Permutation Tests for ANOVA

for Total Charge Estimation

TABLE OF CONTENTS

Introduction

Purpose and Objectives

Methods

ANOVA

Permutation

02 Data Description & EDA

Data Source

Data Cleaning

Variable Explanations

Results & Conclusion

Results

Future Scope

Goal:

Assessing the Effectiveness of a Permutation test in the analysis of variance (ANOVA) model for Estimating Total Charges of Patients in a Hospital

OUR PROCESS

Data Description

Data Source

The data we are using to show these techniques focuses on the hospital inpatient discharges from 2017 within the state of New York. They use a statewide planning and research cooperative system (SPARCS) to contain patient, characteristics, diagnoses, treatments, services and charges.

The data is provided from the New York State Department of Health.

Website https://health.data.ny.gov/dataset/Hospital-Inpatient-Discharges-SPARCS-Deldentified/22g3-z7e7

Data Cleaning

The original data set included **34** different variables with a total of **2.34 million** rows of data. Before we could do anything we had to cut down this, or it would have taken ages and way too much memory to work in R with.

We narrowed it down to just a handful of important variables (**total charges, age group, and hospital county**) to allow us to show the methods from our presentation. Most importantly, we are focusing only on hospital data from **Manhattan**.

Our Variables

Total Charges: Total charges for the discharge

Age Group: Age in years at time of discharge. Grouped into the following age groups: 0 to 17, 18 to 29, 30 to 49, 50 to 69, and 70 or Older.

Hospital County: A description of the county in which the hospital is located.

```
manhattan_data <- readr::read_csv("hospital.csv") %>%
  janitor::clean_names() %>%
  filter(hospital_county == "Manhattan") %>%
  select(age_group, total_charges)
```

• • •

Variable Explanations

Age Group ~ The age of the patient at the time of discharge

- Age Groups are broken up into
 - 0 17, 18 29, 30 49, 50 69, 70 <
- The groups are roughly equal in size, with the smallest group, 18 to 29, making up 8.9% of the data while the largest group, 50 to 69, makes up 29% of the data.

Total Charges ~ The total amount charged for the hospital discharge

- This is a continuous variable with mean \$76,006.14, standard deviation \$143,871.4, and a range from 0.25 to \$9,696,645.
- This data is incredibly right-skewed.

Without transformation

Transformations?

From the box-cox, we got λ =-0.07 which indicates that we may need a power transformation

```
bcPower Transformation to Normality

Est Power Rounded Pwr Wald Lwr Bnd Wald Upr Bnd

Y1 -0.0725 -0.07 -0.0745 -0.0704
```


Barplot of age group

Violin plot without transformation

Box-plot without transformation

Summary Statistics:

Age Group	Mean	SD	(using transformed response) Mean	(using transformed response) SD
0 to 17	55932.	200566.	0.499	0.0354
18 to 29	52993.	114447.	0.486	0.0310
30 to 49	57794.	111648.	0.482	0.0309
50 to 69	93276.	148779.	0.466	0.0322
70 or Older	95673.	119245.	0.462	0.0278

I. Traditional ANOVA

Traditional analysis of variance (ANOVA) is a statistical method used to compare means of different groups.

Fixed groups have assigned observations, they are not random
Residuals are i.i.d and have a normal distribution with a shared variance
With independence being the most important assumption

I. Traditional ANOVA

Since we are trying to see if there is a difference between the medical costs for different age groups in Manhattan, we are going to be testing this hypothesis,

 H_0 : There is no difference in the true mean total medical costs between the different age groups in Manhattan.

$$H_0: \mu_1 = \mu_2 = \mu_2 = ... = \mu_n$$

Vs.

H_a: There is some difference in the true mean total medical costs between the different age groups in Manhattan.

 $H_a: \mu_i \neq \mu_j$ for some $i \neq j$

I. Traditional ANOVA

Traditional ANOVA

P-value is significant, so we **reject** the null hypothesis.

1. Checking Assumptions

Advantages Vs Disadvantages of permutation test of Anova

. . .

Non-parametric

Normality and constant variance of residuals not required

(Chihara & Hesterberg 64, 428)

Computationally intensive

000

- 1. Computing the ANOVA model and F- statistic from the original data
- 1. Generating a random permutation of the response while keeping the predictors in the same order, this creates the permuted data
 - We compute the ANOVA model and F-statistic for the permuted data
 - Save the permuted F- statistics
- 1. Repeat Step 2 N-1 more times
- Compute the P-value as the proportion of permuted F-statistics greater than our original from Step 1

(Chihara & Hesterberg 428-29)

```
set.seed(0)
f_stat <- function(data, idx) {</pre>
  anova(
   tibble(
      age_group = data$age_group,
     total_charges = data$total_charges[idx]
    ) |>
      aov(total_charges ~ age_group, data = _)
 ) $F[1]
f_boot <- boot(</pre>
  statistic = f_stat,
 data = manhattan_data,
 R = 2000,
  sim = "permutation",
 parallel = "multicore",
 ncpus = 6
```

• • •

The permutation method has no assumptions, making it more robust when the residuals are not normally distributed

From this, we got a F - statistic of 1771.019. This indicates that we have a p-value of $1/2001 \approx 0.0005$.

With this p-value and a significance level of 0.05, we are able to **reject** our null, so there is proof that there is some difference of total mean costs between the different age groups.

At 95% confidence we get a percentile CI of (0,3).

Since our observed F value is much larger than 3, we can verify that our observed value exceeds our values from the permutation test, and that there is a significant difference in mean costs between age groups.

Summary of Analysis

- From traditional and permutation based ANOVA analyses, there is evidence of a difference in mean total medical costs between age groups in Manhattan.

Assumptions

Traditional ANOVA: Assumptions

Permutation ANOVA: No assumptions necessary

- Permutation ANOVA requires fitting a large number of ANOVA models

Reference:

Chihara, Laura M., and Tim C. Hesterberg. *Mathematical Statistics with Resampling and R.* Second ed., Wiley, 2018, pp. 64, 428-29.

