Листок №Я1

Языки первого порядка

Определение. Сигнатура $\Sigma = (Cnst, F_n, Pr)$ — это тройка множеств: фиксированный набор констант, функциональных символов и предикатных символов. Она определяет язык первого порядка (элементарный язык) сигнатуры Σ . Синтаксис языка содержит определения правильно построенных выражений двух сортов — термов и формул. Термы делаются из переменных $Var = \{x_0, x_1, \ldots\}$ и функциональных констант. Формулы делаются подстановкой термов в предикаты, при попомщи связок \neg , \vee , \wedge , \rightarrow , \leftrightarrow и кванторов \forall , \exists .

Задача Я1.1. Сигнатура содержит двухместные =, \in , \bot . Констант нет. Носитель интерпретации M — все точки и прямые на плоскости. Предикатные символы интерпретируются равенством, принадлежностью (точка лежит на прямой) и перпендикулярностью (прямых). Выразить:

- 1. «x точка», «x прямая».
- 2. «Прямые x и y параллельны».
- 3. $\langle x, y, z \rangle$ вершины (невырожденного) треугольника».
- 4. «Высоты каждого треугольника пересекаются в одной точке».
- 5. «Точки x, y, z, t являются последовательными вершинами параллелограмма».
- 6. «Точка z делит отрезок x, y пополам».

Задача Я1.2(Язык арифметики). На множестве натуральных чисел заданы трехместные предикаты S(x,y,z) = «x+y=z», P(x,y,z) = «x · y = z». На языке первого порядка с предикатными символами S, P записать:

- 1. формулы с одной свободной переменной a, истинные тогда и только тогда, когда a=0, $a=1,\,a=2,\,a$ чётное число, a— нечётное число;
- 2. формулы с двумя свободными переменными a и b, истинные тогда и только тогда, когда $a=b,\ a\leqslant b,\ a$ делит b;
- 3. формулы с тремя свободными переменными a, b и c, истинные тогда и только тогда, когда a наименьшее общее кратное чисел b и c, a наибольший общий делитель чисел b и c.

Задача Я1.3. Доказать выразимость в стандартной интерпретации языка арифметики условия y = 2x.

Задача Я1.4(*Техника доказательства невыразимости*). Доказать, что если отношение не сохраняется при некотором автоморфизме модели, то оно невыразимо^{*}.

Задача Я1.5. Выразимы ли следующие отношения?

- 1. a = b, b = a + 1, c = a + b B $(\mathbb{Z}, <)$.
- 2. a = 0, a = b, $a < b \ B \ (\mathbb{Z}, a + b = c)$.
- 3. a = b, a = 1, a = 3 в ($\mathbb{N}, a = b$), где $a = b \Leftrightarrow \exists k \quad a = k \cdot b$.
- 4. a = b, |a-b| = 2 в $(\mathbb{R}, |a-b| = 1)$.
- 5. a < b, a = 0, a = 1, a = 2 в $(\mathbb{N}, a + b = c)$.
- 6. «a простое число» в ($\mathbb{N}, a = b$).

Задача Я1.6. Выразимы ли следующие отношения?

- (a) a = 1, a = 2 в $(\mathbb{Z}, a + b = c)$.
- (r) a = b + 1 B $(\mathbb{Z}, |a-b| = 1)$.

(б) a = 0 в $(\mathbb{Z}, a = b + 1)$.

- (д) |a-b|=3 в $(\mathbb{R}, |a-b|=1)$.
- **(B)** a = b + 1 B $(\mathbb{Z}, a = b + 2)$.

Определение Семантика. Выбираем множество $M \neq \emptyset$ (носитель) и интерпретацию I

Листок №Я1 20.10.2019

сигнатуры Σ в M:

$$c \in Cnst \mapsto \bar{c} \in M, f^n \in Fn \mapsto \bar{f} \colon M^n \to M, P^n \in Pr \mapsto \bar{P} \subseteq M^n.$$

[†] Каждая замкнутая (т.е. без свободных переменных) формула становится обозначением для некоторого высказывания про конкретные (заданные интерпретацией) элементы, операции и отношения на множестве M. Оно оказывается истинным или ложным. Тем самым определяется истинность/ложность формулы в данной интерпретации (обозначение: $I \models \varphi$).

Определение. Замкнутая формула называется *выполнимой*, если существует интерпретация, в которой она истинна. *Общезначимость* означает истинность во всех интерпретациях.

Задача Я1.7. Исследовать на выполнимость и общезначимость:

- 1. $\exists x \ P(x,x);$
- 2. $(\forall x \ P(x) \lor Q(x)) \to (\forall x \ P(x)) \lor (\forall x \ Q(x));$
- 3. $(\forall x \ P(x) \lor Q(x)) \to (\forall x \ P(x)) \lor (\exists x \ Q(x));$
- 4. $(\exists x \ \forall y \ \exists z \ P(x,y,z)) \rightarrow (\forall x \ \exists y \ P(x,y,y));$
- 5. $(\exists y \ \forall x \ P(x,y,y)) \rightarrow (\forall x \ \exists y \ \forall z \ P(x,y,z));$

Задача Я1.8. Доказать, что следующая формула выполнима только в бесконечных интерпретациях:

$$(\forall x \exists y \ Q(x,y)) \land (\forall x \ \forall y \ \forall z \ \neg Q(x,x) \land (Q(x,y) \rightarrow (Q(y,z) \rightarrow Q(x,z)))).$$

Задача Я1.9. Доказать, что следующая формула истинна в каждой интерпретации с трехэлементным носителем:

$$(\forall x \ \forall y \ \forall z \ R(x,x) \land (R(x,z) \rightarrow R(x,y) \lor R(y,z))) \rightarrow (\exists x \ \forall y \ R(x,y)).$$

 $^{^{\}dagger} \Pi$ редикат $P \colon M^n \to \{\top, \bot\}$ отождествлен с его областью истинности $\bar{P} \subseteq M^n.$