UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: Probability and Random Processes

Homework 03

Spring 2023

1. Matrix Sketching

Matrix sketching is an important technique in randomized linear algebra for doing large computations efficiently. For example, to compute $\mathbf{A}^T \times \mathbf{B}$ for two large matrices \mathbf{A} and \mathbf{B} , we can use a random sketch matrix \mathbf{S} to compute a "sketch" $\mathbf{S}\mathbf{A}$ of \mathbf{A} , and a sketch $\mathbf{S}\mathbf{B}$ of \mathbf{B} . Such a sketching matrix has the property that

$$\mathbf{S}^T\mathbf{S} \approx \mathbf{I}$$
.

so that the approximate multiplication $(\mathbf{S}\mathbf{A})^T(\mathbf{S}\mathbf{B}) = \mathbf{A}^T\mathbf{S}^T\mathbf{S}\mathbf{B}$ is close to $\mathbf{A}^T\mathbf{B}$.

In this problem, we will discuss two popular sketching schemes and understand how they help in approximate computation. Let $\hat{\mathbf{I}} = \mathbf{S}^T \mathbf{S}$, and let the dimension of the sketch matrix \mathbf{S} be $d \times n$ (where typically $d \ll n$).

a. Gaussian sketch. Let the sketch matrix be

$$\mathbf{S} = \frac{1}{\sqrt{d}} \begin{bmatrix} S_{1,1} & \cdots & S_{1,n} \\ \vdots & \ddots & \vdots \\ S_{d,1} & \cdots & S_{d,n} \end{bmatrix},$$

where the $S_{i,j}$ are chosen i.i.d. from $\mathcal{N}(0,1)$ for all $i \in [1,d]$ and $j \in [1,n]$. Show that the elementwise mean and variance of the matrix $\hat{\mathbf{I}}$, as functions of d, are

$$\mathbb{E}(\hat{I}_{i,j}) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{var}(\hat{I}_{i,j}) = \begin{cases} \frac{2}{d} & \text{if } i = j\\ \frac{1}{d} & \text{otherwise.} \end{cases}$$

You can use without proof the fact that $\mathbb{E}(Z^4) = 3$ for $Z \sim \mathcal{N}(0, 1)$.

b. Count sketch. For each column $j \in [1, n]$ of **S**, choose a row i uniformly randomly from [1, d]. Set

$$S_{i,j} = \begin{cases} 1 & \text{with probability } \frac{1}{2} \\ -1 & \text{with probability } \frac{1}{2}, \end{cases}$$

and assign $S_{k,j}=0$ for all $k\neq i$. An example of a 3×8 count sketch matrix is

1

$$\begin{bmatrix} 0 & -1 & 1 & 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \end{bmatrix}.$$

Show that the elementwise mean and variance of the matrix $\hat{\mathbf{I}}$ are

$$\mathbb{E}(\hat{I}_{i,j}) = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{otherwise} \end{cases}$$
$$\operatorname{var}(\hat{I}_{i,j}) = \begin{cases} 0 & \text{if } i = j \\ \frac{1}{d} & \text{otherwise.} \end{cases}$$

Note that for sufficiently large d, the matrix $\hat{\mathbf{I}}$ is close to the identity matrix in both cases. We use this fact in the lab to do an approximate matrix multiplication.

2. Properties of the CDF

The **cumulative distribution function**, or cdf, of a random variable X is the function $F(x) = \mathbb{P}(X \leq x)$.

- a. Using the properties of a probability measure, show that F is nondecreasing: if $x \leq y$, then $F(x) \leq F(y)$.
- b. Show that F is right-continuous: if x_1, x_2, \ldots is a decreasing sequence converging to y, then $F(x_1), F(x_2), \ldots$ converges to F(y).
- c. Show that F is normalized: $\lim_{x\to-\infty} F(x) = 0$, and $\lim_{x\to\infty} F(x) = 1$.

Hint: For parts b and c, it may help to revisit question 1b of discussion 01.

3. Change of Variables

Let X be a continuous random variable with cdf F_X and pdf $f_X > 0$ everywhere, and let Y = g(X), where g is a differentiable function.

- a. Suppose that g is also invertible. Find the pdf of Y, f_Y , in terms of g and f_X .
- b. Let $U \sim \text{Uniform}([0,1])$. Using the conclusion from part a, show that $F_X^{-1}(U)$ has the same distribution as X. (This allows us to generate a given random variable given only a uniform random number generator.)
- c. Now suppose that $g(x) = x^2$. Find the pdf of Y in terms of the pdf of X. Also find the pdf of Y when X is a standard normal random variable in particular. (Note that this g is not invertible, unlike in part a.)

4. Gaussian Confidence Interval

A C% confidence interval for a parameter θ is the interval containing θ of smallest length, such that θ falls in the interval with probability at least C%.

Suppose that a given population has Gaussian distribution with unknown mean μ and variance σ^2 . We draw n independent samples; let the average of the samples be $\bar{\mu}$.

- a. Find a 95% confidence interval for μ .
- b. Suppose $\sigma^2=1$. How many independent samples at minimum do we need to construct a 99% confidence interval for μ with length at most 1?

5. Binomial with Random Parameter

Let $U \sim \text{Uniform}([0,1])$, and suppose that X has distribution Binomial(n,p) given that U = p. Find $\mathbb{E}(U^2X)$ and $\mathbb{E}(U^2X^2)$.

 ${\it Hint}$: Rather than working directly with the definition of expectation, consider the properties of conditional expectation.

6. Graphical Density

The following figure depicts the joint density $f_{X,Y}$ of X and Y.

- a. Are X and Y independent? Remember to justify your answer.
- b. What is the value of A?
- c. Compute $f_X(x)$.
- d. Compute $\mathbb{E}(Y\mid X=x)$. You may leave your answer as a fraction of terms containing x, but you may not have an integral.
- e. What is $\mathbb{E}(X Y \mid X + Y)$?

7. Joint Density for Exponential Distribution

- a. If $X \sim \text{Exponential}(\lambda)$ and $Y \sim \text{Exponential}(\mu)$ are independent, compute $\mathbb{P}(X < Y)$.
- b. If X_1, \ldots, X_n are independent and Exponentially distributed with parameters $\lambda_1, \ldots, \lambda_n$, show that $\min_{1 \le k \le n} X_k \sim \text{Exponential}(\sum_{j=1}^n \lambda_j)$.
- c. Deduce that

$$\mathbb{P}\left(X_i = \min_{1 \le k \le n} X_k\right) = \frac{\lambda_i}{\sum_{j=1}^n \lambda_j}.$$