

Lecture 33

Yao Li

Department of Statistics and Operations Research
UNC Chapel Hill

Final Presentation Time

- See Schedule via <u>Group Assignment</u>
- Submit slides via Sakai before Presentation Day.
- 5-7 minutes presentation.

Introduction

- Big Data
 - Large Sample Size
 - Large Number of Variables
 - Traditional Methods are Difficult to Implement
 - Depends on the Available Technology
- Goal: Explore Approaches for Quick Filtering of Predictors
- Tutorial 15
 - Download Rmd
 - Install Package > library(glmnet)
 - Knit the Document
 - Read the Introduction

Linear Models

Consider the Following:

$$y_i = \beta_0 + X_{1i}\beta_1 + ... + X_{pi}\beta_p + \epsilon_i$$
 where $i = 1, 2, 3, ..., n$

Matrix Representation

$$\begin{aligned} \boldsymbol{y} &= \boldsymbol{\beta_0} + \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon} \\ \text{where } \boldsymbol{y} &= [y_1, y_2, \dots, y_n]', \\ \boldsymbol{\beta} &= [\beta_1, \beta_2, \dots, \beta_p]', \\ \boldsymbol{\epsilon} &= [\epsilon_1, \epsilon_2, \dots, \epsilon_n]', \end{aligned}$$

and

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{21} & \dots & X_{p1} \\ X_{12} & X_{22} & \dots & X_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n} & X_{2n} & \dots & X_{pn} \end{bmatrix}$$

Linear Model

Information About Model Matrix

$$\mathbf{X} = \begin{bmatrix} X_{11} & X_{21} & \dots & X_{p1} \\ X_{12} & X_{22} & \dots & X_{p2} \\ \vdots & \vdots & \ddots & \vdots \\ X_{1n} & X_{2n} & \dots & X_{pn} \end{bmatrix}$$

This Matrix Should Be Standardized

- Once Standardized, The Intercept $oldsymbol{eta}_0$ is Unnecessary in the Model
- For Interpretability, the Response Vector y Can Also Be Standardized

Part 1: Simulate and Mediate

- Run Chunk 1
 - Simulating Response From a Linear Model
 - All Predictor Variables in X are Standardized
- > rnorm()

- What is n?
- What is p?
- What do We Know About the True Signal We Want to Detect?

- Run Chunk 2
 - Fitting Naïve Linear Model
 - Obtaining Confidence Intervals for Parameters

> confint(lm.model)

- Figure Info
 - Show the Estimated Coefficients of Linear Model
 - Show Confidence Intervals for These Coefficients
 - What Does the Color Aesthetic Being Used For?

- Chunk 2 (Continued)
 - Knit the Document and Observe the 3 Graphics
 - Figure 1

- Chunk 2 (Continued)
 - Figure 2
 - What is the Problem?

- Chunk 2 (Continued)
 - Figure 3
 - What is the Problem?

- Run Chunk 3
 - Regression for Each Predictor
 - Obtaining Coefficients

```
> coef(individual.mod)
(Intercept) X.200
0.1257668 -0.3200960 Save
```

Obtaining P-Values

```
> summary(individual.mod)
call:
lm(formula = y \sim ., data = SIM.DATA[, c(1, j + 1)])
Residuals:
            10 Median
   Min
-47.252 -11.318 0.035 10.759 45.336
                                                   Save
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.1258
                        0.7021
                                 0.179
                                          0.858
                        0.7230 -0.443
             -0.3201
X.200
Residual standard error: 15.66 on 498 degrees of freedom
Multiple R-squared: 0.0003934, Adjusted R-squared: -0.001614
F-statistic: 0.196 on 1 and 498 DF, p-value: 0.6582
```

- Run Chunk 3
 - Figure Plots P-Values Against Coefficients

- Run Chunk 3
 - Suppose We Were to Keep Only the Predictor Variables that Had P-Values<0.01
 - Observe the Table

	P-Val > 0.01	P-Val < 0.01	
Non-Zero	1%)	4%	
Zero	94%	1%)——	
	·		

- 95% of Variables Ignored
- 5% of Variables Included
- Errors (What is Worse?)
 - We Will Ignore Variables that Are Important
 - We Will Include Variables that Are Irrelevant

- Chunk 4
 - Try to Find the Smallest Cutoff Value So That We are Not Missing Important Variables
 - To Ensure We are Not Missing Important Variables, Should we Increase or Decrease the Original Cutoff (0.01)
 - What Cutoff Works?
 - Try Multiple Cutoffs and Observe the Table
 - Run the Code Inside the Chunk Until All 10
 Important Variables are Retained for the Future

- Chunk 4 (Continued)
 - Traditional Choice: 0.20
 - Output in Table

	P-Val > 0.01	P-Val < 0.01	
Non-Zero	0%)	5%	
Zero	71%	24%	

None of the Non-Zero Parameters Will Be Ignored

Fit Linear Model for Variables Kept in Consideration

> lm(y~.,data=SIM.DATA[,c(1,which(KEEP)+1)])

Suppose Cutoff is 0.2

Part 1: Recap

- Recap
 - Before Building Complex Models We are Performing a Simple Screening Procedure
 - Problems
 - We May Lose Variables with Significant Interactions
 - We May Still Have Too Many
 - We May Retain Variables that are Highly Correlated

Shrinkage Estimation

- Classic Linear Model Estimation
 - Minimize Sum of Squared Error

$$SSE = \sum [y_i - (\beta_0 + x_i' \boldsymbol{\beta})]^2$$

- Optimization: Find $\widehat{\beta_0}$ and $\widehat{\pmb{\beta}}$ that Make SSE as Small as Possible
- $\widehat{\beta_0}$ and $\widehat{\beta}$ are Easily Found Using Matrix Representation
- Regularized Estimation
 - Produces Biased Estimates
 - Shrinks Coefficients Toward 0
 - Favors Smaller Models
 - May Lead to a Better Model for Out-of-Sample Prediction

Shrinkage Estimation

- Three Popular Methods
 - Download R Package

> library(glmnet)

Penalized SSE

$$PSSE = SSE + \lambda[(1 - \alpha)\sum_{i=1}^{p} \beta_i^2 + \alpha \sum_{i=1}^{p} |\beta_i|]$$

- Variations
 - Ridge (1970): $\lambda = 1 \& \alpha = 0$
 - Lasso (1996): $\lambda = 1 \& \alpha = 1$
 - Elastic Net (2005)

$$\lambda = 1 \& 0 < \alpha < 1$$

- Notice When
 - $\lambda = 0$ PSSE=SSE
 - As λ Gets Bigger, the Coefficients Approach 0

Part 2: Ridge

- Run Chunk 1
 - Ridge Penalty

Part 2: Lasso

- Run Chunk 2
 - Lasso Penalty

Part 2: Elastic Net

- Run Chunk 3
 - Elastic Net Penalty

