BJT AC Analysis

Topic 5 (Chapter 5)

5.2 AC Amplification

- After a transistor has been biased with the Q point near the middle of the load line, we can couple a small ac voltage into the base (input).
 - This will produce an ac collector voltage (output).
 - The ac collector voltage looks like the ac base voltage, except that it's a lot bigger.
 - In other words, the ac collector voltage is an *amplified* version of the ac base voltage.
- The invention of amplifying devices, first vacuum tubes and later transistors, was crucial to the evolution of electronics.
 - Without amplification, there would be no radio, no television, and no computers.

BJT amplifier biased at a point Q

A small signal voltage v_{be} is applied

 The output signal v_{ce} appears superimposed on the dc collector voltage V_{CF}

• The amplitude of v_{ce} is larger than that of v_{be} by the voltage gain A_v

Base-biased amplifier

- AC input is applied into <u>base</u>
- $v_{be} = v_{in}$
- Coupling capacitors are used to block DC
 - The reactance of a coupling capacitor is <u>small</u> for AC signal
- Amplified and inverted output at the collector. $v_{ce} = v_{out}$
- AC output coupled to the <u>load</u> (R_L)
- Voltage Gain: $A_v = -\frac{v_{out}}{v_{in}} = -\frac{v_{ce}}{v_{be}}$

A base-biased amplifier with capacitive coupling

DC analysis gives: I_B = 29.3 μ A, I_C = 2.93 mA and V_C = 15.35 V

The coupling capacitor

Capacitor current,

$$i_c = C \frac{dv}{dt}.$$

DC Analysis: v is

$$\mathbf{fixed.} \, \frac{dv}{dt} = 0$$

$$i_c = 0$$
. Open

AC Analysis:

Reactance
$$X = \frac{1}{2 \pi f C}$$

$$C = Large$$

$$X = 0$$
. Short

$$i_c = C \frac{dv}{dt} =$$
Large

- 1. For ac analysis, the capacitor is a short.
- 2. For dc analysis, the capacitor is open.

BJT Amplifier Analysis

- Superposition Theorem (DC + AC analysis)
- DC voltages and currents are calculated mentally by opening capacitors: DC Analysis (Chapter 4)
- The AC signal is coupled via a coupling capacitor
- Coupling capacitor: couples between BJT & input AND BJT & output
- The bypass capacitor causes an <u>AC</u> signal to appear across the base-emitter junction and provides <u>higher</u> gain
- Bypass capacitor: Need in DC. Not need in AC.

VDB Amplifier

The <u>dc</u> current gain is given as:

$$\beta_{DC} = \frac{I_C}{I_B}$$

The <u>ac</u> current gain is given as:

$$\beta_{ac} = \frac{\mathbf{i}_c}{\mathbf{i}_b}$$

Use CAPITAL letters for <u>dc</u> quantities and <u>lowercase</u> letters for <u>ac</u>.

Formula for ac emitter resistance

Derived by using solid-state physics and calculus:

Diode AC Resistance,
$$r_{ac} = \frac{nV_T}{I_D}$$
 Chapter 1
$$\mathbf{r_e}' = \frac{nV_T = 26 \text{ mV}}{I_E}$$

 r_e is AC emitter resistance I_E is DC emitter current

5.3 BJT TRANSISTOR MODELING

Transistor AC models

- AC equivalent circuit for a transistor
- Simulates how a transistor behaves when an ac signal is present
- There are two models commonly used in small signal AC analysis of a transistor:
 - r_e model
 - T model and π type models are widely used
 - Hybrid equivalent model (h parameter model)

5.4 The r_e Transistor Model

(The Input Equivalent Circuit)

FIG. 5.8

Finding the input equivalent circuit for a BJT transistor.

FIG. 5.10
ent circuit for the input s

Equivalent circuit for the input side of a BJT transistor.

BJT similar to two diodes, emitter-base (FB) and collector-base (RB) $r_{\scriptscriptstyle\rho}$ Transistor Model: Diode between Emitter and Base

The r_e Transistor Model

(The BJT Equivalent Circuit – T Model)

- BJT similar to two diodes, emitter-base (FB) and collector-base (RB)
- r_e Transistor Model: AC resistance (r_e) between Emitter and Base (input/base side)
- Output/ collector side: $i_c = \beta i_b$; output current = $\beta \times$ input current
- Output side: Current dependent current source (diamond shape)

Deriving π model from T model

$$\mathbf{v}_{be} = \mathbf{i}_{e} \times \mathbf{r}_{e}$$

$$= (\beta+1) \mathbf{i}_{b} \mathbf{r}_{e}$$

$$\cong \mathbf{i}_{b} \times \beta \mathbf{r}_{e}$$

$$\mathbf{z}_{in(base)}$$

$$\mathbf{i}_{e}$$

The π model of a transistor is based on $z_{in(base)} = \beta r_e$:

Overview of r_e Transistor Models

(T and π Model)

BJT Amplifier AC analysis

- Superposition theorem (DC + AC analysis)
- Perform a complete <u>DC</u> analysis (Chapter 4)
- Short all coupling and bypass capacitors for ac signals
- Visualize all <u>DC</u> supply voltages as grounds
- Replace the transistor by its $\underline{\pi}$ or \underline{T} model
- Draw the AC equivalent circuit

5.5 Common-Emitter Fixed-Bias Configuration

AC equivalent

Common-Emitter Fixed-Bias Calculations

Input impedance:

$$Z_i = R_B ||\beta|_e$$

$$Z_i \cong \beta r_e |_{R_E \ge 10 \beta r_e}$$

Output impedance:

$$Z_o = R_C || r_o$$

$$Z_o \cong R_C ||_{r_o \ge 10R_C}$$

Voltage gain:

$$A_{v} = \frac{V_{o}}{V_{i}} = -\frac{(R_{c}||r_{o})}{r_{e}}$$

$$A_{v} = -\frac{R_{c}}{r_{e}}\Big|_{r_{o} \ge 10R_{c}}$$

Current gain:

$$A_{i} = \frac{I_{o}}{I_{i}} = \frac{\beta R_{B} r_{o}}{(r_{o} + R_{C})(R_{B} + \beta r_{e})}$$

$$A_{i} \cong \beta \Big|_{r_{o} \geq 10 R_{C}, R_{B} \geq 10 \beta r_{e}}$$

EXAMPLE 5.1 For the network of Fig. 5.25:

- a. Determine r_e .
- b. Find Z_i (with $r_o = \infty \Omega$).
- c. Calculate Z_o (with $r_o = \infty \Omega$).
- d. Determine A_{ν} (with $r_o = \infty \Omega$).

- 1. Short all coupling and bypass capacitors for ac signals
- 2. <u>DC</u> supply voltages as grounds
- 3. Replace the transistor by its $\underline{\pi}$ or \underline{T} model
- π Model: CE
- T model: CB
- 4. Draw the AC equivalent circuit

- a. Determine r_e .
- b. Find Z_i (with $r_o = \infty \Omega$).
- c. Calculate Z_o (with $r_o = \infty \Omega$).
- d. Determine A_{ν} (with $r_o = \infty \Omega$).

OUTPUT

INPUT

$$I_B = \frac{V_{CC} - V_{BE}}{R_B} = \frac{12 \text{ V} - 0.7 \text{ V}}{470 \text{ k}\Omega} = 24.04 \,\mu\text{A}$$

$$I_E = (\beta + 1)I_B = (101)(24.04 \,\mu\text{A}) = 2.428 \,\text{mA}$$

$$r_e = \frac{26 \,\text{mV}}{I_E} = \frac{26 \,\text{mV}}{2.428 \,\text{mA}} = \mathbf{10.71 \,\Omega}$$

b.
$$\beta r_e = (100)(10.71 \ \Omega) = 1.071 \ k\Omega$$

 $Z_i = R_B \|\beta r_e = 470 \ k\Omega \|1.071 \ k\Omega = 1.07 \ k\Omega$

c.
$$Z_o = R_C = 3 \,\mathrm{k}\Omega$$

d.
$$A_v = -\frac{R_C}{r_e} = -\frac{3 \text{ k}\Omega}{10.71 \Omega} = -280.11$$

5.6 Common-Emitter Voltage-Divider Bias

5.6 Common-Emitter Voltage-Divider Bias

Input impedance

$$R' = R_1 \parallel R_2$$
$$Z_i = R' \parallel \beta r_e$$

Output impedance

$$Z_o = R_C \parallel r_o$$

$$Z_o \cong R_C \mid_{r_o \ge 10R_C}$$

Voltage gain

$$A_{v} = \frac{V_{o}}{V_{i}} = \frac{-R_{C} \parallel r_{o}}{r_{e}}$$

$$A_{v} = \frac{V_{o}}{V_{i}} \cong -\frac{R_{C}}{r_{e}} \Big|_{r_{o} \geq 10R_{C}}$$

Current gain

Current gain
$$A_{i} = \frac{I_{o}}{I_{i}} = \frac{\beta R' r_{o}}{(r_{o} + R_{C})(R' + \beta r_{e})}$$

$$A_{i} = \frac{I_{o}}{I_{i}} \cong \frac{\beta R'}{R' + \beta r_{e}} \Big|_{r_{o} \ge 10R_{C}}$$

$$A_{i} = \frac{I_{o}}{I_{i}} \cong \beta \Big|_{r_{o} \ge 10R_{C}, R' \ge 10\beta r_{e}}$$

EXAMPLE 5.2 For the network of Fig. 5.28, determine:

a.
$$r_e$$
.

b.
$$Z_i$$
.

c.
$$Z_o(r_o = \infty \Omega)$$
.

d.
$$A_{\nu}(r_o = \infty \Omega)$$
.

FIG. 5.28

Example 5.2.

$$V_B = \frac{R_2}{R_1 + R_2} V_{CC} = \frac{(8.2 \text{ k}\Omega)(22 \text{ V})}{56 \text{ k}\Omega + 8.2 \text{ k}\Omega} = 2.81 \text{ V}$$

$$V_E = V_B - V_{BE} = 2.81 \text{ V} - 0.7 \text{ V} = 2.11 \text{ V}$$

$$I_E = \frac{V_E}{R_E} = \frac{2.11 \text{ V}}{1.5 \text{ k}\Omega} = 1.41 \text{ mA}$$

$$r_e = \frac{26 \text{ mV}}{I_E} = \frac{26 \text{ mV}}{1.41 \text{ mA}} = 18.44 \Omega$$

EXAMPLE 5.2 For the network of Fig. 5.28, determine:

- a. r_e .
- b. Z_i
- c. $Z_o(r_o = \infty \Omega)$.
- d. $A_{\nu}(r_o = \infty \Omega)$.

b.
$$R' = R_1 \| R_2 = (56 \,\mathrm{k}\Omega) \| (8.2 \,\mathrm{k}\Omega) = 7.15 \,\mathrm{k}\Omega$$

 $Z_i = R' \| \beta r_e = 7.15 \,\mathrm{k}\Omega \| (90)(18.44 \,\Omega) = 7.15 \,\mathrm{k}\Omega \| 1.66 \,\mathrm{k}\Omega$
 $= 1.35 \,\mathrm{k}\Omega$

c.
$$Z_o = R_C = 6.8 \,\mathrm{k}\Omega$$

d.
$$A_v = -\frac{R_C}{r_e} = -\frac{6.8 \,\mathrm{k}\Omega}{18.44 \,\Omega} = -368.76$$

Example 5.8: Common Base BJT Amplifier

- Common base PNP: r_e T model
- Input: emitter; output: collector
- Output Current: $I_C = \beta I_B = \alpha I_E = \alpha \times \text{input current}$

Example 5.8: Common Base BJT Amplifier

$$I_{E} = \frac{V_{EE} - V_{BE}}{R_{E}} = \frac{2 \text{ V} - 0.7 \text{ V}}{1 \text{ k}\Omega} = \frac{1.3 \text{ V}}{1 \text{ k}\Omega} = 1.3 \text{ mA}$$

$$r_{e} = \frac{26 \text{ mV}}{I_{E}} = \frac{26 \text{ mV}}{1.3 \text{ mA}} = 20 \Omega$$

$$Z_{i} = R_{E} \| r_{e} = 1 \text{ k}\Omega \| 20 \Omega$$

$$= 19.61 \Omega \cong r_{e}$$

$$Z_{o} = R_{C} = 5 \text{ k}\Omega$$

$$A_{v} \cong \frac{R_{C}}{r_{e}} = \frac{5 \text{ k}\Omega}{20 \Omega} = 250$$