

#### PROCESSOR ARCHITECTURES

#### DISTRIBUTED ARCHITECTURES



## CPU + RAM PERFORMANCE

### IT'S ALL ABOUT THE BANDWIDTH!!!!



## **FLYNN'S TAXONOMY**



## **NUMA ARCHITECTURES**







## PROCESSORS ARCHITECTURES

response to physical limits on clock speed on 2005: multicore + coprocessors + GPUs



# Memory Memory Memory Network Memory Network

# **TOP 500**

| Rank | Site                                                                  | System                                                                                                                      | Cores     | Rmax<br>(TFlop/s) | Rpeak<br>(TFlop/s) | Power<br>(kW) |
|------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|-------------------|--------------------|---------------|
| 1    | National Super Computer Center in Guangzhou China                     | Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-<br>2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P<br>NUDT | 3,120,000 | 33,862.7          | 54,902.4           | 17,808        |
| 2    | DOE/SC/Oak Ridge National<br>Laboratory<br>United States              | Titan - Cray XK7 , Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.                               | 560,640   | 17,590.0          | 27,112.5           | 8,209         |
| 3    | DOE/NNSA/LLNL<br>United States                                        | Sequoia - BlueGene/Q, Power BQC 16C 1.60 GHz, Custom IBM                                                                    | 1,572,864 | 17,173.2          | 20,132.7           | 7,890         |
| 4    | RIKEN Advanced Institute for<br>Computational Science (AICS)<br>Japan | K computer, SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu                                                                | 705,024   | 10,510.0          | 11,280.4           | 12,660        |
| 5    | DOE/SC/Argonne National<br>Laboratory<br>United States                | Mira - BlueGene/Q, Power BQC 16C 1.60GHz, Custom IBM                                                                        | 786,432   | 8,586.6           | 10,066.3           | 3,945         |
| 6    | Swiss National Supercomputing<br>Centre (CSCS)<br>Switzerland         | Piz Daint - Cray XC30, Xeon E5-2670 8C 2.600GHz, Aries interconnect , NVIDIA K20x Cray Inc.                                 | 115,984   | 6,271.0           | 7,788.9            | 2,325         |
| 7    | Texas Advanced Computing<br>Center/Univ. of Texas<br>United States    | Stampede - PowerEdge C8220, Xeon E5-2680 8C 2.700GHz,<br>Infiniband FDR, Intel Xeon Phi SE10P<br>Dell                       | 462,462   | 5,168.1           | 8,520.1            | 4,510         |
| 8    | Forschungszentrum Juelich<br>(FZJ)<br>Germany                         | JUQUEEN - BlueGene/Q, Power BQC 16C 1.600GHz, Custom Interconnect IBM                                                       | 458,752   | 5,008.9           | 5,872.0            | 2,301         |
| 9    | DOE/NNSA/LLNL<br>United States                                        | Vulcan - BlueGene/Q, Power BQC 16C 1.600GHz, Custom<br>Interconnect<br>IBM                                                  | 393,216   | 4,293.3           | 5,033.2            | 1,972         |
| 10   | Leibniz Rechenzentrum<br>Germany                                      | SuperMUC - iDataPlex DX360M4, Xeon E5-2680 8C 2.70GHz, Infiniband FDR IBM                                                   | 147,456   | 2,897.0           | 3,185.1            | 3,423         |

80% Intel
80% Infiniband GigabitEthernet
96% Linux
85% Cluster architecture

## TOP 500 2003-2013



# **AMDAHL'S LAW**



## AMDAHL'S LAW AND REALITY

## Loss of parallelism due to:

- Load balancing (synch/wait among computing units)
- Scheduling (shared processors and/or memory)
- I/O latencies



#### **DISTRIBUTED SYSTEMS**

### PARALLEL COMPUTING

Computer resources linked by some interconnect

Methods and architectures for executing calculations simultaneously



distributed systems as a kind of parallel computing parallel computing over distributed systems

## **SCALABILITY**



scale up traditional DBs

scale out noSQL

seek "triviality" for appropriate sw+hw architectures

recent technologies (virtualization, etc.) tend to favor the cost of scaling out

# **PROGRAMMING MODELS**



## **PROGRAMMING MODELS**



## CHALLENGES AS OF TODAY

Managing ubiquity and heterogeneity: many computing-capable devices, infrastructures scattered, difficult to programme

Optimized parallel programming is hard, costly. Legacy applications, difficult to port Interoperability.

Understand what architectures for what applications

Contribute to a culture of cost-benefit analysis  $\rightarrow$  (is it worthwhile to double my computing infrastructure to increase my speedup from 9x to 13x?)

True horizontal scalability

Advances from both academy and industry  $\rightarrow$  synergetic cultures

Power consumption footprint (green 500 top 3 nvidia nvidia xeon phi)

## **HOT ISSUES**

#### **DATA BANDWIDTH**

Within chip

Within cluster

Take compute to data

Keep data close to compute

#### **APP DEVELOPMENT**

Within chip

Within cluster

Easy to use programming models

Realiable frameworks

**MULTIDISCIPLINARITY** 

## **MULTIDISCIPLINARITY**

The world of computing is flat, and anyone can do it. What will distinguish us from the rest of the world is **our ability to do it better and to exploit new architectures** we develop before those architectures become ubiquitous.

There is a clear and urgent need for a **new, modern approach to educating and training the next generation of researchers** in high performance computing specifically, and in modeling and simulation generally, for scientific discovery and engineering innovation.

Inadequate **education and training of the next generation of computational scientists** threatens global as well as U.S. growth of SBE&S [...] unless we prepare researchers to develop and use the next generation of algorithms and computer architectures, we will not be able to exploit their gamechanging capabilities.

There are clear and urgent opportunities for **industry-driven partnerships with universities** and national laboratories to hardwire scientific discovery and engineering innovation through SBE&S.













www.wtec.org/sbes 2009

| DISTRIBUTED SYSTEMS AND PARALLEL COMPUTING |         |
|--------------------------------------------|---------|
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            | GRACIAS |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |
|                                            |         |