TRƯỜNG ĐẠI HỌC SƯ PHẠM KỸ THUẬT THÀNH PHỐ HỒ CHÍ MINH KHOA KHOA HỌC ỨNG DỤNG

ĐÁP ÁN MÔN TOÁN 1 Mã môn học: MATH141601

Mã môn học: MATH141601
Ngày thi: 22/12/2016

Câu	Ý	Nội dung	Điểm
I	1	Ta có $f(x) = 1 \Leftrightarrow \frac{x+1}{x^2+1} = 1 \Leftrightarrow x = 0; 1$	0,50
		Do đó $(f \circ g)(x) = 1 \Leftrightarrow g(x) = 0; 1$	0,25
		$g(x) = 0 \Leftrightarrow \tan^{-1} x = \frac{1}{2} \Leftrightarrow x = \tan \frac{1}{2}$	0,25
		$g(x) = 1 \Leftrightarrow \tan^{-1} x = 2 \Leftrightarrow x = \tan 2$	0,25
	2	$\frac{e^{-x} - 1}{x} \text{ liên tục tại mọi } x \neq 0 \text{ và } \frac{\ln(1+x)}{mx} \text{ liên tục tại mọi } x > 0 \text{ nên } h(x) \text{ liên}$	0,25
		tục tại mọi $x \neq 0$. Vì vậy $h(x)$ liên tục tại mọi $x \Leftrightarrow h(x)$ liên tục tại 0	0,25
		$\Leftrightarrow \lim_{x \to 0^{-}} h(x) = a, \lim_{x \to 0^{+}} h(x) = a$	0,25
		$\Leftrightarrow \begin{cases} a = \lim_{x \to 0^{-}} \frac{e^{-x} - 1}{x} = \lim_{x \to 0^{-}} \frac{-e^{-x}}{1} = -1\\ a = \lim_{x \to 0^{+}} \frac{\ln(1+x)}{mx} = \lim_{x \to 0^{+}} \frac{\frac{1}{1+x}}{m} = \frac{1}{m} \end{cases} \Leftrightarrow \begin{cases} a = -1\\ m = -1 \end{cases}$	0,50
II	1	$\lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0^{-}} \frac{\frac{\sin \Delta x}{\Delta x} - m}{\Delta x}$	0,25
		$m \neq 1 \Rightarrow \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \infty \Rightarrow f(x)$ không có đạo hàm tại 0	0,50
		$m = 1 \Rightarrow \lim_{\Delta x \to 0} \frac{f(\Delta x) - f(0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\sin \Delta x - \Delta x}{\Delta x^2} = \lim_{\Delta x \to 0} \frac{\cos \Delta x - 1}{2\Delta x}$ $= \lim_{\Delta x \to 0} \frac{-\sin \Delta x}{2} = 0 \Rightarrow f'(0) = 0$	0,50
	2	Vậy $f(x)$ có đạo hàm tại 0 khi $m = 1$	
	_	Khi $x \neq 0$ ta có $f'(x) = \frac{x \cos x - \sin x}{x^2}$	0,50
		Do đó hệ số góc của tiếp tuyến tại $(\pi,0)$ là $f'(\pi) = \frac{-\pi}{\pi^2} = -\frac{1}{\pi}$	0,50
		Phương trình tiếp tuyến tại $(\pi,0)$ là $y = -\frac{1}{\pi}(x-\pi)$	0,25

III	1	Hàm $f(x)$ xác định khi $-1 \le x < 1$	0,25
		$f'(x) = -\frac{1}{1-x} + \frac{1}{\sqrt{1-x^2}}$	0,25
		$\int (x)^{-1} \sqrt{1-x^2}$	0,23
		$f'(x) = 0 \Leftrightarrow x = 0$	0,25
		$f''(x) = -\frac{1}{(1-x)^2} + \frac{x}{(1-x^2)^{3/2}} \Rightarrow f''(0) = -1 < 0$	0,25
		Vậy hàm $f(x)$ đạt cực đại tương đối tại $x = 0$, $f(0) = 0$	
	2	$1 = g(0) = \lim_{x \to 0} \frac{e^{ax} + e^{bx} - (a+b)x - 2}{x^2} = \lim_{x \to 0} \frac{ae^{ax} + be^{bx} - (a+b)}{2x}$	0,50
		$= \lim_{x \to 0} \frac{a^2 e^{ax} + b^2 e^{bx}}{2}$	0,25
		$=\frac{a^2+b^2}{2}$	0,25
	3	2	
)	Đặt $CN = x$ và $\alpha = \widehat{MNC}$. Ta có $CM = x \tan \alpha$	
		$\cos \widehat{DNP} = \frac{DN}{PN} = \frac{20 - x}{x} \Rightarrow \cos(\pi - 2\alpha) = \frac{20 - x}{x}$	
		$\Rightarrow \cos \alpha = \sqrt{\frac{x-10}{x}}, \sin \alpha = \sqrt{\frac{10}{x}}$	0,25
		Diện tích tam giác MNP là $S = \frac{1}{2}CM.CN = \frac{1}{2}x^2\sqrt{\frac{10}{x-10}}$ (10 < x \le 20)	0,25
		$\text{Dặt } y = \frac{x^4}{x - 10} (10 < x \le 20) \text{ Ta có } y' = \frac{x^3 (3x - 40)}{(x - 10)^2}$	
		$y' = 0 \Leftrightarrow x = \frac{40}{3}$	0,25
		$y'(x) < 0$ khi $10 < x < \frac{40}{3}$; $y'(x) > 0$ khi $\frac{40}{3} < x \le 20$	
		$\Rightarrow y(x) > y(40/3) \forall x \in (10; 20]$	
		Vậy diện tích tam giác MNP nhỏ nhất khi $x = 40/3$	0,25
IV	1	$f'(x) = e^{(1+x)^2} - e^{x^2}$	0,50
		Gọi m là hoành độ điểm M , ta có: $f'(m) = 0 \Rightarrow e^{(1+m)^2} = e^{m^2} \Rightarrow m = -\frac{1}{2}$	0,50
	2	$g_{TB} = \frac{1}{3 - 0} \int_{0}^{3} g(x) dx = \frac{1}{3} \int_{0}^{3} x \sqrt{1 + x} dx$	0,25
		$= \frac{1}{3} \int_{0}^{3} \left[(1+x)^{3/2} - (1+x)^{1/2} \right] dx = \frac{1}{3} \left[\frac{2}{5} (1+x)^{5/2} - \frac{2}{3} (1+x)^{3/2} \right]_{0}^{3}$	0,50
		$=\frac{116}{45}$	0,25