

Einführung in Simulink

Modellbildung und Simulation, Wintersemester 2013/14

- Modellierung von Systemen
- Aufbauend auf MATLAB
- viele "Toolboxes" für verschiedene Aufgabenfelder

Allgemeines und Lernziele

Simulink® ist eine Blockdiagrammumgebung für die Mehrdomänen-Simulation und Model-Based Design. Simulink unterstützt den Entwurf und die Simulation auf Systemebene und ermöglicht außerdem die automatische Codegenerierung und das kontinuierliche Testen und Verifizieren von Embedded Systems.(www.mathworks.de)

Lernziele

- Kennenlernen der Benutzeroberfläche
- Verstehen der Blockdiagramme
- Anwenden einfacher Befehle
- Numerische Simulation eines Ein-Massen-Schwingers

<u>Literatur</u>

- Simulink® Hilfe
- "MATLAB/Simulink"-Lehrskript des SSC (BIT8000, 4€)
- Bücher: z.B. über KIT-Bibliothek

Software

MATLAB® (Simulink®) kann über die SCC-Webseite bezogen werden.
http://www.scc.kit.edu/produkte/3841.php

Oberfläche

x=sin(w)+w.^2; -x=sin(w)+sqr -plot(w,x) w=0:0.01:20:

-clear all

- Starten von Simulink
 - ,command window':simulink
 - Start → Simulink → Library Browser
- Neues Simulinkmodell
 - File \rightarrow New \rightarrow Model
- Simulink-Modell

New to MATLAB? Watch this Video, see De

"drag and drop"

Simulink-Blöcke

Einführung

- Idee / Struktur
 - Dynamische Systeme werden aus Blöcken aufgebaut, die verschaltet werden.

Signalquellen

(,source'): Sweep, Rauschen, usw.

Signal

(skalar, vektoriell; integer, real, usw.)

Funktionsblöcke:

Übertragungsfunktionen, *MATLAB*-Funktionen, Ableitungen, usw.

Signalsenken (*,sink'*): Oszilloskop, Anzeige, FFT, usw.

Einführung

- Simulinkblöcke
 - per "drag and drop" (Linksklick, halten & ziehen, loslassen) aus Simulink Library Browser in das Model- Fenster ziehen
 - Format: Drehen, vergrößern, einfärben,...
 - Sybsysteme: einzelne Blöcke können in einen Block zusammengefasst werden
 - Besitzen i.d.R. Eingang, Ausgang und Parameter (Doppelklick auf den Simulinkblock)
- Beispiel: Summationsblock

Einführung

- Simulinkblöcke verbinden
 - Einfach vom Ausgang zum Eingang des Zielblocks "zeichnen"
 - Abzweigungen: Abzweigungsstelle, Rechtsklick, halten und zum Eingang des Zielblock "zeichnen"
 - Verschieben: Linksklick, halten und Linie in gewünschte Position ziehen
- Bezeichnungen
 - Sources: Signalquellen, Einlesen von Dateien, Workspace-Input, Uhren, Konstanten
 - Sinks: Ausgabe von Variablen in Dateien oder Workspace, Grafikausgabe
 - Continuous: Integration und Ableitung, Übertragungsfunktionen, linearer Zustandsraum
 - Math Operations: Summe, Produkt, Multiplikation, mathematische Funktionen, log. Operationen
 - <u>User-Def. Functions</u>: Matlab-Funktion, Simulink-Funktionen
 - Signal Routing: Signalein- und ausgänge, Multiplexer, Datenübertragung

Differentialgleichungen

- Differentialgleichung: $\mathbf{m} \ddot{\mathbf{x}} + \mathbf{d} \dot{\mathbf{x}} + \mathbf{c} \mathbf{x} = \mathbf{f}$
- Auflösen nach der höchsten Ableitun: $\ddot{x} = \frac{1}{m}f \frac{d}{m}\dot{x} \frac{c}{m}x$
- Hier: DGL 2.Ordnung → 2-fache Integration notwendig
- Zusammensetzung aus Integration / Verstärkung / Summation

Integration

$$\ddot{x} \rightarrow \dot{x} \rightarrow x$$

Verstärkung

Summation

$$\ddot{x} = \frac{1}{m} f - \frac{d}{m} \dot{x} - \frac{c}{m} x$$

Differentialgleichungen

Aus dem Zusammenschluss von Integration / Verstärkung / Summation ergibt sich das Simulinkmodell:

Differentialgleichungen

Modell

Ergebnis

Differentialgleichungensysteme

- Gleichung 1: $\ddot{x} + \dot{x} + x = y + f$ $\Rightarrow \ddot{x} = y + f \dot{x} x$

- Gleichung 2: $\ddot{y} + \dot{y} + y = \dot{x}$
- $\Rightarrow \ddot{y} = \dot{x} \dot{y} y$

Simulink-Menu: \rightarrow Simulation \rightarrow Configuration Parameters

Signalanalyse: Übertragungsfunktion G(s)

Bestimmung der Übertragungsfunktion mittel Laplacetransformation

(siehe HM, MRT,...)

Beispiel

$$G(s) = \frac{1}{a s^2 + b s + c} = \frac{1}{s^2 + 0.4s + 4}$$

Signalanalyse: Übertragungsfunktion G(s)

2 Regelblöcke
$$G_1(s) = \frac{Y(s)}{X(s)}$$
, $G_2(s) = \frac{Z(s)}{Y(s)}$ $\frac{X(s)}{Y(s)}$ $\frac{1}{s}$ $\frac{Y(s)}{S(s)}$

Wenn beide Regelblöcke in Reihe geschaltet sind, lassen sie sich durch Multiplikation im Bildbereich zu einem Block zusammenfassen:

$$G(s) = \frac{Z}{X} = G_1(s) \cdot G_2(s)$$

