Math Booklet

Iago Mendes

Contents

1	Algebra	:
	1.1 Linear Algebra	
	1.1.1 Matrices	
2	Geometry	4
	2.1 Analytic Geometry	4
	2.1.1 Coordinate systems	4
3	Calculus	6
	3.1 Multivariable Calculus	
	3.1.1 Limits	6

Algebra

1.1 Linear Algebra

1.1.1 Matrices

• Notation

$$A = [a_{ij}]$$

 \bullet Matrix Addition

$$[a_{ij}] + [b_{ij}] = [a_{ij} + b_{ij}]$$

• Scalar multiplication

$$c[a_{ij}] = [ca_{ij}]$$

• Transpose

$$(aT)_{ij} = a_{ji}$$

• Matrix Multiplication

$$c_{ij} = (\text{ith row of A})(\text{jth column of B}) = \sum_{k=1}^{n} a_{ik} b_{kj}$$

Geometry

2.1 Analytic Geometry

2.1.1 Coordinate systems

- Cartesian coordinates (\mathbb{R}^2 and \mathbb{R}^3)
- (x,y) (x,y,z)

• Polar coordinates (\mathbb{R}^2)

 (r, θ)

- Typical restrictions

- $r \ge 0$ $0 \le \theta \le 2\pi$
- Polar/rectangular conversions

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \qquad \begin{cases} r^2 = x^2 + y^2 \\ \tan \theta = \frac{y}{x} \end{cases}$$

• Cylindrical coordinates (\mathbb{R}^3)

 (r, θ, z)

- Typical restrictions

$$r \ge 0$$
$$0 < \theta < 2\pi$$

- Cylindrical/rectangular conversions

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases} \qquad \begin{cases} r^2 = x^2 + y^2 \\ \tan \theta = \frac{y}{x} \\ z = z \end{cases}$$

• Spherical coordinates (\mathbb{R}^3)

$$(\rho, \phi, \theta)$$

- Typical restrictions

$$\rho \ge 0$$
$$0 \le \phi \le \pi$$
$$0 < \theta < 2\pi$$

- Spherical/cylindrical conversions

$$\begin{cases} r = \rho \sin \phi \\ \theta = \theta \\ z = \rho \cos \phi \end{cases} \qquad \begin{cases} \rho^2 = r^2 + z^2 \\ \tan \phi = \frac{r}{z} \\ \theta = \theta \end{cases}$$

- Spherical/rectangular conversions

$$\begin{cases} x = \rho \sin \phi \cos \theta \\ y = \rho \sin \phi \sin \theta \\ z = \rho \cos \phi \end{cases} \qquad \begin{cases} \rho^2 = x^2 + y^2 + z^2 \\ \tan \phi = \frac{\sqrt{x^2 + y^2}}{z} \\ \tan \theta = \frac{y}{x} \end{cases}$$

Calculus

Multivariable Calculus 3.1

3.1.1 Limits

$$\overrightarrow{f}:X\subseteq\mathbb{R}^n\to\mathbb{R}^m$$

$$\lim_{\overrightarrow{x} \to \overrightarrow{a}} \overrightarrow{f}(\overrightarrow{x}) = \overrightarrow{L}$$

• Rigorous definition

$$\text{if } \overrightarrow{x} \in X \text{ and } 0 < ||\overrightarrow{x} - \overrightarrow{a}|| \leq \delta \text{, then } \left| \left| \overrightarrow{f}(\overrightarrow{x}) - \overrightarrow{L} \right| \right| < \varepsilon$$

$$\delta > 0 \\ \varepsilon > 0$$

$$\varepsilon > 0$$