Will Handley

	Education
	University of Cambridge, <i>PhD: Astrophysics</i> , Prof. A. Lasenby & Prof. M. Hobson. University of Cambridge, <i>MSci, MA: Natural Sciences</i> , Gonville & Caius College.
2001–2008	Alleyn's School, A levels, GCSEs, London.
	Employment
Oct 2020–	Royal Society University Research Fellow , <i>Cavendish Lab</i> , University of Cambridge. Bayesian machine learning and tensions in cosmology
Oct 2021-	Turing Fellow, Alan Turing Institute.
May 2021–	Fellow & College Lecturer, Gonville & Caius College, University of Cambridge.
2016–2020	Research fellow, Gonville & Caius College, University of Cambridge. Funded by Gonville & Caius College and an STFC IPS grant.
Jul-Sep 2016	Postdoctoral researcher , <i>Prof. H. Peiris</i> , University College London. Searching for features in the primordial power spectrum.
2012–2016	PhD: Astrophysics , <i>Prof. A. Lasenby & Prof. M. Hobson</i> , University of Cambridge. Kinetic initial conditions for inflation: Theory, observations & methods.
2011–2012	Part III Dissertation , <i>Prof. P. Alexander</i> , University of Cambridge. Investigating the origins of cosmic magnetism.
Summer 2011	Summer Research Student , <i>Prof. M. Faulkes & Dr. J. Spencer</i> , Imperial College. Folded spectrum full configuration interaction quantum Monte Carlo.
Summer 2011	Summer Research Student , <i>Dr. R. Blumenfeld</i> , University of Cambridge. Geometry and field equations of granular systems.
2010–2011	Research Review , <i>Prof. S. Gull</i> , University of Cambridge. Literature Survey of the Physics-Philosophy crossover field of measurement theory.
Summer 2010	iGEM Team Physicist , <i>Dr. J. Haseloff</i> , University of Cambridge. E-glowli 2010 iGEM team (placed in final 6) http://2010.igem.org/Team:Cambridge
	Grants won
30M CPUh \approx £300,000	DiRAC Resource Allocation Committee 13 th call 2020, Next generation cosmological analysis with nested sampling.
£722,622	Royal Society URF 2020, Bayesian machine learning and tensions in cosmology.
2M CPUh \approx £20,000	·
£225,000	STFC IPS 2019, PolyChord and Bayesian sparse facial recognition.
£42,000	STFC IAA 2018, PolyChord and Bayesian neural network facial recognition.
£25,000	STFC IAA 2016, Interfacing PolyChord 2.0.

£15,000 KICC Workshop 2019, AstroHackWeek 2019.

\$6,000 AUS	George Southgate Visiting Fellowship 2020, GAMBIT visit.		
£2,000	KICC visitors 2019, Likelihood free inference workshop.		
•	KICC visitors 2017, Class and MontePython workshop.		
	Caius + Kavli, Summer 2019 student funding.		
	King's + Kavli, Summer 2018 student funding.		
	Awards & Prizes		
	Guiseppe and Vanna Cocconi Prize (WMAP and Planck)		
	Gruber Prize (Planck)	Gruber Foundation	
	-	Cavendish grad. students conference	
Jun. 2012	Best theoretical part III project	University of Cambridge	
6 0011	Physics prize	Gonville & Caius College	
Summer 2011	Undergraduate Research Bursary	Nuffield Foundation	
_	UROP Studentship	Imperial College	
	iGEM Studentship	Wellcome Trust	
2009–12	Junior and Senior Scholarships	Gonville & Caius College	
	Supervision of graduate students and postdo	ctoral researchers	
Postdoc	David Yallup	2021-present	
	Jianghui Lui	2020	
	Kamran Javid	2018-2019	
PhD	Ayngaran Thavanesan, Adam Ormondroyd	2021-present	
	George Carter, Kilian Scheutwinkel, Tom Gessey-Jones, T	homas McAloone 2020-present	
	Ian Roque, Harry Bevins	2019-present	
	Dominic Anstey	2018-present	
	Fruzsina Agocs, Will Barker	2017-2021	
	Lukas Hergt	2017-2020	
	Ed Higson	2016-2017	
Masters	Allahyar Sahibzada	2021-	
	Yi-Jer Loh, Metha Prathaban	2020-2021	
	Tom Gessey-Jones, Aleks Petrosyan, Ayngaran Thavanesa	an, Emma Shen 2019-2020	
	Deaglan Bartlet, Jamie Bamber, Ian Roque	2018-2019	
	Ward Haddadin, Jessica Rigley, Panagiotis Mavrogiannis	2017-2018	
	Fruzsina Agocs, Robert Knighton, Stephen Pickman, Dar	niel Manela 2016-2017	
Summer	Zak Shumaylov, Mattia Varrone	2021	
	Denis Werth, Maxime Jabarian, Liam Lau	2019	
	Elizabeth Guest, Ward Haddadin, Shu-Fan Chen	2018	
	Teaching		
2017-present	Bayesian Statistics	Graduate lecture course	
2020-present	Part III Physics: Relativistic astrophysics and cosmology	Supervising	
2013-2018	Part II Physics: General relativity	Supervising	
	Part IA Mathematics for NatSci	Supervising, Tripos classes	
2013	Part II Theoretical Physics 1 & 2	Demonstrating	
2006–2012	Maths and Science Tuition Individ	dual coaching, key stage 1 — STEP	

Academic Talks

- Jul. 2021 **Success Story 2 Optimum Sensor Placement**, *Mathematical Challenges in the Electromagnetic Environment*, Isaac Newton Institute, Cambridge, UK.
- Jul. 2021 Success Story 1 Detecting Illicit Mesh Networks, Mathematical Challenges in the Electromagnetic Environment, Isaac Newton Institute, Cambridge, UK.
- Feb. 2021 Bayesian methods for quantifying global parameter tensions between cosmological datasets, *Tehran meeting on cosmology at the crossroads*, Tehran (remote), Iran.
- Jan. 2021 **Bayesian information fusion**, *Mathematical Challenges in the Electromagnetic Environment*, Isaac Newton Institute, Cambridge (remote), UK.
- Oct. 2020 **Nested Sampling:** an efficient and robust Bayesian inference tool for 21cm cosmology, 3rd Global 21-cm Workshop, Cambridge (remote), UK.
- Sep. 2020 **Nested Sampling for optimising sensor location**, *Mathematical Challenges in the Electromagnetic Environment*, Isaac Newton Institute, Cambridge (remote), UK.
- Feb. 2020 **Nested Sampling: an efficient and robust Bayesian inference tool for physics and machine learning**, *Physics Colloquium*, Adelaide, Australia.
- Jan. 2020 **Nested Sampling: an efficient and robust Bayesian inference tool for astrophysics and cosmology**, Oxford, UK.
- Jan. 2020 **PolyChord: next generation nested sampling**, *Mathematical Challenges in the Electromagnetic Environment*, Isaac Newton Institute, Cambridge, UK.
- Dec. 2019 Quantised primordial power spectra, Texas 2019, Portsmouth, UK.
- Nov. 2019 **Nested Sampling: an efficient and robust Bayesian inference tool for Machine Learning and Data Science**, *CDT talk*, Cambridge, UK.
- Aug. 2019 Curvature tension: evidence for a closed universe(?), ICG Portsmouth, UK.
- Jul. 2019 Quantifying cosmological tensions, University College London, UK.
- Jun. 2019 Likelihood free inference, GAMBIT X, Germany.
- Mar. 2019 Compromise-free Bayesian sparse reconstruction, LFI workshop, Flatiron institute, US.
- Dec. 2018 Inflation, curvature and kinetic dominance, Future uses of Planck data, ESAC, Spain.
- Nov. 2018 BAMBI Resurrection: Blind Accelerated Multimodal Bayesian Inference, Dark Machines, Worldwide.
- Nov. 2018 Nested Sampling: an efficient and robust Bayesian inference tool for cosmology and particle physics, *Dark Machines*, Worldwide.
- Oct. 2018 Bayesian Statistics, Third Asterics-Obelics workshop, Cambridge, UK.
- May. 2018 Planck, inflation and the future of inflationary constraints, Consistency of Cosmological Datasets, Cambridge, UK.
- May. 2018 MaxEnt priors with derived parameters in a specified distribution, Cambridge, UK.
- May. 2018 Nested Sampling: an efficient and robust Bayesian inference tool for astrophysics and cosmology, ICIC, UK.
- April. 2018 Introduction to statistics, CosmoTools 18, RWTH Aachen, Germany.
- Jan. 2018 Advances in Nested Sampling & astrophysical application, Cambridge, UK.
- Aug. 2017 PolyChord 2.0: Fast inference & nested sampling, Cosmo17, Paris, France.
- Jun. 2017 Modern Bayesian Inference: Theory and Practice, RWTH Aachen, Germany.
- Mar. 2017 Parameter estimation and Model comparison, Cosmo Tools 17, Madrid, Spain.
- Feb. 2017 **PolyChord 2.0: Advances in Nested Sampling & astrophysical application**, Flatiron institute, US.
- Sep. 2016 PolyChord 2.0 & the future of nested sampling, University College London, UK.
- May. 2016 PolyChord 2.0 & the future of nested sampling, University of Sussex, UK.

- Mar. 2016 PolyChord & the future of nested sampling, Edinburgh, UK.
- Dec. 2015 PolyChord: next generation nested sampling, Max Planck Institute, Germany.
- Feb. 2015 PolyChord: next generation nested sampling, University of Sussex, UK.
- Dec. 2013 Kinetic dominance in the pre-inflationary universe, Cavendish grad. conference.

Selected Outreach

Over the course of my career I have given 19 public outreach talks including:

- May 2015 Intro. to Astronomy: Beyond the Milky Way, IoA Public Talk, Cambridge.
- May 2015 To infinity and beyond: Dark Energy, Pint of Science, Cambridge Brewhouse.
- Feb 2014 The Physics of Juggling, CCPE, Cavendish Laboratory.
- Jan 2014 The first 3 yocto-pico seconds, Three minute wonder, Cavendish Laboratory.

Institutional responsibilities

2020-present	Convener of CosmoBit GA			
2020-present	Leader of data analysis team	REACH		
2021-present	ent Center for data-driven discovery (C2D3) steering committee University of C			
2019-present	Gonville & Caius College Council	Gonville & Caius college		
2018-present	Investments committee	Gonville & Caius college		
2016-present	Undergraduate Admissions	Gonville & Caius college		
2018-2020	Education and research committee	Gonville & Caius college		
2017-present	Organiser of weekly group seminars	Cavendish astrophysics group		

Examination

- Sep 2020 Machine Learning Applied to Gaia and Other Survey Data: Applications Supporting a Polarisation Survey, Kyriakos Stylianiopoulos, MPhil.
- 2020–2021 Masters exam checking, Astrostatistics, Part III Maths.

Organisation of scientific meetings

2020	Scientific organising committee member of 3 rd Global 21-cm Workshop	KICC
2019	Local organising committee member of KICC 10^{th} anniversary symposium	KICC
2019	Secured funding for Likelihood free inference workshop (currently organising)	KICC
2019	Helped secure funding and organised AstroHack week 2019	KICC
2018	Secured funding for and organised CLASS+MontePython software workshop	KICC

Peer review

Performed 55 reviews for journals including Physical Review D and Physical Review Letters; https://publons.com/researcher/1596769/will-handley/peer-review/PRD (25), MNRAS (6), JCAP (5), PRL (5), JOSS (2), APJ (2), EPJC (1), PLB (6), Entropy (2), Astronomy & Computing (1)

Collaborations

astro.phy.cam.ac.uk/research/research-projects/re	REACH	2018-present
gambit.hepforge	GAMBIT	2018-present
darkmachines	DarkMachines	2018-present
nt terrahunting	Terra Hunter Experiment	2017–2018
core-mission	CORE	2016-2017

Software

PolyChord Sole author and maintainer: github.com/PolyChord/PolyChordLite

pyBAMBI Team maintainer: github.com/DarkMachines/pyBAMBI

anesthetic Principle author and maintainer: github.com/williamjameshandley/anesthetic

 $fgivenx \quad Sole \ author \ and \ maintainer: \ github.com/williamjameshandley/fgivenx$

primordial Sole author and maintainer: github.com/williamjameshandley/primordial

ModeCode Maintainer: modecode.org

MultiNest Maintainer: github.com/farhanferoz/MultiNest

Open source scipy: Weighted kernel density estimation in scipy.stats.gaussian_kde

matplotlib: Vertical slider in matplotlib.widgets.Slider

Interaction with industry

PolyChord Founded start-up company PolyChord Ltd. to bring Bayesian methods & tools from cosmol-

ogy to Machine Learning & Biotech industries: polychord.co.uk

AnyVision Working collaboratively as part of STFC grant to apply Bayesian sparse reconstruction to

facial recognition

Shell Work with department postdocs in the department applying nested sampling to geophysics

DSTL Consult for government defence research using Bayesian inference

CMAM Consult for local finance company on Bayesian algorithmic trading

In the media

2020 **Quanta Magazine**, *Modified gravity in cosmology led by Will Barker*. quantamagazine.org/why-is-the-universe-expanding-so-fast-20200427/

2019 **KICC annual report**, Compromise-free Bayesian cosmology & AstroHack week.

kicc.cam.ac.uk/aboutus/kicc-annual-report-2019

Computer skills

Programming MPI parallelisation, C++, FORTRAN, Mathematica, Maple, Python

Computing Unix, Bash, zsh, vim, git, svn, LATEX, TikZ, VMs, CI

OS Arch Linux & HPC supercomputing (Experienced), Windows & OSX (Familiar)

References

Prof. Anthony Lasenby, +44 (0)1223 337293/4, a.n.lasenby@mrao.cam.ac.uk,

Prof. Mike Hobson, +44 (0)1223 339992, mph@mrao.cam.ac.uk

Prof. Hiranya Peiris, +44 (0)203 5495831, h.peiris@ucl.ac.uk

Prof. Alan Heavens, +44 (0)207 5942930, a.heavens@imperial.ac.uk

Publications:

arxiv.org/a/handley_w_1

First Author Publications

- [1] **Will Handley** and Pablo Lemos. Quantifying the global parameter tensions between ACT, SPT, and Planck. *PRD*, 103(6):063529, March 2021.
- 2] Will Handley. Primordial power spectra for curved inflating universes. PRD, 100(12):123517, July 2019.
- Will Handley. Curvature tension: evidence for a closed universe. PRD, 103:L041301, February 2021.
- [4] **Will Handley** and Pablo Lemos. Quantifying tensions in cosmological parameters: Interpreting the DES evidence ratio. *PRD*, 100(4):043504, August 2019.

- [5] **Will Handley** and Pablo Lemos. Quantifying dimensionality: Bayesian cosmological model complexities. *PRD*, 100(2):023512, July 2019.
- [6] **Will Handley**, Anthony Lasenby, and Mike Hobson. Logolinear series expansions with applications to primordial cosmology. *PRD*, 99(12):123512, June 2019.
- [7] **Will Handley**. anesthetic: nested sampling visualisation. *JOSS*, 4:1414, May 2019.
- [8] **Will Handley** and Marius Millea. Maximum-Entropy Priors with Derived Parameters in a Specified Distribution. *Entropy*, 21(3):272, March 2019.
- [9] **Will J. Handley**, Anthony N. Lasenby, Hiranya V. Peiris, and Michael P. Hobson. Bayesian inflationary reconstructions from Planck 2018 data. *PRD*, 100(10):103511, November 2019.
- [10] Will Handley. fgivenx: A Python package for functional posterior plotting. JOSS, 3(28):849, August 2018.
- [11] **W. J. Handley**, A. N. Lasenby, and M. P. Hobson. Novel quantum initial conditions for inflation. *PRD*, 94(2):024041, July 2016.
- [12] **W. J. Handley**, A. N. Lasenby, and M. P. Hobson. The Runge-Kutta-Wentzel-Kramers-Brillouin Method. arXiv, 1612.02288, December 2016.
- [13] **W. J. Handley**, M. P. Hobson, and A. N. Lasenby. POLYCHORD: next-generation nested sampling. *MNRAS*, 453(4):4384–4398, November 2015.
- [14] **W. J. Handley**, M. P. Hobson, and A. N. Lasenby. polychord: nested sampling for cosmology. *MNRAS*, 450:L61–L65, June 2015.
- [15] **W. J. Handley**, S. D. Brechet, A. N. Lasenby, and M. P. Hobson. Kinetic initial conditions for inflation. *PRD*, 89(6):063505, March 2014.

Other publications

- [16] A. N. Lasenby, **W. J. Handley**, D. J. Bartlett, and C. S. Negreanu. Perturbations and the Future Conformal Boundary. *arXiv*, 2104.02521, April 2021.
- [17] D. J. Bartlett, W. J. Handley, and A. N. Lasenby. Improved cosmological fits with quantized primordial power spectra. *arXiv*, 2104.01938, April 2021.
- [18] F. J. Agocs, M. P. Hobson, **W. J. Handley**, and A. N. Lasenby. Dense output for highly oscillatory numerical solutions. *arXiv*, 2007.05013, July 2020.
- [19] F. J. Agocs, W. J. Handley, A. N. Lasenby, and M. P. Hobson. Efficient method for solving highly oscillatory ordinary differential equations with applications to physical systems. *Physical Review Research*, 2(1):013030, January 2020.
- [20] F. J. Agocs, L. T. Hergt, **W. J. Handley**, A. N. Lasenby, and M. P. Hobson. Quantum initial conditions for inflation and canonical invariance. *PRD*, 102(2):023507, July 2020.
- [21] L. T. Hergt, W. J. Handley, M. P. Hobson, and A. N. Lasenby. Bayesian evidence for the tensor-to-scalar ratio r and neutrino masses m_{ν} : Effects of uniform versus logarithmic priors. *PRD*, 103(12):123511, June 2021.
- [22] L. T. Hergt, W. J. Handley, M. P. Hobson, and A. N. Lasenby. Case for kinetically dominated initial conditions for inflation. *PRD*, 100(2):023502, July 2019.
- [23] L. T. Hergt, **W. J. Handley**, M. P. Hobson, and A. N. Lasenby. Constraining the kinetically dominated universe. *PRD*, 100(2):023501, July 2019.
- [24] Ayngaran Thavanesan, Denis Werth, and **Will Handley**. Analytical approximations for curved primordial power spectra. *PRD*, 103(2):023519, January 2021.
- [25] T. Gessey-Jones and W. J. Handley. Constraining Quantum Initial Conditions before Inflation. arXiv, 2104.03016, April 2021.
- [26] Jamie Bamber and **Will Handley**. Beyond the Runge-Kutta-Wentzel-Kramers-Brillouin method. *PRD*, 101(4):043517, February 2020.
- [27] W. I. J. Haddadin and **W. J. Handley**. Rapid numerical solutions for the Mukhanov-Sasaki equation. *PRD*, 103(12):123513, June 2021.
- [28] W. É. V. Barker, A. N. Lasenby, M. P. Hobson, and **W. J. Handley**. Nonlinear Hamiltonian analysis of new quadratic torsion theories Part I. Cases with curvature-free constraints. *arXiv*, 2101.02645, January 2021.
- [29] W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J. Handley. Systematic study of background cosmology in unitary Poincaré gauge theories with application to emergent dark radiation and H₀ tension. *PRD*, 102(2):024048, July 2020.
- [30] W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J. Handley. Mapping Poincaré gauge cosmology to Horndeski theory for emergent dark energy. *PRD*, 102(8):084002, October 2020.
- [31] W. E. V. Barker, A. N. Lasenby, M. P. Hobson, and W. J. Handley. Static energetics in gravity. *JMAP*, 60(5):052504, May 2019.
- [32] Dóminic Anstey, Eloy de Lera Acedo, and **Will Handley**. A General Bayesian Framework for Foreground Modelling and Chromaticity Correction for Global 21cm Experiments. *arXiv*, 2010.09644, October 2020.
- [33] Dominic Anstey, John Cumner, Eloy de Lera Acedo, and **Will Handley**. Informing antenna design for sky-averaged 21-cm experiments using a simulated Bayesian data analysis pipeline. *arXiv*, 2106.10193, June 2021.
- [34] H. T. J. Bevins, **W. J. Handley**, A. Fialkov, E. de Lera Acedo, and K. Javid. GLOBALEMU: A novel and robust approach for emulating the sky-averaged 21-cm signal from the cosmic dawn and epoch of reionisation. *arXiv*, 2104.04336, April 2021.
- [35] H. T. J. Bevins, W. J. Handley, A. Fialkov, E. de Lera Acedo, L. J. Greenhill, and D. C. Price. MAXSMOOTH: rapid maximally smooth function fitting with applications in Global 21-cm cosmology. MNRAS, 502(3):4405–4425, April 2021.

- [36] Emma Shen, Dominic Anstey, Eloy de Lera Acedo, Anastasia Fialkov, and **Will Handley**. Quantifying ionospheric effects on global 21-cm observations. *MNRAS*, 503(1):344–353, May 2021.
- [37] I. L. V. Roque, **W. J. Handley**, and N. Razavi-Ghods. Bayesian noise wave calibration for 21-cm global experiments. *MNRAS*, May 2021.
- [38] Pablo Lemos, Fabian Köhlinger, **Will Handley**, Benjamin Joachimi, Lorne Whiteway, and Ofer Lahav. Quantifying Suspiciousness within correlated data sets. *MNRAS*, 496(4):4647–4653, August 2020.
- [39] B. Joachimi, F. Köhlinger, **W. Handley**, and P. Lemos. When tension is just a fluctuation. How noisy data affect model comparison. *A&A*, 647:L5, March 2021.
- [40] The GAMBIT Collaboration. Thermal WIMPs and the Scale of New Physics: Global Fits of Dirac Dark Matter Effective Field Theories. *arXiv*, 2106.02056, June 2021.
- [41] Gambit Cosmology Workgroup. Strengthening the bound on the mass of the lightest neutrino with terrestrial and cosmological experiments. *PRD*, 103(12):123508, June 2021.
- [42] GAMBIT Cosmology Workgroup. CosmoBit: a GAMBIT module for computing cosmological observables and likelihoods. *JCAP*, 2021(2):022, February 2021.
- [43] GAMBIT Collaboration et al. Simple and statistically sound strategies for analysing physical theories. *arXiv*, 2012.09874, December 2020.
- [44] Andrew Fowlie, Sebastian Hoof, and **Will Handley**. Nested sampling for frequentist computation: fast estimation of small *p*-values. *arXiv*, 2105.13923, May 2021.
- [45] Andrew Fowlie, **Will Handley**, and Liangliang Su. Nested sampling with plateaus. *MNRAS*, 503(1):1199–1205, May 2021.
- [46] Ándrew Fowlie, **Will Handley**, and Liangliang Su. Nested sampling cross-checks using order statistics. *MNRAS*, 497(4):5256–5263, October 2020.
- [47] Justin Alsing and Will Handley. Nested sampling with any prior you like. arXiv, 2102.12478, February 2021.
- [48] Kamran Javid, **Will Handley**, Mike Hobson, and Anthony Lasenby. Compromise-free Bayesian neural networks. arXiv, 2004.12211, April 2020.
- [49] Edward Higson, **Will Handley**, Mike Hobson, and Anthony Lasenby. Dynamic nested sampling: an improved algorithm for parameter estimation and evidence calculation. *Statistics and Computing*, 29(5):891–913, September 2019.
- [50] Edward Higson, **Will Handley**, Michael Hobson, and Anthony Lasenby. Bayesian sparse reconstruction: a brute-force approach to astronomical imaging and machine learning. *MNRAS*, 483(4):4828–4846, March 2019.
- [51] Edward Higson, **Will Handley**, Michael Hobson, and Anthony Lasenby. NESTCHECK: diagnostic tests for nested sampling calculations. *MNRAS*, 483(2):2044–2056, February 2019.
- [52] Edward Higson, **Will Handley**, Mike Hobson, and Anthony Lasenby. Sampling Errors in Nested Sampling Parameter Estimation. *Bayesian Analysis*, 13(3):873–896, March 2018.
- [53] E. Ahrer, D. Queloz, V. M. Rajpaul, D. Ségransan, F. Bouchy, R. Hall, W. Handley, C. Lovis, M. Mayor, A. Mortier, F. Pepe, S. Thompson, S. Udry, and N. Unger. The HARPS search for southern extra-solar planets XLV. Two Neptune mass planets orbiting HD 13808: a study of stellar activity modelling's impact on planet detection. MNRAS, 503(1):1248–1263, May 2021.
- [54] F. Lienhard, D. Queloz, M. Gillon, A. Burdanov, L. Delrez, E. Ducrot, W. Handley, E. Jehin, C. A. Murray, A. H. M. J. Triaud, E. Gillen, A. Mortier, and B. V. Rackham. Global analysis of the TRAPPIST Ultra-Cool Dwarf Transit Survey. MNRAS, 497(3):3790–3808. September 2020.
- Transit Survey. MNRAS, 497(3):3790–3808, September 2020.
 [55] Richard D. Hall, Samantha J. Thompson, **Will Handley**, and Didier Queloz. On the Feasibility of Intense Radial Velocity Surveys for Earth-Twin Discoveries. MNRAS, 479(3):2968–2987, September 2018.
- [56] The DarkMachines High Dimensional Sampling Group. A comparison of optimisation algorithms for high-dimensional particle and astrophysics applications. *arXiv*, 2101.04525, January 2021.
- [57] Ethan Carragher, Will Handley, Daniel Murnane, Peter Stangl, Wei Su, Martin White, and Anthony G. Williams. Convergent Bayesian global fits of 4D composite Higgs models. *Journal of High Energy Physics*, 2021(5):237, May 2021.
- [58] Á. J. K. Chua, S. Hee, W. J. Handley, E. Higson, C. J. Moore, J. R. Gair, M. P. Hobson, and A. N. Lasenby. Towards a framework for testing general relativity with extreme-mass-ratio-inspiral observations. MNRAS, 478(1):28–40, July 2018.
- [59] S. Hee, J. A. Vázquez, **W. J. Handley**, M. P. Hobson, and A. N. Lasenby. Constraining the dark energy equation of state using Bayes theorem and the Kullback-Leibler divergence. *MNRAS*, 466(1):369–377, April 2017.
- [60] S. Hee, **W. J. Handley**, M. P. Hobson, and A. N. Lasenby. Bayesian model selection without evidences: application to the dark energy equation-of-state. *MNRAS*, 455(3):2461–2473, January 2016.
- [61] Gong-Bo Zhao, Marco Raveri, Levon Pogosian, Yuting Wang, Robert G. Crittenden, Will J. Handley, Will J. Percival, Florian Beutler, Jonathan Brinkmann, Chia-Hsun Chuang, Antonio J. Cuesta, Daniel J. Eisenstein, Francisco-Shu Kitaura, Kazuya Koyama, Benjamin L'Huillier, Robert C. Nichol, Matthew M. Pieri, Sergio Rodriguez-Torres, Ashley J. Ross, Graziano Rossi, Ariel G. Sánchez, Arman Shafieloo, Jeremy L. Tinker, Rita Tojeiro, Jose A. Vazquez, and Hanyu Zhang. Dynamical dark energy in light of the latest observations. *Nature Astronomy*, 1:627–632, August 2017.
- [62] Clare Rumsey, Malak Olamaie, Yvette C. Perrott, Helen R. Russell, Farhan Feroz, Keith J. B. Grainge, Will J. Handley, Michael P. Hobson, Richard D. E. Saunders, and Michel P. Schammel. AMI observations of 10 CLASH galaxy clusters: SZ and X-ray data used together to determine cluster dynamical states. MNRAS, 460(1):569–589, July 2016.

[63] James S. Spencer, Nick S. Blunt, Seonghoon Choi, Jiri Etrych, Maria-Andreea Filip, W. M. C. Foulkes, Ruth S. T. Franklin, Will J. Handley, Fionn D. Malone, Verena A. Neufeld, Roberto Di Remigio, Thomas W. Rogers, Charles J. C. Scott, James J. Shepherd, William A. Vigor, Joseph Weston, RuQing Xu, and Alex J. W. Thom. The HANDE-QMC project: open-source stochastic quantum chemistry from the ground state up. Journal of Chemical Theory and Computation, 15(3):1728–1742, January 2019.

CORE Collaboration

- Exploring cosmic origins with CORE: B-mode component separation. JCAP, 2018(4):023, April 2018.
- [66]
- Exploring cosmic origins with CORE: Defined component separation. *JCAP*, 2010(4):023, April 2010. Exploring cosmic origins with CORE: Mitigation of systematic effects. *JCAP*, 2018(4):022, April 2018. Exploring cosmic origins with CORE: Extragalactic sources in cosmic microwave background maps. *JCAP*, [67] 2018(4):020, April 2018.
- Exploring cosmic origins with CORE: Cluster science. JCAP, 2018(4):019, April 2018.
- Exploring cosmic origins with CORE: Gravitational lensing of the CMB. JCAP, 2018(4):018, April 2018.
- Exploring cosmic origins with CORE: Cosmological parameters. JCAP, 2018(4):017, April 2018.
- Exploring cosmic origins with CORE: Inflation. *JCAP*, 2018(4):016, April 2018. Exploring cosmic origins with CORE: The instrument. *JCAP*, 2018(4):015, April 2018.
- [73] Exploring cosmic origins with CORE: Survey requirements and mission design. JCAP, 2018(4):014, April 2018.

Planck Collaboration

- Planck 2018 results. XII. Galactic astrophysics using polarized dust emission. A&A, 641:A12, September 2020.
- Planck 2018 results. XI. Polarized dust foregrounds. A&A, 641:A11, September 2020.
- Planck 2018 results. X. Constraints on inflation. A&A, 641:A10, September 2020.
- Planck 2018 results. IX. Constraints on primordial non-Gaussianity. A&A, 641:A9, September 2020.
- Planck 2018 results. VIII. Gravitational lensing. A&A, 641:A8, September 2020.
- Planck 2018 results. VII. Isotropy and statistics of the CMB. A&A, 641:A7, September 2020.
- Planck 2018 results. VI. Cosmological parameters. A&A, 641:A6, September 2020.
- Planck 2018 results. V. CMB power spectra and likelihoods. A&A, 641:A5, September 2020.
- Planck 2018 results. IV. Diffuse component separation. A&A, 641:A4, September 2020.
- Planck 2018 results. III. High Frequency Instrument data processing and frequency maps. A&A, 641:A3,
- Planck 2018 results. II. Low Frequency Instrument data processing. A&A, 641:A2, September 2020.
- Planck 2018 results. I. Overview and the cosmological legacy of Planck. A&A, 641:A1, September 2020.
- Planck intermediate results. LVII. Joint Planck LFI and HFI data processing. A&A, 643:A42, November 2020.
- Planck intermediate results. LVI. Detection of the CMB dipole through modulation of the thermal Sunyaev-Zeldovich effect: Eppur si muove II. A&A, 644:A100, December 2020.
- [88] Planck intermediate results. LV. Reliability and thermal properties of high-frequency sources in the Second Planck Catalogue of Compact Sources. A&A, 644:A99, December 2020.
- [89] Planck intermediate results. LIV. The Planck multi-frequency catalogue of non-thermal sources. A&A, 619:A94, November 2018.
- Planck intermediate results. LIII. Detection of velocity dispersion from the kinetic Sunyaev-Zeldovich effect. A&A, 617:A48, September 2018.
- Planck 2015 results. XX. Constraints on inflation. A&A, 594:A20, September 2016.
- [92] Planck 2015 results. I. Overview of products and scientific results. A&A, 594:A1, September 2016.