Computer Networks COL 334/672

Link Layer

Tarun Mangla

Slides adapted from KR

Sem 1, 2024-25

Link Layer: Services

- Framing
- Error detection
- Reliability
- Link access

ARQ Protocol: Stop and Wait

- Transmit one frame, wait for an acknowledgement
 - If no ack and timer expires, resend

Stop and Wait

- Transmit one frame, wait for an acknowledgement
 - If no ack and timer expires, resend
- How to handle duplicate frames?
 - Sequence numbers for duplicate frames

Stop and Wait

Bandwidten delay product.

Bandwidten X delay

Transmit one frame, wait for an acknowledgement

• If no ack and timer expires, resend

• How to handle duplicate frames?

Sequence numbers for duplicate frames

Any limitation?

- Under-utilization of link
 - Example, 4 Mbps link, RTT 10ms, Frame size 1 KB. What is the link utilization?
- How to achieve higher link utilization?
 - Allow sending more than one unacknowledged packets
- How many packets to get maximum utilization?
 - Bandwidth delay product

Barderay / RT

delay/RTT High BDP network

Link Layer: Services

- Framing
- Error detection
- Reliability
- Link access

Multiple access links, protocols

two types of "links":

- point-to-point
 - point-to-point link between Ethernet switch, host
 - PPP for dial-up access
- broadcast (shared wire or medium)
 - old-school Ethernet
 - upstream HFC in cable-based access network
 - 802.11 wireless LAN, 4G/4G. satellite

shared radio: 4G/5G

shared radio: WiFi

shared radio: satellite

Multiple access protocols

- single shared broadcast channel
- two or more simultaneous transmissions by nodes: interference

multiple access protocol

- distributed algorithm that determines how nodes share channel,
 i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
- no out-of-band channel for coordination

Multiple access protocol

collision if node receives two or more signals at the same time

Frequence Dursion Milliple
Access

Frequence Dursion Milliple
TOMA: Time Dursion Milliple
Access

multiple access protocol

- distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

Multiple access protocol

collision if node receives two or more signals at the same time

host 9 Decentralized

channel partitioning

- divide channel into smaller "pieces" (time slots, frequency, code)
- allocate piece to node for exclusive use
- Limitation: unused slots go idle

Ideals of MAC

The unk to be shared equally amongst nodes (fairness)

S D If a node has date to send, it should get he topic

I whilesation should be high.

- channel not divided, allow collisions
- "recover" from collisions

Random access protocols

- when node has packet to send
 - transmit at full channel data rate R
 - no a priori coordination among nodes
- two or more transmitting nodes: "collision"
- random access protocol specifies:
 - how to detect collisions
 - how to recover from collisions (e.g., via delayed retransmissions)
- examples of random access MAC protocols:
- ALOHA, slotted ALOHA
 - CSMA, CSMA/CD, CSMA/CA

Slotted ALOHA

assumptions:

- all frames same size
- time divided into equal size slots (time to transmit 1 frame)
- nodes start to transmit only slot beginning
- nodes are synchronized

• if 2 or more nodes transmit in slot, all nodes detect collision

operation:

- when node obtains fresh frame, transmits in next slot
 - if no collision: node can send new frame in next slot
 - *if collision:* node retransmits frame in each subsequent slot with probability *p* until success

randomization – why?

Slotted ALOHA

Pros:

- single active node can continuously transmit at full rate of channel
- highly decentralized: only slots in nodes need to be in sync
- simple

Cons:

- collisions, wasting slots
- idle slots
- nodes may be able to detect collision in less than time to transmit packet

clock synchronization

Slotted ALOHA: efficiency

efficiency: long-run fraction of successful slots (many nodes, all with many frames to send)

- suppose: N nodes with many frames to send, each transmits in slot with probability p
 - prob that given node has success in a slot = $p(1-p)^{N-1}$
 - prob that any node has a success = $Np(1-p)^{N-1}$
 - max efficiency: find p^* that maximizes $Np(1-p)^{N-1}$
 - for many nodes, take limit of $Np^*(1-p^*)^{N-1}$ as N goes to infinity, gives:

$$max\ efficiency = 1/e = .37$$

at best: channel used for useful transmissions 37% of time!

CSMA (carrier sense multiple access)

simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission

CSMA (carrier sense multiple access)

simple CSMA: listen before transmit:

- if channel sensed idle: transmit entire frame
- if channel sensed busy: defer transmission

CSMA/CA

CSMA/CD:)CSMA with collision detection

- collisions detected within short time
- colliding transmissions aborted, reducing channel wastage
- collision detection easy in wired, difficult with wireless