Introduction to Spark using Python

orlando.karam@gmail.com

Administrivia

- If you have a question, ask right away
- We're being recorded

What is Spark

- Distributed data processing framework
 - Distributed runs in several machines
 - We get more RAM, more processing power
 - Data processing
 - Read and process data
- Based on Resilient Distributed Datasets
- Used for 'big data' processing
 - 'big' is something that doesn't fit on normal machines
 - Changes as machines become more powerful

Resilient Distributed Datasets

- Imagine a big set of objects, and how we can distribute/parallelize
- We can divide in slices and keep each slice in a different node; this is the basic idea of an RDD
 - Values are computed only when needed
 - To guarantee fault-tolerance, we also keep info about how we calculated each slice, so we can re-generate it if a node fails
 - We can hint to keep in cache, or even save on disk
- Immutable! not designed for read/write
 - instead, transform an existing one into a new one
- It is basically a huge list
 - But distributed over many computers

Shared Spark Variables

- Broadcast variables
 - copy is kept at each node
- Accumulators
 - you can only add; main node can read

Functional programming in python

- A lot of these concepts are already in python
 - But python community tends to promote loops
- Functional tools in python
 - map
 - filter
 - reduce
 - lambda
 - Itertools
 - Chain, flatmap

Map in Python

- Python supports the map operation, over any list
- We apply an operation to each element of a list, return a new list with the results
 - a=[1,2,3]
 - def add1(x): return x+1
 - map(add1,a) => [2,3,4]
- We usually do this with a for loop, this is a slightly different way of thinking

Filter

- Select only certain elements from a list
- Example:
 - a=[1,2,3,4]
 - def isOdd(x): return x%2==1;
 - filter(isOdd,a) => [1,3]

reduce in python

- Applies a function to all pairs of elements of a list; returns ONE value, not a list
- Example:
 - a=[1,2,3,4]
 - def add(x,y): return x+y
 - reduce(add,a) => 10
 - add(1,add(2,add(3,4,)))
- Better for functions that are commutative and associative, so order doesn't matter

lambdas

- When doing map/reduce/filter, we end up with many tiny functions
- Lambdas allow us to define a function as a value, without giving it a name
- example: lambda x: x+1
 - Can only have one expression
 - do not write return
 - I put parenthesis around it, usually not needed by syntax
- (lambda x: x+1)(3) => 4
- map(lambda x: x+1, [1,2,3])=> [2,3,4]

Exercises

- (lambda x: 2*x)(3) => ?
- map(lambda x: 2*x, [1,2,3]) =>
- map(lambda t: t[0], [(1,2), (3,4), (5,6)]) =>
- reduce(lambda x,y: x+y, [1,2,3]) =>
- reduce(lambda x,y: x+y, map(lambda t: t[0], [(1,2), (3,4), (5,6)]))=>

More exercises

- Given
 - a=[(1,2), (3,4), (5,6)]
- Write an expression to get only the second elements of each tuple
- Write an expression to get the sum of the second elements
- Write an expression to get the sum of the odd first elements

Flatmap

- Sometimes we end up with a list of lists, and we want a 'flat' list
- Many functional programming languages (and Spark) provide a function called flatMap, which flattens such a list
- Example:
 - Map(lambda t:range(t[0],t[1]), [(1,5), (7,10)]) # returns list of lists
- Itertools.chain maps a list of iterables into a flat list
 - And so enables us to define our own flatmap

Now let's do those with Spark

- Start the spark shell
 - run pyspark

Creating RDDs in Spark

- All spark commands operate on RDDs (think big distributed list)
- You can use sc.parallelize to go from list to RDD
- Later we will see how to read from files
- Many commands are lazy (they don't actually compute the results until you need them)
- In pySpark, sc represents your SparkContext

Simple example

- list1=sc.parallelize(range(1,1000))
- list2=list1.map(lambda x: x*10) # notice lazy
- list2.reduce(lambda x,y: x+y)
- list2.filter(lambda x: x%100==0).collect()

Transformations vs Actions

- We divide RDD methods into two kinds:
 - Transformations
 - return another RDD
 - are not really performed until an action is called (lazy)
 - Actions
 - return a value other than an RDD
 - are performed immediately

Some RDD methods

Transformations

- .map(f) returns a new RDD applying f to each element
- filter(f) returns a new RDD containing elements that satisfy f
- .flatmap(f) returns a 'flattened' list

Actions

- .reduce(f) returns a value reducing RDD elements with f
- .take(n) returns n items from the RDD
- .collect() returns all elements as a list
- .sum() sum of (numeric) elements of an RDD
 - max,min,mean ...

More examples

- rdd1=sc.parallelize(range(1,100))
- rdd1.map(lambda x: x*x).sum()
- rdd1.filter(lambda x: x%2==0).take(5)

Exercises

- 1. Get an RDD with number 1 to 10
- 2. Get all the elements in that RDD which are divisible by 3
- 3. Get the product of the elements in 2

Reading files

- sc.textFile(urlOrPath,minPartitions,useUnicode=True)
 - Returns an rdd of strings (one per line)
 - Can read from many files, using wildcards (*)
 - Can read from hdfs, ...
 - We normally use map right after and split/parse the lines
- Example:
 - people=sc.textFile("../data/people.txt")
 - people=sc.textFile("../data/people.txt").map(lambda x: x.split('\t')

Tuples and ReduceByKey

- Many times we want to group elements first, and then calculate values for each group
- In spark, we operate on tuples, <Key,Value> and we normally use reduceByKey to perform a reduce on the elements of each group

People example/Exercises

- We have a people.txt file with following schema:
 - Name | Gender | Age | Favorite Language
- We can load with:
 - people=sc.textFile("../data/people.txt").map(lambda x: x.split('\t'))
- Find number of people by gender
 - first get tuples like: ('M',1),('F',1) ... then reduce by key
 - people.map(lambda t: (t[1],1)).reduceByKey(lambda x,y:x+y).collect()
- Let's find number of people by favorite programming language
- Example: youngest person per gender
 - people.map(lambda t: (t[3],int(t[2]))).reduceByKey(lambda x,y:min(x,y)).collect()

More people exercises

- Get number of people with age 40+
 - Using filter
 - Using map and reduceByKey to produce two groups <40, 40+

Person example with objects

- Using tuples for everything is ... ok, but sometimes we want nicer schema
 - We can use regular python objects
 - We still need to use tuples for joins, reduceByKey, since they operate on tuples
 - Can use x.name x.age etc which makes it slightly easier

Person class

people=sc.textFile("../../data/people.txt").map(Person().parse)

Sending programs within shell

- You can use extra parameters to include python (or java) programs in your shell
 - --py-files (and list of files, separated with spaces)
 - Can use .py, .zip, .egg
 - --jars to include java jars
 - --packages, -- repositories to include maven packages (java)
 - --files to include arbitrary files in home folder of executor
- Get out of pyspark
 - Ctrl-D
- Run it again, including person.py in your --py-files

Person with Objects

- Number of people by gender
 - people.map(lambda t: (t.gender,1)).reduceByKey(lambda x,y:x+y).collect()
- Let's do number of people by programming language
- Youngest person by gender
 - people.map(lambda t: (t.gender,t.age)).reduceByKey(lambda x,y:min(x,y))

More people exercises

- Get number of people with age 40+
 - Using filter
 - Using map and reduceByKey to produce two groups <40, 40+
- Get age of oldest person, by programming language

Sales example

- Sales: Day | StoreId | ProductId | QtySold
- Load:
 - sales=sc.textFile("sales-data/sales_*.txt").map(lambda x: x.split('\t'))
- now sales is an rdd of arrays corresponding to the fields
 - but each field is a string
- Total quantity of products sold:
 - sales.map(lambda x: int(x[3])).sum()

Grouping RDDs again

- Work on RDDs of pairs, <key,value>
- .reduceByKey(func)
 - groups based on the key
 - reduce values in each group using the passed function
 - function is same way as reduce
 - produces RDD <key, result>

Example

- sales_by_store=sales.map(lambda t : (t[1], int(t[3])))
- sales_by_store.reduceByKey(lambda t1,t2: t1+t2).collect()

Exercises

- Calculate the sales for each day
- Calculate the total sales for each day for store 1
- Calculate the total sales for each product

Joins

- Joins allow us to combine 2 different RDDs
 - Each RDD is of the form <K,V> (key and value)
 - Result is of the form<K,<V1,V2>> (notice the nesting)
 - Joins only on equal keys (equijoin from db)
 - Also have leftOuterJoin, rightOuterJoin and fullOuterJoin
 - And cartesian, if you want the cartesian product, and other kinds of joins, but this is potentially very slow

Simple join example

```
states=[
("AL", "Alabama"),
("AK", "Alaska"),
("AR", "Arizona")
]; # apologies to the other 47 ...
populations=[
("AL",4779736),
("AK",710231),
("AR",6392017)
]; # according to 2010 census, from Wikipedia
states_rdd=sc.parallelize(states)
populations_rdd=sc.parallelize(populations)
states_rdd.join(populations_rdd);
```

Sales and Objects

- Two other files, one for Products one for Stores
 - Classes: Store, Product, SaleRow, with parse method
- base_path="../data/sales"
- Sales_schema.py

```
stores=sc.textFile(base_path+"stores*.txt").map(lambda x:sales_schema.Store().parse(x))
products=sc.textFile(base_path+"products.txt").map(lambda x:sales_schema.Product().parse(x))
sales=sc.textFile(base_path+"sales_*.txt").map(lambda x:sales_schema.SaleRow().parse(x))
```

Sales examples (with objects)

- sales_by_day=sales.map(lambda x : (x.day,x.quantity)).reduceByKey(lambda x,y:x+y)
- sales_by_store=sales.map(lambda x : (x.store_id,x.quantity)).reduceByKey(lambda x,y:x+y)
- Now let's do sales by product
- Get products with category stuff

Sales and Joins (with objects)

- sales_by_store_joined=
 - sales_by_store.join(stores.map(lambda x: (x.id,x.name)))
- Now let's do it with products

Other joins

- Outer joins
 - Include the keys
 - .leftOuterJoin, .rightOuterJoin, .fullOuterJoin
- Cartesian Product
 - .cartesian

Writing spark applications

- Need to obtain a SparkContext
 - from pyspark import SparkContext, SparkConf
 - conf = SparkConf().setAppName(appName) # appName not needed, but ...
 - sc = SparkContext(conf=conf)
- Everything is the same after that !!
- You probably want to save your data ... ©
 - saveAsTextFile
 - Remember part files 🕾
 - Can save in other ways

Other functions

- Sample(withReplacement, fraction, seed)
- Union, intersection, distinct
- Coalesce, repartition
- aggregateByKey
- groupByKey
- repartitionAndSortWithinPartitions
- mapPartitions, mapPartitionsWithIndex

New DataTable functionality

- A datatable is like an RDD but with schema information
 - Like a table in SQL, or datatable in pandas
 - Generic objects, know their fields
 - Datatable knows all its columns
 - All 'rows' are of the same kind (but there are nulls, and arrays etc)
- We need to either read from places with schemas, or add schema info
- We specify queries on them (similar to RDD, or through SQL), but there's a query optimizer
 - Slightly harder to do general aggregates
- Much smaller python tax!

Person datatable example

- Easiest way to get data with schema is from a 'json' file
 - Each line is a json object
 - { "field":"value", ...}
- Need to use sqlCtx
 - people=sqlCtx.jsonFile("../../data/people1.json")
- Notice how each element is a Row, knows its fields
- .show() displays in nice way (first 20 by default)

Datatable

- .select like map, can use strings or columns
 - people.select("name",people.age+1).show()
- .filter filter certain rows
 - people.filter(people.age>30)
- show display nicely
- Pandas syntax for filter
 - people[people.gender=='F']
- GroupBy returns a grouped RDD
 - people.groupBy(people.gender).count()
- Join

Group By

- GroupBy creates a grouped RDD
 - Can specify several fields
 - Still need to specify aggregates
- Aggregates
 - Count, sum, ...
- Can specify several with agg

SQL

- Need to register the tables with the context
 - people.registerTempTable("people")
- Then can use .sql to do sql queries
 - sqlCtx.sql("select name, age FROM people").show()
 - sqlCtx.sql("select gender,avg(age) AS Av FROM people GROUP BY gender")

Performance considerations

- Spark in python is slower than in scala due to translation
 - Spark processes are running in JVM
 - Need to seend objects back and forth between jvm and python
- Datatable avoids this translation, it all lives in JVM
 - Until last step to client ©
- Datatable can optimize better
 - But you lose some control
- Shuffling (join/reduce) is more expensive
 - Partitioning can help some

RDD Performance

- RDD is:
 - Lineage
 - Set of Partitions/splits
 - List of dependencies on parent RDDs
 - Function to compute each partition given its parents
 - Optimized execution
 - Partitioner which objects go on which partitions
 - Partitioning can help when shuffling
 - Preferred location for each partition

Execution

- Your program
- Spark driver (master)
 - Keeps track of RDD graph
 - Scheduler
 - Block tracker
 - Shuffle tracker
- Spark executors
 - Task threads
 - Block manager