3.	L' geometry of whice
)	een 21 (L,h) $E(\varphi,A) = \frac{1}{2} \ d_A \varphi\ _{L^{\infty}} + \frac{1}{2} \ F_A\ _{L^{\infty}} + \frac{1}{2} \ \frac{1}{2} (\xi - \varphi)\ _{L^{\infty}}$ (Z, g _E) vorhies = numerous of E.
Ed	Soponding bound (1976) $D_{A} \varphi - \frac{1}{2} (7 - \varphi ^{2}) \varphi = 0$ $SF_{A} = h(i\varphi, d_{A} \varphi)$ $cond B = j$
5	Bryond'ny bound (1976) $E = \frac{1}{2} \left\ F_A - \frac{1}{2} (7 - k\rho)^2 \right\ _{L^{\infty}} + \left\ \overline{J}_A \varphi \right\ _{L^{\infty}} + \frac{\tau}{2} \int_{\Sigma} F_A$ $\left(\text{because } \left\langle \varphi \omega_{\Sigma}, F_A \varphi \right\rangle_{L^{\infty}} = \left\ \overline{J}_A \varphi \right\ _{L^{\infty}} - \left\ \overline{J}_A \varphi \right\ _{L^{\infty}} \right)$
	So $E \ge 7\pi n$ with equality \iff $\partial_A \varphi = 0$ — (1) $+ F_A = \frac{1}{2} (7 - \varphi ^2)$ — (2) By $(7 - \varphi ^2)$ For $(7 - \varphi ^2)$ $(7 - \varphi ^$
Malu	So of \$20, (1), (1) have no solutions. [Mn = \$] li Mn = { Anthir 1 (1), (2) / Garge honofamatrus us

5	Li (Adribati approxista (Manhon 1912)
5)—	(g(d), A(d)) & M, (g(d), A(d)) & T(gro, A(d)) Mn "mall"
5		
7		=> (q(1), H(1)) is approximately the geordenic thin M. w.r.t. L' metric
6		Cona cure (y(n, A(n) & V. (M, = V, /G) project (y(o, A(o)) \(\sum_{L2} \) G what knows (y(o, A(o))
3		project (y(v), A(v)) IL2 Gabet knows (y(a)A(v))
2		Then g. (v,v) = P (ig(0), d(0)) //
	J_[
J-		Street (1994) somed on hair concerns a in mall
		Strart (1994) proced puisine converge ce in small velocity but (E= C!)
		1
5		Mohites study of gra
U *U		Strachan (1992) Explicit famile for Mz, $\Sigma = 1+1$
U		Samols (1992) Cerreful rumerics for My, E = C
<u> </u>	<u> </u>	22-t
ارد	$\overline{}$	BATA used bruleration formula T: E" -> 5 TE
		M
V.		
1		b = I bidei
		T'W = TT (W + W 1-+ W) - 176
		Marton-Nasir (1994) Competed Mr.

Post pathole hint 2-20 (Napy, 2017) On the complement of any would of Aft CSE, 92 - co product metne. Dishing hit E-90 (2 > 4m) Prendsvortex (Makin, Buptisk 2003) Come: D & Div, (E) Moon A st. Da = Dep and + FA = 2 mm I! him is 4°(\(\mathbf{\gamma}\), \(\eta\) st. \(\varphi^{\cdot}(\eta) = D\) Normaleri

It \(\varphi\varphi\varphi\) = 1. Isendontex ut duin D = (VE 4, A). Satisfies (V): dij éq = 0 $\int_{\overline{Z}} (\overline{V}) : \int_{\overline{Z}} + F_{\widehat{M}} = \int_{\overline{Z}}^{1} (\overline{\tau} - |\varphi|^{\tau})$ Conjetine: for E 20 small pundoruhier ave In paticular 92° ~ grends. $M_{\Lambda} = B/E \longrightarrow Pii_{\Lambda}(\Sigma)$ $[(\varphi, A)] \longmapsto [\overline{A}]$ AJ: S"Z -> C3/ Model [1/2-1/h] -> / [1/2 + | 1/2/4-4 | 1/2/4

