Reg No.:

Name:

υ									
		APJ ABDUL	KA	LAM TECHNO	LOGIC	AL UNIVERS	SITY		
	В	.Tech Degree S6 (R,	S) / S	S6 (PT) (R,S) Ex	aminatio	n May 2024 (2	2019 Sche	me)	
		Course na	ame:	Course Code			ORK		
Max. M	arks:	50						Duration: 1Hour	
(2) T		(2) Total number of qu	Each question carries one mark. No negative marks for wrong answers Total number of questions: 50 All questions are to be answered. Each question will be followed by 4 possible answers of						
		which only ONE is con		nswerea. Eacn ques	ation will b	е јоножеа ву 4 р	ossibie ansi	vers of	
		(4) If more than one o	ption	is chosen, it will no	t be consid	lered for valuatio	on.		
1.	Stat	te True or False							
		inary search is used The time complexity True, True	of bi	=	(log n)	True, false	d)	False,False	
2.	tree	postorder traversal is 8, 6, 9, 4, 7, 2, 5, leaf. The height of t	of a l	oinary tree is 8, 9 The height of a), 6, 7, 4, tree is the	5, 2, 3, 1. The	inorder tr	aversal of the same	
	a)	1	b)	2	c)	3	d)	4	

4. + A* - BCD is a prefix expression. If A, B, C, D have value 5,4,2,3 respectively the expression evaluates to

FRONT =

REAR - 1

What can be said about the array representation of a circular queue when it contains only one

a) 13

element?

FRONT =

REAR + 1

a)

3.

b) 7

b)

c) 11

= NULL

d) 15

c) FRONT = REAR d) None of these

5. The Breadth First Search (BFS) algorithm has been implemented using the queue data structure. Which one of the following is a possible order of visiting the node in the graph below?

a) MNOPQR

b) NQMPOR

c) QMNROP

d) POQNMR

6. Which of the following can be the sequence of nodes examined in binary search tree while searching for key 88?

	a)	90,40,65,50,88	b)	90,110,80,85,88	c)	190,60,90,85,88	d)	65,140,80,70,88		
7.	The	data structure that i	s use	d to implement recu	ırsion	is				
	a)	Binary Tree	b)	Stack	c)	Queue	d)	All of the above		
8.	If w	e want to find the la	ıst no	de of a linked list, the	hen th	ne correct coding is				
	a)c)	if(temp->link!=NU temp=temp->link while(temp->link! temp=temp->link		LL)	b) d)	if(temp->data ==r temp=temp->link while(temp->link temp=temp->link	!=dat	ta)		
9.	A h	ashing function whi	ch sto	ores colliding items	togetl					
	a)	Separate chaining	b)	Linear hashing with collision detection	c)	Universal hashing	d)	Linear hashing		
10.		merging two sorted parisons of	lists	of size m and n into	a sor	rted listbof size m+r	n, we	required		
	a)	O(m)	b)	O(n)	c)	O(m+n)	d)	$O(\log m + \log n)$		
11	The	advantage of Roune	d Rol	oin CPU Scheduling	gover	Shortest Job First	Scheo	luling is		
	a)	Better average turn around time	b)	Better average response time	c)	Both (a) and (b)	d)	Neither (a) nor (b)		
12	The first fit, best fit and worst fit are strategies to select a									
	a)	process from a queue to put in memory	b)	free hole from a set of available holes	c)	processor to run the next process	d)	all of the above		
13	For	a page size of 200 v	vords	, What is the page n	umbe	er and offset for a lo	ogical	address of 1142		
	a)	5, 142	b)	2, 142	c)	6, 142	d)	7, 140		
14	A, I	process A, B, C. D B, C, D, A, B, E, A, her of page faults w	В, С,	D, E for the LRU	page	C	hms '	with 4 frames. The		
15	,	ounting semaphore		' nitialized to 9 Then			,			
	com	pleted on this sema				-	d)	13		
16	a) 0 b) 5 c) 7 d) 13 Suppose that a disk drive has 5000 tracks, numbered from 0 to 4999. The drive is currently serving a request at track 143 and the previous was at track 125. The queue of pending requin FIFO order is 86, 1470, 913, 1774, 984, 1509, 1022, 1750, 130. Starting from the curren position, the total distance in terms of track movement for SSTF is a) 640 b) 246 c) 350 d) None									

17	Ext	ernal fragmentation	exists	s when?							
	a)	enough total memory exists to satisfy a request but it is not contiguous	b)	the total memory is insufficient to satisfy a request	c)	a request cannot be satisfied even when the total memory is free	d)	none of the mentioned			
18		nsider the following		processes in the FC	FS.	nee					
		cess Id Busrt Tim P1 3	e A	Arrival Time 3							
		P2 6		6							
		P3 9		9							
		at is the average was 2	iting to b)	time?	c)	4	d)	5			
10				_	,		u)	3			
19		_	_	rithms is used to avo			•				
	a)	Dynamic Programming algorithm	b)	Primality algorithms	c)	Banker's algorithm	d)	Deadlock algorithm			
20	Wh	•	comp	ponent does not belo	ng to	PCB (Process Con	trol E	Block)?			
	a)	CPU registers	b)	CPU scheduling information	c)	Accounting information	d)	Operating System information			
21		Which memory type is typically used for storing frequently accessed instructions and data to improve CPU performance?									
	_	RAM	b)	ROM	c)	Cache memory	d)	Virtual memory			
22	·			. 11 10	ĺ	•	,	•			
22	In p a)	oppelining, what is a Occurs when instructions are dependent on each other	struci b)	Occurs when there are insufficient resources to execute instructions simultaneously	c)	Occurs when control signals are misinterpreted	d)	Occurs when there is a conflict in data values			
23	Pipelining can introduce hazards in CPU execution. Which of the following is NOT a hazard typically encountered in pipelined architectures?										
	a)	Structural hazard	b)	Data hazard	c)	Control hazard	d)	Logical hazard			
24	Wh	at does Register Tra	nsfer	Logic (RTL) primar	rily d	eal with?					
	a)	Data transmission between CPU and memory	b)	Data transfer between registers within the CPU	•	Communication between peripheral devices	d)	Data processing algorithms			
25	Sup	pose a CPU has a c	lock	speed of 2 GHz. Ho	w m	any clock cycles are	e req	uired to execute an			
	inst	ruction that takes 4	clock	cycles to complete?							
	a)	0.5 ns	b)	2 ns	c)	4 ns	d)	8 ns			

Which of the following Hazards occur at the following ADD R4, R2, R8 ADD R4, R7, R4												
	a) RAW	b)	WAR	c)	WAW	d)	Both (a) and (b)					
27	An addressing mode in known as	whic	h the location of th	e data	is contained withir	the n	nnemonic is					
28	a) Immediate addressing modeCISC stands for -	b)	Implied addressing mode		Register addressing mode	d)	Direct addressing mode					
	a) Complex Instruction Set Computer	b)	Complete Instruction Sequential Compilation	c)	Complex Instruction Sequential Compiler	d)	None of the above					
29	When we perform subtraction on -7 and -5 the answer in 2's complement form is											
	a) 11110	b)	1110	c)	1010	d)	0010					
30	The instruction cycle in	ivolve	es:									
	a) Fetch, Decode, Execute	b)	Fetch, Store, Execute	c)	Load, Execute, Store	d)	Decode, Execute, Store					
31	The regular expression given by a) (0+10)*	denot	ting the set of all st $(0+10)*(\varepsilon+1)$		NOT containing tw $(1+01)*(\varepsilon+0)$		secutive 0's is $(\varepsilon+0)(101)*(\varepsilon+0)$					
32	, , ,			,		,						
32	The minimal FA accepting the set of all strings over alphabets {0,1} that have three consecutive 0's has											
	a) 4 states	b)	5 states	c)	6 states	d)	None					
33	Which of the following grammars are equivalent?											
	(i) $S \rightarrow AB$ ii) $A \rightarrow aA/a$	S-> a A iii A-> bB A-> a /b		ii) S-> aA iv A->aA/ B B->b		(y) S-> $(aA / bB)A->(aB + bB)$						
	B->b					$B \rightarrow b$						
	a) (i) & (ii)	b)			(ii) & (iii)		(i), (ii), & (iv)					
34	The class of NP proble	ms is	NOT closed with r	espect	to operator							
	a) Union	b)	Intersection	c)	Kleen Closure	d)	Compliment					
35	Consider the following L1 = $\{1^n0^n1^n0^n / n >= 0\}$ L2 = $\{a^nb^k / n <= k <= 2n\}$	} }										
	Which of the following a) Both L1 and L2 are Context Free	state: b)	L1 is Context Free but not L2	c)	L2 is context Free but not L1	d)	Neither L1 nor L2 is context free					
36	A type 0 or unrestricted	l gran										
	a) Generates all the sets that are accepted by Halting Turing Machines but not by all Turing Machines	b)	Generates all the sets accepted by the class of Turing Machines	c)	Generates sets that are not regular languages	d)	None of these					

0.77	****	. 1 . 6 . 1 . 6 . 11							
37	Wh	ich of the following							
	a)	Every Regular Grammar is CFG	b)	Every CFG is Regular Grammar	c)	Every CSG is CFG	d)	None of these	
38	The		nts th	e derivations in a CF	G is				
	a)	Parse tree	b)	Derivation Tree	c)	Both (a) and (b)	d)	None	
39	If y	ou consider a regula	r exp	ression r, in which r	= (11	$(1+111)^*$ over $\Sigma = 1$	$\{0, 1\}$, then the number	
				NFA respectively a		DEA 2 NIEA	٦١,	DEA 4 NEA	
	a)	3	U)	DFA – 3, NFA – 3	C)	4	u)	4 A	
40	Wh	en L and L' happen	to be	recursively enumera	ıble,	here L is:			
	a)	context-free	b)	regular	c)	recursive	d)	context-sensitive	
41	Cor	nsider the relation R((A, B	C, D, E) and the fur	nctio	nal dependency set	$F=\{A$	$AB \rightarrow C, B \rightarrow D,$	
	$C \rightarrow$	E }. What is the high	nest n	ormal form of the re	latio	n R ?			
	a)	1NF	b)	2NF	c)	3NF	d)	BCNF	
42	Wh	ich of the following	stateı	nents are TRUE abo	out a	n SQL query?			
	(P) An SQL query can contain a HAVING clause even if it does not contain a GROUP BY								
	clau	ise.							
	(Q)	An SQL query can	conta	in a HAVING clause	onl	y if it has a GROUF	BY	clause.	
	(R)	All attributes used in	n the	GROUP BY clause i	must	appear in the SELF	ECT o	clause.	
	(S)	Not all attributes use	ed in	the GROUP BY clau	ise n	eed to appear in the	SEL	ECT clause.	
	a)	P and S	b)	P and R	c)	Q and R	d)	Q and S	
43	Wh	at is the meaning of	follo	wing SQL query?					
	SEI	LECT name FROM	stı	dent WHERE mo	bil	eNo LIKE '%0%	0왕',	;	
	a)	List of student	b)	List of student	c)	List of student	d)	List of student	
		name whose		name whose		name whose		name whose	
		mobile number		mobile number's		mobile number		mobile number	
		begins with two		second digit and		starting and		contain two 0's	
		0's		fourth digit are 0.		ending with two			
						0's			
44	Con	nsider the following	relati	onal schema.					
	stuc	lent(snum,sname,age	e)						
	Enr	olled (snum,cname).							
	Wh	at is the output of the	e foll	owing query.?					
	SEI	LECT cname, MIN(a	age) F	ROM student S, enr	ollec	ΙE			

WHERE S.snum = E.Snum GROUP BY cname HAVING COUNT(*) > 3;

a)	For each class	b)	For each class	c)	For atmost one	d)	None of these.
	find the age of		with more than 3		class with more		
	the three		students, finds the		than 3 students,		
	youngest student		age of the		find the age of		
	who has enrolled		youngest student		the youngest		
	in this class.		who has enrolled		student who has		
			in this class.		enrolled in this		
					class.		
Let	El and E2 be two en	ntities	s in an E/Rdiagram w	ith s	imple single-value	d attr	ibutes. Rl
and	R2 are two relation	ships	between El and E2,	whe	re R1 is one-to-man	y and	R2 is
ma	ny-to-many. Rl and	R2 do	o not have any attribu	ites (of their own. What	is the	minimum
nur	mber of tables requir	ed to	represent this situati	on in	the relational mod	el?	
a)	3	b)	4	c)	5	d)	6
Wh	nich one of the follow	ving	statements is NOT co	orrec	t about the B+ tree	data	structure used fo
cre	ating an index of a re	elatio	onal database table?				
a)	B+ Tree is a	b)	Non-leaf nodes	c)	Key values in	d)	Each leaf node
	height-balanced		have pointers to		each node are		has a pointer to
	tree.		data records.		kept in sorted		the next leaf
					order.		node.
Let	the set of functiona	l depo	endencies $F = \{QR -$	S, R	$A \rightarrow P. S \rightarrow Q$ hold	on a r	elation schema >
= (]	PQRS). X is not in E	BCNF	Suppose X is decor	npos	ed into two schema	as Y a	and Z, where Y =
(PR	\mathbf{R}) and $\mathbf{Z} = (\mathbf{Q}\mathbf{R}\mathbf{S})$.						
Co	nsider the two staten	nents	given below.				
I.	Both Y and Z ar	e in E	BCNF				
II.	Decomposition of	of X i	into Y and Z is deper	nden	cy preserving and lo	ossles	SS
Wh	nich of the above stat	temei	nts is/are correct?				
a)	Both I and II	b)	I only	c)	II Only	d)	Neither I nor II
Ma	p the following state	emen	ts to TRUE(T) or FA	LSE	E(F) respectively		
	(i) In SQL, by	defau	lt 'order by' clause lis	sts it	ems in descending	order	
	(ii) In SQL, 'SE	LEC	Γ' clause automatical	ly eli	iminates all duplica	ites.	
a)	(i) TRUE and (ii)	b)	(i) TRUE and (ii)	c)	(i) FALSE and	d)	(i) FALSE and
	TRUE		FALSE		(ii) TRUE		(ii) FALSE

	,	,	****	,	
	a) 1	b) 2	c) 3	d) 4	
	$ABC \rightarrow E, C \rightarrow$	A}. How many candid	ate keys are possible for the	ne relation R?	
50	Consider the re	elation R (A, B, C, D, I	E) and the functional depe	ndency set $F = \{AB \rightarrow CD,$	
	a) DELETE	b) CREA	ΓE c) ALTER	d) DROP	
49	Which of the following is a DML command?				