

UNISONIC TECHNOLOGIES CO., LTD

U74HC00 cmos ic

QUADRUPLE 2-INPUT POSITIVE-NAND GATES

DESCRIPTION

The **U74HC00** is a Quadruple 2-input positive-NAND gate with provides the function $Y = \overline{A \cdot B}$ or $Y = \overline{A} + \overline{B}$.

■ FEATURES

* Operation voltage range: 2.0 V ~6.0 V * Low Quiescent Current: I_{CC}=2uA(Max)

ORDERING INFORMATION

Ordering Number		Package	Packing	
Lead Free	Lead Free Halogen Free			
U74HC00L-D14-T	U74HC00L-D14-T		Tube	
U74HC00L-S14-R	U74HC00G-S14-R	SOP-14	Tape Reel	
U74HC00L-P14-R	U74HC00G-P14-R	TSSOP-14	Tape Reel	

MARKING

<u>www.unisonic.com.tw</u> 1 of 5

■ PIN CONFIGURATION

■ FUNCTION TABLE

INPUT		OUTPUT
Α	В	Υ
Н	Н	L
L	X	Н
X	L	Н

■ LOGIC DIAGRAM (positive logic)

U74HC00 cmos ic

■ ABSOLUTE MAXIMUM RATINGS (unless otherwise specified)(Note 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	-0.5 ~ 7.0	V
Input Clamp Current	I _{IK}	±20	mA
Output Clamp Current	I _{OK}	±20	mA
Output Current	I _{OUT}	±25	mA
V _{CC} or GND Current	Icc	±50	mA
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

2. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
SOP-14			86		
Junction to Ambient	DIP-14	θ_{JA}	80	°C/W	
	TSSOP-14		113		

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V_{CC}		2	5	6	V
Input Voltage	V_{IN}		0		V_{CC}	V
Output Voltage	V_{OUT}		0		V_{CC}	V
Input Transition Rise or Fall Rate	t _R , t _F	V _{CC} = 2 V			1000	ns
		V _{CC} = 4.5V			500	
		V _{CC} = 6 V			400	
Operating Temperature	T _A		-40		85	°C

Note: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

■ STATIC CHARACTERISTICS (Ta = 25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V _{CC} = 2 V	1.5			
High-Level Input Voltage	V_{IH}	V _{CC} = 4.5V	3.15			V
		V _{CC} = 6 V	4.2			
		V _{CC} = 2 V			0.5	
Low-Level Input Voltage	V_{IL}	V _{CC} = 4.5 V			1.35	V
		V _{CC} = 6 V			1.8	
		V_{CC} = 2V, V_{IN} = V_{IH} or V_{IL} , I_{OH} = -20μ A	1.9	1.998		V
		V_{CC} = 4.5V, V_{IN} = V_{IH} or V_{IL} , I_{OH} = -20μ A	4.4	4.999		
High-Level Output Voltage	V _{OH}	V_{CC} = 6V, V_{IN} = V_{IH} or V_{IL} , I_{OH} = -20μ A	5.9	5.999		
		V_{CC} = 4.5V, V_{IN} = V_{IH} or V_{IL} , I_{OH} = -4 mA	3.98	4.3		
		V_{CC} = 6V, V_{IN} = V_{IH} or V_{IL} , I_{OH} = -5.2mA	5.48	5.8		
	V _{OL}	V_{CC} = 2V, V_{IN} = V_{IH} or V_{IL} , I_{OL} = 20 μ A		0.002	0.1	
		V_{CC} = 4.5V, V_{IN} = V_{IH} or V_{IL} , I_{OL} = 20 μ A		0.001	0.1	
Low-Level Output Voltage		V_{CC} = 6V, V_{IN} = V_{IH} or V_{IL} , I_{OL} = 20 μ A		0.001	0.1	V
		V_{CC} = 4.5V, V_{IN} = V_{IH} or V_{IL} , I_{OL} = 4mA		0.17	0.26	
		V_{CC} = 6V, V_{IN} = V_{IH} or V_{IL} , I_{OL} = 5.2mA		0.15	0.26	
Input Leakage Current	I _{I(LEAK)}	V_{CC} = 6V, V_{IN} = V_{CC} or 0		±0.1	±100	nA
Quiescent Supply Current	ΙQ	V_{CC} = 6V, V_{IN} = V_{CC} or 0, I_{OUT} = 0			2	μΑ
Input Capacitance	C _{IN}	V _{CC} =2V~6V		3	10	pF

U74HC00 cmos ic

■ DYNAMIC CHARACTERISTICS (T_A=25°C, Input: t_R=t_F=6ns; PRR≤1MHz, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay, (A) or (B) to (Y)		V _{CC} =2V, C _L =50pF		45	90	ns
	t _{PLH} , t _{PHL}	V _{CC} =4.5V, C _L =50pF		9	18	
		V _{CC} =6V, C _L =50pF		8	15	
Output Transition Times		V _{CC} =2V, C _L =50pF		38	75	
	t_{TLH},t_{THL}	V _{CC} =4.5V, C _L =50pF		8	15	ns
		V _{CC} =6V, C _L =50pF		6	13	

■ OPERATING CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	RATINGS	UNIT
Power Dissipation Capacitance	C_{PD}	No Load	20	pF

Note: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

TEST CIRCUIT AND WAVEFORMS

Note: CL includes probe and jig capacitance.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.