מבוא למחשבים

מצגת 2 – הוראות בסיסיות בשפת סף

- מבוא •
- אוגרי המעבד
 - פקודת vom
- פקודות אריתמטיות

מבוא

- המעבד הוא לב המחשב והיחידה האחראית על עיבוד הנתונים והפקת המידע.
 - . המעבד מורכב ממיליוני טרנזיסטורים שנמצאים על פיסת סיליקון זעירה
 - הטרנזיסטורים הזעירים אוגרים בתוכם מתחים שונים המייצגים את השפה
 הבינארית שבה המחשב משתמש.
- מתח מסוים בטרנזיסטור שקול לספרה הבינארית 1, ומתח אחר שקול לספרה• הבינארית 0.
- באמצעות קבוצות של אפסים ואחדים מצליח המעבד: ליצור ייצוגים של מספרים ולבצע עליהם פעולות מתמטיות או לוגיות.

https://www.youtube.com/watch?v=Fxv3JoS1uY8&t=1s

• המעבד 8086 אותו ייצרה חברת אינטל בשנת, 1978 היה מהצעדים הראשונים • בפיתוח מעבדים למחשבים אישיים.

:Windows 3.0

Table 1-2: Evolution of Intel's Microprocessors (from the 8086 to the Pentium Pro)

Product	8086	80286	80386	80486	Pentium	Pentium Pro
Year Introduced	1978	1982	1985	1989	1993	1995
Technology	NMOS	NMOS	CMOS	CMOS	BICMOS	BICMOS
Clock rate (MHz)	3-10	10-16	16-33	25-33	60, 66	150
Number of pins	40	68	132	168	273	387
Number of transistors	29,000	134,000	275,000	1.2 mill.	3.1 mill.	5.5 mill.
Physical memory	1M	16M	4G	4G	4G	64G
Virtual memory	None	1G	64T	64T	64T	64T
Internal data bus	16	16	32	32	32	32
External data bus	16	16	32	32	64	64
Address bus	20	24	32	32	32	36
Data types	8/16	8/16	8/16/32	8/16/32	8/16/32	8/16/32

• חוק Moore - החוק נקבע ב-1965: המעבדים מכפילים את מהירות העבודה שלהם כל 18 חודשים.

סביבת עבודה

הוא מדמה מעבדי MICROPROCESSOR EMULATOR - EMU8086 ותחילת 80-6 שנים, שהיו בשימוש במחשבי מקינטוש וחלונות משנות ה-80 ותחילת שנות ה-90.

https://www.malavida.com/en/soft/emu8086/download

אוגרי המעבד

- הן יחידות זיכרון בתוך המעבד Cpu registers אוגרי המעבד
 - כל פקודת מכונה מוגדרת ע"י פעולה ואופרנדים:

INSTRUCTION OP, OP

- : אופרנד יכול להיות
 - 1. אוגר
- 2. קבוע (מספר הנשמר בתוך הקידוד של הפקודה עצמה).

AX אוגר

- ax מורכב מ •

AH	AL

- 8 AL הביטים (בית) הנמוכים.
- AH 8 הביטים (בית) הגבוהים.

BX אוגר

- אורכב מbx •

BH	BL

- . הנמוכים (בית) הנמוכים 8 BL
- . הגבוהים (בית) הגבוהים 8-BH

פקודת mov

- mov פעולת העתקה •
- הפקודה ניתנת לביצוע באופן הבא: (מספר immediate):

MOV register, register MOV register, immediate

עד) - dest - מקור, src) • פורמט פקודה:

MOV dest, src dest <= src

● דוגמה:

MOV AX,7 MOV BX, 3 MOV AH,AL MOV BH, 4 MOV BX,AX

<u>תרגיל 1</u>

- כתוב קטע תוכנה:
- .0 את הערך AL את הערך.
 - .1 את הערך AH-2. העבר ל
 - .2 את הערך BL. העבר ל-3
 - .4 העבר ל-BH את הערך 3.
- 5. העבר ל-BL את הערך 19. 6. העבר לאוגר AL את הערך 12.
 - .7. העבר ל-AH את הערך 23
 - .44 את הערך BL. העבר ל
 - . 9. העבר ל-BH את הערך 13
 - 40 את הערך BX. העבר ל-10

בכל שלב יש לציין בטבלה מהם ערכי הרגיסטרים •

AH	AL	BH	BL	
				1
				2
				3

פקודות אריתמטיות

פקודות ADD,SUB

- פעולת חיבור
- הפקודה ניתנת לביצוע באופן הבא:

ADD/SUB register, register
ADD/SUB register, immediate

• פורמט פקודה:

ADD	dest, src	dest <= dest + src	
SUB	dest, src	dest <= dest - src	

• דוגמה:

MOV AX,2 ADD AX,3	
MOV BX,5	
ADD AX,BX	
ADD BL,AL	
ADD AL,4	
ADD AH,5	
ADD BH,7	
ADD BL,8	
SUB AX,6	
SUB AL,4	
SUB AH,3	

<u>תרגיל 2</u>

• בדוגמה בכל שלב יש לציין בטבלה מהם ערכי הרגיסטרים

AH	AL	BH	BL	
				1
				2
				3

inc, dec פקודות

- .1 פעולת הוספת Inc •
- .1 פעולת חיסור Dec •
- הפקודה ניתנת לביצוע באופן הבא:

INC/DEC register		
------------------	--	--

פורמט פקודה:

INC	dest	dest <= dest + 1	
DEC	dest	dest <= dest - 1	

• דוגמה:

MOV AX,12	
INC AX	
INC AX	
DEC AX	
INC AL	
INC AH	
DEC AH	
DEC AH	
DEC AH	
MOV BX,17	
DEC BL	
DEC BL	
DEC BL	

<u>תרגיל 3</u>

● בדוגמה בכל שלב יש לציין בטבלה מהם ערכי הרגיסטרים

AH	AL	BH	BL	
				1
				2
				3

<u>תרגיל 4</u>

- כתוב קטע תוכנה:
- .42 את הערך BX. העבר ל
 - 2. הוסף ל-INC) 1 bx.
 - .(DEC) 1 bx-a חסר 3
 - .1 bx- חסר מ
 - .32 bl-מ חסר .5
 - .5 bl-ם חסר 6
- .65 את הערך AX את הערך 7
 - .17 al-מ חסר .8
 - .4 al-ם חסר .9
- בכל שלב יש לציין בטבלה מהם ערכי הרגיסטרים •

	BL	BH	AL	AH
1				
2				
3				

פקודת MUL, DIV (8 ביט)

• הפקודה ניתנת לביצוע באופן הבא:

MUL/DIV regist	er en
----------------	---

• כפל 8 ביט, פורמט פקודה:

MUL	register	al <= al * register	
		ah <= extend	

- ,(al אם הפעולה מופעלת על אופרטור בן 8 ביטים (לדוגמה,
 - התוצאה "גולשת" ל-AH.
 - דוגמה:

MOV BX,2	
MOV BX,2	
140)/ 4)/ 6	
MOV AX,2	
MUL BL	
MOV AX,5	
MUL BL	
MOV AX,127	
MUL BL	
MOV AV 400	
MOV AX,128 MUL BL	
IVIUL BL	
MOV AX,129	
MUL BL	

• חילוק 8 ביט, פורמט פקודה:

DIV	register	al <= al / register	(תוצאת חלוקה)	
		ah <= ah % register	(תוצאת שארית)	

- AH-, התוצאה "גולשת" ל-(al), התוצאה "גולשת" ל- • אם הפעולה מופעלת על אופרטור בן
 - דוגמה:

<u>תרגיל 4</u>

- כתוב קטע תוכנה (לאחר כל פקודה אפס את BH ,AH):
 - .1 העבר ל-3 BL.
 - 2. כפול את AL ב-3.
 - .4 BL-3. העבר ל
 - 4. כפול את AL ב-4.
 - .5 BL-5. העבר ל
 - 6. כפול את AL ב-5.
 - .40 את הערך AX את הערך 7
 - .8 העבר ל-8
 - 9. חלק את AL ב-6.
 - .10 העבר ל-3 BL.
 - .3-ם AL ב-3.
 - בכל שלב יש לציין בטבלה מהם ערכי הרגיסטרים •

	BL	BH	AL	AH
1				
2				
3				