

HPC Ranking Based on Real Applications

Aaron Jarmusch, Nolan Baker

Introduction

Performance benchmarks are used to stress test hardware and software of large scale computing systems. A corporation known as SPEC has developed a benchmark suite, SPEC ACCEL, consisting of test codes representative of kernels in large applications. This project ranks the published results from ACCEL based on different criteria. The goal is to prepare a ranking website for the work-in-progress real-world SPEC HPG benchmark suite, HPC2021 that will soon be released (time frame 2020-2021).

Project Goals

- Organize and display HPC systems based on SPEC ACCEL benchmarks suite
- Compare HPC systems more holistically
- Enable visualization of the differences between each HPC system
- Base & Peak score: Denotes the default benchmark output and optimized benchmark output.
- Hardware speed and size: Shows their impact on benchmark performance.
- **Developers**: Vendors such as Intel, NVIDIA, AMD, etc., which allows the end-user to see who they may choose to buy parts from.
- Location: Where are the HPC systems hosted

Architecture diagram showing data flow

Cron Job:

Runs web-scraper periodically

Web-Scraper:

- Takes data from SPEC.org website
- Organizes and formats data
- Inputs benchmark data into database

MySQL Database:

- Easy-to-use
- Large documentation for use with websites

Data is taken from the SPEC.org website, condensed and formatted, and transferred into the database.

- Visualization of the data movement within the web-scraper.
- Cron job triggers the web-scraper to move necessary data from SPEC.org to the database.

- The snapshot partial image of the original benchmarks organized on SPEC.org.
- All the results are located within different locations CSV, text, and other files.
- The scraper looks into each CSV file and takes the appropriate benchmark to copy into a table.

	index			Hardware Model: Lenovo NeXtScale nx360 M5				by: Indiana				Name				C	CPU Characteristics						
											Intel Xeon E5-2680 v3					Intel Turbo Boost Technology on,							
ardware	Tested by:	CPU Name	CPU Characteristics	100000000000000000000000000000000000000	FPU	CPU(s) enabled	CPU(s)		Secondary	L3 Cache	Memory	Disk Subsystem	Accel Model	Accel Vendor	Accel Name	Type	Accel Connection	Does Accel	Accel Description	Accel	Operating System	Compiler	SPECacce
enovo eXtScale	Indiana University	Intel Xeon	Intel Turbo Boos Technology on,		Integrate			32 KB I +		30 MB I+D on	256 GB (16 x 16 GB 2Rx4 PC4-2133P-R)		Intel Xeon E5-2680	Intel	Intel Xeon E5-2680 v3	Accel		Use ECC yes	Intel Xeon E5-2680 v3 @2.5~3.3GHz	None	Red Hat	PGI Professional	1.708258
⊃ Z820	Indiana University	Intel Xeon	Hyperthreading on, Turbo Boos is off	is 2000 t	Integrate			per core 32 KB I +	256 KB I+D on chip per	chip 20 MB I+D off	64 GB (4 x 16	2000 GB Seagate ST2000DM00 7200 RPM	v3 Intel Xeon	Intel	Intel Xeon E5-2640 v2		N/A	Yes	Intel Xeon E5-2640 v2 @ 2.0 GHz		release 7.3 Ubuntu	PGI Professional Edition, Release 17.5	0.661609
ay XC30	Indiana University		Intel Turbo Boo Technology off,	st 2700	Integrate	threads/cor ed 24 cores, 2 chips, 12 cores/chip, 2		32 KB I +	256 KB I+D on chip per core	30 MB I+D on	64 GB (8 x 8 GB	SATA3	Intel Xeon E5-2697	Intel ,	Intel Xeon E5-2697 v2	CPU	N/A	Yes	Intel Xeon E5-2697 v2 @ 2.7 GHz	None !			1.179653
ay XK7	Indiana University	AMD Opteron 6276	AMD Turbo CORE Technology up t 3.2GHz, Turbo		Integrate	threads/cor ed 16 cores, 1 chip, 16 cores/chip		16 KB D on chip	16 MB I+D on chip per chip, 2 MB shared / 2 cores	I+D on	PC3L-12800R-11, ECC)	None	Tesla K20	NVIDIA	NVIDIA Tesla K20	GPU	PCle 2.0 16x	yes		NVIDIA UNIX x86_64 Kernel Module 352.68	SUSE Linux Enterprise Server 11 (x86_64), Cray	PGI Accelerator Fortran/C/C++ Server, Release 14.1	1.708379
ay XK7	Indiana University	AMD Opteron 6276	AMD Turbo CORE Technology up t 3.2GHz, Turbo		Integrate	ed 16 cores, 1 chip, 16 cores/chip	1 chip	16 KB D on chip	16 MB I+D on chip per chip, 2 MB shared / 2 cores	16 MB I+D on	2Rx4 PC3L-12800R-11, ECC)		Tesla K20	NVIDIA	NVIDIA Tesla K20	GPU	PCle 2.0 16x	yes	NVIDIA Tesla K20m GPU, 2496 CUDA cores,	NVIDIA UNIX x86_64 Kernel Module 352.68	SUSE Linux Enterprise Server 11 (x86_64), Cray	PGI Accelerator Fortran/C/C++ Server, Release 15.3	1.784006
ay XK7	Indiana University	AMD Opteron 6276	AMD Turbo CORE Technology up t 3.2GHz, Turbo		Integrate	ed 16 cores, 1 chip, 16 cores/chip	1 chip	16 KB D on chip	16 MB I+D on chip per chip, 2 MB shared / 2 cores	16 MB I+D on	PC3L-12800R-11, ECC)	None	Tesla K20	NVIDIA	NVIDIA Tesla K20	GPU	PCle 2.0 16x	yes	NVIDIA Tesla K20m GPU, 2496 CUDA cores,		SUSE Linux Enterprise Server 11 (x86_64), Cray	PGI Accelerator Fortran/C/C++ Server, Release 16.4	1.998554
ay XK7	Indiana University	AMD Opteron 6276	AMD Turbo CORE Technology up t 3.2GHz, Turbo		Integrate	ed 16 cores, 1 chip, 16 cores/chip	1 chip		16 MB I+D on chip per chip, 2 MB shared / 2 cores	16 MB I+D on	32 GB (4 x 8 GB 2Rx4 PC3L-12800R-11, ECC)	None	Tesla K20	NVIDIA	NVIDIA Tesla K20	GPU	PCle 2.0 16x	yes	NVIDIA Tesla K20m GPU, 2496 CUDA cores,	NVIDIA UNIX x86_64 Kernel Module 352.68	SUSE Linux Enterprise Server 11 (x86_64), Cray	PGI Professional Edition, Release 17.1	2.014046
ay XK7	Indiana University	AMD Opteron 6276	AMD Turbo CORE Technology up t 3.2GHz, Turbo		Integrate	ed 16 cores, 1 chip, 16 cores/chip	1 chip	16 KB D on chip	on chip per	16 MB I+D on chip per	PC3L-12800R-11,	None	Tesla K20	NVIDIA	NVIDIA Tesla K20	GPU	PCle 2.0 16x	yes	NVIDIA Tesla K20m GPU, 2496 CUDA cores,	UNIX x86_64	Server 11 (x86_64),	Professional	2.072126

- After being scraped the benchmarks are organized and inserted into a MySQL database which is shown above.
- This visual is from PHPMyAdmin, which allows for the data to be easily accessed to display on the website.

Results

The following design demos a simplistic view:

Key features of the website are as follows:

- A filter button, which allows for the changing of which default columns are shown.
- A search function, which allows for computers, locations, etc. to be searched for and displayed.
- More information for each HPC, which is shown by clicking on the sponsor & name. This shows every computer specification.
- A contact page, which allows for the user to provide feedback about features or errors on the website.
- An about page, which shows background information about the website.

The website shows the **key specifications** of each HPC system while giving the user tools to delve deeper into each one.

Future Work

- The methods and approaches will be applied to the upcoming new benchmark suite from SPEC, i.e. SPEC HPC2021
- When needed, the data can easily be tweaked through PHPMyAdmin, as the data output from SPEC is not always standardized.
- Other benchmarks besides SPEC can also be implemented into the website. For example, the SPEC CPU 2017 benchmark, which specifically focuses on a system's CPU performance, could be added.

 Finally, informative graphs could be added to the website. These graphs would provide another means to visualizing data, allowing for data to be simply compared. For example, the image above shows a graph comparing test sponsors.

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1445604 (Jetstream). Any opinions findings, conclusions, or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

Special theories to Winger Spans Childs, Soth Adams and Dakile Ledgeme's pourse potwerk recourses. Lefferger Davis, Carrie

Special thanks to Winona Snapp-Childs, Seth Adams and Dakila Ledesma's neural network resources, Jefferson Davis, Carrie Ganote, Robert Henschel, and David Hancock.