Game Al

CS 4730 – Computer Game Design

Some slides courtesy Tiffany Barnes, NCSU

The Loop of Life

- Games are driven by a game loop that performs a series of tasks every frame
- Some games have separate loops for the front and and the game itself
- Other games have a unified main loop

The Game Loop

Tasks

- Handling time
- Gathering player input
- Networking
- Simulation
- Collision detection and response
- Object updates
- Rendering
- Other miscellaneous tasks

The Game Loop

Tasks

- Handling time
- Gathering player input
- Networking
- Simulation
- Collision detection and response
- Object updates
- Rendering
- Other miscellaneous tasks

What all do you have to simulate?

- Physics
- Environments
- Lighting
- Sounds
- Behaviors

Some Terms To Know

- AI: Artificial Intelligence does not have to mean perfect human-like intelligence!
- Turing Test: Can a normal user tell the difference between interacting with a computer and a person
- NPC: Non-Player Character any thing in the world that needs to be modeled, can make decisions, and can potentially have player interaction

Discussion

How good should the AI be?

Discussion

• Are people more fun than NPCs? Why?

Al vs. Game Al

- Modern AI research is more in genetic algorithms and neural networks
- This isn't really an option for game AI (right now)
 - We value efficiency over complexity
 - Too much other stuff to do in the game loop!
 - Al for us just has to be "good enough" to be fun
- We will look at three main AI roles:
 - State-based behavior, planning/strat, pathfinding

What Makes "Good AI"?

- Perceived by user as challenging
 - Cruel, but fair!
- User is surprised by the game
 - but later understands why
- Feeling that reality will provide answers
 - able to make progress solving problem
- What games have used AI effectively?

The Bar To Reach

- Have you failed in your attempt to create a game if your NPCs can't pass the Turing Test?
- NO! Of course not!
- Sometimes NPCs can pass the Turing Test in very specific circumstances
 - Computer chess player
- Sometimes NPCs will never pass the Turing Test and we're okay with that!
 - Koopa Troopas in Super Mario Bros. 3

"Good Enough"

- Your AI needs to be "good enough for the player to be challenged..."
- And "bad enough for the player to have fun..."
- Games are often played to escape from reality
- Playing against an AI that's "too good" is incredibly frustrating
- Imagine a computer player of Othello or Scrabble that ONLY took optimal moves

The Al Loop

- Given the changes to the environment, what should the NPC do?
- Cognition of the NPC
 - Perception (processing the state of the environment) or "Sense"
 - Decision making (decide what to do based on perception) or "Plan"
 - Control (update NPC one time step) or "Act"

Perception

- The NPC's estimation of game-related information
- Includes perceived strategies of PCs
- Identifies most important factors for the NPC to respond to
- Think of it as the NPCs "attention span"

Decision Making

- Determining a course of action for this time step for this particular state of the game
- Usually requires a trade off between accuracy of the decision and speed of computation
- Computer COULD simulate out several steps to make a "better" decision, but at a cost of speed and potentially "fun"

Control

- Adjusting the appropriate variables of the NPC to carry out the decision made
 - Steering or throttle in a racing game
 - Crouching or taking a shot in an FPS
 - Using a potion or casting a spell in an RPG

The Sum Of The Parts

- The sum of all these parts makes up the AI of an NPC
- It can be incredibly complex
 - Large fight in a tactical shooter
- It can be pattern based
 - Behaviors of a sentry in Metal Gear Solid
 - Behaviors of any boxer in Punch Out
- It can be ... well, stupid
 - Goombas or Koopas in Super Mario Bros. 3

Pong Al

 What is the challenge in creating the AI for Pong?

Chase/Evade

- Consider a very simple AI task
- Algorithm for the predator?

Enhancements to Chase

- Speed Control
 - Velocity, Acceleration max/min
 - Limited turning Radius
- Randomness
 - Moves
 - Patterns

Steering Behaviors

- Pursue
- Evade
- Wander
- Obstacle Avoidance
- Wall/Path following
- Queuing
- Combine behaviors with weights
- What could go wrong?

Al Strategies

- Reaction vs. Deliberation
- When having the NPC make a decision, how much thought goes into the next move?
- How is the Al different in:
 - Frozen Synapse
 - Kingdom Hearts
 - Civilization
 - Halo

Al Strategies

- Reaction-Based
 - Fast, but limited capabilities
- Implementations
 - Finite-State Machines
 - Rule-Based Systems
 - Set Pattern

Al Strategies

- Deliberation-Based
 - Much slower, but more adaptable
- Implementations
 - A* / Dijkstra
 - Roadmaps
 - Genetic Algorithms

Set Pattern

- Describe the AI behavior of a Koopa Troopa
 - Or any other bad guy from SMB3

Finite-State Machines

- An abstract construct for determining the behavior of an NPC
- Any given behavior state is represented along with rules for transitioning between states
- The standard bad guys in Metal Gear Solid are excellent examples of this

Switch FSM

Switch FSM

```
void RunLogic( int * state ) {
switch( state )
    case 0: //Wander
       Wander();
       if( SeeEnemy() ) { *state = 1; }
       break;
    case 1: //Attack
       Attack();
       if( LowOnHealth() ) { *state = 2; }
       if( NoEnemy() ) { *state = 0; }
       break;
    case 2: //Flee
       Flee();
       if( NoEnemy() ) { *state = 0; }
       break;
```

Switch FSM

- Within each state can be more complex Al
- In Metal Gear Solid, when an enemy sees you, they follow you as long as you are "discovered"
- When the discovery period expires, the enemies return to their previous state, which is set pattern

More Advanced FSM

Problems with State Machines

- Too Predictable
 - Sometimes a good thing, sometimes not
- Limited
 - Can have a very small set of options available at any one time

Probabilistic FSMs

 We can change the personality of an NPC by adjusting the state probabilities

	Aggressive	Passive
Attack	50%	5%
Evade	5%	60%
Random	10%	10%
Flock	20%	20%
Pattern	15%	5%

Probabilistic FSMs

- Other aspects:
 - Sight
 - Memory
 - Curiosity
 - Fear
 - Anger
 - Sadness
 - Sociability
- Modify probabilities on the fly?

Goal Based

- The NPC has a central goal to achieve and a set of operations it can use
- It will selectively choose an operation based on which will get it closer to the goal at that moment
- Goal could be nearly anything
 - A particular score
 - Health of the PC