

PRACOWNIA FIZYCZNA 1

Instytut Fizyki Centrum Naukowo Dydaktyczne

P1-E2. Badanie rezonansu w szeregowym obwodzie LC

Zagadnienia

Drgania wymuszone. Równanie różniczkowe drgań wymuszonych. Pojęcie rezonansu, częstotliwość rezonansowa, szerokość połówkowa krzywej rezonansowej. Dobroć układu drgającego, wzór Thomsona. Postać równania drgań wymuszonych dla prądu w szeregowym układzie LC. Warunek rezonansu w szeregowym układzie LC, przesuniecie fazowe pradu wzgledem napiecia wymuszającego. Dobroć układu LC.

→Należy mieć ze sobą: kalkulator naukowy, ołówek, linijkę, papier milimetrowy.

1 Wprowadzenie

 \rightarrow Obwody szeregowe RLC prądu zmiennego \rightarrow Rezonans w obwodzie prądu zmiennego

2 Układ pomiarowy

Schemat układu pomiarowego przedstawia rysunek.

Kondensator i cewka podłączone są z urządzeń dekadowych. Pojemność kondensatora i indukcyjność cewki można zmieniać tylko przy wyłączonym zasilaniu, by uniknąć uszkodzenia dekad o najniższych wartościach.

3 Pomiary

- 1. Ustalić wartość indukcyjność cewki dekadowej L.
- 2. Wybrać teoretyczną częstotliwość rezonansową f_T tak, by nie przypadała pomiędzy zakresami generatora.
- 3. Z warunku rezonansu obliczyć pojemność kondensatora, jaka jest konieczna do wystąpienia rezonansu na wybranej częstotliwości i przy wyłączonym zasilaniu układu ustawić tę wartość na kondensatorze dekadowym.
- 4. Ustawić na generatorze wartość bliską teoretycznej częstotliwości rezonansowej f_T .
- 5. Włączyć generator przebiegów zmiennych i ustawić napięcie wejściowe U_0 na wartość z przedziału $1 \div 2.5 \text{ V}$.
- 6. Zanotować ustawione wartości L, C, U_0 .
- 7. Zmierzyć wstępnie maksymalną wartość prądu I_{max} w obwodzie. Wyznaczyć opór obwodu $R=U_0/I_{max}$.

8. Obliczyć teoretyczną dobroć układu rezonansowego [1, 2]

$$Q_T = \frac{1}{R} \sqrt{\frac{L}{C}}.$$

- → Dobroć powinna być większa od 2, żeby można było wykonać resztę ćwiczenia. Jeżeli dobroć jest niższa, należy powtórzyć czynności 1-6 dla innych wartości.
- 9. Obliczyć teoretyczną szerokość połówkową krzywej rezonansowej Δf_T .
- 10. Notować wskazania mierników $I,\,U_C$ i U_L dla różnych częstotliwości napięcia wymuszającego w zakresie od f_T – $2\Delta f_T$ do f_T + $2\Delta f_T$. W obszarze częstotliwości rezonansowej zagęścić pomiary.
 - \hookrightarrow Podczas pomiarów należy kontrolować wartość napięcia wejściowego U_0 , w razie potrzeby skorygować do założonej wartości.

4 Opracowanie wyników pomiarów

- 1. Sporządzić wykresy zależności częstotliwościowej (na wspólnym arkuszu):
 - a. natężenia prądu I = f(f),
 - b. napięcia na cewce $U_L = f(f)$,
 - c. napięcia na kondensatorze $U_C = f(f)$, zaznaczając na wykresie słupki niepewności dla kilku punktów pomiarowych.
- 2. Odczytać z wykresu częstotliwość rezonansową f_R .
- 3. Ocenić niepewność $u(f_R)$.
- 4. W sposób formalny ocenić zgodność f_R z założoną na początku ćwiczenia częstotliwością teoretyczną f_T .
- 5. Metodą szerokości połówkowej krzywej rezonansowej obliczyć dobroć badanego układu rezonansowego

$$Q = \frac{f_R}{\Delta f}$$

- 6. Korzystając z prawa propagacji niepewności obliczyć niepewności Q oraz Q_T i zapisać wyniki w odpowiednim formacie.
- 7. W sposób formalny ocenić zgodność otrzymanych wyników dla Q i Q_T .
- 8. Odczytać z wykresu wartość maksymalną natężenia prądu $I_m ax$.
- 9. Obliczyć teoretyczną wartość natężenia prądu w rezonansie I_0 (wraz z niepewnością) i ocenić jej zgodność z wartością zmierzoną I_{max} .
- 10. Obliczyć przesunięcie fazowe natężenia prądu względem napięcia wymuszającego.
- 11. Skomentować wszystkie wyniki eksperymentu pod kątem zgodności z teorią.

Literatura

- [1] J Bodzenta. Wykłady z fizyki. Wydawnictwo Politechniki Śląskiej.
- [2] Z Kleszczewski. Fizyka klasyczna. Wydawnictwo Politechniki Śląskiej.