Large Scale Representation Learning In-the-wild

Hadi Abdi Khojasteh

TELIGHT, Czech Republic hadi.abdikhojasteh@telight.eu

August 13th, 2022

Definition

Definition

Deep Learning: End-to-end approach

General Computer Vision

Deep Learning: End-to-end approach

General Computer Vision

Part-Based Models, Felzenszwalb et al (2010)

Repurpose

Visual Question Answering

. . .

Repurpose

Object Detection Semantic Segmentation Visual Question Answering

. . .

Expensive

Time-consuming

Prone to error

Why unsupervised/self-supervised learning?

- Nature dose not use supervised learning most of the time
- Taking advantage of huge unlabeled data
- Answer new questions

Learning how the world ticks

- Objective is to learn distribution that data comes from

Supervised: p(y|x)

Unsupervised: p(x)

- So long as our machine learning models "cheat" by relying only on surface statistical regularities

Self-supervised: pseudo labels

- Low cost
- More scalable
- Flexible

Recent Progress

Percentage of labeled data

Percentage of labeled data

Learn More:

Learning and Evaluating General Linguistic Intelligence, Yogatama et al Data-Efficient Image Recognition with Contrastive Predictive Coding, Olivier J. Hénaff et al, ICML

(Representation / Encoder / Inference) Networks

Size: Smaller or larger than x

Structure: Flat or interpretable

Type: Continuous or discrete

Shape: Fixed or variable

Disentangled or not

- Multi-layer perceptron
- ConvNet
- Transformer
- Recurrent neural net

(Generation / Generator / Decoder) Networks

- Multi-layer perceptron
- DeconvNet
- Transformer
- Recurrent neural net

Autoencoders

Learn More:

Auto-Encoding Variational Bayes, Kingma et al, ICLR (2014) Stochastic backpropagation and approximate inference in deep generative models, Rezende et al, ICML (2014)

Autoencoders: What are they for?

- Density estimation
- Dimensionality reduction
- Image generation
- Denoising
- Representation learning

Learn More:

Reducing the Dimensionality of Data with Neural Networks, Hinton et al, Science (2006)

Autoencoders

Discriminators / Contrastive Networks

Generative adversarial networks

Generative adversarial networks

Learn More:
A Style-Based Generator for GANs, Karras et al (2018)
Large Scale GAN Training for High Fidelity Natural Image Synthesis, Brock et al (2018)

BiGAN

Adversarial Feature Learning, Donahue, et al. ICLR (2017)

BigBiGAN

Generative Adversarial Networks: Colorization

Generative Adversarial Networks: Rotation Prediction

Representation Network

Generative Adversarial Networks: Rotation Prediction

Self-supervised learning

Contrastive learning

Contrastive learning

What data points are similar?

What data points are dissimilar?

Contrastive learning

What data points are similar?

What data points are dissimilar? ———— Random Selection

Contrastive learning

What data points are similar? ———— Multiple Views

How to obtain different views?

Learn More:Unsupervised Learning of Visual Representations by Solving Jigsaw Puzzles, Noroozi et al, ICCV (2017)

Learn More:A Simple Framework for Contrastive Learning of Visual Representations, Chen et al, ICML (2020)

Contrastive learning

Learn More:

August 13th, 2022

Vector-Quantized Image Modeling with Improved VQGAN

Stage 1: Image Quantization

Vector-Quantized Image Modeling with Improved VQGAN

Great Grey Owl Crock Pot Terrapin Lumbermill Komodo Dragon Scale Night Snake Strawberry Peacock **Grand Piano** Irish Terrier Guenon Monkey

Yerevan

* this photo was taken in Lindos on my last trip

https://github.com/hkhojasteh/PyData-Yerevan

