# Structural Estimation 2: Duration Dependence

Christine Braun

## From Last Time

- Up until now we have assume jobs arrive at a poisson rate
  - the hazard rate is constant over the duration

$$h = \lambda [1 - G(w_R)]$$

Does this seem like a reasonable assumption?

## From Last Time

- Up until now we have assume jobs arrive at a poisson rate
  - the hazard rate is constant over the duration

$$h = \lambda [1 - G(w_R)]$$

- Does this seem like a reasonable assumption? No
  - \( \) might change over the spell, there might be stigma, people might change their search effort
  - w<sub>R</sub> might change over the spell, may lose unemployment benefits

## Hazard Rate Definition

 Definition: Let f and F be the pdf and cdf of t, then the hazard (failure) rate is

$$h(t) = \lim_{dt \to 0} \frac{P(T \in [t, t + dt) | T \ge t)}{dt}$$
 $h(t) = \frac{f(t)}{1 - F(t)}$ 

• Integrate both sides and solve for F(t)

$$\int_0^t h(u) \ du = \int_0^t \frac{f(u)}{1 - F(u)} \ du$$
$$F(t) = 1 - \exp\left(-\int_0^t h(u) \ du\right)$$

# More Flexibility

• Poisson Process: h(t) = h, plugging into F(t), gives exponential arrival times

$$F(t) = 1 - e^{-ht}$$
$$f(t) = he^{-ht}$$

• Weibull hazard:  $h(t) = \alpha t^{\alpha-1}$ , plugging into F(t), gives arrival times following a Weibull distribution

$$F(t) = 1 - e^{-t^{\alpha}}$$
$$f(t) = \alpha t^{\alpha - 1} e^{-t^{\alpha}}$$

## **Duration Dependence**

- With a hazard rate  $\alpha t^{\alpha-1}$ 
  - $\alpha = 1$ : h(t) is flat (poisson process)
  - $\alpha < 1$ : h(t) is decreasing, negative duration dependence
  - $\alpha > 1$ : h(t) is increasing, positive duration dependence



## MLE with Weibull hazard rate

Individual's Contribution: Probability of observing a duration t

$$f(t_i; \alpha) = \alpha t_i^{\alpha - 1} e^{-t_i^{\alpha}}$$

Log-Likelihood function:

$$egin{aligned} \mathcal{L}(lpha;\{t_i\}) &= \sum_{i=1}^N \ln f(t_i;lpha) \ &= \sum_{i=1}^N \ln lpha + (lpha-1) \ln t_i - t_i^lpha \end{aligned}$$

## Estimation in Matlab

- Using data3.csv
- File 1: SE2\_main.m
  - read in data
  - extract just duration from data matrix
  - create lower bound and initial guess
  - estimate
- File 2: loglike3.m
  - inputs: parameters, duration
  - output: negative log-likelihood value

## Weibull Hazard Answer

Estimates and Standard Errors

| Parameter | Estimate | Standard Error |
|-----------|----------|----------------|
| $\alpha$  | 0.5221   | 0.0005         |

Log-Likelihood Value

$$log L = -2.6073e + 4$$

• Why do we get negative duration dependence?

## Selection Effect

- Observable characteristics could affect the hazard rate
- **Example:**  $h_{he}$  is the hazard rate of high educated and  $h_{le}$  is the hazard rate of low educated, both constant over time
  - $h_{he} > h_{le}$
  - $u_{he}(t)$ : fraction of high educated in pool of unemp.
  - $u_{le}(t)$ : fraction of low educated in pool of unemp.

$$\Rightarrow h(t) = u_{he}(t) \times h_{he} + u_{le}(t) \times h_{le}$$

- If we estimate h(t) without covariates we will get negative duration dependence because of a **selection effect** 
  - high educated people leave unemp. first  $(h_{he} > h_{le})$  so the average hazard rate decreases over time

# Proportional Hazard Model

Define the hazard as

$$h(t|x) = \psi(t) \times h_0(x)$$

 $h_0(x)$  is called the *systematic part* and  $\psi(t)$  is called the *baseline hazard*.

The systematic part is commonly given an functional form assumption

$$h_0(x) = exp(x'\beta)$$

covariates affect the hazard rate log-linearly. We then estimate  $\beta$ .

# Proportional Hazard Model



$$h(t) = 0.8t^{0.8-1} exp(0.5x)$$

# Proportional Hazard Model

Assume Weibull baseline

$$\psi(t) = \alpha t^{\alpha - 1}$$

Assume log-linear covariates

$$h_0(x) = \exp(x'\beta)$$

The cdf of duration

$$F(t|x) = 1 - \exp\left(-\int_0^t \exp(x'\beta)\alpha u^{\alpha-1} du\right)$$

$$F(t|x) = 1 - \exp(-\exp(x'\beta)t^{\alpha})$$

• The pdf of duration

$$f(t|x) = \exp(x'\beta)\alpha t^{\alpha-1}e^{-\exp(x'\beta)t^{\alpha}}$$

# MLE with Weibull baseline & Log-linear Covariates

Individual's Contribution: Probability of observing a duration t

$$f(t_i|x_i;\alpha,\beta) = \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\exp(x_i'\beta)t_i^{\alpha}}$$

Log-Likelihood function:

$$\mathcal{L}(\alpha, \beta; \{t_i\}, \{x_i\}) = \sum_{i=1}^{N} \ln f(t_i | x_i; \alpha, \beta)$$

$$= \sum_{i=1}^{N} x_i' \beta + \ln \alpha + (\alpha - 1) \ln t_i - \exp(x_i' \beta) t_i^{\alpha}$$

## Estimation in Matlab

- Using data3.csv
- File 1: SE2\_main.m
  - create a vector x that contains a dummy for women
  - create lower bound and initial guess
  - estimate
- File 2: loglike4.m
  - inputs: parameters, duration, covariates
  - output: negative log-likelihood value

# Weibull Hazard & Log-linear Covariates Answer

Estimates and Standard Errors

| Parameter           | Estimate | Standard Error |
|---------------------|----------|----------------|
| $\overline{\alpha}$ | 0.5809   | 0.0025         |
| $\beta_{\it FE}$    | -0.5956  | 0.0345         |

Log-Likelihood Value

$$log L = -2.5202e + 4$$

- What happened to the estimate of  $\alpha$ ?
- Let's add the covariates

$$educDummy = dummyvar(\ )$$

# Weibull Hazard & Log-linear Covariates Answer

Estimates and Standard Errors

| Parameter           | Estimate | Standard Error |
|---------------------|----------|----------------|
| $\alpha$            | 0.6503   | 0.0038         |
| $\beta_{\it FE}$    | -0.3628  | 0.0067         |
| $eta_{	ext{educ2}}$ | -0.5817  | 0.0194         |
| $eta_{	ext{educ}3}$ | -0.5583  | 0.0044         |
|                     |          |                |

Log-Likelihood Value

$$log L = -2.4363e + 4$$

- What happened to the estimate of  $\alpha$  and  $\beta_{FE}$ ?
- Could we still have a selection effect?

# Mixed Proportional Hazard Model

Define the hazard rate as

$$h(t|x,\nu) = \nu \times \psi(t) \times h_0(x)$$

- $\psi(t)$ : baseline hazard
- $h_0(x)$ : systematic part
- ν: unobserved heterogeneity, "error term"
- $\nu \sim G(\nu)$  where G is called the mixing distribution
  - can make a parametric assumption (usually Gamma)
  - can estimate non-parametrically

# Mixed Proportional Hazard Model

Assume Weibull baseline

$$\psi(t) = \alpha t^{\alpha - 1}$$

Assume log-linear covariates

$$h_0(x) = \exp(x'\beta)$$

- Assume a there exists a mixing distribution  $G(\nu)$
- The cdf of duration

$$F(t|x,\nu) = 1 - \exp(-\nu \exp(x'\beta)t^{\alpha})$$

The pdf of duration

$$f(t|x,\nu) = \nu \exp(x'\beta)\alpha t^{\alpha-1}e^{-\nu \exp(x'\beta)t^{\alpha}}$$

## Parametric Estimation

- Parametric estimation of mixing distribution
  - Choose  $G(\nu; \theta)$  with support  $[0, \infty)$  and parameters  $\theta$
  - Integrate out of duration pdf

$$f(t|x) = \int_0^\infty f(t|x,\nu) \times g(\nu) \ d\nu$$

- This is often a difficult integral
- ullet We would get an MLE of heta
- Heckman & Stinger (1984) show instability of parameter estimates depending on the assumptions on the mixing distribution

## Non-Parametric Estimation

- Non-Parametric estimation of mixing distribution
  - We discretize G
  - $\{\nu_j\}_{j=1}^K$ : set of points in G
  - $\{\pi_j\}_{j=1}^K$ : the probability of point j
- Sum over the points to get the full distribution of durations

$$f(t|x) = \sum_{i=1}^K \pi_i \times f(t|x, \nu_i)$$

• The likelihood function we be a function of  $\{\nu_j\}_{j=1}^K$  and  $\{\pi_j\}_{j=1}^K$  and we get ML estimates of each point and it's probability.

# Non-Parametric Estimation: Example

- Let's estimate with K=2
- Individual's Contribution: Probability of observing a duration t

$$f(t_i|x_i;\alpha,\beta,\nu_1) = \nu_1 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_1 \exp(x_i'\beta)t_i^{\alpha}}$$
  
$$f(t_i|x_i;\alpha,\beta,\nu_2) = \nu_2 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_2 \exp(x_i'\beta)t_i^{\alpha}}$$

Log-Likelihood function:

$$\mathcal{L}(\alpha, \beta, \{\nu_j\}, \{\pi_j\}; \{t_i\}, \{x_i\}) = \sum_{i=1}^{N} \ln[\pi_1 \times f(t_i | x_i; \alpha, \beta, \nu_1) + \pi_2 \times f(t_i | x_i; \alpha, \beta, \nu_2)]$$

# Non-Parametric Estimation: Example

- Maximize  $\mathcal{L}(\alpha, \beta, \{\nu_j\}, \{\pi_j\}; \{t_i\}, \{x_i\})$  with respect to
  - α > 0
  - $\beta$ : no restrictions
  - $\nu_1$ ,  $\nu_2$ , all > 0
  - $\pi_1$ ,  $\pi_2 \in [0,1]$
- Subject to  $\pi_1 + \pi_2 = 1$

#### **Syntax**

```
x = fmincon(fun,x0,A,b)
x = fmincon(fun,x0,A,b,Aeq,beq)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon,options)
x = fmincon(problem)
[x,fval] = fmincon(__)
[x,fval,exitflag,output] = fmincon(__)
[x,fval,exitflag,output,lambda,grad,hessian] = fmincon(__)
```

#### **Description**

Nonlinear programming solver.

Finds the minimum of a problem specified by

$$\min_{x} f(x) \text{ such that} \begin{cases} c(x) \le 0 \\ ceq(x) = 0 \\ A \cdot x \le b \\ Aeq \cdot x = beq \\ lb \le x \le ub, \end{cases}$$

## Estimation in Matlab

- Using data3.csv
- File 1: SE2\_main.m
  - create lower bound and initial guess
  - create Aeq  $(1 \times 8)$  and beq  $(1 \times 1)$
  - estimate
- File 2: loglike5.m
  - inputs: parameters, duration, covariates
  - output: negative log-likelihood value

## **Estimation Answer**

Estimates and Standard Errors

| Parameter             | Estimate | Standard Error |
|-----------------------|----------|----------------|
| $\alpha$              | 0.8854   | 0.1226         |
| $ u_1$                | 0.0936   | 0.0373         |
| $\nu_2$               | 0.3795   | 0.0182         |
| $\pi_1$               | 0.0807   | 0.1211         |
| $\pi_2$               | 0.9193   | 1.2941         |
| $\beta_{\textit{FE}}$ | 0.0597   | 0.2088         |
| $eta_{	extsf{educ}2}$ | 0.0069   | 0.3952         |
| $eta_{	ext{educ}3}$   | 0.0276   | 0.1594         |
|                       |          |                |

Log-Likelihood Value

$$log L = -2.2976e + 4$$

• What happened to  $\alpha$  and  $\beta$ ?

## Estimation in Matlab

• Let's estimate with K=3

 Use the same likelihood function but add another point in the mixing distribution

$$f(t_i|x_i;\alpha,\beta,\nu_1) = \nu_1 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_1 \exp(x_i'\beta)t_i^{\alpha}}$$

$$f(t_i|x_i;\alpha,\beta,\nu_2) = \nu_2 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_2 \exp(x_i'\beta)t_i^{\alpha}}$$

$$f(t_i|x_i;\alpha,\beta,\nu_3) = \nu_2 \exp(x_i'\beta)\alpha t_i^{\alpha-1} e^{-\nu_3 \exp(x_i'\beta)t_i^{\alpha}}$$

#### **Estimation Answer**

Estimates and Standard Errors

| Parameter             | Estimate | Standard Error |
|-----------------------|----------|----------------|
| $\overline{\alpha}$   | 0.9810   | 0.0166         |
| $ u_1$                | 0.0399   | 0.0394         |
| $\nu_2$               | 0.2005   | 0.0888         |
| $\nu_2$               | 0.6037   | 0.2449         |
| $\pi_1$               | 0.0266   | 0.0493         |
| $\pi_2$               | 0.5168   | 1.4205         |
| $\pi_3$               | 0.4566   | 0.2708         |
| $\beta_{\textit{FE}}$ | 0.0713   | 0.0695         |
| $eta_{\sf educ2}$     | 0.0008   | 0.2776         |
| $eta_{	ext{educ}3}$   | 0.0267   | 0.0334         |
|                       |          |                |

Log-Likelihood Value

$$log L = -2.2945e + 4$$

• What happened to  $\alpha$  and  $\beta$ ?

## How may points should we estimate?

- Adding points will improve fit
- Adding too many points is computationally costly
- Use likelihood ratio test to find best K
  - test goodness of fit of two competing models, one is a restricted version of the other
  - ullet stop adding points when the information gained from K+1 points is not statistically significant

## Likelihood Ratio Test

• Unrestricted model: parameter space is  $\Theta$ 

$$\max_{\theta \in \Theta} L(\theta)$$

where  $rank(\theta) = r$ 

• **Restricted model:** constrained parameter space is  $\Theta_0$ 

$$\max_{\theta \in \Theta_0} L(\theta)$$

where  $rank(\theta) = r - q$ 

• Likelihood-ratio test statistic:

$$\lambda_{LR} = -2 \ln \left[ rac{\max_{\theta \in \Theta_0} L(\theta)}{\max_{\theta \in \Theta} L(\theta)} 
ight]$$

where  $\lambda_{LR} \rightarrow \chi^2(q)$ 

## Likelihood Ratio Test: Example

• **Unrestricted model:** the model where K = 3,

$$egin{aligned} \theta^U &= \{ lpha, eta_{ extit{FE}}, eta_{ extit{educ1}}, eta_{ extit{educ2}}, 
u_1, 
u_2, 
u_3, \pi_1, \pi_2, \pi_3 \} \end{aligned}$$
  $rank( heta^U) = 10$   $\ln \max_{ heta \in \Theta} L( heta) = -2.2945e + 4$ 

• **Restricted model:** the model where K=2, where we restricted  $\nu_3=0$  and  $\pi_3=0$ 

$$\begin{split} \theta^R &= \{\alpha, \beta_{\textit{FE}}, \beta_{\textit{educ1}}, \beta_{\textit{educ2}}, \nu_1, \nu_2, \pi_1, \pi_2 \} \\ & rank(\theta^R) = 8 \\ & \ln \max_{\theta \in \Theta} L(\theta) = -2.2976e + 4 \end{split}$$

# Likelihood Ratio Test: Example

Likelihood-ratio test statistic:

$$\lambda_{LR} = -2[-2.2976e + 4 - (-2.2945e + 4)] = 61.9539$$

• **P-value:** Probability that a chi-squared RV with 2 degrees of freedom is larger than 61.9539

$$1 - chi2cdf(61.9539, 2) = 3.5194e - 14$$

so we reject the null hypothesis, i.e. the restricted model. K=3 points is statistically significantly better than K=2.

 Keep estimating by adding one more point until we fail to reject restricted model.

# So do we have duration dependence?

- We need a lot of data to estimate a good mixing distribution
- Can not tell if negative duration dependence is selection driven or structural
- Kroft, Lange, Notowidigdo (2013): investigate employer behavior in duration dependence
  - send out many fake resumes
  - vary the length of unemployment duration
  - show call-back rate decrease with unemployment duration