First text classification model

IMDB movie reviews dataset

- http://ai.stanford.edu/~amaas/data/sentiment/
- Contains 25000 positive and 25000 negative reviews

A classic of French pre-War cinema, Carnival in Flanders across. Set in early 17th-century Flanders, which had prev

- Contains at most 30 reviews per movie
- At least 7 stars out of $10 \rightarrow \text{positive (label} = 1)$
- At most 4 stars out of $10 \rightarrow \text{negative (label} = 0)$
- 50/50 train/test split
- Evaluation: accuracy

Features: bag of 1-grams with TF-IDF values

- 25000 rows, 74849 columns for training
- Extremely sparse feature matrix 99.8% are zeros

acting	actingjob	actings	actingwise
0.000000	0.0	0.0	0.0
0.000000	0.0	0.0	0.0
0.053504	0.0	0.0	0.0
0.033293	0.0	0.0	0.0
0.000000	0.0	0.0	0.0

Model: Logistic regression

- $p(y=1|x) = \sigma(w^T x)$
- Linear classification model
- Can handle sparse data
- Fast to train
- Weights can be interpreted

Logistic regression over bag of 1-grams with TF-IDF

- Accuracy on test set: 88.5%
- Let's look at learnt weights:

weight	ngram		weight	ngram
-12.748257	worst	VS	9.042803	great
-9.150810	awful		8.487379	excellent
-8.974974	bad		6.907277	perfect
-8.944854	waste		6.440972	best
-8.340877	boring		6.237365	wonderful
egative	Top no		sitive	Top po

Better sentiment classification

Let's try to add 2-grams

- Throw away n-grams seen less than 5 times
- 25000 rows, 156821 columns for training

and am	and amanda	and amateur	and amateurish	and amazing
0.068255	0.0	0.0	0.0	0.0
0.000000	0.0	0.0	0.0	0.0
0.000000	0.0	0.0	0.0	0.0
0.000000	0.0	0.0	0.0	0.0
0.000000	0.0	0.0	0.0	0.0

Better sentiment classification

Logistic regression over bag of 1,2-grams with TF-IDF

- Accuracy on test set: 89.9% (+1.5%)
- Let's look at learnt weights:

well worth	13.788515		bad	-24.467648
best	13.633200		poor	-24.319746
rare	13.570259	VS	the worst	-23.773352
better than	13.500025		waste	-22.880340

Near top positive

Near top negative

How to make it even better

Play around with tokenization

• Special tokens like emoji, ":)" and "!!!" can help

Try to normalize tokens

Adding stemming or lemmatization

Try different models

• SVM, Naïve Bayes, ...

Throw BOW away and use Deep Learning

- https://arxiv.org/pdf/1512.08183.pdf
- Accuracy on test set in 2016: 92.14% (+2.5%)

Summary

- Bag of words and simple linear models actually work for texts
- The accuracy gain from deep learning models is not mind blowing for sentiment classification
- In the next video we'll look at spam filtering task