Fixação sobre Memória Virtual e TLB Lista09

Informações

- Trabalho *em duplas*;
- Entrega pelo Moodle em http://trab.dc.unifil.br/moodle/>.
- Peso dessa atividade no bimestre: 10%.
- 1. Considere um computador cujo espaço de endereçamento é mapeado por 18 bits. O computador usa a técnica de *swapping* para gerenciamento de memória, demarcando espaços utilizados em um *bitmap* com granularidade de 4096 palavras (tamanho de cada pedaço de memória).

Nesse contexto, responda:

- (a) Quantas palavras comporta a memória do computador?
- (b) Quantos pedaços compõem a memória?
- (c) A tabela a seguir indica quantos pedaços de memória ocupa cada processo:

pid	pedaços	pid	pedaços
A	23	D	29
В	12	E	30
C	11	F	7

- i. Indique como estará o bitmap do swapping após as seguintes operações:
 - 1. Sistema lança A;
 - 2. Sistema lança D;
 - 3. Sistema lança F;
 - 4. Sistema lança C;
 - 5. Sistema termina D;
 - 6. Sistema lança B;
 - 7. Sistema termina A;
 - 8. Sistema lança E;
 - 9. Sistema termina F;
- ii. Indique quanto espaço de memória (em palavras) cada processo ocupa
- iii. Qual é o desperdício máximo de memória por cada processo? Quanto este sistema pode estar desperdiçando caso todos os 6 processos coubessem na memória?
- 2. Elenque e explique as limitações da técnica de gerência de memória *swapping*?
- 3. Sobre a técnica de overlays:

- (a) Explique o funcionamento da técnica.
- (b) Pense em um exemplo de aplicação da técnica e descreva-o.
- (c) Qual a vantagem dessa técnica em relação à do swapping?
- (d) Quais os problemas dessa técnica? Cite e explique ao menos dois.
- 4. Elabore um parágrafo que explique o funcionamento da técnica de memória virtual. Este parágrafo deve conter os seguintes termos: **memória principal**, **acesso à memória física**, **acesso à memória virtual**, **páginas**, **quadros**, **MMU** e **processos**.
- 5. Complete a tabela abaixo de características da memória virtual de sistemas:

# bits end.	# Págs.	Mem Física	Mem. máx.	Tam. Págs.	# Quadros
16	16	32K			
17	8	16K			
23	128	512K			
24	64	2M			
28	4096	16M			
32	1M	2G			
48	8M	8G			
64	2048	128G			

6. Complete a tabela de valores de acesso à memória abaixo, para um sistema com endereçamento de 16 bits e 16 páginas de memória virtual por processo:

Decimal	Binário (16 bits)	Página	Acesso
47895			
26157			
53354			
56167			
41100			
32303			
19087			
60576			
44538			
1933			

7. Suponha um sistema com memória virtual cuja CPU possua 11 bits para endereçamento de memória, com 1K de memória física instalada, e cada página possua 128 palavras de tamanho. Logo que iniciado, não há nenhuma página em quadro algum. O sistema então lança 3 processos, sendo que cada um deles realiza os seguintes acessos à memória, na ordem indicada:

Ordem	Pid	Acesso	Ordem	Pid	Acesso
1	P1	1632	7	P2	988
2	P2	499	8	P3	1407
3	P3	1894	9	P3	1334
4	P1	653	10	P1	1482
5	P1	1108	11	P2	616
6	P2	1824	12	P3	117

Desenhe as tabelas de páginas de cada processo, além da organização das páginas em quadros, e simule o funcionamento desse sistema.

- 8. O processador da Intel 8086 não implementa memória virtual. No entanto, algumas desenvolveras de computadores da época produziram sistemas com este processador e com suporte a memória virtual, mesmo utilizando processadores 8086 comuns, sem modificações internas. Pense a respeito e descreva como isso foi possível.
- 9. Considere o seguinte programa:

```
public static void main(String args[]) {
   int X[] = new int[N];
   int passo = M;
   for(int i = 0; i < N; i += passo)
      X[i] =X[i] + 1;
}</pre>
```

Suponha um sistema cuja CPU possua 12 bits para endereçamento de memória, e cada página possua 512 palavras de tamanho. Indique, explicando o motivo, quantas falhas de página (page-faults) ocorrerá no laço for, caso:

- (a) N = 400 e M = 1;
- (b) N = 3500 e M = 4;
- (c) N = 4000 e M = 1024.