1. Proszę w załączonym do laboratorium kodzie napisać funkcję realizującą dodawanie oraz mnożenie macierzy. Po krótce opisać obie metody.

```
// Addition of two matrices
template<typename T>
AGHMatrix<T> AGHMatrix<T>::operator+(const AGHMatrix<T>& rhs)
{
    if ((get_cols() != rhs.cols) || (get_rows() != rhs.rows))
    {
        throw exceptions::MismatchedMatricesException();
    }
AGHMatrix<T> result(*this);
for (int i = 0; i < get_rows(); i++)
    {
        for (int j = 0; j < get_cols(); j++){
            result.matrix[i][j] = matrix[i][j] + rhs.matrix[i][j];
        }
    }
    return(result);
}</pre>
```

```
// Left multiplication of this matrix and another
template<typename T>
AGHMatrix<T> AGHMatrix<T>::operator*(const AGHMatrix<T>& rhs)
{
    // the number of columns in the first matrix needs to be equal to the number of rows
in the second one
    if ((get_cols() != rhs.rows))
    {
        throw exceptions::MismatchedMatricesException();
    }
    // the resulting matrix has the same number of rows as the first one and the same
number of columns as the second one
    AGHMatrix<T> result(get_rows(), rhs.cols, 0);
```

```
for (int i = 0; i < get_rows(); i++)
{
    for (int j = 0; j < rhs.cols; j++)
    {
        for (int k = 0; k < get_cols(); k++)
        {
            result.matrix[i][j] += matrix[i][k] * rhs.matrix[k][j];
        }
    }
    return(result);
}</pre>
```

Suma macierzy $A_{N\times M}$ i $B_{N\times M}$ to macierz $C_{N\times M}$, której elementy mają następującą postać:

$$\forall \ i \in [1, \, N] \ \forall \, j \in [1, \, M] : \, c_{ij} = a_{ij} + b_{ij} \,,$$

gdzie x_{ij} oznacza i -ty wiersz i j -tą kolumnę macierzy X .

Wynik mnożenia macierzy $A_{N\times K}$ i $B_{K\times M}$ to macierz $C_{N\times M}$, której elementy mają następującą postać:

$$\forall i \in [1, N] \ \forall j \in [1, M] : c_{ij} = \sum_{k=1}^{K} a_{ik} \times b_{kj}.$$

W implementacji warto zwrócić uwagę na to, czy wykorzystywany język programowania przechowuje tablice wielowymiarowe w pamięci w postaci *row-* czy *column-major*. W przypadku języka C/C++ jest to kolejność *row-major*, czyli wzdłuż wierszy, zatem iteracja po macierzach odbywa się w takiej właśnie kolejności, co przyspiesza działanie programu.

Przykłady działania:

➤ dodawanie macierzy:

```
Kod

void ex1_addition()
{
    AGHMatrix<double> m1(5, 5, 1.2);
    AGHMatrix<double> m2(5, 5, 2.8);
    AGHMatrix<double> m3 = m1 + m2;
    std::cout << m1 << std::endl;
}</pre>
```

> mnożenie macierzy o tych samych wymiarach:

> mnożenie macierzy o różnych wymiarach:

2. Proszę zaimplementować:

2.1. Funkcję/metodę, która sprawdzi czy macierz jest symetryczna.

Kod:

```
template<typename T>
bool AGHMatrix<T>::isSymmetric()
{
   if (get_cols() != get_rows())
   {
      return false;
   }
  for (int i = 0; i < get_rows(); i++)
   {
      for (int j = 0; j < i; j++)
      {
        if (matrix[i][j] != matrix[j][i])
        {
            return false;
      }
    }
   }
   return true;
}</pre>
```

Opis:

Macierz symetryczna to macierz $A_{N\times N}$, której elementy spełniają warunek

$$\forall \ i \in [1, \, N] \ \forall j \in [1, \, N] \ : \ a_{ij} = a_{ji} \, .$$

W powyższej implementacji w iteracjach pomijane są elementy na przekątnej, a każda para indeksów sprawdzana jest tylko raz.

Przykłady działania:

matrix	matrix.isSymmetric()
13, 9, 7, 15, 8, 7, 4, 6,	false
6, 4, 0, 3,	
2, 0, 1, 2,	false
2, 1, 1, 7,	true
2, 1, 3, 13, 8, 1, 2, 7, 0, -3, 3, 7, -7, 10, 12, 13, 0, 10, 3, 19, 8, -3, 12, 19, 100,	true
2, 1, 8, 13, 8, 1, 2, 7, 0, -3, 3, 7, -7, 10, 12, 13, 0, 10, 3, 19, 8, -3, 12, 19, 100,	false
13,	true

2.2. Funkcję/metodę, która obliczy wyznacznik macierzy.

```
// Laplace expansion of the matrix along the first column
template<typename T>
T AGHMatrix<T>:::laplaceExpansion(int start_col, std::vector<int> rows)
if (start_col + 1 == get_cols() && rows.size() == 1)
  return matrix[rows[0]][start_col];
}
T det = 0;
for (int i = 0; i < rows.size(); i++)</pre>
  std::vector<int> new_rows(rows);
  new_rows.erase(std::remove(new_rows.begin(), new_rows.end(), rows[i]),
                  new_rows.end());
  det += matrix[rows[i]][start_col] * pow(-1, i + 2) *
          laplaceExpansion(start col + 1, new rows);
return det;
template<typename T>
T AGHMatrix<T>::getDeterminant()
// the matrix needs to be square
if (get_cols() != get_rows())
  throw exceptions::MatrixNotSquareException();
// to avoid having to copy matrix values we shall always use Laplace
expansion along the first column
// this way we need to remember the column we're starting from and the rows
that compose the matrix in question
std::vector<int> rows(get_rows());
std::iota(rows.begin() + 1, rows.end(), 1);
return laplaceExpansion(0, rows);
}
```

Wyznacznik macierzy $A_{N\times N}$ można obliczyć przy pomocy rozwinięcia Laplace'a. Rozwinięcie Laplace'a macierzy $A_{N\times N}$ wzdłuż kolumny j ma następujący rekurencyjny wzór:

$$det A = \begin{cases} a_{11}, & n = 1 \\ \sum_{i=1}^{N} (-1)^{i+j} a_{ij} det A_{ij}, & n > 1 \end{cases}$$

gdzie j jest dowolną liczbą z zakresu $1 \le j \le N$, a A_{ij} to macierz stopnia N-1 powstała poprzez skreślenie z macierzy A i-tego wiersza oraz j-tej kolumny. Analogicznie definiuje się rozwinięcie Laplace'a wzdłuż wiersza.

Przykłady działania:

matrix	matrix.getDeterminant()
2,	2
2, 0, 1, 2,	4
-5, 0, -1, 1, 2, -1, -3, 4, 1,	-40
0, 1, 2, 7, 1, 2, 3, 4, 5, 6, 7, 8, -1, 1, -1, 1,	-64
0, 1, 0, -2, 1, 1, 0, 3, 1, 1, 1, -1, 1, 1, 1, 2, 2, 1, 0, 1, 3, 1, 1, 1, 2,	4

2.3. (*) Metodę transpose().

Kod:

```
template<typename T>
AGHMatrix<T> AGHMatrix<T>::transpose()
{
    AGHMatrix<T> transposed(get_cols(), get_rows(), 0);
    for (int i = 0; i < get_rows(); i++)
    {
        for (int j = 0; j < get_cols(); j++)
        {
            (transposed.matrix)[j][i] = matrix[i][j];
        }
    }
    return transposed;
}</pre>
```

Opis:

Dla danej macierzy $A_{N\times M}$ jej macierz transponowana A^T to macierz $B_{M\times N}$, w której

$$\forall \ i \in [1,\,M] \ \forall \, j \in [1,\,N] \ : \ b_{ij} = a_{ji} \, .$$

Przykłady działania:

matrix	matrix.transpose()
2,	2
2, 7, 1, 2,	2, 1, 7, 2,
0, 1, 2, 7, 1, 2, 3, 4, 5, 6, 7, 8,	0, 1, 5, 1, 2, 6, 2, 3, 7, 7, 4, 8,
2, 1, 3, 13, 8, 1, 2, 7, 0, -3, 3, 7, -7, 10, 12, 13, 0, 10, 3, 19, 8, -3, 12, 19, 100,	2, 1, 3, 13, 8, 1, 2, 7, 0, -3, 3, 7, -7, 10, 12, 13, 0, 10, 3, 19, 8, -3, 12, 19, 100,

3. Proszę zaimplementować algorytm faktoryzacji LU macierzy (można to zrobić przy użyciu kodu dostarczonego do laboratorium lub stworzyć własną strukturę macierzy i na niej działać). Algorytm przetestować na przykładzie z wikipedii lub korzystając z poniższego kodu.

```
template<typename T>
std::pair<AGHMatrix<T>, AGHMatrix<T>> AGHMatrix<T>::luDecomposition()
if (get_cols() != get_rows()){
   throw exceptions::MatrixNotSquareException();
 T tmp_U = 0;
 T tmp_L = 0;
 AGHMatrix<T> U(get_rows(), get_cols(), 0);
 AGHMatrix<T> L(get_rows(), get_cols(), 0);
 for (int i = 0; i < get_rows(); i++)</pre>
{
  L.matrix[i][i] = 1;
  tmp_U = 0;
  for (int k = 0; k < i; k++)
     tmp_U += L.matrix[i][k] * U.matrix[k][i];
   U.matrix[i][i] = matrix[i][i] - tmp_U;
   for (int j = i + 1; j < get_rows(); j++)</pre>
    tmp_U = 0;
    tmp_L = 0;
     for (int k = 0; k < i; k++)
       tmp_U += L.matrix[i][k] * U.matrix[k][j];
       tmp_L += L.matrix[j][k] * U.matrix[k][i];
     U.matrix[i][j] = matrix[i][j] - tmp_U;
     L.matrix[j][i] = (matrix[j][i] - tmp_L) / U.matrix[i][i];
   }
 }
 return std::make_pair(L, U);
}
```

Metoda LU pozwala na rozwiązywanie układu równań liniowych. Nazwa pochodzi od użytych w tej metodzie macierzy trójkątnych: dolnotrójkątnej (*lower*) i górnotrójkątnej (*upper*).

Dla układu równań liniowych

$$A \cdot x = y$$
,

gdzie A jest macierzą współczynników, x wektorem niewiadomych, a y wektorem danych, $metoda\ LU$ polega na zapisaniu macierzy A jako iloczynu pewnej macierzy dolnej L oraz pewnej macierzy górnej U.

Układ równań przyjmuje wtedy postać

$$L \cdot U \cdot x = y$$
,

a jego rozwiązanie polega na rozwiązaniu dwóch układów równań z macierzami trójkątnymi:

$$L \cdot z = y ,$$

$$U \cdot x = z .$$

Realizację metody LU umożliwia m.in. Algorytm Doolittle'a, w którym elementy macierzy L i U przyjmują następującą postać:

$$\forall 1 \leq i \leq N$$
:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} \cdot u_{kj}, \quad \forall i \le j \le N,$$

$$l_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} \cdot u_{ki}}{u_{ii}}, \quad \forall i+1 \le j \le N.$$

Przykład działania:

A	L	U
5, 3, 2,	1, 0, 0,	5, 3, 2,
1, 2, 0,	0.2, 1, 0,	0, 1.4, -0.4,
3, 0, 4,	0.6, -1.28571, 1,	0, 0, 2.28571,

4. Proszę zaimplementować algorytm faktoryzacji Cholesky'ego macierzy. Jego test można analogicznie do poprzedniego zadania oprzeć o przykład z wikipedii. Po zakończeniu tego zadania proszę porównać oba algorytmy faktoryzacyjne i opisać różnice w ich konstrukcji.

```
template<typename T>
AGHMatrix<T> AGHMatrix<T>::cholskyDecomposition()
if (get_cols() != get_rows()){
   throw exceptions::MatrixNotSquareException();
 }
 T tmp_L = 0;
 AGHMatrix<T> L(get_rows(), get_cols(), 0);
 for (int i = 0; i < get_rows(); i++){</pre>
  tmp_L = 0;
  for (int k = 0; k < i; k++)
     tmp_L += pow(L.matrix[i][k], 2);
   L.matrix[i][i] = sqrt(matrix[i][i] - tmp_L);
  for (int j = i + 1; j < get_rows(); j++)
  {
    tmp_L = 0;
     for (int k = 0; k < i; k++)
       tmp_L = L.matrix[j][k] * L.matrix[i][k];
     L.matrix[j][i] = (matrix[j][i] - tmp_L) / L.matrix[i][i];
   }
 }
return L;
}
```

Rozkład Choleskiego polega na zapisaniu macierzy A w postaci:

$$A = LL^T$$
,

gdzie L jest dolną macierzą trójkątną, a L^T jej transpozycją.

Macierz L wyznaczona przy pomocy algorytmu Choleskiego-Crouta ma następującą postać:

$$\forall$$
 1 < i < N:

$$l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2} ,$$

$$l_{ji} = \frac{a_{ji} - \sum_{k=1}^{i-1} l_{jk} l_{ik}}{l_{ii}} , \forall i < j \le N$$

Po sprowadzeniu układu równań Ax = y do postaci $LL^Tx = y$, rozwiązanie takiego układu sprowadza się do rozwiązania Lz = y względem z przy pomocy forward substitution oraz $L^Tx = z$ przy pomocy backward substitution.

Porównanie z metodą LU:

Rozkład Choleskiego jest specjalnym przypadkiem rozkładu LU i może być stosowany w przypadku macierzy symetrycznych i dodatnio określonych. Dzięki temu, że obliczamy elementy tylko jednej macierzy (drugą możemy otrzymać przez transpozycję), a nie dwóch, jak w przypadku rozkładu LU, czas działania rozkładu Choleskiego jest około dwukrotnie krótszy.

Przykład działania:

A	L	L^{T}
4, 12, -16,	2, 0, 0,	2, 6, -8,
12, 37, -43,	6, 1, 0,	0, 1, 5,
-16, -43, 98,	-8, 5, 3,	0, 0, 3,

5. Proszę napisać funkcję (lub klasę wraz z metodami), która realizuje eliminacje Gaussa. Proszę starannie opisać kod, który ją realizuje. Test algorytmu jest najlatwiej zrealizować przy pomocy języka python oraz pakietu numpy (poniższy kod). (*) Dla chętnych - można napisać prosty TestCase, który porówna dwie macierze - poprawną znalaźć przy pomocy pythona. Środowisk testowych w C++ jest kilka - ja polecam GoogleTest.

```
// transform matrix into row echelon form
template<typename T>
void AGHMatrix<T>::gaussianElimination()
// underdetermined systems have no single solutions
 if (get_cols() > (get_rows()) + 1)
 {
     throw exceptions::UnderdeterminedSystemException();
 }
// overdetermined systems might have a solution, but we're not considering them
 else if (get_cols() != (get_rows()) + 1)
 {
     throw exceptions::OverdeterminedSystemException();
 }
 int h = 0; // pivot row
 int k = 0; // pivot column
 while(h < get_rows() && k < get_cols())</pre>
{
  // looking for the k-th partial pivot
   int i_max = h;
  for (int i = h + 1; i < get_rows(); i++)
     if (abs(matrix[i][k]) > abs(matrix[i_max][k])){
       i_max = i;
     }
  // if no pivot is found in the k-th column, go to the next column
   if (matrix[i_max][k] == 0)
   {
     k += 1;
   }
```

```
else
   {
     // swap pivot row with the current row
     swap_rows(h, i_max);
     // all rows below the pivot
     for (int i = h + 1; i < get_rows(); i++)</pre>
      T coeff = matrix[i][k] / matrix[h][k];
      // fill the lower part of pivot column with zeros
      matrix[i][k] = 0;
       // continue going down the current row
       for (int j = k + 1; j < get_cols(); j++)
         matrix[i][j] -= matrix[h][j] * coeff;
       }
     }
     h += 1;
     k += 1;
 }
}
template<typename T>
AGHMatrix<T> AGHMatrix<T>::backwardSubstitution(){
AGHMatrix<T> results(get_rows(), 1, 0);
for (int i = get_rows() - 1; i >= 0; i--)
   results.matrix[i][0] = matrix[i][get_cols() - 1];
  for (int j = get_cols() - 2; j > i; j--)
     results.matrix[i][0] -= matrix[i][j] * results.matrix[j][0];
  // nan -> infinite solutions
  // inf -> no solutions
  results.matrix[i][0] /= matrix[i][i];
}
return results;
```

Metoda eliminacji Gaussa pozwala na sprowadzenie danej rozszerzonej macierzy układu równań liniowych do **postaci schodkowej** przy pomocy trzech operacji elementarnych: zamiany dwóch wierszy miejscami, mnożenia wiersza przez współczynnik różny od 0 oraz dodawania wiersza pomnożonego przez współczynnik do innego wiersza.

W powyższej implementacji uwzględniono wspomnianą wcześniej zamianę wierszy, dzięki czemu unikamy potencjalnych problemów wynikających z sytuacji wymagających dzielenia przez 0. Dodatkowo zastosowano częściowy wybór elementu głównego w kolumnie (partial pivoting) - jako wiersz do zamiany wybieramy taki, którego element w rozważanej kolumnie ma największą wartość bezwzględną, co znacząco zwiększa stabilność numeryczną algorytmu.

Warto wspomnieć, że istnieje również analogiczna metoda częściowego wyboru elementu głównego w wierszu oraz metoda pełnego wyboru (*complete pivoting*), w której elementu głównego poszukujemy w całej rozważanej podmacierzy - choć prowadzi to do zwiększenia stabilności w pewnym stopniu, to dodatkowe porównania między wartościami znacząco zwiększają złożoność obliczeń i metoda ta rzadko jest stosowana.

W niektórych sytuacjach eliminacja Gaussa z częściowym wyborem elementu głównego może prowadzić do błędnych wyników - w szczególności, gdy współczynniki równań mają bardzo różne rzędy wielkości, ponieważ w metodzie tej nie rozważamy wartości wzdłuż wierszy, a jedynie wartości w danej kolumnie. Pomocna w tej sytuacji może być eliminacja ze skalowalnym wyborem wierszy głównych, w której wybieramy wiersz na podstawie stosunku aktualnie rozważanego elementu do maksymalnej bezwzględnej wartości współczynnika z danego wiersza. Inna potencjalna optymalizacja wiąże się z rezygnacją z faktycznej zamiany wierszy na rzecz wprowadzenia tablicy indeksującej opisującej aktualną pozycję wierszy.

W powyższej implementacji nie są rozważane układy niedookreślone, które nigdy nie posiadają pojedynczego rozwiązania (nie posiadają go wcale lub posiadają nieskończenie wiele rozwiązań), oraz układy nadokreślone, które mogą mieć pojedyncze rozwiązanie w sytuacji, gdy w ich skład wchodzą "redundantne" równania.

Po doprowadzeniu macierzy do postaci schodkowej, rozwiązanie układu jest możliwe przy pomocy **back substitution**, czyli obliczania kolejnych wartości od końca. W przypadku układu sprzecznego w trakcie obliczeń natrafimy na wartość ∞ wynikającą z dzielenia liczby przez 0. W przypadku układu nieoznaczonego natrafimy na wartość NaN wynikająca z dzielenia 0 przez 0.

Testy:

Przykładowe testy zostały przeprowadzone przy pomocy GoogleTest.

```
TEST(LinearEquationSolver, uniqueSolution1) {
   std::vector<double> expected { 0.21602477, -0.00791511, 0.63524333, 0.74617428 };
   std::vector<std::vector<double>> m_v {{ 0.0001, -5.0300, 5.8090, 7.8320, 9.5740 },
                                          { 2.2660, 1.9950, 1.2120, 8.0080, 7.2190 },
                                           { 8.8500, 5.6810, 4.5520, 1.3020, 5.7300 },
                                           { 6.7750, -2.253, 2.9080, 3.9700, 6.291 }};
   AGHMatrix<double> m(m_v);
   m.gaussianElimination();
   std::vector<double> result(m.backwardSubstitution().transpose().matrix[0]);
   EXPECT_EQ(result.size(), expected.size());
   for (int i = 0; i < result.size(); i++){</pre>
       EXPECT NEAR(expected[i], result[i], 1e-8);
   }
}
TEST(LinearEquationSolver, uniqueSolution2) {
   std::vector<double> expected { 2, 3, -1 };
   std::vector<std::vector<double>> m_v { { 2, 1, -1, 8 },
                                            \{ -3, -1, 2, -11 \},
                                            \{-2, 1, 2, -3\};
   AGHMatrix<double> m(m_v);
   m.gaussianElimination();
   std::vector<double> result(m.backwardSubstitution().transpose().matrix[0]);
   EXPECT_EQ(result.size(), expected.size());
   for (int i = 0; i < result.size(); i++){</pre>
       EXPECT_NEAR(expected[i], result[i], 1e-8);
   }
TEST(LinearEquationSolver, uniqueSolutionPivotingRequired) {
   std::vector<double> expected { -10, 4, 11 };
   std::vector < std::vector < double >> \  \  m\_v \ \{ \ \{ \ 1, \ -1, \ \ \ 2, \ \ 8 \ \}, \ \ \{ \ 0, \ \ 0, \ \ -1, \ -11 \ \},
                                           \{0, 2, -1, -3\};
   AGHMatrix<double> m(m_v);
   m.gaussianElimination();
   std::vector<double> result(m.backwardSubstitution().transpose().matrix[0]);
   EXPECT_EQ(result.size(), expected.size());
   for (int i = 0; i < result.size(); i++){</pre>
       EXPECT_NEAR(expected[i], result[i], 1e-8);
   }
}
```

```
TEST(LinearEquationSolver, infinitelyManySolutions) {
   std::vector<std::vector<double>> m_v { { 2, 1, -1, 8 },
                                          \{ 2, 1, -1, 8 \},
                                          \{-2, 1, 2, -3\};
  AGHMatrix<double> m(m_v);
  m.gaussianElimination();
   std::vector<double> result(m.backwardSubstitution().transpose().matrix[0]);
   EXPECT_TRUE(isnan(result[result.size() - 1]));
}
TEST(LinearEquationSolver, noSolutions) {
   std::vector<std::vector<double>> m_v { { 2, 1, -1, 8 },
                                        { 2, 1, -1, 7 },
                                         \{-2, 1, 2, -3\};
  AGHMatrix<double> m(m_v);
  m.gaussianElimination();
   std::vector<double> result(m.backwardSubstitution().transpose().matrix[0]);
   EXPECT_TRUE(isinf(result[result.size() - 1]));
```

6. (*)Implementacja metody Jackobiego - tworzenie i wymagania analogicznie do Zad.4.

```
#define K_MAX 100
#define EPSILON 1e-10

template<typename T>
AGHMatrix<T> AGHMatrix<T>::jacobiMethod()
{
    // result vector - the initial estimation is 0
    AGHMatrix<T> results(get_rows(), 1, 0);
    // the next estimation of the result
    std::vector<double> y(get_rows(), 0);
    // K_MAX denotes the maximum number of iterations
    for (int k = 0; k < K_MAX; k++)
    {
        // copy current result estimations into a temporary vector
}</pre>
```

```
for (int i = 0; i < get_rows(); i++)</pre>
    y[i] = results.matrix[i][0];
  // calculate a new estimation of the variables based on the previous one
  for (int i = 0; i < get_rows(); i++)</pre>
    T sum = matrix[i][get_cols() - 1];
    T diag = matrix[i][i];
    for (int j = 0; j < get_rows(); j++)</pre>
      if (j != i)
        sum -= matrix[i][j] * y[j];
      }
    results.matrix[i][0] = sum / diag;
  std::cout << "ITERATION #" << k << std::endl << results << std::endl;</pre>
  double norm = 0;
  for (int i = 0; i < get_rows(); i++)</pre>
    if (fabs(y[i] - results.matrix[i][0]) > norm)
      norm = fabs(y[i] - results.matrix[i][0]);
    }
  }
  // return if convergence was reached
  if (norm < EPSILON)</pre>
      return results;
  }
std::cout << "ITERATION LIMIT REACHED" << std::endl;</pre>
return results;
```

Metoda Jacobiego to metoda przybliżania rozwiązania układu równań liniowych dla macierzy przekątniowo dominujących, czyli takich, dla których

$$\forall 1 \leq i \leq N : \left| a_{ii} \right| \geq \sum_{j=1, j \neq i}^{N} \left| a_{ij} \right| .$$

W powyższej implementacji poczyniono założenie, że macierz na wejściu spełnia ten warunek. Oprócz tego metoda Jacobiego wymaga podania początkowego oszacowania wartości niewiadomych. W powyższej implementacji wykorzystywany jest do tego wektor wypełniony zerami. Na podstawie oszacowanych wyników w każdej kolejnej iteracji obliczane są nowe szacunki - algorytm kończy działanie w przypadku, gdy przekroczony zostanie limit iteracji lub gdy osiąga zbieżność, czyli kiedy norma tego wektora (najczęściej euklidesowa lub maksimowa) stanie się mniejsza od pewnego ε.

Przykład działania:

➤ na wejściu:

➤ na wyjściu:

iteracja	oszacowanie	$ x-y _{\infty}$
0	0.6, 2.27273, -1.1, 1.875,	2.27273
1	1.04727, 1.71591, -0.805227, 0.885227,	0.989773
2	0.932636, 2.05331, -1.04934, 1.13088,	0.337397
3	1.0152, 1.9537, -0.968109, 0.973843,	0.157038

4	0.988991, 2.01141, -1.01029, 1.02135,	0.057719
14	0.999998, 2, -1, 1,	1.09436e-05
15	1, 2, -0.999999, 0.999999,	4.82589e-06
19	1, 2, -1, 1,	1.58236e-07
20	1, 2, -1, 1,	6.67057e-08