(11) EP 1 342 784 A1

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 10.09.2003 Bulletin 2003/37
- (21) Application number: 02290556.6
- (22) Date of filing: 06.03.2002

- (51) Int CI.7: **C12N 15/31**, C12N 15/63, C07K 14/245, C07K 16/12, A61K 39/108, G01N 33/53
- (84) Designated Contracting States:

 AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU

 MC NL PT SE TR

 Designated Extension States:

 AL LT LV MK RO SI
- (71) Applicant: Mutabilis S.A. 75012 Paris (FR)
- (72) Inventor: Escaich, Sonia 75012 Paris (FR)

 (74) Representative: Peaucelle, Chantal et al Cabinet Armengaud Aine
 3, avenue Bugeaud
 75116 Paris (FR)

Remarks:

A request for correction of the claims (typographical errors claim 15) has been filed pursuant to Rule 88 EPC. A decision on the request will be taken during the proceedings before the Examining Division (Guidelines for Examination in the EPO, A-V, 3.).

- (54) ExPEC-specific proteins, genes encoding them and uses thereof
- (57) The invention relates to isolated antigenic polypeptides obtainable by a process comprising the steps of:
 - 1-selecting on the basis of sequence analysis those of the polypeptides which are either located in the outermembrane or secreted by the bacteria,
 - 2- identifying the genes coding for said polypeptides which are conserved in B2/D clinical isolates,
 - 3- purifying the polypeptides identified in step 1, which are found in step 2 to be conserved in B2/D

isolates

4- testing the polypeptides for immunogenicity using animals models.

Application for making vaccines compositions.

Description

15

20

25

30

35

45

[0001] The invention relates to new products specific to pathogenic strains, particularly to extra-intestinal *E. coli*

5 It more particularly relates as products to antigenic polypeptides and antibodies directed against said polypeptides and to their use as vaccines and in immunotherapy, respectively.

[0002] Although *Escherichia coli* is probably the best known bacterial species and is one of the most common isolates in clinical microbiology laboratories, misconceptions abound regarding the various types of *E. coli* and the infections they cause.

10 [0003] E. coli strains of biological significance to humans can be broadly considered as constituting 3 major groups:

- 1. Commensal strains, which are part of the normal flora.
- 2. Intestinal pathogenic strains, which are not part of the normal flora. This group contains various pathotypes (EPEC, EHEC, EIEC) not including *Shigella*.
- 3. Extra-intestinal strains (ExPEC) which are responsible for infections outside the gastro-intestinal (GI) tract, but can also be part of the normal flora. All hosts are susceptible to these infections, immunocompromised and normal.

[0004] ExPEC strains are responsible for the majority of the urinary tract infections (UTI) particularly cystitis, pyelone-phritis, and cathether associated infections.

[0005] They are also responsible for abdominal infections, nosocomial pneumoniae, neonatal meningitidis, soft tissue infections, and bone infections. Each one of these localizations can lead to bacteremia with a risk of sepsis in case of organ failure. ExPEC strains are indeed the most common Gram negative bacilli isolated from blood cultures.

750 000 cases of bacterial sepsis occur each year in the US, and are responsible for 225 000 deaths. In a recent study on 1690 cases of sepsis, it was shown that the main bacteria species identified is ExPEC (16% of the cases) and then *S.aureus* (14% of the cases).

[0006] These numbers demonstrate the importance of ExPEC strains in both hospital and community acquired infections.

[0007] ExPEC strains correspond to a homogenous subset of *E. coli* strains. Analysis of phylogenetic relationships among *E. coli* strains by MLEE has revealed that *E. coli* belong to 4 main phylogenetic groups designated A, B1, B2 and D.

The pathogenesis of ExPEC strains is that of extra-cellular microorganisms, i.e., they are well adapted to growth in the extra-cellular fluids and efficiently resist phagocytosis by polymorphonuclear. Initial studies have shown that virulence factors known to be important for the extra-cellular growth are mainly found in B2/D *E. coli.*, thus suggesting that B2/D subgroups contain most of the ExPEC strains. This was reinforced by experiments performed on animals showing that B2/D strains are more virulent than A and B1 strains. Subsequent epidemiological studies have indeed confirmed these hypotheses. B2/D isolates are those predominantly responsible for neonatal meningitidis (87%) and community or nosocomial acquired urosepsis, (93 % and 85%, respectively). Surprisingly, similar results have been reported for cystitis (70% are due to the sole B2 *E. coli*), thus demonstrating that the pathogenesis of ExPEC strains is that of extracellular organisms.

These recent findings demonstrate that the B2/D subgroup of strains is the *E. coli* core genome the best adapted to growth in extra-cellular fluids.

[0008] In addition to this core genome, ExPEC strains have various pathogenicity islands which encode virulence factors associated with the different pathogenesis of extra-intestinal *E. coli* infections (UTI, urosepsis, neonatal meningitidis...). Among the main virulence factors are the capsule, which is well-known to be important for extra-cellular growth, and the iron chelation systems (aerobactin and enterochelin, for example). In addition, depending on the pathogenesis, these strains can produce toxins (CNF, hemolysin...), adhesins (pap, sfa...) and other iron chelation system.

[0009] The notion that B2/D *E. coli* correspond to a distinct subset of pathogenic *E. coli* strains is reinforced by the fact that B2/D *E. coli* are not broadly isolated from the stools of humans. They were recovered from only 11% of individuals, whereas A and B1 subgroups are present in the stools of 74% of the individuals of a human population.

[0010] As mentioned above the pathogenesis of ExPEC strains relies on their ability to multiply in the extra-cellular fluids and to resist bactericidal activity of the complement and phagocytosis by polymorphonuclear. Therefore, as for other extra-cellular pathogens (*Haemophilus influenzae*, *Streptococcus pneumonieae* and *meningitidis*) a protective antigen against ExPEC has to induce antibodies that promote opsonisation and/or the bactericidal activity of serum.

[0011] Considering the above statements, an efficient antigen has to be largely represented among the population of B2/D *E. coil*. Similarly to other extra-cellular pathogens, the capsular polysaccharide would be an ideal antigen, however most pathogenic B2 strains express the K1 polysaccharide. The latter has a structure identical to that of group B meningococcus, which is non-immunogenic and shares common antigens with the brain. Another possible target may be the lipopolysaccharide (LPS). However there are a large number of different LPS serotypes that are shared

by various subgroups.

10

15

25

30

50

[0012] The inventors have found that components coded by the B2/D genome, but absent from A and B1 *E. coli* strains, are useful as antigens and can specifically prevent the pathologies due to ExPEC strains. It has also been found that homologous antigenic components coded by other pathogenic strains are useful to prevent the pathologies caused by such strains. Accordingly, any reference to products specific to ExPEC strains, and their uses will encompasses such strains.

[0013] It is then an object of the invention to provide isolated antigenic polypeptides and polynucleotides belonging to the core B2/D genome and not present in commensal *E. coli*.

[0014] Another object of the invention is to provide antibodies raised against such antigenic polypeptides.

[0015] It is still another object of the invention to provide vectors and host cells containing said polynucleotides.

[0016] Another object of the invention is to provide vaccine compositions specific to extra intestinal infections caused by ExPEC and pathologies caused by other pathogenic strains expressing antigenic polypeptides homologous to the ExPEC antigenic polypeptides.

[0017] The invention also relates to means for detecting and treating a development of *E. coli* in a human or animal compartment which is extra-intestinal (systemic and non-diarrhoeal infections, such as septicaemia, pyelonephritis, or meningitis in the newborn).

[0018] The isolated antigenic polypeptides of the invention are specific to B2/D *E. coli* strains and not present in A and B1 isolates of *E. coli*. They are encoded by genes belonging to the core B2/D genome and are not present in commenced *E. coli*.

[0019] They have a sequence selected in the group comprising the sequences SEQ ID N°11 to N°66 or homologous sequences with a minimum of 40% of identity with the whole sequences SEQ ID N°11 to N°66, respectively.

[0020] Said polypeptides are obtainable by a process comprising the steps of

- 1 sclecting on the basis of sequence analysis those of the polypeptides which are either located in the outermembrane or secreted by the bacteria,
- 2- identifying the genes coding for said polypeptides which are conserved in B2/D clinical isolates,
- 3- purifying the polypeptides identified in step 1, which are found in step 2 to be conserved in the B2/D isolates,
- 4- testing the polypeptides for immunogenicity using animals models.

[0021] By the term "conserved", it is meant, according to the invention, that the genes coding for the polypeptides are present with a frequency of at least 50% in B2/D isolates, preferably greater than 60%, more preferably greater than 80% and even more preferably greater than 85%, and in less than 40% in A/B isolates, preferably in less than 20%, more preferably in less than 15%.

[0022] The animal models used in step 4 are infected adult animals, eventually immunodepressed and as models for neonatal infections infant animals.

[0023] The adult animals particularly mice, are infected intraperitoneally, the endpoint being the animal death and/ or bacteremia measurement.

[0024] The animals can be immunodepressed by injection, for example, of cyclophosphamide which induces a neutropenia. Such a model will validate the use of the antigen for prevention of *E. coli* sepsis in immunodepressed patients. The second animal model is for example 2 to 3 day old infant mice.

[0025] The variants or fractionnal sequences conserving the B2/D properties and which are antigenic as defined in step 4 of the above process are also part of the invention. The term "variant" is herein intended to mean any sequence having insertions and/or deletions and/or substitutions with respect to the parent sequence. The term "fractional" is herein intended to mean any fragment of the parent sequence.

[0026] The invention also relates to isolated polynucleotides coding for a polypeptide such as above defined according to the universal genetic code and taking into account the degeneracy of this code. The term "polynucleotide" encompasses any nucleotidic sequence such as DNA, including cDNA, RNA, including mRNA.

[0027] Said polynucleotides have preferably sequences corresponding to SEQ ID N°67 to SEQ ID N°132.

[0028] The present application is also aimed towards any vector comprising at least one of said polynucleotides and also any cell transformed by genetic engineering, characterized in that it comprises, by transfection, at least one of said polynucleotides and/or at least one vector according to the invention, and/or in that said transformation induces the production by this cell of at least one polypeptide corresponding to a polynucleotide such as above-defined.

[0029] The invention also relates to a process for isolating and identifying antigenic polypeptides, therefore useful as vaccine for *E. coli*.

[0030] Such a process comprises the steps of

1- selecting on the basis of sequence analysis those of the polypeptides which are either located in the outermembrane or secreted by the bacteria,

- 2- identifying the genes coding for said polypeptides which are conserved in B2/D clinical isolates,
- 3- purifying the polypeptides identified in step 1, which are found in step 2 to be conserved in B2/D isolates,
- 4- testing the polypeptides for immunogenicity using animals models.
- 5 [0031] The selected antigenic polypeptides, alone or in combination, are capable of inducing an antibody response for prevention of infections due to ExPEC strains regardless of the pathogenesis and the infection site (UTI, pyelonephritis, sepsis, bacteremia, neonatal meningitidis).
 - [0032] Such polypeptides particularly have sequences SEQ ID N°1 to SEQ ID N°66 or correspond to homologous sequences.
- [0033] The invention thus relates to vaccine compositions specific to E. coli extra-intestinal infections, comprising an effective amount of at least one antigenic polypeptide as above defined with a carrier, particularly at least one polypeptide of SEQ ID N°1 to SEQ ID N°66 and the homologous sequences.
 - [0034] Such vaccine compositions are particularly useful for preventing urinary system infections, pyelonephritis, sepsis, bacteremia, neonatal meningitidis.
- 15 [0035] The vaccine compositions of the invention are indicated for
 - immunodepressed patients, ideally before the start of the immunosuppressive therapy: patients suffering from cancer, leukaemia, transplant patients, patients receiving long-term steroids therapy. The E. coli vaccine could then be administered in association with a Staphylococcus aureus vaccine.
 - patients before surgery where there is a high risk of E. coli infections (abdominal surgery)
 - patients with recurrent UTI, especially after one episode of pyelonephritis. The prevention of neonatal infections will require vaccination of the mother, implying vaccination long before pregnancy to avoid potential problem. Ideally such a vaccine should be associated with a Group B Streptococcus polysaccharide vaccine in order to also prevent late onset neonatal infections. It should be pointed out that the induction of a level of antibodies against B2/D E. coli in pregnant women would also prevent UTI, which are always a risk in the context of a pregnancy.
 - [0036] The formulation and the dose of said vaccine compositions can be developed and adjusted by those skilled in the art as a function of the indication targeted, of the method of administration desired, and of the patient under consideration (age, weight).
 - [0037] These compositions comprises one or more physiologically inert vehicles, and in particular any excipient suitable for the formulation and/or for the method of administration desired.
 - [0038] The antibodies raised against the above-identified polypeptides are also part of the invention.
 - [0039] They are capable of binding to said polypeptides in physiological-type conditions (*in vivo* or mimicking *in vivo*) when administered to a human or animal organism, and ELISA-type conditions when said binding product is intended to be used in assays and methods *in vitro*. Such antibodies advantageously inhibit the extra-intestinal growth of ExPEX strains in human or animal.
 - [0040] The methods for manufacturing such antibodies using the polypeptides according to the invention are available to those skilled in the art. They are conventional methods which comprise, in particular, the immunization of animals such as rabbits and the harvesting of the serum produced, followed optionally by the purification of the serum obtained. A technique suitable for the production of monoclonal antibodies is that of Köhler and Milstein (Nature 1975, 256:495-497).
 - [0041] Said antibodies do not recognize the cells of the human or animal to which it is intended.
 - [0042] The antibodies or fragments thereof are advantageoulsy humanized when intended for a human administration.
 - **[0043]** The present invention is also aimed towards the use, in an effective amount, of at least one of said polypeptides, antibodies or polynucleotides for the diagnosis of the presence or absence of undesirable extra-intestinal *E. coli*, and/or for the diagnosis of an extra-intestinal *E. coli* infection.
 - **[0044]** The detection of the presence or absence of such compounds can in particular be carried out by nucleotide hybridization, by PCR amplification or by detection of their polypeptide products. Detection of the presence of such compounds makes it possible to conclude that a B2/D *E. coli* strain is present.
 - **[0045]** The present application is also aimed towards any use of a polypeptide such as above defined for the manufacture of a composition, in particular of a pharmaceutical composition, intended to alleviate and/or to prevent and/or to treat an undesirable growth of *E. coli*, such as an *E. coli* infection, (for example systemic and non-diarrhoeal infections), the presence of extra-intestinal *E. coli* or a sanitary contamination.
 - 55 [0046] The present invention is illustrated by the examples which follow and which are given in a non limiting capacity.

20

25

30

35

40

45

Example 1: Assay for the immunogenicity of a selected polypeptide from sequences 1-66.

. cloning expression and purification of the selected polypeptide.

[0047] The nucleic acid having SEQ ID N°95 encoding the polypeptide corresponding to SEQ ID N°28 was cloned without the signal sequence (coding the 16 first amino acid) in a prokaryotic expression vector according to classical methods for cloning. The recombinant plasmid was used to transform the *E. coli* strain BL21. Transformed cells containing the recombinant plasmid were selected in LB medium with 100µg/ml ampicillin. Individual clones are picked and grown in presence of IPTG 1mM to induce recombinant protein expression. Total protein content of the culture cells was extracted by cell lysis. Recombinant protein was purified by affinity columns.

. Test for immunogenicity in an animal model

10

15

20

25

30

40

50

55

[0048] Polypeptide preparation from SEQ ID N°28 was injected to Swiss mice to induce an antibody response as follows:

At d0 a first immunisation was done by injecting $20\mu g$ of the protein at in $100\mu g$ solution of PBS and complet Freund adjuvant (1:1). Control animals were injected with $100\mu l$ solution of PBS and complet Freund adjuvant (1:1). Boosting injection at d21 with $10\mu g$ of protein in $100\mu l$ PBS and complet Freund adjuvant (1:1).

[0049] - Sera from vaccinated animals was prepared from blood drawn by puncture in the tail of the mice.

[0050] Detection of specific antibodies in animal sera, at d20 before the boosting injection, was performed by western blot according to standart protocol. Purified polypeptide was subjected to electrophoresis (10µg per lane) and transfert to nitrocellulose membrane.

[0051] The membranes were then saturated by incubation 35 min with PBS/Tween20 0.1%/powder milk 5%.

[0052] Diluted sera was incubated with the membrane for 45 min. Membranes were washed three time 5 min with PBS/tween. Bound antibodies were then recognized by an anti-mouse IgG coupled to horseradish peroxidase enzyme. After washing 3 times with PBS/Tween and 3 time with PBS, enzymatic activity was revealed by addition of chromogenic substrate DAB and hydrogen peroxyde.

[0053] Results: Sera from vaccinated animal, diluted at 1/100 revealed a unique band corresponding to the injected polypeptide. No antibody to the polypeptide could be detected in sera from control animals.

[0054] At d42, 300 μ l of cyclophosphamide and 200 μ l at d45 were injected IP in the mice to induce neutropenia in order to increase the susceptibility to the challenge infection.

At d46 vaccinated and control mice were challenged by intraperitoneal injection of the wt B2/D strain C5 of *E. coli* at a dose equal to 10 time the LD50 (letal dose).

[0055] - Immunogenicity of the selected polypeptide and protection conferred by vaccination with the selected polypeptide was assessed by the survival of vaccinated animals three days post challenge.

Example 2: Vaccines compositions intending for prevention of any form of infection by ExPEC.

[0056] The polypeptide coded by a sequence comprising SEQ ID N°28 is conjugated with a toxin and added to a physiologically inert vehicle.

[0057] This conjugated peptide is optionnally added to a childhood vaccine.

[0058] The composition is sterilized and can be injected parenterally, subcutaneously or intramuscularly.

[0059] Said composition can also be sprayed onto mucosa with the aid of a spray.

SEQUENCE LISTING

5	<110> <120> <130> <160> <170> <210> <211> <211> <212> <213> <400>	MUTAB: New pruse as 1494 132 Patent 1 163 PRT Esche:	rodu s va tIn	cts ccin vers	es a	ific nd i	to	path		ic s	strai	ns a	and t	cheir	
15	Met Ly 1	s Leu :		Ala 5	Ile	Ile	Leu	Ala	Thr 10	Gly	Leu	Ile	Asn	Cys 15	Ile
20	Val Ph	e Ser	Ala 20	Gln	Ala	Val	Asp	Thr 25	Thr	Ile	Thr	Val	Thr 30	Gly	Asn
	Val Le	eu Gln 35	Arg	Thr	Cys	Asn	Val 40	Pro	Gly	Asn	Val	Asp 45	Val	Ser	Leu
25	Gly As	sn Leu)	Tyr	Val	Ser	Asp 55	Phe	Pro	Asn	Ala	Gly 60	Ser	Gly	Ser	Pro
30	Trp Va	al Asn	Phe	Asp	Leu 70	Ser	Leu	Thr	Gly	Cys 75	Gln	Asn	Met	Asn	Thr 80
35	Val Ar	g Ala	Thr	Phe 85	Ser	Gly	Thr	Ala	Asp 90	Gly	Gln	Thr	Tyr	Tyr 95	Ala
	Asn Th	nr Gly	Asn 100	Ala	Gly	Gly	Ile	Lys 105	Ile	Glu	Ile	Gln	Asp 110	Arg	Asp
40	Gly Se	er Asn 115	Ala	Ser	Tyr	His	Asn 120	Gly	Met	Phe	Lys	Thr 125	Leu	Asn	Val
45		en Asn 30	Asn	Ala	Thr	Phe 135	Asn	Leu	Lys	Ala	Arg 140	Ala	Val	Ser	Lys
50	Gly G 145	ln Val	Thr	Pro	Gly 150	Asn	Ile	Ser	Ser	Val 155	Ile	Thr	Val	Thr	Туг 160
	Thr T	yr Ala													

5	<210><211><212><212><213><400>	67 PF Es	TS	rich	ia c	oli						•				. <u>.</u>
	Met L	ys N	Met j		Arg 5	Leu '	Tyr	Pro	Leu	Ala 10	Leu	Gly	Gly	Leu	Leu 15	Leu
10	Pro A	ala :		Ala 20	Asn	Ala	Gln	Thr	Ser 25	Gln	Gln	Asp	Glu	Ser 30	Thr	Leu
15	Val V		Thr 35	Ala	Ser	Lys	Gln	Ser 40	Ser	Arg	Ser	Ala	Ser 45	Ala	Asn	Asn
20	Val S	Ser 50	Ser	Thr	Val	Val	Ser 55	Ala	Pro	Glu	Leu	Ser 60	Asp	Ala	Gly	Val
	Thr <i>1</i> 65	Ala	Ser	Asp	Lys	Leu 70	Pro	Arg	Val	Leu	Pro 75	Gly	Leu	Asn	Ile	Glu 80
25	Asn :	Ser	Gly	Asn	Met 85	Leu	Phe	Ser	Thr	Ile 90	Ser	Leu	Arg	Gly	Val 95	Ser
30	Ser /	λla	Gln	Asp 100	Phe	Tyr	Asn	Pro	Ala 105	Val	Thr	Leu	Tyr	Val 110	Asp	Gly
35	Val	Pro	Gln 115	Leu	Ser	Thr	Asn	Thr 120	Ile	Ġln	Ala	Leu	Thr 125	Asp	Val	Gln
		Val 130	Glu	Leu	Leu	Arg	Gly 135		Gln	Gly	Thr	Leu 140	Tyr	Gly	Lys	Ser
	Ala 145		Gly	Gly	Ile	Ile 150	Asn	Ile	Val	Thr	Gln 155	Gln	Pro	Asp	Ser	Thr 160
45	Pro	Arg	Gly	Tyr	Ile 165		Gly	Gly	Val	. Ser 170	Ser	Arg	Asp	Ser	Tyr 175	Arg
50	Ser	Lys	Phe	Asn 180		Ser	Gly	Pro	185		a Asp	Gly	Leu	1 Leu 190	Tyr	Gly
55	Ser	Val	Thr 195		Leu	. Arg	g Glr	val 200		e Asp	Gly	⁄ Asp	205	: Il∈	a Asr	Pro

	Ala	Thr 210	Gly	Ser	Asp	Asp	Leu 215	Gly	Gly	Thr	Arg	Ala 220	Ser	Ile	Gly	Asn
5	Val 225	Lys	Leu	Arg	Leu	Ala 230	Pro	Asp	Asp	Gln	Pro 235	Trp	Glu	Met	Gly	Phe 240
10	Ala	Ala	Ser	Arg	Glu 245	Cys	Thr	Arg	Ala	Thr 250	Gln	Asp	Ala	Tyr	Val 255	Gly
15	Trp	Asn	Asp	Ile 260	Lys	Gly	Arg	Lys	Leu 265	Ser	Ile	Ser	Asp	Gly 270	Ser	Prc
20	Asp	Pro	Tyr 275	Met	Arg	Arg	Cys	Thr 280	Asp	Ser	Gln	Thr	Leu 285	Ser	Gly	гЛа
20	Tyr	Thr 290	Thr	Asp	Asp	Trp	Val 295	Phe	Asn	Leu	Ile	Ser 300	Ala	Trp	Gln	Gln
25	Gln 305	His	Tyr	Ser	Arg	Thr 310	Phe	Pro	Ser	Gly	Ser 315	Leu	Ile	Val	Asn	Met 320
30	Ser	Gln	Arg	Trp	Asn 325		Asp	Val	Gln	Glu 330		Arg	Ala	Ala	Thr 335	Leu
35	Gly	Asp	Ala	Arg 340		Val	Asp	Met	Val 345		Gly	Leu	Tyr	Arg 350	Gln	Asn
33	Thr	Arg	Glu 355		Leu	Asn	Ser	Ala 360		Asp	Met	Pro	Thr 365		Pro	Tyr
40	Leu	Ser 370		Thr	Gly	Tyr	Thr 375		Ala	Glu	. Thr	Leu 380		Ala	Tyr	Ser
45	Asr 385		ı Thr	Trp	His	390		. Ast	Arg	Phe	Asp 395		: Gly	. Gly	Gly	Val 40C
50	Arg	Phe	e Ser	His	409		s Ser	Ser	Thr	Glr 410		His	Gly	Ser	Met 415	Leu
	Gly	y Ası	n Pro	9 Phe 420		/ Asr	Glr	ı Gly	425		Asr	n Asp	Asp	Glr 430	. Val	. Leu
55																

,- [*]	Gly		Le u 435	Ser	Ala	Gly	Tyr	Met 440	Leu	Thr	Asp	Asp	Trp 445	Arg	Val	Tyr
5	Thr	Arg 45.0	Val	Ala	Gln	Gly	Tyr 455	ГÀЗ	Pro	Ser	Gly	Tyr 460	Asn	Ile	Val	Pro
10	Thr 465	Ala	Gly	Leu	Asp	Ala 470	Lys	Pro	Phe	Val	Ala 475	Glu	Lys	Ser	Ile	Asn 480
15	Tyr	Glu	Leu	Gly	Thr 485	Arg	Tyr	Glu	Thr	Ala 490	Asp	Val	Thr	Leu	Gln 495	Ala
	Ala	Thr	Phe	туг 500	Thr	His	Thr	Lys	Asp 505	Met	Gln	Leu	Tyr	Ser 510	Gly	Pro
20	Val	Gly	Met 515	Gln	Thr	Leu	Ser	Asn 520	Ala	Gly	Lys	Ala	Asp 525	Ala	Thr	Gly
25	Val	Glu 530	Leu	Glu	Ala	Lys	Trp 535	Arg	Phe	Ala	Pro	Gly 540	Trp	Ser	Trp	ĄsĄ
	Ile 545		Gly	Asn	Val	Ile 550	Arg	Ser	Glu	Phe	Thr 555	Asn	Asp	Ser	Glu	Leu 560
	Туг	His	Gly	Asn	Arg 565	Val	Pro	Phe	Val	. Pro		Tyr	Gly	Ala	Gly 575	Ser
35	Ser	· Val	Asn	Gly 580		Ile	Asp	Thr	Arg 585		- Gly	Ala	Leu	Met 590	Pro	Arg
40	Lev	ı Ala	Val 595		Leu	Val	Gly	Pro 600		з Туг	r Phe	e Asp	Gly 605	Asp	Asn	Gln
45	Let	610		Gly	Thr	Tyr	Ala 619		. Lei	ı Asp	e Ser	620		Gly	Trp	Gln
45		a Thr	Glu	ı Arg	g Met	. Asr 630		e Se	r Va	l Ty:	r Val) Asr	ı Lev	ı Phe	Asp 640
50	Ar	g Arg	Tyr	r Arg	7 Thr 645		Gl	ү Ту:	r Me	t Ası 65		y Se:	c Sei	Ala	a val	l Ala
55	Gl	n Val	l Ası	n Met	c Gly	/ Aro	Th:	r Va	l Gl	y Il	e As	n Th	r Arg	g Ile	e Asj	p Phe

	660	665	670
5	Phe		
10	<210> 3 <211> 246 <212> PRT <213> Escherichia coli <400> 3		
15	Met Asn Lys Val Phe Val Val S 1	Ser Val Val Ala Ala A 10	la Cys Val Phe 15
	Ala Val Asn Ala Gly Ala Lys	Glu Gly Lys Ser Gly P 25	he Tyr Leu Thr 30
20	Gly Lys Ala Gly Ala Ser Val 35	Met Ser Leu Ser Asp G 40	in Arg Phe Leu 5
25	Ser Gly Asp Glu Glu Glu Thr 50 55	Ser Lys Tyr Lys Gly C	ly Asp Asp His
30	Asp Thr Val Phe Ser Gly Gly 65 70	Ile Ala Val Gly Tyr 7	Asp Phe Tyr Pro 80
	Gln Phe Ser Ile Pro Val Arg 85	Thr Glu Leu Glu Phe '	Tyr Ala Arg Gly 95
35	Lys Ala Asp Ser Lys Tyr Asn 100	n Val Asp Lys Asp Ser 105	Trp Ser Gly Gly 110
40	Tyr Trp Arg Asp Asp Leu Lys 115	s Asn Glu Val Ser Val 120	Asn Thr Leu Met 125
45	Leu Asn Ala Tyr Tyr Asp Pho 130	e Arg Asn Asp Ser Ala 5 140	Phe Thr Pro Trp
	Val Ser Ala Gly Ile Gly Ty 145 150	r Ala Arg Ile His Gln 155	Lys Thr Thr Gly 160
50	Ile Ser Thr Trp Asp Tyr Gl 165	u Tyr Gly Ser Ser Gly 170	Arg Glu Ser Leu 175

	Ser	Arg	Ser	Gly 180	Ser	Ala	Asp	Asn	Phe 185	Ala	Trp	Ser	Leu	Gly 190	Ala	Gly
5	Val	Arg	Tyr 195	Asp	Val	Thr	Pro	Asp 200	Ile	Ala	Leu	Asp	Leu 205	Ser	Tyr	Arg ·
10	Tyr	Leu 210	Asp	Ala	Gly	Asp	Ser 215	Ser	Val	Ser	Tyr	Lys 220	Asp	Glu	Trp	Gly
15	Asp 225		туг	Lys	Ser	Glu 230	Val	Asp	Val	Lys	Ser 235	His	Asp	Ile	Met	Leu 240
	Gly	Met	Thr	туг	Asn 245	Phe										
20	<21 <21 <21 <21	.1 > .2 > .3 >	4 166 PRT Esch	eric	hia	coli										
25	<40 Met 1		4 Leu	ГÀа	Ala 5	Ile	Ile	Leu	Ala	Thr 10	Gly	Leu	Ile	Asn	Cys 15	Ile
30	Alá	a Phe	e Ser	Ala 20	Gln	Ala	Val	Asp	Thr 25	Thr	Ile	Thr	Val	Thr 30	Gly	Arg
35	Va]	l Le	ı Pro	Arg	Thr	Суз	: Thr	11e 40	gly	/ Asn	ı Gly	Gly	Asn 45	. Pro	Asn	Ala
	Th:	r Va	l Val	. Leu	ı Ası	Ası	n Ala 55	а Туз	Thi	r Ser	. Asp	60	ılle	: Ala	. Ala	Asn
40	Se 65		r Sei	Gl:	ı Tr	р L y: 70	s Ası	n Phe	e Se	r Let	ı Thr 75	Leu	ı Thr	Asr	. Cys	Gln 80
45	As	n Va	l Ası	n As:	n Va 85	l Th	r Se	r Ph	e Gl	y Gly 90	y Thi	c Ala	a Glu	ı Asr	Thr 95	Asn
50	ту	т Ту	r Ar	g Ası 10		r Gl	y As	p Al	a Th 10	r As	n Ile	e Met	t Va	l Gl:	ı Lei	ı Gln
	Gl	u Gl	n Gl 11		n Gl	y As	n Th	r Pr 12	o Le O	u Ly	s Va	l Gl	y Se:	r Th	r Ly	s Val
55																

	Val Thr Va	l Ser Asn	Gly Gln 135		Phe Asn	Leu Lys 140	Val Arg	Ala
5	Val Ser Ly 145	s Gly Asn	Ala Gly 150	/ Ala Gly	Ser Ile 155	Asn Ser	Gln Ile	Thr 160
10	Val Thr Ty	r Thr Tyr 165						
15	<210 > 5 <211 > 129 <212 > PRT <213 > Esc <400 > 5		coli					
20	Met Asn Ly 1	rs Ile Tyr 5	Ser Le	u Lys Tyr	Ser Ala 10	Ala Thr	Gly Gly 15	Leu
25	Ile Ala Va	al Ser Glu 20	Leu Al	a Lys Arg 25	Val Ser	Gly Lys	Thr Asn 30	Arg
	Lys Leu Va		Met Le	u Ser Leu 40	. Ala Val	Ala Gly 45	Thr Val	Asn
30	Ala Ala A: 50	sn Ile Asp	o Ile Se 55		Trp Ala	Arg Asp 60	Tyr Leu	Asp
<i>35</i>	Leu Ala G 65	ln Asn Ly	Gly Il 70	e Phe Glr	n Pro Gly 75	Ala Thr	Asp Val	Thr 80
40	Ile Thr L	eu Lys As 85	n Gly As	sp Lys Phe	e Ser Phe 90	His Asn	Leu Ser 95	· Ile
40	Pro Asp P	he Ser Gl 100	y Ala Al	a Ala Sei 109		Ala Thr	Ala Ile 110	e Gly
45	•	yr Ser Va 15	l Thr Va	al Ala His 120	s Asn Lys	Lys Asn 125		ı Ala
50	Ala Glu T 130	hr Gln Va		la Gln Se 35	r Ser Tyr	Arg Val	. Val Ası	Arg
	Arg Asn S	Ger Asn As	p Phe G	lu Ile Gl	n Arg Let 155		s Phe Val	l Val 160
55								

5	Glu T	Thr	Val	Gly	Ala 165	Thr	Pro	Ala	Glu	Thr 170	Asn	Pro	Thr	Thr	Tyr 175	Ser
	Asp i	Ala	Leu	Glu 180	Arg	Tyr	Gly	Ile	Val 185	Thr	Ser	Asp	Gly	Ser 190	Lýs	Lys
10	Ile	Ile	Gly 195	Phe	Arg	Ala	Gly	Ser 200	Gly	Gly	Thr	Ser	Phe 205	Ile	Asn	Gly
15	Glu	Ser 210	Lys	Ile	Ser	Thr	Asn 215	Ser	Ala	Tyr	Ser	His 220	Asp	Leu	Leu	Ser
20	Ala 225	Ser	Leu	Phe	Glu	Val 230	Thr	Gln	Trp	Asp	Ser 235	Tyr	Gly	Met	Met	Ile 240
	Tyr	Lys	Asn	Asp	Lys 245	Thr	Phe	Arg	Asn	Leu 250	Glu	Ile	Phe	Gly	Asp 255	Ser
25	Gly	Ser	Gly	Ala 260	Туг	Leu	Tyr	Asp	Asn 265		Leu	Glu	Lys	Trp 270	Val	Leu
30	Val	Gly	Thr 275	Thr	His	Gly	Ile	Ala 280		Val	Asn	Gly	Asp 285	Gln	Leu	Thr
35	Trp	Ile 290		Lys	Tyr	Asn	Asp 295		Leu	val	Ser	Glu 300	Leu	Lys	Asp	Thr
	Tyr 305	Ser	His	Lys	Ile	Asn 310		ı Asn	Gly	/ Asn	Asn 315		Thr	Ile	Lys	Asn 320
40	Thr	Asp) Ile	Thr	Leu 325		s Glr	ı Asr	a Asr	n Ala 330		Thr	Thr	Gly	Thr 335	Gln
45	Glu	Lys	ile	Thr 340		Asp	Lys	a Asp	345	e Val	L Phe	e Thr	Asr	1 Gly 350	Gly	' Asp
50	Val	Lev	1 Phe 355		. Asp) Ası	n Lei	. Ası		e Gly	y Sei	c Gly	Gl _y 365		e Ile	e Phe
	Asp	Gl: 370		/ His	s Glu	ту:	r Ası 37		e As	n Gl	y Gl	n Gly 380	⁄ Ph∈	e Thi	r Phe	Lys

	Gly 3	Ala	Gly	Ile .	Asp	Ile 390	Gly	ГÀз	Glu	Ser	Ile 395	Val	Asn	Trp	Asn	Ala 400
5	Leu	Туг	Ser		Asp 405	Asp	Val	Leu	His	Lys 410	Ile	Gly	Pro	Gly	Thr 415	Leu
10	Asn	Val	Gln	Lys 420	Lys	Gln	Gly	Ala	Asn 425	Ile	Lys	Ile	Gly	Glu 430	Gly	Asn
15	Val	Ile	Leu 435	Asn	Glu	Glu	Gly	Thr 440	Phe	Asn	Asn	Ile	Tyr 445	Leu	Ala	Ser
	Gly	Asn 450	Gly	Lys	Val	Ile	Leu 455	Asn	Lуs	Asp	Asn	Ser 460	Leu	Gly	Asn	Asp
20	Gln 465	Tyr	Ala	Gly	Ile	Phe 470	Phe	Thr	Lys	Arg	Gly 475	Gly	Thr	Leu	Asp	Leu 480
25	Asn	Gly	His	Asn	Gln 485	Thr	Phe	Thr	Arg	Ile 490	Ala	Ala	Thr	Asp	Asp 495	Gly
30	Thr	Thr	Ile	Thr 500	Asn	Ser	Asp	Thr	Thr 505		Glu	Ala	Val	Leu 510	Ala	Ile
	Asn	Asn	Glu 515		Ser	Tyr	Ile	Tyr 520		Gly	Asn	Ile	8 Asn 525	Gly	Asn	Ile
35	Lys	Leu 530		His	Asn	Ile	Asn 535		Glr	a Asp	Lys	Lys 540	Thr	Asn	. Ala	Lys
40	Leu 545		. Leu	a Asp	Gly	Ser 550		Asr	. Thi	. Lys	S Asn 555	. Asg	o Val	. Glu	ı Val	Ser 560
45	Asn	Ala	. Ser	. Lev	Thr 565		: Glr	ı Gly	/ His	570	a Thr	Glu	ı His	s Ala	575	e Phe
	Arg	g Sei	: Sei	580		n His	э Су:	s Sei	r Le: 58!		l Ph∈	e Le	u Cys	5 Gly	y Thi	Asp
50	Tr	va:	1 Th: 59		L Le	ı Ly:	s Gl	u Th:		u Se:	r Sei	с Ту	r Ası 60!	n Ly: 5	s Ly	s Phe
35 40 45	Lys Leu 545 Asn Arg	Leu 530 . Ile . Ala	Thr. Leu Ser	Asp His Asp Leu 580	Asn Gly Thr 565	Ile Ser 550 Met	Asn 535 Val	Ser Ser Asr Gly	His Glr Thr His 58	Gly Asp Lys 570 Val	Asn 555 Thr	Lys 540 Asg	525 5 Thr c Val 1 His	Gly Asn Glu Ala Gly 596	Asn Ala Val	Lys Ser 560 Phe

100																
	Asn	Ser 610	Asp	Tyr	Lys	Ser	Asn 615	Asn	Gln	Gln	Thr	Ser 620	Phe	Asp	Gln	Pro
5	Asp 625	Trp	Гуs	Thr	Gly	Val 630	Phe	Lys	Phe	Asp	Thr 635	Leu	His	Leu	Asn	Asn 640
10	Ala	Asp	Phe	Ser	Ile 645	Ser	Arg	Asn	Ala	Asn 650	Val	Glu	Gly	Asn	Ile 655	Ser
	Ala	Asn	Lys	Ser 660	Ala	Ile	Thr	Ile	Gly 665	Asp	Lys	Asn	Val	Tyr 670	Ile	Asp
15	Asn	Leu	Ala 675	Gly	Lys	Asn	Ile	Thr 680	Asn	Asn	Gly	Phe	Asp 685	Phe	Гуs	Gln
20	Thr	Ile 690		Thr	Asn	Leu	Ser 695	Ile	Gly	Glu	Thr	Lys 700	Phe	Thr	Gly	Gly
25	Ile 705		Ala	His	Asn	Ser 710		Ile	Ala	Ile	Gly 715	Asp	Gln	Ala	Val	Val 720
	Thr	Leu	ı Asn	Gly	Ala 725		Phe	Leų	Asp	Asn 730	Thr	Pro	Ile	Ser	Ile 735	Asp
30	Lys	Gly	⁄ Ala	Lys 740		Ile	Ala	Gln	Asn 745		Met	Phe	Thr	Thr 750	Lys	Gly
35	Il€	e Asp	755		: Gly	Glu	ı Leu	Thr 760		: Met	: Gly	'Ile	Pro 765	Glu	Gln	Asn
40	Sei	r Ly:		c Val	l Thr	Pro	775		ı His	5 Туг	c Ala	a Ala 780	Asp	Gly	Phe	Arg
	Le:		r Gl	y Gly	y Asr	n Ala 790		n Phe	e Ile	e Ala	a Arg	g Asr 5	n Met	: Ala	Ser	Val 800
45		r Gl	y As:	n Ile	е Туз 805		a Ası	p Ası	o Ala	a Ala 81	a Thi	r Ile	e Thi	. Lev	815	r Gln
50	Pr	o Gl	u Th	r Gl 82	_	r Pr	o Th	r Il	e Se 82		r Al	а Ту	c Gli	n Ala 830	ı Trį) Ala
55	Gl	u Th	ır Le	u Le	и ту	r Gl	y Ph	e As	p Th	r Al	а Ту	r Ar	g Gl	y Ala	a Il	e Thr

		835		840		845	
5	Ala Pro		Thr Val	Ser Met 855	Asn Asn	Ala Ile Trp 860	His Leu Asn
10	Ser Glr 865	n Ser Ser	Ile Asn 870	a Arg Leu)	Glu Thr	Lys Asp Ser 875	Met Val Arg 880
	Phe Thi	r Gly Asp	Asn Gly 885	/ Lys Phe	Thr Thr	Leu Thr Val	Asn Asn Leu 895
15	Thr Ile	e Asp Asp 900		a Phe Val	Leu Arg 905	Ala Asn Leu	Ala Gln Ala 910
20	Asp Gl	n Leu Vai 915	l Val Ası	n Lys Se: 92	r Leu Ser	Gly Lys Asn 925	Asn Leu Leu
25	Leu Va 93		e Ile Gl	u Lys As 935	n Gly Ası	n Ser Asn Gly 940	Leu Asn Ile
25	Asp Le 945	eu Val Se	r Ala Pr 95	o Lys Gl	y Thr Ala	a Val Asp Val 955	Phe Lys Ala 960
30	Thr Th	nr Arg Se	r Ile Gl 965	y Phe Se	r Asp Va	l Thr Pro Va	l Ile Glu Gln 975
35	Lys As	sn Asp Ti 98	ır Asp Ly 30	ys Ala Th	r Trp Th 985	r Leu Ile Gl	y Tyr Lys Ser 990
40	Val A	la Asn A 995	la Asp Al	la Ala Ly 10	ys Lys A	la Thr Leu L 1	eu Met Ser Gly 005
40		yr Lys . 010	Ala Phe I	Leu Ala 1015	Glu Val	Asn Asn Leu 1020	Asn Lys Arg
45		Sly Asp .025	Leu Arg	Asp Ile 1030	Asn Gly	Glu Ser Gly 1035	Ala Trp Ala
50		le Ile 1040	Ser Gly	Thr Gly 1045	Ser Ala	Gly Gly Gly 1050	Phe Ser Asp
55		Tyr Thr 1055	His Val	Gln Val 1060	Gly Ala	Asp Asn Lys	His Glu Leu 5

5	Asp Gly 1070	Leu Asp	Leu Phe	Thr 1075	Gly V	al Thr	Met T	hr Ty .080	r Thr	Asp
	Ser His 1085	Ala Gly	Ser Ası	Ala 1090	Phe S	er Gly	Glu 1	hr Ly 095	s Ser	Val
10	Gly Ala 1100	Gly Leu)	Tyr Al	a Ser 1105	Ala M	1et Phe	Glu S	Ser Gl L110	y Ala	Tyr
15	Ile Asp	Leu Ile	Gly Ly	s Tyr 1120	Val F	His His	Asp A	Asn G1 1125	lu Tyr	Thr
20	Ala Thr 113	Phe Ala	a Gly Le	u Gly 1135	Thr A	Arg Asp	Tyr	Ser Se 1140	er His	Ser
	Trp Tyr 114	Ala Gly	y Ala Gl	u Val 1150		Tyr Arg	Tyr :	His V 1155	al Thr	Asp
25	Ser Ala 116	Trp Ile	e Glu Pr	o Gln 1165	Ala	Glu Leu	Val	Tyr G 1170	ly Ala	Val
30	Ser Gly 117	Lys Gl	n Phe Se	er Trp 1180		Asp Glr	a Gly	Met A 1185	sn Leu	Thr
<i>35</i>	Met Lys	: Asp Ly	s Asp Pl	ne Asn 1195		Leu Ile	e Gly	Arg T 1200	hr Gly	· Val
	Asp Val	. Gly Ly)5	s Ser Pl	ne Ser 1210		Lys Ası	o Trp	Lys V 1215	al Thr	Ala
40	Arg Ala	a Gly Le 20	u Gly T	yr Gln 1229		Asp Le	ı Phe	Ala A 1230	sn Gly	/ Glu
45		l Leu Ar 35	rg Asp A	la Ser 124	Gly O	Glu Ly	s Arg	Ile I 1245	.γs Gl}	/ Glu
50		p Gly Ai 50	g Met L	eu Met 125	Asn 5	Val Gl	y Leu	Asn 1	Ala Glı	ılle
		p Asn Lo 65	eu Arg F	he Gly 127	Leu 0	Glu Ph	e Glu	Lys 1275	Ser Al	a Phe

	Gly Lys Tyr Asn Val Asp Asn Ala Ile Asn Ala Asn Phe Arg Tyr 1280 1285 1290
5	Ser Phe 1295
10	<210> 6 <211> 142 <212> PRT <213> Escherichia coli <400> 6
15	Met Ile Asn Ile Pro Ser Pro Thr Ala Val Val Met Ala Leu Val Ala 10 15
20	Ile Ser Thr Leu Pro Ser Pro Ser Arg Val Lys Leu Met Pro Tyr Pro 20 25 30
	Pro Arg Ala His Asn Thr Thr Gly Leu Leu Pro Val Arg Glu Ile Cys 35 40 45
25	Phe Pro His His Gly Asp Asp Gly Arg Asn Ser Ile Glu Pro Ser Ile 50 55 60
30	Ser Arg Ala Ala His Thr Asp Arg Leu Arg Phe Val Cys Met Thr Arg 65 70 75 80
35	Thr Gly Ser Thr Thr Ser Arg Pro Phe Cys Pro Ile Pro Arg Ser Pro 85 90 95
	Ala Leu Asn Ala Ser Gly Gln Gln Asp Ser Gly Phe Trp Gly Val Ser 100 105 110
40	Ser Ile Pro Gly Asp Ile Leu Met Phe Gln Leu His Val Leu Ile Val 115 120 125
45	Phe Ile Cys Lys Ile Asn Leu Ser Asp Asn Asn Ile Ser Tyr 130 135 140
50	<210> 7 <211> 318 <212> PRT <213> Escherichia coli <400> 7

18

	Met 1	Tyr	Ala	Arg	Glu 5	Tyr	Arg	Ser	Thr	Arg 10	Pro	His	Lys	Ala	Ile 15	Phe
5	Phe	His	Leu	Ser 20	Cys	Leu	Thr	Leu	Ile 25	Cys	Ser	Ala	Gln	Val 30	Туг	Ala
10	Lys	Pro	Asp 35	Met	Arg	Pro	Leu	Gly 40	Pro	Asn	Ile	Ala	Asp 45	Lys	Gly	Ser
45	Val	Phe 50	Tyr	His	Phe	Ser	Ala 55	Thr	Ser	Phe	Asp	Ser 60	Val	Asp	Gly	Thr
15	Arg 65	His	Tyr	Arg	Val	Trp 70	Thr	Ala	Val	Pro	Asn 75	Thr	Thr	Ala	Pro	Ala 80
20	Ser	Gly	туг	Pro	Ile 85		Tyr	Met	Leu	Asp 90	Gly	Asn	Ala	Val	Met 95	Asp
25	Arg	Leu	Asp	Asp 100		Leu	Leu	Lys	Gln 105		Ser	Glu	Lys	Thr 110	Pro	Pro
	Val	Ile	Val 115		Val	Gly	Tyr	Gln 120		Asn	Leu	Pro	Phe 125	Asp	Leu	Asn
30	Ser	Arg 130		ту	· Asp	Tyr	Thr 135		Ala	. Ala	Glu	Ser 140	Arg	Lys	Thr	.Asp
35	Leu 145		: Ser	Gly	' Arg	Phe 150		Arg	Lys	s Ser	Gly 155		Ser	Asn	Asn	Phe 160
40	Arg	g Glr	ı Let	ı Lev	165		: Arg	Ile	e Alá	170		val	Glu	Gln	Gly 175	Leu
	Ası	n Ile	e Asp) Arg		n Arg	g Arç	g Gly	/ Let 189		Gly	/ His	Ser	Туr 190	Gly	Gly
45	Lei	u Phe	e Va:		u Ası	e Sei	r Trg	200		r Sei	c Ser	Tyr	Phe 205	e Arg	Ser	Tyr
50	ТУ	r Se: 21		a Se	r Pro	o Se	r Lei 215		y Ar	g Gl	у Туі	220)			ser .
<i>55</i>	Ar	g Va	l Th	r Al	a Va	l Gl	u Pro	o Le	u Gl:	n Ph	e Cys	s Thi	Ly			ı Ala

	225			:	230					235					240
5	Ile Met	Glu		ser . 245	Ala	Thr	Gln	Gly	Asp 250	Asn	Arg	Glu	Thr	His 255	Ala
10	Val Gly	Val	Leu 260	Ser	Lys	Ile	His	Thr 265	Thr	Leu	Thr	Ile	Leu 270	Lys	Asp
	Lys Gly	Val 275	Asn	Ala	Val	Phe	Trp 280	Asp	Phe	Pro	Asn	Leu 285	Gly	His	Gly
15	Pro Met 290		Asn	Ala	Ser	Phe 295	Arg	Gln	Ala	Leu	Leu 300	Asp	Ile	Ser	Gly
20	Glu Asr 305	n Ala	Asn	Tyr	Thr 310	Ala	Gly	Сув	His	Glu 315	Leu	Ser	His	٠	
25	<210> <211> <212> <213> <400>	8 725 PRT Esche 8	erich	nia d	coli										
30	Met Arg	g Ile	Asn	Lys 5	Ile	Leu	Trp	Ser	Leu 10	Thr	Val	Leu	Leu	Val 15	Gly
	Leu As:	n Ser	Gln 20	Val	Ser	Val	Ala	Lys 25	Tyr	Ser	Asp	Asp	Asp 30	Asn	Asp
35	Glu Th	r Leu 35	Val	Val	Glu	Ala	Thr 40	Ala	Glu	Gln	Val	Leu 45	Lys	Gln	Gln
40	Pro Gl 50		Ser	Val	Ile	Thr 55	Ser	Glu	Asp	Ile	Lys 60	Lys	Thr	Pro	Pro
45	Val As 65	n Asp	Leu	Ser	Asp 70	Ile	Ile	: Arg	Lys	Met 75	Pro	Gly	Val	Asn	Leu 80
	Thr Gl	y Asn	. Ser	Ala 85	. Ser	Gly	Thr	Arg	g Gly 90	Asn	. Asr	n Arg	g Glr	ı Ile 95	e Asp
50	Ile Ar	g Gly	Met 100		Pro	Glu	ı Asr	105		ı Ile	e Lev	ı Ile	e Asp 110	o Gly	y Val
55															

	Pro Val	Thr Ser	Arg Asn		Val 1 120	Arg 1	Cyr S	Ser T	rp ?	Arg (Gly	Glu	Arg
5	Asp Thr	Arg Gly	Asp Thr	Asn 135	Trp	Val 1	Pro E	Pro 0	3lu 140	Gln	Val	Glu	Arg
10	Ile Glu 145	Val Ile	Arg Gly 150		Ala	Ala i	Ala A	Arg 7	Гуr	Gly	Ser	Gly	Ala 160
45	Ala Gly	Gly Val	Val Asr 165	Ile	Ile		Lys <i>i</i> 170	Arg 1	Pro	Thr	Asn	Asp 175	Trp
15	His Gly	Ser Leu 180		Tyr	Thr	Asn 185	Gln :	Pro (Glu	Ser	Ser 190	Glu	Glu .
20	Gly Ala	Thr Arg 195	Arg Ala	a Asn	Phe 200	Ser	Leu	Ser	Gly	Pro 205	Leu	Ala	Gly
25	Asp Ala 210	Leu Thr	Thr Ar	215	Tyr	Gly	Asn	Leu	Asn 220	Lys	Thr	Asp	Ala
	Asp Ser 225	Trp Asp	Ile As 23		Pro	Val	Gly	Thr 235	Lys	Asn	Ala	Ala	Gly 240
30	His Glu	ı Gly Val	Arg As 245	n Lys	Asp	Ile	Asn 250	Gly	Val	Val	Ser	Trp 255	Lys
35	Leu Ası	n Pro Gli 260		e Leu	Asp	Phe 265	Glu	Val	Gly	Tyr	Ser 270	Arg	Gln
40	Gly Ası	n Ile Ty: 275	r Ala Gl	y Asp	Thr 280		Asn	Ser	Ser	Ser 285	Ser	Ala	. Val
	Thr Gl	u Ser Le O	u Ala L _y	rs Ser 295		. Lys	Glu	Thr	Asn 300	Arg	Leu	тут	Arg
45	Gln As 305	n Tyr Gl	y Ile Th 31		s Asr	ı Gly	Ile	Trp 315	Asp	Tr	Gly	/ Glr	n Ser 320
50	Arg Ph	e Gly Va	1 Tyr T	yr Glu	ı Lys	Thr	330	Asn	Thr	r Arç	g Mei	33!	n Glu 5
55	Gly Le	eu Ser Gl	y Gly G.	ly Gl	u Gl	y Arg	; Ile	e Leu	Ala	a Gly	y Gl	ı Ly	s Phe

			;	340					345					350		
5	Thr		Asn 355	Arg 1	Leu	Ser	Ser	Trp 360	Arg	Thr	Ser	Gly	Glu 365	Leu	Asn	Ile
10	Pro	Leu 370	Asn	Val	Met	Val	Asp 375	Gln	Thr	Leu	Thr	Val 380	Gly	Ala	Glu	Trp
	Asn 385	Arg	Asp	Lys	Leu	Asp 390	Asp	Pro	Ser	Ser	Thr 395	Ser	Leu	Thr	Val	Asn 400
15	Asp	Arg	Asp	Ile	Ser 405	Gly	Ile	Ser	Gly	Ser 410	Ala	Ala	Asp	Arg	Ser 415	Ser
20	Lys	Asn	His	Ser 420	Gln	Ile	Ser	Ala	Leu 425	Tyr	Ile	Glu	Asp	Asn 430	Ile	Glu
25	Pro	Val	Pro 435	Gly	Thr	Asn	Ile	Ile 440	Pro	Gly	Leu	Arg	Phe 445	Asp	Tyr	Leu
	Ser	Asp 450	Ser	Gly	Gly	Asn	Phe 455	Ser	Pro	Ser	Leu	Asn 460	Leu	Ser	Gln	Glu
30	Leu 465	Gly	Asp	Tyr	Phe	Lys 470	Val	Lys	Ala	Gly	Val 475	Ala	Arg	Thr	Phe	Lys 180
35	Ala	Pro	Asn	. Leu	Tyr 485		Ser	Ser	Glu	Gly 490	Туг	Leu	Leu	Tyr	Ser 495	Lys
40	Gly	/ Asn	Gly	7 Cys 500		Lys	Asp	ıle	• Thr 505	Ser	Gly	Gly	· Cys	Tyr 510	Leu	ılle
	Gly	y Asn	Lys 515		Leu	Asp	Pro	520	ı Ile O	e Ser	Val	. Asr	Lys 525	Glu	ı Ile	e Gly
45	Le	u Glu 530		e Thr	Trp	Glu	1 Asp 535		r His	s Alá	a Ser	7 Val	l Thr	ту1	r Phe	a Arg
50	As: 54		э Тү:	r Glr	n Asr	550		e Va	l Al	a. Gl	y Ası 559	Ası S	n Val	l Ile	e Gl	y Gln 560
55	Th	r Ala	a Se	r Gly	y Ala 56		r Il	e Le	u Ly	s Tr	p Gli 0	n Ası	n Gly	y Gl	y Ly 57	s Ala 5
																

5	Leu Val Asp Gly 580	Ile Glu Ala S	Ser Met Ser Phe 1 585	Pro Leu Val Lys Glu 590
	Arg Leu Asn Trp 595	Asn Thr Asn A	Ala Thr Trp Met 600	Ile Thr Ser Glu Gln 605
10	Lys Asp Thr Gly 610	Asn Pro Leu : 615	Ser Val Ile Pro	Lys Tyr Thr Ile Asn 620
15 ·	Asn Ser Leu Asn 625	Trp Thr Ile 630	Thr Gln Ala Phe 635	Ser Ala Ser Phe Asn 640
20	Trp Thr Leu Tyr	Gly Arg Gln 645	Lys Pro Arg Thr 650	His Ala Glu Thr Arg 655
	Ser Glu Asp Thr 660	Gly Gly Leu	Ser Gly Lys Glu 665	Leu Gly Ala Tyr Ser 670
25	Leu Val Gly Thr 675	Asn Phe Asn	Tyr Asp Ile Asn 680	Lys Asn Leu Arg Leu 685
30	Asn Val Gly Val 690	Ser Asn Ile 695	Leu Asn Lys Gln	Ile Phe Arg Ser Ser 700
35	Glu Gly Ala Asn 705	Thr Tyr Asn 710	Glu Pro Gly Arg 715	Ala Tyr Tyr Ala Gly 720
	Val Thr Ala Ser	Phe 725		
40	<210> 9 <211> 1014 <212> PRT			
45	<213> Escheric <400> 9	hia coli		
43	Met Gly Asn Gln 1	Trp Gln Gln 5	Lys Tyr Leu Leu 10	. Glu Tyr Asn Glu Leu 15
50	Val Ser Asn Phe	e Pro Ser Pro	Glu Arg Val Val 25	Ser Asp Tyr Ile Lys 30
55	Asn Cys Phe Lys	Thr Asp Leu	Pro Trp Phe Ser	Arg Ile Asp Pro Asp

		35		40		45
5	Asn Ala 50	Tyr Phe	Ile Cys	Phe Ser Gln 55	Asn Arg Ser 60	Asn Ser Arg Ser
10	Tyr Thr	Gly Trp	Asp His	Leu Gly Lys	Tyr Lys Thr 75	Glu Val Leu Thr 80
	Leu Thr	Gln Ala	Ala Leu 85	Ile Asn Ile	Gly Tyr Arg	Phe Asp Val Phe 95
15	Asp Asp	Ala Asn 100	Ser Ser	Thr Gly Ile 105	Tyr Lys Thr	Lys Ser Ala Asp 110
20	Val Phe	e Asn Glu 115	Glu Asn	Glu Glu Lys 120	Met Leu Pro	Ser Glu Tyr Leu 125
25	His Pho		. Lys Сув	Asp Phe Ala	Gly Val Tyr 140	Gly Lys Thr Leu
25	Ser As	p Tyr Trp	Ser Lys 150		Lys Phe Lys 155	Leu Leu Leu Lys 160
30	Asn Ty	r Tyr Ile	e Ser Ser 165	Ala Leu Tyr	Leu Tyr Lys 170	Asn Gly Glu Leu 175
35	Asp Gl	u Arg Glu 180		n Phe Ser Met 185	: Asn Ala Leu 5	Asn Arg Ser Asp 190
40	Asn Il	e Ser Le 195	ı Leu Phe	e Phe Asp Ile 200	e Tyr Gly Tyr	Tyr Ala Ser Asp 205
40	Ile Ph	ne Val Ala .0	a Lys Asr	n Asn Asp Lys 215	s Val Met Leu 220	Phe Ile Pro Gly
45	Ala Ly 225	ys Lys Pr	o Phe Let 230		s Asn Ile Ala 235	A Asp Leu Arg Leu 240
50	Thr L	eu Lys Gl	u Leu Ile 245	e Lys Asp Se	r Asp Asn Ly: 250	s Gln Leu Leu Ser 255
	Gln H	is Phe Se 26		r Ser Arg Gl 26	n Asp Gly Va 5	l Ser Tyr Ala Gly 270
<i>55</i>						

5	Val	Asn	Ser 275	Val	Leu	His	Ala	lle 280	Glu	Asn	Asp	Gly	Asn 285	Phe	Asn	Glu
	Ser	Tyr 290	Phe	Leu	Tyr	Ser	Asn 295	Lys	Thr	Leu	Ser	Asn 300	Lys	qzA	Val	Phe
10	Asp 305	Ala	Ile	Ala	Ile	Ser 310	Val	Lys	Lys	Arg	Ser 315	Phe	Ser	Asp	Gly	Asp 320
15	Ile	Val	Ile	Lys	Ser 325		Ser	Glu	Ala	Gln 330	Arg	Asp	Tyr	Ala	Leu 335	Thr
20	Ile	Leu	Gln	Thr 340	Ile	Leu	Ser	Met	Thr 345	Pro	Ile	Phe	Asp	Ile 350	Val	Val
	Pro	Glu	Val 355	Ser	Val	Pro	Leu	Gly 360	Leu	Gly	Ile	Ile	Thr 365	Ser	Ser	Met
25	Gly	11e 370	Ser	Phe	Asp	Gln	Leu 375	Ile	Asn	Gly	Asp	Thr 380	Tyr	Glu	Glu	Arg
30	Arg 385		Ala	Ile	Pro	Gly 390	Leu	Ala	Thr	Asn	Ala 395	Val	Leu	. Leu	Gly	Leu 400
35	Ser	Phe	Ala	Ile	Pro 405		Leu	Ile	Ser	Lys 410		Gly	Ile	Asn	Gl.n 415	Glu
	Val	Leu	Ser	Ser 420		Ile	Asn	Asn	Glu 425		Arg	Thr	Leu	. Asn 430	Glu	Thr
	Asr	ılle	Asp 435		e Phe	. Leu	Lys	Glu 440		Gly	, Ile	Ala	Glu 445	Asp	Ser	Ile
45	Sei	Ser 450		: Asr	ı Lev	. Lev	Asp 455		Lys	s Leu	ı Lys	s Ser 460	Ser	Gly	Gln	His
<i>50</i> .	Va: 469		ılle	e Val	l Lys	470		ası	Glı	ı Ası	475	Glr	ı Ile	e Val	. Ala	Val 480
	Lys	s Gly	y Sei	c Sei	r Le:		r Gly	/ Ile	е Ту	r Ty:	c Glu D	ı Va.	l Ası	. Il€	e Glu 495	Thr
55																

	Gly	Tyr	Glu	11e 500	Leu	Ser	Arg	Arg	Ile 505	Tyr	Arg	Thr	Glu	Tyr 510	Asn	Asn
5	Glu	Ile	Leu 515	Trp	Thr	Arg	Gly	Gly 520	Gly	Leu	Lys	Gly	Gly 525	Gln	Pro	Phe
10	Asp	Phe 530	Glu	Ser	Leu	Asn	Ile 535	Pro	Val	Phe	Phe	Lys 540	Asp	Glu	Pro	Tyr
15	Ser 545	Ala	Val	Thr	Gly	Ser 550	Pro	Leu	Ser	Phe	Ile 555	Asn	Asp	Asp	Ser	Ser 560
	Leu	Leu	. Tyr	Pro	Asp 565	Thr	Asn	Pro	Lys	Leu 570	Pro	Gln	Pro	Thr	Ser 575	Glu
20	Met	Asp	ıle	• Val 580	. Asn	туг	Val	Lys	Gly 585	r Ser	Gly	Ser	Phe	Gly 590	Asp	Arg
25	Phe	· Val	Th:		ı Met	: Arg	; Gly	Ala	Thi	c Glu	ı Glu	Glu	Ala 605	Trp	Asn	Ile
30	Ala	Sei 610		r His	₃ Thi	r Ala	615	Gl _y	/ Se	r Thi	r Glu	620	ı Lev	His	Glu	lle
	Le:		u Gl	y Gl	n Gl	y Pro 630	o Glr	n Sei	r Se	r Le	u Gly 639	y Phe	e Thr	Glv	туз	t Thr 640
35	Se	r As	n Va	l As	n Se 64		a Asp	Al.	a Al	a Se 65	r Arg	g Ar	g His	s Phe	E Le:	u Val 5
40	Va	1 11	е Ъу	s Va 66		s Va	l Ly	з Ту	r I1 66	.e Th	r As	n Ası	n Asi	n Va 67	ļ Se O	r Tyr
45	Va	l As	n Hi 67		LA q:	a Il.	e Pr	o As 68	p G]	.u Al	a Pr	o Va	1 G1 68	u Va 5	l Le	u Ala
	Va		al As 90	sp Ai	rg Ai	cg Ph	ne As 69	n Ph	ne Pi	co Gl	lu Pr	o Se 70	er Th	r Pr	o Pr	o Asp
50		le Se 05	er T	nr I	le A		ys Le LO	eu Le	eu S	er L	eu Ai 71	rg T <u>y</u> L5	yr Ph	ne Ly	rs G]	u Ser 720

	Ile	Glu	Ser		Ser 725	Lys	Ser	Asn	Phe	Gln 730	Lys	Leu	Ser	Arg	Gly 735	Asn
5	Ile	Asp	Val	Leu 740	Lys	Gly	Arg	Gly	Ser 745	Ile	Ser	Ser	Thr	Arg 750	Gln	Arg
10	Ala	Ile	Туг 755	Pro	Tyr	Phe	Glu	Ala 760	Ala	Asn	Ala	Asp	Glu 765	Gln	Gln	Pro
15	Leu	Phe 770		туr	Ile	Lys	Lys 7 7 5	Asp	Arg	Phe	Asp	Asn 780	His	Gly	Tyr	Asp
15	Gln 785	Tyr	Phe	Tyr	Asp	Asn 790	Thr	Val	Gly	Leu	Asn 795	Gly	Ile	Pro	Thr	Leu 800
20	λsn	Thr	Tyr	Thr	Gly 805		Ile	Pro	Ser	Asp 810	Ser	Ser	Ser	Leu	Gly 815	Ser
25	Thr	Tyr	Trp	Lys 820		Туг	Asn	Leu	Thr 825	Asn	Glu	Thr	Ser	Ile 830	Ile	Arg
	Val	Sei	c Asr 835		Ala	Arg	g Gly	Ala 840	Asn	Gly	/ Ile	Lys	Ile 845	Ala	Leu	Glu
30	Glu	va: 85		n Glu	ı Gly	y Ly:	9 Pro	Val	. Ile	e Ile	e Thr	Ser 860	Gly	Asn	. Leu	. Ser
35	Gl ₃ 865		s Th	r Thi	r Ile	e Va 87		a Arg	J Lys	s Gli	ı Gly 879	y Tyr	: Ile	e Tyr	Lys	880
40	нія	s Th	r Gl	y Th	r Th		s Sei	r Lei	Ala ı	a Gl 89	y Phe O	e Thi	r Sei	Thr	7h. 899	Gly
	Va	l Ly	s Ly	s Al.		l Gl	u Va	l Le	و Gl 90	u Le 5	u Le	u Thi	r Lys	910	Pro	o Ile
45	Pr	o Ar	g Va 91		u Gl	y Il	e Me	t Se 92	r As O	n As	p Ph	e Le	u Va 92	l Ası 5	Э Ту:	r Leu
50	Se		lu As 30	sn Ph	ne Gl	u As		r Le 5.	u Il	e Th	ır Ty	r Se 94	r Se 0	r Se	r Gl	u Lys
55	Ly	rs Pi	ro Ás	sp S€	er Gl	ın II	le Th	ır Il	e Il	.e Ai	rg As	sp As	n Va	l Se	r Va	1 _. Phe

	945 9	50	955	960
5	Pro Tyr Phe Leu Asp A 965	asn Ile Pro Glu His 970	Gly Phe Gly Thr Se	er Ala 75
	Thr Val Leu Val Arg V 980	Val Asp Gly Asn Val 985	Val Val Arg Ser L 990	eu Ser
10	Glu Ser Tyr Ser Leu <i>F</i> 995	Asn Ala Asp Ala Se: 1000	r Glu Ile Ser Val 1005	Leu Lys
15	Val Phe Ser Lys Lys .1010	Phe		
20	<210> 10 <211> 454 <212> PRT <213> Escherichia C <400> 10	oli		
25	Met Val Asp Met Ile 1 5	Asn Glu Ser Ala Arg	Gln Thr Pro Val	Ile Ala 15
30	Gln Thr Asp Val Leu 20	23	_	
	Ala Ile Ala Ala Gly 35	Arg Leu Gly Ala Al	45	·· J
35	Tyr Gly Ser Leu Gly 50	Gly Val Leu Thr Gl 55	n Val Gly Val Glu 60	Ser Phe
40	Ala Trp Tyr Arg His 65	Pro Gly Thr Glu As	sp Cys Glu Gly Ile 75	Cys Arg 80
45	Glu Tyr Glu Gly Arg 85	g Ala Arg Ala Leu Gl 90	Ly Phe Thr Arg Pro)	Glu Pro 95
	Gln Ser Ile Ser Glu	ı Val Ile Asp Thr G	lu Gly Phe Lys Val 110	Val Ala
50	Asp Gln Met Ile The	r Glu Ser Gly Val G 120	lu Pro Leu Tyr His 125	Ser Trp
55				

	Val	Val 130	Asp	Val	Ile		Asp 135	gly	Asp	Thr	Leu	Cys 140	Gly	Val	Ile	Val
5	Glu 145	Asn	Lys	Ser	Gly	Arg 150	Gly	Ala	Ile	Leu	Ala 155	Lys	Arg	īle	Val	Asp 160
10	Cys	Thr	Gly	Asp	Ala 165	Asp	Ile	Ala	Ala	Arg 170	Ala	Gly	Ala	Pro	Trp 175	Thr
	Lys	Arg	Ser	Lys 180	Asp	Gln	Leu	Met	Gly 185	Val	Thr	Val	Met	Phe 190	Ser	Cys
15	Ala	Gly	Val 195	Asp	Val	Ala	Arg	Phe 200	Asn	Arg	Phe	Val	Ala 205	Glu	Glu	Leu
20	Lys	Pro 210		Tyr	Ala	Asp	Trp 215	Gly	Lys	Asn	Trp	Thr 220	Ile	Gln	Thr	Thr
25	Gly 225		Glu	Asp	Pro	Met 230	Phe	Ser	Pro	Туr	Met 235	Glu	Asp	Ile	Phe	Thr 240
	Arg	, Ala	Gln	Gln	Asp 245		Val	Ile	Pro	Gly 250	Asp	Ala	. Gln	Ala	Ile 255	Ala
30	Gly	/ Thr	Trp	Ser 260		Phe	Ser	Glu	Ser 265		Glu	Ala	Phe	Gln 270	Met	Asn
35	Met	: Val	1 Tyr 275	Ala	Phe	Gly	Phe	Asp 280	Cys	Thr	Asp	Va]	. Phe 285	Asp	Leu	Thr
40	Ly	s Ala 290		ı Ile	. Ala	Gly	/ Arg 295		Glr	ıλla	Leu	Trp 300	Ala O	lle	Asp) Ala
	Le 30		g Hi:	з Туг	. Val	. Pro		Phe	g Glu	ı Ası	1 Val	Arg	g Leu	ı Arg	J Asr	n Phe 320
45 ·	G1	y Al	a Th	r Le	ı Gl ₎ 329		r Arg	g Gli	ı Sei	33		ı Il	e Glu	ı Gly	/ Glu 33!	ı Ile
50	Ar	g Il	e Al	a As ₁	_	э Ту	r Val	l Lei	34!		n Gl	y Ar	g Cys	S Sei 350	c Ası	e Ser
<i>55</i>	Va	ıl Gl	y Il	e Ph	e Pro	o Gl	u Pho	e Il	e As	p Gl	y Se	r Gl	у ту:	r Lei	ı Il	e Leu
*																

	355		360	365
5	Pro Thr Thr 370	Gly Arg Phe Ph	ne Gln Ile Pro Tyr 75	Gly Cys Leu Val Pro 380
	Gln Lys Val 385	Glu Asn Leu L 390	eu Val Ala Gly Arg 395	Cys Ile Ser Ala Gly 400
10	Val Val Ala	His Thr Ser M 405	et Arg Asn Met Met 410	Cys Cys Ala Val Thr 415
15	Gly Glu Ala	a Ala Gly Thr A 420	la Ala Val Val Ser 425	Leu Gln Gln Asn Cys 430
20	Thr Val Arc		le Pro Asp Leu Glr 440	n Asn Thr Leu Gln Gln 445
	Gln Gly Val	l Arg Leu Ala		
25	<210> 11			
30	<211> 253 <212> PRT			
	Met Ser Al 1	a Lys Arg Arg 5	Leu Leu Ile Ala Cy 10	rs Thr Leu Ile Thr Ala 15
35	Ile Tyr Hi	is Phe Pro Ala 20	Tyr Ser Ser Leu Gl 25	Lu Tyr Lys Gly Thr Phe
40	Gly Ser Il		Tyr Ala Asp Trp As	sn Ser Gly Phe Val Asn 45
45	Thr His A	rg Gly Glu Val	Trp Lys Val Thr A	la Asp Phe Gly Val Asn 60
40	Phe Lys G 65	lu Ala Glu Phe 70	Tyr Ser Phe Tyr G	lu Ser Asn Val Leu Asn 5 80
50	His Ala V	al Ala Gly Arg 85	Asn His Thr Val S	er Ala Met Thr His Val 95
55				

	Arg	Leu	Phe	Asp 100	Ser	qaA	Met	Thr	Phe 105	Phe	Gly	Lys	Ile	Tyr 110	Gly	Gln
5	Trp	Asp	Asn 115	Ser	Trp	Gly	Asp	Asp 120	Leu	Asp	Met	Phe	Туг 125	Gly	Phe	Gly
10	Tyr	Leu 130	Gly	Trp	Asn	Gly	Glu 135	Trp	Gly		Phe	Lys 140	Pro	Tyr	Ile	Gly
15	Leu 145	His	Asn	Gln	Ser	Gly 150	Asp	Tyr	Val	Ser	Ala 155	Lys	Tyr	Gly	Gln	Thr 160
	Asn	Gl.y	Trp	Asn	Gly 165	Tyr	Val	Val	Gly	Trp 170	Thr	Ala	Val	Leu	Pro 175	Phe
20	Thr	Leu	Phe	Asp 180	Glu	Lys	Phe	Val	Leu 185	Ser	Asn	Trp	Asn	Glu 190	Ile	Glu
25	Leu	Asp	Arg 195		Asp	Ala	Tyr	Thr 200	Glu	Gln	Gln	Phe	Gly 205	Arg	Asn	Gly
30	Leu	Asn 210		Gly	Leu	Thr	Ile 215	Ala	Trp	Lys	Phe	Tyr 220	Pro	Arg	Trp	Lys
	Ala 225		· Val	Thr	Trp	Arg 230		Phe	Asp	Asn	Lys 235		Gly	Tyr	Asp	Gly 240
35	Phe	Gly	/ Asp	Gln	Met 245		: Tyr	Met	Leu	Gly 250		Asp	Phe	:		
40	<21 <21 <21 <21	1>	12 492 PRT Esch	nerio	chia	coli	<u>.</u>									
45	Met 1	Ala	a Sei	. Lev	1 Ile 5	e Gly	/ Let	ı Ala	a Val	10	s Thr	Gly	/ Asr	n Ala	Phe 15	: Ser
.50	Pro	o Al	a Lei	1 Ala 20	a Ala	a Glu	a Ala	a Lys	Glr 25	n Pro	o Asr	ı Let	ı Val	1 Ile 30	: Ile	e Met
	Al	a As	p As _l 35	p Le	u Gl	у Ту:		y Asy 40	p Le	ı Ala	a Thi	тут	r Gl ₃ 45	y His	Glr	lle
EE																

_	Val Lys 50	Thr P	ro Asn	Ile	Asp <i>I</i> 55	Arg 1	Leu A	Ala (Gln (Glu (60	Gly '	Val	ГÀЗ	Phe
5	Thr Asp	Tyr 'I	yr Ala	Pro 70	Ala	Pro	Leu :	Ser	Ser 75	Pro	Ser	Arg	Ala	Gly 80
10	Leu Lei	ı Thr (Gly Arg 85	Met	Pro	Phe	Arg '	Thr 90	Gly	Ile	Arg	Ser	Trp 95	Ile
15	Pro Se	r Gly 1	Lys Asp 100	Val	Ala	Leu	Gly 105	Arg	Asn	Glu	Leu	Thr 110	Ile	Ala
	Asn Le	u Leu : 115	Lys Ala	a Gln	Gly	Туг 120	qaA	Thr	Ala	Met	Met 125	Gly	Lys	Leu
20	His Le		Ala Gl	y Gly	Asp 135	Arg	Thr	Asp	Gln	Pro 140	Gln	Ala	Gln	Asp
25	Met G] 145	y Phe	Азр Ту	r Ser 150	Leu	Ala	Asn	Thr	Ala 155	Gly	Phe	Val	Thr	Asp 160
30	Ala T	ır Leu	Asp As	n Ala 5	Lys	Glu	Arg	Pro 170	Arg	Туг	Gly	Met	Val	Tyr
	Pro T	nr Gly	Trp Le	eu Arg	J Asn	Gly	Gln 185	Pro	Thr	Pro	Arç	190	a Asp	. Lys
35	Met S	er Gly 195	Glu T	yr Val	l Ser	Ser 200	: Glu	ı Val	l Val	Ası	205) Le	ı Ası	o Asn
40		ys Asp 10	Ser L	ys Pr	o Phe 219	e Phe	e Lev	т Ту	r Val	220	a Pho	e Th	r Gl	u Val
45 ·	His 5	er Pro	Leu A	la Se 23	r Pro	o Ly	s ry:	s Ту:	r Le [.] 23	u Asj 5	p Me	t Ty	r Se	r Gln 240
	Tyr	Met Sei	Ala T	yr Gl 45	n Ly	s Gl	n Hi	s Pr 25	o As O	p Le	u Ph	е Ту	r Gl 25	y Asp 55
50	Trp	Ala As _l	o Lys I 260	Pro Ti	rp Ar	g Gl	y Va. 26	11 Gl 55	y G1.	и Ту	r Ty	r Al 2	la As 70	sn Ile
55														

	Ser	Tyr	Leu 275	Asp	Ala	Gln	Val	Gly 280	Lys	Val	Leu	Asp	Lys 285	Ile	Lys	Ala
5	Met	Gly 290	Glu	Glu	Asp	Asn 	Thr 295	Ile	Val	Ile	Phe	Thr 300	Ser	Asp	Asn	Gly
10	Pro 305		Thr	Arg	Glu	Ala 310	Arg	Lys	Val	Tyr	Glu 315	Leu	Asn	Leu	Ala	Gly 320
	Glu	Thr	Asp	Gly	Leu 325	Arg	Gly	Arg	Lys	Asp 330	Asn	Leu	Trp	Glu	Gly 335	Gly
15	Ile	Arg	Val	Pro 340	Ala	Ile	Ile	Lys	Tyr 345	Gly	Lys	His	Leu	Pro 350	Gln	Gly
20	Met	Val	Ser 355	Asp	Thr	Pro	Val	Tyr 360	Gly	Leu	Asp	Trp	Met 365	Pro	Thr	Leu
25	Ala	L ys 370		Met	Așn	Phe	Lys 375	Leu	Pro	Thr	Asp	Arg 380	Thr	Phe	Asp	Gly
	Glu 385		Leu	Val	Pro	Val 390	Leu	Glu	Gln	Lys	Ala 395	Leu	Lys	Arg	Glu	Lys 400
30	Pro	Leu	ı Ile	Phe	Gly 405	Ile	Asp	Met	Pro	Phe 410		Asp	Asp	Pro	Thr 415	Лзр
35	Glu	ı Trg	Ala	11e 420		Asp	Gly	Asp	125		Met	Ile	Ile	Asp 430	Arg	Asn
40	Asr	ı Lys	s Pro 435		; Tyr	Lev	ι Туг	440		ı Lys	s Ser	Asp	445	Tyr	Glu	1 Thr
	Let	Ası 45		ı Ile	e Gly	/ Lys	455	Pro	Ası	o Ile	e Glu	1 Lys 460	Glr	n Met	Туг	Gly
45		s Ph		u Ly:	з Түг	Lys 470		c As	p Il	e Asp	Asr 475	n Asp	Sei	Leu	ı Met	Lys 480
50	Al	a Ar	g Gl	y As	p Ly:	s Pro	o Gli	Al L	a Va	1 Thi 49		o Gly				
	<2	10>	13													
5 5					-											

5	<211> 345 <212> PRT <213> Escherichia coli <400> 13
	Leu Ile Ser Leu Ser Phe Ile Pro Val Met Ser Ala Leu Pro Gly Pro 1 10 15
10	Ile Ala Lys Gly Phe Arg Asn Glu Arg Gly Phe Val Thr Thr Thr Ile 20 25 30
15	Cys Ala Met Gly Glu Leu Leu Ala Glu Phe Leu Ser Arg Asn Fro His 35 40 45
	Gln Lys Phe Thr Gln Pro Gly Glu Phe Ile Gly Pro Phe Pro Ser Gly 50 55 60
20	Ala Pro Ala Ile Phe Ala Ala Gln Val Ala Lys Leu Ser His Arg Ala 65 70 75 80
25	Ile Phe Phe Gly Cys Val Gly Asn Asp Asp Phe Ala Arg Leu Ile Ile 85 90 95
30	Glu Arg Leu Arg His Glu Gly Val Ile Thr Asp Gly Ile His Val Met 100 105 110
	Asn Asn Ala Val Thr Gly Thr Ala Phe Val Ser Tyr Gln Asn Pro Gln 115 120 125
35	Gln Arg Asp Phe Val Phe Asn Ile Pro Asn Ser Ala Cys Gly Leu Phe 130 135 140
40	Thr Ala Glu His Ile Asp Lys Asp Leu Leu Lys Gln Cys Asn His Leu 145 150 155 160
45	His Ile Val Gly Ser Ser Leu Phe Ser Phe Arg Met Ile Asp Val Met 165 170 175
	Arg Lys Ala Ile Thr Thr Ile Lys Ser Ala Gly Gly Thr Val Ser Phe 180 185 190
50	Asp Pro Asn Ile Arg Lys Glu Met Leu Ser Ile Pro Glu Met Ala Gln 195 200 205

	Ala	Leu 210	Asp	Tyr	Leu	Ile	Glu 215	Tyr	Thr	Asp	Ile	Phe 220	Ile	Pro	Ser	Glu
5	Ser 225	Glu	Leu	Pro	Phe	Phe 230	Ala	Arg	His	Lys	Asn 235	Leu	Ser	Glu	Glu	Gln 240
10	Ile	Val	Ser	Asp	Leu 245	Leu	His	Gly	Gly	Val 250	Lys	His	Val	Ala	Ile 255	Lys
. 15	Arg	Ala	Gln	Arg 260	Gly	Ala	Ser	Tyr	Tyr 265	Lys	Leu	Lys	Asn	Gly 270	Thr	Leu
	His	Ala	Gln 275	His	Val	Ala	Gly	His 280	Asp	Ile	Glu	Ile	Ile 285	Asp	Pro	Thr
20	Gly	Ala 290		Asp	Cys	Phe	Gly 295	Ala	Thr	Phe	Ile	Thr 300	Leu	Phe	Leu	Ser
25	Gly 305		Pro	Ala	His	Lys 310		Leu	Gln	Tyr	Ala 315	Asn	Ala	Ser	Gly	Ala 320
<i>30</i>	Leu	Ala	ı Val	Met	Arg 325		Gly	Pro	Met	Glu 330	Gly	·Ile	Ser	Ser	Leu 335	Ala
	Asp	ıle	e Glu	Asp 340		. Leu	Gln	Gln	345							
35	<21 <23	10> 11> 12> 13>	14 192 PRT Esci	nerio	chia	coli	Ĺ									
40	Met 1	ту	r Met	: Pro	o Gly 5	y Ly:	s Glr	n Met	t Lev	ı Су: 10	в Суз	s Ile	e Leu	ı Ile	ser 15	lle
45	110	e Se	r Gl	u Gl 20		p Me	t Ly:	s Il	e Ph	e Il	e Se:	r Le	ı Phe	Leu 30	ı Phe	e Ile
50	11		r Th 35		n Se	r Ph	e Ala	a As;		p Il	e Th	r Hi	s Ala 45	a Gly	y Va∶	l Val
	Ar	g Il 50		u Gl	y Le	u Il	e Th 55		u Ly	s Th	r Cy	s Il 60		e Sei	r Asj	p Glu
55																

	Ser Lys Asn Phe Thr Val Asn Met Pro Asp Val Pro Ser Ser Ser Val 65 70 75 80	
5	Arg Ser Ala Gly Asp Val Thr Glu Lys Val Tyr Phe Ser Ile Thr Leu 85 90 95	L
10	Thr Arg Cys Gly Ser Asp Val Gly Asn Ala Tyr Ile Lys Phe Thr Gly	′
15	Asn Thr Val Ser Glu Asp Ala Ser Leu Tyr Lys Leu Glu Asp Gly Ser 115 120 125	c
	Val Glu Gly Leu Ala Leu Thr Ile Phe Asp Lys Asn Lys Gly Ser Ile 130 135 140	9
20	Ser Asn Asp Val Lys Ser Met Val Phe Ser Leu Thr Ser Ser Val As 145 150 155 16	р 0
25	Asn Ile Leu His Phe Phe Ala Ala Tyr Lys Ala Leu Lys Asn Asn Va 165 170 175	1
30	Gln Pro Gly Asp Ala Asn Ala Ser Val Ser Phe Ile Val Thr Tyr As 180 185 190	φ
35	<210> 15 <211> 201 <212> PRT <213> Escherichia coli <400> 15	
40	Met Ile Lys Phe Arg Leu Tyr Ile Pro Pro Val Ile Leu Gly Phe Va 1 5 10 15	al
	Ile Val Pro Leu Leu Val Trp Pro Thr Val Ile Ala Leu Ala Val Le 20 25 30	eu
45	Ile Phe Thr Leu Thr Phe Leu Ala Glu Ile Ile Phe Ser Phe Pro L 35 40 45	eu
50	Leu Val Val Arg Ile Ser Leu Gln Glu Leu Gln Leu Glu Leu Leu V 50 55	al
<i>55</i>	Val Tyr Ala Leu Phe Phe Ser Val Met Gly Gly Ile Gly Trp Gln F 65 70 75	he 30
55		

5	Ser Ar	g Arg		Pro 85	Pro	Glu	Leu	Lys	Asn 90	Arg	Leu	His	Cys	Trp 95	Leu
	Val Ph	e Ser	Pro 100	Val	Tyr	Phe	Trp	Leu 105	Ile	Leu	Ser	Asn	Phe 110	Ile	Leu
10	Tyr Il	e Ser 115	Pro	Glu	Lys	Ser	Ala 120	Leu	Leu	Glu	Asn	Ile 125	Arg	Asn	Phe
15	Phe Le		Phe	Val	Trp	Leu 135	Pro	Leu	Asn	Phe	Ser 140	Pro	Phe	Trp	Pro
20	Gln Pr 145	o Trp	Thr	Asp	Phe 150	Val	Gly	Pro	Ile	Ser 155	Ala	Gln	Leu	Gly	Phe 160
	Ala Le	eu Gly	Tyr	Tyr 165	Cys	Gln	Trp	Arg	Ser 170	Lys	Asn	Arg	Ser	His 175	Arg
25	Lys L	ys Trp	Gly 180	Asp	Trp	Val	Thr	Cys 185		Ser	Leu	Ala	I l e 190	Leu	Ala
30	Leu G	ly Pro 195		Phe	Asn	туг	Leu 200	Gln							
35	<210><211><211><212><213><400>	234 PRT Esch	eric	hia	coli										
40	Met L 1	ys Phe	: Asn	Leu 5	. Ser	Asn	Leu	Ser	Ala 10	val	. Leu	Leu	Ala	Ser 15	Gly
	Met I	eu Met	Ser 20	Thr	Ala	. Val	Thr	Ala 25	a Ala	a Pro	Gly	Asp	Ala 30	Thr	Gln
45	Phe C	ly Gly 35	/ Ala	a Asp	o Thr	: Asp	Trp 40	Sei	r Thi	r Val	l Asp	Туг 45	Pro	Àr <u>c</u>	J Leu
50		sp Mei	t Asp	aA c	o Aar	n Val 55	l Ası	Se:		t Gl	y Gly 60	/ Lys	. Ile	a Arg	g Phe
. 55	Thr (Gly Ar	g Val	l Va	l Ly:	s Ala	a Thi	c Cy	s Ly	s Va	l Alá	a Thi	c Asp	o Se	r Lys

	65	70	75	80
5	Gln Ile Glu Val Val 85	Leu Pro Val Val	Pro Ser Asn Leu Phe 90	Thr Gly 95
	Ile Asp Val Glu Ala 100	d Gln Gly Ala Ser 105	Asn Gln Thr Asp Phe	Asn Ile
10	Asn Leu Thr Glu Cys	s Ser Asn Thr Asp 120	Asp Gln Lys Ile Glu 125	Phe Arg
15	Phe Thr Gly Thr Ala	a Asp Ser Ala Asr 135	n Lys Thr Leu Ala Asn 140	Glu Val
20	Glu Gly Ser Thr As 145	p Ala Asp Asn Sei 150	r Gly Asn Ala Gly Ala 155	Thr Gly 160
	Val Gly Ile Arg Il	e Tyr Ser Lys Gl	y Thr Thr Asn Asn Gly 170	Leu Ile 175
25	Asn Leu Asn Thr Th	nr Ala Ala Glu Gl 18	y Ser Ala Ser Thr Ala 15 190	a Ala Tyr O
30	Thr Ile Pro Gly As	sn Ala Thr Thr Hi 200	is Asp Phe Ser Ala Ala 205	a Phe Thr
35	Ala Gly Tyr Ala G 210	ln Asn Gly Ser Th 215	nr Val Ala Pro Gly Va 220	l Val Lys
	Ser Thr Ala Ser P 225	he Val Val Leu T 230	yr Glu	
40	<210> 17 <211> 336 <212> PRT		·	
45	<213> Escherichi <400> 17		Arg Arg Tyr Phe Ile Le	eu Leu Ile
50	1	5	10	
50	Ile Ile Phe Ser . 20	Asn Val Leu Ser S	Ser Ile Ala Asn Ala G 25 3	lu Asp Met O
55				

		Gly	Arg	Glu 35	Arg	Ala	Tyr		Tyr 40	Pro	Gly	Ser	Pro	Ser 45	Asn	Asn	Thr
5	. •	Thr	Pro ·50	Ala	Ser	Phe	Ser	Tyr 55	Asn	Phe	Gly	Thr	Ile 60	Val	Val	Ser	Asp
10		Val 65	Asn	Lys	Asn	Ala	Pro 70	Gly	Thr	Val	Leu	Pro 75	Ser	Gln	Ile	Trp	Lys 80
15		Val	Gly	Thr	Tyr	Lys 85	Ala	туr	Cys	Asn	Ser 90	Leu	Asp	Asp	Tyr	Glu 95	Ile
		Tyr	Phe	Ser	Ala 100	Val	Ser	Gly	Ile	Asp 105	Pro	Ser	Gly	Ala	Ser 110	Gly	Asp
20		His	Gln	Gly 115		Asp	Val	Phe	Ile 120	Pro	Leu	Thr	His	Glu 125	Ile	Ser	Val
25		Ser	Thr 130		Ile	Lys	Leu	Туr 135	Asn	Gln	Asn	Gly	Thr 140	Met	Thr	qaA	Lys
30		Ile 145		Pro	Phe	Glu	Asn 150		Asn	Thr	Asn	Tyr 155	Pro	Gly	Asp	Arg	Ser 160
		Lys	Pro	Ser	Asn	Trp 165		Ser	Gly	Thr	Glu 170		Tyr	Ile	Lys	Ile 175	Arg
35		Il€	e Asp	Lys	180		Ile	Ser	Asp	Val 189		Leu	Ser	Asn	Val 190	Leu	Leu
40		Va]	l Sei	195		Val	. Ser	Gln	11e 200		Thr	: Glu	His	Gly 205		Ile	Pro
4 5		Va:	21		n Ala	a Tyr	: Ile	219		. Le	ASI	ı Ile	Glr 220		. Pro	Gln	Gly
43		Cy: 22		r Il	e Ası	ı Glu	23(: Se	e Phe	e Thi	r Val 235	. Asr	ı Met	; Pro) Asr	Val 240
50		Tr	p Al	a Se	r Gl	u Let		r Arg	Ala	a Gl	y Al 25		/ Ala	a Lys	3 Pro	255	Gly
55		Va	l Th	r Pr	o Va	l Ala	a Thi	r Th	r Il	e Pr	o Il	e Ası	ı Cy	s Thi	c Ası	n Lys	s Asp

	260	265	270
5	Thr Asp Ala Val Met Thr Let 275	1 Val Phe Asp Gly Asn Ile 280 289	e Ser Ala Thr
10	Arg Asp Thr Asn Gly Lys Gli 290 299	n Ser Ile Ile Gln Ala Gln 5 300	n Asp Asn Pro
10	Asp Val Gly Ile Met Ile Me 305 310	t Asp Ser Gln Gln Asn Se 315	r Val Asp Leu 320
15	Asn Ala Leu Ala Thr Ser Va 325	l Gly Val Pro Phe Arg Le 330	eu Val Glu Asn 335
20	<210> 18 <211> 864 <212> PRT <213> Escherichia coli <400> 18		
25	Met Asn Leu Lys Leu Lys Ax 1 5	rg Cys Glu Tyr Trp Met A 10	la Ala Gln Lys 15
30	Gln Met Lys Arg Val Val Pr 20 Ser Ile Ala Gly Met Arg P	25	-
	Ser Ile Ala Gly Met Arg P 35	40 40 4	5
35	Glu Ala Val Ala Asp Leu S 50 5	er Arg Phe Glu Lys Gly M 5 60	Met Thr Tyr Leu
40	Pro Gly Ser Tyr Glu Val G 65 70	Glu Val Trp Val Asn Asp 8 75	Ser Pro Leu Leu 80
45	Ser Arg Thr Val Thr Phe I	Lys Ala Asp Asp Glu Asn (90	Gln Leu Ile Pro 95
	Cys Leu Ser Leu Ala Asp 1 100	Leu Leu Ser Leu Gly Ile 105	Asn Lys Asn Ala
50	Leu Pro Glu Gln Ala Leu 115	Ala Ser Ser Glu Asn Ser 120	Cys Leu Asp Leu 125
55			

		Ile 130	Trp	Phe	Pro	Asp	Val 135	His	Tyr	Met	Pro	Glu 140	Leu	Asp	Ala	Gln
5	Arg 145	Leu	ГÀг	Leu	Thr	Phe 150	Pro	Gln	Ala	Ile	Ile 155	Lys	Arg	Asp	Ala	Arg 160
10 `	Gly	Tyr	Ile	Pro	Pro 165	Glu	Gln	Trp	Asp	Asn 170	Gly	Ile	Thr	Ala	Phe 175	Leu
15	Leu	Asn	Tyr	Asp 180	Phe	Ser	Gly	Asn	Asn 185	Asp	Arg	Gly	Asp	Туг 190	Ser	Ser
	Asn	Asn	Туг 195	Tyr	Leu	Asn	Leu	Arg 200	Ala	Gly	Ile	Asn	Ile 205	Gly	Ala	Trp
. 20	Arg	Phe 210	Arg	Asp	туг	Ser	Thr 215	Trp	Ser	Arg	Gly	Ser 220	Asn	Ser	Ala	Gly
25	Lys 225		Glu	His	Ile	Ser 230	Ser	Thr	Leu	Gln	Arg 235	Val	Ile	Ile	Pro	Phe 2 4 0
30	Arg	Ser	Glu	Leu	Thr 245	Leu	Gly	Asp	Thr	Trp 250	Ser	Ser	Ser	Asp	Val 255	Phe
	Asp	Ser	Val	Ser 260		Arg	Gly	Ile	Lys 265		. Glu	Ser	Asp	Glu 270	Asn	Met
35	Leu	. Pro	Asp 275		Gln	. Ser	Gly	Phe 280		Pro	Thr	Val	. Arg 285	Gly	·Ile	Ala
40	Lys	Ser 290		g Ala	a Glr	ı Val	. Thr 295		: Lys	Glr	n Asr	300	/ Tyr	· Val	Ile	e Tyr
45	Glr 305		ту1	c Met	Pro	310		Pro	Phe	e Glu	1 Ile 319	e Sei	c Asp	Leu	a Asr	320
40	Thi	c Sei	c Sei	r Ala	a Gly 329) Lev	ı Glı	ı Val	330	r Ile	e Ly:	s Glu	ı Sei	335	Asn 5
50	Se	r Gl	u Th	r Va 34		r Th	r Val	l Pr	34!		a Al	a Va	l Pro	35	e Lei	ı Gln
55	Ar	g Gl	u Gl	y Hi	s Le	u Ly	s Ty	r Se	r Th	r Th	r Va	l Gl	y Gl:	n Ty	r Ar	g Ser

	355 36	360 365
5	Asn Ser Tyr Asn Gln Lys Ser P 370 375	Pro Tyr Val Phe Gln Gly Glu Leu Ile 380
10	Trp Gly Leu Pro Trp Asp Ile T 385 390	Thr Ala Tyr Gly Gly Ala Gln Phe Ser 395 400
	Glu Asp Tyr Arg Ala Leu Ala I 405	Leu Gly Leu Gly Leu Asn Leu Gly Val 410 415
15	Phe Gly Ala Thr Ser Phe Asp V 420	Val Thr Gln Ala Asn Ser Ser Leu Val 425 430
20	Asp Gly Ser Lys His Gln Gly 6	Gln Ser Tyr Arg Phe Leu Tyr Ser Lys 440 445
25	Ser Leu Val Gln Thr Gly Thr 450 455	Ala Phe His Ile Ile Gly Tyr Arg Tyr 460
	Ser Thr Gln Gly Phe Tyr Thr 465 470	Leu Ser Asp Thr Thr Tyr Gln Gln Met 475 480
30	Ser Gly Thr Val Val Asp Pro 485	D Lys Thr Leu Asp Asp Lys Asp Tyr Val 490 495
35	Tyr Asn Trp Asn Asp Phe Tyr 500	r Asn Leu Arg Tyr Ser Lys Arg Gly Lys 505 510
40	Phe Gln Ala Ser Val Ser Gln 515	n Pro Phe Gly Asn Tyr Gly Ser Met Tyr 520 525
	Leu Ser Ala Ser Gln Gln Thr 530 535	nr Tyr Trp Asn Thr Asp Lys Lys Asp Ser 540
45	Leu Tyr Gln Val Gly Tyr Asr 545 550	sn Thr Ser Ile Lys Gly Ile Tyr Leu Asn 555 560
50	Val Ala Trp Asn Tyr Ser Ly: 565	ys Ser Pro Gly Thr Asn Ala Asp Lys Ile 570 575
55	Val Ser Leu Asn Val Ser Le 580	eu Pro Ile Ser Asn Trp Leu Ser Ser Thr 585 590

5	Asn A	Asp	Gly 595	Arg	Ser	Ser	Ser	Asn 600	Ala	Met	Thr	Ala	Thr 605	Tyr	Gly	Tyr
		Gln 610	Asp	Asn	His	Gly	Gln 615	Val	Asn	Gln	Tyr	Thr 620	Gly	Val	Ser	Gly
10	Ser 625	Leu	Leu	Glu	Gln	His 630	Asn	Leu	Ser	Tyr	Asn 635	Ile	Gln	His	Gly	Phe 640
15	Ala	Asn	Gln	Asp	Asn 645	Ser	Ser	Ser	Gly	Ser 650	Val	Gly	Val	Asn	Tyr 655	Arg
20	Gly	Ala	Tyr	Gly 660	Ser	Leu	Asn	Ser	Ala 665	Tyr	Ser	Tyr	Asp	Asn 670	Glu	Gly
	Asn	Gln	Gln 675	Ile	Asn	Tyr	Gly	Ile 680	Ser	Gly	Ala	Leu	Val 685	Val	His	Glu
25	Asn	Gly 690		Thr	Leu	Ser	Gln 695	Pro	Leu	Gly	Glu	Thr 700	Asn	Val	Leu	Ile
30	Lys 705	Ala	Pro	Gly	Ala	Asn 710		Val	Asp	Val	Gln 715	Arg	Gly	Thr	Gly	Ile 720
<i>35</i>	Ser	Thr	Asp	Trp	Arg 725		Туг	Ala	Val	Val 730		Tyr	Ala	Thr	Glu 735	Tyr
	Arg	Arg	Asn	Asn 740		Ser	Leu	Asp	Pro 745		Ser	Met	Asn	Met 750	His	Thr
40	Glu	Leu	. Asp 755		Thr	Ser	Thr	Glu 760		. Ile	Prc	Gly	Lys 765	Gly	Ala	Leu
45	Val	Arc 770		Glu	ı Phe	e Ala	a Ala 775		s Il∈	e Gly	/ Ile	780	Gly	Leu	Phe	Thr
50	Val 785		туг	Arg	J Asr	1 Lys		va:	l Pro) Phe	e Gly 795	y Ala	Thr	Ala	Ser	Ala 800
	Glr	ı Ile	e Lys	s Ası	n Sei 809		r Glı	n Il	e Thi	r Gly 81		e Val	l Gly	, Asp	AST 815	Gly
55																

	Gln Leu Tyr Leu Ser Gly Leu Pro Leu Glu Gly Val Ile Asn Ile Gln 820 825 830	
5	Trp Gly Asp Gly Val Gln Gln Lys Cys Gln Ala Asn Tyr Lys Leu Pro 835 840 845	ı
10	Glu Thr Glu Leu Asp Asn Pro Val Ser Tyr Ala Thr Leu Glu Cys Arg 850 855 860	j
15	<210> 19 <211> 169 <212> PRT <213> Escherichia coli <400> 19	
20	Met Gly Ala Ile Tyr Val Lys Arg Leu Ile Leu Ser Val Ala Leu Ile 1 5 10 15	e
<i>25</i>	Ile Pro Ile Ala Ser Asn Ala Ser Asp Ala Leu Asn Gln Pro Ser Se 20 25 30	r
	Ser Leu Asn Asp Gly Val Glu Thr Phe Phe Ile Ser Cys Phe Asp Me 35 40 45	t
30	Pro Gln Glu Thr Thr Asp Met Asp Ala Cys Gln Arg Val Gln Le 50 55 60	:u
35	Ala Gln Val Ser Trp Val Lys Asn Lys Tyr Ser Val Ala Ala Leu As 65 70 75 80	sn)
40	Arg Leu Lys Gln Asp Asn Lys Asp Asp Pro Gln Arg Leu Gln Glu Le 85 90 95	eu
	Thr Ala Ser Phe Asn Ala Glu Ser Glu Ala Trp Thr Glu Leu Ile G 100 105 110	lu
45 .	Lys Ala Ser Lys Ser Val Gln Val Asp Tyr Val Gly Gly Thr Ile A 115 120 125	la
50	Gly Thr Ala Val Ala Ser Arg Gln Ile Gly Leu Leu Glu Leu Gln S 130 135 140	er
55	His Asp Ile Trp Glu His Trp Leu Arg Ser Arg Gly Leu Asn Ser S 145 150 155	Ser 160

5	Ser F	he A	Ala A		Thr 165	Lys	Val (Gln	Ile							
			_						٠,							
10	<210: <211: <212: <213: <400:	> 73 > Pi > Es	13 RT sche	rich	iia c	oli										
15	Met A	Ala I	Met	Phe	Thr 5	Pro	Ser	Phe	Ser	Gly 10	Leu	ГÀа	Gly	Arg	Ala 15	Leu
.5	Phe :	Ser		Leu 20	Phe	Ala	Ala	Pro	Met 25	Ile	His	Ala	Thr	Asp 30	Ser	Val
20	Thr		35	Asp	Gly	Glu	Thr	Ile 40	Thr	Val	Thr	Ala	Asp 45	Ala	Asn	Thr
25			Glu	Ala	Thr	Asp	Gly 55	Туг	Gln	Pro	Leu	Ser 60	Thr	Ser	Thr	Ala
	Thr 65	Leu	Thr	Asp	Met	Pro 70	Met	Leu	Asp	Ile	Pro 75	Gln	Val	Val	Asn	Thr 80
30	Val	Ser	Asp		Val	Leu	Glu	Asn	Gln	Asn 90	Ala	Thr	Thr	Leu	Asp 95	Glu
35	Ala	Leu	Tyr	Asn 100	Val	Ser	Asn	Val	Val 105		Thr	Asn	Thr	Leu 110	Gly	Gly
40	Thr	Gln	Asp 115	Ala	Phe	Val	Arg	Arg 120		Phe	Gly	Ala	Asn 125	Arg	Asp	Gly
	Ser	Ile 130	Met	Thr	Asn	Gly	Leu 135		Thr	Val	Leu	Pro 140		Ser	Phe	Asn
45	Ala 145	Ala	: Thr	Glu	1 Arg	Val		Val	. Leu	Lys	Gly 155		Ala	Ser	Thr	Leu 160
50	Туг	Gly	Ile	: Lev	165		o Gly	- Gly	/ Lev	1 Ile 170		Val	Val	Thr	Lys	Arg
55	Pro	Glu	Lys	Thi	r Phe	His	s Gly	r Sei	r Val	. Sei	c Ala	Thr	: Sei	: Ser	Ser	Phe

		180	185	190
5	Gly Gly Gly		Leu Asp Ile Thr Gly 200	Pro Ile Glu Gly Thr 205
10	Gln Leu Ala 210	a Tyr Arg Leu	Thr Gly Glu Val Gln 215	Asp Glu Asp Tyr Trp 220
	Arg Asn Pho	e Gly Lys Glu 230	Arg Ser Thr Phe Ile 235	Ala Pro Ser Leu Thr 240
15	Trp Phe Gl	y Asp Asn Ala 245	Thr Val Thr Met Leu 250	Tyr Ser His Arg Asp 255
20	Tyr Lys Th	r Pro Phe Asp 260	o Arg Gly Thr Ile Phe 265	Asp Leu Thr Thr Lys 270
25	Gln Pro Va 27		o Arg Lys Ile Arg Phe 280	Asp Glu Pro Phe Asn 285
25	Ile Thr As 290	sp Gly Gln Se	r Asp Leu Ala Gln Leu 295	Asn Ala Glu Tyr His 300
30	Leu Asn Se 305	er Gln Trp Th		Ser Tyr Ser Gln Asp 320
35	Lys Tyr S	er Asp Asn Gl 325	n Ala Arg Val Thr Ala 330	A Tyr Asp Ala Thr Thr 335
40	Gly Thr L	eu Thr Arg Ar 340	rg Val Asp Ala Thr Gli 345	n Gly Ser Thr Gln Arg 350
40		la Thr Arg Al	la Asp Leu Gln Gly Ass 360	n Val Asp Ile Ala Gly 365
45	Phe Tyr A	asn Glu Ile Le	eu Gly Gly Val Ser Ty 375	r Glu Tyr Tyr Asp Leu 380
50	Leu Argʻ 385	Thr Asp Met I	le Arg Cys Lys Lys Al 90 39	a Lys Asp Phe Asn Ile 5 400
55	Tyr Asn	Pro Val Tyr G 405	ly Asn Thr Ser Lys Cy 410	s Thr Thr Val Ser Ala 415
55		Pro Val Tyr G	ly Asn Thr Ser Lys Cy	s Thr Thr Val Ser Ala 415

5	Ser	Asp	Ser	Asp 420	Gln	Thr	Ile	Lys	Gln 425	Glu	Asn	Tyr	Ser	Ala 430	Tyr	Ala
	Gln	qaA	Ala 435	Leu	Tyr	Leu	Thr	Asp 440	Asn	Trp	Ile	Ala	Val 445	Ala	Gly	Ile
10	Arg	Tyr 450	Gln	туг	Туг	Thr	Gln 455	Tyr	Ala	Gly	Lys	Gly 460	Arg	Pro	Phe	Asn
15	Val 465	Asn	Thr	Asp	Ser	Arg 470	Asp	Glu	Gln	Trp	Thr 475	Pro	Lys	Leu	Gly	Leu 480
20	Val	Tyr	Lys	Leu	Thr 485	Pro	Ser	Val	Ser	Leu 490	Phe	Ala	Asn	Tyr	Ser 495	Gln
	Thr	Phe	Met	Pro 500	Gln	Ser	Ser	Ile	Ala 505	Ser	Туг	Ile	Gly	Asp 510	Leu	Pro
25	Pro	Glu	Ser 515		Asn	Ala	Tyr	Glu 520	Val	Gly	Ala	Lys	Phe 525	Glu	Leu	Phe
30	Asp	Gly 530		Thr	Ala	Asp	Ile 535	Ala	Leu	Phe	Asp	Ile 540	His	Lys	Arg	Asn
35	Val 545		Tyr	Thr	Glu	Ser 550		Gly	· Asp	Glu	Thr 555	Ile	. Ala	. Lys	Thr	Ala 560
	Gly	/ Arg	Val	. Arg	Ser 565		Gly	Val	. Glu	Val 570		Lev	ı Ala	a Gly	Ala 575	Leu
40	Thi	g Glu	ı Asr	1 Ile 580		. Ile	: Ile	: Alā	Ser 585		Gly	у Туг	Th:	Asp 590	Alā	Lys
45	Va.	l Leu	1 Glu 599		Pro	Asp	туг	Ala 600		, Lys	s Pro) Let	1 Pro 60	o Asr 5	val	Pro
50	Ar	g His 610		r Gly	y Ser	4	ı Phe 619			r Ty:			e Hi O		n Mei	Pro
	Gl 62		n Asi	n Th	r Lei	1 Th:		e Gl	y Gl	Y Gl	y Gl; 63		s Gl	y Va	l Se	r Arg 640
55																

	Arg Ser Ala Thr Asn Gly Ala Asp Tyr Tyr Leu Pro Gly Tyr Phe Val 645 650 655
5	Ala Asp Ala Phe Ala Ala Tyr Lys Met Lys Leu Gln Tyr Pro Val Thr 660 665 670
10	Leu Gln Leu Asn Val Lys Asn Leu Phe Asp Lys Thr Tyr Tyr Thr Ser 675 680 685
15	Ser Ile Ala Thr Asn Asn Leu Gly Asn Gln Ile Gly Asp Pro Arg Glu 690 695 700
	Val Gln Phe Thr Val Lys Met Glu Phe 705 710
20	<210> 21 <211> 606 <212> PRT <213> Escherichia coli
25	<pre><400> 21 Met Lys Ile Ser Trp Asn Tyr Ile Phe Lys Asn Lys Trp Arg Phe His 1 10 15</pre>
30	Ile Thr Ser Ile Ser Leu Phe Leu Ile Met Leu Ala Val Ser Ile Ala 20 25
<i>35</i>	Phe Leu His Leu Arg Phe Asn Thr Leu Ser Ser Thr Asp Lys Met Arg 35 40 45
	Leu Glu Met Tyr Lys Ser Thr Leu Tyr Ser Thr Ile Glu Gln ⊋he Tyr 50 55
40	Val Leu Pro Tyr Met Leu Ser Thr Asp His Ile Ile Arg Gln Ala Val 65 70 75 80
45	Ile Thr Pro Asp Asp Met Thr Ser Ser Glu Leu Asn Gln Arg Ile Ala 85 90 95
50	His Phe Asn Thr Gln Leu Lys Thr Ala Ala Ile Phe Ile Leu Asp Thr 100 105 110
	Gln Gly Lys Ala Ile Ala Ser Ser Asn Trp Gln Asp Pro Gly Ser Tyr 115 120 125
55	

5	Val	Gly (Gln .	Asn	Tyr	Ser	Tyr 135	Arg	Pro	Tyr	Tyr	Lys 140	His	Ala	Met	Ser
	Gly 145	Leu	Asn	Gly	Arg	Phe 150	Tyr	Gly	Ile	Gly	Ser 155	Thr	Thr	Asn	Thr	Pro 160
10	Gly	Phe	Phe	Leu	Ser 165	Thr	Ser	Ile	Lys	Asp 170	ГÀа	Gly	Lys	Ile	Val 175	Gly
15	Val	Val	Val	Val 180	Lys	Ile	Ser	Leu	Asn 185	Glu	Ile	Glu	Lys	Ala 190	Trp	Ala
20	Glu	Gly	Pro 195	Glu	Asn	Ile	Ile	Val 200	Asn	Asp	Glu	His	Gly 205	Ile	Ile	Phe
	Leu	Ser 210	Ser	Lys	Ser	Pro	Trp 215	Arg	Met	Arg	Thr	Leu 220	Gln	Pro	Leu	Pro
25	Val 225	Gln	Ala	Lys	Gln	Lys 230	Leu	Gln	Ser	Thr	Arg 235	Gln	Tyr	Ser	Leu	Asp 240
30	Asn	Leu	Leu	Pro	Ala 245	Asp	Tyr	Tyr	Pro	Сув 250		Thr	Val	Ser	Asn 255	Phe
35	Thr	Phe	Leu	Lys 260		Lys	Lys	Glu	Gln 265		Cys	Leu	Phe	Pro 270	Gln	Tyr
	Tyr	Thr	Gln 275	Gln	Ile	Ala	Ile	Pro 280		Phe	. Asn	Trp	Lys 285	Met	Thr	Ile
40	Met	Val 290	Pro	Leu	Asp	Asn	Leu 295		Trp	Ser	Trp	300		Ser	Leu	Val
45	Ile 305		Leu	Ile		Tyr 310		Lev	ı Phe	e Lev	1 Leu 315		e Ile	. Lys	Tyr	Trp 320
50	Arg	Met	Arg	Ser	325		Glm	Glr		1 Let 330		. Lev	ı Ala	. Asn	335	Thr
	Lev	ı Glu	. Lys	340		Lys	3 Glu	ı Arg	g Th: 34!		r Ala	a Lei	ı Glı	350		e Asn

55

	Gln Lys Leu Ile Gln Glu Ile Lys Glu Arg Ser Gln Ala Glu Gln Val 355 360 365
5	Leu Gln Ile Thr Arg Ser Glu Leu Ala Glu Ser Ser Lys Leu Ala Ala 370 375 380
10	Leu Gly Gln Met Ala Thr Glu Ile Ala His Glu Gln Asn Gln Pro Leu 395 400
15	Ala Ala Ile His Ala Leu Thr Asp Asn Ala Arg Thr Met Leu Lys Lys 405 410 415
	Glu Met Tyr Pro Gln Val Glu Gln Asn Leu Lys His Ile Ile Ser Val 420 425 430
20	Ile Glu Arg Met Thr Gln Leu Ile Ser Glu Leu Lys Ala Phe Ala Ser 435 440 445
25	Arg His Arg Val Pro Lys Gly Ser Ala Asp Val Ile Lys Val Met Tyr 450 455 460
30	Ser Ala Val Ala Leu Leu Asn His Ser Met Glu Lys Asn Asn Ile Glu 470 475 480
	Arg Arg Ile Lys Ala Pro Ser Met Pro Leu Phe Val Asn Cys Asp Glu 495 490 495
35	Leu Gly Leu Glu Gln Ile Phe Ser Asn Leu Ile Ser Asn Ala Leu Asp 500 505 510
40	Ser Met Glu Gly Ser Ser Tyr Lys Arg Leu Asp Ile Ala Ile Arg Gln 525 525
45	Ala Asn Asn Lys Val Ile Ile Thr Ile Lys Asp Ser Gly Gly Phe 535 540
	Ala Pro Glu Val Val Asp Arg Ile Phe Glu Pro Phe Phe Thr Thr Lys 555 560
50	Arg Arg Gly Met Gly Leu Gly Leu Ala Ile Val Ser Glu Ile Val Arg 575 575
55	

	Asn Ser Asn Gly Ala Leu His Ala Ser Asn His Pro Glu Gly Gly 580 585 590	Ala
5	Val Met Thr Leu Thr Trp Pro Glu Trp Gly Glu Glu His Glu 595 600 605	
10	<210 > 22 <211 > 101 <212 > PRT <213 > Escherichia coli <400 > 22	
15	Val Leu Thr Pro Gln His Leu Arg Cys Val Leu Thr Cys Ser Asp 1 5 10 15	Leu
20	Leu Thr Leu Leu Ser Gly Thr Val Met Ser Gln Met Pro Leu Tyr 20 25 30	Phe
	Leu Asn Thr Gln Lys Lys Leu Thr Ala His Tyr Glu Trp Leu Glr 35 40 45	ılle
25	Asn Leu Thr Asp Thr Tyr Glu Leu Val Lys Arg Leu Met Pro Ile 50 55 60	Pro
30	Ser Leu Asp Val Val Val Lys Val Gly Lys Leu Val Leu Pro Glu 65 70 75	ı Lys 80
35	Gly His His Gly Phe Tyr Pro Glu Ala Gly Val Val Tyr Arg Th 85 90 95	r Val
	Ala Pro Glu Asn Pro 100	
40	<210> 23 <211> 263 <212> PRT <213> Escherichia coli	
45	<pre><400> 23 Met Met Lys Asn Thr Gly Tyr Ile Leu Ala Leu Cys Leu Thr Al</pre>	a Ser
	1 .5 10 .15	
50	Gly His Val Leu Ala His Asp Val Trp Ile Thr Gly Lys Gln Al 20 25 30	a Giu
55	Asn Asn Val Thr Ala Glu Ile Gly Tyr Gly His Asn Phe Pro Se	er Lýs

	35	40	45
5	Gly Thr Ile Pro Asp	p Arg Arg Asp Phe Phe (Glu Asn Pro Arg Leu Tyr 60
40	Asn Gly Lys Glu Th	or Ile Thr Leu Lys Pro 70	Ala Ser Thr Asp Tyr Val 75 80
10	Tyr Lys Thr Glu Se	er Ala Ser Lys Asp Asn	Gly Tyr Val Leu Ser Thr
	85	5 90	95
15	Tyr Met Lys Pro Gl 100	ly Tyr Trp Ser Arg Thr 105	Ser Ser Gly Trp Lys Pro
20	Val Ser Arg Glu Gl	ly Arg Asn Asp Val Ala	Tyr Cys Glu Phe Val Thr
	115	120	125
05	Lys Tyr Ala Lys Se	er Phe Ile Pro Gly Glu	Gln Gln Met Pro Ala Gln
	130	135	140
25	Leu Tyr Gln Ser Pi	Pro Thr Gly His Glu Leu	Glu Ile Ile Pro Leu Ser
	145	150	155 160
30		Phe Ser Glu Asn Val Lys 165 170	Leu Lys Val Leu Tyr Lys 175
35	Thr Ser Pro Leu A	Ala Gly Ala Ile Met Glu	Leu Asp Ser Val Ser Tyr
	180	185	190
	Leu Thr Ser Ser A	Arg His Thr His Ala Val	Glu His Lys His Pro Val
	195	200	205
40	His Lys Ala Glu I	Leu Thr Phe Val Thr Asr	n Glu Asp Gly Ile Val Thr
	210	215	220
45	Val Pro Ser Leu 1	His Ile Gly Gln Trp Let	u Ala Lys Val Gln Asn Lys
	225	230	235 240
50	Lys Ser Phe Gln	Asp Lys Ser Leu Cys As 245 25	p Glu Thr Val Asp Val Ala 0 255
	Thr Leu Ser Phe 260	Ser Arg Asn	
55			

5	<210> 24 <211> 378 <212> PRT <213> Escherichia coli <400> 24
10	Met Gly Lys Ile Lys Tyr Trp Leu Ile Val Gly Phe Ile Ile Leu Phe 1 5 10 15
15	Ala Ile Phe Tyr Ile Ala Ile Ser Asp Arg Asp Ser Thr Leu Ser Arg 20 25 30
	Leu Lys Ser Ala Gly Glu Asn Gly Asp Val Glu Ala Gln Tyr Ala Leu 35 40 45
20	Gly Leu Met Tyr Leu Tyr Gly Glu Ile Leu Asp Val Asp Tyr Gln Gln 50 55 60
25	Ala Lys Ile Trp Tyr Glu Lys Ala Ala Asp Gln Asn Asp Pro Arg Ala 65 70 75 80
30	Gln Ala Lys Leu Gly Val Met Tyr Ala Asn Gly Leu Gly Val Asn Gln 85 90 95
•	Asp Tyr Gln Gln Ser Lys Leu Trp Tyr Glu Lys Ala Ala Ala Gln Asn 100 105 110
35	Asp Val Asp Ala Gln Phe Leu Leu Gly Glu Met Tyr Asp Asp Gly Leu 115 120 125
40	Gly Val Ser Gln Asp Tyr Gln His Ala Lys Met Trp Tyr Glu Lys Ala 130 135 140
	Ala Ala Gln Asn Asp Glu Arg Ala Gln Val Asn Leu Ala Val Leu Tyr 145 150 155 160
45	Ala Lys Gly Asn Gly Val Glu Gln Asp Tyr Arg Gln Ala Lys Ser Trp 165 170 175
50	Tyr Glu Lys Ala Ala Gln Asn Ser Pro Asp Ala Gln Phe Ala Leu 180 185 190
55	Gly Ile Leu Tyr Ala Asn Ala Asn Gly Val Glu Gln Asp Tyr Gln Gln

	195 200 205	
5	Ala Lys Asp Trp Tyr Glu Lys Ala Ala Glu Gln Asn Phe Ala Asn Ala 210 215 220	
10	Gln Phe Asn Leu Gly Met Leu Tyr Tyr Lys Gly Glu Gly Val Lys Gln 235 240	
	Asn Phe Arg Gln Ala Arg Glu Trp Phe Glu Lys Ala Ala Ser Gln Asn 245 250 255	
15	Gln Pro Asn Ala Gln Tyr Asn Leu Gly Gln Ile Tyr Tyr Gly Gln 260 265 270	
20	Gly Val Thr Gln Ser Tyr Arg Gln Ala Lys Asp Trp Phe Glu Lys Ala 275 280 285	
25	Ala Glu Lys Gly His Val Asp Ala Gln Tyr Asn Leu Gly Val Ile Tyr 290 295 300	
25	Glu Asn Gly Glu Gly Val Ser Gln Asn Tyr Gln Gln Ala Lys Ala Trp 305 310 315 320	
30	Tyr Glu Lys Ala Ala Ser Gln Asn Asp Ala Gln Ala Gln Phe Glu Leu 325 330 335	
35	Gly Val Met Asn Glu Leu Gly Gln Gly Glu Ser Ile Asp Leu Lys Gln 340 345 350	
40	Ala Arg His Tyr Tyr Glu Arg Ser Cys Asn Asn Gly Leu Lys Lys Gly 365 360 365	
40	Cys Glu Arg Leu Lys Glu Leu Leu Tyr Lys 370 375	
45	<210> 25 <211> 654 <212> PRT	
,	<213> Escherichia coli <400> 25	
50	Met Asn Val Ile Arg Thr Val Ile Cys Thr Leu Ile Ile Leu Pro Val 1 5 10	•
55	•	

	Gly	Leu		Ala 20	Ala	Thr	Ser	His	Ser 25	Ser	Met	Val	Lys	Asp 30	Thr	Ile
5	Thr	Ile	Val 35	Ala	Thr	Gly		Gln 40	Asn	Thr	Val	Phe	Glu 45	Thr	Pro	Ser
10	Met	Val 50	Ser	Val	Val	Thr	Asn 55	Asp	Thr	Pro	Trp	Ser 60	Gln	Asn	Ala	Val
15	Thr 65	Ser	Ala	Gly	Met	Leu 70	Lys	Gly	Val	Ala	Gly 75	Leu	Ser	Gln	Thr	Gly 80
15	Ala	Gly	Arg	Thr	Asn 85	Gly	Gln	Thr	Phe	Asn 90	Leu	Arg	Gly	Tyr	Asp 95	Lys
20	Ser	Gly	Val	Leu 100	Val	Leu	Val	Asp	Gly 105	Val	Arg	Gln	Leu	Ser 110	Asp	Met
25	Ala	Lys	Ser 115	Ser	Gly	Thr	Tyr	Leu 120	Asp	Pro	Ala	Leu	Val 125	Lys	Arg	Ile
	Glu	Val 130		Arg	Gly	Pro	Asn 135	Ser	Ser	Leu	Tyr	Gly 140	Ser	Gly	Gly	Leu
30	Gly 145		val	Val	Asp	Phe 150		Thr	Ala	Asp	Ala 155		Asp	Phe	Leu	Pro 160
35	Pro	Gly	Glu	Thr	Asn 165		· Leu	Ser	Lev	170		Asn	Ile	Ala	Ser 175	· Gly
40	Asp	His	s Ser	Thr 180		/ Ser	Gly	' Le	1 Thi		Phe	e Gly	' Lys	Thr 190	Gly	r Lys
	Thr	: Asp	Ala 195		ı Lev	ı Ser	. Val	. Ile 200		E Arg	g Lys	arç	g Gly 205	Asr	ı Ile	e Tyr
45 · :	Glr	n Sei 21		o Gly	y Glı	ı His	3 Ala 219		o Asi	n Ly	s Glı	ı Lys 220	s Pro	o Ala	a Ala	a Leu
50	Phe 22!		a Lys	s Gl	y Se:	r Va. 23		y Il	e Th	r As	p Se:	r Ası 5	ı Lys	s Ala	a Gly	y Ala 240
55	Se	r Le	u Ar	g Le	u Ty	r Ar	g Asi	n As	n Th	r Th	r Gl	u Pro	o Gl	y As	n Se	r Thr

					245					250					255	
5	Gln	Thr	His	Gly 260	Asp	Ser	Gly	Leu	Arg 265	Asp	Arg	Lys	Thr	Val 270	Gln	Asn
10 .	Лsp	Val	Gln 275	Phe	Trp	Туг	Gln	Tyr 280	Ala	Pro	Val	Asp	Asn 285	Ser	Leu	Ile
	Asn	Val 290	Lys	Ser	Thr	Leu	Tyr 295	Leu	Ser	Asp	Ile	Thr 300	Ile	Lys	Thr	Asn
15	Gly 305	His	Asn	Lys	Thr	Ala 310	Glu	Trp	Arg	Asn	Asn 315	Arg	Thr	Ser	Gly	Val 320
20	Asn	Val	Val	Asn	Arg 325	Ser	His	Thr	Leu	330	Phe	Pro	Gly	Ala	His 335	Gln
25	Leu	Ser	Tyr	Gly 340		Glu	туr	Туr	Arg 345	g Gln	Gln	Gln	Lys	Pro 350	Glu	Gly
	Ser	Ala	Thr 355		ı Tyr	Pro	Glu	Gly 360	Asr	n Ile	e Asp	Phe	Thr 365	Ser	Leu	Tyr
30	Phe	Glr 370		Glu	ı Met	. Thr	Met 379		s Sei	r Tyi	r Pro	Val 380	. Asn	ı Ile	Ile	e Val
35	Gly 385		r Arg	д Туі	r Asp	390	ј Туз)	r Lys	s Se	r Ph	e Asr 399	n Pro	. Arg	g Ala	. Gly	/ Glu 400
40	Lev	ı Ly	s Al	a Gli	u Arg 409		ı Se:	r Pro	o Ar	g Al 41	a Ala O	a Ile	e Sei	c Val	. Se:	r Pro
	Th	r As		p Le 42				r Gl	47	r Il	e Se	r Sei	r Ala	a Phe 430	e Arg	g Ala
45	Pr	o Th	r Me 43		a Gl	u Me	t Ту	r Ar 44	g As O	sp As	sp Va	l Hi	s Ph 44	е Ту: 5	r Ar	g Lys
50	Gl	y Ly 45		o As	n Ty	r Tr	p Va 45		o As	sn Le	eu As	n Le 46	u Ly 0	s Pr	o Gl	u Asn
55	As 46		e Th	nr Ai	rg Gl	.u Il 47		Ly Al	a G	ly I	le Gl 47	n Le 5	u As	p Gl	y Le	u Leu 480

5	Thr Asp Asn Asp Arg Leu Gln Leu Lys Gly Gly Tyr Phe 485 490	Gly Thr Asp 495
	Ala Arg Asn Tyr Ile Ala Thr Arg Val Asp Met Lys Arg 500 505	Met Arg Ser 510
10	Tyr Ser Tyr Asn Val Ser Arg Ala Arg Ile Trp Gly Trp 515 520 525	Asp Met Gln
15	Gly Asn Tyr Gln Ser Asp Tyr Val Asp Trp Met Leu Ser 530 535 540	Tyr Asn Arg
20	Thr Glu Ser Met Asp Ala Ser Ser Arg Glu Trp Leu Gly 545 550 555	Ser Gly Asn 560
	Pro Asp Thr Leu Ile Ser Asp Ile Ser Ile Pro Val Gly 565 570	His Arg Gly 575
25	Val Tyr Ala Gly Trp Arg Ala Glu Leu Ser Ala Ser Ala 580 585	Thr His Val
30	Lys Lys Gly Asp Pro His Gln Ala Gly Tyr Thr Ile His 595 600 605	Ser Phe Ser
35	Leu Ser Tyr Lys Pro Val Ser Val Lys Gly Phe Glu Ala 610 620	Ser Val Thr
	Leu Asp Asn Ala Phe Asn Lys Leu Ala Met Asn Gly Lys	Gly Val Pro
	Leu Ser Gly Arg Thr Val Ser Leu Tyr Thr Arg Tyr Glr 645 650	ı Trp
45	<210> 26 <211> 1376 <212> PRT <213> Escherichia coli	
50	<pre><400> 26 Met Asn Lys Ile Tyr Ala Leu Lys Tyr Cys Tyr Ile Th 1 5 10</pre>	 r Asn Thr Val 15
55	Lys Val Val Ser Glu Leu Ala Arg Arg Val Cys Lys Gl	y Ser Thr Arg

	20							25						30		
5	Arg (Lys 35	Arg 1	Leu S	Ser	Val	Leu 40	Thr	Ser	Leu	Ala	Leu 45	Ser	Ala	Leu
10	Leu	Pro 50	Thr	Val .	Ala	Gly	Ala 55	Ser	Thr	Val	Gly	Gly 60	Asn	Asn	Pro	Tyr
	Gln 65	Thr	Tyr	Arg	Asp	Phe 70	Ala	Glu	Asn	Lys	Gly 75	Gln	Phe	Gln	Ala	Gly 80
15	Ala	Thr	Asn	Ile	Pro 85	Ile	Phe	Asn	Asn	Lys 90	Gly	Glu	Leu	Val	Gly 95	His
20	Leu	Asp	Lys	Ala 100	Pro	Met	Val	Asp	Phe 105	Ser	Ser	Val	Asn	Val 110	Ser	Ser
25	Asn	Pro	Gly 115	Val	Ala	Thr	Leu	Ile 120	. Asn	Pro	Gln	Tyr	Ile 125	Ala	Ser	Val
	Lys	His 130	Asn	Lys	Gly	Tyr	Gln 135	Ser	. Val	. Ser	Phe	Gly 140	Asp	Gly	Gln	Asn
30	Ser 145		His	Ile	Val	Asp 150	Arg	J Ası	ı Glu	ı His	Ser 155	Ser	· Ser	Asp	Leu	His 160
35	Thr	Pro	Arc	, Leu	Asp 165		Lev	ı Va	l Th:	c Gli	ı Val	. Ala	Pro	Ala	Thr 179	Val
40	Thr	: Ser	: Sei	s Ser 180		Ala	a As	o Il	e Le 18	u As : 5	n Pro	Sei	. Lys	190	Ser	Ala
	Phe	э Туг	19		Gly	seı	Gl	y Se 20	r Gl O	n Ty	r Ile	e Glı	n Asg 209	Sei	Gl:	n Gly
45 ·	Ьy	s Arg		s Tr	o Val	L Th:	r Gl 21	y Gl 5	у Ту	r Gl	у Ту	r Le	u Thi	c Gl	y Gl	y Ile
50	Le [.] 22		o Th	r Se	r Phe	e Ph 23		r Hi	ls Gl	y Se	er As 23	p Gl 5	y Il	e Gl	n Le	u Tyr 240
<i>55</i>	Me	t Gl	y Gl	y As	n Il 24		s As	sp H	is S∈	er Il 25	le Le 50	u Pr	o Se	r Ph	e Gl 25	y Glu 5

5	Ala	Gly	Asp	Ser 260	Gly	Ser	Pro	Leu	Phe 265	Gly	Trp	Asn	Thr	Ala 270	Lys	Gly
	Gln	Trp	Glu 275	Leu	Val	Gly	Val	Туг 280	Ser	Gly	Val	Gly	Gly 285	Gly	Thr	Asn
10	Leu	Ile 290	Tyr	Ser	Leu	rle	Pro 295	Gln	Ser	Phe	Leu	Ser 300	Gln	Ile	Tyr	Ser
15	Glu 305	Asp	Asn	Asp	Ala	Pro 310	Val	Phe	Phe	Asn	Ala 315	Ser	Ser	Gly	Ala	Pro 320
20	Leu	Gln	Trp	Lys	Phe 325	Asp	Ser	Ser	Thr	Gly 330	Thr	Gly	Ser	Leu	Lys 335	Gln
	Gly	Ser	Asp	Glu 340	Tyr	Ala	Met	His	Gly 345	Gln	Lys	Gly	Ser	Asp 350	Leu	Asn
25	Ala	Gly	Lys 355	Asn	Leu	Thr	Phe	Leu 360		His	Asn	Gly	Gln 365	Ile	Asp	Leu
30	Glu	Asn 370		Val	Thr	Gln	Gly 375		Gly	Ser	Leu	Thr 380		Thr	Asp	Asp
35	Tyr 385		Val	Thr	Thr	Ser 390		Gly	Ser	Thr	Trp 395		Gly	Ala	Gly	Ile 400
	Ile	. Val	Asp	Lys	Asp 405		Ser	Val		1 Trp		. Val	Asn	Gly	Val 415	
40	GlΣ	, Asp	Asn	Leu 420		Lys	Ile	Gly	Glu 425		Thr	Leu	. Val	Val 430	Gln	Gly
45	Thi	Gly	Val 435	. Asn	Glu	ı Gly	Gly	440		; Val	. Gly	Asp	Gly 445		Val	Val
50	Lei	1 Ası 45(ı Glr	n Ala	a Asp	Ser 455		Gly	/ His	3 Val	. Glr -460		Phe	: Ser	Ser
•	Va:		n Ile	e Alá	a Sei	470		g Pro	Thi	c Val	1 Val 475		Alā	a Asp	Asr	1 Gln 480
55																

	Gln V	al As	sn Pr	Asp 485	Asn	Ile	Ser	Trp	Gly 490	Tyr .	Arg	Gly (3ly	Val 495	Leu
5	Asp V	al A	sn Gl 50		. Asp	Leu	Thr	Phe 505	His	Lys	Leu	Asn .	Ala 510	Ala	Asp
10	Tyr G		la Th 15	c Lev	. Gly	Asn	Ser 520	Ser	Asp	Lys	Thr	Ala 525	Asn	Ile	Thr
15	Leu A	sp T	yr Gl	n Thi	arç	Pro 535	Ala	Asp	Val	Lys	Val 540	Asn	Glu	Trp	Ser
20	Ser S 545	Ser A	sn Ar	g Gl	y Thi 550	val	Gly	Ser	Leu	туr 555	Ile	Tyr	Asn	Asn	Pro 560
20	Tyr 3	Thr F	lis Tì	r Va 56		y Tyr	Phe	Ile	Leu 570	Lys	Thr	Ser	Ser	Tyr 575	Gly
25	Trp	Phe I	Pro Ti		y Gl	n Val	. Ser	Asn 585	Glu	His	Trp	Glu	Туг 590	Val	Gly
30	His		Gln A 595	sn Se	r Al	a Glr	n Ala 600	Let	ı Lev	Ala	Asn	Arg 605	Ile	Asn	Asn
35		Gly 610	Tyr L	eu Ty	r Hi	s Gly 61	y Lys	i Lei	ı Lev	ı Gly	Asn 620	Ile	Asn	Phe	Ser
55	Asn 625	Lys	Ala T	hr Pi	co Gl 63		r Thi	c Gly	y Ala	a Leu 635	val	. Met	Asp	Gly	Ser 640
40				6	45				651	0				633	
45	Gln	Gly		ro V 60	al I	le Hi	s Al	a Se 66	r Th	r Sei	c Gli	n Ser	67	e Ala O	a Asn
50	Thr	Val	Ser 5	er L	eu G	ly As	sp As 68	n Se O	r Va	l Le	u Th	r Gli 68	n Pro	o Th	r Ser
50	Phe	Thr 690		A ca	sp T	rp G] 69	lu As 95	n Ar	g Th	ır Ph	e Se 70	r Ph	e Gl	y Se	r Leu

55

	Val 1	Leu i	Lys	Yab ,		Asp 710	Phe	Gly	Leu	Glγ	Arg 715	Asn	Ala	Thr	Leu	Asn 720
5	Thr '	Thr	Ile	Gln	Ala 725	Asp	Asn	Ser	Ser	Val 730	Thr	Leu	Gly	Asp	Ser 735	Arg
10	Val	Phe	Ile	Asp 740	Lys	Lys	Asp	Gly	Gln 745	Gly	Thr	Ala	Phe	Thr 750	Leu	Glu
15	Glu	Gly	Thr 755	Ser	Val	Ala	Thr	Lys 760	Asp	Ala	Asp	Lys	Ser 765	Val	Phe	Asn
	Gly	Thr 770	Val	Asn	Leu	Asp	Asn 775	Gln	Ser	Val	Leu	Asn 780	Ile	Asn	Glu	Ile
20	Phe 785	Asn	Gly	Gly	Ile	Gln 790	Ala	Asn	Asn	Ser	Thr 795	Val	Asn	Ile	Ser	Ser 800
25	qeA	Ser	Ala	Val	Leu 805	Glu	Asn	Ser	Thr	Leu 810	Thr	Ser	Thr	Ala	Leu 815	Asn
30	Leu	Asn	ГÀЗ	Gly 820	Ala	Asn	Val	Leu	Ala 825	Ser	Gln	Šer	Phe	Val 830	Ser	Asp
	Gly	Pro	Val 835	Asn	Ile	Ser	Asp	Ala 840		Leu	Ser	Leu	Asn 845		Arg	Pro
35	Asp	Glu 850		Ser	His	Thr	Leu 855		Pro	Val	туг	Asp 860	Tyr	Ala	Gly	Ser
40	Trp 865		Leu	Lys	Gly	Asp 870		Ala	Arg	Lev	Asn 875	Val	Gly	Pro	Tyr	Ser 880
4 5	Met	Leu	Ser	: Gly	Asr 885		Asr	ı Val	Glr	a Ası 890) Lys	Gly	/ Thr	· Val	. Thr . 895	Leu i.
	Gly	Gly	r Gli	u Gly 900		ı Leı	ı Ser	r Pro	Ası 909		ı Thi	: Le	ı Glr	910	n Glr	n Met
50	Lev	1 Туг	91!		ı Phe	e Asr	n Gly		r Arg	g Ası	n Thi	r Trj	925 925		/ Sei	Leu
<i>55</i>	Asr	n Ala	a Pro	geA c	Al.	a Th:	r Va	l Se	r Mel	t Th	r As	p Th	r Glı	n Trj	o Sei	c Met

	930	935	940	
5	Asn Gly Asn Ser Thr 945	Ala Gly Asn Met Ly 950	rs Leu Asn Arg Thr 955	Ile Val 960
10	Gly Phe Asn Gly Gly 965	Thr Ser Ser Phe Th	nr Thr Leu Thr Thr	Asp Asn 975
	Leu Asp Ala Val Gln 980	Ser Ala Phe Val Me 985	et Arg Thr Asp Leu 990	Asn Lys
15	Ala Asp Lys Leu Val 995	. Ile Asn Lys Ser i 1000	Ala Thr Gly His A 1005	sp Asn Ser
20	Ile Trp Val Asn Ph 1010	ne Leu Lys Lys Pro 1015	Ser Asp Lys Asp	Thr Leu
25	Asp Ile Pro Leu V 1025	al Ser Ala Pro Glu 1030	Ala Thr Ala Asp 1035	Asn Leu
	Phe Arg Ala Ser T 1040	hr Arg Val Val Gly 1045	Phe Ser Asp Val	Thr Pro
30	Thr Leu Ser Val A 1055	rg Lys Glu Asp Gly 1060	y Lys Lys Glu Trp 1065	Val Leu
35	Asp Gly Tyr Gln V 1070	al Ala Arg Asn Asp 1075	o Gly Gln Gly Lys 1080	Ala Ala
40	Ala Thr Phe Met F 1085	His Ile Ser Tyr Ası 1090	n Asn Phe Ile Thr 1095	Glu Val
	Asn Asn Leu Asn I	Lys Arg Met Gly As 1105	p Leu Arg Asp Ile 1110	Asn Gly
45	Glu Ala Gly Thr ' 1115	Trp Val Arg Leu Le 1120	ou Asn Gly Ser Gly 1125	Ser Ala
50	Asp Gly Gly Phe 1130	Thr Asp His Tyr Th	nr Leu Leu Gln Met 1140	Gly Ala
55	Asp Arg Lys His 1145	Glu Leu Gly Ser Me 1150	et Asp Leu Phe Thr 1155	Gly Val

5	Met	Ala 1160	Thr	Tyr	Thr	Asp	Thr 1165	qeA	Ala	Ser	Ala	Gly 1170	Leu	Tyr	Ser
10	Gly	Lys 1175	Thr	Lys	Ser	Trp	Gly 1180	Gly	Gly	Phe	Tyr	Ala 1185	Ser	Gly	Leu
70	Phe	Arg 1190	Ser	Gly	Ala	Tyr	Phe 1195	Asp	Leu	Ile	Ala	Lys 1200	Tyr	Ile	His
15	Asn	Glu 1205		Lys	Tyr	Asp	Leu 1210	Asn	Phe	Ala	Gly	Ala 1215	Gly	Lys	Gln
20	Asn	Phe 1220		Ser	His	Ser	Leu 1225		Ala	Gly	Ala	Glu 1230	Val	Gly	Tyr
	Arg	Tyr 1235		Leu	Thr	Asp	Thr 1240		Phe	Val	Glu	Pro 1245	Gln	Ala	Glu
25	Leu	Val 1250		Gly	Arg	Leu	Gln 1255		Gln	Thr	Phe	Asn 1260	Trp	Asn	Asp
30	Ser	Gly 1265		Asp	Val	Ser	Met 1270		Arg	Asn	Ser	Val 1275	Asn	Pro	Leu
35	Va]	Gly 1280	_	Thr	Gly	· Val	. Val 1285		Gly	, Lys	Thr	Phe 1290	Ser	Gly	Lys
	Ası	7rp 129		: Lev	Thr	Ala	a Arg 1300		a Gly	/ Leu	His	Tyr 1309	Glu	Phe	e Asp
40	,Le1	u Thr 131		Ser	: Ala	a Asp	val 131		s Lei	ı Lys	. Asr	Ala 1320	Ala	a Gly	/ Glu
45	Hi	s Gln 132		e Ası	Gly	y Ar	g Lys 133	As _]	o Gl	y Arg	y Met	Leu 1335	Ту1 5	c Gly	y Val
50	. G l	y Leu 134		n Ala	a Arq	g Ph	e Gly 134		p As	n Thi	. Arc	135	Gly 0	y Le	u Glu
	Va	l Glu 135		g Se	r Al	a Ph	e Gly 136	o Ly	з Ту	r Ası	n Th	r Asp 136	As _] 5	p Al	a Ile
55															•

	Asn Ala Asn Ile Arg Tyr Ser Phe 1370 1375
5	
10	<210> 27 <211> 349 <212> PRT <213> Escherichia coli <400> 27
	Met Ile Thr Leu Phe Arg Leu Leu Ala Ile Leu Cys Leu Phe Phe Asn 1 15
15	Val Ser Ala Phe Ala Val Asp Cys Tyr Gln Asp Gly Tyr Arg Gly Thr 20 25 30
20	Thr Leu Ile Asn Gly Asp Leu Pro Thr Phe Lys Ile Pro Glu Asn Ala 35 40 45
25	Gln Pro Gly Gln Lys Ile Trp Glu Ser Gly Asp Ile Asn Ile Thr Val 50 55 60
	Tyr Cys Asp Asn Ala Pro Gly Trp Ser Ser Asn Asn Pro Ser Glu Asn 65 70 75 80
30	Val Tyr Ala Trp Ile Lys Leu Pro Gln Ile Asn Ser Ala Asp Met Leu 85 90 95
35	Asn Asn Pro Tyr Leu Thr Phe Gly Val Thr Tyr Asn Gly Val Asp Tyr 100 105 110
40	Glu Gly Thr Asn Glu Lys Ile Asp Thr His Ala Cys Leu Asp Lys Tyr 115 120 125
40	Glu Gln Tyr Tyr Asn Gly Tyr Tyr His Asp Pro Val Cys Asn Gly Ser 130 135 140
45	Thr Leu Gln Lys Asn Val Thr Phe Asn Ala His Phe Arg Val Tyr Val 145 150 155 160
50	Lys Phe Lys Ser Arg Pro Ala Gly Asp Gln Thr Val Asn Phe Gly Thr 165 170 175
55	Val Asn Val Leu Gln Phe Asp Gly Glu Gly Gly Ala Asn Met Ala Pro 180 185 190
<i>55</i>	

5	Asn	Ala	Lys 195	Asn	Leu	Arg	Tyr	Ala 200	Ile	Thr	Gly	Leu	Asp 205	Asn	Ile	Ser ···
	Phe	Leu 210	Asp	Сув	Ser	Val	Asp 215	Val	Arg	Ile	Ser	Pro 220	Glu	Ser	Gln	Ile
10	Val 225	Asn	Phe	Gly	Gln	Ile 230	Ala	Ala	Asn	Ser	Ile 235	Ala	Thr	Phe	Pro	Pro 240
15	Lys	Ala	Ala	Phe	Ser 245	Val	Ser	Thr	Ile	Lys 250	Asp	Ile	Ala	Ser	Asp 255	Cys
20	Thr	Glu	Gln	Phe 260	Asp	Val	Ala	Thr	Ser 265	Phe	Phe	Thr	Ser	Asp 270	Thr	Leu
	Туг	Asp	Asn 275	Thr	His	Leu	Glu	Ile 280	Gly	Asn	Gly	Leu	Leu 285	Met	Arg	Ile
25	Thr	890 785		Lys	Thr	Gln	Glu 295	Asp	Ile	Lys	Phe	Asn 300	Gln	Phe	Lys	Leu
30	Phe 305		Thr	Tyr	Ile	Pro 310	Gly	Gln	Ser	Ala	Ala 315		Ala	Thr	Arg	Asp 320
35	Tyr	Gln	Ala	Glu	Leu 325		Gln	Lys	Pro	330		Pro	Leu	Val	Туг 335	Gly
	Pro	Phe	Gln	Lys 340		Leu	Ile	Val	Lys 345	Ile	Asn	. Tyr	His			
	<21 <21 <21 <21	.1>	28 840 PRT Esch	nerio	hia	coli										
45	<40 Met	• •	28 1 Asr	Lvs	Asn	. Thr		e Ser	Arc	Asp	Lys	Leu	ı Ser	His	Ala	Ile
	1				5					10	•				15	
50	ГÀ	s Ası	ı Ala	1 Let 20	ı Ser	Gly		L Val	. Cys 25		. Lev	. Leu	ı Phe	30	. Leu	Pro
55	Va]	l His	s Ala	a·Val	l Glu	ı Phe	e Ası	n Val	L Asp	, Met	: Ile	e Asp	o Ala	a Glu	ı Asp	Arg

			35					40					45			
5	Glu	Asn 50	Ile	Asp	Ile	Ser	Arg 55	Phe	Glu	Lys	rys	Gly 60	Tyr	Ile	Pro	Pro
10	Gly 65	Arg	Туr	Leu	Val	Arg 70	Val	Gln	Ile	Asn	Lys 75	Asn	Met	Leu	Pro	Gln 80
	Thr	Leu	Ile	Leu	Glu 85	Trp	Val	Lys	Ala	Asp 90	Asn	Glu	Ser	Gly	Ser 95	Leu
15	Leu	Cys	Leu	Thr 100	Lys	Glu	Asn	Leu	Thr 105	Asn	Phe	Gly	Leu	Asn 110	Thr	Glu
20	Phe	Ile	Glu 115	Ser	Leu	Gln	Asn	Ile 120	Ala	Gly	Ser	Glu	Cys 125	Leu	qeA	Leu
25	Ser	Gln 130	Arg	Gln	Glu	Leu	Thr 135	Thr	Arg	Leu	Asp	Lys 140	Ala	Thr	Met	Ile
	Leu 145		Leu	Ser	Val	Pro 150	Gln	Ala	Trp	Leu	Lys 155		Gln	Ala	Thr	Asn 160
30	Trp	Thr	Pro	Pro	Glu 165	Phe	Trp	Asp	Thr	Gly 170		Thr	Gly	Phe	Ile 175	Leu
35	Asp	Tyr	Asn	Val 180		Ala	Ser	Gln	Tyr 185		Pro	His	His	Gly 190	Asp	Ser
40	Thr	Gln	Asn 195	Val	Ser	Ser	Tyr	Gly 200		: Leu	Gly	Phe	Asn 205	Leu	Gly	Ala
	Trp	210	J Leu	Arg	ser	. Ast	7yr 215		туг	Asn	Glr	220	Phe	Ala	Asp	Gly
45	Arc 225		: Val	Asn	Arg	230		: Glu	ı Phe	e Ala	Arg 235		Tyr	Leu	Phe	Arg 240
50	Pro	o Ile	e Pro	Ser	7rp 245		r Sei	: Lys	s Phe	e Thr 250	Met	: Gl _y	y Glr	ı Tyr	Asp 255	Leu
<i>55</i>	Sei	c Se	r Asn	260		c As	p Thi	. Phe	e His 26		• Thi	r Gly	/ Ala	270	Leu	Glu

5	Ser	Asp	Glu 275	Ser	Met	Leu	Pro	Pro 280	Asp	Leu	Gln	Gly	Tyr 285	Ala	Pro	Gln
40	Ile	Thr 290	Gly	Ile	Ala	Gln	Thr 295	Asn	Ala	Lys	Val	Thr 300	Val	Ala	Gln	Asn
10	Gly 305	Arg	Val	Leu	Tyr	Gln 310	Thr	Thr	Val	Ala	Pro 315	Gly	Pro	Phe	Thr	Ile 320
15	Ser	Asp	Leu	Gly	Gln 325	Ser	Phe	Gln	Gly	Gln 330	Leu	Asp	Val	Thr	Val 335	Glu
20	Glu	Glu	Asp	Gly 340	Arg	Thr	Ser	Thr	Phe 345	Gln	Val	Gly	Ser	Ala 350	Ser	Ile
	Pro	Tyr	Leu 355	Thr	Arg	Lys	Gly	Gln 360	Val	Arg	Туг	Lys	Thr 365	Ser	Leu	Gly
25	Lys	Pro 370		Ser	Val	Gly	His 375	Asn	Asp	Ile	Asn	Asn 380	Pro	Phe	Phe	Trp
30	Thr 385		Glu	Ala	. Ser	Trp 390	Gly	Trp	Leu	Asn	Asn 395	Val	Ser	Leu	Tyr	Gly 400
35	Gly	· Gly	Met	Ph∈	Thr 405		Asp	Asp	Tyr	Gln 410		Ile	Thr	Thr	Gly 415	Ile
	Gly	⁄ Ph∈	e Asn	Let 420		Gln	Phe	Gly	Ser 425		Ser	Phe	Asp	Val 430	Thr	Gly
40	Ala	a Asp	Ala 435		c Lev	ı Gln	Gln	Glr 440		ser	Gly	Asn	Leu 445	Arg	Gly	Tyr
45	Sei	r Ty:		g Ph	e Asr	туг	Ala 455		His	s Phe	e Glu	Ser 460	Thr	Gly	ser	Gln
50	11e 46	5	r Phe	e Al	a Gly	7 Ty:		g Phe	e Sei	c Asj	o Lys 475		туг	· Val	. Ser	: Met 480
	Se	r Gl	u Ty	r _. Le	u Se: 48		c Arq	g Ası	n Gly	y As 49	p Gl: 0	ı Sei	c Ile	e Ası	Asr 499	ı Glu
55																

5	Lys	Glu	Ser	Туг 500	Val	Ile :	Ser	Leu	Asn 505	Gln	Tyr	Phe	Glu	Thr 510	Leu	Glu
	Leu	Asn	Ser 515	Tyr	Leu	Asn	Val	Thr 520	Arg	Asn	Thr	Tyr	Trp 525	Asp	Ser	Ala
10	Ser	Asn 530	Thr	Asn	туг	Ser	Val 535	Ser	Val	Ser	Lys	Asn 540	Phe	Asp	Ile	Gly
15	Asp 545	Phe	Lys	Gly	Ile	Ser 550	Ala	Ser	Leu	Ala	Val 555	Ser	Arg	Ile	Arg	Trp 560
20	Asp	Asp	Asp	Glu	Glu 565	Asn	Gln	Tyr	Tyr	Phe 570	Ser	Phe	Ser	Leu	Pro 575	Leu
20	Gln	Gln	Asn	Arg 580		Ile	Ser	Tyr	Ser 585	Met	Gln	Arg	Thr	Gly 590	Ser	Ser
25	Asn	Thr	Ser 595		Met	Ile	Ser	Trp 600	Tyr	Asp	Ser	Ser	Asp 605	Arg	Asn	Asn
30	Ile	Trp 610		ılle	. Ser	Ala	Ser 615		Thi	r Asp	Asp	Asn 620	Ile	Arg	Asp	Gly
35	Gl: 629		o Thi	. Leu	ı Arg	Gly 630	Ser	Туг	Gl:	n His	635	Ser	Pro	Trp	Gly	Arg 640
33	Le	ı As	n Ile	e Ası	n Gly 645		Val	. Glr	ı Pro	o Ası 650	n Glr O	туг	. Asr	ı Ser	Val	l Thr
40	Al	a Gl	y Tr	р Ту : 66	r Gly	y Ser	. Lev	ı Th:	r Al 66	a Th	r Arg	g His	s Gly	y Val 670	L Al 6	a Leu
45	Hi	s As	р Ту 67		г Ту	r Gly	y As]	As: 68	n Al O	a Ar	g Me	t Me	t Vai	l As _l 5	o Th	r Asp
	Gl	y I) 69		r Gl	y Il	e Gl	u Il 69	e As 5	n Se	er As	n Ar	g Th 70	r Va O	1 Th	r As	n Gly
50		eu G.)5	ly I]	e Al	a Va	1 Il 71	e Pr O	o Se	r Le	eu S∈	er As 71	n Ty .5	r Th	r Th	r Se	r Met 720
55																

	Leu	Arg	Val	Asn	Asn 725	Asn	Asp	Leu	Pro	Glu 730	G1y	Val	Asp	Val	Glu 735	Asn .
5	Ser	Val	Ile	Arg 740	Thr	Thr	Leu	Thr	Gln 745.		Ala	Ile	Gly	Tyr 750	Ala	Lys
10	Leu	Asn	Ala 755	Thr	Thr	Gly	Tyr	Gln 760	Ile	Val	Gly	Val	Ile 765	Arg	Gln	Glu
15	Asn	Gly 770	Arg	Phe	Pro	Pro	Leu 775	Gly	Val	Asn	Val	Thr 780	Asp	Lys	Ala	Thr
	Gly 785	Гуз	Asp	Val	Gly	Leu 790	Val	Ala	Glu	Asp	Gly 795	Phe	Val	Tyr	Leu	Ser 800
20	Gly	Ile	Gln	Glu	Asn 805	Ser	Ile	Leu	His	Leu 810	Thr	Trp	Gly	Asp	Asn 815	Thr
25	Cys	Glu	Val	Thr 820		Pro	Asn	Gln	Ser 825	Asn	Ile	Ser	Glu	Ser 830	Ala	Ile
30	Ile	Leu	Pro 835		Lys	Thr	Val	Lys 840								
35	<21 <21 <21 <21 <40	1> 2> 3>	29 169 PRT Esch 29	eric	hia	coli										
40	Leu 1	Met	Asn	Thr	Lys 5	Gln	. Ser	Val	. Ala	Gln 10	. Leu	Ala	Val	Pro	His 15	Arg
	Lys	Arc	, Lev	Ser 20	Ser	Thr	. Met	Val	. Val 25	. Ala	Leu	. Leu	Leu	Cys	Val	Val
45	Ala	Gly	/ Ala 35	a Val	L Met	. Ile	e Asn	Ala 40	a Alá	a Asp	Phe	Pro	Ala 45	Thr	Ala	Ile
50	Glu	1 Th	c As	Pro	o Gly	/ Ala	a Ser 55	: Ala	a Phe	e Pro	Thi	Phe 60	туг	Ala	Cys	Ala
	Let 65	ı Ile	e Va	l Le	u Ala	a Va 70	l Le	ı Le	u Vai	l Ile	75	g Ası) Let	ı Lev	ı Glr	n Ala 80
<i>55</i> _																

-	Lys Pro Ala Ser Cys Ala Asn Ala Gln Glu 85 90	Lys Pro Ala Phe Arg Lys 95
5	Thr Ala Thr Gly Ile Ala Ala Thr Ala Phe 100 105	Tyr Ile Val Ala Met Ser 110
10	Tyr Cys Gly Tyr Leu Ile Thr Thr Pro Val	Phe Leu Ile Val Ile Met 125
15	Thr Leu Met Gly Tyr Arg Arg Trp Val Leu 130 135	Thr Pro Gly Ile Ala Leu 140
	Leu Leu Thr Ala Ile Leu Trp Leu Leu Phe 145 150	Val Glu Ala Leu Gln Val 155 160
20	Pro Leu Pro Val Gly Thr Phe Phe Glu 165	
25	<210> 30 <211> 311 <212> PRT <213> Escherichia coli <400> 30	
30	Met Val Leu Leu Ala Gly Ala Ala Leu Ser 1 5 10	Ile Ala Pro Val Gln Ala 15
35	Ala Ser Tyr Pro Thr Lys Gln Ile Glu Leu 20 25	Val Val Pro Tyr Ala Ala 30
40	Gly Gly Gly Thr Asp Leu Val Ala Arg Ala 35 40	A Phe Ala Asp Ala Ala Lys 45
40	Asn His Leu Pro Val Ser Ile Gly Val Ile 50 55	
45	Gly Ala Ile Gly Leu Ser Glu Ile Ala Ala 65 70	a Ala Arg Pro Asn Gly Tyr 75 80
50	Lys Ile Gly Leu Gly Thr Val Glu Leu Th 85 90	r Thr Leu Pro Ser Leu Gly 95
55	Met Val Arg Phe Lys Thr Ser Asp Phe Lys	s Pro Ile Ala Arg Leu Asn 110

5	Ala	Asp	Pro 115	Ala	Ala	Ile	Thr	Val 120	Arg	Ala	Asp	Ala	Pro 125	Trp	Asn	Ser
	Tyr	Glu 130	Glu	Phe	Met	Ala	Tyr 135	Ser	ГÄ	Ala	Asn	Pro 140	Gly	Lys	Val	Arg
10	Ile 145	Gly	Asn	Ser	Gly	Thr 150	Gly	Ala	Ile	Trp	His 155	Leu	Ala	Ala	Ala	Ala 160
15	Leu	Glu	Asp	Lys	Thr 165	Gly	Thr	Lys	Phe	Ser 170	His	Val	Pro	Tyr	Asp 175	Gly
20	Ala	Ala	Pro	Ala 180	Ile	Thr	Gly	Leu	Leu 185	Gly	Gly	His	Ile	Glu 190	Ala	Val
	Ser	Val	Ser 195	Pro	Gly	Glu	Val	Ile 200	Asn	His	Val	Asn	Gly 205	Gly	Lys	Leu
25	Lys	Thr 210		Val	Val	Met	Ala 215	Asp	Glu	Arg	Met	Lys 220	Thr	Met	Pro	Asp
30	Va]		Thr	Leu	Lys	Glu 230		Gly	Val	Asp	Leu 235	Ser	Ile	Gly	Thr	Trp 240
35	Arq	g Gly	Leu	Ile	Val 245		Gln	Lys	Thr	250		Asp	Val	Val	Asp 255	Val
	Le	ı Alá	. Lys	260		Lys	Glu	Thr	Ala 265	ı Glu	ı Glu	Pro	Ala	Phe 270	Gln	Asp
_. 40	Al	a Leı	1 Glr 275		. Lev	ı Asr	ı Leu	Asr 280		T Ala	a Trp	Leu	1 Asp 285	Ala	Ala	Ser
45	Ph	e Gl: 29		r Glr	n Ile	e Sei	Glu 299	ı Glr	n Glu	a Ly:	з Туг	300	e Asp)	Glu	ı Lev	ı Leu
50	Th 30		g Le	ı Gly	y Let	1 Ly: 31	s Lys	3	٠.,							•
55	<2	10> 11> 12>	31 722 PRT													

	<213> Escherichia coli <400> 31
5	Met Leu Arg Trp Lys Arg Cys Ile Ile Leu Thr Phe Ile Ser Gly Ala 1 10 15
10	Ala Phe Ala Ala Pro Glu Ile Asn Val Lys Gln Asn Glu Ser Leu Pro 20 25 30
	Asp Leu Gly Ser Gln Ala Ala Gln Gln Asp Glu Gln Thr Asn Lys Gly 35 40 45
15	Lys Ser Leu Lys Glu Arg Gly Ala Asp Tyr Val Ile Asn Ser Ala Thr 50 55 60
20	Gln Gly Phe Glu Asn Leu Thr Pro Glu Ala Leu Glu Ser Gln Ala Arg 65 70 75 80
25	Ser Tyr Leu Gln Ser Gln Ile Thr Ser Thr Ala Gln Ser Tyr Ile Glu 85 90 95
	Asp Thr Leu Ser Pro Tyr Gly Lys Val Arg Leu Asn Leu Ser Ile Gly 100 105 110
30	Gln Gly Gly Asp Leu Asp Gly Ser Ser Ile Asp Tyr Phe Val Pro Trp 115 120 125
35	Tyr Asp Asn Gln Thr Thr Val Tyr Phe Ser Gln Phe Ser Ala Gln Arg 130 135 140
40	Lys Glu Asp Arg Thr Ile Gly Asn Ile Gly Leu Gly Val Arg Tyr Asn 145 150 155 160
	Phe Asp Lys Tyr Leu Leu Gly Gly Asn Ile Phe Tyr Asp Tyr Asp Phe 165 170 175
45	Thr Arg Gly His Arg Arg Leu Gly Leu Gly Ala Glu Ala Trp Thr Asp 180 185 190
50	Tyr Leu Lys Phe Ser Gly Asn Tyr Tyr His Pro Leu Ser Asp Trp Lys 195 200 205
55	Asp Ser Glu Asp Phe Asp Phe Tyr Glu Glu Arg Pro Ala Arg Gly Trp 210 215 220

5	Asp 225		Arg	Ala	Glu	Val 230	Trp	Leu	Pro	Ser	Tyr 235	Pro	Gln	Leu	Gly	Gly 240
	ГÀз	Ile	Val	Phe	Glu 245	Gln	Tyr	Tyr	Gly	Asp 250	Glu	Val	Ala	Leu	Phe 255	Gly
	Thr	Asp	Asn	Leu 260	Glu	Lys	Asp	Pro	Tyr 265	Ala	Val	Thr	Leu	Gly 270	Leu	Asn
15	Tyr	Gln	Pro 275	Val	Pro	Leu	Leu	Thr 280	Val	Gly	Thr	Asp	Tyr 285	Lys	Ala	Gly
20	Thr	Gly 290	Asp	Asn	Ser	Asp	Val 295	Ser	Ile	Asn	Ala	Thr 300	Leu	Asn	Tyr	Gln
	Phe 305	Gly	Val	Pro	Leu	Lys 310	Asp	Gln	Leu	Asp	Ser 315	Asp	Lys	Val	Lys	Ala 320
25	Ala	His	Ser	Leu	Met 325	Gly	Ser	Arg	Leu	Asp 330		Val	Glu	Arg	Asn 335	Asn
30	Phe	Ile	Val	Leu 340		Tyr	Lys	Glu	Lys 345		Pro	Leu	Asp	Val 350	Thr	Leu
35	Trp	Leu	Lys 355		Asp	Ala	. Thr	Asn 360		. His	Pro	Glu	Cys 365	Val	Ile	ГÀЗ
	Asp	370		Glu	ı Ala	. Ala	Val 375		/ Leu	Glu	ı Lys	Cys 380	Lys	Trp	Thr	Ile
40	Asr 385		ı Lev	ıle	e Asn	His 390		Туг	: Lys	: Ile	9 Val 395	Ala	. Ala	. Ser	Trp	Gln 400
45	Ala	a Lys	s Asr	n Asr	n Ala 409		a Arç	y Thi	c Lev	ı Va 410	L Met	Pro	Va]	l Il∈	Lys 415	s Glu
50	Ası	n Th	r Le	u Th: 42		ı Gly	y Asr	n Ası	n Ası 429		s Trp	o Ası	. Lei	u Val 430		ı Pro
	Ala	a Tr	p Gl: 43		r Se:	r Se	r Ası	Gl:		a Gl	u Gli	n Gli	ı Ly: 44:		u Ası	n Thr
55																٠

5	Trp Arg Val Arg Leu Ala Leu Glu Asp Glu Lys Gly Asn Arg 450 455 460	g Gln Asn
J	Ser Gly Val Val Glu Ile Thr Val Gln Gln Asp Arg Lys Ile 465 470 475	e Glu Leu 480
10	Ile Val Asn Asn Ile Ala Asn Pro Glu Glu Asn Asn His Se 485 490	r His Glu 495
15	Ala Ser Ala Gln Ala Asp Gly Val Asp Gly Val Val Met As 500 505 51	p Leu Asp O
	Val Thr Asp Ser Phe Gly Asp Asn Thr Asp Arg Asn Gly As 515 520 525	p Ala Leu
20	Pro Glu Asp Asn Leu Thr Pro Gln Leu Tyr Asp Ala Gln As 530 535 540	p Lys Arg
25	Val Thr Leu Thr Asn Lys Pro Cys Ser Thr Asp Asn Pro Cy 545 550 555	ys Val Phe 560
30	Ile Ala Lys Gln Asp Lys Glu Lys Gly Thr Val Thr Leu Se 565 570	er Ser Thr 575
	Leu Pro Gly Thr Tyr Arg Trp Lys Ala Lys Ala Ala Pro T 580 585 5	yr Asp Asp 90
<i>35</i>	Ser Asn Tyr Val Asp Val Thr Phe Leu Gly Ala Glu Ile G 595 600 605	ly Gly Leu
40	Asn Ala Phe Ile Tyr Arg Val Gly Ala Ala Lys Pro Ser A 610 615 620	asn Leu Ile
45	Gly Lys Asp Lys Glu Pro Leu Pro Ser Thr Thr Phe Ile A	Asp Leu Phe 640
	Tyr Gly Ala Thr Thr Ile Lys Thr Val Ser Ser Ser Arg 5	Ser Lys Asn 655
50	Leu Thr Lys Arg Trp Cys Ser Thr Thr Thr Ser Gly Asn 660 665	Leu Pro Ala 670

55

	Arg A	Ala	Ser 675	Met	Val	Ser (Gly (680 Cys 1	Thr (Gly (Glu :	His	Ser <i>l</i> 685	Asn (3lu <i>l</i>	Asp
5		Val 690	Ile	Pro	Ala	Thr .	Asn . 695 _.	Arg	Glu i		Ala	Gln 700	Thr '	Tyr (3ly i	Ala
10	Gln 705	Ala	Gly	Asp	Gly	Leu 710	Gln	Gly	Tyr (Gly	Leu 715	Arg	Val	Leu '	ryr '	Thr 720
	Lys	Lys														
15													•			
20	<210 <213 <213 <213 <400	l > 2 > 3 >	32 319 PRT Esch 32	eric	hia (coli										
	Met 1	Lys	Glr	Asp	Lys 5	Arg	Arg	Gly	Leu	Thr 10	Arg	Ile	Ala	Leu	Ala 15	Leu
25	Ala	Lev	ı Ala	Gly 20	Tyr	Cys	Val	Ala	Pro 25	Val	Ala	Leu	Ala	Glu 30	Asp	Ser
30	Ala	Tr	Va:	l Asp	Ser	Gly	Glu	Thr 40	Asn	Ile	Phe	Gln	Gly 45	Ťhr	Ile	Pro
35	Trp	Let 50	д Ту	r Ser	: Glu	ı Gly	Gly 55	Ser	Ala	Thr	Thr	Asp 60	Ala	Asp	Arg	Val
	Thr 65	. Le	u Th	r Ser	a Ası	Leu 70	Lys	Gly	Ala	Arg	Pro 75	Gln	Gly	Met	Lys	Arg 80
40	Thr	c Se	r Va	l Phe	e Th:	r Arg	y Val	. Ile	: Asn	ılle 90	Gly	Asp	Thr	Glu	Gly 95	Asp
45	Val	l As	p Le	u Gly		y Leu	ı Gly	/ Asp	Asr 109	n Ala	Lys	s Thi	c Ile	Asp	Thr	·Ile
50	Arg	g Tr	р Ме 11		r Ty	r Lys	s Asp	9 Ala 129	a Glr	ı Gly	/ Gl	y Asj	p Pro 125	Lys	Glu	ı. Leu
	Al		nr Ly		i Ťh	r Se	r Ty:	r Th	r Lei	u Thi	r" As	p Al 14	a Asp O	Arg	Gl3	/ Arg
55					•											

	Tyr I]	le Gly	Ile	Glu	Ile' 150	Thr	Pro	Thr	Thr	Gln ' 155	Thr ·	Gly	Thr	Pro	Asn 160
5	Val G	ly Thr	Ala	Leu 165	His	Leu	Tyr	qaA	Val 170	Ser	Thr	Ala	Ser	Gly 175	Gly
10	Gly S	er Asp	Ser 180	Asp	Asn	Val	Ala	Pro 185	Gly	Pro	Val	Val	Asn 190	Gln	Asn
15	Leu L	ys Val 195	Ala	Ile	Phe	Val	Asp 200	Gly	Thr	Ser	Ile	Asn 205	Leu	Ile	Asn
		er Thr	Pro	Ile	Glu	Leu 215	Gly	ГЛа	Thr	Tyr	Val 220	Ala	Lys	Leu	Tyr
20	Ser <i>P</i> 225	Asp Glu	. Asn	Lys	Asn 230	Gly	Lys	Phe	Asp	Ala 235	Gly	Thr	Asp	Ala	Asp 240
25	Val 7	Thr Ala	a Asn	Tyr 245	Asp	Phe	Arg	Trp	Val 250	Leu	Ser	Gly	Ser	Ser 255	Gln
30	Gln l	Leu Gly	/ Thr 260		Gly	Gly	Ile	Val 265	. Asn	Ser	Ser	Phe	Asp 270	Asn	. Asn
	Asn	Leu Val 27!		Pro	Ala	. Thr	Asr 280	n Asp	Glu	ı Ala	Arg	Thr 285	Asn	. Lev	ı Asn
35		Pro Al	a Arg	g Asp	Gly	Lys 295	Glu	ı Ala	a Lev	ı Ser	11e	Pro) Thr	Ası	ı Gly
40	Asp 305	Gly Va	l Gli	n Gly	7 Tyr 310		. Le	ı Hi:	s Ile	315	тут	. Lys	s His	s Ly:	5
45	<210 <211 <212 <213 <400	l> 629 2> PRT 3> Esc		chia	col	i									
50	Met 1	Lys Ly	ys Va	1 Le 5	u Th	r Le	u Se	r Le	u Le 10	u Ala	a Le	u Cy	s Va	1 Se 15	r His
<i>55</i>	Ser	Ala Va	al Al 20		a As	n Ty	r Th	r Ph 25	ne As	n As	n As	p As	n Il 30	e Al	a Leu

5	Ser	Phe	Asp 35	Asp	Thr	Asn	Ser	Thr 40	Ile	Val	Leu	Lys	Asp 45	Arg	Arg	Thr	
	Asn	His 50	Pro	Ile	Thr	Pro	Gln 55	Glu	Leu	Phe	Phe	Leu 60	Thr	Leu	Pro	Asp	
10	Glu 65	Thr	ГÀЗ	Ile	His	Thr 70	Ala	Asp	Phe	Lys	Ile 75	Lys	His	Ile	Lys	Lys 80	
15	Gln	Asp	Asn	Ala	Ile 85	Val	Ile	Asp	Phe	Thr 90	Arg	Pro	Asp	Phe	Asn 95	Val	
20	Thr	Val	Gln	Leu 100	Asn	Leu	Val	Lys	Gly 105	Lys	Tyr	Ala	Ser	Ile 110	Asp	Tyr	
	Thr	Ile	Ala 115	Ala	Val	Gly	Gln	Pro 120	Arg	Asp	Val	Ala	Lys 125	Ile	Thr	Phe	
25	Phe	Pro 130		Lys	Lys	Gln	Phe 135		Ala	Pro	Tyr	Val 140	Asp	Gly	Ala	Ile	
30	Thr 145		· Ser	Pro	Ile	Ile 150		. Asp	Ser	Phe	Phe 155	Ile	Leu	Pro	Asn	Lys 160	
35	Pro) Ile	e Val	Asn	Thr 165		: Ala	Tyr	Glu	170		Thr	Asn	Leu	Asn 175	Val:	
·	Glu	ı Leı	ı Lys	Thr 180		Ile	e Glr	n Pro	Glu 185		Pro	Val	. Ser	Phe 190	Thr	Thr	
40 .	Tr) Phe	e Gly 195		Phe	Pro	o Gli	1 Thr 200		Glr	ı Lev	ı Arg	arg 205	g Ser	· Val	Asn	
45	Glı	n Pho 21		e Asr	n Ala	u Val	l Arg 219	g Pro	Arg	g Pro	э Ту	r Lys 220	s Pro	у Туг	Leu	i His	
50	Ту: 22		n Se	r Trg) Met	23		e Gly	y Phe	e Pho	e Th	r Pro	о Туг	r Thi	c Glu	1 Gln 240	
	As	p Va	l Le	u Gly	249		t As	p Gl	u Tr	p As: 25	n Ly O	s Gl	u Pho	e Ile	e Ser 259	r Gly	

_	Arg G	ly V		Ala 1 260	Leu i	Asp :	Ala	Phe	Leu 265	Leu	Asp	Asp	Gly	Trp 270	Asp	Asp
5	Leu T		ly 1 175	Arg '	Trp	Leu	Phe	280 Gly	Pro	Ala	Phe	Ser	Asn 285	Gly	Phe	Ser
10	Lys V 2	al A 90	Arg (Glu	ГÀЗ	Ala	Asp 295	Ser	Leu	His	Ser	Ser 300	Val	Gly	Leu	Trp
15	Leu S 305	Ger F	?ro	Trp	Gly	Gly 310	Tyr	Asn	Lys	Pro	Gln 315	Arg	Arg	Ser	Arg	Phe 320
00	Ala (Cys 1	Lys	Arg	Val 325	Trp	Val	Arg	Asn	Arg 330	Gly	Arg	Gln	Ala	Gly 335	Ala
20	Phe (Gly	ser	Glu 340	Leu	Leu	Lys	Asn	Phe 345	Asn	Glu	Gln	Ile	Ile 350	Asn	Leu
25	Ile	Lys	Asn 355	Glu	His	Ile	Thr	Ser 360	Phe	Lys	Leu	Asp	Gly 365	Met	Gly	Asn
30		Ser 370	Ser	His	Ile	Lys	Gly 375	Ser	Pro	Phe	Ala	Ser 380	Asp	Phe	Asp	Ala
	Ser 385	Ile	Ala	Leu	Leu	His 390		. Met	: Arg	g Arg	395	Asr	n Pro) Asr	. Leu	Phe 400
35	Ile	Asn	Leu	Thr	Thr 405		Thi	: Ast	n Ala	a Ser 410	Pro	Sei	c Try	Lev	1 Phe 419	e Tyr
40	Ala	Asp	Ser	11e		Arg	g Gli	n Gly	y Ası 42	p Ası 5	o Ile	e Ası	n Lei	1 Ty:	r Gly	y Pro
. 45	Gly	Thr	Pro 435		l Gl	n Glr	ı Trj	o Il 44	e Thi	т Ту	r Arg	g As	p Ala	a Gl	u Th	r Tyr
	Arg	Ser 450		e Val	l Ar	g Ly:	s Gl 45	y Pr 5	o Le	u Ph	e Pr	o Le 46	u As O	n Se	r Le	u Met
50	Tyr 465		Gly	y Il	e Va	l Se 47		a Gl	u As	n Al	а Ту 47	r Ty 5	r Gl	y Le	u Gl	u Lys 480

55

	Val Gln Thr Asp Ser Asp Phe Ala Asp Gln Val Trp Ser Tyr Phe Ala 485 490 495
5	Thr Gly Thr Gln Leu Gln Glu Leu Tyr Ile Thr Pro Ser Met Leu Asn 500 505 510
10	Lys Val Lys Trp Asp Thr Leu Ala Lys Ala Ala Lys Trp Ser Lys Glu 515 520 525
15	Asn Ala Ser Val Leu Val Asp Thr His Trp Ile Gly Gly Asp Pro Thr 530 535 540
	Ala Leu Ala Val Tyr Gly Trp Ala Ser Trp Ser Lys Asp Lys Ala Ile 545 550 555 560
20	Leu Gly Leu Arg Asn Pro Ser Asp Lys Pro Gln Thr Tyr Tyr Leu Asp 565 570 575
25	Leu Ala Lys Asp Phe Glu Ile Pro Ala Gly Asn Ala Ala Gln Phe Ser 580 585 590
30	Leu Lys Ala Val Tyr Gly Ser Asn Lys Thr Val Pro Val Glu Tyr Lys 595 600 605
	Asn Ala Thr Val Ile Thr Leu Gln Pro Leu Glu Thr Leu Val Phe Glu 610 615 620
35	Ala Val Thr Ile Asn 625
40	<210> 34 <211> 1778 <212> PRT <213> Escherichia coli <400> 34
45 ·	Met Asn Lys Ile Phe Lys Val Ile Trp Asn Pro Ala Thr Gly Ser Tyr 1 5 10 15
50	Thr Val Ala Ser Glu Thr Ala Lys Ser Arg Gly Lys Lys Ser Gly Arg 20 25 30
	Ser Lys Leu Leu Ile Ser Ala Leu Val Ala Gly Gly Leu Leu Ser Ser 35 40 45
55	

	Phe G	;ly 50	Ala	Ser	Ala	Asp	Asn 55	Tyr '	Thr	Gly	Gln	Pro 60	Thr	Asp '	Tyr	Gly
5	Asp (3ly	Ser	Ala	Gly	Asp 70	Gly	Trp	Val	Ala	Ile 75	Gly	Lys	Gly	Ala	Lys 80
10	Ala	Asn	Thr	Phe	Met 85	Asn	Thr	Ser	Gly	Ala 90	Ser	Thr	Ala	Leu	Gly 95	Tyr
15	Asp	Ala	Ile	Ala 100	Glu	Gly	Glu	Tyr	Ser 105	Ser	Ala	Ile	Gly	Ser 110	Lys	Thr
	Leu	Ala	Thr 115	Gly	Gly	Ala	Ser	Met 120	Ala	Phe	Gly	Val	Ser 125	Ala	Lys	Ala
20	Met	Gly 130		Arg	Ser	Val	Ala 135	Leu	Gly	Ala	Ser	Ser 140	Val	Ala	Asn	Gly
25	Asp 145	Arg	Ser	Met	: Ala	. Phe	Gly	Arg	Туг	Ala	Lys 155	Thr	: Asn	Gly	Ph∈	160
30	Ser	Leu	ı Alá	à Ile	e Gly 165	/ Asp	Ser	: Ser	Let	1 Ala 170	a Asp	o Gly	/ Glu	Lys	179	c Ile
	Ala	Lev	ı Gl	y Asi 18	n Thi	r Ala	a Lys	s Alá	18	r Glo 5	a Il	e Met	t Sei	190	a Ala	a Leu
35	Gly	· Ası	p As 19	n Al 5	a As:	n Al	a Sei	r Ly:	s Gl O	u Ty	r Al	a Me	t Ala 20	a Lei	ı Gl	y Ala
40	Ser	Se 21		s Al	a Gl	y Gl	y Al 21	a As; 5	p Se	r Le	u Al	a Ph 22	e Gl O	y Ar	g Ly	s Ser
45	Th: 229		a As	n Se	er Th	r Gl 23	y Se	r Le	u Al	a Il	.e G] 23	y Al 35	a As	p Se	r Se	er Ser 240
	Se	r As	sn As	ap As	sn Al 24	.a I] 15	le Al	a Il	e Gl	Ly As 25	sn Ly 50	ys Tl	ır Gl	n Al	a Le 29	eu Gly 55
50	Va	l As	sn Se	er Mo 2	et Al 60	la Le	eu Gl	Ly As	en A	la Se 65	er G	ln A	la Se	er Gl 21	Ly G: 70	lu Ser
<i>55</i>																

	Ser		Ala 275	Leu	Gly	Asn		Ser 280	Glu	Ala	Ser	Glu	Gln 285	Asn	Ala	Ile
5		Leu 290	Gly	Gln	Gly	Ser	Ile 295	Ala	Ser	Lys	Val	Asn 300	Ser	Ile	Ala	Leu
10	Gly 305	Ser	Asn	Ser	Leu	ser 310	Ser	Gly	Glu	Asn	Ala 315	Ile	Ala	Leu	Gly	Glu 320
15	Gly	Ser	Ala	Ala	Gly 325	Gly	Ser	Asn	Ser	Leu 330	Ala	Phe	Gly	Ser	Gln 335	Ser
	Arg	Ala	Asn	Gly 340	Asn	Asp	Ser	Val	Ala 345	Ile	Gly	Val	Gly	Ala 350	Ala	Ala
20	Ala	Thr	Asp 355	Asn	Ser	Val	Ala	Ile 360	Gly	Ala	Gly	Ser	Thr 365	Thr	Asp	Ala
25	Ser	Asn 370	Thr	Val	Ser	Val	Gly 375	Asn	Ser	Ala	Thr	Lys 380	Arg	Lys	Ile	Val
30	Asn 385	Met	Ala	Ala	Gly	Ala 390	Ile	Ser	Asn	Thr	Ser 395	Thr	Asp	Ala	Ile	Asn 400
	Gly	Ser	Gln	Leu	Tyr 405		Ile	Ser	Asp	Ser 410		Ala	Lys	Arg	Leu 415	Gly
35	Gly	Gly	Ala	Thr 420		Gly	Ser	Asp	Gly 425		Val	Thr	Ala	Val 430	Ser	Tyr
40	Ala	Leu	Arg 435		Gly	Thr	туr	Asn 440		. Val	Gly	Asp	Ala 445	Leu	Ser	Gly
45	Ile	Asp 450		Asn	Thr	Leu	Gln 455		Asn	ı Lys	Thr	Ala 460	Gly	Ala	Phe	Ser
45	Ala 465		His	Gly	Ala	Asn 470		Thr	. Asr	ı Lys	11e 475		Asn	Val	. Ala	Lys 480
50	Gly	Thr	: Val	. Ser	Ala 485		: Ser	Thi	. Ast	Va]		. Asr	Gly	Sei	Glr 495	Leu
55	Tyr	: Asp) Lev	ı Glr	ı Glı	ı Ası	Ala	Let	ı Leı	u Trį) Asr	ı Gly	y Thr	Ala	a Phe	e Ser

		500	505	510
5	Ala Ala His 515	Gly Thr Glu A	Ala Thr Ser Lys Ile 520	Thr Asn Val Thr Ala 525
10	Gly Asn Leu 530	Thr Ala Gly S	Ser Thr Asp Ala Val 535	Asn Gly Ser Gln Leu 540
	Lys Thr Thr 545	Asn Asp Asn 550	Val Thr Thr Asn Thr 555	Thr Asn Ile Ala Thr 560
15	Asn Thr Thr	Asn Ile Thr 565	Asn Leu Thr Asp Ala 570	a Val Asn Gly Leu Gly 575
20	Asp Asp Ser	Leu Leu Trp 580	Asn Lys Ala Ala Gl 585	y Ala Phe Ser Ala Ala 590
25	His Gly Th	r Glu Ala Thr 5	Ser Lys Ile Thr As	n Val Thr Ala Gly Asn 605
	Leu Thr Al 610	a Gly Ser Thr	Asp Ala Val Asn Gl 615	y Ser Gln Leu Lys Thr 620
30	Thr Asn As	p Asn Val Thr 630	Thr Asn Thr Thr As	sn Ile Ala Thr Asn Thr 35 640
35	Thr Asn Il	e Thr Asn Leu 645	Thr Asp Ala Val As 650	sn Gly Leu Gly Asp Asp 655
40	Ser Leu Le	eu Trp Asn Lys 660	Thr Ala Gly Ala P 665	he Ser Ala Ala His Gly 670
		la Thr Ser Lys 75	B Ile Thr Asn Val T 680	hr Ala Gly Asn Leu Thr 685
45	Ala Gly S	er Thr Asp Ala	a Val Asn Gly Ser G 695	In Leu Lys Thr Thr Asn 700
50	Asp Asn V 705	al Thr Thr As:	n Thr Thr Asn Ile A	Ala Thr Asn Thr Thr Asn 715 720
55	Ile Thr A	sn Leu Thr As 725	p Ala Val Asn Gly I 730	Leu Gly Asp Asp Ser Leu 735

5	Leu	Trp	Asn	Lys 740	Thr	Ala	Gly	Ala	Phe 745	Ser	Ala	Ala	His	Gly 750	Thr	Asp
	Ala	Thr	Ser 755	Lys	Ile	Thr	Asn	Val 760	Lys	Ala	Gly	Asp	Leu 765	Thr	Ala	Gly
10	Ser	Thr 770	Asp	Ala	Val	Asn	Gly 775	Ser	Gln	Leu	Lys	Thr 780	Thr	Asn	Asp	Asn
15	Val 785	Ser	Thr	Asn	Thr	Thr 790	Asn	Ile	Thr	Asn	Leu 795	Thr	Asp	Ala	Val	Asn 800
20	Gly	Leu	Gly	Asp	Asp 805	Ser	Leu	Leu	Trp	Asn 810	Lys	Thr	Ala	Gly	Ala 815	Phe
	Ser	Ala	Ala	His 820	Gly	Thr	Asp	Ala	Thr 825	Ser	Lys	Ile	Thr	Asn 830	Val	Lys
25	Ala	Gly	Asp 835	Leu	Thr	Ala	Gly	Ser 840	Thr	Asp	Ala	Val	Asn 845	Gly	Ser	Gln
30	Leu	Lys 850	Thr	Thr	Asn	Asp	Asn 855	Val	Ser	Thr	Asn	Thr 860	Thr	Asn	Ile	Thr
35	Asn 865		Thr	Asp	Ser	Val 870	Gly	Asp	Leu	Lys	Asp 875	Asp	Ser	Leu	Leu	Trp 880
	Asn	Lys	Ala	Ala	Gly 885		Phe	Ser	Ala	Ala 890	His	Gly	Thr	Glu	Ala 895	Thr
40	Ser	. Lys	Ile	900		. Leu	Leu	Ala	Gly 905		: Ile	Ser	Ser	Asn 910		Thr
45	Asp	Ala	Ile 915		Gly	Ser	Gln	Leu 920		Gly	, Val	Ala	Asp 925	Ser	Phe	Thr
<i>50</i>	Ser	Tyr 930		ı Gly	Gly	Gly	7 Ala 935		ıle	e Sei	c Asp	940		Val	. Leu	. Ser
,	Gl ₃ 945		Thi	туг	Thr	: Ile 950		g Gly	Thi	c Ası	955	Thi	- Asr	ı Val	. Gly	/ Asp 960
55																

	Ala Leu Ala Ala Ile Asn Thr Ser Phe Ser Thr Ser Leu Gly Asp Ala 965 970 975
5	Leu Leu Trp Asp Ala Thr Ala Gly Lys Phe Ser Ala Lys His Gly Ile 980 985 990
10	Asn Asn Ala Pro Ser Val Ile Thr Asp Val Ala Asn Gly Ala Val Ser 995 1000 1005
15	Ser Thr Ser Ser Asp Ala Ile Asn Gly Ser Gln Leu Tyr Gly Val 1010 1015 1020
	Ser Asp Tyr Ile Ala Asp Ala Leu Gly Gly Asn Ala Val Val Asn 1025 1030 1035
20	Thr Asp Gly Ser Ile Thr Thr Pro Thr Tyr Ala Ile Ala Gly Gly 1040 1045 1050
25	Ser Tyr Asn Asn Val Gly Asp Ala Leu Glu Ala Ile Asp Thr Thr 1055 1060 1065
30	Leu Asp Asp Ala Leu Leu Trp Asp Thr Thr Ala Asn Gly Gly Asn 1070 1075 1080
	Gly Ala Phe Ser Ala Ala His Gly Lys Asp Lys Thr Ala Ser Val 1085 1090 1095
35	Ile Thr Asn Val Ala Asn Gly Ala Val Ser Ala Thr Ser Asn Asp 1100 1105 1110
40	Ala Ile Asn Gly Ser Gln Leu Tyr Ser Thr Asn Lys Tyr Ile Ala 1115 1120 1125
45	Asp Ala Leu Gly Gly Asp Ala Glu Val Asn Ala Asp Gly Thr Ile 1130 1135 1140
	Thr Ala Pro Thr Tyr Thr Ile Ala Asn Thr Asp Tyr Asn Asn Val 1145 1150 1155
50	Gly Glu Ala Leu Asp Ala Leu Asp Asn Asn Ala Leu Leu Trp Asp 1160 1165 1170

55

•	Glu	Asp 1175	Ala	Gly	Ala		Asn 1180	Ala	Ser	His	Asp	Gly 1185	Asn	Ala	Ser
5	Lys	Ile 1190	Thr	Asn	Val	Ala	Ala 1195	Gly	Asp	Leu	Ser	Thr 1200	Thr	Ser	Thr
. 10	Asp	Ala 1205		Asn	Gly	Ser	Gln 1210	Leu	Asn	Ala	Thr	Asn 1215	Ile	Leu	Val
1 <i>5</i>	Thr	Gln 1220	Asn	Ser	Gln	Met	Ile 1225	Asn	Gln	Leu	Ala	Gly 1230	Asn	Thr	Ser
19	Glu	Thr 1235	Tyr	Ile	Glu	Glu	Asn 1240		Ala	Gly	Ile	Asn 1245	Tyr	Val	Arg
20	Thr	Asn 1250		Ser	Gly	Leu	Ala 1255	Phe	Asn	Asp	Ala	Ser 1260	Ala	Ser	Gly
25	Ile	Gly 1265		Thr	Ala	Val	Gly 1270	Tyr	Asn	Ala	Val	Ala 1275		His	Ala
	Ser	Ser 1280		Ala	Ile	Gly	Gln 1285		Ser	Ile	Ser	Glu 1290	Val	Asp	Thr
<i>30</i>	Gly	Ile 1295		Leu	Gly	Ser	Ser 1300		Val	Ser	Ser	Arg 1305	Val	Ile	Val
35	Lys	Gly 1310		Arg	Asn	Thr	Ser 1315		Ser	Glu	Glu	Gly 1320		Val	Ile
40	Gly	Tyr 1325		Thr	Thr	Asp	Gly 1330		Lev	Leu	Gly	Ala 1335		Ser	lle
	Gly	Asp 1340		Gly	Lys	Tyr	Arg 1345		Ile	: Ile	Asn	Val 1350	Ala	Asp	Gly
45	Ser	Glu 1355		His	qeA	Ala	Val 1360		· Val	l Arg	Gln	Leu 1365		Asn	ı Ala
50	Ile	Gly 1370		. Val	. Ala	Thr	Thr 1375		Th	r Lys	туг	Tyr 1380		. Ala	a Asn
55	Sei	r Thr	Ala	i Glu	ı Asp	Se1	c Leu	Ala	a Va	l Gly	/ Glu	ı Asp	Ser	. Lev	ı Ala

	;	1385					1390				:	1395			
5		Gly 1400	Ala	Lys	Thr	Ile	Val 1405	Asn	Gly	Asn	Ala	Gly 1410	Ile (Gly	Ile
10	_	Leu 1415	Asn	Thr	Leu	Val	Leu 1420	Ala	Asp	Ala	Ile	Asn 1425	Gly	Ile .	Ala
		Gly 1430	Ser	Asn	Ala	Arg	Ala 1435	Asn	His	Ala	Asp	Ser 1440	Ile .	Ala	Met
15	Gly	Asn 1445	Gly	Ser	Gln	Thr	Thr 1450	Arg	Gly	Ala	Gln	Thr 1455	Asn	Tyr	Thr
20	Ala	Tyr 1460		Met	Asp	Ala	Pro 1465	Gln	Asn	Ser	Val	Gly 1470	Glu	Phe	Ser
25	Val	Gly 1475	Ser	Glu	Asp	Gly	Gln 1480	Arg	Gln	Ile	Thr	Asn 1485	Val	Ala	Ala
	Gly	Ser 1490		Asp	Thr	Asp	Ala 1495	Val	Asn	Val	Gly	Gln 1500	Leu	Lys	Val
30	Thr	Asp 1505		Gln	Val	Ser	Gln 1510		Thr	Gln	Ser	Ile 1515	Thr	Asn	Leu
35	Asn	Thr 1520		Val	Thr	Asn	Leu 1525		Thr	Arg	Val	Thr 1530	Asn	Ile	Glu
40	Asn	Gly 1535		Gly	Asp	ıle	val 1540		Thr	Gly	Ser	Thr 1545	Lys	Tyr	Phe
	Lys	Thr 1550		Thr	Asp	Gly	/ Ala 1555	Asp	Ala	. Asn	Ala	Gln 1560	Gly	Lys	Asp
45	Ser	Val 1565		lle	Gly	/ Sei	Gly 1570		: Ile	e Ala	Ala	Ala 1575	Asp	Asn	Ser
50	Val	. Ala 1580		ı Gly	Thi	c Gly	y Ser 1589		l Alá	a Asp	Glu	Glu 1590	Asn	Thr	Ile
. 55	Ser	val 1599		y Sei	s Sei	r Th	r Asn 160		n Arg	g Arg	, Ile	thr 1605	Asn	Val	. Ala

5	Ala	Gly 1610	Val	Asn	Ala	Thr	Asp 1615	Ala	Val	Asn	Val	Ser 1620	Gln	Leu	Lys
	Ser	Ser 1625		Ala	Gly	Cly	Val 1630		Tyr	Asp	Thr	Lys 1635		Asp	Gly
10	Ser	Ile 1640		Tyr	Ser	Asn	Ile 1645			Gly	Gly	Gly 1650	Asn	Ser	Gly
15	Thr	Thr 1655		Ile	Ser	Asn	Val 1660	Ser	Ala	Gly	Val	Asn 1665	Asn	Asn	Asp
20	Ala	Val 1670		Tyr	Ala	Gln	Leu 1675		Gln	Ser	Val	Gln 1680	Glu	Thr	Lys
	Gln	Tyr 1685		Asp	Gln	Arg	Met 1690		Glu	Met	Asp	Asn 1695	Lys	Leu	Ser
25	Lys	Thr 1700		Ser	Lys	Leu	Ser 1705		Gly	Ile	Ala	Ser 1710	Ala	Met	Ala
30	Met	Thr 1715		Leu	Pro	Gln	Ala 1720		Thr	Pro	Gly	Ala 1725	Ser	Met	Ala
35		1730)				Tyr 1735	,				1740	ı		·
	Gly	7 Val 1749		. Met		. Ser	1750		ı Gly	Arc	Trp	Val 1755	Tyr	Lys	Leu
40	Glr	1 Gly 1760		Thr	- Asr	ı Sei	Gln 1765		7 Glu	і Туі	: Ser	Ala 1770	Ala	. Leu	Gly
45	Ala	a Gly 177		e Glr	ı Try	,							. 1.		•
50	<2 <2 <2 <4	11> 12> 13> 00>	PRT Esch 35	ericl									·		
55	Me	t Asn	Leu	Lys	Lys	Thr	Leu	Leu	Ser	Val	Leu 1	Met I	le Le	eu G	ln Leu

	1				5					10						15	
5	CAa	Leu	Leu	Val 20	Gly	Cys	Asp	Tyr	Il∈ 25	e Gl	u L	ys i	Ala	Ser	Lys 30	Val	Asp
10	Asp	Leu	Val 35	Thr	Gln	Gln	Glu	Leu 40	Glr	ı Ly	s S	er	Lys	Ile 45	Glu	Ala	Leu
	Glu	L ys 50	Gln	Gln	Glu	Leu	Asp 55	Lys	ar Ar	g Ly	rs 1	[le	Glu 60	His	Phe	Glu	Lys
15	Gln 65	Gln	Thr	Thr	Ile	Il∈ 70	. Asn	ı Sei	r Th	r Ly	/s :	Thr 75	Leu	Ala	Gly	Val	Val 80
20	Lys	Ala	Val	Lys	Aan 85	. Lys	3 Glr	n As	p Gl	u Pl 90	he '	Val	Phe	Thr	Glu	Phe 95	e Asn
25	Pro	Ala	Gln	100	Glr	ту:	r Phe	e Il	e Le 10	eu A	sn	Asn	Gly	Ser	Vaļ 110	Gly	/ Leu
25	Ala	a Gly	/ Lys		e Lei	ı Se	r Il	e As	(A q 0	la V	al	Glu	Asn	Gly 125	Ser	· Vai	l Ile
30	Arg	g Ile 13		r Le	u Va	l As	n Le 13	u Le	eu Se	er V	al	Pro	Val 140	. Sei	: Ası	n Me	t Gly
35	Pho 14		r Al	a Th	r Tr	p Gl 15	y G1	.у G:	tu L	ys F	Pro	Thr 155	- Asp	o Ile	e Asi	n Al	a Leu 160
40	Al	a Ly	s Tr	p Gl	n Gl 16	n Le	eu Le	eu P	he S	er 1	Thr 170	Ala	a Me	t As	n Se	r Se 17	r Leu 'S
40	Ъу	s L∈	eu Le	eu Pi 18	co G1	.у G:	ln T	rp G	ln A	.sp : .85	Ile	Ası	n Le	u Th	r Le 19	u Ly 0	ys Gly
45	Va	al Se		co A:	sn As	sn L	eu L	ys T	yr I 00	Jeu	Lys	Le	u Al	a Il 20	e As	en Me	et Ala
50	As		le G: 10	ln P	he A	sp A	rg L 2	eu (ln I	Pro	Ala	a Gl	u Se 22	er Pr 20	:o G	Ln A	rg Lys
<i>55</i>		sn L 25	ys L	γs													

5	<210> 36 <211> 1109 <212> PRT <213> Escherichia coli <400> 36	
10	Met Lys Arg Val Val Arg Leu Leu Gly Val Gly Leu Leu Leu Va 1 5 10 15	.1
15	Val Leu Leu Ile Leu Phe Val Leu Ala Gln Thr Thr Pro Leu Il 20 25 30	.е ^
	Ser Ala Gln Asp Glu His Ala Val Trp Leu Arg Leu Leu Ile Thr Al 35 40 45	.a
20	Ile Val Ile Cys Leu Leu Ser Met Cys Ile Phe Phe Leu Phe Ser Ph 50 55 60	ıe
25	Arg Gln Asn Glu Ala Ser Thr Ile Ser Leu Tyr Ala Gln Pro Thr As 65 70 75 80	Sp O
22	Ile Lys Glu Ile Asn Thr Glu Gln Pro Asn Tyr Ala Ser Leu Leu Th 85 90 95	hr
30	Ile Tyr Leu Arg Asp Arg Tyr Gly Pro Phe Trp Arg Arg Lys Val A 100 105 110	rg
35	Leu Leu Leu Val Thr Gly Glu Pro Glu Gln Ala Glu Ala Ile Ala P 115 120 125	ro
40	Gly Leu Thr Gly Gln His Trp Leu Glu Gly Asp His Thr Val Leu I 130 135 140	le
	Tyr Gly Gly Arg Pro Thr Ala Glu Pro Asp Val Thr Leu Leu Thr A 145 150 155 1	1a .60
45	Leu Lys Lys Leu Arg Arg Ser Arg Pro Leu Asp Gly Ile Ile Trp A 165 170 175	la
50	Leu Thr Glu Glu Gln Ser Arg Gln Thr Ala Gln Leu Asp Lys Gly T 180 185 190	rp
55	Arg Gly Leu Ile Asn Gly Gly Lys Arg Leu Gly Phe Gln Ala Pro I	ieu

			195					2	00					205				
5	Tyr	Leu 210	Trp	Gln	Val	Cys	As 21	ър <i>I</i> .5	Asp (Gly	Asp	Tyr	Gln 220	Thr	Gl	y A	rg	Pro
10	Leu 225	Gln	Ser	Val	Gly	Cys 230	Le	eu l	Leu	Pro	Glu	Arg 235	Cys	Thr	Pr	:o G	€lu	Gln 240
	Leu	Ala	Val	Met	Leu 245	Glu	A]	La .	Ala	Ala	Asp 250	Gly	Thr	Gl3	, Hi	is \	/al 255	Ala
15	Ala	Thr	Asp	Arg 260		Arg	j Me	et	Phe	Ser 265	Ala	Ala	Ser	Gly	/ Se	er 5	Гуr	Pro
20	Cys	Arg	Ala 275		туз	Cy:	s S	er	Leu 280	Ala	Asp	Ar <u>c</u>	, Pro	28	1 T) 5	hr.	Ala	Ala
25	Gly	Arg 290	y Arg	Arg	g Ile	e Ph	e P 2	he 95	Pro	Ala	. Pro	Alá	300	g Pr	o A	qe	Val	Gln
25	Pro 305		a Alá	. Су:	s Ar	g Ar 31		.la	Gly	Gly	Glr	1 His 31!	s Le	u Me	t G	ln	Trp	Leu 320
30	Pro	s Sei	r Pro	o Va	1 Tr 32		a G	Sly	Val	Thi	7 Va:	l Il	e Th	r Ar	g A	la	Gly 335	Ala
35	Arg	g Tr	p Vai	1 Ph 34		u Tr	p I	Leu	Arg	Th:	r Al	a Le	u Me	t S∈	er A	Ala 850	Val	Cys
	Va	l Le	u Va 35		e Tr	:p G]	.y <i>i</i>	Ala	Gly 360	, Me	t Th	r Th	r Se	er Pl	ne I 55	Phe	Ala	a Asn
40	Ar	g Al 37		u Vā	il G	ln G	lu '	Thr 375	Gly	/ Il	e Gl	n Th	ır Al 38	ia A 30	rg i	Ala	Let	ı Asp
45	Th		g Le	u Pi	ro L		la 90	Glu	ı Glı	n Le	u Vá	al Al 39	.a Le 95	eu H	is '	Thr	Let	u Gln 400
50	GJ	.y Gi	Lu Le	eu G		rg L 05	eu	Glr	ту	r Ar	g I. 4:	le Ai 10	rg G	lu G	ly	Ala	Pr 41	o Trp 5
	Т	yr G	ln A		he G 20	ly I	en	Gl	ı Ar	g As 42	sn G 25	ln G	ln L	eu I	eu	Ala 430	a Al	a Ala
55																		

5		Phe	Pro	Gly 435	Tyr	Ala	Gln	Ala	Ala 440	Asn	Arg	Leu	Val	Arg 445	qzA	Val .	Ala
		Val	Asp 450	His	Leu	Gln	Gln	Gln 455	Leu	Asn.	Ala	Phe	Val 460	Ala	Leu	Pro	Pro
10		Asn 465	Ser	Pro	Gln	Λrg	Thr 470	Ala	Thr	Gly	Glu	Gln 475	Arg	Tyr	Lys	Gln	Leu 480
15 .		ГÀа	Ala	Leu	Leu	Met 485	Thr	Ser	Arg	Pro	Glu 490	Lys	Ala	Asp	Ala	Ala 495	Phe
20		Phe	Ser	Thr	Thr 500	Leu	Met	Ala	Asp	Gly 505	Leu	Arģ	Tyr	Glu	Asn 510	Ile	Pro
		Glu	Gly	Val 515	Arg	Gln	Ser	Val	Leu 520	Pro	Ser	Leu	Leu	Thr 525	Phe	Trp	Thr
25	•	Ala	Asn 530		Pro	Glu	His	Pro 535	Gln	Trp	Lys	Thr	Ser 540	Pro	Pro	Pro	Glu
30		Leu 545		Gly	Ala	Val	Arg 550		Ile	Leu	Leu	Arg 555	Gln	Ile	Gly	Val	Arg 560
35		Asn	Ala	Glu	Asn	Thr 565		Tyr	Gln	Asn	`. Val 570		Gln	Gln	Val	Ser 575	Arg
		Asr	туг	: Ala	Asp 580		Thr	· Leu	. Ala	Asp 585	Met	Thr	Gly	Asp	Thr 590	Leu	Thr
40		Glu	ı Seı	. Lev 595		e Ser	Thr	Glu	Glr 600		· Val	. Pro	Gly	Met 605	Phe	Thr	Arg
45	•	Glr		a Trg	Glu	ı Gly	/ Glr	n Val 615	. Arg	g Glu	ı Ala	a Ile	Glu 620	ı Gln	Val	Val	Thr
50		Ala 62!		g Ar	g Gl	ı Glı	11e 630		Tr	o Val	l Lei	1 Ser 635	Asp	Arg	Gln	Gln	Asp 640
		Th	r Se	r Al	a As	p Il. 64:		r Pro	o Asj	p Th	r Lei 65	u Arg	, Ası	n Arg	, Leu	655	Ser
55																	

	Arg	Tyr	Phe '	Thr 1 660	Asp 1	Phe .	Ala	Gly	Ser 665	Trp	Leu	Ala	Phe	Leu 670	Asn	Ser
5	Ile	His	Trp 675	Lys :	Lys	Glu	Asp	Ser 680	Leu	Ser	Gly	Ile	Leu 685	qaA	Gln	Leu
10	Thr	Leu 690	Met	Ala	Asp	Ala	Arg 695	Gln	Ser	Pro	Leu	Ile 700	Ala	Leu	Thr	Asp
15	Thr 705	Leu	Ala	Trp	Gln	Ala 710	Ala	Thr	Gly	Arg	Glu 715	Asn	Arg	Gly	Leu	Ser 720
	Asp	Ser	Leu	Ala	Lys 725	Ser	Ala	Gln	Glu	Leu 730	Phe	Asn	Gly	Lys	Glu 735	ŗĀR
20	Thr	Pro	Gln	Gln 740	Ser	Arg	Glu	Gly	Asp 745	Asp	Val	Pro	Val	Gly 750	Pro	Leu
25	Asp	Lys	Thr 755		Thr	Pro	Leu	Leu 760	. Arg	Leu	Leu	Gly	Asp 765	Lys	Ala	Gly
30	Gly	770		Ser	Gln	Leu	Ser 775	Leu i	Gln	1 Thr	Tyr	Leu 780	Thr	Arg	Val	Thr
	Arg 785		. Arg	, Leu	Lys	Leu 790		ı Glr	n Val	l Thi	795	ı Ala	Pro	Asp	Pro	800
35	Glu	ı Met	Thr	r Gln	Gln 805		Ala	a Glr	n Thi	r Val	L Leu O	ı Glŗ	ı Gly	r Lys	819	r Val
40	As	p Le	u Thi	c Asp 820		: Arg	J ASI	э Тү	r G1; 82	y Ar	g Le	ı Ile	e Ala	a Ala 830	a Se: O	r Leu
45	Gl	y Gl	u Gli 83!		Ser	Gly	y Ph	e Gl 84	y Gl O	n Al	a Lei	u Pho	e Va 84	l Arg	g Pr	o Val
	Gl	u Gl 85		r Tr	o Arg	g Gli	n Va 85	1 Le 5	u Th	ır Pr	o Al	a Al 86	a As O	p Se	r Le	u Asn
50	Ar 86		n Tr	p Gli	n Ar	g Al 87	a I1 0	e Va	ıl S∈	er Hi	s Tr. 87	p As 5	n Gl	n As	p Ph	e Ala 880
<i>55</i>																

	Gly A	rg Tyr	Pro	Phe 885	Lys	Ala	Ser	Gln	Asn 890	Asp	Ala	Ser	Leu	Pro 895	Leu
5	Leu A	ıla Gln	Tyr ,9,00	Leu	Arg	Asp	Asp	Gly 905	Arg	Ile	Asn	Leu	Phe 910	Ile	Ala
10	Ala A	Asn Leu 915		Gly	Val	Leu	Lys 920	Arg	Glu	Gly	Arg	Tyr 925	Trp	Val	Ala
	~	Ala Met 930	Asn	Thr	Gln	Gly 935	Leu	Thr	Val	Asn	Pro 940	Asp	Phe	Ile	Arg
15	Ala I 945	Leu Asn	Arg	Leu	Arg 950	Asp	Val	Ala	Asp	Thr 955	Ala	Phe	Ala	Ser	Gly 960
20	Asp A	Ala Gly	·Ile	His 965	Phe	Glu	Leu	Arg	Ala 970		Pro	Ala	Arg	Asp 975	Val
25	Met 1	Lys Thr	His 980	Leu	Val	Ile	Asp	985		. Glu	. Leu	ı Glu	Tyr 990	Phe	Asn
	Gln	Lys Gli 999		Trp	Gln	Arg	Phe 100	e As	n Tr	rp Pr	o As	sp Gl 10	ս G 05	lr. T	rp Gln
30		Gly A	la Se	r Le	u Se		p 1	Chr S	Ber 1	Thr C	Sln A	Ala 1020	Met	Glu	Arg
35		Leu A 1025	la A≘	эр Ту	r Ar		Ly :	Ser :	rp :	Ser I	Leu :	Ile 1035	Arg	Leu	Leu
40	Glu	Gln A 1040	la Gl	.n Va	al Th		co '	Val 1	Asp :	Ser S	Ser '	Thr 1050	Phe	Lys	Val
	Val	Trp L 1055	ys Al	la Gl	in As	sp G	ly 060	Leu	Pro	Leu :	Asn	Tyr 1065	Leu	Leu	Arg
45	Val	Glu G 1070	ln G	ly L	ys G	ly P	ro 075.	Leu	Ala	Leu	Leu	Glu 1080	Leu	Lys	Asn
50	Phe	Arg I	eu P	ro G	ly G	ln V -1	al 090.	Phe		Thr	Gly	Lys 1095	Ser	Met	
<i>55</i>		Val (Slu G	lu T	yr G	ly G	lu	Asp	Ala	Asp	Glu				

5	<210 <211 <212 <213 <400	> 1 > F > E	7 78 PRT Ische	erich	iia c	oli										
10	Met 1	Phe	Pro	Ile	Arg 5	Phe	Lys	Arg		Ala 10	Leu	Leu	Cys	Met	Ala 15	Met
15	Leu	Thr	Val	Val 20	Leu	Ser	Gly	Cys	Gly 25	Leu	Ile	Gln	Lys	Val 30	Val	Asp
20	Glu	Ser	Lys 35	Ser	Val	Ala	Ser	Ala 40	Val	Phe	Tyr	Lys	Gln 45	Ile	Lys	Ile
20	Leu	His 50	Leu	Asp	Phe	Phe	Ser 55	Arg	Ser	Ala	Leu	Asn 60	Thr	Asp	Ala	Glu
25	Asp 65	Thr	Pro	Leu	Ser	Thr 70	Met	Val	His	Val	Trp 75	Gln	Leu	Lys	Thr	Arg 80
30	Glu	Asp	Phe	Asp	Lys 85	Ala	Asp	Tyr	Asp	Thr 90	Leu	Phe	Met	Gln	Glu 95	Glu
	Lys	Thr	Leu	Glu 100	Lys	Asp	Val	Leu	Ala 105	Lys	His	Thr	Val	Trp 110	Val	Lys
35	Pro	Glu	Gly 115	Thr	Ala	Ser	Leu	Asn 120	Val	Pro	Leu	qsA	Lys 125	Glu	Thr	Gln
40	Phe	Val 130	Ala	Ile	Ile	Gly	Gln 135		Tyr	His	Pro	Asp 140	Glu	Lys	Ser	Asp
45 ·	Ser 145	Trp	Arg	Leu	Val	Ile 150	Lys	Arg	Asp	Glu	Leu 155	Glu	Ala	Asp	Lys	Pro 160
	Arg	Ser	Ile	Glu	Leu 165	Met	Arg	Ser	Asp	Leu 170		Leu	Leu	Pro	Leu 175	Lys
50	Asp	Lys														

5	<210><211><211><212><212><400>	> 28 > PF > Es	30 RT sche:	rich	ia C	oli										
	Met :	Ile S	Ser (Gly 5	Asn	Met	Leu	Lys	Glu 10	Trp	Met	Ile	Phe	Thr 15	Cys
10	Šer 1	Leu !		Thr 20	Leu	Ala	Gly	Ala	Ser 25	Leu	Pro	Leu	Ser	30 Gly	Cys	Ile
15	Ser		Gly 35	Gln	Glu	Ser	Ile	Ser 40	Glu	Gly	Ala	Ala	Phe 45	Gly	Ala	Gly .
20		Leu 50	Arg	Glu	Pro	Gly	Ala 55	Thr	Lys	Lys	Ala	Asp 60	Thr	Lys	Asp	Leu
	Asn 65	Val	Pro	Pro	Pro	Val 70	Tyr	Gly	Pro	Pro	Gln 75	Val	Ile	Phe	Arg	Ile 80
25	Asp	Asp	Asn	Arg	Tyr 85	Phe	Thr	Leu	Glu	Asn 90	Tyr	Thr	His	Cys	Glu 95	Asn
30	Gly	Gln	Thr	Phe 100	Tyr	Asn	Asn	Lys	Ala 105	Lys	Asn	Ile	His	Val 110	Lys	Ile
<i>35</i>	Leu	Asp	Ala 115	Ser	Gly	Tyr	Leu	Phe 120		Gly	Arg	Leu	Phe 125	Trp	Leu	Ser
	Thr	Arg 130	Asp	Asp	Phe	Leu	Ala 135		Pro	Ala	Thr	Leu 140	Asn	Thr	Arg	His
40	Ala 145	Ser	Cys	Met	Gly	Ser 150		r PÀs	Gly	, Cys	Met 155	Asn	Ala	Val	Ile	Val 160
45	Thr	Thr	Asp	Gly	Gly 165		Arg	J Arg	g Ser	170	v Val	Pro	Tyr	Gly	9 Ser 175	Tyr
50	Thr	Gln	Asn	180		Gl _y	/ Ala	a Thi	189		у Туг	: Asg	Met	190	ı Val	Met
	Asn	. Asp	Gl _y 195		туз	. Lev	ı Le	20	д Ту: 0	r Arg	g Gl	/ Gly	7 Glr 209	n Gly	y Arg	Phe
55																

5	Ser Pro Val	Ile Leu A	Arg Trp 215	Ile Leu	Ser Thr	Glu Asp 220	Ser Ser (Bly
J	Val Val Arg 225		Asp Ala 230	Tyr Glu	Leu Phe 235	Arg Pro		Glu 240
10	Val Pro Ser	Thr Gly I 245	Phe Tyr	Lys Ile	Asp Leu 250	Ser Arg	Phe Tyr I 255	Pro
. 15	Lys Asn Asr	Val Met (260	Glu Met	Gln Cys 265	Asp Arg	Thr Leu	Glu Pro V 270	Val
	Gln Pro Ser 275		Lys Ile	Gln 280				
20	<210> 39 <211> 501 <212> PRT <213> Esch	erichia c	oli					
25	<400> 39 Met Glu His 1	Val Ser	Ile Lys	Thr Leu	Tyr His	Leu Leu	Cys Cys I	Met
30	Leu Leu Phe	e Ile Ser 20	Ala Met	Cys Ala 25	Leu Ala	Gln Glu	His Glu	Pro
35	Ile Gly Ala	a Gln Asp	Glu Arg	Leu Ser 40	Thr Leu	Ile His 45	Gln Arg	Met
40	Gln Glu Ala 50	a Lys Val	Pro Ala 55	Leu Ser	Val Ser	Val Thr 60	Ile Lys	Gly
	Val Arg Gli 65	_	Val Tyr 70	Gly Val	Ala Asp 75			80 Lys
45	Ala Asn Th	r Leu Asp 85	Thr Val	Tyr Glu	Leu Gly	Ser Met	Ser Lys 95	Ala
50	Phe Thr Gl	y Leu Val 100	Val Gln	Ile Leu 105		Glu Gly	Arg Leu 110	Arg
55	Gln Gly As	_	Ile Thr	Tyr Leu 120	Pro Glu	Met Arc 125		Tyr

5	Gln	Gly 130	Lys	Pro	Ala	Ser	Leu 135	Thr	Val	Ala	Asp	Phe 140	Leu	Tyr	His	Thr ·
	Ser 145	Gly	Leu	Pro	Phe	Ser 150	Thr	Leu	Ala	Arg	Leu 155	Glu	Asn	Pro	Met	Pro 160
10	Gly	Ser	Ala	Val	Ala 165	Gln	Gln	Leu	Arg	Asn 170	Glu	Asn	Leu	Leu	Phe 175	Ala
15	Pro	Gly	Ala	Lys 180	Phe	Ser	Tyr	Ala	Ser 185	Ala	Asn	Туг	Asp	Val 190	Leu	Gly
20	Ala	Val	Ile 195	Glu	Asn	Val	Thr	Gly 200	Lys	Thr	Phe	Thr	Glu 205	Val	Ile	Ala
	Glu	Arg 210	Leu	Thr	Gln	Pro	Leu 215	Gly	Met	Ser	Ala	Thr 220	Val	Ala	Val	Lys
25	Gly 225	_	Glu	Ile	Ile	Val 230	Asn	Lys	Ala	Ser	Gly 235	Tyr	Lys	Leu	Gly	Phe 240
30	Gly	Lys	Pro	Val	Leu 245		His	Ala	Pro	Leu 250		Arg	Asn	His	Val 255	Pro
<i>35</i>	Ala	Ala	туr	Ile 260	His	Ser	Thr	Leu	Pro 265		Met	Glu	Ile	Trp 270	Ile	Asp
	Ala	Trp	Leu 275		Arg	Lys	Ala	Leu 280) Ala	Thr	Leu	Arg 285	Glu	Ala	Met
40	Ser	: Asn 290		Trp	Arg	, Gly	Asn 295		Asp	Val	Pro	Leu 300		Ala	qaA .	Asn
45	Ar <u>c</u> 305		. Leu	Tyr	Ala	ser 310	Gly	Trp	Phe	e Ile	e Asr 315	Gln	. Asn	Gln	Gly	Pro 320
50	Туз	c Ile	e Ser		Gl ₃		/ Glr	Asr	n Pro) Asr (330		e Ser			335	Ala
	Le	ı Arg	g Pro	Asp 340		n Glr	ı Ile	e Gly	7 Ile 34	e Val	l Ala	Leu	ı Alá	a Ası 350	n Met	: Asn
55										,					•	

5	Ser Asn Leu Ile Leu Gln Leu Cys Ala Asp Ile Asp Asn Tyr Leu Arg 355 360 365	
3	Ile Gly Lys Tyr Ala Asp Gly Ala Gly Asp Ala Ile Thr Ala Thr Asp 370 375 380	
10	Thr Leu Phe Val Tyr Leu Thr Leu Leu Cys Phe Trp Gly Ala Val 385 390 395 400	
15	Val Val Val Arg Gly Ala Phe Arg Val Tyr Arg Ala Thr Ala His Gly 405 410 415	
	Pro Gly Lys Gln Gln Arg Leu Arg Leu Arg Val Arg Asp Tyr Ile Ile 420 425 430	!
20	Ala Leu Ala Val Pro Gly Leu Val Ala Ala Met Leu Tyr Val Ala Pro 435 440 445)
25	Gly Ile Leu Ser Pro Gly Leu Asp Trp Arg Phe Ile Leu Val Trp Gly 450 455 460	,
30	Pro Ser Ser Val Leu Ala Ile Pro Phe Gly Ile Ile Leu Leu Ala Phe 465 470 475 480	;)
	Val Leu Thr Leu Asn His Gln Ile Lys Arg Ile Leu Leu His Asn Lys 485 490 495	3
35	Glu Trp Asp Asp Glu 500	
40	<210> 40 <211> 682 <212> PRT <213> Escherichia coli <400> 40	
45	Met Lys Asn Lys Tyr Ile Ile Ala Pro Gly Ile Ala Val Met Cys Se 1 10 15	r
50	Ala Val Ile Ser Ser Gly Tyr Ala Ser Ser Asp Lys Lys Glu Asp Th 20 25 30	r
	Leu Val Val Thr Ala Ser Gly Phe Thr Gln Gln Leu Arg Asn Ala Pr 35 40 45	0
55		

5	Ala	Ser 50	Val	Ser	Val	Ile	Thr 55	Ser	Glu	Gln	Leu	Gln 60	Lys	Lys	Pro	Val
	Ser 65	Asp	Leu	Val	Asp	Ala 70	Val	Lys	Asp	Val	Glu 75	Gly	Ile	Ser	Ile	Thr 80
10	Gly	Gly	Asn	Glu	Lys 85	Pro	Asp	Ile	Ser	Ile 90	Arg	Gly	Leu	Ser	Gly 95	Asp
15	Tyr	Thr	Leu	Ile 100	Leu	Val	Asp	Gly	Arg 105	Arg	Gln	Ser	Gly	Arg 110	Glu	Ser
20	Arg	Pro	Asn 115	Gly	Ser	Gly	Gly	Phe 120	Glu	Ala	Gly	Phe	Ile 125	Pro	Pro	Val
	Glu	Ala 130	Ile	Glu	Arg	Ile	Glu 135	Val	Ile	Arg	Gly	Pro 140	Met	Ser	Ser	Leu
25	Tyr 145	Gly	Ser	Asp	Ala	Ile 150	Gly	Gly	Val	Ile	Asn 155	Ile	Ile	Thr	Lys	Pro 160
30	Val	Asn	Asn	Gln	Thr 165	Trp	Asp	Gly	Val	Leu 170		Leu	Gly	Gly	Ile 175	Ile
35	Gln	Glu	His	Gly 180	Lys	Phe	Gly	Asn	Ser 185		Thr	Asn	Asp	Phe 190	Tyr	Leu
	Ser	Gly	Pro 195		. Ile	Lys	Asp	Lys 200		Gly	Leu	Gln	Leu 205	Tyr	Gly	Gly
40	Met	Asn 210		Arg	Lys	Glu	Asp 215		Ile	Ser	Gln	Gly 220		Pro	Ala	Lys
45	Asp 225		Lys	Asn	ı Ile	Thr 230		Thr	Leu	Glr	235		Pro	Thr	Glu	Ser 240
50	Gln	Lys	Phe	e Val	. Phe 245		Туг	Gl _y	/ Lys	250		Glr	Val	His	Thr 255	Leu
	Thr	Pro	Gly	/ Glu 260		Lev	ı Asp	Ala	265	5	. Met	Arg	g Gly	Asn 270		Lys
55																

	Gln Pro	Asn Se 275	r Lys	Arg	Glu	Thr 280	His	Asn	Ser	Arg	Ser 285	His	Trp	Val
5	Ala Al	a Trp As	n Ala	Gln	Gly 295	Glu	Ile	Leu	His	Pro 300	Glu	Ile	Ala	Val
10	Tyr Gl:	n Glu Ly	s Val	Ile 310	Arg	Glu	Val	Lys	Ser 315	Gly	Lys	Lys	Asp	Lys 320
15	Tyr As	n His Tr	p Asp 325	Leu	Asn	Tyr	Glu	Ser 330	Arg	Lys	Pro	Glu	Ile 335	Thr
	Asn Th	r Ile Il 34	-	Ala	Lys	Val	Thr 345	Ala	Phe	Leu	Pro	Glu 350	Asn	Val
20	Leu Th	r Ile Gl 355	y Gly	Gln	Phe	Gln 360	His	Ala	Glu	Leu	Arg 365	Asp	Asp	Ser
25	Ala Th 37	r Gly Ly O	s Lys	Thr	Thr 375	Glu	Thr	Gln	Ser	Val 380	Ser	Ile	Lys	Gln
30	Lys Al 385	a Val Pi	e Ile	Glu 390	Asn	Glu	Tyr	Ala	Ala 395	Thr	Asp	Ser	Leu	Ala 400
	Leu Th	r Gly G	y Leu 405	Arg	Leu	Asp	Asn	His 410	Glu	Ile	Tyr	Gly	Ser 415	Tyr
35	Trp As	n Pro A:		Tyr	Ala	Val	Tyr 425	Asn	Leu	Thr	Asp	Asn 430	Leu	Thr
40	Leu Ly	s Gly G 435	y Ile	Ala	Lys	Ala 440	Phe	Arg	Ala	Pro	Ser 445	Ile	Arg	Glu
45	Val Se	r Pro G	y Phe	Gly	Thr 455		Thr	Gln	Gly	Gly 460	Ala	Ser	Ile	Met
	Tyr G] 465	y Asn A	rg Asp	Leu 470		Pro	Glu	Thr	Ser 475		Thr	Glu	Glu	Ile 480
50	Gly II	e Ile T	r Ser 485		Asp	Ser	Gly	Phe 490		Ala	Ser	Ala	Thr 495	Leu

55

	Phe	Asn	Thr	Asp 500	Phe	Lys	Asn	Lys	Leu 505	Thr	Ser	Tyr	Asp	Ile 510	Gly	Thr
5	Lys	Asp	Pro 515	Val	Thr	Gly	Leu	Asn 520	Thr	Phe	Ile	Tyr	Asp 525	Asn	Val	Gly
10	Glu	Ala 530	Asn	Ile	Arg	Gly	Val 535	Glu	Leu	Ala	Thr	Gln 540	Ile	Pro	Val	Tyr
15	Asp 545	Lys	Trp	His	Val	Ser 550	Ala	Asn	Tyr	Thr	Phe 555	Thr	Asp	Ser	Arg	Arg 560
,3	Lys	Ser	Asp	qaA	Glu 565	Ser	Leu	Asn	Gly	Lys 570	Ser	Leu	Lys	Gly	Glu 575	Pro
20	Leu	Glu	Arg	Thr 580	Pro	Arg	His	Ala	Ala 585	Asn	Ala	Lys	Leu	Glu 590	Trp	Asp
25	Tyr	Thr	Gln 595	Asp	Ile	Thr	Phe	Tyr 600	Ser	Ser	Leu	Asn	Tyr 605	Thr	Gly	Lys
	Gln	Ile 610		Ala	Ala	Gln	Arg 615	Asn	Gly	Ala	Lys	Val 620	Pro	Arg	Val	Arg
30	Asn 625		Phe	Thr	Ser	Met 630		Ile	Gly	· Leu	Asn 635		Gln	Ile	Leu	Pro 640
35	Asp	Thr	Leu	ılle	Asn 645		Ala	Val	Lev	Asn 650		Thr	Asp	Arg	Lys 655	Ser
40	Glu	ı Asp) Ile	e Asp 660		: Ile	: Asp	Gly	Asr 665		Glr	n Val	. Asp	670	Gly	Arg
·	Arg	д Туз	675		a Ası	ı Val	. Arç	y Val 680		c Phe)					
. 45	<2: <2:	10> 11> 12> 13>	164 PRT	nerio	chia	col	i .								•	
50	<4	00>	41					e Il	e Th	r Se: 10	r Vai	l Gl	y Le	u Ile	e Pho 15	e Ile

55

	Ser Phe S	er Phe V	al Ala	Lys (Ser 25	Gln	Leu	ГÀЗ	Asn	Leu . 30	Asn	Asn
5	Tyr Ser V		eu Cys		Lys 40	Val	Ser	Asn	Asn	Ile 45	Leu	Asp	Asp
10	Ile Gly G 50	ly Tyr L	ys Glu	Arg 2	Asn	Ile	Leu	Met	Leu 60	Arg	Ala	Ile	Lys
15	Lys Ile I 65	le Ile M	et Thr 70	Ile '	Val	Asn	Ile	Ile 75	Phe	Phe	Tyr	Ser	Phe 80
	Gln Ser T		.sp Glu 5	Met '	Val	Leu	Ile 90	Lys	Lys	Tyr	Gly	Phe 95	Gly
20	Leu Glu A	rg Asp I 100	le Lys	Gly	Arg	Pro 105	Leu	Ile	туr	Pro	Ile 110	Glu	Asn
25	Tyr Asp G	lu Cys I 15	ys Lys	Lys	Cys 120	Asn	His	Met	Asn	Tyr 125	Ile	Ala	Asp
30	Val Asn A	la Gln I	eu Ala	Met 135	Ser	Lys	Lys	Asn	Asn 140	Arg	Ile	Phe	Ala
	Asn Ile 1 145	hr Phe T	Thr Asn 150		Ser	Ser	Thr	Thr 155	Tyr	Phe	Phe	Leu	Asn 160
35	Ile Ile 1	yr Leu											
40	<210 > 42 <211 > 22 <212 > PF <213 > E9 <400 > 42	.8 cr scherich:	ia coli										
45	Met Asn (Lys Asp 5) Asn	Lys	Val	Ile 10	Met	Lys	Ile	Lys	Asn 15	Leu
50	Ile Ser	Val Ile : 20	Leu Leu	ı Ser	Gly	Gly 25	Ile	Met	Gly	Thr	Gly 30	Leu	Tyr
	Ser Ser	Asp Asn :	His Glr	Lys	Ile 40	Arg	Ser	Arg	Phe	Asn 45	lle	Gln	Glu
55													

5	Ser	Tyr 50	Cys	Ala	Ile	Lys	Thr 55	Asn	Gly	Val	Leu	Gly 60	Phe	Ser	Asn	Arg
	Lys 65	Asp	Val	Leu	Arg	Glu 70	Asn	Gly	Asp	Ser	Thr 75	Gly	Thr	Thr	Ser	Ser 80
10	Ser	Thr	Asn	Ala	Met 85	Met	Leu	Met	Glu	Asn 90	Gly	Glu	Asn	Glu	Ile 95	Ser
15	Leu	Glu	Ile	Gly 100	Ala	Leu	Arg	Trp	Phe 105	Ser	Asp	Lys	Pro	Ala 110	Ser	Thr '
20	Glu	Glu	Arg 115	Gly	His	Phe	Ser	Gln 120	Lys	Ala	Gly	Сув	Ser 125	Leu	Asp	Leu
	Val	Arg 130	Phe	Val	Lys	Gln	Glu 135	Glu	Thr	Ile	Leu	Ser 140	Ser	Ile	ГÀЗ	Val
25	Thr 145		Asn	Gln	Gln	Gly 150	Ile	Pro	Glu	Ala	Gln 155	Pro	Asp	Ser	Met	His 160
30	Pro	val	Ile	Arg	Lys 165		Ile	Leu	Ala	Glu 170		Ala	Glu	Pro	Gly 175	Phe
35	Ile	. Asp	Pro	Asp 180		Phe	Asn	Glu	Thr 185		Phe	Pro	Lys	Gly 190		Lys
	Va]	. Tyr	Gln 195		. Thr	Gln	Lys	Val 200		· Val	Ala	. Gly	Leu 205	Pro	Asp	Gly
40	Pro	Gly 210	_	g Ser	Thr	Pro	Phe 215		: Gly	/ Ala	ı					
45	<2	10 > 11 > 12 >	43 2732 PRT	2 · `		٠					. •					
50	<4	13> 00>	43					r Phe	• Th:	r Tvi	r Arc	ı Lei	ı Lev	ı Sei	туг	Leu
	1 .				5	-				10					15	
55	Va	l Se	r Ala	a Il	e Il	e Ala	a Gly	y Gli	n Pro	o Lei	u Lei	ı Pro	o Alá	a Val	l Gly	/ Ala

				20			-		25					30		
5	Val	Ile	Thr 35	Pro	Gln	Asn	Gly	Ala 40	Gly	Met	Asp	Lys	Ala 45	Ala	Asn	Gly
10	Val	Pro 50	Val	Val	Asn	Ile	Ala 55	Thr	Pro	Asn	Gly	Ala 60	Gly	Ile	Ser	His
	Asn 65	Arg	Phe	Thr	Asp	Tyr 70	Asn	Val	Gly	Lys	Glu 75	Gly	Leu	Ile	Leu	Asn 80
15	Asn	Ala	Thr	Gly	Lys 85	Leu	Asn	Pro	Thr	Gln 90	Leu	Gly	Gly	Leu	Ile 95	Gln
20	Asn	Asn	Pro	Asn 100	Leu	Lys	Ala	Gly	Gly 105	Glu	Ala	Lys	Gly	Ile 110	Ile	Asn
25	Clu	Val	Thr 115	Gly	Gly	Lys	Arg	Ser 120	Leu	Leu	Gln	Gly	Tyr 125	Thr	Glu	Val
	Ala	Gly 130		Ala	Ala	Asn	Val 135	Met	Val	Ala	Asn	Pro 140	Tyr	Gly	Ile	Thr
30	Cys 145	Asp	Gly	Сўз	Gly	Phe 150	Ile	Asn	Thr	Pro	His 155	Ala	Thr	Leu	Thr	Thr 160
35	Gly	Lys	Pro	Val	Met 165	Asn	Ala	Asp	Gly	Ser 170		Gln	Ala	Leu	Glu 175	Val
40	Thr	Glu	Gly	Ser 180	Ile	Thr	Ile	Asn	Gly 185		Gly	Leu	Asp	Gly 190	Thr	Arg
40	Ser	. Asb	Ala 195	Val	Ser	Ile	Ile	Ala 200	Arg	Ala	Thr	Glu	Val 205		Ala	Ala
45	Leu	His 210		. Lys	Asp	Leu	Thr 215		Thr	Ala	Gly	Ala 220		Arg	Val	Thr
50	Ala 225	_	Gly	/ Arg	Val	Arg 230		. Leu	Lys	Gly	Glu 235		Asp	Val	Pro	Lys 240
	Va]	. Alā	a Val	l Asp	Thr 245		⁄ Ala	Leu	Gly	Gly 250		Tyr	· Ala	Arg	Arg 255	
55																

5	His	Leu	Thr	Ser ' 250	Thr	Glu	Ser	Gly	Val 265	Gly	Val	Asn	Leu	Gly 270	Asn	Leu
	Tyr	Ala	Arg 275	Asp	Gly	qsA	Ile	Thr 280	Leu	Asp	Ala	Ser	Gly 285	Arg	Leu	Thr
	Val	Asn 290	Asn	Ser	Leu	Ala	Thr 295	Gly	Ala	Val	Thr	Ala 300	Lys	Gly	Gln	Gly
15	Val 305	Thr	Leu	Thr	Gly	Asp 310	His	Lys	Ala	Gly	Gly 315	Asn	Leu	Ser	Val	Ser 320
20	Ser	Arg	Arg	qeA	Ile 325	Val	Leu	Ser	Asn	Gly 330	Thr	Leu	Asn	Ser	Asp 335	Lys
	Asp	Leu	Ser	Leu 340	Thr	Ala	Gly	Gly	Arg 345	Ile	Thr	Gln	Gln	Asn 350	Glu	Lys
25	Leu	Thr	Ala 355	Gly	Arg	Asp	Val	Thr 360	Leu	Ala	Ala	Lys	Asn 365	Ile	Thr	Gln
30	qaA	Thr 370		Ser	Gln	Ile	Asn 375		Ala	Arg	Asp	Ile 380	Val	Thr	Val	Ala
35	Ser 385		Thr	Leu	Thr	Thr 390		Gly	, Gln	ı Ile	Thr 395	Ala	Gly	Gln	Asn	Leu 400
	Thr	Ala	Ser	Ala	Thr 405		· Leu	Thr	c Glr	Asp 410	Gly	·Ile	Leu	. Leu	Ala 415	Lys
40	ser	His	s Alá	a Gly 420		ı Asr	ı Ala	Gl	7 Thi 425		ı Asr	n Asn	. Ser	Gly 430	Ala	. Val
45	Gļr	ı Gly	/ Ala		Lev	Thi	Leu	1 Gl	y Se: O	r Thi	r Thi	Let	3 Sei 445	Asr	ser	: Gly
50	Ser	Le:		u Sei	c Gly	y Gly	y Pro 459		u Th	r Me	t Ası	n Thi 460	r Arg	g Asp	Phe	e Thr
	Gl:		r Gl	y Arq	g Th	r Gl		a Ly	s Gl	у Гу	s Va 47	l As _l 5	o Ile	e Met	. Ala	ser 480
55																

_	Gly	ГÀЗ	Leu	Thr	Ser 485	Thr	Gly	Leu	Leu	Val 490	Thr	Met	His	Leu	Val 495	Leu
5	Lys	Ala	Gln	qzA 002	Val	Thr	Gln	Asn	Gly 505	Val	Leu	Ser	Gly	Gly 510	Lys	Gly
10	Leu	Thr	Val 515	Ser	Ala	Thr	Ser	Ser 520	Gly	Lys	Lys	Ser	Val 525	Thr	His	Ser
15	Asp	Ala 530	Ala	Met	Thr	Leu	Asn 535	Val	Thr	Thr	Val	Ala 540	Leu	Asp	Gly	Glu
	Thr 545	Ser	Ala	Gly	Asp	Thr 550	Leu	Arg	Val	Gln	Ala 555	Asp	Lys	Leu	Ser	Thr 560
20	Ala	Ala	Gly	Ala	Gln 565	Leu	Gln	Ser	Gly	Lys 570	Asn	Leu	Ser	Ile	Asn 575	Ala
25	Arg	Asp	Λla	Arg 580	Leu	Λla	Gly	Thr	Gln 585	Ala	Ala	Gln	Gln	Thr 590	Met	Val
30	Val	Asn	Ala 595	Ser	Glu	Lys	Leu	Thr 600	His	Ser	Gly	Lys	Ser 605	Ser	Ala	Pro
	Ser	Leu 610	Ser	Leu	Ser	Ala	Pro 615		Leu	Thr	Ser	Ser 620	Gly	Val	Leu	Val
35	Gly 625		Ala	Leu	Asn	Thr 630		. Ser	Gln	Thr	Leu 635		Asn	Ser	Gly	Leu 640
40	Leu	Gln	Gly	· Glu	Ala 645		Leu	Thr	Val	Asn 650	Thr	Gln	Arg	Leu	Asp 655	Asn
45	Gln	Gln	Asn	Gly 660		Leu	туг	: Ser	· Ala 665	Ala	Asp	Leu	Thr	Leu 670	Asp	Ile
	Pro	Asp	Ile 675		Asn	Ser	Gly	7 Leu 680		. Thr	Gly	Asp	Asn 685	Gly	Leu	Met
50	Leu	Asn 690		ı Val	Ser	Leu	1 Se1 695		n Pro	Gly	Lys	700	: Ile	: Ala	. Asp	Thr

5**5**

	Leu 705	Ser	Val .	Arg		Thr 7	Thr	Leu .	Asp	Gly	Asp 715	Gly	Leu	Leu	Gln	Gly 720
5	Ala	Gly	Ala		Ala 725	Leu	Ala	Gly	Asp	Thr 730	Leu	Ser	Gln	Gly	Ser 735	His
10	Gly	Arg		Leu 740	Thr	Ala	Asp	Asp	Leu 745	Ser	Leu	Arg	Gly	Lys 750	Thr	Leu
	Asn	Thr	Ala 755	Gly	Thr	Thr	Gln	Gly 760	Gln	Asn	Ile	Thr	Val 765	Gln	Ala	Asp
15	Arg	Trp 770	Ala	Asn	Ser	Gly	Ser 775	Val	Leu	Ala	Thr	Gly 780	Asn	Leu	Thr	Ala
20	Ser 785	Ala	Thr	Gly	Gln	Leu 790	Thr	Ser	Thr	Gly	Asp 795	Ile	Met	Ser	Gln	Gly 800
25	Asp	Thr	Thr	Leu	Lys 805	Ala	Ala	Thr	Thr	Asp 810	Asn	Arg	Gly	Ser	Leu 815	Leu
	Ser	Ala	Gly	Thr 820	Leu	Ser	Leu	Asp	Gly 825		Ser	Leu	Asp	Asn 830	Arg	Gly
30	Thr	Val	Gln 835	Gly	Asn	His	Val	Thr 840	Ile	Arg	Gln	Asn	Ser 845	Val	Thr	Asn
35	Ser	Gly 850		Leu	Thr	Gly	Ile 855		Ala	. Leu	Thr	Leu 860	Ala	Ala	Arg	Met
40	Ala 865		Pro	Glr	n Pro	Ala 870		Met	Asr	a Asr	875	Gly	/ Ser	Leu	Leu	880
	Ser	Gly	/ Asp	Let	Thr 885		e Thr	Ala	Gly	/ Sei 890	Il€ O	e Thi	Ser	Ser	Gly 895	
45	Tr	o Glr	ı Gly	, Lys 900		y Val	L Lev	ı 11∈	905	c Ala	a Asp	Sez	Leu	1 Ala 910	a Asr	n Ser
50	Gly	y Ala	a Ile 915	_	n Ala	a Ala	a Asp	920		u Thi			92	>		y Glu
	Le	u Va	l Sei	c Th	r Ala	a Gl	y Se	r Ly:	s va	l Th	r Se	r As:	n Gly	y Gl	u Me	t Ala
55																

	930 935 940	
5	Seu Ser Ala Leu Asn Leu Ser Asn Ser Gly Gln Trp Ile Ala Lys Asr 945 950 955 960	1
10	Leu Thr Leu Lys Ala Asn Ser Leu Thr Ser Ala Gly Asp Ile Thr Gly 965 970 975	<i>,</i>
	Val Asp Thr Leu Thr Leu Thr Val Asn Gln Thr Leu Asn Asn Gln Ala 980 985 990	ì
15	Asn Gly Lys Leu Leu Ser Ala Gly Val Leu Thr Leu Lys Ala Asp 995 1000 1005	3er
20	Val Thr Asn Asp Gly Gln Leu Gln Gly Asn Val Thr Thr Ile Thr 1010 1015 1020	
25	Ala Gly Gln Leu Thr Asn Gly Gly His Leu Gln Gly Glu Thr Leu 1025 1030 1035	
	Thr Leu Thr Ala Ser Gly Gly Val Asn Asn Arg Ser Gly Gly Val 1040 1045 1050	
30	Leu Met Ser Arg Asn Ala Leu Asn Val Ser Thr Ala Thr Leu Ser 1055 1060 1065	
35	Asn Gln Ser Thr Ile Gln Gly Gly Gly Gly Val Ser Leu Asn Ala 1070 1075 1080	
40	Thr Asp Arg Leu Gln Asn Asp Gly Lys Ile Leu Ser Gly Ser Asn 1085 . 1090 1095	
	Leu Thr Leu Thr Ala Gln Val Leu Ala Asn Thr Gly Ser Gly Leu 1100 1105 1110	
45	Val Gln Ala Ala Thr Leu Leu Leu Asp Val Val Asn Thr Val Asn 1115 1120 1125	
50	Gly Gly Arg Val Leu Ala Thr Gly Ser Asp Val Lys Gly Thr Thr 1130 1135 1140	
55	Leu Asn Asn Thr Gly Thr Leu Gln Gly Ala Thr Leu Val Asn Tyr 1145 1150 1155	

5		Thr 1160	Phe	Ser	Ser	Gly	Thr 1165	Leu	Leu	Gly	Thr	Ser 1170	Gly	Leu	Gly
	Val	Lys 1175	Gly	Ser	Ser	Leu	Leu 1180	Gln	Asn	Gly	Thr	Gly 1185	Arg	Leu	Tyr
10	Ser	Ala 1190	Gly	Asn	Leu	Leu	Leu 1195		Ala	Gln	Asp	Phe 1200	Ser	Gly	Gln
15	Gly	Gln 1205		Val	Ala	Thr	Gly 1210		Val	Thr	Leu	Lys 1215	Leu :	Ile	Ala
20	Ala	Leu 1220		Asn	His	Gly	Thr 1225		Ala	Ala	Gly	Lys 1230	Thr	Leu	Ser
	Val	Thr 1235		Gln	Asn	Ala	Ile 1240		Asn	Gly	Gly	Val 1245	Met	Gln	Gly
25	Asp	Ala 1250		Val	Leu	Gly	Ala 1255		Glu	Ala	Phe	Thr 1260	Asn	Asn	Gly
30	Leu	Thr 1265		Gly	Lys	Gly	Asn 1270		Val	. Phe	Ser	Ala 1275	Gln	Arg	Leu
35	Phe	Leu 1280		Ala	Pro	Gly	Ser 1285		Gln	ı Gly	Gly	Gly 1290	Asp	Val	Ser
	Lev	Asn 1299		Arg	Ser	Asp	1300		: Ile	e Ser	Gly	Phe 1305	Thr	Gly	Thr
40	Ala	a Gly 131		Lev	Thr	. Met	2 Asn 131!		. Ala	a Gly	Thr	Leu 1320	Leu)	Asr.	Ser
45	Ala	a Leu 132		э Туг	c Ala	a Gly	y Asn 133		ı Lei	u Lys	Lev	133!	Thr 5	Asp	Arg
<i>50</i>	Le	u His 134		n Gli	n His	s Gl	y Asp 134		e Le	u Ala	a Gly	/ Asn 135	Ser 0	Let	ı Trp
	Va	l Gln 135		s As	p Al	a Se	r Gly 136		y Al	a As	n Th	r Glu 136	Il∈ 5	e Ile	e Asn

		Ser 1370	Gly	Asn	Ile	Glu	Thr 1375	His	Gln	Gly	Asp	Ile 1380	Val '	Val 2	Arg
5		Gly 1385		Leu	Leu	Asn	Gln 1390	Arg	Glu	Gly	Phe	ser 1395	Ala '	Thr	Thr
10	Thr	Thr 1400		Thr	Asn	Pro	Ser 1405	Ser	Ile	Gln	Gly	Met 1410	Gly	Asn	Ala
15	Leu	Val 1415		Ile	Pro	Leu	Ser 1420	Leu	Leu	Pro	Asp	Gly 1425	Ser	Tyr	Gly
22	Tyr	Phe 1430		Arg	Glu	Val	Glu 1435		Gln	His	Gly	Thr 1440	Pro	Cys	Asn
20	Gly	His 1445		Ala	Cys	Asn	Ile 1450		Met	Asp	Thr	Leu 1455	Tyr	Tyr	Tyr
25	Ala	Pro 1460		Ala	Asp	Ser	Ala 1465	Thr	Gln	Arg	Phe	Leu 1470	Ser	Ser	Gln
30	Asn	Ile 1475		Thr	Val	Thr	Gly 1480		Asp	Asn	Pro	Ala 1485	Gly	Arg	Ile
35	Ala	Ser 1490		Arg	Asn	. Leu	Ser 1495		Glu	Ala	Glu	Arg 1500	Leu	Glu	Asn
35	Arg	Ala 1505		Phe	Ile	Leu	Ala 1510	Asn	ı Gly	Asp	Ile	Ala 1515	Leu	Ser	Gly
40	Arg	Glu 1520		. Ser	: Asn	Glr	Ser 1525		Glr	Thr	· Gly	Thr 1530	Glu	Asn	Glu
45	Tyr	Leu 153!		. Туг	Arg	туг	1540) Lys	Thr	Phe	Tyr 1545	Gly	Ser	Tyr
50	Alá	155		y Sei	Let	ı Asp	Lys 1555		ı Pro) Let	ı Lev	Ser 1560	Pro	Glu	Phe
50	Gli	ı Asn 156		n Th	r Ile	e Arg	Phe 1570		r Lei	ı Ası	o Gly	/ Arg 1575	Glu	. Lys	Asp

	Tyr	Thr 1580	Pro	Gly	Lys	Thr	Tyr 1585	Tyr	Ser	Val	Ile	Gln 1590	Ala	Gly	Gly
5	Asp	Val 1595	Lys	Thr	Arg	Phe	Thr 1600	Ser	Ser	Ile	Asn	Asn 1605	Gly	Thr	Thr
10	Thr	Ala 1610		Ala	Gly	Ser	Val 1615	Ser	Pro	Val	Val	Ser 1620	Ala	Pro	Val
	Leu	Asn 1625	Thr	Leu	Ser	Gln	Gln 1630	Thr	Gly	Gly	qsA	Ser 1635	Leu	Thr	Gln
15	Thr	Ala 1640	Leu	Gln	Gln	Tyr	Glu 1645		Val	Val	Val	Gly 1650	Ser	Pro	Gln
20	Trp	His 1655		Glu	Leu	Ala	Gly 1660		Leu	Lys	Asn	Ile 1665	Ala	Gly	Gly
25	Ser	Pro 1670		Thr	Gly	Gln	Thr 1675		Ile	Ser	Asp	Asp 1680	Trp	Pro	Leu
	Pro	Ser 1685		Asn	Asn	Gly	Tyr 1690	Leu	Val	Pro	Ser	Thr 1695	Asp	Pro	Asp
30	Ser	Pro 1700		Leu	Ile	Ţhr	Val 1705		Pro	Lys	Leu	Asp 1710	Gly	Leu	Gly
35	Gln	. Val 1715		Ser	His	Leu	Phe 1720		Gly	Leu	Tyr	Glu 1725	Leu	Leu	Gly
40	Ala	Lys 1730		Gly	Gln	Ala	Pro 1735		Glu	Thr	Ala	Pro 1740	Ser	Tyr	Thr
	Asr	Glu 1745		Gln	Phe	Leu	1750		: Ser	Tyr	Phe	Leu 1755		Arg	Leu
45	Glζ	7 Leu 1760	_	Fro	Glu	ı Lys	3 Asp 1769		Arg	J Ph∈	: Leu	1 Gly 1770	Asp	Ala	. Val
50	Phe	e Asp 177		c Arg	ј Туг	. Val	l Ser 178		a Ala	a Val	. Leı	ı Ser 1789		J Thi	Gly
<i>55</i>	Se	r Arg	ТУ	r Lei	ı Ası	ı Gly	y Leu	Gl	y Se:	r Ası	o Thi	r Glu	Glr	n Met	Arg

	1796)		1795		1800
5	Tyr Leu 180		p As n Ala	a Ala Arg 1810	g Gln Gln Lys	Gly Leu Gly Leu 1815
10	Glu Phe 182	_	l Ala Leu	1825	a Glu Gln Ile	Ala Gln Leu Asp 1830
	Gly Ser 183		u Trp Tr	o Glu Se: 1840	r Val.Thr Ile	Asn Gly Gln Thr 1845
15	Val Met 185		o Lys Lei	u Tyr Le 1855	u Ser Pro Glu	Asp Ile Thr Leu 1860
20	His Asn 186		er Val Ilo	e Ser Gl 1870	y Asn Asn Val	Gln Leu Ala Gly 1875
<i>25</i>	Gly Asn 188		nr Asn Se	r Gly Gl 1885	y Ser Ile Asn	Ala Gln Asn Asp 1890
	Leu Ser 189		sp Ser Se	r Gly Ty 1900	r Ile Asp Asn	Leu Asn Ala Gly 1905
30	Leu Ile 191		la Gly Gl	y Ser Le 1915	u Asp Leu Ser	Ala Ile Gly Asp 1920
35	Ile Ser 192		le Ser Se	r Val Il 1930	e Ser Gly Lys.	Thr Val Gln Leu 1935
40	Glu Ser 194		er Gly As	n Ile Se 1945	er Asn Ile Thi	Arg Arg Gln Gln 1950
	Trp Asr 195		ly Ser As	sp Ser Gl 1960	in Tyr Gly Gly	Val His Leu Ser 1965
45	Gly Thi		hr Gly Pr	O Val Al	la Thr Ile Lys	s Gly Thr Asp Ser 1980
50	. Leu Se:		sp Ala Gl	Ly Lys As 1990	sn Ile Asp Ile	e Thr Gly Ala Thr 1995
	Val Se		ly Gly As	sp Leu Gl 2005	ly Met Ser Ala	a Gly Asn Asp Ile- 2010
55						

5	Asn	Ile 2015	Ala	Ala	Asn	Leu	Ile 2020	Ser	Gly	Ser	Lys	Ser 2025	Gln	Ser	Gly
:	Phe	Trp 2030			Asp	Asp	Asn 2035	Ser	Ser	Ser	Ser	Thr 2040	Thr	Ser	Gln
10	Gly	Ser 2045	Ser	Ile	Ser	Ala	Gly 2050	Gly	Asn	Leu	Ala	Met 2055	Ala	Ala	Gly
15	His	Asn 2060		Asp	Val	Thr	Ala 2065	Ser	Ser	Val	Ser	Ala 2070	Gly	His	Ser
20	Ala	Leu 2075		Ser	Cys	Arg	Ser 2080		Pro	Ser	Leu	Glu 2085	Cys	Ser	Gln
	Gly	Lys 2090		Lys	Thr	Ser	Arg 2095		Gly	Arg	Ser	Glu 2100	Ser	His	Glu
25	Ser	His 2105		Ala	Val	Ser	Thr 2110	Val	Thr	Ala	Gly	Asp 2115	Asn	Phe	Leu
30	Leu	val 2120		Gly	Arg	Asp	11e 2125		Ser	Gln	Ala	Ala 2130	Gly	Met	Ala
35	Alá	a Glu 2135		Asn	Val	Val	11e 2140		Gly	Gly	Arg	Asp 2145	Val	Asn	Leu
	Va:	l Ala 2150		Ser	Ala	Gly	Ala 2155		Asp	Ser	Tyr	Thr 2160	Ser	Lys	Lys
40	-	z Lys 2169	5				2170					2175	5		
45	Al	a Ser 218		/ Gly	Asp		Thr 2189		L Ası	n Ale	Gly	2190	Asp)	Ile	e Thr
50	Al	a Val 219		a Sei	Ser	· Val	1 Thr 220		a Thi	r Gly	y Asi	1le 220	Sei 5	· Val	Asn
	Al	a Gly 221		g Ası	o Val	l Ala	a Leu 221		r Th	r Ala	a Thi	c Glu 222	Sei 0	. Asp	Tyr

	His	Tyr 2225	Leu	Glu	Thr	Lys	Lys 2230	Lys	Ser	Gly	Gly	Phe 2235	Leu	Ser	Lys
5	Lys	Thr 2240	Thr	Arg	Thr	Ile	Ser 2245	Glu	Asp	Ser	Ala	Thr 2250	Arg.	Glu	Ala
10	Gly	Ser 2255		Leu	Ser	Gly	Asn 2260	Arg	Val	Thr	Val	Asn 2265	Ala	Gly	Asp
15	Asn	Leu 2270		Val	Glu	Gly	Ser 2275	Asp	Val	Val	Ala	Asp 2280	Arg	Asp	Val
	Ser	Leu 2285	Ala	Ala	Gly	Asn	His 2290	Val	Asp	Val	Leu	Ala 2295	Ala	Thr	Ser
20	Thr	Asp 2300		Ser	Trp	Arg	Phe 2305		Glu	Thr	Lys	Lys 2310		Gly	Leu
25	Met	Gly 2315		Gly	Gly	Ile	Gly 2320		Thr	Ile	Gly	Ser 2325		Lys	Thr
30	Thr	His 2330	_	Arg	Arg	Glu	Ala 2335	Gly	Thr	Thr	Gln	Ser 2340		Ser	Ala
	Ser	Thr 2345		Gly	Ser	Thr	Ala 2350		Asn	Val	Ser	Ile 2355		Ala	Gly
35	Lys	Gln 2360		His	Ile	Ser	Gly 2365		Asp	Val	Ile	Ala 2370		Arg	Asp
40	Ile	Ser 2375		Thr	Gly	Asp	Ser 2380		Val	Val	Asp	Pro 2385		His	Asp
45	Arg	Arg 2390		Val		Glu	Lys 2395		Glu	Gln	Lys	Lys 2400		Gly	Leu
	Thr	Val 2405		Leu	Ser	Gly	Thr 2410		Gly	Ser	Ala	Ile 2415		Asn	Ala
50	Val	Thr 2420		Ala	Gln	Glu	Thr 2425		Glu	Ser	Ser	Asp 2430		Arg	Leu

		Ala 2435	Leu	Gln	Ala	Thr	Lys 2440	Thr	Ala	Leu	Ser	Gly 2445	Val	Gln	Ala
5	Gly	Gln 2450	Ala	Ala	Thr	Met	Ala 2455	Ser	Ala	Thr	Gly	Asp 2460	Pro	Asn	Ala
10	Gly	Val 2465		Leu	Ser	Leu	Thr 2470	Thr	Gln	Lys	Ser	Lys 2475	Ser	Gln	Gln
15	His	Ser 2480	Glu	Ser	Asp	Thr	Val 2485	Ser	Gly	Ser	Thr	Leu 2490	Asn	Ala	Gly
15	Asn	Asn 2495		Ser	Val	Val	Ala 2500	Thr	Gly	Lys	Asn	Arg 2505	Gly	Asp	Asn
20	Arg	Gly 2510		lle	Val	Ile	Ala 2515		Ser	Gln	Leu	Lys 2520	Ala	Gly	Gly
25	Asn	Thr 2525		Leu	Asp	Ala	Ala 2530		Asp	Ile	Leu	Leu 2535	Ser	Gly	Ala
	Ala	Asn 2540		Gln	Lys	Thr	Thr 2545		Arg	Asn	Ser	Ser 2550	Ser	Gly	Gly
30	Gly	Val 2555		Val	Ser	Ile	Gly 2560		Gly	' Lys	Gly	Ala 2565	Gly	Ile	Ser
35	Ala	Phe 2570		Ser	Val	Asn	Ala 2575		Lys	Gly	Arg	Glu 2580	Lys	Gly	Asn
40	Gly	Thr 2589		Thr	: Asp	. Lys	Thr 2590		. Thi	r Ile	. Asn	Ser 2595	Gly	' Arg	Asp
	Thr	Val 260		ı Asr	Gl _y	/ Ala	Gln -2605	Val	. Ası	n Gly	/ Asr	Arg 2610	Il∈	ıle	e Ala
45	Ası		Gl ₎ 5 '		a Ası		ı Leu 262		e Se	r Sei	Glr	Gln 2629	Asg 5	Thi	r Ser
50	Lyı	s Tyr 263		o Sei	r Ly	s Glr	263	Se:	r Va	l Ala	a Ala	a Gly 264	Gl ₃	y Sei	r Phe
<i>55</i>	Th	r Phe	Gl	y Se:	r Me	t Th	r Gly	Se	r Gl	у Ту:	r Ile	e Ala	Ala	a Se	r Arg

	2645	2650	2655
5	Asp Lys Met Lys Ser Arg	Phe Asp Ser Val Ala	Glu Gln Thr Gly
	2660	2665	2670
10	Met Phe Ala Arg Val Met	Val Ala Ser Thr Ser	Gln Trp Val Asn
	2675	2680	2685
	Ile Pro Asn Trp Met Val	Arg Ser Leu Pro His	Cys His Thr Gly
	2690	2695	2700
15	Glu Lys Pro Pro Gly Tyr	Arg Thr Leu Gly Leu	Val Thr Leu Gln
	2705	2710	2715
20	Arg Ser Gly Ile Ile Lys	Ser Ser His Arg Trp	Asn Gln Ser
	2720	2725	2730
25	<210> 44 <211> 321 <212> PRT <213> Escherichia coli <400> 44		
30	Met Met Leu Lys Lys Thr	Ile Phe Ile Leu Thr L	eu Phe Ser Gly Asn
	1 5	10	15
	Val Ile Ala Ala Thr Val	Glu Leu Gly Phe Glu A	asn Glu Gln Tyr Asn
	20	25	30
35	Tyr Ala Tyr Arg Ser Ala 35	Asp Val Phe Met Pro T	Cyr Ile Lys Ser Asn 45
40	Phe Asn Pro Val Thr Asp		Ser Leu Thr Tyr Met
45	Tyr Gln Asp Gln Tyr Gly	Lys Lys His Lys Lys T	Thr Ser Glu Asp Arg
	65 70	75	80
	Phe Lys Thr Asn Arg Asp	Arg Ile Glu Leu Tyr I	Leu Lys Gly Tyr Thr
	85	90	95
50	Leu Asn Arg Gly Ala Tyr 100	Ser Phe Ser Pro Ser A	Ala Gly Phe Arg Tyr 110
55	•		

	Glu		Trp 115	Asp	Val	Asn	туr	Asp 120	Asn	Pro	ГÀг	Lys	Gln 125	Asp	Lys	Trp
5	Lys	Leu 130	Glu	Leu	Arg	Phe	Tyr 135	Pro	Asn	Met	Thr	Tyr 140	Lys	Leu	Asn	Asp
10	Gln 145	Leu	Ser	Leu	Tyr	Met 150	Asn	Gly	Phe	Val	Ala 155	Pro	Val	Phe	Phe	Lys 160
15	Thr	Gln	Gln	Glu	Ser 165	Arg	Lys	Asp	Asn	Asn 170	туг	Val	Lys	Gly	Lys 175	Leu
15	Gly	Ala	Lys	Arg 180	туr	Asn	Asn	Asp	Tyr 185	Tyr	Gln	Glu	Leu	Gln 190	Ile	Leu
20	Gly	Val	Arg 195	Tyr	Lys	Phe	Asn	Asn 200	Asp	Asn	Thr	Leu	Trp 205	Ala	Ser	Val
25	Tyr	Asn 210	Glu	Arg	Lys	Tyr	Asn 215	Gln	His	Ser	Ser	Lys 220	Tyr	Asp	Arg	Trp
	Gln 225	Leu	Arg	Gly	Gly	Tyr 230	Asp	Phe	Lys	Val	Thr 235	Glu	Glu	Phe	Val	Leu 240
30	Ser	Pro	Phe	Ile	Arg 245	Туr	Asp	Leu	Ser	Tyr 250		Glu	Lys	Asn	Leu 255	Glu
35	Ser	Thr	Ser	Asn 260	Asn	Gly	Leu	Ser	Lys 265		Asn	Lys	Glu	Ile 270	Arg	Thr
40	Gly	Ala	Ser 275		Ser	Tyr	.Lys	Ile 280		Pro	Ser	Val	Lys 285	Leu	Val	Gly
	Glu	1le 290		Arg	Gln	Thr	Thr 295		ılle	e Glu	Asn	Tyr 300		Gly	Glu	His
45		Glu		. Lys	. Asn	Arg 310		Ph∈	э Туг	. Lys	315		lle	. Asn	∟у≘	320
50	Phe	9	, .		r		. *	· ·								
55	<2	10>	45													

5	<2112 <2122 <2132 <4002	P E		rich	ia c	oli										
	Met (3ln	His	Arg	Gln 5	Lys	Asn	Ile	Leu	Thr 10	Lys	Thr	Ser	Leu	Leu 15	Ser
10	Arg i	Ala	Leu	Ser 20	Val	Pro	CAa	Cys	Asp 25	Met	Phe	Arg	Arg	Gly 30	Ser	Pro
15	Trp	Ile	Суs 35	Tyr	Leu	Ser	Leu	Ser 40	Val	Phe	Ser	Gly	Cys 45	Phe	Ile	Pro
		Phe 50	Ser	Ser	Pro	Ala	Ala 55	Met	Leu	Ser	Pro	Gly 60	Asp	Arg	Ser	Ala
20	Ile 65	Gln	Gln	Gln	Gln	Gln 70	Gln	Leu	Leu	Asp	Glu 75	Asn	Gln	Arg	Gln	Arg 80
25	Asp	Ala	Leu	Glu	Arg 85	Pro	Leu	Thr	Ile	Thr 90	Pro	Ser	Pro	Glu	Thr 95	Ser
30	Ala	Gly	Thr	Glu 100	Gly	Pro	Cys	Phe	Thr 105	Val	Ser	Ser	Ile	Val 110	Val	Ser
	Gly	Ala	Thr 115		Leu	Thr	Ser	Ala 120		Thr	Asp	Arg	Leu 125	Val	Pro	Trp
35	Val	Asn 130		Cys	Leu	Asn	Ile 135		Gly	Leu	Thr	Ala 140	Val	Thr	Asp	Ala
40	Val 145	Thr	Asp	Gly	Tyr	11e		Arc	Gly	Tyr	Ile 155	Thr	Ser	Arg	Ala	Phe 160
45 ·	Leu	Thr	Glu	Gln	Asp 165		. Ser	· Gly	r Gly	val 170	Leu	His	Ile	Thr	Val 175	Met
	Glu	. Gly	/ Arg	180		ı Glr	ı Ile	e Arg	7 Ala 185		Gly	' Ala	. Asp) Let 190	ı Pro	Ala
50	Arg	Thi	r Let 195		s Met	: Val	L Ph∈	200		y Met	Glu	ı Gly	7 Lys 205	s Val	Leu	ı Asn

	Leu	Arg 210	Asp	Ile	Glu	Gln	Gly 215	Met	Glu	Gln	Ile	Asn 220	Arg	Leu	Arg	Thr
5	Glu 225	Pro	Val	Gln	Ile	Glu 230	Ile	Ser	Pro	Gly	Asp 235	Arg	Glu	Gly	Trp	Ser 240
10	Val	Val	Thr	Leu	Thr 245	Ala	Leu	Pro	Glu	Trp 250	Pro	Val	Thr	Gly	Ser 255	Val
. 15	Gly	Ile	Asp	Asn 260	Ser	Gly	Gln	Lys	Ser 265	Thr	Gly	Thr	Gly	Gln 270	Leu	Asn
15	Gly	Val	Leu 275	Ser	Phe	Asn	Asn	Pro 280	Leu	Gly	Leu	Ala	Asp 285	Asn	Tṛp	Phe
20	Val	Ser 290	Gly	Gly	Arg	Ser	Ser 295	Asp	Phe	Ser	Val	Ser 300	His	Asp	Ala	Arg
25	Asn 305	Phe	Ala	Ala	Gly	Val 310	Ser	Leu	Pro	Tyr	Gly 315	Туг	Thr	Leu	Val	Asp 320
	Tyr	Thr	Tyr	Ser	Trp 325	Ser	Asp	Tyr	Leu	Ser 330	Thr	Ile	Asp	Asn	Arg 335	Gly
30	Trp	Arg	Trp	Arg 340	Ser	Thr	Gly	Asp	Leu 345		Thr	His	Arg	Leu 350	Gly	Leu
35	Ser	· His	Val 355		Phe	Arg	Asn	Gly 360		Met	Lys	Thr	Ala 365	Leu	Thr	Gly
40	Gly	/ Leu 370		ı His	Arg	Ile	1le 375		Asn	Tyr	Leu	380		val	Leu	Leu
	Glr 385		r Ser	Ser	Arg	390		Thr	Ser	Phe	Ser 395	Val	Gly	Leu	. Asn	His 400
45		r His	Lys	s Phe	405		gly	v Val	. Gly	7 Thr 410		ı Ası	n Pro	val	. Phe 415	Thr
50		g Gly		2 Pro) Phe	e Gly	/ Ala	a Gli 42!		c Asp	Hi:	∃ Gly	7 Lys 430	arg	Gly
55	As	p Lei	ı Pro	o Val	l Asr	n Glr	n Phe	e Arg	g Ly:	s Tr	o Sei	r Va	l Se	r Ala	a Sei	r Phe

		435					440					445			
5	Gln Arg 450		Val 1	Thr	Asp	Arg 455	Val	Trp	Trp	Leu	Thr 460	Ser	Ala	Tyr	Ala
	Gln Trp 465	Ser :	Pro i	Asp	Arg 470	Leu	His	Gly	Val	Glu 475	Gln	Leu	Ser	Leu	Gly 480
,,	Gly Glu	Ser		Val 485	Arg	Gly	Phe	Lys	Asp 490	Gln	Tyr	Ile	Ser	Gly 495	Asn
15	Asn Gly		Tyr 500	Leu	Arg	Asn	Glu	Leu 505	Ser.	Trp	Ser	Leu	Phe 510	Ser	Leu
20	Pro Tyr	Val 515	Gly	Thr	Val	Arg	Ala 520	Val	Ala	Ala	Leu	Asp 525	Gly	Gly	Trp
05	Leu His		qeA	Ser	Asp	Asp 535	Pro	Tyr	Ser	Ser	Gly 540	Thr	Leu	Trp	Gly
25	Ala Ala 545	a Ala	Gly	Leu	Ser 550	Thr	Thr	Ser	Gly	His 555	Val	Ser	Gly	Ser	Phe 560
30	Thr Ala	a Gly	Leu	Pro 565	Leu	Val	Tyr	Pro	Asp 570		Leu	Ala	Pro	Asp 575	His
35	Leu Th	r Val	Tyr 580	Trp	Arg	Val	Ala	Val 585		Phe	!				
40	<210><211><211><212><213><400>	46 744 PRT Esche	eric	hia	coli										
45	Met As 1	n Lys	His	Thr 5	Leu	. Lev	ı Leu	Thr	7 Val	Lev	ı Phe	e Leu	ı Asr	15	lle
	Cys Th	ır Pro	Val 20	Phe	Ala	Glr	n Asr	n Trp 25	Glr	ı Va	l Ala	a Thi	Phe 30	e Gly	/ Gln
50	Ser Th	ır Asp 35	Leu	. Asr	n Phe	e Sei	r Sei 40	. Le	ı Ile	e As	p Se:	r Ala 45	a Lys	s Ile	e Gly
55															

	Arg	Asn 50	Asn	Ala '	Trp		Ala 55	Gly	Asn	Asn	Asn	Phe 60	Leu	Glu	Ala	Gly	
5	Lys 65	Phe	Tyr	Thr	Leu	Pro 70	Thr	Asp	Phe	Phe	Ile 75	Glu	Ser	Arg	Gly	Gly 80	
10	Lys	Ile	Ala	Asn	Ser 85	His	Asp	Gly	Met	Thr 90	Val	Phe	Tyr	Thr	Ile 95	Val	
	Pro	Val	Thr	Gln 100	Thr	Phe	Arg	Leu	Glu 105	Ala	Asp	Leu	Thr	Leu 110	Glu	Gln	
15	Ile	Gly	Pro 115	Glu	Val	Asn	Gly	Lys 120	Ser	Pro	Ala	Gly	Gln 125	Glu	Gly	Ala	
20	Gly	Leu 130	Phe	Val	Arg	Asp	Ile 135	İle	Gly	Pro	Gln	Arg 140	Gln	Glu	Pro	Gln	
25	Ser 145		Gly	Thr	Glu	Glu 150	Tyr	Pro	Gln	Ala	Ser 155	Asn	Ile	Leu	Met	Asn 160	
	Ala	Phe	Ile	Thr	Gln 165	Asn	Lys	Lys	Asn	Asp 170		Leu	Val	Gln	Ile 175	Thr	
30	Ser	·Ile	Val	Arg 180		Gly	Val	Ile	Lys 185		Trp	Gly	Asn	Glu 190	Gly	Ile	
35	Thr	: Ile	Lys 195		Gln	Pro	Ile	11e		Asn	ı Ile	Asn	Phe 205	Thr	Gln	Lys	
. 40	Arg	3 Asn 210		e His	Met	Thr	lle 215		ı Arç	, Leu	ı Pro	Glu 220	Lys	Phe	: Ile	Leu	
	Th: 225		. Phe	e Asp	Thr	Asp 230		J Lys	Glu	ı Asr	n Glr 239	ser	Trp	Glr	Phe	Ser 240	
45	Ası	э Туг	s Sei	r Gly	Phe 245		: Asr	n Glr	ı Lei	1 Asp 250	o Ası	a Ası	n Sei	. Lev	1 Alá 259	a Ile	
50	Gl	y Phe	e Ph	e Ala 260		a Arg	g Asr				u Ar	g Vai	LY:	270	n Ala	a Ser	
<i>5</i> 5	Ph	e Ly:	s Pr	o Gly	y Lys	3 Pro) Lei	ı Va	l As	р Ту	r Ly	s Gl:	n Le	ı Th	r Se	r Arg	•

			275					280					285			
5	Gln	Phe 290	Ser	Arg	Val	Arg	His 295	Lys	Ala	Pro	Glu	Leu 300	Phe	Leu	Ala	Ser
10	Pro 305	Gln	Ser	Val	Val	Arg 310	Asn	Ser	Thr	Thr	Leu 315	Gln	Phe	Leu	Ala	Asn 320
	Gln	Ala	Gly	Ile	Val 325	Ser	Ile	Asp	Asn	Asp 330	Lys	Gln	Thr	ГÀЗ	Gln 335	Val
15	Gln	Ala	Gly	Glu 340	Leu	Val	Gln	Phe	Pro 345	Val	Thr	Leu	Gln	Lys 350	Lys	His
20	Asn	Asp	Phe 355	Thr	Val	Asn	Phe	Asn 360	Val	Asp	Gly	Asn	Ile 365	Ser	Lys	Lys
25	Ala	Ile 370	Arg	Ile	Glu	Gln	Val 375	Lys	Ser	Asn	Leu	Thr 380	Asp	Pro	Tyr	Glu
	Ile 385	Tyr	Val	Cys	Ser	Asp 390	Cys	Arg	Gln	Gly	Ala 395	Arg	Gly	Ser	Lys	Asn 400
30	Asp	Pro	Val	Asp	Leu 405	Gln	Thr	Ala	Val	Lys 410	Phe	Val	Ala	Pro	Gly 415	Gly
35	Asn	Ile	Tyr	Leu 420	Asn	Asp	Gly	Gln	Tyr 425	His	Gly	Ile	Thr	Leu 430	Asp	Arg
40	Glu	Leu	Ser 435	Gly	Ile	Pro	Gly	Lys 440	Tyr	Lys	Thr	Ile	Ser 445	Ala	Ile	Asn
	Pro	His 450	Lys	Ala	Ile	Phe	Ile 455	Asn	Lys	Thr	Phe	Asn 460	Leu	Asp	Ala	Ser
45	Tyr 465	Trp	His	Leu	Lys	Ser 470	Val	Val	Phe	Asp	Gly 475	Asn	Val	Asp	Asn	Gly 480
50	Asn	Asn	Lys	Pro	Ala 485	Tyr	Leu	Arg	Ile	Ala 490	Gly	Ser	Tyr	Asn	Ile 495	Ile
	Glu	His	Val	Ile 500	Ala	Arg	Asn	Asn	Asp 505	Asp	Thr	Gly	Ile	Ser 510	Ile	Ser
55																

5		Ala	Lys	Asp 515	Гåа	Asn	Arg	Phe	Phe 520	Trp	Pro	Ala	His	Asn 525	Leu	Val	Leu	
		Asn	Ser 530	Asp	Ser	Tyr	Asn	Asn 535	Leu	Asp	Leu	Ser	Gly 540	Ile.	Asn	Ala 	Asp	-
10		Gly 545	Phe	Ala	Ala	Lys	Leu 550	Gly	Val	Gly	Pro	Gly 555	Asn	Ile	Phe	Arg	Gly 560	
15		Суз	Ile	Ala	His	Asn 565	Asn	Ala	Asp	Asp	Gly 570	Trp	Asp	Leu	Phe	Asn 575	Fàa	
20		Ile	Glu	Asp	Gly 580	Pro	Asn	Ala	Ser	Val 585	Thr	Ile	Glu	Asn	Ser 590	Val	Ala	
		Tyr	Glu	Asn 595	Gly	Leu	Pro	Tyr	Asn 600	Lys	Ala	Asp	Ile	Leu 605	Lys	Gly	Ser	
25		Ile	Gly 610		Gly	Gly	Glu	Gly 615	Ģln	Pro	Ser	Lys	Ser 620	Gln	Val	Ile	Asn	
30	•	Ser 625		Ala	Ile	Asn	Asn 630	Asn	Met	Asp	Gly	Phe 635		Asp	Asn	Phe	Asn 640	
35		Thr	Gly	Ser		1le 645		Arg	Asn	Asn	11e 650	Ala	. Met	Asn	Asn	Ala 655	Arg	
		Tyr	Asn	Tyr	1le 660	Leu	Arg	Thr	Asn	Pro 665		Lys	Phe	Pro	Ser 670	Ser	Ile	
40		Leu	Phe	Asp 675		ı Asn	Tyr	Ser	11e		a Asp	Asp	Trp	Glu 685	ı Asn	Lys	Ile	
45		Lys	690			ı Gly		Thr 695		. Ası	n Ser	Va]	700		Lys	: Leu	Leu	
<i>50</i> ·		Va] 709		r His	Glu	ı Thr	Gl _y 710		o Val	Glr	n Lýs	719	Lev 5	ı Pho	e Phe	e Thr	Arg 720	<i>:</i> .
		Ası	aA c	sei	c Gly	7 Asr 729		e Ile	е Ту	r Pro	730	Phe	∋ Phe	e Le	u Ası	1 Ile 735	lle	

	Asn Lys Phe Asn Glx Thr Met Pro
5	<210> 47 <211> 136 <212> PRT <213> Escherichia coli <400> 47
	Met Lys Thr Phe Ile Lys Thr Leu Leu Val Ala Val Thr Ile Leu Phe 1 5 10 15
15	Ser Val Phe Ala Thr Ala Lys Gln Val Lys Leu Pro Asn Asn Ile Lys 20 25 30
20	Tyr Val Asn Thr Thr Glu Ala Phe Ser Cys Thr Glu Ile Asp Gly Met 35 40 45
25	Asn Cys Gln Thr Lys Asn Pro Phe Asn Tyr Lys Asp Asn Ser Tyr Val 50 55 60
	Phe Val Leu Glu Arg Gly Gly Ala Trp Cys Tyr Asp Tyr Thr Val Ser 65 70 75 80
30	Val Leu Asn Leu Lys Thr Gly Lys Ala Gln Met Leu Glu Tyr Lys Asp 85 90 95
35	Asn Gln Leu Cys Ser Gly Ser Asn Lys Pro Phe Phe Glu Ile Lys Asn 100 105 110
40	Gly Val Pro Thr Val Gly Val Ile Asp Thr Ser Gly Lys Pro Val Val 115 120 125 Val Ala Leu Asp Lys Leu Lys Thr 130 135
45	<210> 48 <211> 225 <212> PRT <213> Escherichia coli <400> 48
50	Met Gln Leu Pro Val Lys Leu Leu Met Ser Leu Ile Ser Leu Val Ser 1 5 10 15

	Val	Ile	Ala	Arg 20	Ala	Gly	Lys	Tyr	Lys 25	Asn	Tyr	Ile	Arg	Asp 30	Glu	Ile	
5	Lys	Tyr	Trp 35	Arg	Tyr	Thr	Ser	Tyr 40	Lys	Gly	Gly	Glu	Phe 45	Pro	Glu	Gly	
10	Phe	Thr 50	Asp	Glu	Lys	Phe	Ser 55	Ser	Ala	Ile	Tyr	Asn 60	Gly	Arg	Ile	Phe	
	Thr 65	Met	Lys	Arg	Leu	His 70	Thr	Leu	Met	Leu	Phe 75	Leu	Ala	Val	Leu	Phe 80	*
15	Thr	Gly	Phe	Asn	Val 85	Glu	Ala	Ala	Ser	Val 90	Lys	Gln	Ala	Leu	Ser 95	Cys	
20	Asp	Pro	Asn	Ala 100	Arg	Ala	Glu	Gln	Pro 105	Gly	Ala	Cys	Pro	Thr	Thr	Tyr	
25	Glu	Leu	Туг 115	Glu	Gly	Asp	Ala	Ala 120	туг	Lys	Ala	Ala	Leu 125		Lys	Ala	
	Leu	Lys 130	Pro	Val	Gly	Leu	Ser 135	Gly	Met	Phe	Gly	Lys 140	Gly	Gly	Туr	Met	
30	Asp 145		Pro	Gly	Gly	Asn 150		Thr	Pro	Val	Thr 155	Ile	Asn	Gly	Thr	Val 160	
35	Trp	Leu	Gln	Gly	Asp 165	Gly	Cys	Lys	Ala	Asn 170		Cys	Gly	Trp	Asp 175	Phe	
40	Ile	Val	Thr	Leu 180		Asn	Pro	Lys	Thr 185	His	: Glu	Val	Val	Gly 190		Arg	
	Туг	· Phe	: Gly 195		. Asp	Asp	Pro	Ala 200		. Leu	ı Val	Trp	Phe 205		Glu	Ile	
45	Gly	/ Val		Glu	Phe	Ala	Tyr 215		ı Val	L Lys	Asn	1 Tyr 220	Val	. Ala	Ala	Val	
50	Asr 225														şi Hi		
	<21	L0>	49														
55																	

5	<211 <212 <213 <400	> P	21 RT Sche	erich	iia c	oli										
	Met 1	Lys	Thr	Gln	Ile 5	Thr	Phe	Ala	Ala	Leu 10	Leu	Pro	Ala	Leu	Ala 15	Ser
10	Phe	Ile	Pro	Leu 20	His	Ala	His	Ala	Ser 25	Ser	Thr	Ser	Glu	Asp 30	Glu	Met
15	Ile	Val	Thr 35	Gly	Asn	Thr	Ala	Ala 40	Asp	Thr	Thr	Asp	Ser 45	Ala	Ala	Gly
	Ala	Gly 50	Phe	Гуs	Thr	Asn	Asp 55	Ile	Asp	Val	Gly	Pro 60	Leu	Gly	Thr	Lys
20	Ser 65	Trp	Ile	Glu	Thr	Pro 70	Tyr	Ser	Ser	Thr	Thr 75	Val	Thr	Lys	Glu	Met 80
25	Ile	Glu	Asn	Gln	Gln 85	Ala	Gln	Ser	Val	Ser 90	Glu	Met	Leu	Lys	Tyr 95	Ser
30	Pro	Ser	Thr	Gln 100	Met	Gln	Ala	Arg	Gly 105	Gly	Met	Asp	Val	Gly 110	Arg	Pro
	Gln	Ser	Arg 115	Gly	Met	Gln	Gly	Ser 120	Val	Val	Ala	Asn	Ser 125	Arg	Leu	Asp
35	Gly	Leu 130	Asn	Ile	Val	Ser	Thr 135	Thr	Ala	Phe	Pro	Val 140	Glu	Met	Leu	Glu
40	Arg 145		Asp	Val	Leu	Asn 150	Ser	Leu	Thr	Gly	Ala 155	Leu	туг	Gly	Pro	Ala 160
45	Ser	Pro	Ala	Gly	Gln 165		Asn	Phe	Val	Ala 170		Arg	Pro	Thr	Glu 175	Glu
	Thr	Leu	Arg	Lys 180		Thr	Leu	Gly	Tyr 185		Ser	Arg	Ser	Ala 190		Thr
50	Gly	His	Ala 195		Leu	Gly	Gly	His 200		Asp	Glu	Asn	Lys 205		?he	Gly

	Tyr	Arg 210	Val	Asn	Leu	Leu	Asp 215	Gln	Glu	Gly	Glu	Gly 220	Asn	Val	Asp	Asp
5	Ser 225	Thr	Leu	Arg	Arg	Lys 230	Leu	Val	Ser	Val	Ala 235	Lēu	Asp	Trp	Asn	Ile 240
10	Gln	Pro	Gly	Thr	Gln 245	Leu	Gln	Leu	Asp	Ala 250	Ser	His	Tyr	Glu	Phe 255	Ile
,,	Gln	Lys	Gly	Tyr 260	Val	Gly	Ser	Phe	Asn 265	Tyr	Gly	Pro	Asn	Val 270	Lys	Leu
	Pro	Ser	Ala 275	Pro	Asn	Pro	Lys	Asp 280	Lys	Asn	Leu	Ala	Leu 285	Ser	Thr	Ala
20	Gly	Asn 290	Asp	Leu	Thr	Thr	Asp 295		Ile	Ser	Thr	Arg 300	Leu	Ile	His	Tyr
25	Phe 305	Asn	Asp	Asp	Trp	Ser 310	Met	Asn	Ala	Gly	Val 315	Gly	Trp	Gln	Gln	Ala 320
	Asp	Λrg	Ala	Met	Arg 325	Ser	Val	Ser	Ser	Lys 330	Ile	Leu	Asn	Asn	Gln 335	Gly
30	Asp	Ile	Ser	Arg 340		Met	Lys	Asp	Ser 345	Thr	Ala	Ala	Gly	Arg 350	Phe	Arg
35	Val	Leu	Ser 355		Thr	Ala	Gly	Leu 360		Gly	His	Ile	Asp 365		Gly	Ser
40	Ile	Gly 370		Asp	Leu	Ser	Leu 375		Thr	Thr	Gly	Tyr 380		Trp	Ser	Leu
	Туг 385		Ala	Lys	Gly	Thr 390		· Ser	Ser	Tyr	Ser 395	Trp	Gly	Thr	Thr	Asn 400
45	Met	Tyr	His	Prc	405		ıle	: Asp	Glu	1 Gln 410		Asp	Gl _y	/ Lys	.415	Arg
50	Thi	Gly	/ Gly	7 Pro 420		ту:	r Arg	g Ser	Ser 429		. Asr	Thr	Glr	1 Glr 430		Val
. 55	Thi	r Lev	ı Gly	y As <u>r</u>	Thr	. Val	l Thi	r Phe	e Thi	r Pro	Glr	ı Trp	Se:	r Alā	. Met	Phe

			435					440					445			
5	Tyr	Leu 450	Ser	Gln	Ser	Trp	Leu 455	Gln	Thr	Lys	Asn	Tyr 460	Asp	Lys	His	Gly
10	Asn 465	Gln	Thr	Asn	Gln	Val 470	Asp	Glu	Asn	Gly	Leu 475	Ser	Pro	Asn	Ala	Ala 480
	Leu	Met	Tyr	Lys	Ile 485	Thr	Pro	Asn	Thr	Met 490	Ala	Tyr	Val	Ser	Tyr 495	Ala
15	Asp	Ser	Leu	Glu 500	Gln	Gly	Gly	Thr	Ala 505	Pro	Thr	Asp	Glu	Ser 510	Val	Lys
20	Asn	Ala	Gly 515	Gln	Thr	Leu	Asn	Pro 520	Tyr	Arg	Ser	Lys	Gĺn 525	туг	Glu	Val
25	Gly	Leu 530	Lys	Ser	Asp	Ile	Gly 535	Glu	Met	Asn	Leu	Gly 540	Ala	Ala	Leu	Phe
	Arg 545	Leu	Glu	Arg	Pro	Phe 550	Ala	Tyr	Leu	Asp	Thr 555	Asp	Asn	Val	Tyr	Lys 560
30	Glu	Gln	Gly	Asn	Gln 565	Val	Àsn	Asn	Gly	Leu 570	Glu	Leu	Thr	Ala	Ala 575	Gly
35	Asn	Val	Trp	Gln 580	Gly	Leu	Asn	Ile	Tyr 585	Ser	Gly	Val	Thr	Phe 590	Leu	Asp
40	Pro	Lys	Leu 595	Lys	Asp	Thr	Ala	Asn 600	Ala	Ser	Thr	Ser	Asn 605	Lys	Gln	Val
	Val	Gly 610	Val	Pro	Lys	Val	Gln 615	Ala	Asn	Leu	Leu	Ala 620	Glu	Tyr	Ser	Leu
45	Pro 625	Ser	Ile	Pro	Glu	Trp 630	Val	туг	Ser	Ala	Asn 635	Val	His	Tyr	Thr	Gly 640
50	Lys	Arg	Ala	Ala	Asn 645	Asp	Thr	Asn	Thr	Ser 650	Tyr	Ala	Ser	Ser	Tyr 655	Thr
	Thr	Trp	Asp	660	Gly	Thr	Arg	Туг	Thr 665	Thr	Lys	Val	Ser	Asn 670	Val	Pro
55				•												

5		Thr '		Phe 675	Arg `	Val	Val	Val	Asn 680	Asn	Val	Phe	Asp	Lys 685	His	Tyr	Trp	
		Ala	Ser 690	Ile	Phe	Pro	Ser	Gly 695	Thr	Asp	Gly	Asp	Asn 700	Gly	Ser	Pro	Ser	
10		Ala 705	Phe	Ile	Gly	Gly	Gly 710	Arg	Glu	Val	Arg	Ala 715	Ser	Val	Thr	Phe	Asp 720	
15		Phe																
20		<210 <211 <212 <213 <400	.> 6 !> I !> I	50 569 PRT Esche	erich	nia (coli											
25		Met 1	Lys	Asn	Ile	Thr 5	Leu	Trp	Gln	Arg	Leu 10	Arg	Gln	Val	Ser	Ile 15	Ser	
		Thr	Ser	Leu	Arg 20	Cys	Ala	Phe	Leu	Met 25	Gly	Ala	Leu	Leu	Thr 30	Leu	Ile	
30		Val	Ser	Ser 35	Val	Ser	Leu	Tyr	Ser 40	Trp	His	Glu	Gln	Ser 45	Ser	Gln	Ile	
35		Arg	Tyr 50	Ser	Leu	Asp	Lys	Tyr 55	Phe	Pro	Arg	Ile	His 60	Ser	Ala	Phe	Leu	
40		Ile 65	Glu	Gly	Asn	Leu	Asn 70	Leu	ı Val	Val	. Asp	Gln 75	Leu	Asn	Glu	Phe	Leu 80	
		Gln	. Ala	Pro) Asn	Thr	Thr	· Val	Arg	J Leu	Glr 90	. Lev	a Arg	Thr	Gln	. Ile 95	: Ile	
45	٠	Gln	His	Leu	Asp		Ile	e Glu	ı Arg	, Let 105		Arg	Gly	Leu	Ser 110	Ser	. Arg	
50		Glu	. Arg	g Glr 115	_	. Le	1 Thi	c Va	l Ile 120		ı Glr	n Ası) Ser	125	Ser	. Lev	ı Leu	· ·/·
55		Ser	Glu	ı Let	ı Asp	Arq	g Ala	a Le	u Ty:	r Ası	n Me	: Phe	e Lei	ı Lev	ı Arg	g Gli	ı Lys	٠

		130					135					140				
5	Val 145	Ser	Glu	Leu	Ser	Ala 150	Arg	Ile	Asp	Trp	Leu 155	His	Asp	Asp	Phe	Thr 160
10	Thr	Glu	Leu	Asr.	Ser 165	Leu	Val	Gln	Asp	Phe 170	Thr	Trp	Gln	Gln	Gly 175	Thr
	Leu	Leu	Asp	Glr. 18C	Ile	Ala	Ser	Arg	Gln 185	Gly	Asp	Thr	Ala	Gln 190	Tyr	Leu
15	Lys	Arg	Ser 195	Arg	Glu	Val	Gln	Asn 200	Glu	Gln	Gln	Gln	Val 205	туг	Thr	Leu
20	Ala	Arg 210	Ile	Glu	Asn	Gln	Ile 215	Val	Asp	Asp	Leu	Arg 220	Asp	Arg	Leu	Asn
<i>2</i> 5	Glu 225	Leu	Lys	Ser	Gly	Arg 230	Asp	Asp	Asp	Ile	Gln 235	Val	Glu	Thr	His	Leu 240
	Arg	Tyr	Phe	Glu	Asn 245	Leu	Lys	Lys	Thr	Ala 250	Asp	Glu	Asn	Ile	Arg 255	Met
30	Leu	Asp	Asp	Trp 260	Pro	Gly	Thr	Ile	Thr 265	Leu	Arg	Gln	Thr	Ile 270	Asp	Glu
35	Leu	Leu	Asp 275		Gly	Ile	Val	Lys 280	Asn	Lys	Met	Pro	Asp 285	Thr	Met	Arg
40	Glu	Tyr 290		Ala	Ala	Gln	Lys 295	Ala	Leu	Glu	Asp	Ala 300		Arg	Tar	Arg
	Glu 305		Thr	Gln	Gly	Arg 310		Arg	Thr	Leu	Leu 315		Λla	Gln	Leu	Gly 320
45	Ser	Thr	His	Gln	Gln 325		Gln	Met	Phe	Asn 330		. Arg	Met	Glu	Gln 335	
50	Val	. His	. Val	Ser 340		Gly	' Leu	Ile	Leu 345		Ala	Thr	· Ala	Leu 350		Leu
<i>55</i>	Leu	ı Lev	1 Ala 355		Val	Phe	. Asn	His 360	Tyr	Phe	: Ile	e Arg	Ser 365		Leu	Val

5	Lys	Arg 370	Phe	Thr	Leu	Leu	Asn 375	Gln	Ala	Val	Val	Gln 380	Ile	Gly :	Leu	Gly
	Gly 385	Thr	Glu	Thr	Thr	Ile 390	Pro	Val	Tyr	Gly	Asn 395	Asp	Glu	Leu	Gly	Arg 400
10	Ile	Ala	Gly	Leu	Leu 405	Arg	His	Thr	Leu	Gly 410	Gln	Leu	Asn	Val	Gln 415	Lys
15	Gln	Gln	Leu	Glu 420	Gln	Glu	Ile	Thr	Asp 425	Arg	Lys	Val	Ile	Glu 430	Ala	Asp
20	Leu	Arg	Ala 435	Thr	Gln	Asp	Glu	Leu 440	Ile	Gln	Thr	Ala	Lys 445	Leu	Ala	Val
	Val	Gly 450		Thr	Met	Thr	Thr 455	Leu	Ala	His	Glu	Ile 460	Asn	Gln	Pro	Leu
25	Asn 465		Leu	Ser	Met	Tyr 470	Leu	Phe	Thr	Ala	Arg 475	Arg	Ala	Ile	Glu	Gln 480
30	Thr	Glr.	ı Lys	Glu	Gln 485		Ser	Met	Met	Leu 490	ı Gly	. TÀ2	Ala	Glu	Gly 495	Val
35	Ile	e Ser	r Arg	; Ile 500		Ala	ı Ile	: Ile	509	g Ser	r Leu	ı Arg	g Gln	Phe 510	Thr	Arg
	Arg	g Ala	a Glu -515		Glu	ı Thi	: Ser	Let 520	ı His	s Ala	a Val	l Asp	525	Ala	Glr	Met
40	Ph	e Se:		a Ala	a Trį	Gl:	1 Le: 53!	ı Lev	ı Al	a Me	t Ar	g His 540	a Arç	ser Ser	: Leu	ı Gln
· 45	Al 54		r Le	u Val	L Le	u Pro	o Gli O	n Gl	y Th	r Al	a Th 55	r Val	l Ser	Gly	/ Ası	560
50	Va	l Ar	g Th	r Gl	n Gl 56		1 Le	u Va	l·As	n Va 57	1 Le		a Ası	n Ala	57	u Asp 5
	Va	ıl Cy	rs Gl	y Gl 58		y Al	a Va		e Th	r Va 35	ıl As	n Tr	p Gli	n Me	t G1:	n Gly

	Lys Thr	Leu Asn 595	Val P	he Ile	Gly 600	Asp	Asn	Gly	Pro	Gly 605	Trp	Pro	Glu
5	Ala Leu 610	Leu Prc	Ser L	Leu Leu 615	Lys	Pro	Phe	Thr	Thr 620	Ser	Lys	Glu	Val
10	Gly Leu 625	Gly Ile		Seu Ser	Ile	Cys	Val	ser 635	Leu	Met	Glu	Gln	Met 640
15	Lys Gly	Glu Leu	Arg I 645	Leu Ala	Ser	Thr	Met 650	Thr	Arg	Asn	Ala	Cys 655	Val
	Val Leu	Gln Phe 660	Arg I	Leu Thr	Asp	Val 665	Glu	Asp	Ala	Lys			
20	<211> <212>	51 7 53 PRT Escheric	hia co	oli									
25		51 Val Ile	Lys 1	Leu Ala	Ile	Gly	Ser 10	Gly	Ile	Leu	Leu	Leu 15	Ser
30	Cys Gly	Ala Tyr 20	Ser	Gln Ser	lle	Ser 25	Glu	Lys	Thr	Asn	Ser 30	Asp	Lys
35	Lys Gly	Ala Ala 35	Glu	Phe Ser	Pro 40	Leu	Ser	Val	Ser	Val 45	Gly	Lys	Thr
40	Thr Ser	Glu Glr	ı Glu	Ala Leu 55	Glu	Lys	Thr	Gly	Ala 60	Thr	Ser	Ser	Arg
	Thr Thr 65	Asp Lys		Leu Glr 70	ser	Leu	Asp	Ala 75	Thr	Val	Arg	Ser	Met 80
45	Pro Gly	Thr Ty	r Thr 85	Gln Ile	Asp	Pro	90	Gln	Gly	Ala	Ile	ser 95	Val
50	Asn Ile	e Arg Gly		Ser Gly	/ Phe	Gly 105		Val	Asn	Thr	Met 110		Asp
	Gly Ile	e Thr Gl: 115	n Ser	Phe Ty	c Gly 120		Ser	Thr	Ser	Gly 125		Thr	Thr
55													

5	His G	3ly :	Ser '	Thr 1	Asn .	Asn	Met 135	Ala	Gly	Val	Leu	Ile . 140	Asp	Pro .	Asn	Leu
	Leu V	/al	Ala	Val 2	Asp	Val 150	Thr	Arg	Gly	Asp	Ser 155	Ser	Gly	Ser	Glu	Gly 160
10	Ile A	Asn	Ala		Ala 165	Gly	Ser	Ala	Asn	Met 170	Arg	Thr	Ile	Gly	Val 175	Asp
15	Asp '	Val	Ile	Phe 180	Asn	Gly	Asn	Thr	Туг 185	Gly	Leu	Arg	Ser	Arg 190	Phe	Ser
20	Val (GTĀ	Ser 195	Asn	Gly	Leu	Gly	Arg 200	Ser	Gly	Met	Ile	Ala 205	Leu	Gly	Gly
		Ser 210	Asp	Ala	Phe	Thr	Asp 215	Thr	Gly	Ser	Ile	Gly 220	Val	Met	Ala	Ala
25	Val 225	Ser	Gly	Ser	Ser	Val 230	туr	Ser	Asn	Phe	Ser 235	Asn	Gly	Ser	Gly	Ile 240
30	Asn	Ser	Lys	Glu	Phe 245		туг	Asp	Lys	Tyr 250	Met	Lys	Gln	Asn	Pro 255	Lys
35	Ser	Gln	Leu	Туг 260	Lys	Met	Asp	Ile	Arg 265	Pro) Asp	Glu	Phe	Asn 270	Ser	Phe
33	Glu	Leu	Ser 275		Arg	Thr	Tyr	Glu 280	Asr	ı Lys	s Phe	. Thr	Arg 285	Arg	qaA	Ile
40	Thr	Ser 290		Asp	Туг	Tyr ·	11e 295		Туі	c His	з Туг	Thr 300	Pro	Phe	Ser	Glu
45	Leu 305		Asr			1 Val		Ala	s Sei	r Th	r Sei . 31!	r Arg	g Gly	/ Asn	Glr	1 Lys 320
	Tyr	Arg	g Asg	Gly	7 Sen 329		u Tyi	r Thi	r Ph	e Ty	r Ly	s Thi	Sei	c Ala	325	n Asn
50 .	Arg	Se j	c As	9 Ala 340		u As	p Ile	e Ası	n As 34	n Th 5	r Se		g Ph	e Thi 350	r Val	l Ala

	Asp	Asn	Asp 355	Leu	Glu	Phe	Met	Leu 360	Gly	Ser	Lys	Leu	Met 365	Arg	Thr	Arg
5	Tyr	Asp 370	Arg	Thr	Ile	His	Ser 375	Ala	Ala	Gly	Asp	Pro 380	Lys	Ala	Asn	Gln
10	Glu 385	Ser	Ile	Glu	Asn	Asn 390	Pro	Phe	Ala	Pro	Ser 395	Gly	Gln	Gln	Asp	Ile 400
15	Ser	Ala	Leu	туr	Thr 405	Gly	Leu	Lys	Val	Thr 410	Arg	Gly	Ile	Trp	Glu 415	Ala
	Asp	Phe	Asn	Leu 420	Asn	Tyr	Thr	Arg	Asn 425	Arg	Ile	Thr	Gly	Tyr 430	Lys	Pro
20	Ala	Cys	Asp 435	Ser	Arg	Val	Ile	Cys 440	Val	Pro	Gln	Gly	Ser 445	Туг	Asp	Ile
25	Asp	Asp 450	Lys	Glu	Gly	Gly	Phe 455	Asn	Pro	Ser	Val	Gln 460	Leu	Ser	Ala	Gln
30	Val 465	Thr	Pro	Trp	Leu	Gln 470	Pro	Phe	Ile	Gly	Tyr 475	Ser	Lys	Ser	Met	Arg 480
	Ala	Pro	Asn	Ile	Gln 485	Glu	Met	Phe	Phe	Ser 490	Asn	Ser	Gly	Gly	Ala 495	Ser
35	Met	Asn	Pro	Phe 500	Leu	ГÀз	Pro	Glu	Arg 505	Ala	Glu	Thr	Trp	Gln 510	Ala	Gly
40	Phe	Asn	Ile 515	qaA	Thr	Arg	Asp	Leu 520	Leu	Val	Glu	Gln	Asp 525	Ala	Leu	Arg
45	Phe	Lys 530	Ala	Leu	Ala	Туr	Arg 535	Ser	Arg	Ile	Gln	Asn 540	туг	Ile	Туr	Ser
	Glu 545		Tyr	Leu	Val	Cys 550		Gly	Gly	Arg	Lys 555		Ser	Leu	Pro	Glu 560
50	Val	Ile	Gly	Asn	Gly 565	Trp	Glu	Gly	Ile	Ser 570	Asp	Glu	Туг	Ser	Asp 575	Asn
55																

	Met	Tyr	Ile	Tyr 580	Val	Asn	Ser	Ala	Ser 585	Asp	Val	Ile	Ala	Lys 590	Gly	Phe
5	Glu	Leu	Glu 595	Met	Asp	Tyr	Asp	Ala 600	Gly	Phe	Ala	Phe	Gly 605	Arg	Leu	Ser
10	Phe	Ser 610	Gln	Gln	Gln	Thr	Asp 615	Gln	Pro	Thr	Ser	Ile 620	Ala	Ser	Thr	His
15	Phe 625	Gly	Ala	Gly	Asp	Ile 630	Thr	Glu	Leu	Pro	Arg 635	Lys	Tyr	Met	Thr	Leu 640
,,	Asp	Thr	Gly	Val	Arg 645	Phe	Phe	Asp	Asn	Ala 650	Leu	Thr	Leu	Gly	Thr 655	Ile
20	Ile	Lys	Tyr	Thr 660	Gly	Lys	Ala	Arg	Arg 665	Leu	Ser	Pro	Asp	Phe 670	Glu	Gln
25	Asp	Glu	His 675	Thr	Gly	Ala	Ile	Ile 680		Gln	Asp	Leu	Pro 685	Gln	Ile	Pro
30	Thr	11e		e Asp	Leu	Туг	Gly 695		Tyr	· Glu	Tyr	Asn 700	Arg	Asn	Leu	Thr
30	Leu 705		: Lev	ı Ser	· Val	Gln 710		Lev	. Met	Asn	Arg 715		Tyr	Ser	Glu	Ala 720
35	Lev	ı Ası	ı Lys	s Leu	Asn 725		. Met	. Pro	Gly	730	Gly	Asp	Glu	Thr	His 735	Pro
40	Ala	a Ası	n Se	r Ala		g Gly	/ Arg	Th:	749		e Ph∈	e Gly	r Gly	750	ll∈	e Arg
	Ph	е												· •.		*
45	<2 <2	10> 11> 12> 13>	PRT		chia	col	i									
50		00> t Se	52 r Se	 r Ly	s Th	r Ly	s Cy	s Tr	p Le	u Tr 10	p Me	t Le	u Lei	u Va	1 Il 15	e Leu

	Ser Glu Th	r Ser Ala 20	Thr Ser	Thr Leu 25	Lys Met	Phe Asp	Asn Ser 30	Glu
5	Gly Met Th		Leu Leu	Leu Ala 40	Leu Ile	Val Val 45	Leu Tyr	Cys
10	Ile Cys Ty 50	r Tyr Ser	Leu Ser 55	Arg Ala	Val Lys	Asp Ile	Pro Val	Gly
15	Leu Ala Ty 65	r Ala Thr	Trp Ser 70	Gly Thr	Gly Ile 75	Leu Met	Val Ser	Thr 80
	Leu Gly I	e Leu Phe 85	Tyr Gly	Gln His	Pro Asp 90	Thr Ala	Ala Ile 95	Ile
20	Gly Met Va	l Ile Ile 100	Ala Ser	Gly Ile 105	Ile Ile	Met Asn	Leu Phe 110	Ser
25	Lys Met G		Glu Ala	Glu Glu 120	Thr Pro	Val Thr 125	Asn Leu	Asp
30	Lys Lys I	e Ala Asn						
35	<210 > 53 <211 > 280 <212 > PR' <213 > Eso <400 > 53		coli					
40	Met Tyr I	e Lys Lys. 5	His Trp	Ile Ala	Leu Ser 10	Ile Leu	Leu Ile 15	Pro
	Cys Ile G	y Asn Ala 20	Gln Glu	Ile Lys 25	Ile Asp	Glu Ser	Trp Leu 30	His
45	Gln Ser L	eu Asn Val	Ile Gly	Arg Thr 40	Asp Ser	Arg Phe 45	Gly Pro	Arg
50	Leu Thr A 50	sn Asp Leu	Tyr Pro	Glu Tyr	Thr Val	Ala Gly 60	Arg Lys	Asp
				. 17-1 Nove	Iou Dro	Ive Phe	Phe Gly	Val-
<i>55</i>	Trp Phe A 65	sp Phe Tyr	Gly Tyr	vai Asp	75	пув гие	rne dry	80

5	Gly Ser	His Tyr	Asp 85	Val	Gly	Ile	Trp	Asp 90	Glu	Gly	Ser	Pro	Leu 95	Phe
	Thr Glu	Ile Glu		Arg	Phe	Ser	Ile 105	Asp	Lys	Leu	Thr	Gly 110	Leu	Asn
10	Leu Ala	Phe Gly	r Pro	Phe	Lys	Glu 120	Trp	Phe	Ile	Ala	Asn 125	Asn	Tyr	Val
, 15	Tyr Asp 130		/ Asp	Asn	Gln 135	Ser	Ser	Arg	Gln	Ser 140	Thr	Trp	Tyr	Met
20	Gly Leu 145	Gly Th	c Asp	Ile 150	Asp	Thr	Gly	Leu	Pro 155	Ile	Lys	Leu	Ser	Ala 160
	Asn Ile	Tyr Al	Lys 165	Tyr	Gln	Trp	Gln	Asn 170	Tyr	Gly	Ala	Ala	Asn 175	Glu
25 .	Asn Glu	Trp As		Tyr	Arg	Phe	Lys 185	Ile	Lys	Туr	Ser	Ile 190	Pro	Leu
30	Thr Asn	Leu Ph 195	e Gly	Gly	Arg	Leu 200	Val	Tyr	Asn	Ser	Phe 205	Thr	Asn	Phe
35	Asp Phe	e Gly Se	r Asp	Leu	Ala 215	Asp	Lys	Ser	His	Asn 220	Asn	Lys	Arg	Thr
·	Ser Asr 225	n Ala Il	e Ala	Ser 230		His	Ile	Leu	Ser 235	Leu	Leu	Tyr	Glu	His 240
40	Trp Lys	s Phe Al	a Phe 245		Leu	Arg	Tyr	Phe 250		Asn	Gly	Gly	Gln 255	Trp
45	Asn Ala	a Gly Gl	u Lys			. Phe	Gly 265		Gly	Pro	Phe	Glu 270	Leu	Lys
50	Asn Th	r Gly Tr 275	p Gly	Thr	Tyr	Thr 280		. Ile	Gly	Туг	Gln 285			
	<210><211><212>	54 172 PRT	•											
55			•											

	<213> Escherichia coli <400> 54	
5	Met Arg Ile Ala Pro Arg Thr Phe Phe Ala Ile Ser Ala Leu Ala Phe 1 5 · 10 15	
10	Ile Val Ala Ser Gly Phe Ser Phe Trp Arg Leu Ser Pro Ala Glu Asn 20 25 30	•
	Thr Gly Ile Met Ser Cys Ser Thr Lys Gly Ile Met Arg Phe Glu Asn 35 40 45	
15	Met Glu Lys Glu Asn Val Asn Gly Asn Ile His Phe Asn Phe Gly Ser 50 55 60	•
20	Gln Gly Lys Gly Ser Met Val Leu Glu Gly Tyr Thr Asp Ser Ala Ala 65 70 75 80	i
25	Gly Trp Leu Tyr Leu Gln Arg Tyr Val Lys Phe Thr Tyr Thr Ser Lys 85 90 95	i
	Arg Val Ser Ala Thr Glu Arg His Tyr Arg Ile Ser Gln Trp Glu Ser	•
30	Ser Ala Ser Ser Ile Asp Glu Ser Pro Asp Val Ile Phe Asp Tyr Phe 115 120 125	ì
35	Met Arg Glu Met Ser Asp Ser His Asp Gly Leu Phe Leu Asn Ala Gln 130 135 140	1
40	Lys Leu Asn Asp Lys Ala Ile Leu Leu Ser Ser Ile Asn Ser Pro Leu 145 150 155 160	
	Trp Ile Cys Thr Leu Lys Ser Gly Ser Lys Leu Asp 165 170	
45	<210> 55 <211> 182 <212> PRT <213> Escherichia coli <400> 55	
50	Met Lys Ile Lys Val Ile Ala Leu Ala Thr Phe Val Ser Ala Val Phe 1 5 10 15	3
55		

	Ala	Gly	Ser	Ala 20	Met	Ala	Tyr	Asp	Gly 25	Thr	Ile	Thr	Phe	Thr 30	Gly	Lys
5	Val	Val	Ala 35	Glņ	Thr	Cys	Thr	Val 40	Asn	Thr	Ser	Asp	Lys 45	Asp	Leu	Ala
10	Val	Thr 50	Leu	Pro	Thr	Val	Ala 55	Thr	Ser	Ser	Leu	Lys 60	Asp	Asn	Ala	Ala
	Thr 65	Ser	Gly	Leu	Thr	Pro 70	Phe	Ala	Ile	Arg	Leu 75	Thr	Gly	Cys	Ala	Thr 80
	Gly	Met	Asn	Ser	Ala 85	Gln	Asn	Val	Lys	Ala 90	Tyr	Phe	Glu	Pro	Ser 95	Ser
20	Asn	Ile	Asp	Leu 100	Ala	Thr	His	Asn	Leu 105	Lys	Asn	Thr	Ala	Thr 110	Pro	Thr
25	Lys	: Ala	Asp 115	Asn	Val	Gln	Ile	Gln 120		Leu	Asn	Ser	Asn 125	Gly	Thr	Ser
	Thr	11e		Leu	Gly	Glu	Ala 135		Asn	Gly	Gln	Asp 140	Val	Gln	Ser	Glu
30	Th:		e Gly	, Ser	Asp	Gly 150		· Ala	Thr	Leu	Arg 155		· Met	Ala	Gln	Tyr 160
35	Туз	r Ala	a Thr	r Gly	Glr. 165		Thr	Ala	Gly	7 Asp 170	Val	. Lys	Ala	Thr	Val 175	His
40	Ту	r Th	r Ile	e Ala 183		: Glu	1									3
45	<2 <2 <2	10> 11> 12> 13>	56 359 PRT Esc! 56	herio	chia	col	i									
50	_	t Ly	s Ar	g Il	e Pho		≘ Ile	e Pro		10					15	o Lys
	Le	u Al	a Va	1 Al. 20			o As	p As		r Va						a Val
<i>55</i>																

5	Asn	Thr	Ser 35	Thr	Leu	Pro	Gly	Val 40	Val	Ile	Gly	Pro	Ala 45	Asp	Ala	His
J	Thr	Tyr 50	Pro	Arg	Val	Ile	Gly 55	Glu	Leu	Ala	Gly	Thr 60	Ser	Asn	Gln	Tyr
10	Val 65	Phe	Asn	Gly	Gly	Ala 70	Ile	Ala	Leu	Met	Arg 75	Gly	Lys	Phe	Thr	Pro 80
15	Ala	Leu	Pro	Lys	Ile 85	Gly	Ser	Ile	Thr	Val 90	Tyr	Phe	Pro	Ser	Arg 95	Lys
	Gln	Arg	Asp	Ser 100	Ser	Asp	Phe	Asp	Ile 105	Tyr	Asp	Ile	Gly	Val 110	Ser	Gly
20	Leu	Gly	Ile 115	Ile	Ile	Gly	Met	Ala 120	Gly	Tyr	Trp	Pro	Ala 125	Thr	Pro	Leu
25	Val	Pro 130	Ile	Asn	Ser	Ser	Gly 135	Ile	туг	Ile	Asp	Pro 140	Val	Gly	Ala	Asn
30	Thr 145	Asn	Pro	Asn	Thr	Tyr 150	Asn	Gly	Ala	Thr	Ala 155	Ser	Phe	Gly	Ala	Arg 160
	Leu	Phe	Val	Ala	Phe 165		Ala	Thr	Gly	Arg 170		Pro	Asn	Gly	Туг 175	Ile
35	Thr	Ile	Pro	Thr 180	Arg	Gln	Leu	Gly	Thr 185		Leu	Leu	Glu	Ala 190	Lys	Arg
40	Thr	Ser	Leu 195		Asn	Lys	Gly	Leu 200		Ala	. Pro	Val	Met 205	Leu	Asn	Gly
45	Gly	Arg 210		e Gln	Val	Gln	Ser 215		Thr	- Cys	Thr	Met 220		Gln	. Lys	Asn
	Tyr 225		. Val	. Pro	Leu	230		· Val	. Туг	: Glr	Ser 235	Gln	ı Phe	Thr	Ser	Leu 240
50	туг	. Lys	s Glv	ı Ile	Glr 245		gly	, Lys	: Ile	e Ası 250		His	. Leu	Gln	Cys 255	; Pro
<i>55</i>																

	Asp	Gly		Asp 260	Val	Tyr	Ala	Thr	Leu 265	Thr	Asp	Ala	Ser	Gln 270	Pro	Val
5	Asn		Thr 275	Asp	Ile	Leu	Thr	Leu 280	Ser	Ser	Glu	Ser	Thr 285	Ala	Lys	Gly
10	Phe	Gly 290		Arg	Leu	Tyr	Lys 295	Asp	Ser	Asp	Val	Thr 300	Ala	Ile	Ser	Tyr
15	Gly 305		Asp	Ser	Pro	Val 310	Tys	Gly	Asn	Gly	Ser 315	Gln	Trp	His	Fhe	Ser 320
13	Asp	Tyr	Arg	Gly	Glu 325	Val	Asn	Pro	His	Ile 330	Asn	Leu	Arg	Ala	Asn 335	Tyr
20	Ile	Lys	Ile	Ala 340	Asp	Ala	Thr	Thr	Pro 345	Gly	Ser	Val	Lys	Ala 350	Ile	Ala
25	Thr	Ile	Thr 355	Phe	Ser	туг	Gln									
30	<21 <21 <21 <40	.1> .2> .3>	57 844 PRT Esch 57	eric	hia	coli										
35	Met 1	Asn	Ala	Asn	Asn 5	Leu	Ser	Cys	Leu	Ile 10	Tyr	Cys	Arg	Cys	Ser 15	Leu
	Lev	ı Lev	Phe		Ala	Leu	Gly	Leu	Thr 25	Val	Thr	Asn	His	Ser 30	Fhe	Ala
40	Alá	a Glu	35	Ala	. Glu	Phe	Asp	Ser 40	Glu	. Phe	Leu	. His	45	, Asp	Lys	Gly
45	Ile	e Asr 50	n Ala	ıla	: Asp	Ile	Arg 55	Ar <u>c</u>	Phe	e Ser	His	60 60	Asr	Pro	Val	Pro.
50	G1 ₅	u Gly	y Arg	д Туг	туг	Ser 70	Asp	Ìl∈	туг	val	. Asr 75	n Asr	ı Val	Trp	Lys	Gly 80
	Ly		a Ası) Leu	i Glr 85	туг	Let	ı Arç	Thi	7 Ala 90	a Asr	ı Thi	c Gly	/ Ala	Pro 95	Thr
55																

	Leu (Cys :	Leu	Thr 100	Pro	Glu	Leu		Ser 105	Leu	Ile	Asp	Leu	Val 110	Lys	Asp
5	Thr		Ser 115	Gly	Asn	Thr	Ser	Cys 120	Phe	Pro	Ala	Ser	Thr 125	Gly	Leu	Ser
10	Ser	Ala 130	Arg	Ile	Asn	Phe	Asp 135	Leu	Ser	Thr	Leu	Arg 140	Leu	Asn	Ile	Glu
15	Ile 145	Pro	Gln	Ala	Leu	Leu 150	Asn	Thr	Arg	Pro	Arg 155	Gly	Tyr	Ile	Ser	Pro 160
	Ala	Gln	Trp	Gln	Ser 165	Gly	Val	Pro	Ala	Ala 170	Phe	Ile	Asn	Tyr	Asp 175	Ala
20	Asn	туг	Tyr	Gln 180	Tyr	Ser	Ser	Ser	Gly 185	Thr	Ser	Asn	Glu	Gln 190	Thr	Tyr
25	Leu	Gly	Leu 195	Lys	Ala	Gly	Phe	Asn 200	Leu	Trp	Gly	Trp	Ala 205	Leu	Arg	His
30	Arg	Gly 210	Ser	Glu	Ser	Trp	Asn 215	Asn	Ser	Tyr	Pro	Ala 220	Gly	Tyr	Gln	Asn
	Ile 225	Glu	Thr	Ser	Ile	Met 230	His	qsA	Leu	Ala	Pro 235	Leu	Arg	Ala	Gln	Phe 240
<i>35</i>	Thr	Leu	Gly	Asp	Phe 245		Thr	Asn	Gly	Glu 250		Met	Asp	Ser	Leu 255	Ser
40	Leu	Arg	Gly	Val 260		Leu	ı Ala	Ser	Asp 265		Arg	Met	Leu	Pro 270	Gly	Ser
45	Leu	. Arg	Gly 275		Ala	Pro	Ala	Val 280		Gly	·Ile	Ala	. Asn 285	Ser	Asn	ı Ala
	Lys	val 290		: Ile	туг	Glr	n Asr 295		His	: Ile	e Leu	300		. Thr	Thr	val
50	Pro 305		Gl3	y Pro	Phe	e Val	_	e Ası	ı Ası) Lev	1 Tyr 315	Pro	Sei	Gly	туі	320

	Gly	Asp	Leu	Leu	Val 325	Lys	Ile	Thr	Glu	Ser 330	Asn	Gly	Gln	Thr	Arg 335	Met
5	Phe	Thr		Pro 340		Λla	Ala	Val	Ala 345	Gln	Leu	Ile	Arg	Pro 350	Gly	Phe
10	Ser		Trp 355	Gln	Met	Ser	Val	Gly 360	Lys	Tyr	Arg	Tyr	Ala 365	Asn	Lys	Thr
	•	370	Asp	Leu	Ile	Ala	Gln 375	Gly	Thr	туr	Gln	Туг 380	Gly	Leu	Thr	Asn
15	Asp 385		Thr	Leu	Asn	Ser 390	Gly	Leu	Thr	Thr	Ala 395	Ser	Gly	Tyr	Thr	Ala 400
20	Gly	Leu	Ala	Gly	Leu 405	Ala	Phe	Asn	Thr	Pro 410		Gly	Ala	Ile	Ala 415	Ser
25	Asp	Ile	Thr	Leu 420	Ser	Arg	Thr	Ala	Phe 425	Arg	Туг	Ser	Gly	Val 430	Thr	Arg
	Lys	Gly	Tyr 435	Ser	Leu	His	Ser	Ser 440		Ser	Ile	Asn	Ile 445	Pro	Ala	Ser
30	Asn	Thr 450	Asn	Ile	Thr	Leu	Ala 455		Tyr	Arg	Tyr	Ser 460	Ser	Lys	Asp	Phe
35	Tyr 465		Leu	Lys	Asp	Ala 470		Ser	· Ala	Asn	His 475	Asn	Ala	. Phe	lle	Asp 480
40	Asp	Val	Ser	Val	. Lys 485		Thr	Ala	Phe	'Tyr 490		Pro	Arg	, Asr	Gln 495	Phe
	Gln	Ile	Ser		e Asn	Gln	ı Glu	Let	505	g Glu	Lys	Trp	Gly	Gl ₃	Met	Tyr
45	Leu	. Thr	Gly 515		c Thr	Tyr	Asr	тул 520	Trp	Gly	/ His	з Ьуз	525	y Sei	Arg	, Asn
50	Glu	туг 530		ı Ile		/ Туз	53:	5 .	n Pho	e Tr		3 Glr 54() .	ı Gl;	ү Түг	Gln
55	Ile	e Gly	/ Let	ı Se	r Gli	ı Sei	r Arg	g As	o Asi	n Gli	ı Glı	n Gli	n Arg	g Ar	g Asg	g Asp

	545	550 5	555 560	D
5	Arg Phe Tyr Ile Ass	n Phe Thr Leu Pro Leu G 5 570	Gly Gly Ser Val Gln Ser 575	r
10	Pro Val Phe Ser Thr 580	r Val Leu Asn Tyr Ser I 585	Lys Glu Glu Lys Asn Se 590	r
	Ile Gln Thr Ser Ile 595	e Ser Gly Thr Gly Gly G	Glu Asp Asn Gln Phe Se 605	r
15	Tyr Gly Ile Ser Gly 610	y Asn Ser Gln Glu Asn 0 615	Gly Pro Ser Gly Tyr Al 620	a
20	Met Asn Gly Gly Ty:	vr Arg Ser Pro Tyr Val 1 630	Asn Ile Thr Thr Thr Va 635 64	1
25	Gly His Asp Thr Gl	in Asn Asn Asn Gln Arg : 45 650	Ser Phe Gly Ala Ser Gl 655	У
	Ala Val Val Ala Hi 660	is Pro Tyr Gly Val Thr 1 665	Leu Ser Asn Asp Leu Se 670	:r
30	Asp Thr Phe Ala II	le Ile His Ala Glu Gly 7 680	Ala Gln Gly Ala Val Il 685	.e
35	Asn Asn Ala Ser Gl 690	ly Ser Arg Leu Asp Phe ' 695	Trp Gly Asn Gly Val Va 700	11
40	Pro Tyr Val Thr Pr 705	ro Tyr Glu Lys Asn Gln 710	Ile Ser Ile Asp Pro Se 715 72	er !0
	Asn Leu Asp Leu As 72	sn Val Glu Leu Ser Ala 25 730	Thr Glu Gln Glu Ile Il 735	.е
45 ·	Pro Arg Ala Asn Se 740	er Ala Thr Leu Val Lys 745	Phe Asp Thr Lys Thr Gl 750	ŗÀ
50	Arg Ser Leu Leu Ph 755	he Asp Ile Arg Met Ser 760	Thr Gly Asn Pro Pro Pro 765	ro
<i>55</i>	Met Ala Ser Glu Va 770	al Leu Asp Glu His Gly 775	Gln Leu Ala Gly Tyr Va 780 ·	al

5	Ala Gln 7	Ala Gly		/al F /90	he '	Thr	Arg	Gly	Leu 795	Pro	Glu	Lys	Gly	His 800
	Leu Ser \	Val Val	Trp G 805	Sly F	Pro .	Asp .	Asn	Lys 810	Asp	Arg	Cys	Ser	Phe 815	Val
10	Tyr His '	Val Ala 820	His A	Asn I	ьуs		Asp 825	Met	Gln	Ser	Gln	Leu 830	Val	Pro
15	Val Leu	Cys Ile 835	Gln F	His I		Asn 840	Gln	Glu	Lys	Thr	* .	٠.,		
20	<212> P <213> E	8 77 RT scheric 8	nia co	oli										
25	Met Val 1	Lys Cys	His 1	Thr I	Leu	Ile	Asn	Arg 10	Arg	Asn	Lys	Суѕ	Leu 15	Leu
	Ile Val	Phe Ile 20	Val 1	Leu	Ile	Gly	Trp 25	Ile	Ile	Phe	Arg	Pro 30	Lys	Ala
<i>30</i>	Tyr Thr	Tyr Ser 35	Leu	Asn	Asp	Lys 40	Glu	Lys	Glu	Met	Leu 45	Ile	Met	Leu
35	Ser Gln 50	His Pro	Glu	Thr	Arg 55	Tyr	Phe	Gly	Phe	Туг 60	Ser	Ile	Gļu	Leu
40	Pro Ala 65	Asp Tyr		Pro 70	Thr	Gly	Met	Val	Met 75	Phe	Ile	Gln	Gly	Ser 80
45	Ala Met	Ile Pro	Val 85	Glu	Thr	Lys	Leu		Tyr			Pro	Phe 95	Leu
-	Gln Tyr	Met Thr		Tyr	Glu	Ala	Glu 105		. Lys	Asn	Thr	Ser 110		Leu
50	Asp Pro	Leu Asr 115	Thr	Pro	туг	Leu 120		Gln	. Val	His	Pro 125		Ser	Pro
<i>55</i>	Pro Met	Asn Gly	/ Val	Île	Phe	Glu	Arg	g Met	Lys	Ala	. Lys	Tyr	Thr	Pro

	130	135	140
5	Asp Phe Ala Arg Val Le 145 15		rp Glu Asn Gly Val Thr 55 160
10	Phe Ser Val Lys Ile Gl 165	u Ala Lys Asp Gly Ai 170	rg Ala Thr Arg Tyr Asp 175
	Gly Ile Ser Lys Ile Al	a Glu Tyr Ser Tyr G 185	ly Tyr Asn Ile Pro Glu 190
15	Lys Lys Val Gln Leu Le 195	u Thr Ile Leu Ser G 200	ly Leu Gln Pro Arg Ala 205
20	Asp Asn Gln Pro Pro Se 210	r Glu Asn Lys Leu A 215	la Ile Gln Tyr Ala Gln 220
25	Val Asp Ala Ser Leu Le 225 23		eu Ser Val Asp Tyr Lys 35 240
25	Asn Ser Asn Asn Ile Ly 245	rs Ile Ser Leu Gln T 250	hr Asp Asn Asn Ser Tyr 255
30	Ile Asp Ser Leu Leu As 260	sp Ile Arg Tyr Pro S 265	er Asn Gly Asn Arg Ala 270
35	Trp Tyr Asn Ser Ile 275		
40	<210> 59 <211> 366 <212> PRT <213> Escherichia co: <400> 59	li	
45	Met Leu Pro Glu Pro V 1 5	al Tyr Arg Arg Trp I 10	le Ile Leu Leu Ile Ser 15
	Met Leu Thr Val Gly T 20	hr Leu Phe Ile Leu S 25	Ser Val Trp Asn Ser Ala 30
50	Thr Tyr Trp Asp Ile P	he Ile Tyr Gly Val 1 40	Leu Pro Met Leu Phe Leu 45
55		•	

	Trp	Leu 50	Сув	Leu	Phe	Gly	Ile 55	Ala	Leu	Asn	Lys	Tyr 60	Glu	Gln	Ser	Val
5	Ala 65	Ala	Cys	Ile		Trp 70	Glu	Ser	Glu	Arg	Gln 75	Gln	Val	Lys	Gln	Leu 80
10	Trp	Gln	His	Trp	Ser 85	Gln	Lys	Gln	Leu	Ala 90	Ile	Val	Gly	Asn	Val 95	Leu
15	Phe	Thr	Pro	Glu 100	Glu	ГÀЗ	Gly	Met	Ser 105	Val	Leu	Leu	Gly	Pro 110	Gln	Glu
	Glu	Ile	Pro 115	Ala	Tyr	Pro	Lys	Lys 120	Ala	Arg	Pro	Leu	Phe 125	Ser	Ala	Ser
20	Arg	Tyr 130	Ser	Leu	Ser	Ser	Ile 135	Phe	His	Asp	Ile	His 140	Gln	Gln	Leu	Thr
_ 25	Gln 145		Phe	Pro	Asp	Tyr 150	Arg	His	туг	Leu	His 155	Thr	Ile	Tyr	Val	Leu 160
30	Gln	Pro	Glu	Lys	Trp 165	Arg	Gly	Glu	Thr	Val 170	Arg	Gln	Ala	Ile	Phe 175	His
	Gln	Trp	Asp	Leu 180		Pro	Glu	Arg	Thr 185		Thr	Leu	. Asn	. Gln 190	lle	Gln
35	Ser	Leu	Туг 195		Glu	Arg	Phe	Asp 200		Leu	Ile	Leu	Val 205	Val	Cys	Leu
40	Glr	Asn 210		Pro	Glu	. Asn	215		Glu	a Asp	Thr	Ser 220	Glu	ı Lev	ı Val	Ser
45	Ala 225		ı Lev	ılle	e Ser	Ser 230		Se 1	Phe	e Val	Arg ,235	Glr	n His	Glr	ı Ile	240
	Va:	ì Il∈	e Ala	a Gly	/ Leu 245		y Arg	y Vai	l Met	250) Lev	ı Glı	ı Pro	o Gli	ı Gli 259	ı Leu
50	Gli	ı His	a Ası		ı Asp		l Le	ı Pho	e Gl: 26	и Ту: 5	r Ası	ı Glı	n Let	a As _] . 27	o Ası	n Lys
55 ·	Gl	n Lei	u Gli	n Hi:	s Val	l Tr	p Vai	l Se	r Gl	y Le	u Ası	o Gl	u Gl	y Th	r Ile	e Glu

	275		280	285
5	Asn Leu Met 290	Gln Tyr Ala Glu 295	Gln His Gln Trp Ser	Leu Pro Lys Lys
10	Arg Pro Leu 305	His Met Ile Asp	His Ser Phe Gly Pro 315	Thr Gly Glu Phe 320
	Ile Phe Pro	Val Ser Leu Ala 325	. Met Leu Ser Glu Ala 330	Ala Lys Glu Thr 335
15	Glu Gln Asn	His Leu Ile Ile 340	Tyr Gln Ser Ala Gln 345	Tyr Ala Gln Lys 350
20	Lys Ser Leu 355		: Arg Lys Leu Tyr Leu 360	Arg Thr 365
25	<210> 60 <211> 260 <212> PRT <213> Esch <400> 60	erichia coli		
30	Met Leu Asn 1	Arg Lys Leu Asr 5	n Ile Arg Leu Arg His 10	Ser Leu Asn Ser 15
	His Cys Ile	Pro Ser Ile Ile 20	e Ile Asn Asn Thr Val 25	Arg Ser Phe Gln 30
<i>35</i>	Arg Ser Val	. Met Asn Thr Arc	g Ala Leu Phe Pro Leu 40	Leu Phe Thr Val 45
40	Ala Ser Phe 50	e Ser Ala Ser Ala 55	a Gly Asn Trp Ala Val 60	. Lys Asn Gly Trp
45	Cys Gln Thr 65	Met Thr Glu Asp 70	o Gly Gln Ala Leu Val 75	. Met Leu Lys Asn 80
	Gly Thr Ile	e Gly Ile Thr Gl	y Leu Met Gln Gly Cys 90	s Pro Asn Gly Val 95
50	Gln Thr Leu	ı Leu Gly Ser Arg	g Ile Ser Ile Asn Gly 105	/ Asn Leu Ile Pro 110
55				

	Thr	Ser	Gln 115	Met	Cys	Asn	Gln	Gln 120	Thr	Gly	Phe	Arg	Ala 125	Val	Glu	Val
5	Glu	Ile 130	Gly	Gln	Ala	Pro	Glu 135	Met	Va·l	Lys	Lys	Ala 140	Val	His	Ser	Ile
10	Ala 145	Glu	Arg	çaA	Val	Ser 150	Val	Leu	Gln	Ala	Phe 155	Gly	Val	Arg	Met	Glu 160
	Phe	Thr	Arg	Gly	Asp 165	Met	Leu	Lys	Val	Cys 170	Pro	Lys	Phe	Val	Thr 175	Ser
15	Leu	Ala	Gly	Phe 183	Ser	Pro	Lys	Gln	Thr 185	Thr	Thr	Ile	Asn	Lys 190	Asp	Ser
20	Val	Leu	Gln 195	Ala	Ala	Arg	Gln	Ala 200	Tyr	Ala	Arg	Glu	Tyr 205	Asp	Glu	Glu
25	Thr	Thr 210	Glu	Thr	Ala	Asp	Phe 215		Ser	Tyr	Glu	Val 220	Lys	Gly	Asn	Lys
	Val 225		Phe	Glu	Val	Phe 230		Pro	Glu	. Asp	Arg 235		Туг	Asp	Lys	Val 240
30	Thr	· Val	Thr	Val	Gly 245		. Asp	Gly	Asn	Ala 250		Gly	Ala	Ser	Val 255	Glu
35	Phe	: Ile	e Gly	Lys 260												
40		1>	61 385 PRT Esch		chia	coli										
45	Val 1	L Va	l Ile	e Ile	Asr 5	ı Sei	Thr	: Ile	e Lev	ı Ser 10	Gly	/ Ala	Gly	Ala	Ile 15	Pro
50	Sei	r Lei	u Thi	s Se:	r Ĺei	ı Let	1 Pro	o Ası	25	e Arg	J Ľys	s Met	: Lev	Let 30	ı Val	Thr
	Asj	p Ar	g Ası 35	n I1	e Ala	a Gli	n Lei		p Gl	y Va	l Gl	ı Gli	n Il€ 45	e Arc	g Ala	Leu
55					•											

5	Leu	Glu 50	Lys	His	Cys	Pro	Gln 55	Val	Asn	Val	Ile	Asp 60	Asn	Val	Pro	Ala
Š	Glu 65	Pro	Thr	His	His	Asp 70	Val	Arg	Gln	Leu	Met 75	Asp	Ala	Pro	Gly	Asp 80
10	Ala	Ser	Phe	Asp	Val 85	Val	Val	Gly	Ile	Gly 90	Gly	Gly	Ser	Val	Leu 95	Asp
15	Val	Ala	Lys	Leu 100	Leu	Ser	Val	Leu	Cys 105	His	Pro	Gln	Ser	Pro 110	Gly	Leu
20	Asp	Ala	Leu 115	Leu	Ala	Gly	Glu	Lys 120	Pro	Thr	Gln	Arg	Val 125	Gln	Ser	Trp
20	Leu	Ile 130	Pro	Thr	Thr	Ala	Gly 135	Thr	Gly	Ser	Glu	Ala 140	Thr	Pro	Asn	Ala
25	Ile 145	Leu	Ala	Ile	Pro	Glu 150	Gln	Ser	Thr	Lys	Val 155	Gly	Ile	Ile	Ser	Gln 160
30	Val	Leu	Leu	Pro	Asp 165		Val	Ala	Leu	Phe 170	Pro	Glu	Leu	Thr	Thr 175	Ser
	Met	Pro	Ala	His 180		Ala	Ala	Ser	Thr 185		Ile	Asp	Ala	Leu 190	Cys	His
35	Leu	Leu	Glu 195		Phe	Thr	Ala	Thr 200		Ala	Asn	Pro	Val 205		Asp	Asn
40	Ala	Ala 210		Thr	Gly	Leu	Ser 215		Lev	Phe	Arg	His		Gln	Pro	Ala
45	Val 225		geA ı	Pro	Glr	Asp 230		ı Arg	Ala	r PAa	Leu 235		ı Met	Leu	Trp	Ala 240
	Ser	Туз	туг	: Gly	/ Gly 245		. Ala	ıle	t Thr	His 250		Gly	/ Thr	His	Leu 255	Val
50	His	s Ala	a Lei	ı Sei 260		r Pro	Lev	ı Gly	7 Gly 269		з Туг	His	s Leu	270	His	Gly
55																

	Val Ala Asn Ala Ile Leu Leu Ala Pro Cys Met Ala Phe Val Arg Pro 275 280 285	,
5	Trp Ala Val Glu Lys Phe Ala Arg Val Trp Asp Cys Ile Pro Asp Ala 290 295 300	
10	Glu Thr Ala Leu Ser Ala Glu Glu Lys Ser His Ala Leu Val Thr Trp 305 310 315 320) }
	Leu Gln Ala Leu Val Asn Gln Leu Lys Leu Pro Asn Asn Leu Ala Ala 325 330 335	L
15	Leu Gly Val Pro Pro Glu Asp Ile Ala Ser Leu Ser Glu Ala Ala Leu 340 345 350	1
20	Asn Val Lys Arg Leu Met Asn Asn Val Pro Cys Gln Ile Asp Leu Glr 355 360 365	1
25 ·	Asp Val Gln Ala Ile Tyr Gln Thr Leu Phe Pro Gln His Pro Phe Lys 370 375 380	5
	Glu 385	
30	<210> 62 <211> 105 <212> PRT <213> Escherichia coli	
35	<pre><400> 62 Met Asn Ile Arg Lys Leu Phe Cys Pro Gly Asn Thr Pro Arg Ile Le 1 5 10 15</pre>	u
40	Leu Phe Leu Phe Phe Phe Val Val Ser Ala Ile Thr Thr Ile Ala Cy 20 25 30	s
45	Gly Tyr Thr Glu Lys Asn Ala Thr Gly Asn Val Leu Leu Leu Phe Le 35 40 45	u,
50	Leu Leu Leu Ala His Arg Asn Thr Leu Thr Ser Ile Thr Ala Le 50 55 60	u
	Leu Phe Leu Phe Cys Cys Ala Leu Tyr Ala Pro Ala Gly Met Thr Ty 65 70 75 80	/ r)
55		

	Gly Lys Ile Asn Asn Ser Phe I 85	le Val Ala Leu L 90	eu Gln Thr Thr Thr 95
	Asp Glu Ala Ala Glu Phe Thr G	Gly Met 105	
10	<210> 63 <211> 147 <212> PRT <213> Escherichia coli <400> 63		
15	Met Asn Ile Gln Ala Ile Lys (1 5	Glu Met Val Asn I 10	Leu Ile Cys Ser Phe 15
20	Leu Phe Ile Phe Phe Leu Ser S 20	Ser Ala Phe Val S 25	Ser Phe Gly Cys Tyr 30
	Ala Ile Tyr Glu Leu Phe Leu '	Trp Asn Asp Ile : 40	Ile Val Tyr Ser Trp 45
25	Gly Tyr Ile Leu Ile Val Phe 50 55	Leu Pro Phe Thr	Leu Tyr Val Met Ser 60
30	Phe Glu Ile Leu Phe Phe Ala 65 70	Ile Ser Gly Arg 75	Arg Leu Ser Lys Val 80
35	Thr Met Val Arg Leu Trp Leu 85	Ile Ile Lys Ile 90	Ile Ile Ala Phe Ser 95
	Ile Cys Ala Val Leu Ile Phe 100	Ser Ser Ile Tyr 105	Lys Lys Glu Leu Leu 110
40	Ser Arg Asn Tyr Ile Ala Cys 115	Ser Gly Ile Pro 120	Ser Gly Trp Met Pro 125
45	Gly Leu Ala Thr Lys Tyr Val	Lys Glu Lys Ser	Leu Cys Glu Lys Asn 140
50	Gly Asn Asn 145		
	<210> 64 <211> 178		
55			

	<212 <213 <400	> E	RT sche 4	rich	ia c	oli										
5	Met 1	Phe	Pro	Ile	Arg 5	Phe	Lys	Arg	Pro	Ala 10	Leu	Leu	Cys	Met	Ala 15	Met
10	Leu	Thr	Val	Val 20	Leu	Ser	Gly	Cys	Gly 25	Leu	Ile	Gln	Lys	Val 30	Val	Asp
	Glu	ser	Lys 35	Ser	Val	Ala	Ser	Ala 40	Val	Phe	Tyr	ГÀа	Gln 45	Ile	ГÀг	Ile
15	Leu	His 50	Leu	Asp	Phe	Phe	Ser 55	Arg	Ser	Ala	Leu	Asn 60	Thr	Asp	Ala	Glu
20	Asp 65	Thr	Pro	Leu	Ser	Thr 70	Met	Val	His	Val	Trp 75	Gln	Leu	Lys	Thr	Arg 80
25	Glu	Asp	Phe	Asp	Lys 85	Ala	Asp	Tyr	Asp	Thr 90	Leu	Phe	Met	Gln	Glu 95	Glu
	Lys	Thr	Leu	Glu 100		Asp	Val	Leu	Ala 105	Lys	His	Thr	Val	Trp 110	Val	Lys
30	Pro	Glu	Gly 115		Ala	Ser	Leu	Asn 120		Pro	Leu	Asp	Lys 125	Glu	Thr	Gln
35	Phe	Val 130		Ile	Ile	Gly	Gln 135	Phe	туг	His	Pro	Asp 140	Glu	. Lys	Ser	Asp
40	Ser 145		Arg	Leu	ı Val	11e		Arg	, Asr	Glu	155	Glu	ı Ala	. Asp	Lys	Pro 160
	Arg	g Ser	: Ile	e Glu	1 Leu 165		: Arg	g Ser	. Asi	170)	J Lev	ı Lev	Pro	175	ı Lys
45	Ası	Lys	5										•			
50	<2 <2 <2	10> 11> 12> 13>		nerio	chia	col	i									·
55	<4	00>	65													

	Met 1	Phe	Leu	Lys	Arg 5	Lys	Trp	Tyr	Tyr	Ala 10	Val	Thr	Thr	Ser	Val 15	Val
5	Ile	Thr	Leu	Cys 20	Gly	Gly	Gly	Tyr	Туг 25	Met	Туг	Arg	Gln	Glu 30	Tyr	Gln
10	Met	Val	Val 35	Thr	Val	Pro	Thr	Ala 40	Asp	Ala	Asn	Asp	Pro 45	Asn	Trp	Pro
15	Asn	Lys 50	Arg	Ile	Gln	Phe	Asp 55	Thr	Ser	Glu	Trp	Leu 60	Gln	Gln	Leu	Gln
	Tyr 65	Ile	Lys	Ile	Asp	Asp 70	His	Tyr	Ile	Leu	Asn 75	Thr	Gln	Tyr	Thr	Pro 80
20	Ile	λla	Asn	Leu	Asp 85	Asp	Phe	Gly	Ile	Thr 90	Leu	Lys	Leu	Gln	Asn 95	Ala
25	Leu	Asn	Gly	Ser 100		Lys	Arg	Leu	Pro 105	Ala	Leu	Tyr	Gly	Leu 110	Ala	Glu
30	Met	Asp	Ala 115		Lys	Phe	Lys	Asp 120		Met	Arg	Gly	Lys 125	Ile	Lys	Cys
	Glu	Туг 130		Arg	Thr	Thr	Phe 135		Ala	Glu	Thr	Leu 140	Lys	Pro	Val	Asn
35	Asp 149		r Phe	. Lev	ı Ile	Ser 150		Thr	туг	: Lys	155	Lys	Trp	туг	Glu	Phe 160
40	Glu	ı Thi	c Glu	ı Arç	Lys 165		e Ser	. Lys	s Thi	ser 170	Asp) Asp	Gly	тут	Phe 175	. Leu
45	Tr	Ala	a Phe	e Ası 18		1 Th	c Val	. His	189	ı Ala	a Gly	туг	r Trg	190	a Asr	Thr
	Ası	o Pr	o Ala 19		а Ту	c Se:	г Тул	200		р Ту	c Glr	n Ası	n Gly 209	y Lys	ala	a Val
50	Ly	s														
55																

5	<210 <211 <212 <213 <400	> 4 > P > E	6 24 RT sche 6	rich	ia c	oli										*** *	
	Met 1	Asp	Ile		Arg 5	Gly	His	Ser	Phe	Leu 10	Met	Thr	Ile	Ser	Ala 15	Arg	
10	Phe	Arg	Gln	Tyr 20	Val	Phe	Ser	Leu	Met 25	Ser	Ile	Leu	Leu	Gln 30	Glu	Arg	
15	Lys	Met	Asn 35	Ile	Phe	Thr	Leų	Ser 40	Lys	Ala	Pro	Leu	Tyr 45	Leu	Leu	Ile	
20	Ser	Leu 50	Phe	Leu	Pro	Thr	Met 55	Ala	Met	Ala	Ile	Asp 60	Pro	Pro	Glu	Arg	
	Glu 65	Leu	Ser	Arg	Phe	Ala 70	Leu	Lys	Thr	Asn	Tyr 75	Leu	Gln	Ser	Pro	Asp 80	
25	Glu	Gly	Val	туг	Glu 85	Leu	Ala	Phe	Asp	Asn 90	Ala	Ser	Lys	Lys	Val 95	Phe	
30	Ala	Ala	Val	Thr 100	Asp	Arg	Val	Asn	Arg 105		Ala	Asn	Lys	Gly 110	Tyr	Leu	
35	Tyr	Ser	Phe 115	Asn	Ser	Asp	Ser	Leu 120		Val	Glu	Asn	Lys 125	Туr	Thr	Met	
	Pro	130		Ala	Phe	Ser	Leu 135		Ile	e Asr	ı Gln	Asp 140	Lys	His	Gln	Leu	
40	Туг 145		e Gly	His	Thr	Glr 150		Ala	ser	. Lev	a Arg	, Ile	Ser	Met	Phe	Asp 160	
45	Thi	r Pro	Thr	- Gly	Lys 165	Lev	ı Val	Arg	g Thi	. Sei 170	r Asp	Arg	Leu	. Ser	Phe 175	Lys	-
<i>50</i> .	Ala	a Ala	a Asr	1 Ala	a Ala	a Asp	p Sei	ar Ar	g Phe 18	e Gli	 u His	∍ Ph∈	e Arg	190	Met	. Val	
	Ту	r Se	r Glr 195		Se:	r As _l	p Thi	r Le:	u Ph	e Va	l Se:	г Туз	205	c Ası	n Met	; Leu	

	Lys	210	Ala	Glu	Gly	Met	Lys 215	Pro	Leu	His	Lys	Leu 220	Leu	Met	Leu	Asp
5	Gly 225	Thr	Thr	Leu	Ala	Leu 230	Lys	Gly	Glu	Val	Lys 235	Asp	Ala	туг	Lys	Gly 240
10 .	Thr	Ala	Tyr	Gly	Leu 245	Thr	Met	Asp	Glu	Lys 250	Thr	Gln	Lys	Ile	Tyr 255	Val
15	Gly	Gly	Arg	Asp 260	Tyr	Ile.	Asn	Glu	Ile 265	Asp	Ala	Lys	Asn	Gln 270	Thr	Leu
	Leu	Arg	Thr 275	Ile	Pro	Leu	Lys	Asp 280	Pro	Arg	Pro	Gln	Ile 285	Thr	Ser	Val
20	Gln	Asn 290	Leu	Ala	Val	Asp	Ser 295		Ser	qaA	Arg	Ala 300	Phe	Val	Val	Val
25	Phe 305	Asp	His	Asp	Asp	Arg 310	Ser	Gly	Thr	Lys	Asp 315	Gly	Leu	Tyr	Ile	Phe 320
30	Asp	Leu	Arg	Asp	Gly 325	Lys	Gln	Leu	Gly	Tyr 330	Val	His	Thr	Gly	Ala 335	Gly
	Ala	Asn	Ala	Val 340	Lys	Tyr	Asn	Pro	Lys 345		Asn	Glu	Leu	Туг 350	Val	Thr
35	Asn	Phe	Thr 355	Ser	Gly	Thr	Ile	Ser 360	Val	Val	Asp	Ala	Thr 365	Lys	Tyr	Ser
40	Ile	Thr 370	Arg	Glu	Phe	Asn	Met 375	Pro	Val	Tyr	Pro	Asn 380		Met	Val	Leu
45 ·	Ser 385	-	Asp	Met	Asp	Thr 390	Leu	Tyr	Ile	Gly	Ile 395	Lys	Glu	Gly	Phe	Asn 400
	Arg	Asp	Trp	Asp	Pro 405	Asp	Val	Phe	Val	Glu 410		Ala	Lys	Glu	Arg 415	Ile
50	Leu	. Ser	·Ile	420		Lys	Lys	Ser								

	<210>	67						
	<211> <212>	489 DNA	erichia col	i				
5		67 tga a	agctattat	attggccacc	ggtcttatta.	actgtattgt	attttcagca	60
	caggcag	itgg a	atacgacgat	tactgtgacg	ggtaatgttt	tgcaaagaac	atgtaatgta	120
0	ccaggga	atg t	tggatgtttc	tttgggtaat	ctgtatgtat	cagactttcc	caatgcagga	180
	agtggat	ctc o	catgggttaa	ttttgatctg	teteteaceg	gatgccagaa	tatgaatact	240
	gttcggg	ıcaa (catttagtgg	tactgcggat	gggcagacat	actatgcgaa	tacagggaat	300
15	gctggcg	gta :	tcaagattga	aattcaggac	agggatggaa	gtaatgcatc	atatcacaat	360
	ggtatgt	tca .	agacgcttaa	tgtacaaaat	aataatgcaa	cctttaatct	taaagcccgt	420
20	gcagtga	agta	aaggccaggt	tactcctgga	aatatcagtt	ctgttataac	cgtcacctat	480
20	acctate	gcg						489
25	<210><211><212><212><213><400>	68	erichia co					
						tattgctccc		60
30						ttaccgccag		120
						tcagcgcgcc	•	180
<i>35</i>	_					tgcccgggct		240
						gcgtctcttc		300
						ctcagctttc		360
40			•			gaggcccaca		420
						cccagcagcc	•	480
	ccgcgc	ggct	atattgaagg	cggcgtcagt	agccgcgaca	gttatcgaag	taagttcaac	540
45							acgccaggtt	600
						acttaggcgg		660
50						agccctggga		720
- <i>*</i>				•		. atgtgggatg		780
	aagggo	cgta	agctgtcgat	cagcgatggt	tcaccagaco	: cgtacatgcg	gcgctgcact	840

	gacagccaga	ccctgagtgg	gaaatacacc	accgatgact	gggttttcaa	cctgatcagc	900
	gcctggcagc	agcagcatta	ttcgcgcacc	ttcccttccg	gttcgttaat	cgtcaatatg	960
5	tctcagcgct	ggaatcagga	tgtgcaggag	ctgcgcgctg	caaccctggg	cgatgcgcgt	1020
	accgttgata	tggtgtttgg	gctgtaccgg	cagaacaccc	gcgagaagtt	aaattcagcc	1080
	tacgacatgc	cgacaatgcc	ttatttaagc	agtaccggct	ataccaccgc	tgaaacgctg	1140
10	gccgcataca	gtgacctgac	ctggcattta	accgatcgtt	ttgatatcgg	cggcggcgtg	1200
	cgcttctcgc	atgataaatc	cagtacacaa	tatcacggca	gcatgctcgg	caacccgttt	1260
15	ggcgaccagg	gtaagagcaa	tgacgatcag	gtgctcgggc	agctatccgc	aggctatatg	1320
	ctgaccgatg	actggagagt	gtatacccgt	gtagcccagg	gatataaacc	ttccgggtac	1380
	aacatcgtgc	ctactgcggg	tcttgatgcc	aaaccgttcg	togoogagaa	atccatcaac	1440
20	tatgaacttg	gcacccgcta	cgaaaccgct	gacgtcacgc	tgcaagccgc	gacgttttat	1500
	acccacacca	aagacatgca	gctttactct	ggcccggtcg	ggatgcagac	attaagcaat	1560
	gcgggtaaag	ccgacgccac	cggcgttgag	cttgaagcga	agtggcggtt	tgcgccaggc	1620
25	tggtcatggg	atatcaatgg	caacgtgatc	cgttccgaat	tcaccaatga	cagtgagttg	1680
	tatcacggta	accgggtgcc	gttcgtacca	cgttatggcg	cgggaagcag	cgtgaacggc	1740
30	gtgattgata	egegetateg	cgcactgatg	ccccgactgg	cggttaatct	ggtcgggccg	1800
	cattatttcg	atggcgacaa	ccagttgcgg	caaggcacct	atgccaccct	ggacagcagc	1860
	ctgggctggc	aggcgactga	acggatgaac	atttccgtct	atgtcgataa	cctgttcgac	1920
35	cgtcgttacc	gtacctatgg	ctacatgaac	ggcagcagcg	ccgtcgcgca	ggtcaatatg	1980
	ggtcgcaccg	, toggtatcaa	. tacgcgaatt	gatttcttc			2019
40			oli				
45	<400> 69 atgaataagg	g tttttgttgt	ttcagtggtg	gccgcagcct	gtgtatttgo	agtaaatgca	60
75	ggagcaaagg	g aaggtaaaag	g cggtttttat	ctgaccggta	aagccggtgo	ctctgtgatg	1.20
	tcactttcag	g accagegttt	cctgtcagga	a gatgaggaag	aaacatcaaa	gtataaaggc	180
50	ggcgatgac	c atgatacggt	attcagtgg	ggtattgcgg	toggttatga	a tttttatccg	240
	cagttcagt	a ttccggttc	g tacagaacto	g gagttttaco	ctcgtggaaa	agctgattcg	300
	aagtataac	g tagataaag	a cagctggtca	a ggtggttact	: ggcgtgatga	a cctgaagaat	360

	gaggtgtcag tcaacacact aatgctgaat gcgtactatg acttccggaa tgacagcgca	420
5	ttcacaccat gggtatccgc agggattggc tacgccagaa ttcaccagaa aacaaccggt	480
	atcagtacct gggattatga gtacggaagc agtggtcgcg aatcgttgtc acgttcaggc	540
	totgotgaca acttogoatg gagoottggo gogggtgtoo gotatgaogt aaccooggat	600
10 .	ategetetgg aceteageta tegetatett gatgeaggtg acageagtgt gagttacaag	660
	gacgagtggg gcgataaata taagtcagaa gttgatgtta aaagtcatga catcatgctt	720
15	ggtatgactt ataacttc	738
	<210> 70 <211> 498 <212> DNA <213> Escherichia coli	
	<400> 70 atgaaactga aagctattat attggccacc ggtcttatta actgtattgc attttcagca	60
	caggcagtgg atacgacgat tactgttaca gggagggtat tgccacgtac ctgtaccatt	120
25	ggtaatggag gaaacccaaa cgccaccgtt gttttggata acgcttacac ttctgacctg	180
	atagcageca acageacete teagtggaaa aatttttegt tgacattgae gaattgteag	240
	aatgtaaaca atgttacttc atttggtgga accgcagaaa atacaaatta ttacagaaat	300
30	acaggggatg ctactaatat catggttgag ctacaggaac aaggtaatgg taataccccc	360
	ttgaaagttg gttcaacaaa agttgttaca gtgagcaatg ggcaggcgac attcaatctt	420
0.5	aaagteegtg eegtaageaa aggtaatget ggtgegggaa gtattaatte acaaattaet	480
35	gtcacctata cctatgcg	498
40	<210> 71 <211> 3885 <212> DNA <213> Escherichia coli	
	<400> 71 atgaataaaa tatactccct taaatatagt gctgccactg gcggactcat tgctgtttct	60
45	gaattagcga aaagagtttc tggtaaaaca aaccgaaaac ttgtagcaac aatgttgtct	120
	ctggctgttg ccggtacagt aaatgcagca aatattgata tatcaaatgt atgggcgaga	180
	gactatettg atettgeaca aaataaaggt atttteeage eeggageaae agaegtaaca	240
50	atcactttaa aaaacggaga taaattctct ttccataatc tctcaattcc ggatttttct	300
	ggtgcagcag cgagtggcgc agctaccgca ataggaggtt cttatagtgt tactgttgca	360

	cataacaaaa	agaaccctca	ggccgcagaa	acccaggttt	acgctcagtc	ttcttacagg	420
	gttgttgaca	gaagaaattc	caatgatttt	gagattcaga	ggttaaataa	atttgttgtg	480
5	gaaacagtag	gtgccacccc	ggcagagacc	aaccctacaa	catattctga	tgcattagaa	540
	cgctacggta	tagtcacttc	tgacggttca	aaaaaaatca	taggttttcg	tgctggctct	600
40	ggaggaacat	catttattaa	tggtgaatcc	aaaatctcaa	caaattcagc	atatagccat	660
10	gatctgttaa	gtgctagtct	atttgaggtc	acccaatggg	actcatacgg	catgatgatt	720
	tataaaaatg	ataaaacatt	tcgtaatctt	gaaatattcg	gagacagcgg	ctctggagca	780
15	tacttatatg	ataacaaact	agaaaaatgg	gtattagtcg	gaacaaccca	tggtattgcc	840
	agcgttaatg	gtgaccaact	gacatggata	acaaaataca	atgataaact	ggttagtgag	900
	ttaaaagata	cctatagtca	taaaataaat	ctgaatggca	ataatgtaac	cattaaaaac	960
20	acagatataa	cattacacca	aaacaatgca	gataccactg	gtactcaaga	aaaaataact	1020
	aaagacaaag	atattgtgtt	cacaaatggg	ggagatgtcc	tgtttaagga	taatttggat	1080
	tttggtagcg	gtggtattat	ctttgacgaa	ggccatgaat	ataacataaa	cggtcaggga	1140
25	tttacattta	aaggagcagg	aattgatatc	ggaaaagaaa	gcattgtaaa	ctggaatgca	1200
	ttgtattcca	gtgatgatgt	tttacacaaa	ataggccccg	gtactctgaa	tgttcaaaaa	1260
30	aaacaggggg	caaatataaa	gataggtgaa	ggaaatgtta	ttcttaatga	agaaggaaca	1320
	tttaacaata	tataccttgc	aagcggaaat	ggtaaggtaa	tactaaataa	agataattcc	1380
	cttggcaatg	atcaatatgc	ggggatattt	tttactaaac	gtggtggtac	gctagattta	1440
35	aatggacaca	atcagacttt	tactagaatt	gccgccactg	acgatggaac	aacaataact	1500
	aactcagata	caacgaaaga	agccgttctg	gcaatcaata	acgaagactc	ctacatatat	1560
	catgggaaca	taaatggcaa	tataaaacta	acgcacaata	ttaattctca	ggataagaaa	1620
40	actaatgcaa	aattaattct	ggatggtagt	gtcaacacaa	aaaatgatgt	tgaagtcagt	1680
	aatgccagtc	ttaccatgca	aggccatgca	acagagcatg	caatattcag	aagctcagcg	1740
45	aatcattgct	ccctggtatt	tctttgtgga	acggactggg	tcaccgtttt	gaaagaaaca	1800
	gagagttcat	ataataaaaa	attcaattct	gattacaaaa	gtaataatca	gcagacctca	1860
	tttgatcago	ctgactggaa	aaccggggtg	tttaaatttg	atacattaca	cctgaacaat	1920
50	gctgactttt	caatatcacg	caatgccaat	gttgaaggaa	atatatcago	aaataaatca	1980
	gctatcacaa	teggegataa	aaatgtttac	attgataato	ttgcagggaa	aaatattact	2040
	aataatggtt	ttgacttcaa	acaaactato	agtactaato	tatecatagg	agaaactaaa	2100
55							

	tttacaggtg	gcatcactgc	acataacagc	caaatagcca	taggtgatca	agctgtagtt	2160
_	acacttaatg	gtgcaacctt	tctggataat	actcctataa	gtatagataa	aggagcaaaa	2220
5	gttatagcac	aaaattccat	gttcacaaca	aaaggtattg	atatctccgg	tgaactgact	2280
	atgatgggaa	tccctgaaca	gaatagtaaa	actgtaacgc	cgggtctcca	ctacgctgct	2340
10	gatggattca	ggctgagtgg	tggaaatgca	aatttcattg	ccagaaatat	ggcatctgtc	2400
	accggaaata	tttatgctga	tgatgcagca	accattactc	tgggacagcc	tgaaactgaa	2460
	acaccgacta	tatcgtctcc	ttatcaggca	tgggcagaga	ctcttttgta	tggctttgat	2520
15	accgcttatc	gaggcgcaat	aacagccccc	aaagctacag	ttagcatgaa	taatgcgatc	2580
	tggcatctaa	atagccagtc	atcaattaat	cgtctagaaa	caaaagacag	tatggtgcgt	2640
	tttactggtg	ataatgggaa	gtttacaacc	cttacagtga	acaaccttac	tatagatgac	2700
20	agtgcatttg	tgctgcgtgc	aaatctggcc	caagcagatc	agcttgttgt	caataaatcg	2760
	ttgtctggta	aaaacaacct	tctgttagtc	gacttcattg	agaaaaatgg	aaacagcaac	2820
25	ggactgaata	tegatetggt	cagcgcacca	aaaggaactg	cagtagatgt	ctttaaagct	2880
20	acgactcgga	gtattggctt	cagtgatgta	acaccggtta	togagcaaaa	. gaacgataca	2940
	gacaaagcaa	. catggactct	gatcggctat	aaatctgtgg	ccaacgccga	tgcggctaaa	3000
· 30	aaggcaacat	. tactgatgtc	aggcggctat	aaageettee	ttgctgaggt	: caacaacctt	3060
						ggcccgaatc	3120
	attagoggaa	cegggtetge	cggcggtgga	ttcagtgaca	actacaccca	cgttcaggtc	3180
35						gaccatgacc	3240
						tgtgggtgcc	3300
40	•		-			cggtaagtac	3360
40					· ·	g agactacagc	3420
					·	c tgactctgca	3480
45			g##			a gttctcctgg	3540
	•					t gattgggcgt	. 3600
						c agcccgcgcc	. 3660
50						g tgatgcgtcc	3720
٠				-		t tggtctcaac	3780
	٠٠٠ و٠٠٠						

	gccgaaatt	gcgataatct	tcgcttcggt	cttgagtttg	agaaatcggc	atttggtaaa	3840
	tacaacgtg	g ataacgcgat	caacgccaac	ttccgttact	ctttc		3885
5							
10	<210> 72 <211> 426 <212> DNA <213> Esc <400> 72		li				
70		a ttcccagtcc	caccgctgtt	gttatggcgc	tggtagccat	cagcacgctt	60
	cccagcccta	a gcagggtaaa	gcttatgcca	tatcctccca	gagcccacaa	caccacaggt	120
15	ttactgcca	g tacgggaaat	ttgctttccc	caccacgggg	acgatggcag	aaacagcatt	180
	gagccaagc	a tcagcagggc	agcccataca	gacagactca	gatttgtctg	tatgaccaga	240
	acagggagc	a caaccagcag	accgttctgc	ccgataccga	gaagcccggc	actgaacgca	300
20	agtggccag	c aggacagtgg	tttttggggc	gtatcttcga	tcccaggtga	cattttaatg	360
	tttcaactc	c atgtattaat	tgtgtttatt	tgtaaaatta	atttatctga	caataacatt	420
	tcttat						426
<i>25</i>							
30	<400> 73	4 A cherichia co					
	atgtatgcc	c gcgagtatcg	ctcaacacgc	ccgcataaag	cgattttctt	tcatctttct	60
	tgcctcacc	c ttatctgtag	tgcgcaagtt	tatgcgaagc	cggatatgcg	gccactgggg	120
35	ccgaatata	g ccgataaagg	ctccgtgttt	taccatttca	gcgccacctc	tttcgactct	180
	gtcgatggc	a cacgccatta	tcgggtatgg	acggccgtgc	cgaatacaac	cgcaccggca	240
	tcgggttac	c cgattttata	tatgettgae	ggtaacgcag	ttatggaccg	cctggatgac	300
40	gaactgctc	a aacaattgtc	agaaaaaaca	ccgccagtga	tegtggetgt	cgggtatcag	360
	accaaccto	c ctttcgatct	caacagcagg	gcttacgact	atacgccagc	agcagaaagc	420
45	agaaaaaca	g atctccacto	agggcgtttt	agccgtaaga	gtggtggcag	caacaacttc	480
	cgccagtta	c tggaaacgcg	tattgcccca	aaagtggaac	agggactgaa	tatcgatcgg	540
	caacgccgc	g gcttatgggg	gcactcctac	ggcggcctct	tcgtgctgga	ttcctggctg	600
50	tectectet	t actteeggte	gtactacago	gccagcccgt	cgttgggcag	aggttatgat	660
	gctttgcta	a geegegttae	ggcggttgag	cctctgcaat	tctgcaccaa	acacctggcg	720
<i>==</i>	ataatggaa	ng geteggegae	: acagggtgat	aaccgggaaa	cgcatgctgt	cggggtgctg	780
55							

	tcgaaaattc ataccaccct cactatactg aaagataaag gcgtcaatgc cgtattttgg	840
5	gatttcccca acctgggaca cgggccgatg ttcaatgcct cctttcgcca ggcactgtta	900
	gatatcagtg gtgaaaacgc aaattacaca gcaggttgtc atgagttaag ccac	954
•	210 74	
10	<pre><210> 74 <211> 2175 <212> DNA <213> Escherichia coli</pre>	:
	<400> 74 atgagaatta acaaaatcct ctggtcgcta actgtgctcc tagttgggtt gaatagccag	60
15	gtatcagtag ccaaatactc cgacgatgat aatgacgaga ctctggtggt ggaagccacc	120
	gctgagcagg tattaaaaca gcagccgggc gtgtcggtta ttaccagcga ggatattaaa	180
20	aagacccctc cggtaaacga cctttcagat attattcgta aaatgcctgg tgttaatctt	240
	accggcaata gegeeteggg cacaegeggt aataacegee agategatat tegtggtatg	300
. •	gggccggaaa acaccttaat tttaattgat ggtgtaccgg tgacgtcacg taactccgtg	360
25	cgttataget ggcgtggga gegtgataee egeggtgaea eeaaetgggt geeaeeggaa	420
	caggttgagc gtattgaagt gatccgcggc cctgcggcgg cgcgctacgg ttcgggggcc	480
	gccggggggg tggtgaacat cattaccaaa cgtcccacca acgactggca cggttcgctg	540
30	togttataca ocaaocagoo ggaaagtago gaagagggog etacgogtog ogocaattto	600
	ageettagtg ggeetetgge tggtgatget ettaccaege gtttgtatgg taacetgaat	660
35	aaaacggatg ctgacagttg ggatattaat tctccggtcg gtacgaaaaa cgcagccggg	720
	catgaagggg tacgtaacaa agatattaac ggcgttgtct cgtggaaatt aaatccgcag	78 Õ
	cagatteteg atttegaagt eggatatage egecagggga atatetatge gggegataeg	840
40	cagaacagtt cttccagtgc agttaccgaa agcctggcaa aatccggcaa agagacgaac	900
	cgcctgtacc gacagaatta tggcattacg cataatggta tctgggactg gggacaaagt	960
:	cgctttggtg tttattacga gaaaaccaat aatacccgca tgaatgaagg attatccggc	1020
45	ggtggtgaag gacgtatttt agcgggtgaa aagtttacga ccaatcgcct gagttcctgg	1080
	cgaaccageg gtgagettaa tatteetttg aatgtgatgg ttgateaaac getgaeegtt	1140
50	ggtgcagagt ggaaccgcga taagctcgat gatccttcct ctaccagcct gacggtgaat	1200
	gacagagata teageggtat ttetggetet getgeggate geageagtaa aaateattet	1260
	caaatcagtg cgctgtatat tgaagataac attgagccgg ttcctggcac gaatatcatt	1320

	cccggcctgc	gctttgatta	tctcagcgac	tccggcggga	acttcagccc	cagtctgaat	1380
	ctttcgcagg	aattgggcga	ttatttcaaa	gtcaaagcag	gggttgcccg	aacctttaaa	1440
5	gecccaaacc	tgtatcaatc	cagtgaaggc	tatctgctct	actcgaaagg	caatggctgt	1500
	ccaaaagata	ttacatcagg	cgggtgctac	ctgatcggta	ataaagatct	cgatccggaa	1560
	atcagcgtca	ataaagaaat	tggactggag	ttcacctggg	aagattacca	cgcaagtgtg	1620
10	acctacttcc	gcaatgatta	ccagaataag	atcgtggccg	gggataacgt	tatcgggcaa	1680
	accgcttcag	gcgcatatat	cctcaagtgg	cagaatggcg	ggaaagctct	ggtggacggt	1740
15	atcgaagcca	gtatgtcttt	cccactggtg	aaagagcgtc	tgaactggaa	taccaatgcc	1800
	acatggatga	tcacttcgga	gcaaaaagac	accggtaatc	ctctgtcggt	catcccgaaa	1860
	tatactatca	ataactcgct	taactggacc	atcacccagg	cgttttctgc	cagcttcaac	1920
20	tggacgttat	atggcagaca	aaaaccgcgt	actcatgcgg	aaacccgcag	tgaagatact	1980
	ggcggtctgt	caggtaaaga	gctgggcgct	tattcactgg	tggggacgaa	cttcaattac	2040
	gatattaata	aaaatctgcg	tcttaatgtc	ggcgtcagta	atatcctcaa	taaacagatc	2100
25	ttccgatctt	ctgaagggc	gaatacctat	aacgagccag	gccgggctta	ttatgccgga	2160
	gttaccgcat	cattc					2175
30	<210> 75 <211> 304 <212> DNA <213> Esc <400> 75	2 herichia co	li				
35		aatggcaaca	aaaatatctt	cttgagtaca	atgagttggt	atcaaatttc	60
	ccttcacctg	aaagagttgt	cagcgattac	attaagaatt	gttttaaaac	tgacttgccg	120
	tggtttagtc	ggattgatcc	tgataatgct	tatttcatct	gettttetea	aaaccggagt	180
40	aatagcagat	cttatactgg	atgggatcat	cttgggaaat	ataaaacaga	agtactgaca	240
	ctcactcaag	ccgctcttat	taatattggt	tatcgttttg	atgtttttga	tgatgcaaat	300
45	tcaagcacag	gaatttataa	aacaaagagt	gcagatgtgt	ttaacgaaga	aaatgaagaa	360
	aaaatgctcc	cgtcggaata	cctgcatttt	ttacaaaagt	gtgattttgc	aggtgtttat	420
							480
	ggaaaaactc	tgtcagatta	ctggtcgaaa	tactatgata	aatttaagct	tttactaaaa	400
50					aatttaagct gagagcttga		540
50	aattattata	tttcttctgc	tttgtatctt	tataaaaatg	gagagcttga		
50	aattattata tataatttct	tttcttctgc	tttgtatctt	tataaaaatg agtgataata	gagagcttga	tgagcgtgaa	540

	ttcattcctg	gtgcaaaaaa	accttttta	ttcaagaaga	atatcgctga	tttgcggctt	120
1	acccttaaag	aacttattaa	ggatagtgac	aacaaacaat	tactttccca	acatttttca	780
	ttatatagtc	gtcaagatgg	agtttectat	gcaggagtaa	attetgttet	acatgcaata	840
	gaaaatgatg	gtaattttaa	tgagtcttac	tttctgtatt	ccaataagac	acttagcaat	900
o	aaagatgttt	ttgatgctat	agctatttct	gttaagaaac	gcagtttcag	tgatggtgat	960
	atcgttataa	aatcaaacag	tgaagctcaa	cgagactatg	ctctgactat	actccagacg	1020
	attttatcaa	tgacccctat	atttgatatc	gtagtcccgg	aggtatctgt	tccgcttgga	1080
5	ctggggatta	ttacttccag	tatggggatc	agttttgatc	aactgattaa	tggtgatact	1140
	tatgaagaac	gtcgttctgc	tatacctggt	ttggcgacaa	atgcagtatt	gcttggtctg	1200
20	tcttttgcaa	ttccactctt	gattagtaag	gcaggaataa	accaggaggt	acttagcagc	1260
	gttataaata	atgagggcag	gactctgaat	gaaacaaata	tcgatatatt	tttgaaggaa	1320
	tatggaattg	ctgaagatag	tatatcctca	actaatttgt	tagacgttaa	gcttaaaagt	1380
?5	tccgggcagc	atgtcaatat	tgtaaagctt	agtgatgaag	ataatcaaat	tgtcgctgta	1440
	aaagggagtt	ctctgagcgg	catctactat	gaagtggaca	ttgaaacagg	atatgagatt	1500
	ttatcccgaa	gaatttatcg	taccgaatat	aataatgaaa	ttctctggac	tcgaggtggt	1560
30	ggtctaaaag	gggggcagcc	atttgatttt	gaaagtctca	atattectgt	attttttaaa	1620
	gatgaaccct	attetgeagt	gaccggatct	ccgttatcat	ttattaatga	tgacagctca	1680
35	cttttatatc	ctgatacaaa	cccaaaatta	. седсаассаа	cgtcagaaat	ggatattgtt	1740
	aattatgtta	agggttetgg	aagctttggg	gatagatttg	taactttgat	gagaggagct	1800
	actgaggaag	aagcatggaa	tattgcctct	tatcatacgg	ctgggggaag	g tacagaagaa	1860
40	ttacacgaaa	ttttgttagg	g tcagggccca	a cagtcaagct	taggttttad	tgaatatacc	1920
	tcaaatgtta	acagtgcaga	a tgcagcaago	agacgacact	ttctggtagt	tataaaagtg	1980
	cacgtaaaat	atatcaccaa	a taataatgtt	tcatatgtta	atcattggg	aatteetgat	2040
45	gaageceegg	ttgaagtact	ggetgtggtt	gacaggagat	ttaattttc	tgagccatca	2100
	acgcetects	atatatcaa	c catacgtaa	a ttgttatcto	tacgatatt	taaagaaagt	2160
50	atcgaaagca	a cctccaaat	c taactttca	g aaattaagto	geggtaata	t tgatgtgctt	2220
	aaaggacgg	g gaagtattt	c_atcgacacg	t cagcgtgca	a totatoogt	a ttttgaagcc	2280
	gctaatgct	g atgagcaac	a acctctctt	t ttctacatc	a aaaaagatc	g ctttgataac	2340

	catggctatg	atcagtattt	ctatgataat	acagtggggc	taaatggtat	tccaacattg	2400
	aacacctata	ctggggaaat	tccatcagac	tcatcttcac	teggeteaae	ttattggaag	2460
5	aagtataatc	ttactaatga	aacaagcata	attcgtgtgt	caaattctgc	tcgtggggcg	2520
	aatggtatta	aaatagcact	tgaggaagtc	caggagggta	aaccagtaat	cattacaagc	2580
10	ggaaatctaa	gtggttgtac	gacaattgtt	gcccgaaaag	aaggatatat	ttataaggta	2640
	catactggta	caacaaaatc	tttggctgga	tttaccagta	ctaccggggt	gaaaaaagca	2700
	gttgaagtac	ttgagctact	tacaaaagaa	ccaatacctc	gcgtggaggg	aataatgagc	2760
15	aatgatttct	tagtcgatta	tetgteggaa	aattttgaag	attcattaat	aacttactca	2820
	tcatctgaaa	aaaaaccaga	tagtcaaatc	actattattc	gtgataatgt	ttctgttttc	2880
	ccttacttcc	ttgataatat	acctgaacat	ggctttggta	catcggcgac	tgtactggtg	2940
20	agagtggacg	gcaatgttgt	cgtaaggtet	ctgtctgaga	gttattctct	gaatgcagat	3000
	gcctccgaaa	tatcggtatt	gaaggtattt	tcaaaaaaat	tt		3042
25		e nerichia co	li				
30	<400> 76 algglggaca	tgattaatga	aagtgcacgg	caaacgccag	tcattgcaca	aacggacgtt	60
	ctggttatcg	ggggcggtcc	ggcaggatta	tccgctgcca	ttgcggcagg	gcggttaggt	120
	gccagaacca	tgattgttga	gcgctacggg	tcgctaggcg	gcgtattgac	gcaggtcggg	180
35	gtagaaagtt	ttgcctggta	tegteateeg	gggacggaag	attgtgaagg	gatctgtcgt	240
	gagtatgaag	gccgcgcacg	agcgctgggt	ttcacacgac	cagaacctca	gtcaattagc	300
	gaagttatag	atactgaagg	atttaaagtt	gtcgccgatc	agatgattac	ggaatctggc	360
40	gttgagccgt	tatatcactc	ctgggttgtg	gadgtgatca	aggacgggga	tacgttatgc	420
	ggtgttatcg	tcgagaataa	atcaggtcga	ggggcaattc	tggcgaaaag	aatcgtcgat	480
45	tgcacggggg	atgctgatat	tgccgctcgt	gcaggcgcgc	cctggacgaa	acggagcaag	540
	gaccaactga	tgggcgtcac	cgtgatgttc	agttgcgcag	gtgttgatgt	ggcacgcttt	600
	aaccgttttg	ttgcggaaga	acttaagccg	acctacgcgg	attggggcaa	aaactggacg	660
50	attcaaacca	cgggtaaaga	agacccgatg	tttagcccgt	atatggagga	tatttttacc	720
	cgcgcgcaac	aggatggtgt	gattccaggt	gacgcccagg	cgattgccgg	aacctggtcg	780

	tgtaccgatg tottcgattt aaccaaagct gagattgccg gaaggcagca agcattacgg	700
5	gcaattgacg cactacgcca ctatgttccg ggctttgaaa atgtacggtt acgcaatttt	960
	ggtgccacgc tggggacgcg tgaatcacgg cttattgagg gggaaatacg tattgctgat 10	020
	gattacgtcc ttaatcaggg gegttgttcg gacagtgtag ggattttccc ggaatttatt 1	080
0	gatggttccg gttatctcat tttgccaacg accgggcgtt tctttcagat cccttatggt 1	140
	tgtctggtgc cgcaaaaagt ggagaacctt ttggtcgccg gtcgctgtat ttccgcaggc 1	200
	gtagttgcac atacttctat gcgtaacatg atgtgttgtg ccgttaccgg tgaggccgca 1	260
15	ggtactgccg ccgtggtttc gctacagcaa aattgcaccg tgcgtcaggt tgctatccct 1	320
	gatttgcaaa acacgctgca acagcagggc gttcgtctgg ca	362
20	<210> 77 <211> 759 <212> DNA <213> Escherichia coli <400> 77	
25	atgtotgoca aaagacgact tottattgog tgtacottga taacagotat ctatcatttt	60
	cctgcatatt cttcattaga atataaagga acctttggtt caataaatgc gggttatgca	120
	gactggaaca gtggatttgt aaacactcac cgtggtgaag tatggaaagt gactgcggat	180
30	tttggggtaa attttaaaga agcagaattt tactcatttt atgaaagtaa tgtactcaat	240
	catgctgtag cagggagaaa tcatacggtt tcagcaatga cgcatgtcag actctttgac	300
35	totgatatga cattotttgg caaaatttat ggocaatggg ataactcatg gggtgacgat	360
	ctggacatgt tttatggatt cggttacctc ggctggaacg gcgagtgggg cttttttaaa	420
	ccgtatattg gattgcataa tcaatctggt gactacgtat cagctaaata tggtcaaacg	480
40	aatggttgga atggttatgt tgttggctgg acagcagtat taccatttac gttatttgac	540
•	gaaaaatttg tittatctaa ctggaatgaa atagaactgg acaggaacga tgcttacacg	600
	gagcagcaat ttggccggaa cgggttaaat ggcggtttaa ctattgcctg gaagttctat	660
45	cctcgctgga aagcaagtgt gacgtggcgt tatttcgata ataagctggg ctacgatggc	720
	tttggcgatc aaatgattta tatgcttggt tatgatttc	759
50	<210> 78	
٠	<pre><211> 1476 <212> DNA <213> Escherichia coli <400> 78</pre>	

	atggccagtt	tgatcggcct	tgcagtttgc	acagggaatg	cttttagtcc	tgccttagcc	60
_	gcagaggcta	aacaacctaa	tttagtcatt	attatggcgg	atgatttagg	ttatggcgat	120
5	ttagcaacat	atggtcatca	gatcgttaaa	acacctaata	tcgacaggct	tgcccaggaa	180
	ggggtcaaat	ttactgacta	ctatgccccc	gctcctttaa	gttcaccttc	acgcgcaggg	240
10	ctattaaccg	gccggatgcc	atttcgtact	ggaattcgct	catggattcc	ttcaggcaaa	300
	gatgttgcct	tagggcgtaa	cgaactcacg	attgctaatc	tactcaaagc	gcaagggtac	360
	gacacggcaa	tgatgggtaa	gctgcatctg	aatgcaggcg	gcgatcgcac	cgatcagcca	420
15	caagcacaag	atatgggctt	tgattactca	ctggctaata	cggcgggctt	tgttaccgac	480
	gccacgctgg	ataacgctaa	agaacgcccg	cgttatggca	tggtttaccc	gacaggctgg	540
	ctacgtaatg	ggcaacccac	tccacgagcc	gataaaatga	gcggtgagta	tgtcagttcg	600
20	gaagtcgtca	actggctgga	taacaaaaag	gacagcaagc	ctttcttcct	ctatgttgct	660
	tttaccgaag	tgcatagccc	cctggcttcg	cccaaaaaat	acctcgacat	gtactcacaa	720
25	tatatgagcg	cgtatcagaa	gcagcatcct	gatttatttt	atggcgactg	ggcagacaaa	780
	cectggegtg	gtgtggggga	atattatgcc	aatatcagct	atctggatgc	acaggttgga	840
	aaagtgctgg	ataaaatcaa	agcgatgggt	gaagaagata	acacaatcgt	tatttttacc	900
30	agtgataacg	gtccggtaac	gcgtgaagcg	cgcaaagtgt	atgagctgaa	tttggcaggg	960
	gaaacggatg	gattacgcgg	tegcaaggat	aacctttggg	aaggcggaat	tcgtgttcca	1020
	gccattatta	aatatggtaa	acatctacca	cagggaatgg	tttcagatac	acccgtttat	1080
35	ggtctggact	ggatgcctac	tttagcgaaa	atgatgaact	tcaaattacc	tacagaccgt	1140
	actttcgatg	gtgaatcgct	ggttcctgtt	cttgagcaaa	aagcattgaa	acgcgaaaag	1200
40	ccattaattt	tcgggattga	tatgccattc	caggatgatc	caaccgatga	atgggcgatc	1260
	cgtgatggtg	actggaagat	gattatcgat	cgcaataata	aaccgaaata	tctctacaat	1320
	ctgaaatctg	atcgttatga	aacacttaat	ctgatcggta	aaaaaccaga	tattgaaaaa	1380
45	cagatgtatg	gtaagttttt	aaaatataaa	actgatattg	ataatgattc	tctaatgaaa	1440
	gccagaggtg	ataaaccaga	ageggtgace	tggggc			1476
50	<210> 79 <211> 954 <212> DNA <213> Esc <400> 79		li				
55		ctatctgcgc	tatgggcgaa	ttgctggccg	agtttttgtc	ccgcaaccca	60

	catcaaaaat tcactcagcc tggggagttt atcgggccat ttcccagcgg tgcgccagca	120
5	atttttgctg ctcaggtggc aaaactgtcc catcgggcca tcttctttgg atgtgttggt	180
	aatgatgatt ttgcccgact cattatagag cgtctccgtc atgaaggtgt cattaccgat	240
	gggatccatg ttatgaacaa tgccgtcaca ggtacggcgt tcgtgagtta tcaaaatccc	300
10	cageageggg atttegtett taatateeet aacagegeet geggtttgtt taetgeegag	360
	cacattgata aggatetget taaacagtgt aaccatetge atattgtggg eteategttg	420
15	ttctcatttc gcatgatcga tgtcatgcgt aaagcaataa cgacgatcaa atcggctggc	480
15	ggcaccgttt ctttcgatcc caatattcgc aaagagatgc tgagcattcc tgaaatggcg	540
	caggeteteg attatttgat tgaatataeg gatattttta teeceagega aagegaaete	600
20	cetttetteg egegteacaa aaatetgtea gaggaacaga ttgttagega tetteteeac	660
	ggcggcgtaa aacatgtggc gataaaacgc gcccagcgtg gggccagcta ttacaagctt	720
	aaaaacggta cattacacgc ccagcatgtt gcaggtcacg atatcgaaat tatcgatcca	780
25	acgggtgcag gcgactgctt tggcgcaacg tttatcactc ttttcttatc cggtttcccg	840
	gcacacaagg cgctgcaata tgcaaatgcc agcggcgcgc tcgccgtaat gcggcaaggt	900
30 .	ccgatggaag ggatateete actggeagae attgaagaet ttttgeagea geae	954
35	<210> 80 <211> 513 <212> DNA <213> Escherichia coli <400> 80 atgaagatat tcattagttt atttttgttt ataatatcaa caaattcttt tgctgatgat	60
	atcactcatg ccggagtggt tcgtattgaa gggttaatta ccgaaaaaac ctgcattatt	120
40	tctgatgagt caaaaaattt tacagttaat atgccagacg tacccagtag ttcggtaagg	180
	agtgcagggg atgttactga aaaggtttat ttttccataa cgttaacccg ctgtggtagt	240
	gatgttggca acgcgtatat aaagtttacc ggcaatacag tttctgaaga tgccagttta	300
45	tataagetgg aagatggete ggtagagggg ettgeaetta egatttttga taagaacaaa	360
· ·	ggcagtatta gtaatgatgt taaaagcatg gttttttcac ttacatcatc agttgataat	420
50	atattgcatt tttttgcggc ttacaaagca ttaaaaaaata atgtccaacc aggggatgca	480
	aatgegteag tategtttat tgteacetat gat	513
55	<210> 81	

_	<211><212><213>		erichia col	.i				
5	<400> atgatta	81 aaat	tccggcttta	tattccccct	gtaattctcg	gttttgttat	cgtaccatta	60
	ttggtat	ggc	cgacggttat	tgccttagcc	gtacttatat	tcacgttaac	ttttctggcg	120
10	gaaataa	atat	tctcctttcc	gctcctggtt	gtgcgtattt	ctcttcagga	attacaactt	180
	gagttat	tgg	ttgtatatgc	acttttttc	agtgtaatgg	gtggcatcgg	ttggcaattc	240
	tecegea	agaa	cgcctcctga	attaaaaaac	aggctacatt	gctggctggt	cttttctccg	300
15	gtctatt	tct	ggttaattct	ctcgaatttc	attctttata	tttctccaga	gaaatcagcg	360
	ttgctg	gaaa	atatccgaaa	tttctttctg	acatttgtct	ggcttcccct	gaatttttcc	420
20	cctttt	tggc	cgcagccgtg	gactgatttt	gteggeeega	ttagtgccca	gcttggtttt	480
20	gcgttg	ggat	attattgcca	gtggcgtagc	aaaaatagaa	gccataggaa	gaagtggggc	540
	gattgg	gtaa	cgtgcttaag	tttggcgatt	ttagctctgg	ggccgttatt	caattattta	600
25	caa							603
30	<210><211><212><213><400>	82 702 DNA Esch 82	nerichia col	li				
			atttatctaa	tttatccgca	gtattactgg	catcaggtat	gctgatgtct	60
	actgcg	gtaa	ccgcagcacc	cggcgatgca	acacaatttg	gtggggcgga	tactgactgg	120
35	agcacc	gttg	attatcccag	gctcactgat	atggatgaca	acgttgattc	aatggggggg	180
	aaaatc	cgct	ttactggccg	tgtagtgaaa	gctacctgta	aggtcgcaac	cgattcaaaa	240
40	cagatt	gaag	ttgtcctgcc	ggttgtgcct	tccaaccttt	tcactggtat	cgacgtagaa	300
	gcacag	a aaa	cgagcaacca	gaccgatttc	aatattaatc	tgaccgaatg	tagcaataca	360
	gatgat	caga	aaattgagtt	ccgttttacc	ggtactgcag	atagcgctaa	taaaacgctc	420
45	gctaac	gaag	tagaaggatc	aacggatgct	gacaacagcg	gcaatgcggg	ggcgactggt	480
	gtaggg	attc	gaatttactc	caaaggtacg	acgaataatg	gtctgattaa	cctgaatacc	540
	actgcg	gcag	agggtagcgc	ctccaccgcc	gcttatacaa	ttccaggaaa	tgctacgacc	600
50	catgat	ttca	gcgcggcctt	tactgcaggt	tatgctcaaa	acggtagcac	tgttgcacca	660
	ggtgta	gtta.	agtcaacage	aagttttgtt	gtgctgtacg	ag		702

5	<210> <211> <212> <213>		erichia col	i			•	
	<400> atgcgta	83 atac	atacttattg	gtatagaaga	tatttcattt	tattgattat	tätättttca	60
	aatgtt	cttt	cttctattgc	taatgctgaa	gatatggggc	gagaacgtgc	atattgttat	120
10	ccgggt	tcac	cgagtaataa	tactacgcct	gcatcctttt	cttataattt	tggtactata	180
	gtggtt	tctg	atgtcaacaa	aaatgcgcct	ggcactgtat	tgccatcaca	aatctggaag	240
15	gttgga	acct	ataaggctta	ttgtaattct	ctigatgatt	atgaaattta	cttcagtgct	300
	gtctct	ggaa	tagatccgtc	tggtgccagt	ggtgatcatc	aagggagtga	tgtatttatt	360
	ccactc	accc	atgaaatatc	tgtctctact	catataaaac	tttataatca	aaatggcaca	420
20	atgaca	gata	aaattgtgcc	attcgaaaat	tataatacca	attatccggg	ggacagaagc	480
	aaacca	tcta	attgggcatc	aggtactgaa	ggatatatta	aaatcaggat	tgataaaaaa	540
25	attata	tctg	atgtttcatt	aagtaacgta	ttattggtgt	cattatatgt	cagccagate	600
	cctacc	gaac	atggtcctat	ccctgtcttt	aatgcctaca	taggaaactt	aaatattcag	660
	gttccg	caag	gttgcactat	taatgagggt	acgagtttta	ctgttaatat	gccggatgtg	720
30	tgggcc	agtg	aattgagccg	ggctggtgcc	ggagcgaagc	ccgctggtgt	tactcctgta	780
	gcaaca	acta	ttccgattaa	ttgtacgaat	aaagatacag	atgcggtaat	gaegttggta	840
	ttcgac	ggta	acatttccgc	cacacgtgat	accaatggga	aacaaagtat	tattcaggca	900
35	caagat	aatc	ctgatgttgg	tattatgatt	atggatagtc	agcaaaactc	cgtagattta	960
	aatgcc	ctgg	caacatcagt	aggegtteeg	ttcagattgg	tggaaaac		1008
40			erichia co	li				
	<400> atgaac		agctcaaaag	atgcgaatat	tggatggcgg	cacaaaagca	gatgaaacgg	60
45	gttgtg	Jeege	ttcttctggt	tattatgcct	gcatgttcaa	tcgcgggaat	gcgctttaac	120
	cetget	tttc	tgtcgggtga	tactgaagct	gttgctgact	tatcccgctt	cgagaaaggg	180
50	atgact	tatc	ttcctggtag	ctatgaagtc	gaagtttggg	tcaatgattc	ccctttactc	240
	tctcgt	actg	taacttttaa	agcagacgat	gagaatcaac	tgattccctg	cettteactt	300
	gctgac	ttat	taagccttgg	aattaacaaa	aatgcgctgc	: cagagcaggc	tttggcttca	360

		tctgaaaata	gttgccttga	tttgcgtatc	tggtttcccg	atgtgcatta	catgccggag	420
		ctggatgcac	agagacttaa	actgaccttt	ccacaggcga	taataaaacg	tgacgctcgc	480
5	ī	ggatatattc	caccagaaca	gtgggataac	ggtattacag	cttltttgct	gaattatgac	540
		ttttctggta	ataacgatcg	tggtgattac	tcttcaaata	actattattt	aaatcttcgc	600
		gctgggatca	atattggtgc	atggcgtttt	cgcgattatt	caacctggag	tcgtgggagt	660
7	0	aattcagcag	gtaaactgga	gcatatcagt	agtacgttgc	agcgcgttat	tattcctttc	720
		agaagtgaat	taacgctagg	agatacatgg	tcatcatcag	atgttttcga	cagtgttagt	780
1	5	attcgtggca	taaaactgga	atctgacgaa	aatatgttgc	ccgatagtca	aagtggtttc	840
		gctcccacgg	tgcgcggaat	tgcgaaaagt	cgcgctcagg	taacaatcaa	acagaatggt	900
		tatgtcattt	atcaaaccta	tatgccgccg	ggaccgtttg	agattagcga	tcttaacccg	960
2	20	acatcatctg	cgggagatct	ggaagttacc	atcaaagagt	ctgataattc	agaaactgtc	1020
		tataccgtac	cttatgccgc	tgtccccatc	ctgcaacgag	aaggtcattt	aaaatattct	1080
25	actacggttg	gccaatatcg	aagcaatagc	tataaccaga	aaagtcctta	tgtatttcag	1140	
	ggggaattaa	tttggggttt	accctgggat	attacggctt	atggtggggc	acaattctct	1.200	
		gaggattacc	gggcgttggc	gctcggcctt	ggcctgaatc	tgggtgtatt	tggtgcaaca	1260
	3 <i>0</i>	tcgtttgatg	ttactcaggc	taacagttcg	, cttgtggatg	ggagcaaaca	tcaagggcaa	1320
		tcttatcgtt	ttctttattc	caaatcgtta	gttcagacag	gaacagcatt	ccatattatt	1380
		ggctatcgtt	: attcaaccca	gggcttttac	actttaagtg	atacgacata	ccaacaaatg	1440
	35	tcagggactg	g ttgttgatcc	aaaaacgtta	a gatgataaag	attacgttta	taactggaat	1500
		gatttttata	a acttgcgtta	tagcaaacgt	ggaaaatttc	aggctagtgt	atcgcaacct	1560
		ttcggtaact	acgggtctat	gtatttatco	g gctagtcago	: aaacatactg	gaatactgat	1620
	40	aaaaaagatt	: ctttatacca	agttggttat	c aacaccagta	ı ttaagggtat	ctatctaaat	1680
		gttgcgtgga	a attacagtaa	atcaccagg	g acaaatgcgg	, ataaaattgt	ctcgctaaat	1740
	45	gtctcattac	c ctataagtaa	ttggttatc	t tocacgaato	g atgggcgcto	atcatcgaat	1800
		gccatgacts	g caacgtatgg	ttatagtcag	g gataaccacq	gacaggtaaa	ccaatatacg	1860
		ggggtatct	g gttctctgtt	ggagcagca	t aatctcagt1	ataacataca	a acatggtttt	1920
	50	gctaatcag	g ataatagcag	g tagtggttc	t gttggtgtt	a attatcgtgg	g ggcatatggt	1980
		teettgaat	t ccgcctacac	g ttacgataa	t gaaggtaat	c aacaaataa	a ctatggcatc	2040
							t aggtgaaact	2100
	55							

	aatgttttga taaaagegee tggagegaat aatgtggatg tteagegggg gacaggaata	2160
5	tccactgact ggcgtggata tgcagttgtt ccttatgcaa cagaatatag acgtaataat	2220
	atttcattag atcctatgtc aatgaatatg catactgaac tggatatcac ttccactgaa	2280
	gttattccgg gaaaaggtgc gttagttcgt gcagagtttg ctgctcatat cggtattcgt	2340
10	ggtttgttca cagttcgtta tcgtaataaa tcagtcccat tcggtgctac agccagcgct	2400
	cagattaaaa acagtagtca aattaccggg attgtcggcg ataatggaca actttatctc	2460
	tcaggattgc ctttagaagg tgttattaat atccagtggg gagacggtgt tcagcaaaaa	2520
15	tgtcaggcta attacaagct ccctgaaaca gaactggata atcctgttag ctatgcaact	2580
	ctggagtgcc gc	2592
20	<210> 85 <211> 507 <212> DNA <213> Escherichia coli	
25	<400> 85 atgggagega tttatgttaa aegtttgatt etgteggtag eaetgataat aeegatagea	60
23	tocaatgott otgatgottt gaaccagoog agoagtagto taaatgatgg tgttgagaot	120
	tttttattt cctgctttga tatgcctcag gaaacaacta ctgatatgga cgcttgtcag	180
30	agagttcagt tagctcaggt tagttgggtt aagaataagt attcggtggc cgccctgaat	240
	cgtttgaaac aagacaacaa ggatgatcca cagcgtctgc aggaattaac tgcttctttt	300
	aacgcggaaa gtgaagcttg gacagaatta attgagaaag cgtcaaagtc cgtccaggtt	360
35	gattatgtag gaggaactat agetggeact geagttgeat caegteaaat tggtettetg	420
	gattacquat cccacgatat ctgggagcac tggctacgat ctcgaggact caactcctcc	480
		· 507
40	tottttgcca gaaccaaagt tcaaatc	
45	<210> 86 <211> 2139 <212> DNA	
	<400> 86 atggctatgt tcacacette atteteagga etcaaaggte gggegetett tteaetgett	. 60
•	tttgcggcac cgatgattca tgcaacagac tctgtaacga ccaaagatgg cgaaacaatc	120
50	actgttacag cagatgcaaa taccgcaact gaggcaaccg atggttatca acctctgagc	180
	acctccacgg cgacattaac cgatatgccg atgctggata tcccgcaggt ggtcaatacg	240

	gttagcgatc	aggttctgga	aaaccagaat	gcgacaacgc	tggatgaggc	gctttataac	300
	gtcagtaacg	tggtacagac	caatacatta	ggcgggactc	aggatgcttt	tgtacgccgt	360
5	gggtttggcg	caaaccggga	tggctccatc	atgaccaacg	gtctgcgaac	cgtacttcct	420
	cgtagtttca	acgccgcaac	agagcgtgtg	gaagtgctaa	aaggcccggc	ctccacgctg	480
	tatggcattc	tcgatcctgg	cggactgatt	aacgtcgtga	ccaagcgccc	ggaaaaaaca	540
10	ttccatggtt	cggtttcagc	cacctcctcc	agttttggtg	gcggcactgg	gcaacttgat	600
	atcacaggtc	ccattgaagg	cactcagctg	gcgtatcgcc	ttaccgggga	agtgcaggat	660
15	gaagattact	ggcgaaactt	cggtaaagag	cgcagtacat	ttattgcccc	gtcactcacc	720
	tggtttggtg	ataatgcaac	agtaaccatg	ctctattccc	atcgggacta	taaaactcca	780
	ttcgatcgtg	gaacgatttt	cgaccttacg	acgaaacagc	ccgtaaacgt	tgatcgaaaa	840
20	atacgttttg	acgaaccgtt	taatattaca	gatggtcagt	ccgatctggc	gcaactcaac	900
	gcagaatatc	atctcaatag	ccagtggaca	gegegetttg	attacagcta	cagccaggat	960
25	aaatacagcg	ataatcaggc	gcgtgttacc	gcgtatgatg	caacgacagg	aacactgaca	1020
	cggcgtgttg	atgcaactca	gggatctacc	cagcgtatgc	atgctactcg	tgcggatctg	1080
	caagggaatg	ttgatattgc	cggattctat	aatgagattc	tgggtggggt	gtcatatgaa	1140
30	tattatgatc	ttctgcgtac	agatatgatt	cgctgtaaaa	aagctaaaga	tttcaatata	1200
	tacaaccctg	tttatggtaa	taccagcaaa	tgtacaacgg	tttcggcgtc	ggacagcgat	1260
	cagacgatca	aacaggagaa	ctactcagct	tatgcacagg	acgcgctcta	tctgaccgat	1320
35	aactggattg	ccgtcgccgg	gateegetat	cagtattaca	cgcaatatgc	gggtaaaggc	1380
	cgtcctttta	atgtcaatac	tgacagccgc	gatgaacaat	ggacgcccaa	actggggtta	1440
	gtctacaaac	tgacgccatc	ggtatcctta	tttgccaatt	attcgcaaac	atttatgccg	1500
40	cagtcgtcaa	ttgccagcta	cattggcgat	cttccaccag	aatcatctaa	tgcttacgaa	1560
	gtcggggcaa	aattcgagct	attcgatggt	atcaccgcag	atattgeget	gtttgatatc	1620
45	cataaacgta	atgtgttgta	taccgaaagt	attggtgatg	aaaccatcgc	caaaacggca	1680
	ggcegcgttc	gttcaagagg	ggtagaagtc	gaccttgcgg	gagcattaac	tgaaaacatt	1740
	aatatcattg	, ccagctacgg	ctataccgat	gcaaaggttc	tggaagatcc	tgattatgca	1800
50	gggaaaccat	. tgccgaatgt	tcctcgtcat	accggttcgc	tattcctgac	ctatgatatt	1860
	cataacatgo	caggcaataa	cacactgacg	tttggcggtg	gcggacatgg	tgtaagccgt	1920
	cgttcggcaa	ccaatggggc	: tgactattat	ctgcctggct	atttcgttgc	cgatgccttc	1980
55							

	gccgcataca	aaatgaaatt	gcagtatccg	gtcactctgc	aattaaacgt	caaaaacctg	2040
5	tttgataaaa	cgtattacac	ctcttccatc	gccacaaata	atctgggcaa	ccagattggc	2100
•	gatecgcgtg	aagtgcaatt	cacggtgaaa	atggaattt			2139
0	<210 > 87 <211 > 181 <212 > DNA <213 > Esc	8 herichia col	Li				
	-400 > 87		tatatttaag	aacaaatggc	gatttcacat	tacaagcatt	60
15	tcactttttc	ttatcatgct	cgcggtttca	atcgcttttt	tgcacttgcg	ttttaatacc	120
	ttgtccagta	ccgataaaat	geggettgaa	atgtataagt	ccacattata	ttccaccatc	180
20	gagcaatttt	atgttttacc	ctatatgctc	tcaacagacc	atatcatccg	tcaggcggta	240
	attacgcctg	acgatatgac	gtccagcgaa	ctcaatcaac	gaattgcaca	tttcaatact	300
	caactcaaaa	ccgcagcaat	atttattctg	gatacccaag	gtaaggccat	cgcttctagc	360
25	aactggcagg	accccggcag	ctatgtaggg	caaaattata	gctatcgccc	ctattataaa	420
	cacgccatgt	; ctggcttaaa	tggacgcttt	tacggtattg	gtagcactac	gaatacaccg	480
	ggattette	tctctacaag	tataaaagat	aaaggaaaaa	ttgtcggtgt	: tgtagtagta	540
30	aaaataagto	ttaatgaaat	tgaaaaagca	tgggccgaag	gtcctgaaaa	tattatcgtg	600
	aatgatgaa	atgggattat	atttttaagt	tcaaaatcgc	catggcgaat	gcgaacactg	660
25	caaccgtta	ctgttcaggc	aaaacaaaa	ctacaatcta	cccgccaata	a tagtotogac	720
35	aatctttta	c cggcggatta	ttatccctgt	tataccgtga	gcaattttad	tttcctgaaa	780
	gataaaaaa	g aacaactctc	tttattccc	g caatattata	cgcaacaaat	agccattcca	840
40	gaatttaac	t ggaaaatgad	aattatggto	cccttagata	acctgtact	g gtcatgggct	900
	atttcgtta	g tcattacact	: aattattta	ctgctgtttt	tgttattta	t taaatactgg	960
	agaatgcga	t ctcatgcaca	a acaattatt	a acacttgcga	a atgaaacat	t agaaaaacag	1020
45	gttaaagag	c gtacatctg	c cctggaatt	g atcaatcaaa	a aattaatac	a ggagataaaa	1080
	gagcgcagt	c aagetgaac	a agtattaca	a attacgcgta	gtgaactgg	c agagtccagc	1140
	aaactggcg	g cgcttggac	a gatggcaac	c gaaattgcc	c atgaacaaa	a tcaaccgtta	1200
50	gccgccatt	c acgcactta	c tgataacgc	g cgtactatg	taaaaaaag	a gatgtatccg	1260
	caggttgaā	ıc agaatotga	a acatattat	t tcagtgatt	g ageggatga	c gcagctcatt	1320

	tccgaactta	aagcatttgc	eregegeeat	egegtaccia	aaggeteege	cgacgccacc	1200
	aaagtgatgt	atagegeegt	ggcgttactt	aatcacagca	tggagaaaaa	taacattgag	1440
5	cgacgaataa	aagccccatc	catgccgtta	tttgtcaatt	gcgatgagct	cggtcttgaa	1500
	cagatattca	gtaatttaat	tagcaacgcc	ttagattcta	tggaaggtag	ctcttacaaa	1560
40	cgactggata	tcgccattcg	ccaggcaaat	aacaaagtta	ttattaccat	taaagacagc	1620
10	ggtggcggtt	ttgcacctga	agttgtcgat	cgcatatttg	aaccattttt	taccactaaa	1680
	cgtagaggaa	tggggttggg	actggcaata	gtcagcgaaa	ttgtccgaaa	ttcgaacggc	1740
15	gcactccacg	ccagtaatca	tcctgaaggc	ggcgcagtaa	tgacattaac	ctggcctgaa	1800
	tggggagaag	aacatgaa					1818
20	<210> 88 <211> 303 <212> DNA <213> Esch <400> 88	erichia col	i				
25		cacaacattt	acgttgtgtg	ttaacatgta	gcgatttact	gactcttttg	60
	agtggtaccg	ttatgtctca	aatgcccctc	tattttctta	atacccaaaa	gaaactcact	120
	gctcactatg	aatggcttca	aatcaacctg	actgatacct	acgaactagt	taaaaggtta	180
30	atgccgattc	cttcactgga	cgtggtggtt	aaagtaggga	aacttgtcct	cccggagaaa	240
	gggcatcatg	gtttttaccc	tgaagctgga	gttgtctata	gaacagtagc	tccagaaaat	300
	cca						303
35	<210> 89 <211> 789 <212> DNA <213> Esch <400> 89	nerichia co	li				
40		atacaggcta	tatcttagct	ctttgtctga	cagcatcggg	gcatgtccta	60
	gcccatgatg	tctggattac	aggtaaacag	gcagagaaca	acgttaccgc	agagattggt	120
45	tatggtcata	atttcccctc	aaaggggaca	attcctgaca	gaagggattt	ctttgaaaat	180
		ataacgggaa					240
		agtctgcaag					300
50		cgagaacctc					360
		gtgaatttgt					420
<i>55</i>	atgccagcac	aactctatca	gtctccaaca	gggcatgagc	ttgaaatcat	teegttatee	480

	gatataagtc gtttcagt	ga aaatgtgaag	ctgaaagttc	tgtataaaac	gtccccgctc	540
=	gccggagcta tcatggag	ct tgactcggtc	agttatctga	catcatcccg	tcatactcat	600
,	gcagttgagc acaaacat	cc tgttcataaa	gcagaactca	cctttgtaac	taatgaggat	660
	ggtatcgtca cagtacct	tc tcttcatatc	ggacagtggc	tggcgaaagt	ccaaaataag	720
· ·	aaaagttttc aggacaaa	ag cctgtgtgat	gaaactgtcg	atgtggcaac	cttaagcttc	780
	tcccgaaat					789
15	<pre><210> 90 <211> 1134 <212> DNA <213> Escherichia <400> 90</pre>	coli				
20	atgggaaaaa taaaata	tg gctaatagta	ggatttatta	tactttttgc	gattttttac	60
	attyctatta gtgacage	gga ttctacgctt	tctaggttga	aatcagcagg	tgaaaacgga	120
	gatgtagaag ctcagta	tge tttggggete	atgtatttgt	atggagaaat	tctggatgtt	180
25	gattat.cagc aggcaaa	gat ttggtatgaa	. aaagccgctg	accaaaatga	tccgcgtgcg	240
	caggecaaac teggtgt	gat gtatgcaaat	ggtctcgggg	taaatcagga	ttatcagcaa	300
	tcaaaattat ggtatga	aaa ggeggetgeg	caaaatgatg	ttgatgcgca	atttttgctt	360
30	ggggagatgt atgacga	tgg teteggggta	agccaagact	accagcatgo	aaagatgtgg	420
	tatgaaaaag cggctgc	tca aaatgatgag	g cgtgctcagg	tcaatctcgc	tgttctatac	480
o e	gcaaagggta atggtgt	tga acaggattat	cgacaggcca	aaagctggta	tgaaaaggct	540
35	gcagctcaaa atagtco	tga tgcgcagtto	getettggaa	ttctgtatgo	: caatgctaat	600
	ggtgtagagc aggacta	tca gcaggcaaa	a gactggtatg	agaaagcago	: agaacaaaat	. 660
40	ttcgccaatg ctcagtt	taa tottggtat	g ctctattaca	a aaggtgagg	g tgttaaacaa	720
	aactttcggc aagccag	aga atggtttga	a aaagccgcat	: ctcaaaatca	gccgaatgcc	780
	caatataatt taggtca	gat ttattacta	c ggtcagggtg	g tgactcagaq	g ctatcgacag	840
45	gcgaaagact ggtttga	aaaa agcggcaga	g aaaggtcato	g tegatgetea	a atataatctc	900
	ggtgtaatat acgaaaa	itgg tgaaggtgt	g agtcagaact	atcaacagg	c aaaggettgg	960
	tatgaaaagg cagccto	aca aaatgatgc	g caggcgcagt	t togaacttg	g cgttatgaat	1020
50	gaactgggtc agggtg		g aaacaagca	a gacattact	a tgagcggtca	1080
	tgtaataatg ggctta	agaa aggttgtga	a cggttaaaa	g agttattat	a caaa '	113

5	<210> 91 <211> 1962 <212> DNA <213> Escherichia coli
	<pre><400> 91 atgaatgtaa tcagaactgt catttgtaca ttaattatac ttccggtggg attacaggca 60</pre>
10	gegaceagte attettetat ggttaaagat acaateacea ttgtegegae aggaaateag 120
70	aacacggtat ttgaaacgcc gtcgatggtc agtgtcgtca cgaatgacac accgtggagt 180
	cagaatgegg ttacategge eggeatgetg aaaggtgttg eeggteteag eeagaetggt 240
15	gcaggacgga ccaatgggca gacctttaat ttacgcggct atgacaaaag cggggtactt 300
	gttcttgttg acggcgttcg ccaactcagt gacatggcaa aaagcagtgg cacttatctg 360
	gatccggcac tcgtcaaacg tatcgaagtt gtccgcgggc caaactccag tctgtacggc 420
20	agtggcgggc tgggaggtgt agtggacttc agaactgccg atgcagcaga ttttcttccc 480
	cccggagaga caaacggttt aagtctgtgg ggaaatatcg ccagtggtga ccacagcaca 540
25	ggctcggggc tcacctggtt tggtaaaact ggaaaaacag atgcgctcct ttctgtcatt 600
	atgcgtaaaa gaggtaatat ctatcaaagt gatggtgagc acgcacctaa caaggaaaaa 660
	cctgcagccc tgtttgcgaa aggctctgtc ggtataacag acagtaacaa agcaggtgcc 720
30	agettgegte tetaceggaa taacaceaet gaacegggea attecaetea gacacatggt 780
	gacageggee tgegtgacag aaaaacagta caaaatgaeg tacagttetg gtaccagtae 840
	gctcctgtgg ataacagcct catcaatgta aagtcaacgt tatatctcag tgatatcact 900
35	atcaagacaa acggtcacaa caaaacggca gaatggagaa acaacagaac ctccggtgtt 960
	aatgttgtca acaggagtca tactctgatt tttccgggag cccatcagtt aagttatggc 1020
40	gctgaatatt accgtcagca gcagaagcca gaaggctctg ccacactata tccggaagga 1080
40	aacattgact ttacatcgtt gtatttccag gatgaaatga caatgaaaag ctacccggtt 1140
	aacattatog toggttooog otatgacogg tacaagagot toaatoooog tgooggagaa 1200
45	ctgaaagccg aacgcctgtc cccaagggcg gcgatttcag tctcaccgac agactggctg 1260
	atgatgtacg gctccatatc ctctgcattc cgagcgccca caatggcaga aatgtacagg 1320
	gatgatgtac atttttaccg caagggtaaa cccaattact gggttcctaa ccttaatctg 1380
50	aaaccagaaa ataacatcac cegtgagatt ggegeaggta tteaactgga tggeetgett 1440
	acagacaatg accggetgea gttaaaagge ggatattteg gaacggatge cagaaactat 1500
55	attgccacac gcgtggatat gaaacggatg cgttcttatt cttataatgt atcccgggcc 1560

	cgtatctggg	gatgggatat	gcagggtaat	taccagtctg	attatgttga	ctggatgctt	1620
5	tcttataacc	ggacggaaag	tatggatgcc	agcagcaggg	aatggctggg	ctccggcaat	1680
	cctgacacac	ttatcagtga	catcagcata	cctgttggtc	atagaggcgt	ttatgccgga	1740
	tggcgtgctg	aactttcagc	atcagccacg	catgtgaaaa	aaggcgatcc	ccatcaggct	1800
10	ggttatacca	tacattcctt	ttcactgtct	tataagcctg	taagtgttaa	aggetttgag	1860
	gcgtcagtaa	ctctggataa	tgccttcaac	aagcttgcca	tgaatggcaa	aggtgtgccg	1920
	ctttcaggca	gaactgtcag	tctttatacc	cgttatcagt	g g	٠	1962
15							
20	<pre><210> 92 <211> 412 <212> DNA <213> Esc <400> 92</pre>	8 herichia col	Li	•			
		tatacgctct	aaaatattgt	tatattacta	acacagtaaa	ggttgtctct	60
	gaactagccc	gaagggtatg	taaagggagt	acccgcagag	gaaaaagact	ttcagtactt	120
25	acctctctgg	cactatctgc	attactccca	accgttgctg	gtgcatcaac	ggttggtggc	180
	aacaatcctt	accagacata	ccgcgacttt	gcagaaaaca	aagggcagtt	tcaggctggc	240
	gcaacaaaca	ttcctatttt	taataataaa	ggggaattag	taggacatct	tgataaagcg	300
30	cccatggttg	attttagcag	tgtgaatgta	agctcaaatc	ccggcgttgc	aacattaatt	360
	aacccgcaat	atatagccag	tgtaaaacat	aataaaggat	atcagagcgt	cagcttcggt	420
25	gatggtcaga	acagttacca	tattgtggat	cgtaatgaac	acagttcatc	tgatctccac	480
35	acaccaagac	: ttgataagct	cgtaactgag	gttgctccgg	ctaccgtaac	cagctcatca	540
	acagctgata	tattgaaccc	ttcaaaatac	teggeattet	acagggctgg	ttcgggaagt	600
40	cagtatatto	: aggatagtca	gggtaagcga	cattgggtaa	caggtgggta	tggttatctg	660
	acaggaggaa	tactcccgac	atcattcttt	tatcacggct	cagacggcat	tcagctgtat	720
	atggggggca	a acatacatga	tcatagcato	: ctgccctctt	: ttggagaggd	: cggcgacagt	780
45	ggttctccat	tatttggctg	gaatacggc	aaagggcagt	gggaactggt	cggtgtttac	
	togggagtag	g gagggggac	caatttgata	a tattctctta	a ttcctcagag	ttttctctca	900
	cagatctat	cagaggataa	tgacgctcco	gtottttt	a.atgcctcato	: cggcgccccc	960
50	ctgcaatgg	a aatttgacag	cagcaccgg	c actggctct	tgaaacaggg	ttccgatgaa	1020
	tatgccatg	c acgggcaaaa	aggttctgad	ctgaacgcaq	g gtaaaaatct	gacattcctg	1080

	ggacataatg	gtcagattga	cctggaaaac	tctgtcacgc	agggtgccgg	ttcactgaca	1140
	tttactgatg	actacactgt	caccacttca	aacggaagta	cctggaccgg	ggccggtatt	1200
5	attgtggaca	aggatgcctc	cgtaaactgg	caggttaatg	gtgtgaaagg	tgacaacctg	1260
	cataaaatcg	gcgaaggaac	cctggttgta	cagggaaccg	gtgttaatga	gggeggeetg	1320
10	aaagtcgggg	atgggacegt	tgtcctcaat	cagcaggctg	acagttcagg	acacgttcag	1380
	gcattcagta	gcgtgaatat	tgccagcggc	cgcccgacag	tegtgetgge	agacaaccag	1440
	caggttaatc	cggacaatat	atcctggggc	taccgggggg	gggttctgga	tgttaacggg	1500
15	aatgacctga	catttcataa	gctgaatgcc	gccgattatg	gcgcaactct	cggtaacagc	1560
	agtgataaaa	cggctaatat	cactctggat	tatcagacgc	gtccggcaga	cgtaaaagtt	1620
	aatgaatggt	catcatcaaa	caggggaaca	gtaggttcat	tatatattta	taataatccc	1680
20	tatactcata	ccgtcgatta	ttttatcctg	aaaacaagta	gttatggctg	gttccctacc	1740
	ggtcaggtca	gtaacgagca	ctgggaatat	gtcggacatg	accagaacag	tgcacaggca	1800
25	ctgcttgcaa	acagaattaa	taataaaggg	tatctgtatc	atggcaagtt	gctgggaaat	1860
23	attaattzct	caaataaagc	aaccccgggt	acaaccggcg	cattggttat	ggacggctca	1920
	gcgaatatgt	ccggtacatt	tactcaggaa	aacggtcgtc	tgaccattca	gggccacccg	1980
30	gttatccatg	cttcaacgtc	tcagagtatt	gcaaatacag	tctcgtctct	gggcgacaat	2040
	teegttetga	cacagcccac	ctcatttaca	caggatgact	gggagaacag	gacgttcagc	2100
	tttggttcgc	tcgtgttaaa	agatacagac	tttggtctgg	gccgcaatgc	cacactgaac	2160
35	acaaccatcc	aggcagataa	ctccagcgtc	acgctgggcg	acagtegggt	atttatcgac	2220
	aaaaaagatg	gccagggaac	agcatttacc	cttgaagaag	gcacatctgt	tgcaactaaa	2280
10	gatgcagata	aaagcgtctt	caacggcacc	gtcaacctgg	ataatcagtc	agtgctgaat	2340
40	atcaatgaga	. tattcaatgg	cggaatacag	gcgaacaaca	gtaccgtgaa	tatctcctca	2400
	gacagtgccg	ttctggagaa	ctcaacgctg	accagtaccg	ccctgaatct	gaacaaggga	2460
45	gcaaatgtto	tggccagtca	gagttttgtt	tctgacggtc	: cggtgaatat	ttctgatgcc	2520
	accctgagto	: tgaacagccg	tcctgatgag	gtatctcaca	cacttttacc	tgtatacgat	2580
	tatgccggtt	catggaacct	gaagggagac	gatgcccgcc	: tgaacgtggg	geegtacagt	2640
50	atgttgtcag	g gtaatatcaa	tgttcaggat	aaagggactg	g teaccetege	aggggaaggg	2700
	gaactgagto	c ctgacctgac	tcttcagaat	: cagatgttgt	acagcctgtt	taacgggtac	2760
	cgcaatacct	ggagcgggag	cctgaatgca	ccggatgcca	a cegteageat	gacagacacc	2820
<i>55</i>							

	cagtggtcga tg	aacggaaa c	tccacggca	ggaaatatga	aacttaaccg	gacaatagtc	2880
	ggttttaacg gg	ggaacatc a	ategttcaeg	acactgacaa	cagataatct	ggacgcggtt	2940
	cagtcagcat tt	gtcatgcg t	tacagacett	aacaaggcag	acaaactggt	gataaacaag	3000
	teggeaacag gt	catgacaa (cagcatctgg	gttaacttcc.	tgaaaaaacc	ctctgacaag	3,060
0	gacacgcttg at	attecact o	ggtcagcgca	cctgaagcga	cagctgataa	tctgttcagg	3120
	gcatcaacac gg	gttgtggg a	attcagtgat	gtcaccccca	cccttagtgt	cagaaaagag	3180
	gacgggaaaa aa	gagtgggt (cctcgatggt	taccaggttg	cacgtaacga	cggccagggt	3,240
5	aaggetgeeg ee	cacattcat o	gcacatcagc	tataacaact	tcatcactga	agttaacaac	3300
	ctgaacaaac go	catgggcga	tttgagggat	attaacggcg	aagccggtac	gtgggtgcgt	3360
	ctgctgaacg gt	tccggctc	tgctgatggc	ggtttcactg	accactatac	cctgctgcag	3420
0	atgggggctg ac	ccgtaagca	cgaactggga	agtatggacc	tgtttaccgg	cgtgatggcc	3480
	acctacactg ac	cacagatgc	gtcagcaggc	ctgtacagcg	gtaaaacaaa	atcatggggt	3540
?5	ggtggtttct at	tgccagtgg	tctgttccgg	tccggcgctt	actttgattt	gattgccaaa	3600
	tatattcaca a	tgaaaacaa	atatgacctg	aactttgccg	gagctggtaa	acagaacttc	3660.
	cgcagccatt ca	actgtatgc	aggtgcagaa	gtcggatacc	gttatcatct	gacagatacg	3720
30	acgtttgttg a	acctcaggc	ggaactggtc	tggggaagac	tgcagggcca	aacatttaac	3780
	tggaacgaca g	tggaatgga	tgtctcaatg	cgtcgtaaca	gcgttaatcc	tctggtaggc	3840
	agaaccggcg t	tgtttccgg	taaaaccttc	agtggtaagg	actggagtct	gacagcccgt	3900.
35	geeggeetge a	ttatgagtt	cgatctgacg	gacagtgctg	acgttcacct	gaaggatgca	3960
	gcgggagaac a	tcagattaa	tggcagaaaa	gacggtcgta	tgctttacgg	tgtggggtta	4020
40	aatgcccggt t	tggcgacaa	tacgcgtctg	gggctggaag	ttgaacgcto	tgcattcggt	4080
	aaatacaaca c	agatgatgc	gataaacgct	aatattcgtt	attcattc		4128
45	<210> 93 <211> 1047				• •	. "	
	<212> DNA <213> Esche	erichia co	li				
•	<400> 93 atgattacac t	ttttcgact	actggcgatt	ctttgeet <u>t</u> t	tttttaacgi	ttcagctttt	60
50	gctgttgatt g	gctatcagga	tgggtadaga	ggaacaacco	tcataaatg	g agatttacca	120
	acgttcaaaa t	tccagagaa	tgcgcaácct	gggcáaaaa	tttgggaga	g cggagatatt	180

	aatatcacag	tttattgtga	caatgcacca	ggatggtcaa	gtaacaaccc	accagaaaat	240
	gtctatgcct	ggatcaaatt	gccccaaata	aatagtgccg	atatgttgaa	taatccgtat	300
5	ttaacatttg	gcgtgactta	taatggtgta	gattatgaag	ggacaaatga	aaaaattgat	360
	actcatgcgt	gcctggataa	atatgaacaa	tactataatg	ggtattatca	tgaccctgta	420
10	tgcaatggca	gcactcttca	aaaaaatgta	acatttaacg	cccattttcg	cgtctatgta	480
	aaattcaaaa	geegeeegge	aggagatcag	acggtaaact	ttggcacagt	caacgtgctg	540
	caattcgacg	gtgaaggcgg	ggcgaacatg	gcccccaacg	cgaaaaattt	acgctatgcg	600
15	attacggggt	tagataatat	ttcattcctt	gactgtagtg	tegaegteeg	catttccccg	660
	gaaagtcaga	tagtcaattt	tgggcagatc	gctgcgaatt	ccattgcaac	tttcccaccg	720
	aaggcagcat	tcagcgtttc	taccataaaa	gacattgcgt	ctgattgtac	cgaacagttt	780
20	gatgttgcaa	ccagtttctt	tacttcagat	acattatatg	acaatacgca	tctggaaata	840
	ggtaacggct	tgctcatgcg	aattactgat	caaaaaacgc	aagaagatat	taaatttaac	900
05	cagttcaaat	tatttagtac	ttatattccc	ggtcagagtg	cggcaatggc	aacccgcgat	960
25	taccaggccg	aattaaccca	aaaacctggt	gaaccactcg	tctatggccc	atttcagaaa	1020
	gacctgatag	ttaaaatcaa	ctaccac				1047
30	<210> 94 <211> 2520 <212> DNA <213> Escl <400> 94	0 herichia co	li				
35		aaaacacgtt	ttcccgggat	aagttatccc	atgcaattaa	aaatgccctg	60
	tetggegttg	tgtgttccct	actcttcgtt	ttgccagtcc	acgccgtaga	attcaacgtc	120
	gatatgattg	acgcagaaga	ccgtgagaat	atcgacatct	ctcgttttga	gaaaaaaggc	180
40	tatatccccc	ctggtagata	cctcgttcgt	gtgcaaataa	ataaaaatat	gttgccacaa	240
	acgttaatac	tggaatgggt	aaaagccgat	aatgaaagtg	gttcgttact	ctgcttaacc	300
45	aaagaaaatt	tgactaattt	cggtcttaat	acggaattta	. ttgaatcatt	gcaaaacata	360
	gctggcagcg	aatgtctcga	. tttaagccaa	cgtcaggagt	taacgacacg	acttgataaa	420
	gctacgatga	tattatcgct	aagtgttccc	caggcatggt	taaaatacca	ggcaacaaac	480
50	tggacgccac	cagagttttg	ggataccggt	atcaccgggt	ttatccttga	ttacaacgtg	540
	tacgccagcc	agtatgcccc	acatcacgga	gacagcacco	: aaaacgtcag	ctcctatggt	600
55	acgttaggct	ttaacctcgg	cgcatggcgc	: ttacgtagcg	, attaccaata	taatcagaat	660
<i>55</i>							

	tttgctgatg	gacgctcggt	aaaccgcgac	agcgaatttg	cgcgaactta	tetgtttege	720
5	cctatcccct	cctggtcgtc	aaaattcact	atgggccagt	acgacctgag	ctccaatctt	780
	tacgatacct	tccactttac	tggcgcatcg	ctggaaagtg	atgaaagcat	gctgccgcca	840
	gatttacagg	gttatgegee	acaaattacc	ggcatcgcgc	agaccaacgc	gaaagtaact	900
10	gtggcacaaa	atggtcgtgt	actttatcaa	accactgtcg	cgccaggccc	ttttactatt	960
	tctgatttgg	ggcaatcgtt	tcaggggcag	ctggatgtca	cagtggaaga	agaagatggc	1020
	cgcaccagca	ccttccaggt	tggctccgca	tecattecet	atttaacccg	taaagggcaa	1080
15	gtgcgctata	aaacgtcact	gggaaaaccg	acatccgtcg	ggcataacga	tatcaataat	1140
	ccctttttct	ggacggcgga	agcctcctgg	ggctggctga	acaatgtgtc	gttgtatggt	1200
20	ggtggcatgt	tcaccgctga	tgattatcag	gctatcacta	ccggtattgg	ctttaacctt	1260
	aaccaattcg	gttcgctttc	ttttgatgtc	actggagcag	acgcgtcttt	acagcaacaa	1320
	aatagcggca	atctgcgtgg	ttacagctat	cgcttcaact.	atgcaaagca	tttcgaatcg	1380
25	acaggcagtc	agattacctt	cgcgggttat	cgcttctcag	ataaagatta	cgtgtcgatg	1440
	agtgagtacc	teagetegeg	taatggcgat	gagtcaatcg	ataatgaaaa	agagagttat	1500
	gtcatttcct	tgaaccagta	ctttgaaacg	ctggaattaa	actettatet	caacgttaca	1560
<i>30</i>	cgcaatactt	attgggacag	cgccagcaat	accaactact	ccgtatctgt	aagcaaaaac	1620
	tttgatattg	gcgatttcaa	aggtatatct	gcatcgctgg	cagtaagtcg	aatccgctgg	1680
35	gatgacgacg	aagagaatca	atattacttc	tetttetete	tacctttaca	acaaaaccgc	1740
	aacatctcct	acagtatgca	gcgaacggga	agcagtaata	cttcgcagat	gatttcctgg	1800
	tacgattcat	cagatcgcaa	caatatctgg	aatatttcag	cgtcggcaac	ggacgacaat	1860
40	atacgtgatg	gcgaaccaac	actgegegge	agctaccagc	actattcgcc	gtggggacgc	1920
	ctgaacatta	atggcagtgt	acagecgaat	cagtacaatt	ctgttaccgc	aggctggtac	1980
	ggttcactta	ccgctacacg	tcatggtgtc	gecetteacg	attatagcta	tggcgataac	2040
45	gcccgcatga	tggtcgatac	cgatggcatc	tccggcattg	aaatcaactc	taaccgtacc	2100
	gttaccaacg	ggctgggcat	cgccgtgata	ccttcgttat	cgaactacac	cacctccatg	2160
50	ttgcgggtga	acaataacga	tctgccagaa	ggtgtcgatg	tcgaaaactc	ggttattcgt	2220
	actacgctca	cccagggtgc	catcggctac	gcaaaactga	atgccaccac	cggataccaa	2280
	atcgtcggcg	ttattcgtca	ggaaaatggc	cgcttccctc	cactaggtgt	gaatgtcacg	2340

183

	gataaagcga	caggtaaaga	tgtgggcctg	gtagcggaag	atggcttcgt	ttatctcagc	2400
	ggtattcagg	aaaacagtat	tctgcattta	acctggggtg	ataatacctg	tgaagtcacg	2460
5	ccgccaaacc	aaagtaacat	tagtgaaagc	gcgataattt	taccttgtaa	aacagtcaaa	2520
10	<400> 95	herichia col caaaacagtc		at against ac	cacaccacaa	gcgcctttca	60
15		tggtggcgct					120
	gctgattttc	cagcaactgc	cattgaaacg	gatcccggtg	caagtgcctt	ccctaccttc	180
	tatgcctgtg	ccctgattgt	gctcgctgtc	ttgctggtga	tacgcgatct	tttgcaggca	240
20	aaaccagcct	cttgcgccaa	cgcacaggaa	aaaccggcat	tcaggaaaac	agcaacagga	300
	attgcggcaa	ccgcgtttta	tattgtggcg	atgagctact	gcggttatct	cattactact	360
	cctgttttcc	tcatcgtcat	tatgacgttg	atgggctaca	ggcgatgggt	actcacaccg	420
25	ggtattgcgc	tgctgttaac	ggcaatcctc	tggttgctgt	ttgtcgaagc	gttacaggtg	480
	ccattgcctg	teggeacatt	tttcgaa				507
30	<210> 96 <211> 933 <212> DNA <213> Esc <400> 96		li				
35	atggtactto	ttgcaggcgc	tgccctcagc	attgcgcctg	tacaggcagc	ctcctaccca	60
	accaaacaga	a tcgagttagt	cgttccctac	gctgccggag	geggtaegga	tetggttgcc	120
	cgtgccttt	g ctgatgccgc	caaaaaccat	ttacccgtca	gcatcggggt	tatcaataaa	180
40	cctggcggag	g geggtgetat	cggcctgagt	gaaatcgccg	ctgcccgccc	taacggttac	240
	aaaattggt	taggcacggt	tgaactgacc	accettecea	. geeteggaat	ggtgcgtttt	300
45	aaaaccagc	g actttaaacc	cattgcccgt	ctgaatgcgg	atccggctgc	tatcacagtc	360
45	cgtgccgat	g cgccgtggaa	tagctatgaa	gaatttatgg	r cttactccaa	agcgaatccc	420
	ggaaaagta	c gcattggtaa	ctcaggcacc	ggagctatct:	ggcatctggc	ggcagctgca	480
50	ctggaagac	a aaacgggcac	aaagttttct	catgtcccgt	atgacggcgc	agcccctgcc	540
	attacaggo	c tgttaggcgg	gcatattgaa	geggttteeg	g taageceage	g agaagttatc	600
	aaccatgtg	a atggcggcaa	gctgaagaca	ı ctggtagtga	tggcggatga	a gcgaatgaaa	660
55	•						

	accatgeetg acgtecegae gttaaaagag aaaggegttg ateteteeat eggeacetgg	720
5	cgcggcctga ttgtgtcgca aaaaacgccg caggatgtgg tggatgttct ggcaaaggca	780
	gcaaaagaga cggctgaaga gcctgcattc caggatgcac tgcaaaagtt gaatctcaac	840
	tatgcatggc ttgacgctgc cagcttccag acccaaatca gcgaacagga aaagtacttt	900
10	gacgagttgc tgactcgcct gggcctgaaa aaa	933
15	<210> 97 <211> 2166 <212> DNA <213> Escherichia coli <400> 97	
	atgctgcgat ggaaacgctg tattattcta acatttatct ctggtgctgc tttcgcggcg	60
20	ccagagataa atgttaagca aaacgaatcg ttacctgatt taggtagcca ggcagcacaa	120
	caggatgaac aaaccaacaa gggtaaatcg ctgaaagagc gcggagccga ttacgtcatc	180
	aactccgcca cgcaagggtt tgaaaacttg acccctgagg cgctggaatc tcaggccaga	240
25	agctatctgc aaagtcaaat cacctcaacc gcacaatctt atattgaaga cacactctct	300
	ccctacggta aggtccgttt gaacctctcc attggtcagg gcggcgatct ggatggcagt	360
	tccatcgatt attttgttcc ctggtacgat aatcaaacca ctgtttattt cagccaattt	420
30	totgogoaac gaaaagaaga togtacgato gggaatattg goottggggt aaggtataat	480
	tttgataaat atctattggg tggaaatata ttttatgatt atgactttac ccgtggacat	540
	cgccgtttag gtttaggcgc cgaagcctgg acggattatt taaaattctc aggcaactat	600
35	tatcacccac tttctgactg gaaagactct gaagatttcg acttttatga agaacgccct	660
	gcgcgcggtt gggatattcg tgccgaagtc tggttacctt cttatccgca actggggggc	720
40	aaaattgtot togagoaata ttaoggogat gaagtogooo tttttggtao ggataatttg	780
	gagaaagate eetaegeggt aaegettgga etgaattate aaecagtgee gttaetgaea	840
	gttgggacgg actataaagc ggggaccgga gataacagtg atgtcagcat taatgccact	900
45	cttaattatc agttcggcgt tccgctaaaa gatcaattgg atagcgataa agtgaaagcg …	··· 960
	gegeaetege tgatgggeag eegtettgat ttegttgage gtaataaett tattgttetg -	1020
	gaatacaaag aaaaagatcc gcttgatgtc accctgtggt tgaaagcgga tgccaccaac	1080
50	gagcaccetg agtgegteat taaggacaet eeegaagegg eegteggtet ggaaaaatgt	1140
	aagtggacca ttaacgcact cattaatcat cattacaaaa tcgttgcggc ctcctggcag	
	en e	

	gcgaaaaaca	atgccgcccg	cacgctggtg	atgccggtta	tcaaagagaa	tactctgaca	1260
	gagggtaaca	ataaccactg	gaacctggtg	ctgcctgcct	ggcagtacag	ttccgatcaa	1320
5	gccgaacaag	aaaaactcaa	tacctggcga	gtacgtctgg	cgctggaaga	tgaaaagggc	1380
	aaccgacaga	actctggcgt	ggtggaaatc	accgttcagc	aggaccgtaa	aatagagttg	1440
10	attgttaata	acatcgcgaa	cccagaagag	aacaaccaca	gccacgaagc	cagcgcacag	1500
	gcagatggcg	ttgatggtgt	agtgatggat	ctcgatgtaa	ccgacagctt	tggcgataac	1560
	accgaccgca	acggcgatgc	gttgccggaa	gataacctta	cgcctcagct	ttacgacgcg	1620
15	caggacaaac	gagtgacgtt	aaccaacaag	ccctgctcga	ccgataaccc	ctgcgttttt	1680
	attgccaaac	aagataaaga	aaagggcact	gtcaccetet	ccagtacctt	acctggcacc	1740
	tatcgctgga	aagcaaaagc	cgcgccctac	gatgacagta	actatgtgga	tgtcactttc	1800
20	ctcggggcag	aaattggtgg	gctaaatgct	tttatctatc	gtgtgggggc	ggctaaaccc	1860
	agcaacctga	taggtaaaga	taaagaaccg	ttgccgtcaa	caacatttat	cgatttgttt	1920
25	tatggcgcga	caacaataaa	gacggtgtct	tccagcaggt	cgaaaaacct	gacgaagaga	1980
23	tggtgcagta	cgactacaag	tgggaattta	ccggcaagag	catcaatggt	aagtgggtgc	2040
	acaggcgaac	actccaatga	ggacattgtg	attccggcca	ctaaccgtga	agcggcgcaa	2100
30	acctatggcg	cacaagcggg	agatggcttg	cagggatacg	gtttacgcgt	gctgtatacc	2160
	aaaaaa						2166
	0.7.0						
35	<210 > 98 <211 > 957						
		nerichia col	li				
40	<400> 98 atgaagcagg	ataaaagacg	cggtctgacc	cggatcgcat	tagcgctggc	actggcaggt	60
40	tattgtgtgg	cacctgtggc	gctggctgaa	gacagcgcct	gggtcgacag	cggtgaaacc	120
	aatattttcc	aggggaccat	tccgtggctc	tattcggaag	ggggaagtgc	tacgacagat	180
45	gccgaccgtg	taacgttgac	ttctgatcta	aaaggcgctc	gcccgcaagg	catgaaacgg	240
	acaagcgttt	ttactcgggt	gataaatatt	ggtgataccg	aaggcgacgt	ggatcttggt	300
	ggattgggcg	ataacgcgaa	aactatcgat	actatecget	ggatgagcta	caaggatgcg	360
50	cagggggggg	atccaaaaga	gctggcaacg	aaggtgacca	gttacactct	taccgatgcc	420
	gaccgtggtc	gctatatcgg	tattgaaatt	acgccaacca	cgcagaccgg	tacgccaaac	480
	gtcgggactg	cgctgcatct	ttatgacgtt	tctactgcca	acaacaacaa	aagcgacagc	540
55							

	gataacgttg	caccggggcc	ggtggttaac	cagaacctga	aagtcgccat	ctttgttgat	600
5	ggtaccagta	tcaaccttat	caacggtagc	acaccaatcg	aacttggcaa	aacctacgtg	660
	gccaaactgt	actcggatga	gaacaaaaat	ggcaagtttg	atgcgggtac	cgatgctgac	720
	gtcaccgcca	attatgactt	ccgttgggta	ctttctggca	gcagccaaca	gcttggcact	780
o .	tcgggtggca	tcgttaactc	aagcttcgat	aataacaatt	tggtcatccc	tgcgaccaac	840
•	gacgaagcca	gaaccaacct	taacggccct	gcgcgcgatg	gaaaagaggc	actttccatc	900
15	ccgaccaacg	gcgacggggt	acagggttac	aaacttcaca	ttatttacaa	acacaaa	957
20	<210> 99 <211> 188 <212> DNA <213> Esc <400> 99		li				
	atgaagaaag	tgctcactct	ctcactactg	gctctgtgtg	tgtctcatag	tgcagtagca	60
	gcaaactata	cgttcaataa	cgataatatt	gccctctcgt	ttgatgatac	aaactcgacg	120
25	attgtgctga	aggaccgtag	aactaaccat	ccgatcacac	cacaggaatt	gttctttctg	180
	acactaccgg	ı atgagacaaa	aatccacacc	gcagatttca	aaatcaagca	catcaaaaaa	240
	caggacaatg	g cgattgtcat	cgactttacg	cgcccagatt	ttaacgtaac	agtgcagttg	300
30	aaccttgtga	agggaaaata	. tgccagcato	gactacacta	ttgccgccgt	tgggcaacca	360
	cgagacgtcg	g ccaagattac	cttetteeeg	accaaaaaa	agtttcaggo	tccttacgta	420
35	gacggcgcaa	a tcactageto	accgatcatt	. gcggactcgt	tctttatcct	gccgaataaa	480
	ccgatcgtga	a atacctacgo	: ctatgaagca	acaaccaato	c tcaacgtaga	. actgaaaact	540
	ccaattcag	cagagacgcc	ggttagcttt	accacctggt	teggtacttt	cccggaaacc	600
40	agccagttg	gacgcagtgt	gaaccagttt	attaatgcc	g tacgtccacc	tccgtacaag	660
	ccttalltg	c attacaacac	y ttggatggat	ateggettt	Leactecgta	caccgaacag	720
	gatgttctg	g gacgcatgga	a cgaatggaad	aaggaattc	a ttageggeeg	, cggagtggcg	780
45	ttagacgct	t ttctgctgga	a cgatggctg	g gacgatett	a ceggaegete	gttatttggc	840
	ccggcattc	a gcaacggttt	tagcaaagt	a cgagagaaa	g ccgatagcct	gcacagetee	900
50	gttgggcta	t ggctttcac	= gtgggggg	t tacaataag	c cgcagcgacg	g ttegegttte	960
50	gcatgcaaa	a gagtatggg	t tegaaaceg	t ggacggcaa	g ctggcgcttt	cgggagcgaa	1020
, , ,	ctacttaaa	a acttcaatg	a gcagatcat	t aatcttatc	a aaaatgaac	a cattacctcg	1080

	tttaaactcg	acggaatggg	gaacgccagt	tcacatataa	agggtagccc	gttcgcctcg	1140
	gattttgatg	cgtcaatagc	tctgctgcac	aatatgcgca	gagcaaaccc	gaatctattt	1200
5	atcaacctga	ccaccggcac	caacgccagc	ccgtcctggt	tgttctatgc	tgattctatc	1260
	tggcgtcagg	gggatgatat	aaacctgtat	ggccccggca	cgccggtgca	gcagtggata	1320
10	acatatcgtg	atgccgagac	ataccgctct	attgtacgta	aaggcccgct	attecegetg	1380
	aactcgctga	tgtaccacgg	gatagtcagc	gccgagaatg	cctattacgg	gttagagaag	1440
	gtgcaaacgg	acagcgactt	tgccgatcag	gtctggagct	acttegegae	cggcacccag	1500
15	ctgcaggagc	tgtatattac	cccgtccatg	ctgaacaagg	tgaagtggga	tacgctggcg	1560
	aaggetgeaa	aatggtcgaa	ggaaaatgcc	agcgtgctgg	ttgataccca	ctggattggc	1620
	ggcgacccaa	cggcgcttgc	cgtgtacggc	tgggcatcct	ggagcaaaga	caaagccatt	1680
20	ctcggtttgc	gcaacccatc	ggataageca	cagacctact	atctggattt	ggcgaaggat	1740
	ttcgaaatac	cggcaggaaa	cgcggcgcag	tttagtctga	aagcggtata	cggcagcaat	1800
25	aaaacagtgc	ccgttgagta	taaaaacgcg	acggtgatta	cgttgcagcc	gctggaaacg	1860
	ctggtgtttg	aggcggtgac	cattaac				1887
30		4 herichia co	li				
30	<211> 533- <212> DNA <213> Esc <400> 100			ccggcaacag	gcagttacac	cgttgccagc	60
30	<pre><211> 533 <212> DNA <213> Esc <400> 100 atgaacaaaa</pre>	herichia co	tatctggaat				60 120
	<pre><211> 533 <212> DNA <213> Esc <400> 100 atgaacaaaa gaaacggcga</pre>	herichia co	tatctggaat taaaaaaagc	gggcgcagta	agctgttaat	ttctgcactg	
35	<pre><211> 533 <212> DNA <213> Esc <400> 100 atgaacaaaa gaaacggcga gttgcgggtg</pre>	herichia co tatttaaagt agagccgtgg	tatctggaat taaaaaaagc gtcgtttggg	gggcgcagta gcaagtgcag	agctgttaat ataattacac	ttctgcactg tgggcagcca	120
	<pre><211> 533 <212> DNA <213> Esc. <400> 100 atgaacaaaa gaaacggcga gttgcgggtg actgattatg</pre>	herichia co tatttaaagt agagccgtgg ggttgttgtc	tatctggaat taaaaaaagc gtcgtttggg agcaggtgac	gggcgcagta gcaagtgcag ggctgggttg	agctgttaat ataattacac ctatcggtaa	ttetgeactg tgggeageea aggggeaaaa	120 180
35	<pre><211> 533 <212> DNA <213> Esc <400> 100 atgaacaaaa gaaacggcga gttgcgggtg actgattatg gcaaatacct</pre>	herichia co tatttaaagt agagccgtgg ggttgttgtc gcgatggctc	tatctggaat taaaaaaagc gtcgtttggg agcaggtgac tagtggcgcg	gggcgcagta gcaagtgcag ggctgggttg agtacagctt	agctgttaat ataattacac ctatcggtaa taggatatga	ttetgeactg tgggcageca aggggcaaaa cgegatagec	120 180 240
35	<pre><211> 533 <212> DNA <213> Esc <400> 100 atgaacaaaa gaaacggcga gttgcgggtg actgattatg gcaaatacct gaaggtgagt</pre>	tatttaaagt agagccgtgg ggttgttgtc gcgatggctc ttatgaacac	tatctggaat taaaaaaagc gtcgtttggg agcaggtgac tagtggcgcg catcgggtca	gggcgcagta gcaagtgcag ggctgggttg agtacagctt aaaacccttg	agctgttaat ataattacac ctatcggtaa taggatatga caactggtgg	ttetgeactg tgggcageca aggggcaaaa cgegatagec ageatecatg	120 180 240 300
<i>35</i>	<pre><211> 533 <212> DNA <213> Esc. <400> 100 atgaacaaaa gaaacggcga gttgcgggtg actgattatg gcaaatacct gaaggtgagt gcgttcgggg</pre>	tatttaaagt agagccgtgg ggttgttgtc gcgatggctc ttatgaacac acagttctgc	tatctggaat taaaaaaagc gtcgtttggg agcaggtgac tagtggcgcg catcgggtca agcaatgggt	gggcgcagta gcaagtgcag ggctgggttg agtacagctt aaaacccttg gacagaagtg	agctgttaat ataattacac ctatcggtaa taggatatga caactggtgg tcgcgctagg	ttetgeactg tgggcageca aggggcaaaa cgegatagec ageatecatg	120 180 240 300 360
<i>35</i>	<pre><211> 533 <212> DNA <213> Esc. <400> 100 atgaacaaaa gaaacggcga gttgcgggtg actgattatg gcaaatacct gaaggtgagt gcgttcgggg gtagcaaatg</pre>	tatttaaagt agagccgtgg ggttgttgtc gcgatggctc ttatgaacac acagttctgc	tatctggaat taaaaaaagc gtcgtttggg agcaggtgac tagtggcgcg catcgggtca agcaatgggt gatggctttt	gggcgcagta gcaagtgcag ggctgggttg agtacagctt aaaacccttg gacagaagtg ggtcgttacg	agctgttaat ataattacac ctatcggtaa taggatatga caactggtgg tcgcgctagg caaagacgaa	ttetgeactg tgggcageca aggggcaaaa cgegatagec ageatecatg tgeategtea tggttttaca	120 180 240 300 360 420
<i>35</i>	<pre><211> 533 <212> DNA <213> Esc. <400> 100 atgaacaaaa gaaacggcga gttgcgggtg actgattatg gcaaatacct gaaggtgagt gcgttcgggg gtagcaaatg tctcttgcta</pre>	tatttaaagt agagccgtgg ggttgttgtc gcgatggctc ttatgaacac acagttctgc ttagtgcaaa gcgatcgttc	tatctggaat taaaaaaagc gtcgtttggg agcaggtgac tagtggcgcg catcgggtca agcaatgggt gatggctttt ctcccttgcc	gggcgcagta gcaagtgcag ggctgggttg agtacagctt aaaacccttg gacagaagtg ggtcgttacg gatggtgaaa	agctgttaat ataattacac ctatcggtaa taggatatga caactggtgg tcgcgctagg caaagacgaa aaactattgc	ttetgeactg tgggcageca aggggcaaaa cgegatagec ageatecatg tgeategtea tggttttaca	120 180 240 300 360 420 480
35 40 45	<pre><211> 533 <212> DNA <213> Esc. <400> 100 atgaacaaaa gaaacggcga gttgcgggtg actgattatg gcaaatacct gaaggtgagt gcgttcgggg gtagcaaatg tctcttgcta acggctaaag</pre>	tatttaaagt agagccgtgg ggttgttgtc gcgatggctc ttatgaacac acagttctgc ttagtgcaaa gcgatcgttc	tatctggaat taaaaaaagc gtcgtttggg agcaggtgac tagtggcgcg catcgggtca agcaatgggt gatggctttt ctcccttgcc tatgagcatc	gggcgcagta gcaagtgcag ggctgggttg agtacagctt aaaacccttg gacagaagtg ggtcgttacg gatggtgaaa gccctcggtg	agctgttaat ataattacac ctatcggtaa taggatatga caactggtgg tcgcgctagg caaagacgaa aaactattgc ataatgccaa	ttetgeactg tgggcageca aggggcaaaa cgegatagec ageatecatg tgeategtea tggttttaca gttaggaaat tgegtcaaaa	120 180 240 300 360 420 480 540

	tcgaacgata	acgccatcgc	gatagggaac	aaaacgcaag	ccctgggagt	gaattcgatg	780
5	gccctgggta	atgcaagtca	ggcatctggc	gaatccagta	ttgcattagg	taacaccagt	840
	gaagccagcg	aacaaaatgc	gattgcgctg	gggcaaggta	gcattgcaag	caaagtgaac	900
	tcaatcgcgt	tgggaagtaa	cagtttgtcc	tcgggagaga	atgccatcgc	attgggagag	960
10	ggtagtgccg	ctggtggcag	caacagcctt	gctttcggta	gccagtccag	ggcaaacggc	1020
	aatgattctg	tegecategg	tgtaggggct	gcagcagcga	ccgacaattc	tgtcgctatc	1080
	ggcgcaggat	cgaccacaga	tgcaagcaat	acggtttcag	ttggcaacag	cgcaacaaaa	1140
15	cgcaaaattg	ttaatatggc	tgetggtgee	ataagcaaca	ccagtaccga	tgccatcaac	1200
	ggetcacage	tttatacgat	cagtgattca	gtcgccaagc	gactcggagg	aggcgctact	1260
20	gtaggcagcg	atggcaccgt	aaccgcagta	agctacgcgt	tgagaagcgg	aacctataat	1320
	aacgtgggtg	atgctctgtc	aggaatcgac	aataataccc	tacaatggaa	taaaaccgcg	1380
	ggggcgttca	gcgccaatca	cggtgcaaat	gccaccaaca	aaatcactaa	tgttgctaaa	1440
25	ggtacggttt	ctgcaaccag	caccgatgta	gtaaacggct	ctcaattgta	cgacctgcag	1500 '
	caggatgete	tgttgtggaa	cggcacagca	ttcagtgccg	cacacggcac	cgaagccacc	1560
	agcaaaatca	ctaacgtcac	cgctggcaac	ctgactgccg	gcagcactga	cgccgttaac	1620
30	ggctctcagc	tcaaaaccac	caacgacaac	gtgacgacca	acaccaccaa	catcgccact	1680
	aacaccacca	atatcaccaa	cctgactgac	gctgttaacg	gteteggtga	cgactccctg	1740
35	ctgtggaaca	aagcagct <u>c</u> g	cgcattcago	geegegeaeg	gcaccgaago	caccagcaaa	1800
	atcaccaacg	, tcaccgctgg	caacctgact	gccggtagca	ctgacgccgt	taacggctcc	1860
	cagctcaaaa	a ccaccaacga	caacgtgacg	accaacacca	ccaacatcgo	cactaacacc	1920
40	accaatatca	a ccaacctgac	tgacgctgtt	aacggtctcg	gtgacgacto	cctgctgtgg	1980
	aacaaaaca	g ctggcgcatt	cagegeegeg	g cacggcacts	acgccaccag	g caagatcacc	2040
	aacgtcacc	g ctggcaacct	gactgccgg	agcactgac <u>c</u>	ccgttaacgg	g ctcccagctc	2100
45	aaaaccacca	a acgacaacgt	gacgaccaa	accaccaaca	tcgccactaa	caccaccaat	2160
	atcaccaac	c tgactgacco	tgttaacgg	ctcggtgacg	g actecetget	gtggaacaaa	2220
50	acagctggc	g cattcagcgo	c cgcgcacgg	c actgacgcc	a ccagcaagat	caccaatgtc	2280
	aaagccggt	g acctgacaço	tggcagcac	t gacgccgtta	a acggetete	a gctcaaaacc	2340
	accaacgat	a acgtgtegad	c caacaccac	c aacatcacca	a acctgactg	a cgctgttaac	2400
				*			

189

	ggtctcggtg	acgactccct	gctgtggaac	aaaacagctg	gcgcattcag	cgccgctcac	2460
	ggcactgacg	ccaccagcaa	gatcaccaat	gtcaaagccg	gtgacctgac	agctggcagc	2520
5	actgacgccg	ttaacggctc	ccagctcaaa	accaccaacg	ataacgtgtc	gaccaacacc	2580
	accaacatca	ctaacctgac	ggattccgtt	ggcgacctta	aggacgattc	tctgctgtgg	2640
40	aacaaagcgg	ctggcgcatt	cagcgccgcg	cacggtaccg	aagctaccag	caagatcacc	2700
10	aacttactgg	ctggcaagat	atcttctaac	agcactgatg	ccattaatgg	ctcacaactt	2760
	tatggcgtag	cggattcatt	tacgtcatat	cttggtggtg	gtgctgatat	cagegatacg	2820
15	ggtgtattaa	gtgggccaac	ctacactatt	ggtggtactg	actacactaa	cgtcggtgat	2880
	getetggcag	ccattaacac	atcatttagc	acatcactcg	gcgacgccct	actttgggat	2940
	gcaaccgcag	gcaaattcag	cgccaaacac	ggcattaata	atgctcccag	tgtaatcact	3000
20	gatgttgcaa	acggtgcagt	ctcgtccacc	agcagcgacg	ccattaacgg	ttcacaactt	3060
	tatggtgtta	gtgactacat	tgccgatgct	ctgggcggga	atgctgtggt	gaacactgac	3120
	ggcagtatca	ctacaccaac	ttatgccatc	gctggcggca	gttacaacaa	cgtcggtgac	3180
25	gcgctggaag	cgatcgatac	cacgctggat	gatgctctgc	tgtgggatac	aacagccaat	3240
	ggcggtaacg	gtgcatttag	cgccgctcac	gggaaagata	aaactgccag	tgtaatcact	3300
30	aacgtcgcta	acggtgcagt	ctctgccacc	agcaacgatg	ccattaatgg	ctcacagctc	3360
	tatagcacta	ataagtacat	cgctgatgcg	ctgggtggtg	atgcagaagt	caacgctgac	3420
	ggtactatca	. ctgcaccgac	ttacaccatt	gcaaataccg	attacaacaa	cgtcggtgaa	3480
35	gccctggatg	getegataa	taacgcgctg	ctgtgggatg	aagacgcagg	tgcctacaac	3540
	gccagccatg	atggcaatgc	cagcaaaatc	accaacgttg	cggctggtga	tctctccaca	3600
	accagtaccg	atgctgttaa	. cggttcccag	ttaaacgcaa	ccaatattct	ggttacgcaa	3660
40	aatagccaaa	tgattaacca	gettgetggt	aacactagcg	aaacctacat	cgaggaaaac	3720
	ggtgcgggta	ttaactatgt	acgtaccaac	gacagegget	tagcgttcaa	cgatgccagc	3780
45	gcttcaggta	ttggcgctac	agetgtaggt	tataacgcag	ttgectetca	tgccagcagt	3840
	gtagccatcg	g gtcaggacag	; catcagcgaa	gttgatacgg	gtategetet	gggtagcagt	3900
	teegttteea	a gccgtgtaat	: agttaaaggg	actcgtaaca	ccagogtato	ggaagaaggt	3960
50	gttgtgattg	g gttatgacad	cacggatggc	gaactgcttg	gegegttgte	gattggtgat	4020
	gacggtaaat	atogtcaaat	: catcaacgto	gcggatggtt	ctgaagccca	tgatgcggtc	4080
	actgttcgc	c agttgçaaaa	a cgccattggt	gcagtcgcaa	ccacaccaac	caaatactat	4140
55							

	cacgccaact	caacggctga	agactcactg	gcagtcggtg	aagactcgct	ggcaatgggc	4200
5	gcgaaaacca	tcgttaatgg	taatgcgggt	attggtatcg	gcctgaacac	gctggttctg	4260
	gctgatgcga	tcaacggtat	tgctatcggt	tetaacgcac	gcgcaaatca	tgccgacagc	4320
•	attgcaatgg	gtaatggttc	tcagactacc	cgtggtgcgc	agaccaacta	cactgcctac	4380
10	aacatggatg	caccgcagaa	ctctgtgggt	gagttctctg	tcggcagtga	agacggtcaa	4440
	cgtcagatca	ccaacgtcgc	agcaggttcg	gcggataccg	atgcggttaa	cgtgggtcag	4500
	ttgaaagtaa	cggacgcgca	ggtttcccag	aatacccaga	gcattactaa	cctgaacact	4560
15	caggtcacta	atctggatac	tegegtgace	aatatcgaaa	acggcattgg	cgatatcgta	4620
	accaccggta	gcactaagta	cttcaagacc	aacaccgatg	gcgcagatgc	caacgcgcag	4680
20	ggtaaagaca	gtgttgcgat	tggttctggt	tccattgctg	ccgctgacaa	cagcgtcgca	4740
	ctgggcacgg	gttccgtagc	agacgaagaa	aacaccatct	ctgtgggttc	ttctaccaac	4800
	cagogtogta	tcaccaacgt	tgctgccggt	gttaatgcca	ccgatgcggt	taacgtttcg	4860
25	caactgaagt	cttctgaagc	aggcggcgtt	cgctacgaca	ccaaagctga	tggctctatc	4920
	gactacagca	. acatcactct	cggtggcggc	aatagcggta	cgactcgcat	cagcaacgtt	4980
	tctgctggcg	, tgaacaacaa	cgacgcagtg	aactatgcgc	agttgaagca	aagtgtgcag	5040
30	gaaacgaagc	: aatacaccga	tcagcgcatg	gttgagatgg	ataacaaact	gtccaaaact	5100
	gaaagcaagc	: tgagtggtgg	tatcgcttct	gcaatggcaa	. tgaccggtct	gccgcaggct	5160
<i>3</i> 5	tacacgccgg	gtgccagcat	ggcctctatt	. ggtggcggta	cttacaacgg	tgaatcggct	5220
	gttgctttag	g gtgtgtcgat	ggtgagcgc	aatggtcgtt	gggtctacaa	attacaaggt	5280
	agtaccaata	a gccagggtga	atactccgcc	gcactcggtc	g ccggtattca	gtgg	5334
40	•		*				
	<210> 10	1.					
	<211> 683						
	<212> DNI		.1 4		• •	•	
	<213> Esc <400> 103	cherichia co				س ياريد بدايد	
45	atgaaccta	a agaaaacact	gttaagcgt	ttaatgata	tgcaacttt	g cttattggta	60 -
	gggtgtgac	t atattgaaaa	agegagtaa	g gtcgacgat	c tegttacaca	a gcaagagttg	120
50	caaaaaagc			a caacaagaa	c tegacaage	g caagatagaa	180
-	cactttgaa		taccatcat	a aacagtacc	a aaacgctcg	c tggtgtggtg	240
	aaggcagtt	a aaaacaaaca			g aatttaacc	c ggcacaaacc	300
	• •					1.1	

	caatacttta ttttaaataa cggctctgtt ggtttggcag ggaaaatact gtctattgac	360
	gcagtagaaa acggcagtgt tattcgtatt tcactggtta acttattaag tgttcctgta	420
5	tcaaatatgg gtttctacgc aacatggggg ggagaaaaac ccaccgacat caacgcatta	480
	gcaaaatggc agcaattgct atttagtacc gcaatgaact cctccctgaa attattacca	540
10	ggtcaatggc aagacattaa tttgacgcta aaaggtgtct cgcccaacaa cctcaaatat	600
10	ctgaaattag ccatcaacat ggcaaatatt cagttcgacc gtcttcaacc tgctgaatct	660
	ccacagcgga aaaacaaaaa a	681
15		
	<210> 102 <211> 3327 <212> DNA <213> Escherichia coli	
20	<400> 102 atgaaaagag ttgtgcgtct tttgggtgtg gggttactgc tccttgttgt gttgttgctc	60
	attttgtttg ttctggctca gaccacaccg ctgatatcag cacaggatga gcatgctgtc	120
05	tggcttcgtc tgttgataac agcgattgtg atctgtttgc taagtatgtg catatttttc	180
25	ctcttttctt tccggcagaa cgaagcctcg acgatatcac tatacgctca accgactgat	240
	ataaaggaaa taaatacgga gcagccgaac tatgcatcac tgctgacgat atatttacgc	300
30	gaccgctacg gtccgttctg gcggcgtaaa gtccgcctgc tgctggtgac cggcgagcct	360
	gaacaggcag aagccatcgc gccggggctg accgggcaac actggctgga aggcgaccac	420
	acggtgctga tatatggcgg caggccaaca gcggagcctg atgtcacact gctgaccgcc	480
35	ttaaaaaaac tgcgccgcag ccgtccgctg gacggcatca tctgggcgct gacagaagaa	540
	cagageegee agaeagegea actegaeaaa ggetggegeg gaetgataaa eggeggtaag	600
40	cgactcggtt ttcaggctcc actctatttg tggcaggtct gtgacgacgg tgattatcag	660
40	accggacgcc ccctgcaaag cgtcggctgc ctgctgccgg aacgctgtac cccggaacaa	720
	ctggctgtaa tgctggaagc agccgctgac ggaacagggc atgtcgcagc tactgaccga	780
45	taccgcatgt tttctgctgc gtctggctca tacccttgca gagcggggta ttgctcactg	840
	gcagaccgtc ctgaaaccgc tgctggcagg cggcgcattt tettcectgc gcctgcgcgg	900
	cctgatgttc agcccgccgc ttgccgccgt gccggaggcc agcacctcat gcagtggctg	960
50	ccgtcaccgg tctgggcggg cgtgacggtg ataacgcgcg cgggcgcacg gtgggttttc	1020
,	ctytgyctgc gtaccycact gatytccyct ytctycytyc tygtgataty ygygyccyga	1080
55	atgacgacct cgttcttcgc caaccgcgct cttgttcagg aaaccggtat ccagacggca	1140

	cgtgcgcttg	atacccgcct	gccgctggca	gaacaactgg	tggcgctgca	taccctgcag	1200
5	ggcgaactgg	aacgcctgca	atatcgtatc	cgcgaaggtg	cgccgtggta	tcagcgtttt	1260
	ggccttgaac	gtaaccaaca	actgctcgcc	gccgcttttc	ccggctatgc	gcaggcggca	1320
•	aaccggctgg	tgcgcgacgt	ggccgttgac	catctgcaac	agcaactgaa	cgcctttgtc	1380
10	gccctgccgc	ccaacagtcc	tcagcgtacc	gccaccggtg	aacaacgcta	taagcagctt	1440
	aaggcattgc	tgatgacttc	ccgcccggaa	aaggccgacg	ctgccttttt	cagtaccacg	1500
	ctgatggcgg	acggtctgcg	ctacgagaat	atcccggaag	gtgtgcggca	gagcgtgttg	1560
15	ccgtcactgc	tgaccttctg	gacggcgaac	ctgccggaac	acccgcagtg	gaaaacatcg	1620
	ccgccaccgg	aactgaccgg	cgcagtgcgt	aaaatcctgc	tgcgccagat	tggtgtgcgt	1680
20	aatgccgaaa	acaccctcta	ccagaacgtg	ctgcaacagg	tgtcccgcaa	ctacgccgat	1740
	atgacgctgg	cggacatgac	cggggatacc	ctcaccgaat	ctcttttcag	tacggaacag	1800
	acggtgccgg	ggatgttcac	ccgtcaggcg	tgggaaggac	aggtcaggga	agccatcgag	1860
25	caggtggtga	cggcgcggcg	cgaggaaatc	gactgggtac	tcagcgaccg	g ccagcaggat	1920
	acctctgcgg	atatctcgcc	ggatacgctg	cgtaaccgtc	: tcacctcacç	ctactttacc	1980
	gactttgccg	gaagctggct	ggcgtttctc	: aacagcatto	: actggaaaaa	a ggaagactcg	2040
30	ctctccggca	ttctcgacca	gctgacactc	g atggccgate	g cccgtcagtc	gccactgatt.	2100
	gcgctgacgg	acaccctcgc	gtggcaggcg	g gcgacaggca	a gggaaaacc	g tggtctgtca	2160
35	gactcgctgg	cgaaatcggc	acaggaact	tttaacggca	a aggagaaaa	c gccgcagcaa	2220
33	tcccgtgaag	gtgacgacgt	gcctgtcgg	g ccgctggata	a aaaccttca	c geegetgetg	2280
	cgtttgctgg	gcgataaggc	: cggaggcgg	c gacagecage	c tgagtctac	a gacctacctc	2340
40	accegegtea	cccgcgtgcg	cctcaaact	g caacaggtg	a ccaacgccc	c cgacccgcag	2400
	gagatgacco	: aacaactggc	gcagacggt	c ttacagggt	a aaaccyttg	a ceteacegae	2460
	acccgcgact	acggacggtt	aategeege	c agtctgggc	g aagaatgga	g tggcttcggt	2520
45	caggcgctgt	tegttegeed	ggtagagca	g tegtggegg	c aggtgctga	c gcctgcggcg	2580
	gacageetga	a accgccagt	g gcagcgggc	g attgtcagc	c actggaatc	a ggacttcgct	2640
. 50	ggccgctate	c cgttcaaag	c ctcacagaa	c gatgeetée	c tececetge	t ggcgcagtac	2700
50	ctgcgcgat	g acgggcgca	t caacctgtt	t atcgccgcc	a acctttccg	g cgtgctgaaa	2760
	cgagagggc	c gctactggg	t ggctgacgo	c atgaacacg	c aggggctga	c ggtcaatccg	2820
						ووالمنفعة المعجوبة	

193

	gactttatcc gcgccctgaa ccgcctgcgc gacgtggccg ataccgcctt tgccagcggc	2880
	gatgccggga tacattttga actgcgggca aaaccggcgc gtgacgtgat gaagacgcat	2940
5	ctggtgattg acgggcagga gctggaatat ttcaaccaga aagaacgctg gcagcgtttt	3000
	aactggeegg atgaacagtg geaaceegge geategetaa getggaeeag cacaeaggee	3060
	atggagogoa taotggogga ttacogggga agotggagto ttattogoot gotggaacag	3120
10	gcgcaggtga cgccggtgga cagcagcacc tttaaggtgg tgtggaaagc gcaggacggc	3180
	ctgccgctga attacctgct acgggttgaa cagggtaaag ggccgctggc gctgctggag	3240
15	ctgaaaaact teegeetgee gggacaggtg tttetgaeeg gaaaaagtat gaaggatgte	3300
	gaagagtatg gggaagacgc cgatgag	3327
20	<210> 103 <211> 534 <212> DNA <213> Escherichia coli <400> 103	
	atgtttecta ttegttttaa aegteeggeg ttgetetgta tggegatget gaeggttgt	60
25	ctgagtggct gcggcctgat tcagaaagtg gtggatgaat cgaaaagcgt ggcctcagc	2 120
	gttttctaca aacaaatcaa aatactgcat ctcgatttct tctcccgcag cgccctgaa	t 180
30	acggatgcgg aagatacgcc gctttccacg atggtgcatg tctggcaact gaaaacccg	c 240
	gaagattttg acaaggcgga ttacgacacc ctgtttatgc aggaagagaa gacgctgga	g 300
	aaggacgtac tggcaaaaca caccgtctgg gtaaaaccgg aaggcacggc atccctgaa	360
35	gtgccgctgg ataaagagac gcagtttgtc gccattattg ggcagtttta tcaccctga	t 420
	gaaaaaagcg acagctggcg tctggtgatc aaaagggacg aactggaggc cgacaagcc	g 480
40	cgctcgattg aactgatgag aagcgacctg cgactgctgc ctctcaagga taaa	534
40 45	<210> 104 <211> 840 <212> DNA <213> Escherichia coli	
43	<400> 104 atgatttcag ggggaaatat gttgaaagaa tggatgatat ttacgtgcag tttattgac	t 60
	ctggctgggg cgtcactgcc cctcagtggc tgtatttcca gaggccagga gtctatatc	c 120
50	gaagggggg catttggggc agggatcctg cgcgaaccgg gagcaacaaa aaaagccga	.c 180
	acgaaagacc tcaatgtgcc accaccggtt tatggtccgc cgcaggtgat atttcgcat	t 240
	gatgacaacc gctatttcac gctagaaaat tatacccact gcgagaacgg gcagacgtt	t 300

	tataataata	aagcaaaaaa	cattcatgtt	aaaatattag	acgetteagg	gtatttattt	360
5	aaaggccgct	tattctggtt	atcaacgcgt	gatgattttc	tggcctttcc	tgccacgtta	420
	aataccagac	acgcttcctg	tatggggtcg	aataaaggct	gtatgaatgc	ggtcattgtc	480
	actaccgatg	gtggaaaaag	acgcagtggt	gtgccatacg	gcagttatac	ccagaatccg	540
0	accggtgcca	cgagggatta	tgacatgctg	gtgatgaatg	acggcttcta	cctgcttaga	600
	tatcgggggg	gacagggcag	atttagtccg	gtgatactta	gatggattct	cagtactgaa	660
	gatagctctg	gtgttgtgcg	ttcagaagat	gcttatgaat	tgttccgtcc	cggagaagag	720
15	gtaccctcca	ccggttttta	taaaatcgac	ctgtcacgtt	tttatcccaa	aaacaacgtt	780
	atggaaatgc	agtgtgacag	gacgctggag	ccagttcaac	cttcagagag	taaaattcaa	840
		3 herichia co	li				
25	<400> 105 atggaacacg	ttagcattaa	aacattatat	catctcctgt	gctgtatgct	gctctttatt	60
	tccgctatgt	gegetttgge	gcaagaacat	gagectateg	gggcgcaaga	tgagcgcctg	120
	tcgacattaa	ttcaccaacg	gatgcaggag	gccaaggtcc	cagccctttc	cgtaagtgtg	180
30	accattaagg	gggtacgtca	gcgatttgtc	tacggtgttg	ccgatgtggc	tagtcagaaa	240
	gcgaatacto	tagacacagt	ttacgagctg	ggatcgatga	gtaaggegtt	taccggactt	300
35	gtggtgcaaa	a tactgattca	ggaaggcaga	. ctccggcaag	gggatgatat	cattacctat	360
33	ctgccggaaa	a tgcgcttgaa	ttatcaggga	aaacctgctt	ccctgaccgt	ggctgatttc	420
	ctttatcata	a catcaggatt	gcctttttca	acactggcto	ggctggaaaa	ccctatgcct	480
40	gggagcgctg	g tggcacagca	actgcgcaac	gagaatctgo	tgtttgcgcc	gggtgcgaag	540
	tttagctate	g ceteegeeaa	ttatgatgts	ı ttgggcgcgg	g tgattgaaaa	a tgtgacggga	600
	aaaaccttt	a cagaggtcat	tgcggaacga	a ctcacgcago	cgctgggcat	gtcggcgact	660
45	gtggcagtt	a agggggatga	a gattattgto	aacaaggcaa	a geggetataa	a actgggattc	720
	ggcaaaccc	g ttctgtttc	a tgegeetete	geceggaace	c atgttcctg	c cgcctatatc	780
	catagcact	c tgcctgata	ggaaatatg	g atagacgcc	t ggttgcaca	g aaaggetttg	840
50	ccggcaacg	c tgcgtgagg	gatgagtaad	agttggcgt	g gtaatagtg	a tgttccgctt	900
	geegeagae	a atcgtatcc	t ctatgccag	ggttggttt	a tegaceaga	a tcaaggccct	960

	tacatcagtc	acggtgggca	gaatccaaac	ttttcttctt	gcattgcgtt	gcgaccggat	1020
	cagcagattg	gcattgttgc	gctggcaaat	atgaattcga	atctgatact	acagetttge	1080
5	geggatateg	ataattatct	gcgcattggc	aaatatgctg	acggcgctgg	tgatgcaatt	1140
	acagccaccg	ataccctttt	cgtctacctc	acgttgttgc	tgtgtttttg	gggggcggtg	1200
10	gttgtagtgc	gcggtgcttt	ccgtgtttat	cgcgcaacgg	cgcatggccc	tggaaaacag	1260
	cagaggttac	gtttacgcgt	acgtgactat	atcatcgcct	tggcggttcc	tgggctcgtg	1320
	gccgccatgc	tctatgtcgc	accgggtata	ctatctccag	gacttgactg	gcgttttatc	1380
15	ttggtatggg	gtccatcgag	cgtgttggcg	ataccgttcg	gaattatcct	gttagctttc	1440
	gttctgacat	taaatcatca	aattaaacga	attctattac	acaacaagga	gtgggacgat	1500
	gag						1503
20							
25	<210> 106 <211> 204 <212> DNA <213> Esc <400> 106		li				
		aatatatcat	tgctccgggc	attgccgtga	tgtgttctgc	agttatatca	60
	tcaggttatg	ccagttctga	taaaaaagaa	gatacgcttg	ttgttactgc	ctccgggttc	120
30	actcagcagc	tcagaaatgc	cccggccagt	gtctcagtca	ttacttcaga	acaactgcaa	180
	aaaaaaccgg	tttcagatct	ggtcgatgca	gtaaaagatg	ttgaagggat	tagtatcact	240
	ggtgggaatg	aaaaaccgga	tatcagtata	cgtggtctaa	gtggcgatta	cacgctgatt	300
35	ctggtcgatg	gacgacgtca	gagcggtcgg	gaatccagac	caaacggcag	cggcggtttt	360
	gaagccggat	ttatccctcc	tgtggaagca	attgaacgca	ttgaagtgat	ccgtggccct	420
40	atgtetteee	tgtatggttc	tgatgccatc	ggaggggtca	ttaatatcat	aaccaaacca	480
40	gttaataacc	aaacatggga	tggcgtactt	ggacttgggg	ggattattca	ggaacatggg	540
	aaatttggta	actcaaccac	aaatgacttc	tatctgtcag	gcccattgat	taaggataaa	600
45	cttggtcttc	agctatatgg	aggaatgaac	tatcgcaagg	aagatagtat	ctctcaggga	660
	acaccggcaa	aagataataa	gaatataacg	gcaacgctcc	agtttactcc	gactgaaagc	720
	cagaagtttg	tttttgaata	tggaaaaaat	aaccaggtgc	atacattaac	acctggtgag	780
50	tctctcgatg	cctggactat	gcggggaaat	cttaaacaac	caaacagtaa	aagagaaacg	840
-	cataattcac	gtagtcactg	ggtagcagca	tggaatgccc	agggcgaaat	actgcatcct	900
55	gaaattgctg	tttatcagga	gaaagttatt	cgtgaggtta	aatcaggtaa	aaaagataaa	960

	tataatcatt gggatcttaa ttacgagtca agaaaaccgg aaataaccaa cacaatcata	1020
5	gatgcaaaag tgacggcatt tctgccggaa aatgtactga ccatcggagg tcaatttcag	1080
	catgoagago teegtgatga eteagecaeg ggtaaaaaaa egacagaaac acagtetgtt	1140
	tcaattaaac agaaagctgt ttttatagaa aatgaatatg cagcaacgga ttctctcgcc	1200
0	ctgactggag gactgcgtct cgataatcat gaaatctatg gcagttactg gaatccaaga	1260
	ttgtacgctg tttataacct gaccgataat ctcacactca aaggggggat cgcaaaagca	1320
	tttcgggctc cttcaattcg tgaggtgagt cctggatttg gaacactgac gcagggtggt	1380
15	gcctctatta tgtatggaaa cagggacctg aaaccggaga ccagtgtaac cgaagagatc	1440
	ggtattattt atagtaatga tagtggtttt teggegageg egaegetgtt taataetgat	1500
20	tttaaaaata agttgaccag ttacgatata ggtacaaaag atccagtcac cgggttaaac	1560
20	acttttattt atgataatgt aggtgaggca aatatcagag gggtggagct tgcaactcag	1620
	attoctgtgt atgataaatg goatgtatot goaaactata catttactga ctotogtoga	1680
25	aaaagtgatg acgaaagtet caatggcaag tegetgaaag gggaacetet ggaaagaact	1740
	cccagacatg cagccaatgc aaaactggaa tgggattaca ctcaggatat tacattttat	1800
	tcatctctga attatacggg aaaacaaatc tgggcagcac aaagaaatgg tgctaaggtt	1860
30	ccccgcgttc gtaatggatt cacatctatg gatattggtc taaattacca gattctgcca	1920
	gacacgetga ttaattttge egttettaae gteacagaca gaaagagega ggatategat	1980
	accattgatg gtaactggca ggtcgatgaa ggacgccgtt attgggctaa tgtaagagta	2040
35	tootto	2046
40	<210> 107 <211> 492 <212> DNA	·
	<213> Escherichia coli <400> 107	
	atggggttta gaaaaacaat aatcacttcg gtaggtttga tatttatttc attctctttt	60
45	gtggcaaagt gctctcaact caaaaatttg aataattact cagtgatgct ttgtggaaaa	120
	gtgtcaaata atatcctgga tgatattggt ggttataaag aaagaaatat attaatgctg	180
50	cgagctataa aaaaaatcat aataatgaca atcgtaaata ttatattttt ctattccttt	240
	caatcgactg cggatgaaat ggttttaata aaaaaatacg ggtttgggct tgagagagat	300
	atcaaaggaa ggccattaat ttatcctatc gaaaattatg atgagtgtaa gaaaaaatgc	360

197

	aatcatatga	attatatagc	ggatgtcaat	gctcaattag	Claugaglaa	addadaLaaC	420
	aggatttttg	ctaacataac	ctttactaac	aatagctcta	ccacgtattt	ttttctaaat	480
5	attatctacc	ta					492
	<210> 108						
10	<211> 654 <212> DNA						
	<213> Esc. <400> 108	herichia col	11				
		ttaaagataa	taaggtaatt	atgaaaataa	aaaatttaat	atcagtcatt	60
15	ttactatcag	gaggtattat	ggggactgga	ttgtactcga	gcgataacca	tcaaaaaatc	120
	cgcagcaggt	ttaatataca	ggaatcatat	tgtgccatta	agactaatgg	tgtccttgga	180
	ttcagcaacc	gaaaggatgt	attgcgagaa	aatggtgatt	caaccggaac	caccagttcc	240
20	agcactaatg	ccatgatgct	gatggaaaat	ggtgaaaatg	aaatcagtct	ggagattggg	300
	gcgttaaggt	ggttttctga	taaacctgcc	agtaccgaag	aacgagggca	tttctcccaa	360
	aaagcagggt	gcagtctgga	tttggttcgt	tttgttaagc	aggaagaaac	catactttct	420
25	tcgataaagg	tgaccatcaa	ccagcaggga	atacctgaag	cgcagccaga	cagcatgcat	480
	cctgttatcc	gaaaagagat	tctggctgag	caggcagaac	ccggatttat	tgatccagac	540
30	tattttaatg	aaacttattt	cccgaaaggg	atgaaggtgt	atcaatttac	acaaaaggtc	600
	teggtggegg	ggetteetga	tgggcctgga	cgcagtacgc	cctttaccgg	agca	654
	<210> 109	1					
35	<211> 819						
	<212> DNA <213> Esc	cherichia co	li				
	<400> 109)				asataaastt	60
40	_				gttacctggt		
					tcaccccaca		120
	ggaatggata	a aagcggcaaa	tggtgtgccg	gtcgtgaaca	ttgccacgcc	gaacggggcc	180
45	gggatttcgc	ataaccggtt	tacggattac	aacgtcggga	i aggaagggct	gattctcaat	240
	aatgccacco	g gtaagcttaa	teegaegeag	cttggtggac	: tgatacagaa	taacccgaac	300
	ctgaaagcg	g gcggggaago	gaagggtato	atcaacgaag	g tgaccggcgg	taagcgttca	360
50	ctgctgcagg	g gctatacgga	agtggccggc	: aaagcggcga	a atgtgatggt	tgccaacccg	420
	tatggtatca	a cctgtgacgg	ctgtggcttt	atcaacacgo	cgcacgcgac	gctcaccacg	480
	ggcaaacct	g tgatgaatgo	cgacggcago	ctgcaggcgc	tggaggtgac	tgaaggcagt	540

	atcaccatca atggogoggg cotggaoggo accoggagog atgoogtato cattattgoo	600
5	cgtgcaacgg aagtgaatgc cgcgcttcat gcgaaggatt taactgtcac tgcaggcgct	660
	aaccgtgtaa ctgcagatgg tcgtgtcaga gccctgaagg gcgaaggtga tgtgccgaaa	720
	gttgccgttg ataccggcgc tctcggtgga atgtacgcca ggcgtattca tctgacctcc	780
10	actgaaagtg gtgtcggggt taatcttggt aacctttatg cccgcgatgg cgatatcacc	840
	ctggatgcca gcggcagact gactgtcaac aacagtctcg ccacgggggc cgtcactgca	-900
	aaaggtcagg gcgtcacctt aaccggcgac cataaagcgg gaggtaacct gagcgtcagc	960
- 15	agceggagag atategttet cageaatgga aegettaaea gegaeaagga eeteageetg l	1020
	accgccggcg gcagaatcac tcaacagaat gaaaaactga ctgccggccg ggatgtaacg	1080
20	cttgccgcga aaaacatcac acaggatacc gccagccaga ttaacgcggc ccgcgatatc	1140
	gtgactgtcg ccagtgacac gctgacaaca cagggacaga taaccgccgg gcagaatctc	1200
	acggccagcg ccaccacgct gacgcaggac ggaatattgc tggcgaaaag tcatgcggga	1260
25	ctcaatgeeg gtaegetgaa taacagtgge geegtteagg gagetaceet gaegetegge	1320
	agtacaacgo tcagcaacag tggotcootg otcagtggog gtcooctgac catgaataco	1380
	cgcgacttta cccagagcgg ccgcactggc gcgaagggca aagtggatat catggccagt	1440
30	gggaaactga ccagtacagg tttgctggtg acgatgcact tggtgctgaa ggcgcaggat	1500
	gtgacacaga acggtgtgct gtccggcggc aaagggctga cggtcagtgc gacgagctcc	1560
<i>35</i>	ggtaaaaaat cggtcaccca cagcgatgct gcgatgacgc tgaatgtgac aacagtggcg	1620
33	ctggacgggg aaaccagtge cggtgacace ctccgggttc aggcagacaa actgagtacc	1680
	gcagegggeg cacaacttea gageggeaaa aateteagea teaaegeeag agatgeaegt	1740
40	cttgcaggta cgcaggcagc acaacagacc atggtggtga acgccagtga aaagctcacc	1800
	cacagoggga aaagoagtgo ocogtogoto agootoagtg ogooggaact gaccagoago	1860
	ggcgtacttg ttggttccgc cctgaataca cagtcacaga ccctgaccaa cagcggtctg	1920
45	ttgcaggggg aggcctcact caccgttaac acacagaggc ttgataatca gcagaacggc	1980
	acgetgtaca gtgctgcaga cetgaegetg gatatacegg acateegeaa cagegggett	2040
50	atcaccggtg ataatggttt aatgttaaat gctgtctccc tcagcaatcc gggaaaaatc	2100
50	ategetgaca egetgagegt eagggegace aegetggatg gtgaeggeet gttgeaggge	2160
	gccggtgcac tggcgcttgc tggcgacacc ctctcacagg gtagtcacgg acgctggctg	2220

199

	acggcggacg	acctctccct	ccggggcaaa	acactgaata	ccgcagggac	cacgcaggga	2280
	cagaatatca	ccgtgcaggc	ggacagatgg	gcgaacagtg	gttccgtgct	ggcaaccggt	2340
5	aaccttactg	cttcggcaac	cggtcagttg	accagtaccg	gcgatatcat	gagccagggt	2400
	gacaccacgc	tgaaagcagc	caccacggac	aaccggggca	gtctgctttc	ggeeggeaeg	2460
10	ctctcccttg	atggaaattc	actggataac	cgcggcactg	tccagggtaa	ccatgtcacg	2520
70	attcgccaga	acagtgtcac	caacagtggc	acgctcaccg	ggatcgccgc	actgacgctt	2580
	gccgcccgta	tggcatcccc	tcaacctgcg	ctgatgaata	acggaggttc	attgctgacc	2640
15	ageggegate	tgacaatcac	cgcaggcagt	attaccagtt	ccggacactg	gcagggcaaa	2700
	cgggtgctga	tcaccgcaga	cagtctggca	aacagcgggg	cgatccaggc	ggctgacagc	2760
	ctgactgcac	gtctgacggg	tgagctcgtc	agcacagcgg	gcagcaaagt	cacctcgaac	2820
20	ggtgaaatgg	cgctcagtgc	actgaattta	agcaacagcg	gacaatggat	tgcaaaaaat	2880
	ctgaccctga	aggcgaactc	actgaccagt	gcgggtgaca	tcaccggtgt	ggatactctc	2940
	acgeteacgg	tgaatcagac	gctgaacaat	caggcgaacg	gaaaactgct	cagtgcaggt	3000
25	gtgctgacgc	tgaaggcaga	cagtgtcaca	aacgacgggc	aattacaggg	aaatgtcacc	3060
	accatcacgg	caggacaact	cacaaacggc	gggcatctgc	agggcgaaac	gctgacgctg	3120
30	acageeteeg	gtggcgtgaa	caaccgttcc	ggtggtgttc	tgatgagccg	gaatgcactg	3180
	aatgtcagta	ctgcgaccct	gagtaaccag	agcacgatac	agggtggagg	cggggtttcc	3240
	ctgaacgcca	cagaccgtct	gcagaacgac	ggcaaaatcc	tctccggcag	taacctcacg	3300
35	ctgacggcgc	aggtgctggc	gaacaccggc	agcggactgg	tacaggctgc	caccctgctg	3360
	ctggatgtgg	tgaatactgt	caacggcgga	cgcgtacttg	ccaccggcag	tgacgttaaa	3420
	ggaaccacgo	: tgaataatac	cggtacgctt	cagggtgcga	ctctggtgaa	ttaccacaca	3480
40	ttcagcagcg	gtaccctgct	gggaacctcc	gggcttggcg	tcaagggcag	ttcactgctg	3540
	caaaatggta	cagggcggct	gtacagtgca	ggcaacctgc	tgcttgacgc	tcaggacttc	3600
45	agtggtcagg	ggcaggtggt	ggccaccggt	gatgtcacac	tgaaactgat	tgctgccctc	3660
	acgaatcato	gtaccctggc	cgcagggaaa	accettteeg	tcacgtcgca	aaatgccatc	3720
	accaacggc	g gtgtcatgca	gggtgatgcc	atggtgctcg	gtgccggaga	ggcattcacc	3780
50	aacaatggad	tgactgccgg	taaaggcaac	agtgttttca	gcgcacagcg	tctttcctt	3840
	aacgcaccgg	g gttcacttca	gggcggtggc	gatgtgagtc	tgaacagccg	gagtgatatc	3900
	accatcagt	g gttttaccgg	cacggcaggc	agtctgacaa	tgaatgtggc	cggtaccctg	3960
<i>55</i>							

	ctgaacagtg cgctgattta tgcggggaat aacctgaagc tgtttacaga ccgtctgcat 4	1020
5	aaccagcatg gtgatatect ggccggcaac agtetgtggg tacagaagga tgetteegge	4080
	ggtgcaaaca cagagattat caataattcc gggaatattg agacgcatca gggcgatatt	4140
	gttgtaagaa ccgggcatct tctgaaccag cgggagggat tttctgccac aacaacaacc	4200
10	cggactaacc cctcatccat tcagggaatg ggaaatgctc tggttgatat tcccctttcc	4260
	cttcttcctg acggcagcta tggctatttc acccgtgaag ttgaaaatca gcacggtacg	4320
	ccctgcaacg ggcacggggc atgcaatatc acaatggata cgctttatta ttacgcgccg	4380
15	tttgetgaca gtgecacaca gegetttete ageageeaga acateacaae agtaaceggt	4440
	gctgataate eggeaggeeg cattgegtea gggegtaate tttetgetga ggetgaaega	4500
00	ctggaaaacc gggcgtcatt tatcctggcg aatggggata tcgcactctc gggcagagag	4560
20	ttaagcaato agagotggca gaoggggaca gagaatgaat atotggtata ocgotaogao	4620
	coganaacgt tttacggtag ctatgcaaca ggctctctgg ataaactgcc cctgctgtca	4680
25	coggnattig aaaacaatac catcagatti toactggatg googggaaaa agattacaog	4740
	cocygtaaya cgtattatto ogttattoag gogggogggg atgttaagao cogttttaco	4800
	agcagtatca ataacggaac aaccactgca catgcaggta gtgtcagtcc ggtggtctct	4860 -
<i>30</i> .	gcacctgtac tgaatacgtt aagtcagcag accggcggag acagtctgac acagacagcg	4920
	ctgcagcagt atgagccggt ggtggttggc tctccgcaat ggcacgatga actggcaggt	4980
	gecetgaaaa atattgeegg aggttegeea etgaeeggte agaeeggtat eagtgatgae	5040
35	tggccactgc cttccggcaa caatggatac ctggttccgt ccacggaccc ggacagtccg	5100
	tatctgatta cggtgaaccc gaaactggat ggtctcggac aggtggacag ccatttgttt	5160
40	gccggactgt atgagcttct tggagcgaag ccgggtcagg cgccacgtga aacggctccg	5220
	tegtataceg atgaaaaaca gtttetggge teategtatt ttettgaeeg eetegggetg	5280
	aaaccggaaa aagattatcg tttcctgggg gatgcggtct ttgatacccg gtatgtcagt	5340
45	aacgeggtge tgageeggae gggtteaegt tateteaaeg gaetgggtte agaeaeggaa	5400
	cagatgeggt atetgatgea taaegeggee agacaacaga aaggaetggg attagagttt	5460
	ggtgtggege tgacagetga acagattget cagettgacg geageatact gtggtgggag	5520
50	tcagtcacca tcaacggaca aacagtcatg gtcccgaaac tgtatctgtc gccggaagat	5580
	atcaccctgc ataacggcag cgttatcagc gggaacaacg tgcaacttgc gggcggcaat	5640

	atcaccaaca	gcggcggcag	catcaacgca	cagaacgacc	tctcgctcga	cagttccggc	5700
	tatatogaca	acctgaatgc	ggggctgata	agcgcgggcg	gtagcctgga	cctgagcgcc	5760
5	atcggggata	tcagcaatat	cagctcagtc	atcagcggta	aaaccgtaca	actggaaagc	5820
	gtgagtggca	acatcagcaa	tatcaccegg	cgtcagcaat	ggaatgcggg	cagtgacagc	5880
10	caatatggtg	gtgtgcatct	cagcggtacg	gacaccggtc	cggttgcgac	cattaaaggc	5940
	actgattcac	tttcgctgga	tgcagggaaa	aacattgata	ttaccggggc	aacggtctcg	6000
	tccggtggag	accttggaat	gtctgcgggt	aatgatatca	acattgccgc	aaacctgata	6060
15	agtgggagca	aaagtcagtc	cggtttctgg	cacactgatg	acaacagttc	atcatccacc	6120
	acctcacagg	gcagcagcat	cagegeegge	ggtaacctgg	cgatggctgc	aggccataat	6180
	ctggatgtca	cggcatcctc	tgtttctgcc	gggcacagcg	ccctgctttc	ttgcaggtca	6240
20	cgacctagtc	ttgaatgcag	tcagggaaaa	gcaaaaacaa	gtcgcaacgg	caggtcagaa	6300
	agtcatgaaa	gccacgcagc	tgtgtccacg	gtgacagcgg	gcgataactt	cctccttgtt	6360
25	gccggtcgtg	atattgccag	tcaggctgcc	ggtatggctg	cggaaaataa	cgtggtcatc	6420
23	cggggcggac	gtgatgtgaa	cctggtggca	gagtctgccg	gcgcaggcga	cagctatacg	6480
	tcgaagaaaa	agaaagagat	taacgagaca	gtccgtcagc	agggaacgga	aatcgccagc	6540
30	ggtggtgaca	ccaccgtcaa	cgcaggacgg	gatatcaccg	ctgttgcgtc	atccgttacc	6600
	gcaaccggca	atatcagcgt	gaatgccggt	cgtgatgttg	ccctgaccac	ggcgacagaa	6660
	agtgactatc	actatctgga	aacgaagaaa	aaaagcggag	gttttctcag	taagaaaacc	6720
35	acccgcacca	tcagtgagga	cagtgccacc	cgtgaagcag	gctccctgct	gtcggggaac	6780
	cgcgtgaccg	ttaacgccgg	tgataacctg	acggtagagg	gttcggatgt	ggtggctgac	6840
40	cgggatgtgt	cactggcggc	gggtaaccat	gttgatgttc	ttgctgccac	cagtacagat	6900
40	acgtcctggc	gctttaagga	aacgaagaaa	tccggtctga	tgggtaccgg	cggtattggt	6960
	ttcaccattg	gcagcagtaa	gacaacgcac	gaccggcgcg	aggccgggac	aacgcagagt	7020
45	cagagtgcca	gcaccatcgg	ctccactgcc	ggtaatgtca	gtattaccgc	gggcaaacag	7080
	gctcatatca	geggttegga	tgtgattgcg	aaccgggata	tcagcattac	cggtgacagt	7140
	gtggtggttg	acccggggca	tgaccgtcgt	actgtggacg	aaaaatttga	gcagaagaaa	7200
50	agcgggctga	eggttgeeet	tteeggeaeg	gtgggcagtg	ccatcaataa	tgcggttacc	7260
	agtgcacagg	agacgaagga	gagcagtgac	agccgtctga	aagccctgca	ggccacaaag	7320
	acagcgctgt	ctggtgtgca	ggccggacag	gctgcgacaa	tggcctccgc	aaccggtgac	7380
55							

	ccgaatgegg gagteageet gtegeteace acceagaaat egaaateaca acaacattet	7440
		75.00
5	gaaagtgaca cagtateegg cagtaegetg aatgeeggga ataatetgte tgttgtegea	7500
	accggcaaaa acaggggcga taaccgcgga gatattgtga ttgcaggaag ccagcttaag	7560
	gccggtggta acacaagcct ggatgccgcg aatgatattc tgttgagtgg cgccgcaaac	7620
10	acacaaaaaa caacgggcag gaacagcagc agtggcggtg gcgtgggtgt cagtatcggt	7680
	gcaggtaaag gtgccggtat cagcgccttt gccagcgtta atgcggcaaa aggcagggag	7740
	aaaggtaacg gtactactac cgacaaaacc gtcaccatca acagtggtcg ggatacggta	7800
15	ctgaacggtg ctcaggtcaa cggcaacagg attatcgccg atgtgggcca cgacctgctg	7860
	ataagcagcc agcaggacac cagtaagtac gacagtaaac agaccagcgt ggctgccggc	7920
	ggcagtttta cctttggctc catgaccggc tcaggttaca tcgctgcctc ccgggataag	7980
20	atgaagagee getttgaete egttgetgaa caaaceggaa tgtttgeeeg ggtgatggtg	8040
	gcttcgacat cacagtgggt aaacataccc aactggatgg tgcggtcatt gcctcactgc	8100
25	cacaccggag aaaaaccacc tggataccgg acgctgggtt tagtgacttt acaacgaagc	8160
	gggattataa agtcaagtca caggtggaat cagtctga	8198
30	<210> 110 <211> 963 <212> DNA <213> Escherichia coli	
30	<211> 963 <212> DNA	60
30 35	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110</pre>	60
	<211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattct ctggcaacgt aattgctgca	
	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattct ctggcaacgt aattgctgca actgtagaat taggttttga aaatgagcaa tataattatg cttatcgttc tgcagatgtc</pre>	120
35	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattct ctggcaacgt aattgctgca actgtagaat taggttttga aaatgagcaa tataattatg cttatcgttc tgcagatgtc ttcatgccgt atattaagag taatttcaac cctgttactg attctgcttt gaatgtgtca</pre>	120
35	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattct ctggcaacgt aattgctgca actgtagaat taggttttga aaatgagcaa tataattatg cttatcgttc tgcagatgtc ttcatgccgt atattaagag taatttcaac cctgttactg attctgcttt gaatgtgtca ctcacctata tgtatcagga tcaatatggg aaaaaacata aaaaaacatc tgaggacaga</pre>	120 180 240
35	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattct ctggcaacgt aattgctgca actgtagaat taggttttga aaatgagcaa tataattatg cttatcgttc tgcagatgtc ttcatgccgt atattaagag taatttcaac cctgttactg attctgcttt gaatgtgtca ctcacctata tgtatcagga tcaatatggg aaaaaacata aaaaaacatc tgaggacaga tttaaaacca atcgcgatcg catagagctc tatcttaaag gttatacttt aaataggga</pre>	120 180 240 300 360
35 40	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattct ctggcaacgt aattgctgca actgtagaat taggttttga aaatgagcaa tataattatg cttatcgttc tgcagatgtc ttcatgccgt atattaagag taatttcaac cctgttactg attctgcttt gaatgtgtca ctcacctata tgtatcagga tcaatatggg aaaaaacata aaaaaacatc tgaggacaga tttaaaacca atcgcgatcg catagagctc tatcttaaag gttatacttt aaataggga gcatattctt tttctccttc cgcaggtttc cgttatgagt catgggatgt aaactacgat</pre>	120 180 240 300 360
35 40 45	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattet etggcaacgt aattgetgea actgtagaat taggttttga aaatgagcaa tataattatg ettategtte tgeagatgte tteatgeegt atattaagag taattteaac eetgttaetg attetgettt gaatgtgtea etcacetata tgtateagga teaatatggg aaaaaacata aaaaaacate tgaggacaga tttaaaacca ategegateg eatagagete tatettaaag gttataettt aaataggga geatattett ttteteette egeaggtte egttatgagt eataggatgt aaactaegat aateegaaaa ageaggataa gtggaaactg gaactaeget tttateetaa tatgaettat</pre>	120 180 240 300 360 420
35 40	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattct ctggcaacgt aattgctgca actgtagaat taggttttga aaatgagcaa tataattatg cttatcgttc tgcagatgtc ttcatgccgt atattaagag taatttcaac cctgttactg attctgcttt gaatgtgtca ctcacctata tgtatcagga tcaatatggg aaaaaacata aaaaaacatc tgaggacaga tttaaaacca atcgcgatcg catagagctc tatcttaaag gttatacttt aaatagggaa gcatattctt tttctccttc cgcaggtttc cgttatgagt catgggatgt aaactacgat aatccgaaaa agcaggataa gtggaaactg gaactacgct tttatcctaa tatgacttat aaactcaatg accagttaag cctatatatg aatggttttg ttgcccctgt atttttaaaa acacaacaag agtcgagaaa agataacaat tatgtaaagg gtaagttagg ggcgaaacgt tataacaacg attattatca ggaactccag attctgggtg tcagatataa atttaataat</pre>	120 180 240 300 360 420 480 540 600
35 40 45	<pre><211> 963 <212> DNA <213> Escherichia coli <400> 110 atgatgttga agaaaacgat atttatatta acgttattct ctggcaacgt aattgctgca actgtagaat taggttttga aaatgagcaa tataattatg cttatcgttc tgcagatgtc ttcatgccgt atattaagag taatttcaac cctgttactg attctgcttt gaatgtgtca ctcacctata tgtatcagga tcaatatggg aaaaaacata aaaaaacatc tgaggacaga tttaaaacca atcgcgatcg catagagctc tatcttaaag gttatacttt aaataggga gcatattctt tttctccttc cgcaggtttc cgttatgagt catgggatgt aaactacgat aatccgaaaa agcaggataa gtggaaactg gaactacgct tttatcctaa tatgacttat aaactcaatg accagttaag cctatatatg aatggttttg ttgcccctgt atttttaaa acacaacaag agtcgagaaa agataacaat tatgtaaagg gtaagttagg ggcgaaacgt</pre>	120 180 240 300 360 420 480 540

	tatgatcgct ggcaattgcg tggaggctat gattttaaag ttacagagga gtttgttttg	720
	agtccattca taagatatga cctctcttat agagaaaaaa acctcgaaag cacaagtaat	780
5	aatggtttat caaaaaataa taaagaaatt cgaactggag ccagcttttc ctataaaatt	840
	atcccttctg taaaactggt aggagaaata tacaggcaaa caaccaacat tgaaaactat	900
	tatggagagc attctgaaga caaaaaccgc atgttctaca aacttggtat aaacaaaaca	960
10	ttt	963
15	<210> 111 <211> 1761 <212> DNA <213> Escherichia coli <400> 111	60
	atgcagcacc ggcagaaaaa cattctgacg aaaacgtccc ttttatcccg tgcgttgtct	
20	greecetgtt gtgatatgtt eeggegegge teteegtgga tatgetatet eteeetetee	120
	gttttttetg gttgttteat eeeegeattt tegteteegg cagecatget gteteegggt	180
25	gaccgcagtg caattcagca gcaacagcag cagttgctgg atgaaaacca gcgtcagcgt	240
	gatgegetgg agegeeeget gaecateaeg eegteteegg aaaegtetge eggtaetgaa	300
	ggt:cctgct ttacggtgtc aagcattgtt gtcagtgggg ccacccgact gacgtctgca	360
30	gaaaccgaca gactggtgcc gtgggtgaat cagtgtctga atatcacggg gctgaccgcg	420
	gtcacggatg ccgtgacgga cggctatata cgccggggat atatcaccag ccgggccttt	480
	ctgacagagc aggacctttc agggggcgta ctgcacataa cggtcatgga aggcaggctg	540
3 5	cagcaaatee gggeggaagg egetgaeett eetgeeegea eeetgaagat ggtttteeeg	600
	ggaatggagg ggaaggttet gaacetgegg gatattgage aggggatgga geagattaat	660
	cgtctgcgta cggagccggt acagattgaa atatcgcccg gtgaccgtga gggatggtcg	720
40	gtggtgacac tgacggcatt gccggaatgg cctgtcacag ggagcgtggg catcgacaac	780
	agcgggcaga agagtaccgg tacggggcag ttaaatggtg teettteett taataateet	840
45	ctggggctgg ctgacaactg gtttgtcagc gggggacgga gcagtgactt ttcggtgtca	900
	catgatgcga ggaattttgc cgccggtgtc agtctgccgt atggctatac cctggtggat	960
	tacacgtatt catggagtga ctacctcagc accattgata accggggctg gcggtggcgt	1020
50	tecaegggag acctgeagae teaeeggetg ggaetgtege atgteetgtt eegtaaeggg	1080
	gacatgaaga cagcactgac cggaggtctg cagcaccgca ttattcacaa ttatctggat	1140
	gatgttetge tteagggeag eageegtaaa eteaetteat tttetgtegg getgaateae	1200
55		

	acccacaagt ttctgggggg ggtcggaaca ctgaatccgg tattcacacg ggggatgccc	1260
_	tggttcggcg cagaaagcga ccacgggaaa aggggagacc tgcccgtaaa tcagttccgg	1320
5	aaatggtcgg tgagtgccag ttttcagcgc cccgtcacgg acagggtgtg gtggctgacc	1380
	agegettatg cecagtggte aceggaeegt etteatggtg tggaacaaet gageeteggg	1440
10	ggtgagagtt cagtgcgtgg ctttaaggat cagtatatct ccggtaataa cggcggttat	1500
	ctgcggaatg agctgtcctg gtctctgttc tccctgccat atgtgggaac tgtccgtgca	1560
	gtggctgcac tggacggcgg ctggctgcac tctgacagcg atgacccgta ctcgtccggc	1620.
15	acgetgtggg gtgetgetge egggeteage accaecagtg gecatgttte eggttegtte	1680
	actgeeggae tgeetetggt ttacceggae tggettgeee etgaccatet caeggtttae	1740
•	tggegegttg eegtegegtt t	1761
20		
	<210> 112 <211> 2220	
25	<212> DNA <213> Escherichia coli	
25	<400> 112 atgaataage acacactatt actgaetgtt etttttetga atttgatttg tactceegtt	60
	tttgctcaaa actggcaggt ggcgacgttt ggtcagtcta cggatctcaa cttttcatcg	120
30	ctgatagatt eggecaagat eggaeggaat aatgeetgge ttgeaggaaa caataatttt	180
	cttgaagctg gaaaatttta cactttacca acagattttt ttattgaaag ccgtgggga	240
	aaaattgcta acteccatga eggtatgace gtettttata etattgttee ggttaeteag	300
35	acattccgac tggaggctga tttgacatta gaacagattg gtccggaggt gaatggaaaa	360
	tcaccagcgg gacaggaggg agctggattg tttgtcagag atattatcgg tcctcagcga	420
	caggaacete agteagetgg aacagaagaa tateeceagg eetetaatat attgatgaat	480
40	gcctttatta cacagaataa aaagaatgat aacttagtac agattacttc aattgttcgt	540
	gaaggagtaa taaaaacatg gggtaatgaa ggtattacaa ttaagaaaca gccgatcatt	600
45	gagaatataa actttacgca aaaaagaaat attcatatga cgatcgagcg actaccagag	660
	aagttcatcc tgaccgcttt tgataccgat cgtaaagaaa atcagtcatg gcaattttct	720
	gattactcag gctttatgaa tcaactggat aataatagtt tagctattgg tttttttgcc	780
50	gcacgaaatg cgaaactaag ggtgaaaaat gcatcattta aaccgggcaa gccactggtt	840
	gattacaaac aattaacttc acgtcaattc agtcgtgtcc ggcataaagc ccctgaactt	900

205

	tttcttgctt	cacctcaatc	cgttgtaaga	aactcaacaa	ctcttcaatt	tttggccaat	960
	caggctggaa	tagtcagtat	tgataatgat	aagcagacta	agcaggtgca	ggcgggtgaa	1020
5	ctggtacagt	ttccagttac	tttgcaaaaa	aaacataatg	acttcaccgt	caactttaac	1080
	gttgatggga	atatatcaaa	aaaagctata	cgcatagagc	aggttaaatc	aaacctgact	1140
10	gatccttatg	agatttacgt	atgtagtgat	tgtcgacagg	gggccagagg	cagcaaaaat	1200
10	gaccctgtag	atttacagac	agccgtaaaa	tttgtcgcac	ccggcggtaa	tatatacctt	1260
	aacgatggtc	aatatcatgg	aattacctta	gatcgggaat	taagtggaat	acctggcaag	1320
15	tataaaacaa	tttctgccat	taatccacat	aaagccattt	ttataaacaa	gacattcaat	1380
	ctggatgcaa	gttactggca	tctaaaatcc	gtggtctttg	acggcaatgt	ggataatgga	1440
	aataataaac	cagcatattt	gcgtatagct	ggtagctata	atattattga	gcatgtgata	1500
20	gccagaaata	atgatgatac	gggaatttct	atttcagcga	aagataaaaa	ccgtttttc	1560
	tggccagctc	ataacttagt	tttaaactca	gattcatata	ataatcttga	tttatccggg	1620
	attaatgccg	atggttttgc	tgcaaaatta	ggtgtcggac	cgggaaacat	ttttcgagga	1680
25	tgcattgcac	ataataatgc	agatgatggt	tgggacctat	ttaacaaaat	tgaagatggt	1740
	ccaaatgcat	ctgttactat	tgagaattct	gtagcctatg	aaaatggcct	gccatacaat	1800
30	aaagcggata	tcctaaaagg	gagtattggc	aatggcggtg	aaggtcaacc	cagtaaatca	1860
	caagttatta	attccattgc	tattaataat	aatatggatg	gattcactga	taattttaat	1920
	actgggtcat	tgatagttag	aaataatata	gcaatgaaca	atgcacgcta	taattatatt	1980
35	ttaagaacta	acccatataa	attcccatca	tctatccttt	ttgataataa	ttattcaatc	2040
	agagatgatt	gggaaaataa	aataaaagac	ttcttaggtg	atacagttaa	cagtgtgaat	2100
	tataaattgc	ttgtttcaca	tgaaacagga	ccggtacaaa	aagatttatt	tttcacacga	2160
40	gatgatagtg	gaaatatta:	ctatcctgat	ttttttctta	atatcattaa	taaatttaat	2220
45 ·		nerichia col	Li				
	<400> 113 atgaaaactt	ttatcaaaac	tttactcgtt	gctgtaacta	ttetgttete	tgtcttcgct	60
50	acggcgaaac	aagtaaaact	gccaaacaac	atcaaatacg	ttaatactac	agaggcgttt	120
	tcctgtactg	agattgacgg	tatgaattgc	cagacgaaga	atccgtttaa	ctataaagat	180
	aacagctatg	ttttcgtgct	tgaacgtggt	ggtgcctggt	gttacgacta	cactgtctcg	240

	gtacttaacc	tgaaaaccgg	gaaagcadag	atgctcgaat	acaaagacaa	ccagctgtgc	300
5	tcaggtagca	acaaaccgtt	cttcgaaatc	aaaaatggcg	taccgacggt	aggagtcatc	360
	gacacatccg	gaaaacctgt	cgttgtggct 	ctggacaaac	ttaaaacc	. •	408
10		nerichia col	i			·	·
		ctgtaaagtt					60
15	gccgggaaat	ataaaaatta	catccgggat	gaaataaaat	actggcgata	tacatcatac	. 120
	aaggggggg	aatttccgga	aggtttcact	gatgagaaat	tttccagcgc	catttacaac	180
20	ggaagaatat	ttacaatgaa	acgtttacat	accctgatgt	tatttctggc	ggttctgttt	240
	actggcttta	acgtggaagc	agcgagcgtg	aaacaagcgc	tcagctgcga	cccaaacgcc	300
	cgggctgaac	aacctggagc	gtgtccaaca	acgtacgagt	tgtacgaagg	tgacgctgcc	360
25	tacaaagctg	cgcttgacaa	agcattaaaa	ccggtcggac	tgagcggcat	gttcggtaaa	420
	ggcgggtata	tggatggccc	tggcggaaac	gtaacgccag	taaccattaa	cggtacagtc	480
	tggctccagg	gcgacggttg	caaagccaat	acctgcggct	gggactttat	. cgtaacactc	540
30	tataacccaa	a aaacccatga	agtcgttggc	taccgctact	ttggtttaga	tgacccggcc	600
	tacctggttt	ggttcggcga	aattggcgtg	catgaattcg	cgtatctggt	gaaaaactac	660
35	gtagetgegg	g ttaac					675
40	<400> 11	63 A cherichia co 5					
	atgaaaact	c aaataacttt	cgctgcgctt	ttgccagcat	tagegtetti	t catacogott	60
	catgeteat	g cctcgtctac	: ttctgaagat	gaaatgatt	g tcacgggca	a caccgccgcc	120
45	gacaccacc	g attctgccgo	: cggtgccggt	ttcaaaacga	a acgatatag	a tgtcggcccg	180
	ctgggaacg	a aatcctggat	cgaaacacca	a tattccagca	a ccactgtta	c taaagagatg	240
50	attgaaaat	c agcaggcgca	a aagcgtcag	c gagatgetg	a aatactctc	c cagtacgcaa	300
50	atgcaggcg	c gcggtggaat	ggatgtcgg	g cgtccgcaa	a gtcggggga	t gcagggcagc	360
	gtggtggcd	a acageegte	ggacgggct	g aatatcgtt	t caacaaccg	c gtttccggtg	420
				and the second of	_		

	gaaatgcttg	agcgcatgga	tgtgcttaac	agtttgaccg	gcgcgctgta	cggcccggcg	480
	agcccagcag	ggcagtttaa	tttcgtggcg	aagcgcccaa	ccgaagagac	gctgcgtaaa	540
5	gtgacgctgg	gctatcaaag	ccgcagtgcg	tttaccggcc	atgccgatct	gggtggccat	600
	tttgatgaaa	acaaacggtt	tggctatcgc	gtgaacctgc	ttgatcagga	aggggaaggc	660
10	aatgtggatg	acagcacgct	gcgtcgcaaa	ctcgtttccg	ttgcgctcga	ctggaatatt'	720
	cagccgggca	ctcagctaca	gctcgacgcc	agccattacg	aatttatcca	gaaaggctat	780
	gtcggtagct	ttaactatgg	gccgaacgtc	aaactgccgt	ctgcgccgaa	tccgaaggac	840
15	aaaaatctgg	cgctcagcac	tgcgggcaac	gacctcacta	ccgataccat	cagcactcgc	900
	ctgatccact	actttaacga	cgactggtcc	atgaacgctg	gcgtgggctg	gcagcaggct	960
	gaccgcgcga	tgcgtagtgt	ttccagtaaa	atactçaaca	atcagggcga	tatctctcgt	1020
20	tcgatgaagg	attccaccgc	tgccggacgt	tttcgcgtcc	tgagcaacac	cgccgggctg	1080
	aatggtcata	. ttgataccgg	ctctatcggc	cacgatctgt	cactttctac	cacgggatat	1140
25	gtctggtcgc	: tttatagtgc	caaaggaaca	ggttccagct	atagctgggg	tacaacaaat	1200
25	atgtatcacc	: cggatgcgat	agatgagcag	ggcgatggca	aaatccgcac	cggcgggccg	1260
	cgataccgct	ccagcgtaaa	tactcagcag	agcgttacgc	teggegatae	ggtgacattt	1320
30	acgccgcagt	ggtcggcaat	gttctatctc	agccagagct	ggctgcagac	taaaaactac	1380
	gataagcacg	gtaatcaaac	gaaccaggtt	gatgaaaatg	gtttaagtcc	gaacgccgcg	1440
	ctgatgtata	aaattacccc	taacacaatg	gcctacgtta	gctatgccga	ttcgctggag	1500
35	cagggcggta	ccgcaccgac	ggatgagagc	gtaaaaaatg	ccggtcaaac	gctaaacccg	1560
	tatcgcagca	agcagtatga	agtggggcta	aaatcggaca	tcggcgagat	gaatctaggc	1620
40	gccgcgctgt	tccgactgga	acgtccgttt	gcctatcttg	atacggataa	cgtgtataaa	1680
40	gagcagggta	a accaggttaa	caacggcctt	gagttaaccg	ctgccgggaa	tgtgtggcag	1740
	gggctgaata	a tttacagcgg	cgtgaccttc	ctegaceega	aactgaaaga	tacggcgaat	1800
45	gcctcaacca	a gcaataaaca	ggttgtcggc	gtgccgaaac	tgcaggccaa	tctgttggcg	1860
	gaatacagt	tgccgtccat	accggaatgg	gtttacagco	ctaacgtcca	ttatacgggc	1920
	aaacgcgcg	g cgaacgatad	caacacctct	tacgccagca	gctataccac	atgggatttg	1980
50	ggaacgcgt	t acaccacgaa	agtgagcaac	gtcccaacca	ctttccgcgt	ggtggtaaac	2040
	aacgtgttt	g ataaacatta	ctgggettet	atcttcccat	cgggtaccga	tggcgataac	2100
	ggttcccca	a gtgcgtttat	. cggcggcggc	: cgcgaagtgo	: gtgcatccgt	caccttcgat	2160
55							

	ttc	2163
5	<210> 116 <211> 2007 <212> DNA <213> Escherichia coli <400> 116	
10	atgaaaaaca taacgctgtg gcagcgttta agacaggtca gtatcagtac cagcttacgt	60
	tgcgcatttc tgatggggc acttctgacc ctgattgtca gtagtgtcag tctgtattca	120
	tggcatgaac aaagctcaca aattcgttac tcgctggata agtattttcc ccgtattcac	180
15	totgotttoo ttattgaagg gaacotgaat otggtggtag accagotaaa tgaatttttg	240
	caggetecca acaccaeggt gegattgeaa ettegtacee agattattea geatetegae	300
20	accatagaac ggcttagtag gggactgtca tcccgggaac gccaacaact gacggtcatt	360
	ttgcaggaca gtcgatcact gttatccgag ttggatcgtg cgctttacaa catgttttta	420
	ctacgggaaa aggtgagtga gctatcagcg cggattgact ggttacacga tgattttact	480
25	accgagetta attetttagt geaggattte acctggeage agggaaeget getggateaa	540
	ategeeteee gacagggega taeggegeaa taeetgaage gatetegtga agtgeaaaat	600
	gaacagcagc aggtttatac cctggcacgc attgaaaatc agattgttga cgatctgcgt	660
30	gacagactca atgagctcaa atcaggacgt gatgacgaca tacaggtgga aactcatctc	720
	cgttattttg aaaatctgaa aaaaacggca gatgaaaata tacgtatgct ggatgactgg	780
35	cctggcacca ttaccctgag gcagaccatc gatgaattgc tggatatggg aatcgtaaaa	840
	aacaaaatge eggataegat gegtgaatat gtegeegeee aaaaageett agaggatgee	900
	agtogoacca gggaagogac acagggtogo ttoagaacgt tactggaago gcagettggo	960
40	agtactcatc aacaaatgca gatgtttaat caacgaatgg aacaaattgt tcacgttagc	1020
	ggtgggctga teetggtgge gacagcaetg gegttaetge ttgcatgggt attcaaccat	1080
	tattttatce geteaeggtt ggtgaaaege tttaeeetae tgaateagge egttgtgeaa	1140
45	attggtctgg gaggcacgga aacgactatt ccagtttatg ggaatgatga actggggaga	1200
	attgcaggat tattacgcca tactctcggc caactcaatg tgcaaaaaca gcaacttgaa	1260
	caagaaatta eegategtaa ggtgatagaa geegatetge gtgeeaceca ggaegaaetg	1320
50	attcagacag caaagttggc ggtagtcggg caaacgatga ccacgctggc ccacgagatc	1380
	aatcageege taaatgeget gteaatgtat etgtttacag eeegeaggge cattgaacag	1440

	acccagaaag	aacaggccag	catgatgctt	ggtaaagccg	aaggggtgat	tagtcgtatt	1500
	gacgccatta	tccgttcact	acggcagttt	acceggegeg	ccgaactgga	aacatcactc	1560
5	catgccgttg	atttagcaca	gatgttcagt	geggeetggg	aacttctggc	catgcgtcat	1620
	cgctctctgc	aagctacgct	tgttctgccg	caaggtacag	ccacagtttc	aggtgatgag	1680
10	gtcagaaccc	agcaggtact	ggttaacgta	ctggcgaatg	cgcttgatgt	ttgtgggcaa	1740
	ggcgctgtca	ttaccgttaa	ctggcaaatg	cagggtaaaa	cgctgaacgt	attcattggc	1800
	gataatggcc	cgggctggcc	tgaggcattg	ttgccttcgt	tattgaagcc	gtttaccacc	1860
15	agtaaagaag	taggactggg	tattggtctt	tcaatttgtg	tgtcgttgat	ggagcaaatg	1920
	aaaggggaat	tgcggctggc	atcaacgatg	accaggaatg	cctgtgtggt	actgcaattc	1980
	agactaacgg	atgtggaaga	tgctaag				2007
20							
25			li				
25	<400> 117 atgaacgtta	taaaactggc	tateggetea	ggcatattat	tgctcagctg	cggtgcttac	60
	tcacaatcca	tcagtgaaaa	aactaattcc	gacaaaaaag	gagcggcaga	attcagtccg	120
30	ctcagcgttt	ctgtcgggaa	gacgaccagt	gagcaggaag	ctctcgagaa	aacaggcgcg	180
	accagttccc	ggacaacgga	caaaaacctg	caatcacttg	acgcaacagt	gegtagtatg	240
	cctggtactt	atactcaaat	agatcctggt	cagggagcaa	tcagtgtgaa	tattcgaggc	300
35	atgagcggat	ttggtcgtgt	aaacactatg	gtcgatggta	ttacccagag	tttttacgga	360
	acctctacct	ccggaacaac	gacgcatggt	tcaactaaca	atatggctgg	cgtacttata	420
	gatcctaact	tactggtagc	agttgatgtt	acacgcggtg	acagcagtgg	ctctgaaggg	480
40	atcaacgccc	ttgccggtag	tgcaaatatg	cgtactattg	gcgttgacga	tgtaatattt	540
	aacggtaata	catatggcct	tcgttcacgt	ttctctgtcg	gtagtaatgg	getgggaege	600
45	agcggaatga	tegecettgg	tggaaaaagc	gacgctttta	cggatacggg	aagcattggc	660
	gttatggctg	ctgtgagcgg	cagttctgtg	tactctaatt	tctcaaatgg	ttctggaatt	720
	aacagcaaag	agtttggtta	tgataaatat	atgaagcaga	accccaaatc	ccaactgtat	780
50	aaaatggata	tcagaccaga	cgaatttaac	agcttcgaac	tttccgctcg	aacctatgaa	840
	aataaattta	cacgtcgtga	tataaccagt	gacgactatt	acattaaata	tcattacacc	900
55	cctttttctg	aattaattga	ctttaacgta	acggccagta	ccagt.cgcgg	taatcaaaag	960

	tatogtgatg gotogotgta tactttotac aaaacotcag ogcaaaateg ttotgacgeg	1020
5	ctggatatca acaataccag ccggttcact gtcgcggaca atgacctgga gtttatgctg	1080
	ggcagcaaac tgatgcgtac cegctatgac eggaccatte acteagegge gggcgacceg	1140
	aaagcgaate aggaategat egagaacaat eegttegeae eeteeggeea geaggatatt	1200
0	tcagcgctgt ataccgggct gaaggttacg cgcggcatct gggaggcaga tttcaatctc	1260
	aactacacac gtaacaggat cacagggtac aagcccgcct gcgattcacg cgttatctgc	1320
	gtgccacagg gtagctacga tattgacgat aaagagggtg gcttcaaccc ttcagttcag	1380
15	ctttctgctc aggtaacacc atggcttcag ccgttcattg gctacagcaa atccatgcgc	1440
	gccccgaaca tccaggagat gttcttctct aattcaggag gcgcatccat gaacccattc	1500
	ctgaagcctg aacgtgcaga aacctggcag gcgggtttta acattgatac cagagattta	1560
20	ctggtcgaac aggatgccct gcgctttaag gctctggcgt accgcagcag gatccagaac	1620
	tacatotaca gogagiotia totggittgi totggaggio giaaatgeag totgootgag	1680
25	gtgattggca atggctggga gggcattagc gatgaataca gcgacaatat gtacatctac	1740
	gttaactcgg caagcgacgt tatcgcaaag ggcttcgaac tggagatgga ttatgatgca	1800
	ggttttgett ttggeegaet etettteage cageageaaa cagaecagee aacetecate	1860
30	gccagcacce actttggcgc aggggatata accgaactgc ccagaaaata catgacgctg	1920
	gatactggtg ttcgcttctt cgataacgcg ttgaccctgg gcactatcat aaaatacaca	1980
	ggcaaggete gtegeetgte geetgatttt gagcaggaeg aacatacegg egcaataate	2040
35	aaacaggatt tgccgcagat cccaacgatt atcgatctct atggtactta cgagtacaac	2100
	cgcaacctga cactgaaact ttcggtacaa aacctgatga acagagatta ttcggaggcg	
40	ctgaataagc tcaacatgat gccaggtctt ggtgacgaga cccacccagc caattccgcg	
	cgtggcagaa catggatatt tggcggggac attcgtttc	2259
45	<210> 118	• • •
	<212> DNA <213> Escherichia coli	•
	<400> 118 atgtettega aaacaaaatg etggetatgg atgttactgg teatcettte tgaaacetet	: 60
50	gcaacatcca cacttaaaat gttcgataac agtgagggga tgacaaaaac gctgctgctg	
4	gccctaatcg tcgtactgta ttgcatttgt tactactcgc tttcacgggc agtaaaagat	
	georgated redeacedra redeaced a contract of the second	

211

	atceceging g	tetggetta	egceacatgg	teeggtaetg	geactityat	ggtttcaacc	240
	cttgggattt t	attttacgg	tcaacacccg	gataccgccg	ccattattgg	tatggtcatc	300
5	atagccagcg g	tattatcat	tatgaatctg	ttctcaaaaa	tgggcagtga	agaggcggaa	360
	gaaactccag t	taccaacct	cgataaaaaa	atcgctaac			399
10	<210> 119 <211> 858 <212> DNA <213> Esche <400> 119	richía col	i				
15	atgtatataa a	aaagcactg	gatagcttta	tccattctat	taataccttg	cattggaaac	60
	gctcaggaaa t	taaaattga	tgaaagctgg	ttacatcaaa	gcttgaatgt	cattggtcgc	120
	acagactete g	getttggece	aagactgact	aacgacctct	accctgaata	tactgtagca	180
20	ggaagaaaag a	ctggtttga	tttttatggt	tatgttgatc	taccgaaatt	ctttggcgtc	240
	ggcagtcact a	tgatgttgg	gatctgggat	gagggctcac	cactatttac	ggaaatagaa	300
25	cctcggtttt c	cattgacaa	attgaccgga	ttaaatcttg	cgttcggccc	atttaaagaa	360
23	tggttcattg c	aaacaacta	tgtctatgat	atgggtgaca	accagtcatc	ccggcaaagt	420
	acatggtata t	ggggcttgg	tacagatatc	gacacgggtc	taccaattaa	gctttctgcc	480
30	aatatatacg c	caagtatca	gtggcaaaac	tatggtgccg	ctaatgaaaa	tgaatgggac	540
	ggatatcgat t	caaaataaa	atatagcatc	cctcttacaa	atttattcgg	aggacgattg	600
	gtatacaata g	gttttactaa	ctttgatttt	ggctccgatc	ttgcggacaa	gtcacacaat	660
35	aataaacgaa c	ccagtaatgc	tattgcttca	agccatatcc	tttcccttct	atatgaacac	720
	tggaaatttg c	catttacact	acgttatttt	cacaacggtg	gacaatggaa	tgcgggagag	780
40	aaggttaact t	cggagatgg	tccatttgaa	ttaaaaaata	caggatgggg	aacctatact	840
40	actattggtt a	atcaattt					858
45		erichia col	L i	·			
	<400> 120 atgagaatcg	caccgcgtac	cttctttgct	atttccgccc	tggcgtttat	tgtcgcctcc	60
50	ggatttagtt t	tctggcggtt	gtcccctgct	gaaaatacag	ggattatgag	ttgttcaaca	120
	aaaggcatca t	tgcgttttga	gaatatggaa	aaggagaacg	ttaacggtaa	tattcacttt	180
	aactttggca g	gccagggtaa	aggttcgatg	gtgctcgaag	gctacacgga	ctctgccgct	240

	ggctggctgt acctgcaacg ctatgtcaaa tttacctata ccagtaaac	eg tgttteegee	300
5	acggaacgec attacegeat cagecagtgg gaatecageg cetcateg	at agatgaatca	3 60
	ccagatgtga tttttgacta ctttatgcgt gaaatgtctg acagccat	ga egggetgtte	420
	ctcaacgccc agaagctgaa cgataaagcg attttgctca gttctatt	aa ttcaccgctt	480
10	tggatetgta ecettaaate tggeageaaa ttagae		516
15 .	<210> 121 <211> 546 <212> DNA <213> Escherichia coli <400> 121		
	atgaaaataa aagttatagc attggctaca tttgtttctg ctgtgttt	gc tggttcagct	60
20	atggcctatg acggaacaat tacgtttacc ggtaaagttg tagctcag	ac ctgcacagtt	120
	aatacaageg acaaagaett ageagtaaet ttaeecaetg ttgeeaet	tc atctctaaaa	180
	yacaatgetg ctaegteagg getgaeacee tttgeeatte gtttaaet	gg ttgtgcaact	240
25	ggtatgaata gtgctcagaa tgttaaagcg tactttgagc cttcaagt	aa cattgactta	300
	gctacacata atttaaaaaa tactgctact ccaactaaag cggataat	gt acagattcag	360
	ttgctaaata gtaatggaac ttcaactatt cttttggggg aagcggat	aa tgggcaagat	420
30	gtccagtctg agacaatcgg atctgatgga agtgccacat tgcgttat	at ggcccagtat	480
	tatgcaacag gacaatctac cgcaggggat gtaaaagcga cggtccat	ta taccattgcc	540
35	tacgaa		546
40	<pre><210> 122 <211> 1077 <212> DNA <213> Escherichia coli <400> 122</pre>		
	atgaaaagaa tettttteat accattgttt ttaattttae teectaa	get ggeggtageg	60
	ggtccggatg attatgtgcc ttcgcagata gcggttaata catccac	att gccaggtgtt	120
45	gtgattggtc ctgctgatgc ccatacctat ccccgggtga taggaga	get ggegggaaca	180
	agtaaccagt atgtttttaa tggcggtgcc atcgctctga tgcgtgg	aaa gtttacaccc	240
• •	gcactgccta aaattggaag tattacggta tactttccat caaggaa	aca gcgtgattca	300
50	totgattttg atatotatga tattggtgta tooggactgg gtattat	•	360
,	ggctattggc ccgcaacgcc tctggtcccc ataaatagct caggtat	ata tattgaccct	420

	gtaggtgcca at	tacaaaccc	caatacttat	aacggtgcga	cagcaagctt	cggagctcgt	480
	ttgtttgttg c	ttttgtcgc	aacgggaaga	ttacccaatg	gatatataac	aatacccacc	540
5	aggcagcttg g	tactattts	gttggaagca	aaacgtacaa	gtttaaataa	taaaggactg	600
	acagcacctg t	tatgttaaa	tggtgggcgc	attcaggtac	agagtcagac	atgtaccatg	660
10	gggcaaaaaa a	ctatgtggt	gccattaaat	accgtatatc	aatcacagtt	cacatctttg	720
10	tataaagaaa t	acagggagg	taaaattgac	atacacctac	aatgcccgga	tggaattgat	780
	gtttatgcta c	attgacaga	tgcatcacag	ccagtgaaca	gaacagatat	attgacctta	840
15	agcagtgaat c	cactgcaaa	aggatttggc	atcaggctat	ataaagacag	tgatgtaact	900
	gccatcagct a	tggtgaaga	ctcccctgtg	aaaggaaatg	gcagtcaatg	gcacttctcc	960
	gattacaggg g	agaggtaaa	tccacatatc	aatttaagag	ccaattatat	aaaaattgct	1020
20	gatgcaacta c	acctggaag	tgtgaaggct	attgcaacta	ttactttctc	atatcaa	1077
25	<210> 123 <211> 2532 <212> DNA <213> Esche <400> 123	erichia col	.i				
	atgaacgcta a	taatctgtc	atgcctgatt	tactgtcgtt	gttctcttct	gctttttgct	60
30	gcattagggt t						120
	gagtttttgc a						180
	aaccctgtgc c	tgagggcag	gtattattct	gatatttatg	ttaataatgt	atggaagggg	240
35	aaggctgatt t	gcagtattt	acgtactgcc	aataccggtg	ctccgacgtt	atgcctgacg	300
	cctgagctgc t	ttcattgat	tgatttagtc	aaagatacta	tgtcgggaaa	cacctcctgc	360
40	tttccggcgt c	caacagggct	ttcttcagcc	agaattaatt	ttgacttatc	gactttaagg	420
	ttgaatatcg a	aatccctca	ggcactgctg	aatacacgtc	caagaggata	tatttcccct	480
	gctcagtggc a	aagtggtgt	tcctgcagca	tttataaact	atgatgctaa	ctattaccag	540
45	tatagctctt c	ccgggacgag	taacgaacag	acttatctgg	gattaaaagc	tggattcaat	600
	ttgtggggat g	gggetttgeg	ccaccgtggc	agtgagagct	ggaataatag	ctatcctgcc	660
	ggatatcaga a	atatagaaac	aagtataatg	catgaccttg	ccccattgag	agcacaattc	720
50	acattagggg a	atttttatac	gaatggtgag	ctaatggata	gcctcagttt	gcggggagtc	780
	aggttagcat o	cggatgaacg	aatgttaccc	ggctctttac	gtggctatgc	tectgetgte	840
55	cggggaatag (ctaacagtaa	tgctaaagta	accatttatc	aaaatgctca	tatcctctat	900

	gaaacgacgg	tgccagccgg	accatttgtc	atcaatgatt	tatatcccag	tggatatgct	960
	ggtgaccttc	tcgttaagat	aacagagtct	aatggccaga	cacgaatgtt	cacggttcct	1020
	tttgcggccg	ttgctcaact	cattegteec	ggatttagtc	gctggcaaat	gtcagtggga	1080
	aagtatcgtt	atgcgaataa	aacatataat	gatttaatag	cacaaggcac	ctatcaatac	1140
0	ggcctgacga	atgatattac	tttaaacagt	ggtcttacca	cagcttcagg	atatacagcg	1200
	gggttagctg	gcctggcctt	taatacccct	ctgggtgcta	tagcatctga	cattacattg	1260
	tccagaacag	cattcaggta	ttccggtgta	acgcgtaaag	gttatagtct	gcactcaagt	1320
5	tatagcatca	atattccagc	ctcaaacaca	aatataactc	tggcggctta	tcgttattca	1380
	•				atcacaacgc		1440
						gatttcaatc	1500
0						ctataattac	1560
						ctggaaacaa	1620
25						ccgtgatgac	1680
· ·						ggtgttttcc	1740
						tagtggtact	1800
30						aaacgggcct	1860
						: cacaacagtc	1920
						: ggtggtcgca	1980
35	•					tatccatgct	2040
	•	•	• •		-	a tttttgggga	2100
						cgatccctcc	2160
40						tegtgetaat	2220
*						tgatattcgt	2280
45 ·						a tggacagttg	2340
	•					a aaaaggtcat	2400
						a tcatgttgca	
50	• •						
		•	a atcleage.	c geeddeged		a gcaccctaat	2532
	caggaaaaa	a ca					

5	<210> 124 <211> 831 <212> DNA <21.3> Escherichia coli <400> 124	
	atggtaaaat gtcatactct gattaaccgt agaaataaat gtctgctgat tgtttttata	60
10	gtccttattg gatggattat attcagacct aaagcatata cttattcact aaatgataaa	120
, 5	gaaaaagaga tgctcataat gttatcacaa catcctgaaa ctcggtactt tggattttat	180
	tccatagaac ttccggctga ttacaaacca acaggaatgg ttatgttcat acaaggatcg	240
15	gcgatgatcc ctgtagaaac aaagctacaa tattatcctc cttttctgca atatatgaca	300
	cgatatgagg cagaactaaa aaacacctca gcattagatc cactggatac gccttatttg	360
	aagcaagtte acceactaag tecacetatg aatggagtea tttttgaacg aatgaaageg	420
20	aaatacaccc cagattttgc acgagtattg gatgcatgga aatgggaaaa tggcgttacg	480
	ttttcagtaa aaatagaago taaagatggt agagcaacco gotatgatgg aattagtaag	540
05	attgccgaat acagttatgg atataatatt ccagaaaaaa aagtacagtt acttactatt	600
25	ctttcaggac tacaacctcg tgcagataac caacccccat cagaaaataa attggcgata	660
	caatatgcac aggttgacgc ttcactactt ggagagtatg aattatctgt agattataaa	720
30	aatagcaata atattaaaat aagtttgcag acggataata atagttatat tgactcatta	780
	ttagatataa gatateegag taatggaaae agageatggt ataaetetat a	831
35	<210> 125 <211> 1098 <212> DNA <213> Escherichia coli <400> 125 atgctacctg agcctgttta tcgacgctgg attatattat	60
40	qqtactctqt ttattttatc gqtctqqaat tctqcqacat actqqqatat ttttatttat	120
	ggcgttctgc caatgctgtt tctttggcta tgtttgtttg gtattgcgct gaacaaatat	180
		240
45	gaacaatccg ttgcagcctg tataagttgg gagtctgaaa gacaacaagt taaacaactc	300
	tggcaacact ggagccaaaa acaactggca atagttggga atgttctttt tacaccggaa	360
	gaaaaaggca tgagtgtttt actggggcca caggaagaga tccctgcata tcctaaaaag	
50	gcacgaccgt tattctctgc atcccgttat tctctttcgt ctatattcca tgatattcac	420
		480
55	cageetgaga aatggegtgg agaaacegtg agacaggeta titteeatea atgggaetta	540

	gtacctgaac ggaccaatac tcttaatcaa atccagtctc tttatgatga aagatt	tgac 600
5	ggtctaattc tggttgtttg tttacaaaac tggccggaga ataaacctga agatac	cgagt 660
	gaactggtat cagcacaget tateteetea tegteatttg taeggeagea eeagat	tacçc 720
	gttattgctg gtctggggcg tgtaatgcca ttagaacccg aggagttgga gcata	atctg 780
10	gatgtgttat ttgaatataa ccaattggat aacaaacaac tacagcatgt ctggg	tctct 840
	ggtttagatg agggaacgat agaaaacett atgeagtatg etgaacaaca teaate	ggtca 900
	cttcctaaaa aacggcccct acacatgatt gatcattcct ttggccctac aggag	agttt 960
15	atttttcctg tctctctggc aatgctgtca gaggctgcca aagaaactga acaaa	atcat 1020
	ttaattatot atcagtcago acagtatgot cagaaaaaga gootttgoot gatta	cccgg 1080
20	aagctttatt taaggaca	1098
20		
	<210> 126 <211> 780 <212> DNA	
25	<213> Escherichia coli <400> 126	
	atgttgaaca gaaaactaaa tatacggeta egteatteee tgaacagtea etgea	tacct 60
	tocatoatta toaataacao ogtaogttoa tttoagaggt cagtoatgaa tacca	igagct 120
30	ctttttcccc tgctgttcac tgtggcatca ttctccgcct ccgccggcaa ctggg	jctgtc 180
	aaaaacggct ggtgtcagac catgacggaa gatggtcagg cgctggtaat gctga	aaaat 240
25	ggcacgattg gtattaccgg cctgatgcag ggatgcccga atggtgtaca gacgo	ctcctg 300
35	ggcagccgta tcagtattaa cggtaacctg atccccacat cacaaatgtg taatc	agcag 360
	acgggattca gggctgttga ggtggaaatc ggacaggcgc cggaaatggt caaaa	aaagcc 420
40	gttcactcca tagcagagcg tgatgtgtcc gttttacagg catttggtgt acgaa	atggaa 480
	ttcaccegeg gtgatatget gaaggtetgt cegaaatttg teacateact tgeeg	ggtttt 540
	teccegaaac agaegaecae tattaataaa gatteegtee tgeaggetge eegge	caggca 600
45	tacgcccggg aatatgacga ggaaacaaca gaaaccgctg attttggctc ttac	gaagta 660
	aaaggcaata aggttgagtt tgaagtattc aatcctgaag accgtgcgta cgac	aaagtg 720
50	accgtcacgg ttggtgctga cggtaatgcc accggcgcca gcgttgaatt tatc	ggaaaa 780
	<210> 127	
	<212> DNA	•

	<213>	Esch 127	merichia col	i				
	gtggtaa	atta	tcaatagcac	gatactgagc	ggcgcaggcg	ctatcccttc	cctgacgtcg	60
5	ctcttac	ccg	acatcagaaa	aatgctgctg	gtcactgacc	gtaatattgc	gcagctcgac	120
	ggtgtg	cagc	agattegege	cttactggaa	aagcactgcc	cgcaggttaa	cgttatcgat	1.80
10	aatgtg	cccg	cagagcccac	gcatcatgat	gtgcgccagc	taatggatgc	ccctggcgat	240
10	gcctctt	ttg	atgtggtggt	cgggatcggc	ggtggcagcg	tgttggatgt	ggcgaagctg	300
	ctatcg	gtgc	tttgccatcc	acaatcaccg	gggctggatg	cgctgcttgc	gggtgaaaaa	360
15	ccgacto	cagc	gggtgcaatc	atggttgatt	cctacaaccg	ccggaaccgg	ctcagaagcc	420
	acgccga	aatg	cgattctggc	aatccctgag	caaagcacga	aggtgggtat	tatttcccag	480
	gtgctg	ttac	cagactatgt	ggcgcttttc	ccggaactga	ccaccagcat	gcccgcgcat	540
20	attgcg	gcgt	ccacgggcat	tgatgctctt	tgccacttac	tggagtgttt	taccgcgacc	600
	gtggca	aatc	cggtcagcga	taacgcggcg	ctgactgggt	taagtaaact	tttccggcac	660
	attcaa	cccg	ccgtgaacga	tecteaggat	ctgcgcgcaa	aactggaaat	gctgtgggcg	720
25	tcttac	tatg	gcggcgtagc	gataacccat	gcgggcacgc	atctcgttca	tgcgctctcc	780
	tacccg	ttag	gtggcaaata	tcatctgccg	catggcgtcg	cgaatgccat	cttgctggcg	840
30	ccgtgc	atgg	cgtttgttcg	cccctgggcg	gtcgagaaat	ttgcccgggt	ctgggattgc	900
	attccc	gatg	cggaaaccgc	cctgagcgcg	gaagaaaaat	ctcatgccct	ggtgacctgg	960
	ttacag	gcat	tagtcaatca	actcaagcta	cccaacaatc	tcgcggctct	cggcgtaccg	1020
35	ccagag	gata	ttgcctctct	gagcgaggcg	gcactgaacg	tgaagcgcct	tatgaacaat	1080
	gtgccg	tgcc	aaattgatct	acaggacgta	caggccattt	accaaacact	gtttccgcaa	1140
	catcca	ttta	aggag					1155
40								
	<210><211><211>	128 315 DNA		7 :				
45 .	<213> <400>	128					~~~~	60
	_						gtttttattc	60
							gaatgcaaca	120
50							cctcacatcc	180
							tatgacgtac	240
55	ggtaaa	atca	acaacagttt	tattgtcgcg	ttgttgcaga	ccacaactga	tgaggcagcg	300

	gagtttaccg ggatg	315
5	<210> 129 <211> 441 <212> DNA <213> Escherichia coli	
	<400> 129	
10	atgaatatto aggoaataaa agaaatggta aatttaattt	60
	tttctgtcct cggcttttgt ttcttttggg tgttatgcta tttatgaatt gtttttatgg	120
	aatgatatta ttgtatatag ctggggatat atattaattg tctttttacc tttcacatta	180
15	tatgtaatgt cgtttgagat tttgtttttt gctattagtg ggcgacgatt gtctaaagta	240
	acaatggtgc gcctttggtt gataattaaa attattattg ctttctctat ttgcgcagtg	300
20	ttgatttttt cttcaattta caaaaaagaa ttattatcta gaaattatat tgcttgtagt	360
	ggtatcccgt ctgggtggat gccgggtctg gcaacgaaat acgttaaaga aaaatcatta	420
	tgcgaaaaaa atggcaataa t	441
25	<210> 130 <211> 534 <212> DNA <213> Escherichia coli	
30	<400> 130	60
	atgttteeta tregttttaa aegteeggeg ttgetetgta tggegatget gaeggttgtt	
	ctgagtggct gcgggctgat tcagaaagtg gtggatgaat cgaaaagcgt ggcctcagcc	120
35	gttttctaca aacaaatcaa aatactgcat ctcgatttct tctcccgcag cgccctgaat	180
	acggatgcgg aagatacgcc gctttccacg atggtgcatg tctggcaact gaaaacccgc	240
	gaagattttg acaaggegea ttaegaeaee etgtttatge aggaagagaa gaegetggag	300
40	aaggacgtac tggcaaaaca caccgtctgg gtaaaaccgg aaggcacggc atccctgaat	360
	gtgccgctgg ataaagagac gcagtttgtc gccattattg ggcagtttta tcaccctgat	420
	gaaaaaagcg acagetggeg tetggtgate aaaagggaeg aaetggagge egacaageeg	480
45	cgctcgattg aactgatgag aagcgacctg cgactgctgc ctctcaagga taaa	534
50	<210> 131 <211> 627 <212> DNA. <213> Escherichia coli <400> 131.	
	atgttettaa aaagaaaatg gtattaegea gtgaegaeat etgtegteat taetttgtgt	60

	ggtggaggat	attatatgta	caggcaagaa	tatcagatgg	ttgtcactgt	accaactgct	120
	gacgcgaacg	atcccaactg	gccaaataaa	aggatacagt	ttgataccag	cgaatggcta	180
5	cagcaacttc	aatatattaa	aatagatgat	cattatatat	tgaatactca	atatactcca	240
	attgctaatt	tggatgactt	tggtattaca	ttaaaattac	agaacgcatt	aaatgggtcg	300
	gataaaagac	ttcctgcact	atatggcctt	gctgagatgg	atgctcagaa	atttaaagac	360
10	ctgatgcgcg	gtaaaattaa	atgtgaatat	ctgaggacga	catttgatgc	ggaaacatta	420
	aagcctgtca	atgattattt	ccttatttct	tttacttata	aagataagtg	gtatgaattt	480
15	gagacagaaa	gaaaaatatc	taaaacaagt	gatgatgggt	attttttgtg	ggcatttgat	540
	aatactgtcc	acgaagcagg	ctattggcat	aacacagatc	cggctgcgta	ttcctataga	600
	gattaccaga	atggtaaggc	tgtgaaa				627
20	400						
	<210> 132 <211> 127						
		herichia col	Li				
25	<400> 132 atggatattt	ggcggggaca	ttcgtttctg	atgacaattt	ccgctaggtt	cagacaatac	60
	gttttctctc	ttatgtcaat	tttattgcag	gaacgaaaaa	tgaatatttt	cactttatcc	120
30	aaagcaccgc	tatacctgtt	aatttcacta	tttttaccca	cgatggccat	ggctatcgat	180
	ccacctgaac	gegaacttte	gcgatttgcc	ctgaaaacga	attaccttca	gtcccctgat	240
	gaaggcgtct	atgaactggc	gtttgataat	gccagtaaaa	aggtgtttgc	agcagtcacc	300
35	gatcgtgtaa	. atcgtgaagc	caataaaggc	tatctgtatt	cgtttaattc	agattcgctg	360
	aaagtcgaaa	. ataaatacac	gatgccatac	cgggcatttt	cgctggcgat	aaatcaggat	420
	aaacatcagc	tctatatcgg	acacacccag	tcagcgtccc	tgcgtatcag	tatgtttgac	180
40	accccaaccg	gcaaactggt	aagaaccagc	gacaggttaa	gttttaaagc	ggcaaacgct	540
	gcagattcgc	gttttgagca	ttttcgccat	atggtttaca	gccaggattc	cgataccctg	600
45	tttgtgagtt	: atagcaatat	gctgaaaacg	gccgagggca	tgaagcctct	gcataagctg	660
	ttaatgctcg	acgggacgac	gcttgcctta	aaaggcgagg	ttaaggatgo	ttacaaaggt	720
	acagogtato	g gtctgacgat	ggatgaaaaa	acacagaaaa	tctacgttgg	cggaagagat	780
50	tacatcaacg	g aaattgatgo	gaaaaatcag	acgetgetge	gtaccatccc	gttgaaagat	840
	ccgagaccac	aaatcacaag	tgtgcagaat	. ctggcggtgg	g acteegette	tgaccgtgcc	900
	tttgtggtgg	g tattegacea	tgacgatcgt	tccggtacaa	a aagatggact	ctatattttt	960

	gacttacgcg	acggtaaaca	gcttggctat	gtgcacacag	gagccggagc	taacgcggtg	1020
	aaatacaatc	cgaaatataa	cgaactgtat	gtcaccaact	tcactagcgg	caccatcagc	1080
5	gtagtggatg	ccaccaaata	cagcatcacc	cgtgaattta	acatgccggt	ctacccaaac	1140
	cagatggtgt	tgtcggacga	tatggatacc	ctttacattg	gcatcaaaga	aggctttaac	1200
0	cgcgattggg	atcctgatgt	gtttgtggaa	ggagctaaag	aacgtattct	gagcattgat	1260
	ttgaaaaagt	cg					1272

Claims

5

10

15

20

25

30

- Isolated antigenic polypeptides selected in the group comprising SEQ ID N°11 to SEQ ID N°66 and the homologous sequences.
- 2. Isolated antigenic polypeptides according to claim 1 obtainable by a process comprising the steps of:
 - 1- selecting on the basis of sequence analysis those of the polypeptides which are either located in the outermembrane or secreted by the bacteria,
 - 2- identifying the genes coding for said polypeptides which are conserved in B2/D clinical isolates,
 - 3- purifying the polypeptides identified in step 1, which are found in step 2 to be conserved in B2/D isolates,
 - 4- testing the polypeptides for immunogenicity using animals models.
- 3. Isolated polynucleotides, coding for a polypeptide according to claim 1 or 2, according to the universal genetic code.
- Isolated polynucleotides according to claim 3, having sequences selected in the group comprising SEQ ID N°77 to SEQ ID N°132.
- 5. An expression vector comprising at least an isolated polynucleotide according to claim 3 or 4.
- 6. A host cell comprising an expression vector according to claim 5.
- 7. A process for isolating and identifying antigenic polypeptides, useful as vaccines comprising the steps of:
- 1- selecting on the basis of sequence analysis those of the polypeptides which are either located in the outermembrane or secreted by the bacteria,
 - 2- identifying the genes coding for said polypeptides which are conserved in B2/D clinical isolates.
 - 3- purifying the polypeptides identified in step 1, which are found in step 2 to be conserved in B2/D isolates,
 - 4- testing the polypeptides for immunogenicity using animals models.
- **8.** The process of claim 7, comprising the use of infected adult animals, eventually immunodepressed, and of infant animals as models for neonatal infections.
- 9. The use of at least one polypeptide selected in the group comprising SEQ ID N°1 to SEQ ID N°66 as antigens and the homologous sequences.
 - 10. A vaccine composition specific to E. coli extra-intestinal infections, comprising an effective amount of at least one antigenic polypeptide such as selected by the process of claim 7, alone or in combination, particularly at least one polypeptide having a sequence selected in the group comprising SEQ ID N°1 to SEQ ID N°66 and the homologous sequences, with a carrier.
 - 11. The vaccine composition of claim 10 for preventing urinary system infections, pyelonephritis, sepsis, bacteremia, neonatal meningitidis.
- 45 12. The vaccine composition of claim 10 or 11, adapted to specific indication in combination with components directed against other bacteria, such as S.aureus or group B Streptococcus.
 - 13. Antibodies or fragments thereof directed against a polypeptide such as used according to claim 9.
- 14. A method for detecting the present or absence of undesirable extra-intestinal E. coli, and/or for the diagnosis of an extra-intestinal E. coli infection, comprising the use of at least one polypeptide such as defined in claim 9, or a polynucleotide according to claim 3 or 4, or an antibody to claim 13.
- 15. Pharmaceutical composition for alleviating and/or preventing and/or treating and undesirable growth of E. coli comprising an effectivement of at least one polypeptide such as use in claim 9.

PARTIAL EUROPEAN SEARCH REPORT

Application Number

which under Rule 45 of the European Patent Convention Ep 02 29 0556 shall be considered, for the purposes of subsequent proceedings, as the European search report

	DOCUMENTS CONSIDI	ERED TO BE RELEVANT		
Category	Citation of document with in of relevant passa	dication, where appropriate, ges	Refevant - to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.7)
Х	WO 01 66572 A (INST; NASSIF XAVIER (FR) B) 13 September 200 SEQ ID NOS:347 and * page 3, line 20 - * page 29, line 23	; TINSLEY COLIN (FR); 1 (2001-09-13) 348 page 4. line 17 *	1-6,9-15	C12N15/31 C12N15/63 C07K14/245 C07K16/12 A61K39/108 G01N33/53
A	JOHNSON JAMES R ET pathotypic similari Escherichia coli is tract infections in extraintestinal inf JOURNAL OF INFECTIO vol. 183, no. 6, 20 XP002211433 ISSN: 0022-1899 * abstract *	olates from urinary dogs and ections in humans." US DISEASES.		
	apstract			
		-/		
				TECHNICAL FIELDS SEARCHED (InLCL7)
				C12N
				C07K
	WPLETE SEARCH			
not complete be carried	y with the EPC to such an extent that lout, or can only be carried out partial	application, or one or more of its claims, does a meaningful search into the state of the art ca by, for these claims.	/de annot	
Claims St	arched completely:			
Claims se	arched incompletely ;			
Claims no	t searched :			
Reason fr	or the limitation of the search:			
	sheet C			
	•			
			·	
	Place of search	Date of completion of the search	\	Examiner M
	Place of search THE HAGUE	28 August 2002		a-Vicente, M
X : par Y : par doc		28 August 2002 T: theory or principl E: earlier patent do after the filing da ther D: document clad i L: document clad i	le underlying the li cument, but publis te in the application	nvention shed on, or

INCOMPLETE SEARCH SHEET C

Application Number EP 02 29 0556

As far as an "in vivo" method is concerned claim 9 is directed to a method of treatment of the human/animal body (Article 52(4) EPC) and the search has been carried out and based on the alleged effects of the compound/composition.

As far as an "in vivo" method is concerned claim 14 is directed to a diagnostic method practised on the human/animal body (Article 52(4) EPC) and the search has been carried out and based on the alleged effects of the compound/composition.

PARTIAL EUROPEAN SEARCH REPORT

Application Number

EP 02 29 0556

	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int.CI.7)	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
A	MUEHLDORFER I ET AL: "Characterization of Escherichia coli strains isolated from environmental water habitats and from stool samples of healthy volunteers." RESEARCH IN MICROBIOLOGY, vol. 147, no. 8, 1996, pages 625-635, XP002211434 ISSN: 0923-2508 * table I * page 630, paragraph 2 *	-	
	•	,	TECHNICAL FIELDS
			SEARCHED (Int.Cl.7)
1	•		
	·		

Application Number

EP 02 29 0556

CLAIMS INCURRING FEES
The present European patent application comprised at the time of filing more than ten claims.
Only part of the claims have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims and for those claims for which claims fees have been paid, namely claim(s):
No claims fees have been paid within the prescribed time limit. The present European search report has been drawn up for the first ten claims.
LACK OF UNITY OF INVENTION
The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:
see sheet B
All further search fees have been pald within the fixed time limit. The present European search report has been drawn up for all claims.
As all searchable claims could be searched without effort justifying an additional fee, the Search Division did not invite payment of any additional fee.
Only part of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the inventions in respect of which search fees have been paid, namely claims:
None of the further search fees have been paid within the fixed time limit. The present European search report has been drawn up for those parts of the European patent application which relate to the invention first mentioned in the claims, namely claims: (1-6 and 9-15) partially
- -

LACK OF UNITY OF INVENTION SHEET B

Application Number

EP 02 29 0556

The Search Division considers that the present European patent application does not comply with the requirements of unity of invention and relates to several inventions or groups of inventions, namely:

Invention 1: Claims (1-6 and 9-15) - partially

Isolated antigenic polypeptide SEQ ID NO:11; the polynucleotide encoding it (SEQ ID NO:77); vector comprising said polynucleotide and host cell transformed with it; antibodies against said polypeptide; vaccines comprising the polypeptide; methods of diagnosis/treatment derived of the use of any of the molecules previously mentioned.

Inventions 2-56: Claims (1-6 and 9-15) - partially

Idem as invention 1, but restricted to each one of the polypeptides of SEQ ID NOs:12-66 and their corresponding genes (SEQ ID NOs:78-132).

Invention 57: Claims (9-15) - partially

Use of the polypeptide SEQ ID NO:1 as antigen; vaccines; antibodies against said polypeptide; methods of diagnosis/treatment derived of the use thereof.

Inventions 58-66: Claims (9-15) - partially

Idem as invention 57, but restricted to each one of the polypeptides SEQ ID NOs:2-10.

Invention 67: Claims (7 and 8) - partially

process for isolating and identifying polypeptides useful as vaccines comprising the steps of: selecting on the basis of sequence analysis those of the polypeptides which are either located in the outermembrane or secreted by the bacteria; identifying the genes coding for said polypeptides which are conserved in B2/D clinical isolates; purifying the polypeptides identified in step 1, which are found in step 2 to be conserved in B2/D isolates; and testing the polypeptides for immunogenicity using animal models.

ANNEX TO THE EUROPEAN SEARCH REPORT ON EUROPEAN PATENT APPLICATION NO.

EP 02 29 0556

This annex lists the patent family members relating to the patent documents cited in the above-mentioned European search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information.

28-08-2002

Patent docume cited in search re	nt port	Publication date		Patent fam member(s	ily :) 	Publication date
WO 0166572	Α	13-09-2001	FR WO	2806096 0166572	A1 A2	14-09-200 13-09-200
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						
						•
•						
	•					
	•	e Official Journal of the				
						

INTERNATIONAL SEARCH REPORT

Internation No PCT/EP2005/002105

A. CLASSIFICATION OF SUBJECT MATTER IPC 7 A61K39/108 A61K39/10

A61K39/02

A61K39/00

A61K39/112

A61K39/106

A61K39/39

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols) IPC 7 A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, Sequence Search, BIOSIS, WPI Data, PAJ, EMBASE

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A .	EP 1 342 784 A (MUTABILIS S.A) 10 September 2003 (2003-09-10) paragraph '0031! - paragraph '0034! claim 10 sequence 9	1-10
A	DATABASE UniProt 'Online! 1 November 1996 (1996-11-01), "Cytotoxic necrotizing factor 1." XP002323706 retrieved from EBI accession no. UNIPROT:Q47106 Database accession no. Q47106 the whole document	1-10
	-/	

Y Further documents are listed in the continuation of box C.	Patent family members are listed in annex.
Special categories of cited documents: A document defining the general state of the art which is not considered to be of particular relevance E earlier document but published on or after the internalional filing date L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) O document referring to an oral disclosure, use, exhibition or other means P document published prior to the international filing date but later than the priority date claimed	 "T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same palent family
Date of the actual completion of the International search	Date of mailing of the international search report
24 June 2005	2 6: 08. 2005
Name and mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Ulbrecht, M

INTERNATIONAL SEARCH REPORT

PCT/EP2005/002105

		PCT/EP20	05/002105
C.(Continua Category °	citation of documents with indication and a second control of the		
Category *	Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
A	MOREAU VIOLAINE ET AL: "Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA." MOLECULAR AND CELLULAR BIOLOGY, vol. 23, no. 19, October 2003 (2003-10), pages 6809-6822, XP002323705 ISSN: 0270-7306 abstract page 6810, left-hand column, paragraph 6		1-10
T	MUNRO P ET AL: "The Rho GTPase activators CNF1 and DNT bacterial toxins have mucosal adjuvant properties" VACCINE, BUTTERWORTH SCIENTIFIC. GUILDFORD, GB, vol. 23, no. 20, 8 April 2005 (2005-04-08), pages 2551-2556, XP004789509 ISSN: 0264-410X the whole document		1-9
	•		
		•	
	·		
,		•	
Ì			
İ		!	
1			
			- -

INTERNATIONAL SEARCH REPORT

Box II Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
□ 1
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful international Search can be carried out, specifically:
3. Ctaims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box III Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
see additional sheet
As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-10 (completely)
The substitute of second property of the configuration protect
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

This International Searching Authority found multiple (groups of) inventions in this international application, as follows:

Invention 1: claims 1-10 (all completely)

A vaccine composition comprising an immunoadjuvant compound consisting of a Rho GTPase activator.

Invention 2: claims 11-13 (all partially)

A protein comprising a polypeptide consisting of the injection domain of a Rho GTPase activator comprising residues 1-719 of SEQ ID No. 1 and the catalytic domain of a Rho GTPase activator comprising residues 720-1014 of SEQ ID No. 1; the use of said polypeptide or of a polypeptide according to SEQ ID No. 1 for manufacturing a vaccine composition.

Invention 3-4: claims 11-13 (all partially)

Idem as invention 3, but each of invention 3 and 4 referring to SEQ ID Nos. 2 and 3, respectively.

Invention 5: claims 11-13 (all partially)

A protein comprising a polypeptide consisting of the injection domain of a Rho GTPase activator comprising residues 1-1145 of SEQ ID No. 4 and the catalytic domain of a Rho GTPase activator comprising residues 1145-1451 of SEQ ID No. 4; the use of said polypeptide or of a polypeptide according to SEQ ID No. 4 for manufacturing a vaccine composition.

Inventions 7-10: claim 11-13 (partially)

Idem as invention 6, but each of the inventions 7-10 referring to one of SEQ ID Nos. 6-9.