Exercice 2 page 14:

Pour chacune des fonctions réelles f suivantes, donner son ensemble de définition \mathcal{D}_f , son ensemble image Im(f), et, pour chaque $y \in \mathbb{R}$, donner $S_y = \{x \in \mathcal{D}_f \mid f(x) = y\}$, l'ensemble des antécédents de f:

1.
$$f(x) = \frac{1}{1+x}$$
 2. $f(x) = -x^2 + 2x$, 3. $f(x) = \frac{x-1}{x+1}$, 4. $f(x) = 1 + \sqrt{x}$ 5. $f(x) = \sqrt{1-x}$, 6. $f(x) = \sqrt{1+x^2} - x$.

Cet exercice revient à résoudre l'équation y = f(x), en donnant au passage l'ensemble des y pour lesquels cette équation a une solution.

Méthode: on donne d'abord des conditions nécessaires sur y et x pour que y = f(x) soit vrai (analyse du problème), puis on vérifie dans quels cas ces conditions sont bien suffisantes ((synthèse).

- Donner \mathcal{D}_f .
- Analyse (ou conditions nécessaires) : Supposer $y \in Im(f)$, et $x \in S_y$, et exprimer x en fonction de y à partir de l'équation y = f(x). Au cours du calcul, on en déduira :
 - 1. Des conditions sur y, par exemple $y \neq 0$, ou $y \geq 0$. On trouve donc un sous-ensemble J tel que $y \in J$.

En conséquence, il est **nécessaire** que $Im(f) \subset J$.

2. Des conditions sur x, en général de la forme "x = g(y)", avec g une fonction réelle.

On en déduit un ensemble

$$E_y = \{ \text{ les expressions de } x \text{ en fonction de } y \}$$

(Attention! On peut obtenir plusieurs expressions différentes pour x en fonction de y, il faut toutes les prendre en compte!).

On en déduit qu'il est nécessaire que $S_y \subset \{$ les expressions de x en fonction de $y \}$,

- Synthèse (ou conditions suffisantes) : On prend y satisfaisant les conditions trouvées dans la partie précédente, c'est-à-dire $y \in J$ et, pour chaque élément $x \in E_y$ (x s'exprime alors généralement par x = g(y)) :
 - 1. On vérifie que $x \in \mathcal{D}_f$, c'est-à-dire que si $y \in J$, l'expression $g(y) \in \mathcal{D}_f$ aussi.
 - Si non : comme $S_y \subset \mathcal{D}_f$, x = g(y) n'appartient pas à S_y : on passe à l'élément suivant de E_y et on recommence jusqu'à en trouver un qui soit bien dans \mathcal{D}_f .
 - Si oui, on continue le raisonnement.
 - 2. On calcule f(x) = f(g(y)).
 - Si on trouve f(g(y)) = y, alors g(y) appartient bien à S_y . On passe à l'élément suivant de E_y et on recommence.
 - Si on trouve $f(g(y)) \neq y : g(y)$ n'appartient pas à S_y . On passe à l'élément suivant de E_y .
- Après avoir vérifié tous les éléments de E_y (en général, seulement un ou deux), deux possibilité :
 - 1. Aucun des éléments de E_y n'appartient à S_y . Comme nécessairement $S_y \subset E_y$, on en déduit que S_y est vide : y n'a pas d'antécédent, et ne peut pas appartenir à $\Im(f)$. \Rightarrow nouvelle condition nécessaire pour que $y \in Im(f)$.
 - 2. S_y n'est pas vide. En particulier, $y \in Im(f)$ (on a donc une condition suffisante sur y), et on a identifié tous les éléments de E_y qui sont dans S_y . Comme $S_y \subset E_y$, on a bien S_y tout entier.
- Conclusion : on a identifié Im(f) et S_y .

Attention! La notation S_y pour l'ensemble des antécédents de y par f est à réintroduire à chaque fois, sauf si, comme ici, elle est donnée dans l'énoncé. Faire particulièrement attention si plusieurs fonctions (par exemple f_1 et f_2) ont été définies dans la même question, auquel cas il faut préciser s'il s'agit de l'ensemble des antécedents par f_1 ou par f_2 .

1 (Rédaction très détaillée) : $f(x) = \frac{1}{x+1}$

- Pour x réel, f(x) est définie si $x+1\neq 0$, c'est-à-dire si $x\neq -1$. Donc $\mathcal{D}_f=\mathbb{R}\setminus\{-1\}$.
- Analyse:

Soit y un réel, que nous supposons dans Im(f), et soit alors $x \neq -1$ tel que $x \in S_y$. On obtient

$$y = f(x) = \frac{1}{x+1}$$

$$\Rightarrow xy + y = 1$$

$$\Rightarrow xy = 1 - y.$$

Pour exprimer x en fonction de y, on veut diviser par y, mais il faudrait que y soit différent de 0, ce qu'on n'a pas supposé à priori!

Cela dit, si y=0 alors que xy=1-y, on obtiendrait 0=1, une contradiction. Notre hypothèse que $y \in Im(f)$ implique donc $y \neq 0$. On peut ainsi diviser par y et obtenir

$$x = \frac{1 - y}{y}.$$

Au cours des calculs, on voit que si $y \in Im(f)$, alors

- 1. $y \in \mathbb{R}^*$ (conditions sur y), d'où $Im(f) \subset \mathbb{R}^*$.
- 2. $x = \frac{1-y}{y}$, d'où

$$S_y \subset \underbrace{\left\{ \frac{1-y}{y} \right\}}_{=E_y},$$

et a donc au plus un élément.

- Synthèse:

Réciproquement, soit $y \in \mathbb{R}^*$, et $x \in \{\frac{1-y}{y}\}$, ce qui veut dire que $x = \frac{1-y}{y}$.

- 1. Vérifions que $x \in \mathcal{D}_f$, c'est-à-dire que $x = \frac{1-y}{y} \neq -1$. Si on avait $\frac{1-y}{y} = -1$, on en déduirait 1-y = -y, d'où 1 = 0: contradiction. Donc $x = \frac{1-y}{y} \in \mathcal{D}_f$.
- 2. Vérifions que f(x) = y:

$$f(x) = f\left(\frac{1-y}{y}\right) = \frac{1}{\frac{1-y}{y}+1} = \frac{1}{\frac{1-y+y}{y}} = \frac{1}{\frac{1}{y}} = y.$$

Donc $\frac{1-y}{y} \in S_y$ et $y \in Im(f)$, autrement dit

$$\mathbb{R}^* \subset Im(f)$$
 et $\left\{\frac{1-y}{y}\right\} \subset S_y$.

- Conclusion

$$Im(f) = \mathbb{R}^* \text{ et } \forall y \in \mathbb{R}^*, \ S_y = \left\{\frac{1-y}{y}\right\}.$$

3

2 (Rédaction très détaillée) : $f(x) = -x^2 + 2x$

- Pour x réel, f(x) est définie. Donc $\mathcal{D}_f = \mathbb{R}$.
- Analyse

Soit y un réel, que nous supposons dans Im(f), et soit alors $x \in \mathbb{R}$ tel que $x \in S_y$. On obtient

$$y = f(x) = -x^2 + 2x$$

$$\Rightarrow x^2 - 2x + y = 0.$$

Donc x est solution de cette équation du second degré, dont le discriminant est $\Delta = 4 - 4y = 4(1 - y)$. Cette équation a une ou plusieurs solutions si et seulement si $\Delta \geq 0$, c'est-à-dire $y \leq 1$, et ces solutions sont

$$\frac{2 - 2\sqrt{1 - y}}{2} = 1 - \sqrt{1 - y} \text{ et } \frac{2 + 2\sqrt{1 - y}}{2} = 1 + \sqrt{1 - y}.$$

Ainsi, au cours des calculs, on voit que si $y \in Im(f)$, alors

- 1. l'équation $x^2 2x + y = 0$ a une solution, et donc $y \le 1$ (conditions sur y), d'où $Im(f) \subset]-\infty, 1]$.
- 2. x est solution de l'équation, et donc $x=1-\sqrt{1-y}$ ou $x=1+\sqrt{1-y}$, d'où

$$S_y \subset \underbrace{\left\{1 - \sqrt{1 - y}, 1 + \sqrt{1 - y}\right\}}_{=E_y}$$

et a donc au plus deux éléments.

- Synthèse:

Réciproquement, soit $y \in]-\infty, 1]$, et $x \in \{1-\sqrt{1-y}, 1+\sqrt{1-y}\}$.

- 1. $\mathcal{D}_f = \mathbb{R} \text{ donc } x \in \mathcal{D}_f$.
- 2. Vérifions que f(x) = y: on sait que comme $x \in \{1 \sqrt{1 y}, 1 + \sqrt{1 y}\}$, alors x est solution de $x^2 2x + y = 0$. Donc on a bien $y = -x^2 + 2x = f(x)$.

Donc $y \in Im(f)$ et $x \in S_y$, autrement dit

$$]-\infty,1]\subset Im(f) \quad {
m et} \quad \left\{1-\sqrt{1-y},1+\sqrt{1-y}\right\}\subset S_y.$$

- Conclusion

$$Im(f) =]-\infty, 1]$$
 et $S_1 = \{1\}$ et $\forall y < 1, S_y = \{1 - \sqrt{1-y}, 1 + \sqrt{1-y}\}$.

2 (Rédaction très détaillée) : $f(x) = -x^2 + 2x$

- Pour x réel, f(x) est définie. Donc $\mathcal{D}_f = \mathbb{R}$.
- Analyse:

Soit y un réel, que nous supposons dans Im(f), et soit alors $x \in \mathbb{R}$ tel que $x \in S_y$. On obtient

$$y = f(x) = -x^2 + 2x$$

$$\Rightarrow x^2 - 2x + y = 0.$$

Donc x est solution de cette équation du second degré, dont le discriminant est $\Delta = 4 - 4y = 4(1 - y)$. Cette équation a une ou plusieurs solutions si et seulement si $\Delta \geq 0$, c'est-à-dire $y \leq 1$, et ces solutions sont

$$\frac{2-2\sqrt{1-y}}{2} = 1-\sqrt{1-y}$$
 et $\frac{2+2\sqrt{1-y}}{2} = 1+\sqrt{1-y}$.

Ainsi, au cours des calculs, on voit que si $y \in Im(f)$, alors

- 1. l'équation $x^2 2x + y = 0$ a une solution, et donc $y \le 1$ (conditions sur y), d'où $Im(f) \subset]-\infty, 1]$.
- 2. x est solution de l'équation, et donc $x=1-\sqrt{1-y}$ ou $x=1+\sqrt{1-y}$, d'où

$$S_y \subset \underbrace{\left\{1 - \sqrt{1 - y}, 1 + \sqrt{1 - y}\right\}}_{=E_y}$$

et a donc au plus deux éléments.

Synthèse :

Réciproquement, soit $y \in]-\infty, 1]$, et $x \in \{1-\sqrt{1-y}, 1+\sqrt{1-y}\}$.

- 1. $\mathcal{D}_f = \mathbb{R} \text{ donc } x \in \mathcal{D}_f$.
- 2. Vérifions que f(x) = y: on sait que comme $x \in \{1 \sqrt{1 y}, 1 + \sqrt{1 y}\}$, alors x est solution de $x^2 2x + y = 0$. Donc on a bien $y = -x^2 + 2x = f(x)$.

Donc $y \in Im(f)$ et $x \in S_y$, autrement dit

$$]-\infty,1]\subset Im(f) \quad {
m et} \quad \left\{1-\sqrt{1-y},1+\sqrt{1-y}
ight\}\subset S_y.$$

- Conclusion

$$Im(f) =]-\infty, 1]$$
 et $S_1 = \{1\}$ et $\forall y < 1, S_y = \{1 - \sqrt{1-y}, 1 + \sqrt{1-y}\}$.

4

4 (Rédaction très détaillée) : un exemple où on élimine certains y dans la partie synthèse $f(x) = 1 + \sqrt{x}$

- pour x réel, f(x) est définie si \sqrt{x} l'est. Donc $\mathcal{D}_f = \mathbb{R}_+$.
- Analyse:

Soit y un réel, que nous supposons dans Im(f), et soit alors $x \in \mathbb{R}_+$ tel que $x \in S_y$. On obtient

$$y = f(x) = \sqrt{x} + 1 \Rightarrow \sqrt{x} = y - 1$$
$$\Rightarrow x = (y - 1)^{2}.$$

Ainsi, au cours des calculs, on voit que si $y \in Im(f)$, alors

- 1. pour l'instant, pas de condition sur $y:y\in\mathbb{R}$.
- 2. $x = (y-1)^2$, d'où

$$S_y\subset \underbrace{\left\{(y-1)^2\right\}}_{=E_y}.$$

et a donc au plus un éléments.

- Synthèse:

Réciproquement, soit $y \in \mathbb{R}$, et $x \in \{(y-1)^2\}$, de sorte que $x = (y-1)^2$.

1.
$$x = (y-1)^2 \ge 0$$
 donc $x = (y-1)^2 \in \mathbb{R}_+ = \mathcal{D}_f$.

2. Vérifions que $f(x) = f((y-1)^2) = y$:

$$f(x) = f((y-1)^2) = \sqrt{(y-1)^2} + 1 = \begin{cases} y-1+1 = y & \text{si } y-1 \geq 0, & \text{c-\`a-d si } y \geq 1 \\ -y+1+1 = -y+2 & \text{si } y-1 < 0, & \text{c-\`a-d si } y < 1 \end{cases}$$

On voit donc que

• Si y < 1, alors $f((y-1)^2) = -y + 2$.

Or, y = -y + 2 implique y = 1, contradiction avec y < 1.

On en déduit que $f(x) = f((y-1)^2) \neq y$.

Ainsi, $(y-1)^2$ n'est pas dans S_y .

• Si $y \ge 1$, alors on a bien $f((y-1)^2) = y$.

Finalement, on a:

1. Si y < 1, comme $S_y \subset \{(y-1)^2\}$ et $(y-1)^2$ n'appartient pas à S_y , S_y est vide, et y n'a pas d'antécédent. \Rightarrow Si y < 1, y n'est pas dans Im(f).

Donc $Im(f) \subset [1, +\infty[$.

2. Si $y \ge 1$ $f((y-1)^2) = y$, donc $(y-1)^2 \in S_y$ et $y \in Im(f)$.

Ainsi

$$[1, +\infty[\subset Im(f)]$$
 et $\{(y-1)^2\}\subset S_y$.

Conclusion

$$Im(f) = [1, +\infty[$$
 et $S_y = \{(y-1)^2\}$.

Remarque/astuce : On aurait pu réduire la preuve en remarquant, dans la partie analyse, que si $y=1+\sqrt{x}$, comme $\sqrt{x}\geq 0$, alors forcément $y\geq 1$, d'où $Im(f)\subset [1,+\infty[$. Dans ce cas, dans la partie synthèse, on suppose tout de suite $y\geq 1$, ce qui donne immédiatement $f((y-1)^2)=y$, et donc

$$[1,+\infty[\subset Im(f)\quad \text{et}\quad \{(y-1)^2\}\subset S_y.$$