Introduction to Data Structures

Last modified: 9/20/2016

Basic Concepts

- System life cycle
- Algorithm specification
- Data abstraction
- Performance analysis & measurement

Overview: System Life Cycle

- Requirements
- Analysis
 - Bottom-up
 - Top-down
- Design
 - Data objects: abstract data types
 - Operations: specification & design of algorithms

Overview: System Life Cycle (Cont.)

- Coding & Refinement
 - Choose representations for data objects
 - Write algorithms for each operation on data objects
- Verification
 - Correctness proofs: selecting proved algorithms
 - Testing: correctness & efficiency
 - Error removal: well-document

Evaluative judgments about programs

- Meet the original specification?
- Work correctly?
- Document?
- Use functions to create logical units?
- Code readable?
- Use storage efficiently?
- Running time acceptable?

Data Abstraction

Predefined & user defined data type

```
* Struct student { char last_name; int student_id; char grade; }
```

Data type: objects & operations

```
* integer: +, -, *, /, %, =, ==, atoi()
```

Data Abstraction (Cont.)

- Representation: char 1 byte, int 4 bytes
- Abstract Data Type (ADT): data type specification(object & operation) is separated from representation.
- ADT is implementation-independent

Abstract data type Natural_Number (p.9)

ADT Natural_Number is

objects: an ordered subrange of the integers starting at zero and ending at the maximum integer (INT_MAX) on the computer functions:

for all $x, y \in \text{Nat_Number}$; TRUE, FALSE $\in \text{Boolean}$ and where +, -, <, and == are the usual integer operations.

 $Nat_No Zero () ::= 0$

Boolean $Is_Zero(x) ::= if(x) return FALSE$ else return TRUE

Nat_No Add(x, y) ::= if $((x+y) \le INT_MAX)$ return x+y

else return INT_MAX

Boolean Equal(x,y) ::= if (x==y) return TRUE

else return FALSE

 $Nat_No\ Successor(x) ::= if (x == INT_MAX)\ return\ x$

else return x+1

Nat_No Subtract(x,y) ::= if (x<y) return 0 else return x-y

end Natural_Number

::= is defined as

Data Abstraction (Cont.)

- Specification
 - name of function
 - type of arguments
 - types of result
 - description of what the function does (without implementation detail)

Algorithm Specification

- Algorithm criteria
 - Input
 - Output
 - Definiteness
 - Finiteness
 - Effectiveness
 - program doesn't have to be finite (e.g. OS scheduling)

Example 1: Selection Sort

From those integers that are currently unsorted, find the smallest and place it next in the sorted list.

```
For ( i=0; i < n; i++) {

Examine list[i] to list[n-1] and

suppose that smallest integer is list[min]

Interchange list[i] & list[min]
```

Example 1: Selection Sort (cont.)

```
void sort(int list[], int n)
  for (i=0; i < n-1; i++) {
     min = i;
     for (j = i + 1; j < n; j++) {
        if (list[j] < list[min])</pre>
          min = j; 
        SWAP(list[i], list[min], temp);
```

Example of Selection Sort

	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]
Original	34	8	64	51	32	21
after pass 0	8	34	64	51	32	21
after pass 1	8	21	64	51	32	34
after pass 2	8	21	32	51	64	34
after pass 3	8	21	32	34	64	51
after pass 4	8	21	32	34	51	64

Example of Selection Sort (cont.)

Detailed (for example, doing pass 3 after pass 2)

21

	A[0]	A[1]	A[2]	A[3]	A[4]	A[5]	
Original	34	8	64	51	32	21	
after pass 0	8	34	64	51	32	21	
after pass 1	8	21	64	51	32	34	
after pass 2	8	21	32	51	64	34	
doing pass 2	8	21	32	51	64	(34)	minimum
					e	xchange	
after pass 3	8	21	32	34	64	51	

32

34 51

64

of executions: n * (n-1)

after pass 4

Example of Binary Search

Enter a number between 0 and 28: 6

0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28

0 2 4 6* 8 10 12

6 found in array element 3

Enter a number between 0 and 28: 25

0 2 4 6 8 10 12 14* 16 18 20 22 24 26 28 16 18 20 22* 24 26 28 24 26* 28 24*

25 not found

Example 2: Binary Search

```
While (there are more integers to check) {
    middle = (left + right) /2;
    if (searchnum < list[middle])
        right = middle -1;
    else if (searchnum == list[middle])
        return middle;
    else left = middle+1;
}</pre>
```

Example 2: Binary Search (cont.)

```
int compare(int x, int y)
/* return -1 for less than, 0 for equal */
int binsearch(int list[], int searchno, int left, int right)
  while (left <= right) {
     middle = (left + right) / 2;
     switch ( COMPARE(list[middle], searchno) ) {
        case -1: left = middle +1;
                 break;
        case 0: return middle;
        case 1: right = middle -1;
```

Example 3: Selection Problem

- Selection problem: select the k-th largest among N numbers
- Solutions
 - Approach 1
 - read N numbers into an array
 - sort the array in decreasing order
 - return the element in position k

Example 3: Selection Problem (cont.)

- Solutions
 - Approach 2
 - read k elements into an array
 - sort them in decreasing order
 - for each remaining elements, read one by one
 - ignored if it is smaller than the k-th element
 - otherwise, place in correct place and bumping one out of array
- Which is better?
- More efficient algorithm?

Recursive Algorithms

- Direct recursion: functions that call themselves
- Indirect recursion: Functions that call other functions that invoke calling function again
- C(n,m) = n!/[m!(n-m)!]⇒ C(n,m)=C(n-1,m)+C(n-1,m-1)
- Boundary condition for recursion

Recursive Factorial

```
  n! = n × (n-1)! ⇒ fact(n) = n × fact(n-1)
0! = 1
```

```
int fact(int n)
{
    if ( n== 0)
       return (1);
    else
      return(n*fact(n-1));
}
```

```
fact(n) = n x fact(n-1)

\frac{4 * fact(3)}{4 * 3 * fact(2)}

\frac{4 * 3 * 2 * fact(1)}{4 * 3 * 2 * 1 * fact(0)}
```

Recursive Multiplication

```
a x b = a x (b-1) + a

a x 1 = a

int mult(int a, int b)
{
    if ( b== 1)
        return (a);
    else
        return( mult(a, b-1) + a );
}
```

Recursive Summation

```
\bigcirc sum(1, n) = sum(1, n-1) + n
  sum(1, 1) = 1
   int sum(int n)
       if ( n== 1)
return (1);
       else
         return( sum(n-1) + n);
```

Recursive binary search

```
int binsearch(int list[], int searchno, int left, int right)
{
  if (left <= right) {
    middle = (left + right)/2;
    switch (COMPARE(list[middle], searchno) )
{
    case -1: return binsearch(list, searchno, middle+1, right)
        case 0: return middle;
        case 1: return binsearch(list, searchno, left, middle-1);
    }
  }
  return -1;
}</pre>
```

Recursive Permutations

- Permutation of {a, b, c}
 (a, b, c), (a, c, b)
 (b, a, c), (b, c, a)
 (c, a, b), (c, b, a)
- Recursion?
 - a+Perm({b,c})=> {a, b, c} and {a, c, b}
 - b+Perm({a,c})=> {b, a, c} and {b, c, a}
 - c+Perm({a,b})=> {c, a, b} and {c, b, a}

Recursive Permutations (cont.)

```
void perm(char *list, int i, int n)
{
    if ( i == n) {
        for (j=0; j <= n; j++)
            cout << list[j];
    }
    else {
        for (j = i; j <= n; j++) {
            SWAP(list[i], list[j], temp);
            perm(list, i+1, n);
            SWAP(list[i], list[j], temp);
        }
    }
}</pre>
```

Performance Evaluation

- Performance analysis: machine independent
- Performance measurement: machine dependent

Performance Analysis

- Complexity theory
 - Space complexity: amount of memory
 - Time complexity: amount of computer time

Space Complexity

- \bigcirc S(P) = c + Sp(I)
 - c: fixed space(instruction, simple variables, constant
 - Sp(I): depends on characteristics of instance I
 - Characteristics: number, size, values of I/O associated with I
 - * if n is the only characteristic, $Sp(I) \Rightarrow Sp(n)$

Time Complexity

 \bigcirc T(P) = c + T_p(I)

c: compile time (or constant time)

 $T_{\rho}(I)$: program execution time depends on characteristics of instance I

Characteristic: number, size, values of I/O associated with /

* predict the growth in run time as the instance characteristics change

Time Complexity (cont'd)

- Compile time (C) independent of instance characteristics
- Run (execution) time TP

 $T_P(n) = c_a ADD(n) + c_s SUB(n) + c_l LDA(n) + c_{st} STA(n)$

Definition

A program step is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.

```
float sum(float list[], int n)
  float tempsum = 0; count++; /* for assignment */
  int i:
  for (i = 0; i < n; i++) {
     count++; /*for the for loop */
     tempsum += list[i]; count++; /* for
assignment */
  count++; /* last execution of for */
  return tempsum;
  count++; /* for return */
                                    2n + 3 steps
```

Tabular Method

Table 1.1: Step count table for Program Sum

steps/execution

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum $= 0$;	1	1	1
int i;	0	0	0
for(i=0; i <n; i++)<="" td=""><td>1</td><td>n+1</td><td>n+1</td></n;>	1	n+1	n+1
tempsum += list[i];	1	n	n
return tempsum;	1	1	1
}	0	0	0
Total			2n+3

Recursive summing of a list of numbers

2n+2

Matrix addition

```
void add(matrix a, matrix b, matrix c, int rows, int cols)
{
   int i, j;
   for (i = 0; i < rows; i++)
      for (j= 0; j < cols; j++)
      c[i][j] = a[i][j] +b[i][j];
}</pre>
```

```
void add(matrix a, matrix b, matrix c, int row, int cols)
 int i, j;
 for (i = 0; i < rows; i++)
                               2(rows * cols) + 2 rows + 1
     count++; /* for i for loop */
     for (j = 0; j < cols; j++)
       count++; /* for j for loop */
       c[i][j] = a[i][j] + b[i][j];
       count++; /* for assignment statement */
     count++; /* last time of j for loop */
 count++; /* last time of i for loop */
```

Matrix Addition

Step count table for matrix addition

Statement	s/e	Frequency	Total steps	
Void add (int a[0	0	0	
][MAX_SIZE]•••)	0	0	0	
{	0	0	0	
int i, j;	1	rows+1	rows+1	
for $(i = 0; i < row; i++)$	1	rows•(cols+1)	rows•cols+rows	
for (j=0; j< cols; j++)	1	rows•cols	rows•cols	
c[i][j] = a[i][j] + b[i][j];	0	0	0	
}				
Total	2r	2rows * cols + 2 rows + 1		
	21	210W3 COIS 2 10WS 1		

```
void add(matrix a, matrix b, matrix c, int row, int
cols){
  int i, j;
  for(i = 0; i < rows; i++) {
    for (j = 0; j < cols; j++)
       count += 2;
       count += 2;
  count++;
          2(rows \times cols) + 2rows + 1
```

Suggestion: Interchange the loops when rows >> cols

Time Complexity (cont'd)

- Worst case
- Best case
- Average case

Time Complexity (cont'd)

- Difficult to determine the exact step counts
- what a step stands for is inexact
- e.g. x := y v.s. x := y + z + (x/y) + ...
- exact step count is not useful for comparison
 - Step count doesn't tell how much time step takes
- \bigcirc break-even point $(n^2 + 2n)$ v.s. (10n)

Asymptotic Notation -Big "oh

- \odot f(n)=O(g(n)) iff
 - \odot ∃ positive const. c and n_0 , \ni f(n) \le cg(n) \forall n, n \geq n₀
- e.g.
 - -3n+2 = O(n)
 - 10n²+4n+2=O(n²) 10

- $3n+2 \le 4n$ for all $n \ge 2$
 - $10n^2 + 4n + 2 \le 11n^2$, for all $n \ge 1$
- $3n+2 = O(n^2)$ $3n+2 \le n^2$ for all $n \ge 4$
- * g(n) should be a *least upper bound*

Asymptotic Notation -Omega

- $f(n) = \Omega(g(n)) iff$

 - ⊙e.g.
 - $3n+3 = \Omega(n)$
 - $-6*2^n + n^2 = \Omega(2^n)$
 - 3n+3 = Ω(1)

 $3n+3 \ge 3n$ for all $n \ge 1$

 $6*2^n + n^2 \ge 2^n$ for all $n \ge 1$

 $3n+3 \ge 3$ for all $n \ge 1$

* g(n) should be a most lower bound

Asymptotic Notation -Theta

- $f(n) = \Theta(g(n))$ iff
 - ●∃ positive constants c1,c2, and n0 ∋ c1g(n) ≤ $f(n) \le c2g(n) \forall n, n \ge n0$
 - oe.g.
 - 3n+2 = ⊕(n)
- $3n \le 3n+2 \le 4n$, for all $n \ge 2$
 - $10n^2+4n+2=\Theta(n^2)$ $10n^2 \le 10n^2+4n+2 \le 11n^2$, for all $n \ge 5$
- * g(n) should be both lower bound & upper bound

Some Rules

Rule 1:

```
If T1(N)=O(f(N)) and T2(N)=O(g(N)) Then
(a) T1(N)+T2(N) = max ( O(f(N)), O(g(N)) )
(b) T1(N)*T2(N) = O( f(N)*g(N) )
```

- Rule 2:
 - If T(N) is a polynomial of degree k, then $T(N) = \Theta(N^k)$
- Rule 3:

 $(logN)^k=O(N)$ (Prove it in our discussion board)

Running Time Calculations

for loops

```
for (I=0; I <n; I++)
{
    x++;
    y++;
    z++;
}</pre>
```

Running Time Calculations (cont'd)

- nested for loops
 - for (i=0; i <N; i++)
 for (j=0; j<N; j++)
 k++;</pre>
 - 1*N*N

Running Time Calculations (cont'd)

consecutive statements

```
    for (i=0; i <N; i++)
        A[i]=0;
        for (i=0; i<N; i++)
        for (j=0; j<N; j++)
            A[i] +=A[j]+i+j</li>
    max( 1*N, 1*N*N)= 1*N*N
```

Running Time Calculations (cont'd)

If/Else

Running Time Calculations-Recursive

Running Time Calculations-Recursive

Iong int Fb(int N)
{
 if (N<=1)
 return 1;
 else
 return Fb(N-1)+Fb(N-2);
 }

I(N)=T(N-1)+T(N-2)+c</pre>

Typical Growth Rate

c: constant

■ log N: logarithmic

■ log²N: Log-squared

■ N: Linear

■ NlogN:

■ N²: Quadratic

■ N³: Cubic

■ 2^N: Exponential

Performance Measurement

- Timing event
- in C's standard library time.h
 - oclock function: system clock
 - time function