Name: Elil Cemre Durgut

ID: 26493

Recitation Section: A18

Signature: Ili

Math 201-Lecture Participation Assignment week 12

Theorems

zero vector of T

- 1) If $\lambda_1 \neq \lambda_2$ are the eigenvalues of T, then $E_T(\lambda_1) \cap E_T(\lambda_2) = \{0\}$
- 2) T: V-1V be linear Let $\lambda_1, \lambda_2, \dots, \lambda_k$ be distinct eigenvalues of T.

 If v_1, v_2, \dots, v_k are the eigenvectors of T such that $T(v_i) = \lambda_i V_i$ for $i=1,\dots,k$.

 Then $\{v_1, v_2, \dots, v_k\}$ is a linearly independent subset of V.
 - 3) Let T: V-1 V be linear with dim V= n < 00. If T has n distinct eigenvalues, then T is diagonalizable.
 - 4) T:V-V be linear with dim V=n < 0.

T is diagonalizable \iff (i) $P_{T}(\lambda)$ has a roots (counted with multiplicities)

(ii) $AM(\lambda) = GM(\lambda)$ for each eigenvalue of T. \iff There exists an eigenbasis B of V.