

R – nośność elementu konstrukcyjnego Q - efekt obciążenia

- niezależne zmienne losowe o rozkładach normalnych $f_R(x)$ i $f_O(x)$, o parametrach $\mu_{\text{R}}\text{, }\sigma_{\text{R}}$ i $\mu_{\text{Q}}\text{, }\sigma_{\text{Q}}$

Stan bezpieczny:

Stan graniczny: R = Q

Stan awarii: R < Q

Prawdopodobieństwo awarii:

$$P_f = P(R < Q)$$

Prawdopodobieństwo awarii – wskaźnik niezawodności Cornella X = R - Q

losowy margines bezpieczeństwa

- zmienna losowa o rozkładzie normalnym $f_x(x)$, o parametrach μ_X i σ_X

$$\mu_{X} = \mu_{R} - \mu_{Q}$$
 $\sigma_{X} = \sqrt{\sigma_{R}^{2} + \sigma_{Q}^{2}}$

Stan bezpieczny: X > 0

X = 0Stan graniczny:

Stan awarii: X < 0

Prawdopodobieństwo awarii:

$$P_f = P(X < 0) = \int_{-\infty}^{0} f_X(x) dx = F_X(0)$$

Prawdopodobieństwo awarii – wskaźnik niezawodności Cornella

$$Z = \frac{X - \mu_X}{\sigma_X}$$

- zmienna losowa o rozkładzie normalnym standardowym $\phi(z)$, o parametrach μ_Z =0 i σ_Z =1

Wskaźnik niezawodności Cornella:

$$\beta = \frac{\mu_X}{\sigma_X} = \frac{\mu_R - \mu_Q}{\sqrt{\sigma_R^2 + \sigma_Q^2}}$$

Prawdopodobieństwo awarii:

$$P_f = P(Z < -\beta) = \int\limits_{-\infty}^{-\beta} \phi(z) dz = \Phi(-\beta)$$

Prawdopodobieństwo awarii – wskaźnik niezawodności Cornella

β	$P_f = \Phi(-\beta)$
0	0,5
1,0	0,159
2,0	0,0228
3,0	0,00135
4,0	0,0000317
5,0	0,000000287
6,0	0,000000000987

$$\begin{array}{lll} P_f & \beta = -\Phi^{-1}\big(P_f\big) \\ 10^{-1} & 1,28 \\ 10^{-2} & 2,33 \\ 10^{-3} & 3,09 \\ 10^{-4} & 3,71 \\ 10^{-5} & 4,26 \\ 10^{-6} & 4,75 \\ 10^{-7} & 5,19 \\ 10^{-8} & 5,62 \\ 10^{-9} & 5,99 \\ \end{array}$$

Zadanie

Nośność belki stalowej na zginanie R i największy moment zginający Q są niezależnymi zmiennymi losowym, o rozkładach normalnych, o parametrach: $\mu_R=80$ kNm $~\sigma_R=8.0$ kNm $~\mu_Q=50$ kNm $~\sigma_Q=6.0$ kNm

Obliczyć prawdopodobieństwa awarii belki (przekroczenia stanu granicznego nośności na zginanie).

Rozwiązanie

$$\beta = \frac{\mu_R - \mu_Q}{\sqrt{\sigma_R^2 + \sigma_Q^2}} = \frac{80 - 50}{\sqrt{8^2 + 6^2}} = \frac{30}{10} = 3,0$$

$$P_f = P(R < Q) = \Phi(-\beta) = \Phi(-3.0) = 1.35 \cdot 10^{-3} = 0.00135$$

	0	0,01	0.02	0,03	0,04	0,05	0.06	0.07	0,08	0,09
0	5,00E-01	4,96E-01	4,92E-01	4,88E-01	4,84E-01	4,80E-01	4,76E-01	4,72E-01	4,68E-01	4,64E-01
-0,1	4,60E-01	4,56E-01	4,52E-01	4,48E-01	4,44E-01	4,40E-01	4,36E-01	4,33E-01	4,29E-01	4,25E-01
-0,2	4,21E-01	4,17E-01	4,13E-01	4,09E-01	4,05E-01	4,01E-01	3,97E-01	3,94E-01	3,90E-01	3,86E-01
-0,3	3,82E-01	3,78E-01	3,74E-01	3,71E-01	3,67E-01	3,63E-01	3,59E-01	3,56E-01	3,52E-01	3,48E-01
-0,4	3,45E-01	3,41E-01	3,37E-01	3,34E-01	3,30E-01	3,26E-01	3,23E-01	3,19E-01	3,16E-01	3,12E-01
-0,5	3,09E-01	3,05E-01	3,02E-01	2,98E-01	2,95E-01	2,91E-01	2,88E-01	2,84E-01	2,81E-01	2,78E-01
-0,6	2,74E-01	2,71E-01	2,68E-01	2,64E-01	2,61E-01	2,58E-01	2,55E-01	2,51E-01	2,48E-01	2,45E-01
-0,7	2,42E-01	2,39E-01	2,36E-01	2,33E-01	2,30E-01	2,27E-01	2,24E-01	2,21E-01	2,18E-01	2,15E-01
-0,8	2,12E-01	2,09E-01	2,06E-01	2,03E-01	2,00E-01	1,98E-01	1,95E-01	1,92E-01	1,89E-01	1,87E-01
-0,9	1,84E-01	1,81E-01	1,79E-01	1,76E-01	1,74E-01	1,71E-01	1,69E-01	1,66E-01	1,64E-01	1,61E-01
-1	1,59E-01	1,56E-01	1,54E-01	1,52E-01	1,49E-01	1,47E-01	1,45E-01	1,42E-01	1,40E-01	1,38E-01
-1,1	1,36E-01	1,33E-01	1,31E-01	1,29E-01	1,27E-01	1,25E-01	1,23E-01	1,21E-01	1,19E-01	1,17E-01
-1,2	1,15E-01	1,13E-01	1,11E-01	1,09E-01	1,07E-01	1,06E-01	1,04E-01	1,02E-01	1,00E-01	9,85E-02
-1,3	9,68E-02	9,51E-02	9,34E-02	9,18E-02	9,01E-02	8,85E-02	8,69E-02	8,53E-02	8,38E-02	8,23E-02
-1,4	8,08E-02	7,93E-02	7,78E-02	7,64E-02	7,49E-02	7,35E-02	7,21E-02	7,08E-02	6,94E-02	6,81E-02
-1,5	6,68E-02	6,55E-02	6,43E-02	6,30E-02	6,18E-02	6,06E-02	5,94E-02	5,82E-02	5,71E-02	5,59E-02
-1,6	5,48E-02	5,37E-02	5,26E-02	5,16E-02	5,05E-02	4,95E-02	4,85E-02	4,75E-02	4,65E-02	4,55E-02
-1,7	4,46E-02	4,36E-02	4,27E-02	4,18E-02	4,09E-02	4,01E-02	3,92E-02	3,84E-02	3,75E-02	3,67E-02
-1,8	3,59E-02	3,51E-02	3,44E-02	3,36E-02	3,29E-02	3,22E-02	3,14E-02	3,07E-02	3,01E-02	2,94E-02
-1,9	2,87E-02	2,81E-02	2,74E-02	2,68E-02	2,62E-02	2,56E-02	2,50E-02	2,44E-02	2,39E-02	2,33E-02
-2	2,28E-02	2,22E-02	2,17E-02	2,12E-02	2,07E-02	2,02E-02	1,97E-02	1,92E-02	1,88E-02	1,83E-02
-2,1	1,79E-02	1,74E-02	1,70E-02	1,66E-02	1,62E-02	1,58E-02	1,54E-02	1,50E-02	1,46E-02	1,43E-02
-2,2	1,39E-02	1,36E-02	1,32E-02	1,29E-02	1,25E-02	1,22E-02	1,19E-02	1,16E-02	1,13E-02	1,10E-02
-2,3	1,07E-02	1,04E-02	1,02E-02	9,90E-03	9,64E-03	9,39E-03	9,14E-03	8,89E-03	8,66E-03	8,42E-03
-2,4	8,20E-03	7,98E-03	7,76E-03	7,55E-03	7,34E-03	7,14E-03	6,95E-03	6,76E-03	6,57E-03	6,39E-03
-2,5	6,21E-03	6,04E-03	5,87E-03	5,70E-03	5,54E-03	5,39E-03	5,23E-03	5,08E-03	4,94E-03	4,80E-03
-2,6	4,66E-03	4,53E-03	4,40E-03	4,27E-03	4,15E-03	4,02E-03	3,91E-03	3,79E-03	3,68E-03	3,57E-03
-2,7	3,47E-03	3,36E-03	3,26E-03	3,17E-03	3,07E-03	2,98E-03	2,89E-03	2,80E-03	2,72E-03	2,64E-03
-2,8	2,56E-03	2,48E-03	2,40E-03	2,33E-03	2,26E-03	2,19E-03	2,12E-03	2,05E-03	1,99E-03	1,93E-03
-2,9	1,87E-03	1,81E-03	1,75E-03	1,69E-03	1,64E-03	1,59E-03	1,54E-03	1,49E-03	1,44E-03	1,39E-03
-3	1,35E-03	1,31E-03	1,26E-03	1,22E-03	1,18E-03	1,14E-03	1,11E-03	1,07E-03	1,04E-03	1,00E-03
-3,1	9,68E-04	9,35E-04	9.04E-04	8,74E-04	8,45E-04	8,16E-04	7,89E-04	7,62E-04	7,36E-04	7,11E-04
-3,2	6,87E-04	6,64E-04	6,41E-04	6,19E-04	5,98E-04	5,77E-04	5,57E-04	5,38E-04	5,19E-04	5,01E-04
-3,3	4,83E-04	4,66E-04	4,50E-04	4,34E-04	4,19E-04	4,04E-04	3,90E-04	3,76E-04	3,62E-04	3,49E-04
-3,4	3,37E-04	3,25E-04	3,13E-04	3,02E-04	2,91E-04	2,80E-04	2,70E-04	2,60E-04	2,51E-04	2,42E-04
-3,5	2,33E-04	2,24E-04	2,16E-04	2,08E-04	2,00E-04	1,93E-04	1,85E-04	1,78E-04	1,72E-04	1,65E-04
-3,6	1,59E-04	1,53E-04	1,47E-04	1,42E-04	1,36E-04	1,31E-04	1,35E-04 1,26E-04	1,78E=04 1,21E-04	1,17E-04	1,12E-04
-3,7	1,08E-04	1,04E-04	9,96E-05	9,57E-05	9,20E-05	8,84E-05	8,50E-05	8,16E-05	7,84E-05	7,53E-05
-3,8	7,23E-05	6,95E-05	6,67E-05	6,41E-05	6,15E-05	5,91E-05	5,67E-05	5,44E-05	5,22E-05	5,01E-05
-3,9	4,81E-05	4,61E-05	4,43E-05	4,25E-05	4,07E-05	3,91E-05	3,75E-05	3,59E-05	3,45E-05	3,30E-05
-5,9 -4	3,17E-05	3,04E-05	2,91E-05	2,79E-05	2,67E-05	2,56E-05	2,45E-05	2,35E-05	2,25E-05	2,16E-05
	3,17103	J,04L-0J	2,71103	2,77103	2,071-03	2,501-05	2,45105	2,331-03	2,231,-03	2,101303

Zadanie

Rozpiętość belki swobodnie podpartej wynosi I = 4 m.

Wskaźnik przekroju belki W i wytrzymałość materiału f są niezależnymi zmiennymi losowymi o rozkładach normalnych, o parametrach: $\mu_W = 50 \text{ cm}^3 \quad \sigma_W = 3 \text{ cm}^3 \quad \mu_F = 400 \text{ MPa} \quad \sigma_F = 32 \text{ MPa}$

Na belkę działają obciążenia ciągłe równomiernie rozłożone q_1 i q_2 – niezależne zmienne losowe o parametrach:

- a) μ_{q1} = 2,0 kN/m $~\sigma_{q1}$ = 0,4 kN/m $~\mu_{q2}$ = 2,0 kN/m $~\sigma_{q2}$ = 0,4 kN/m
- b) $~\mu_{q1}$ = 2,0 kN/m $~\sigma_{q1}$ = 0,4 kN/m $~\mu_{q2}$ = 4,0 kN/m $~\sigma_{q2}$ = 0,8 kN/m
- c) $\mu_{\alpha 1} = 2.0 \text{ kN/m}$ $\sigma_{\alpha 1} = 0.4 \text{ kN/m}$ $\mu_{\alpha 2} = 8.0 \text{ kN/m}$ $\sigma_{\alpha 2} = 1.6 \text{ kN/m}$

Na opisanych przykładach wyjaśnić ideę obliczania prawdopodobieństwa awarii elementów konstrukcyjnych w oparciu o wskaźnik niezawodności Cornella.

Zadanie

Rozpiętość belki swobodnie podpartej wynosi I = 4 m.

Wskaźnik przekroju belki W i wytrzymałość materiału f są niezależnymi zmiennymi losowymi o rozkładach normalnych, o parametrach: $\mu_W = 50~\text{cm}^3 \quad \sigma_W = 3~\text{cm}^3 \quad \mu_f = 400~\text{MPa} \quad \sigma_f = 32~\text{MPa}$

Na belkę działają:

- a) dwa obciążenia ciągłe równomiernie rozłożone q_1 i q_2 o parametrach: $\mu_{q1}=\mu_{q2}=2,0$ kN/m $V_{q1}=V_{q2}=0,2$
- b) jedno obciążenie ciągłe równomiernie rozłożone q_3 o parametrach: μ_{q3} = 4,0 kN/m $~~V_{q3}$ = 0,2

 q_1 , q_2 , q_3 – niezależne zmienne losowe o rozkładach normalnych.

Na opisanych przykładach wyjaśnić ideę obliczania prawdopodobieństwa awarii elementów konstrukcyjnych w oparciu o wskaźnik niezawodności Cornella.