Neural Networks for Reinforcement Learning in Challenging State Spaces

Ludwig Winkler

Machine Learning Group TU Berlin

November 8, 2017

Outline

AlphaGo

AlphaGo Zero

Hierarchical RL

2 / 36

AlphaGo - Go

- Ancient board game from Asia on a 19×19 field
- More board configurations than atoms in the universe: $2 \cdot 10^{170}$

AlphaGo - Go

- Ancient board game from Asia on a 19×19 field
- More board configurations than atoms in the universe: $2 \cdot 10^{170}$
- Branching factor b = 250 and depth d = 150
- Chess: b = 35 and d = 80

AlphaGo - Go

- ullet Ancient board game from Asia on a 19 imes 19 field
- ullet More board configurations than atoms in the universe: $2\cdot 10^{170}$
- $\, \bullet \,$ Branching factor b=250 and depth d=150
- Chess: b = 35 and d = 80
- Sheer number of positions makes brute force methods unrealistic

- Go is a perfect information game
- All accesible information is available on the board
- Game tree of all possible board positions unfeasable
- MCTS approximates game tree with random play outs

Game Tree

Selection

$\mathsf{Selection} \to \mathsf{Expansion}$

 $\mathsf{Selection} \to \mathsf{Expansion} \to \mathsf{Simulation}$

 $\mathsf{Selection} \to \mathsf{Expansion} \to \mathsf{Simulation} \to \mathsf{Backpropagation}$

 $\mathsf{Selection} \to \mathsf{Expansion} \to \mathsf{Simulation} \to \mathsf{Backpropagation} \to \mathsf{Action}$

AlphaGo - Architecture

- Components of AlphaGo
 - Supervised policy network $p_{SL}(a|s)$
 - Reinforced policy network $p_{RL}(a|s)$
 - Value network v(s)
 - Fast rollout policy network $p_{FR}(a|s)$

AlphaGo - Architecture

- Components of AlphaGo
 - \circ Supervised policy network $p_{SL}(a|s)$
 - Reinforced policy network $p_{RL}(a|s)$
 - Value network v(s)
 - Fast rollout policy network $p_{FR}(a|s)$
- Intialization with supervised learning
- Refinement with reinforcement learning

Policy and Value Network

- 12 convolutional layers with ReLu
- First layer $23 \times 23 \times 48$
- Padding of feature maps to $21 \times 21 \times 192$ for subsequent layers
- Final layer with softmax and individual bias
- Action from output probability $a_t \sim p(\cdot|s)$

Policy and Value Network

- 12 convolutional layers with ReLu
- First layer $23 \times 23 \times 48$
- Padding of feature maps to $21 \times 21 \times 192$ for subsequent layers
- Final layer with softmax and individual bias
- Action from output probability $a_t \sim p(\cdot|s)$
- Value network architecture similar to policy network
- FC and single tanh-unit for scalar output
- Predict win $z_T = +1$ or loss $z_T = -1$

Training of Policy Network

- Supervised training of policy network with 30 million expert positions
- Expert prediction with 57% accuracy

Training of Policy Network

- Supervised training of policy network with 30 million expert positions
- Expert prediction with 57% accuracy
- Reinforcement learning through self-play with previous versions
- Update with win $z_T = 1$ or loss $z_T = -1$

$$\Delta\theta \propto \nabla_{\theta} \log p_{RL}(a|s;\theta) \cdot \underbrace{z_T}_{+1}$$

Training of Value Network

- Value function for strongest RL policy $p_{RL}(a|s)$
- Trained on state-outcome pairs

$$\Delta\theta \propto \nabla_{\theta} v(s;\theta) \cdot (z_T - v(s;\theta))$$

Trained on self-play data between two identical policy networks

MCTS Program

- Each edge stores Q(s, a), N(a, s) and $p_{SL}(a|s) = P(a, s)$
- Choose action that maximizes the chance of winning

$$a = \max_{\tilde{a}} Q(s, \tilde{a}) + u(s, \tilde{a}), \qquad u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$

MCTS Program

- Each edge stores Q(s, a), N(a, s) and $p_{SL}(a|s) = P(a, s)$
- Choose action that maximizes the chance of winning

$$a = \max_{\tilde{a}} Q(s, \tilde{a}) + u(s, \tilde{a}), \qquad u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)}$$

- $p_{SL}(a|s)$ selects more human-like search directions
- \circ Q(s,a) from mixed value network and rollouts evaluations

Selection/Expansion

Selection/Expansion

 ${\sf Selection/Expansion} \to {\sf Simulation}$

 ${\sf Selection/Expansion} \to {\sf Simulation} \to {\sf Backpropagation}$

 ${\sf Selection/Expansion} \to {\sf Simulation} \to {\sf Backpropagation} \to {\sf Action}$

Evaluation

AlphaGo Zero - Motivation

- AlphaGo achieved super-human play strength
 - Supervised learning for pretraining
 - Reinforcement learning for policy network
 - Regression for value network
 - MCTS with policy/value network and rollout policy

AlphaGo Zero - Motivation

- AlphaGo achieved super-human play strength
 - Supervised learning for pretraining
 - Reinforcement learning for policy network
 - Regression for value network
 - MCTS with policy/value network and rollout policy
- AlphaGo Zero streamlined the learning process
 - Training only through reinforcement learning
 - Multi-headed, single network for policy and evaluation
 - Residual blocks
 - MCTS with single network

Combined Policy and Value Network

Policy and Value Head

Combined Policy and Value Network

Policy Network

Combined Policy and Value Network

Value Network

Residual Network

- Shortcuts over layer blocks
- Gradients can skip layers
- Propagation of gradient to first layer
- Allows for deeper networks
- Extensions: Highway Nets, Dense Nets

Residual Network

- Shortcuts over layer blocks
- Gradients can skip layers
- Propagation of gradient to first layer
- Allows for deeper networks
- Extensions: Highway Nets, Dense Nets

MCTS Program

- Policy head picks search beam directions in MCTS
- Value head evaluates positions in MCTS
- MCTS search probabilities used as policy head targets
- Self-play game outcome used for value head targets
- MCTS can be interpreted as powerful policy improvement operator

Evaluation

Hierarchical RL - Motivation

- Long-term credit assignment problem
- Sparse rewards makes learning hard
- Sequences of sub-goals have to be fulfilled

Architecture

- Hierarchy within agent
- Decoupling of goal setting from goal achievement
- Manager sets directional goals for worker in latent space

Architecture

- Hierarchy within agent
- Decoupling of goal setting from goal achievement
- Manager sets directional goals for worker in latent space
- Manager works at lower temporal resolution
- Implementation with multiple neural networks

Architecture

Manager

- ullet Transforms joint z_t to internal s_t
- \circ RNN f_{Mrnn} sets goal g_t for worker
- Dilated LSTMs for greater temporal reach
- Past goals are pooled

- N LSTM's that activate every N steps
- ${\color{red} \circ}$ Same parameters for all N LSTM's
- E.g. 3 LSTM's that activate seperately in turn

- N LSTM's that activate every N steps
- \circ Same parameters for all N LSTM's
- E.g. 3 LSTM's that activate seperately in turn

- N LSTM's that activate every N steps
- \circ Same parameters for all N LSTM's
- E.g. 3 LSTM's that activate seperately in turn

- N LSTM's that activate every N steps
- \circ Same parameters for all N LSTM's
- E.g. 3 LSTM's that activate seperately in turn

- ullet N LSTM's that activate every N steps
- \circ Same parameters for all N LSTM's
- E.g. 3 LSTM's that activate seperately in turn

- ullet N LSTM's that activate every N steps
- \circ Same parameters for all N LSTM's
- E.g. 3 LSTM's that activate seperately in turn

Worker

- o RNN f^{Wrnn} computes workers embedding matrix U_t
- \circ arphi projects bias-free goals to embedding w_t
- ullet Workers output U_t is modulated by w_t

Training - Manager

- Independent training of Manager and Worker
 - No gradient between Manager and Worker

Training - Manager

- Independent training of Manager and Worker
 - No gradient between Manager and Worker
- Manager trained on advantageous directions in latent space

$$\nabla g_t = A^M(s, a) \ \nabla \underbrace{d_{cos}(s_{t+c} - s_t, g_t)}_{\text{Cost Function}}$$

- Advantage function $A^M(s,a)$ trained on external reward R_t
- Cosine similarity $d_{cos}(\underline{a},\underline{b})$ measures alignment

Training - Manager

Training - Worker

Worker trained on intrinsic and extrinsic reward

$$\nabla \pi_t = A^W(s, a) \ \nabla \log \pi(a_t | x_t; \theta)$$

Training - Worker

Worker trained on intrinsic and extrinsic reward

$$\nabla \pi_t = A^W(s, a) \ \nabla \log \pi(a_t | x_t; \theta)$$

Internal reward R_t^I measures alignment

$$R_{t}^{W} = R_{t} + \alpha R_{t}^{I}$$

$$= R_{t} + \alpha \frac{1}{c} \sum_{i=1}^{c} d_{cos}(s_{t} - s_{t-i}, g_{t-i})$$

Evaluation

- 1B observations for Montezuma and hyperparameter grid-search
- Strong in Montezumas Revenge, Enduro, Frostbite
- Similarly strong on Breakout, Seaquest, Space Invaders

Sources

- 'Mastering the game of Go with deep neural networks and tree search'. Silver et al.
- 'Mastering the game of Go without human knowledge', Silver et al.
- 'Reinforcement Learning', Sutton & Barto
- 'FeuDal Networks for Hierarchical Reinforcement Learning', Vezhenevets et al.

Thank you

RL Intuition

- In between supervised and unsupervised learning
- Take actions in an environment that maximize reward
 - \circ Actions \mapsto Policy
 - Environment → States
 - Reward → Feedback from environment

State Value & Action Value

- State avlue V(s) and action value Q(s, a)
- Minimize MSE between reward R(s, a) and V(s), Q(s, a)

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\pi} \left[\left(R(s^{(t)}, a^{(t)}) + \gamma V(s^{(t+1)}) - V(s^{(t)}) \right)^{2} \right]$$

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\pi} \left[\left(\underbrace{R(s^{(t)}, a^{(t)})}_{\text{Reward}} + \gamma \underbrace{Q(s^{(t+1)}, a^{(t+1)})}_{\text{Next Action}} - \underbrace{Q(s^{(t)}, a^{(t)})}_{\text{Action}} \right)^{2} \right]$$

Advantage Function

- State value function V(s) as baseline
- Compare action value Q(s,a) to state value V(s)
- Difference between the state-action value and the state value

$$A(s,a) = Q(s,a) - V(s)$$

Better-than-average or worse-than-average actions

$$V(s) = 100$$

 $Q(s, a_1) = 90 \rightarrow A(s, a_1) = -10$
 $Q(s, a_2) = 110 \rightarrow A(s, a_2) = 10$

Policy Gradient & Actor-Critic

- Directly learn a stochastic policy π_{θ}
- Total reward of following policy

$$J(s) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} \left[\sum_{t=0}^{T} R(s^{(t)}, a^{(t)}) \right]$$

Replace trajectory reward with action value Q(s, a)

$$\begin{split} J(s) &\approx \mathbb{E}_{\pi_{\pmb{\theta}}}\left[Q(s, a)\right] \\ \nabla_{\pmb{\theta}} J(s) &\approx \mathbb{E}_{\pi_{\pmb{\theta}}}\Big[\underbrace{Q(s, a)}_{\text{Critic Network}} \nabla_{\pmb{\theta}} \log \left[\underbrace{\pi_{\pmb{\theta}}(a|s)}_{\text{Policy Network}}\right]\Big] \end{split}$$

Actor-Critic

Training

- Training on stationary distributions in supervised learning
- Stable training with i.i.d. data
- RL environments are non-stationary and highly correlated
- Aproximate stationary distribution with Experience Replay
- Store transitions (s, a, r, s) in buffer
- Sample mini-batches to decorrelate training data

Asynchronous Advantage Actor-Critic

Different agents with separate exploration strategies and environments

$$J(\boldsymbol{\theta}) = \mathbb{E}_{\pi_{\boldsymbol{\theta}}} \left[\overbrace{(Q(s, a) - V(s))}^{A(s, a)} \nabla_{\boldsymbol{\theta}} \log \left[\pi_{\boldsymbol{\theta}}(a|s) \right] \right]$$

