Mass Spectrometry Analysis of Proteins Using Electron Transfer Dissociation

Statistical Model

Mateusz Łącki

Uniwersytet Warszawski

17 October 2013

Data from a Mass Spectrometer for a given substance.

Project massTodon: Debriefing

- Mass Spectrometer
 - Evaluation of chemical composition of molecules
 - Measurements

$$\star \left\{ \frac{\text{Mass}_j}{\text{Charge}_j}, \text{Intensity}_j \right\}_j^J$$

- We use MS/MS instrument
 - Coupling two mass specs
 - Filtering specific mass to charge
 - Use of the ETD instrument
- Why all that?
 - Study structure of peptides by inducing cleavages

3 / 31

Inducing Cleavages

4 / 31

Today's Agenda

- What is our motivation?
- Statistical Modelling
- Fitting Procedures
- What remains to be done?

Multinomial Model

- What is being explained?
 - Distributions of masses
 - Deviations from monoisotopic peaks

Multinomial Model

- Modelling isotope distributions
 - $\mathcal{P}(^{16}O) = 99.757$
 - $\mathcal{P}(^{17}O) = 0.038$
 - $\mathcal{P}(^{18}\text{O}) = 0.205$
- Molecule = $C_c H_h O_o N_n S_s$
- Assumptions
 - Isotope variant of a single atom from $C_cH_hO_oN_nS_s$ (e.g. C) independent of isotope variants of other atoms
 - i.e. for a molecule with 2 atoms

$$\mathcal{P}(^{13}C^{17}O) = \mathcal{P}(^{13}C) \times \mathcal{P}(^{17}O)$$

• We cannot discern among isomers

$$^{13}C^{17}O^{17}O \simeq ^{17}O^{13}C^{17}O \simeq ^{17}O^{17}O^{13}C$$

Multinomial Model

• Chemical compound = list of sets of atoms

$$\begin{split} \mathcal{P}(\underbrace{c_{12}^{\ 12}C,\,c_{13}^{\ 13}C}_{c_{12}+c_{13}=c},\underbrace{\underbrace{h_{_{1}}^{\ 1}H,\,h_{_{2}}^{\ 2}H}_{h_{_{1}}+h_{_{2}}=h}},\,\ldots,\,s_{36}^{\ 36}S) = \\ \binom{c}{c_{_{12}},c_{_{13}}} \mathcal{P}(^{^{12}}C)^{c_{_{12}}}\mathcal{P}(^{^{13}}C)^{c_{_{13}}}\binom{h}{h_{_{1}},h_{_{2}}} \mathcal{P}(^{^{1}}H)^{h_{_{1}}}\mathcal{P}(^{^{2}}H)^{h_{_{2}}}\ldots \end{split}$$

Multinomial Model and Molecular Mass

- Atomic mass m of a molecule $R = (c_{12}, c_{13}, \dots s_{36})$
 - $\star m_R = c_{12} m_{12} C + \cdots + s_{36} m_{36} S$
 - $\star \mathcal{P}(m_R = m) = \sum \mathcal{P}(c_{12}^{12}C, \dots, c_{36}^{36}S)$
 - s.t. $m_R = c_{12} m_{12} + \cdots + s_{36} m_{36}$
 - :) Good news: theory operates on chemical formulas
 - No need to solve these equations!
 - given a formula F, we derive it's mass probability function, $p_F(m)$.
 - :(Bad news
 - The number of peaks grow's quite big this way
- Cool thing
 - Masses of neutrons for different elements are not equal!
 - Modern mass specs can already discern them
- ★ Neglecting that phenomenon gives rise to BRAIN algorithm

Visualising Multinomial Model

- BRAIN software Piotr Dittwald®
- Assumption:
 - * All neutrons have equal masses and cannot be discerned.

- Alas! Real spectra are multimodial!
 - fragmentation? (ETD)
 - charge reductions? (ETD, ETnoD, PTR)

10 / 31

Mass Spec results for substance P

Polymer as a sequence of Amino Acids

• Extra structure in our model must be added

$$C_cH_hO_oN_nS_s = A_1A_2...A_k$$

 $A_i \in \{$ Alanine, Cysteine, Aspartic Acid, Glutamic Acid, ... $\}$

Matteo (UW) ETD 17 October 2013 12 / 31

Molecule Subdivided into Amino Acids

Electron Transfer Disociation

• Result: random cleavage of the peptide in two subsequences

$$A_1 A_2 \dots A_k \to \underbrace{A_1 \dots A_L}_{C \text{ fragment}} \oplus \underbrace{A_{L+1} \dots A_k}_{Z \text{ fragment}}$$

- *L* = index of the cleaved peptide bond (N-terminus to C-terminus)
- Assumption
 - Cleavage independent of isotope composition

$$\mathcal{P}(A_1 \dots A_L = a_1 \dots a_L | L = I) =$$

$$\mathcal{P}(A_1 \dots A_I = a_1 \dots a_I)$$

- Minor complication
 - Cleavage solely on A₁

Reactions considered by Frederik, our fellow chemist

Hypothesis:

- ★ Empirical spectrum = Result of Several Reactions
- ETD

$$[M+nH]^{n+} + A^{--} \longrightarrow [C+xH]^{x+} + [Z+(n-x)H]^{(n-x-1)} + A$$

PTR

$$[M+nH]^{n+} + A^{--} \longrightarrow [M+(n-1)H]^{(n-1)+} + AH$$

• ETnoD

$$[M+nH]^{n+} + A^{-} \longrightarrow [M+nH]^{(n-1)+} + A$$

- Not good description of rules
 - e.g. Concatenating reactions: $ETD \rightarrow PTR \rightarrow PTR \rightarrow ETnoD$

Correct Rules

- Additional Description of $C_cH_hO_oN_nS_s$ (p, q)
 - p protonisation
 - n° of extra protons
 - charge state of a given molecule
 - adds weight to molecule
 - \bullet q neutralised protonisation
 - n° of extra protons paired with electrons
 - only adds weight
- Problem Input $(A_1 A_2 \dots A_k, p, q)$

Reactions revised: post-doc in accountancy

- Problem Input $(A_1A_2...A_k, p, q)$
- Some Partial Reactions
 - 🚣 ETD

$$\rightarrow (A_1 \dots A_L, p_1, q_1)$$

$$\rightarrow (A_{L+1} \dots A_k, p_2, q_2)$$

s.t.
$$p_1 + p_2 = p - 1$$
 and $q_1 + q_2 = q$ and $q_2 \ge 0$

♦ PTR

$$\rightarrow (A_1 \dots A_k, p-1, q)$$

♡ ETnoD

$$\rightarrow (A_1 \dots A_k, p-1, q+1)$$

♠ HTR

$$\rightarrow (A_1 \dots A_l, p_1, q_1)$$

$$\rightarrow (A_{L+1} \dots A_k, p_2, q_2)$$

s.t.
$$p_1 + p_2 = p$$
 and $q_1 + q_2 = q + 1$ and $q_2 \ge 1$

Algorithm?

- Inputs:
 - $S = [M = A_1 \dots A_k, p = \text{Maximal Charge}, q = 0]$
 - Partial Reactions =

$$= \{\mathfrak{Id}, \clubsuit^{\mathsf{C}}_{\mathsf{L},p_1,q_1}, \clubsuit^{\mathsf{Z}}_{\mathsf{L},p_2,q_2}, \diamondsuit, \heartsuit, \spadesuit^{\mathsf{C}}_{\mathsf{L},\tilde{p}_1,\tilde{q}_1}, \spadesuit^{\mathsf{Z}}_{\mathsf{L},\tilde{p}_2,\tilde{q}_2}\}$$

• Reactions =

=
$$\{r_1 r_2 \dots r_k : r_i \text{ is a Partial Reactions and is OK}\}$$

- e.g. $\clubsuit_{L,2,1}^{\mathcal{C}} \heartsuit$, $\heartsuit \diamondsuit$ might be valid reactions if
 - S has enough charges
 - *M* long enough
 - \bullet there were q reactions before ET resulting in proton neutralisation
 - Empirical Spectrum, $y = \left\{ \left(\frac{m_j}{z_j}, I_j \right) \right\}_{j=1}^J$

18 / 31

Deriving many probability functions

- Observations:
 - Each reaction is also a triplet R = [F, p, q]
 - $F \sim$ Multinomial Distribution
 - m_F corresponding mass distribution

$$\mathcal{P}\left(\frac{m_R}{z_R}\right) = \mathcal{P}\left(\frac{m_F + p + q}{p}\right) = p_F(m_F)$$

Some reactions give the same results

$$\Diamond \Diamond = \Diamond \Diamond$$

- The problem is static: we do not model time explicitly.
- Discernible Reactions ⊂ Reactions
- Reactions := Equivalence Classes within Reactions

Precising Hypothesis

• Empirical Spectrum, $y = \left\{ \left(\frac{m_j}{z_j}, I_j \right) \right\}_{j=1}^J$

Hypothesis

- * $I_j = \sum_{R \in \text{Reactions}} \alpha_R \mathcal{P}(\frac{m_R}{z_R}) + \text{Error}$
- s.t. $\alpha_R \ge 0$, $\sum_R \alpha_R \le 1$
- Problem: need software that
 - finds Reactions
 - estimates α_R so that error is smallest possible

massTodon

- The prototype of the software already exists
- Codename MASSTODON
- Stupid fitting procedure: does not use BRAIN

Kernelisation

- Consider a function

$$y(z) = \sum_{j=1}^{J} I_j \times y_j(z)$$

s.t.
$$y_j(z) = \frac{1}{\sqrt{\pi\sigma^2}} e^{-\frac{(z-\mu)^2}{\sigma^2}}$$

 $\mu = \frac{m_j}{z_j}$

Gaussian Approximation to Multinomial Model

Human Dynein: $C_{23832}H_{37816}N_{6528}O_{7031}S_{170}$

Gaussian Approximation to Multinomial Model

- Theoretical Spectra: $\left\{f_R(z)\right\}_{R \in \text{Reactions}}$
- Empirical Spectrum: y(z)
- Linear model:

$$y(z) = \sum_{R} \alpha_{R} f_{R}(z) + \epsilon(z)$$

• Usual least squares humbug

$$||\epsilon||^2 = \left|\left|y - \sum_{R} \alpha_R f_k\right|\right|^2 \to \min$$

s.t.
$$\alpha_R \ge 0$$

s.t. $\sum_R \alpha_R \le 1$
where $||y||^2 = \langle y|y \rangle = \int_{\mathbb{R}} y(x)^2 \mathrm{d} x$.

Gaussian Approximation to Multinomial Model

$$\left|\left|y - \sum_{R} \alpha_{R} f_{k}\right|\right|^{2} = ||y||^{2} - 2\alpha^{t} \mathfrak{m} + \alpha^{t} \mathfrak{H} \alpha$$

where
$$\mathfrak{m}^{t} = [\ldots, \langle y | f_{R} \rangle, \ldots]$$

and $\mathfrak{H} = [\langle f_{R} | f_{P} \rangle]_{R,P \in \text{Reactions}}$

• Easy to evaluate scalar product

$$m(z) = \frac{1}{\sqrt{\pi \sigma^2}} e^{-\frac{(z-\mu)^2}{\sigma^2}} \text{ and } n(z) = \frac{1}{\sqrt{\pi \eta^2}} e^{\frac{(z-\eta)^2}{\nu^2}}$$

$$\langle m|n\rangle = \int_{\mathbb{R}} m(z)n(z)dz = \frac{1}{\sqrt{\pi(\sigma^2 + \nu^2)}} e^{-\frac{(\mu - \eta)^2}{\sigma^2 + \nu^2}}$$

- This problem is numerically very nice
 - The Gramm Matrix is diagonally dominant, well conditioned.

Theoretically Explained Spectrum

Whole lotta of things to do

- Algorithmically
 - Optimise generation of Reactions:
 - $\heartsuit \diamondsuit = \diamondsuit \heartsuit$
 - Calibrate fitting procedures:
 - stick spectra more jazzy among chemists
 - no-one uses gaussian approximations
 - Derive quick procedures for stick spectra generation: modify BRAIN.
- Experimentally
 - More substances to analyze
 - Mixtures of substances
- Pragmatically
 - What if the substance is not known?

massTodon potential

- Understanding ETD statics
- Next step : understand dynamics
- Quantitative approach : potential characterisation of peptides through the use of MASS SPEC.
 - But not certain yet how to do it yet

Igor Kaltashov, Stephen J. Eyles Mass Spectrometry in Biophysics: Conformation and Dynamics of Biomolecules. Wiley-Interscience, 2005.

Matteo (UW) ETD 17 October 2013 31 / 31