DAY 3 DATE:30/04/2025 27739 -Annie John

TITLE: LAN CABLING, WIRED AND WIRELESS MEDIA, TYPES OF CABLES AND RAID OVERVIEW

➤ LAN CABLING - LAN (Local Area Network) cabling refers to the physical infrastructure that connects devices within a specific, limited geographical area, such as a home or office, to form a network.

> Types of Cables Used in LAN:

Coaxial Cable - Looks like: One thick wire with a copper core and layers of insulation.
A single pipe carrying all the data. Used in: Early internet and cable TV. Rarely used in modern LANs. Connector: BNC

- o **Twisted Pair Cables -** Inside the cable: 8 thin wires twisted into 4 pairs.
 - 1. **Unshielded Twisted Pair (UTP)** Most Common, No extra metal protection. Lighter, cheaper. Used in homes and offices. Example: Cat5e, Cat6. Like normal wires twisted together to reduce interference.
 - 2. **Shielded Twisted Pair (STP)** Each pair has metal shielding to block interference. Used in factories or noisy electrical areas. More expensive and thicker. Like wrapping each wire pair in foil to protect the signal.

Wired Media

• Twisted Pair Cable

- UTP (Unshielded Twisted Pair): This is the most common type of cable used for connecting devices in networks (like Ethernet). There are different categories (e.g., Cat5e, Cat6) that vary in speed and performance.
- STP (Shielded Twisted Pair): This is similar to UTP but has extra shielding to protect against electrical interference. It's used where there's a lot of interference around, like in factories.

Coaxial Cable

This older cable type was once used for Ethernet networks and is still used for cable
TV. It's made of a central wire, an insulating layer, a metal shield, and another layer of insulation.

• Fiber Optic Cable

- Single-mode Fiber: This is designed for long-distance data transfer. It has a small core and uses a laser to send data.
- Multi-mode Fiber: Used for shorter distances, with a larger core, and uses LEDs to send data. Fiber optics are fast and don't lose much signal over long distances.

> Wireless Media

Radio Waves

- Wi-Fi: This is what gives you wireless internet. It works by sending data through radio waves, with different versions offering different speeds and ranges.
- Bluetooth: Used for short-range connections, like connecting a phone to a headset or keyboard.

- ➤ Data Center A data center is a physical facility used to store and manage a large amount of data. It's where organizations keep their servers, storage devices, and network systems to ensure that data is accessible, secure, and processed efficiently.
- RAID (Redundant Array of Independent Disks) is a technology used to combine multiple hard drives (HDDs) or solid-state drives (SSDs) into a single unit for improved performance, data redundancy (protection against failure), or both. The idea is to increase speed and/or reliability by distributing data across multiple disks.

Here's a simplified explanation of common RAID levels:

1. RAID 0 (Striping) - Splits data into chunks and stores them across multiple disks.

Pros: Improves speed (faster read/write operations) because data is accessed from multiple drives simultaneously.

Cons: No redundancy; if one drive fails, all data is lost.

Use case: When performance is the priority, and data loss isn't critical (e.g., temporary data storage).

2. RAID 1 (Mirroring) - What it does: Duplicates the same data on two drives. Each drive contains an identical copy of the data.

Pros: Provides data redundancy, meaning if one drive fails, the data is still available on the other.

Cons: No performance boost; you get the same read/write speed as a single drive. It also requires double the storage capacity (two drives for the same amount of data).

Use case: When data reliability is important and storage space isn't a concern.

3. RAID 5 (Striping with Parity) - What it does: Data is striped (split) across three or more disks, with parity information (extra data for recovery) stored on each drive.

Pros: Balances performance, redundancy, and storage capacity. If one drive fails, data can be rebuilt using the parity information.

Cons: Slower write speeds due to the need to update parity information.

Use case: When you need a balance of speed, redundancy, and efficient use of storage space.

4. RAID 6 (Striping with Double Parity) - Similar to RAID 5 but with two sets of parity information, so two drives can fail without data loss.

Pros: Offers extra protection against drive failures compared to RAID 5.

Cons: Slightly slower than RAID 5 because it stores more parity data, and you lose more storage space (two drives worth of space for parity).

Use case: When extra data protection is needed, and storage space is less of a concern.

5. RAID 10 (Stripping and mirroring) - Combines RAID 1 (mirroring) and RAID 0 (striping).

Data is mirrored across pairs of drives, and those pairs are striped.

Pros: Offers both redundancy (from RAID 1) and performance (from RAID 0).

Cons: Requires at least 4 disks and halves the usable storage space (because of the mirroring).

Use case: When you need both high performance and redundancy, especially for databases and critical applications.

What is Static Routing?

Static Routing is a type of routing where the network administrator manually configures routes in the router's routing table.

- When Do We Use Static Routing?
- In small networks with a simple structure
- When the network topology doesn't change often
- To have **more control** over data paths
- ➤ What is Windows Administration Windows Administration refers to managing and maintaining Windows operating systems, typically in a professional or enterprise environment. It's a core skill for IT infrastructure support roles.