

Deva sir

Previous Class Summary:

closure propertius

The same of the same o

Topics to be covered Today:

- (I) Regular Expression => FA
- D FA => Reg Exp
- FA RLG
- RLG P) FA
 - (I) FA => LLG
 - E ILG P FA

1 R

(2) R=a

$$\rightarrow \bigcirc \sim \sim \bigcirc$$

(3) R = a.b= $R_1.R_2$

$$\frac{R_1}{2} = \frac{R_2}{2} = \frac{R_$$

$$\begin{array}{c} (5) & R = \alpha \\ & = R_1^* \end{array}$$

$$\begin{array}{c} G \\ R = a^{\dagger} \\ = R_{1}^{\dagger} \end{array}$$

Shortcut:

ar

0/

a+6/

(a+b)*

(3) (ab)*a

(ab) ta

(ba)*b

(8) (ba)*a

(9) (00a)* L

H.W. of states in min step.

- 1) Kleene Meltod 7 Rij = Rij + Rik (PKK) * RKj
- 2) Arden's meltod) If R=Q+RP then R=QP*
- 3) State Elimination }

State Elimination Meltod:

$$0 \rightarrow 0 \rightarrow 0$$

$$R = a$$

$$R = ab$$

$$= (a+bc)^{bc}$$

$$= (a+bc)^{b}$$

$$= (a+bc)^{b}$$

$$= (a+bc)^{b}$$

1)
$$\rightarrow \mathbb{R}^{a} \xrightarrow{2} \mathbb{R}^{b} \xrightarrow{3} \mathbb{R}^{a}$$

Delek 2

 $\Rightarrow \mathbb{R}^{a} \xrightarrow{a + b} \mathbb{R}^{a}$
 $\Rightarrow \mathbb{R}^{a} \xrightarrow{a + b} \mathbb{R}^{a}$

 $A \rightarrow aB | E$ for final states

RLG

$$A \rightarrow \alpha A | \alpha B | C$$

$$B \rightarrow C | E$$

$$C \rightarrow b A | E$$

$$RLG$$

DFA NFA RLG RegExp

$$[A] = \varepsilon$$

$$[B] = a(a+b)^*$$

$$[C] = b(a+b)^*$$

$$ANB = \emptyset$$
 $ANC = \emptyset$
 $BNC = \emptyset$
 $AUBUC = \Sigma^*$

How many equivalence classes are there for L=a(a+b)* 9

$$=3$$

no. of states in min DFA that accepts L

No. of equivalence classes for L

Every regular language has unique min DFA.

I) No. of equivalence classes for every regular language
is finite

I) No. of equivalence classes for every non regular language is Infinite

1 = à6

Infrite class

B & c are not two deller different equivalence deller different equivalence deller will be combined

L: a (a+b)

Summary

Algoritms

> 99% Never apply in exam

[A] WISEL

(B) w₂s &L

