multi_grapes : a multi-SFS version of the grapes program

Introduction

multi_grapes is a program fitting a population genetic model to synonymous + non-synonymous Site Frequency Spectrum (SFS) data, and is essentially a multi-SFS version of the program **grapes** (https://github.com/BioPP/grapes) . This file is relevant to version 1.1.

The main new feature of multi_grapes, compared to grapes, is the option of fitting model parameters assumed to be shared by distinct data sets – specifically, the shape of the distribution of fitness effects (DFE). This is the main focus of Galtier & Rousselle 2020, and the reason why this program was developed. In addition, new models of the DFE are implemented in multi_grapes that are absent in grapes.

These new option come with costs: (1) several of the models implemented in grapes are not available in multi_grapes; (2) no estimate of the adaptive substitution rate is performed by multi_grapes.

Installation

See the Grapes manual.

Compilation

See the Grapes manual.

Execution

multi_grapes -in input_file.dofe -out output_file.csv -model model_name [options]

Input

multi_grapes needs information on the number and frequency of synonymous and non-synonymous SNPs (SFS) and number of synonymous and non-synonymous sites, for one or several data sets. These are passed via a DoFE file as described in the documentation of the DoFE program: http://www.lifesci.susx.ac.uk/home/Adam Eyre-Walker/Website/Software.html.

multi_grapes can handle both folded (as in DoFE) and unfolded SFS data. If SFS's are unfolded, this must be indicated via an extra line in the input file containing: #unfolded. Multiple data sets should

appear as different lines of the DoFE file (see examples at the bottom of this file)

Analysis

multi_grapes will estimate the distribution of fitness effect of mutations (DFE) by fitting a population genetic model to SFS + divergence data in the maximum likelihood framework. Data sets will first be analyzed separately (=with all parameters specific to each data set, as in grapes) then jointly (=with one parameter, the shape of the DFE, shared among data sets).

Output

Basic output is written in the terminal. This corresponds parameter estimates and likelihoods. Detailed output is written in a csv file.

Options

The most important option is the name of the assumed DFE model. Two distinct models are implemented in addition to the Neutral model, namely GammaZero (=Gamma) and ReflectedGamma. See Galtier (2016) and Galtier & Rousselle (2020) for details on what these models mean. In addition, one can add a class of lethal mutations using the -p lethal option (see below).

Additional options:

-fold : fold the SFS (if unfolded)

-no_syn_orient_error : force equal synonymous and non-synonymous mis-orientation rate
(default=false)

-nb_rand_start <int> : number of random starting values in model optimization (default=0); setting positive values will slow down the program but decrease the probability of being trapped in local optima.

-no_separate : do not perform separate analysis.

-no_shared : do not perform shared analysis.

-shared_shape <int>,<int>,...: fixed shared shape parameters (all the listed values will be fitted successively); in the absence of this option, the shared shape parameter will be optimized.

-p_lethal <float> : proportion of lethal mutations (this parameter cannot be optimized).

Developed by

Nicolas Galtier Institute of Evolutionary Sciences CNRS – University Montpellier

Supported by

Montpellier Bioinformatics & Biodiversity platform http://mbb.univ-montp2.fr

References

Galtier N. 2016. Adaptive protein evolution in animals and the effective population size hypothesis. *PLoS Genetics* 12:e1005774.

Galtier N., Rousselle M. 2020. How much does Ne vary among species? **biorxiv** https://doi.org/10.1101/861849

Example input files:

- folded DoFE file:

```
Allolobophora_chlorotica+Aporerctodea_icterica (4852 genes)
          1\overline{2}
                  254286
                             4360.47
                                         1987.61
                                                                 1640.54
all genes
                                                     1339.62
      1087.89
                  581.969
                             92842.3
                                          18049.3
                                                     9568.58
                                                                 6722.38
                                                      10578 111000
                                          340000
      6820.24
                  5353.69
                             2607.35
                                                                       24890
```

First line is a header/comment line.

Second line contains the data:

entry 1 (all_genes): any string (dataset description)

entry 2 (12): sample size (here, 6 diploid individuals)

entry 3 (254286): number of non-synonymous sites, polymorphism data

entry $4 \rightarrow 3+n/2$, where *n* equals sample size: non-synonymous SFS (number of non-synonymous singletons, doubletons, etc...)

entry 3+n/2+1 (92842.3): number of synonymous sites, polymorphism data

entry $3+n/2+2 \rightarrow 3+n/2+1+n/2$, where *n* equals sample size: synonymous SFS (number of synonymous singletons, doubletons, etc...)

entry 3+n/2+1+n/2+1 (340000): number of non-synonymous sites, divergence data

entry 3+n/2+1+n/2+2 (10578): number of non-synonymous substitutions, divergence data

entry 3+n/2+1+n/2+3 (111000): number of synonymous sites, divergence data

entry 3+n/2+1+n/2+4 (24890): number of synonymous substitutions, divergence data

- unfolded DoFE file:

```
Microtus arvalis+Microtus glareolus.fas (2943 genes)
#unfolded
                                                                              85.956
                  1.61188e+06 2008.19
                                          590.033
                                                      165.33
                                                                  109.824
all genes
            12
                          63.5934
                                          65.3077
                                                                  119.604
      73.6923
                  61.4066
                                                      104.637
                                                                              361114
      5046.4
                  2095.86
                              836.505
                                          533.066
                                                      403.44
                                                                  357.615
      327.066
                  318.044
                              322.549
                                          518.198
                                                      757.527
                                                                  1.48228e+06 13089
      432574
                  38940
```

Same as above with additional #unfolded line, and SFS's containing n-1 entries instead of n/2.

- multi-species DoFE file:

fourmis/	mis/ Wed,03		3 Apr2019		16:32:30+0200						
#unfolded											
Formica cunicular		ia	8	400701	L	1202.2	23	300.6	57	109.94	11
7 7 .6465		65.5697		82.224	12	80.5131		115533		1329.47	
570.259		258.343		164.59	96	130.121		147.059		130.028	
493898.9871		2212.765165224		22424	192183.3071		2	3136.55		346427778	
Formica fusca		10	516075	;	1388.	02	219.93	l 1	126.11	.2	105.307
88.7	7185	71.512	22	65.351	l 1	64.472	24	84.62	74	194430)
1655	5.77	458.13	35	300.31	L7	231.84	45	192.9	9	150.88	38
131.	.223	134.90)9	170.52	29	964535	5.9	244.7	114	391115	5.4
425.	7194										
Formica p	ratensis	12	586753	3	979.6	16	283.84	17	140.75	8	98.7363
	1736										
2221	142	865.26	58	373.90	1	213.66	52	163.2	45	128.12	26
106.	.923	94.175	58	76.381	L9	71.670	03	76.62	53	80.996	57
9315	598.3	513.25	56	377392	2.1	752.37	783				
Formica sa	anguinea	16	613806	,	1860.	31	435.44	43	221.74	8	148.063
$1\overline{0}5$.391	81.997	75	75.959	94	55.650	02	47.04	37	40.124	13
35.0	322	25.668	34	31.339	9	36.622	23	48.87	84	232166	5
2124	1.23	860.25	57	512.79	93	343.70	9	268.3	26	207.41	18
179.	.786	147.13	36	126.41	L8	122.13	38	107.3	87	94.732	27
81.0)537	73.502	26	107.04	18	942195	5.7	450.9	158	382511	1.8
660.	.5132										