from google.colab import drive drive.mount('/content/drive') import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns → Mounted at /content/drive ls drive/MyDrive/'Colab Notebooks'/Data_set.csv 'drive/MyDrive/Colab Notebooks/Data_set.csv' ls drive/MyDrive/'Colab Notebooks'/Data_to_Transform.csv 'drive/MyDrive/Colab Notebooks/Data_to_Transform.csv' ls drive/MyDrive/'Colab Notebooks'/'Encoding Data.csv' 'drive/MyDrive/Colab Notebooks/Encoding Data.csv' df=pd.read_csv('drive/MyDrive/Colab Notebooks/Encoding Data.csv') $\overline{\Rightarrow}$

	id	bin_1	bin_2	nom_0	ord_2
0	0	F	N	Red	Hot
1	1	F	Υ	Blue	Warm
2	2	F	N	Blue	Cold
3	3	F	Ν	Green	Warm
4	4	Т	Ν	Red	Cold
5	5	Т	Ν	Green	Hot
6	6	F	N	Red	Cold
7	7	Т	Ν	Red	Cold
8	8	F	N	Blue	Warm
9	9	F	Υ	Red	Hot

ORDINAL ENCODER

```
from sklearn.preprocessing import LabelEncoder,OrdinalEncoder
pm=['Hot','Warm','Cold']
e1=OrdinalEncoder(categories=[pm])
e1.fit_transform(df[["ord_2"]])
\rightarrow array([[0.],
            [1.],
            [2.],
            [1.],
            [2.],
            [0.],
            [2.],
            [2.],
            [1.],
            [0.]])
df['bo2']=e1.fit_transform(df[["ord_2"]])
df
 \overline{\Rightarrow}
        id bin_1 bin_2 nom_0 ord_2 bo2
      0 0
                      Ν
                           Red
                                  Hot 0.0
                           Blue
                                Warm 1.0
                F
                      Ν
                           Blue
                                 Cold 2.0
      3 3
                F
                      N Green Warm 1.0
                Τ
                      Ν
                           Red
                                 Cold 2.0
         5
                Т
                      N Green
                                  Hot 0.0
                                 Cold 2.0
                F
                           Red
      7 7
                           Red
                                 Cold 2.0
                Т
                      Ν
      8 8
                F
                      Ν
                           Blue
                                Warm 1.0
      9
        9
                F
                           Red
                                  Hot 0.0
```

LABEL ENCODER

```
le=LabelEncoder()
dfc=df.copy()
dfc['ord_2']=le.fit_transform(df[["ord_2"]])
dfc
```

/usr/local/lib/python3.10/dist-packages/sklearn/preprocessing/_label.py:114: DataConversionWarning: A column-vector y was passed when a 1d array was expected. Please change th y = column_or_1d(y, warn=True)

	id	bin_1	bin_2	nom_0	ord_2	bo2
0	0	F	N	Red	1	0.0
1	1	F	Υ	Blue	2	1.0
2	2	F	Ν	Blue	0	2.0
3	3	F	Ν	Green	2	1.0
4	4	Т	N	Red	0	2.0
5	5	Т	Ν	Green	1	0.0
6	6	F	Ν	Red	0	2.0
7	7	Т	Ν	Red	0	2.0
8	8	F	Ν	Blue	2	1.0
9	9	F	Υ	Red	1	0.0

ONEHOT ENCODER

from sklearn.preprocessing import OneHotEncoder
ohe=OneHotEncoder()
df2=df.copy()
enc=pd.DataFrame(ohe.fit_transform(df2[['nom_0']]))
df2=pd.concat([df2,enc],axis=1)
df2

\Rightarrow		id	bin_1	bin_2	nom_0	ord_2	bo2	0
	0	0	F	N	Red	Hot	0.0	(0, 2)\t1.0
	1	1	F	Υ	Blue	Warm	1.0	(0, 0)\t1.0
	2	2	F	Ν	Blue	Cold	2.0	(0, 0)\t1.0
	3	3	F	Ν	Green	Warm	1.0	(0, 1)\t1.0
	4	4	Т	Ν	Red	Cold	2.0	(0, 2)\t1.0
	5	5	Т	Ν	Green	Hot	0.0	(0, 1)\t1.0
	6	6	F	Ν	Red	Cold	2.0	(0, 2)\t1.0
	7	7	Т	Ν	Red	Cold	2.0	(0, 2)\t1.0
	8	8	F	Ν	Blue	Warm	1.0	(0, 0)\t1.0
	9	9	F	Υ	Red	Hot	0.0	(0. 2)\t1.0

pd.get_dummies(df2,columns=["nom_0"])

$\overline{\Rightarrow}$		id	bin_1	bin_2	ord_2	bo2	0	nom_0_Blue	nom_0_Green	nom_0_Red
	0	0	F	N	Hot	0.0	(0, 2)\t1.0	False	False	True
	1	1	F	Υ	Warm	1.0	(0, 0)\t1.0	True	False	False
	2	2	F	Ν	Cold	2.0	(0, 0)\t1.0	True	False	False
	3	3	F	Ν	Warm	1.0	(0, 1)\t1.0	False	True	False
	4	4	Т	Ν	Cold	2.0	(0, 2)\t1.0	False	False	True
	5	5	Т	Ν	Hot	0.0	(0, 1)\t1.0	False	True	False
	6	6	F	Ν	Cold	2.0	(0, 2)\t1.0	False	False	True
	7	7	Т	Ν	Cold	2.0	(0, 2)\t1.0	False	False	True
	8	8	F	Ν	Warm	1.0	(0, 0)\t1.0	True	False	False
	9	9	F	Υ	Hot	0.0	(0. 2)\t1.0	False	False	True

BINARY ENCODER

pip install --upgrade category_encoders

Collecting category_encoders
Downloading category_encoders-2.6.4-py2.py3-none-any.whl.metadata (8.0 kB)
Requirement already satisfied: numpy>=1.14.0 in /usr/local/lib/python3.10/dist-packages (from category_encoders) (1.26.4)
Requirement already satisfied: scikit-learn>=0.20.0 in /usr/local/lib/python3.10/dist-packages (from category_encoders) (1.5.2)

be=BinaryEncoder()

nd=be.fit transform(df['Ord 2'])

EXP03_24900103.ipynb - Colab

```
Requirement already satisfied: scipy>=1.0.0 in /usr/local/lib/python3.10/dist-packages (from category encoders) (1.13.1)
    Requirement already satisfied: statsmodels>=0.9.0 in /usr/local/lib/python3.10/dist-packages (from category encoders) (0.14.4)
    Requirement already satisfied: pandas>=1.0.5 in /usr/local/lib/python3.10/dist-packages (from category encoders) (2.2.2)
    Requirement already satisfied: patsy>=0.5.1 in /usr/local/lib/python3.10/dist-packages (from category encoders) (1.0.1)
    Requirement already satisfied: python-dateutil>=2.8.2 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.0.5->category encoders) (2.8.2)
    Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas>=1.0.5->category encoders) (2024.2)
    Requirement already satisfied: tzdata>=2022.7 in /usr/local/lib/pvthon3.10/dist-packages (from pandas>=1.0.5->category encoders) (2024.2)
    Requirement already satisfied: joblib>=1.2.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.20.0->category encoders) (1.4.2)
    Requirement already satisfied: threadpoolctl>=3.1.0 in /usr/local/lib/python3.10/dist-packages (from scikit-learn>=0.20.0->category encoders) (3.5.0)
    Requirement already satisfied: packaging>=21.3 in /usr/local/lib/python3.10/dist-packages (from statsmodels>=0.9.0->category encoders) (24.2)
    Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.2->pandas>=1.0.5->category encoders) (1.16.0)
    Downloading category encoders-2.6.4-py2.py3-none-any.whl (82 kB)
                                  Installing collected packages: category encoders
    Successfully installed category encoders-2.6.4
from category encoders import BinaryEncoder
df=pd.read csv('drive/MvDrive/data.csv')
df
    ______
    FileNotFoundError
                                         Traceback (most recent call last)
    <ipython-input-16-0232598ea1f2> in <cell line: 2>()
          1 from category_encoders import BinaryEncoder
    ----> 2 df=pd.read csv('drive/MvDrive/Colab Notebooks/data.csv')
          3 df
                                      4 frames
    /usr/local/lib/python3.10/dist-packages/pandas/io/common.py in get handle(path or buf, mode, encoding, compression, memory map, is text, errors, storage options)
        871
                   if ioargs.encoding and "b" not in ioargs.mode:
        872
                       # Encoding
     --> 873
                       handle = open(
        874
                           handle.
        875
                           ioargs.mode,
    FileNotFoundError: [Errno 2] No such file or directory: 'drive/MyDrive/Colab Notebooks/data.csv'
```

https://colab.research.google.com/drive/1BumVMOnhAAMyR3D2 5ozi 1FV0f0UhrZ#scrollTo=qldFU1KrbjS &printMode=true

dfb

```
KeyError
                                               Traceback (most recent call last)
     /usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py in get loc(self, key)
        3804
     -> 3805
                         return self._engine.get_loc(casted_key)
        3806
                     except KeyError as err:
     index.pyx in pandas. libs.index.IndexEngine.get loc()
     index.pyx in pandas. libs.index.IndexEngine.get loc()
     pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
     pandas/_libs/hashtable_class_helper.pxi in pandas._libs.hashtable.PyObjectHashTable.get_item()
     KeyError: 'Ord 2'
     The above exception was the direct cause of the following exception:
     KeyError
                                               Traceback (most recent call last)
                                        2 frames
     /usr/local/lib/python3.10/dist-packages/pandas/core/indexes/base.py in get loc(self, key)
        3810
        3811
                             raise InvalidIndexError(key)
     -> 3812
                         raise KeyError(key) from err
        3813
                     except TypeError:
        3814
                         # If we have a listlike key, _check_indexing_error will raise
     KeyError: 'Ord 2'
dfb=pd.concat([df,nd],axis=1)
```

$\overline{\Rightarrow}$		id	bin_1	bin_2	City	0rd_1	0rd_2	Target	Ord_2_0	Ord_2_1	Ord_2_2
	0	0	F	N	Delhi	Hot	High School	0	0	0	1
	1	1	F	Υ	Bangalore	Warm	Masters	1	0	1	0
	2	2	M	Ν	Mumbai	Very Hot	Diploma	1	0	1	1
	3	3	M	Υ	Chennai	Cold	Bachelors	0	1	0	0
	4	4	M	Υ	Delhi	Cold	Bachelors	1	1	0	0
	5	5	F	N	Delhi	Very Hot	Masters	0	0	1	0
	6	6	M	Ν	Chennai	Warm	PhD	1	1	0	1
	7	7	F	N	Chennai	Hot	High School	1	0	0	1
	8	8	M	N	Delhi	Very Hot	High School	0	0	0	1
	9	9	F	Υ	Delhi	Warm	PhD	0	1	0	1

TARGET ENCODER

from category_encoders import TargetEncoder
te=TargetEncoder()
cc=df.copy()
new=te.fit_transform(X=cc["City"],y=cc["Target"])
cc=pd.concat([cc,new],axis=1)
cc

₹		id	bin_1	bin_2	City	Ord_1	Ord_2	Target	City
	0	0	F	N	Delhi	Hot	High School	0	0.445272
	1	1	F	Υ	Bangalore	Warm	Masters	1	0.565054
	2	2	M	Ν	Mumbai	Very Hot	Diploma	1	0.565054
	3	3	M	Υ	Chennai	Cold	Bachelors	0	0.525744
	4	4	M	Υ	Delhi	Cold	Bachelors	1	0.445272
	5	5	F	N	Delhi	Very Hot	Masters	0	0.445272
	6	6	M	Ν	Chennai	Warm	PhD	1	0.525744
	7	7	F	N	Chennai	Hot	High School	1	0.525744
	8	8	M	N	Delhi	Very Hot	High School	0	0.445272
	9	9	F	Υ	Delhi	Warm	PhD	0	0.445272

FEATURE TRANSFORMATION

from scipy import stats

df=pd.read_csv('drive/MyDrive/Data_to_Transform.csv')
df

\Rightarrow	Moderat	te Positive Skew	Highly Positive Skew	Moderate Negative Skew	Highly Negative Skew
-	0	0.899990	2.895074	11.180748	9.027485
	1	1.113554	2.962385	10.842938	9.009762
	2	1.156830	2.966378	10.817934	9.006134
	3	1.264131	3.000324	10.764570	9.000125
	4	1.323914	3.012109	10.753117	8.981296
	9995	14.749050	16.289513	-2.980821	-3.254882
	9996	14.854474	16.396252	-3.147526	-3.772332
	9997	15.262103	17.102991	-3.517256	-4.717950
	9998	15.269983	17.628467	-4.689833	-5.670496
	9999	16.204517	18.052331	-6.335679	-7.036091
,	10000 rows × 4	columns			

df.skew()

Moderate Positive Skew 0.656308
Highly Positive Skew 1.271249
Moderate Negative Skew -0.690244
Highly Negative Skew -1.201891

np.log(df["Highly Positive Skew"])

$\overline{\Rightarrow}$		Highly Positive Skew
	0	1.063011
	1	1.085995
	2	1.087342
	3	1.098720
	4	1.102640
	9995	2.790522
	9996	2.797053
	9997	2.839253
	9998	2.869515
	9999	2.893275
	10000	rows × 1 columns

np.reciprocal(df["Moderate Positive Skew"])

→	Moderate Posit	tive Skew
0		1.111123
1		0.898026
2		0.864431
3		0.791057
4		0.755336
9995		0.067801
9996		0.067320
9997		0.065522
9998		0.065488
9999		0.061711
10000	rows × 1 columns	

np.sqrt(df["Highly Positive Skew"])

7		Highly	Positiv	e Skew
	0		1.	701492
	1		1.	721158
	2		1.	722317
	3		1.	732144
	4		1.	735543
	9995		4.	036027
	9996		4.	049229
	9997		4.	135576
	9998		4.	198627
	9999		4.	248803
	10000	rows × 1	columns	

4

np.square(df["Highly Positive Skew"])

\Rightarrow		Highly Positive Skew
	0	8.381452
	1	8.775724
	2	8.799396
	3	9.001942
	4	9.072800
	9995	265.348230
	9996	268.837091
	9997	292.512290
	9998	310.762852

10000 rows × 1 columns

325.886637

◀

9999

df["Highly Positive Skew_boxcox"],parameters=stats.boxcox(df["Highly Positive Skew"])
df

	Moderate Positive Skew	Highly Positive Skew	Moderate Negative Skew	Highly Negative Skew	Highly Positive Skew_boxcox
0	0.899990	2.895074	11.180748	9.027485	0.812909
1	1.113554	2.962385	10.842938	9.009762	0.825921
2	1.156830	2.966378	10.817934	9.006134	0.826679
3	1.264131	3.000324	10.764570	9.000125	0.833058
4	1.323914	3.012109	10.753117	8.981296	0.835247
9995	14.749050	16.289513	-2.980821	-3.254882	1.457701
9996	14.854474	16.396252	-3.147526	-3.772332	1.459189
9997	15.262103	17.102991	-3.517256	-4.717950	1.468681
9998	15.269983	17.628467	-4.689833	-5.670496	1.475357
9999	16.204517	18.052331	-6.335679	-7.036091	1.480525
10000	rows × 5 columns				

11/20/24, 6:03 PM

df["Moderate Negative Skew_yeojohnson"],parameters=stats.yeojohnson(df["Moderate Negative Skew"])
df

\Rightarrow	Moderate Positive Skew	Highly Positive Skew	Moderate Negative Skew	Highly Negative Skew	Highly Positive Skew_boxcox	Moderate Negative Skew_yeojohnson
0	0.899990	2.895074	11.180748	9.027485	0.812909	29.137807
1	1.113554	2.962385	10.842938	9.009762	0.825921	27.885274
2	1.156830	2.966378	10.817934	9.006134	0.826679	27.793303
3	1.264131	3.000324	10.764570	9.000125	0.833058	27.597362
4	1.323914	3.012109	10.753117	8.981296	0.835247	27.555370
999	5 14.749050	16.289513	-2.980821	-3.254882	1.457701	-1.949345
999	6 14.854474	16.396252	-3.147526	-3.772332	1.459189	-2.028952
999	7 15.262103	17.102991	-3.517256	-4.717950	1.468681	-2.199693
999	8 15.269983	17.628467	-4.689833	-5.670496	1.475357	-2.697151
999	9 16.204517	18.052331	-6.335679	-7.036091	1.480525	-3.311401
1000	0 rows × 6 columns					

df.skew()

$\overline{\Rightarrow}$		0
	Moderate Positive Skew	0.656308
	Highly Positive Skew	1.271249
	Moderate Negative Skew	-0.690244
	Highly Negative Skew	-1.201891
	Highly Positive Skew_boxcox	0.023089
	Moderate Negative Skew_yeojohnson	-0.119651

df["Highly Negative Skew_yeojohnson"],parameters=stats.yeojohnson(df["Highly Negative Skew"])

import seaborn as sns
import statsmodels.api as sm
import mathlotlih.nvnlot as nlt