Домашнее задание №1

Лев Довжик, М3439 Вариант №62

Начальные условия

Проверочная матрица
$$H = \begin{pmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

№1 Скорость кода

Матрица H имеет n=10 столбцов и r=n-k=4 строк, а значит n=10, k=6, r=4, и скорость кода $R=\frac{k}{n}=\frac{3}{5}=0.6$ $\frac{bit}{symbol}$

№2 Минимальное расстояние кода

Заметим, что любые два столбца проверочной матрицы независимы (т.к. все столбцы различны). При этом первый, четвёртый и десятый столбец в сумме

дают нулевой вектор:
$$\begin{pmatrix} 1\\1\\1\\0 \end{pmatrix} + \begin{pmatrix} 0\\0\\1\\0 \end{pmatrix} + \begin{pmatrix} 1\\1\\0\\0 \end{pmatrix} = \begin{pmatrix} 0\\0\\0\\0 \end{pmatrix}.$$

Откуда по теореме 2.4 получаем, что минимальное расстояние d=3.

№3 Расстрояние кода

TODO

№4 Порождающая матрица

Приведём проверочную матрицу к систематическому виду.

Прибавим к 4 строке первые три: $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$

В конце проверяем, что $G \cdot P^T = O_{k \times n}$

```
import numpy as np
G = \text{np.array}([[1, 0, 0, 0, 0, 0, 1, 0, 1, 1],
               [0, 1, 0, 0, 0, 0, 1, 1, 0],
               [0, 0, 1, 0, 0, 0, 1, 1, 0, 0],
               [0, 0, 0, 1, 0, 0, 1, 0, 1, 0],
               [0, 0, 0, 0, 1, 0, 0, 1, 1],
               [0, 0, 0, 0, 0, 1, 0, 1, 0, 1]]
H = \text{np.array}([[1, 1, 1, 0, 1, 0, 0, 1, 0, 1],
               [1, 0, 0, 0, 0, 0, 1, 1, 1, 1],
               [1, 1, 0, 1, 0, 1, 1, 1, 0, 0],
               [0, 1, 1, 0, 0, 1, 0, 1, 0, 0]]
H t = H. transpose()
res = np.matmul(G, H t) \% 2
print (res)
# [[0 0 0 0]
# [0 0 0 0]
# [0 0 0 0]
# [0 0 0 0]
# [0 0 0 0]
```

№5 Кодировка сообщения

Пусть
$$m=(1\ 1\ 0\ 1\ 0\ 0),$$
 тогда $c=m\cdot G=(1\ 1\ 0\ 1\ 0\ 0)\cdot \begin{pmatrix} 1\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1\ 0 \\ 0\ 0\ 1\ 0\ 0\ 1\ 1\ 0 \\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1 \\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 1 \\ 0\ 0\ 0\ 0\ 1\ 0\ 1\ 0\ 1 \end{pmatrix}.$ То есть $c=(1\ 1\ 0\ 1\ 0\ 0\ 0\ 1\ 1\ 1\ 1)$

 $To ectb c = (1 \ 1 \ 0 \ 1 \ 0 \ 0 \ 1 \ 1 \ 1)$

№6 Информационная совокупность

Заметим, что при «систематизации» матрицы H мы нигде не перестовляли столбцы, значит нам не нужна перенумеровка стобцов в G. При этом первый k=6 столбцов матрицы G образают единичную подматрицу, а следовательно линейно назависимы. Из всего вышесказанного получаем, что информационная совокупность равна (1, 2, 3, 4, 5, 6)

№11 Синдромное декодирование

Всего у нас существует $2^r = 2^4 = 16$ синдромов. Нулевому синдрому, очевидно, соотвествует нулевой вектор ошибок. А так же, в силу того что строки \boldsymbol{H}^T различны, каждому вектору ошибок веса 1 будет соотвествовать свой уникальный синдром. Итого мы построили таблицу для 11 синдромов из 16:

$$H^T = egin{pmatrix} 1 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \ 1 & 0 & 0 & 1 & 0 \ 0 & 0 & 1 & 1 & 0 \ 0 & 1 & 1 & 0 & 0 \ 1 & 1 & 1 & 1 & 0 \ 1 & 1 & 0 & 0 & 0 \ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

S	e
0 0 0 0	00000000000
0 0 0 1	?
0 0 1 0	0001000000
0 0 1 1	0000010000
0 1 0 0	0000000010
0 1 0 1	?
0 1 1 0	0000001000
0 1 1 1	?
1000	0000100000
1001	0010000000
1010	?
1011	01000000000
1 1 0 0	00000000001
1 1 0 1	?
1 1 1 0	10000000000
1 1 1 1	0000000100

Оставшиеся синдромы будут иметь соотвествующие им вектора ошибок веса хотя бы 2. Заметим, что синдром $(0\ 0\ 0\ 1)$ получается складыванием 1 и 8 строк, $(0\ 1\ 0\ 1) - 6$ и 7, $(0\ 1\ 1\ 1) - 5$ и 8, $(1\ 0\ 1\ 0) - 1$ и 9, $(1\ 0\ 1\ 1) - 8$ и 9. Вес меньше двух они иметь не могут, а значит мы нашли минимальные вектора для данных синдромов. Итоговая таблица синдромного декодирования:

S	e
0 0 0 0	00000000000
0 0 0 1	1000000100
0 0 1 0	0001000000
0 0 1 1	0000010000
0 1 0 0	0000000010
0 1 0 1	0000011000
0 1 1 0	0000001000
0 1 1 1	0000100100
1000	0000100000
1001	0010000000
1010	1000000010
1011	0100000000
1 1 0 0	00000000001
1 1 0 1	0000000110
1110	10000000000
1111	0 0 0 0 0 0 0 1 0 0