

Механико-математический факультет

Линейная алгебра и геометрия, 2 семестр, 2 поток

Преподаватель: Чубаров Игорь Андреевич

Студенты: Молчанов Вячеслав

Соколов Егор

Группа: 108

Контакт: Мой телеграм для связи

Содержание

1	Векторное пространство 1.1 Изменение координат вектора при замене базиса	3
2	Векторные подпространства 2.1 Примеры	6
3	Пересечение и сумма подпространств	g
4	Прямая сумма подпространств и пространств	11
5	Линейные отображения и функции	16
6	Линейные функции	18
7	Линейные отображения и их матрицы	2 1
8	Матрицы линейного отображения 8.1 Изменение матрицы линейного отображения при замене координат	22 22
9	Линейные операторы	2 4
10	Действия над линейными отображениями	27
11	Собственные векторы и собственные значения оператора	29
12	Диагонализируемость 12.1 Собственное подпространство линейного оператора, заданное собственным значением	3 0
13	Анулирующие многочлены линейных операторов 13.1 Минимальный анулирующий многочлен линейного оператора	3 5
14	Корневые подпространства	39
15	Теорема Жордана 15.1 Изображение разложения корневых подпространств 15.2 Решение СЛАУ 15.3 Решение СЛДУ 15.4 Функции от матриц 15.5 Вычисление корня и экспоненты	41 46 48 49 49 50
16	Билинейные и квадратичные формы 16.1 Запись билинейной функции в координатах 16.2 Изменение матрицы билинейной формы при замене базиса 16.3 Квадратичные формы 16.4 Знакоопределённые квадратичные формы 16.5 Кососимметрические билинейные формы	51 52 52 55 57 60
17	Евклидовы пространства и их обобщения 17.1 Основные понятия и утверждения	62

	17.2 Линейные операторы в евклидовом пространстве	68 70 72
18	Общие линейные операторы	7 5
19	Квадратичные формы	77
20	Полуторалинейные, эрмитовы формы. Унитарные (эрмитовы) простран-	
	ства 20.1 Линейные операторы в унитарном пространстве	79 81
21	Аффинные пространства и их преобразования	83
	21.1 Аффинные плоскости (подпространства)	85
22	Евклидовы аффинные пространства	87
	22.1 Аффинные отображения	89
	22.2 Аффинные преобразования	92
	22.3 Ортогональные преобразования (движения, изометрии)	93
23	Тензоры	97
	23.1 Основные определения и первоначальные конструкции	97
	23.2 Свёртка тензора	101
	23.3 Симметрические, кососимметрические тензоры	102
	23.4 Тензоры на евклидовом пространстве	105
24	Факультативный материал	105
	24.1 Попарно коммутирующие линейные операторы	105
	24.2 Некоторые группы линейных и аффинных операторов	106
	24.3 Группы, сохраняющие билинейную форму	107
	24.4 Симплектическая группа	109
	24.5 Некоторые аффинные группы	109

1 Векторное пространство

Определение. Множество V называется векторным пространством над полем F, если заданы операции "+" : $V \times V \to V$ и " \cdot " : $F \times V \to V$ и выполнены следующие аксиомы:

1.
$$\forall v_1, v_2, v_3 \in V : (v_1 + v_2) + v_3 = v_1 + (v_2 + v_3)$$

$$2. \ \exists \ \vec{0} \in V: \ \forall v \in V : \ v + \vec{0} = v$$

3.
$$\forall v \in V \ \exists -v \in V : v + (-v) = \vec{0}$$

4.
$$\forall v_1, v_2 \in V : v_1 + v_2 = v_2 + v_1$$

5.
$$\forall \alpha, \beta \in F, v \in V : (\alpha \beta)v = \alpha(\beta v)$$

6.
$$\forall v \in V : 1_F \cdot v = v$$

7.
$$\forall \alpha, \beta \in F, v \in V : (\alpha + \beta)v = \alpha v + \beta v$$

8.
$$\forall \alpha \in F, v_1, v_2 \in V : \alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2$$

Загадка: Одна из этих аксиом - следствие других. Какая? *Ответ:* Аксиома коммутативности.

Доказательство. Сначала докажем два свойства.

- 1. $0 \cdot \overline{a} = 0 \cdot \overline{a} + \overline{0} = 0 \cdot \overline{a} + (0 \cdot \overline{a} + (-0 \cdot \overline{a})) = (0 \cdot \overline{a} + 0 \cdot \overline{a}) + (-0 \cdot \overline{a})$ (по аксиоме ассоциативности) $= 0 \cdot \overline{a} + (-0 \cdot \overline{a}) = \overline{0}$
- 2. $(-1)\overline{a} + \overline{0} = (-1)\overline{a} + (\overline{a} + (-\overline{a})) = ((-1)\overline{a} + \overline{a}) + (-\overline{a})$ (по аксиоме ассоциативности) $= 0 \cdot \overline{a} + (-\overline{a}) = -\overline{a}$.

Теперь докажем первую аксиому (аксиому коммутативности).

$$(\overline{a} + \overline{b}) + \overline{0} = (\overline{a} + \overline{b}) + (-(\overline{b} + \overline{a}) + (-(-(\overline{b} + \overline{a}))) =$$

(по второму свойству)

$$=(\overline{a}+\overline{b})+(-(\overline{b}+\overline{a})+(\overline{b}+\overline{a}))=$$

(по аксиоме ассоциативности)

$$= (\overline{a} + \overline{b} + (-(\overline{b} + \overline{a}))) + (\overline{b} + \overline{a}) = (((\overline{a} + \overline{b}) + (-(\overline{b}))) + (-\overline{a})) + (\overline{b} + \overline{a}) =$$

$$= ((\overline{a} + (\overline{b} + (-(\overline{b})))) + (-\overline{a})) + (\overline{b} + \overline{a}) = ((\overline{a} + \overline{0}) + (-\overline{a})) + (\overline{b} + \overline{a}) =$$

$$(\overline{a} + (-\overline{a})) + (\overline{b} + \overline{a}) = \overline{0} + (\overline{b} + \overline{a}) = \overline{b} + \overline{a}$$

Замечание. Любое поле можно рассматривать как векторное пространство над собой - все аксиомы будут выполнены из аксиом поля.

Определение. $U \subset V$ - векторное подпространство пространства V, если оно само является пространством относительно тех же операций в V.

Утверждение. Определение 2 эквивалентно:

- 1. $U \neq \emptyset$
- 2. $\forall u_1, u_2 \in U : u_1 + u_2 \in U$
- 3. $\forall u \in U, \ \lambda \in F : \lambda u \in U$

Определение. Векторы $v_1,...,v_n \in V$ называются линейно зависимыми, если $\exists \lambda_1,...,\lambda_n$ (не все равные 0) : $\lambda_1v_1+...+\lambda_nv_n=\vec{0}$. В противном случае векторы $v_1,...,v_n$ называются линейно независимыми.

Утверждение. Определение $3 \iff (n \ge 2)$ хотя бы один вектор из векторов v_i выражается как линейная комбинация остальных.

Определение. Упорядоченный набор векторов $e = (e_1, ..., e_n), e_k \in V$ называется базисом V, если e - максимальный ЛНЗ набор векторов из V.

Утверждение. e - базис в $V \Longleftrightarrow$

1.
$$e_1, ..., e_n$$
 - $\mathcal{I}H3$

2.
$$\forall x \in V \exists x_1, ..., x_n \in F : x = x_1 e_1 + ... + x_n e_n = \sum_{i=1}^n x_i e_i$$

Следствие. Разложение любого вектора в базисе единственно.

Доказательство. Если
$$x=\sum\limits_{i=1}^n x_ie_i=\sum\limits_{i=1}^n x_i'e_i$$
, то $\vec{0}=x-x=\sum\limits_{i=1}^n (x_i'-x_i)e_i$ Из ЛНЗ все коэффициенты равны

Обозначаем:
$$X_e = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in F^n$$
, тогда $x = eX_e = e_1x_1 + \ldots + e_nx_n$
$$\boxed{x = eX_e} \tag{1}$$

Теорема. Если в $V \equiv 6$ азис из k векторов, то любой базис V содержит k векторов.

Доказательство.

Если \exists базис $e'_1, ..., e'_m \in V$, где m > n, то по ОЛЛЗ $e'_1, ..., e'_m$ - ЛЗ, т.е. не базис. Если же m < n, то по ОЛЛЗ (в другую сторону) $e_1, ..., e_n$ - ЛЗ \Longrightarrow не базис. \square

Свойства. матриц перехода

1. $\det C \neq 0$

2.
$$C_{e'\to e} = (C_{e\to e'})^{-1}$$

3.
$$C_{e \rightarrow e''} = C_{e \rightarrow e'} \cdot C_{e' \rightarrow e''}$$

Доказательство.

- 1) Столбцы координаты ЛНЗ векторов $e_1',...,e_n'\Longrightarrow rkC=n\Longrightarrow \det C\neq 0$
- Перепишем определение матрицы перехода в матричный вид.
 По определению:

$$e' = (e'_1, ..., e'_n) = (e_1, ..., e_n)C_{e \to e'}, \text{ r.e. } e' = eC_{e \to e'}$$

$$\boxed{e' = eC_{e \to e'}}$$
(2)

С другой стороны

$$e = e'C_{e' \to e} = eC_{e \to e'}C_{e' \to e} \Longrightarrow C_{e \to e'}C_{e' \to e} = E$$

ввиду единственности разложения векторов по базису, т.е.

$$C_{e \rightarrow e'} = (C_{e' \rightarrow e})^{-1}$$

3)
$$e'' = e'C_{e' \to e''} = e(C_{e \to e'}C_{e' \to e''}) = eC_{e \to e''}$$

В силу единственности разложения $C_{e o e''} = C_{e o e'} C_{e' o e''}$

Алгоритм. Как вычислить матрицу перехода, если известны координаты векторов e_i и e'_j в некотором универсальном базисе? $e' = eC_{e \to e'}$ можно рассмотреть как матричное уравнение:

$$(e_1^{\uparrow}, ..., e_n^{\uparrow})C = (e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow})$$
$$[e_1^{\uparrow}, ..., e_n^{\uparrow} \mid e_1^{\prime \uparrow}, ..., e_n^{\prime \uparrow}] \stackrel{\text{crpok}}{\leadsto} [E \mid C_{e \to e^{\prime}}]$$

1.1 Изменение координат вектора при замене базиса

Теорема. Формула изменения координат вектора при замене базиса:

$$X_e = C_{e \to e'} X_{e'} \tag{3}$$

Доказательство.

$$\forall x \in V : x = eX_e = e'X_{e'} = eC_{e \to e'}X_{e'}$$
$$\Longrightarrow X_e = C_{e \to e'}X_{e'}$$

2 Векторные подпространства

2.1 Примеры

- 1. Геометрические векторы
- 2. F^n пространство столбцов (строк) высоты (длины) n с естественными операциями $(+,\cdot\lambda)$

Базис
$$\vartheta = \left\{ \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\\vdots\\0 \end{pmatrix}, ..., \begin{pmatrix} 0\\0\\\vdots\\1 \end{pmatrix} \right\}$$
 (можно взять столбцы любой

невырожденной матрицы порядка n)

Упражнение. Пусть $|F|=q, \dim_F V=n \Longrightarrow |V|=q^n$ $\dim M_{m,n}=mn$, стандартный базис - $\{E_{ij}\}$, где E_{ij} содержит 1 на ij-ой позиции и 0 на остальных.

3. $V = \{F : X \to \mathbb{R}\}$ с операциями сложения и умножения на скаляр Оно бесконечномерно, если X бесконечно.

Если $\lambda_1,...,\lambda_n$ - попарно различные числа, то $y_1=e^{\lambda_1 x},...,y_n=e^{\lambda_n x}$ ЛНЗ Допустим, что:

$$\begin{cases} C_1 y_1 + \dots + C_n y_n \equiv 0 \\ C_1 y_1' + \dots + C_n y_n' \equiv 0 \\ \vdots \\ C_1 y_1^{(n-1)} + \dots + C_n y_n^{(n-1)} \equiv 0 \end{cases} \implies \begin{cases} C_1 e^{\lambda_1 x} + \dots + C_n e^{\lambda_n x} \equiv 0 \\ \lambda_1 C_1 e^{\lambda_1 x} + \dots + \lambda_n C_n e^{\lambda_n x} \equiv 0 \\ \vdots \\ \lambda_1^{n-1} C_1 e^{\lambda_1 x} + \dots + \lambda_n^{n-1} C_n e^{\lambda_n x} \equiv 0 \end{cases}$$

$$\Delta = V(\lambda_1, ..., \lambda_n) \neq 0 \Longrightarrow C_1 = ... = C_n = 0$$

4. F[t] с естественными операциями сложения и умножения на скаляр - бесконечномерное пространство, т.к.: $\forall n \in N_0: 1, t, t^2, ...$ - линейно независимы. $F[t]_n = \{a_0 + a_1t + a_2t^2 + ... + a_nt^n \mid a_k \in F, \ k = 0, ..., n; \ n \in N_0\}$ - подпространство, $\dim U = n + 1$, базис: $1, t, ..., t^n$ Тейлоровский базис: $1, t - t_0, ..., (t - t_0)^n$; $\sum_{k=0}^n \frac{f^{(k)}(t_0)}{k!} (t - t_0)^k$

5. $\Omega \neq 0$, $V = 2^{\Omega}$ с операциями вместо сложения:

$$A \triangle B = (A \cap \overline{B}) \cup (B \cap \overline{A}) \ \forall A, B \subseteq \Omega$$

 $F = \mathbb{Z}_2, \ 0 \cdot A = \emptyset, \ 1 \cdot A = A$

Упражнение. Доказать, что V - векторное пространство над \mathbb{Z}_2

2.2 Два основных способа задания подпространства в V

1. Линейная оболочка семейства векторов $S \subset V$:

$$\langle S \rangle = \{ \sum_{i \in I} \lambda_i s_i \text{ (канонические суммы) } | s_i \in S, \lambda_i \in F \}$$

Частный случай:

$$\langle a_1, ..., a_m \rangle = \{ \sum_{i=1}^m \lambda_i a_i \mid \lambda_i \in F \} = U$$

Утверждение. $\langle a_1,...,a_m\rangle\subseteq V\Longrightarrow \dim\langle a_1,...,a_m\rangle=rk\{a_1,...,a_m\}$

Доказательство.

$$\mu \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\mu \lambda_i) a_i$$
$$\sum_{i=1}^{m} \mu_i a_i + \sum_{i=1}^{m} \lambda_i a_i = \sum_{i=1}^{m} (\mu_i + \lambda_i) a_i \in U$$

Если $r = rk\langle a_1,...,a_m\rangle$, то $a_{j1},...,a_{jr}$ - базисные, то $\forall a_i$ через них тоже выражается

$$\forall \sum_{i=1}^m \lambda_i a_i \Longrightarrow \{a_{j1},...,a_{jr}\}$$
 — базис U

Алгоритм. Алгоритм вычисления $\dim \langle a_1, ..., a_m \rangle$ и базиса, если известны координаты этих векторов:

1) Составить матрицу: $(a_1^\uparrow,...,a_m^\uparrow) \xrightarrow[\text{строк}]{j_1 \cdots j_r} \begin{pmatrix} 1 & 0 & \\ & \ddots & 0 \\ 0 & 1 & \\ \hline 0 & 0 \end{pmatrix}$

- 2) Столбцы с номерами $j_1, ..., j_r$ базис в U, разложение оставшихся векторов можно сразу считать из преобразованной матрицы
- **2.** $(\dim V = n, \text{ известны координаты в некотором базисе})$

$$\forall \sum_{i=1}^{n} x_i e_i = eX, \ X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

 $W = \{x \in V \mid x = eX: \ AX = 0\}$ — задание с помощью ОСЛУ

Утверждение. W - подпространство в V, $\dim W = n - rkA$, базис - любая ΦCP (это переход от **2.** к **1.** способу задания подпространства).

Теорема. Линейную оболочку конечного числа векторов в конечномерном векторном пространстве V можно задать с помощью OCJY.

Доказательство. Два способа:

1) Вектор
$$x$$
 (со столбцом координат $X = \begin{pmatrix} x_1 \\ \vdots \\ x_m \end{pmatrix}$):

$$x \in \langle a_1, ..., a_m \rangle = U$$

$$\iff$$
 $\exists \ \alpha_1,...,\alpha_m \in F: \sum_{i=1}^m \alpha_i a_i = x, \$ или в координатах: $\sum_{i=1}^m \alpha_i a_i^{\uparrow} = x$

т.е. СЛУ с
$$\widetilde{A}=(a_1^\uparrow,...,a_m^\uparrow\mid \begin{pmatrix} x_1\\ \vdots\\ x_m\end{pmatrix})$$
 совместна \Longleftrightarrow после алгоритма Гаусса:

$$\widetilde{A} \longrightarrow \begin{pmatrix} K & \sum_{j} C_{kj} x_j \\ 0 & \sum_{j} C_{r+1,j} x_j = 0 \\ \sum_{j} C_{nj} x_j = 0 \end{pmatrix}$$

$$\left(K\right)$$
 имеет ступенчатый вид, а $\left(\sum C_{r+1,j}x_j=0\right)$ - нужная нам система.

Упражнение. Доказать, что эти уравнения ЛНЗ.

2) Пусть дана ОСЛУ: $\underset{(r \times n)}{C} X = 0, \ rkC = r$

$$C \xrightarrow[\text{строк}]{\Theta\Pi} \left(E_r \mid D \right) = C'$$

$$\begin{cases} x_1 = -(d_{1,r+1}x_{1,r+1} + \dots + d_{1n}x_n) \\ \vdots \\ x_k = -(d_{k,r+1}x_{k,r+1} + \dots + d_{kn}x_n) \end{cases}$$
 $k = 1, \dots, r$

Фундаментальная матрица: $\mathcal{F} = \left(\frac{-D}{E_{n-r}}\right)$

$$C' \cdot \mathcal{F} = E_r \cdot (-D) + D \cdot E_{n-r} = -D + D = 0$$

Рассмотрим матрицу из строк координат векторов $a_1, ..., a_r$:

$$\begin{pmatrix} a_1^{\rightarrow} \\ \vdots \\ a_r^{\rightarrow} \end{pmatrix} \xrightarrow{\text{улучшенный вид}} \begin{pmatrix} M \mid E_r \end{pmatrix} \xrightarrow{\text{Транспонируем}} \begin{pmatrix} M^T \\ E_r \end{pmatrix} = \mathcal{F}$$

Тогда искомая система будет иметь матрицу: $C = (E_{n-r} \mid -M^T)$ Пространство $\{X \mid CX = 0\}$ имеет размерность n - (n-r) = r

3 Пересечение и сумма подпространств

Утверждение.

- 1. Если $U_i \ (i \in I)$ подпространство $V, \ mo \ W = \bigcap_{i \in I} U_i \ moже подпространство в <math>V;$
- 2. Объединение подпространств может НЕ быть подпространством даже для двух подпространств.

Доказательство. 1. $\overline{0} \in W$, т.к. $\overline{0} \in U_i$, $\forall i \in I$.

Если
$$x, y \in U_i, \ \forall i \in I \Longrightarrow x + y \in U_i, \ \forall i \in I \Longrightarrow x + y \in \bigcap_{i \in I} U_i$$

Если $x \in U_i, \ \forall i \in I, \ \forall \lambda \in F \Longrightarrow \lambda x \in U_i, \ \forall i \in I \Longrightarrow \lambda x \in \bigcap_{i \in I} U_i$

Замечание. Если U_1, U_2 - подпространства в V и Q - любое подпространство, которое содержит U_1 и U_2 , то оно содержит и сумму u_1+u_2 , если $u_i\in U_i,\ i=1,2$

Определение. Суммой подпространств $U_1, ..., U_m \subseteq V$ назовем:

$$U_1 + \dots + U_m = \{x_1 + \dots + x_m \mid x_i \in U_i\}$$

Утверждение. $U_1 + ... + U_m$ - nodnpocmpancmeo в V

Теорема. (Формула Грассмана)

Eсли U_1, U_2 - nodnpocmpaнcmea в $V, \dim U_1 < \infty, \dim U_2 < \infty, mo$

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2)$$

Доказательство. Пусть $\dim U_i = n_i$, $\dim(U_1 \cap U_2) = s$ Выберем $c_1, ..., c_s$ - базис $U_1 \cap U_2$, дополним до базиса в U_1 векторами $a_1, ..., a_{n_1-s}$ и до базиса в U_2 векторами $b_1, ..., b_{n_2-s}$.

Тогда векторы $c_1,...,c_s,a_1,...,a_{n_1-s},b_1,...,b_{n_2-s}$ - образуют базис в U_1+U_2

1. Они порождают $U_1 + U_2$:

$$\forall u = u_1 + u_2 = \left(\sum \alpha_i a_i + \sum x_i c_i\right) + \left(\sum \beta_i b_i + \sum \delta_i c_i\right)$$

2. Они ЛНЗ. Рассмотрим линейную комбинацию:

$$\sum_{i=1}^{n_1-s} \alpha_i a_i + \sum_{k=1}^{n_2-s} \beta_k b_k + \sum_{j=1}^s \gamma_j c_j = 0$$

$$\sum_{i=1}^{n_1-s} \alpha_i a_i = -\sum_{k=1}^{n_2-s} \beta_k b_k - \sum_{j=1}^s \gamma_j c_j \in U_1 \cap U_2$$

Левая часть должна раскладываться по $\{c_j\} \Longrightarrow \sum_{i=1}^{n_1-s} \alpha_i a_i = 0 \Longrightarrow a_i$ - ЛНЗ $\Longrightarrow \forall i: \ \alpha_i = 0$

Тогда
$$\sum_{k=1}^{n_2-s}\beta_k b_k + \sum_{j=1}^s \gamma_j c_j = 0 \Longrightarrow \{b_k,\gamma_j\}$$
 - ЛНЗ $\Longrightarrow \forall k,j: \ \beta_k = \gamma_j = 0$

Алгоритм. Пусть $U_1 = \langle a_1, ..., a_{n_1} \rangle$, $U_2 = \langle b_1, ..., b_{n_2} \rangle$, известны координаты всех этих векторов. Составим матрицу:

$$(A \mid B) = (a_1^{\uparrow}, ..., a_{n_1}^{\uparrow} \mid b_1^{\uparrow}, ..., b_{n_2}^{\uparrow})$$

 $\dim(U_1 + U_2) = rk(A|B)$

$$\left(A \mid B \right) \xrightarrow[\text{строк}]{\mathfrak{I}} \left(a_1^{\uparrow}, ..., a_{n_1}^{\uparrow} \mid \underbrace{b_1^{\uparrow}, ..., b_m^{\uparrow}}_{\text{попало в базис}}, b_{m+1}^{\uparrow}, ..., b_{n_2-m}^{\uparrow} \right)$$

Можно записать:

$$b_j = \sum_{i=1}^{n_1} \alpha_i a_i + \sum_{k=1}^m \beta_{k_j} b_k \Longrightarrow b_j - \sum_{k=1}^m \beta_{k_j} b_k = \sum_{i=1}^{n_1} \alpha_i a_i \in U_1 \cap U_2$$

Упражнение. Верна ли аналогичная формула для трех подпространств?

4 Прямая сумма подпространств и пространств

Определение. Сумма $U_1 + ... + U_m$ подпространств $U_i \subset V$, $1 \leq i \leq m$ называется прямой суммой, если $\forall u \in U_1 + ... + U_m$ представим в виде: $u = u_1 + ... + u_m \; (u_i \in U_i)$ единственным образом

Пусть m=2,V - конечномерное пространство, $U_{1,2}$ - подпространства V

Теорема. Следующие условия равносильны:

1.
$$U = U_1 + U_2$$
 - прямая сумма

2.
$$U_1 \cap U_2 = \{0\}$$

3.
$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2$$

4. $\mathit{Basuc}\ U_1 + U_2$ - объединение базисов слагаемых

Доказательство.

$$1. \to 2.$$
 Допустим $v \in U_1 \cap U_2 \Longrightarrow v = v + 0 = 0 + v \Longrightarrow v = 0$

 $2. \to 3.$ По формуле Грассмана:

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \underbrace{\dim(U_1 \cap U_2)}_{0}$$

 $3. \to 4.$ Ввиду доказательства формулы Грассмана. Если

$$\sum_{i} \alpha_i a_i + \sum_{j} \beta_j b_j = 0 \Longrightarrow \sum_{i} \alpha_i a_i = \sum_{j} (-\beta_j) b_j \in U_1 \cap U_2 = \{0\}$$

 \Longrightarrow все α_i и β_i равны нулю

 $4. \to 1. \ \forall u \in U_1 + U_2 :$

$$u = \left(\sum_{i} \alpha_{i} a_{i}\right) + \left(\sum_{j} \beta_{j} b_{j}\right)$$

- разложение по базису единственно

Теорема. Следующие условия равносильны:

1.
$$U = U_1 + U_2 + ... + U_n$$
 - прямая сумма

2.
$$\forall i, 1 \leq i \leq m, U_i \cap (\sum_{j \neq i} U_j) = \{0\}$$

3.
$$\dim(U_1 + U_2 + ... + U_n) = \dim U_1 + \dim U_2 + ... + \dim U_n$$

4. Базис
$$U_1+U_2+\ldots+U_n$$
 - объединение базисов слагаемых

Упражнение. Доказать

Пример. того, что условия $U_i \cap U_j = \{0\}, \ i \neq j$ недостаточно для прямой суммы:

 v_1, v_2, v_3 - $\Lambda 3 \Longrightarrow$ представление не единственным образом

Лемма. Любой ЛНЗ набор векторов $a_1, ..., a_m$ в n-мерном векторном пространстве V (m < n) можно дополнить до базиса в V.

Доказательство. 1. Пусть известны координаты векторов в некотором базисе $e_1, ..., e_n \Longrightarrow rk\{a_1, ..., a_m, e_1, ..., e_n\} = n$

2. Составим матрицу:

$$\left(a_1^{\uparrow} \cdots a_m^{\uparrow} \mid E_n\right) \xrightarrow{\exists \Pi \text{ строк матрицы}} \left(a_1^{\uparrow} \cdots a_m^{\uparrow} \mid e_{i,1}^{\uparrow} \mid e_{j,n-m}^{\uparrow} \cdots\right)$$

Тогда к векторам $a_1, ..., a_m$ надо добавить $e_{j,1}, ..., e_{j,n-m}$

Определение. Если U - подпр-во в V ($0 \neq U \neq V$) и $\exists W \subset V : V = U \oplus W$, то W - прямое дополнение к U.

Следствие. Для любого подпространства в конечномерном векторном пространстве \exists прямые дополнения.

Доказательство.
$$U = \langle a_1, ..., a_m \rangle \Longrightarrow \exists \ a_{m+1}, ..., a_n : \langle a_1, ..., a_n \rangle$$
 - базис в V , тогда $W = \langle a_{m+1}, ..., a_n \rangle$

Определение. Пусть $V_1,...,V_k$ $(k\geq 2)$ - векторы пространства над одним и тем же полем \mathbb{F} , тогда:

$$V = V_1 \times ... \times V_k = \{(v_1,...,v_k) \mid v_i \in V_i, 1 \le i \le k\}$$
 — внешняя прямая сумма

Обозначение: 👵

Замечание. Внешнюю прямую сумму $V = V_1 \oplus ... \oplus V_k$ можно превратить в прямую сумму подпространства:

$$\forall i$$
 рассмотрим $V_i' = \{0, ..., v_i,, 0\}$ — подпространство в V

Запись $v_1,...,v_k\stackrel{\text{единственно}}{=}(v_1,0,0,...,0)+(0,v_2,0,...,0)+...+(0,0,0,...,v_k)$ по-казывает, что $V=V_1'\oplus...\oplus V_k'$ - единственно.

В частности
$$\dim(V_1 \oplus ... \oplus V_k) = \sum_{i=1}^n \dim V_i$$

Факторпространства

Определение. Пусть $U\subset V$ - подпространство, $v_1,v_2\in V$. Говорят, что $v_1\sim v_2$ по модулю U, если $v_1-v_2\in U$. Классы эквивалентности имеют вид:

$$v + U = \{v + u \mid u \in U\}$$

- смежные классы по U, где v - представитель

$$*V/U = \{\underbrace{v + U}_{\overline{v}} \mid u \in U\}$$

Утверждение. $v_1 \sim v_2 \Leftrightarrow v_1 + U = v_2 + U$

Доказательство.

 \Rightarrow : Если $v_1 \sim v_2$, то $\exists u_0 \in V : v_2 = v_1 + u_0$

$$\forall u \in U \ v_2 + u = v_1 + (u_0 + u) \Longrightarrow v_2 + U \subseteq v_1 + U$$

$$v_1 = v_2 - u_0; \ \forall u \in U \ v_1 + u = v_2 + (u - u_0) \Longrightarrow v_1 + U \subseteq v_2 + U$$

 \leq : Если $v_1 + U = v_2 + U$, то $\exists u_1 \in U : v_1 = v_2 + u_1 \Longrightarrow v_1 - v_2 = u_1 \in U$

Определение. v+U - смежный класс элемента v по U : $\bar{v}:=v+U$

Определение. $V/U = \{\bar{v} \mid v \in V\}$ - факторпространство V по U.

Определение. Структура векторного пространства на V/U:

$$\overline{v}_1 + \overline{v}_2 = \overline{v_1 + v_2}; \quad \lambda \overline{v}_1 = \overline{\lambda v_1};$$

Определение. $\dim(V/U)$ называется коразмерностью подпространства U в V Обозначается: $\mathrm{Codim}_V U$

Пример. Пусть V = C[a, b]

$$U = \{f(x) \mid f(x_0) = 0, \ x_0 \in [a, b]\} \Longrightarrow \operatorname{Codim}_V U = 1$$

Теорема.

- 1. Данные операции задают на V/U векторное пр-во;
- 2. Если dim $V < \infty$, то dim $(V/U) = \dim V \dim U$

Доказательство.

1) Проверим корректность введённых операций:

Если
$$v_1' = v_1 + u_1, \ v_2' = v_2 + u_2, \ u_1, u_2 \in U$$
:

$$v'_1 + v'_2 = v_1 + v_2 + (u_1 + u_2)$$

$$v'_1 + v'_2 \sim v_1 + v_2, \text{ r.e. } v'_1 + v'_2 + U = v_1 + v_2 + U \Rightarrow \overline{v'_1 + v'_2} = \overline{v_1 + v_2}$$

$$\overline{v'_1} + \overline{v'_2} = \overline{v'_1 + v'_2} = \overline{v_1 + v_2} = \overline{v_1} + \overline{v_2}$$

т.е. сложение не зависит от выбора элементов в классах.

Если

$$v' = v + u, \ u \in U \Longrightarrow \lambda v' = \lambda v + \lambda u \in \lambda v + U$$

 $v \sim v' \Longrightarrow \lambda v \sim \lambda v'; \ \overline{0} \in U; \ -\overline{v} = \overline{-v}$

Все аксиомы выполенены, т.к. действия над смежными классами выражаются через действия над векторами.

2) Выберем базис $a_1,...,a_m$ в U Если U=V, т.е. $m=n=\dim V$, то $V/U=\{0\}\Longrightarrow \dim(V/U)=n-n=0$ Если же m< n, то можно дополнить базис U векторами $a_{m+1},....,a_n$ до базиса в V, тогда классы $\overline{a_{m+1}},....,\overline{a_n}$ образуют базис в V/U:

$$\forall v \in V : v = \sum_{i=1}^{m} \alpha_i a_i + \sum_{j=m+1}^{n} \alpha_j a_j$$

$$\overline{v} = v + U = \sum_{j=m+1}^{n} \overline{\alpha_j a_j} = \sum_{j=m+1}^{n} \alpha_j \overline{a_j}$$

 $\Longrightarrow \overline{a_{m+1}},....,\overline{a_n}$ порождают V/U

Проверим ЛНЗ:

$$\exists \ \lambda_j \in \mathbb{F} : \sum_{j=m+1}^n \lambda_j \overline{a_j} = \overline{0} \iff \sum_{j=m+1}^n \lambda_j a_j \in U$$

$$\exists \ \mu_i \in \mathbb{F} : \sum_{j=m+1}^n \alpha_j a_j - \sum_{i=1}^m \mu_i a_i = 0$$

Т.к. $\{a_1,...,a_n\}$ ЛНЗ, то $\lambda_j=0,\ \mu_i=0,\ \forall i,j\Longrightarrow \overline{a_{m+1}},....,\overline{a_n}$ - ЛНЗ

5 Линейные отображения и функции

Пусть V_1, V_2 - векторные пространства над полем \mathbb{F} .

Определение. Отображение $\varphi: V_1 \to V_2$ называется линейным отображением V_1 в V_2 , если:

- 1. $\forall v_1, v_1' \in V_1 : \varphi(v_1 + v_1') = \varphi(v_1) + \varphi(v_1');$
- 2. $\forall v \in V_1, \lambda \in \mathbb{F} : \varphi(\lambda v) = \lambda \varphi(v);$

Из курса I семестра известно, что $\varphi(0_{V_1}) = 0_{V_2}$

Определение. Ядром φ называется множество $\mathrm{Ker}(\varphi) = \{v \in V_1 \mid \varphi(v) = 0_{v_2}\}.$ Образом φ называется множество $\mathrm{Im}(\varphi) = \varphi(V_1).$

Утверждение.

- 1. $\mathrm{Ker}\varphi$ $nodnpocmpaнcmeo\ e\ V_1$
- 2. Отображение φ инъективно \iff $\operatorname{Ker}\varphi = \{0_{V_1}\}$
- 3. $\text{Im}\varphi$ $nodnpocmpaнcmeo\ e\ V_2$

Доказательство.

1.

$$\forall u_1, u_2 \in \text{Ker}\varphi : \varphi(u_1 + u_2) = \varphi(u_1) + \varphi(u_2) = 0_{V_2} + 0_{V_2} = 0_{V_2}$$
$$\forall u \in \text{Ker}\varphi, \ \forall \lambda \in \mathbb{F} : \ \varphi(\lambda u) = \lambda \varphi(u) = \lambda \cdot 0_{V_2} = 0_{V_2}$$

- подпространство по определению.
- $2. \Longrightarrow \Pi$ усть отображение φ инъективно, то есть если $\varphi(v) = \varphi(w)$ для v, $w \in V$, то v = w. Возьмём $v = 0_{V_1}, w \in \text{Ker}\varphi$. Так как $0_{V_1} \in \text{Ker}\varphi$, то $\varphi(v) = 0_{V_2} = \varphi(w) \Longrightarrow v = w = 0_{V_1}$, так как отображение φ инъективно $\Longrightarrow \text{Ker}\varphi = \{0_{V_1}\}$ $\longleftarrow \Pi$ усть $\text{Ker}\varphi = \{0_{V_1}\}$ и $v, w \in V_1 : \varphi(v) = \varphi(w) \Leftrightarrow \varphi(v w) = 0_{V_2}$, то есть $(v w) \in \text{Ker}\varphi = \{0_{V_1}\} \Longrightarrow w = v$
- 3. $\forall w_1, w_2 \in V_2 \exists v_1, v_2 \in V_1 : \varphi(v_1) = w_1, \varphi(v_2) = w_2 \Longrightarrow w_1 + w_2 = \varphi(v_1) + \varphi(v_2) = \varphi(v_1 + v_2) \in \operatorname{Im} \varphi$

Определение. Линейное отображение $\varphi: V_1 \to V_2$ называется изоморфизмом, если φ линейно и биективно. V_1 и V_2 называются изоморфными, если существует изоморфизм $\varphi: V_1 \to V_2$. Обозначается: $V_1 \cong V_2$.

Теорема. (Об изоморфизме) Конечномерные векторные пространства V_1 и V_2 изоморфны тогда и только тогда, когда $dimV_1 = dimV_2$.

 \mathcal{A} оказательство. eq Пусть $\dim V_1 = \dim V_2 = n$. Выберем e_1, \ldots, e_n - базис в V_1 , а f_1, \ldots, f_n - базис в V_2 , тогда $\forall v \in V_1 \ v = \sum_{i=1}^n x_i e_i$.

Определим отображение $\varphi: V_1 \to V_2$ формулой $\varphi(v) := \sum_{i=1}^n x_i f_i$.

- 1. (линейность) Пусть $v_1, v_2 \in V_1, v_1 = \sum_{i=1}^n x_i e_i$ и $v_2 = \sum_{i=1}^n y_i e_i$, тогда $v_1 + v_2 = \sum_{i=1}^{n} (x_i + y_i)e_i \Longrightarrow$ $\implies \varphi(v_1 + v_2) = \sum_{i=1}^{n} (x_i + y_i) f_i = \sum_{i=1}^{n} x_i f_i + \sum_{i=1}^{n} y_i f_i = \varphi(v_1) + \varphi(v_2).$ $\forall \lambda \in \mathbb{F} \text{ и } \forall v \in V_1 \varphi(\lambda v) = \sum_{i=1}^n (\lambda x_i) f_i = \lambda \sum_{i=1}^n x_i f_i = \lambda \varphi(v).$
- 2. (инъективность) $\text{Ker}\varphi = \{v \in V_1 | \varphi(v) = 0_{V_2}\}$. Пусть $v \in V_1$ и $v \in \text{Ker}\varphi$, тогда $v = \sum_{i=1}^{n} \alpha_i e_i \Longrightarrow$ $\Longrightarrow \varphi(v) = \sum_{i=1}^{n} \alpha_i f_i = 0$, а так как f_1, \ldots, f_n - линейно независимы $\Longrightarrow \forall i$ $\alpha_i = 0 \Longrightarrow v = \sum_{i=1}^{n} \alpha_i e_i = 0 \Longrightarrow \operatorname{Ker} \varphi = \{0\}.$
- 3. (сюръективность) $\forall w \in V_2 \ w = \sum_{i=1}^n \alpha_i f_i \Longrightarrow w = \varphi(v), \ v = \sum_{i=1}^n \alpha_i e_i \Longrightarrow$ $\varphi(V_1) = V_2$.

 \Longrightarrow Пусть $V_1\cong V_2,\ \dim V_1=n,\ \varphi:V_1\to V_2$ - изоморфизм V_1 и V_2 . Выберем

базис e_1, \ldots, e_n в V_1 и покажем, что $\varphi(e_1), \ldots, \varphi(e_n)$ - базис в V_2 . $\forall w \in V_2 \; \exists v \in V_1 : \varphi(v) = w.$ Пусть $v = \sum_{i=1}^n x_i e_i$, тогда $\varphi(v) = w = \sum_{i=1}^n x_i \varphi(e_i) \Longrightarrow$

 $\Longrightarrow V_2 = \langle \varphi(e_1), \ldots, \varphi(e_n) \rangle$. Проверим линейную независимость

Предположим, что $\exists \mu_i \in \mathbb{F} : 0_{V_2} = \sum_{i=1}^n \mu_i \varphi(e_i) = \varphi(\sum_{i=1}^n \mu_i e_i) \Longrightarrow \sum_{i=1}^n \mu_i e_i \in \text{Ker} \varphi = \varphi(e_i)$ $\{0\}$, так как φ - биекция.

Так как $\{e_i\}$ линейно независимы $\Longrightarrow \mu_i = 0 \ \forall i \Longrightarrow \varphi(e_1), \ldots, \varphi(e_n)$ линейно независимы.

6 Линейные функции

Пусть V - векторное пространство над \mathbb{F}

Определение. Отображение $f: V \to \mathbb{F}$ - линейная функция со значениями в \mathbb{F} , если:

1.
$$\forall v_1, v_2 \in V : f(v_1 + v_2) = f(v_1) + f(v_2)$$

2.
$$\forall v \in V, \forall \lambda \in \mathbb{F}: f(\lambda v) = \lambda f(v)$$

Обозначается: $V^* = \{f: \ V \to \mathbb{F}\}$ - множество линейных функций на V

Лемма. Если $f \not\equiv 0$, то dim (V/Kerf) = 1.

Доказательство. $f \not\equiv 0 \Rightarrow \exists v_1 \in V, \ f(v_1) \not\equiv 0.$ Пусть $v \in V$, тогда либо $v \in \mathrm{Ker}(f)$, либо $f(v) = \alpha \not\equiv 0$

$$\beta = f(v_1) \neq 0 \Longrightarrow f(\frac{v_1}{\beta}) = 1, \ f(\frac{\alpha}{\beta}v_1) = \alpha$$

Рассмотрим выражение $f(v - \frac{\alpha}{\beta}v_1)$:

$$f(v - \frac{\alpha}{\beta}v_1) = f(v) - f(\frac{\alpha}{\beta}v_1) = \alpha - \alpha = 0$$

$$\Longrightarrow v - \frac{\alpha}{\beta}v_1 \in \operatorname{Ker}(f)$$
 и $v = \frac{\alpha}{\beta}v_1 + u$, $u \in \operatorname{Ker}(f)$

Замечание.
$$\forall x \in V: (f_1 + f_2)(x) = f_1(x) + f_2(x)$$
 и $(\lambda f)(x) = \lambda f(x)$

Лемма. Множество V^* с введенными операциями - векторное пространство.

Определение. V^* - векторное пространство, сопряженное с V (двойственное для V)

Зафиксируем базис $e=(e_1,...,e_n)$ в V и линейную функцию $f:V \to F$

$$\forall x \in V: \ x = \sum_{i=1}^n x_i e_i \Rightarrow f(x) = \sum_{i=1}^n x_i f(e_i) = \sum_{i=1}^n a_i x_i, \ \text{где } a_i = f(e_i)$$

Удобно записывать это так:
$$f(x) = \begin{pmatrix} a_1 & \cdots & a_n \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

Определение. Координатные функции - функции вида:

$$f_i: f_i(x) = x_i$$

Будем использовать обозначение: $e^i = f_i$

В частности:
$$f_i(e_j) = e^i(e_j) = \begin{cases} 1, & i = j \\ 0, & i \neq j \end{cases}$$

Утверждение. Функции e^i - базис в V^*

Доказательство.

Докажем ЛНЗ: Пусть $\exists \lambda_1,...,\lambda_n: \sum_{i=1}^n \lambda_i e^i \equiv 0$. Подставим e_j :

$$\left(\sum_{i=1}^{n} \lambda_i e^i\right)(e_j) = \sum_{i=1}^{n} \lambda_i e^i(e_j) = \lambda_j = 0$$

Отсюда после подстановки всех $e_1,...,e_n$ получим, что $\forall i=1,...,n: \lambda_i=0.$ Разложим произвольную функцию $f\in V^*$:

$$f(x) = \sum_{i=1}^{n} a_i x_i = \sum_{i=1}^{n} a_i e^i(x) = (\sum_{i=1}^{n} a_i e^i)(x) \implies f \equiv \sum_{i=1}^{n} a_i e^i$$

Следствие. $Ecnu \dim V < \infty, mo V^* \cong V, m.к. \dim V^* = \dim V.$

Определение. Базис $e^* = (e^1, ..., e^n)$ называется базисом V^* , сопряжённым (дуальным, двойственным, биортогональным) к базису e в V.

Посмотрим, как изменится строка координат функции $f \in V^*$ при замене базиса e в V.

Пусть $e'=(e'_1,...,e'_n)=e\cdot C_{e\to e'}$ - новый базис в V. Как известно, $X=C_{e\to e'}\cdot X'$. Отсюда если $x=\sum_{i=1}^n x_ie_i=\sum_{i=1}^n x'_ie'_i$, то $\forall f\in V^*$:

$$f(x) = \sum_{i=1}^{n} a'_{i} x'_{i} = (a'_{1}, ..., a'_{n}) X'$$

С другой стороны

$$f(x) = (a_1, ..., a_n)X = (a_1, ..., a_n)(C_{e \to e'}X') = ((a_1, ..., a_n)C_{e \to e'})X'$$

Отсюда

$$\forall X' \in \mathbb{F}^n \ ((a_1, ..., a_n)C_{e \to e'})X' = ((a'_1, ..., a'_n))X'$$

Подставляя по очереди $X' = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}, \dots, \begin{pmatrix} 0 \\ 0 \\ \vdots \\ i \end{pmatrix}$, в итоге получим равенство

$$(a_1, ..., a_n)C_{e \to e'} = (a'_1, ..., a'_n)$$

Пример. Возьмём
$$V = \mathbb{R}[t]_n = \{p(t) \in \mathbb{R}[t] \mid \deg p = n\}$$
 Выберем в нём базис $\{1, (t-t_0), ..., (t-t_0)^n\} \Longrightarrow p(t) = \sum_{i=0}^n \frac{p^{(i)}(t_0)}{i!} (t-t_0)^i$ Если $e_i = (t-t_0)^i, \ 0 \leqslant i \leqslant n, \text{ то } e^i(p) = \frac{p^{(i)}(t_0)}{i!}$

Определение. Вторым сопряжённым пространством к V (обозначается V^{**}) называется пространство, сопряженное к V^* - пространство линейных функций от линейных функций над V.

$$V^{**} = \{ \varphi : V^* \to \mathbb{F} \}$$

Лемма. f - инъекция $\iff Ker(f) = \{0\}$

Теорема. Если $\dim V < \infty$, то $V^{**} \cong V$, причём изоморфизм не зависит от выбора базиса (такой изоморфизм называется каноническим).

Доказательство. Рассмотрим отображение:

$$\varphi: V \to V^{**}: \ \varphi(x) = \varphi_x \in V^{**}: \ \forall f \in V^*, \varphi_x(f) = f(x)$$

Это линейное отображение:

- $\forall f \in V^*, \ \varphi_{x_1+x_2}(f) = f(x_1 + x_2) = f(x_1) + f(x_2) = \varphi_{x_1}(f) + \varphi_{x_2}(f) \Longrightarrow \varphi(x_1 + x_2) = \varphi(x_1) + \varphi(x_2);$
- $\forall f \in V^*, \ \varphi_{\lambda x}(f) = f(\lambda x) = \lambda f(x) = \lambda \varphi_x(f) \Longrightarrow \varphi(\lambda x) = \lambda \varphi(x);$

Чтобы проверить, что φ - биекция, достаточно проверить, что $\mathrm{Ker}(\varphi)=\{0\}$ (так как сюръекцию имеем из $\dim V^{**}=\dim V$).

Пусть $x \in \text{Ker}(\varphi)$, т.е. $\varphi_x \equiv 0$. Значит, $\forall f \in V^*: f(x) = 0$

Если $x \neq 0$, то его можно дополнить до базиса: $x, e_2, ..., e_n$, где $n = \dim V$.

Тогда
$$e^1(x)=1 \neq 0$$
 - противоречие с условием $\forall f \in V^*: \ f(x)=0.$

 $\exists a \partial a$ ча. Доказать, что $a_1,...,a_n \in V$ ЛНЗ $\Leftrightarrow \exists$ лин. ф-ции $f^1,...,f^n \in V^*$ такие, что $\det(f^i(a_i)) \neq 0$.

3амечание. Если $dimV=\infty$, то $V^*\ncong V$ в общем случае.

Пример. $V=\mathbb{Q}[t]$ - V счётно. Зафиксируем число $t\in\mathbb{Q}$ и рассмотрим произвольную $f\in V^*$:

 $f(t^k) = b_k \Rightarrow f \leftrightarrow (b_0, b_1, ..., b_k, ...) \Rightarrow V^*$ континуально.

Отсюда мощность V^* больше мощности V, и они, очевидно, не изоморфны.

7 Линейные отображения и их матрицы

Пусть V_1, V_2 - векторные пространства, $\varphi: V_1 \to V_2$ - линейное отображение.

Пример.

 $V_1 = D(a, b)$ - множество функций над полем \mathbb{R} , дифференцируемых на (a, b);

 $V_2 = F(a, b)$ - множество функций над полем \mathbb{R} , опреелённых на (a, b);

$$\varphi(f)=rac{df}{dt},\; \varphi:\; V_1 o V_2$$
 - линейное отображение, $\operatorname{Ker}(\varphi)=\{const\}$

Частный случай: $V_1 = \mathbb{R}[t]_n, \ V_2 = \mathbb{R}[t]_{n-1}$

 $\varphi(f)=f'$ - линейное отображение (взяли производную)

 $\operatorname{Ker}(\varphi) = \{const\}$. Является ли φ сюръекцией?

$$\forall p(t) = a_0 + a_1 x + \dots + a_{n-1} t^{n-1}$$

$$\exists f(t) = a_0t + a_1\frac{t^2}{2} + \ldots + a_{n-1}\frac{t^n}{n}: f'(t) = p(t) \Longrightarrow \varphi$$
 - сюръекция

Теорема. Если $\varphi: V_1 \to V_2$ - линейное отображение, $\dim V_1 < \infty$, то

$$\dim(\operatorname{Im}\varphi) = \dim V_1 - \dim(\operatorname{Ker}\varphi)$$

Доказательство. Пусть $\dim(\operatorname{Im}\varphi) = m \ (m \leq n = \dim V_1)$

Выберем $c_1,...,c_m$ - базис в $\operatorname{Im}\varphi\Longrightarrow\exists\ a_1,...,a_m\in V_1:\ \varphi(a_i)=c_i,\ i=\overline{1,m}$

Так же выберем базис $b_1,...,b_k$ в $\operatorname{Ker} \varphi$ (если $\operatorname{Ker} \varphi=\{0\},$ то $\operatorname{Im} \varphi\cong V_1)$

Покажем, что $\{a_1,...,a_m,b_1,...,b_k\}$ - базис в V_1 :

Пусть
$$\alpha_i$$
, β_j : $\sum_{i=1}^m \alpha_i a_i + \sum_{j=1}^k \beta_j b_j = 0_{v_1}$, тогда:

$$\varphi(\sum_{i=1}^{m} \alpha_i a_i + \sum_{j=1}^{k} \beta_j b_j) = \sum_{i=1}^{m} \alpha_i \varphi(a_i) + \underbrace{\sum_{j=1}^{k} \beta_j \varphi(b_j)}_{0_{v_2}} = \sum_{i=1}^{m} \alpha_i c_i = \varphi(0_{v_1}) = 0_{v_2}$$

Т.к.
$$c_i$$
 - ЛНЗ $\Longrightarrow \forall i=\overline{1,m}: \ \alpha_i=0 \Longrightarrow \sum\limits_{j=1}^k b_j\beta_j=0$

Т.к. b_i - ЛНЗ $\Longrightarrow \forall j = \overline{1,k}: \ \beta_j = 0$

$$\forall v \in V_1: \ \varphi(v) = \sum_{l=1}^m \gamma_l c_l = \varphi(\sum_{l=1}^m \gamma_l a_l) \Longrightarrow v - \sum_{l=1}^m \gamma_l a_l \in \operatorname{Ker} \varphi$$

$$\Longrightarrow \exists \beta_j \in \mathbb{F}: \ v = \sum_{l=1}^m \gamma_l a_l + \sum_{j=1}^k \beta_j b_j$$

8 Матрицы линейного отображения

Пусть: $\mathcal{E} = \{e_1, ..., e_n\}$ - базис в V_1 ; $\mathcal{F} = \{f_1, ..., f_m\}$ - базис в V_2

$$\forall x \in V_1: \ x = \sum_{j=1}^n x_j e_j \Longrightarrow \varphi(x) = \sum_{j=1}^n x_j \varphi(e_j) =$$
$$= \{ \varphi(e_j) = \sum_{i=1}^m a_{ij} f_i \} = \sum_{j=1}^n \sum_{i=1}^m x_j a_{ij} f_i$$

Определение. Назовем $A=(a_{ij})=A_{\varphi,e,f}$ - матрицей φ в базисах $\mathcal E$ и $\mathcal F$. Обозначается: $Y_f = A_{\varphi,e,f} \cdot X_e$ (где Y - столбец координат $\varphi(x)$).

3амечание. Для линейного оператора $\varphi: V \to V, \ A_{\varphi,e} \equiv A_{\varphi,e,e}$

Алгоритм. Вычисление $\operatorname{Ker} \varphi$ и $\operatorname{Im} \varphi$ с помощью матрицы A_{φ} :

- 1. Ker $\varphi = \{x = \mathcal{E} \cdot x_{\mathcal{E}} : A_{\varphi} \cdot x_{\mathcal{E}} = 0\}; \dim(\operatorname{Ker} \varphi) = n \operatorname{rk} A_{\varphi}$
- 2. Im $\varphi = \langle \varphi(e_1), ..., \varphi(e_n) \rangle = \{ y = f \cdot Y_f : Y_f = A_\varphi \cdot x_{\mathcal{E}} \}$ $Y \in \operatorname{Im} \varphi \iff \operatorname{CЛУ} A_{\varphi} \cdot x_{\mathcal{E}} = Y \operatorname{cobmectha} \implies \dim(\operatorname{Im} \varphi) = \operatorname{rk} A_{\varphi}$ (т.е. не зависит от базиса);
- 3. $\dim(\operatorname{Im}\varphi) + \dim(\operatorname{Ker}\varphi) = \dim V_1$

Изменение матрицы линейного отображения при за-8.1мене координат

Утверждение. Пусть $\mathcal{E} = (e_1, ..., e_n)$ - старый, а $\mathcal{E}' = (e'_1, ..., e'_n)$ - новый базисы в V_1 и $\mathcal{F}=(f_1,...,f_n)$ - старый, а $\mathcal{F}'=(f_1',...,f_n')$ - новый базисы в V_2 , C - матрица перехода из $\mathcal E$ в $\mathcal E'$, а D - матрица перехода из $\mathcal F$ в $\mathcal F'$. Тогда:

$$A_{\varphi,\mathcal{E}',\mathcal{F}'} = D^{-1} \cdot A_{\varphi,\mathcal{E},\mathcal{F}} \cdot C$$

Доказательство. Воспользуемся формулами связи координат векторов:

$$\forall x \in V_1: \ x_{\mathcal{E}} = \underbrace{C_{\mathcal{E} \to \mathcal{E}'}}_{C} \cdot x_{\mathcal{E}'} \text{ и } \ \forall y \in V_2: \ y_{\mathcal{F}} = \underbrace{C_{\mathcal{F} \to \mathcal{F}'}}_{D} \cdot y_{\mathcal{F}'}$$
 Тогда формулы имеют вид:

$$Y_{\mathcal{F}} = A_{\varphi,\mathcal{E},\mathcal{F}} \cdot x_{\mathcal{E}}$$
 и $Y_{\mathcal{F}'} = A_{\varphi,\mathcal{E}',\mathcal{F}'} \cdot x_{\mathcal{E}'}$

$$(*)$$

Умножим (*) слева на D^{-1} , а также запишем выражение $x_{\mathcal{E}}$ через $x_{\mathcal{E}'}$: $\forall x_{\mathcal{E}'} \in F^n$:

$$D^{-1} \cdot Y_{\mathcal{F}} = D^{-1} \cdot (A_{\varphi,\mathcal{E},\mathcal{F}} \cdot C) \cdot x_{\mathcal{E}'} \Longleftrightarrow Y_{\mathcal{F}'} = (D^{-1} \cdot A_{\varphi,\mathcal{E},\mathcal{F}} \cdot C) \cdot x_{\mathcal{E}'}$$

Возьмем
$$x_{\mathcal{E}'} = E_j, \ j = 1, ..., n$$

3амечание. Для линейного оператора $\varphi: V \to V:$

$$A_{\varphi,\mathcal{E}'} = C_{\mathcal{E} \to \mathcal{E}'}^{-1} \cdot A_{\varphi,\mathcal{E}} \cdot C_{\mathcal{E} \to \mathcal{E}'}$$

Следствие.

1. Для любого линейного отображения ранг его матрицы инвариантен при замене базиса

$$\operatorname{rk} A_{\varphi,\mathcal{E}',\mathcal{F}'} = \operatorname{rk} A_{\varphi,\mathcal{E},\mathcal{F}};$$

2. Для любого линейного оператора оперделитель и след его матрицы инвариантны при замене базиса

$$\det(A_{\varphi,\mathcal{E}'}) = \det(A_{\varphi,\mathcal{E}})$$

$$tr(A_{\varphi,\mathcal{E}'}) = tr(A_{\varphi,\mathcal{E}})$$

Доказательство.

1. Матрицы C и D невырождены, значит достаточно доказать, что $\operatorname{rk} A = \operatorname{rk} (AC)$, где C - невыроджена.

$$\begin{cases} B = A \cdot C \Longrightarrow \operatorname{rk} B \le \operatorname{rk} A \\ A = (A \cdot C) \cdot C^{-1} \Longrightarrow \operatorname{rk} A \le \operatorname{rk} (AC) \end{cases} \Longrightarrow \underbrace{\operatorname{rk} (AC) \le \operatorname{rk} A \le \operatorname{rk} (AC)}_{\operatorname{rk} (AC) = \operatorname{rk} A}$$

2. $\det(C^{-1}AC) = \det C^{-1} \cdot \det A \cdot \det C = \det A$

3.
$$\operatorname{tr}(AC) = \operatorname{tr}(CA) \Longrightarrow \operatorname{tr}\left[C^{-1} \cdot (AC)\right] = \operatorname{tr}\left[(AC) \cdot C^{-1}\right] = \operatorname{tr}A$$

Теорема. Пусть $a_1, ..., a_n$ - ЛНЗ векторы в V_1 (dim $V_1 = n$), $b_1, ..., b_n$ - случайные векторы в V_2 (dim $V_2 = m$). Тогда $\exists !$ линейное отображение $\varphi : V_1 \to V_2 : \varphi(a_j) = b_j, \ j = 1, ..., n$

Доказательство.

Пусть в некотором базисе ${\mathcal E}$ пространства V_1 вектор $a_j \sim a_j^{\uparrow}$ - столбец координат,

в базисе f пространства V_2 вектор $b_j \sim b_j^{\uparrow}$ По условию, $\forall j=1,...,n: A_{\varphi}\cdot a_j^{\uparrow}=b_j^{\uparrow} \Longrightarrow A_{\varphi}(a_1^{\uparrow},...,a_n^{\uparrow})=(b_1^{\uparrow},...,b_n^{\uparrow})$ или $A_{\varphi} \cdot A = B$, где A_{φ} - искомая матрица.

Отсюда получаем, что $A_{\varphi} = B \cdot A^{-1}$ (т.к. $a_1, ..., a_n$ ЛНЗ).

$$\left(\begin{array}{c} A \\ \hline B \end{array} \right) \xrightarrow[\text{строк}]{} \left(\begin{array}{c} E \\ \hline A_{\varphi} \end{array} \right), \ \left(\begin{array}{c} A \\ \hline B \end{array} \right) \rightarrow \left(\begin{array}{c} A \\ \hline B \end{array} \right) \cdot C_{\text{эл}} = \left(\begin{array}{c} AC \\ \hline BC \end{array} \right)$$
 Если $AC = E$, то $C = A^{-1}$ и $BC = BA^{-1} = A_{\varphi}$

Теорема. Если dim $V_1 < \infty, \ \varphi: \ V_1 \to V_2$ - линейное отображение, то

$$Im \varphi \cong V_1/Ker \varphi$$

Доказательство. Базис ядра дополним до базиса пространства V_1 векторами $e_1,...,e_s$. Тогда любой $v \in V_1$ можно записать в виде:

$$v = \sum_{i=1}^{s} x_i e_i + u$$
, где $u \in \operatorname{Ker} \varphi$

По этому в факторпространстве базис составляет классы $\overline{v} + u = \sum_{i=1}^{s} x_i \overline{e_i}$ Рассмотрим отношение $\overline{\varphi}: V_1/u \to V_2$, где $\overline{\varphi}(\overline{v}) = \overline{\varphi}(v+u) := \varphi(v)$ Отсюда $w = \overline{\varphi}(\overline{v})$. Получаем, что φ - сюръективное линейное отображение (т.к. $\forall w \in V_2 \; \exists \; v \in V_1 : \; \varphi(v) = w$). Также $\operatorname{Ker} \overline{\varphi} = \{0\} = \{\operatorname{Ker} \varphi\}$, потому что если $\overline{\varphi}(\overline{v})=0$, то $\varphi(v)=0$, т.е. $v\in \operatorname{Ker} \varphi=u\Longrightarrow v\in U\Longrightarrow \overline{v}=u=\{0\}$

Линейные операторы 9

Определение. Линейное отображение $\varphi:\ V o V$ называется линейным оператором

Далее рассматриваем линейные операторы.

Утверждение.

- 1. $Ker \varphi$ nodnpocmpaнcmeo в <math>V
- $2.~Im\, arphi$ $nodnpocmpaнcmeo\ e\ V$

3. Если $U \subset V$, то $\varphi(U)$ - подпространство в V

Определение. Подпространство $U \subset V$ называется инвариантным относительно φ (или φ - инвариантным), если:

$$\forall u \in U : \varphi(u) \in U$$
, T.E. $\varphi(U) \subseteq U$

Примеры.

- 1. Пусть $V=U\oplus W$. Пусть $\varphi:V\to V$ такое, что $\varphi(v)=\varphi(u+w)=u$ проекция V на U вдоль W. Тогда U и W инвариантные подпространства относительно φ и $\forall u\in U: \varphi(u)=u$, а также $\forall w\in W: \varphi(w)=0$. Отсюда $U\cong V/W$
- 2. Пусть $V = \mathbb{R}[t], \ \varphi(f) = \frac{df}{dt} \Rightarrow p(t) \to p'(t)$. Здесь инвариантным является подпространство $\mathbb{R}[t]_n \supset \mathbb{R}[t]_{n-1}, \ n \in \mathbb{N} \cup \{0\}$

Теорема. Если $\varphi: V \to V$ - линейный оператор, $\dim V = n, U$ - инвариантное подпространство, то существует базис, в котором A_{φ} имеет блочный вид:

$$A_{\varphi} = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix}$$

 $\Gamma \partial e \ B \ u \ C$ - квадратные: $B_{m \times m}, \ m = \dim U$

Доказательство. Выберем базис $e_1,...,e_m$ в U и дополним до базиса в V. Тогда в полученном базисе A_{φ} имеет нужный вид.

 $\mathit{Замечаниe}.$ Пусть $U\subset V$ - инвариантное подпространство для линейного оператора $\varphi:\ V\to V$

Ограничение φ на подпространство U:

$$\varphi|_u: U \to U; \quad \forall u \in U: \ \varphi|_u(u) = \varphi(u)$$

Рассмотрим факторпространтсво:

$$\overline{V} = V/U: \ \{v+u \mid u \in U\}$$

и фактор-оператор:

$$\overline{\varphi}(\overline{v}) := \overline{\varphi(v)}$$

$$\forall \overline{v} \in \overline{V}: \ v' = v + u, \ u \in U \Longrightarrow \varphi(\overline{v}) = \varphi(v) + \varphi(u) \in U \Longrightarrow \varphi(\overline{v}) = \varphi(v)$$
 Т.о. $\overline{\varphi}: \ \overline{V} \to \overline{V}$ - линейный оператор.

Теорема.

1. Если существует инвариантное подпространство $U \subset V$, то в подходящем базисе:

$$A_{\varphi} = \begin{pmatrix} B & D \\ 0 & C \end{pmatrix} \tag{I}$$

 $\Gamma \partial e \ B_{m \times m}, \ m = \dim U, \ a \ moчнее: B$ - матрица оператора $\varphi|_u,$ C - матрица оператора $\overline{\varphi}$

2. Если $V=U\oplus W,\ U\ u\ W$ - инвариантные для $\varphi,\ mo\ в\ noдходящем$ базисе:

$$A_{\varphi} = \begin{pmatrix} B & 0 \\ \hline 0 & C \end{pmatrix} \tag{II}$$

Причем $B = A_{\varphi|_u}, \ C = A_{\varphi|_w}.$

Верно и обратное, если в некотором базисе матрица A_{φ} имеет вид (I), то для $\varphi \exists$ инвариантное подпространство, а если A_{φ} имеет вид (II), то V - прямая сумма двух инвариантных подпространств.

Доказательство. Обозначим $\dim V = n, \dim U = m, 0 < m < n$

1. Выберем базис в $U: e_1, ..., e_m$ и произвольно дополним его до базиса V векторами $e_{m+1}, ..., e_n$.

$$\forall u \in U : u = \sum_{i=1}^{m} u_i e_i \Longrightarrow \varphi(u) = \sum_{i=1}^{m} u_i \varphi(e_i)$$

В частности, столбцы $\varphi(e_1)^{\uparrow},...,\varphi(e_m)^{\uparrow}$ имеют вид: $\begin{pmatrix} a_{1i} \\ \vdots \\ a_{mi} \end{pmatrix}$ \Longrightarrow они состав-

ляют матрицу $\binom{B}{0}$. Столбцы матрицы $\varphi(e_{m+1}^{\uparrow},...,e_{n}^{\uparrow})$ соответствуют номерам координат. Видно, что:

$$B = \begin{pmatrix} a_{11} & \cdots & a_{1m} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mm} \end{pmatrix} = A_{\varphi|_u}$$

 $\overline{e_j}=e_j+U,\ j=m+1,...,n$ - базис в факторпространстве $\overline{V}=V/U.$

$$\overline{\varphi(e_j)} = \sum_{i=1}^m a_{ij} e_i + \sum_{k=m+1}^n a_{kj} e_k + U = \sum_{k=m+1}^n a_{kj} e_k + U = \sum_{k=m+1}^n a_{kj} \overline{e_k}$$

$$\Longrightarrow C = \begin{pmatrix} a_{m+1,m+1} & \cdots & a_{m+1,n} \\ \vdots & & \vdots \\ a_{n,m+1} & \cdots & a_{nn} \end{pmatrix}$$
 — матрица оператора $\overline{\varphi}$

2. Если $V = U \oplus W$, векторы $e_{m+1}, ..., e_n$ надо выбирать в W. Остальное аналогично.

Теорема. (Обратная)

Для второго случая, если в базисе $e_1,...,e_n$ матрица имеет вид (II), то положим $U:=\langle e_1,...,e_m\rangle,\ W:=\langle e_{m+1},....,e_n\rangle$

Из определения матрицы $A_{\varphi,e}$ следует, что U,W - инвариантные относительно $\varphi, \ \varphi|_u$ имеет матрицу $B, \ \varphi|_w$ - матрицу C.

Замечание. В общем случае, если $V = U_1 \oplus ... \oplus U_s$, U_i - инвариантны относительно $\varphi: V \to V$, то в базисе, согласованном с этим разложением:

$$A_{\varphi} = \begin{pmatrix} B_1 & 0 \\ & \ddots & \\ 0 & B_s \end{pmatrix}$$

где B_i - матрица $\varphi|_{u_i}$.

Примеры. $\varphi:\ V \to V$

- 1. Кег φ , Іт φ , любое подпространство $U\supseteq \operatorname{Im} \varphi$ инвариантны.
- 2. Если $U_1, U_2 \varphi$ -инвариантные подпространства, то $U_1 + U_2$ и $U_1 \cap U_2$ инвариантны

10 Действия над линейными отображениями

Пусть $\varphi:\ V_1 \to V_2$ - линейное отображение, $\forall x \in V_1$

- 1. $\forall \lambda \in \mathbb{F} : (\lambda \varphi)(x) = \lambda \varphi(x)$
- 2. Если $\psi: V_1 \to V_2$, то $(\varphi + \psi)(x) = \varphi(x) + \psi(x)$

Утверждение. (1) Относительно этих операций множество $Z(V_1, V_2)$ линейных отображений из V_1 в V_2 является векторным пространством.

Утверждение. (2) Если dim $V_1 = n$, dim $V_2 = m$, mo $Z(V_1, V_2) \cong M_{m \times n}(\mathbb{F})$

Доказательство. Зафиксируем базисы в V_1 и V_2 : e и f соответственно, тогда $\forall \varphi$ взаимооднозначно соответствует его матрица $A_{\varphi,e,f}$ относительно базисов e

и f. $A_{\lambda\varphi} = \lambda A_{\varphi} \ \forall \lambda \in \mathbb{F} \ (\lambda\varphi)(e_j) = \lambda\varphi(e_j) \Longrightarrow$ все столбцы A_{φ} умножаются на $\lambda \Longrightarrow A_{\varphi}$ умножается на λ .

$$\forall j = 1, ..., m : (\varphi + \psi)(e_j) = \varphi(e_j) + \psi(e_j)$$

 \Longrightarrow столбцы $A_{\varphi+\psi}$ имеют вид $\varphi(e_j)+\psi(e_j)$.

Обозначение: $L(V_1, V_2) = \mathfrak{T}(V_1, V_2) = \text{Hom}(V_1, V_2)$.

 $\mathfrak{T}(V)$ - множество линейных операторов на V.

Определение. Произведением линейных отображений $\varphi: V_1 \to V_2$ и $\psi: V_2 \to V_3$ называется их композиция:

$$(\varphi \circ \psi)(x) = \psi(\varphi(x)),$$
 где $x \in V_1$

Утверждение. (3) Композиция линейных отображений является линейным отображением, а композиция линейных операторов - линейным оператором.

Утверждение. (4) Пусть V_1, V_2, V_3 - конечномерные векторные пространства, $\varphi: V_1 \to V_2, \ \psi: V_2 \to V_3$ - линейные отображения, тогда, если зафиксировать базисы в этих пространствах, матрица композиции:

$$A_{\psi \circ \varphi} = A_{\psi} \cdot A_{\varphi}$$

Доказательство.

Утверждение (3) - упражнение.

Утверждение (4): Пусть e - базис в V_1 , f - базис в V_2 , g - базис в V_3 .

$$A_{\varphi} = (\varphi(e_1)^{\uparrow} \dots \varphi(e_n)^{\uparrow})$$
 в базисе f

$$A_{\psi} = (\psi(f_1)^{\uparrow} \dots \psi(f_m)^{\uparrow})$$
 в базисе g

 $\forall x=eX,$ обозначим $y=\varphi(x),\ z=\psi(y)$ со столбцами координат Y и Z соответственно. Тогда:

$$Y = A_{\varphi}X, \ Z = A_{\psi}Y = A_{\psi}(A_{\varphi}X) = (A_{\psi}A_{\varphi})X = A_{\psi\circ\varphi}X$$

Теорема. Множество L(V) с операциями +, $\cdot \lambda$, \cdot является ассоциативной алгеброй с единицей, равной id V. Если $\dim V = n$, то $L(V) \cong M_n(\mathbb{F})$.

Доказательство. Следует из утверждений (1) - (4).

Утверждение. Если φ - линейный оператор на V, то $\forall k \in \mathbb{N}$ подпространства $Ker \varphi^k$ и $Im \varphi^k$ инвариантны. При этом:

$$\{0\} \subseteq Ker \varphi \subseteq Ker \varphi^2 \subseteq \dots$$
$$V \supseteq Im \varphi \supseteq Im \varphi^2 \dots$$

11 Собственные векторы и собственные значения оператора

Пусть $\varphi:V o V$ - линейный оператор над полем $\mathbb F$

Определение. Вектор $x \in V$ называется собственным вектором оператора $\varphi,$ если $x \neq 0$ и

$$\exists \lambda \in \mathbb{F}: \ \varphi(x) = \lambda \cdot x \tag{1}$$

Где λ - называется собственным значением оператора φ , соответствующим вектору x.

Пусть $\dim V = n, \ e$ - базис в V, в нём $\forall x = e \cdot X,$ тогда равенство из вышеуказанного определения равносильно:

$$A_{\varphi}X = \lambda X \Longleftrightarrow (A_{\varphi} - \lambda E)X = 0 \tag{2}$$

- это СЛУ для нахождения вектора x, если известна λ . Система (2) имеет ненулевое решение, только если:

$$\det(A_{\varphi} - \lambda E) = 0 \tag{3}$$

Равенство (3) называется характеристическим уравненением. Собственными значениями могут быть только корни характеристического уравнения.

Примеры.

1. $V=D^{\infty}(\mathbb{R})$ - множество бесконечно дифференцируемых функций.

$$\varphi = \frac{d}{dx}, \ \forall f(x) : \ \varphi(f) = f'(x)$$

$$\forall \lambda \in \mathbb{R} : \ (e^{\lambda x})' = \lambda e^x$$

Доказательство. Если $f'(x) = \lambda \cdot f(x)$, то $f(x) = C \cdot e^{\lambda x}$, где $C \neq 0$. Рассмотрим $(f(x)e^{-\lambda x})' = f'(x)e^{-\lambda x} - \lambda f(x)e^{-\lambda x} = 0 \Longrightarrow f(x)e^{-\lambda x} = C$. \square

2.

$$A_{\varphi} = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}$$

Упражнение. Какие существуют собственные векторы и собственные значения у φ во втором примере?

Определение.

$$\chi_A(\lambda) = |A - \lambda E| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \lambda & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \lambda \end{vmatrix} =$$

 $=(a_{11}-\lambda)\cdot(a_{11}-\lambda)\cdot\cdot\cdot(a_{11}-\lambda)+\dots=(-\lambda)^n+(a_{11}+\dots+a_{nn})(-\lambda)^{n-1}+\dots+\det A$ $\chi_A(\lambda)$ - характеристический многочлен матрицы A

Утверждение. (1) $\chi_A(\lambda)$ - не зависит от базиса.

Доказательство. В новом базисе: $A_{\varphi}' = C^{-1} \cdot A_{\varphi} \cdot C$

$$\chi_{A'_{\varphi}}(\lambda) = \det(C^{-1}A_{\varphi}C - \lambda E) = \det(C^{-1}(A_{\varphi} - \lambda E)C) = \det(A_{\varphi} - \lambda E)$$

Определение. Вместо $\chi_{A_{\varphi}}(\lambda)=\chi_{\varphi}(\lambda)$ и называется характеристическим многочленом оператора φ

12 Диагонализируемость

Пусть $\varphi:\ V o V$ - линейный оператор

Лемма. Если $a_1, ..., a_m \in V$ - собственные векторы оператора φ с собственными значениями $\lambda_1, ..., \lambda_m$, причем $\forall i \neq j : \lambda_i \neq \lambda_j$, то $a_1, ..., a_m$ - ЛНЗ.

Доказательство.

m=1: Один вектор $a_1 \neq 0$ ЛНЗ

m>1: Предположение индукции: Любые m-1 вектор, отвечающих попарно различным собственным значениям - ЛНЗ

Запишем:

$$a_1\alpha_1 + \dots + a_{m-1}\alpha_{m-1} + a_m\alpha_m = 0 \tag{1}$$

Подействуем оператором

$$\varphi: a_1 \lambda_1 \alpha_1 + \dots + a_{m-1} \lambda_{m-1} \alpha_{m-1} + a_m \lambda_m \alpha_m = 0$$
 (2)

Домножим (1) на λ_m и вычтем его из (2):

$$a_1(\lambda_1 - \lambda_m)\alpha_1 + \dots + a_{m-1}(\lambda_{m-1} - \lambda_m)\alpha_{m-1} = 0$$

По предположению индукции $\forall i=1,...,m-1:\ \alpha_i(\lambda_i-\lambda_m)=0\Longrightarrow\alpha_i=0$ Остается $\alpha_m a_m=0\Longrightarrow\alpha_m=0$

П

Следствие. Если φ имеет n попарно различных собственных значений $(\dim V = n)$, то соответствующее собственные векторы, взятые по одному для каждого собственного значения, образуют базис в V (Базис из собственных векторов или собственный базис).

Вид матрицы A_{φ} в базисе из собственных векторов:

Обозначаем базис $\{e_1, ..., e_n\} \in V$, $\varphi(e_j) = \lambda_j e_j$, $j = \overline{1, n}$ $\forall x \in V : \varphi(x) = A_{\varphi,e} \cdot X_e$. Столбец вектора $\varphi(e_1) = \begin{pmatrix} \lambda_1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$, $\varphi(e_2) = \begin{pmatrix} 0 \\ \lambda_2 \\ \vdots \\ 0 \end{pmatrix}$,...

$$A_{arphi,e} = egin{pmatrix} \lambda_1 & & & & \\ & \lambda_2 & & & \\ & & \ddots & & \\ & & & \lambda_n \end{pmatrix}$$

- диагональная, причем на диагонали находятся собственные значения с учетом нумерации векторов

12.1 Собственное подпространство линейного оператора, заданное собственным значением

Фиксируем собственное значение $\lambda_0 \in \mathbb{F}$ так, что $\exists v \in V, v \neq 0 : \varphi(v) = \lambda_0 v$ Обозначается: $V_{\lambda_0} = \{v \in V \mid \varphi(v) = \lambda_0 v\}$

Утверждение. (1) V_{λ_0} - $nodnpocmpancmso\ s\ V,\ V_{\lambda_0} = Ker(\varphi - \lambda_0 \cdot \mathrm{id})$

Доказательство. Если A_{φ} - матрица оператора φ , то в координатах V_{λ_0} - множество всех решений СЛУ.

$$(A_{\varphi} - \lambda_0 E) \cdot X = 0 \Longrightarrow \dim V_{\lambda_0} = n - \operatorname{rk} (A_{\varphi} - \lambda_0 E)$$

Определение.

 $\dim V_{\lambda_0}$ - геометрическая кратность характеристического корня $\lambda=\lambda_0$. Имеет смысл и алгебраическая кратность λ_0 характеристического корня $\chi_{\varphi}(\lambda)$:

$$\chi_{\varphi}(\lambda) = (\lambda_0 - \lambda)^k p(\lambda_0), \ P(\lambda_0) \neq 0, \ k$$
 – алгебраическая кратность

Лемма. Для любого собственного значения λ_0 оператора φ : $\dim V_{\lambda_0} \leq a$ лгебраическая кратность корня $\lambda = \lambda_0$ в $\chi_{\varphi}(\lambda)$

Доказательство. Пусть $\dim V_{\lambda_0} = m \le n$, выберем базис в $V_{\lambda_0} : \{e_1, ..., e_m\}$ и произвольно дополним его до базиса в V (при m < n) векторами $e_{m+1}, ..., e_n \Longrightarrow$

$$A_{\varphi,e} = \begin{pmatrix} \lambda_0 & 0 & \\ & \ddots & & C \\ 0 & \lambda_0 & \\ \hline & 0 & B \end{pmatrix} \Longrightarrow$$

$$|A_{\varphi,e} - \lambda E| = \det \begin{pmatrix} (\lambda_0 - \lambda) & 0 & \\ & \ddots & \\ 0 & (\lambda_0 - \lambda) & \end{pmatrix} = (\lambda_0 - \lambda)^m \cdot |B - \lambda E| = 0$$

Не исключено, что $\lambda=\lambda_0$ - корень уравнения $|B-\lambda E|=0$

3амечание. Любое собственное подпространство V_{λ_0} является φ - инвариантным:

$$\forall v \in V_{\lambda_0} : \varphi(v) = w : \varphi(w) = \varphi(\varphi(v)) = \lambda_0 \varphi(v) = \lambda_0 w$$

Либо w = 0, либо является собственным вектором.

Следствие. 2 из Леммы о ЛНЗ:

Пусть $\lambda_1, ..., \lambda_r$ - все попарно различные собственные значения оператора φ , тогда $V_{\lambda_1} + ... + V_{\lambda_r}$ - является прямой суммой, т.е.:

$$\forall i = 1, ..., n : V_{\lambda_i} \cap (\sum_{j \neq i} V_{\lambda_j}) = \{0\}$$

Доказательство. Допустим, что $\exists \ w \in V_{\lambda_i} \cap (\sum_{j \neq i} V_{\lambda_j})$, тогда:

$$w = v_i = \sum_{j \neq i} v_j \Longrightarrow (\sum_{j \neq i} v_j) - v_i = 0$$

Где $(\sum_{j\neq i} v_j)$ - попарно различные собственные векторы, т.е. либо 0, либо противоречие с ЛНЗ $\Longrightarrow v_i = w = 0$

Определение. Скажем, что φ (или его матрица) приводится к диагональному виду (т.е. диагонализируема), если в $V \exists$ базис, в котором A_{φ} диагональна.

Теорема. Для линейного оператора $\varphi:V\to V\ (\dim V<\infty)$ следующие условия эквивалентны:

1. A_{φ} - диагонализируема

- 2. $B \ V \ \exists \ \textit{базис из собственных векторов}$
- 3. Все характеристические корни принадлежат \mathbb{F} и $\forall i=1,...,r$:

 $\dim V_{\lambda_i} = a$ лгебраической кратности корня λ_i

4.
$$V = V_{\lambda_1} \oplus \ldots \oplus V_{\lambda_r}$$

Доказательство.

 $1 \Rightarrow 2$: Если $A_{\varphi} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$, это значит, что:

$$\varphi(e_j)^{\uparrow} = \begin{pmatrix} \lambda_1 & 0 \\ \vdots & \ddots & \\ 0 & \lambda_n \end{pmatrix} \cdot \begin{pmatrix} 0 \\ \vdots \\ \vdots \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ \lambda_j \\ \vdots \\ 0 \end{pmatrix}$$

 $\Longrightarrow arphi(e_j) = \lambda_j e_j$, т.е. e_j - собственный вектор с собственным значением λ_j

 $\underline{2\Rightarrow 1}$: В базисе из собственных векторов марица A_{arphi} диагональна

 $1 \cup 2 \Rightarrow 3$: Выберем базис из собственных векторов $\{f_1, ..., f_n\}$ так, чтобы:

$$\{f_1, ..., f_{m_1}, f_{m_1+1}, ..., f_{m_1+m_2}, ...\}$$

В этом базисе матрица $A_{\varphi,f}$ выглядит:

$$\begin{pmatrix} \lambda_1 & & & & & \\ & \ddots & & & & \\ & & \lambda_2 & & & \\ & & & \ddots & & \\ & & & & \lambda_2 & & \\ & & & & \ddots & \\ & & & & & \lambda_r & \\ & & & & & \ddots & \\ & & & & & \lambda_r & \\ & & & & & \ddots & \\ & & & & & & \lambda_r & \\ & & & & & & \lambda_r & \\ & & & & & & \lambda_r & \\ & & & & & & \lambda_r & \\ & & & & & & \lambda_r & \\ & & & & & & & \lambda_r & \\ & & & & & & & \lambda_r & \\ & & & & & & \lambda_r$$

 $\implies m_1 + ... + m_r = n$. С другой стороны, если k_i - алгебраическая кратность корня λ_i , то:

$$n = \sum_{i=1}^{r} m_i \le \sum_{i=1}^{r} k_i = \deg[\chi_{\varphi}(\lambda)] = n$$

 $3 \Rightarrow 4: \sum_{i=1}^{r} \dim V_{\lambda_i} = n \Longrightarrow V = V_{\lambda_1} \oplus ... \oplus V_{\lambda_r}$

 $4\Rightarrow 1$: Базис в V - объединение базисов слагаемых

Существование двумерного инвариантного подпространства для линейного оператора над \mathbb{R} , отвечающего мнимому корню характеристического многочлена.

Пусть $\varphi: V \to V$ - линейный оператор, $\dim V = n$, тогда в некотором базисе V, φ действует матрицей $Y = A_{\varphi} \cdot X$, где $X \in \mathbb{R}^n$, а Y - столбец образа этого вектора $(y = \varphi(x))$. Пусть $\lambda = \alpha + i\beta$ $(\beta \neq 0)$ - корень характеристического многочлена.

Рассмотрим линейный оператор над полем \mathbb{C} , действующий при той же матрице:

$$A_{\varphi}: \forall Z \in \mathbb{C}^n, \ Z \to A_{\varphi} \cdot Z$$

Соответствующий оператор будем обозначать той же буквой. Так как $\mathbb C$ алгебраически замкнуто, то \exists собственный вектор Z_0 , отвечающий выбранному λ . Это значит, что:

$$A_{\varphi}Z_0 = \lambda Z_0, \ Z_0 = X_0 + iY_0, \ \text{где } X_0, Y_0 \in \mathbb{R}^n$$

$$\implies A_{\varphi}Z_0 = A_{\varphi}X_0 + iA_{\varphi}Y_0 = (\alpha + i\beta)(X_0 + iY_0) =$$

$$= (\alpha X_0 - \beta Y_0) + i(\beta X_0 + \alpha Y_0) \implies$$

$$\implies \begin{cases} A_{\varphi}X_0 = \alpha X_0 - \beta Y_0 \\ A_{\varphi}Y_0 = \beta X_0 + \alpha Y_0 \end{cases}$$

Обозначим x_0 и $y_0 \in V$ векторы со столбцами координат X_0 и Y_0 соответственно, тогда:

$$\begin{cases} \varphi(x_0) = \alpha x_0 - \beta y_0 \\ \varphi(y_0) = \beta x_0 + \alpha y_0 \end{cases} \implies \text{подпространство } U := \langle x_0, y_0 \rangle \subset V$$

 $\Longrightarrow U$ является инвариантным подпространством для φ . Теперь докажем, что $\dim U=2$

Доказательство. Предположим, что dim U = 1, то есть $y_0 = \mu x_0$, где $\mu \in \mathbb{R}$. Тогда $\varphi(x_0) = (\alpha - \beta \mu)x_0 \Longrightarrow$ если $x_0 \neq 0$, то x_0 - собственный вектор для φ (для y_0 аналогично). Но эти векторы не были собственными для φ .

$$A_{arphi|_U}=egin{pmatrix} lpha & eta \ -eta & lpha \end{pmatrix}$$
 имеет корни $lpha\pm ieta
otin\mathbb{R}$ — противоречие

Теорема. Любой линейный оператор в конечномерном вещественном векторном пространстве имеет одномерное или двумерное инвариантное подпространство.

Доказательство. Если $\exists \ \lambda \in \mathbb{R}$ - корень характеристического многочлена, ему отвечает собственный вектор $u_i \in V, \ u_i \neq 0, \Longrightarrow \langle u_i \rangle$ - одномерное инвариантное подпространство.

Если $\forall \lambda \in \mathbb{C} \setminus \mathbb{R}$, то $\exists U$ - двумерное инвариантное подпространство. \square

Вместо диагонализируемости можно использовать следующее утверждение:

$$A'_{\varphi} = \begin{pmatrix} \lambda_1 & & & & \\ & \ddots & & & & \\ & & \lambda_r & & & \\ & & & \lambda_r & & & \\ & & & \alpha_1 & \beta_1 & & \\ & & & -\beta_1 & \alpha_1 & & \\ & & & \ddots & & \\ & & & & -\beta_m & \alpha_m \end{pmatrix}$$

где $\lambda_i \in \mathbb{R}, \ i = \overline{1,r}, \ a \beta_j \neq 0, \ j = \overline{1,m}$

13 Анулирующие многочлены линейных операторов

Пусть $\varphi:\ V \to V$ - линейный оператор над полем $\mathbb{F}.$

Определение. Линейный оператор $\varphi: V \to V$ такой, что $\forall v \in V: \varphi(v) = v$, называется тождественным оператором и обозначается id.

Определение. Многочлен $f(t) = a_0 + a_1 t + \ldots + a_m t^m \in \mathbb{F}[t]$, где $a_1 \ldots a_m \in \mathbb{F}$, называется анулирующим многочленом оператора φ

$$f(\varphi) = a_0 \cdot \mathrm{id} + a_1 \varphi + \ldots + a_m \varphi^m = 0 \Longrightarrow f(A_{\varphi}) = 0$$

$$\Longrightarrow A_{f(\varphi)} = f(A_{\varphi}) = a_0 E + a_1 A_{\varphi} + \ldots + a_m A_{\varphi}^m.$$

Пример. $V = \mathbb{R}[t]_n, \ \varphi = \frac{d}{dt}$

$$arphi^n(t^n)=n!, \ arphi^{n+1}\equiv 0\Longrightarrow$$
 для $arphi=rac{d}{dt}\ t^{n+1}$ — анулирующий многочлен

Утверждение. Если $\dim V = n \Longrightarrow \exists$ многочлен $\deg \leq n^2$, анулирующий φ .

Доказательство. $\dim L(V)=n^2,\ L(V)\cong M_n(\mathbb{F})\Longrightarrow$ операторы $\{Id,\ \varphi,\ \varphi^2,\ \dots,\ \varphi^{n^2}\}$ - линейно зависимы, так как их больше $n^2\Longrightarrow$

$$\exists a_0, ..., a_{n^2} \in \mathbb{F} : a_0 \cdot id + a_1 \varphi + ... + a_{n^2} \varphi^{n^2} = 0$$

 $\Longrightarrow a_0 + a_1 t + \ldots + a_{n^2} t^{n^2}$ - анулирующий многочлен для arphi

Определение. Многочленной матрицей (матричным многочленом) называется матрица $P=(P_{ij}(\lambda))$, где $P_{ij}(\lambda)$ - многочлены над полем, над которым задано векторное пространство.

Пример.

$$P = \begin{pmatrix} 1 - \lambda^2 & 2\lambda + 1 \\ 3\lambda^2 & \lambda^2 + \lambda + 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 0 & 2 \\ 0 & 1 \end{pmatrix} \cdot \lambda + \begin{pmatrix} -1 & 0 \\ 3 & 1 \end{pmatrix} \cdot \lambda^2$$

- многочлен от λ с матричными коэффициентами.

Определение. Оператор $\varphi:V\to V$ называется нулевым оператором, если образом любого вектора является нулевой вектор.

Определение. Для матрицы $A = (a_{ij})$ присоединённой матрицей называется матрица $\widehat{A} = (A_{ji})$, то есть $\widehat{a_{ij}} = A_{ji}$.

Свойство.

$$A \cdot \widehat{A} = \begin{pmatrix} |A| & & \\ & \ddots & \\ & & |A| \end{pmatrix} = |A| \cdot E$$

Теорема. Гамильтона-Кэли

Характеристический многочлен $\chi_{\varphi}(\lambda)$ является анулирующим многочленом для линейного оператора φ , то есть $\chi_{\varphi}(\varphi)=0$, где θ - нулевой оператор. В матричной форме:

$$\forall A \in M_n(\mathbb{F}): \ \chi_A(A) = 0$$

$$\chi_A(\lambda) = |A - \lambda E| = \sum_{i=0}^n p_i \lambda^i$$

$$p_i \in \mathbb{F}, \ p_n = (-1)^n, \ \chi_A(A) = \sum_{i=0}^n p_i A^i$$
 (считаем, что $A^0 = E$)

Составим матрицу:

$$\widehat{A-\lambda E} = \sum_{j=0}^{n-1} D_j \lambda^j$$
, где $D_j \in M_n(\mathbb{F})$

Рассмотрим равенство:

$$(A - \lambda E)(\widehat{A - \lambda E}) = \chi_A(\lambda)E$$

$$(A - \lambda E) \cdot \sum_{j=0}^{n-1} D_j \lambda^j = \sum_{j=0}^{n-1} (AD_j \lambda^j) - \sum_{j=0}^{n-1} D_j \lambda^{j+1} =$$

$$= AD_0 + \sum_{j=1}^{n-1} (AD_j - D_{j-1}) \lambda^j - D_{n-1} \lambda^n = \chi_A(\lambda) E = (\sum_{j=0}^n p_j \lambda^j) E$$

Приравняем матричные коэффициенты при соответствующих степенях λ :

$$E \cdot \begin{vmatrix} \lambda^0 : & AD_0 = p_0E \\ A \cdot & \lambda^1 : & AD_1 - D_0 = p_1E \\ \vdots & & & \\ A^j \cdot & \lambda^j : & AD_j - D_{j-1} = p_jE \\ \vdots & & & \\ A^n \cdot & \lambda^n : & -D_{n-1} = p_nE \end{vmatrix}$$

Домножим равенства с любой стороны на соответствующие степени A и сложим:

$$\implies \chi_A(A)E = 0$$

13.1 Минимальный анулирующий многочлен линейного оператора

Определение. Минимальным анулирующим многочленом линейного оператора $\varphi: V \to V$ называется анулирующий многочлен φ минимальной степени. Обозначается: $\mu_{\varphi}(\lambda)$ (Зачастую его выбирают со старшим коэффициентом = 1) Ясно, что:

$$m = \deg \mu_{\varphi}(\lambda) \le n \le \deg \chi_{\varphi}(\lambda)$$

Теорема.

- 1. $\mu_{\varphi}(\lambda)$ делит анулирующий многочлен оператора φ (в частности $\chi_{\varphi}(\lambda)$);
- 2. Если $\mu'_{\varphi}(\lambda)$ тоже минимальный многочлен φ , то:

$$\mu'_{\varphi}(\lambda) = \alpha \mu_{\varphi}(\lambda), \ \alpha \neq 0$$

Он определен единственным образом с условием, что старший коэффиичент = 1;

3. Если все корни λ_i характеристического многочлена принадлежат \mathbb{F} , то они являются и корнями минимального многочлена.

Доказательство.

1. Пусть $p(\varphi) = 0$, для некоторого $p(\lambda) \in \mathbb{F}[\lambda]$ Разделим p с остатком на μ_{ω} :

$$p(\lambda) = \mu_{\varphi}(\lambda) \cdot q(\lambda) + r(\lambda) \Rightarrow p(\varphi) = \mu_{\varphi}(\varphi) \cdot q(\varphi) + r(\varphi) = 0 \Rightarrow r(\varphi) = 0$$

Т.к. $\deg r(\lambda) < \deg(\mu_{\varphi}(\lambda)), r(\lambda) \equiv 0.$

- 2. Т.к. $\mu_{\varphi}(\lambda) \mid \mu'_{\varphi}(\lambda)$ и $\mu'_{\varphi}(\lambda) \mid \mu_{\varphi}(\lambda) \Longrightarrow \frac{\mu'_{\varphi}}{\mu_{\varphi}} = \alpha \in \mathbb{F}^* = \mathbb{F} \setminus \{0\}$ Если $\mu_{\varphi}(\lambda) = \lambda^m + \dots$ и $\mu'_{\varphi}(\lambda) = \lambda^m + \dots \Longrightarrow \alpha = 1$
- 3. Допустим, что $\exists j: \ \mu_{\varphi}(\lambda_j) \neq 0$, т.е. в разложение μ_{φ} не входит $(\lambda \lambda_j)$ $\Longrightarrow \exists$ вектор $v \in V: \ \varphi(v) = \lambda_j v$

$$0 = \mu_{\varphi}(\varphi)(v) = \mu_{\varphi}(\varphi(v)) = \mu_{\varphi}(\lambda_j v) = \mu_{\varphi}(\lambda_j)v \neq 0$$

- противоречие

Примеры.

1.

$$A_{\varphi} = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \ \chi_{\varphi}(\lambda) = (2 - \lambda)^{3}$$
$$A_{\varphi} - 2E = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \ (A - 2E)^{2} \neq 0, \ (A - 2E)^{3} = 0 \Longrightarrow \mu_{\varphi} = -\chi_{\varphi}$$

2.

$$A_{\varphi} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ \chi_{\varphi} = (2 - \lambda)^{2} (1 - \lambda)$$
$$(A_{\varphi} - 2E)(A_{\varphi} - E) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} = 0 \Longrightarrow \mu_{\varphi}(\lambda) = (\lambda - 2)(\lambda - 1)$$

Вопросы:

1. Для каких операторов φ (или A_{φ}) $\chi_{\varphi}(\lambda) = \pm \mu_{\varphi}(\lambda)$?

2. Для каких φ корни $\mu_{\varphi}(\lambda)$ простые?

Определение. Оператор φ нильпотентный, если:

$$\exists L \in \mathbb{N}: \ \varphi^L = 0$$

Если L - минимальный с этим условием, то L - индекс нильпотентности

Пример. $D = \frac{d}{dt}$ в пространстве $\mathbb{R}[t]_n$, то $D^{n+1} = 0$

Утверждение. Все собственные значения нильпотентного оператора = 0

Доказательство. Если $v \neq 0$, $\varphi(v) = \lambda v$:

$$\Longrightarrow \varphi^L(v) = \lambda^L v = 0 \Longrightarrow \lambda = 0 \Longrightarrow \chi_{\varphi}(\lambda) = \pm \lambda^n$$

14 Корневые подпространства

 $\varphi:\ V o V$ - линейный оператор над $\mathbb{F},\ \dim V=n$

Все корни характеристического многочлена для φ принадлежат F так, что:

$$\chi_{\varphi}(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} \cdots (\lambda - \lambda_p)^{k_p} \cdots (\lambda - \lambda_s)^{k_s}, \ \forall i \neq j : \ \lambda_i \neq \lambda_j, \ \sum_{i=1}^s k_i = n$$

Рассмотрим:

$$\frac{1}{\chi_{\varphi}(\lambda)} = \frac{f_1(\lambda)}{(\lambda - \lambda_1)^{k_1}} + \dots + \frac{f_s(\lambda)}{(\lambda - \lambda_s)^{k_s}} \mid \cdot \chi_{\varphi}(\lambda)$$

$$\Longrightarrow 1 = f_1(\lambda) \prod_{i \neq 1} (\lambda - \lambda_i)^{k_i} + \dots + f_s(\lambda) \prod_{i \neq s} (\lambda - \lambda_i)^{k_i}$$

$$1 = q_1(\lambda) + \dots + q_s(\lambda) \Longrightarrow \mathrm{id} = q_1(\varphi) + \dots + q_s(\varphi) = Q_1 + \dots + Q_s$$

$$\forall x \in V : x = Q_1(x) + \dots + Q_s(x) \Longrightarrow V = \mathrm{Im}(Q_1) + \dots + \mathrm{Im}(Q_s)$$

Обратим внимание, что:

$$\forall i \neq j: \ Q_i Q_j = Q_j Q_i = 0$$

Т.к. в $q_i(\lambda)q_j(\lambda)$ входят все множители, входящие в разложение $\chi_{\varphi}(\lambda) \Longrightarrow$ по теореме Гамильтона-Кэли:

$$q_i(\varphi)q_j(\varphi) = 0$$

Умножим равенство $id = Q_1 + ... + Q_i + ... + Q_s$ на Q_i :

$$\Longrightarrow Q_i \text{id} = Q_i = Q_i Q_1 + \dots + Q_i Q_i + \dots + Q_i Q_s = Q_i^2 \Longrightarrow Q_i^2 = Q_i$$

П

Определение. $Q_i^2 = Q_i$ - идемпотентный оператор.

Введем обозначение $K_i = \text{Im}Q_i$

Утверждение. $V = K_1 \oplus ... \oplus K_s$

Доказательство. Пусть $x = y_1 + ... + y_s$, $y_i = Q_i(x_i)$. Тогда:

$$Q_i(x) = Q_i(Q_1(x_1)) + \dots + Q_s(Q_i(x_s)) = Q_i(Q_i(x_i)) = Q_i(x_i) = y_i$$

Отсюда разложение любого вектора из V в сумму векторов из $K_1,...,K_s$ единственно, т.е. $V=K_1\oplus...\oplus K_s$.

Определение. Подпространство $K_i = {\rm Im} Q_i$ назовем корневым подпространством, отвечающим корню λ_i .

Замечание.
$$q_i(\lambda) = \frac{f_i(\lambda) \cdot \chi_{\varphi}(\lambda)}{(\lambda - \lambda_i)^{k_i}} = f_i(\lambda) \prod_{i \neq i} (\lambda - \lambda_j)^{k_j}; \quad Q_i = q_i(\varphi); \quad K_i = \operatorname{Im} Q_i.$$

Утверждение.

- 1. Корневые подпространства инвариантны
- 2. $K_i = Ker(\varphi \lambda_i \cdot id)^{k_i}, \ 1 \le i \le s$

Доказательство.

1. Докажем, что для линейного оператора φ и многочлена $q(\lambda)$ подпространство $q(\varphi)(V)$ инвариантно:

$$q(\lambda) = a_0 + a_1\lambda + \dots + a_m\lambda^m, \quad q(\varphi) = a_0 + a_1\varphi + \dots + a_m\varphi^m$$

Возьмем $v \in \text{Im}q(v) \Longrightarrow \exists u \in V : v = q(\varphi)(u) \Longrightarrow \varphi(v) = (\varphi \cdot q(\varphi))(u) = q(\varphi)(\varphi(u)) \in \text{Im}q(u)$, так как оператор φ и любой $q(\varphi)$ перестановочны. Так как $K_i = Q_i(V) = q_i(\varphi)(V)$, из доказаноого выше следует, что K_i инвариантно.

2. $\forall x_i \in \text{Im}Q_i \Longrightarrow x_i = Q_i(u_i)$

$$(\varphi - \lambda_i \cdot id)^{k_i}(x_i) = f_i(\varphi) \cdot (\varphi - \lambda_i \cdot id)^{k_i} \cdot \prod_{j \neq i} (\varphi - \lambda_j E)^{k_j}(u_i) = 0$$

$$\chi_{\varphi}(\varphi)$$

$$\Longrightarrow K_i \subseteq \operatorname{Ker}(\varphi - \lambda_i \cdot \operatorname{id})^{k_i}$$

Обратно: пусть $y_i \in \text{Ker}(\varphi - \lambda_i \cdot \text{id})^{k_i}$. Знаем, что $y_i = Q_1(y_i) + \ldots + Q_s(y_i)$, причём в Q_j при $j \neq i$ содержится множитель $(\varphi - \lambda_i \cdot \text{id})^{k_i}$. Отсюда $Q_j(y_i) = 0$ при $j \neq i$, т.е. $y_i = Q_i(y_i) \Rightarrow y_i \in K_i \Rightarrow \text{Ker}(\varphi - \lambda_i \cdot \text{id})^{k_i} \subseteq K_i$.

Теорема. Размерность K_i равна алгебраической кратности корня λ_i .

Доказательство. Рассмотрим ограничение оператора $\varphi - \lambda_i \cdot \text{id}$ на K_i . Так как полученный оператор нильпотентный (из предыдущей теоремы), его единственное собственное значение равно 0, т.е. оператор φ в ограничении на K_i имеет единственное собственное значение λ_i , причём его алгебраическая кратность для ограничения равна размерности K_i .

Выберем базис в K_i , дополним его до базиса V и рассмотрим матрицу оператора в нём. Из инвариантности K_i она будет иметь вид

$$\begin{pmatrix}
B & D \\
0 & C
\end{pmatrix}$$

где B - матрица $\varphi|_{K_i}$. Из её характеристического многочлена очевидно, что алгебраическая кратность λ_i для ограничения не может превосходить алгебраической кратности λ_i для всего оператора. Значит, $\dim K_i$ не превосходит алгебраической кратности λ_i .

Осталось заметить, что $\dim V$ равна сумме алгебраических кратностей всех собственных значений и $V = K_1 \oplus ... \oplus K_s \Rightarrow \dim V = \dim K_1 + ... + \dim K_s$. Значит, $\dim K_i$ равна алг. кратности λ_i .

15 Теорема Жордана

Основное условие: $\,\, \varphi : \, V \to V \,$ - линейный оператор, все его корни $\in \mathbb{F} \,$

$$\chi_{\varphi}(\lambda) = (-1)^n (\lambda - \lambda_1)^{k_1} \cdot \ldots \cdot (\lambda - \lambda_s)^{k_s} \ (\forall i \neq j : \ \lambda_i \neq \lambda_j \ \text{if} \ \sum_{i=1}^s k_i = \dim V)$$

$$V=K_1\oplus\ldots\oplus K_s$$
, где $K_i=\mathrm{Ker}(\varphi-\lambda_i\cdot\mathrm{id})^{k_i}$ — корневое подпространство $V_{\lambda_i}=\{x\in V\mid \varphi(x)=\lambda_ix\},\ \dim V_{\lambda_i}\leqslant k_i=\dim K_i$

Так как K_i - инвариантное подпространство относительно оператора φ , можно рассмотреть ограничение:

$$(\varphi - \lambda_i \text{ id})|_{K_i} := B_i$$

Из определения K_i следует, что $B_i^{k_i}=0$, то есть B_i - нильпотентный оператор. В базисе, согласованном с этим разложением:

$$A_{\varphi} = \begin{pmatrix} \boxed{A_1} & & & \\ & \boxed{A_2} & & \\ & & \ddots & \\ & & \boxed{A_s} \end{pmatrix}$$

где $A_i = A_{\varphi_{k_i}}$ - матрица порядка $k_i, \ A_i - \lambda_i E_{k_i} = B_i, \ B_i^{k_i} = 0$ Обозначим $K_i := K, \ B_i := B, \ k_i := k, \$ тогда:

$$\forall x \in K : B^k(x) = 0$$

если $x \neq 0$, то \exists наименьшее значение m:

$$B^{m}(x) = 0, \ B^{m-1}(x) \neq 0 \ (m \leqslant h)$$

Назовём это высотой вектора x.

Для фиксированного вектора $x \neq 0$ (высоты m) рассмотрим векторы:

$$x, Bx, \dots, B^{m-1}x, B^mx = 0$$

Определение. Векторы $\{x,\ Bx,\ \dots,\ B^{m-1}x\}$ называются жордановой цепочкой.

Лемма. Вышеуказанные векторы являются линейно независимыми.

Доказательство. Предположим, что:

$$\alpha_0 x + \alpha_1 B x + \ldots + \alpha_{m-1} B^{m-1} x = 0$$

Подействуем на это равенство оператором B^{m-1} :

$$\alpha_0 B^{m-1} x = 0 \implies \alpha_0 = 0$$

На оставшиеся векторы подействуем оператором B^{m-2} :

$$\alpha_1 B^{m-1} x = 0 \implies \alpha_1 = 0$$

и т.д. Получим, что $\forall i=\overline{0,m-1}: \ \alpha_i=0 \implies$ векторы являются линейно независимыми.

Определение. Подпространство, натянутое на эти векторы:

$$\langle x, Bx, \ldots, B^{m-1}x \rangle$$

называется циклическим подпространством, порождённым жордановой цепочкой. Данное подпространство обозначим U_x , $\dim U_x = m$.

Обычно векторы жордановой цепочки нумеруют с конца, то есть:

$$a_1 = B^{m-1}x, \ a_2 = B^{m-2}x, \dots, a_m = x$$

Тогда a_1 - собственный вектор для B, и для $\forall j = \overline{2,m}: \ a_{j-1} = Ba_j.$

Вектор a_i называется **присоединённым** к вектору a_{i-1} .

 ${\rm K}$ вектору a_1 : a_2 - присоединённый, a_3 - второй присоединённый и т.д.

Определение.

Матрица ограничения оператора B на подпространство $U_x = \langle a_1 \dots a_m \rangle$:

$$B|_{U_x} = \begin{pmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & \ddots & \ddots & \\ & & & 0 & 1 \\ & & & & 0 \end{pmatrix} = J_k(0)$$

называется жордановой клеткой с собственным значением $\lambda=0$

$$\lambda = \lambda_i : A_{\varphi|_{U_x}} = \begin{pmatrix} \lambda_i & 1 & & & \\ & \lambda_i & 1 & & \\ & & \ddots & \ddots & \\ & & & \lambda_i & 1 \\ & & & & \lambda_i \end{pmatrix} = J_k(\lambda_i)$$

- жорданова клетка с собственным значением $\lambda = \lambda_i$, где:

$$\varphi(a_2) = a_1 + \lambda_i a_2, \ \varphi(a_{j+1}) = a_j + \lambda_i a_{j+1}$$

Перед доказательством теоремы докажем лемму:

 $oldsymbol{\Pi}$ емма. Eсли B - mакой oператор в nространстве V, что:

$$ImB = B(V) \subset V$$

то V обладает (n-1)-мерным инвариантным подпространством W, таким что ${\rm Im} B\subseteq W$.

Доказательство. Пусть $e_1,...,e_m$ - базис в ${\rm Im}B,\ m< n=\dim V$ Дополним его до базиса в V векторами $e_{m+1},...,e_n$.

Тогда $W = \langle e_1, ..., e_{n-1} \rangle$ - искомое инвариантное подпространство:

$$\forall w = \sum_{i=1}^{n-1} \beta_i e_i \Longrightarrow Bw = \sum_{i=1}^{n-1} \beta_i Be_i \in \operatorname{Im} B \subseteq W$$

Теорема. Жордана

Если все характеристические корни опертора $\varphi: V \to V$ принадлежат полю \mathbb{F} , то V является прямой суммой циклических подпространств для оператора φ . Это равносильно тому, что в V существует базис, составленный из жордановых цепочек. Такой базис называется жордановым базисом.

Если жорданов базис уже построен: Пусть имеются r жордановых цепочек, отвечающих собственным значениям $\lambda_1, \ldots, \lambda_r$, необязательно различным, длины которых m_1, \ldots, m_r соответственно, тогда в этом базисе:

$$A_{\varphi} = \begin{pmatrix} \boxed{J_{m_1}(\lambda_1)} & & & 0 \\ & \boxed{J_{m_2}(\lambda_2)} & & \\ & & \ddots & \\ 0 & & \boxed{J_{m_r}(\lambda_r)} \end{pmatrix} \quad \sum_{i=1}^r m_i = n = \dim V$$

- жорданова матрица - жорданова нормальная форма (ЖНФ) матрицы A_{φ} .

Теорема. Жордана (матричная формулировка)

Для любой матрицы $A \in M_n(\mathbb{F})$, все характеристические корни которой $\in \mathbb{F}$, \exists матрица C (det $C \neq 0$) такая, что:

$$C^{-1}AC = J$$

жорданова матрица. При этом жордановы клетки определены для матрицы
 А единственным образом с точностью до расположения клеток на диагонали жордановой матрицы.

3амечание. Матрицу A можно интерпретировать как матрицу линейного оператора φ , для него верна теорема Жордана.

Доказательство. (См. Шафаревич И.Р. "Линейная алгебра")

Доказательство достаточно провести для ограничения оператора на каждое корневое подпространство K_i .

Введем обозначения: $B: V \to V$ - нильпотентный оператор, $\dim V = n, W - (n-1)$ -мерное инвариантное подпространство в V, содержащее $\operatorname{Im} B$ (существует по лемме 1).

Докажем теорему индукцией по n:

База: если n=1, то B=0 и любой базис - жорданов.

Пусть n > 1, тогда по предположению индукции в $W \exists$ базис для $B|_w$, т.е.

$$W = U_1 \oplus ... \oplus U_r$$

Выберем вектор $a \in V \setminus W$, тогда a ЛНЗ с векторами из W. Рассмотрим $Ba \in W$ (т.к. $\operatorname{Im} B \subseteq W$) так, что $Ba = u_1 + ... + u_r, \ u_i \in U_i$ (*). Если Ba = 0, то:

$$V = \langle a \rangle \oplus U_1 \oplus ... \oplus U_r$$
 — искомое разложение пространства

Если $Ba \neq 0$, то найдется i, что $u_i \neq 0$.

Если в разложении есть $u_i \in B(U_i)$, то $\exists v_i \in U_i : u_i = Bv_i$.

Рассмотрим вместо a вектор $a-v_i$: $B(a-v_i)=u_1+...+u_r+u_r+u_r+u_r=u_i$ в разложение такого вектора u_i не входит.

Заменив a на нужные разности $a-v_i$, получим новый вектор $e \in V \setminus W$, при этом занулив все $u_i \in B(U_i)$, т.е.

$$Be = u_1' + ... + u_r', \ \forall i$$
 либо $u_i' \not\in B(U_i),$ либо $u_i' = 0$

Хотя бы один из векторов $u_i' \neq 0$, выберем из них вектор, имеющий максимальную высоту m. Заметим, что $m = \max(\dim U_i)$, так как каждый u_i' по построению нового разложения имеет максимальную высоту в своём подпространстве. Тогда h(e) = m + 1, т.к. h(Be) = m.

Без ограничения общности выбрали вектор u_1 . Докажем, что:

$$V = \langle e, Be, ..., B^m e \rangle \oplus U_2 \oplus ... \oplus U_r$$

Сумма размерностей подпространств в правой части:

$$(m_1 + 1) + \dots + m_r = n = \dim V$$

Поэтому для прямой суммы достаточно доказать, что:

$$\langle e, Be, ..., B^m e \rangle \cap (U_2 \oplus ... \oplus U_r) = \{0\}$$

Пусть $v = \lambda_1 e + ... + \lambda_{m+1} B^m e \in U_2 \oplus ... \oplus U_r$

Т.к. $e \not\in W$, $\lambda_1 = 0$. $Be = u_1' + ... + u_r' \Rightarrow$ проекция Be на U_1 равна u_1' .

Спроецируем всё разложение на U_1 :

$$\lambda_2 u_1 + \lambda_3 B u_1 + \dots + \lambda_{m+1} B^{m-1} u_1 = 0 \Longrightarrow \lambda_2 = \dots = \lambda_{m+1} = 0 \Longrightarrow v = 0$$

Существование ЖНФ доказано. Доказательство единственности приводится в следующем пункте. \Box

Замечание. r - количество циклических подпространств в разложении корневого подпространства K, отвечающего корню λ_0 , равно геометрической кратности корня λ_0 характеристического многочлена.

15.1 Изображение разложения корневых подпространств

Обозначим: $r=\dim {\rm Ker} B$ - размерность собственного подпространства Занумеруем собственные векторы, входящие в цепочки, располагая цепочки по убыванию высоты. m - максимальная высота цепочки, 1 - минимальная Также введем обозначение для последовательных присоединённых векторов: есть p_1 цепочек высоты m, p_2 - высоты m-1,..., $r-(p_1+...+p_{r-1})$ - высоты 1

 $V = U_1 \oplus ... \oplus U_r$, dim $U_{i+1} \le \dim U_i$

$$BV = BU_1 \oplus \dots \oplus BU_r$$

$$\vdots$$

$$B^kV = B^kU_1 \oplus \dots \oplus B^kU_r$$

Если $\dim U_i = m_i, \ \dim(B^k U_i) = \begin{bmatrix} m_i - k, \ \text{если } k < m_i \\ 0, \ \text{если } k \geq m_i \end{bmatrix}$

$$\dim(B^k V) = \sum_{i=1}^r \dim B^k U_i = q_{k+1} + 2q_{k+2} + \dots + (m-k)q_m$$

Пусть q_i - число циклических подпространств размерности $i,\ 1 \leq i \leq r$ Обозначим $r_k = \mathrm{rk} B^k$

Для k = 0 до m - 1 получим равенства:

$$k = 0: q_1 + 2q_2 + ... + mq_m = n$$

 $k = 1: q_2 + 2q_3 + ... + (m-1)q_m = r_1 = rkB$
...

$$q_m = r_{m-1} = \operatorname{rk} B^{m-1} \neq 0$$

 $B^m = 0$ на корневом подпространстве

Вычитая из каждого уравнения следующее, получим систему:

$$\begin{cases} q_1 + q_2 + \dots + q_m = n - r_1 \implies q_1 = n - 2r_1 + r_2 \\ q_2 + \dots + q_m = r_1 - r_2 \implies q_2 = r_1 - 2r_2 + r_3 \\ \dots \\ q_m = r_{m-1} - r_m \ (r_m = 0) \end{cases}$$

$$\implies q_i = r_{i-1} - 2r_i + r_{i+1} \ (i = 1, \dots, m-1)$$

Вывод: количество и порядок (высоты цепочек) однозначно опреледяется по матрице $B=A|_{\varphi-\lambda {\rm id}}$ - эти ранги не зависят от конкретного разложения \Longrightarrow определяются единственным образом, т.е. ЖНФ единственна с точностью до перестановки клеток на диагонали.

Следствие. Пусть:

$$\chi_{\varphi} = (-1)^n (\lambda - \lambda_1)^{k_1} \cdot \dots \cdot (\lambda - \lambda_s)^{k_s}$$

- характеристический многочлен

$$\mu_{\varphi} = (\lambda - \lambda_1)^{m_1} \cdot \dots \cdot (\lambda - \lambda_s)^{m_s}$$

- минимальный многочлен

Tогда $\forall i=\overline{1,s}: m_i$ равна \max размерности жордановой клетки, отвечающей корню λ_i

Следствие. Критерий диагонализируемости в терминах тіп многочлена:

Оператор φ диагонализируем $\iff m_1 = ... = m_s = 1$

Доказательство. Достаточно доказать для каждого корневого подпространства K_i

$$B = A_{\varphi - \lambda_i \text{id}}|_{K_i}$$

- блочно-диагональная матрица с клетками размера m_j

Переделываем:

Применим оператор B:

$$\begin{cases} \dim V = q_1 + 2q_2 + \dots + (m-1)q_{m-1} + mq_m = n \\ \dim \operatorname{Im} B = q_2 + \dots + (m-2)q_{m-1} + (m-1)q_m = r_1 \\ \vdots \\ \dim \operatorname{Im} B^{m-1} = q_m = r_{m-1} \end{cases}$$

Некоторые применения приведут матрицу к жордановой форме (в частности, диагонализируемости)

15.2 Решение СЛАУ

Пусть дана система AX=B с квадратной матрицей A, все характеристические корни которой $\in \mathbb{R}.$

Сделаем замену:

$$X = CY \Longrightarrow (AC)Y = B \Longleftrightarrow (\underbrace{C^{-1}AC}_{y})Y = C^{-1}b = b'$$

Можно взять C - матрицу перехода к жорданову базису

$$y = \begin{pmatrix} Y_{k_1}(\lambda_1) & 0 \\ & \ddots & \\ 0 & Y_{k_i}(\lambda_i) \end{pmatrix}$$

Если у жорданова клетка, то уравнения:

$$\begin{cases} \lambda x_1 + x_2 = b_1' \\ \lambda x_2 + x_3 = b_2' \end{cases}$$
 легко решить :

15.3 Решение СЛДУ

$$X = \begin{pmatrix} x_1(t) \\ \vdots \\ x_n(t) \end{pmatrix}, \quad \frac{dx}{dt} = \begin{pmatrix} \dot{x}_1 \\ \vdots \\ \dot{x}_n \end{pmatrix}$$

 $\dot{X} = AX$, где A - квадратная

$$X = CY \Longrightarrow \dot{X} = C\dot{Y}$$

$$C\dot{Y} = (AC)Y \Longrightarrow \dot{Y} = (C^{-1}AC)Y$$

Если матрица $C^{-1}AC$ диагональная: $C^{-1}AC=\begin{pmatrix}\lambda_1&&0\\&\ddots&\\0&&\lambda_n\end{pmatrix}$, $\lambda_i\neq 0$ получаем

систему:

$$\begin{cases} \dot{y}_1 = \lambda_1 y_1 \\ \vdots \\ \dot{y}_n = \lambda_n y_n \end{cases} \Longrightarrow \begin{cases} y_1 = C_1 e^{\lambda_1 t} \\ \vdots \\ y_n = C_n e^{\lambda_n t} \end{cases}$$

Тогда X = CY

Если

$$C^{-1}AC = J_k(\lambda_0) = \begin{pmatrix} \lambda_0 & 1 & & 0 \\ & \ddots & \ddots & \\ & & \lambda_0 & 1 \\ 0 & & 0 & \lambda_0 \end{pmatrix} \Longrightarrow \begin{cases} \dot{y}_1 = \lambda_0 y_1 + y_2 \\ \vdots \\ \dot{y}_{n-1} = \lambda_0 y_{n-1} + y_n \\ \dot{y}_n = \lambda_0 y_n \end{cases}$$

решаем снизу вверх.

15.4 Функции от матриц

$$(C^{-1}AC) = J = \begin{pmatrix} \boxed{J_{k_1}(\lambda_1)} & 0 \\ & \ddots & \\ 0 & \boxed{J_{k_i}(\lambda_i)} \end{pmatrix} \Longrightarrow A = CYC^{-1}$$

$$\Longrightarrow A^{n} = (CYC^{-1})(CYC^{-1})...(CYC^{-1}) = CY^{n}C^{-1}$$

$$J^{n} = \begin{pmatrix} J_{k_{1}}^{n}(\lambda_{1}) & 0 \\ & \ddots & \\ 0 & & J_{k_{i}}^{n}(\lambda_{i}) \end{pmatrix}$$

Для жордановой клетки:

$$\begin{pmatrix} \lambda_1 & 1 & 0 \\ \ddots & \ddots & \\ \lambda_{n-1} & 1 \\ 0 & 0 & \lambda_n \end{pmatrix}^n = \begin{pmatrix} \lambda E + \begin{pmatrix} 0 & 1 & 0 \\ \ddots & \ddots & \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix} =$$

$$= \lambda^n E + C_n^1 \lambda^{n-1} B + C_n^2 \lambda^{n-2} B^2 + \dots = \begin{pmatrix} \lambda^n & \lambda^{n-1} C_n^1 & \lambda^{n-2} C_n^2 & \dots \\ \ddots & \ddots & \ddots & \\ & & \lambda^n & \lambda^{n-1} C_n^1 & \lambda^{n-2} C_n^2 \\ & & \ddots & \\ & & & \lambda^n & \lambda^n \end{pmatrix}$$

Упражнение. Пусть f(t) - многочлен, $J = \begin{pmatrix} \lambda & 1 & 0 \\ \ddots & \ddots & \\ & & \ddots & 1 \\ 0 & & & \lambda \end{pmatrix}$

Доказать, что:

$$f(J) = \begin{pmatrix} f(\lambda) & f'(\lambda) & \frac{f''(\lambda)}{2!} & \cdots \\ & \ddots & & \\ & & \ddots & \\ & & & \ddots & \\ & & & f(\lambda) \end{pmatrix}$$

15.5 Вычисление корня и экспоненты

$$\begin{split} e^{at} &= 1 + \frac{at}{1!} + \frac{a^2t^2}{2!} + \ldots + \frac{a^{n-1}t^{n-1}}{(n-1)!} + \ldots \\ e^{At} &= E + \frac{At}{1!} + \frac{A^2t^2}{2!} + \ldots + \frac{A^{n-1}t^{n-1}}{(n-1)!} + \ldots \end{split}$$

Для $J_n(\lambda) = \lambda E + B \Longrightarrow$

$$(e^{A+B} = e^A \cdot e^B \iff AB = BA)$$

Примеры.

1.

$$(1+t)^{\frac{1}{2}} = 1 + \frac{1}{2}t + \frac{1}{2!} \cdot \frac{1}{2} \cdot (\frac{1}{2} - 1)t^2 + \dots$$

2.

$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = E + \frac{1}{2}B + \frac{1}{2!}C_{\frac{1}{2}}^2B^2 = \begin{pmatrix} 1 & \frac{1}{2} \\ 0 & 1 \end{pmatrix}$$

3.

$$\begin{pmatrix} \lambda & 1 \\ 0 & \lambda \end{pmatrix} = \lambda^{\frac{1}{2}} \cdot \begin{pmatrix} 1 & \frac{1}{\lambda} \\ 0 & 1 \end{pmatrix}^{\frac{1}{2}} = \lambda^{\frac{1}{2}} \cdot \begin{pmatrix} 1 & \frac{1}{2\lambda} \\ 0 & 1 \end{pmatrix}, \ \lambda \neq 0$$

16 Билинейные и квадратичные формы

Определение. Функция $b:V\times V\to \mathbb{F}$ называется билинейной функцией, если:

1. аддитивность:

$$\forall x_1, x_2, y : b(x_1 + x_2, y) = b(x_1, y) + b(x_2, y)$$

$$\forall x, y_1, y_2 : b(x, y_1 + y_2) = b(x, y_1) + b(x, y_2)$$

2. однородность:

$$\forall x, y \in V, \ \forall \lambda \in \mathbb{F}: \ b(\lambda x, y) = \lambda b(x, y) = b(x, \lambda y)$$

Определение. b(x,y) - называется симметрической, если:

$$\forall x, y \in V : b(y, x) = b(x, y)$$

Примеры.

1. Симметрическая билинейная функция - скалярное произведение

2.
$$V = M_n(\mathbb{F}) : b(X, Y) = tr(XY)$$

3.
$$b(f,g) = \int_{\alpha}^{\beta} f(x)g(x)dx$$

16.1 Запись билинейной функции в координатах

Пусть в V задан базис $e_1, ..., e_n$, тогда:

$$b(\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j) = \sum_{i,j=1}^{n} b(x_i e_i, y_j e_j) = \sum_{i,j=1}^{n} x_i y_j b(e_i, e_j)$$

Определение. Обозначим $b_{ij}=b(e_i,e_j),$ тогда $B_e=(b_{ij})$ - матрица билинейной функции b(x,y) в базисе e

Тогда:

$$b(x,y) = \sum_{i,j=1}^{n} x_i b_{ij} y_j = \begin{pmatrix} x_1 & \cdots & x_n \end{pmatrix} B_e \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = X^T B_e Y$$
 (1)

16.2 Изменение матрицы билинейной формы при замене базиса

Пусть e'=eC, т.е. C - матрица перехода от e к e' Тогда:

$$X = CX', Y = CY' \tag{2}$$

По определению матрицы билинейной функции, в новом базисе:

$$b(x,y) = X'^T B' Y' \quad (B' = B_{e'})$$

Подставим в формулу (1) выраженеие (2):

$$b(x,y) = X'^T C^T B C Y' = X'^T (C^T B C) Y' = X'^T B' Y' \quad (\forall X', Y' \in \mathbb{F}^n)$$
$$\Longrightarrow B' = C^T B C \quad (\forall i, j : X' := E_i, Y' := E_j)$$

Следствие.

1.
$$rkB' = rkB$$

2.
$$\mathbb{F} = \mathbb{R} \Longrightarrow \operatorname{sgn}(\det B') = \operatorname{sgn}(\det B)$$

Определение. Билинейная функция b(x,y) называется кососимметрической (при char $\mathbb{F} \neq 2$), если:

$$\forall x, y \in V: \ b(x, y) = -b(y, x)$$

Утверждение. (*) Любая билинейная функция над \mathbb{F} , $char \mathbb{F} \neq 2$ единственным образом представляется в виде:

$$b(x,y) = b_{+}(x,y) + b_{-}(x,y), \quad e \partial e \ b_{+}(x,y) \equiv b_{+}(y,x), \ b_{-}(x,y) \equiv -b(y,x)$$

Доказательство.

$$\begin{cases} b(x,y) = b_{+}(x,y) + b_{-}(x,y) \\ b(y,x) = b_{+}(x,y) - b_{-}(x,y) \end{cases} \implies b_{+}(x,y) = \frac{b(x,y) + b(y,x)}{2}, \ b_{-}(x,y) = \frac{b(x,y) - b(y,x)}{2}$$

Утверждение. Билинейная функция b(x,y) симметрична (кососимметрична) \iff в любом базисе e:

$$B_e^T = B_e \ (B_e^T = -B_e)$$

Доказательство. (Докажем для симметрической, для кососимметрической аналогично)

$$\Longrightarrow$$
 Пусть $B=(b_{ij})$, тогда $b_{ij}=b(e_i,e_j)$.

$$\forall x, y \in V, \ b(x, y) = b(y, x) \Longrightarrow b(e_j, e_i) = b(e_i, e_j)$$

 \leftarrow

$$b(x,y) = X^T B Y, \ b(y,x) = Y^T B X = (X^T B^T Y)^T = (X^T B Y)^T = b(x,y)$$

Утверждение (1) \iff \forall матрицы B некоторой билинейной функции верно, что $B=B_++B_-$, где B_+ - матрица симметрической билинейной функции, а B_- - матрица кососимметрической билинейной функции.

Определение. Квадратичная функция, порождённая билинейной функцией b(x,y) - это функция на V.

Обозначаем: k(x) := b(x, x), если $k(x) \not\equiv 0$.

Если b - кососимметрическая функция, то $b(x,x)=0 \Longrightarrow k(x)\equiv 0$. В общем случае существует бесконечно много билинейных функций, порождающих одну и ту же квадратичную, таких, что:

$$b(x,y) = b_{+}(x,y) + b_{-}(x,y) \Longrightarrow b(x,x) = b_{+}(x,x)$$

Теорема. Для любой квадратичной функции $\exists!$ симметрическая билинейная функция, которая её порождает.

Доказательство. Допустим, что b(x,y)=b(y,x) - симметрическая билинейная функция и k(x)=b(x,x). Тогда $\forall x,y\in V$:

$$k(x+y) = b(x+y, x+y) = b(x,x) + b(x,y) + b(y,x) + b(y,y) =$$
$$= b(x,x) + 2b(x,y) + b(y,y) = k(x) + 2b(x,y) + k(y)$$

Так как char $\mathbb{F} \neq 2$, то:

$$b(x,y) = \frac{k(x+y) - k(x) - k(y)}{2}$$

Определение. Билинейная функция $b(x,y) = \frac{k(x+y)-k(x)-k(y)}{2}$ называется поляризацией квадратичной функции k.

Далее будем считать матрицу квадратичной формы матрицей её полярной симметрической билинейной функции b(x,y)

$$b(x,y) = \sum_{i=1}^{n} b_{ii} x_i y_i + \sum_{i < j} b_{ij} x_i y_j + \sum_{i > j} b_{ij} x_i y_j$$

$$\forall i, j: \ b_{ij} = b_{ji} \Longrightarrow b(x,x) = k(x) = \sum_{i=1}^{n} b_{ii} x_i^2 + 2 \sum_{1 \le i < j \le n} b_{ij} x_i x_j \tag{1}$$

Пример. Пусть $k(x_1, x_2, x_3) = 3x_1^2 + 2x_1x_2 - x_1x_3 + x_2^2 + 6x_2x_3 - 7x_3^2$, тогда:

$$B = \begin{pmatrix} 3 & 1 & -\frac{1}{2} \\ 1 & 1 & 3 \\ -\frac{1}{2} & 3 & -7 \end{pmatrix}$$

Определение. Пусть b(x,y) - симметрическая или кососимметрическая билинейная функция и $\varnothing \neq L \subset V$ - подпространство. Ортогональным дополнением к L относительно билинейной формы b(x,y) называется:

$$L^{\perp} := \{ y \in V \mid b(x, y) = 0, \ \forall x \in L \}$$

3амечание. Запись $x \perp y$ означает, что b(x,y) = 0.

Определение. $V^{\perp} = \{ y \in V \mid b(x,y) = 0, \ \forall x \in V \}$ - ядро формы.

Определение. Билинейная функция b(x,y) называется невырожденной, если:

$$Ker(b) = V^{\perp} = \{0\}$$

Упражнение. b(x,y) - невырожденная функция $\iff \det B \neq 0$.

16.3 Квадратичные формы

Определение. Квадратичная форма в некотором базисе называется диагональной, если в этом базисе:

$$k(x_1,\ldots,x_n)=\sum_{i=1}^n \alpha_i x_i^2,$$
 где $\alpha_i\in\mathbb{F}$

Теорема. В конечномерном пространстве V (char $\mathbb{F} \neq 2$) \exists базис, в котором квадратичная форма диагональна.

Доказательство. (Алгоритм Лагранжа - метод выделения полных квадратов) По формуле (1):

$$k(x) = \sum_{i=1}^{n} b_{ii} x_i^2 + 2 \sum_{i < j} b_{ij} x_i x_j$$

1. Основной случай:

 $\exists i: b_{ii} \neq 0 \Longrightarrow$ можно перенумеровать неизвестные x_1, \ldots, x_n так, что $b_{11} \neq 0$. Выделим в k(x) все одночлены, содержащие x_1 :

$$k(x) = b_{11}x_1^2 + 2x_1\sum_{i=2}^n b_{1i}x_i + \widetilde{k}(x_2, \dots, x_n)$$

и дополним выражение до квадрата:

$$k(x) = b_{11}(x_1^2 + 2x_1 \sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i + (\sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i)^2) - \frac{(\sum_{i=2}^n b_{1i} x_i)^2}{b_{11}} + \widetilde{k} =$$

$$= b_{11}(x_1 + \sum_{i=2}^n \frac{b_{1i}}{b_{11}} x_i)^2 + k_2(x_2, \dots, x_n)$$

Затем для формы $k_2(x_2,\ldots,x_n)=\sum_{i=2}^n b'_{ii}x_i^2+\sum_{2\leqslant i< j\leqslant n} b'_{ij}x_ix_j$ найдём коэффициент $b'_{jj}\neq 0$ и выделим квадрат как на предыдущем шаге. На каждом шаге число переменных уменьшается на единицу, а значит, за конечное число шагов (а именно $\leqslant n-2$) форма приобретёт диагональный вид.

2. Особый случай:

 $\forall i: b_{ii} = 0$, но так как $k(x) \not\equiv 0 \Longrightarrow \exists$ индексы i и j такие, что $b_{ij} \not\equiv 0$, то есть в выражение k(x) входит одночлен $2b_{ij}x_ix_j$.

Пусть $x_i = x'_i + x'_j$ и $x_j = x'_i - x'_j$, тогда $x_i x_j = x'^2_i - x'^2_j$, то есть появился квадрат с коэффициентом, не равным нулю \Longrightarrow можно перейти к общему

случаю. (Квадраты появятся только в этом одночлене, т.к. x_i' и x_j' ни в одном другом не встретятся дважды, поэтому и после приведения подобных коэффициенты перед ними будут ненулевые)

3амечание. В благоприятном случае, когда на первом шаге коэффициент при x_1 не равен нулю, на втором шаге коэффициент при x_2 не равен нулю и т.д., матрица замены будет иметь вид:

$$C_{e \to e'}^{-1} = \begin{pmatrix} 1 & \frac{b_{12}}{b_{11}} & \dots & \frac{b_{1n}}{b_{11}} \\ 0 & 1 & \dots & \frac{b_{2n}}{b_{22}} \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

- матрица с 1 на диагонали $\Longrightarrow |C_{e \to e'}^{-1}| = 1 \neq 0.$

Определение. Форма $k(x_1, \ldots, x_n)$ называется канонической (нормальной), если:

- 1. (над \mathbb{R}) в диагональном виде $\forall \alpha_i$ принимает только значения: -1, 0, 1
- 2. (над \mathbb{C}) в диагональном виде $\forall \alpha_i$ принимает только значения: 0, 1

Примеры.

1. Пусть $\mathbb{F} = \mathbb{R}$:

$$k(x) = b_{11}x_1^2 + b_{22}x_2^2 + \ldots + b_{nn}x_n^2 = \alpha_1x_1^2 + \alpha_2x_2^2 + \ldots + \alpha_nx_n^2$$

Если $rkB = r \Longrightarrow k(x) = \alpha_1 x_1^2 + \alpha_2 x_2^2 + \ldots + \alpha_r x_r^2 \ (\alpha_{r+1} = \ldots = \alpha_n = 0).$

Если $\alpha_i > 0$, то введём обозначение: $\widehat{x}_i = \sqrt{\alpha_i} x_i$

Если $\alpha_i < 0 \Longrightarrow \widehat{x}_i = -\sqrt{\alpha_i} x_i$

$$\implies k = \hat{x}_1^2 + \ldots + \hat{x}_p^2 - \hat{x}_{p+1}^2 - \ldots - \hat{x}_r^2$$

где p - количество коэффициентов $\alpha_i > 0$.

2. Пусть $\mathbb{F} = \mathbb{C}$:

$$\forall i = \overline{1,r} : \widehat{x}_i = \sqrt{\alpha_i} x_i \Longrightarrow k = \widehat{x}_1^2 + \ldots + \widehat{x}_r^2$$

Таким образом, в вещественном случае для любой квадратичной формы k(x) существует замена координат $X = CY(|C| \neq 0)$ такая, что в новых координатах

$$k = \sum_{i=1}^{p} x_i^2 - \sum_{j=p+1}^{p+q} x_j^2.$$

Определение. p в такой записи называется положительным индексом инерции, q - отрицательным индексом инерции.

Теорема. Единственности (закон инерции)

Если в некоторых базисах $e_1, ... e_n$ и $f_1, ..., f_n$ квадратичная форма k имеет канонические виды:

$$k = \sum_{i=1}^{p} y_i^2 - \sum_{j=p+1}^{p+q} y_j^2 = \sum_{i=1}^{p'} z_i^2 - \sum_{j=p'+1}^{p'+q'} z_j^2$$

 $mo \ p = p', q = q'.$

Доказательство. Так как p+q=rkB=p'+q', достаточно доказать, что p=p'. От противного: пусть p'< p. Рассмотрим подпространства:

$$U_1 = \langle e_1, ..., e_p \rangle, \ U_2 = \langle f_{p'+1}, ..., f_n \rangle$$

Очевидно, что: $\dim U_1 = p, \dim U_2 = n - p'$.

$$\dim U_1 + \dim U_2 = p - p' + n > n; \quad U_1 + U_2 \subset V \Rightarrow \dim(U_1 + U_2) \le n$$

Из формулы Грассмана:

$$\dim(U_1 + U_2) = \dim U_1 + \dim U_2 - \dim(U_1 \cap U_2) \Rightarrow \dim(U_1 \cap U_2) > 0$$

Рассмотрим вектор $0 \neq v \in U_1 \cap U_2$:

$$v = \sum_{i=1}^{p} \alpha_i e_i \Rightarrow k(v) = \sum_{i=1}^{p} \alpha_i^2 \ge 0$$

С другой стороны:

$$v = \sum_{k=p'+1}^{n} \beta_k f_k \Rightarrow k(v) = -\sum_{k=p'+1}^{n} \beta_k^2 \le 0$$

Отсюда $k(v)=0\Longrightarrow \forall i=1,...,p \ \ \alpha_i=0\Longrightarrow v=0$ - противоречие.

16.4 Знакоопределённые квадратичные формы

Определение. Пусть b(x,y) - симметрическая билинейная форма. Векторы u,v называются *ортогональными*, если b(u,v)=0. Обозначается: $u\perp v$.

Определение. Базис $e_1,...,e_n$ в V - *ортогональный*, если $b(e_i,e_j)=0$ $(i\neq j).$

Определение. Для квадратной матрицы B главными минорами (угловыми

минорами) называются миноры
$$\Delta_1, \Delta_2, ..., \Delta_{n-1},$$
 где $\Delta_i = \begin{vmatrix} b_{11} & \dots & b_{1i} \\ \vdots & & \vdots \\ b_{i1} & \dots & b_{ii} \end{vmatrix}$.

Определим $\Delta_n = |B|, \Delta_0 = 1.$

Алгоритм. (Ортогонализации Грама/Шмидта)

Будем строить базис e' из базиса e, ортогональный относительно b(x,y).

$$\forall k \geq 1 \ \langle e_1',...,e_k' \rangle = \langle e_1,...,e_k \rangle$$
, причём $b(e_i',e_j') = 0 \ (1 \leq i \neq j \leq k)$

Пусть: $e_1' = e_1$ (система из одного вектора всегда ортогональна)

Шаг алгоритма: допустим, что k>1 и векторы $e_1',...,e_{k-1}'$ уже построены. Будем искать e_k' в виде

$$e_k' = e_k + \sum_{i=1}^{k-1} \lambda_i e_i'$$

где λ_i найдём из условия $b(e_k',e_j')=0,\ j=1,...,k-1$

$$b(e'_k, e'_j) = b(e_k, e'_j) + \sum_{i=1}^{k-1} \lambda_j b(e'_i, e'_j) = b(e_k, e'_j) + \lambda_j b(e'_j, e'_j) = 0 \Rightarrow \lambda_j = -\frac{b(e_k, e'_j)}{b(e'_j, e'_j)}$$

Теорема. Якоби Пусть k(x) (k(x) = b(x,x), b - cимм. б. ф.) такова, что главные миноры её матрицы B в нек. базисе $e: \Delta_1, \Delta_2, ..., \Delta_{n-1} \neq 0$ Тогда в V существует базис (и замена координат X = CY), в котором:

$$k = \sum_{i=1}^{n} \frac{\Delta_i}{\Delta_{i-1}} y_i^2$$

Доказательство. Построим базис e' из базиса e, ортогональный относительно b(x,y), с помощью алгоритма ортогонализации Грама/Шмидта.

$$e_k' = e_k + \sum_{i=1}^{k-1} \lambda_i e_i',$$
 где $\lambda_j = -\frac{b(e_k, e_j')}{b(e_j', e_j')}$

Покажем по индукции, что $b(e'_j, e'_j) = \frac{\Delta_j}{\Delta_{j-1}} \neq 0$.

Обратим внимание, что матрица перехода от $e_1, ..., e_{k-1}$ к $e'_1, ..., e'_{k-1}$ - верхняя треугольная с 1 по диагонали (предп. индукции). Запишем:

$$C_{(e_1,\dots,e_k)\to(e'_1,\dots,e'_k)} = \begin{pmatrix} C_{k-1} & * \\ 0 & 1 \end{pmatrix},$$
 где $C_{k-1} = \begin{pmatrix} 1 & & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$

B - матрица билин. формы b(x,y) в базисе $e,\ B'$ - в базисе e', который мы строим.

$$B'_{k|\langle e'_1, \dots, e'_k \rangle} = C_k^T B_{k|\langle e_1, \dots, e_k \rangle} C_k \Rightarrow \det(B'_{k|\langle e'_1, \dots, e'_k \rangle}) = (\det C_k)^2 \cdot \det B_{k|\langle e_1, \dots, e_k \rangle}$$

$$\Delta'_k = \det(B'_{k|\langle e'_1, \dots, e'_k \rangle}) = b'_{11} \cdot \dots \cdot b'_{kk} = \Delta_k$$

$$\frac{\Delta_1}{\Delta_0} \cdot \frac{\Delta_2}{\Delta_1} \cdot \dots \cdot \frac{\Delta_{k-1}}{\Delta_{k-2}} \cdot b'_{kk} = \Delta_k \Rightarrow b'_{kk} = \frac{\Delta_k}{\Delta_{k-1}}$$

Далее рассматриваем $F = \mathbb{R}$.

Определение. Квадратичная форма k(x) на пр-ве V над $\mathbb R$ называется

- положительно определённой, если $\forall x \neq 0 \ k(x) > 0$ (обозн. k > 0);
- ullet отрицательно определённой, если $\forall x \neq 0 \ k(x) < 0$ (обозн. k < 0);
- неотрицательно определённой, если $\forall x \ k(x) \geq 0$ (обозн. $k \geq 0$);
- неположительно определённой, если $\forall x \ k(x) \leq 0$ (обозн. $k \leq 0$).

Утверждение. *Квадратичная форма* k(x) *является*

- 1. положительно определённой $\iff p=n, q=0;$
- 2. отрицательно определённой $\iff p=0, q=n;$
- 3. неотрицательно определённой $\iff q=0;$
- 4. неположительно определённой $\iff p=0;$
- 5. знаконеопределённой $\iff p,q>0$.

Доказательство. Очевидно.

Лемма. Если кв. форма k > 0, то $\det B = \Delta_n \neq 0$.

Доказательство. Т.к. $k>0,\, p=n,$ т.е. существует базис, в котором:

$$k(x') = x_1'^2 + \dots + x_n'^2 \Longrightarrow \Delta_n' = 1 > 0$$

A так как
$$B' = C^T B C$$
, $|B'| = |C|^2 \cdot |B| \Longrightarrow \det B > 0$.

Теорема. Критерий Сильвестра

Kвадратичная форма k(x), имеющая в некотором базисе матрицу B, является

- 1. положительно определённой $\iff \Delta_1 > 0, ..., \Delta_n > 0.$
- 2. отрицательно определённой $\iff \forall t \ (-1)^t \Delta_t > 0.$

Доказательство.

 \Longrightarrow : $k>0\Longrightarrow \Delta_1\cdot\Delta_2\cdot\ldots\cdot\Delta_n\neq 0$ (t-ый минор ненулевой по лемме для угловой подматрицы) \Longrightarrow применима т. Якоби, из которой следуют необходимые нам знаки на всех Δ

 $k < 0 \Longrightarrow -k > 0$, причём при домножении матрицы на -1 знак меняют только миноры нечётного порядка.

Замечание. Т.к. $b_{ii}=k(e_i)$, у положительно определённой формы все $b_{ii}>0$, у отрицательной все $b_{ii}<0$.

Замечание. Пусть k(x) такая, что $\Delta_1,...,\Delta_r \neq 0, \Delta_{r+1} = ... = \Delta_n = 0$. Тогда p - число сохранений знака в последовательности $\Delta_0,\Delta_1,...,\Delta_r$, а q - число перемен знака в этой последовательности.

Доказательство. Из теоремы Якоби в подходящем базисе

$$k(x) = \frac{\Delta_1}{\Delta_0} y_1^2 + \dots + \frac{\Delta_k}{\Delta_{k-1}} y_k^2 + \dots + \frac{\Delta_r}{\Delta_{r-1}} y_r^2$$

Тогда каждое сохранение знака соответствует положительному коэффициенту, а каждая перемена знака - отрицательному коэффициенту, откуда и следует необходимое равенство.

16.5 Кососимметрические билинейные формы

Определение. Кососимметрическая билинейная форма:

$$\forall x, y \in V : b(y, x) = -b(x, y) \text{ (char } \mathbb{F} \neq 2)$$

Замечание. Заметим, что $\forall x \in V: \ b(x,x) = 0.$ Если же $b(x,x) \equiv 0:$

$$0 = b(x + y, x + y) = b(x, x) + b(y, y) + b(x, y) + b(y, x) \Longrightarrow b(x, y) = -b(y, x)$$

Поэтому условие $b(x,x) \equiv 0$ не только эквивалентно кососимметричности формы, но и применимо в случае char F=2.

Лемма. Пусть b(x,y) - симметрическая или кососимметрическая билинейная форма на V (dim $V=n<\infty$), $U\subset V$. Тогда если $e_1,...,e_m$ - базис U, то $y\in U^\perp\Longleftrightarrow b(e_i,y)=0,\ i=1,...,m$.

Доказательство. $U^{\perp} = \{ y \in V : b(x,y) = 0 \ \forall x \in U \}.$

$$\Longrightarrow : y \in U^{\perp} \Longrightarrow b(x,y) = 0 \ \forall x \in U \Longrightarrow b(e_i,y) = 0, \ i = 1,...,m;$$

Теорема. Пусть b(x,y) - симметрическая или кососимметрическая билинейная форма на V (dim $V=n<\infty$), $U\subset V$ такое, что $b|_U$ невырождена. Тогда $V=U\oplus U^\perp$.

Доказательство. Из леммы $y \in U^{\perp} \iff b(e_i, y) = 0, \ i = 1, ..., m.$

Запишем систему уравнений для нахождения y, выбрав базис $e_1,...,e_m \in U$ и дополнив его до базиса $e_1,...,e_n \in V$. В этом базисе:

$$e_{i}^{\uparrow} = \begin{pmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{pmatrix}, b(e_{i}, y) = (0, ..., 1, ..., 0)B \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \end{pmatrix} = (b_{i1}, ..., b_{in})Y^{\uparrow}$$

Система имеет вид

$$\begin{pmatrix} b_{11} & \dots & b_{1n} \\ \vdots & & \vdots \\ b_{m1} & \dots & b_{mn} \end{pmatrix} Y = 0$$

Т.к. матрица $B|_U$ невырождена, $\operatorname{rk} B = m$, т.е. система имеет n-m ЛНЗ решений, а значит, $\dim U^{\perp} = \dim V - \dim U$.

Если же $v \in U \cap U^{\perp}$, то $\forall x \in U : b(x,v) = 0$, а из невырожденности формы $b|_U$ тогда следует, что v = 0.

Теорема. Для любой кососимметрической билинейной формы $b(x,y) \not\equiv 0$ \exists такой базис $f_1,...,f_n \in V$, в котором матрица этой формы имеет вид

$$B = \begin{pmatrix} \boxed{I_1} & & & & \\ & \ddots & & & & \\ & & \boxed{I_s} & & & \\ & & 0 & & & \\ & & & \ddots & & \\ & & & 0 \end{pmatrix}$$

$$e\partial e \ I_j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ rkB = 2s$$

Доказательство. Т.к. $b(x,y) \not\equiv 0$, \exists векторы $e_1,e_2 \in V$: $b(e_1,e_2) = \beta_{12} \not= 0$. Рассмотрим:

$$f_1 = \frac{e_1}{\beta_{12}}, f_2 = e_2 \Longrightarrow b(f_1, f_2) = 1, \ b(f_2, f_1) = -b(f_1, f_2) = -1$$

Пусть $n=2:\ U=\langle e_1,e_2\rangle$ - база. Проведем индукцию по $n=\dim V.$

Возьмём U^{\perp} в пр-ве V. Заметим, что $\tilde{b}=b|_{U^{\perp}}$ также кососимметрическая, невырожденая форма \Longrightarrow по Лемме $V=U\oplus U^{\perp}$.

Если $\dim U^{\perp} = n-2$, т.е. \exists базис $f_3, ..., f_n$, в котором матрица $b|_{U^{\perp}}$ имеет вид:

$$B|_{U^{\perp}} = \begin{pmatrix} \boxed{I_2} & & & & \\ & \ddots & & & \\ & & \boxed{I_s} & & \\ & & & 0 & \\ & & & \ddots & \\ & & & 0 \end{pmatrix}$$

Тогда в базисе $f_1, ..., f_n$ матрица b имеет нужный вид.

17 Евклидовы пространства и их обобщения

17.1 Основные понятия и утверждения

Основное поле - $\mathbb{F} = \mathbb{R}$.

Определение. Вещественное конечномерное векторное пространство \mathcal{E} называется евклидовым, если на \mathcal{E} задано скалярное произведение (x,y).

Определение. Скалярное произведение (x,y) - симметрическая билинейная функция такая, что соответственная квадратичная форма (x,x) положительно определена.

Определение. Длина (норма) вектора $x \in \mathcal{E}$: $|x| = \sqrt{(x,x)}$.

Теорема. Неравенство Коши-Буняковского-Шварца

 $\forall x,y \in \mathcal{E}: |(x,y)| \leq |x| \cdot |y|$, причём равенство выполнено $\iff x \parallel y$ (либо x = 0 или y = 0, либо $y = \lambda x$).

Доказательство. Рассмотрим функцию:

$$f(t) = (tx - y, tx - y) = t^{2}(x, x) - 2t(x, y) + (y, y) \ge 0$$

Это квадратичная функция относительно t:

$$f(t) \geqslant 0 \Longleftrightarrow \frac{\mathcal{D}}{4} = (x, y)^2 - (x, x)(y, y) \leqslant 0 \Longrightarrow (x, y) \le \sqrt{(x, x)(y, y)} = |x| \cdot |y|$$

Равенство выполнено
$$\iff$$
 $(tx - y, tx - y) = 0 \implies y = tx$.

Теорема. Неравенство треугольника

$$\forall x, y \in \mathcal{E}: |x+y| \leq |x| + |y|$$
 (равенство выполнено $\iff x \uparrow \uparrow y$)

Доказательство.

$$(x+y,x+y) = (x,x) + 2(x,y) + (y,y) \le |x|^2 + 2|x||y| + |y|^2 = (|x|+|y|)^2$$
$$|x+y|^2 \le (|x|+|y|)^2 \Longleftrightarrow |x+y| \le |x|+|y|$$

Координатная запись: пусть в V фиксированный базис $e_1,...,e_n,$ то:

$$(x,y) = (\sum_{i=1}^{n} x_i e_i, \sum_{j=1}^{n} y_j e_j) = \sum_{i,j=1}^{n} x_i y_j (e_i, e_j)$$

Определение. $G_e = ((e_i, e_j))$ - матрица Грама базиса e

$$G_e^T = G_e$$

Т.к. (x,x) - положительно определенная квадратичная форма, то матрица:

$$G_e = (g_{ij})$$

может служить матрицей Грама $\iff \triangle_1 > 0, ..., \triangle_n > 0$ В частности: $\det G_e > 0$ (определитель Грама)

$$(x,y) = X^T G_e Y$$

Определение.

$$x \perp y \iff (x, y) = 0$$

Определение. Базис $e_1, ..., e_n$ называется ортогональным, если:

$$e_i \perp e_j$$
 при $i \neq j$

Если при этом длина каждого вектора $e_1, ..., e_n$ равна 1, то базис называется ортонормированным.

Следствие. $e_1,...,e_n$ - ортонормированный базис, если $(e_i,e_j)=\delta_{ij}$.

Следствие. Если базис ортонормированный, то $G = E \ u \ (x,y) = \sum_{i=1}^{n} x_i y_i$.

Теорема. Пусть $e' = eC_{e \to e'}$ - новый базис. Тогда:

- 1. Если е и e' ортонормированные базисы, то $C_{e \to e'}$ ортогональна;
- 2. Если e ортонормированный базис и $C_{e \to e'}$ ортогональная матрица \Longrightarrow e' = eC ортонормированный базис.

3амечание. C - ортогональная, если $C^TC=E$

Доказательство.

1. По определению матрицы перехода:

$$C_{e \to e'} = \begin{pmatrix} e_1'^{\uparrow} & \cdots & e_n'^{\uparrow} \end{pmatrix}; \quad C_{e \to e'}^T = \begin{pmatrix} e_1'^{\to} \\ \vdots \\ e_n'^{\to} \end{pmatrix}$$

Обозначим d_{ij} - (ij) элемент матрицы C^TC :

$$d_{ij} = e_i^{\prime \to} \cdot e_j^{\prime \uparrow} = (e_i^{\prime}, e_j^{\prime}) = \delta_{ij}$$

т.к. базис e ортонормированный $\Longrightarrow d_{ij} = \delta_{ij} \Longrightarrow C^T C = E$

2. Рассмотрим $e' = eC_{e \to e'}$, тогда e'^{\uparrow}_j - это j столбец матрицы $C_{e \to e'}$ По условию $C^TC = E \iff e'^{\downarrow}_i \cdot e'^{\uparrow}_j = \delta_{ij} = (e'_i, e'_j)$

Лемма. Если $a_1, ..., a_m \in \mathcal{E}$ - ортогональная система векторов, то $a_1, ..., a_m$ ЛНЗ.

 \mathcal{A} оказательство. Пусть $\sum_{i=1}^{m} \lambda_i a_i = 0$. Скалярно умножим обе части на a_j :

$$(\sum_{i=1}^{m} \lambda_i a_i, a_j) = \sum_{i=1}^{m} \lambda_i (a_i, a_j) = \lambda_j (a_j, a_j) = 0 \Longrightarrow \lambda_j = 0$$

Проведя такие рассуждения для j=1,...,m, получим, что все коэффициенты должны быть равны 0, т.е. $a_1,...,a_m$ ЛНЗ.

T.o. $\forall x \in \mathcal{E}$ единственным образом разлагается в сумму $x = x_{\shortparallel} + x_{\perp}$

 $x_{\shortparallel}\in U,\ x_{\shortparallel}$ - ортогональная проекция вектора x на U $x_{\perp}\in U^{\perp},\ x_{\perp}$ - ортогональная составляющая x относительно U

Пример.

Надо подобрать такой многочлен $p(t) \in U$, чтобы:

$$|| f(t) - p(t) || = \min$$

Где p(t) = f(t) - псевдорешение

Как конкретно находить такое разложение?

1 способ: Выбрать ортогональный базис в U и дополнить его до ортогонального базиса в $\mathcal E$

Тогда:

$$x = \underbrace{\sum_{i=1}^{m} (x_i, e_i)e_i}_{x_{\text{II}}} + \underbrace{\sum_{i=m+1}^{n} (x_i, e_i)e_i}_{x_{\text{L}}} = x_{\text{II}} + x_{\text{L}}$$

2 способ: Выбрать в U произвольный базис $a_1,...,a_m$ и искать разложение в виде:

$$x = \sum_{i=1}^{m} \alpha_i a_i + x_{\perp} \mid \cdot a_j \Longrightarrow (x_i, a_j) = \sum_{i=1}^{m} \alpha_i (a_i, a_j) + \underbrace{(x_{\perp}, a_j)}_{=0}$$

Неоднородная СЛУ с неизвестными α_i , основная матрица:

$$((a_i, a_j)) = G_{\{a_1, \dots, a_m\}}$$

где $\det G \neq 0 \Longrightarrow$ по теореме Крамера $\exists ! \ \alpha_1,...,\alpha_m \Longrightarrow \exists ! \ x_{\sqcap} \Longrightarrow x_{\perp} = x - x_{\sqcap}$

Определение. Ортогональное дополнение подпространства $U \subset \mathcal{E}$ - ортогональное дополнение U относительно скалярного произведения как симметрической билинейной формы.

 $\it Замечание.$ Доказательство разложения $\it \mathcal{E}=U\oplus U^\perp$ см. в разделе $\it 16.5$

Свойства. операций ортогонального дополнения

1.
$$(U^{\perp})^{\perp} = U$$

2.
$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$$

3.
$$(U_1 \cap U_2)^{\perp} = U_1^{\perp} + U_2^{\perp}$$

Доказательство.

1. Пусть $x \in U$, $y \in U^{\perp}$, тогда:

$$\forall y \in U^{\perp}: (y, x) = 0 \Longrightarrow x \in (U^{\perp})^{\perp} \Longrightarrow U \subseteq (U^{\perp})^{\perp}$$

Причем:

$$\dim (U^{\perp})^{\perp} = n - \dim U^{\perp} = n - (n - \dim U) = \dim U \Longrightarrow U = (U^{\perp})^{\perp}$$

2. Пусть $v \in U_1^{\perp} \cap U_2^{\perp} \Longrightarrow v \perp U_1$ и $v \perp U_2 \Longrightarrow \forall x = u_1 + u_2$:

$$(v,x) = (v,u_1) + (v,u_2) = 0 \Longrightarrow v \in (U_1 + U_2)^{\perp} \Longrightarrow U_1^{\perp} \cap U_2^{\perp} \subseteq (U_1 + U_2)^{\perp}$$

Если $w \in (U_1 + U_2)^{\perp}$, то $\forall u_1 \in U_1, \forall u_2 \in U_2: \ (w, u_1 + u_2) = 0$

В частности:

$$\begin{cases} \forall u_1 \in U_1 : \ (w, u_1) = 0 \implies w \in U_1^{\perp} \\ \forall u_2 \in U_2 : \ (w, u_2) = 0 \implies w \in U_2^{\perp} \end{cases} \implies w \in U_1^{\perp} \cap U_2^{\perp}$$

To есть $(U_1 + U_2)^{\perp} \subseteq U_1^{\perp} \cap U_2^{\perp} \Longrightarrow$ имеет место равенство:

$$(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$$

3. Возьмем
$$(U_1^{\perp} + U_2^{\perp})^{\perp} = (U_1^{\perp})^{\perp} \cap (U_2^{\perp})^{\perp} = U_1 \cap U_2$$

 $\Longrightarrow ((U_1^{\perp} + U_2^{\perp})^{\perp})^{\perp} = (U_1 \cap U_2)^{\perp} \Longrightarrow U_1^{\perp} + U_2^{\perp} = (U_1 \cap U_2)^{\perp}$

Утверждение. Вектор наименьшей длины, соединяющий точку из подпространства U с концом вектора x, это - x_{\perp} .

Доказательство. Обозначим $x_{\shortparallel}=y,\ x_{\perp}=z,$ а вектор из начала x в произвольную точку U - вектор v

Какой тут рисунок то? (рисунок скинули, завтра нарисую)

Докажем, что $|x-v|\geqslant |z|$, причём равенство достигается при v=y:

$$x - v = x - y + y - v = z + y - v$$

T.K. $z \in U^{\perp}, (y - v) \in U$,

$$z \perp (y - v) \Longrightarrow |x - v|^2 = |z|^2 + |y - v|^2 \geqslant |z|^2$$

причём равенство при $|y - v| = 0 \Longrightarrow y = v$.

Это подтверждает осмысленность определения $\rho(x, U) = |x_{\perp}|$.

Упражнение. Докажите отсюда, что $\angle(x,v) \geqslant \angle(x,y)$.

Определение. Углом между вектором и подпространством будем называть:

$$\angle(x, U) = \angle(x, y)$$

Определение. n-мерным параллеленинедом с рёбрами $e_1, ..., e_n$ называется:

$$\Pi_{\langle e_1, \dots, e_n \rangle} = \{ v = \lambda_1 e_1 + \dots + \lambda_n e_n, 0 \leqslant \lambda_i \leqslant 1 \}$$

Определение. В общем случае объём параллелепипеда определяется рекурсивно:

$$V_{\langle e_1,...,e_n\rangle}=V_{\langle e_1,...,e_{n-1}
angle}\cdot|e_{n\perp}|,$$
 где $e_{n\perp}$ - проекция e_n на $\langle e_1,...,e_{n-1}
angle$

Заметим, что если $e_1,...,e_n$ попарно ортогональны, то $V_{\langle e_1,...,e_n\rangle}=|e_1|\cdot...\cdot|e_n|.$

3 амечание. Частный случай: $\dim U = n-1$ ("гиперплоскость"):

В ортонормированном базисе U задаётся уравнением $a_1x_1 + ... + a_nx_n = 0$, а ортогональное дополнение $U^{\perp} = \langle \bar{n} = (a_1, ..., a_n) \rangle$ (\bar{n} - вектор нормали). Тогда:

$$\rho(x, U) = |x_{\perp}| = \frac{V_{\langle e_1, \dots, e_{n-1}, x \rangle}}{V_{\langle e_1, \dots, e_{n-1} \rangle}}$$

где $V_{\langle a_1,...,a_k\rangle}$ - объём параллелепипеда, натянутого на $a_1,...,a_k$.

Объём не изменится, если к векторам применить процесс ортогонализации (с унитреугольной матрицей перехода).

Тогда:

$$V_{\langle e'_1, \dots, e'_n \rangle} = |e'_1| \cdot \dots \cdot |e'_n| = \sqrt{|G_{\{e'_1, \dots, e'_n\}}|}$$

В ортогональном базисе:

$$G_{\{e'_1,\dots,e'_n\}} = \begin{pmatrix} |e'_1|^2 & 0 \\ & \ddots & \\ 0 & |e'_n|^2 \end{pmatrix} \Longrightarrow |G_{\{e'_1,\dots,e'_n\}}| = |e'_1|^2 \cdot \dots \cdot |e'_n|^2$$

$$G_{e'} = C^T G_e C \Longrightarrow |G_{e'}| = |C|^2 |G_e| = |G_e|$$

Упражнение. Доказать отсюда. что если $U = \langle e_1, ..., e_{n-1} \rangle$, то:

$$\rho^{2}(x, U) = \frac{|G_{\{e_{1}, \dots, e_{n}\}}|}{|G_{\{e_{1}, \dots, e_{n-1}\}}|}$$

17.2 Линейные операторы в евклидовом пространстве

Пусть \mathcal{E} - евклидово пр-во, $\varphi:\mathcal{E}\to\mathcal{E}$ - лин. оператор в \mathcal{E} .

Определение.

1. Оператор $\varphi^*:\mathcal{E} \to \mathcal{E}$ - сопряжённый к φ , если:

$$\forall x, y \in \mathcal{E} : (\varphi(x), y) = (x, \varphi^*(y)) \tag{1}$$

2. Оператор φ - самосопряжённый, если:

$$\varphi^* = \varphi \Longrightarrow \forall x, y \in \mathcal{E} : (\varphi(x), y) = (x, \varphi(y))$$
 (2)

3. Оператор φ - ортогональный, если:

$$\forall x, y \in \mathcal{E} : (\varphi(x), \varphi(y)) = (x, y)$$
(3)

В частности, для ортогонального $\varphi : \forall x \in \mathcal{E} \ |\varphi(x)| = |x|$.

Условия (1)-(3) через матрицу Грама

Пусть в \mathcal{E} зафиксирован базис $e=(e_1,...,e_n)$ (dim $\mathcal{E}=n$). Пусть x=eX, $y=eY,G_e=((e_i,e_j))$ - матрица Грама базиса e,A_{φ} - матрица φ в базисе e. (1): $\forall X,Y\in\mathbb{R}^n$:

$$(A_{\varphi}X)^T G_e Y = X^T A_{\varphi}^T G_e Y = X^T G_e A_{\varphi^*} Y \Longrightarrow A_{\varphi}^T G_e = G_e A_{\varphi^*} \tag{1'}$$

(2): В частности,

$$\varphi^* = \varphi \iff A_{\varphi}^T G_e = G_e A_{\varphi} \tag{2'}$$

Если e - ортонормированный, то $G_e=E$, и $A_{\varphi}^T=A_{\varphi}$, т.е. A_{φ} - симметрическая матрица.

(3): φ - ортогональный $\iff \forall X,Y \in \mathbb{R}^n$ выполнено:

$$(A_{\varphi}X)^{T}G_{e}(A_{\varphi}Y) = X^{T}G_{e}Y \Longrightarrow A_{\varphi}^{T}G_{e}A_{\varphi} = G_{e}$$
(3')

Если $G_e=E$, то $A_{\varphi}^TA_{\varphi}=E$, т.е. A_{φ} - ортогональная матрица.

Теорема. Свойства сопряжённых операторов

- 1. $(\varphi^*)^* = \varphi$;
- 2. Ker $\varphi^* = (\operatorname{Im} \varphi)^{\perp}$
- 3. Ker $\varphi = (\operatorname{Im} \varphi^*)^{\perp}$

Доказательство.

1. В ортонормированном базисе:

$$A_{\varphi^*} = A_{\varphi}^T \Longrightarrow A_{\varphi^{**}} = (A_{\varphi^*})^T = (A_{\varphi}^T)^T = A_{\varphi}$$

Т.к. в фиксированном базисе имеется взаимно однозначное соответствие операторов и их матриц, $(\varphi^*)^* = \varphi$.

2. Сравним размерности:

$$\dim \operatorname{Ker} \varphi^* = n - \operatorname{rk}(A_{\varphi^*}) = n - \operatorname{rk}(A_{\varphi}^T) = n - \operatorname{rk}(A_{\varphi})$$
$$\dim \operatorname{Im} \varphi = \operatorname{rk} A_{\varphi} \Longrightarrow \dim (\operatorname{Im} \varphi)^{\perp} = n - rk A_{\varphi}$$

Докажем, что $\operatorname{Im} \varphi \subseteq (\operatorname{Ker} \varphi^*)^{\perp}$ (отсюда $\operatorname{Ker} \varphi^* \subseteq (\operatorname{Im} \varphi)^{\perp}$): Пусть $v \in \operatorname{Im} \varphi \Longrightarrow v = \varphi(x), y \in \operatorname{Ker} \varphi^*$. Тогда:

$$(v,y) = (\varphi(x),y) = (x,\varphi^*(y)) = (x,0) = 0 \Longrightarrow v \perp \operatorname{Ker} \varphi^*$$

Т.к. размерности равны и $\operatorname{Ker} \varphi^* \subseteq (\operatorname{Im} \varphi)^{\perp}$, то $\operatorname{Ker} \varphi^* = (\operatorname{Im} \varphi)^{\perp}$.

3. Следует из (2) подстановкой φ^* вместо φ .

Теорема. Фредгольма СЛУ AX = b с квадратной матрицей A порядка n совместна \iff для любого Y - решения однородной сопряжённой системы - выполнено условие $Y \perp b$.

Доказательство. AX = b совместна $\iff b \in \operatorname{Im} A$

$$Y \in \operatorname{Ker} \varphi^* = \operatorname{Ker} A^T$$

Т.к. $\operatorname{Ker} \varphi^* = (\operatorname{Im} A)^{\perp}$, то система совместна $\iff b \perp \operatorname{Ker} \varphi^*$

17.3 Самосопряжённые операторы

Лемма. Пусть $\varphi: \mathcal{E} \to \mathcal{E}$ - лин. оператор, $U \subset \mathcal{E}: \varphi(U) \subseteq U$. Тогда $\varphi^*(U^{\perp}) \subseteq U^{\perp}$.

Доказательство. Покажем, что $\forall y \in U^{\perp}, x \in U$ выполнено $(x, \varphi^*(y)) = 0$:

$$(x, \varphi^*(y)) = (\varphi(x), y) = 0$$
, т.к. $\varphi(x) \in U, \ y \in U^{\perp}$

Утверждение.

- 1. Если λ_1, λ_2 различные собственные значения самосопряжённого оператора φ, x_1, x_2 соответсвующие им собственные векторы, то $x_1 \perp x_2$;
- 2. Все характеристические числа самосопряжённого оператора $\in \mathbb{R}$.

Доказательство.

1. Пусть $\varphi^* = \varphi$. Тогда:

$$(\varphi(x_1), x_2) = \lambda_1(x_1, x_2); \ (\varphi(x_1), x_2) = (x_1, \varphi(x_2)) = \lambda_2(x_1, x_2)$$

Из $\lambda_1 \neq \lambda_2$ следует $(x_1, x_2) = 0$.

2. От противного: пусть $\exists \lambda_1 = \alpha + i\beta$ - характеристическое число для самосопряжённого φ с $\beta \neq 0$.

Как было доказано ранее, $\exists \varphi$ -инвариантное подпространство U размерности 2, на котором $\varphi|_U$ имеет собственные значения $\alpha \pm i\beta$. U можно рассматривать как евклидово пр-во со скалярным произведением $(x,y)|_U$. Тогда $\varphi|_U$ - также самосопряжённый на U.

Выберем ортонормированный базис в U. Тогда в этом базисе $\varphi|_U$ имеет симметрическую матрицу $A=\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix}$. Её характеристические числа:

$$|A - \lambda E| = (a_{11} - \lambda)(a_{22} - \lambda) - a_{12}^2 = \lambda^2 - (a_{11} + a_{22})\lambda + a_{11}a_{22} - a_{12}^2$$

70

$$\mathcal{D} = (a_{11} + a_{22})^2 - 4a_{11}a_{22} + 4a_{12}^2 = (a_{11} - a_{22})^2 + 4a_{12}^2 \geqslant 0$$

Отсюда корни характеристического многочлена вещественные, что противоречит предположению.

Теорема. Для любого самосопряжённого оператора $\varphi : \mathcal{E} \to \mathcal{E}$ в \mathcal{E} существует ортонормированный базис из собственных векторов этого оператора.

Доказательство. Индукция по $\dim \mathcal{E} = n$:

База: n=1. Тогда $\forall x \in \mathcal{E}: \varphi(x)=\lambda_1 x$, т.е. любой единичный вектор подойдёт в качестве ортонормированного базиса.

Шаг: Пусть $\lambda_1 \in \mathbb{R}$ - какое-либо собственное значение для φ . Рассмотрим $\mathcal{E}_{\lambda_1} \neq \{0\}$ - оно является φ -инвариантным подпространством.

Если $\mathcal{E}_{\lambda_1} = \mathcal{E}$, то $\forall x \in \mathcal{E} : \varphi(x) = \lambda_1 x$, т.е. в ортонормированном базисе матрица оператора - $\lambda_1 E$;

Если $\mathcal{E}_{\lambda_1} \neq \mathcal{E}$, то по лемме $\mathcal{E}_{\lambda_1}^{\perp}$ также φ -инвариантно и $\mathcal{E} = \mathcal{E}_{\lambda_1} \oplus \mathcal{E}_{\lambda_1}^{\perp}$. К ограничению φ на инвариантные подпространства \mathcal{E}_{λ_1} , $\mathcal{E}_{\lambda_1}^{\perp}$ можно применить предположение индукции, если рассмотреть их как отдельные евклидовы пространства. Тогда в них есть ортонормированные базисы из собственных векторов, а тогда их объединение будет искомым ортонормированным базисом для \mathcal{E} (ортогональность векторов из разных базисов следует из утверждения выше).

Следствие. Если $\lambda_1, ..., \lambda_s$ - все попарно различные собственные значения самосопряженного оператора φ , то $\mathcal{E} = \mathcal{E}_{\lambda_1} \oplus ... \oplus \mathcal{E}_{\lambda_s}$.

Замечание. Если все собственные значения $\lambda_1, ..., \lambda_n$ самосопряжённого оператора φ положительны, то \exists самосопряжённый оператор ψ с положительными собственными значениями такой, что $\psi^2 = \varphi$.

 $\ \ \, \mathcal{A}$ оказательство. Пусть $e_1,...,e_n$ - ортонормированный базис из собственных векторов для φ . Тогда:

$$A_{arphi,e}=egin{pmatrix} \lambda_1 & & & \\ & \ddots & \\ & & \lambda_n \end{pmatrix} \Longrightarrow \ ext{oператор c матрицей} \ \begin{pmatrix} \sqrt{\lambda_1} & & \\ & \ddots & \\ & & \sqrt{\lambda_n} \end{pmatrix} -\psi$$

Пример. Пусть $\mathcal{E} = U \oplus U^{\perp}$, т.е. $\forall x = x_{\parallel} + x_{\perp}$. $\varphi_1(x) = x_{\parallel}$ - ортогональное проектирование на U;

 $\varphi_2(x) = x_{\shortparallel} - x_{\bot}$ - ортогональная симметрия, или отражение $\mathcal E$ относительно U. Покажем, что φ_1 и φ_2 самосопряжённые:

$$\forall x,y \in \mathcal{E} : x = x_{\shortparallel} + x_{\bot}, y = y_{\shortparallel} + y_{\bot} :$$

$$(\varphi_1(x),y) = (x_{\shortparallel},y_{\shortparallel} + y_{\bot}) = (x_{\shortparallel},y_{\shortparallel}) = (x_{\shortparallel} + x_{\bot},y_{\shortparallel}) = (x,\varphi_1(y))$$

$$(\varphi_2(x),y) = (x_{\shortparallel} - x_{\bot},y_{\shortparallel} + y_{\bot}) = (x_{\shortparallel},y_{\shortparallel}) - (x_{\bot},y_{\bot}) = (x_{\shortparallel} + x_{\bot},y_{\shortparallel} - y_{\bot}) = (x,\varphi_2(y))$$

17.4 Ортогональные операторы

Определение. $\varphi: \mathcal{E} \to \mathcal{E}$ - ортогональный, если:

$$\forall x, y \in \mathcal{E} : (\varphi(x), \varphi(y)) = (x, y)$$

Из определения следует, что $\forall x \in \mathcal{E} : |\varphi(x)| = |x|$ - φ сохраняет длины $\Longrightarrow \operatorname{Ker} \varphi = \{0\} \Longrightarrow \varphi$ инъективный, а так как $\varphi : \mathcal{E}_n \to \mathcal{E}_n$, получаем, что φ - биективный (и обратимый) оператор.

Утверждение. Пусть $\varphi: \mathcal{E} \to \mathcal{E}$ - ортогональный оператор. Тогда φ^{-1} также ортогональный, причём $\varphi^{-1} = \varphi^*$.

Доказательство. Покажем, что $\forall x,y \in \mathcal{E}(\varphi^{-1}(x),\varphi^{-1}(y)) = (x,y)$. Выберем $x' = \varphi^{-1}(x), y' = \varphi^{-1}(y)$. Тогда:

$$(\varphi^{-1}(x), \varphi^{-1}(y)) = (x', y') = (\varphi(x'), \varphi(y')) = (x, y)$$

По определению φ^* : $(\varphi(x), y) = (x, \varphi^*(y)), \ \forall x, y \in \mathcal{E}$ Т.к. φ обратим, $\exists y' \in E : \ y = \varphi(y')$

$$(\varphi(x),y)=(\varphi(x),\varphi(y'))=(x,y')=(x,\varphi^{-1}(y))\Longrightarrow (x,\varphi^*(y))=(x,\varphi^{-1}(y))$$

$$(x,\varphi^*(y)-\varphi^{-1}(y))=0\ \forall x,y\in\mathcal{E}\Longrightarrow \varphi^*(y)=\varphi^{-1}(y)\ \forall y\in\mathcal{E}$$
 T.e.
$$\varphi^*=\varphi^{-1}$$

Лемма. Пусть $\varphi: \mathcal{E} \to \mathcal{E}$ - ортогональный оператор, $U \subset E: \varphi(U) \subseteq U$. Тогда:

$$\varphi(U^{\perp}) \subseteq U^{\perp}$$

Доказательство. Покажем, что $\forall y \in U^{\perp}, x \in U$ выполнено $(x, \varphi(y)) = 0$. Т.к. φ обратим, $\exists x' : x = \varphi(x')$, т.е. $x' = \varphi^{-1}(x) \in U$. Отсюда:

$$(x, \varphi(y)) = (\varphi(x'), \varphi(y)) = (x', y) = 0, \text{ t.k. } x' \in U, y \in U^{\perp}$$

Определение. В пространстве \mathcal{C}^n введем скалярное произведение с требованиями:

- 1. Линейность по 1 аргументу
- 2. Вместо симметричности потребуем:

$$(y,x) = \overline{(x,y)}$$

3. $(x,x) \neq 0$, (x,x) = 0, если x = 0

Следовательно, если $\lambda \in \mathbb{C}$, то $(x, \lambda y) = \overline{\lambda}(x, y)$

Теорема. Пусть $\varphi: \mathcal{E} \to \mathcal{E}$ - ортогональный оператор.

- 1. Собственные значения φ только ± 1 , причём отвечающие этим значениям собственные векторы \perp .
- 2. Все характеристические числа для φ над \mathbb{C} имеют модуль 1.

Доказательство.

1. Пусть $\varphi(x) = \lambda x, x \neq 0, \lambda \in \mathbb{R}$. Тогда:

$$(x,x) = (\varphi(x), \varphi(x)) = \lambda^2(x,x) \Longrightarrow \lambda^2 = 1 \Longrightarrow \lambda = \pm 1$$

Если $\varphi(x) = x, \varphi(y) = -y(x, y \neq 0)$, то

$$(x,y) = (\varphi(x), \varphi(y)) = -(x,y) \Longrightarrow (x,y) = 0$$

2. Будем обозначать через $\varphi: \mathbb{C}^n \to \mathbb{C}^n$ заданной матрицей A_{φ} Если $\lambda = \alpha + i\beta$ - характеристическое число для φ , то:

$$\exists \ v \in \mathbb{C}^n: \ \varphi(v) = \lambda(v)$$

Тогда $(v,v)=(\varphi(v),\varphi(v))=(\lambda v,\lambda v)=\lambda\overline{\lambda}(v,v)\Longrightarrow \lambda\overline{\lambda}=|\lambda|^2=1$, или $\lambda=\cos(\theta)\pm i\sin(\theta)$.

Теорема. Если $\varphi: \mathcal{E} \to \mathcal{E}$ - ортогональный оператор, то в $\mathcal{E} \exists$ ортонормированный базис, в котором:

Порядок матрицы равен $n = \dim \mathcal{E}$ (s - количество пар сопряжённых собственных значений, а также количество 1 и -1 определены однозначно).

Доказательство. Заметим, что если все собственные значения φ вещественные, то для φ существует ортонормированный базис из собственных векторов - это объединение ортонормированных базисов подпространств \mathcal{E}_1 и \mathcal{E}_{-1} (в частности, φ будет ещё и самосопряжённым).

Индукция по n:

База: n=2. Случай, если все собственные значения φ вещественные, разобран. Если у φ есть комплексное собственное значение λ , то $\overline{\lambda}$ - также собственное значение для φ . Рассмотрим произвольный ортонормированный базис $e_1, e_2 \in \mathcal{E}$. В нём $\varphi(e_1) = \alpha e_1 + \beta e_2$. Так как φ сохраняет длины, $|\varphi(e_1)| = 1$, т.е.

$$(\alpha e_1 + \beta e_2, \alpha e_1 + \beta e_2) = \alpha^2 + \beta^2 = 1 \Longrightarrow \exists \psi_1 : \alpha = \cos(\psi_1), \beta = \sin(\psi_1)$$

Аналогично $\exists \psi_2: \varphi(e_2) = \cos(\psi_2)e_1 + \sin(\psi_2)e_2$. При этом $(\varphi(e_1), \varphi(e_2)) = (e_1, e_2) = 0$, т.е.

$$(\varphi(e_1), \varphi(e_2)) = \cos \psi_1 \cos \psi_2 + \sin \psi_1 \sin \psi_2 = \cos(\psi_1 - \psi_2) = 0$$

Отсюда $\psi_2 = \psi_1 + \frac{(2k+1)\pi}{2}$, т.е. при необходимости заменив e_2 на $-e_2$ в базисе, получим матрицу $A_\varphi = \begin{pmatrix} \cos\psi_1 & -\sin\psi_1 \\ \sin\psi_1 & \cos\psi_1 \end{pmatrix}$. База доказана.

Переход: пусть n>2. Случай, если все собственные значения φ вещественные, разобран. Если у φ есть комплексное собственное значение λ , то из доказанного ранее знаем, что существует φ -инвариантное подпространство U такое, что $\varphi|_U$ имеет собственные значения $\lambda, \overline{\lambda}$. Тогда U^\perp - также φ -инвариантно, причём $\mathcal{E} = U \oplus U^\perp$. Для U и U^\perp искомые ортонормированные базисы есть по

предположению индукции, а тогда искомый ортонормированный базис для \mathcal{E} будет объединением двух найденных (возможно, с перестановкой векторов для правильного порядка элементов на диагонали матрицы).

Определение. Оператор φ собственный, если $\det \varphi = 1$, при $\det \varphi = -1$ - не собственный

Частный случай теоремы: \forall собственный оператор φ в трехмерном пространстве - это поворот вокруг оси на некоторый угол.

Объяснение: Т.к. 3 - нечетное число, то у φ есть вещественное собственное значение $\lambda = \pm 1$, т.к. $\det \varphi > 0$, то $\lambda = 1$ и e_3 - собственный вектор для этого λ , тогда плоскость $\langle e_3 \rangle^{\perp}$ - инвариантная плоскость, и она поворачивается на некоторый угол.

18 Общие линейные операторы

Утверждение.

$$(\psi \cdot \varphi)^* = \varphi^* \cdot \psi^*$$

Доказательство. Следует из равенства $(AB)^T = B^T A^T$ в ортонормированном базисе.

Лемма. Если оператор $\varphi: \mathcal{E} \to \mathcal{E}$ невырожденный, то все собственные значения оператора $\varphi^* \cdot \varphi$ положительны.

 $\mathcal{\underline{A}}$ оказательство. Оператор $\varphi^*\cdot\varphi$ - самосопряжённый:

$$(\varphi^* \cdot \varphi)^* = \varphi^* \cdot (\varphi^*)^* = \varphi^* \cdot \varphi$$

 \Longrightarrow все его собственные значения $\in \mathbb{R}$. Путсь μ - какое-то из них: $(\varphi^* \cdot \varphi)(v) = \mu v$ для подходящего $v \neq 0$. Вычислим μ :

$$((\varphi^* \cdot \varphi)(v), v) = \mu(v, v) = (\varphi(v), (\varphi^*)^*(v)) = (\varphi(v), \varphi(v)) \Longrightarrow \mu = \frac{(\varphi(v), \varphi(v))}{(v, v)}$$
$$\Longrightarrow \mu > 0$$

Теорема. Любой невырожденный линейный оператор φ в евклидовом пространстве \mathcal{E} единственным образом может быть представлен в виде: $\varphi = \theta \cdot \rho$, где θ - ортогональный оператор и ρ - самосопряжённый оператор с положительными собственными значениями.

Теорема. Матричная версия

Любую вещественную матрицу A c $\det A \neq 0$ можно представить в виде произведения $A = Q \cdot R$, где Q - ортогональная, R - симметричная c положительными собственными значениями.

3амечание. Для любой вещественной матрицы A она является $A=A_{\varphi}$ в подходящем базисе (этот базис можно выбрать ортонормированным). Будем доказывать матричную версию, используя тот факт, что в ортонормированном базисе: $A_{\varphi^*}=A_{\varphi}^T.$

Доказательство. Предположим, что разложение A = QR уже найдено:

$$\Longrightarrow A^T = R^T Q^T = RQ^T \Longrightarrow A^T A = R(\underbrace{Q^T Q}_{=E})R = R^2$$

- это симметричная матрица с положительными собственными значениями. $\Longrightarrow R^2$ можно привести к диагональному виду: \exists ортогональная матрица C такая, что:

$$C^{-1}(R^2)C = \Lambda^2 = \begin{pmatrix} \mu_1 & 0 \\ & \ddots & \\ 0 & & \mu_n \end{pmatrix} \Longrightarrow R^2 = C\Lambda^2C^{-1} = C\Lambda^2C^T \Longrightarrow R = C\Lambda C^T$$

Где
$$\Lambda = \begin{pmatrix} \sqrt{\mu_n} & 0 \\ & \ddots & \\ 0 & \sqrt{\mu_n} \end{pmatrix}$$
 имеет положительные собственные значения. Тогла $O = A \cdot B^{-1}$

Проверка:

$$Q^T = (R^{-1})^T A^T = R^{-1} A^T \Longrightarrow Q^T Q = R^{-1} (A^T A) R^{-1} = R^{-1} R^2 R^{-1} = E$$

Определение. Разложение $\varphi=\theta\rho$ или $A=Q\cdot R$ - полярное разложение оператора φ с собственной матрицей A

Определение. Сингулярное разложение: $A = (QC)\Lambda C^T = U\Lambda V$, где Λ - диагональная матрица с положительными собственными значениями $\lambda_1,...,\lambda_m$, U,V - ортогональные матрицы $(\lambda_1,...,\lambda_m$ - сингулярные числа матрицы A)

19 Квадратичные формы

Пусть k(x) = b(x, x) - квадратичная форма на пространстве \mathcal{E}, B - её матрица в некотором базисе $(B^T = B)$.

Теорема. $B \in \exists$ ортонормированный базис f = eC, в котором эта форма имеет вид: $k(x) = \lambda_1 y_1^2 + ... + \lambda_n y_n^2$, где $\lambda_1, ..., \lambda_n$ - собственные значения B.

3амечание. Векторы базиса f называются главными осями для квадратичной формы k, а сама замена - приведением формы к главным осям.

Доказательство. Примем B за матрицу самосопряжённого оператора φ в некотором ортонормированном базисе. Тогда \exists ортонормированный базис $f_1, ..., f_n$ из собственных векторов оператора φ , т.е. $\exists C$ - ортогональная матрица такая, что

$$C^{-1}BC = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix} \Longrightarrow C^TBC = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & & \lambda_n \end{pmatrix}$$

т.е. C - матрица перехода к главным осям.

Утверждение. Если \mathcal{E} - евклидово пр-во, то \mathcal{E}^* изоморфно E.

Доказательство. Достаточно показать, что $\forall f: \mathcal{E} \to \mathbb{R} \ \exists ! a \in \mathcal{E}$ такой, что:

$$\forall x \in \mathcal{E}, f(x) = (a, x)$$

Выберем в \mathcal{E} ортонормированный базис $e = \{e_1, ..., e_n\}$, тогда в нём:

$$f(x)=\sum_{i=1}^n a_ix_i=(a,x),$$
 где $a=\left(egin{array}{c} a_1\ dots\ a_n \end{array}
ight)$

Лемма. Для любой билинейной функции b(x,y) на евклидовом пространстве \mathcal{E} $\exists !$ линейный оператор $\varphi: \mathcal{E} \to \mathcal{E}$ такой, что:

$$\forall x, y \in \mathcal{E}: \ b(x, y) = (x, \varphi(y)) \tag{1}$$

Доказательство. Выберем произвольный базис e в \mathcal{E} с матрицей Грама G ($\dim \mathcal{E} = n$). Тогда:

$$(1) \Longleftrightarrow \forall X, Y \in \mathbb{R}^n : X^T B Y = X^T (G A_{\wp}) Y \Longrightarrow A_{\wp} = G^{-1} B$$

3амечание. Пусть b(x,y) = b(y,x). Тогда:

$$(x, \varphi^*(y)) = (\varphi(x), y) = (y, \varphi(x)) = b(y, x) = b(x, y) = (x, \varphi(y)) \Rightarrow \varphi^* = \varphi$$

Теорема. Пусть V - векторное пространство над \mathbb{R} (dim V=n), f,g - квадратичные формы на V, причём g знакоопределена (в частности, g>0). Тогда \exists базис, в котором:

$$f(x) = \sum_{i=1}^n \lambda_i x_i^2; \ g(x) = \sum_{i=1}^n x_i^2 \ (\partial$$
ля $g < 0 \ g(x) = -\sum_{i=1}^n x_i^2)$

.

Доказательство. Рассмотрим порождающие f,g симметрические билинейные формы f(x,y) и g(x,y), т.е. $f(x,x)\equiv f(x),\ g(x,x)\equiv g(x),$ и обозначим за F,G матрицы этих форм в некотором базисе. Тогда можем задать на пр-ве V скалярное произведение с помощью формы g:(x,y)=g(x,y).

По лемме $\exists ! \ \varphi : V \to V$ - самосопряжённый оператор такой, что:

$$f(x,y) \equiv g(x,\varphi(y))$$

Заметим также, что G - матрица Грама для базиса, в котором функция g(x,y) имеет матрицу G. Тогда $A_{\varphi}=G^{-1}F$.

Так как $\varphi \equiv \varphi^*$, в $V \exists$ ортонормированный базис, в котором $A_{\varphi,e'} = \begin{pmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{pmatrix}$.

Если $C = C_{e \to e'}$, то $A_{\varphi,e'} = C^{-1}A_{\varphi}C$, $F_{e'} = C^TFC$.

Тогда во-первых, $C^TGC = G_{e'} = E$, т.к базис ортонормированный, а во-вторых

$$C^{-1}A_{\varphi,e}C = C^{-1}G^{-1}FC = C^{-1}(CC^T)FC = (C^{-1}C)C^TFC = C^TFC = F_{e'}$$

т.е. в новых координатах
$$F_{e'} = A_{\varphi,e'} = \begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_n \end{pmatrix}$$
 и $f(x') = \sum_{i=1}^n \lambda_i x_i'^2$

3амечание. $\lambda_1,...,\lambda_n$ - корни характеристического уравнения

$$|A_{\omega} - \lambda E| = 0 \iff |G^{-1}F - \lambda E| = 0 \iff |F - \lambda G| = 0 \tag{2}$$

т.е. соответствующие собственные векторы будут решениями СЛУ

$$(F - \lambda G)X = 0 (3)$$

Для каждого собственного значения λ_i нужно найти ФСР для (3) и ортонормировать относительно g(x,y).

20 Полуторалинейные, эрмитовы формы. Унитарные (эрмитовы) пространства

Далее всюду $F=\mathbb{C},V$ - в.п. над $\mathbb{C}.$

Определение. Функция $f(x,y):V\times V\to\mathbb{C}$ называется полуторалинейной, если:

- 1. $f(x_1 + x_2, y) = f(x_1, y) + f(x_2, y);$ $f(\lambda x, y) = \lambda f(x, y) \ (\lambda \in \mathbb{C});$
- 2. $f(x, y_1 + y_2) = f(x, y_1) + f(x, y_2);$ $f(x, \lambda y) = \overline{\lambda} f(x, y) \ (\lambda \in \mathbb{C})$

Определение. f(x,y) называется эрмитово симметричной (эрмитовой), если

- 1. f(x,y) линейна по x;
- 2. $f(y,x) \equiv \overline{f(x,y)} \iff f(x,\lambda y) = \overline{\lambda}f(x,y) \ \forall \lambda \in \mathbb{C}$

Заметим, что если f(x,y) эрмитова, то $f(x,x) \equiv \overline{f(x,x)} \Rightarrow f(x,x) \in \mathbb{R}$.

Определение. Квадратичная функция, порождённая эрмитовой формой - это функция $k(x) \equiv f(x,x)$.

Упражнение. Доказать, что для любой квадратичной формы k(x) $\exists !$ эрмитова форма f(x,y) такая, что $f(x,x)\equiv k(x)$.

Если f(x,y) полуторалинейна и эрмитова, то обозначим $F=(f(e_i,e_j)),$ и тогда $f(e_j,e_i)=\overline{f(e_i,e_j)}\Longrightarrow F^T=\overline{F}\Longleftrightarrow \overline{F}^T=F.$

Определение. $F^* = \overline{F}^T$ - эрмитово сопряжённая матрица к F. Если $F^* = F$, то F - эрмитова матрица.

Определение. Скалярное произведение на пр-ве V - функция (x,y) такая, что

- 1. (x, y) линейна по x;
- 2. $(y,x) \equiv \overline{(x,y)};$
- 3. $(x, x) > 0 \ \forall x \neq 0$

Скалярное произведение в координатах:

$$\left(\sum_{k=1}^{n} x_k e_k, \sum_{j=1}^{n} y_j e_j\right) = \sum_{k=1}^{n} x_k \left(e_k, \sum_{j=1}^{n} y_j e_j\right) = \sum_{k,j=1}^{n} x_k \overline{y_j} \left(e_k, e_j\right)$$

Матрица Грама базиса e:

$$G_e = ((e_k, e_j)). G_{e^*} = \overline{G_e}^T = G_e$$

Определение. $x \perp y \iff (x,y) = 0$.

Базис $e_1, ..., e_n$ ортогональный, если $(e_k, e_j) = 0, \ k \neq j.$

Базис $e_1,...,e_n$ ортонормированный, если $(e_k,e_j)=\delta_{ij}$.

В ортонормированном базисе $(x,y) = \sum_{j=1}^{n} x_j \overline{y_j}$.

Изменение матрицы полуторалинейной формы при замене базиса:

Если f(x,y) - полуторалинейная форма, то в некотором базисе e :

$$f(x,y) = X^T F \overline{Y}$$
, где $F = (f(e_i, e_j))$

Если f эрмитово симметричная, т.е. $\overline{f(y,x)} = f(x,y)$, то $\overline{F}^T = F$. Тогда если e' = Ce, то в случае полуторалинейной формы:

$$X = CX', Y = CY' \Rightarrow f(x, y) = (X')^T (C^T F \overline{C}) \overline{Y'} = (X')^T F' \overline{Y'}$$

В случае эрмитовой квадратичной формы k(x) = f(x, x):

$$k(x) = \sum_{k,j=1}^{n} x_k \overline{x}_j f_{kj} = \dots + f_{kj} x_k \overline{x}_j + \dots, \ f_{jk} = \overline{f}_{kj}$$

Отсюда $f_{ii} = \overline{f}_{ii}$, т.е. $f_{ii} \in \mathbb{R}$.

Теорема. Эрмитову квадратичную форму можно привести к диагональному виду $\alpha_1|x_1|^2 + ... + \alpha_r|x_r|^2$, где r = rkF, $\alpha_1, ..., \alpha_r \in \mathbb{R}$, $\alpha_j \neq 0$. Количество положительных коэффициентов p и отрицательных коэффициентов q - инварианты для данной формы.

 \mathcal{A} оказательство. Применим следующий вариант алгоритма Лагранжа: Основной случай. Если $b_{11} \neq 0$, то необходимо выделить все одночлены, содержащие x_1 и \overline{x}_1 :

$$k(x_{1},...,x_{n}) = (b_{11}x_{1}\overline{x}_{1} + ... + b_{n1}x_{n}\overline{x}_{1}) + (b_{12}x_{1}\overline{x}_{2} + ... + b_{1n}x_{1}\overline{x}_{n}) + \tilde{k}(x_{2},...,x_{n}) =$$

$$= \frac{1}{\overline{b}_{11}}(b_{11}x_{1} + ... + b_{n1}x_{n})(\overline{b_{11}x_{1}} + ... + \overline{b_{n1}x_{n}}) + \tilde{k}(x_{2},...,x_{n}) =$$

$$= \frac{1}{\overline{b}_{11}}|b_{11}x_{1} + ... + b_{n1}x_{n}|^{2} + \tilde{k}(x_{2},...,x_{n})$$

Заменяем $y_1 = b_{11}x_1 + ... + b_{n1}x_n$ и далее преобразуем \tilde{k} .

Особый случай: $b_{ii}=0, i=1,...,n$. По условию $k\not\equiv 0$, т.е. $\exists b_{ij}=\overline{b}_{ji}\not\equiv 0$ и при замене $\begin{cases} x_i=b_{ji}(y_i+y_j)\\ x_j=y_i-y_j \end{cases}$ форма содержит члены:

$$b_{ij}x_i\overline{x}_j + b_{ji}x_j\overline{x}_i = 2b_{ij}^2|y_i|^2 - 2b_{ij}^2|y_j|^2$$

Далее можем продолжать по основному случаю.

Сохраняют силу следующие утверждения и понятия:

- 1. Теорема Якоби: $\Delta_1, ..., \Delta_{n-1} \neq 0 \Longrightarrow k = \frac{\Delta_1}{\Delta_0} |y_1|^2 + ... + \frac{\Delta_n}{\Delta_{n-1}} |y_n|^2$;
- 2. Критерий Сильвестра: $k > 0 \Longleftrightarrow \Delta_i > 0, i = 1, ..., n$;
- 3. Понятие u^{\perp} и утверждение $V=U\oplus U^{\perp}$

Замечание. Если
$$A^* = \overline{A}^T = A$$
, то $|A| = |\overline{A}^T| = |\overline{A}| = |\overline{A}|$, т.е. $|A| \in \mathbb{R}$

Алгоритм. Процесс ортогонализации:

Дан произвольный базис $e_1,...,e_n\in V$. Необходимо построить ортогональный базис $e'_1,...,e'_n$ такой, что $\langle e_1,...,e_k\rangle=\langle e'_1,...,e'_k\rangle$. Возьмём $e'_1=e_1$.

Шаг алгоритма:

Если k>1 и $e_1',...,e_{k-1}'$ уже построены, то будем искать e_k' в виде:

$$e_k - \sum_{j=1}^{k-1} \lambda_j^{(k)} e_j'$$

Тогда:

$$0 = (e'_k, e'_i) = (e_k, e'_i) - \sum_{j=1}^{k-1} \lambda_j^{(k)}(e'_j, e'_i) = (e_k, e'_i) - \lambda_i^{(k)}(e'_i, e'_i) \Longrightarrow \lambda_i^{(k)} = \frac{(e_k, e'_i)}{(e'_i, e'_i)}$$

20.1 Линейные операторы в унитарном пространстве

1. Сопряжённый оператор φ^* к линейному оператору $\varphi:V\to V$:

$$\forall x, y \in V, (\varphi(x), y) = (x, \varphi^*(y)) \tag{1}$$

2. Самосопряжённый оператор:

$$\varphi = \varphi^* \tag{2}$$

3. Унитарный оператор:

$$\forall x, y \in V, (\varphi(x), \varphi(y)) = (x, y) \tag{3}$$

Для самосопряжённого оператора:

$$(2) \Longleftrightarrow (\varphi(x), y) \equiv (x, \varphi(y)) \Longrightarrow (A_{\varphi}X)^T G\overline{Y} = X^T (A_{\varphi}^T G) \overline{Y} = X^T (G\overline{A}_{\varphi}) \overline{Y}$$

Отсюда

$$A_{\varphi}^{T}G = G\overline{A}_{\varphi} \tag{2'}$$

Если базис ортонормированный, то $A_{\varphi}^T = \overline{A}_{\varphi} \Longleftrightarrow A = A^*$

Для унитарного оператора:

$$(3) \iff X^T G \overline{Y} = (A_{\varphi} X)^T G \overline{A_{\varphi} Y} = X^T (A_{\varphi}^T G \overline{A_{\varphi}}) \overline{Y} \implies A_{\varphi}^T G \overline{A_{\varphi}} = G \qquad (3')$$

Если базис ортонормированный, то $A_{\varphi}^T \overline{A}_{\varphi} = E \iff A^{-1} = A^*$ (унитарная матрица).

Теорема. Если φ - самосопряжённый линейный оператор в V, то

- 1. Все его характеристические корни $\in \mathbb{R}$;
- 2. Собственные векторы, соответствующие попарно различным собственным значениям, ортогональны;
- 3. Если U φ -инвариантно в V, то U^{\perp} также φ -инвариантно;
- 4. В $V \; \exists \; opmoнopмированный базис из собственных векторов <math>\varphi \Longleftrightarrow \varphi = \varphi^*$ ($\Longrightarrow npu \; ycловии, \; что \; все \; coбственные значения <math>\in \mathbb{R}$)

Теорема. Если φ - унитарный линейный оператор в V, то

- 1. Все собственные значения имеют модуль 1;
- 2. Собственные векторы, соответствующие попарно различным собственным значениям, ортогональны;
- 3. Если U φ -инвариантно в V, то U^{\perp} также φ -инвариантно;
- 4. $B \ V \ \exists \ \textit{базис из собственных векторов } \varphi, \ \textit{причём в этом базисе}$

$$A'_{\varphi} = \begin{pmatrix} e^{i\omega_1} & 0 \\ & \ddots & \\ 0 & e^{i\omega_n} \end{pmatrix}$$

Доказательство. За исключением примечаний ниже доказательство аналогично случаю евклидова пространства.

К пункту 1 обоих теорем:

Так как $\mathbb C$ замкнуто, любой корень λ характеристического многочлена для φ является собственным значением и имеет отвечающийй ему собственный вектор.

Для самосопряжённого оператора:

$$\lambda(x,x) = (\varphi(x),x) = (x,\varphi(x)) = \overline{\lambda}(x,x) \Longrightarrow \lambda \in \mathbb{R}$$

Для унитарного оператора:

$$(x,x) = (\varphi(x), \varphi(x)) = \lambda \overline{\lambda}(x, \varphi(x)) \Longrightarrow \lambda \overline{\lambda} = |\lambda|^2 = 1 \Longrightarrow |\lambda| = 1$$

К пункту 4 теоремы 2:

Индукция по n:

База: $n=1\Rightarrow \varphi(x)=e^{i\omega}x$; Шаг: Выберем собственное значение $\lambda_1=e^{i\omega_1}$, найдём для него собственный вектор e_1 и нормируем его. $\langle e_1\rangle - \varphi$ -инвариантное подпространство $\Longrightarrow \langle e_1\rangle^\perp - \varphi$ -инвариантно, и тогда по предположению индукции \exists ортонормированный базис $e_2,...,e_n$ нужного вида для $\varphi|_{\langle e_1\rangle^\perp}$, а из ортогональности e_1 всем векторам этого базиса получаем, что $e_1,...,e_n$ - искомый базис.

21 Аффинные пространства и их преобразования

Определение. Аффинным пространством над полем \mathbb{F} называется пара (\mathbb{A},V) , где \mathbb{A} - множество точек, V - ассоциированное с ним векторное пространство (над \mathbb{F}), если задано отображение $\mathbb{A} \times V \to \mathbb{A}$ - операция прибавления вектора к точке (откладывание вектора от точки) со следующими аксиомами:

- 1. $\forall p \in \mathbb{A}, x, y \in V : p + (x + y) = (p + x) + y;$
- $2. \ \forall p \in \mathbb{A}: \ p+0=p;$
- 3. $\forall p, q \in \mathbb{A} \exists ! x \in V : p + x = q$

Размерность аффинного пространства: $\dim \mathbb{A} = \dim V$.

Замечание. Если имеется векторное пространство V, то можно принять $\mathbb{A} = V$, понимая точки как радиус-векторы, если задать начальную точку $0 \in V$.

Утверждение. $\overrightarrow{pq} + \overrightarrow{qs} = \overrightarrow{ps}$

Доказательство.
$$q = p + x$$
; $s = q + y = (p + x) + y = p + (x + y)$

Аффинная система координат

Задаётся точкой $o \in \mathbb{A}$ - началом координат и базисом e ассоциированного векторного пространства V. Обозначается $(o, e_1, ..., e_n)$.

Координаты точки p - координаты радиус-вектора \overrightarrow{op} в базисе e.

$$\overrightarrow{op} = \sum_{i=1}^{n} x_i e_i \Longrightarrow \overrightarrow{pq} = \overrightarrow{oq} - \overrightarrow{op} = \sum_{i=1}^{n} (y_i - x_i) e_i$$

Также можно задать точки $o, p_1, ..., p_n$ общего положения (т.е. $\overrightarrow{op_1}, ..., \overrightarrow{op_n}$ линейно независимы) - тогда $(o, \overrightarrow{op_1}, ..., \overrightarrow{op_n})$ - система координат.

Изменение координат точки при замене системы координат

Пусть (o,e) - старая система координат, (o',e') - новая система координат. Заметим, что $\overrightarrow{op} = \overrightarrow{oo'} + \overrightarrow{o'p}$. Поэтому если X - столбец координат точки p в старых координатах, X' - в новых координатах, а X_o - столбец старых координат точки o', то

$$X=X_o+CX', \ \ (C=C_{e o e'}) \ \ (1)$$
 Можно ввести аффинную матрицу перехода $\tilde{C}=\begin{pmatrix} C & X_0 \\ 0 & 1 \end{pmatrix}$ порядка $n+1$ $(n=\dim V)$ и дополненный столбец $\tilde{X}=\begin{pmatrix} X \\ 1 \end{pmatrix}$ высоты $n+1.$ Тогда из (1) : $\tilde{X}=\tilde{C}\tilde{X}'$

Барицентрическая комбинация точек

Пусть даны $p_0, p_1, ..., p_m (1 \le m \le n)$ с коэффициентами $\lambda_0, \lambda_1, ..., \lambda_m, \sum \lambda_i = 1$.

Барицентрической комбинацией будем называть

$$\sum_{i=0}^m \lambda_i p_i := p + \sum_{i=0}^m \lambda_i \overrightarrow{pp_i} = p + \sum_{i=0}^m \lambda_i (p_i - p)$$
 для некоторой точки p

Покажем, что результат не зависит от выбора точки p: если q=p+v - другая точка, то:

$$q + \sum_{i=0}^{m} \lambda_i \overrightarrow{qp_i} = p + v + \sum_{i=0}^{m} \lambda_i (-v) + \sum_{i=0}^{m} \lambda_i \overrightarrow{pp_i} = p + \sum_{i=0}^{m} \lambda_i \overrightarrow{pp_i}$$

Следствие. Если m=n и $p_0,...,p_n$ - точки общего положения, то любую точку можно единственным образом представить в виде барицентрической комбинации этих точек: $p=\sum\limits_{i=0}^m x_ip_i, \sum\limits_{i=0}^m x_i=1.$

 $(x_0,...,x_n)$ называются барицентрическими координатами точки p.

21.1 Аффинные плоскости (подпространства)

Определение. Зафиксируем точку $p_0 \in \mathbb{A}$ и подпространство $U \subseteq V$. Аффинная плоскость P с начальной точкой p_0 и направляющим подпространством U - это множество точек $P:=p_0+U=\{p_0+u|u\in U\}$. Размерность плоскости: $\dim P=\dim U$.

Утверждение. P не зависит от выбора точки p_0 .

Доказательство. Пусть $P = p_0 + U, p'_0 \in P$. Тогда:

$$p'_0 = p_0 + u_0, u_0 \in U \Longrightarrow P' = p'_0 + U = p_0 + u_0 + U = p_0 + U = P$$

Утверждение. Если $P = p_0 + U = p'_0 + U'$, то U = U' (т.е. направляющее подпространство для плоскости определено однозначно).

Доказательство.
$$p_0' \in p_0 + U \Longrightarrow p_0 + U = p_0' + U = p_0' + U' \Longrightarrow U = U'$$

Утверждение. (P, U) является аффинным пространством относ. операции $p \to p + x$ для $x \in U$.

Доказательство. Проверим аксиомы:

- 1. $p+u \in p+U$ операция определена на P и U;
- 2. $p + (u_1 + u_2) = (p + u_1) + u_2 \in p' + U = P;$
- 3. Если $p,q\in P,$ то $P=p+U,q=p+u\Longrightarrow \overrightarrow{pq}=u\in U$ существует и единственный.

$$\forall p \in P: \ p = p_0 + \sum_{i=1}^m x_i e_i \ (e_1, ..., e_m - \text{ базис в } U).$$

Вместо точки p_0 и базиса $e_1,...,e_m$ можно рассмотреть точки $p_0,p_1,...,p_m$ общего положения - любую точку $p\in P$ можно представить в виде барицентрической комбинации точек $p_0,...,p_n$.

Задание аффинной плоскости неоднородной СЛУ

Пусть $P = p_0 + U$, dim U = m, dim V = n. Тогда \exists матрица A такая, что:

$$U = \{x = eX | AX = 0\}$$
 $(e - базис V)$

 $\forall p \in P$ имеет координаты $X_0 + X$, где X_0 - столбец координат p_0 , а X - координаты $u \in U$. Тогда:

$$b := A(X_0 + X) = AX_0 + AX = AX_0$$

 \Longrightarrow координаты $p \in P$ удовлетворяют системе AX = b.

Если p_0 заменить на p_0' с координатами $X_0 + X', AX' = 0$, то:

$$A(X_0 + X') = AX_0 = b$$

Остюда получаем следующее утверждение:

Утверждение. Любую аффинную плоскость можно задать (неоднородной) системой линейных уравнений.

Определение. Аффинная оболочка множества точек M - это наименьшая по включению аффинная плоскость, содержащая все точки M. В частности, если

$$M = \{p_0, ..., p_k\}$$
 to $\langle M \rangle = p_0 + \langle \overrightarrow{p_0 p_1}, ..., \overrightarrow{p_0 p_k} \rangle$

3амечание. Аффинная плоскость $P = p_0 + U$ представляет собой некоторый смежный класс пространства V по U:

$$p_0' + U = p_0 + U = P \Longleftrightarrow \overline{p_o p_0'} \in U$$

Взаимное расположение двух плоскостей:

Пусть
$$P_1 = p_1 + U_1$$
, $P_2 = p_2 + U_2$

- 1. $P_1 \parallel P_2$ (в широком смысле), если $U_1 \subseteq U_2$ или $U_2 \subseteq U_1$. В истинном смысле: если они параллельны в широком смысле и не пересекаются.
- 2. $P_1 \cap P_2 \neq \emptyset$, но не параллельны.
- 3. P_1 и P_2 скрещиваются: $P_1 \cap P_2 = \emptyset$ и $U_1 \cap U_2 = \{0\}$.

Утверждение. $P_1 \cap P_2 \neq \emptyset \iff \overline{p_1p_2} \in U_1 + U_2$

Доказательство.

$$\implies$$
 Пусть $p=p_1+u_1=p_2+u_2\Rightarrow \overline{p_1p_2}=u_1-u_2\in U_1+U_2$

 $\underline{\longleftarrow}$ Пусть существуют $u_i \in U_i, i = 1, 2 : \overline{p_1p_2} = u_1 - u_2$. Значит:

$$p_1 + u_1 = p_2 + u_2 \in P_1 \cap P_2$$

Определение. Аффинная оболочка подмножества $M\subset \mathbb{A}$ - это

$$Aff(M) \equiv \langle M \rangle := p_0 + \langle \overline{pq} \mid p, q \in M \rangle, \ p_0 \in M$$

Видно, что $\langle M \rangle$ - аффинная плоскость с направляющим подпространством

$$U_0 = \langle \overline{pq} : p, q \in M \rangle$$

Если $P = p_0 + U \supseteq M \Longrightarrow P \ni p_0 + \overline{pq}, \ p,q \in M \Longrightarrow P \supseteq \langle M \rangle$. Если P_1,P_2 -аффинные плоскости, то:

$$\langle P_1, P_2 \rangle = p_0 + \langle \overline{p_1 p_2}, U_1, U_2 \rangle$$

Теорема.

$$\dim \langle P_1, P_2 \rangle = \begin{cases} \dim(U_1 + U_2), & ecnu \ P_1 \cap P_2 \neq \emptyset, \\ \dim(U_1 + U_2) + 1, & ecnu \ P_1 \cap P_2 = \emptyset \end{cases}$$

Доказательство. $\langle P_1, P_2 \rangle$ имеет направляющее подпространство:

$$\langle \overline{p_1p_2}, U_1, U_2 \rangle, \ \forall p_1 \in P_1, \ p_2 \in P_2$$

$$\dim \langle \overline{p_1p_2}, U_1, U_2 \rangle = \begin{cases} \dim(U_1 + U_2), \ \text{если } \overline{p_1p_2} \in U_1 + U_2 \Longleftrightarrow P_1 \cap P_2 \neq \emptyset, \\ \dim(U_1 + U_2) + 1, \ \text{если } \overline{p_1p_2} \not\in U_1 + U_2. \end{cases}$$

22 Евклидовы аффинные пространства

Определение. Аффинное пространство (\mathbb{A} , \mathcal{E}) - евклидово, если \mathcal{E} - евклидово пространство (над \mathbb{R}), \mathcal{E} ассоциировано с пространством точек \mathbb{A} . Расстояние определяется как

$$\rho(p,q) = |\overline{pq}|$$

Для трех точек a,b,c угол между лучами (ab) и (ac) - это угол между векторами \overline{ab} и \overline{ac} (если они ненулевые).

Определение.

Расстояние от точки $p_1 \in \mathbb{A}$ до плоскости $P = p_0 + U, \ V \supset U \neq \{0\}.$ Либо $p_1 \in P$, либо $\overline{p_0p_1} \notin U$.

Можно рассматривать подпространство:

$$\widetilde{U} = \langle \overline{p_0 p_1} + U \rangle \supset V, \ \overline{p_0 p_1} = y + z, \ y \in U, \ z \in U^{\perp} \Longrightarrow \min |\overline{p_1 q}| = |z|$$

Определение. Параллелепипед с одной вершиной p_0 и ребрами a_1, \ldots, a_m , где $m \leq n, \ a_i \in \mathcal{E}$:

$$\Pi_{\langle p_0, a_1, \dots, a_m \rangle} = \{ p_0 + \sum_{i=1}^m \lambda_i a_i : 0 \le \lambda_i \le 1 \}$$

Определим m-мерный объем рекурсивно: для m=1:

$$V(\Pi_1) = |a_1|$$

$$V(\Pi_m) = (a_m)_{\perp} \cdot V_{\{p_0, a_1, \dots, a_{m-1}\}}$$

где $(a_m)_{\perp}$ - ортогональная составляющая ребра a_m отностительно подпространства $\langle a_1, \ldots, a_{m-1} \rangle$.

Пусть a_1, \ldots, a_m линейно независимы. Тогда:

$$V_{p_0,a_1,\dots,a_m} = \sqrt{|G_{\{a_1,\dots,a_m\}}|}$$

Можно ортогонализовать векторы a_1, \ldots, a_m , причем матрица перехода от a_1, \ldots, a_m к b_1, \ldots, b_m , где b_1, \ldots, b_m получены из алгоритма ортогонализации, выглядит так:

$$C = \begin{pmatrix} 1 & * \\ & \ddots & \\ 0 & & 1 \end{pmatrix}$$
$$|G_{\{a_1,\dots,a_m\}}| = |G_{\{b_1,\dots,b_m\}}| = \begin{vmatrix} |b_1^2| & & 0 \\ & & \ddots & \\ 0 & & |b_m^2| \end{vmatrix} = |b_1|^2 \cdot \dots \cdot |b_m|^2$$

Значит:

$$\rho(p_1, P) = \frac{\sqrt{|G_{\{a_1, \dots, a_m, \overline{p_0p_1}\}}|}}{\sqrt{|G_{\{a_1, \dots, a_m\}}|}}$$

Если $P_1 = p_1 + U_1, P_2 = p_2 + U_2$ - две аффинные плоскости в аффинном пространстве, то назовем:

$$\rho(P_1, P_2) = \inf\{|\overline{pq}| : p \in P_1, q \in P_2\}$$

Теорема. $\rho(P_1, P_2)$ равно длине ортогональной составляющей вектора $\overline{p_1p_2}$ относительно U_1+U_2

Замечание. Если $P_1 \cap P_2 \neq \emptyset$, то $\rho(P_1, P_2) = 0$, $\overline{p_1 p_2} \in U_1 + U_2$, так что $(p_1, p_2)_{\perp} = 0$, что не противоречит утверждению теоремы.

 \mathcal{A} оказательство. Обозначим $W=U_1+U_2$, тогда $\mathcal{E}=W\oplus W^\perp$. Обозначим

$$\overline{p_1 p_2} = v = v_{\parallel} + v_{\perp}, \ v_{\parallel} \in W, \ v_{\perp} \in W^{\perp}$$

Попробуем доказать, что существуют

$$a = p_1 + u_1^0 \in P_1, \ b = p_2 + u_2^0 \in P_2$$

такие, что $\overline{ab} = v_{\perp}$.

Выберем произвольные точки $x=p_1+u_1\in P_1,\ y=p_2+u_2\in P_2.$ Тогда:

$$\rho^{2}(x,y) = |\overline{yx}|^{2} = |\overline{p_{2}p_{1}} + u_{1} - u_{2}|^{2} = |v + u_{2} - u_{1}|^{2} = |(v_{\parallel} + u_{2} - u_{1}) + v_{\perp}|^{2} = |v_{\parallel} + u_{2} - u_{1}|^{2} + |v_{\perp}|^{2} \ge |v_{\perp}|^{2}$$

где $v_{\perp} \in (U_1 + U_2)^{\perp}$. Равенство достигается, если $v_{\parallel} = u_2 - u_1 \Rightarrow \exists \ u_1, u_2$ такие, что $a = p_1 + u_1, \ b = p_2 + u_2 : |\overline{ab}| = v_{\perp}$.

Следствие. Прямая $l = a + \langle \overline{ab} \rangle = (p_1 + u_1) + \langle (\overline{p_1p_2})_{\perp} \rangle$ является общим перпендикуляром этих двух плоскостей.

22.1 Аффинные отображения

Пусть (\mathbb{A}_1, V_1) и (\mathbb{A}_2, V_2) - аффинные пространства над одним и тем же полем.

Определение. Отображение $\Phi: \mathbb{A}_1 \to \mathbb{A}_2$ называется аффинно-линейным отображением, если существует линейное отображение $\varphi: V_1 \to V_2$ такое, что

$$\forall a, b \in \mathbb{A}_1 : \overline{\Phi(a)\Phi(b)} = \varphi(\overline{ab}) \tag{1}$$

Такое определение равносильно следующему:

$$\forall a, b \in \mathbb{A}_1: \ \Phi(b) = \Phi(a) + \varphi(\overline{ab}) \tag{2}$$

Если задано Φ и какая-то точка a, то φ определяется однозначно. Если $\overline{ab}=\overline{a_1b_1}=v$

$$\Phi(a_1) + \varphi'(v) = \Phi(b_1) = \Phi(a_1) + \varphi'(\overline{a_1b_1}) \Rightarrow \varphi = \varphi'$$

Утверждение.

1. Пусть

$$\mathbb{A}_1 \xrightarrow{\Phi_1} \mathbb{A}_2 \xrightarrow{\Phi_2} \mathbb{A}_3$$

где Φ_1,Φ_2 - аффинно-линейны, тогда

$$\Phi = \Phi_2 \cdot \Phi_1 : \mathbb{A}_1 \to \mathbb{A}_3$$

тоже аффинно-линейно с линейной частью $\varphi = \varphi_2 \cdot \varphi_1$

2. $\mathbb{A}_1 \xrightarrow{\Phi} \mathbb{A}_2$ биективно $\iff \varphi$ - биективно, при этом Φ^{-1} является аффинно-линейным с линейной частью φ^{-1} .

Координатная запись

Выберем систему координат с началом в точке O и базисом e

$$\forall b(x_1, \dots, x_n) = \overline{Ob}, \ \Phi(O) = O'(x_1^0, \dots, x_n^0)$$
$$\Phi(b) = \Phi(O) + \varphi(\overline{Ob})$$

Обозначим $\Phi(b)(y_1,\ldots,y_m)$, тогда

$$\begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} = \begin{pmatrix} x_1^0 \\ \vdots \\ x_m^0 \end{pmatrix} + A_{\varphi,e,f} \cdot \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$

где f - базис в V_2

$$\widetilde{A} = \begin{pmatrix} A_{\varphi} & X_0 \\ 0 \dots 0 & 1 \end{pmatrix}$$

$$(2) \iff \widetilde{Y} = \widetilde{A} \cdot \widetilde{X}$$

где

$$\widetilde{X} = \begin{pmatrix} X \\ 1 \end{pmatrix}, \widetilde{Y} = \begin{pmatrix} Y \\ 1 \end{pmatrix}$$

Подробная запись:

$$\begin{cases} y_1 = a_{11}x_1 + \dots + a_{1n}x_n + x_1^0, \\ \vdots \\ y_m = a_{m1}x_1 + \dots + a_{mn}x_n + x_m^0 \end{cases} \implies \begin{cases} dy_1 = a_{11}dx_1 + \dots + a_{1n}dx_n, \\ \vdots \\ dy_m = a_{m1}dx_1 + \dots + a_{mn}dx_n \end{cases}$$

Отсюда

$$\begin{pmatrix} dy_1 \\ \vdots \\ dy_m \end{pmatrix} = A_{\varphi} \cdot \begin{pmatrix} dx_1 \\ \vdots \\ dx_n \end{pmatrix}$$

Значит, A_{φ} действует на столбцы

$$\begin{pmatrix} dx_1 \\ \vdots \\ dx_n \end{pmatrix}$$

как оператор φ . Обозначим

$$DY = \begin{pmatrix} dy_1 \\ \vdots \\ dy_m \end{pmatrix}, \ D : \mathbb{F}^n \to \mathbb{F}^m$$

Утверждение.

1. Пусть

$$\mathbb{A}_1 \xrightarrow{\Phi_1} \mathbb{A}_2 \xrightarrow{\Phi_2} \mathbb{A}_3$$

где Φ_1,Φ_2 - аффинно-линейны, тогда

$$\Phi = \Phi_2 \cdot \Phi_1 : \ \mathbb{A}_1 \to \mathbb{A}_3$$

тоже аффинно-линейны, причем

$$D(\Phi_2 \cdot \Phi_1) = D\Phi_2 \cdot D\Phi_1 = \varphi_2 \cdot \varphi_1$$

2. Φ_1 - биективно $\iff \varphi_1$ - биективно, и линейная часть Φ_1^{-1} есть φ_1^{-1} Доказательство. 1. Пусть $b_1, a_1 \in \mathbb{A}_1$

$$\Phi_1(b_1) = \Phi_1(a_1) + \varphi_1(\overline{a_1b_1})$$

$$\Phi_2(\Phi_1(b_1)) = \Phi_2(\Phi_1(a_1)) + \varphi_2(\varphi_1(\overline{a_1b_1}))$$

2. Если φ_1 - биективно, то $\forall \ \overline{a_2b_2} \in V_2$ существует единственный вектор

$$\overline{a_1b_1} \in V_1 : \varphi(\overline{a_1b_1}) = \overline{a_2b_2}$$

Определим отображение

$$\Phi': \mathbb{A}_2 \to \mathbb{A}_1$$

$$\Phi'(a_2) = a_1, \ \Phi'(b_2) = \Phi'(a_2) + \varphi^{-1}(\overline{a_2b_2})$$

Значит, Φ' - аффинно-линейное отображение.

$$\Phi(a_1) = a_2, \ \Phi(b_1) = \Phi(a_1) + \varphi(\overline{a_1b_1}) = \Phi(a_1) + \overline{a_2b_2} = b_2$$
$$(\Phi'\Phi)(a_1) = \Phi'(a_2) = a_1 \Longrightarrow \Phi'\Phi = \mathrm{Id}_{\mathbb{A}_1}$$

Аналогично в другом порядке.

22.2 Аффинные преобразования

Определение. Пусть $\Phi : \mathbb{A} \to \mathbb{A}$ - аффинно-линейное преобразование. Если Φ биективно, то будем называть его просто аффинным.

Примеры.

1. Параллельный перенос на вектор $v \in V$:

$$\forall a \in \mathbb{A}: t_v(a) = a + v$$

ясно что

$$t_v^{-1} = t_{-v}, Dt_v = \text{Id}$$

2. Гомотетия с центром в точке O:

$$\forall v \in V: \ \Phi(O+v) = O + \lambda v$$

где $\lambda \neq 0$ - коэффициент гомотетии. Например, при $\lambda = -1$ - это центральная симметрия.

Теорема. Любое (биективное) аффинное преобразование Φ для любой точки $a \in A$ представляется единственным образом в виде композиции

$$\Phi = t_v \cdot \Psi$$

где Ψ - аффинное преобразование такое, что $\Psi(a)=a.$

Доказательство. Для заданной точки a обозначим $v:=\overline{a\Phi(a)}$. Рассмотрим преобразование $\Psi=t_{-v}\cdot\Phi$, тогда Ψ - аффинное.

$$\Psi(a) = \Phi(a) - v = a \Longrightarrow \Phi = t_v \cdot \Psi$$

Докажем единственность: Пусть

$$\Phi = t_v \cdot \Psi = t_{v'} \cdot \Psi', \ \Psi'(a) = a$$

значит,

$$t_{v-v'} = \Psi' \cdot \Psi^{-1}, \text{ T.K } \Psi'(a) = \Psi(a) = a$$

отсюда

$$\Psi' \cdot \Psi^{-1}(a) = a = a + (v - v') \Longrightarrow v' = v$$

следовательно,

$$\Psi' \cdot \Psi^{-1} = t_0 = \mathrm{Id}$$

Теорема. Для любых двух наборов точек общего положения $\{a_0, a_1, \ldots, a_n\}$ и $\{b_0, b_1, \ldots, b_n\}$ существует единственное аффинное преобразование $\Psi : \mathbb{A} \to \mathbb{A}$ n-мерного аффинного пространства такое, что

$$\Phi(a_i) = b_i, \ \forall i = 0, \dots, n$$

Доказательство. По условию $\{\overline{a_0a_1},\dots,\overline{a_0a_n}\}$ и $\{\overline{b_0b_1},\dots,\overline{b_0b_n}\}$ - базисы в ассоциированном с $\mathbb A$ векторном пространстве V. Значит, существует единственный линейный оператор $\varphi:V\to V$ такой, что

$$\varphi(\overline{a_0a_i}) = \overline{b_0b_i}, \ i = 0, \dots, n$$

Тогда $\Phi(a_0+v)=b_0+\varphi(v)$ - требуемое преобразование.

22.3 Ортогональные преобразования (движения, изометрии)

Определение. Пусть (\mathbb{A}, V) - аффинное евклидово пространство, то есть V - евклидово пространство.

Аффинное преобразование $\Phi: \mathbb{A} \to \mathbb{A}$ называется ортогональным или движением, если $\forall a,b \in \mathbb{A}$:

$$\rho(\Phi(a),\Phi(b)) = \rho(a,b), \text{ T.e } |\overline{\Phi(a),\Phi(b)}| = |\overline{ab}|$$

Упражнение. Доказать, что если преобразование $\Phi : \mathbb{A} \to \mathbb{A}$ сохраняет расстояния между точками, то оно является аффинным, то есть $\forall a$:

$$\Phi(a+v) = \Phi(a) + \varphi(v)$$

где φ - линейный оператор.

На этом основании можно называть Φ изометрией

3амечание. Если Φ - движение, то $D\Phi = \varphi$ - ортогональный оператор:

$$|\overline{\Phi(a)},\overline{\Phi(b)}| = |\overline{ab}|, \ \Phi(b) = \Phi(a) + \varphi(\overline{ab})$$

значит,

$$|\varphi(\overline{ab})| = |\overline{ab}|, \ b - a + v, \ \forall v \in V$$

следовательно, φ сохраняет длины векторов, а отсюда и скалярное произведение.

Запишем Ф в координатах в ортонормированной системе координат.

$$Y = X_0 + A_{\varphi} \cdot X, \ A_{\varphi}^T = A_{\varphi}^{-1} \Longrightarrow \det A_{\varphi} = \pm 1$$

поскольку

$$A_{\varphi}^{T} \cdot A_{\varphi} = E \Longrightarrow (\det A_{\varphi})^{2} = 1 \Longrightarrow \det A_{\varphi} = \pm 1$$

Определение. Движение называется собственным, если $\det A_{\varphi}=1$ и несобственным, если $\det A_{\varphi}=-1$

Замечание. (Уточнение к теореме о разложении: $\Phi = t_v \cdot \Psi$)

Для любого движения $\Phi: \mathbb{A} \to \mathbb{A}$ с линейной частью φ существует $u \in V$ такой, что

$$\Phi = t_u \cdot \Psi$$

причем $\varphi(u)=u$ (возможно, u=0) и Ψ имеет неподвижную точку.

Доказательство. Пусть $a \in \mathbb{A}$ - произвольная точка. Обозначим $v := \overline{a\Phi(a)}$. Пусть $\lambda = 1$ является собственным значением оператора φ , то есть:

$$U = \{u \in V : \varphi(u) = u\} \neq \{0\},\$$

Обозначим $W=U^{\perp}$, тогда

$$V = U \oplus W$$

и имеет место разложение v=u+w, где $\varphi(u)=u$, (w,u)=0. Определим $\Psi=t_{-u}\cdot\Phi$. Поищем для Ψ неподвижную точку в виде $b=a+\widetilde{w},\ \widetilde{w}\in W$. Вычислим $\Psi(b)=\Psi(a+\widetilde{w})$:

$$a + \widetilde{w} = \Psi(a + \widetilde{w}) = t_{-u}(\Phi(a) + \varphi(\widetilde{w})) = t_{-u}(a + v + \varphi(\widetilde{w})) =$$

$$= a + (v - u) + \varphi(\widetilde{w}) = a + w + \varphi(\widetilde{w}) = a + (w + \widetilde{w}) + (\varphi(\widetilde{w}) - \widetilde{w}) =$$

$$= a + \widetilde{w} + w + (\varphi - \operatorname{Id})(\widetilde{w})$$

Из полученного равенства $(\varphi - \operatorname{Id})(\widetilde{w}) = -w$. Так как $\varphi|_W$ не имеет собственного значения 1, $(\varphi - \operatorname{Id})|_W$ невырожденный, а значит обратимый оператор. Тогда

 $\widetilde{w} = -(\varphi - \mathrm{Id})^{-1}(w)$, и тогда $a + \widetilde{w}$ - неподвижная точка для Ψ . Если $\lambda = 1$ не является собственным значением, то рассуждения сохраняют силу с U = 0 и $W = V, t_u = \mathrm{Id}, \ \Psi = \Phi$ имеет неподвижную точку. \square

Наблюдение: Если $\lambda=1$ - не собственное значение оператора φ , то Φ имеет неподвижную точку. Если же $\lambda=1$ - собственное значение, u_0 - собственный вектор: $\varphi(u_0)=u_0$, то все точки прямой

$$l = b + \langle u_0 \rangle$$

неподвижны, а Ψ определяется своим действием в гиперплоскости, ортогональной этой прямой:

$$P = b + \langle u_0 \rangle^{\perp}$$

Классификация движений при n=1,2,3

- n=1: Φ либо параллельный перенос, либо центральная симметрия относительно неподвижной точки.
- n = 2: Координатная запись одна из следующих:
 - 1. Параллельный перенос:

$$\begin{cases} x' = x + a, \\ y' = y + b \end{cases}$$

2. Композиция параллельного переноса вдоль оси и симметрии относительно оси:

$$\begin{cases} x' = x + a, \\ y' = -y + b \end{cases} \implies \begin{cases} \widetilde{x}' = x' + a, \\ \widetilde{y}' = -y' \end{cases}$$

3. Поворот:

$$\begin{cases} x' = x \cos \alpha - y \sin \alpha + a, \\ y' = x \sin \alpha + y \cos \alpha + b \end{cases}$$

Согласно общей теореме, существует неподвижная точка такая, что после переноса в эту точку остается только поворот.

n=3: Четыре варианта в каноническом базисе для оператора φ :

1. Параллельный перенос $(\lambda_{1,2,3}=1)$

$$\begin{cases} x' = x + a, \\ y' = y + b, \\ z' = z + c \end{cases}$$

2. $\lambda_{1,2} = 1, \lambda_3 = -1$

$$\begin{cases} x' = x + a, \\ y' = y + b, \\ z' = -z + c \end{cases}$$

Можно заменить координаты $(x,y,z) \to (\xi,\eta,\zeta)$ и получить

$$\begin{cases} \xi' = \xi + a, \\ \eta' = \eta + b, \\ \zeta' = -\zeta \end{cases}$$

- композиция ортогональной симметрии относительно плоскости $\xi = \eta = 0$ и параллельного переноса на вектор (a,b,0), параллельно этой плоскости.

3.

$$\begin{cases} x' = x \cos \alpha - y \sin \alpha + a, \\ y' = x \sin \alpha + y \cos \alpha + b, \\ z' = z + c \end{cases}$$

Можно сделать замену координат $(x, y, z) \to (\xi, \eta, \zeta)$, чтобы осталось (упражнение):

$$\begin{cases} \xi' = \xi \cos \alpha - \eta \sin \alpha, \\ \eta' = \xi \sin \alpha + \eta \cos \alpha, \\ \zeta' = \zeta + c \end{cases}$$

- композиция поворота вокруг прямой, параллельной (0,0,1), на угол α и переноса на вектор (0,0,c) вдоль этой прямой (винтовое движение).

4.

$$\begin{cases} x' = x \cos \alpha - y \sin \alpha + a, \\ y' = x \sin \alpha + y \cos \alpha + b, \\ z' = -z + c \end{cases}$$

Можно сделать замену координат $(x, y, z) \to (\xi, \eta, \zeta)$, чтобы осталось:

$$\begin{cases} \xi' = \xi \cos \alpha - \eta \sin \alpha, \\ \eta' = \xi \sin \alpha + \eta \cos \alpha, \\ \zeta' = -\zeta + c \end{cases}$$

что является композицией симметрии относительно плоскости $\zeta=c$, повотора вокруг прямой, перпендикулярной этой плоскости, и параллельного переноса на вектор (0,0,c), который параллелен этой плоскости.

23 Тензоры

23.1 Основные определения и первоначальные конструкции

Если векторное пространство V над F конечномерно, то $(V^*)^* \simeq V$. Соглашение: векторное пространство V отождествляется с пространством линейных функций на V^* . Пока что будем считать, что поле F - произвольное.

Определение. Пусть $p,q \in \mathbb{N}_0$. Тензор типа (p,q) - это полилинейная функция

$$f: \underbrace{V \times \cdots \times V}_{p} \times \underbrace{V^{*} \times \cdots \times V^{*}}_{q} \to F$$

p - ковариантная валентность тензора f

q - контрвариантная валентность тензора f

p+q - ранг тензора f.

Множество всех тензоров типа (p,q) обозначают

$$T_p^q(v) = T_p^q$$

По определению $T_0^0 := F$.

Линейные операции на T_p^q

1. Сложение:

$$f_1(v_1, \dots, v_p, u_1, \dots, u_q) + f_2(v_1, \dots, v_p, u_1, \dots, u_q) =$$

= $(f_1 + f_2)(v_1, \dots, v_p, u_1, \dots, u_q)$

2. Умножение на $\lambda \in F$:

$$(\lambda f)(v_1,\ldots,v_p,u_1,\ldots,u_q) = \lambda f(v_1,\ldots,v_p,u_1,\ldots,u_q)$$

3. Произведение тензоров:

Пусть $f_1 \in T_p^q(V), f_2 \in T_r^s(V)$, определим функцию:

$$(f_1 \otimes f_2)(v_1, \dots, v_p, v_{p+1}, \dots, v_{p+r}, u_1, \dots, u_q, u_{q+1}, \dots, u_{q+s}) =$$

$$= f_1(v_1, \dots, v_p, u_1, \dots, u_q) \cdot f_2(v_{p+1}, \dots, v_{p+r}, u_{q+1}, \dots, u_{q+s})$$

Утверждение. T_p^q с введенными операциями - векторное пространство над полем F.

Утверждение.

- 1. $f_1 \otimes f_2 \in T^{q+s}_{p+r}(V)$
- 2. Операция \otimes ассоциативна
- 3. $(\alpha_1 f_1 + \alpha_2 f_2) \otimes f_3 = \alpha_1 (f_1 \otimes f_3) + \alpha_2 (f_2 \otimes f_3)$

Отождествление тензоров малых валентностей с известными объектами из линейной алгебры

Теорема.

1.
$$T_1^0(V) = V^*$$

2.
$$T_0^1(V) = (V^*)^* \equiv V$$

- 3. $T_2^0(V)$ билинейные функции
- 4. $T_1^1(V) \equiv L(V)$ линейные операторы на V.

Доказательство. Докажем, что тензор типа (1,1) - это линейный оператор. Пусть $f \in T^1_1(V)$, то есть f = f(v,u), где $v \in V$, $u \in V^*$. Изоморфизм между V и V^{**} задавался правилом:

$$\forall v \in V: arphi_v$$
 - линейная функция на $V^*: \forall u \in V^* \ \ arphi_v(u) = u(v)$

При фиксированном v f(v,u) - линейная функция на V^* , а значит,

$$\exists y_v = \varphi^{-1}(f(v, u))$$

где $y_v \in V$. Соответствие $v \xrightarrow{\psi} y_v$ является линейным оператором на V, так как

$$f(v_1 + v_2, u) = u(y_{v_1 + v_2})$$

И

$$f(v_1 + v_2, u) = f(v_1, u) + f(v_2, u) = u(y_{v_1}) + u(y_{v_2}) = u(y_{v_1} + y_{v_2})$$

Также очевидно, что

$$\psi(\lambda v) = \lambda \psi(v)$$

Обратно: если $\varphi:V\to V$ - линейный оператор, то $f(v,u):=u(\varphi(v))$ - функция, линейная по v и u, то есть $f\in T^1_1(V)$. Значит, можем установить изоморфизм

$$T_1^1(V) \simeq L(V)$$

Правило Эйнштейна

Некоторые индексы пишутся снизу, а некоторые сверху: например, базисные векторы записываются как e_i (= $(e_1, ..., e_n)$), а координаты векторов имеют верхние индексы, а также e^i (= $(e^1, ..., e^n)$) - дуальный базис.

Также опускается знак суммирования, если один и тот же индекс повторяется сверху и снизу: $x = x^i e_i$ подразумевает $\sum_{i=1}^n x_i e_i$.

Матрицы линейных операторов по этому правилу можно записывать так: $A_{\varphi}=(a^i_j),$ где i - номер строки, j - номер столбца. Также:

- 1. $\operatorname{tr} A_{\varphi} = a_i^i$ (след матрицы);
- 2. $Y = A_{\varphi}X \Longrightarrow y^i = a^i_j x^j$ (умножение матрицы на вектор);
- 3. $b(x,y) = b_{ij}x^{i}y^{j}$ (билинейная форма)

Построение базиса в пространстве $T_p^q(V)$

Для любых значений $\{i_1,\ldots i_p,j_1,\ldots,j_q\}\in\{1,\ldots,n\}$ и чисел $p,q\in\mathbb{N}_0$ можно определить тензоры:

$$e^{i_1} \otimes \cdots \otimes e^{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_q} \in T_p^q(V)$$

$$(e^{i_1} \otimes ... \otimes e^{i_p} \otimes e_{j_1} \otimes ... \otimes e_{j_q})(e_{k_1}, ..., e_{k_p}, e^{l_1}, ..., e^{l_q}) =$$

$$= e^{i_1}(e_{k_1}) \cdot ... \cdot e^{i_p}(e_{k_p}) \cdot e_{j_1}(e^{l_1}) \cdot ... \cdot e_{j_q}(e^{l_q}) = \delta_{k_1}^{i_1} \cdot ... \cdot \delta_{k_p}^{i_p} \cdot \delta_{j_1}^{l_1} \cdot ... \cdot \delta_{j_q}^{l_q} \quad (*)$$

Теорема. Тензоры вида $\{e^{i_1} \otimes \cdots \otimes e^{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_p}\}$ образуют базис в пространстве $T_p^q(V)$, причем

$$\dim (T_n^q)(V) = n^{p+q}$$

Доказательство. Пусть $f \in T_p^q(V)$. Вычислим $f(v_1, ..., v_p; u^1, ..., u^q)$:

$$v_i = v_i^{k_i} e_{k_i}, \ i = 1, ..., p; u^j = u_{l_i}^j e^{l_j}, \ j = 1, ..., q;$$

Тогда:

$$f(..., v_i^{k_i} e_{k_i}, ...; ..., u_{l_j}^j e^{l_j}, ...) = f(e_{k_1}, ..., e_{k_p}; e^{l_1}, ..., e^{l_q}) v_1^{k_1} ... v_p^{k_p} u_{l_1}^1 ... u_{l_q}^q =$$

$$= f(e_{k_1}, ..., e_{k_p}; e^{l_1}, ..., e^{l_q}) e^{k_1} \otimes ... \otimes e^{k_p} \otimes e_{l_1} \otimes ... \otimes e_{l_q}(v_1, ..., v_p; u^1, ..., u^q)$$

в силу равенства (*). Это значит, что

$$f = f(e_{k_1}, ..., e_{k_p}; e^{l_1}, ..., e^{l_q})(e^{k_1} \otimes ... \otimes e^{k_p} \otimes e_{l_1} \otimes ... \otimes e_{l_q})$$

Коэффициенты, очевидно, определены однозначно при фиксированном базисе $e_1, ..., e_n$, а значит, $\{e^{i_1} \otimes \cdots \otimes e^{i_p} \otimes e_{j_1} \otimes \cdots \otimes e_{j_p}\}$ - базис в пространстве $T_p^q(V)$. \square

Определение. Матрицей тензора f называется матрица $A^{j_1,\dots,j_q}_{i_1,\dots,i_p}$ такая, что:

$$a_{k_1,...,k_p}^{l_1,...,l_q} := f(e_{k_1},...,e_{k_p},e^{l_1},...,e^{l_q})$$

Закон изменения матрицы координат тензора при замене базиса

Пусть
$$(e'_1,...,e'_n)=(e_1,...,e_n)C,$$
 $\begin{pmatrix} e'^1\\ \vdots\\ e'^n \end{pmatrix}=D\begin{pmatrix} e^1\\ \vdots\\ e^n \end{pmatrix}.$ Тогда:

$$DC = D \begin{pmatrix} e^1 \\ \vdots \\ e^n \end{pmatrix} (e_1, ..., e_n)C = \begin{pmatrix} e'^1 \\ \vdots \\ e'^n \end{pmatrix} (e'_1, ..., e'_n) = E \Rightarrow D = C^{-1}$$

Отсюда:

$$f = A_{i_1,...,i_p}^{j_1,...,j_q} x_1^{i_1} ... x_p^{i_p} u_{j_1}^1 ... u_{j_q}^q$$
$$x_k^{i_k} = c_{i'_k}^{i_k} x_k'^{i'_k}; \quad u_{j_l}^l = d_{j_l}^{j'_l} u_{j'_l}'^l$$

Отсюда новые коэффициенты линейной формы:

$$(u'_1, ..., u'_n) = (u_1, ..., u_n)C \Longrightarrow (u_1, ..., u_n) = (u'_1, ..., u'_n)D$$

Итак, в новом базисе

$$f = A^{j_1, \dots, j_q}_{i_1, \dots, i_p} c^{i_1}_{i'_1} \dots c^{i_p}_{i'_p} d^{j'_1}_{j_1} \dots d^{j'_q}_{j_q} {x'}^{i'_1}_1 \dots {x'}^{i'_p}_p {u'}^1_{j'_1} \dots {u'}^q_{j'_q}$$

Пупупу - согласен с Егором...

23.2 Свёртка тензора

Примеры.

- 1. $A = a_j^i \in T_1^1(V)$: ${\rm tr} A = a_i^i$ Из тензора a_j^i получили тензор ${\rm tr} A \in T_0^0$.
- 2. Действие оператора на вектор, т.е. умножение матрицы на столбец:

$$A = a_k^i, \ x = x^j \Longrightarrow A \otimes X = a_k^i x^j, \ j := k \Longrightarrow a_k^i x^k$$

 $A\in T^1_1, X\in T^1_0\Longrightarrow A\otimes X\in T^2_1$ - из него получили тензор $\in T^1_0.$

3. Произведение матриц:

$$A = a_k^i, \ B = b_j^l \Longrightarrow A \otimes B = a_k^i b_j^l, \ l := k \Longrightarrow a_k^i b_j^k = (AB)_j^i$$

Из тензора $\in T_2^2$ получили тензор T_1^1 .

Определение. Пусть $f \in T_p^q(V)$, причём $p \geqslant 1, q \geqslant 1$, т.е. $f(x_1, ..., x_p, u^1, ..., u^q)$. Выберем пару индексов $s \in \{1, ..., p\}, r \in \{1, ..., q\}$ и рассмотрим функцию

$$\overline{f}(x_1, ..., \hat{x}_s, ..., x_p, u^1, ..., \hat{u}^r, ..., u^q) := \sum_{k=1}^n f(x_1, ..., \underbrace{e_k}_s, ..., x_p, u^1, ..., \underbrace{e^k}_r, ..., u^q)$$

Ясно, что $\overline{f} \in T_{p-1}^{q-1}$.

Типичное обозначение: $\overline{f} = \operatorname{tr}_s^r(f)$

В матрицах: $\overline{A}_{\dots}^{\dots}$ - матрица тензора \overline{f} , тогда

$$\overline{A}_{i_1,\dots,\hat{i}_s,\dots i_p}^{j_1,\dots,\hat{j}_r,\dots,j_q} = A_{i_1,\dots,k,\dots i_p}^{j_1,\dots,k,\dots,j_q}$$

Если p=q, то тензор можно свернуть по всем парам индексов и получить инвариант (тензор $\in T_0^0$).

Можно сначала рассмотреть произведение тензоров, а после этого свернуть получившийся тензор.

Пример. Пусть \mathcal{A} - конечномерная (как векторное пространство) алгебра с операциями $+, \lambda \cdot, \cdot, \ e_1, ..., e_n$ - линейный базис (базис в.п.).

Тогда $\forall i, je_ie_j = a_{ij}^k e_k$, где a_{ij}^k - структурные константы - составляют структурный тензор типа (2,1).

Упражнение. Найдите структурный тензор для $M_n(F)$.

23.3 Симметрические, кососимметрические тензоры

Определение. Тензор $f \in T^0_p(V)$ - симметрический, если $\forall x_1,...,x_p \in V, \sigma \in S_p$

$$f(x_{\sigma(1)}, ..., x_{\sigma(p)}) = f(x_1, ..., x_p)$$
 (1)

Аналогично, если $g\in T^q_0(V)$, то g - симметрический, если $\forall u^1,...,u^q\in V^*,\sigma\in S_p$

$$f(u^{\sigma(1)}, ..., u^{\sigma(p)}) = f(u^1, ..., u^p)$$
 (1')

Тензор $f \in T^0_p(V)$ (char $F \neq 2$) - кососимметрический, если $\forall x_1,...,x_p \in V, \sigma \in S_p$

$$f(x_{\sigma(1)}, ..., x_{\sigma(p)}) = \operatorname{sgn}(\sigma) f(x_1, ..., x_p)$$
 (2)

Аналогично для $T_0^q(V)$. Обозначения:

 T_p^+ - симметрические тензоры типа (p, 0);

 $T^{q,-}$, либо $\Lambda^q(V^*)$ - кососимметрические тензоры типа $(0,\,{\bf q})$

Очевидно, для определения кососимметричности достаточно выполнения условия (2) только для транспозиций.

Очевидно, что $T_2^0 = T_2^+ \oplus T_2^-$

Упражнение. Доказать, что такого разложения для T_p^0 нет при p>2.

Тензорная алгебра пространства V

Определим $T(V) = \bigoplus_{q=0}^{\infty} T_0^q(V)$ - множество финитных последовательностей тензоров $(f_0,...,f_s,0,...)$. $f_i \in T_0^i, f_j \in T_0^j \Longrightarrow f_i \otimes f_j \in T_0^{i+j}$.

Последовательности перемножаются по правилу перемножения многочленов (от одной переменной).

Симметризация и альтернирование

Далее char F = 0.

1. Симметризация: для тензора $f \in T_p^0(V)$:

$$Sym(f)(x_1, ..., x_p) = \frac{1}{p!} \sum_{\sigma \in S_n} f(x_{\sigma(1)}, ..., x_{\sigma(p)})$$

Свойства:

(a) Sym : $T_p^0(V) \to T_p^0(V)$ - линейное отображение, Im Sym = $T_p^+(V)$;

(b)
$$\operatorname{Sym}(\operatorname{Sym}(f)) = \operatorname{Sym}(f)$$
, r.e. $\operatorname{Sym}^2 = \operatorname{Sym}$.

2. Альтернирование: для тензора $f \in T_p^0(V)$:

$$Alt(f)(x_1, ..., x_p) = \frac{1}{p!} \sum_{\sigma \in S_p} sgn(\sigma) f(x_{\sigma(1)}, ..., x_{\sigma(p)})$$

 $\mathrm{Alt}(f)$ - кососимметрический тензор, обозначим $g=\mathrm{Alt}(f)$ - полилинейная функция $\in T^0_p(V)$.

Тогда $g(x_1,...,x_p); \ \forall \pi \in S_p$ рассмотрим

$$g(x_{\pi(1)}, ..., x_{\pi(p)}) = \frac{1}{p!} \sum_{\sigma \in S_p} \operatorname{sgn}(\sigma) f(x_{\sigma(\pi(1))}, ..., x_{\sigma(\pi(p))}) =$$

$$= \frac{1}{p!} \operatorname{sgn}(\sigma) \sum_{\tau \in S_p} \operatorname{sgn}(\tau) f(x_{\tau(1)}, ..., x_{\tau(p)}) = \operatorname{sgn}(\pi) g(x_1, ..., x_p)$$

Свойства:

- (a) Alt : $T_p^0(V) \to T_p^0(V)$ линейное отображение, Im Alt = Λ_p
- (b) $Alt^2 = Alt$.

Внешнее произведение кососимметрических тензоров

Определение. Пусть $f\in T^0_p, g\in T^0_r$. Тогда $\mathrm{Alt}(f)\in\Lambda_p,\ \mathrm{Alt}(g)\in\Lambda_r,$ и $f\wedge g:=\mathrm{Alt}(f\otimes g)\in\Lambda_{p+r}$

3амечание. Если f,g кососимметрические, то $f\otimes g$ не обязано быть кососимметрическим.

Из определения следует, что $\Lambda_p \wedge \Lambda_q \subseteq \Lambda_{p+q}$

(Вообще говоря, внешнее произведение существует для произвольных тензоров, но в данном курсе операции внешнего/внутреннего произведения рассматриваются исключительно на кососимметрических/симметрических тензорах соответственно)

Пусть $x_i = x_i^j e_i, i = 1, ..., q = n$. Вычислим $x_1 \wedge ... \wedge x_n$:

$$x_1 \wedge ... \wedge x_n = (x_1^{j_1} e_{j_1}) \wedge (x_2^{j_2} e_{j_2}) \wedge ... \wedge (x_n^{j_n} e_{j_n}) = x_1^{j_1} \cdot ... \cdot x_n^{j_n} (e_{j_1} \wedge ... \wedge e_{j_n})$$

Также $e_{j_1} \wedge ... \wedge e_{j_n} = 0$, если $\exists j_k = j_l$. Остаются только слагаемые, в которых $\{j_1,...,j_n\} = \{1,..,n\}$, поэтому

$$x_1^{j_1} \cdot \dots \cdot x_n^{j_n}(e_{j_1} \wedge \dots \wedge e_{j_n}) = (\operatorname{sgn}(j_1 \dots j_n) x_1^{j_1} \cdot \dots \cdot x_n^{j_n}) e_1 \wedge \dots \wedge e_n = \begin{vmatrix} x_1^1 & \dots & x_n^1 \\ \vdots & & \vdots \\ x_1^n & \dots & x_n^n \end{vmatrix} e_1 \wedge \dots \wedge e_n$$

Очевидно, что существует только одномерное подпространство, содержащее $x_1 \wedge ... \wedge x_n \forall x_i \in V$, т.е. $\dim \Lambda^n(V) = n$.

Рассмотрим теперь $\Lambda^q(V)$. Оно содержит произведения $e_{j_1} \wedge ... \wedge e_{j_q}$, причём они линейно независимы и любой тензор типа Λ^q линейно выражается через них $\Longrightarrow \dim \Lambda^q(V) = C_n^q$.

Обозначим
$$\Lambda(V) = \bigoplus_{p=0}^{\infty} \Lambda_p = \{(f_0, f_1..., f_n) | f_i = \Lambda^i(V)\} \Longrightarrow \dim \Lambda(V) = 2^n.$$

 $\Lambda(V)$ называется внешней алгеброй пространства V или алгеброй Грассмана.

Внутреннее произведение симметрических тензоров

Обозначим
$$S(V) = \bigoplus_{p=0}^{\infty} T_p^+(V)$$
.

В качестве операции умножения используем операцию внутреннего произведения:

$$f \vee g = \operatorname{Sym}(f \otimes g)$$

Несложно показать, что данная операция ассоциативна, дистрибутивна со сложением и коммутативна.

Тензоры $e^{j_1} \vee ... \vee e^{j_p} \in T_p^+(V)$ (допускается равенство индексов). При этом

$$\forall u \in T_p^0(V) \quad u = u_{i_1, \dots, i_p} e^{i_1} \otimes \dots \otimes e^{i_p}$$

Если $u \in T_p^+$, то

$$u = \text{Sym}(u) = u_{i_1,...,i_p} e^{i_1} \lor ... \lor e^{i_p} \Longrightarrow T_p^+ = \langle e^{i_1} \lor ... \lor e^{i_p} | i_1,...,i_p \in \{1,...,n\} \rangle$$

Также из линейной независимости $e^{i_1} \otimes ... \otimes e^{i_p}$ следует линейная независимость тензоров $e^{i_1} \vee ... \vee e^{i_p}$

Сопоставим $e^1 \leftrightarrow x_1, ..., e^n \leftrightarrow x_n$, где $x_1, ..., x_n$ - коммутирующие независимые переменные. Получаем биекцию $T_p^+(V) \leftrightarrow \{\sum a_{i_1,...,i_k} x_1^{i_1}...x_n^{i_n} | \sum_{k=1}^n i_k = p \}$ (операция внутреннего произведения в этом случае сопоставляется операции умножения: $e^{i_1} \lor e^{i_2} \leftrightarrow x_{i_1} \cdot x_{i_2}$)

Вычислим размерность пространства однородных многочленов степени p. Для этого необходимо подсчитать количество выборок $i_1, ..., i_p$ с повторениями из $\{1, ..., n\}$ без учёта порядка. Для этого воспользуемся методом шаров и перегородок - пусть шарами являются числа 1, ..., n, а перегородками - элементы выборки, причём i_k равен числу, соответствующему ближайшему слева шару от перегородки i_k . Тогда шаров n, перегородок p, причём первый элемент строки - не перегородка, т.е. индексы не принимают значение 0. Тогда всего способов C_{n+p-1}^p (выбираем p элементов как перегородки из n+p-1 элемента) $\Longrightarrow \dim T_p^+ = C_{n+p-1}^p$

23.4 Тензоры на евклидовом пространстве

Скалярное произведение - тензор типа (2, 0): $(x, y) = g_{ij}x^ix^j$. g_{ij} - метрический тензор.

Далее полагаем базис ортонормированным.

Обозначим $G^{-1} = g^{kl}$. Тогда $G^{-1}G = E \Leftrightarrow g^{kl}g_{lj} = \delta^k_j$. g^{kl} называется контравариантным метрическим тензором.

Рассмотрим вектор x^i (типа (0,1)) и свёртку $g_{ij}x^j=a_i$ - это линейная функция, т.е. тензор типа (1,0). В результате верхний индекс переместился вниз:

$$V_i \longrightarrow V_i^* : x_i \rightarrowtail g_{ij}x^i = a_j$$

- изоморфизм между V и V^* . Аналогично можно рассмотреть свёртку $g^{ij}a_j=y^i$ - индекс поднимается наверх. Эти операции, очевидно, взаимно обратны: $g_{ij}(g^{ij}a_j)=(g_{ij}g^{ij})a_j=a_j$.

Общий случай: пусть $q\geqslant 1,\, f\in T^q_p(V)$ - тензор, $A^{j_1,\dots,j_q}_{i_1,\dots,i_p}$ - его матрица. Рассмотрим свёртку

$$g_{ij}A_{i_1,\dots,i_s,\dots,i_p}^{j_1,\dots,j_q} = \tilde{A}_{i_1,\dots,i_s,\dots,i_p,i}^{j_1,\dots,j_{k-1},j_{k+1},\dots,j_q} \in T_{p+1}^{q-1}$$

- операция опускания индекса тензора. Аналогично, свёртка

$$g^{ij}A^{j_1,\dots,j_k,\dots,j_q}_{i_1,\dots,\underbrace{i},\dots,i_p} = \tilde{\tilde{A}}^{j_1,\dots,j_{k-1},j_{k+1},\dots,j_q,j}_{i_1,\dots,i_{s-1},i_{s+1},\dots,i_p} \in T^{q+1}_{p-1}$$

- операция поднятия индекса тензора (для $p \geqslant 1$).

24 Факультативный материал

24.1 Попарно коммутирующие линейные операторы

Пусть $\varphi_1, \varphi_2 : V \to V$ над полем \mathbb{F} и $\varphi_1 \varphi_2 = \varphi_2 \varphi_1$. Если $\varphi_1(U) \subseteq U$, то $\varphi_2(U) \subseteq U$, где U — собственное подпространство для φ_1 , то есть $\varphi_1(u) = \lambda_1 u \ \forall u \in U$.

Возьмём $u \in U \Longrightarrow \varphi_1(u) \in U$.

$$\varphi_1(\varphi_2(u)) = \varphi_2(\varphi_1(u)) = \lambda \varphi_2(u)$$

 $\Longrightarrow \varphi_2(u)$ - собственный вектор для $\varphi_1 \Longrightarrow \varphi_2(u) \in U$.

Теорема. Если $\{\varphi_i \mid i \in I\}$ - семейство попарно коммутирующих операторов в пространстве V над алгебраически замкнутым полем \mathbb{F} , $\dim V < \infty$, то все φ_i имеют общий собственный вектор.

Доказательство. Индукция по $n = \dim V$.

$$n = 1$$
: $\forall i \ \varphi_i(v) = \lambda_i v, \ \forall v \neq 0.$

n>1: Предположение индукции: в пространстве $U, 0<\dim U<\dim V$ у попарно коммутирующих операторов есть общий собственный вектор. Если $\forall i\in I,$ $\varphi_i=\lambda_i Id\Longrightarrow$ любой ненулевой вектор - собственный для всех $\varphi_i.$

Если существует φ_1 - нескалярный, он имеет собственное значение λ_1 и $U = V_{\lambda_1}$ - собственное подпространство для φ_1 , то $\forall i \in I \ U$ инвариантно относительно φ_i , причём $0 < \dim U < \dim V \Longrightarrow$ у операторов $\varphi_i|_U$ есть общий собственный вектор, исходя из предположения индукции (включая φ_1 , по построению).

Следствие.

- 1. Если G коммутативная группа линейных операторов в пространстве $V, \overline{\mathbb{F}} = \mathbb{F}$ (то есть \mathbb{F} алгебраически замкнуто), то все элементы этой группы имеют общий собственный вектор.
- 2. Если в V не существует инвариантного подпространства относительно всех $q \in G$, кроме $\{0\}$ и V, то $\dim V = 1$.

По теореме, если v_0 - собственный вектор $\forall g \in G$, то подпространство $\langle v_0 \rangle$ инвариантно $\forall g \in G \Longrightarrow$ по условию $2 \Longrightarrow \langle v_0 \rangle = V$.

24.2 Некоторые группы линейных и аффинных операторов

Определение. Множество G называется группой, если на G задана бинарная операция:

$$\forall (a,b) \in G \times G \longmapsto a \circ b \in G :$$

- 1. операция ассоциативна;
- 2. $\exists e \in G : eg = ge = g \ \forall g \in G;$
- 3. $\forall g \in G \ \exists g^{-1} \in G : g^{-1}g = gg^{-1} = e$.

Более того, G коммутативна, если $\forall g_1, g_2 \in G : g_1g_2 = g_2g_1$.

Мы будем рассматривать $G\subseteq GL(V)$, где GL(V) - множество обратимых линейных операторов.

Пример. Множество всех обратимых линейных операторов на V с операцией « \circ » - группа.

Знаем: если φ, ψ - линейные операторы, то $\varphi \circ \psi$ - тоже, $e = \mathrm{Id}$ - тождественный оператор. Если φ - обратимый линейный оператор, то есть $\varphi \in GL(V)$, то $\varphi^{-1} \in GL(V)$.

Определение. Подмножество $H \subseteq G$ - подгруппа группы G, если:

- 1. $H \neq \emptyset$;
- $2. \ \forall h_1, h_2 \in H \Longrightarrow h_1 \cdot h_2 \in H;$
- 3. $\forall h \in H \Longrightarrow h^{-1} \in H \Longrightarrow hh^{-1} = e_G \in H$.

Определение. Отображение $\varphi: G_1 \to G_2$ называется гомоморфизмом, если:

$$\forall a,b \in G : \varphi(ab) = \varphi(a)\varphi(b)$$

Определение. Отображение φ - изоморфизм, если φ - биективный гомоморфизм.

Обозначение: $G_1 \cong G_2$ - изоморфны, если существует изоморфизм $\varphi: G_1 \to G_2$.

Пример. Обозначим $GL(n,\mathbb{F})$ - множество всех матриц A над \mathbb{F} порядка n с $\det A \neq 0; GL(n,\mathbb{F})$ - группа с операцией умножения матриц.

Если $\dim V = n$, в V фиксируем базис $e = (e_1, \ldots, e_n)$, то $\forall \varphi \in GL(V)$, $\varphi \longleftrightarrow A_{\varphi} \in GL(n, \mathbb{F})$ и $A_{\varphi\psi} = A_{\varphi}A_{\psi} \Longrightarrow$ группы GL(V) и $GL(n, \mathbb{F})$ изоморфны. Рассмотрим некоторые подгруппы в $GL(n, \mathbb{F})$:

$$SL(n, \mathbb{F}) = \{ A \in GL(n, \mathbb{F}) \mid \det A = 1 \} -$$

подгруппа в группе $GL(n, \mathbb{F})$.

 $GL(n,\mathbb{F})$ 0 полная (= общая) линейная группа, $SL(n,\mathbb{F})$ - специальная линейная группа.

24.3 Группы, сохраняющие билинейную форму

Определение. Билинейная функция на V f(x,y) инвариантна относительно оператора $\varphi:V\to V$ (то есть φ сохраняет эту билинейную форму), если

$$\forall x, y \in V : f(\varphi(x), \varphi(y)) = f(x, y).$$

В частности, если f(x,y) - скалярное произведение, то φ — ортогональный оператор.

Лемма. Множество $G_f = \{ \varphi \in GL(V) \}$, где φ сохраняет форму f - подгруппа в GL(V).

Доказательство. $Id \in G_f$; если φ_1, φ_2 таковы, что

$$f(\varphi(x), \varphi(y)) = f(x, y),$$

TO

$$f(\varphi_1(\varphi_2(x)), \varphi_1(\varphi_2(y))) = f(\varphi_2(x), \varphi_2(y)) = f(x, y).$$

Если $\varphi \in G_f$, то $\varphi^{-1} \in G_f$.

Проверим, что $f(\varphi(x), \varphi(y)) = f(x, y)$, где $x' = \varphi(x)$, $y' = \varphi(y)$. Тогда:

$$x = \varphi^{-1}(x'), \ y = \varphi^{-1}(y')$$

$$f(x', y') = f(\varphi^{-1}(x'), \varphi^{-1}(y')),$$

так как φ биективно, а x', y' любые. Следовательно, $\varphi^{-1} \in G_f$.

Если V - евклидово пространство, f=(x,y), то G_f - группа всех ортогональных операторов. Обозначение: O(V) - ортогональная группа.

Если в V выбрать ортонормированный базис, то в нём $\forall \varphi \in O(V), \varphi \longleftrightarrow A_{\varphi}$ - ортогональная матрица и $O(n,\mathbb{R})$ - группа ортогональных матриц.

Таким образом, $O(V) \cong O(n, \mathbb{R})$. Введём следующую группу:

$$O(n, \mathbb{R}) \cap SL(n, \mathbb{R}) = SO(n, \mathbb{R}) -$$

специальная ортогональная группа.

При n=3 получается группа SO(3) - группа вращения трёхмерного пространства (другие поля здесь не рассматриваем, поэтому $\mathbb R$ не пишем).

Общий случай

В общем случае условие

$$f(\varphi(x), \varphi(y)) = f(x, y)$$

записывается в матричном виде следующим образом:

$$X^{T}(A_{\wp}^{T}FA_{\wp})Y = X^{T}FY \iff A_{\wp}^{T}FA_{\wp} = F, \ \forall X, Y \in \mathbb{R}^{n},$$

где ${\cal F}$ - некоторая матрица.

Будем предполагать, что f невырожденна, то есть $|F| \neq 0$, тогда

$$(\det A_{\varphi})^2 \cdot |F| = |F| \Longrightarrow \det A_{\varphi} = \pm 1.$$

24.4 Симплектическая группа

 $char \mathbb{F} \neq 2$, достаточно считать, что $\mathbb{F} = \mathbb{R}$.

Если на V задана кососимметрическая невырожденная билинейная форма, то $\dim V = n = 2m$ и существует базис, в котором матрица

$$F = \begin{pmatrix} 0 & -1 & & & 0 \\ 1 & 0 & & & \\ & & \dots & & \\ & & & 0 & -1 \\ 0 & & & 1 & 0 \end{pmatrix}$$

Обозначение:

$$Sp(2m, \mathbb{F}) = \{ A \in GL(2m, \mathbb{F}) \mid A^T F A = F \}.$$

24.5 Некоторые аффинные группы

A - аффинное пространство над пространством V, Aff(A) - множество всех аффинных биективных преобразований A.

Было доказано, что для любого биективного аффинного преобразования $\Phi t_v \Psi, \ \Psi(0) = O, \ (O$ - начало координат), причём разложение единственно.

 $\{\Psi: \ \Psi(0)=O\}$ - подгруппа в $Aff(A), \ T(V)=\{t_v \mid v\in V\}$ - подгруппа параллельных переносов.

 $T(V)\cong V$ - как группе с операцией «+».