1. Übung zur Vorlesung

Differential- und Integralrechnung für Informatiker

(A 1)

a) Man fülle die folgende Tabelle aus:

M	US(M)	OS(M)	$\min M$	$\max M$	$\inf M$	$\sup M$
\mathbb{R}_+^*						
$(-3,0] \cup \{7\}$						
$(-\sqrt{7},\infty)\cap\mathbb{Z}$						
$[\pi, 10] \cap \mathbb{Q}$						
$\{x \in \mathbb{R} \mid x^8 + 2x^4 \le -1\}$						
$\{x \in \mathbb{R} \mid x^3 - x^2 - 6x \ge 0\}$						
$\left\{ x \in \mathbb{R} \mid \frac{x+1}{x^2+1} < 1 \right\}$						

b) Man gebe ein Beispiel für eine Teilmenge M von \mathbb{R} , die gleichzeitig den folgenden Bedingungen genügt: sie ist kein Intervall, sie ist nach oben unbeschränkt, sie hat kein kleinstes Element und inf M = -3.

(A 2) (Umgebungen)

1) Man entscheide, welche der folgenden Teilmengen von \mathbb{R} Umgebungen der 1 sind und welche nicht, und begründe die jeweilige Antwort:

a)
$$(-1, 2]$$
, b) \mathbb{N} , c) $\mathbb{R} \setminus \{1\}$, d) $(-\infty, -1) \cup [0, 5]$, e) $[1, \infty)$.

2) Man entscheide, welche der folgenden Teilmengen von \mathbb{R} Umgebungen von $-\infty$ sind und welche nicht, und begründe die jeweilige Antwort:

a)
$$[-1, \infty)$$
, b) $(-\infty, 1) \cap (\mathbb{R} \setminus \mathbb{Q})$, c) \mathbb{Z} .

(A 3) (Für Schlaufüchse)

Sei $M \subseteq \mathbb{R}$.

- a) Beweise, dass wenn $OS(M) \neq \emptyset$ ist, dann OS(M) unendlich viele Elemente enthält.
- b) Beweise, dass M höchstens ein größtes Element besitzen kann. (Mit anderen Worten kann also M nicht zwei verschiedene größte Elemente haben.)
- c) Beweise, dass M höchstens ein Supremum besitzen kann. (Mit anderen Worten kann also M nicht zwei verschiedene Suprema haben.)
- d) Beweise, dass wenn M ein größtes Element besitzt, dann $\max M = \sup M$ ist.

(A 4) (Für Schlaufüchse)

Sei $M \subseteq \mathbb{R}$.

a) Beweise, dass wenn $US(M) \neq \emptyset$ ist, dann US(M) unendlich viele Elemente enthält.

- b) Beweise, dass M höchstens ein kleinstes Element besitzen kann. (Mit anderen Worten kann also M nicht zwei verschiedene kleinste Elemente haben.)
- c) Beweise, dass M höchstens ein Infimum besitzen kann. (Mit anderen Worten kann also M nicht zwei verschiedene Infima haben.)
- d) Beweise, dass wenn M ein kleinstes Element besitzt, dann $\min M = \inf M$ ist.

(A 5) (Für Schlaufüchse)

Den Beweis zu F2 aus der ersten Vorlesung als Muster verwendend, beweise man F4.