Distributed Computations MapReduce

adapted from Jeff Dean's slides

What we've learnt so far

- Basic distributed systems concepts
 - Consistency (sequential, eventual)
 - Fault tolerance (recoverability, availability)
- What are distributed systems good for?
 - Better fault tolerance
 - Better security?
 - Increased storage/serving capacity
 - Storage systems, email clusters
 - Parallel (distributed) computation (Today's topic)

Why distributed computations?

- How long to sort 1 TB on one computer?
 - One computer can read ~30MB from disk
 - Takes ~2 days!!
- Google indexes 20 billion+ web pages
 - 20 * 10^9 pages * 20KB/page = 400 TB
- Large Hadron Collider is expected to produce 15 PB every year!

Solution: use many nodes!

- Cluster computing
 - Hundreds or thousands of PCs connected by high speed LANs
- Grid computing
 - Hundreds of supercomputers connected by high speed net
- 1000 nodes potentially give 1000X speedup

Distributed computations are difficult to program

- Sending data to/from nodes
- Coordinating among nodes
- Recovering from node failure
- Optimizing for locality
- Debugging

Same for all problems

MapReduce

- A programming model for large-scale computations
 - Process large amounts of input, produce output
 - No side-effects or persistent state (unlike file system)
- MapReduce is implemented as a runtime library:
 - automatic parallelization
 - load balancing
 - locality optimization
 - handling of machine failures

MapReduce design

- Input data is partitioned into M splits
- Map: extract information on each split
 - Each Map produces R partitions
- Shuffle and sort
 - Bring M partitions to the same reducer
- Reduce: aggregate, summarize, filter or transform
- Output is in R result files

More specifically...

- Programmer specifies two methods:
 - $map(k, v) \rightarrow \langle k', v' \rangle^*$
 - reduce(k', $\langle v' \rangle^*$) $\rightarrow \langle k', v' \rangle^*$
- All v' with same k' are reduced together, in order.
- Usually also specify:
 - partition(k', total partitions) -> partition for k'
 - often a simple hash of the key
 - allows reduce operations for different k' to be parallelized

Example: Count word frequencies in web pages

- Input is files with one doc per record
- Map parses documents into words
 - key = document URL
 - value = document contents
- Output of map:

Example: word frequencies

Reduce: computes sum for a key

Output of reduce saved

Example: Pseudo-code

```
Map (String input key, String input value):
  //input key: document name
  //input value: document contents
  for each word w in input values:
    EmitIntermediate(w, "1");
Reduce (String key, Iterator
intermediate values):
  //key: a word, same for input and output
  //intermediate values: a list of counts
  int result = 0;
  for each v in intermediate values:
    result += ParseInt(v);
  Emit(AsString(result));
```

MapReduce is widely applicable

- Distributed grep
- Document clustering
- Web link graph reversal
- Detecting approx. duplicate web pages

•

MapReduce implementation

- Input data is partitioned into M splits
- Map: extract information on each split
 - Each Map produces R partitions
- Shuffle and sort
 - Bring M partitions to the same reducer
- Reduce: aggregate, summarize, filter or transform
- Output is in R result files

MapReduce scheduling

- One master, many workers
 - Input data split into M map tasks (e.g. 64 MB)
 - R reduce tasks
 - Tasks are assigned to workers dynamically
 - Often: *M*=200,000; *R*=4,000; workers=2,000

MapReduce scheduling

- Master assigns a map task to a free worker
 - Prefers "close-by" workers when assigning task
 - Worker reads task input (often from local disk!)
 - Worker produces R local files containing intermediate k/v pairs
- Master assigns a reduce task to a free worker
 - Worker reads intermediate k/v pairs from map workers
 - Worker sorts & applies user's Reduce op to produce the output

Parallel MapReduce

Input data

WordCount Internals

- Input data is split into M map jobs
- Each map job generates in R local partitions

WordCount Internals

Shuffle brings same partitions to same reducer

WordCount Internals

Reduce aggregates sorted key values pairs

The importance of partition function

- partition(k', total partitions) -> partition for k'
 - -e.g. hash(k') % R
- What is the partition function for sort?

Load Balance and Pipelining

- Fine granularity tasks: many more map tasks than machines
 - Minimizes time for fault recovery
 - Can pipeline shuffling with map execution

Process	Time>									
User Program	MapReduce()			wait						
Master	Assign tasks to worker machines									
Worker 1		Map 1	Мар 3							
Worker 2		Map 2								
Worker 3			Read 1.1	Read 1.3	J	Read 1.2	!	Redu	ice 1	
Worker 4			Read 2.1			Lead 2.2	Read	d 2.3	Redu	ce 2

Fault tolerance via re-execution

On worker failure:

- Re-execute completed and in-progress map tasks
- Re-execute in progress reduce tasks
- Task completion committed through master
 On master failure:
- State is checkpointed to GFS: new master recovers & continues

Avoid straggler using backup tasks

- Slow workers significantly lengthen completion time
 - Other jobs consuming resources on machine
 - Bad disks with soft errors transfer data very slowly
 - Weird things: processor caches disabled (!!)
 - An unusually large reduce partition?
- Solution: Near end of phase, spawn backup copies of tasks
 - Whichever one finishes first "wins"
- Effect: Dramatically shortens job completion time

MapReduce Sort Performance

- 1TB (100-byte record) data to be sorted
- 1700 machines
- M=15000 R=4000

MapReduce Sort Performance

