2021-February Session-02-24-2021-shift-1

ee24btech11064 - Harshil Rathan

1) Let

$$P = \begin{pmatrix} 3 & -1 & -2 \\ 2 & 0 & \alpha \\ 3 & -5 & 0 \end{pmatrix}$$

where $\alpha \in R$. Suppose $Q = [q_{ij}]$ is a matrix satisfying $PQ = kI_3$ for some non-zero $k \in R$. If $q_{23} = \frac{-k}{8}$ and $|Q| = \frac{k^2}{2}$, then $\alpha^2 + k^2$ is equal to

- 2) Let B_i (i = 1, 2, 3) be three independent events in a sample space. The probability that only B_1 occur is α , only B_2 occurs is β and only B_3 occurs is γ . Let p be the probability that none of the events B_i occurs and these 4 probabilities satisfy the equations $(\alpha 2\beta) p = \alpha\beta$ and $(\beta 3\gamma) p = 2\beta\gamma$. All the probabilities are assumed to lie in the interval (0, 1). Then $\left(\frac{P(B_1)}{P(B_3)}\right)$ is equal to
- 3) The minimum value of α for which the equation $\frac{4}{\sin x} + \frac{1}{1-\sin x} = \alpha$ has at least one solution in $\left(0, \frac{\pi}{2}\right)$ is
- 4) If one of the diameters of the circle $x^2 + y^2 2x 6y + 6 = 0$ is a chord of another circle 'C' whose centre is at (2, 1), then its radius is
- 5) $\lim_{n\to\infty} \tan\left(\sum_{r=1}^n \tan^{-1}\left(\frac{1}{1+r+r^2}\right)\right)$ is equal to
- 6) If

$$\int_{-a}^{a} (|x| + |x - 2|) \, dx = 22$$

and [x] denotes the greatest integer $\leq x$, then $\int_{a}^{-a} (x + [x]) dx$ is equal to

7) Let three vectors \mathbf{a} , \mathbf{b} and \mathbf{c} be such that \mathbf{c} is coplanar with \mathbf{a} and \mathbf{b} , $\mathbf{a} \cdot \mathbf{c} = 7$ and \mathbf{b} is perpendicular to \mathbf{c} , where $\mathbf{a} = -\hat{i} + \hat{j} + \hat{k}$ and $\mathbf{b} = 2\hat{i} + \hat{k}$, then the value of $2|\mathbf{a} + \mathbf{b} + \mathbf{c}|^2$ is

8) Let $A = \{n \in N : n \text{ is a 3-digit number}\}$, $B = \{9k + 2 : k \in N\}$ and $C = \{9k + I : k \in N\}$ for some I (0 < I < 9). If the sum of all the elements of the set $A \cap (B \cup C)$ is 274x400, then I is equal to

1

- 9) If the least and the largest real values of α , for which the equation $z + \alpha |z 1| + 2i = 0$ $(z \in \mathbb{C} \text{ and } i = \sqrt{-1})$ has a solution, are p and q respectively; then $4(p^2 + q^2)$ is equal to
- 10) Let M be any 3x3 matrix with entries from the set $\{0, 1, 2\}$. The maximum number of such matrices, for which the sum of diagonal elements of M^TM is seven, is