Washing of	1/27/03
	ok, let's continue with our study of the exponsions
	$1 + 2 \text{ and } \leq 2$
	· Actually, we want the exponsion of In Z and not Z, since it is In Z that is proportional
	to the thermodynamic functions of interest.
	to find lot or lotzo in perturbation Reary, we just do the Taylor series expansion:
	$\ln \frac{2}{5} = \ln \left[1 - \frac{32}{40^2} + \frac{105}{39} \frac{2}{04} + 0 \left(\frac{3}{3} \right) \right]$
	$= -\frac{3\lambda}{4\alpha^2} + \frac{3\lambda^2}{64} + \dots$
	one and -32 appearing twice.
	There are two parts here at O(2): The 35 of appearing once and -325 appearing twice. The go back to our diagrams, we find that
	In = 00 +00000 + 0 +000 - 00000
	$=00+(0)+0000+0(\lambda^{3})$
	and the "disconnected" ports cancels out when we take
,	the logarithm!
	. This is not really convincing not because we
	about know that the factors multiplying the cancelling
· <u>-</u>	terms are really the same
	But we can prove the result in general (which is called the "linked cluster theorem") using a very elegent technique called the "replica method."
	technique called the "replica method."

1/27/03 Replica method: Consider in copies of the integral and the product (3)=2". We rewrite 2" in a form that we can use in perturbation theory in n: Zn = eln? = enh? = 1+ n(h2) + \$n(h2)2+ ... So we can find In ? if we can calculate ?" and pick of the linear term in n! But what is En? Just a copies of Z. Will add the sources as well: Zn = (Sax, e sax + x, + j, x,) (Sax = 1/2 ax = 1/2 x + j x 2) ... (Sax -) = (dx, ..dx, = \$ = a; x; 2 - 1; = x); x; + =); x; · We've added indices to a ch & exer though all of the a; are the same and all of the 1; are the same. - Perturbation teary is durind as before ! use of to remove As interaction terms from all of the integrals. - each vertex has the same index i for all lines coming out of it, so the airs have the same i vertex at each

· We sum over i from 1 to 1.

To any connected diagram or all of it's lines and vertices only are i at a time > Factor of n from the sum. · So disconnected diagrams get in from each pièce.

The terms linear in n, which In Z are precisely those that are connected. In Z-ln Zo 15 The sum of connected diagrams

1/27/03
Now For the 627 evaluation, We'll use the replica
and an one of the other
Note: We can also carry out tese proofs directly, but they are not nearly as elegant? See the references for alternative proofs.]
but They are not nearly as elegant .
Ise the reterences for alternative proofs.
- Me'll make n copies as before but define Rn to here
· We'll make n capies as before but define Rn to have only x2 in the integral besides the e-ax2/2-x4x2+1x; factors.
$\Rightarrow R_0 = \frac{1}{2^n} \left(dx_1 \cdots dx_n \times_1^2 e^{-\frac{1}{2} \xi a_i \times_1^2 + \frac{1}{2} \lambda_i \times_1^4} \right)$
= (\frac{1}{2} \int \lambda x, \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \int \frac{1}{2} \cdot \f
- (20 Jax, x, e / Z0 Jax e)
so Ro is what he want with the 2rd part giving the denomination, => calculate Rn and continue to n=0.
so ho is what he want with the a part giving the advantitation,
-> Calculate in and companie to 11-0.
TF we and exact R metuchatiely be introducion i and
The now expand Ra porturbatively the introducing is and so on), then all indices on the part of any diagram that is connected to the X2 must also be 1's. In summation on the X2 part and summations on all disconnected parts.
Plat is connected to the X2 must also be 1's.
=> no summation on the x2 part and summations on
all disconnected parts.
i. The n=0 port, which is <x2? 1.="" all="" at="" can="" connected="" disciprains.="" drop="" is="" obviously="" of="" point="" qed.<="" simply="" sum="" td="" that="" the="" we=""></x2?>
& all connected diversions.
·Obviously at Plat point we can drop the 1. QED.
· Note that nothing in the argument depended on the operator averaged being x2 > <0> for any operator 0 is given by the sum of connected diagrams.
averaged being x2 >> <0> for any operator 0 is given
by the sum of connected diagrams

.....

1/27/03 Time to talk about symmetry factors ...

The not from the Taylor series exponsion of the exponentials almost always concels the n! ways of intercharging the vertices. The factor of 4! from (\$) " is taken into account in the Feynman rule of 4!!

The symmetry factor is the left-over correction to these cancellations.

· There are three types of Pactors for our diagrams:

DFactor of & from each line that starts and ends on the same vertex.

· This goes away for lines with an arrow, · Will write these factors as fractions, but you'll

off see them collected first as a factor S and

then 2/5 applied to the diagram.

You can derive this factor by comparing X to R

(8) 4 (1) (6) 4 (6) = -6) = -6) = 1 factor

 $(8)^{2} \frac{\lambda}{3!} (8)^{4} \frac{1}{3!} (1)^{3} (10^{1})^{3} = -3\lambda$

D Factor of ni for each set of n "equivalent lines",
which are lines that run (in the same direction, if arrows)
between two different vertices.

21 93!

3 Factor of 1/p for permutations P of the vertices
that leave the diagram unchanged. (including any acrows).
external points stay fixed when considering permutations.

	1/57/03 Let's go through the (x2) term at O(x2): (x2) =
	(1+00+88+0+000+)
·	$= - + 0 + 8 + 00 + 0(1^{3})$ $= \frac{1}{2} from (1)$
	so once again the disconnected pieces cancel when we account for the denominator.
	· Now Let's go ahead and try the symmetry factors:
	3) equivalent lines: (3) vertex permutations:
	D lines to some vertex; O equivalent lines;
	3 vertex permutations!
	1) lines to same vertex!
	Dequivalent lines:
	3 vertex permutations!

1127/03 If the lines have acrows on tem, then the symmetry factors are: Of this is always I Only equivalent lines in the same direction The permutations can't mess up the direction of the lines of the lines
But we comb OOD as & under @ still,
Now if the potential is not contracted to a point: A) - for example, teeping track of spin, The we lose (2) entirely > only (3). To this case, we wouldn't pick up the 4! factor For the victex For repoint functions, the remaining symmetry Factor contribution is at most 12 and for many cose fore are no symmetry factors.

OK, let's continue to explore the "Faynman rules" for our simple model a bit...

The Engineer rule for the "quadratic part" of the action, which is the part with at, came from considering the "two-point" function (x.x). Ithis is just (x) here, but we write it this way it articipation of having a(x(t)) (xto)) or (T[+(xt))) 4t(xto)) with operators at different times or different places and times.]

The leading contribution to (x), of order (x), was a when we include a to in the original "action": e-tax?

"If we had written e-ax? instead, we obviously would get a, so it's convenient (although nover recessory) to could the constants in the action in such a way as to eliminate inconvenient represent factors.

We can do an analogous analysis for any vertex, such as arises for EAXT or e-EX or whatever.

The vertices are different from the propagator (the quadratic part) since the propagator is found by actually solving the quadratic part (or, rather, by computing the exponent outside the integral, replacing X by of.

Consider the leading n-point vertex by looking at the leading (in look) contributions to the report function

XXY for E-XXT

· (note: Thre will be I and & contributions!)

and so on

1/27/03

E HE, 1, 6/2/2, 1 = 0

· To do (xb) in the trang with = 8x4!, just multiply = \$x66!
with the = 92x2 +xx part (so the action" is now \$x2+4x4+8x4) and how (3) in the numerator

- The bealing-contributions to CX+7 are:

ラ Cxり = (まままま)(1-女(ま)は、、)[1+対(で))+女(で))+女(で)) +女(で)) +女(で)

[1- 年度] +...] (1+年(10))+成(5)2+...] 13=0

1-45,441,00

= (毒一部)(小静)= 高一點

what is this in our diagrammatic expansion?
You should imagine the XH is represented by 4 fixed
points: to which we can join propagators — > a

and vertices • > 2.4!

 $(x^{47} = (11 + 2 + 2) + (x + b + 2 + 1) (\infty + 1)$ (1+00+...)

So look at (x")-(x2)2 to subtract off the type pieces.

1/27/03
When the dust settles, <x4> - <x2><x2> is given by the set of totally connected diagrams,</x2></x2></x4>
by the set of totally connected diagrams,
What next?
· When we go to path integral representations of boson and fermion portition functions, everything
boson and termion partition functions, everything
goes Though enalogously.
- We'll have formulas for Gaussian integrals that
goes Through analogously. We'll have formulas For Goussian integrals that are more complicated, but most of the rest goes
through the same way.
· Lines will generally have arrows => Slightly
Through the same way. • Lines will generally have arrows => slightly modified symmetry factors.
· Now we can think of portial summations.
Examples:
D For ln 3/20, sum OO+ O+ O+ O+ O+ O+ which picks out one term to each order.
7.40.7 10.0001 04.001
(2) For (x27, consider - + 0 + 00+.
DFor (x2), consider + _ Q _ + _ Q _ + If we designate the sum with a double line; ,
Ren
== = -+ -> = =
· Ite is meaning by iterating the equation:
<i>d</i> th :
1
34; = = + + + + + + + + + + + + + + + + +
and so on. More general; == -+
$= - + Q + QQ + B + \dots$
(IPI) One generally, pick out the "one particle irreducible" (IPI)
preces: does the diagram tall apart when you cut a line.
more generally, pick out the "one porticle irreducible" (IPI) preces: does the diagram fall apart when you cut a line? Later: Sum these with Dyson's equation.
