CLAIMS

Having thus described our invention, what we claim as new and desire to secure by Letters Patent is as follows:

1	1. A method for making prioritized recommendations to a customer in the
2	process of filling a market basket for purchase on an Internet commerce site,
3	the method comprising the steps of:
4	generating a matrix of training data;
5	considering preferences based on associative and renewal buying
6	history from the training data; and
7	making a prioritized recommendation of items so as to maximize the
8	likelihood that the customer will add to the market basket those items with
9	higher priorities.
1	2. The method of claim 1, wherein the two preferences are estimated
2	separately from the training data and combined in proper proportions to obtain
3	an overall preference for item not yet in the market basket.
1	3. A method for making prioritized recommendations to a customer in the
2	process of filling a market basket for purchase on an Internet commerce site,
3	the method comprising the steps of:
4	collecting statistics from training data;
5	precomputing model parameters from the collected statistics; and
6	recommending ordering for a given partial market basket based on the
7	precomputed model parameters.
1	4. The method of claim 3, wherein the step of collecting statistics comprises
2	the steps of:

- 3 (a) for each item j, obtaining n_i a number of baskets with item j purchased;
- 4 (b) for each item j, obtaining n_{j} a number of baskets with j being a sole item purchased;
- (c) for each pair of items i and j, obtaining a number of market baskets n_{ji}
 with items j and i purchased together; and
- 8 (d) for each pair of items i and j, obtaining a number of market baskets n_{ji} with items i and j being the only two items purchased.
- 5. The method of claim 4, wherein the step of precomputing model parameters comprises the steps of:
- 3 (a) computing $P(\text{renewal}) = \frac{\sum_{k} n_{k}'}{\sum_{k} n_{k}}$;
- 4 (b) for each item j, computing $P(j) = \frac{n_j}{\sum_k n_k}$;
- 6 computing $\mathbf{P}(\text{renewal} \mid j) = \frac{n_j'}{n_j} + \mathbf{P}(\text{renewal}) \left(1 \frac{n_j'}{n_j}\right)$;
- 7 (d) for each item j, computing

for each item j,

- 8 $\mathbf{P}'(j \mid \text{renewal}) = \mathbf{P}(\text{renewal} \mid j) \times \frac{\mathbf{P}(j)}{\mathbf{P}(\text{renewal})};$
- 9 (e) for each pair of items i and j with $n_{ij} \neq 0$, computing

5

$$\mathbf{P}(j \mid i) = \frac{n_{ji}}{\sum_{k} n_{ki}};$$

11 (f) for each pair of items i and j with $n_u \neq 0$, computing

12
$$\mathbf{P}(\text{renewal} \mid j,i) = \frac{n_{ji}'}{n_{ji}} + \mathbf{P}(\text{renewal}) \left(1 - \frac{n_{ji}'}{n_{ji}}\right) ; \text{ and}$$

13 (g) for each pair of items \bar{i} and j with $n_{ij} \neq 0$, computing

14
$$\mathbf{P}'(j \mid \text{asso},i) = \mathbf{P}(j \mid i) \times \frac{(1-\mathbf{P}(\text{renewal} \mid j,i))}{(1-\mathbf{P}(\text{renewal} \mid i))}.$$

- 1 6. The method of claim 5, wherein given a partial basket $\mathbf{B} = \{i_1, i_2, \dots, i_k\}$
- and $\overline{\mathbf{B}}$ is a complementary set of items not in \mathbf{B} , the step of recommending
- ordering for a given partial market basket comprises the steps of:
- 4 (a) if **B** is empty, sorting items in order of decreasing $P(j \mid \text{renewal})$ and
- 5 returning this as an item preference ordering;
- 6 (b) if **B** is non-empty, then
- 7 (i) computing $\mathbf{P}(\text{renewal} \mid \mathbf{B}) = \min_{i_k \in \mathbf{B}} \mathbf{P}(\text{renewal} \mid i_k)$;
- 8 (ii) compute a normalization factor $\sum_{k \in \overline{R}} \mathbf{P}'(k \mid \text{renewal})$;
- 9 (iii) for each item $j \in \overline{\mathbf{B}}$, computing

10
$$\mathbf{P}(j \mid \text{renewal}) = \frac{\mathbf{P}'(j \mid \text{renewal})}{\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \text{renewal})};$$

```
(iv) computing a normalization factor \sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(j \mid asso, \mathbf{B});
```

- 12 (v) for each item $j \in \overline{\mathbf{B}}$, computing
- 13 $\mathbf{P}'(j \mid \mathsf{asso}, \mathbf{B}) = \mathsf{max}_{i_k \in \mathbf{B}} \mathbf{P}(j \mid \mathsf{asso}, i_k) ;$
- (vi) for each item $j \in \overline{\mathbf{B}}$, computing

15
$$\mathbf{P}(j \mid \mathrm{asso},\mathbf{B}) = \frac{\mathbf{P}'(j \mid \mathrm{asso},\mathbf{B})}{\sum_{k \in \overline{\mathbf{B}}} \mathbf{P}'(k \mid \mathrm{asso},\mathbf{B})};$$

- 16 (vii) for each item $j \in \overline{\mathbf{B}}$, computing
- 17 $P(j|\mathbf{B}) = P(j \mid asso, \mathbf{B})P(asso \mid \mathbf{B}) + P(j \mid renewal, \mathbf{B})P(renewal \mid \mathbf{B});$
- 18 and
- (viii) sorting items in order of decreasing P(j | B) and returning this
- as an item preference ordering.
- 7. The method of claim 6, wherein the step of sorting comprises the step of
- using a final probability obtained for each item, P(j | B), of a customer buying
- 3 the item to maximize profit by recommendation.
- 8. The method of claim 7, wherein the step of using a final probability of an
- 2 item to maximize profit comprises the steps of:
- 3 assigning a profit amount, $\$_i$, to each item;
- 4 computing P(j | B), for each item; and
- ranking recommendations based on the computation of P(j | B) for
- 6 each item.