Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2020

Electronic Supplementary Information

The electronic structure and surface properties of mechanochemically synthesised LaMnO₃ during in situ N₂O decomposition

Rachel H. Blackmore, ^{†‡} Maria Elena Rivas, [§] George Tierney, ^{†‡} Khaled M. H. Mohammed, ^{‡‡} Donato Decarolis, ^{†‡} Shusaku Hayama, [‡] Federica Venturini, [‡] Georg Held, [‡] Rosa Arrigo, [‡] Monica Amboage, [‡] Pip Hellier, ^{†‡} Evan Lynch, ^{†‡} Mahrez Amri, [§] Marianna Casavola, [‡] Tugce Eralp Erden, [§] Paul Collier [§] and Peter P. Wells ^{†‡‡}

- † UK Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratories, Harwell Science & Innovation Campus, Didcot, Oxfordshire. OX11 0FA, UK
- ‡ School of Chemistry, University of Southampton, Southampton. SO17 1BJ, UK
- § Johnson Matthey Technology Centre, Blounts Court Road, Sonning Common, Reading. RG4 9NH, UK
- # Department of Chemistry, Faculty of Science, Sohag University, Sohag, P.O.Box 82524, Egypt.
- ± School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff. CF10 3AT, UK
- △ Diamond Light Source Ltd., Harwell Science & Innovation Campus, Didcot, Oxfordshire. OX11 0FA, UK
- * Electronic Supplementary Information (ESI) available.

See DOI:

Figure S1: Mn K β mainlines fitted using three symmetric Voigt curves (K $\beta_{1,3}$, K β' and K β_x) for Mn reference materials **(A)** Mn₃O₄ **(B)** Mn₂O₃ **(C)** MnO₂ compared to **(D)** sol-gel synthesised LaMnO₃

Figure S2: Mn K β mainline fitted using three symmetric Voigt curves (K $\beta_{1,3}$, K β' and K β_x) during the mechanochemical synthesis of LaMnO₃ after (A) 1 h (B) 2h (C) 3 h and (D) 4 h

Table S1: EXAFS fitting parameters for the Mn K-edge for spectra collected after 4 h of milling in air and inert (argon) conditions for the mechanochemical synthesis of LaMnO $_3$ compared to precursor Mn $_2$ O $_3$ and sol-gel synthesised LaMnO $_3$. Fitting parameters: $S_0^2 = 0.7$ determined by a Mn foil standard; Fit range 3 < k > 11, 1.2 < R > 3.85. aCN fixed to known structures and the number of scattering paths reduced in order to minimise fitting parameters bAll refined CN are within 10% error margin

Sample	Bond (Abs-Sc)	CN	E0 (eV)	σ2	R/Å
	Mn-O1	4.0		0.007(1)	1.92(2)
aMn O	Mn-O2	2.0	-5.7(2)	0.011(6)	2.27(3)
^a Mn₂O₃	Mn-Mn1	6.0		0.0070(8)	3.10(2)
	Mn-Mn2	6.0		0.012(3)	3.57(3)
h A in maille d	Mn-O	5.0(1)	-8.5(4)	0.0054(3)	1.90(2)
^b Air milled LaMnO₃	Mn-La1	5.9(5)		0.014(1)	3.24(1)
	Mn-La2	2.0(1)		0.0043(3)	3.37(1)
^b Argon milled LaMnO ₃	Mn-O	4.9(1)		0.0062(1)	1.90(1)
	Mn-La2	6.0(1)	-9.6(2)	0.010(1)	3.30(1)
	Mn-La1	2.0(1)		0.0050(1)	3.13(2)
ªSol-gel LaMnO₃	Mn-O	6.0		0.0058(5)	1.93(4)
	Mn-La2	6.0	-2.7(4)	0.0071(6)	3.34(6)
	Mn-La3	2.0		0.0020(9)	3.70(9)

Figure S3: Mn K β mainline fitted using three symmetric Voigt curves (K $\beta_{1,3}$, K β' and K β_x) for mechanochemically synthesised LaMnO $_3$ in an argon environment

Table S2: Surface Atomic percentage ratios of both 3 and 4 h milled LaMnO₃ compared to sol-gel synthesised sample

	Sol-gel	Air	Argon
La : Mn	1.1:1	1.2:1	1.7:1
O : La	1:0.2	1:0.2	1:0.2
O : Mn	1:0.2	1:0.2	1:0.1

Table S3: Mn3s and La3d splitting energies for LaMnO₃ synthesised by sol-gel and mechanochemistry under different environments

	Sol-gel	Air	Argon
Mn3s splitting (eV)	4.8	4.9	5.0
La3d splitting (eV)	4.5	4.6	3.7

Figure S4: Repeat catalytic activity testing of deN₂O for LaMnO₃ prepared by milling in air and argon compared to a sol-gel prepared perovskite

Figure S5: XRD patterns of LaMnO $_3$ mechanochemically synthesised in an argon atmosphere before and after deN $_2$ O

Figure S6: Survey scan at 1200 eV to calibrate correct binding energies for La3*d*, Mn3s, Mn2p and O1s for the argon milled catalyst at room temperature (RT) in vacuum, RT under a N₂O atmosphere and after heating at 400°C and 600°C

Figure S7: Survey scan at 1200 eV to calibrate correct binding energies for La3d, Mn3s, Mn2p and O1s for the air milled catalyst at room temperature (RT) in vacuum, RT under a N₂O atmosphere and after heating at 400°C and 600°C

Figure S8: Survey scan at 1200 eV to calibrate correct binding energies for La3d, Mn3s, Mn2p and O1s for the sol-gel synthesised catalyst at room temperature (RT) in vacuum, RT under a N₂O atmosphere and after heating at 400°C and 600°C

Table S4: NAP-XPS deconvoluted peak positions and areas during in situ deN₂O of the air milled catalyst at Mn2p, Mn3s, La3d and O1s regions

		RT vacuum	RT in N₂O	400 °C in N₂O	600 °C in N₂O
	Peak 1	641.6, 37671	641.8, 50225	641.3, 71126	641.5, 86067
	Peak 2	643.7, 27363	644.3, 19745	643.2, 58775	653.5, 67777
	Peak 3	653.2, 16135	653.6, 26975	652.9, 32281	653.2, 34134
Mn2p	Peak 4	655.2, 10737	656.3, 2412	655.0, 35168	654.8, 36277
	Spin coupling	11.7	11.9	11.7	11.8
	Ratio Mn(III):Mn(IV)	1.4	2.5	1.2	1.3
	Peak 1	83.6	83.7	83.3	83.0
Mn3s	Peak 2	88.6	88.7	88.6	88.3
ivin3s	Satellite	92.0	91.9	92.3	92.3
	Splitting	5.0	5.1	5.3	5.3
La3 <i>d</i>	Peak 1	834.0	834.1	834.95	834.6
	Peak 2	838.2	838.1	839.44	839.22
	Peak 3	850.9	836.4	837.23	837.05
	Peak 4	855.0	851.0	851.8	851.5
	Peak 5	853.0	855.0	856.29	855.97
	Peak 6	836.2	853.4	854.21	853.91
	La3d _{5/2} splitting	4.1	4.0	4.5	4.6
	Spin coupling	16.8	16.9	16.8	16.9
01 s	Peak 1	529.2, 15913	529.2, 22031	529.4, 46689	530.2, 34509
	Peak 2	531.1, 20980	531.0, 32303	531.4, 34064	531.3, 37535
	Peak 3	533.3, 1540	533.1, 4718	533.9, 1349	533.4, 1516
	Peak 4	=	-	-	-

Table S5: NAP-XPS deconvoluted peak positions and areas during in situ deN₂O of the sol-gel catalyst at Mn2p, Mn3s, La3d and O1s regions

		RT vacuum	RT in N₂O	400 °C in N₂O	600 °C in N₂O
	Peak 1	641.6, 42127	641.4, 15869	641.3, 54139	641.3, 113016
	Peak 2	643.7, 14016	643.5, 15941	643.5, 40711	643.6, 67138
Mn2p	Peak 3	653.3, 19832	653.4, 7762	653.1, 22587	653.0, 46964
IVINZP	Peak 4	655.2 <i>,</i> 6549	655.5, 3353	654.9, 17644	655.2, 35191
	Spin coupling	11.7	12.0	11.7	11.8
	Ratio Mn(III):Mn(IV)	3.0	1.0	1.3	1.7
	Peak 1	-	83.33	83.08	83.11
Mn3s	Peak 2	-	88.47	88.42	88.57
IVIN3S	Satellite	=	-	-	-
	Splitting	-	5.1	5.3	5.5
	Peak 1	833.94	833.89	833.87	834.1
	Peak 2	838.1	838.08	838.19	838.44
	Peak 3	836.14	836.05	835.68	835.94
La3d	Peak 4	850.77	850.68	850.73	850.95
	Peak 5	854.96	854.8	855.06	855.27
	Peak 6	852.97	852.73	852.6	852.79
	La3d5/2 splitting	4.2	4.2	4.3	4.3
	Spin coupling	16.8	16.8	16.9	16.9
O1s	Peak 1	529.2, 10246	529.2, 6013	529.4, 30261	529.7, 66906
	Peak 2	531.0, 12478	531.3, 7440	531.3, 23633	531.2, 52792
	Peak 3	533.9, 1454	533.1, 2975	533.6, 3188	533.7, 1942
	Peak 4	-	-	-	-

Figure S9: NAP-XPS performed on the argon milled catalyst at the Mn2p region at (A-C) RT under a N₂O atmosphere and then heated to 400°C and 600°C and at the Mn3s region (D-G) at RT in vacuum, RT under a N₂O atmosphere and then heated to 400°C and 600°C, respectively

Figure S10: NAP-XPS performed on the air milled catalyst at the (A-D) Mn2p region and (E-H) Mn3s region at RT in vacuum, RT under a N₂O atmosphere and then heated to 400°C and 600°C, respectively

Figure S11: (A-D) Mn2p region RT in vacuum, RT under a N₂O atmosphere and then heated to 400°C and 600°C and (E-G) Mn3s for the solgel synthesised catalyst at RT under a N₂O atmosphere and then heated to 400°C and 600°C

Figure 12 (A-D) La3d region for the argon milled catalyst at RT in vacuum, RT under a N₂O atmosphere and then heated to 400°C and 600°C

Figure S13: La3d region for the air milled catalyst at (A) RT in vacuum, (B) RT under a N₂O atmosphere and then heated to (C) 400°C and (D) 600°C

Figure S15: (A-D) O1s region for the argon milled catalyst at RT in vacuum, RT under a N2O atmosphere and then heated to 400°C and 600°C

Figure S17: O1s region for the sol-gel synthesised catalyst at (A) RT in vacuum, (B) RT under a N_2O atmosphere and then heated to (C) $400^{\circ}C$ and (D) $600^{\circ}C$