

Discrete Mathematics MH1812

Topic 8.3 - Relations III Dr. Guo Jian

What's in store...

By the end of this lesson, you should be able to...

- Explain the concept of partial order.
- Explain the three properties of transitive closure.
- Explain the concept of non-binary relations.
- Explain the different operations on relations.

Partial Order: Definition

R is a partial order on *A* if *R* is reflexive, antisymmetric and transitive.

$$A = \mathbb{Z}, xRy \longleftrightarrow x \le y$$

Notion of partial order is useful for scheduling problems across possibly different domains.

Transitive Closure: What is Closure?

Let A be a set and R a binary relation on A.

The closure of a relation $R \subseteq A \times A$ with respect to a property P (P being reflexive, symmetric, or transitive) is the relation obtained by adding the minimum number of ordered pairs to R to obtain property P.

Transitive Closure: Definition

Let A be a set and R a binary relation on A. The transitive closure of R is the binary relation R^{t} on A that satisfies the following three properties:

- 1. R^t is transitive
- 2. $R \subseteq R^{t}$
- 3. If S is any other transitive relation that contains R then $R^{t} \subseteq S$

Transitive Closure: Example

Let $A = \{0,1,2,3\}$

Consider a relation $R = \{(0,1), (1,2), (2,3)\}$ on A

S is transitive and $R \subseteq S$ Thus $R^t \subseteq S$

$$R^{t} = \{(0,1),(1,2),(2,3),(0,2),(0,3),(1,3)\}$$

Transitive Closure: Construction

- Let A be a set and R a binary relation on A.
- Start with R, and do the following: $\forall x, y, z \in A$, if $(xRy \land yRz \land x\not Rz)$ then add (x,z).
- Repeat until the obtained relation is transitive (will stop if |A| is finite).
- The ordering in which the edges are added does not matter.

Beyond Binary Relations: Non-binary Relations (Example)

 $S = \{s_1, s_2\}$ students, $T = \{c_1, c_2, c_3\}$ courses

 $G = \{A, B, C\}$ grades, (s_1, c_1, A) , (s_1, c_3, B) , (s_2, c_2, B)

Beyond Binary Relations: n-ary Relations

Let $A_1, ..., A_n$ be sets. A *n*-ary relation R is a subset of $A_1 \times \cdots \times A_n$. $a_1, ..., a_n$ are related if $(a_1, ..., a_n) \in R$.

Example

 $S = \{s_1, s_2\}$ students, $T = \{c_1, c_2, c_3\}$ courses

 $G = \{A, B, C\}$ grades, $(s_1, c_1, A), (s_1, c_3, B), (s_2, c_2, B)$

Operations of Relations: Complement of a Relation

Let $R \subseteq A_1 \times \cdots \times A_n$ be a relation.

 $\overline{R} = (A_1 \times \cdots \times A_n - R)$ is the relational complement of R, i.e., $(a_1, a_2, a_3, ..., a_n) \notin R$.

Example

$$A = \{1,2\}, B = \{3,5\} \text{ and } R = \{(1,3), (2,5)\}$$

Then
$$\overline{R} = A \times B - R = \{(1,5), (2,3)\}$$

Operations of Relations: Union of Relations

Let $R, S \subseteq A_1 \times \cdots \times A_n$ be two relations. $R \cup S$ is the relation such that $(a_1, a_2, a_3, ..., a_n) \in R \cup S \Leftrightarrow (a_1, a_2, a_3, ..., a_n) \in R \vee (a_1, a_2, a_3, ..., a_n) \in S$.

Example

 $A = \{1,2,3\}, B = \{1,2,3,4\} \text{ and } R = \{(1,1), (2,2), (3,3)\}$

 $S = \{(1,1), (1,2), (1,3), (1,4)\}$

Then $R \cup S = \{(1,1), (2,2), (3,3), (1,2), (1,3), (1,4)\}$

Operations of Relations: Intersection of Relations

Let $R, S \subseteq A_1 \times \cdots \times A_n$ be two relations. $R \cap S$ is the relation such that $(a_1, a_2, a_3, ..., a_n) \in R \cap S \Leftrightarrow (a_1, a_2, a_3, ..., a_n) \in R \wedge (a_1, a_2, a_3, ..., a_n) \in S$.

Example

$$A = \{1,2,3\}, B = \{1,2,3,4\} \text{ and } R = \{(1,1), (2,2), (3,3)\}$$

$$S = \{(1,1), (1,2), (1,3), (1,4)\}$$

Then
$$R \cap S = \{(1,1)\}$$

Operations of Relations: Example

$$T = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x + y \le 3 \}$$

Operations of Relations: Example

$$T = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x+y \le 3 \}$$
$$S = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x-y \le 2 \}$$

Operations of Relations: Example

$$T = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x+y \le 3 \}$$

$$S = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid x-y \le 2 \}$$

$$T \cap S = \{ (x,y) \in \mathbb{R} \times \mathbb{R} \mid (x+y \le 3) \land (x-y \le 2) \}$$

Let's recap...

- Partial Order
- Transitive Closure
- Beyond binary relations
- Operations on relations
 - Complement
 - Union
 - Intersection

