SLOT: C2+TC2+V5

OPEN BOOK

SEPARATE

SCHOOL OF MECHANICAL ENGINEERING

CONTINUOUS ASSESSMENT TEST – II - WINTER SEMESTER 2019-2020

Programme Name & Branch:

B. Tech (BME, BMA)

Course Code: MEE 2028

Course Name: Automotive Aerodynamics

Faculty Name(s):

Dr. Y. Mukkamala

Class Number(s):

1267

Exam Duration: 90 mins Maximum Marks: 50

Join VIT Question Papers Today By Simply Searching It On Telegram App.

General instruction(s):

Answer briefly with net schematics, plots, equations and data analysis

Sl.No.	Question	Course Outcome (CO)
1.	Due to smaller fan size, most small-scale wind tunnels can't produce the required Reynolds number for drag measurements. Suggest a testing method to test vehicles at the design Reynolds number.	2
2.	Moving belt simulation in wind tunnels is difficult due to belt vibrations and slip. How would you correct such data to make it reflect on-road data more accurately?	2
3.	Active noise control in vehicles is limited to low frequencies by the short cabin distances. Suggest a way to boost or amplify this frequency attenuation to extend it to higher frequencies.	1
4.	Consider turbulent flow past an isothermal flat plate of width b and length L with constant (ρ, μ, c_p, k) . Assume $\delta = \delta_t$, and $Pr = 1$. At $x = 0$ the flow has uniform velocity U and temperature T_{∞} . At $x = L$, the mean flow may be approximated by the one seventh power law profile: $(u/u_{\infty}) = (y/\delta)^{1/7}$. There is no information about the flow structure between the leading and trailing edges. Use a control volume analysis to estimate the total friction drag on one side of the plate.	
5.	Briefly explain how the DNS method can be modified to make it more suitable for wake and drag analysis.	3