Project Report

2023012253, 2024011850

1 Task 1: Loop Order Variants

In Task 1, we experimented with different loop orderings for matrix multiplication. The measured average speedups for each ordering are as follows:

Loop Order	mnk	mkn	kmn	nmk	nkm	knm
Speedup	1.00	4.91	4.81	1.01	0.88	1.01

Figure 1 illustrates the performance results.

Figure 1: Performance results for different loop orderings in Task 1.

2 Task 2: Transposed Y and Blocking Techniques

In Task 2, we implemented several optimizations including:

- Transposing the matrix Y.
- Blocked matrix multiplication.
- Loop unrolling.

We experimented with different block sizes, loop orders, and unrolling factors. The best performance was achieved with the t_mnk_lu4 variant, which attained an average speedup of 7.52. Other variants achieved the following speedups:

- t_mnk: 5.89,
- mnkkmn_b32: 4.63,
- mnk_lu2: 1.04,
- t_mnk_b64_lu4: 6.93,
- knmknm_b8_lu2: 4.33,
- knmknm_b16_lu2 (alternative): 3.19.

Figure 2 shows the performance comparisons for Task 2.

Figure 2: Performance results for different optimizations in Task 2.

3 Task 3: SIMD with 16-bit Data

Task 3 focused on accelerating the inner-product computation using SIMD with 16-bit data (using YP16 and X16). To prevent overflow, the multiplication results were first extended to 64-bit integers before accumulation. The speedups observed for various configurations were:

• mnk: 1.00,

• simd: 2.63,

• o3: 2.62,

• simd-o3: 39.61.

Figure 3 illustrates the performance results for Task 3.

Figure 3: Performance results for SIMD optimizations in Task 3.