### **SBML Model Report**

# Model name: "Chan2004\_TCell\_receptor\_activation"



May 6, 2016

#### 1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Harish Dharuri<sup>1</sup> at June 22<sup>nd</sup> 2007 at 1:48 a. m. and last time modified at April eighth 2016 at 3:36 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

| Element           | Quantity | Element              | Quantity |
|-------------------|----------|----------------------|----------|
| compartment types | 0        | compartments         | 1        |
| species types     | 0        | species              | 5        |
| events            | 2        | constraints          | 0        |
| reactions         | 10       | function definitions | 0        |
| global parameters | 11       | unit definitions     | 4        |
| rules             | 1        | initial assignments  | 0        |

#### **Model Notes**

The model reproduces Fig 3a of the paper. Please note that the authors mention that they used a value of 2 for n, n being the power in the positive feedback function for kinase autocatalysis, however the model here has n=1.95 because this results in a simulation that is identical to Fig 3a. The model was successfully tested on MathSBML.

 $<sup>^{1}</sup> California\ Institute\ of\ Technology, {\tt hdharuri@cds.caltech.edu}$ 

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

#### 2 Unit Definitions

This is an overview of eight unit definitions of which four are predefined by SBML and not mentioned in the model.

#### 2.1 Unit substance

**Definition** item

#### 2.2 Unit items\_per\_time

Name items\_per\_time

**Definition** item  $\cdot$  s<sup>-1</sup>

#### 2.3 Unit sec\_inv

Name sec\_inv

**Definition**  $s^{-1}$ 

#### 2.4 Unit sec\_inv\_item\_inv

Name per\_sec\_per\_item

**Definition** item $^{-1} \cdot s^{-1}$ 

#### 2.5 Unit volume

**Notes** Litre is the predefined SBML unit for volume.

**Definition** 1

#### 2.6 Unit area

**Notes** Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

**Definition** m<sup>2</sup>

#### 2.7 Unit length

**Notes** Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

**Definition** m

#### 2.8 Unit time

Notes Second is the predefined SBML unit for time.

**Definition** s

## 3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

| Id          | Name | SBO | Spatial Dimensions | Size | Unit  | Constant | Outside |
|-------------|------|-----|--------------------|------|-------|----------|---------|
| compartment | cell |     | 3                  | 1    | litre | Ø        |         |

#### 3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name cell

# 4 Species

This model contains five species. Section 9 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

| Id                        | Name                 | Compartment | Derived Unit | Constant | Boundary<br>Condi-<br>tion |
|---------------------------|----------------------|-------------|--------------|----------|----------------------------|
| lck_inactive              | Inactive lck         | compartment | item         |          |                            |
| lck_active                | Active lck           | compartment | item         |          |                            |
| phosphatase-<br>_inactive | Inactive phosphatase | compartment | item         |          |                            |
| phosphatase-<br>_active   | Active phosphatase   | compartment | item         |          |                            |
| $lck_total$               | Total kinase         | compartment | item         |          |                            |

#### **5 Parameters**

This model contains eleven global parameters.

Table 4: Properties of each parameter.

| Id       | Name | SBO | Value | Unit                         | Constant     |
|----------|------|-----|-------|------------------------------|--------------|
| n1       |      |     | 1.00  | $item^{-1} \cdot s^{-1}$     | $\checkmark$ |
| k1       |      |     | 0.01  | $s^{-1}$                     |              |
| m1       |      |     | 1.00  |                              |              |
| d0       |      |     | 0.15  | $s^{-1}$                     |              |
| d1       |      |     | 0.15  | $s^{-1}$                     |              |
| k2       |      |     | 0.01  | $s^{-1}$                     |              |
| m2       |      |     | 1.00  | $item^{-1} \cdot s^{-1}$     |              |
| n2       |      |     | 0.02  | $s^{-1}$                     | $\square$    |
| d2       |      |     | 0.00  | $s^{-1}$                     | $\square$    |
| n        |      |     | 1.95  | dimensionless                |              |
| $r_{-}l$ |      |     | 0.00  | item $\cdot$ s <sup>-1</sup> |              |

#### 6 Rule

This is an overview of one rule.

#### 6.1 Rule lck\_total

Rule lck\_total is an assignment rule for species lck\_total:

$$[lck\_total] = lck\_inactive + lck\_active$$
 (1)

**Derived unit** item

#### 7 Events

This is an overview of two events. Each event is initiated whenever its trigger condition switches from false to true. A delay function postpones the effects of an event to a later time point. At the time of execution, an event can assign values to species, parameters or compartments if these are not set to constant.

#### **7.1 Event** event\_0000001

**Name** Setting r(1) to 1

**Trigger condition** 

$$t \ge 10 \tag{2}$$

Assignment

r l = 1 (3)

**7.2 Event** event\_0000002

Name Resetting r(l) to 0

**Trigger condition** 

 $t \ge 24 \tag{4}$ 

Assignment

 $\mathbf{r} \mathbf{l} = 0 \tag{5}$ 

## 8 Reactions

This model contains ten reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

| Nº | Id  | Name                                  | Reaction Equation                                      | SBO |
|----|-----|---------------------------------------|--------------------------------------------------------|-----|
| 1  | v1  | Kinase recruitment to T-cell receptor | $\emptyset \longrightarrow lck\_inactive$              |     |
| 2  | v2  | Kinase inactivation                   | lck_active phosphatase_active lck_inactive             |     |
| 3  | v3  | Basal kinase activation               | lck_inactive —→ lck_active                             |     |
| 4  | v4  | Catalytic kinase activation           | lck_inactive → lck_active                              |     |
| 5  | v5  | Inactive kinase diffusion             | lck_inactive $\longrightarrow \emptyset$               |     |
| 6  | v6  | Active kinase diffusion               | $lck\_active \longrightarrow \emptyset$                |     |
| 7  | v7  | Basal phosphatase activation          | phosphatase_inactive — phosphatase_active              |     |
| 8  | v8  | Catalyzed phosphatase activation      | phosphatase_inactive   lck_active   phosphatase_active | 2   |
| 9  | v9  | Phosphatase inactivation              | phosphatase_active — phosphatase_inactive              |     |
| 10 | v10 | Active phosphatase diffusion          | phosphatase_active $\longrightarrow \emptyset$         |     |

#### 8.1 Reaction v1

This is an irreversible reaction of no reactant forming one product.

Name Kinase recruitment to T-cell receptor

#### **Reaction equation**

$$\emptyset \longrightarrow lck\_inactive$$
 (6)

#### **Product**

Table 6: Properties of each product.

| Tuble of Troperties of each product. |              |     |  |  |
|--------------------------------------|--------------|-----|--|--|
| Id                                   | Name         | SBO |  |  |
| $lck_{-}$ inactive                   | Inactive lck |     |  |  |

#### **Kinetic Law**

Derived unit item  $\cdot$  s<sup>-1</sup>

$$v_1 = r \bot \tag{7}$$

#### 8.2 Reaction v2

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Kinase inactivation

#### **Reaction equation**

#### Reactant

Table 7: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| lck_active | Active lck |     |

#### **Modifier**

Table 8: Properties of each modifier.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| phosphatase_active | Active phosphatase |     |

#### **Product**

Table 9: Properties of each product.

|                    | 1            |     |
|--------------------|--------------|-----|
| Id                 | Name         | SBO |
| $lck_{-}$ inactive | Inactive lck |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot item$ 

$$v_2 = n1 \cdot lck\_active \cdot phosphatase\_active$$
 (9)

#### 8.3 Reaction v3

This is an irreversible reaction of one reactant forming one product.

Name Basal kinase activation

#### **Reaction equation**

$$lck\_inactive \longrightarrow lck\_active$$
 (10)

#### Reactant

Table 10: Properties of each reactant.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| lck_inactive | Inactive lck |     |

#### **Product**

Table 11: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| lck_active | Active lck |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot item$ 

$$v_3 = k1 \cdot lck\_inactive$$
 (11)

#### 8.4 Reaction v4

This is an irreversible reaction of one reactant forming one product.

Name Catalytic kinase activation

#### **Reaction equation**

$$lck\_inactive \longrightarrow lck\_active$$
 (12)

#### Reactant

Table 12: Properties of each reactant.

| Id              | Name         | SBO |
|-----------------|--------------|-----|
| $lck\_inactive$ | Inactive lck |     |

#### **Product**

Table 13: Properties of each product.

| Id         | Name       | SBO |
|------------|------------|-----|
| lck_active | Active lck |     |

#### **Kinetic Law**

Derived unit contains undeclared units

$$v_4 = m1 \cdot lck\_active^n \cdot lck\_inactive$$
 (13)

#### 8.5 Reaction v5

This is an irreversible reaction of one reactant forming no product.

Name Inactive kinase diffusion

#### **Reaction equation**

$$lck\_inactive \longrightarrow \emptyset$$
 (14)

#### Reactant

Table 14: Properties of each reactant.

| Id           | Name         | SBO |
|--------------|--------------|-----|
| lck_inactive | Inactive lck |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot item$ 

$$v_5 = d0 \cdot lck\_inactive$$
 (15)

#### 8.6 Reaction v6

This is an irreversible reaction of one reactant forming no product.

Name Active kinase diffusion

#### **Reaction equation**

$$lck\_active \longrightarrow \emptyset$$
 (16)

#### Reactant

Table 15: Properties of each reactant.

| Id         | Name       | SBO |
|------------|------------|-----|
| lck_active | Active lck |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot item$ 

$$v_6 = d1 \cdot lck\_active$$
 (17)

#### 8.7 Reaction v7

This is an irreversible reaction of one reactant forming one product.

Name Basal phosphatase activation

#### **Reaction equation**

#### Reactant

Table 16: Properties of each reactant.

| Id                   | Name                 | SBO |
|----------------------|----------------------|-----|
| phosphatase_inactive | Inactive phosphatase |     |

#### **Product**

Table 17: Properties of each product.

| Tuble 17.11 operates of each product. |                    |     |
|---------------------------------------|--------------------|-----|
| Id                                    | Name               | SBO |
| phosphatase_active                    | Active phosphatase |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot item$ 

$$v_7 = k2 \cdot phosphatase_inactive$$
 (19)

#### 8.8 Reaction v8

This is an irreversible reaction of one reactant forming one product influenced by one modifier.

Name Catalyzed phosphatase activation

#### **Reaction equation**

$$phosphatase\_inactive \xrightarrow{lck\_active} phosphatase\_active \qquad (20)$$

#### Reactant

Table 18: Properties of each reactant.

| Table 10. Froperties of each reactain. |                      |     |
|----------------------------------------|----------------------|-----|
| Id                                     | Name                 | SBO |
| phosphatase_inactive                   | Inactive phosphatase |     |

Produced by SBML2LATEX

#### **Modifier**

Table 19: Properties of each modifier.

| Id         | Name       | SBO |
|------------|------------|-----|
| lck_active | Active lck |     |

#### **Product**

Table 20: Properties of each product.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| phosphatase_active | Active phosphatase |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot item$ 

$$v_8 = \text{m2} \cdot \text{lck\_active} \cdot \text{phosphatase\_inactive}$$
 (21)

#### 8.9 Reaction v9

This is an irreversible reaction of one reactant forming one product.

Name Phosphatase inactivation

#### **Reaction equation**

#### Reactant

Table 21: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| phosphatase_active | Active phosphatase |     |

#### **Product**

Table 22: Properties of each product.

|                      | 1                    |     |
|----------------------|----------------------|-----|
| Id                   | Name                 | SBO |
| phosphatase_inactive | Inactive phosphatase |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot item$ 

$$v_9 = n2 \cdot phosphatase\_active$$
 (23)

#### 8.10 Reaction v10

This is an irreversible reaction of one reactant forming no product.

Name Active phosphatase diffusion

#### **Reaction equation**

phosphatase\_active 
$$\longrightarrow \emptyset$$
 (24)

#### Reactant

Table 23: Properties of each reactant.

| Id                 | Name               | SBO |
|--------------------|--------------------|-----|
| phosphatase_active | Active phosphatase |     |

#### **Kinetic Law**

**Derived unit**  $s^{-1} \cdot item$ 

$$v_{10} = d2 \cdot phosphatase\_active$$
 (25)

# 9 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

#### 9.1 Species lck\_inactive

Name Inactive lck

**Initial amount** 0 item

This species takes part in five reactions (as a reactant in v3, v4, v5 and as a product in v1, v2).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{lck\_inactive} = v_1 + v_2 - v_3 - v_4 - v_5 \tag{26}$$

#### 9.2 Species lck\_active

Name Active lck

**Initial amount** 0 item

This species takes part in five reactions (as a reactant in v2, v6 and as a product in v3, v4 and as a modifier in v8).

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{lck\_active} = v_3 + v_4 - v_2 - v_6 \tag{27}$$

#### 9.3 Species phosphatase\_inactive

Name Inactive phosphatase

**Initial amount** 0.6 item

This species takes part in three reactions (as a reactant in v7, v8 and as a product in v9).

$$\frac{d}{dt} phosphatase\_inactive = v_9 - v_7 - v_8$$
 (28)

#### 9.4 Species phosphatase\_active

Name Active phosphatase

**Initial amount** 0.6 item

This species takes part in five reactions (as a reactant in v9, v10 and as a product in v7, v8 and as a modifier in v2).

$$\frac{d}{dt} \text{phosphatase\_active} = v_7 + v_8 - v_9 - v_{10}$$
 (29)

#### 9.5 Species lck\_total

Name Total kinase

**Initial amount** 0 item

Involved in rule lck\_total

One rule which determines this species' quantity.

SML2ATEX was developed by Andreas Dräger<sup>a</sup>, Hannes Planatscher<sup>a</sup>, Dieudonné M Wouamba<sup>a</sup>, Adrian Schröder<sup>a</sup>, Michael Hucka<sup>b</sup>, Lukas Endler<sup>c</sup>, Martin Golebiewski<sup>d</sup> and Andreas Zell<sup>a</sup>. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

<sup>&</sup>lt;sup>a</sup>Center for Bioinformatics Tübingen (ZBIT), Germany

<sup>&</sup>lt;sup>b</sup>California Institute of Technology, Beckman Institute BNMC, Pasadena, United States

<sup>&</sup>lt;sup>c</sup>European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

<sup>&</sup>lt;sup>d</sup>EML Research gGmbH, Heidelberg, Germany