

Objetivo

El participante identificará las operaciones tensoriales básicas.

Contenido

- Creación de tensores
- Operaciones elemento a elemento
- Multiplicación de tensores

Creación de tensores

En las redes neuronales utilizaremos la suma y la multiplicación de matrices. Por ello, debemos tener en cuenta cuatro puntos importantes:

- Suma y resta de matrices
- Producto Hadamard
- Transpuesta de matrices
- Multiplicación de matrices

Suma y resta de matrices

Consiste en sumar/restar cada elemento fila, columna, con su homólogo en la otra matriz. Las matrices deben tener el mismo número de filas y columnas. El resultado es una matriz con el mismo número de filas y columnas.

Producto Hadamard

$A \odot B$

Consiste en multiplicar cada elemento fila, columna, con su homólogo en la otra matriz. Las matrices deben tener el mismo número de filas y columnas. El resultado es una matriz con el mismo número de filas y columnas.

Transpuesta de matrices

La operación consiste en cambiar filas por columnas.

1	2	3
4	5	6

1	4
2	5
3	6

Si se puede realizar A X B, entonces también se puede hacer B^T X A^T, cumpliéndose la propiedad

 $(A \times B)^{\mathsf{T}} = B^{\mathsf{T}} \times A^{\mathsf{T}}$

Х В

(AXB) ^T

1	2
3	4

5	6
7	8

19	22
43	50

19	43
22	50

ΑT

Χ

ВТ

5	7
6	8

1	3
2	4

A X B

(AXB) ^T

1	2
ડ	4

5	6
7	8

ΑT

X

ВТ

Multiplicación de matrices

En la multiplicación de matrices, debemos considerar los siguientes puntos:

- El número de columnas de A=número de filas de B
- El resultado es C=nº filas A X nº columnas de B
- El hecho que se pueda multiplicar A x B no implica que se pueda multiplicar B x A (no hay propiedad conmutativa)

5 3 -4 -2 8 -1 0 -3

1	4	0
-5	3	7
0	-9	5
5	1	4

B

 $\begin{array}{l} \text{C11=[(5)x(1)]+[(3)x(-5)]+[(-4)x(0)]+[(-2)x(5)]=-20} \\ \text{C12=[(5)x(4)]+[(3)x(-3)]+[(-4)x(-9)]+[(-2)x(1)]=63} \\ \text{C13=[(5)x(0)]+[(3)x(7)]+[(-4)x(5)]+[(-2)x(4)]=-7} \\ \text{C21=[(8)x(1)]+[(-1)x(-5)]+[(0)x(0)]+[(-3)x(5)]=-2} \\ \text{C22=[(8)x(4)]+[(-1)x(3)]+[(0)x(-9)]+[(-3)x(1)]=26} \\ \text{C23=[(8)x(0)]+[(-1)x(7)]+[(0)x(5)]+[(-3)x(4)]=-19} \end{array}$

C11	C12	C13
C21	C22	C23

-20	63	-7
-2	26	-19

C

Referencias

- Daizhan Cheng, Hongsheng Qi, Yin Zhao, "An Introduction to Semi-tensor Product of Matrices and Its Applications", World Scientific, 2012.
- Ye, J. 2004. Generalized low rank approximations of matrices. In International Conference on Machine Learning, ICML'04.
- G. Strang, Introduction to Linear Algebra, 3rd ed., Wellesley-Cambridge Press, Wellesley, MA, 2003.
- J. Strum, Binomial matrices, Two-Year College Math. J. 8 (1977) 260-266.

Contacto

Edgar Morales Palafox Doctor en Ciencias de la computación

Edgra_morales_p@yahoo.com.mx

Tels: (55-3104-1600)

