Block I

Definitions

1. Discrete dynamical systems

Dynamical system

Let:

- $\cdot M$ manifold
- $\cdot (T, +)$ monoid
- $\cdot \phi : T \times M \to M$

Then, (M, T, ϕ) is a dynamical system if:

- $\cdot \ \forall \ x \in X$:
 - $\cdot \ \phi(x,0) = 0$
 - $\cdot \ \forall \ t_1, t_2 \in T$:

$$\cdot \phi(\phi(x,t_1),t_2) = \phi(x,t_1+t_2)$$

Discrete

Let:

 $\cdot \left(M,T,\phi \right)$ dynamical system

Then, (M, T, ϕ) is discrete if:

 $T \stackrel{\subseteq}{\sim} \mathbb{N}$

Dimension

Let:

$$\cdot (M, T, \phi)$$
 dynamical system

We name dimension of (M, T, ϕ) to:

$$\dim(M)$$

We denote:

$$\cdot dim(M) = n : (M, T, \phi) \text{ n-D}$$

Functional

Let:

 $\cdot (M, T, \phi)$ discrete dynamical system

Then, (M, T, ϕ) is functional if:

$$\cdot \, T \subset \mathbb{N}$$

$$\cdot \exists f : M \to M$$
:

$$\cdot \ \forall \ (t,x) \in T \times M$$
:

$$\cdot \phi(t,x) = f^t(x)$$

We denote:

 $\cdot T = \mathbb{N} : (M, f)$ functional discrete dynamical system

$$f \in \mathcal{C}^n(M) : (M, f) \mathcal{C}^n$$

Orbit

Let:

- \cdot (M, f) functional discrete dynamical system
- $\cdot x \in M$

We name orbit of x to:

$$\{f^n(x)\}_{n\in\mathbb{N}}$$

We denote:

 $\cdot o(x)$

Periodicity

Let:

- \cdot (M, f) functional discrete dynamical system
- $\cdot x \in M$
- $\cdot m \in \mathbb{N}$

Then, x is a period m point if:

$$f^m(x) = x$$

We denote:

 $\cdot \{x \in M \mid x \text{ period 1 point }\} : \text{Fix}(f)$

Stability

Let:

 \cdot (\mathbb{R}^n, f) functional dynamical system

 $p \in \mathbb{R}^n$ period m point

Then, p is stable for f if:

$$\cdot \ \forall \ \varepsilon \in \mathbb{R}^+$$
:

 $\cdot \exists \delta \in \mathbb{R}^+$:

$$\cdot \ \forall \ x \in B(p, \delta)$$
:

 $\cdot \ \forall \ n \in \mathbb{N}$:

$$f^{nm}(x) \in B(p,\varepsilon)$$

Then, p is unstable if:

 $\cdot p$ not stable

Then, p is attractive for f if:

 $\cdot\,p$ stable

 $\cdot \exists \varepsilon \in \mathbb{R}^+$:

 $\cdot \ \forall \ x \in B(p, \varepsilon)$:

$$f^{nm}(x) \xrightarrow{n} p$$

Then, p is repulsive if:

 $\cdot p$ attractive by f^{-1}

Attraction set

Let:

- \cdot (M, f) functional discrete dynamical system
- $\cdot x \in M$ attractive m-periodic point
- $\cdot o(x)$ orbit of x

We name attraction set of o(x) to:

$$\{y \in M \mid \exists x' \in o(x) : f^{nm}(y) \xrightarrow{n} x'\}$$

We denote:

$$\cdot A(o(x))$$

Multiplier

Let:

- $\cdot (M, f)$ C^1 functional discrete dynamical system
- $\cdot x \in M$

We name multiplier of x to:

$$m(x) = f'(x)$$

We denote:

- |m(x)| = 1 : x neutral point
- $\cdot \left| m(x) \right| = 1 \, \wedge \, f''(x) = 0 \, : \, x \text{ feeble point}$

Character

Let:

 \cdot (M, f) functional discrete dynamical system

We name fixed point character to:

We denote:

$$\cdot f : \chi_f$$

Topological equivalence

Let:

 $(M, f_1), (M, f_2)$ functional discrete dynamical systems

Then, (M, \mathbb{N}, f_1) is topologically equivalent to (M, \mathbb{N}, f_2) if:

·
$$Fix(f_1) = Fix(f_2)$$

$$\cdot \ \forall \ x \in \text{Fix}(f_1)$$
:

$$\cdot \chi_{f_1}(x) = \chi_{f_2}(x)$$

We denote:

$$\cdot (M, f_1) \sim (M, f_2)$$

Bifurcation

Let:

- $\cdot\,\{(M,f_\lambda)\}_{\lambda\in\Lambda}$ functional discrete dynamical systems
- $\cdot \lambda_0 \in \Lambda$

Then, λ_0 is a bifurcation parameter if:

- $\cdot \ \forall \ \varepsilon \in \mathbb{R}^+$:
 - $\cdot \exists \lambda' \in B(\lambda_0, \varepsilon)$:
 - $\cdot (M, f_{\lambda'}) \not\sim (M, f_{\lambda_0})$

Saddle-node bifurcation

Let:

- $(M, \mathbb{N}, f_{\lambda})_{{\lambda} \in {\Lambda}}$ functional discrete dynamical systems
- $\lambda_0 \in \Lambda$
- $\cdot x_0 \in M$

Then, λ_0 is a saddle-node bifurcation value at x_0 if:

- $x_0 \in \operatorname{Fix}(f_{\lambda_0})$
- $\cdot x_0$ neutral point of f_{λ_0}
- $\cdot \partial_{\lambda} f_{\lambda}(x_0) \neq 0$
- $\cdot \partial_{xx} f_{\lambda}(x_0) \neq 0$

Pitchfork bifurcation

Let:

- $\cdot \, (M, \mathbb{N}, f_{\lambda})_{\lambda \in \Lambda}$ functional discrete dynamical systems
- $\cdot \lambda_0 \in \Lambda$
- $\cdot x_0 \in M$

Then, λ_0 is Pitchfork bifurcation value at x_0 if:

- $x_0 \in \operatorname{Fix}(f_{\lambda_0})$
- $\cdot x_0$ neutral point of f_{λ_0}
- $\cdot \partial_{\lambda} f_{\lambda}(x_0, \lambda_0) = 0$
- $\partial_{x^2} f_{\lambda}(x_0, \lambda_0) = 0$
- $\cdot \partial_{\lambda x} f_{\lambda}(x_0, \lambda_0) \neq 0$
- $\cdot \partial_{x^3} f_{\lambda}(x_0, \lambda_0) \neq 0$

Period doubling bifurcation

Let:

- $\cdot \: \Lambda \subset M$
- $(M, \mathbb{N}, f_{\lambda})_{{\lambda} \in {\Lambda}}$ functional discrete dynamical systems
- $\cdot \lambda_0 \in \Lambda$
- $x_0 \in M$

Then, λ_0 is Period doubling bifurcation value at x_0 if:

 $\cdot\,\lambda_0$ Pitchfork bifurcation value at x_0 of f^2

Sarkovskii's order

We name Sarkovskii's order to:

$$\forall \ a,b \in \mathbb{N} \quad \text{,,} \quad a = 2^n a', b = 2^m b', 2^n || a, 2^m || b:$$

$$a <_s b \leftrightarrow \begin{cases} m < n & a' = b' = 1 \\ & a' = 1, b' \neq 1 \\ a' < b' & a' = b' \neq 1 \\ n < m & 1 \neq a' \neq b' \end{cases}$$

Chaos

Let:

 $(\mathbb{R}, \mathbb{N}, f)$ dynamical system

Then, $(\mathbb{R}, \mathbb{N}, f)$ is chaotic if:

- · Fix(f) dense in \mathbb{R}
- $\cdot \exists x \in \mathbb{R}$:
 - $\cdot o(x)$ dense in \mathbb{R}
- $\cdot \ \forall \ x \in \mathbb{R}$:
 - $\cdot \exists \varepsilon \in \mathbb{R}^+$:
 - $\cdot \ \forall \ \delta \in \mathbb{R}^+$:
 - $\cdot \exists \tilde{x} \in B(x, \delta)$:
 - $\cdot \lim_n o(\tilde{x}) \notin B(\lim_n o(x), \varepsilon)$

12 2 unit name

2. Linear dynamical systems

Linear

Let:

 $\cdot \left(\mathbb{R}^{n},f\right)$ euclidean functional dynamical system

Then, (\mathbb{R}^n, f) is linear if:

- $\cdot \exists A \in \mathcal{M}_{n \times n}(\mathbb{R})$:
 - $\cdot \ \forall \ x \in \mathbb{R}^n$:
 - f(x) = Ax

Invariant curve

Let:

- $\cdot\,\gamma$ differentiable curve
- $p \in \mathbb{R}^n$

Then, γ is invariant if:

- $\cdot \ \forall \ x \in \gamma *$:
 - $\cdot o(x) \subset \gamma *$

Then, γ is converges to pif:

- $\cdot \ \forall \ x \in \gamma *$:
 - $\cdot o(x) \xrightarrow{n} p$