Rob 501 Handout: Grizzle Orthogonal Projection and Normal Equations

Projection Theorem (Continued)

Orthogonal Projection Operator

Let \mathcal{X} be a finite dimensional (real) inner product space and M a subspace of \mathcal{X} . For $x \in \mathcal{X}$ and $m_0 \in M$. The Projection Theorem shows the TFAE:

- (a) $x m_0 \perp M$.
- (b) $\exists \tilde{m} = M^{\perp}$ such that $x = m_0 + \tilde{m}$.
- (c) $||x m_0|| = d(x, M) = \inf_{m \in M} ||x m||.$

Def. $P: \mathcal{X} \to M$ by $P(x) = m_0$, where m_0 satisfies any of (a),(b) or (c), is called the orthogonal projection of \mathcal{X} onto M.

Exercise1: $P: \mathcal{X} \to M$ is a linear operator.

Exercise2: P: Let $\{v^1, \dots, v^k\}$ be an orthonormal basis for M.Then

$$P(x) = \sum_{i=1}^{k} \langle x, v^i \rangle v^i.$$

Normal Equations

Let \mathcal{X} be a finite dimensional (real) inner product space and $M = \operatorname{span}\{y^1, \dots, y^k\}$, with $\{y^1, \dots, y^k\}$ linearly independent. Given $x \in \mathcal{X}$, seek $\hat{x} \in M$ such that

$$||x - \hat{x}|| = d(x, M) = \inf_{m \in M} ||x - m|| = \min_{m \in M} ||x - m||$$

where we can write "min" because the Projection Theorem assures the existence of a minimizing vector $\hat{x} \in M$.

Notation: $\hat{x} = \operatorname{argmin} d(x, M)$

Remark: One solution is Gram Schmidt and the orthogonal projection operator. We provide an alternative way to compute the answer.

By the Projection Theorem, \hat{x} exists and is characterized by $x - \hat{x} \perp M$. Write

$$\hat{x} = \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k$$

and impose $(x - \hat{x}) \perp M \Leftrightarrow (x - \hat{x}) \perp y^i$, $1 \leq i \leq k$.

Then,
$$\langle x - \hat{x}, y^i \rangle = 0$$
, $\forall 1 \le i \le k$ yields
 $\langle \hat{x}, y^i \rangle = \langle x, y^i \rangle$ $i = 1, 2, \dots, k$
 $\Leftrightarrow \langle \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k, y^i \rangle = \langle x, y^i \rangle$ $i = 1, 2, \dots, k$.

We now write this out in matrix form.

$$\frac{i=1}{\alpha_1 \langle y^1, y^1 \rangle + \alpha_2 \langle y^2, y^1 \rangle + \dots + \alpha_k \langle y^k, y^1 \rangle} = \langle x, y^1 \rangle$$

$$\underline{i=2}$$

$$\alpha_1 \langle y^1, y^2 \rangle + \alpha_2 \langle y^2, y^2 \rangle + \dots + \alpha_k \langle y^k, y^2 \rangle = \langle x, y^2 \rangle$$

:

$$\underline{i=k}$$

$$\alpha_1 \langle y^1, y^k \rangle + \alpha_2 \langle y^2, y^k \rangle + \dots + \alpha_k \langle y^k, y^k \rangle = \langle x, y^k \rangle$$

These are called the Normal Equations.

$$\mathbf{Def.}\ G = G(y^1, \cdots, y^k) := \begin{bmatrix} \langle y^1, y^1 \rangle & \langle y^1, y^2 \rangle & \cdots & \langle y^1, y^k \rangle \\ \langle y^2, y^1 \rangle & \langle y^2, y^2 \rangle & \cdots & \langle y^2, y^k \rangle \\ \vdots & \vdots & & \vdots \\ \langle y^k, y^1 \rangle & \langle y^k, y^2 \rangle & \cdots & \langle y^k, y^k \rangle \end{bmatrix}$$

 $G_{ij} = \langle y^i, y^j \rangle$ is called the Gram matrix.

Remark: Because we are assuming $\mathcal{F} = \mathbb{R}$, $\langle y^i, y^j \rangle = \langle y^j, y^i \rangle$, and we therefore have $G = G^T$.

Let
$$\alpha = \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_k \end{bmatrix}$$
, we have

 $G^T \alpha = \beta$ (normal equations in matrix form)

where

$$\beta_i = \langle x, y^i \rangle, \quad \beta = \begin{bmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix}.$$

Def. $g(y^1, y^2, \dots, y^k) = \det G(y^1, \dots, y^k)$ is the determinant of the Gram Matrix.

Prop. $g(y^1, y^2, \dots, y^k) \neq 0 \Leftrightarrow \{y^1, \dots, y^k\}$ is linearly independent.

The proof is given at the end of the handout.

Summary: Here is the solution of our best approximation problem by the normal equations. Assume the set $\{y^1, \dots, y^k\}$ is linearly independent and $M := \operatorname{span}\{y^1, \dots, y^k\}$. Then $\hat{x} = \operatorname{arg\ min}\ d(x, M)$ if, and only if,

$$\hat{x} = \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k$$

$$G^T \alpha = \beta$$

$$G_{ij} = \langle y^i, y^j \rangle$$

$$\beta_i = \langle x, y^i \rangle.$$

Application: Over determined system of linear equations in \mathbb{R}^n

$$A\alpha = b$$
,

where $A = n \times m$ real matrix, $n \geq m$, rank(A) = m (columns of A are linearly independent). From the dimension of A, we have that $\alpha \in \mathbb{R}^m$, $b \in \mathbb{R}^n$.

Original Problem Formulation:

Seek $\hat{\alpha}$ such that

$$||A\hat{\alpha} - b|| = \min_{\alpha \in \mathbb{R}^m} ||A\alpha - b||,$$

where

$$||x||^2 = \sum_{i=1}^n (x_i)^2.$$

Better Formulation via the Normal Equations

$$\mathcal{X} = \mathbb{R}^n, \quad \mathcal{F} = \mathbb{R}, \quad \langle x, y \rangle = x^T y = y^T x = \sum_{i=1}^n x_i y_i$$

Therefore,

$$||x||^2 = \langle x, x \rangle = \sum_{i=1}^n |x_i|^2.$$

Write

$$A = [A_1 | A_2 | \cdots | A_m] \text{ and } \alpha = [\alpha_1, \alpha_2, \cdots, \alpha_m]^{\top}$$

and we note that

$$A\alpha = \alpha_1 A_1 + \alpha_2 A_2 + \cdots + \alpha_m A_m.$$

New Problem Formulation:

Seek

$$\hat{x} = A\hat{\alpha} \in \operatorname{span}\{A_1, A_2, \cdots, A_m\} =: M$$

such that

$$\|\hat{x} - b\| = d(b, M) \Leftrightarrow \hat{x} - b \perp M.$$

From the Projection Theorem and the Normal Equations,

$$\hat{x} = \hat{\alpha}_1 A_1 + \hat{\alpha}_2 A_2 + \cdots + \hat{\alpha}_m A_m$$

and $G^{\top}\hat{\alpha} = \beta$, with

$$G_{ij} = \langle A_i, A_j \rangle = A_i^{\top} A_j$$
$$\beta_i = \langle b, A_i \rangle = b^{\top} A_i = A_i^{\top} b.$$

<u>Aside</u>

$$A^{\top} = \begin{bmatrix} A_1^{\top} \\ A_2^{\top} \\ \vdots \\ A_m^{\top} \end{bmatrix} \qquad A = [A_1| \cdots |A_m]$$
$$(A^{\top}A)_{ij} = A_i^{\top}A_j$$
$$G = G^{\top} = A^{\top}A$$
$$(A^{\top}b)_i = A_i^{\top}b$$

Normal Equations are

$$A^{\top}A\hat{\alpha} = A^{\top}b.$$

From the Proposition, $G^{\top} = A^{\top}A$ is invertible \Leftrightarrow columns of A are linearly independent. Hence,

$$\hat{\alpha} = (A^{\top}A)^{-1}A^{\top}b.$$

Prop. $g(y^1, y^2, \dots, y^k) \neq 0 \Leftrightarrow \{y^1, \dots, y^k\}$ is linearly independent.

Proof: $g(y^1, y^2, \dots, y^k) = 0 \leftrightarrow \exists \alpha \neq 0$ such that $G^{\top} \alpha = 0$.

From our construction of the normal equations, $G^{\top}\alpha = 0$ if, and only if

$$\langle \alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k, y^i \rangle = 0 \quad i = 1, 2, \dots, k.$$

This is equivalent to

$$(\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k) \perp y^i = 0 \ i = 1, 2, \dots, k$$

which is equivalent to

$$(\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k) \perp \operatorname{span}\{y^1, \dots, y^k\} =: M$$

and thus

$$(\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k) \in M^{\perp}.$$

Because $\alpha_1 y^1 + \alpha_2 y^2 + \cdots + \alpha_k y^k \in M$, we have that

$$(\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k) \in M \cap M^{\perp}$$

and therefore

$$\alpha_1 y^1 + \alpha_2 y^2 + \dots + \alpha_k y^k = 0.$$

By the linear independence of $\{y^1, \cdots, y^k\}$, we deduce that

$$\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0. \square$$