Real Analysis HW #8

Jack Krebsbach

Nov 15th

Definition 0.0.1: Fibonacci Sequence

The Fibonacci sequence, 1, 2, 3, 5, 8, 13, ... is given by the recursive formula

$$F_{n+1} = F_n + F_{n-1}$$

where $F_1 = 1$ and $F_2 = 2$. Let $a_n = \frac{F_n}{F_{n-1}}$.

Question 1

Suppose that $\{a_n\}$ converges to a limit. What must that limit be? Hint: Divide the above equation by F_n to find an equation relating a_{n+1} to a_n .

Solution: From the recursive formula, dividing by F_n yields:

$$\frac{F_{n+1}}{F_n} = 1 + \frac{F_{n-1}}{F_n}$$

Then,

$$a_{n+1} = 1 + \frac{F_{n-1}}{F_n}$$

$$\implies a_{n+1} = 1 + \frac{1}{a_n}$$

Let $L = \lim_{n \to \infty} a_n$, then

$$L = 1 + \frac{1}{L}$$

$$\implies L^2 = L + 1$$

$$\implies L^2 - L - 1 = 0.$$

By the quadratic formula,

$$L = \frac{1 \pm \sqrt{5}}{2}.$$

Since this sequence is positive for all $n \in \mathbb{N}$ we want the positive solution. Thus,

$$L=\frac{1+\sqrt{5}}{2}.$$

Question 2

Show that $\frac{3}{2} \le a_n \le 2 \ \forall n \ge 2$.

Question 3

For each n > 2, prove that $|a_{n+1} - a_n| \le \left(\frac{2}{3}\right)^2 |a_n - a_{n-1}|$.

Question 4

Prove that for each $m \ge 2$, $|a_{m+1} - a_m| \le (\frac{2}{3})^{2(m-2)} |a_3 - a_2|$.

Question 5

Use the inequality in (4) to show that $\{a_n\}$ is a Cauchy sequence and therefore converges to a limit.

Question 6

CHAT GPT CHALLENGE: To prove that a bounded sequence (x_n) with the property that every convergent subsequence of (x_n) converges to the same limit $x \in \mathbb{R}$ must converge to x, you can use the following proof:

Let $\epsilon > 0$ be given. Since (x_n) is bounded, it has a limit point, say y, which means that there exists a subsequence (x_{n_k}) that converges to y. Since every convergent subsequence of (x_n) converges to x, we have y = x.

Now, consider $\epsilon > 0$ and y = x. Since (x_n) is a bounded sequence, it has a limit point, and there exists a subsequence (x_{n_k}) that converges to x.

By the definition of the limit, there exists an N_1 such that for all $k \ge N_1$, $|x_{n_k} - x| < \epsilon/2$. Additionally, because every convergent subsequence of (x_n) converges to x, we can choose another N_2 such that for all $k \ge N_2$, $|x_{n_k} - x| < \epsilon/2$.

Now, let $N = \max(N_1, N_2)$. For all $n \ge N$, there exists $k_1 \ge N$ and $k_2 \ge N$ such that:

$$\begin{vmatrix} x_{n_{k_1}} - x \end{vmatrix} < \frac{\epsilon}{2}$$
$$\begin{vmatrix} x_{n_{k_2}} - x \end{vmatrix} < \frac{\epsilon}{2}$$

By the triangle inequality:

$$|x_n - x| \le \left| x_n - x_{n_{k_1}} \right| + \left| x_{n_{k_1}} - x \right|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= \epsilon$$

So, for all $n \ge N$, $|x_n - x| < \epsilon$, which means that (x_n) converges to x. Therefore, we've shown that if (x_n) is a bounded sequence with the property that every convergent subsequence converges to the same limit $x \in \mathbb{R}$, then (x_n) itself must converge to x.

2