BÀI TẬP BẮT BUỘC CHƯƠNG 2

Bài 1. Hãy sử dụng các phép biến đổi sơ cấp hàng để tìm ma trận nghịch đảo của các ma trận sau nếu chúng tồn tại:

$$1.\begin{bmatrix} 1 & 2 \\ 4 & 7 \end{bmatrix} \qquad 2.\begin{bmatrix} 5 & 10 \\ 4 & 7 \end{bmatrix} \qquad 3.\begin{bmatrix} 1 & 0 & -2 \\ -3 & 1 & 4 \\ 2 & -3 & 4 \end{bmatrix} \qquad 4.\begin{bmatrix} 1 & -2 & 1 \\ 4 & -7 & 3 \\ -2 & 6 & -4 \end{bmatrix}$$

Bài 2. Cho ma trận $A = \begin{bmatrix} -2 & -7 & -9 \\ 2 & 5 & 6 \\ 1 & 3 & 4 \end{bmatrix}$. Hãy tìm cột thứ 1 của ma trận A^{-1} mà không

cần tính các cột khác.

Bài 3. Hãy xác định xem ma trận nào sau đây là khả nghịch, sử dụng càng ít phép tính càng tốt để giải thích:

1.
$$\begin{bmatrix} 0 & 3 & -5 \\ 1 & 0 & 2 \\ -4 & -9 & 7 \end{bmatrix}$$
2.
$$\begin{bmatrix} 1 & -5 & -4 \\ 0 & 3 & 4 \\ -3 & 6 & 0 \end{bmatrix}$$
3.
$$\begin{bmatrix} -1 & -3 & 0 & 1 \\ 3 & 5 & 8 & -3 \\ -2 & -6 & 3 & 2 \\ 0 & -1 & 2 & 1 \end{bmatrix}$$
4.
$$\begin{bmatrix} 4 & 0 & -7 & -7 \\ -6 & 1 & 11 & 9 \\ 7 & -5 & 10 & 19 \\ -1 & 2 & 3 & -1 \end{bmatrix}$$
5.
$$\begin{bmatrix} 5 & 3 & 1 & 7 & 9 \\ 6 & 4 & 2 & 8 & -8 \\ 7 & 5 & 3 & 10 & 9 \\ 9 & 6 & 4 & -9 & -5 \\ 8 & 5 & 2 & 11 & 4 \end{bmatrix}$$

Bài 4. Hãy giải phương trình $A\mathbf{x} = \mathbf{b}$ bằng cách sử dụng nhân tử hóa LU, với phép phân tích được cho sau đây:

$$A = \begin{bmatrix} 2 & -1 & 2 \\ -6 & 0 & -2 \\ 8 & -1 & 5 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 0 \\ 4 \end{bmatrix}; A = \begin{bmatrix} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 4 & -1 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 & 2 \\ 0 & -3 & 4 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -2 & -4 & -3 \\ 2 & -7 & -7 & -6 \\ -1 & 2 & 6 & 4 \\ -4 & 1 & 9 & 8 \end{bmatrix}, b = \begin{bmatrix} 1 \\ 7 \\ 0 \\ 3 \end{bmatrix}; A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ -4 & 3 & -5 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -4 & -3 \\ 0 & -3 & 1 & 0 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Bài 5. Tìm nhân tử hóa LU của các ma trận

1.
$$\begin{bmatrix} 3 & -6 & 3 \\ 6 & -7 & 2 \\ -1 & 7 & 0 \end{bmatrix}$$
2.
$$\begin{bmatrix} 2 & -4 & 4 & -2 \\ 6 & -9 & 7 & -3 \\ -1 & -4 & 8 & 10 \end{bmatrix}$$
3.
$$\begin{bmatrix} 1 & 3 & -5 & -3 \\ -1 & -5 & 8 & 4 \\ 4 & 2 & -5 & -7 \\ -2 & -4 & 7 & 5 \end{bmatrix}$$
4.
$$\begin{bmatrix} 2 & -6 & 6 \\ -4 & 5 & -7 \\ 3 & 5 & -1 \\ -6 & 4 & -8 \\ 8 & -3 & 9 \end{bmatrix}$$
5.
$$\begin{bmatrix} 1 & -2 & 0 & 0 & 4 \\ 1 & -2 & 1 & 2 & 7 \\ 3 & -6 & -2 & -3 & 7 \\ -1 & 2 & -2 & -1 & -7 \end{bmatrix}$$

Bài 6. Giả sử A là ma trận vuông cấp 3 được phân tích thành $A = PDP^{-1}$, trong đó P là ma trận khả nghịch cấp 3 và D là ma trận đường chéo

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1/2 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}.$$

Hãy chứng tỏ phân tích này là hữu ích trong việc tính các lũy thừa bậc cao của A. (Hãy tính A^2 , A^3 và A^k theo P và các phần tử của D.)