CG2023 TUTORIAL 4 (SOLUTIONS)

Solution to Q.1

Transfer function of suspension system:

$$\tilde{H}(s) = \frac{\tilde{X}_o(s)}{\tilde{X}_i(s)} = \frac{bs+k}{ms^2+bs+k}$$

Substituting m = 1 kg, $k = 1 Nm^{-1}$, $b = \sqrt{2} Nm^{-1}s$, we get

$$\tilde{H}(s) = \frac{s\sqrt{2} + 1}{s^2 + s\sqrt{2} + 1}$$

Frequency response of suspension system:

$$\tilde{H}(j\omega) = \frac{1 + j\omega\sqrt{2}}{1 - \omega^2 + j\omega\sqrt{2}}$$
Magnitude Response: $|\tilde{H}(j\omega)| = \left(\frac{1 + 2\omega^2}{\left(1 - \omega^2\right)^2 + 2\omega^2}\right)^{1/2} = \left(\frac{1 + 2\omega^2}{1 + \omega^4}\right)^{1/2}$

$$\Rightarrow \begin{cases} \text{Phase Response: } \angle \tilde{H}(j\omega) = \angle \left(1 + j\omega\sqrt{2}\right) - \angle \left(1 - \omega^2 + j\omega\sqrt{2}\right) \\ = \tan^{-1}\left(\frac{\omega\sqrt{2}}{1}\right) - \tan^{-1}\left(\frac{\omega\sqrt{2}}{1 - \omega^2}\right) \end{cases}$$

Fourier series expansion of input: $x_i(t) = \frac{4}{\pi} \left[\sin(t) + \frac{1}{3} \sin(3t) + \frac{1}{5} \sin(5t) + \cdots \right]$

- **Steady-state** response of system due to sinusoidal input $\sin(t)$ is given by $|\tilde{H}(j1)| \cdot \sin(t + \angle \tilde{H}(j1)) = 1.2247 \sin(t 0.6155)$
- **Steady-state** response of system due to sinusoidal input $\sin(3t)$ is given by $\left| \tilde{H}(j3) \right| \cdot \sin(3t + \angle \tilde{H}(j3)) = 0.4814 \sin(3t 1.3147)$
- **Steady-state** response of system due to sinusoidal input $\sin(5t)$ is given by $|\tilde{H}(j5)| \cdot \sin(5t + \angle \tilde{H}(j5)) = 0.2854\sin(5t 1.4248)$

Since system is linear, the output of the system can be obtained by superposition. Hence, at steady state:

$$x_o(t) = \frac{4}{\pi} \left[1.2247 \sin(t - 0.6155) + \frac{1}{3} \times 0.4814 \sin(3t - 1.3147) + \frac{1}{5} \times 0.2854 \sin(5t - 1.4248) + \cdots \right]$$
$$= \frac{4}{\pi} \left[1.2247 \sin(t - 0.6155) + 0.1065 \sin(3t - 1.3147) + 0.05708 \sin(5t - 1.4248) + \cdots \right]$$

Solution to Q.2

Temperature of air stream
$$x(t) = ?$$

Recorder

 $\tilde{H}(s) = \frac{1}{s+1}$

Recorded temperature at **steady-state**
 $y(t) = 50 + 2\sin(4\pi t)$

$$\tilde{H}(j\omega) = \frac{1}{j\omega + 1} \dots \begin{cases} \text{Magnitude response:} & |\tilde{H}(j\omega)| = (\omega^2 + 1)^{-1/2} \\ \text{Phase response:} & \angle \tilde{H}(j\omega) = -\tan^{-1}(\omega) \end{cases}$$

At STEADY-STATE:

The system output is $y(t) = 50 + 2\sin(4\pi t)$.

At
$$\omega = 0$$
:
$$\begin{cases} \left| \tilde{H}(j0) \right| = (0+1)^{-1/2} = 1 \\ \angle \tilde{H}(j0) = -\tan^{-1}(0) = 0 \end{cases}$$

At
$$\omega = 4\pi$$
:
$$\begin{cases} \left| \tilde{H}(j4\pi) \right| = \left(16\pi^2 + 1 \right)^{-1/2} = 0.0793 \\ \angle \tilde{H}(j4\pi) = -\tan^{-1}(4\pi) = -1.4914 \end{cases}$$

The system input is then given by

$$x(t) = \frac{50}{\left|\tilde{H}(j0)\right|} + \frac{2}{\left|\tilde{H}(j4\pi)\right|} \sin(4\pi t - \angle\tilde{H}(j4\pi)) = 50 + \frac{2}{0.0793} \sin(4\pi t - (-1.4914))$$
$$= 50 + 25.22 \sin(4\pi t + 1.4914)$$

which shows that:

Maximum air temperature: 50 + 25.22 = 75.22°C **Minimum** air temperature: 50 - 25.22 = 24.78°C

We note that the recorded maximum and minimum temperatures are $52^{\circ}C$ and $48^{\circ}C$. Clearly, the recorder does not have sufficient bandwidth.

Solution to Q.3

Transfer function:
$$\tilde{H}(s) = \frac{K(s+\alpha)}{(s+\beta)(s+\gamma)(s+\lambda)} = \frac{K_{dc}(\frac{s}{\alpha}+1)}{(\frac{s}{\beta}+1)(\frac{s}{\gamma}+1)(\frac{s}{\lambda}+1)}; \quad K = \frac{\beta\gamma\lambda}{\alpha}K_{dc}$$

- (a) At $\omega = 4 \ rad/s$, there is a <u>slope-change</u> of 20 dB/decade. This indicates the presence of the zero factor $\left(\frac{s}{4} + 1\right)$.
 - At $\omega = 10 \ rad/s$, there is a <u>slope-change</u> of -20 dB/decade. This indicates the presence of the pole factor $\left(\frac{s}{10} + 1\right)^{-1}$.
 - At $\omega = 20 \ rad/s$, there is a <u>slope-change</u> of -40 dB/decade. This indicates the presence of the double pole factor $\left(\frac{s}{20} + 1\right)^{-2}$.
 - DC (or Static) gain: $\left[20\log_{10}K_{dc} = \left|G(j0)\right|_{dB} = 13.9794 \text{ dB}\right] \text{ or } \left[K_{dc} = 10^{13.9794/20} = 5\right].$

Hence, the transfer function is

$$\tilde{H}(s) = \frac{5\left(\frac{s}{4}+1\right)}{\left(\frac{s}{10}+1\right)\left(\frac{s}{20}+1\right)^2} = \frac{5000(s+4)}{(s+10)(s+20)^2}$$

$$\therefore K = 5000, \quad \alpha = 4, \quad \beta = 10, \quad \gamma = \lambda = 20$$

Solution to Q.4

s-Domain Circuit $(R = 40\Omega \quad C = 10^{-4}F \quad L = 1H)$

(a) Transfer function:

$$\tilde{H}(s) = \frac{\tilde{V}(s)}{\tilde{I}(s)} = \frac{\frac{1}{sC}sLR}{\frac{1}{sC}sL + \frac{1}{sC}R + sLR} = sL\frac{\frac{1}{LC}}{s^2 + \frac{1}{RC}s + \frac{1}{LC}}$$
$$= \frac{10000s}{s^2 + 250s + 10000}$$
$$= \frac{10000s}{(s + 50)(s + 200)}$$

(b) Given: $i(t) = 5\cos(100t)$.

Frequency response:

$$\tilde{H}(j\omega) = \frac{j10000\omega}{\left(10000 - \omega^{2}\right) + j250\omega} \rightarrow \begin{cases} \left|\tilde{H}(j\omega)\right| = \frac{10000\omega}{\sqrt{\left(10000 - \omega^{2}\right)^{2} + \left(250\omega\right)^{2}}} \\ \angle \tilde{H}(j\omega) = 90^{\circ} - \tan^{-1}\left(\frac{250\omega}{10000 - \omega^{2}}\right) \end{cases}$$

$$\left|\tilde{H}(j100)\right| = 40$$

$$|H(j100)| = 40$$

$$\angle \tilde{H}(j100) = 0^{\circ}$$

$$v(t) = 5 \left| \tilde{H}(j100) \right| \cos(100t + \angle \tilde{H}(j100)) = 200\cos(100t)$$

(c) $\tilde{H}(s)$ is an overdamped system comprising two distinct pole factors and a unity gain differentiator:

$$\tilde{H}(s) = s \cdot \frac{10000}{(s+50)(s+200)} = s \cdot \frac{1}{\left(\frac{s}{50}+1\right)\left(\frac{s}{200}+1\right)}$$
$$= \tilde{H}_1(s)\tilde{H}_2(s)\tilde{H}_3(s)$$

where

$$\tilde{H}_1(s) = s$$
 $\tilde{H}_2(s) = \frac{1}{\frac{s}{50} + 1}$ $\tilde{H}_3(s) = \frac{1}{\frac{s}{200} + 1}$

$$\tilde{H}_1(j\omega) = j\omega$$
 $\tilde{H}_2(j\omega) = \frac{1}{j\frac{\omega}{50} + 1}$ $\tilde{H}_3(j\omega) = \frac{1}{j\frac{\omega}{200} + 1}$

Solution to S.1

$$\left. \tilde{H}(j\omega) = \frac{2}{0.2s+1} \right|_{s=j\omega} = \frac{2}{1+j0.2\omega} \quad \begin{cases} \left| \tilde{H}(j\omega) \right| = \frac{2}{\sqrt{1+0.04\omega^2}} \\ \angle \tilde{H}(j\omega) = -\tan^{-1} \left(\frac{0.2\omega}{1} \right) \end{cases}$$

The system response to $\sin(3t)$ is

$$|\tilde{H}(j3)|\sin(3t+\angle\tilde{H}(j3))=1.715\sin(3t-0.54)$$

Solution to S.2

With $\left| \left| \tilde{H}(j5) \right| = 0.75 \right|$ and $\left| \left| \angle \tilde{H}(j5) \right| = -68^{\circ} \right|$, the system output $4.5 \sin(5t - 38^{\circ})$ is due to an input signal given by

$$\frac{4.5}{\left|\tilde{H}(j5)\right|}\sin(5t - 38^{\circ} - \angle\tilde{H}(j5)) = \frac{4.5}{0.75}\sin(5t - 38^{\circ} + 68^{\circ})$$
$$= 6\sin(5t + 30^{\circ})$$

Solution to S.3

Low frequency response:

$$|K/j\omega|_{dB} = 20\log_{10}(K) - 20\log_{10}(\omega)$$

..... (A)

Substitute the coordinates of any point on the low frequency asymptote into (\clubsuit) to solve for K.

For example, choose the point (0.04,40):

$$40 = 20\log_{10}(K) - 20\log_{10}(0.04)$$
$$\to \log_{10}\left(\frac{K}{0.04}\right) = 2 \quad \text{or} \quad \mathbf{K} = \mathbf{4}$$

High frequency asymptote: -40 dB/decade

Solution to S.4

$$\tilde{H}(j\omega) = \frac{50}{5 - 2\omega^2 + j11\omega}$$

$$\tilde{H}(s) = \tilde{H}(j\omega)\Big|_{\omega = \frac{s}{j}} = \frac{50}{5 + 2s^2 + 11s} = \frac{50}{2(s+5)(s+0.5)} = \frac{10}{\left(\frac{s}{5} + 1\right)\left(\frac{s}{0.5} + 1\right)} \qquad \dots$$

In (\clubsuit) , we observe that the system has a dc gain of 10, and two pole factors with corner frequencies $0.5 \ rad/s$ and $5 \ rad/s$. Th straight-line Bode magnitude plot is shown below.

Solution to S.5

System transfer function:
$$\tilde{H}(s) = \frac{K(s+a)}{(s+b)(s^2 + 2\zeta\omega_n s + \omega_n^2)}$$

Existence of resonance peak indicated that 2^{nd} -order factor is underdamped (i.e. $0 \le \zeta < 1/\sqrt{2}$).

By inspection: a = 30 b = 9 $\omega_n = 2$.

$$K_{dc} = \tilde{H}(j\omega)\Big|_{\omega=0} = \tilde{H}(s)\Big|_{s=0} = \frac{aK}{b\omega_n^2} = \frac{5}{6}K$$

With $20\log_{10}(K_{dc}) = 20 \,\text{dB}$ where $K_{dc} = \frac{5}{6}K$, we get K = 12

With
$$\omega_r = \omega_n \sqrt{1 - 2\zeta^2}$$
 where $\left\{\begin{array}{l} \omega_n = 2\\ \omega_r = 1.87 \end{array}\right\}$, we get $\zeta = 0.25$

