Zeeman-Effekt

Katharina Brägelmann Tobias Janßen

Durchführung: 30. Januar 2019, Abgabe: ??. Januar 2019

 $katharina.braegelmann@tu-dortmund.de,\ tobias 2. janssen@tu-dortmund.de$

Inhaltsverzeichnis

1 Theorie

1.1 Übergänge der Cd-Lampe

In diesem Versuch werden die Übergänge von Cadmium untersucht, indem die Aufspaltung von zwei Spekrallinien einer Cd-Lampe aufgenommen werden. Zum einen wird die rote Spektrallinie mit einer Wellenlänge von 643,8 nm, die durch den Übergang $^1P_1 \leftrightarrow ^1D_2$ hervorgerufen wird untersucht. Zum anderen wird die blaue Spektrallinie mit einer Wellenlänge von 480 nm betrachtet, die durch den Übergang $^1S_1 \leftrightarrow ^3P_1$ ausgelöst wird. Die Termschemata sind in ?? und ?? dargestellt. Die zugehörigen Landé-Faktoren werden in ?? und ?? berechnet. Dabei entspricht die rote Spektrallinie dem normalen Zeeman-Effekt und die blaue dem anormalen Zeeman-Effekt.

Abbildung 1: Hier ist das Termschema der blauen Spektrallinie einer Cd-Lampe dargestellt

Übergang	m_1	g_1	m_2	g_2	g_{12}
	$^{1}P_{1}$		1D_2		
	2	1	1	1	1
σ	1	1	0	1	1
	0	1	-1	1	1
π	1	1	1	1	0
	0	1	0	1	0
	-1	1	-1	1	0
σ	0	1	1	1	-1
	-1	1	0	1	-1
	-2	1	-1	1	-1

Tabelle 1: Hier sind die Landé-Faktoren der roten Spektrallinie aufgeführt.

Übergang	m_1	g_1	m_2	g_2	g_{12}
	${}^{3}S_{1}$		$^{3}P_{2}$		
σ	+1	2	0	$\frac{3}{2}$ $\frac{3}{2}$	2
	0	2	-1	$\frac{3}{2}$	$\begin{array}{c} 2\\ \frac{3}{2} \end{array}$
	+1	2	+1	3 23 23 2	$\frac{1}{2}$
π	2	2	0	$\frac{\overline{3}}{2}$	$\bar{0}$
	-1	2	-1	$\frac{3}{2}$	$-\frac{1}{2}$
	0	2	1	$\frac{3}{2}$ $\frac{3}{2}$	$-\frac{3}{2}$ -2
σ	-1	2	0	$\frac{\overline{3}}{2}$	-2

Tabelle 2: Hier sind die Landé-Faktoren der blauen Spektrallinie aufgeführt.

Abbildung 2: Hier ist das Termschema der roten Spektrallinie einer Cd-Lampe dargestellt