逻辑航线信息学奥赛系列教程

背包专题之01背包

一本通 1267: 01背包问题

题目描述

一个旅行者有一个最多能装 M 公斤的背包, 现在有 n 件物品, 它们的重量分别是W1, W2, ..., Wn, 它们的价值分别为C1,C2,...,Cn, 求旅行者能获得最大总价值。

输入

第一行: 两个整数, M(背包容量, M<=200)和N(物品数量, N<=30);

第2..N+1行: 每行二个整数Wi, Ci, 表示每个物品的重量和价值。

输出

仅一行,一个数,表示最大总价值。

输入样例

10 4

2 1

3 3

4 5

7 9

输出样例

12

解析

任何背包类问题的本质都是**是否将物品装入背包**,如果能够理解这个本质,就能够解决一切背包问题。我们将这个例题抽象成图表,具体内容如下,我们需要在空白处填入装入第i件物品后的最大价值。

À	V1			
Ì	为物	切品信,	息	容量
3	索引	重量	价值	10
	0	0	0	0
	1	2	1	
	2	3	3	
	3	4	5	
	4	7	9	

首先,尝试装入第一个物品。它的重量是2,小于背包上限,因此可以装入。所以,最终价值是1。如下图所示:

牧	7品信,	息	容量
索引	重量	价值	10
0	0	0	0
1	2	1	1
2	3	3	
3	4	5	
4	7	9	

接下来,我们装入第2个物品,最终价值为4。装入第3个物品后,最终价值为9。如下图所示:

41	- 日 仁	白	应且
99	7品信,		容量
索引	重量	价值	10
0	0	0	0
1	2	1	.10
2	3	3 .	4
3	4	5	
4	7.	9	

牧	切品信,	息	容量
索引	重量	价值	10
0	0	0	0
1	2	1	1
2	3	3	4
3	4	5	9
4	7	9	

现在,我们开始放入第4个物品。这时,出现一个问题,那就是此时背包中只剩下1个容量了, 是无法装入第4个物品的。那么我们到底装不装入它呢,该如何抉择呢?

很明显,如果装入第4个物品后,整体的价值比当前的最大价值大,那么我们就肯定选择它。

那么装入第4个物品后的价值该如何计算呢?通过分析,我们能够得出这样一个结论:假如我们能够知道装入第4件物品前整个背包的最大价值,那么就能够求出装入第4个物品后的整体价值。

但是,我们并不知道装入第4件物品前整个背包的最大价值……

再来分析一下,我们可以知道,装入第4件物品前的最大价值,应该出现在背包容量只使用了3个重量的时刻。用表格描述如下:

物	为品信,	息					빝	f包容:	量				
索引	重量	价值	0	S 1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	4										1
2	3	3	2								.=.	. (4
3	4	5									NXP	10	9
4	7	9								8			

其中,红色的格子就是装入第4件物品前整个背包的最大价值。

另外一个问题是为什么它出现在第3行呢?这是因为第3行代表的是已经对前三个物品进行了选择,是最优的结果。以此类推,第2行代表的是已经对前两个物品进行了选择。

现在, 我们需要计算出红色格子的数值。

牧	· 动品信	息					캩	f包容:	量	160			
索引	重量	价值	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1					Ÿ/.						
2	3	3				4							
3	4	5				7.0		•					
4	7	9											

首先,第0行的全部数值肯定都为0,因为什么都没有装入嘛。现在,表格中的空白位置就是需要我们计算填入的数据,每一个空格都代表在那个时刻整个背包的最大价值,而最终的最大价值就是这个表格中的最后一个格子。

在前面叙述中, 我们知道问题的关键是物品的装入与否, 那么我们现在开始依次尝试装入。

首先,是第一个物品。它的重量是2,价值是1。很明显,在背包容量分别为0和1时,由于它的重量超过了背包的容量,因此无法填入,此时背包的价值就是0,结果如下:

	<u> </u>	///.												
Ĭ	物	切品信,	息					. Vla.						
	索引	重量	价值	0	1	2	3	4	5	6	7	8	9	10
	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	1	2	1	0	0					1				
	2	3	3											
	3	4	5						9					
	4	7	9											

当背包容量大于等于2时,物品1可以被装入,又因为每件物品只能装入1个,因此后续所有表格的价值均为当前物品的价值,即为1,如下所示:

牧	· 动品信	息		-XF)	<i>7.</i> \{\	>	背	肯包容:	量				
索引	重量	价值	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1	1	1
2	3	3	. 9										
3	4	5	4										
4	7	9	0										

在上面的装载过程中,我们其实忽略了一个问题,那就是当背包装入物品1的时候,其实还有很多空余,这些空余该怎么处理呢?我们继续往下看,现在,我们尝试装入第二个物品。

第2个物品的重量是3,很明显,当背包的容量小于3时,这个物品是无法被装入的。那么此时背包的价值就应该等同于只装入物品1时的价值,图示如下:

牧	7品信,	息					雚	f包容:	量				
索引	重量	价值	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	10	1	1	1	1	1	1
2	3	3	0	0	1								
3	4	5			-	,O,			·				
4	7	9		\	学 、	5							

当背包的容量大于等于3的时候,物品2存在了两种选择:放或者不放。如何决定是否放入呢?

这个决定必然是背包的最大价值,我们需要比较物品2在放与不放的两种状态下,哪一种能够 使背包达到最大的价值,然后选择这一种即可。即:

背包的最大价值 = max(不放置物品2的最大价值,放置物品2的最大价值)

先来考虑不放置的情况,很容易想到,如果不放入物品2,那么背包的价值就等价于只装入物品1的价值。如下图:

牧	· 动品信	息		0			캩	f包容:	量				
索引	重量	价值	.00	1	2	3	4	5	6	7	8	97/	10
0	0	0 .	0	0	0	0	0	0	0	0	0	0	0
1	2	10	0	0	1	1	1	1	1	1	1	1	1
2	3	3	0	0	1	1	1	1	1	1	1	1	1
3	4	5								7	AZX		
4	2/7	9		•			·	·					•

再来考虑,如果放入物品2,那么计算会发生什么样的变化呢?

如同最初时刻的问题一样,我们需要找到没有放入物品2前的背包最大价值,很明显,它位于第1行第0列,即下图中蓝色箭头标记的位置。

减去物品2重量后的最大价值

							· ·						
物	7品信,	息			0,8	1/2/	掌	f包容:	皇				
索引	重量	价值	0	1.0	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0	1	1	1	1	1	1	1	1	1
2	3	3	0	0	1	3							
3	4	5		9		·							
4	7	9	. ?			·							

当前容量下最大价值

上图中,两个绿色分别是未装入第2个物品时背包的最大价值以及第2个物品的价值,它们的数值和3,大于只装入物品1时的最大价值1,因此我们应该装入第2个物品。

总结一下这个状态转移方程, 我们设:

dp[i][j]为装入前i个物品在容量j时能取得的最大价值

w[i]为第i个物品的重量

v[i]为第i个物品的价值

则有:

按照上面这个方程, 我们将表格填写完整

牧	· 动品信/	息					킽	f包容:	量				
索引	重量	价值	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	2	1	0	0.	1	1	1	1	1	1	1	1	1
2	3	3	0	0	1	3	3	4	4	4	4	4	4
3	4	5	0	0	1	3	5	5	6	8	8	9	9
4	7	9	0	0	1	3	5	5	6	9	9	10	12

最终,整个背包的最大价值即为12。

编码

```
#include < bits / stdc++.h>
using namespace std;
int bagV, n;
                   //商品的体积
int w[31];
int v[31];
                   //商品的价值
//动态规划表
int dp[31][201] = {{0}};
int main() {
   //记录最大承重和物品数量
   cin >> bagV >> n;
   //记录每个物品的重量和价值
   for (int i = 1; i <= n; i++) {
       cin >> w[i] >> v[i];
   }
   //从放入第一件物品开始
   for (int i = 1; i <= n; i++) {
       //从第一个格子开始尝试
      for (int j = 1; j <= bagV; j++) {</pre>
          //如果当前的格子的重量小于目标物品的重量,则价值等于前一个物品的价值
         if (j < w[i])</pre>
              dp[i][j] = dp[i - 1][j];
              dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]);
       }
   }
   //01背包的最大值在最后一个格子中
```

```
cout << dp[n][bagV];
return 0;
}</pre>
```

逻辑航线培优教育,信息学奥赛培训专家。 扫码添加作者获取更多内容。

