Infinitesimal Calculus

Paul Schulze

History

- Newton & Leibniz formulated calculus using the idea of infinitesimals.
- Infinitesimals are really really small, but not 0.
- ► Considered nonsensical, replaced with δ - ϵ .
- Early 1960's: Abraham Robinson formalizes Nonstandard Analysis.
- Most modern formulations are based on work by Jerzy Łoś.

(a) Abraham Robinson

(b) Jerzy Łoś

Hyperreals

We construct a set of *hyperreals*, call it ${}^*\mathbb{R}$, such that we know three things:

- 1. $\mathbb{R} \subseteq {}^*\mathbb{R}$
- 2. * $\mathbb R$ contains at least one infinitesimal δ , such that $0<\delta$ but $\delta< r$ for any positive real number r
- 3. Any sentence of first-order logic is true in \mathbb{R} iff it is true* in * \mathbb{R}

First-Order Logic

- Our logical language has the following logical symbols:
 - ▶ & for "and"
 - ▶ ∨ for "or"
 - ightharpoonup for "if...then..."
 - ightharpoonup \leftrightarrow for "if and only if"
 - → for "for all"
 - ▶ ∃ for "there exists"
 - ► ∈ for set membership
- \triangleright 5 + 3 = 8 & 2^3 = 8
- $1+1=1 \lor 5+7=12$
- $(\forall x \in \mathbb{R})(\exists y \in \mathbb{N})(x < y)$
- $(\forall x \in \mathbb{R})(\forall n \in \mathbb{N})(x < \frac{1}{n} \to n < \frac{1}{x})$

Transfer Principle

Every sentence that's true in \mathbb{R} is also "true in \mathbb{R} ," when modified to be talking about \mathbb{R} . For instance:

- ▶ $(\forall x \in {}^*\mathbb{R})(\forall y \in {}^*\mathbb{R})(x+y=y+x)$, i.e. addition is commutative
 - We can similarly prove other arithmetic properties, so we can do algebra as normal in ${}^*\mathbb{R}$
- ▶ $(\forall x \in {}^*\mathbb{R}) (x \neq 0 \rightarrow (\exists y \in {}^*\mathbb{R})(x \cdot y = 1))$, i.e. for any nonzero x there exists a multiplicative inverse $\frac{1}{x}$
 - ▶ So even if δ is an infinitesimal, we know $\frac{1}{\delta}$ has to exist
- $(\forall x \in {}^*\mathbb{R})(\exists y \in {}^*\mathbb{N})(x < y)$
 - ▶ So ${}^*\mathbb{N}$ has to contain "infinite" elements, and thus ${}^*\mathbb{N} \neq \mathbb{N}$

What is ${}^*\mathbb{R}$ like?

- ▶ Call a hyperreal x infinitesimal when |x| < r for every positive real r.
 - There's exactly one real infinitesimal: 0
 - ▶ We know some nonzero infinitesimal δ exists by our construction of ${}^*\mathbb{R}$
 - $ightharpoonup r \cdot \delta$ is infinitesimal for any real δ —so there are a bunch of infinitesimals!
- ▶ There are "infinite" hyperreals—take any nonzero infinitesimal δ , and $\frac{1}{\delta}$ is greater than any real number
- ► Two hyperreals x and y are *infinitely close*, denoted $x \simeq y$, when their difference x y is infinitesimal
- Any finite hyperreal x is infinitely close to exactly one real number, called its standard part st (x)
 - For instance, st $(1 + \delta) = 1$

Derivatives, the way Leibniz intended

- ▶ Say $f : \mathbb{R} \to \mathbb{R}$
- ▶ Fix $b \in \mathbb{R}$, and let Δx be infinitesimal. Then

$$f'(b) = \operatorname{st}\left(\frac{f(b+\Delta x)-f(b)}{\Delta x}\right)$$

so that $f'(b) \simeq \frac{f(b+\Delta x)-f(b)}{\Delta x}$.

Example: Say $f(x) = x^2$. Then we have

$$f'(3) \simeq \frac{(3+\Delta x)^2 - 3^2}{\Delta x} = \frac{9+6\Delta x + (\Delta x)^2 - 9}{\Delta x}$$
$$= \frac{6\Delta x + (\Delta x)^2}{\Delta x} = 6 + \Delta x \simeq 6$$

So $f'(3) \simeq 6$. But these are both real numbers, so their difference can't be infinitesimal. Hence f'(3) = 6.

Proof: Chain Rule

Let $f,g:\mathbb{R}\to\mathbb{R}$ be differentiable. Let Δx be any infinitesimal, and $\Delta g=g(x+\Delta x)-g(x)$. Since $g'(x)=\operatorname{st}(\Delta g/\Delta x)$ is defined, Δg must be infinitesimal. Then

$$(f \circ g)'(x) \simeq \frac{f(g(x + \Delta x)) - f(g(x))}{\Delta x}$$

$$= \frac{f(g(x) + \Delta g) - f(g(x))}{\Delta g} \cdot \frac{\Delta g}{\Delta x}$$

$$\simeq f'(g(x)) \cdot g'(x)$$

So $(f \circ g)'(x) \simeq f'(g(x)) \cdot g'(x)$. But since both of these numbers are real, they must be identical.

In the case where $\Delta g=0$, we clearly have $f(g(x)+\Delta g)-f(g(x))=0$ and so $(f\circ g)'(x)=0$.