Table des matières

Ι	Continuité en un point	1
	I. 1 Définition de la continuité en un point :	1
	I. 2 Continuité à droite et à gauche en un point	2
	I. 3 Lien entre continuité à droite, à gauche et continuité en un point	2
Π	Continuité sur un intervalle	2
	II. 1 Définition de la continuité sur un intervalle	2
	II. 2 Continuité des fonctions usuelles	3
	II. 3 Continuité et opérations algébriques	3
	II. 4 Continuité et composition entre deux fonctions	3
II.	I Prolongement par continuité	4
	III. 1Prolongement par continuité	4
	III. 2Prolongement par continuité à droite et à gauche	4
ΙV	Théorèmes sur les fonctions continues définies sur un intervalle	5
	IV. 1 Composition entre une fonction et une suite, application aux suites récurrentes :	5
	IV. 2Théorème des valeurs intermédiaires	5
	IV. 3Théorème de la bijection	5
	IV. 4Fonction continue sur un segment	6

Chapitre 12: Continuite

Dans tout ce qui suit, les fonctions considérées sont des fonctions numériques.

f désigne une fonction de \mathbb{R} dans \mathbb{R} . Son domaine de définition noté \mathcal{D}_f est un intervalle ou une réunion d'intervalles.

I Continuité en un point

I. 1 Définition de la continuité en un point :

Définition 1. Soit $x_0 \in \mathcal{D}_f$. On dit que la fonction f est continue en x_0 si

Exercice 1. 1. Étudier la continuité en 0 de la fonction f définie par $f(x) = \begin{cases} x \ln(x) & \text{si } x > 0 \\ 0 & \text{si } x = 0. \end{cases}$

2. Étudier la continuité en 1 de la fonction
$$f$$
 définie par $f(x) = \begin{cases} \frac{\ln(x)}{x-1} & \text{si } x > 0, \ x \neq 1 \\ 2 & \text{si } x = 1. \end{cases}$

I. 2 Continuité à droite et à gauche en un point

Lorsque la fonction se comporte de façon différente à droite et à gauche de $x_0 \in \mathcal{D}_f$, on doit regarder la continuité à droite et à gauche en x_0 .

Exemple type : les fonctions définies par des raccords.

Définition 2. Soit f une fonction définie en x_0 . On suppose que x_0 n'est pas une borne de \mathcal{D}_f .

Exercice 2. Étudier la continuité en 0 à droite et à gauche de la fonction partie entière.

I. 3 Lien entre continuité à droite, à gauche et continuité en un point

Proposition 1. Soit f une fonction définie en x_0 , où x_0 n'est pas une extrémité de \mathcal{D}_f . On a alors :

f continue en $x_0 \iff \dots \iff \dots$

Exemple 1. Étudier la continuité en 0 de la fonction partie entière.

Exercice 3. Étudier la continuité au point de raccord des fonctions suivantes :

1.
$$f(x) = \begin{cases} \frac{\sin(x)}{x} & \text{si } x > 0 \\ 1 & \text{si } x = 0 \\ \frac{e^x - 1}{x} & \text{si } x < 0 \end{cases}$$

2.
$$f(x) = \begin{cases} e^{-\frac{1}{x}} & \text{si } x \neq 0 \\ 0 & \text{si } x = 0 \end{cases}$$

3.
$$f(x) = \begin{cases} \frac{\sin(3x)}{e^x - 1} & \text{si } x > 0 \\ -\frac{1}{2} & \text{si } x = 0 \\ \frac{\sqrt{1 - x} - 1}{x} & \text{si } x < 0 \end{cases}$$

4.
$$f(x) = \begin{cases} \frac{\ln(1+x^2)}{x} & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

II Continuité sur un intervalle

II. 1 Définition de la continuité sur un intervalle

Définition 3. Soit I un intervalle de \mathbb{R} non réduit à un point.

- \bullet L'ensemble des fonctions continues sur I est noté $\ldots\ldots\ldots$ ou $\ldots\ldots$
- On dit que f

II. 2 Continuité des fonctions usuelles

En repassant par la définition, on peut ainsi démontrer la continuité des fonctions usuelles suivantes:

II. 3 Continuité et opérations algébriques

Proposition 2. Soient I un intervalle quelconque de \mathbb{R} et $\lambda \in \mathbb{R}$. Si f et g sont deux éléments de $\mathcal{C}(I)$ alors

-
-

Continuité et composition entre deux fonctions II. 4

Proposition 3. Soient I et J deux intervalles de \mathbb{R} .

Si $f \in \mathcal{C}(I)$ et $g \in \mathcal{C}(J)$ avec $f(I) \subset J$ alors

Méthode pour montrer la continuité sur un intervalle :

Par somme, produit, composée, quotient dont le dénominateur ne s'annule pas de fonctions usuelles.

Exercice 4. Étudier la continuité sur \mathcal{D}_f des fonctions suivantes :

$$1. \ f(x) = \sqrt{\frac{1+x}{2}}$$

2.
$$f(x) = \frac{e^{-x^2}}{x}$$

2.
$$f(x) = \frac{e^{-x^2}}{x}$$

3. $f(x) = \ln(e^{-x^4} + 3)$

4.
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right) & \text{si } x \neq 0\\ 1 & \text{si } x = 0 \end{cases}$$

5.
$$f(x) = \begin{cases} \frac{\ln(x)}{\tan(\pi x)} & \text{si } x \neq 1\\ 1 & \text{si } x = 1 \end{cases}$$

III Prolongement par continuité

La fonction f est définie au voisinage de x_0 MAIS PAS en x_0 : $x_0 \notin \mathcal{D}_f$. On calcule donc $\lim_{x \to x_0} f(x)$ pour savoir si on peut prolonger par continuité la fonction en x_0 .

III. 1 Prolongement par continuité

Définition 4. Soient $x_0 \in \mathbb{R}$ et une fonction f telle que : $\begin{cases} f \text{ non définie en } x_0 \\ f \text{ admet une limite finie en } x_0 \text{ notée } l. \end{cases}$

Alors la fonction \tilde{f} définie par :

s'appelle le prolongement par continuité de f en x_0 . Par abus de notation, on la note encore

III. 2 Prolongement par continuité à droite et à gauche

Lorsque la limite en x_0 n'existe pas, cela vient le plus souvent du fait que les limites en x_0 à droite et à gauche ne sont pas les mêmes. On peut alors regarder si la fonction est prolongeable par continuité à droite ou à gauche.

Proposition 4. Existence du prolongement par continuité à droite ou à gauche : Soit f une fonction non définie en x_0 .

- Prolongement par continuité à droite :

 - \star Dans ce cas, le prolongement \tilde{f} est défini par :
- Prolongement par continuité à gauche :
 - \star f admet un prolongement par continuité à gauche en x_0 si
 - \star Dans ce cas, le prolongement \tilde{f} est défini par :

Exercice 5. Étudier les éventuels prolongements par continuité des fonctions suivantes :

1.
$$f(x) = e^{\frac{1}{x}}$$

2.
$$g(x) = \begin{cases} \frac{\ln x}{x-1} & \text{si } x > 1\\ \frac{x}{-x^2 - x + 2} & \text{si } x < 1. \end{cases}$$

IV Théorèmes sur les fonctions continues définies sur un intervalle

IV. 1 Composition entre une fonction et une suite, application aux suites récurrentes :

On rappelle le résultat vu lors du chapitre sur les suites.

Proposition 5. Soient f une fonction numérique définie sur \mathcal{D}_f et une suite $(u_n)_{n\in\mathbb{N}}$. Si

Alors

Exercice 6. Calculer les limites éventuelles de la suite $(u_n)_{n\in\mathbb{N}}$ définie par : $u_0>0$ et pour tout $n\in\mathbb{N}$: $u_{n+1}=f(u_n)$ avec $f(x)=\ln{(2+x)}$.

IV. 2 Théorème des valeurs intermédiaires

Le théorème

Exercice 7. 1. Montrer que toute fonction polynôme de degré 3 a au moins une racine réelle sur \mathbb{R} . De même montrer que toute fonction polynôme de degré impair a au moins une racine réelle sur \mathbb{R} .

- 2. Soit $f: [a,b] \to [a,b]$ une fonction continue. Montrer qu'elle admet un point fixe.
- 3. Soient deux fonctions continues $f: [0,1] \to \mathbb{R}$ et $g: [0,1] \to \mathbb{R}$ vérifiant f(0) > g(0) et f(1) < g(1). Montrer qu'il existe $c \in [0,1[$ tel que f(c) = g(c).

IV. 3 Théorème de la bijection

Théorème de la bijection et fonction réciproque

Exercice 8. 1. Étude de la bijectivité de la fonction $f: x \mapsto x^3 + 2^x$.

2. Étude de la bijectivité de la fonction $f: x \mapsto \frac{x+2}{x-2}$. Donner ensuite l'expression de f^{-1} .

Fonction arctangente

- Monotonie : la fonction arctangente est
- Parité : la fonction arctangente est

Fonctions arccosinus et arcsinus

Ces fonctions ne font pas partie des fonctions usuelles du programme : il faut refaire la démonstration pour démontrer leur existence et leurs propriétés.

Exercice 9. • Montrer que la fonction cosinus est bijective de $[0, \pi]$ dans [-1, 1]. Sa bijection réciproque est appelée fonction arccosinus, et est notée arccos. Faire sa représentation graphique.

• Montrer que la fonction sinus est bijective de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans [-1, 1]. Sa bijection réciproque est appelée fonction arcsinus, et est notée arcsin. Faire sa représentation graphique.

Exercice 10. 1. Étude des points fixes de la fonction tangente sur $\left]\frac{\pi}{2}, \frac{3\pi}{2}\right[$.

- 2. Soit $n \in \mathbb{N}^*$ fixé. Montrer qu'il existe un unique $u_n \in \left]2n\pi, 2n\pi + \frac{\pi}{2}\right[$ tel que $u_n \sin{(u_n)} = 1$.
- IV. 4 Fonction continue sur un segment

Exemples	es d'intervalles de $\mathbb R$ non segment :	
)
Théorèn	me 9. Théorème d'une fonction continue sur un segment :	
•		
• Plu	as précisement, si f est continue sur $[a,b]$ alors :	

Exercice 11. Montrer que la fonction f définie par $f(x) = x^{12} - 2x^5 + 3x^3 - 1$ admet un minimum sur \mathbb{R} .