MEGABYTE: Predicting Million-byte Sequences with Multiscale Transformers

MITON Times Radek Bartyzal

Why?

Current state of Transformers:

- Transformers use self-attention
- Self-attention scales quadratically with number of elements
- => use tokenization to reduce the number of elements

Tokenization:

- many forms
- separately trained = form of preprocessing
- generally pain

MegaByte

Idea:

- let's work directly with bytes of the input
- => ditch tokenization
- problem = $O(n^2)$ scaling with number of bytes

Megabyte solution:

- multi-scale architecture
- global model works with patches of bytes -> local model works on bytes

MegaByte architecture

- patch = 4 bytes
- global model embeds each patch
- local model gets:
 - patch bytes
 - global model embedding of the patch

 local model predicts next byte in its patch

MegaByte architecture

- embed each byte
- 2. chunk byte embeddings into K patches of size P = 4
- 3. global model outputs patch representations = decoder-only Transformer
 - works on K patches
- 4. local model = smaller decoder-only Transformer
 - works on P elements of a single patch
 - each element = sum of:
 - output from the global model for this patch (global patch representation)
 - embedding of the previous byte in the sequence

MegaByte architecture

Benefits:

- sub-quadratic self-attention = with splits into patches
- per-patch feed-forward layers
 - MEGABYTE uses large feedforward layers per-patch rather than per-position, enabling much larger and more expressive models for the same cost
- parallelization of decoding:
 - generate representation of patches in parallel
 - MEGABYTE model with 1.5B parameters can generate sequences 40% faster than a standard
 350M Transformer

Experiments: Comparison to sub-word models

	Tokenizer	Vocab Size	Context Length	Validation	Test
TransformerXL (Rae et al., 2019a)	SentencePiece	32k	512+1024 (subwords)	45.5	36.3
CompressiveTransformer (Rae et al., 2019a)	SentencePiece	32k	512+512+2x512 (subwords)	43.4	33.6
PerceiverAR (Hawthorne et al., 2022)	SentencePiece	32k	2048 (subwords)	45.9	28.9
BlockRecurrent (Hutchins et al., 2022)	SentencePiece	32k	1024+recurrence (subwords)	-	26.5
Transformer byte-level (ours)	Bytes	256	2048 (bytes)	81.6	69.4
PerceiverAR byte-level (ours)	Bytes	256	8192 (bytes)	119.1	88.8
MEGABYTE	Bytes	256	8192 (bytes)	42.8	36.4

Table 3. Larger scale experiments on PG19, converting bits-per-byte to word-level perplexities for comparison with prior work. Results below the line are compute-matched. MEGABYTE outperforms other byte models by a wide margin, and gives results competitive with state-of-the-art models trained on subwords.

Experiments: Scaling to 1M bytes

	Context	Image64	Image256	Image640
Total len		12288	196608	1228800
Transformer	1024	3.62	3.801	2.847
Perceiver AR	12000	3.55	3.373	2.345
MEGABYTE	Full	3.52	3.158	2.282

Table 5. Bits per byte (bpb) on ImageNet with different resolutions. All models use the same compute and data. MEGABYTE scales well to sequences of over 1M tokens.

Sources

https://arxiv.org/abs/2305.07185