RICERCA OPERATIVA – 5 crediti

Tema d'esame del 13 dicembre 2011

	COGNOME:	 Questo foglio deve
Scrivere subito!	NOME: MATRICOLA:	essere consegnato con l'elaborato

1. In vista del Natale, una ditta di trasporti è stata incaricata delle spedizioni di abeti dalla Norvegia verso diverse capitali europee. In Norvegia ci sono 3 vivai, indicati con A, B e C, e gli abeti sono disponibili in 2 diverse misure: medi e grandi. Le distanze in km tra i vivai e le capitali europee sono indicate in tabella, insieme alle richieste di ogni capitale e alle disponibilità di ogni vivaio (per le due taglie):

km	Roma	Parigi	Londra	Madrid	Disponibilità	Disponibilità
					medi	grandi
Vivaio A	2000	1500	800	2200	100	210
Vivaio B	2300	1700	1200	1900	200	120
Vivaio C	1800	1300	900	2000	300	250
Richiesta medi	50	80	260	150		
Richiesta grandi	100	200	40	160		

I costi di trasporto sono di 20 centesimi di euro a chilometro per gli abeti medi e di 45 centesimi di euro a chilometro per gli abeti grandi. Determinare il piano di trasporti di costo minimo considerando che:

- il sindaco di Roma ha bisogno di almeno 20 alberi medi dal vivaio A e 10 alberi grandi dal vivaio B;
- per motivi logistici, il vivaio C non può servire più di 2 capitali diverse;
- le spedizioni avvengono in container della capacità di 50 abeti, indipendentemente dalla taglia, e ogni container utilizzato impone un costo aggiuntivo di 100 euro;
- ogni abete che non viene spedito nelle capitali europee impone dei costi di recupero (gli abeti eccedenti vengono trapiantati nelle foreste). I costi sono diversi per i diversi vivai e sono pari a 5, 7 e 9 euro per i vivai A, B e C, rispettivamente.

(Si suggerisce di scrivere il modello tenendo conto dei punti sopra elencati nell'ordine proposto.)

2. Si risolva con il metodo del simplesso il seguente problema di programmazione lineare, applicando la regola anticiclo di Bland.

max
$$3 x_1 + 2 x_2 + 6 x_3$$

s.t. $4 x_1 - 2 x_2 - x_3 - x_4 = -3$
 $-3 x_1 + x_2 + 2 x_3 \le 2$
 $-x_1 - 2 x_2 - x_3 \ge -4$
 $x_1 \le 0 \quad x_2 \ge 0 \quad x_3 \ge 0 \quad x_4 \ge 0$

CONTINUA SUL RETRO	

3. Dato il seguente grafo, calcolare i cammini minimi a partire dal nodo A verso tutti gli altri nodi:

- a. si scelga l'algoritmo da utilizzare e si motivi la scelta;
- b. si applichi l'algoritmo scelto (riportare e **giustificare** i passi dell'algoritmo in una tabella);
- c. si disegnino l'albero e il grafo dei cammini minimi da A.
- 4. Enunciare le condizioni di complementarietà primale-duale in generale.

Applicare tali condizioni per dimostrare che $(x_1, x_2, x_3, x_4) = (-3, 0, 1, 0)$ è soluzione ottima del seguente problema:

min
$$2 x_1 - x_2 + 3 x_3$$

s.t. $x_1 - x_2 + x_4 \ge -4$
 $-2 x_1 + 3 x_2 - x_3 \le 5$
 $-2 x_2 - x_3 + x_4 = -1$
 $x_1 \text{ libera} \quad x_2 \le 0 \quad x_3 \ge 0 \quad x_4 \ge 0$

5. Si consideri il seguente tableau del simplesso:

x_1	x_2	x_3	x_4	x_5	z	b
-12/5	0	-23	0	0	-1	9
22	0	1	1	0	0	8
-44	0	(2)	0	1	0	16
11	1	4	0	0	0	4

Si dica, senza svolgere calcoli e fornendo una giustificazione teorica delle risposte:

- a. quale è la soluzione di base corrispondente? Possiamo subito dire se è ottima?
- b. perché non è consentita l'operazione di pivot sull'elemento evidenziato (2)?
- c. su quali elementi è possibile effettuare il pivot secondo le regole del simplesso (indipendentemente dalle regole anticiclo)?
- d. quale sarà il cambio base secondo le regole del simplesso e applicando la regola di Bland? Che caratteristica avrà la soluzione di base ottenuta?
- **6.** Si consideri il seguente problema di programmazione lineare.

min
$$x_1 - 2 x_2 + 2 x_3$$

s.t. $31 x_1 - 12 x_2 + 23 x_3 \le 32$
 $-13 x_1 + 2 x_3 \le 12$
 $16 x_1 - 23 x_2 - x_3 \le 27$
 $x_1 \ge 0 \quad x_2 \ge 0 \quad x_3 \ge 0$

Senza svolgere calcoli, cosa possiamo dire del corrispondente problema duale? In base a quale proprietà? Fornire una giustificazione teorica della risposta.

2