

Chapter 3: SQL

Click to add Text

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Chapter 3: SQL

- Data Definition
- Basic Query Structure
- Set Operations
- Aggregate Functions
- Null Values
- Nested Subqueries
- Complex Queries
- Views
- Modification of the Database
- Joined Relations**

History

- □ IBM Sequel language developed as part of System R project at the IBM San Jose Research Laboratory
- Renamed Structured Query Language (SQL)
- ANSI and ISO standard SQL:
 - SQL-86
 - SQL-89
 - □ SQL-92
 - □ SQL:1999 (language name became Y2K compliant!)
 - □ SQL:2003
- Commercial systems offer most, if not all, SQL-92 features, plus varying feature sets from later standards and special proprietary features.
 - Not all examples here may work on your particular system.

Data Definition Language

Allows the specification of:

- The schema for each relation, including attribute types.
- Integrity constraints
- Authorization information for each relation.
- Non-standard SQL extensions also allow specification of
 - The set of indices to be maintained for each relations.
 - The physical storage structure of each relation on disk.

Create Table Construct

An SQL relation is defined using the create table command:

```
create table r(A_1 D_1, A_2 D_2, ..., A_n D_n, (integrity-constraint_1), ..., (integrity-constraint_k))
```

- r is the name of the relation
- \square each A_i is an attribute name in the schema of relation r
- \Box D_i is the data type of attribute A_i

Example:

```
create table branch (

branch_name char(15),
branch_city char(30),
assets integer

);
```


Domain Types in SQL

- char(n). Fixed length character string, with user-specified length n.
- varchar(n). Variable length character strings, with user-specified maximum length n.
- □ int. Integer (a finite subset of the integers that is machine-dependent).
- smallint. Small integer (a machine-dependent subset of the integer domain type).
- numeric(p,d). Fixed point number, with user-specified precision of p digits, with n digits to the right of decimal point.
- real, double precision. Floating point and double-precision floating point numbers, with machine-dependent precision.
- \square float(n). Floating point number, with user-specified precision of at least n digits.
- More are covered in Chapter 4.

Integrity Constraints on Tables

- not null
- primary key $(A_1, ..., A_n)$

Example: Declare *branch_name* as the primary key for *branch*

primary key declaration on an attribute automatically ensures **not null** in SQL-92 onwards, needs to be explicitly stated in SQL-89

Basic Insertion and Deletion of Tuples

- Newly created table is empty
- Add a new tuple to account

insert into account values ('A-9732', 'Perryridge', 1200)

- Insertion fails if any integrity constraint is violated
- Delete all tuples from account

delete from account

Note: Will see later how to delete selected tuples

Drop and Alter Table Constructs

- The drop table command deletes all information about the dropped relation from the database.
- ☐ The **alter table** command is used to add attributes to an existing relation:

alter table r add A D

where A is the name of the attribute to be added to relation r and D is the domain of A.

- All tuples in the relation are assigned *null* as the value for the new attribute.
- The alter table command can also be used to drop attributes of a relation:

alter table r drop A

where A is the name of an attribute of relation r

Dropping of attributes not supported by many databases

Basic Query Structure

A typical SQL query has the form:

select
$$A_1$$
, A_2 , ..., A_n from r_1 , r_2 , ..., r_m where P

- A_i represents an attribute
- \square R_i represents a relation
- P is a predicate.
- This query is equivalent to the relational algebra expression.

$$\prod_{A_1,A_2,...,A_n} (\sigma_P(r_1 \times r_2 \times ... \times r_m))$$

☐ The result of an SQL query is a relation.

The select Clause

- ☐ The **select** clause list the attributes desired in the result of a query
 - corresponds to the projection operation of the relational algebra
- Example: find the names of all branches in the *loan* relation:

select branch_name **from** loan

In the relational algebra, the query would be:

 $\prod_{branch_name} (loan)$

- NOTE: SQL names are case insensitive (i.e., you may use upper- or lower-case letters.)
 - E.g. Branch_Name ≡ BRANCH_NAME ≡ branch_name
 - Some people use upper case wherever we use bold font.

The select Clause (Cont.)

- SQL allows duplicates in relations as well as in query results.
- To force the elimination of duplicates, insert the keyword distinct after select.
- Find the names of all branches in the *loan* relations, and remove duplicates select distinct branch name from loan
- ☐ The keyword **all** specifies that duplicates not be removed.

select all branch_name from loan

The select Clause (Cont.)

An asterisk in the select clause denotes "all attributes"

```
select *
from loan
```

- The select clause can contain arithmetic expressions involving the operation, +, , *, and /, and operating on constants or attributes of tuples.
- E.g.:

```
select loan_number, branch_name, amount * 100 from loan
```


The where Clause

- ☐ The where clause specifies conditions that the result must satisfy
 - Corresponds to the selection predicate of the relational algebra.
- To find all loan number for loans made at the Perryridge branch with loan amounts greater than \$1200.

```
select loan_number
from loan
where branch_name = 'Perryridge' and amount > 1200
```

Comparison results can be combined using the logical connectives and, or, and not.

The from Clause

- ☐ The **from** clause lists the relations involved in the query
 - Corresponds to the Cartesian product operation of the relational algebra.
- ☐ Find the Cartesian product borrower X loan

select *
from borrower, loan

☐ Find the name, loan number and loan amount of all customers having a loan at the Perryridge branch.

select customer_name, borrower.loan_number, amount
 from borrower, loan
 where borrower.loan_number = loan.loan_number and
 branch_name = 'Perryridge'

The Rename Operation

- □ SQL allows renaming relations and attributes using the **as** clause: old-name **as** new-name
- □ E.g. Find the name, loan number and loan amount of all customers; rename the column name *loan_number* as *loan_id*.

select customer_name, borrower.loan_number **as** loan_id, amount **from** borrower, loan **where** borrower.loan_number = loan.loan_number

Tuple Variables

- Tuple variables are defined in the from clause via the use of the as clause.
- Find the customer names and their loan numbers and amount for all customers having a loan at some branch.

```
select customer_name, T.loan_number, S.amount

from borrower as T, loan as S

where T.loan_number = S.loan_number
```

☐ Find the names of all branches that have greater assets than some branch located in Brooklyn.

```
select distinct T.branch_name
from branch as T.branch as S
where T.assets > S.assets and S.branch_city = 'Brooklyn'
```

- □Keyword **as** is optional and may be omitted borrower **as** $T \equiv borrower T$
 - Some database such as Oracle require as to be omitted

String Operations

- □ SQL includes a string-matching operator for comparisons on character strings.

 The operator "like" uses patterns that are described using two special characters:
 - percent (%). The % character matches any substring.
 - underscore (_). The _ character matches any character.
- Find the names of all customers whose street includes the substring "Main".

```
select customer_name
from customer
where customer_street like '% Main%'
```

Match the name "Main%"

like 'Main\%' escape '\'

- SQL supports a variety of string operations such as
 - concatenation (using "||")
 - converting from upper to lower case (and vice versa)
 - finding string length, extracting substrings, etc.

Ordering the Display of Tuples

 List in alphabetic order the names of all customers having a loan in Perryridge branch

- □ We may specify desc for descending order or asc for ascending order, for each attribute; ascending order is the default.
 - Example: order by customer_name desc

Duplicates

- In relations with duplicates, SQL can define how many copies of tuples appear in the result.
- Multiset versions of some of the relational algebra operators given multiset relations r_1 and r_2 :
 - 1. $\sigma_{\theta}(r_1)$: If there are c_1 copies of tuple t_1 in r_1 , and t_1 satisfies selections σ_{θ} , then there are c_1 copies of t_1 in $\sigma_{\theta}(r_1)$.
 - 2. $\Pi_A(r)$: For each copy of tuple t_1 in r_1 , there is a copy of tuple $\Pi_A(t_1)$ in $\Pi_A(t_1)$ where $\Pi_A(t_1)$ denotes the projection of the single tuple t_1 .
 - 3. $r_1 \times r_2$: If there are c_1 copies of tuple t_1 in r_1 and c_2 copies of tuple t_2 in r_2 , there are $c_1 \times c_2$ copies of the tuple t_1 . t_2 in $t_1 \times t_2$

Duplicates (Cont.)

Example: Suppose multiset relations r_1 (A, B) and r_2 (C) are as follows:

$$r_1 = \{(1, a) (2,a)\}$$
 $r_2 = \{(2), (3), (3)\}$

- □ Then $\Pi_B(r_1)$ would be {(a), (a)}, while $\Pi_B(r_1)$ x r_2 would be {(a,2), (a,2), (a,3), (a,3), (a,3), (a,3)}
- SQL duplicate semantics:

select
$$A_1, A_2, ..., A_n$$
 from $r_1, r_2, ..., r_m$ **where** P

is equivalent to the *multiset* version of the expression:

$$\prod_{A_1,A_2,\ldots,A_n} (\sigma_P(r_1 \times r_2 \times \ldots \times r_m))$$

Set Operations

- ☐ The set operations union, intersect, and except operate on relations and correspond to the relational algebra operations \cup , \cap , -.
- Each of the above operations automatically eliminates duplicates; to retain all duplicates use the corresponding multiset versions union all, intersect all and except all.

Suppose a tuple occurs *m* times in *r* and *n* times in *s*, then, it occurs:

- \square m + n times in r union all s
- \square min(m,n) times in r intersect all s
- \square max(0, m-n) times in r except all s

Set Operations

☐ Find all customers who have a loan, an account, or both:

```
(select customer_name from depositor)
union
(select customer_name from borrower)
```

Find all customers who have both a loan and an account.

```
(select customer_name from depositor)
intersect
(select customer_name from borrower)
```

Find all customers who have an account but no loan.

```
(select customer_name from depositor)
except
(select customer_name from borrower);
Or
select customer_name from depositor where customer_name not in (select
```

customer_name from borrower);

Aggregate Functions

These functions operate on the multiset of values of a column of a relation, and return a value

avg: average value

min: minimum value

max: maximum value

sum: sum of values

count: number of values

Aggregate Functions (Cont.)

☐ Find the average account balance at the Perryridge branch.

```
select avg (balance)
from account
where branch_name = 'Perryridge'
```

☐ Find the number of tuples in the *customer* relation.

```
select count (*)
from customer
```

Find the number of depositors in the bank.

```
select count (distinct customer_name)
from depositor
```


Aggregate Functions – Group By

☐ Find the number of depositors for each branch.

```
select branch_name, count (distinct customer_name)
from depositor, account
where depositor.account_number = account.account_number
group by branch_name
```

Note: Attributes in **select** clause outside of aggregate functions must appear in **group by** list

Aggregate Functions – Having Clause

☐ Find the names of all branches where the average account balance is more than \$1,200.

```
select branch_name, avg (balance)
from account
group by branch_name
having avg (balance) > 1200
```

Note: predicates in the **having** clause are applied after the formation of groups whereas predicates in the **where** clause are applied before forming groups

Nested Subqueries

- SQL provides a mechanism for the nesting of subqueries.
- A subquery is a select-from-where expression that is nested within another query.
- A common use of subqueries is to perform tests for set membership, set comparisons, and set cardinality.

"In" Construct

Find all customers who have both an account and a loan at the bank.

Find all customers who have a loan at the bank but do not have an account at the bank

select distinct customer_name
from borrower
where customer_name not in (select customer_name
from depositor)

Example Query

Find all customers who have both an account and a loan at the Perryridge branch

```
select distinct customer_name
from borrower, loan
where borrower.loan_number = loan.loan_number and
    branch_name = 'Perryridge' and
    (branch_name, customer_name) in
    (select branch_name, customer_name
    from depositor, account
    where depositor.account_number =
        account.account_number);
```

Note: Above query can be written in a much simpler manner. The formulation above is simply to illustrate SQL features.

(select customer_name from borrower, loan where loan.loan_number = borrower.loan_number and branch_name = 'Perryridge') intersect (select customer_name from account, depositor where account.account_number = depositor.account_number);

"Some" Construct

☐ Find all branches that have greater assets than some branch located in Brooklyn.

```
select distinct T.branch_name
from branch as T, branch as S
where T.assets > S.assets and S.branch_city = 'Brooklyn';
```

Same query using > some clause

```
select branch_name
from branch where assets > some
(select assets from branch where branch_city = 'Brooklyn');
```


"All" Construct

Find the names of all branches that have greater assets than all branches located in Brooklyn.

```
select branch name
from branch
where assets > all (select assets from branch where branch_city = 'Brooklyn');
Or
select branch_name from branch where assets < (select min(assets) from branch
```

where branch_city = 'Brooklyn');

"Exists" Construct

☐ Find all customers who have an account at all branches located in Brooklyn.

- □ Note that $X Y = \emptyset \iff X \subset Y$
- Note: Cannot write this query using = all and its variants

Absence of Duplicate Tuples

- The unique construct tests whether a subquery has any duplicate tuples in its result.
- Find all customers who have at most one account at the Perryridge branch.

select T.customer name

Example Query

Find all customers who have at least two accounts at the Perryridge branch.

```
select distinct T.customer_name
from depositor as T
where not unique (
    select R.customer_name
    from account, depositor as R
    where T.customer_name = R.customer_name and
    R.account_number = account.account_number and
    account.branch_name = 'Perryridge')
```

Variable from outer level is known as a correlation variable

Modification of the Database – Deletion

Delete all account tuples at the Perryridge branch

```
delete from account
where branch_name = 'Perryridge'
```

Delete all accounts at every branch located in the city 'Needham'.

Example Query

Delete the record of all accounts with balances below the average at the bank.

```
delete from account
    where balance < (select avg (balance)
    from account)</pre>
```

- Problem: as we delete tuples from deposit, the average balance changes
- Solution used in SQL:
 - 1. First, compute avg balance and find all tuples to delete
 - Next, delete all tuples found above (without recomputing avg or retesting the tuples)

Modification of the Database – Insertion

Add a new tuple to account

insert into account
 values ('A-9732', 'Perryridge', 1200)

or equivalently

insert into account (branch_name, balance, account_number)
 values ('Perryridge', 1200, 'A-9732')

Add a new tuple to account with balance set to null

insert into account
 values ('A-777','Perryridge', null)

Modification of the Database – Insertion

Provide as a gift for all loan customers of the Perryridge branch, a \$200 savings account. Let the loan number serve as the account number for the new savings account

```
insert into account
    select loan_number, branch_name, 200
    from loan
    where branch_name = 'Perryridge'
insert into depositor
    select customer_name, loan_number
    from loan, borrower
    where branch_name = 'Perryridge'
        and loan.account_number = borrower.account_number
```

- ☐ The **select from where** statement is evaluated fully before any of its results are inserted into the relation
 - Motivation: insert into table1 select * from table1

Modification of the Database – Updates

- Increase all accounts with balances over \$10,000 by 6%, all other accounts receive 5%.
 - Write two update statements:

```
update account
set balance = balance * 1.06
where balance > 10000
```

update account
set balance = balance * 1.05
where balance < 10000</pre>

- The order is important
- Can be done better using the case statement (next slide)

Case Statement for Conditional Updates

□ Same query as before: Increase all accounts with balances over \$10,000 by 6%, all other accounts receive 5%.

More Features

Click to add Text

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

Joined Relations**

- Join operations take two relations and return as a result another relation.
- These additional operations are typically used as subquery expressions in the from clause
- Join condition defines which tuples in the two relations match, and what attributes are present in the result of the join.
- Join type defines how tuples in each relation that do not match any tuple in the other relation (based on the join condition) are treated.

Join types inner join left outer join right outer join full outer join

Join Conditions

natural

on < predicate>
using $(A_1, A_1, ..., A_n)$

Joined Relations – Datasets for Examples

- Relation loan
- ☐ Relation *borrower*

loan_number	branch_name	amount	customer_name	loan_number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230
L-260	Perryridge	1700	Hayes	L-155
loan			borro	wer

Note: borrower information missing for L-260 and loan information missing for L-155

Joined Relations – Examples

loan inner join borrower on
loan.loan_number = borrower.loan_number

loan_number	branch_name	amount	customer_name	loan_number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230

loan left outer join borrower on loan.loan_number = borrower.loan_number

loan_number	branch_name	amount	customer_name	loan_number
L-170	Downtown	3000	Jones	L-170
L-230	Redwood	4000	Smith	L-230
L-260	Perryridge	1700	null	null

Joined Relations – Examples

□ loan natural inner join borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith

loan natural right outer join borrower

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-155	null	null	Hayes

Find all customers who have either an account or a loan (but not both) at the bank: **select** *customer_name*

from (depositor natural full outer join borrower) where account_number is null or loan_number is null

Joined Relations – Examples

- Natural join can get into trouble if two relations have an attribute with same name that should not affect the join condition
 - □ e.g. an attribute such as *remarks* may be present in many tables
- □ Solution:
 - loan full outer join borrower using (loan_number)

loan_number	branch_name	amount	customer_name
L-170	Downtown	3000	Jones
L-230	Redwood	4000	Smith
L-260	Perryridge	1700	null
L-155	null	null	Hayes

Derived Relations

- □ SQL allows a subquery expression to be used in the **from** clause
- ☐ Find the average account balance of those branches where the average account balance is greater than \$1200.

```
select branch_name, avg_balance

from (select branch_name, avg (balance)

from account

group by branch_name)

as branch_avg (branch_name, avg_balance)

where avg_balance > 1200
```

Note that we do not need to use the **having** clause, since we compute the temporary (view) relation *branch_avg* in the **from** clause, and the attributes of *branch_avg* can be used directly in the **where** clause.

View Definition

- A relation that is not of the conceptual model but is made visible to a user as a "virtual relation" is called a view.
- A view is defined using the create view statement which has the form

create view v as < query expression >

- where <query expression> is any legal SQL expression. The view name is represented by *v.*
- Once a view is defined, the view name can be used to refer to the virtual relation that the view generates.

Example Queries

A view consisting of branches and their customers

```
create view all_customer as
          (select branch_name, customer_name
          from depositor, account
          where depositor.account_number =
          account.account_number)
          union
          (select branch_name, customer_name
          from borrower, loan
          where borrower.loan_number = loan.loan_number)
```

□ Find all customers of the Perryridge branch

```
select customer_name
from all_customer
where branch_name = 'Perryridge'
```


Uses of Views

- Hiding some information from some users
 - Consider a user who needs to know a customer's name, loan number and branch name, but has no need to see the loan amount.
 - Define a view

```
(create view cust_loan_data as select customer_name, borrower.loan_number, branch_name from borrower, loan where borrower.loan_number = loan.loan_number)
```

- Grant the user permission to read cust_loan_data, but not borrower or loan
- Predefined queries to make writing of other queries easier
 - Common example: Aggregate queries used for statistical analysis of data

Processing of Views

- When a view is created
 - the query expression is stored in the database along with the view name
 - the expression is substituted into any query using the view
- Views definitions containing views
 - One view may be used in the expression defining another view
 - \square A view relation v_1 is said to *depend directly* on a view relation v_2 if v_2 is used in the expression defining v_1
 - A view relation v_1 is said to depend on view relation v_2 if either v_1 depends directly to v_2 or there is a path of dependencies from v_1 to v_2
 - A view relation v is said to be recursive if it depends on itself.

View Expansion

- A way to define the meaning of views defined in terms of other views.
- Let view v_1 be defined by an expression e_1 that may itself contain uses of view relations.
- □ View expansion of an expression repeats the following replacement step:

repeat

Find any view relation v_i in e_1 Replace the view relation v_i by the expression defining v_i until no more view relations are present in e_1

As long as the view definitions are not recursive, this loop will terminate

With Clause

- The with clause provides a way of defining a temporary view whose definition is available only to the query in which the with clause occurs.
- Find all accounts with the maximum balance

```
with max_balance (value) as
select max (balance)
from account
select account_number
from account, max_balance
where account.balance = max_balance.value
```


Complex Queries using With Clause

☐ Find all branches where the total account deposit is greater than the average of the total account deposits at all branches.

- Note: the exact syntax supported by your database may vary slightly.
 - E.g. Oracle syntax is of the form with branch_total as (select ...), branch_total_avg as (select ...) select ...

Update of a View

Create a view of all loan data in the loan relation, hiding the amount attribute

```
create view loan_branch as
select loan_number, branch_name
from loan
```

Add a new tuple to loan_branch

```
insert into loan_branch
     values ('L-37', 'Perryridge')
```

This insertion must be represented by the insertion of the tuple

```
('L-37', 'Perryridge', null)
```

into the *loan* relation

Updates Through Views (Cont.)

- Some updates through views are impossible to translate into updates on the database relations
 - create view v as

```
select loan_number, branch_name, amount
from loan
where branch_name = 'Perryridge'
```

insert into v values ('L-99', 'Downtown', '23')

- Others cannot be translated uniquely
 - insert into all_customer values ('Perryridge', 'John')
 - Have to choose loan or account, and create a new loan/account number!
- Most SQL implementations allow updates only on simple views (without aggregates) defined on a single relation

Null Values

- It is possible for tuples to have a null value, denoted by null, for some of their attributes
- null signifies an unknown value or that a value does not exist.
- ☐ The predicate **is null** can be used to check for null values.
 - Example: Find all loan number which appear in the *loan* relation with null values for *amount*.

select loan_number from loan where amount is null

- □ The result of any arithmetic expression involving *null* is *null*
 - Example: 5 + null returns null
- However, aggregate functions simply ignore nulls
 - More on next slide

Null Values and Three Valued Logic

- Any comparison with *null* returns *unknown*
 - □ Example: 5 < null or null <> null or null = null
- Three-valued logic using the truth value unknown:
 - OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown
 - AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown
 - □ NOT: (**not** unknown) = unknown
 - □ "P is unknown" evaluates to true if predicate P evaluates to unknown
- Result of **where** clause predicate is treated as *false* if it evaluates to *unknown*

Null Values and Aggregates

Total all loan amounts

select sum (amount) **from** loan

- Above statement ignores null amounts
- Result is null if there is no non-null amount
- All aggregate operations except count(*) ignore tuples with null values on the aggregated attributes.

End of Chapter 3

Click to add Text

Database System Concepts, 5th Ed.

©Silberschatz, Korth and Sudarshan See www.db-book.com for conditions on re-use

The where Clause (Cont.)

- □ SQL includes a **between** comparison operator
- Example: Find the loan number of those loans with loan amounts between \$90,000 and \$100,000 (that is, \geq \$90,000 and \leq \$100,000)

select loan_number
from loan
where amount between 90000 and 100000

Figure 3.1: Database Schema

branch (branch_name, branch_city, assets)

customer (customer_name, customer_street, customer_city)

loan (*loan_number*, *branch_name*, *amount*)

borrower (<u>customer_name</u>, <u>loan_number</u>)

account (account_number, branch_name, balance)

depositor (<u>customer_name</u>, <u>account_number</u>)

Definition of Some Clause

$$(5 =$$
some $\boxed{ 0$ $) =$ true

$$(5 \neq \mathbf{some} \quad \boxed{0} \\ 5 \quad) = \text{true (since } 0 \neq 5)$$

- (= some) = in
- □ However, (≠ some) is not equivalent to not in

Definition of all Clause

$$(5 < \mathbf{all} \quad \begin{array}{c} 0 \\ 5 \\ 6 \end{array}) = \text{false}$$

$$(5 < \mathbf{all} \quad \begin{array}{c} 6 \\ 10 \end{array}) = \text{true}$$

$$(5 = \mathbf{all} \quad \begin{array}{c} 4 \\ 5 \end{array}) = \text{false}$$

$$(5 \neq \mathbf{all} \quad \begin{array}{c} 4 \\ 6 \end{array}) = \text{true (since } 5 \neq 4 \text{ and } 5 \neq 6)$$

- \Box (\neq all) \equiv not in
- □ However, (= **all**) is not equivalent to **in**

Test for Empty Relations

- ☐ The **exists** construct returns the value **true** if the argument subquery is nonempty.
- \square exists $r \Leftrightarrow r \neq \emptyset$

Figure 3.3: Tuples inserted into *loan* and *borrower*

loan_number	branch_name	amount		customer_name	loan_number
L-11	Round Hill	900		Adams	L-16
L-14	Downtown	1500		Curry	L-93
L-15	Perryridge	1500		Hayes	L-15
L-16	Perryridge	1300		Jackson	L-14
L-17	Downtown	1000		Jones	L-17
L-23	Redwood	2000		Smith	L-11
L-93	Mianus	500		Smith	L-23
null	null	1900		Williams	L-17
loan				Johnson	null
юшт				borro	wer

Figure 3.4: The *loan* and *borrower* relations

loan_number	branch_name	amount	[customer_name	loan_number
L-170	Downtown	3000		Jones	L-170
L-230	Redwood	4000		Smith	L-230
L-260	Perryridge	1700		Hayes	L-155
loan				borro	wer