1 Successioni

1.1 Successioni in \mathbb{R}

Sia $X \neq \emptyset$, una qualsiasi funzione $f : \mathbb{N} \to X$ si dice: **successione in** X. In notazione si indica $\{f_n\}_{n\in\mathbb{N}}$ o f_1, f_2, \ldots, f_n f_n si chiama termine n-esimo.

 k_1, k_2, \dots, k_n è una successione di numeri naturali:

$$k_1 < k_2 < \dots < k_n < k_{n+1} < \dots \quad \forall n \in \mathbb{N}$$
 (1)

La successione $\{f_{k_n}\}$ è una sottosuccessione di $\{f_n\}$.

Il limite di una successione $\{a_n\} = l$. Vale a dire che $l \in \mathbb{R}$ è un numero vicino ai termini della successione. Esso è più precisamente un **numero reale** tale che *comunque si scelga* un intervallo di numeri intorno ad a.

$$\underbrace{(a-\epsilon,a+\epsilon)}_{\text{un intervallo attorno a }l}, \epsilon > 0 \mid \exists \underbrace{\overline{n}}_{\text{un indice }n \text{ t.c.}} n > \overline{n}. \tag{2}$$

 a_n si trova in questo *intorno*

Definizione 1 (Successione):

Una successione è una legge che ad ogni numero **naturale** n fa corrispondere**uno ed uno solo** numero reale a_n .

$$\{a_n\}_{n\in\mathbb{N}} = a_1, a_2, a_3, \dots, a_n$$
 (3)

Una successione è una funzione che collega degli indici n a dei numeri reali $a \in \mathbb{R}$

Definizione 2:

Se a_n tende $a \ l \in \mathbb{R}$ per $n \to \infty$, si dice che

$$\lim_{n \to \infty} a_n = l$$

$$\downarrow \qquad \qquad \downarrow$$

$$\forall \epsilon > 0, \ \exists \overline{n} : (n > \overline{n} \Rightarrow |a_n - l| < \epsilon)$$

$$\downarrow \qquad \qquad \downarrow$$

$$|a_n - l| < \epsilon$$

$$(4)$$

 $\{a_n\}$ converge ad l ed esso è il **limite** di tale **tale successione**

Esempio 1.

$$\lim_{n \to \infty} \frac{1}{n} = 0 \tag{5}$$

Ovvero

$$\forall \epsilon > 0 \exists \overline{n} : \forall n \in \mathbb{N} \left(n > \overline{n} \Rightarrow \left| \frac{1}{n} - 0 \right| < \epsilon \right)$$
 (6)

DIMOSTRAZIONE 1 (Il limite se esiste è unico).

$$\lim_{x \to \infty} a_n = l \quad \land \quad \lim_{x \to \infty} a_n = m \quad \iff \quad l = m \tag{7}$$

Esempio 2.

Poniamo per assurdo che $l \neq m$ Fissiamo $\epsilon > 0$

$$\underbrace{\frac{|a_n - l| < \frac{\epsilon}{2}}{n > \overline{n_1}} \quad \& \quad \underbrace{|a_n - m| < \frac{\epsilon}{2}}_{n > \overline{n_2}}}_{n > \max\{\overline{n_1}, \overline{n_2}\}} \tag{8}$$

 \parallel

Ricordiamo che $|a_n - m| = |m - a_n|$

$$| -a_n - l - -a_n + m | |a_n - l| + |m - a_n| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 (9)

 $\downarrow \downarrow$

$$|m-l| < \epsilon \implies |m-l| = 0$$
 (10)

Ma questo è assurdo perchè: $\epsilon > 0, \forall \epsilon \in \mathbb{R}$

$$m = l \tag{11}$$

Definizione 3:

Se $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ converge ad $l\in\mathbb{R}$ ogni sua sottosuccessione $\{a_{k_n}\}_{n\in\mathbb{N}}$ converge ad l

DIMOSTRAZIONE 2 (Limiti).

Se $\{a_n\}_{n\in\mathbb{N}}$ converge $l\in\mathbb{R}$ \Longrightarrow $\{a_{k_n}\}_{k_{n\in\mathbb{N}}}$ converge $l\in\mathbb{R}$

Si ha che:

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} : n > \overline{n} \implies |a_n - l| < \epsilon$$
 (12)

$$\forall \epsilon > 0 \ \exists \overline{n} \in \mathbb{N} : n > \overline{n} \implies |a_{k_n} - l| < \epsilon$$
 (13)

$$\lim_{n \to \infty} a_{k_n} = l \tag{14}$$

Esempio 3.

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \& \qquad k = 2, \lim_{k_n \to +\infty} \frac{1}{k_n} = 0$$
 (15)

Esercizio 1.

DIMOSTRAZIONE 3.

$$\lim_{n \to +\infty} (a_n + b_n) = l + m \tag{16}$$

$$\lim_{n \to +\infty} a_n = l \quad \& \quad \lim_{n \to +\infty} b_n = m \tag{17}$$

 \parallel

$$|a_n - l| < \frac{\epsilon}{2} \quad \text{se} \quad n > \overline{n_1}$$
 (18)

$$|b_n - m| < \frac{\epsilon}{2} \quad \text{se} \quad n > \overline{n_2}$$
 (19)

 $n > \max\{\overline{n_1}, \overline{n_2}\}$

$$|a_n + b_n - l - m| \le |a_n - l| + |b_n - m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

$$(20)$$

$$\forall \epsilon > 0, \exists \overline{n} \equiv \max\{\overline{n_1}, \overline{n_2}\} : n > \overline{n} \Rightarrow \underbrace{|(a_n + b_n) - (l + m)|}_{0} < \epsilon \qquad (21)$$

$$(a_n + b_n) - (l + m) = 0 (22)$$

$$a_n + b_n = l + m (23)$$

DIMOSTRAZIONE 4 (Permanenza del segno).

$$\forall \epsilon > 0, \exists \overline{n} \in \mathbb{N} : n > \overline{n} \Rightarrow \underbrace{|a_n - l < \epsilon|}_{l - \epsilon < a_n < l + \epsilon \quad \forall n > \overline{n}}$$
 (24)

$$\epsilon = |l|$$

Da questo otteniamo che

$$\underbrace{l-|l|}_{0} < a_n < \underbrace{l+|l|}_{2l} \tag{25}$$

In conclusione avremo che:

se
$$l > 0 \Rightarrow a_n > 0$$

se $l < 0 \Rightarrow a_n < 0$

Definizione 4 (Teorema dei 2 carabinieri):

$$Se \underbrace{\{a_n\},\{b_n\}}_{convergono\ a},\{c_n\}$$

è ovvio che:
$$a_n \le c_n \le b_n \implies c_n converge \ a \ l$$
 (26)

DIMOSTRAZIONE 5.

$$\forall \epsilon > 0, \exists \overline{n_1}, \overline{n_2} \in \mathbb{N} : \tag{27}$$

 \parallel

$$l - \epsilon < a_n < l + \epsilon \qquad \& \qquad l - \epsilon < b_n < l + \epsilon \tag{28}$$

se $n > \max\{\overline{n_1}, \overline{n_2}\}$

 $\downarrow \downarrow$

$$l - \epsilon < a_n \le c_n \le b_n < l + \epsilon \qquad \forall n > \overline{n} \tag{29}$$

$$\underbrace{l - \epsilon < c_n < l + \epsilon}_{|c_n - l| < \epsilon} \Longrightarrow \lim_{n \to +\infty} c_n = l \tag{30}$$

Definizione 5:

Sia una successione $\{a_n\}_n \subseteq \mathbb{R} \ \dot{e} \ detta$:

- superiormente limitata, se $\exists M \in \mathbb{R} : a_n \leq M \ \forall n \in \mathbb{N}$
- inferiormente limitata, se $\exists M \in \mathbb{R} : a_n \geq M \ \forall n \in \mathbb{N}$
- $limitata, se \exists M \in \mathbb{R} : |a_n| \leq M \ \forall n \in \mathbb{N}$

Definizione 6 (Ogni successione convergente è limitata):

$$Sia \{a_n\}_{n \in \mathbb{N}} \subseteq \mathbb{R}, \ a_n \underset{n \to \infty}{\to} l$$

 $Allora \ (con \ \epsilon = 1)$

$$\exists \overline{n} : \forall n \in \mathbb{N} (n > \overline{n} \implies |a_n - l| < 1) \tag{31}$$

Segue quindi che $|a_n| \le |a_n - l| + |l| < 1 + |l|, \ n > \overline{n}$

$$|a_n| \le 1 + |l| \tag{32}$$

Definizione 7 (Retta reala ampliata):

$$\overline{\mathbb{R}} := \mathbb{R} \cup \{+\infty\} \cup \{-\infty\} \tag{33}$$

Definizione 8:

 $Sia\ \{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$

$$\lim_{n \to +\infty} a_n = +\infty$$

$$\downarrow \qquad \qquad (34)$$

$$\forall k \in \mathbb{R} \exists \overline{n} \in N : \forall n \in \mathbb{N} (n > \overline{n} \implies a_n > k)$$

La scrittura è analoga per $-\infty$ invertendo il segno: $(a_n < k)$ Potremo dire che a_n diverge positivamente o negativamente

1.2 Forme indeterminate

Se $\{a_n\}, \{b_n\} \subseteq \mathbb{R}$ e $\{a_n\} \to +\infty, \{b_n\} \to -\infty\}$ allora:

$$a_n + b_n \to +\infty - \infty = ? \tag{35}$$

 $+\infty~e~-\infty~non~sono~veri~e~propri~numeri,~piuttosto~sono~dei~simboli,~quindi~il~risultato~sarà~detto:$ FORMA INDETERMINATA $+\infty-\infty$

Altri tipi di forme indeterminate sono:

$$\frac{\infty}{\infty}, \ \frac{0}{0}, \ 0 \cdot \infty, \ 1^{\infty}, \ 0^0, \ \infty^0$$
 (36)

1.3 Teoremi generali di esistenza

Una successione $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ è detta monotona crescente se

$$a_n \le a_{n+1}, \ \forall n \in \mathbb{N}$$
 (37)

Si dice invece monotona decrescente se

$$a_n > a_{n+1}, \forall n \in \mathbb{N}$$
 (38)

Sono rispettivamente **strettamente** monotone crescenti o decrescenti se le disuguaglianze sono **strette** (<,>)

Le scritture $a_n \nearrow e a_n \searrow$ indicano monotonia crescente e decrescente

Definizione 9 (Successioni costanti):

Se $a_n = a \ \forall n \in \mathbb{N}$, con a numero reale fissato si dice che

$$\{a_n\}_{n\in\mathbb{N}} = l, \ l\in\mathbb{R} \quad \{a_n\} \nearrow = costante$$
 (39)

Definizione 10:

Ogni successione monotona ammette limite:

$$Se \{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$$
:

1.
$$a_n \nearrow \Longrightarrow \lim_{n \to +\infty} a_n = \sup_{n \in \mathbb{N}} a_n$$

2.
$$a_n \searrow \Longrightarrow \lim_{n \to +\infty} a_n = \inf_{n \in \mathbb{N}} a_n$$

DIMOSTRAZIONE 6.

Se $\{a_n\}$ è superiormente limitata per l'assioma di completezza:

$$\exists \sup_{n \in \mathbb{N}} a_n = \lambda \tag{40}$$

Per la proprietà del sup si ha che $a_n \leq \lambda, \forall n \in \mathbb{N}$ dunque:

$$a_n < \lambda + \epsilon \ \forall n \in \mathbb{N}, \ \forall \epsilon > 0$$
 (41)

$$\forall \epsilon > 0, \exists \overline{n} \in \mathbb{N} : \lambda < a_{\overline{n}} + \epsilon \tag{42}$$

La definizione di limite è:

$$\lim_{n \to +\infty} a_n = \lambda \tag{43}$$

Esercizio 2 (Il numero di nepero e).

$$e \equiv \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n \tag{44}$$

Si nota che $a_n = (1 + \frac{1}{n})^n$ e $b_n = (1 + \frac{1}{n})^{n+1}$ sono successioni **convergenti** che hanno lo stesso limite e, inoltre sono **strettamente monotone**

$$a_n < a_{n+1} \quad e \quad b_n > b_{n+1} \ \forall n \in \mathbb{N}$$
 (45)

Inoltre

$$a_n < b_n \ \forall n \in \mathbb{N} \tag{46}$$

allora:

$$a_n < a_p < b_p < b_m \quad \forall n, m, p; p = \max\{n, m\}$$
 (47)

Entrambe le successioni convergono: a_n è monotona crescente e superiormente limitata e b_n è monotona decrescente e inferiormente limitata.

$$\lim_{n \to +\infty} \frac{b_n}{a_n} = \lim_{n \to +\infty} \left(1 + \frac{1}{n} \right) = 1 \tag{48}$$

Questo implica che:

$$\lim_{n \to +\infty} b_n = \lim_{n \to +\infty} a_n = e \tag{49}$$

DIMOSTRAZIONE 7.

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1} \quad \& \quad b_{n+1} = \left(1 + \frac{1}{n+1}\right)^{(n+1)+1}$$
 (50)

$$\frac{b_n}{b_{n+1}} > 1 \Longrightarrow \frac{\left(1 + \frac{1}{n}\right)^{n+1}}{\left(1 + \frac{1}{n+1}\right)^{(n+1)+1}} > 1 \quad \forall n \in \mathbb{N}$$

$$= \left(1 + \frac{1}{n}\right)^{n+1} \left(1 + \frac{1}{n}\right) = \left(\frac{n+1}{n}\right) \left(\frac{n+1}{n}\right) > 1$$

$$= \left(1 + \frac{1}{n+1}\right)^{n+2} \left(1 + \frac{1}{n+1}\right)^2 = \left(\frac{n+2^n}{n+1}\right) \left(\frac{n+2}{n+1}\right)^2 > 1$$

$$= \left(\frac{(n+1)(n+2)}{n(n+1)}\right)^n \cdot \left(\frac{n+1}{n}\right) \cdot \left(\frac{n+2}{n+1}\right)^2 > 1$$

$$= \left(\frac{n+2}{n}\right)^n \cdot \left(\frac{n+2}{n}\right) \cdot \left(\frac{n+2}{n+1}\right) > 1$$

$$= \left(\frac{n+2}{n}\right)^{n+1} > \left(\frac{n+2}{n+1}\right)$$

Definizione 11 (Bolzano - Weierstrass):

Ogni successione reale limitata ammette una sottosuccessione convergente.

DIMOSTRAZIONE 8.

Per ogni $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ esiste M>0: $|a_n|\leq M, \ \forall n\in\mathbb{N} \ \exists k_n\nearrow: \ a_{k_n}\underset{n\to+\infty}{\to} l\in\mathbb{R}$

$$-M \le a_n \le M \ \forall n \in \mathbb{N} \tag{52}$$

$$\alpha_n = \sup a_k : k \ge n, \ n \in \mathbb{N} \implies -M \le \alpha_n \le M \ \forall n \in \mathbb{N}$$
 (53)

Quindi dalla definizione ne segue che:

$$\alpha_{n+1} \le \alpha_n \ \forall n \in \mathbb{N} \Rightarrow \alpha_n \searrow$$

$$\downarrow \downarrow$$

$$(54)$$

$$\exists \lim_{n \to +\infty} \alpha_n \equiv l \quad \Longrightarrow \quad l \equiv \inf_{n \in \mathbb{N}} \alpha_n \tag{55}$$

$$\forall \epsilon > 0, \ \forall p \in \mathbb{N} \ \exists n \ge p : l - \epsilon \le a_n$$

$$\alpha_p \searrow \beta \ l \le \alpha_p \Rightarrow l - \epsilon < \alpha_p \ \forall \epsilon > 0 \ \forall p$$
(56)

Dato che $\alpha_p = \sup\{a_n : n \geq p\}$, deve esistere $n \geq p : a_n > l - \epsilon$ Sia $k_n : \mathbb{N} \to \mathbb{N}$ definita per ricorrenza:

$$\begin{cases}
k_1 = \min\{k \in \mathbb{N} : l - 1 < a_k\} \\
k_{n+1} = \min\{k \in \mathbb{N} : k > k_n \land l - \frac{1}{n+1} < a_k\}
\end{cases}$$
(57)

 $\downarrow \downarrow$

$$k_{n+1} > k_n, \ \forall n \quad \land \quad l - \frac{1}{n} < a_{k_n} \ \forall n$$
 (58)

Questo implica che $\{a_{k_n}\}_{n\in\mathbb{N}}$ verifica le disuguaglianze

$$l - \frac{1}{n} < a_{k_n} \le \alpha_{k_n} \implies \alpha_{k_n} \underset{n \to +\infty}{\longrightarrow} l \implies a_{k_n} \to l$$
 (59)

Definizione 12 (Successioni di Cauchy):

Una successione $\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}$ si chiama successione di Cauchy se:

$$\forall \epsilon > 0, \ \exists \overline{n} \in \mathbb{N} : \ \forall n, m \in \mathbb{N} (n, m > \overline{n} \Rightarrow |a_n - a_m| < \epsilon)$$
 (60)

Una successione si dice di Cauchy se i suoi termini sono "arbitrariamente" vicini tra loro.

Definizione 13 (Ogni successione convergente è di Cauchy):

$$\{a_n\}_{n\in\mathbb{N}}\subseteq\mathbb{R}, a_n\to l\in\mathbb{R}=di\ Cauchy$$
 (61)

DIMOSTRAZIONE 9.

Se $\lim_{n\to+\infty} a_n = l \in \mathbb{R}$ implica che:

$$\forall \epsilon, \epsilon > 0 \exists \overline{n} \forall n \left(n > \overline{n} \Rightarrow |a_n - l| < \frac{\epsilon}{2} \right)$$
 (62)

La scrittura $\exists \overline{n}$ significa che esiste un indice dopo il quale ogni indice successivo sarà maggiore di quello.

Di conseguenza:

$$|a_n - a_m| = |(a_n - l) + (l - a_m) \le |a_n - l| + |a_m - l| \le 2 \cdot \frac{\epsilon}{2} \quad n, m > \overline{n}$$
 (63)

 $\{a_n\}$ è di Cauchy

$$\{a_n\}$$
 di Cauchy $\Rightarrow \{a_n\} \nearrow \iff \{a_n\} \nearrow \Rightarrow \{a_n\}$ di Cauchy (64)

1.4 Rappresentazione decimale di numeri reali

Se $x \in \mathbb{R}$ è:

$$[x] = \text{parte intera} = \max\{p \in \mathbb{Z} : p < x\}$$

$$\downarrow \downarrow$$
(65)

$$[x] \le x < [x] + 1 \ \forall x \in \mathbb{R} \tag{66}$$

$$x_n = \frac{[b^n x]}{b^n} \tag{67}$$

Le seguenti affermazioni sono vere:

- 1. $\{x_n\} \nearrow$
- 2. $x_n \le x < x_n + \frac{1}{b_n} \ \forall n \in \mathbb{N}$
- $3. \lim_{n \to +\infty} x_n = x$
- 4. $\exists \alpha_0 \in \mathbb{Z}, \exists \{\alpha_n\}_{n \in \mathbb{N}} \subseteq \mathbb{Z}$

Definizione 14 (Decimali):

I numeri decimali sono i numeri razionali:

$$\frac{m}{10^n} (m \in \mathbb{Z}, n \in \mathbb{N}) \tag{68}$$

Ogni numero decimale si può scrivere come

$$x = \alpha_0 + \frac{\alpha_1}{10} + \frac{\alpha_2}{10^2} + \dots + \frac{\alpha_n}{10^n}$$
 (69)

 $con \ \alpha_0 \in \mathbb{Z}, \ \alpha_1 \alpha_2, \dots, \alpha_n \in \{0, 1, 2, \dots, 9\}$

Definizione 15 (Decimali propri):

Sia $x \in \mathbb{R}$, $x = \alpha_0, \alpha_1, \ldots, \alpha_n, \ldots$ La rappresentazione decimale di x si dice **propria** se:

$$\nexists p \in \mathbb{N} : \alpha_n = 9 \ \forall n > p \tag{70}$$

Ogni numero reale ammette un'**unica** rappresentazione decimale propria. Se $x \in \mathbb{R} \implies x = \alpha_0, \alpha_1, \dots, \alpha_n, \dots$ è la rappresentazione decimale propria di x se e solo se

$$\alpha_0, \alpha_1, \dots, \alpha_n \le x < \alpha_0, \alpha_1, \dots, \alpha_n + \frac{1}{10^n} \, \forall n \in \mathbb{N}$$
 (71)

1.5 Cardinalità di insiemi

Due insiemi $A, B \neq \emptyset$ si dicono **equipotenti** se

$$\exists f: A \underset{1-1}{\overset{su}{\to}} B \quad \Longrightarrow \quad A \cong B \tag{72}$$

Vale a dire che esiste una **funzione biunivoca** fra i due insiemi ed essi hanno stessa **cardinalità**

$$card(A) = card(B) \tag{73}$$

$$I_n = \{k \in \mathbb{N} : 1 \le k \le n\}, \quad card(A) \cong card(I_n) \implies card(A) = n \quad (74)$$

A è un insieme finito. Un iniseme è infinito se non è finito.

- A è finito $B \subseteq A, B \neq \emptyset \implies B$ è finito
- $\bullet \ A$ è finito e B è sottoinsieme proprio di $A \implies A \cong B$
- A è finito, allora il numero dei suoi elementi è unico
- $\bullet \ B$ è infinito e $B \subseteq A \implies A$ è infinito

Altre proposizione che ne conseguono sono:

- $A \neq \emptyset \implies A \cong A$
- $A \cong B \iff B \cong A$
- $A \cong B$. $B \cong C \implies A \cong C$

L'equipotenza è una relazione di **equivalenza**

Definizione 16 (\mathbb{N} è infinito):

Dimostriamo che \mathbb{N} è equivalente ad un suo sottoinsieme proprio:

$$P = \{ n \in \mathbb{N} := 2m, n \in \mathbb{N} \}, \ f : P \to \mathbb{N}, f(n) = \frac{n}{2}$$
 (75)

 $f \ \dot{e} \ biunivoca \ quindi \ P \subset \mathbb{N} \implies P \cong \mathbb{N}$

Definizione 17 ($\mathbb{Z}, \mathbb{Q}, \mathbb{R}$ sono infiniti):

Tutti questi insiemi contengono N

Definizione 18 (Assioma della scelta):

Sia \mathcal{B} una famiglia $\neq \emptyset$ di insiemi. Sia A un insieme t.c.

$$B \subseteq A \ \forall B \in \mathcal{B} \tag{76}$$

$$\downarrow \downarrow$$

$$\exists \varphi : \mathcal{B} \to A : \varphi(B) \in B \ \forall B \in \mathcal{B}$$
 (77)