МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

НИЖЕГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Р.Е.АЛЕКСЕЕВА

Институт радиоэлектроники и информационных технологий Кафедра информатики и систем управления

Лабораторная работа №6

«Приближенное решение обыкновенных дифференциальных уравнений методом Эйлера с пересчетом»

по дисциплине

Вычислительная математика

РУКОВОДИТЕЛЬ:	
	Суркова А.С.
СТУДЕНТ:	
	Сухоруков В.А.
	<u> 19-ИВТ-3</u>
Работа защищена «	
С оценкой	

Оглавление

Элементы оглавления не найдены.

Цель работы

Закрепление знаний и умений по численному решению обыкновенных дифференциальных уравнений методом Эйлера и методом Адамса.

Постановка задачи

Задание 1

Используя метод Эйлера и метод Эйлера с пересчетом, составить таблицу приближенных значений интеграла дифференциального уравнения y'=f(x,y), удовлетворяющего начальным условиям y(x0)=y0 на отрезке [a,b]; шаг h=0.1. Все вычисления вести с четырехзначными знаками. Проверить полученные значения, используя метод Рунге-Кутты 4 порядка.

$$19.y' = x + \sin \frac{y}{\sqrt{3}}, y_0(1.1) = 1.5$$
, $x \in [1.1;2.1]$

Задание 2

Используя метод Адамса с третьими разностями составить таблицу приближенных значений интеграла дифференциального уравнения y'=f(x,y), удовлетворяющего начальным условиям y(x0)=y0 на отрезке [0,1]; шаг h=0.1. Все вычисления вести с четырехзначными знаками. Начальный отрезок определить методом Рунге-Кутты. Проверить полученные значения, используя метод Эйлера с пересчетом.

19.
$$y'=(0.8-y^2)\cos x +0.3y$$
, $y(0)=0$

Теоретические сведения

Постановка задачи Коши:

Найти решение дифференциального уравнения

Метод Эйлера

Метод Эйлера для решения указанной задачи Коши основан на непосредственной замене производной разностным отношением по приближенной формуле: dy/dx=f(x,y), $\Delta y/\Delta x=f(x,y)$ если обозначить $h=\Delta x$, то:

$$y(x+h)=y(x)+hf(x,y)$$

Приближенные значения у k в точках х $_{\rm K}$ =x $_0$ +hk вычисляются по формуле y_{k+1} =y $_k$ +hf(x $_k$,y $_k$)

Нахождение у' методом Эйлера

Метод Адамса

Широко распространенным семейством многошаговых методов решения дифференциальных уравнений являются методы Адамса. В практических расчетах чаще всего используется вариант метода Адамса, имеющий четвертый порядок точности и использующий на каждом шаге результаты предыдущих четырех. Именно его и называют обычно методом Адамса.

Рассмотрим этот метод. Пусть найдены значения y_{i-3} , y_{i-2} , y_{i-1} , y_{i-1} в четырех последовательных узлах и значения правой части - f i-3, f i-2, f i-1, f i, f i, f i = f(f i). В качестве интерполяционного многочлена f i) можно взять многочлен Ньютона. В случае постоянного шага конечные разности для правой части в узле имеют вид:

$$\Delta f i = f_i - f_{i-1}$$

$$\Delta^{2} f i = f_{i} - 2f_{i-1} + f_{i-2}$$

$$\Delta^{3} f i = f_{i} - 3f_{i-1} + 3f_{i-2} - f_{i-3}$$

Тогда разностную схему четвертого порядка метода Адамса можно записать после необходимых преобразований в виде :

$$y_{i+1} = y_i + hf_i + \frac{h^2}{2}\Delta f_i + \frac{5h^3}{12}\Delta^2 f_i + \frac{3h^4}{8}\Delta^3 f_i$$

Нахождение у' методом Адамса. Для нахождения первых 3 значений используется метод Рунге-Кутта

Расчетные данные

Задание 1

19.y'= x+
$$sin\frac{y}{\sqrt{3}}$$
, $y_0(1.1) = 1.5$, $x \in [1.1;2.1]$

-	• -	,	, - [
Решение	Решение методом Эйлера		
		f(xi)	
	xi	`´yi	
	1.1	1.5	
	1.2	1.686	2
	1.3	1.888	
	1.4	2.107	
	1.5	2.341	
	1.6	2.589	
	1.7	2.848	
	1.8	3.118	
	1.9	3.395	
	2		
		3.678	
Решение		Эйлера с пере	счетом
		f(xi)	
	xi	yi	
	1.1	1.5	
	1.2	1.689	
		1.895	
	1.4	2.116	
	1.5	2.352	
	1.6	2.601	
		2.860	9
	1.8	3.129	4
	1.9	3.404	1
	2	3.682	7
Решение	методом	Рунге-Кутта	
		f(xi)	
	xi	yi	
	1.1	1.5	
	1.2	1.694	6
	1.3	1.905	
	1.4	2.132	
	1.5	2.373	
	1.6	2.627	
	1.7	2.892	
	1.8	3.166	
	1.9	3.445	
	2	3.728	
	_	5.720	

Решение	методом	Адамса f(xi)
	xi	yi
	0	0
	0.1	0.08086
	0.2	0.16206
	0.3	0.24161
	0.4	0.31957
	0.5	0.39322
	0.6	0.46137
	0.7	0.52336
	0.8	0.57898
	0.9	0.62842
		0.67217
Решение	методом	Эйлера с пересчётом
		f(xi)
	xi	yi
	0	0
	0.1	0.08088
	0.2	0.16249
	0.3	0.24279
	0.4	0.31994
	0.5	0.39247
	0.6	0.4594
	0.7	0.5202
	0.8	0.57479
	0.9	0.62341
		0.66657

Код программы Value_function_table.h

```
#pragma once
#include<vector>
#include<iostream>
#include"Colors.h"
using namespace std;
/*Класс для описания таблицы значений функции*/
class Value_function_table{
public:
    vector<double>x;
                                          //Координаты х точек
                                          //Координаты у точек
    vector<double>y;
    size_t n;
                                          //Количество точек
    double a;
                                          //Левая граница для х
     double b;
                                          //Правая граница для х
```

```
double h;
               //War
     Value function table() {
          n = 0;
          a = 0;
          b = 0;
          h = 0;
     }
     //Функция заполнения таблицы
     void set value() {
          setlocale(LC ALL, "Russian");
          cout<<Yellow << "X:[a,b]\nВведите а ";
          cin >> this->a;
          cout << "\nВведите b ";
          cin >> this->b;
          cout << "\nВведите шаг h ";
          cin >> this->h;
          cout << "\nВведите y0 ";
          double y0; cin >> y0;
          this->y.push back(y0);
          for (double i = a; i <=b; i=i+h) {</pre>
               this->x.push back(i);
               this->y.push back(0);
          this->n = this->x.size();
     }
};
                          solution methods.h
#pragma once
#include<cmath>
#include<vector>
#include<iostream>
#include<iomanip>
#include"Value function table.h"
/*Библиотека для решения дифференциального уравнения методом
Эйлера и Рунге-Кутта*/
/*Нахождение значения функции при заданных х и у
*Параметр equation отвечает за выбор функции
*Eсли equation=1, то находится значение функции
f(x,y) = x + \sin(y/3^{(1/2)})
*Если equation=2, то находится значение функции f(x,y)=(0.8-
y^2) * cos(x) + 0.3y */
double f x y(double x, double y,int equation) {
```

```
double res=0;
     if (equation == 1) {
         res = x + \sin(y / pow(3, 0.5));
     }
     if (equation == 2) {
         res = (0.8 - y * y) * cos(x) + 0.3 * y;
    return res;
}
/*Решение уравнения методом Эйлера*/
void Euler(Value function table table, int equation) {
    for (size t i = 1; i < table.n; i++) {</pre>
          table.y[i]=table.y[i - 1] + table.h * f x y(
          table.x[i - 1], table.y[i - 1], equation);
     }
    cout<<Blue<<"Решение методом Эйлера\n"
            <<Green << "\t\tf(xi)\n"
            << "\txi\t|\tyi\n"
             <<"----\n";
    for (size t i = 0; i < table.n; i++) {</pre>
          cout << "\t" << table.x[i] << "\t|\t"</pre>
               << setprecision(5)<< table.y[i] << "\n";</pre>
     }
}
/*Решение уравнения методом Эйлера с пересчётом*/
void Euler recount(Value function table table, int equation) {
    double y;
    for (size t i = 1; i < table.n; i++) {</pre>
          y = table.y[i-1]+table.h*f x y(table.x[i - 1],
               table.y[i - 1], equation);
          table.y[i]=table.y[i - 1] + table.h / 2 *
               (f \times y(table.x[i-1], table.y[i-1], equation) +
               f x y(table.x[i - 1], y,equation));
     }
    cout << Blue << "Решение методом Эйлера с пересчётом\n"
          << Green << "\t\tf(xi)\n"
          << "\txi\t|\tyi\n"
          << "----\n";
     for (size t i = 0; i < table.n; i++) {</pre>
          cout << "\t" << table.x[i] << "\t|\t"</pre>
                << setprecision(5) << table.y[i] << "\n";
     }
```

```
/*Решение методом Рунге-Кутта*/
void Runge Kutt(Value function table table, int equation) {
    double k1, k2, k3, k4;
    for (size t i = 1; i < table.n; i++) {</pre>
         k1 = f \times y(table.x[i - 1], table.y[i - 1], equation);
         k2 = f \times y(table.x[i - 1] + table.h / 4, table.y[i - 1]
               + k1 * table.h / 4, equation);
         k3 = f \times y(table.x[i - 1] + table.h / 2, table.y[i - 1]
              + k2 * table.h / 2, equation);
         k4 = f \times y(table.x[i - 1] + table.h, table.y[i - 1]
               + table.h * k1 - 2 * table.h * k2 + 2 * table.h *
              k3, equation);
         table.y[i] = table.y[i - 1] + (k1 + 4*k3 + k4) *
              table.h / 6;
     }
    cout << Blue << "Решение методом Рунге-Кутта\n"
         << Green << "\t\tf(xi)\n"
         << "\txi\t|\tyi\n"
         << "----\n";
     for (size t i = 0; i < table.n; i++) {</pre>
         cout << "\t" << table.x[i] << "\t|\t"</pre>
               << setprecision(5) << table.y[i] << "\n";
     }
}
/*Решение методом Адамса*/
void Adams(Value function table table, int equation) {
    //Нахождение первых 3 значений методом Рунге-Кутта
    double k1, k2, k3, k4;
    for (size t i = 1; i < 4; i++) {</pre>
         k1 = f \times y(table.x[i - 1], table.y[i - 1], equation);
         k2 = f \times y(table.x[i - 1] + table.h / 4, table.y[i - 1]
               + k1 * table.h / 4, equation);
         k3 = f \times y(table.x[i - 1] + table.h / 2, table.y[i - 1]
               + k2 * table.h / 2, equation);
         k4 = f \times y(table.x[i - 1] + table.h, table.y[i - 1]
               k3, equation);
         table.y[i] = table.y[i - 1] + (k1 + 4 * k3 + k4)
```

}

```
}
     //Нахождение остальных значений методом Адамса
     double d_f = 0, d_2_f = 0, d_3_f = 0;
     for (size t i = 4; i < table.n; i++) {</pre>
          d_f = f_x_y(table.x[i - 1], table.y[i - 1], equation) -
                f x y(table.x[i - 2], table.y[i - 2], equation);
          d 2 f= f x y(table.x[i - 1], table.y[i - 1], equation)
                    -2*f \times y(table.x[i-2], table.y[i-2],
                     equation) + f x y(table.x[i - 3],
                     table.y[i - 3], equation);
          d 3 f = f x y(table.x[i - 1], table.y[i - 1], equation)
                   -3 * f x y(table.x[i - 2], table.y[i - 2],
                     equation) +3 * f x y(table.x[i - 3],
                     table.y[i - 3], equation) -
                     f x y(table.x[i - 4], table.y[i - 4],
                     equation);
          table.y[i] = table.y[i - 1] + table.h *
                      f \times y(table.x[i-1], table.y[i-1],
                      equation) +pow(table.h, 2) * d f / 2 +5 *
                    pow(table.h, 3) * d 2 f / 12 + 3 *
                    pow(table.h, 4) * d 3 f / 8;
     }
     cout << Blue << "Решение методом Адамса\n"
          << Green << "\t\tf(xi)\n"
          << "\txi\t|\tyi\n"
          << "----\n";
     for (size t i = 0; i < table.n; i++) {</pre>
          cout << "\t" << table.x[i] << "\t|\t"</pre>
                << setprecision(5) << table.y[i] << "\n";</pre>
     }
}
                             Main.cpp
#include "solution methods.h"
#include "Value function table.h"
#include "Colors.h"
#include<iomanip>
using namespace std;
int main() {
     setlocale(LC ALL, "Russian"); //Включение русского языка
в консол
     cout<<Blue << "Решение уравнения
y'=f(x,y)=x+\sin(y/3^{(1/2)})\n";
     Value function table table f, table s;
     table f.set value();
```

* table.h / 6;

Результаты работы программы

```
уравнения y'=t(x,y)=x+\sin(y/3^{x}(1/2))
(:[a,b]
Введите а 1.1
Введите b 2.1
Введите шаг h 0.1
Введите у0 1.5
Решение методом Эйлера
                        2.8487
                        3.1184
Решение методом Эйлера с пересчётом
                        2.1166
                        3.1294
Решение методом Рунге-Кутта
                        1.6946
Решение уравнения y'=f(x,y)=(0.8-y^2)*cos(x)+0.3y
(:[a,b]
Введите а 0
Введите b 1
Введите шаг h 0.1
Введите у0 0
```

Решение	методом	Адамса f(xi)	
	xi	yi yi	
	0	0	
	0.1	0.08086	
	0.2	0.16206	
	0.3	0.24161	
	0.4	0.31957	
	0.5	0.39322	
	0.6	0.46137	
	0.7	0.52336	
	0.8	0.57898	
	0.9	0.62842	
		0.67217	
Решение	методом	Эйлера с пересчётом	
	f(xi)		
	xi	yi	
	0	0	
	0.1	0.08088	
	0.2	0.16249	
	0.3	0.24279	
	0.4	0.31994	
	0.5	0.39247	
	0.6	0.4594	
	0.7	0.5202	
	0.8	0.57479	
	0.9	0.62341	
	1	0.66657	

Вывод

Закрепил знания и умения по численному решению обыкновенных дифференциальных уравнений методом Эйлера и методом Адамса. Сравнил значения, полученные разными способами решения, они получились равны в пределах погрешности.