Part III-B: Probability Theory and Mathematical Statistics

Lecture by SongHao Note by THF

2024年9月17日

目录

1	引言		2
	1.1	确定事件	2
	1.2	通机事件	2
	1.3	充计规律	2
2	事件		3
	2.1	式验	3
	2.2	道机试验	3
	2.3	事件	3
	2.4	通机事件	3
	2.5	基本事件	3
	2.6	夏合事件	4
	2.7	必然事件	4
	2.8	不可能事件	4
	2.9	羊本空间	4
	2.10	羊本点	4
3	事件	h 生 合表示	5

4	事件	:间的关系	6
	4.1	包含	6
	4.2	相等	6
	4.3	并与和	7
	4.4	交与积	7
	4.5	差	9
	4.6	互不相容	10
	4.7	对立	10
	4.8	完备事件组	12
5	事件	间的运算律	13
	5.1	交换律	13
	5.2	结合律	13
	5.3	分配律	13
	5.4	对偶律	14

1 引言

1.1 确定事件

一定发生的事件

1.2 随机事件

可能发生的事件

1.3 统计规律

大量试验得出的宏观规律

2 事件

2.1 试验

对对象观察、测量、实验

2.2 随机试验

随机试验的条件:

- 1. 在相同条件下可重复
- 2. 结果不止一个
- 3. 试验前无法预测出现的实验结果 使用 *E* 代表随机试验。

2.3 事件

随机试验的每种结果。

2.4 随机事件

可能出现的事件,用 A,B,C... 表示

2.5 基本事件

不能或不必再分的事件(基于试验的事件)

Example. 扔一次骰子,实验目的为:骰子朝上的点数,基本事件为:出现 1, 2, 3, 4, 5, 6 点。

Example. 扔一次骰子,实验目的为:骰子的位置,此时出现的点数不是基本事件。

Example. 扔一次硬币,实验目的为:硬币朝上的面,

基本事件为: 出现正面或反面。

Example. 扔一次硬币,实验目的为:硬币某根已知的轴线与已知直线的夹角基本事件为:夹角 $\theta \in [0, 2\pi]$ 此时正面朝上与反面朝上不是基本事件。

2.6 复合事件

由基本事件复合而成的事件

Example. 扔一次骰子,点数小于7点表示为:

$$\Omega = \{x | x < 7\}$$

点数大于7点表示为:

$$\emptyset = \{x | x > 7\}$$

2.7 必然事件

一定发生的结果,用 Ω 表示

2.8 不可能事件

不可能发生的结果,用 Ø 表示

Example. 扔一次骰子,点数大于7点为不可能事件

2.9 样本空间

所有基本事件的集合(实验目的确定),与必然事件相似,用 Ω 表示。

2.10 样本点

样本空间中的元素,即基本事件,用 ω 表示。

Example. 扔硬币研究某面朝上的样本空间: $\Omega = \{ \mathbb{E}, \mathbb{E} \}$

样本点: $\omega_1 =$ 正面朝上, $\omega_2 =$ 反面朝上

Example. 扔一个骰子研究某点朝上的样本空间:

$$\Omega = \{x | x \in [1, 6], x \in \mathbb{R}\}$$

样本点:

$$(\omega_1, \omega_2, \dots \omega_6) = (1, 2, 3, 4, 5, 6)$$

Example. 扔两个硬币,研究朝上的面,样本空间为:

$$\Omega = \{(x,y)|(0,0), (1,1), (0,1), (1,0)\}$$

或:

$$\Omega = \{(x, y) | x, y \in \{0, 1\}\}$$

Notation. 样本空间可以是无限集。

Example. 在 [0,1] 内扔一个质子, 求其坐标。

其样本空间为:

$$\Omega = \{x | x \in [0, 1]\}$$

Notation. 质子/点: 无大小

Example. 向平面扔一个点:

$$\Omega = \{(x, y) | x, y \in \mathbb{R}\}$$

3 事件的集合表示

集合 (set): $A = \{2,4,6\}$ 等。

Notation. Ω 与必然事件、样本空间等同, \varnothing 与不可能事件、空集等同。 任何事件都是 Ω 的子集, \varnothing 是所有事件的子集。

4 事件间的关系

4.1 包含

 $B \subset A \text{ or } A \supset B$

A 发生必然有 B 发生,且有:

$$\forall A,\varnothing\subset A\subset\Omega.$$

4.2 相等

称 A 与 B 相等。

4.3 并与和

 $A \cup B$: (并/和) A 与 B 至少有一个发生

$$\begin{cases} A+B \subset A, \\ A+A=A, \\ A+\varnothing=A, \\ A+\Omega=\Omega. \end{cases}$$

4.4 交与积

 $A \cap B$: (交/积) A 与 B 同时发生

Definition. 无限可列个: 能按某种规律排成一个序列

Example. 自然数无限可列: 0,1,2,...

Example. 整数无限可列: 0, 1, -1, 2, -2, ...

Example. 有理数: 能写成 $\frac{p}{q}$ 的数

 $0.\dot{5}\dot{6}$ 可以写为: $\frac{56}{99}$ $0.1\dot{2}$ 可以写为: $\frac{11}{90}$ 有理数无限可列: $0,\frac{1}{1},\frac{-1}{1},\frac{1}{2},\frac{-1}{2}\dots$

Example. 实数集、平面点集非无限可列。

以下定义:

Definition. *n* 个事件互斥时:

$$A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{i=1}^n A_i.$$

n 个事件同时发生:

$$A_1 \cap A_2 \cap \ldots \cap A_n = \bigcap_{i=1}^n A_i.$$

该定义支持无限可列个。

4.5 差

A-B: A 发生而 B 不发生。

4.6 互不相容

A 与 B 不同时发生,即: $AB = \emptyset$

n 个事件:

$$A_1, A_2, \ldots A_n$$
.

互不相容,则:

$$\forall i, j : A_i A_j = \varnothing.$$

4.7 对立

$$AB=\varnothing \, \, \underline{\!\! \perp} \, \, A \cup B=\Omega$$

记作:

$$A = \overline{B}.$$

或:

$$B = \overline{A}.$$

由此可得:

$$\begin{cases} \overline{\overline{A}} = A \\ A - B = A - AB = A\overline{B} \end{cases}.$$

Notation. 若两事件对立,则一定互不相容. 互不相容的事件不一定对立.

Notation. 互不相容适用于多个事件. 对立只适用于两个事件.

Notation. 互不相容:不能同时发生,但可以都不发生

对立:必须有一个发生

4.8 完备事件组

 $A_1, A_2, \ldots A_n$ 两两互不相容,且

$$\bigcup_{i=1}^{n} A_i = \Omega.$$

则为完备事件组。

5 事件间的运算律

5.1 交換律

$$\begin{cases} A \cup B = B \cup A \\ A \cap B = B \cap A \end{cases}.$$

5.2 结合律

$$\begin{cases} (A \cup B) \cup C = A \cup (B \cup C) \\ (A \cap B) \cap C = A \cap (B \cap C) \end{cases}.$$

5.3 分配律

 $(A \cup B) \cap C = (A \cap C) \cup (B \cap C).$

$$(A \cap B) \cup C = (A \cup C) \cap (B \cup C).$$

5.4 对偶律

 $\overline{A \cap B} = \overline{A} \cup \overline{B}.$

记法:

- 1. 画图
- 2. 长线变短线, 开口换方向
- 3. 事件定义

Notation. 多个事件的对偶律:

$$\begin{cases} \overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i} \\ \bigcap_{i=1}^{n} A_i = \bigcup_{i=1}^{n} \overline{A_i} \end{cases}$$

Example. A, B, C 是试验 E 的随机事件,用符号表示以下事件:

- 1. 只有 A 发生: A B C
- 2. A 发生: A
- 3. A, B, C 只有一个发生: $A\bar{B}\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}C$
- 4. A, B, C 同时发生: ABC
- 5. A, B, C 至少一个发生: A+B+C
- 6. A, B, C 至多一个发生: $\bar{A}\bar{B}\bar{C} + A\bar{B}\bar{C} + \bar{A}B\bar{C} + \bar{A}\bar{B}C$
- 7. A, B, C 恰有两个发生: $AB\bar{C} + A\bar{B}C + \bar{A}BC$
- 8. A, B, C 至少两个发生: $AB\bar{C} + A\bar{B}C + \bar{A}BC + ABC$ 或 AB + BC + AC

Example. 从产品中抽查,不放回,一共取了三次: A_1, A_2, A_3 代表三次取得合格品:

- 1. 三次都合格: *A*₁*A*₂*A*₃
- 2. 至少一次合格: $A_1 + A_2 + A_3$
- 3. 恰有两次合格: $A_1A_2\bar{A}_3 + A_1\bar{A}_2A_3 + \bar{A}_1A_2A_3$
- 4. 最多一次合格: $\bar{A}_1\bar{A}_2\bar{A}_3 + A_1\bar{A}_2\bar{A}_3 + \bar{A}_1A_2\bar{A}_3 + \bar{A}_1\bar{A}_2A_3$

Example. 射击三枪, A_i , i = 1, 2, 3 表示第 i 次击中目标,解释以下事件:

- 1. $A_1 + A_2$: 前两次至少击中一次
- $2. \overline{A_2}:$ 第二次不击中
- 3. $A_1 + A_2 + A_3$: 至少击中一次
- 4. $A_1A_2A_3$: 全部击中
- 5. $A_2 A_3$: 第二次击中而第三次不击中
- 6. $\overline{A_1 + A_3} = \overline{A_1} \cap \overline{A_3}$ (使用对偶律): 第一次和第三次不击中
- 7. $\overline{A_1} + \overline{A_3}$: 第一次和第三次至少一次未能击中