CSE 40647/60647 Data Science (Spring 2018) Lecture 10: Classification: Ensembles

Goals:

- Describe ensemble methods
 - Bagging: Random Forest (Bagged Decision Trees)
 - Boosting: AdaBoost (Adaptive Boosting)

Bagging:

- Given a data set D of d instances, a classifier model M_i is learned for a training set D_i of d instances that is sampled with replacement from D (i = 1...k)
- As a result of the *sampling-with-replacement* procedure, each classifier is trained on approximately 63.2% of the training examples

Boosting:

- Weights are assigned to each training instance
- A series of k classifiers is *iteratively* learned
- After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1}, to pay more attention to the training instances that were *misclassified* by M_i
- The final M* *combines the votes* of each individual classifier, where the *weight* of each classifier's vote is a function of its *accuracy* on classifying training instances

AdaBoost:

- Given a set of d class-labeled instances, $(X_1, y_1), ..., (X_d, y_d)$
- Initially, all the *weights* of instances are set the same (1/d)
- Generate k classifiers in k rounds. At round i,
 - o Instances from D are *sampled with replacement* to form a training set D_i of the same size
 - o Each instance's chance of being selected is based on its *weight*
 - o A classification model M_i is derived from D_i
 - o Its *error rate* is calculated *using* D_i *as a "test set"*
 - If an instance is misclassified, its weight is increased, otherwise it is decreased