Esame di Applicazioni di Meccanica Quantistica

Prova scritta del 12/12/2005

Problema 1

Sia dato un oscillatore armonico anisotropo nel piano xy, descritto dalla hamiltoniana

$$H = \frac{1}{2m}(p_x^2 + p_y^2) + \frac{1}{2}m(\omega_1^2 x^2 + \omega_2^2 y^2).$$

- a) Si consideri dapprima il caso isotropo $\omega_1 = \omega_2 = \omega$ e si dica come in questo caso gli autovalori e le autofunzioni dell'energia possono essere classificati con i numeri quantici n_1, n_2 (in coordinate cartesiane). Si dica inoltre qual è la degenerazione dei livelli.
 - Si consideri il caso $\omega_1 = \omega + \delta$, $\omega_2 = \omega \delta$, con $\delta \ll \omega$. Si calcoli allora lo spostamento del livello E_n al primo ordine perturbarivo in δ nella base $|n_1 n_2\rangle$, tenendo conto che il livello E_n è degenere. Si confronti il valore ottenuto per l'energia col risultato esatto.
- Si consideri ancora il caso isotropo con $\omega_1 = \omega_2 = \omega$ e si supponga che l'oscillatore abbia carica elettrica e e spin zero e sia immerso in un campo magnetico B diretto lungo l'asse z. Si dica come il livello n=1 viene separato per effetto del campo magnetico e si calcoli lo spostamento delle sue componenti al primo ordine in B.

Problema 2

Siano date due particelle di spin $\frac{1}{2}$ il cui moto relativo è descritto dalla hamiltoniana

$$H = H_0 + A\boldsymbol{L} \cdot \boldsymbol{S}_1 + B\boldsymbol{L} \cdot \boldsymbol{S}_2 + C\boldsymbol{S}_1 \cdot \boldsymbol{S}_2,$$

dove $H_0 = p^2/2\mu + V(r)$ è indipendente dallo spin ed ha autovalori noti, L è il momento angolare orbitale, S_1 e S_2 sono gli operatori di spin delle due particelle. Supponiamo per semplicità che i momenti angolari siano presi in unità \hbar .

- a) Il caso $A \neq 0$ e B = C = 0 è analogo a quello dell'interazione spin-orbita dell'idrogeno (salvo che qui A = cost.). Si dica come un livello E_{nl} di H_0 si separa per effetto dell'interazione spin-orbita.
- b) Supponiamo ora che sia $A = B \neq 0$ e $C \neq 0$. Si dica anche in questo caso come si separa un generico livello E_{nl} e con quale degenerazione.
- c) Si consideri il caso con $A \neq B \neq 0$, C = 0, l = 1 e J = 2, dove J è il numero quantico del momento angolare totale. Si trovino in questo caso gli autovalori dell'energia e si dica qual è la loro degenerazione.