Week 3 Information Measures - entropy

07 July 2020 17:57

Entropy

Given a random variable X, with possible outcomes x_i , each with probability $P_X(x_i)$, the entropy H(X) of X is as follows:

$$H(X) = -\sum_i P_X(x_i) \log_b P_X(x_i) = \sum_i P_X(x_i) I_X(x_i) = \mathrm{E}[I_X]$$

- where $I_X(x_i)$ is the self-information associated with particular outcome; I_X is the self-information of the random variable X in general, treated as a new derived random variable; and $\mathrm{E}[I_X]$ is the expected value of this new random variable, equal to the sum of the self-information of each outcome, weighted by the probability of each outcome occurring^[3]; and b, the base of the logarithm, is a new parameter that can be set different ways to determine the choice of units for information entropy.
 - o usual unit: bit (b=2)
 - information content of an event E: I(E)=-log2(p(E))
 - low probability -> high information content
- The self-information quantifies the level of information or surprise associated with one particular outcome or event of a random variable, whereas the entropy quantifies how "informative" or "surprising" the entire random variable is, averaged on all its possible outcomes.
 - o higher entropy: more unpredictable
- Properties
 - o determined entirely by the probability distribution of the data source, it is additive for independent sources
 - maximized at the uniform distribution = logn
 - minimized (and equal to zero) when there is 100% probability of only one event occurring/when outcome is known
 - o obeys a certain derived version of the chain rule of probability
- Conditional entropy:

The conditional entropy of Y given X is defined as

$$_{\odot}$$
 $\mathrm{H}(Y|X) \ = -\sum_{x\in\mathcal{X},y\in\mathcal{Y}} p(x,y)\lograc{p(x,y)}{p(x)}$ (Eq.1)

where ${\mathcal X}$ and ${\mathcal Y}$ denote the support sets of X and Y.

 mutual information: a measure of the mutual dependence between the two variables.

∘ X, Y independence iff H(X,Y) = 0

Monty Hall problem

• information gain by opening one door = I(X;Y) = H(X) - H(X|Y)

Bayes thm

- transform fact -> knowledge
- Bayes does the work and entropy keeps the score
- probability distributions are carriers of information.
- Information gained in one toss of coin
 - Know that a coin is fair with probability 1/2, crooked (0.4 head, 0.6 tail)with probability half. One toss get head.
 - o by bayes, P(fair coin | first toss is head) = 5/9
 - o H(0.5, 0.5) H(0.556, 0.444) = 0.0091 -information gain

= e*log(1/e) + f*log(1/f)

Entropy in confusion matrix

H(X,Y)

0.06 ac

Confusion Matrix				Test Classifi	cation	Υ	
				[optical scanner on assembly			/ line]
				"Positive"		"Negative	. "
				0.3	С	0.7	d
Condition X	"+"	0.2	a	0.1	e	0.1	f
[defective computer chip]							
	"_"	0.8	b	0.2	g	0.6	h

H(X)	= a*log(1/a)	+ b*log(1/b)	I(X;Y) =	H(X)	- H(X Y)	
	0.7219 0.464	4 0.2575	0.0323	0.7219		
			I(X;Y) =	H(Y)	- H(Y X)	

+ g*Log(1/g)

0.14 ad

0.8813	0.5211	0.3602					
			I(X;Y) =	H(X)	+ H(Y)		- H(X,Y)
			0.0323	0.7219		0.8813	1.5710

+ h*log(1/h)

0.24 bc

0.56 bd

1.5710	0.3322	0.3322	0.4644	0.4422	
0.1	e	0.10 f		0.20 g	0.60 h

Mutual Informat	tion I(X:Y) = Rela	ative Entropy of	f Joint and Produc	t Distributions	D(p(X,	Y p(X)p(Y))	
= e*log(e/ac)	0.073696559	+ f*log(f/ad)	-0.048542683	+ g*log(g/bc)	-0.0526	+ h*log(h/bd)	0.05972
0.0323							

H(Y X)	= (a	*H(e/a, f/a))	+	(b	*H(g/b, h/b)	
	0.2000	1.0000		0.8000	0.8113	
0.8490						

H(X Y)	= (c	*H(e/c, g/c)	+	(d	*H(f/d, h/d)
	0.3000	0.9183		0.7000	0.5917
0.6897					