Divide and ConquerAlgoritmos y Estructuras de Datos II

Christian G. Cossio-Mercado

Departamento de Computación, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires

3 de julio de 2020

Temario

- Introducción
- 2 Recurrencias
- 3 Ejercicios
- 4 Cierre

Temario

- Introducción
 - Divide and Conquer
 - Algunas soluciones D&C
- Recurrencias
- 3 Ejercicios
- 4 Cierre

Divide and Conquer

Es una estrategia algorítmica que consiste en

- Dividir el problema en k subproblemas del mismo tipo, pero más chicos
- Conquistar resolviendo los subproblemas, recursivamente o directamente (si son lo suficientemente fáciles o chicos)
- Combinar las soluciones obtenidas para resolver el problema original

Los problemas pueden tener varias soluciones, pero en este contexto esperamos que puedan pensar en una solución D&C

Esquema General

DC(X)

if X es chico (o simple) then Retornar solución ad hoc de X

else

Descomponer X en subinstancias $X_1, X_2,...,X_k$ for $i \in [1..k]$ do $Y_i = DC(X_i)$

Combinar las soluciones Y_i para construir una solución para X

Merge Sort

Es un algoritmo que usa D&C para ordenar un arreglo Donde, Merge fusiona de forma ordenada dos arreglos ordenados, con costo O(n)

- Dividir el arreglo en dos mitades
- Conquistar: Si los arreglos son de un elemento ya están ordenados, sino, hacer recursión sobre ellos y los obtengo ordenados
- **Ombinar:** Merge para obtener el arreglo ordenado a partir de las dos mitades ordenadas

Merge Sort

MergeSort(A)

if
$$|A| \le 1$$
 then return A

A1
$$\leftarrow$$
 MergeSort(A[0 .. $\frac{n}{2}$)) \triangleright T($\frac{n}{2}$) A2 \leftarrow MergeSort(A[$\frac{n}{2}$.. n)) \triangleright T($\frac{n}{2}$) \triangleright T($\frac{n}{2}$) \triangleright O(n)

return A

Complejidad: $T(n) = 2T(\frac{n}{2}) + \Theta(n)$

Búsqueda Binaria

Podemos pensar a una búsqueda binaria como un algoritmo de D&C donde dividimos nuestro problema en un solo sub-problema

- **Dividir** el arreglo en una mitad (elegida a partir de cuanto vale el elemento a la mitad del arreglo)
- Conquistar: Si el arreglo tiene un elemento, me fijo si es el que estoy buscando, sino, hago recursión sobre la mitad en donde podría estar el elemento
- Combinar: No hace falta

Búsqueda Binaria

```
Buscar(A, elem, I, r) \rightarrow int
                                                                   Buscamos en el rango [l, r)
  if r-l=1 then
                                               // Rango de un solo elemento
       if A[I] = elem then
                                                                                                 \triangleright \Theta(1)
            return |
       else
            return -1
   m \leftarrow (1+r)/2
   if elem \leq A[m] then
       return Buscar(A, elem, I, m)
                                                                                                 \triangleright \mathsf{T}(\frac{n}{2})
   else
       return Buscar(A, elem, m, r)
                                                                                                 \triangleright \mathsf{T}(\frac{n}{2})
```

Complejidad:
$$T(n) = T(\frac{n}{2}) + \Theta(1)$$

Temario

- Introducción
- 2 Recurrencias
- 3 Ejercicios
- 4 Cierre

Complejidades

¿Cómo calculamos estas complejidades?

- Merge Sort: $T(n) = 2T(\frac{n}{2}) + \Theta(n)$
- Búsqueda Binaria: $T(n) = T(\frac{n}{2}) + \Theta(1)$

Recurrencias en D&C

Las recurrencias de D&C tienen la siguiente forma:

$$T(n) = \begin{cases} \Theta(1) & n \leq k \\ aT(\frac{n}{c}) + f(n) & n > k \end{cases}$$

Donde:

- k es tamaño del caso base, que en general vale 1
- a es la cantidad de subproblemas a resolver.
- c es la cantidad de particiones y $\frac{n}{c}$ es el tamaño de los subproblemas a resolver.
- f(n) es el costo de todo lo que se hace en cada llamado además de los llamados recursivos, así, incluye el costo de la división (D(n)) y de la combinación de los resultados (C(n))
- Estamos asumiendo que resolver un caso base cuesta $\Theta(1)$.

Cálculo de complejidad

- **Opción 1**: Dibujar el árbol de llamadas recursivas, calcular cuanto demora cada nodo y sumar para todos los nodos
- Opción 2: Adivinar cuanto va a dar y probar por inducción que tiene esa complejidad a partir de la recurrencia. Se lo conoce también como método de sustitución
- Opción 3: Usar el Teorema Maestro

Nota: No son las únicas opciones que existen

Árbol de recursión

Fuente: https://courses.csail.mit.edu/6.006/spring11/rec/rec08.pdf

Método de sustitución

Se basa en **proponer** una cota para $\mathsf{T}(\mathsf{n})$ y probarla por inducción.

Por ejemplo, si $T(n) = 2T(\frac{n}{2}) + n$, qvq $T(n) \in O(n \log n)$. Por definición, qvq $T(n) \le cn \log n$ Suponemos que vale para todos los n' < n, como, por ejemplo, $n' = \frac{n}{2}$. Así, $T(n') = T(\frac{n}{2}) \le c \frac{n}{2} \log(\frac{n}{2})$.

$$T(n) = 2T(\frac{n}{2}) + n$$
(sustituimos $T(\frac{n}{2})$) $T(n) \le 2$ c $\frac{n}{2}\log(\frac{n}{2}) + n$

$$\le c \ n\log(\frac{n}{2}) + n$$

$$= c \ n(\log n - 1) + n$$

$$= c \ n\log n - (c - 1)n$$

$$\le c \ n\log n \ (\text{tomando } c \ge 1)$$

Así, para $n_0=2$, tenemos dos casos base (n=2 y n=3), y con $c\geq 2$ se cumplen los casos base. Luego se sigue con la demostración por inducción **Cuidado:** Para que la demostración valga tenemos que llegar a *exactamente* lo que queríamos probar.

Teorema maestro

Si nuestra recurrencia es de la forma

$$T(n) = \begin{cases} aT\left(\frac{n}{c}\right) + f(n) & n > 1\\ \Theta(1) & n = 1 \end{cases}$$

(con a ≥ 1 y c > 1) entonces:

$$T(n) = \begin{cases} \Theta(n^{\log_c a}) & \text{Si } \exists \varepsilon > 0 \text{ tal que } f(n) \in O(n^{\log_c a} - \varepsilon) \\ \Theta(n^{\log_c a} \log n) & \text{Si } f(n) \in \Theta(n^{\log_c a}) \\ \Theta(f(n)) & \text{Si } \exists \varepsilon > 0 \text{ tal que } f(n) \in \Omega(n^{\log_c a} + \varepsilon) \text{ y} \\ \exists \delta < 1, \exists n_0 > 0 \text{ tal que } \forall n \geq n_0 \text{ se cumple: } a.f(\frac{n}{c}) \leq \delta f(n) \end{cases}$$

Teorema maestro - Merge Sort

Calculemos la complejidad de Merge Sort usando el teorema maestro.

$$T(n) = 2T\left(\frac{n}{2}\right) + n$$

- a = 2, cantidad de subproblemas
- c=2, cantidad de particiones $(\frac{n}{2}$ el tamaño del subproblema)
- $\log_c a = \log_2 2 = 1$

$$f(n) \in \Theta(n^{\log_c a})$$

 $n \in \Theta(n^1)$

Por el caso 2 del Teorema Maestro,

$$T(n) \in O(n \log n)$$

Teorema maestro - Búsqueda Binaria

Nuestra recurrencia es:

$$T(n) = 1T(\frac{n}{2}) + O(1)$$

- Tenemos que $\log_c a = \log_2 1 = 0$.
- Comparando f(n) con $n^{\log_c a} = n^0 = 1$ vemos que caemos en el segundo caso del teorema maestro, porque f(n) $\in \Theta(1)$.
- Entonces la complejidad es $\Theta(n^0 log n) = \Theta(log n)$

Temario

- Introducción
- 2 Recurrencias
- 3 Ejercicios
- 4 Cierre

Máximo de una montaña

Ejercicio 1

Dado un arreglo montaña de longitud n, queremos encontrar al máximo. La complejidad del algoritmo que resuelva el problema debe ser $O(\log n)$

- Un arreglo de enteros *montaña* está compuesto por una secuencia estrictamente creciente seguida de una estrictamente decreciente
- Por ejemplo, para un arreglo [-1, 3, 8, 22, 30, 22, 8, 4, 2, 1], el máximo está en la posición 4 y vale 30
- Suponemos que hay al menos un elemento antes y después que el máximo, ya que las secuencias creciente y decreciente tienen al menos 2 elementos

Máximo de una montaña

A pensar

Dado A un arreglo montaña, pensemos los casos posibles...

- A = [-1, 3, 8, 22, 30, 22, 8, 4, 2, 1]
- A = [10, 11, 12, -2, -100]
- A = [0, 48, 10, 8, -1]
- A = [-1, 48, 100, 100, 84, -10]

Máximo de una montaña

Solución posible

Muy similar al algoritmo anterior. Acá considero rango [l, r].

Cuidado: Usar índices en vez de copiar los subarreglos.

```
Maximo(A, I, r) \rightarrow int
  if l=r then
                                       // Rango de un solo elemento
       return A[I]
  m \leftarrow (l + r) / 2
  // Si es creciente seguro el maximo está a la derecha de m
  if A[m] < A[m+1] then
       return Maximo(A, m+1, r);
                                                                                             \triangleright \mathsf{T}(\frac{n}{2})
  else
       return Maximo(A, I, m);
                                                                                             \triangleright \mathsf{T}(\frac{n}{2})
```

Complejidad: O(log n). Misma justificación que en la búsqueda binaria.

Ejercicio 2

Dada una secuencia de n enteros, se desea encontrar el máximo valor que se puede obtener sumando elementos contiguos.

- Por ejemplo, para la secuencia [3, -1, 4, 8, -2, 2, -7, 5], este valor es 14, que se obtiene de la subsecuencia [3, -1, 4, 8]
- Si una secuencia tiene todos números negativos, se entiende que su subsecuencia de suma máxima es la vacía, por lo tanto el valor es 0
- Se desea hallar un algoritmo D&C que lo resuelva en $O(n \log n)$

A pensar

Dado un arreglo A, pensemos los casos posibles...

•
$$A = [3, -1, 4, 8, -2, 2, -7, 5]$$

Solución posible

$\mathsf{SumaSubsecuencia}(\mathsf{A}) \to \mathsf{int}$

if
$$|A| = 1$$
 then return $\max(0, A[0])$ // Rango de un solo elemento $s1 \leftarrow \text{SumaSubsecuencia}(A[0 ... $\frac{n}{2}])$ $\triangleright T(\frac{n}{2})$ $s2 \leftarrow \text{SumaSubsecuencia}(A[\frac{n}{2} ... n])$ $\triangleright T(\frac{n}{2})$ $s3 \leftarrow \text{SumaAlMedio}(A)$ $\triangleright O(n)$$

$\overline{SumaAlMedio(A) \to int}$	
$s1 \leftarrow SumaHaciaDerecha(A[\frac{n}{2}n])$	> O(n)
$s2 \leftarrow SumaHaciaDerecha(reverso(A[0\frac{n}{2}]))$	⊳ O(n)
return $s1 + s2$	

Solución posible

$\begin{array}{lll} SumaHaciaDerecha(A) \rightarrow int \\ \\ maxSuma \leftarrow 0 & \rhd O(1) \\ sumaAcumulada \leftarrow 0 & \rhd O(1) \\ \\ \textbf{for } i = 0 \text{ to n-1 } \textbf{do} & \rhd O(n) \\ \\ sumaAcumulada += A[i] & \rhd O(1) \\ \\ maxSuma \leftarrow max(maxSuma, sumaAcumulada) & \rhd O(1) \\ \end{array}$

return maxSuma

- Recurrencia de **SumaSubsecuencia**: $T(n) = 2 T(\frac{n}{2}) + O(n)$
- Observar que es la misma ecuación que MergeSort
- Podemos demostrar de igual forma que la complejidad es $O(n \log n)$
- ullet Bonus: Se podía resolver en O(n) usando el algoritmo de Kadane

Ejercicio 3

Se tiene una matriz A de $n \times n$ números naturales, de manera que A[i,j] representa al elemento en la fila i y columna j $(1 \le i, j \le n)$. Se sabe que el acceso a un elemento cualquiera se realiza en tiempo O(1). Se sabe también que todos los elementos de la matriz son distintos y que todas las filas y columnas de la matriz están ordenadas de forma creciente (es decir, $i < n \Rightarrow A[i,j] < A[i+1,j]$ y $j < n \Rightarrow A[i,j] < A[i,j+1]$).

Implementar, utilizando la técnica de dividir y conquistar, la función:

está(in n: nat, in A: matriz(nat), in e: nat) \rightarrow bool

que decide si un elemento e dado aparece en alguna parte de la matriz. Se debe dar un algoritmo que tome tiempo estrictamente menor que $O(n^2)$. Notar que la entrada es de tamaño $O(n^2)$.

2 Calcular y justificar la complejidad del algoritmo propuesto. Para simplificar el cálculo, se puede suponer que *n* es potencia de dos.

• Dada M_1 de abajo, con n = 4, ¿Está 4?

1	4	35	157
5	19	118	334
9	64	464	1395
54	169	1295	5698

• Dada M_1 de abajo, con n=5

2 14 70 318 3464 5 41 159 839 7269 53 239 596 1514 21901 151 1114 2969 8878 79094 412 4431 8971 35720 134696					
53 239 596 1514 21901 151 1114 2969 8878 79094	2	14	70	318	3464
151 1114 2969 8878 79094	5	41	159	839	7269
	53	239	596	1514	21901
412 4431 8971 35720 134696	151	1114	2969	8878	79094
	412	4431	8971	35720	134696

- ▶ ¿Está 500?
- ▶ ¿Está 600?

A pensar

Pensemos los casos posibles...

Algunas ideas

- Cuidado: el tamaño de la entrada es $O(n^2)$
 - Si hacemos un algoritmo que recorra todas las posiciones no vamos a cumplir con la complejidad pedida
- Dividiendo la matriz en dos partes no vemos una forma clara de resolverlo.
 - ▶ No necesariamente tienen que ser siempre dos partes
- Suele ser conveniente prestar atencion a las características del problema.
- Notar en este caso que los valores están ordenados de una forma particular
- Puede resolverse sin D&C, lo que queda de ejercicio
 - Pista: Aprovechar que cada fila y columna están ordenadas y son estrictamente crecientes

Solución posible

$$\frac{\mathsf{esta?}(\mathsf{n},\ \mathsf{A},\ \mathsf{e}) \to \mathsf{bool}}{\mathsf{return}\ \mathsf{EstaM}(\mathsf{A},\ \mathsf{e},\ \mathsf{0},\ \mathsf{n},\ \mathsf{0},\ \mathsf{n})}$$

Esta(A, e,
$$x_1$$
, x_2 , y_1 , y_2) \rightarrow bool
if $(x_1 + 1 = x_2 \text{ and } y_1 + 1 = y_2)$ then
return $e == A[x_1][y_1]$
 $m_x \leftarrow (x_1 + x_2)/2$
 $m_y \leftarrow (y_1 + y_2)/2$
if $e \le A[m_x][m_y]$ then
return Esta(A, e, x_1 , m_x , y_1 , m_y) or
Esta(A, e, m_x , x_2 , y_1 , m_y) or
Esta(A, e, x_1 , x_2 , x_3 , x_4 , x_4 , x_5 , x_5 , x_5 , x_7 , x_8 , x_9 , x_9 , x_9) or
Esta(A, e, x_1 , x_2 , x_3 , x_4 , x_8 , x_8 , x_9 , x_9 , x_9) or
Esta(A, e, x_1 , x_2 , x_3 , x_4 , x_4 , x_8 , x_8 , x_8 , x_8 , x_8 , x_9 , x_9 , x_9) or
Esta(A, e, x_1 , x_2 , x_3 , x_4 , x_4 , x_8 , x_8 , x_8 , x_8 , x_8 , x_9 , x_9 , x_9) or
Esta(A, e, x_1 , x_2 , x_3 , x_4 , x_4 , x_4 , x_8 , x

Complejidad

- Queremos calcular la complejidad en función del tamaño de la entrada. El problema es que el tamaño de la entrada es n^2
- Llamemos $m=n^2$ y calculemos la complejidad en función de m

$$T(m) = 3 * T(\frac{m}{4}) + O(1)$$

- $O(1) \subseteq O(m^{\log_4 3})$, caemos en el caso 1 del teorema maestro
- Entonces por el teorema, $T(m) = \Theta(m^{\log_4 3})$
- Como m = n^2 , tenemos que T (n^2) = O $(n^{2 \log_4 3}) \subseteq O(n^{1,60})$, que es estrictamente mejor que O (n^2)

Enunciado

Dado un árbol binario de números enteros, se desea calcular la máxima suma de los nodos pertenecientes a un camino entre dos nodos cualesquiera del árbol

- Un camino entre dos nodos n_1 y n_2 está formado por todos los nodos que hay que atravesar en el árbol para llegar desde n_1 hasta n_2 , incluyéndolos a ambos
- Un camino entre un nodo y sí mismo está formado únicamente por ese nodo
- Suponemos que el árbol está balanceado
- Dar un algoritmo $M\acute{A}XIMASUMACAMINO(a:ab(int)) \rightarrow int que resuelva el problema utilizando la técnica de$ *Divide & Conquer*

Ejemplo

¿Cuál es el camino de máxima suma del árbol siguiente?

Ejemplo

¿Cuál es el camino de máxima suma del árbol siguiente?

Suma total del camino= 24 + (-4) + 20 + 10 = 50

Ejercicio a)

El algoritmo debe tener una complejidad temporal de peor caso igual o mejor que $O(n \log n)$ siendo n la cantidad de nodos del árbol

A pensar...

Solución posible

Similar al problema de subsecuencia máxima, tenemos tres posibilidades: el máximo camino está en el subárbol izquierdo, en el subárbol derecho, o pasa por la raiz del árbol.

```
\begin{array}{ll} \mathsf{M\acute{a}ximaSumaCamino(A:ab(int))} \to \mathsf{int} \\ & \quad \quad \mathsf{if} \ \mathsf{nil?(A) \ then} \\ & \quad \quad \mathsf{return} \ 0 & \qquad \qquad \triangleright \ \mathsf{O}(1) \\ & \mathsf{S1} \leftarrow \mathsf{M\acute{a}ximaSumaCamino(izq(A))} & \qquad \qquad \triangleright \ \mathsf{T}(\frac{n}{2}) \\ & \mathsf{S2} \leftarrow \mathsf{M\acute{a}ximaSumaCamino(der(A))} & \qquad \qquad \triangleright \ \mathsf{T}(\frac{n}{2}) \\ & \mathsf{S3} \leftarrow \mathsf{raiz}(\mathsf{A}) + \mathsf{MaxDesdeRaiz(izq(A))} + \mathsf{MaxDesdeRaiz(der(A))} & \triangleright \ \mathsf{O}(\mathsf{n}) \\ & \quad \quad \mathsf{return} \ \mathsf{max}(\mathsf{S1}, \, \mathsf{S2}, \, \mathsf{S3}) \end{array}
```

Solución posible

MaxDesdeRaiz es el camino más grande que empieza en la raiz. Podría ser un camino vacío.

$\overline{MaxDesdeRaiz(A:ab(int))} \to int$	
if nil?(A) then return 0	⊳ O(1)
	()
$C0 \leftarrow 0$	▷ O(1)
$C1 \leftarrow raiz(A)$	▷ O(1)
$C2 \leftarrow raiz(A) + MaxDesdeRaiz(izq(A))$	$ ightharpoons T(\frac{n}{2})$
$C3 \leftarrow raiz(A) + MaxDesdeRaiz(\;der(A)\;)$	$ ightharpoons T(rac{n}{2})$
return max(C0, C1, C2, C3)	

Complejidad

Teorema Maestro Si nuestra recurrencia es de la forma

$$T(n) = \begin{cases} aT\left(\frac{n}{c}\right) + f(n) & n > 1\\ \Theta(1) & n = 1 \end{cases}$$

$$T(n) = \begin{cases} \Theta(n^{\log_c a}) & \text{Si } \exists \varepsilon > 0 \text{ tal que } f(n) \in O(n^{\log_c a - \varepsilon}) \\ \Theta(n^{\log_c a} \log n) & \text{Si } f(n) \in \Theta(n^{\log_c a}) \\ \Theta(f(n)) & \text{Si } \exists \varepsilon > 0 \text{ tal que } f(n) \in \Omega(n^{\log_c a + \varepsilon}) \text{ y} \\ \exists \delta < 1, \exists n_0 > 0 \text{ tal que } \forall n \geq n_0 \text{ se cumple: } a.f(\frac{n}{c}) \leq \delta f(n) \end{cases}$$

- MaxDesdeRaiz: Tenemos que $T'(n) = 2 T'(\frac{n}{2}) + O(1)$. Por el primer caso del teorema maestro la complejidad es $\Theta(n)$
- MáximaSumaCamino: su ecuación es $T(n) = 2 T(\frac{n}{2}) + O(n)$ Por el segundo caso del teorema su complejidad es $\Theta(n \log n)$

Ejercicio b)

El algoritmo debe tener una complejidad temporal de peor caso igual o mejor que O(n) siendo n la cantidad de nodos del árbol.

A pensar...

Ejemplo

Solución posible

```
MaxCamino(A : ab(int)) \rightarrow \langle sumaCamino : int, sumaCaminoRaiz : int \rangle
  if nil?(A) then
      return \langle 0, 0 \rangle
                                                                                                > O(1)
  datalzq \leftarrow MaxCamino(izq(A))
                                                                                                \triangleright \mathsf{T}(\frac{n}{2})
  dataDer \leftarrow MaxCamino(der(A))
                                                                                                \triangleright \mathsf{T}(\frac{n}{2})
  S1 \leftarrow datalzq.sumaCamino
                                                                                                > O(1)
  S2 ← dataDer.sumaCamino
                                                                                                > O(1)
  S3 \leftarrow raiz(A) + datalzg.sumaCaminoRaiz + dataDer.sumaCaminoRaiz
                                                                                                > O(1)
  cam \leftarrow max(S1, S2, S3)
                                                                                                > O(1)
  desdeR \leftarrow max(0, raiz(A),
        raiz(A) + dataIzq.sumaCaminoRaiz, raiz(A) + dataDer.sumaCaminoRaiz) > O(1)
  return (cam, desdeR)
```

```
MaximaSumaCamino(A : ab(int)) \rightarrow int
```

return MaxCamino(A).camino

Complejidad

La complejidad de **MáximaSumaCamino** está dada por la de **MaxCamino**, cuya relación de recurrencia es:

$$T(n) = 2T\left(\frac{n}{2}\right) + O(1)$$

Por el primer caso del teorema maestro, la complejidad es $\Theta(n)$

Ejercicio c)

Supongamos que el árbol **NO** está balanceado. El algoritmo debe tener una complejidad temporal de peor caso igual o mejor que O(n) siendo n la cantidad de nodos del árbol. Por ejemplo, podríamos tener que resolver un árbol degenerado.

A pensar...

Solución posible

- Podemos usar el mismo algoritmo que en b), pero **NO** podemos usar teorema maestro para justificar la complejidad, pues los llamados recursivos NO necesariamente son $T(\frac{n}{2})$.
- Para justificar que sigue siendo O(n) podemos hacer el cálculo de costo usando el árbol de la recursión. Cada uno de los n nodos son visitados por única vez y tenemos O(1) costo en cada nodo, por lo que el costo final termina siendo O(n).

Temario

- Introducción
- 2 Recurrencias
- 3 Ejercicios
- 4 Cierre

Referencias y links útiles

- T. H. Cormen, C. E. Leiserson, R.L Rivest, and C. Stein. "Introduction to Algorithms". 3rd edition.
- Más información y otras formas de resolver recurrencias.
 http://jeffe.cs.illinois.edu/teaching/algorithms/notes/99-recurrences.pdf
- Clase del MIT. Aplicaciones: Convex Hull y Calcular Mediana en O(n) https://www.youtube.com/watch?v=EzeYI7p9MjU