Pregunta 1. Se tiene un conjunto de datos que se usa ampliamente en la investigación médica, este contiene información relacionada el avance de la diabetes en pacientes y de estos se tiene la siguiente información edad, sexo, genero, índice de masa corporal, presión arterial y seis medidas diferentes de serología sanguínea. En este ya se realizo un modelo de regresión lineal teniendo como variables independiente el índice de masa corporal y la edad, ¿Con los resultados de los modelos de regresión lineal cual diría que es factor que mejor explica el avance de la enfermedad?

OLS Regression Results								OLS Regression Results					
Dep. Variable: avan		ance de la ent	ermedad	R-squared:		0.34	Dep. Variable: ava		avance de la enfermedad		R-squared:		0.0
Model:			OLS	Adj. R-squar	red:	0.34	Model:			OLS	Adj. R-squar	ed:	0.0
Method:		Least	Squares	F-statistic:		230.	Method:		Least Squares F-statistic			16.	
Date:		Mon, 11 9		Prob (F-statistic):		3.47e-4	Date:		Mon, 11 Sep 2023 Prob (F-stat			7.06e-	
Time:			9:36:31	Log-Likelihood:		-2454.0					Log-Likelihood:		-2539
No. Observations:			442	AIC:	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		No. Observa	tions:		442	AIC:	ou.	508
Df Residuals:			440	BIC:			Df Residual			442	BIC:		509
Df Model:			440	DIC.		4520	Df Model:	.5.		440	DIC.		309
	w							-		1			
Covariance	Type:	no	nrobust				Covariance	Type:	nor	robust			
	coef	std err	+	P> t	[0.025	0.9751		coef	std err		P> t	[0,025	0.975]
	coer	stu err	L	PAICI	[0.025	0.9/5]		coei	stu en	·	PAICI	[0.025	0.9/5]
Intercept	152.1335	2.974	51.162	0.000	146.289	157.978	Intercept	152.1335	3.606	42.192	0.000	145.047	159.220
bmi	949.4353	62.515	15.187	0.000	826.570	1072.301	age	304.1831	75.806	4.013	0.000	155.196	453.170
Omnibus:		11.6	74 Durb	oin-Watson:		1.848	Omnibus:		52.99	6 Durl	oin-Watson:		1.921
Prob(Omnibu	ıs):	0.6	03 Jaro	que-Bera (JB)		7.310	Prob(Omnibu	ıs):	0.00	00 Jaro	que-Bera (JB):		26.909
Skew:		0.1	56 Prob	(JB):		0.0259	Skew:		0.43	8 Prol	O(JB):		1.43e-06
Kurtosis:		2.4	53 Cond	i. No.		21.0	Kurtosis:		2.16	7 Cond	d. No.		21.0

Pregunta 2. A partir del resumen de la regresión del número de bateos de un equipo de beisbol sobre el número de carreras (runs), responda a lo siguiente:

		OLS	Regre	ssion Re	esults		
Dep. Variab	 le:		runs	R-sqı	uared:	0.373	
Model:			OLS	Adj.	R-squared:		0.350
Method:		Least Sq	uares	F-sta	atistic:		16.65
Date:		Mon, 11 Sep	2023	Prob	(F-statist	ic):	0.000339
Time:		19:	29:32	Log-l	Likelihood:		-167.44
No. Observa	tions:		30	AIC:			338.9
Df Residual	s:		28	BIC:			341.7
Df Model:			1				
Covariance	Type:	nonr	obust				
========	=======		=====	======			
	coef	std err		t	P> t	[0.025	0.975]
Intercept	-2789.2429	853.696		-3.267	0.003	-4537 . 959	-1040.526
bateos	0.6305	0.155		4.080	0.000	0.314	0.947
Omnibus:	======		===== 2.579	Durb	======= in-Watson:	=======	1.524
Prob(Omnibu	s):		0.275		ue-Bera (JB):	1.559
Skew:	, -		0.544		•	,	0.459
Kurtosis:			3.252		• ,		3.89e+05
========	========						

- (a) ¿Cuál es la correlación entre los rendimientos el # de bateos y las carreras?
- (b) ¿Cuál es el intervalo de confianza del 95% para el numero de bateos?
- (c) ¿Qué valor se puede predecir del modelo si el número de bateos del equipo es 5550?

Pregunta 3. La siguiente tabla resumen muestra la relación que tiene el número medio de habitaciones por vivienda (RM) y el precio medio de la vivienda ocupada por sus habitantes en miles de dólares (MEDV), responda o siguiente:

OLS Regression Results							
Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	ons:	Least Squ lon, 11 Sep	2023 3:52 506 504 1	F-sta Prob	ared: R-squared: tistic: (F-statistic ikelihood:):	0.484 0.483 471.8 2.49e-74 -1673.1 3350. 3359.
	=======	std err	=====	t	 P> t	[0.025	0.975]
Intercept RM	-34.6706 9.1021	2.650 0.419	-13 21		0.000	-39.877 8.279	-29.465 9.925
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:	6	.585 .000 .726 .190		,		0.684 612.449 1.02e-133 58.4

- (a) ¿Cómo se ve afectada la medida estimada del MEDV por RM
- (b) ¿Qué nos indica el valor 'F-statistic' y el valor 'Prob (F-statistics)' frente a la significancia del modelo?

Pregunta 4. ¿En qué caso el coeficiente (R²) sería igual a 1en un modelo de regresión lineal?

- (c) Cuando el tamaño de muestra es muy grande
- (d) Cuando la variable dependiente Y no se explica con el modelo
- (e) Cuando el modelo de regresión pasa por todos los puntos del set de datos, sin errores de predicción
- (f) No podemos saberlo sin el tamaño de la muestra

Pregunta 5. Un gerente de una cadena de restaurantes quiere determinar si hay una diferencia significativa en la satisfacción del cliente entre dos sucursales. Para esto recopilo datos calificaciones de satisfacción de los clientes en las dos sucursales.

Con esto realizo una prueba de hipótesis para determinar si hay una diferencia significativa en la satisfacción del cliente entre las sucursales, usando un nivel de significancia del 0.05.

Considere la siguiente secuencia:

```
import numpy as np
from scipy import stats

# Datos de los dos grupos
sucursal_a = np.array([8, 9, 7, 6, 8, 9, 8, 7, 6, 7, 9, 8, 7, 6, 8, 9, 7, 6, 8, 9, 7, 6, 8, 9, 7, 6, 7, 9, 8, 7, 6, 8, 9, 7, 6, 7, 9, 8, 7, 6, 8, 9, 7, 6, 7, 9, 8, 7, 6, 8, 9, 7, 6, 8, 9, 7, 6, 8, 9, 7, 6, 7, 9])
sucursal_b = np.array([7, 8, 6, 5, 7, 8, 7, 6, 5, 6, 8, 7, 6, 5, 7, 8, 6, 5, 7, 8, 6, 5, 7, 8, 7, 6, 5, 6])
# Realizar la prueba t de Student para muestras independientes
t_statistic, p_valor = stats.ttest_ind(sucursal_a, sucursal_b)
# Imprimir los resultados
print("Estadístico t:", t_statistic)
print("Valor p:", p_valor)
```

Estadístico t	Valor p
4.623	1.228

¿Se rechaza o se acepta la hipótesis nula?