

FingerNet: An Unified Deep Network for Fingerprint Minutiae Extraction

Yao Tang, Fei Gao, Jufu Feng, Yuhang Liu Peking University

Contents

- 1. Background
- 2. FingerNet
- 3. Experiments
- 4. Conclusions

Backgrounds

- 1. Ten-print fingerprint:
 - Controlled condition (rolled/slap)
 - Automated minutiae extraction
- 2. Latent fingerprint:
 - Uncontrolled condition (crime scenes)
 - Manually marked by experts

Left: Ten-print (FVC2002), right: Latent (NIST SD27)

- 1. Traditional method
 - Hand-crafted features designed by domain knowledge

Traditional minutiae extraction pipeline

Orientation estimation: Global dictionary (Feng J et al. 2013)

Orientation estimation: ConvNet (Cao K et al. 2015)

- 2. Leaning-based method
 - Toward latent fingerprints
 - Learning features from data
 - End-to-end

Stacked denoising autoencoders. Sankaran A et al. 2014

- 2. Leaning-based method
 - Two minutiae templates

Automated Latent Fingerprint Recognition. Cao K et al. 2017

3. Previous work

- Detection task
- Deep learning
- End-to-end

Faster R-CNN based minutiae detection. Tang Y et al. 2016

Motivation

- 1. Combining domain knowledge and deep learning
 - Integrating fingerprint characteristics to make the model interpretable and transferable
 - Learning from data to make the model more robust to noise

One question

What's the relationship between traditional method and deep learning?

 Traditional method is equivalent to a simple shallow ConvNet with fixed weights

Traditional methods to equivalent ConvNet

Convolutional operation—>convolutional layer Pixel-wise operation—>activation layer/combined layer

Plain FingerNet: Integrated minutiae extraction pipeline

Transform traditional methods

1. Orientation estimation (Nalini K Ratha et al. 1995)

$$G_{xy} = \sum_{h=-8}^{8} \sum_{k=-8}^{8} \nabla_{x}(x_{i} + h, y_{i} + k) \cdot \nabla_{y}(x_{i} + h, y_{i} + k),$$

$$G_{xx} = \sum_{h=-8}^{8} \sum_{k=-8}^{8} \nabla_{x}(x_{i} + h, y_{i} + k)^{2},$$

$$G_{yy} = \sum_{h=-8}^{8} \sum_{k=-8}^{8} \nabla_{y}(x_{i} + h, y_{i} + k)^{2},$$

$$G_{yy} = (\nabla_{y} + h, y_{i} + h, y_{i} + k)^{2},$$

$$\theta = 90^{\circ} + \frac{1}{2}atan2(2 \cdot G_{xy}, G_{xx} - G_{yy}),$$

$$\nabla_x I = I * S_x, \ \nabla_y I = I * S_y,$$

$$G_{xy} = (\nabla_x I \cdot \nabla_y I) * J_w,$$

$$G_{xx} = (\nabla_x I)^2 * J_w,$$

$$G_{yy} = (\nabla_y I)^2 * J_w,$$

$$\theta = 90^\circ + \frac{1}{2} atan2(2 \cdot G_{xy}, G_{xx} - G_{yy}),$$

Transform traditional methods

- 1. Orientation estimation (Nalini K Ratha et al. 1995)
 - 3 hand-crafted features, complex connection and activation function

Orientation estimation module

Transform traditional methods

- 2. Enhancement (Gao X et al. 2010)
- o Grouped phases: generate enhanced phases C on every orientation
- Orientation choose: generate a mask M according to orientation

$$\begin{split} C(x,y,i) &= (I * g_{\omega_i,\theta_i})(x,y), \ i = 0,1,...,N-1 \\ F(x,y,i) &= Arg[C(x,y,i)]. \end{split}$$

$$M(x, y, i) = \begin{cases} 1, & \text{if } \omega(x, y) = \omega_i, \ \theta(x, y) = \theta_i \\ 0, & \text{otherwise.} \end{cases}$$

$$E(x, y) = \sum_{i=0}^{N} F(x, y, i) \cdot M(x, y, i)$$

Enhancement module

Transform traditional methods

- 3. Extraction
- Template matching
- Conv + maxout activation

$$S(x, y) = \max_{t} (E * T_t)(x, y),$$

Extraction templates. Black, white and gray represent 0, 1 and arbitrary pixels respectively

Expand to FingerNet

- 1. Plain FingerNet:
 - Fixed weights
 - Shallow layers
- 2. Complete FingerNet:
 - Release weights: learn complex background variance from data
 - Expand layers: enhance representation ability

Expand to FingerNet

Detailed FingerNet architecture

- Expanded from the plain FingerNet
- Trained end-to-end

How to train?

Label, Loss and training.

Label

Weak, strong and ground truth label:

- Weak orientation: from corresponding ten-print fingerprint (minutiae alignment)
- Strong orientation: minutia direction
- Weak segmentation: minutiae convex hull
- Ground truth minutia: manually marked
 Figure on the right:
- Weak label generation

Top: minutiae alignment Down: orientation replication

Loss

Loss cluster: a weighted sum of 9 different losses from orientation, segmentation and minutiae extraction

Training

- 1. Two steps training:
 - a) Training orientation and segmentation modules for a few epoches
 - b) Training the whole FingerNet by all the losses
- 2. Training data:
 - 8000 pairs of matched rolled fingerprints and latent fingerprints. Latent fingerprints include manually marked minutiae. Rolled fingerprints are used to generate weak labels.

Minutiae extraction on NIST SD27

Precision-Recall curves on NIST SD27

A sample for extracted minutiae. Red denotes our results and blue denotes manually marked minutiae.

One more thing!

Benefit from the combination of deep learning and domain knowledge:

- 1. Interpretable: typical fingerprint representations including orientation field, segmentation and enhancement can be acquired from intermediate layer.
- 2. Transferable: it also performed well on other datasets without any fine-tuning.

More results on NIST SD27 (Good)

More results on NIST SD27 (Bad)

More results on NIST SD27 (Ugly)

Minutiae extraction on FVC2004

Precision-Recall curves on NIST SD27

A sample for extracted minutiae. Red denotes our results and blue denotes manually marked minutiae.

More results on FVC2004

More results on NIST 4

More results on high-resolution partial fingerprint

Conclusions

- 1. A new way to guide the deep network's structure design for combining domain knowledge and deep learning representation ability.
- 2. FingerNet is proposed to extract reliable minutiae on both ten-print and latent fingerprints. The network is interpretable and transferable.
- 3. One way to generate weak labels to help training.

Thanks for your listening!

If you have any question, please email to:

tangyao@pku.edu.cn goofy@pku.edu.cn fjf@cis.pku.edu.cn liuyuhang@pku.edu.cn