Note on a Simple Timing Invariant in CMS LLP Searches

September 11, 2025

Dear CMS Exotica Group,

This short note highlights a model-agnostic timing pattern for long-lived particles (LLPs). Consider the linear combination

$$X \equiv t - \alpha d_0$$

where t is the reconstructed time-of-arrival (e.g., ECAL timing) and d_0 is the transverse impact parameter of the associated track or displaced vertex proxy. The empirical claim is:

Var(X) is minimized at the same α^* across different LLP topologies.

How it can be tested with CMS Run-3 data

- Samples: use existing LLP-enriched selections (EXO/LLP triggers or displaced-track/vertex categories) in Run-3.
- Reconstruction: per-candidate t from ECAL time-of-arrival (after standard timing calibrations and path-length/TOF corrections); d_0 from tracker track or displaced-vertex fit (choose a consistent proxy when no single track is available).
- Binning: split by topology (displaced leptons, displaced jets, delayed photons, etc.) and by kinematics (p_T, η) to control trivial kinematic effects.
- Fit: for each bin, scan α and find the α^* minimizing $Var(t \alpha d_0)$; propagate uncertainties with bootstrapping and include timing/tracking systematics.
- Universality check: test whether α^* is consistent across LLP classes and bins; compare to control regions dominated by SM backgrounds (cosmics, beam-halo, out-of-time pileup).
- Robustness: repeat with alternative t definitions (cluster time vs. seed time) and with per-candidate β corrections (when available) to verify stability.

Why this may be important

- Model-agnostic discriminant: a common α^* provides a simple observable for LLP selections, potentially improving S/B without assuming a specific LLP model.
- Systematics cross-check: universality of α^* across categories is a nontrivial coherence pattern; its absence in background regions helps validate timing/tracking systematics.
- Search reach: if confirmed, $X = t \alpha^* d_0$ can be added to multivariate LLP taggers as a physically interpretable feature.

Sincerely,
Evgeny Monakhov
Independent Researcher
VOSCOM ONLINE
evgeny.monakhov@voscom.online