Controller Area Network

Mathis Schmieder (316110)

TU Berlin
Department of Telecommunication Systems
Telecommunication Networks Group

June 12th, 2015

Table of Contents

- Introduction
- 2 Physical Layer
- 3 Data Link Layer
- 4 Application Layer
- 5 Summary

Timeline

1983 🛉	Development	started at	Robert Bosch	GmbH
--------	-------------	------------	--------------	------

- 1986 ♦ Official release at SAE congress
- 1987 ♦ First chips by Intel and Philips
- 1991 ♦ Bosch publishes CAN 2.0 for standardization
- 1993 ♦ Approved and published as ISO 11989
- 2012 ♦ CAN FD 1.0 released by Bosch

CAN protocol basics

- Serial Bus System
- Only physical and data link layer specified
- Physical Layer
 - Effective transmission of data
 - Bit timing & Synchronization
 - High & Low Speed standards exist
- Data Link Layer
 - Medium Access Control: CSMA/CR
 - Logical Link Control: Interface to higher layers
- Numerous application layers rely on CAN

Telecommunication
Networks Group

June 12th, 2015

Table of Contents

- Physical Layer
- Data Link Layer
- **Application Layer**
- Summary

Telecommunication Networks Group イロトイプトイミトイミト (注

Physical Layer

- Physical signalling specified in ISO 11898-1
- Medium access units (transceivers) described in two documents
 - ISO 11898-2: High-speed CAN
 - ISO 11898-3: Low-speed fault-tolerant CAN
- Connectors are not standardised by CAN specification

Network Topology

- CAN networks use shared bus topology
- Buses have to be terminated
- Topology should be as linear as possible
- Maximum bitrate and length directly dependent
- No effective way to share line for power and signalling

Transmission Medium

Several kinds of transmission media can be used:

- **Two-wire bus**: Enables differential signal transmission, ensures reliable communication. Requirement for high-speed CAN.
- **Single-wire bus**: Simpler/cheaper alternative, fall back in case of fault.
- Optical transmission medium: Ensures immunity to electromagnetic noise, used to interconnect different subnets.

ISO 11898-2: High-speed CAN

- Maximum bit rate 1 Mbps
- Linear bus end-terminated with 120Ω
- Stubs must be shorter than 30 cm.

Figure: High Speed CAN Network [3]

ISO 11898-3: Low-speed fault-tolerant CAN

- Maximum bit rate 125 kbps
- Linear or star bus terminated at node with about 100Ω
- Features energy-saving sleep mode

Figure: Low Speed CAN Network [4]

Telecommunication Networks Group

10/32

Schmieder CAN Bus June 12th, 2015

Bit Encoding

- Level on bus can assume two complementary values:
 - dominant, usually corresponds to logical value 0
 - recessive, usually corresponds to logical value 1
- CAN relies on non-return to zero (NRZ) bit encoding

Figure: Levels on the CAN bus [5]

Synchronization

- Timing information extracted from bit stream
- Edges of the signal are used for synchronization
- Bit stuffing to ensure sufficient number of edges

Figure: Bit stuffing technique [1]

Telecommunication
Networks Group

12/32

Table of Contents

- 1 Introduction
- 2 Physical Layer
- 3 Data Link Layer
- 4 Application Layer
- 5 Summary

Frame Format

- Specifications define standard and extended frame format
 - Standard: 11 bit identifier
 - Extended: 29 bit identifier
- Standard frame format mostly used
- Identifier describes meaning of message
- Protocol foresees four kinds of frames: data, remote, error and overload

Data Frames

Figure: Format of standard data frames [1]

- Dominant start of frame (SOF) bit
- Arbitration field: identifier and remote transmission request bit
- Data length code (DLC): Length of data field encoded in 4 bits
- Cyclic redundancy check (CRC) encoded in 15 bits
- ACK slot: Recessive at transmitter, dominant at receiver
- End of frame (EOF) slot: Seven recessive bits

Telecommunication Networks Group

15/32

Remote Frames

- Generally, source sends out data autonomously
- Protocol allows to poll for data
- Remote format similar to data format
- RTR field is recessive, data frames have higher priority
- Remote frames carry no data

Error Frames

- Notify nodes that an error has occured
- Consist of two fields:
 - Error flag: Six dominant/recessive bits.
 - → Violates bit stuffing rules, error condition is detected
 - Error delimiter: 8 recessive bits.
- Active flag: dominant, transmitted by node in state error active
- Passive flag: recessive, transmitted by node in state error passive

Schmieder CAN Bus June 12th, 2015

Fault Confinement

- Supervises correct operation of MAC sublayer
- Disconnect defective node from bus
- Uses two counters: transmission and receive error count
 - On error detect, counter is increased by a given amount
 - On success, counter is decreased by one
 - Increase amount of detecting node is higher than relying nodes
- When counter exceeds 127, node switches from error active to error passive
- When counter exceeds 255, node switches to bus off

Overload Frames

- Used to slow down operations on the bus by adding delays
- Format similar to the error frames
- Hardly ever used because today's CAN controllers are very fast

Access Technique

- CAN relies on CSMA for access control:
 - When no data is exchanged, level on the bus is recessive
 - Before transmission, nodes observe the state of the network
 - When network is idle, transmission starts immediately
- Collisions are improbable but not impossible
- CAN introduces collision resolution scheme: Bus arbitration

CSMA/CR: Bus Arbitration

Bus arbitration essentially identifies the most urgent frame.

- Level on bus is dominant if one node is sending dominant bit
- Nodes can reliably check level on bus
- On transmission, each node compares level on bus against written value
- If node transmits recessive bit but reads dominant, it backs off

CSMA/CR: Bus Arbitration

Figure: Arbitration phase in CAN

- Nodes transmit message identifier starting with MSB
- Lowest identifier corresponds to highest priority
- Message with highest priority wins contention

Telecommunication Networks Group

4 日 5 4 周 5 4 至 5 4 至 5

Error Management

- Fundamental requirement for CAN is robustness
- Specifications foresee five mechanisms for error detection:
 - 15 bit wide CRC: Discover up to five erroneous bits
 - Frame check: CRC, ACK, EOF delimiters have to be recessive
 - Acknowledgement check: Transmitter checks for set ACK bit
 - Bit monitoring: Transmitter checks level on bus against written value
 - Bit stuffing: Each node verifies if bit stuffing rules have been violated
- Residual probability for undetected corrupt message is 4.7 · 10⁻¹¹ times the frame error rate or less

Logical Link Layer

- Sublayer of Data Link Layer
- Provides communication services to higher layers
- Exports only two types of frames:
 - L DATA: Broadcast value over the network
 - L_REMOTE: Ask for value over the network
- Error and overload frames invisible to higher layers
- Provides frame acceptance filtering function

Frame Acceptance Filtering (FAF)

- Producer transmits information on the bus
- Frame is read by every node in a receive buffer
- FAF determines if information is relevant to the node

Figure: Producer/consumer model

Table of Contents

- 1 Introduction
- 2 Physical Layer
- 3 Data Link Layer
- Application Layer
- 5 Summary

Higher Layer Implementations

- CAN specifications do not include application layer tasks
 - Flow Control
 - Device Addressing
 - Fragmentation/Defragmentation
- Several higher layer protocols rely on CAN
- Industrial automation: CANopen, DeviceNet
- Passenger cars: Each manufacturer has its own standard

Table of Contents

- Introduction
- 2 Physical Layer
- 3 Data Link Layer
- 4 Application Layer
- 5 Summary

Advantages & Disadvantages of CAN

CAN implements a distributed priority-based multi-master communication system.

- Advantages:
 - Much more simple and robust than token based access schemes
 - More flexible than TDMA approaches
 - No message will be delayed by lower priority exchanges
- Drawbacks:
 - Relatively low maximum throughput
 - Bus length limited by bandwidth, arbitration, timing
 - Offers no security or authentication schemes

Thanks for your attention!

Questions? Ideas? Suggestions?

References I

- Gianluca Cena and Adriano Valenzano. Operating Principles and Features of CAN Networks. IEIIT-CNR, 2005.
- Gabriel Leen, Donal Heffernan. Expanding Automotive Electronic Systems
- EE JRW Own work.

 CAN ISO11898-2 Network.

Licensed under CC BY-SA 4.0 via Wikimedia Commons, 2015.

http://commons.wikimedia.org/wiki/File: CAN_ISO11898-2_Network.png

Telecommunication
Networks Group

31/32

References II

EE JRW - Own work.

CAN ISO11898-3 Network.

Licensed under CC BY-SA 4.0 via Wikimedia Commons, 2015.

http://commons.wikimedia.org/wiki/File: CAN ISO11898-3 Network.png

Plupp - Own work.

Canbus levels.

Licensed under CC BY-SA 3.0 via Wikimedia Commons, 2015.

http://commons.wikimedia.org/wiki/File: Canbus_levels.svg

> Telecommunication **Networks Group** 4 D F 4 P F F F F F F F

32 / 32