1 Theoretical Analysis

Symbol	Definition
K	The set of possible key values
λ	The set of all GS
ActualCount(k)	k's occurrence count in the stream
GS.maxLayer()	index of GS last layer
	with an allocated counter
GS.minLayer()	index of GS first layer
	with an allocated counter
$GS.query_{l,r}(k)$	value of k 's counter in GS 's row r , layer l
$GS.query_r(k)$	GS's row r estimate of k 's occurrence count

Table 1: Notations

For this section, we use the notations in Table 1. Note that $GS.query_r(k) = \sum_{l=GS.minLayer()}^{GS.maxLayer()} GS.query_{l,r}(k)$.

Lemma 1.1. Compressing a sketch does not impact its query results. Formally:

$$\forall GS \in \lambda, n \in \mathbb{N} : GS' := GS.compress(n) \Rightarrow$$

 $\forall k \in K : GS'.query(k) = GS.query(k)$

Proof. By definition: $GS.query(k) = min\{GS.query_r(k)|0 \le r < D\}$. In GS', $0 \le m \le n$ counters are removed from the beginning of each row. If m = 0, GS = GS' and we are trivially correct.

If m=1, the first counters of each row, $\{C[r,O]|0 \leq r < D\}$, were removed, so their value became 0. For every such C[r,O], all of its children, $\{C[r,n]|OB \leq n < (O+1)B\}$, must be allocated. Otherwise, we could not have removed C[r,O]. The value of each of the children was increased by C[r,O]'s pre-removal value. We define the functions OV(C[r,n]), CV(C[r,n]) that return the counter's values before and after the compression.

Without loss of generality, consider $0 \le r < D$. If $GS.query_r(k)$ does not require summing C[r, O], then we did not change any of the summed counters (since we only modified C[r, O] and its children). Therefore: $GS'.query_r(k) = GS.query_r(k)$

Otherwise, $GS.query_r(k)$ includes summing C[r, O]. A single child of C[r, O], marked C_{child} , would also be summed. We know this since C[r, O] was compressed in GS', so its children must be allocated. Due to our implementation, k would be mapped to one of those children, whose value would be summed.

$$GS'.query_r(k) = \sum_{l=GS'.minLayer()}^{GS'.maxLayer()} GS'.query_{l,r}(k) = \\ CV(C[r,0]) + CV(C_{child}) + \sum_{l=GS'.minLayer()+2}^{GS'.maxLayer()} GS'.query_{l,r}(k) = \\ OV(C_{child}) + OV(C[r,0]) + \sum_{l=GS.minLayer()+2}^{GS.maxLayer()} GS.query_{l,r}(k) = \\ \sum_{l=GS.minLayer()}^{GS.maxLayer()} GS.query_{l,r}(k) = GS.query_r(k)$$

For m > 1, we use induction: Given that the assumption holds for m-1 compresses, we create GS'' := GS.compress(m-1). Define GS''' = GS''.compress(1), yielding a sketch that would return the same queries.

Lemma 1.2. If we expand a sketch, update it, and follow with undoing the expansion, the final state of our sketch is the same as if we updated it without expanding and undoing it.

$$\forall GS \in \lambda, n, m \in \mathbb{N} :$$

$$GS^* := GS.update(k_0, v_0).[...].update(k_m, v_m) \land$$

$$GS_1 := GS.expand(n) \land$$

$$GS_2 := GS_1.update(k_0, v_0).[...].update(k_m, v_m) \land$$

$$GS_3 := GS_2.undoExpand(n) \Rightarrow GS_3 == GS^*$$

Proof. We start with some notations:

 $U := \{k_i | 0 \le i \le m\}$: set of unique updated keys.

 $UpdateSum(k) := \sum_{k_i=k} v_i$: a function mapping each $k \in U$ to the total amount it is updated by.

Descendants(GS, C): a function mapping a counter in a GS to the counter's allocated descendants.

 GS^* has the same structure as GS, by which we mean that the length of Counters and the 4 integer fields O, B, D, W are the same for both. This is due to update's implementation.

 GS_3 also has the same structure as GS. This is because the Counters array in GS_1 has exactly n more counters than Counters in GS, while in GS_3 the length of Counters is reduced by exactly n counters from GS_1 . The number of undone counters is not less than n, since for this to occur, one of the last n counters must not have an allocated parent. Yet, each of the last n counters has a parent counter present in GS, due to the implementation of expand.

Let m be an array index of an allocated counter in GS. We mark counters in array index m: C, C^*, C_1, C_2, C_3 , matching the names of the respective sketches.

Denote $U_m = \{k | k \in U \land H_{r,l}^*(k) = m\}$. This is the set of updated keys mapped to the counter in the m^{th} array index of our sketches. From the implementation of update, we deduce:

 $C^*.value = C.value + \sum \{UpdateSum(k)|k \in U_m\}.$ On the other hand:

 $C_3.value = C_2.value + \sum \{C'.value | C' \in Descendants(C_2)\}.$

Since $Descendants(C_2)$ were allocated with value 0 in GS_1 , each one's value is exactly the amount it was updated by $\{(k_i, v_i)\}$. Any key from U_m which did not update them has updated C_2 . Therefore:

 $C_2.value + \sum \{C'.value | C' \in Descendants(C_2)\} = C_1.value + \sum \{UpdateSum(k) | k \in U_m\}.$

Since expanding can not modify C's value, we get:

 $C_3.value = C.value + \sum \{UpdateSum(k)|k \in U_m\} = C^*.value$ In conclusion, the structure of GS^*andGS_3 is the same. Further, their corresponding counters hold the same values. Therefore, they are identical.

We proceed with proving useful properties of our error given a specific expansion strategy used in this paper. Note that any expansion strategy can be constructed to suit the properties required from a GS, and said properties can be proven using a method similar to the one presented below.

Lemma 1.3. Initialize $GS \in \lambda$ with δ such that $D = \lceil \ln(\frac{1}{\delta}) \rceil$, $W \in \mathbb{N}$. Additionally, select M > 0 - every time we increment GS's counters by a total of $u = \frac{M}{eD(B+1)}$, we expand GS by a single counter. After incrementing GS's counters by a total of N:

- 1. $ActualCount(k) \leq GS.estimate(k)$,
- 2. $Pr[GS.estimate(k) > ActualCount(k) + Mlog_B(N)] \le \delta$.

Proof. Consider the counter $C[r,l,H^*_{r,l}(k)]$ which is updated when we modify k's count, and $C[r,l,H^*_{r,l+1}(k)]$ is not yet allocated. Since every update adds a positive value, the counter holds at least the sum of increments for k after $C[r,l,H^*_{r,l}(k)]$ was allocated and before $C[r,l,H^*_{r,l+1}(k)]$ was allocated. At any specific time, $\sum_l C[r,l,H^*_{r,l}(k)] \geq ActualCount(k)$. Since our estimate is the minimum from this sum from each row, our estimate cannot be less than ActualCount(k), thereby proving (1).

Onwards to (2): Since we expand by a single counter every u updates, every uD update all our rows are expanded by a single counter. Therefore, we fill the l^{th} layer $uDWB^l$ updates after allocating the last counter of the previous layer. We always update the lowest counter, therefore after layer l+1 is fully allocated layer l will receive no more updates.

Thus, for any specific layer it receives at most $uDWB^{l+1}$ updates while allocating the next layer, and $uDWB^{l}$ updates while allocating itself, for a total of $(B+1)uDWB^{l}$. We define indicator variables $I_{i,j,r,l}$, which are 1 only if $(i \neq j) \wedge H_{r,l}^{*}(i) = H_{r,l}^{*}(j)$, and 0 otherwise. Due to the pairwise independence of our hash functions, we get:

$$E(I_{i,j,r,l}) = Pr[H_{r,l}^*(i) = H_{r,l}^*(j)] \le \frac{1}{WB^l}.$$

We define the variables $X_{i,r}$ randomly over the choices of h, as the excess quantity (error) for the estimation of k's count by the r^{th} row, with n being the unique keys count and m being the max layer at least semi-allocated after N updates. That is, m is the number of layers after N updates. Due to our expansion strategy, we know that $\frac{N}{uD}$ counters were added to each row. Therefore, we know that: $m \leq 1 + log_B(\frac{N(B-1)}{uDWB} + \frac{1}{B}) \leq log_B(N)$. We can thus infer the value of our random variables: $X_{k,r} = \sum_{k=1}^n \sum_{l=0}^m I_{k,j,r,l} *GS.estimate_{l,r}(k)$. Due to the linearity of expectation, $E[X_{k,r}]$ equals:

$$E[\sum_{k=1}^{n} \sum_{l=0}^{m-1} I_{k,j,r,l} * count_{l,r}(k)] = \sum_{k=1}^{n} \sum_{l=0}^{m-1} count_{l,r}(k) * E[I_{k,j,r,l}] \le \sum_{k=1}^{m-1} \sum_{k=1}^{n} count_{l,r}(k) * \frac{1}{WB^{l}} = \sum_{l=0}^{m-1} \frac{1}{WB^{l}} \sum_{k=1}^{n} count_{l,r}(k) \le \sum_{l=0}^{m-1} \frac{1}{WB^{l}} (B+1)uDWB^{l} = (B+1)muD \le (B+1)uD * log_{B}(N)$$

For brevity, we denote $V = (B+1)uD * log_B(N)$

$$\begin{split} ⪻[GS.estimate(k) > ActualCount(k) + eV] = \\ ⪻[\forall_{D > r \geq 0}GS.estimate_r(k) > ActualCount(k) + eV] = \\ ⪻[\forall_{D > r \geq 0}ActualCount(k) + X_{k,r} > ActualCount(k) + eV] = \\ ⪻[\forall_{D > r \geq 0}X_{k,r} > eV] = Pr[X_{k,0} > V] * \dots * Pr[X_{k,D-1} > eV] \leq \\ &(\frac{E[X_{k,r}]}{eV})^D \leq (\frac{V}{eV})^D = e^{-D} \leq e^{-ln(\frac{1}{\delta})} = \delta \end{split}$$

Then we can replace V and u with their actual values to get: $eV = u * e(B + 1)D * log_B(N) = M * log_B(N)$

Corollary 1.3.1. This accuracy guarantee is independent of W. Therefore, we may select W = 1 for a minimal initial memory usage.

Corollary 1.3.2. A CMS with $\delta, \varepsilon > 0$ such that $D = \lceil ln(\frac{1}{\delta}) \rceil$ and $W = \lceil ln(\frac{e}{\varepsilon}) \rceil$ provides $Pr[CMS.estimate(k) > ActualCount(k) + \varepsilon N] \le \delta$

Corollary 1.3.3. GS's relative error for a key k is defined

$$\frac{|ActualCount(k) - GS.estimate(k)|}{ActualCount(k)}$$

Since we know that:

 $ActualCount(k) \le N \land ActualCount(k) \le GS.estimate(k)$

we can deduce:

$$\begin{split} ⪻[GS.estimate(k) > ActualCount(k) + Mlog_B(N)] = \\ ⪻[\frac{GS.estimate(k) - ActualCount(k)}{ActualCount(k)} > \frac{Mlog_B(N)}{ActualCount(k)}] \leq \\ ⪻[\frac{GS.estimate(k) - ActualCount(k)}{ActualCount(k)} > \frac{Mlog_B(N)}{N}] \leq \delta \end{split}$$

Note that, $\lim_{N\to\infty}\frac{Mlog_B(N)}{N}=0$. Therefore, there is a probability greater than $1-\lambda$ that for any key k, GS's estimation's relative error is smaller than an expression whose limit diminishes to 0 as N grows. I.e., the larger our stream, the smaller the expected relative error becomes.