Motivating example: Spelling correction

- **Problem**: Someone types 'radom'.
- Question: What did they mean to type? Random?

Ingredients:

- Data x: The observed word radom
- Parameter of interest θ : The correct word

Comments: To solve this we need

- background information on which words are usually typed.
- an idea about how words are typically mistyped.

Example adapted from Bayesian Data Analysis by Gelman et al.

Bayesian Idea

■ **Data model**: Conditional on θ , data x is distributed according to pf/pdf $\pi(x)$:

$$\pi(x|\theta) \propto L(\theta;x) \leftarrow \text{the likelihood}$$

■ **Prior**: Prior knowledge (i.e. *before* collecting data) about θ is summaries by a pf/pdf,

$$\pi(\theta) \leftarrow \mathsf{the}\;\mathsf{prior}$$

■ **Posterior**: The updated knowledge about θ after collecting data: The conditional distribution of θ given data x:

$$\pi(\theta|x) = \frac{\pi(x|\theta)\pi(\theta)}{\pi(x)}$$

$$\propto \pi(x|\theta)\pi(\theta)$$
"posterior = likelihood × prior"

Example: Prior

Without any other prior knowledge Google provies the following *prior* probabilities (for three candidate words):

θ	$\pi(\theta)$
random	7.60×10^{-5}
radon	6.05×10^{-6}
radom	3.12×10^{-7}

Comments

- The relative high probablity for the word *radom* is surprising! Name of Polish airshow and nickname for Polish hand gun...
- In the context of writing a scientific report these prior probailities would look different...?

Example: Likelihood

Google provies the following conditional probabilities prior probabilities:

θ	$\pi(x = \text{'radom'} \theta)$
random	0.00193
radon	0.000143
radom	0.975

Comments

- This is *not* a probability distribution!
- If one in fact intends to write 'radom' this actually happens in 97.5% of cases.
- If one intends to write either 'random' or 'radon' this is rarely misspelled 'radom'.

Example: Posterior

Combining the prior and likelihhod we obtain the posterior probabilities:

$$\pi(\theta|x) = \frac{\pi(x|\theta)\pi(\theta)}{\pi(x)} \propto \pi(x|\theta)\pi(\theta)$$

$$\frac{\theta}{\text{random}} \frac{\pi(x = \text{'radom'}|\theta)\pi(\theta)}{1.47 \times 10^{-7}} \frac{\pi(\theta|x = \text{'radom'})}{0.325}$$

$$\frac{1.47 \times 10^{-7}}{1.47 \times 10^{-10}} \frac{0.002}{0.002}$$

$$\frac{3.04 \times 10^{-7}}{0.673} \frac{0.673}{0.673}$$

Conclusion

■ With the given prior and likelihood the word 'radom' is twice as likely as 'random'.

Criticism

- The posterior probability for 'radom' seems too high.
- Likelihood or prior to blame
- Likelihood is probably ok in this case
- Prior depends on context and hence might be "wrong".

Another example

Heights of some Copenhageners in 1995

Assume: Heights are normal, $X \sim \mathcal{N}(\mu, \tau)$.

For now: Assume precision τ known.

Bayesian Idea: Illustration

Data model: $X \sim \mathcal{N}(\mu, 0.01)$ (i.e. pop. sd = 10)

Prior: We believe that the population mean is most likely between 160 cm and 200 cm. $\pi(\mu) = \mathcal{N}(180, 0.01)$.

Posterior: After observing a number of heights ($n=10, \bar{x}=169$), our knowledge about μ is updated. Summarised by the posterior.

Normal example: One (!) observation

Data model: $X \sim \mathcal{N}(\mu, \tau)$

Assume: Precision τ known.

Interest: The unknown mean μ .

Prior: The prior for μ is specified as $\mu \sim \mathcal{N}(\mu_0, \tau_0)$.

Normal example: Data density

Data: One observation, X, from a normal distribution:

$$\pi(x|\mu) = \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{1}{2}\tau(x-\mu)^2\right)$$
$$= \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{1}{2}\tau x^2 - \frac{1}{2}\tau\mu^2 + \tau\mu x\right)$$
$$\propto \exp\left(-\frac{1}{2}\tau x^2 + \tau\mu x\right)$$

Notice the "pattern" inside the exponential.

Normal example: Posterior density

 $Posterior \propto Likelihood \times Prior$

$$\pi(\mu|x) \propto \pi(x|\mu)\pi(\mu)$$

$$= \sqrt{\frac{\tau}{2\pi}} \exp\left(-\frac{1}{2}\tau(x-\mu)^2\right) \sqrt{\frac{\tau_0}{2\pi}} \exp\left(-\frac{1}{2}\tau_0(\mu-\mu_0)^2\right)$$

$$\propto \exp\left(-\frac{1}{2}\tau\mu^2 + \tau x\mu - \frac{1}{2}\tau_0\mu^2 + \tau_0\mu\mu_0\right)$$

$$= \exp\left(-\frac{1}{2}(\tau+\tau_0)\mu^2 + (\tau x + \tau_0\mu_0)\mu\right)$$

$$\propto \mathcal{N}\left(\frac{\tau x + \tau_0\mu_0}{\tau + \tau_0}, \tau + \tau_0\right)$$

Notice: Prior for μ was normal, now the posterior for μ is also normal!

Normal example: Posterior mean & variance

The posterior:
$$\pi(\mu|x) = \mathcal{N}\left(\frac{\tau x + \tau_0 \mu_0}{\tau + \tau_0}, \tau + \tau_0\right)$$

Posterior expectation:

$$\mathbb{E}[\mu|x] = \frac{\tau x + \tau_0 \mu_0}{\tau + \tau_0} = \frac{\tau}{\tau + \tau_0} x + \frac{\tau_0}{\tau + \tau_0} \mu_0 (= \mu_1).$$

Weighted average of prior mean and observation x.

Posterior variance:

$$\mathbb{V}\mathrm{ar}[\mu|x] = \frac{1}{\tau + \tau_0} (= \frac{1}{\tau_1})$$

Posterior as prior — or updating believes

General setup: We are interested in parameter θ .

■ Data model: $\pi(x|\theta)$

■ Prior: $\pi(\theta)$

■ Data: First observation $x_1 \sim \pi(x_1|\theta)$

■ Posterior: $\pi(\theta|x_1) \propto \pi(x|\theta)\pi(\theta)$

Assume we have a second independent observation $x_2 \sim \pi(x_2|\theta)$.

Posterior:

$$\pi(\theta|x_1, x_2) \propto \pi(x_1, x_2|\theta)\pi(\theta)$$

$$= \pi(x_1|\theta)\pi(x_2|\theta)\pi(\theta)$$

$$\propto \underbrace{\pi(x_2|\theta)}_{likelihood}\underbrace{\pi(\theta|x_1)}_{prior}$$

Notice: The posterior after observing x_1 is the prior before observing x_2 .

Independent normal case

Posterior mean and precision after <u>one</u> observation x_1 :

$$\mu_1 = \frac{x_1\tau + \mu_0\tau_0}{\tau + \tau_0} \quad \text{and} \quad \tau_1 = \tau + \tau_0.$$

Next, μ_1 and τ_1 are prior mean and precision before observing x_2 . Hence, posterior mean and precision after observing (independent) x_1 and x_2 are

$$\mu_2 = \mathbb{E}[\mu_2 | x_1, x_2] = \frac{x_2 \tau + \mu_1 \tau_1}{\tau + \tau_1}$$

$$= \frac{x_2 \tau + x_1 \tau + \mu_0 \tau_0}{\tau + \tau + \tau_0} = \frac{(x_1 + x_2) \tau + \mu_0 \tau_0}{2\tau + \tau_0}$$

$$\tau_2 = 2\tau + \tau_0$$

This can easily be generalised.

Many independent normal observations

Assume...

- $X_2, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \tau).$
- \blacksquare τ in known.
- Prior $\pi(\mu) = \mathcal{N}(\mu_0, \tau_0)$.

The posterior is then

$$\pi(\mu|x_1, x_2, \dots, x_n) = \mathcal{N}\left(\frac{\tau \sum_i x_i + \tau_0 \mu_0}{n\tau + \tau_0}, n\tau + \tau_0\right)$$

Posterior mean: Sanity check

The posterior is

$$\pi(\mu|x_1, x_2, \dots, x_n) = \mathcal{N}\left(\frac{\tau \sum_i x_i + \tau_0 \mu_0}{n\tau + \tau_0}, n\tau + \tau_0\right)$$

Does the posterior mean seem "sane"?

$$\mathbb{E}[\mu|x_1,\dots,x_n] = \mu_n = \frac{\tau \sum_i x_i + \tau_0 \mu_0}{n\tau + \tau_0}$$

$$= \frac{\tau n \frac{1}{n} \sum_i x_i + \tau_0 \mu_0}{n\tau + \tau_0}$$

$$= \frac{n\tau}{n\tau + \tau_0} \bar{x} + \frac{\tau_0}{n\tau + \tau_0} \mu_0$$

Weighted average of sample average \bar{x} and prior mean μ_0 . For n large we have $\mu_n \approx \bar{x}$. Choice of μ_0 of little importance. Precision $\tau_n = n\tau + \tau_0$. Knowledge is ever more precise.

One observation

Ten observations

100 observations

2627 observations

How to summaries the posterior $\pi(\theta|x)$?

The posterior is usually summaries using one or more of the following:

- Plot of posterior density $\pi(\theta|x)$. See previous slides.
- Posterior mean and variance/precision.
- Central Posterior Interval (CPI). See next slide.
- Maximum A Posteriori (MAP) estimate

$$MAP(\theta) = \operatorname*{argmax}_{\theta} \, \pi(\theta|x).$$

Central Posterior Interval

- The CPI is an interval estimate.
- Also known as credibility interval.
- A 95% CPI for a parameter θ is the shortest (connected) interval which contains θ with 95% posterior probability.
- In case of the normal example, we have

$$P\left(\mu_n - 1.96\sqrt{\frac{1}{\tau_n}} \le \mu \le \mu_n + 1.96\sqrt{\frac{1}{\tau_n}}\right) = 0.95$$

Hence, a 95% CPI for μ is

95% CPI:
$$\mu_n \pm 1.96 \sqrt{\frac{1}{\tau_n}}$$
.

CPI compared to confidence interval

The classical 95% confidence interval for μ is

95% CI:
$$\bar{x} \pm 1.96 \sqrt{\frac{1}{n\tau}}$$
.

For CPI: Assume the prior precision is $\tau_0=0$, i.e. infinite variance. Then $\mu_n=\bar{x}$ and $\tau_n=n\tau$, i.e.

95% CPI:
$$\bar{x} \pm 1.96 \sqrt{\frac{1}{n\tau}}$$
.

Same interval. Different interpretations.

Conjugate priors

In the normal example: Both prior and posterior were normal! Very convenient!

We say that the normal distribution is conjugate.

Definition: Conjugate priors

Let $\pi(x|\theta)$ be the data model.

A class Π of prior distributions for θ is said to be conjugate for $\pi(x|\theta)$ if

$$\pi(\theta|x) \propto \pi(x|\theta)\pi(\theta) \in \Pi$$

whenever $\pi(\theta) \in \Pi$. I.e. prior and posterior are in the same class of distributions.

Notice: Π should be a class of "natural" distributions for this to be useful.

Improper priors

If we have no prior knowledge we may be tempted to use a "flat" prior, i.e.

$$\pi(\theta) \propto k$$

If $heta \in \mathbf{R}$ this is an example of an improper prior, as

$$\int_{-\infty}^{\infty} \pi(\theta) \mathrm{d}\theta = \int_{-\infty}^{\infty} k = \infty.$$

Problematic, but ok, if posterior is proper, i.e. if

$$\int \pi(\theta|x) d\theta = \int \pi(x|\theta) \pi(\theta) d\theta < \infty.$$

Notice: If $\pi(\theta) \propto 1$ then MAP estimator = Maximum likelihood estimator.

Normal example: Unknown precision, known mean

■ Data model: $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \tau)$:

$$\pi(x|\tau) = \left(\frac{\tau}{2\pi}\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2}\tau \sum_{i=1}^{n} (x_i - \mu)^2\right)$$

■ **Prior**: Gamma distribution: $\pi(\tau) = Gamma(\alpha, \beta)$

$$\pi(\tau) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} \tau^{\alpha - 1} \exp\left(-\frac{\tau}{\beta}\right)$$

Shape parameter α and scale parameter β .

Properties of the gamma distribution:

$$\mathbb{E}[\tau] = \alpha\beta \qquad \mathbb{V}\mathrm{ar}[\tau] = \alpha\beta^2.$$

Gamma distribution

Normal example: Posterior precision

- Data model: $X_1, X_2, \ldots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \tau)$:
- Prior: $\pi(\tau) = Gamma(\alpha, \beta)$
- Posterior:

$$\pi(\tau|x) = Gamma\left(\frac{n}{2} + \alpha, \left\{\frac{1}{2}\sum_{i=1}^{n}(x_i - \mu)^2 + \frac{1}{\beta}\right\}^{-1}\right)$$

Posterior mean and variance

$$\mathbb{E}[\tau|x] = \frac{\frac{n}{2} + \alpha}{\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 + \frac{1}{\beta}} \qquad \mathbb{V}\operatorname{ar}[\tau|x] = \frac{\frac{n}{2} + \alpha}{\left(\frac{1}{2} \sum_{i=1}^{n} (x_i - \mu)^2 + \frac{1}{\beta}\right)^2}$$

For large n we have

$$\mathbb{E}[\tau|x] \approx \frac{1}{\hat{\sigma}^2}$$
 where $\hat{\sigma}^2$ is the usual ML variance estimate.

Known mean: Priors and posteriors

Binomial example

■ **Data model**: Binomial, $X \sim B(n, p)$, n known.

$$\pi(x|p) = \binom{n}{x} p^x (1-p)^{n-x} \quad 0 \le p \le 1.$$

■ **Prior**: Beta distribution,

$$\pi(p) = \mathsf{Be}(\alpha, \beta) \quad , \alpha, \beta > 0.$$

Where we have to specify α and β .

The Beta distribution has density

$$\pi(p) = \begin{cases} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} p^{\alpha-1} (1-p)^{\beta-1} & \text{for } 0 \leq p \leq 1 \\ 0 & \text{otherwise.} \end{cases}$$

If $\alpha = \beta = 1$ then $\pi(p) = 1$ for $0 \le p \le 1$, i.e. uniform.

Beta distribution: Examples

Binomial example — cont.

- Data model: $X \sim B(n, p)$
- **Prior**: $\pi(p) = Be(\alpha, \beta)$, that is

$$\pi(p) = \begin{cases} \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} p^{\alpha-1} (1-p)^{\beta-1} & \text{for } 0 \leq p \leq 1 \\ 0 & \text{otherwise}. \end{cases}$$

Posterior:

$$\pi(p|x) \propto \pi(x|p)\pi(p)$$

$$= \binom{n}{x} p^x (1-p)^{n-x} \cdot \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

$$\propto p^{x+\alpha-1} (1-p)^{n-x+\beta-1}$$

$$= Be(x+\alpha, n-n+\beta).$$

Posterior mean & Variance

Posterior

$$\pi(p|x) = Be(x + \alpha, n - n + \beta).$$

Posterior mean

$$\mathbb{E}[p|x] = \frac{x+\alpha}{(x+\alpha)+(n-x+\beta)} = \frac{x+\alpha}{\alpha+\beta+n}$$

If $x, n \gg \alpha, \beta$ then $\mathbb{E}[p|x] \approx \frac{x}{n}$.

Posterior variance

$$\operatorname{Var}[p|x] = \frac{(x+\alpha)(n-x+\beta)}{(x+\alpha+n-x+\beta)^2(x+\alpha+n-x+\beta+1)}$$
$$= \frac{(x+\alpha)(n-x+\beta)}{(\alpha+\beta+n)^2(\alpha+\beta+n+1)} = O\left(\frac{1}{n}\right)$$

Example: Placentia Previa (PP)

- Question: Is the sex ratio different for PP births compared to normal births?
- **Prior knowledge**: 51.5% of new-borns are boys.
- **Data**: Of n = 980 cases of PP x=543 were boys (543/980=55.4%).
- Data model: $X \sim B(n, p)$.
- Prior: $\pi(p) = Be(\alpha, \beta)$.
- Posterior:

$$\pi(p|x) = Be(x + \alpha, n - x + \beta)$$
$$= Be(543 + \alpha, 437 + \beta)$$

How to choose α and β , and what difference does it make?

Placenta Previa: Beta priors and posteriors

