Álgebra Universal e Categorias

Exercícios - Folha 5

28. Seja $\mathcal{A} = (\{a, b, c, d\}, f)$ a álgebra de tipo (1) onde f é a operação definida por

Determine todas as relações de congruência em A.

29. Considere o reticulado N_5 representado pelo diagrama de Hasse

Determine

(a) $\Theta(a,0)$;

(b) $\Theta(a, 1)$;

(c) $\Theta(a,b)$.

30. Sejam $\mathcal{R}=(R;\wedge,\vee)$ um reticulado e $\theta\in\mathrm{Con}\mathcal{R}$. Mostre que, para quaisquer $a,b,c\in R$, se $a\leq c\leq b$ e $(a,b)\in\theta$, então $(a,c)\in\theta$ e $(b,c)\in\theta$.

31. Sejam $\mathcal{S}=(S,\cdot)$ um semirreticulado e \leq a relação de ordem parcial em S definida por $x\leq y$ se $x\cdot y=x$. Dado $a\in S$, define-se

$$\theta_a = \{(b,c) \in S^2 \mid (a \le b \in a \le c) \text{ ou } (a \nleq b \in a \nleq c)\}.$$

Mostre que, para qualquer $a \in S$, θ_a é uma congruência em S.

32. Seja $\mathcal{S}=(S;\cdot)$ um semigrupo. Um subconjunto não vazio I de S diz-se um *ideal* de S se, para quaisquer $s\in S$ e $i\in I$, tem-se $is\in I$ e $si\in I$. Mostre que, para qualquer ideal I, $I^2\cup\triangle_S$ é uma congruência em S, designada a *congruência de Rees induzida por* I.

33. Seja $\mathcal{A}=(A;F)$ uma álgebra de tipo $(O;\tau)$. Mostre que $\triangle_A=\{(a,a)\,|\,a\in A\}$ e $\nabla_A=\{(a,b)\,|\,a,b\in A\}$ são congruências em \mathcal{A} .

34. Sejam θ , ψ relações binárias num conjunto A. Mostre que:

- (a) Se θ e ψ são relações de equivalência em A, não é necessariamente verdade que $\theta \cup \psi$ e $\theta \circ \psi$ sejam relações de equivalência em A.
- (b) Se θ e ψ satisfazem a propriedade de substituição numa álgebra $\mathcal{A}=(A;F)$, então $\theta\circ\psi$ satisfaz a propriedade de substituição em \mathcal{A} .
- (c) Se θ e ψ são congruências numa álgebra $\mathcal{A}=(A;F)$, então $\theta\cap\psi$ e a relação $\theta*\psi$ definida por

$$\theta * \psi = \{(x, y) \in A^2 \mid \exists n \in \mathbb{N}, \exists z_0, z_1, \dots, z_n \in A, x = z_0, y = z_n \}$$

$$e \ \forall 1 \le k \le n, z_{k-1} \theta z_k \text{ ou } z_{k-1} \psi z_k \},$$

são conguências em A.

35. Sejam $\mathcal{A}=(A;F)$ uma álgebra e $X,Y\subseteq A\times A$. Mostre que

- (a) $X \subseteq \Theta(X)$.
- (b) $X \subseteq Y \Rightarrow \Theta(X) \subseteq \Theta(Y)$.
- (c) $\Theta(\Theta((X)) = \Theta(X)$.
- (d) $\Theta(X) = \bigcup \{ \Theta(Z) \mid Z \text{ \'e um subconjunto finito de } X \}.$