Systems of ODEs - Homework 1

Philip Warton

January 15, 2021

Problem 1.11

(a)

Find a general solution to the following differential equaiton: $x' = x^2$.

We can solve this by doing a speration of variables and then some simple calculus.

$$x' = x^{2}$$

$$\frac{dx}{dt} = x^{2}$$

$$x^{-2}dx = dt$$

$$\int x^{-2}dx = \int dt$$

$$(-1)x^{-1} + c_{1} = t + c_{2}$$

$$x^{-1} = c - t$$

$$x = (c - t)^{-1}$$

(b)

The domain of the above solution is $\mathbb{R} \setminus \{c\}$ for every constant $c \in \mathbb{R}$.

(c)

Give a differential equation such that x(0) = 0 is a solution defined only on -1 < t < 1.

$$x' = \sqrt{1 - x^2} - 1$$

Problem 2.11

Let $V = (v_1, v_2), W = (w_1, w_2)$ be vectors in \mathbb{R}^2 . Prove that V and W are linearly independent if and only if $\det \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} = 0$.

Proof. \implies Assume that V and W are linearly independent. Then V and W are not co-linear. That is, $\forall x \in \mathbb{R} x V \neq W$ or equivalently $xv_1 \neq w_1$ and $xv_2 \neq w_2$. So $\det \begin{bmatrix} v_1 & w_1 \\ v_2 & w_2 \end{bmatrix} = v_1w_2 - v_2w_1$. Suppose, by contradiction, that $v_1w_2 - v_2w_1 = 0$. We know that neither vector can be the 0 vector, otherwise, scale the other by a 0 coefficient. So we must have $v_1w_2 = v_2w_1$ non-trivially. This can be rewritten as $v_1\frac{w_2}{v_2} = w_1$ (contradiction).

 \sqsubseteq Assume that V and W are not linearly independent. Then $\exists x \in \mathbb{R}$ such that xV = W (if V is the 0 vector, without loss of generality, swap V and W). Then we know that $\det[X|X] = 0$ for any vector $X \in \mathbb{R}^2$, so it follows that

$$\det[V \ W] = v_1 w_2 - v_2 w_1 = x v_1 w_2 - x v_2 w_1 = \det[x V \ W] = \det[W \ W] = 0$$

Problem 2.14

Prove that two eigenvectors from distinct real eigenvalues of a 2×2 matrix are always linearly independent.

Proof. Let $A \in M_{2 \times 2}(\mathbb{R})$ be a matrix such that $\exists \lambda_1 \neq \lambda_2 \in \mathbb{R}$ eigenvalues of A, and let \vec{v}_1, \vec{v}_2 be the associated eigenvectors. We want to show that $x_1\vec{v}_1 + x_2\vec{v}_2 = 0$ has only the trivial solution, $x_1, x_2 = 0$. This equation scaled by λ_1 is $x_1\lambda_1\vec{v}_1 + x_2\lambda_1\vec{v}_2 = 0$. Another equation can be produced by multiplying our matrix A to both sides of the equation, giving us $Ax_1\vec{v}_1 + Ax_2\vec{v}_2 = x_1A\vec{v}_1 + x_2A\vec{v}_2 = x_1\lambda_1\vec{v}_1 + x_2\lambda_2\vec{v}_2 = 0$. We then have the following:

$$x_1\lambda_1\vec{v}_1 + x_2\lambda_1\vec{v}_2 = x_1\lambda_1\vec{v}_1 + x_2\lambda_1\vec{v}_2$$
$$x_2\lambda_1\vec{v}_2 = x_2\lambda_2\vec{v}_2$$
$$\implies x_2 = 0$$

Then it follows that x_1 must also be equal to 0 since we have real non-trivial eigenvectors so we say that \vec{v}_1 and \vec{v}_2 are linearly independent.