HW? Softmax

The softmax function takes a list $[x_1, ..., x_n]$ of real numbers and an index $i \in \{1, ..., n\}$:

Softmax (
$$[x_1,...,x_n]$$
, i) = e^{x_i}

$$\sum_{j=1}^{n} e^{x_j}$$

It's called softmax because it usually turns the largest element of the list to something close to 1, and the others to something close to zero

e.g.
$$softmax([-4,1.5,5], 1) = 0.00012$$

 $softmax([-4,1.5,5], 2) = 0.029$
 $softmax([-4,1.5,5], 3) = 0.971$

(a) Show for any real number b: $Softmax([x,+b,...,x_n+b], i) = Softmax([x,,...,x_n], i)$

(b) Express the sigmoid function
$$\sigma(x)$$
 in terms of softmax:
$$\sigma(x) = softmax \left(\frac{1}{1-1-1} \right)$$

(c) Suppose we try to compute
$$\sigma(-740)$$
 directly, using Python. What happens?

(d) How can we exploit result (a) to compute
$$\sigma(-740)$$
? Show an implementation of $\sigma(x)$: