Лекция 7: вывод типов

Функциональное программирование на Haskell

Алексей Романов 4 апреля 2018

ТЕИМ

• Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):

- Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala

- Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:

- Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.

- Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.

- Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.
 - Тип локальных переменных/полей = тип инициализатора (если нет явного).

- Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.
 - Тип локальных переменных/полей = тип инициализатора (если нет явного).
 - Возвращаемый тип = общий тип для всех return.

- Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.
 - Тип локальных переменных/полей = тип инициализатора (если нет явного).
 - Возвращаемый тип = общий тип для всех return.
- Отдельный вопрос: вывод параметров шаблонов (в C++)/генериков (в других языках).

- Во многих ООП-языках сейчас есть вывод типов локальных переменных (иногда и возвращаемого типа):
 - auto в C++11
 - var в C# 3.0 и Java 10
 - Отсутствие явного типа в Kotlin, Scala
- Устроен в них всех похоже:
 - Тип аргументов функций задаётся явно.
 - Дальше типы протягиваются сверху вниз.
 - Тип локальных переменных/полей = тип инициализатора (если нет явного).
 - Возвращаемый тип = общий тип для всех return.
- Отдельный вопрос: вывод параметров шаблонов (в C++)/генериков (в других языках).
- Он сложнее, но появился раньше.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).
- Минусы:

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).
- Минусы:
 - Сложнее понять, как работает.

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).
- Минусы:
 - Сложнее понять, как работает.
 - Больше «дальнодействия».

- В основе системы типов языка Haskell лежит система Хиндли-Милнера.
- Она изначально создана для вывода типов.
- Даже без указания типов параметров.
- Плюсы:
 - Для любого данного выражения есть наиболее общий тип (если есть хоть какой-то).
 - Есть эффективные (для реальных программ) алгоритмы их нахождения.
- Не все расширения Haskell их сохраняют (но это один из критериев оценки расширений).
- Минусы:
 - Сложнее понять, как работает.
 - Больше «дальнодействия».
- Поэтому понимание работы иногда необходимо. 3/19

Постановка задачи

• Даны:

- Набор типов и конструкторов типов: Int, Bool, [] и т.д.
- Среди них особую роль играет конструктор функций ->.
- Набор известных именованных функций (или констант) с их типами.
- Выражение, тип которого мы хотим найти (обычно определение функции).

Постановка задачи

• Даны:

- Набор типов и конструкторов типов: Int, Bool, [] и т.д.
- Среди них особую роль играет конструктор функций ->.
- Набор известных именованных функций (или констант) с их типами.
- Выражение, тип которого мы хотим найти (обычно определение функции).

• Нужно:

• Определить наиболее общий тип для этого выражения.

Постановка задачи

• Даны:

- Набор типов и конструкторов типов: Int, Bool, [] и т.д.
- Среди них особую роль играет конструктор функций ->.
- Набор известных именованных функций (или констант) с их типами.
- Выражение, тип которого мы хотим найти (обычно определение функции).

• Нужно:

- Определить наиболее общий тип для этого выражения.
- Или найти объяснение, почему ему нельзя дать никакой тип.

• Сравните let $x = e_1$ in e_2 и ($x -> e_2$) e_1 .

- Сравните let $x = e_1$ in e_2 и ($\xspace x -> e_2$) e_1 .
- Значения всегда одинаковы (для любых e_1 и e_2).

- Сравните let $x = e_1$ in e_2 и ($\xspace x -> e_2$) e_1 .
- Значения всегда одинаковы (для любых e_1 и e_2).
- Но есть разница при типизации:

- Сравните let $x = e_1$ in e_2 и ($\xspace x -> e_2$) e_1 .
- Значения всегда одинаковы (для любых e_1 и e_2).
- Но есть разница при типизации: х в лямбде всегда мономорфна, а в let может быть полиморфной.

- Сравните let $x = e_1$ in e_2 и ($x -> e_2$) e_1 .
- Значения всегда одинаковы (для любых e_1 и e_2).
- Но есть разница при типизации: х в лямбде всегда мономорфна, а в let может быть полиморфной.
- Поэтому в нетипизированном и просто типизированном λ -исчислении let обычно не вводится.

• В нашей системе 5 видов выражений:

- В нашей системе 5 видов выражений:
- Названия переменных (в том числе функций) х
- Применение функции к аргументу
- Лямбда-выражения
- let-выражения
- case-выражения

- В нашей системе 5 видов выражений:
- Названия переменных (в том числе функций) x
- Применение функции к аргументу
- Лямбда-выражения
- let-выражения
- case-выражения
- Типы *t*:

- В нашей системе 5 видов выражений:
- Названия переменных (в том числе функций) х
- Применение функции к аргументу
- Лямбда-выражения
- let-выражения
- case-выражения
- Типы *t*:
- Базовые типы Int, ...
- Переменные типов (греческие буквы α, β, \ldots)
- ullet Тип функций $t_1
 ightarrow t_2$

- В нашей системе 5 видов выражений:
- Названия переменных (в том числе функций) х
- Применение функции к аргументу
- Лямбда-выражения
- let-выражения
- case-выражения
- Типы *t*:
- Базовые типы Int, ...
- Переменные типов (греческие буквы α, β, \ldots)
- ullet Тип функций $t_1
 ightarrow t_2$
- Полиморфные типы: $\forall \alpha_1 \dots \alpha_k t$

- В нашей системе 5 видов выражений:
- Названия переменных (в том числе функций) x
- Применение функции к аргументу
- Лямбда-выражения
- let-выражения
- case-выражения
- Типы *t*:
- Базовые типы Int, ...
- Переменные типов (греческие буквы $lpha,eta,\ldots$)
- Тип функций $t_1
 ightarrow t_2$
- Полиморфные типы: $\forall \alpha_1 \dots \alpha_k t$
- \forall только на внешнем уровне, под \to его быть не может!

Унификация

 Нам понадобятся понятия подстановки и унификации. В общем случае:

Унификация

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.
- Подстановка переменных сопоставляет некоторым переменным выражения (которые тоже могут содержать переменные).

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.
- Подстановка переменных сопоставляет некоторым переменным выражения (которые тоже могут содержать переменные).
- Мы хотим знать, можно ли сделать такую подстановку, чтобы термы стали одинаковыми.

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.
- Подстановка переменных сопоставляет некоторым переменным выражения (которые тоже могут содержать переменные).
- Мы хотим знать, можно ли сделать такую подстановку, чтобы термы стали одинаковыми.
- Это достаточно широко применимое понятие.

- Нам понадобятся понятия подстановки и унификации. В общем случае:
- Пусть даны два выражения (терма) какого-то формального языка (или несколько пар).
- Они могут содержать переменные.
- Подстановка переменных сопоставляет некоторым переменным выражения (которые тоже могут содержать переменные).
- Мы хотим знать, можно ли сделать такую подстановку, чтобы термы стали одинаковыми.
- Это достаточно широко применимое понятие.
- Разрешимость задачи унификации и свойства решений зависят от структуры языка.

- Для вывода типов в системе Хиндли-Милнера случай один из самых простых: унификация первого порядка.
- Подстановки σ сопоставляют переменным типов α, β, \ldots мономорфные типы (без \forall). Например,

$$\sigma = \{\alpha \mapsto \mathsf{Int}, \beta \mapsto [\gamma]\}$$

• Подстановку можно применить к типу:

$$\sigma(\mathsf{Maybe}\ \beta) = \mathsf{Maybe}\ [\gamma]$$

- Композиция подстановок подстановка.
- Мономорфные типы равны, если они совпадают синтаксически.

- Для вывода типов в системе Хиндли-Милнера случай один из самых простых: унификация первого порядка.
- Подстановки σ сопоставляют переменным типов α, β, \ldots мономорфные типы (без \forall). Например,

$$\sigma = \{\alpha \mapsto \mathsf{Int}, \beta \mapsto [\gamma]\}$$

• Подстановку можно применить к типу:

$$\sigma(\mathsf{Maybe}\ \beta) = \mathsf{Maybe}\ [\gamma]$$

- Композиция подстановок подстановка.
- Мономорфные типы равны, если они совпадают синтаксически.
 - Т.е. синонимы типов должны быть уже раскрыты!

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.
- (α, β) более общий, чем (α, α) .

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.
- (α, β) более общий, чем (α, α) .
- Вопрос: когда два типа более общи друг друга?

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = (\text{Int, Int}).$
- Второй частный случай первого.
- (α, β) более общий, чем (α, α) .
- Вопрос: когда два типа более общи друг друга?
- Когда они отличаются только названиями переменных.

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.
- (α, β) более общий, чем (α, α) .
- Вопрос: когда два типа более общи друг друга?
- Когда они отличаются только названиями переменных.
- Можем рассмотреть задачу унификации $(\alpha, \beta) = (\beta, Int)$.

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.
- (α, β) более общий, чем (α, α) .
- Вопрос: когда два типа более общи друг друга?
- Когда они отличаются только названиями переменных.
- Можем рассмотреть задачу унификации $(\alpha, \beta) = (\beta, \text{ Int}).$
- $\{\alpha\mapsto {\sf Int}, \beta\mapsto {\sf Int}\}$ это одно из её решений.

- Тип (α, α) более общий, чем (Int, Int), так как $\exists \sigma \ \sigma((\alpha, \alpha)) = ($ Int, Int).
- Второй частный случай первого.
- (α, β) более общий, чем (α, α) .
- Вопрос: когда два типа более общи друг друга?
- Когда они отличаются только названиями переменных.
- Можем рассмотреть задачу унификации $(\alpha, \beta) = (\beta, \text{ Int}).$
- $\{\alpha \mapsto \mathsf{Int}, \beta \mapsto \mathsf{Int}\}$ это одно из её решений.
- Наиболее общее (все остальные его частные случаи).

Алгоритм унификации

- Вообще, у каждой задачи унификации типов есть наиболее общее решение (или нет вообще).
- Оно находится следующим алгоритмом:

Алгоритм унификации

- Вообще, у каждой задачи унификации типов есть наиболее общее решение (или нет вообще).
- Оно находится следующим алгоритмом:
- На каждом шаге есть система уравнений.
 Выбираем любое из них и упрощаем.
- Закончим, когда не останется упрощаемых уравнений (оставшиеся опишут подстановку).
- Правило упрощения зависит от вида рассмотренного уравнения:

• $C t_1 t_2 \dots t_k = C s_1 s_2 \dots s_k$ (одинаковые конструкторы):

• $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$

- $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$
- C ... = D ... (разные конструкторы):

- $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$
- $C \dots = D \dots$ (разные конструкторы): унификатора не существует.

- $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- *X* = *X*:

- $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).

- $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).
- x = t или t = x: два случая.

- $C \ t_1 \ t_2 \ \dots \ t_k = C \ s_1 \ s_2 \ \dots \ s_k$ (одинаковые конструкторы): заменяется на $t_1 = s_1, t_2 = s_2, \dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).
- x = t или t = x: два случая.
 - Если в *t* нет переменной *x*:

- $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$
- $C \ldots = D \ldots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).
- x = t или t = x: два случая.
 - Если в t нет переменной x: во всех остальных уравнениях делаем замену $x \mapsto t$, переходим к следующему.
 - Если есть

- $C\ t_1\ t_2\ \dots\ t_k=C\ s_1\ s_2\ \dots\ s_k$ (одинаковые конструкторы): заменяется на $t_1=s_1,t_2=s_2,\dots$
- $C \dots = D \dots$ (разные конструкторы): унификатора не существует.
- x = x: оно удаляется, переходим к следующему (можно обобщить и на t = t).
- x = t или t = x: два случая.
 - Если в t нет переменной x: во всех остальных уравнениях делаем замену $x \mapsto t$, переходим к следующему.
 - Если есть, то унификатора не существует (иначе результат будет бесконечным)!

Алгоритм ${\mathcal J}$ вывода типов

- Г окружение типов (набор переменных с их типами).
- $\mathcal{J}(\Gamma;e)$ возвращает наиболее общий тип для e с окружением Γ или выдаёт ошибку.

Алгоритм ${\mathcal J}$ вывода типов

- Г окружение типов (набор переменных с их типами).
- $\mathcal{J}(\Gamma;e)$ возвращает наиболее общий тип для e с окружением Γ или выдаёт ошибку.
- ϕ глобальная переменная (только для простоты объяснения), содержащая уже сделанные подстановки.
- Функция fresh() возвращает свежую переменную типа (т.е. такую, которой ещё нигде не было).
- Функция ftv возвращает свободные переменные типов в аргументе.
- Функция *unify* решает задачу унификации.

Алгоритм \mathcal{J} : приведение e к стандартному виду

- Переименуем связанные переменные с одинаковыми именами.
- Заменим where на let.
- if и все сопоставления с образцом в case.

Переменная х.

- Переменная x.
 - Тип берётся из окружения (он всегда там есть).
 - Если он полиморфный, то переменные под кванторами заменяются на свежие (новые).

- Переменная х.
 - Тип берётся из окружения (он всегда там есть).
 - Если он полиморфный, то переменные под кванторами заменяются на свежие (новые).
- Применение функции $e_1 e_2$.

- Переменная x.
 - Тип берётся из окружения (он всегда там есть).
 - Если он полиморфный, то переменные под кванторами заменяются на свежие (новые).
- Применение функции $e_1 e_2$.
 - Выводим тип t_1 для e_1 .
 - Выводим тип t₂ для e₂.
 - t_1 должен иметь вид $t_2 \to \alpha$ (где α свежая переменная). Унифицируем их.
 - Результат (тип *e*₁ *e*₂):

- Переменная х.
 - Тип берётся из окружения (он всегда там есть).
 - Если он полиморфный, то переменные под кванторами заменяются на свежие (новые).
- Применение функции $e_1 e_2$.
 - Выводим тип t_1 для e_1 .
 - Выводим тип t₂ для e₂.
 - t_1 должен иметь вид $t_2 \to \alpha$ (где α свежая переменная). Унифицируем их.
 - Результат (тип e_1 e_2): α (после подстановок).

• Лямбда-выражение $\lambda x.e_1$.

- Лямбда-выражение $\lambda x.e_1$.
 - Тип x свежая переменная α . $x : \alpha$ добавляется в окружение (на время этого вывода).
 - Выводится тип t₁ для e₁.
 - Результат:

- Лямбда-выражение $\lambda x.e_1$.
 - Тип x свежая переменная α . $x : \alpha$ добавляется в окружение (на время этого вывода).
 - Выводится тип t_1 для e_1 .
 - Результат: $\alpha \to t_1$.

- Лямбда-выражение $\lambda x.e_1.$
 - Тип x свежая переменная α . $x : \alpha$ добавляется в окружение (на время этого вывода).
 - Выводится тип t_1 для e_1 .
 - Результат: $\alpha \to t_1$.
- let-выражение let $x = e_1$ in e_2

- Лямбда-выражение $\lambda x.e_1$.
 - Тип x свежая переменная α . $x:\alpha$ добавляется в окружение (на время этого вывода).
 - Выводится тип t_1 для e_1 .
 - Результат: $\alpha \to t_1$.
- let-выражение let $x = e_1$ in e_2
 - Выводим тип t_1 для e_1 .
 - Тип x получается навешиванием \forall на свободные переменные t_1 , не входящие в окружение. Добавляем его в окружение

- Лямбда-выражение $\lambda x.e_1$.
 - Тип x свежая переменная α . $x : \alpha$ добавляется в окружение (на время этого вывода).
 - Выводится тип t_1 для e_1 .
 - Результат: $\alpha \to t_1$.
- let-выражение let $x = e_1$ in e_2
 - Выводим тип t_1 для e_1 .
 - Тип x получается навешиванием \forall на свободные переменные t_1 , не входящие в окружение. Добавляем его в окружение (тоже на время этого вывода).
 - Выводим тип t₂ для e₂.
 - Результат:

- Лямбда-выражение $\lambda x.e_1$.
 - Тип x свежая переменная α . $x : \alpha$ добавляется в окружение (на время этого вывода).
 - Выводится тип t_1 для e_1 .
 - Результат: $\alpha \to t_1$.
- let-выражение let $x = e_1$ in e_2
 - Выводим тип t_1 для e_1 .
 - Тип x получается навешиванием \forall на свободные переменные t_1 , не входящие в окружение. Добавляем его в окружение (тоже на время этого вывода).
 - Выводим тип t₂ для e₂.
 - Результат: *t*₂.

• Особый случай: рекурсивный let (x входит в e_1).

Алгоритм \mathcal{J} : рекурсия по определению $oldsymbol{e}$

- Особый случай: рекурсивный let (x входит в e_1).
 - Используем функцию fix.
 - fix f возвращает неподвижную точку f (т.е. f (fix f) == fix f).

- Особый случай: рекурсивный let (x входит в e_1).
 - Используем функцию fix.
 - fix f возвращает неподвижную точку f (т.е. f (fix f) == fix f).
 - Соотвественно, её тип

- Особый случай: рекурсивный let (x входит в e_1).
 - Используем функцию fix.
 - fix f возвращает неподвижную точку f (т.е. f(fix f) == fix f).
 - Соотвественно, её тип fix :: forall a. (a -> a) -> a.

- Особый случай: рекурсивный let (x входит в e_1).
 - Используем функцию fix.
 - fix f возвращает неподвижную точку f (т.е. f(fix f) == fix f).
 - Соотвественно, её тип fix :: forall a. (a -> a) -> a.
 - let $x = e_1$ in e_2 превращается в let $x = fix (x -> e_1)$ in e_2 .
 - Этот let не рекурсивный, потому что

- Особый случай: рекурсивный let (x входит в e_1).
 - Используем функцию fix.
 - fix f возвращает неподвижную точку f (т.е. f(fix f) == fix f).
 - Соотвественно, её тип fix :: forall a. (a -> a) -> a.
 - let $x = e_1$ in e_2 превращается в let $x = fix (x -> e_1)$ in e_2 .
 - Этот let не рекурсивный, потому что х в let х = ... и в \х -> e₁ — разные!

```
case e of pat_1 \rightarrow body_1 pat_2 \rightarrow body_2 ...
```

Алгоритм \mathcal{J} : рекурсия по определению $oldsymbol{e}$

```
case e of pat_1 \rightarrow body_1 pat_2 \rightarrow body_2 ...
```

- Выводим тип *t* для *e*.
- Для *i*-той ветви:

```
case e of pat_1 \rightarrow body_1 pat_2 \rightarrow body_2
```

- . . .
- Выводим тип *t* для *e*.
- Для *i*-той ветви:
 - Вводим переменные типов для каждой переменной в pat_i.
 - Выводим тип для pat_i .

• case-выражение

```
case e of pat_1 \rightarrow body_1 pat_2 \rightarrow body_2
```

. . .

- Выводим тип *t* для *e*.
- Для *i*-той ветви:
 - Вводим переменные типов для каждой переменной в pat_i.
 - Выводим тип для *pat_i*.
 - Унифицируем его с *t*.

```
case e of pat_1 \rightarrow body_1 pat_2 \rightarrow body_2
```

- . . .
- Выводим тип *t* для *e*.
- Для *i*-той ветви:
 - Вводим переменные типов для каждой переменной в pat_i.
 - Выводим тип для *pat_i*.
 - Унифицируем его с t.
 - Выводим тип *t_i* для *body_i*.

```
case e of pat_1 \rightarrow body_1 pat_2 \rightarrow body_2
```

- . . .
- Выводим тип *t* для *e*.
- Для *i*-той ветви:
 - Вводим переменные типов для каждой переменной в pat_i.
 - Выводим тип для *pat_i*.
 - Унифицируем его с t.
 - Выводим тип *t_i* для *body_i*.
- Унифицируем все t_i .
- Результат:

```
case e of pat_1 \rightarrow body_1 pat_2 \rightarrow body_2
```

- . . .
- Выводим тип *t* для *e*.
- Для *i*-той ветви:
 - Вводим переменные типов для каждой переменной в pat_i.
 - Выводим тип для *pat_i*.
 - Унифицируем его с *t*.
 - Выводим тип *t_i* для *body_i*.
- Унифицируем все t_i .
- Результат: t_1 (или любой другой t_i).

• Разберём несколько примеров

- Разберём несколько примеров
- Без let:

```
f1 = (.) . (.)
```

- Разберём несколько примеров
- Без let:

```
f1 = (.) . (.)
```

• C let-полиморфизмом:

```
f2 x = let pair x = (x,x) in pair (pair x)
```

- Разберём несколько примеров
- Без let:

$$f1 = (.) . (.)$$

• C let-полиморфизмом:

$$f2 x = let pair x = (x,x) in pair (pair x)$$

• Пример ошибки типа:

$$f3 x = x x$$

Дополнительное чтение

- Более известна альтернатива \mathcal{J} , избегающая «глобальной» ϕ алгоритм \mathcal{W} . Вы можете легко найти его описания и реализации в Интернете.
- Глава Hindley-Milner Inference в Write You a Haskell
- Algorithm W Step by Step
- Реализация системы типов всего (!) стандарта Haskell 98 с выводом, основанная на \mathcal{J} , есть в Typing Haskell in Haskell.
- Курс лекций В. Н. Брагилевского "Вывод типов от Хиндли — Милнера до GHC 8.8" (есть видео)
- Реализации на Haskell обычно используют монады, но это не должно сильно осложнить понимание.

19/19