

Para que a capacidade C do circuito seja l uF, a capacidade C_{∞} deve ser de:

a)	1 pF		
ъ)	2 PF	**********************************	X
			_

comp
$$C_{t1}$$
, C_{t2} e C_{x} estão em série, vem
$$\frac{1}{C} = \frac{1}{C_{x}} + \frac{1}{C_{t1}} + \frac{1}{C_{t2}} \text{ ou } \frac{1}{C} - \frac{1}{C_{t1}} - \frac{1}{C_{t2}} = \frac{1}{C_{x}} \text{ e como}$$
 $C = 1 \text{ uF, } C_{t1} = 6 \text{ uF e } C_{t2} = 3 \text{ uF vem}$

$$\frac{1}{1} - \frac{1}{6} - \frac{1}{3} = \frac{1}{C_{x}}$$
ou $\frac{1}{2} = \frac{1}{C_{y}} \Rightarrow C_{x} = 2 \text{ up}$

2.5.9.2

Qual deverá ser a capacidade total de dois condensadores de 0,1 µF, ligados em série ?

Nota: A fórmula que dá a capacidade de um conjunto de condensadores ligados em série é:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$

No caso de 2 condensadores, temos:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$
 on $C = \frac{c_1}{c_1 + c_2}$

Se
$$C_1 = C_2 = 0.1$$
 μ F, ven:

$$C = \frac{0.1 \times 0.1}{0.1 + 0.1} = \frac{0.01}{0.2} = 0.05 \quad \mu$$
 F