Introdução ao Cálculo Diferencial Integral para Ciência de Dados

Lista de exercícios I: Derivadas e Integrais

Wagner Hugo Bonat

2018-04-06

Exercícios para fixação, recomendo que usam o R e o wxMaxima para auxiliar e verificar suas respostas.

- 1. Calcule a derivada das seguintes funções:
- a) $f(x) = x^4$.
- b) $f(x) = x^3$.
- c) $f(x) = x^{-3}$.
- d) $f(x) = \frac{1}{x^5}$. e) $f(x) = \sqrt{x}$.
- f) $f(x) = \sqrt[3]{x}$.
- g) $f(x) = x^{1/3}$

- h) $f(x) = \frac{1}{x}$. i) $f(x) = \sqrt[8]{x}$. j) $f(x) = \frac{1}{x^2}$.
- 2. Determine a reta tangente ao gráfico de $f(x) = \frac{1}{x}$ no ponto de abscissa 2. Esboce o gráfico de f(x) e da reta tangente.
- 3. Determine a reta tangente ao gráfico de $f(x) = x^3$ nos pontos de abscissa -3 e 3. Esboce o gráfico de f(x) e da reta tangente.
- 4. Determine a equação da reta tangente ao gráfico de $f(x) = \exp x$ no ponto de abscissa 0. Esboce o gráfico de f(x) e da reta tangente.
- 5. Determine a reta tangente ao gráfico de $f(x) = \log x$ no ponto de abscissa 2. Esboce o gráfico de f(x) e da reta tangente.
- 6. Calcule a derivada das seguintes funções:
- a) $f(x) = 4x^3 + x^2$.
- b) $f(x) = 5x^4 + 4$.
- c) $f(x) = \frac{2x+3}{x^2+1}$. d) $f(x) = (3x^2+1) \exp^x$.
- e) $f(x) = \sqrt[3]{x}$.
- f) $f(x) = 5x^4 + 6x^3 + x^2 + 2$.
- 7. Calcule a derivada das seguintes funções usando a regra da cadeia.
- a) $f(x) = \exp 3x$.
- b) $f(x) = \sin x^2$.
- c) $f(x) = (3x^2 + 1)^3$.
- d) $f(x) = \log(x^2 + 3)$.
- e) $f(x) = x^2 \exp^{3x}$.
- f) $f(x) = \log(x^2 + 3x + 9)$.
- g) $f(x) = \sqrt{x + \exp^x}$.

8. Sejam y_i valores observados para $i=1,\ldots,n$. Considere a função perda absoluta dada por

$$f(\mu) = \sum_{i=1}^{n} |y_i - \mu|.$$

- a) Usando o R ou qualquer outro software conveniente, simule um conjunto de valores adequado para y_i .
- b) Esboce o gráfico da função perda para este conjunto de dados e diferente valores de μ .
- c) Encontre o valor de μ que miniza a função perda absoluta.
- d) Discuta quando a função perda absoluta pode ser mais conveniente do que a função perda quadrática.
- 9. Sejam y_i e x_i valores observados para $i=1,\ldots,n$. Considere o problema de ajustar uma reta relacionando y_i com x_i , usando a função perda absoluta

$$f(\beta_0, \beta_1) = \sum_{i=1}^{n} |y_i - (\beta_0 + \beta_1 x_i)|.$$

- a) Usando o R ou qualquer outro software conveniente, simule um conjunto de valores adequado para y_i fixado um vetor para x_i .
- b) Esboce o gráfico da função perda para este conjunto de dados e diferentes valores de β_0 e β_1 .
- c) Encontre o valor de β_0 e β_1 que miniza a função perda absoluta.
- d) Discuta quando a função perda absoluta pode ser mais conveniente do que a função perda quadrática.
- 10. Calcule as seguintes integrais indefinidas:
- a) $\int x^3 dx$.
- b) $\int \frac{1}{x^2} dx$.

- c) $\int \sqrt[3]{x^2} dx$. d) $\int \left(\frac{1}{x}\right) dx$. e) $\int \left(\frac{1}{x} + \sqrt{x}\right) dx$. f) $\int \exp^{\alpha x} dx$.
- g) $\int \exp^{2x} dx$.
- h) $\int 3dx$.
- i) $\int \exp^{-x} dx$.
- j) $\int (x+3\exp^x)dx$.
- 11. Calcule as seguintes integrais definidas:

- a) $\int_{1}^{2} x^{2} dx$. b) $\int_{-1}^{4} 4 dx$. c) $\int_{0}^{2} (x^{3} + 3x 1) dx$. d) $\int_{1}^{2} \frac{1}{x^{2}} dx$. e) $\int_{1}^{2} \left(\frac{1}{x} + \frac{1}{x^{3}}\right) dx$.