

UNIVERSIDAD DE EL SALVADOR MODALIDAD A DISTANCIA FACULTAD DE CIENCIAS NATURALES

MATEMÁTICA CARRERA: LIC. EN ENSEÑANZA DE LA MATEMÁTICA.

ASIGNATURA: ÁLGEBRA LINEAL

Material de Apoyo Unidad II: Matrices y sistemas de ecuaciones lineales

2.1. Conceptos básicos

Definición 11 Sean m y n enteros positivos. Una matriz de tamaño (orden o dimensión) $m \times n$ es un arreglo rectángular de mn números dispuestos en m filas y n columnas.

En general una matriz A de $m \times n$ se presenta por

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & \vdots & & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix},$$

donde el elemento a_{ij} es el elemento en la i- ésima fila y j- ésima columna.

Ejemplo 4 Dada la matriz

$$A = \begin{bmatrix} -1 & 4 & 2 & 3 \\ 1 & 0 & 5 & 7 \end{bmatrix}$$

- a) ¿ Cuál es tamaño o dimensión de la matriz A?

 R. La matriz tiene 2 filas y 4 columnas, por lo que su dimensión es 2×4 .
- b) ¿ Cuál es el elemento a_{23} ? **R.** Elemento a_{23} es el que se encuentra en la fila 2 y columna 3, entonces $a_{23} = 5$.
- c) ¿Y el elemento a_{14} ? Ahora buscamos en la fila 1 y columna 4, así $a_{14}=3$

Tipos de matrices

1. Una matriz fila es una matriz de dimensión $1 \times n$, es decir, formada por una sola fila. También es llamada vector fila.

Ejemplos: $A = \begin{bmatrix} -1 & 0 & 2 & 3 \end{bmatrix}$ y $B = \begin{bmatrix} 1 & 0 & 5 & 7 & -1 & 3 \end{bmatrix}$.

2. Un vector columna o matriz columna, es una matriz de dimensión $m \times 1$. Por ejemplo

$$C = \begin{bmatrix} -1\\0 \end{bmatrix} \text{ y } D = \begin{bmatrix} 1\\-1\\8 \end{bmatrix}$$

- 3. Una matriz A es cuadrada si tiene el mismo número de filas que de columnas, es decir, si m = n. En el caso que $m \neq n$ diremos que la matriz A es rectangular.
- 4. Si A es una matriz cuadrada los elementos a_{ii} para $i=1,\dots,n$ forman lo que se conoce como diagonal principal. Ejemplo

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

5. Diremos que una matriz cuadrada A es triangular superior si todos los elementos que están por debajo de la diagonal principal son iguales a cero. Por ejemplo la matriz

$$A = \begin{bmatrix} -1 & 0 & 2 & 3\\ 0 & 4 & -1 & 2\\ 0 & 0 & 5 & 7\\ 0 & 0 & 0 & -1 \end{bmatrix}$$

6. Una matriz cuadrada es *triangular inferior* si todos los elementos por encima de la diagonal principal son iguales a cero.

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

7. Un tipo de matriz que se utilizará más adelante en transformaciones lineales son las matrices diagonales. Una matriz diagonal A es una matriz cuadrada donde los elementos que están ubicados fuera de la diagonal principal son todos iguales a cero. Es decir

$$A = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

2

Una forma equivalente de decir que una A matriz diagonal es que A sea matriz diagonal superior e inferior. Las matrices diagonales son muy fálices de operar y están relacionadas con diagonalizar un endomorfismo.

Un ejemplo de matriz diagonal es la matriz identidad, que representaremos por I_n

$$I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

está matriz en efecto es la identidad para el producto de matrices que se definirá en la siguiente sección.

- 8. Sea A una matriz de dimensión $m \times n$. La matriz A es escalonada reducida si
 - a) Todas las filas que están formadas únicamente por ceros (si las hubiese) aparecen en la parte de abajo de la matriz.
 - b) El primer elemento distinto de cero de cualquier fila que no consista únicamente de ceros es igual a 1.
 - c) Si dos filas sucesivas, no consistentes únicamente por ceros , el primer 1 de la fila inferior está más a la derecha que el primer 1 de la fila superior.
 - d) Cualquier columna que tenga el primer 1 de una fila tendrá todos los demás elementos iguales a 0.

Las siguientes matrices son escalonadas reducidas

$$A = \begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & 3 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \text{ y } I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Ejercicios

Escribir la dimensión y tipo para cada una de las siguientes matrices.

2.2. Operaciones con matrices

Suma de matrices

 $\square e_{42} =$

 \square tipo de matriz:

Recordemos que en \mathbb{R}^2 podemos sumar vectores $u=(x_1,x_2)$ y $v=(x_1',x_2')$, para obtner un tercer vector u+v sumando componente a componente, esto es, $u+v=(x_1+x_1',x_2+x_2')$. De manera análoga podemos definir la suma de matrices como sigue.

 \square tipo de matriz:

 $\Box f_{12} =$

Definición 12 Sea $A = (a_{ij})$ y $B = (b_{ij})$ dos matrices de dimensión $m \times n$. La suma de la matrices A y B es otra matriz A + B también de dimensión $m \times n$ dada por

$$A + B = (a_{ij}) + (b_{ij}) = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

Observación: De la difinición notamos que solo podemos sumar matrices que tengan las mismas dimensiones. Por ejemplo, no podemos sumar las matrices $A = \begin{bmatrix} 2 & 1 & 5 \\ -1 & 0 & 1 \end{bmatrix}$ y

$$B = \begin{bmatrix} 0 & 1 \\ 2 & -1 \\ 0 & 0 \end{bmatrix}$$
 ya que no son del mismo tamaño.

Ejemplo 5 Sean
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix}$$
 y $B = \begin{bmatrix} -2 & -3 & -4 \\ 1 & 2 & -4 \end{bmatrix}$, su suma

$$A + B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix} + \begin{bmatrix} -2 & -3 & -4 \\ 1 & 2 & -4 \end{bmatrix}$$
$$= \begin{bmatrix} 1 + (-2) & 0 + (-3) & 1 + (-4) \\ 1 + 1 & (-2) + 2 & 3 + (-4) \end{bmatrix}$$
$$= \begin{bmatrix} -1 & -3 & -3 \\ 2 & 0 & -1 \end{bmatrix}$$

Multiplicación de una matriz por un escalar

Recordemos que la multiplicación de un vector por un escalar. Sea $\lambda \in \mathbb{R}$ y $\mathbf{v} = (x, y)$, entonces $\lambda \mathbf{v} = (\lambda x, \lambda y)$. En el caso de la multiplicación de una matriz por un escalar se define de manera análoga

Definición 13 Sea $A = (a_{ij})$ una matriz de $m \times y \lambda$ un escalar, la multiplicación de la matriz A por el escalar λ es la matriz λA definida por

$$\lambda A = (\lambda a_{ij}) = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \dots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \dots & \lambda a_{2n} \\ \vdots & \vdots & & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \dots & \lambda a_{mn} \end{bmatrix},$$

Ejemplo 6 Dadas las matrices $A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -2 & 3 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 1 \\ -2 & 3 \\ 0 & -1 \end{bmatrix}$ y $C = \begin{bmatrix} -\frac{1}{2} & 1 \\ 1 & -\frac{3}{2} \\ 0 & -1 \end{bmatrix}$ se

tiene entonces

$$\frac{1}{2}A = \begin{bmatrix} \frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & -1 & \frac{3}{2} \end{bmatrix}, (-2)B = \begin{bmatrix} -2 & -2 \\ 4 & -6 \\ 0 & 2 \end{bmatrix}$$
 y $B + 2C = \begin{bmatrix} 1 & 1 \\ -2 & 3 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} -1 & 2 \\ 2 & -3 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 3 \\ 0 & 0 \\ 0 & -3 \end{bmatrix}$

Con la definición de multiplicación de una matriz por un escalar podemos definir la resta de matrices de la siguiente manera.

Definición 14 Sean A y B dos matrices de $m \times n$ la diferencia A - B := A + (-1)B.

Multiplicación de matrices

Sea $\mathbf{a} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ un vector fila de dimensión $1 \times n$ y $\mathbf{b} = \begin{bmatrix} a_1 \\ b_2 \\ \vdots \\ b \end{bmatrix}$ un vector columna

de dimensión $n \times 1$. Definimos definimos el producto escalar de un vector fila y un vector columna como

$$\mathbf{a} \cdot \mathbf{b} = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
$$= a_1b_1 + a_2b_2 + \cdots + a_nb_n$$

$$\mathbf{Definición\ 15\ Sean\ }A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \text{ una matriz de } m \times n \text{ y}$$

$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nj} & \cdots & b_{np} \end{bmatrix} \text{ una matriz de } n \times p.$$

$$Denotaremos por \mathbf{a}_i = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}, \text{ el vector fila formado por la } i-1$$

$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1j} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2j} & \cdots & b_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nj} & \cdots & b_{np} \end{bmatrix}$$
una matriz de $n \times p$

Denotaremos por $\mathbf{a}_i = \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix}$, el vector fila formado por la i-ésima fila de la matriz A y por $\mathbf{b}_j = \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ , \end{bmatrix}$, el vector columna formado por la j-ésima columna de B. Se define el producto de las matrices A y B como la matriz $C = (c_{ij})$ de dimensión $m \times p$ donde:

$$c_{ij} = \mathbf{a}_i \cdot \mathbf{b}_j$$

$$= \begin{bmatrix} a_{i1} & a_{i2} & \cdots & a_{in} \end{bmatrix} \cdot \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix}$$

$$= a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{in}b_{nj}$$

Es decir, el elemento ij-ésimo de la matriz producto AB es igual al producto escalar de la fila i-ésima de A con la columna j-ésima de B.

La definción indica que solo pueden multiplicar dos matrices sólo si el número de columnas de la primera es igual al número de filas de la segunda.

Ejemplo 7 Sean
$$A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ -1 & 1 & 1 \\ 0 & -2 & 1 \end{bmatrix}$$
 y $B = \begin{bmatrix} 3 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix}$. Calcular AB .

Observemos que A tiene dimesión 4×3 y B tiene dimensión 3×2 por lo que su producto AB = C tiene dimensión 4×2 . Calculando:

$$c_{11} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} = 3 \qquad c_{12} = \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = 2$$

$$c_{21} = \begin{bmatrix} 0 & 3 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} = 0 \qquad c_{22} = \begin{bmatrix} 0 & 3 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = 3$$

$$c_{31} = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} = -2 \qquad c_{32} = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = 3$$

$$c_{41} = \begin{bmatrix} 0 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix} = 1 \qquad c_{42} = \begin{bmatrix} 0 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} = 0$$

Se tiene entonces que

$$AB = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ -1 & 1 & 1 \\ 0 & -2 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 & 0 \\ 0 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 3 & 2 \\ 0 & 3 \\ -2 & 3 \\ 1 & 0 \end{bmatrix}$$

En este mismo ejemplo ¿es posible calcular BA? ¿Será AB = BA?.

En general el producto de matrices no es conmutativo, como en el ejemplo anterior AB se puede realizar pero en cambio BA no está definido. Veamos el siguiente ejemplo.

Ejemplo 8 Sean
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & 0 \end{bmatrix}$$
 y $B = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$. Calcular AB y BA .

La matriz A tiene dimensión 2×3 y la matriz B tiene dimensión 3×2 . El producto AB está definido ya que el número de columnas de A coincide con el número de filas B (ambas son iguales a 3). Por lo que AB = C tiene dimensión 2×2 . Calculando cada elemento de AB.

$$c_{11} = \begin{bmatrix} 3 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2 \qquad c_{21} = \begin{bmatrix} 2 & 4 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 2$$
$$c_{12} = \begin{bmatrix} 3 & 1 & -1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} = 0 \qquad c_{22} = \begin{bmatrix} 2 & 4 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} = 4$$

Así

$$AB = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 2 & 4 \end{bmatrix} = 2 \begin{bmatrix} 1 & 0 \\ 1 & 2 \end{bmatrix}$$

Para BA. Como B tiene dimensión 3×2 y A tiene dimensión 2×3 , entonces el producto BA = C' tiene dimensión 3×3 . Calculando

$$c'_{11} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 3 \qquad c'_{21} = \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 2 \qquad c'_{31} = \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 3 \\ 2 \end{bmatrix} = 5$$

$$c'_{12} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 1 \qquad c'_{22} = \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 4 \qquad c'_{32} = \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 4 \end{bmatrix} = 5$$

$$c'_{13} = \begin{bmatrix} 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -1 \qquad c'_{23} = \begin{bmatrix} 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \end{bmatrix} = 0 \qquad c'_{33} = \begin{bmatrix} 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} -1 \\ 0 \end{bmatrix} = -1$$

Por lo que

$$BA = \begin{bmatrix} 3 & 1 & -1 \\ 2 & 4 & 0 \\ 5 & 5 & -1 \end{bmatrix}$$

Claramente $AB \neq BA$

2.3. Reducción de matrices

Es esta sección se estudiará como reducir una matriz a su forma escalonada o escalonada reducida aplicando operaciones elementales de filas.

Operaciones elementales de filas

Se definen las siguientes operaciones con filas

- 1. Multiplicar una fila por un número distinto de cero.
- 2. Sumar un múltiplo de una fila a otra fila.
- 3. Intercambiar dos filas.

Notación:

- 1. Para indicar que la i-ésima fila de una matriz se ha multiplacado por un escalar $c \neq 0$ lo indicamos por cf_i .
- 2. $f_i \to f_i + cf_j$ indica que a la fila i- ésima le estamos sumando un múltiplo de la fila j-ésima.
- 3. $f_i \leftrightarrow f_j$ indica que estamos intercambiando la filas i- ésima y j- ésima.

2.4. El conjunto solución de un sistema de ecuaciones

Se define un sistema lineal de m ecuaciones con n incognitas como

Donde $x_1, ..., x_n$ son las incognitas o variables y los $b_1, ..., b_n$ son terminos idependientes.

El sistema anterior lo podemos escribir de forma matricial como

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}$$

Teorema 3 1. Si el número de ecuaciones es mayor o igual que el número de variables en un sistema lineal, entonces se tiene uno de los siguientes casos:

- El sistema no tiene solución.
- El sistema tiene solución única.
- El sistema tiene infinitas soluciones.
- 2. Si hay menos ecuaciones que variables entonces el sistema:
 - No tiene solución o
 - tiene infinitas soluciones.

2.5. Método de eliminación de Gauss

Existen dos métodos para resolver sistemas de ecuaciones lineales.

- 1. Eliminación de Gauss Jordan: Consiste en reducir la matriz de coeficientes a la forma escalonada reducida.
- 2. Eliminación Gaussiana: Se reduce la matriz a la forma escalonada. Una vez hecho esto se despeja la última incognita y se usa sustitución hacia atrás para despejar las otras incógnitas

Veamos los siguientes ejemplos donde se utilizan ambos métodos.

Ejemplos

1. Resolver el sistema

$$w-2x+y-z = 1$$

$$w+x+y-z = 1$$

$$w+y-z = 1$$

Escribimos la matriz la respectiva aumentada y la llevamos a la forma escalonada a través de operaciones elementales de fila

$$\begin{bmatrix} 1 & -2 & 1 & -1 & | & 1 \\ 1 & 1 & 1 & -1 & | & 1 \\ 1 & 0 & 1 & -1 & | & 1 \end{bmatrix} \xrightarrow{f_2 \to f_2 + (-1)f_1} \begin{bmatrix} 1 & -2 & 1 & -1 & | & 1 \\ 0 & 3 & 0 & 0 & | & 0 \\ 0 & -2 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{f_2 \to \frac{1}{3}f_2} \begin{bmatrix} 1 & -2 & 1 & -1 & | & 1 \\ 0 & 3 & 0 & 0 & | & 0 \\ 0 & -2 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{f_2 \to \frac{1}{3}f_2} \begin{bmatrix} 1 & 0 & 1 & -1 & | & 1 \\ 0 & 1 & 0 & 0 & | & 0 \\ 0 & -2 & 0 & 0 & | & 0 \end{bmatrix}$$

Obtenemos el sistema equivalente

$$\begin{aligned}
w + y - z &= 1 \\
x &= 0 \\
0 &= 0
\end{aligned}$$

La solución viene dada por w = 1 - y + z y x = 0. Este sistema tiene infinitas soluciones ya que y y z pueden tomar cualquier valor en los números reales.

2. Resolver el sistema

$$w + 2x + 8y - 7z = -2$$

$$3w + 2x + 12y - 5z = 6$$

$$-w + x + y - 5z = -10$$

Escribimos la matriz aumentada del sistema y la llevamos a su forma escalonada reducida

$$\begin{bmatrix} 1 & 2 & 8 & -7 & | & -2 \ 3 & 2 & 12 & -5 & | & 6 \ -1 & 1 & 1 & -5 & | & -10 \ \end{bmatrix} \xrightarrow{f_2 \to f_2 + (-3)f_1} \begin{bmatrix} 1 & 2 & 8 & -7 & | & -2 \ 0 & -4 & -12 & 16 & | & 12 \ 0 & 3 & 9 & -12 & | & -12 \ \end{bmatrix} \xrightarrow{f_2 \to -\frac{1}{4}f_2}$$

$$\begin{bmatrix} 1 & 2 & 8 & -7 & | & -2 \ 0 & 1 & 3 & -4 & | & -3 \ 0 & 3 & 9 & -12 & | & 12 \ \end{bmatrix} \xrightarrow{f_3 \to f_3 + (-3)f_2} \begin{bmatrix} 1 & 0 & -2 & 1 & | & 4 \ 0 & 1 & 3 & -4 & | & -3 \ 0 & 0 & 0 & 0 & | & -4 \ \end{bmatrix} \xrightarrow{f_3 \to -\frac{1}{4}f_3}$$

$$\begin{bmatrix} 1 & 0 & -2 & 1 & | & 4 \ 0 & 1 & 3 & -4 & | & 0 \ 0 & 0 & 0 & 0 & | & 1 \ \end{bmatrix} \xrightarrow{f_2 \to f_2 + 3f_3} \begin{bmatrix} 1 & 0 & -2 & 1 & | & 0 \ 0 & 1 & 3 & -4 & | & 0 \ 0 & 0 & 0 & 0 & | & 1 \ \end{bmatrix}$$

Obtenemos el sistema equivalente

$$w - 2y + z = 0$$
$$x + 3y - 4 = 0$$
$$0 = 1$$

La tercera ecuación es una contradicción ya que 0 no es igual a 1, por lo que el sistema original no tiene solución.

3. Resolver el sistema

$$x + 2y + 3z = 1$$

$$2x - y + z = 2$$

$$x - 8y - 7z = 1$$

$$y + z = 0$$

Escribimos la matriz aumentada del sistema y la llevamos a su forma escalonada reducida

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 \\ 2 & -1 & 1 & | & 2 \\ 1 & -8 & -7 & | & 1 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{f_2 \to f_2 + (-2)f_1} \begin{bmatrix} 1 & 2 & 3 & | & 1 \\ 0 & -5 & -5 & | & 0 \\ 0 & -10 & -10 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{f_2 \leftrightarrow f_4}$$

$$\begin{bmatrix} 1 & 2 & 3 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & -10 & -10 & | & 0 \\ 0 & -5 & -5 & | & 0 \end{bmatrix} \xrightarrow{f_3 \to f_3 + 10f_2} \begin{bmatrix} 1 & 2 & 3 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix} \xrightarrow{f_1 \to f_1 + (-2)f_2}$$

$$\begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1 & | & 1 \\ 0 & 1 & 1 & | & 0 \\ 0 & 0 & 0 & | & 0 \\ 0 & 0 & 0 & | & 0 \end{bmatrix}$$

En el último caso obtenemos la matriz escalonada reducida, se tiene así el sistema equivalente

$$\begin{array}{rcl} x + z & = & 1 \\ y + z & = & 0 \end{array}$$

Este sistema tiene infinitas soluciones: x = 1 - z, y = -z y z puede tomar cualquier valor en los números reales.

4. Estudiar en función del parámetro a la solución del sistema

$$\begin{aligned}
x + y &= 5 \\
ax + 2y &= 10
\end{aligned}$$

Escribimos la matriz aumentada y aplicamos operaciones elementales de filas para llevarla a su forma escalonada.

$$\begin{bmatrix} 1 & 1 & | & 5 \\ a & 2 & | & 10 \end{bmatrix} \xrightarrow{f_2 \to f_2 + (-a)f_1} \begin{bmatrix} 1 & 1 & | & 5 \\ 0 & 2 - a * & | & 10 - 5a \end{bmatrix} \xrightarrow{f_2 \to \frac{1}{2-a}f_2} \begin{bmatrix} 1 & 1 & | & 5 \\ 0 & 1 & | & 5 \end{bmatrix}$$

Analizando:

• Si $a \neq 2$ podemos llevar la matriz a su forma escalonada, y se tiene que el sistema tiene como solución única x = 0 y y = 5.

• Si a=2, en la fila marcado con * al sutituir el valr de a=2 obtenemos como sistema equivalente:

$$\begin{array}{rcl}
x + y & = & 5 \\
0 & = & 0
\end{array}$$

por lo que el sistema tiene infinitas soluciones, $y = t \in \mathbb{R}$ y x = 5 - t

5. Encuentre el valor de a tal que el sistema

$$x + y + az = 1$$

$$x + ay + z = 1$$

$$ax + y + z = 1$$

- a) Tenga solución única.
- b) No tenga solución
- c) Tenga infinitas soluciones

Escribimos la matriz aumentada del sistema y la llevamos a la forma escalonada; pero ahora se debe tener cuidado al realizar las operaciones elementales de filas ya que no sabemos el valor de a, debemos cuidar de no dividir por 0.

$$\begin{bmatrix} 1 & 1 & a & | & 1 \\ 1 & a & 1 & | & 1 \\ a & 1 & 1 & | & 1 \end{bmatrix} \xrightarrow{f_2 \to f_2 + (-1)f_1} \begin{bmatrix} 1 & 1 & a & | & 1 \\ 0 & a - 1 & 1 - a & | & 0 \\ 0 & 1 - a & 1 - a^2 & | & 1 - a \end{bmatrix} \xrightarrow{f_2 \to \frac{1}{a-1}f_2} \xrightarrow{(a \neq 1)}$$

$$\begin{bmatrix} 1 & 1 & a & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 - a & 1 - a^2 & 1 - a \end{bmatrix} \xrightarrow{f_3 - (1 - a)f_2} \begin{bmatrix} 1 & 1 & a & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & (a + 2)(1 - a) ** & 1 - a \end{bmatrix}$$

$$\frac{f_3 \to \frac{1}{(a+2)(1-a)} f_2}{(a \neq -2)} = \begin{bmatrix}
1 & 1 & a & | & 1 \\
0 & 1 & -1 & | & 0 \\
0 & 0 & 1 & | & \frac{1}{a+2}
\end{bmatrix}$$

Analizando los casos:

• Si a = 1, en el primer paso se tiene que al sutituir el valor de a = 1 la fila 2 y fila 3 todos sus elementos son iguales a 0. Por tanto el sistema se reduce a

$$\begin{aligned}
x + y + z &= 1 \\
0 &= 0 \\
0 &= 0
\end{aligned}$$

por lo que tiene infinitas soluciones: z = t, y = s y x = 1 - t - s, con $t, s \in \mathbb{R}$.

- Si a = -2, en el tercer paso en la fila tres al sustituir el valor de a = -2 la ecuación que le correspondiente es 0 = 3. Por lo que el sistema no tendría solución.
- Si $a \neq 1$ y $a \neq -2$. podemos llevar la matriz de coeficientes a la forma escalonada y el sistema original tiene como solucuión única:
- 6. Encuentre el valor de a tal que el sistema

$$x + y + z = a$$

$$ax + y + 2z = 2$$

$$x + ay + z = 4$$

- a) Tenga solución única.
- b) No tenga solución
- c) Tenga infinitas soluciones

Escribimos la matriz aumentada del sistema y la llevamos a la forma escalonada; pero ahora se debe tener cuidado al realizar las operaciones elementales de filas ya que no sabemos el valor de a, debemos cuidar de no dividir por 0.

$$\begin{bmatrix} 1 & 1 & 1 & | & a \\ a & 1 & 2 & | & 2 \\ 1 & a & 1 & | & 4 \end{bmatrix} \xrightarrow{f_2 \to f_2 + (-a)f_1} \begin{bmatrix} 1 & 1 & 1 & | & a \\ f_3 \to f_3 + (-1)f_1 & | & 1 & | & 1 & | & a \\ 0 & 1 - a & 2 - a & | & 2 - a^2 \\ 0 & a - 1 & 0 & | & 4 - a \end{bmatrix} \xrightarrow{f_2 \to \frac{1}{1-a}f_2} (a \neq 1)$$

$$\begin{bmatrix} 1 & 1 & 1 & a \\ 0 & 1 & \frac{2-a}{1-a} & \frac{2-a^2}{1-a} \\ 0 & a-1* & 0 & 4-a \end{bmatrix} \xrightarrow{f_3 \to f_3 - (a-1)f_2} \begin{bmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 2-a & \frac{2-a^2}{1-a} \\ 0 & 0 & (2-a)(1-a)** & (2-a)(a+3) \end{bmatrix}$$

$$\frac{f_3 \to \frac{1}{(2-a)(1-a)}f_3}{(a \neq 2)} = \begin{bmatrix}
1 & 1 & 1 & a \\
0 & 1 & 2-a & \frac{2-a^2}{1-a} \\
0 & 0 & 1 & a+3
\end{bmatrix}$$

Ahora hacemos el siguiente análisis:

• Si $a \neq 1$ y $a \neq 2$, el sistema tiene solución única (despejando hacia atrás):

$$z = 3+a$$

$$y = \frac{2-a^2}{1-a} - \frac{(2-a)(3+a)}{1-a}$$

$$x = a - \frac{2-a^2}{1-a} + \frac{(2-a)(3+a)}{1-a} - (3+a)$$

- Si a = 1, en el segundo paso en la fila marcada con * al sutituir a = 1 la ecuación conrrespondiente a dicha fila es 0 = 3. Por lo que el sistema no tiene solución.
- Si a=2, en el tercer paso, en la fila marcada con ** al sustituir a=2 obtenemos que la ecuación correspodiente a dicha fila es 0=0. Por lo que el sistema tiene infinitas soluciones. De manera explícita, al sutituir a=2 en la matriz del tercer paso se tiene el sistema

$$\begin{array}{rcl}
x + y + z & = & 2 \\
y & = & 2 \\
& = & 0
\end{array}$$

que tiene por solución x = -z y y = 2.

Ejercicios

Sistemas de ecuaciones

1. 2.

$$x + 2y + z = 2$$
 $2x + 2y + 3z = 0$
 $2x + 4y = 2$ $4x + 8y + 12z = -4$
 $3x + 6y + z = 4$ $6x + 2y + 3z = 4$

$$x - y + z = 1$$
 $x + y = 2$
 $x - y - z = 2$ $x - y = 5$
 $x + y - z = 3$ $3x + y = 9$

7.

8.

x + y + z = 2

4.
$$2w + x + 7y - 2z = 4$$
$$2w + x + 3y + 5z = 1$$
$$4w + 4y + 8z = 0$$
$$3w - 2x + 11z = 13$$
$$w + x + 5y - 3z = 1$$

$$w + x + 2y + 3z = 0$$

$$x + y + z = 0$$

9.

5.
$$7w + 6x + 5y + z = 30$$

$$-3w - x + 3y + z = 3$$

$$w + x - y - z = 2$$

$$-2w - x + y - 4z = -2$$

$$-2w + 5x + 5y + 2z = 9$$

$$-w - x + 2y + 3z = 1$$
 $3w + 4x - y + 2z = 6$
 $w + 2x + y - 2z + w = 3$ $w - 2x + 3y + z = 2$
 $-w + x - 2y + z = 4$ $10x - 10y - z = 1$

Estudio de soluciones de sistemas de ecuaciones en función de paramétros

Estudiar en función de los paramétros α, β, γ y δ la solución de los siguientes sistemas de ecuaciones lineales

$$x-y-3z = 3$$

$$2x+z = 0$$

$$2y+7z = \alpha$$

$$x+2y-z = 7$$

$$3x-y+2z = 9$$

$$7x+7y-2z = \alpha$$

$$x + 2y = 0$$

$$\alpha x + 8y + 3z = 0$$

$$\beta y + 5z = 0$$

$$x + y + \alpha z = 1$$

$$x + \alpha y + z = 1$$

$$\beta x + y + z = -2$$

5. 6.

$$2w + x + 3y + 5z = 1$$

$$x + 2y + 3z = \alpha$$

$$2x + 3y + 4z = \beta$$

$$3x + 4y + \delta z = \gamma$$

$$2w + x + 3y + 5z = 0$$

$$w + x + 2y + 3z = 0$$

$$x + y + z = 0$$

Sistemas de ecuaciones homogéneos

Un sistema de ecuaciones lineales de $m \times n$, es llamado homogéneo si todas las constantes o términos independientes $b_1, b_2, ..., b_m$ son iguales a cero. Es decir

Una observación importante es que un sistema de ecuaciones homogéneo siempre tiene al menos una solución; ya que $x_1 = 0, x_2 = 0, \dots x_n = 0$ siempre es una solución.

2.6. Calculo de matrices inversas

Definición 16 Sea A una matriz de $n \times n$, diremos que A es invertible, si existe otra matriz otra matriz del mismo orden denotada por A^{-1} tal que

$$A \cdot A^{-1} = A^{-1}A = I_n$$

La definición indica que no todas las matricies tienen inversa. En el caso que una matriz A no tenga inversa se dirá que es singular.

Teorema 4 Sean A y B matrices de $n \times n$

- 1. Si A es invertible su inversa es única.
- 2. Si A y B son invertibles, entonces su producto AB es invertible y $(AB)^{-1} = B^{-1}A^{-1}$.
- 3. Si Aes invertible, el sistema $A\mathbf{x}=\mathbf{b}$ tiene solución única $\mathbf{x}=A^{-1}b$

Veremos en el siguiente ejemplo un método para calcular la inversa de una matriz en caso sea invertible.

Ejemplo 9 Calcular la inversa de la matriz $A = \begin{bmatrix} -1 & 2 \\ 4 & -7 \end{bmatrix}$, en caso de ser invertible.

Supongamos que A^{-1} existe y además $A^{-1} = \begin{bmatrix} w & x \\ y & z \end{bmatrix}$. De la definición sabemos que

$$AA^{-1} = \begin{bmatrix} -1 & 2 \\ 4 & -7 \end{bmatrix} \begin{bmatrix} w & x \\ y & z \end{bmatrix} = \begin{bmatrix} -w + 2y & -x + 2z \\ 4w - 7y & 4x - 7z \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

Por igualdad de matrices se obtiene el sistema de ecuaciones:

Notesé que la primera y tecera encuación solo dependen de las variables w y y, mientras que la segunda y la cuarta ecuación dependen únicamente de las variables x y z, por lo que el sistema anterior puede ser separado en dos sistemas con dos incógnitas cuyas matrices aumentadas son

$$\begin{bmatrix} -1 & 2 & 1 \\ 4 & -7 & 0 \end{bmatrix} y \begin{bmatrix} -1 & 2 & 0 \\ 4 & -7 & 1 \end{bmatrix}$$

Como ambos sistemas deben tener solución única, entonces al aplicar el método de eliminación de Guauss-Jordan la forma escalonada reducida de ambas matrices debe coincidir con la matriz identidad, es decir

$$\left[\begin{array}{cc|c} 1 & 0 & w \\ 0 & 1 & y \end{array}\right] y \left[\begin{array}{cc|c} 1 & 0 & x \\ 0 & 1 & z \end{array}\right]$$

Podemos generalizar el procedimiento anterior para encontrar la inversa de una matriz cuadrada A en los siguientes pasos:

- Escribir la matriz aumentada (A|I)
- Utiliar operaciones elementales para reducir a la martiz A a su forma escalonada reducida.
- Si la forma escalona reducida de la matriz A es la identidad, entonces A es invertible y su inversa es la matriz que quede al lado derecho de la barra. En caso contrario la matriz es singular.

Ejemplo 10 Verificar si la matriz
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \end{bmatrix}$$
 es invertible.

Escribimos la mariz aumentada (A|I) y aplicamos operaciones elementales de filas hasta llevar la matriz A a su forma escalonada reducida

$$\begin{bmatrix} 1 & 1 & 0 & | & 1 & 0 & 0 \\ 0 & -1 & 1 & | & 0 & 1 & 0 \\ 1 & 0 & 0 & | & 0 & 0 & 1 \end{bmatrix} \xrightarrow{f_1 \leftrightarrow f_3} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & -1 & 1 & | & 0 & 1 & 0 \\ 1 & 1 & 0 & | & 1 & 0 & 0 \end{bmatrix} \xrightarrow{f_3 \to f_3 - f_1} \begin{bmatrix} 1 & 0 & 0 & | & 0 & 0 & 1 \\ 0 & -1 & 1 & | & 0 & 1 & 0 \\ 0 & 1 & 0 & | & 1 & 0 & -1 \end{bmatrix}$$

$$\xrightarrow{f_2 \to (-1)f_2} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 & 0 & -1 \end{array} \right] \xrightarrow{f_3 \to f_3 + (-1)f_2} \left[\begin{array}{ccc|c} 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1 & 1 & -1 \end{array} \right] \xrightarrow{f_2 \to f_2 + f_3}$$

$$\left[\begin{array}{ccc|cccc}
1 & 0 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & -1
\end{array}\right]$$

Obervamos que al reducir la matriz A, su forma escalonada reducida coincide con la identidad, por tanto la matriz A es invertible y su inversa es:

$$A^{-1} = \left[\begin{array}{ccc} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & -1 \end{array} \right]$$

Para verificar la respuesta se pueden multiplicar ambas matrices y comprobar que

$$A \cdot A^{-1} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I_3$$

Ejercicios. Inversa de una matriz

- 1. Muestre que si A y B son dos matrices cuadradas de orden n con $AB = I_n$ entonces A es invertible y $A^{-1} = B$.
- 2. Utilizando operaciones elementales de fila verificar cuales de las siguientes matrices son invertibles e indicar su inversa.

a)
$$\begin{bmatrix} 1 & 3 & -5 & 7 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
c)
$$\begin{bmatrix} 1 & 3 & 5 & 7 & \cdots & 2n-1 \\ 2n-1 & 1 & 3 & 5 & \cdots & 2n-3 \\ 2n-3 & 2n-1 & 1 & 3 & \cdots & 2n-5 \\ & & & & & & & & \\ 3 & 5 & 7 & 9 & \cdots & 1 \end{bmatrix}_{n \times n}$$
b)
$$\begin{bmatrix} 0 & 1 & 1 & \cdots & 1 \\ 1 & 0 & 1 & \cdots & 1 \\ 1 & 1 & 0 & \cdots & 1 \\ & & & & & & \\ 1 & 1 & 1 & \cdots & 0 \end{bmatrix}$$
d)
$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ a & 1 & 0 & \cdots & 0 & 0 \\ a^2 & a & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ a^{n-1} & a^{n-2} & a^{n-3} & \cdots & a & 1 \end{bmatrix}_{n \times n}$$

3. Encontrar para que valores de k la matriz A es invertible, en tales casos encontrar A^{-1} .

$$A = \left[\begin{array}{rrr} 1 & -1 & 3 \\ 2 & 1 & -3 \\ -1 & 4 & k \end{array} \right]$$

4. Sea A una matriz de $n \times n$ para la cual existe $k \in \mathbb{N}$ con $A^k = 0_n$. Probar que

$$(I_n - A)^{-1} = I_n + A + A^2 + \dots + A^{k-1}$$

.

- 5. Sean P y Q dos matrices cuadradas con entradas en $\mathbb R$ tales que $P^3=Q^3$, $P^2Q=Q^2P$ y P^2+Q^2 es invertible. Mostrar que P=Q.
- 6. Sean P y Q dos matrices cuadradas con entradas en \mathbb{R} . Si P, Q y P+Q son matrices invertibles, determinar si $P^{-1}+Q^{-1}$ tiene inversa.