Discrete Mathematics for Computer Science

Department of Computer Science

Lecturer: Nazeef Ul Haq

Reference Book: Discrete Mathematics and its applications

BY Kenneth H. Rosen – 8th edition

- RESPECT YOURSELF!
- Maintain silence
- Use of mobile phones are not allowed
- Cheating/Plagiarism case will be dealt strictly
- Avoid cross talking
- Avoid copy paste submission of work

Course Introduction

- What we will cover in this course?
- Proofs and logics,
- Hashing function, Pseudorandom numbers
- Check Digits UPCs, ISBNs, Airline ticket number
- Cryptography
- Mathematical Induction, Counting Techniques, Relations, Graphs and Trees
- Reference Book: Discrete Mathematics and its applications BY Kenneth H. Rosen 8th edition

Mid Exam	30%
Final Exam (Complete Syllabus	s) 40%
Quizzes (3 to 4)	10%
Assignments (2 to 3)	10%
 Surprise Quiz/Class Participation 	on 10%

Minimum 75% attendance is MUST.

Lecture 1

Course Overview Chapter 1. The Foundations

1.1 Propositional Logic

What is Mathematics, really?

- It's not just about numbers!
- Mathematics is *much* more than that:

Mathematics is, most generally, the study of any and all absolutely certain truths about any and all perfectly well-defined concepts.

- These concepts can be about numbers, symbols, objects, images, sounds, anything!
- It is a way to interpret the world around you.

So, what's this class about?

What are "discrete structures" anyway?

"Discrete" - Composed of distinct, separable parts. (Opposite of continuous.)

discrete continuous : digital analog

"Discrete Mathematics" - concerns processes that consist of a sequence of individual steps.

Why Study Discrete Math?

- The basis of all of digital information processing is: <u>Discrete manipulations of</u> <u>discrete structures represented in memory.</u>
- It's the basic language and conceptual foundation for all of computer science.
- Discrete math concepts are also widely used throughout math, science, engineering, economics, biology, etc., ...
- A generally useful tool for rational thought!

Uses for Discrete Math in Computer Science

- Advanced algorithms & data structures
- Programming language compilers & interpreters
- Computer networks
- Operating systems
- Computer architecture
- Database management systems
- Cryptography
- Error correction codes
- Graphics & animation algorithms, game engines, etc....

• *i.e.*, the whole field!

1.1 Propositional Logic

- Logic -- Logic is the study of the principles and methods that distinguishes between a valid and an invalid argument.
 - Focuses on the relationship among statements, not on the content of any particular statement.
 - Gives precise meaning to mathematical statements.
- Propositional Logic is the logic that deals with statements (propositions) and compound statements built from simpler statements using so-called Boolean connectives.
- Some applications in computer science:
 - Design of digital electronic circuits.
 - Expressing conditions in programs.
 - Queries to databases & search engines.

Definition of a Proposition

Definition: A *proposition* (denoted *p*, *q*, *r*, ...) is simply:

- a statement (i.e., a declarative sentence)
 - with some definite meaning, (not vague or ambiguous)
- having a truth value that's either true (T) or false (F)
 - it is never both, neither, or somewhere "in between!"
 - However, you might not know the actual truth value,
 - and, the truth value might depend on the situation or context.
- Later, we will study probability theory, in which we assign degrees of certainty ("between" T and F) to propositions.
 - But for now: think True/False only! (or in terms of 1 and 0)

Examples of Propositions

- It is raining. (In a given situation)
- Beijing is the capital of China. (T)
- 2 + 2 = 5. (F)
- \bullet 1 + 2 = 3. (T)
- A fact-based declaration is a proposition, even if no one knows whether it is true
 - 11213 is prime.
 - There exists an odd perfect number.

Proposition

• Rule -- If the sentence is preceded by other sentences that make the pronoun or variable reference clear, then the sentence is a statement.

Example:

x = 1 and x > 2

x > 2 is a statement with truth-value FALSE.

COMPOUND STATEMENT:

Simple statements could be used to build a compound statement.

EXAMPLES:

LOGICAL CONNECTIVES

- 1. "3 + 2 = 5" and "Lahore is a city in Pakistan"
- 2. "The grass is green" or "It is hot today"
- **3.** "Discrete Mathematics is **not** difficult to me"

AND, OR, NOT are called LOGICAL CONNECTIVES.

Examples of Non-Proposition's

The following are **NOT** propositions:

- Who's there? (interrogative, question)
- Just do it! (imperative, command)
- La la la la. (meaningless interjection)
- Yeah, I sorta dunno, whatever... (vague)
- 1 + 2 (expression with a non-true/false value)
- x + 2 = 5 (declaration about semantic tokens of non-constant value)

Truth Tables

- An operator or connective combines one or more operand expressions into a larger expression. (e.g., "+" in numeric expressions.)
- Unary operators take one operand (e.g., -3);
 Binary operators take two operands (e.g. 3 × 4).
- Propositional or Boolean operators operate on propositions (or their truth values) instead of on numbers.
- The Boolean domain is the set {T, F}. Either of its elements is called a Boolean value.
 An n-tuple (p₁,...,p_n) of Boolean values is called a Boolean n-tuple.
- An n-operand truth table is a table that assigns a Boolean value to the set of all Boolean n-tuples.

Some Popular Boolean Operators

Formal Name	<u>Nickname</u>	Arity	<u>Symbol</u>
Negation operator	NOT	Unary	Г
Conjunction operator	AND	Binary	^
Disjunction operator	OR	Binary	V
Exclusive-OR operator	XOR	Binary	\oplus
Implication operator	IMPLIES	Binary	\rightarrow
Biconditional operator	IFF	Binary	\leftrightarrow

The Negation Operator

- The unary *negation* operator "¬" (NOT) transforms a proposition into its logical *negation*.
- E.g. If p = "I have brown hair." then $\neg p =$ "It is not the case that I have brown hair" or "I do **not** have brown hair."
- The truth table for NOT:

Operand column

Result column

The Conjunction Operator

- The binary conjunction operator "∧" (AND) combines two propositions to form their logical conjunction.
- E.g. If p = "I will have salad for lunch." and q = "I will have steak for dinner."

then, $p \wedge q$ = "I will have salad for lunch **and** I will have steak for dinner."

Conjunction Truth Table

Operand columns

$$egin{array}{c|cccc} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \\ \hline \end{array}$$

Note that a conjunction $p_1 \wedge p_2 \wedge ... \wedge p_n$ of n propositions will have 2^n rows in its truth table

The Disjunction Operator

- The binary disjunction operator "\" (OR) combines two propositions to form their logical disjunction.
- E.g. If p = "My car has a bad engine." and q = "My car has a bad carburetor."

then, $p \lor q$ = "My car has a bad engine, **or** my car has a bad carburetor."

Meaning is like "and/or" in informal English.

Disjunction Truth Table

_ <i>p</i>	q	$p \lor q$	
T	T	T	
T	F	T Note difference	
F	T	$\mathbf{T} \int from AND$	
F	F	F	

- Note that p∨q means that p is true, or q is true, or both are true!
- So, this operation is also called inclusive or, because it includes the possibility that both p and q are true.

The Exclusive-Or Operator

- The binary exclusive-or operator "⊕" (XOR) combines two propositions to form their logical "exclusive or"
- E.g. If p = "I will earn an A in this course." and
 q = "I will drop this course.", then
 - $p \oplus q$ = "I will **either** earn an A in this course, or I will drop it (**but not both**!)"

Exclusive-Or Truth Table

p	q	$p \oplus q$	
T	T	$\overline{\mathbf{F}}$	Note difference from OR.
T	F	T	
F	T	T	
F	F	F	

- Note that p⊕q means that p is true, or q is true, but not both!
- This operation is called exclusive or, because it excludes the possibility that both p and q are true.

Natural Language is Ambiguous

Note that the <u>English</u> "or" can be <u>ambiguous</u> regarding the

"both" case!

■ "Pat is a singer or Pat is a writer." - ∨

■ "Pat is a man or Pat is a woman." - ⊕

p	q	p "or" q
T	T	?
T	F	T
F	T	T
F	F	F

- Need context to disambiguate the meaning!
- For this class, assume "or" means inclusive (∨).

The Implication Operator

- The conditional statement (aka *implication*) $p \rightarrow q$ states that p implies q.
- I.e., If p is true, then q is true; but if p is not true, then q could be either true or false.
- E.g., let p = "You study hard."
 q = "You will get a good grade."
 p → q = "If you study hard, then you will get a good grade." (else, it could go either way)
 - p: hypothesis or antecedent or premise
 - q: conclusion or consequence

Implication Truth Table

$$\begin{array}{c|cccc} p & q & p \rightarrow q \\ \hline T & T & T \\ T & F & F \end{array}$$

$$\begin{array}{c|cccc} T & ccccc & T \\ \hline T & T & T \\ \hline F & T & T \\ \hline F & F & T \end{array}$$

$$\begin{array}{c|cccc} T & ccccc & T \\ \hline The only \\ False case! \\ \hline F & T & T \\ \hline \end{array}$$

- $p \rightarrow q$ is **false** only when p is true but q is **not** true.
- $p \rightarrow q$ does **not** require that p or q are ever true!
- E.g. "(1=0) \rightarrow pigs can fly" is TRUE!

Examples of Implications

- "If this lecture ever ends, then the sun will rise tomorrow." True or False? $(T \rightarrow T)$
- "If 1+1=6, then Joe Biden is president." True or False? $(F \rightarrow T)$
- "If the moon is made of green cheese, then I am richer than Bill Gates." True or False? $(F \rightarrow F)$
- "If Tuesday is a day of the week, then I am a penguin." True or False (T→F)

English Phrases Meaning $p \rightarrow q$

- "p implies q"
- "if *p*, then *q*"
- "if p, q"
- "when p, q"
- "whenever p, q"
- "q if p"
- "q when p"
- "q whenever p"

- "*p* only if *q*"
- "p is sufficient for q"
- "q is necessary for p"
- "q follows from p"
- "q is implied by p"

We will see some equivalent logic expressions later.

Converse, Inverse, Contrapositive

• Some terminology, for an implication $p \rightarrow q$:

• Its **converse** is: $q \rightarrow p$.

• Its *inverse* is: $\neg p \rightarrow \neg q$.

■ Its contrapositive: $\neg q \rightarrow \neg p$.

<u>p</u>	q	$p \rightarrow q$	$q \rightarrow p$	$\neg p \rightarrow \neg q$	$\neg q \rightarrow \neg p$
T	T	T	T	T	T
T	F	F	\mathbf{T}	T	\mathbf{F}
F	T	T	F	F	T
F	F	Γ	T	\mathbf{T}	T

• One of these three has the same meaning (same truth table) as $p \rightarrow q$. Can you figure out which?

Examples

- p: Today is Easter
 - q: Tomorrow is Monday
- $p \rightarrow q$:
 If today is Easter then tomorrow is Monday.
- Converse: $q \rightarrow p$ If tomorrow is Monday then today is Easter.
- *Inverse*: $\neg p \rightarrow \neg q$ If today is not Easter then tomorrow is not Monday.
- Contrapositive: $\neg q \rightarrow \neg p$ If tomorrow is not Monday then today is not Easter.

The Biconditional Operator

- The *biconditional* statement $p \leftrightarrow q$ states that p *if* and only if (iff) q.
- p = "It is below freezing."
 q = "It is snowing."
 p ↔ q = "It is below freezing if and only if it is snowing."

or

= "That it is below freezing is necessary and sufficient for it to be snowing"

Biconditional Truth Table

p	q	$p \leftrightarrow q$
T	T	T
T	F	F
F	T	F
F	F	T

BOTH SOME => TOWE

- p is necessary and sufficient for q
- If p then q, and conversely
- p iff q
- $p \leftrightarrow q$ is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$.
- $p \leftrightarrow q$ means that p and q have the **same** truth value.
- $p \leftrightarrow q$ does **not** imply that p and q are true.
- Note this truth table is the exact **opposite** of \oplus 's! Thus, $p \leftrightarrow q$ means $\neg(p \oplus q)$.

Boolean Operations Summary

- Conjunction: p ∧ q, (read p and q), "discrete math is a required course and I am a computer science major".
- Disjunction: , $p \lor q$, (read p or q), "discrete math is a required course or I am a computer science major".
- Exclusive or: p ⊕ q, "discrete math is a required course or I am a computer science major but not both".
- Implication: $p \rightarrow q$, "if discrete math is a required course then I am a computer science major".
- Biconditional: $p \leftrightarrow q$, "discrete math is a required course if and only if I am a computer science major".

Boolean Operations Summary

We have seen 1 unary operator and 5 binary operators. What are they? Their truth tables are below.

p	q	$\neg p$	$p \land q$	$p \lor q$	$p \oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
T	T	F	T	T	F	T	T
T	F	F	F	T	T	F	F
F	T	T	F	T	T	T	F
F	F	T	F	F	F	T	T

• For an implication
$$p \rightarrow q$$

• Its **converse** is:
$$q \rightarrow p$$

• Its *inverse* is:
$$\neg p \rightarrow \neg q$$

• Its contrapositive:
$$\neg q \rightarrow \neg p$$

Compound Propositions

- A *propositional variable* is a variable such as *p*, *q*, *r* (possibly subscripted, e.g. *p_j*) over the Boolean domain.
- An atomic proposition is either Boolean constant or a propositional variable: e.g. T, F, p
- A *compound proposition* is derived from atomic propositions by application of propositional operators: e.g. $\neg p$, $p \lor q$, $(p \lor \neg q) \to q$
- Precedence of logical operators: \neg , \wedge , \vee , \rightarrow , \leftrightarrow
- Precedence also can be indicated by parentheses.
 - e.g. $\neg p \land q$ means $(\neg p) \land q$, not $\neg (p \land q)$

An Exercise

- Any compound proposition can be evaluated by a truth table
- $(p \vee \neg q) \rightarrow q$

p	q	$\neg q$	$p \lor \neg q$	$(p \lor \neg q) \rightarrow q$
T	T	F	T	T
T	F	T	T	F
F	T	F	F	T
F	F	T	T	F

Translating English Sentence

Let p = "It rained last night", q = "The sprinklers came on last night," r = "The lawn was wet this morning."

Translate each of the following into English:

 $\neg p$ = "It didn't rain last night."

 $r \wedge \neg p$ = "The lawn was wet this morning, and it didn't rain last night."

 $\neg r \lor p \lor q =$ "The lawn wasn't wet this morning, or it rained last night, or the sprinklers came on last night."

Another Example

- Find the converse of the following statement.
 - "Raining tomorrow is a sufficient condition for my not going to town."
- Step 1: Assign propositional variables to component propositions.
 - p: It will rain tomorrow
 - q: I will not go to town
- **Step 2**: Symbolize the assertion: $p \rightarrow q$
- **Step 3**: Symbolize the converse: $q \rightarrow p$
- Step 4: Convert the symbols back into words.
 - "If I don't go to town then it will rain tomorrow" or
 - "Raining tomorrow is a necessary condition for my not going to town."

Logic and Bit Operations

- A bit is a binary (base 2) digit: 0 or 1.
- Bits may be used to represent truth values.
 - By convention:
 - O represents "False"; 1 represents "True".
- A *bit string of length n* is an ordered sequence of $n \ge 0$ bits.
- By convention, bit strings are (sometimes) written left to right:
 - e.g. the "first" bit of the bit string "1001101010" is 1.
 - What is the length of the above bit string?

Bitwise Operations

 Boolean operations can be extended to operate on bit strings as well as single bits.

Example:

01 1011 0110

<u>11 0001 1101</u>

11 1011 1111 Bit-wise OR

01 0001 0100 Bit-wise AND

10 1010 1011 Bit-wise XOR

You have learned about:

- Propositions: what they are
- Propositional logic operators'
 - symbolic notations, truth tables, English equivalents, logical meaning
- Atomic vs. compound propositions
- Bits, bit strings, and bit operations
- Next section:
 - Propositional equivalences
 - Equivalence laws
 - Proving propositional equivalences