Отчет по лабораторной работе 5

Дисциплина: Математические основы защиты информации и информационной безопасности

Дяченко З. К.

12 ноября 2022

Российский университет дружбы народов, Москва, Россия

Прагматика выполнения лабораторной работы

Данная лабораторная работа выполнялась мной для приобретения практических навыков проверки чисел на простоту.

Реализовать проверку числа на простоту с использованием теста Ферма (рис. - fig. 1).

```
In [13]: import numpy as np
         import random
         import math
In [20]: def ferma(n):
             if (n>=5 and n%2!=0):
                 a=random.randint(2, n-2)
                 r=math.pow(a, n-1)%n
                 if (r==1):
                     return ("Число ", n, ", вероятно, простое")
                 else:
                     return ("Число ", n, "составное")
             else:
                 return ("Введите нечетное число больше или равное 5")
In [21]: ferma(10)
Out[21]: 'Введите нечетное число больше или равное 5'
In [22]: ferma(7)
Out[22]: ('Число ', 7, ', вероятно, простое')
In [23]: ferma(9)
Out[23]: ('Число ', 9, 'составное')
```

Figure 1: Реализация алгоритма, реализующего тест Фирма

Реализовать алгоритм вычисления символа Якоби (рис. - fig. 2 и - fig. 3).

```
In [98]: def vakobi(n. a):
             if (now3 and n%21=0 and Oceacn):
                 while True:
                     if (a==0):
                        return 0
                     if (a==1):
                         return g
                     1f (a%21=0);
                         k#0
                         a1=a
                         a1=a
                         while (a1%2==0):
                            a1 = a1 / 2
                            keke1
                     if (k%2000):
                         5=1
                     else:
                        if (n%8==1 or n%8==-1);
                         1f(n%8==3 or n%8===3):
                           60-1
                     if (al==1):
                        return e's
                     if (n%4==3 and a1%4==3):
                        5=-5
                     a=n%a1
                     nua?
                     g=g*s
                 return ("Введите нечетное число больше или равное 3 и проверьте, что а больше или равно 0 и меньше введенного числа")
```

Figure 2: Реализация алгоритма вычисления символа Якоби

```
In [91]: yakobi(21, 11)
Out[91]: -1
In [92]: yakobi(21, 7)
Out[92]: 0
In [75]: yakobi(21, 4)
Out[75]: 1
```

Figure 3: Пример работы алгоритма вычисления символа Якоби

Реализовать проверку числа на простоту с использованием теста Соловэя-Штрассена (рис. - fig. 4).

```
In [128]:

def solshtr(n):
    if (n>=5 and n%2|=0):
        a=random.randint(2, n-3)
        r=math.pow(a, (n-1)/2)%n
    if (r|=1 and r|=n-1):
        return ("Число ", n, "составное")
    else:
        ss=yakobi(n, a)
        if (г%n==s$):
            return ("Число ", n, "составное")
        else:
        return ("Число ", n, "составное")
        else:
        return ("Число ", n, ", вероятно, простое")

In [131]:
out[131]: ("Число ', 13, ', вероятно, простое')
```

Figure 4: Реализация теста Соловэя-Штрассена

Реализовать проверку числа на простоту с использованием теста Миллера-Рабина (рис. - fig. 5).

```
In [125]: def milrab(n):
              if (n)=5 and n%21=0):
                  S=0
                  r=n-1
                  while (r%2==0):
                      r=r/2
                      s=s+1
                  a=random.randint(2, n-3)
                  v=math.pow(a, r)%n
                  if (v|=1 and v|=n-1):
                      if (j<=s-1 and y|=n-1):
                          v=math.pow(v,2)%n
                          if (v==1):
                              return ("Число ", n, "составное")
                      if (vl=n-1):
                          return ("Число ", n, "составное")
                  return ("Число ", n, ", вероятно, простое")
              else:
                  return ("Ввелите нечетное число больше или равное 5")
In [126]: milrab(7)
Out[126]: ('Число ', 7, ', вероятно, простое')
In [127]: milrab(9)
Out[127]: ('Число ', 9, 'составное')
```

Figure 5: Реализация теста Миллера-Рабина

Результаты выполнения лабораторной работы

Результатом выполнения работы стала реализация алгоритмов проверки чисел на простоту, что отражает проделанную мной работу и полученные новые знания.