γ analysis update in $B^\pm o (K^+K^-\pi^+\pi^-)_D K^\pm$ decays

Martin Tat

Oxford LHCb

14th March 2021

Outline

Summary of last time

② Binning scheme

Summary of last time

- $B^{\pm} \rightarrow DK^{\pm}$, $D \rightarrow K^{+}K^{-}\pi^{+}\pi^{-}$, arXiv:hep-ph/0611272
- Model independent measurement with BESIII strong phase input
- Estimate 2000 B events from LHCb Run 1 and 2
 - Benchmark: $\sigma(\gamma) = 11^{\circ}$ from model dependent fit
 - LHCb amplitude model in AmpGen, arXiv:1811.08304
- Pull study to test and optimize binning scheme
 - Simulated 1000 experiments with 2000 events each
 - Strong phases from amplitude model using MC integration

Binning scheme

• Aim: Pick binning scheme to maximize x_{\pm} and y_{\pm} sensitivity

Event yield in bin i

$$\begin{split} N_{i}^{+} &= h_{B^{+}} \Big(\bar{K}_{i} + \left(x_{+}^{2} + y_{+}^{2} \right) K_{i} + 2 \sqrt{K_{i} \bar{K}_{i}} \big(x_{+} c_{i} - y_{+} s_{i} \big) \Big) \\ N_{-i}^{+} &= h_{B^{+}} \Big(K_{i} + \left(x_{+}^{2} + y_{+}^{2} \right) \bar{K}_{i} + 2 \sqrt{K_{i} \bar{K}_{i}} \big(x_{+} c_{i} + y_{+} s_{i} \big) \Big) \\ x_{\pm} &= r_{B} \cos(\delta_{B} \pm \gamma), \quad y_{\pm} = r_{B} \sin(\delta_{B} \pm \gamma) \end{split}$$

- Previously: Rectangular parameterization of 5D phase space
- Better and simpler:
 - Generate C++ source code for amplitude model using AmpGen
 - Evaluate amplitude directly in analysis
 - Decide bin based on strong phase and amplitude ratio directly

Strong phase and amplitude ratio

$$\mathcal{A}(D^0)/\mathcal{A}(\bar{D^0}) = r_D \exp(i\delta_D)$$

Naive ampltiude binning scheme

Pull study naive amplitude binning

Optimize bin widths

- Optimize x_{\pm} , y_{\pm} sensitivity
- ullet Vary bin edges, keep symmetric around $\delta_D=0$

Binning Q value

$$\begin{aligned} Q^2 &= 1 - \sum_i \frac{\kappa_i \bar{K}_i (1 - c_i^2 - s_i^2)}{N_i} / \sum_i K_i \\ Q^2 &\approx \sum_i N_i (c_i^2 + s_i^2) / \sum_i N_i \end{aligned}$$

• Can achieve $Q \approx 0.90$ with 8 bins \implies expect $\sigma(\gamma) = 12^{\circ}$

Variable widths binning scheme

Pull study with variable widths binning

Binning along r_D

- \bullet Further optmization by binning along r_D
- Claim: Can use **same** c_i and s_i in bin i and i'
- \bullet Can push $\sigma(\gamma)$ down by $0.5^{\circ}\text{-}1^{\circ}$

