Managing Schema Objects

Objectives

After completing this lesson, you should be able to do the following:

- Define schema objects and data types
- Create and modify tables
- Define constraints
- View the columns and contents of a table
- Create indexes
- Create views
- Create sequences
- Explain the use of temporary tables
- Use the data dictionary

What Is a Schema?

> Schema
Constraints
Indexes
Views
Sequences
Temp Tables
Data Dict

Accessing Schema Objects

Database Instance: orcl.oracle.com Home Performance Administration Maintenance Schema Database Objects XML Database Programs Tables Packages: <u>Configuration</u> Package Bodies Indexes Resources Access Control Lists Views: Procedures: XML Schemas Functions Sy<u>nonyms</u> XMLType Tables <u>Sequences</u> <u>Triggers</u> Database Links Java Classes XMLType Views Directory Objects Java Sourcesi Reorganize Objects Materialized Views BI & OLAP Users & Privileges Users Materialized Views Dimensions Roles Materialized View Logs Cubes **Profiles** Refresh Groups OLAP Dimensions Audit Settings Measure Folders

Naming Database Objects

- The length of names must be from 1 to 30 bytes, with these exceptions:
 - Names of databases are limited to 8 bytes.
 - Names of database links can be as long as 128 bytes.
- Nonquoted names cannot be Oracle-reserved words.
- Nonquoted names must begin with an alphabetic character from your database character set.
- Quoted names are not recommended.

Specifying Data Types in Tables

Common data types:

- CHAR (size [BYTE | CHAR]): Fixed-length character data of size bytes or characters
- VARCHAR2 (size [BYTE | CHAR]): Variable-length character string having a maximum length of size bytes or characters
- DATE: Valid date ranging from January 1, 4712 B.C. through A.D. December 31, 9999
- NUMBER (p, s): Number with precision p and scale s

Creating and Modifying Tables

Understanding Data Integrity

Schema

> Constraints
Indexes
Views
Sequences
Temp Tables
Data Dict

Defining Constraints

Constraint Violations

Examples of how a constraint can be violated are:

- Inserting a duplicate primary key value
- Deleting the parent of a child row in a referential integrity constraint
- Updating a column to a value that is out of the bounds of a check constraint

Constraint States

Constraint Checking

Constraints are checked at the time of:

- Statement execution, for nondeferred constraints
- COMMIT, for deferred constraints

Case: DML statement, followed by COMMIT

- 1 Nondeferred constraints checked
- 2 COMMIT issued
- 3 Deferred constraints checked
- 4 COMMIT complete

Creating Constraints with SQL: Examples

ALTER TABLE countries
ADD (UNIQUE(country_name) ENABLE NOVALIDATE);

ALTER TABLE employees ADD CONSTRAINT pk PRIMARY KEY

(employee_id)

CREATE TABLE t1 (pk NUMBER PRIMARY KEY, fk NUMBER, c1 NUMBER, c2 NUMBER, C2 NUMBER, C2 NUMBER, C3 NUMBER, C4 NUMBER, C5 NUMBER, C5 NUMBER, C6 N

Viewing the Columns in a Table

Viewing the Contents of a Table

Actions with Tables

Dropping a Table

Dropping a table removes:

Data

- DROP TABLE hr.employees PURGE;
- Table structure
- Database triggers
- Corresponding indexes
- Associated object privileges

Optional clauses for the DROP TABLE statement:

- CASCADE CONSTRAINTS: Dependent referential integrity constraints
- PURGE: No flashback possible

Truncating a Table

```
TRUNCATE TABLE hr.employees;
```

- Truncating a table makes its row data unavailable, and optionally releases used space.
- Corresponding indexes are truncated.

Indexes

Schema Constraints

IndexesViewsSequencesTemp Tables

Types of Indexes

These are several types of index structures available to you, depending on the need:

- A B-tree index is in the form of a binary tree and is the default index type.
- A bitmap index has a bitmap for each distinct value indexed, and each bit position represents a row that may or may not contain the indexed value. This is best for low-cardinality columns.

B-Tree Index

Bitmap Indexes

Index Options

- A unique index ensures that every indexed value is unique.
- An index can have its key values stored in ascending or descending order.
- A reverse key index has its key value bytes stored in reverse order.
- A composite index is one that is based on more than one column.
- A function-based index is an index based on a function's return value.
- A compressed index has repeated key values removed.

Creating Indexes

Create I	ndex						
				Show SQL Cancel OK			
General 3	Storage Options P	artitions					
	* Name						
	Schema HR						
	Tablespace <default< td=""><td>></td><td></td><td>Estimate Index Size</td></default<>	>		Estimate Index Size			
	Index Type ெStandard - B-tree ○ Bitmap						
Indexed	Indexed Table Object						
* Table Name HR.EMPLOYEES							
▼TIP The indexed columns and their orders are indicated by the Order field							
Table Columns							
(Column Name	Data Type	Sorting Orde	er Order			
E	EMPLOYEE_ID	NUMBER	ASC •				
F	FIRST_NAME	VARCHAR2	ASC 🔽				
	LACT NAME	VAROUARO.	ASC V				

```
CREATE INDEX my_index ON
employees(last_name, first_name);
```

What Is a View?

Schema Constraints Indexes

> Views

...

LOCATION table

l	LOCAT	ION_ID	STREET_ADDRESS	POSTAL_CODE	CITY	STATE_PROVINCE	CO
		2200	12-98 Victoria Street	2901	Sydney	New South Wales	AU
		2800	Rua Frei Caneca 1360	01307-002	Sao Paulo	Sao Paulo	BR
I		1000	1297 Via Cola di Rie	00989	Roma		IT
		1100	93091 Calle della Testa	10934	Venice		IT

COUNTRY table

CO	COUNTRY_NAME	REGION_ID
AR	Argentina	2
AU	Australia	3
BE	Belgium	1
BR	Brazil	2

CREATE VIEW v AS SELECT location_id, country_name FROM
locations l, countries c
WHERE l.country_id = c.country_id AND c.country_id in
('AU','BR');

Creating Views

Sequences

Schema Constraints Indexes Views

Sequences Temp Tables Data Dict

A sequence is a mechanism for automatically generating integers that follow a pattern.

- A sequence has a name, which is how it is referenced when the next value is requested.
- 1₂3₄5
- A sequence is not associated with any particular table or column.
- The progression can be ascending or descending.
- The interval between numbers can be of any size.
- A sequence can cycle when a limit is reached.

Creating a Sequence

Using a Sequence

Temporary Tables

Schema
Constraints
Indexes
Views
Sequences

> Temp Tables
Data Dict

A temporary table:

- Provides storage of data that is automatically cleaned up when the session or transaction ends
- Provides private storage of data for each session
- Is available to all sessions for use without affecting each other's private data

Temporary Tables: Considerations

 Use the GLOBAL TEMPORARY clause to create temporary tables:

```
CREATE GLOBAL TEMPORARY TABLE employees_temp
ON COMMIT PRESERVE ROWS
AS SELECT * FROM employees;
```

- Use the TRUNCATE TABLE command to delete the contents of the table.
- You can create the following on temporary tables:
 - Indexes
 - Views
 - Triggers

Data Dictionary: Overview

Schema
Constraints
Indexes
Views
Sequences
Temp Tables
Data Dict

SELECT * FROM dictionary;

Data Dictionary Views

	Who Can Query	Contents	Subset of	Notes
DBA_	DBA	Everything	N/A	May have additional columns meant for DBA use only
ALL_	Everyone	Everything that the user has privileges to see	DBA_ views	Includes user's own objects
USER_	Everyone	Everything that the user owns	ALL_ views	Is usually the same as ALL_except for the missing OWNER column. Some views have abbreviated names as PUBLIC synonyms.

Data Dictionary: Usage Examples

- a SELECT table name, tablespace name FROM user_tables;
- SELECT sequence_name, min_value, max_value,
 increment_by FROM all_sequences WHERE
 sequence_owner IN ('MDSYS','XDB');
- SELECT USERNAME, ACCOUNT_STATUS FROM

 dba_users WHERE ACCOUNT_STATUS = 'OPEN';
- d DESCRIBE dba_indexes;

Summary

In this lesson, you should have learned how to:

- Define schema objects and data types
- Create and modify tables
- Define constraints
- View the columns and contents of a table
- Create indexes
- Create views
- Create sequences
- Explain the use of temporary tables
- Use the data dictionary

Practice Overview: Administering Schema Objects

This practice covers the following topics:

- Creating tables with columns
- Creating constraints:
 - Primary Key
 - Foreign Key
 - Check constraint
- Creating indexes