$D \to K^+K^-\pi^+\pi^-$ strong phase analysis and γ measurement at LHCb and BESIII

Martin Tat

Oxford LHCb

4th December 2023

Brief introduction to my PhD analysis

What's happened since my last update in June?

- Very busy summer! Many presentations, holiday, some analysis...
- Analysis: First strong-phase measurement of $D^0 \to K^+K^-\pi^+\pi^-$ in phase-space bins complete!
- \bullet Today: The combination of LHCb and BESIII, resulting in the first model-independent measurement of γ in this channel

Brief introduction to my PhD analysis

Status after 3 years:

- Final piece of my PhD analysis is coming together
- 2 Just started on analysis of November 2022 TORCH testbeam data
- Will probably start writing PhD thesis next term

LHCb paper: A study of CP violation in the decays
$$B^\pm \to [K^+K^-\pi^+\pi^-]_D h^\pm$$
 $(h=K,\pi)$ and $B^\pm \to [\pi^+\pi^-\pi^+\pi^-]_D h^\pm$

- Binned model-dependent GGSZ analysis of $B^\pm o [K^+K^-\pi^+\pi^-]_D h^\pm$
- A 3σ tension: $\gamma = (116^{+12}_{-14})^{\circ}$

Figure 1: Left: $B^{\pm} \rightarrow DK^{\pm}$ bin asymmetries. Right: Interpretation of γ

Why is there a 3σ tension?

- $D^0 \to K^+ K^- \pi^+ \pi^-$ strong phases are from a model
- Model-independent inputs from BESIII are necessary
- ullet It's been challenge to convince reviewers that γ is model dependent:

Why is there a 3σ tension?

- $D^0 o K^+ K^- \pi^+ \pi^-$ strong phases are from a model
- Model-independent inputs from BESIII are necessary
- \bullet It's been challenge to convince reviewers that γ is model dependent:

" If you plan to keep the model-dependent value of gamma in the paper, the interpretation part should contain more discussion on the model dependence." - EPJC referee 1

Why is there a 3σ tension?

- $D^0 o K^+ K^- \pi^+ \pi^-$ strong phases are from a model
- Model-independent inputs from BESIII are necessary
- ullet It's been challenge to convince reviewers that γ is model dependent:

" If you plan to keep the model-dependent value of gamma in the paper, the interpretation part should contain more discussion on the model dependence." - EPJC referee 1

"A general comment is that in (7 !!) different places [Abstract, Introduction (page 1)...] it is mentioned the same message: that the analysis is model-dependent..." - EPJC referee 2

Brief summary of formalism

- ullet Identical formalism to BPGGSZ analyses with $D^0 o K^0_S h^+ h^-$
- Split events into bins of phase space
- LHCb: Measure CP asymmetries in each bin
- BESIII: Measure the cosine (sine) of the strong-phase difference c_i (s_i)

Figure 2: Left: Binning scheme of $D^0 \to K_S^0 \pi^+ \pi^-$, visualised on a Dalitz plot. Right: Analogous binning scheme for $D^0 \to K^+ K^- \pi^+ \pi^-$, where the 5D phase space is projected onto the model-predicted δ_D and r_D .

BESII c_i and s_i results

How to measure c_i and s_i ? Sneha already introduced BESIII in last week's seminar!

- Measure the double-tag yields
- Tags with different CP content can enhance/suppress yields
- **1** Infer c_i and s_i in a large simultaneous fit of all tags

Double tag fit of $KK\pi\pi$ vs $K\pi$

(a) Bin 1 yield: 84.5^{+9.8}_{-9.1}

(c) Bin 3 yield: $181.0^{+14.0}_{-13.3}$

(b) Bin 2 yield: 211.2^{+15.4}_{-14.8}

(d) Bin 4 yield: 88.6^{+9.7}_{-9.0}

Double tag fit of $KK\pi\pi$ vs KK

(a) Bin 1 yield: $25.3^{+6.2}_{-5.5}$

(c) Bin 3 yield: $4.5^{+3.3}_{-2.6}$

(b) Bin 2 yield: $8.8^{+4.0}_{-3.3}$

(d) Bin 4 yield: $21.1^{+5.5}_{-4.8}$

Double tag fit of $KK\pi\pi$ vs $K_S\pi^0$

(a) Bin 1 yield: $7.9^{+3.1}_{-2.5}$

(c) Bin 3 yield: $61.1^{+8.3}_{-7.8}$

(b) Bin 2 yield: 40.4^{+6.8}_{-6.3}

(d) Bin 4 yield: $18.3^{+4.5}_{-3.9}$

Double tag fit of $KK\pi\pi$ vs $K_S\pi^+\pi^-$

(a) Bin (1,1) yield: $8.2^{+3.3}_{-2.7}$

(b) Bin (-1,4) yield: $0.9^{+1.3}_{-0.7}$

Toy studies

Toy studies

Toy studies

What do the toy fits tell us?

- 1 Small bias in ci which can be corrected
- $oldsymbol{0}$ s_i pulls are very asymmetric, and uncertainties are not very reliable