

MATH-UH-3413-001 (Spring 2022)

Numerical Methods

Yuefan Deng | yuefan.deng@nyu.edu | https://nyu.zoom.us/my/ydeng007

Homework Set 05

Due: 11:59 pm on Sunday April 03, 2022

Notes:

- 1. Do all assigned problems
- 2. The set is worth 100 points evenly distributed among problems for the entire set. All HW sets will contribute 25 credits of the 100-credit system for the semester.
- 3. No late HW is accepted
- 4. Please be reminded of the lectured material (the shaded text is not used for composing this HW set):

Lecture03	02/01	Interpolation: Polynomial interpolation Lagrange, Newton forms. Runge phenomenon	3.1
Lecture04	02/03	Error in polynomial interpolation	3.2
Lecture05	02/08	Chebyshev interpolation	3.3
Lecture06	02/10	Cubic splines	3.4
Lecture07	02/15	Numerical differentiation	5.1
Lecture08	02/17	Trapezoid, Simpson and generic Newton-Cotes	5.2
		formulas for numerical quadrature. Gaussian	5.5
		quadrature	
Lecture09	02/22	Linear systems of equations: simple direct	2.1
Lecture10	02/24	methods. Gaussian elimination. LU	2.2
		factorization. Evaluation of numerical errors.	2.3
		Pivoting.	2.4
Lecture11	03/01	Linear systems of equations: iterative methods;	2.5
Lecture12	03/03	methods for symmetric-positive matrices.	2.6
Lecture13	03/08	Trigonometric interpolation	Ch10
Lecture14	03/10	FFT	Ch10
Lecture15	03/15	Spring break	
Lecture16	03/17	Spring break	
Lecture17	03/22	Spring break	4.1
Lecture18	03/24	Least-square methods.	4.2

tion was autol contants.

Note 1: Suggested solution reports' contents:

For this and all future HW sets, please include the following **four parts** for a self-contained report:

- (1) Problem description for each problem. This could be copied from the problem assignment.
- (2) Algorithm description and pseudo-code describing the main structure of your program(s).
- (3) Results (numbers, figures, and tables) as requested by the assignments.
- (4) Brief comments of your program performance (fast, correct, etc)

Note 2: Your HW report should be consolidated as one PDF (for each HW set) which include the 4 parts stated above. If the source code is too long, a Google Drive link is OK too. How long is too long, you are the judge.

Problem 5.1 The well-known function

$$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} \frac{e^{-\frac{1}{2}\left(\frac{\ln x - \mu}{\sigma}\right)^2}}{x}$$
 independent variable. At $\mu = 0$,

where μ , σ are parameters and x is independent variable. At $\mu = 0$, $\sigma = 1$, the function becomes

$$f(x; 0,1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\ln x)^2} \frac{e^{-\frac{1}{2}(\ln x)^2}}{x}$$

and it looks like

Select 6 points between $x \in [0, 5]$ evenly and interpolate these points in a polynomial of the appropriate order. Estimate the upper bound of the interpolation errors.

Problem 5.2 Same as Problem 5.1, select 6 points between $x \in [0, 5]$ as required by Chebyshev interpolation and interpolate these points by Chebyshev polynomials. Estimate the upper bound of the interpolation errors.

Problem 5.3 Using data from Problem 5.1, select 6 points between $x \in [0, 5]$ evenly and fit these points in the following form

$$y = c_0 + c_1 x + c_2 x^2 + c_3 x^3$$

Also, compute the RMSE for this fit.

Problem 5.4 Using data from Problem 5.1, select 6 points between $x \in [0, 5]$ evenly and fit these points in the following form

$$y = c_1 x e^{c_2 x}$$

Also, compute the RMSE for this fit.