

Introduction

- How the model works now.
- Prediction based on previous and current state and an ensemble of probabilities.

Example Data

Introduction | MTL | Supervised vs Unsupervised | Results | Mediapipe | New Algorithm | Metrics | Conclusion | Bibliography

Cap Off - Removal of the pen cap. Significant Area of interest (AOI): Cap, Pen **Apply Tip** - Applying the disposable needle to the pen.

Significant AOIs: Safety, Tip, Pen **Setting Units** - Setting or checking the desired number of units using the dosage knob.

Significant AOIs: Gauge

Priming-Testing the function of the needle, removing trapped air by holding the device upright and releasing 1-2 units.

Significant AOIs: Tip, Pen, App

Injection - Placing the needle into injection area, injecting 5-10 units for 10 seconds.

Significant AOIs: Pad, Tip, App

Remove Tip - Removal of the disposable needle from the pen.

Significant AOIs: Safety, Tip, Pen

Cap On - Applying the Cap to the Pen.

Significant AOIs: Cap, Pen

Start_time	End_time	Арр	Сар	Gauge	Pen	Safety	Tip	Action
0	0.5	400	111	0	380	1600	0	Apply Tip
0.5	1	417	85	87	480	1600	1600	Apply Tip
1.5	2	300	84	1600	515	1600	500	Setting Units
2	2.5	200	1	1600	600	1600	200	Apply Tip

- Experiments have been carried out on several participants.
- They had to perform 7 different action.

Tobi Pro Glasses 2

- 1. High- definition scene camera Captures a Full HD video of what is in front of the participant.
- 2. IR illuminators Illuminates the eyes to support the eye tracking sensors.
- 3. Eye tracking sensors Records eye orientation e.g. the direction of the eye gaze (Tobii AB 2018).

Multi Task Learning (MTL)

pd z Product Development Group Zurich Produktentwicklungsgruppe Zürich

- Initial Idea.
- Sharing representations between related tasks.

Supervised VS Unsupervised learning

Introduction | MTL | Supervised vs Unsupervised | Results | Mediapipe | New Algorithm | Metrics | Conclusion | Bibliography

- · Different approaches.
- Clustering the data using Kmeans.
- Raw data as an input to a Neural Network (NN).

Supervised Learning

Unsupervised Learning

Advantages and Disadvantages

Supervised Learning	 Advantages Easy to find how many classes are there before giving data for training Very efficient once it has been properly trained 	DisadvantageNeeds a lot of computer resourcesRisk of overfitting
Unsupervised Learning	 Does not need as much computer resources No risk of overfitting 	 Need to interpret the optimal number of clusters It is not always certain that the obtained results will be useful since there is no label or output measure to confirm its usefulness.

Unsupervised Learning Results

[→	precision	recall	f1-score	support
1	0.00	0.00	0.00	9
2	0.62	0.83	0.71	18
3	0.14	0.18	0.15	17
4	0.00	0.00	0.00	35
5	0.00	0.00	0.00	50
6	0.29	0.35	0.32	20
7	0.00	0.00	0.00	17
macro avg	0.15	0.19	0.17	166
weighted avg	0.12	0.15	0.13	166

- Low accuracy (15%) probably due to high dimensionality (7 dimensional data).
- We had to find a new solution / approach.

Silhouette Coefficients

- Method of interpretation and validation of consistency within clusters of data
- How similar an object is to its own cluster compared to other clusters
- Ranges from -1 to +1
- High value indicates that the object is well matched to its own cluster
- Low value means clustering configuration may have too many or too few clusters

Silhouette Coefficients

- Method of interpretation and validation of consistency within clusters of data.
- Provides a succint graphical representation of how well each object has been classified.

Supervised Learning Results


```
INFO:tensorflow:Calling model_fn.
INFO:tensorflow:Done calling model_fn.
INFO:tensorflow:Starting evaluation at 2022-04-11T13:47:24
INFO:tensorflow:Graph was finalized.
INFO:tensorflow:Restoring parameters from /tmp/tmp_jmczt57/model.ckpt-5000
INFO:tensorflow:Running local_init_op.
INFO:tensorflow:Done running local_init_op.
INFO:tensorflow:Inference Time : 0.72536s
INFO:tensorflow:Finished evaluation at 2022-04-11-13:47:25
INFO:tensorflow:Saving dict for global step 5000: accuracy = 0.2, average_loss = 1.98889, global_step = 5000, loss = 1.98889
INFO:tensorflow:Saving 'checkpoint_path' summary for global step 5000: /tmp/tmp_jmczt57/model.ckpt-5000
Test set accuracy: 0.200
```

- Low accuracy (20%).
- Layers 100-80-50-20

Mediapipe

- Google Model.
- Trained over a million images.

Landmarks

- Detecting a bunch of landmarks on the hands.
- Classified and identified.

- 0. WRIST
- 1. THUMB_CMC
- 2. THUMB_MCP
- 3. THUMB_IP
- 4. THUMB_TIP
- 5. INDEX_FINGER_MCP
- 6. INDEX_FINGER_PIP
- 7. INDEX_FINGER_DIP
- 8. INDEX FINGER TIP
- 9. MIDDLE_FINGER_MCP
- 10. MIDDLE_FINGER_PIP

- 11. MIDDLE_FINGER_DIP
- 12. MIDDLE_FINGER_TIP
- 13. RING_FINGER_MCP
- 14. RING_FINGER_PIP
- 15. RING_FINGER_DIP
- 16. RING_FINGER_TIP
- 17. PINKY_MCP
- 18. PINKY_PIP
- 19. PINKY_DIP
- 20. PINKY_TIP

Unsupervised Learning Results

- Prints all the landmarks on the video.
- Detecting whether the hand is left or right.
- Ouputs x and y coordinates of the different landmarks in the image frame.

What we can achieve

Introduction | MTL | Supervised vs Unsupervised | Results | Mediapipe | New Algorithm | Metrics | Conclusion | Bibliography

- Prints all the landmarks on the video.
- Detecting whether the hand is left or right.
- Ouputs x and y coordinates of the different landmarks in the image frame.

Origin of the frame

Metrics

Hand Object

Gaze Object

Gaze Hand

Conclusion

Introduction | MTL | Supervised vs Unsupervised | Results | Mediapipe | New Algorithm | Metrics | Conclusion | Bibliography

Future

- Continue to focus on two approaches.
- Dig unsupervised learning deeper.
- Improve former algorithm based on Hidden Markov models or come up with a new neural Network if we do not succeed in improving it.

Possible issues

- Synchronization between algorithm (15 Hz) and glasses (25 Hz)
- Understanding clusters
- Combine the data and hand tracking

Bibliography

- 1. https://ruder.io/multi-task/index.html#fn3
- 2. https://lakshaysuri.wordpress.com/2017/03/19/machine-learning-supervised-vs-unsupervised-learning/
- 3. https://fr.wikipedia.org/wiki/Silhouette_(clustering)
- 4. https://google.github.io/mediapipe/
- 5. https://imotions.com/blog/10-terms-metrics-eye-tracking/
- 6. Gaze Comes in Handy: Predicting and Preventing Erroneous Hand Actions in AR-Supported Manual Tasks, Julian Wolf
- 7. https://www.dreamstime.com/object-form-geometric-part-angle-degrees-expert-hand-professional-to-take-measurements-calculate-right-image168287546
- 8. Development of a Peripheral Vision Based Approach to Human Task Classification, Thomas Kreiner

Felix Wang Phd Student wangfe@ethz.ch ETH Zürich

Product Development Group LEE O10 Leonhardstrasse 21 8092 Zürich