Rappels

William Hergès $^{\mathrm{1}}$

20 septembre 2024

Table des matières

1	Vecteur		
	1.1	Norme d'un vecteur	3
	1.2	Produit scalaire	3
		1.2.1 Produit scalaire dans une bose orthonormée	3
	1.3	Produit vectoriel	4
2	Droites et plans		
	2.1	Droites	5
	2.2	Plans	5
3	Fam	illes libres, familles liées	6

Rappels en vrac.

Vecteur

1.1. Norme d'un vecteur

Définition 1

La norme du vecteur \vec{v} se note $||\vec{v}||$ et

$$||\vec{v}|| = \sqrt{(x_b - x_a)^2 + (y_b - y_a)^2 + (z_b - z_a)^2}$$

1.2. Produit scalaire

Définition 2

Le produit scalaire entre \vec{v} et \vec{u} se note $\vec{v} \cdot \vec{u}$ et

$$\vec{v} \cdot \vec{u} = ||\vec{u}|| \times ||\vec{v}|| \cos \alpha$$

Proposition 2.1

Pour tous vecteurs \vec{u} , \vec{v} et \vec{w} , on a : $- \vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$ $- \forall \lambda \in \mathbb{R}, \quad (\lambda \vec{u}) \cdot \vec{v} = \lambda \cdot (\vec{u}\vec{v})$ $- (\vec{u} + \vec{v})\vec{w} = \vec{u}\vec{w} + \vec{w}\vec{v}$

- \square Démonstration. AQT

Proposition 2.2

Proposition 2.2

Pour tous vecteurs
$$\vec{u}$$
 et \vec{v} , on a:
$$- ||\vec{u} + \vec{v}||^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v})$$

$$- ||\vec{u} - \vec{v}||^2 = (\vec{u} - \vec{v}) \cdot (\vec{u} - \vec{v})$$

☐ Démonstration. AQT

1.2.1. Produit scalaire dans une bose orthonormée

Définition 3

Un vecteur est alors caractérisé par trois coordonnées (qui sont celles du point

d'arrivé si le vecteur part du point d'origine). On peut alors écrire :

$$\vec{u} = x\vec{i} + y\vec{j} + z\vec{k}$$

 $\vec{u}=x\vec{i}+y\vec{j}+z\vec{k}$ (où $(x,y,z)\in\mathbb{R}^3$ sont les coordonnées du vecteur \vec{u} et $(\vec{i},\vec{j},\vec{k})$ une base)

Proposition 3.1

Pour deux vecteurs \vec{u} et \vec{v} , on a :

$$\vec{u} \cdot \vec{v} = xx' + yy' + zz$$

 $\vec{u}\cdot\vec{v}=xx'+yy'+zz'$ (où $(x,y,z)\in\mathbb{R}^3$ sont les coordonnées de \vec{u} et (x',y',z') sont les coordonnées

☐ Démonstration. AQT

1.3. Produit vectoriel

Définition 4

Soient \vec{u} et \vec{v} deux vecteurs dans une base orthonormée.

Le produit vectoriel de \vec{v} par \vec{u} est noté $\vec{u} \wedge \vec{v}$ et est le vecteur perpendiculaire à \vec{u} et à \vec{v} de norme $u \times v \times \sin \alpha$ (où α est l'angle entre \vec{u} et \vec{v}) dirigé selon "la règle de la main droite".

Proposition 4.1

On a:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \wedge \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} yz' - zy' \\ zx' - xz' \\ xy' - yx' \end{pmatrix}$$

☐ Démonstration. AQT(besoin de linéarité comme lemme)

Application principale

Il sert à obtenir un vecteur orthogonal à deux autres.

Droites et plans

2.1. **Droites**

Définition 5 Une droite Δ dirigée par $\vec{u}=\begin{pmatrix}\alpha\\\beta\end{pmatrix}$ passant par A=(a,b) est l'ensemble des points P sastisfaisant cette relation : $\forall M\in P,\quad \exists k\in\mathbb{R},\quad \overrightarrow{AM}=k\vec{u}$

$$\forall M \in P, \quad \exists k \in \mathbb{R}, \quad \overrightarrow{AM} = k\overline{u}$$

Proposition 5.1 Equations parts. $\begin{cases} \alpha \\ \beta \end{cases} \text{ passant par } (a,b) \text{ possède comme équations paramétriques}: \\ \begin{cases} x=a+t\alpha \\ y=b+t\beta \end{cases} \quad (t\in\mathbb{R})$

$$\begin{cases} x = a + t\alpha \\ y = b + t\beta \end{cases} \quad (t \in \mathbb{R})$$

☐ Démonstration. AQT

$$y - \frac{\beta}{\alpha}x = b - \frac{a\beta}{\alpha}$$

pour un point de coordonnées (x,y) appartenant à $\Delta.$

☐ Démonstration. AQT

C'est la même chose dans \mathbb{R}^3 .

Plans

Équations paramétriques

Soit Π le plan passant par A=(a,b,c) et dirigé par $\vec{v}=\begin{pmatrix}\alpha\\\beta\\\gamma\end{pmatrix}$ et par $\vec{u}=\begin{pmatrix}\alpha'\\\beta'\\\gamma'\end{pmatrix}$ possède comme équation paramétrique :

$$\begin{cases} x = a + t\alpha + s\alpha' \\ y = b + t\beta + s\beta', & (t, s \in \mathbb{R}) \\ z = c + t\gamma + s\gamma' \end{cases}$$

pour un point de coordonnées (x,y,z) appartenant à Π .

☐ Démonstration. AQT

Soit Π un plan passant par A et dirigée par \vec{u} et \vec{v} . Soit P un point de Π . Le vecteur \overrightarrow{AP} est orthogonal à \vec{w} (où \vec{w} est un vecteur orthognal à \vec{u} et \vec{v}). Autrement dit,

$$\overrightarrow{AP} \cdot (\vec{u} \wedge \vec{v}) = 0$$

☐ Démonstration. AQT

Cela permet d'obtenir l'équation cartésienne du plan.

3. Familles libres, familles liées

Définition 6

Une famille de n-vecteurs $(\vec{u}_1,\ldots,\vec{u}_n)\in\mathbb{R}^n$ est libre si, et seulement si, ces vecteurs sont linéairement indépendant. i.e.

$$\sum_{i=1}^{n} \lambda_i \vec{u}_i = \vec{0} \iff \forall i \in [|1, n|], \quad \lambda_i = 0$$

avec $(\lambda_1, \ldots, \lambda_n) \in \mathbb{R}^n$

Définition 7

Une famille de n-vecteurs est liée si, et seulement si, elle n'est pas libre.