### Chương I: Giải phương trình f(x)=0

1) Định nghĩa: Khoảng [a,b] gọi là một khoảng cách ly nghiệm nếu trong khoảng đó phương trình f(x) = 0 chỉ có duy nhất một nghiệm.

## Định lý: TÀI LIỆU SƯU TẬP

 $\mathbf{N\acute{e}u} f(x)$  khả vi liên tục trên [a,b]

- 1) f'(x) giữ dấu trên [a,b]
- 2) f(a)f(b) < 0

thì [a,b] là khoảng cách ly nghiệm.

**Ví dụ:** Phương trình  $x^4 - 4x - 1 = 0$ 

$$f(1.5) = -1.94 < 0$$

$$f(2) = 7 > 0$$
.

Hàm đơn điệu trong [1.5, 2] f'(x) > 0

khoảng cách ly nghiệm: [1.5, 2]

khoảng cách ly nghiệm thứ 2:[-1,0] (BTập)

BỞI HCMUT-CNCP

# 2)Công thức sai số tổng quát:

 $x_d$ : nghiệm đúng của f(x) = 0

 $x_{gd}$ : nghiệm gần đúng.

Công thức sai số: 
$$\begin{vmatrix} x_{gd} - x_{d} \end{vmatrix} \le \frac{|f(x_{gd})|}{m^{(1)}}$$

Ký hiệu:

$$m^{(1)} = Min \left[ f(x) \right] \quad \forall x \in [a,b]$$

**Ví dụ:** Phương trình  $x^4 - 4x - 1 = 0$  xét trong khoảng cách ly nghiệm: [1.5, 2]

giả sử  $x_{gd} = 1.663$ . Đánh giá sai số tuyệt đối

$$|f(1.663)| = 0.003629$$

$$m^{(1)} = 9.5$$

$$m^{(1)} = 9.5$$

sai số: 
$$|1.663 - x^*| \le 0.003629$$
  
 $9.5$ 

### 3)Phương pháp chia đôi:

### a) Nội dung:

Nếu [a,b] là khoảng cách ly nghiệm thì

$$[a, \frac{a+b}{2}]$$
 hoặc  $[\frac{a+b}{2}, b]$  sẽ là khoảng cách ly nghiệm mới

ly nghiệm mới.

Lặp lại quá trình phân chia này nhiều lần.

### b) Đánh giá sai số:

$$\left| x_n - x_d \right| \le \frac{(b-a)}{2^{n+1}}$$

# c)Nhận xét:

Luôn cho nghiệm gần đúng. Giải thuật đơn giản. Tốc độ hội tụ khá chậm **Ví dụ 1:** Phương trình  $x - \cos x = 0$  với khoảng cách ly nghiệm [0, 1], chia đôi tới  $x_4$  Kết quả cho theo bảng sau

Sai số phương pháp chia đôi là

$$\frac{b-a}{2^5} = \frac{1}{32} = 0.3125$$

**Ví dụ 2:** Giải phương trình  $x - e^{-x} = 0$  với khoảng cách ly nghiệm [0,1] đến  $x_3$ 

# 2) Phương pháp lặp đơn (phương pháp điểm bất động, phương pháp ánh xạ co )

- a) Nội dung:
- \*) Đưa phương trình f(x) = 0 về dạng tương đương  $x = \varphi(x)$
- \*) Kiểm tra **điều kiện** đối với hàm  $\varphi(x)$ :  $Max | \varphi'(x) | = q < 1 \quad \forall x \in [a,b]$
- \*) Lấy  $x_0$  là một giá trị ban đầu **tùy ý**  $\in$  [a, b]

Xây dựng dãy lặp: 
$$x_1 = \varphi(x_0)$$

$$x_2 = \varphi(x_1)$$

$$x_3 = \varphi(x_2)$$

Lấy **n hữu hạn**  $x_n = x_{gd}$ 

### b) Đánh giá sai số:

1) 
$$|x_n - x^*| \le \frac{q^n |x_1 - x_0|}{1 - q}$$
 (đánh giá **tiên nghiệm**)

2) 
$$|x_n - x^*| \le \frac{|\mathbf{T}| \mathbf{L}| \mathbf{E} \mathbf{U} \mathbf{S} \mathbf{U} \mathbf{U} \mathbf{T} \mathbf{A} \mathbf{P}}{1 - q}$$

(đánh giá **hậu nghiệm**)

### c) Nhận xét:

Có vô số cách chọn hàm  $\varphi(x)$ Hàm  $\varphi(x)$  có tính chất q < 1 gọi là **hàm co** 

q là **hệ số co** 

q càng nhỏ thì tốc độ hội tụ càng cao

 $q \ge 1$  Không sử dụng được

BỞI HCMUT-CNCP

**Ví dụ1:** Xét phương trình  $x^3 + x - 1000 = 0$  trong khoảng cách ly nghiệm [9, 10]

a) 
$$x^{3} + x - 1000 = 0$$

$$x = 1000 - x^{3}$$

$$\varphi(x) = 1000 - x^{3}$$

$$\varphi'(x) = -3x^{2} \text{ Liftu SUU TÂP}$$

$$|\varphi'(x)| = 3x^{2}$$

$$q = Max|\varphi'(x)| = 300 > 1$$
Không sử dụng được

b) 
$$x^3 + x - 1000 = 0$$
  
 $x^3 = 1000 - x$   
 $x = \sqrt[3]{1000 - x}$   
 $\varphi'(x) = \frac{\sqrt{1000 - x}}{\sqrt[3]{(1000 - x)^2}}$   
 $|\varphi'(x)| = \frac{\sqrt{1000 - x}}{\sqrt[3]{(1000 - x)^2}}$ 

$$q = Max \frac{1}{3\sqrt[3]{(1000 - x)^2}} = 0.003355742403$$

 $x_0 = 10.0$ 

9.966554934

9.966667166

9.966666789

9.966666791

Sai số hậu nghiệm  $x_{4}$   $6.74 \times 10^{-12}$ 

c) 
$$x^{3} + x - 1000 = 0$$
  
 $x^{3} = 1000 - x$   
 $x^{2} = \frac{1000 - x}{x}$   
 $x = \sqrt{\frac{1000 - x}{x}}$  For HCMUT-CNCP

Với 
$$x_0 = 10$$
 ta có  $x_{gd} = 9,966666791$  với số bước lặp

### Phương pháp Newton ( Phương pháp Tiếp tuyến )

a) Nội dung: Đưa 
$$f(x) = 0$$
 về dạng lặp  $x = x - \frac{f(x)}{f'(x)} = \varphi(x)$ .

Chọn  $x_0$ 

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)} = \varphi(x)$$

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

### b) Đánh giá sai số:

Sai số theo công thức sai số tổng quát

$$\begin{vmatrix} x_{gd} - x * \end{vmatrix} \le \frac{|f(x_{gd})|}{m^{(1)}}$$
c) Nhận xét:

Phương pháp sử dụng được nếu f'(x) và f''(x)

không đổi dấu trên khoảng cách ly nghiệm.

Điểm  $x_0$  là điểm Fourier nếu  $f(x_0)$  cùng dấu với  $f''(x_0)$ 

Chọn x=a,  $x_0=b$  nếu a, b là **điểm Fourier** 

**Vídụ:** Phương trình  $x^3+x-1000=0$  với khoảng cách ly nghiệm [9, 10]

Điểm nào là điểm Fourier trong hai điểm 9, 10 Với  $x_0$  tìm được, tính  $x_2$   $x_0$ 

Đánh giá sai số của  $x_2$ 

|   | $x_{n-1}$ | $x_n$       | Sai số             |
|---|-----------|-------------|--------------------|
| 1 | 10.0      | 9.966777409 | \P                 |
| 2 |           | 9.966666792 | 0.3 x <b>10</b> -9 |

**Ví dụ:** Phương pháp Newton tìm nghiệm của phương trình  $x - \cos x = 0$ 

Khoảng cách ly nghiệm [0,1]

- 1) Điểm nào là Fourier trong hai đầu
- 2) Tìm  $x_3$  3) Đánh giá sai số của  $x_3$

TÀI LIỆU SƯU TẬP

BỞI HCMUT-CNCP

| n | $x_{n-1}$ | $x_n$       | Sai số               |
|---|-----------|-------------|----------------------|
| 1 | 1.0       | 0.750363867 |                      |
| 2 |           | 0.73911289  |                      |
| 3 |           | 0.739085133 | $0.4 \times 10^{-9}$ |

