EDL Örnek Sorular

1.

a. Aşağıdaki şekildeki devrede $V_C=6V$ u sağlayacak R_E değerini yaklaşık analiz yapmak suretiyle bulunuz. ($V_{CC}=16V$, $R_{B1}=82k\Omega$, $R_{B2}=24k\Omega$, $R_C=5k\Omega$, $V_{BE}=0.7V$, $\beta=150$)

b. Aynı devrenin küçük işaret analizini r_e eşdeğer devre modelini kullanmak suretiyle eşdeğer devreyi çizerek yapınız ve Z_i , Z_o , A_v ve A_i değerlerini bulunuz.

2. $V_{CC}=25\,V$, $R_{B1}=220k\Omega$, $R_{B2}=33\,k\Omega$, $R_{E}=1.8\,k\Omega$, $C_{1}=C_{2}=C_{E}=1\mu F$, $V_{BE}=0.7\,V$ ve $\beta=180$ olmak üzere aşağıdaki devreyi $V_{CE}=0.5V_{CC}$ de öngerilimleyecek R_{C} değerini,

- a.) Tam analiz yapmak suretiyle bulunuz.
- b.) Yaklaşık analiz yapmak suretiyle bulunuz.

3. Aşağıdaki şekildeki BJT kuvvetlendirici devresinin küçük işaret analizini r_e eşdeğer devre modelini kullanmak suretiyle eşdeğer devreyi çizerek yapınız ve Z_i , Z_o , A_v ve A_i değerlerini bulunuz. ($V_{CC}=12V$ $V_{BE}=0.7V$, $R_{F1}=20\,k\Omega$, $R_{F2}=30\,k\Omega$, $R_C=3\,k\Omega$, $R_E=2\,k\Omega$, $\beta=100$, $C_1=C_2=C_3=C_E=10\,\mu F$)

- 4. Aşağıdaki şekildeki BJT kuvvetlendirici devresinin;
- (a) Doğru akım analizini yaparak, I_{C} akımını ve V_{CE} gerilimini hesaplayınız.
- (b) Devrenin küçük işaret analizini r_e eşdeğer devre modelini kullanmak suretiyle eşdeğer devreyi çizerek yapınız ve Z_i , Z_o , A_v ve A_i değerlerini bulunuz. ($V_{CC}=10V$ $V_{BE}=0.7V$, $R_{F1}=100k\Omega$, $R_{F2}=150k\Omega$ $R_C=3k\Omega$, $R_E=1.2k\Omega$, $C_1=C_2=C_3=C_E=10\mu F$, $\beta=60$)

- 5. Aşağıdaki şekildeki BJT kuvvetlendirici devresinin;
- (a) Doğru akım analizini yaparak, I_C akımını ve V_{CE} gerilimini hesaplayınız.
- (b) Aynı devrenin değişken işaret analizini r_e eşdeğer devre modelini kullanmak suretiyle eşdeğer devreyi çizerek yapınız ve Z_i , Z_o , A_v ve A_i değerlerini bulunuz. ($V_{CC}=12\,Volt$, $R_E=2.2\,k\Omega$, $R_B=560k\Omega$ $V_{BE}=0.7\,Volt$, $C_1=C_2=100\,\mu F$, $\beta=100$)

- **6a**) Aşağıdaki şekildeki devrenin DC analizini yaparak I_C , V_{CE} , V_C ve V_E değerlerini bulunuz
- **b**) Devrenin küçük işaret analizini r_e eşdeğer devre modelini kullanarak yapınız ve Z_i , Z_o , A_v ve A_i değerlerini bulunuz.
- c) Devre, iç direnci 100Ω olan bir alternatif gerilim kaynağı ile beslenirken, $250k\Omega$ luk saf ohmik bir yükü beslediğinde, kaynak iç direncinin gerilim kazancına ve yükün de akım kazancına etkilerini bularak yorumlayınız. $(V_{CC}=20V, R_{B1}=56k\Omega, R_{B2}=5.6k\Omega, R_{E}=0.56k\Omega, R_{C}=1k\Omega, C_{E}=1\mu F, C_{1}=C_{2}=1\mu F, V_{BE}=0.6V$ ve $\beta=100$)

7. Aşağıdaki şekildeki n-kanallı JFET devresinde I_D , V_{GS} , V_D , V_S ve V_{DS} değerlerini hesaplayınız.

8. Aşağıdaki şekildeki p kanallı JFET devresinde I_D , V_{GS} , V_D , V_S ve V_{DS} değerlerini hesaplayınız.

9. Aşağıdaki şekildeki p kanallı JFET devresinde I_D , V_{GS} , V_D , V_S ve V_{DS} değerlerini hesaplayınız. ($V_{DD}=-24\,V$, $R_D=3\,k\Omega$ $R_S=2\,k\Omega$, $R_G=5\,M\Omega$, $V_p=6\,V$, $I_{DSS}=8\,mA$)

10. Aşağıdaki şekildeki n-kanallı kanal oluşturmalı bir MOFSET kuvvetlendirici devresinde $V_{DD}=12\,V$, $K=0.5mA/V^2$, $R_D=4\,k\Omega$, $R_G=50\,M\Omega$, $C_1=C_2=0.02\,\mu F$ ve $V_T=4\,V$ olmak üzere I_D ve V_{DS} değerlerini bulunuz.

11. Aşağıdaki şekildeki n-kanallı kanal ayarlamalı MOSFET in transfer karakteristiğini çizerek V_{GS} , I_D ve V_{DS} değerlerini bulunuz.

12. Aşağıdaki şekildeki n kanallı gerilim bölücülü JFET devresinde I_{DSS} ve V_{DS} değerlerini bulunuz. $(V_{DD}=20\,V\,,~V_P=-3\,V\,,~V_S=6\,V\,,~R_{G1}=90\,k\Omega\,,~R_{G2}=30\,k\Omega\,,~R_D=1\,k\Omega\,,~R_S=1.5\,k\Omega\,,~C_1=C_2=10\,\mu F\,)$

