830

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления»	
КАФЕДРА «Программное обеспечение ЭВМ и информационные технологии»	
Лабораторная работа № <u>2</u>	
4-го порядка точности при решении системы ОДУ в задаче Коши.	
Студент Брянская Е.В.	
Группа ИУ7-62Б	
Оценка (баллы)	
Преподаватель Градов В.М.	

Задание

Тема. Программно-алгоритмическая реализация метода Рунге-Кутта 4-го порядка точности при решении системы ОДУ в задаче Коши.

Цель работы. Получение навыков разработки алгоритмов решения задачи Коши при реализации моделей, построенных на системе ОДУ, с использованием метода Рунге-Кутта 4-го порядка точности.

Исходные данные.

Задана система электротехнических уравнений, описывающих разрядный контур, включающий постоянное активное сопротивление R_k , нелинейное сопротивление $R_p(I)$, зависящее от тока I, индуктивность L_k и емкость C_k .

$$\begin{cases}
\frac{dI}{dT} = \frac{U - (R_k + R_p(I))I}{L_k}, \\
\frac{dU}{dt} = -\frac{I}{C_k}
\end{cases} (1)$$

Начальные условия:

$$t = 0, I = I_0, U = U_0$$

Здесь I, U - ток и напряжение на конденсаторе.

Сопротивление R_p рассчитать по формуле:

$$R_p = \frac{l_p}{2\pi R^2 \int\limits_0^1 \sigma(T(z))zdz}$$
 (2)

Для функции T(z) применить выражение $T(z) = T_0 + (T_w - T_0)z^m$.

Параметры T_0 , m находятся интерполяцией из таблицы 1 при известном токе I.

Коэффициент электропроводности $\sigma(T)$ зависит от T и рассчитывается интерполяцией из таблицы 2.

Таблица 1

I, A	T_0, K	m
0.5	6730	0.50
1	6790	0.55
5	7150	1.7
10	7270	3
50	8010	11
200	9185	32
400	10010	40
800	11140	41
1200	12010	39

Таблица 2

T, K	$\sigma, 1/$
4000	0.031
5000	0.27
6000	2.05
7000	6.06
8000	12.0
9000	19.9
10000	29.6
11000	41.1
12000	54.1
13000	67.7
14000	81.5

Параметры разрядного контура:

 $R=0.35\ \mathrm{cm}$

 $l=12~\mathrm{cm}$

 $L_k=187\cdot 10^{-6}~\Gamma$ н

 $C_k = 268 \cdot 10^{-6} \ \Phi$

 $R_k=0.25~\mathrm{Om}$

 $U_{co}=1400~\mathrm{B}$

 $I_o = 0..3 \text{ A}$

 $T_w = 2000~\mathrm{K}$

Выполнение

Задача решается методом Рунге-Кутта 4ого порядка для системы ОДУ.

$$y_{n+1} = y_n + \frac{k_1 + 2k_2 + 2k_3 + k_4}{6}, \qquad z_{n+1} = z_n + \frac{p_1 + 2p_2 + 2p_3 + p_4}{6}$$
 (3)

где

$$k_1 = hf(x_n, y_n, z_n) \qquad p_1 = h\varphi(x_n, y_n, z_n) \tag{4}$$

$$k_2 = hf(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}, z_n + \frac{p_1}{2})$$
 $p_2 = h\varphi(x_n + \frac{h}{2}, y_n + \frac{k_1}{2}, z_n + \frac{p_1}{2})$ (5)

$$k_3 = hf(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}, z_n + \frac{p_2}{2})$$
 $p_3 = h\varphi(x_n + \frac{h}{2}, y_n + \frac{k_2}{2}, z_n + \frac{p_2}{2})$ (6)

$$k_4 = hf(x_n + \frac{h}{2}, y_n + k_3, z_n + p_3)$$
 $p_4 = h\varphi(x_n + \frac{h}{2}, y_n + k_3, z_n + p_3)$ (7)

Результат работы программы.

1. Графики зависимости от времени импульса t: $I(t), U(t), R_p(t)$, произведения $I(t) \cdot R_p(t), T_0(t)$ при заданных выше параметрах. Шаг сетки - 10^{-7} .

2. График зависимости I(t) при $R_k + R_p = 0$. Обратить внимание на то, что в этом случае колебания тока будут незатухающими.

3. График зависимости I(t) при $R_k + R_p = const = 200$ Ом в интервале значений t 0-20 мкс.

4. Результаты исследования влияния параметров контура C_k , L_k , R_k на длительность импульса tимп. апериодической формы. Длительность импульса определяется по

кривой зависимости тока от времени на высоте $35I_{max}$, I_{max} - значение тока в максимуме (см. рисунок).

Таблица 3 — Влияние C_k на длительность импульса
 tuмп

C_k , мк Φ	200	250	300	350	400	450	500	550	600	650
tимп, мкс	485.10	546.10	602.10	654.20	703.20	749.90	794.70	838.0	879.70	920.40

Таблица 4 — Влияние L_k на длительность импульса tимп

L_k , мк Γ н	100	150	200	250	300	350	400	450	500	550
tимп, мкс	425.50	511.80	584.70	649.30	708.20	762.50	813.20	861.00	906.20	949.20

Таблица 5 — Влияние R_k на длительность импульса tимп

R_k , Om	0.1	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
tимп, мкс	556.20	562.90	580.2	604.5	636.3	675.3	723.9	781.01	842.6	903.2	959.7

В результате исследования было выявлено, что при увеличении любого из трёх параметров увеличивается и длительность импульса.

Вопросы при защите лабораторной работы

- 1. Какие способы тестирования программы, кроме указанного в п.2, можете предложить ещё?
- 2. Получите систему разностных уравнений для решения сформулированной задачи неявным методом трапеций. Опишите алгоритм реализации полученных уравнений.
- 3. Из каких соображений проводится выбор численного метода того или иного порядка точности, учитывая, что чем выше порядок точности метода, тем он более сложен и требует, как правило, больших ресурсов вычислительной системы?
- 4. Можно ли метод Рунге Кутта применить для решения задачи, в которой часть условий задана на одной границе, а часть на другой? Например, напряжение по-прежнему задано при t=0, т.е. $t=0, U=U_0$ а ток задан в другой момент времени, к примеру, в конце импульса, т.е. при $t=T, I=I_T$. Какой можете предложить алгоритм вычислений?

Код программы

Листинг 1 — Лабораторная работа №2

```
1 from math import *
2 import matplotlib.pyplot as plt
_{4} table I = [0.5, 1, 5, 10, 50, 200, 400, 800, 1200]
_{5}| table T0 = [6730, 6790, 7150, 7270, 8010, 9185, 10010, 11140, 12010]
_{6} table _{m} = [0.5, 0.55, 1.7, 3, 11, 32, 40, 41, 39]
|\tau| table |T| = [4000, 5000, 6000, 7000, 8000, 9000, 10000, 11000, 12000, 13000, 14000]
s \mid table \quad sigma = [0.031, 0.27, 2.05, 6.06, 12, 19.9, 29.6, 41.1, 54.1, 67.7, 81.5]
_{10} | R = 0.35
_{11} le = 12
_{12} | Lk = 187 * 10 ** (-6)
_{13} Ck = 268 * 10 ** (-6)
_{14} | Rk = 0.25
_{15}|Tw = 2000
_{17}|T0 = 0
_{18} | Rp = 0
19
||_{20}||_{\mathsf{res}}||_{\mathsf{res}}||_{\mathsf{res}}||_{\mathsf{res}}
_{21} res U = []
|z_2| \, \text{res} \, t = []
_{23} res Rp = []
_{24} res IRp = []
_{25} res T0 = []
^{26}
  def find sigma(z, I, Tw):
     t0 = interpolation(I, 2, table I, table T0)
28
     global T0
29
     T0 = t0
30
    m = interpolation(I, 2, table I, table m)
31
    T = T0 + (Tw - T0) * z ** m
^{32}
     sigma = interpolation(T, 2, table T, table sigma)
33
     return sigma
34
35
36 def find Rp(I, Tw):
    a, b = 0, 1
```

```
n = 100
38
    dz = (b - a) / n
39
    intgr = 0
40
    z = 0
41
42
    for j in range(n):
43
      intgr += z * dz * find_sigma(z, I, Tw)
44
      z += dz
45
46
    return le / (2 * pi * R * R * intgr)
47
  def f(I, U):
49
    global Rp
50
    Rp = find Rp(I, Tw)
51
    return (U - (Rk + Rp) * I) / Lk
52
53
  def phi(I):
    return - I / Ck
55
56
  def find I U(I, U, h):
57
    k1 = h * f(I, U)
58
    p1 = h * phi(I)
59
60
    k2 = h * f(I + k1 / 2, U + p1 / 2)
61
    p2 = h * phi(1 + k1 / 2)
62
63
    k3 = h * f(1 + k2 / 2, U + p2 / 2)
64
    p3 = h * phi(1 + k2 / 2)
65
66
    k4 = h * f(I + k3, U + p3)
67
    p4 = h * phi(1 + k3)
68
69
    return 1 + 1 / 6 * (k1 + 2 * k2 + 2 * k3 + k4), \
      U + 1 / 6 * (p1 + 2 * p2 + 2 * p3 + p4)
71
72
  def find position(x, data x, number):
    left = 0
74
    right = number - 1
75
76
    if data x[0] < data x[-1]:
77
```

```
if x < data x[left] or x > data x[right]: return -1
78
       while left + 1 != right:
79
         pos x = int((left + right)/2)
80
         if data x[pos x] \le x:
81
           left = pos x
82
         else:
83
           right = pos x
84
       return left
85
     else:
86
       if x < data x[right] or x > data x[left]: return -1
87
       while left + 1 != right:
88
         pos x = int((left + right)/2)
89
         if data x[pos x] >= x:
90
           left = pos x
91
         else:
92
           right = pos x
93
       return left
95
  def find range(pos x, degree, data x, data y, number):
96
     half = int(degree / 2)
97
     left = pos x - half
98
     right = pos x + (degree - half)
     if left < 0:
100
       right += -left
101
       left = 0
102
     elif right > number -1:
103
       left = right - (number - 1)
104
       right = number - 1
105
106
     return data x[left: right + 1], data y[left: right + 1]
107
108
  def find polynomial(degree, nodes x, nodes y):
109
     div diff, old arr = [0] * (degree + 1), nodes y
    new arr = [0] * degree
111
112
     div \ diff[0] = old \ arr[0]
113
    for i in range(degree):
114
       for j in range(degree - i):
115
         new arr[j] = (old arr[j] - old arr[j+1]) / 
116
         (nodes x[j] - nodes x[j+i+1])
117
```

```
div diff[i+1] = new arr[0]
118
       old arr = new arr
119
     return lambda x: nwtn_polynom(x, degree, div diff, nodes x)
121
122
   def nwtn polynom(x, degree, div diff, nodes x):
     y = div \ diff[0]
124
     x pl = 1
125
     for i in range (1, degree + 1):
126
       x pl *= (x - nodes x[i-1])
127
       y += x pl * div diff[i]
128
     return y
129
130
   def interpolation (x, degree, data x, data y):
     pos = find_position(x, data_x, len(data_x))
132
     nodes x, nodes y = find range(pos, degree, data x, data y, len(data x))
133
     f = find polynomial(degree, nodes x, nodes y)
     return f(x)
135
136
   def show graph():
137
     /* Построение графиков */
138
   def main():
140
     Uc = 1400
141
     I, t = 0, 0
     h = 10 ** (-7)
143
144
     while t < 1.5 * 10 ** (-3):
145
       I, Uc = find I U(I, Uc, h)
146
       t += h
147
148
       res l.append(l)
149
       res U.append(Uc)
150
       res t.append(t)
151
       res T0.append(T0)
152
       res Rp.append(Rp)
153
154
     for i in range(len(res Rp)):
155
       res IRp.append(res_I[i] * res_Rp[i])
156
157
```

```
show_graph()

if __name__ == '__main__':

main()
```