Enriching word vectors with subword information

(paper review)

Khoklin I., Kovrigin A., Shibaev E.

Motivation

Why embedding words considering each word as a whole is not the best idea?

Motivation: morphologically rich languages

- Finnish has 15 cases for nouns.
- In French and Spanish most verbs have more than 40 different inflected forms.

The verb parler "to speak", in French orthography and IPA transcription

	Indicative				Subjunctive		Conditional	Imperative
	Present	Simple past	Imperfect	Simple future	Present	Imperfect	Present	Present
Je	/barı/ bau-e	/barie/ baul-ai	/barle/ baul-als	parl-eral /parləre/	/barl/ baul-e	/parlasse	/barlers/ barl-erals	
tu	/parl/es	/parla/	/paule/	parl-eras /parlera/	/parl/	/parlasses	/barlers/ barl-erais	/barl/ barl-e
11	/barl/ barl-e	/barla/ baul-a	/barle/	parl-era /paslesa/	/barl/	/paʁlɑ/	/barlers/ barl-etait	
nous	/parl-ons	parl-âmes /parlam/	parl-ions /paslj5/	parl-erons /paʁləʁɔ/	/parl-ions	/parl-assions	parl-erions /pauleuj5/	/parl5/
vous	/parle/	/parlat/	/parlje/	parl-erez /parləre/	/parl-iez	parl-assiez /parlasje/	/barlarie/ bau-euez	/parle/
lis	parl-ent /pasl/	/paule:u/	/paule/	parl-eront /paslas5/	/parl/	parl-assent /paulas/	/parleralent	

The conjugations of a verb "to speak" in French.

talo 'house'	singular	plural	
nominative	talo	talot	
genitive	talon	talojen	
partitive	taloa	taloja	
inessive	talossa	taloissa	
elative	talosta	taloista	
illative	taloon	taloihin	
adessive	talolla	taloilla	
ablative	talolta	taloilta	
allative	talolle	taloille	
essive	talona	taloina	
translative	taloksi	taloiksi	
instructive		taloin	
abessive	talotta	taloitta	
comitative	Ŧ.	taloine+POS	

All declinations of a word "house" in Finnish

Motivation: rare words & amount of data for training

- Languages have big tails of rare words.
- Hence, "whole word embeddings" require an immense amount of data to learn properly and, for rare words, the embeddings end up being bad.

Proposal: Subword model

- Proposal: represent each word by character n-grams
- Word embedding is a sum of n-gram embeddings
- Technicalities:
 - Boundary symbols < and > added
 - The whole word is added as a special sequence
 - In practice, all n-grams where3 <= n <= 6 are taken

Qualitative analysis: Subword importance

- Analyze learned embeddings
- Rank n-grams by importance
 - Remove n-gram from the sum
 - Compute cosine similarity between word embedding and word embedding without the n-gram
 - Lower similarity → higher importance

	word		n-grams	ï
	autofahrer	fahr	fahrer	auto
	freundeskreis	kreis	kreis>	<freun< td=""></freun<>
DE	grundwort	wort	wort>	grund
	sprachschule	schul	hschul	sprach
	tageslicht	licht	gesl	tages
5	anarchy	chy	<anar< td=""><td>narchy</td></anar<>	narchy
	monarchy	monarc	chy	<monar< td=""></monar<>
	kindness	ness>	ness	kind
	politeness	polite	ness>	eness>
EN	unlucky	<un< td=""><td>cky></td><td>nlucky</td></un<>	cky>	nlucky
	lifetime	life	life	time
	starfish	fish	fish>	star
	submarine	marine	sub	marin
	transform	trans	<trans< td=""><td>form</td></trans<>	form
FR	finirais	ais>	nir	fini
	finissent	ent>	finiss	<finis< td=""></finis<>
	finissions	ions>	finiss	sions>

Qualitative analysis: Subword similarity

- Discover which n-grams are considered similar
- Calculate cosine similarity between subword embeddings

Results. Human similarity judgement

The authors compared word similarity through human judgment and cosine similarity of generated embeddings across various languages. They also distinguished between common and rare English words in their datasets.

Their method was compared with CBOW and Skip-gram baselines, showing superior performance on all datasets, with the exception of the English WS353 dataset. Notably, the proposed model's computation of vectors for out-of-vocabulary words (sisg) consistently surpassed the alternative approach of not computing these vectors (sisg-).

		sg	cbow	sisg-	sisg
AR	WS353	51	52	54	55
DE	Gur350	61	62	64	70
	Gur65	78	78	81	81
	ZG222	35	38	41	44
En	RW	43	43	46	47
	WS353	72	73	71	71
Es	WS353	57	58	58	59
FR	RG65	70	69	75	75
Ro	WS353	48	52	51	54
RU	HJ	59	60	60	66

There are two ways to deal with out of vocabulary words:

- sigs sum of n-grams
- sigs- null vector

Results. Word analogy tasks

Word analogy task is questions, of the form A is to B as C is to D, where D must be predicted by the models.

They observe that morphological information significantly improves the syntactic tasks; the approach outperforms the baselines. In contrast, it does not help for semantic questions, and even degrades the performance for German and Italian.

		sg	cbow	sisg
Cs	Semantic	25.7	27.6	27.5
	Syntactic	52.8	55.0	77.8
DE	Semantic	66.5	66.8	62.3
	Syntactic	44.5	45.0	56.4
En	Semantic	78.5	78.2	77.8
	Syntactic	70.1	69.9	74.9
Іт	Semantic	52.3	54.7	52.3
	Syntactic	51.5	51.8	62.7

Results. Effect of the size of the training data

The approach is more robust because it is able to model infrequent words: authors used different proportion of the training dataset and measured the performance on the test dataset.

They noticed that:

- For all datasets, and all sizes, the proposed approach (sisg) performs better than the baseline.
- Proposed approach provides very good word vectors even when using very small training datasets.

Results. Summary

- Morphologically Rich Languages: The model works really well with languages that have lots of different word forms, outperforming others because it's great at understanding their complexity.
- Handling of Rare Words: Leveraging n-grams, the model effectively captures information from rare words, ensuring robust and meaningful embeddings..
- **Training on Limited Data**: Demonstrating efficiency, the model achieves impressive results even with a small proportion of training data, making it suitable for tasks with restricted dataset sizes.

Thank you for your attention!