Pontifícia Universidade Católica de Minas Gerais Pós Graduação em Ciência dos Dados e Big Data Campus Praça da Liberdade

Análise Descritiva de Dados Qualidade e Custo de Vida nas Cidades

Disciplina: Estatística Geral - Teoria e Aplicações

Professor: Wagner Rogério

Grupo II
Amanda M. P. Amorim
Carlos R. Cardoso
Frederico Augusto C.V. da Costa
Ricardo Lempke
Sérgio R. I. Yoshioka
Thaís Ferreira Araújo

Introdução	2
Descrição do Dataset	2
Dicionário de Dados	2
Classificação das variáveis	5
Problemas	5
Problema Principal	5
Problema Secundário	6
Proposta de Solução (Sugestão)	6
Informações de custo de vida	6
Validação das informações do poder de compra	6
Geração da informação de poder de compra	6
Informações de qualidade de vida	6
Validação das informações do MoveHub Rating	6
Validação das informações do Quality of Life	6
Selecionar o que melhor representa a melhor cidade para se viver	7
Geração da informação da qualidade de vida com os dados primários	7
Validação estatística	7
Informações de poder de compra	7
Validação das informações do poder de compra	7
Geração da informação de poder de compra	8
Informações de qualidade de vida	9
Validação das informações do MoveHub Rating	10
Validação das informações do Quality of Life	11
Selecionar o que melhor representa a melhor cidade para se viver	12
Geração da informação da qualidade de vida com os dados primários	13
Considerações adicionais	16
Anexos: Análise utilizando Python (Jupyter Notebook)	20

1. Introdução

Este documento apresenta inicialmente uma análise descritiva dos dados relacionados à qualidade e custo de vida em algumas das principais cidades e países ao redor do mundo. Os dados utilizados foram extraídos do dataset Movehub City Ranking¹ publicado na plataforma online de datascience Kaggle. Esse dataset se baseia no ranking de cidades do MoveHub², plataforma online que permite a consulta das melhores cidades para viver a partir de critérios de pesquisa submetidos pelos seus usuários.

Posteriormente é realizada uma exploração dos dados a fim de identificar um problema e propor a solução por meio de métodos estatísticos.

Ao final do trabalho é feita uma análise das variáveis, executados testes de correlação e clusterização, com o objetivo de propor um modelo para solução do problema.

2. Descrição do Dataset

2.1. Dicionário de Dados

O Dataset Movehub City Ranking é composto por três tabelas, armazenadas em arquivo texto no formato CSV:

Tabela: movehubqualityoflife.csv

Descrição: Registra para cada cidade parâmetros relacionados à percepção de qualidade de vida por parte de seus habitantes.

Parâmetro	Descrição
City	nome da cidade
Movehub Rating	nota geral da cidade a partir da combinação de todos os demais parâmetros
Purchase Power	comparação entre o custo de vida médio e o salário médio local

¹ disponível em: https://www.kaggle.com/blitzr/movehub-city-rankings/home

² disponível em:https://www.movehub.com/city-rankings/

Health Care	traduz a percepção dos habitantes sobre a qualidade e facilidade de acesso aos serviços de saúde
Pollution	traduz a percepção dos habitantes sobre a poluição, incluindo ar, água e poluição sonora
Quality of Life	traduz a qualidade de vida da cidade por meio de um balanceamento dos demais parâmetros
Crime Rating	traduz a percepção dos habitantes sobre a segurança

Amostra:

1	City	Movehub Rating	Purchase Power	Health Care	Pollution	Quality of Life	Crime Rating
2	Aachen	81.64	60.55	73.25	11.69	90.52	15.34
3	Aberdeen	81.89	49.7	82.86	34.31	76.77	24.22
4	Abu Dhabi	86.4	68.03	48.02	53.42	80.8	10.86
5	Addis Ababa	59.88	6.38	63.89	85.59	28.41	26.04
6	Adelaide	87.29	72.03	56.25	12.01	91.54	41.32

	Movehub Rating	Purchase Power	Health Care	Pollution	Quality of Life	Crime Rating
count	216.000000	216.000000	216.000000	216.000000	216.000000	216.000000
mean	79.676713	46.477176	66.442824	45.240370	59.994537	41.338611
std	6.501011	20.614519	14.416412	25.369741	22.019376	16.416409
min	59.880000	6.380000	20.830000	0.000000	5.290000	9.110000
25%	75.070000	28.815000	59.420000	24.410000	42.752500	29.375000
50%	81.060000	49.220000	67.685000	37.210000	65.150000	41.140000
75%	84.020000	61.607500	77.207500	67.675000	78.617500	51.327500
max	100.000000	91.850000	95.960000	92.420000	97.910000	85.700000

Tabela: movehubcostofliving.csv

Descrição: Registra para cada cidade valores cotados em Libras Esterlinas (GBP) para diferentes parâmetros.

Parâmetro	Descrição			
City	nome da cidade			
Capuccino	preço médio do capuccino			

Cinema	preço médio do cinema
Wine	preço médio do vinho
Gasoline	preço médio da gasolina
Avg Rent	preço médio do aluguel residencial
Avg Disposable Income	renda média disponível após dedução de taxas e impostos

Amostra:

1	City	Cappuccino	Cinema	Wine	Gasoline	Avg Rent	Avg Disposable Income
2	Aachen	2.05	6.88	4.26	1.33	767.23	1619.72
3	Aberdeen	1.99	6.98	5.98	1.37	1195.74	1743.78
4	Abu Dhabi	2.67	6.23	13.73	0.3	1779.93	2135.92
5	Addis Ababa	0.46	2.29	4.18	0.72	653.77	124.22
6	Adelaide	2.49	11.42	10.08	0.95	1382.26	2911 69

	Cappuccino	Cinema	Wine	Gasoline	Avg Rent	Avg Disposable Income
count	216.000000	216.000000	216.000000	216.000000	216.000000	216.000000
mean	1.981481	6.775602	7.079722	1.001898	1092.979213	1413.530463
std	0.737131	5.632751	3.325691	0.351713	664.778486	912.013027
min	0.460000	1.810000	2.130000	0.070000	120.680000	120.680000
25%	1.320000	4.397500	4.260000	0.735000	609.015000	549.860000
50%	2.085000	6.540000	6.540000	0.950000	980.650000	1535.415000
75%	2.490000	7.850000	8.472500	1.320000	1388.095000	2053.812500
max	4.480000	79.490000	26.150000	1.690000	5052.310000	4266.110000

Tabela: cities.csv

Descrição: Registra as cidades e seus respectivos países.

Parâmetro	Descrição		
Cidade	nome da cidade		
País	nome do país		

Amostra:

1	City	Country	
2	A Coruña	Spain	
3	Aachen	Germany	
4	Aalborg	Denmark	
5	Aarhus	Denmark	
6	Aba	Nigeria	

2.2. Classificação das variáveis

Conforme definição da estatística descritiva, foram classificados os dados disponíveis no dataset Movehub City Ranking:

População: Cidades e seus respectivos países

Qualitativas

nominal: nenhuma

ordinal: nenhuma

Quantitativas

contínua: Movehub Rating, Purchase Power, Health Care, Pollution, Quality of Life, Crime Rating, Capuccino, Cinema, Wine, Gasoline, Avg Rent, Avg

Disposable Income discreta: nenhuma

3. Problemas

Com base na descrição e exploração dos dados (disponível no Anexo I) foram definidos os problemas:

3.1. Problema Principal

Como estimar o ranking de uma cidade que não foi estimada pelo MoveHub por meio da coleta de seus dados?

3.2. Problema Secundário

Como saber se os dados processados pelo MoveHub e seus índices são confiáveis?

4. Proposta de Solução (Sugestão)

A seguir a proposta de solução dos problemas anteriormente expostos:

4.1. Informações de custo de vida

4.1.1. Validação das informações do poder de compra Validar se a métrica de Purchase Power é fortemente correlacionada a Renda Média Disponível.

- 4.1.2. Geração da informação de poder de compra
 - 1) Selecionar dentre as informações de:
 - Preço do vinho, capuccino, cinema, gasolina e aluguel
 - Renda média disponível

Combinar as variáveis mais relevantes para definir o custo de vida da cidade. Como na base não há a informação do custo de vida, será utilizado o Poder de Compra.

4.2. Informações de qualidade de vida

4.2.1. Validação das informações do MoveHub Rating

Validar se a métrica do MoveHub Rating é fortemente correlacionada ao Health Care e Purchase Power; e fortemente negativamente correlacionada ao crime e poluição.

4.2.2. Validação das informações do Quality of Life

Validar se a métrica do Quality of Life é fortemente correlacionada ao Health Care e Purchase Power; e fortemente negativamente correlacionada ao crime e poluição.

4.2.3. Selecionar o que melhor representa a melhor cidade para se viver

Dentre as colunas Quality of Life e MoveHub Rating, selecionar a que melhor representa a qualidade de vida.

4.3. Geração da informação da qualidade de vida com os dados primários

Combinar as variáveis mais relevantes para definir a qualidade de vida de uma cidade.

5. Validação estatística

Nesta seção, será tratada a proposta de solução de forma a validar estatisticamente com os dados disponíveis.

5.1. Informações de poder de compra

A respeito das informações do poder de compra, foi avaliada a informação da renda disponível, e posteriormente avaliado o modelo de inferência do poder de compra por meio das informações primárias (preços de produtos, renda disponível, etc). Não é possível verificar de forma direta o custo de vida, porque esse dado não está disponível na base. Por isso, na geração do modelo para poder de compra, foram utilizados os custos do vinho, cappucino, cinema, aluguel e gasolina.

5.1.1. Validação das informações do poder de compra

```
> cor.test(dados$Purchase.Power, dados$Avg.Disposable.Income)
```

Pearson's product-moment correlation

```
data: dados$Purchase.Power and dados$Avg.Disposable.Income
t = 22.389, df = 214, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
    0.7921823    0.8730709
sample estimates:
        cor
0.8371464</pre>
```

Há forte correlação (0.83) do poder de compra com a renda disponível. Além de haver significância do mesmo, visto que o p-valor (2,2 x 10^-16) é muito menor do que o valor de referência (0,05).

Assim, pode-se evidenciar que o poder de compra pode ter sido gerado com a informação da renda disponível e para tanto a informação parece ser confiável.

5.1.2. Geração da informação de poder de compra

Criando o modelo de regressão linear para predizer o custo de vida com base nas informações disponíveis, foi verificado que a informação do preço do capuccino e cinema não é interessante para o modelo:

```
call:
lm(formula = dados$Purchase.Power ~ dados$Cappuccino + dados$Cinema +
    dados$Wine + dados$Gasoline + dados$Avg.Rent + dados$Avg.Disposable.Income,
    data = dados)
Residuals:
                               3Q
Min 1Q Median 3Q Max
-34.805 -5.718 0.851 5.723 33.430
Coefficients:
                                 Estimate Std. Error t value Pr(>|t|)
(Intercept)
dados$Cappuccino
                               40.824796 3.043394 13.414 < 2e-16 ***
-1.941242 1.403575 -1.383 0.16812
0.038540 0.126357 0.305 0.76066
-0.867456 0.263539 -3.292 0.00117 **
dados$Cinema
dados$Wine
dados$Gasoline -11.718988 2.141301 -5.473 1.26e-07 ***
dados$Avg Rent -0.008418 0.001399 -6.017 7.87e-09 ***
                                -0.008418 0.001399 -6.017 7.87e-09 ***
dados$Avg.Rent
dados$Avg.Disposable.Income 0.025696 0.001168 21.997 < 2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.398 on 209 degrees of freedom
Multiple R-squared: 0.798,
                                   Adjusted R-squared: 0.7922
F-statistic: 137.6 on 6 and 209 DF, p-value: < 2.2e-16
```

Esta escolha de variáveis para o modelo é validada pelo stepwise:

```
> sel.varPP <- stepAIC(modPP, direction = "both")</pre>
Start: AIC=974.78
dados$Purchase.Power ~ dados$Cappuccino + dados$Cinema + dados$Wine +
    dados$Gasoline + dados$Avg.Rent + dados$Avg.Disposable.Income
                               Df Sum of Sq
                                              RSS

    dados$Cinema

                                           8 18467
                                                    972.87
                                        169 18628 974.74
18459 974.78
957 19416 983.69

    dados$Cappuccino

<none>

    dados$wine

    dados$Gasoline

                                1
                                       2645 21104 1001.70

    dados$Avq.Rent

                                1
                                       3197 21656 1007.28

    dados$Avg.Disposable.Income 1 42737 61196 1231.66

Step: AIC=972.87
dados$Purchase.Power ~ dados$Cappuccino + dados$Wine + dados$Gasoline +
    dados$Avg.Rent + dados$Avg.Disposable.Income
                               Df Sum of Sq
                                             RSS
                                        168 18635 972.83

    dados$Cappuccino

                                1
                                            18467 972.87
<none>
                                          8 18459 974.78
+ dados$Cinema
                               1

    dados$wine

                                       961 19429 981.83
                                1
                                1
                                      2637 21104 999.70

    dados$Gasoline

                                      3240 21707 1005.79

    dados$Avg.Rent

                                1

    dados$Avg.Disposable.Income 1

                                    45430 63898 1238.99
Step: AIC=972.83
dados$Purchase.Power ~ dados$Wine + dados$Gasoline + dados$Avg.Rent +
    dados$Avg.Disposable.Income
                               Df Sum of Sq
                                               RSS
                                                        AIC
                                             18635 972.83
<none>
                                         168 18467
+ dados$Cappuccino
                                1
                                                     972.87
                                          7 18628 974.74
                                1
+ dados$Cinema
                                       1511 20146 987.66

    dados$Wine

                                1
                                       3063 21698 1003.69

    dados$Gasoline

                                1
                                       3519 22154 1008.19

    dados$Avg.Rent

                                1

    dados$Avg.Disposable.Income 1 58519 77154 1277.71

>
```

Que gerou o modelo, também retirando o Capuccino e o Cinema:

dados\$Purchase.Power ~ dados\$Wine + dados\$Gasoline + dados\$Avg.Rent +
 dados\$Avg.Disposable.Income

5.2. Informações de qualidade de vida

Nesta seção serão avaliados as métricas de MoveHub Rating e Qualidade de vida e definido qual delas representa melhor a escolha da melhor cidade para se viver, com os dados disponíveis.

5.2.1. Validação das informações do MoveHub Rating

Validar se a métrica do MoveHub Rating é fortemente correlacionada ao Health Care e Purchase Power; e fortemente negativamente correlacionada ao crime e poluição.

```
> cor.test(dados$Movehub.Rating, dados$Health.Care)
         Pearson's product-moment correlation
 data: dados$Movehub.Rating and dados$Health.Care
 t = 5.7678, df = 214, p-value = 2.787e-08
 alternative hypothesis: true correlation is not equal to 0
 95 percent confidence interval:
 0.2453157 0.4769367
 sample estimates:
      cor
 0.3667969
> cor.test(dados$Movehub.Rating, dados$Purchase.Power)
        Pearson's product-moment correlation
data: dados$Movehub.Rating and dados$Purchase.Power
t = 21.736, df = 214, p-value < 2.2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.7828167 0.8670803
sample estimates:
      cor
0.8296145
> cor.test(dados$Movehub.Rating, dados$Crime.Rating)
        Pearson's product-moment correlation
data: dados$Movehub.Rating and dados$Crime.Rating
t = -2.757, df = 214, p-value = 0.006337
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
 -0.31100903 -0.05302329
sample estimates:
       cor
-0.1852053
```


O poder de compra foi fortemente correlacionado com o MoveHub Rating (0,82), as demais tiveram correlações fracas, contudo todas tiveram o nível de significância, visto que o p-valor foi menor que o valor de referência de 0,05.

5.2.2. Validação das informações do Quality of Life

Validar se a métrica do Quality of Life é fortemente correlacionada ao Health Care e Purchase Power, e fortemente negativamente correlacionada ao crime e poluição.

```
> cor.test(dados$Quality.of.Life, dados$Health.Care)
```

```
Pearson's product-moment correlation
```

```
> cor.test(dados$Quality.of.Life, dados$Purchase.Power)
```

```
Pearson's product-moment correlation
```


O poder de compra foi fortemente correlacionado com a qualidade de vida (0,84), os demais dados tiveram correlações fracas, entretanto, mais fortes que o MoveHub Rating. Contudo todas tiveram o nível de significância, visto que o p-valor foi menor que o valor de referência de 0,05.

5.2.3. Selecionar o que melhor representa a melhor cidade para se viver

Conforme os dados anteriormente analisados, a teoria é que o MoveHub Rating deve utilizar mais informações do que as disponíveis na base de dados.

Desta forma, para buscar maiores evidências, foram criados os modelos do MoveHub Rating e da qualidade de vida, que segue:

```
call:
lm(formula = dados$Quality.of.Life ~ dados$Purchase.Power + dados$Health.Care +
    dados$Pollution + dados$Crime.Rating, data = dados)
Residuals:
     Min
               10 Median
                                  30
-22.6595 -6.4556 -0.1708 6.2853 25.6953
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
               22.86481 4.07004 5.618 6.06e-08 ***
Power 0.76865 0.03247 23.676 < 2e-16 ***
(Intercept)
dados$Purchase.Power 0.76865
dados$Health.Care 0.27848 0.04651 5.987 9.07e-09 ***
dados$Pollution -0.09587 0.02538 -3.777 0.000207 ***
dados$crime.Rating -0.30869 0.03955 -7.806 2.72e-13 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 9.104 on 211 degrees of freedom
Multiple R-squared: 0.8322, Adjusted R-squared: 0.829
F-statistic: 261.7 on 4 and 211 DF, p-value: < 2.2e-16
call:
lm(formula = dados$Movehub.Rating ~ dados$Purchase.Power + dados$Health.Care +
    dados$Pollution + dados$Crime.Rating, data = dados)
Residuals:
Min 1Q Median
-14.7229 -1.8294 -0.4123
                                 3Q
                                          Max
                            1.1654 18.8300
Coefficients:
                       Estimate Std. Error t value Pr(>|t|)
(Intercept) 66.2725301 1.5892152 41.701 <2e-16 ***
dados$Purchase.Power 0.2452972 0.0126766 19.350 dados$Health.Care 0.0457144 0.0181612 2.517 dados$Pollution -0.0225498 0.0099117 -2.275
                                                       <2e-16 ***
                                                      0.0126 *
                                                       0.0239 *
dados$crime.Rating -0.0003331 0.0154416 -0.022 0.9828
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 3.555 on 211 degrees of freedom
Multiple R-squared: 0.7065, Adjusted R-squared: 0.701
F-statistic: 127 on 4 and 211 DF, p-value: < 2.2e-16
```

Assim, nota-se que o modelo para estimar a qualidade de vida foi mais rico do que o que infere o MoveHub Rating. É importante ressaltar que a métrica do MoveHub Rating não é pior, mas sim, menos adequada para os dados que temos disponível.

5.3. Geração da informação da qualidade de vida com os dados primários

Além de definir a melhor cidade para se viver por meio do poder de compra, que é uma informação secundária (gerada a partir de outras informações primárias, como no modelo apresentado em 5.1.2), foi avaliado a criação de um modelo somente com as variáveis primárias.

Assim, gerando o modelo com as variáveis primárias disponíveis na base, tivemos:

```
call:
lm(formula = dados$Quality.of.Life ~ dados$Cappuccino + dados$Cinema +
      dados$Wine + dados$Gasoline + dados$Avg.Rent + dados$Avg.Disposable.Income +
      dados$Health.Care + dados$Pollution + dados$Crime.Rating,
      data = dados)
Residuals:
Min 1Q Median 3Q Max
-35.512 -6.766 0.769 6.941 25.429
Coefficients:
                                            Estimate Std. Error t value Pr(>|t|)
Estimate Std. Error t value Pr(>|t|)

(Intercept) 57.063942 5.642852 10.113 < 2e-16 ***

dados$Cappuccino -0.413533 1.465753 -0.282 0.778127

dados$Cinema -0.016948 0.133244 -0.127 0.898911

dados$wine -1.131106 0.276430 -4.092 6.14e-05 ***

dados$Gasoline -8.706797 2.411928 -3.610 0.000385 ***

dados$Avg.Rent -0.009500 0.001474 -6.447 7.97e-10 ***
dados$Avg.Disposable.Income 0.021900 0.001261 17.372 < 2e-16 ***

    dados$Health.Care
    0.277950
    0.051586
    5.388 1.94e-07 ***

    dados$Pollution
    -0.111191
    0.029385
    -3.784 0.000202 ***

    dados$Crime.Rating
    -0.324496
    0.044164
    -7.348 4.64e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 9.783 on 206 degrees of freedom
Multiple R-squared: 0.8109,
                                                 Adjusted R-squared: 0.8026
F-statistic: 98.14 on 9 and 206 DF, p-value: < 2.2e-16
```

Que como na geração do modelo de poder de compra, descartou as variáveis do preço do Capuccino e do Cinema.

Analogamente, foi avaliado o stepwise, para confirmar esta decisão:

```
> sel.varQ2 <- stepAIC(modQ2, direction = "both")</pre>
Start: AIC=994.99
dados$Quality.of.Life ~ dados$Cappuccino + dados$Cinema + dados$Wine +
    dados$Gasoline + dados$Avq.Rent + dados$Avq.Disposable.Income +
    dados$Health.Care + dados$Pollution + dados$Crime.Rating
                                  Df Sum of Sq RSS
- dados$Cinema
                                            1.5 19716 993.01

    dados$Cappuccino

                                            7.6 19723 993.08
<none>
                                                 19715 994.99
                                  1 1247.1 20962 1006.24

    dados$Gasoline

    dados$Pollution

                                       1370.3 21085 1007.51
                                  1
                                  1 1602.4 21317 1009.87
- dados$Wine
- dados$Health.Care
                                  1 2778.4 22493 1021.47
- dados$Avg.Rent
                                       3977.5 23692 1032.69
                                  1
                          1
- dados Crime. Rating
                                        5166.7 24882 1043.27
- dados$Avg.Disposable.Income 1 28882.5 48597 1187.87
Step: AIC=993.01
dados$Quality.of.Life ~ dados$Cappuccino + dados$wine + dados$Gasoline +
    dados$Avg.Rent + dados$Avg.Disposable.Income + dados$Health.Care +
    dados$Pollution + dados$Crime.Rating
                                  Df Sum of Sq RSS
                                                            AIC
                                            7.6 19724 991.09
- dados$Cappuccino
                                   1
<none>
                                                 19716 993.01
                                            1.5 19715 994.99
+ dados$Cinema
                                  1
                                  1 1248.4 20965 1004.27

    dados$Gasoline

                             1 1388.9 21105 1005.71
1 1685.3 21402 1008.72
1 2781.9 22498 1019.52

    dados$Pollution

    dados$wine

- dados$Health.Care
                                 1
                                       3997.5 23714 1030.88

    dados$Avg.Rent

                                       5167.0 24884 1041.28
- dados$Crime.Rating
                                  1

    dados$Avq.Disposable.Income 1 30241.9 49958 1191.83

 Step: AIC=991.09
 dados$Quality.of.Life ~ dados$wine + dados$Gasoline + dados$Avg.Rent +
     dados$Avg.Disposable.Income + dados$Health.Care + dados$Pollution +
     dados$Crime.Rating
                                   Df Sum of Sq
                                                   RSS
                                                  19724 991.09
<none>
+ dados$Cappuccino
                                               8 19716 993.01
                                    1
+ dados$Cinema
                                               2 19723 993.08
                                   1
- dados$Gasoline 1 1326 21050 1003.14

- dados$Pollution 1 1381 21105 1003.71

- dados$wine 1 2053 21777 1010.48

- dados$Health.Care 1 2787 22511 1017.64

- dados$Avg.Rent 1 4110 23834 1029.98

- dados$Crime.Rating 1 5164 24888 1039.32

- dados$Avg.Disposable.Income 1 39650 59374 1227.13
```

Que também sugeriu remover do modelo o preço do Capuccino e do Cinema. Gerando o modelo sem estas variáveis, tem-se:

call:

lm(formula = dados\$Quality.of.Life ~ dados\$Wine + dados\$Gasoline +
 dados\$Avg.Rent + dados\$Avg.Disposable.Income + dados\$Health.Care +
 dados\$Pollution + dados\$Crime.Rating)

Residuals:

```
Min 1Q Median 3Q Max
-35.440 -6.960 0.752 7.045 25.533
```

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                            56.746642
                                         5.520952
                                                  10.278 < 2e-16 ***
                                                   -4.652 5.83e-06 ***
dados$wine
                            -1.166331
                                         0.250694
                                                   -3.739 0.000239 ***
dados$Gasoline
                            -8.832136
                                         2.362151
dados$Avg.Rent
                            -0.009535
                                         0.001448
                                                   -6.584 3.67e-10 ***
                                                          < 2e-16 ***
dados$Avg.Disposable.Income 0.021691
                                         0.001061
                                                   20.448
                                                    5.421 1.63e-07 ***
dados$Health.Care
                             0.278300
                                         0.051334
                                                   -3.817 0.000178 ***
dados$Pollution
                            -0.109967
                                         0.028813
dados$Crime.Rating
                            -0.324171
                                         0.043930
                                                   -7.379 3.75e-12 ***
                0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Signif. codes:
```

Residual standard error: 9.738 on 208 degrees of freedom Multiple R-squared: 0.8108, Adjusted R-squared: 0.8044 F-statistic: 127.3 on 7 and 208 DF, p-value: < 2.2e-16

Assim, o modelo final proposto para inferir o índice de melhor cidade para se viver com os dados primários é:

Y = 56,75 -1,17 * Vinho - 8,83 * Gasolina - 0,01 * Aluguel + 0,02 * Renda + 0,28 * Saúde - 0,11 * Poluição - 0,32 * Crime

5.4. Considerações adicionais

Toda a avaliação foi levando em considerações os dados disponíveis, porém caso seja possível evoluir a análise para melhorar o modelo proposto, a acurácia provavelmente seria melhor.

Desta forma, caso se insira a informações de IDH dos países, pode-se verificar que a base de dados se concentrou basicamente em países de alto índice de IDH, conforme gráfico abaixo (Gráfico 1):

Gráfico 1: Relação entre IDH, Qualidade de Vida e Renda Média Fonte: Autor

Verifica-se no Gráfico 1 que existe uma clusterização dos países e, principalmente, um comportamento não linear da qualidade de vida em função do IDH, sendo que países com alto IDH e rendas maiores, também, geralmente, representam resultados de qualidade de vida maiores.

Esta informação pode ser constatada variável a variável, conforme tabela abaixo (Tabela 1). Nesta tabela, verifica-se que itens relacionados a consumo e renda, apresentam valores mais altos, bem como itens sociais, apresentam resultados mais baixos.

Tabela 1: Estatística descritiva das variáveis clusterisadas Fonte: Autor

Item avaliado	IDH Clusterizado	Valor médio	Variância	Número de Dados	Relação ao cluster Alto e Muito Alto
	Alto e Muito Alto	2,119	0,460	186,000	100%
Valor do Cappuccino	Médio	1,069	0,118	27,000	50%
	Baixo	1,680	1,225	3,000	79%
Valor da entradade de	Alto e Muito Alto	7,383	33,993	186,000	100%
Cinema	Médio	2,771	0,420	27,000	38%
Cinema	Baixo	5,123	6,021	3,000	69%
50	Alto e Muito Alto	7,281	11,472	186,000	100%
Valor do Vinho	Médio	5,793	7,465	27,000	80%
	Baixo	6,190	3,459	3,000	85%
	Alto e Muito Alto	1,038	0,130	186,000	100%
Valor da Gasolina	Médio	0,799	0,024	27,000	77%
	Baixo	0,577	0,026	3,000	56%
Custo médio do Aluguel	Alto e Muito Alto	1.190,478	432.150,430	186,000	100%
	Médio	438,040	57.770,126	27,000	37%
	Baixo	942,517	73.817,916	3,000	79%
	Alto e Muito Alto	1.572,979	754.144,510	186,000	100%
Renda Média	Médio	375, <mark>1</mark> 53	82.558,745	27,000	24%
	Baixo	873,123	1.224.865,488	3,000	56%
Indice de mobilidade	Alto e Muito Alto	80,525	37,305	186,000	100%
urbana	Médio	74,623	34,103	27,000	93%
dibana	Baixo	72,533	160,912	3,000	90%
	Alto e Muito Alto	49,144	394,450	186,000	100%
Poder de Compra	Médio	29,504	212,964	27,000	60%
	Baixo	33,897	1.640,110	3,000	69%
	Alto e Muito Alto	67,547	190,222	186,000	100%
Qualidade da saúde	Médio	58,694	288,526	27,000	87%
	Baixo	67, <mark>74</mark> 0	69,258	3,000	100%
	Alto e Muito Alto	42,314	617,440	186,000	100%
Indice de Poluição	Médio	65,109	374,386	27,000	154%
	Baixo	47,850	1.073,753	3,000	113%
	Alto e Muito Alto	63,467	414,545	186,000	100%
Qualidade de Vida	Médio	37,727	327,962	27,000	59%
×	Baixo	45,133	1.366,773	3,000	71%
	Alto e Muito Alto	40,062	241,457	186,000	100%
Taxa de criminalidade	Médio	48,632	368,481	27,000	121%
	Baixo	54,870	701,611	3,000	137%

O comportamento observado era esperado quando relacionado ao comportamento econômico real, visto que países mais desenvolvidos e com melhor IDH, geralmente se concentram em regiões com maior qualidade de vida e custos de vida maiores, conforme podemos observar na imagem abaixo.

Figura 1: Países do mundo que se concentram as cidades analisadas por qualidade de vida média Fonte: Autor

Os países geralmente analisados se concentram no hemisfério norte, o qual também detém a maioria dos países desenvolvidos do mundo e, consequentemente, países com maior qualidade de vida. A priori, estes países com câmbio forte e custo de vida geralmente mais elevado, explicar-se-á a relação da qualidade de vida com o poder econômico e renda média, não sendo itens específicos de consumo os mais relevantes para determinar uma equação de qualidade de vida.

Desta forma, se utilizássemos apenas a parte do gráfico que representa a maioria dos dados (~80% - Grupo de alto e muito alto IDH), teríamos um resultado melhor da regressão.

Gráfico 2: Volume de dados por clusters criados Fonte: Autor

Neste cenário, verificando as correlações das variáveis (Tabela 2 - coluna 2), a significância (Tabela 2 - coluna 3) e a matriz de covariância, podemos determinar variáveis que melhor se adequaria para a regressão (Gráfico 3), conforme cenários abaixo.

Tabela 2: Correlações de Pearson das variáveis com a qualidade de vida Fonte: Autor

Ė-Co	Valor do Cappuccino	0.465	Forte
	Valor da entradade de Cinema	0.228	Forte
	Valor do Vinho	0.054	Fraco
	Valor da Gasolina	0.084	Fraco
	Custo médio do Aluguel	0.275	Forte
	Renda Média	0.774	Forte
200	Indice de mobilidade urbana	0.701	Forte
	Poder de Compra	0.826	Forte
	Qualidade da saúde	0.448	Forte
	Indice de Poluição	-0.307	Forte
	Taxa de criminalidade	-0.468	Forte

Taxa de IDH

Resposta: Qualidade de Vida						
Renda Média_transformed						
Poder de Compra_transformed						
Qualidade da saúde_transformed						
Indice de Poluição_transformed						
Taxa de criminalidade_transformed						
Custo médio do Aluguel_transformed						
0	0 0,2	0,4 0,6	0,8	1,0		

Importância do preditor

0.833

Forte

Mais Importante

Gráfico 3: Variáveis mais importantes para determinação do modelo em ordem crescente Fonte: Autor

Neste cenário, normalizando as variáveis através do método do máximo valor, o resultado da equação ficaria assim:

Qualidade de vida = Custo médio do Aluguel * -3,846 + Renda Média * 9,075 + Poder de Compra * 8,865 + Qualidade da saúde * 2,472 + Indice de Poluição * -1,939 + Taxa de criminalidade * -4,79 + 63,63

É importante salientar que outras considerações podem ser feitas para melhor o modelo, contudo, isto carece de mais análise e avaliações. Este cenário foi escrito basicamente para exemplificar que existem situações que podem melhor o modelo e avaliações, não sendo um cenário final para o modelo proposto.

Anexos: Análise utilizando Python (Jupyter Notebook)

Foi criado um Jupyter Notebook com uma outra visão da análise, na qual uma exploração da base foi desenvolvida e um modelo muito similar ao anterior (Item 5.4) criado. O mesmo seque anexo para melhor visualização.

Analise Dados Movehub City.ipypnb

Menos Importante