Energiebron

Chemoorganotrofen

Organische stoffen als energiebron.

Twee belangrijke strategieën:

Respiratie:

Aeroob of anaeroob katabolisme waarbij een elektrondonor wordt geoxideerd m.b.v. O_2 of een andere stof als terminale elektronenacceptor.

Fermentatie:

Vorm van anaeroob katabolisme waarbij een organische component zowel de elektrondonor als de elektronacceptor is.

Beide strategiën beginnen met de glycolyse

Glycolyse

Ook wel: Emden-Meyerhof-Parnas pathway

Oxidatie van 1 glucose tot 2 pyruvaat

Fase 1 (stap 1 -5) kost energie

10 stappen in 2 fases

Fase 2 (stap 6-10) levert energie op

Glycolyse (begrijpen)

biphosphoglycerate

Waar vind(en) redoxreactie(s) plaats?

Nicotinamide adenine dinucleotide (NAD+)

NAD⁺ is een co-enzym en een electron carrier

Opdracht

1. De halfreactie voor de reductie van NAD+ is:

$$NAD^+ + 2e^- + 2H^+ \rightarrow NADH + H^+$$

Tijdens de omzetting van glucose ($C_6H_{12}O_6$) naar pyruvaat ($C_3H_3O_3^-$) worden 2 NAD+ moleculen gereduceerd.

Laat m.b.v. halfreacties zien dat dit klopt.

Opdracht - uitwerking

De reductie halfreactie is gegeven: $NAD^+ + 2e^- + 2H^+ \rightarrow NADH + H^+$

De oxidatie halfreactie moet je zelf uitwerken:

Dit weet je: $C_6H_{12}O_6 \rightarrow C_3H_3O_3^-$

C kloppend maken: $C_6H_{12}O_6 \rightarrow 2 C_3H_3O_3$

O kloppend maken: $C_6H_{12}O_6 \rightarrow 2 C_3H_3O_3^{-1}$

H kloppend maken: $C_6H_{12}O_6 \rightarrow 2 C_3H_3O_3^- + 6 H^+$

H kloppend maken: $C_6H_{12}O_6 \rightarrow 2 C_3H_3O_3^- + 6 H^+ + 4 e^-$

4 elektronen, want er staan rechts van de pijl al 2 'minnetjes' (van 2 pyruvaat)

Tijdens de oxidatie komen 4 elektronen vrij. Voor één NAD+ reductie heb je 2 elektronen nodig (zie reductiereactie) Er kunnen tijdens de glycolyse dus inderdaad 2 NADH gevormd worden.

Glycolyse (netto)

Glucose + 2 ADP + 2 Pi + 2 NAD $^+$ \rightarrow 2 pyruvaat + 2 ATP + 2 NADH

Glycolyse (zo kennen)

2 Glyceraldehyde-3-phosphate (C3)

2 1,3-biphosphoglycerate (C3)

Citroenzuurcyclus (begrijpen)

Citroenzuurcyclus (zo kennen)

Opbrengst per pyruvaat:

1 ATP, 4 NADH, 1 FADH₂, 3 CO₂

(LET OP: één glucose levert 2 pyruvaat in de glycolyse)

Opdracht

Tijdens de citroenzuurcyclus wordt pyruvaat (C₃H₃O₃⁻) omgezet in CO₂.

Hierbij wordt 4 NADH en 1 FADH₂ gevormd.

NAD+ en FAD kunnen elk 2 elektronen opnemen.

Laat m.b.v. halfreacties zien dat dit klopt.

NAD+/ NADH cycling

In de cel is maar een beperkte hoeveelheid NAD⁺ aanwezig. NAD⁺ moet daarom 'gerecycled' worden.

NAD+/ NADH en FAD/FADH₂ cycling

Glycolyse: NAD⁺ gereduceerd tot NADH.

Citroenzuurcylcus: NAD⁺ gereduceerd tot NADH en FAD gereduceerd tot FADH₂

Een cel moet die elektronen kwijt (en NAD+ en FAD terugkrijgen)

Dat kan op twee manieren:

- Elektronentransportketen (ETK)
- Overbrengen op substraat (fermentatie, zie volgende les).

Tijdens de glycolyse en de citroenzuurcyclus wordt NAD⁺ gereduceerd tot NADH en FAD tot FADH₂

Een cel moet die elektronen kwijt (en NAD+ en FAD terugkrijgen)

Tijdens aerobe ademhaling worden de in NADH en FADH₂ opgeslagen elektronen overgedragen op zuurstof.

Dit gaat in een aantal stappen, via de elektronentransportketen (ETK)

Zuurstof is een hele goede electronen acceptor (redoxpaar zuurstof/water heeft E₀' van +0.82 V)

Maar electronen worden niet direct op O₂ overgedragen.

Waarom niet?

Voorbeeld H₂ en O₂

https://www.youtube.com/watch?v=R0IWI-bnJVA

Zuurstof is een hele goede electronen acceptor (redoxpaar zuurstof/water heeft E₀' van +0.82 V)

Maar electronen worden niet direct op O₂ overgedragen.

Van belang is om de e- rustig in energie af te laten nemen (E₀' stapsgewijs omhoog)

Hiervoor worden elektronendragers gebruikt.

Waar (bij bacteriën)?

Bij bacteriën in het cytoplasmatisch membraan

Verschillende oxidatie-reductie enzymen:

- NADH dehydrogenases
- flavoproteins
- iron-sulfur proteins
- cytochromes

En non-protein electron carriers: quinones

Elektronen stap voor stap van NADH (of $FADH_2$) naar de terminale elektronenacceptor (O_2 in dit figuur). Bij elke stap gaat E_0 ' omhoog.

Opbouw proton motive force

Tijdens de elektronenoverdracht worden protonen over het membraan getransporteerd.

H+ afkomstig van: NADH/ FADH (uiteindelijk het substraat) en de dissociatie van water

ETK: vereenvoudigde weergave

2 elektronen van 1 NADH naar $O_2 \sim 10$ protonen

2 elektronen van 1 FADH: naar $O_2 \sim 6$ protonen

Waarom is protonentransport belangrijk?

Leidt tot een proton motive force (pmf)

Proton motive force: Δ lading + Δ pH

Pmf kan worden gebruikt voor synthese ATP en andere processen

ATP synthase (ATPase)

Gebruikt de energie van de H⁺ gradiënt om ATP te genereren ('omgekeerde pomp')

H⁺ gaat via kanaal terug naar cytoplasma

Tijdens de passage van H⁺ wordt ATP gemaakt: ADP + P_i → ATP

~ 4 H⁺ voor 1 ATP

Let op: deze waarde onthouden voor het tentamen (Brock geeft een andere waarde)

Terug naar ETK

2 electronen van 1 NADH naar $O_2 \sim 10$ protonen

2 electronen van 1 FADH: naar $O_2 \sim 6$ protonen Alle figuren in deze PowerPoint zijn eigen werk of afkomstig uit Brock Biology of Microorganisms (16th edition, Pearson) tenzij anders vermeld.