```
In [1]: import pandas as pd
        import numpy as np
        import matplotlib.pyplot as plt
        import seaborn as sns
        import scipy.stats as stats
        import statsmodels.api as sm
        import statsmodels.formula.api as smf
       # Load the dataset
        insurance_df = pd.read_csv("/Users/balakrishnamupparaju/Downloads/insurance.
        # Inspect the dataset
        print(insurance df.info())
        print(insurance_df.head())
      <class 'pandas.core.frame.DataFrame'>
      RangeIndex: 1338 entries, 0 to 1337
      Data columns (total 7 columns):
                    Non-Null Count Dtype
           Column
       0
                     1338 non-null int64
           age
                    1338 non-null object
       1
           sex
       2
                     1338 non-null float64
           bmi
          children 1338 non-null int64
                     1338 non-null object
       4
           smoker
       5
           region
                     1338 non-null object
           charges
                     1338 non-null float64
       6
      dtypes: float64(2), int64(2), object(3)
      memory usage: 73.3+ KB
      None
                                                            charges
                         bmi children smoker
                                                 region
         age
                 sex
          19 female 27.900
                                        yes southwest 16884.92400
      0
      1
                male 33.770
          18
                                        no southeast 1725.55230
      2
          28
                male 33.000
                                    3
                                         no southeast 4449.46200
      3
          33
                male 22.705
                                    0
                                         no northwest 21984.47061
          32
                male 28.880
                                         no northwest 3866.85520
In [3]: # Check for missing values
        print(insurance_df.isnull().sum())
       # Data types of variables
        print(insurance df.dtypes)
```

```
age
                    0
        sex
        bmi
                    0
        children
                    0
        smoker
                    0
        region
                    0
        charges
        dtype: int64
        age
                      int64
        sex
                     object
        bmi
                    float64
        children
                     int64
        smoker
                     object
        region
                     object
        charges
                    float64
        dtype: object
 In [5]: print(insurance_df.columns)
        Index(['age', 'sex', 'bmi', 'children', 'smoker', 'region', 'charges'], dtyp
        e='object')
In [9]: # Convert categorical variables
         insurance_df['smoker'] = insurance_df['smoker'].map({'yes': 1, 'no': 0})
         insurance df['sex'] = insurance df['sex'].map({'male': 1, 'female': 0}) # N
         insurance_df['region'] = insurance_df['region'].astype('category').cat.codes
In [13]: # Plot histograms for key variables
         fig, axes = plt.subplots(2, 3, figsize=(15, 10))
         fig.suptitle('Histograms of Key Variables')
         columns = ['age', 'bmi', 'children', 'smoker', 'charges', 'region']
         for i, col in enumerate(columns):
             sns.histplot(insurance_df[col], bins=30, kde=True, ax=axes[i//3, i%3])
             axes[i//3, i%3].set_title(f'Distribution of {col}')
         plt.tight_layout()
         plt.show()
```


In [15]: # Summary statistics
insurance_df.describe()

Out[15]:	Out[15]: age		sex	bmi	children	smoker	regi
	count	1338.000000	1338.000000	1338.000000	1338.000000	1338.000000	1338.0000
	mean	39.207025	0.505232	30.663397	1.094918	0.204783	1.5156
	std	14.049960	0.500160	6.098187	1.205493	0.403694	1.1048
	min	18.000000	0.000000	15.960000	0.000000	0.000000	0.0000
	25%	27.000000	0.000000	26.296250	0.000000	0.000000	1.0000
	50%	39.000000	1.000000	30.400000	1.000000	0.000000	2.0000
	75%	51.000000	1.000000	34.693750	2.000000	0.000000	2.0000
	max	64.000000	1.000000	53.130000	5.000000	1.000000	3.0000

In []: #Look at mean, median, and standard deviation.
#Identify potential outliers in BMI and charges.
C#heck the skewness of charges (often right-skewed).

```
In [19]: # PMF for smokers vs. non-smokers (charges)
smoker_charges = insurance_df[insurance_df['smoker'] == 1]['charges']
non_smoker_charges = insurance_df[insurance_df['smoker'] == 0]['charges']

# Plot the PMF
plt.figure(figsize=(10, 5))
sns.histplot(smoker_charges, bins=30, kde=True, color='red', label='Smokers')
```

```
sns.histplot(non_smoker_charges, bins=30, kde=True, color='blue', label='Nor
plt.legend()
plt.title("PMF of Insurance Charges for Smokers vs. Non-Smokers")
plt.xlabel("Charges")
plt.ylabel("Probability Density")
plt.show()
```


In []: #Smokers have significantly higher insurance charges.
#The distribution shifts right, indicating a strong effect.

In []: #A steep rise indicates where most people's charges are concentrated.
#This helps understand the distribution and percentiles.

```
In [29]: # Fit a normal distribution to charges
mu, sigma = stats.norm.fit(insurance_df['charges'])

# Plot the histogram with the normal distribution curve
plt.figure(figsize=(10, 5))
sns.histplot(insurance_df['charges'], bins=30, kde=False, stat="density")
x = np.linspace(min(insurance_df['charges']), max(insurance_df['charges']),
plt.plot(x, stats.norm.pdf(x, mu, sigma), label='Normal Distribution Fit', c

plt.title('Checking Normality of Charges')
plt.xlabel('Charges')
plt.ylabel('Density')
plt.legend()
plt.show()
```


In []: #The actual distribution is right-skewed, not normally distributed.
#This confirms outliers affect charges.

```
In [33]: # Scatter plot: BMI vs. Charges
plt.figure(figsize=(8, 5))
sns.scatterplot(x=insurance_df['bmi'], y=insurance_df['charges'], hue=insura
plt.title("BMI vs Charges")
plt.show()

# Scatter plot: Age vs. Charges
plt.figure(figsize=(8, 5))
sns.scatterplot(x=insurance_df['age'], y=insurance_df['charges'], hue=insura
plt.title("Age vs Charges")
plt.show()

# Pearson correlation
print(insurance_df[['age', 'bmi', 'charges']].corr())
```


In []: #BMI vs. Charges: A weak trend, but smokers have higher charges. #Age vs. Charges: Slight positive correlation.

bmi

0.109272

1.000000

0.198341

age

1.000000

0.109272
0.299008

age

bmi

charges

charges

0.299008

0.198341

1.000000

```
In [37]: # Perform a t-test
#Testing if smokers have significantly higher charges.

t_stat, p_val = stats.ttest_ind(smoker_charges, non_smoker_charges)

print(f"T-Statistic: {t_stat}, P-Value: {p_val}")

# Interpretation
if p_val < 0.05:
    print("Reject Null Hypothesis: Smoking significantly affects charges.")
else:
    print("Fail to Reject Null Hypothesis: No significant effect.")</pre>
```

T-Statistic: 46.66492117272371, P-Value: 8.271435842179101e-283 Reject Null Hypothesis: Smoking significantly affects charges.

```
In [41]: # Simple Linear Regression
model = smf.ols('charges ~ bmi', data=insurance_df).fit()
print(model.summary())
```

OLS Regression Results

							=	
0.0		R-squared:			charges		Oep. Variable 39	
0.0		Adj. R-squared:			0LS		odel:	
54.		ictic	E c+>+	uaros	Loost Sa		39 Method:	
54.		.15110;	r-stat	uares	Least Sq		71	
2.46e-	c):	F-statisti	Prob (2025	at, 01 Mar	Sa	Oate: L3	
-1445		kelihood:	Log-Li	00:19	16:		「ime: ∣.	
2.891e+	AIC:		AIC:	1338		ns:	lo. Observati 04	
2.892e+			BIC:	1336			of Residuals: 04	
							of Model: Covariance Ty	
=======	========	=======	======				:======= :=	
0.97	[0.025	P> t	t		std err	coef	5]	
4458.8	-2072.974	0.474	0.717		1664.802	.92.9372		
498.3	289.409	0.000					19 omi 37	
1.9	=======	======= n-Watson:		 1.030	26	======	========= ==)mnibus:	
431.0	Jarque-Bera (JB):		Jarque	0.000		83 Prob(Omnibus):		
2.45e-		IB):	Prob(J	1.297			91 Skew:	
16		No.	Cond.	4.004			04 Kurtosis: O.	

Notes:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [45]: # Multiple Regression
model = smf.ols('charges ~ age + bmi + smoker', data=insurance_df).fit()
print(model.summary())
```

OLS Regression Results

========	=======	========	======	=====	========	=======	=======
== Dep. Varia 47	ble:	ch	arges	R-sq	uared:		0.7
Model:			0LS	Adj.	R-squared:		0.7
47		Lasat Car			- 4 - 4 - 4		121
Method: 6.		Least Sq	uares	r-st	atistic:		131
Date:		Sat. 01 Mar	2025	Prob	(F-statistic):	0.
00		33.1, 32.1.3.			(. 516115116	, -	
Time:		16:	00:52	Log-	Likelihood:		-1355
7.							
No. Observ	ations:		1338	AIC:			2.712e+
Df Residua	ıls:		1334	BIC:			2.714e+
04							
Df Model:			3				
Covariance	: Type:	nonr	obust				
=======================================	========	========	======	====	=========	======	=======
	coet	f std err		t	P> t	[0.025	0.97
5]				_	. [-]	[0.000	0.07
 Intercept	1 160010	1 027 560	12	151	0 000	1 250104	0027 5
61	-1.1000+02	+ 937.309	-12	. 434	0.000	-1.336+04	-903/.3
age	259.5475	11.934	21	.748	0.000	236.136	282.9
59							
bmi	322.6153	l 27.487	11	.737	0.000	268.692	376.5
38	2 202010	412.867	5 7	702	0.000	2.3e+04	2.46e+
04	Z.362E+02	412.007	57	. 703	0.000	Z.3e+04	Z.40e+
	========		======	=====	=========	=======	=======
==							
Omnibus:		29	9.709	Durb	in-Watson:		2.0
77 Prob(Omnib	u.e.) :		0.000	lard	ue-Bera (JB):		710.1
37	,us / .	,	0.000	Jaiq	ue-bera (Jb).		/10.1
Skew:			1.213	Prob	(JB):		6.25e-1
55							
Kurtosis:			5.618	Cond	. No.		28
9.							
==							

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is corre ctly specified.

```
In [37]: import statsmodels.api as sm

# Define independent variables (X) and dependent variable (y)
X = insurance_df[['age', 'bmi', 'smoker', 'region_northwest', 'region_southe
y = insurance_df['charges']
```

```
# Add a constant for the regression intercept
X = sm.add_constant(X)

In [39]: # Fit the regression model
model = sm.OLS(y, X).fit()

# Display regression results
print(model.summary())
```

OLS Regression Results

=======================================	========		=========	=======		===
== Dep. Variable:	charges		R-squared:	0.7		
49 Model:	0LS		Adj. R-squar	0.7		
48 Method:	Least	t Squares	F-statistic:	66		
0.8 Date:	Sat, 01	Mar 2025	Prob (F-stat	0.		
00 Time:		15:34:21	Log-Likeliho	-1355		
<pre>4. No. Observations:</pre>		1338	AIC:	2.712e+		
04 Df Residuals:		1331	BIC:		2.716e+	
04 Df Model:		6				
Covariance Type:		nonrobust				
=======						===
0.975]	coet	std err	t	P> t	[0.025	
const 9686.503	-1.16e+04	976.200	-11.884	0.000	-1.35e+04	-
age	258.6365	11.930	21.680	0.000	235.233	
282.040 bmi	340.0076	28.673	11.858	0.000	283.759	
396.256 smoker	2.385e+04	413.508	57.683	0.000	2.3e+04	
2.47e+04 region_northwest	-303.5207	477.850	-0.635	0.525	-1240.943	
633.901 region_southeast			-2.162	0.031	-1981.225	
-96.040					-1856.712	
region_southwest 24.833	-913.9394	4/9.336	-1.910	0.030	-1030.712	
=======================================	========	=======	=========	=======	=========	===
Omnibus: 79		298.282	Durbin-Watson:		2.0	
Prob(Omnibus): 89		0.000	Jarque-Bera (JB):		705.0	
Skew:		1.208	<pre>Prob(JB):</pre>		7.80e-1	
54 Kurtosis:		5.609	Cond. No.			30
7. ========	========	=======	========	-=====	========	===
==						

Notes:

 $\[1\]$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

In []: #Smoking is the strongest predictor of charges.
#BMI has a mild effect but interacts with smoking.
#Age slightly influences charges.