Combinational Logic

Dr. E. Paul Braineard

Logic Circuits

- Combinational circuit
 - Logic gate circuit, whose output at a particular time instant is dependent on input combination at that particular time instant
- Sequential circuit
 - Logic gate circuit + Storage element
 - Output depends on the input combination and the state of the memory element

Combinational Circuit

- Logic circuit that consists of interconnection of logic gates
- For m inputs, the possible combinations of binary inputs = 2^m
- For each possible input combination, there is one possible value at the output
- A combinational circuit can be described by truth table

Block diagram of combinational circuit

Combinational Circuits

- Binary Adder, Subtractor
- Decimal Adder
- Binary multiplier
- Magnitude comparator
- Decoder
- Encoder
- Multiplexer

Analysis of Combinational Circuit

- Determine the function the circuit implements
- Start with
 - Logic circuit
 - · Boolean functions
 - Truth table
 - Explanation of the circuit operation
- Make sure the circuit is not sequential
- Make sure there is no feedback path or memory elements

Procedure to obtain Boolean function from logic circuit

- Label all gate first stage outputs with unique names
- Proceed to the next stage, till you reach final output

Die

Combinational Circuit

$$P = ABC$$

$$Q = A + B + C$$

$$R = AB$$

$$S = AC$$

$$T = BC$$

$$O_2 = R + S + T$$

$$O_2 = AB + AC + BC$$

$$O_1 = P + X = (ABC) + (QO_2')$$

Code conversion example combinational logic circuit

Decimal	Binary	Excess-3
0	0000	0011
1	0001	0100
2	0010	0101
3	0011	0110
4	0100	0111
5	0101	1000
6	0110	1001
7	0111	1010
8	1000	1011
9	1001	1100

Input BCD				Output Excess-3			
Α	В	С	D	P	Q	R	S
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0

K-maps for the output variables

m15

Don't care conditions

De

- The six bit combinations not listed beyond 1001 for input are don't-care combinations
- These values have no meaning in BCD and we assume that they will never occur in actual operation of the circuit
- Therefore we have the liberty to take either 0 or 1
- Don't care is represented by X
- Idea is to get simple circuit

Excess-3
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100

Four-variable K-map

Simplify the Boolean function given in standard SOP form

$$F = A'B'C' + B'CD' + A'BCD' + AB'C'$$

m_0	m_1	m_3	m_2
<i>m</i> ₄	<i>m</i> ₅	m ₇	<i>m</i> ₆
m ₁₂	m ₁₃	m ₁₅	m ₁₄
<i>m</i> ₈	<i>m</i> ₉	m ₁₁	m ₁₀

Add missing variables	AB	00	01	11	10	_
F = A'B'C' (D+D')+(A+A') B'CD' + A'BCD' + AB'C'(D+D')	00	1	1		1	
	01				1	
	11					
	10	1	1		1	

K-maps for the output variables

PH 13

K-maps for the output variables

