IRIGONOMETRY PL. PURE CIRCULAR MEASURE TRIGONOMERY (7-8 Marks). (7-8 Marks) BASICS ANGLES RADIANG DEGREES 180 (i) Convert 120 to radians. (ii) Convert 3.8 rad to degrees. 180° = Trad 120° = 2 180 = I rad. x = 3.8 rad. 180x = xx120 Tx= 3.8 x180 $x = \frac{120 \times \overline{\Lambda}}{180}$ $\alpha = \frac{3.8 \times 180}{}$ $\chi = \frac{2\pi}{3}$ x= 217.723

FAMOUS ANGLES

180°		T rad
90°	=	Trad Trad
		2
45°	=	Trad.
		4
30°	=	To red
		O
60°	=	T rad.
		3
360°	=	2T rad-

Degrees	0	30	45	60	90
Degrees Radians	0	<u>7</u>	<u>T</u>	3	<u>1</u> 2
Sin	Ð		<u></u>	<u>J3</u>	1
<u> </u>	1	2	J2 	2	0
Lan	0	2	J2 	13	∞
		<u></u>			

SECTORS

D= Degrees.	0 = RADIANS.
Arclength = $\frac{\theta}{\sqrt{2\pi}}$ × 2π r	Arclength = S = RB
Arclength = $\frac{\theta^{\circ}}{360} \times 2\pi r$	V
Atrea of Sector = $\frac{1}{360} \times \overline{\lambda} \times \overline{\lambda}^2$	Area of Sector = 1 rs 2 ro
360	2 ro
	$A = 1 R^2 \theta$
	$A = \frac{1}{2} R^2 \theta$

Find area of Shaded region
Shaded = SECTOR - TRIANGLE Area
$= \frac{1}{2}s^2\theta - 1 \square \square \sin \bigcirc$
$= \frac{1}{2}(9)^{2}(0.8) - \frac{1}{2}[9]9 \sin (0.8)$ 2 CALCULATOR MODE
= 32.4 - 29.05 SHADED AREA = 3.347
WHEN TO SWITCH CALCULATOR TO RADIAN MODE.
DNLY IF YOUR WORKING CONTAINS
Sin Cos Cos' Cos' Cos' Cos' Cos' Cos' Cos'