Lecture 9

Aakash Jog

Sunday 23rd November, 2014

Contents

1	Local Minimum and Maximum	2
2	Absolute or Global Minimum and Maximum 2.1 Algorithm for Finding Maxima and Minima of a Function 2.2 Examples	3 3
3	Convexity and Inflection Points	4
4	Asymptotes	4

1 Local Minimum and Maximum

Definition 1. Let f(x) be defined on an open interval about x_0 . We say that f(x) has a local minimum (or local maximum) at x_0 , if there exists an open interval about x_0 , s.t. $f(x) \ge f(x_0)$ (or $f(x) \le f(x_0)$), $\forall x$ in the interval. x_0 which is a local minimum or maximum is called a local extremum.

Definition 2. Let f(x) be defined on an open interval about x_0 . We say that x_0 is a <u>critical point</u> of f, if $f'(x_0) = 0$ or $\nexists f'(x_0)$.

Theorem 1 (Fermat Theorem - Necessary Condition for Extrema Existence). If $\exists f'(x_0)$ where x_0 is a local extremum, then $f'(x_0) = 0$.

Remark 1. By Fermat Theorem - Necessary Condition for Extrema Existence, any local extremum point is a critical point, but the converse is not true.

Theorem 2 (Sufficient Condition for Extrema Existence). If $\exists f'(x)$ and $\exists f''(x)$ are continuous on an open interval about x_0 and $f'(x_0) = 0$, then,

- 1. x_0 is a local maximum if $f''(x_0) < 0$
- 2. x_0 is a local minimum if $f''(x_0) > 0$
- 3. there is no rule if $f''(x_0) = 0$

Proof. If $f''(x_0) < 0$ and f''(x) is continuous on an open interval about x_0 , then, f''(x) < 0 on some interval about x_0 .

By ?? with n=1

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \frac{f''(c)}{2!}(x - x_0)^2$$

where c is between x and x_0 .

$$f(x) = f(x_0) + \frac{f''(c)}{2}(x - x_0)^2$$

$$f(x) - f(x_0) = \frac{f''(c)}{2}(x - x_0)^2$$

$$f'(c) < 0$$
 and $(x - x_0)^2 \ge 0$

$$\therefore f(x) - f(x_0) \le 0$$
$$\therefore f(x) \le f(x_0)$$

Similarly for the remaining cases.

Theorem 3. Let x_0 be a critical point of f(x) and let f(x) be continuous at x_0 , and differentiable on an open interval about x_0 except possibly at x_0 itself. Then

- 1. If f'(x) changes the sign from negative to positive at x_0 , then x_0 is a local minimum.
- 2. If f'(x) changes the sign from positive to negative at x_0 , then x_0 is a local maximum.
- 3. If f'(x) does not change the sign at x_0 , then x_0 is not a local extremum.

2 Absolute or Global Minimum and Maximum

Definition 3. Let f(x) be defined on a domain D. $x_0 \in D$ is called an absolute minimum (or maximum) of f(x) on D if $f(x) \geq f(x_0)$ (or $f(x) \leq f(x_0)$), $\forall x \in D$.

Theorem 4. Let f(x) be continuous on [a,b]. Then f(x) has at least one absolute maximum and at least one absolute minimum in [a,b]. If x_0 is such a point, then x_0 must be a critical point of f(x) or one of a or b.

$2.1 \quad \hbox{Algorithm for Finding Maxima and Minima of a Function}$

- Step 1 Find all critical points of f(x) on the domain, excluding the end points.
- Step 2 Calculate the values of f(x) at the critical points.
- Step 3 Calculate the values of f(x) at the end points of the domain.
- Step 4 Select the maximum and minimum values from Step 2 and Step 3

2.2 Examples

Example 1. Find maximum and minimum values of

$$f(x) = x^{\frac{5}{3}} + 5x^{\frac{2}{3}}$$

on [-1, 1]

Solution.

$$f'(x) = \frac{5}{3}x^{\frac{2}{3}} + \frac{10}{3}x^{-\frac{1}{3}}$$

$$= \frac{5}{3}\frac{x+2}{x^{\frac{1}{3}}}$$

$$f'(x) = 0 \iff x = -2$$

$$f'(0) = \lim_{\Delta x \to 0} \frac{f(0 + \Delta x) - f(0)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \Delta x^{\frac{2}{3}} + \frac{5}{\Delta x^{\frac{1}{3}}}$$

$$\therefore \nexists f'(0)$$

Therefore, x = 0 is a critical point

$$f(0) = 0$$

$$f(-1) = 4$$

$$f(1) = 6$$

$$\lim_{[-1,1]} f(x) = 0$$

$$\lim_{[-1,1]} f(x) = 6$$

3 Convexity and Inflection Points

Definition 4. Let f(x) be differentiable at x_0 . f(x) is said to be convex upwards (or downwards) at x_0 , if there exists an open interval about x_0 in which the graph of y = f(x) is below (or above) the line tangent to y = f(x) at $(x_0, f(x_0))$, i.e. $\exists \delta > 0$, s.t.

$$f(x) \le f(x_0) + f'(x_0)(x - x_0); \forall x \in (x_0 - \delta, x_0 + \delta)$$

$$\left(\text{ or } f(x) \ge f(x_0) + f'(x_0)(x - x_0); \forall x \in (x_0 - \delta, x_0 + \delta) \right)$$

Theorem 5. Let f(x) be twice differentiable on the interval (a,b).

- 1. If $f''(x) > 0, \forall x \in (a, b)$, then f(x) is convex downwards on (a, b).
- 2. If $f''(x) < 0, \forall x \in (a,b)$, then f(x) is convex upwards on (a,b).

Definition 5. If f(x) is continuous on an open interval about x_0 and differentiable at x_0 in a wide sense (i.e. the derivative may be infinite), we say that x_0 is an <u>inflection point</u> of f(x) if there exists an interval $(x_0 - \delta, x_0 + \delta)$, s.t. the function changes its convexity passing through x_0 .

Remark 2. At an inflection point x_0 , there is no restriction of the value of f'(x). It may be 0, a finite number or ∞ .

Theorem 6. If x_0 is an inflection point of f(x) and $\exists f''(x)$ on an open interval about x_0 and f''(x) is continuous at x_0 , then $f''(x_0) = 0$.

4 Asymptotes

Definition 6. Let f(x) be defined on $(a - \delta)$ or $(a, a + \delta)$ or $(a - \delta, a + \delta) - \{a\}$ for $\delta > 0$. If at least one of $\lim_{x \to a^-} f(x)$ and $\lim_{x \to a^+} f(x)$ is equal to $\pm \infty$, then the straight line x = a is said to be a vertical asymptote of f(x).

Definition 7. The straight line y = ax + b is called an oblique asymptote of a function y = f(x) at $+\infty$ (or $-\infty$), if

$$\lim_{x \to +\infty} (f(x) - (ax + b)) = 0$$

$$\left(\text{ or } \lim_{x \to -\infty} (f(x) - (ax + b)) = 0 \right)$$

Theorem 7. Let f(x) be defined on $(c, +\infty)$. If there exist the limits $a_1 = \lim_{x \to +\infty} \frac{f(x)}{x}$ and $b_1 = \lim_{x \to +\infty} (f(x) - a_1x)$, then the straight line $y = a_1x + b_1$ is a unique oblique asymptote of f(x) at $+\infty$.

Let f(x) be defined on $(-\infty,c)$. If there exist the limits $a_2 = \lim_{x \to -\infty} \frac{f(x)}{x}$ and $b_2 = \lim_{x \to -\infty} (f(x) - a_2x)$, then the straight line $y = a_2x + b_2$ is a unique oblique asymptote of f(x) at $-\infty$.