# Vovk's algorithm Mixable and unmixable loss functions

Yoav Freund

February 2, 2006

## **Outline**

Review

The general prediction game

Some useful loss functions

Vovk's algorithm

mixable loss functions

The convexity condition

Log loss

Square loss

Square loss using simple averaging

Summary table

## The log-loss game

- Prediction algorithm A has access to N experts.
- ▶ The following is repeated for t = 1, ..., T
  - **Experts** generate predictive distributions:  $\mathbf{p}_1^t, \dots, \mathbf{p}_N^t$
  - Algorithm generates its own prediction p<sup>t</sup><sub>A</sub>
  - c<sup>t</sup> is revealed.
- ▶ Goal: minimize regret:

$$-\sum_{t=1}^{T} \log p_{\mathcal{A}}^{t}(c^{t}) + \min_{i=1,\dots,N} \left( -\sum_{t=1}^{T} \log p_{i}^{t}(c^{t}) \right)$$

## The online Bayes Algorithm

► Total loss of expert i

$$L_i^t = -\sum_{i=1}^t \log p_i^s(c^s); \quad L_i^0 = 0$$

Weight of expert i

$$w_i^t = w_i^1 e^{-L_i^{t-1}} = w_i^1 \prod_{i=1}^{t-1} p_i^s(c^s)$$

Freedom to choose initial weights.

$$w_t^1 > 0, \sum_{i=1}^n w_i^1 = 1$$

► Prediction of algorithm A

$$\mathbf{p}_A^t = \frac{\sum_{i=1}^N w_i^t \mathbf{p}_i^t}{\sum_{i=1}^N w_i^t}$$

## Cumulative loss vs. Final total weight

Total weight: 
$$W^t \doteq \sum_{i=1}^N w_i^t$$

$$\frac{W^{t+1}}{W^t} = \frac{\sum_{i=1}^{N} w_i^t e^{\log p_i^t(c^t)}}{\sum_{i=1}^{N} w_i^t} = \frac{\sum_{i=1}^{N} w_i^t p_i^t(c^t)}{\sum_{i=1}^{N} w_i^t} = p_A^t(c^t)$$
$$-\log \frac{W^{t+1}}{W^t} = -\log p_A^t(c^t)$$

$$-\log W^{T+1} = -\log \frac{W^{T+1}}{W^1} = -\sum_{t=1}^{T} \log p_A^t(c^t) = L_A^T$$

#### **EQUALITY** not bound!

## Vovk's general prediction game

 $\Gamma$  - prediction space.  $\Omega$  - outcome space. On each trial t = 1, 2, ...

- 1. Each expert  $i \in \{1 \dots N\}$  makes a prediction  $\gamma_i^t \in \Gamma$
- 2. The learner, after observing  $\langle \gamma_1^t \dots \gamma_N^t \rangle$ , makes its own prediction  $\gamma^t$
- 3. Nature chooses an outcome  $\omega^t \in \Omega$
- 4. Each expert incurs loss  $\ell_i^t = \lambda(\omega^t, \gamma_i^t)$ The learner incurs loss  $\ell_A^t = \lambda(\omega^t, \gamma^t)$

## Achievable loss bounds

- ►  $L_A \doteq \sum_{t=1}^{T} \ell_A^t$  total loss of algorithm
- $ightharpoonup L_i \doteq \sum_{t=1}^{T} \ell_i^t$  total loss of expert *i*
- Goal: find an algorithm which guarantees that

$$(a,c) \in [0,\infty), \ L_A \le aL_{\min} + c \ln N$$

For any sequence of events.

▶ We say that the pair (a, c) is achievable.

## The set of achievable bounds

- ► Fix loss function  $\lambda : \Omega \times \Gamma \to [0, \infty)$
- ► The pair (a, c) is achievable if there exists some prediction algorithm such that for any N > 0, any set of N prediction sequences and any sequence of outcomes

$$L_A \leq aL_{\min} + c \ln N$$



## Some useful loss functions

- ▶ Outcomes:  $\omega^1, \omega_2, \dots \omega^t \in [0, 1]$
- ▶ Predictions:  $\gamma^1, \gamma^2, \dots \gamma^t \in [0, 1]$

# Log loss (Entropy loss)

$$\lambda_{ ext{ent}}(\omega,\gamma) = \omega \ln rac{\omega}{\gamma} + (1-\omega) \ln rac{1-\omega}{1-\gamma}$$

- ▶ When  $q_t \in \{0, 1\}$  Cumulative log loss = coding length  $\pm 1$
- ▶ If  $P[\omega_t = 1] = q$ , optimal prediction  $\gamma^t = q$
- Unbounded loss.
- ▶ Not symmetric  $\exists p, q \ \lambda(p, q) \neq \lambda(q, p)$ .
- No triangle inequality  $\exists p_1, p_2, p_3 \ \lambda(p_1, p_3) > \lambda(p_1, p_2) + \lambda(p_2, p_3)$

## Square loss (Breier Loss)

$$\lambda_{\mathsf{sq}}(\omega,\gamma) = (\omega - \gamma)^2$$

- ►  $P[\omega^t = 1] = q$ ,  $P[\omega^t = 0] = 1 q$ , optimal prediction  $\gamma^t = q$
- Bounded loss.
- Defines a metric (symmetric and triangle ineq.)
- Corresponds to regression.

## Hellinger Loss

$$\lambda_{\text{hel}}(\omega,\gamma) = \frac{1}{2} \bigg( \big(\sqrt{\omega} + \sqrt{\gamma}\big)^2 + \Big(\sqrt{1-\omega} + \sqrt{1-\gamma}\Big)^2 \bigg)$$

- ▶ If  $P[\omega^t = 1] = q$ ,  $P[\omega^t = 0] = 1 q$ , optimal prediction  $\gamma^t = q$
- Loss is bounded.
- Defines a metric.
- ▶  $\lambda_{\text{hel}}(p,q) \approx \lambda_{\text{ent}}(p,q)$  when  $p \approx q$  and  $p,q \in (0,1)$

## Absolute loss

$$\lambda(\omega, \gamma) = |\omega - \gamma|$$

- Probability of making a mistake if predicting 0 or 1 using a biased coin
- ▶ If  $P[\omega^t = 1] = q$ ,  $P[\omega^t = 0] = 1 q$ , then the optimal prediction is

$$\gamma^t = \begin{cases} 1 & \text{if } q > 1/2, \\ 0 & \text{otherwise} \end{cases}$$

#### Structureless bounded loss

- ▶ Prediction is a distribution  $\gamma = \langle p_1, \dots, p_N \rangle$ ,  $p_i \ge 0$ ,  $\sum_{i=1}^{N} p_i = 1$
- ▶ Outcome is a loss vector  $\omega = \langle \omega_1, \dots, \omega_N \rangle$ ,  $0 \le \omega_i \le 1$
- ▶ Loss is the dot product:  $\lambda_{dot}(\omega, \gamma) = \gamma \cdot \omega$
- Corresponds to the hedging game.
- ▶ For hedge loss the regret is  $\Omega(\sqrt{T \log N})$ .
- ► For the log loss the regret is O(log N)
- Which losses behave like entropy loss and which behave like hedge loss?

## Some technical requirements

- ► There should be a topology on the prediction set Γ such that
- ► Γ is compact.
- ▶  $\forall \omega \in \Omega$ , the function  $\gamma \to \lambda(\omega, \gamma)$  is continuous
- ► There is a universally reasonable prediction  $\exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) < \infty$
- ► There is no universally optimal prediction  $\neg \exists \gamma \in \Gamma, \forall \omega \in \Omega, \lambda(\omega, \gamma) = 0$

## Vovk's meta-algorithm

- Fix an achievable pair (a, c) and set  $\eta = a/c$

1.

$$W_i^t = \frac{1}{N} e^{-\eta L_i^t}$$

**2**. Choose  $\gamma_t$  so that, for all  $\omega^t \in \Omega$ :

$$\lambda(\omega^t, \gamma^t) - c \ln \sum_i W_i^t \le -c \ln \left( \sum_i W_i^t e^{-\eta \lambda(\omega^t, \gamma_i^t)} 
ight)$$

▶ If choice of  $\gamma^t$  always exists, then the total loss satisfies:

$$\sum_{t} \lambda(\omega^{t}, \gamma^{t}) \leq -c \ln \sum_{i} W_{i}^{T+1} \leq aL_{\min} + c \ln N$$

Vovk's result: *yes!* a good choice for  $\gamma_t$  always exists!

## Vovk's algorithm is the the highest achiever [Vovk95]

The pair (a, c) is achieved by some algorithm if and only if it is achieved by Vovk's algorithm.

The separation curve is  $\left\{ \left( a(\eta), \frac{a(\eta)}{\eta} \right) \middle| \eta \in [0, \infty] \right\}$ 



#### Mixable Loss Functions

▶ A Loss function is mixable if a pair of the form (1, c),  $c < \infty$  is achievable.

$$L_A \leq L_{\min} + c \ln N$$

- ▶ Vovk's algorithm with  $\eta = 1/c$  achieves this bound.
- $\triangleright \lambda_{ent}, \lambda_{sq}, \lambda_{hel}$  are mixable
- $\triangleright \lambda_{abs}, \lambda_{dot}$  are not mixable

## The convexity condition

- requirement for loss to be  $(1, 1/\eta)$  mixable
- $\forall \langle (\gamma_1, W_1), \dots, (\gamma_N, W_N) \rangle$  $\exists \gamma \in \Gamma$  $\forall \omega \in \Omega:$

$$\lambda(\omega, \gamma) - rac{1}{\eta} \ln \sum_i W_i \le -rac{1}{\eta} \ln \left( \sum_i W_i e^{-\eta \lambda(\omega, \gamma_i)} 
ight)$$

Can be re-written as:

$$e^{-\eta\lambda(\omega,\gamma)} \geq \sum_{i} \left( \frac{W_{i}}{\sum_{j} W_{j}} \right) e^{-\eta\lambda(\omega,\gamma_{i})}$$

► Equivalently - the image of the set Γ under the mapping  $F(\gamma) = \langle e^{-\eta \lambda(\omega, \gamma)} \rangle_{\omega \in \Omega}$  is concave.

## convexity condition: Pictorially

**Example:** Suppose  $\Omega = \{0, 1\}, \Gamma = [0, 1]$ . then

$$F(\gamma) = \left\langle e^{-\eta\lambda(0,\gamma)}, e^{-\eta\lambda(1,\gamma)} 
ight
angle$$



## Vovk Algorithm for log loss

- ▶ The log loss is mixable with  $\eta = 1$
- ► The image of [0, 1] through  $F(\gamma) = \langle e^{-\eta \lambda(0,\gamma)}, e^{-\eta \lambda(1,\gamma)} \rangle$  is a straight line segment.
- ► The only satisfactory prediction is

$$\gamma = \frac{\sum_{i} W_{i} \gamma_{i}}{\sum_{i} W_{i}}$$

We are back to the online Bayes algorithm.

## Vovk algorithm for square loss

- ▶ The square loss is mixable with  $\eta = 2$ .
- Prediction must satisfy

$$1 - \sqrt{-\frac{1}{2} \ln \sum_{i} V_{i}^{t} e^{-2(1-\rho_{i}^{t})^{2}}} \leq \rho^{t} \leq \sqrt{-\frac{1}{2} \ln \sum_{i} V_{i}^{t} e^{-2(\rho_{i}^{t})^{2}}}$$

where 
$$V_i^t = \frac{W_i^t}{\sum_s W_i^s}$$
.

$$L_A \leq L_{\min} + \frac{1}{2} \ln N$$

## Simple prediction for square loss

We can use the prediction

$$\gamma = \frac{\sum_{i} \mathbf{W}_{i} \gamma_{i}}{\sum_{i} \mathbf{W}_{i}}$$

- ▶ But in that case we must use  $\eta = 1/2$  when updating the weights.
- Which yields the bound

$$L_A \leq L_{\min} + 2 \ln N$$

## Summary of bounds for mixable losses

#### TRACKING THE BEST EXPERT

| Loss                    | c values: $(\eta = 1/c)$              |                                                  |
|-------------------------|---------------------------------------|--------------------------------------------------|
| Functions:              | $\mathbf{pred}_{\mathrm{wmean}}(v,x)$ | $\operatorname{pred}_{\operatorname{Vovk}}(v,x)$ |
| $L_{\text{Sq}}(p,q)$    | 2                                     | 1/2                                              |
| $L_{\mathbf{ent}}(p,q)$ | 1                                     | 1                                                |
| $L_{\mathbf{hel}}(p,q)$ | 1                                     | $1/\sqrt{2}$                                     |

Figure 2. (c, 1/c)-realizability: c values for loss and prediction function pairing