Outline

- Linear differential equations
- 2 Laplace transform
- 3 Solving LDEs with the Laplace transform
- Properties of state-space representation
- **5** Transfer functions
 - Impulse response and time constant
 - Relationship between state space and transfer functions
- Transient response analysis of first order and second order systems
 - First order systems
 - Second order systems

Impulse response

Definition

The impulse response h(t) of input i to output j is the output $y_j(t)$ of a system when an impulse $\delta(t)$ is applied at input $u_i(t)$. The impulse response is the inverse Laplace transform of the transfer function $h(t) = \mathcal{L}^{-1}\{H(s)\}$.

For stable continuous time systems the impulse response always converges to 0:

$$\lim_{t\to\infty} h(t) = 0$$
, because $\mathbf{D} = 0$ and $\lim_{t\to\infty} \mathbf{x}(t) = 0$.

The speed of convergence depends on the position of the poles.

Definition

The transfer function of first order systems can be written as:

$$H(s) = rac{K}{ au s + 1} \quad \leftrightarrow \quad h(t) = rac{K}{ au} e^{-t/ au},$$

where τ is called the system's **time constant**.

The time constant summarizes the speed of a system's dynamics:

- after τ seconds, the impulse response reaches h(0)/e.
- after τ seconds, the step response has reached $1-e^{-1}\approx 63\%$ of its regime value.

Impulse response $H(s) = 5/(5s+1) \leftrightarrow h(t) = exp(-t/5)$

990

Transient response analysis of first order and second order systems

Step response $H(s) = 5/(5s+1) \leftrightarrow h(t) = exp(-t/5)$

990

Outline

- Linear differential equations
- 2 Laplace transform
- 3 Solving LDEs with the Laplace transform
- Properties of state-space representation
- Transfer functions
 - Impulse response and time constant
 - Relationship between state space and transfer functions
- Transient response analysis of first order and second order systems
 - First order systems
 - Second order systems

We start from the linear state-space representation:

time domain

Laplace domain

$$\begin{cases} \dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \\ \mathbf{y}(t) = \mathbf{C}\mathbf{x}(t) + \mathbf{D}\mathbf{u}(t) \end{cases} \leftrightarrow \begin{cases} s\mathbf{X}(s) = \mathbf{A}\mathbf{X}(s) + \mathbf{B}\mathbf{U}(s) \\ \mathbf{Y}(s) = \mathbf{C}\mathbf{X}(s) + \mathbf{D}\mathbf{U}(s) \end{cases}$$

A transfer function $\mathbf{H}(s) = \frac{\mathbf{Y}(s)}{\mathbf{U}(s)}$ relates an input and an output in the Laplace-domain \to to obtain it, we must eliminate $\mathbf{X}(s)$.

$$(sI - A)X(s) = BU(s)$$

$$X(s) = (sI - A)^{-1}BU(s)$$

$$\Rightarrow Y(s) = C(sI - A)^{-1}BU(s) + DU(s)$$

$$\Rightarrow H(s) = C(sI - A)^{-1}B + D$$

Relationship between poles and eigenvalues of ${\bf A}~1/2$

Poles are zeros of the denominator of $\mathbf{H}(s)$, e.g. those values of s for which $\mathbf{H}(s)$ is singular.

The relationship between state-space representation (matrices \mathbf{A} , \mathbf{B} , \mathbf{C} and \mathbf{D}) and transfer functions is given by

$$\mathbf{H}(s) = \mathbf{C}(s\mathbf{I} - \mathbf{A})^{-1}\mathbf{B} + \mathbf{D}$$

H(s) cannot be computed when $(s\mathbf{I} - \mathbf{A})^{-1}$ does not exist, ie.

$$\det(s\mathbf{I}-\mathbf{A})=0$$

The determinant is zero if s is an eigenvalue of A.

 \rightarrow all poles of $\mathbf{H}(s)$ are eigenvalues of \mathbf{A} .

Relationship between poles and eigenvalues of \mathbf{A} 2/2

Transfer functions only capture what is relevant to describe an input-output relationship, but not all states necessarily contribute.

 \rightarrow unobservable modes of **A** are not poles in **H**(s).

Consider the following SISO system with 2 states:

$$\begin{bmatrix} sX_1(s) \\ sX_2(s) \end{bmatrix} = \begin{bmatrix} \alpha & 0 \\ 0.2 & 1 \end{bmatrix} \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix} + \begin{bmatrix} \beta \\ 2 \end{bmatrix} U(s)$$

$$Y(s) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} X_1(s) \\ X_2(s) \end{bmatrix}$$

The transfer function $H(s) = \frac{\beta}{s-\alpha}$ has only one pole $(s_1 = \alpha)$. \rightarrow not all eigenvalues of **A** are poles in transfer functions H(s).