

Chapter 6

Dynamic Programming

Slides by Kevin Wayne. Copyright © 2005 Pearson-Addison Wesley. All rights reserved.

Algorithmic Paradigms

Greed. Build up a solution incrementally, myopically optimizing some local criterion.

Divide-and-conquer. Break up a problem into two sub-problems, solve each sub-problem independently, and combine solution to sub-problems to form solution to original problem.

Dynamic programming. Break up a problem into a series of overlapping sub-problems, and build up solutions to larger and larger sub-problems.

Dynamic Programming History

Bellman. Pioneered the systematic study of dynamic programming in the 1950s.

Etymology.

- Dynamic programming = planning over time.
- Secretary of Defense was hostile to mathematical research.
- Bellman sought an impressive name to avoid confrontation.
 - "it's impossible to use dynamic in a pejorative sense"
 - "something not even a Congressman could object to"

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

Areas.

- Bioinformatics.
- Control theory.
- Information theory.
- Operations research.
- Computer science: theory, graphics, AI, systems,

Some famous dynamic programming algorithms.

- Viterbi for hidden Markov models.
- Unix diff for comparing two files.
- Smith-Waterman for sequence alignment.
- Bellman-Ford for shortest path routing in networks.
- Cocke-Kasami-Younger for parsing context free grammars.

6.1 Weighted Interval Scheduling

Weighted Interval Scheduling

Weighted interval scheduling problem.

- \blacksquare Job j starts at s_j , finishes at f_j , and has weight or value v_j .
- Two jobs compatible if they don't overlap.
- Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

Recall. Greedy algorithm works if all weights are 1.

- Consider jobs in ascending order of finish time.
- Add job to subset if it is compatible with previously chosen jobs.

Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_1 \le f_2 \le ... \le f_n$. Def. p(j) = largest index i < j such that job i is compatible with j.

Ex:
$$p(8) = 5$$
, $p(7) = 3$, $p(2) = 0$.

Dynamic Programming: Binary Choice

Notation. OPT(j) = value of optimal solution to the problem consisting of job requests 1, 2, ..., j.

- Case 1: OPT selects job j.
 - can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j 1 }
 - must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., p(j)

 optimal substructure

Case 2: OPT does not select job j.

- must include optimal solution to problem consisting of remaining compatible jobs 1, 2, ..., j-1

$$OPT(j) = \begin{cases} 0 & \text{if } j = 0\\ \max \{v_j + OPT(p(j)), OPT(j-1)\} & \text{otherwise} \end{cases}$$

Weighted Interval Scheduling: Brute Force

Brute force algorithm.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Compute-Opt(j) {
   if (j = 0)  
       return 0
   else
      return max(v_j + Compute-Opt(p(j)), Compute-Opt(j-1))
}
```

Weighted Interval Scheduling: Brute Force

Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.

Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

Weighted Interval Scheduling: Memoization

Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s_1, ..., s_n, f_1, ..., f_n, v_1, ..., v_n
Sort jobs by finish times so that f_1 \leq f_2 \leq \ldots \leq f_n.
Compute p(1), p(2), ..., p(n)
M[0] = 0
for j = 1 to n \leftarrow global array
   M[j] = empty
M-Compute-Opt(j) {
   if (M[j] is empty)
       M[j] = max(w_j + M-Compute-Opt(p(j)), M-Compute-Opt(j-1))
   return M[j]
```

Weighted Interval Schedule

Análise Justa

- Complexidade = soma dos custos de todas as chamadas
- Vamos analisar quantas chamadas M-Opt(i) faz
 - Na primeira vez que M-OPT(i) é chamada, ela faz duas chamadas.
 - Nas demais vezes M-OPT(i) não realiza chamadas
 - Portanto, M-OPT(i) faz ao todo 2 chamadas
- O total de chamadas é O(n) e cada chamada tem custo O(1)

Portanto, o algoritmo gasta O(n).

Weighted Interval Scheduling: Finding a Solution

- Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
- A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
   if (j = 0)
      output nothing
   else if (v<sub>j</sub> + M[p(j)] > M[j-1])
      print j
      Find-Solution(p(j))
   else
      Find-Solution(j-1)
}
```

• # of recursive calls \leq n \Rightarrow O(n).

Weighted Interval Scheduling: Bottom-Up

Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s_1,...,s_n, f_1,...,f_n, v_1,...,v_n

Sort jobs by finish times so that f_1 \leq f_2 \leq ... \leq f_n.

Compute p(1), p(2), ..., p(n)

Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max(v_j + M[p(j)], M[j-1])
}
```

Entrada:

A = (a(1), a(2), ..., a(n)) uma sequência de números reais distintos.

Objetivo:

Encontrar a maior subsequência crescente A

- Exemplo A=(2,3,14,5,9,8,4)
 - (2,3,8) e (3,14) são subsequências crescentes de tamanho 3
 - A maior subsequência crescente de A é 2,3,5,9

- Seja L(i): tamanho da maior subsequência crescente que termina em a(i) (a(i) pertence a subsequencia)
- \blacksquare Exemplo A= (2, 3, 14, 5, 9, 8, 4)
- L(1)=1, L(2)=2, L(3)=3, L(4)=3, L(5)=4,L(6)=4,L(7)=3
- O tamanho da maior subsequência crescente é

$$\max \{ L(1),L(2), ..., L(n) \}$$

Temos a seguinte equação para L(j)

$$L(j) = max_i \{ 1+L(i) | i < j \in a(j) > a(i) \}$$
 para $j>1$ $L(1)=1$

Maior subsequência crescente: Encontrando o tamanho

```
Input: n, a_1, ..., a_n
For j=1 to n
  L(j) \leftarrow 1, pre(j) \leftarrow 0
  For i=1 to j-1
         If A(i) < A(j) and 1+L(i)>L(j) then
              L(j) \leftarrow 1+L(i)
              pre(j)←i
                                                 %(atualiza predecessor)
         End If
  End For
End For
MSC \leftarrow 0
For i=1 to n
                                             % (encontra maior L)
  MSC \leftarrow max\{ MSC, L(i) \}
End For
```

- pre(j): é utilizado para guardar o predecessor de j na maior subsequência crescente
- Complexidade O(n²)

Encontrando a subsequencia (Recursivamente)

```
Input: n, L(1),...,L(n),pre(1),...,pre(n),MSC
j←0
While L(j) <> MSC
   j++
End While
Find Subsequence(j)
Proc Find Subsequence(j)
   if j=0
     Return
   else
      Add j to the solution;
      Find Subsequence(pre(j))
   End if
  Return
```

Complexidade O(n)

Encontrando a subsequencia (iterativamente)

```
Input: n, L(1),...,L(n),pre(1),...,pre(n),MSC,

j←0
While L(j)<> MSC
    j++
End While

While j>0
    Add j to the solution;
    j← pre(j)
End While
```

Complexidade O(n)

Exercícios

- Criar uma versão recursiva que permita encontrar o tamanho da maior subsequencia crescente
- * Provar que toda sequencia tem uma subsequência crescente de tamanho n^{0.5} ou uma subsequência decrescente de tamanho n^{0.5}

6.4 Knapsack Problem

Knapsack Problem

Knapsack problem.

- Given n objects and a "knapsack."
- Item i weighs $w_i > 0$ kilograms and has value $v_i > 0$.
- Weights are integers.
- Knapsack has capacity of W kilograms.
- Goal: fill knapsack so as to maximize total value.

Ex: { 3, 4 } has value 40.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

•

Knapsack Problem: Greedy Attempt

Greedy: repeatedly add item with maximum ratio v_i / w_i . Ex: { 5, 2, 1 } achieves only value = 35 \Rightarrow greedy not optimal.

W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Dynamic Programming: False Start

Def. OPT(i) = max profit subset of items 1, ..., i.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 }
- Case 2: OPT selects item i.
 - accepting item i does not immediately imply that we will have to reject other items
 - without knowing what other items were selected before i, we don't even know if we have enough room for i

Conclusion. Need more sub-problems!

Dynamic Programming: Adding a New Variable

Def. OPT(i, w) = max profit subset of items 1, ..., i with weight limit w.

- Case 1: OPT does not select item i.
 - OPT selects best of { 1, 2, ..., i-1 } using weight limit w
- Case 2: OPT selects item i.
 - new weight limit = w wi
 - OPT selects best of { 1, 2, ..., i-1 } using this new weight limit

$$OPT(i, w) = \begin{cases} 0 & \text{if } i = 0 \\ OPT(i-1, w) & \text{if } w_i > w \\ \max \{ OPT(i-1, w), v_i + OPT(i-1, w-w_i) \} & \text{otherwise} \end{cases}$$

Knapsack Problem: Bottom-Up

Knapsack. Fill up an n-by-W array.

```
Input: n, w_1, ..., w_N, v_1, ..., v_N
for w = 0 to W
  M[0, w] = 0
for i = 1 to n
   for w = 1 to W
      if (w_i > w)
          M[i, w] = M[i-1, w]
      else
          M[i, w] = \max \{M[i-1, w], v_i + M[i-1, w-w_i]\}
return M[n, W]
```

Knapsack Algorithm

		0	1	2	3	4	5	6	7	8	9	10	11
n + 1	ф	0	0	0	0	0	0	0	0	0	0	0	0
	{ 1 }	0	1	1	1	1	1	1	1	1	1	1	1
	{ 1, 2 }	0	1	6	7	7	7	7	7	7	7	7	7
	{ 1, 2, 3 }	0	1	6	7	7	18	19	24	25	25	25	25
	{1,2,3,4}	0	1	6	7	7	18	22	24	28	29	29	40
\downarrow	{1,2,3,4,5}	0	1	6	7	7	18	22	28	29	34	34	40

OPT: { 4, 3 } value = 22 + 18 = 40

z = 22 + 18 = 40 W = 11

Item	Value	Weight
1	1	1
2	6	2
3	18	5
4	22	6
5	28	7

Knapsack Problem: Running Time

Running time. $\Theta(n W)$.

- Not polynomial in input size!
- "Pseudo-polynomial."
- Decision version of Knapsack is NP-complete. [Chapter 8]

Knapsack approximation algorithm. There exists a polynomial algorithm that produces a feasible solution that has value within 0.01% of optimum. [Section 11.8]

Problema da Mochila

- Exercícios: Escrever pseudo-códigos para
 - Obter os itens que devem ir na mochila dado que o vetor M já está preenchido.
 - Calcular M[n,w] utilizando espaço O(W) em vez de O(nW)
 - Criar uma versão recursiva do algoritmo.

6.6 Sequence Alignment

String Similarity

How similar are two strings?

- ocurrance
- occurrence

6 mismatches, 1 gap

1 mismatch, 1 gap

0 mismatches, 3 gaps

Edit Distance

Applications.

- Basis for Unix diff.
- Speech recognition.
- Computational biology.

Edit distance. [Levenshtein 1966, Needleman-Wunsch 1970]

- . Gap penalty δ ; mismatch penalty $\alpha_{pq}.$
- Cost = sum of gap and mismatch penalties.

$$\alpha_{TC}$$
 + α_{GT} + α_{AG} + $2\alpha_{CA}$

$$2\delta + \alpha_{CA}$$

Sequence Alignment

Goal: Given two strings $X = x_1 x_2 ... x_m$ and $Y = y_1 y_2 ... y_n$ find alignment of minimum cost.

Def. An alignment M is a set of ordered pairs x_i - y_j such that each item occurs in at most one pair and no crossings.

Def. The pair $x_i - y_j$ and $x_{i'} - y_{j'}$ cross if i < i', but j > j'.

$$cost(M) = \underbrace{\sum_{(x_i, y_j) \in M} \alpha_{x_i y_j}}_{\text{mismatch}} + \underbrace{\sum_{i: x_i \text{ unmatched}} \delta + \sum_{j: y_j \text{ unmatched}} \delta}_{\text{gap}}$$

Ex: CTACCG VS. TACATG.

Sol: $M = x_2 - y_1, x_3 - y_2, x_4 - y_3, x_5 - y_4, x_6 - y_6.$

Sequence Alignment: Problem Structure

Def. OPT(i, j) = min cost of aligning strings $x_1 x_2 ... x_i$ and $y_1 y_2 ... y_j$.

- Case 1: OPT matches x_i-y_j .
 - pay mismatch for x_i - y_j + min cost of aligning two strings $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_{j-1}$
- Case 2a: OPT leaves x_i unmatched.
 - pay gap for x_i and min cost of aligning $x_1 x_2 \dots x_{i-1}$ and $y_1 y_2 \dots y_j$
- Case 2b: OPT leaves y_i unmatched.
 - pay gap for y_j and min cost of aligning $x_1\,x_2\,\ldots\,x_i$ and $y_1\,y_2\,\ldots\,y_{j-1}$

$$OPT(i, j) = \begin{cases} j\delta & \text{if } i = 0 \\ \alpha_{x_i y_j} + OPT(i-1, j-1) & \text{otherwise} \\ \delta + OPT(i, j-1) & \text{otherwise} \end{cases}$$

$$i\delta & \text{if } j = 0$$

Sequence Alignment: Algorithm

```
Sequence-Alignment(m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
   for i = 0 to m
       M[i, 0] = i\delta
   for j = 0 to n
       M[0, j] = j\delta
   for i = 1 to m
       for j = 1 to n
          M[i, j] = min(\alpha[x_i, y_i] + M[i-1, j-1],
                            \delta + M[i-1, j],
                            \delta + M[i, j-1]
   return M[m, n]
```

Analysis. $\Theta(mn)$ time and space.

English words or sentences: $m, n \le 10$.

Computational biology: m = n = 100,000.10 billions ops OK, but 10GB array?

6.7 Sequence Alignment in Linear Space

Sequence Alignment: Value of OPT with Linear Space

```
Sequence-Alignment(m, n, x_1x_2...x_m, y_1y_2...y_n, \delta, \alpha) {
   for i = 0 to m
       CURRENT[i] = i\delta
   for j = 1 to n
       LAST←CURRENT ( vector copy)
       CURRENT [0] \leftarrow j\delta
       for i = 1 to m
           CURRENT[i] \leftarrow \min(\alpha[x_i, y_i] + LAST[i-1],
                             \delta + LAST[i],
                             \delta + CURRENT[i-1])
return CURRENT[m]
```

- · Two vectors of of m positions: LAST e CURRENT
- O(mn) time and O(m+n) space

Sequence Alignment: Value of OPT with Linear Space

Sequence Alignment: Algorithm for recovering the sequence

```
Find_Sequence (i, j, x<sub>1</sub>x<sub>2</sub>...x<sub>m</sub>, y<sub>1</sub>y<sub>2</sub>...y<sub>n</sub>, δ, α) {
   If i=0 or j=0 return
   Else
        If M[i, j] = α[x<sub>i</sub>, y<sub>j</sub>] + M[i-1, j-1]
              Add pair x<sub>i</sub> y<sub>j</sub> to the solution
              Return Find_Sequence(i-1,j-1)
        Else If M[i,j] = δ + M[i-1, j]
              Return Find_sequence(i-1,j)
        Else return Find_sequence(i,j-1)
}
```

Analysis. $\Theta(mn)$ space and O(m+n) time

Q. Can we avoid using quadratic space?

Easy. Optimal value in O(m + n) space and O(mn) time.

- Compute OPT(i, •) from OPT(i-1, •).
- No longer a simple way to recover alignment itself.

Theorem. [Hirschberg 1975] Optimal alignment in O(m + n) space and O(mn) time.

- Clever combination of divide-and-conquer and dynamic programming.
- Inspired by idea of Savitch from complexity theory.

- Let f(i, j) be shortest path from (0,0) to (i, j).
- Observation: f(i, j) = OPT(i, j).

- Let f(i, j) be shortest path from (0,0) to (i, j).
- Can compute $f(\cdot, j)$ for any j in O(mn) time and O(m + n) space.

- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute by reversing the edge orientations and inverting the roles of (0,0) and (m,n).

- Let g(i, j) be shortest path from (i, j) to (m, n).
- Can compute $g(\cdot, j)$ for any j in O(mn) time and O(m + n) space.

Observation 1. The cost of the shortest path that uses (i, j) is f(i, j) + g(i, j).

Observation 2. let q be an index that minimizes f(q, n/2) + g(q, n/2). Then, the shortest path from (0, 0) to (m, n) uses (q, n/2).

Divide: find some index q that minimizes f(q, n/2) + g(q, n/2) using DP.

• Align x_q and $y_{n/2}$.

Conquer: recursively compute optimal alignment in each piece.

Sequence Alignment: Running Time Analysis Warmup

Theorem. Let T(m, n) = max running time of algorithm on strings of length at most m and n. $T(m, n) = O(mn \log n)$.

$$T(m,n) \leq 2T(m, n/2) + O(mn) \Rightarrow T(m,n) = O(mn \log n)$$

Remark. Analysis is not tight because two sub-problems are of size (q, n/2) and (m - q, n/2). In next slide, we save log n factor.

Sequence Alignment: Running Time Analysis

Theorem. Let T(m, n) = max running time of algorithm on strings of length m and n. T(m, n) = O(mn).

Pf. (by induction on n)

- O(mn) time to compute $f(\cdot, n/2)$ and $g(\cdot, n/2)$ and find index q.
- T(q, n/2) + T(m q, n/2) time for two recursive calls.
- Choose constant c so that:

$$T(m, 2) \le cm$$

 $T(2, n) \le cn$
 $T(m, n) \le cmn + T(q, n/2) + T(m-q, n/2)$

- Base cases: m = 2 or n = 2.
- Inductive hypothesis: $T(m, n) \le 2cmn$.

$$T(m,n) \leq T(q,n/2) + T(m-q,n/2) + cmn$$

$$\leq 2cqn/2 + 2c(m-q)n/2 + cmn$$

$$= cqn + cmn - cqn + cmn$$

$$= 2cmn$$