Using Diamond

Christian Jacobs

Context

- To run a simulation in Fluidity, we need to give it some input. For example:
 - The path to the mesh file
 - What fields we want to solve for
 - Initial conditions, boundary conditions
 - What spatial and temporal discretisations will be used
 - Solver settings
- All of these need to be specified by the user in a file, which is then given to Fluidity.
- This is where **Diamond** comes in...

Diamond and FLML

- Diamond is an XML editor, used to create/edit simulation configuration files.
- ► These files have a ".flml" (FLuidity Markup Language) file extension, but are basically XML files with elements pre-defined...
- ...in another XML file called a schema. Schemas contain all the available options that the user can choose from, and act like a blueprint or template from which .flml files can be derived.
- Diamond loads the schema and gives you all the options contained within.

Diamond's User Interface

Ham et al., 2010

Live demo

- Stommel gyre
- Prescribed velocity
- Adaptive mesh
- Advect a tracer (temperature) and measure mixing

Before we start...

```
Make a directory in your data/<username> directory:
mkdir stommel
cd_stommel
```

```
cd stommel
```

```
cp /scratch/Stommel2_adapt.* .
```

```
cp /scratch/stommel.pvsm .
```


Create a FLML

Live demo diamond -s /data/<username>/fluidity/schema/fluidity_options.rng my.flml

Running Fluidity

```
/path/bin/fluidity my.flml
/data/<username>/fluidity/bin/fluidity my.flml
/home/<username>/fluidity/bin/fluidity -l -v2 my.flml
```


Visualising your output

paraview --state=stommel.pvsm

