

MODELOWANIE ZASIĘGU LODOWCA NA OBSZARZE ANTARKTYDY ZA POMOCĄ MODELU MATEMATYCZNEGO

Adam Biedrzycki, Szymon Cogiel

22.06.2022

1. WSTĘP

Celem projektu było stworzenie modelu matematycznego zachowania lodowca na przestrzeni czasu. Analiza została przeprowadzona na bazie danych z lat 1978-2008.

2. METODYKA

Projekt został zrealizowany za pomocą języka R w środowisku RStudio. Niezbędne pakiety:

- ggplot 2
- FFmpeg (służącego do stworzenia animacji)
- animation (zapis video)
- matrixStats

3. ANALIZOWANIE MINIMALNEGO ZASIĘGU LODOWCA

W celu przybliżenia kształtu Antarktydy znaleziono dla każdego kąta długości geograficznej najmniejszą wartość zasięgu pokrywy lodowca. Znalezione dane zostały przetworzone i wykorzystane do wizualizacji kształtu kontynentu. Dane zostały przetworzone w następujący sposób:

- użycie wartości bezwzględnej (dane z półkuli południowej miały oryginalnie wartości ujemne)
- odjęcie wartości od kąta 90 stopni (przesunięcie środka wykresu z równika na biegun)

Zasieg rzeczywisty

Dlugosc_geograficzna

4. MODELOWANIE ZASIĘGU LODOWCA W CZASIE

Wykorzystana została regresja liniowa z wykorzystaniem funkcji sinus oraz funkcji cosinus. Funkcja lm() posłużyła do wytrenowania modelu do przetworzonych danych. Tak uzyskany wynik został zapisany pod zmienną pred uprzednio potraktowany

funkcją predict, zastosowaną w celu prognozy nowych wartości.

```
real_long <- cos(2*pi*rel_granica_lodu_df$longitude/180)
real_lat <- sin(2*pi*rel_granica_lodu_df$lat/90)
obl <- lm(rel_granica_lodu_df$lat~real_long+real_lat)

pred <- predict(obl, newdata = data.frame(rel_granica_lodu_df$longitude))
rel_granica_lodu_df$pred<-pred
```

Zasieg matematyczny

Dlugosc_geograficzna

5. TWORZENIE ANIMACJI PRZEDSTAWIAJĄCEJ ZMIANĘ W CZASIE ZARÓWNO RZECZYWISTEGO JAK I WYMODELOWANEGO ZASIĘGU LODU

W tym celu użyliśmy bilbiotek: animation oraz saveVideo oraz pakietu ffmpeg. Pętlę wyświetlającą rzeczywisty i matematyczny model wykorzystaliśmy 9288 razy. W rezultacie czego otrzymaliśmy wideo przedstawiające zmiany na kontynencie. Wideo załączamy w folderze ze sprawozdaniem.

6. OBLICZENIE MODELU ZASIĘGU LODOWCA ZA POMOCĄ TRANSFORMACJI LAPLACE'A

$$Lnew[i,j]<-0.25*(L[i-1,j]+L[i+1,j]+L[i,j-1]+L[i,j+1])$$

Po transformacji LaPlace'a w pętli while wykonujemy obliczenia dla modelu rzeczywistego, matematycznego oraz po transformacji. W efekcie otrzymujemy:

Efekt końcowy

Porównanie obrazu danych rzeczywistych do modelu dla jednego roku pomiarów

7. KOŃCOWE WNIOSKI

Początkowe modelowanie daje przybliżony rezultat, lecz jego dokładność i trafność nie są na wysokim poziomie. Wynika to z przyjętego modelu, który jest tylko poglądowym przybliżeniem realnej postaci. Zmienność zasięgu powierzchni pokrytej lodem w czasie jest zachowana. Dalej wykonane operacje umożliwiają nam dojście do uzyskania modelu bardzo zbliżonego do stanu rzeczywistego.

Zmiany klimatu są coraz bardziej widoczne i nic nie wskazuje na to żeby sytuacja miała się odwrócić w nadchodzących latach. Jednym ze skutków jest powszechne topnienie śniegu i lodu, co dalej skutkuje podwyższeniem się poziomu mórz i oceanów.

Prowadzonych jest wiele badań związanych z system wód globalnych oraz biegunami Ziemi. Niezwykle przydatne są rejestrowane dane, które po przetworzeniu w odpowiedni sposób pozwalają nam zrozumieć jakie procesy zachodzą w naszym otoczeniu.

W ciągu trzech ostatnich dekad, w wyniku topnienia lodu lądowego, średni globalny poziom morza podniósł się o 3,5 centymetra. Powodem takiego stanu rzeczy jest wzrost temperatury, co skutkuje rozszerzaniem się wody która jest w oceanach. Biały lód odbija promieniowanie słoneczne z powrotem w przestrzeń kosmiczną. Gdy lód topnieje, odsłania wodę, która ze względu na swoją barwę pochłania więcej ciepła, przyspieszając omawiany proces.