DISCRETE MATHEMATICS

SUBMITTED BY

KOMAL

APPLIED SCIENCE

Introduction

- Discrete Mathematics is the part of Mathematics devoted to study of
 - Discrete (Disinct or not connected objects)
- Discrete Mathematics is the study of mathematical structures that are fundamentally discrete rather than continuous.
- As we know Discrete Mathematics is a backbone of mathematics and computer science

Scope

- It Develops our Mathematical Thinking
- It Improves our problem solving abilities
- Many Problems can be solved using Discrete mathematics
- For eg .
- Sorting the list of Integers
- Finding the shortest path from home to any destination
- Drawing a garph within two conditions
- We are not allowed to lift your pen.
- We are not allowed to repeat edges

Algebraic Structures

- Algebraic systems Examples and general properties
- Semi groups
- Monoids
- Groups
- Sub groups

Algebraic systems

- N = $\{1,2,3,4,.....\infty\}$ = Set of all natural numbers. Z = $\{0, \pm 1, \pm 2, \pm 3, \pm 4,\infty\}$ = Set of all integers. Q = Set of all rational numbers.
 - R = Set of all real numbers.
- **Binary Operation:** The binary operator * is said to be a binary operation (closed operation) on a non empty set A, if $a * b \in A$ for all $a, b \in A$ (Closure property).
 - Ex: The set N is closed with respect to addition and multiplication but not w.r.t subtraction and division.
- Algebraic System: A set 'A' with one or more binary(closed) operations defined on it is called an algebraic system.
 - Ex: (N, +), (Z, +, -), $(R, +, \cdot, -)$ are algebraic systems.

Properties

- Commutative: Let * be a binary operation on a set A.
 - The operation * is said to be commutative in A if
 - a * b = b * a for all a, b in A
- **Associativity:** Let * be a binary operation on a set A.
 - The operation * is said to be associative in A if
 - (a * b) * c = a * (b * c) for all a, b, c in A
- Identity: For an algebraic system (A, *), an element 'e' in A is said to be an identity element of A if
 - a * e = e * a = a for all $a \in A$.
- **Note:** For an algebraic system (A, *), the identity element, if exists, is unique.
- Inverse: Let (A, *) be an algebraic system with identity 'e'. Let a be an element in A. An element b is said to be inverse of A if

Semi group

- **Semi Group:** An algebraic system (A, *) is said to be a semi group if
 - 1. * is closed operation on A.
 - 2. * is an associative operation, for all a, b, c in A.
- Ex. (N, +) is a semi group.
- Ex. (N, .) is a semi group.
- Ex. (N, −) is not a semi group.
- Monoid: An algebraic system (A, *) is said to be a monoid if the following conditions are satisfied.
 - 1) * is a closed operation in A.
 - 2) * is an associative operation in A.
 - 3) There is an identity in A.

Subsemigroup & submonoid

Subsemigroup: Let (S, *) be a semigroup and let T be a subset of S. If T is closed under operation *, then (T, *) is called a subsemigroup of (S, *).

Ex: (N, .) is semigroup and T is set of multiples of positive integer m then (T,.) is a sub semigroup.

Submonoid: Let (S, *) be a monoid with identity e, and let T be a non- empty subset of S. If T is closed under the operation * and $e \in T$, then (T, *) is called a submonoid of (S, *).

Group

- **Group:** An algebraic system (G, *) is said to be a **group** if the following conditions are satisfied.
 - 1) * is a closed operation.
 - 2) * is an associative operation.
 - 3) There is an identity in G.
 - 4) Every element in G has inverse in G.
- Abelian group (Commutative group): A group (G, *) is said to be abelian (or commutative) if

$$a * b = b * a$$
.

- In a Group (G, *) the following properties hold good
- 1. Identity element is unique.
- 2. Inverse of an element is unique.
- 3. Cancellation laws hold good

```
a * b = a * c \implies b = c (left cancellation law)

a * c = b * c \implies a = b (Right cancellation law)
```

- 4. $(a * b)^{-1} = b^{-1} * a^{-1}$
- In a group, the identity element is its own inverse.
- Order of a group: The number of elements in a group is called order of the group.
- Finite group: If the order of a group G is finite, then G is called a finite group.

- Ex. Show that set of all non zero real numbers is a group with respect to multiplication .
- Solution: Let R^* = set of all non zero real numbers. Let a, b, c are any three elements of R^* .
- 1. <u>Closure property</u>: We know that, product of two nonzero real numbers is again a nonzero real number.
 - i.e., $a \cdot b \in R^*$ for all $a,b \in R^*$.
- 2. <u>Associativity</u>: We know that multiplication of real numbers is associative.
 - i.e., (a.b).c = a.(b.c) for all a,b,c $\in R^*$.
- 3. <u>Identity</u>: We have $1 \in R^*$ and $a \cdot 1 = a$ for all $a \in R^*$.
 - ∴ Identity element exists, and '1' is the identity element.
- 4. Inverse: To each $a \in R^*$, we have $1/a \in R^*$ such that $a \cdot (1/a) = 1$ i.e., Each element in R^* has an inverse.

Contd.,

5.<u>Commutativity</u>: We know that multiplication of real numbers is commutative.

```
i.e., a.b = b.a for all a,b \in R^*.
Hence, (R^*, .) is an abelian group.
```

- <u>Ex:</u> Show that set of all real numbers 'R' is not a group with respect to multiplication.
- Solution: We have $0 \in R$.

The multiplicative inverse of 0 does not exist.

Hence. R is not a group.

Example

- Ex. Let (Z, *) be an algebraic structure, where Z is the set of integers and the operation * is defined by n * m = maximum of (n, m).
 Show that (Z, *) is a semi group.
 Is (Z, *) a monoid ?. Justify your answer.
- Solution: Let a , b and c are any three integers.

Closure property: Now, a * b = maximum of (a, b) \in Z for all a,b \in Z

Associativity: $(a * b) * c = maximum of {a,b,c} = a * (b * c)$ \therefore (Z, *) is a semi group.

Identity: There is no integer x such that
 a * x = maximum of (a, x) = a for all a ∈ Z
 ∴ Identity element does not exist. Hence, (Z, *) is not a monoid.

Ex. Show that the set of all positive rational numbers forms an abelian group under the composition * defined by a * b = (ab)/2.

- Solution: Let A = set of all positive rational numbers.
 Let a,b,c be any three elements of A.
- 1. <u>Closure property:</u> We know that, Product of two positive rational numbers is again a rational number.

i.e., $a * b \in A$ for all $a,b \in A$.

- 2. Associativity: (a*b)*c = (ab/2)*c = (abc)/4a*(b*c) = a*(bc/2) = (abc)/4
- 3. <u>Identity</u>: Let e be the identity element.

We have $a^*e = (a e)/2 ...(1)$, By the definition of * again, $a^*e = a$ (2), Since e is the identity. From (1)and (2), (a e)/2 = a $\Rightarrow e = 2$ and $2 \in A$.

... Identity element exists, and '2' is the identity element in A.

Contd.,

- 4. Inverse: Let a ∈ A
 let us suppose b is inverse of a.
 Now, a * b = (a b)/2(1) (By definition of inverse.)
 Again, a * b = e = 2(2) (By definition of inverse)
 From (1) and (2), it follows that
 (a b)/2 = 2
 ⇒ b = (4 / a) ∈ A
 ∴ (A ,*) is a group.
- Commutativity: a * b = (ab/2) = (ba/2) = b * a
- Hence, (A,*) is an abelian group.

- Ex. In a group (G, *), Prove that the identity element is unique.
- Proof :
- a) Let e_1 and e_2 are two identity elements in G.

```
Now, e_1 * e_2 = e_1 ...(1) (since e_2 is the identity)
Again, e_1 * e_2 = e_2 ...(2) (since e_1 is the identity)
From (1) and (2), we have e_1 = e_2
```

:. Identity element in a group is unique.

- Ex. In a group (G, *), Prove that the inverse of any element is unique.
- Proof:
- Let a ,b,c \in G and e is the identity in G.
- Let us suppose, Both b and c are inverse elements of a.
- Now, $a * b = e \dots (1)$ (Since, b is inverse of a)
- Again, a * c = e ...(2) (Since, c is also inverse of a)
- From (1) and (2), we have
- a * b = a * c
- \Rightarrow b = c (By left cancellation law)
- In a group, the inverse of any element is unique.

- Ex. In a group (G, *), Prove that $(a * b)^{-1} = b^{-1} * a^{-1}$ for all $a,b \in G$.
- Proof :
- Consider,

$$\blacksquare$$
 (a * b) * (b⁻¹ * a⁻¹)

= (a * (b *
$$b^{-1}$$
) * a^{-1}) (By associative property).

$$= (a * e * a^{-1})$$
 (By inverse property)

$$= (a * a^{-1}) (Since, e is identity)$$

- Similarly, we can show that
- \bullet (b⁻¹ * a⁻¹) * (a * b) = e
- Hence, $(a * b)^{-1} = b^{-1} * a^{-1}$.

Ex. If (G, *) is a group and $a \in G$ such that a * a = a, then show that a = e, where e is identity element in G.

- Proof: Given that, a * a = a
- \Rightarrow a * a = a * e (Since, e is identity in G)
- \Rightarrow a = e (By left cancellation law)
- Hence, the result follows.

Ex. If every element of a group is its own inverse, then show that the group must be abelian .

- Proof: Let (G, *) be a group.
- Let a and b are any two elements of G.
- Consider the identity,
- \Rightarrow (a * b) = b * a (Since each element of G is its own
- inverse)
- Hence, G is abelian.

Ex. Show that $G = \{1, -1, i, -i\}$ is an abelian group under multiplication.

Solution: The composition table of G is

- 1. <u>Closure property:</u> |Since all the entries of the composition table are the elements of the given set, the set G is closed under multiplication.
- 2. <u>Associativity</u>: The elements of G are complex numbers, and we know that multiplication of complex numbers is associative.
- 3. <u>Identity</u>: Here, 1 is the identity element and $1 \in G$.

Contd.,

- 4. <u>Inverse</u>: From the composition table, we see that the inverse elements of
 - 1 -1, i, -i are 1, -1, -i, i respectively.
- 5. Commutativity: The corresponding rows and columns of the table are identical. Therefore the binary operation . is commutative. Hence, (G, .) is an abelian group.

Sub groups

- <u>Def.</u> A non empty sub set H of a group (G, *) is a sub group of G,
- if (H, *) is a group.

Note: For any group {G, *}, {e, *} and (G, *) are trivial sub groups.

Ex. $G = \{1, -1, i, -i\}$ is a group w.r.t multiplication.

 $H_1 = \{1, -1\}$ is a subgroup of G.

 $H_2 = \{1\}$ is a trivial subgroup of G.

- Ex. (Z, +) and (Q, +) are sub groups of the group (R +).
- Theorem: A non empty sub set H of a group (G, *) is a sub group of G iff
- \blacksquare i) $a * b \in H \forall a, b \in H$
- ii) $a^{-1} \in H \quad \forall a \in H$

- Theorem: A necessary and sufficient condition for a non empty subset H of a group (G, *) to be a sub group is that a ∈ H, b ∈ H ⇒ a * b⁻¹ ∈ H.
- Proof: Case1: Let (G, *) be a group and H is a subgroup of G Let $a,b \in H \Rightarrow b^{-1} \in H$ (since H is is a group) $\Rightarrow a * b^{-1} \in H$. (By closure property in H)
- <u>Case2</u>: Let H be a non empty set of a group (G, *).

Let
$$a * b^{-1} \in H \quad \forall a, b \in H$$

- Now, $a * a^{-1} \in H$ (Taking b = a) $\Rightarrow e \in H$ i.e., identity exists in H.
- Now, $e \in H$, $a \in H \implies e * a^{-1} \in H$ $\Rightarrow a^{-1} \in H$

Contd.,

■ ∴ Each element of H has inverse in H.

Further, $a \in H$, $b \in H \Rightarrow a \in H$, $b^{-1} \in H$

- \Rightarrow a * (b⁻¹)⁻¹ \in H.
- \Rightarrow a * b \in H.
- ∴ H is closed w.r.t *.
- Finally, Let a,b,c ∈ H
 - \Rightarrow a,b,c \in G (since H \subseteq G)
 - \Rightarrow (a * b) * c = a * (b * c)
 - ∴ * is associative in H
- Hence, H is a subgroup of G.

Homomorphism and Isomorphism.

- Homomorphism: Consider the groups (G, *) and (G¹, ⊕)
 A function f: G → G¹ is called a homomorphism if
 f (a * b) = f(a) ⊕ f (b)
- **Isomorphism**: If a homomorphism $f: G \to G^1$ is a bijection then f is called isomorphism between G and G^1 .

Then we write $G \equiv G^1$

Cosets

- If H is a sub group of(G, *) and $a \in G$ then the set Ha = { h * a | h \in H}is called a right coset of H in G. Similarly $aH = \{a * h \mid h \in H\}$ is called a left coset of H is G.
- Note:- 1) Any two left (right) cosets of H in G are either identical or disjoint.
- 2) Let H be a sub group of G. Then the right cosets of H form a partition of G. i.e., the union of all right cosets of a sub group H is equal to G.
 - 3) <u>Lagrange's theorem</u>: The order of each sub group of a finite group is a divisor of the order of the group.
- 4) The order of every element of a finite group is a divisor of the order of the group.
- 5) The converse of the lagrange's theorem need not be true.

State and prove Lagrange's Theorem

- <u>Lagrange's theorem</u>: The order of each sub group H of a finite group G is a divisor of the order of the group.
- Proof: Since G is finite group, H is finite.
- Therefore, the number of cosets of H in G is finite.
- Let Ha₁,Ha₂, ...,Ha_r be the distinct right cosets of H in G.
- Then, $G = Ha_1 \cup Ha_2 \cup ..., \cup Ha_r$
- So that $O(G) = O(Ha_1) + O(Ha_2) ... + O(Ha_r)$.
- But, $O(Ha_1) = O(Ha_2) = = O(Ha_r) = O(H)$
- \cdot : O(G) = O(H)+O(H) ...+ O(H). (r terms)
- = r . O(H)
- This shows that O(H) divides O(G).

THANK YOU