Universidade do Minho

1º Teste de

Lógica EI

Lic. Eng. Informática

30 de Abril de 2011

Duração: 2 horas

Nota: Justifique adequadamente cada uma das suas respostas.

1. Seja $X = \{0,1\}$ e seja $G \subseteq X^*$ o conjunto gerado pela seguinte definição indutiva:

$$\frac{u \in G}{1 \in G} \ (i) \qquad \frac{u \in G}{00u \in G} \ (ii) \qquad \frac{u \in G}{u1 \in G} \ (iii)$$

- (a) Construa uma árvore de formação do elemento 0011 de G.
- (b) A definição indutiva de G é determinista?
- (c) Enuncie o Teorema de Indução Estrutural para G.
- (d) Seja $f: X^* \to X^*$ a função definida, para cada $u \in X^*$, por f(u) = 0u. Diga se G é fechado para f.
- 2. Considere $f: \mathcal{F}^{CP} \to \{0,1\}$ a função definida recursivamente por:
 - (i) $f(p_i) = 0$ $(i \in \mathbb{N}_0)$.
- (ii) $f(\bot) = 0$.

(iii) $f(\neg \varphi) = f(\varphi)^2$.

- (iv) $f(\varphi \Box \psi) = f(\varphi) \times f(\psi) \quad (\Box \in \{\land, \lor, \to, \leftrightarrow\}).$
- (a) Verifique que $f(\neg(\neg p_3 \to \bot)) = 0$.
- (b) Prove por indução estrutural que, para todo $\varphi \in \mathcal{F}^{CP}$, $f(\varphi) = 0$.
- (c) Diga se f é uma valoração.
- 3. Seja φ a seguinte fórmula do Cálculo Proposicional:

$$\varphi = (p_0 \to \bot) \lor (p_1 \leftrightarrow \neg p_2).$$

- (a) Dê exemplo de uma forma normal conjuntiva logicamente equivalente a φ .
- , (b) Diga se $\varphi[(p_1\vee p_2)\wedge (\neg p_1\vee \neg p_2)/p_0]$ é uma tautologia.
 - (c) Verifique se $\neg (p_1 \land p_2)$ é consequência semântica de $\{\varphi, p_0\}$.
- 4. Considere as seguintes proposições:
 - João gosta de computadores mas não usa óculos.
 - Se João gosta de computadores, então usa óculos se e só se é engenheiro.
 - João não é engenheiro ou usa óculos.
 - (a) Exprima as afirmações anteriores através de fórmulas do Cálculo Proposicional, utilizando variáveis proposicionais para representar as frases atómicas.
 - (b) Diga se as três proposições acima podem ser simultaneamente verdadeiras.
- 5. Sejam $\varphi \in \mathcal{F}^{CP}$ e $\Gamma \subseteq \mathcal{F}^{CP}$. Diga se as afirmações seguintes são verdadeiras ou falsas:
 - (a) Se Γ é consistente e $\Gamma \models \varphi$, então φ não é uma contradição.
 - (b) $p_0 \vee \neg p_0 \models \varphi$ se e só se φ é uma tautologia.
 - (c) Se Γ , $p_0 \to p_2 \models p_0 \land p_2$, então Γ é inconsistente.

Cotações	1.	2.	3.	4.	5.
	1+1+1+1	1+2+1	1,5+1,5+1,5	1,5+1,5	1,5+1,5+1,5