CSC 522 - Automated Learning and Data Analysis Graph Mining

Srinath Ravindran

Department of Computer Science North Carolina State University

- Graph Theory
 - What is a Graph
 - Some basic Concepts
- ② Graph Mining
 - Why Mine Graphs
 - Flavors of Graph Mining
- Frequent Subgraph Mining
 - Introduction
 - Challenges
 - Apriori Based Approach
 - Issues

Graphs - Brief Introduction

- A graph is an ordered pair G = (V, E) comprising a set V of vertices or nodes together with a set E of edges or lines that connect the vertices.
- The size of a graph is the number of vertices = |V|

Graph Definitions

(a) Labeled Graph

(b) Subgraph

(c) Induced Subgraph

Graph Isomorphism

 A graph is isomorphic if it is topologically equivalent to another graph

PS. You may be interested in this paper:

The NFL Coaching Network: Analysis of the Social Network Among Professional Football Coaches, Fast and David Jensen, AAAI 2006

http://sports.espn.go.com/nfl/columns/story?columnist=wickersham_seth&id=4781314

So, what can we do with these graphs?

- Mining Frequent Subgraphs
- Graph Classification
- Graph Clustering

Frequent Subgraph Mining

- A (sub)graph is frequent if its support (occurrence frequency) in a given dataset is no less than a minimum support threshold
- Applications
 - Mining biomolecular/ Chemical structures to identify the most common cores in active compounds
 - Program control flow analysis
 - 3 Mining XML structures or Web communities
 - Building blocks for graph classification, clustering, compression, comparison, and correlation analysis

Example

Sample graph dataset.

$$S-C-C=O$$
 $C-C-N$

Frequency: 2 Frequency: 3

Source: Mining Graph Data, Diane Cook and Larry Holder, Wiley, 2007.

What are the Challenges?

What are the Challenges?

- How do we represent the graphs?
- How do we generate candidates of size (k + 1) given a structure of size k?
- What is support and how do we count support?
- Assumption: frequent subgraphs must be connected
- Oh wait! aren't most of these computationally complex?

What are the Challenges?

- How do we represent the graphs?
- How do we generate candidates of size (k + 1) given a structure of size k?
- What is support and how do we count support?
- Assumption: frequent subgraphs must be connected
- Oh wait! aren't most of these computationally complex? An n-edge frequent graph may have 2ⁿ subgraphs!

Representing Graphs as Transactions

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G3							

Generation of Candidate Patterns

Apriori Based Approach

- Apriori-like approach: Use frequent k-subgraphs to generate frequent (k+1) subgraphs
- That's fine... but does Apriori Principle hold?

Apriori Based Approach

- Apriori-like approach: Use frequent k-subgraphs to generate frequent (k+1) subgraphs
- Support: number of graphs that contain a particular subgraph

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - ◆ Use frequent (k-1)-subgraphs to generate candidate k-subgraph
 - Candidate pruning
 - Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - Support counting
 - ◆ Count the support of each remaining candidate
 - Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Candidate Generation

There are 2 ways to generate a candidate k-graph from two given k-1-subgraphs.

- Vertex Growing: Iteratively expanding the graph by adding one vertex at a time
- Edge Growing: Iteratively expanding the graph by adding one edge at a time

Support Counting

Example: Dataset

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G4	0	0	0	0	0	0	 0

Issues

Apriori-based algorithms have two kinds of considerable overheads:

- Joining two size-k frequent graphs to generate size-(k + 1) graph candidates This produces an exponential number of candidates.
- Checking the frequency of these candidates separately Some graphs are isomorphic

These overheads constitute the performance bottleneck of Apriori-based algorithms.

Multiplicity of Candidates (Vertex Growing)

$$M_{G1} = \begin{pmatrix} 0 & p & p & q \\ p & 0 & r & 0 \\ p & r & 0 & 0 \\ q & 0 & 0 & 0 \end{pmatrix} \qquad M_{G2} = \begin{pmatrix} 0 & p & p & 0 \\ p & 0 & r & 0 \\ p & r & 0 & r \\ 0 & 0 & r & 0 \end{pmatrix} \qquad M_{G3} = \begin{pmatrix} 0 & p & p & 0 & q \\ p & 0 & r & 0 & 0 \\ p & r & 0 & r & 0 & 0 \\ 0 & 0 & r & 0 & ? \\ q & 0 & 0 & ? & 0 \end{pmatrix}$$

Multiplicity of Candidates (Edge growing)

Case 1: identical vertex labels

Multiplicity of Candidates (Edge growing)

 Case 2: Core contains identical labels. Core: The (k-1) subgraph that is common between the joint graphs

Multiplicity of Candidates (Edge growing)

Case 3: Core multiplicity

Graph Isomorphism

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a candidate has been generated
 - During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix

String: 0010001111010110

Canonical: 0111101011001000