OPTIMISATION CONTINUE:

PROBLÈMES LINÉAIRES

Hacène Ouzia

MAIN (4 ème année) Sorbonne Université

2019

Généralités Optimisation linéaire Méthode du simplexe Sol. Polluetout Exemple Géométrie Algèbre Liens algèbre-géométrie

AGENDA

- Généralités
 - Exemple introductif
 - Un peu de géométrie
 - Un peu d'algèbre
 - Liens algèbre-géométrie
- Optimisation linéaire
- Méthode du simplexe
- Stratégie optimale pour Polluetout

3 / 68

■ ENTREPRISE POLLUETOUT

L'entreprise *polluetout* fabrique 2 produits π_1 , π_2 et utilise 3 types de matières premières μ_1 , μ_2 et μ_3 . Les bénéfices nets par chaque unité de matière première utilisée μ_1 , μ_2 et μ_3 sont 4, 2 et 3 respectivement.

Pour chaque produit, les coûts écologiques par unité de matière première utilisée sont :

La politique écologique locale impose à l'entreprise le respect de la norme *eco-norme* fixée à 75 unités par chaque type de produit. Enfin, pour des raisons de sécurité, l'entreprise polluetout ne peut disposer de plus de 3 unités de μ_1 et 5 unités de μ_2 .

■ QUESTION Quel est le plan de production écologique et optimal?

Exemple introductif

■ ENTREPRISE POLLUETOUT Le modèle mathématique associé

MAX
$$4x_1 + 2x_2 + 3x_3$$
 s.c. $25x_1 - 9x_2 + 15x_3 \le 75$ $-5x_1 + 9x_2 + 15x_3 \le 75$ $x_1 \le 3$ $x_2 \le 5$

Exemple introductif

■ Entreprise polluetout Un modèle équivalent

-MIN
$$-4x_1$$
 $-2x_2$ $-3x_3$ s.c.
$$25x_1 -9x_2 +15x_3 \leq 75$$

$$-5x_1 +9x_2 +15x_3 \leq 75$$

$$x_1 \leq 3$$

$$x_2 \leq 5$$
 (1)

Exemple introductif

■ ENTREPRISE POLLUETOUT Un modèle équivalent

MIN
$$c^t x$$
 s.c. $(x_1, x_2, x_3) \in P$
$$P = \left\{ x \in \mathbb{R}^3_+ : Ax \le b \right\}$$

$$\lceil 25 -9 \ 15 \rceil \qquad \lceil 75 \rceil$$

οù

$$P = \left\{ x \in \mathbb{R}^3_+ : Ax \leq b \right\}$$

avec

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, A = \begin{bmatrix} 25 & -9 & 15 \\ -5 & 9 & 15 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, b = \begin{bmatrix} 75 \\ 75 \\ 3 \\ 5 \end{bmatrix}, c = \begin{bmatrix} -4 \\ -2 \\ -3 \end{bmatrix}$$

■ ENTREPRISE POLLUETOUT Ensemble des plans de production écologiques

Ensembles convexes

COMBINAISON CONVEXE Une combinaison convexe de deux éléments x et y de \mathbb{R}^n est l'élément :

$$\lambda x + (1 - \lambda) y$$
, où $\lambda \in [0, 1]$

 \blacksquare Ensemble Convexe Un sous-ensemble C de \mathbb{R}^n est convexe si C est stable par combinaison convexe, i.e.,

$$\forall x, y \in C : \lambda x + (1 - \lambda) y \in C, \forall \lambda \in [0, 1]$$

POLYÈDRE Un sous-ensemble P de \mathbb{R}^n est un polyèdre si : il existe une matrice $A \in \mathcal{M}_{m \times n}$ (\mathbb{R}) et un vecteur $b \in \mathbb{R}^m$ tels que :

$$P = \{x \in \mathbb{R}^n : Ax \le b\}$$

OBE Un sous-ensemble P de \mathbb{R}^n est un polytope si P est un polyèdre borné.

Ensembles convexes

COMBINAISON CONVEXE Une combinaison convexe de deux éléments x et y de \mathbb{R}^n est l'élément :

$$\lambda x + (1 - \lambda) y$$
, où $\lambda \in [0, 1]$

ENSEMBLE CONVEXE Un sous-ensemble C de \mathbb{R}^n est convexe si C est stable par combinaison convexe, i.e., :

$$\forall x, y \in C : \lambda x + (1 - \lambda) y \in C, \forall \lambda \in [0, 1]$$

POLYÈDRE Un sous-ensemble P de \mathbb{R}^n est un polyèdre si : il existe une matrice $A \in \mathcal{M}_{m \times n}$ (\mathbb{R}) et un vecteur $b \in \mathbb{R}^m$ tels que :

$$P = \{x \in \mathbb{R}^n : Ax \leq b\}$$

sous-ensemble P de \mathbb{R}^n est un polytope si P est un polyèdre borné.

Ensembles convexes

COMBINAISON CONVEXE Une combinaison convexe de deux éléments x et y de \mathbb{R}^n est l'élément :

$$\lambda x + (1 - \lambda) y$$
, où $\lambda \in [0, 1]$

ENSEMBLE CONVEXE Un sous-ensemble C de \mathbb{R}^n est convexe si C est stable par combinaison convexe, i.e., :

$$\forall x, y \in C : \lambda x + (1 - \lambda) y \in C, \forall \lambda \in [0, 1]$$

POLYÈDRE Un sous-ensemble P de \mathbb{R}^n est un polyèdre si : il existe une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ et un vecteur $b \in \mathbb{R}^m$ tels que :

$$P = \{x \in \mathbb{R}^n : Ax \leq b\}$$

POLYTOPE Un sous-ensemble P de \mathbb{R}^n est un polytope si P est un polyèdre borné.

Généralités Optimisation linéaire Méthode du simplexe Sol. Polluetout

Exemple Géométrie Algèbre Liens algèbre-géométrie

Ensemble convexe

Points extrêmes

POINT EXTRÊME Un point \hat{x} d'un ensemble convexe C est extrême s'il n'est pas combinaison convexe de deux autres points appartenant à C, i.e. :

$$\forall x, y \in C, \exists \lambda \in [0, 1] : \hat{x} = \lambda x + (1 - \lambda) y \Longrightarrow \lambda = 0 \text{ ou } \lambda = 1$$

Généralités Optimisation linéaire Méthode du simplexe Sol. Polluetout

Exemple Géométrie Algèbre Liens algèbre-géométrie

Points extrêmes

■ Données :

- ▶ Une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$
- ▶ Un vecteur $b \in \mathbb{R}^m$

■ OBJECTIF:

Résoudre le système

$$Ax = b$$

où le vecteur $x \in \mathbb{R}^n$

- La matrice A est de plain rang, i.e., rang(A) = m
- On a l'inégalité suivante : $m \le n$

■ Données :

- ▶ Une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$
- ▶ Un vecteur $b \in \mathbb{R}^m$

■ OBJECTIF:

Résoudre le système

$$Ax = b$$

où le vecteur $x \in \mathbb{R}^n$

■ HYPOTHÈSES ;

- La matrice A est de plain rang, i.e., rang(A) = m
- On a l'inégalité suivante : $m \le n$

■ EXEMPLE Soit le système suivant :

La matrice associée est

BASE Up base d'une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ est toute sous-matrice carrée B inversible, i.e. $B \in GL_m(\mathbb{R})$.

■ EXEMPLE Soit le système suivant :

La matrice associée est

$$A = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

■ BAS**#** (Up) base d'une matrice $A \in \mathcal{M}_{m \times n}$ (\mathbb{R}) est toute sous-matrice carrée Binversible, i.e. $B \in GL_m(\mathbb{R})$.

■ EXEMPLE Soit le système suivant :

La matrice associée est

$$A = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

BASE Une base d'une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ est toute sous-matrice carrée B inversible, i.e. $B \in GL_m(\mathbb{R})$.

EXEMPLE 1 Bases (certaines) de la matrice A :

$$A = \begin{bmatrix} N^{1}, B^{1} \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

οù

- ▶ B^1 est formée des colonnes $B = \{4, 5, 6, 7\}$
- \triangleright N^1 est formée des colonnes $\mathcal{N} = \{1, 2, 3\}$
- Le nombre de base d'une matrice A est au plus égal à $\binom{n}{m}$.

EXEMPLE 1 Bases (certaines) de la matrice A :

$$A = \begin{bmatrix} N^1, B^1 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

οù

- ▶ B^1 est formée des colonnes $B = \{4, 5, 6, 7\}$
- \triangleright N^1 est formée des colonnes $\mathcal{N} = \{1, 2, 3\}$
- \triangle Le nombre de base d'une matrice A est au plus égal à $\binom{n}{m}$.

$$\begin{bmatrix} N^2, B^2 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} N^3, B^3 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^6, B^6 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} N^4, B^4 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^7, B^7 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} N^2, B^2 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^5, B^5 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} N^6, B^6 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} N^7, B^7 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

SOLUTION DE BASE Une solution de base du système Ax = b est un vecteur $x = (x_{\mathcal{B}}, x_{\mathcal{N}})$ tel que :

$$x_{\mathcal{N}} = 0$$
$$x_{\mathcal{B}} = B^{-1}b$$

où B est une base de la matrice A.

A une base B correspond une seule solution de base (x_B, x_N) .

A une solution de base $(x_{\mathcal{B}}, x_{\mathcal{N}})$ peut correspondre à plusieurs bases.

SOLUTION DE BASE Une solution de base du système Ax = b est un vecteur $x = (x_{\mathcal{B}}, x_{\mathcal{N}})$ tel que :

$$x_{\mathcal{N}} = 0$$
$$x_{\mathcal{B}} = B^{-1}b$$

où B est une base de la matrice A.

- A une base *B* correspond une seule solution de base (x_B, x_N) .
- A une solution de base $(x_{\mathcal{B}}, x_{\mathcal{N}})$ peut correspondre à plusieurs bases.

Solution de base

EXEMPLE 2 Soit le système Ax = b où :

$$A = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 75 \\ 75 \\ 3 \\ 5 \end{bmatrix}$$

La solution de base correspondant à la base :

de base correspondant à la base :
$$\begin{bmatrix} N^1, B^1 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

est

$$x_{\mathcal{B}^1} = (x_4, x_5, x_6, x_7) = (75, 75, 3, 5)$$

 $x_{\mathcal{N}^1} = (x_1, x_2, x_3) = (0, 0, 0)$

Solution de base

EXEMPLE 2 Soit le système Ax = b où :

$$A = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 75 \\ 75 \\ 3 \\ 5 \end{bmatrix}$$

La solution de base correspondant à la base :

$$[N^{1}, B^{1}] = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

est

$$egin{array}{lcl} x_{\mathcal{B}^1} &=& (x_4,x_5,x_6,x_7) = (75,75,3,5) \ x_{\mathcal{N}^1} &=& (x_1,x_2,x_3) = (0,0,0) \end{array}$$

$$\begin{bmatrix} N^2, B^2 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^5, B^5 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{R2} = (x_1, x_5, x_6, x_7) = (3, 90, 0, 5)$$

$$\begin{bmatrix} N^3, B^3 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^6, B^6 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{R3} = (x_1, x_2, x_4, x_5) = (3, 5, 45, 45)$$

$$\begin{bmatrix} N^4, B^4 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{\mathcal{B}^4} = (x_2, x_4, x_5, x_6) = (5, 120, 30, 3)$$

$$\begin{bmatrix} N^5, B^5 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} N^6, B^6 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{136} = (x_1, x_2, x_3, x_5) = (3, 5, 3, 0)$$

$$\begin{bmatrix} N^4, B^4 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^7, B^7 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{B7} = (x_3, x_5, x_6, x_7) = (5, 0, 3, 5)$$

SOLUTION DE BASE DÉGÉNÉRÉE Une solution de base $x=(x_{\mathcal{B}},x_{\mathcal{N}})$ du système Ax = b est dégénérée si au moins une composante du vecteur $x_{\mathcal{B}}$ est nulle.

La base
$$B^1$$
 n'est pas dégénérée : $X_{\mathcal{B}^1} = (x_1, x_5, x_6, x_7) = (75, 75, 3, 5)$

$$X_{\mathcal{N}^1} = (x_1, x_2, x_3) = (0, 0, 0)$$

► La base B² est dégénérée :

$$x_{\mathcal{B}^2} = (x_1, x_5, x_6, x_7) = (3, 90, 0, 5)$$

 $x_{\mathcal{N}^2} = (x_2, x_3, x_4) = (0, 0, 0)$

SOLUTION DE BASE DÉGÉNÉRÉE Une solution de base $x=(x_{\mathcal{B}},x_{\mathcal{N}})$ du système Ax = b est dégénérée si au moins une composante du vecteur $x_{\mathcal{B}}$ est nulle.

EXEMPLE 3

La base B¹ n'est pas dégénérée ;

$$X_{\mathcal{B}^1} = (x_4, x_5, x_6, x_7) = (75, 75, 3, 5)$$

 $X_{\mathcal{N}^1} = (x_1, x_2, x_3) = (0, 0, 0)$

▶ La base B² est dégénérée :

$$X_{\mathcal{B}^2} = (x_1, x_5, x_6, x_7) = (3, 90, 0, 5)$$

 $X_{\mathcal{N}^2} = (x_2, x_3, x_4) = (0, 0, 0)$

$$\begin{bmatrix} N^2, B^2 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^5, B^5 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{B2} = (x_1, x_5, x_6, x_7) = (3, 90, 0, 5)$$

$$\begin{bmatrix} N^3, B^3 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^6, B^6 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{R3} = (x_1, x_2, x_4, x_5) = (3, 5, 45, 45)$$

$$\begin{bmatrix} N^4, B^4 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{B4} = (x_2, x_4, x_5, x_6) = (5, 120, 30, 3)$$

$$\begin{bmatrix} N^5, B^5 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} N^6, B^6 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{136} = (x_1, x_2, x_3, x_5) = (3, 5, 3, 0)$$

$$\begin{bmatrix} N^4, B^4 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^7, B^7 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{B7} = (x_3, x_5, x_6, x_7) = (5, 0, 3, 5)$$

Terminologie : solution de base réalisable

■ Données :

- ▶ Une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$
- ▶ Un vecteur $b \in \mathbb{R}^m$

OBJECTIF:

Résoudre le système

$$Ax = b$$

$$x \ge 0$$

où le vecteur $x \in \mathbb{R}^n$

- La matrice A est de plain rang, i.e., rang(A) = m
- On a l'inégalité suivante : $m \le n$

Terminologie : solution de base réalisable

■ Données :

- ▶ Une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$
- ▶ Un vecteur $b \in \mathbb{R}^m$

OBJECTIF:

Résoudre le système

$$Ax = b$$

 $x > 0$

où le vecteur $x \in \mathbb{R}^n$

- La matrice A est de plain rang, i.e., rang(A) = m
- On a l'inégalité suivante : $m \le n$

Terminologie : solution de base réalisable

SOLUTION DE BASE RÉALISABLE Une solution de base $(x_{\mathcal{B}}, x_{\mathcal{N}})$ du système

$$Ax = b$$

 $x > 0$

est réalisable si $x_{\mathcal{B}} \geq 0$.

Solution de base réalisable

EXEMPLE 4 Soit le système $Ax = b, x \ge 0$ où :

$$A = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}, b = \begin{bmatrix} 75 \\ 75 \\ 3 \\ 5 \end{bmatrix}$$

La solution de base correspondant à la base :

$$\begin{bmatrix} N^8, B^8 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

n'est pas réalisable, car

$$X_{\mathcal{B}^8} = (x_2, x_5, x_6, x_7) = \left(-\frac{25}{3}, 150, 3, \frac{40}{3}\right)$$

 $X_{\mathcal{N}^8} = (x_1, x_3, x_4) = (0, 0, 0)$

Liens

■ Polyèdres Soit le polyèdre P

$$P = \left\{ x \in \mathbb{R}^n : Ax \le b, x \ge 0 \right\}$$

■ BASES RÉALISABLES Soit le système

$$\begin{aligned}
Ax + y &= b \\
x, y &\geq 0
\end{aligned} \tag{2}$$

Quel est le lien entre les bases réalisables du système (2) et les points extrêmes du polyèdre P?

Liens

■ Polyèdres Soit le polyèdre P

$$P = \left\{ x \in \mathbb{R}^n : Ax \le b, x \ge 0 \right\}$$

■ BASES RÉALISABLES Soit le système

$$\begin{aligned}
Ax + y &= b \\
x, y &> 0
\end{aligned} \tag{2}$$

Quel est le lien entre les bases réalisables du système (2) et les points extrêmes du polyèdre P?

EXEMPLE 5 Soit le polyèdre P suivant :

$$P = \left\{ x \in \mathbb{R}^3 : Ax \le b, x \ge 0 \right\}$$

avec

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, A = \begin{bmatrix} 25 & -9 & 15 \\ -5 & 9 & 15 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, b = \begin{bmatrix} 75 \\ 75 \\ 3 \\ 5 \end{bmatrix}$$

Considérons le système associé :

$$\begin{bmatrix} N^2, B^2 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^5, B^5 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{132} = (x_1, x_5, x_6, x_7) = (3, 90, 0, 5)$$

$$\begin{bmatrix} N^3, B^3 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{R3} = (x_1, x_2, x_4, x_5) = (3, 5, 45, 45)$$

$$\begin{bmatrix} N^4, B^4 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{B4} = (x_2, x_4, x_5, x_6) = (5, 120, 30, 3)$$

$$\begin{bmatrix} N^5, B^5 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} N^3, B^3 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^6, B^6 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{136} = (x_1, x_2, x_3, x_5) = (3, 5, 3, 0)$$

$$\begin{bmatrix} N^4, B^4 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} N^7, B^7 \end{bmatrix} = \begin{bmatrix} 25 & -9 & 15 & 1 & 0 & 0 & 0 \\ -5 & 9 & 15 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

$$x_{137} = (x_3, x_5, x_6, x_7) = (5, 0, 3, 5)$$

$$x_{\mathcal{B}^1} = (x_4, x_5, x_6, x_7) = (75, 75, 3, 5)$$

$$x_{B^2} = (x_1, x_5, x_6, x_7) = (3, 90, 0, 5)$$

$$x_{B^3} = (x_1, x_2, x_4, x_5) = (3, 5, 45, 45)$$

$$x_{\mathcal{B}^4} = (x_2, x_4, x_5, x_6) = (5, 120, 30, 3)$$

$$x_{\mathcal{B}^5} = (x_2, x_3, x_4, x_6) = (5, 2, 90, 3)$$

$$x_{\mathcal{B}^6} = (x_1, x_2, x_3, x_5) = (3, 5, 3, 0)$$

$$x_{B^7} = (x_3, x_5, x_6, x_7) = (5, 0, 3, 5)$$

$$X_{B^1} = (x_4, x_5, x_6, x_7) = (75, 75, 3, 5)$$

$$x_{\mathcal{B}^2} = (x_1, x_5, x_6, x_7) = (3, 90, 0, 5)$$

$$x_{B^3} = (x_1, x_2, x_4, x_5) = (3, 5, 45, 45)$$

$$x_{B4} = (x_2, x_4, x_5, x_6) = (5, 120, 30, 3)$$

$$X_{135} = (x_2, x_3, x_4, x_6) = (5, 2, 90, 3)$$

$$x_{\mathcal{B}^6} = (x_1, x_2, x_3, x_5) = (3, 5, 3, 0)$$

$$x_{B^7} = (x_3, x_5, x_6, x_7) = (5, 0, 3, 5)$$

$$x_{\mathcal{B}^9} = (x_1, x_4, x_5, x_7) = (3, 0, 90, -85)$$

$$x_{\mathcal{B}^{10}} = (x_1, x_4, x_5, x_7) = (3, 0, 90, 5)$$

$$\times X_{\mathcal{B}^{10}} = (X_1 X_3 X_5, X_7) = (3, 0, 90, 5)$$

$$x_{R1} = (x_4, x_5, x_6, x_7) = (75, 75, 3, 5)$$

$$x_{B^2} = (x_1, x_5, x_6, x_7) = (3, 90, 0, 5)$$

$$x_{B^3} = (x_1, x_2, x_4, x_5) = (3, 5, 45, 45)$$

$$x_{\mathcal{B}^4} = (x_2, x_4, x_5, x_6) = (5, 120, 30, 3)$$

$$X_{B5} = (x_2, x_3, x_4, x_6) = (5, 2, 90, 3)$$

$$x_{\mathcal{B}^6} = (x_1, x_2, x_3, x_5) = (3, 5, 3, 0)$$

$$x_{\mathcal{B}^7} = (x_3, x_5, x_6, x_7) = (5, 0, 3, 5)$$

$$x_{\mathcal{B}^9} = (x_1, x_4, x_5, x_7) = (3, 0, 90, -85)$$

■ Données:

- ▶ Une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ de rang m
- ▶ Un vecteur $b \in \mathbb{R}^m$
- Le polytope P de \mathbb{R}^n donné par le système :

$$\begin{aligned}
Ax &= b \\
x &> 0
\end{aligned} \tag{3}$$

■ PROPOSITION LIEN ENTRE SOLUTION DE BASE ET POINT EXTRÊME

Un point x appartenant à \mathbb{R}^n est un point extrême du polytope P si et seulement si x est une solution de base réalisable du système (3)

- Généralités
- Optimisation linéaire
 - Formes d'un problème linéaire
 - Théorème fondamental
- Méthode du simplexe
- Stratégie optimale pour Polluetout

OPTIMISATION CONTINUE: PROBLÈMES LINÉAIRES

Fonction objectif

MIN
$$c^t x$$

s.c. $Ax = b$
 $x \ge 0$

Min S.C. Ax = b $x \ge 0$

► Fonction objectif

Min S.C.

$$Ax = b$$
$$x \ge 0$$

$$x \geq 0$$

► Fonction objectif

Min

S.C.

$$Ax = b$$
$$x \ge 0$$

- ► Contraintes structurelles

Fonction objectif

MIN
$$c^t x$$

S.C. $Ax = b$
 $x > 0$

- Contraintes structurelles
- Contraintes de non négativité

Forme canonique

► MINIMISATION

MIN
$$c^t x$$

s.c. $Ax \ge b$
 $x \ge 0$

► MAXIMISATION

Max S.C.

$$Ax \le b$$
$$x \ge 0$$

Tout problème linéaire peut s'écrire sous la forme standard.

Forme canonique

► MINIMISATION

MIN
$$c^t x$$

s.c. $Ax \ge b$
 $x \ge 0$

► MAXIMISATION

MAX
$$c^t x$$
 S.C.

$$Ax \le b$$
$$x \ge 0$$

■ PROPOSITION ÉQUIVALENCE DES FORMES

Tout problème linéaire peut s'écrire sous la forme standard.

Équivalence des formes

	Forme c	anonique	Forme s	tandard
Minimisation	Min	$c^t x$	Min	$c^t x$
sa	S.C.		S.C.	
i <u>E</u>		$Ax \geq b$	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	$Ax - I\zeta = b$
Ž		$x \ge 0$		$x, \zeta \geq 0$
tion	Max	$c^t x$	Max	$c^t x$
Sa	S.C.		S.C.	
Maximisation	122	$Ax \leq b$		$Ax + I\zeta = b$
Max		$x \ge 0$		$x, \zeta \geq 0$

■ Données:

- ▶ Une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ de rang m
- ▶ Un vecteur $b \in \mathbb{R}^m$
- Un problème linéaire sous la forme

MIN
$$c^t x$$

S.C. $Ax = b$
 $x \ge 0$ (4)

■ THÉORÈME FONDAMENTAL DE L'OPTIMISATION LINÉAIRE

- S'il existe une solution réalisable pour (PL), alors il existe une solution de base réalisable
- S'il existe une solution réalisable optimale pour (PL), alors il existe une solution de base réalisable optimale
- Ce théorème répond à a question d'existence d'une solution pour un problème d'optimisation linéaire.

■ Données :

- Une matrice $A \in \mathcal{M}_{m \times n}(\mathbb{R})$ de rang m
- Un vecteur $b \in \mathbb{R}^m$
- Un problème linéaire sous la forme

MIN
$$c^t x$$

S.C.
$$Ax = b$$

$$x \ge 0$$
(4)

■ THÉORÈME FONDAMENTAL DE L'OPTIMISATION LINÉAIRE

- S'il existe une solution réalisable pour (PL), alors il existe une solution de base réalisable
- S'il existe une solution réalisable optimale pour (PL), alors il existe une solution de base réalisable optimale
- Ce théorème répond à a question d'existence d'une solution pour un problème d'optimisation linéaire.

AGENDA

- **Généralités**
- Optimisation linéaire
- Méthode du simplexe
 - Format tableau
 - Algorithme simplexe
 - Analyse de la méthode
 - Problèmes non bornés
- Stratégie optimale pour Polluetout

Autre exemple

Soit le programme linéaire suivant :

Min
$$2x_1 + x_2 -3x_3$$

s.c.
$$x_1 -2x_2 +2x_3 \leq 5$$

$$x_1 +x_2 -x_3 \leq 3$$

$$x_1 +2x_2 x_3 \leq 4$$
(5)

 X_2 ,

Autre exemple : mise sous forme standard

Min
$$2x_1 + x_2 - 3x_3 + 0x_4 + 0x_5 + 0x_6$$

s.c.
$$x_1 - 2x_2 + 2x_3 + x_4 = 5$$

$$x_1 + x_2 - x_3 + x_5 = 3$$

$$x_1 + 2x_2 + x_3 + x_6 = 4$$

$$x_1 x_2 x_3 x_4 x_5 x_6 \ge 0$$

Variables d'écra

Autre exemple : mise sous forme standard

Min
$$2x_1 + x_2 - 3x_3 + 0x_4 + 0x_5 + 0x_6$$

s.c. $x_1 - 2x_2 + 2x_3 + x_4 = 5$
 $x_1 + x_2 - x_3 + x_5 = 3$ (6)
 $x_1 + 2x_2 + x_3 + x_4 = 4$
 $x_1 x_2 x_3 + x_4 + x_5 = 4$

- Valeur de la fonction objectif
- Vecteur des coûts réduits
- Variables de base

_		<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
		-2	-1	3	0	0	0	0
	<i>X</i> ₄	1	-2	2	1	0	0	5
	<i>X</i> ₅	1	1	–1	0	1	0	3
	<i>X</i> ₆	1	2	1	0	0	1	4

- Matrice des contraintes
- Second membre

- ► Valeur de la fonction objectif
- Vecteur des coûts réduits
- Variables de base

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0 ←
<i>X</i> ₄	1	-2	2	1	0	0	5
<i>X</i> ₅	1	1	-1	0	1	0	3
<i>X</i> ₆	1	2	1	0	0	1	4

- Matrice des contraintes
- Second membre

- ► Valeur de la fonction objectif
- Vecteur des coûts réduits
- Variables de base

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X 5	<i>X</i> ₆	Z
	-2	-1	3 ←	0	0	0	0 ←
<i>X</i> ₄	1	-2	2	1	0	0	5
<i>X</i> ₅	1	1	-1	0	1	0	3
<i>X</i> ₆	1	2	1	0	0	1	4

- Matrice des contraintes
- Second membre

- ► Valeur de la fonction objectif
- Vecteur des coûts réduits
- Variables de base —

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3 ←	0	0	0	0 ←
<i>X</i> ₄	/1	-2	2	1	0	0	5
<i>X</i> ₅ ←	1	1	–1	0	1	0	3
<i>X</i> ₆	1	2	1	0	0	1	4

- Matrice des contraintes
- Second membre

- ► Valeur de la fonction objectif
- Vecteur des coûts réduits
- Variables de base —

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3 ←	0	0	0	0 ←
<i>X</i> ₄	/1	-2	_	1	0	0	5
<i>X</i> ₅ ←	1	1	-1	0	1	0	3
<i>X</i> ₆	1	2	→ 1	0	0	1	4

- Matrice des contraintes
- Second membre

- Valeur de la fonction objectif
- Vecteur des coûts réduits
- Variables de base

x	√ ₁ X ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
_	2 -1	3 ←	0	0	0	0 ←
<i>X</i> ₄	1 -2			0	0	5
<i>X</i> ₅	1 1	-1	0	1	O	3
<i>X</i> ₆	1 2	→ 1	0	0	_1_	→ 4

- Matrice des contraintes
- Second membre

Optimalité du tableau simplexe?

								_ ^
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X 5	<i>X</i> ₆	Z	
-	-2	-1	3	0	0	0	0	
<i>X</i> ₄	1	-2	2	1	0	0	5	
<i>X</i> ₅	1	1	-1	0	1	0	3	
<i>X</i> ₆	1	2	1	0	0	1	4	

D'après le vecteur des coûts réduits on a :

$$z - 2x_1 - x_2 + 3x_3 = 0 \iff z = 0 + 2x_1 + x_2 - 3x_3 \tag{7}$$

La valeur de l'objectif diminuerait si la variable x_3 entre en base.

Or peut améliorer la valeur de la fonction objectif en faisant entrer dans la base une variable hors base de coût réduit positif.

Optimalité du tableau simplexe?

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X 5	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	2	1	0	0	5
<i>X</i> ₅	1	1	-1	0	1	0	3
<i>X</i> ₆	1	2	1	0	0	1	4

D'après le vecteur des coûts réduits on a :

$$z - 2x_1 - x_2 + 3x_3 = 0 \iff z = 0 + 2x_1 + x_2 - 3x_3$$
 (7)

La valeur de l'objectif diminuerait si la variable x_3 entre en base.

On peut améliorer la valeur de la fonction objectif en faisant entrer dans la base une variable hors base de coût réduit positif.

Variable de base bloquante

Quelle variable doit sortir de la base?

Si x_3 entre en base, alors la nouvelle solution doit être réalisable, i.e. :

$$x_{\mathcal{B}} = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix} - \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix} x_3 \ge 0$$

D'où:

$$5-2x_3 \ge 0 \iff x_3 \le \frac{5}{2}$$
 $3+x_3 \ge 0 \iff x_3 \ge -3$
 $4-x_3 \ge 0 \iff x_3 \le 4$

La variable de base bloquante est x_4 (variable de base associée à la première équation). Donc, x_4 sort de la base et laisser sa place à x_3 .

- Est-ce que le tableau est optimal?
- Faire entrer, dans la base, une variable hors base ...

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	2	1	0	0	5
X 5	1	\mathcal{O}_{1}	-1	0	1	0	3
<i>X</i> ₆	1(2	1	0	0	1	4

- Déterminer le pivot ...
- Faire sorur une variable de la base ...

- ► Est-ce que le tableau est optimal → non
- Faire entrer, dans la base, une variable hors base ...

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	2	1	0	0	5
<i>X</i> ₅	1	(1)	-1	0	1	0	3
<i>X</i> ₆	1(2	1	0	0	1	4

- Déterminer le pivot ...
- Faire sortir une variable de la base ...

- ► Est-ce que le tableau est optimal → non
- Faire entrer, dans la base, une variable hors base ...

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	2	1	0	0	5
X 5	1	1 ,	-1	0	1	0	3
<i>X</i> ₆	1	2	1	0	0	1	4

- Déterminer le pivot ...
- Faire sorur une variable de la base ...

- ► Est-ce que le tableau est optimal → non
- Faire entrer, dans la base, une variable hors base ...

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z		
	-2	-1	3	0	0	0	0		
<i>X</i> ₄	1	-2	2	1	0	0	5		
<i>X</i> 5	1	A,	-1	0	1	0	3		
<i>X</i> ₆	_1(2	1	0	0	1	4		

- Déterminer le pivot ...
- Faire sortir une variable de la base ...

- ightharpoonup Est-ce que le tableau est optimal ightarrow non
- Faire entrer, dans la base, une variable hors base ...

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	2	1	0	0	5
<i>X</i> ₅	1	(1)	—1	0	1	0	3
<i>X</i> ₆	1	2	1	0	0	1	4

- Déterminer le pivot ...
- Faire sartir une variable de la base ...

- ightharpoonup Est-ce que le tableau est optimal ightarrow non
- Faire entrer, dans la base, une variable hors base ...

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	2	1	0	0	5
<i>X</i> ₅	1	(t)	1 1	0	1	0	3
<i>X</i> ₆	1	2	/ 1	0	0	1	4

- Déterminer le pivot ...
- Faire sortir une variable de la base ...

- ightharpoonup Est-ce que le tableau est optimal ightarrow non
- Faire entrer, dans la base, une variable hors base ...

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	2	1	0	0	5
<i>X</i> ₅	1	(1)	-1	0	1	0	3
<i>X</i> ₆	_1	2	1	0	0	1	4

- Déterminer le pivot ...
- Faire sortir une variable de la base ...

- ightharpoonup Est-ce que le tableau est optimal ightarrow non
- Faire entrer, dans la base, une variable hors base ...

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄ ←	1	-2	2	1	0	0	5
<i>X</i> ₅	1		-1	0	1	0	3
<i>X</i> ₆	1	2	1	0	0	1	4

- Déterminer le pivot ...
- Faire sortir une variable de la base ...

	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄	<i>X</i> 5	<i>X</i> ₆	Z
	$-\frac{7}{2}$	2	0	$-\frac{3}{2}$	0	0	$-\frac{15}{2}$
<i>X</i> ₃	$\frac{1}{\frac{1}{2}}$	-1	1	$\frac{1}{2}$	0	0	5 - 11
<i>X</i> ₅	$\frac{3}{2}$	0	0	$\frac{1}{2}$	1	0	$\frac{1\overline{1}}{2}$
<i>X</i> ₆	$\frac{1}{2}$	3	0	$-\frac{1}{2}$	0	1	$\frac{3}{2}$

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	Z
	$-\frac{23}{6}$	0	0	$-\frac{7}{6}$	0	$-\frac{2}{3}$	$-\frac{17}{2}$
X 3	2 3 3	0	1	$\frac{1}{3}$	0	1 3	3
<i>X</i> ₅	$\frac{3}{2}$	0	0	$\frac{1}{2}$	1	0	$\frac{11}{2_1}$
<i>X</i> ₂	6	1	0	$-\frac{1}{6}$	0	$\frac{1}{3}$	1 2

Analyse de la méthode : pourquoi le format tableau?

Soit à résoudre :

Min
$$c^t x$$

s.c. $Ax = b$
 $x \ge 0$ (PL)

Avec:

$$A = (B, N),$$
 $c = (c_B, c_N)$
 $x = (x_B, x_N)$

où B est la base courante.

Analyse de la méthode : pourquoi le format tableau?

Le problème (PL) est équivalent au problème linéaire suivant (why?) :

$$z + (c_B B^{-1} N - c_N) x_N + 0 x_B = c_B B^{-1} b$$

$$0z + x_B + B^{-1} N x_N = B^{-1} b$$

$$x_B, x_N \ge 0$$
(8)

Analyse de la méthode : pourquoi le format tableau?

D'où le tableau simplexe :

Analyse de la méthode : critère d'optimalité

NOTATION

- $ightharpoonup \mathcal{N}$ ensemble des indices des variables hors base
- ▶ $\zeta = c_B B^{-1} N$, i.e, $\zeta_j = (c_B B^{-1} N)_j, j \in \mathcal{N}$.
- CRITÈRE D'OPTIMALITÉ Le tableau simplexe

	X _N	x _B	Z
	$\zeta - c_N$	0	$c_B B^{-1} b$
XB	$B^{-1}N$	1	$B^{-1}b$

est optimal si et seulement si $\zeta_j - c_j \leq 0, \forall j \in \mathcal{N}$.

Analyse de la méthode : var. entrante et var. sortante

■ CHOISIR LA VAR. ENTRANTE : RÈGLE DE DANTZIG La variable hors base x_k entre en base si

$$k \in argmax\{\zeta_j - c_j : j \in \mathcal{N}\}$$

 \blacksquare CHOISIR LA VAR. SORTANTE : RÈGLE DU RATIO MINIMUM La variable x_r sort de la base si

$$r \in argmin_i \left\{ \frac{(B^{-1}b)_i}{(B^{-1}N)_{ik}} : (B^{-1}N)_{ik} > 0 \right\}$$

 $B^{-1}b$ la dernière colonne du tableau simplexe

 $(B^{-1}N)_k$ la colonne sous la variable hors base x_k

Analyse de la méthode : convergence et complexité

■ THÉORÈME CONVERGENCE ET COMPLEXITÉ DE LA MÉTHODE SIMPLEXE

En l'absence de dégénérescence, l'algorithme simplexe

- converge en un nombre fini d'itérations et,
- sa complexité est exponentielle en la taille de l'instance.

Max
$$\sum_{j=1}^{n} x_{j}$$
 s.c. $x_{j} + 2\sum_{k=1}^{j-1} x_{j} \le 3^{(j-1)}, \quad j = 2, ..., n$ (9)

- Résoudre le problème (9) dans le cas où n vaut 2 et 3.
- Que remarquez-vous?

Analyse de la méthode : convergence et complexité

■ THÉORÈME CONVERGENCE ET COMPLEXITÉ DE LA MÉTHODE SIMPLEXE

En l'absence de dégénérescence, l'algorithme simplexe

- converge en un nombre fini d'itérations et,
- sa complexité est exponentielle en la taille de l'instance.

Max
$$\sum_{j=1}^{n} x_{j}$$
 s.c. $x_{j} + 2\sum_{k=1}^{j-1} x_{j} \leq 3^{(j-1)}, \quad j = 2, ..., n$ $x_{1} \leq 1$ $x \geq 0$

- Résoudre le problème (9) dans le cas où *n* vaut 2 et 3.
- Que remarquez-vous?

Problèmes non bornés

PROPOSITION PROBLÈME NON BORNÉ

Si le vecteur

$$(B^{-1}N)_k \leq 0 \iff (B^{-1}N)_{ik} \leq 0, \forall i \in \{1,\ldots,m\}$$

alors le problème d'optimisation linéaire est non borné.

En effet, la solution suivante est base réalisable pour toute valeur de x_k , i.e.,

$$x_B = B^{-1}b - (B^{-1}N)_k x_k \ge 0$$

et

$$z=c_BB^{-1}b-\left(\zeta_k-c_k
ight)x_k$$
 où $\left(\zeta_k-c_k
ight)>0$

Donc, on peut décroître la valeur de la fonction objectif z en augmentant la valeur de x_k sans porter atteinte à la réalisabilité.

Soit le problème suivant :

Min
$$2x_1 + x_2 - 3x_3$$

s.c.
$$x_1 - 2x_2 - 2x_3 \le 5$$

$$x_1 + x_2 - 1x_3 \le 3$$

$$x_1 + 2x_2 - x_3 \le 4$$

$$(10)$$

- Le problème (10) est non borné car
 - la solution $(0,0,\alpha)$ avec $\alpha>0$ est réalisable.
 - \triangleright sa valeur est -3α .

Soit le problème suivant :

Min
$$2x_1 + x_2 - 3x_3$$

s.c.
$$x_1 - 2x_2 - 2x_3 \le 5$$

$$x_1 + x_2 - 1x_3 \le 3$$

$$x_1 + 2x_2 - x_3 \le 4$$

$$(10)$$

$$x_1 + 2x_2 x_3 \ge 0$$

- ▶ Le problème (10) est non borné car
 - la solution $(0,0,\alpha)$ avec $\alpha > 0$ est réalisable.
 - ightharpoonup sa valeur est -3α .

Le tableau simplexe associé à (10) est

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> 5	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	-2	_1	0	0	5
<i>X</i> ₅	1	1	-1<	0	1	0	3
<i>X</i> ₆	1	2	$\left(1\right)$	0	0	1	4

Pour ce tableau on a

$$B^{-1}b = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix}, \left(B^{-1}N\right)_3 = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$$

- Impossible de déterminer une variable sortante
- Donc, problème non borné

Le tableau simplexe associé à (10) est

							-
	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X 5	<i>X</i> ₆	Z
	-2	-1	3	0	0	0	0
<i>X</i> ₄	1	-2	-2	. 1	0	0	5 3
<i>X</i> ₅	1	1	-1<	0	1	0	3
<i>X</i> ₆	1	2	(1)	0	0	1	4

Pour ce tableau on a

$$B^{-1}b = \begin{bmatrix} 5 \\ 3 \\ 4 \end{bmatrix}, \left(B^{-1}N\right)_3 = \begin{bmatrix} -2 \\ -1 \\ -1 \end{bmatrix}$$

- Impossible de déterminer une variable sortante
- Donc, problème non borné

AGENDA

- **Généralités**
- Optimisation linéaire
- Méthode du simplexe
- Stratégie optimale pour Polluetout

Modèle mathématique

■ ENTREPRISE POLLUETOUT Soit à résoudre le problème suivant

MIN
$$-4x_1$$
 $-2x_2$ $-3x_3$ s.c.
$$25x_1 -9x_2 +15x_3 \leq 75$$
$$-5x_1 +9x_2 +15x_3 \leq 75$$
$$x_1 \leq 3$$
$$x_2 \leq 5$$

Problème sous format tableau

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	X ₇	Z
	4	2	3	0	0	0	0	0
<i>X</i> ₄	25	-9	15	(1)	0	0	0	75
X 5	-5	9	15	0	1	0	0	75
<i>X</i> ₆	1	0	0	0	0	1	0	3
X 7	0	1	0	0	0	0	1	5

Position de la solution courante

Première itération de la méthode simplexe

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	X 5	<i>X</i> ₆	X 7	Z
	4	2	3	0	0	0	0	0
<i>X</i> ₄	25	-9	15	1	0	0	0	75
<i>X</i> 5	-5	9	15	0	1	0	0	75
<i>X</i> ₆	1	0	0	0	0	1	0	3
X 7	0	1	0	0	0	0	1	5

- Variable entrant en base : x₁
- ▶ Variable sortante x_6 .

Passage vers le sommet suivant

Deuxième itération de la méthode simplexe

	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	X 7	Z
	0	2	3	0	0	-4	0	-12
<i>X</i> ₄	0	-9	15	1	0	-25	0	0
<i>X</i> ₅	0	9	15	0	1	5	0	90
<i>X</i> ₁	1	0	0	0	0	1	0	3
X 7	0	1	(0	0	0	0	1	5

- Variable entrant en base : x₃
- Variable sortante x₄

Position de la solution courante

Troisième itération de la méthode simplexe

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	X 7	Z
	0	19/5	0	-1/5	0	7	0	-12
<i>X</i> ₃	0	-3/5	1	1/15	0	-5/3	0	0
<i>X</i> ₅	0	18	0	(-)	1	30	0	90
<i>X</i> ₁	1	0	0	0	0	1	0	3
X 7	0	1_	0	0	0	0	1	5

- Variable entrant en base : x₂
- Variable sortante x₅

Position de la solution courante

Quatrième itération de la méthode simplexe

	<i>X</i> ₁	<i>X</i> ₂	X 3	<i>X</i> ₄	X 5	<i>X</i> ₆	X 7	Z
	0	0	0	1/90	-19/90	-16/3	0	-31
<i>X</i> ₃	0	0	1	1/30	1/30	-2/3	0	3
<i>X</i> ₂	0	1	0	-1/18	1/18	10/9	0	5
<i>X</i> ₁	1	0	0	0	0	1	0	3
X 7	0	0	0	1/18	-1/18	-10/9	1	0

- Variable entrant en base : x₄
- Variable sortante x₇

Position de la solution courante

Sommet optimal (3,5,3).

999

Dernière itération de la méthode simplexe

	<i>X</i> ₁	<i>X</i> ₂	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	<i>X</i> ₆	<i>X</i> ₇	Z
	0	0	0	0	-1/5	-5	-1/5	-31
<i>X</i> ₃	0	0	1	0	1/15	1/3	-3/5	3
<i>X</i> ₂	0	1	0	0	0	0	1	5
<i>X</i> ₁	1	0	0	0	0	1	0	3
<i>X</i> ₄	0	0	0	1	-1	-30	18	0

Le plan de production optimal pour l'entreprise polluetout est

$$(x_1, x_2, x_3) = (3, 5, 3)$$

Son bénéfice est de 31

Bibliographie

M.S. Bazaraa, J.J. Jarvis and H.D. Sherali (2006), Linear Programming and Network Flows

G.B. Dantzig and N.T. Mukund (1997), Linear Programming, Springer

R. J Venderbei (2008), Linear programming, Fondations and extensions, Springer

