Fraud Transaction Detection: Project Report

Nature Inspired Computing

Nikita Zagainov, Dmitry Tetkin, Alisher Kamolov, Nikita Tsukanov Innopolis University

April 2025

Project Description

Application of nature-inspired algorithms to the problem of fraud transaction detection in banking systems.

- Fraud detection is a critical task in banking systems
- Most common approach is Machine Learning
- We propose to use nature-inspired algorithms to fine-tune ML models to get better results

Reference Work

Our project was inspired by the following project: https://github.com/pmacinec/transactions-fraud-detection Our project's contribution is the following:

- Comparison with gradient boosting algorithms
- Application of NIC algorithms to the gradient boosting algorithms

Results

Table: ROC AUC of ML models with NIC feature selection

Method	CatBoost	LightGBM	DecisionTree
Original Score	0.893	0.909	0.835
Artificial Bee Colony	0.887	0.906	0.836
Cuckoo Search	0.891	0.905	0.842
Bat Algorithm	0.889	0.909	0.842
Firefly Algorithm	0.892	0.907	0.844
Flower Pollination	0.891	0.906	0.846
Grey Wolf Optimizer	0.892	0.913	0.844
Particle Swarm	0.892	0.912	0.845
Algorithms better than baseline	0	2	7

Conclusion

- NIC algorithms for feature selection do not improve performance of gradient boosting models
- We hypothesize that the reason for such difference in results between single tree and ensemble is that single tree is more prone to overfitting

Thank you for your attention!