Supplemental Instructions

Niklas Gustafsson niklgus@student.chalmers.se Gustav Örtenberg gusort@student.chalmers.se

2016-11-29

Determinanter

1.

Beräkna determinanterna till följande matriser. Baserat på determinanterna, kan ni säga om någon av matriserna är inverterbara?

- a) $\begin{bmatrix} 1 & 2 \\ 3 & 5 \end{bmatrix}$
- b) $\begin{bmatrix} -2 & 10 \\ 1 & 5 \end{bmatrix}$
- c) $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 9 \\ 3 & 6 & -1 \end{bmatrix}$
- $d) \begin{bmatrix} 3 & 6 & 9 \\ 2 & 7 & -2 \\ 4 & 11 & 24 \end{bmatrix}$
- e) $\begin{bmatrix} 2 & 4 & 8 & 4 \\ 3 & 9 & -6 & -3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 5 & 7 \end{bmatrix}$
- $f) \quad \begin{bmatrix} 2 & 4 & 8 & 4 \\ 3 & 9 & -6 & -3 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{bmatrix}$

Linjära avbildningar

2.

Låt
$$f(\vec{x}) = f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} x+y \\ x-y \end{bmatrix}$$
.

- a) Bevisa att $f(\vec{x})$ är en linjär avbildning.
- b) Låt $\vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Beräkna $f(\vec{v})$.
- c) Beräkna standardmatrisen A för $f(\vec{x})$.
- d) Beräkna nu $\vec{v} \cdot A$ och verifiera att det stämmer med ert svar i b).

3.

Låt
$$g(\vec{x}) = f(\begin{bmatrix} x \\ y \end{bmatrix}) = \begin{bmatrix} 2 \cdot y \\ 3 \cdot x \end{bmatrix}$$
.

- a) Bevisa att $g(\vec{x})$ är en linjär avbildning
- b) Låt $\vec{v} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$. Beräkna $f(\vec{v})$.
- c) Beräkna standardmatrisen A för $g(\vec{x})$.
- d) Beräkna nu $\vec{v} \cdot A$ och verifiera att det stämmer med ert svar i b).
- e) Låt nu $h(\vec{x}) = f(g(\vec{x}))$. Är detta en linjär avbildning?
- f) Kan ni beräkna en standardmatris för $h(\vec{x})$?

4.

Bestäm standardmatrisen för den linjära avbildning i R^2 som först roterar $\frac{\pi}{3}$ och sedan projicerar på y-axeln.

5.

- a) Bestäm standardmatrisen för den linjära avbildning i planet som ges av spegling i linjen $y=k\cdot x.$
- b) Vad får ni som resultat om ni applicerar detta på vektorn $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$ med k=3.

Affina avbildningar

6.

En affin avbildning är en (godtycklig) sammansättning av en linjär avbildning och en translation. Bevisa att en sammansättning av två affina avbildningar också är en affin avbildning.