BTS-III(S)-(11.20/04.21)-1693	Reg. No.						

B. Tech. Degree III Semester Supplementary Examination November 2020/April 2021

CS/IT 15-1303 DISCRETE COMPUTATIONAL STRUCTURES

(2015 Scheme)

Time: 3 Hours Maximum Marks: 60

PART A

(Answer ALL questions)

 $(10 \times 2 = 20)$

- I. (a) Define tautology and contradiction. Check whether pv~p and p^~p satisfy any of the definitions in this question.
 - (b) Prove that $p \leftrightarrow q \equiv (p^q)V(p^q)$
 - (c) How many of the numbers will have the same remainder when divided by 5 if any six positive integers are chosen?
 - (d) Solve $a_r 6a_{r-1} + 9a_{r-2} = 0$ with $a_0 = 1$ and $a_1 = 6$.
 - (e) Give an example of a graph that has an Euler circuit which is not Hamiltonian.
 - (f) Draw complete binary tree with 15 nodes. What is the depth of complete binary tree if 'n' nodes are there in the tree?
 - (g) Define abelian group. Show that an algebraic system (G, *) where G is the set of all non-zero reals and * is a binary operation defined by a*b=(ab)/2 is abelian.
 - (h) Define Bounded lattice and complemented lattices.
 - (i) Determine whether the relation $S = \{(a, b): a \text{ divides } b\}$ on set R of real numbers is a partial order relation.
 - (j) Consider the functions f, g, h on integers defined by f(n) = n 1, $g(n) = n^2$, h(n) = n + 1. Find hofog and fogoh.

PART B

 $(4 \times 10 = 40)$

- II. Prove by induction
 - (a) Prove using mathematical induction that for all

(5)

- $n \ge 1$, $1 + 4 + 7 + \cdots + (3n 2) = n(3n 1)/2$
- (b) Sum of cubes of three consecutive integers is divisible by 9.

(5)

(5)

(5)

- OI
- III. (a) Among the first 500 positive integers how many are not divisible by 2 nor 3 nor 5 nor by 7. Also determine the number of integers that are not exactly divisible by any of them.
 - (b) If R and S are equivalence relation prove R∩S and RUS are equivalence relation.

(P.T.O)

BTS-III(S)-(11.20/04.21)-1693

- IV. (a) Solve $F_r F_{r-1} F_{r-2} = 0$ with initial condition $a_0 = 1$ and $a_1 = 1$. (5)
 - (b) If 9 colors are used to paint 100 houses how many houses will have the same color.

OR

- V. (a) What are the characteristics of algorithm? (5)
 - (b) Define Best case time, worst case time, average case time, θ notation, O notation. (5)
- VI. (a) Given the inorder and preorder of binary tree
 Inorder: 3 * a + b * b * c + d
 Preorder: * * * 3 a b + * b c d. Draw the tree.

 (5)
 - (b) Find the minimum spanning tree by Kruskal's algorithm. (5)

VII. (a) Give example for a graph which is both Euler circuit and Hamiltonian (5) circuit.

(b) Find the shortest path from vertex C to other vertices using Dijikstra's algorithm. (5)

VIII. (a) Define Poset and Lattice. (5)

(b) Determine all sub lattices of D_{30} that contain at least four elements. (5)

OR

IX. (a) Define field and Ring. (5)

(b) Let S is {0, 1, 2, 3, 4} and addition modulo 5 and multiplication modulo 5. (5) Check whether (S, +, *) form a field.