

Abstract:

PURPOSE: To economize time taken for image development of form data in a printing device capable of storing the form data. CONSTITUTION: Data received from a host 1 is divided into a form data and an ordinary data and stored in a page buffer 9 at page unit. The page buffer 9 is further provided with a page control table 91 indicating correspondence relation of superposition of the normal data and the form data. Image of the form data is developed in an image buffer 7. When it is read and is to be sent to an engine section 11, a next page and a page under procedure and development are compared so as to see whether they are the same form data or not. When they are the same, the image of the form data is held as it is as a normal reading. When they are not the same, it is read out by a read modify write cycle so as to write null data simultaneously with the reading and clear the image buffer 7.

COPYRIGHT: (C)1993,JPO&Japio

Inventor(s):

HIGUCHI YUICHI

Application No. 04050390 JP04050390 JP, Filed 19920309, A1 Published 19930924

Original IPC(1-7): B41J02100

G06F00312

Patents Citing This One No US, EP, or WO patent/search reports have cited this patent.

(19)日本国特許庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-246104

(43)公開日 平成5年(1993)9月24日

(51)Int.Cl.⁵

識別記号 庁内整理番号 FI

技術表示箇所

B 4 1 J 21/00

A 8804-2C

G 0 6 F 3/12

審査請求 未請求 請求項の数3(全 10 頁)

(21)出願番号

特願平4-50390

(22)出願日

平成4年(1992)3月9日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 樋口 雄一

東京都大田区下丸子3丁目30番2号 キャ

ノン株式会社内

(74)代理人 弁理士 大塚 康徳 (外1名)

(54)【発明の名称】 印刷装置

(57)【要約】

【目的】 フォームデータを格納しておける印刷装置に おいて、フォームデータのイメージ展開に要する時間を 節約する。

【構成】 ホスト1から受信したデータは、フォームデ ータとそうでない通常データとに分けてページ単位でペ ージバッファ9に格納される。ページバッファ9には、 更に通常データとフォームデータとの重ね合わせの対応 関係を示したページ制御テーブル91が設けられる。フ ォームデータのイメージをイメージバッファ7に展開 し、それを読んでエンジン部11に送る際には、次のペ ージと処理中の展開されているページとで同一のフォー ムデータか比較する。同一であれば、通常の読み出しと してフォームデータのイメージはそのまま保持してお き、同一でなければリードモディファイライトサイクル で読みだして、読みだしと同時にヌルデータを書き込 み、イメージバッファ7をクリアする。

【特許請求の範囲】

【請求項1】 入力された定型データを登録しておき、別に入力されたデータと該データの入力に伴って指定された定型データとをページ単位で重ね合わせて出力する印刷装置であって、

前記定型データ指定を複数ページにわたって記憶する手段と、

前記記憶された注目ページの定型データ指定とその直後の定型データ指定とを比較する手段と、

読み出し直後に同サイクルでデータを書き込めるメモリ と、

入力データを前記メモリにイメージデータとして展開する手段と、

前記比較の結果に応じて、前記メモリからデータを読み 出すか、読み出し直後に同サイクルでヌルデータを書き 込むかを選択しデータを読み出す手段と、を備えること を特徴とする印刷装置。

【請求項2】 入力されたフォームデータを登録しておき、別に入力されたデータと該データの入力に伴って指定されたフォームデータとをページ単位で重ね合わせて出力する印刷装置であって、

前記フォームデータ指定を複数ページにわたって記憶する手段と、

前記記憶された注目ページのフォームデータ指定とその 直後のフォームデータ指定とを比較する手段と、

前記フォームデータを第1のイメージデータに展開する 手段と、

前記フォームデータを展開したイメージデータを格納する、読み出し直後に同サイクルでデータを書き込むリードモディファイライトサイクルでアクセスできるメモリと、

前記比較の結果に応じて、前記メモリからのデータ読み 出しをリードモディファイライトサイクルで行うか決定 する手段と、

前記決定により読み出し後にヌルデータを前記メモリに 書き込む手段と、

前記フォームデータと重ねあわせるデータを格納する手 段と、

前記格納されたデータを第2のイメージデータに展開する手段と、

前記第1のイメージデータと第2のイメージデータとを 重ねあわせる手段と、

重ねあわせたデータを印刷出力する手段と、を備えることを特徴とする印刷装置。

【請求項3】 前記出力する手段はレーザスキャン方式 であることを特徴とする請求項2記載の印刷装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、フォーム情報を複数登録しておき入力される画像情報に重ね合わせて出力する

事が可能な印刷装置に関する。

[0002]

【従来の技術】従来、この種の装置においては、画像と 重ねあわせて出力すべきフォームに変更が生じると、フ ォーム用イメージメモリに格納された旧いフォームデー タを消去し、その後新しいフォームデータを格納してフ ォームの更新をしていた。

[0003]

【発明が解決しようとしている課題】しかしながら、上 記従来例ではフォームの変更が生じる都度フォーム用イ メージメモリの内容の消去を行い、あらためて展開せね ばならず、スループットが著しく低下するという欠点が あった。

【0004】本発明は上記従来例に鑑みて為されたもので、フォーム用イメージメモリに記憶されたデータを更新する際に、消去に要する時間を省いて迅速な印刷処理を行う印刷装置を提供することを目的とする。

[0005]

【課題を解決するための手段】上記目的を達成するため に、本発明の印刷装置は次のような構成からなる。

【0006】入力された定型データを登録しておき、別に入力されたデータと該データの入力に伴って指定された定型データとをページ単位で重ね合わせて出力する印刷装置であって、前記定型データ指定を複数ページにわたって記憶する手段と、前記記憶された注目ページの定型データ指定とその直後の定型データ指定とを比較する手段と、読み出し直後に同サイクルでデータを書き込めるメモリと、入力データを前記メモリにイメージデータとして展開する手段と、前記比較の結果に応じて、前記メモリからデータを読み出すか、読み出し直後に同サイクルでヌルデータを書き込むかを選択しデータを読み出す手段とを備えることを特徴とする。

【0007】または、入力されたフォームデータを登録 しておき、別に入力されたデータと該データの入力に伴 って指定されたフォームデータとをページ単位で重ね合 わせて出力する印刷装置であって、前記フォームデータ 指定を複数ページにわたって記憶する手段と、前記記憶 された注目ページのフォームデータ指定とその直後のフ オームデータ指定とを比較する手段と、前記フォームデ ータを第1のイメージデータに展開する手段と、前記フ ォームデータを展開したイメージデータを格納する、読 み出し直後に同サイクルでデータを書き込むリードモデ ィファイライトサイクルでアクセスできるメモリと、前 記比較の結果に応じて、前記メモリからのデータ読み出 しをリードモディファイライトサイクルで行うか決定す る手段と、前記決定により読み出し後にヌルデータを前 記メモリに書き込む手段と、前記フォームデータと重ね あわせるデータを格納する手段と、前記格納されたデー タを第2のイメージデータに展開する手段と、前記第1 のイメージデータと第2のイメージデータとを重ねあわ

せる手段と、重ねあわせたデータを印刷出力する手段と を備えることを特徴とする。

[8000]

【作用】上記構成により、入力された定型データを登録しておき、別に入力されたデータに伴ってそのデータと重ねるものと指定された定型データを複数ページにわたって記憶し、読み出し直後に同サイクルでデータを書き込めるメモリにイメージデータとして定型データを展開し、そのイメージデータを読み出す際に前記記憶された注目ページの定型データ指定とその直後の定型データ指定とを比較し、その比較の結果に応じて、読み出し直後に同サイクルでヌルデータを書き込む

[0009]

【実施例】本発明の実施例として、ホストコンピュータ に接続されてそこから文書データを受信し、その文書を 印刷出力するページプリンタの説明をする。

【0010】<構成の説明>図1は実施例であるプリンタを示した図である。1は印刷すべき文書データのデータ源であるホストコンピュータ、100はプリンタ本体である。3はCPUであり、ROM5等のメモリに格納されたプログラムを実行することで、入力バッファ2を介してとり込んだデータの解析やプリンタ100全体の制御、後述するようなデータの展開等を行う。CPU3には、ワークエリアであるRAM4とプログラム等を格納するROM5が接続される。RAM4には後で説明するフォーム登録フラグ41やポインタ42、消去フラグ43が設けられている。

【0011】6はパターンメモリであり、入力される文字コードに対応する文字パターンが登録されている。7はフオーム用イメージメモリであり、フォームパターンが登録されている。8は文書用イメージメモリであり、フォームパターンを除いた文書のデータパターンが1頁毎に書き込まれる。9はページバッファであり、フォーム情報やデータ情報を内部コードに変換しページデータとして格納するとともに、後述する様にページごとのデータ管理を行うためのページ制御テーブル91が格納される。

【0012】10はエンジン部インタフェースであり、フォーム用イメージメモリと文書用イメージメモリを同時に読みだし、エンジン部11を制御する。11はエンジン部であり、実際の出力を行なう。本実施例ではレーザスキャン方式であるが、インクジェット方式や感熱方式等であってもページプリンタであればよく、方式を特定する必要はない。

【0013】なお、これ以降の説明でも「文書用」と「フォーム用」という語を用いるが、それぞれ「フォーム登録されていない印刷データ用」と「フォーム登録されている印刷データ用」という意味合いで用いている。【0014】<リードモディファイライトサイクルの説明>図8はイメージメモリの制御信号を詳しく描いた図

である。フォーム用であってもデータ用であっても同一の構成となる。制御信号RAS、CAS、WEとともにアドレスを入力してデータの書き込みまたは読み出しを行う。図2は、「リードモディファイライトサイクル」におけるイメージメモリの読みだしと書き込み動作の制御の一例を示したタイミング図である。図における各信号の上位レベルを"TRUE"、下位レベルを"FALSE"と呼ぶ。

【0015】イメージメモリ(フォーム用データ用を問わず)は行アドレスと列アドレスとによりアクセスされる。信号201はRAS信号、信号202はCAS信号であり、この2つの信号各々によりアドレス信号203の行と列とが確定し、1つのロケーションが定まる。こうしてアドレスが確定すると、そのアドレスのメモリセルからデータが読み出される。図2のタイミングT1はこの読み出しのタイミングにあたる。信号Dout 206はこうしてイメージメモリから読み出されるデータであり、エンジン部インタフェース10を通じてエンジン部11に転送される。

【0016】WE信号204は「書き込み可」であることを示し、"FALSE" 時に書き込みが行なわれる。信号205はイメージメモリに書き込まれるデータを示し、WE信号204が"FALSE" となったときの信号Din205の値が、その時に指定されているアドレスに書き込まれる。リードモディファイライトサイクルでは、読み出し時のアドレス指定をそのままにWE信号204を"FALSE" とし、信号Dinのデータを指定アドレスに書き込む。これが図2のタイミングT2にあたる。本例では信号Dinとして0(ヌル)を書き込むことにより、イメージメモリをクリアしている。

【0017】このようにリードモディファイライトサイクルを使用することによって、指定したアドレスからの読み出しと同アドレスへの書き込みを1サイクルで行なうことができる。

【0018】 <ページバッファの内容>図3はページバッファ9内に作成されるページデータの構成の一例を示した図であり、1ページ分のデータを表している。出力されるデータはその属性ごとに文字データや線データという様に分類されており、各分類ごとに文字コード等のパターン展開のための詳細な情報とその位置すべきアドレスとが記述されている。ページバッファ9では複数ページ分のページデータが管理ができ、それが文書用であってもフォーム用であっても区別されることはない。

【0019】図3において、301は文字を出力するものであることを示している。302はパターンを書き込む座標値を示し、303はパターンメモリ6に格納されているフォントパターンアドレスを示している。305はこのレコードが線を描くものであることを表し、306は線の開始座標、307は終了座標、308は線の幅、309は線の種類を示している。310は1頁分の

ページデータの終了を示している。つまり、ページ単位 の区切りとなっている。

【0020】図4はページ制御テーブルの1レコードの構成を示した図である。ページ制御テーブルは、その1レコードが1ページ分のデータを管理するデータとなっている。図において、401はそのページの展開すべき文書用ページデータのアドレスが格納される。402はそのページに重ね書きされるべきフォーム用ページデータのアドレスが格納される。403はそのページを出力する部数がセットされ、404はページ番号が格納される。

【0021】図5はページ制御テーブルの一例を示した図で、501は1ページ目の内容が格納され、502は2ページ目内容、503は3ページ目の内容がそれぞれ格納されている。このテーブルによれば、1ページ目と2ページ目のフォームが異なり、2ページ目と3ページ目のフォームは同じものであることがわかる。部数はそれぞれ1部である。通常、画像情報の入力は実際の印字動作より高速に行なわれるため、内部には複数のページ制御テーブルが作成される。

【0022】 <ページバッファへの格納手順>次に図6及び図7のフローチャートを参照して実施例のプリンタの動作例を説明する。これらフローチャートはROM5等のメモリに格納されたプログラムとして記述されているものであり、CPU3がそのプログラムを実行することで実現される。

【0023】初めに、図6によりデータを受信して、ページデータ及びページ制御テーブルをページバッファ9に作成する手順を説明する。ホストコンピュータ1より画像情報が送信されると、ステップS601よりこの手順は開始される。

【0024】まず、ステップS602において入力バッ ファ2よりデータを取り出す。ステップS603では取 り出したデータが文字かどうかを判断し、文字であるな らステップS604でフォーム登録中かどうかをフォー ム登録フラグ41より判断する。このフラグはRAM4 内に設けられている。フォーム登録中ならばステップS 605でフォーム用ページバッファへ書き込み、そうで ないならステップS606で文書用ページバッファへ書 き込みを行なう。ここで、書き込むとは図3として説明 したページバッファを作成することである。フォームで はないデータについては、現在受信中のデータが処理中 のページに描かれるデータそのものであるため、ここで 作成したページバッファアドレスを処理中のページのペ ージ制御テーブルにデータアドレスとして登録してしま う。なお、ステップS602で新たなページの処理を開 始したなら直ちにページ制御テーブルを作成しておく。

【0025】一方、文字でないなら制御命令と判断し、ステップS607でフォーム登録開始命令かテストする。フォーム登録開始命令ならばステップS608でフ

オーム登録フラグ41をフォーム登録中をセットする。フォーム登録開始命令でない場合はステップS609でフォーム登録終了命令であるかどうかを調べ、そうであるならステップS610でフォーム用ページデータにページ区切りコード310を書き込んで、フォーム登録フラグ41をリセットする。

【0026】フォーム登録終了命令でない場合はステップS611でフォーム指示命令かどうかをチェックし、そうならステップS612で、命令に伴って指示されるフォームのページバッファアドレスを、処理中のページ制御テーブルのフォームアドレス欄402にセットする。即ち、指示されたフォームを現在処理中のページに重ねるものとする。フォーム指示命令でない場合はステップS613で改頁命令かをチェックする。改頁命令の場合は、ステップS614で文書用ページデータにページ区切りコードを書き込んで、ページ制御テーブルのデータアドレス欄401に文書用ページバッファアドレスをセットした後、コピー部数と番号とを同テーブルに書き込み、1ページ分のページ制御テーブルの作成を終了する。

【0027】その他の命令であれば、命令に対応した処理をステップS615で行なう。ステップS616ではデータの終了かどうかを判断し、終了でないならステップS602に戻る。終了ならステップS617で処理を終了する。このフローチャートでは入力データの処理について記した。通常画像データの入力は実際の出力より先行して行なわれる。以下に出力動作のフローチャートについて動作例を図7を用いて説明する。図7のフローチャートの手順も図6と同じくCPU3の実行により実現される。

【0028】<ページバッファからの読み出し手順>ページ制御テーブルに出力されるべき頁が格納されることによってステップS701よりプログラムは開始される。

【0029】初めに、ステップS702でページ制御テーブル91の先頭のレコードを指示する。これはRAM4に確保されたポインタ42にアドレスを書き込むことで行われる。以下、ページ制御テーブルの指示はこの同じポインタ42で行う。まずこうしてページ制御テーブルの第1ページ目にあたるレコードを指し示しておく。

【0030】ステップS703では、指示されたレコードよりフォームアドレスを取り出し、そのアドレスに格納されているフォームデータに基づいてフォーム用イメージメモリ7にパターン展開する。続いて、ステップS704では指示されたレコードより文書アドレスを取り出し、そこから文書用データを読み出してそれを元に文書用イメージメモリ8にパターン展開する。

【0031】ステップS705ではページ制御テーブルの次のレコードを指示する。ステップS706で現在のレコードのフォームアドレスが、直前のレコードのそれ

と等しいか比較し、即ち、直前のステップS703で展開したフォームを再び用いているか調べ、等しくない場合、即ち用いていない場合はステップS707でフォーム消去フラグ43をONとする。つまりステップS709でフォーム用イメージメモリ7よりデータを読み出す場合、読み出すと同時に0(ヌル)を書き込みイメージメモリ7の内容をクリアする。また、本例では文書用イメージメモリ8は常に読み出しと同時に0が書き込まれるものとする。

【0032】一方、フォームアドレスが等しい場合にはステップS708でフォーム消去フラグ43をOFFする。つまりステップS709でフォーム用イメージメモリ7より読み出しを行なっても書き込みは行なわずその状態を保持し、次の頁にために書き直ししなくとも済む。

【0033】ステップS709では、イメージメモリからイメージデータを読み出して実際に印刷を行うビデオ転送をおこなう。ここではプリンタインタフェース10を通して、フォーム用イメージメモリ7と文書用イメージメモリ8から画像パターンをプリンタ11に転送する。このとき、文書用イメージメモリ8からの読み出しは「リードモディファイライトサイクル」を用いて読み出しと同サイクルで0クリアする。

【0034】フォーム用イメージメモリ8からの読み出しは消去フラグ43に従い、その値がONであれば「リードモディファイライトサイクル」を用いて読み出しと同時に0を書き込んで消去し、OFFであれば通常の読み出しを行ってフォームのイメージをそのまま残す。

【0035】ステップS710ではページ制御テーブルの更新が行なわれる。ステップS711では更に出力すべきページがないかチェックし、ある場合はステップS712でフォーム消去フラグがONかどうかを調べる。ONの場合はステップS703に戻ってフォームのイメージ展開から行い、OFFの場合はステップS704へ戻りフォームのイメージデータはそのまま用いる。出力すべきページがない場合はステップS713で処理を終了する。

【0036】ここで、用紙上に記録を行うエンジン部11について説明する。

【0037】図9はこの場合のレーザスキャン方式のエンジン部11の内部構造を示す断面図で、このLBPは、文字パターンデータ等を入力して記録紙に印刷することができる。

【0038】図において、740はLBP本体であり、 供給される文字パターン等を基に、記録媒体である記録 紙上に像を形成する。700は操作のためのスイツチ及 びLED表示器などが配されている操作パネル、701 はLBP740全体の制御及び文字パターン情報等を解 析するプリンタ制御ユニツトである。このプリンタ制御 ユニツト701は主に文字パターン情報をビデオ信号に 変換してレーザドライバ702に出力する。図1の構成 におけるエンジン部11を除くCPUやメモリ等はここ に納められている。

【0039】レーザドライバ702は半導体レーザ703を駆動するための回路であり、入力されたビデオ信号に応じて半導体レーザ703から発射されるレーザ光704は回転多面鏡705で左右方向に振られて静電ドラム706上を走査する。これにより、静電ドラム706上には文字パターンの静電潜像が形成される。この潜像は静電ドラム706周囲の現像ユニット707により現像された後、記録紙に転写される。この記録紙にはカットシートを用い、カットシート記録紙はLBP740に装着した用紙カセット708に収納され、給紙ローラ709及び搬送ローラ710と711とにより装置内に取込まれて、静電ドラム706に供給される。このような機構でイメージメモリのデータが用紙上に記録される。

【0040】以上説明したような手順によってデータの受信から印刷出力までが行われるが、同じフォームを繰り返して使うようなデータの場合、フォーム用イメージメモリの消去及びフォームイメージの展開に要する時間を節約することができ、迅速な印刷が可能となる。これによりホストの出力待ち時間を短縮するという効果もある。

【0041】また、本実施例では文書データとそれに重ねあわせるフォームで説明したが、定型的な記録パターンを有するデータであるならば、定型的な部分をフォームとして登録し、そのほかの部分を上記説明の文書と置き換えても構わず、処理対象は文書データに限定されるものではない。

[0042]

【他の実施例】前の実施例ではフォーム用イメージメモリの更新の制御について記述したが、複数部のコピーを行なう場合には、文書ようイメージメモリ内のデータも読み出し時の書き込み(消去)を禁止することによって、繰り返しパターン展開を行なわなくてよい。

【0043】また、イメージメモリを文書用とフォーム用とそれぞれ2ページ分持ち、ビデオ転送中に次のページのパターンを書き込めるようなシステムにおいては、次のページのフォームが異なる場合、必ず読みだしと同時に0を書き込むことで、ビデオ転送していない方のメモリを常にクリアされた状態に維持する。これによりフォームのパターン展開はイメージメモリのクリアを伴わずに行なうことができ処理速度をあげることが可能である。

【0044】一方、画像データの入力が遅く次のページ 制御テーブルのレコードが完成していない場合は、イメ ージメモリのクリアを指示するようにすればフォームが 異なる場合にクリアを行なう必要がある。

【0045】尚、本発明は、複数の機器から構成される

システムに適用しても、1つの機器から成る装置に適用しても良い。また、本発明はシステム或は装置にプログラムを供給することによって達成される場合にも適用できることは言うまでもない。

[0046]

【発明の効果】以上説明したように、本発明に係る印刷 装置は、フォーム用イメージメモリに記憶されたデータ を更新する際に、消去に要する時間を省いて迅速な印刷 処理を行うことができるという効果がある。

【図面の簡単な説明】

【図1】実施例のプリンタのプロック図である。

【図2】実施例のプリンタにおけるイメージメモリのリードモディファイライトモードの書き込みタイミングを示した図である。

【図3】実施例のプリンタにおけるページデータのフォーマット例の図である。

【図4】実施例のプリンタにおけるページ制御テーブルの構成図である。

【図5】実施例のプリンタにおけるページ制御テーブル

の内容の一例を示した図である。

【図6】

【図7】実施例のプリンタにおける画像情報の処理の流れを示したフローチャート図である。

【図8】実施例のプリンタにおけるイメージメモリへの制御信号の図である。

【図9】実施例のプリンタの断面図である。

【符号の説明】

1…ホストコンピュータ、

2…入力バッファ、

3 ··· C P U 、

4 ··· R A M、

5 ... ROM,

6…パターンメモリ、

7…フォーム用イメージメモリ、

8…文書用イメージメモリ、

9…ページバッファ、

10…エンジン部インタフェース、

11…エンジン部である。

【図1】

【図4】

【図5】

20000	10000	1	2
22000	11000	1	2
24000	11000	1	
	22000	22000 11000	22000 11000 1

[図2] [図8]

Dour

) **2**06

【図3】

