

SELECCIÓN DE INSTANCIAS EN BIG DATA

Victor Martinez^a, Dr. Alejandro Rosales Pérez^b, Dr. Edgar Jiménez Peña^b

^a Alumno Maestría en Computo Estadístico, Centro de Investigación en Matemáticas

^b Profesor Investigador, Centro de Investigación en Matemáticas, Unidad Monterrey

Introducción

"El objetivo de un método de selección de instancias es obtener un subconjunto $S \in T$ tal que Sno contenga instancias superfluas y $Acc(S) \cong$ Acc(T) donde Acc(X) es la exactitud de clasificación obtenida usando X como conjunto de entrenamiento" [1]"

Datos mas fáciles de manipular

- 1. Mejorar tiempos de ejecución en clasificadores
- Eliminar instancias ruidosas
- 3. Optimización en el almacenamiento de la información

FCNN

Algoritmo de Selección de instancias propuesto por Angulli [2]

Es probable que seleccione puntos cercanos al limite de decisión

El algoritmo finaliza cuando el conjunto T es clasificado correctamente por S.

Algoritmo 1 FCNN (Fast Condensed Nearest Neighbour)

Entrada: Conjunto de entrenamiento $T = \{(x_1, y_1), ..., (x_n, y_n)\}$

Salida: Conjunto consistente S de T

1: $S = \emptyset$

2: S = centroides(T)

3: Mientras $\Delta S \neq \emptyset$ hacer:

 $S = S \cup \Delta S$

 $\Delta S = \emptyset$

Para cada $x \in S$ hacer:

 $\Delta S = \Delta S \cup \{rep(x, Voren(p, S, T))\}$

Fin Para cada

9: Fin Mientras

Distancias

Una métrica debe cumplir con los siguientes criterios (donde d(x, y) se refiere a la distancia entre dos objetos x e y

- $d(x,y) \ge 0$ No negativa
- d(x,y) = d(y,x) Simetrica
- $d(x,z) \ge d(x,y) + d(y,z)$ Designaldad del triangulo

Distancia euclidiana

$$d(x,y) = ||x - y|| \tag{1}$$

Distancia en el espacio kernel

$$d^{2}(\phi(x), \phi(y)) = \|\phi(x) - \phi(y)\|^{2}$$

$$= K(x, x) - 2K(x, y) + K(y, y)$$
(2)

SI-MapReduce

FCNN MR, Imagen Adaptada [4]

ALEATORIZAR

<k. instancia>

etiqueta, [instancias]>

<k. instancia>

<etiqueta, instancia:

Мар

etiqueta, [instancias]>

MRPR, Imagen Adaptada [3]

Desempeño del conjunto S

	Datos	Metodologia	$KNN \\ (K = 3)$	MLP	SVM (Kernel = RBF)	RF
	Airlines	FCNN_MR FCNN KFCNN KPCAFCNN T	0.88638 0.88993 0.90571 0.89291 0.90737	0.92891 0.93087 0.93886 0.92940 0.93906	0.93011 0.93171 0.93410 0.92012 0.93478	0.88130 0.88390 0.89009 0.88556 0.89060
	BGN Australian	FCNN_MR FCNN KFCNN KPCAFCNN T	0.78106 0.83234 0.82489 0.83203	0.85676 0.86448 0.86412 0.86480		0.86257 0.86819 0.86243 0.85796
_	CovType	FCNN_MR FCNN KFCNN KPCAFCNN T	0.91101 0.93067 0.94382 0.94792	0.85590 0.88871 0.90009 0.89891	0.87814 0.91909 0.92374 0.92573	0.76216 0.76672 0.76814 0.76175

Compresión de los datos

Conclusiones

- La mayor compresión y aceleración se obtiene utilizando el algoritmo FCNN MR, y la perdida de rendimiento no supera las 5 centésimas de la linea base en nuestra métrica de interés.
- ullet La metodología FCNN muestra resultados ligeramente mejores a FCNN MR en la métrica de interés, no obtiene la mayor compresión y en contraparte el tiempo de ejecución es menor al empleado por FCNN MR.
- KFCNN, muestra el mejor rendimiento, la velocidad de ejecución supera a FCNN - MR pero no logra una gran aceleración y la compresión mínima es de alrededor del 10%.

Referencias

FCNN MR

Actualizar

conjunto S

<k, instancia>

etiqueta, instancia>

- J. Olvera-López, J. Carrasco-Ochoa, J. F. Martínez-Trinidad, and J. Kittler, "A review of instance selection methods," Artif. Intell. Rev., vol. 34, pp. 133-143, Aug. 2010. DOI: 10.1007/s10462-010-9165-y.
- F. Angiulli, "Fast condensed nearest neighbor rule," in Proceedings of the 22nd international conference on Machine learning, 2005, pp. 25–32.
- I. Triguero, D. Peralta, J. Bacardit, S. García, and F. Herrera, "Mrpr: A mapreduce solution for prototype reduction in big data classification," Neurocomputing, vol. 150, pp. 331–345, 2015, ISSN: 0925-2312. DOI: https://doi.org/10.1016/j.neucom.2014.04.078.
- L. Si, J. Yu, S. Li, et al., "Fcnn-mr: A parallel instance selection method based on fast condensed nearest neighbor rule," Journal of information and communication convergence engineering, vol. 11, pp. 855-861, 2017.