Next-generation all-solid-state battery (#ASSB)

Tuan Vo^{a,b†}, Claas Hüter^b, Stefanie Braun^a, Manuel Torrilhon^a

^aDepartment of Mathematics, Applied and Computational Mathematics (ACoM), RWTH Aachen University, Schinkelstraße 02, 52062 Aachen, Germany ^bInstitute of Energy and Climate Research (IEK-2), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52428 Jülich, Germany

Mathematical modelling for the next-generation All-solid-state batteries: Nucleation (SE|SSE)^(*)-interface

Rechargeable Lithium-ion battery (LIB) is at the heart of every electric vehicle (EV), portable electronic device, and energy storage system [1]. Nowadays, LIBs enable human life more efficient and help to solve global environment issues thanks to EVs' zero emission. However, conventional LIB (c-LIB) is sensible to temperature and pressure, hence, flammable and explosive, which is undesirable. This bottleneck is mainly due to liquid-based electrolyte found in c-LIBs.

All-solid-state battery (ASSB) is one of promising candidates to overcome bottlenecks of c-LIBs. Thanks to solid-state electrolyte (SSE), ASSB is highly stable towards temperature and pressure. Nevertheless, Limetal dendrite triggered at (SE|SSE)-interface is the main drawback of ASSB since these dendritic threads extrapolate into SSE grain boundary network, causing crevice, degradation of ionic conductivity, and the probability of short-circuit, which is unfavorable.

Next-generation All-solid-state battery (ng-ASSB) with a consideration of nucleation criterion defined by

$$a_{ ext{Griffith}} := a^* = \arg\min_{a \in \mathbb{R}} \left. \iint_{\Omega} f(a, oldsymbol{u}; \lambda, \mu, oldsymbol{d} \otimes oldsymbol{d}) \, d\Omega - \iint_{\Gamma} f(a; \gamma) \, d\Gamma
ight|_{oldsymbol{u}^{(s)}}$$

where, can help to improve ASSB performance. can help to improve ASSB performance. can help to improve ASSB performance.

Interface Analysis

Interface between solid electrode and solid-state electrolyte (SE|SSE) taking place at space charge layer (SCL) [2] found in ASSBs critically exhibits mechanical and electrochemical instability [3]. This evidence points directly to the fact that the soft metallic li anode is erroneously prone to triggering dendrites, under cycles of electric charge & discharge [4].

<u>Distribution</u>: ana. max. shear stress ${}^{\mathcal{V}}\!\!\sigma_{x_1x_2}^{\Pi}$ around crack tip a_c ,

Next-generation All-solid-state battery

Nucleation taking place at critical dendritic (SE|SSE)-interface

Thermodynamic consistency: satisfied. Closure problem: fulfille by 15 moments.

Embedded structural-tensor SSE

Polycrystalline garnet-typed SSE such as LLZO exhibit a network of grain boundaries, and grains with various sizes and shapes under microscopic observation. Therefore, this type of microstructure is potentially prone to nuance destruction of ceramic-like materials.

Consequentially, dendrites contribute to degradation of ionic conductivity and cracks via tracing along grain boundaries.

Nucleation interface: Taking place at the critical dendritic interface

Coupled fields: Displacement vector field and temperature scalar field

$$\boldsymbol{u}: \begin{cases} \Omega \times \mathbb{R}_{+} \to \mathbb{R}^{3}, \\ (\boldsymbol{x},t) \mapsto \boldsymbol{u}(\boldsymbol{x},t), \end{cases} \quad \theta: \begin{cases} \Omega \times \mathbb{R}_{+} \to \mathbb{R}, \\ (\boldsymbol{x},t) \mapsto \theta(\boldsymbol{x},t), \end{cases} \quad \theta: \begin{cases} \Omega \times \mathbb{R}_{+} \to \mathbb{R}, \\ (\boldsymbol{x},t) \mapsto \theta(\boldsymbol{x},t), \end{cases}$$

Governing conservation equations

$$\frac{d}{dt} \int_{\Omega}^{\bullet} (\cdot) \ d\Omega = \int_{\Omega}^{\bullet} (\cdot)^{\text{action}} \ d\Omega + \int_{\partial \Omega}^{\bullet} (\cdot)^{\text{action}} \ d\partial\Omega + \int_{\Omega}^{\bullet} (\cdot)^{\text{production/source/sink}} \ d\Omega$$

 $\rho(\boldsymbol{x},t)$ is mass density per unit volume (puv); $\boldsymbol{b}(\boldsymbol{x},t)$ body force puv; $\boldsymbol{v}(\boldsymbol{x},t)$ velocity; $e(\boldsymbol{x},t)$ internal energy puv; $\boldsymbol{q}(\boldsymbol{x},t)$ heat flux; $r(\boldsymbol{x},t)$ heat source puv; $\boldsymbol{\sigma}$ Cauchy stress and ε infinitesimal strain. Helmholtz energy functional

$$a_{ ext{Griffith}} := a^* = \arg\min_{a \in \mathbb{R}} \left. \iint_{\Omega} f(a, oldsymbol{u}; \lambda, \mu, oldsymbol{d} \otimes oldsymbol{d}) \, d\Omega - \iint_{\Gamma} f(a; \gamma) \, d\Gamma
ight|_{oldsymbol{u}^{(s)}}$$

Governing PDE

$$a_{ ext{Griffith}} := a^* = \arg\min_{a \in \mathbb{R}} \left. \iint_{\Omega} f(a, \boldsymbol{u}; \lambda, \mu, \boldsymbol{d} \otimes \boldsymbol{d}) \, d\Omega - \left. \iint_{\Gamma} f(a; \gamma) \, d\Gamma \right|_{\boldsymbol{u}^{(s)}}$$

Strain energy: Interface between solid | Surface energy: (SE|SSE) taking place at space charge

electrode and solid-state electrolyte | solid electrode and solid-state electrolyte (SE|SSE) taking place

$$\iiint_{\Omega} f(a, \boldsymbol{u}; \lambda, \mu, \boldsymbol{d} \otimes \boldsymbol{d}) d\Omega$$

Interface between

$$\iint_{\Gamma} f(a;\gamma) \, d\Gamma$$

Therefore

$$\rho \, \partial_{t^2}^2 \boldsymbol{u}^{(s)} + \nabla \cdot \left(\overset{4}{\mathbb{C}} f_{(\lambda,\mu)}^{\mathbb{D}(\Omega)} : \nabla \boldsymbol{u}^{(s)} \right) + \rho \nabla V_e = \mathbf{0},$$
s.t. $a_{\text{Griffith}} := a^* = \arg \min_{a \in \mathbb{R}} \left. \iint_{\Omega} f(a, \boldsymbol{u}; \lambda, \mu, \boldsymbol{d} \otimes \boldsymbol{d}) \, d\Omega - \int_{\Gamma} f(a; \gamma) \, d\Gamma \right|_{\boldsymbol{u}^{(s)}}$

Boundary condition settings $oldsymbol{d}_{G_2}^R$ Grain-2 $\overline{\boldsymbol{d}^E}$ Uniform displacement fixence field θ electric-potential polarizational effect preferred direction

FEM implementation: Element stiffness matrix K^e : known; approximated by Gauss quadrature rule; index notation implies 4 + 2 for-loop:

$$K_{ik}^{e^{\alpha\beta}} = \int_{\Omega^{\xi}} \left(\mathcal{L}_{1}^{\alpha} \, \mathbb{C}_{i1k1}^{fGL}(y) \, \mathcal{R}_{1}^{\beta} + \mathcal{L}_{1}^{\alpha} \, \mathbb{C}_{i1k2}^{fGL}(y) \, \mathcal{R}_{2}^{\beta} + \mathcal{L}_{2}^{\alpha} \, \mathbb{C}_{i2k1}^{fGL}(y) \, \mathcal{R}_{1}^{\beta} + \mathcal{L}_{2}^{\alpha} \, \mathbb{C}_{i2k2}^{fGL}(y) \, \mathcal{R}_{2}^{\beta} \right) \det(\boldsymbol{J}) \, d\Omega^{\xi}$$

where \mathcal{L}_{i}^{α} and \mathcal{R}_{l}^{β} are gradients of basis functions at node α^{th} and β^{th} , respectively.

Contact

Tuan Vo vo@acom.rwth-aachen.de

References

[1] **T.Vo**, Modeling the swelling phenomena of li-ion batt. cells based on a numerical chemo-mech. coupled approach. MA, Robert Bosch Battery Systems GmbH, 2018. [2] S.Braun, C. Yada and A. Latz, Thermodynamically consistent model for Space-Charge-Layer formation in a solid electrolyte. Ir. Phys. Chem., 119, 22281-22288, 2015.

[3] **C.Hüter**, S.Fu, M.Finsterbusch, E.Figgemeier, L.Wells, and R.Spatschek, *Electrode-electrolyte interface stability in solid state electrolyte system: influence of* coating thickness under varying residual stresses. AIMS Materials Science, 4(4):867-877, 2017.

[A] **C Kim** I C Kim I Misrs V Wang C K Jung C V Park 7 Song H King M Radding I M Chang V Roov C Voon R Kim I H Kim K Voon D Im and K Kang