Задание 1. Выполнить чертеж детали, заданной аксонометрической проекцией. Количество видов – 3. Масштаб, необходимое количество разрезов, сечений (если уже знаете, что это), формат (не больше A3) выбрать самостоятельно (выбор обосновать). Нанести размеры. Название – Корпус. Построить 3d модель детали.

Обозначение здесь и далее: СУИР.0X.0Y.000, где X – номер задания (либо указан на рисунке, либо в тексте), Y – номер варианта.

37

Пример заполнения основной надписи:

Взам. ин							
и дата		2			СУИР.01.15.000		
Подп		№ дакум. Занов И.И.	Подп.	Дата	Корпус	Лит. Масса Масшта 1:1	
№ подл.	Προά Αδ, Τκοнπρ	рамчук М.В.			Noprige	Лист Листов 1	
MHB. N	Нконтр. Утв.					ИТМО R3135	
~X					Копировал	Формат А4	

Задание 2

Построить три изображения детали по двум заданным. Третий вид (вид слева) должен содержать **разрез** (секущая плоскость проходит вдоль вертикальной оси на главном виде). Задание выполняется на формате A4 или A3. Нанести размеры. Название – корпус. Построить 3d модель детали.

Задание 3. Выполнить чертеж выданной детали, количество видов определить самостоятельно, нанести размеры, выполнить разрез. Формат: А3 или А4. Название детали – втулка.

D1=120 мм; D2=70 мм; D3=90 мм (окружность центров отверстий); D4=10 мм (количество отверстий – 8); D5=50 мм; D6=50 мм; D7=25 мм; M=35 мм; X=1 мм; L=95 мм; l1=15 мм; l2=30 мм; l3=40 мм; l4=35 мм; α =30°.

Пример:

Выполнить чертеж зубчатого колеса (с помощью приложения (**Приложения - Механика – Валы и механические передачи 2D**) со ступицей, с выточками и облегчающими отверстиями, предварительно сделав его расчет. Нанести размеры. Привести таблицу параметров (m, z, d (делительный диаметр), между z и d пропустить пару строчек). Формат: А3 - А4. Зубья не чертить!

Построить 3d-модель колеса (в том же приложении Валы и механические передачи 2D)

Параметры колеса: колесо — цилиндрическое прямозубое m=0,5 мм; z=104; b=3 мм; d=7 мм (диаметр вала).

Материалы к заданию 4

Рис 1. Типовые конструкции цилиндрических зубчатых колёс

Примечания:

- 1. Малая ступица диаметром d'_{I} (рис. 1, в) выполняется в том случае, когда она используется в качестве упора.
- 2. Выточки d_2 (рис. 1, д) рекомендуются при выполнении следующих условий: $b \ge 3$ мм, $d_f d_1 2S \ge 16$ мм, где d_f диаметр впадин зубьев.

Диаметр выточки d_2 определяется из формулы $d_2 = d_f - 2 \cdot S$, где $S=1,5 \ (m+1)$ мм.

3. При повышенных требованиях к малоинерционности передачи делают облегчающие отверстия рис. 1, г) и рис. 1, д). При шести облегчающих отверстиях их диаметр d_3 определяется из условий: $d_{3max} \le 0.5 (d_2 - d_1 - 6)$ мм — для колес с выточками;

 $d_{3max} \le 0,5 (d_f - d_1 - 3m - 5)$ мм – для колес без выточек;

 $d_{3min} \ge 5$ MM.

Таблица 1 Размеры конструктивных элементов типовых зубчатых колёс, мм.

т измеры конструктивных элементов типовых зуотатых колес, им.										
d	d_1	d'_1	b	l	l_2	ďш	$d_{I\!I\!I}$	d_P	l_1	c
3	7	6	3	7 8	0,5	0,6	0,8	M2	2,5	0,3
4	8	7	3	7 8	0,5	0,8	1	M2	2,5	0,3
5	9	8	3	8 9	0,5	1	1,2	M2	2,5	0,3
6	10	9	3 4	9 10	0,5	1,3	1,6	М3	3	0,7
7	12	10	3 4	9 10	0,5	1,6	2	М3	3	0,7 1,2
8	14	12	3 4	10 12	0,5	1,6	2	М3	3,5	0,7
9	16	13	4 5	12 14	0,5	1,6	2	М3	4	1,5
10	18	15	4 5	14	0,5	2,6	3	М3	4,5	1,5
12	20	17	4 5	16	0,5	2,6	3	M4	5	1,5
14	22	19	5	18	0,5	3,6	4	M4	6	1,2 1,8

Примечания:

1. Расчётное значение d_3 следует округлить до меньшего целого числа.

При этом k в мм (рис. 1, д) в зависимости от модуля m и числа зубьев колеса z приведены ниже. Значения параметра k.

	Числа зубьев <i>z</i>								
II.		До 80	Св.80 до 125	Св.125 до 150	Св.150				
Модул т, мм	От 0,3 до 0,5	3	4	5	6				
	От 0,5 до 1	5	6	7	9				

2. Диаметр d_4 окружности центров облегчающих отверстий рис. 1, а) и рис. 1, д) определяется из формулы

 $d_4 = 0.5(d_2 + d_1) + 1$ мм – для колес с выточками;

 $d_4 = 0.5 (d_f + d_1 - 3m - 1) + 1$ мм – для колес без выточек.

3. Диаметр $d'_{I\!I\!I}$ — диаметр предварительного сверления под штифт. d_P — диаметр резьбового отверстия.

На каждом чертеже колеса должна быть таблица параметров. Ее расположение и размеры жестко ограничены.

Параметры цилиндрического зубчатого колеса определяются по формулам из таблицы

Параметр	Обозначение	Формула		
Высота головки зуба	h_a	$h_a = m$		
Высота ножки зуба	h_f	$h_f = 1,25m$		
Высота зуба	h	$h = h_a + h_f = 2,25m$		
Делительный диаметр	d	d = mz		
Диаметр вершин зубьев	d_a	$d_a = d + 2h_a = m(z+2)$		
Диаметр впадин зубьев	d_f	$d_f = d - 2h_f = m(z - 2,5)$		
Шаг окружной	P_t	$P_t = m\pi$		
Окружная толщина зуба	s_t	$s_t = 0.5P_t = 0.5m\pi$		
Окружная ширина впадины	e_t	$e_t = 0.5P_t = 0.5m\pi$		

ГОСТ 9563-60 (*«Основные нормы взаимозаменяемости. Колеса зубчатые. Модули»*) устанавливает значения модулей зубчатых колес. При выборе модуля следует отдавать предпочтение первому ряду.

Стандартные значения модуля, мм

Ряд 1	0,3	0,4	0,5	0,6	0,8	1,0	1,25	1,5	2,0	2,5
Ряд 2	0,35	0,45	0,55	0,7	0,9	1,125	1,375	1,75	2,25	2,75

Задание 5

По предложенным изображениям построить три вида детали, выполнить сложный разрез Б-Б, проставить размеры.

Построить 3D-модель. Название – Корпус.

