Análisis Estadístico con R

Regresión

true

02 de abril de 2018

Contents

Regresión Lineal	1
Una idea general	1
Transformaciones Lineales	12
Regresión Lineal Múltiple	17

Regresión Lineal

Una idea general

Abordemos las primeras ideas de regresión lineal a través de un ejemplo práctico:

- Abrir la tabla 2.1
- Creamos dos variables, Ingreso y Consumo Esperado

```
ingresos <- seq(80,260,20)
consumoEsperado <- c(65,77,89,101,113,125,137,149,161,173)
```

Ahora:

- Generar un gráfico tipo línea entre ingresos y consumo esperado
- Superponer un gráfico tipo puntos de X e Y (tabla 2.1) sobre el gráfico anterior
- Generar un gráfico tipo puntos X e Y en azul
- Superponer un gráfico tipo lineas de Ingresos y consumo esperado sobre el gráfico anterior en azul

```
## [1] "X" "Y"
```

```
ingresos consumoEsperado
##
    [1,]
                80
    [2,]
               100
                                  77
##
##
    [3,]
               120
                                  89
##
    [4.]
               140
                                 101
    [5,]
##
               160
                                 113
##
    [6,]
               180
                                 125
##
    [7,]
               200
                                 137
##
    [8,]
               220
                                 149
##
    [9,]
               240
                                 161
## [10,]
               260
                                 173
```

```
par(mfrow=c(1,2))
plot(ingresos,consumoEsperado, type="1",main="Linea muestral \ny puntos poblacional") # la "s" en type,
points(X,Y)
```

#Primero poner los puntos y luego la l?nea para tener

• ¿Qué hemos hecho?

$$E(Y|X_i) = f(X_i)$$

$$E(Y|X_i) = \beta_1 + \beta_2 X_i$$

$$u_i = Y_i - E(Y|X_i)$$

$$Y_i = E(Y|X_i) + u_i$$

• ¿Qué significa que sea lineal?

El término regresión lineal siempre significará una regresión lineal en los parámetros; los β (es decir, los parámetros) se elevan sólo a la primera potencia. Puede o no ser lineal en las variables explicativas X

Para evidenciar la factibilidad del uso de RL en este caso, vamos a obtener una muestra de la población:

- Creamos una variable indicadora para obtener una muestra indice=seq(1,55,1)
- Usamos sample para obtener una muestra sin reemplazo del tamaño indicado: muestra <- sample(indice,size=20)
- Obtenemos el valor de la variable X en la posición de muestra + ingreso.muestra <- X[muestra] + consumo.muestra <- Y[muestra]

```
indice <- seq(1,55,1)
muestra <- sample( X ,size=20)
muestra <- sample(indice,size=20)
ingreso.muestra <- X[muestra]
consumo.muestra <- Y[muestra]</pre>
```

- Graficamos ingreso.muestra vs consumo.muestra
- Realizar una regresión lineal de las variables muestra:
 - plot(ingreso.muestra,consumo.muestra)
 - ajuste.1=(lm(consumo.muestra\sim ingreso.muestra))
 - abline(coef(ajuste.1))
- Generar una segunda muestra (muestra.2 por ejemplo) y comparar los coeficientes
- ¿Qué conclusiones puede sacar?

```
plot(ingreso.muestra,consumo.muestra)
ajuste.1 <- (lm(consumo.muestra~ingreso.muestra))</pre>
ajuste.1
##
## Call:
## lm(formula = consumo.muestra ~ ingreso.muestra)
##
## Coefficients:
##
       (Intercept)
                     ingreso.muestra
           12.6573
##
                              0.6256
coef(ajuste.1)
##
       (Intercept) ingreso.muestra
        12.6573242
                          0.6255685
```


Regresión: Paso a paso

La función poblacional sería:

$$Y_i = \beta_1 + \beta_2 X_i + u_i$$

Como no es observable, se usa la muestral

$$Y_i = \hat{\beta}_1 + \hat{\beta}_2 X_i + \hat{u}_i$$

$$Y_i = \hat{Y}_i + \hat{u}_i$$

$$\hat{u}_i = Y_i - \hat{Y}_i$$

$$\hat{u}_i = Y_i - \hat{\beta}_1 - \hat{\beta}_2 X_i$$

Es por esto que los residuos se obtienen a través de los betas:

(1)

$$\sum \hat{u}_{i}^{2} = \sum (Y_{i} - \hat{\beta}_{1} - \hat{\beta}_{2}X_{i})^{2}$$

$$\sum \hat{u}_i^2 = f(\hat{\beta}_1, \hat{\beta}_2)$$

Diferenciando ((???)) se obtiene:

$$\hat{\beta}_2 = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_1 = \bar{Y} - \hat{\beta}_2 \bar{X}$$

donde

$$S_{xx} = \sum_{i=1}^{n} x_i^2 - n\bar{x}^2$$

$$S_{xy} = \sum_{i=1}^{n} x_i y_i - n\bar{x}\bar{y}$$

Abrimos la tabla3.2, vamos a obtener:

uu <- "https://raw.githubusercontent.com/vmoprojs/DataLectures/master/Tabla3_2.csv"
consumo=read.csv(file="Tabla3_2.csv",sep=";",dec=".",header=TRUE)
consumo <- read.csv(url(uu),sep=";",dec=".",header=TRUE)
attach(consumo)</pre>

The following objects are masked from familia:

##

X, Y

```
media_x <- mean(X, na.rm=T)
media_y <- mean(Y, na.rm=T)

n <- length(X)*1

sumcuad_x <- sum(X*X)
sum_xy <- sum(X*Y)

beta_som <- (sum_xy-n*media_x*media_y)/
    (sumcuad_x-n*(media_x^2))
alpha_som <- media_y-beta_som*media_x</pre>
```

• Verificamos lo anterior mediante:

```
reg.1 <- (lm(Y~X))
coef(reg.1)</pre>
```

(Intercept) X ## 24.4545455 0.5090909

• Veamos cómo queda nuestra estimación:

```
y.ajustado <- alpha_som+beta_som*X
head(cbind(X,y.ajustado))</pre>
```

```
## X y.ajustado

## [1,] 80 65.18182

## [2,] 100 75.36364

## [3,] 120 85.54545

## [4,] 140 95.72727

## [5,] 160 105.90909

## [6,] 180 116.09091
```

• Gráficamente:

```
plot(X,y.ajustado,main="Valores estimados")
abline(a=alpha_som,b=beta_som)
```

Valores estimados

• Encontremos los residuos:

```
y.ajustado=alpha_som+beta_som*X
e = Y-y.ajustado
```

• Comparemos los resultados

head(cbind(X,Y,y.ajustado,e))

```
X
              Y y.ajustado
## [1,]
         80
             70
                  65.18182
                              4.8181818
  [2,] 100
                  75.36364 -10.3636364
             65
## [3,] 120
             90
                  85.54545
                              4.4545455
## [4,] 140
             95
                  95.72727
                             -0.7272727
## [5,] 160 110
                 105.90909
                              4.0909091
                 116.09091
## [6,] 180 115
                            -1.0909091
```

• Veamos la media y la correlación

```
mean(e)
```

```
## [1] -1.421085e-15
cor(e,X)
```

[1] 1.150102e-15

- Hallemos el coeficiente de determinación o bondad de ajuste.
- Para ello necesitamos la suma de cuadrados total y la suma de cuadramos explicada

```
SCT = sum((Y-media_y)^2)
SCE = sum((y.ajustado-media_y)^2)
SCR <- sum(e^2)
R_2 <- SCE/SCT</pre>
```

```
summary(reg.1)
```

```
##
## Call:
## lm(formula = Y \sim X)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -10.364 -4.977
                     1.409
                             4.364
                                     8.364
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 24.45455
                           6.41382
                                     3.813 0.00514 **
## X
               0.50909
                           0.03574 14.243 5.75e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 6.493 on 8 degrees of freedom
## Multiple R-squared: 0.9621, Adjusted R-squared: 0.9573
## F-statistic: 202.9 on 1 and 8 DF, p-value: 5.753e-07
```

Pruebas de hipótesis:

$$H_0: \beta_2 = 0$$
$$H_1: \beta_2 \neq 0$$

- Abrir la tabla 2.8
- Regresar el gasto total en el gasto en alimentos
- ¿Son los coeficientes diferentes de cero?

```
t1 <- (0.43681-0)/0.07832
1-pt(t1,53)
```

[1] 4.222605e-07

• ¿Son los coeficientes diferentes de 0.5?

```
# H0: beta1 = 0.5
t2 <- (0.43681-0.5)/0.07832
(1-pt(abs(t2),53))
```

```
## [1] 0.2116886
```

Interpretación de los coeficientes

- El coeficiente de la variable dependiente mide la tasa de cambio (derivada=pendiente) del modelo
- La interpretación suele ser En promedio, el aumento de una unidad en la variable independiente produce un aumento/disminución de β_i cantidad en la variable dependiente
- Interprete la regresión anterior.

Práctica: Paridad del poder de compra

Abrir la tabla 5.9, las variables son:

```
## [1] "COUNTRY" "BMACLC" "BMAC." "EXCH" "PPP" "LOCALC"
```


Figure 1:

- BMACLC: Big Mac Prices in Local Currency
- BMAC\$: Big Mac Prices in \$
- EXCH: Actual \$ Exchange Rate 4/17/2001
- PPP: Implied Purchasing-Power Parity of the Dollar: Local Price Divided by Price in United States
- LOCALC: Local Currency Under (-)/Over (+) Valuation Against \$, Percent

Empezamos con el buen summary. ¿Notan algo raro?

• Debemos limpiar los datos

##

PPP[-13]

```
datos$EXCH[which( EXCH == -99999)] = NA
datos$PPP[which( PPP == -99999)] = NA
datos$LOCALC[which( LOCALC ==-99999)] = NA
```

Regresamos la paridad del poder de compra en la tasa de cambio

```
reg1 <- lm(EXCH~PPP)
summary(reg1)
##
## Call:
## lm(formula = EXCH ~ PPP)
##
## Residuals:
##
              1Q Median
## -212.9 -211.0 -208.0 -186.3 4827.8
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.116e+02 1.675e+02
                                     1.264
                                               0.216
              1.005e+00 9.306e-03 107.990
                                              <2e-16 ***
## PPP
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 920.1 on 29 degrees of freedom
## Multiple R-squared: 0.9975, Adjusted R-squared: 0.9974
## F-statistic: 1.166e+04 on 1 and 29 DF, p-value: < 2.2e-16
reg2 <- lm(EXCH[-13]~PPP[-13])
summary(reg2)
##
## lm(formula = EXCH[-13] \sim PPP[-13])
## Residuals:
     Min
              1Q Median
                            3Q
## -203.1 -201.2 -199.0 -179.6 4838.5
##
## Coefficients:
```

0.254

<2e-16 ***

Estimate Std. Error t value Pr(>|t|)

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1

1.005e+00 9.465e-03 106.157

Residual standard error: 934.8 on 28 degrees of freedom

1.166

(Intercept) 2.018e+02 1.731e+02

```
## Multiple R-squared: 0.9975, Adjusted R-squared: 0.9974
## F-statistic: 1.127e+04 on 1 and 28 DF, p-value: < 2.2e-16
reg3 <- lm(log(EXCH)~log(PPP))</pre>
summary(reg3)
##
## Call:
## lm(formula = log(EXCH) ~ log(PPP))
## Residuals:
##
       Min
                  1Q
                     Median
                                    30
                                            Max
## -0.70587 -0.24564 -0.05721 0.26862 0.42295
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.34363
                           0.08613
                                    3.99 0.000432 ***
## log(PPP)
                1.00231
                           0.02463
                                     40.69 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.3206 on 28 degrees of freedom
     (1 observation deleted due to missingness)
## Multiple R-squared: 0.9834, Adjusted R-squared: 0.9828
## F-statistic: 1655 on 1 and 28 DF, p-value: < 2.2e-16
La PPA sostiene que con una unidad de moneda debe ser posible comprar la misma canasta de bienes en
todos los países.
Práctica: Sueño
De la carpeta Datos, abrir sleep.xls
library(XLConnect)
## Loading required package: XLConnectJars
## XLConnect 0.2-13 by Mirai Solutions GmbH [aut],
    Martin Studer [cre],
##
     The Apache Software Foundation [ctb, cph] (Apache POI),
##
     Graph Builder [ctb, cph] (Curvesapi Java library)
##
## http://www.mirai-solutions.com ,
## http://miraisolutions.wordpress.com
wk = loadWorkbook("sleep75.xls")
datos = readWorksheet(wk, sheet="SLEEP75",header=FALSE)
agregamos los nombres:
names (datos)=c("age", "black", "case", "clerical" , "construc" , "educ", "earns74", "gdhlth"
                ","inlf", "leis1", "leis2", "leis3", "smsa", "lhrwage", "lothinc", "male,
                "marr", "prot", "rlxall", "selfe", "sleep", "slpnaps", "south", "spsepay",
```

Veamos los datos gráficamente y corramos la regresión:

"yrsmarr", "hrwage", "agesq")

"spwrk75", "totwrk", "union", "worknrm", "workscnd", "exper", "yngkid",

The following object is masked from package:datasets: ## ## sleep #totwrk minutos trabajados por semana #sleep minutos dormidos por semana plot(totwrk, sleep)


```
dormir = lm(sleep~totwrk)
summary(dormir)
```

```
##
## Call:
## lm(formula = sleep ~ totwrk)
##
## Residuals:
##
        Min
                  1Q
                       Median
                                     3Q
##
   -2429.94 -240.25
                         4.91
                                250.53
                                        1339.72
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3586.37695
                            38.91243
                                      92.165
                                                <2e-16 ***
## totwrk
                 -0.15075
                             0.01674
                                      -9.005
                                                <2e-16 ***
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 421.1 on 704 degrees of freedom
## Multiple R-squared: 0.1033, Adjusted R-squared: 0.102
## F-statistic: 81.09 on 1 and 704 DF, p-value: < 2.2e-16
```

- ¿Existe una relación entre estas variables?
- Interprete el modelo

Intervalo de confianza para β_2 y veamos los residuos

```
-0.15084-2*c(-0.01677,0.01677)

## [1] -0.11730 -0.18438

hist(resid(dormir),freq=F)
lines(density(resid(dormir)))
```

Histogram of resid(dormir)

Derivaciones del modelo

Transformaciones Lineales

Abrir la tabla 31.3, regresar el ingreso per cápita en el número de celulares por cada 100 personas:

```
reg.1 = lm(Cellphone ~ Pcapincome)
summary(reg.1)
```

```
##
## Call:
## lm(formula = Cellphone ~ Pcapincome)
##
## Residuals:
##
       Min
                1Q
                   Median
                                3Q
                                       Max
## -45.226 -10.829
                   -2.674
                             8.950
                                    47.893
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                                      2.043
                                              0.0494 *
## (Intercept) 1.248e+01 6.109e+00
## Pcapincome 2.313e-03 3.158e-04
                                      7.326 2.5e-08 ***
## ---
```

Modelo	Ecuación	Pendiente $\left(=\frac{dY}{dX}\right)$	Elasticidad $\left(=\frac{dY}{dX}\frac{X}{Y}\right)$
Lineal	$Y = \beta_1 + \beta_2 X$	β2	$\beta_2 \left(\frac{X}{Y}\right)^*$
Log-lineal	$\ln Y = \beta_1 + \beta_2 \ln X$	$\beta_2\left(\frac{Y}{X}\right)$	β_2
Log-lin	$ \ln Y = \beta_1 + \beta_2 X $	$\beta_2(Y)$	$\beta_2(X)^*$
Lin-log	$Y = \beta_1 + \beta_2 \ln X$	$\beta_2\left(\frac{1}{\chi}\right)$	$\beta_2 \left(\frac{1}{Y}\right)^*$
Recíproco	$Y = \beta_1 + \beta_2 \left(\frac{1}{X}\right)$	$-\beta_2\left(\frac{1}{X^2}\right)$	$-\beta_2 \left(\frac{1}{XY}\right)^*$
Recíproco log	$\ln Y = \beta_1 - \beta_2 \left(\frac{1}{X}\right)$	$\beta_2\left(\frac{Y}{X^2}\right)$	$\beta_2 \left(\frac{1}{X}\right)^*$

Nota: * indica que la elasticidad es variable: depende del valor tomado por X o por Y, o por ambas. En la práctica, cuando no se especifican los valores de X y de Y, es muy frecuente medir estas elasticidades con los valores medios de estas variables, es decir, \bar{X} y \bar{Y} .

Figure 2:

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 19.92 on 32 degrees of freedom
## Multiple R-squared: 0.6265, Adjusted R-squared: 0.6148
## F-statistic: 53.67 on 1 and 32 DF, p-value: 2.498e-08
plot(Pcapincome,Cellphone)
abline(coef(reg.1))
```


Modelo recíproco

Abrir la tabla 6.4, regresar el Producto Nacional Bruto (PGNP) en la tasa de mortalidad (CM).

```
## [1] "CM" "FLR" "PGNP" "TFR"
plot(CM~ PGNP)
```

```
0
             0
             8
     200
                                         0
     100
                        0
                           0
                                                                                0
                          ത
     0
            0
                           5000
                                            10000
                                                            15000
                                                                              20000
                                           PGNP
reg1<-lm(CM~ PGNP)
summary(reg1)
##
## Call:
## lm(formula = CM ~ PGNP)
##
## Residuals:
        Min
                 1Q
                       Median
                                    ЗQ
                                            Max
## -113.764 -53.111
                       -6.685
                               48.064 157.758
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 157.424441
                            9.845583 15.989 < 2e-16 ***
## PGNP
                -0.011364
                           0.003233 -3.516 0.000826 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 69.93 on 62 degrees of freedom
## Multiple R-squared: 0.1662, Adjusted R-squared: 0.1528
## F-statistic: 12.36 on 1 and 62 DF, p-value: 0.0008262
reg2<-lm(CM~I(1/PGNP))
summary(reg2)
##
## Call:
## lm(formula = CM ~ I(1/PGNP))
##
## Residuals:
##
        Min
                  1Q
                      Median
                                    ЗQ
                                            Max
## -130.806 -36.410
                       2.871
                               31.686 132.801
```

##

```
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 81.79 10.83 7.551 2.38e-10 ***
## I(1/PGNP) 27273.17 3760.00 7.254 7.82e-10 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 56.33 on 62 degrees of freedom
## Multiple R-squared: 0.4591, Adjusted R-squared: 0.4503
## F-statistic: 52.61 on 1 and 62 DF, p-value: 7.821e-10
```

Modelo log-lineal

Abrir los datos ceosal2.xls,

Regresar la antigüedad del CEO en el logaritmo del salario.

```
summary(lm(lsalary~ceoten))
```

```
##
## Call:
## lm(formula = lsalary ~ ceoten)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
  -2.15314 -0.38319 -0.02251 0.44439
                                      1.94337
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.505498
                         0.067991 95.682
                                            <2e-16 ***
## ceoten
              0.009724
                         0.006364
                                    1.528
                                             0.128
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.6038 on 175 degrees of freedom
## Multiple R-squared: 0.01316,
                                   Adjusted R-squared:
## F-statistic: 2.334 on 1 and 175 DF, p-value: 0.1284
```

- Hay una probabilidad de equivocarnos del 12.84% si rechazamos la hipótesis nula
- No hay evidencia de la entiguedad tenga relación con el salario
- Los CEO con 0 a?os de antiguedad entran ganando exp(6.505)=668.4757 miles de USD exp(6.505)

Regresión a través del origen

Abrir la tabla 6.1, regresar X (rendimientos excedentes de un índice acciones del sector de bienes de consumo cíclico) en Y (rendimientos excedentes de un índice acciones de todo el mercado de valores en el Reino Unido)

```
lmod1 \leftarrow lm(Y \sim -1 + X)
summary(lmod1)
##
## Call:
## lm(formula = Y \sim -1 + X)
##
## Residuals:
##
       Min
                  1Q
                      Median
                                    3Q
                                            Max
## -20.8053 -3.9760 -0.2102
                                3.0745 14.7680
##
## Coefficients:
    Estimate Std. Error t value Pr(>|t|)
##
       1.1555
                  0.0744
                           15.53
                                   <2e-16 ***
## X
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.549 on 239 degrees of freedom
## Multiple R-squared: 0.5023, Adjusted R-squared: 0.5003
## F-statistic: 241.2 on 1 and 239 DF, p-value: < 2.2e-16
lmod2 \leftarrow lm(Y\sim
summary(lmod2)
##
## Call:
## lm(formula = Y ~ X)
## Residuals:
       Min
                  10
                       Median
                                    30
## -20.4122 -3.5274
                       0.2316
                                3.4774 15.1150
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.44748
                           0.36294 -1.233
                                              0.219
## X
                1.17113
                           0.07539 15.535
                                             <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 5.543 on 238 degrees of freedom
## Multiple R-squared: 0.5035, Adjusted R-squared: 0.5014
## F-statistic: 241.3 on 1 and 238 DF, p-value: < 2.2e-16
```

- El coeficiente de la pendiente no es sólo estadísticamente significativo, sino que es significativamente mayor que 1 (¿puede verificar esto?).
- Si un coeficiente Beta es mayor que 1, se dice que ese título (en este caso, un portafolios de 104 acciones) es volátil

Regresión Lineal Múltiple

Abrir los datos hprice1.xls. Correr os siguientes modelos e interpretarlos:

```
library(XLConnect)
wk = loadWorkbook("hprice1.xls")
```

```
precios = readWorksheet(wk, sheet="HPRICE1",header=FALSE)
                            "assess"
names(precios)=c("price"
                            "lotsize"
                "bdrms"
                "sgrft"
                            "colonial",
                "lprice" , "lassess" ,
                "llotsize" , "lsqrft")
attach(precios)
modelo1 = lm(lprice ~ lassess + llotsize + lsqrft + bdrms)
summary(modelo1)
##
## Call:
## lm(formula = lprice ~ lassess + llotsize + lsqrft + bdrms)
## Residuals:
       Min
                10
                    Median
                                  3Q
                                          Max
## -0.53337 -0.06333 0.00686 0.07836 0.60825
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.263745 0.569665 0.463
                                            0.645
## lassess
              ## llotsize
               0.007438 0.038561
                                  0.193
                                            0.848
## lsqrft
              -0.103239 0.138431 -0.746
                                            0.458
## bdrms
              0.033839 0.022098 1.531
                                            0.129
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.1481 on 83 degrees of freedom
## Multiple R-squared: 0.7728, Adjusted R-squared: 0.7619
## F-statistic: 70.58 on 4 and 83 DF, p-value: < 2.2e-16
modelo2 = lm(lprice ~ llotsize + lsqrft + bdrms)
summary(modelo2)
##
## lm(formula = lprice ~ llotsize + lsqrft + bdrms)
##
## Residuals:
##
       Min
                 1Q
                    Median
                                  30
                                          Max
## -0.68422 -0.09178 -0.01584 0.11213 0.66899
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.29704 0.65128 -1.992 0.0497 *
                                 4.388 3.31e-05 ***
## llotsize
             0.16797
                         0.03828
## lsqrft
               0.70023
                         0.09287
                                   7.540 5.01e-11 ***
              0.03696
                         0.02753
## bdrms
                                 1.342 0.1831
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
##
## Residual standard error: 0.1846 on 84 degrees of freedom
## Multiple R-squared: 0.643, Adjusted R-squared: 0.6302
## F-statistic: 50.42 on 3 and 84 DF, p-value: < 2.2e-16
modelo3 = lm(lprice ~ bdrms)
summary(modelo3)
##
## Call:
## lm(formula = lprice ~ bdrms)
## Residuals:
##
                 1Q
                      Median
                                           Max
       Min
                                   3Q
## -0.99586 -0.17202 -0.00319 0.14974 0.71355
##
## Coefficients:
##
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 5.03649
                          0.12635 39.862 < 2e-16 ***
                                    4.851 5.43e-06 ***
## bdrms
               0.16723
                          0.03447
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.2706 on 86 degrees of freedom
## Multiple R-squared: 0.2148, Adjusted R-squared: 0.2057
## F-statistic: 23.53 on 1 and 86 DF, p-value: 5.426e-06
```

Predicción

• Forma 1 de predicción:

```
tamano_casa=8000
cuartos=4
tamano_lote=2100
coef(modelo2)
## (Intercept)
                   llotsize
                                  lsqrft
                                                bdrms
## -1.29704057 0.16796682 0.70023213 0.03695833
valores=c(1,log(tamano_lote),log(tamano_casa),cuartos)
## [1] 1.000000 7.649693 8.987197 4.000000
sum(valores*coef(modelo2))
## [1] 6.428811
exp(sum(valores*coef(modelo2)))
## [1] 619.4372
  • Forma 2 de predicción:
datos.nuevos=data.frame(llotsize=log(2100),lsqrft=log(8000),bdrms=4)
predict.lm(modelo2,newdata=datos.nuevos,se.fit=T)
## $fit
##
          1
## 6.428811
##
## $se.fit
## [1] 0.1479752
##
## $df
## [1] 84
##
## $residual.scale
## [1] 0.1846026
RLM: Cobb-Douglas
Abrir la tabla 7.3. Regresar las horas de trabajo (X_2) e Inversión de Capital (X_3) en el Valor Agregado (Y)
W = log(X2)
K = log(X3)
LY=log(Y)
reg.1=lm(LY~W+K)
summary(reg.1)
##
## Call:
## lm(formula = LY \sim W + K)
##
```

```
## Residuals:
##
       Min
                      Median
                  1Q
                                    3Q
                                            Max
  -0.15919 -0.02917 0.01179 0.04087
##
##
  Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
                            2.4491 -1.363 0.197845
## (Intercept) -3.3387
## W
                 1.4987
                            0.5397
                                     2.777 0.016750 *
## K
                 0.4899
                            0.1020
                                     4.801 0.000432 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0748 on 12 degrees of freedom
## Multiple R-squared: 0.8891, Adjusted R-squared: 0.8706
## F-statistic: 48.08 on 2 and 12 DF, p-value: 1.864e-06
aov(reg.1)
## Call:
##
      aov(formula = reg.1)
##
## Terms:
##
                           W
                                     K Residuals
## Sum of Squares 0.4090674 0.1289876 0.0671410
## Deg. of Freedom
                                     1
                                              12
                           1
##
## Residual standard error: 0.07480028
## Estimated effects may be unbalanced
```

• Las elasticidades de la producción respecto del trabajo y el capital fueron 1.49 y 0.48.

Ahora, si existen rendimientos constantes a escala (un cambio equi proporcional en la producción ante un cambio equiproporcional en los insumos), la teoría económica sugeriría que:

$$\beta_2 + \beta_3 = 1$$

```
LY K \leftarrow log(Y/X3)
W_K \leftarrow log(X2/X3)
reg.2 \leftarrow lm(LY_K~W_K)
summary(reg.2)
##
## Call:
## lm(formula = LY_K ~ W_K)
##
## Residuals:
                      1Q
                             Median
                                            ЗQ
   -0.164785 -0.041608 -0.008268 0.076112
##
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   1.7083
                               0.4159
                                         4.108 0.00124 **
## W_K
                   0.3870
                               0.0933
                                         4.147 0.00115 **
## ---
```

```
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.08388 on 13 degrees of freedom
## Multiple R-squared: 0.5695, Adjusted R-squared: 0.5364
## F-statistic: 17.2 on 1 and 13 DF, p-value: 0.001147
aov(reg.2)
## Call:
##
      aov(formula = reg.2)
##
## Terms:
                           W K Residuals
## Sum of Squares 0.12100534 0.09145854
## Deg. of Freedom
##
## Residual standard error: 0.08387653
## Estimated effects may be unbalanced
¿Se cumple la hipótesis nula?
SCRNR <- 0.0671410
SCRRes <- 0.09145854
numero_rest = 1
grad <- 12
est_F <- ((SCRRes-SCRNR)/numero_rest)/(SCRNR/grad)</pre>
{\tt est}_{\tt F}
## [1] 4.346234
valor.p <- 1-pf(est_F,1,12)</pre>
valor.p
## [1] 0.05912184
No se tiene suficiente evidencia para rechazar la hipótesis nula de que sea una economía de escala.
```

RLM: Dicotómicas

Abrir la tabla 9.1. ¿Hay alguna diferencia entre la ubicación del estado en los salarios?

```
## [1] "State" "Salary" "Spending" "D2" "D3"
```

- "State"
- "Salary" salario prmedio de los profesores
- "Spending" gasto promedio en cada estudiante
- "D2" 1 si el estado se encuentra en el norte este/centr de EEUU
- "D3" 1 si el estado se encuentra en el Sur de EEUU
- D1 podria ser lo que no es ni D2 ni D3 (0,0)

```
reg1 <- lm(Salary~D2+D3)
summary(reg1)
```

```
##
## Call:
## lm(formula = Salary ~ D2 + D3)
```

```
## Residuals:
##
      Min
              1Q Median
                             30
                                   Max
  -14161 -4566 -1638
                                 15625
##
                           4632
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                  48015
                               1857
                                     25.853
                                               <2e-16 ***
## D2
                   1524
                               2363
                                      0.645
                                                0.522
## D3
                  -1721
                               2467
                                    -0.698
                                                0.489
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 6696 on 48 degrees of freedom
                                     Adjusted R-squared:
## Multiple R-squared: 0.04397,
## F-statistic: 1.104 on 2 and 48 DF, p-value: 0.3399
Esto es un análisis de varianza, se analiza la var continua (salarios) con factores (categorias)
¿Hay alguna diferencia entre la ubicación del estado en los salarios?
reg2 <- lm(Salary~Spending+D2+D3)
summary(reg2)
##
## Call:
## lm(formula = Salary ~ Spending + D2 + D3)
##
## Residuals:
##
      Min
              1Q Median
                             3Q
                                   Max
## -10556 -2471
                    106
                           2066
                                 15084
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 28694.9180
                            3262.5213
                                        8.795 1.70e-11 ***
## Spending
                   2.3404
                               0.3592
                                        6.515 4.45e-08 ***
## D2
               -2954.1268
                           1862.5756
                                       -1.586
                                                 0.1194
## D3
               -3112.1948
                           1819.8725
                                       -1.710
                                                 0.0938 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4905 on 47 degrees of freedom
## Multiple R-squared: 0.4977, Adjusted R-squared: 0.4656
## F-statistic: 15.52 on 3 and 47 DF, p-value: 3.762e-07
```

- Esto es un análisis de la varianza con covariadas (el covariado es el gasto por estudiante).
- Se quiere mostrar que en los estados del sur se gana menos que los otros:

$$H_0: \beta_3 >= 0$$

 $H_a: \beta_3 < 0$

Diferencias en medias, enfoque RLM

##

Abrir los datos wage1.xls. Correr los modelos. Se desea saber si el género tiene relación con el salario y en qué medida.

```
library(XLConnect)
wk = loadWorkbook("wage1.xls")
salarios = readWorksheet(wk, sheet="WAGE1",header=FALSE)
names(salarios) <- c("wage", "educ", "exper", "tenure", "nonwhite", "female", "married",</pre>
                    "numdep", "smsa", "northcen", "south", "west", "construc", "ndurman",
                    "trcommpu", "trade", "services", "profserv", "profocc", "clerocc",
                    "servocc", "lwage", "expersq", "tenursq")
attach(salarios)
reg3 <- lm(wage~female)
summary(reg3)
##
## Call:
## lm(formula = wage ~ female)
## Residuals:
      Min
               1Q Median
                               3Q
## -5.5995 -1.8495 -0.9877 1.4260 17.8805
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
                          0.2100 33.806 < 2e-16 ***
## (Intercept) 7.0995
                           0.3034 -8.279 1.04e-15 ***
## female
               -2.5118
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 3.476 on 524 degrees of freedom
## Multiple R-squared: 0.1157, Adjusted R-squared: 0.114
## F-statistic: 68.54 on 1 and 524 DF, p-value: 1.042e-15
reg4 <- lm(wage~female + educ+ exper + tenure)
summary(reg4)
##
## Call:
## lm(formula = wage ~ female + educ + exper + tenure)
##
## Residuals:
               1Q Median
      Min
                               30
## -7.7675 -1.8080 -0.4229 1.0467 14.0075
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -1.56794 0.72455 -2.164 0.0309 *
                          0.26483 -6.838 2.26e-11 ***
## female
             -1.81085
## educ
              0.57150
                          0.04934 11.584 < 2e-16 ***
                                   2.195 0.0286 *
              0.02540
                          0.01157
## exper
              0.14101
                          0.02116
                                   6.663 6.83e-11 ***
## tenure
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.958 on 521 degrees of freedom
## Multiple R-squared: 0.3635, Adjusted R-squared: 0.3587
```

```
## F-statistic: 74.4 on 4 and 521 DF, p-value: < 2.2e-16
```

- La hipotesis es que saber si el coeficiente de female es menor a cero
- Se nota que es menor,
- Tomando en cuenta, educación experiencia y edad, en promedio a la mujer le pagan 1.81 menos

RLM: Educación con insumos

Abrir los datos gpa1.xls. Correr los modelos.

-0.7901 -0.2622 -0.0107 0.2334 0.7570

• ¿Afecta el promedio el tener o no una computadora?

```
library(XLConnect)
wk <- loadWorkbook("GPA1.xls")</pre>
datosgpa <- readWorksheet(wk, sheet="GPA1",header=FALSE)</pre>
#age
           soph
                     junior
                                senior
                                          senior5
                                                    male
                                                               campus
                               hsGPA
                                         ACT
#business engineer
                    colGPA
                                                    job19
                                                              job20
                                                                        drive
          walk
                               PC
#bike
                    voluntr
                                         greek
                                                    car
                                                              siblings
                                                                        bgfriend
#clubs
          skipped
                    alcohol
                               qradMI
                                         fathcoll
                                                   mothcoll
names(datosgpa) <- c("age",</pre>
                              "soph",
                                       "junior",
                                                    "senior",
                                                                  "senior5",
                                                                              "male", "campus",
attach(datosgpa)
reg4 <- lm(colGPA ~ PC )
summary(reg4)
##
## Call:
## lm(formula = colGPA ~ PC)
## Residuals:
                       Median
        Min
                  1Q
                                     3Q
## -0.95893 -0.25893 0.01059 0.31059 0.84107
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.98941
                           0.03950
                                     75.678
                                              <2e-16 ***
## PC
                0.16952
                           0.06268
                                      2.704
                                              0.0077 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3642 on 139 degrees of freedom
## Multiple R-squared: 0.04999,
                                     Adjusted R-squared: 0.04315
## F-statistic: 7.314 on 1 and 139 DF, p-value: 0.007697
reg5 <- lm(colGPA~ PC + hsGPA + ACT)
summary(reg5)
##
## lm(formula = colGPA ~ PC + hsGPA + ACT)
##
## Residuals:
##
       Min
                1Q Median
                                 30
                                        Max
```

"busine

```
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                      3.793 0.000223 ***
## (Intercept) 1.263520
                          0.333126
## PC
               0.157309
                          0.057287
                                      2.746 0.006844 **
               0.447242
                          0.093647
                                      4.776 4.54e-06 ***
## hsGPA
## ACT
               0.008659
                          0.010534
                                      0.822 0.412513
## ---
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.3325 on 137 degrees of freedom
## Multiple R-squared: 0.2194, Adjusted R-squared: 0.2023
## F-statistic: 12.83 on 3 and 137 DF, p-value: 1.932e-07
```

RLM: Cambio estructural

Abrir los datos 8.9. Veamos las variables gráficamente:

```
## [1] "YEAR" "SAVINGS" "INCOME"

par(mfrow = c(1,2))
plot(INCOME,SAVINGS,main="Ahorro VS Ingresos")
plot(YEAR,SAVINGS,main="Ahorro VS Tiempo",t="l")
abline(v=1981,col = "red")
```

Ahorro VS Ingresos

Ahorro VS Tiempo

¿Hubo algún cambio en la relación entre ingreso y ahorro en el 80?

• Hay varias formas de hacer la prueba, la mas facil es mediante variables dicotómicas

```
ajuste_chow <- lm(SAVINGS~INCOME)</pre>
summary(ajuste_chow)
##
## Call:
## lm(formula = SAVINGS ~ INCOME)
##
## Residuals:
##
                               3Q
      Min
               1Q Median
                                      Max
## -62.236 -21.208 -9.271 18.726 67.399
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 62.422671 12.760749 4.892 5.47e-05 ***
## INCOME
               0.037679
                         0.004237
                                     8.894 4.61e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 31.12 on 24 degrees of freedom
## Multiple R-squared: 0.7672, Adjusted R-squared: 0.7575
## F-statistic: 79.1 on 1 and 24 DF, p-value: 4.607e-09
cambio <- (YEAR>1981)*1
ajuste_chow <- lm(SAVINGS~INCOME+cambio)</pre>
summary(ajuste_chow)
##
## Call:
## lm(formula = SAVINGS ~ INCOME + cambio)
## Residuals:
##
      Min
               1Q Median
                                3Q
                                      Max
## -53.053 -20.645 -4.828 15.793 69.159
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
## (Intercept) 71.705871 13.545668 5.294 2.26e-05 ***
## INCOME
               0.026468
                          0.007925
                                    3.340 0.00285 **
## cambio
              37.833470 22.905072
                                    1.652 0.11217
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 30.06 on 23 degrees of freedom
## Multiple R-squared: 0.7919, Adjusted R-squared: 0.7738
## F-statistic: 43.76 on 2 and 23 DF, p-value: 1.446e-08
Veamos el modelo en términos de interacciones y la matriz de diseño:
ajuste chow1=lm(SAVINGS~INCOME+cambio+INCOME*cambio, x = TRUE)
summary(ajuste chow1)
##
## Call:
## lm(formula = SAVINGS ~ INCOME + cambio + INCOME * cambio, x = TRUE)
##
```

```
## Residuals:
##
       Min
                1Q Median
                                30
                                       Max
## -38.729 -14.777 -1.398 11.689
                                   50.535
##
## Coefficients:
##
                  Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                   1.01612
                             20.16483
                                        0.050 0.960266
                                        5.541 1.44e-05 ***
## INCOME
                   0.08033
                              0.01450
## cambio
                 152.47855
                             33.08237
                                        4.609 0.000136 ***
## INCOME:cambio -0.06547
                            0.01598 -4.096 0.000477 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 23.15 on 22 degrees of freedom
## Multiple R-squared: 0.8819, Adjusted R-squared: 0.8658
## F-statistic: 54.78 on 3 and 22 DF, p-value: 2.268e-10
ajuste_chow1$x
      (Intercept) INCOME cambio INCOME:cambio
##
## 1
                1 727.1
                              0
## 2
                1 790.2
                                          0.0
                              0
## 3
                1 855.3
                              0
                                          0.0
## 4
                1 965.0
                              0
                                          0.0
## 5
                1 1054.2
                                          0.0
                              0
## 6
                1 1159.2
                              0
                                          0.0
## 7
               1 1273.0
                              0
                                          0.0
## 8
               1 1401.4
                              0
                                          0.0
## 9
               1 1580.1
                              0
                                          0.0
## 10
                1 1769.5
                              0
                                          0.0
## 11
                1 1973.3
                              0
                                          0.0
## 12
               1 2200.2
                              0
                                          0.0
## 13
               1 2347.3
                                       2347.3
                              1
## 14
               1 2522.4
                              1
                                       2522.4
               1 2810.0
## 15
                              1
                                       2810.0
## 16
               1 3002.0
                                       3002.0
                              1
               1 3187.6
## 17
                                       3187.6
                              1
## 18
                1 3363.1
                              1
                                       3363.1
## 19
               1 3640.8
                              1
                                       3640.8
## 20
               1 3894.5
                                       3894.5
                              1
```

4166.8

4343.7

4613.7

4790.2

5021.7

5320.8

attr(,"assign") ## [1] 0 1 2 3

1 4166.8

1 4343.7

1 4613.7

1 4790.2

1 5021.7

1 5320.8

1

1

1

1

1

1

21

22

23

24

25

26