

Understanding control effectiveness requires structured hazards

Phil Cook, Neil Robinson, and Tim McComb RGB Assurance

Australian System Safety Conference 2024 Brisbane, Queensland

23 October 2024

Background

- Attempts to "rate" hazard controls in terms of (perceived) "effectiveness" are common
 - Especially in WHS contexts, but increasingly in System Safety Engineering
- Not unreasonable to ask:
 - Is this control (or set of controls) good enough?
 - [Conversely: Is it too much?]
- Alternatively:
 - Have we done everything we can or should to reduce safety risk?
 - Are we getting good "bang for buck" out of our hazard controls?
- These are not easy questions to answer...
- In attempting to do so, we need to think about:
 - How do we measure effectiveness?
 - How should we articulate hazards to enable us to do this?

Outline

- Running Example; Example Hazard Log Entry
- The Problem; What do we mean by "Control Effectiveness"?
- A Structured Approach to Hazard Logs
- Control Effectiveness Take 2
- Using Fuzzy Logic to Assess Control Coverage
- Further Thoughts
- Conclusions

Example

Adapted from Leveson (1995): Safeware: system safety and computers

Example Hazard Log Entry

Hazard	Causes	Accident	Controls
Failure to manage high pressure	 Valve 1 failure Valve 2 failure Computer does not open valve 1 Indicator failure Operator inattentiveness 	Explosion	 Valve reliability Valve maintenance Safety integrity of computer Indicator reliability Operator fatigue management

The Problem

Controls

- Valve reliability
- Valve maintenance
- Safety integrity of computer
- Indicator reliability
- Operator fatigue management

How can we estimate the effectiveness of each of these controls?

Control Effectiveness

- How can we measure it?
 - A probability?
 - "T-shirt sizing"? e.g., Very Effective, Effective, Partially Effective, Ineffective
- Effective relative to what?
 - Cause
 - Hazard
 - Accident

Necessity vs sufficiency

A Structured Approach to Hazard Logs

- Hazard Log consists of two main types of objects:
 - Events
 - Controls
- Events
 - Include Hazards, Accidents, Causes, Coeffectors, and Gates
 - Have causal relationships
 - Caused by One Of / Caused by All Of
 - Sufficient to Cause / Necessary to Cause
- Controls
 - Associated with Events
- Although we show five event types here, this is just "convention"
 - The model supports multiple layers of hazards, where hazards at one level act as causes at a higher level
- Effectively equivalent to fault trees

Example Hazard as a Fault Tree

Adapted from Leveson (1995): Safeware: system safety and computers

Example Hazard as a Fault Tree

Example Hazard as a Fault Tree

Control Effectiveness – Take 2

- How effective is "Safety integrity of computer"...
 - ... against "Computer does not open valve 1"?
 - Perhaps "Very Effective"
 - ... against "Relief valve 1 does not open"?
 - ??? only as good as controls against "Valve 1 failure"; depends on relative likelihood of causes
 - ... against "Failure to manage high pressure"?
 - ??? as above
- How effective is "Operator fatigue management"...
 - ... against "Operator inattentive"?
 - Maybe only "Partially Effective"
 - ... against "Relief valve 2 does not open"?
 - ??? only as good as controls against "Valve 2 failure", "Indicator failure"; depends on relative likelihood of causes
 - ... against "Failure to manage high pressure"?
 - ??? as above

Control Effectiveness – Take 2

- It seems that we cannot really answer the question "how effective is this control?"
 - ... except in the simplest of cases

Instead we should ask...

How effectively controlled is this event?

- Fuzzy Logic enables "computing with words", making deductions with inexact knowledge
- A Fuzzy Set is a class of objects with a continuum of grades of membership
 - E.g.: We could define a Fuzzy Set to represent control coverage:
 - Strongly Controlled, Controlled, Weakly Controlled, Uncontrolled
 - Work in terms of "degree of membership"

- 1. Evaluate how effectively each basic event is controlled
 - Use "T-shirt sizes" like Strongly Controlled, Controlled, Weakly Controlled, Uncontrolled
- 2. Propagate estimates "up" the tree, using fuzzy logic to evaluate each node
 - AND gate: Take the maximum measure from antecedent events
 - OR gate: Take the minimum measure from antecedent events
 - These are referred to as the "Zadeh operators"
 - (Actually... what is described here is dual to the Zadeh operators)

- Note: The measure applied to the hazard is <u>not</u> a measure of risk
 - But can inform the assessment of Residual Risk

- Can we do better?
 - There are alternatives to the Zadeh operators
 - However, these would require more information:
 - Relative likelihood of antecedents of OR gates
 - Propensity for common cause events among antecedents of AND gates
 - We would also need to much more carefully calibrate our Fuzzy Set
 - This would still be a lot easier than full quantification of fault trees

Further Thoughts

- This is a relatively simple method that can be applied to a Hazard Log
- ... But it requires the Hazard Log to be suitably structured
 - The generic Hazard Log structure presented here has worked well on a variety of projects
- The structured approach to Hazard Logs has many other benefits
 - Well-suited to "systems-of-systems"
 - Amenable to quantification of risk
- We believe that storing such structure in the Hazard Log itself is important
 - Different "views" of Hazard Log information can be developed if needed
 - E.g., We have developed software to transform this structure into bow-tie diagrams
- When in the project lifecycle should this structure be developed?
 - We view this as part of the transition from *Preliminary Hazard Analysis* to *System Hazard Analysis*
 - It is hard to apply this sort of structure "after the fact"
- The process of reasoning about control coverage is perhaps as valuable as the outcome

Conclusions

- Reasoning about control effectiveness is not as simple as labelling controls "Effective", "Partially Effective", etc.
- Better to ask "How well controlled is this hazard (or event)?"
- Symbolic/semi-quantitative approaches to systematically answering this question are possible
 - One such method, based on Fuzzy Logic, was presented
 - It requires hazards be suitably structured
- Simple and general approach to structured Hazard Logs
 - We have used this approach successfully on a number of projects
 - We plan to continue developing (software-supported) methods of viewing and reasoning about the contents of such Hazard Logs

