2章 微分の応用

練習問題 1-A

1.

$$y = f(x)$$
 とする.
 $f'(x) = 3x^2 + 2$
よって
 $f(1) = 1^3 + 2 \cdot 1 = 3$
 $f'(1) = 3 \cdot 1^2 + 2 = 5$

したがって, x = 1における接線の方程式は

$$y - f(1) = f'(1)(x - 1)$$

 $y - 3 = 5x - 5$
 $y = 5x - 2$

また, x = 1における法線の方程式は

$$y - f(1) = -\frac{1}{f'(1)}(x - 1)$$
$$y - 3 = -\frac{1}{5}x + \frac{1}{5}$$
$$y = -\frac{1}{5}x + \frac{16}{5}$$

2.

(1)
$$y' = 12x^5 - 36x^3$$

 $= 12x^3(x^2 - 3)$
 $y' = 0$ とすると, $x = 0$, $\pm\sqrt{3}$
 $x = -\sqrt{3}$ のときの y の値は
 $y = 2 \cdot (-\sqrt{3})^6 - 9 \cdot (-\sqrt{3})^4 + 10$
 $= 2 \cdot 27 - 9 \cdot 9 + 10$
 $= 54 - 81 + 10 = -17$
 $x = 0$ のときの y の値は
 $y = 10$
 $x = \sqrt{3}$ のときの y の値は
 $y = 2 \cdot (\sqrt{3})^6 - 9 \cdot (\sqrt{3})^4 + 10$
 $= 2 \cdot 27 - 9 \cdot 9 + 10$
 $= 54 - 81 + 10 = -17$
 y の増減表は次のようになる.

x	•••	$-\sqrt{3}$	•••	0	•••	$\sqrt{3}$	•••
y'	_	0	+	0	ı	0	+
у	7	-17	7	10	7	-17	7

よって

極大値 10 (x = 0) 極小値 -17 $(x = \pm \sqrt{3})$

(2)
$$y' = 3\sin^2 x \cdot (\sin x)'$$

= $3\sin^2 x \cos x$ (0 < x < 2π)
 $y' = 0$ とすると、 $\sin x = 0$ または $\cos x = 0$

よって,
$$x = \frac{\pi}{2}$$
, π , $\frac{3}{2}\pi$

$$x = 0$$
のときの y の値は

$$y = \sin^3 0 = 0$$

$$x = \frac{\pi}{2}$$
のとき y の値は

$$y = \sin^3 \frac{\pi}{2} = 1$$

$$x = \pi$$
のときの y の値は

$$y = \sin^3 \pi = 0$$

$$x = \frac{3}{2}\pi$$
のとき y の値は

$$y = \sin^3 \frac{3}{2}\pi$$

$$=(-1)^3=-1$$

$$x = 2\pi$$
のときのyの値は

$$y = \sin^3 2\pi = 0$$

yの増減表は次のようになる.

x	0		$\frac{\pi}{2}$	•••	π	•••	$\frac{3}{2}\pi$		2π
y'		+	0	_	0	_	0	+	
у	0	7	1	7	0	7	-1	7	0

よって

極大値 1
$$\left(x=\frac{\pi}{2}\right)$$

極小値
$$-1$$
 $\left(x=\frac{3}{2}\pi\right)$

3.

$$y = 3 \cdot (-1)^5 - 5 \cdot (-1)^3 + 1$$
$$= -3 + 5 + 1$$

= 3

x = 0のときのyの値は

$$y = 1$$

x = 1のときのyの値は

$$y = 3 \cdot 1^5 - 5 \cdot 1^3 + 1$$
$$= 3 - 5 + 1$$

$$= -1$$

νの増減表は次のようになる.

х	-2		-1		0		1
y'		+	0	-	0	-	
y	-55	7	3	7	1	7	-1

よって

最大值 3
$$(x=-1)$$

最小值
$$-55$$
 $(x = -2)$

$$(2) y' = 2x - \frac{8}{x}$$

$$= \frac{2x^2 - 8}{x}$$

$$= \frac{2(x^2 - 4)}{x}$$

$$= \frac{2(x + 2)(x - 2)}{x}$$

$$y' = 0$$
 きまると、 $x = \pm 2$

x = -2は変域の外なので考えない.

x = 1のときのyの値は

$$y = 1^2 - 8\log 1 = 1$$

x = 2のときのyの値は

$$y = 2^2 - 8\log 2$$

$$= 4 - 8 \log 2$$

x = eのときのyの値は

$$y = e^2 - 8\log e$$

$$=e^2-8$$

γの増減表は次のようになる.

х	1	•••	2	•••	e
y'		-	0	+	
у	1	7	$4 - 8 \log 2$	7	$e^2 - 8$

よって

最大値 1
$$(x = 1)$$

最小值
$$4-8\log 2$$
 $(x=2)$

(3)
$$y' = 2\cos x - \sqrt{3} \ (0 < x < 2\pi)$$

$$y' = 0$$
とすると,

$$\cos x = \frac{\sqrt{3}}{2}$$

$$x = \frac{\pi}{6}, \ \frac{11}{6}\pi$$

$$x = 0$$
のときの y の値は

$$y = 2\sin 0 + 0 = 0$$

$$x = \frac{\pi}{6}$$
のときのyの値は

$$y = 2\sin\frac{\pi}{6} - \sqrt{3} \cdot \frac{\pi}{6}$$

$$=2\cdot\frac{1}{2}-\frac{\sqrt{3}}{6}\pi$$

$$=1-\frac{\sqrt{3}}{6}\pi$$

$$x = \frac{11}{6}\pi$$
のときのyの値は

$$y = 2\sin\frac{11}{6}\pi - \sqrt{3} \cdot \frac{11}{6}\pi$$

$$=2\cdot\left(-\frac{1}{2}\right)-\frac{11\sqrt{3}}{6}\pi$$

$$=-1-\frac{11\sqrt{3}}{6}\pi$$

$$x = 2\pi$$
のときの y の値は

$$y = 2\sin 2\pi - \sqrt{3} \cdot 2\pi$$

$$=-2\sqrt{3}\pi$$

γの増減表は次のようになる.

x	0		$\frac{\pi}{6}$	•••	$\frac{11}{6}\pi$	•••	2π
y'		+	0	_	0	+	
у	0	7	$1-\frac{\sqrt{3}}{6}\pi$	7	$-1-\frac{11\sqrt{3}}{6}\pi$	7	$-2\sqrt{3}\pi$

よって

最大値
$$1-\frac{\sqrt{3}}{6}\pi$$
 $\left(x=\frac{\pi}{6}\right)$

最小値
$$-1-\frac{11\sqrt{3}}{6}\pi$$
 $\left(x=\frac{11}{6}\pi\right)$

4.

底面になる正方形の1辺の長さは、15-2x[cm] また、容器の高さはx[cm]であるから

$$V = x(15 - 2x)^2$$

また,
$$x > 0$$
, $15 - 2x > 0$ より, $0 < x < \frac{15}{2}$

$$(2) V' = 1 \cdot (15 - 2x)^2 + x \cdot 2 \cdot (15 - 2x) \cdot (-2)$$

$$= (15 - 2x)^2 - 4x(15 - 2x)$$

$$= (15 - 2x)(15 - 2x - 4x)$$

$$= (15 - 2x)(15 - 6x)$$

$$= 3(15 - 2x)(5 - 2x)$$

$$V' = 0$$
 とすると, $0 < x < \frac{15}{2}$ において, $x = \frac{5}{2}$

$$x = \frac{5}{2}$$
のときのVの値は

$$V = \frac{5}{2} \cdot \left(15 - 2 \cdot \frac{5}{2}\right)^2$$
$$= \frac{5}{2} \cdot 10^2$$

= 250

Vの増減表は次のようになる.

x	0		$\frac{5}{2}$	•••	15 2
V'		+	0	_	
V		7	250	7	

よって、Vが最大になるときのxの値は、

$$x=\frac{5}{2}$$

5.

(1)

底面の半径をrとすると,

$$r^2 + \left(\frac{x}{2}\right)^2 = 2^2$$
 & $r^2 = 4 - \frac{x^2}{4}$

$$V = \pi r^2 x$$

$$= \pi \left(4 - \frac{x^2}{4}\right) x$$

$$= \frac{\pi}{4} x (16 - x^2) \quad (0 < x < 4)$$

$$V' = \frac{\pi}{4} \cdot (16 - x^2) + \frac{\pi}{4} x \cdot (-2x)$$

$$= 4\pi - \frac{\pi}{4} x^2 - \frac{2\pi}{4} x^2$$

$$= 4\pi - \frac{3\pi}{4} x^2$$

$$= -\frac{3\pi}{4} \left(x^2 - \frac{16}{3} \right)$$

$$V' = 0$$
とすると,

$$x^2 = \frac{16}{3}$$

$$(0 < x < 4)$$
において, $x = \frac{4}{\sqrt{3}}$

$$x = \frac{4}{\sqrt{3}}$$
のときのVの値は

$$V = \frac{\pi}{4} \cdot \frac{4}{\sqrt{3}} \cdot \left\{ 16 - \left(\frac{4}{\sqrt{3}}\right)^2 \right\}$$
$$= \frac{\pi}{\sqrt{3}} \cdot \left(16 - \frac{16}{3} \right)$$
$$= \frac{\pi}{\sqrt{3}} \cdot \frac{32}{3}$$
$$32\pi$$

Vの増減表は次のようになる.

x	0		$\frac{4}{\sqrt{3}}$		4
V'		+	0	-	
V		7	$\frac{32\pi}{3\sqrt{3}}$	7	

よって、Vが最大になるときのxの値は、

$$x = \frac{4}{\sqrt{3}}$$

$$y = x - \log(x+1)$$
とおく.

$$y' = 1 - \frac{1}{x+1}$$

$$= \frac{x+1-1}{x+1}$$

$$= \frac{x}{x+1}$$

$$v' = 0$$
とすると, $x = 0$

$$x = 0$$
のときの y の値は

$$y = 0 - \log 1$$

= 0

νの増減表は次のようになる.

х	-1	•••	0	•••
y'		-	0	+
у		7	0	7

よって, y > -1において, $y \ge 0$ であるから $x - \log(x+1) \ge 0$, すなわち, $x \ge \log(x+1)$

7.

(1) 与式は $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 0} \frac{(\tan 4x)'}{(x^2 + 2x)'}$$

$$= \lim_{x \to 0} \frac{\frac{4}{\cos^2 4x}}{2x + 2}$$

$$= \frac{4}{\cos^2 0} \cdot \frac{1}{0 + 2}$$

$$= 4 \cdot \frac{1}{2}$$

$$= 2$$

(2) 与式は $\frac{0}{0}$ の不定形である.

与式 =
$$\lim_{x \to 1} \frac{(1 + \cos \pi x)'}{\{(x - 1)^2\}'}$$

= $\lim_{x \to 1} \frac{-\pi \sin \pi x}{2(x - 1)}$ ※ここでも $\frac{0}{0}$ の不定形
= $\lim_{x \to 1} \frac{-\pi(\sin \pi x)'}{2(x - 1)'}$

$$= \lim_{x \to 1} \frac{-\pi \cdot \pi \cos \pi x}{2 \cdot 1}$$

$$= -\frac{\pi^2}{2} \lim_{x \to 1} \cos \pi x$$

$$= -\frac{\pi^2}{2} \cdot (-1)$$

$$= \frac{\pi^2}{2}$$

練習問題 1-B

1.

接点の座標を $P(t, t^2)$ とする.

y' = 2xであるから、点Pにおける接線の方程式は

$$y - t^2 = 2t(x - t)$$

$$y = 2tx - 2t^2 + t^2$$

$$y = 2tx - t^2$$

これが,点(2,-5)を通るので

$$-5 = 2t \cdot 2 - t^2$$

$$t^2 - 4t - 5 = 0$$

$$(t+1)(t-5) = 0$$

よって,
$$t = -1$$
, 5

i) t = -1028

$$y = 2 \cdot (-1) \cdot x - (-1)^2$$

$$y = -2x - 1$$

ii) t = 5のとき

$$y = 2 \cdot 5 \cdot x - 5^2$$

$$y = 10x - 25$$

よって, 求められる接線の方程式は

$$y = -2x - 1$$
, $y = 10x - 25$

2.

直円柱の体積をVとすると

$$V = \pi r^2 x \cdot \cdot \cdot (1)$$

また, 直円柱の表面積が1であるから

$$\pi r^2 \times 2 + 2\pi r \times x = 1$$

$$2\pi r^2 + 2\pi r x = 1$$

$$2\pi rx = 1 - 2\pi r^2$$

$$2\pi r \neq 0$$
 なので, $x = \frac{1 - 2\pi r^2}{2\pi r}$

これを①に代入して

$$V = \pi r^2 \cdot \frac{1 - 2\pi r^2}{2\pi r}$$

$$=\frac{r-2\pi r^3}{2}$$

rについて微分.

$$V' = \frac{1 - 6\pi r^2}{2}$$

V' = 0とすると, $1 - 6\pi r^2 = 0$, すなわち $6\pi r^2 = 1$

$$r > 0$$
 より, $r^2 = \frac{1}{6\pi}$ を満たす実数 r は,

$$r = \frac{1}{\sqrt{6\pi}} \quad \text{tilovasabs}$$

Vの増減表は次のようになり, $r = \frac{1}{\sqrt{6\pi}}$ のとき,

体積は最大になる.

r	0		$\frac{1}{\sqrt{6\pi}}$	•••
V'		+	0	-
V		7		7

体積が最大になるとき, $6\pi r^2 = 1$ が成り立つから,

これと、
$$2\pi r^2 + 2\pi rx = 1$$
より

$$6\pi r^2 = 2\pi r^2 + 2\pi r x$$

$$3r = r + x$$

$$2r = x$$

$$\frac{x}{x} = 2$$

3.

定義域は $x \neq 0$ である.

$$y' = 1 - \frac{a}{x^2}$$

$$= \frac{x^2 - a}{x^2}$$

$$= \frac{(x + \sqrt{a})(x - \sqrt{a})}{x^2} \qquad (a > 0 \ \& \ \emptyset)$$

$$y' = 0$$
とすると, $x = \pm \sqrt{a}$

$$x = -\sqrt{a}$$
のときのyの値は

$$y = -\sqrt{a} + \frac{a}{-\sqrt{a}}$$
$$= -\sqrt{a} - \sqrt{a}$$
$$= -2\sqrt{a}$$

$$x = \sqrt{a}$$
のときの y の値は

$$y = \sqrt{a} + \frac{a}{\sqrt{a}}$$
$$= \sqrt{a} + \sqrt{a}$$
$$= 2\sqrt{a}$$

γの増減表は次のようになる.

x		$-\sqrt{a}$		0		\sqrt{a}	•••
y'	+	0	_		_	0	+
у	7	$-2\sqrt{a}$	7		7	$2\sqrt{a}$	7

増減表より, $x = \pm \sqrt{a}$ で極値をもつ.

また,極小値は $2\sqrt{a}$ であるから

$$2\sqrt{a} = 8$$
$$\sqrt{a} = 4$$

a = 16

4.

(1)
$$y' = 6x^2 + 6x - 12$$

 $= 6(x^2 + x - 2)$
 $= 6(x + 2)(x - 1)$
 $y' = 0$ とすると、 $x = -2$ 、1
 $x = -2$ のときのyの値は
 $y = 2 \cdot (-2)^3 + 3 \cdot (-2)^2 - 12 \cdot (-2)$
 $= -16 + 12 + 24$
 $= 20$
 $x = 1$ のときのyの値は
 $y = 2 \cdot 1^3 + 3 \cdot 1^2 - 12 \cdot 1$
 $= 2 + 3 - 12$
 $= -7$

γの増減表は次のようになる.

х	•••	-2	•••	1	•••
y'	+	0	_	0	+
у	7	20	7	-7	7

よって

(2)
$$\begin{cases} y = 2x^3 + 3x^2 - 12x \\ y = k \end{cases}$$

方程式の実数解の個数は、2つのグラフの 交点の個数であるから、

$$k < -7$$
のとき 1個
 $k = -7$ のとき 2個
 $-7 < k < 20$ のとき 3個
 $k = 20$ のとき 2個
 $k > 20$ のとき 1個

以上より.

$$k < -7$$
, $k > 20$ のとき 1個

$$k = -7$$
, $k = 20$ のとき 2個

5.

$$(1) y' = -\frac{a}{r^2}$$

よって, 点Pにおける接線の方程式は

$$y - \frac{a}{t} = -\frac{a}{t^2}(x - t)$$
$$y = -\frac{a}{t^2}x + \frac{a}{t} + \frac{a}{t}$$
$$y = -\frac{a}{t^2}x + \frac{2a}{t}$$

(2) (1) k = 0 k = 0

$$0 = -\frac{a}{t^2}x + \frac{2a}{t}$$

$$\frac{a}{t^2}x = \frac{2a}{t}$$

$$x = \frac{2a}{t} \cdot \frac{t^2}{a} = 2t$$

よって, 点 A の座標は, (2t, 0)

また, (1) において, x = 0とおけば

$$y = \frac{2a}{t}$$

よって,点Bの座標は, $\left(\mathbf{0},\frac{2a}{t}\right)$

(3) ここで線分 AB の中心の座標を求めると

$$\left(\frac{2t+0}{2}, \frac{0+\frac{2a}{t}}{2}\right) = \left(t, \frac{a}{t}\right)$$

これは点Pの座標に等しいので、点Pは線ABの中点である。よって、PA=PB

6.

(1)
$$y' = -2e^{-2x}$$
 よって、点Pにおける接線の方程式は

よって,点Aの座標は,
$$\left(t+\frac{1}{2},0\right)$$

また、①において、x = 0とおけば

$$v = 2te^{-2t} + e^{-2t}$$

よって,点Bの座標は, $(0, 2te^{-2t} + e^{-2t})$ 以上より,

$$S = \frac{1}{2} \left(t + \frac{1}{2} \right) (2te^{-2t} + e^{-2t})$$

$$= \frac{1}{2} \left(2t^2 e^{-2t} + te^{-2t} + te^{-2t} + \frac{1}{2} e^{-2t} \right)$$

$$= \left(t^2 + t + \frac{1}{4} \right) e^{-2t}$$

$$= \left(t + \frac{1}{2} \right)^2 e^{-2t} \quad (t > 0)$$

$$(2) S' = 2\left(t + \frac{1}{2}\right)e^{-2t} + \left(t + \frac{1}{2}\right)^2 (-2e^{-2t})$$

$$= -2e^{-2t}\left(-t - \frac{1}{2} + t^2 + t + \frac{1}{4}\right)$$

$$= -2e^{-2t}\left(t^2 - \frac{1}{4}\right)$$

$$= -2e^{-2t}\left(t + \frac{1}{2}\right)\left(t - \frac{1}{2}\right)$$

$$S' = 0 \$$
とすると, $t > 0 \$ であるから, $t = \frac{1}{2}$

$$t = \frac{1}{2}$$
のときの S の値は

$$S = \left(\frac{1}{2} + \frac{1}{2}\right)^2 e^{-2 \cdot \frac{1}{2}}$$

$$=1^2 \cdot e^{-1} = \frac{1}{e}$$

Sの増減表は次のようになる.

D 1/7	V1C 10) (·) (, , , ,	
t	0	•••	$\frac{1}{2}$	
S'		+	0	_
S		7	$\frac{1}{e}$	7

増減表よりSが最大になるときのtの値は

$$t = \frac{1}{2}$$

よって, 点 P の座標は, $\left(\frac{1}{2}, \frac{1}{e}\right)$