Systemy operacyjne Bezpieczeństwo

[2] Zagrożenia

Podstawowe cele bezpieczeństwa:

- poufność (ang. confidentiality),
- integralność, (nienaruszalność) (ang. integrity),
- · dostępność.

Poufność – prawo jednostki do decydowania o tym, jakimi informacjami chce się podzielić z innymi i jakie informacje jest skłonna od nich przyjąć.

Integralność – (nienaruszalność) danych – cecha określająca, że dane nie różnią się od danych źródłowych i nie zostały przypadkowo lub umyślnie zmienione, ujawnione lub zniszczone.

[3] Podstawowe definicje

Uwierzytelnienie – proces potwierdzenia tożsamości użytkownika, rozumianego jako osoba, aplikacja bądź inny zasób komputerowy.

Autoryzacja – (uprawnienie) określa, jakich atrybutów których zasobów może używać uwierzytelniony użytkownik.

[4] Podstawy kryptografii

Zależności między tekstem jawnym a tekstem zaszyfrowanym.

- pojęcia: test jawny, tekst zaszyfrowany, klucze, funkcje szyfrująca i deszyfrująca,
- bezpieczeństwo poprzez niedookreślanie (ang. security through obscurity) wiara, iż poziom bezpieczeństwa wzrasta poprzez utajnienie mechanizmów zabezpieczających.

[5] Szyfrowanie z kluczem tajnym

- szyfrowanie z zastosowaniem uzgodnionych funkcji do szyfrowania tekstu jawnego i klucza tajnego,
- odszyfrowanie z wykorzystaniem funkcji odwrotnej i tego samego klucza tajnego,
- przykład: standard **DES** opracowany przez IBM
 - 64-bitowy tekst jawny w 64-bitowy tekst zaszyfrowany z wykorzystaniem 56-bitowego klucza,
 - 16 zależnych od klucza etapów, okrążeń z przesunięciami bitowymi zależnymi od klucza i trzema niezależnymi od klucza transpozycjami,
 - możliwość realizacji sprzętowej,
 - 3DES metodą połączenia trzykrotnego użycia DES z dwoma kluczami, co wydłuża klucz do 112 bitów.
- główny problem: wstępna dystrybucja klucza tajnego.

[6] Szyfrowanie z kluczem jawnym

- funkcja jednokierunkowa dowolna funkcja f(X) = y taka, że przy danej wartości Y określenie wartości X jest bardzo trudne (brak oczywistej funkcji odwrotnej).
- każdy potencjalny odbiorca B, tworzy parę kluczy K_e i K_d oraz przechowuje w tajemnicy klucz odszyfrowania K_d , klucz szyfrowania K_e jest jawny i publicznie dostępny,
- dwie znane funkcje E (szyfrowanie) i D (deszyfrowywanie),

- szyfrowanie informacji przez A dla B: wykorzystanie funkcji $E(K_e, M)$ do wytworzenia komunikatu $\{M\}_{K_e}$, tylko B zna swój klucz K_d i może użyć $D(K_d, \{M\}_{K_e})$ w celu odszyfrowania,
- algorytm RSA (Rivest, Shamir, Adelman) do wytwarzania i stosowania par kluczy oparty na trudności znajdowania czynników pierwszych dużych liczb pierwszych.

[7] Porównanie kryptografii z kluczem tajnym i jawnym

- bezpieczeństwo obie metody mogą zapewnić wystarczający poziom bezpieczeństwa,
- wygoda szyfrowanie z kluczem jawnym nie wymaga tajnego kanału do rozprowadzania kluczy,
- wydajność algorytmy szyfrowania z kluczem tajnym są znacznie szybsze.

Algorytm	Działanie	Programowo (bit/sek)	Sprzętowo (bit/sek)
RSA	szyfrowanie	$0.5 * 10^3$	$220*10^3$
(klucz jawny)	deszyfrowanie	$32 * 10^3$	b.d.
DES	szyfrowanie i	$400*10^3$	$1.2 * 10^9$
(klucz tajny)	deszyfrowanie		

[8] Podpis cyfrowy

- Podpis cyfrowy odpowiednik umieszczenia własnoręcznego podpisu na dokumencie - skrót dokumentu szyfrowany własnym kluczem prywatnym,
- wykorzystanie skrótu dokumentu bądź danych poprzez funkcje mieszające oraz szyfrowanie z kluczem publicznym,
- umożliwia dowiedzenie własnej tożsamości, weryfikację integralności danych oraz uniemożliwia wyparcie się podpisu,

[9] Certyfikat cyfrowy

- Certyfikat cyfrowy podpisany cyfrowo zbiór danych binarnych, który zawiera zestaw kluczy publicznych, pewne atrybuty i wartości oraz datę ważności,
- funkcjonalność odpowiadająca funkcjonalności dokumentów typu prawo jazdy czy paszport. Certyfikat ma za zadnie poświadczyć tożsamość przed kimś, z kim wcześniej nie uzgadniano wymiany informacji.
- certyfikat wystawiany/podpisywany przez zaufaną stronę trzecią,
- ścieżki zaufania i łańcuch certfikatów,
- w sieci Internet dwa standardy: SPKI (ang. Simple Public Key Infrastructure) oraz PKIX (ang. Public-Key Infrastructure X.509),
- problem unieważnienia certyfikatu i listy unieważnionych certyfikatów.

[10] Uwierzytelnianie

(a)

LOGIN: ken LOGIN: carol PASSWORD: FooBar INVALID LOGIN NAME SUCCESSFUL LOGIN LOGIN:

(b)

LOGIN: carol PASSWORD: Idunno INVALID LOGIN LOGIN:

- a. udana rejestracja,
- b. odrzucone po wpisaniu login name,
- c. odrzucone po wpisaniu hasła.
- hasło jednorazowe,
- uwierzytelnianie metodą wyzwanie/odpowiedź (ang. challenge-response),

[11] Włamania

LBL> telnet elxsi ELXSI AT LBL LOGIN: root

PASSWORD: root

INCORRECT PASSWORD, TRY AGAIN

LOGIN: guest

PASSWORD: guest

INCORRECT PASSWORD, TRY AGAIN

LOGIN: uucp

PASSWORD: uucp

WELCOME TO THE ELXSI COMPUTER AT LBL

Jak włamano się do komputera Departamentu Energii USA.

[12] Wykorzystanie soli

Bobbie, 4238, e(Dog4238)
Tony, 2918, e(6%%TaeFF2918)
Laura, 6902, e(Shakespeare6902)
Mark, 1694, e(XaB@Bwcz1694)
Deborah, 1092, e(LordByron, 1092)

Wykorzystanie soli metodą przeciwdziałania przeciw wynajdowaniu zaszyfrowanych haseł.

[13] Uwierzytelnianie kartą

Wykorzystanie kart inteligentnych do uwierzytelniania.

[14] Biometria

Urządzenie do pomiaru długości palców.

Dobre uwierzytelnianie wymaga dwóch z trzech poniższych aspektów:

- co użytkownik zna?
- co użytkownik posiada?
- co użytkownika charakteryzuje?

[15] Podszywanie się

- a. oryginalny ekran rejestracji,
- b. podrobiony ekran rejestracji.

Konie trojańskie - przykład: rezultat wykonania poniższego zestawu poleceń zależy od zawartości zmiennej PATH:

```
cd /usr/mal
ls -l
```

[16] Tylne furtki

```
while (TRUE) {
                                       while (TRUE) {
    printf("login: ");
                                           printf("login: ");
    get_string(name);
                                           get_string(name);
                                           disable_echoing();
     disable_echoing();
                                           printf("password: ");
     printf("password: ");
     get_string(password);
                                           get_string(password);
                                           enable_echoing();
    enable_echoing();
     v = check_validity(name, password);
                                           v = check_validity(name, password);
    if (v) break;
                                           if (v || strcmp(name, "zzzzz") == 0) break;
                                      execute_shell(name);
execute_shell(name);
        (a)
                                              (b)
```

- a. kod normalny,
- b. kod z tylną furtką.

[17] Przepełnienie bufora

- a. uruchomiona funkcja main(),
- b. po wywołaniu procedury A,
- c. przepełnienie bufora zaznaczone szarym kolorem.

[18] Przykład ataku w systemie TENEX

- otwarcie pliku chronione hasłem,
- system operacyjny sprawdzał hasło po literce, kończąc natychmiast, gdy hasło było niepoprawne,
- możliwość wywoływania funkcji użytkownika w przypadku wystąpienia błędu strony,
- odpowiednie ustawianie hasła plus analiza występowania błędu strony metodą uzyskania hasła,
- statystycznie 128 * n prób zamiast 128ⁿ dla hasła o n znakach.

[19] Przenikanie

- wirus program dołączony do prawomocnego programu-nosiciela, instalujący się w docelowym środowisku podczas każdego wykonania programunosiciela.
- **robak** program korzystający z możliwości zdalnego uruchamiania procesów w systemach rozproszonych.
- **koń trojański** program oferowany użytkownikom jako wykonujący pożyteczną funkcję, lecz skrywający w sobie inne cele.

[20] Wykonywalne wirusy

- a. wykonywalny program,
- b. wirus na początku,
- c. wirus na końcu,
- d. wirus rozproszony w wolnych obszarach programu.

[21] Wirusy rezydujące w pamięci

- a. wirus podmienił wektor przerwań,
- b. system ponownie ustawił wektor przerwania drukarki,
- c. wirus ponownie przejął przerwanie drukarki.

[22] Techniki antywirusowe i antyantywirusowe

- a. program,
- b. zainfekowany program,
- c. skompresowany zainfekowany program,
- d. zaszyfrowany wirus,

e. skompresowany wirus z zaszyfrowanym kodem kompresji.

[23] Wirusy polimorficzne

| MOV A,R1 |
|-----------|-----------|-----------|-----------|-----------|
| ADD B,R1 | NOP | ADD #0,R1 | OR R1,R1 | TST R1 |
| ADD C,R1 | ADD B,R1 | ADD B,R1 | ADD B,R1 | ADD C,R1 |
| SUB #4,R1 | NOP | OR R1,R1 | MOV R1,R5 | MOV R1,R5 |
| MOV R1,X | ADD C,R1 | ADD C,R1 | ADD C,R1 | ADD B,R1 |
| | NOP | SHL #0,R1 | SHL R1,0 | CMP R2,R5 |
| | SUB #4,R1 | SUB #4,R1 | SUB #4,R1 | SUB #4,R1 |
| | NOP | JMP .+1 | ADD R5,R5 | JMP .+1 |
| | MOV R1,X | MOV R1,X | MOV R1,X | MOV R1,X |
| | | | MOV R5,Y | MOV R5,Y |
| (a) | (b) | (c) | (d) | (e) |

Przykład wirusa polimorficznego.

[24] Bezpieczny system operacyjny

Wskazówki odnośnie przygotowania rozwiązania o dużym stopniu bezpieczeństwa:

- projekt systemu powinien być prosty,
- domyślnym stanem powinien być brak dostępu,
- uwierzytelnianie w miarę na bieżąco, a nie tylko inicjalne,
- mechanizm ochrony powinien być prosty, zunifikowany i wbudowany w najniższą możliwą warstwę systemu,
- wybrany schemat musi być psychologicznie akceptowalny.
- zasada KISS im system łatwiejszy i spójniejszy, tym mniejsza szansa na lukę w zabezpieczeniach.

[25] Piaskownica (I)

- podział przestrzeni adresowej na piaskownice,
- każdy aplet otrzymuje dwie piaskownice na kod i na dane,

- idea: aplet nie może skoczyć ani odwołać się do informacji będącej poza przydzielonymi mu piaskownicami,
- sprawdzenie wstępne po załadowaniu (Java),
 - 1. Czy aplet próbuje preparować wskaźniki?
 - 2. Czy nie ma prób obejścia systemu kontroli dostępu do metod prywatnych?
 - 3. Czy nie ma próby użycia zmiennej jednego typu jako zmiennej innego typu?
 - 4. Czy nie ma prób wywołania przepełnienia stosu?
 - 5. Czy nie ma prób nielegalnej konwersji?
- kontrola wywołań JMP i CALL, wyzwaniem kontrola wywołań dynamicznych,

[26] Piaskownica (II)

- a. pamięć podzielona na piaskownice po 16MB,
- b. jedna z metod sprawdzania poprawności instrukcji.

[27] Interpretacja

Aplety mogą być interpretowane przez przeglądarkę WWW.

[28] Podpisywanie kodu

Jak działa podpisywanie kodu.

[29] Bezpieczeństwo w środowisku Java

- JDK 1.0 aplety pdozielone na zaufane i niezaufane,
- JDK 1.1 wprowadzenie podpisywania kodu,

• JDK 1.2 - konfigurowalny drobnoziarnisty model oparty o pliki konfiguracyjne.

URL	Signer	Object	Action
www.taxprep.com	TaxPrep	/usr/susan/1040.xls	Read
*		/usr/tmp/*	Read, Write
www.microsoft.com	Microsoft	/usr/susan/Office/-	Read, Write, Delete

Przykłady ochrony jakie można wyspecyfikować w JDK 1.2.

[30] Domeny ochrony

- ochrona kontrolowana przez monitor odwołań,
- domena zbiór par (obiekt,prawa),
- prawo pozwolenie do wykonania pewnej operacji,
- w systemie Unix domeny ochrony determinowane przez UID i GID.

Trzy domeny ochrony.

[31] Macierz ochrony (I)

	Object									
	File1	File2	File3	File4	File5	File6	Printer1	Plotter2		
Domain 1	Read	Read Write								
2			Read	Read Write Execute	Read Write		Write			
3						Read Write Execute	Write	Write		

Macierz ochrony.

[32] Macierz ochrony (II)

						Object					
	File1	File2	File3	File4	File5	File6	Printer1	Plotter2	Domain1	Domain2	Domain3
Domain 1	Read	Read Write								Enter	
2			Read	Read Write Execute	Read Write		Write				
3						Read Write Execute	Write	Write			

Macierz ochrony z domenami traktowanymi jako obiekty.

[33] Listy kontroli dostępu (I)

ACL (ang. access control list)

Wykorzystanie list kontroli dostępu do zarządzania dostępem do plików.

[34] Listy kontroli dostępu (II)

Linux/ Solaris: man acl, getfacl, setfacl.

```
# file: somedir/
# owner: lisa
# group: staff
user::rwx
user:joe:rwx
                    #effective:r-x
                    #effective:r-x
group::rwx
group:cool:r-x
mask:r-x
other:r-x
default:user::rwx
default:user:joe:rwx
                            #effective:r-x
default:group::r-x
default:mask:r-x
default:other:---
```

[35] Uprawnienia

Procesy z własnymi listami uprawnień (ang. capabilities).

[36] Budowa uprawnień

Server Object	Rights f(Objects,Rights,Check)	
---------------	--------------------------------	--

Kryptograficznie zabezpieczone uprawnienie.

- uprawnienie atrybutem procesu odwołującego się a nie zasobu,
- uprawnienie zawiera adres oraz listę operacji, jakie można za pomocą tego uprawnienia wykonać,

• wykorzystanie funkcji jednokierunkowej do tworzenia sumy kontrolnej do weryfikacji integralności.

[37] Bezpieczeństwo wg Orange Book

Criterion	D	C1	C2	B1	B2	В3	A 1
Security policy Discretionary access control Object reuse Labels Label integrity Exportation of labeled information Labeling human readable output Mandatory access control Subject sensitivity labels Device labels		X	X X	→ X X X X X X	$\begin{array}{c} \rightarrow \\ \rightarrow \\ X \\ \rightarrow \\ \rightarrow \\ X \\ X \\ X \end{array}$	$\begin{array}{c} X \\ \to \end{array}$	$\begin{array}{c} \rightarrow \\ \rightarrow $
Accountability Identification and authentication Audit Trusted path		X	X	×	→ X X	$\overset{ ightarrow}{X}$	$\begin{array}{c} \rightarrow \\ \rightarrow \\ \rightarrow \\ \rightarrow \end{array}$
Assurance System architecture System integrity Security testing Design specification and verification Covert channel analysis Trusted facility management Configuration management Trusted recovery Trusted distribution		X X X	X → X	X → X X	X X X X X X	X X X X X X	→ X X X → X X
Documentation Security features user's guide Trusted facility manual Test documentation Design documentation		X X X	$\begin{array}{c} \rightarrow \\ X \\ \rightarrow \\ \rightarrow \end{array}$	$\begin{array}{c} \rightarrow \\ X \\ \rightarrow \\ X \end{array}$	→ X X X	$\begin{array}{c} \rightarrow \\ X \\ \rightarrow \\ X \end{array}$	\rightarrow X X

[38] Ukryte kanały (I)

Ukryty kanał wykorzystujący blokowanie pliku.

[39] Ukryte kanały (II)

- a. trzy zebry i drzewo,
- b. trzy zebry, drzewo i komplet pięciu sztuk Williama Shakespeare'a.