Marks for each part of each question are indicated in square brackets.

Calculators are NOT permitted.

1. a. Consider a Kripke frame with worlds $V = \{x, y, z, w\}$ and edges

$$E=\{(x,y),(x,z),(x,w),(y,y),(y,z)\}.$$
 Let v be the propositional valuation $v(p)=\{x,y\},\ v(q)=\{x,w\}.$

Which of the following are true?

- 1. $(V, E), v, x \models \Box p$
- 2. $(V, E), v, x \models \Diamond p$
- 3. $(V, E), v, x \models \Diamond (p \land q)$
- 4. $(V, E), v, x \models \Diamond \Box \bot$
- 5. $(V, E), v, x \models \Diamond(p) \land \Box(p \rightarrow \Box \neg q)$.

No, yes, no, yes, yes

- b. Let (V, E) be the Kripke frame above. Which of the following hold?
 - 1. $(V, E) \models (\Box p \rightarrow p)$
 - 2. $(V, E) \models (\Box p \rightarrow \Box \Box p)$
 - 3. $(V, E) \models (\Box(p \land q) \leftrightarrow (\Box p \land \Box q)).$

No, cos not reflexive. Yes, it is transitive. Yes, this is valid over all frames.

[Question 1 cont. over page]

- c. For each formula below use a tableau to find a Kripke model of the formula.
 - 1. $\Diamond p \land \Box (p \rightarrow \Diamond p)$
 - 2. $\Diamond p \land \Box(p \to \Diamond \neg p) \land \Box(p \lor \Diamond p)$.

Also, use tableaus to find transitive Kripke models for both formulas.

For the first formula, let $V=\{x,y,z\},\; E=\{(x,y),(y,z)\},\; v(p)=\{y,z\},$ formula is true at x.

For the second formula let $V=\{x,y,z\},\; E=\{(x,y),(y,z)\}$ and $v(p)=\{y\}$, formula is true at x

For transitive frames, in the first case $V = \{x_0, x_1, x_2, \ldots\}$, $E = \{(x_i, x_j) : 0 \le i < j\}$ and $v(p) = \{x_i : i \ge 1\}$. In the second case, same frame but $v(p) = \{x_{2i+1} : i \ge 0\}$ (alternates between p and $\neg p$).

d. A frame (V, E) is *dense* if $(v, w) \in E$ implies there is $u \in V$ such that $(v, u) \in E$ and $(u, w) \in E$. Write down a modal formula ϕ such that for all frames (V, E) we have $(V, E) \models \phi$ if and only if (V, E) is dense. Prove that your formula defines the class of dense frames.

 $(\Box\Box p\to\Box p)$ (or $(\Diamond p\to\Diamond\Diamond p)$). Suppose (V,E) is not dense, then there is an edge $(x,y)\in E$ but no node z where $(x,z),(z,y)\in E$. Let v be valuation $v(p)=V\setminus\{y\}$. p does not hold at y. There is an edge (x,y) therefore $(V,E),v,x\not\models\Box p$. But for any node z if there is an edge (x,z) then there is no edge (z,y) therefore $(V,E),v,x\not\models\Box\Box p$. Therefore the implication is not valid in (V,E). Conversely, suppose (V,E) is dense. Let v be any valuation and let $x\in V$ be any world. Suppose $(V,E),v,x\not\models\Box\Box p$. For any $y\in V$ where $(x,y)\in E$ we know by density that there is z where $(x,z),(z,y)\in E$, so $(V,E),v,y\not\models p$. This shows that $(V,E),v,x\not\models\Box\Box p$ implies $(V,E),v,x\not\models\Box p$, as required. You might find it easier to use the equivalent \Diamond form of the density axiom.

