INTRO TO NEURAL NETWORKS

Elizabeth Heon 5/19/2025

INTRO

What, where, why?

What is a Neural Network?

A neural network is a machine learning model formed of interconnected layers of nodes, called neurons, which are designed to mimic the function of biological neurons

- Neurons are connected together in layers, forming networks. The output of one neuron becomes input to another.
- The connections in networks are associated with weights, which determine how much the output of one neuron influences
- Networks are **trained** by adjusting the weights to improve performance

Hidden Layers

Where are Neural Networks Used?

- Image recognition
- Speech recognition
- Recommendation Algorithm

NETFLIX

Many applications in the sciences:

- Predict protein structure from amino acids
- Predict chemical compounds with useful properties
- Find atoms in EM datasets
- Etc.

M. Ziatdinov, ACS Nano 2017

Neural networks are used in many applications in the physical sciences, technology, etc.

Types of Learning:

- Supervised Learning: Labelled training data is available network learns to predict the correct answer for new data
 - Regression
 - Classification
 - Semantic and Instance Segmentation
- Unsupervised Learning: No labelled training data provided networks learns intrinsic patterns in the data
 - Clustering
- Semi-supervised Learning: Some labelled training data is provided

This talk will focus on supervised learning, where a network is supplied labelled training data

Regression and Classification

Classification

- Classification tasks -> Output of network is categorical
- Examples:
 - Medical Diagnosis: Input -> medical imaging, Output -> Diagnosis
 - Character Recognition: Input -> Image of handwritten character, Output -> Letter A-Z or digit 0-9

Regression

- Regression tasks -> Output of network is numerical
- Examples:
 - Linear regression / function interpolation

I. NEURONS

Biological Neurons:

- Dendrites receive messages from other neurons these messages can be excitatory (encourage the neuron to fire) or inhibitory (prevent firing)
- Depending on the combination of inputs, the neuron may fire an "action potential" which travels down the axon to other neurons

A (biological) neuron takes a combination of inputs and decides which output to produce – potential or no potential

Consider a binary linear neuron – given a set of inputs, the neuron can output either 0 or 1 -> essentially, the neuron can classify a set of inputs into one of two groups

<u>Artificial Neurons</u>

- Neuron receives a vector of inputs, x_i
- Inputs are multiplied by vector of weights to form net input function:

$$z = \sum_{i} x_i w_i$$

The net input is compared to a value called the **threshold** (θ):

Artificial neurons take in a set of inputs and determine what output to produce using a set of weights and a threshold

Bias

The critical point between inputs that result in output 0 and inputs that result in output 1 is given by:

$$z = \sum_{i} x_{i} w_{i} = \theta$$

Subtract the value of θ from both sides:

$$x_i w_i + ... + x_n w_n - \theta = 0$$

 $x_i w_i + ... + x_n w_n + b = 0$

The term b is known as the bias – using the bias makes the threshold value trainable along with the weights

Training a Linear Neuron - Overview

Training is the process of updating the weights and bias to improve the performance of the model. Training is performed iteratively

Training Algorithm - Verbal

- To train the network we require a set of training data. Training data consists of:
 - Vectors of inputs -> x_i
 - The "ground truth" (i.e. correct) output for each set of inputs, y(i)
- For each vector in the training, g set, calculate the **model prediction**, $\widehat{y^{(i)}}$, then:
 - If the prediction is correct, do nothing
 - If the prediction is wrong, update the weights and bias to move the decision boundary in a way that reduces error
 - Repeat until the bias and weights stop changing

Training Algorithm - Math

1) Initialize the bias and weights either to zero or to small random numbers

- 2) For each example in the training set:
- Compute the output using the current bias and weights: $\hat{y}^{(i)} = w^T x^{(i)} + b$
- Update the weights and the bias:
 - $w_j = w_j + \Delta w$ where $\Delta w = \eta(y^{(i)} \hat{y}^{(i)})x_j^{(1)}$
 - $b = b + \Delta b$ where $\Delta b = \eta(y^{(i)} \hat{y}^{(i)})$

3) Repeat until prediction matches output for all examples in training set

The Problem of Separability

- Consider a linear neuron that takes two inputs, x1 and x2:
- We thus have: $x_1w_1 + x_2w_2 = \theta$
- Rearrange:

$$x_2 w_2 = \theta - x_1 w_1$$

$$x_2 = \frac{\theta}{w_2} - \frac{w_1}{w_2} x_1$$

$$x_2 = ax_1 + b$$

Results in linear equation –decision line/plane

Single neurons can only solve problems that are linearly separable

Adaptive Linear Neuron (Adaline)

Activation Functions:

- Activation functions introduce non-linearity to neural networks – otherwise even deep networks can only solve linear problems
- Non-linearity ->output has a non-linear relationship to input – decision surface can be curved

Activation functions introduce non-linearity to neural networks, allowing networks to learn complex patterns in data

Choosing Activation Functions

- **Re**ctified Linear Unit: If input is negative, output is zero. If input is positive, output = input
- Often used for image data or in other cases where negative inputs are not physically meaningful

- Leaky ReLU: Introduce a small non-zero slope for negative inputs
- Helps avoid "dying ReLU" where negative inputs cause a node is a network to become inactive

Choosing Activation Functions

- **Sigmoid:** Maps output to values between o and 1
- Ideal for situations where output should be interpreted as a probability

- Tanh: Maps output to values between -1 and 1
- Often used in hidden layers

<u>Training an Adaline – Loss Function</u>

• We train an Adaline by minimizing a **loss function**:

$$L(w,b) = \frac{1}{n} \sum_{i=1}^{n} (y^{(i)} - \sigma(z^{(i)}))^{2}$$
Ground Truth

- A loss function quantifies the difference between the network prediction and the ground truth
- The above is called the Mean Squared Error (MSE) loss and is common for regression problems

Loss functions quantify error for Adaline; training occurs by minimizing the loss

Gradient Descent - Analogy

 For every combination of weights and bias there is a corresponding value of the loss. This forms a loss surface/hypersurface. To train the network we must move to the minimum of the surface

- You are on a hill, and want to reach the valley (minimum) nearby
- To reach the minimum, make a series of steps, always making sure to move down hill

Gradient Descent - Math

- To move "downhill" we need the slope of the loss function
 - To find the slope of a function, take the derivative (in this case partial derivatives since loss is a multivariate function)
- 1) Start at an arbitrary position on the loss surface.
 - 2) Use the learning rule:

$$\Delta w = -\eta \nabla_w L(w, b)$$

$$\Delta b = -\eta \nabla_b L(w, b)$$

$$w := w + \Delta w$$
$$b := w + \Delta b$$

η = Learning Rate

Determines how large each "step" is

Role of Learning Rate

Learning rate, η, determines how quickly weights and bias change – how large each "step" is. Too small and the network will take a very long time to reach the minimum. Too large and it may overshoot the minimum and fail to converge.

II. FROM NEURONS TO NETWORK

Putting Neurons Together

 Deep architectures allow networks to learn complex patterns in data (so long as they have non-linear activation functions) – how does a multi-layer network work?

- Composed of multiple layers of artificial neurons the inner layers are known as "hidden layers"
 - The number of nodes per layer and the connectivity between nodes varies between networks
- Each node receives inputs, applies weights and biases, and passes outputs onto the next layer

Training a Multilayer Network

- To train a multi-layer network, each neurons weights and bias must be updated. To train multi-layer networks an approach known as backpropagation is used.
- Backpropagation consists of a forward and backward pass:
 - **Forward pass:** put training data into network at input layer, and propagate forward through the network, producing an output.
 - Calculate the loss based on the network prediction and the ground truth
 - **Backward pass:** Compute the gradient of the loss function with respect to each neuron's weights by chain rule
 - Update weights

Multi-layer networks are trained by backpropagation, which moves layer by layer to determine appropriate updates to the network weights

Metrics

Once a network is trained, the performance can be evaluated according to several possible metrics, including:

- **Accuracy:** Defined as the ratio of correctly predicted observations to the total observations.
- **Precision:** The ratio of correctly predicted positive observations to the total predicted positive observations. Important in scenarios where the cost of a false positive is high.
- **Recall** (Sensitivity): The ratio of correctly predicted positive observations to all observations in the actual class. Crucial in situations where missing a positive instance is costly.

III. USING NETWORKS

There are Many Types of Neural Networks

- Multilayer perceptron
- Convolutional Neural Networks
- Autoencoders
- Physics informed neural networks
- Etc.

Given the many types of networks that are possible, how do you know which type to use?

Where to Start:

Problem-Centric Approach:

- Always start with the problem at hand: Analyze the nature of input data and desired output
- Choose a network architecture that aligns with the type and structure of your data
- Select a loss function that reflects the objective of the problem
- Metrics should be chosen based on what measures success for your specific task

Hyperparameter Tuning:

- Once the architecture and loss function are set, proceed to tune hyperparameters including network structure, optimizers, regularization, etc.
- Hyperparameter tuning should be guided by the chosen metrics and the nature of the problem

Coding Task

Thank you

