Intercepts of the Quadratic

Case1: △>0 $w_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a}$ computes the w-intercepts of multiplicity 1.

Given a quadratic $n(w) = a w^2 + b w + c$ compute its discriminant \triangle :

 $n\left(\mathbf{0} \right)=c$ computes the single n-intercept.

Example 1. $n(w) = -w^2 + w + 56$ compute its discriminant \triangle :

 $\triangle = \sqrt{b^2 - 4ac}$

$$\triangle = 225 > 0$$
 $w_{1,2} = -7,8$

$$w_{1,2}=-7.8$$

 $n(0)=56$ n-intercept.

 $w_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a}$ single w-intercept of multiplicity 2.

$n(w) = 3 w^2 + 30 w + 75$ compute its discriminant \triangle :

Example 2.

Case3: △<0

 $\triangle = -1764 < 0$

no w-intercepts.

However there is a n-intercept.

△=0

 $\sqrt{\,\mathsf{b}^2\,_-\,\mathsf{4}\,\mathsf{ac}}$ has no value in Real Numbers. Therefore there are

n(0) = 490 n-intercept.

 $n(w) = 9 w^2 + 126 w + 490$ compute its discriminant \triangle :

5000 n-intercept 5 -10 10