MATERIAŁY POMOCNICZE DO WYKŁADU "PODSTAWY ELEKTRONIKI 1" (ELR033303, ARR033302, ELR043303, ARR043302 ITP.) - PRZYKŁADOWE SCHEMATY, ZALEŻNOŚCI, CHARAKTERYSTYKI

Warto zerknąć, np.

D. idealna

Madej P., *Ćwiczenia laboratoryjne z podstaw elektroniki*, OW PWr, Wrocław 2014 [PDF 2017]: http://kmnipe.pwr.edu.pl/382040,351.dhtml?s=387332

http://sim.okawa-denshi.jp/en/CRtool.php + inne przydatne narzędzia.

http://home.agh.edu.pl/~maziarz/LabPE/wzmacniacz.html

www.fpga.agh.edu.pl/tc/tc_pliki/Bramki_teor.pdf

http://zto.ita.pwr.wroc.pl/~luban/uklady_sek/przerzutniki/przerzutniki.html interaktywne do poćwiczenia

Uproszczona charakterystyka diody wzrost 1 [mA, A] $U_{BR} < 0$ $^{\prime}_{I}U_{T0}$ kilkaset mV ... kilka V Uproszczone modele diody I_D $U_{T0} > 0V$ $U_{T0}=0V$ $U_{T0} > 0V$ $1/r_{D}$ $r_D = 0\Omega$ $r_D=0\Omega$ $r_D > 0\Omega$ $I_{R}=0A$ $I_R=0A$ $I_{\rm B}=0A$ U_D U_{D} U_{T0} U_{T0} U_{T0}

 U_{T0}

 D_{i}

 U_{T0}

 r_D

 D_{i}

Prostowniki:

Do zastanowienia się:

- Warunki pracy transformatora w każdym z przypadków? A diod?
- Kształt prądu obciążenia w każdym z przypadków?
- Jak będą wyglądać przebiegi i warunki pracy diod / transformatora, jeśli dodamy kondensator filtrujący napięcie wyjściowe?

Stabilizatory:

Obwody ograniczające pasmo wzmacniaczy:

Polaryzacja tranzystora: stałym prądem bazy, dzielnikiem napięcia (potencjometryczna), przez sprzężenie prądowe; Co zmienia zastosowanie kondensatora C_E ?

Wtórnik emiterowy; źródła prądowe:

Budowa wzmacniacza różnicowego: układ podstawowy i jego rozwinięcie – przykład wykonania

08-10-2018 9 z 20

Przykłady: kompensacja pr. polaryz. (wzm. z tr. bipol.). Niech u_i=0V

Wzmocnienie – cecha układu liniowego – może być wyznaczona w zakresie liniowym pracy:

Komparator na WO z histerezą, odwracający

Komparator z histerezą odwracający, wyjście typu otwarty kolektor, np. LM339

Filtr Sallena-Keya dolnoprzepustowy

1.
$$a \cdot 0 = 0$$

$$6 \quad a+1=1$$

11.
$$(a+b)+c=a+(b+c)$$

$$2 \cdot a \cdot 1 = a$$

7.
$$a \cdot a = a$$

12.
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

3.
$$a+0=a$$

8.
$$a + a = a$$

13.
$$(a+b) \cdot c = a \cdot c + b \cdot c$$

4.
$$a \cdot b = b \cdot a$$

9.
$$a \cdot \overline{a} = 0$$

14.
$$(a \cdot b) + c = (a+c) \cdot (b+c)$$

$$5. \quad a+b=b+a$$

10.
$$a + \overline{a} = 1$$

15.
$$\overline{\overline{a}} = a$$

Prawa de'Morgana

16.
$$a \cdot b = \overline{a} + \overline{b}$$

ogólnie wieloargumentowe!!

17. $\overline{a+b} = \overline{a} \cdot \overline{b}$

$$a \rightarrow y$$

$$Y = \overline{CBA} + \overline{CBA} + \overline{CBA} + C\overline{BA} + C\overline{BA}$$

Przykładowa funkcja do poćwiczenia minimalizacji metodą tablicy Karnaugha

		ВА				
		00	01	11	10	
DC	00	1	X	0	1	
	01	1	0	0	. 1	
	11	0	1	1	0	
	10	0	1	0	1	

Prze	Przerzutnik RS na bramkach NOR					
R	S	Q _n	$\overline{\mathbf{Q}_{\mathbf{n}}}$	komentarz		
0	1	1	0	ustawienie		
1	0	0	1	zerowanie		
0	0	$\mathbf{Q}_{\mathbf{n}-1}$	$\overline{\mathbf{Q}_{\mathbf{n}-1}}$	pamiętanie		
1	1	0	0	sprzeczność		

Zebrał: Marcín Skóra

Uwagi i dostrzeżone błędy można zgłaszać na adres Marcin.Skora@pwr.edu.pl

Przerzutnik D, zboczowy

Przerzutnik D, zatrzaskowy

Przerzutnik JK-MS

Przerzutnik D, zboczowy					
\overline{R}	\overline{S}	D	С	$\mathbf{Q}_{\mathbf{n}}$	$\overline{\mathbf{Q}_{\mathtt{n}}}$
0	0			1	1
0	1	Х	X	0	1
1	0			1	0
1		Х	1	$\mathbf{Q}_{\mathbf{n}-\mathbf{l}}$	$\overline{\mathbf{Q}_{\mathbf{n}-1}}$
	1	Х	\downarrow		
		Х	0		
		X	↑	D	$\overline{\overline{D}}$

Przerzutnik D zatrzaskowy (latch)						
\overline{R}	G	D	$\mathbf{Q}_{\mathbf{n}}$	$\overline{\mathbf{Q}_{\mathrm{n}}}$		
0	Х	Х	0	1		
	\downarrow	Х				
	0	Х	$\mathbf{Q}_{\mathbf{n}-1}$	$\mathbf{Q}_{\mathbf{n}-1}$		
1	\uparrow	Х				
	1	Х	D	$\overline{\overline{D}}$		

Przerzutnik D zboczowy, diagramy czasowe gdy $\overline{R}=\overline{S}=1$

Przerzutnik D zatrzaskowy, diagramy czasowe gdy \overline{R} =1

08-10-2018

18 z 20

Przerzutnik JK-MS, dwutaktowy						
\overline{R}	\overline{S}	J	K	O	$\mathbf{Q}_{\mathbf{n}}$	$\overline{\mathbf{Q}_{\mathrm{n}}}$
0	0				1	1
0	1	Х	Х	Х	0	1
1	0				1	0
1	1	Х	х	0 ↑ 1	$\mathbf{Q}_{\mathbf{n}-\mathbf{l}}$	$\overline{\mathbf{Q}_{\mathbf{n}-\mathbf{l}}}$
1 1		0	0	\downarrow	$\mathbf{Q}_{\mathbf{n}-1}$	$\overline{\mathbf{Q}_{\mathbf{n}-1}}$
	1	1	0	\downarrow	1	0
		0	1	\downarrow	0	1
		1	1	\rightarrow	$\overline{\mathbf{Q}_{\mathbf{n}-1}}$	$\mathbf{Q}_{\mathbf{n}-1}$

Dwójki liczące Dzielnik częstotliwości przez dwa

Idea: rejestry w roli układu pamiętającego, równoległe wejście i wyjście

Licznik synchroniczny: idea, schemat ogólny Przykłady układów: 74193, 4017

