Department of Mathematics Indian Institute of Technology, Bombay

MA 106: Mathematics II

Tutorial Sheet No.1

Autumn 2016

AR

Topics: Matrix addition, Scalar multiplication, Transposition, Matrix multiplication, Elementary row operations, matrices as linear maps, GEM and GJEM.

1. Show that every square matrix A can be written as S+T in a unique way, where S is symmetric and T is skew-symmetric.

Solution. $S = \frac{A + A^T}{2}$, $T = \frac{A - A^T}{2}$. Further, $A = S' + T' \Longrightarrow A^T = S' - T' \Longrightarrow S' = \frac{A + A^T}{2} = S$, $T' = \frac{A - A^T}{2} = T$.

- 2. A linear combination of matrices A and B of the same size is an expression of the form P = aA + bB, where a, b are arbitrary scalars. Show that for the square matrices A, B, the following is true: (i)If these are symmetric then so is P. (ii)If these are skewsymmetric, then so is P. (iii)If these are upper triangular, then so is P.
- 3. Let A and B be symmetric matrices of the same size. Show that AB is symmetric if and only if AB = BA.

Solution. $(AB)^T = AB \iff B^TA^T = AB \iff BA = AB$.

4. Consider $\begin{bmatrix} 1 \\ -1 \end{bmatrix}$ as a linear map $\mathbb{R} \longrightarrow \mathbb{R}^2$. Show that its range is a line through $\mathbf{0}$.

Similarly, show that $\begin{bmatrix} 1 & -1 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$ as a linear map from $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$ has its range as a plane

through **0**. Find its equation.

Solution. (i) $A(t) = \begin{bmatrix} 1 \\ -1 \end{bmatrix} [t] = \begin{bmatrix} t \\ -t \end{bmatrix} = \begin{bmatrix} x(t) \\ y(t) \end{bmatrix}$, say. Thus x(t) = t, y(t) = -t which

are parametric equations of the line x + y = 0 through **0**.

$$(ii)B\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ -1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} u-v \\ -u+2v \\ v \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \text{ say. Thus } x = u-v, \ y = 2v-u, \ z = v-v =$$

v are the parametric equations of the plane x + y - z = 0 through 0.

5. Consider the matrices:

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Determine the images of (i) Unit square $\{0 \le x \le 1, \ 0 \le y \le 1\}$, (ii) Unit circle $\{x^2 + y^2 = 1\}$ and (iii) Unit disc $\{x^2 + y^2 \le 1\}$ under the above matrices viewed as linear maps $\mathbb{R}^2 \longrightarrow \mathbb{R}^2$.

Solution.

- The matrix $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$:
 - (i) The parallellogram with vertices at $\{(0,0),(-1,-1),(-1,0),(0,1)\}$.
 - (ii) The ellipse $\{x^2 2xy + 2y^2 = 1\}$.
 - (iii) Elliptic disc enclosed by (ii).
- The matrix $\begin{bmatrix} -1 & 0 \\ -1 & 1 \end{bmatrix}$:
 - (i) The parallellogram with vertices at $\{(0,0),(1,0),(2,1),(1,1)\}$.
 - (ii) The ellipse $\{2x^2 2xy + y^2 = 1\}$.
 - (iii) Elliptic disc enclosed by (ii).
- The matrix $\begin{bmatrix} 2 & 0 \\ 0 & -3 \end{bmatrix}$:
 - (i) The parallellogram (actually rectangle) with vertices at $\{(0,0),(2,0),(2,-3),(0,-3)\}$.
 - (ii) The ellipse $\left\{\frac{x^2}{4} + \frac{y^2}{9} = 1\right\}$.
 - (iii) Elliptic disc enclosed by (ii).
- The matrix $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$:
 - (i) The segment [0,1] along the x-axis.

(ii)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos t \\ \sin t \end{bmatrix} = \begin{bmatrix} \cos t + \sin t \\ 0 \end{bmatrix} \implies \text{the segment } [-\sqrt{2}, \sqrt{2}] \text{ along the } x\text{-axis. (iii) Same as (ii).}$$

- The matrix $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$:
 - (i) The segment from (0,0) to (1,1) along the line $\{x=y\}$.

(ii)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \cos t \\ \sin t \end{bmatrix} = \begin{bmatrix} \cos t + \sin t \\ \cos t + \sin t \end{bmatrix} \implies \text{the segment between } \pm(\sqrt{2}, \sqrt{2})$$
 along the line $\{x = y\}$. (iii) Same as (ii).

- The matrix $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$:
 - (i) The segment [0,1] along the x-axis.

(ii)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \cos t \\ \sin t \end{bmatrix} = \begin{bmatrix} \sin t \\ 0 \end{bmatrix} \implies \text{the segment } [-1, 1] \text{ along the } x\text{-axis. (iii)}$$
 Same as (ii).

6. Find the inverses of the following matrices using elementary row-operations:

$$\begin{bmatrix} 1 & 3 & -2 \\ 2 & 5 & -7 \\ 0 & 1 & -4 \end{bmatrix}, \begin{bmatrix} 1 & -x & e^x \\ 0 & 1 & x \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{bmatrix}.$$

Solution.

$$\begin{bmatrix} 1 & 3 & -2 & | & 1 & 0 & 0 \\ 2 & 5 & -7 & | & 0 & 1 & 0 \\ 0 & 1 & -4 & | & 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & -1 & -3 & | & -2 & 1 & 0 \\ 0 & 1 & -4 & | & 0 & 0 & 1 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 1 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & -1 & -3 & | & -2 & 1 & 0 \\ 0 & 0 & -7 & | & -2 & 1 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & 2 & -1 & 0 \\ 0 & 0 & -7 & | & -2 & 1 & 1 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 1 & 3 & -2 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & 2 & -1 & 0 \\ 0 & 0 & -7 & | & -2 & 1 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & -11 & | & -5 & 3 & 0 \\ 0 & 1 & 3 & | & 2 & -1 & 0 \\ 0 & 0 & 1 & | & 2/7 & -1/7 & -1/7 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 1 & 0 & 0 & | & -13/7 & 10/7 & -11/7 \\ 0 & 1 & 0 & | & 8/7 & -4/7 & 3/7 \\ 0 & 0 & 1 & | & 2/7 & -1/7 & -1/7 \end{bmatrix}.$$

Therefore, the inverse is $\begin{bmatrix} -13 & 10 & -11 \\ 8 & -4 & 3 \\ 2 & -1 & -1 \end{bmatrix}$

$$\begin{bmatrix} 1 & -x & e^x & 1 & 0 & 0 \\ 0 & 1 & x & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & x^2 + e^x & 1 & x & 0 \\ 0 & 1 & x & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 1 & 0 & 0 & 1 & x & -x^2 - e^x \\ 0 & 1 & 0 & 0 & 1 & -x \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

Therefore, the inverse is $\begin{bmatrix} 1 & x & -x^2 - e^x \\ 0 & 1 & -x \\ 0 & 0 & 1 \end{bmatrix}.$

 $\begin{bmatrix} \cos x & -\sin x & 1 & 0 \\ \sin x & \cos x & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} \cos x & -\sin x & 1 & 0 \\ 0 & \sec x & -\tan x & 1 \end{bmatrix}$ $\mapsto \begin{bmatrix} \cos x & -\sin x & 1 & 0 \\ 0 & 1 & -\sin x & \cos x \end{bmatrix} \mapsto \begin{bmatrix} \cos x & 0 & \cos^2 x & \sin x \cos x \\ 0 & 1 & -\sin x & \cos x \end{bmatrix}$

$$\mapsto \begin{bmatrix} 1 & 0 & \cos x & \sin x \\ 0 & 1 & -\sin x & \cos x \end{bmatrix}.$$

Therefore, the inverse is $\begin{bmatrix} \cos x & \sin x \\ -\sin x & \cos x \end{bmatrix}.$

7. Compute the last row of the inverse of the following matrices:

(i)
$$\begin{vmatrix} 1 & 0 & 1 \\ 8 & 1 & 0 \\ -7 & 3 & 1 \end{vmatrix} .$$

Solution.

$$\begin{bmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 8 & 1 & 0 & | & 0 & 1 & 0 \\ -7 & 3 & 1 & | & 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 8 & 1 & 0 & | & 0 & 1 & 0 \\ -8 & 3 & 0 & | & -1 & 0 & 1 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 1 & 0 & 1 & | & 1 & 0 & 0 \\ 8 & 1 & 0 & | & 0 & 1 & 0 \\ 8 & 1 & 0 & | & 0 & 1 & 0 \\ -32 & 0 & 0 & | & -1 & -3 & 1 \end{bmatrix} \mapsto \begin{bmatrix} -32 & 0 & 0 & | & -1 & -3 & 1 \\ 8 & 1 & 0 & | & 0 & 1 & 0 \\ 1 & 0 & 1 & | & 1 & 0 & 0 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} -32 & 0 & 0 & | & -1 & -3 & 1 \\ 8 & 1 & 0 & | & 0 & 1 & 0 \\ 32 & 0 & 32 & | & 32 & 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} -32 & 0 & 0 & | & -1 & -3 & 1 \\ 8 & 1 & 0 & | & 0 & 1 & 0 \\ 0 & 0 & 32 & | & 31 & -3 & 1 \end{bmatrix}$$

Therefore, the last row of the inverse is $\begin{bmatrix} \frac{31}{32} & \frac{-3}{32} & \frac{1}{32} \end{bmatrix}$.

(ii)
$$\begin{vmatrix} 2 & 0 & -1 & 4 \\ 5 & 1 & 0 & 1 \\ 0 & 1 & 3 & -2 \\ -8 & -1 & 2 & 1 \end{vmatrix} .$$

Solution.

$$\begin{bmatrix} 2 & 0 & -1 & 4 & | & 1 & 0 & 0 & 0 \\ 5 & 1 & 0 & 1 & | & 0 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & | & 0 & 0 & 1 & 0 \\ -8 & -1 & 2 & 1 & | & 0 & 0 & 0 & 1 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & -1 & 4 & | & 1 & 0 & 0 & 0 \\ 5 & 1 & 0 & 1 & | & 0 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & | & 0 & 0 & 1 & 0 \\ -10 & -1 & 3 & -3 & | & -1 & 0 & 0 & 1 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 2 & 0 & -1 & 4 & | & 1 & 0 & 0 & 0 \\ 5 & 1 & 0 & 1 & | & 0 & 1 & 0 & 0 \\ 5 & 1 & 0 & 1 & | & 0 & 1 & 0 & 0 \\ 0 & 1 & 3 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 1 & 3 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 1 & 3 & -2 & | & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & | & -1 & 2 & -1 & 1 \end{bmatrix}.$$

Therefore, the last row of the inverse is $\begin{bmatrix} -1 & 2 & -1 & 1 \end{bmatrix}$.

8. A Markov or stochastic matrix is an $n \times n$ matrix $[a_{ij}]$ such that $a_{ij} \geq 0$ and $\sum_{j=1}^{n} a_{ij} = 1$. Prove that the product of two Markov matrices is again a Markov matrix. Solution. Let $A = [a_{jk}]$ and $B = [b_{k\ell}]$ be Markov matrices and $C = AB = [c_{j\ell}]$.

$$\sum_{\ell=1}^{n} c_{j\ell} = \sum_{\ell=1}^{n} \left[\sum_{k=1}^{n} a_{jk} b_{k\ell} \right]$$

$$= \sum_{k=1}^{n} a_{jk} \left[\sum_{\ell=1}^{n} b_{k\ell} \right]$$

$$= \sum_{k=1}^{n} a_{jk} = 1.$$

9. Let $\Pi = \begin{bmatrix} 3 & -1 & 4 \\ -1 & 5 & -9 \\ 2 & -6 & 5 \end{bmatrix}$. Compute the products. (Note the patterns):

$$(i) \ \Pi \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \Pi \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \Pi \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}, \ [1\ 0\ 0]\Pi, \ [0\ 1\ 0]\Pi, \ [0\ 0\ 1]\Pi.$$

$$(ii) \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \nu \end{bmatrix} \Pi, \ \Pi \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \mu & 0 \\ 0 & 0 & \nu \end{bmatrix}, \ \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Pi, \ \Pi \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

$$(iii) \begin{bmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \Pi, \ \Pi \begin{bmatrix} 1 & \lambda & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \mu & 0 & 1 \end{bmatrix} \Pi, \ \Pi \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \mu & 0 & 1 \end{bmatrix}.$$

10. Let A be a square matrix. Prove that there is a set of elementary matrices E_1 , E_2 , ..., E_N such that $E_N...E_2E_1A$ is either the identity matrix or its bottom row is zero.

Solution. (i) Applying row operations is equivalent to multiplying by ERM's on the left.

- (ii) Can achieve $E_N...E_2E_1A$ to be the <u>reduced</u> row-echelon form. There are either n pivots or less than n.
- (a) If less than n, then the last row is zero.
- (b) If equal to n, then by the definition of reduced REF must be identity since the pivots are forced to occupy the diagonal entries.
- 11. List all possibilities for the reduced row echelon matrices of order 4×4 having exactly one pivot. Count the number of free parameters (degrees of freedom) in each case. For

Repeat for 0, 2, 3 and 4 pivots.

Solution.

- For 0 pivots the only possibility is the zero-matrix.
- For 1 pivot there are 4 possibilities

• For 2 pivots there are 6 possibilities

$$\begin{bmatrix} 1 & 0 & * & * \\ 0 & 1 & * & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ 4 degrees of freedom, } \begin{bmatrix} 1 & * & 0 & * \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ 3 degrees of freedom, }$$

$$\begin{bmatrix} \boxed{1} & * & * & 0 \\ 0 & 0 & 0 & \boxed{1} \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ 2 degrees of freedom, } \begin{bmatrix} 0 & \boxed{1} & 0 & * \\ 0 & 0 & \boxed{1} & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ 2 degrees of freedom, } \begin{bmatrix} 0 & \boxed{1} & 0 & * \\ 0 & 0 & \boxed{1} & * \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 1 & * & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
1 degree of freedom,
$$\begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
 no degree of freedom.

• For 3 pivots there are 4 possibilities

$$\begin{bmatrix} \boxed{1} & 0 & 0 & * \\ 0 & \boxed{1} & 0 & * \\ 0 & 0 & \boxed{1} & * \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ 3 degrees of freedom, } \begin{bmatrix} \boxed{1} & 0 & * & 0 \\ 0 & \boxed{1} & * & 0 \\ 0 & 0 & 0 & \boxed{1} \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ 2 degrees of freedom, }$$

$$\begin{bmatrix} 1 & * & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ 1 degree of freedom, } \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ nil degrees of freedom. }$$

- For 4 pivots there is only the identity matrix $\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$
- 12. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$. Verify that $(A I)^3 = [0]$ and so the inverse is $A^2 3A + 3I$.

Compute the same and verify by multiplying.

Solution.

$$(A-I)^{3} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}^{3}$$

$$= \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = A^{3} - 3A^{2} + 3A - I.$$

$$\therefore A^{-1} = A^2 - 3A + 3I = (A - I)^2 - (A - I) + I = \begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}.$$

Verifcation:
$$\begin{bmatrix} 1 & -1 & 2 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

13. Let
$$X = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}$$
. (i) Show that $X^n = \begin{bmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{bmatrix}$, for all $\lambda \in \mathbb{R}, n \ge 1$.

(ii) If, as per the standard convention, we let $X^0 = \vec{\mathbf{I}}$ (even when X = [0]), then show that $e^X = e^{\lambda} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$.

(iii) Show that (i) holds for integers m=0 and also m<0 if $\lambda \neq 0$. Solution.

(i) Since the equation is true for n = 1, assume for n. Then

$$X^{n+1} = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix} \begin{bmatrix} \lambda^n & n\lambda^{n-1} \\ 0 & \lambda^n \end{bmatrix}$$
$$= \begin{bmatrix} \lambda^{n+1} & (n+1)\lambda^n \\ 0 & \lambda^{n+1} \end{bmatrix}.$$

(ii)
$$e^{X} \stackrel{def}{=} \mathbf{I} + X + \frac{X^{2}}{2!} + \frac{X^{3}}{3!} + \dots = \begin{bmatrix} e^{\lambda} & e^{\lambda} \\ 0 & e^{\lambda} \end{bmatrix}.$$

(iii) For n=0 we trivially get **I**. For n=-1 we get the matrix $\begin{bmatrix} \lambda^{-1} & -\lambda^{-2} \\ 0 & \lambda^{-1} \end{bmatrix} = \begin{bmatrix} -\lambda & 1 \end{bmatrix}$

$$(-\lambda^{-2})$$
 $\begin{bmatrix} -\lambda & 1 \\ 0 & -\lambda \end{bmatrix}$ which is actually the inverse X^{-1} .

Applying (i), we find
$$X^{-n} = \left(-\lambda^{-2}\right)^n \begin{bmatrix} (-\lambda)^n & n(-\lambda)^{n-1} \\ 0 & (-\lambda)^n \end{bmatrix} = \begin{bmatrix} \lambda^{-n} & -n\lambda^{-n-1} \\ 0 & \lambda^{-n} \end{bmatrix}$$
.

Therefore,
$$X^m = \begin{bmatrix} \lambda^m & m\lambda^{m-1} \\ 0 & \lambda^m \end{bmatrix}$$
, where $m = -n < 0$.

Tutorial Sheet No.2

Autumn 2016 AR

Topics: \mathbb{R}^n , subspaces, linear independence, rank of a matrix, solvability of linear systems using rank.

- 1. Suppose that the state of land use in a city area in 2003 was
 - 1 (Residential) 30percent
 - 2 (Commercial) 20percent
 - 3 (Industrial) 50percent

Estimate the states of land use in 2008, 2013, 2018, assuming that the transitional prob-

abilities for 5-year intervals are given by the stochastic matrix $\begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}$, where

 $(i,j)^{th}$ entry is the probability for the i^{th} type to change to the j^{th} type. (For e.g. 0.2 is the probability for commercially used land to become industrial in a 5-year interval.)

Solution. Let R, C and I denote the residential, the commercial and the industrial us-

age respectively in percentages. The given stochastic matrix represents schematically,

the probabilities of the transitions: $\begin{bmatrix} R \mapsto R & R \mapsto C & R \mapsto I \\ C \mapsto R & C \mapsto C & C \mapsto I \\ I \mapsto R & I \mapsto C & I \mapsto I \end{bmatrix}$. Clearly, after 5 years

$$[R \ C \ I] = [R_0 \ C_0 \ I_0] S.$$

Hence

$$[R C I]_{2008} = [30 \ 20 \ 50] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}$$
$$= [26 \ 22 \ 52]$$

$$[R C I]_{2013} = [26 22 52] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}$$
$$= [23.0 \ 23.2 \ 53.8]$$

$$[R C I]_{2018} = [23.0 \ 23.2 \ 53.8] \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}$$
$$= [20.72 \ 23.92 \ 55.36]$$

Remark 0.0.1. Note that $[R \ C \ I] = [12.5 \ 25.0 \ 62.5]$ gives the equilibrium solution.

2. Find whether the following sets of vectors are linearly dependent or independent:

(i)
$$[1,-1,1],[1,1,-1],[-1,1,1],[0,1,0].$$

(ii)
$$[1, 9, 9, 8], [2, 0, 0, 3], [2, 0, 0, 8].$$

Solution. (i) 2[0, 1, 0] = [1, 1, -1] + [-1, 1, 1] hence linearly dependent.

Aliter:

$$\begin{bmatrix}
1 & -1 & 1 \\
1 & 1 & -1 \\
-1 & 1 & 1 \\
0 & 1 & 0
\end{bmatrix}
\mapsto
\begin{bmatrix}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}$$

Hence dimension lin span $= 3 < 4 \Longrightarrow$ lin DEPendent

Aliter-2:(changing to colulmns)

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ -1 & 1 & 1 & 1 \\ 1 & -1 & 1 & 0 \end{bmatrix} \mapsto \begin{bmatrix} \boxed{1} & 1 & -1 & 0 \\ 0 & \boxed{2} & 0 & 1 \\ 0 & 0 & \boxed{2} & 1 \end{bmatrix}$$

Hence dimension lin span $= 3 < 4 \Longrightarrow$ lin DEPendent. Moreover, on dropping the fourth vector we get a linearly independent set, since the fourth column is pivot-free

(ii)
$$a[1,9,9,8] + b[2,0,0,3] + c[2,0,0,8] = [0,0,0,0]$$

 $\implies a+2b+2c=9a=8a+3b+8c=0 \implies a=0,\ b=0,\ c=0.$ Hence linearly independent.

Aliter:(changing to colulmns)

$$\begin{bmatrix} 1 & 2 & 2 \\ 9 & 0 & 0 \\ 9 & 0 & 0 \\ 8 & 3 & 8 \end{bmatrix} \mapsto \begin{bmatrix} \boxed{1} & 2 & 2 \\ 0 & \boxed{1} & 1 \\ 0 & 0 & \boxed{5} \\ 0 & 0 & 0 \end{bmatrix}.$$

No. of pivots = 3 = no. of vectors, hence lin. INDependent.

3. Find the ranks of the following matrices:

(i)
$$\begin{bmatrix} 8 & -4 \\ -2 & 1 \\ 6 & -3 \end{bmatrix}$$
, (ii) $\begin{bmatrix} m & n \\ n & m \\ p & p \end{bmatrix}$ $(m^2 \neq n^2)$, (iii) $\begin{bmatrix} 0 & 8 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 4 & 5 \end{bmatrix}$.

Solution. (i) By row operations, $\begin{bmatrix} 8 & -4 \\ -2 & 1 \\ 6 & -3 \end{bmatrix} \mapsto \begin{bmatrix} 2 & -1 \\ -2 & 1 \\ 2 & -1 \end{bmatrix} \mapsto \begin{bmatrix} 2 & -1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$. Rank is 1.

(ii)
$$\begin{bmatrix} m & n \\ n & m \\ p & p \end{bmatrix} \mapsto \begin{bmatrix} m+n & n+m \\ n & m \\ p & p \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 \\ n & m \\ 0 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 1 \\ 0 & m-n \\ 0 & 0 \end{bmatrix}$$
. Rank is 2.

Remark 0.0.2. We used the fact that $m \pm n \neq 0$.

(iii)
$$\begin{bmatrix} 0 & 8 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & 3 \\ 0 & 4 & 5 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 \\ 0 & 8 & -1 \\ 0 & 4 & 5 \\ 0 & 0 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & -11 \\ 0 & 4 & 5 \\ 0 & 0 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & -11 \\ 0 & 4 & 5 \\ 0 & 0 & 0 \end{bmatrix} . \text{ Rank is 3.}$$

4. Solve the following system of linear equations in the unknowns x_1, \ldots, x_5 by GEM:

(i)
$$2x_3 - 2x_4 + x_5 = 2$$
 (ii) $2x_1 - 2x_2 + x_3 + x_4 = 1$ $2x_2 - 8x_3 + 14x_4 - 5x_5 = 2$ $-2x_2 + x_3 + 7x_4 = 0$ $x_2 + 3x_3 + x_5 = \alpha$ $3x_1 - x_2 + 4x_3 - 2x_4 = -2$ Solution. (i) Augmented matrix is
$$\begin{bmatrix} 0 & 0 & 2 & -2 & 1 & 2 \\ 0 & 2 & -8 & 14 & -5 & 2 \\ 0 & 1 & 3 & 0 & 1 & \alpha \end{bmatrix}$$
.

A REF is
$$\begin{bmatrix} 0 & \boxed{1} & 3 & 0 & 1 & \alpha \\ 0 & 0 & \boxed{2} & -2 & 1 & 2 \\ 0 & 0 & 0 & 0 & \boxed{16-2\alpha} \end{bmatrix}.$$
 Hence no solutions if $\alpha \neq 8$.

For
$$\alpha = 8$$
, the REF is $\begin{bmatrix} 0 & \boxed{1} & 3 & 0 & 1 & 8 \\ 0 & 0 & \boxed{2} & -2 & 1 & 2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ and the solution set is $x_3 = 1 + x_4 - x_5/2$, $x_2 = 5 - 3x_4 + x_5/2$; x_1, x_4, x_5 being arbitrary.

(ii) Augmented matrix
$$\begin{bmatrix} 2 & -2 & 1 & 1 & 1 \\ 0 & -2 & 1 & 7 & 0 \\ 3 & -1 & 4 & -2 & -2 \end{bmatrix}.$$
A REF is
$$\begin{bmatrix} 2 & -2 & 1 & 1 & 1 \\ 0 & -2 & 1 & 7 & 0 \\ 0 & 0 & 1 & 1 & -1 \end{bmatrix}$$
. Hence the solution set is
$$x_3 = -x_4 - 1, \ x_2 = 3x_4 - 1/2; \ x_1 = 3x_4 + 1/2; \ x_4 \text{ being arbitrar}.$$

5. Determine the equilibrium solution $(D_1 = S_1, D_2 = S_2)$ of the two-commodity market with linear model (D, S, P) = (demand, supply, price):

$$D_1 = 40 - 2P_1 - P_2$$
 $S_1 = 4P_1 - P_2 + 4$
 $D_2 = 16 + 5P_1 - 2P_2$ $S_2 = 3P_2 - 4$.

Solution. Equilibrium condition implies

$$40 - 2P_1 - P_2 = 4P_1 - P_2 + 4$$

$$16 + 5P_1 - 2P_2 = 3P_2 - 4$$

$$\implies P_1 = 6, P_2 = 5.$$

6. For the following linear systems, find solvability by comparing the ranks of the coefficient matrix and the augmented matrix. Write down a basis for the solutions of the associated homogeneous systems and hence describe the general solution of each of the systems.

(i)
$$-2x_4 + x_5 = 2$$
 (ii) $2x_1 -2x_2 + x_3 + x_4 = 1$
$$2x_2 -2x_3 +14x_4 -x_5 = 2$$

$$-2x_2 +x_3 -x_4 = 2$$

$$2x_2 +3x_3 +13x_4 +x_5 = 3$$

$$x_1 +x_2 +2x_3 -x_4 = -2$$

Solution. (i) The augmented matrix
$$A^+ = \begin{bmatrix} 0 & 0 & 0 & -2 & 1 & 2 \\ 0 & 2 & -2 & 14 & -1 & 2 \\ 0 & 2 & 3 & 13 & 1 & 3 \end{bmatrix}$$
.

$$\begin{bmatrix} 0 & 0 & 0 & -2 & 1 & 2 \\ 0 & 2 & -2 & 14 & -1 & 2 \\ 0 & 2 & 3 & 13 & 1 & 3 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 2 & 3 & 13 & 1 & 3 \\ 0 & 2 & -2 & 14 & -1 & 2 \\ 0 & 0 & 0 & -2 & 1 & 2 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 0 & 2 & 3 & 13 & 1 & 3 \\ 0 & 0 & -2 & 1 & 2 \end{bmatrix} \quad \mapsto \begin{bmatrix} 0 & 2 & 3 & 13 & 1 & 3 \\ 0 & 0 & -5 & 1 & -2 & -1 \\ 0 & 0 & 0 & -2 & 1 & 2 \end{bmatrix}.$$

Hence $\rho(A^+)=3=\rho(A)$ and the system is solvable. The homogeneous system has solutions $x_4=0.5x_5,\ x_3=-0.3x_5,\ x_2=-3.3x_5;\ x_1,x_5$ arbitrary. A basis of the homogeneous solutions is $\{[1,0,0,0,0]^T,[0,3.3,0.3,-0.5,-1]^T\}$. A particular solution of the given system is $[0,8,0,-1,0]^T$. The general solution is

$$[s, 8-33t, -3t, 5t-1, 10t]^T$$
; s, t arbitrary.

(ii) The augmented matrix
$$A^+ = \begin{bmatrix} 2 & -2 & 1 & 1 & 1 \\ 0 & -2 & 1 & -1 & 2 \\ 1 & 1 & 2 & -1 & -2 \end{bmatrix}$$
.

$$\begin{bmatrix} 2 & -2 & 1 & 1 & | & 1 \\ 0 & -2 & 1 & -1 & | & 2 \\ 1 & 1 & 2 & -1 & | & -2 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & -1 \\ 0 & -2 & 1 & -1 & | & 2 \\ 1 & 1 & 2 & -1 & | & -2 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & -1 \\ 0 & -2 & 1 & -1 & | & 2 \\ 0 & 2 & 4 & -4 & | & -1 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & -1 \\ 0 & \boxed{-2} & 1 & -1 & | & 2 \\ 0 & 0 & \boxed{5} & -5 & | & 1 \end{bmatrix}.$$

Hence $\rho(A^+) = 3 = \rho(A)$ and the system is solvable. The homogeneous system has solutions $x_3 = x_4$, $x_2 = 0$, $x_1 = -x_4$; x_4 arbitrary. A basis of the homogeneous solutions is $\{[-1,0,1,1]^T\}$. A particular solution of the given system is $-[0.5,1.1,0.2,0]^T$. The

general solution is

$$\left[-t - \frac{1}{2}, -\frac{11}{10}, t - \frac{2}{5}, t \right]^T$$
; t arbitrary.

7. Is the given set of vectors a vector space?

(i) All vectors $[v_1, v_2, v_3]^T$ in \mathbb{R}^3 such that $3v_1 - 2v_2 + v_3 = 0$, $4v_1 + 5v_2 = 0$. (ii) All vectors in \mathbb{R}^2 with components less than 1 in absolute value.

Solution. (i) YES. (ii) NO.

8. For a < b, consider the system of equations:

$$x + y + z = 1$$

 $ax + by + 2z = 3$
 $a^{2}x + b^{2}y + 4z = 9$

Find the pairs (a, b) for which the system has infinitely many solutions. Solution. For a square matrix A, $A\mathbf{x} = \mathbf{b}$ to have infinitely many solutions, a necessary (but not sufficient) condition is that $\det A = 0$.

$$A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & 2 \\ a^2 & b^2 & 4 \end{bmatrix} \implies \det A = (b - a)(2 - a)(2 - b) = 0. \text{ Hence } a = 2 \text{ or } b = 2 \text{ since } b - a \neq 0.$$

Case 1:(a=2) The augmented matrix is

$$A^{+} = \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 2 & b & 2 & | & 3 \\ 4 & b^{2} & 4 & | & 9. \end{bmatrix}$$

Elementary row operations give

$$A^{+} \mapsto \begin{bmatrix} 1 & 1 & 1 & | & 1 \\ 0 & b - 2 & 0 & | & 1 \\ 0 & b^{2} - 4 & 0 & | & 5 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} \boxed{1} & 1 & 1 & | & 1 \\ 0 & \boxed{b - 2} & 0 & | & 1 \\ 0 & 0 & 0 & | & 3 - b \end{bmatrix}$$

For existence $\rho(A^+) = \rho(A) \Longrightarrow b = 3$. Thus a = 2, b = 3 will give infinitely many solutions.

Case 2:(b=2) Solving similarly, we find that a = 3 which is inadmissible since a < b.

9. Show that the row space of a matrix does not change by row operations. Show that the dimension of the column space is unchanged by row operations.

Proof:

- (i) The new rows are linear combinations of previous rows and vice versa.
- (ii) Suppose that $C_1, ..., C_n$ are the columns of a matrix. If an ERO is applied through a matrix E, then the new columns are $EC_1, ..., EC_n$. If $C_{j_1}, ..., C_{j_r}$ are lin. ind. then so are $EC_{j_1}, ..., EC_{j_r}$ and vice versa due to invertibility of E.

Department of Mathematics Indian Institute of Technology, Bombay

MA 106: Mathematics II Tutorial Sheet No.3

Autumn 2016 AR

Topics: Determinants, ranks by determinants, Adjoints, Inverses, Cramer's rule.

1. Find the rank by determinants. Verify by row reduction.

(i)
$$\begin{bmatrix} 0 & 2 & -3 \\ 2 & 0 & 5 \\ -3 & 5 & 0 \end{bmatrix}$$
 (ii)
$$\begin{bmatrix} 4 & 3 \\ -8 & -6 \\ 16 & 12 \end{bmatrix}$$
 (iii)
$$\begin{bmatrix} -2 & -\sqrt{3} & -\sqrt{2} \\ -1 & 0 & 1 \\ \sqrt{2} & \sqrt{3} & 2 \end{bmatrix}$$

Solution. (i) The 3×3 determinant $\begin{vmatrix} 0 & 2 & -3 \\ 2 & 0 & 5 \\ -3 & 5 & 0 \end{vmatrix} = -60$ implies that the rank is 3.

Row reduction is

$$\begin{bmatrix} 0 & 2 & -3 \\ 2 & 0 & 5 \\ -3 & 5 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 5 \\ 0 & 2 & -3 \\ -3 & 5 & 0 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 5 \\ 0 & 2 & -3 \\ 0 & 5 & 7.5 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 5 \\ 0 & 2 & -3 \\ 0 & 0 & 15 \end{bmatrix}.$$

(ii) All 2×2 subdeterminants vanish and there are nonzero entries, hence the rank is 1.

Row reduction is
$$\begin{bmatrix} 4 & 3 \\ -8 & -6 \end{bmatrix} \mapsto \begin{bmatrix} 4 & 3 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}.$$

(iii) The 3×3 determinant vanishes, hence rank is < 3. The 2×2 subdeterminant $\begin{vmatrix} 0 & 1 \\ \sqrt{3} & 2 \end{vmatrix} = -\sqrt{3} \neq 0$, hence the rank is 2.

Row reduction is

$$\begin{bmatrix} -2 & -\sqrt{3} & -\sqrt{2} \\ -1 & 0 & 1 \\ \sqrt{2} & \sqrt{3} & 2 \end{bmatrix} \mapsto \begin{bmatrix} 0 & -\sqrt{3} & -\sqrt{2} - 2 \\ -1 & 0 & 1 \\ 0 & \sqrt{3} & 2 + \sqrt{2} \end{bmatrix} \mapsto \begin{bmatrix} -1 & 0 & 1 \\ 0 & \boxed{\sqrt{3}} & 2 + \sqrt{2} \\ 0 & 0 & 0 \end{bmatrix}.$$

18

2. Find the values of β for which Cramer's rule is applicable. For the remaining value(s) of β , find the number of solutions.

$$x + 2y + 3z = 20$$

$$x + 3y + z = 13$$

$$x + 6y + \beta z = \beta$$

Solution. The coefficient matrix has determinant $\beta + 5$, hence for $\beta \neq -5$ Cramer's Rule is applicable.

For
$$\beta = -5$$
, the augmented matrix $A^{+} = \begin{bmatrix} 1 & 2 & 3 & 20 \\ 1 & 3 & 1 & 13 \\ 1 & 6 & -5 & -5 \end{bmatrix}$.

$$\begin{bmatrix}
1 & 2 & 3 & 20 \\
1 & 3 & 1 & 13 \\
1 & 6 & -5 & -5
\end{bmatrix}
\mapsto
\begin{bmatrix}
1 & 2 & 3 & 20 \\
0 & 1 & -2 & -7 \\
0 & 4 & -8 & -25
\end{bmatrix}$$

$$\begin{bmatrix}
1 & 2 & 3 & 20
\end{bmatrix}$$

The pivot in the last column means that $\rho(A) = 2 < 3 = \rho(A^+)$. Hence the system is not solvable for $\beta = -5$.

3. Find whether the following set of vectors is linearly dependent or independent:

$${a\mathbf{i} + b\mathbf{j} + c\mathbf{k}, b\mathbf{i} + c\mathbf{j} + a\mathbf{k}, c\mathbf{i} + a\mathbf{j} + b\mathbf{k}}.$$

Solution. Consider the matrix $\begin{bmatrix} a & b & c \\ b & c & a \\ c & a & b \end{bmatrix}$. We have lin. ind. iff its rank is 3 i.e. its

determinant is non zero.
$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 3abc - (a^3 + b^3 + c^3) = -\frac{(a+b+c)}{2} [(a-b)^2 + b^3 + c^3] = -\frac{(a+b+c)}{2} [(a-b)^2 + b^3] =$$

$$(b-c)^2 + (c-a)^2$$

Therefore, linear dependence if either a+b+c=0 or a=b=c. In the rest of the cases we have independence.

4. Consider the system of equations

$$x + \lambda z = \lambda - 1$$

$$x + \lambda y = \lambda + 1$$

$$\lambda x + y + 3z = 2\lambda - 1 \text{ (or } 1 - 2\lambda)$$

Find the values of λ for which Cramer's rule can be used. For the remaining values of λ , discuss the solvability of the linear system.

Solution. The coefficient matrix is $A(\lambda) = \begin{bmatrix} 1 & 0 & \lambda \\ 1 & \lambda & 0 \\ \lambda & 1 & 3 \end{bmatrix}$.

 $|A(\lambda)| = -\lambda(\lambda^2 - 4) \Longrightarrow$ Cramer's Rule appplies if $\lambda \in \mathbb{R} \setminus \{0, \pm 2\}$. Hence we a a unique solution for these values of λ .

Case 1 ($\lambda = 0$): The augmented matrix is $A^{+}(0) = \begin{bmatrix} 1 & 0 & 0 & | & -1 \\ 1 & 0 & 0 & | & 1 \\ 0 & 1 & 3 & | & -1 \end{bmatrix}$ has rank 3 since

the determinant of the first, second and fourth columns is non zero. While A(0) is of rank 2. Hence no solutions in this case.

Case 2 ($\lambda = 2$): The augmented matrix is $A^+(2) = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 1 & 2 & 0 & 3 \\ 2 & 1 & 3 & 3 \end{bmatrix}$ has rank 2 since

the determinant of any three columns vanishes. (A(2) is of rank 2.) Hence ∞ ly many solutions in this case.

Case 3 ($\lambda = -2$): The augmented matrix is $A^{+}(-2) = \begin{bmatrix} 1 & 0 & -2 & | & -3 \\ 1 & -2 & 0 & | & -1 \\ -2 & 1 & 3 & | & -5 \end{bmatrix}$ has rank

3 since the determinant of the first, second and fourth columns is non zero. While A(-2) is of rank 2. Hence no solutions in this case also.

If we replace $2\lambda + 1$ by $1 - 2\lambda$ in the third equation, we find no solutions in case 1 and 2 and ∞ ly many in case 3.

5. Find the matrices of minors, cofactors and the adjoint of the following matrices:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}, \begin{bmatrix} 0 & 9 & 5 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}, \begin{bmatrix} 2 & \sqrt{3} & \sqrt{2} \\ -1 & 0 & 1 \\ \sqrt{2} & \sqrt{3} & 2 \end{bmatrix}, \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.1 & 0.7 & 0.2 \\ 0.0 & 0.1 & 0.9 \end{bmatrix}, \begin{bmatrix} 3 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Solution.

•
$$\mathcal{M}(A) = \begin{bmatrix} d & c \\ b & a \end{bmatrix}$$
, $\mathcal{C}(A) = \begin{bmatrix} d & -c \\ -b & a \end{bmatrix}$, $\mathrm{Adj}(A) = \mathcal{C}(A)^T = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$.

$$\bullet \mathcal{M} = \begin{bmatrix} 0 & 0 & 4 \\ -10 & 0 & 0 \\ 0 & -10 & -18 \end{bmatrix}, \mathcal{C} = \begin{bmatrix} 0 & 0 & 4 \\ 10 & 0 & 0 \\ 0 & 10 & -18 \end{bmatrix}, \operatorname{Adj} = \begin{bmatrix} 0 & 10 & 0 \\ 0 & 0 & 10 \\ 4 & 0 & -18 \end{bmatrix}.$$

$$\bullet \begin{bmatrix}
-\sqrt{3} & -(2+\sqrt{2}) & -\sqrt{3} \\
(2-\sqrt{2})\sqrt{3} & 2 & (2-\sqrt{2})\sqrt{3} \\
\sqrt{3} & (2+\sqrt{2}) & \sqrt{3}
\end{bmatrix}, \begin{bmatrix}
-\sqrt{3} & (2+\sqrt{2}) & -\sqrt{3} \\
(\sqrt{2}-2)\sqrt{3} & 2 & (\sqrt{2}-2)\sqrt{3} \\
\sqrt{3} & -(2+\sqrt{2}) & \sqrt{3}
\end{bmatrix}, \begin{bmatrix}
-\sqrt{3} & (\sqrt{2}-2)\sqrt{3} & 2 & (\sqrt{2}-2)\sqrt{3} \\
\sqrt{3} & -(2+\sqrt{2}) & \sqrt{3}
\end{bmatrix}, \begin{bmatrix}
-\sqrt{3} & (\sqrt{2}-2)\sqrt{3} & \sqrt{3} \\
(2+\sqrt{2}) & 2 & -(2+\sqrt{2}) \\
-\sqrt{3} & (\sqrt{2}-2)\sqrt{3} & \sqrt{3}
\end{bmatrix}.$$

$$\begin{bmatrix} -\sqrt{3} & (\sqrt{2} - 2)\sqrt{3} & \sqrt{3} \\ (2 + \sqrt{2}) & 2 & -(2 + \sqrt{2}) \\ -\sqrt{3} & (\sqrt{2} - 2)\sqrt{3} & \sqrt{3} \end{bmatrix}$$

•
$$\mathcal{M} = \frac{1}{100} \begin{bmatrix} 61 & 9 & 1 \\ 8 & 72 & 8 \\ -5 & 15 & 55 \end{bmatrix}$$
, $\mathcal{C} = \frac{1}{100} \begin{bmatrix} 61 & -9 & 1 \\ -8 & 72 & -8 \\ -5 & -15 & 55 \end{bmatrix}$, $Adj = \frac{1}{100} \begin{bmatrix} 61 & -8 & -5 \\ -9 & 72 & -15 \\ 1 & -8 & 55 \end{bmatrix}$.

$$\bullet \begin{bmatrix} -1 & 0 & 0 & 0 \\ -4 & -3 & 6 & 0 \\ -1 & 0 & 3 & 0 \\ 4 & 3 & -6 & -3 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 \\ 4 & -3 & -6 & 0 \\ -1 & 0 & 3 & 0 \\ -4 & 3 & 6 & -3 \end{bmatrix} \begin{bmatrix} -1 & 4 & -1 & -4 \\ 0 & -3 & 0 & 3 \\ 0 & -6 & 3 & 6 \\ 0 & 0 & 0 & -3 \end{bmatrix}$$
 respectively.

6. In the previous problem verify that $AAdj(A) = A(Adj(A)) = \det AI$. Hence compute the inverses in the valid cases.

Solution.

$$\bullet \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} = \begin{bmatrix} ad - bc & 0 \\ 0 & ad - bc \end{bmatrix} = \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
Threfore $A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$ if $\det A = ad - bc \neq 0$.
$$\begin{bmatrix} 0 & 9 & 5 \end{bmatrix} \begin{bmatrix} 0 & 10 & 0 \end{bmatrix} \begin{bmatrix} 0 & 10 & 0 \end{bmatrix} \begin{bmatrix} 0 & 9 & 5 \end{bmatrix}$$

$$\bullet \begin{bmatrix} 0 & 9 & 5 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & 10 & 0 \\ 0 & 0 & 10 \\ 4 & 0 & -18 \end{bmatrix} = 20\mathbf{I} = \begin{bmatrix} 0 & 10 & 0 \\ 0 & 0 & 10 \\ 4 & 0 & -18 \end{bmatrix} \begin{bmatrix} 0 & 9 & 5 \\ 2 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$$

Therefore,
$$A^{-1} = \frac{1}{20} \begin{bmatrix} 0 & 10 & 0 \\ 0 & 0 & 10 \\ 4 & 0 & -18 \end{bmatrix}$$
.

•

$$\begin{bmatrix} 2 & \sqrt{3} & \sqrt{2} \\ -1 & 0 & 1 \\ \sqrt{2} & \sqrt{3} & 2 \end{bmatrix} \begin{bmatrix} -\sqrt{3} & (\sqrt{2} - 2)\sqrt{3} & \sqrt{3} \\ (2 + \sqrt{2}) & 2 & -(2 + \sqrt{2}) \\ -\sqrt{3} & (\sqrt{2} - 2)\sqrt{3} & \sqrt{3} \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} =$$

$$\begin{bmatrix} -\sqrt{3} & (\sqrt{2}-2)\sqrt{3} & \sqrt{3} \\ (2+\sqrt{2}) & 2 & -(2+\sqrt{2}) \\ -\sqrt{3} & (\sqrt{2}-2)\sqrt{3} & \sqrt{3} \end{bmatrix} \begin{bmatrix} 2 & \sqrt{3} & \sqrt{2} \\ -1 & 0 & 1 \\ \sqrt{2} & \sqrt{3} & 2 \end{bmatrix}.$$

 $\det A = 0$ hence not invertible.

$$\bullet \begin{bmatrix}
0.8 & 0.1 & 0.1 \\
0.1 & 0.7 & 0.2 \\
0.0 & 0.1 & 0.9
\end{bmatrix} \frac{1}{100} \begin{bmatrix} 61 & -8 & -5 \\
-9 & 72 & -15 \\
1 & -8 & 55
\end{bmatrix} = 0.48\mathbf{I} = \frac{1}{100} \begin{bmatrix} 61 & -8 & -5 \\
-9 & 72 & -15 \\
1 & -8 & 55
\end{bmatrix} \begin{bmatrix} 0.8 & 0.1 & 0.1 \\
0.1 & 0.7 & 0.2 \\
0.0 & 0.1 & 0.9
\end{bmatrix}.$$

Therefore,
$$A^{-1} = \frac{1}{48} \begin{bmatrix} 61 & -8 & -5 \\ -9 & 72 & -15 \\ 1 & -8 & 55 \end{bmatrix}$$
.

$$\begin{bmatrix}
3 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
-1 & 4 & -1 & -4 \\ 0 & -3 & 0 & 3 \\ 0 & -6 & 3 & 6 \\ 0 & 0 & 0 & -3
\end{bmatrix} = -3\mathbf{I} = \begin{bmatrix} -1 & 4 & -1 & -4 \\ 0 & -3 & 0 & 3 \\ 0 & -6 & 3 & 6 \\ 0 & 0 & 0 & -3 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$A^{-1} = \frac{1}{3} \begin{bmatrix} 1 & -4 & 1 & 4 \\ 0 & 3 & 0 & -3 \\ 0 & 6 & -3 & -6 \end{bmatrix}$$

7. Solve by Cramer's rule and verify by Gauss elimination.

$$5x - 3y = 37$$

$$-2x + 7y = -38.$$
Solution. $A^{+} = \begin{bmatrix} 5 & -3 & 37 \\ -2 & 7 & -38 \end{bmatrix}$. $D = 29$, $D_{1} = \begin{vmatrix} 37 & -3 \\ -38 & 7 \end{vmatrix} = 145$,
$$D_{2} = \begin{vmatrix} 5 & 37 \\ -2 & -38 \end{vmatrix} = -116 \Longrightarrow x = 5, \ y = -4. \text{ OTOH row reduction gives}$$

$$\begin{bmatrix} 5 & -3 & 37 \\ 0 & 5.8 & -23.2 \end{bmatrix} \Longrightarrow y = -4, \ 5x + 12 = 37 \Longrightarrow x = 5. \text{ Verified!}$$

8. Solve by Cramer's rule and verify by Gauss elimination.

$$x + 2y + 3z = 20$$

 $7x + 3y + z = 13$
 $x + 6y + 2z = 0$

Solution.
$$A^{+} = \begin{bmatrix} 1 & 2 & 3 & 20 \\ 7 & 3 & 1 & 13 \\ 1 & 6 & 2 & 0 \end{bmatrix}$$
. $D = \begin{bmatrix} 1 & 2 & 3 \\ 7 & 3 & 1 \\ 1 & 6 & 2 \end{bmatrix} = 91$,

$$D_{1} = \begin{vmatrix} 20 & 2 & 3 \\ 13 & 3 & 1 \\ 0 & 6 & 2 \end{vmatrix} = 182, D_{2} = \begin{vmatrix} 1 & 20 & 3 \\ 7 & 13 & 1 \\ 1 & 0 & 2 \end{vmatrix} = -273, D_{3} = \begin{vmatrix} 1 & 2 & 20 \\ 7 & 3 & 13 \\ 1 & 6 & 0 \end{vmatrix} = 728.$$
Therefore $x = 2, y = -3, z = 8$

On the other hand row operations on A^+ yield $\begin{bmatrix} 1 & 2 & 3 & 20 \\ 0 & 44 & 80 & 508 \\ 0 & 0 & 91 & 728 \end{bmatrix}$. Consequently, $z = 8, 44y + 640 = 508 \Longrightarrow y = -3, x + (-6) + 24 = 20 = 20$ Working:

$$\begin{bmatrix} 1 & 2 & 3 & | & 20 \\ 7 & 3 & 1 & | & 13 \\ 1 & 6 & 2 & | & 0 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 3 & | & 20 \\ 0 & -11 & -20 & | & -127 \\ 0 & 4 & -1 & | & -20 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 1 & 2 & 3 & | & 20 \\ 0 & 44 & 80 & | & 508 \\ 0 & -44 & 11 & | & 220 \end{bmatrix} \mapsto \begin{bmatrix} 1 & 2 & 3 & | & 20 \\ 0 & 44 & 80 & | & 508 \\ 0 & 0 & 91 & | & 728 \end{bmatrix}.$$

9. Invert the matrix
$$H = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}$$
.

Solution. $\mathcal{M} = \begin{bmatrix} 1/240 & 1/60 & 1/72 \\ 1/60 & 4/45 & 1/12 \\ 1/72 & 1/12 & 1/12 \end{bmatrix}$, $\mathcal{C} = \begin{bmatrix} 1/240 & -1/60 & 1/72 \\ -1/60 & 4/45 & -1/12 \\ 1/72 & -1/12 & 1/12 \end{bmatrix} = \text{Adj.}$

$$\det H = \frac{1}{240} - \frac{1}{120} + \frac{1}{216} = \frac{1}{2160} \Longrightarrow H^{-1} = \begin{bmatrix} 9 & -36 & 30 \\ -36 & 192 & -180 \\ 30 & -180 & 180 \end{bmatrix}.$$

10. (Vandermonde determinant)

(a) Prove that
$$\det \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix} = (b-a)(c-a)(c-b).$$

Solution. Using column operation

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a & b-a & c-a \\ a^2 & b^2-a^2 & c^2-a^2 \end{vmatrix}$$

$$= (b-a)(c-a)\begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & b+a & c+a \end{vmatrix}$$

$$= (b-a)(c-a)(c-b).$$

Aliter: The determinant is a polynomial of degree 3 in a, b, c and it vanishes whenever a = b or b = c or c = a. Hence equals C(b - a)(c - a)(c - b). The coefficient of bc^2 is 1 by inspection of the diagonal entries, hence C=1.

(b) Prove an analogous formula for $n \times n$. Solution.

$$V(a_1, a_2, ..., a_n) \stackrel{def}{=} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ a_1 & a_2 & \cdots & a_n \\ \vdots & \vdots & & \vdots \\ a_1^{n-1} & a_2^{n-1} & \cdots & a_n^{n-1} \end{vmatrix}.$$

This time V is a polynomial in $(a_1, a_2, ..., a_n)$ of degree $0+1+\cdots+(n-1)=\frac{n(n-1)}{2}$ and vanishes whenever $a_j = a_k$, $j \neq k$. Therefore, $\prod (a_k - a_j)$ must divide V. The degree count makes $V(a_1, a_2, ..., a_n) = C \prod_{1 \leq j < k \leq n} (a_k - a_j)$ and a look at the diagonal terms forces C = 1.

11. (Wronskian) Let $f_1, f_2, ..., f_n$ be functions over some interval (a, b). Their Wronskian is another function on (a, b) defined by the determinant involving the given functions and their derivatives upto the order n-1.

$$W_{f_1, f_2, \dots, f_n}(x) \stackrel{def}{=} \begin{vmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{vmatrix}.$$

Prove that if $c_1f_1 + c_2f_2 + \cdots + c_nf_n = 0$ holds over the interval (a, b) for some constants $c_1, c_2, ..., c_n$ and $W_{f_1, f_2, ..., f_n}(x_0) \neq 0$ at some x_0 , then $c_1 = c_2 = \cdots = c_n = 0$. In other words, nonvanishing of $W_{f_1, f_2, ..., f_n}$ at a single point establishes linear independence of $f_1, f_2, ..., f_n$ on (a, b).

Caution: The converse is false. $W \equiv 0 \implies f_1, f_2, ..., f_n$ linearly dependent on (a, b). Though one can prove existence of a subinterval of (a, b) where linear dependence holds. Solution. Starting with the equation $c_1f_1 + c_2f_2 + \cdots + c_nf_n = 0$ and its first n-1 derivatives we get a system of equations

$$\begin{bmatrix} f_1 & f_2 & \cdots & f_n \\ f'_1 & f'_2 & \cdots & f'_n \\ \vdots & \vdots & & \vdots \\ f_1^{(n-1)} & f_2^{(n-1)} & \cdots & f_n^{(n-1)} \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \quad x \in (a, b).$$

If
$$W_{f_1,f_2,\dots,f_n}(x_0) \neq 0$$
 for some $x_0 \in (a,b)$, then $\begin{vmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{vmatrix}$ as required.

Remark 0.0.3. The converse is false in general. E.g. take

$$f(x) = \begin{cases} 0, & x \le 0 \\ e^{-1/x}, & x > 0 \end{cases} \quad and \quad g(x) = \begin{cases} e^{1/x}, & x < 0 \\ 0, & x \ge 0 \end{cases}$$

Then f, g are C^{∞} , linearly independent but $W(f,g) \equiv 0$. However, can take $a=1,\ b=0$ in the subinterval $(-\infty,0)$ or $a=0,\ b=1$ in $(0,\infty)$.

Department of Mathematics Indian Institute of Technology, Bombay

MA 106: Mathematics II Tutorial Sheet No.4

Autumn 2016 AR

Topics: Expansion in a basis, orthogonal sets, orthonormal basis, Gram-Schmidt process, Bessel's inequality.

1. (Resolution into orthogonal components) Let \mathbf{u} be a nonzero vector and \mathbf{v} be any other vector. Let $\mathbf{w} = \mathbf{v} - \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2} \mathbf{u}$ as in Gram-Schmidt process. Then show that

$$\mathbf{v} = \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2} \mathbf{u} + \mathbf{w}$$

is resolution of \mathbf{v} into two components-one parallel to \mathbf{u} and the other orthogonal to \mathbf{u} . Solution. Clearly, the first term (summand) is parallel to \mathbf{u} . Hence must verify that $\langle \mathbf{w}, \mathbf{u} \rangle = 0$.

$$\langle \mathbf{w}, \mathbf{u} \rangle = \langle \mathbf{v}, \mathbf{u} \rangle - \frac{\langle \mathbf{v}, \mathbf{u} \rangle}{\|\mathbf{u}\|^2} \langle \mathbf{u}, \mathbf{u} \rangle$$

= 0

2. Verify that the set of vectors $\left\{ \begin{bmatrix} 2\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\2 \end{bmatrix}, \begin{bmatrix} 2\\1\\-2 \end{bmatrix} \right\}$ is an orthogonal set in \mathbb{R}^3 . Is it

a basis? If yes, express $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ as a linear combination of these vectors and verify that

Bessel's inequality is an equality.

Solution. Orthogonality is easily verified. Now linear independence makes it a basis. The coefficients in the expansion are:

$$a = \frac{\mathbf{v} \cdot \mathbf{w}_1}{\|\mathbf{w}_1\|^2} = \frac{1}{9}, \ b = \frac{\mathbf{v} \cdot \mathbf{w}_2}{\|\mathbf{w}_2\|^2} = \frac{5}{9}, \ \frac{\mathbf{v} \cdot \mathbf{w}_3}{\|\mathbf{w}_3\|^2} = \frac{1}{9}.$$

Bessel's:
$$\|\mathbf{v}\|^2 = 3$$
, while $(\mathbf{v} \cdot \mathbf{u}_1)^2 = \frac{1}{9}$, $(\mathbf{v} \cdot \mathbf{u}_2)^2 = \frac{25}{9}$, $(\mathbf{v} \cdot \mathbf{u}_3)^2 = \frac{1}{9}$ and $3 = \frac{1}{9} + \frac{25}{9} + \frac{1}{9}$.

3. Orthogonalize the following set of row-vectors in \mathbb{R}^4 .

$$\{[1,1,1,1], [1,1,-1,-1], [1,1,0,0], [-1,1,-1,1]\}$$

Do you get an orthogonal basis?

Solution.

$$\mathbf{w}_{1} = \mathbf{v}_{1} = [1, 1, 1, 1]$$

$$\mathbf{w}_{2} = \mathbf{v}_{2} - \frac{\mathbf{v}_{2} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} = [1, 1, -1, -1]$$

$$\mathbf{w}_{3} = \mathbf{v}_{3} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\mathbf{v}_{3} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} = [0, 0, 0, 0]$$

$$\mathbf{w}_{4} = \mathbf{v}_{4} - \frac{\mathbf{v}_{4} \cdot \mathbf{w}_{1}}{\|\mathbf{w}_{1}\|^{2}} \mathbf{w}_{1} - \frac{\mathbf{v}_{4} \cdot \mathbf{w}_{2}}{\|\mathbf{w}_{2}\|^{2}} \mathbf{w}_{2} = [-1, 1, -1, 1].$$

Since only 3 nonzero orthogonal elements appear, it is NOT a basis of \mathbb{R}^4 . (The linear span is 3-dimensional.)

4. Orthogonalize the following ordered set of row-vectors in \mathbb{R}^4 .

$$\{[1,1,0,0],\ [1,0,1,0],\ [1,0,0,1],\ [0,1,1,0],\ [0,1,0,1],\ [0,0,1,1]\}$$

Do you get an orthogonal basis? Does [-2, -1, 1, 2] belong to the linear span? Use Bessel's inequality.

Solution. After the Gram-Schmidt process we get

$$\{[1,1,0,0], \frac{1}{2}[1,-1,2,0], \frac{1}{3}[1,-1,-1,3], \frac{1}{2}[-1,1,1,1], \mathbf{0}, \mathbf{0}\}.$$

The 4 nonzero elements give an orthogonal basis. [-2, -1, 1, 2] must be in linear span. To verify Bessel's equality, we first note that

$$\mathbf{u}_1 = \frac{1}{\sqrt{2}}[1, 1, 0, 0], \ \mathbf{u}_2 = \frac{1}{\sqrt{6}}[1, -1, 2, 0], \ \mathbf{u}_3 = \frac{1}{2\sqrt{3}}[1, -1, -1, 3], \ \mathbf{u}_4 = \frac{1}{2}[-1, 1, 1, 1].$$

Now
$$\sum (\mathbf{v} \cdot \mathbf{u}_j)^2 = \frac{9}{2} + \frac{1}{6} + \frac{4}{3} + 4 = 10 = ||\mathbf{v}||^2$$
. (Verified!)

5. For the following linear homogeneous systems, write down orthogonal bases for the solution spaces.

(i)
$$-2x_4 + x_5 = 0$$
 (ii)
$$2x_1 -2x_2 + x_3 + x_4 = 0$$

$$2x_2 -2x_3 +14x_4 -x_5 = 0$$

$$-2x_2 +x_3 -x_4 = 0$$

$$2x_2 +3x_3 +13x_4 +x_5 = 0$$

$$x_1 +x_2 +2x_3 -x_4 = 0$$
 (This is a point of the orbit of the o

(This is a variant of the problem 6 in Sheet No.2)

Solution. (i) The augmented matrix
$$A^+ = \begin{bmatrix} 0 & 0 & 0 & -2 & 1 & 0 \\ 0 & 2 & -2 & 14 & -1 & 0 \\ 0 & 2 & 3 & 13 & 1 & 0 \end{bmatrix}$$
.

$$\begin{bmatrix} 0 & 0 & 0 & -2 & 1 & | & 0 \\ 0 & 2 & -2 & 14 & -1 & | & 0 \\ 0 & 2 & 3 & 13 & 1 & | & 0 \end{bmatrix} \mapsto \begin{bmatrix} 0 & 2 & 3 & 13 & 1 & | & 0 \\ 0 & 2 & -2 & 14 & -1 & | & 0 \\ 0 & 0 & 0 & -2 & 1 & | & 0 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 0 & 2 & 3 & 13 & 1 & | & 0 \\ 0 & 0 & 0 & -2 & 1 & | & 0 \\ 0 & 0 & 0 & -2 & 1 & | & 0 \end{bmatrix}.$$

The homogeneous system has solutions $x_4 = 0.5x_5$, $x_3 = -0.3x_5$, $x_2 = -3.3x_5$; x_1, x_5 arbitrary. A basis of the homogeneous solutions is $\{[1, 0, 0, 0, 0]^T, [0, 3.3, 0.3, -0.5, -1]^T\}$, which is already orthogonal.

(ii) The augmented matrix
$$A^+ = \begin{bmatrix} 2 & -2 & 1 & 1 & 0 \\ 0 & -2 & 1 & -1 & 0 \\ 1 & 1 & 2 & -1 & 0 \end{bmatrix}$$
.

$$\begin{bmatrix} 2 & -2 & 1 & 1 & | & 0 \\ 0 & -2 & 1 & -1 & | & 0 \\ 1 & 1 & 2 & -1 & | & 0 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & 0 \\ 0 & -2 & 1 & -1 & | & 0 \\ 1 & 1 & 2 & -1 & | & 0 \end{bmatrix}$$

$$\mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & 0 \\ 0 & -2 & 1 & -1 & | & 0 \\ 0 & 2 & 4 & -4 & | & 0 \end{bmatrix} \mapsto \begin{bmatrix} 2 & 0 & 0 & 2 & | & 0 \\ 0 & \boxed{-2} & 1 & -1 & | & 0 \\ 0 & 0 & \boxed{5} & -5 & | & 0 \end{bmatrix}.$$

The homogeneous system has solutions $x_3 = x_4$, $x_2 = 0$, $x_1 = -x_4$; x_4 arbitrary.

A basis of the homogeneous solutions is $\{[-1,0,1,1]^T\}$. A singleton set is vacuously orthogonal.

6. For the following linear homogeneous systems, write down orthogonal bases for the solution spaces.

(i)
$$2x_3 -2x_4 +x_5 = 0$$
 (ii) $2x_1 -2x_2 +x_3 +x_4 = 0$
 $2x_2 -8x_3 +14x_4 -5x_5 = 0$ $-2x_2 +x_3 +7x_4 = 0$ Solution. (i) $x_2 +3x_3 +x_5 = 0$ $3x_1 -x_2 +4x_3 -2x_4 = 0$

Augmented matrix is
$$\begin{bmatrix} 0 & 0 & 2 & -2 & 1 & 0 \\ 0 & 2 & -8 & 14 & -5 & 0 \\ 0 & 1 & 3 & 0 & 1 & 0 \end{bmatrix}.$$

A REF is
$$\begin{bmatrix} 0 & \boxed{1} & 3 & 0 & 1 & | & 0 \\ 0 & 0 & \boxed{2} & -2 & 1 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{bmatrix}$$
. The solution set is $x_0 = x_4 - x_5/2$, $x_2 = -3x_4 + x_5/2$; $x_3 = x_4 - x_5$ being arbitrary

A basis is $\{[1,0,0,0,0]^T,\ [0,-3,1,1,0]^T,\ [0,1,-1,0,2]^T\}$. An orthogonal basis is

$$\{[1,0,0,0,0]^T, [0,-3,1,1,0]^T, [0,-1,-7,4,22]^T\}.$$

(ii) Augmented matrix
$$\begin{bmatrix} 2 & -2 & 1 & 1 & 0 \\ 0 & -2 & 1 & 7 & 0 \\ 3 & -1 & 4 & -2 & 0 \end{bmatrix}.$$

A REF is
$$\begin{bmatrix} 2 & -2 & 1 & 1 & 0 \\ 0 & -2 & 1 & 7 & 0 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$
. Hence the solution set is

 $x_3 = -x_4$, $x_2 = 3x_4$; $x_1 = 3x_4$; x_4 being arbitrary. A basis is $\{[3, 3, -1, 1]\}$ which is vacuously orthogonal.

7. Find whether the following sets of vectors are linearly dependent or independent by orthogonalizing them

(i)
$$[1,-1,1]$$
, $[1,1,-1]$, $[-1,1,1]$, $[0,1,0]$.

(ii) [2,0,0,3], [2,0,0,8], [2,0,1,3].

Solution. (i) Orthogonalization yields: $\{[1,-1,1], [2,1,-1], [0,1,1], [0,0,0]\}$. Hence l.d. as **0** occurs.

- (ii) Orthogonalization yields: $\{[2,0,0,3], [-3,0,0,2], [0,0,1,0]\}$. Hence linearly independent. (We scaled \mathbf{w}_2 for covvenience by 13/10.)
- 8. Orthonormalize the ordered set in \mathbb{C}^5 :

$$\{[1, i, 0, 0, 0], [0, 1, i, 0, 0], [0, 0, 1, i, 0], [0, 0, 0, 1, i]\}$$

relative to the unitary inner product $\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{w}^* \mathbf{v} = \sum_{j=1}^5 v_j \bar{w}_j$.

Use Bessel's inequality to find whether [1, i, 1, i, 1] is in the (complex) linear span of the above set or not.

Solution.

$$\mathbf{w}_{1} = \mathbf{v}_{1} = [1, i, 0, 0, 0]$$

$$\mathbf{w}_{2} = [0, 1, i, 0, 0] - \frac{-i}{2} [1, i, 0, 0, 0] = \frac{1}{2} [i, 1, 2i, 0, 0]$$
Similarly, $\mathbf{w}_{3} = \frac{1}{3} [-1, i, 1, 3i, 0]$
and $\mathbf{w}_{4} = \frac{1}{4} [-i, -1, i, 1, 4i]$.

The corresponding orthonormal (unitary) set is

$$\left\{ \frac{1}{\sqrt{2}} [1, i, 0, 0, 0], \frac{1}{\sqrt{6}} [i, 1, 2i, 0, 0], \frac{1}{2\sqrt{3}} [-1, i, 1, 3i, 0], \frac{1}{2\sqrt{5}} [-i, -1, i, 1, 4i] \right\}.$$

$$\|[1, i, 1, i, 1]\|^{2} = 5. \text{ OTOH},$$

$$|\langle \mathbf{v}, \mathbf{u}_{1} \rangle|^{2} = 2, \quad |\langle \mathbf{v}, \mathbf{u}_{2} \rangle|^{2} = 2/3,$$

$$|\langle \mathbf{v}, \mathbf{u}_{3} \rangle|^{2} = 4/3, \quad |\langle \mathbf{v}, \mathbf{u}_{4} \rangle|^{2} = 4/5.$$

The sum is 24/5 < 5, hence can not be in the linear span.

9. Let $S = \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ be any ordered set in \mathbb{R}^n and $T = \{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_k\}$ be the set resulting from the Gram-Schmidt process applied to S. Prove that for j = 1, 2, ..., k, the linear span of $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_j\}$ equals that of $\{\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_j\}$. Conclude that \mathbf{w}_j is orthogonal to $\mathbf{v}_1, ..., \mathbf{v}_{j-1}$.

Hint: Use induction on j.

10. Let $\{\mathbf{p}, \mathbf{q}, \mathbf{r}\}$ be a linearly independent ordered set in \mathbb{R}^3 . Let $\{\mathbf{x}(=\mathbf{p}), \mathbf{y}, \mathbf{z}\}$ be the orthogonal set as a result of Gram-Schmidt process. Show that \mathbf{z} must be a scalar multiple of $\mathbf{p} \times \mathbf{q}$.

Solution. By the previous theorem, plane of $\{\mathbf{x}, \mathbf{y}\}$ is the plane of $\{\mathbf{p}, \mathbf{q}\}$. Hence \mathbf{z} being orthogonal to this plane must be a scalar multiple of $\mathbf{p} \times \mathbf{q}$.

11. For two <u>nonzero</u> vectors $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$, we define the angle between them by $\theta = \cos^{-1}\left[\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|}\right]$. Note that by Cauchy-Schwartz inequality $\frac{\langle \mathbf{v}, \mathbf{w} \rangle}{\|\mathbf{v}\| \|\mathbf{w}\|} \in [-1, 1] \Longrightarrow \theta \in [0, \pi]$. Moreover, $\mathbf{v} \perp \mathbf{w}$ (orthogonal) if and only if $\theta = \frac{\pi}{2}$ as expected.

(i) $\theta = 0$ if and only if $\mathbf{w} = \frac{\|\mathbf{w}\|}{\|\mathbf{v}\|} \mathbf{v}$ is a positive scalar multiple of \mathbf{v} (parallel).

(ii) $\theta = \pi$ if and only if $\mathbf{w} = -\frac{\|\mathbf{w}\|}{\|\mathbf{v}\|}\mathbf{v}$ is a negative scalar multiple of \mathbf{v} (anti-parallel).

(iii)
$$\|\mathbf{v} + \mathbf{w}\|^2 = \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 + 2\|\mathbf{v}\|\|\mathbf{w}\|\cos\theta.$$

Solution.

Show that

(i) (
$$\Longrightarrow$$
): $\theta = 0 \Longrightarrow \langle \mathbf{v}, \mathbf{w} \rangle = \|\mathbf{v}\| \|\mathbf{w}\| \Longrightarrow \lambda = \frac{\|\mathbf{w}\|}{\|\mathbf{v}\|} > 0 \text{ in } \mathbf{w} = \lambda \mathbf{v}.$
(\Longleftrightarrow): $\mathbf{w} = \frac{\|\mathbf{w}\|}{\|\mathbf{v}\|} \mathbf{v} \Longrightarrow \langle \mathbf{v}, \mathbf{w} \rangle = \|\mathbf{w}\| \|\mathbf{v}\| \Longrightarrow \cos \theta = 1 \Longrightarrow \theta = 0.$

(ii) Similar to (i).

(iii)

$$\|\mathbf{v} + \mathbf{w}\|^2 = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$
$$= \langle \mathbf{v}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle + 2\langle \mathbf{v}, \mathbf{w} \rangle$$
$$= \|\mathbf{v}\|^2 + \|\mathbf{w}\|^2 + 2\|\mathbf{v}\| \|\mathbf{w}\| \cos \theta.$$