- 1. Fore each of the following pairs of functions, indicate whether f = o(g), $f = \omega(g)$, $f = \theta(g)$, or none of these hold. You don't need to prove your answers.
 - (a) for f = n 100 and g = n 200, $f = \theta(g)$
 - (b) for $f = n^{1/2}$ and $g = n^{2/3}$, f = o(g)
 - (c) for $f = 100n + \log(n)$ and $g = n + (\log n)^2$, $f = \theta(g)$
 - (d) for f = nlog n and $g = 10n(log 10n), f = \theta(g)$
 - (e) for f = log2n and g = log3n, $f = \theta(g)$
 - (f) for f = 10logn and $g = logn^2$, $f = \theta(g)$
 - (g) for $f = n \cdot 2^n$ and $g = 3^n$, f = o(g)
 - (h) for $f = 2^n$ and $g = 2^{n+1}$, $f = \theta(g)$
 - (i) for $f = n^2/\log n$ and $g = n(\log n)^2$, $f = \omega(g)$
 - (j) for $f = n^{1.01}$ and $g = n(log n)^2$, f = o(g)
 - (k) for $f = n^{0.1}$ and $g = (log n)^{10}$, f = o(g)
 - (1) for $f = \sqrt{n}$ and $g = (log n)^3$, $f = \omega(g)$
 - (m) for $f = \sqrt{n}$ and $g = 5^{\log n}$, f = o(g)
 - (n) for $f = n^{1+(-1)^n}$ and g = n, none of these hold
 - (o) for f = n! and $g = 2^n$, $f = \omega(g)$
 - (p) for $f = (log n)^{log n}$ and $g = 2^{log n^2}$, f = o(g)

2. For each of the following statements, either prove (using the formal definition of big O) that it is true for all functions f, g, and h from positive integers to positive reals, or give a counterexample.

Big-O: f = O(g) if $f \le c \cdot g$ for all n when $n_0 \ge 1$ and c is a positive, non-zero integer

(a) If f = O(g) and g = O(h), then f = O(h).

Proof. Because f = O(g) and g = O(h), we know that $f \leq c_1 \cdot g$ and $g \leq c_2 \cdot h$ by definition of big-O. Assume c_1 and c_2 are positive, non-zero integers.

We can rewrite this as $f \leq c_1 \cdot g \leq c_2 \cdot h$ which simplifies to $f \leq c \cdot h$

Therefore, f = O(h) by definition of big-O.

(b) If f = O(h) and g = O(h), then f + g = O(h).

Proof. Because f = O(h) and g = O(h), we know that $f \leq c_1 \cdot h$ and $g \leq c_2 \cdot h$. Suppose $g \leq f$ such that

$$g \le f \le c \cdot h$$
 and $f + g \le 2f$

As such, it must also be true that

$$f + g \le 2f \le 2 \cdot c \cdot h$$

Since there exists some constant k = 2c such that $f + g \le k \cdot h$, we know that if f = O(h) and g = O(h), then f + g = O(h) by definition of big-O.

(c) If f = O(h) and g = O(h), then $f \cdot g = O(h)$.

Because f = O(h) and g = O(h), we know that $f \le c \cdot h$ and $g \le c \cdot h$. By definition of big-O, $f \cdot g = O(h)$ is the same as $f \cdot g \le c \cdot h$. However, in the case that f = g = n, we get

$$n^2 \le c \cdot n$$

Because n^2 increases exponentially while $c \cdot n$ increases linearly by a factor of c, this inequality will not hold for all values of n such that $n \ge 1$. Therefore, $f \cdot g \ne O(h)$.

(d) If f(n) = O(g(n)), then log(f(n)) = O(log(g(n))).

Proof. Because f(n) = O(g(n)), we know that $f \leq c \cdot g$.

Let us assume the maximum value of f and the minimum value of g such that f = g = n. Thus, we can rewrite the expression as:

$$log(n) \le c \cdot log(n)$$

We know this inequality will hold true for all f and g such that $f \leq c \cdot g$ because the above assumes extreme cases of f and g. Therefore, log(f(n)) = O(log(g(n))) when f(n) = O(g(n)).

(e) If f(n) = O(g(n)), then $2^{f(n)} \neq O(2^{g(n)})$.

Because f(n)=O(g(n)), we know that $f\leq c\cdot g$. In the case that f=g=3, we get: $2^3\leq c\cdot 2^3 \quad \text{ which is the same as } \quad 8\leq c\cdot 8$

Assuming that c is some positive, non-negative integer, the inequality holds true, so when $f(n) = O(g(n)), 2^{f(n)} = O(2^{g(n)}).$

(f) f(n) = O(f(n/2)) In the case that $f = 6^n$, we get

$$6^n \le c \cdot \frac{6^n}{2}$$

While there may exist some c that would make this inequality true for some values of n, we find that there is no one constant c that holds true as n continues to increase. Therefore, $f(n) \neq O(f(n/2))$