Halbleitertechnik und Nanostrukturen I

Teil Vakuumtechnik WS 2014 Arno Förster Übung 3:

Ü 03 / Seite 1/2

	Ue03_HTNS_PT_WS14						
1	Ein Behälter mit einem Volumen von 1m³ ist mit Stickstoff bei Raumtemperatur gefüllt. Der						
	Behälter steht anfänglich unter dem Druck von 1 mbar. Über eine Blende mit einem						
	Durchmesser von 1 mm entweicht Gas in ein gedachtes ideales Vakuum.						
	a) Entwickeln Sie eine Gleichung für die zeitliche Abnahme der Teilchenzahl im Behälter.						
	Hinweis: gehen Sie davon aus, das $N(t+dt)=N(t)-j_NAdt$.						
	b) Nach welcher Zeit ist die Teilchenzahl um die Hälfte gesunken?						
2	Berechnen Sie die molekularen Leitwerte folgender Rohre. Bei welchen Rohren müssen Sie der						
	Clausing-Korrekturfaktor berücksichtigen?						
	a) 1m DN50mm						
	a) 1m DN50mm b) 2m DN35mm						
	c) 4mDN100mm						
	d) 0,5m DN200mm						
3	Bestimmen Sie die effektiven Leitwerte der Rohrkombinationen:						
	Destination die die effektiven Leitweite der Komkomoniumonen.						
	a) Serienschaltung von 4 Leitungen						
	1m DN50mm + 2m DN35mm + 4mDN100mm + 0,5m DN200mm						
	b) Parallelschaltung von 4 Leizungen mit den Daten aus Aufgabe a)						
	c) Mit welchem Saugvermögen rechnen Sie, wenn Sie hinter die Leitungen aus						
	Aufgabe a) eine Pumpe mit einem Saugvermögen von 1000l/s anschließen?						
1	Des Conservations since Propose cell regulisher avander mit einer Öffman eine absolute						
4	Das Saugvermögen einer Pumpe soll verglichen werden mit einer Öffnung ins absolute						
	Vakuum. Mit welchen effektiven Öffnungsquerschnittsflächen könnte man dann						
	Pumpen mit 100 l/s, 400 l/s,1000 l/s uns 2000 l/s beschreiben?						
5	In einem Edelstahlbehälter befindet sich ein Ultrahochvakuum von $P = 5 \cdot 10^{-11}$ Torr.						
	Der Behälter hat ein Volumen von 0,5 m ³ und wird kontinuierlich von einer Pumpe mit						
	einem Saugvermögen von $S = 1000 \text{ l/s}$ gepumpt.						
	a) Wie hoch ist der Druck-Volumenstrom (Gasstromstärke), der von der Pumpe						
	abgepumpt wird?						
	b) Wie hoch ist die Teilchenstromstärke, die abgepumpt wird?						
	c) Wie groß ist die Leckrate?						
	d) Die Pumpe wird bei t=0 durch ein Plattenventil von der Kammer getrennt. Stellen Sie						
	die Teilchenzahl bzw. Teilchendichte im Behälter als Funktion der Zeit dar und						
	zeichnen Sie den Graphen.						
	f) Wie würden Sie experimentell aufgrund der Erkenntnis von Aufgabe a)-e) vorgehen,						
	um die Leckrate zu bestimmen?						
	g) Durch betätigen eines Plattenventils wird die Pumpe zum Zeitpunkt $t = 0$						
	abgeschaltet. Nach welcher Zeit erreicht die Kammer einen Druck von P = 1•10 ⁻⁶ mbar?						
6	Ein Vakuumbehälter wird an eine Turbomolekularpumpe mit einem Saugvermögen von						
	1000 l/s angeschlossen. Der Behälter hat ein Volumen von einem 1 m ³ . Ein kleines						
	Loch im Behälter vom Durchmesser d= 1 µm begrenzt den zu erreichenden Enddruck.						
	μ						
	a) Das Saugvermögen der Pumpe ist Druckabhängig. Die Pumpe erreicht jedoch etwa						
	bei einem Druck von 1E-3 mbar das angegebene Saugvermögen. Wie sieht ab diesem						
	Zeitpunkt die ideale Druck-Zeit-Kurve aus?						
	Donpular die ideale Dider Zeit Ruive aus:						
	b) Welchen Enddruck erreicht die Kammer?						
	c) Wie hoch sind die Leckraten für Stickstoff, Sauerstoff, Wasserstoff und Helium?						
	d) Wie lange dauert es, bis die Kammer ausgehend von P ₀ =1E-3mbar einen Enddruck						
<u></u>	von 1E-6 mbar erreicht?						

Halbleitertechnik und Nanostrukturen I Teil Vakuumtechnik WS 2014 Arno Förster

Ü 03 / Seite 2/2

Übung 3: Ue03 HTNS PT WS14

Bestimmen Sie die mittlere freie Weglängen von Stickstoff , Trimethylgallium Molekül (TMG) Ga(CH₃)₃ und für ein Arsin-Molekül AsH₃ aus den Daten der Tabelle bei einem Druck von 1mbar., T=300K

Beachten Sie hierbei, dass für die Berechnung der mittleren freien Weglänge der Vander-Waals-Radius und nicht der Atomradius relevant ist!

Molekül	Dichte	Atom-Radius	Van der Waals	Molmasse
			Radius	
N2	$807,6 \text{ kg/m}^3$	65 pm	155 pm	28 g
TMG	1,15 g/ml			114,82 g
AsH ₃		115 pm	185 pm	77,95 g

Berechnen Sie aus der Dichte des TMG Moleküls das Volumen des Moleküls aus und nähern Sie das mit einem Würfel.

8 Bestimmen Sie mit der Knudsen Zahl die Art der Strömung:

Für Stickstoff gilt: $\lambda = 68 \mu m * 1/(P/mbar)$

Für Wasserstoff gilt: $\lambda = 115 \mu m * 1/(P/mbar)$

- a) Stickstoff mit Druck P=200Pa bei einem Rohrdurchmesser von 35 mm
- b) Wasserstoff bei P=200Pa bei 6mm Rohrdurchmesser
- c) Stickstoff bei 1E-6mbar und Rohrdurchmesser 50mm
- d) Stickstoff bei 1E-3 mbar und Rohrdurchmesser 35 mm
- 9 In einem Wellschlauch wird Stickstoff bei einem Druck von 1E-3 mbar transportiert. Welchen Durchmesser darf der Wellschlauch haben, damit sicher noch mit einer Molekularen Strömung gerechnet werden kann?
- Nach einer einfachen Abschätzung kann der Diffusionskoeffizient von Stickstoff-Molekülen innerhalb von Stickstoffmolekülen abgeschätzt werden mit

$$D = \frac{\lambda < v >}{3}$$

- a) Wie weit entfernt sich nach dieser Abschätzung ein Stickstoffmolekül innerhalb einer Zeit von 5 Minuten von seiner Ausgangsposition? Der Stickstoffdruck beträgt 1bar.
- b) Mit welcher Geschwindigkeit bewegt es im Mittel von seiner Ausgangslage weg?

Machen Sie eventuelle Idealisierungen deutlich, und versuchen Sie diese zu rechtfertigen!