〈 과제별 참고 자료〉

CJ대한통운 미래기술챌린지 2023

CJ대한통운 TES물류기술연구소와 함께할 인재를 찾습니다.

Technology Engineering System & Solution

TES물류기술연구소

과제설명 (1/2)

■ 현재 운행 중인 차량들을 활용하여 실시간 주문에 대응하는 ROUTING 모델 개발

과제 내용	 운행 중인 차량들에 그룹화된 실시간 주문을 연속적으로 할당하기 위한 알고리즘을 개발함 알고리즘은 주어진 제약조건을 고려하여 배송 주문을 차량에 배정하고 새로운 경로를 산출해야 함 과제는 7일 기간을 범위로 하며, 주문은 6시간 간격의 묶음 형태로 24회 분량이 (1일 4회) 제공되며, 마지막 날은 남은 물량 처리를 위해 주문이 발생하지 않음 총 차량 운영비용을 최소화하는 경로 설정 및 주문 할당 결과를 도출해내는 것을 목표로 함
제공 데이터	 차량 데이터: 차량번호, 최대 적재량, 출발 터미널 ID, 차량 고정비, 단위 거리당 운송비 주문 데이터: 주문번호, 상차 터미널 ID, 착지ID, CBM, 하차 가능시간 터미널 데이터: 터미널 ID, 상차 가능 시간 경로 산출을 위한 착지 및 터미널 간의 Origin-Destination matrix
제출 데이터	 알고리즘 설명자료(알고리즘 구조, 구동환경 정보 필수) 알고리즘 코드 (부정행위 검출용) 결과 파일: 주문 처리 결과, 차량 배차 결과 (아웃풋 포맷 준수)
개발 환경	ㅇ 윈도우 환경 권장 ㅇ 개발 언어 제약 없음
제약 사항	 최적화 라이브러리 사용 금지 (라우팅, 물량배정 등) 주어진 기간 내에 주어진 차량들만을 사용하여 모든 주문을 배송 완료하여야 함 모든 차량은 차량의 최대 CBM을 초과하여 적재할 수 없다 모든 차량의 이동은 노드 간 이동만 가능하다. 도착지 이동 중 다른 도착지 및 터미널로 경로를 변경할 수 없다. 주문 배치를 통합해서 한번에 처리하는 것은 금지됨: 미처리 물량의 잔류는 허용하나 발생시각기준 72시간내 처리되어야 함
평가 요소	 총 운영비용 최소화: 차량별 고정비 및 단위거리당 운송비를 합하여 계산 (고정비 + 단위거리운송비*운행거리) 모델 제약사항 준수 여부 최적화 알고리즘 구동: 제공된 샘플 데이터를 입력했을 시 정해진 아웃풋 포맷에 맞춘 결과를 반환해야 함 현장 경연: 동일한 포맷의 새로운 주문, 차량, 착지, 터미널, OD matrix 가 제공되며 2시간 내에 결과를 제출해야 함

과제설명 (2/2)

■ 총 4개의 데이터를 사전 제공하여 5개의 팀을 선출 후 현장에서 예선(COMPETITION) 진행

심사방식/진행 방법

공통 심사기준

- ① 총 운영비용 (차량 거리비례 운영비용) 최소화
- ② 부정행위 여부

사전 심사방식

- ① 결과 테이블 및 소스코드 사전 제출
- ② 담당자 자체 샘플 데이터로 구동 및 부정행위 여부 점검
- ③ 2번 여부에 따라 피드백 및 디버깅 기간 추가 제공
- ④ 마감 기한 내 정상적으로 구동 파일을 제출한 5팀 예선 자격 부여

예선(Competition) 진행 방법

- ① 참가자들에게 3일 분량 (12 배치)의 동일 포맷 주문 데이터를 제공
- ② 참가자들은 12개의 배차 결과 파일을 2시간 내에 제출하여야 함
- ③ 담당자는 총 운영비용이 가장 적은 팀을 선출

센터/착지 참고지도

