Fundamentele limbajelor de programare Programare Logică. Corectitudinea algoritmului de unificare.

Traian Florin Şerbănuță și Andrei Sipoș

Facultatea de Matematică și Informatică, DL Info

Anul II, Semestrul II, 2024/2025

Sectiunea 1

Programare Logică (de ordinul I)

Logica de ordinul I

Vom fixa patru obiecte \bot , \rightarrow , \forall , =, diferite două câte două și o mulțime numărabilă (de **variabile logice**)

$$V=\{x_0,x_1,\ldots\},$$

cu
$$V \cap \{\bot, \rightarrow, \forall, =\} = \emptyset$$
.

Signaturi de ordinul I

Definim o **signatură de ordinul I** ca fiind un triplet $\sigma = (F, R, r)$ astfel încât $F \cap R = \emptyset$, $(F \cup R) \cap (V \cup \{\bot, \rightarrow, \forall, =\}) = \emptyset$ și $r : F \cup R \rightarrow \mathbb{N}$.

Dacă $\sigma = (F, R, r)$ este o signatură de ordinul I, atunci numim:

- simbolurile de relație ale lui σ elementele lui R
- simbolurile de funcție ale lui σ elementele lui F
- r(s) aritatea lui s pentru orice $s \in F \cup R$
- **constantele** lui σ acele $f \in F$ pentru care r(f) = 0

Termeni

Termenii sunt cuvinte peste alfabetul

$$S_{\sigma} := \{\bot, \rightarrow, \forall, =\} \cup V \cup F \cup R.$$

definite prin următoarele două (scheme de) reguli:

- v e termen, pentru orice $v \in V$
- dacă $t_1, \ldots, t_{r(f)}$ sunt termeni, atunci f $t_1 \ldots t_{r(f)}$ e termen pentru orice $f \in F$.

 (în particular, dacă r(f) = 0, atunci f este termen)

Mulțimea termenilor peste σ se va nota cu T_{σ} .

Conventii de scriere

Presupunând că V, F, R nu conțin simbolurile (,), și , putem scrie $f(t_1,\ldots,t_{r(f)})$ în loc de f $t_1\cdots t_{r(s)}$ dacă r(f)>0.

Mulțimea variabilelor unui termen

 $Var: T_{\sigma} \rightarrow \mathcal{P}(V)$, definită prin:

- pentru orice $x \in V$, $Var(x) := \{x\}$;
- pentru orice $f \in F$ și orice $t_1, \ldots, t_{r(f)} \in T_{\sigma}$, $Var(f \ t_1 \cdots t_{r(f)}) := Var(t_1) \cup \ldots \cup Var(t_{r(s)})$ (în particular, dacă r(f) = 0, $Var(f) = \emptyset$).

Notăm cu T_{σ} mulțimea termenilor fără variabile.

Formule atomice

Fie $\sigma = (F, R, r)$ o signatură.

- O formulă atomică **ecuațională** sau doar **ecuație** e un șir de forma =tu, cu t, $u\in T_{\sigma}$
- O formulă atomică **relațională** e un șir de forma $p t_1 \cdots t_{r(p)}$ cu $p \in R$ și $t_1, \ldots, t_n \in T_{\sigma}$
- O formulă atomică este fie o ecuație fie o formulă atomică relațională

Mulțimea formulelor atomice peste σ se va nota cu Fa_{σ} .

Conventii de scriere

- Vom scrie t = u în loc de =tu
- Presupunând că V, F, R nu conțin simbolurile (,), și , putem scrie $p(t_1, \ldots, t_{r(p)})$ în loc de $p t_1 \cdots t_{r(p)}$ dacă r(p) > 0.

Formule

Mulțimea **formulelor** peste σ e definită de următoarele (scheme de) reguli:

- a este formulă, pentru orice formulă atomică $a \in Fa_{\sigma}$;
- dacă φ , ψ sunt formula, atunci $\rightarrow \varphi \psi$ este formulă;
- dacă φ formulă, atunci $\forall x \varphi \in A$, pentru orice $x \in V$.

Mulțimea formulelor peste σ se va nota cu F_{σ} .

De asemenea, vom defini **formulele relaționale** în același mod, cu excepția că acceptăm în cadrul lor doar formule atomice relaționale.

Conventii de scriere

Vom scrie $\varphi \to \psi$ în loc de $\to \varphi \psi$ și vom folosi parenteze pentru dezambiguizare.

Conectori logici derivați

Pentru orice $\varphi, \psi \in F_{\sigma}$

- \bullet $\top := \bot \to \bot$
- $\bullet \neg \varphi := \varphi \to \bot$
- $\varphi \wedge \psi := \neg(\varphi \rightarrow \neg \psi)$
- $\varphi \lor \psi := (\neg \varphi) \to \psi$
- $\varphi \leftrightarrow \psi := (\varphi \to \psi) \land (\psi \to \varphi)$
- $\exists x \varphi := \neg \forall x \neg \varphi$, pentru orice $x \in V$ și $\varphi \in F_{\sigma}$.

Mulțimea variabilelor libere ale unei formule

Definim funcția $FV: F_{\sigma} \to \mathcal{P}(V)$, prin:

- pentru orice t, $u \in T_{\sigma}$, $FV(t = u) := Var(t) \cup Var(u)$;
- pentru orice $p \in R$ și orice $t_1, \ldots, t_{r(p)} \in T_{\sigma}$, $FV(p t_1 \cdots t_{r(p)}) := Var(t_1) \cup \ldots \cup Var(t_{r(p)})$;
- $FV(\bot) := \emptyset$;
- pentru orice φ , $\psi \in F_{\sigma}$, $FV(\varphi \to \psi) := FV(\varphi) \cup FV(\psi)$;
- pentru orice $\varphi \in F_{\sigma}$ și $x \in V$, $FV(\forall x \varphi) := FV(\varphi) \setminus \{x\}$.

Dacă $\varphi \in F_{\sigma}$ cu $FV(\varphi) = \emptyset$, atunci φ se numește **enunț**. Mulțimea enunțurilor peste σ se notează cu E_{σ} .

Clauze

Dacă avem o formulă φ , $n \in \mathbb{N}$ și $k_1 < \ldots < k_n$ cu $FV(\varphi) = \{x_{k_1}, \ldots, x_{k_n}\}$, notăm cu $\forall \varphi$ enunțul $\forall x_{k_1} \ldots \forall x_{k_n} \varphi$.

Numim **literal** o formulă de forma φ sau $\neg \varphi$, unde φ este o formulă atomică relațională (literalul este, respectiv, **pozitiv** sau **negativ**). Numim **clauză** o formulă de forma $\forall (L_1 \lor \ldots \lor L_m)$, unde L_1, \ldots, L_m sunt literali. Numim **clauză definită** o clauză unde apare exact un literal pozitiv, anume pe prima poziție. Dacă $A_0, \ldots A_m$ sunt formule atomice relaționale, atunci clauza

$$\forall (A_0 \vee \neg A_1 \vee \ldots \vee \neg A_m)$$

se scrie și sub forma (cunoscută din limbajul Prolog)

$$A_0 \leftarrow A_1, \ldots, A_m$$
.

Un **program** va fi o mulțime finită de clauze definite. Un **scop definit** este o clauză în care apar doar literali negativi.

Secțiunea 2

Unificare

Motivația unificării

Să zicem că avem un program Prolog care conține regula

$$p(f(X), Y) \leftarrow p(X, Y)$$

și vrem să interogăm p(Z, f(T)). Pentru a găsi o soluție a acestei interogări folosind regula de mai sus, trebuie să substituim $X \mapsto X$, $Z \mapsto f(X)$, $Y \mapsto f(T)$, $T \mapsto T$, interogarea devenind p(f(X), f(T)), care este redusă, conform regulii, la p(X, f(T)), care devine practic o nouă interogare.

Observăm că o parte esențială a procesului de rulare a unui program Prolog este găsirea acelei substituții.

Substituția termenilor

Vom numi **substituție** o funcție $\theta: V \to T_{\sigma}$. Folosind Principiul de recursie pe termeni, ea se extinde natural în mod unic la o funcție $\widetilde{\theta}: T_{\sigma} \to T_{\sigma}$.

Se observă, folosind unicitatea, că, pentru orice două substituții θ , θ' ,

$$\widetilde{\widetilde{\theta'}\circ\theta}=\widetilde{\theta'}\circ\widetilde{\theta}.$$

Pentru o variabilă x și un termen t definim substituția singleton $[x\mapsto t]$ prin

$$[x \mapsto t](y) = \begin{cases} t, & \text{dacă } y = x, \\ y, & \text{altfel.} \end{cases}$$

Spunem că o substituție Θ e **mai generală** decât altă substituție Θ' dacă există o substitutie Δ astfel încât $\Theta' = \widetilde{\Delta} \circ \Theta$

• Notăm cu $\Theta \succ \Theta'$ faptul că Θ e mai generală decât Θ'

Unificatori

Dacă $\mathcal E$ este o mulțime de ecuații, numim **unificator** pentru ea o substituție θ astfel încât, pentru orice $(s=t)\in \mathcal E$, avem $\widetilde{\theta}(s)=\widetilde{\theta}(t)$

Notăm cu $\mathcal{U}(\mathcal{E})$ mulțimea unificatorilor lui \mathcal{E}

Un unificator θ pentru $\mathcal E$ se numește **cel mai general unificator** (**cgu**; **most general unifier**, **mgu**) dacă este mai general (ca substituție) decât orice alt unificator θ' pentru $\mathcal E$.

Formal Θ e mgu pentru ${\mathcal E}$ ddacă

- ullet $\Theta \in \mathcal{U}(\mathcal{E})$ și
- pentru orice $\Theta' \in \mathcal{U}(\mathcal{E}), \ \Theta \succ \Theta'$

Propoziție (definiție alternativă)

 Θ e mgu pentru ${\mathcal E}$ ddacă

$$\mathcal{U}(\mathcal{E}) = \{\Theta' : V \to T_{\sigma} \mid \Theta \succ \Theta'\}$$

Algoritm de unificare (ușor formalizat)

Algoritmul pornește cu configurația inițială $(\Theta, \mathcal{R}) = (1_V, \mathcal{E})$ și constă în aplicarea nedeterministă a regulilor de mai jos¹:

SCOATE
$$(\Theta, \mathcal{R} \cup \{t = t\}) \Longrightarrow (\Theta, \mathcal{R})$$

DESCOMPUNE
$$(\Theta, \mathcal{R} \cup \{f \ t_1 \cdots t_n = f \ t'_1 \cdots t'_n\})$$

 $\Longrightarrow (\Theta, \mathcal{R} \cup \{t_1 = t'_1, \dots, t_n = t'_n\})$

REZOLVĂ
$$(\Theta, \mathcal{R} \cup \{x = t\})$$
 sau $(\Theta, \mathcal{R} \cup \{t = x\})$
 $\Longrightarrow ([x \mapsto t] \circ \Theta, \{[x \mapsto t](t_1) = [x \mapsto t](t_2) \mid t_1 = t_2 \in \mathcal{R}\}$
dacă $x \notin Var(t)$.

EȘEC (conflict) există în
$$\mathcal{R}$$
 o ecuație de forma $f s_1 \cdots s_n = g t_1 \cdots t_m$ cu $f \neq g$.

EȘEC (ciclu) există în
$$\mathcal{R}$$
 o ecuație de forma $x = t$ sau $t = x$ cu $t \neq x$ și $x \in Var(t)$.

¹Condiție suplimentară pentru orice regulă $(\Theta, \mathcal{R} \cup \{e\}) \Longrightarrow (\Theta', \mathcal{R}')$: $e \notin \mathcal{R}$.

Accesibilitate

Definiție: Configurația (Θ', \mathcal{R}') e **accesibilă** din configurația (Θ, \mathcal{R}) dacă există $n \in \mathbb{N}$ și o secvență $(\Theta_i, \mathcal{R}_i)_{i \in \overline{1,n}}$, numită **derivare** astfel încât:

- $(\Theta_0, \mathcal{R}_0) = (\Theta, \mathcal{R})$
- $(\Theta_n, \mathcal{R}_n) = (\Theta', \mathcal{R}')$
- $(\Theta_i, \mathcal{R}_i) \Longrightarrow (\Theta_{i+1}, \mathcal{R}_{i+1})$ pentru orice $0 \le i < n$.

Invariant

Teoremă

Pentru orice configurație (Θ, \mathcal{R}) accesibilă dintr-o configurație $(1_V, \mathcal{E})$:

$$\mathcal{U}(\mathcal{E}) = \{\Theta' \in \mathcal{U}(\mathcal{R}) \mid \Theta \succ \Theta'\}$$

Demonstrație (schiță)

Demonstrăm concluzia teoremei împreună cu următoarele afirmații

- $\forall x \in V. \forall y \in Var(\Theta(x)). \Theta(y) = y$
- $\forall x \in Var(\mathcal{R}).\Theta(x) = x$ (unde $Var(\mathcal{R}) = \bigcup_{(t_1 = t_2) \in \mathcal{R}} (Var(t_1) \cup Var(t_2))$)

prin inducție după lungimea unei derivări.

Lemă ajutătoare

Fie Θ unificator pentru x = t, unde x variabilă.

Atunci $\Theta = \widetilde{\Theta} \circ [x \mapsto t].$

Variant

Pentru un termen t definim $n_F(t)$, numărul de simboluri din t recursiv prin:

- $n_F(x) = 0$ pentru orice variabilă x
- $n_F(f t_1 \cdots t_{r(f)}) = 1 + n_F(t_1) + \ldots + n_F(t_{r(s)})$

 n_F se extinde natural la ecuații și mulțimi de ecuații.

• n_F numără doar simbolurile de funcție (deci nu numără = ca simbol)

Dată fiind o configurație (Θ, \mathcal{R}) definim

$$variant((\Theta, \mathcal{R})) := (|Var(\mathcal{R})|, n_F(\mathcal{R}), |\mathcal{R}|).$$

Pe $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$ notăm *ordinea lexicografică* cu <

- $(n_1, n_2, n_3) < (m_1, m_2, m_3)$ ddacă $n_1 < m_1 \lor (n_1 = m_1 \land n_2 < m_2) \lor (n_1 = m_1 \land n_2 = m_2 \land n_3 < m_3)$
- < este o *bună ordine*, i.e., nu există secvențe infinite descrescătoare:

$$\not\exists (a_n)_{n\in\mathbb{N}}$$
 cu $a_n>a_{n+1}$ pentru orice $n\in\mathbb{N}$

Variant

Teoremă

$$\mathsf{Dac} (\Theta, \mathcal{R}) \Longrightarrow (\Theta', \mathcal{R}') \text{ atunci } \mathit{variant}((\Theta, \mathcal{R})) > \mathit{variant}((\Theta', \mathcal{R}'))$$

Demonstrație

Discuție după pasul din algoritm folosit:

SCOATE primele două componente nu cresc și ultima sigur scade cu 1
DESCOMPUNE prima componentă rămâne la fel și a doua scade cu 1
REZOLVĂ Prima componentă scade pentru că:

- REZOLVĂ Prima componentă scade, pentru că:
 - variabila care este rezolvată apărea în \mathcal{R} dar nu va mai apare în \mathcal{R}' (e substituită peste tot cu un termen în care nu apare)
 - nu apar alte variabile noi

Terminare

Teoremă

Algoritmul de unificare nu admite derivări infinite.

Demonstratie

Presupunem există o derivare infinită $(\Theta_n, \mathcal{R}_n)_{n \in \mathbb{N}}$ Considerăm șirul $(a_n)_{n \in \mathbb{N}}$ definit prin $a_n := variant((\Theta_n, \mathcal{R}_n))$ Deoarece $(\Theta_n, \mathcal{R}_n) \Longrightarrow (\Theta_{n+1}, \mathcal{R}_{n+1})$ pentru orice $n \in \mathbb{N}$, reiese că $a_n > a_{n+1}$ pentru orice $n \in \mathbb{N}$ (din teorema de variant). Contradicție cu faptul că < e bună ordine pe $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$.

Configurații finale

O configurație (Θ, \mathcal{R}) se numește **finală** dacă orice ecuatie din \mathcal{R} este "de esec", i.e., de forma:

- x = t sau t = x unde $t \neq x$ și $x \in Var(t)$
- $f t_1 \cdots t_{r(f)} = g t'_1 \cdots t'_{r(g)}$ cu $f \neq g$

Teoremă

Dacă
$$(\Theta, \mathcal{R})$$
 e finală atunci $\mathcal{U}(\mathcal{R}) = \begin{cases} T_{\sigma}^{V} & \text{dacă } \mathcal{R} = \emptyset \\ \emptyset & \text{altfel} \end{cases}$

Demonstratie

Dacă $\mathcal{R} = \emptyset$ afirmatia e evidentă din definiția unificatorilor^a.

- Altfel, prin reducere la absurd pentru $\Theta(t_1) = \Theta(t_2)$ unde $(t_1 = t_2) \in \mathcal{R}$
 - $\Theta(x) = \Theta(t)$ contradicție cu $n_F(\Theta(x)) < n_F(\Theta(t))$ • $\Theta(f t_1 \cdots t_{r(f)}) = \Theta(g t'_1 \cdots t'_{r(g)})$ contradicție cu $f \neq g$

Corectitudine parțială

Fie (Θ, \mathcal{R}) configurație finală accesibilă din $(1_V, \mathcal{E})$.

- Dacă $\mathcal{R} = \emptyset$ atunci Θ este mgu pentru \mathcal{E} .
- Dacă $\mathcal{R} \neq \emptyset$ atunci $\mathcal{U}(\mathcal{E}) = \emptyset$.

Demonstrație

Folosind teorema despre invariant avem că

$$\mathcal{U}(\mathcal{E}) = \{\Theta' \in \mathcal{U}(\mathcal{R}) \mid \Theta \succ \Theta'\}$$

Folosim teorema despre configurații finale:

- dacă $\mathcal{R} = \emptyset$, atunci $\mathcal{U}(\mathcal{R}) = T_{\sigma}^{V}$, deci $\mathcal{U}(\mathcal{E}) = \{\Theta' : V \to T_{\sigma} \mid \Theta \succ \Theta'\}$ de unde Θ mgu pentru \mathcal{E} .
- dacă $\mathcal{R} \neq \emptyset$, atunci $\mathcal{U}(\mathcal{R}) = \emptyset$, deci $\mathcal{U}(\mathcal{E}) = \emptyset$

Progres

Teoremă

Pentru orice configurație ne-finală (Θ,\mathcal{R}) există o configurație (Θ',\mathcal{R}') cu

$$(\Theta,\mathcal{R}) \Longrightarrow (\Theta',\mathcal{R}')$$

Demonstrație

Există cel puțin o ecuație $(t_1=t_2)\in \mathcal{R}$ care nu e "de eșec".

Analiză după forma ei. Avem trei cazuri:

$$x = x$$
 Aplicăm regula ELIMINĂ

$$x = t$$
 sau $t = x$ cu $t \neq x$ Avem că $x \notin Var(t)$ (nu e de eșec).

Aplicăm regula REZOLVĂ

$$f t_1 \cdots t_{r(f)} = g t'_1 \cdots t'_{r(g)}$$
 Avem că $f = g$ (nu e de eșec).

Aplicăm regula DESCOMPUNE

Corectitudine totală

Teoremă

Algoritmul de unificare se termină mereu și produce rezultatul corect.

Demonstrație

- Terminare: din teorema de terminare.
- Admite configurații finale: din teorema de progres (și terminare).
- Produce rezultatul corect: din teorema de corectitudine parțială.