

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY RAMAPURAM CAMPUS DEPARTMENT OF MATHEMATICS

Year/Sem: II/III

Branch: Common to All branches

Unit V – Z Transforms

1.Find Z(n)

(a)
$$\frac{z}{(z-1)^2}$$
 (b) $\frac{z}{(z+1)^2}$ (c) $\frac{z}{z-1}$ (d) $\frac{z}{z+1}$

Solution:

$$Z(n) = \sum_{0}^{\infty} nz^{-n}$$

$$= \frac{1}{z} + \frac{2}{z^{2}} + \frac{3}{z^{3}} + \cdots$$

$$= \frac{1}{z} \left(1 - \frac{1}{z}\right)^{-2} = \frac{z}{(z-1)^{2}}$$

2. Find Z-Transform of na^n

(a)
$$\frac{z}{(z+a)^2}$$
 (b) $\frac{z}{(z-a)^2}$ (c) $\frac{az}{(z-a)^2}$ (d) $\frac{az}{(z+a)^2}$

$$Z(nf(n)) = -z \frac{d}{dz} Z(a^n)$$

$$= -z \frac{d}{dz} \left(\frac{z}{z-a}\right)$$

$$= -z \left(-\frac{a}{(z-a)^2}\right)$$

$$= \frac{az}{(z-a)^2}$$

3. Find Z-Transform of $a^n \frac{1}{n!}$

(a)
$$e^{-\frac{a}{z}}$$

(b)
$$e^{\frac{a}{z}}$$

(c)
$$e^{\frac{1}{z}}$$

(b)
$$e^{\frac{a}{z}}$$
 (c) $e^{\frac{1}{z}}$ **(d)** $e^{-\frac{1}{z}}$

Solution

$$Z\left(a^{n} \frac{1}{n!}\right) = Z\left(\frac{1}{n!}\right)_{z \to \frac{z}{a}}$$
$$= \left(e^{\frac{1}{z}}\right)_{z \to \frac{z}{a}}$$
$$= e^{\frac{a}{z}}$$

4. Find Z-Transform of $r^n e^{in\theta}$ by eliminating arbitrary function

(a)
$$\frac{z}{z-re^{i\theta}}$$

(a)
$$\frac{z}{z-re^{i\theta}}$$
 (b) $\frac{z}{z+re^{i\theta}}$ (c) $\frac{1}{z-re^{i\theta}}$ (d) $\frac{-1}{z-re^{i\theta}}$

(c)
$$\frac{1}{z-re^{i\theta}}$$

(d)
$$\frac{-1}{z-re^{i\theta}}$$

Solution:

We know that $Z(a^n) = \frac{z}{z-a}$

Put $a = re^{i\theta}$

$$Z(r^n e^{in\theta}) = \frac{z}{z - re^{i\theta}}$$

5. Find $Z(n^2)$

(a)
$$-z \left[\frac{1+z}{(z-1)^3} \right]$$

(b)
$$z \left[\frac{1+z}{(z-1)^3} \right]$$

$$(c) - z \left[\frac{1+z}{(z+1)^3} \right]$$

$$\left(dz \left[\frac{1+z}{(z+1)^3}\right]\right)$$

$$Z(n^{2}) = -z \frac{d}{dz} Z(n)$$

$$= -z \frac{d}{dz} \left(\frac{z}{(z-1)^{2}} \right)$$

$$= -z \left[\frac{1+z}{(z-1)^{3}} \right]$$

6.Find
$$Z(n(n-1))$$

(a)
$$\frac{z}{(z+1)^3}$$

(b)
$$\frac{z}{(z-1)^3}$$

(a)
$$\frac{z}{(z+1)^3}$$
 (b) $\frac{z}{(z-1)^3}$ (c) $\frac{2z}{(z+1)^3}$ (d) $\frac{2z}{(z-1)^3}$

(d)
$$\frac{2z}{(z-1)^3}$$

Solution:

$$Z(n(n-1)) = Z(n^{2} - n)$$

$$= Z(n^{2}) - Z(n)$$

$$= \frac{z(z+1)}{(z-1)^{3}} - \frac{z}{(z-1)^{2}}$$

$$= \frac{2z}{(z-1)^{3}}$$

7. Find $Z(n(1+5^n))$

(a)
$$\frac{z}{(z-1)^2} + \frac{5z}{(z-5)^2}$$

(c)
$$\frac{z}{(z-1)^2} + \frac{5z}{(z+5)^2}$$

(b)
$$\frac{z}{(z+1)^2} + \frac{5z}{(z+5)^2}$$

(d)
$$\frac{z}{(z+1)^2} + \frac{5z}{(z-5)^2}$$

Solutionz9:

$$Z(n(1+5^n)) = Z(n) + Z(n.5^n)$$
$$= \frac{z}{(z-1)^2} + \frac{5z}{(z-5)^2}$$

8. Find the inverse Z-Transform of $\frac{z}{z+1} + \frac{7z}{z-3}$, $for \ n > 0$ (a) $(-1)^n + 7(-3)^n$ (b) $(-1)^n - 7(3)^n$

(a)
$$(-1)^n + 7(-3)^n$$

(b)
$$(-1)^n - 7(3)^n$$

(c)
$$(-1)^n - 7(-3)^n$$
 (d) $(-1)^n + 7(3)^n$

(d)
$$(-1)^n + 7(3)^n$$

Solution:

Solution:
$$Z^{-1}\left(\frac{z}{z+1} + \frac{7z}{z-3}\right) = (-1)^n + 7(3)^n$$
9. Find $Z^{-1}\left(\frac{2z}{2z-1}\right)$
(a) $\left(\frac{1}{2}\right)^n$
(b) $\left(\frac{1}{2}\right)^n$
(c) $\left(\frac{1}{2}\right)^n$
(d) $\left(\frac{1}{2}\right)^n$

(a)
$$\left(\frac{1}{2}\right)^n$$

(b)
$$\left(\frac{1}{2}\right)^n$$

(c)
$$\left(\frac{1}{2}\right)^n$$

(d)
$$\left(\frac{1}{2}\right)^n$$

$$Z^{-1}\left(\frac{2z}{2z-1}\right) = \frac{2}{2}Z^{-1}\left(\frac{z}{z-\frac{1}{2}}\right) = \left(\frac{1}{2}\right)^n$$

10. Find
$$Z^{-1}\left(\frac{z}{4z+1}\right)$$
 (a) $(-1)^n\left(\frac{1}{3}\right)^{n+1}$

(a)
$$(-1)^n \left(\frac{1}{3}\right)^{n+1}$$

(b)
$$(-2)^n \left(\frac{1}{3}\right)^{n+1}$$

(c)
$$(-1)^n \left(\frac{1}{4}\right)^{n+1}$$

(d) $(-2)^n \left(\frac{1}{4}\right)^{n+1}$

Solution:

$$Z^{-1}\left(\frac{z}{4z+1}\right) = \frac{1}{4}Z^{-1}\left(\frac{z}{z+\frac{1}{4}}\right)$$
$$= \frac{1}{4}\left(-\frac{1}{4}\right)^n = (-1)^n\left(\frac{1}{4}\right)^{n+1}$$

11. Find
$$Z(3^n(1+n))$$

(a)
$$\frac{z}{z+3} + \frac{3z}{(z+3)^2}$$

(b)
$$\frac{z}{z+3} + \frac{3z}{(z-3)^2}$$

(c)
$$\frac{z}{z-3} + \frac{3z}{(z-3)^2}$$

(d)
$$\frac{z}{z-3} + \frac{3z}{(z+3)^2}$$

Solution:

$$Z(3^{n}(1+n)) = Z(3^{n}) + Z(n.3^{n})$$
$$= \frac{z}{z-3} + \frac{3z}{(z-3)^{2}}$$

12.If $F(z)z^{n-1} = \frac{z^n}{(z-1)(z-2)}$ then find residue at largest pole

(a)
$$2^{-n}$$

$$(h) 3^{-n}$$

(c)
$$3^n$$

$$(d)2^n$$

Solution:

$$Res_{z=2}F(z)z^{n-1} = \lim_{z \to 2} (z-2) \frac{z^n}{(z-1)(z-2)}$$

= $\frac{z^n}{z-1} = 2^n$

13. If $F(z)z^{n-1} = \frac{z^n}{(z-1)(z-2)}$ then find residue at smallest pole

(a)
$$-1$$

(b)
$$(-1)^n$$

(d)
$$(-2)^n$$

Solution:

$$Res_{z=1}F(z)z^{n-1} = \lim_{z \to 2} (z-1) \frac{z^n}{(z-1)(z-2)}$$

= $\frac{1}{-1} = -1$

14. Find y(z) for the difference Equation $y_{n+1} - y_n = 0$, $y_0 = 1$

$$(a)y(z) = \frac{z}{z+1}$$

(b)
$$y(z) = \frac{z}{1-z}$$

(a)
$$y(z) = \frac{z}{z+1}$$

(c) $y(z) = \frac{z}{z-1}$

(b)
$$y(z) = \frac{z}{1-z}$$

(d) $y(z) = \frac{z}{z+1}$

Solution:

$$Z(y_n) - zy_0$$

$$zy(z) - zy_0 - y(z) = 0$$

$$(z - 1)y(z) = z$$

$$y(z) = \frac{z}{z - 1}$$

15. Find
$$Z[(e^n)^{100} + (e^n)^{200})]$$

(a) $\frac{z}{z-e^{100}} + \frac{z}{z-e^{200}}$ (b) $\frac{z}{z+e^{100}} + \frac{z}{z-e^{200}}$ (c) $\frac{z}{z-e^{100}} + \frac{z}{z+e^{200}}$ (d) $\frac{z}{z+e^{100}} + \frac{z}{z+e^{200}}$

(b)
$$\frac{z}{z+e^{100}} + \frac{z}{z-e^{200}}$$

(c)
$$\frac{z}{z-e^{100}} + \frac{z}{z+e^{200}}$$

(d)
$$\frac{z}{z+e^{100}} + \frac{z}{z+e^{200}}$$

Solution:

$$Z[(e^n)^{100} + (e^n)^{200})] = Z((e^{100})^n) + Z(((e^{100})^n))$$

$$=\frac{Z}{Z-\rho^{100}}+\frac{Z}{Z-\rho^{200}}$$

16. Using Final value theorem evaluate $f(z) = \frac{1+z^{-1}}{1-0.25z^{-1}}$

- (a) 0
- (b) 1
- (c) 2
- (d)3

Let
$$F(z) = \frac{z+1}{z-0.25}$$

$$\lim_{z \to 1} (z - 1)F(z) = \lim_{z \to 1} (z - 1) \frac{z + 1}{z - 0.25} = 0$$

17. Find the initial value of $F(z) = \frac{z}{2z^2-3z+1}$

(a) 0 (b) 1 (c)-1 (d)2

Solution:

$$f(0) = \lim_{\mathbf{z} \to \infty} \mathbf{F}(\mathbf{z})$$

$$0 = \frac{1}{z\left(2 - \frac{3}{z} + z^2\right)} = \frac{z}{z^2\left(2 - \frac{3}{z} + \frac{1}{z^2}\right)}$$

18. Evaluate $Z[(k-1)a^{k-1}]$

- $(a)\frac{a}{(z-a)^2}$
- (b) $\frac{a}{(z+a)^2}$
- $(c)\frac{1}{(z-a)^2}$
- (d) $\frac{1}{(z+a)^2}$

Solution

$$Z[(k-1)a^{k-1}] = z^{-1}Z[ka^k]$$
$$= z^{-1} \left(\frac{az}{(z-a)^2}\right) = \frac{a}{(z-a)^2}$$

19. Find Y(z) for $y_{n+2} + 4y_n = 0$, $y_0 = 0$, $y_1 = -2$

(a)
$$Y(z) = \frac{z}{z^2+4}$$
 (b) $Y(z) = \frac{2z}{z^2-4}$

(b)
$$Y(z) = \frac{2z}{z^2 - 4}$$

(c)
$$Y(z) = \frac{2z}{z^2+4}$$
 (d) $Y(z) = \frac{-2z}{z^2+4}$

$$(\mathsf{d})Y(z) = \frac{-2z}{z^2 + 4}$$

$$z^{2}Y(z) - z^{2}y(0) - zy(1) - 4Y(z) = 0$$
$$z^{2}Y(z) - z(2) + 4Y(z) = 0$$

$$Y(z) = \frac{2z}{z^2 + 4}$$

20.Find $Z\{e^{3n}\}$

- (a) $-\cos x$ (b) $\cos x$ (c) $-\sin x$ (d) $\sin x$

Solution:

$$Z\{e^{3n}\} = Z\{(e^3)^n\} = \frac{z}{z - e^3}$$

21. Find $Z\{(-3)^n\}$

- (a) $\frac{z}{z+3}$ (b) $\frac{-z}{z+3}$ (c) $\frac{z}{z-3}$ (d) $\frac{2z}{z+3}$

Solution:

$$Z\{a^n\} = \frac{z}{z - a}$$
$$Z\{(-3)^n\} = \frac{z}{z - (-3)} = \frac{z}{z + 3}$$

22. Find $Z\{2^n + (-5)^n\}$

(a)
$$\frac{z}{z+2} + \frac{z}{z-5}$$
 (b) $\frac{z}{z-2} + \frac{z}{z-5}$ (c) $\frac{z}{z-2} + \frac{z}{z+5}$ (d) $\frac{z}{z+2} + \frac{z}{z-5}$

(c)
$$\frac{z}{z-2} + \frac{z}{z+5}$$

(d)
$$\frac{z}{z+2} + \frac{z}{z-5}$$

Solution:

$$Z\{2^{n} + (-5)^{n}\} = Z\{2^{n}\} + Z\{(-5)^{n}\}$$
$$= \frac{z}{z-2} + \frac{z}{z+5}$$

23. Find $Z\{4.8^n + (-4)(-6)^n\}$

(a)
$$\frac{4z}{z-8} + \frac{4z}{z+6}$$

(b)
$$\frac{4z}{z-8} - \frac{4z}{z+6}$$

(c)
$$\frac{4z}{z+8} - \frac{4z}{z-6}$$

(d)
$$\frac{4z}{z+8} + \frac{4z}{z-6}$$

Solution:1

$$1Z\{4.8^{n} + (-4)(-6)^{n}\} = 4Z\{8^{n}\} + (-4)Z\{(-6)^{n}\}$$
$$= \frac{4z}{z-8} - \frac{4z}{z+6}$$

24. Find $Z^{-1}\left\{\frac{z}{z+7}+2.\frac{z}{z-3}\right\}$

- (a) $(7)^n + 2(-3)^n$ (b) $(-7)^n 2(3)^n$
- $(c)(7)^n + 2(3)^n$ (d) $(-7)^n + 2(3)^n$

Solution:

$$Z^{-1}\left\{\frac{z}{z+7} + 2 \cdot \frac{z}{z-3}\right\} = Z^{-1}\left\{\frac{z}{z+7}\right\} + 2 Z^{-1}\left\{\frac{2}{z-3}\right\}$$
$$= (-7)^n + 2(3)^n$$

25.Find $Z^{-1}\left\{\frac{z}{z-8}+3.\frac{z}{z+3}\right\}$

- (a) $(8)^n 3(-3)^n$
- (b) $(-8)^n + 3(3)^n$
- $(c)(-8)^n + 3(-3)^n$
- $(d)(8)^n + 3(-3)^n$

$$Z^{-1}\left\{\frac{z}{z-8} + 3 \cdot \frac{z}{z+3}\right\} = Z^{-1}\left\{\frac{z}{z-8}\right\} + 3 Z^{-1}\left\{\frac{2}{z+3}\right\}$$
$$= (8)^{n} + 3(-3)^{n}$$