Algebraic Structures

Ikhan Choi

September 9, 2022

Contents

Ι	Groups	3
1	Subgroups	4
2	Group actions 2.1 Orbits and stabilizers	5 5 5
3	Symmetry groups 3.1 Cyclic groups	6 6 6 6
II	Rings	7
4	Ideals 4.1 Definitions of rings and ideals	8
5	Integral domains5.1 Principal ideal domains5.2 Unique factorization domains5.3 Noetherian rings	9 9 9
6	6.1 Irreducible polynomials	10 10 10
II]	I Modules	11
7 8	7.1 Modules	12 12 13 13
_		14

9	Modules over principal ideal domains	15
	9.1 Structure theorem of finitely generated modules	15
IV	Vector spaces	16
10		17
	10.1 Dual spaces	17
	10.2 Bilinear and sesquilinear forms	17
	10.3 Adjoint	17
11	Normal forms	18
	11.1 Rational canonical form	18
	11.2 Jordan normal form	18
	11.3 Conjugacy classes in matrix groups	18
	11.4 Spectral theorems	
12	2 Tensor algebras	19

Part I

Groups

Subgroups

subgroups homomorphisms, image, kernel, inverse images normality, quotient, coset counting direct sum, direct product generators, subgroup lattice

Exercises

Problems

- 1. Let *G* be a finite group. If the cube map $x \mapsto x^3$ is a surjective endomorhpism, then *G* is abelian.
- 2. Show that if $|G| = p^2$ for a prime p, then a group G is abelian.
- 3. Show that the order of a group with only on automorphism is at most two.

Group actions

2.1 Orbits and stabilizers

Invariants on orbit space. The size and number of orbits.

- 2.1 (Transitive actions). stabilizer of an action is well defined
- **2.2** (Free actions). no fixed point, trivial stabilizer for any point, every orbit has 1-1 correspondence to group

2.2 Action by conjugation

2.3 Action by left multiplication

H has index n : G can act on Sym(G/H) : left mul K normalizes H : K -> NG(H) -> NG(H)/H with ker = KnH K normalizes H : K -> NG(H) -> Aut(H) with ker = CG(H)

Problems

1. Let G be a finite group. If G/Z(G) is cylic, then G is abelian.

Symmetry groups

Information about: element counting by order, element counting by conjugacy class, subgroups by order (existence) subgroups by conjugacy class.

- 3.1 Cyclic groups
- 3.2 Dihedral groups
- 3.3 Symmetric groups

alternating groups

3.4 Automorphism groups

Maybe too hard

cyclic groups. abelian groups? symmetric groups?

Exercises

3.1 (Primitive roots). We find all n such that $(\mathbb{Z}/n\mathbb{Z})^{\times}$ is cyclic.

Problems

- 1. Show that a group of order 2p for a prime p has exactly two isomorphic types.
- 2. Let *G* be a finite group of order *n* and *p* the smallest prime divisor of *n*. Show that a subgroup of *G* of index *p* is normal in *G*.
- 3. Show that a finite group *G* satisfying $\sum_{g \in G} \operatorname{ord}(g) \leq 2n$ is abelian.
- 4. Find all homomorphic images of A_4 up to isomorphism.
- 5. For a prime p, find the number of subgroups of $Z_{p^2} \times Z_{p^3}$ of order p^2 .

Part II

Rings

Ideals

4.1 Definitions of rings and ideals

4.1 (Definition of rings). A *ring* is an abelian group (R, +) together with a binary operation $\times : R \times R \to R$, called the *multiplication*, such that:

- (i) (R, \times) is an abelian monoid,
- (ii) the *distributive law*: for every $r, s, t \in R$, we have

$$r \times (s+t) = (r \times s) + (r \times t).$$

The additive and multiplicative identities are usually denoted by 0 and 1 and called the *zero* and the *unity* respectively. We will sometimes call rings for which multiplication is not necessarily commutative or the multiplicative identity does not necessarily exist as *non-commutative rings* and *non-unital rings*, respectively.

4.2 (Definition of ideals). Let *R* be a ring.

Exercises

size of units, the number of ideals

Integral domains

- 5.1 Principal ideal domains
- 5.2 Unique factorization domains
- 5.3 Noetherian rings

Exercises

Problems

- 1. Show that a finite integral domain is a field.
- 2. Show that every ring of order p^2 for a prime p is commutative.
- 3. Show that a semiring with multiplicative identity and cancellative addition has commutative addition.
- 4. Show that the complement of a saturated monoid in a commutative ring is a union of prime ideals.

Polynomial rings

6.1 Irreducible polynomials

relation to maximal ideals Irreducibles over several fields

- 6.1 (Gauss lemma).
- **6.2** (Eisenstein criterion).

6.2 Polynomial rings over a field

- **6.3** (Euclidean algorithm for polynoimals).
- **6.4** (Polynomial rings over UFD).
- **6.5** (Hilbert's basis theorem).

Part III

Modules

Modules

7.1 Modules

7.1 (Definition of modules). Let R be a non-commutative ring. A (left) R-module is an abelian group (M,+) together with a function $\cdot : R \times M \to M$, called the *scalar multiplication*, such that

(i) the scalar multiplication defines an *left action* on M: for every $r, s \in R$ and $m \in M$, we have

$$r \cdot (s \cdot m) = (rs) \cdot m$$
 and $1 \cdot m = m$,

(ii) the distributive laws hold: for every $r, s \in R$ and $m, n \in M$, we have

$$r \cdot (m+n) = r \cdot m + r \cdot n$$
 and $(r+s) \cdot m = r \cdot m + s \cdot m$.

(a) If *R* is commutative, then

submodules quotient modules isomorphism theorems

7.2 Algebras

7.2 (Definition of algebras). Let *R* be a ring. An (associative) *R*-algebra is an *R*-module $(A, +, \cdot)$ together with a binary operation $\times : A \times A \rightarrow A$, called the *multiplication*, such that

- (i) the multiplication is associative,
- (ii) the *distributive laws* hold: for every $a, b, c \in A$, we have

$$a \times (b+c) = a \times b + a \times c$$
 and $(a+b) \times c = a \times c + b \times c$,

(iii) the *compatibility with scalars*: for every $r, s \in R$ and $a, b \in A$, we have

$$(rs) \cdot (a \times b) = (r \cdot a) \times (s \cdot b).$$

If the multiplication is commutative or admits an identity, respectively, we say the *R*-algebra is *commutative* or *unital*. Although there are examples of *non-associative* algebras in which the multiplication is not associative, we will always mean *associative R*-algebras by *R*-algebras if any modifier is not attached.

- (a) The set of matrices $M_n(R)$ over a ring R is a unital R-algebra.
- (b) The set of quaternions \mathbb{H} is an \mathbb{R} -algebra.

- (c) There is a one-to-one correspondence between rings and commutative unital \mathbb{Z} -algebras.
- **7.3** (Algebras as non-commutative rings). The term algebra is commonly used when we have to consider either non-commutative or non-unital of rings. Let R be a ring. An R-algebra also can be defined as a non-commutative and non-unital ring $(A, +, \times)$ together with a ring homomorphism $\eta: R \to Z(A)$, where

$$Z(A) := \{ a \in A : ab = ba \text{ for all } b \in A \},$$

which is called the *center*. The homomorphism η defines a scalar multiplication via

$$: R \times A \rightarrow A : (r, a) \mapsto \eta(r)a.$$

- (a) A non-commutative and non-unital ring R is a Z(R)-algebra.
- (b) The "module-with-multiplication definition" is equivalent to the "ring-with-scalar-multiplication definition".

7.3 Free modules

generators, cyclic direct sum free modules

7.4 Tensor products

Exact sequences

8.1

injective modules projective modules flat modules endomorphism algebra Tor and Ext

Modules over principal ideal domains

9.1 Structure theorem of finitely generated modules

invariant factors and elementary divisors

9.1 (Structure theorem of finitely generated modules). Let R be a principal ideal domain and let M be a finitely generated module.

If we know the ideal structure of a PID R, then we can classify all finitely generated modules over R.

- 9.2 (Fundamental theorem of abelian groups).
- 9.3 (Cyclic decomposition).

Part IV Vector spaces

10.1 Dual spaces

10.1 (Double dual space).

10.2 Bilinear and sesquilinear forms

10.2 (Polarization identity). (a) Let F be a field of characteristic not 2. If $\langle -, - \rangle$ is a symmetric bilinear form, then

 $\langle x, y \rangle = \frac{1}{2} (\|x + y\|^2 - \|x\|^2 - \|y\|^2).$

(b) Let $F = \mathbb{C}$. If $\langle -, - \rangle$ is a sesquilinear form, then

 $\langle x, y \rangle = \frac{1}{4} \sum_{k=0}^{3} i^{k} ||x + i^{k}y||^{2}.$

- (c) isometry check
- **10.3** (Cauchy-Schwarz inequality). (a) Let $F = \mathbb{R}$. If $\langle -, \rangle$ is a positive semi-definite symmetric bilinear form, then
 - (b) Let $F = \mathbb{C}$. If $\langle -, \rangle$ is a positive semi-definite Hermitian form, then
- **10.4** (Dual space identification). Let $\langle -, \rangle$ be a non-degenerate bilinear form

10.3 Adjoint

10.5 (Adjoint linear transforms).

Normal forms

11.1 Rational canonical form

11.1 (Finitely generated F[x]-modules). Let F be a field. Then, the map

$$V \mapsto (V, x)$$

defines a one-to-one correspondence

$$\left\{\begin{array}{c} \text{finitely generated} \\ F[x]\text{-modules} \end{array}\right\} \rightarrow \left\{(V,T)\;;\;\; \begin{array}{c} V \text{ is a finite-dimensional vector spaces over } F, \\ T:V\to V \text{ is a linear transform} \end{array}\right\}.$$

11.2 (Cyclic subspaces).

11.2 Jordan normal form

11.3 Conjugacy classes in matrix groups

11.3 (Conjugacy classes of $GL_2(\mathbb{F}_p)$). The conjugacy classes are classified by the Jordan normal forms. There are four cases: for some a and b in \mathbb{F}_p ,

(a)
$$\begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix}$$
: $\binom{p-1}{2} = \frac{(q-1)(q-2)}{2}$ classes of size $\frac{|G|}{(q-1)^2} = q(q+1)$.

(b)
$$\begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$
: $q-1$ classes of size 1.

(c)
$$\begin{pmatrix} a & 1 \\ 0 & a \end{pmatrix}$$
: $q-1$ classes of size $\frac{|G|}{q(q-1)} = q^2 - 1$.

(d) otherwise, the eigenvalues are in $\mathbb{F}_{p^2}\setminus\mathbb{F}_p$. In this case, the number of conjugacy classes is same as the number of monic irreducible qudratic polynomials over \mathbb{F}_p ; $\frac{|\mathbb{F}_{p^2}|-|\mathbb{F}_p|}{2}=\frac{p(p-1)}{2}$ classes. Their size is $\frac{p(p-1)}{2}$.

11.4 Spectral theorems

Exercises

Tensor algebras

Exterior algebras Symmetric algebras