Esercizio :

$$T(n) = \begin{cases} 1, \text{ se } n \leq 2 \\ 3T(\sqrt{n}) + \log(n), \text{ altrimenti} \end{cases}$$

Livello	Nodi per livello	bimensione in in put	Contributo pur nodo	Contributo totale per liveleo
0	1	n	log (n)	log (n)
1	3	N TA	1/2 log(n)	3/2 log(n)
2	9	n 4	1/4 log(n)	9 lag(n)
3	2#	n ¹ 8	1/8 log(n)	27 log(n)
i	3 ⁱ	n ²ⁱ	d log(n)	3i log(n)

Calciliano l'altezza:

Calceliamo la sommatoria:

$$\frac{3^{i}}{2^{i}}\log(n) = \log_{2}(n) + \left(\frac{3}{2}\right)^{i} = \log_{2}(n) \cdot \frac{1 - \left(\frac{3}{2}\right)^{n+1}}{1 - \frac{3}{2}} = 2\log_{2}(n) \cdot \left(1 - \frac{3}{2}\left(\frac{3}{2}\right)^{\log_{2}(\log_{2}(n))}\right) = -2\log_{2}(n) \cdot \left(1 - \frac{3}{2}\left(\frac{3}{2}\right)^{\log_{2}(\log_{2}(n))}\right) = -2\log_{2}(n) \cdot \left(1 - \frac{3}{2}\left(\frac{2\log_{2}(\log_{2}(n))}{2\log_{2}(\log_{2}(n))}\right)\right) = -2\log_{2}(n) \cdot \left(1 - \frac{3}{2}\left(\log_{2}(\log_{2}(n))\right)\right) = -2\log_{2}(n) \cdot \left(\log_{2}(\log_{2}(n))\right) = -2\log_{2}(n) \cdot \left(\log_{2}(\log_{2}(n))\right) = -2\log_{2}(n) \cdot \left(\log_{2}(\log_{2}(n)\right) = -2\log_{2}(n) \cdot \left(\log_{2}(\log_{2}(n))\right) = -2\log_{2}(n) \cdot \left(\log_{2}(\log_{2}(n)\right) = -2\log_{2}(n) \cdot \left(\log_{2}(\log_{2}(n)\right) = -2\log_{2}(\log_{2}(n)) = -2\log_{2}(n) \cdot \left(\log_{2}(\log_{2}(n)\right) = -2\log_{2}(n) \cdot \left(\log_{2}(n)\right) = -2\log_{2}(n) \cdot \left(\log_{2}(n)\right) = -2\log_{2}(n) \cdot \left(\log_{2}(n)\right) = -2\log_{2}$$

$$= -2 \log_{2}(n) \left(1 - \frac{3}{2} \left(\frac{2^{\log_{2}(\log_{2})} \log_{2}(3)}{\log_{2}(n)} \right) \right) = -2 \log_{2}(n) \left(1 - \frac{3}{2} \left(\frac{\log_{2}(n) \log_{2}(3)}{\log_{2}(n)} \right) \right) =$$

$$=-2\log_{2}\left(n\right)\left(1-\frac{3\log_{2}\left(n\right)^{\log_{2}\left(3\right)}}{2\log_{2}\left(n\right)}\right)=-2\log_{2}\left(n\right)+3\log_{2}\left(n\right)^{\log_{2}\left(3\right)}=>\left(1)\left(\log_{2}\left(n\right)^{\log_{2}\left(3\right)}\right)$$

