论文总结和改进方向

- •特征不对齐问题
- •旋转不变性

R 3 Det: Refined Single-Stage Detector with Feature Refinement for Rotating Object

Considering the shortcoming of feature misalignment in existing refined single-stage detector, we design a feature refinement module to improve detection performance by getting more accurate features.

Algorithm 1 Feature Refinement Module

Input: original feature map F, the bounding box (B) and confidence (S) of the previous stage

Output: reconstructed feature map F'

```
1: B' \leftarrow Filter(B, S);
2: h, w \leftarrow Shape(F), F' \leftarrow ZerosLike(F);
3: F \leftarrow Conv_{1\times 1}(F) + Conv_{1\times 5}(Conv_{5\times 1}(F))
 4: for i \leftarrow 0 to h-1 do
        for j \leftarrow 0 to w-1 do
 5:
             P \leftarrow GetFivePoints(B'(i, j));
             for p \in P do
                 p_x \leftarrow Min(p_x, w-1), p_x \leftarrow Max(p_x, 0);
                 p_{y} \leftarrow Min(p_{y}, h-1), p_{y} \leftarrow Max(p_{y}, 0);
 9:
                 F'(i,j) \leftarrow F'(i,j) + BilinearInte(F,p);
10:
             end for
11:
                             将回归框的5个点的双线性
                             插值特征累加到瞄点
        end for
12:
13: end for
14: F' \leftarrow F' + F;
15: return F'
```

Real-Time, Highly Accurate Robotic Grasp Detection using Fully Convolutional Neural

Network with Rotation

旋转不变性

Consider a typical scenario of convolution with input feature maps $f \in \mathbb{R}^{H \times W \times C}$ where $N = H \times W$ is the number of pixels and C is the number of channels. Let us denote $g_l \in \mathbb{R}^{K \times K \times C}$, $l = 1, \ldots, n_f$ a convolution kernel where $K \times K$ is the spatial dimension of the kernel and there are n_f number of kernels in each channel. Similar to the group convolutions [4], we propose n_r rotations of the weights to obtain $n_f \cdot n_r$ rotated weights for each channel. Bilinear interpolations of four adjacent pixel values were used for generating rotated kernels. A rotation matrix is

$$R(r) = \begin{bmatrix} \cos(r\pi/4) & -\sin(r\pi/4) & 0\\ \sin(r\pi/4) & \cos(r\pi/4) & 0\\ 0 & 0 & 1 \end{bmatrix}$$

where r is an index for rotations. Then, the rotated weights (or kernels) are $g_l^i = R(i)g_l, i = 0, \ldots, 3, l = 1, \ldots, n_f$. Finally, the output of these convolutional layers with rotation operators for the input f is

$$d_l^i = g_l^i \star f, i = 0, \dots, 3, l = 1, \dots, n_f,$$

where \star is a convolution operator. This pipeline of operations is called "rotation convolution". A typical kernel size is K=5.

Our REM contains rotation activation that aggregates all feature maps at different angles. Assume that an intermediate output for $\{t^x, t^y, \theta, t^w, t^h, t^z\}$ is available in REM, called $\{t_m^x, t_m^y, \theta_m, t_m^w, t_m^h, t_m^z\}$. Note that $\theta_m^i \in \mathbb{R}^{H \times W}$ where $i = 0, \pi/4, 2\pi/4, 3\pi/4$. For each angle, activations will be generated and all of them must be aggregated to yield one final feature map $\hat{d}_l = \sum_{i=1}^4 d_l^i \odot \theta_m^i/4$. where \odot is Hadamard product. Thus, our proposed method utilizes class probability (probability to grasp) to selectively aggregate activations along with the weight of angle classification.

Region Proposal by Guided Anchoring

改进方法

