Introduction to Sensor Networks

Mobile Ad-hoc Systems Seminar WS 2004/05

13. Jan 2006

Sensor: a small, lightweight device which measures the environment of physical parameters such as temperature, pressure, relative humidity,...

Sensor Networks: are highly distributed networks of wireless sensor nodes, deployed in large numbers to monitor the environment or system.

- Setup and maintenance autonomous
- Sensor networks are infrastructure-less.
- Available energy!
 Network lifetime vs. Accuracy of results and fault tolerance.

Issues and Challenges (2)

Include or avoid sensor nodes if their state has changed.

- Communication:
 - Real Time
 - Secure

Classification of sensor network protocols

Sensor Network Architecture

Two kinds of Architecture:

Layered and Clustered

Layered Architecture

 The sensor nodes, which are not near enough to the base station, communicate over nodes of neighboring layers.

Example UNPF: Unified network protocol framework

Clustered Architecture

Sensor nodes are organized in clusters

- Each cluster has a cluster-head,
- Cluster formation must be an autonomous process.
- Example: Low-Energy Adaptive Clustering Hierarchy (LEACH)

Data Handling

 Data dissemination is the process by which queries or data are routed in the sensor network

Data dissemination – Data diffusion model (1)

- Consists of a two-step process of interest propagation and data propagation
- An interest is a kind of data or event that a node is interested in, such as temperature, pressure, ...
- For every event a sink is interested in, it broadcasts its interests to its neighbours and periodically refreshes its interest.

Data dissemination – Data diffusion model (3)

The basic idea of diffusion is made efficient by different algorithms for interest and data routing:

Flooding, Gossiping, Rumor routing, Sequential assignment routing, Directed diffusion, Sensor protocols for information via negotiation, Cost-Field Approach, Geographic hash table, Small minimum Energy communication Network

Flooding

each node which receives a packet broadcasts it if the maximum hop-count

of the packet is not reached and the node is not the destination of the packet.

Advantages: easy to implement and maintenance

<u>Disadvantages:</u> Implosion (duplicate messages are sent to the same node), Overlap (overlapping regions of sensor coverage), Resource blindness (many redundant transmissions, reduced network lifetime)

Gossiping

modified version of flooding, nodes do not broadcast a packet, but send it to a randomly selected neighbor.

<u>Advantages:</u> easy to implement and maintenance, lower overhead than flooding

<u>Disadvantages:</u> need a long time for a message to propagate throughout the network, does not guarantee that all nodes will receive the message!

Rumor routing

Agent-based path creation algorithm

Table of Agent

Event	Distance
E1	2

Table of Node A

Event	Distance	Direction
E1	3	С
E2	2	С

Sequential Assignment Routing (SAR)

- Tree based Algorithm
- A node (Sensor) could be part of more than one Tree

Directed diffusion

Useful in scenarios where the sensor nodes themselves generate request/queries for data sensed by other nodes

Uses *interest gradients* and *data gradients*.

 Sensor Protocols for Information via Negotiation (SPIN) (1)

three types of messages:

ADV... advertisement

REQ... request

DATA... ...

Sensor Protocols for Information via Negotiation (SPIN) (2)

- Cost-Field Approach
- Considers the problem of setting up paths to a sink
- Two-phase process:

The first phase set up the cost field at all sensor nodes (based on metrics such as delay,...)

The second phase uses the cost for data dissemination

Geographic Hash Table (GHT)

- -Inspired by Internet-scale distributed hash table (DHT)
- -stores a pair (key, value)
- -The data is stored distributed across all sensors not routed to a central storage.
- -More effective in large sensor networks where a large number of events are detected but not all are queried.

Small Minimum Energy Communication Network (SMECN)

Builds up a sub network of the given communication network

Paths which need minimal power consumption

Data gathering model

- Data gathering algorithms try to maximize the number of rounds of communication before the nodes die and the network becomes inoperable.
- Conflicting requirements:
 Minimum delay and minimum energy consumption

Data gathering model algorithms

DirectTransmission

Every node sends the collected data directly to the base station.

high energy consumption, and delays

Data gathering model algorithms

Power-Efficient Gathering for Sensor Information Systems (PEGASIS) (1)

constructs a chain of sensor nodes

performed before any message is transmitted

Data gathering model algorithms

Binary Scheme

- Also chain based algorithm like PEGASIS which classifies nodes into different levels.
- Levels: all nodes which receive a message rise to the next level. The number of nodes is halved from a level to the next.
- Chain-Based Three-Level Scheme

MAC Protocols for sensor Networks

- MAC protocols in sensor networks: Self-organizing MAC for sensor networks (SMACS)
- Carrier Sense MultipleAccess (CSMA)
- Hybrid TDMA /FDMA
 Time Division Multiple
 Access / Frequency
 Division Multiple Access

Quality of a Sensor Network

The quality of a sensor network is given by **Coverage** and **Exposure**.

Coverage

Depends on the range, sensitivity and density of the sensing nodes.

Exposure

- The ability of observing a target
- sensor node s at (0,0) in a field
- The minimum exposure path (MEP):

Introduction to Sensor Networks

Thank you for your attention...