56 weddle's rule.

	i v					
>x 0.0	0.25	0.50	0.75	1-00	1-25	1-50
3 1.0	0.9896	0.9589	0.9089	0.8415	0.8029	0.7635

Here, h= 6.25, 70=1 \$0 on. If Vis the volume of the solid formed then we know that it is seen to be a bloom of the things of the seen of the se

Now we find the value of you so the table becomes,

×	0.0	0.25	0.50	10.75	1.00	1:25	1-50
9	1.0	0.9793	0-9195	0.8261	0.7081	0.6496	0.5829

Now by, weddle's Rule,

$$V = \pi \frac{3h}{10} \left[\frac{3}{40} + 5\frac{3}{4} + \frac{3}{4} + \frac{3$$

$$= 11 \times \frac{36}{10} \left[1 + 4.8965 + 0.9195 + 4.9566 + 0.7081 \right]$$

$$= 17 \times 3 \times 0.25 \times 16.2866 = 3.8374$$

#(b) Runge-kutta => $\frac{dy}{dx} = x + y^2$, y = 1 at x = 0For y(0:1), $x_0 = 0$, $y_0 = 1$, $f(x,y) = x + y^2$, h = 0? so, $K_1 = hf(x_0, y_0) = 0.1 \times f(0.05, 1.05) = 0.11525$ $K_2 = hf(x_0 + \frac{h}{2}, y_0 + \frac{ky}{2}) = 0.1 \times f(0.05, 1.0576) = 0.11685$ $K_3 = hf(x_0 + \frac{h}{2}, y_0 + \frac{ky}{2}) = 0.1 \times f(0.05, 1.0576) = 0.11685$ $K_4 = hf(x_0 + h, y_0 + k_3) = 0.1 \times f(0.1, 1.11685) = 0.13474$ NPW, for y(0.2) here $7x_1 = 70.17$, $y_1 = 1$ $y(0.1) = y_0 + \frac{h}{6} [K_1 + 2K_2 + 2K_3 + K_4]$ = $1 + \frac{h}{6} [0.69894] = 1.11649$ For y(0-2), y=0.1, y=1.11649• y=1.11649

-	0.1	0.2	0.3	0.4	0.50	0.G	0-7	0.8	0-9	0.1837	4 2.319
,	1.00	1.104987	1-219779	1.34385	1.476122	1615146	1.75881	911.90449	12.049009	2.100	- Contract
-	<u> </u>	ļ <u>.</u>	F.				$(-\sqrt{n})$	-,-+-1(14-(0.4)		
	he	ore,h=	0.40	Part)	- 7		11-41	71-1	(fig. 1)		
	10	c'he.	the d	istam	ee Th	ren,					
	7			volt	12.0	the you	- †060) -	it wit	3, 3	801	- 1.
			5-7				, 139 A	17 1	0 4150	J. Mo	ો •
		w appl	0	C D. An	son 1	3 rule	-)	vg) +21 +(2x	1	. 1/4	vol
	No	w appli	ying .	Simb		· (+) (-	かまか	(g) +2	(V27V4	4 AC ,	4
			hIVO	+410+	4(4)+	137 15		vg) +21 + (2)x + 1?	6.503	129)	
		5=	31	_	= 1/4	x 8.15	122).	+ (21	9 2		
			0.15	3.3197	H T19	,		+ 15		~	1
			31			00 C	2888	+ 13	3.007	458	\mathbf{J}
			1 1	0.219	ሳተፕ ነ	O 27	7	· * 5- 1 -, ·			
			3/	5	To a stage		-1				

#8b) Regula Falsi

Given let, $f(x) = \chi^6 - \chi^4 - \chi^3 - 1$ $f(4) = -0.056064 \angle 6$ f(4) = 4.953125 > 6

Therefore one root of for =0 lie between 1.4 & 1.5. Now, eve find the apprease root of the given equation by the Regula Falsi method,

n an(-) bn(+) f(an) f(+)	on) him xnow f(xnow)
0 1.4 1.5 -0.056064 1.95	3125 0.00279 1. 40279 -0.01273560
. A 4070 . E - n 1/10 7254 1.95	31250-00063 1.40342 -0.002861<0
1, 16849 1.5 -0.002861 1.95	3125 0.00080 1.40422 0.00972670
150 do 1-40422 -0.002861 - 6.009	3726 0.0018 1.40360 -0.00003340
3 1.40360 1.40422 -0.600033 0.009	3726 0.000002 1-403602, -0-000002<0
4 If(an) (bn-an)	$\cdot \times - a_{oot} \mathbf{b}$

here $h_n = \frac{|f(a_n)|(b_n-a_n)}{|f(a_n)|+|f(b_n)|}$; $\chi_n = a_n + b_n$

go, 1.4036 is the root of the given equation upto four decimal places.