Im If $0 \longrightarrow N \xrightarrow{\varphi} M \xrightarrow{\psi} k \longrightarrow 0$ Splits from the left (that is, $\exists \tau: M \longrightarrow N \text{ s.d.}$ $\tau \circ \varphi = id_N$), Thun $M \cong N \oplus k$.

Proof Let K' = Ker(T). Claim: $K' \cong K$ by Ψ and $M = \Psi(N) \oplus K'$ $Y|_{K'}$ is an isomorphism: if $u \in K'$ & $\Psi(u) = 0$ then $\exists v \in N$ s.t. $u = \Psi(V)$. but $\Upsilon(u) = 0$ so $\Upsilon(\Psi(V)) = V = 0$ so U = 0, so $\Psi|_{K'}$ is injective.

Claim: $K' \cap P(N) = 0$, K' + P(N) = M ($\Rightarrow P|_{K'}$ is surjective) $K' \cap P(N) = K' \cap Ker \Psi = Ker P|_{K'} = 0$.

why K' + P(N) = M? Take u.e.M. Let V = T(u). Let $U_1 = P(T(u))$. Then $U_1 \in P(N)$. Take $U_2 = U - U_1$, So $T(U_2) = T(U - P(T(u))) = T(U) - T(U) = 0$ So $U_2 \in K'$. So M = K' + P(N), which implies the therem.

M: R-module a set $S \subseteq M$ is linearly independent if whenever $a_1u_1+\dots+a_nu_n=0$ for a i.e. $a_1e_1\dots=a_n=0$.

Theorem: BEM is a basis of M iff B is linearly independent & generates M.

Claim: I rusil liherly indp. set.

M: module. if \$\frac{1}{2} \limins map (u), we are done (\$\phi\$ is max'!)

Page 1

Let {u,} be In indp if \$\frac{1}{2}\ll u_sib. {\ll u_1, u_3} is lin indp, we redone
thereise pick uz sib. {\ll u_1, u_2} is lin indp. et. cetera. (Zornis Lenne).

ex: tors ron medule: Ø doesn't generate

So maxil linearly indep. Set is a single element.

but 993 does not generate Ω . $\Omega/2$ is a torsion module.

(X is a maxil linearly indep. set iff M/RX is a torsion module).

Deti a collection C of subsets of X is a chain contower) if $YA_1B \in C$, either $A \subseteq B$ or $B \subseteq A$.

Zorvis Lemme: Let X be a set and \mathbb{I} the a system of subsets of X.

Assume that for any man $E \subseteq A$, $UE = UC \in A$.

Then A has a maximal element: $\exists A_o \in A$ s.t. $\exists B \in A$ s.t. $A_o \subseteq B$.

1 et A be meset of all Imerly independent subsets of M.

Then Y Chain C = A, U C 15 liherly independent.

So I max'l Chain.

Claim: \$\int 2 is not a free Z-module.

Proof Assume it has a basis B. Then B is uncountable (if C is countable). We say that $A = \sum_{i=1}^{\infty} \mathbb{Z} \subseteq \bigcap_{i=1}^{\infty} \mathbb{Z}^{N}$. Vie $\oplus \mathbb{Z}$, let $B_u \subseteq B$ sit. $u \in \mathbb{Z}B_u$. Let $D = \bigcup_{u \in \oplus_{\mathbb{Z}}} B_u$.

D is countable. Let N=ZD. Then N is countable

and $\oplus \mathbb{Z} \subseteq \mathbb{N}$. Let $\mathbb{M} = \frac{\Pi \mathbb{Z}}{N}$. - freely generated by $\mathbb{B} \cdot \mathbb{D}$ (\mathbb{M} istree). \mathbb{B} at the element $\mathbb{U} = (1, 2!, 3!, 4!, ...)$ and $\mathbb{N} \in \mathbb{M}$. Then $\forall \mathbb{K} \in \mathbb{Z}$, $\exists \mathbb{V} \in \mathbb{M}$. So that $\mathbb{K} \mathbb{V} = \mathbb{U}$ (\mathbb{U} is divisible by any integer).

But a free Z-module cannot have this property. 5.