Lecture 04

불대수

기본 논리식 표현

- 불 대수란?
 - AND, OR, NOT을 이용하여 표현함
- 표현법

■ 각각의 입력과 출력에 해당하는 기호는 보통 알파벳 대문자 또는 소문자

로 나타냄

■ AND : 곱셈

■ OR : 덧셈

■ NOT : Ā 또는 A'

입력	출력
A	F
0	$ar{A}$
1	A

입	출력	
A	В	F
0	0	$ar{A}ar{B}$
0	1	ĀΒ
1	0	$Aar{B}$
1	1	AB

	입력					
A	В	С	F			
0	0	0	ĀĒĒ			
0	0	1	ĀĒC			
0	1	0	ĀBĒ			
0	1	1	ĀBC			
1	0	0	$Aar{B}ar{C}$			
1	0	1	AĒC			
1	1	0	ABŪ			
1	1	1	ABC			

기본 논리식 표현

■ 출력 함수를 구성할 때 여러 가지 논리식이 있을 수 있음

입력		출력	
A	В	F	
0	0	1	
0	1	1	$F = \bar{A}\bar{B} + \bar{A}B + A\bar{B}$
1	0	1	
1	1	0	$F = \bar{A} + \bar{B} = \overline{AB}$

주어진 논리식의	2로부터	진리표를	만들
수 있음			

•
$$\Theta$$
, $F = A + \bar{B}C$

	입력					
A	В	С	$A + \overline{B}C$			
0	0	0	0			
0	0	1	1			
0	1	0	0			
0	1	1	0			
1	0	0	1			
1	0	1	1			
1	1	0	1			
1	1	1	1			

불대수법칙

■ 불 대수 공리

P1
$$A = 0 \text{ or } A = 1$$

P3
$$1 \cdot 1 = 1$$

P7
$$1+0=0+1=1$$

P2
$$0 \cdot 0 = 0$$

P4
$$0 + 0 = 0$$

P6
$$1 \cdot 0 = 0 \cdot 1 = 0$$

■ 불 대수의 기본 법칙

■ 항등•누승•보간•이중 부정 법칙

1
$$A + 0 = 0 + A = A$$

$$2 \quad A \cdot 1 = 1 \cdot A = A$$

$$3 \quad A+1=1+A=1$$

$$4 \quad A \cdot 0 = 0 \cdot A = 0$$

5
$$A + A = A$$

6
$$A \cdot A = A$$

$$7 \quad A + \bar{A} = 1$$

$$8 \quad A \cdot \bar{A} = 0$$

쌍대성(duality): 불 대수 공리나 기본 법칙에서 좌우 한 쌍에서 0과 1 을 서로 바꾸고 ·과 +도 서로 바꾸며 다른 한쪽이 얻어진 성질임

9
$$\bar{A} = A$$

불대수법칙

- 불 대수의 기본 법칙
 - 교환 법칙(communicative law)

$$10 \quad A + B = B + A$$

11
$$A \cdot B = B \cdot A$$

■ 결합 법칙(associate law)

12
$$(A+B)+C=A+(B+C)$$

13
$$(A \cdot B) \cdot C = A \cdot (B \cdot C)$$

■ 분배 법칙(distributive law)

$$14 \quad A \cdot (B+C) = A \cdot B + A \cdot C$$

15
$$A + B \cdot C = (A + B) \cdot (A + C)$$

■ 드모르간의 정리(De Morgan's theorem)

16
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

17
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

불 대수 법칙

- 불 대수의 기본 법칙
 - 흡수 법칙(absorptive law)

$$18 \quad A + A \cdot B = A$$

$$19 \quad A \cdot (A+B) = A$$

■ 합의 정리(consensus theorem)

$$20 \quad AB + BC + \bar{A}C = AB + \bar{A}C$$

21
$$(A+B)(B+C)(\bar{A}+C) = (A+B)(\bar{A}+C)$$

■ 드모르간 정리의 일반식

$$\frac{\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}}{\overline{A} \cdot \overline{B} \cdot \overline{C}} = \overline{A} + \overline{B} + \overline{C}$$

$$\overline{A + B + C + D} = \overline{A} \cdot \overline{B} \cdot \overline{C} \cdot \overline{D}$$
$$\overline{A \cdot B \cdot C \cdot D} = \overline{A} + \overline{B} + \overline{C} + \overline{D}$$

$$\frac{\overline{A_1 + A_2 + \dots + A_n}}{\overline{A_1 \cdot A_2 \cdot \dots \cdot A_n}} = \overline{A_1} \cdot \overline{A_2} \cdot \dots \cdot \overline{A_n}$$

불 대수 법칙

- 불 대수의 기본 법칙 증명
 - 전리표를 사용하거나 다른 기본 법칙을 사용하여 증명할 수 있음
 - q, 분배 법칙(15) q + q · q = q ·

진리표 사용

	입력		왼쪽	오른쪽		
A	В	С	A + BC	A + B	A + C	(A+B)(A+C)
0	0	0	0	0	0	0
0	0	1	0	0	1	0
0	1	0	0	1	0	0
0	1	1	1	1	1	1
1	0	0	1	1	1	1
1	0	1	1	1	1	1
1	1	0	1	1	1	1
1	1	1	1	1	1	1

3번 법칙 사용

$$(A + B) \cdot (A + C) = AA + AC + BA + BC$$
$$= A + AC + AB + BC$$
$$= A \cdot (1 + B + C) + BC$$
$$= A \cdot 1 + BC$$
$$= A + BC$$

논리회로의 논리식 변환

- 논리회로를 설계하거나 분석하기 위해 논리식으로 표현함
 - 예,

■ 입력: A, B, C, D

■ 출력:*F*

논리식의 회로 구성

- AND-OR 회로
 - Θ , $F = \bar{A}B + A\bar{B} + BC$

■ OR-AND 회로

•
$$\Theta$$
, $F = (A + B)(\bar{A} + \bar{B} + C)$

- 복합 회로
 - Θ , $F = AB + C(BD + \bar{A})$

- 불 대수식을 표현하는 <mark>2가지 기본 형태</mark>가 있음
 - 곱의 합(SOP: Sum Of Product) : AND-OR 결합 형태
 - 합의 곱(POS: Product Of Sum) : OR-AND 결합 형태
- 곱의 합(SOP)과 최소항(minterm)
 - 입력 측인 1단계가 AND 항(곱의 항)으로 구성되고, 출력 측인 2단계는 OR 항(합의 항)으로 만들어진 논리식임
 - 예.

$$F = A$$

$$F = A + \bar{B} + C$$

$$F = A\bar{B}$$

$$F = AB + \bar{C}$$

$$F = AB\bar{C}\bar{D} + \bar{A}BCD + AB\bar{C}D + ABCD$$

- 곱의 합(SOP)과 최소항(minterm)
 - 표준 곱의 항 : 모든 입력을 포함하는 항임
 - 표준 곱의 항 : 최소항이라고 함
 - 예, A, B, C, D 4개의 입력을 포함하는 경우 $AB\bar{C}\bar{D}$, $\bar{A}BCD$, ABCD 등 \to 표준 곱의 항 또는 최소항 ABC, $AB\bar{C}$, $B\bar{C}$ 등 \rightarrow 최소항 아님
 - 최소 SOP : SOP로 나타낸 함수 중에서 최소 곱의 항들로 나타낸 것임
 - 예, 아래 식들은 모두 같은 결과를 만들어내는 논리식임

```
\bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + AB\bar{C} + AB\bar{C}
```

 $2 \bar{A}B + A\bar{B} + ABC$

출력

F

n

입력

0

В

0

- 곱의 합(SOP)과 최소항(minterm)
 - 진리표로부터 최소항식을 표현하는 방법

$$A = 0 \text{ AND } B = 1 \text{ OR}$$

$$A = 1 \text{ AND } B = 0 \text{ OR}$$

$$A = 1 \text{ AND } B = 1 \text{ 2} \text{ III} F = 1 \text{ 2}$$

$\bar{A} = 1$	AND B	= 1 OR
---------------	---------	--------

$$A = 1 \text{ AND } \bar{B} = 1 \text{ OR}$$

$$A = 1$$
 AND $B = 1$ 일 때 $F = 1$ 임

$$\bar{A}B = 1 \text{ OR } A\bar{B} = 1 \text{ OR } AB = 1$$
일 때 $F = 1$ 임

$$F = \bar{A}B + A\bar{B} + AB$$

- 곱의 합(SOP)과 최소항(minterm)
 - 진리표로부터 최소항식을 표현하는 방법

$$F = \overline{A}B + A\overline{B} + AB$$
$$= m_1 + m_2 + m_3$$
$$= \sum m(1,2,3)$$

입	력	출력	최소항	기호
A	В	F	되고 8	기오
0	0	0	$ar{A}ar{B}$	m_0
0	1	1	$ar{A}B$	m_1
1	0	1	$Aar{B}$	m_2
1	1	1	AB	m_3

$$F = \sum m(0,1,3,5,7)$$

	입력		출력	최소항	기호	
A	В	С	F	10 11	기오	
0	0	0	1	$ar{A}ar{B}ar{\mathcal{C}}$	m_0	
0	0	1	1	$ar{A}ar{B}$ C	m_1	
0	1	0	0	$ar{A}Bar{\mathcal{C}}$	m_2	
0	1	1	1	ĀBC	m_3	
1	0	0	0	$Aar{B}ar{\mathcal{C}}$	m_4	
1	0	1	1	$A\bar{B}C$	m_5	
1	1	0	0	ABŪ	m_6	
1	1	1	1	ABC	m_7	

- 곱의 합(SOP)과 최소항(minterm)
 - 진리표로부터 최소항식을 표현하는 방법

$$F = \sum m(0,1,3,5,7)$$

$$\bar{F} = \sum m(2,4,6)$$

	입력		출력	최소항	기호
A	В	С	F	되고 90	기호
0	0	0	1	$ar{A}ar{B}ar{\mathcal{C}}$	m_0
0	0	1	1	$ar{A}ar{B}$ C	m_1
0	1	0	0	ĀВĒ	m_2
0	1	1	1	ĀВС	m_3
1	0	0	0	$Aar{B}ar{C}$	m_4
1	0	1	1	$Aar{B}C$	m_5
1	1	0	0	$ABar{\mathcal{C}}$	m_6
1	1	1	1	ABC	m_7

- 합의 곱(POS)과 최대항(maxterm)
 - 입력 측인 1단계는 OR 항(합의 항)으로 구성되고, 출력 측인 2단계는 AND 항(곱의 항)으로 만들어진 논리식임
 - 예,

$$F = A$$

$$F = A + \overline{B} + C$$

$$F = A(B + C)$$

$$F = (A + B)(\overline{A} + C)$$

$$F = (A + B + \overline{C} + D)(\overline{A} + \overline{B} + C + D)(A + B + C + D)$$

- 표준 합의 항 : 모두 입력을 포함하는 항임
- 표준 합의 항 : 최대항이라고 함
 - 예, *A*, *B*, *C*, *D* 4개의 입력을 포함하는 경우 *A* + *B* + *C* + *D*는 최대항임, *A* + *B* + *C*는 최대항 아님

- 합의 곱(POS)과 최대항(maxterm)
 - 진리표로부터 최소항식을 표현하는 방법

SOP

$$F = \bar{A}B + AB$$

$$F = m_1 + m_3$$

$$F = \sum m(1,3)$$

입	력	출력	최소항
A	В	F	3 3 3 3
0	0	0	$m_0 = \bar{A}\bar{B}$
0	1	1	$m_1 = \bar{A}B$
1	0	0	$m_2 = A\bar{B}$
1	1	1	$m_3 = AB$

POS

$$F = (A + B)(\bar{A} + B)$$

$$F = M_0 + M_2$$

$$F = \prod M(0,2)$$

입	력	출력	최대항		
A	В	F	의 기 %		
0	0	0	$M_0 = A + B$		
0	1	1	$M_1 = A + \bar{B}$		
1	0	0	$M_2 = \bar{A} + B$		
1	1	1	$M_3 = \bar{A} + \bar{B}$		

2024, 03, 04.

불대수식의표현형태

■ 최소항과 최대항의 관계

입력		출력		최소항	기호	최대항	기호	관계	
A	В	С	F	F'	최고영	기오	피네8	기오	근계
0	0	0	1	0	ĀĒĒ	m_0	A+B+C	M_0	$M_0 = \overline{m_0}$
0	0	1	1	0	ĀĒC	m_1	$A+B+\bar{C}$	M_1	$M_1 = \overline{m_1}$
0	1	0	0	1	ĀBĒ	m_2	$A + \overline{B} + C$	M_2	$M_2 = \overline{m_2}$
0	1	1	1	0	ĀBC	m_3	$A + \bar{B} + \bar{C}$	M_3	$M_3 = \overline{m_3}$
1	0	0	0	1	$Aar{B}ar{C}$	m_4	$\bar{A} + B + C$	M_4	$M_4 = \overline{m_4}$
1	0	1	1	0	$A\overline{B}C$	m_5	$\bar{A} + B + \bar{C}$	M_5	$M_5 = \overline{m_5}$
1	1	0	0	1	$ABar{\mathcal{C}}$	m_6	$\bar{A} + \bar{B} + C$	M_6	$M_6 = \overline{m_6}$
1	1	1	1	0	ABC	m_7	$\bar{A} + \bar{B} + \bar{C}$	M_7	$M_7 = \overline{m_7}$

■ 최소항과 최대항의 관계

$$F = \sum m(0,1,3,5,7)$$

$$= \bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}C + ABC$$

$$= \overline{\bar{A}\bar{B}\bar{C} + \bar{A}\bar{B}C + \bar{A}BC + A\bar{B}C + ABC}$$

$$= \overline{\overline{A}\overline{B}\overline{C} \cdot \overline{A}\overline{B}C \cdot \overline{A}BC \cdot \overline{A}BC \cdot \overline{A}BC \cdot \overline{A}BC}$$

$$= \overline{(A + B + C)(A + B + \bar{C})(A + \bar{B} + \bar{C})(\bar{A} + B + \bar{C})(\bar{A} + \bar{B} + \bar{C})}$$

$$= \overline{\prod M(0,1,3,5,7)}$$

$$F = \sum m(0,1,3,5,7) = \overline{\sum m(2,4,6)} = \overline{\overline{\prod M(2,4,6)}} = \overline{\prod M(2,4,6)}$$

논리식의 간소화

- 불 대수 법칙을 이용해서 논리식을 간소화할 수 있음
 - 예,

$$F = \bar{A}B\bar{C} + \bar{A}BC + A\bar{B}\bar{C} + A\bar{B}C + ABC$$

$$= (\bar{A}B\bar{C} + \bar{A}BC) + (\bar{A}B\bar{C} + \bar{A}BC) + ABC$$

$$= \bar{A}B(\bar{C} + C) + \bar{A}B(\bar{C} + C) + ABC$$

$$= \bar{A}B \cdot 1 + \bar{A}B \cdot 1 + ABC$$

$$= \bar{A}B + \bar{A}B + \bar{A}BC$$

$$F = A + \overline{A}B$$

$$= (A + \overline{A})(A + B)$$

$$= 1 \cdot (A + B)$$

$$= A + B$$