If the recurrence is of the form $T(n) = aT(\frac{n}{b}) + \Theta(n^k \log^p n)$, where $a \ge 1, b > 1$ $1,k \ge 0$ and p is a real number, then:

1) If
$$a > b^k$$
, then $T(n) = \Theta(n^{\log_b^a})$

2) If
$$a = b^k$$

a. If
$$p > -1$$
, then $T(n) = \Theta(n^{\log_b^a} \log^{p+1} n)$

b. If
$$p = -1$$
, then $T(n) = \Theta(n^{\log_b^a} \log \log n)$

c. If
$$p < -1$$
, then $T(n) = \Theta(n^{\log_b^a})$

3) If
$$a < b^k$$

a. If
$$p \ge 0$$
, then $T(n) = \Theta(n^k \log^p n)$

b. If
$$p < 0$$
, then $T(n) = O(n^k)$

Styr -
$$p=0$$
 (londitin 3q)
Styr - $p=0$ (londitin 3q)

$$=0(n^2 \log n)$$

$$=0(n^2.1)$$

$$=0(n^2).$$

 $T(n)_2 4 T(n/2) + n^2$