Sem-III - Thermal Physics II

(Instructor: AKB, Department of Physics, Asutosh College)

Assignment II: 1^{st} & 2^{nd} law of Thermodynamics

Submission due date: 23/08/2019

Q.1) If a gas is both ideal and paramagnetic obeying Curie's law, show that the entropy is given by

$$S = c_{V,M} lnT + nR lnV - \frac{M^2}{2C_c'} + constant,$$

where $c_{V,M}$ is the heat capacity at constant volume, magnetization assumed constant and C'_c is Curie's constant.

- **Q.2)** The equation of state of a novel matter is $PV = AT^3$ with A a constant. The internal energy of the matter is $U = BT^n ln(V/V_0) + f(T)$. Using first law of thermodynamics, find B and n.
- Q.3) Suppose an engine works between two reservoirs at T_1 and $T_2(T_2 > T_1)$ until both reservoirs attain final temperature T_c . Show that $T_c > \sqrt{T_1T_2}$. What is the maximum amount of work obtainable from this engine?
- Q.4) A Carnot engine has an efficiency of 30% when the sink temperature is $27^{\circ}C$. What must be the change in temperature of the source to make its efficiency 50%?
- Q.5) An inventor claims to have developed an engine working between 600K and 300K to deliver an efficiency of 52%. Using Carnot's theorem, can you decipher whether this claim is valid?
- **Q.6)** Two Carnot engines X and Y are operating in series. X receives heat at 1200K and rejects to a reservoir at temperature TK. The second engine Y receives the heat rejected by X and inturn rejects to a heat reservoir at 300K. Calculate the temperature T for the situation when, (i) The work output of two engines are equal, (ii) The efficiency of two engines are equal.
- Q.7) A Carnot's refrigerator takes heat from water at $0^{\circ}C$ and discards it to a room temperature. 1Kg of water at $0^{\circ}C$ is to be changed into ice at $0^{\circ}C$. How many calories of heat are discarded to the room? What is the work done by the refrigerator in this process? What is the coefficient of performance $[P = Q_{cold}/(Q_{hot} Q_{cold})]$ of the machine? Given, room temperature is $27^{\circ}C$ and 1Cal = 4.2Joule.
- **Q.8)** A thermally conducting bar of length L, area A, density ρ is brought to a nonuniform temperature distribution by sandwiching between hot (temperature T_h) and cold reservoir (temperature T_c). The bar is removed from reservoirs, thermally insulated and kept at constant pressure. Show that the change in entropy of the bar is

$$\Delta S = c_p \rho A L \Big\{ 1 + ln \Big(\frac{T_h + T_c}{2} \Big) + \frac{T_c}{T_h - T_c} ln T_c - \frac{T_h}{T_h - T_c} ln T_h \Big\}.$$