11. Meranie koeficienta dĺžkovej rozťažnosti

Autor pôvodného textu: Peter Dieška

Úloha: Určiť koeficient dĺžkovej rozťažnosti Edelmanovým dilatometrom.

Teoretický úvod

Podobne ako plyny menia svoj objem s teplotou pri stálom tlaku, aj tuhé telesá menia s teplotou svoj objem, resp. dĺžkové rozmery. Experimenty ukazujú, že dĺžkové rozmery tuhých látok v pomerne širokom intervale teplôt sa menia s teplotou lineárne, podobne ako objem ideálneho plynu. To znamená, že napríklad dĺžka ℓ tyče, ako funkcia termodynamickej teploty T, sa vyjadruje vzťahom

$$\ell = \ell_0 + k(T - T_0), (11.1)$$

v ktorom ℓ_0 predstavuje dĺžku tyče pri teplote $T=T_0$. Ak za T_0 zvolíme teplotu topenia ľadu pri normálnom tlaku, potom $t=T-T_0$ predstavuje Celziovu teplotu. Vtedy vzťah (11.1) môžeme prepísať do tvaru

$$\ell = \ell_{o}(1 + \frac{k}{\ell_{o}}t) = \ell_{o}(1 + \alpha t), \qquad (11.2)$$

v ktorom $\alpha = k / \ell_0$ predstavuje *koeficient teplotnej rozťažnosti*. Zo vzťahu vyplýva, že koeficient môžeme definovať aj nasledovne:

$$\alpha = \frac{1}{\ell_0} \frac{\mathrm{d}\ell}{\mathrm{d}t} \,, \tag{11.3}$$

čo môžeme prečítať ako prírastok dĺžky pri vzraste teploty o jeden stupeň, prepočítaný na jednotku dĺžky, teda v SI na jeden meter.

Pri väčších rozdieloch teploty však zisťujeme, že dĺžkové rozmery telies závisia od teploty zložitejším spôsobom. Potom sa experimentálnymi závislosťami prekladajú polynómy vyšších stupňov, napríklad

$$\ell = \ell_o(1 + at + bt^2).$$

Koeficient dĺžkovej rozťažnosti vtedy závisí od teploty:

$$\alpha = \frac{1}{\ell_0} \frac{\mathrm{d}\ell}{\mathrm{d}t} = a + 2bt .$$

Metóda merania

Na meranie dĺžkovej rozťažnosti tuhých látok sa používa Edelmanov dilatometer. Schéma takéhoto zariadenia je na obr. 11.1. Meraná tyč je umiestnená na dvoch valčekoch v olejovom kúpeli. O konce tyče sa opierajú dve rovnoramenné páky P_1 a P_2 , ktorých osi sú upevnené na vodorovnom ráme R. Polohu páky P_1 (t.j. jedného konca tyče) nastavíme skrutkou S. Poloha páky P_2 (t.j. poloha druhého konca tyče) sa prenáša na dotykový mikrometer M. Na mikrometri priamo odčítame zmenu dĺžky tyče pri zvýšení jej teploty.

Prístroje a pomôcky:

Edelmanov dilatometer, meraná tyč, dva digitálne teplomery, prívod s vypínačom na vyhrievanie špirály dilatometra.

Postup pri meraní

Na dotykovom mikrometri M pomocou skrutky S nastavíme nulovú hodnotu. Na teplomeroch, ktoré sú ponorené v olejovom kúpeli pri obidvoch koncoch meranej tyče, odčítame začiatočné teploty. Potom pripojíme vyhrievacie zariadenie na sieť a teplotu kúpeľa postupne zvyšujeme. Aby sa teplota tyče zhodovala s údajmi na teplomeroch, vždy keď teplota stúpne o 3 – 4 stupne, vypneme prívod prúdu a po ustálení (minimálne 1 minúta) odčítame údaje na teplomeroch a súčasne údaj na mikrometri, predstavujúci predĺženie tyče. Za teplotu tyče považujeme aritmetický priemer údajov z dvoch teplomerov. Údaje zapisujeme do tabuľky. Teplota olejového kúpeľa nemá prekročiť 75 °C.

Tab. 11.1

$\ell_{\rm o}$ =				
i	<i>t</i> ₁ (°C)	<i>t</i> ₂ (°C)	$(t_1+t_2)/2$	$\Delta\ell$ (mm)

Namerané hodnoty vynesieme do grafu ako závislosť predĺženia tyče od teploty. Vynesenými bodmi preložíme priamku a z jej smernice určíme koeficient rozťažnosti.

Otázky

- 1. Ak chceme správne určiť koeficient rozťažnosti, musíme vynášať na graf celú dĺžku tyče, alebo stačí vynášať len jej predĺženie?
- 2. Ako určíme zo smernice vynesenej priamky koeficient rozťažnosti?
- 3. Je znalosť pôvodnej dĺžky tyče potrebná pri správnom určení koeficienta rozťažnosti?
- 4. Zostali by predĺženia tyče rovnaké, keby sa dĺžka tyče zdvojnásobila?
- 5. Predlžovala by sa tyč s rastúcou teplotu aj v stave bez tiaže?

Meno:

Krúžok:

Dátum merania:

Protokol laboratórnej úlohy 11 Meranie koeficienta dĺžkovej rozťažnosti

Stručný opis metódy merania	Stru	ičný	opis	metódy	merania
-----------------------------	------	------	------	--------	---------

Vzťahy ktoré sa používajú pri meraní:

D	_	
Pristroje	a	pomôcky:
U		

Meranie

Tab. 11.1

$\ell_{o} =$				
i	<i>t</i> ₁ (°C)	<i>t</i> ₂ (°C)	$(t_1+t_2)/2$	$\Delta\ell$ (mm)

Pôvodná dĺžka tyče	$\ell_{\rm o}$ =
Smernica priamky	k =
Regresný koeficient	R =
Koeficient dĺžkovej rozťažnosti	$\alpha =$
K protokolu treba pripojiť graf z	závislosti rozťažnosti od teploty
Slovné zhodnotenie výsledkov me	erania:
Dátum odovzdania protokolu:	
Podpis študenta:	Podpis učiteľa: