

Dokumen Pengembangan TRIAMIX (TRIso Analysis Code coupled with THERMIX capabilities)

LABORATORIUM KOMPUTASI PUSAT TEKNOLOGI DAN KESELAMATAN REAKTOR NUKLIR

*Disusun oleh:*Arya Adhyaksa Waskita

Supervisor: Dr. Eng. Topan Setiadipura

Daftar Isi

Da	Daftar Gambar	i
Da	Daftar Program	ii
1	Pendahuluan	2
2	Struktur Program	

Daftar Gambar

1.1	Aspek keselamatan reaktor nuklir												1

Daftar Program

BAB 1

Pendahuluan

Analisis keselamatan reaktor nuklir melibatkan sejumlah aspek seperti diperlihatkan pada Gambar 1.1. Setelah upaya melakukan rekayasa balik terhadap PANAMA [1, 2] untuk aspek kinerja bahan bakar [3], dipandang perlu untuk melanjutkan analisis keselamatan di aspek *thermal hydraulics*.

Gambar 1.1: Aspek keselamatan reaktor nuklir

Kode komputer THERMIX [4, 5] sebagai salah satu kode baku dalam analisis keselamatan reaktor di aspek termal yang turut menghantarkan Jerman sebagai *center of excellent* pada penelitian tersebut. Dari THERMIX, sejarah irradiasi dan kecelakaan yang dialamai partikel triso dapat disimulasikan.

Karenanya, perangkat lunak akan dikembangkan berdasarkan data referensi dan dokumentasi [4, 5]. Hasil rekayasa balik akan berupa prototipe kode komputer/perangkat lunak yang terintegrasi dengan modul analisis keselamatan bahan bakar berbasis partikel triso [3] dan analisis ketidakpastian [6].

BAB 2

Struktur Program

Tahapan rekayasa balik dimulai dengan membuka struktur program dan melihat keterkaitan antar fungsi yang terdapat di kode komputer THERMIX. Terdapat 4 program, masing-masing THERMIX1.FOR - THERMIX4.FOR. Subrutin dan fungsi pada masing program tersebut disajikan pada Tabel 2.1 - Tabel 2.2. Deskripsi yang disajikan merupakan translasi bebas dari Bahasa Jerman menggunakan google translate.

Tabel 2.1: Daftar fungsi dan subrutin dalam program THERMIX1.FOR

Fungsi / Subrutin	Deskripsi						
ABEND	Membuat penanganan kesalahan						
BILD	Lembar penciptaan buatan dan halaman akhir						
BUBIL	Perhitungan sumber panas konvektif saat ini dan kompensasi						
	komposisi ini. Hanya aktif jika sumber panas dibuat dengan $\alpha * f$						
	dan TFLU						
CALT	Hitung suhu pada kondisi tunak						
CALT1	Menghitung suhu suhu padat yang homogen						
CALT2	Menghitung suhu padat heterous (temperatur zona bola) so-						
	lusi TRISSIAG dari sistem persamaan penghapusan matriks						
	(GAUSS)						
CALT2H	Menghitung suhu padat heterous (temperatur zona bola) solusi						
	sistem persamaan TRIDIAG matriks penghapusan (GAUSS)						
CALTA	Menghitung temperatur padat heterous (stationary billing) solusi						
	sistem persamaan sebagai SR CALT2 (eliminasi matriks)						
CALTAH	Menghitung temperatur padat heterous (stationary billing) solusi						
	sistem persamaan sebagai SR CALT2 (eliminasi matriks)						
EXPLIZ	Perhitungan eksplisit ke fungsi panas						
MAITHX	Program utama THERMIX, 50x80 tingkat perubahan						
STEUER	Menetapkan suhu tengah, menciptakan plot waktu, temperatur						
	corr. rangkaian dalam arah y						
WTSTEU	Kendali penghapusan kinerja di pertukaran panas						

Tabel 2.2: Daftar fungsi dan subrutin dalam program THERMIX2.FOR

Fungsi / Subrutin	Deskripsi
CALT3	Perhitungan suhu pada heterous (temperatur zona bola) solusi sistem persamaan Gauss-Siedel. Hati-hati menggunakan \rightarrow kapasitas panas*WK APH, tidak bekerja untuk flash ball

Daftar Referensi

- [1] K. Verfondern and H. Nabielek, "The mathematical basis of the panama-i code for modelling pressure vessel failure of triso coated particles under accident conditions," Julich Research Center, Germany, Tech. Rep., 1990.
- [2] K. Verfondern, J. Cao, T. Liu, and H.-J. Allelein, "Conclusions from v&v studies on the german codes panama and fresco for htgr fuel performance and fission product release," *Nuclear Engineering and Design*, vol. 271, pp. 84 91, 2014, sI: HTR 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0029549313005992
- [3] A. A. Waskita and T. Setiadipura, "The development of triac-batan: a triso fuel performance analysis code," in *Proceeding of Symposium of Emerging Nuclear Technology and Engineering Novelty*, 2018.
- [4] H. B. K. J. Rütten, K. A. Haas and W. Scherer, "V.s.o.p (99/05) computer code system for reactor physics and fuel cycle simulation," Forschungszentrum Jülich GmbH, Tech. Rep., 2005.
- [5] K. A. H. K. J. Rütten and C. Pohl, "Computer code system v.s.o.p (99/11) update 2011 of v.s.o.p (99)-version 2009 code manual," Forschungszentrum Jülich GmbH, Tech. Rep., 2009.
- [6] A. A. Waskita, N. A. Wahanani, A. Purwaningsih, and T. Setiadipura, "Study on effect of latin hypercube sampling method in triso fuel performance analysis," in *Proceeding* of HTR 2018, 2018.