UNIVERSIDAD NACIONAL DE INGENIERÍA

FACULTAD DE CIENCIAS

SISTEMAS CONCURRENTES Y DISTRIBUIDOS

Trabajo: Maximizacion de una función mediante

Algoritmos Genéticos

Alumno: Alex Edelfre Flores Mamani

Codigo: 20134132C

Introducción

Los algoritmos genéticos se utilizan en distintos ámbitos de investigación ya que se basan en la competición entre individuos sobreviviendo aquellos que resultan más fuertes genética mente en nuestro caso los elementos mas fuertes serán aquellos que al evaluar en la función nos den un valor máximo. En el presente trabajo determinara el valor que maximiza una función usando los algoritmos genéticos.

Se trabajara con un sistema cliente servidor, en el cual el servidor brindara los parámetros iniciales tales como tamaño de población, cantidad de decimales y la cantidad de generaciones a evaluar, una ves hecho esto cada cliente enviara al servidor su secuencia de élites resultantes, el servidor con estos datos generara nuevamente la población final con lo que se obtendrá la máxima posible.

Clases Principales:

public class genetic

Se encarga de manejar todo el algoritmo genetico

public class HilosGenetic

Maneja los hilos para obtener la siguiente poblacion

class Server y class Cliente

inicialisan los los nodos para el uso

class TCPCliente y class TCPServer

Manejadores de la conexxion con hilos

class serverSendMatThread

Se encarga del envio de datos a los clientes en tipo objeto

class TCPClient

Se encarga de enviar los datos elite a el servidor principal

Desarrollo

Para llevar a cabo este algoritmo primero debemos de generar una población aleatoria mente, cada miembro de la población debe ser transformado a bits, los cuales se debe hacer considerando los signos y los decimales. Para poder generar una siguiente población se debe evaluar con la función fintes la cual es la que se nos pide maximizar. La función es la siguiente :

$$\begin{aligned} &\text{La función Fitness} = \\ &1.23 \star \text{Sin} \left[\left(\frac{x^2 + y^2}{1 + 0.0563} \right) \left(\left(\frac{0.4}{1 + 0.02 \left((x + 20)^2 + (y + 20)^2 \right)} \right) + \left(\frac{0.2}{1 + 0.5 \left((x + 5)^2 + (y + 25)^2 \right)} \right) + \left(\frac{0.7}{1 + 0.01 \left((x)^2 + (y - 30)^2 \right)} \right) + \left(\frac{1}{1 + 2 \left((x + 30)^2 + (y)^2 \right)} \right) + \left(\frac{0.05}{1 + 0.1 \left((x - 30)^2 + (y + 30)^2 \right)} \right) \right) \end{aligned}$$

La población se dividirá el élite (25%), híbrido (25%) y cruce (50%), la población híbrida y cruce se obtendrán de la población élite.

Diagrama de Protocolos

Comparación de resultados según población

En la ejecución del programa se obtuvo los siguientes resultados según la población y la cantidad de decimales

X	у	z	Población	Decimales	Generaciones
12.4921875	32.046875	0.33770423	1000	7	100
3.9921875	29.2421875	0.7466908	5000	7	200
-1.24902343	40.24902342	0.3813825	5000	8	250
-0.49902343	24.87402343	0.689703	10000	8	300
0.0	32.0	0.8122	20000	10	250
1.96875	31.09375	0.82706	20000	5	250
0.46785	36.46875	0.848150	20000	5	250
0.46785	35.46875	0.8604500	30000	5	300
-0.03951	28.94725	1.191797	30000	5	300
-29.84375	0.0	1.2125056	50000	5	300