ページの制御

- ページングでは、使うページはページフレームを、 そうで無いものはそれなりに
- * プロセスの持つ仮想アドレス空間の中身
 - * 物理ページ (ページフレーム) のあるページ
 - * 補助記憶に退避されたページ
 - * 割り当てなしのページ
- * 物理ページは即座にアクセス可能
- * 使えるページの準備
- ページフレームの確保
 空きページがなければ、適当なページを退避 (ページアウト)
- 2. 退避ページがある場合は、 補助記憶から読み出し (ページイン)
- 3. 新たな割り当てならばページフレーム内を初期化
- 4. ページテーブルを更新

- *ページ作成のタイミング
- * ページフレームの割り当てがないページに対して
- * デマンドページング:アクセスが生じたときに逐次
- * プリページング: アクセスが生じそうなものを事前 に
- * アクセスが生じたときの合図は割り込みで→ページフォールト
- ページの置き換え
- ⋄ 使うページ全てを事前に予見するのは不可能
- * デマンドページングを基本、ある程度プリページング
- * コンピュータの動作の性質を利用する
- * 局所性(可能性が高い)
- * 周りのデータが近い将来に使われる
- * 同じ時期に周りのデータが使われる

メモリの応答時間

- ページフォールトの発生→ページ入れ替えによる時間ロス
- * メモリの体感的な応答時間が大きくなる
- ◆ 体感的な平均メモリ応答時間E=(1-P)・M + P・R
 - *ページフォールトの確率 P
 - * ページの置換えにかかる時間 R
 - * 実際の物理メモリの応答時間 M
- * 一般にM<<Rなので、Pが大きいとメモリ応答は格 段に悪くなる
- * 使うページの予測
- * E=(1-P) \cdot M + P \cdot R
- * Eを減らすには、RかPを小さくする
- * Rの縮小は物理的な対応

- * 高速なHDDとかSSDを使う
- * Pの縮小は
 - * 物理メモリを増やす
 - * すぐ使いそうなページをうまく残す→ソフト ウェア的な対応
- * 最適なページ置き換え
- * 使わなさそうなページをページアウト
- ページアウトするページを決める手順→ページ置換えアルゴリズム
- * 最適なアルゴリズム
 - →実現はほぼ不可能 (部分的には可能)
 - * 挙動の全てが記録できていて
 - * 挙動が完全に再現される場合
 - * 将来使用するページを元に、 最も参照されないページからページアウト

置換えアルゴリズム

- * FIFO: First In, First Out
 - →確保の古い順
- * NRU: Not Recently Used
 - →参照、変更ビットを確認。
 - 一定間隔で全てリセット
- * Second Chance
 →FIFOの改良。参照があれば猶予し
 てキューに入れ直し
- Clock
 →ページの参照リストを巡回して
 チェック。参照がなければページアウト。参照があればリセット(猶予)

- * LRU: Least Recently Used
 - →参照された時期をリスト所持。 古い参照から
- * NFU: Not Frequently Used
 - →参照された回数をカウント。 回数が少ないものから
- * Aging
 - →ビット列の最上位に参照ビットを。 時間が経つごとに右シフトして値を小 さく。ビット列の値が小さいものから

ワーキングセットモデル

- * アクセスの局所性
- * データやプログラムの特徴(傾向)
 - * 連続して配置されている
 - * 種類別に分けて配置されている
 - * 繰り返し処理される
- * 参照先はプログラムカウンタかアドレスレジスタに指 定される
- * メモリ領域の周辺が近い将来に参照される (時間的局所性)
- * 同じ時期にメモリ領域の周辺が参照される (空間的局所性)
- * ワーキングセットモデル
- ・現在各プロセスが使用しているページの集合→ワーキングセット
- * ワーキングセットの一部が物理メモリ上にない→アクセスするとページフォールトが発生

- * ページフォールトが頻発するとメモリへのアクセス速度が激減→処理速度も激減(スラッシング)
- * ワーキングセットを全て物理メモリにあれば問題はないが・・・
- * マルチタスクではプロセス切り替えの際にワーキング セットも大きく変化→スラッシングが一時的に発生
- * ワーキングセットをメモリ上に維持しようとするページの割当て手法→ワーキングセットモデル
- * 予めプロセス毎のワーキングセットの遷移を保持→実行時にその実績に応じたページを割り当てる(プリページング)
- * 使用されないページを予測して置き換え対象ページに することも可能
- * ただし、管理コストは大きいので疑似的な手法が必要
- * 利用時期が古いものはセットから外れている→WSClock