ПРОГРАММА ПО АЛГЕБРЕ

1. Системы линейных алгебраических уравнений.

Основные понятия: основная и расширенная матрицы системы; решение системы; совместные и несовместные, определенные и неопределенные системы; эквивалентные системы; общее и частное решение системы; элементарные преобразования системы.

 $Teopemы\ u\ метodы:$ эквивалентность систем при элементарных преобразованиях; метод Гаусса.

Задачи: найти общее (частное) решение системы уравнений; исследовать систему с параметрами.

2. Перестановки.

Основные понятия: перестановка; инверсия; четная и нечетная перестановка; транспозиция.

 $Teopemu\ u\ memodu:$ теоpema о числе перестановок; теоpema об изменении четности перестановки при траспозиции.

Задачи: найти число инверсий в перестановке; определить четность перестановки.

3. Теория определителей.

Основные понятия: определитель матрицы; минор и дополнительный минор; алгебраическое дополнение элемента.

Теоремы и методы: свойства определителя (определитель треугольной матрицы; определитель транспонированной матрицы; аддитивность определителя по строкам и столбцам; изменение определителя при перестановке строк или столбцов; равенство нулю определителя с нулевой строкой, с пропорциональными строками или столбцами); теорема о произведении минора на дополнительный минор; разложение Лапласа; методы вычисления определителя (приведение к треугольному виду; рекуррентных соотношений; выделения линейных множителей; представления в виде суммы определителей); формулы Крамера.

 $\it 3adauu:$ вычислить определитель; решить систему уравнений, используя формулы Крамера.

4. Основные алгебраические системы.

Основные понятия: бинарная алгебраическая операция, нейтральный и обратный элементы; аксиомы коммутативности, ассоциативности, дистрибутивности; группа, кольцо, поле.

 $Teopembu\ u\ memodu:$ единственность нейтрального и обратного элементов; следствия из аксиом коммутативности, ассоциативности и дистрибутивности.

Задачи: доказать или опровергнуть утверждение о том, что множество с заданной на нем операцией образует группу, кольцо, поле.

1. Найти решения системы или доказать её несовместность

A)
$$\begin{cases} x_2 + x_3 + x_4 = 1, \\ x_1 + x_3 + x_4 = 2, \\ x_1 + x_2 + x_4 = 3, \\ x_1 + x_2 + x_3 = 4; \end{cases}$$
 B)
$$\begin{cases} 2x_1 - 2x_2 - 3x_3 = -1, \\ 4x_1 - 4x_2 + x_3 = 19, \\ 6x_1 - 6x_2 - 2x_3 = -11; \end{cases}$$

$$C) \begin{cases} -x_1 + 4x_2 - 3x_3 + 3x_4 &= 4, \\ x_1 - 3x_2 + 7x_3 - 5x_4 &= -1, \\ 6x_1 - 21x_2 + 31x_3 - 28x_4 &= -11, \\ 4x_1 - 15x_2 + 17x_3 - 18x_4 &= -9; \end{cases} D) \begin{cases} 2x_1 - x_2 = 0, \\ -x_1 + 2x_2 - x_3 = 0, \\ -x_2 + 2x_3 - x_4 = 0, \\ \dots \\ -x_{n-2} + 2x_{n-1} - x_n = 0, \\ -x_{n-1} + x_n = 1. \end{cases}$$

2. Найти решение системы или установить её несовместность в зависимости от значений параметров a,b

$$\begin{cases} ax + y + z &= 4, \\ x + by + z &= 3, \\ x + 2by + z &= 4. \end{cases}$$

3. Определить число инверсий в перестановке

$$2n, 2n-2, ..., 4, 2, 2n-1, 2n-3, ..., 3, 1$$

и её четность в зависимости от n.

4. Вычислить определители

$$A) \left| \begin{array}{cccc} 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{array} \right|, \qquad B) \left| \begin{array}{ccccc} 3 & 2 & 0 & \dots & 0 \\ 1 & 3 & 2 & \dots & 0 \\ 0 & 1 & 3 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 3 \end{array} \right|,$$

5. Пусть \mathbb{R} — множество действительных чисел, $\alpha_1, \alpha_2, \alpha_3$ и $\beta_1, \beta_2, \beta_3, \beta_4$ — фиксированные действительные числа. Определим на \mathbb{R} операции \oplus и \odot , полагая

$$a \oplus b = \alpha_1 a + \alpha_2 b + \alpha_3,$$
 $a \odot b = \beta_1 a + \beta_2 b + \beta_3 ab + \beta_4$

для любых $a, b \in \mathbb{R}$.

- 1) Найти необходимые и достаточные условия на константы $\alpha_1, \alpha_2, \alpha_3$, при которых $\langle \mathbb{R}, \oplus \rangle$ абелева группа.
- 2) Найти необходимые и достаточные условия на константы $\beta_1, \beta_2, \beta_3, \beta_4$, при которых операция \odot является: коммутативной, ассоциативной.
- 3) Найти необходимые и достаточные условия на константы $\alpha_1, \alpha_2, \alpha_3$ и $\beta_1, \beta_2, \beta_3, \beta_4$, при которых $\langle \mathbb{R}, \oplus, \odot \rangle$ поле.

2