

Text Technologies for Data Science INFR11145

IR Evaluation

Instructor: Walid Magdy

17-Oct-2017

Lecture Objectives

- Learn about how to evaluate IR
 - Evaluation measures
 - P, R, F
 - MAP
 - nDCG
- <u>Implement</u>:
 - MAP
 - Some others

IR as an Experimental Science!

- Formulate a research question: the hypothesis
- Design an experiment to answer the question
- Perform the experiment
 - Compare with a baseline "control"
- Does the experiment answer the question?
 - Are the results significant? Or is it just luck?
- Report the results!
- Repeat...

Walid Magdy, TTDS 2017/2018

Configure your system

- About the system:
 - Stopping? Tokenise? Stemming? n-gram char?
 - Use synonyms improve retrieval performance?
- Corresponding experiment?
 - Run your search for a set of queries with each setup and find which one will achieve the best performance
- About the user:
 - Is letting users weight search terms a good idea?
- Corresponding experiment?
 - Build two different interfaces, one with term weighting functionality, and one without; run a user study

Types of Evaluation Strategies

- System-centered studies:
 - · Given documents, queries, and relevance judgments
 - Try several variations of the system
 - Measure which system returns the "best" hit list
 - Laboratory experiment
- User-centered studies
 - Given several users, and at least two retrieval systems
 - · Have each user try the same task on both systems
 - Measure which system works the "best"

Walid Magdy, TTDS 2017/2018

Importance of Evaluation

- The ability to measure differences underlies experimental science
 - How well do our systems work?
 - Is A better than B?
 - Is it really?
 - Under what conditions?
- Evaluation drives what to research
 - Identify techniques that work and don't work

THE UNIVERSITY of EDINBURGH

The 3-dimensions of Evaluation

- Effectiveness
 - How "good" are the documents that are returned?
 - · System only, human + system
- Efficiency
 - · Retrieval time, indexing time, index size
- Usability
 - Learnability, flexibility
 - Novice vs. expert users

Reusable IR Test Collection

- Collection of Documents
 - Should be "representative" to a given IR task
 - Things to consider: size, sources, genre, topics, ...
- Sample of information need
 - Should be "randomized" and "representative"
 - Usually formalized **topic** statements (query + description)
- Known relevance judgments
 - · Assessed by humans, for each topic-document pair
 - Binary/Graded
- Evaluation measure

Walid Magdy, TTDS 201<u>7/2018</u>

Good Effectiveness Measures

- Should capture some aspect of what the user wants
 - IR → Do the results satisfy user's information need?
- Should be easily replicated by other researchers
- Should be easily comparable
 - Optimally, expressed as a single number
 - Curves and multiple numbers are still accepted, but single numbers are much easier for comparison
- Should have predictive value for other situations
 - What happens with different queries on a different document collection?

THE UNIVERSITY of EDINBURGH

Set Based Measures

- Assuming IR system returns sets of retrieved results without ranking
- Suitable with Boolean Search
- No certain number of results per query

Precision and Recall

• Precision:

What fraction of these retrieved docs are relevant?

$$P = \frac{rel \cap ret}{retrieved} = \frac{TP}{TP + FP}$$

Recall:

What fraction of the relevant docs were retrieved?

$$R = \frac{rel \cap ret}{relevant} = \frac{TP}{TP + FN}$$

Relevant documents

Relevant documents

Relevant documents

TP FN

TP FN

retrieved not retrieved

Walid Magdy, TTDS 2017/2018

THE UNIVERSITY of EDINBURGH

Trade-off between P & R

- Precision: The ability to retrieve top-ranked docs that are mostly relevant.
- Recall: The ability of the search to find all of the relevant items in the corpus.
- Retrieve more docs:
 - Higher chance to find all relevant docs → R ↑↑
 - Higher chance to find more irrelevant docs \rightarrow P $\downarrow\downarrow$

One Measure? F-measure

$$F1 = \frac{2 \cdot P \cdot R}{P + R}$$

$$F_{\beta} = \frac{(\beta^2 + 1)P \cdot R}{\beta^2 P + R}$$

- Harmonic mean of recall and precision
 - Emphasizes the importance of small values, whereas the arithmetic mean is affected more by outliers that are unusually large
- Beta (β) controls relative importance of P and R
 - $\beta = 1$, precision and recall equally important $\rightarrow F1$
 - $\beta = 5$, recall five times more important than precision

Walid Magdy, TTDS 2017/2018

Rank-based IR measures

- Consider systems A & B
 - Both retrieved 10 docs, only 5 are relevant
 - P, R & F are the same for both systems
 - Should their performances considered equal?
- Ranked IR requires taking "ranks" into consideration!
- How to do that?

Precision @ K

- *k* (a fixed number of documents)
- Have a cut-off on the ranked list at rank k, then calculate precision!
- Perhaps appropriate for most of web search: most people only check the top k results
- But: averages badly, Why?

Walid Magdy, TTDS 2017/2018

R-Precision

- For a query with known r relevant documents
 → R-precision is the precision at rank r (P@r)
- r is different from one query to another
- Concept: It examines the ideal case: getting all relevant documents in the top ranks
- Is it realistic?

When to cut-off?

- It is assumed that users needs to find relevant docs at the highest possible ranks
 - → Precision is a good measure
- But, user would cut-off (stop inspecting results) at some point, say rank x
 →P@x
- What is the optimal x?When you think a user can stop?

Walid Magdy, TTDS 2017/2018

When a user can stop?

- IR objective: "satisfy user information need"
- Assumption: a user will stop once his/her information need is satisfied
- How? user will keep looking for relevant docs in the ranked list, read them, then stop once he/she feels satisfied → user will stop at a relevant document
- P@x →x can be any rank where a relevant document appeared (assume uniform distribution)
- What about calculating the averages over all x's?
 - every time you find relevant doc, calculate P@x, then take the average at the end

AP & MAP

$$AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k)$$

where, r: number of relevant docs for a given query

n: number of documents retrieved

P(k) precision @ k

rel(k): 1 if retrieved doc @ k is relevant, 0 otherwise.

$$MAP = \frac{1}{Q} \sum_{q=1}^{Q} AP(q)$$

where, Q: number of queries in the test collection

AP/MAP

$$AP = \frac{1}{r} \sum_{k=1}^{n} P(k) \times rel(k)$$

- A mix between precision and recall
- Highly focus on finding relevant document as early as possible
- When $r=1 \rightarrow MAP = MRR$ (mean reciprocal rank $\frac{1}{k}$)
- MAP is the most commonly used evaluation metric for most IR search tasks
- Uses binary relevance: rel = 0/1

Walid Magdy, TTDS 2017/2018

Binary vs. Graded Relevance

- Some docs are more relevant to a query than other relevant ones!
 - We need non-binary relevance
- Two assumptions:
 - Highly relevant documents are more useful than marginally relevant
 - The lower the ranked position of a relevant document, the less useful it is for the user, since it is less likely to be examined
- Discounted Cumulative Gain (DCG)
 - Uses graded relevance as a measure of the usefulness
 - The most popular for evaluating web search

THE UNIVERSITY of EDINBURGH

Discounted Cumulative Gain (DCG)

- Gain is accumulated starting at the top of the ranking and may be reduced (<u>discounted</u>) at lower ranks
- Users care more about high-ranked documents, so we discount results by 1/log₂(rank)
 - the discount at rank 4 is 1/2, and at rank 8 is 1/3
- DCG_k is the total gain accumulated at a particular rank
 k (sum of DG up to rank k):

$$DCG_k = rel_1 + \sum_{i=2}^{k} \frac{rel_i}{\log_2 i} (gr_{aded})$$

Walid Magdy, TTDS 201<u>7/2018</u>

Normalized DCG (nDCG)

- DCG numbers are averaged across a set of queries at specific rank values (DCG@k)
 - e.g., DCG at rank 5 is 6.89 and at rank 10 is 9.61
 - Can be any positive real number!
- DCG values are often normalized by comparing the DCG at each rank with the DCG value for the perfect ranking
 - makes averaging easier for queries with different numbers of relevant documents
- nDCG@k = DCG@k / iDCG@k (divide actual by ideal)
- nDCG ≤ 1 at any rank position
- To compare DCGs, normalize values so that a ideal ranking would have a normalized DCG of 1.0

		<u>•</u>					
						<u> </u>	
k	G	DG	DCG@k	iG	iDG	iDCG@k	nDCG@k
1	3	3	3	3	3.00	3	1.00
2	2	2	5	3	3.00	6	0.83
3	3	1.89	6.89	3	1.89	7.89	0.87
4	0	0	6.89	2	1.00	8.89	0.78
5	0	0	6.89	2	0.86	9.75	0.71
6	1	0.39	7.28	2	0.77	10.52	0.69
7	2	0.71	7.99	1	0.36	10.88	0.73
8	2	0.67	8.66	o	0.00	10.88	0.80
9	3	0.95	9.61	o	0.00	10.88	0.88
10	o	0	9.61	o	0.00	10.88	0.88

Summary:

- IR test collection:
 - Document collection
 - Query set
 - Relevant judgements
 - IR measures
- IR measures:
 - R, P, F → not commonly used
 - P@k, R-precision → used sometimes
 - MAP → the most used IR measure
 - nDGC → the most used measure for web search

Resources

- Text book 1: Intro to IR, Chapter 8
- Text book 2: IR in Practice, Chapter 8

