ECE124: Discussion

Discussion #11

Yeonsik Noh, PhD

* Implement the following Boolean function with a multiplexer.

$$F(A, B, C, D) = \pi (2, 3, 6, 7, 10, 12, 13, 14)$$

	In	out		_
Α	В	С	D	F F
0	0	0	0	
0	0	0	1	
0	0	1	0	۵
0	0	1	1	O
0	1	0	0	
0	1	0	1	1
0	1	1	0	0
0	1	1	1	6
1	0	0	0	I
1	0	0	1	1
1	0	1	0	0
1	0	1	1	
1	1	0	0	Q
1	1	0	1	O
1	1	1	0	0
1	1	1	1	

5.6 A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations.

$$A(t+1) = xy' + xB;$$
 $B(t+1) = xA + xB';$ $z = A$

(a) Draw the logic diagram of the circuit

5.6 A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations.

$$A(t+1) = xy' + xB;$$

$$B(t+1) = xA + xB';$$

$$z = A$$

(b) List the state table for the sequential circuit

Preser	Present state Inputs		A(t+1)		B(t+1)		Next state		output	
Α	В	х	у	xy'	хВ	хА	хВ'	Α	В	z
0	0	0	0	0	0			O		
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							
1	0	1	0					1		
1	0	1	1							
1	1	0	0							
1	1	0	1							
1	1	1	0					J		
1	1	1	1							

A(t+1) = xy'+xB ABxy' + ABxy 0010m2₀₁₁₀ 6 0110m6₀₁₁₁ 7 1010m1₉₁₁₀ 14 1110m1₄111 15 5.6 A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations.

$$A(t+1) = xy' + xB;$$

$$B(t+1) = xA + xB';$$

$$z = A$$

mealy

(c) Draw the corresponding state diagram

Preser	nt state	Inp	uts	A(t	+1)	B(t	:+1)	Next	state	output
Α	В	х	у	xy'	хВ	хА	хВ'	Α	В	Z
0	0	0	0							
0	0	0	1							
0	0	1	0							
0	0	1	1							
0	1	0	0							
0	1	0	1							
0	1	1	0							
0	1	1	1							
1	0	0	0							
1	0	0	1							
1	0	1	0							
1	0	1	1							
1	1	0	0							
1	1	0	1							
1	1	1	0							
1	1	1	1							

5.10 A sequential circuit has two JK flip-flops A and B, two inputs, x and y; and one output z. The flip-flop input equations and circuit equation are

$$\begin{split} J_A &= Bx + B'y', \qquad J_B = A'x \\ K_A &= B'xy', \qquad K_B = A + xy', \qquad Z = Ax'y' + Bx'y' \end{split}$$

(a) Draw the logic diagram of the circuit

5.10 A sequential circuit has two JK flip-flops A and B, two inputs, x and y; and one output z. The flip-flop input equations and circuit equation are

$$J_A = Bx + B'y', \qquad J_B = A'x$$

$$K_A = B'xy', \qquad K_B = A + xy', \qquad Z = Ax'y' + Bx'y'$$

(b) Tabulate the state table

Preser	nt state	Inp	uts	FF inputs			Next state		output	
Α	В	х	у	J _A	K _A	J _B	K _B	Α	В	z
					6			1		
)					
				•						
								-		
							1	1	1	
					/					
										•

5.10 A sequential circuit has two JK flip-flops A and B, two inputs, x and y; and one output z. The flip-flop input equations and circuit equation are

$$J_A = Bx + B'y',$$
 $J_B = A'x$
 $K_A = B'xy',$ $K_B = A + xy',$ $Z = Ax'y' + Bx'y'$

(c) Derive the state equations for A and B

$$Q(t+1) = JQ' + K'Q$$

$$A(t+1) = (Bx+B'y')A'+(B'xy')'A$$

 $A'Bx+A'B'y'+AB+Ax'+Ay$

$$B(t+1) = (A'x)B' + (A+xy')'B$$

(d) Draw the corresponding state diagram

5.16 Design a sequential circuit with two D flip-flops A and B, and on input x_in.

(b) When $x_{in} = 0$, the state of the circuit remains the same. When $x_{in} = 1$, the circuit goes through the state transitions from 00 to 11, to 01, to 10, back to 00, and repeat.

Current State		Input	Next	State
Α	В	х	Α	В
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		