LEBANESE UNIVERSAL ACADEMY

Class: LS

Subject: Biology Duration: 90 min.

Answer the following questions.

Exercise1: (5 points)

Mr. and Mrs. X have a daughter suffering from sickle cell anemia, document 1. This hereditary sickness, whose mode of transmission is autosomal, is characterized by an abnormality in the β -

globin molecule which leads to the deformation of the red blood cells. Mrs. X is pregnant and the couple demand prenatal diagnosis to know if their second child will be affected by sickle cell anemia.

- 1- Specify if the allele responsible for the sickle cell anemia is dominant or recessive.
- 2- Indicate the genotype of Mr. and Mrs. X and that of their sick daughter. Justify the answer.
- 3- Determine the genetic risk for the fetus to be affected by sickle cell anemia.

Document 1

Document 2 reveals the sequences of parts of the non-transcribed strands of the β -globin alleles: HbA is the normal allele while HbS is the mutant allele of the β -globin gene responsible for sickle cell anemia.

A direct diagnostic method by radioactive probe is done for this family. Many copies of the parts of the

 β -globin gene can be obtained from the DNA of each person by this technique. These copies are separated in two lots, and each lot is placed in the presence of a different radioactive probe, document 3; each probe is capable to bind with either allele HbA or HbS. The results of autoradiography are shown in document 4.

Position of the nucleotide	1 20	Probe nº1	GAGGACACCTCTTCAGACGG
HbA	CTCCTGAGGAGAAGTCTGCC	Probe nº2	GAGGACACCTCTTCAGACGG
HbS	CTCCTGTGGAGAAGTCTGCC		

Document 2 Document 3

	Mr. X	Mrs. X	Daughter	Fetus
Probe				
n∘1				
Probe				
n°2				

Document 4

- 4- Specify, based on document 2, the location of the mutation and its type. Justify the answer.
- 5- Determine, in reference to documents 2 and 3, which allele corresponds to each probe used.
- 6- Do the results of document 4 confirm the genotypes you have indicated in question a? Justify the answer. Draw out the genotype and the phenotype of the fetus.
- 7- Justify why prenatal diagnosis is more accurate than a pedigree in detecting a genetic disease.

Exercise 2: (5points)

Albinism is a hereditary disease caused by the absence of melanin, a pigment responsible for hair color. Document 1 represents the pedigree of a family where some members are affected by the disease.

- 1- Specify if the allele responsible for albinism is dominant or recessive.
- 2- Determine the localization for the gene of albinism.
- 3- Indicate the genotypes of individuals I-1, II-1, and III-6.

In the population where this family lives, among each 100 normal individuals 15 are heterozygous.

4- Determine the genetic risk for the fetus IV-3 to be albino.

Document 1

Researchers have identified gene E1 coding for enzyme E1 and gene E2 coding for enzyme E2. These enzymes are essential for the synthesis of melanin according to the following reactions:

PrecursorEnzyme 1_	Tyrosine	Enzyme 2	Melanin
--------------------	----------	----------	---------

To find the exact origin of albinism in this family, the researchers determined the nucleotide sequences of specific parts of the non-transcribed DNA strand of gene E1 (document 2a) and gene E2 (document 2b) for a normal individual and an albino individual of this family.

	Non-transcribed DNA strand of gene E1									
	1	2	3	4	5	6	7	8	9	
Normal individual	ACG	AGG	CCT	ACG	GGC	TTA	TGG	GGC	GAA	
Albino individual	ACG	AGG	CCT	ACG	GGC	TTA	TGG	GGC	GAA	

Document 2a

	Non-transcribed DNA strand of gene E2										
	1	2	3	4	5	6	7	8	9		
Normal individual	ATC	ATG	CGA	ACC	GGC	TGC	TCA	AAC	CCA		
Albino individual	ATC	ATG	CGA	ACC	GGG	CTGC	TGA	AA	C CC	A	

Document 2b

- **3.** Show that the gene responsible for albinism in this family is gene E2.
- **4.** Determine, using the genetic code (document 3), the amino acid sequence of enzyme E2 that corresponds to each of the two individuals, the normal and the albino.
- **5.** Explain how the modification in the nucleotide sequence of the allele coding for enzyme E2 leads to albinism in this family.

GOOD LUCK.