Équations différentielles - Partie 1 : Primitives

Savoir.

- ☐ Connaître la définition d'une primitive.
- ☐ Connaître le lien entre deux primitives d'une même fonction.
- ☐ Connaître les formules des primitives usuelles.

Savoir-faire.

☐ Savoir déterminer une primitive.

Primitives

— **Définition.** Soit $f: I \to \mathbb{R}$ une fonction définie sur un intervalle I. On dit qu'une fonction F est une **primitive** de f sur I, si pour tout $x \in I$:

$$F'(x) = f(x)$$

- Dans la majorité de nos exemple, les fonctions seront définies sur \mathbb{R} tout entier, ainsi si F'(x) = f(x)pour tout $x \in \mathbb{R}$ et alors F est une primitive de f.
- Exemples:
 - $F(x) = \frac{x^3}{3}$ est une primitive de $f(x) = x^2$ (sur \mathbb{R}) puisque $F'(x) = (\frac{x^3}{3})' = x^2 = f(x)$.
 - $\ln(x)$ est une primitive de $\frac{1}{x}$ sur $]0, +\infty[$.
- Trouver une primitive est l'opération inverse du calcul de la dérivée.
- Exercice. Trouver une primitive de chacune des fonctions suivantes (en précisant l'intervalle I considéré):

x

 \bullet 2x - x²

• cos(x)

• e^x • $\frac{3}{x} - \frac{7}{x^2} + 1$

Toutes les primitives

— Une primitive n'est pas unique! Soit $f(x) = x^2$, alors $F(x) = \frac{x^3}{3}$ est une primitive. Mais la fonction $G(x) = \frac{x^3}{2} + 2$ est aussi une primitive (dérivez-la pour vérifier). Il y a donc plusieurs primitives. En fait toutes les fonctions $\frac{x^3}{3} + C$, où C est une constante, sont des primitives. Nous généralisons ceci à toutes les fonctions :

Proposition. Si F(x) est une primitive de f(x), alors les autres primitives sont de la forme F(x) + Coù $C \in \mathbb{R}$ est une constante.

- Une conséquence de cette proposition est la suivante : si F(x) et G(x) sont deux primitives d'une même fonction, alors F et G ne diffèrent que d'une constante. Autrement dit, il existe une constante C telle que F(x) = G(x) + C.
- Exemple. Les primitives de $x^4 3x + 5$ sont les fonctions $\frac{1}{5}x^5 \frac{3}{2}x^2 + 5x + C$, où $C \in \mathbb{R}$ est une constante.
- Exercice. Vérifier que les primitives de la fonction $\frac{1}{\sqrt{x}}$ sont les fonctions $2\sqrt{x} + C$.

Primitives usuelles

Primitives des fonctions classiques

Ici C désigne une constante réelle. Si l'intervalle n'est pas précisé, c'est $I = \mathbb{R}$.

Fonction	Primitives
x^n	$\frac{x^{n+1}}{n+1} + C (n \in \mathbb{N})$
$\frac{1}{x^n} = x^{-n}$	$\frac{1}{1-n}\frac{1}{x^{n-1}} + C = \frac{x^{1-n}}{1-n} + C (n \in \mathbb{N} \setminus \{0, 1\}) \text{sur } I =]0, +\infty[\text{ ou } I =]-\infty, 0[$
$\frac{1}{x}$	$\ln(x) + C \text{sur } I =]0, +\infty[$
$\frac{1}{\sqrt{x}}$	$2\sqrt{x} + C \text{sur } I =]0, +\infty[$
e^x	$e^x + C$
$\cos(x)$	$\sin(x) + C$
sin(x)	$-\cos(x) + C$

Ces formules sont à maîtriser! Mais ce sont juste les formules des dérivées que vous connaissez déjà.

Primitives pour une composition

Ici u est une fonction dérivable sur un intervalle I; C désigne une constante réelle.

Fonction	Primitive
u'u ⁿ	$\frac{u^{n+1}}{n+1} + C \qquad (n \in \mathbb{N})$
$u'u^{-n}$	$\frac{u^{1-n}}{1-n} + C (n \in \mathbb{N} \setminus \{0,1\}) u \text{ ne s'annulant pas sur } I$
$\frac{u'}{u}$	$ln(u) + C$ où $u(x) > 0$ pour tout $x \in I$
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u} + C$ où $u(x) > 0$ pour tout $x \in I$
u'e ^u	$e^u + C$
$u'\cos(u)$	$\sin(u) + C$
$u'\sin(u)$	$-\cos(u) + C$

- Exemple. Comment calculer une primitive de $f(x) = xe^{x^2}$? Avec $u(x) = x^2$ (et donc u'(x) = 2x) on a $2xe^{x^2} = u'(x)e^{u(x)}$ dont une primitive est ainsi $e^{x^2} = e^{u(x)}$. On réécrit alors la fonction dont on recherche une primitive comme $f(x) = \frac{1}{2} \cdot 2xe^{x^2}$: une primitive est donc $F(x) = \frac{1}{2}e^{x^2}$. Si on veut toutes les primitives, ce sont les fonctions $\frac{1}{2}e^{x^2} + C$ où C est une constante.
- Exercice. Calculer une primitive de $cos(x)(sin(x))^2$.