Assignment-11.14.7

EE:1205-Signals and Systems
Indian Institute of Technology, Hyderabad

Md Ayaan Ashraf EE23BTECH11041

Question

The motion of a particle executing simple harmonic motion is described by the displacement function, $x(t) = A \cos(\omega t + \phi)$. If the initial (t = 0) position of the particle is 1cm and its initial velocity is $\omega cm/s$, what are its amplitude and initial phase angle? The angular frequency of the particle is πs^{-1} . If instead of the cosine function, we choose the sine function to describe the SHM: $x = B \sin(\omega t + \alpha)$, what are the amplitude and initial phase of the particle with the above initial conditions.

Solution

Parameter	Description	Value
x(0)	Initial position of particle	1cm
ω	Angular frequency of particle	πs^{-1}
v(0)	Initial velocity of particle	ω

TABLE 0 Parameter Table

The displacement function for simple harmonic motion (SHM) is given by:

$$x(t) = A\cos(\omega t + \phi)$$

where A is the amplitude, ω is the angular frequency, and ϕ is the phase angle.

Given:

$$x(0) = A\cos(\phi) = 1$$
 cm

$$v(0) = -A\omega \sin(\phi) = \omega \text{ cm/s}$$

We are given that $\omega = \pi \text{ s}^{-1}$. Substituting this into the initial velocity equation:

$$-A\pi\sin(\phi) = \pi$$

Solving for $sin(\phi)$:

$$\sin(\phi) = -1$$

This implies that $\phi = -\frac{\pi}{2}$ since the sine function is negative in the third quadrant.

1

Therefore, the amplitude *A* is 1 cm, and the initial phase angle ϕ is $-\frac{\pi}{2}$.

If we choose the sine function instead, the displacement function becomes:

$$x(t) = B\sin(\omega t + \alpha)$$

Following the same logic, if the initial conditions are the same:

$$B\sin(\alpha) = 1$$
 cm

$$-B\omega\cos(\alpha) = \omega \text{ cm/s}$$

Solving for $sin(\alpha)$:

$$\sin(\alpha) = -1$$

This implies that $\alpha = -\frac{\pi}{2}$.

Therefore, for the sine function, the amplitude *B* is 1 cm, and the initial phase angle α is $-\frac{\pi}{2}$.