG	3 A C A A C T T 3 A C A A C T T	C A A T C A A C A A T C A A	C A G A A A A A C A G A A A A A
				4000	4040	4320
Y09108-cds	AAAGTT	4290 G G G G G G	CAGGA	4300 A C A T C T T C	ATGACGG	AAGAACAA AGGAGCAG
mScn10a cds (GRI)	AAAGCI	AGGGGGG	CAGGA	CATOTIO	ATGAO	A C A C A C
Y09108-cds	A A A A A	4330 T A T T A C A	ATGCC	4340 CATGAAAA	4350 A A C T G G G	4360 CTCCAAAAAAA
mScn10a cds (GRI)	AAGAAG	TACTACA	ATGCC	ATGAAGA	AGCTGGG	CTCCAAGA
		4370		4380	4390	4400
Y09108-cds mScn10a cds (GRI)	A A C C C C A A C C C C	A A A G C C A G A A G C C	C A T C C	CACGGCC CACGGCC	TCTGAAT	A A G T A C C A A A G T A C C A
				4400	4420	4440
Y09108-cds	GGGCTT	4410 CGTGTTT	GACAT	4420 F T G T G A C C	4430 A G G C A A G	C C T T T G A C C A T T T G A C
mScn10a cds (GRI)	GGGCTT	CGIGIII	GACAI	TGTGACC	AGGCAAG	
Y09108-cds	ATCATC	4450 A T C A T G O	ы⊤ тстс	4460 CATCTGCC	4470 T C A A C A T	4480 G A T C A C C A
mScn10a cds (GRI)	ATCATC	ATCATGO	ыс <u>тстс</u>	CATCTGCC	TCAACAT	GATCACCA
		4490		4500	4510	4520
Y09108-cds mScn10a cds (GRI)		T G G A G A C	C C G A C A C C G A C A	AATCAGAG AATCAGAG	C G A G G A G C G A G G A G	A A G A C G A A A A G A C G A A
		4520		4540	4550	4560
Y09108-cds mScn10a cds (GRI)	GGTTCT	4530 G G G C A G A	AATCAA	ACCAGTT	TTTGTGG	C G G T C T T C C C G T C T T C
mountua cus (GRI)		GGGGAGA	· · · · · · · · · · · · · · · · · · ·			
Y09108-cds	ACGGGC	4570 G A G T G T C	G T G A T G	4580 G A A A G T G T	4590 T C G C C C T	4600 G C G A C A G T T C G G C A G T
mScn10a cds (GRI)	ACGGGC	GAGTGT	GTGATG	3 A A G A T G T	TCGCCCT	TCGGCAGT

	4650		4660	4670	4680
Y09108-cds G G T	GATTCTG	TCCATT	GCGAGTC	TGTTGTTTTC	TGCAATC
mScn10a cds (GRI) G G T	GATTCTG	TCCATT	TCTAGTC	TGTTGTTTTC	TGCGATC
	4690		4700	4710	4720
Y09108-cds C T T	A A G T C A C	TAGAAA	GTTACTT	CTCCCCCACG	TTCTTCC
mScn10a cds (GRI) C T T	AG CTCAC	TAGAAA	GTTACTT	CTCCCCCACG	CTCTTAC
	4730		4740	4750	4760
				GGCCGCATCC	
mScn10a cds (GRI) G C G	TCATCCG	TCTGGC	CAGGATCO	GGCCGCATCC	CAGGCI
	4770		4780	4790	4800
Y09108-cds G A T	TCGAGCA	GCCAAG	GGGATTC	GCACGCTGCT	CTTCGCC
mScn10a cds (GRI) G A T	TCGAGCA	GCCAAG	GGGAIIC	GCACGCTGCT	CIICGCC
	4810		4820	4830	4840
Y09108-cds	ATGATGT	CCCTGC	CCGCCCT	CTTCAACATC	GCTCTCC
mScn10a cds (GRI) CTC	AIGAIGI	CCCIGC	CCGCCCT	CTTCAACATC	, G G C [C T C C]
	4850		4860	4870	4880
				T	
mScn10a cds (GRI)	1011001	CGICAI	GIICAICI	IACICCAICI	ICGGCAI
	4890		4900	4910	4920
Y09108-cds G G C mScn10a cds (GRI) G A C	CAGCTTC	GCTAAI	I GI CAIAGA I GT CATAGA	A T G A G G C T G G A T G A G G C T G G	CATCGAC
modifica cus (GRI) [G] A [C	CAGOIIO	401441	u i o A i A u i	A, GAGGOTG	
					4000
V00400	4930	A C T T C A	4940	4950 T G G C A A C A G C	4960 NATECTET
				TGGCAACAGC	
modified dod (of it)					
				4000	5000
Y09108-cds G C C	4970	GATCAC	4980 CACGTCG	4990 G C T G G C T G G G	5000 A T G G C C T
				GCTGGCTGG	
	E040		5020	5030	5040
Y09108-cds C C T	5010 CAGCCCC	ATCCTC		GACCCCCCTA	
		ATCCTC		GACCCCCCTA	CTGCGAC
	5050		5060	5070	5080
Y09108-cds C C C		CCAACA		CTCCAÄGGGG	
				CTCCAAGGGG	
	5090		5100	5110	5120
Y09108-cds G A A		GGTGGG	CATCCTCT		
			CATCCTCT		CCTACAT

								5170)								51	80									519	90									5200
Y09108-cds																																					CA
mScn10a cds (GRI)	G 7	<u> </u>	A £	Т	T	С	T	G (A	G	A	Α	С	T	T	С	Α	Α	T	G	T	G	G	C	C	A	С	A	G	Α	Α	G	Α	G	A	G	CA
								5210										20									523										5240
Y09108-cds																																					G A
mScn10a cds (GRI)	<u>C</u> (<u> </u>	A k	G	<u> </u>	C	C	C		A	G	U	G	А	G	G	<u>A</u>	<u> </u>	<u> </u>	<u> </u>				<u> </u>	G	<u> </u>	<u> </u>	<u> </u>	1	u	-	<u>'</u>					G A
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<u> </u>			_		_		5250		_	_	_			_	_		60	_	_	_		_		_		527		~	_	^	6	7	-	_		5280 T T
Y09108-cds mScn10a cds (GRI)	G	4 (4 () C	Ť	G	G	G	A (A A	. A	G	T	'T	+ T	G	A	C	C	C	G	G	A	G	G	C	C	A	C	C	C	A	G	Ť	Ť	C	A	TT
moonrod dad (dru)	<u> </u>	•		•																																	
								E20/	,								52	00									531	'n									5320
Y09108-cds	G	2 0	. T	т	T	T		5290 T (С	C	T	С	Т	С	A			С	Т	Т	T	G	С	À				A	С	Α	С	T	C	T	c	C G
mScn10a cds (GRI)																																				c	⊤G
								5330)								53	40									535	50									5360
Y09108-cds																																					AT
mScn10a cds (GRI)	G	2 (<u> </u>	Т	С	T	T	A (A	_A	T	С	С	C	<u>A</u>	Α	Α	Α	С	С	T	Α	Α	T	С	Α	G	A	A	<u>T</u>	A	T	A	T	<u>T</u>	A	AT
								5370										80									539										5400
Y09108-cds																																					A C
mScn10a cds (GRI)	<u> </u>		1 6			G	G	A (<u> </u>		<u> </u>	<u>u</u>			G	G	<u>'</u>				<u> </u>	<u> </u>	<u> </u>		<u>.</u>		<u>.</u>	_	_	<u> </u>	_		<u> </u>	<u> </u>	7 0
Y09108-cds	T /	2 7	7	_	G	G		5410		_	_	-	_	_	T	<u> </u>		20		T	_	C	Δ	c	Δ		543 A		Δ	Δ	T	G	Ť	C	т	т	5440 G G
mScn10a cds (GRI)																																					GG
, ,	'																																				
								5450)								54	60									547	70									5480
Y09108-cds							T	G	a G								Α	T								Α	G	A									G A
mScn10a cds (GRI)	G A	4 (A £	Α	T	С	Т	G (G	G	Α	G	T	T	G	G	Α	T	T	С	T	С	T	G	Α	Α	G	Α	C	T	A	A	T	Α	T	G	G A
								5490										00									551										5520
Y09108-cds																																					AT
mScn10a cds (GRI)	A	G A	A G	Α	_ <u>A</u>	G	<u>T</u>	T 1	Α		G	G	C	<u>A</u>	A	<u>C</u>		<u>A</u>	<u> </u>	<u> </u>	U		<u> </u>	<u>.</u>	C	U	A	<u>A</u>	<u>A</u>	u	<u> </u>	A	-				<u>A 1</u>
\(\alpha\)				_				5530		_			_		_	_		40	_	_	_	_	_	_	_		555		_		~	~					5560 C A
Y09108-cds mScn10a cds (GRI)																																					CA
	<u>~</u> ,						<u> </u>						_			<u>.</u>			_	_					_												
								F C										.00									E E 1	٥.									5600
Y09108-cds	T	ר :	r c	Δ	G	С		5570 A (Δ	T	T	Α	Т	T	c		80 A	A	Α	G	G	C	С	T		559 T		G	G	Α	Α	С	T	Ā	С	A T
mScn10a cds (GRI)	- 1																																				
																												_	_		_					_	_
								5610)								56	20									563	30									5640
Y09108-cds	G 7	г 1	r G	С	Α	A	С	G	; T	С	С	T	T	G	Α	T	G	С	T	С	T	С	С	Α	Α	С	А[C	C	С	T	G	С	Α	T	G	TG
mScn10a cds (GRI)	G T	<u> </u>	r G	Ç	Α	Α	С	G (; T	С	С	T	T	G	Α	T	G	С	<u>T</u>	С	T	С	C	A	Α	С	င	C	С	C	T	G	C	A	T	G	TG

									569	90									57	00									57	10									572	<u></u> '0
Y09108-cds	G	Ċ	T	Α	T	G	T	Т	Α	С	Α	T	T	С	Α	T	G	G	C	Α	Α	Α	T	G	Α	С	Α	A	С	G	G	T	G	G	G	C	T	C	С	C
mScn10a cds (GRI)	G	С	T	Α	T	G	T	T	Α	С	Α	T	T	С	A	T	G	G	C	Α	Α	Α	T	G	Α	C	Α	A	С	G	G	T	G	G	G	<u></u>	T	C	С	C
									573	30									57	40									57	50									576	0
Y09108-cds	Α	G	Δ	C	Δ	Δ	Δ		c		G	Δ	Δ	Δ	С	Т	G	Ċ			C	Ŧ	G	С	T	Ā	Ċ	G	T		T	T	T	С	C	C	Α	C	C	Ā
1	Ā	_	•	_	Ā	Ā			- 1		_	A	A	A	C	Ť	G	_	-	Ť	Č	Ť	G	Č	_		C		-	C	-	Т	T	Ċ	C	C	Α	C	C	A
moonrod odo (Gra)	<u></u>			<u> </u>	<u></u>	<u></u>		•		_	_				_					_																				
									57	70									57	80									57	90									580	10
Y09108-cds	T	С	С	T	Α	T	G				G	С	G	T	С	Α	Ç	_		G				_	_		G	Α	G	T	G	Α	_	• •	Ψ.			Ξ.	С	11
mScn10a cds (GRI)	Т	С	С	T	Α	T	G	Α	C	A	G	C	G	T	С	Α	С	С	Α	G	G	G	G	C	C	T	G	A	G	T	G	A	С	Α	G	G	G	C	C	Α
																				00									EO	20									584	10
	_	_				_			58	_	_	-4-		_	_	_	_	_	58.		_	Ŧ	_	_	_	4		Δ	30	30 G	A	Α.	G	_	~	_			G	
,	1 .	C		•	T	٠,	A		• •	C	A	1	C	1	A	G	_	•		• •		•	G	-	••	A	A		1	-		A		~	+				G	
mScn10a cds (GRI)	LA_	C	Α_	T	1	Α	G[C	A	C	A		C		Α	G	C		C	A	A	1	G	<u></u>	A	A	<u>A</u>	<u>A</u>	T	<u>u</u>	<u>A</u>	Α	G	A		<u>u</u>		A	<u>u</u>	
									585	50									58	60									58	70									588	30
Y09108-cds	С	Δ	C	Т	G	C	T	Á		G	G	Ā	Ā	G	G	G	A	A	lΤ	_	G	C	С	С	T	G	G	A		С	T	С	Α	G	T	G	Α	Ì		
	C	•	c	-	-	c	Ť	A	A	G	G	Α	Α	G	-		A		G	Α	G	C	Ċ	Ċ	T	G	G	Α	С	C	T	С	A	G	T	G	Α			

Appendix C

10	20 30 40
Y09108 MEFPFGSVGTTNFRR	R F T P E S L A E I E K Q I A A H R A A K K G R T K
mScn10a(GRI) MEFPFGSVGTTNFRR	R F T P G S L A E I E K Q I A A H R A A K K G R P K
50	60 70 80
	LDLKACNQLPRFYGELPAELVGEPLE
mScn10a(GRI) QRGQKDKSEKPRPQL	LDLKACNQLPRFYGELPAELVGEPLE
20	100 110 120
Y09108 DLDPFYSTHRTFILL	L N K S R T I S R F S A T W A L W L F S P F N L I R
mScn10a(GRI) D L D P F Y S T H R T F ! V L	LDKSRTISRFSATWALWLFSPFNLIR
130	140 150 160
Y09108 RTAIKVSVHSWFSIF	FIT V T I L V N C V C M T R T D L P E K L E Y V F FIT V T I L V N C V C M T R T D L P E K L E Y A F
MISCHIVA(GRI) RIAIRVSVESIF	FITTIEVACTORITATION
170	180 190 200
Y09108 TVVYTFEALIKILAR	RGFCLNEFTYLRDPWNWLDFSVITLA
mScn10a(GRI) TVVYTFEALIKILAR	RGFCLNEFTYLRDPWNWLDFSVITLA
210	220 230 240
	RTFRVLRALKTVSVIPGLKVIVGALI
mScn10a(GRI) YVGAAIDLRGISGLR	RTFRVLRALKTVSVIPGLKVIVGALI
250	260 270 280
Y09108 HSVRKLADVTILTVF	F C L S V F A L V G L Q L F K G N L K N K C I K N G
mScn10a(GRI) HSVRKLADVTILTVF	F C L S V F A L V G L Q L F K G N L K N K C I K N G
290	300 310 320
Y09108 TDPHKADNLSSEMAE	EDIFIKPGTTDPLLCGNGSDAGHCPN
mScn10a(GRI) T D P H K A D N L S S E M A G	G D I F I K P G T T D P L L C G N G S D A G H C P N
330	340 350 360
Y09108 GYVCQKTPDNPDFNY	YTSFDSFAWAFLSLFRLMTQDSWERL
mScn10a(GRI) DYVCRKTSDNPDFNY	YTSFDSFAWAFLSLFRLMTQDSWERL
370	380 390 400
Y09108 YQQTLRASGKMYMVF	
mScn10a(GRI) Y Q Q T L R A S G K M Y M V F	
410	420 430 440
	KKFQEALEVLQKEQEVLAALGIDTTS
mScn10a(GRI) EQSQATIAEIEAKEK	KKFKEALEVLQKEQEVLAALGIGTTS
1 /	

									49	00									50	00								51	0								520	
Y09108 mScn10a(GRI)	Y	N	Q Q	R	R R	M M	S S	F F	L	G	L L	S S	s s	G G	R R	R R	R R	A A	s	H	G[S	3 \ 3 \	/ F	H	F	R R	A A	Р	s () [) V	S	F	P P	D D	G G	l L l L	
Y09108	D	D	G	v	F	Н	G	D	53 Q		S	R	R	N[s	ī	Ĺ	L	54 G		G A	A (G G) A	G	P	L	55 P		S F) <u>L</u>	P	Q	s	P	N	560 P G	
mScn10a(GRI)		D	G	٧	F	Н	G	D	Q	E	S	R	R	s	S	ı	L	L	G	R	G A	A (G G	A	G	P	L	Р	RS	<u> </u>	<u> </u>	P	Q	S	P	N	P _. G	j
Y09108 mScn10a(GRI)	R P	K R	H R	G G	K[E	G G	Q Q	57 L R	G	м[V	P P	T T	G G	E E	L L	A A	A T	58 G G	тΓ	P E	E (3 F) A	L	D D	A A	59 A A	G) H	C N	F	L L	s s	A A	G[600 Y L Y L	7
							_		61	0									62									63							l 1		640	
Y09108 mScn10a(GRI)	N	E	P P	F	R	A	Q Q	R	A A	M M	S S	ν ν	v v	S S	1 1	M	T T	S S	V V	1	E	Ξ L	. E	: E	S	K	L	K	0 1) F	, (L	1	S	L	A	Q K Q K	
Y09108	Y	L	Ţ	W	E	C	C	P	65 K		R	K	F	K	M	٧	L	L	66 E		V 1	 Γ [) F) F	A	E	L	67 T		ΓL	. 0	; 1	V	V	N N	T T	680 V F V F	
mScn10a(GRI)	Ľ	<u>L</u>	•	VV		<u> </u>		<u> </u>	69			Κ	<u>r</u>		173				70		<u> </u>		<i>,</i> ,					71						<u> </u>	••	•	720	
Y09108 mScn10a(GRI)	M	A A	M M	E E	H H	Y Y	P P	M M	T	D	A A	F F	D D	A A	M	L	Q Q	A A	G	N	1 \ 1 \	/ F	: T	· v	F	F	T T	М	E N	N A	F	K	1	l		-	D P D P	
Y09108	T	Y	Y	F	a	ĸ	K	w	73 N	ī	F	D	С	V	1	v	T	v	74 S	L	LE	= L	. 8	S] A	s	K	K	75 G	SI	_	3 V	L	R	s	L	R	760 L L	1
mScn10a(GRI)	Y	Y	Ÿ	F	Q	K	K	W	N	1	F	D	С	V	l	٧	T	V	S	<u>L</u>	LE	<u> </u>	. 5	šĮΤ	s	K	K	G	s ı	_	<u> </u>	<u> </u>	R	T	F	R	<u>L L</u>	J
Y09108 mScn10a(GRI)										Р										G	N S								T F						-	-	800 I F I F	1
									81	10						·			82								_	83									840	
Y09108 mScn10a(GRI)		L L	ν ν	G G	K	Q Q	L L	L L	S S	E	N N	Y Y	G G	C C	R	R	D D	G	V I	s s	V V V V	1 1	1 (3 E	R	L L	R	W	HN	л (<u>Л</u> (; [) F	F	H	S	F	L V L V	
Y09108	V	F	R	ī	L	C	G	E	85 W	ī	E	N	M	W	V	C	M	E	86 V	s	Q 1	۷[،	/ I	C	L	T	L	87 F		Γ \ Γ \	/ 1V	I V	L	G	N N	L	880 V V]
mScn10a(GRI)	L <u>v</u>	<u> </u>	<u>п</u>	•	<u> </u>		<u>u</u>		89				.71	**		<u> </u>	141		90		<u>~</u> '	L					_	91					-				920	J
Y09108 mScn10a(GRI)	L	N N	L L	F	1	A A	L L	L L	L	N	s s	F	S S	A A	D D	N N	L L	T	A A	P P	E I) (0 0	G E	V	N N	N N	L I	Q I		\ L		R		Q Q		L G F G	
Y09108	H	R	A	s	R	A	1	Ŧ	93 S	30 Y	ī	R	s	Н	С	R	F	R	94 W		ΚV	/ 8	: 1	r Q	L	G	М	95 K		> <u>[</u>	. T	s	С	K	٧	E	960 N H N H	
mScn10a(GRI)	Н	R	Α	S	R	A	1	T	S	Υ	ı	R	s	Н	С	R	L	R	W	P	K١	/ [: 1	Q	L	G	M	K	P) (<u>. T</u>	S	С	K	A	E	N H]

Protein alignment Formatted Alignments Saturday, June 2, 2001 8:21 PM

1010 1020 1030	1040
Y09108 A E G E S D L D E L E E D V E Q A S Q S S W Q E E S P K G Q Q mScn10a(GRI) A E G E S D L D E L E E D V E H A S Q S S W Q E E S P K G Q -	E L L P Q V Q K C E L L Q Q V Q K C
1050 1060 1070 Y09108 ENHQAARSPTSGMSSEDLAPYLGERWKRKDN	1080 P Q V P A E G V D
Y09108 ENHQAARSPTSGMSSEDLAPYLGERWKRKDN mScn10a(GRI) EDHQAARSPPSGMSSEDLAPYLGERWQREES	PRVPAEGVD
1090 1100 1110	1120
V09108 DTSSSEGSTVDCPDPEEILRKIPELAEDLDE	PDDCFTEGC
mScn10a(GRI) DTSSSEGSTVDCPDPEEILRKIPELAEELDE	PDDCFPEGG
1130 1140 1150	1160
Y09108 TRRCPCCKVNTSKSPWATGWQVRKTCYRIVE mScn10a(GRI) TRRCPCCKVNTSKFPWATGWQVRKTCYRIVE	H S W F E S F I I
Y09108 F M I L L S S G T L A F E D N Y L E E K P R V K S V L E Y T D M Scn10a(GRI) F M I L L S S G A L A F E D N Y L E E K P R V K S V L E Y T D	RVFTFIFVF
mScn10a(GRI) FMILLSSGALAFEDNYLEEKPRVKSVLEYTD	RVFTFIFVF
1210 1220 1230	1240
Y09108 EMLLKWVAYGFKKYFTNAWCWLDFLIVNISL MScn10a(GRI) EMLLKWVAYGFKKYFTNAWCWLDFLIVNISL	T S L I A K I L E T S L I A K I L E
mountagon) (E m E E R W V X C G C R R C C C G C G C G C G C G C G C	
1250 1260 1270 Y09108 Y S D V A S I K A L R T L R A L R P L R A L S R F E G M R V V	1280 V D A L V G A I P
mScn10a(GRI) Y S D V A S I K A L R T L R A L R P L R A L S R F E G M R V V	VDALVGAIP
1290 1300 1310	1320
Y09108 SIMNVLLVCLIFWLIFSIMGVNLFAGKFSRC	VDTRSNPFS
mScn10a(GRI) SIMNVLLVCLIFWLIFSIMGVNLFAGKFSRC	VDIRSNPFS
1330 1340 1350	1360
Y09108 V V N S T F V N N K S D C H N Q N N T G H F F W V N V K V N F mScn10a(GRI) V V N S T F V T N K S D C Y N Q N N T G H F F W V N V K V N F	D N V A M G Y L A D N V A M G Y L A
1370 1380 1390 Y09108 L L Q V A T F K G W M D I M Y A A V D S R D I N S Q P N W E E	SLYMYLYFV
mScn10a(GRI) L L Q V A T F K G W M D I M Y A A V D S R D I N S Q P N W E E	SLYMYLYFV
1410 1420 1430	1440
Y09108	
, , , , , , , , , , , , , , , , , , ,	
1450 1460 1470 Y09108 KKYYNAMKKLGSKKPQKPIPRPLNKYQGFVF	1480 D I V T R Q A F D
mScn10a(GRI) KKYYNAMKKLGSKKPQKPIPRPLNKYQGFVF	DIVTRQAFD

Protein alignment Formatted Alignments Saturday, June 2, 2001 8:21 PM

	1530	1540	1550 1560
Y09108 TGECVMKV	FALRQYYFTN	IGWNVFDFIVV	I L S I A S L L F S A I
mScn10a(GRI) T G E C V M K M	FALRQYYFTN	IGWNVFDFIVV	ILSISSLLFSAI
	1570	1580	1590 1600
Y09108 LKSLESYF		. ARIGRILRLI	RAAKGIRTLLFA RAAKGIRTLLFA
mScn10a(GRI) L S S L E S Y F	SPTLLRVIRL	. ARIGRILRLI	RAAKGIRTLLFA
	1610	1620	1630 1640
Y09108 LMMSLPAL	FNIALLLFLV	MFIYSIFGMA	SFANVIDEAGID
mScn10a(GRI) L M M S L P A L	FNIGLLLFLV	/MFIYSIFGM	SFANVIDEAGID
	1650	1660	1670 1680
Y09108 DMFNFKTF			SPILNTGPPYCD
mScn10a(GRI) DMFNFKTF	GNSMLCLFQI	TTSAGWDGLL	SPILNTGPPYCD
	4000	4700	1710 1720
Y09108 PNRPNSNG	1690 ISKGNCGSPAV	1700 / G	ISFLIVVNMYIA
mScn10a(GRI) PNRPNSNG	ISK GN C G S P A V	/ G L F F T T Y	ISFLIVVNMYIA
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
			1700
WOLLE N. F. N. F. N. Y.	1730	1740	1750 1760 T W E K F D P E A T Q F I
Y09108 VILENFNV mScn10a(GRI) VILENFNV	ATEESTEPLS	;	WEKFDPEATQFI
mochroa(ord)	,,, <u>,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u>		
			1000
V 20 4 2 2 5 5	1770	1780	1790 1800 MDLPLVPGDKIH
Y09108 AFSALSDF mScn10a(GRI) AFSALSDF	ADILSGPLKI ADTISGPIRI	. PKPNUNILIU IPKPNONILIO	MDLPLVPGDKIH
mociroa(GN) AT SALSDI	ADILOGILII	1 11 11 11 11 11 11	
	1810	1820	1830 1840
Y09108 CLDILFAF mScn10a(GRI) CLDILFAF	TKNVLGESGE	:LDSEKINMEE :IDSIKTNMFF	K F M A T N L S K A S Y
IIISCITOA(GRI)	TRAVEGESGE	. L D O L R I I I III L L	- KI WAI WE O KIO
	1850	1860	1870 1880
Y09108 E P I A T T L R mScn10a(GRI) E P I A T T L R	ICKQEDISAT!	: IQKAYKNYML	QRSLMLSNT LHV
MSCHOOLGRI) EFIATIER	CRUEDISATI	TORATHUT	
	1890	1900	1910 1920
	SLPKGGYVTF	: MANDNGGLPE	O K S E T A S A T S F P P O K S E T A S A T S F P P
mScn10a(GRI) PRAEEDGV	SLPHEUTVIF	WANDNUULPL	/ ROEI A OA I OF PF
	1930	1940	1950 1960
Y09108 SYESVTRG	LSDRANINTS	SSMQNEDEVT	TAKEGNSPGPQN TAKEGKSPGPQN
mScn10a(GRI) SYDSVTRG	ILS DRANIS TS	SSMUNEDEVI	AREGNSPUN

Appendix D

Activation properties of Scn10a channels heterologously expressed in sympathetic neurons

Cell	1	2	3	4	5	6	7	8	9			
mV					Normali	ized Cond	luctance			Mean	SEM	N
-39	-0.003	-0.005	-0.001	-0.001	-0.003	-0.001	-0.003	-0.004	-0.004	-0.003	0.000	9
-34	-0.004	-0.006	-0.001	-0.003	-0.003	-0.001	-0.004	-0.004	-0.004	-0.003	0.001	9
-29	-0.005	-0.006	-0.002	-0.001	-0.004	0.000	-0.005	-0.005	-0.005	-0.003	0.001	9
-24	-0.003	-0.008	-0.002	-0.002	-0.001	0.002	-0.005	-0.003	-0.004	-0.003	0.001	9
-19	0.000	-0.004	0.000	0.000	0.003	0.006	-0.003	-0.002	-0.003	0.000	0.001	9
-14	0.011	0.006	0.006	0.011	0.015	0.025	0.005	0.005	0.003	0.010	0.002	9
-9	0.049	0.035	0.021	0.026	0.047	0.086	0.023	0.016	0.014	0.035	0.008	9
-4	0.153	0.122	0.068	0.064	0.111	0.203	0.091	0.044	0.051	0.101	0.018	9
1	0.343	0.294	0.179	0.152	0.236	0.353	0.235	0.125	0.154	0.230	0.028	9
6	0.554	0.529	0.346	0.280	0.396	0.501	0.430	0.268	0.322	0.403	0.036	9
11	0.722	0.750	0.508	0.431	0.558	0.625	0.624	0.439	0.502	0.573	0.038	9
16	0.872	0.905	0.661	0.575	0.718	0.736	0.775	0.599	0.664	0.723	0.038	9
21	0.963	1.001	0.782	0.727	0.847	0.822	0.896	0.752	0.793	0.843	0.031	9
26	1.011	0.958	0.890	0.837	0.919	0.909	0.965	0.868	0.900	0.917	0.018	9
31	0.966	0.753	0.978	0.934	0.972	1.004	0.993	0.957	0.984	0.949	0.025	9
Boltzmann equation parameters as determined by nonlinear regression												
Vh	5.07	5.42	11.21	13.49	9.33	6.90	8.12	13.16	11.43	9.35	1.06	9
k	5.43	4.75	6.73	7.26	6.72	7.81	5.74	6.53	6.30	6.36	0.31	9

Inactivation properties of Scn10a channels heterologously expressed in sympathetic neurons

Cell	1	2	3	4						
mV		Normalia	zed condu	ictance	Mean	SEM	N			
-59	1.000	1.000	1.000	1.000	1.000	0.000	4			
-53	1.011	0.998	1.001	0.985	0.999	0.005	4			
-48	0.960	0.992	0.952	0.976	0.970	0.009	4			
-44	0.956	0.963	0.883	0.933	0.934	0.018	4			
-38	0.936	0.918	0.772	0.840	0.866	0.038	4			
-34	0.907	0.841	0.611	0.717	0.769	0.066	4			
-28	0.825	0.723	0.432	0.539	0.630	0.089	4			
-23	0.658	0.560	0.278	0.348	0.461	0.089	4			
-18	0.388	0.347	0.145	0.147	0.257	0.065	4			
-14	0.127	0.137	0.046	0.046	0.089	0.025	4			
-9	0.027	0.034	0.017	0.023	0.025	0.004	4			
-4	0.004	0.008	0.004	0.009	0.006	0.001	4			
1	0.000	0.000	0.000	0.000	0.000	0.000	4			
Boltzn	Boltzmann equation parameters as determined by nonlinear regression									
Vh	-20.68	-22.51	-30.14	-27.66	-25.25	2.20	4			
K	-4.30	-5.56	-6.52	-5.89	-5.57	0.47	4			

Appendix E Activation properties of TTX-R sodium channels in mouse DRG neurons

Activation properties of TTX-R sodium channels in mouse DRG neurons												
Cell	1	2	3	4	5	6	7	8	9			
mV	_			N	ormaliz	ed Cond	ductanc	e		Mean		N
-58	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.000	0.0007	0.0001	9
-48	0.000	-0.002	0.000	0.000	0.001	0.000	0.000	-0.001	0.000	-0.0001	0.0003	9
-43	0.001	-0.001	0.000	0.000	0.001	0.000	0.000	0.001	0.000	0.0003	0.0002	9
-38	0.001	-0.001	0.000	0.002	0.004	-0.001	0.000	0.002	-0.001	0.0007	0.0005	9
-34	0.003	0.002	0.002	0.004	0.007	0.001	0.001	0.005	0.000	0.0028		9
-28	0.006	0.007	0.006	0.009	0.010	0.009	0.005	0.009	0.002	0.0069	0.0008	9
-24	0.013	0.022	0.016	0.020	0.017	0.029	0.015	0.018	0.007	0.0175	0.0021	9
-19	0.032	0.057	0.046	0.047	0.032	0.082	0.048	0.042	0.022	0.0454		9
-14	0.086	0.161	0.127	0.110	0.060	0.223	0.162	0.105	0.062	0.1217	0.0177	9
-9	0.244	0.373	0.312	0.268	0.134	0.437	0.433	0.271	0.184	0.2950	0.0349	9
-4	0.511	0.625	0.558	0.493	0.300	0.663	0.716	0.531	0.405	0.5335	0.0429	9
1	0.716	0.796	0.746	0.688	0.519	0.839	0.888	0.757	0.633	0.7313		9
6	0.852	0.903	0.861	0.824	0.718	0.947	0.978	0.914	0.804	0.8668	0.0265	9
11	0.935	0.969	0.933	0.921	0.859	0.999	1.000	0.988	0.923	0.9475	0.0153	9
16	0.982	1.000	0.988	0.983	0.957	1.000	0.963	1.000	0.986	0.9843		9
21	1.000	0.985	1.000	1.000	1.000	0.903	0.852	0.924	1.000	0.9628	0.0185	9
Boltzma	ann equa	tion par	ameters	s as dete	rmined	by nonl	inear re	egressior	1			
Vh	-3.61	-6.20	-4.72	-3.38	0.72	-7.56	-7.73	-4.48	-1.69	-4.29	0.91	9
k	4.94	4.97	5.25	5.53	5.40	5.00	3.99	4.55	4.99	4.96	0.15	9
Inactiv	Inactivation properties of TTX-R sodium channels in mouse DRG neurons											
Cell	1	2	3	4	. 5	6	7	8	9	N #	CITA I	N .T
mV					lormaliz				1 000	Mean		N
-58	1.000		1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.0000	0.0000	
52	0.072	0.000	0.088	1 000	1.002	n uat	0.089	0.991	0 988	0 9877	-0.0047	7

Cell	1	2	3	4	5	6	7	8	9		
mV	-	_	_		ormaliz	ed Cond	luctance	;		Mean	SEM N
-58	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.0000	0.0000 9
-53	0.972	0.990	0.988	1.009	1.002	0.961	0.989	0.991	0.988	0.9877	0.0047 9
-48	0.919	0.963	0.944	0.996	1.013	0.913	0.952	0.965	0.950	0.9572	0.0108 9
-43	0.810	0.878	0.869	0.943	0.974	0.805	0.870	0.892	0.859	0.8777	0.0183 9
-38	0.625	0.759	0.732	0.815	0.875	0.620	0.697	0.726	0.663	0.7236	0.0282 9
-33	0.369	0.567	0.513	0.583	0.680	0.420	0.421	0.452	0.390	0.4885	0.0347 9
-29	0.140	0.321	0.266	0.272	0.377	0.222	0.158	0.184	0.148	0.2321	0.0277 9
-23	0.046	0.125	0.087	0.079	0.145	0.125	0.049	0.084	0.058	0.0888	0.0119 9
-19	0.023	0.035	0.032	0.033	0.050	0.078	0.023	0.060	0.035	0.0410	0.0061 9
-14	0.013	0.011	0.015	0.015	0.023	0.042	0.013	0.035	0.020	0.0210	0.0036 9
-9	0.003	0.003	0.006	0.005	0.010	0.021	0.005	0.021	0.007	0.0091	0.0023 9
-4	0.001	0.002	0.001	0.000	0.000	0.005	0.002	0.009	0.003	0.0025	0.0010 9
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.0000	0.0000 9
Roltzma	Roltzmann equation parameters as determined by nonlinear regression										

Boltzmann equation parameters as determined by nonlinear regression

										-33.99		
k	-4.71	-4.78	-4.41	-3.66	-3.83	-5.54	-3.82	-3.97	-3.95	-4.30	0.21	9

•		20	40	60
	ATCTTCTTCTTCT	TCTTCTTCTTCTT	CTTCTTCTTCTTCTTCTT	CHCHCHCHC
9 4/25whole >			сттеттеттеттетт	
A 4/25whole >	ATCTTCTTCTTCT	гтсттсттсттстт	CTTCTTCTTCTTCTTCTT	сттсттсттсттс
B 4/25whole ▶	ATCTTCTTCTTCT	ттсттсттсттстт	CTTCTTCTTCTTCTTCTT	сттсттсттс
Intron1-in/A-Not! ▶				
Intron1-in/B-Notl ▶				
Intron1-out/A-Swal ◀				
Intron1-out/B-Swal ◀				
Intron1-out/A-Swal/I-Ceul 4				
Intron1-out/B-Swal/I-Ceul 4				
		•	100	120
	TYCTTCTCCTTCTCC	80 TTCTCCTTCTCCT	100 TCTCCTTCTCCTTCTCCTT	
9 4/25whole ▶	TTCTTCTCCTTCTCC	ттстссттстсст	тстссттстсстт	стссттстссттс
A 4/25whole >			тстссттстссттстсстт	
B 4/25whole ▶	TCCTTCTCCTTCTCC	ттстссттстсст	тстссттстссттстсстт	стссттстссттс
Intron1-in/A-Notl ▶				
Intron1-in/B-Notl >				
Intron1-out/A-Swal ◀				
Intron1-out/B-Swal ◀				
Intron1-out/A-Swal/I-Ceul ◀				
Intron1-out/B-Swal/I-Ceul ◀				
		140	160	180
	TCCTTCTCCTTCTCC	CTTCTNN:INNN:	MANNAMARANANNANNANNANNANNANNANNANNANNANNANNANN	липипипипипипипи
9 4/25whole >	TCCTTCTCCTTCTCC	ттстссттстсст	TCCCCTTCTCCTTCTCCTT	гстссттстссттс
A 4/25whole >			• • • • • • • • • • • • • • • • • • • •	
B 4/25whole ▶	TCCTTCTCCCTCTCC	ттстссттст	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • •
Intron1-in/A-NotI▶				
Intron1-in/B-NotI▶				
Intron1-out/A-Swal ◀				
Intron1-out/B-Swal ◀				
Intron1-out/A-Swal/I-Ceul 4				
Intron1-out/B-Swal/I-Ceul ◀				

· .	200 220 240 ECCCTTTTCTCGCCTCCTTCTTCCTT
9 4/25whole A 4/25whole B 4/25whole Intron1-in/A-Notl Intron1-in/B-Notl Intron1-out/A-Swal Intron1-out/B-Swal Intron1-out/B-Swal/I-Ceul Intron1-out/	TCCCTTTTCTCTGCCTCCTCCTCCTCCTCCTCCTCCTTCTT
	260 280 300 CTCTTCTTCTKWYYKCRKYSBYCCTTTCGAATGACKATSKMGSMMRYGACAACCAACAAT
9 4/25whole A 4/25whole B 4/25whole Intron1-in/A-Notl Intron1-in/B-Notl Intron1-out/A-Swal Intron1-out/B-Swal Intron1-out/B-Swal/I-Ceul Intron1-out/B-Swal/I-Ceul	CTCTTCTTCTTCATTGCTCCTTTCGAATGACTATGTAGCAAACGACAACCAAC
	320 340 360 CAGCAACCTACCCATAGGGGCTCTAGAATTTATGTCCTCTGAGAG
9 4/25whole > A 4/25whole > B 4/25whole > Intron1-in/A-Notl > Intron1-in/B-Notl > Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/B-Swal/I-Ceul 4	CAGCAACCTACCCATAGGGGCTCTAGAATTTATGTCCTCTGAGAGACCCCAGAATTCCAA CAGCAACCTACCCATAGGGGCTCTAGAATTTATGTCCTCTGAGAGTTCCCAGAATTCCAA CAGCAACCTACCCATAGGGGCTCTAGAATTTATGTCCTCTGAGAGTCCCCAGAATTCCAA CAGCAACC CAGCAACC

380 400 420 ATGTCACINCACTTGCAGAAACTACCTGCAACCGACAAAINTCTCGCCCCTGCTAGAGCAAG ATGTCACACACTTGCAGAAACTACCTGCAACCGACAAAGTCTCGCCCCTGCTAGAGCAAG 9 4/25whole ▶ A 4/25whole > ATGTCACACTTGCAGAAACTACCTGCAACCGACAAAATCTCGCCCCTGCTAGAGCAAG ATGTCACGCACTTGCAGAAACTACCTGCAACCGACAAAATCTCGCCCCTGCTAGAGCAAG B 4/25whole ▶ Intron1-in/A-Notl > Intron1-in/B-Notl ▶ Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/A-Swal/I-Ceul ◀ Intron1-out/B-Swal/I-Ceul 4 440 460 AGGCAAATCATAGTCAGCTGCTGTGGNTCAATCYKNAAGCAGCTCCATATCCCACACCCG AGGCAAATCATAGTCAGCTGCTGTGG.TCAATCCG.AAGCAGCTCCATATCCCACACCCG 9 4/25whole > AGGCAAATCATAGTCAGCTGCTGCGGGTCAATCTTGAAGCAGCTCCATATCCCACACCCG A 4/25whole > AGGCAAATCATAGTCAGCTGCTGTGG.TCAATCTG.AAGCAGCTCCATATCCCACACCCG B 4/25whole ▶ Intron1-in/A-NotI▶ Intron1-in/B-NotI▶ Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/A-Swal/I-Ceul ◀ Intron1-out/B-Swal/I-Ceul 4 500 520 GGATTAAAACAGACATACTCATAATATT CTG GATT TCTTCTTAAAGAAANGCAAAAT GGATTAAAACAGACATACTCATAATATTTCTGTGATTTTCTTCTTAAAGAAA.GCAAAAT 9 4/25whole > **GGATTAAAACAGACATACTCATAATATTTCTGGGATTCTCTTCTTAAAGAAAAGCAAAAT** A 4/25whole ▶ GGATTAAAACAGACATACTCATAATATT.CTGTGATTCTCTTCTTAAAGAAA.GCAAAAT B 4/25whole ▶ Intron1-in/A-NotI▶ Intron1-in/B-NotI▶ Intron1-out/A-Swal 4 Intron1-out/B-Swal 4 Intron1-out/A-Swal/I-Ceul 4 Intron1-out/B-Swal/I-Ceul 4

•	560 580 TTNYACTGCAATGAGGGAAAGATGTTCANAATTTATAAAGCTTAGTTTGT	600 TGGGGGAATGG
9 4/25whole A 4/25whole B 4/25whole Intron1-in/A-Notl Intron1-in/B-Notl Intron1-out/A-Swal Intron1-out/B-Swal Intron1-out/B-Swal/I-Ceul Intron1-out/B-Swal/I-Ceul		rggggaatgg
	620 640 GATGGAGCTTCTTACAAAGCAAGGAGNAARRCAATGGCTTCAGGGATATG	660 GANCAAANAC
9 4/25whole A 4/25whole B 4/25whole B 4/25whole B Intron1-in/A-Notl B Intron1-in/B-Notl B Intron1-out/A-Swal C Intron1-out/B-Swal Intron1-out/B-Swal/I-Ceul C Intron1-out/B-Swal/I-Ceul C Intron1-out/B-Swal/I-Ceul C		GAGCAAAGAC
	680 700 ACACCTGTGCTACCTGGATTTGTAGATGGACTGCAGAGGATGGAGGGGGG	720 GGG <mark>TNN</mark> CGGG
9 4/25whole A 4/25whole B 4/25	ACACCTGTGCTACCTGGATTTGTAGATGGACTGCAGAGGATGGAGGGGGGGG	GGGGGGGGG

r.	740 760 780 TATTGANGAGCTGGAGACAGAGATAGGGGGCTGCTCTGTCAATCAAGTAGGGGTGATGG
9 4/25whole >	.TATTGAAGAGCTGGAGACAGAGATAGGGGGCTGCTCTGTCAATCAA
A 4/25whole >	.TATTGAGGAGCTGGAGACAGAGATAGGGGGCTGCTCTGTCAATCAA
B 4/25whole ▶	GTATTGAGGAGCTGGAGACAGAGATAGGGGGCTGCTCTGTCAATCAA
Intron1-in/A-Notl▶	
Intron1-in/B-NotI▶	
Intron1-out/A-Swal 4	
Intron1-out/B-Swal ◀	
Intron1-out/A-Swal/I-Ceul ◀	
Intron1-out/B-Swal/I-Ceul ◀	
	800 820 840
	ACAGGAGGGTTGCAGTGGTCAGGCTGTCACCACTCTCTGGHTYTILCCTYMSRAWGAK
9 4/25whole ▶	ACAGGAGGGTTGCAGTGGTCAGGCTGTCACCACTCTCTGGTTATTTTCCTCCCAGAAGAG
A 4/25whole ▶	ACAGGAGGTTGCAGTGGTCAGGCTGTCACCACTCTCTGGTTATTTTCCTCCCAGAAGAG
B 4/25whole ▶	ACAGGAGGGTTGCAGTGGTCAGGCTGTCACCACTCTCTGGTTATTTTCCTCCCAGAAGAG
Intron1-in/A-NotI≱	
Intron1-in/B-NotI ▶	
Intron1-out/A-Swal ◀	GAG
Intron1-out/B-Swal ◀	GGTCAGGCTGTCACCACTCTCTGGATTT
Intron1-out/A-Swal/I-Ceul ◀	GAG
Intron1-out/B-Swal/I-Ceul ◀	GGTCAGGCTGTCACCACTCTCTGGTTCGCTACCTTAGGACCGTT
	860 880 900 KWRWW.CSWTYYCCAAGAAGWYKMAA.SWTEGRRYYSYYAT.KKKRYSMKT.GGAACT
9 4/25whole >	TGTAAATCCTTCCCCAAGAAGAATGAGAAGATGGAGTTCCCCTTTGGGTCCGTGGGAACT
A 4/25whole >	TGTAAATCCTTCCCCAAGAAGAATGAGAAGATGGAGTTCCCCTTTGGGTCCGTGGGAACT
B 4/25whole ▶	TGTAAATCCTTCCCCAAGAAGAATGAGAAGATGGAGTTCCCCTTTGGGTCCGTGGGAACT
Intron1-in/A-NotI▶	
Intron1-in/B-Notl ▶	
Intron1-out/A-Swal ◀	TGTAAATCCTTCCCCAAGAAGATTT
Intron1-out/B-Swal 4	
Intron1-out/A-Swal/I-Ceul ◀	TGTAAATCCTTCCCCAAGAAGTTCGCTACCTTAGGACCGTTATAGTTACGATTT
Intron1-out/B-Swal/I-Ceul ◀	ATAGTTACGATTT

,	920 ACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGC	940	960
9 4/25whole >	ACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGC		
A 4/25whole >	ACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGC		
B 4/25whole ▶	ACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGC		
Intron1-in/A-NotI▶			
Intron1-in/B-NotI ▶			
Intron1-out/A-Swal ◀			
Intron1-out/B-Swal ◀			
Intron1-out/A-Swal/I-Ceul ◀			
Intron1-out/B-Swal/I-Ceul ◀			

Appendix G:

Primers for 5' Rapid Amplification of cDNA Ends:

GCCAGCGACTCTGGAGTGAACCGTC- Scn10a5'RACE1 GACCAGCTCTGCTGGGAGCTCGC- Scn10a5'RACE2 GAACCTGGGCAGCTGGTTACAGGCC- Scn10a5'RACE3

ACE prod	ducts					
cn10a RAC	E Clone B from A	ATG out				
equence R	ange: 1 to 245 5	5'UTR (245-	+ cds)			
•	-		30	40	5.0	60
	CCGGACAAGTGTAA	AGTTTCGCAG	AGCTGGGGTCT	CCAGCTTAC	TTCTGCTAAT	GCTACCC
	70	80	90	100	110	120
	CAGGCCTTTAGACC					
			150			
	GAGCGGATCTCAT(GATCCCCGAGG	CTCATGGCTTI UTR MOUSE S	CAGTAGAGG CN10A	CAACCTGGGC'	TAAGAAG >
			210			240
	AGATCTCCGACTT	ACGGAGCAGC	AAAGAAGAGTG	TAAATCCTT	CCCCAAGAAG	AATGAGA
	>Start_codon AGATG					
GAG! AGC!	-	CGCCGCCAAC	GAAGGGCAGAC	CTAAGCAAA	GAGGACAGAA	
GAGT AGCA GCCC	 AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCG	CGCCGCCAAC TTGAAGGCCT	GAAGGGCAGAC	CTAAGCAAA	GAGGACAGAA	
GAGT AGCA GCCC GCCC Cn10a RAC	AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCG CAGGCCTCAGTTGGAC	CGCCGCCAAC TTGAAGGCCT	GAAGGGCAGAC TGTAACCAGCT	CTAAGCAAA	GAGGACAGAA	
GAGT AGCA GCCC GCCC Cn10a RAC	AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCG CAGGCCTCAGTTGGAC E Clone I from A ange: 1 to 209 5	CGCCGCCAAC TTGAAGGCCT ATG OUT 5'UTR (210- 20 FGCTAATGCT	GAAGGGCAGAC TGTAACCAGCT + cds) 30 ACCCCAGGCCT	CTAAGCAAA(GCCCAGGTT(40 TTAGACGGA	EAGGACAGAAC C 50 SAACAGATGG	egacaaga 60 cagatgg
GAGT AGCA GCCC GCCC Cn10a RAC	AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCG CAGGCCTCAGTTGGAC E Clone I from A ange: 1 to 209 !	CGCCGCCAAC TTGAAGGCCT ATG out 5'UTR (210- 20 TGCTAATGCT	GAAGGGCAGAC TGTAACCAGCT + cds) 30 ACCCCAGGCCT SCN10A 5'UT	CTAAGCAAA(GCCCAGGTT(40 TTAGACGGA(R	50 GAACAGATGG	GGACAAGA 60 CAGATGG
GAGT AGCA GCCC GCCC Cn10a RAC	AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCG CAGGCCTCAGTTGGAC E Clone I from A ange: 1 to 209 ! 10 ACGCGGGGGACTTCCT 70 AGTTTCTTCCTGCG	CGCCGCCAAC TTGAAGGCCT ATG out 5'UTR (210- 20 FGCTAATGCT 80 CATGCGCGAA	GAAGGGCAGAC TGTAACCAGCT + cds) 30 ACCCCAGGCCT SCN10A 5'UT	CTAAGCAAA(GCCCAGGTTC 40 TTAGACGGA R 100 TCTCATGAT	50 SAACAGATGG	60 CAGATGG 120 ATGGCTT
GAGT AGCA GCCC GCCC Cn10a RAC	AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCG CAGGCCTCAGTTGGAC E Clone I from A ange: 1 to 209 ! 10 ACGCGGGGGACTTCCT 70 AGTTTCTTCCTGCG	CGCCGCCAAC TTGAAGGCCT ATG out 5'UTR (210- 20 FGCTAATGCT 80 CATGCGCGAA	GAAGGGCAGAC TGTAACCAGCT + cds) 30 ACCCCAGGCCT SCN10A 5'UT	40 PTTAGACGGA R 100 PTCTCATGAT	50 SAACAGATGG	60 CAGATGG 120 ATGGCTT >
GAGT AGCA GCCC GCCC Cn10a RAC	AGATG TTCCCCTTTGGGTCCG AGATCGNTGCCCACCG CAGGCCTCAGTTGGAC E Clone I from A ange: 1 to 209 ! 10 ACGCGGGGACTTC	ECGCCGCCAAC ETTGAAGGCCT ATG out 5'UTR (210- 20 FGCTAATGCT. 80 CATGCGCGAA	GAAGGGCAGAC FGTAACCAGCT + cds) 30 ACCCCAGGCCT SCN10A 5'UT 90 TGCTGAGCGGC SCN10A 5'UT	40 TTAGACGGA TTAGACGGA TCTCTCATGAT 'R >S: 160	50 GAACAGATGG 110 CCCCGAGCTC.	60 CAGATGG 120 ATGGCTT nd_of_ex

>Start_codon

190 200 | AATCCTTCCCCAAGAAGAATGAGAAGATG __SCN10A 5'UT___>

 $\label{thm:cocttog} \textbf{GAGTTCCCCTTTGGGTCCGTGGGAACTACCAACTTCAGACGGTTCACTCCAGAGTCGCTGGCAGAGATCGAGAAGCAGACCAGACCAGACCAGACCAGAGCAGAAGAGGACAAGAGGACAAGAGGACAAGAGCCCAGGCCTCAGTTGGACTTGAAGGCCTGTAACCAGCTGCCCAGGTTC$

Appendix H:

LM-PCR primers: used for LM-PCR out (upstream) walking into the first intron 5' from the translational start site: (simply used RACE primers on genomic template instead of cDNA)

GCCAGCGACTCTGGAGTGAACCGTC- Scn10a5'RACE1 GACCAGCTCTGCTGGGAGCTCGC- Scn10a5'RACE2 GAACCTGGGCAGCTGGTTACAGGCC- Scn10a5'RACE3

Sequence of LM-PCR product generated by walking into the first intron 5' from the translational start site:

ATCTTCT'	10	20	30	40	50	60
	rcttcttct	TCTTCTTCTT	CTTCTTCTTC	TTCTTCTTCT	TCTTCTTCTT	CTTC
TTCTTCT	70	80	90	100	110	120
	CCTTCTCCT	TCTCCTTCTC	CTTCTCCTTC	TCCTTCTCCT	TCTCCTTCTC	CTTC
	130	140	150	160	170	180
	CCTTCTCCT	TCTCCTTCTC	CTTCCCCTTC	TCCTTCTCCT	TCTCCTTCTC	CTTC
	190	200	210	220	230	240
	rctctgcct	CCTCCTCCTT	CTCCTCCTCC	TTCTTCTCCT	TCCTCTTCTT	CCTT
	250	260	270	280	290	300
	PCTTTCTTC	ATTGCTCCTT	FCGAATGACT	ATGTAGCAAA	CGACAACCAA	CAAT
	310	320	330	340	350	360
	CTACCCATA	GGGGCTCTAG	AATTTATGTC	CTCTGAGAGA	CCCCAGAATT	CCAA
	370	380	390	400	410	420
	ACACTTGCA	GAAACTACCT	GCAACCGACA	AAGTCTCGCC	CCTGCTAGAG	CAAG
	430	440	450	460	470	480
	TCATAGTCA	GCTGCTGTGG'	FCAATCCGAA	GCAGCTCCAT	ATCCCACACC	CGGG
	490	500	510	520	530	540
	CAGACATAC'	TCATAATATT	FCTGTGATTT	TCTTCTTAAA	GAAAGCAAAA	TTTT
	550	560	570	580	590	600
	ATGAGGGAA	AGATGTCAAA	ATTTATAAAG	CTAGTTTGTG	GGGGAATGGG	ATGG
	610	620	630	640	650	660
	TACAAAGCA	AGGAGGAAAC	AATGGCTTCA	GGGATATGGA	GCAAAGACAC	ACCT
	670	680	690	700	710	720
	CTGGATTTG	TAGATGGACT	GCAGAGGATG	GAGGGGGGG	GGGCGGGTAT	TGAA
	730	740	750	760	770	780
	AGACAGAGA	TAGGGGGCTG	CTCTGTCAAT	CAAGTAGGGG	TGATGGACAG	GAGG
	790	800	810	820	830	840
	TGGTCAGGC'	TGTCACCACT	CTCTGGTTAT	TTTCCTCCCA	GAAGAGTGTA	AATC
	850	860	870	880	890	900
	AAGAAGAAT	GAGAAGATGG	AGTTCCCCTT	TGGGTCCGTG	GGAACTACCA	ACTT
	910 TTCACTCCA	920 GAGTCGCTGG	C			

Appendix I:

LM-PCR primers: used for LM-PCR out (upstream) from the RACE products

CAGGTTGCCTCTACTGAAAGCCATGAGC –LMPCRScn10a-1 GCTCAGCATTCGCGCATGGCAGG –LMPCRScn10a-2 CTCCATCTGCCATCTGTTCTCCGTC –LMPCRScn10a-3 CTCCATCTGCCATCTGTTCTCCGTC –LMPCRScn10a-3a CTCCGTCTAAAGGCCTGGGGTAGC –LMPCRScn10a

Sequence of combined two rounds of LM-PCR 5' from ends of RACE products:

10 ATTCCAGTTGCT	20 GAGTGGAGAGA	30 GCACTGTAGG	40 GTCATGGAAG	50 GACAGTGGGG	60 AGGTCTG
70 TTAGAGGTCCTT	80 GAAATTATATA	90 GTGACCTCGC	100 CATGATGGTG	110 GTCTCAGAGA	120 rcgagag
130 ATGATGTAATCA				170 CAGAAAGAGGG	180 GCTGTGG
190 ACGAGGGACGGC	200 TCTTGGATTAC	210 CTCTAGATGC	220 TGGGCTTGTG.	230 AGTCCAGGCA	240 AGCAGAG
250 TGTTCTTGGAGA	260 GGCTTCTCTGG	270 GGGAGGATCA	280 TTCTGAGCAG	290 GGCACAGGCA	300 CAGAAAT
310 CATTAGTCCATC			340 AGTGGAGTGT	350 CCATGAAGGG	360 AAATTCA
370 GGCTTCTACCAC	380 ATTAGTGTATA	390 TTTAAATCTG	400 ACACCAGGAG.	410 AGAGATTTATO	420 GATGGAG
430 CTGACAGACTCC					
490 GGATGGAATCTT	AAAACGATTCT	CCAACTACTT			
550 GGCCAGAGAAGC					
610 GCAGCTAATCCT					
670 GAGACCAGTAGA		ATTCCGGGTG			
730 TCTTCCTTCTTG					
790 TCAAAGAAGAGA					
850 CGTGGTGGGGAA		GGCAAGCATG			
910 TATCTTTGTCTG	920 TATACAGAAAG	930 CAGAGAGAGC	940 CAACTGGGAA	950 FGACTTGTGG	960 CTTTTGG

CAACGGGTGCTGCTCTGCCACGCAGGGGCAGCGGTGGGACTCAGCCCATCCTGCTAAGGA

3620 3630

CGGGCAGCCTGAGCCAGGCTTGGGAGTCTGTCATGGCTGCCAGACGAATCATTATCTAAT

3670 3680 3690 3700 3710 3720
TGCAGCCTTTTCTTCTTCCTTAGGTTTCAGCAGGTCCCGAGAGAGCATTTAAAATCGCATT

3640 3650

3660

3730 3740 3750 3760 3770 3780 TACTACTTTACCATCTAATCACACATAAGCCTCTCCCTATACCCTCCACCCTCCTTCCAT

3790 3800 3810 3820 3830 3840 TCAGAGTGTACTTTCTGGAGCCCATCCAGCAAGCAGGGTGGAACTCATGACGGGAAATGG

3850 3860 3870 3880 3890 3900 GAACGGCGCCCACGAAGGCGTGATTCCTTGTAGATCCTTGAGTGATGGACGGGTGAGGTT

3910 3920 3930 3940 3950 3960 TCCGTCAGGCAAGCCCAGCCACCTTCGTGGAGGAGCCCCGGACAAGTGTAAGTTTCGCAG

3970 3980 3990 4000 4010 4020 AGCTGGGGTCTCCAGCTTACTTCTGCTAATGCTACCCCAGGCCTTTAGACGGAGAACAGA

4030 TGGCAGATGGAG

3610

Appendix J:

Primers for genomic screening of mouse library:

CCTGTGTGTGCTGTAAAAAGGATC - EX1-3' OUT TGAGAAGATGGAGTTCCCCTTTGG – EX1-5' IN

Amplified fragment for PCR screening of mouse genomic library:

10	20	30	40	50	60		
TGAGAAGATGGA	GTTCCCCTTTGG	GTCCGTGGG	AACTACCAAC!	TTCAGACGGT	CACTCC		
70	80	90	100	110	120		
AGAGTCGCTGGC.	AGAGATCGAGAA	GCAGATCGC'	TGCCCACCGC	GCCGCCAAGA	AGGGCAG		
130	140	150	160	170	180		
AACTAAGCAAAG.	AGGACAGAAGGA	CAAGAGTGA	GAAGCCCAGG	CCTCAGTTGG	ACTTGAA		
					0.40		
190	200	210	220	230	240		
GGCCTGTAACCAGCTGCCCAGGTTCTATGGCGAGCTCCCAGCAGAGCTGGTCGGGGAGCC							
250	260	270					
CCTGGAGGACCT	GGATCCTTTTTA	CAGCACACA	CAGG				

Souslova VA, Fox M, Wood JN, and Akopian AN "Cloning and Characterization of a Mouse Sensory Neuron Tetrodotoxin-Resistant Voltage-Gated Sodium Channel Gene, Scn10a" *Genomics* **41**, 201-209 (1997).