Remote Work and the Wage Premium

Mitchell Valdes-Bobes and Anna Lukianova

February 25, 2025

Research Question

Research Question: How does the feasibility of remote work influence the wage premiums of remote workers?

Research Question

Research Question: How does the feasibility of remote work influence the wage premiums of remote workers?

Agenda for Today

- Occupation Remote Index: New a measure of remote work feasibility.
- Theoretical Model: Remote work and worker-firm matching dynamics.
- Model Calibration & Preliminary Results: Key findings and next steps.

Related Literature

I. Teleworkability Measurement

- Dingel, Neiman (2020), Mongey, Pilossoph, Weinberg (2021) Construct teleworkability indices using occupation tasks and requirements based on ad hoc feature selection.
 - **Contribution** Use machine learning on a high-dimensional feature set, rather than relying on manual selection.

Related Literature

I. Teleworkability Measurement

- Dingel, Neiman (2020), Mongey, Pilossoph, Weinberg (2021) Construct teleworkability indices using occupation tasks and requirements based on ad hoc feature selection.
 - Contribution Use machine learning on a high-dimensional feature set, rather than relying on manual selection.

II. Remote Work and Compensation

- Pabilonia, Vernon (2023), Cullen, Pakzad-Hurson, Perez-Truglia (2024),
 Barrero, Bloom, Buckman, and Davis (2023) Workers value remote work
 document wage premiums associated with remote work.
 - o Contribution Link wage premiums to occupation teleworkability.

Related Literature

I. Teleworkability Measurement

- Dingel, Neiman (2020), Mongey, Pilossoph, Weinberg (2021) Construct teleworkability indices using occupation tasks and requirements based on ad hoc feature selection.
 - Contribution Use machine learning on a high-dimensional feature set, rather than relying on manual selection.

II. Remote Work and Compensation

- Pabilonia, Vernon (2023), Cullen, Pakzad-Hurson, Perez-Truglia (2024),
 Barrero, Bloom, Buckman, and Davis (2023) Workers value remote work
 document wage premiums associated with remote work.
 - Contribution Link wage premiums to occupation teleworkability.

III. Amenity Provision and Hedonic Wages

- Morchio, Moser (2024), Hwang, Mortensen, Reed (1998) Model how workers value job amenities and how these preferences affect wages.
 - Contribution Link worker preferences for remote work to job productivity. Allow for heterogeneity in remote work efficiency at the firm and worker level.

Empirical Evidence

- American Community Survey, 2013-2022: individual data.
 - Sample civilian wage-employed, respondents between 22 and 70, work more than 30 hours over federal minimum wage.
 - Remote work defined as not commuting to work (answered: worked from home).

- American Community Survey, 2013-2022: individual data.
 - Sample civilian wage-employed, respondents between 22 and 70, work more than 30 hours over federal minimum wage.
 - Remote work defined as not commuting to work (answered: worked from home).
- ONET: occupation level data.
 - Skills, abilities, work context, and work activities.

- American Community Survey, 2013-2022: individual data.
 - Sample civilian wage-employed, respondents between 22 and 70, work more than 30 hours over federal minimum wage.
 - Remote work defined as not commuting to work (answered: worked from home).
- ONET: occupation level data.
 - Skills, abilities, work context, and work activities.
- **BLS**: occupation-industry level data.
 - Selected occupation feasibility of remote work.
 - Occupational composition of the workforce. (U.S. and 3-digit industry level).
 - Labor productivity at the 3-digit industry level.
 - Occupational Requirements Survey (ORS) establishment-level data that includes teleworkability at the occupation level (incomplete coverage).

- American Community Survey, 2013-2022: individual data.
 - Sample civilian wage-employed, respondents between 22 and 70, work more than 30 hours over federal minimum wage.
 - Remote work defined as not commuting to work (answered: worked from home).
- ONET: occupation level data.
 - Skills, abilities, work context, and work activities.
- **BLS**: occupation-industry level data.
 - Selected occupation feasibility of remote work.
 - Occupational composition of the workforce. (U.S. and 3-digit industry level).
 - Labor productivity at the 3-digit industry level.
 - Occupational Requirements Survey (ORS) establishment-level data that includes teleworkability at the occupation level (incomplete coverage).

Other:

- Business Dynamics Statistics (BDS).
- WFH Map, **Hansen, et. al. (2023)**: Remote job posting.

Remote vs. Non-Remote Worker Characteristics

	Non-	-WFH	WFH		
	Mean	Sd	Mean	Sd	
Share labor force 2013 - 2019	97%	-	3%	-	
Share labor force 2020 - 2023	85%	-	15%	-	
Age	44.20	12.43	44.66	11.88	
Total income	67,536.4	69,200.87	106,556.2	97,919.89	
Hourly wage	27.95	25.81	44.20	37.59	
Real hourly wage	26.31	24.10	39.31	33.10	
Commuting time	26.81	23.50	-	-	
Share of College	39%	-	66%	-	
Share of Postgraduate	15%	-	26%	-	
Observations	902	5857	751654		

• **Teleworkability Index:** A measure of the extent to which an occupation can be performed remotely.

- **Teleworkability Index:** A measure of the extent to which an occupation can be performed remotely.
- Why?: Are there inherent occupational characteristics that not only make a job teleworkable but also imply higher wages?

- Teleworkability Index: A measure of the extent to which an occupation can be performed remotely.
- Why?: Are there inherent occupational characteristics that not only make a job teleworkable but also imply higher wages?
- Existing teleworkability indexes are coarse and use inconsistent feature selection.
 - Dingel and Neiman (2020) classify occupations as teleworkable or not.
 - Mongey, Pilossoph, Weinberg (2021) measured occupation feasibility for remote work and physical proximity required.
 - Both approaches require the researcher to make assumptions about the importance of the features used to classify teleworkability.

- Teleworkability Index: A measure of the extent to which an occupation can be performed remotely.
- Why?: Are there inherent occupational characteristics that not only make a job teleworkable but also imply higher wages?
- Existing teleworkability indexes are coarse and use inconsistent feature selection.
 - **Dingel and Neiman (2020)** classify occupations as teleworkable or not.
 - Mongey, Pilossoph, Weinberg (2021) measured occupation feasibility for remote work and physical proximity required.
 - Both approaches require the researcher to make assumptions about the importance of the features used to classify teleworkability.

Need for a New Index:

- Leverage a high-dimensional, data-driven approach.
- Capture nuanced differences in how tasks and requirements enable remote work.

• **Approach:** Use a mixture of machine learning models to generate a teleworkability index. • details

- Approach: Use a mixture of machine learning models to generate a teleworkability index.
 - Classify occupations as teleworkable or not and score their teleworkability.
 - Identify key contributing occupational features.

- Approach: Use a mixture of machine learning models to generate a teleworkability index.
 - Classify occupations as teleworkable or not and score their teleworkability.
 - Identify key contributing occupational features.
 - Classifier Stage: Feature importance identifies occupations impossible to telework.
 (extensive margin) details
 - Regressor Stage: Feature importance the level of teleworkability. (intensive margin)

- Approach: Use a mixture of machine learning models to generate a teleworkability index.
 - Classify occupations as teleworkable or not and score their teleworkability.
 - Identify key contributing occupational features.
 - Classifier Stage: Feature importance identifies occupations impossible to telework.
 (extensive margin) details
 - Regressor Stage: Feature importance the level of teleworkability. (intensive margin) details
- Validate results against labeled occupational data.
 - Establishment-level data: Percentage of workers that are able to telework at the occupation level.
 - The coverage is incomplete, we use the provided values and the estimated index to predict the teleworkability of the remaining occupations.

Classifier/Regressor Performance and Data Distribution

Classification:

- $\ \, \mathsf{Accuracy} = 90.7\%$
- F1 = 91.9%

• Regression:

- MSE = 0.1
- Correlation = 0.71

Figure 1: Distribution of Unlabeled vs Labeled Data

Stylized Fact I: Remote Work Correlates with Higher Wages

Table 1: (log)Wage regressed on Teleworkability index and remote work indicator.

	(1)	(2)	(3)	(4)	(5)	(6)
Teleworkability Index	1.009***	0.860***	0.582***	0.551***	0.484***	0.473***
	(0.00111)	(0.00129)	(0.00256)	(0.00256)	(0.00124)	(0.00124)
WFH Indicator				0.161***		0.0793***
				(0.000970)		(0.000909)
FE: Year & Location	√	√	√	√	√	√
FE: Industry		\checkmark		\checkmark	\checkmark	✓
$AgeCat \times Educ$					\checkmark	✓
N	9708029	9708029	9708029	9708029	9708028	9708028
R^2	0.198	0.279	0.334	0.338	0.420	0.421

Worker level data. All regressions include demographic controls: age, race, education, others.

Standard errors in parentheses: p < 0.1, p < 0.05, p < 0.001.

Stylized Fact II: Within Occupations Remote Workers Earn More

Table 2: (log)Wage regressed on remote work indicator and controls.

	(1)	(2)	(3)	(4)	(5)
WFH Indicator	0.347***	0.216***	0.146***	0.130***	0.0880***
	(0.00108)	(0.00105)	(0.000946)	(0.000942)	(0.000870)
FE: Year & Location	√	√	√	√	✓
FE: Industry		\checkmark		\checkmark	\checkmark
FE: Occupation			\checkmark	\checkmark	\checkmark
FE: Class of Worker				\checkmark	\checkmark
$AgeCat \times Educ$					\checkmark
N	9712293	9712293	9712293	9712293	9712292
R^2	0.0955	0.227	0.383	0.408	0.485

Worker level data. All regressions include demographic controls: age, race, education, others. Standard errors in parentheses: $^*p < 0.1$, $^{**}p < 0.05$, $^{***}p < 0.001$.

Stylized Fact III: WFH Wage Premium is Increasing

▶ Regression

Model

Model Overview

• Directed search model in the spirit of Menzio and Shi (2010).

Model Overview

- Directed search model in the spirit of Menzio and Shi (2010).
- Sources of heterogeneity:
 - Firms: Different remote-work efficiencies.
 - Workers: Different skill levels.

Model Overview

- Directed search model in the spirit of Menzio and Shi (2010).
- Sources of heterogeneity:
 - Firms: Different remote-work efficiencies.
 - Workers: Different skill levels.

• Key Mechanisms:

- Workers value the flexibility provided by remote work arrangements.
- High skilled workers are more productive and better suited for remote work.
- Firms treat remote and on-site work as substitutable.

• Characterized by their productivity.

- Characterized by their productivity.
- Incur disutility from on-site work $(1-\alpha)$, compensated by wage (w).
 - $x(w,\alpha)$: utility of a worker earning w with remote work $\alpha \in [0,1]$ of the time.
 - $\circ x_w(w,\alpha) > 0$
 - $\circ x_{\alpha}(w,\alpha) > 0$

- Characterized by their productivity.
- Incur disutility from on-site work $(1-\alpha)$, compensated by wage (w).
 - $x(w,\alpha)$: utility of a worker earning w with remote work $\alpha \in [0,1]$ of the time.
 - $\circ x_w(w,\alpha) > 0$
 - $\circ x_{\alpha}(w,\alpha) > 0$
- Labor market is segmented by worker type and promised utility: (h, x):
 - $-\theta(h,x)$ is the sub-market tightness.
 - $p(\theta(h,x))$ is the job finding rate.

- Characterized by their productivity.
- Incur disutility from on-site work $(1-\alpha)$, compensated by wage (w).
 - $x(w,\alpha)$: utility of a worker earning w with remote work $\alpha \in [0,1]$ of the time.
 - $\circ x_w(w,\alpha) > 0$
 - $\circ x_{\alpha}(w,\alpha) > 0$
- Labor market is segmented by worker type and promised utility: (h, x):
 - $-\theta(h,x)$ is the sub-market tightness.
 - $p(\theta(h,x))$ is the job finding rate.
- Choose where to apply based on maximizing expected utility.

• Remote-work efficiency: A firm's type ψ determines its efficiency in remote work.

- Remote-work efficiency: A firm's type ψ determines its efficiency in remote work.
- The output of a firm-worker match depends on the fraction of remote work (α) and the worker's skill (h):

$$Y(\alpha \mid \psi, h) = A(h) ((1 - \alpha) + \alpha g(h, \psi))$$

- Remote-work efficiency: A firm's type ψ determines its efficiency in remote work.
- The output of a firm-worker match depends on the fraction of remote work (α) and the worker's skill (h):

$$Y(\alpha \mid \psi, h) = A(h) ((1 - \alpha) + \alpha g(h, \psi))$$

- A'(h) > 0: Higher-skilled workers (h) contribute more to productivity.
- $g_{\psi}(\psi, h)$ ≥ 0: Remote work efficiency increases with firm type (ψ) due to better technology, better management practices or the nature of the occupation.
- $g_h(\psi, h)$ ≥ 0: Remote work efficiency increases with skill (h) due to greater autonomy and technological ability.

- Remote-work efficiency: A firm's type ψ determines its efficiency in remote work.
- The output of a firm-worker match depends on the fraction of remote work (α) and the worker's skill (h):

$$Y(\alpha \mid \psi, h) = A(h) ((1 - \alpha) + \alpha g(h, \psi))$$

- -A'(h) > 0: Higher-skilled workers (h) contribute more to productivity.
- $g_{\psi}(\psi, h)$ ≥ 0: Remote work efficiency increases with firm type (ψ) due to better technology, better management practices or the nature of the occupation.
- $g_h(\psi, h)$ ≥ 0: Remote work efficiency increases with skill (h) due to greater autonomy and technological ability.
- Firm is uncertain of ψ before posting. The distribution $F(\psi)$ is known by all agents.

$$\max_{\alpha} \{ Y(\alpha \mid \psi, h) - w(x, \alpha) \} \quad \text{s.t.} \quad x(w(x, \alpha), \alpha) = x$$

• Type ψ firms posting vacancies in a sub-market (x,h) faces the maximization problem:

$$\max_{\alpha} \{ Y(\alpha \mid \psi, h) - w(x, \alpha) \} \quad \text{s.t.} \quad x(w(x, \alpha), \alpha) = x$$

• Implies an optimal remote policy for each firm $\alpha^*(\psi,h,x)$

$$\max_{\alpha} \{ Y(\alpha \mid \psi, h) - w(x, \alpha) \} \quad \text{s.t.} \quad x(w(x, \alpha), \alpha) = x$$

- Implies an optimal remote policy for each firm $\alpha^*(\psi, h, x)$
- We derive the optimal remote work policy with the following parametrization:

$$\max_{\alpha} \{ Y(\alpha \mid \psi, h) - w(x, \alpha) \} \quad \text{s.t.} \quad x(w(x, \alpha), \alpha) = x$$

- Implies an optimal remote policy for each firm $\alpha^*(\psi, h, x)$
- We derive the optimal remote work policy with the following parametrization:
 - **Skill-Driven productivity gains:** A(h) = Ah with A > 0

$$\max_{\alpha} \{ Y(\alpha \mid \psi, h) - w(x, \alpha) \} \quad \text{s.t.} \quad x(w(x, \alpha), \alpha) = x$$

- Implies an optimal remote policy for each firm $\alpha^*(\psi, h, x)$
- We derive the optimal remote work policy with the following parametrization:
 - Skill-Driven productivity gains: A(h) = Ah with A > 0
 - Remote work efficiency: $g(\psi, h) = \psi \psi_0 + \phi \log(h)$
 - \circ ψ_0 : Baseline productivity reflecting how technology supports remote work.
 - $\circ \phi \in \mathbb{R}$: Captures how worker skill affects the productivity of remote work.

$$\max_{\alpha} \{ Y(\alpha \mid \psi, h) - w(x, \alpha) \} \quad \text{s.t.} \quad x(w(x, \alpha), \alpha) = x$$

- Implies an optimal remote policy for each firm $\alpha^*(\psi, h, x)$
- We derive the optimal remote work policy with the following parametrization:
 - Skill-Driven productivity gains: A(h) = Ah with A > 0
 - Remote work efficiency: $g(\psi, h) = \psi \psi_0 + \phi \log(h)$
 - \circ ψ_0 : Baseline productivity reflecting how technology supports remote work.
 - o $\phi \in \mathbb{R}$: Captures how worker skill affects the productivity of remote work.
 - Worker utility: $x(w,\alpha) = w c(1-\alpha)^{\chi}$ with c > 0 and $\chi > 1$

• First order conditions of the firm problem give us interior solution if and only if:

$$1 + \psi_0 - \phi \log(h) - \frac{c\chi}{Ah} < \psi < 1 + \psi_0 - \phi \log(h)$$

• First order conditions of the firm problem give us interior solution if and only if:

$$\underbrace{\frac{1+\psi_0-\phi\log(h)-\frac{c\chi}{Ah}}_{\underline{\psi}(h)}} < \psi < \underbrace{1+\psi_0-\phi\log(h)}_{\overline{\psi}(h)}$$

• First order conditions of the firm problem give us interior solution if and only if:

$$\underbrace{1 + \psi_0 - \phi \log(h) - \frac{c\chi}{Ah}}_{\underline{\psi}(h)} < \psi < \underbrace{1 + \psi_0 - \phi \log(h)}_{\overline{\psi}(h)}$$

• The optimal remote work policy is:

$$\alpha^*(\psi, h) = \begin{cases}
0 & \text{if } \psi \leq \underline{\psi}(h) \\
1 & \text{if } \overline{\psi}(h) \leq \psi
\end{cases}$$

• First order conditions of the firm problem give us interior solution if and only if:

$$\underbrace{\frac{1+\psi_0-\phi\log(h)-\frac{c\chi}{Ah}}_{\underline{\psi}(h)}} < \psi < \underbrace{1+\psi_0-\phi\log(h)}_{\overline{\psi}(h)}$$

The optimal remote work policy is:

$$\alpha^{*}(\psi, h) = \begin{cases} 0 & \text{if } \psi \leq \underline{\psi}(h) \\ 1 - \left(\frac{Ah(1+\psi_{0}-\phi\log(h)-\psi)}{c\chi}\right)^{\frac{1}{\chi-1}} & \text{if } \underline{\psi}(h) < \psi < \overline{\psi}(h) \\ 1 & \text{if } \overline{\psi}(h) \leq \psi \end{cases}$$

Consider a firm's optimal remote work policy where a worker's skill level h influences their arrangement. If the worker's skill satisfies:

$$h > \frac{c\chi}{A\phi}$$

Consider a firm's optimal remote work policy where a worker's skill level h influences their arrangement. If the worker's skill satisfies:

$$h > \frac{c\chi}{A\phi}$$

then the following properties hold:

• Higher-skilled workers get more remote work: The optimal remote work policy $\alpha^*(h)$ is increasing in h.

Consider a firm's optimal remote work policy where a worker's skill level h influences their arrangement. If the worker's skill satisfies:

$$h > \frac{c\chi}{A\phi}$$

- **Higher-skilled workers get more remote work**: The optimal remote work policy $\alpha^*(h)$ is increasing in h.
- Easier access to remote work: The lower bound $\underline{\psi}(h)$ of the productivity range where remote work is feasible decreases in h.

Consider a firm's optimal remote work policy where a worker's skill level h influences their arrangement. If the worker's skill satisfies:

$$h > \frac{c\chi}{A\phi}$$

- **Higher-skilled workers get more remote work**: The optimal remote work policy $\alpha^*(h)$ is increasing in h.
- Easier access to remote work: The lower bound $\underline{\psi}(h)$ of the productivity range where remote work is feasible decreases in h.
- Lower threshold for full remote work: The upper bound $\overline{\psi}(h)$, which determines when full remote work is optimal, decreases in α .

Consider a firm's optimal remote work policy where a worker's skill level h influences their arrangement. If the worker's skill satisfies:

$$h > \frac{c\chi}{A\phi}$$

- **Higher-skilled workers get more remote work**: The optimal remote work policy $\alpha^*(h)$ is increasing in h.
- Easier access to remote work: The lower bound $\underline{\psi}(h)$ of the productivity range where remote work is feasible decreases in h.
- Lower threshold for full remote work: The upper bound $\overline{\psi}(h)$, which determines when full remote work is optimal, decreases in α .

Optimal Remote Work

Value Functions

- Firms:
 - Value of posting:

$$V(h,x) = -\kappa + \int J(\psi,h,x)dF(\psi)$$

- Value of an ongoing match:

$$J(\psi,h,x) = Y(\alpha^*(\psi,h) \mid \psi,h) - w(x,\alpha^*(\psi,h)) + \beta \left[(1-\delta)J(\psi,h,x) + \delta V(h,x) \right]$$

Value Functions

- Firms:
 - Value of posting:

$$\underbrace{V(h,x)}_{\text{=0 by free entry}} = -\kappa + q(\theta(h,x)) \int J(\psi,h,x) dF(\psi)$$

Value of an ongoing match:

$$J(\psi,h,x) = Y(\alpha^*(\psi,h) \mid \psi,h) - w(x,\alpha^*(\psi,h)) + \beta(1-\delta)J(\psi,h,x)$$

Value Functions

- Firms:
 - Value of posting:

$$\underbrace{V(h,x)}_{\text{=0 by free entry}} = -\kappa + q(\theta(h,x)) \int J(\psi,h,x) dF(\psi)$$

Value of an ongoing match:

$$J(\psi, h, x) = Y(\alpha^*(\psi, h) \mid \psi, h) - w(x, \alpha^*(\psi, h)) + \beta(1 - \delta)J(\psi, h, x)$$

- Workers:
 - Value of unemployed worker:

$$U(h) = b + \max_{x} \left\{ p(\theta(h,x)) \int W(\psi,h,x) dF(\psi) + (1 - p(\theta(h,x))) U(h) \right\}$$

– Value of employed worker:

$$W(\psi, h, x) = x + \beta \left[(1 - \delta) W(\psi, h, x) + \delta U(h) \right]$$

Better Jobs are Harder to Find (but better workers find them)

Higher Skill Workers search for Better Jobs

Higher-Skilled Workers Earn More and Access More Remote Opportunities

Calibration

Calibration Overview

Worker Skill Distribution:

 Skill index at the occupation level constructed from Abilities and Skills datasets from ONET. details

• Remote Work Efficiency Distribution($F(\psi)$):

- No productivity data at the occupation level.
- Labor productivity at the 3-digit industry level from BLS.
- Combined with the teleworkability index estimated at the occupation level with the occupation composition of each industry, obtain the remote work feasibility at the industry level.
- Use the observed fraction of remote workers in each industry (ACS).
- Regress productivity data on remote work indicators to estimate ψ as a function of observables. details
- Use a kernel density estimator to calibrate the distribution of teleworkability (ψ).

Calibrated Parameters and Density Function

Parameter	Estimate	_
А	25.55	▶ details
ψ_{0}	1.46	
ϕ	2.66	

Future Work

- Incorporate additional sources of heterogeneity, firm productivity, and worker preferences.
- Test alternative functional forms for productivity and utility in the theoretical model.
- Examine how the overall technological environment and digital infrastructure influence remote work feasibility and wage differentials.
- Explore dynamic aspects such as on-the-job search and career mobility in remote work settings.
- Evaluate counterfactual scenarios—such as a complete shutdown of remote work—to measure their impact on wage differentials.

Appendix

Occupation Remote Index: Details

- Data: Occupation-level features (tasks, skill requirements, etc.)
- Models: SVC (RBF) for classification, SVR (RBF) for teleworkability level.
- **Hyperparameters:** (tuned via cross-validation)
- Validation: Boostrap validation (1000 samples) per parameter set.

Occupation Remote Index: Performance

Figure 2: Feature importance for classifier stage

Occupation Remote Index: Performance

Figure 3: Feature importance for regressor stage

Calibration of Remote Work Efficiency Distribution

Consider the production function:

$$Y(\alpha, h, \psi) = Ah((1 - \alpha) + \alpha(\psi - \psi_0 + \phi \log(h))$$

• We make the following assumption:

$$\psi_i = \psi_1 \mathsf{Tele}_i$$

This implies the following specification:

$$Y_{it} = \beta_0 + \beta_1 h_i + \beta_2 \alpha_{it} h_i + \beta_3 \mathsf{Tele}_i \alpha_{it} + \beta_4 h_i \log(h_i)$$

• This identifies the coefficients:

$$A = \beta_1, \quad \psi_0 = \frac{\beta_2 + 1}{A}, \quad \psi_1 = \frac{\beta_3}{A}, \quad \phi = \frac{\beta_4}{A}$$

Calibration of Remote Work Efficiency Distribution: Results

$$Y_{it} = \beta_0 + \beta_1 h_i + \beta_2 \alpha_{it} h_i + \beta_3 \mathsf{Tele}_i \alpha_{it} + \beta_4 h_i \log(h_i)$$

	Y
β_0	16.739***
	(6.151)
β_1	25.708***
	(4.345)
β_2	-37.564**
	(17.131)
β_3	315.199***
	(73.476)
β_{4}	64.152***
	(20.580)
N	418
R^2	0.263

WFH premium over years

Dependent variable	Log of real hourly wage		
WFH (1 if works from home)	0.0781*** (0.005)		
WFH#2014	0.0099 (0.0074)		
WFH#2015	0.0136* (0.0072)		
WFH#2016	0.0134* (0.0069)		
WFH#2017	0.0160** (0.0069)		
WFH#2018	0.0178*** (0.0065)		
WFH#2019	0.00737 (0.0065)		
WFH#2020	0.0243*** (0.0058)		
WFH#2021	0.0286*** (0.0056)		
WFH#2022	0.0209*** (0.0056)		
Observations	8,410,229		
R-squared	0.438		

Fixed effects: Age and age squared, education controls, race controls, year FE, place of residence FE, industry FE, occupation FE. Robust standard errors are in parentheses.

Stylized Fact I: Remote Work Correlates with Higher Wages

Table 3: Wage regressed on Teleworkability index and remote work indicator.

	(1)	(2)	(3)	(4)	(5)	(6)
Teleworkability Index	33.58***	27.68***	20.89***	19.70***	15.36***	14.90***
	(0.0522)	(0.0580)	(0.115)	(0.115)	(0.0569)	(0.0570)
WFH Indicator				6.365***		3.203***
				(0.0506)		(0.0487)
FE: Year & Location	√	√	√	√	√	√
FE: Industry		\checkmark		\checkmark	\checkmark	\checkmark
$AgeCat \times Educ$					\checkmark	\checkmark
N	9708029	9708029	9708029	9708029	9708028	9708028
R^2	0.141	0.186	0.227	0.230	0.292	0.293

Worker level data. All regressions include demographic controls: age, race, education, others. Standard errors in parentheses: * p < 0.1, ** p < 0.05, *** p < 0.001.

Stylized Fact II: Within Occupations Remote Workers Earn More

Table 4: Wage regressed on remote work indicator and controls.

	(1)	(2)	(3)	(4)	(5)
WFH Indicator	12.44***	7.702***	5.834***	5.031***	3.603***
	(0.0530)	(0.0525)	(0.0494)	(0.0493)	(0.0471)
FE: Year & Location	√	√	√	√	✓
FE: Industry		\checkmark		\checkmark	\checkmark
FE: Occupation			\checkmark	\checkmark	\checkmark
FE: Class of Worker				\checkmark	\checkmark
$AgeCat \times Educ$					\checkmark
N	9712293	9712293	9712293	9712293	9712292
R^2	0.0711	0.153	0.289	0.307	0.364

Worker level data. All regressions include demographic controls: age, race, education, others. Standard errors in parentheses: * p < 0.1, ** p < 0.05, *** p < 0.001.

Worker's Skill Distribution

- The skill distribution is constructed from ONET data.
- Simple average of Skills and Abilities weighted by importance to the occupation.
- We fit a Normal distribution to the skill index.

Mean: 0.41StandardDeviation: 0.17

