

NFA =
$$\{S, \Sigma, \Delta, S_0, S_A\}$$

relation.

9=5x R=1

 Δ : $\left(S \times \left(\Sigma \cup \widetilde{E}\right)\right) \times S$

リニナスズ

- 1). a state can have multiple transitus at (2) on the same chaacter. (2) a (2)

 (2) It can also have no transitions.
- (3) à state can have & +ransitures (+rounsiton consumes no imput)

 $a \rightarrow a$

A strong w is accepted by a machine M ift. there exists a path from so to an accepting on the path.

State s.t. the edge labels V spell W. ignoring E-s.

M: a Pi a Pi a a is accepted

L(M):= { all strys accepted by M?

two models for the behavior of NFA.

- O. The NFA always guesses the transitions correctly.
- 2) each time the NFA must make a choice, NFA clone itself for each possible choice.

2. example

ex: L= { w ∈ {a, b, c, d}*, w contains at most

3 letters ? b,c,d (b|c|d)*

E Pa,b,d

L= {w \(\int \langle a, b\) \(\text{N} \) \(\tex

3	NFA VS DFA.
	* NFA is more intritive
	o, 1, 2 ··· transition
	E franktiton. vecognneel. * NFA = DFA: a language is accepted by
	* NFA = DFA: a language is accepted by
	a DFA iff it is aiccepted
	by an NFA
	* Why study NFA: scanner
	* Why study AFA: scanner Key to automate the RE -> DFA.
	construction,
4.	Automating scanner construction. 2.4.2
	- D. write down RE for the lexical structure
automatry	D. write down RE for the lexical structure of a language of Build a big simple. NFA. 3 systematically construct a minual DFA.
	(3) systematically construct a minal DFA.
	4 de turn 14 înto coele.
	Thompton ourstmitm:
	bottom up: * NFA for each symbol. * Join NFAs with & transiton.
	* Join NFAs with & transiton.

Z={a, b} ->0-b>0 → 50 - ×51 properties of NFAs from Thompson's construction * . each NFA has one start State has only one accepting state * . start state only has outgoing transitures

accepting state only has noomy transforms.

* each state has at most 2 incomy & transition at most 2 and outgony & transition 3 at most 1 incoming /enterny transition/move on a symbol in the alphabet 4 at most 1 outgoing /exit transition/more on a symbol m the alphabat. a (b|c)* Thompton construction

NFA 02/05/2025

of states of NFA.

2 key functions:

Followepsition (s):

s: a set of state in NFA

the set of states reachable from some state of S by &- transitions.

Followersition ({no}) = {no}

Followepsion ({ 13}) = { 14, 16, 13}

Followepssion ({n3, n8}) = {n3, n8, n4, n6, n9}

Delta (S, a): a subset of states reachable

from some states MS via a transity

labeled "a" in NFA

Del+a($\{n_2, n_3, n_4\}$) $= \{$ $\}$. $= \emptyset$

Delta ({ n2, n3 }, b) = \$

Delta ({ Nz, N43, b) = { Ns?

Followepsilon Delta (3, a))

subset construction.

input: NFA (N, E, J, no, NA)

output DFA: (D. Z. T., do, DA)

steps: Follow (No?)

D = { do}

W = {do? 13t of states need to compute transition

if do N NA + \$, add do to DA

while $(w \neq \phi)$

remove a state s from W

for each & E E

t = Follow (Delta (s,a))

T[s, a] = t

if t \ D

add t to D

 $//D = DU\{t\}$

add to w

//w=wust3

if to NA = \$

add t to DA

1/ DA = DA U [+]

		Followepsion (Delta (S, a					
	DFA	state.	NFA states.	a		Ь	C
	do		{no}	$\{n_1, n_2, n_4, n_6, n_6, n_6, n_6, n_6, n_6, n_6, n_6$			4
				do a = {di}			
				$w = \{d_i\}$ $Da = \{d_i\}$			
			{ n,	4		15, N8, N3	$\frac{n_7}{n_3}, \frac{n_8}{n_4}, \frac{n_9}{n_6}$
	di		n4, n6, n9].	4			
				. [2	(α_i))> (d3)	(a) (b) (c)
				$W = \{d2\}$	V	{d2}.	
				DA = { d, }	D _A =	5d1, d23	$D_A = \{d_1, d_2, d_3\}$
_			ut a Ma 7		~ N=	12 N2 7	No. NA Na 2
	Ol2.	$\begin{cases} n_i \\ n_i \end{cases}$	5, 18, 13 ?	4	3 na,	14, 16	{ n3, n4, n6?
		1		w={d; }	· (di	12	
				DA = Edi, d	2, d3 W =	5 d2 ?	(A) (A)
_					DA :	2	$ \begin{array}{c} C \\ C \\$
	1	1 N2	ns, na 2	do			
_	dz) ha	ng, ng ?	w= \$.	olz		d3
_				$\mathcal{D}_{\Delta} = \cdots$	(di)	6	(ds) e
				<i>F</i> -1		(02)	
				,	PS	5	7-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3
			(n) 9-(a)	1 27	(cols)	-	
		\longrightarrow (do)		CTT	Ь	
				C	(Os)	D C.	
						~	

