Dynamical Systems (ODEs)

A continuous-time dynamical system is defined by a system of n ODEs: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}, t; \theta)$, where $\mathbf{x} \in \mathbb{R}^n$.

- Equilibrium Point \mathbf{x}_e : A state where the system does not change, i.e., $\mathbf{f}(\mathbf{x}_e)=0$.
- Linear System: A system of the form $\dot{\mathbf{x}} = A\mathbf{x}$.

Solving Linear Systems: $\dot{\mathbf{x}} = A\mathbf{x}$

- 1. Find eigenvalues λ_i by solving the characteristic equation: $\det(A-\lambda I)=0.$
- 2. For each eigenvalue λ_i , find the corresponding eigenvector \mathbf{u}_i by solving $(A \lambda_i I) \mathbf{u}_i = \mathbf{0}$.
- The general solution is a linear combination of the "straight-line" solutions:

$$\mathbf{x}(t) = \sum_{i=1}^{n} c_i e^{\lambda_i t} \mathbf{u}_i$$

The constants c_i are determined by the initial conditions $\mathbf{x}(0)$.

Stability of Equilibria

Stability for a linear system's equilibrium at the origin (or for a nonlinear system's equilibrium \mathbf{x}_e based on its Jacobian J) is determined by the eigenvalues $\lambda = \alpha \pm i\beta$.

- Asymptotically Stable: All eigenvalues have real parts $\alpha < 0$. All nearby solutions converge to the equilibrium.
- Stable: All eigenvalues have $\alpha \leq 0$. No real parts are positive, and any with $\alpha = 0$ (purely imaginary) are simple. Nearby solutions stay nearby, but don't necessarily converge (e.g., centers).
- Unstable: At least one eigenvalue has a real part $\alpha > 0$. Most nearby solutions will move away.

Eigenvalues	Type
λ_1, λ_2 real, distinct	
$\lambda_1, \lambda_2 < 0$	Stable Node (All paths head to origin)
$\lambda_1, \lambda_2 > 0$	Unstable Node (All paths leave origin)
$\lambda_1 \cdot \lambda_2 < 0$	Saddle (Unstable)
$\lambda_1 = \lambda_2$ real, repeated	Node (Stable if $\lambda < 0$, Unstable if $\lambda > 0$)
$\lambda = \alpha \pm i\beta$ (where $\beta \neq 0$)	
$\alpha < 0$	Stable Spiral (Spiral into the origin)
$\alpha > 0$	Unstable Spiral (Spiral away from the origin)
$\alpha = 0$	Center (Neutrally Stable, paths are closed orbits)

Nonlinear Systems: $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$

- **Linearization**: To analyze the stability of an equilibrium point \mathbf{x}_e , we linearize the system using the **Jacobian matrix** $J = J_{\mathbf{f}}(\mathbf{x}_e)$, where $J_{ij} = \frac{\partial f_i}{\partial x_j}$.
- We then analyze the stability of the linear system $\dot{\mathbf{u}}=J\mathbf{u}$, where $\mathbf{u}=\mathbf{x}-\mathbf{x}_e.$
- Hartman-Grobman Theorem: The stability of the linearized system (based on J's eigenvalues) usually determines the stability of the nonlinear system, except for marginal cases (like $\alpha=0$ centers).

Other 2D+ Concepts

- Nullclines: Curves in the phase space where one component of the vector field is zero (e.g., $\dot{x}=0$ or $\dot{y}=0$). Equilibrium points occur at the intersections of *all* nullclines.
- Limit Cycle: A stable, isolated, closed-orbit trajectory. Solutions nearby may spiral into or away from a limit cycle.
- Poincaré-Bendixson Theorem: In a 2D continuous system, the only possible long-term behaviors are approaching an equilibrium point, approaching a limit cycle, or diverging to infinity. This theorem implies that chaos cannot occur in 2D continuous systems.
- Chaos: Aperiodic, long-term behavior in a deterministic system that
 exhibits sensitive dependence on initial conditions. Associated with
 Strange Attractors (e.g., Lorenz Attractor) and requires 3 or more
 dimensions for continuous systems.

Iterated Maps (Discrete-Time Systems)

A discrete-time system: $x_{n+1} = f(x_n)$. The sequence $x_0, x_1, x_2, ...$ is the **orbit**.

- Fixed Point x^* : A point that maps to itself, $f(x^*) = x^*$.
- Stability of Fixed Points: Determined by the multiplier $\lambda = f'(x^*)$.
 - $|\lambda| < 1$: **Stable** (attracting). Orbits starting near x^* converge to it.
 - $-\ |\lambda|>1$: Unstable (repelling). Orbits starting near x^* (but not exactly on it) move away.
 - $|\lambda| = 1$: Marginal case (e.g., $f'(x^*) = -1$ leads to a bifurcation).
- Cobweb Plot: A graphical method to visualize orbits. Draw a line from (x_n, x_n) to $(x_n, f(x_n))$, then horizontally to $(f(x_n), f(x_n)) = (x_{n+1}, x_{n+1})$, and repeat.

Logistic Map

The canonical example of a route to chaos: $x_{n+1} = rx_n(1 - x_n)$.

- \bullet As the parameter r increases (from 0 to 4), the system's long-term behavior changes.
- It moves from a single stable fixed point, to a stable 2-cycle, then a 4-cycle, 8-cycle, etc. This is the **period-doubling bifurcation** route to chaos.
- Past a certain r, the system becomes chaotic, with regions of stability ("islands") interspersed.

Lyapunov Exponent

Measures the average exponential rate of divergence or convergence of nearby orbits, quantifying sensitivity to initial conditions.

$$\lambda = \lim_{n \to \infty} \frac{1}{n} \sum_{k=0}^{n-1} \ln |f'(x_k)|$$

- $\lambda > 0 \implies$ Chaos. Nearby orbits diverge exponentially.
- $\lambda < 0 \implies$ **Stable**. Nearby orbits converge.
- $\lambda = 0 \implies \text{Marginal}$.

Cellular Automata (CA)

Discrete-time, discrete-space, discrete-state systems where cells update their state based on a **local rule** applied to their **neighborhood**.

- Neighborhood: Set of cells that influence a cell's next state.
- Von Neumann: 4 neighbors (N, S, E, W).
- Moore: 8 neighbors (all adjacent cells).
- Update Schedule:
- Synchronous: All cells update simultaneously.
- Asynchronous: Cells update one at a time (e.g., in a random order).
- Combinatorics: For k states and a neighborhood of size |N|, the total number of possible rules is $k^{(k^{|N|})}$.
- Wolfram's 1D CA: k=2, |N|=3 (cell + left/right neighbors) $\Rightarrow 2^{(2^3)}=256$ possible rules.

Wolfram's 4 Classes of Behavior

- Class 1 (Stable): Evolves to a stable, homogeneous state (e.g., all black or all white).
- 2. Class 2 (Periodic): Evolves to simple periodic structures (e.g., stable patterns or simple oscillators).
- 3. Class 3 (Chaotic): Exhibits chaotic, aperiodic, fractal-like patterns (e.g., Rule 30).
- 4. Class 4 (Complex): Exhibits complex, localized structures ("gliders") that move and interact. Can support computation (e.g., Rule 110 is Turing complete).

Conway's Game of Life (2D CA)

A famous 2D CA with a Moore neighborhood and 2 states (live/dead).

- Survival: A live cell with exactly 2 or 3 live neighbors survives.
- **Death**: A live cell with < 2 neighbors (loneliness) or > 3 neighbors (overcrowding) dies.
- Reproduction: A dead cell with exactly 3 live neighbors becomes alive.

Networks

Networks (graphs) consist of nodes (vertices) and edges (links).

Key Properties of Real Networks

- Small-World: Low average path length h. The average distance between any two nodes is short, typically $h \sim O(\log N)$.
- **High Clustering**: High clustering coefficient C. A node's neighbors are also likely to be neighbors of each other.
- Scale-Free: The degree distribution p_k (probability a node has k links) follows a power-law, $p_k \sim k^{-\gamma}$. This implies a few "hubs" with many links and many nodes with few links.

Network Models

Model	Scale-Free?	Small-World?	High C?
Erdos-Renyi (ER)	No	Yes	No
Watts-Strogatz (WS)	No	Yes	Yes
Barabasi-Albert (BA)	Yes	Yes	Kinda

- Erdos-Renyi (ER): A random graph. Start with N nodes, connect every pair with probability p. Degree distribution p_k is Poisson (peaked).
- Watts-Strogatz (WS): The "small-world" model. Start with a regular ring lattice (high C, high h), and "rewire" each edge with probability p. This quickly lowers h while retaining high C.
- Barabasi-Albert (BA): The "scale-free" model. Built via two mechanisms:
 - 1. Growth: Start with a small network, add one node at a time.
 - 2. **Preferential Attachment**: New nodes prefer to link to existing nodes that already have a high degree ("rich get richer").

Centrality Measures

Ways to quantify a node's "importance" in a network.

- Degree: Number of connections. Simple count of a node's "popularity".
- Betweenness: Fraction of all shortest paths in the network that pass through this node. Identifies "bridges" or "bottlenecks".
- Closeness: Inverse of the average shortest-path distance to all other nodes. Measures how "central" a node is or how fast it can reach everyone.
- Eigenvector: A node's importance is determined by the importance of its neighbors. A node is important if it's connected to other important nodes. Solved by finding the principal eigenvector of the adjacency matrix A: Ac = λc.
- Alpha-Centrality: A generalization that includes a node's intrinsic importance: $\mathbf{c} = \beta (I \alpha A)^{-1} \mathbf{e}$.

Optimization

Gradient Descent (GD)

An iterative algorithm to find a local minimum of a function $f(\mathbf{w})$ by repeatedly moving in the direction of the negative gradient, $-\nabla f(\mathbf{w})$.

$$\mathbf{w}_{k+1} = \mathbf{w}_k - \alpha \nabla f(\mathbf{w}_k)$$

Where α is the **learning rate**.

- Batch GD: Calculate ∇f using the entire dataset. Very accurate gradient, but computationally slow for large datasets.
- Stochastic GD (SGD): Calculate ∇f using only *one* data point.
 Very fast updates, but the gradient is noisy, leading to a volatile convergence path.
- Mini-batch SGD: A compromise. Calculate ∇f using a small batch of data. Offers a balance between the stability of Batch GD and the speed of SGD.

Adam Optimizer: An advanced optimization algorithm popular for deep learning. It adaptively adjusts the learning rate for each parameter, combining the ideas of Momentum (using a moving average of the 1st moment/gradient) and RMSprop (using a moving average of the 2nd moment/squared gradient).

Local Search

An iterative improvement heuristic. Start with a candidate solution and repeatedly move to a "neighboring" solution if it is better.

- Neighborhood: The set of solutions accessible from the current solution by a small change.
- Example: TSP Neighborhoods:
 - 2-opt: Remove two edges from the tour, and reconnect the four resulting endpoints in the only other possible way (which "uncrosses" the paths).
 - 3-opt: Remove three edges, reconnect in a way that improves the tour.

Particle Swarm Optimization (PSO)

A population-based stochastic optimization algorithm inspired by social behavior (e.g., bird flocking). Used for black-box optimization.

- A "swarm" of particles (candidate solutions) "fly" through the search space.
- Each particle i has a position \mathbf{x}_i (its solution) and a velocity \mathbf{v}_i .
- Each particle remembers its **personal best** position found so far: pbest_i.
- The swarm tracks the global best position found by *any* particle: qbest.

Core Update Equations

$$\mathbf{v}_{i}(t+1) = \underbrace{\mathbf{v}_{i}(t)}_{\text{Inertia}} + \underbrace{c_{1}r_{1}(pbest_{i} - \mathbf{x}_{i}(t))}_{\text{Cognitive/Personal}} + \underbrace{c_{2}r_{2}(gbest - \mathbf{x}_{i}(t))}_{\text{Social}}$$

$$\mathbf{x}_{i}(t+1) = \mathbf{x}_{i}(t) + \mathbf{v}_{i}(t+1)$$

- ω : Inertia weight. Balances exploration (high ω) and exploitation (low ω).
- c_1, c_2 : Acceleration coefficients. Control the "pull" towards the personal best $(c_1, \text{cognitive})$ and global best (c_2, social) .
- r_1, r_2 : Random numbers in [0, 1] to add stochasticity.

Topologies

Defines how information (the *qbest*) is shared among particles.

- **gbest (Global Best)**: All particles are connected. The *gbest* is the best of the entire swarm. Converges very fast, but can get stuck in local optima.
- **lbest (Local Best)**: Particles are in a smaller neighborhood (e.g., a ring). The *gbest* in the equation is replaced with the *lbest* (best in the neighborhood). Slower convergence, but more robust to local optima.

Multi-Robot Task Allocation (MRTA)

The problem of assigning a set of tasks T to a set of robots R to optimize a collective objective (e.g., minimize time, maximize utility).

MRTA Taxonomy

Problems are classified by:

- ST/MT: Single-Task / Multi-Task robots (robots can handle one vs. many tasks at a time).
- SR/MR: Single-Robot / Multi-Robot tasks (tasks require one vs. a team of robots).
- IA/TA: Instantaneous Assignment / Time-Extended Assignment (tasks are just assigned vs. tasks involve durations and travel, requiring scheduling/routing).

Mapping MRTA to Optimization Models

MRTA Type	Optimization
ST-SR-IA (One robot per task, one task per robot) MT-SR-IA (Robots can take multiple tasks) ST-SR-TA (One robot per task, includes routing) MT-SR-TA (Robots take multiple tasks, includes routing)	LAP (Linear A GAP (Generali mTSP (Multipl VRP (Vehicle I

Set-Based Formulations (for MR tasks)

Used for coalition formation, where tasks require multiple robots (MR).

• Set Covering (MT-MR-IA): Find the minimum cost set of coalitions (subsets of robots) such that *every task is covered at least once*. Models MT-MR-IA, as robots can be in multiple coalitions.

$$\min \sum c_j x_j \quad \text{s.t.} \quad \sum a_{ij} x_j \ge 1$$

• Set Packing (ST-MR-IA): Find the maximum profit set of coalitions such that *each task is covered at most once*. Models ST-MR-IA, where task allocation must be exclusive.

$$\max \sum p_j x_j$$
 s.t. $\sum a_{ij} x_j \le 1$

• Set Partitioning: Find the coalitions such that *every task is covered exactly once*. This is a very common base for routing problems.