Número: Nome:

Sistemas Digitais 2008/2009

Departamento de Informática, Universidade de Évora

2ª Frequência / Exame – Resolução parcial 21 de Janeiro de 2008

Observações

• Duração: 2h00m (exame: +30 min)

• Cálculos: Nas respostas apresente todos os cálculos efectuados

• Identificação: Não se esqueça de identificar todas as folhas entregues

• Frequência: Responder aos Grupos 1, 2 e 3

• Exame: Responder a todos os grupos

Grupo 1

Simplifique a função F(A,B,C) representada pelo circuito da figura seguinte.

Constrói-se uma tabela de verdade com as entradas e, para cada configuração, calcular-se qual o sinal em pontos chave (entradas/saídas) do circuito. Depois é só construir o mapa de Karnaugh e simplificar.

$$F = AB + B\overline{C}$$

(Nota: falta preencher o mapa, simplificar e desenhar o logigrama)

Grupo 2

1. Complete o diagrama temporal para o circuito apresentado na figura abaixo, considerando que os flipflops são sensíveis à transição ascendente de relógio.

Como os FF são sensíveis à transição ascendente, para calcular o estado dos FF no ciclo seguinte verifica-se o estado dos flip-flops, no instante anterior à transição.

A	$B = S_{mux}$	$C = B_{>}$	$S_+ = A_>$	$C_{out} = X_{n+1}$	Y_{n+1}	F
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	1
0	1	1	1	0	0	0
1	0	0	1	0	1	0
1	0	1	1	0	1	0
1	1	0	1	1	0	1
1	1	1	1	1	0	1

Tabela 1: Tabela de verdade do exercício 1

Figura 1: Diagrama temporal do exercício 2.1

A	B	Q_{n+1}
0	0	1
0	1	Q_n
1	0	0
1	1	0

2. A partir de um flip-flop T, implemente um flip-flop AB que possua o comportamento descrito pela tabela.

Constrói-se uma tabela de transição de estados com as variáveis A, B e Q_n e estado seguinte Q_{n+1} . Com a tabela de excitação do flip-flop T preenche-se o mapa de Karnaugh, simplifica-se e desenha-se o logigrama.

A	В	Q_n	Q_{n+1}
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	0

Tabela 2: Tabela de transição de estados do exercício 2.2

$$T = A\overline{Q_n} + \overline{B} \ \overline{Q_n} = \overline{Q_n}(A + \overline{B})$$

(Nota: falta preencher o mapa, simplificar e desenhar o logigrama)

Grupo 3

Utilizando flip-flops T projecte um circuito que, gera sequências distintas consoante o valor da variável de controlo X:

- a sequência é 1011, se X=0
- a sequência é 0011, se X=1

O problema tem 1 entrada (X) e uma saída (S). Se olharmos para as duas sequências verificamos que apenas são diferentes num ciclo de relógio. Assim, podemos desenhar o modelo ASM que origina 5 estados diferentes: a - e e a correspondente tabela de estados.

Para codificar 5 estados são necessários 3 FF. Com a codificação dos estados, a tabela de transição de estados e a tabela de excitação dos FF T, obtêm-se as equações de entrada dos FF. A codificação dos estados dá origem a diferentes equações de entrada dos FF.

Com as equações de entrada dos FF, desenha-se o logigrama.

A figura e tabelas seguintes correspondem ao modelo ASM e à tabela de transição de estados.

(Nota: falta codificar os estados, preencher os mapas de Karnaugh para cada um dos FF, simplificar e desenhar o logigrama)

Grupo 4 (exame)

Figura 2: Modelo ASM do exercício $3\,$

X	Q_n	Q_{n+1}
x	\mathbf{a}	b
0	b	c
1	b	e
x	\mathbf{c}	d
x	d	a
x	e	d

Tabela 3: Tabela de transição de estados do exercício $3\,$

Efectue as seguintes operações indicando todos os cálculos:

- 1. Converta o número $67_{(16)}$ para BCD $67_{(16)} = 103_{(10)} = 100000011_{(BCD)}$
- 2. Converta o número 1000111001 $_{(2)}$ para hexadecimal $1000111001_{(2)}=10.0011.1001=239_{(16)}$
- 3. Converta o número $-71_{(8)}$ para código de complemento para 2 com 8 bits $71_{(8)}=00111001_{(2)}$. Como o número é negativo Complementa-se 00111001_2 bit a bit e soma-se 1, obtendo 11000111. $-71_{(8)}=11000111_{(C2)}$.
- 4. Calcule $A409_{(16)} + 1A7_{(16)}$

Soma-se algarismo a algarismo, tendo em atenção que $9+7_{(16)}=10_{(16)}$. $A409_{(16)}+1A7_{(16)}=A5B0$.

Grupo 5 (exame)

Considere a função $F(A, B, C, D) = (A\overline{D} + \overline{A}C) \oplus C\overline{D} \oplus CB$.

 Simplifique a função F através de mapas de Karnaugh. Constrói-se a tabela de verdade da função, preenche-se o mapa de Karnaugh e simplifica-se.

A	В	С	D	$A\overline{D}$	$\overline{A}C$	$A\overline{D} + \overline{A}C$	$C\overline{D}$	$\ldots \oplus C\overline{D}$	CB	F
0	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	0	1	1	1	0	0	0
0	0	1	1	0	1	1	0	1	0	1
0	1	0	0	0	0	0	0	0	0	0
0	1	0	1	0	0	0	0	0	0	0
0	1	1	0	0	1	1	1	0	1	1
0	1	1	1	0	1	1	0	1	1	0
1	0	0	0	1	0	1	0	1	0	1
1	0	0	1	0	0	0	0	0	0	0
1	0	1	0	1	0	1	1	0	0	0
1	0	1	1	0	0	0	0	0	0	0
1	1	0	0	1	0	1	0	1	0	1
1	1	0	1	0	0	0	0	0	0	0
1	1	1	0	1	0	1	1	0	1	1
1	1	1	1	0	0	0	0	0	1	1

(Nota: falta preencher o mapa de Karnaugh e simplificar agrupando os 1's ou os 0's.)

2. Implemente a função F usando apenas portas NOR.

A implementação com portas NOR deve ser feita a partir da 2ª forma canónica, ou seja, deve tirar-se a expressão do mapa de Karnaugh agrupando os 0's. Faz-se uma dupla negação à expressão e simplificando uma das negações obtém-se automaticamente a expressão com NOR's (não esquecer que as variáveis negadas (NOT de 1 variável) também devem ser implementados com NOR's.