Distances for Sequences and Text

- symbol distance: $\rho(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{otherwise} \end{cases}$
- Hamming distance:

ning distance:
$$H((x^{(1)},\ldots,x^{(p)}),(y^{(1)},\ldots,y^{(p)})) = \sum_{i=1}^p \rho(x^{(i)},y^{(i)})$$

· edit/Levenshtein distance: append/remove least operations to have the 2 vectors

$$L((x^{(1)}, \dots, x^{(p)}), (y^{(1)}, \dots, y^{(q)})) =$$

$$\begin{cases} p & & q = 0 \\ q & & \text{if sequence} \ p = 0 \\ \min\{L((x^{(1)}, \dots, x^{(p-1)}), (y^{(1)}, \dots, y^{(q)})) + 1, \text{ lethove}\} \\ L((x^{(1)}, \dots, x^{(p)}), \ (y^{(1)}, \dots, y^{(q-1)})) + 1, \text{ lethove}\} \\ L((x^{(1)}, \dots, x^{(p-1)}), (y^{(1)}, \dots, y^{(q-1)})) + \rho(x^{(p)}, y^{(q)})\} \\ L((x^{(1)}, \dots, x^{(p-1)}), (y^{(1)}, \dots, y^{(q-1)})) + \rho(x^{(p)}, y^{(q)})\} \end{cases}$$

Prof. Dr. Thomas A. Runkler

Copyright © 2020. All rights reserved.

Example Edit/Levenshtein Distance

		C	L	E	0	Р	Α	T	R	Α
	0	1	2	3	4	5	6	7	8	9
С	1	0	1	2	3	4	5	6	7	8
Α	2	1	1	2	3	4	4	5	6	7
E	3	2	2	1	2	3	4	5	6	7
S	4	3	3	2	2	3	4	5	6	7
Α	5	4	4	3	3	3	3	4	5	6
R	6	5	5	4	4	4	4	4	4	5

С	А	Е	S		Α		R		
0	1	0	1	1	0	1	0	1	$\Rightarrow 5$
С	L	Е	O	Р	Α	T	R	Α	

Sampling Continuous Signals

Prof. Dr. Thomas A. Runkler

Shannon's Sampling Theorem

- 1. s(t) band limited: Fourier spectrum $|s(j2\pi f)| = 0$ for $|f| > f_{\text{max}}$
- 2. $T_s < \frac{1}{2 \cdot f_{\text{max}}}$ (Nyquist condition) χ_{min}
- \Rightarrow s(t) can be completely reconstructed from s_n

Prof. Dr. Thomas A. Runkler

Copyright © 2020. All rights reserved.

Quantization

Prof. Dr. Thomas A. Runkler

Chapter 3: Data Preprocessing

- 1. Error Types and Handling
- 2. Filtering
- 3. Standardization and Transformation
- 4. Data Merging