

Global United Technology Services Co., Ltd.

Report No: GTSE11110088502

FCC REPORT (Bluetooth)

Applicant: SHENZHEN KENXINDA TECHNOLOGY CO.,LTD

Address of Applicant: 18TH FLOOR, FUCHUN ORIENT BUILDING, SHENNAN AV

7006, SHENZHEN, CHINA

Equipment Under Test (EUT)

Product Name: GSM MOBILE PHONE

Model No.: S-350

Trade mark: **SEFTON**

ZSHS-350 FCC ID:

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247:2010

Date of sample receipt: Nov. 1, 2011

Date of Test: Nov. 1-14, 2011

Date of report issued: Nov. 16, 2011

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the GTS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards. Any mention of GTS International Electrical Approvals or testing done by GTS International Electrical Approvals in connection with, distribution or use of the product described in this report must be approved by GTS International Electrical Approvals in writing.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only."

2 Version

Version No.	Date	Description
00	Nov. 16, 2011	Original

Prepared by:	Collan. He	Date:	Nov. 16, 2011	
	Project Engineer			
Reviewed by:	Hams. Hu	Date:	Nov. 16, 2011	
	Reviewer	_		

3 Contents

			Page
1	CC	OVER PAGE	1
2	VE	ERSION	2
		ONTENTS	
3			
4	TE	ST SUMMARY	4
5	GE	ENERAL INFORMATION	5
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T.	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	TEST FACILITY	7
	5.5	TEST LOCATION	
	5.6	OTHER INFORMATION REQUESTED BY THE CUSTOMER	
	5.7	TEST INSTRUMENTS LIST	8
6	TE	ST RESULTS AND MEASUREMENT DATA	9
	6.1	Antenna requirement:	9
	6.2	CONDUCTED EMISSIONS	
	6.3	CONDUCTED PEAK OUTPUT POWER	13
	6.4	20DB OCCUPY BANDWIDTH	15
	6.5	CARRIER FREQUENCIES SEPARATION	
	6.6	HOPPING CHANNEL NUMBER	
	6.7	DWELL TIME.	
	6.8	BAND EDGE	
	6.9	RF ANTENNA CONDUCTED SPURIOUS EMISSIONS	
	6.10	PSEUDORANDOM FREQUENCY HOPPING SEQUENCE	
	6.11	RADIATED EMISSION	
		11.1 Transmitter emission below1GHz	
		11.2 Transmitter emission above 1GHz	
		,	
7	TE	ST SETUP PHOTO	37
R	FU	IT CONSTRUCTIONAL DETAILS	35

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111100881RF

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna Requirement	15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	15.207	PASS
Conducted Peak Output Power	15.247 (b)(1)	PASS
20dB Occupied Bandwidth	15.247 (a)(1)	PASS
Carrier Frequencies Separation	15.247 (a)(1)	PASS
Hopping Channel Number	15.247 (a)(1)	PASS
Dwell Time	15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	PASS
Radiated Emission	15.205/15.209	PASS
Band Edge	15.247(d)	PASS

Pass: The EUT complies with the essential requirements in the standard.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111100881RF

Page 4 of 38

5 General Information

5.1 Client Information

Applicant:	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD
Address of Applicant:	18TH FLOOR,FUCHUN ORIENT BUILDING,SHENNAN AV 7006,SHENZHEN,CHINA
Manufacturer:	SHENZHEN KENXINDA TECHNOLOGY CO.,LTD BAO'AN BRANCH
Address of Manufacturer:	1-6 FLOOR,NO.105 WORK SHOP&1-5 FLOOR,NO.104 WORKSHOP,XINWEIHUANINGROAD,DALANG COMMUNITY, DALANGSTREET,BAO'AN DISTRICT,SHENZHEN, P.R.CHINA

5.2 General Description of E.U.T.

Product Name:	GSM MOBILE PHONE
Model No.:	S-350
Trade mark:	SEFTON
Operation Frequency:	2402MHz~2480MHz
Channel numbers:	79
Channel separation:	1MHz
Modulation type:	GFSK
Antenna Type:	Integral
Antenna gain:	2dBi
Power supply:	Li-ion Battery Voltage: DC 3.7V 900mAh
AC adapter:	Model No:HWT-2.5W-5050G Input: AC 100-240V 50/60Hz Output: DC 5V 500mA

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 5 of 38

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	21	2422MHz	41	2442MHz	61	2462MHz
2	2403MHz	22	2423MHz	42	2443MHz	62	2463MHz
3	2404MHz	23	2424MHz	43	2444MHz	63	2464MHz
4	2405MHz	24	2425MHz	44	2445MHz	64	2465MHz
5	2406MHz	25	2426MHz	45	2446MHz	65	2466MHz
6	2407MHz	26	2427MHz	46	2447MHz	66	2467MHz
7	2408MHz	27	2428MHz	47	2448MHz	67	2468MHz
8	2409MHz	28	2429MHz	48	2449MHz	68	2469MHz
9	2410MHz	29	2430MHz	49	2450MHz	69	2470MHz
10	2411MHz	30	2431MHz	50	2451MHz	70	2471MHz
11	2412MHz	31	2432MHz	51	2452MHz	71	2472MHz
12	2413MHz	32	2433MHz	52	2453MHz	72	2473MHz
13	2414MHz	33	2434MHz	53	2454MHz	73	2474MHz
14	2415MHz	34	2435MHz	54	2455MHz	74	2475MHz
15	2416MHz	35	2436MHz	55	2456MHz	75	2476MHz
16	2417MHz	36	2437MHz	56	2457MHz	76	2477MHz
17	2418MHz	37	2438MHz	57	2458MHz	77	2478MHz
18	2419MHz	38	2439MHz	58	2459MHz	78	2479MHz
19	2420MHz	39	2440MHz	59	2460MHz	79	2480MHz
20	2421MHz	40	2441MHz	60	2461MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2441MHz
The Highest channel	2480MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

5.3 Test environment and mode

Operating Environment:				
Temperature:	25.0 °C			
Humidity:	45 % RH			
Atmospheric Pressure:	1050 mbar			
Test mode:				
Bluetooth mode	Keep the EUT in communicating mode on Bluetooth function.			

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

● FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, July 20, 2010.

● Industry Canada (IC)

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-1.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen,

China

Tel: 0755-27798480 Fax: 0755-27798960

5.6 Other Information Requested by the Customer

None.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 7 of 38

5.7 Test Instruments list

Radia	Radiated Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	Mar. 30 2011	Mar. 29 2012
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	Jul. 04 2011	Jul. 03 2012
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	Feb. 26 2011	Feb. 25 2012
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 30 2011	June 29 2012
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	Mar. 30 2011	Mar. 29 2012
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A
8	Coaxial Cable	GTS	N/A	GTS213	Apr. 01 2011	Mar. 31 2012
9	Coaxial Cable	GTS	N/A	GTS211	Apr. 01 2011	Mar. 31 2012
9	Coaxial cable	GTS	N/A	GTS210	Apr. 01 2011	Mar. 31 2012
11	Coaxial Cable	GTS	N/A	GTS212	Apr. 01 2011	Mar. 31 2012
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	Jul. 04 2011	Jul. 03 2012
13	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	Jul. 04 2011	Jul. 03 2012
14	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	Apr. 01 2011	Mar. 31 2012
15	Band filter	Amindeon	82346	GTS219	Apr. 01 2011	Mar. 31 2012
16	Universal radio communication tester	Rohde & Schwarz	CMU200	GTS235	May 11 2011	May 11 2012
17	Signal Generator	Rohde & Schwarz	SML03	GTS236	May 11 2011	May 11 2012
18	Temp. Humidity/ Barometer	Oregon Scientific	BA-888	GTS248	May 11 2011	May 11 2012
19	D.C. Power Supply	Instek	PS-3030	GTS232	NA	NA
20	Splitter	Agilent	11636B	GTS237	May 11 2011	May 11 2012

Cond	Conducted Emission:					
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS252	Jul. 04 2011	Jul. 03 2012
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	Jul. 04 2011	Jul. 03 2012
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	Jul. 04 2011	Jul. 03 2012
4	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	Jul. 04 2011	Jul. 03 2012
5	Coaxial Cable	GTS	N/A	GTS227	Apr. 01 2011	Mar. 31 2012
6	EMI Test Software	AUDIX	E3	N/A	N/A	N/A

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 8 of 38

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The antenna is integrated metal foil antenna. The best case gain of the antenna is 2dBi.

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 9 of 38

6.2 Conducted Emissions

	T				
Test Requirement:	FCC Part15 C Section 15.207				
Test Method:	ANSI C63.4: 2009				
Test Frequency Range:	150KHz to 30MHz				
Class / Severity:	Class B				
Receiver setup:	RBW=9KHz, VBW=30KHz				
Limit:	Fraguerov range (MHz)	Limit (d	dBuV)		
	Frequency range (MHz) Quasi-peak Average				
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
Test procedure	* Decreases with the logarithm The E.U.T and simulators are				
	coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refers to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement.				
Test setup:	Reference Plane				
	Test table/Insulation pla Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilizatio		er — AC power		
Took In ohm was a set as	Test table height=0.8m				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 10 of 38

Measurement Result:

Line:

Condition : FCC PART15 CLASSB QP LISN(2011) LINE

: 885RF : Bluetooth mode Job No. Test Mode

Test Engineer: Collin

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1 2 3 4 5 6 7 8 9 10 11	0.365 0.365 0.634 0.634 1.456 1.456 2.978 2.978 7.606 7.606 28.755	41. 65 32. 58 40. 66 32. 16 40. 64 31. 99 31. 88 22. 26 24. 95 15. 58 21. 32	0.59 0.59 0.53 0.53 0.44 0.44 0.36 0.36 0.25 0.25	0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.17 0.17	42. 34 33. 27 41. 29 32. 79 41. 18 32. 53 32. 34 22. 72 25. 37 16. 00 21. 65	48.61 56.00 46.00 56.00 46.00 56.00 46.00 50.00	-14.71 -13.21 -14.82 -13.47 -23.66 -23.28 -34.63	Average QP Average QP Average QP Average QP Average QP Average
12	28.755	13.59	0.10	0.23	13.92	50.00	-36.08	Average

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111100881RF

Project No.: GTSE111100881RF

Neutral:

Condition : FCC PART15 CLASSB QP LISN(2011) NEUTRAL

Job No.

: 885RF : Bluetooth mode Test Mode

Test Engineer: Collin

	Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBuV	dB	dB	dBuV	dBuV	dB	
1	0.363	42.96	0.59	0.10	43.65	58.65	-15.00	QP
2	0.363	33.38	0.59	0.10	34.07	48.65	-14. 58	Average
3	0.541	44.16	0.55	0.10	44.81	56.00	-11.19	QP
4 5	0.541	35.56	0.55	0.10	36.21	46.00	-9.79	Average
5	1.000	47.13	0.48	0.10	47.71	56.00	-8.29	QP
6	1.000	37.16	0.48	0.10	37.74	46.00	-8.26	Average
7	1.819	45.83	0.41	0.10	46.34	56.00	-9.66	QP
8	1.819	36.55	0.41	0.10	37.06	46.00	-8.94	Average
9	3.173	40.26	0.35	0.10	40.71	56.00	-15.29	QP
10	3.173	31.18	0.35	0.10	31.63	46.00	-14.37	Average
11	8.456	31.58	0.24	0.18	32.00	60.00	-28.00	QP
12	8.456	22.29	0.24	0.18	22.71	50.00	-27.29	Average

Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

6.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 C Section 15.247 (b)(3)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=3MHz, VBW=3MHz, Detector=Peak	
Limit:	30dBm	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data

GFSK mode				
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result	
Lowest	-0.29	30.00	Pass	
Middle	-0.76	30.00	Pass	
Highest	-0.90	30.00	Pass	

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 13 of 38

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.4 20dB Occupy Bandwidth

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=30KHz, VBW=100KHz,detector=Peak	
Limit:	NA	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data		
	20dB Occupy Bandwidth (kHz)	
Test channel	GFSK	
Lowest	1050	
Middle	1044	
Highest	1044	

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 15 of 38

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.5 Carrier Frequencies Separation

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=100KHz, VBW=300KHz, detector=Peak	
Limit:	0.025MHz or 2/3 of the 20dB bandwidth (whichever is greater)	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data	Measurement Data				
	GFSK mode				
Test channel	Carrier Frequencies Separation (KHz)	Limit (kHz)	Result		
Lowest	1002	700	Pass		
Middle	1002	700	Pass		
Highest	1002	700	Pass		

Note: According to section 6.4,

· · · · · · · · · · · · · · · · · · ·				
Mode	20dB bandwidth (KHz)	Limit (kHz)		
Wode	(worse case)	(Carrier Frequencies Separation)		
GFSK	1050	700		

Test plot as follows:

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 17 of 38

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.6 Hopping Channel Number

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)	
Test Method:	ANSI C63.4:2009 and KDB DA00-705	
Receiver setup:	RBW=100KHz, VBW=300KHz, Frequency range=2400MHz-2483.5MHz, Detector=Peak	
Limit:	15channels	
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane	
Test Instruments:	Refer to section 5.7 for details	
Test mode:	Refer to section 5.3 for details	
Test results:	Pass	

Measurement Data		
Mode	Hopping channel numbers	Limit
GFSK	79	15

Test plot as follows

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 19 of 38

6.7 Dwell Time

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)		
Test Method:	ANSI C63.4:2009 and KDB DA00-705		
Receiver setup:	RBW=1MHz, VBW=1MHz, Span=0Hz, Detector=Peak		
Limit:	0.4 Second		
Test mode:	Hopping transmitting with all kind of modulation.		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane		
Test Instruments:	Refer to section 5.7 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement Data										
Mode	Packet	Dwell time (second)	Limit (second)							
	DH1	0.1414	0.4							
GFSK	DH3	0.2736	0.4							
	DH5	0.3155	0.4							

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

The lowest channel (2402MHz), middle channel (2441MHz), highest channel (2480MHz) as below

DH1 time slot=0.442(ms)*(1600/ (2*79))*31.6=141.44ms

DH3 time slot=1.71(ms)*(1600/ (4*79))*31.6=273.60ms

DH5 time slot=2.96(ms)*(1600/ (6*79))*31.6=315.54ms

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 20 of 38

Test plot as follows

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

6.8 Band Edge

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2009 and KDB DA00-705				
Receiver setup:	RBW=100KHz, VBW=300KHz, Detector=Peak				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 22 of 38

Project No.: GTSE111100881RF

Test plot as follows:

Hopping off:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Highest

Hopping on:

Test mode: GFSK Test channel: Lowest

Test mode: GFSK Test channel: Highest

Project No.: GTSE111100881RF

6.9 RF Antenna Conducted spurious emissions

Test Requirement:	FCC Part15 C Section 15.247 (d)				
Test Method:	ANSI C63.4:2009 and KDB DA00-705				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.				
Test setup:					
Test Instruments:	Ground Reference Plane				
	Refer to section 5.7 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Pass				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 25 of 38

Test mode:	GFSK	Test channel:	Lowest
1 CSt IIIOGC.	OI OIX	i Cot Griaririoi.	LOWCSI

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 26 of 38

Test mode:	GFSK	Test channel:	Middle
i col illouc.		i col chamic.	IVIIGGIC

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 27 of 38

	0-0.7		
Loot modo:	I CECK	Loct channel:	Lighoot
l lest mode:	IGFON	l lest channel:	l Highest

30MHz~10GHz

10GHz~25GHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111100881RF

6.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: FCC Part15 C Section 15.247 (a)(1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Alternatively. Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

EUT Pseudorandom Frequency Hopping Sequence

The pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- Number of shift register stages: 9
- Length of pseudo-random sequence: 2⁹-1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.

The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 29 of 38

6.11 Radiated Emission

Test Requirement:	FCC Part15 C Section 15.209 and 15.205								
Test Method:	ANSI C63.4: 2009								
Test Frequency Range:	30MHz to 25GHz								
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)								
Receiver setup:	mada.c.mon Diotanos. om (Comi / Moonolo Onambor)								
·	Frequency	Detector	RBW	VBW	Remark				
	30MHz-1GHz	Quasi-peak	100KHz	300KHz	Quasi-peak Value				
	Above 1GHz	Peak	1MHz	3MHz	Peak Value				
	7.0070 7.01.12	Average	1MHz	10Hz	Average Value				
Limit:		1	1: :: / ID 1/	/ 60 \					
	Freque	-	Limit (dBuV		Remark				
	30MHz-8		40.0		Quasi-peak Value				
	88MHz-21		43.5 46.0		Quasi-peak Value				
	216MHz-9 960MHz-		54.0		Quasi-peak Value				
	9001011 12-	TGHZ	54.0		Quasi-peak Value Average Value				
	Above 1	GHz	74.0		Peak Value				
Test Procedure:	the ground rotated 360 radiation. b. The EUT wantenna, who tower. c. The antennation ground to domorizontal atthe measured. For each sucase and the meters and degrees to e. The test-reasured Specified B. If the emission the limit specified B. If the emission of the EUT have 10dB peak or aversheet. g. The radiation	at a 3 meter se degrees to det as set 3 meters ich was mount a height is varie etermine the mind vertical polaement. Ispected emissien the antenna the rotable tab find the maximulativer system wandwidth with Mion level of the ecified, then tes would be repormargin would be	e top of a romi-anechoic ermine the paway from ed on the top ed from one aximum valurizations of the control on, the EUT was turned the was turned the was turned to pay t	tating table camber. Toosition of the interference of a varial meter to foue of the fiethe antennation heights find from 0 decaded and the emissione by one and then represent in X, in the camber of the emissione of the emission	e 0.8 meters above he table was he highest ence-receiving able-height antenna ur meters above the eld strength. Both a are set to make ged to its worst rom 1 meter to 4 egrees to 360 Function and s 10dB lower than and the peak values esions that did not using peak, quasi-ported in a data				

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111100881RF

Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level = Receiver Reading + Antenna Factor + Cable Factor - Preamplifier Factor

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 31 of 38

6.11.1 Transmitter emission below1GHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
32.98	46.58	14.76	0.61	32.23	29.72	40.00	-10.28	Vertical
53.13	44.44	14.87	0.68	31.99	28.00	40.00	-12.00	Vertical
78.14	48.26	11.33	0.93	31.83	28.69	40.00	-11.31	Vertical
167.82	39.53	9.73	1.62	32.08	18.80	43.50	-24.70	Vertical
490.75	35.44	17.10	2.39	31.66	23.27	46.00	-22.73	Vertical
909.67	35.05	24.35	3.35	31.47	31.28	46.00	-14.72	Vertical
35.75	36.71	11.64	0.63	32.20	16.78	40.00	-23.22	Horizontal
55.61	43.51	13.10	0.69	31.97	25.33	40.00	-14.67	Horizontal
82.94	48.31	8.03	0.99	31.79	25.54	40.00	-14.46	Horizontal
153.20	40.83	10.34	1.53	32.00	20.70	43.50	-22.80	Horizontal
487.32	36.24	19.51	2.38	31.71	26.42	46.00	-19.58	Horizontal
912.86	35.57	25.18	3.35	31.47	32.63	46.00	-13.37	Horizontal

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 32 of 38

6.11.2 Transmitter emission above 1GHz

Worse case n	node:	GFSK	Test c	hannel:	Lowest	Remark	C:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	9.36	34.25	41.53	50.32	52.40	74.00	-21.60	Vertical
7206.00	11.42	35.84	39.48	45.38	53.16	74.00	-20.84	Vertical
9608.00	13.39	37.99	37.56	42.03	55.85	74.00	-18.15	Vertical
12010.00	16.45	39.10	39.09	40.18	56.64	74.00	-17.36	Vertical
14412.00						74.00		Vertical
16814.00						74.00		Vertical
4804.00	9.36	34.25	41.53	49.00	51.08	74.00	-22.92	Horizontal
7206.00	11.42	35.84	39.48	44.08	51.86	74.00	-22.14	Horizontal
9608.00	13.39	37.99	37.56	40.62	54.44	74.00	-19.56	Horizontal
12010.00	16.45	39.10	39.09	38.70	55.16	74.00	-18.84	Horizontal
14412.00						74.00		Horizontal
16814.00						74.00		Horizontal

Worse case r	node: (GFSK	Test c	hannel:	Lowest	Remark	(:	Average
Frequency (MHz)	Cable Loss (dB	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4804.00	9.36	34.25	41.53	29.79	31.87	54.00	-22.13	Vertical
7206.00	11.42	35.84	39.48	26.50	34.28	54.00	-19.72	Vertical
9608.00	13.39	37.99	37.56	24.68	38.50	54.00	-15.50	Vertical
12010.00	16.45	39.10	39.09	24.30	40.76	54.00	-13.24	Vertical
14412.00						54.00		Vertical
16814.00						54.00		Vertical
4804.00	9.36	34.25	41.53	28.32	30.40	54.00	-23.60	Horizontal
7206.00	11.42	35.84	39.48	25.07	32.85	54.00	-21.15	Horizontal
9608.00	13.39	37.99	37.56	23.11	36.93	54.00	-17.07	Horizontal
12010.00	16.45	39.10	39.09	22.63	39.09	54.00	-14.91	Horizontal
14412.00						54.00		Horizontal
16814.00			_			54.00		Horizontal

Remark

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 33 of 38

[&]quot;---" means that the emission level is too low to be measured

Worse case	mode: G	FSK	Test	channel:	Middle	Remar	k:	Peak
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	10.57	34.35	40.33	47.19	51.78	74.00	-22.22	Vertical
7323.00	11.85	36.12	39.18	44.44	53.23	74.00	-20.77	Vertical
9764.00	13.89	38.03	37.94	40.58	54.56	74.00	-19.44	Vertical
12205.00	17.95	39.23	39.30	37.95	55.83	74.00	-18.17	Vertical
14646.00						74.00		Vertical
17087.00						74.00		Vertical
4882.00	10.57	34.35	40.33	46.21	50.80	74.00	-23.20	Horizontal
7323.00	11.85	36.12	39.18	43.62	52.41	74.00	-21.59	Horizontal
9764.00	13.89	38.03	37.94	39.79	53.77	74.00	-20.23	Horizontal
12205.00	17.95	39.23	39.30	38.23	56.11	74.00	-17.89	Horizontal
14646.00						74.00		Horizontal
17087.00						74.00		Horizontal

Worse case mode: GFSK		Test	Test channel: N		Middle Remark		Average	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4882.00	10.57	34.35	40.33	29.10	33.69	54.00	-20.31	Vertical
7323.00	11.85	36.12	39.18	26.56	35.35	54.00	-18.65	Vertical
9764.00	13.89	38.03	37.94	24.86	38.84	54.00	-15.16	Vertical
12205.00	17.95	39.23	39.30	22.71	40.59	54.00	-13.41	Vertical
14646.00						54.00		Vertical
17087.00						54.00		Vertical
4882.00	10.57	34.35	40.33	28.26	32.85	54.00	-21.15	Horizontal
7323.00	11.85	36.12	39.18	25.85	34.64	54.00	-19.36	Horizontal
9764.00	13.89	38.03	37.94	24.15	38.13	54.00	-15.87	Horizontal
12205.00	17.95	39.23	39.30	22.04	39.92	54.00	-14.08	Horizontal
14646.00		_				54.00		Horizontal
17087.00						54.00		Horizontal

Remark

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 Page 34 of 38

[&]quot;---" means that the emission level is too low to be measured

Worse case mode: GFSK		Test channel:		Highest	Remar	k:	Peak	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	10.73	34.45	40.18	44.88	49.88	74.00	-24.12	Vertical
7440.00	12.35	36.68	38.85	43.66	53.84	74.00	-20.16	Vertical
9920.00	14.24	38.08	37.78	40.55	55.09	74.00	-18.91	Vertical
12400.00	17.55	39.34	37.48	37.27	56.68	74.00	-17.32	Vertical
14880.00						74.00		Vertical
17360.00						74.00		Vertical
4960.00	10.73	34.45	40.18	43.70	48.70	74.00	-25.30	Horizontal
7440.00	12.35	36.68	38.85	42.50	52.68	74.00	-21.32	Horizontal
9920.00	14.24	38.08	37.78	39.28	53.82	74.00	-20.18	Horizontal
12400.00	17.55	39.34	37.48	37.62	57.03	74.00	-16.97	Horizontal
14880.00						74.00		Horizontal
17360.00						74.00		Horizontal

Worse case mode: GFSK		Test channel:		Highest	Remar	k:	Average	
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
4960.00	10.43	34.45	41.03	31.74	35.59	54.00	-18.41	Vertical
7440.00	12.72	37.37	40.01	26.29	36.37	54.00	-17.63	Vertical
9920.00	14.24	38.08	37.78	24.83	39.37	54.00	-14.63	Vertical
12400.00	17.55	39.34	37.48	22.27	41.68	54.00	-12.32	Vertical
14880.00						54.00		Vertical
17360.00						54.00		Vertical
4960.00	10.43	34.45	41.03	30.60	34.45	54.00	-19.55	Horizontal
7440.00	12.72	37.37	40.01	24.94	35.02	54.00	-18.98	Horizontal
9920.00	14.24	38.08	37.78	23.40	37.94	54.00	-16.06	Horizontal
12400.00	17.55	39.34	37.48	20.72	40.13	54.00	-13.87	Horizontal
14880.00						54.00		Horizontal
17360.00						54.00		Horizontal

Remark

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111100881RF

[&]quot;---" means that the emission level is too low to be measured

6.11.3 Bar	nd edge (I	Radiated	Emission)						
est mode: Transmitting		Test channel: Lowest			Remark:		Peak		
	1			,	1	1	•		
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatior	
2390.00	6.02	29.76	39.75	51.29	47.32	74.00	-26.68	Horizontal	
2400.00	6.22	30.03	38.87	52.94	50.32	74.00	-23.68	Horizontal	
2390.00	6.02	29.76	39.75	52.65	48.68	74.00	-25.32	Vertical	
2400.00	6.22	30.03	38.87	54.27	51.65	74.00	-22.35	Vertical	
Test mode:	Trans	mitting	Test channe	el: Lowe	est	Remark:	Average		
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatior	
2390.00	6.02	29.76	39.75	30.78	26.81	54.00	-27.19	Horizontal	
2400.00	6.22	30.03	38.87	34.28	31.66	54.00	-22.34	Horizontal	
2390.00	6.02	29.76	39.75	32.04	28.07	54.00	-25.93	Vertical	
2400.00	6.22	30.03	38.87	35.51	32.89	54.00	-21.11	Vertical	
Test mode:	est mode: Transmitting		Test channel: Highest			Remark:	Remark: Peak		
Frequency (MHz)	Cable Loss (dB)	Antenna Factor (dB/m)	Preamp Factor (dB)	Read Level (dBuV)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarizatior	
2483.50	6.34	30.32	39.53	53.50	50.63	74.00	-23.37	Horizontal	
2500.00	6.36	30.37	39.65	50.27	47.35	74.00	-26.65	Horizontal	
2483.50	6.34	30.32	39.53	54.72	51.85	74.00	-22.15	Vertical	
2500.00	6.36	30.37	39.65	51.46	48.54	74.00	-25.46	Vertical	
Test mode:	est mode: Transmitting		Test channel: Highest			Remark: Average			
			1						
Frequency		Antenna Factor	Preamp	Read Level		Limit Line	Over Limit	Polarizatio	
(MHz)	(dB)	(dB/m)	Factor (dB)	(dBuV)	(dBuV/m)	(dBuV/m)	(dB)		
2483.50	6.34	30.32	39.53	35.89	33.02	54.00	-20.98	Horizonta	
0500.00	6.36	30.37	39.65	32.39	29.47	54.00	-24.53	Horizonta	
2500.00									
2483.50	6.34	30.32	39.53	36.95	34.08	54.00	-19.92	Vertical	

Global United Technology Services Co., Ltd. 2nd Floor, Block No.2, Laodong Industrial Zone, Xixiang Road Baoan District, Shenzhen, China 518102

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Project No.: GTSE111100881RF