

Transferts de chaleur Convection

Pierre Le Cloirec

Ecole Nationale Supérieure de Chimie de Rennes

11 allée de Beaulieu, CS 50837

35700 Rennes, France

Tel 33 (0) 2 23 23 80 00 e-mail Pierre.Le-Cloirec@ensc-rennes.fr

Trois modes de transfert de la chaleur :

- Conduction
- Convection
- · Rayonnement

Loi de l'échange par convection

Loi d'échange par convection

- · Soit une paroi et un fluide
- Proche de la paroi, il existe un film
- · Si les températures de paroi et de fluide sont différentes il existe un gradient de température dans le film
- Il est montré que quelque soit le régime d'écoulement, dans la zone de film, l'écoulement est laminaire.

Loi d'échange par convection

- · L'épaisseur du film est fonction de Re.
- \square δ augmente quand Re diminue
- Si T₁ > T₂ → échange de chaleur
- · La résistance thermique est située presque entièrement dans le film
- Si δ est faible (Re élevé) l'échange est facilité

Loi de Newton

Loi d'échange par convection

$$\Phi = hA(T_1 - T_2)$$

avec

. Φ : flux de chaleur échangée

· A : surface d'échange

· T_i : température

· h : coefficient d'échange par convection

$$[h] = [W m^{-2}K^{-1}] = [kcal h^{-1}m^{-2}K^{-1}]$$

Loi d'échange par convection Le coefficient h?

$$\Phi = hA(T_1 - T_2)$$

h est fonction de :

- · la nature de fluide
- · la température
- · la vitesse d'écoulement
- · La forme de la surface d'échange

•

Exemples de quelques équations utilisables pour des transferts dans des échangeurs tubulaires

Le coefficient h?

Analyse dimensionnelle...

Transfert sans changement d'état

Le coefficient h?

On suppose un échange de chaleur entre fluide circulant en écoulement forcée

Liste des variables :

- Le coefficient de convection	: h	Js ⁻¹ m ⁻² K ⁻¹	JT-1L-2θ-1
- Le diamètre du tube	: D	m	L
- la vitesse d'écoulement du fluide	: U	$m \; s^{-1}$	LT-1
- la masse volumique du fluide	: ρ	kg m ⁻³	ML-3
- la viscosité dynamique du fluide	: μ	PĬ	ML-1T-1
- la chaleur spécifique	: <i>C</i> p	Jkg ⁻¹ K ⁻¹	JM-1T-1
- la conductivité thermique du fluide	: K	Js ⁻¹ m ⁻¹ K ⁻¹	$JT^{-1}L^{-1}\theta^{-1}$

$$\mathbf{h} = \alpha \mathbf{D}^{\mathbf{a}} \mathbf{U}^{\mathbf{b}} \rho^{\mathbf{c}} \mu^{\mathbf{d}} \mathbf{C}_{\mathbf{P}}^{\mathbf{e}} \mathbf{K}^{\mathbf{f}}$$

$$\mathbf{h} = \alpha \mathbf{D}^{b-1} \mathbf{U}^{b} \rho^{b} \mu^{e-b} \mathbf{C}_{P}^{e} \mathbf{K}^{1-e}$$

Le coefficient h?

$$h = \alpha D^{b-1} U^b \rho^b \mu^{e-b} C_P^e K^{1-e}$$

$$\mathbf{h} = \alpha \left(\frac{\mathbf{D}\mathbf{U}\boldsymbol{\rho}}{\boldsymbol{\mu}}\right)^{b} \left(\frac{\mathbf{C}_{p}\boldsymbol{\mu}}{\mathbf{K}}\right)^{e} \left(\frac{\mathbf{K}}{\mathbf{D}}\right)$$

$$\frac{hD}{K} = \alpha \left(\frac{DU\rho}{\mu}\right)^b \left(\frac{C_p \mu}{K}\right)^e$$

$$\frac{hD}{K} = \alpha \left(\frac{DU\rho}{\mu}\right)^b \left(\frac{C_p \mu}{K}\right)^e$$

ou

$$Nu = \alpha (Re)^b (Pr)^e$$

avec

$$Nu = \frac{hD}{K}$$
 $Re = \frac{DU\rho}{\mu}$ $Pr = \frac{C_p \mu}{K}$

Circulation d'un fluide en convection forcée

Hypothèses:

- · Régime laminaire
- · fluide très visqueux ou très faibles vitesses

$$\frac{hD}{K} = 3,66 \left(\frac{DU\rho}{\mu}\right)^0 \left(\frac{C_p \mu}{K}\right)^0$$

Température de paroi constante

$$\frac{hD}{K} = Nu = 3,66$$

Flux thermique constant

$$\frac{hD}{K} = Nu = 4,66$$

Circulation d'un fluide en convection forcée

Hypothèses:

- · Le fluide à l'intérieur des tubes
- $\cdot L/D > 60$
- · Régime turbulent
- Equation utilisable si Re > 10 000
- $\cdot 0.7 < Pr < 160$

Relation de Colburn

$$\frac{hD}{K} = 0.023 \left(\frac{DU\rho}{\mu}\right)^{0.8} \left(\frac{C_p \mu}{K}\right)^{\frac{1}{3}}$$

$$Nu = 0.023 Re^{0.8} Pr^{\frac{1}{3}}$$

Circulation d'un fluide en convection forcée

Hypothèses:

- · Le fluide à l'intérieur des tubes
- · Régime turbulent
- Equation utilisable si Re > 10 000
- $\cdot 0.7 < Pr < 160$

Relation de Dittus et Boelter

$$\frac{hD}{K} = 0.023 \left(\frac{DU\rho}{\mu}\right)^{0.8} \left(\frac{C_p \mu}{K}\right)^n$$

$$Nu = 0.023 Re^{0.8} Pr^{n}$$

avec

n = 0,3 si le fluide est refroidi n = 0,4 si le fluide est réchauffé

Circulation d'un fluide en convection forcée

Hypothèses:

- · Le fluide à l'intérieur des tubes lisses
- · Régime turbulent
- · Equation utilisable si Re > 10 000

Relation de Sieder et Tade

$$\frac{hD}{K} = 0.023 \left(\frac{DU\rho}{\mu}\right)^{0.8} \left(\frac{C_{p}\mu}{K}\right)^{0.33} \left(\frac{\mu}{\mu_{s}}\right)^{0.14}$$

Nu = 0,023 Re^{0,8} Pr^{1/3}
$$\left(\frac{\mu}{\mu_s}\right)^{0,14}$$

avec

μ Jierre Le Cloirec viscosité de la masse du fluide viscosité du fluide à la température de paroi

Circulation d'un fluide en convection forcée

Hypothèses:

- · Le fluide à l'intérieur des tubes
- · Régime laminaire
- Equation utilisable si Re < 2100

$$\frac{hD}{K} = 1.86 \left(\frac{D}{L}\right)^{\frac{1}{3}} \left(\frac{DU\rho}{\mu}\right)^{\frac{1}{3}} \left(\frac{C_p\mu}{K}\right)^n \left(\frac{\mu}{\mu_s}\right)^{0.14}$$

avec

μ

 μ_{s}

L

n = 0.3

n = 0.4

viscosité de la masse du fluide

viscosité du fluide à la température de paroi

longueur de la conduite

si le fluide est refroidi

si le fluide est réchauffé

Circulation d'un fluide en convection forcée

Relation de Petukhov

$$Nu = \frac{RePr}{X} \left(\frac{\Lambda}{8} \right) \left(\frac{\mu}{\mu_s} \right)^n$$

$$X = 1,07 + 1,27 \left(Pr^{\frac{2}{3}} - 1 \right) \left(\frac{\Lambda}{8} \right)^{\frac{1}{2}}$$

~ 4f coefficient de friction

si le fluide est refroidi

pour les gaz

si le fluide est réchauffé

avec

Λ

n = 0,11

n = 0.25

n = 0

10 000 < Re < 5 106

2 < Pr < 2 000 (erreur de 5 - 6 %)

0,5 < Pr < 2 000 (erreur de 10 %)

 $0.08 < \mu/\mu_s < 40$

Variation de Nu = f(Re, Pr) En régime établi

Exemples d'équations donnant h Diamètre équivalent

Circulation d'un fluide en convection forcée

Hypothèses:

- · Le fluide à l'extérieur des tubes
- · Ecoulement parallèle aux tubes

$$\frac{hD_{_e}}{K} = 0.023 \left(\frac{D_{_e}U\rho}{\mu}\right)^{0.8} \left(\frac{C_{_p}\mu}{K}\right)^n \qquad \text{ou} \qquad \frac{hD_{_e}}{K} = 0.023 \left(\frac{D_{_e}U\rho}{\mu}\right)^{0.8} \left(\frac{C_{_p}\mu}{K}\right)^{0.33} \left(\frac{\mu}{\mu_{_s}}\right)^{0.14}$$

ou
$$\frac{hD_e}{K} = 1.86 \left(\frac{D_e}{L}\right)^{\frac{1}{3}} \left(\frac{D_e U \rho}{\mu}\right)^{\frac{1}{3}} \left(\frac{C_p \mu}{K}\right)^{\frac{1}{3}} \left(\frac{\mu}{\mu_s}\right)^{0.14}$$

avec

D_e diamètre équivalent

A section de l'écoulement

P périmètre d'échange

$$\mathbf{D}_{\mathrm{e}} = \frac{4\mathbf{A}}{\mathbf{p}}$$

Circulation d'un fluide en convection forcée Calcul du diamètre équivalent

Cas où le fluide circule dans l'espace annulaire entre deux tubes co-axiaux

$$\mathbf{D}_{\mathrm{e}} = \frac{4\mathbf{A}}{\mathbf{p}}$$

$$\mathbf{A} = \frac{1}{4} \pi \left(\mathbf{D}_2^2 - \mathbf{D}_1^2 \right)$$

L'échange a lieu entre le fluide et la paroi extérieure Du tube intérieur

$$\mathbf{p} = \pi \mathbf{D}_1$$

et donc

$$D_e = \frac{D_2^2 - D_1^2}{D_1}$$

Circulation d'un fluide en convection forcée

Calcul du diamètre équivalent

Cas où le fluide circule dans l'espace annulaire entre deux tubes co-axiaux

$$\mathbf{D}_{\mathrm{e}} = \frac{4\mathbf{A}}{\mathbf{p}}$$

$$\mathbf{A} = \frac{1}{4} \pi \left(\mathbf{D}_2^2 - \mathbf{D}_1^2 \right)$$

L'échange a lieu entre le fluide et la paroi intérieur du tube extérieur

$$\mathbf{p} = \pi \mathbf{D}_2$$

et donc

$$\mathbf{D}_{\mathrm{e}} = \frac{\mathbf{D}_{2}^{2} - \mathbf{D}_{1}^{2}}{\mathbf{D}_{2}}$$

Circulation d'un fluide en convection forcée Calcul du diamètre équivalent

Cas où le fluide circule dans l'espace Compris entre une enveloppe et n tubes

$$\mathbf{D_e} = \frac{\mathbf{4A}}{\mathbf{p}}$$

$$\mathbf{A} = \frac{1}{4} \pi \left(\mathbf{D}_2^2 - \mathbf{n} \mathbf{D}_1^2 \right)$$

$$\mathbf{p} = \mathbf{n}\pi \mathbf{D}_1$$

$$\mathbf{D}_{\mathrm{e}} = \frac{\mathbf{D}_{2}^{2} - \mathbf{n}\mathbf{D}_{1}^{2}}{\mathbf{n}\mathbf{D}_{1}}$$

Exemples de valeurs de h

Fluide en convection libre

Cas d'un tube placé dans une pièce (permet de déterminer les pertes thermiques)

$$\mathbf{h} = \mathbf{h}_{\text{rayonnement}} + \mathbf{h}_{\text{convection}}$$

h en kcal h⁻¹m⁻¹K⁻¹

Diamètre du tube	ΔT (°C ou K)			
(mm)	28	56	83	111
25	11	12,2	13,3	14,7
76	10	11	12,1	13,3
111	9,5	10,5	11,5	12,8

Circulation d'un fluide en convection forcée

Cas d'un écoulement autours d'un cylindre : 4 régimes d'écoulement

Unseparated flow

Pair of vortices in the wake

4 < Re < 60

60 < Re < 5000 Periodic vortices

Re > 5000 Highly turbulent wake

Circulation d'un fluide en convection forcée

Cas d'un écoulement autours d'un cylindre :

Relation de Whitaker

Nu =
$$\left[0.4 \,\mathrm{Re}^{0.5} + 0.06 \,\mathrm{Re}^{\frac{2}{3}}\right] \mathrm{Pr}^{0.4} \left[\frac{\mu}{\mu_{\mathrm{s}}}\right]^{0.25}$$

avec

$$0.25 < \mu/\mu_s < 5.2$$

Relation de Churchill

$$Nu = 0.3 + \frac{0.62 \, \text{Re}^{0.5} \, \text{Pr}^{\frac{1}{3}}}{\left[1 + \left(\frac{0.4}{\text{Pr}}\right)^{\frac{2}{3}}\right]^{0.25}} \left[1 + \left(\frac{\text{Re}}{282000}\right)^{\frac{5}{8}}\right]^{\frac{7}{5}}$$

avec

$$100 < \text{Re} < 10^7$$

Pe=RePr > 0.2

Pierre Le Cloirec

Circulation d'un fluide en convection forcée

Cas d'un écoulement autours d'un cylindre :

Ecoulement autours d'un obstacle non cylindrique

$$Nu_{m} = c \left(\frac{D_{e}U\rho}{\mu}\right)^{n}$$

$$Nu_m = cRe_e^n$$

$Re = \frac{u_{\infty}D_{e}}{v}$	n	c
5,000-100,000	0.588	0.222
2,500-15,000	0.612	0.224
2,500-7500	0.624	0.261
5,000-100,000	0.638	0.138
5,000-19,500	0.638	0.144
5,000-100,000	0.675	0.092
2,500-8,000	0.699	0.160
4,000-15,000	0.731	0.205
19,500-100,000	0.782	0.035
3,000-15,000	0.804	0.085
	2,500-15,000 2,500-7500 5,000-100,000 5,000-19,500 5,000-100,000 2,500-8,000	2,500-15,000 0.612 2,500-7500 0.624 5,000-100,000 0.638 5,000-19,500 0.638 5,000-100,000 0.675 2,500-8,000 0.699 4,000-15,000 0.731 19,500-100,000 0.782

écoulement autours d'un obstacle non cylindrique

$$Nu = C \left(\frac{D_e U \rho}{\mu}\right)^m \left(\frac{C_p \mu}{K}\right)^{0.35}$$

$$Nu = C(Re)^m (Pr)^{0.35}$$

·				
	Red	С	m	
→ \(\sum_{d} \)	5.10 ³ à 10 ⁸	0,25	0,588	
[d	2,5.10 ³ à 8.10 ³ 5.10 ³ à 10 ⁵	0,180 0,104	0,699 0,675	
\longrightarrow \bigcirc $[d]$	2,5.10 ³ à 1,5.10 ⁴	0,25	0,612	
() [d	3.10 ³ à 1,5.10 ⁴	0,096	0,804	
	5.10 ³ à 10 ⁸	0,156	0,638	
- O Id	5.10 ³ à 1,9510 ⁴ 1,95.10 ⁴ à 10 ⁵	0,162 0,0395	0,638 0,782	
→ 2/1 [d	3.10 ³ à 2.10 ⁴	0,264	0,66	
<u>[</u> d	4.10 ³ à 1,5.10 ⁴	0,232	0,731	
$\frac{1}{1} \sqrt{2} \left[d \right]$	3.10 ³ à2.10 ⁴	0,246	0,61	

écoulement autours d'une sphère

Au point d'arrêt

$$Nu_{(\alpha=0^{\circ})} = 0.37 \, Re^{0.53}$$

$$4,4\ 10^4$$
 < Re < 1,5 10^5

Valeur moyenne : Relation de Whitaker

$$\overline{Nu} = 2 + \left(0.4 \, \text{Re}^{0.5} + 0.06 \, \text{Re}^{\frac{2}{3}}\right) \text{Pr}^{0.4} \left(\frac{\mu}{\mu_s}\right)^{\frac{1}{4}}$$
3.5 < Re < 7.6 10⁴
0.71 < Pr < 380
1.0 < μ/μ_s < 3.2

Valeur moyenne : Relation de Katsnel'son et Timofeyeva

$$Nu = 2 + 0.03 Pr^{0.33} Re^{0.54} + 0.35 Pr^{0.36} Re^{0.58}$$

$$\forall Re$$

$$0.71 < Pr < 380$$
 $1.0 < \mu/\mu_s < 3.2$

écoulement autours d'une sphère

Transfert avec changement d'état

Condensation

Condensation

Vapeur saturé

+

Contact avec une paroi froide

=

Condensation en film ou en gouttes

Condensation en film

Condensation en gouttes

Condensation en film

Exemple de coefficients d'échange pour une condensation en film

Condensation sur un seul tube vertical

$$h = 0.925 \left(\frac{K^3 \rho^2 g}{\mu \Gamma}\right)^{\frac{1}{3}}$$

$$Re = \frac{4\Gamma}{\mu}$$

$$Re < 2100$$

$$\Gamma = \frac{W}{\pi D}$$

W: flux totale de condensat (kg s⁻¹)

K, ρ et μ sont les paramètres du fluide à l'état liquide à une température T définie par :

$$T = \frac{1}{4} \left(T_{v} - 3T_{P} \right)$$

T_v : température de la vapeur

T_P: température de paroi

Exemple de coefficients d'échange pour une condensation en film

Condensation sur un seul tube horizontal

$$h = 0.95 \left(\frac{K^3 \rho^2 g}{\mu \Gamma}\right)^{\frac{1}{3}}$$

$$Re = \frac{4\Gamma}{\mu}$$

$$Re < 2100$$

$$\Gamma$$

 $\Gamma = \frac{\mathbf{W}}{\mathbf{D}}$

W: flux totale de condensat (kg s⁻¹)

n: nombre de tubes

K, ρ et μ sont les paramètres du fluide à l'état liquide

à une température T définie par :

 $T = \frac{1}{4} \left(T_{v} + 3T_{P} \right)$

 T_v : température de la vapeur

T_P: température de paroi

Exemple de coefficients d'échange pour une condensation en film

Condensation sur de plusieurs tubes verticaux

Echangeur tubulaire à faisceau

$$h = 0.925 \left(\frac{K^3 \rho^2 g}{\mu \Gamma}\right)^{1/3}$$

$$Re = \frac{4\Gamma}{\mu} \qquad Re < 2100$$

 $\Gamma = \frac{\mathbf{W}}{\mathbf{n}\pi\mathbf{D}}$

W: flux totale de condensat (kg s⁻¹)

n: nombre de tubes

K, ρ et μ sont les paramètres du fluide à l'état liquide à une température T définie par :

$$T = \frac{1}{4} \left(T_{v} - 3T_{P} \right)$$

T_v : température de la vapeur

T_P: température de paroi

Exemple de coefficients d'échange pour une condensation en film

Condensation sur de plusieurs tubes horizontaux Echangeur tubulaire à faisceau

Les tubes sont dans le même plan horizontal

$$\mathbf{h} = 0.95 \left(\frac{\mathbf{K}^3 \rho^2 \mathbf{g}}{\mu \Gamma} \right)^{1/3}$$

$$Re = \frac{4\Gamma}{\Pi} \qquad Re < 2100$$

$$\Gamma = \frac{\mathbf{W}}{\mathbf{n}\mathbf{D}}$$

Exemple de coefficients d'échange pour une condensation en film

Condensation sur de plusieurs tubes horizontaux Echangeur tubulaire à faisceau

Les tubes sont dans un volume

$$h = 0.95 \left(\frac{K^3 \rho^2 g}{\mu \Gamma}\right)^{\frac{1}{3}}$$

$$Re = \frac{4\Gamma}{\Pi} \qquad Re < 2100$$

$$\Gamma = \frac{\mathbf{W}}{\mathbf{n}^{2/3}\mathbf{D}}$$

Le liquide condensé tombe sur les tubes en position inférieure Les échanges sont perturbés

Transfert avec changement d'état

Ebullition

Ebullition - Description du phénomène

Cas d'un liquide en ébullition sur une plaque chauffée

Phénomène fonction de la :

- Rugosité de surface
 Favorise la formation de bulle et l'amorce de l'ébullition
- Mouillabilité de la surface les bulles se détachent si la surface est mouillée par le liquide (cas n° 1)

Ebullition - Description du phénomène

Cas d'un liquide en ébullition sur une plaque chauffée

$$h = f(\Delta T)$$

· ΔT faible

ΔT critique (ΔT_c)

le nombre de bulles importante nappe gazeuse entre le liquide et la paroi mauvais échange thermique h décroit

Ebullition - Exemple de valeur de h Ebullition de l'eau

 $\Delta T_c = 30^{\circ} C$

Ebullition et bruit

- · Avant l'ébullition frémissement
 - Formation de bulles sur la surface chaude
 - Transfert de chaleur de la bulle dans la phase liquide plus froide
 - Condensation de la vapeur
 - Contraction et disparition de la bulle
 - Mouvement brutale implique une onde de choc
- · A l'ébullition
 - Eclatement de bulles de vapeur à la surface
 - Onde de choc en surface

Transfert global de chaleur

Calorifugeage

D₁ : diamètre intérieur

D₂ : diamètre extérieur

x : épaisseur du calorifugeage

K₁ : conductivité du métal

K₂ : conductivité du calorifugeage

L : longueur de la canalisation

Exemple d'un transfert de chaleur dans une conduite

$$T_1' > T_1 > T_2 > T_0$$

$$\begin{aligned} &\textit{Convection } \textbf{T}_1' - \textbf{T}_1 \\ &\Phi = h_1 A_1 (\textbf{T}_1' - \textbf{T}_1) \\ &\textit{Conduction } \textbf{T}_1 - \textbf{T}_2 \\ &\Phi = 2\pi L K_1 (\textbf{T}_1 - \textbf{T}_2) \frac{1}{Ln \frac{\textbf{D}_2}{\textbf{D}_1}} \\ &\textit{Convection } \textbf{T}_2 - \textbf{T}_0 \end{aligned}$$

$$\mathbf{A}_1 = \pi \mathbf{L} \mathbf{D}_1 \qquad \mathbf{A}_2 = \pi \mathbf{L} \mathbf{D}_2$$

Exemple d'un transfert de chaleur dans une conduite

$$\frac{\Phi}{\pi L} \left[\frac{1}{h_1 D_1} + \frac{Ln \binom{D_2}{D_1}}{2K_1} + \frac{1}{h_2 D_2} \right] = T_1' - T_0$$

Exemple d'un transfert de chaleur dans une conduite

$$\frac{\mathbf{T}_{1}^{\prime} \quad \mathbf{T}_{1}^{\prime}}{\pi \mathbf{L}} \begin{bmatrix} \mathbf{T}_{0} \\ \mathbf{T}_{1}^{\prime} \end{bmatrix} + \frac{\mathbf{L} \mathbf{n} \begin{pmatrix} \mathbf{D}_{2} \\ \mathbf{D}_{1} \end{pmatrix}}{2\mathbf{K}_{1}} + \frac{1}{\mathbf{h}_{2} \mathbf{D}_{2}} \end{bmatrix} = \mathbf{T}_{1}^{\prime} - \mathbf{T}_{0}$$

$$T_1' - T_0 = \Phi[R_1 + R_2 + R_3]$$

$$\mathbf{T}_{1}' - \mathbf{T}_{0} = \mathbf{\Phi}\mathbf{R}$$

$$\mathbf{A}_1 = \pi \mathbf{L} \mathbf{D}_1$$

$$\mathbf{A}_3 = \pi \mathbf{L} \big(\mathbf{D}_2 + 2\mathbf{x} \big)$$

$$\begin{split} &\textit{Convection } \textbf{T}_1\text{'} - \textbf{T}_1\\ &\Phi = h_1 A_1 (\textbf{T}_1^{'} - \textbf{T}_1)\\ &\textit{Conduction } \textbf{T}_1 - \textbf{T}_2\\ &\Phi = 2\pi L K_1 (\textbf{T}_1 - \textbf{T}_2) \frac{1}{Ln \frac{\textbf{D}_2}{\textbf{D}_1}}\\ &\textit{Conduction } \textbf{T}_2 - \textbf{T}_3\\ &\Phi = 2\pi L K_2 (\textbf{T}_2 - \textbf{T}_3) \frac{1}{Ln \frac{\textbf{D}_2 + 2x}{\textbf{D}_2}}\\ &\textit{Convection } \textbf{T}_3 - \textbf{T}_0\\ &\Phi = h_2 A_3 (\textbf{T}_3 - \textbf{T}_0) \end{split}$$

$$\frac{\Phi}{2\pi L} \left[\frac{2}{h_1 D_1} + \frac{Ln \left(\frac{D_2}{D_1}\right)}{K_1} + \frac{Ln \left(\frac{D_2 + 2x}{D_2}\right)}{K_2} + \frac{2}{h_2 \left(D_2 + 2x\right)} \right] = T_1' - T_0$$

$$T_1' - T_0 = \Phi[R_1 + R_2 + R_3 + R_4]$$

$$\mathbf{T}_{1}' - \mathbf{T}_{0} = \mathbf{\Phi}\mathbf{R}$$

Etude de la fonction R(x)

$$\mathbf{T}_{1}^{'}-\mathbf{T}_{0}=\mathbf{\Phi}\mathbf{R}$$

$$R = \frac{1}{2\pi L} \left[\frac{2}{h_1 D_1} + \frac{Ln \left(\frac{D_2}{D_1}\right)}{K_1} + \frac{Ln \left(\frac{D_2 + 2x}{D_2}\right)}{K_2} + \frac{2}{h_2 (D_2 + 2x)} \right]$$

$$\frac{dR}{dx} = \frac{1}{2\pi L} \left[\frac{2}{K_2(D_2 + 2x)} - \frac{4}{h_2(D_2 + 2x)^2} \right]$$

Etude de la fonction R(x)

$$\frac{dR}{dx} = \frac{1}{2\pi L} \left[\frac{2}{K_2(D_2 + 2x)} - \frac{4}{h_2(D_2 + 2x)^2} \right]$$

$$\frac{dR}{dx} = \frac{1}{\pi L} \frac{h_2(D_2 + 2x) - 2K_2}{h_2 K_2(D_2 + 2x)^2}$$

$$\frac{dR}{dx} = 0$$
 si $h_2(D_2 + 2x_0) = 2K_2$ soit $x_0 = \frac{K_2}{h_2} - \frac{D_2}{2}$

$$\frac{dR}{dx} > 0$$
 si $h_2(D_2 + 2x) > 2K_2$ soit $x > \frac{K_2}{h_2} - \frac{D_2}{2}$