

Inference

Sampling Methods

MCMC for PGMs: The Gibbs Chain

Gibbs Chain

- Target distribution P_Φ(X₁,...,X_n)
- Markov chain state space: complete assignments x to $X = \{X_1,...,X_n\}$
- Transition model given starting state x:
 - For i=1,...,n
 - Sample x_i ~ P_Φ(X_i | x_{-i}) assignment to all you're except x
 - Set $x' = x \le$

Daphne Koller

Computational Cost

- For i=1,...,n
 - Sample $x_i \sim P_{\Phi}(X_i \mid \mathbf{x}_{-i})$

$$P_{\Phi}(X_i \mid \boldsymbol{x}_{-i}) = \frac{P_{\Phi}(X_i, \boldsymbol{x}_{-i})}{P_{\Phi}(\boldsymbol{x}_{-i})} = \frac{P_{\Phi}(X_i, \boldsymbol{x}_{-i})}{P_{\Phi}(\boldsymbol{x}_{-i})}$$

complete assignment

Another Example

Computational Cost Revisited

- For i=1,...,n
 - Sample $x_i \sim P_{\Phi}(X_i \mid \mathbf{x}_{-i})$

$$P_{\Phi}(X_i \mid \boldsymbol{x}_{-i}) = \frac{P_{\Phi}(X_i, \boldsymbol{x}_{-i})}{P_{\Phi}(\boldsymbol{x}_{-i})} = \frac{\tilde{P}_{\Phi}(X_i, \boldsymbol{x}_{-i})}{\tilde{P}_{\Phi}(\boldsymbol{x}_{-i})}$$

Gibbs Chain and Regularity

X_1	X ₂	У	Prob	
		0	0.25	
- 0	0	0	0.23	
0	1	1	0.25	4
1	0	1	0.25	
1	1	0	0.25	_

- If all factors are positive, Gibbs chain is regular
- · However, mixing can still be very slow

Summary

- Converts the hard problem of inference to a sequence of "easy" sampling steps
- Pros:
 - Probably the simplest Markov chain for PGMs
 - Computationally efficient to sample
- · Cons:
 - ->Often slow to mix, esp. when probabilities are peaked
 - —Only applies if we can sample from product of factors