HW1 Regression Report 113024510 廖振宇

1. Executive Summary 摘要

- 以純 numpy 實作的五層前饋網路([d, 8, 8, 4, 1]) 成功預測建築暖氣負載(Heating Load)。
- 在能源效率資料集 (768 筆) 上,最佳模型於 **第 11,604 個 epoch** 取得 Validation RMS = 0.376,最終測試誤差為 Test RMS = 0.460、 MAE = 0.334。
- Permutation Importance 顯示 roof_area, wall_area, relative_compactness 為最關鍵特徵;僅保留單一或少數特徵時效能劇烈下降,證明多特徵整合的重要性。

2. Data & Preprocessing 資料與前處理

- **資料來源 Dataset**: HW1/datasets/2025_energy_efficiency_data.csv 。 隨機打散後切分為 Train 461 / Val 115 / Test 192 (60/15/25)。
- 特徵工程 Feature Engineering:
 - 。 六個連續欄位 (relative_compactness 等) 以訓練集均值與標準差進行 z-score 標準化。
 - 。 orientation (4 類) 與 glazing_area_distribution (6 類) 透過 one-hot encoding加入模型, 並維持固定欄位順序。
 - 。 目標變數 heating load 保留原始尺度。
- 資料檔案產出 Artifacts:
 - 。 artifacts/regression/training_history.csv:每個 epoch 的 Train/Val MSE、RMS。
 - 。 results/regression_summary.json: Train/Val/Test 的最終指標。

3. Model & Training Setup 模型與訓練設定

- 網路架構 Architecture: [input_dim, 8, 8, 4, 1] ,隱藏層採 ReLU、輸出層線性。權重以 Xavier Uniform 初始化。
- 超參數 Hyperparameters:

參數 Parameter	值 Value
Learning Rate	0.01
Epoch 上限	30,000
Mini-batch Size	32
Gradient Clip	±1.0 (element-wise)
Early Stopping Patience	5,000 (監控 Validation RMS)
Random Seed	29
Gradient Check	Central difference, epsilon=1e-5, 抽樣 10 個權重 + 各層第 1 個bias;最大相對誤差 < 1e-3

• 訓練流程 Highlights:

- 。 每個 epoch 重新打散 batch 順序 (seed + epoch)。
- 。 以完整 Train/Val 集計算 RMS 供早停監控。
- 。 儲存最佳驗證表現時的參數 (artifacts/regression/best_model.pkl)。

4. Learning Dynamics 學習過程

• 最佳驗證點 Best Epoch: 11,604

指標 Metric	Train	Val
MSE	0.0941	0.1414
RMS	0.3067	0.3760

• 學習曲線 Learning Curve:

- 。 初期 (≤100 epoch) RMS 急速下降,顯示神經網路快速捕捉主要模式。
- 。 之後平緩且有震盪,早停於 11.6k epoch 附近保留最佳驗證性能。
- 。 大量 epoch 後訓練 RMS 繼續下降但驗證 RMS 未再改善,顯示正規化不足但早停有效避免過度擬合。

5. Performance Evaluation 效能評估

• 整體指標 Overall Metrics:

Split	MSE	RMS	MAE
Train	0.0941	0.3067	0.2310
Val	0.1414	0.3760	0.2993
Test	0.2114	0.4598	0.3341

預測可視化 Prediction Visuals∶

o Train / Val / Test y_true vs y_pred :

Val Predictions vs Actual

。 Train/Test 預測與真值折線:

• 觀察 Observations:

- 。 訓練/驗證/測試的散點緊貼對角線,可以看出模型有很好的捕捉到主要趨勢。
- 。 序列圖顯示模型能捕捉趨勢,但在極值樣本 (高負載的情況下) 有明顯低估,這可能是由於資料 中高負載樣本較少,導致模型在這些區域的泛化能力較弱。
- 。 整體來說,模型在大部分樣本上表現良好,但在極端值上的表現仍有提升空間。

6. Feature Analysis 特徵分析

6.1 Permutation Importance

- 檔案: artifacts/regression/feature_importance.csv ; 視覺
 化: figures/regression feature importance.png °
- 理論概念:Permutation Importance 以「擾動後效能下降量」衡量特徵重要性。假設模型在驗證集上的評分函數為 score(X,y),當第 j 個特徵被隨機置換後,所得期望分數下降 $\Delta_j = score(X,y) score(X_{perm(j)},y)$,即為該特徵的貢獻度。由於本題使用 RMS 作為 score 的(分數越低越好),因此報告中的 $\Delta_{RMS} = RMS_{perm} RMS_{base}$;值愈大表示該特徵在維持原始關聯性時提供愈多資訊。 此方法不需重新訓練模型,能直接檢驗既有模型對特徵的依賴程度,也避免了梯度量測受尺度或分布影響的問題。
- 實驗方法:
 - 。 預先以早停訓練並保存最佳參數 (best model.pkl),評估時固定權重避免重新訓練。
 - 。 以驗證集作為評估基準,計算 baseline RMS_base=0.3760 。驗證集的使用可避免測試集資訊洩漏。
 - 。 先將特徵分組(G1 ~ G8),單一連續欄位為一組, one-hot 類別向量為一組;這在程式中透過 group mapping 實作,目的是避免多欄 one-hot 被拆散後重要度被稀釋。
 - 。 對某一組所有欄位逐欄打亂 (rng.permutation), 保持該欄邊際分布但破壞其與其他欄、目標的對應關係,再以原模型推論新的 RMS perm。
 - 。 $\Delta_{
 m RMS}=RMS_{
 m perm}-RMS_{
 m base}$ 作為該組的重要度,最後依 $\Delta_{
 m RMS}$ 降序排序並輸出 CSV 與長條圖。
- Top-6 重要度 (RMS 上升量):

Permutation Importance (Validation set)

Rank	Group	Features	ΔRMS
1	G4	roof_area	22.01
2	G3	wall_area	15.40
3	G1	relative_compactness	13.63
4	G5	overall_height	8.23
5	G2	surface_area	6.23
6	G7	orientation_* (4 dims)	5.63
7	G8	gad_* (6 dims)	3.20
8	G6	glazing_area	2.78

• 觀察 Observations:

- 。 面積相關特徵 (roof_area, wall_area, relative_compactness) 重要度最高,顯示建築物的尺寸與形狀是影響暖氣負載的主要因素。
- 。 overall_height 亦具顯著影響,可能因為高度影響熱量分布與流動。

- 。 orientation (窗戶朝向) 也有中等影響,符合直覺。
- 。 glazing_area (窗戶面積) 重要度最低,可能因為資料中窗戶面積變化較小,或其影響被其他面積特徵所掩蓋。
- 整體來看,特徵重要度排序基本上與直覺相符,驗證了模型在學習過程中捕捉到合理的物理關聯。

6.2 Feature Subset Evaluation

- 檔案: artifacts/regression/feature_subset_results.csv ;圖 片: figures/regression subset performance.png °
- 實驗方法 Experiment Setup:
 - 。 依照 Permutation Importance 排序, 從最重要特徵開始逐步加入 (Top-1, Top-3, Top-5), 其他特徵設為 0。
 - 。 每組特徵皆重新訓練模型,並以相同超參數與早停條件。
 - 。 最終比較Top-K、全特徵與移除 gad * (G8, 10 維) 的結果並以RMS進行排序。

Subset	Included Groups	#Features	Val RMS	Test RMS
Top-1	['G4']	1	3.9880	4.3813
Top-3	['G4','G3','G1']	3	2.8376	3.2808
Top-5	['G4','G3','G1','G5','G2']	5	2.8285	3.2618

Subset	Included Groups	#Features	Val RMS	Test RMS
All	所有群組 (16 特徵)	16	0.3760	0.4598
All-minus-G8	排除 gad_*	10	0.3837	0.6706

觀察 Observations:

- 。 僅使用頂尖特徵時 (Top-1~5) 誤差遠高於全特徵,顯示小型網路仍需多種特徵的輸入才能捕捉 複雜度。
- 。 移除 glazing_area_distribution (G8)造成測試 RMS 由 0.46 惡化至 0.67,說明窗戶分布雖未列入 Top-5,仍提供泛化所需訊息。

7. Appendix 附錄

主要檔案:

。 程式: project/src/regression_pipeline.py

。 設定: project/src/regression_pipeline.py::CONFIG

○ 模型權重: project/artifacts/regression/best_model.pkl

○ 指標: project/results/regression_summary.json

。 圖表: project/figures/regression_*.png

• 重現步驟 Reproducibility:

cd HW1/project
python src/regression_pipeline.py

會自動完成前處理、訓練、評估與特徵分析;若要重新產出報告圖表請確保 figures/ 、 artifacts/ 可寫入。