Autor: Ícaro G. Siqueira

Orientador: Prof. Mateus Grellert

Co-orientador: Prof. Guilherme Corrêa

O Futuro da Ciência e os Desafios da Produção do Conhecimento

De 22 a 25 de outubro

Realização:

Sumário

- > Introdução
- Codificação de Vídeo
- > Metodologia
- Resultados Experimentais
- > Conclusão

Introdução

- Aumento de vídeos transmitidos em tempo real
- Demanda por vídeos com altas resolução e taxa de quadros
- Aumento da banda necessária para transmitir e memória necessária para armazenar

Introdução

- High-Efficiency Video Coding (HEVC) desenvolvido pela Joint Collaborative Team on Video Coding (JCT-VC) [4]
- Média de melhora na compressão de 39% na mesma qualidade de imagem [1]
- Por volta de 20% e 50% mais processamento para comprimir dados do que H.264/AVC [2]

Introdução

- Joint Video Experts Team (JVET) desenvolve Versatile Video Coding (VVC) [5]
- Codificador JVET se mostra 11,3 vezes mais complexo com um ganho de 25% de ganhos de compressão em relação ao HEVC [3]

Codificação de Vídeo

- Predição
 - Intra-quadro
 - Inter-quadro
 - Estimação de Movimento
 - IME
 - FME
 - Compensação de Movimento
- Transformada
- Quantização
- Filtro
- Codificação de Entropia

Codificação de Vídeo

- Predição
 - Intra-quadro
 - Inter-quadro
 - Estimação de Movimento
 - IME
 - FME
 - Compensação de Movimento
- Transformada
- Quantização
- Filtro
- Codificação de Entropia

Codificação de Vídeo quadro i+1 quadro Redundância Temporal (inter-quadro)

- Predição
 - Intra-quadro
 - Inter-quadro
 - Estimação de Movimento
 - IME
 - FME
 - Compensação de Movimento
 - Transformada
- Quantização
- Filtro
- Codificação de Entropia

Codificação de Vídeo

- Predição
 - Intra-quadro
 - Inter-quadro
 - Estimação de Movimento
 - IME
 - FME
 - Compensação de Movimento
- Transformada
- Quantização
- Filtro
- Codificação de Entropia

Codificação de Vídeo

- Unidades de Codificação (UC) do VVC tem de 128x128 até 4x4 pixels de tamanho
- UC HEVC tem de 64x64 até 8x8 pixels de tamanho

Codificação de Vídeo

Diferença dos Codificadores

- Ângulos de Intra-quadro do VVC com quase o dobro de possíveis direções (65 contra 33)
- Predição Inter-quadro com maior precisão (1/16 de pixel contra 1/4) e mais modos (affine, triangular)
- Maior alcance de tamanhos para aplicar transformadas
- Ferramenta de filtragem adicional (ALF)

Metodologia (resultados gerais)

Resultados Experimentais

- Os resultados mostram que o VVC provém um ganho na compressão de 44.4% em média
- E em termos de qualidade uma média de melhora de 2.1 dB é obtida

	Ganho de Compressão(%)	Ganho de Qualidade(dB)
Média	44,40	2,07

Resultados Experimentais

- VTM com as otimizações SIMD habilitadas é em média 10 vezes mais lento que o HM
- Tempo médio do VTM, com tais núcleos de aceleração desativados, passa a ser
 15,9 vezes maior do que o do HM

	Dif. Tempo (SIMD)	Dif. Tempo (sem SIMD)
Média	10,17	15,88

Resultados Experimentais

- Comparando a qualidade x compressão dos dois codificadores para cada QP em 4 vídeos de 1080p
- VVC é superior em ambos
- O ganho de BD-BR é maior quanto mais alto o QP

Metodologia (perfilamento por módulo)

Resultados Experimentais

- Compensação de Movimento (MC) no VVC 19 vezes mais complexo que no HEVC
- MC duas vezes mais lento que o IME-S, segundo módulo mais complexo do VVC

Resultados Experimentais

 Explicação para o aumento de complexidade do MC no VVC é pela implementação de novas ferramentas na predição inter-quadro, Affine Motion Vectors e Triangle Mode

Resultados Experimentais

- Filtro tem uma média de mais de 600 vezes mais complexo no VVC comparado ao Filtro do HEVC apresentando a maior diferença de complexidade
- Implementação da ferramenta Adaptive Loop Filter (ALF) no Filtro do VVC

Resultados Experimentais

- No HEVC o FME é o módulo mais complexo, sendo o único que consome mais tempo no HEVC do que no VVC.
- Isso é explicado com o fato da SIMD causar um grande decréscimo no tempo de codificação no VVC

Conclusão

- VVC tem um ganho de BD-BR de 44.4% para mesma qualidade de imagem comparado ao HEVC
- Na mesma taxa de bits a média de melhora na qualidade de imagem do VVC é de 2 dB comparado com o HEVC
- VVC se mostrou de 10 até quase 16 vezes mais complexo que o HEVC
- Análise de profiling mostrou as principais fontes de complexidade do VVC, sendo um bom ponto de partida para saber onde focar em novas pesquisas

Referências

- [1] D. Grois, D. Marpe, A. Mulayoff, B. Itzhaky, and O. Hadar, "Performance comparison of h.265/mpeg-hevc, VP9, and h.264/mpeg-avc encoders," pp. 394–397, 2013.
- [2] J. Vanne, M. Viitanen, T. D. Hamalainen, and A. Hallapuro, "Comparative rate-distortion-complexity analysis of HEVC and AVC video codecs," IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1885–1898, 2012
- [3] M. Karczewicz and E. Alshina, "Jvet ahg report: Tool evaluation (ahg1)," Joint Video Exploration Team (JVET) of ITU-T SG, 2016.
- [4] C. Rosewarne, B. Bross, M. Naccari, K. Sharman, and G. J. Sullivan, "HM16.2: High Efficiency Video Coding (HEVC) Test Model 16 (HM 16) Encoder Description Update 2," in 27th JCT-VC Meeting, 2017.
- [5] J. Chen, Y. Ye, and S. Kim, "Algorithm description for versatile video coding and test model 5 (vtm 5)," 14th Meeting of Joint Video Experts Team (JVET): Doc. JVET-J1001-v2, 2019
- [6] G. Bjontegaard, "Calculation of average psnr differences between rd-curves," VCEG-M33, 2001

Obrigado!

Metodologia

- Seguidas as condições de teste definidas pelo grupo JCT-VC
- Ferramentas de paralelismo desligadas
- Com e sem a otimização Single Instruction/Multiple Data (SIMD)

Versões dos Codificadores				
HEVC	HM 16.9			
VVC	VTM 5.1 / VTM 6.0			

Metodologia

 O BD-BR representa a diferença média em bitrate entre codificadores para mesma qualidade de imagem

Ferramentas usadas para obter os resultados					
Complexidade por módulo	GNU Profiler (GPROF)				
Análise dos dados de saída da codificação	Python 2.7				
Calculo dos dados analisados	Bjontegaard Delta (BD)				

Metodologia

- Subamostragem YUV 4:2:0
- 8 bits por amostra
- Testes realizados em um Intel Xeon octa-core 3.60GHz, 32 GB RAM usando a ferramenta GNU Parallel [6] para rodar 4 processos simultâneos
- Total de 228 codificações

Sequence Name	Class	Resolution	Frame Rate	SI	TI	
PeopleOnStreet	Class A	2560x1600	30fps	8.5	66.7	
Traffic	Class A	2560x1600	30fps	6.6	57.8	
BasketballDrive	Class B	1920x1080	50fps	5.5	39.7	
BQTerrace	Class B	1920x1080	60fps	11.4	81.4	
Cactus	Class B	1920x1080	50fps	6.9	70.7	
Kimono	Class B	1920x1080	24fps	2.8	54.1	
ParkScene	Class B	1920x1080	24fps	5.4	54.2	
Tennis	Class B	1920x1080	24fps	4.0	58.7	
BasketballDrill	Class C	832x480	50fps	7.4	40.1	
BQMall	Class C	832x480	60fps	9.8	55.7	
PartyScene	Class C	832x480	50fps	11.4	54.1	
RaceHorses	Class C	832x480	30fps	8.8	52.9	
BasketballPass	Class D	416x240	50fps	7.8	36.8	
BlowingBubbles	Class D	416x240	50fps	8.3	56.5	
BQSquare	Class D	416x240	60fps	16.9	83.9	
RaceHorses	Class D	416x240	30fps	10.6	51.9	
FourPeople	Class E	1280x720	60fps	7.4	61.6	
Johnny	Class E	1280x720	60fps	6.0	59.1	
SlideEditing	Class F	1280x720	30fps	21.8	83.9	

Metodologia

- Complexidade foi medida de duas formas:
- 1) Em termos de tempo de execução
- Para comparar os codificadores em termos de tempo de execução foi dividido o tempo médio de codificação do VTM pelo tempo médio do HM

	BD-BR	BD-PSNR	TR	TR
Sequence Name	(%)	(db)	SIMD	no SIMD
PeopleOnStreet	-38.85	1.97	11.07	15.18
Traffic	-49.35	1.91	9.18	15.34
BasketballDrive	-46.06	1.21	9.31	13.10
BQTerrace	-59.71	1.57	11.18	16.41
Cactus	-47.01	1.23	13.00	18.92
Kimono	-28.91	1.00	8.68	15.07
ParkScene	-43.02	1.53	14.54	25.79
Tennis	-41.05	1.48	11.36	15.71
BasketballDrill	-46.22	2.31	5.52	8.19
BQMall	-42.77	2.17	4.88	8.25
PartyScene	-48.53	2.77	13.16	16.87
RaceHorses	-40.60	1.80	8.48	13.27
BasketballPass	-40.96	2.37	11.78	18.20
BlowingBubbles	-40.73	1.87	10.87	14.17
BQSquare	-60.92	4.10	13.24	19.04
RaceHorses	-41.00	2.19	13.15	24.06
FourPeople	-41.68	1.78	3.12	4.66
Johnny	-50.11	1.45	12.41	24.68
SlideEditing	-34.47	5.53	8.28	14.81
Average	-44.40	2.07	10.17	15.88

Metodologia

- Complexidade foi medida de duas formas:
- 2) Usando GPROF, o que permite comparar o tempo de cada função dos codificadores
 - No profiling somente o VVC com SIMD foi usado
 - Número de frames reduzido para 30
 - Número de sequências reduzido para 9

Codificação de Vídeo

- VVC possui partições binárias e ternárias
- HEVC possui somente partições binárias
- HEVC possui limitação em particionamento recursivo

Metodologia

 A configuração temporal Random Access (RA) foi selecionada

Coding configuration				
Nº of frames on BD measure	60			
Nº of frames on profiling	30			
QPs used	22, 27, 32, 37			

Metodologia

- Valores de SI e TI estimam o nivel de textura e movimento de uma cena
- Valores calculados a partir do componente luminancia (Y)

Sequence Name	Class	Class Resolution		SI	TI	
PeopleOnStreet	Class A	2560x1600	30fps	8.5	66.7	
Traffic	Class A	2560x1600	30fps	6.6	57.8	
BasketballDrive	Class B	1920x1080	50fps	5.5	39.7	
BQTerrace	Class B	1920x1080	60fps	11.4	81.4	
Cactus	Class B	1920x1080	50fps	6.9	70.7	
Kimono	Class B	1920x1080	24fps	2.8	54.1	
ParkScene	Class B	1920x1080	24fps	5.4	54.2	
Tennis	Class B	1920x1080	24fps	4.0	58.7	
BasketballDrill	Class C	832x480	50fps	7.4	40.1	
BQMall	Class C	832x480	60fps	9.8	55.7	
PartyScene	Class C	832x480	50fps	11.4	54.1	
RaceHorses	Class C	832x480	30fps	8.8	52.9	
BasketballPass	Class D	416x240	50fps	7.8	36.8	
BlowingBubbles	Class D	416x240	50fps	8.3	56.5	
BQSquare	Class D	416x240	60fps	16.9	83.9	
RaceHorses	Class D	416x240	30fps	10.6	51.9	
FourPeople	Class E	1280x720	60fps	7.4	61.6	
Johnny	Class E	1280x720	60fps	6.0	59.1	
SlideEditing	Class F	1280x720	30fps	21.8	83.9	

Resultados Experimentais

- ParkScene (1920x1080) sequence.
 It can be seen that VVC provides more bitrate savings on smaller QP values, ranging from 27% on QP=22 down to 20% on QP=37.
- SIMD accelerators have a higher impact on larger QPs

J	HM		VTM				
QPs	PSNR	Bitrate	PSNR	Bitrate	TR	TR	
Qrs	(db)	(kbps)	(db)	(kbps)	SIMD	no SIMD	
22	40.2	9404	41.0	6884	13.1	18.5	
27	37.8	3719	38.7	2808	9.4	14.6	
32	35.5	1599	36.4	1272	6.9	11.6	
37	33.4	716	34.1	573	4.6	8.4	

