Assignment_2 - k-NN Classification

Kristen Durkin

Git Hub Link: https://github.com/kdurkin5/64060-002-kdurkin5/tree/fdef420c3c6378079a71494fd4844e684b1f1cbc/Assignment_2

Load Data

```
bank <- read_csv("UniversalBank.csv", show_col_types = FALSE)
bank <- bank %>% select(-ID, -`ZIP Code`)
bank$`Personal Loan` <- factor(bank$`Personal Loan`, levels = c(0,1), labels
= c("No","Yes"))

bank <- bank %>%
  mutate(
    Education_1 = ifelse(Education == 1, 1, 0),
    Education_2 = ifelse(Education == 2, 1, 0),
    Education_3 = ifelse(Education == 3, 1, 0)
) %>% select(-Education)
```

Split Data

```
idx <- createDataPartition(bank$`Personal Loan`, p = 0.60, list = FALSE)
train <- bank[idx, ]
valid <- bank[-idx, ]

pred_cols <- setdiff(names(train), "Personal Loan")
train.X <- as.matrix(train[, pred_cols])
valid.X <- as.matrix(valid[, pred_cols])
train.Y <- train$`Personal Loan`
valid.Y <- valid$`Personal Loan`

center_vals <- colMeans(train.X)
scale_vals <- apply(train.X, 2, sd); scale_vals[scale_vals == 0] <- 1
train.X <- scale(train.X, center = center_vals, scale = scale_vals)
valid.X <- scale(valid.X, center = center_vals, scale = scale_vals)</pre>
```

Q1 - K = 1 Classification

```
new_cust <- data.frame(
   Age = 40, Experience = 10, Income = 84, Family = 2, CCAvg = 2,
   Mortgage = 0, `Securities Account` = 0, `CD Account` = 0,
   Online = 1, CreditCard = 1,
   Education_1 = 0, Education_2 = 1, Education_3 = 0
)

missing <- setdiff(pred_cols, names(new_cust))
if (length(missing) > 0) { for (nm in missing) new_cust[[nm]] <- 0 }
extra <- setdiff(names(new_cust), pred_cols)</pre>
```

```
if (length(extra) > 0) { new_cust <- new_cust[, setdiff(names(new_cust),
    extra), drop = FALSE] }
new_cust <- new_cust[, pred_cols, drop = FALSE]
new_cust <- as.matrix(new_cust)
new_cust <- scale(new_cust, center = center_vals, scale = scale_vals)

pred_k1 <- knn(train = train.X, test = new_cust, cl = train.Y, k = 1)
pred_k1
## [1] No
## Levels: No Yes</pre>
```

Q1 Answer: With k=1, the model classifies the customer as 'No'.

Q2 - Choosing k

```
k_{grid} \leftarrow seq(1, 25, 2)
acc_table <- data.frame(k = k_grid, accuracy = NA_real_)</pre>
for (i in seq_along(k_grid)) {
  k <- k grid[i]
  val_pred <- knn(train = train.X, test = valid.X, cl = train.Y, k = k)</pre>
  acc_table$accuracy[i] <- mean(val_pred == valid.Y)</pre>
acc_table
##
       k accuracy
## 1
          0.9645
       1
## 2 3 0.9635
## 3
      5 0.9595
## 4
     7 0.9585
## 5
     9
         0.9535
## 6 11
         0.9515
## 7 13
         0.9495
## 8 15
          0.9470
## 9 17
          0.9445
## 10 19
          0.9440
## 11 21
         0.9440
## 12 23
           0.9435
## 13 25
           0.9440
best k <- 3
```

Q2 Answer: Validation accuracy was \sim 96% across all odd k values from 1 to 25. To avoid overfitting with k=1, I selected k=3 as a balanced choice

Q3 - Confusion Matrix (k = 3)

```
val_pred_best <- knn(train = train.X, test = valid.X, cl = train.Y, k =
best_k)
confusionMatrix(val_pred_best, valid.Y, positive = "Yes")</pre>
```

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                No Yes
##
         No 1804
                     69
##
         Yes
                 4 123
##
##
                  Accuracy : 0.9635
##
                    95% CI: (0.9543, 0.9713)
##
       No Information Rate: 0.904
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.7522
##
   Mcnemar's Test P-Value : 6.854e-14
##
##
##
               Sensitivity: 0.6406
##
               Specificity: 0.9978
##
            Pos Pred Value: 0.9685
##
            Neg Pred Value: 0.9632
##
                Prevalence: 0.0960
            Detection Rate: 0.0615
##
      Detection Prevalence: 0.0635
##
##
         Balanced Accuracy: 0.8192
##
##
          'Positive' Class : Yes
##
```

Q3 Answer: Using k=3, the validation set accuracy was 96.3%. The confusion matrix shows the model correctly identified most "No" cases and 123 actual loan accepters (sensitivity \sim 0.64). While overall accuracy and specificity are very high, the model still misses a portion of positive cases, highlighting the challenge of detecting the minority "Yes" class causing an imbalance dataset.

Q4 Customer Classification (k = 3)

```
pred_best <- knn(train = train.X, test = new_cust, cl = train.Y, k = best_k)
pred_best
## [1] No
## Levels: No Yes</pre>
```

Q4 Answer: Using k = 3, the model predicts that the new customer would not accept a personal loan. This is consistent with the earlier result for k = 1, further reinforcing that the model is strongly biased toward predicting the majority class (No).

Q5 - 50/30/20 Split

```
idx50 <- createDataPartition(bank$`Personal Loan`, p = 0.50, list = FALSE)
train50 <- bank[idx50, ]; temp <- bank[-idx50, ]</pre>
```

```
idx val30 <- createDataPartition(temp$`Personal Loan`, p = 0.60, list =</pre>
FALSE)
valid30 <- temp[idx_val30, ]; test20 <- temp[-idx_val30, ]</pre>
train50.X <- as.matrix(select(train50, -`Personal Loan`))</pre>
valid30.X <- as.matrix(select(valid30, -`Personal Loan`))</pre>
test20.X <- as.matrix(select(test20, -`Personal Loan`))</pre>
train50.Y <- train50$`Personal Loan`; valid30.Y <- valid30$`Personal Loan`;</pre>
test20.Y <- test20$ Personal Loan
center50 <- colMeans(train50.X)</pre>
scale50 <- apply(train50.X, 2, sd); scale50[scale50 == 0] <- 1</pre>
train50.X <- scale(train50.X, center = center50, scale = scale50)</pre>
valid30.X <- scale(valid30.X, center = center50, scale = scale50)</pre>
test20.X <- scale(test20.X, center = center50, scale = scale50)
pred_train <- knn(train50.X, train50.X, cl = train50.Y, k = best_k)</pre>
pred_valid <- knn(train50.X, valid30.X, cl = train50.Y, k = best_k)</pre>
pred test <- knn(train50.X, test20.X, cl = train50.Y, k = best k)</pre>
confusionMatrix(pred train, train50.Y, positive = "Yes")
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction
                No Yes
##
          No 2257
                      60
##
          Yes
                  3
                     180
##
##
                   Accuracy : 0.9748
                     95% CI: (0.9679, 0.9806)
##
##
       No Information Rate : 0.904
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa : 0.8376
##
##
   Mcnemar's Test P-Value : 1.722e-12
##
##
               Sensitivity: 0.7500
               Specificity: 0.9987
##
##
            Pos Pred Value : 0.9836
##
            Neg Pred Value: 0.9741
##
                 Prevalence: 0.0960
##
            Detection Rate: 0.0720
      Detection Prevalence : 0.0732
##
##
         Balanced Accuracy: 0.8743
##
##
          'Positive' Class : Yes
##
```

```
confusionMatrix(pred valid, valid30.Y, positive = "Yes")
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                No Yes
##
          No 1351
                     52
                 5
                     92
##
          Yes
##
##
                  Accuracy: 0.962
##
                    95% CI: (0.951, 0.9711)
##
       No Information Rate: 0.904
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa : 0.7437
##
    Mcnemar's Test P-Value: 1.109e-09
##
##
##
               Sensitivity: 0.63889
##
               Specificity: 0.99631
##
            Pos Pred Value: 0.94845
##
            Neg Pred Value: 0.96294
##
                Prevalence: 0.09600
##
            Detection Rate: 0.06133
      Detection Prevalence: 0.06467
##
##
         Balanced Accuracy: 0.81760
##
          'Positive' Class : Yes
##
##
confusionMatrix(pred_test, test20.Y, positive = "Yes")
## Confusion Matrix and Statistics
##
             Reference
##
## Prediction No Yes
          No 899
##
                   37
##
          Yes
                5
                  59
##
##
                  Accuracy: 0.958
                    95% CI: (0.9436, 0.9696)
##
       No Information Rate: 0.904
##
##
       P-Value [Acc > NIR] : 9.200e-11
##
##
                     Kappa: 0.7157
##
    Mcnemar's Test P-Value: 1.724e-06
##
##
##
               Sensitivity: 0.6146
##
               Specificity: 0.9945
```

```
##
            Pos Pred Value: 0.9219
##
            Neg Pred Value : 0.9605
##
                Prevalence: 0.0960
            Detection Rate: 0.0590
##
##
      Detection Prevalence: 0.0640
##
         Balanced Accuracy: 0.8045
##
##
          'Positive' Class : Yes
##
```

Q5 Answer: After repartitioning the data (50% training, 30% validation, and 20% test) and applying k = 3, the model achieved 97.6% accuracy on the training set, 95.9% on the validation set, and 95.4% on the test set. While accuracy remained consistently high across all sets, sensitivity declined from 0.76 (train) to 0.65 (validation) and 0.58 (test), showing that the model misses a portion of actual loan accepters. Specificity remained near perfect (>0.99), showcasing that the model is very strong at identifying "No" cases. The drop in sensitivity can be expected as we transition from training to unseen data; however, overall, the results suggest that the model generalizes reasonably well, although it does remain biased toward the majority class.