

Иван Кочкожаров, студент группы М8О-108Б-22

9 мая 2023 г.

1. Определить для орграфа, заданного матрицей смежности
$$A = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- а) матрицу односторонней связности;
- б) матрицу сильной связности;
- в) компоненты сильной связности;
- г) матрицу контуров.

Решение.

Изображение графа:

Матрица односторнней связности:

$$A = A(D) = \begin{bmatrix} & v_1 & v_2 & v_3 & v_4 \\ v_1 & 0 & 1 & 0 & 1 \\ v_2 & 0 & 0 & 0 & 1 \\ \hline v_3 & 1 & 1 & 0 & 1 \\ v_4 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A^{2} = \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Матрица двусторонней связности:

$$S(D) = T(D) \& [T(D)]^{\mathrm{T}} = \begin{pmatrix} 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \& \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

 $S(D) = E \Rightarrow$ в графе D нет контуров.

Компонентны сильной связности:

$$S_2(D) = S(D) = \begin{vmatrix} & v_1 & v_2 & v_3 & v_4 \\ v_1 & 1 & 0 & 0 & 0 \\ v_2 & 0 & 1 & 0 & 0 \\ v_3 & 0 & 0 & 1 & 0 \\ v_4 & 0 & 0 & 0 & 1 \end{vmatrix}$$

$$D_1 = (V_1, X_1), V_1 = \{v_1\}$$

$$A(D_1) = \begin{array}{|c|c|} \hline v_1 \\ \hline v_1 & 0 \end{array} \qquad D_1: \qquad \boxed{1}$$

$$S_2(D) = \begin{vmatrix} v_2 & v_3 & v_4 \\ v_2 & 1 & 0 & 0 \\ v_3 & 0 & 1 & 0 \\ v_4 & 0 & 0 & 1 \end{vmatrix}$$

$$D_2 = (V_2, X_2), V_2 = \{v_2\}$$

$$A(D_2) = \begin{array}{|c|c|} \hline v_2 \\ \hline v_2 & 0 \end{array} \qquad D_2 : \qquad \begin{array}{|c|c|} \hline 2 \\ \hline \end{array}$$

$$D_3 = (V_3, X_3), V_3 = \{v_3\}$$

Матрица контуров:

2. Используя алгоритм Терри, определить замкнутый маршрут, проходящий ровно по два раза (по одному в каждом направлении) через каждое ребро графа.

Решение.

Для решения этой задачи действуем в соответствии с алгоритмом Тэрри. Для реализации алгоритма помечаем первые заходящие в вершины ребра крестиками, которые наносим на ребрах ближе к той вершине в которую в первый раз заходим, а также указываем направления прохождения ребер и последовательность прохождения ребер. Алгоритм дает следующий возможный маршрут:

 $v_1v_2v_3v_5v_4v_3v_4v_2v_4v_1v_4v_5v_3v_2v_1$

3. Орграф D=(V,X), где $V=\{v_1,\ldots,v_{10}\}$ задан матрицей смежности A(D). Найти все минимальные пути v_1 в v_8 .

		v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8
	v_1	0	0	1	0	0	1	0	0
	v_2	1	0	1	1	1	1	0	0
	v_3	1	0	0	0	0	1	0	0
A = A(D) =	v_4	1	1	1	0	0	1	0	0
	v_5	1	1	1	1	0	0	1	1
	v_6	0	0	1	1	0	0	0	0
	v_7	1	0	1	1	1	1	1	0
	v_8	1	0	1	1	0	0	1	0

Решение.

Действуя согласно алгоритму фронта волны, последовательно определяем:

$$FW_{0}(v_{1}) = \{v_{1}\}, FW_{1}(v_{1}) = D(v_{1}) = \{v_{3}, v_{6}\},$$

$$FW_{2}(v_{1}) = D(FW_{1}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1})) = D(\{v_{3}, v_{6}\}) \setminus \{v_{1}, v_{3}, v_{6}\} =$$

$$= \{v_{1}, v_{3}, v_{4}, v_{6}\} \setminus \{v_{1}, v_{3}, v_{6}\} = \{v_{4}\},$$

$$FW_{3}(v_{1}) = D(FW_{2}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1})) = \{v_{1}, v_{2}, v_{3}, v_{6}\} \setminus$$

$$\{v_{1}, v_{3}, v_{4}, v_{6}\} = \{v_{2}\},$$

$$FW_{4}(v_{1}) = D(FW_{3}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1}) \cup FW_{3}(v_{1})) =$$

$$= \{v_{1}, v_{3}, v_{4}, v_{5}, v_{6}\} \setminus \{v_{1}, v_{2}, v_{3}, v_{4}, v_{6}\} = \{v_{5}\},$$

$$FW_{5}(v_{1}) = D(FW_{4}(v_{1})) \setminus (FW_{0}(v_{1}) \cup FW_{1}(v_{1}) \cup FW_{2}(v_{1}) \cup FW_{3}(v_{1}) \cup FW_{4}(v_{1})) =$$

$$\{v_{1}, v_{2}, v_{3}, v_{4}, v_{7}, v_{8}\} \setminus \{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\} = \{v_{7}, v_{8}\}$$

Таким образом, $v_8 \in FW_5(v_1)$, а следовательно, согласно алгоритму фронта волны существует минимальный путь в орграфе D из v_1 в v_8 длины 5. Найдём все эти пути.

Рис. 1: График D'

На рисунке изображен подграф D' орграфа D, на котором последовательно изображены множества $FW_k(v_1), k=1,2,3,4,5$, а так же дуги вида (v,v'), где для некоторого $k \in \{0,1,2,3,4\}, v \in FW_k(v_1), v' \in FW_{k+1}(v_1)$, т.е. исходящие из вершин некоторого k-го фронта волны и заходящие в вершины следующего (k+1)-го фронта волны.

Используя изображение D' нетрудно выделить все минимальные пути из v_1 в v_8 в орграфе D. При этом, следуя алгоритму фронта волны, находим эти минимальные пути, используя орграф D' но двигаясь в D' в обратной последовательности (т.е. не из v1 в v_8 а наоборот, из v_8 в v_1). Используя рисунок 1, получаем, что в любом минимальном пути из v_1 в v_8 соблюдается следующая последовательность вершин. Вершиной, предшествующей вершине v_8 может быть v_5 . Вершиной, предшествующей вершине 5 может быть v_2 . Вершиной, предшествующей вершине v_2 – вершина v_4 . Вершиной, предшествующей вершине v_4 – любая из вершин v_3, v_6 . Вершинам, предшествующей вершине v_4 может предшествовать только v_1 . Этими условиями однозначно определяется множество минимальных путей из v_1 в v_8 которое компактно изображено на рисунке 2. На этом рисунке изображены все вершины, входящие в минимальные пути v_1 в v_8 Для каждой из промежуточных вершин ν показано множество вершин, которые могут ей предшествовать, а также соответствующие дуги (исходящие из вершин, предшествующих у и заходящие в v). Из рисунка 2 видно, что всего существует два минимальных пути из v_1 в v_8 : $v_1v_3v_4v_2v_5v_8$, $v_1v_6v_4v_2v_5v_8$.

Рис. 2: График минимальных путей

4. Нагруженный орграф D задан матрицей длин дуг C(D). Найти минимальные

пути из v_1 во все достижимые вершины.

$$C(D) = \begin{pmatrix} \infty & 4 & \infty & \infty & 5 & \infty & \infty & \infty \\ 5 & \infty & 7 & 10 & 2 & \infty & \infty & \infty \\ \infty & \infty & \infty & 2 & \infty & 2 & \infty & \infty \\ 6 & \infty & \infty & \infty & \infty & \infty & 3 & 5 \\ 3 & 2 & \infty & \infty & \infty & 3 & 11 & \infty \\ 4 & \infty & 2 & \infty & \infty & \infty & 7 & \infty \\ 8 & \infty & \infty & 3 & \infty & \infty & \infty & 3 \\ \infty & \infty & \infty & \infty & 17 & \infty & \infty & \infty \end{pmatrix}$$

Решение.

Используем алгоритм Форда. Сначала определим таблицу величин $\lambda_i^{(i)}, i=1,2,\dots,n-1$, где n=8

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	$\lambda^{(0)}$	$\lambda^{(1)}$	$\lambda^{(2)}$	$\lambda^{(3)}$	$\lambda^{(4)}$	$\lambda^{(5)}$	$\lambda^{(6)}$	$\lambda^{(7)}$
v_1	∞	4	∞	∞	5	∞	∞	∞								
v_2	5	∞	7	10	2	∞	∞	∞								
v_3	∞	∞	∞	2	∞	2	∞	∞								
v_4	6	∞	∞	∞	∞	∞	3	5								
v_5	3	2	∞	∞	∞	3	11	∞								
v_6	4	∞	2	∞	∞	∞	7	∞								
v_7	8	∞	∞	3	∞	∞	∞	3								
v_8	∞	∞	∞	∞	17	∞	∞	∞								

C(D) Таблица величин