Leveraging Intrinsic Task Modularity for Multilingual Machine Translation

SHAOMU TAN

Multilingual Neural Machine Translation (MNMT)

- -> Training a unified model on a mixed dataset from multiple languages.
- -> Efficient: One model for many languages.

facilitates Knowledge Transfer

facilitates Knowledge Transfer

Knowledge transfer benefits low-resource languages

facilitates Knowledge Transfer

Knowledge transfer benefits low-resource languages

e.g.:

Bilingual (100k En-Lb) -> Multilingual (+ 10M En-Germanic)

Multilingual Machine Translation facilitates Knowledge Transfer

Shared Vocabulary

Uni-versi-ty

حامعة

Uni-versi-teit

אוניברסיטה

Uni-versi-tät

大學

университет

Uni-versi-té

大学

Grande école

대-학교

Knowledge transfer in vocabulary

is not a free lunch

Joint Multilingual Training brings Synergy but also Interference (negative transfer)

is not a free lunch

Interference

compromises performance (for high-resource languages)

Data-size (High -> Low)

60

why Interference?

Interference

rooted in **Conflicting** optimization demands of various tasks

why Interference?

Interference

rooted in **Conflicting** optimization demands of various tasks

Gradient Conflicts

Wang, Qian, and Jiajun Zhang. "Parameter differentiation based multilingual neural machine translation."

why Interference?

Interference

can be seen as a capacity issue.

Bilingual -> Multilingual:

Model Capacity for each Language-Pair decreased when remaining the same model size.

Recent work in Reducing Interference

Modular Deep Learning - to introduce Langauge Specificity

Modular Deep Learning - Adapters

Language Pair Adapters: insert adapters conditioned on language pairs to add language-specific capacities.

Bapna, Ankur, and Orhan Firat. "Simple, Scalable Adaptation for Neural Machine Translation."

Limitations - Modular Deep Learning

Adapters, Language-Specific Modules, are Language-Dependent that operates in isolation

Such Design fundamentally dis-encourages cross-lingual Transfer especially for low-resource languages

Limitations - Modular Deep Learning

Trade-Off: Efficiency & Performance

- a. increase substantial parameters when many languages are involved
- b. memory¹ and latency² issue

Liao, Baohao, Shaomu Tan, and Christof Monz. "Make your pre-trained model reversible: From parameter to memory efficient fine-tuning."

Liao, Baohao, Yan Meng, and Christof Monz. "Parameter-efficient fine-tuning without introducing new latency."

Leveraging Priori Linguistic Knowledge

Language cluster Training¹: Train one multilingual model for one language cluster.

(1) Tan, Xu, et al. "Multilingual neural machine translation with language clustering." (2) Chronopoulou, et al "Language-family adapters for low-resource multilingual neural machine translation."

Limitations - Leveraging Priori Linguistic Knowledge

- a. Heavily rely on priori knowledge, e.g.: linguistic knowledge.
- b. lack clear inductive bias, thus heavy reliance on heuristics.
- c. show strong effects for low-resource languages, less or no effects on high-resource ones.

Exploring the Intrinsic Modularity

in Multi-task Networks

Intrinsic Modularity in Multi-task Vision Networks

Example face-ranked filters

Multi-task training develops task-specific functional specialization:

Multi-task networks form Task-Specific Sub-networks: face-filters & object-filters

Dobs, Katharina, et al. "Brain-like functional specialization emerges spontaneously in deep neural networks." Science advances

Conv5

Conv9

Conv13

Locating Intrinsic Modularity in MNMT Models

Prior Studies attempt to identify Task-Specific Sub-networks inside trained Multi-task Models

Locating Intrinsic Modularity in MNMT Models

Prior Studies attempt to identify Task-Specific **Sub-networks** inside trained Multi-task Models

Fine-tuning tasks to see what parameters changed the most 1,2,3

Lin, Zehui, et al. "Learning language specific sub-network for multilingual machine translation."

He, Dan, et al. "Gradient-based Gradual Pruning for Language-Specific Multilingual Neural Machine Translation."

Choenni, Rochelle, et al. "Cross-Lingual Transfer with Language-Specific Subnetworks for Low-Resource Dependency Parsing."

Locating Intrinsic Modularity

in MNMT Models

LaSS: Fine-tuning the pre-trained multi-task model on each task to see what parameters changed the most¹

Pre-trained Multilingual MT Model $heta_0$

 $\theta_{en-ar} - \theta_0$: then select top 30% changed parameters for en-de

¹⁾ Lin, Zehui, et al. "Learning language specific sub-network for multilingual machine translation."

Locating Intrinsic Modularity requires Network Modifications

Fine-tuning approaches (LaSS) raise a question:

whether the modularity (Subnets) is inherent to the original model, or simply an artifact introduced by network modifications?

Modularity in Finetuned Model reflect that in pre-trained model?

Does Intrinsic Modularity even exist?

Analyzing task Modularity in Multi-task models

25

Neuron Structural Analysis - Method

We focus on Neurons: intermediate activations inside the feed-forward (FFN) blocks

26

Neuron Structural Analysis - Method

Neuron Structural Analysis - Method

Intuition: Are neurons task-specific?

Neuron Structural Analysis - Method

Activation Recording: Feed some sentences to observe which neurons are active / inactive

Neuron Structural Analysis - Method

Activation Recording: Feed some sentences to observe which neurons are active / inactive

Neuron Structural Analysis - Method

Neuron Activation Frequency

Neuron Structural Analysis - Method

Neuron Activation Frequency

How should we select Specialized Neurons for each language pair?

Neuron Structural Analysis - Method

Specialized Neuron Selection

$$\sum_{n \in S_k^{s \to t}} a_n^{s \to t} \ge k * \sum_{n=1}^{d_{ff}} a_n^{s \to t},$$

We dynamically select neurons based on a cumulative activation threshold $k \in [0,1]$.

33

Neuron Structural Analysis - Analysis

$$m_{s \to t}^{l=1} \in \mathbb{R}^{d_{ff}}$$

Neuron Structural Analysis - Analysis

Whether similar languages share Similar Specialized Neurons?

$$m_{s \to t}^{l=1} \in \mathbb{R}^{d_{ff}}$$

Neuron Structural Analysis - Analysis

We use Intersection Over Union (IoU) to measure the similarity between two specialized neuron sets.

36

Neuron Structural Analysis - Observations

Specialized Neuron that extracted from En->X in first Decoder layer.

Neuron Structural Analysis - Observations

Neuron Structural Analysis - Findings

decoder.layers.0.fc1.weight

Neuron Structural Analysis - Observations

Neuron overlap progresses across layers

Encoder: specific neurons -> agnostic neurons

Decoder: agnostic neurons -> specific neurons

Similar to prior MNMT representation study¹

1) Kudugunta, Sneha Reddy, et al. "Investigating multilingual NMT representations at scale."

Neuron Specialization Training:

Leveraging specialized neurons to modularize FFN layers in a task-specific manner.

Shaomu Tan

Method

We use identified Neurons to modularize FC1 weights via sparse networks for continual training

Method

We use identified Neurons to modularize FC1 weights via sparse networks for continual training

$$M_{en->de} \in \{0,1\}$$

Method

We use identified Neurons to modularize FC1 weights via sparse networks for continual training

Method

We use identified Neurons to modularize FC1 weights via sparse networks for continual training

Method

We use identified Neurons to modularize FC1 weights via sparse networks for continual training

$$FFN(H) = ReLU(HW_1) W_2.$$

$$FFN(H) = ReLU(H(m_k^t \odot W_1))W_2.$$

N_{2}	$I_{en->}$	$de \in$	{0,1}
	1	0	1

Method

No extra parameters are introduced!

Results - EC30

Consistent performance gains - on all directions

Methods	$\mid \;\;_{\Delta heta} \mid$	Н	igh (5M	.)	N	Ied (1M)	Lo	w (100I	K)	A	ll (61M)
1,10011000		O2M	M2O	Avg	O2M	M2O	Avg	O2M	M2O	Avg	O2M	M2O	Avg
mT-big	_	28.1	31.6	29.9	29.7	31.6	30.6	18.9	26.0	22.4	25.5	29.7	27.7
Fine-Tune	0%	+0.3	+0.2	+0.3	+0.3	+0.2	+0.3	+0.1	-0.4	-0.2	+0.2	0	+0.1
Adapter $_{Fam}$	+70%	+0.7	+0.3	+0.5	+0.7	+0.3	+0.5	+1.1	+0.5	+0.8	+0.8	+0.4	+0.6
$Adapter_{LP}$	+87%	+1.6	+0.6	+1.1	+1.6	+0.4	+1.0	+0.4	+0.4	+0.4	+1.2	+0.5	+0.8
LaSS	0%	+2.3	+0.8	+1.5	+1.7	+0.2	+1.0	-0.1	-1.8	-1.0	+1.3	-0.3	+0.5
Random	0%	+0.9	-0.5	+0.2	+0.5	-0.7	-0.2	-0.3	-1.5	-0.9	+0.5	-0.9	-0.2
Ours ^{Enc}	0%	+1.2	+1.1	+1.1	+1.0	+1.0	+1.0	+0.7	+0.8	+0.8	+1.0	+1.0	+1.0
Ours^{Dec}	0%	+1.2	+1.1	+1.1	+0.9	+1.1	+1.0	+0.7	+1.1	+0.9	+0.9	+1.1	+1.0
Ours	0%	+1.8	+1.4	+1.6	+1.4	+1.1	+1.3	+1.4	+0.9	+1.2	+1.5	+1.1	+1.3

SacreBleu Improvements over the baseline system (mT-big)

Results - EC30

Remain Efficiency - No additional parameters

Methods	$\Delta \theta$	$\Delta \theta$ High (5M)			N	Med (1M)			Low (100K)			All (61M)		
		O2M	M2O	Avg	O2M	M2O	Avg	O2M	M2O	Avg	O2M	M2O	Avg	
mT-big	-	28.1	31.6	29.9	29.7	31.6	30.6	18.9	26.0	22.4	25.5	29.7	27.7	
Fine-Tune	0%	+0.3	+0.2	+0.3	+0.3	+0.2	+0.3	+0.1	-0.4	-0.2	+0.2	0	+0.1	
Adapter _{Fam}	+70%	+0.7	+0.3	+0.5	+0.7	+0.3	+0.5	+1.1	+0.5	+0.8	+0.8	+0.4	+0.6	
Adapter $_{LP}$	+87%	+1.6	+0.6	+1.1	+1.6	+0.4	+1.0	+0.4	+0.4	+0.4	+1.2	+0.5	+0.8	
LaSS	0%	+2.3	+0.8	+1.5	+1.7	+0.2	+1.0	-0.1	-1.8	-1.0	+1.3	-0.3	+0.5	
Random	0%	+0.9	-0.5	+0.2	+0.5	-0.7	-0.2	-0.3	-1.5	-0.9	+0.5	-0.9	-0.2	
Ours ^{Enc}	0%	+1.2	+1.1	+1.1	+1.0	+1.0	+1.0	+0.7	+0.8	+0.8	+1.0	+1.0	+1.0	
Ours^{Dec}	0%	+1.2	+1.1	+1.1	+0.9	+1.1	+1.0	+0.7	+1.1	+0.9	+0.9	+1.1	+1.0	
Ours ^{Dec} Ours	0%	+1.8	+1.4	+1.6	+1.4	+1.1	+1.3	+1.4	+0.9	+1.2	+1.5	+1.1	+1.3	

SacreBleu Improvements over the baseline system (mT-big)

Results - Efficiency Comparison

Model	$\triangle \theta$	$\triangle T_{subnet}$	△ Memory
Adapter _{LP}	+87%	n/a	1.42 GB
LaSS	0%	+33 hours	9.84 GB
Ours	0%	+5 minutes	3e-3 GB

Results reported based on EC30 with 4 A6000 GPUs

Our approach is highly efficient, facilitating the adaptation to massively multilingual models.

Results - Wider and Deeper Models

Methods	S	acreBLI	EU	COMET					
		Wide	Deep	Big	Wide	Deep			
Baseline Ours	27.7 29.0	28.3 29.4	28.8 29.7	79.1 80.0	79.7 80.5	80.0 80.7			

Performance comparison between baseline models and our methods on three configurations.

The effectiveness on larger configurations.

Results - beyond ReLU

Methods	All	(61M)	
	SacreBLEU	ChrF	Comet
mT-big ^{relu}	27.7	52.2	79.1
Ours ^{relu}	29.0	53.3	80.0
mT-big ^{gelu}	27.9	52.3	79.2
Ours ^{gelu}	28.9	53.2	80.1

Performance comparison between the relu and gelu backbone models and our method.

GeLU Active Neurons: >0 Inactive Neurons: <=0

Other threshold may deliver better results -> Future work

For 870 Zero-Shot Directions, compared to the baseline system, 847 improved, 23 had minor declines.

Analysis and Discussion — How much we can alleviate interference?

Lang	De 5m	Es 5m	Cs 5m	Hi 5m	Ar 5m	Lb 100k	Ro 100k	Sr 100k	Gu 100k	Am 100k	High Avg	Low Avg		
One-to-Many														
Bilingual	36.3	24.6	28.7	43.9	23.7	5.5	16.2	17.8	12.8	4.1	31.8	11.3		
mT-big	-4.7	-1.5	-3.6	-4.4	-4.7	+9.0	+8.9	+6.2	+13.9	+3.1	-3.7	+8.2		
	Many-to-One													
Bilingual	39.1	24.5	32.6	35.5	30.8	8.7	19.5	21.3	7.0	8.7	32.7	13.0		
mT-big	-1.5	+0.9	+0.2	-1.8	-2.3	+13.7	+11.9	+10.3	+18.2	+12.5	-1.1	+13.3		

SacreBleu Improvements over bilingual systems

Evidence of Interference: worse performance on high-resource languages.

Analysis and Discussion — How much we can alleviate interference?

Lang Size	De 5m	Es 5m	Cs 5m	Hi 5m	Ar 5m	Lb 100k	Ro 100k	Sr 100k	Gu 100k	Am 100k	High Avg	Low Avg	
One-to-Many													
Bilingual	36.3	24.6	28.7	43.9	23.7	5.5	16.2	17.8	12.8	4.1	31.8	11.3	
mT-big	-4.7	-1.5	-3.6	-4.4	-4.7	+9.0	+8.9	+6.2	+13.9	+3.1	-3.7	+8.2	
Ours	-2.0	-0.2	-1.7	-2.4	-3.0	+10.8	+10.0	+8.2	+16.4	+3.7	-1.9	+9.8	
						Many-to-	One						
Bilingual	39.1	24.5	32.6	35.5	30.8	8.7	19.5	21.3	7.0	8.7	32.7	13.0	
mT-big	-1.5	+0.9	+0.2	-1.8	-2.3	+13.7	+11.9	+10.3	+18.2	+12.5	-1.1	+13.3	
Ours	-0.3	+1.7	+1.8	-0.2	-0.3	+15.3	+12.4	+11.3	+19.6	+14.1	+0.3	+14.5	

SacreBleu Improvements over bilingual systems

Our method reduces interference while further encouraging knowledge transfer!

Conclusions

Neuron Analysis

Show Intrinsic modularity in multitask models without modification.

Proposed Method

Presents Consistent Performance Gains on large-scale experiments.

Neuron Specialization

Efficiency

Introduce 0 extra

Trainable Parameters.

Understanding

fundamental properties in FFN Modules & Multi-task.

Neuron Structural Analysis - Observations

Evidence of how specialized neuron overlaps correlated with language similarity - by quantifying the correlation between neuron overlaps and linguistic distances.