

$\begin{array}{c} {\bf Type 977 \ fitting \ for \ heat \ pump} \\ {\bf SIN-100TE} \end{array}$

Parametric Heat Pump calculation

Dani Carbonell

dani.carbonell@spf.ch

2019/03/12 at: 16:04:54 h

Table 1: Fitted coefficients for the heat pump.

Coefficient	Description	
Coemcient	Description	[1,117]
		[kW]
P_{Q_1}	1^{st} condenser polynomial coefficient	8.8992e+01
P_{Q_2}	2^{st} condenser polynomial coefficient	6.8460e + 02
P_{Q_3}	3^{st} condenser polynomial coefficient	1.8677e + 02
P_{Q_4}	4 st condenser polynomial coefficient	-3.6498e + 02
P_{Q_5}	5^{st} condenser polynomial coefficient	5.8326e+01
P_{Q_6}	6 st condenser polynomial coefficient	-9.8419e + 02
P_{COP_1}	1 st COP polynomial coefficient	5.4931e+00
P_{COP_2}	2 st COP polynomial coefficient	2.4336e+01
P_{COP_3}	3 st COP polynomial coefficient	2.6236e+00
P_{COP_4}	4 st COP polynomial coefficient	-1.0492e+01
P_{COP_5}	5^{st} COP polynomial coefficient	-7.4207e+00
P_{COP_6}	6 st COP polynomial coefficient	-8.8722e+01
\dot{m}_{cond}	$16300.00 \ [kg/h]$	
\dot{m}_{evap}	$16300.00 \ [kg/h]$	
$COP_{nom} \text{ (A0W35)}$	4.34	
$Q_{cond,nom}$ (A0W35)	$91.42 \ [kW]$	
$Q_{evap,nom}$ (A0W35)	$70.34 \ [kW]$	
$W_{comp,nom}$ (A0W35)	$21.08 \ [kW]$	
RMS_{COP}	3.95e - 02	
$RMS_{Q_{cond}}$	1.30e - 01	
$RMS_{W_{comp}}$	2.71e - 01	
Fit model	Average Temperature	

Table 2: Differences between experiments and fitted data for the heat pump. $error = 100 \cdot |\frac{Q_{exp} - Q_{num}}{Q_{exp}}|$ and $RMS = \sqrt{\sum \frac{(Q_{exp} - Q_{num})^2}{n_p}}$ where n_p is the number of data points.

$T_{cond,out}$	$T_{evap,in}$	COP	COP_{exp}	error	Q_{cond}	$Q_{cond,exp}$	error	W_{comp}	$W_{comp,exp}$	error
^{o}C	°Ĉ	[-]	[-]	[%]	[kW]	[kW]	[%]	[kW]	[kW]	[%]
35.00	-5.00	3.95	3.90	1.3	81.40	81.50	0.1	20.61	20.90	1.40
35.00	0.00	4.37	4.40	0.7	92.43	92.30	0.1	21.15	20.98	0.82
35.00	5.00	4.79	4.81	0.5	103.50	103.45	0.1	21.63	21.51	0.54
50.00	-5.00	2.69	2.69	0.2	76.93	76.77	0.2	28.65	28.53	0.40
50.00	0.00	3.10	3.04	2.2	87.69	87.50	0.2	28.25	28.81	1.95
50.00	5.00	3.52	3.45	2.0	98.50	98.35	0.1	27.99	28.52	1.85
45.00	-5.00	3.17	3.20	1.1	79.00	79.13	0.2	24.95	24.72	0.95
45.00	0.00	3.59	3.61	0.7	89.86	89.90	0.0	25.06	24.90	0.67
45.00	5.00	4.00	4.03	0.8	100.77	100.90	0.1	25.18	25.02	0.67
55.00	0.00	2.57	2.60	1.2	84.98	85.10	0.1	33.10	32.73	1.12
55.00	5.00	2.98	2.99	0.4	95.67	95.80	0.1	32.10	32.02	0.23
35.00	10.00	5.20	5.20	0.0	114.61	114.60	0.0	22.05	22.04	0.04
35.00	15.00	5.61	5.57	0.6	125.77	125.75	0.0	22.44	22.57	0.60
50.00	10.00	3.93	3.86	1.7	109.35	109.20	0.1	27.83	28.28	1.58
50.00	15.00	4.34	4.30	0.9	120.26	120.05	0.2	27.74	27.93	0.70
45.00	10.00	4.41	4.45	0.9	111.72	111.90	0.2	25.32	25.13	0.73
45.00	15.00	4.82	4.87	1.0	122.71	122.90	0.2	25.46	25.25	0.82
55.00	10.00	3.39	3.40	0.3	106.42	106.50	0.1	31.40	31.32	0.25
55.00	15.00	3.79	3.83	0.9	117.22	117.20	0.0	30.89	30.61	0.91
Sum				17.4			2.3			16.22
RMS_{COP}	3.95e - 02									
$RMS_{Q_{cond}}$	1.30e - 01									
$RMS_{W_{comp}}$	2.71e - 01									

$\rm Meier/SIN\text{-}100TE/SIN\text{-}100TE\text{-}Qcond.pdf}$

Figure 1: Q_{cond} differences between experiments and fitted data

$\rm Meier/SIN\text{-}100TE/SIN\text{-}100TE\text{-}Qcomp.pdf}$

Figure 2: W_{comp} differences between experiments and fitted data

$\rm Meier/SIN\text{-}100TE/SIN\text{-}100TE\text{-}COP.pdf$

Figure 3: COP differences between experiments and fitted data