

Práctica de laboratorio Difracción de electrones

Resumen

El trabajo práctico consiste en hacer pasar un haz de electrones, acelerados por una serie de potenciales, a través de un policristal de grafito y observar el diagrama de interferencia que éstos producen sobre una pantalla de fósforo. A partir de la tabla de distancias interplanares del grafito, se calculan los diámetros de lo anillos potencialmente observables utilizando la ley de Bragg: $n\lambda = 2d\sin(\theta)$.

Desarrollo de la práctica

- a) Medir los anillos de difracción aplicando diferentes potenciales de aceleración.
- b) Utilizando los postulados de de Broglie, calcular la longitud de onda de los electrones de acuerdo a la tensión aplicada.
- c) Determinar qué familias de planos contribuyen a la formación de los anillos observados partiendo de la simulación del punto h) del Cuestionario previo y de las mediciones realizadas. Para facilitar el análisis de los datos, graficar los anillos calculados y los medidos en función de las distintas tensiones aplicadas.

Figura 1: Esquema del dispositivo utilizado para observar los anillos de interferencia. $D = (127 \pm 3)$ mm.

Cuestionario previo

- a) ¿Qué demostró el experimento de Davisson Germer?
- b) Encontrar la expresión de λ en función de la energía cinética de los electrones (E_c) usando:
 - b.1) las ecuaciones relativistas $E^2 = (pc)^2 + (mc^2)^2$ y $E = mc^2 + E_c + E_p$.
 - b.2) las ecuaciones clásicas.
- c) ¿Cómo se varía λ en el experimento? ¿Cuál es el valor del máximo error relativo en el cálculo de λ al considerar energías no relativistas en lugar de las relativistas? ($V_{máx} \approx 10 \text{ kV}$)
- d) ¿A qué se debe que los máximos de interferencia observados en el fósforo del bulbo sean anillos? (llamados anillos de Debye Scherrer).
- e) ¿Demostrar que el ángulo de dispersión α vale el doble que el ángulo de Bragg θ ?
- f) Los anillos observados sobre la pantalla de fósforo tienen un cierto espesor. ¿Qué método de medición le parece que sería el mejor para determinarlos?
- g) Una vez medidos los anillos, ¿cómo se calcula el ángulo θ sin realizar ninguna aproximación?
- h) Utilizando la ecuación encontrada en b.1), calcular los ángulos de Bragg (θ) correspondientes a las distancias interplanares con intensidad relativa ≥ 2 para cada una de las diferencias de potencial aplicadas (4000, 5000, 6000, 7000, 8000 y 9000 V). Hacer una tabla considerando n=1 y otra con n=2.
 - Luego, conocidas las dimensiones del bulbo, calcular los diámetros de los anillos que corresponden a dichos ángulos.
- i) Graficar los anillos calculados en el punto h) para las distintas tensiones aplicadas.

Los alumnos deben presentarse a la práctica conociendo la manera correcta de utilizar de un calibre. (http://es.wikipedia.org/wiki/Nonius)

Ficha patrón del grafito. d=distancia interplanar en Å, Int=intensidad relativa de cada máximo.

41-1487						Wavelength= 1.54051	
C	d .	Int	h	k	1		
Carbon	3.3756	100	0	0	2		
	2.1386	2	1	0	0		
Graphite-2H	2.0390 1.8073	6 <1	1	0	2		
•	1.6811	4	ô	ŏ	$\tilde{4}$		
Rad.: CuKa1 \(\lambda: 1.5405\) Filter: Ni Beta.M d-sp: Diffractometer	1.5477	1	1	0	3		
Cut off: 22.1 Int.: Diffract. I/Icor.: 7.78	1.2340	3	1	1	0		
Ref: Sanc, I., Polytechna, Foreign Trade Corporation, Panska,	1.1603 1.1208	3 <1	0	0	2 6		
Czechoslovakia, ICDD Grant-in-Aid, (1990)	1.0567	<1	2	Ö	1		
Sys.: Hexagonal S.G.: P6 ₃ /mmc (194)							
a: 2.4704(15) b: c: 6.7244(38) A: C: 2.7220							
α: β: γ: Z: 4 mp:							
Ref: Ibid.							
Dx: 2.245 Dm: 2.160 SS/FOM: F ₁₀ =18(.042, 13)							
Color: Black	-						
Pattern taken at 25(1) C. Specimen from Netolice,							
Czechoslovakia. CAS #: 7782-4c(IEobs)= ±0.05. C type. Also							
called: cliftonite.Silicon used as an external stand. PSC:							
hP4. To replace 1-640, 1-646, 2-456, 3-401, 23-64, 25-284							
and 34-567 and validated by calculated pattern 25-284. Mwt: 12.01. Volume[CD]: 35.54.							

@1995 JCPDS-International Centre for Diffraction Data. All rights reserved.