Reverse directed graph in C++

```
#include <iostream>
#include <vector>
using namespace std;
class ReverseDirectedGraph {
public:
  static vector<vector<int>>
reverseDirectedGraph(const vector<vector<int>>& adj,
int V) {
    vector<vector<int>> reversedAdj(V + 1);
    for (int i = 0; i \le V; ++i) {
       for (int j : adj[i]) {
         reversedAdj[j].push_back(i);
    return reversedAdj;
  }
  static void printGraph(const vector<vector<int>>&
graph, int V) {
    for (int i = 1; i \le V; ++i) {
       for (int j : graph[i]) {
         cout << i << " -> " << j << endl;
};
int main() {
  int V = 5;
  vector < vector < int >> adj(V + 1);
  adj[1].push_back(3);
  adj[1].push_back(2);
  adj[3].push_back(4);
  adj[4].push_back(5);
  vector<vector<int>> reversedAdj =
ReverseDirectedGraph::reverseDirectedGraph(adj, V);
  cout << "Reversed Graph:" << endl;</pre>
  ReverseDirectedGraph::printGraph(reversedAdj, V);
  return 0;
```

Original Input Graph (Adjacency List)

We have a **directed graph** with 5 vertices (V = 5):

Vertex	Edges
1	$\rightarrow 3, \rightarrow 2$
2	
3	$\rightarrow 4$
4	$\rightarrow 5$
5	

Graphically:

$$\begin{array}{c} 1 \rightarrow 2 \\ \downarrow \\ 3 \rightarrow 4 \rightarrow 5 \end{array}$$

⊘ Dry Run Table: reverseDirectedGraph(adj, V)

This function creates a reversed adjacency list where every edge $u \rightarrow v$ becomes $v \rightarrow u$.

i (Source Node)	j (adj[i])	reversedAdj[j] After Insertion
1	3	$reversedAdj[3] = \{1\}$
1	2	$reversedAdj[2] = \{1\}$
3	4	$reversedAdj[4] = {3}$
4	5	$reversedAdj[5] = {4}$

≛ Final reversedAdj Table

Vertex	reversedAdj[vertex] (Incoming Edges)
1	
2	1
3	1
4	3
5	4

 $riangleq ext{Output of printGraph(reversedAdj, V)}$

This prints **destination** \rightarrow **source** (reversed):

	2 -> 1 3 -> 1 4 -> 3 5 -> 4
Output:-	
Reversed Graph:	
2 -> 1	
3 -> 1	
4 -> 3	
3 -> 1 4 -> 3 5 -> 4	