Các mô hình ước tính phù hợp khi dữ liệu còn hạn chế

Ngô Hoàng Anh (Ecole Polytechnique - Pháp)
Hoàng Thái Nam (Beloit College - Mỹ)
Nguyễn Tuấn Khôi (University of Melbourne - Úc)

Hiện trạng

Có nhiều dữ liệu nhưng chưa được trích xuất. Những dữ liệu hiện có phần nhiều là untidied data. Vì vậy, cần sử dụng ít dữ liệu, nhưng dự đoán nhanh.

Yêu cầu

- Nhanh
- Độ chính xác cao
- Có ý nghĩa

Giải pháp

- Xây dựng mô hình sử dụng tối thiểu biến số
- Độ phức tạp đủ cao nhưng không overfit
 - >> Sử dụng mô hình 1 biến (1-dimensional) dựa trên số ca của các ngày trước

Ưu điểm

- Nhanh
- Độ chính xác cao
 >> Đủ ý nghĩa để đưa ra
 giải pháp vĩ mô kịp thời

Nhược điểm

- Không mang ý nghĩa dịch tễ (chưa xác định nguồn nhiễm, F1-F2,...)
- Độ chính xác chưa đạt tuyệt đối (△=3%-5%)
 >> Sẽ cải thiện được bằng nhiều dữ liệu biến khác nhau

Tiếp cận ban đầu

Traditional Machine Learning - Máy học truyền thống:

Convolutional Neural Network (CNN)

Long Short-Term Memory (LSTM)

ARIMA Family

Mô hình toán học:

Grey Model & Extensions: RONGBM(1.1)

Các mô hình ML truyền thống

Neural networks

- Dựa trên mạng neural thần kinh của con người
- CNN có nhiều mạng và neural ẩn để học tốt hơn các mạng máy học đơn thuần
- LSTM có nhiều cell, hoạt động như bộ não của con người (có chức năng "quên" để lọc data). Biến thể Bidirectional LSTM (BiLSTM) có khả năng học từ hai chiều (input và output).

ARIMA

Là mô hình xác suất cơ bản dùng để benchmark các mô hình khác

CNN + LSTM Graph

ARIMA Graph

Data

Date	CNN	BiLSTM	ARIMA
03/27/2020	167	160	186
03/28/2020	185	178	204
03/29/2020	204	194	225
03/30/2020	225	206	250
03/31/2020	248	225	281
04/01/2020	274	238	314
04/02/2020	302	263	349
04/03/2020	333	275	386
04/04/2020	367	314	429
04/05/2020	405	324	479
04/06/2020	446	376	535
04/07/2020	492	388	595
04/08/2020	542	450	662
04/09/2020	598	460	735

Kết quả mô hình

- Không xuất hiện overfit khi sai số có xu hướng nhỏ dần
- Sai số lớn vào những ngày nhất định (sẽ bổ sung sau)
- CNN dự đoán trend tăng cấp số nhân, LSTM dự đoán có trend theo ngày
- ARIMA dự đoán với sai số 5%, và lệch ± 2 ngày
- Với data mới nhất (27/3), dự đoán kết quả là 160-186, kết quả đến (hiện tại) 163

Mô hình toán học

- Grey Systems & Extensions:
 - Ý tưởng dựa trên sự discretize theo thời gian của 1 phương trình vi phân.
 - Đã được đề cập trong A rolling optimized nonlinear grey bernoulli model ROMGBM(1,1) and application in predicting total 2019-nCoV infected cases, HA Ngo, TN Hoang, 2020
 - Bao gồm: GM(1,1), NGBM(1,1), Optimized NGBM(1,1), Rolling optimized NGBM(1,1)

Grey systems with extensions Graph

Data

Date	GM(1, 1)	NGBM(1, 1)	Nash NGBM(1, 1)	Optimized Nash NGBM(1, 1)	Optimized Nash NGBM(1, 1) (new initial)
03/27/2020	166	162	165	161	162
03/28/2020	184	178	180	176	177
03/29/2020	203	196	198	193	193
03/30/2020	224	215	216	211	211
03/31/2020	248	237	237	230	230
04/01/2020	274	260	259	251	251
04/02/2020	303	286	284	274	274
04/03/2020	334	314	310	298	299
04/04/2020	369	345	339	325	326
04/05/2020	408	379	371	354	355
04/06/2020	451	416	405	386	387
04/07/2020	498	457	443	421	421
04/08/2020	550	502	484	458	459
04/09/2020	607	551	528	499	500

Kết quả mô hình

- Không xuất hiện overfit khi sai số có xu hướng nhỏ dần
- Sai số lớn vào những ngày nhất định (4/3 và 19/3)
- Sai số trung bình nhỏ (nhỏ hơn 5% với những mô hình optimized, ngày cuối cùng có sai số khoảng 3%)
- Với data mới nhất (27/3), dự đoán kết quả là 160-166, kết quả (hiện tại) là 163

Dự đoán chung

Có 3 kịch bản được đưa ra theo thứ tự tệ dần, cụ thể như sau:

Ngày\Kịch bản	Best Scenario	Average Scenario	Worst Scenario
31/03	225	230-235	240
09/04 (sau 2 tuần)	450-500	500-550	600

Hướng đi tiếp theo:

- Mở rộng số lượng và phạm vi mô hình áp dụng
- Sử dụng mô hình đa biến để các mô hình mang ý nghĩa dịch tế
- Ngoài dự đoán số ca mắc của địa phương/cả nước, có thể dùng Machine Learning để dự đoán ca bệnh (xác suất phải dùng ICU, tử vong/hồi phục, ngày xuất viện,...)