Sapienza University of Rome

Master in Artificial Intelligence and Robotics Master in Engineering in Computer Science

Machine Learning

A.Y. 2020/2021

Prof. L. locchi, F. Patrizi

L. locchi, F. Patrizi

3. Decision Trees

1/37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

3. Decision Trees

L. locchi, F. Patrizi

L. locchi, F. Patrizi 3. Decision Trees 2 / 37

Overview

- Decision tree representation
- ID3 learning algorithm
- Entropy, Information gain
- Inductive Bias
- Overfitting and pruning

References

T. Mitchell. Machine Learning. Chapter 3

L. Iocchi, F. Patrizi

3. Decision Trees

3/37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Concept Learning as search

Problem: Given a training set D for a target function c, compute the "best" consistent hypothesis wrt D.

Solution approach

- Define hypothesis space H
- Implement an algorithm to find $h^* \in H$, "best" hypothesis consistent with D

L. locchi, F. Patrizi 3. Decision Trees 4/37

Decision Trees

Consider a discrete input space described with m attributes $X = A_1 \times \ldots \times A_m$, with A_i finite and a classification problem for $f: X \to C$

Hypothesis space H: set of decision trees.

Decision tree

Tree with the following characteristics:

- Each internal node tests an attribute A_i
- Each branch denotes a value of an attribute $a_{i,j} \in A_i$
- ullet Each leaf node assigns a classification value $c \in \mathcal{C}$

L. Iocchi, F. Patrizi

3. Decision Trees

5 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Example *PlayTennis*

Instances $X = Outlook \times Temperature \times Humidity \times Wind$

$$Outlook = \{Sunny, Overcast, Rain\}$$
 $Temperature = \{Hot, Mild, Cold\}$
 $Humidity = \{Normal, High\}$
 $Wind = \{Weak, Strong\}$

Classification values:

$$PlayTennis = \{Yes, No\}$$

Learning problem:

$$f: Outlook \times Temperature \times Humidity \times Wind \rightarrow PlayTennis$$

L. locchi, F. Patrizi 3. Decision Trees 6 / 37

Example PlayTennis: Training data

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

L. locchi, F. Patrizi

3. Decision Trees

7/37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Decision Tree for *PlayTennis*

L. locchi, F. Patrizi 3. Decision Trees 8 / 37

Decision Tree for PlayTennis

Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.

$$(Outlook = Sunny \land Humidity = Normal) \lor$$

 $(Outlook = Overcast) \lor$
 $(Outlook = Rain \land Wind = Weak)$

Disjunction of conjunctions of all the paths to positive (true) leaf nodes.

L. Iocchi, F. Patrizi

3. Decision Trees

9/37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Converting a Tree to Rules

A rule is generated for each path to a leaf node.

```
\begin{array}{ll} \mathsf{IF} & (\mathit{Outlook} = \mathit{Sunny}) \land (\mathit{Humidity} = \mathit{High}) \\ \mathsf{THEN} & \mathit{PlayTennis} = \mathit{No} \\ \\ \mathsf{IF} & (\mathit{Outlook} = \mathit{Sunny}) \land (\mathit{Humidity} = \mathit{Normal}) \\ \mathsf{THEN} & \mathit{PlayTennis} = \mathit{Yes} \end{array}
```

. . .

Decisions are made explicit.

L. locchi, F. Patrizi 3. Decision Trees 10 / 37

ID3 Algorithm

Input: Examples, Target_attribute, Attributes

Output: Decision Tree

- Create a Root node for the tree
- 2 if all Examples are positive, then return the node Root with label +
- 3 if all Examples are negative, then return the node Root with label —
- if Attributes is empty, then return the node Root with label = most common value of Target_attribute in Examples
- Otherwise ...

L. locchi, F. Patrizi

3. Decision Trees

11 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

ID3 Algorithm

Otherwise

- A ← the "best" decision attribute for Examples
- Assign A as decision attribute for Root
- For each value v_i of A
 - add a new branch from Root corresponding to the test $A = v_i$
 - Examples_{v_i} = subset of Examples that have value v_i for A
 - **if** $Examples_{v_i}$ is empty **then** add a leaf node with label = most common value of $Target_attribute$ in Examples
 - else

add the tree ID3($Examples_{v_i}$, $Target_attribute$, Attributes— $\{A\}$)

L. locchi, F. Patrizi 3. Decision Trees 12 / 37

Which is the best attribute to choose?

Output tree depends on attribute order

Example (dataset different than previous one):

Day	Outlook	Temperature	PlayTennis
D1	Sunny	Hot	Yes
D2	Sunny	Cold	Yes
D3	Rain	Hot	No
D4	Rain	Cold	No

Outlook first:

Temperature first:

L. locchi, F. Patrizi

3. Decision Trees

13 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Which is the best attribute to choose?

Information gain measures how well a given attribute separates the training examples according to their target classification.

Day	Outlook	Temperature	PlayTennis
D1	Sunny	Hot	Yes
D2	Sunny	Cold	Yes
D3	Rain	Hot	No
D4	Rain	Cold	No

Day	Outlook	Temperature	PlayTennis
D1	Sunny	Hot	Yes
D2	Sunny	Cold	Yes
D3	Rain	Hot	No
D4	Rain	Cold	No

Day	Outlook	Temperature	PlayTennis
D1	Sunny	Hot	Yes
D3	Rain	Hot	No
D2	Sunny	Cold	Yes
D4	Rain	Cold	No

ID3 selects the attribute that induces highest information gain.

Information gain measured as reduction in entropy.

L. locchi, F. Patrizi 3. Decision Trees 14/37

Entropy

- ullet p_\oplus is the proportion of positive examples in S
- ullet p_{\ominus} $(=1-p_{\oplus})$ is the proportion of negative examples in S
- Entropy measures the *impurity* of S

$$Entropy(S) \equiv -p_{\oplus} \log_2 p_{\oplus} - p_{\ominus} \log_2 p_{\ominus}$$

I locchi E Patrizi

3. Decision Trees

15 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Entropy example

Consider the set S = [9+, 5-] (9 positive examples, 5 negative examples)

$$Entropy(S) = -(9/14)log_2(9/14) - (5/14)log_2(5/14) = 0.940$$

Note: we define $0log_20 = 0$.

Maximum entropy when $p_\oplus=0.5$, minimum when $p_\oplus=0$ or 1. In case of multi-valued target functions (c-wise classification)

$$Entropy(S) \equiv \sum_{i=1}^{c} -p_i \log_2 p_i$$

L. locchi, F. Patrizi 3. Decision Trees 16 / 37

Information Gain

Gain(S, A) = expected reduction in entropy of S caused by knowing the value of attribute A.

$$Gain(S, A) \equiv Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Values(A): set of all possible values of A $S_v = \{s \in S | A(s) = v\}$

L. Iocchi, F. Patrizi

3. Decision Trees

17 / 37

18 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Information Gain example

$$Values(Wind) = \{Weak, Strong\}$$

$$S = [9+, 5-]$$

$$S_{Weak} = [6+, 2-]$$

$$S_{Strong} = [3+, 3-]$$

$$Gain(S, Wind) = Entropy(S) - \frac{8}{14}Entropy(S_{Weak}) - \frac{6}{14}Entropy(S_{Strong})$$

$$= 0.940 - \frac{8}{14}0.811 - \frac{6}{14}1.00$$

$$= 0.048$$

L. locchi, F. Patrizi 3. Decision Trees

Selecting the Next Attribute

Which attribute is the best classifier?

$$Gain(S,Outlook) = 0.246$$

 $Gain(S,Humidity) = 0.151$
 $Gain(S,Wind) = 0.048$
 $Gain(S,Temperature) = 0.029$

L. locchi, F. Patrizi

3. Decision Trees

19 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Selecting the Next Attribute

Which attribute should be tested here?

```
S<sub>sunny</sub> = {D1,D2,D8,D9,D11}

Gain (S<sub>sunny</sub>, Humidity) = .970 - (3/5) 0.0 - (2/5) 0.0 = .970

Gain (S<sub>sunny</sub>, Temperature) = .970 - (2/5) 0.0 - (2/5) 1.0 - (1/5) 0.0 = .570

Gain (S<sub>sunny</sub>, Wind) = .970 - (2/5) 1.0 - (3/5) .918 = .019
```

L. locchi, F. Patrizi 3. Decision Trees 20 / 37

Decision Tree for *PlayTennis*

L. locchi, F. Patrizi

3. Decision Trees

21 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Hypothesis Space Search by ID3

L. locchi, F. Patrizi 3. Decision Trees 22 / 37

Hypothesis Space Search by ID3

- Hypothesis space is complete (target concept is there!)
- Outputs a single hypothesis (cannot determine how many DTs are consistent!)
- No back tracking (local minima!)
- Statistically-based search choices (robust to noisy data!)
- Uses all the training examples at each step (not incremental!)

I locchi E Patrizi

3. Decision Trees

23 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Issues in Decision Tree Learning

- Determining how deeply to grow the DT
- Handling continuous attributes
- Choosing appropriate attribute selection measures
- Handling training data with missing attribute values
- Handling attributes with different costs

L. locchi, F. Patrizi 3. Decision Trees 24 / 37

Overfitting in Decision Trees

Consider a new data set $D' = D \cup d_{15}$ adding a training example:

$$d_{15} = \langle Sunny, Hot, Normal, Strong, PlayTennis = No \rangle$$

ID3 will generate a different tree T'

Note: T is consistent with D and T' is consistent with D' (i.e., accuracy = 100%)

Is T' in general a better solution for our learning problem?

L. Iocchi, F. Patrizi

3. Decision Trees

25 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Overfitting in Decision Trees

Let's consider a more complex problem with $|D|\gg 15$ and containing noisy data and two decision trees T and T' obtained with different configuration of an ID3-like algorithm.

$$accuracy_D(T') > accuracy_D(T)$$

Is T' in general a better solution for our learning problem?

L. locchi, F. Patrizi 3. Decision Trees 26 / 37

Overfitting in Decision Tree Learning

L. locchi, F. Patrizi

3. Decision Trees

27 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Avoiding Overfitting

How can we avoid overfitting?

- stop growing when data split not statistically significant
- grow full tree, then post-prune

To determine the correct tree size

- use a separate set of examples (distinct from the training examples) to evaluate the utility of post-pruning
- apply a statistical test to estimate accuracy of a tree on the entire data distribution
- using an explicit measure of the complexity for encoding the examples and the decision trees.

L. locchi, F. Patrizi 3. Decision Trees 28 / 37

Reduced-Error Pruning

Split data into training and validation set

Do until further pruning is harmful (decreases accuracy):

- ① Evaluate impact on *validation* set of pruning each possible node (remove all the subtree and assign the most common classification)
- ② Greedily remove the one that most improves *validation* set accuracy

L. locchi, F. Patrizi

3. Decision Trees

29 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Effect of Reduced-Error Pruning

L. locchi, F. Patrizi 3. Decision Trees 30 / 37

Remarks on Reduced-Error Pruning

- it produces smallest version of most accurate subtree (removing sub-trees added due to coincidental irregularities).
- When data set is limited, reducing the set of training examples (used as validation examples) can give bad results.

L. locchi, F. Patrizi

3. Decision Trees

31 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Rule Post-Pruning (C4.5)

- Infer the decision tree allowing for overfitting
- 2 Convert the learned tree into an equivalent set of rules
- Prune (generalize) each rule independently of others
- Sort final rules into desired sequence for use

L. locchi, F. Patrizi 3. Decision Trees 32 / 37

Continuous Valued Attributes

Create a discrete attribute to test continuous variables

- Temperature = 82.5
- (Temperature > 72.3) = t, f

Temperature:	40	48	60	72	80	90
PlayTennis:	No	No	Yes	Yes	Yes	No

Locchi F Patrizi

3 Decision Trees

33 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Attributes with Many Values

Problem:

- If attribute has many values, Gain will select it
- Imagine using $Date = Jun_3_1996$ as attribute

One approach: use GainRatio instead

$$GainRatio(S, A) \equiv \frac{Gain(S, A)}{SplitInformation(S, A)}$$

$$SplitInformation(S, A) \equiv -\sum_{i=1}^{c} \frac{|S_i|}{|S|} \log_2 \frac{|S_i|}{|S|}$$

where S_i is subset of S for which A has value v_i

L. locchi, F. Patrizi 3. Decision Trees 34 / 37

Attributes with Costs

Consider

- medical diagnosis, BloodTest has cost \$150
- robotics, Width_from_1ft has cost 23 sec.

How to learn a consistent tree with low expected cost? Replace gain by

• Tan and Schlimmer (1990)

$$\frac{Gain^2(S,A)}{Cost(A)}$$

• Nunez (1988) ($w \in [0,1]$ determines importance of cost)

$$\frac{2^{Gain(S,A)}-1}{(Cost(A)+1)^w}$$

L. Iocchi, F. Patrizi

3. Decision Trees

35 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Unknown Attribute Values

What if some examples missing values of A? Use training example anyway, sort through tree

- If node n tests A, assign most common value of A among other examples sorted to node n
- assign most common value of A among other examples with same target value
- assign probability p_i to each possible value v_i of A
 - assign fraction p_i of example to each descendant in tree

Classify new examples in same fashion

L. locchi, F. Patrizi 3. Decision Trees 36 / 37

Other algorithms based on Decision Trees

Random Forest: ensemble method that generates a set of decision trees with some random criteria and integrates their values into a final result.

Random criteria: 1) random subsets of data (bagging), 2) random subset of attributes (feature selection), ...

Integration of results: majority vote (most common class returned by all the trees).

Random Forests are less sensitive to overfitting.

L. locchi, F. Patrizi

3. Decision Trees

37 / 37

Sapienza University of Rome, Italy - Machine Learning (2020/2021)

Summary

- Decision Trees can represent classification function by making decisions explicit
- Learning as search in the hypothesis space with heuristics based on information gain
- Statistical method (some robustness to noisy data)
- Overfitting and pruning
- Used as basis of randomized ensemble methods

L. locchi, F. Patrizi 3. Decision Trees 38 / 37