456/1

MATHEMATICS

PAPER 1

JULY/AUGUST.2023

2 ½ HOURS

Uganda Certificate of Education

SHAPTA JOINT ASSESSMENT BOARD 2023

MATHEMATICS

Paper 1

2 Hours 30 Minutes

INSTRUCTIONS TO CANDIDATES:

- ➤ Attempt **ALL** the questions in Section **A** and any **FIVE** questions from Section **B**.
- ➤ All the necessary calculations must be done in the answer sheets provided. No paper for rough work is required.
- ➤ Silent non programmable calculators and mathematical tables with a list of formulae may be used.

SECTION A (40 MARKS)

- 1. Factorise $x^2 y^2$ hence find the value of $7.25^2 2.75^2$ without using tables or calculator.
- 2. Determine the solution set of the inequality $x^2 5x 14 < 0$.
- 3. Given that $\sin \theta = 0.8$ and that $90^{\circ} < \theta < 270^{\circ}$. Determine the value of $2 \cos \theta \tan \theta$.
- 4. In a class of 56 students, the average mark of 30 boys is 68 while that of girls is 72. Find the average mark of the whole class.
- 5. Find the coordinates of the centre of enlargement given that point A(7, 1) is mapped onto A'(-2, -2) by an enlargement of scale factor -2.
- 6. Make *P* the subject of the formula $M = 2n \sqrt{\frac{P}{P-4}}$.
- 7. The representative fraction of a map is $\frac{1}{400,000}$. Find the actual area of a swamp (in km^2) which is represented by 5 cm^2 on the map.
- 8. Under a transformation whose matrix is $\begin{pmatrix} x-1 & 2 \\ -x & 3 \end{pmatrix}$, a figure whose area is $5 \ cm^2$ is mapped onto a figure of area $60 \ cm^2$. Find x.
- 9. The operations \square and Λ are defined as $A \square B = XA + B$ and $A \Lambda B = A^2 B$. Find the value of X if $-4 \Lambda (2 \square 3) = 9$.

10. The figure below is a net of a cone from a sector of radius 15 cm. Given that the arc $\overline{AA'}$ is of length 56.57 cm, find the height of the cone formed out of it.

Section B (60 marks)

- 11. (i). Draw the graph of y = (3x + 1)(2x 5) for $-1 \le x \le 4$.
 - (ii). Using the same axes, draw the graph of y = 8x 7.
 - (iii). Hence, find the values of x which satisfy the simultaneous equations in part (i) and (ii) above.
 - (iv). Write down the simplified quadratic equation satisfied by the values of x where the two graphs intersect.
- 12. (a). Express 19 < 3(x + 2) < 35 in the form $a \le x \le b$.
 - (b). To start a bus company, the Business association needed at least five "Taata"-buses and ten "Mini"-buses, and not morethan 30 vehicles were needed altogether. Suppose that a Taata-bus required 3 units of parking space; while a mini-bus required required 1 unit, and only 54 units of parking space were available at the proposed site. If *x* and *y* represent the number of Taata-buses and Mini-buses respectively;
 - (i). Write down four inequalities representing the given information.
 - (ii). Draw a graph showing the region representing the given inequalities in (i) above.
 - (iii). Find the maximum number of vehicles that can be bought.

- 13. (a). Given that $\begin{pmatrix} 3a & a-8 \\ -6 & a-2 \end{pmatrix}$ is a singular matrix; find the values of a.
 - (b). Find the values of x and y for which P'(9,2) is the image of P(x,y) under transformation matrix $\mathbf{M} = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$ followed by $\mathbf{N} = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$.
 - (c). Identify the matrix of transformation that maps the unit square OIKJ onto O(0,0), I'(2,7), K'(3,7), J'(1,0).
- 14. (a). Using a pair of campasses, and ruler only, construct a triangle PQR with base $\overline{PQ} = 3.7$ cm, $\overline{QR} = 4.4$ cm and $\angle PQR = 120^{\circ}$.
 - (b). on the same diagram,
 - (i). Locate the point S that makes PQRS a parallelogram.
 - (ii). Drop a perpendicular from point S to side \overline{PR} .
 - (iii). Use point D as the centre to draw a circle having \overline{PR} as its tangent. State the radius of this circle.
- 15. 40 students carried out an experiment and recorded the following measurements.
 - 4.7 2.7 2.3 4.6 3.7 2.8 2.9 3.6 4.9 3.9 3.4 4.5 4.2 3.5 1.7 1.1 2.0 3.7 3.8 3.3 3.8 3.1 3.6 1.8 1.4 2.1 2.8 3.3 3.1 1.6 2.6 4.0 3.2 4.3 3.5 2.4 4.4 4.1 2.9 3.2
 - (a). Draw a frequency distribution table starting with 1.0 1.4.
 - (b). Hence state the:
 - (i). class interval,
 - (ii). modal class.
 - (c). Calculate the mean and median of the data.

- 16. (a). A bag contains 3 green and 2 red balls. Two balls are randomly selected from the bag without replacement. Find the probability that:
 - (i). Both are of same color.
 - (ii). The second ball is red.
 - (iii). They are of different colors.
 - (b). A regular octahedron, whose faces are numbered 1 to 8 is thrown together with a coin. Show the possible outcomes in a table. Find the probability of getting;
 - (i). "T" with prime number,
 - (ii). "H" and a number less than 4.
- 17. (a). Expand and simplify: $(x + 3)(x^2 x)$.
 - (b). Find what must be added to $\left(x^2 \frac{3}{4}x\right)$ to make it a perfect square.
 - (c). (i). Factorise: $(x^2 xy + 3x 3y) = 0$.
 - (ii). Hence solve $(x^2 xy + 3x 3y) = 0$ when y = 2.