Übungen zur Algebraischen Zahlentheorie I

Wintersemester 2021/22

Universität Heidelberg Mathematisches Institut Prof. A. Schmidt Dr. K. Hübner

Blatt 2

Abgabetermin: Freitag, 5.11.2021, 9:30 Uhr

Aufgabe 1 (6 Punkte).

- (a) Ist 41 ein quadratischer Rest modulo 181?
- (b) Berechnen Sie das Legendre-Symbol $(\frac{930}{1021})$.

Aufgabe 2 (6 Punkte).

(a) Seien m,n zwei teilerfremde natürliche Zahlen, und sei $a\in\mathbb{Z}.$ Zeigen Sie: Die Kongruenz

$$x^2 \equiv a \mod mn$$

ist genau dann lösbar, wenn die beiden Kongruenzen

$$x^2 \equiv a \mod m \quad \text{und} \quad x^2 \equiv a \mod n$$

eine Lösung besitzen.

(b) Bestimmen Sie alle Lösungen der Kongruenz

$$x^2 \equiv 29 \mod 35$$
.

Aufgabe 3 (6 Punkte). Sei p eine Primzahl ungleich 2, \mathbb{F}_p der endliche Körper mit p Elementen und $d \in \mathbb{F}_p$ kein Quadrat. Wir fixieren eine Quadratwurzel \sqrt{d} in einem algebraischen Abschluss von \mathbb{F}_p .

(a) Zeigen Sie: Für alle $a,b\in\mathbb{F}_p$ gilt in $\mathbb{F}_p[\sqrt{d}]$:

$$(a + b\sqrt{d})^p = a - b\sqrt{d}.$$

- (b) Zeigen Sie: Die Abbildung $N: \mathbb{F}_p[\sqrt{d}] \to \mathbb{F}_p, a + b\sqrt{d} \mapsto a^2 db^2$ ist surjektiv.
- (c) Bestimmen Sie die Anzahl der Lösungen der Gleichung $x^2-dy^2=1$ mit $x,y\in\mathbb{F}_p$ in Abhängigkeit von p.

Aufgabe 4 (6 Punkte). Sei $n \in \mathbb{N}$ beliebig. Zeigen Sie:

- (a) Jeder Primteiler $p \neq 3$ von $n^2 + n + 1$ erfüllt $p \equiv 1 \mod 6$.
- (b) Jeder Primteiler $p \neq 5$ von $n^2 + n 1$ erfüllt $p \equiv \pm 1 \mod 10$.