Quantur Mechanics in Three dimensions we could approximate as one dimensional A general problem; quantur particle in 3d potential = V(x,y, Z)

Classically: H= 12 + V(r) P= Px + Px + Pe = P.P where P = (Px, Py, Pz) Quantu particle. A physical state 4(x, y, 2, t) = 4(r, t) a solution to schweduger equation it= 4 = 114 Where $H = \frac{2 \times 1}{2 \times 1} + \frac{1}{2 \times 1} + \frac{1}{2 \times 1} + \frac{1}{2 \times 1}$ Px = -itiox, Py=-ition, Pz=-ition

Combine

$$\begin{pmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} & \frac{\partial}$$

3d Schroedinger Egn 4(r,t) + V(r) 4(v,t) =+に大きり(では) normalisable states 3 4(r,t) Solution with definite energy (r,t) = 4=(r) e Sin le it = 4(r,t)= = 4(r,t) it) Solves

provided the solves

H
$$t_e(\vec{r}) = E(\vec{r})$$

or

Time indep. s.e.

- t_0^2 t_0^2

	Ex1
	3d Harmonic osulator:
	34 Harring C 33 1
	V(r) = 1 (kx X + ky Y + kz 23)
	our 2
	this is an approbimation to
	this is an approbimation to an artihory 3d potential
	and the second
	near a minimum where
	$\nabla V=0=1$ $\frac{\partial}{\partial x}V=0=\frac{\partial}{\partial y}V=\frac{\partial}{\partial z}V$
	V=0=) = 0= 27 V= 72 V
	The second denvalve makex
	Jr. Sr.
	is symmetric, and can always
	Sof Milliam Control
	AP Me x y
-+	Be diagenalitéel. April, x, y,
-+	•
	2 are coordinates un correspondy
	coordinates.

Eignfudar of ti Uni = (ni+ 2) with Uni where W= Ki/m (hi= Vni(ri) = nith eignifuler Then 4-(+)= 4nx(x) tny(y)4n2(2) acts only = ExtEytEz = trwx (nx+ 2)+ + truy (hytz) + + h Wz (nz+1)

	Note:
	- For:
	Wx + Wy + Wz
	no symmetry e no degeneracy
	- For wx=wy + wz:
	Axial symmetry (rot: about z-axis)
	Degenwaly: states
	Chringinz, Chringing.
	Have same energy if
	nxthy = nxt hy
	NZ = NZ
-	- For $\omega_x = \omega_y = \omega_z$:
	Sphenical symmetry.
	Same energy it
	NX+NY+NZ= NX+NY+NZ.

Sphenically symmetric potental $V(\hat{r}) = V(r)$ where $\gamma = \sqrt{x^2 + y^2 + 2^2}$ depends only on dislance Som on'giu. Usefu use coordinates that make nse of sphenical symmetry! to "spherical coordinates

r - radius 0 - polar æugle e - azymuthal augh Y= \X2+ Y2+ Z2 $0 = \cos\left(\frac{z}{\sqrt{x^2+y^2+z^2}}\right)$ 0 = tan (y/x) Change to polar wordness in SE itizt 4 = - # 74 + V(r) 4 In these coordinables

equals 5170 30 (8in 0 30 Since this says - th 2 (12 a 4

)
<u>}</u>

of angular momentue
squared operator.
Later: Spectrum of Î ²
is discrete. Allowed
values of 12 are
$\Lambda = t^2 l(l+1)$
where $e = 0, 1, 2,$
and degenerate
Tem
$m = -\ell_1 - \ell_1 - \ell_1 - \ell_1 = \ell_1 - \ell_1 = \ell_1 - \ell_1 = \ell_1 =$
20+1

all have same eigenvalue. They are distinguished by where La Tem = -it Then, R(r) sobez

$$=0$$
 $A = t^{2}l(l+1)$, $l=0,1,2$.

where

where

$$P(x) = (1-x^2)^{\frac{|m|}{2}} \left(\frac{1}{4x}\right) P(x)$$

$$P_{\ell}(x) = \frac{1}{2^{\ell} \ell!} \left(\frac{d}{dx} \right)^{\ell} (x^2 - 1)^{\ell}$$

Note:

or
$$M = -\ell_1 - \ell_2 - \ell_3 - \ell_4 - \ell_5 - \ell_$$

$$P_0(x) = 1$$

$$P_{\lambda}(x) = x$$

$$P_{\alpha}(x) = \frac{1}{2}(3x^2-1)$$

The Radial Egn

$$-\frac{t^2}{2m}\frac{1}{r^2}\frac{\partial}{\partial r}\left(r^2\frac{\partial}{\partial r}R\right)+\left[V(r)+\frac{t^2}{2mr^2}llll\right]R$$

Vell(r) =
$$V(r) + \frac{t^2}{2mr^2}$$
 lil+1)

Centrifugal

Term

lfo => repels particle frame=0

Simplifies of:

$$R(r) = \frac{2U(r)}{r}$$

Thun
$$\frac{1}{r^2} \frac{d}{dr} (r^2 \frac{d}{dr} R) = \frac{1}{r^2} \frac{d}{dr} (r \frac{d}{dr} u - u)$$

$$= \frac{1}{r^2} \cdot r \frac{d^2}{dr^2} u = \frac{1}{r} \frac{d^2}{dr^2} u$$

$$= 0 \quad u \quad \text{solves}$$

$$\frac{1}{r} \left[-\frac{t^2}{2m} \frac{d^2}{dr^2} u + V_{ell}(r) u = E u \right]$$

Solu to T.J.S.E For fixed E, e, u TEIRIM(V) = MEIR(V) (PIM(O14) Normalizaton (37 (F) = 1 (d3= Sr2 sino drdodq

Atom Hy drogan 4.2 -ly drogen escentially motoriles m = me tZe

radial for a wave gr Ver (Cot C1rt C2r+... + Cnir) all Dehaul as for mall for each fixed l: Worve funder with nodes More nodes <=> Higher onergy. n=n+l+1 angular monulu # of nodis P=0111 -n/=0111--

More qually: Unie(r)=renr Vnie(r)=renr Where Vne(r) = Zi Gra Egn must hold for all coefficily rd suparally. Kicj retttj l(l+1) Cj+2 - 27 G+1 - (l+1+j+2)(l+1+j+1) Cj+2 +2K(l+j+2) Cj+1 - R

$$= 0 \left[l(l+1) - (l+j+3)(l+j+2) \right] C_{j+2}$$

$$= \left[2^{2} - 2k(l+j+2) \right] C_{j+1}$$

$$= \left[2^{2} - 2k(l+j+2) \right] C_{j+1}$$

$$= \left[2^{2} - 2k(l+j+2) \right] C_{j+1}$$

$$= 0 \quad C_{n+1} \quad C_{n+1$$

	n= n+ l+1
	is principal quantum munter
	since et determens onnegy
	En = Z E1 Bohr formula
	$E_{1}=-\frac{t^{2}}{2ma^{2}}$ un 1913 (S.E. demalu) 1924
	Deguiray:
_	For each fixed n,
	values of l'allowed
	l=01, n-1 too shalum
	(For l too high, well Pecons

to have bound states: For fired l, there are arlibertly many states of tight and higher energy, m = n - (l+1)modes

$$R_{2,0} = A_{2,0} \left(1 - \frac{1}{2}r/a\right) e^{-r/2a}$$

$$R_{3,2} = A_{3,2} r^2 e^{-r/3a}$$

$$R_{3,0} = A_{3,0} r^2 e^{-r/3a}$$

	For l'20, wave- fu vanishig
	at r=0.
	A particle Can't have any augular monuture at r=0!
	augular monutuul at r=0!)
_	
-	To find degenery of states
	retall:
	_ at Bixed C, have
	20+1 states " with
	$\frac{1}{2}$
	Lz eignalis tim
	$m = -\ell_1 - \ell + 1, -1, 0, 1, \ell$
	n-1
	$d(n) = \sum_{n=1}^{\infty} (2\ell+1)$
	$l=0$ $= 2 \cdot n(n-1) + n = n^2$
	$= 2 \cdot \frac{1}{2} $

Wave funday are orthonormal 3- 7 Thimle (F) Thimle (F) = $\frac{1}{2}$ $\frac{1}{2}$ 13== \rdr sino do de 5/110 do de (e,m (0, e) (e'm' (0, e)
= Se of m' arel - Sdr Rnie(r) Rnie'(r)

= Sdr Unie(r) Unie'(r)= Su de

Z=1 (=) Hydrogun Atom 45 N=3 n'=2 40 n'=1 4 n'=c deried deried The energy levels are exact to 0.01 %. Missing effects relativista non-coulant nucleus-elivar intractors.

This giver also a fair first approximation to engy Levels of multi-electron ions. .. But for this we must include Hydrogen emission spechul Suppose you have an atom in some state Une, m Strictly, it should stay there forever. However, in reality

electron is coupled to electro -magnetic field... this is true even in vacuum. This supling alous elector to transition between the Aales by emiting * Emith's a photon of energy Ex= Er- Et $= \pm 1 \left(\frac{1}{n_i^2} - \frac{1}{n_p^2} \right)$ >=> == >= if ng zn.' Energy of a photen Ey=hv $=\hbar\omega$, So wavelight

Lyman
$$\frac{1}{n_{s}=1}$$
: $\frac{1}{n}=R\left(1-\frac{1}{n_{i}}^{2}\right)$

Balmer $\frac{1}{n}=R\left(\frac{1}{2^{2}}-\frac{1}{n_{i}}^{2}\right)$

hg=2

Pacher $\frac{1}{n}=R\left(\frac{1}{2^{2}}-\frac{1}{n_{i}}^{2}\right)$

Angular Momentum

Clamcally, in a applicably symmetric political $\frac{1}{n_{s}}=\frac{1}{n_{s}}$

E | $\frac{1}{n_{s}}=\frac{1}{n_{s}}$

are considered

 $\frac{1}{n_{s}}=\frac{1}{n_{s}}$
 $\frac{1}{n_{s}}=\frac{1}{n_{s}}$
 $\frac{1}{n_{s}}=\frac{1}{n_{s}}$

Angular Momentum

Angular Momentum

 $\frac{1}{n_{s}}=\frac{1}{n_{s}}$
 $\frac{1}{n_{s}}=\frac{1}{n_{s}}$

In components _ = (Lx, Ly, Lz) LX=YPz-ZPy y = Zpx- x PZ LZ = x Py - y Px In an, these observably promoted to operators

Fortmatch. 2 = Lx+Ly+L2 commety with all [L, Lx]=0=[L, Ly] So, we can find common eigne fra day of Tuse where Eleim = REIE(r) (eim (Oil)

One gow show, wsphur word Lz=Xpy-ypx=-ittage X= 7 SMO WS4 Y= raind sing $L_{1}^{2} = -\frac{1}{2} \left[\frac{1}{800000} \left(\frac{1}{800000} \right) \right]$ + = 102 2 2 2 2 2 (e,m(0,4) = th((+1) & Tl,w = (1, m(0, 4) = tim (1, m It turns out that to derive speche of 12 we do not med expluit formlas ges eigenfró, only commutation rels. Suppose we try to final of Lt= Lx tily Thus = [L = 1 L x + i L y] = ith (Ly = i Lx). = th (Lx ti Ly) This means that -t mereases Lz eiguvalue by to and L-decreases of

no eignvalue of Lz can Be Bigger, in absolute herritan and in any state (L2)= (Lx)+(Lx)+(L2)7,(L2) thue must be a top Mmax = tel | fmax > , | fmin > L+lfmax) = 0 = L-lfmin>

What are lie?

SIMIL

we have

Simoury

So
$$t^2 \ell(\ell+1) = \lambda = t^2 \ell(\ell-1)$$
 $\ell_1 \ell$ are not newbarily integral

But $\ell_2 - \ell = \# \text{ of step up's} = \ell$

is an weiger 20 .

 $\ell_2 = \# \text{ of step s} = \ell - \ell$
 $\ell_3 = \ell_4 + \ell_5 = \ell_5 + \ell_5 = \ell_5$

- Eigenvalur of L'ave the l(l+1) l=0, \frac{1}{2}, 1, \frac{3}{2}, 2 where eithe integer or half Eigenvalus of Lz are -l,-l+1, ,l-1, l Gives us eigenvalues, allowed without nudig eignificateus. * For l=0, 1, 2, ... Eigenfuctions and (1,m(0,4) we wrote denn Pefer Yeim (0,4) = Ane Pe (wso) e Associated Legandre Polynamal l= 1 3 . . . This type of angular manushed with where the particle is.

Instead of corresponds to Internal degree an freedom "Spin" 4.4 Spin Clamical mulauries two hinds of auguler manuly ortital aug. celler of mas motion about centr of was

Believes esactly whe L [Sx, Sy]=itcSz + gun =0 particles ceu le commen eignet. 5=5.5 5 |s m>= th s(S+1) |s m> Sz(Sim) = tim ISm> turns out electrons, quenty, all early an whine Gorn, which is a propuly of the particle.

Eluhans S=1, M=+2 or = Photous S= L ; M=+1, 0 m-1 S=2; W=12,+1,0,-1,02 Even though they are pointlike partieles so nothing is really spring about c.o.m. Eleutary on atom here Both sprin and orbital augular. memerhur l l=01112, -

	This abstract reportulation of
	statis is all we can ask for
	Since internal spin 5 of a
Ą	out parlicle has noting to to
	with position x, y, 2.
	Still we can get fran it
	all we need.
	Lets write down
	S ² , S ₂ , S ₊ , S ₋
	· 14>, (4>
(3ans.
	•

$$\frac{1}{3} \frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{3} \frac{1}$$

$$|\uparrow\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \quad |\downarrow\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$=\frac{\pi}{2}\left(0\right)=\frac{\pi}{2}\left(1\right)$$

$$S^2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} * \frac{3}{4}t^2$$

Sincl

$$\frac{2}{5} |1\rangle = \frac{1}{4} S(S+1) |1\rangle$$

$$= \frac{1}{4} \frac{2}{4} |1\rangle$$

Ruall

Or earl show:

So,
$$S = \frac{1}{2}$$

$$S + |1\rangle = 0$$

$$S + |1\rangle = 0$$

$$S = \frac{1}{2} |M\rangle = \frac{1}{2}$$

$$S - |1\rangle = \frac{1}{2} |M\rangle = 0$$

$$S + = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$S + = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

spin = matrices These I play such an impulant one defins Sx= tox, Sy=tor, Sz= toz Pauli spin (5) matius: $\begin{bmatrix} 0 & \lambda \\ -1 & 0 \end{bmatrix}$ Example Find a state 14> such that Sz= 2 W/ prob. 1912 Sz=-2 W pour 1612 1al+1b12=1

In the same state, and probability

to meanue
$$Sx = \frac{4\pi}{2} \quad \text{and} \quad Sx = -\frac{4\pi}{2}$$

Let $|1|_{2}$, $|1|_{2}$) be eigeneins
of Sz

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1|_{2}$$
) $\left(Sz = +\frac{4\pi}{2}\right)$

$$\begin{pmatrix} 0 \\ 1 \end{pmatrix} = |1|_{2}$$
) $\left(Sz = -\frac{4\pi}{2}\right)$

Thue
$$Prote\left(Sz = +\frac{\pi}{2}\right) = \left(\frac{1}{2}|1|4\right) = |a|^{2}$$

$$Prote\left(Sz = -\frac{4\pi}{2}\right) = \left(\frac{1}{2}|1|4\right)$$

$$Since\left(\frac{1}{2}|1|4\right) = |a|^{2}$$

$$Since\left(\frac{1}{2}|1|4\right) = |a|^{2}$$

$$\left(\frac{1}{2}|1|4\right) = |a|^{2}$$

To find this we need to know

Its eignestors are

$$|\uparrow_{x}\rangle = \frac{1}{72}\begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 $\leq_{x=+\frac{1}{2}}$

$$| \psi_{\chi} \rangle = \frac{1}{\Upsilon_2} \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$
 $S_{\chi} = -\frac{1}{2}$

$$\langle 1_x | 1_x \rangle = 1 = \langle 1_x | 1_x \rangle$$

Prob
$$(1x) = |\langle 1x| | | |\langle 1 \rangle|^2$$

$$= |\frac{1}{72}(1 | 1) |\langle 1 \rangle|^2$$

$$= |a+b|^2$$
Prob $(1x) = |a-b|^2$

$$= |a-b|^2$$

$$= |a-b|^2$$
E.g. $a=1,b=0$ (=) electron is
in state $(1x) = 1$ we marke $(1x) = 1$ we marke $(1x) = 1$ where $(1x) = 1$ we have $(1x) = 1$ and $(1x)$

Example:

So

$$= (a^{\dagger}b^{\dagger}) \begin{pmatrix} \frac{t}{2} & 0 \\ \frac{t}{2} & \frac{t}{2} \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$
$$= \frac{t}{2} \left(|a|^2 - |b|^2 \right)$$

$$\langle S_{x} \rangle = \begin{pmatrix} a & b \end{pmatrix} \begin{pmatrix} a & b \\ b & 2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix}$$

$$= \left(\frac{1}{2}b^{4} + \frac{1}{2}a^{4}\right)\begin{pmatrix} 9\\ b \end{pmatrix}$$

$$= \frac{\pi}{2} \left(ab^{2} + ba^{2} \right)$$

$$\langle Sy \rangle = \frac{t}{2} \left(iab - ba^* \right)$$

Electron in Magnetic Field
How do we measure Sprin?
Spinning change has magnete dipole moment of particle
Spin angular gyro-mag. Tahio
It Behaus like a little magnet
which likes to align W/ Magnetic fild B
H=- M·B. =-8 S·B
Pick z akis along B:
H=-855.B
(This focuses only on sprin work bulen

$$H|I_{z}\rangle = -88.52|I_{z}\rangle = -\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

$$H|I_{z}\rangle = +\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

$$H|I_{z}\rangle = +\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

$$H|I_{z}\rangle = +\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

$$H|I_{z}\rangle = +\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

$$I_{z}\rangle = -\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

$$I_{z}\rangle = -\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

$$I_{z}\rangle = -\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}$$

$$I_{z}\rangle = -\frac{1}{2}\frac{1$$

Electeur in Beau experience B=(B0+d2)2; 65t 5T (need x company as well, such with your) For stort time while they havel theup magnt (1/(t)) = a/2) e i = +/t + b/2 e i = - c = - 1/h OSTST No time dependence Before or t<0 (4(t)) = a /2> + b /2> For t>T, electron emerges

Addition of Angular Momentud Suppose you have two particles Eg Hydrogen atom, in ground Both proton and electron are Sprin & particles. Total spin

1	Mptme
4 possible states	11
Mp Me	\sim
1/p,1e> +1 +1	+1
11p, ve) += ==================================	0
1 /p, ile > - 1 . + 1	0
Upi be	-1
Claim: The 4 states	•
correspond to total sy	nm:
S=1 S=0	
$m = l_1 o_1 - l \qquad m = 0$)
three states one	ota L
three states. The	> M C
$S=1$, $m=1$) = $ \Lambda_p \Lambda_0$	<u> </u>
1 2 - 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1	2/
S=1, M=-1> = Up V	<u>e</u>

ov:

Replace two Spin 2 particles
with two particles of artitacy
Spins St and St
There are (251+1) × (252+1)
possible states:
$ S_1, M_1\rangle \otimes S_2, M_2\rangle$
$m_1 = -S_{11} - \cdots + S_1$
M2=-S21 S2
These are eigenfu's of Sin
But, they are not eigenfus
of $S^2 = (\bar{S}_1 + \bar{S}_2)^2$

_

Since
$$S^{2} = \vec{S} \cdot \vec{S} = \vec{S}_{1}^{2} + \vec{S}_{2}^{2} + 2\vec{S}_{1}\vec{S}_{2}$$

$$= \vec{S}_{1}^{2} + \vec{S}_{2}^{2} + 2\vec{S}_{1} \cdot \vec{S}_{2}$$

$$[S^2, S^2] = 0 = [S^2, S^2]$$

 $= S_1^2 + S_2^2 + 2S_1 \cdot S_2$

but
$$[5^2, 542] \neq 0$$

Instead, we can look for

passir of eigenstates of

Since they muhially commule.

 $|S, S_1, S_2, m\rangle \equiv |S, m\rangle$

(Recall: 52 commutes w/ Sx, Sy, Sz But SxiSy, Sz do not commute w/ each other)

Claim: From 25,+1) x (252+1) states S11W1) & (S2(W2). oblain all eigenstates 1SIM7 where S = S1+521 . in untiger steps. E.g: 15=51+52, m=51+52> = (S1, MI=S1) @ | S2, M2=S2> Ma M

(tasy to check # 8 of States add up!) Simi 182 M2 (SIIMI) D (S21 M2) m=W1tW2 = "Clebsch-Gordon coefficients" E.8

Identical particles
Single qurticle wave fundae
74(r,t)
posi'' in a particle
Two particle wave fue
2+(r, r2, t).
n n n n n n n n n n n n n n n n n n n
$ \psi(r_1,r_2,t) ^2 = \text{Probability}$ density
to find particle 1
at 7, and particle 2
=P(r,1r21t)

	Tu's is all well of particles
	#1 and #2
	are distinguisherle.
	towern, QM is full of particles bich are not distinguishable.
- E	Any two electrons are exactly the same (or protons, or photons)
	Then, it has to be true
	that $p(\vec{r}_1 \vec{r}_2 t) = p(\vec{r}_2 \vec{r}_1 t)$
	Since we cannot distinguish

Let . P = exchange operator $Pf(\vec{r}_1,\vec{r}_2) = f(\vec{r}_2,\vec{r}_1), any f.$ Thu, (+) is the same as PH = 4Pf for any f, or (P, H.) = 0 This means, we can find a basis of Hilbert space that consists of simultaneous eigenfrinchons of H and P. Since is eignoralues are symmetric anti-sym. gn8 7 (r11/2) = ± 4 (r21 r1)

So far, we only included spatial part of wave fins. In nature, we must also include spin E.g., ware In of two distinct Sprin & particles is of from 2 (rirz) & element of 4-dim vector space spanned 84 17,77, 17,17 14,1>, (4,4> For identical particles, total quantum state has to be symmetic or anti-symmetic Spin-Statistics Theorem a Spins For identical particles

	E.g Consider two electrons in
	a-square well. Assure particles
	are non-interacting.
	Total quantum state
	Spatial x Spin
	is anti-symmetic if
	Symmetic x aug-smule
	ant-sym x symmetric
	Spatial Wave for is symmetre
4	t 11/1/2/=1(tn, (x1) 4n2(x2) + 4n, (x2) 4n2(x,)
	1-particle (h(x) - n th wave In af
	a square well

Anti-Symmetic: Thinz (x, kz) = - (4, (x) 4nz (xz) --4n, (x2) 4n2(x1) Note: $V_{N_1N_2}(X_{1_1}X_2) = 0$ of $N_1 = N_2$ Spin wave Ins: Symmetic! M = | 5=1 1 (M)+ (M), W=D 111) (m=-1 Anti- symmetic = (172> - 124> 5= 6

Lowest energy state $h_1 = h_2 = 1$ and S = 0. Next level up has $n_1 = 1$, $n_2 = 2$ and s = 0 or S=1. Periodic Table A neutral atom consists of heavy nucleus of charge +Ze Z elections.

Hint Coulomb repulsor of elulars

Stationery states

(1)
$$H = (\vec{r}_1, \vec{r}_2) = E = (\vec{r}_1, \vec{r}_2)$$

Q: What is the ground state of H for Z=1,2,...

() which atoms exist in makine
Can derive from this the Periodic Table of Elevits!
Stationary states w/
E> Eground scale (=) excited states of the atom
Full quantu state is
4 (ri, 12) = × (Si, 152)
Total quantum state has to De anti-symmetic
$= -\frac{1}{(r_1, r_2, \dots, r_n)} \times (\vec{s}_1, \vec{s}_1, \dots, \vec{s}_n)$ $= -\frac{1}{(r_1, r_2, \dots)} \times (\vec{s}_1, \vec{s}_1, \dots, r_n)$

•

Es for 2 particles

$$\frac{(T)(\vec{r}_{11}\vec{r}_{2}) = \frac{1}{T_{2}}(T_{1}(\vec{r}_{11}\vec{r}_{2}) + T_{1}(\vec{r}_{21}\vec{r}_{1}))}{T_{2}(T_{11}\vec{r}_{2}) = T_{2}(T_{1}(\vec{r}_{11}\vec{r}_{2}) - T_{1}(\vec{r}_{21}\vec{r}_{1}))}$$
Anti-signal:

$$\frac{(T)(\vec{r}_{11}\vec{r}_{2}) = T_{2}(T_{1}(\vec{r}_{11}\vec{r}_{2}) - T_{1}(\vec{r}_{21}\vec{r}_{1}))}{T_{2}(T_{11}\vec{r}_{21}) = T_{2}(T_{1}(\vec{r}_{11}\vec{r}_{2}) - T_{1}(\vec{r}_{21}\vec{r}_{1}))}$$

$$\frac{(T)(\vec{r}_{11}\vec{r}_{21}) = T_{2}(T_{11}\vec{r}_{21}) - T_{1}(\vec{r}_{21}\vec{r}_{11})}{T_{1}(\vec{r}_{21}\vec{r}_{11}) - T_{1}(\vec{r}_{21}\vec{r}_{11})}$$

$$\frac{(T)(\vec{r}_{11}\vec{r}_{21}) = T_{2}(T_{11}\vec{r}_{21}) - T_{1}(\vec{r}_{21}\vec{r}_{11})$$

$$\frac{(T)(\vec{r}_{11}\vec{r}_{21}) = T_{2}(T_{11}\vec{r}_{21}) - T_{1}(\vec{r}_{21}\vec{r}_{21})$$

$$\frac{(T)(\vec{r}_{11}\vec{r}_{21}) = T_{1}(\vec{r}_{21}\vec{r}_{21})$$

$$\frac{(T)(\vec{r}_{1$$

H= Ho+ Hint = Ho Ground states can be deduced from Hydrogenic ones! We can get a good qualitative fairly. pricture which atoms exist & derive essential features of Table of elements. E.g Z=2 4 (r, r2) & 4nem (r) 4n2e2m2 (r2) = 4 (En+ En2) Bohr trup En= - 12 x 13.6 eV

E.g. ground state:

$$n_1=n_2=1=0$$
 $2(r_1r_2)=2t_{100}(r_1)2t_{100}(r_2)$
 $n_1 e_1 e_1$
 $e_1 e_2$
 $e_2 e_3$
 $e_4 e_2 e_4$
 $e_4 e_5$
 $e_4 e_5$
 $e_4 e_5$
 $e_4 e_5$
 $e_4 e_5$
 e_5
 e_6
 e_6

In the ground-state 4 (F2, F2) = 24 (V2, V2) is neuroauly symmetic -- the anti-symmetized wave In ramishes. So, the spin part X(5,152)= - (M)-141) hus to be auti-symmetic. => spir singlet: S=0, m=0. Total He ground state: 4,00(r) 4100(r2) 1 (H1) - (117)

Periodic Table
Ground states of heavier atoms cem le deduced similarly.
The lowest energy state corresponds to Z electrons
placed in lowest energy configuration
subject to total anti-symmetry
of wave function.
We worked out ground-states of
$\frac{1}{1} \left(\frac{z}{z} \right)$ $\frac{1}{1} \left(\frac{z}{z} \right)$ $\frac{1}{1} \left(\frac{z}{z} \right)$
m=1 $m=1$ $l=0$, $s=0$ $l=0$, $s=0$

Pauli - exclusion principle sprevents having more than one elular un sant state, 723, have to start filling up higher enugy levels Roughly, outer elections being in n-th shell => n-th row of pen'odic table level has room for elections, subject to pauli: exclusion

	m=0 m=1 m=-1						
N=2	11 11 11						
	l=0 l=1						
	Filling all 8 spots with						
	Filling all 8 spots with electory gets us from						
	Z=3 to Z=10						
	Li-thiu Neon						
	Linum						
	States w/ lower & have						
	31666						
	lower energy, since the elutais						
	get closer to nucleus and see						
	higher effective Z						
	ourgest of the						
1 1:							
11-							
	Litrium Beryllium						
	Li Be						

Oxigur 8 (15) (25) (2p) 4
Fluorine 9 (15)2(25)2(24)5
Ne: 10 (15) ² (25) ² (2p) ⁴ Neon
After Neon, n=2 level is filled
and we have to go to n=3
We get 2 atoms filling
$3s \qquad (3s)^2$
Z=11, Na Z=12 Mg
and 6 more
$(7.5)(3p) \qquad (35)^{2}(3p)^{6}$ $Z = 13$
Al Argon
No contract the contract to th

, 			turns ou faverable	
more	engin	ray	7910 auc	70
go to	n=4	shell		
Han	full ay	b 3d	shell.	
55				
	2=19			
		Ca		
	Rahum	Calciun	•	
	45	(45)2		
		• ,		
The ne	ext lo	elunt	r fill up)
			· · · · · · · · · · · · · · · · · · ·	
	(n=3,	l=2)		
		() ()		
	3d 01	rh lall		
3 0/			7-2	
Z=21			Z=3	0
Sc			Z_{n}	
			<u> </u>	•
Scandiu	200		Zinc	

	aud	following	g 6	go back	le to
		n=4	e=1		
	Z=31 Ga	•		Z	
	Gallium		•		r
	(4p)			(Up)6
	00				
		eluton		naled	•
()	Z=2	00		p) (3d)	10 /40 /400
(1)	(43)) (75) 4 p
		31	elections	-	