Osserviamo innanzitutto che se $i(a,b) \neq 0$ allora è sufficiente scegliere c=a, giacché i(a,a)=0. Supponiamo dunque che i(a,b)=0, e siano α , β curve semplici chiuse in posizione minimale che rappresentano rispettivamente a e b; in particolare, α e β hanno supporti disgiunti. Distinguiamo alcuni casi.

■ Supponiamo che α non sia separante. Allora $S \setminus \alpha$ è una superficie compatta connessa con due componenti di bordo.

■ Supponiamo che le due componenti di bordo appartengano alla stessa componente connessa di $S \setminus \alpha \setminus \beta$. Allora esiste una curva γ che interseca α esattamente una volta e non interseca β .

Prendendo come c la classe di isotopia di γ , otteniamo che

$$i(a,c) = 1 \neq 0 = i(b,c).$$

■ Supponiamo che le due componenti di bordo appartengano a componenti connesse diverse di $S \setminus \alpha \setminus \beta$. In questo caso $S \setminus \alpha \setminus \beta$ è unione disgiunta di due superfici S_1 e S_2 , ciascuna con due componenti di bordo, una lungo α e una lungo β .

Osserviamo che S_1 e S_2 hanno genere almeno 1, altrimenti α e β coborderebbero un anello e sarebbero dunque isotope. È allora facile costruire una curva γ la cui classe di isotopia c soddisfa la tesi.

Grazie al criterio del bigono, si verifica che α e γ sono in posizione minimale, da cui

$$i(a, c) = 2 \neq 0 = i(b, c).$$