ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environment and Energy

journal homepage: www.elsevier.com/locate/apcatb

Interfacial electron interactions governed photoactivity and selectivity evolution of carbon dioxide photoreduction with spinel cobalt oxide based hollow hetero-nanocubes

Chao Cheng ^{a,1}, Hengyue Xu ^{b,1}, Maomao Ni ^a, Changfa Guo ^{a,*}, Yuanyuan Zhao ^a, Yong Hu ^{a,c,**}

- a Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua 321004, China
- ^b Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- ^c College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China

ARTICLE INFO

Keywords: C0₃O₄ ZnIn₂S₄ Hollow hetero-nanocubes Interfacial electron interactions CO₂ photoreduction

ABSTRACT

In this work, an efficient CO_2 photoreduction catalyst based on $Co_3O_4/ZnIn_2S_4$ hollow hetero-nanocubes is precisely constructed via an in-situ transformation of cobalt-organic framework followed by a solvothermal reaction. Comprehensive in-situ spectroscopic analyses and theoretical calculations have revealed that the critical interfacial electron interactions (IEIs) effects on both photoactivity evolution and selectivity modulation in the $Co_3O_4/ZnIn_2S_4$ hetero-structure. As the content of $ZnIn_2S_4$ increases in the hetero-structure, the photoactivity exhibits a volcano-like evolution profile but the CH_4 selectivity reduces monotonously. The improved photoactivity is attributed to the IEIs-promoted charge separation as well as the specific-surface-area effect in terms of electron unitization rate, and the electronic structure of Co_3O_4 is tuned and the energy barrier for the key reaction intermediate *CHO is reduced, leading to improved CH_4 selection in comparison with bare Co_3O_4 . The IEIs-mediated production selectivity is further verified by a Co_3O_4/CeO_2 heterojunction, indicating a certain universality of the IEI effect.

1. Introduction

Since the pioneering report in 1979 [1], photochemical conversion of CO_2 to valuable chemicals has been regarded as a promising solution to address the growing greenhouse effects and climate issues. Different with the case of polar H_2O molecules, the adsorption and activation of CO_2 molecules on semiconducting materials is relatively difficult, due to symmetry C=O bonds with a high dissolution energy of \sim 750 kJ mol $^{-1}$ [2]. Moreover, the reduction process of CO_2 involves multielectron-coupled proton transfer, variable reaction routes, and low product selectivity [3,4]. Till now, many inorganic and organic semiconducting materials have been proposed for CO_2 reduction, the photocatalysis efficiency and product selectivity are, however, insufficiently high, and far away from the practical level [5,6].

Many strategies have been put forward to improve ${\rm CO_2}$ photoreduction activity of single semiconductors, such as size reduction, defect/strain engineering, built-in electric field modulation, heteroatom

doping, surface modification, construction of heterojunction (containing cocatalyst loading), use of hole scavengers [7–11]. Among which, heterojunctions made of two or more semiconductors with direct contact have been proven as one of the most effective approaches to promote photocatalysis efficiency, by virtue of charge transfer across interfaces and spatially separation of redox sites, which facilitates the separation of photogenerated carriers and suppresses backwards reactions [11]. The advantages of heterojunctions for photocatalysis are sufficiently exerted by direct Z-scheme systems, also called as S-scheme junctions, which has been paid considerable efforts to in the past decades [12,13]. For example, various S-scheme systems, such as ${\rm TiO_2}$ -, ${\rm CdS}$ -, and ${\rm C_3N_4}$ -based heterojunctions [14–16], have been successfully constructed, which exhibits significantly enhanced photoactivity towards ${\rm CO_2}$ reduction in comparison with single-phase counterparts.

As two typical visible-light-response semiconductors, both ${\rm Co_3O_4}$ and ${\rm ZnIn_2S_4}$ have enough negative potentials for ${\rm CO_2}$ reduction and thus were often employed to construct heterojunction photocatalysts, such as

^{*} Corresponding author.

^{**} Corresponding author at: College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China. *E-mail addresses*: changfa.guo@zinu.edu.cn (C. Guo), yonghu@zinu.edu.cn, yonghu@zafu.edu.cn (Y. Hu).

¹ These authors contributed equally to this work.

hollow Co₃O₄/NiCo₂O₄ hetero-nanocages [17], defective Co₃O₄/g-C₃N₄ hetero-nanosheets [18], Ag/CuO@ZnIn₂S₄ [19], and hollow core-shell Co₉S₈ @ZnIn₂S₄/CdS [20]. Compared to single semiconductors, heterojunctions significantly enhance photocatalytic CO₂ reduction activity. Moreover, their photocatalytic activity of heterojunctions takes a volcano-like evolution profile with monotonous change of component ratio, which is rationalized in terms of a compromise of enhanced carrier separation efficiency and light absorption capacity [17-24]. The enhanced carrier separation is associated with the interfacial electron interactions (IEIs) which creates interfacial built-in electric field driving carrier transfer in oppositive directions. The role of IEIs is applied uniformly to all semiconductor heterojunction photocatalysts. However, the effects of IEIs on surface redox reactions have rarely been investigated. Additionally, theoretical calculations are usually employed to explain kinetic and thermodynamic properties of surface redox reactions for heterojunction photocatalysts. Furthermore, the structure model for theoretical calculations is generally constructed based on one component of heterojunctions [20,25]. Such simplification treatment might ignore the effects of IEIs how to influence on electronic structure of active sites and photoactivity.

Another interesting but often ignored phenomenon for heterogeneous photocatalysts is that product selectivity also functions as the components' ratio. For instance, Liu et al. found that the CO selectivity remarkably varies with the loading amount of sulfur vacancy-rich CuIn_5S_8 on g-C_3N_4 [26]. Similarly, O'Shea et al. reported the dependence of product selectivity on the loading amount of TiO_2 on Bi_2WO_6 [27]. Significantly, the CH₄ selectivity represents a volcano-like profile with the increase of TiO_2 content. Very recently, Yan et al. pointed that the intensity of interfacial interactions affects the CO selectivity of CO_2 photoreduction over $\text{Cs}_3\text{Bi}_2\text{Br}_9$ /hierarchically porous BiVO_4 (CBB/HP-BVO) heterojunctions [28]. Despite frequent observations on the fluctuation of product selectivity with components' ratio in the previous reports [26–30], the underlying mechanism, however, has been ignored and unclear to date.

In this study, a Co₃O₄/ZnIn₂S₄ hollow hetero-nanocube (HHNC) structure comprised of Co₃O₄ hollow nanocubes (HNCs) and ZnIn₂S₄ nanoparticles (NPs) has been precisely constructed as a model system for visible-light-driven CO₂ photoreduction. The Co₃O₄/ZnIn₂S₄ HHNCs keep the internal surfaces of Co₃O₄ HNCs exposed to some extent with the increase of ZnIn₂S₄ loading amount, which provides good platform for studying the component ratio-dependent product selectivity evolution. It was found that both photocatalytic activity and product selectivity vary with the components' ratio. The photocatalytic activity takes a volcano-like evolution profile, while the CH₄ selectivity monotonously declines with the increase of ZnIn₂S₄ content. A combined analysis of insitu spectroscopies and theoretical calculations reveals the origins of photocatalytic activity and product selectivity evolution, which is closely associated with the IEIs between Co₃O₄ HNCs and ZnIn₂S₄ NPs. In particular, the IEIs were also found to play a crucial role in the selectivity modulation. Furthermore, the IEIs-mediated selectivity evolution was verified by another similar model system of Co₃O₄/CeO₂ HHNCs constructed by the same strategy to Co₃O₄/ZnIn₂S₄ HHNCs, indicating a certain universality of the IEI effect. Taken together, this work unveils the effects of IEIs on photocatalysis from both catalytic activity and production selectivity for the first time. In particular, the IEI-mediated selectivity evolution provides new insights into the ratio-dependent selectivity component for heterogeneous photocatalysis.

2. Experimental

2.1. Materials

Cobaltous nitrate hexahydrate ($Co(NO_3)_2$ -6 H_2O_1 , $\geq 99\%$), zinc nitrate hexahydrate ($Zn(NO_3)_2$ -6 H_2O_1 , AR), indium nitrate hydrate ($In(NO_3)_3$ - xH_2O_1 , $\geq 99.9\%$), sodium sulfate (Na_2SO_4 , $\geq 98\%$), $K_3[Fe(CN)_6]$

(AR), KCl (AR), thioacetamide (TAA, AR), hexadecyl trimethyl ammonium bromide (CTAB, AR), 2-methylimidazole (2-MI, \geq 98%), absolute ethanol (AR), ethylene glycol (EG, AR), and Nafion solution (5.0 wt%, in lower aliphatic alcohols and water). All the chemicals were purchased from Sinopharm Chemical Reagent Co., Ltd. (China) and directly used without further purification. Deionized water was used throughout the work.

2.2. Synthesis of ZIF-67

Typically, 0.292~g of $Co(NO_3)_2$ - $6H_2O$ was dissolved in 10~mL distilled water containing 5 mg of CTAB to obtain solution A; solution B was obtained by dissolving 4.54 g of 2-MI in 70 mL of distilled water. The suspension A was quickly poured into solution B, the resultant mixture was stirred for 20 min and centrifuged. The precipitate was washed four times with ethanol and dried at $60~^{\circ}C$ in air for 12~h.

2.3. Synthesis of Co₃O₄ HNCs

 ${\rm Co_3O_4\,HNCs}$ were obtained by annealing ZIF-67 in air at 350 °C for 2 h with a ramp rate of 1 °C min $^{-1}$.

2.4. Synthesis of Co₃O₄/ZnIn₂S₄ HHNCs

15 mg of Co_3O_4 HNCs were dispersed in 30 mL EG with ultrasonication for 30 min. Then, 0.6 mmol $Zn(NO_3)_2\cdot 6H_2O$, 1.2 mmol In $(NO_3)_3\cdot xH_2O$, and 2.4 mmol TAA were dispersed into the above suspension under stirring. The resultant mixture was transferred into a 50 mL of Teflon-lined stainless-steel autoclave and kept at 160 °C for 12 h. After cooling to ambient temperature, the precipitate was collected by centrifugation, washed with absolute ethanol for three times, and dried at 60 °C for 12 h. The obtained sample was denoted as $Co_3O_4/ZnIn_2S_4$ -6. To adjust the loading amount of $ZnIn_2S_4$, the dosage of $Zn(NO_3)_2\cdot 6H_2O$, $In(NO_3)_3\cdot xH_2O$, and TAA with a fixed molar ratio of 1:2:4 was set as one-third, two-third, and four-third times that of $Co_3O_4/ZnIn_2S_4$ -6 to obtain different $Co_3O_4/ZnIn_2S_4$ -y samples, where y=2, 4, and 8, respectively.

2.5. Synthesis of ZnIn₂S₄ NPs

 $0.6~\text{mmol Zn(NO}_3)_2 \cdot 6H_2O$, $1.2~\text{mmol In(NO}_3)_3 \cdot xH_2O$, and 2.4~mmol TAA were dissolved into 30 mL of EG under stirring. The solution was transferred into a 50 mL of Teflon-lined stainless-steel autoclave and kept at 120~C for 6 h. After cooling to ambient temperature, the product was collected by centrifugation, washed with ethanol, and dried at 60~C for 12~h

Other experimental details including material characterizations, photophysical and (photo)electrochemical measurements, photocatalytic CO_2 reduction experiments, and theoretical calculations, can be found in the Appendix A. Supplementary data.

3. Results and discussion

3.1. Composition and Microstructure of Co₃O₄/ZnIn₂S₄ HHNCs

 $Co_3O_4/ZnIn_2S_4$ HHNCs were prepared via a two-step method (Fig. 1a). First, bare cobalt-organic framework (ZIF-67) was synthesized as a cubic-structure precursor, which was calcined in air at 350 °C for 2 h to obtain Co_3O_4 HNCs. Then, $Co_3O_4/ZnIn_2S_4$ HHNCs were prepared via a solvothermal reaction of EG solution containing $Zn(NO_3)_2$, $In(NO_3)_3$, TAA, and the as-synthesized Co_3O_4 HNCs. As shown in Fig. S1a, the assynthesized ZIF-67 appears a typical cubic structure with a grain size of about 500 nm. The single-phase constitution of the as-synthesized ZIF-67 is validated by its X-ray diffraction (XRD) pattern (Fig. S1b). The Field-emission scanning electron microscopy (FESEM) images of Co_3O_4 HNCs, $ZnIn_2S_4$ NPs, and $Co_3O_4/ZnIn_2S_4$ HHNCs are shown in Fig. S2. Co_3O_4 HNCs keep the cubic structure of ZIF-67 but become rough

Fig. 1. (a) Schematic illustration of the synthetic process of the $Co_3O_4/ZnIn_2S_4$ HHNCs. (b) XRD patterns of the as-prepared Co_3O_4 HNCs, $ZnIn_2S_4$ NPs, and $ZnIn_2S_4$ Phys, and $ZnIn_2S_4$ HHNCs. (c) Averaged position and intensity of diffraction rings in the SAED pattern (inset) of the $ZnIn_2S_4$ HHNCs.

surface made of small NPs derived from the Co-oxo clusters in ZIF-67 in the annealing process (Fig. S2a). Additionally, all the $Co_3O_4/ZnIn_2S_4-y$ HHNCs also maintain cubic morphology but appear covered by some NPs, and these NPs gradually increase with the y value (Fig. S2b-e), implying successful loading of $ZnIn_2S_4$ NPs on Co_3O_4 HNCs. Without

Co₃O₄ HNCs as supports, the as-prepared ZnIn₂S₄ sample exhibits a typical morphology of disordered NP structure (Fig. S2f). The XRD analyses verify the desirable phase constitution of Co₃O₄ HNCs, ZnIn₂S₄ NPs, and Co₃O₄/ZnIn₂S₄ HHNCs (Fig. 1b), where Co₃O₄ and ZnIn₂S₄ correspond to a cubic structure (space group: *Fd3m*, JCPDS:42–1467 and

space group: Fd-3 m, JCPDS: 48-1778, respectively). Moreover, the weak noisy peak at $2\theta = 22.5^{\circ}$ can be indexed to face-centered cubic ZnS. The appearance of a trace of ZnS is ascribed to the most addition of Zn(NO₃)₂·6H₂O, In(NO₃)₃·xH₂O, and TAA for preparing Co₃O₄/ZnIn₂S₄-8 HHNCs with the highest loading amount of ZnIn₂S₄, which results in local reaction heterogeneity and thus formation of a trace of ZnS. Note that the impurity ZnS cannot be detected in the $Co_3O_4/ZnIn_2S_4$ -y (y = 2, 4, and 6) HHNCs, indicating that the impurity phase has little influence on photocatalytic performance and photocatalytic process. Besides, the appearance of the noisy peak in XRD patterns might be ascribed to the remained organics derived from ZIF-67. Note that Raman is more sensitive towards short-range ordering than XRD [31,32], the phase purity of Co₃O₄ HNCs and Co₃O₄/ZnIn₂S₄ HHNCs is also supported by their Raman spectra, as shown in Fig. S3. All the Raman bands can be well indexed to spinel structure Co₃O₄ in Co₃O₄ HNCs and Co₃O₄/ZnIn₂S₄ HHNCs without impurity signals [13]. The absence of Raman signals from ZnIn₂S₄ NPs is due to strong photoluminescence (PL) emission, which is discussed later.

The hollow structure, phase constitution, and elemental distribution of Co₃O₄/ZnIn₂S₄ HHNCs were further investigated by transmission electron microscopy (TEM) technique. The TEM image reveals a body cavity in a Co₃O₄/ZnIn₂S₄ HHNC (Fig. 1c), while the shells of Co₃O₄ HNCs appear distorted, likely due to shrink of six faces towards interior during calcination process. Moreover, a cover of the surface of Co₃O₄ HNCs by a coating verify successful loading of ZnIn₂S₄ NPs. The highresolution TEM (HRTEM) image exhibits a clear interface separating two sets of lattice fringes (Fig. 1d), one of which was well indexed to the (400) places of spinel-structure Co₃O₄, the other one corresponds to the (400) planes of cubic ZnIn₂S₄. The selected-area electron diffraction (SAED) image shows a set of irregular diffraction rings corresponding to polycrystalline aggregates (inset of Fig. 1e), where each ring exhibits an uneven brightness and diameter, indicating preferential orientation and nonuniform grain size in Co₃O₄ HNCs [33,34]. According to the previous report [35], the reciprocal spacings of the SAED pattern and their relative intensity along with an integrated intensity-spacing profile were obtained, as shown in Fig. 1e. A set of composite diffraction pattern containing cubic Co₃O₄ and ZnIn₂S₄ can be observed, in which main diffraction peaks were well assigned to Co₃O₄, while the signal fluctuation of Co₃O₄ and some weak peaks are closely associated with the diffraction from ZnIn₂S₄ phase, with no impurity signal detected. Like Raman, SAED is also more sensitive to short-range ordering than XRD [31,36], thereby the phase constitution of Co₃O₄/ZnIn₂S₄ HHNCs is well verified. In addition, the scanning TEM-energy dispersive X-ray spectroscopy (STEM-EDS) images illustrate uniform distribution of Co, O, Zn, In, and S elements throughout the adjacent HHNCs (Fig. S4). To disclose the porous characteristics, N2 adsorption-desorption curves were recorded, as shown in Fig. S5. All the samples present a type-IV isotherm with similar hysteresis loops, and the specific surface area was determined as 90 m 2 g $^{-1}$ for ZnIn $_2$ S $_4$ NPs, about four times higher as that of Co $_3$ O $_4$ HNCs (22 m 2 g $^{-1}$) (Fig. S5a and b). As expected, the specific surface area of Co₃O₄/ZnIn₂S₄ HHNCs present a compromise result, gradual increasing from 55 to 86 m² g⁻¹ with the loading amount of ZnIn₂S₄ (Fig. S5c-f). The significant difference of specific surface area between ZnIn₂S₄ NPs and Co₃O₄ HNCs is related to their grain size. According to the main diffraction peak of ZnIn₂S₄ and Co₃O₄ in Fig. 1b, the average grain size is calculated using Scherrer formula to be 275 nm for Co₃O₄ HNCs and 82 nm for ZnIn₂S₄ NPs. The smaller grain size endows ZnIn₂S₄ NPs with higher specific surface area. Moreover, the pore diameter distribution diagram shows the presence of predominant mesopore structure in all the samples while a gradual decreased average pore size with the increase of ZnIn₂S₄ content.

The surface composition and chemical states of elements in bare Co_3O_4 HNCs, ZnIn_2S_4 NPs, and Co_3O_4 /ZnIn $_2\text{S}_4$ HHNCs were revealed by X-ray photoelectron spectroscopy (XPS). The survey XPS clearly shows, apart from signals of adventitious carbon, Co and O elements in bare Co_3O_4 HNCs, Zn, In, and S elements in ZnIn $_2\text{S}_4$ NPs, and all the identified

elements in Co₃O₄/ZnIn₂S₄ HHNCs (Fig. S6a), and no impurity elements were detected. The atomic percentage of these elements was listed in Table S1. The atomic ratios of Zn, In, and S are close to the theoretical value of ZnIn₂S₄, while the atomic ratios of Co and O are higher than the theoretical value (0.75), implying more Co sites exposed on Co₃O₄ surface [37]. However, for Co₃O₄/ZnIn₂S₄ HHNCs, the exorbitant content of ZnIn₂S₄ indicates ZnIn₂S₄ NPs mostly distributed on the surface of Co₃O₄ HNCs. For bare ZnIn₂S₄ NPs, the Zn 2p high-resolution spectrum is shown in Fig. S6b, which depicts a doublet at 1022.2 and 1045.3 eV with a splitting energy of 23.1 eV, corresponding to divalent Zn species [38,39]. Similarly, the In 3d spectrum displays two symmetry peaks at 445.1 and 452.6 eV, being consistent with trivalent In (Fig. S6c) [39,40]. The S 2p spectrum was deconvoluted into two peaks at 161.7 and 162.9 eV, corresponding to S 2p_{3/2} and S 2p_{1/2} of S²⁻, respectively (Fig. S6d) [41]. For bare Co₃O₄ HNCs, the deconvolution analysis on Co 2p spectrum reveals the presence of Co²⁺ with a doublet at 781.5 and 797.1 eV and Co³⁺ with a doublet at 779.4 and 794.9 eV (Fig. S6e) [42]. The O 1 s spectrum indicates the lattice oxygen at 530.0 eV as predominate oxygen species as well as the presence of adsorbed hydroxyls (OH_{ads}) at 531.9 eV and bridged oxygen (O_b) at 531.1 eV (Fig. S6f) [43]. The reduction in signal of lattice oxygens in HNCs can be ascribed to the cover of ZnIn₂S₄ NPs on Co₃O₄ HNCs, which shields the XPS signals from Co₃O₄ to some extent under condition that the detectable depth of XPS is no more than 10 nm. Note that the IEIs between Co₃O₄ and ZnIn₂S₄ are not reflected by the XPS data, since the E_F difference between Co₃O₄ HNCs and ZnIn₂S₄ NPs is not such large (0.04 eV, determined by the ultraviolet photoemission spectroscopy (UPS) analysis later) that the transferred electrons across the interfaces are limited. Besides, XPS is a typical analysis technique for surface element constitution and their chemical states. The IEIs mainly affect the binding energies of atoms at the interfaces below the ZnIn₂S₄ phase, the distance between interface and surface weakens the XPS signals from the interfacial atoms to some extent. Therefore, the apparent XPS binding energy mostly reflects the signals of surface atoms, and is close to that of pure phases under the limited IEIs.

The IEIs within Co₃O₄/ZnIn₂S₄ HHNCs were studied by DFT, the structure models of bare Co₃O₄, ZnIn₂S₄, and Co₃O₄/ZnIn₂S₄ heterojunctions are shown in Fig. S7 and Fig. 2a. The model of Co₃O₄/ZnIn₂S₄ heterojunctions is constructed based on the HRTEM observation, where the interface is mostly formed by the contact between Co₃O₄(400) and ZnIn₂S₄(400) facets. For cubic crystals, the family of {400} facets are equivalent to that of the {001} facets. Compared to bare Co₃O₄, the work function of Co₃O₄(001) face is significantly reduced for Co₃O₄/ZnIn₂S₄, which is conductive to electron transfer from Co₃O₄ surface to adsorbed substrate molecules and thus favors photoreduction half-reactions [44]. Moreover, Co₃O₄/ZnIn₂S₄ exhibits a large potential step between Co₃O₄ and ZnIn₂S₄ across the interface, which will induce IEIs (Fig. 2b and c). The charge density difference of Co₃O₄/ZnIn₂S₄ heterojunctions shows a charge redistribution along the interface with electron depletion at the side of Co₃O₄ and electron accumulation on the ZnIn₂S₄ side, accompanied by the formation of interfacial electric field (IEF) pointing from Co₃O₄ to ZnIn₂S₄ (Fig. 2d). Fig. 2e and f show the electrostatic potential mapping of bare Co₃O₄ and Co₃O₄/ZnIn₂S₄. Clearly, the electrostatic potential difference within Co₃O₄/ZnIn₂S₄ is larger than that of bare Co₃O₄. According to the previous study [45], the large electrostatic potential difference supports the formation of strong IEIs and IEF, which helps to separate photogenerated carriers for photocatalysis. Additionally, the comparison of density of state between bare Co₃O₄ and Co₃O₄/ZnIn₂S₄ reveals that an interfacial defect state contributed by Co, O, Zn, and S 2p orbitals near the E_f is formed, which enhances the interfacial conductivity for photogenerated carrier transfer (Fig. S8).

3.2. Photocatalytic CO₂ reduction performance

 CO_2 photoreduction experiments were carried out in a gas-solid system under visible-light irradiation ($\lambda > 420$ nm) using Co_3O_4 HNCs,

Fig. 2. (a) Structure Model of $Co_3O_4/ZnIn_2S_4$ heterojunctions. Electrostatic potentials of (b) bare Co_3O_4 and (c) $Co_3O_4/ZnIn_2S_4$ heterojunctions. (d) Calculated differential charge density at the $Co_3O_4/ZnIn_2S_4$ interface. The electron–density isosurface was plotted at 0.001 e/bohr³. The yellow and blue regions represent electron accumulation and depletion, respectively. Calculated 2D electrostatic potential mapping of (e) $Co_3O_4(001)$ and (f) $Co_3O_4(001)/ZnIn_2S_4$ heterojunctions.

ZnIn₂S₄ NPs, and Co₃O₄/ZnIn₂S₄ HHNCs as catalysts. It was found that CO and CH₄ are main products, while no other gaseous or liquid products were detected, as confirmed by the ¹H nuclear magnetic resonance (¹H NMR) spectroscopy of liquid phases (Fig. S9a). As shown in Fig. 3a and b, Co₃O₄ HNCs enable both CO and CH₄ evolution but show the lowest CO2 photoreduction activity in total. In contrast, ZnIn2S4 NPs display more active in CO evolution than that of CH₄ evolution. Compared to the two single-phase catalysts, Co₃O₄/ZnIn₂S₄-6 HHNCs exhibit an outstanding photoactivity, especially for CH4 evolution, delivering a single-carbon (C₁) compound production rate of 51.1 μmol $g^{-1} h^{-1}$ with a CH₄ product selectivity of 65.9% (Fig. 3c). The apparent quantum yield (AQY) of Co₃O₄/ZnIn₂S₄-6 was determined under various monochromatic light, as shown in Fig. S10. The AQY gradually decreases with the increase of irradiation wavelength, which matches with the UV-vis diffuse reflectance spectrum (UV-vis DRS). The highest AQY is 0.83% at 400 nm. Interestingly, the C₁ compound production rate manifests a volcano-like profile with the increase of ZnIn₂S₄ content. Upon loading ZnIn₂S₄, the CH₄ selectivity gradually decreases in terms of both product and electron selectivity (Fig. 3d). A series of control experiments show no C1 compounds were detected under various conditions including in dark, using argon (Ar) gas to replace CO2, and without photocatalyst or H2O (Fig. 3e), verifying real photocatalysis of CO2 with H2O on Co3O4/ZnIn2S4 HHNCs under irradiation and the protons in the detected CH_4 from H_2O molecules in the photocatalysis. No oxygen gas is detected in the photocatalysis process, due to the following two reasons. One is a great difference of detection line between O2 and hydrocarbons (CO, CH4, and so on) on Shimadzu Gas Chromatograph GC-2014 by thermal conductivity detector (TCD) and flame ionization detector (FID), respectively. The former only detects O_2 with a concentration of > 50 ppm, while the latter can detect hydrocarbons with a concentration of > 1 ppm. According to the C_1 -compound production rate of $C_03O_4/ZnIn_2S_4$ -6 HHNCs, the stoichiometric oxygen evolution ratio was calculated to be 28 ppm in 4 h, significantly lower than the detection line. In addition, the generated oxygen easily suffers from photoadsorption [46,47], resulting in further decrease in the concentration of oxygen in the gaseous products. As the cases in the most studies on CO_2 photoreduction [48–51], no specific oxygen yield is given when the theoretical yield is not high enough. Furthermore, the isotopic labeling experiment was also carried out under identical test conditions by replacing $^{12}CO_2$ with $^{13}CO_2$ as the substrate, the obtained mass spectra of m/z=17 and 29 correspond to $^{13}CH_4$ and $^{13}CO_2$ respectively, confirming the resource of detected C_1 compounds indeed from the used CO_2 gas (Fig. S9b).

The durability of ${\rm Co_3O_4/ZnIn_2S_4}$ HHNC photocatalysts was assessed by a cyclic photocatalytic test with each run of 4 h under identical conditions, as shown in Fig. 3f. The CH₄ evolution rate remains roughly unchanged in a total of 16 h. Furthermore, the XRD, FESEM, and XPS analyses on the recycled ${\rm Co_3O_4/ZnIn_2S_4}$ HHNCs show that the elemental composition and chemical state, phase constitution, and hollow cubic structure were kept during ${\rm CO_2}$ reduction process (Fig. S11 and S12). In a word, ${\rm Co_3O_4/ZnIn_2S_4}$ HHNCs exhibit good stability for ${\rm CO_2}$ photoreduction to CH₄.

3.3. Origins of photoactivity evolution

To unveil the enhanced photocatalytic activity, the effects of specific surface area on photoactivity were further examined. For this purpose, the surface-area-normalized photoactivity (moles of evolved CO and

Fig. 3. Time courses of photocatalytic (a) CH_4 and (b) CO evolution on different catalysts under visible-light irradiation ($\lambda > 420$ nm), (c) CH_4 and CO evolution rates over different samples, (d) electron selectivity and product selectivity of CH_4 evolution over different samples, (e) CO_2 photoreduction activity under various reaction conditions, (f) cyclic tests of the $CO_3O_4/ZnIn_2S_4$ -6 HHNCs for photocatalytic CH_4 evolution.

CH₄ per unit surface area of catalysts per unit time) were obtained by dividing the mass-normalized photoactivity (moles of evolved CO and CH_4 per unit mass of catalysts per unit time) by the specific surface area, as shown in Fig. S13a. As seen, the trend of surface-area-normalized photoactivity also manifests a volcano-like profile, being consistent with that of mass-normalized photoactivity. Given that both CO and CH₄ with different portion evolve on all the catalysts and the number of photoelectrons for CO and CH₄ evolution reactions is also different (2 versus 8), it is practically unreasonable to investigate the photoactivity evolution in terms of surface-area-normalized activity. To solve this issue, electron utilization rate as a proof of concept, defined as the electron number (moles) produced for CO2 reduction per unit surface area of catalysts per unit time, is proposed as a new photoactivity parameter representing the intrinsic photocatalytic activity. The parameter is suitable for all photocatalysts in principle, especially for multiphase materials with variable product selectivity. As shown in Fig. S13b. Co₃O₄ HNCs manifest higher electron utilization rate in total as well as better CH₄ selectivity than ZnIn₂S₄ NPs, indicating that Co₃O₄ HNCs possess a high intrinsic photoactivity towards CO2 reduction than ZnIn₂S₄ NPs. The intrinsic photoactivity and CH₄ selectivity are drastically promoted when ZnIn₂S₄ NPs are loaded on Co₃O₄ NCs, owing to the IEIs evidenced by the DFT calculations. Moreover, Co₃O₄/ZnIn₂S₄-2, 4, and 6 HHNCs display a very close photoactivity in terms of their electron utilization rate, indicating that IEIs is the key factor governing photoactivity for Co₃O₄/ZnIn₂S₄ HHNCs with moderate loading of ZnIn₂S₄. In this regard, the electron utilization rate is more brilliant in revealing the intrinsic photoactivity than previously used mass- and specific-surface-area normalized photoactivity. In contrast, an excess loading of ZnIn₂S₄ NPs is detrimental to the photoactivity of Co₃O₄/ ZnIn₂S₄ HHNCs, possibly due to the severe cover of Co₃O₄ by ZnIn₂S₄ NPs, making the surface properties of Co₃O₄/ZnIn₂S₄-8 close to bare ZnIn₂S₄. Anyway, the greatly improved CH₄ selectivity cannot be rationalized by the effect of specific surface area. In addition, the effect of CO2 adsorption capacity is examined by recording CO2 adsorption curves, as shown in Fig. S14. Although Co₃O₄/ZnIn₂S₄-6 HHNCs present

the highest CO_2 uptake compared to Co_3O_4 HNCs and $ZnIn_2S_4$ NPs, while the increment does not match with those of their photoactivity, indicating the enhanced photoactivity is irrelevant to CO_2 adsorption capacity.

The influences of light absorption and carrier separation on photoactivity were assessed by UV-vis DRS and a series of photophysical and (photo)electrochemical measurements. As shown in Fig. S15a, Co₃O₄ HNCs show a full spectrum response in the wavelength range of 200-800 nm, while ZnIn₂S₄ NPs only absorbs the light with wavelength lower than ~500 nm, which is not in agreement with the higher C₁ production rate on ZnIn₂S₄ NPs relative to Co₃O₄ HNCs. The band gap was determined as 1.46 and 2.59 eV for bare Co₃O₄ HNCs and ZnIn₂S₄ NPs, according to their Tauc plots (Fig. S15b). Owing to the presence of Co₃O₄ component, all the Co₃O₄/ZnIn₂S₄ HHNCs show full spectrum response with slight difference in absorption intensity, which is also inconsistent with the trend of their photoactivity. These results allow us to correlate the enhanced photoactivity with the separation efficiency of photogenerated carriers. The photocurrent response of these samples is shown in Fig. S16a, upon irradiation, single-phase Co₃O₄ HNCs and ZnIn₂S₄ NPs show significantly lower photocurrent signals than all the Co₃O₄/ZnIn₂S₄ HHNCs. In particular, the Co₃O₄/ZnIn₂S₄-6 HHNCs display the highest photocurrent signal. Moreover, the PL and transient PL spectra (TRPL) spectra reveal that Co₃O₄/ZnIn₂S₄-6 HHNCs have the weakest PL emission and shorter average PL lifetime as compared to Co₃O₄ HNCs and ZnIn₂S₄ NPs as well as other Co₃O₄/ZnIn₂S₄ HHNCs (Fig. S16b and c). According to the previous literature [52], the shortening of the PL lifetimes is ascribed to the charge separation process through heterogenous interfaces. In addition, the electrochemical impedance spectroscopy (EIS) illustrates Co₃O₄/ZnIn₂S₄-6 HHNCs having the smallest Nernst semicircle among these catalysts (Fig. S16d). Taken together, the separation of photogenerated carriers and their transfer kinetics are greatly improved for Co₃O₄/ZnIn₂S₄ HHNCs in comparison with single-phase counterparts, due to the IEIs, which accounts for the enhanced photoactivity of Co₃O₄/ZnIn₂S₄ HHNCs relative to bare Co₃O₄ HNCs and ZnIn₂S₄ NPs.

Based on the above results, a plausible mechanism behind the volcano-like evolution profile can be rationalized by combining with the previous studies on heterojunctions for photocatalysis [53-55]. Both bare Co₃O₄ HNCs and ZnIn₂S₄ NPs show low photocatalytic activity due to poor charge separation efficiency. When ZnIn₂S₄ NPs are loaded on Co₃O₄ HNCs, closely contacted interfaces are formed between Co₃O₄ and ZnIn₂S₄, accompanied by the IEIs and the formation of IEF. The interfaces act as channels to IEF-driven photogenerated carrier transfer. More loading amount of ZnIn₂S₄, more intimate interfaces formed. When the number of interfaces reaches saturation, the specific surface area will be responsible for the photoactivity evolution of different Co₃O₄/ZnIn₂S₄ HHNCs. However, the excess loading of ZnIn₂S₄ severely covers Co₃O₄ HNCs, which not only shields the light absorption of Co₃O₄ HNCs, but also extend the distance of photogenerated carriers' diffusion to catalyst surface [53], leading to degenerate photoelectric efficiency and increased resistance for interface charge transfer. As a result, the photoactivity of Co₃O₄/ZnIn₂S₄-8 HHNCs is slightly higher than that of ZnIn₂S₄ NPs.

3.4. Influence of IEIs on charge transfer pathway under irradiation

To reveal the IEI-mediated charge transfer under irradiation, the band alignment of Co₃O₄/ZnIn₂S₄-6 HHNCs was investigated by a combined analysis of Mott-Schottky plots and UPS. The Mott-Schottky measurements were made to assess the nature of semiconductors and the electrochemical potential (versus reversible hydrogen electrode, RHE) of conduction band minimum (CBM) of Co₃O₄ HNCs and ZnIn₂S₄ NPs, that is E_{CB} , as shown in Fig. S15c and d, respectively. The positive slopes indicate n-type nature of Co₃O₄ HNCs and ZnIn₂S₄ NPs. Although Co₃O₄ is frequently reported as p-type electrocatalysts, while the n-type nature of Co₃O₄ as photocatalysts have been recognized [56,57]. That is, the semiconducting type of Co₃O₄ is dependent on the specific preparation method. The E_{CB} was determined to be -0.65 and -0.47 eV for Co_3O_4 HNCs and $ZnIn_2S_4$ NPs, respectively, while the potential (E_{VB}) of valence band maximum (VBM) was calculated from $E_{CB} + E_{g}$ as 0.81 and 2.12 eV. Moreover, the positions of E_f were determined based on their work function (Φ) measured by ultraviolet UPS, as illustrated in

Fig. 4. (a) Schematic illustration of formation of the $Co_3O_4/ZnIn_2S_4$ heterojunction. E_{vac} , vacuum level. The plus and minus signs indicate the positively and negatively charged regions at the junction, respectively, whereas the grey dashed arrows indicate the direction of IEF. The red arrows show the photoinduced electron transfer direction. Δ refers to the E_f difference at the junction. The energy levels are in volt (versus RHE). (b) Co 2p and (f) In 3d high-resolution XPS spectra of $Co_3O_4/ZnIn_2S_4$ -6 HHNCs with and without irradiation. The values above the pink arrows indicate the shift magnitude of XPS peaks. EPR results of (d) \bullet OH and (e) \bullet O₂ free radicals trapped by DMPO in (d) aqueous and (e) methylbenzene suspension of $Co_3O_4/ZnIn_2S_4$ -6 HHNCs, Co_3O_4 HNCs, and $ZnIn_2S_4$ NPs after 15 min of visible light illumination.

Fig. S17a. The Φ was calculated–by subtracting the secondary electron cutoff ($E_{\rm cutoff}$) from the excitation energy (21.22 eV)–to be 4.72 and 4.76 eV for ${\rm Co_3O_4}$ HNCs and ${\rm ZnIn_2S_4}$ NPs, respectively. The difference of Φ between ${\rm Co_3O_4}$ and ${\rm ZnIn_2S_4}$ is larger than the energy uncertainty of 0.02 eV for UPS, indicating that ${\rm Co_3O_4}$ HNCs indeed have smaller Φ than ${\rm ZnIn_2S_4}$ NPs. Given the free electron level set to be 0.00 eV as the vacuum level, the corresponding $E_{\rm f}$ was determined to be - 4.72 and - 4.76 eV, respectively. Finally, the $E_{\rm f}$ values were converted to electrochemical potentials in volts (V versus RHE) according to the following equation [58],

$$E(vs \text{ RHE}) = -4.44 - E(vs \text{ vacuum}) - 0.059 \text{pH}$$
 (1)

The band alignment of Co_3O_4 HNCs and ZnIn_2S_4 NPs is illustrated in Fig. 4a. Upon contact in dark, the E_f difference drives electron transfer from Co_3O_4 to ZnIn_2S_4 for Fermi equilibrium and thus induces an IEF pointing from Co_3O_4 to ZnIn_2S_4 , resulting in IEIs. The E_f of Co_3O_4 / ZnIn_2S_4 HHNCs was determined by UPS analysis to lie between those of Co_3O_4 and ZnIn_2S_4 , as shown in Fig. S17b. This result is consistent with the Φ reduction of Co_3O_4 within heterojunction compared to bare Co_3O_4 , demonstrated by the DFT calculations. Upon irradiation, both of two components are excited, constrained by the IEF, photoelectrons transfer from ZnIn_2S_4 to Co_3O_4 , obeying a S-scheme pathway. Accordingly, CO_2 conversion mainly occur on Co_3O_4 component, while the

photooxidation half-reaction mostly proceeds over $ZnIn_2S_4$. In-situ irradiated XPS was employed to examined the actual electron transfer pathway. Compared to that in dark, the Co 2p spectrum of $Co_3O_4/ZnIn_2S_4$ HHNCs exhibits an evident shift towards lower binding energy by -0.32 eV under irradiation (Fig. 4b), which is contrary to the cases of In 3d and Zn 2p spectra (+0.21 and +0.16 eV, respectively) (Fig. 4c and S18). Note that all the shift magnitudes are significantly higher than the energy uncertainty of 0.05 eV for XPS. Collectively, these results confirm electron transfer from $ZnIn_2S_4$ to Co_3O_4 within $Co_3O_4/ZnIn_2S_4$ HHNCs under irradiation.

To further confirm the presence of IEIs within $\text{Co}_3\text{O}_4/\text{ZnIn}_2\text{S}_4$ HHNCs and the electron transfer pathway under irradiation, free radical trapping experiments were conducted, as shown in Fig. 4d and e. As the CBM potentials of both Co_3O_4 HNCs and ZnIn_2S_4 NPs are enough negative for oxygen reduction $(\text{O}_2/\cdot\text{O}_2\text{-})$, while $\cdot\text{OH}$ free radicals can be only generated on the surface of ZnIn_2S_4 NPs [59]. As expected, the EPR spectrum of Co_3O_4 HNCs is silent, while ZnIn_2S_4 NPs display a weak EPR signal corresponding to the adduct of DMPO/ $\cdot\text{OH}$. Significantly, $\text{Co}_3\text{O}_4/\text{ZnIn}_2\text{S}_4$ -6 HHNCs exhibit enhanced EPR signal in comparison with ZnIn_2S_4 NPs, indicating photogenerated holes accumulating on the surface of ZnIn_2S_4 for $\text{Co}_3\text{O}_4/\text{ZnIn}_2\text{S}_4$. On the other hand, Co_3O_4 HNCs and ZnIn_2S_4 NPs present nearly equivalent EPR signal corresponding to $\cdot\text{O}_2$ free radicals, while the EPR signal is enhanced for $\text{Co}_3\text{O}_4/\text{ZnIn}_2\text{S}_4$ -6

Fig. 5. (a and b) In-situ DRIFTS of the $Co_3O_4/ZnIn_2S_4$ -6 HHNCs exposed to a mixture gas of He, CO_2 , and H_2O with and without irradiation. (c) Reaction pathways for CO_2 photocatalysis on bare Co_3O_4 and $Co_3O_4/ZnIn_2S_4$ heterojunctions and calculated Gibbs free energies of reaction intermediates. The Co, O, In, Zn, S, C, and H atoms are represented by blue, pink, lilac, gray, yellow, brown, and white balls, respectively.

HHNCs, indicating IEI-induced electron accumulation within the heterojunctions under irradiation. Taken together, the IEIs between within ${\rm Co_3O_4/ZnIn_2S_4}$ HHNCs and the proposed charge transfer pathway are well confirmed. Moreover, the active sites for ${\rm CO_2}$ photoreduction are deservedly located at the surface of ${\rm Co_3O_4}$ within the heterojunctions.

3.5. IEIs-mediated selectivity

To unravel the IEIs-mediated selectivity, the main reaction intermediates in CO2 photoreduction over Co3O4/ZnIn2S4 HHNCs were monitored by in-situ diffuse reflectance infrared Fourier transform spectra (in-situ DRIFTS), (Fig. 5a and b). Prior to irradiation, Co₃O₄/ ZnIn₂S₄-6 HHNCs were exposed to a mixture gas of He, CO₂, and a trace of water vapor in dark for reaching adsorption equilibrium, the obtained Fourier transform infrared spectroscopy (FTIR) signals were taken as background and deducted as baseline. Upon irradiation, multiple reaction intermediates were observed. The adsorption bands at 1632 and 1341-1440, 1494 and 1517, and 1539 cm⁻¹ correspond to HCO₃, monodentate carbonate (m-CO₃²-), bicarbonate (b-CO₃²-) species, respectively [60,61], indicating the co-adsorption and reactions of CO₂ and H₂O molecules on catalyst surface. Moreover, the emergence of CO₂ species at 1642–1680 cm⁻¹ and its increasing signal with irradiation time demonstrate easy single-electron reduction of the adsorbed CO₂ by photoelectrons [60]. Furthermore, the conversion of the adsorbed CO₂ is confirmed by the appearance of key intermediate *COOH at 1529, 2889, 2905 and 2989 cm⁻¹ [26,61-63]. A series of hydrocarbon intermediates including *CH₂O at 1506 cm⁻¹, *CH₃O at 2840 and 2949 cm⁻¹, and *CH₂ at 2938 cm⁻¹ verify the relatively favorable hydrogenation process of *CO to CH₄. As comparisons, the in-situ DRIFTS of both Co₃O₄ HNCs and ZnIn₂S₄ NPs are recorded under the same condition to that of Co₃O₄/ZnIn₂S₄ HHNCs. As shown in Fig. S19a and b, as the case of Co₃O₄/ZnIn₂S₄-6 HHNCs, *COOH and hydrocarbon intermediates could be observed for Co₃O₄ HNCs, indicating that both CO and CH₄ can be steadily evolved on the surface of Co₃O₄ HNCs. In contrast, there is hardly signals from hydrocarbon intermediates seen on the surface of ZnIn₂S₄ NPs (Fig. S19c and d), indicating ZnIn₂S₄ NPs are active in evolving CO rather than CH₄. These results are consistent with the experimental results.

Based on the in-situ DRIFTS results, a plausible reaction pathway was determined for the ${\rm CO}_2$ conversion, as shown in Fig. 5c. For both bare Co₃O₄ and Co₃O₄/ZnIn₂S₄ heterojunctions, the active sites for CO₂ conversion are located on Co atoms at the surface of Co₃O₄. The corresponding Gibbs free energies (ΔG) of and reaction intermediates on the Co₃O₄ and Co₃O₄/ZnIn₂S₄ models described above were respectively calculated by DFT. With bare Co₃O₄ as the catalyst, the generation of intermediate *COOH is thermodynamically unfavored. Moreover, both desorption and hydrogenation of *CO are significantly uphill reactions, though, the formation of *CO is an obvious exothermic process. These results account for low catalytic activity and poor selectivity of bare Co₃O₄ HNCs for CO₂ reduction. By comparison, with Co₃O₄/ZnIn₂S₄ heterojunctions as the photocatalyst, the electron-enriched Co₃O₄ component favors the generation of *COOH with a negative ΔG . In particular, the hydrogenation of *CO to *CHO becomes significantly favorable in contrast to its desorption to gaseous CO, though the formation of *CO is a slightly uphill reaction. Furthermore, the continuous hydrogenation processes of *CHO to *OH+CH₄ correspond to a series of exothermic reactions, resulting in preferential CH₄ evolution on Co₃O₄/ ZnIn₂S₄. Taken together, it is concluded that the IEIs tune the electronic structure of Co₃O₄ within Co₃O₄/ZnIn₂S₄, making it more suitable for CH₄ evolution.

Given that two and eight electrons required for the conversions of CO_2 to CO and CH_4 , respectively, the possibility of multielectron-induced methanation may also be practicable. The photocurrent spectra reveal that $Co_3O_4/ZnIn_2S_4$ -6 has the strongest electron accumulation on Co_3O_4 but shows the second worst CH_4 selectivity. Moreover, all the proposed elementary reactions for CO_2 to CH_4 only require

one electron, which is not dependent on the electron accumulation. Collectively, the possibility of multielectron-induced methanation can be ruled out.

In-situ near atmospheric pressure XPS (NAP-XPS) spectra of the C 1 s and O 1 s regions were recorded to verify the photocatalysis process of CO₂ with H₂O over Co₃O₄/ZnIn₂S₄ HHNCs under different conditions. Fig. 6a presents the in-situ changes in C 1 s core level spectra. In ultrahigh vacuum (UHV), only three kinds of carbon species are identified on catalyst surface: C-C, C-O, and C=O at binding energy of 285.3, 286.9, and 288.1 eV, respectively. After high-purity CO2 gas was pumped into the system, reaching a pressure of 0.5 mbar in dark and adsorption equilibrium. Multiple new components were observed, including gasphase CO_2 at 293.3 eV, CO_2^{δ} and HCO_3 species at 291.7 and 290.8 eV, respectively. Interestingly, an obvious peak at 283.7 eV, which was well assigned to carbon-metal (C-M) bonds according to the previous reports [43,64–67], indicating effective adsorption and activation of CO₂ molecules on the metal sites of catalysts. Upon irradiation, apart from species observed in the dark, an obvious reduction in intensity occurs for the C-M and C=O species, implying their chemical conversion (Table S2). In particular, the appearance of C-H bonds at 283.0 eV indicates favorable hydrogenation reactions and CO2-to-CH4 conversion [64,68]. On the other hand, the O 1 s core level spectrum in UHV condition was fitted using four components: adsorbed water (H2Oads), adsorbed hydroxyls (OHads), surface bridging O (Ob), and Co-O species (Fig. 6b and Table S3), in agreement with the XPS results of O 1 s spectra in Fig. S6f and S12f. The introduction of CO2 gases into the system significantly reduces the content of H₂O_{ads} by the reactions of H₂O and CO₂ molecules, leading to the emergence of carbonates at 532.4 eV as well as more exposure of surface Co-O species acting as active centers, in addition to the component of CO₂ gas [67]. Moreover, a trace number of C-O species at 534.5 eV suggests slight dissociation of the adsorbed CO2 molecules [64]. Under irradiation, the C-O species significantly increase, indicating visible-driven CO2 activation and conversion, agreeing with the results of the C 1 s spectra analysis.

To examine the validity of IEIs-mediated activity and selectivity, we further use CeO_2 to replace the $ZnIn_2S_4$ component, constructing Co_3O_4/CeO_2 HHNCs. The selection of CeO_2 is due to its high CO selectivity towards CO_2 photoreduction according to the previous reports [69-71]. The FESEM and XRD analyses reveal the successful preparation of Co_3O_4/CeO_2 HHNCs with different components' ratio (Figs. S21 and S22). As expected, bare CeO_2 shows low CO_2 -to-CO rate but high CO selectivity (Fig. S23a and b), while Co_3O_4/CeO_2 HHNCs deliver a significantly increased C_1 -compound production rate due to IEIs, which presents a volcano-like profile with the increase of CeO_2 loading amount (Fig. S23c). Moreover, the CH_4 selectivity synchronously declines (Fig. S23d), resembling the case of $Co_3O_4/ZnIn_2S_4$ HHNCs. Taken together, the IEIs-mediated activity and selectivity are verified undoubtedly, which exhibits a certain universality.

3.6. Photocatalytic mechanism

Base on the above analyses, a plausible mechanism for CO_2 photoreduction on $Co_3O_4/ZnIn_2S_4$ HHNCs was summarized in Scheme 1, the intimate contact of Co_3O_4 HNCs and $ZnIn_2S_4$ NPs results in strong IEIs and thus the formation of IEF, which tunes the electronic structure of Co_3O_4 , making it favorable for continuous hydrogenation process of CO_2 and thus promoting CH_4 selectivity as compared to bare Co_3O_4 and $ZnIn_2S_4$ are excited, with the assistance of IEF, photoelectrons transfer from $ZnIn_2S_4$ to Co_3O_4 for CO_2 reduction in terms of S-scheme pathway. CO_2 molecules are preferentially adsorbed on the CO_3 (Step 1). The bent CO_2 is converted into the *COOH intermediate by receiving one proton and one photoelectron (Step 2). The *COOH dehydrates (Step 3) and transforms into *CHO (Step 4) with continuous aid of proton-electron pairs. The subsequent multistep hydrogenation processes lead to the formation

Fig. 6. In-situ NAP-XPS spectra of (a) C 1 s and (b) O 1 s regions recorded for the $Co_3O_4/ZnIn_2S_4$ -6 HHNCs under the following conditions (from top to bottom): UHV; 0.5 mbar CO_2 atmosphere; 0.5 mbar CO_2 atmosphere and light illumination.

Scheme 1. Proposed reaction pathway for photocatalytic reduction of CO_2 to CH_4 using $Co_3O_4/ZnIn_2S_4$ HHNCs with IEIs. For the ball-and-stick models, the gray, pink, and white balls represent C, O, and H atoms, respectively.

of ${}^*\mathrm{CH}_2\mathrm{O}$ and ${}^*\mathrm{CH}_3\mathrm{O}$ intermediates (Step 5 and 6), until one methane molecule is formed and released, leaving a O´-bonded Co site (Step 7). The negatively charged center recovers by two hydrogenation processes under irradiation (Step 8 and 9) for next photocatalytic circle.

4. Conclusion

In summary, Co₃O₄/ZnIn₂S₄ HHNCs have been well constructed via a two-step method of ZIF-67 transformation followed by a solvothermal reaction and proposed for efficient visible-light-driven CO2 photoreduction. Bare Co₃O₄ HNCs enable both CO and CH₄ evolution, while ZnIn₂S₄ NPs favor CO generation. As the loading amount of ZnIn₂S₄ increases, the C₁-compound generation rate of Co₃O₄/ZnIn₂S₄ HHNCs manifests a volcano-like profile. In particular, the CH₄ selectivity monotonously reduces. The photoactivity evolution is governed by IEIspromoted carrier separation and the effects of specific surface area under moderate loading of ZnIn₂S₄, while the CH₄ selectivity is closely associated with the IEIs between Co₃O₄ and ZnIn₂S₄, which tunes the electronic structure of Co₃O₄ and lowers the energy barrier of key intermediate *CHO, making consequent hydrogenation processes easier. The IEIs-mediated activity and selectivity are validated by a similar model catalyst Co₃O₄/CeO₂ HHNCs, which further exhibit a certain universality of the IEI effect. This work has unveiled the interacting mechanism underlying the product selectivity evolution and shed new light on the manipulation of multiple-phase photocatalytic products.

CRediT authorship contribution statement

Hu Yong: Conceptualization, Funding acquisition, Supervision, Writing – review & editing. **Zhao Yuanyuan:** Formal analysis. **Ni Maomao:** Investigation, Methodology. **Xu Hengyue:** Software, Validation. **Guo Changfa:** Funding acquisition, Writing – review & editing. **Cheng Chao:** Data curation, Investigation, Visualization, Writing – original draft.

Declaration of Competing Interest

The authors declared that there is no conflict of interest.

Data Availability

The authors do not have permission to share data.

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (22272150, 22102145), the Major Program of Zhejiang Provincial Natural Science Foundation of China (LD22B030002), Zhejiang Provincial Ten Thousand Talent Program (2021R51009), and the Zhejiang Provincial Natural Science Foundation of China (LY22B030012). The calculations were carried out on high performance supercomputer of Zhejiang Normal University.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.apcatb.2024.123705.

References

- T. Inoue, A. Fujishima, S. Konishi, K. Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders, Nature 277 (1979) 637–638, https://doi.org/10.1038/277637a0.
- [2] S. Wang, X. Han, Y. Zhang, N. Tian, T. Ma, H. Huang, Inside-and-out semiconductor engineering for CO₂ photoreduction: from recent advances to new trends, Small Struct. 2 (2021) 2000061, https://doi.org/10.1002/sstr.202000061.

- [3] X. Shi, Y. Huang, Y. Bo, D. Duan, Z. Wang, J. Cao, G. Zhu, W. Ho, L. Wang, T. Huang, Y. Xiong, Highly selective photocatalytic CO₂ methanation with water vapor on single-atom platinum-decorated defective carbon nitride, Angew. Chem. Int. Ed. 61 (2022) e202203063, https://doi.org/10.1002/ange.202203063.
- [4] S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO₂ on TiO₂ and other semiconductors, Angew. Chem. Int. Ed. 52 (2013) 7372–7408, https://doi.org/10.1002/anie.201207199.
- [5] Z. Guo, G. Chen, C. Cometto, B. Ma, H. Zhao, T. Groizard, L. Chen, H. Fan, W. Man, S. Yiu, K. Lau, T. Lau, M. Robert, Selectivity control of CO versus HCOO⁻ production in the visible-light-driven catalytic reduction of CO₂ with two cooperative metal sites, Nat. Catal. 2 (2019) 801–808, https://doi.org/10.1038/s41929-019-0331-6.
- [6] X. Chang, T. Wang, J. Gong, CO₂ photo-reduction: insights into CO₂ activation and reaction on surfaces of photocatalysts, Energy Environ. Sci. 9 (2016) 2177–2196, https://doi.org/10.1039/C6EE00383D.
- [7] W. Tu, Y. Zhou, Z. Zou, Photocatalytic conversion of CO₂ into renewable hydrocarbon fuels: state-of-the-art accomplishment, challenges, and prospects, Adv. Mater. 26 (2014) 4607–4626, https://doi.org/10.1002/adma.201400087.
- [8] W. Gao, S. Li, H. He, X. Li, Z. Cheng, Y. Yang, J. Wang, Q. Shen, X. Wang, Y. Xiong, Y. Zhou, Z. Zou, Vacancy-defect modulated pathway of photoreduction of CO₂ on single atomically thin AgInP₂S₆ sheets into olefiant gas, Nat. Commun. 12 (2021) 4747, https://doi.org/10.1038/s41467-021-25068-7.
- [9] L. Liu, Z. Wang, J. Zhang, O. Ruzimuradov, K. Dai, J. Low, Tunable interfacial charge transfer in a 2D–2D composite for efficient visible-light-driven CO₂ conversion, Adv. Mater. 35 (2023) 2300643, https://doi.org/10.1002/ adma.202300643.
- [10] S. Karmakar, S. Barman, F.A. Rahimi, D. Rambabu, S. Nath, T.K. Maji, Confining charge-transfer complex in a metal-organic framework for photocatalytic CO₂ reduction in water, Nat. Commun. 14 (2023) 4508, https://doi.org/10.1038/ s41467-023-40117-z.
- [11] R. Marschall, Semiconductor composites: strategies for enhancing charge carrier separation to improve photocatalytic activity, Adv. Funct. Mater. 24 (2014) 2421–2440, https://doi.org/10.1002/adfm.201303214.
- [12] W. Zhang, A.R. Mohamed, W.J. Ong, Z-scheme photocatalytic systems for carbon dioxide reduction: Where are we now? Angew. Chem. Int. Ed. 59 (2020) 22894–22915, https://doi.org/10.1002/anie.201914925.
- [13] M.E. Malefane, U. Feleni, P.J. Mafa, A.T. Kuvarega, Fabrication of direct Z-scheme Co₃O₄/BiOI for ibuprofen and trimethoprim degradation under visible light irradiation, Appl. Surf. Sci. 514 (2020) 145940, https://doi.org/10.1016/j. apsusc.2020.145940.
- [14] Y. Bai, M. Li, X. Liu, J. Han, X. Zhu, Q. Ge, H. Wang, Ti³⁺ defective TiO₂/CdS Z-scheme photocatalyst for enhancing photocatalytic CO₂ reduction to C₁-C₃ products, Ind. Eng. Chem. Res. 61 (2022) 8724–8737, https://doi.org/10.1021/acs_iecr_2c0113
- [15] M. Hao, D. Wei, Z. Li, Rational design of an efficient S-scheme heterojunction of CdS/Bi₂WO₆–S nanocomposites for photocatalytic CO₂ reduction, Energy Fuels 36 (2022) 11524–11531. https://doi.org/10.1021/acs.energyfuels.2c01076.
- [16] F. Li, X. Yue, Y. Liao, L. Qiao, K. Lv, Q. Xiang, Understanding the unique S-scheme charge migration in triazine/heptazine crystalline carbon nitride homojunction, Nat. Commun. 14 (2023) 3901. https://doi.org/10.1038/s41467-023-39578-z.
- [17] M. Ni, Y. Zhu, C. Guo, D.-L. Chen, J. Ning, Y. Zhong, Y. Hu, Efficient visible-light-driven CO₂ methanation with self-regenerated oxygen vacancies in Co₃O₄/NiCo₂O₄ hetero-nanocages: vacancy-mediated selective photocatalysis, ACS Catal. 13 (2023) 2502–2512, https://doi.org/10.1021/acscatal.2c05577.
- [18] M. Anagnostopoulou, A. Zindrou, T. Cottineau, A. Kafizas, C. Marchal, Y. Deligiannakis, V. Keller, K.C. Christoforidis, MOF-derived defective Co₃O₄ nanosheets in carbon nitride nanocomposites for CO₂ photoreduction and H₂ production, ACS Appl. Mater. Interfaces 15 (2023) 6817–6830, https://doi.org/ 10.1021/acsami.2r19683
- [19] Y. Zhang, J. Li, W. Zhou, X. Liu, X. Song, S. Chen, H. Wang, P. Huo, Rational design of Ag/CuO@ZnIn₂S₄ S-scheme plasmonic photocatalyst for highly selective CO₂ conversion, Appl. Catal. B-Environ. 342 (2024) 123449, https://doi.org/10.1016/ i.apcatb.2023.123449.
- [20] Y. Zhang, Y. Wu, L. Wan, H. Ding, H. Li, X. Wang, W. Zhang, Hollow core–shell Co₅S₈@ZnIn₂S₄/CdS nanoreactor for efficient photothermal effect and CO₂ photoreduction, Appl. Catal. B-Environ. 311 (2022) 121255, https://doi.org/ 10.1016/j.apcatb.2022.121255.
- [21] L. Wang, D. Chen, S. Miao, F. Chen, C. Guo, P. Ye, J. Ning, Y. Zhong, Y. Hu, Nitric acid-assisted growth of InVO₄ nanobelts on protonated ultrathin C₃N₄ nanosheets as an S-scheme photocatalyst with tunable oxygen vacancies for boosting CO₂ conversion, Chem. Eng. J. 434 (2022) 133867, https://doi.org/10.1016/j.cei.2021.133867.
- [22] V. Giulimondi, S. Mitchell, J. Pérez-Ramírez, Challenges and opportunities in engineering the electronic structure of single-atom catalysts, ACS Catal. 13 (2023) 2981–2997, https://doi.org/10.1021/acscatal.2c05992.
- [23] X. Su, T. Xu, R. Ye, C. Guo, S.M. Wabaidur, D.L. Chen, S. Aftab, Y. Zhong, Y. Hu, One-pot solvothermal synthesis of In-doped amino-functionalized UiO-66 Zr-MOFs with enhanced ligand-to-metal charge transfer for efficient visible-light-driven CO₂ reduction, J. Colloid Interf. Sci. 646 (2023) 129–140, https://doi.org/10.1016/j. icic.2023.05.041
- [24] Z. Bi, R. Guo, X. Hu, J. Wang, X. Chen, W. Pan, Fabrication of a concave cubic Z-scheme ZnIn₂S₄/Cu₂O heterojunction with superior light-driven CO₂ reduction performance, Energy Fuels 37 (2023) 6036–6048, https://doi.org/10.1021/acs.energyfuels.3c00672.
- [25] P. Su, X. Zhang, X. Hao, H. Liu, Z. Jin, $\rm Co_3O_4$ modified $\rm Mn_{0.2}Cd_{0.8}S$ with different shells forms p-n heterojunction to optimize energy/mass transfer for efficient

- photocatalytic hydrogen evolution, Sep. Purif. Technol. 285 (2022) 120318, https://doi.org/10.1016/j.seppur.2021.120318.
- [26] S. Liu, L. Chen, T. Liu, S. Čai, X. Zou, J. Jiang, Z. Mei, Z. Gao, H. Guo, Rich S vacant g-C₃N₄@Culn₅S₈ hollow heterojunction for highly efficient selective photocatalytic CO₂ reduction, Chem. Eng. J. 424 (2021) 130325, https://doi.org/10.1016/j. cei/2021/130325
- [27] L. Collado, M. Gomez-Mendoza, M. García-Tecedor, F.E. Oropeza, A. Reynal, J. R. Durrant, D.P. Serrano, V.A. de la Peña O'Shea, Towards the improvement of methane production in CO₂ photoreduction using Bi₂WO₆/TiO₂ heterostructures, Appl. Catal. B-Environ. 324 (2023) 122206, https://doi.org/10.1016/j.apcatb.2022.122206.
- [28] B. Zhou, S. Xu, L. Wu, M. Li, Y. Chong, Y. Qiu, G. Chen, Y. Zhao, C. Feng, D. Ye, K. Yan, Strain-engineering of mesoporous Cs₃Bi₂Br₉/BiVO₄ S-scheme heterojunction for efficient CO₂ photoreduction, Small 19 (2023) 2302058, https://doi.org/10.1002/smll.202302058.
- [29] C. Guo, D. Chen, Y. Hu, Perspective on defective semiconductor heterojunctions for CO₂ photoreduction, Langmuir 38 (2022) 6491–6498, https://doi.org/10.1021/ acs.langmuir.2c00820.
- [30] L. Li, X. Dai, D. Chen, Y. Zeng, Y. Hu, X.W.D. Lou, Steering catalytic activity and selectivity of CO₂ photoreduction to syngas with hydroxy-rich Cu₂S@R_{OH}-NiCo₂O₃ double-shelled nanoboxes, Angew. Chem. Int. Ed. 61 (2022) e202205839, https:// doi.org/10.1002/anie.202205839.
- [31] S. Naghdi, A. Cherevan, A. Giesriegl, R. Guillet-Nicolas, S. Biswas, T. Gupta, J. Wang, T. Haunold, B.C. Bayer, G. Rupprechter, M.C. Toroker, F. Kleitz, D. Eder, Selective ligand removal to improve accessibility of active sites in hierarchical MOFs for heterogeneous photocatalysis, Nat. Commun. 13 (2022) 282, https://doi. org/10.1038/s41467-021-27775-7.
- [32] C. Adelhelm, M. Balden, M. Rinke, M. Stueber, Influence of doping (Ti, V, Zr, W) and annealing on the sp2 carbon structure of amorphous carbon films, J. Appl. Phys. 105 (2009) 033522, https://doi.org/10.1063/1.3075843.
- [33] Z.R. Tian, J.A. Voigt, J. Liu, B. McKenzie, M.J. McDermott, M.A. Rodriguez, H. Konishi, H. Xu, Complex and oriented ZnO nanostructures, Nat. Mater. 2 (2003) 821–826, https://doi.org/10.1038/nmat1014.
- [34] S. Zhou, C. Zhang, J. Liu, J. Liao, Y. Kong, Y. Xu, G. Chen, Formation of an oriented Bi₂WO₆ photocatalyst induced by in situ Bi reduction and its use for efficient nitrogen fixation, Catal. Sci. Technol. 9 (2019) 5562–5566, https://doi.org/ 10.1039/C9CY00972H.
- [35] C. Gammer, C. Mangler, C. Rentenberger, H.P. Karnthaler, Quantitative local profile analysis of nanomaterials by electron diffraction, Scr. Mater. 63 (2010) 312–315, https://doi.org/10.1016/j.scriptamat.2010.04.019.
- [36] B.C. Bayer, D.A. Bosworth, F.B. Michaelis, R. Blume, G. Habler, R. Abart, R. S. Weatherup, P.R. Kidambi, J.J. Baumberg, A. Knop-Gericke, R. Schloegl, C. Baehtz, Z.H. Barber, J.C. Meyer, S. Hofmann, In situ observations of phase transitions in metastable nickel (carbide)/carbon nanocomposites, J. Phys. Chem. 120 (2016) 22571–22584, https://doi.org/10.1021/acs.jpcc.6b01555.
- [37] T. Ling, D. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X. Du, Z. Hu, M. Jaroniec, S. Qiao, Engineering surface atomic structure of single-crystal cobalt (II) oxide nanorods for superior electrocatalysis, Nat. Commun. 7 (2016) 12876, https://doi.org/10.1038/ncomms12876.
- [38] L. Wang, B. Cheng, L. Zhang, J. Yu, In situ irradiated XPS investigation on S-scheme TiO₂@ZnIn₂S₄ photocatalyst for efficient photocatalytic CO₂ reduction, Small 17 (2021) 2103447, https://doi.org/10.1002/smll.202103447.
- [39] H.T. Fan, Z. Wu, K.C. Liu, W.S. Liu, Fabrication of 3D CuS@ZnIn₂S₄ hierarchical nanocages with 2D/2D nanosheet subunits p-n heterojunctions for improved photocatalytic hydrogen evolution, Chem. Eng. J. 433 (2022) 134474, https://doi. org/10.1016/j.cej.2021.134474.
- [40] S. Wang, B.Y. Guan, X.W.D. Lou, Construction of ZnIn₂S₄-In₂O₃ hierarchical tubular heterostructures for efficient CO₂ photoreduction, J. Am. Chem. Soc. 140 (2018) 5037–5040, https://doi.org/10.1021/jacs.8b02200.
- [41] L. Huang, B. Li, B. Su, Z. Xiong, C. Zhang, Y. Hou, Z. Ding, S. Wang, Fabrication of hierarchical Co₃O₄@CdIn₂S₄ p-n heterojunction photocatalysts for improved CO₂ reduction with visible light, J. Mater. Chem. A 8 (2020) 7177–7183, https://doi. org/10.1039/DOTA01817A.
- [42] H. Ouyang, K. Song, J. Du, Z. Zhan, B. Tan, Creating chemisorption sites for enhanced CO₂ chemical conversion activity through amine modification of metalloporphyrin-based hypercrosslinked polymers, Chem. Eng. J. 431 (2022) 134326, https://doi.org/10.1016/j.cej.2021.134326.
- [43] L. Collado, P. Reñones, J. Fermoso, F. Fresno, L. Garrido, V. Pérez-Dieste, C. Escudero, M.D. Hernández-Alonso, J.M. Coronado, D.P. Serrano, V.A. de la Peña O'Shea, The role of the surface acidic/basic centers and redox sites on TiO₂ in the photocatalytic CO₂ reduction, Appl. Catal. B-Environ. 303 (2022) 120931, https:// doi.org/10.1016/j.apcatb.2021.120931.
- [44] A. Biswas, S. Nandi, N. Kamboj, J. Pan, A. Bhowmik, R.S. Dey, Alteration of electronic band structure via a metal–semiconductor interfacial effect enables high faradaic efficiency for electrochemical nitrogen fixation, ACS Nano 15 (2021) 20364–20376, https://doi.org/10.1021/acsnano.1c08652.
- [45] Y. Zhang, Y. Li, X. Xin, Y. Wang, P. Guo, R. Wang, B. Wang, W. Huang, A. J. Sobrido, X. Li, Internal quantum efficiency higher than 100% achieved by combining doping and quantum effects for photocatalytic overall water splitting, Nat. Energy 8 (2023) 504–514, https://doi.org/10.1038/s41560-023-01242-7.
- [46] S. Gong, G. Zhu, R. Wang, F. Rao, X. Shi, J. Gao, Y. Huang, C. He, M. Hojamberdiev, Synergistically boosting highly selective CO₂-to-CO photoreduction over BiOCl nanosheets via in-situ formation of surface defects and non-precious metal nanoparticles, Appl. Catal. B-Environ. 297 (2021) 120413, https://doi.org/10.1016/j.apcatb.2021.120413.

- [47] S.S. Tan, L. Zou, E. Hu, Photocatalytic reduction of carbon dioxide into gaseous hydrocarbon using TiO₂ pellets, Catal. Today 115 (2006) 269–273, https://doi. org/10.1016/j.cattod.2006.02.057.
- [48] T. Yan, N. Li, L. Wang, W. Ran, P.N. Duchesne, L. Wan, N.T. Nguyen, L. Wang, M. Xia, G.A. Ozin, Bismuth atom tailoring of indium oxide surface frustrated Lewis pairs boosts heterogeneous CO₂ photocatalytic hydrogenation, Nat. Commun. 11 (2020) 6095, https://doi.org/10.1038/s41467-020-19997-y.
- [49] J. Yu, J. Low, W. Xiao, P. Zhou, M. Jaroniec, Enhanced photocatalytic CO₂-reduction activity of anatase TiO₂ by coexposed {001} and {101} facets, J. Am. Chem. Soc. 136 (2014) 8839–8842, https://doi.org/10.1021/ja5044787.
- [50] L.L. Tan, W.J. Ong, S.P. Chai, A.R. Mohamed, Band gap engineered, oxygen-rich TiO₂ for visible light induced photocatalytic reduction of CO₂, Chem. Commun. 50 (2014) 6923–6926, https://doi.org/10.1039/C4CC01304B.
- [51] Y. Xiao, J. Liu, J. Leng, Z. Yin, Y. Yin, F. Zhang, C. Sun, S. Jin, Long-lived internal charge-separated state in two-dimensional metal-organic frameworks improving photocatalytic performance, ACS Energy Lett. 7 (2022) 2323–2330, https://doi. org/10.1021/acsenergylett.2c00970.
- [52] J. Yang, J. Jing, Y. Zhu, A full-spectrum porphyrin–fullerene D–A supramolecular photocatalyst with giant built-In electric field for efficient hydrogen production, Adv. Mater. 33 (2021) 2101026, https://doi.org/10.1002/adma.202101026.
- [53] J. Kosco, M. Bidwell, H. Cha, T. Martin, C.T. Howells, M. Sachs, D.H. Anjum, S. Gonzalez Lopez, L. Zou, A. Wadsworth, W. Zhang, L. Zhang, J. Tellam, R. Sougrat, F. Laquai, D.M. DeLongchamp, J.R. Durrant, I. McCulloch, Enhanced photocatalytic hydrogen evolution from organic semiconductor heterojunction nanoparticles, Nat. Mater. 19 (2020) 559–565, https://doi.org/10.1038/s41563-019-0591-1.
- [54] K.C. Kwon, S. Choi, K. Hong, D.M. Andoshe, J.M. Suh, C. Kim, K.S. Choi, J.H. Oh, S. Y. Kim, H.W. Jang, Tungsten disulfide thin film/p-type Si heterojunction photocathode for efficient photochemical hydrogen production, MRS Commun. 7 (2017) 272–279, https://doi.org/10.1557/mrc.2017.37.
- [55] L. Kong, Z. Jiang, H.H. Lai, R.J. Nicholls, T. Xiao, M.O. Jones, P.P. Edwards, Unusual reactivity of visible-light-responsive AgBr–BiOBr heterojunction photocatalysts, J. Catal. 293 (2012) 116–125, https://doi.org/10.1016/j. jcat.2012.06.011.
- [56] G. Qian, W. Lyu, X. Zhao, J. Zhou, R. Fang, F. Wang, Y. Li, Efficient photoreduction of diluted CO₂ to tunable syngas by Ni–Co dual sites through d-band center manipulation, Angew. Chem. Int. Ed. 61 (2022) e202210576, https://doi.org/ 10.1002/anie.202210576.
- [57] W. Lyu, Y. Liu, J. Zhou, D. Chen, X. Zhao, R. Fang, F. Wang, Y. Li, Modulating the reaction configuration by breaking the structural symmetry of active sites for efficient photocatalytic reduction of low-concentration CO₂, Angew. Chem. Int. Ed. 62 (2023) e202310733, https://doi.org/10.1002/anie.202310733.
- [58] T. Xu, X. Su, Y. Zhu, S. Khan, D.L. Chen, C. Guo, J. Ning, Y. Zhong, Y. Hu, One-pot solvothermal synthesis of flower-like Fe-doped In₂S₃/Fe₃S₄ S-scheme heteromicrospheres with enhanced interfacial electric field and boosted visible-light-driven CO₂ reduction, J. Colloid Interf. Sci. 629 (2023) 1027–1038, https://doi.org/10.1016/j.jcis.2022.09.132.
- [59] H.S. Moon, K.C. Hsiao, M.C. Wu, Y. Yun, Y.J. Hsu, K. Yong, Spatial separation of cocatalysts on Z-scheme organic/inorganic heterostructure hollow spheres for enhanced photocatalytic H₂ evolution and in-depth analysis of the charge-transfer mechanism, Adv. Mater. 35 (2023) 2200172, https://doi.org/10.1002/ adma.202200172.
- [60] J. Sheng, Y. He, M. Huang, C. Yuan, S. Wang, F. Dong, Frustrated lewis pair sites boosting CO₂ photoreduction on Cs₂CuBr₄ perovskite quantum dots, ACS Catal. 12 (2022) 2915–2926, https://doi.org/10.1021/acscatal.2c00037.
- [61] J. Sheng, Y. He, J. Li, C. Yuan, H. Huang, S. Wang, Y. Sun, Z. Wang, F. Dong, Identification of halogen-associated active sites on bismuth-based perovskite quantum dots for efficient and selective CO₂-to-CO photoreduction, ACS Nano 14 (2020) 13103–13114, https://doi.org/10.1021/acsnano.0c04659.
- [62] J. Xu, Z. Ju, W. Zhang, Y. Pan, J. Zhu, J. Mao, X. Zheng, H. Fu, M. Yuan, H. Chen, R. Li, Efficient infrared-light-driven CO₂ reduction over ultrathin metallic Ni-doped CoS₂ nanosheets, Angew. Chem. Int. Ed. 60 (2021) 8705–8709, https://doi.org/ 10.1002/ange.202017041.
- [63] T.C. Schilke, I.A. Fisher, A.T. Bell, In situInfrared study of methanol synthesis from CO₂/H₂ on titania and zirconia promoted Cu/SiO₂, J. Catal. 184 (1999) 144–156, https://doi.org/10.1006/jcat.1999.2434.
- [64] L. Collado, A. Reynal, F. Fresno, M. Barawi, C. Escudero, V. Perez-Dieste, J. M. Coronado, D.P. Serrano, J.R. Durrant, V.A. de la Peña O'Shea, Unravelling the effect of charge dynamics at the plasmonic metal/semiconductor interface for CO₂ photoreduction, Nat. Commun. 9 (2018) 4986, https://doi.org/10.1038/s41467-018.07397-2
- [65] H. Bluhm, M. Hävecker, A. Knop-Gericke, E. Kleimenov, R. Schlögl, D. Teschner, V. I. Bukhtiyarov, D.F. Ogletree, M. Salmeron, Methanol oxidation on a copper catalyst investigated using in situ X-ray photoelectron spectroscopy, J. Phys. Chem. B 108 (2004) 14340–14347, https://doi.org/10.1021/jp040080j.
- [66] X. Deng, A. Verdaguer, T. Herranz, C. Weis, H. Bluhm, M. Salmeron, Surface chemistry of Cu in the presence of CO₂ and H₂O, Langmuir 24 (2008) 9474–9478, https://doi.org/10.1021/la8011052.
- [67] D. Ferrah, A.R. Haines, R.P. Galhenage, J.P. Bruce, A.D. Babore, A. Hunt, I. Waluyo, J.C. Hemminger, Wet chemical growth and thermocatalytic activity of Cu-based nanoparticles supported on TiO₂ nanoparticles/HOPG: In situ ambient pressure XPS study of the CO₂ hydrogenation reaction, ACS Catal. 9 (2019) 6783–6802, https://doi.org/10.1021/acscatal.9b01419.
- [68] G.E. Muilenberg, Handbook of X-ray photoelectron spectrosocopy, Perkin-Elmer Corporation, Phys. Electron. Div., Minn. (1979) 38–42, https://doi.org/10.1002/ sia.740030412.

- [69] Z. Wang, J. Zhu, X. Zu, Y. Wu, S. Shang, P. Ling, P. Qiao, C. Liu, J. Hu, Y. Pan, J. Zhu, Y. Sun, Y. Xie, Selective CO_2 photoreduction to CH_4 via $Pd^{\delta+}$ -assisted hydrodeoxygenation over CeO₂ nanosheets, Angew. Chem. Int. Ed. 61 (2022) e202203249, https://doi.org/10.1002/anie.202203249. [70] Z. Guan, Y. Chen, Y. Ding, J. Lin, Y. Zhao, Y. Jiao, G. Tian, Efficient charge transfer
- and CO2 photoreduction of hierarchical CeO2@SnS2 heterostructured hollow
- spheres with spatially separated active sites, Appl. Surf. Sci. 592 (2022) 153192,
- https://doi.org/10.1016/j.apsusc.2022.153192. [71] H. Dong, L. Zhang, L. Li, W. Deng, C. Hu, Z.J. Zhao, J. Gong, Abundant Ce³⁺ ions in Au-CeO_x nanosheets to enhance CO₂ electroreduction performance, Small 15 (2019) 1900289, https://doi.org/10.1002/smll.201900289.