Sample graduate preliminary exam (3 hours, 9 problems counted equally)

- 1. Define what is meant by an inverse function, and give necessary and sufficient conditions for an inverse function to exist. Find the inverse function of f(x) = (x+2)/(3x-1) for x real, $x \neq 1/3$.
- 2. Let a be a real number and let I be an open interval containing a. For a function $f: I \to \mathbb{R}$, give the definition of continuity at a. Prove that $f(x) = x^2$ is continuous at a = 2.
- 3. Give the definition for convergence of a sequence of real numbers $\{a_n\}_{n=1,2,...}$ to a real number a. Prove that the sequence $a_n = (n^2 + 2)/(n^2 + 3n)$ converges to a = 1.
- 4. Work out the Taylor series for $f(x) = \ln x$ around x = 1 and use it to approximate $\ln(1.1)$ accurate to 2 decimal places.
- 5. Evaluate the integral $\int_0^{10\pi} |\sin x| dx$.
- 6. Define the Jacobian matrix of a mapping $f: \mathbb{R}^n \to \mathbb{R}^m$ at a point $a = (a_1, ..., a_n)$ of \mathbb{R}^n . Compute the Jacobian matrix of $f(r, \theta) = (r \cos \theta, r \sin \theta)$ at a = (0, 0).
- 7. Assuming that u, v, and w are linearly independent (in \mathbb{R}^n), prove that 2u + v, u + v + w, and v w are linearly independent.

1

- 8. Diagonalize the matrix $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$.
- 9. Find the 3 cube roots of i and compute $(1+i)^5$.