

inorganic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

$K(M_0O_2)_4O_3(AsO_4)$

Raja Jouini, Mohamed Faouzi Zid* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie, Faculté des Sciences de Tunis, Université de Tunis ElManar, 2092 ElManar II Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 7 May 2013; accepted 17 May 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (As–O) = 0.004 Å; R factor = 0.018; wR factor = 0.045; data-to-parameter ratio = 13.9.

A new compound with a non-centrosymmetric structure, potassium tetrakis[dioxomolybdenum(IV)] arsenate trioxide, $K(MoO_2)_4O_3(AsO_4)$, has been synthesized by a solid-state reaction. The $[(MoO_2)_4O_3(AsO_4)]^+$ three-dimensional framework consists of single arsenate AsO_4 tetrahedra, MoO_6 octahedra, MoO_5 bipyramids and bioctahedral units of edgesharing Mo_2O_{10} octahedra. The $[Mo_2O_8]_{\infty}$ octahedral chains running along the a-axis direction are connected through their corners to the AsO_4 tetrahedra, MoO_6 octahedra and MoO_5 bipyramids, so as to form large tunnels propagating along the a axis in which the K^+ cations are located. This structure is compared with compounds containing M_2O_{10} (M = Mo, V, Fe) dimers and with those containing M_2O_8 (M = V) chains.

Related literature

For background to the physico-chemical properties of related compounds, see: Piffard et al. (1985); Centi et al. (1988); Stucky et al. (1989); Northrup et al. (1994); Ouerfelli et al. (2007). For details of structurally related compounds, see: Amoros & LeBail (1992), Boudin et al. (1994); Guesdon et al. (1994, 1995); Borel et al. (1994, 2000); LeBail et al. (1995); Berrah et al. (1999); Hajji et al. (2009). For the preparation, see: Jouini et al. (2012). For bond-valence sums, see: Brown & Altermatt (1985).

Experimental

Crystal data

 $K(MoO_2)_4O_3(AsO_4)$ $V = 1215.50 (18) Å^3$ $M_r = 737.78$ Z = 4 Orthorhombic, $P2_12_12_1$ Mo $K\alpha$ radiation $\alpha = 8.0442 (8) Å$ $\mu = 7.16 \text{ mm}^{-1}$ T = 298 K c = 12.6799 (10) Å $0.42 \times 0.33 \times 0.22 \text{ mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.077, T_{\max} = 0.212$ 8046 measured reflections

2647 independent reflections 2611 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.030$ 2 standard reflections every 120 min intensity decay: 1.2%

Refinement

 $\begin{array}{lll} R[F^2 > 2\sigma(F^2)] = 0.018 & \Delta \rho_{\rm max} = 0.52 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ wR(F^2) = 0.045 & \Delta \rho_{\rm min} = -0.69 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ S = 1.10 & {\rm Absolute \ structure: \ Flack \ (1983)}, \\ 2647 \ {\rm reflections} & 2399 \ {\rm Friedel \ pairs} \\ 191 \ {\rm parameters} & {\rm Flack \ parameter: \ 0.089 \ (10)} \end{array}$

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS*); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: VN2070).

References

Amoros, P. & LeBail, A. (1992). J. Solid State Chem. 97, 283-291.

Berrah, F., Borel, M. M., Leclaire, A., Daturi, M. & Raveau, B. (1999). *J. Solid State Chem.* **145**, 643–648.

Borel, M. M., Guesdon, A., Leclaire, A., Grandin, A. & Raveau, B. (1994). Z. Anorg. Allg. Chem. 620, 569–573.

Borel, M. M., Leclaire, A., Chardon, J. & Raveau, B. (2000). Int. J. Inorg. Mater. 2, 11–19.

Boudin, S., Grandin, A., Borel, M. M., Leclaire, A. & Raveau, B. (1994). J. Solid State Chem. 110, 43–49.

Brandenburg, K. (1998). Diamond. University of Bonn, Germany.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.

Centi, G., Trifiro, F., Ebner, J. R. & Franchetti, V. M. (1988). Chem. Rev. 88, 55–80.

Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Guesdon, A., Borel, M. M., Leclaire, A., Grandin, A. & Raveau, B. (1994). J. Solid State Chem. 109, 145–151.

Guesdon, A., Leclaire, A., Borel, M. M., Grandin, A. & Raveau, B. (1995). J. Solid State Chem. 114, 481–485.

Hajji, M., Zid, M. F. & Driss, A. (2009). Acta Cryst. E65, i21.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Jouini, R., Zid, M. F. & Driss, A. (2012). Acta Cryst. E68, i93.

LeBail, A., Permier, L. & Laligant, Y. (1995). Eur. J. Solid State Inorg. Chem. 32, 883–892.

Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.

North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). *Acta Cryst.* A**24**, 351–359.

Northrup, P. A., Parise, J. B., Cheng, L. K., Cheng, L. T. & McCarron, E. M. (1994). *Chem. Mater.* **6**, 434–440.

Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007).
J. Solid State Chem. 180, 2942–2949.

Piffard, Y., Lachgar, A. & Tournoux, M. (1985). J. Solid State Chem. 109, 253-256

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Stucky, G. D., Phillips, M. L. F. & Gier, T. E. (1989). Chem. Mater. 1, 492-509.

supplementary materials

Acta Cryst. (2013). E69, i37 [doi:10.1107/S1600536813013664]

 $K(MoO_2)_4O_3(AsO_4)$

Raja Jouini, Mohamed Faouzi Zid and Ahmed Driss

Comment

Diverses études sur des composés à charpentes covalentes formées d'octaèdres et de tétraèdres ont débuté il y a plusieurs années. Les applications espérées des nouveaux oxydes élaborés sont en catalyse hétérogène comme produits d'intercalation (Centi *et al.*, 1988) et comme échangeurs cationiques (Piffard *et al.*, 1985) et conducteurs ioniques (Ouerfelli *et al.*, 2007). Ces matériaux peuvent être aussi dotés de propriétés d'optique non-linéaire pour les composés non-centrosymétriques (Northrup *et al.*, 1994).

À titre de contribution à l'étude de ces types de matériaux, nous avons poursuivi l'exploration des systèmes A—Mo—As —O (A= cation monovalent) dans lesquels nous avons précédemment caractérisé la phase suivante: Na₂MoO₂As₂O₁ (Jouini et al., 2012) dans le but de trouver des nouveaux arséniates qui manifestent des caractéristiques structurales favorables à une bonne conduction ionique. Une nouvelle phase non-centrosymétrique de formulation K(MoO₂)₄O₃(AsO₄) a été synthétisée par réaction à l'état solide. L'unité asymétrique dans la structure est constituée de deux octaèdres MoO₆ reliés par partage d'une arête formant ainsi le bioctaèdre Mo₂O₁₀. Ce dernier met en commun deux de ses sommets avec une bipyramide Mo1O₅ et un autre sommet avec un tétraèdre AsO₄ relié lui-même à un octaèdre Mo4O₆ par partage d'un sommet (Fig. 1). La charpente anionique peut être décrite à partir des chaînes ondulées infinies (Mo₂O₈)∞ formées par les dimères Mo₂O₁₀ reliés par partage d'arêtes selon la direction [100] (Fig. 2). Au sein de ces chaînes, chaque dimère partage deux de ses sommets avec deux octaèdres Mo4O₆, quatre sommets avec trois bipyramides Mo1O₅ et un sommet avec un tétraèdre AsO₄ laissant libre trois sommets. Cette association conduit à des rubans de type Mo₈AsO₃₄ disposés selon la direction [100] (Fig. 3). La cohésion entre ces derniers est assurée par formation de ponts mixtes Mo—O—As (Fig. 4). L'association de ces rubans conduit à une structure tridimensionnelle possédant de larges canaux. Les atomes de potassium sont situés dans les canaux mais excentrés (Fig. 5). Les valeurs des charges des ions (BVS) dans la structure ont été calculées moyennant la formule empirique de Brown (Brown & Altermatt, 1985). Le résultat final est: Mo1(6,080), Mo2(6,143), Mo3(6,086), Mo4(6,153), As1(5,292) et K1(1,222) confirme les degrés d'oxydation des différents ions dans la phase étudiée.

La comparaison de la structure de K(MoO₂)₄O₃(AsO₄) avec celles trouvées dans la littérature et renfermant le même groupement Mo₂O₁₀ montre que ces dimères sont rencontrés dans les monophosphates de formulation *A*Mo₃P₂O₁₄ (*A*=Na (Borel *et al.*, 1994); *A*=K (Guesdon *et al.*, 1994)), dans le composé Cs₃Mo₈O₁₁(PO₄)₈ (Borel *et al.*, 2000), dans le diphosphate β-K₂Mo₂O₄P₂O₇ (Guesdon *et al.*, 1995) ainsi que dans l'arséniate Li₃AlMo₂As₂O₁₄ (Hajji *et al.*, 2009). Les monophosphates de formulation *A*Mo₃P₂O₁₄ présentent des structures bidimensionnelles où les groupements Mo₂O₁₀ partagent leurs sommets avec les polyèdres PO₄ et MoO₆. Dans la charpente tridimensionnelle de Cs₃Mo₈O₁₁(PO₄)₈, chaque unité Mo₂O₁₀ partage sept sommets avec les tétraèdres PO₄, alors que dans le diphosphate β-K₂Mo₂O₄P₂O₇, chaque groupement Mo₂O₁₀ met en commun six sommets avec cinq groupements P₂O₇. Le matériau Li₃AlMo₂As₂O₁₄ est caractérisé par une structure très ouverte liée au fait que chaque groupement Mo₂O₁₀ ne partage ses sommets qu'avec seulement deux tétraèdres AsO₄ et deux octaèdres AlO₆. Dans le composé FeVMoO₇ (LeBail *et al.*, 1995), les dimères

Acta Cryst. (2013). E69, i37 Sup-1

M₂O₁₀ sont observés sous forme de Fe₂O₁₀ où ce dernier partage ses dix sommets avec respectivement quatre tétraèdres MoO₄ et six tétraèdres VO₄ conduisant à une charpente bidimensionnelle. Certains phosphates de vanadium sont caractérisés par la présence des groupements V₂O₁₀ comme Cd₃V₄(PO₄)₆ (Boudin *et al.*, 1994) dans lequel les dimères V₂O₁₀ sont connectés directement aux groupements PO₄. Une différence est observée dans le comportement des dimères dans ces matériaux et ceux existant dans notre composé. En effet, chaque dimère dans notre matériau partage ses sommets avec trois polyèdres de nature différentes: deux de ses sommets sont liés à deux octaèdres MoO₆, quatre sommets avec trois bipyramids MoO₅ et un sommet avec un tétraèdre AsO₄ laissant ainsi libre trois sommets et conduisant à une structure tridimensionnelle. Notre structure est construite aussi à partir de chaînes ondulées Mo₂O₈. Ce type de chaînes M₂O₈ est observé sous forme de V₂O₈ dans d'autres composés rencontrés dans la bibilographie notamment: KV₂PO₈ (Berrah *et al.*, 1999) et l'hydrogénophosphate d'ammonium α-NH₄VO₂PO₃OH (Amoros & LeBail, 1992), dans lesquels les pyramides VO₅ sont connectés les uns aux autres au moyen de sommets. Contrairement à notre composé où les octaèdres MoO₆ se lient par partage d'arêtes formant des chaînes ondulées. Le composé K(MoO₂)₄O₃(AsO₄) appartenant à une classe non-centrosymétrique (groupe d'espace: P2₁2₁2₁) pourrait présenter des propriétés d'optique non-linéaires (Stucky *et al.*, 1989).

Experimental

Les cristaux relatifs à la phase K(MoO₂)₄O₃(AsO₄) ont été obtenus à partir des réactifs solides K₂CO₃ (Fluka, 69858), (NH₄)₂Mo₄O₁₃ (Fluka, 69858) e t NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01–775) pris dans les proportions K:Mo:As=1:4:1. Le mélange a été finement broyé et préchauffé à l'air à 573 K pendant une nuit. Après refroidissement et broyage, la préparation est portée, proche de la fusion à 823 K pour favoriser la germination et la croissance des cristaux, pendant une semaine. Le résidu final est refroidi lentement (5°/demi journée, à 773 K) puis rapide (50°/h) jusqu'à la température ambiante. Par lavage à l'eau chaude des cristaux de couleur jaunâtre de qualité et de taille suffisante ont été séparés pour analyse par DRX.

Refinement

Les densités d'électrons maximum et minimum restants dans la Fourier-différence sont acceptables et sont situées respectivements à 0.80 Å de O9 et à 0.56 Å de K1.

Computing details

Data collection: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: *CAD-4 EXPRESS* (Duisenberg, 1992; Macíček & Yordanov, 1992); data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *WinGX* (Farrugia, 2012).

Acta Cryst. (2013). E69, i37 Sup-2

Figure 1
Unité asymétrique dans K(MoO₂)₄O₃(AsO₄). Les ellipsoïdes ont été définis avec 50% de probabilités. [codes de symétrie:
(i) 1 + x, y, z; (ii) 3/2 - x, 1 - y, 1/2 + z; (iii) 1 - x, 1/2 + y, 3/2 - z; (iv) 1/2 - x, 1 - y, 1/2 + z; (v) -1 + x, y, z; (vi) 1 - x, -1/2 +

Figure 2 Projection de chaînes ondulées de type Mo_2O_8 selon la direction [100].

y, 3/2 - z].

Acta Cryst. (2013). E**69**, i37

Figure 3 Projection des rubans de type Mo₈AsO₃₄ selon la direction [100].

Acta Cryst. (2013). E**69**, i37

Figure 4Représentation de la cohésion entre les rubans.

Acta Cryst. (2013). E**69**, i37

Figure 5 Projection de la structure de K(MoO₂)₄O₃(AsO₄) selon a, mettant en évidence les canaux où logent les atomes de potassium.

Potassium tetrakis(dioxomolybdenum) arsenate trioxide

Crystal data

 $K(MoO_2)_4O_3(AsO_4)$ $M_r = 737.78$ Orthorhombic, P2₁2₁2₁ Hall symbol: P 2ac 2ab a = 8.0442 (8) Å b = 11.9167 (9) Åc = 12.6799 (10) Å $V = 1215.50 (18) \text{ Å}^3$ Z = 4

Data collection

Enraf-Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube

Graphite monochromator

 $\omega/2\theta$ scans

Absorption correction: ψ scan

(North et al., 1968) $T_{\min} = 0.077, T_{\max} = 0.212$ 8046 measured reflections F(000) = 1360 $D_{\rm x} = 4.032 {\rm Mg m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

 $\theta = 10-15^{\circ}$ $\mu = 7.16 \text{ mm}^{-1}$

T = 298 K

Prism, yellow

 $0.42 \times 0.33 \times 0.22 \text{ mm}$

2647 independent reflections 2611 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.030$

 $\theta_{\text{max}} = 27.0^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$ $h = -10 \rightarrow 4$

 $k = -15 \rightarrow 15$

 $l = -16 \rightarrow 16$

2 standard reflections every 120 min

intensity decay: 1.2%

sup-6 Acta Cryst. (2013). E69, i37

Refinement

Refinement on F^2

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.018$

 $wR(F^2) = 0.045$

S = 1.10

2647 reflections

191 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

Secondary atom site location: difference Fourier

man

 $w = 1/[\sigma^2(F_0^2) + (0.0195P)^2 + 2.5252P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$

 $\Delta \rho_{\text{max}} = 0.52 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.68 \text{ e Å}^{-3}$

Extinction correction: *SHELXL97* (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/\sin(2\theta)]^{-1/4}$

Extinction coefficient: 0.00488 (17)

Absolute structure: Flack (1983), 2399 Friedel

pairs

Flack parameter: 0.089 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and F-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
Mo1	0.99047 (5)	0.41688 (3)	0.61974 (3)	0.01100 (9)	
Mo2	0.78403 (5)	0.64073 (3)	0.90494 (3)	0.00936 (9)	
Mo3	0.19469 (5)	0.63578 (3)	0.92886 (3)	0.00829 (9)	
Mo4	0.46142 (5)	0.71544 (3)	0.68083 (3)	0.01289 (10)	
As1	0.56223 (6)	0.43948 (3)	0.65276 (3)	0.00879 (10)	
K1	0.9351(2)	0.75546 (14)	0.60338 (12)	0.0474 (4)	
O1	0.7659 (5)	0.5009(3)	0.9106(3)	0.0236 (8)	
O2	0.4420 (4)	0.5521 (2)	0.6643 (3)	0.0155 (7)	
O3	0.3320 (4)	0.6807(3)	0.8313 (2)	0.0146 (7)	
O4	0.6627 (4)	0.6759 (3)	0.7968 (3)	0.0187 (8)	
O5	0.4982 (6)	0.8616(3)	0.7455 (3)	0.0273 (9)	
O6	0.7604 (5)	0.4761 (3)	0.6609(3)	0.0313 (10)	
O7	0.2779 (6)	0.7443 (3)	0.6214 (3)	0.0305 (10)	
O8	0.6055 (6)	0.7332(3)	0.5839 (3)	0.0330 (10)	
O9	0.2086 (5)	0.4954(3)	0.9257 (3)	0.0200 (8)	
O10	0.9963 (4)	0.6679(2)	0.8464(2)	0.0136 (6)	
O11	0.8536 (4)	0.3194(2)	0.5245 (2)	0.0099 (6)	
O12	0.1790 (4)	0.3351(2)	0.5557(2)	0.0100 (6)	
O13	0.5239 (4)	0.3741 (2)	0.5374 (2)	0.0103 (6)	
O14	0.0441 (5)	0.3976 (4)	0.7460(3)	0.0309 (10)	
O15	0.0494 (5)	0.5469 (3)	0.5840 (4)	0.0347 (10)	

Acta Cryst. (2013). E69, i37 Sup-7

supplementary materials

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Mo1	0.00734 (18)	0.01387 (16)	0.01180 (17)	-0.00106 (15)	0.00059 (14)	-0.00650 (13)
Mo2	0.00731 (17)	0.01417 (17)	0.00660 (17)	-0.00085 (15)	-0.00026 (14)	-0.00219 (13)
Mo3	0.00694 (17)	0.01092 (16)	0.00703 (16)	0.00121 (14)	0.00010 (13)	-0.00095 (13)
Mo4	0.0238 (2)	0.00954 (16)	0.00534 (16)	0.00046 (15)	-0.00095 (16)	-0.00032 (12)
As1	0.0092(2)	0.01012 (18)	0.00711 (19)	0.00226 (17)	-0.00031 (17)	-0.00295 (15)
K1	0.0510 (9)	0.0557 (8)	0.0355 (7)	0.0067 (8)	0.0015 (8)	-0.0129 (7)
O1	0.032(2)	0.0155 (16)	0.0235 (19)	-0.0039 (15)	0.0019 (17)	-0.0053 (13)
O2	0.0163 (16)	0.0096 (13)	0.0206 (16)	0.0036 (13)	0.0004 (15)	-0.0043 (12)
O3	0.0107 (16)	0.0233 (15)	0.0098 (14)	-0.0029 (13)	0.0028 (13)	-0.0026 (12)
O4	0.0123 (18)	0.0337 (19)	0.0100 (15)	0.0033 (15)	-0.0020(13)	-0.0028(13)
O5	0.054(3)	0.0143 (14)	0.0135 (15)	-0.006(2)	0.0064 (17)	-0.0017 (12)
O6	0.0116 (18)	0.044(2)	0.038(2)	0.0011 (17)	0.0001 (17)	-0.0319 (18)
O7	0.039(3)	0.0190 (16)	0.033(2)	0.0086 (17)	-0.020(2)	0.0029 (16)
O8	0.050(3)	0.029(2)	0.0200 (18)	-0.0101 (19)	0.015(2)	0.0005 (15)
O9	0.0235 (19)	0.0150 (15)	0.0214 (18)	0.0024 (15)	-0.0081 (17)	-0.0046 (13)
O10	0.0103 (15)	0.0262 (15)	0.0042 (13)	0.0015 (14)	-0.0028 (13)	-0.0014 (11)
O11	0.0085 (15)	0.0130 (14)	0.0082 (14)	-0.0021 (12)	-0.0028 (12)	-0.0010 (11)
O12	0.0074 (15)	0.0102 (13)	0.0123 (14)	0.0006 (11)	0.0012 (12)	-0.0019 (11)
O13	0.0084 (15)	0.0158 (13)	0.0066 (13)	-0.0002 (12)	-0.0003 (12)	-0.0050 (11)
O14	0.024(2)	0.053(2)	0.0156 (16)	0.0141 (19)	-0.0036 (16)	-0.0148 (16)
O15	0.028(2)	0.0197 (17)	0.057(3)	-0.0052 (17)	0.021(2)	-0.0103 (17)

Geometric parameters (Å, °)

Mo1—O14 ⁱ	1.674 (4)	Mo4—O8	1.703 (4)
Mo1—O15 ⁱ	1.682 (4)	Mo4—O5	1.947 (3)
Mo1—O12i	1.977 (3)	Mo4—O2	1.964 (3)
Mo1—O11	2.005 (3)	Mo4—O3	2.213 (3)
Mo1—O6	2.048 (4)	Mo4—O4	2.237 (3)
Mo2—O1	1.675 (4)	As1—O6	1.656 (4)
Mo2—O4	1.735 (3)	As1—O2	1.661 (3)
Mo2—O10	1.890 (4)	As1—O5 ^{vi}	1.662 (3)
Mo2—O11 ⁱⁱ	1.936 (3)	As1—O13	1.685 (3)
Mo2—O13 ⁱⁱ	2.289 (3)	K1—O14 ⁱⁱⁱ	2.558 (4)
Mo2—O12 ⁱⁱⁱ	2.388 (3)	K1—O15 ⁱ	2.662 (4)
Mo3—O9	1.677 (3)	K1—O8	2.676 (5)
Mo3—O3	1.742 (3)	K1—O8vii	2.745 (5)
Mo3—O12 ^{iv}	1.934(3)	K1—O7 ⁱ	2.771 (5)
Mo3—O10 ^v	1.946 (3)	K1—O9 ⁱⁱⁱ	3.106 (4)
Mo3—O13 ^{iv}	2.237 (3)	K1—O7 ^{vii}	3.118 (5)
Mo3—O11 ⁱⁱⁱ	2.300(3)	K1—O10	3.290 (3)
Mo4—O7	1.693 (4)	K1—O4	3.423 (4)
$O14^{i}$ — $Mo1$ — $O15^{i}$	108.2 (2)	O9—Mo3—O13 ^{iv}	90.84 (15)
$O14^{i}$ — $Mo1$ — $O12^{i}$	97.31 (16)	O3—Mo3—O13 ^{iv}	162.09 (13)
$O15^{i}$ — $Mo1$ — $O12^{i}$	97.29 (16)	O12 ^{iv} —Mo3—O13 ^{iv}	84.88 (12)
O14 ⁱ —Mo1—O11	129.64 (18)	O10 ^v —Mo3—O13 ^{iv}	72.32 (12)

Acta Cryst. (2013). E69, i37 sup-8

supplementary materials

O15 ⁱ —Mo1—O11	121.71 (18)	O9—Mo3—O11 ⁱⁱⁱ	165.14 (15)
O12 ⁱ —Mo1—O11	83.60 (13)	O3—Mo3—O11 ⁱⁱⁱ	89.84 (13)
O14 ⁱ —Mo1—O6	92.10 (18)	O12 ^{iv} —Mo3—O11 ⁱⁱⁱ	72.79 (11)
O15 ⁱ —Mo1—O6	90.35 (19)	O10 ^v —Mo3—O11 ⁱⁱⁱ	79.19 (12)
O12 ⁱ —Mo1—O6	165.36 (13)	O13 ^{iv} —Mo3—O11 ⁱⁱⁱ	76.06 (11)
O11—Mo1—O6	81.76 (14)	O7—Mo4—O8	104.3 (2)
O1—Mo2—O4	103.02 (19)	O7—Mo4—O5	97.95 (19)
O1—Mo2—O10	105.44 (17)	O8—Mo4—O5	95.13 (18)
O4Mo2O10	99.00 (15)	O7—Mo4—O2	94.84 (16)
O1—Mo2—O11 ⁱⁱ	99.25 (16)	O8—Mo4—O2	95.74 (17)
O4Mo2O11 ⁱⁱ	103.76 (14)	O5—Mo4—O2	160.62 (14)
O10—Mo2—O11 ⁱⁱ	141.44 (13)	O7—Mo4—O3	90.67 (18)
O1—Mo2—O13 ⁱⁱ	87.18 (16)	O8—Mo4—O3	165.03 (19)
O4Mo2O13 ⁱⁱ	168.11 (14)	O5—Mo4—O3	82.88 (13)
O10—Mo2—O13 ⁱⁱ	72.05 (12)	O2—Mo4—O3	82.47 (13)
O11 ⁱⁱ —Mo2—O13 ⁱⁱ	80.21 (12)	O7—Mo4—O4	165.11 (18)
O1—Mo2—O12 ⁱⁱⁱ	165.31 (15)	O8—Mo4—O4	90.47 (19)
O4—Mo2—O12 ⁱⁱⁱ	90.04 (14)	O5—Mo4—O4	78.55 (16)
O10—Mo2—O12 ⁱⁱⁱ	78.65 (12)	O2—Mo4—O4	85.37 (14)
O11 ⁱⁱ —Mo2—O12 ⁱⁱⁱ	70.72 (12)	O3—Mo4—O4	74.58 (12)
O13 ⁱⁱ —Mo2—O12 ⁱⁱⁱ	80.64 (10)	O6—As1—O2	110.01 (18)
O9—Mo3—O3	104.30 (17)	O6—As1—O5 ^{vi}	112.4 (2)
O9—Mo3—O12 ^{iv}	99.44 (15)	O2—As1—O5 ^{vi}	102.26 (18)
O3—Mo3—O12 ^{iv}	101.66 (14)	O6—As1—O13	110.60 (17)
O9—Mo3—O10 ^v	103.77 (16)	O2—As1—O13	110.10 (15)
O3—Mo3—O10 ^v	94.47 (15)	O5 ^{vi} —As1—O13	111.22 (16)
O12 ^{iv} —Mo3—O10 ^v	147.40 (12)		
·		· · · · · · · · · · · · · · · · · · ·	

Symmetry codes: (i) x+1, y, z; (ii) -x+3/2, -y+1, z+1/2; (iii) -x+1, y+1/2, -z+3/2; (iv) -x+1/2, -y+1, z+1/2; (v) x-1, y, z; (vi) -x+1, y-1/2, -z+3/2; (vii) x+1/2, -y+3/2, -z+1.

Acta Cryst. (2013). E69, i37 sup-9