NOIP2023 模拟赛

时间: 2023 年 9 月 28 日

题目名称	剧场	马	球衣	填数游戏
题目类型	传统题	传统题	传统题	传统题
目录	theatre	horse	soccer	number
可执行文件名	theatre	horse	soccer	number
输入文件名	theatre.in	horse.in	soccer.in	number.in
输出文件名	theatre.out	horse.out	soccer.out	number.out
输出文件名 每个测试点时限	theatre.out 1秒	horse.out 1秒	soccer.out 1秒	number.out 2秒
				1
每个测试点时限	1秒	1秒	1秒	2 秒

提交源程序文件名

对于 C++ 语言	theatre.cop	horse.cpp	soccer.cpp	number.cpp
				F F

编译选项

对于 C++ 语言	-02 -std=c++14
-----------	----------------

注意事项(请仔细阅读)

- 1. 文件名(程序名和输入输出文件名)必须使用英文小写。
- 2. C/C++ 中函数 main() 的返回值类型必须是 int,程序正常结束时的返回值必须 是 0。
- 3. 提交的程序代码文件的放置位置请参考各省的具体要求。
- 4. 因违反以上三点而出现的错误或问题,申诉时一律不予受理。
- 5. 若无特殊说明,结果的比较方式为全文比较(过滤行末空格及文末回车)。
- 6. 选手提交的程序源文件必须不大于 100KB。
- 7. 程序可使用的栈空间内存限制与题目的内存限制一致。
- 8. 只提供 Linux 格式附加样例文件。
- 9. 评测在当前最新公布的 NOI Linux 下进行,各语言的编译器版本以此为准。

NOIP2023 模拟赛 1 剧场(theatre)

剧场 (theatre)

【题目描述】

魔都是一座高度现代化的城市,道路可以看作只有横向道路和竖向道路。因此我们视魔都城内两点的距离为他们的曼哈顿距离。魔都城的大小为 C, H,即城内点的横坐标范围在 [1, C] 之间,纵坐标范围在 [1, H] 之间。

现在,魔都城内有 n 座主要建筑,他们的坐标分别为 $(x1_i,y1_i)$,保证坐标是整数。 市政府想在城市内修建一个剧场! 该剧场有 m 个可能的选址 $(x2_i,x2_i)$,坐标同样是 整数。你作为城市的规划员,你希望该剧场到所有主要建筑间距离的最大值最小。请你 计算出这个最小值和对应的选址编号。

【输入格式】

从文件 theatre.in 中读入数据。

第一行两个整数 C, H。表示魔都城的大小。

下一行一个整数 n,表示主要建筑的数量。紧接的 n 行,每行两个整数 $x1_i, y1_i$ 表示主要城市坐标。

下一行一个整数 m,表示选址的数量。接下来 m 行,一行两个整数 $x2_i, y2_i$ 表示选址的坐标。

【输出格式】

输出到文件 theatre.out 中。

第一行一个整数,表示剧场到主要城市间最小的最大值。

第二行一个整数,表示剧场选址的编号。标号按输入顺序从 1 到 m 编号。

【样例 1 输入】

```
1 10 10
2 2
3 1 1
4 3 3
5 2
6 1 10
7 4 4
```

NOIP2023 模拟赛 1 剧场(theatre)

【样例 1 输出】

1 6

2 2

【数据范围】

对于所有数据,满足 $C, H \le 10^9, n \le 10^5, m \le 10^5$ 。

子任务编号	n	m	分值
1	n = 1	$m \le 10^5$	10
2	$n \le 5 \times 10^3$	$m \le 5 \times 10^3$	30
3	$n \le 10^5$	$m \le 10^5$	60

NOIP2023 模拟赛 2 马 (horse)

马 (horse)

【题目描述】

有一个 $4 \times n$ 的棋盘,你初始可以在任意一个格子放置一个马,然后移动 4n-1 次,问能否不重不漏经过所有格子。如果可以,给出构造。

注: 马走日。

【输入格式】

从文件 horse.in 中读入数据。

第一行一个正整数T,表示数据组数。

每组数据一行一个正整数 n 。

【输出格式】

输出到文件 horse.out 中。

对于每组数据:

如果有解,第一行输出 Yes,并在接下来 4n 行,每行输出两个数 $x,y(1 \le x \le 4,1 \le y \le n)$, 表示依次经过的点的坐标。

如果无解,输出 No。

【样例 1 输入】

```
1 2 2 2 3 3
```

【样例 1 输入】

```
1 No
2 Yes
3 1 2
4 3 3
5 4 1
6 2 2
7 4 3
```

NOIP2023 模拟赛 2 马 (horse)

```
      8
      3
      1

      9
      2
      3

      10
      1
      1

      11
      3
      2

      12
      1
      3

      13
      2
      1

      14
      4
      2
```

【数据范围】

对于 30% 的数据, $n \le 5$ 。

对于 50% 的数据, $n \le 10$ 。

对于 70% 的数据, $n \le 1000$ 。

对于 100% 的数据, $n \leq 100000, T \leq 5$ 。

NOIP2023 模拟赛 3 球衣(soccer)

球衣 (soccer)

【题目描述】

球衣有 n 个颜色块需要被染色。球衣设计师正在思考该如何安排红蓝色。他的初步想法是以红色为底色,在上面覆盖若干个连续的蓝色块。特别的,你可以不用蓝色覆盖任何一个颜色块,也可以用蓝色覆盖所有颜色块。他只确定了这些蓝色块的长度和相对位置,而没有确定他们的具体位置。

具体的, 他用数组 p 表示他的一个想法, 要求从左到右第 i 个极大连通蓝色块的大小恰好为 p_i 。容易发现, 这样的想法对应了多个可行的设计方案。

由于设计师没有确定想法 p 的最终设计方案, 他只记录下来了在想法 p 对应的所有设计方案中, 一定会被染成蓝色的颜色块的位置。

举例来说, 若想法 p 为 $\{3,2,3\}$, 那么它对应的设计方案可能是:

而以下的设计方案不可能是 {3,2,3} 对应的设计方案:

第一种对应的方案是 $\{5,3\}$, 第二种对应的方案是 $\{2,3,3\}$ 。在所有 p 对应的设计方案中, 一定会被染成蓝色的位置是:

而设计师有健忘症,第二天醒来的时候他只记得在想法 p 对应的所有设计方案中,所有一定会被染成蓝色的颜色块的位置。为了让他的工作不白费,他希望你帮他还原出一种可能的设计方案,或者告诉设计师他的记忆有问题,即不存在这样的方案。

【输入格式】

从文件 soccer.in 中读入数据。

NOIP2023 模拟赛 3 球衣(soccer)

第一行一个正整数 n. 表示需要被染色的颜色块数量。

第二行一个长为 n 的 01 串, 其中 θ 表示这个位置不一定被染成蓝色, 1 表示这个位置一定被染成蓝色。

【输出格式】

输出到文件 soccer.out 中。

如果不存在这样的想法 p,输出一行一个字符串 No。

否则第一行输出一个字符串 Yes, 第二行输出一个长为 n 的字符串, 只包含字符 R 和 B, 表示一种合法的想法 p 对应的设计方案, 其中 R 表示红色, B 表示蓝色。如果有多种可能的设计方案, 输出任意一个即可。

【样例 1 输入】

1 11

2 01100100110

【样例 1 输出】

1 Yes

2 RBBBRBBRBBB

【样例1解释】

一种可能的想法 p 是 $\{3,2,3\}$, 设计方案详见题目描述里的图片。

【样例 2 输入】

10

1

000000000

【样例 2 输出】

1 Yes

2 RRRRRBRBRR

NOIP2023 模拟赛 3 球衣(soccer)

【样例 2 解释】

一种可能的想法 p 是 $\{1,1\}$,样例输出给出了这个 p 对应的一个设计方案。当然, $p=\emptyset$ 也是合法的,也就是说,答案也可能为 RRRRRRRR。还有很多其他的合法方案, 这里就不一一列举了。

【样例 3】

见选手目录下的 *soccer/soccer3.in* 与 *soccer/soccer3.ans*。 该样例满足子任务 3 的限制。

【样例 4】

见选手目录下的 *soccer/soccer4.in* 与 *soccer/soccer4.ans*。 该样例满足子任务 6 的限制。

【提示】

由于不可抗力,不提供设计方案的构造,选手可以通过 <u>checker</u> 校验答案的正确性。 本题评测采用 Special Judge。

为了方便选手测试,在附件中有 <u>checker.exe</u> 文件,选手可以使用它校验自己的输出文件。<u>checker</u> 的使用方式为: <u>checker 〈inputfile〉</u><outputfile〉<answerfile〉,参数依次表示输入文件、输出文件和答案文件。

提示: <u>checker</u> 只读取了 <u>answerfile</u> 的第一行, 也就是 <u>Yes</u> 或 <u>No</u>。对于答案是 <u>Yes</u> 的输入数据, 你只需要传入一个包含 <u>Yes</u> 的 <u>answerfile</u>, 即可检验你的 <u>outputfile</u> 的构造是否正确。

【数据范围】

子任务编号	$n \leq$	特殊性质	分值
1	15	无	15
2	100	无	15
3	3000	无	20
4	10^{6}	1 的个数 ≤ 1000	10
5	10^{6}	0 的个数 ≤ 1000	10
6	5×10^6	无	30

填数游戏 (number)

【题目描述】

小 L 是一个爱摸鱼的孩子, 这天, 小 L 玩起了填数游戏。

具体的,有 n 个格子,排成一列,编号分别为 $1 \sim n$,小 L 需要在每个格子中填入 $1 \sim k$ 中的一个数,对于最终的结果,令 a_i 为第 i 个格子中填入的数,那么代价为:

$$\max_{1 \le i < j \le n} (f[i][a_i] + f[j][a_j] + X \times |a_i - a_j|)$$

其中 $f[1\cdots n][1\cdots k]$ 和 X 已经提前给出。

小 L 想最小化代价,可是他由于天天摸鱼,所以不知道该怎么做。于是找到的聪明的你,希望你求出最小代价。

同时,他想知道构造方案,所以请你在此基础上构造出一组代价最小的方案,如果方案不唯一,任意输出一组即可。

【输入格式】

从文件 number.in 中读入数据。

第一行三个正整数, n, k, X。

接下来 n 行, 每行 k 个正整数, 分别是 $f[i][1\cdots k]$ 。

【输出格式】

输出到文件 number.out 中。

第一行一个数,表示最小的代价。

第二行 n 个数 $a_{1\cdots n}$,表示每一个格子中填入的数。

【样例 1 输入】

1 2 2 1

2 2 4

3 **4 2**

【样例 1 输出】

1 5

2 1 2

NOIP2023 模拟赛 4 填数游戏(number)

【样例 2 输入】

```
1 3 3 2
2 1 3 4
3 3 3 4
4 4 5 1
```

【样例 2 输出】

```
1 6 2 1 2 3
```

【数据范围】

数据编号	$n \leq$	$k \leq$	特殊性质
1, 2	10	3	无
3,4	10^{3}	2	无
$5 \sim 8$	10^{5}	2	无
9, 10	10^{3}	3	有
$11 \sim 13$	10^{5}	3	有
$14 \sim 16$	10^{3}	20	无
$17 \sim 20$	10^{5}	20	无

特殊性质: 对于任意 $f[i][j](1 \le i \le n, 1 \le j \le k)$, 均有 f[i][j] > X, 并且保证 k = 3。 对于所有数据,保证 $2 \le n \le 10^5$, $2 \le k \le 20$, $1 \le f[i][j]$, $X \le 10^8$ 。 本题输入量较大,请不要使用过慢的读入方式。