第十周作业参考解答及补充

作业

1. (习题 3.3.1)

设 $f(x) = x^2 + ax + b \in K[x]$ 不可约, $E = K[u_1]$ (其中 $f(u_1) = 0$) 证明: E 必包含 f(x) = 0 的另一个根 (所以 E 是 f(x) 的分裂域).

proof

由于 $u_1 \in E$ 是 f(x) 的根, 因此在 E[x] 中有分解 $f(x) = (x - u_1)f_1(x)$. 而 $\deg(f) = 2$, 故只能是 $\deg(f_1) = 1$, 即 $f_1 = x - u_2$, $u_2 \in E$ 自然是 f(x) 的另一个根.

或设 f(x) 的分裂域是 E', 令 f 的另一个根为 $u_2 \in E'$, 则有 $u_1 + u_2 = a \in K \subseteq E$. 而 $u_1 \in E$, 因此 $u_2 \in E$, 即 E' = E.

注:

若要严谨一点,则不能在 E 中直接使用韦达定理,因为 $u_2 \in E$ 是要证的结论.韦达定理实际上是 f 在其分裂域可以分解成一次因式的乘积 (即分裂),再对比系数得到的结论.而按分裂域的定义可知它是使得 f 分裂的最小扩域.那么直接使用韦达定理是在用结论证结论.不过由于代数闭包总存在且唯一 (见 3.3.2 和 3.3.6),我们总能把任意多项式分解成一次多项式的乘积,所以直接使用事实上是没问题的.

这题也告诉我们, 二次扩张都是正规扩张.

2. (习题 3.3.2)

设 $f(x) = x^3 - 2 \in \mathbb{Q}[x], u_1 = \sqrt[3]{2}$. 证明: $E = \mathbb{Q}[u_1]$ 不包含 f(x) = 0 的其他两个根.

proof

教材例 3.3.4.

由于 $\mathbb{Q} \subseteq \mathbb{C}$, 而 \mathbb{C} 是代数闭域, 我们可以把所有根都明确的写出来. x^3-2 的根为 $\alpha_k = \sqrt[3]{2}e^{\frac{2k\pi i}{3}} = \sqrt[3]{2}\zeta_3^k$, $k = 0, 1, 2, u_1 = \alpha_0$. 而 $\mathbb{Q}[u_1] \subseteq \mathbb{R}$, $\alpha_{1,2} \in \mathbb{C} \setminus \mathbb{R}$.

注:

借此补充代数扩张的一个结论,任何域在同构的意义下都有唯一的代数闭包.这个结果的证明分为两部分,一是存在性,二是 3.3.6 提到的延拓.

定义 若域 K 满足任意次数大于 1 的多项式 $f(x) \in K[x]$ 在 K 中都有根.

我们称 K 是一个代数闭域. 根据教材的定义 2.4.2, K 是代数闭域等价于 K[x] 中的不可约多项式都是一次多项式. 即 f(x) 总能分解成一次多项式的乘积.

由定义, K 是代数闭域意味着 K 无法再做非平凡的代数扩张了. 若有代数扩张 $K \subseteq L$ 且 [L:K] > 1, 则存在 $\alpha \in L \setminus K$ 在 K 上代数, 即存在非零多项式 $f(x) \in K[x]$ 使得 $f(\alpha) = 0$, 而 K 是代数闭域, f(x) 的所有根都在 K 里, 这就矛盾了. 换句话说, 代数闭域做代数扩张只能得到它自己. 反过来也是对的, 若 K 没有非平凡代数扩张, 且有次数大于 1 的不可约多项式, 那根据 3.1.2 就能做 真代数扩张, 矛盾.

定义 设域扩张 $K \subseteq L$, 考虑所有的代数元

$$E = \{ \alpha \in L \mid \alpha \in K$$
上代数 $\}$

由教材的推论 3.1.1 可知 E 是一个中间域, 且 $K \subseteq E$ 是代数扩张. E 称为 K 在 L 中的 (相对) 代数闭包.

比如对于扩张 $\mathbb{Q} \subseteq \mathbb{R}$, 这里的 E 就是所有的实代数数. 把 \mathbb{R} 换成 \mathbb{C} , E 就是所有的复代数数, 也就是 \mathbb{Q} 的代数闭包, 一般用 $\overline{\mathbb{Q}}$ 表示.

相对代数闭包 E 在 L 内没有非平凡代数扩张, 即若 $E \subseteq E' \subseteq L$ 且 $E \subseteq E'$ 是代数扩张, 则 E = E'. 证明这个结论需要一个很基本的定理.

定理 代数扩张的代数扩张仍是代数扩张,即代数扩张是可以传递的. 《近世代数引论》p105, Serge Lang《Algebra》p228. 即对域扩张 $K \subseteq E \subseteq L$, L/K 是代数扩张 $\iff E/K$ 和 L/E 都是代数扩张.

那么 E'/E 代数, E/K 代数, 就有 E'/K 代数. 但根据 E 的定义是所有 K 上代数元构成的中间域, 因此 $E' \subseteq E$, 所以 E' = E.

定义 设 $K \subseteq L$ 是代数扩张, 若 L 是代数闭域, 称 L 是 K 的 (绝对) 代数闭包. 一般用记号 \overline{K} 表示. (所以教材定理 3.3.2 的记号容易引起误解)

一般说代数闭包默认指绝对代数闭包.

命题 设 $K \subseteq L$ 是域扩张, L 是代数闭域, E 是 K 在 L 中的相对代数闭包, 则 $E = \overline{K}$.

只需证明这样得到的相对代数闭包是一个代数闭域,注意到次数大于 1 的多项式 $f(x) \in E[x] \subseteq L[x]$, 而 L 是代数闭的, 因此 $f(x) = (x - \alpha_1) \cdots (x - \alpha_n)$, $\alpha_1, \cdots, \alpha_n \in L$ 在 E 上代数,自然就在 K 上代数,按 E 的定义就有 $\alpha_1, \cdots, \alpha_n \in E$. 从而 $f(x) \in E[x]$ 总能在 E 上分解称一次多项式的乘积.

若该命题成立, 那么根据上面的讨论, 任何域都存在代数闭包, 唯一性见 3.3.6. 这个命题的证明是构造性的, 构造方法属于 Artin, 需要用到 2.1.6 注记里补充的命题. 基本的思路就是构造一个域扩张 $K \subseteq K_1$ 使得 K[x] 中所有非常数多项

式在 K_1 中都有至少一个根,这个操作做可数次之后就能得到一个代数闭域. 类似 2.3.2 和 3.1.2 中说的那样,令 $S = \{X_f \mid f \in K[x] \setminus K\}$,即用 K[x] 里的非常数多项式来编号,得到一个无穷的未定元构成的集合,然后考虑多项式环 K[S]. 此时记 K[S] 的一个理想 $I = (f(X_f))_{f \in K[x] \setminus K} = \sum_{f \in K[x] \setminus K} (f(X_f))$,即所有这种形式的 K[S] 里的多项式生成的理想(2.1.6 的注记),如果商掉这个理想,那么和2.3.2 一样, $\overline{X_f}$ 就是 f 的一个根,但 I 不一定是极大理想,因此需要用到 2.1.6 注记里补充的命题(新增加的),即考虑 $I \subseteq \mathfrak{m}$,其中 \mathfrak{m} 是极大理想。不过需要先验证 $I \neq (1)$,这是容易的,若 I = (1),意味着 $1 = \sum_{i=1}^n a_i f_i(X_{f_i})$,而这是不可能的,因为我们可以用 n 次 3.1.2 得到扩张 $K \subseteq E$ 让这里的 f_i 都有根,赋值(这里用的是多元的 2.4.5)之后就得到 1 = 0,矛盾。因此这样我们得到了 $K_1 = K[S]/\mathfrak{m}$. 然后做可数次 $K \subseteq K_1 \subseteq \cdots \subseteq K_i \subseteq \cdots$ 最终得到的代数闭域就是 $L = \bigcup_{i=1}^n K_i$.

3. (习题 3.3.3)

设 $L \in n$ 次多项式 $f(x) \in K[x]$ 的分裂域, 证明: $[L:K] \leq n!$.

proof

对 n 归纳.

n=1 或 f 已经在 K 上分裂,都有 [L:K]=1. 假设结论对 n 成立,现 考虑 $\deg(f)=n+1$,且 f 在 K 上不分裂,那么存在 f 的不可与因子 g 满足 $\deg(g)>1$ (否则 f 在 K 上分裂). 设 $u\in L$ 是 g(x) 的一个根,由 3.1.2, $K[u]\cong K[x]/(g(x))$ 是中间域, $[K[u]:K]=\deg(g)\leqslant \deg(f)=n+1$,且在 K[u][x] 上有分解 f(x)=(x-u)h(x), $\deg(h)=n$. 由归纳假设,此时 L 是 n 次多项式 $h(x)\in K[u][x]$ 的分裂域,有 $[L:K[u]]\leqslant n!$,从而 $[L:K]=[L:K[u]]\cdot [K[u]:K]\leqslant (n+1)!$.

4. (习题 3.3.4)

构造 $x^5 - 2 \in \mathbb{Q}[x]$ 的一个分裂域 L, 并求 $[L : \mathbb{Q}]$.

proof

仍使用 3.1.14 分析 degree 的方法, x^5-2 的根为 $\sqrt[5]{2}\zeta_5^k$, k=0,1,2,3,4. $L=\mathbb{Q}\left[\sqrt[5]{2}\zeta_5^i\right]=\mathbb{Q}\left[\sqrt[5]{2},\zeta_5\right]$. 借助中间域 $\mathbb{Q}[\sqrt[5]{2}]$. 一方面, $\left[\mathbb{Q}[\sqrt[5]{2}]:\mathbb{Q}\right]=5(3.1.14)$; 另一方面, $\left[\mathbb{Q}[\zeta_5]:\mathbb{Q}\right]=4(3.1.5)$. 因此 $5,4\mid [L:\mathbb{Q}]$, 由于 (4,5)=1, 因此 $4\cdot 5=20\mid [L:\mathbb{Q}]$, 另一方面 $x^5-2\in\mathbb{Q}[\zeta_5][x]$ 仍是 $\sqrt[5]{2}$ 的化零多项式, 又有 $[L:\mathbb{Q}]\leqslant 20$, 故 $[L:\mathbb{Q}]=20$.

5. (习题 3.3.5)

确定多项式 $x^{p^n} - 1 \in \mathbb{F}_p[x]$ 在 \mathbb{F}_p 上的分裂域 $(n \in \mathbb{N})$.

proof

特征 p 的域的多项式环上 Frobenius(2.1.2) 也是成立的, 故有 $x^{p^n} - 1 = x^{p^n} - 1^{p^n} = (x-1)^{p^n}$. 从而 x^{p^n} 在 \mathbb{F}_p 上分裂, 分裂域即 \mathbb{F}_p .

6. (习题 3.3.7)

令 $f(x) = (x^2 - 2)(x^2 - 3)$, $K = \mathbb{Q}[x]/(x^2 - 2) = \mathbb{Q}[u_1]$, 此处 $u_1 = \overline{x} \in \mathbb{Q}[x]/(x^2 - 2)$. 试证明:

- (1) K 是一个域, 且 $x^2 3$ 在 K[x] 中不可约;
- (2) $L = K[x]/(x^2 3) = K[u_2]$ (此处 $u_2 = \overline{x} \in K[x]/(x^2 3)$) 是 $f(x) = (x^2 2)(x^2 3)$ 的分裂域, 且 $[L : \mathbb{Q}] = 4$.

proof

- (1) K 是域是因为 (x^2-2) 是极大理想, 见 3.1.2 和 3.1.14. x^2-3 在 K 中不可约在 3.1.4 已证.
- (2) 根据 3.1.2 和 (1), $L = \mathbb{Q}[u_1, u_2]$ 是域. 且有分解 $f(x) = (x u_1)(x + u_1)(x u_2)(x + u_2)$, 因此 L 是 f(x) 的分裂域 (3.3.1). 且有 $[L : \mathbb{Q}] = [L : K] \cdot [K : \mathbb{Q}] = 2 \cdot 2 = 4$.