

Advanced Networking

Introduction

Prof. Andrzej Duda duda@imag.fr

http://duda.imag.fr

Course goals

- Advanced topics in networking
 - cross-layer vision
 - advanced functionalities
 - design, performance, management
- Organization
 - 36 h course
 - concepts, exercises
- Lab
 - 18 h OSPF, BGP
- Grading
 - written examination 2/3, open books
 - Lab 1/3

Contents

- Interconnection Layer 2
 - Bridges/switches, Spanning Tree Protocol
- Interconnection Layer 3 Routing
 - Distance vector, Link State, external (BGP)
- Congestion control
- Quality of service
- MPLS
- SNMP
- Data Center Networking

Course support

- Chamilo
- C. Huitema "Routing in the Internet"
- R. Perlman " Interconnections: Bridges, Routers, Switches, and Internetworking Protocols"
- Web, papers

Overview

Internet architecture

Interconnection structure - layer 2

<u>Interconnection at layer 2</u>

- Switches (bridges)
 - interconnect hosts
 - logically separate groups of hosts (VLANs)
 - managed by one entity
- Type of the network
 - broadcast
- Forwarding based on MAC address
 - flat address space
 - forwarding tables: one entry per host
 - works if no loops
 - careful management
 - Spanning Tree protocol
 - not scalable

Protocol architecture

- Switches are layer 2 intermediate systems
- Transparent forwarding
- Management protocols (Spanning Tree, VLAN)

Protocols

<u>Interconnection structure - layer 3</u>

<u>Interconnection at layer 3</u>

- Routers
 - interconnect subnetworks
 - logically separate groups of hosts
 - managed by one entity
- Forwarding based on IP address
 - structured address space
 - routing tables: aggregation of entries
 - works if no loops routing protocols (IGP Internal Routing Protocols)
 - scalable inside one administrative domain

Protocol architecture

- Routers are layer 3 intermediate systems
- Explicit forwarding
 - host has to know the address of the first router
- Management protocols (control, routing, configuration)

Protocols

Autonomous systems

Internet

Interconnection of AS

- Border routers
 - interconnect AS
- NAP or GIX, or IXP
 - exchange of traffic peering
- Route construction
 - based on the path through a series of AS
 - based on administrative policies
 - routing tables: aggregation of entries
 - works if no loops and at least one route routing protocols (EGP - External Routing Protocols)

Protocols

Conclusion

- Complex architectures
 - other types of networks used as data links
- Internet
 - Rapid growth
 - scalability
 - No central control
 - consistent development
 - Three level hierarchy
 - host, subnetwork, autonomous system
 - manage complexity
 - Advances
 - larger address space IPv6
 - performance quality of service, congestion control