Optimization methods Lecture 7: Introduction to stochastic gradient methods

Alexandr Katrutsa

Modern State of Artificial Intelligence Masters Program Moscow Institute of Physics and Technology

Brief reminder of the previous lecture

- Conjugate gradient method
- Heavy-ball method
- Accelerated gradient method

What do we know?

► Deterministic first-order methods

What do we know?

- Deterministic first-order methods
- ► Fast methods for different classes of problems

What do we know?

- Deterministic first-order methods
- ► Fast methods for different classes of problems

Questions

- ► How the methods will change if the randomness will be introduced in problems?
- ▶ How to measure convergence in that case?

Why do we need randomness?

► If the number of variables is huge, the explicit computing of the gradient can be hard

Why do we need randomness?

- ▶ If the number of variables is huge, the explicit computing of the gradient can be hard
- ► Stochastic gradient estimate can be sufficient for solving problem at the appropriate level

Why do we need randomness?

- ▶ If the number of variables is huge, the explicit computing of the gradient can be hard
- ► Stochastic gradient estimate can be sufficient for solving problem at the appropriate level
- Sometimes given parameters of the problem are inexact

How the randomness can be introduced?

► The known data in the problem is random variables with known distributions

$$\min x_1 + x_2$$
s.t. $w_1 x_1 + x_2 \ge 0$

$$w_2 x_1 + x_2 \ge 0$$

$$x_{1,2} \ge 0$$

where $w_1 \sim \mathcal{U}[0,4]$, $w_2 \sim \mathcal{U}[2,3]$

How the randomness can be introduced?

► The known data in the problem is random variables with known distributions

$$\min x_1 + x_2$$
 s.t. $w_1x_1 + x_2 \ge 0$
$$w_2x_1 + x_2 \ge 0$$

$$x_{1,2} \ge 0$$
,

where $w_1 \sim \mathcal{U}[0,4]$, $w_2 \sim \mathcal{U}[2,3]$

 Objective function is an expected value of some other function

$$\min f(\mathbf{x}) := \mathbb{E}_{\omega}[F(\mathbf{x}, \omega)]$$

How the randomness can be introduced?

► The known data in the problem is random variables with known distributions

$$\min x_1 + x_2$$
 s.t. $w_1x_1 + x_2 \ge 0$
$$w_2x_1 + x_2 \ge 0$$
 $x_{1,2} \ge 0$,

where $w_1 \sim \mathcal{U}[0,4]$, $w_2 \sim \mathcal{U}[2,3]$

 Objective function is an expected value of some other function

$$\min f(\mathbf{x}) := \mathbb{E}_{\omega}[F(\mathbf{x}, \omega)]$$

A particular case

$$\min \frac{1}{N} \sum_{i=1}^{N} f_i(\mathbf{x})$$

Problem statement

$$\min_{\mathbf{x} \in \mathbb{R}^n} \frac{1}{N} \sum_{i=1}^N f_i(\mathbf{x})$$

- $f_i(\mathbf{x})$ may be nonconvex
- ightharpoonup n may be of the order 10^6 and higher
- $lackbox{ }N$ is also may be huge

Example 1

Hutchinson trace estimator

$$\operatorname{trace}(\mathbf{A}) = \operatorname{trace}(\mathbf{A}\mathbf{I}) = \operatorname{trace}(\mathbf{A}\mathbb{E}_{\mathbf{z}}\mathbf{z}\mathbf{z}^{\top}) = \mathbb{E}_{\mathbf{z}}(\mathbf{z}^{\top}\mathbf{A}\mathbf{z}),$$

where z is a vector from standard normal distribution or from the Rademacher distribution

- lacktriangle Expected value is replaced with the unbiased estimate \hat{f}_N
- Minimize \hat{f}_N for fixed \mathbf{z}_i

Example 2

- Classification problem
- \blacktriangleright Loss function ℓ is additive by the samples of the training set

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{i=1}^{N} \ell(\mathbf{w} | \mathbf{x}_i)$$

► Interpretation as the empirical risk minimization or ground truth distribution approximation

Stochastic gradient descent (SGD)

$$\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \mathbf{h}_k,$$

where

- ▶ $\mathbf{h}_k = f'_{i_k}(x_k)$, $i_k \in \{1, ..., N\}$ is selected randomly
- ▶ $\mathbf{h}_k = \frac{1}{|\mathcal{I}_k|} \sum_{i \in \mathcal{I}_k} f_i'(\mathbf{x}_k)$, $\mathcal{I}_k \subset \{1, \dots, N\}$ is some subset of indices usually of fixed size $|\mathcal{I}_k| = m$

Properties

1. Unbiased gradient estimate

$$\mathbb{E}[\mathbf{h}_k] = f'(\mathbf{x}_k)$$

2. Large variance

Convergence

Theorem

Let f be convex, L-smooth function. Then if SGD generates directions \mathbf{h}_k such that $\mathrm{Var}(\mathbf{h}_k) \leq \sigma^2$ and $\alpha_k \leq \frac{1}{L}$ then

$$\mathbb{E}[f(\bar{\mathbf{x}}_k)] - f^* \le \frac{\|\mathbf{x}_0 - \mathbf{x}^*\|_2^2}{\alpha_k k} + \frac{\alpha_k \sigma^2}{2}.$$

In particular, after $k=\frac{(\sigma^2+L\|\mathbf{x}^*-\mathbf{x}_0\|_2^2)^2}{\varepsilon^2}$ iterations if $\alpha_k=\frac{1}{\sqrt{k}}$ we get the solution with accuracy 2ε .

Assume X_{ω} gives unbiased estimate of the parameter x: $\mathbb{E}_{\omega}[X_{\omega}] = x$

- Assume X_{ω} gives unbiased estimate of the parameter x: $\mathbb{E}_{\omega}[X_{\omega}] = x$
- Assume $Z_{\omega}=X_{\omega}-Y_{\omega}$ such that $\mathbb{E}_{\omega}[Y_{\omega}]pprox 0$

- Assume X_{ω} gives unbiased estimate of the parameter x: $\mathbb{E}_{\omega}[X_{\omega}] = x$
- Assume $Z_{\omega}=X_{\omega}-Y_{\omega}$ such that $\mathbb{E}_{\omega}[Y_{\omega}]\approx 0$
- ▶ Then $\mathbb{E}_{\omega}[X_{\omega}] = \mathbb{E}_{\omega}[Z_{\omega}] = x$

- Assume X_{ω} gives unbiased estimate of the parameter x: $\mathbb{E}_{\omega}[X_{\omega}] = x$
- Assume $Z_{\omega}=X_{\omega}-Y_{\omega}$ such that $\mathbb{E}_{\omega}[Y_{\omega}]\approx 0$
- ▶ Then $\mathbb{E}_{\omega}[X_{\omega}] = \mathbb{E}_{\omega}[Z_{\omega}] = x$
- ▶ $\operatorname{Var}(Z_{\omega}) = \operatorname{Var}(X_{\omega}) + \operatorname{Var}(Y_{\omega}) 2\operatorname{Cov}(X_{\omega}, Y_{\omega}) \ll \operatorname{Var}(X_{\omega})$ if Y_{ω} highly correlates with X_{ω}

- Assume X_{ω} gives unbiased estimate of the parameter x: $\mathbb{E}_{\omega}[X_{\omega}] = x$
- Assume $Z_{\omega}=X_{\omega}-Y_{\omega}$ such that $\mathbb{E}_{\omega}[Y_{\omega}]pprox 0$
- ▶ Then $\mathbb{E}_{\omega}[X_{\omega}] = \mathbb{E}_{\omega}[Z_{\omega}] = x$
- ▶ $\operatorname{Var}(Z_{\omega}) = \operatorname{Var}(X_{\omega}) + \operatorname{Var}(Y_{\omega}) 2\operatorname{Cov}(X_{\omega}, Y_{\omega}) \ll \operatorname{Var}(X_{\omega})$ if Y_{ω} highly correlates with X_{ω}

The recipe to reduce the variance

Find the estimate Y, such that

- 1. Its expected value is close to 0
- 2. It highly correlates with given estimate X

Stochastic average gradient (Schmidt, Le Roux, Bach 2013)

- Initialization x_0 and $g_i^0 = x_0, i = \{1, \dots, N\}$
- In the k-th iteration, one selects some index i_k and updates $g_{i_k}^k = f_{i_k}'(x_k)$
- $x_{k+1} = x_k \alpha_k \frac{1}{N} \sum_{i=1}^{N} g_i^k$
- More convenient notation

$$x_{k+1} = x_k - \alpha_k \left(\frac{1}{N} g_{i_k}^{(k+1)} - \frac{1}{N} g_{i_k}^k + \frac{1}{N} \sum_{i=1}^N g_i^k \right)$$

Variance reduction

- $lacksquare X = g_{i_k}^{(k+1)} ext{ and } \mathbb{E}_{\omega}[X] = f'(x_k)$
- $lacksquare Y = g_{i_k}^k \sum\limits_{i=1}^N g_i^k \text{ and } \mathbb{E}_{\omega}[Y]
 eq 0$
- $||X Y||_2 = ||(g_{i_k}^{(k+1)} g_{i_k}^k) + \sum_{i=1}^N g_i^k||_2 \to 0, \ k \to \infty$
- Variance of the result estimate goes to 0

Convergence for convex and L-smooth function

Theorem

Let f_i be differentiable and L-smooth, $\bar{x}^{(k)} = \frac{1}{k} \sum_{i=0}^{k-1} x_i$, $\alpha_k = \frac{1}{16L}$ and initialization

$$g_i^0 = f_i'(x_0) - f'(x_0), i = 1, \dots, N$$

gives

$$\mathbb{E}[f(\bar{x}^{(k)})] - f(x^*) \le \frac{48n}{k} (f(x_0) - f^*) + \frac{128L}{k} ||x_0 - x^*||_2^2$$

Comparison

SAG

$$\frac{48n}{k}(f(x_0) - f^*) + \frac{128L}{k} ||x_0 - x^*||_2^2$$

The first item depends on n!

▶ GD

$$\frac{L\|x_0 - x^*\|_2^2}{k}$$

SGD

$$\frac{\|x_0 - x^*\|_2^2 + \sigma^2}{2\sqrt{k}}$$

Convergence for L-smooth and μ -strongly convex function

Theorem

If there are the same assumptions that were used in the theorem about convex L-smooth function, then the following estimate holds

$$\mathbb{E}[f(\bar{x}^{(k)})] - f(x^*) \le \left(1 - \min\left\{\frac{\mu}{16L}, \frac{1}{8n}\right\}\right)^k \left(\frac{3}{2}(f(x_0) - f^*) + \frac{4L}{n} \|x^* - x_0\|_2^2\right)$$

- Adapt to the strong convexity
- Analogue of the SGD
- ▶ SGD gives only $\mathcal{O}(1/\sqrt{k})$ convergence rate

Remarks

- SAG requires careful tuning of settings
- \blacktriangleright Initial approximation is better to derive from one epoch of SGD and storing g_i^0
- ▶ Choice of α_k

SVRG (Johnson, Zhang 2013)

- ▶ Initialization \bar{x}_0
- ▶ For k = 1, 2, ...
 - $\bar{x} = \bar{x}_0$
 - $\bar{\mu} = f'(\bar{x})$
 - $x_0 = \bar{x}_0$
 - For $m=1,\ldots,l$
 - Random choice of $i_m \in \{1, \dots, N\}$
 - \blacktriangleright

$$x_{m+1} = x_m - \alpha (f'_{i_m}(x_m) - f'_{i_m}(\bar{x}) + \bar{\mu})$$

 $\bar{x}_0 = x_l$

Drawbacks of variance reduction methods

- They require exact gradient computations
- They depend on other parameters
- ▶ No universal way to run them

Adaptive stochastic gradient methods

- Acceleration with step size scaling
- ► Scaling based on the gradient norms AdaGrad method
- Taking into account moving averaging of gradient values and variance estimate leads to celebrated Adam optimizer
- In more details these methods will be discussed in the webinar

▶ Stochastic estimate of the gradient helps in many cases

- ► Stochastic estimate of the gradient helps in many cases
- ► SGD and its properties

- ► Stochastic estimate of the gradient helps in many cases
- SGD and its properties
- Variance reduction methods

- ► Stochastic estimate of the gradient helps in many cases
- SGD and its properties
- Variance reduction methods
- Intro to adaptive step size stochastic methods