Errata

O. Egeland and J.T. Gravdahl

Modeling and Simulation for Automatic Control

ISBN 82-92356-01-0, Marine Cybernetics, 2nd Printing, Trondheim June 2003. Last modified: May 30, 2005.

Page	Reads	Correct to
22, (1.122)	$J_m \dot{\omega}_m = T_m - T_L$	$J_m \dot{\omega}_m = T - T_L$
22, below (1.128)	port variables T_1 and ω_m	port variables T_1 and ω_1
23, (1.135)	$J_m \dot{\omega}_1 = T_L$	$J_m \dot{\omega}_1 = T_1$
31, above (1.170)	x_d, v_d	x_0, v_0
31, (1.170)	$u = K(x_d - x) + D(v_d - v)$	$u = K(x_0 - x) + D(v_0 - v)$
45, (2.31)	$H(s) = \frac{\omega_m}{u_a}(s) = \frac{1}{K} \frac{1}{1 + T_m s + T_a T_m s}$	$H(s) = \frac{\omega_m}{u_a}(s) = \frac{1}{K} \frac{1}{1 + T_m s + T_a T_m s^2}$

Page	Reads	Correct to
198, (5.23)	$F_f = \begin{cases} \operatorname{sat}(F_a, F_c) & \text{when } v = 0\\ \dots & \text{else} \end{cases}$	$F_f = \begin{cases} \operatorname{sat}(F_a, F_s) & \text{when } v = 0\\ \dots & \text{else} \end{cases}$
201, below (5.36)	\dots a pole at $ v /F_c$	\dots a pole at $\sigma v /F_c$
201, below (5.36)	a time constant $T = F_c/ v $.	a time constant $T = F_c/(\sigma v)$.
203, (5.43)	$\sigma_0 g(v) = F_c + (F_s - F_c)e^{-(v/v_s)^2}$	$g(v) = F_c + (F_s - F_c)e^{-(v/v_s)^2}$
204, (5.47)	$F_c \le \sigma_0 g(v) \le F_s$	$F_c \le g(v) \le F_s$
249, (6.334)	$egin{aligned} = rac{1}{2} \left(egin{array}{cc} \eta & -oldsymbol{\epsilon}^T \ oldsymbol{\epsilon} & \eta \mathbf{I} + oldsymbol{\epsilon}^ imes \end{array} ight) \left(egin{array}{cc} 0 \ oldsymbol{\omega}^a \end{array} ight) = \end{aligned}$	$egin{aligned} = rac{1}{2} \left(egin{array}{cc} \eta & -oldsymbol{\epsilon}^T \ oldsymbol{\epsilon} & \eta \mathbf{I} + oldsymbol{\epsilon}^ imes \end{array} ight) \left(egin{array}{cc} 0 \ oldsymbol{\omega}^b \end{array} ight) = \end{aligned}$
249, (6.335)	$\left \ \cdots \left(egin{array}{c} 0 \ oldsymbol{\omega}^a \end{array} ight) \cdots ight.$	$\left \ \cdots \left(egin{array}{c} 0 \ oldsymbol{\omega}^b \end{array} ight) \cdots ight $
249, (6.336)	$\left \ \cdots \left(egin{array}{c} 0 \ oldsymbol{\omega}^a \end{array} ight) \cdots ight.$	$\left \ \cdots \left(egin{array}{c} 0 \ oldsymbol{\omega}^b \end{array} ight) \cdots ight.$
319, (8.51)	$\left[\ldots + \mathbf{J}_{\omega_{i}}^{T}\left(\mathbf{q} ight)\mathbf{M}_{ci}^{i}\mathbf{J}_{\omega_{0i}}\left(\mathbf{q} ight) ight]$	$[\ldots + \mathbf{J}_{\omega_{0i}}^T(\mathbf{q})\mathbf{M}_{ci}^i\mathbf{J}_{\omega_{0i}}(\mathbf{q})]\dot{\mathbf{q}}$

Page	Reads	Correct to
402, above (10.1)	$\dots rac{D \mathbf{u}}{V t} \dots$	$1 \cdots \frac{D\mathbf{u}}{Dt} \cdots$
402, below (10.1)	$\dots rac{D \mathbf{u}}{V t} \dots$	$\dots \frac{D\mathbf{u}}{Dt} \dots$
484, line 12	a large gradients	large gradients

Page	Reads	Correct to
518, (14.22)	$\dots + rac{h^{p+1}}{(p+1)!} rac{d^p \mathbf{f}[\mathbf{y}_L(au), au]}{dt^p}$	$\ldots + rac{h^{p+1}}{(p+1)!} rac{d^p \mathbf{f}[\mathbf{y}_L(t_n; au), au]}{dt^p}$
533, line 1	when $ \lambda $ goes to infinity	when $ h\lambda $ goes to infinity.