LatSeq

A Low-impact Internal Latency Measurement tool for OpenAirInterface

<u>Flavien Ronteix–Jacquet</u>, X. Lagrange, A. Ferrieux, I. Hamchoui, S. Tuffin

Orange Labs Networks, IMT Atlantique

IEEE WCNC'21, 30th March 2021, Nanjing, China

Overview

- 1 Motivation
- 2 On Internal latency
- 3 Implementation
- 4 Results
- 5 Future Work
- 6 Conclusion

Motivation

Motivation

•0

Motivation I

Motivation

End-to-End latency for a cellular internet connection

Motivation II

Radio Latency

Motivation

0

- 4G / 5G NSA = 20ms
- 5G SA = 10ms
- 5G SA + URLLC = 1 to 5 ms

Radio Access Network segment

Latency and jitter on the RAN:

- radio propagation
- radio encoding and processing
- radio access
- radio scheduling and queueing
- radio retransmissions and error corrections

Motivation III

Motivation

Methods to measure latency:

- Network captures
 - pro : per-packet and per-flow latency
 - con : no details on latency components
- Statistics exposed by the Base Station
 - pro : Global statistics on latency
 - con : not always available, no per-packet statistics

Motivation IV

Objective

Motivation

Measure detailed internal latency on the base station, **per packet** with a **low impact** on it.

4 D > 4 A >

4 D > 4 A >

On Internal latency

•0

On Internal latency I

Internal latency

The time between the moment when the packet is fully received by the node from the input interface and the moment when all the segments making up the packet leave the software part of this node to be transmitted.

 $\underline{\text{Flavien Ronteix-Jacquet}}, \text{X. Lagrange, A. Ferrieux, I. Hamchoui, S. Tuffin} \\ \underline{\text{--- LatSeq ----}}$

On Internal latency II

Packet fingerprint

The measurement of a packet at a measurement point.

LatSeg fingerprint

On Internal latency III

Packet journey

The list of successive fingerprints associated to a given packet.

Examples of packet journeys

4 D > 4 A >

Implementation

Implementation I

Tool architecture, low-to-no impact by design

Implementation II

- (A): 16ns / measurement
- (B): lockless mechanism for the single data collector
- (C): rebuilding journeys from Fingerprint list
- (D): filtering packets for fine-grained analysis
- **(E)**: scripts to produce visualizations and statistics

Implementation III

From **LatSeq point** (Instrumentation) to **packet fingerprint** (Formatted output)

Testbed

Implementation: Testbed I

- **OpenAirInterface**
- An open-source software-defined Base Station (LTE/5G)
- Project started in 2014 [1]

Motivation

Our simplified radio access network testbed

Motivation

Implementation: Testbed III

Core	software	OAI EPC
eNodeB	software	OAI main-ocp ¹
	CPU	Intel Xeon 16cores@2.60GHz
	RAM	16GB
	Disk speed	264MBps
	Radio Interface	USRP B210
	LatSeq points	11 (DL), 8 (UL)
Terminal	model	LeEco 2 Android
RAN properties	Radio config	FDD, Band7 (2.68GHz), BW10MHz
	DRB config	RLC AM, default qci
	Scheduler	Default (1UE, 1DRB)
	Expected throughput	35 Mbps (DL), 17 Mbps (UL)
	Radio Signal Quality	Excellent

Testbed setup

¹ https://gitlab.eurecom.fr/oai/openairinterface5g/ Havien-Konleix-Jacquet, X. Lagrange, Al-Ferrieux, I. Hanchour, S. Tuffin — LatSeq —

Results

- Theoritical analysis : measurement point costs 35 CPU cycles
- Unit performance evaluation of measurement module : [10.98,18.56] ns
- **Performance evaluation** of the data collector : only limited by the disk write speed. Overall impact less than 1%.

Motivation

Results: Usage – Statistical Analysis

Space of internal latencies

Results: Usage - Waterfall

Motivation

Waterfall visualization of packet journeys

Results: Usage - Case Study I

Motivation

Network captures at Terminal (Blue) and Base Station output (Red)

Results: Usage - Case Study II

Motivation

LatSeq waterfall for the packet burst

Motivation

Future Workand Discussion

- Can be associated with other analysis approaches (e.g. network captures)
- Add control information (e.g. MAC Control Element, scheduling decision)
- Participate to OpenAirInterface open-source community²
- Ready to be adapted to other projects (e.g. srsLTE)

Conclusion

- A novel method to analyse internal latency of Base Station
- A tested proof of concept to analyse latency dynamics

References I

[1] N. Nikaein, R. Knopp, F. Kaltenberger, L. Gauthier, C. Bonnet, D. Nussbaum, and R. Ghaddab.

Demo: Openairinterface: An open lte network in a pc.

In Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, MobiCom '14, page 305–308, New York, NY, USA, 2014. Association for Computing Machinery. 10.1145/2639108.2641745.