DAT320 Operating Systems and Systems Programming

Course Introduction — Fall 2019 Lecturer: Hein Meling

Today

- Class overview and administration
- What is an operating system?
- What is a process?

Teaching Staff

- Instructor: Hein Meling < hein.meling@uis.no >
 - Office: E437 (by appointment only; send email)
- Teaching Assistants:
 - Eivind Mellemstrand Stavnes <em.stavnes@stud.uis.no>
 - Leon Nielsen < <u>le.nielsen@stud.uis.no</u>>

Course Web Site

- https://github.com/dat320-2019/
 - Syllabus
 - Lecture Plan
 - Reading Material
 - Lab Projects
 - (but no lecture notes)

Syllabus

- Chapters from the textbook
- Additional papers and blog posts
- Lab projects
- Slides published throughout the semester

Textbook

Operating Systems: Three Easy Pieces
 Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau
 Arpaci-Dusseau Books
 August, 2018 (Version 1.00)

- http://pages.cs.wisc.edu/~remzi/OSTEP/
- Printed copies available in the campus book store and online (see link)

Textbook Overview

Intro	Virtualization		Concurrency	Persistence	Appendices
<u>Preface</u>	3 <u>Dialogue</u>	12 <u>Dialogue</u>	25 <u>Dialogue</u>	35 <u>Dialogue</u>	<u>Dialogue</u>
<u>TOC</u>	4 <u>Processes</u>	13 Address Spaces code	26 Concurrency and Threads code	36 <u>I/O Devices</u>	Virtual Machines
1 <u>Dialogue</u>	5 <u>Process API</u> code	14 Memory API	27 <u>Thread API</u> code	37 <u>Hard Disk Drives</u>	<u>Dialogue</u>
2 Introduction code	6 Direct Execution	15 Address Translation	28 <u>Locks</u> <u>code</u>	38 Redundant Disk Arrays (RAID)	<u>Monitors</u>
	7 CPU Scheduling	16 <u>Segmentation</u>	29 Locked Data Structures	39 Files and Directories	<u>Dialogue</u>
	8 Multi-level Feedback	17 Free Space Management	30 Condition Variables code	40 File System Implementation	Lab Tutorial
	9 <u>Lottery Scheduling</u> code	18 Introduction to Paging	31 <u>Semaphores</u> code	41 Fast File System (FFS)	Systems Labs
	10 Multi-CPU Scheduling	19 Translation Lookaside Buffers	32 <u>Concurrency Bugs</u>	42 FSCK and Journaling	xv6 Labs
	11 <u>Summary</u>	20 Advanced Page Tables	33 Event-based Concurrency	43 Log-structured File System (LFS)	
		21 Swapping: Mechanisms	34 <u>Summary</u>	44 Flash-based SSDs	
		22 <u>Swapping: Policies</u>		45 Data Integrity and Protection	
		23 Complete VM Systems		46 <u>Summary</u>	
		24 <u>Summary</u>		47 <u>Dialogue</u>	
				48 <u>Distributed Systems</u>	
				49 Network File System (NFS)	
				50 Andrew File System (AFS)	
				51 <u>Summary</u>	

Lectures and Labs

- Combination of slides, live demo/coding, videos and whiteboard (mostly)
- Same room for the labs: bring your laptop
- There will be 6 mandatory lab assignments

Activity	Day	Time	Room	
Lecture	Monday	10:15 - 14:00	E456	
Lab	Tuesday	08:15 - 10:00	E456	Assistance
Lab	Tuesday	10:15 - 12:00	E456	Work on your own
Lecture	Wednesday	10:15 - 12:00	E456	

(tentative) Lecture Plan Fall 2019

W	М	D	Ch	Monday	Tuesday	Ch	Wednesday	Deadlines	Comment
34	Aug	19	2	Introduction to Operating Systems	C Introduction	5	Process API		
			4	Abstraction: The Process		6	Mechanism: Limited Direct Execution		
35	Aug	26	7	Scheduling: Introduction		9	Scheduling: Proportional Share		
			8	Scheduling: Multi-Level Feedback Queue		10	Multiprocessor Scheduling		
36	Sep	2	13	Abstraction: Address Spaces	Introduction to Go	15	Mechanism: Address Translation	Lab 1	
			14	Memory API		16	Segmentation		
37	Sep	9	17	Free-Space Management	Organizing Go code	19	Paging: Faster Translation (TLBs)	Lab 2	
			18	Paging: Introduction		20	Paging: Smaller Tables		
38	Sep	16	21	Beyond Physical Memory: Mechanisms			No Lecture		
			22	Beyond Physical Memory: Policies					
			23	Complete Virtual Memory Systems					
39	Sep	23	26	Concurrency: Introduction	Concurrency in Go	28	Locks	Lab 3	
			27	Thread API					
40	Sep	30	29	Lock-based Concurrent Data Structures			Semaphores		
			30	Condition Variables		32	Common Concurrency Problems		
41	Oct	7	33	Event-based Concurrency	Networking with Go			Lab 4	
	Oct								
	Oct			No Lecture			No Lecture	Lab 5	AFT
	Oct			No Lecture			No Lecture	Lab 6	SOSP
	Nov								
	Nov								
	Nov							Lab 7	
	Nov								
	Dec			Lab exam: ?					
50	Dec	9		Written exam: ?					

Slip Days and Resubmissions

- Free slip days: 5
- For each extra slip day used, your grade is reduced by 5 points (0-100).
- Resubmission (but only one pr. handin):
 - 5 points for the first resubmission
 - 10 points for the second resubmission
 - 20 points for the third resubmission
 - A fourth resubmission will not be allowed, resulting in failing the lab.

Unix Account Registration

- To complete the lab you'll need a Unix user account
- Go to http://user.ux.uis.no/ today!
- Register ASAP
- Physical access to the Linux lab (E353)
 - PIN code: 2244

Autograder

- We will use Autograder to manage
 - Courses, Users and Groups on GitHub
 - Lab submissions, testing and scoring
- Not ready yet, but will be @ http://ag.itest.run/
 - When ready, sign up using your GitHub account
 - (you can create a new GitHub account for courses if you prefer)

Group Registration

- The last lab will be carried out in groups
 - General rule: two students per group
 - Working alone or three member groups only accepted by application stating a reason
- Registration will be carried out on Autograder later

(tentative) Lab Assignments

Lab	Topic	Grading	Submission	Deadline
1	Unix Tools and C Programming	Pass / Fail	Individual	3. Sep
2	Introduction to Go Programming	Pass / Fail	Individual	10. Sep
3	Scheduling & Data Race Detection	Pass / Fail	Individual	24. Sep
4	Base & Bounds Memory Management	Pass / Fail	Individual	8. Oct
5	Paged Memory Management	Pass / Fail	Individual	22. Oct
6	Network Programming in Go	Pass / Fail	Individual	29. Oct
7	ChanStat: TV Channel Statistics	Graded	Group	19. Nov

Grading Policy

Final Exam: 60 %

Lab project: 40 %

- Lab exam explain your code
- Graded based on final handin and examination
- Must pass all labs to attend exam
- More details will follow later

Why Go?

=60

- General-purpose programming language
 - Low-level, but garbage collected
- Fast, scalable and easy to learn
 - Designed for ease of reading code
- Builtin support for concurrency
- Easy to build command line tools, clients and servers (microservices)
 - Key enablers for cloud computing services

https://golang.org/

Learning a new Programming Language

- Impossible to learn systems programming in theory
- You need to get your hands dirty!

https://golang.org/

- Start today!
- Best way to learn is to do real programming!
 - Compiler returns great error messages great way to learn!

Supplement Book

The Go Programming Language Alan A. A. Donovan and Brian W. Kernighan Addison-Wesley; ISBN: 978-0134190440 Published Oct 26, 2015

http://gopl.io/

Alan A. A. Donovan Brian W. Kernighan

Why Study Operating Systems?