Abiturvorbereitung Informatik

Maximilian Prietzel

April 10, 2022

Contents

1	1. \$	Semester	2				
	1.1	Datenstrukturen	2				
		1.1.1 Listen	2				
	1.2	Objektorientierung	2				
		1.2.1 Klasse/Objekt	2				
		1.2.2 UML-Klassendiagramm	3				
2	2. Semester						
	2.1	Mengenlehre	4				
		2.1.1 Mengenoperationen	4				
		2.1.2 Venn-Diagramme	4				
	2.2	Datenbankentwurf	4				
3	3. Semester						
	3.1	Theoretische Informatik	5				
	3.2	Netzwerke	5				
	3.3	Netzwerktopologie	5				

1 1. Semester

1.1 Datenstrukturen

1.1.1 Listen

1.2 Objektorientierung

1.2.1 Klasse/Objekt

Eine Klasse ist wie der Bauplan eines Objektes, sie beinhaltet die Informationen, welche Attribute und Methoden das Objekt besitzt. Beispiel Java:

```
public class Katze
 2
       //Attribute
       static private int beine = 4; //static variable
       private String name;
private int alter;
 6
       //Konstruktor
       Katze(int name, int alter)
         this.name = name;
this.alter = alter;
11
12
13
14
       //Methoden
15
16
       public void miau()
17
         System.out.println("Miau");
18
19
20
       public String getName()
21
23
         return name;
24
    }
25
```

Das Objekt kann mithilfe der Instanzisierung in einer Variable (Instanz) gespeichert werden.

Ein Objekt wird mithilfe des Konstruktors erstellt. So würde in Java ein Objekt erstellt werden:

```
class Programm
{
    public static void main(String args[]) //main method
    {
        Katze garfield = new Katze("Garfield" , 10);
        garfield.miau(); //Output: Miau
}
```

Die Schlüsselwörter public und private bestimmen wann und ob ein anderes Objekt auf diese Variable/Methode zugreifen kann.

public	Jeder kann darauf zugreifen	
private	Nur die eigene Klasse kann darauf zugreifen	
protected*	Die Subklasse kann darauf zugreifen	
package private*	Das eigene Paket kann darauf zugreifen	

${\bf 1.2.2}\quad {\bf UML\text{-}Klassendiagramm}$

A ◆ —B	Kompostion	
A <i></i> ⇔—B	Aggregation	
A>B	Assoziation	
B	Vererbung	

Beispiel UML-Diagramm:

2 2. Semester

2.1 Mengenlehre

2.1.1 Mengenoperationen

Symbol	Name	SQL-Befehl
U	Vereinigungsmenge	UNION
\cap	Schnittmenge	INTERSECT
\	Differenzmenge	EXCEPT
$A \times B$	Kartesisches Produkt	SELECT * FROM A,B
\subseteq	Teilmenge	
$\overline{}$	Echte Teilmenge	

2.1.2 Venn-Diagramme

2.2 Datenbankentwurf

- 3 3. Semester
- 3.1 Theoretische Informatik
- 3.2 Netzwerke
- 3.3 Netzwerktopologie