# 17.Extend the I/O port of V-1 board

### **ABOUT THIS PROJECT:**

## You will learn:



How to use the 74HC595 Shift Register to extend the i/O port of V-1 board

Things used in this project:

| Hardware components       | Picture                                 | Quantity |
|---------------------------|-----------------------------------------|----------|
| V-1 board                 |                                         | 1 PCS    |
| Breadboard                |                                         | 1 PCS    |
| 9V Battery Snap Connector |                                         | 1 PCS    |
| Breadboard power module   | EXT | 1 PCS    |
| Male to Male DuPont Line  |                                         | 19 PCS   |
| 30CM USB cable            |                                         | 1 PCS    |
| F3 Red LED Light          |                                         | 2 PCS    |
| F3 Green LED Light        |                                         | 2 PCS    |
| F3 Blue LED Light         |                                         | 2 PCS    |
| F3 White LED Light        |                                         | 2 PCS    |
| 74HC595 Shift Register    | REFERE                                  | 1 PCS    |
| 220R Resistor             |                                         | 8 PCS    |

1

### 1. About 74HC595 Shift Register

The 74HC/HCT595 is an 8-stage serial shift register with a storage register and 3-state outputs. The shift register and storage register have separate clocks.

Data is shifted on the positive-going transitions of the SH\_CP input. The data in each register is transferred to the storage register on a positive-going transition of the ST\_CP input. If both clocks are connected together, the shift register will always be one clock pulse ahead of the storage register.

The shift register has a serial input (DS) and a serial standard output (Q7') for cascading. It is also provided with asynchronous reset (active LOW) for all 8 shift register stages. The storage register has 8 parallel 3-state bus driver outputs. Data in the storage register appears at the output whenever the output enable input (OE) is LOW.

#### **PINOUT:**



| PIN | SYMBOL | DESCRIPTION                  |  |
|-----|--------|------------------------------|--|
| 1   | Q1     | parallel data output         |  |
| 2   | Q2     | parallel data output         |  |
| 3   | Q3     | parallel data output         |  |
| 4   | Q4     | parallel data output         |  |
| 5   | Q5     | parallel data output         |  |
| 6   | Q6     | parallel data output         |  |
| 7   | Q7     | parallel data output         |  |
| 8   | GND    | ground (0 V)                 |  |
| 9   | Q7'    | serial data output           |  |
| 10  | MR     | master reset (active LOW)    |  |
| 11  | SH_CP  | shift register clock input   |  |
| 12  | ST_CP  | storage register clock input |  |
| 13  | ŌĒ     | output enable (active LOW)   |  |
| 14  | DS     | serial data input            |  |
| 15  | Q0     | parallel data output         |  |
| 16  | Vcc    | positive supply voltage      |  |

## Timing diagram:



## 2. Extend your Arduino with one shift register

When you want V-1 board to drive multiple peripherals, such as LEDs, IO resources may not be enough. You can use IO expansion chips, such as 74HC595. The main statements used in this section are: shiftOut(); The specific usage can refer to This page: <a href="https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/">https://www.arduino.cc/reference/en/language/functions/advanced-io/shiftout/</a> Or open IDE:help-->Reference-->Advanced I/O--->shiftOut().

#### 2.1 Sketch

```
void led_display(void){
 for(int i;i<8;i++)
    digitalWrite(latchPin,LOW);
    shiftOut(dataPin, clockPin, MSBFIRST ,leds[i]);
    digitalWrite(latchPin,HIGH);
    delay(500);
.
.
.
void setup (){
 pinMode(latchPin,OUTPUT);
 pinMode(clockPin,OUTPUT);
 pinMode(dataPin,OUTPUT);
 led clear();
void loop(){
 led display();
```

## 2.2 Wiring the LEDs and 74HC595 Shift Register to V-1 board





### **2.3 Steps:**

2.3.1. Connect the computer to the V-1 board with a USB cable and copy the sample code above to the Arduino IDE:

```
oo led_display | Arduino 1.8.5
                                                                  X
File Edit Sketch Tools Help
   led_display
int clockPin = 8; //SH_CP
int latchPin = 9; //ST_CP
int dataPin = 10; //DS
int leds[8]={0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f};
void led_clear(void){
 digitalWrite(latchPin, LOW);
 shiftOut(dataPin, clockPin, MSBFIRST , 0xff);
 digitalWrite(latchPin, HIGH);
void led_display(void) {
 for (int i; i <8; i++)
    digitalWrite(latchPin, LOW);
    shiftOut(dataPin, clockPin, MSEFIRST ,leds[i]);
    digitalWrite(latchPin, HIGH);
    delay(500);
```

#### 2.3.2 Select board type



#### 2.3.3 Select port



#### 2.3.4 Compile the sketch

```
oo led_display | Arduino 1.8.5
                                                                     ×
File Edit Sketch Tools Help
 Ted_display
int clockPin = 8; //SH_CP
int latchPin = 9; //ST_CP
int dataPin = 10; //DS
int leds[8]={0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f};
void led_clear(void){
 digitalWrite(latchPin, LOW);
 shiftOut(dataPin, clockPin, MSBFIRST , 0xff);
 digitalWrite(latchPin, HIGH);
void led_display(void) {
 for (int i; i <8; i++)
    digitalWrite(latchPin, LOW);
    shiftOut(dataPin, clockPin, MSBFIRST ,leds[i]);
    digitalWrite(latchPin, HIGH);
    delay(500);
    }
Done compiling.
Sketch uses 1118 bytes (3%) of program storage space. Maximum is 32256 bytes.
Global variables use 25 bytes (1%) of dynamic memory, leaving 2023 bytes for local variables
```

#### 2.3.5 Upload the sketch

```
    led_display | Arduino 1.8.5

                                                                   П
                                                                         X
File Edit Sketch Tools Help
        led_lisplay
int clockPin = 8; //SH_CP
int latchPin = 9; //ST_CP
int dataPin = 10; //DS
int leds[8]={0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f};
void led_clear(void){
 digitalWrite(latchPin, LOW);
 shiftOut(dataPin, clockPin, MSBFIRST , 0xff);
 digitalWrite(latchPin, HIGH);
void led_display(void) {
  for (int i; i <8; i++)
    {
    digitalWrite(latchPin, LOW);
    shiftOut(dataPin, clockPin, MSBFIRST ,leds[i]);
    digitalWrite(latchPin, HIGH);
    delay(500);
    }
Done uploading.
                                                      Arduino/Genuino Uno on COM3
```

2.3.6. Unplug the USB cable from the V-1 board, connect the external power supply to the power module, and then turn on the power switch on the power module. The LED lights on the breadboard will light up from right to left, as shown below.

