LIỆU DÀNH CHO ĐÔI TƯỢNG HỌC SINH KHÁ – MỨC 7-8 ĐIỂM

Dạng 1. Nguyên hàm cơ bán có điều kiện Bảng nguyên hàm của một số hàm thường gặp (với C là hằng số tùy ý)	
	$ \int k \mathrm{d}x = kx + C.$
$\Im \int \frac{1}{x} dx = \ln x + C.$	$\longrightarrow \int \frac{1}{ax+b} dx = \frac{1}{a} \ln ax+b + C.$
	$\longrightarrow \int \frac{1}{(ax+b)^2} dx = -\frac{1}{a} \cdot \frac{1}{ax+b} + C.$
$\int \sin x \mathrm{d}x = -\cos x + C.$	$ \int \sin(ax+b) dx = -\frac{1}{a}\cos(ax+b) + C. $
	$\longrightarrow \int \cos(ax+b) dx = \frac{1}{a}\sin(ax+b) + C.$
	$\longrightarrow \int \frac{\mathrm{d}x}{\sin^2(ax+b)} = -\frac{1}{a}\cot(ax+b) + C.$
	$\longrightarrow \int \frac{\mathrm{d}x}{\cos^2(ax+b)} = \frac{1}{a}\tan(ax+b) + C.$
	$\longrightarrow \int e^{ax+b} dx = \frac{1}{a} e^{ax+b} + C.$
	$\longrightarrow \int a^{\alpha x + \beta} dx = \frac{1}{\alpha} \frac{a^{\alpha x + \beta}}{\ln a} + C.$
• Nhận xét. Khi thay x bằng $(ax+b)$ thì khi lấy nguyên hàm nhân kết quả thêm $\frac{1}{-}$.	

Một số nguyên tắc tính cơ bản

- Tích của đa thức hoặc lũy thừa PP → khai triễn.
- Bậc chỗn của sin và cosin \Rightarrow Hạ bậc: $\sin^2 a = \frac{1}{2} \frac{1}{2}\cos 2a$, $\cos^2 a = \frac{1}{2} + \frac{1}{2}\cos 2a$.
- Chứa tích các căn thức của $x \xrightarrow{PP}$ chuyển về lũy thừa.
- **(Đề Tham Khảo 2018)** Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \left\{ \frac{1}{2} \right\}$ thỏa mãn Câu 1.

 $f'(x) = \frac{2}{2x-1}$, f(0) = 1, f(1) = 2. Giá trị của biểu thức f(-1) + f(3) bằng

- **A.** $2 + \ln 15$
- **B.** $3 + \ln 15$
- C. ln 15
- (Sở Phú Thọ 2019) Cho F(x) là một nguyên hàm của $f(x) = \frac{1}{x-1}$ trên khoảng $(1;+\infty)$ thỏa mãn F(e+1) = 4 Tìm F(x).

A.
$$2\ln(x-1)+2$$

B.
$$\ln(x-1)+3$$

C.
$$4 \ln(x-1)$$

D.
$$\ln(x-1)-3$$

(THPT Minh Khai Hà Tĩnh 2019) Cho F(x) là một nguyên hàm của hàm số $f(x) = \frac{1}{x-2}$, biết F(1) = 2. Giá trị của F(0) bằng

A. $2 + \ln 2$.

B. ln 2.

C. $2 + \ln(-2)$.

D. $\ln(-2)$.

(KTNL GV Thuận Thành 2 Bắc Ninh 2019) Cho F(x) là một nguyên hàm của hàm

$$f(x) = \frac{1}{2x+1}$$
; biết $F(0) = 2$. Tính $F(1)$.

A.
$$F(1) = \frac{1}{2}ln3 - 2$$
. **B.** $F(1) = ln3 + 2$. **C.** $F(1) = 2ln3 - 2$. **D.** $F(1) = \frac{1}{2}ln3 + 2$.

B.
$$F(1) = ln3 + 2$$
.

C.
$$F(1) = 2ln3 - 2$$
.

D.
$$F(1) = \frac{1}{2} \ln 3 + 2$$

(Chuyên ĐHSP Hà Nội 2019) Hàm số F(x) là một nguyên hàm của hàm số $y = \frac{1}{x}$ trên $(-\infty;0)$ thỏa mãn F(-2) = 0. Khẳng định nào sau đây đúng?

A.
$$F(x) = \ln\left(\frac{-x}{2}\right) \ \forall x \in (-\infty; 0)$$

B. $F(x) = \ln |x| + C \quad \forall x \in (-\infty, 0) \text{ với } C \text{ là một số thực bất kì.}$

C. $F(x) = \ln |x| + \ln 2 \ \forall x \in (-\infty; 0)$.

D. $F(x) = \ln(-x) + C \ \forall x \in (-\infty, 0) \ \text{v\'oi} \ C$ là một số thực bất kì.

(THPT Minh Khai Hà Tĩnh 2019) Cho hàm số f(x) xác định trên $R \setminus \{1\}$ thỏa mãn

$$f'(x) = \frac{1}{x-1}$$
, $f(0) = 2017$, $f(2) = 2018$. Tinh $S = f(3) - f(-1)$.

A.
$$S = \ln 4035$$
.

B.
$$S = 4$$
.

C.
$$S = \ln 2$$
.

D.
$$S = 1$$

(Mã 105 2017) Cho F(x) là một nguyên hàm của hàm số $f(x) = e^x + 2x$ thỏa mãn $F(0) = \frac{3}{2}$. Tìm F(x).

A.
$$F(x) = e^x + x^2 + \frac{1}{2}$$
 B. $F(x) = e^x + x^2 + \frac{5}{2}$

B.
$$F(x) = e^x + x^2 + \frac{5}{2}$$

C.
$$F(x) = e^x + x^2 + \frac{3}{2}$$

C.
$$F(x) = e^x + x^2 + \frac{3}{2}$$
 D. $F(x) = 2e^x + x^2 - \frac{1}{2}$

(THCS - THPT Nguyễn Khuyến 2019) Biết F(x) là một nguyên hàm của hàm số $f(x) = e^{2x}$ và F(0) = 0. Giá trị của $F(\ln 3)$ bằng

A. 2.

B. 6.

(Sở Bình Phước 2019) Biết F(x) là một nguyên hàm của hàm số e^{2x} và $F(0) = \frac{201}{2}$. Giá trị

 $F\left(\frac{1}{2}\right)$ là

A. $\frac{1}{2}e + 200$

B. 2e + 100

C. $\frac{1}{2}e + 50$ D. $\frac{1}{2}e + 100$

Câu 10. (Chuyên Nguyễn Trãi Hải Dương 2019) Hàm số f(x) có đạo hàm liên tục trên $\mathbb R$ và:

$$f'(x) = 2e^{2x} + 1$$
, $\forall x, f(0) = 2$. Hàm $f(x)$ là

A.
$$y = 2e^x + 2x$$
.

B.
$$v = 2e^x + 2$$

C.
$$y = e^{2x} + x + 2$$
.

D.
$$y = e^{2x} + x + 1$$
.

Câu 11. (Sở Bắc Ninh 2019) Cho hàm số $f(x) = 2x + e^x$. Tìm một nguyên hàm F(x) của hàm số f(x)thỏa mãn F(0) = 2019.

A.
$$F(x) = x^2 + e^x + 2018$$
.

B.
$$F(x) = x^2 + e^x - 2018$$
.

C.
$$F(x) = x^2 + e^x + 2017$$
.

D.
$$F(x) = e^x - 2019$$
.

Câu 12. Gọi F(x) là một nguyên hàm của hàm số $f(x) = 2^x$, thỏa mãn $F(0) = \frac{1}{\ln 2}$. Tính giá trị biểu thức T = F(0) + F(1) + ... + F(2018) + F(2019).

A.
$$T = 1009. \frac{2^{2019} + 1}{\ln 2}$$
. **B.** $T = 2^{2019.2020}$.

C.
$$T = \frac{2^{2019} - 1}{\ln 2}$$
. D. $T = \frac{2^{2020} - 1}{\ln 2}$.

D.
$$T = \frac{2^{2020} - 1}{\ln 2}$$
.

Câu 13. (**Mã 104 2017**) Tìm nguyên hàm F(x) của hàm số $f(x) = \sin x + \cos x$ thoả mãn $F\left(\frac{\pi}{2}\right) = 2$.

A.
$$F(x) = -\cos x + \sin x + 3$$

B.
$$F(x) = -\cos x + \sin x - 1$$

C.
$$F(x) = -\cos x + \sin x + 1$$

D.
$$F(x) = \cos x - \sin x + 3$$

Câu 14. (**Mã 123 2017**) Cho hàm số f(x) thỏa mãn $f'(x) = 3 - 5 \sin x$ và f(0) = 10. Mệnh đề nào dưới đây đúng?

A.
$$f(x) = 3x - 5\cos x + 15$$

B.
$$f(x) = 3x - 5\cos x + 2$$

C.
$$f(x) = 3x + 5\cos x + 5$$

D.
$$f(x) = 3x + 5\cos x + 2$$

Câu 15. (**Việt Đức Hà Nội 2019**) Cho hàm số f(x) thỏa mãn $f'(x) = 2 - 5\sin x$ và f(0) = 10. Mệnh đề nào dưới đây **đúng**?

A.
$$f(x) = 2x + 5\cos x + 3$$
.

B.
$$f(x) = 2x - 5\cos x + 15$$
.

C.
$$f(x) = 2x + 5\cos x + 5$$
.

D.
$$f(x) = 2x - 5\cos x + 10$$
.

Câu 16. (Liên Trường Thọt Tọ Vinh Nghệ An 2019) Biết F(x) là một nguyên hàm của hàm

$$f(x) = \cos 3x$$
 và $F\left(\frac{\pi}{2}\right) = \frac{2}{3}$. Tính $F\left(\frac{\pi}{9}\right)$.

A.
$$F\left(\frac{\pi}{9}\right) = \frac{\sqrt{3} + 2}{6}$$

B.
$$F\left(\frac{\pi}{9}\right) = \frac{\sqrt{3} - 2}{6}$$

C.
$$F\left(\frac{\pi}{9}\right) = \frac{\sqrt{3} + 6}{6}$$

A.
$$F\left(\frac{\pi}{9}\right) = \frac{\sqrt{3} + 2}{6}$$
 B. $F\left(\frac{\pi}{9}\right) = \frac{\sqrt{3} - 2}{6}$ **C.** $F\left(\frac{\pi}{9}\right) = \frac{\sqrt{3} + 6}{6}$ **D.** $F\left(\frac{\pi}{9}\right) = \frac{\sqrt{3} - 6}{6}$

Câu 17. (Chuyên Lê Quý Đôn Quảng Trị 2019) Cho F(x) là một nguyên hàm của hàm số

$$f\left(x\right) = \frac{1}{\cos^2 x}. \text{ Biết } F\left(\frac{\pi}{4} + k\pi\right) = k \text{ với mọi } k \in \mathbb{Z}. \text{ Tính } F\left(0\right) + F\left(\pi\right) + F\left(2\pi\right) + \ldots + F\left(10\pi\right).$$

A. 55.

D. 0.

Câu 18. (Yên Lạc 2 - Vĩnh Phúc - 2020) Gọi F(x) là một nguyên hàm của hàm số $f(x) = 2^x$, thỏa mãn

 $F(0) = \frac{1}{\ln 2}$. Tính giá trị biểu thức T = F(0) + F(1) + F(2) + ... + F(2019).

A.
$$T = \frac{2^{2020} - 1}{\ln 2}$$

A.
$$T = \frac{2^{2020} - 1}{\ln 2}$$
. **B.** $T = 1009 \cdot \frac{2^{2019} - 1}{2}$. **C.** $T = 2^{2019 \cdot 2020}$. **D.** $T = \frac{2^{2019} - 1}{\ln 2}$.

D.
$$T = \frac{2^{2019} - 1}{\ln 2}$$

(Đề minh họa 2022) Cho hàm số y = f(x) có đạo hàm là $f'(x) = 12x^2 + 2, \forall x \in \mathbb{R}$ và f(1) = 3.

Biết $F\left(x\right)$ là nguyên hàm của $f\left(x\right)$ thỏa mãn $F\left(0\right)\!=\!2$, khi đó $F\left(1\right)$ bằng

- **A.** -3.
- **B.** 1.

- **D.** 7.

Câu 20. (Sở Hà Tĩnh 2022) Cho F(x) là nguyên hàm của $f(x) = \sin^2 x$ trên \mathbb{R} thoả mãn $F\left(\frac{\pi}{A}\right) = 0$.

Giá trị biểu thức $S = F(-\pi) + 2F(\frac{\pi}{2})$ bằng

- **A.** $S = \frac{3}{4} \frac{\pi}{4}$. **B.** $S = \frac{3}{4} \frac{3\pi}{4}$. **C.** $S = \frac{1}{4} + \frac{3\pi}{8}$. **D.** $S = \frac{3}{2} \frac{3\pi}{8}$.

Câu 21. (Sở Nam Định 2022) Cho hàm số y = f(x) có đạo hàm là $f'(x) = 8x^3 + \sin x, \forall x \in \mathbb{R}$ và f(0) = 3. Biết F(x) là nguyên hàm của f(x) thỏa mãn F(0) = 2, khi đó F(1) bằng

- **A.** $\frac{32}{5} + \cos 1$. **B.** $\frac{32}{5} \cos 1$. **C.** $\frac{32}{5} \sin 1$. **D.** $\frac{32}{5} + \sin 1$.

Câu 22. (Chuyên Hùng Vương – Gia Lai 2022) Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{2\}$ thỏa mãn

$$f'(x) = \frac{1}{x-2}$$
, $f(1) = 2021$, $f(3) = 2022$. Tinh $P = \frac{f(2023)}{f(-2019)}$

- **A.** $P = \ln 4042$.
- **B.** $P = \frac{\ln 2021}{\ln 2022}$.
- **C.** $P = \ln \frac{2021}{2022}$.
- **D.** $P = \frac{2022 + \ln 2021}{2021 + \ln 2021}$

Câu 23. (THPT Hoàng Hoa Thám - Quảng Ninh - 2022) Cho hàm số y = f(x) có đạo hàm $f'(x) = \frac{1}{x-1} + 6x, \forall x \in (1, +\infty)$ và f(2) = 12. Biết F(x) là nguyên hàm của f(x) thỏa F(2) = 6, khi đó giá trị biểu thức P = F(5) - 4F(3) bằng

A. 25.

- **B.** 10.
- C. 20.

Câu 24. (THPT Trần Quốc Tuấn - Quảng Ngãi - 2022) Cho hàm số f(x) có $f\left(\frac{\pi}{4}\right) = -\frac{4}{3}$ và

 $f'(x) = 16\cos 4x \cdot \sin^2 x, \forall x \in \mathbb{R}$. Biết F(x) là nguyên hàm của f(x) thỏa mãn $F(0) = \frac{15}{26}$. Tính $F(\pi)$.

- A. $\frac{64}{27}$.
- **B.** $\frac{15}{26}$.
- C. $\frac{31}{10}$.
- **D.** 0.

Dạng 2. Tìm nguyên hàm bằng phương pháp đổi biến số

"Nếu
$$\int f(x)dx = F(x) + C$$
 thì $\int f(u(x)).u'(x)dx = F(u(x)) + C$ ".

Giả sử ta cần tìm họ nguyên hàm $I = \int f(x) dx$, trong đó ta có thể phân tích

f(x) = g(u(x))u'(x)dx thì ta thức hiện phép đổi biến số t = u(x)

$$\Rightarrow dt = u'(x)dx$$
. Khi đó: $I = \int g(t)dt = G(t) + C = G(u(x)) + C$

Chú ý: Sau khi ta tìm được họ nguyên hàm theo t thì ta phải thay t = u(x)

1. Đổi biến số với một số hàm thường gặp

•
$$\int f(ax+b)^n x dx \xrightarrow{PP} t = ax+b$$
. • $\int_a^b \sqrt[n]{f(x)} f'(x) dx \xrightarrow{PP} t = \sqrt[n]{f(x)}$.

•
$$\int_{a}^{b} f(\ln x) \frac{1}{x} dx \xrightarrow{PP} t = \ln x$$
. • $\int_{a}^{b} f(e^{x}) e^{x} dx \xrightarrow{PP} t = e^{x}$.

•
$$\int_{a}^{b} f(\sin x) \cos x dx \xrightarrow{PP} t = \sin x$$
. • $\int_{a}^{b} f(\cos x) \sin x dx \xrightarrow{PP} t = \cos x$.

•
$$\int_{a}^{b} f(\tan x) \frac{1}{\cos^{2} x} dx \xrightarrow{PP} t = \tan x$$
. • $\int_{a}^{b} f(\sin x \pm \cos x) \cdot (\sin x \pm \cos x) dx \Rightarrow t = \sin x \pm \cos x$.

•
$$\int_{a}^{\beta} f(\sqrt{a^2 - x^2}) x^{2n} dx \xrightarrow{PP} x = a \sin t. • \int_{a}^{\beta} f\left((\sqrt{x^2 + a^2})^m\right) x^{2n} dx \xrightarrow{PP} x = a \tan t.$$

•
$$\int_{\alpha}^{\beta} f\left(\sqrt{\frac{a \pm x}{a \mp x}}\right) dx \xrightarrow{PP} x = a \cos 2t$$
. • $\int_{\alpha}^{\beta} \frac{dx}{\sqrt{(ax+b)(cx+d)}} \Rightarrow t = \sqrt{ax+b} + \sqrt{cx+d}$.

•
$$\int_{\alpha}^{\beta} R\left[\sqrt[s_1]{ax+b},..,\sqrt[s_k]{ax+b}\right] dx \Rightarrow t^n = ax+b.$$
 •
$$\int_{\alpha}^{\beta} \frac{dx}{(a+bx^n)\sqrt[n]{a+bx^n}} \xrightarrow{PP} x = \frac{1}{t}.$$

2. Đổi biến số với hàm ẩn

- Nhận dạng tương đối: Đề cho f(x), yêu cầu tính $f(\neq x)$ hoặc đề cho $f(\neq x)$, yêu cầu tính f(x).
- Phương pháp: Đặt $t = (\neq x)$.
- Lưu ý: Đổi biến nhớ đổi cận và ở trên đã sử dụng tính chất: "Tích phân không phụ thuộc vào biến số, mà chỉ phụ thuộc vào hai cận", nghĩa là $\int_{0}^{\infty} f(u) du = \int_{0}^{\infty} f(t) dt = \cdots = \int_{0}^{\infty} f(x) dx = \cdots$

Câu 25. (Mã 101 – 2020 Lần 2) Biết $F(x) = e^x + x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Khi đó $\int f(2x)dx$ bằng

A.
$$2e^x + 2x^2 + C$$
.

B.
$$\frac{1}{2}e^{2x} + x^2 + C$$
.

A.
$$2e^x + 2x^2 + C$$
. **B.** $\frac{1}{2}e^{2x} + x^2 + C$. **C.** $\frac{1}{2}e^{2x} + 2x^2 + C$. **D.** $e^{2x} + 4x^2 + C$.

D.
$$e^{2x} + 4x^2 + C$$

Câu 26. (**Mã 102 - 2020 Lần 2**) Biết $F(x) = e^x - 2x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Khi đó $\int f(2x)dx$ bằng

A.
$$2e^x - 4x^2 + C$$

B.
$$\frac{1}{2}e^{2x}-4x^2+C$$
.

C.
$$e^{2x} - 8x^2 + C$$

A.
$$2e^x - 4x^2 + C$$
. **B.** $\frac{1}{2}e^{2x} - 4x^2 + C$. **C.** $e^{2x} - 8x^2 + C$. **D.** $\frac{1}{2}e^{2x} - 2x^2 + C$.

Câu 27. (**Mã 103 - 2020 Lần 2**) Biết $F(x) = e^x - x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Khi đó $\int f(2x) dx$ bằng

A.
$$\frac{1}{2}e^{2x} - 2x^2 + C$$
. **B.** $e^{2x} - 4x^2 + C$. **C.** $2e^x - 2x^2 + C$. **D.** $\frac{1}{2}e^{2x} - x^2 + C$.

B.
$$e^{2x} - 4x^2 + C$$

C.
$$2e^x - 2x^2 + C$$

D.
$$\frac{1}{2}e^{2x} - x^2 + C$$

Câu 28. (**Mã 104 - 2020 Lần 2**) Biết $F(x) = e^x + 2x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Khi đó $\int f(2x) dx$ bằng

A.
$$e^{2x} + 8x^2 + C$$

B.
$$2e^x + 4x^2 + C$$

C.
$$\frac{1}{2}e^{2x} + 2x^2 + C$$

A.
$$e^{2x} + 8x^2 + C$$
. **B.** $2e^x + 4x^2 + C$. **C.** $\frac{1}{2}e^{2x} + 2x^2 + C$. **D.** $\frac{1}{2}e^{2x} + 4x^2 + C$.

Câu 29. (Thi thử Lômônôxốp - Hà Nội lần V 2019) Biết $\int f(2x) dx = \sin^2 x + \ln x + C$. Tìm nguyên hàm $\int f(x) dx$?

$$\mathbf{A.} \int f(x) dx = \sin^2 \frac{x}{2} + \ln x + C.$$

B.
$$\int f(x) dx = 2\sin^2 2x + 2\ln x + C$$
.

C.
$$\int f(x) dx = 2\sin^2 \frac{x}{2} + 2\ln x + C$$

C.
$$\int f(x) dx = 2\sin^2 \frac{x}{2} + 2\ln x + C$$
. D. $\int f(x) dx = 2\sin^2 x + 2\ln x + C$.

Câu 30. Cho $\int f(4x) dx = x^2 + 3x + c$. Mệnh đề nào dưới đây đúng?

A.
$$\int f(x+2) dx = \frac{x^2}{4} + 2x + C.$$

B.
$$\int f(x+2) dx = x^2 + 7x + C.$$

C.
$$\int f(x+2) dx = \frac{x^2}{4} + 4x + C$$
.

D.
$$\int f(x+2) dx = \frac{x^2}{2} + 4x + C$$
.

Câu 31. Cho $\int f(x) dx = 4x^3 + 2x + C_0$. Tính $I = \int x f(x^2) dx$.

A.
$$I = 2x^6 + x^2 + C$$

A.
$$I = 2x^6 + x^2 + C$$
. **B.** $I = \frac{x^{10}}{10} + \frac{x^6}{6} + C$.

C.
$$I = 4x^6 + 2x^2 + C$$
. **D.** $I = 12x^2 + 2$.

D.
$$I = 12x^2 + 2$$
.

Câu 32. (Sở Bắc Ninh 2019) Tìm họ nguyên hàm của hàm số $f(x) = x^2 \cdot e^{x^3 + 1}$.

A.
$$\int f(x) dx = \frac{x^3}{3} \cdot e^{x^3 + 1} + C$$
.

B.
$$\int f(x) dx = 3e^{x^3+1} + C$$
.

C.
$$\int f(x) dx = e^{x^3+1} + C$$
. D. $\int f(x) dx = \frac{1}{3} e^{x^3+1} + C$.

Câu 33. (THPT Hà Huy Tập - 2018) Nguyên hàm của $f(x) = \sin 2x e^{\sin^2 x}$ là

A.
$$\sin^2 x \cdot e^{\sin^2 x - 1} + C$$
. **B.** $\frac{e^{\sin^2 x + 1}}{\sin^2 x + 1} + C$. **C.** $e^{\sin^2 x} + C$. **D.** $\frac{e^{\sin^2 x - 1}}{\sin^2 x - 1} + C$.

B.
$$\frac{e^{\sin^2 x + 1}}{\sin^2 x + 1} + C$$

C.
$$e^{\sin^2 x} + C$$
.

D.
$$\frac{e^{\sin^2 x - 1}}{\sin^2 x - 1} + C$$

Câu 34. Tìm tất cả các họ nguyên hàm của hàm số $f(x) = \frac{1}{x^9 + 3x^5}$

A.
$$\int f(x) dx = -\frac{1}{3x^4} + \frac{1}{36} \ln \left| \frac{x^4}{x^4 + 3} \right| + C$$

A.
$$\int f(x) dx = -\frac{1}{3x^4} + \frac{1}{36} \ln \left| \frac{x^4}{x^4 + 3} \right| + C$$
 B. $\int f(x) dx = -\frac{1}{12x^4} - \frac{1}{36} \ln \left| \frac{x^4}{x^4 + 3} \right| + C$

C.
$$\int f(x) dx = -\frac{1}{3x^4} - \frac{1}{36} \ln \left| \frac{x^4}{x^4 + 3} \right| + C$$

C.
$$\int f(x) dx = -\frac{1}{3x^4} - \frac{1}{36} \ln \left| \frac{x^4}{x^4 + 3} \right| + C$$
 D. $\int f(x) dx = -\frac{1}{12x^4} + \frac{1}{36} \ln \left| \frac{x^4}{x^4 + 3} \right| + C$

Câu 35. (Chuyên Lê Hồng Phong Nam Định 2019) Tìm hàm số F(x) biết $F(x) = \int \frac{x^3}{x^4 + 1} dx$ và F(0) = 1.

A.
$$F(x) = \ln(x^4 + 1) + 1$$
. **B.** $F(x) = \frac{1}{4}\ln(x^4 + 1) + \frac{3}{4}$.

C.
$$F(x) = \frac{1}{4} \ln(x^4 + 1) + 1$$
.

D.
$$F(x) = 4\ln(x^4 + 1) + 1$$
.

Câu 36. Biết
$$\int \frac{(x-1)^{2017}}{(x+1)^{2019}} dx = \frac{1}{a} \cdot \left(\frac{x-1}{x+1}\right)^b + C$$
, $x \ne -1$ với $a, b \in \mathbb{N}^*$. Mệnh đề nào sau đây đúng?

A.
$$a = 2b$$

$$\mathbf{B}$$
, $h = 2a$

C.
$$a = 2018b$$

D.
$$b = 2018a$$
.

Câu 37. (Chuyên Quốc Học Huế - 2018) Biết rằng F(x) là một nguyên hàm trên \mathbb{R} của hàm số

$$f(x) = \frac{2017x}{(x^2+1)^{2018}}$$
 thỏa mãn $F(1) = 0$. Tìm giá trị nhỏ nhất m của $F(x)$.

A.
$$m = -\frac{1}{2}$$

A.
$$m = -\frac{1}{2}$$
. **B.** $m = \frac{1 - 2^{2017}}{2^{2018}}$. **C.** $m = \frac{1 + 2^{2017}}{2^{2018}}$. **D.** $m = \frac{1}{2}$.

$$\mathbf{C.} \ \ m = \frac{1 + 2^{2017}}{2^{2018}}.$$

D.
$$m = \frac{1}{2}$$
.

Câu 38. Cho F(x) là nguyên hàm của hàm số $f(x) = \frac{1}{e^x + 1}$ và $F(0) = -\ln 2e$. Tập nghiệm S của phương trình $F(x) + \ln(e^x + 1) = 2$ là:

A.
$$S = \{3\}$$

B.
$$S = \{2; 3\}$$

C.
$$S = \{-2, 3\}$$

D.
$$S = \{-3, 3\}$$

Câu 39. (THPT Lê Quý Đôn Đà Nẵng 2019) Họ nguyên hàm của hàm số $f(x) = x^3(x^2 + 1)^{2019}$ là

A.
$$\frac{1}{2} \left[\frac{\left(x^2+1\right)^{2021}}{2021} - \frac{\left(x^2+1\right)^{2020}}{2020} \right].$$

B.
$$\frac{\left(x^2+1\right)^{2021}}{2021} - \frac{\left(x^2+1\right)^{2020}}{2020}.$$

C.
$$\frac{(x^2+1)^{2021}}{2021} - \frac{(x^2+1)^{2020}}{2020} + C$$
.

D.
$$\frac{1}{2} \left[\frac{\left(x^2 + 1\right)^{2021}}{2021} - \frac{\left(x^2 + 1\right)^{2020}}{2020} \right] + C.$$

Câu 40. (THPT Hà Huy Tập - 2018) Nguyên hàm của $f(x) = \frac{1 + \ln x}{x \ln x}$ là:

$$\mathbf{A.} \int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln \left| \ln x \right| + C.$$

B.
$$\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln |x^2 \cdot \ln x| + C$$
.

C.
$$\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln |x + \ln x| + C.$$

D.
$$\int \frac{1 + \ln x}{x \cdot \ln x} dx = \ln |x \cdot \ln x| + C$$
.

Câu 41. (Chuyên Hạ Long - 2018) Tìm họ nguyên hàm của hàm số $f(x) = x^2 e^{x^3+1}$

A.
$$\int f(x) dx = e^{x^3+1} + C$$
. **B.** $\int f(x) dx = 3e^{x^3+1} + C$.

C.
$$\int f(x) dx = \frac{1}{3} e^{x^3 + 1} + C$$
.

D.
$$\int f(x) dx = \frac{x^3}{3} e^{x^3 + 1} + C$$
.

Câu 42. (Chuyên Lương Văn Chánh Phú Yên 2019) Nguyên hàm của hàm số $f(x) = \sqrt[3]{3x+1}$ là

A.
$$\int f(x) dx = (3x+1)\sqrt[3]{3x+1} + C$$
.

B.
$$\int f(x) dx = \sqrt[3]{3x+1} + C$$
.

C.
$$\int f(x) dx = \frac{1}{3} \sqrt[3]{3x+1} + C$$
.

D.
$$\int f(x) dx = \frac{1}{4} (3x+1) \sqrt[3]{3x+1} + C$$
.

Câu 43. Nguyên hàm của hàm số $f(x) = \sqrt{3x+2}$ là

A.
$$\frac{2}{3}(3x+2)\sqrt{3x+2} + C$$
 B. $\frac{1}{3}(3x+2)\sqrt{3x+2} + C$

C.
$$\frac{2}{9}(3x+2)\sqrt{3x+2} + C$$
 D. $\frac{3}{2}\frac{1}{\sqrt{3x+2}} + C$

Câu 44. (HSG Bắc Ninh 2019) Họ nguyên hàm của hàm số $f(x) = \sqrt{2x+1}$ là

Blog: Nguyễn Bảo Vương: https://www.nbv.edu.vn/

A.
$$-\frac{1}{3}(2x+1)\sqrt{2x+1}+C$$
.

B.
$$\frac{1}{2}\sqrt{2x+1}+C$$
.

C.
$$\frac{2}{3}(2x+1)\sqrt{2x+1}+C$$
.

D.
$$\frac{1}{3}(2x+1)\sqrt{2x+1}+C$$
.

Câu 45. (THPT An Lão Hải Phòng 2019) Cho hàm số $f(x) = 2^{\sqrt{x}} \cdot \frac{\ln 2}{\sqrt{x}}$. Hàm số nào dưới đây **không** là nguyên hàm của hàm số f(x)?

A.
$$F(x) = 2^{\sqrt{x}} + C$$

A.
$$F(x) = 2^{\sqrt{x}} + C$$
 B. $F(x) = 2(2^{\sqrt{x}} - 1) + C$

C.
$$F(x) = 2(2^{\sqrt{x}} + 1) + C$$

D.
$$F(x) = 2^{\sqrt{x+1}} + C$$

Câu 46. (THPT Yên Phong Số 1 Bắc Ninh 2019) Khi tính nguyên hàm $\int \frac{x-3}{\sqrt{x+1}} dx$, bằng cách đặt $u = \sqrt{x+1}$ ta được nguyên hàm nào?

A.
$$\int 2(u^2-4)du$$
.

B.
$$\int (u^2-4) du$$

C.
$$\int (u^2-3) du$$

A.
$$\int 2(u^2-4) du$$
. **B.** $\int (u^2-4) du$. **C.** $\int (u^2-3) du$. **D.** $\int 2u(u^2-4) du$.

Câu 47. (Chuyên Hạ Long - 2018) Tìm họ nguyên hàm của hàm số $f(x) = \frac{1}{2\sqrt{2x+1}}$.

A.
$$\int f(x) dx = \frac{1}{2} \sqrt{2x+1} + C$$
.

B.
$$\int f(x) dx = \sqrt{2x+1} + C$$
.

C.
$$\int f(x) dx = 2\sqrt{2x+1} + C$$
.

D.
$$\int f(x) dx = \frac{1}{(2x+1)\sqrt{2x+1}} + C$$
.

Câu 48. (THCS - THPT Nguyễn Khuyến - 2018) Nguyên hàm của hàm số $f(x) = \ln(x + \sqrt{x^2 + 1})$ là

A.
$$F(x) = x \ln(x + \sqrt{x^2 + 1}) + \sqrt{x^2 + 1} + C$$

A.
$$F(x) = x \ln(x + \sqrt{x^2 + 1}) + \sqrt{x^2 + 1} + C$$
. **B.** $F(x) = x \ln(x + \sqrt{x^2 + 1}) - \sqrt{x^2 + 1} + C$.

C.
$$F(x) = x \ln(x + \sqrt{x^2 + 1}) + C$$
.

D.
$$F(x) = x^2 \ln(x + \sqrt{x^2 + 1}) + C$$
.

Câu 49. (Chuyên Hạ Long - 2018) Biết rằng trên khoảng $\left(\frac{3}{2}; +\infty\right)$, hàm số $f(x) = \frac{20x^2 - 30x + 7}{\sqrt{2x-2}}$ có

một nguyên hàm $F(x) = (ax^2 + bx + c)\sqrt{2x - 3}$ (a,b,c là các số nguyên). Tổng S = a + b + c bằng

Câu 50. (Chuyên Bắc Ninh 2019) Tìm nguyên hàm của hàm số $f(x) = \frac{\sin x}{1 + 3\cos x}$.

A.
$$\int f(x) dx = \frac{1}{3} \ln |1 + 3 \cos x| + C$$
.

B.
$$\int f(x) dx = \ln |1 + 3\cos x| + C$$
.

C.
$$\int f(x) dx = 3 \ln |1 + 3 \cos x| + C$$
.

D.
$$\int f(x) dx = -\frac{1}{3} \ln |1 + 3 \cos x| + C$$

Câu 51. (Sở Thanh Hóa 2019) Tìm các hàm số f(x) biết $f'(x) = \frac{\cos x}{(2 + \sin x)^2}$

A.
$$f(x) = \frac{\sin x}{(2 + \sin x)^2} + C$$
.

B.
$$f(x) = \frac{1}{(2 + \cos x)} + C$$
.

C.
$$f(x) = -\frac{1}{2 + \sin x} + C$$
.

D.
$$f(x) = \frac{\sin x}{2 + \sin x} + C$$
.

Câu 52. (THPT Quang Trung Đống Đa Hà Nội 2019) Biết F(x) là một nguyên hàm của hàm số

$$f(x) = \frac{\sin x}{1 + 3\cos x}$$
 và $F\left(\frac{\pi}{2}\right) = 2$. Tính $F(0)$.

A.
$$F(0) = -\frac{1}{3}\ln 2 + 2$$
. **B.** $F(0) = -\frac{2}{3}\ln 2 + 2$. **C.** $F(0) = -\frac{2}{3}\ln 2 - 2$. **D.** $F(0) = -\frac{1}{3}\ln 2 - 2$.

Câu 53. (Liên Trường Thọt Tp Vinh Nghệ An 2019) Biết $\int f(x)dx = 3x\cos(2x-5) + C$. Tìm khẳng định đúng trong các khẳng định sau.

A.
$$\int f(3x) dx = 3x \cos(6x-5) + C$$
 B. $\int f(3x) dx = 9x \cos(6x-5) + C$

B.
$$\int f(3x) dx = 9x \cos(6x-5) + C$$

C.
$$\int f(3x) dx = 9x \cos(2x-5) + C$$

C.
$$\int f(3x) dx = 9x \cos(2x-5) + C$$
 D. $\int f(3x) dx = 3x \cos(2x-5) + C$

Câu 54. (Chuyên Hạ Long - 2018) Tìm họ nguyên hàm của hàm số $f(x) = \tan^5 x$.

A.
$$\int f(x) dx = \frac{1}{4} \tan^4 x - \frac{1}{2} \tan^2 x + \ln |\cos x| + C$$
.

B.
$$\int f(x) dx = \frac{1}{4} \tan^4 x + \frac{1}{2} \tan^2 x - \ln|\cos x| + C$$
.

C.
$$\int f(x) dx = \frac{1}{4} \tan^4 x + \frac{1}{2} \tan^2 x + \ln|\cos x| + C$$
.

D.
$$\int f(x) dx = \frac{1}{4} \tan^4 x - \frac{1}{2} \tan^2 x - \ln |\cos x| + C$$
.

Câu 55. (Hồng Bàng - Hải Phòng - 2018) Biết F(x) là một nguyên hàm của hàm số

 $f(x) = \sin^3 x \cdot \cos x$ và $F(0) = \pi$. Tính $F(\frac{\pi}{2})$.

A.
$$F\left(\frac{\pi}{2}\right) = -\pi$$
.

B.
$$F\left(\frac{\pi}{2}\right) = \pi$$
.

A.
$$F\left(\frac{\pi}{2}\right) = -\pi$$
. **B.** $F\left(\frac{\pi}{2}\right) = \pi$. **C.** $F\left(\frac{\pi}{2}\right) = -\frac{1}{4} + \pi$. **D.** $F\left(\frac{\pi}{2}\right) = \frac{1}{4} + \pi$.

D.
$$F\left(\frac{\pi}{2}\right) = \frac{1}{4} + \pi$$

Câu 56. Cho F(x) là một nguyên hàm của hàm số $f(x) = \frac{1}{x \ln x}$ thỏa mãn $F(\frac{1}{e}) = 2$ và $F(e) = \ln 2$.

Giá trị của biểu thức $F\left(\frac{1}{e^2}\right) + F\left(e^2\right)$ bằng

A.
$$3 \ln 2 + 2$$
.

B.
$$\ln 2 + 2$$
.

C.
$$\ln 2 + 1$$
.

D.
$$2 \ln 2 + 1$$
.

Câu 57. (Chuyên Nguyễn Huệ-HN 2019) Gọi F(x) là nguyên hàm của hàm số $f(x) = \frac{x}{\sqrt{8-x^2}}$ thỏa

mãn F(2) = 0. Khi đó phương trình F(x) = x có nghiệm là:

A.
$$x = 0$$
.

B.
$$x = 1$$

C.
$$x = -1$$

D.
$$x = 1 - \sqrt{3}$$
.

Câu 58. Gọi F(x) là nguyên hàm của hàm số $f(x) = \frac{2x}{\sqrt{x+1}} - \frac{1}{x^2}$. Biết F(3) = 6, giá trị của F(8) là

A.
$$\frac{217}{8}$$
.

C.
$$\frac{215}{24}$$
. D. $\frac{215}{8}$.

D.
$$\frac{215}{8}$$
.

Câu 59. Họ nguyên hàm của hàm số $f(x) = \frac{20x^2 - 30x + 7}{\sqrt{2x - 3}}$ trên khoảng $(\frac{3}{2}; +\infty)$ là

A.
$$(4x^2+2x+1)\sqrt{2x-3}+C$$
.

B.
$$(4x^2-2x+1)\sqrt{2x-3}$$

C.
$$(3x^2-2x+1)\sqrt{2x-3}$$
.

D.
$$(4x^2-2x+1)\sqrt{2x-3}+C$$
.

Dạng 3. Nguyên hàm của hàm số hữu tỉ

1. Công thức thường áp dung

•
$$\int \frac{1}{ax+b} dx = \frac{1}{a} \ln |ax+b| + C$$
. • $\int \frac{1}{(ax+b)^2} dx = -\frac{1}{a} \cdot \frac{1}{ax+b} + C$.

•
$$\ln a + \ln b = \ln(ab)$$
. • $\ln a - \ln b = \ln \frac{a}{b}$

•
$$\ln a^n = n \ln a$$
. • $\ln 1 = 0$.

2. Phương pháp tính nguyên hàm, tích phân của hàm số hữu tỷ $I = \int \frac{P(x)}{Q(x)} dx$.

- Nếu bậc của tử số $P(x) \ge b$ ậc của mẫu số $Q(x) \xrightarrow{PP}$ Chia đa thức.
- Nếu bậc của tử số P(x) < bậc của mẫu số $Q(x) \xrightarrow{PP} phân tích mẫu <math>Q(x)$ thành tích số, rồi sử dụng phương pháp che để đưa về công thức nguyên hàm số 01
- Nếu mẫu không phân tích được thành tích số $\stackrel{PP}{\longrightarrow}$ thêm bót để đổi biến hoặc lượng giác hóa bằng cách đặt $X = a \tan t$, nếu mẫu đưa được về dang $X^2 + a^2$.

Câu 60. (Đề Minh Họa 2020 Lần 1) Họ tất cả các nguyên hàm của hàm số $f(x) = \frac{x+2}{x-1}$ trên khoảng $(1;+\infty)$ là

A.
$$x+3\ln(x-1)+C$$
. **B.** $x-3\ln(x-1)+C$.

B.
$$x-3\ln(x-1)+C$$
.

C.
$$x - \frac{3}{(x-1)^2} + C$$
. D. $x + \frac{3}{(x-1)^2} + C$.

D.
$$x + \frac{3}{(x-1)^2} + C$$

Câu 61. (**Mã đề 104 - BGD - 2019**) Họ tất cả các nguyên hàm của hàm số $f(x) = \frac{3x-2}{(x-2)^2}$ trên khoảng

 $(2;+\infty)$ là

A.
$$3\ln(x-2) + \frac{2}{x-2} + C$$

B.
$$3\ln(x-2) - \frac{2}{x-2} + C$$

C.
$$3\ln(x-2) - \frac{4}{x-2} + C$$

D.
$$3\ln(x-2) + \frac{4}{x-2} + C$$
.

Câu 62. (**Mã đề 101 - BGD - 2019**) Họ tất cả các nguyên hàm của hàm số $f(x) = \frac{2x-1}{(x+1)^2}$ trên

khoảng $(-1;+\infty)$ là

A.
$$2\ln(x+1) + \frac{2}{x+1} + C$$
.

B.
$$2\ln(x+1) + \frac{3}{x+1} + C$$
.

C.
$$2\ln(x+1) - \frac{2}{x+1} + C$$
.

D.
$$2\ln(x+1) - \frac{3}{x+1} + C$$
.

Câu 63. Họ nguyên hàm của hàm số $f(x) = \frac{x+3}{x^2+3x+2}$ là

A.
$$\ln |x+1| + 2 \ln |x+2| + C$$
.

B.
$$2 \ln |x+1| + \ln |x+2| + C$$
.

C.
$$2 \ln |x+1| - \ln |x+2| + C$$
.

D.
$$-\ln|x+1| + 2\ln|x+2| + C$$
.

Câu 64. (Chuyên Lê Quý Dôn Diện Biên 2019) Tìm một nguyên hàm F(x) của hàm số

$$f(x) = ax + \frac{b}{x^2}(x \neq 0)$$
, biết rằng $F(-1) = 1, F(1) = 4, f(1) = 0$

A.
$$F(x) = \frac{3}{2}x^2 + \frac{3}{4x} - \frac{7}{4}$$
.

EXAMPLE 19 TÀI LIỆU ÔN THI THPTQG 2023 B.
$$F(x) = \frac{3}{4}x^2 - \frac{3}{2x} - \frac{7}{4}$$
.

C.
$$F(x) = \frac{3}{4}x^2 + \frac{3}{2x} + \frac{7}{4}$$
.

D.
$$F(x) = \frac{3}{2}x^2 - \frac{3}{2x} - \frac{1}{2}$$
.

Câu 65. Cho biết
$$\int \frac{2x-13}{(x+1)(x-2)} dx = a \ln|x+1| + b \ln|x-2| + C$$
.

Mênh đề nào sau đây đúng?

A.
$$a + 2b = 8$$
.

B.
$$a + b = 8$$

B.
$$a+b=8$$
. **C.** $2a-b=8$.

D.
$$a - b = 8$$

Câu 66. Cho biết
$$\int \frac{1}{x^3 - x} dx = a \ln |(x - 1)(x + 1)| + b \ln |x| + C$$
. Tính giá trị biểu thức: $P = 2a + b$.

C.
$$\frac{1}{2}$$

Câu 67. Cho biết
$$\int \frac{4x+11}{x^2+5x+6} dx = a \ln|x+2| + b \ln|x+3| + C$$
. Tính giá trị biểu thức: $P = a^2 + ab + b^2$.

Câu 68. Cho hàm số
$$f(x)$$
 thỏa mãn $f'(x) = ax^2 + \frac{b}{x^3}$, $f'(1) = 3$, $f(1) = 2$, $f(\frac{1}{2}) = -\frac{1}{12}$. Khi đó $2a + b$

bằng

A.
$$-\frac{3}{2}$$
.

D.
$$\frac{3}{2}$$
.

Câu 69. (**Mã 102 2019**) Họ tất cả các nguyên hàm của hàm số
$$f(x) = \frac{3x-1}{(x-1)^2}$$
 trên khoảng $(1; +\infty)$ là

A.
$$3\ln(x-1) - \frac{1}{x-1} + c$$
. **B.** $3\ln(x-1) + \frac{2}{x-1} + c$.

C.
$$3\ln(x-1) - \frac{2}{x-1} + c$$
. D. $3\ln(x-1) + \frac{1}{x-1} + c$.

Câu 70. (Mã 103 - 2019) Họ tất cả các nguyên hàm của hàm số
$$f(x) = \frac{2x+1}{(x+2)^2}$$
 trên khoảng $(-2; +\infty)$ là

A.
$$2\ln(x+2) + \frac{3}{x+2} + C$$
.

B.
$$2\ln(x+2) + \frac{1}{x+2} + C$$
.

C.
$$2\ln(x+2) - \frac{1}{x+2} + C$$
.

D.
$$2\ln(x+2) - \frac{3}{x+2} + C$$

Câu 71. (THPT Yên Khánh - Ninh Bình - 2019) Cho F(x) là một nguyên hàm của hàm số

$$f(x) = \frac{2x+1}{x^4+2x^3+x^2}$$
 trên khoảng $(0;+\infty)$ thỏa mãn $F(1) = \frac{1}{2}$. Giá trị của biểu thức

$$S = F(1) + F(2) + F(3) + ... + F(2019)$$
 bằng

A.
$$\frac{2019}{2020}$$

B.
$$\frac{2019.2021}{2020}$$

A.
$$\frac{2019}{2020}$$
. **B.** $\frac{2019.2021}{2020}$. **C.** $2018\frac{1}{2020}$. **D.** $-\frac{2019}{2020}$.

D.
$$-\frac{2019}{2020}$$

Câu 72. Giả sử
$$\int \frac{(2x+3)dx}{x(x+1)(x+2)(x+3)+1} = -\frac{1}{g(x)} + C$$
 (C là hằng số).

Tính tổng các nghiệm của phương trình g(x) = 0.

A.
$$-1$$
.

$$D. -3$$
.

Câu 73. (Nam Trực - Nam Định - 2018) Cho $I = \int \frac{1}{x^3 (1+x^2)} dx = \frac{-a}{x^2} - b \ln|x| + 2c \ln(1+x^2) + C$. Khi

đó S = a + b + c bằng

A.
$$\frac{-1}{4}$$
.

B.
$$\frac{3}{4}$$

B.
$$\frac{3}{4}$$
. **C.** $\frac{7}{4}$.

Câu 74. (**Trường VINSCHOOL - 2020**) Cho hàm số f(x) xác định trên $R \setminus \{-1,1\}$ thỏa mãn

 $f'(x) = \frac{1}{x^2 - 1}$. Biết f(3) + f(-3) = 4 và $f(\frac{1}{3}) + f(\frac{-1}{3}) = 2$. Giá trị của biểu thức f(-5) + f(0) + f(2)

bằng

A.
$$5 - \frac{1}{2} \ln 2$$

A.
$$5 - \frac{1}{2} \ln 2$$
. **B.** $6 - \frac{1}{2} \ln 2$. **C.** $5 + \frac{1}{2} \ln 2$. **D.** $6 + \frac{1}{2} \ln 2$.

C.
$$5 + \frac{1}{2} \ln 2$$

D.
$$6 + \frac{1}{2} \ln 2$$
.

Câu 75. (Quảng Xương - Thanh Hóa - 2018) Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{-2;1\}$ thỏa

mãn $f'(x) = \frac{1}{x^2 + x - 2}$, f(-3) - f(3) = 0 và $f(0) = \frac{1}{3}$. Giá trị của biểu thức f(-4) + f(-1) - f(4) bằng

A.
$$\frac{1}{3} \ln 2 + \frac{1}{3}$$
.

B.
$$\ln 80 + 1$$
. **C.** $\frac{1}{3} \ln \frac{4}{5} + \ln 2 + 1$. **D.** $\frac{1}{3} \ln \frac{8}{5} + 1$.

D.
$$\frac{1}{3} \ln \frac{8}{5} + 1$$

Câu 76. (Chuyên Nguyễn Quang Diêu - Dồng Tháp - 2018) Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{1\}$

thỏa mãn $f'(x) = \frac{1}{x-1}$, f(0) = 2017,, f(2) = 2018. Tính S = (f(3) - 2018)(f(-1) - 2017).

A.
$$S = 1$$
.

B.
$$S = 1 + \ln^2 2$$
. **C.** $S = 2 \ln 2$. **D.** $S = \ln^2 2$

C.
$$S = 2 \ln 2$$

D.
$$S = \ln^2 2$$

Câu 77. (Sở Phú Thọ - 2018) Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{-1;1\}$ thỏa mãn $f'(x) = \frac{2}{x^2-1}$,

f(-2)+f(2)=0 và $f\left(-\frac{1}{2}\right)+f\left(\frac{1}{2}\right)=2$. Tính $f\left(-3\right)+f\left(0\right)+f\left(4\right)$ được kết quả

A.
$$\ln \frac{6}{5} + 1$$
. **B.** $\ln \frac{6}{5} - 1$. **C.** $\ln \frac{4}{5} + 1$. **D.** $\ln \frac{4}{5} - 1$.

B.
$$\ln \frac{6}{5} - 1$$

C.
$$\ln \frac{4}{5} + 1$$
.

D.
$$\ln \frac{4}{5} - 1$$
.

Câu 78. (Liên trường Hà Tĩnh – 2022) Cho hàm số f(x) xác định trên $\mathbb{R} \setminus \{-1, 2\}$ thỏa mãn

 $f'(x) = \frac{1}{x^2 - x - 2}$; f(-3) - f(3) = 0 và $f(0) = \frac{1}{3}$. Giá trị của biểu thức f(-4) + f(1) - f(4) bằng

A.
$$\frac{1}{3} + \frac{1}{3} \ln 2$$
.

B.
$$1 + \ln S0$$
.

C.
$$\frac{1}{3} - \ln 2$$
.

D.
$$1 + \frac{1}{3} \ln \frac{8}{5}$$
.

Dạng 4. Nguyên hàm từng phần

Cho hai hàm số u và v liên tục trên [a;b] và có đạo hàm liên tục trên [a;b]. Khi đó:

$$\int u dv = uv - \int v du (*)$$

Để tính tích phân $I = \int_{0}^{\infty} f(x) dx$ bằng phương pháp từng phần ta làm như sau:

Buớc 1: Chọn u, v sao cho f(x)dx = udv (chú ý: dv = v'(x)dx).

Tính $v = \int dv$ và du = u'.dx.

Bước 2: Thay vào công thức (*) và tính $\int v du$.

Cần phải lựa chọn u và dv hợp lí sao cho ta dễ dàng tìm được v và tích phân $\int v du$ dễ tính hơn

∫udv. Ta thường gặp các dạng sau

Dạng 1:
$$I = \int P(x) \begin{bmatrix} \sin x \\ \cos x \end{bmatrix} dx$$
, trong đó $P(x)$ là đa thức

Với dạng này, ta đặt u = P(x), $dv = \begin{bmatrix} \sin x \\ \cos x \end{bmatrix} dx$.

Dang 2:
$$I = \int (x)e^{ax+b}dx$$

Với dạng này, ta đặt $\begin{cases} u = P(x) \\ dv = e^{ax+b} dx \end{cases}$, trong đó P(x) là đa thức

Dạng 3:
$$I = \int P(x) \ln(mx + n) dx$$

Với dạng này, ta đặt $\begin{cases} u = \ln(mx + n) \\ dv = P(x) dx \end{cases}$.

Dạng 4:
$$I = \int \begin{bmatrix} \sin x \\ \cos x \end{bmatrix} e^x dx$$

Với dạng này, ta đặt $\begin{cases} u = \begin{bmatrix} \sin x \\ \cos x \end{bmatrix} \text{ để tính } \int v du \text{ ta đặt } \begin{cases} u = \begin{bmatrix} \sin x \\ \cos x \end{bmatrix}. \end{cases}$

Câu 79. (**Mã 101 - 2020 Lần 1**) Cho hàm số $f(x) = \frac{x}{\sqrt{x^2 + 2}}$. Họ tất cả các nguyên hàm của hàm số

$$g(x) = (x+1).f'(x)$$
 là

A.
$$\frac{x^2 + 2x - 2}{2\sqrt{x^2 + 2}} + C$$
. **B.** $\frac{x - 2}{\sqrt{x^2 + 2}} + C$. **C.** $\frac{x^2 + x + 2}{\sqrt{x^2 + 2}} + C$. **D.** $\frac{x + 2}{2\sqrt{x^2 + 2}} + C$.

B.
$$\frac{x-2}{\sqrt{x^2+2}} + C$$

C.
$$\frac{x^2 + x + 2}{\sqrt{x^2 + 2}} + C$$

D.
$$\frac{x+2}{2\sqrt{x^2+2}} + C$$

Câu 80. (**Mã 102 - 2020 Lần 1**) Cho hàm số $f(x) = \frac{x}{\sqrt{x^2 + 3}}$. Họ tất cả các nguyên hàm của hàm số

$$g(x) = (x+1)f'(x)$$
 là

A.
$$\frac{x^2 + 2x - 3}{2\sqrt{x^2 + 3}} + C$$

B.
$$\frac{x+3}{2\sqrt{x^2+3}} + C$$

A.
$$\frac{x^2 + 2x - 3}{2\sqrt{x^2 + 3}} + C$$
. **B.** $\frac{x + 3}{2\sqrt{x^2 + 3}} + C$. **C.** $\frac{2x^2 + x + 3}{\sqrt{x^2 + 3}} + C$. **D.** $\frac{x - 3}{\sqrt{x^2 + 3}} + C$.

D.
$$\frac{x-3}{\sqrt{x^2+3}} + C$$

Câu 81. (**Mã 103 - 2020 Lần 1**) Cho hàm số $f(x) = \frac{x}{\sqrt{x^2 + 1}}$. Họ tất cả các nguyên hàm của hàm số

$$g(x) = (x+1)f'(x)$$

A.
$$\frac{x^2 + 2x - 1}{2\sqrt{x^2 + 1}} + C$$

B.
$$\frac{x+1}{\sqrt{x^2+1}} + C$$

A.
$$\frac{x^2 + 2x - 1}{2\sqrt{x^2 + 1}} + C$$
. **B.** $\frac{x + 1}{\sqrt{x^2 + 1}} + C$. **C.** $\frac{2x^2 + x + 1}{\sqrt{x^2 + 1}} + C$. **D.** $\frac{x - 1}{\sqrt{x^2 + 1}} + C$.

D.
$$\frac{x-1}{\sqrt{x^2+1}} + C$$

Câu 82. (**Mã 104 - 2020 Lần 1**) Cho hàm số $f(x) = \frac{x}{\sqrt{r^2 + 4}}$. Họ tất cả các nguyên hàm của hàm số

$$g(x) = (x+1)f'(x)$$
 là

A.
$$\frac{x+4}{2\sqrt{x^2+4}} + C$$

B.
$$\frac{x-4}{\sqrt{x^2+4}} + C$$

C.
$$\frac{x^2 + 2x - 4}{2\sqrt{x^2 + 4}} + C$$

A.
$$\frac{x+4}{2\sqrt{x^2+4}} + C$$
. **B.** $\frac{x-4}{\sqrt{x^2+4}} + C$. **C.** $\frac{x^2+2x-4}{2\sqrt{x^2+4}} + C$. **D.** $\frac{2x^2+x+4}{\sqrt{x^2+4}} + C$.

Câu 83. (Đề Minh Họa 2020 Lần 1) Cho hàm số f(x) liên tục trên \mathbb{R} . Biết $\cos 2x$ là một nguyên hàm của hàm số $f(x)e^x$, họ tất cả các nguyên hàm của hàm số $f'(x)e^x$ là:

A.
$$-\sin 2x + \cos 2x + C$$
. **B.** $-2\sin 2x + \cos 2x + C$.

C.
$$-2\sin 2x - \cos 2x + C$$
.

D.
$$2\sin 2x - \cos 2x + C$$
.

Câu 84. (Đề Tham Khảo 2019) Họ nguyên hàm của hàm số $f(x) = 4x(1 + \ln x)$ là:

A.
$$2x^2 \ln x + 3x^2$$
. **B.** $2x^2 \ln x + x^2$.

B.
$$2x^2 \ln x + x^2$$

C.
$$2x^2 \ln x + 3x^2 + C$$

C.
$$2x^2 \ln x + 3x^2 + C$$
. D. $2x^2 \ln x + x^2 + C$

Câu 85. Họ các nguyên hàm của hàm số $f(x) = x \sin x$ là

$$\mathbf{A.} \ F(x) = x \cos x + \sin x + C.$$

B.
$$F(x) = x \cos x - \sin x + C$$
.

C.
$$F(x) = -x \cos x - \sin x + C$$
.

D.
$$F(x) = -x \cos x + \sin x + C$$
.

Câu 86. (Chuyên Phan Bội Châu 2019) Họ nguyên hàm của hàm số $f(x) = x \cdot e^{2x}$ là:

A.
$$F(x) = \frac{1}{2}e^{2x}\left(x - \frac{1}{2}\right) + C$$

B.
$$F(x) = \frac{1}{2}e^{2x}(x-2) + C$$

C.
$$F(x) = 2e^{2x}(x-2) + C$$

D.
$$F(x) = 2e^{2x} \left(x - \frac{1}{2} \right) + C$$

Câu 87. (THPT Gia Lộc Hải Dương 2019) Họ nguyên hàm của hàm số $f(x) = (2x-1)e^x$ là

A.
$$(2x-3)e^x + C$$

A.
$$(2x-3)e^x + C$$
. **B.** $(2x+3)e^x + C$.

C.
$$(2x+1)e^x + C$$

C.
$$(2x+1)e^x + C$$
. D. $(2x-1)e^x + C$.

Câu 88. (Chuyen Phan Bội Châu Nghệ An 2019) Tìm họ nguyên hàm của hàm số $f(x) = xe^{2x}$?

A.
$$F(x) = \frac{1}{2}e^{2x}\left(x - \frac{1}{2}\right) + C.$$

B.
$$F(x) = \frac{1}{2}e^{2x}(x-2) + C$$
.

C.
$$F(x) = 2e^{2x}(x-2) + C$$
.

D.
$$F(x) = 2e^{2x} \left(x - \frac{1}{2} \right) + C.$$

Câu 89. (Chuyên Sơn La 2019) Họ nguyên hàm của hàm số $f(x) = x(1 + \sin x)$ là

$$\mathbf{A.} \ \frac{x^2}{2} - x \sin x + \cos x + C.$$

B.
$$\frac{x^2}{2} - x \cos x + \sin x + C$$
.

C.
$$\frac{x^2}{2} - x \cos x - \sin x + C$$
.

$$\mathbf{D.} \frac{x^2}{2} - x \sin x - \cos x + C.$$

Câu 90. (Chuyên Thái Bình - Lần 3 - 2020) Giả sử $F(x) = (ax^2 + bx + c)e^x$ là một nguyên hàm của hàm số $f(x) = x^2 e^x$. Tính tích P = abc.

$$C. -5.$$

D.
$$-3$$
.

Câu 91. Họ nguyên hàm của hàm số $f(x) = 2x(1+e^x)$ là

A.
$$(2x-1)e^x + x^2$$
.

B.
$$(2x+1)e^x + x^2$$
.

A.
$$(2x-1)e^x + x^2$$
. **B.** $(2x+1)e^x + x^2$. **C.** $(2x+2)e^x + x^2$. **D.** $(2x-2)e^x + x^2$.

1.
$$(2x-2)e^x + x^2$$

Câu 92. Họ nguyên hàm của $f(x) = x \ln x$ là kết quả nào sau đây?

A.
$$F(x) = \frac{1}{2}x^2 \ln x + \frac{1}{2}x^2 + C$$
.

B.
$$F(x) = \frac{1}{2}x^2 \ln x + \frac{1}{4}x^2 + C$$
.

C.
$$F(x) = \frac{1}{2}x^2 \ln x - \frac{1}{4}x^2 + C$$
.

D.
$$F(x) = \frac{1}{2}x^2 \ln x + \frac{1}{4}x + C$$
.

Câu 93. (Chuyên Lê Hồng Phong Nam Định 2019) Tìm tất cả các nguyên hàm của hàm số $f(x) = (3x^2 + 1) \cdot \ln x$.

A.
$$\int f(x) dx = x(x^2 + 1) \ln x - \frac{x^3}{3} + C$$
. **B.** $\int f(x) dx = x^3 \ln x - \frac{x^3}{3} + C$.

B.
$$\int f(x) dx = x^3 \ln x - \frac{x^3}{3} + C$$

C.
$$\int f(x) dx = x(x^2 + 1) \ln x - \frac{x^3}{3} - x + C$$
. D. $\int f(x) dx = x^3 \ln x - \frac{x^3}{3} - x + C$.

D.
$$\int f(x) dx = x^3 \ln x - \frac{x^3}{3} - x + C$$
.

Câu 94. (Chuyên Đại Học Vinh 2019) Tất cả các nguyên hàm của hàm số $f(x) = \frac{x}{\sin^2 x}$ trên khoảng $(0;\pi)$ là

A.
$$-x \cot x + \ln(\sin x) + C$$
.

B.
$$x \cot x - \ln |\sin x| + C$$
.

C.
$$x \cot x + \ln |\sin x| + C$$
. D. $-x \cot x - \ln (\sin x) + C$.

Câu 95. (Sở Phú Thọ 2019) Họ nguyên hàm của hàm số $y = 3x(x + \cos x)$ là

A.
$$x^3 + 3(x \sin x + \cos x) + C$$

B.
$$x^3 - 3(x \sin x + \cos x) + C$$

C.
$$x^3 + 3(x \sin x - \cos x) + C$$

D.
$$x^3 - 3(x \sin x - \cos x) + C$$

Câu 96. (Chuyên Lê Hồng Phong Nam Định 2019) Họ nguyên hàm của hàm số $f(x) = x^4 + xe^x$ là

A.
$$\frac{1}{5}x^5 + (x+1)e^x + C$$
. **B.** $\frac{1}{5}x^5 + (x-1)e^x + C$.

C.
$$\frac{1}{5}x^5 + xe^x + C$$

C.
$$\frac{1}{5}x^5 + xe^x + C$$
. D. $4x^3 + (x+1)e^x + C$.

Câu 97. Cho hai hàm số F(x), G(x) xác định và có đạo hàm lần lượt là f(x), g(x) trên $\mathbb R$. Biết rằng

 $F(x).G(x) = x^2 \ln(x^2 + 1)$ và $F(x).g(x) = \frac{2x^3}{x^2 + 1}$. Họ nguyên hàm của f(x).G(x) là

A.
$$(x^2+1)\ln(x^2+1)+2x^2+C$$
.

B.
$$(x^2+1)\ln(x^2+1)-2x^2+C$$
.

C.
$$(x^2+1)\ln(x^2+1)-x^2+C$$
.

D.
$$(x^2+1)\ln(x^2+1)+x^2+C$$
.

Câu 98. (Sở Bắc Ninh 2019) Mệnh đề nào sau đây là đúng?

$$\mathbf{A.} \int x e^x \mathrm{d}x = e^x + x e^x + C.$$

B.
$$\int xe^x dx = \frac{x^2}{2}e^x + e^x + C$$
.

$$\mathbf{C.} \int x e^x \mathrm{d}x = x e^x - e^x + C.$$

D.
$$\int xe^{x} dx = \frac{x^{2}}{2}e^{x} + C$$
.

Câu 99. (Sở Bắc Giang 2019) Cho hai hàm số F(x), G(x) xác đinh và có đạo hàm lần lượt là f(x),

g(x) trên \mathbb{R} . Biết F(x). $G(x) = x^2 \ln(x^2 + 1)$ và $F(x)g(x) = \frac{2x^3}{x^2 + 1}$. Tìm họ nguyên hàm của f(x)G(x).

A.
$$(x^2+1)\ln(x^2+1)+2x^2+C$$
.

B.
$$(x^2+1)\ln(x^2+1)-2x^2+C$$
.

C.
$$(x^2+1)\ln(x^2+1)-x^2+C$$
.

D.
$$(x^2+1)\ln(x^2+1)+x^2+C$$
.

Câu 100. Cho biết $F(x) = \frac{1}{3}x^3 + 2x - \frac{1}{x}$ là một nguyên hàm của $f(x) = \frac{(x^2 + a)^2}{x^2}$. Tìm nguyên hàm của $g(x) = x \cos ax$.

A.
$$x \sin x - \cos x + C$$
 B. $\frac{1}{2} x \sin 2x - \frac{1}{4} \cos 2x + C$

C.
$$x \sin x + \cos + C$$
 D. $\frac{1}{2} x \sin 2x + \frac{1}{4} \cos 2x + C$

Câu 101. Họ nguyên hàm của hàm số $y = \frac{(2x^2 + x)\ln x + 1}{x}$ là

A.
$$(x^2 + x + 1) \ln x - \frac{x^2}{2} + x + C$$
. **B.** $(x^2 + x - 1) \ln x + \frac{x^2}{2} - x + C$.

C.
$$(x^2 + x + 1) \ln x - \frac{x^2}{2} - x + C$$
.
D. $(x^2 + x - 1) \ln x - \frac{x^2}{2} + x + C$.

Câu 102. (**Mã 104 2017**) Cho $F(x) = \frac{1}{2x^2}$ là một nguyên hàm của hàm số $\frac{f(x)}{x}$. Tìm nguyên hàm của hàm số $f'(x) \ln x$.

A.
$$\int f'(x) \ln x dx = -\left(\frac{\ln x}{x^2} + \frac{1}{x^2}\right) + C$$
 B. $\int f'(x) \ln x dx = \frac{\ln x}{x^2} + \frac{1}{2x^2} + C$

C.
$$\int f'(x) \ln x dx = -\left(\frac{\ln x}{x^2} + \frac{1}{2x^2}\right) + C$$
 D. $\int f'(x) \ln x dx = \frac{\ln x}{x^2} + \frac{1}{x^2} + C$

Câu 103. (**Mã 105 2017**) Cho $F(x) = -\frac{1}{3x^3}$ là một nguyên hàm của hàm số $\frac{f(x)}{x}$. Tìm nguyên hàm của hàm số $f'(x) \ln x$

A.
$$\int f'(x) \ln x dx = \frac{\ln x}{x^3} + \frac{1}{5x^5} + C$$
 B. $\int f'(x) \ln x dx = \frac{\ln x}{x^3} - \frac{1}{5x^5} + C$

C.
$$\int f'(x) \ln x dx = -\frac{\ln x}{x^3} + \frac{1}{3x^3} + C$$
 D. $\int f'(x) \ln x dx = \frac{\ln x}{x^3} + \frac{1}{3x^3} + C$

Câu 104. (**Mã 110 2017**) Cho $F(x) = (x-1)e^x$ là một nguyên hàm của hàm số $f(x)e^{2x}$. Tìm nguyên hàm của hàm số $f'(x)e^{2x}$.

A.
$$\int f'(x)e^{2x}dx = (4-2x)e^x + C$$
 B. $\int f'(x)e^{2x}dx = (x-2)e^x + C$

C.
$$\int f'(x)e^{2x}dx = \frac{2-x}{2}e^x + C$$
 D. $\int f'(x)e^{2x}dx = (2-x)e^x + C$

Câu 105. Cho hàm số f(x) thỏa mãn $f'(x) = xe^x$ và f(0) = 2. Tính f(1).

A.
$$f(1) = 3$$
. **B.** $f(1) = e$. **C.** $f(1) = 5 - e$. **D.** $f(1) = 8 - 2e$.

Câu 106. (Chuyên Đại Học Vinh 2019) Cho hàm số f(x) thỏa mãn $f(x) + f'(x) = e^{-x}$, $\forall x \in \mathbb{R}$ và f(0) = 2. Tất cả các nguyên hàm của $f(x)e^{2x}$ là

A.
$$(x-2)e^x + e^x + C$$
 B. $(x+2)e^{2x} + e^x + C$ **C.** $(x-1)e^x + C$ **D.** $(x+1)e^x + C$

Câu 107. (**Việt Đức Hà Nội 2019**) Cho hàm số y = f(x) thỏa mãn $f'(x) = (x+1)e^x$, f(0) = 0 và $\int f(x) dx = (ax+b)e^x + c \text{ với } a,b,c \text{ là các hằng số. Khi đó:}$

A.
$$a + b = 2$$
.

B.
$$a + b = 3$$
.

C.
$$a + b = 1$$

$$\mathbf{D}, a+b=0.$$

Câu 108. (THPT Nguyễn Thị Minh Khai - Hà Tĩnh - 2018) Gọi F(x) là một nguyên hàm của hàm số $f(x) = xe^{-x}$. Tính F(x) biết F(0) = 1.

A.
$$F(x) = -(x+1)e^{-x} + 2$$
.

B.
$$F(x) = (x+1)e^{-x} + 1$$
.

C.
$$F(x) = (x+1)e^{-x} + 2$$
.

D.
$$F(x) = -(x+1)e^{-x} + 1$$
.

Câu 109. (Sở Quảng Nam - 2018) Biết $\int x \cos 2x dx = ax \sin 2x + b \cos 2x + C$ với a, b là các số hữu tỉ. Tính tích ab?

A.
$$ab = \frac{1}{8}$$

B.
$$ab = \frac{1}{4}$$
.

A.
$$ab = \frac{1}{8}$$
. **B.** $ab = \frac{1}{4}$. **C.** $ab = -\frac{1}{8}$. **D.** $ab = -\frac{1}{4}$.

D.
$$ab = -\frac{1}{4}$$
.

Câu 110. (**Chuyên Đh Vinh - 2018**) Giả sử F(x) là một nguyên hàm của $f(x) = \frac{\ln(x+3)}{x^2}$ sao cho F(-2)+F(1)=0. Giá trị của F(-1)+F(2) bằng

A.
$$\frac{10}{3} \ln 2 - \frac{5}{6} \ln 5$$
. **B.** 0. **C.** $\frac{7}{3} \ln 2$. **D.** $\frac{2}{3} \ln 2 + \frac{3}{6} \ln 5$.

C.
$$\frac{7}{3} \ln 2$$

D.
$$\frac{2}{3} \ln 2 + \frac{3}{6} \ln 5$$

Câu 111. (THCS&THPT Nguyễn Khuyến - Bình Dương - 2018) Gọi g(x) là một nguyên hàm của hàm số $f(x) = \ln(x-1)$. Cho biết g(2) = 1 và $g(3) = a \ln b$ trong đó a,b là các số nguyên dương phân biệt. Hãy tính giá tri của $T = 3a^2 - b^2$

A.
$$T = 8$$
.

B.
$$T = -17$$
. **C.** $T = 2$.

C.
$$T = 2$$
.

D.
$$T = -13$$
.

Câu 112. (Sở Quảng Nam - 2018) Biết $\int x \cos 2x dx = ax \sin 2x + b \cos 2x + C$ với a, b là các số hữu tỉ. Tính tích ab?

A.
$$ab = \frac{1}{8}$$
.

B.
$$ab = \frac{1}{4}$$
.

A.
$$ab = \frac{1}{8}$$
. **B.** $ab = \frac{1}{4}$. **C.** $ab = -\frac{1}{8}$. **D.** $ab = -\frac{1}{4}$.

D.
$$ab = -\frac{1}{4}$$
.

Câu 113. (Sở Hậu Giang 2022) Biết $\int (ax^2 + bx + 5)e^x dx = (3x^2 - 8x + 13)e^x + C$, với a, b là các số nguyên. Tim S = a + b.

A.
$$S = 1$$
.

B.
$$S = 4$$
. **C.** $S = 5$.

C.
$$S = 5$$

D.
$$S = 9$$
.

Theo dõi Fanpage: Nguyễn Bảo Vương Fhttps://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) * https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: https://www.nbv.edu.vn/