Exponential Separation of Quantum and Classical One-Way Communication Complexity

Iordanis Kerenidis UC Berkeley

Joint work with: Ziv Bar-Yossef T. S. Jayram
IBM Almaden Research

Spot a difference!

Are the images the same?

- Applications of Communication Complexity
 VLSI design, Boolean circuits, Data structures, Automata, Formulae size, Data streams, ...
- Encoding/Compression scheme C(x), such that P(x,y)=g(C(x),y)

Quantum one-way communication complexity

Main question:

What is the relation between classical and quantum one-way communication?

Quantum one-way communication complexity

- Holevo's bound
 - We cannot compress information by using qubits.
 We need n qubits to transmit n classical bits.
- [Kremer95] defined a complete problem for boolean promise problems of logarithmic quantum communication complexity.
- [Raz 99] also considers the same problem. He gives an exponential separation for two-way communication.

Quantum one-way communication complexity

- Holevo's bound
 - We cannot compress information by using qubits.
 We need n qubits to transmit n classical bits.
- [Kremer95] defined a complete problem for boolean promise problems of logarithmic quantum communication complexity.
- [Raz 99] also considers the same problem. He gives an exponential separation for two-way communication.

Our result:

The first exponential separation of classical and quantum one-way communication complexity.

Hidden matching problem HM_n

Input: $x \ 2 \ \{0,1\}^n$

Input: a matching M on [n]

e.g. {(1,3),(2,5),(4,8),(6,7)}

Hidden matching problem HM_n

Input: $x \ 2 \ \{0,1\}^n$

Output:

$$((i,j), x_i \oplus x_j),$$

for $(i,j) \in M$

Input: a matching M on [n]

e.g.
$$\{(1,3),(2,5),(4,8),(6,7)\}$$

4

Complexity of HM_n

Input: $x \ 2 \{0,1\}^n$

Output

 $((i,j), x_i \oplus x_j),$ for $(i,j) \in M$ Input: a matching M on [n]

Theorem

- There exists a quantum algorithm with complexity $O(\log n)$
- Any randomized algorithm with public coins has complexity $\, \Omega(\sqrt{n}) \,$

•

Quantum algorithm for HM_n

Let
$$M = \{(i_1, i_2), (i_3, i_4), \dots, (i_{n-1}, i_n)\}$$
 be Bob's matching.

Alice sends the state

$$\frac{1}{\sqrt{n}}\sum_{i=1}^{n}(-1)^{x_i}|i\rangle$$

Bob measures in the basis

$$B = \{|i_1\rangle \pm |i_2\rangle, |i_3\rangle \pm |i_4\rangle, \dots, |i_{n-1}\rangle \pm |i_n\rangle\}$$

4

Quantum algorithm for HM_n

Alice sends the state

$$\frac{1}{\sqrt{n}} \sum_{i=1}^{n} (-1)^{x_i} |i\rangle = \frac{1}{\sqrt{n}} (((-1)^{x_{i_1}} |i_1\rangle + (-1)^{x_{i_2}} |i_2\rangle) + \ldots + ((-1)^{x_{i_{n-1}}} |i_{n-1}\rangle + (-1)^{x_{i_n}} |i_n\rangle))$$

Bob measures in the basis

$$B = \{|i_1\rangle \pm |i_2\rangle, |i_3\rangle \pm |i_4\rangle, \dots, |i_{n-1}\rangle \pm |i_n\rangle\}$$

- Prob[outcome is $|j\rangle+|k\rangle$] = $\frac{1}{2n}((-1)^{x_j}+(-1)^{x_k})^2$ Prob[outcome is $|j\rangle-|k\rangle$] = $\frac{1}{2n}((-1)^{x_j}-(-1)^{x_k})^2$
- Bob can compute the XOR of a pair of the matching with prob. 1

HM_n and Other problems

Locally Decodable Codes

- The quantum algorithm relies on the property that we can compute efficiently the XOR of a pair of a matching from a uniform superposition.
- Same property was used in [K., deWolf] to prove a lower bound for 2-query Locally Decodable Codes.

HM_n and Other problems

Locally Decodable Codes

- The quantum algorithm relies on the property that we can compute efficiently the XOR of a pair of a matching from a uniform superposition.
- Same property was used in [K., deWolf] to prove a lower bound for 2-query Locally Decodable Codes.

Complete Problems

- We can define a variant of Kremer's problem which is complete for non-boolean promise problems of logarithmic on-way quantum communication complexity.
- Our bounds extend to this problem.

-

Other models of communication complexity

Two-way communication

- [Raz99] proved an exponential separation.
- The quantum protocol needs two rounds.

•

Other models of communication complexity

Sampling model

- [ASTVW98] proved an exponential separation.
- The separation does not hold with public coins.

Other models of communication complexity

Simultaneous Messages

Quantum fingerprints [BCWdW01]
 The separation does not hold with shared public coins

Our problem provides the first exponential separation in the model of Simultaneous Messages with public coins.

Neat application [Harry Buhrman]

Hidden matching Problem as a non-locality game

 Using EPR pairs and NO communication, we can create correlations for which we need exponential classical communication even to approximate them!

Hidden matching problem HM_n

Input: $x \ 2 \{0,1\}^n$

Output

 $((i,j), x_i \oplus x_j),$ for $(i,j) \in M$ Input: a matching M on [n]

Theorem

- There exists a quantum algorithm with complexity $O(\log n)$
- Any randomized algorithm with public coins has complexity $\, \Omega(\sqrt{n}) \,$

 By Yao's Lemma we will construct a "hard" distribution over instances of HM_n and prove a distributional lower bound w.r.t. deterministic one-way protocols.

- By Yao's Lemma we will construct a "hard" distribution over instances of HM_n and prove a distributional lower bound w.r.t. deterministic one-way protocols.
- Distribution of Alice's input: x 2_R {0,1}ⁿ
- Distribution of Bob's input: $M \ 2_R M_n$ M_n is any set of $\Omega(n)$ pairwise edge-disjoint matchings.

Intuition:

Alice's message must contain information about at least one edge of each matching ($\Omega(n)$ edges).

(e.g.
$$x_1 \otimes x_2$$
, $x_2 \otimes x_3$, $x_1 \otimes x_3$, ...)

There are $\Omega(\sqrt{n})$ independent edges.

Hence, the message needs to be of length $\Omega(\sqrt{n})$

Intuition:

Alice's message must contain information about at least one edge of each matching ($\Omega(n)$ edges).

(e.g.
$$x_1 @ x_2$$
, $x_3 @ x_4$, $x_1 @ x_4$, $x_2 @ x_3$...)

There are $\Omega(\sqrt{n})$ independent edges.

Hence, the message needs to be of length $\Omega(\sqrt{n})$

Idea of Proof:

We prove that Alice cannot send the same message for too many inputs x.

Every matching imposes a linear constraint on x. (e.g. $x_1 \otimes x_2 = 0,...$) There are at least $\Omega(\sqrt{n})$ linearly independent constraints,

hence only $2^{n-\Omega(\sqrt{n})}$ x's can be mapped to the same message.

We need to take care of errors!!!

The Matrix

- At least a $(1-\delta)$ fraction of the entries are correct.
 - At least half the columns are (1-2δ)-"good".
 - At least half the rows are (1-2δ)-"good".

Step 1:Pick "good" rows corresponding to the same msg.

	\mathbf{M}_1	M_2	$\boldsymbol{M}_{n/2}$
X^1			
X^2			
X^3			
X^N			

Step 1: Pick "good" rows corresponding to the same msg.

• Each row is $(1-2\delta)$ -"good".

•

Step 1: Pick "good" rows corresponding to the same msg.

- Each row is $(1-2\delta)$ -"good".
- Let S_{τ} be the set of x's that correspond to the most "popular" message τ .
- Number of Alice's distinct message $\int_{0}^{\infty} 2^{n} / |S_{\tau}|$
- I need to bound the size of $|S_{\tau}|$!

Each column is $(1-4\delta)$ -"good". $|G| = \Omega(n)$

- Each column is $(1-4\delta)$ -"good". $|G| = \Omega(n)$
- All the rows of the matrix are the same.
- **Each** row contains $\Omega(n)$ entries of the form $((i,j),x_i \otimes x_j)$

- Each column is $(1-4\delta)$ -"good". $|G| = \Omega(n)$
- All the rows of the matrix are the same.
- **Each** row contains Ω(n) entries of the form $((i,j),x_i © x_j)$
- Define the Graph G.

(e.g.
$$x_1 @ x_3$$
, $x_1 @ x_4$, $x_2 @ x_4$, $x_2 @ x_3$, $x_6 @ x_8$...)

- Each column is $(1-4\delta)$ -"good". $|G| = \Omega(n)$
- All the rows of the matrix are the same.
- **Each** row contains $\Omega(n)$ entries of the form $((i,j),x_i © x_j)$
- Define the Graph G.

(e.g.
$$x_1 @ x_3$$
 , $x_1 @ x_4$, $x_2 @ x_4$, $x_2 @ x_3$, $x_6 @ x_8$...)

• There are $\Omega(n)$ edges) There exists a forest of size $\Omega(\sqrt{n})$

• The columns in F are independent and $|F| = \Omega(\sqrt{n})$

Pick "good" rows again!

The columns in F are independent and $|F| = \Omega(\sqrt{n})$

Each row is (1-8δ)-"good"

Lower bound for HM_n

- The rows correspond to inputs mapped to the same message.
- The columns correspond to independent edges, $|F| = \Omega(\sqrt{n})$
- In each row, (1-8δ) fraction of the entries are correct.

- How many x's can be mapped to the same message?
- n variables and a set F of $\Omega(\sqrt{n})$ independent linear constraints.
 - There are $2^{n-\Omega(\sqrt{n})}$ solutions.
- We also need to count all x's that satisfy a set of constraints which agrees with F on at least a $(1-8\delta)$ fraction.
 - There are $2^{H_2(8\delta)\Omega(\sqrt{n})}$ such sets of constraints.
- Total number of x's mapped to the same message:

$$|S_{\tau}| \cdot 2^{n-(1-H_2(8\delta))\Omega(\sqrt{n})}$$

Total number of x's mapped to the same message:

$$|S_{\tau}|$$
 · $2^{n-(1-H_2(8\delta))\Omega(\sqrt{n})}$

• Size of Alice's message = $\log \left(\left. 2^{\mathrm{n}} \right/ \left| \mathrm{S}_{\mathrm{\tau}} \right| \right) = \Omega(\sqrt{n})$

Theorem:

The one-way randomized communication complexity of ${\rm HM_n}$ is $\Theta(\sqrt{n})$

<u>Upper bound:</u> It's sufficient for Alice to send $O(\sqrt{n})$ random bits of x.

-

Boolean Hidden Matching Problem

Input: $x 2 \{0,1\}^n$

Output:

O if w is correct

if w is wrong

Input: a matching M on [n], w 2 $\{0,1\}^{n/2}$

Theorem

- There exists a quantum algorithm with complexity $O(\log n)$
- Any linear randomized algorithm with public coins has complexity $\,\Omega(n^{1/3})$

Open problems

Work in progress

- Boolean HM_n : extend the lower bound to general randomised protocols.
- Provide a separation between quantum one-way and classical two-way communication.

Open problems

- One-way communication complexity of total functions
- Simultaneous Messages
- Quantum advice: BQP/poly vs. BQP/qpoly
- Quantum proofs: QMA vs. QCMA