$12n_{0106} (K12n_{0106})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle 2.95001 \times 10^{28} u^{46} + 1.02756 \times 10^{29} u^{45} + \dots + 4.89243 \times 10^{27} b - 4.24094 \times 10^{28},$$

$$5.28780 \times 10^{28} u^{46} + 1.85724 \times 10^{29} u^{45} + \dots + 2.44621 \times 10^{27} a - 1.24073 \times 10^{29}, \ u^{47} + 4u^{46} + \dots - 11u - I_2^u = \langle u^2 b + b^2 + bu - 2u^2 + b - 3u - 2, \ a, \ u^3 + u^2 - 1 \rangle$$

$$I_3^u = \langle b - 2, \ a - 1, \ u - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 54 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

$$\begin{matrix} \text{I. } I_1^u = \\ \langle 2.95 \times 10^{28} u^{46} + 1.03 \times 10^{29} u^{45} + \dots + 4.89 \times 10^{27} b - 4.24 \times 10^{28}, \ 5.29 \times 10^{28} u^{46} + \\ 1.86 \times 10^{29} u^{45} + \dots + 2.45 \times 10^{27} a - 1.24 \times 10^{29}, \ u^{47} + 4u^{46} + \dots - 11u - 1 \rangle \end{matrix}$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ u^2 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -21.6162u^{46} - 75.9230u^{45} + \dots + 433.914u + 50.7202 \\ -6.02975u^{46} - 21.0031u^{45} + \dots + 76.8942u + 8.66836 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 29.5086u^{46} + 104.599u^{45} + \dots - 601.499u - 73.1793 \\ 11.4583u^{46} + 40.3975u^{45} + \dots - 214.814u - 25.2675 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -21.6162u^{46} - 75.9230u^{45} + \dots + 433.914u + 50.7202 \\ -12.4237u^{46} - 42.3264u^{45} + \dots + 171.240u + 19.2103 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -u^2 + 1 \\ -u^4 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -26.2116u^{46} - 91.6779u^{45} + \dots + 523.253u + 61.1104 \\ -10.1373u^{46} - 34.3085u^{45} + \dots + 141.882u + 16.1328 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 33.2674u^{46} + 117.852u^{45} + \dots - 671.448u - 81.1792 \\ 15.2170u^{46} + 53.6510u^{45} + \dots - 284.762u - 33.2674 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 23.3159u^{46} + 82.6280u^{45} + \dots - 479.630u - 56.3099 \\ 5.89371u^{46} + 20.0339u^{45} + \dots - 139.693u - 15.9659 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 2.05202u^{46} + 7.02641u^{45} + \dots - 34.0094u - 5.57078 \\ 5.07530u^{46} + 18.0511u^{45} + \dots - 64.3990u - 8.02822 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-19.4717u^{46} 66.4148u^{45} + \cdots + 400.531u + 54.1723$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{47} + 26u^{46} + \dots + 33u + 1$
c_2, c_4	$u^{47} - 4u^{46} + \dots - 11u + 1$
c_{3}, c_{6}	$u^{47} - 3u^{46} + \dots - 6u + 2$
c_5, c_9	$u^{47} + 2u^{46} + \dots - 32u - 64$
c_7, c_8, c_{11} c_{12}	$u^{47} - 5u^{46} + \dots - 8u - 1$
c_{10}	$u^{47} + 7u^{46} + \dots - 5444u + 89$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{47} - 6y^{46} + \dots + 193y - 1$
c_2, c_4	$y^{47} - 26y^{46} + \dots + 33y - 1$
c_{3}, c_{6}	$y^{47} + 15y^{46} + \dots + 315y^2 - 4$
c_5, c_9	$y^{47} - 36y^{46} + \dots + 168960y - 4096$
c_7, c_8, c_{11} c_{12}	$y^{47} - 53y^{46} + \dots + 138y - 1$
c_{10}	$y^{47} + 31y^{46} + \dots + 25436870y - 7921$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.989960 + 0.148170I		
a = 0.086218 + 0.547482I	-1.149640 - 0.628552I	-5.94054 - 2.36276I
b = 1.057400 - 0.538353I		
u = 0.989960 - 0.148170I		
a = 0.086218 - 0.547482I	-1.149640 + 0.628552I	-5.94054 + 2.36276I
b = 1.057400 + 0.538353I		
u = -0.931667 + 0.360435I		
a = 0.650552 - 1.137680I	0.10041 + 3.44087I	0.17183 - 8.28941I
b = 0.506455 - 0.859521I		
u = -0.931667 - 0.360435I		
a = 0.650552 + 1.137680I	0.10041 - 3.44087I	0.17183 + 8.28941I
b = 0.506455 + 0.859521I		
u = -0.223147 + 1.003930I		
a = -0.312504 + 1.368880I	5.63196 - 8.09738I	3.35253 + 4.54237I
b = -0.143382 - 0.236139I		
u = -0.223147 - 1.003930I		
a = -0.312504 - 1.368880I	5.63196 + 8.09738I	3.35253 - 4.54237I
b = -0.143382 + 0.236139I		
u = 0.951382		
a = -0.361021	-0.451802	-56.4450
b = -4.05034		
u = -0.108798 + 0.923471I		
a = 0.29912 - 1.44151I	-1.70582 - 5.21126I	0.15580 + 5.73446I
b = -0.019834 + 0.147643I		
u = -0.108798 - 0.923471I		
a = 0.29912 + 1.44151I	-1.70582 + 5.21126I	0.15580 - 5.73446I
b = -0.019834 - 0.147643I		
u = 0.375825 + 0.801282I		
a = 0.38215 - 1.40610I	3.28905 + 1.41624I	1.285372 - 0.077907I
b = -0.312468 - 0.166120I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.375825 - 0.801282I		
a = 0.38215 + 1.40610I	3.28905 - 1.41624I	1.285372 + 0.077907I
b = -0.312468 + 0.166120I		
u = -0.754499 + 0.439436I		
a = 0.787718 + 0.900721I	10.33830 + 1.89063I	3.79886 - 2.45073I
b = 1.67009 - 0.64753I		
u = -0.754499 - 0.439436I		
a = 0.787718 - 0.900721I	10.33830 - 1.89063I	3.79886 + 2.45073I
b = 1.67009 + 0.64753I		
u = 0.848625		
a = 0.348245	7.65141	-49.4120
b = 5.16287		
u = -0.874869 + 0.786950I		
a = -0.309968 - 0.224071I	3.72699 + 2.94871I	-12.2330 - 7.8683I
b = -0.262520 - 0.143001I		
u = -0.874869 - 0.786950I		
a = -0.309968 + 0.224071I	3.72699 - 2.94871I	-12.2330 + 7.8683I
b = -0.262520 + 0.143001I		
u = 1.126180 + 0.347504I		
a = -0.188549 - 0.855543I	5.11792 - 1.20868I	0
b = -1.147560 - 0.094454I		
u = 1.126180 - 0.347504I		
a = -0.188549 + 0.855543I	5.11792 + 1.20868I	0
b = -1.147560 + 0.094454I		
u = 0.059234 + 0.812807I		
a = -0.34521 + 1.50868I	-2.49343 - 1.08855I	-2.03214 + 0.04750I
b = 0.186918 - 0.028378I		
u = 0.059234 - 0.812807I		
a = -0.34521 - 1.50868I	-2.49343 + 1.08855I	-2.03214 - 0.04750I
b = 0.186918 + 0.028378I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.144920 + 0.321301I		
a = -1.39264 - 0.30017I	-1.09956 + 1.43032I	0
b = -2.50504 + 0.05350I		
u = -1.144920 - 0.321301I		
a = -1.39264 + 0.30017I	-1.09956 - 1.43032I	0
b = -2.50504 - 0.05350I		
u = -1.109420 + 0.477918I		
a = -0.225844 + 1.135400I	6.07282 + 6.30143I	0
b = -0.151788 + 0.912718I		
u = -1.109420 - 0.477918I		
a = -0.225844 - 1.135400I	6.07282 - 6.30143I	0
b = -0.151788 - 0.912718I		
u = -0.889179 + 0.911068I		
a = 0.567632 + 0.472874I	10.50090 + 3.30217I	0
b = 0.506073 + 0.310758I		
u = -0.889179 - 0.911068I		
a = 0.567632 - 0.472874I	10.50090 - 3.30217I	0
b = 0.506073 - 0.310758I		
u = 1.157290 + 0.591284I		
a = 1.109010 - 0.155564I	0.92342 - 6.68779I	0
b = 2.14720 - 0.71964I		
u = 1.157290 - 0.591284I		
a = 1.109010 + 0.155564I	0.92342 + 6.68779I	0
b = 2.14720 + 0.71964I		
u = -1.230280 + 0.438166I		
a = 1.292840 + 0.114739I	-6.29518 + 5.50452I	0
b = 2.59516 - 0.07060I		
u = -1.230280 - 0.438166I		
a = 1.292840 - 0.114739I	-6.29518 - 5.50452I	0
b = 2.59516 + 0.07060I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.221460 + 0.493956I		
a = -1.035260 + 0.239047I	-5.89684 - 3.67490I	0
b = -2.17910 + 0.67973I		
u = 1.221460 - 0.493956I		
a = -1.035260 - 0.239047I	-5.89684 + 3.67490I	0
b = -2.17910 - 0.67973I		
u = 0.669427		
a = -0.452367	-1.01372	-10.3930
b = 0.335316		
u = -0.178892 + 0.636081I		
a = 1.61229 + 0.11889I	8.67414 - 2.02923I	6.38070 + 1.31837I
b = 0.969029 - 0.433870I		
u = -0.178892 - 0.636081I		
a = 1.61229 - 0.11889I	8.67414 + 2.02923I	6.38070 - 1.31837I
b = 0.969029 + 0.433870I		
u = 1.286390 + 0.397327I		
a = 0.966983 - 0.333762I	-6.10647 + 0.63964I	0
b = 2.17649 - 0.61779I		
u = 1.286390 - 0.397327I		
a = 0.966983 + 0.333762I	-6.10647 - 0.63964I	0
b = 2.17649 + 0.61779I		
u = -1.251910 + 0.523865I		
a = -1.226570 - 0.021764I	-5.19394 + 10.42330I	0
b = -2.63642 + 0.05168I		
u = -1.251910 - 0.523865I		
a = -1.226570 + 0.021764I	-5.19394 - 10.42330I	0
b = -2.63642 - 0.05168I		
u = -1.252930 + 0.595086I		
a = 1.168960 - 0.050135I	2.45160 + 13.84790I	0
b = 2.66504 - 0.01710I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.252930 - 0.595086I		
a = 1.168960 + 0.050135I	2.45160 - 13.84790I	0
b = 2.66504 + 0.01710I		
u = 1.366130 + 0.294990I		
a = -0.908758 + 0.454189I	0.27703 + 3.60334I	0
b = -2.11656 + 0.55334I		
u = 1.366130 - 0.294990I		
a = -0.908758 - 0.454189I	0.27703 - 3.60334I	0
b = -2.11656 - 0.55334I		
u = -0.591311 + 0.089878I		
a = -1.40817 + 1.26783I	1.303350 - 0.477077I	6.44413 + 0.83351I
b = -0.997142 + 0.442455I		
u = -0.591311 - 0.089878I		
a = -1.40817 - 1.26783I	1.303350 + 0.477077I	6.44413 - 0.83351I
b = -0.997142 - 0.442455I		
u = -0.275356 + 0.071579I		
a = -2.33744 + 1.67178I	1.33872 - 0.48836I	6.23098 + 1.53144I
b = -0.731969 + 0.318628I		
u = -0.275356 - 0.071579I		
a = -2.33744 - 1.67178I	1.33872 + 0.48836I	6.23098 - 1.53144I
b = -0.731969 - 0.318628I		

II.
$$I_2^u = \langle u^2b + b^2 + bu - 2u^2 + b - 3u - 2, \ a, \ u^3 + u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{2} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ b \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{2}b + bu \\ -2u^{2}b + 2b \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_7 = \begin{pmatrix} u^2 - 1 \\ u^2 + u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^2 + 1\\ -b + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^2 + 1 \\ -b + 2 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u^2b - bu \\ 2u^2b + u^2 - 2b + u + 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $-4u^2b bu u^2 b u + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_3	$(u^3 - u^2 + 2u - 1)^2$
c_2	$(u^3 + u^2 - 1)^2$
c_4	$(u^3 - u^2 + 1)^2$
c_5, c_9	u^6
<i>C</i> ₆	$(u^3 + u^2 + 2u + 1)^2$
c_7, c_8, c_{10}	$(u^2 - u - 1)^3$
c_{11}, c_{12}	$(u^2 + u - 1)^3$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_6	$(y^3 + 3y^2 + 2y - 1)^2$
c_2, c_4	$(y^3 - y^2 + 2y - 1)^2$
c_{5}, c_{9}	y^6
$c_7, c_8, c_{10} \\ c_{11}, c_{12}$	$(y^2 - 3y + 1)^3$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.877439 + 0.744862I		
a = 0	11.90680 + 2.82812I	7.12010 - 2.78145I
b = -0.546315 + 0.909787I		
u = -0.877439 + 0.744862I		
a = 0	4.01109 + 2.82812I	12.01538 + 1.83947I
b = 0.208674 - 0.347508I		
u = -0.877439 - 0.744862I		
a = 0	11.90680 - 2.82812I	7.12010 + 2.78145I
b = -0.546315 - 0.909787I		
u = -0.877439 - 0.744862I		
a = 0	4.01109 - 2.82812I	12.01538 - 1.83947I
b = 0.208674 + 0.347508I		
u = 0.754878		
a = 0	-0.126494	2.87910
b = 1.43675		
u = 0.754878		
a = 0	7.76919	23.8500
b = -3.76147		

III.
$$I_3^u = \langle b-2, a-1, u-1 \rangle$$

(i) Arc colorings

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2, c_9 c_{11}, c_{12}	u-1
c_3, c_6	u
c_4, c_5, c_7 c_8, c_{10}	u+1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4 c_5, c_7, c_8 c_9, c_{10}, c_{11} c_{12}	y-1
c_3, c_6	y

(vi) Complex Volumes and Cusp Shapes

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.00000	0	0
b = 2.00000		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u-1)(u^3 - u^2 + 2u - 1)^2(u^{47} + 26u^{46} + \dots + 33u + 1) $
c_2	$(u-1)(u^3+u^2-1)^2(u^{47}-4u^{46}+\cdots-11u+1)$
<i>c</i> 3	$u(u^3 - u^2 + 2u - 1)^2(u^{47} - 3u^{46} + \dots - 6u + 2)$
c_4	$(u+1)(u^3-u^2+1)^2(u^{47}-4u^{46}+\cdots-11u+1)$
<i>C</i> ₅	$u^{6}(u+1)(u^{47}+2u^{46}+\cdots-32u-64)$
<i>c</i> ₆	$u(u^3 + u^2 + 2u + 1)^2(u^{47} - 3u^{46} + \dots - 6u + 2)$
c_{7}, c_{8}	$(u+1)(u^2-u-1)^3(u^{47}-5u^{46}+\cdots-8u-1)$
<i>C</i> 9	$u^{6}(u-1)(u^{47}+2u^{46}+\cdots-32u-64)$
c_{10}	$(u+1)(u^2-u-1)^3(u^{47}+7u^{46}+\cdots-5444u+89)$
c_{11}, c_{12}	$(u-1)(u^2+u-1)^3(u^{47}-5u^{46}+\cdots-8u-1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)(y^3+3y^2+2y-1)^2(y^{47}-6y^{46}+\cdots+193y-1)$
c_{2}, c_{4}	$(y-1)(y^3 - y^2 + 2y - 1)^2(y^{47} - 26y^{46} + \dots + 33y - 1)$
c_3, c_6	$y(y^3 + 3y^2 + 2y - 1)^2(y^{47} + 15y^{46} + \dots + 315y^2 - 4)$
c_5,c_9	$y^{6}(y-1)(y^{47}-36y^{46}+\cdots+168960y-4096)$
c_7, c_8, c_{11} c_{12}	$(y-1)(y^2-3y+1)^3(y^{47}-53y^{46}+\cdots+138y-1)$
c_{10}	$(y-1)(y^2-3y+1)^3(y^{47}+31y^{46}+\cdots+2.54369\times 10^7y-7921)$