PREDIKSI JUMLAH KEBUTUHAN PEMAKAIAN AIR MENGGUNAKAN METODE *EXPONENTIAL SMOOTHING*(STUDI KASUS: PDAM KOTA MALANG)

SKRIPSI

Untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Komputer

Disusun oleh: Bossarito Putro NIM: 145150201111068

PROGRAM STUDI TEKNIK INFORMATIKA
JURUSAN TEKNIK INFORMATIKA
FAKULTAS ILMU KOMPUTER
UNIVERSITAS BRAWIJAYA
MALANG
2018

PENGESAHAN

PREDIKSI JUMLAH KEBUTUHAN PEMAKAIAN AIR MENGGUNAKAN METODE **EXPONENTIAL SMOOTHING** (STUDI KASUS: PDAM KOTA MALANG)

SKRIPSI

Diajukan untuk memenuhi sebagian persyaratan memperoleh gelar Sarjana Komputer

> Disusun Oleh: **Bossarito Putro** NIM: 145150201111068

Skripsi ini telah diuji dan dinyatakan lulus pada 3 Mei 2018 Telah diperiksa dan disetujui oleh:

Dosen Pembimbing I

Dosen Pembimbing II

M.Tanzil Furgon, S.Kom, M.CompSc NIP. 19820930 200801 1 004

Satrio Hadi Wijovo, S.Si., S.Pd., M.Kom

NIK. 201609 890910 1 001

Mengetahui

San Teknik Informatika

stoto Kurniawan, S.T, M.T, Ph.D

NIP. 19710518 200312 1 001

PERNYATAAN ORISINALITAS

Saya menyatakan dengan sebenar-benarnya bahwa sepanjang pengetahuan saya, di dalam naskah skripsi ini tidak terdapat karya ilmiah yang pernah diajukan oleh orang lain untuk memperoleh gelar akademik di suatu perguruan tinggi, dan tidak terdapat karya atau pendapat yang pernah ditulis atau diterbitkan oleh orang lain, kecuali yang secara tertulis disitasi dalam naskah ini dan disebutkan dalam daftar pustaka.

Apabila ternyata didalam naskah skripsi ini dapat dibuktikan terdapat unsur-unsur plagiasi, saya bersedia skripsi ini digugurkan dan gelar akademik yang telah saya peroleh (sarjana) dibatalkan, serta diproses sesuai dengan peraturan perundang-undangan yang berlaku (UU No. 20 Tahun 2003, Pasal 25 ayat 2 dan Pasal 70).

Malang, 5 Mei 2018

Bossarito Putro

NIM: 145150201111068

KATA PENGANTAR

Puji syukur kehadirat Tuhan Yang Maha Esa yang telah melimpahkan rahmat-Nya sehingga laporan skripsi yang berjudul "Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode *Exponential Smoothing* (Studi Kasus : PDAM Kota Malang)" ini dapat terselesaikan.

Skripsi ini merupakan salah satu syarat kelulusan yang harus ditempuh di Fakultas Ilmu Komputer, Program Studi Informatika Universitas Brawijaya Malang. Dan tak lupa pula, penulis juga mengucapkan terimakasih yang sebesar-besarnya kepada pihak-pihak yang telah memberikan bantuan selama pengerjaan skripsi ini dari awal hingga terselesaikannya laporan skripsi ini, diantaranya:

- Bapak M. Tanzil Furqon, S.Kom, M.CompSc dan Satrio Hadi Wijoyo, S.Si., S.Pd., M.Kom selaku dosen pembimbing skripsi yang telah dengan sabar membimbing dan mengarahkan penulis sehingga dapat menyelesaikan skripsi ini.
- 2. Bapak Agus Wahyu Widodo, S.T, M.Sc selaku Ketua Program Studi Informatika.
- 3. Bapak Tri Astoto Kurniawan, S.T, M.T, Ph.D selaku Ketua Jurusan Teknik Informatika.
- 4. Seluruh dosen Fakultas Ilmu Komputer yang telah mendidik dan memberikan ilmu serta wawasannya selama menempuh pendidikan dan menyelesaikan skripsi ini.
- 5. Kedua orang tua (Bapak Turyanto dan Ibu Siti Sundari), Dicky Aprilino dan seluruh keluarga atas segala nasehat, kasih sayang, perhatian dan kesabarannya di dalam membesarkan dan mendidik penulis, serta yang senantiasa tiada henti-hentinya memberikan doa dan semangat demi terselesaikannya skripsi ini.
- 6. Mahardhika Hendra Bagaskara, Firdaus Rahman, Defanto Hanif Yoranda, Maria Sartika Tambun, Nirzha Maulidya selaku sahabat dalam menempuh kuliah di Fakultas Ilmu Komputer Universitas Brawijaya.
- 7. Eko Setiyono, Robihamanto, Mukmin, M. Imam Wahyu Santosa, Riski Pradana selaku sahabat satu atap.
- 8. *Squad* ACELOLE FUTSAL CLUB selaku sahabat serta mentor dalam aspek kesehatan jasmani.
- 9. Seluruh teman-teman TIF-F 2014 yang telah berbagi ilmu, serta memberikan bantuan selama pengerjaan skripsi ini.
- 10. Teman-teman Eksekutif Mahasiswa Informatika (EMIF) Kabinet Berinovasi khususnya Departemen Ekonomi, Kabinet KITA khususnya BPH yang selalu mendukung dalam pengerjaan skripsi ini, dan terima kasih atas pengalamannya selama ini.
- 11. Teman-teman IMAKA (Ikatan Mahasiswa Karanganyar) selaku keluarga di Malang

- 12. M. Misbahul Munir, Abul A'la Algifari, Rizky Maulana Akbar, Achmad Fahlevi, Muhammad Setyawan, Reyhan Laksamana Dzikrillah, Eko Aditya, Adhitya Wijayakusuma serta teman-teman lainnya atas dukungan, masukan dan semangat yang diberikan kepada penulis sehingga terselesaikannya skripsi ini.
- 13. Seluruh civitas akademika Informatika Universitas Brawijaya yang telah banyak memberi bantuan dan dukungan selama penulis menempuh studi di Informatika Universitas Brawijaya dan selama penyelesaian skripsi ini.

Penulis menyadari bahwa dalam penyusunan skripsi ini masih banyak kekurangan, sehingga saran dan kritik yang membangun sangat penulis harapkan. Akhir kata penulis berharap skripsi ini dapat membawa manfaat bagi semua pihak yang menggunakannya.

Malang, 5 Mei 2018

Bossarito Putro

Email: bossarito.11@gmail.com

ABSTRAK

Air merupakan sumber daya alam yang sangat dibutuhkan oleh semua makhluk hidup. Manusia, hewan, dan tumbuhan memerlukan air untuk kelangsungan kehidupannya. Beda dengan binatang dan tumbuhan, manusia membutuhkan air yang bersih untuk keberlangsungan hidupnya. Menjadi sebuah tantangan tersendiri bagi PDAM seluruh Indonesia untuk terus mencukupi jumlah permintaan ketersediaan air bersih, tak terkecuali PDAM Kota Malang. Prediksi yang dilakukan pada penelitian ini menggunakan metode Exponential Smoothing. Exponential Smoothing merupakan metode yang secara terus menerus melakukan perbaikan peramalan dengan mengambil nilai rata-rata penghalusan (smoothing) nilai masa lalu dari suatu data runtut waktu dengan cara menurun (exponential). Pada penelitian ini akan dibandingkan 3 metode Exponential Smoothing, yaitu: Single Exponential Smoothing (SES), Double Exponential Smoothing (DES), dan Triple Exponential Smoothing (TES) yang digunakan untuk mendapatkan hasil prediksi dan melakukan evaluasi hasil prediksi dengan metode Mean Absolute Percentage Error (MAPE). MAPE terkecil didapatkan pada saat menggunakan metode Single Exponential Smoothing (SES) pada saat nilai a = 0.2 dengan nilai MAPE sebesar 3,992, metode Double Exponential Smoothing (DES) pada saat nilai a = 0,1 dengan nilai MAPE sebesar 4,932, dan metode Triple Exponential Smoothing (TES) pada saat nilai $\alpha = 0.1$, $\beta = 0.1$, dan $\gamma = 0.6$ dengan nilai MAPE sebesar 6,733. Dengan nilai MAPE dibawah 10, maka metode Exponential Smoothing untuk prediksi jumlah kebutuhan air termasuk kedalam kategori sangat baik.

Kata kunci: prediksi, *Exponential Smoothing*, *Single Exponential Smoothing* (SES), *Double Exponential Smoothing* (DES), *Triple Exponential Smoothing* (TES), *Mean Absolute Percentage Error* (MAPE), PDAM

ABSTRACT

Water is a natural resource that needed by all living things. Humans, animals, and plants need water to survive. Unlike animals and plants, humans need clean water to survive. Becoming a challenge for all PDAM Indonesia to keep sufficient number of demand for clean water supply, not to mention PDAM Malang City. Prediction done in this research use Exponential Smoothing method. Exponential Smoothing is a method that continuously performs forecasting improvements by taking the average value of smoothing past values from time expanding data in exponential way. In this research, we will compare three Exponential Smoothing methods: Single Exponential Smoothing (SES), Double Exponential Smoothing (DES), and Triple Exponential Smoothing (TES) used to obtain prediction result and evaluate prediction result with Mean Absolute Percentage Error (MAPE). The smallest MAPE was obtained when using Single Exponential Smoothing (SES) method when value a = 0.2 with MAPE value 3.992, Double Exponential Smoothing (DES) method when value a = 0.1 with MAPE value 4.932, and Triple Exponential Smoothing method TES) when the value of a = 0.1, $\theta = 0.1$, and y = 0.6 with MAPE value of 6.733. With the MAPE value below 10, the Exponential Smoothing method to predict the amount of water requirement included into the category is very good.

Keywords: prediction, Exponential Smoothing, Single Exponential Smoothing (SES), Double Exponential Smoothing (DES), Triple Exponential Smoothing (TES), Mean Absolute Percentage Error (MAPE), PDAM

DAFTAR ISI

PENGESAHAN	.Error! Bookmark not defined.
PERNYATAAN ORISINALITAS	ii
KATA PENGANTAR	iii
ABSTRAK	vi
ABSTRACT	vii
DAFTAR ISI	viii
DAFTAR TABEL	xii
DAFTAR GAMBAR	xiii
DAFTAR SOURCE CODE	xiv
DAFTAR LAMPIRAN	xv
BAB 1 PENDAHULUAN	1
1.1 Latar belakang	
1.2 Rumusan masalah	2
1.3 Tujuan Penelitian	3
1.4 Manfaat Penelitian	
1.5 Batasan masalah	//
1.6 Sistematika Penulisan	//
BAB 2 LANDASAN KEPUSTAKAAN	6
2.1 Kajian Pustaka	6
2.2 Pemakaian Air	7
2.2.1 Pemakaian Air Domestik	8
2.2.2 Pemakaian Air Non Domestik	8
2.3 Perusahaan Daerah Air Minum (PDAM).	8
2.4 Penentuan Pola Data	9
2.4.1 Pola Data Horizontal	9
2.4.2 Pola Data Musiman	10
2.4.3 Pola Data Siklis	11
2.4.4 Pola Data Trend	11
2.5 Prediksi	12
2.5.1 Metode Prediksi	12

2.5.2 Kesalahan Prediksi 1	13
2.6 Algoritme Metode Smoothing Exponential	L4
2.6.1 Metode Pemulusan Exponential Tunggal (Single Exponenti Smoothing)1	
2.6.2 Metode Linear Exponential Smoothing (Double Exponenti Smoothing) Brown1	
2.6.3 Metode Pemulusan <i>Exponential</i> Musiman/Winter's (<i>Trip Exponential Smoothing</i>)1	
BAB 3 METODOLOGI	L7
3.1 Studi Literatur	18
3.2 Analisis Kebutuhan Sistem 1	
3.3 Objek Penelitian 1	L9
3.4 Pengumpulan Data 1	L9
3.5 Perancangan Sistem	L9
3.6 Implementasi Sistem	LS
3.7 Pengujian Sistem	20
3.8 Penyelesaian Penelitian 2	
BAB 4 PERANCANGAN	
4.1 Formulasi Permasalahan	21
4.2 Diagram Alir Algoritme Single Exponential Smoothing	22
4.2.1 Proses Perhitungan Single Exponential Smoothing 2	24
4.2.2 Proses Perhitungan MAPE2	26
4.3 Diagram Alir Double Exponential Smoothing 2	28
4.3.1 Proses Perhitungan Double Exponential Smoothing 3	30
4.3.2 Proses Inisialisasi Double Exponential Smoothing 3	31
4.4 Diagram Alir Triple Exponential Smoothing 3	32
4.4.1 Proses Perhitungan Triple Exponential Smoothing 3	34
4.4.2 Proses Inisialisasi <i>Triple Exponential Smoothing</i>	35
4.5 Perancangan Penyelesaian Masalah Menggunakan Metode <i>Exponenti Smoothing</i> 3	
4.5.1 Data Latih 3	36
4.5.2 Manualisasi Single Exponential Smoothing 3	36
4.5.3 MADE Single Exponential Smoothing	20

2	4.5.4 Manualisasi <i>Double Exponential Smoothing</i>	41
4	4.5.5 MAPE Double Exponential Smoothing	43
4	4.5.6 Manualisasi <i>Triple Exponential Smoothing</i>	44
4	4.5.7 MAPE Triple Exponential Smoothing	46
4.6	Perancangan Antarmuka	47
2	4.6.1 Perancangan Antarmuka <i>Login</i>	47
2	4.6.2 Perancangan Antarmuka Awal	47
4	4.6.3 Perancangan Antarmuka Prediksi	48
4	4.6.4 Perancangan Antarmuka Data	49
2	4.6.5 Perancangan Antarmuka Pengujian	50
4.7	Perancangan Pengujian	51
4	4.7.1 Perancangan Pengujian Pengaruh Nilai parameter	51
4	4.7.2 Perancangan Pengujian MAPE	52
BAB 5 IMPL	EMENTASI	53
5.1	Batasan Implementasi	54
5.2 ا	Implementasi Algoritme dalam Bentuk Program	54
5	5.2.1 Implementasi Algoritme Single Exponential Smoothing	54
5	5.2.2 Implementasi Algoritme <i>Double Exponential Smoothing</i>	55
5	5.2.3 Implementasi Algoritme <i>Triple Exponential Smoothing</i>	57
5	5.2.4 Implementasi Perhitungan MAPE	60
	Implementasi Antarmuka	
5	5.3.1 Implementasi Antarmuka <i>Login</i>	67
5	5.3.2 Implementasi Antarmuka Awal	67
5	5.3.3 Implementasi Antarmuka Prediksi	67
5	5.3.4 Implementasi Antarmuka Data	68
5	5.3.5 Implementasi Antarmuka Pengujian	68
BAB 6 PENG	GUJIAN	70
6.1	Pengujian Pengaruh Nilai Parameter	70
6	5.1.1 Pengujian Pengaruh Nilai Parameter Single Exponential Smooth	_
	5.1.2 Pengujian Pengaruh Nilai Parameter <i>Double Exponen</i>	tia 73

	5.1.3 Pengujian Pengaruh Nilai Parameter <i>Triple Exponential Smoothi</i>	_
6.2 F	Pengujian MAPE	79
6	5.2.1 Pengujian MAPE Single Exponential Smoothing	79
6	5.2.2 Pengujian MAPE Double Exponential Smoothing	80
6	5.2.3 Pengujian MAPE <i>Triple Exponential Smoothing</i>	80
BAB 7 PENU	JTUP	81
7.1 k	Kesimpulan	81
	Saran	
DAFTAR PU	ISTAKA	83
LAMPIRAN		85
2	AMPIRAN DATA TOTAL PEMAKAIAN AIR PDAM MALANG TAHUN 200	85
با	AMPIRAN DATA TRAINING	86
((AMPIRAN DATA UJI	87

DAFTAR TABEL

Tabel 2.1 Kriteria Nilai MAPE	13
Tabel 4.1 Total pemakaian air pelanggan PDAM	21
Tabel 4.2 Data Latih Exponential Smoothing	36
Tabel 4.3 Manualisasi Single Exponential Smoothing	38
Tabel 4.4 Hasil perhitungan MAPE Single Exponential Smoothing	40
Tabel 4.5 Inisialisasi <i>Double Exponential Smoothing</i>	41
Tabel 4.6 Manualisasi Double Exponential Smoothing	43
Tabel 4.7 Hasil perhitungan MAPE Double Exponential Smoothing	43
Tabel 4.8 Inisialisasi <i>Triple Exponential Smoothing</i>	
Tabel 4.9 Manualisasi Triple Exponential Smoothing	46
Tabel 4.10 MAPE Triple Exponential Smoothing	
Tabel 4.11 Pengujian nilai parameter	
Tabel 4.12 Pengujian MAPE	52
Tabel 6.1 Pengaruh Nilai Parameter Single Exponential Smoothing	71
Tabel 6.2 Pengaruh Nilai Parameter Double Exponential Smoothing	74
Tabel 6.3 Pengaruh Nilai Parameter Triple Exponential Smoothing	77
Tabel 6.4 MAPE Single Exponential Smoothing	79
Tabel 6.5 MAPE Double Exponential Smoothing	80
Tabel 6.6 MAPE Triple Exponential Smoothing	80

DAFTAR GAMBAR

Gambar 2.1 PDAM Kota Malang	8
Gambar 2.2 Pola Data Horizontal	. 10
Gambar 2.3 Pola Data Musiman	. 11
Gambar 2.4 Pola Data Siklis	. 11
Gambar 2.5 Pola Data <i>Trend</i>	. 12
Gambar 3.1 Tahapan Penelitian	. 17
Gambar 4.1 Diagram Alir Algoritme Single Exponential Smoothing	. 22
Gambar 4.2 Diagram Alir Proses Perhitungan Single Exponential Smoothing	. 24
Gambar 4.3 Diagram Alir Proses Perhitungan MAPE	. 26
Gambar 4.4 Diagram Alir Algoritme Double Exponential Smoothing	. 28
Gambar 4.5 Diagram Alir Proses Perhitungan Double Exponential Smoothing	. 30
Gambar 4.6 Proses Inisialisasi Double Exponential Smoothing	. 31
Gambar 4.7 Diagram Alir Algoritme Triple Exponential Smoothing	. 32
Gambar 4.8 Diagram Alir Proses Perhitungan <i>Triple Exponential Smoothing</i>	. 34
Gambar 4.9 Inisialisasi <i>Triple Exponential Smoothing</i>	. 35
Gambar 4.10 Perancangan Antarmuka Login	
Gambar 4.11 Perancangan Antarmuka Awal	
Gambar 4.12 Perancangan Antarmuka Prediksi	
Gambar 4.13 Perancangan Antarmuka Data	. 50
Gambar 4.14 Perancangan Antarmuka Pengujian	. 51
Gambar 5.1 Tahapan Implementasi	. 53
Gambar 5.2 Implementasi Antarmuka Login	. 67
Gambar 5.3 Implementasi Antarmuka Awal	. 67
Gambar 5.4 Implementasi Antarmuka Prediksi	. 68
Gambar 5.5 Implementasi Antarmuka Data	. 68
Gambar 5.6 Implementasi Antarmuka Pengujian	. 69
${\it Gambar~6.1~Grafik~Pengaruh~Nilai~Parameter~\it Single~\it Exponential~\it Smoothing~}$. 72
Gambar 6.2 Grafik Pengaruh Nilai Parameter Double Exponential Smoothing	. 75
$ \hbox{ Gambar 6.3 Grafik Pengaruh Nilai Parameter \it Triple \it Exponential \it Smoothing }$. 78

DAFTAR SOURCE CODE

Source Code 5.1 Implementasi Algoritme Single Exponential Smoothing	. 54
Source Code 5.2 Implementasi Algoritme Double Exponential Smoothing	. 57
Source Code 5.3 Implementasi Algoritme Triple Exponential Smoothing	. 60
Source Code 5.4 MAPE Single Exponential Smoothing	. 61
Source Code 5.5 MAPE Double Exponential Smoothing	. 63
Source Code 5.6 MAPE Triple Exponential Smoothing	. 66

DAFTAR LAMPIRAN

Lampiran 1 Data Total Pemakaian Air PDAM Malang Tahun 2008-2013	85
Lampiran 2 Data Training	86
Lamniran 3 Data Uii	87

BAB 1 PENDAHULUAN

1.1 Latar belakang

Air merupakan sumber daya alam yang sangat dibutuhkan oleh semua makhluk hidup. Manusia, hewan, dan tumbuhan memerlukan air untuk kelangsungan kehidupannya. Beda dengan binatang dan tumbuhan, manusia membutuhkan air yang bersih untuk keberlangsungan hidupnya. Air bersih merupakan air yang bermutu baik yang dapat dikonsumsi oleh manusia atau digunakan untuk keberlangsungan hidup sehari-hari. Air yang bermutu baik merupakan air yang mengadung kadar pH, oksigen, logam, bakteri, plankton, serta kekeruhan yang normal (Effendi, 2003).

Guna memenuhi jumlah ketersediaan air bersih untuk seluruh penduduk Indonesia, pemerintah menyediakan suatu perusahaan khusus yang menangani perihal ketersediaan air bersih ini. Perusahaan tersebut ialah Perusahaan Daerah Air Minum (PDAM). PDAM merupakan perusahaan milik daerah yang memiliki fungsi sebagai penyedia air bersih. PDAM terdapat di setiap Provinsi, Kabupaten, dan Kota Madya di seluruh Indonesia. Salah satu PDAM juga terdapat di Kota Malang, Kota yang semakin hari jumlah penduduknya semakin meningkat yang secara otomatis juga menaikan permintaan akan ketersediaan air bersih di Kota Malang. Pemakaian air yang tinggi mengakibatkan kebutuhan akan permintaan ketersediaan air bersih terus meningkat sedangkan persediaan air bersih sendiri di setiap tahun jumlahnya terus berkurang seiring dengan banyaknya lahan hijau terbuka yang dijadikan pemukiman atau bangunan.

Berdasarkan permasalahan tersebut menjadi sebuah tantangan tersendiri bagi PDAM seluruh Indonesia untuk terus mencukupi jumlah permintaan ketersediaan air bersih bagi para pelanggannya, tak terkecuali PDAM Kota Malang. Salah satu cara yang dapat dilakukan adalah memprediksi jumlah kebutuhan air di periode mendatang sehingga PDAM dapat mempersiapkan lebih dini persediaan air bersih yang cukup untuk memenuhi kebutuhan pelanggan. Selain itu, prediksi kebutuhan air juga dapat dimanfaatkan oleh perusahaan untuk mengalokasikan pendistribusian air ke pelanggan guna menghindari kejadian kekurangan atau pemborosan pemakaian air. Hasil prediksi yang akurat juga dapat menekan tingkat kerugian air dan juga biaya yang ditanggung oleh PDAM serta dengan menggunakan air secara efisien, air tadi dapat disalurkan ke PDAM daerah lain ataupun untuk mengaliri lahan persawahan. Terdapat beberapa metode untuk melakukan prediksi, salah satunya adalah dengan menggunakan metode Fuzzy Time Series dengan Algoritme Genetika yang dilakukan oleh oleh Khaira Istiqara pada tahun 2017 dengan judul "Prediksi Kebutuhan Air PDAM Kota Malang Menggunakan Metode Fuzzy Time Series dengan Algoritme Genetika", tujuan dari penelitian tersebut adalah untuk mempredikdi kebutuhan air masyarakat Kota Malang. Kelemahan fuzzy time series sendiri adalah salah satunya adalah pola perubahan trend data sebelumnya diabaikkan, sedangkan dalam Exponential Smoothing tidak.

Exponential Smoothing merupakan metode yang secara terus menerus melakukan perbaikan peramalan dengan mengambil nilai rata-rata penghalusan (smoothing) nilai masa lalu dari suatu data runtut waktu dengan cara menurun (exponential). Analisis exponential smoothing merupakan salah satu analisis deret waktu dan merupakan metode peramalan dengan memberi nilai penghalusan pada serangkaian pengamatan sebelumnya untuk memprediksi nilai pada masa depan (Trihendradi, 2005).

Metode Exponential Smoothing juga telah diterapkan oleh Iwa Sungkawa pada tahun 2011 dengan judul "Penerapan Ukuran Ketepatan Nilai Ramalan Data Deret Waktu dalam Seleksi Model Peramalan Volume Penjualan PT Satriamandiri Citramulia" pada tahun 2011. Tujuan dari penelitian tersebut adalah untuk meramalkan volume penjualan PT Satriamandiri Citramulia, penelitian tersebut membahas pemilihan model peramalan yang sesuai dan tepat dengan data deret waktu yang ada. Dalam penelitian ini dibahas cara mendeteksi ketepatan peramalan dengan berbagai cara, yaitu: Mean Square Error (MSE) dan Mean Absolute Percentage Error (MAPE). Peramalan menggunakan metode Moving Average, Exponential Smoothing, dan Winters. Dengan ketiga metode yang ditentukan nilai ramalan dan dipilih nilai MSE dan MAPE terkecil. Dari ketiga metode, Exponential Smoothing dinilai karena memiliki nilai MSE, MAPE, Durbin-Watson yang paling kecil dibandingkan dua metode lainnya dengan nilai MSE sebesar 157,51, MAPE sebesar 8,841, dan Durbin-Watson sebesar 0,559. Hal itu membuktikkan bahwa metode Exponential Smoothing termasuk kedalam kriteria sangat baik.

Penelitian ini menggunakan data terkait jumlah pemakaian air dalam satuan meter kubik (m³) pada setiap bulannya. Berdasarkan paparan sebelumnya bahwasanya metode *Exponential Smoothing* merupakan metode peramalan atau *forcasting* dengan cara kerjanya adalah dengan memberi nilai pemulusan pada serangkaian data pada pengamatan sebelumnya untuk memprediksi nilai masa depan, maka penulis mengusulkan penelitian dengan judul "Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode *Exponential Smoothing* (Studi Kasus: PDAM Kota Malang)".

1.2 Rumusan masalah

Berdasarkan latar belakang permasalahan yang telah dipaparkan, maka dapat dirumuskan permasalahan pada penelitian ini adalah.

- 1. Bagaimana penerapan metode *Exponential Smoothing* dalam memprediksi jumlah pemakaian air.
- 2. Berapa nilai *Mean Absolute Percentage Error* (MAPE) metode *Exponential Smoothing* dalam memprediksi jumlah pemakaian air.

3. Bagaimana perbandingan nilai error prediksi antara metode Single Exponential Smoothing, Double Exponential Smoothing, dan Triple Exponential Smoothing.

1.3 Tujuan Penelitian

Berdasarkan rumusan masalah yang adapun penelitian ini bertujuan untuk.

- 1. Dapat mengetahui penerapan metode Exponential Smoothing untuk memprediksi jumlah pemakaian air.
- 2. Dapat mengetahui nilai Mean Absolute Percentage Error (MAPE) metode Exponential Smoothing dalam memprediksi jumlah pemakaian air.
- 3. Dapat mengetahui perbandingan nilai error prediksi antara metode Single Exponential Smoothing, Double Exponential Smoothing, dan Triple Exponential Smoothing.

1.4 Manfaat Penelitian

lanfaat Penelitian Manfaat dari penelitian ini antara lain :

- 1. Bagi Penulis
 - a) Menerapkan ilmu yang dimiliki penulis untuk kepentingan masyarakat, terutama para pegawai dan pelanggan PDAM.
 - b) Memahami metode Exponential Smoothing untuk memprediksi jumlah pemakaian air.
- 2. Bagi pengelola PDAM
 - a) Mampu memprediksi jumlah kebutuhan pemakaian air di masa yang akan datang
 - b) Meminimalisir pemborosan atau kekurangan produksi air yang berdampak pada kerugian masyarakat dan PDAM itu sendiri.
- 3. Bagi Pembaca

Sebagai sumber informasi terkait prediksi kebutuhan pemakaian air di PDAM Kota Malang

1.5 Batasan masalah

Berikut batasan masalah dalam penelitian ini.

- 1. Data yang digunakan adalah data total pemakaian air pelanggan PDAM yang dijadikan objek penelitian. Data diperoleh dari penelitian Khaira Istiqara pada tahun 2017.
- 2. Data yang digunakan berdasarkan 5 Kecamatan, yang meliputi Kecamatan Blimbing, Kedungkandang, Klojen, Lowokwaru, dan Sukun pada rentang waktu 2008 - 2013.

- 3. Parameter yang digunakan yaitu data total pemakaian air pelanggan PDAM selama 6 tahun yang dihitung per bulannya, dalam kurun waktu tahun 2008-2013 sehingga menghasilkan 72 data.
- 4. Data volume pemakaian air bulanan PDAM menggunakan satuan meter kubik (m³).
- 5. Data hasil prediksi sistem terbatas hanya dalam kurun waktu tahun 2008 -2013.

1.6 Sistematika Penulisan

Penyusunan tugas akhir ini menggunakan sistematika penulisan dengan kerangka sebagai berikut :

BAB I PENDAHULUAN

Bab pendahuluan merupakan salah satu bab yang berisi latar belakang, rumusan masalah, tujuan, manfaat serta batasan masalah prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing* (Studi Kasus: PDAM Kota Malang)".

BAB II LANDASAN KEPUSTAKAAN

Bab landasan kepustakaan terdiri dari kajian pustaka dan dasar teori. Kajian pustaka berisi pemaparan singkat penelitian yang sudah pernah dilakukan namun terkait dengan penelitian prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing* (Studi Kasus : PDAM Kota Malang)". Dasar teori berisi teori-teori yang mendukung dalam pengembangan dan perancanangan sistem prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing* (Studi Kasus : PDAM Kota Malang)".

BAB III METODOLOGI

Bab metodologi merupakan salah satu bab pada yang mambahas tentang metode dan langkah kerja yang digunakan dalam membangun sistem prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing* (Studi Kasus: PDAM Kota Malang)". Metodologi penelitian yang digunakan terdiri dari studi literatur, analisis kebutuhan sistem, objek penelitian, pengumpulan data, perancangan sistem, implementasi sistem, pengujian sistem dan penyelesaian penelitian.

BAB IV PERANCANGAN

Bab perancangan membahas tentang perancangan sesuai kebutuhan dari sistem prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing* (Studi Kasus: PDAM

Kota Malang)", kemudian merancang sistem sesuai dengan kebutuhan.

BAB V IMPLEMENTASI

Bab Implementasi berisi tentang pengimplementasian dan pembahasan prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing* (Studi Kasus : PDAM Kota Malang)".

BAB VI PENGUJIAN

Bab pengujian berisi tentang rencana pengujian yang akan dilakukan pada sistem prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing* (Studi Kasus : PDAM Kota Malang)" yang telah di implementasikan.

BAB VII PENUTUP

Bab Penutup merupakan salah satu bab yang membahas kesimpulan yang diperoleh dari pembuatan dan pengujian yang dikembangkan dalam skripsi serta saran untuk pengembangan lebih lanjut.

BAB 2 LANDASAN KEPUSTAKAAN

Pada bab landasan kepustakaan berisi terkait kajian pustaka dan dasar teori yang berkaitan dengan prediksi, air, PDAM, dan *Exponential Smoothing*. Kajian pustaka membahas penelitian sebelumnya yang berkaitan dengan topik penilitian yang diusulkan. Dasar teori membahas terkait teori yang diperlukan dan digunakan dalam penyusunan penelitian yang diusulkan. Penelitian-penelitian tersebut antara lain, Penerapan Metode Exponential Smoothing untuk Peramalan Penggunaan Waktu Telepon Di PT. Telkomsel Divre3 Surabaya oleh Alda Raharja, Penerapan Ukuran Ketepatan Nilai Ramalan Data Deret Waktu dalam Seleksi Model Peramalan Volume Penjualan PT Satriamandiri Citramulia oleh Iwa Sungkawa, Peramalan Jumlah Stok Alat Tulis Kantor di UD Achmad Jaya Menggunakan Metode *Double Exponential Smoothing* oleh Titania Dwi Andini, dan terakhir Prediksi Kebutuhan Air PDAM Kota Malang Menggunakan Metode *Fuzzy Time Series* dengan Algoritme Genetika oleh Khaira Istiqara.

2.1 Kajian Pustaka

Penelitian pertama yang dilakukan oleh Alda Raharja pada tahun 2010., tujuan dari penelitian tersebut adalah untuk meramalkan berapa penggunaan waktu telepon Di PT. Telkomsel Divre3 Surabaya. Evaluasi hasil peramalan menggunakan metode MAPE dan RMSE. Penggunaan metode Double Exponential Smoothing dalam meramalkan data dengan nilai perhitungan kesalahan MAPE berada di bawah 10%. Peramalan menggunakan metode Double Exponential Smoothing mendapatkan hasil yang lebih baik dibandingkan dengan metode Moving Average, dengan selisih error sebesar 0,29% dan selisih error RMSE sebesar 74,15.

MAS BR

Penelitian kedua yang dilakukan oleh Iwa pada tahun 2011, tujuan dari penelitian tersebut adalah untuk meramalkan volume penjualan PT Satriamandiri Citramulia, penelitian tersebut membahas pemilihan model peramalan yang sesuai dan tepat dengan data deret waktu yang ada. Dalam penelitian ini dibahas cara mendeteksi ketepatan peramalan dengan berbagai cara, yaitu: *Mean Square Error* (MSE) dan *Mean Absolute Percentage Error* (MAPE). Peramalan menggunakan metode *Moving Average, Exponential Smoothing,* dan *Winters*. Dengan ketiga metode di atas ditentukan nilai ramalan dan dipilih nilai MSE dan MAPE terkecil. Dari ketiga metode, *Exponential Smoothing* dinilai karena memiliki nilai MSE, MAPE, *Durbin-Watson* yang paling kecil dibandingkan dua metode lainnya dengan nilai MSE sebesar 157,51, MAPE sebesar 8,841, dan *Durbin-Watson* sebesar 0,559.

Penelitian ketiga yang dilakukan oleh Titania Dwi Andini pada tahun 2015. Tujuan dari penelitian tersebut adalah untuk menentukan jumlah pembelian alat tulis kantor (ATK) ke produsen. Pengujian peramalan menggunakan cara perhitungan percentage error dan mean absolut percentage error (MAPE), MAPE

terkecil didapat ketika bulan Januari 2015 pada saat *alfa* 0.7 dengan nilai 12,36 dan peramalan 408,63 pack. Perbandingan hasil peramalan dengan data aktual penjualan di tahun 2015 pada pengujian mempunyai nilai presentase kesalahan dibawah 20% pada setiap bulanya.

Penelitian keempat yang dilakukan oleh Khaira Istiqara pada tahun 2017, tujuan dari penelitian tersebut adalah untuk memprediksi kebutuhan air masyarakat Kota Malang, agar kebutuhan air di masa depan akan tetap terjamin. Variabel yang digunakan yaitu data pemakaian air PDAM Kota Malang rentang waktu tahun 2008-2013. Hasil dari pengujian parameter *Fuzzy Time Series* dan algoritme genetika, diperoleh ukuran populasi terbaik yaitu 360, panjang kromosom sebesar 60, kombinasi tingkat crossover dan mutasi terbaik yaitu 0,4 dan 0,2, serta jumlah generasi terbaik sebesar 550. Berdasarkan parameter terbaik, diperoleh hasil prediksi dengan nilai error (MAPE) sebesar 2,266776%. Hasil tersebut menunjukkan kemampuan prediksi yang baik dengan nilai error yang rendah.

2.2 Pemakaian Air

Air adalah unsur yang tidak dapat dipisahkan dari kehidupan manusia, bahkan dapat dipastikan tanpa pengembangan sumberdaya air secara konsisten peradaban manusia tidak akan mencapai tingkat yang dinikmati sampai saat ini. Oleh karena itu pengembangan dan pengolahan sumber daya air merupakan dasar peradaban manusia (Sunaryo, dkk, 2005).

GITAS BA

Salah satu faktor penting penggunaan air dalam kehidupan sehari-hari adalah akan kebutuhan air bersih. Air bersih merupakan air yang harus bebas dari mikroorganisme penyebab penyakit dan bahan-bahan kimia yang dapat merugikan kesehatan manusia maupun makhluk hidup lainnya. Air merupakan sumber kehidupan kehidupan, di mana tidak ada satupun makhluk hidup di bumi ini yang tidak membutuhkan air .

Berdasarkan peraturan menteri kesehatan tahun 2002, air minum merupakan air yang telah melewati proses pengolahan atau tanpa proses pengolahan, yang dapat langsung diminum dan telah memenuhi syarat kesehatan. Ada beberapa syarat air, diantaranya yaitu:

- Aman dari segi higienisnya.
- Dapat diminum.
- Tersedia dalam jumlah yang cukup.
- Harga terjangkau.

Penggunaan air di kalangan masyarakat mempunyai kegunaan yang berbeda-beda di setiap daerahnya, pemakaian air pada satu daerah berbeda dengan daerah yang lainnya. Faktor yang mempengaruhi pemakaian air yaitu ciri-ciri penduduk, industri dan perdagangan, iklim, masalah lingkungan hidup, dan lain sebagainya (Suryadmaja, 2015).

Kebutuhan pemakaian air dibedakan menjadi 2, yaitu kebutuhan air domestik dan kebutuhan air non-domestik. Kebutuhan air domestik merupakan kebutuhan air yang meliputi kebutuhan air pada rumah tangga, sedangkan kebutuhan air non-domestik meliputi kegiatan kegiatan pabrik, pertanian dan industri (Widiyanti & Ristianti, 2004).

2.2.1 Pemakaian Air Domestik

Air domestik merupakan pemakaian air yang digunakan oleh masyarakat untuk memenuhi kebutuhan rumah tangga sehari-hari baik di dalam maupun di luar rumah. Kebutuhan tersebut meliputi air untuk mencuci, , mandi, memasak, minum dan sebagainya. Pemakaian air domestik yang terbesar yaitu untuk kebutuhan kamar mandi dan kakus. Faktor yang mempengaruhi pemakaian air domestik yaitu jumlah penduduknya. Untuk mengetahui kebutuhan air domestik suatu penduduk maka harus mengetahui jumlah dan pertumbuhan penduduk tersebut. (Suryadmaja, 2015).

2.2.2 Pemakaian Air Non Domestik

Air non domestik merupakan pemakaian air untuk kebutuhan diluar lingkungan rumah tangga seperti kegiatan pabrik, pertanian dan industri Widiyanti & Ristianti, 2004). Selain itu air non domestik juga termasuk dalam kebutuhan air untuk instansi atau kantor dan juga fasilitas umum seperti sekolah, rumah ibadah ,sarana kesehatan, dan sarana infrastruktur lainnya. Jumlah pemakaian air non domestik lebih besar dari pada pemakaian air domestik (Suryadmaja, 2015).

2.3 Perusahaan Daerah Air Minum (PDAM)

Gambar 2.1 PDAM Kota Malang

Perusahaan daerah merupakan salah satu pelaku ekonomi di suatu daerah, selain perusahaan milik negara, perusahaan swasta dan koperasi. Tujuan pemerintah mendirikan perusahaan daerah yaitu untuk menjadi penyokong dalam

pembangunan daerah. PDAM adalah satu dari beberapa Badan Usaha Milik Daerah (BUMD), yang bertugas untuk mengelola kebutuhan air minum. Pada saat ini PDAM memiliki peran yang sangat penting bagi kehidupan bermasyarakat dalam mendukung kelancaran pembangunan daerah, sehingga keberhasilan PDAM harus selalu di upayakan oleh setiap daerah (Kurniawati, 2009). Gambar 2.1 merupakan foto kantor PDAM Kota Malang.

Perkembangan PDAM khususnya di bidang infrastruktur, menjadi bagian dari upaya untuk menghasilkan atau mendukung menaikan angka pertumbuhan ekonomi, dalam hal pengembangan sistem pasokan air di perkotaan dan pedesaan. Pengelolaan PDAM cukup kompleks, karena banyak lembaga pemerintah yang bertanggung jawab untuk pengoperasiannya. Diantaranya yaitu Departemen Kesehatan yang memiliki tanggung jawab untuk menetapkan persyaratan kualitas air minum dan Departemen Pekerjaan Umum yang bertanggung jawab atas infrastruktur dan pengelolaan pendistribusian air. Hal ini membuat para pegawai PDAM memiliki tanggung jawab yang cukup besar dalam mengelola perusahaan dan juga untuk memenuhi kebutuhan masyarakat (Hadipuro, 2010).

Salah satu PDAM juga terdapat di Kota Malang, PDAM menjadi sumber penyedia air bersih terbesar di kota Malang. Perkembangan dan pertambahan penduduk di Kota Malang yang semakin pesat menyebabkan peningkatan akan kebutuhan air bersih meningkat pula. Untuk memenuhi kebutuhan air konsumen, PDAM Kota Malang menambah kapasitas produksi di setiap tahunnya dengan mengelola sumber Air Wendit dan beberapa mata air lokal di Kota Malang dengan menggunakan sistem pompanisasi. Sehingga kebutuhan air sebagian besar masyarakat dan pelanggan dapat terpenuhi.

2.4 Penentuan Pola Data

Ada beberapa pola data yang harus untuk peramalan (Andini, 2016) yaitu:

2.4.1 Pola Data Horizontal

Pola ini terjadi saat terdapat data yang berfluktuasi disekitar nilai rata-rata yang konstan. Suatu produk yang suatu yang penjualannya tidak meningkat atau menurun secara drastic selama waktu tertentu termasuk jenis pola ini (Makridakis, 1999). Pola dari data horizontal terdapat pada Gambar 2.2.

Gambar 2.2 Pola Data Horizontal

2.4.2 Pola Data Musiman

Pola data ini terjadi pada suatu deret data yang dipengaruhi oleh faktor musiman (misalnya data tahunan, bulanan, atau hari-hari tertentu). Penjualan dari produk seperti minuman ringan, es krim, dan bahan bakar pemanas ruang merupakan salah satu contoh jenis pola ini. Pola dari data musiman terdapat pada Gambar 2.3:

Gambar 2.3 Pola Data Musiman

2.4.3 Pola Data Siklis

Pola data ini terjadi jika terdapat data yang dipengaruhi oleh fluktuasi ekonomi jangka panjang seperti yang berhubungan dengan siklus bisnis. Contoh: penjualan produk seperti mobil, sepeda motor, dan *Handphone*. Pola dari data siklis terdapat pada Gambar 2.4:

Gambar 2.4 Pola Data Siklis

2.4.4 Pola Data Trend

Pola data *trend* terjadi pada saat kenaikan atau penurunan sekuler jangka panjang dalam data. Contoh: penjualan banyak perusahaan, *Gross National Product* (GNP) dan berbagai indikator bisnis atau ekonomi lainnya. Pola dari data *trend* terdapat pada Gambar 2.5:

Gambar 2.5 Pola Data Trend

TAS BA

2.5 Prediksi

Prediksi merupakan suatu proses untuk meramalkan atau memperkirakan suatu variable di masa yang akan datang. Dalam kasus prediksi biasanya data yang sering digunakan adalah data kuantitatif. Prediksi tidak harus menghasilkan suatu jawaban yang pasti kejadian, melainkan berusaha untuk mencari jawaban yang sedekat mungkin dengan kejadian yang akan terjadi.

Prediksi sendiri terbagi atas 3 bagian, yaitu prediksi jangka panjang, jangka menengah dan panjang jangka pendek. Prediksi jangka pendek merupakan prediksi yang dilakukan dengan memperhatikan pola data, dan membutuhkan jangka waktu yang pendek terhadap perubahan berdasarkan faktor-faktor yang membentuk pola data. Sedangkan prediksi jangka menengah dan jangka panjang digunakan untuk perencanaan strategis. Prediksi jangka menengah membantu untuk menyiapkan ekspansi dan mengantisipasi kebutuhan. Prediksi jangka panjang berfungsi untuk menjamin ketersediaan kebutuhan di masa depan. (Maté, et al., 2016).

2.5.1 Metode Prediksi

Pada data time series terdapat hubungan antara variabel yang dicari (dependent) dan variabel yang mempengaruhinya (independent). Kedua variabel tersebut akan dihubungan berdasarkan waktu yang terbagi atas minggu, bulan dan bahkan tahun. Dalam prediksi jangka pendek biasanya membutuhkan metode yang tidak bervariasi, beda halnya dengan prediksi jangka menengah dan panjang yang membutuhkan metode yang bervariasi(Taylor, 2003). Ada beberapa metode yang digunakan dalam prediksi data yaitu sebagi berikut:

 Smoothing, metode ini biasanya digunakan untuk meramalkan perencanaan keuangan (finance) dan befungsi untuk meminimalisir data masa lalu yang tidak beraturan.

- Box jenknis, metode ini berfungsi untuk meramalkan data time series pada jangka pendek.
- Proyeksi trend, metode ini berisi persamaan matematis yang berupa garis yang membentuk suatu trend dan berfungsi melakukan prediksi jangka panjang.

2.5.2 Kesalahan Prediksi

Ada beberapa metode perhitungan yang biasa digunakan dalam menghitung kesalahan prediksi (forecast error). Perhitungan ini dapat digunakan untuk membandingkan beberapa model peramalan yang berbeda, dan juga dapat digunakan untuk mengawasi prediksi, dan untuk memastikan apakah prediksi itu berjalan dengan baik atau tidak. Cara untuk mengevaluasi teknik peramalan salah satunya adalah MAPE.

Kesalahan persen rata-rata absolute atau *Mean Absolute Percent Error* (MAPE). MAPE merupakan rata-rata diferensiasi absolut antara nilai peramalan dan aktual, yang dinyatakan sebagai presentase nilai aktual. MAPE dihitung sebagai rata-rata diferensiasi absolut antara nilai yang diramal dan aktual, dinyatakan sebagai presentase nilai aktual. Nilai MAPE dapat dicari dengan menggunakan rumus pada Persamaan (2.1)

$$MAPE = \frac{100}{n} \sum_{i} \frac{|At - Ft|}{At}$$
 (2.1)

dimana:

At = nilai aktual pada data t

Ft = nilai peramalan pada data t

n = jumlah periode data

Penggunaan MAPE pada evaluasi hasil prediksi dapat menghindari pengukuran akurasi terhadap besarnya nilai aktual dan nilai prediksi. Kriteria nilai MAPE ditunjukkan pada Tabel 2.1 (Chang, Wang, & Liu, 2007).

Tabel 2.1 Kriteria Nilai MAPE

Nilai MAPE	Kriteria
< 10%	Sangat Baik
10% – 20%	Baik
20% – 50%	Cukup
> 50%	Buruk

2.6 Algoritme Metode Smoothing Exponential

2.6.1 Metode Pemulusan Exponential Tunggal (Single Exponential Smoothing)

Metode pemulusan Exponential Tunggal (Single Exponential Smoothing) mengasumsikan bahwa data berfluktuasi di sekitar nilai mean yang tetap, tanpa trend atau pola pertumbuhan konsisten (Makridakis, 1999). Nilai α yang dekat dengan 1 memberikan penekanan terbesar pada nilai saat ini sedangkan nilai yang dekat dengan 0 memberi penekanan pada titik data sebelumnya. Nilai peramalan dapat dicari dengan menggunakan rumus pada Persamaan (2.2).

$$Ft = \alpha X_t + (1 - \alpha) Ft_{-1}$$
 (2.2)

dimana:

 F_t = peramalan untuk periode t.

 X_t = nilai aktual pada waktu ke t-1

 F_{t-1} = peramalan pada waktu t-1

 α = parameter Exponential dengan nilai antara 0 – 1

2.6.2 Metode Linear Exponential Smoothing (Double Exponential Smoothing) Brown

Metode ini dikembangkan oleh Brown's untuk mengatasi perbedaan yang muncul antara data aktual dan nilai peramalan apabila ada trend pada perubahan datanya. Dasar pemikiran dari pemulusan Exponential linier dari Brown's adalah serupa dengan rata-rata bergerak linier (Linier Moving Average), karena kedua nilai pemulusan tunggal dan ganda ketinggalan dari data yang sebenarnya bilamana terdapat unsur trend, perbedaan antara nilai pemulusan tunggal dan ganda ditambahkan kepada nilai pemulusan dan disesuaikan. Parameter α digunakan untuk melakukan pemulusan tunggal dan ganda, karena data akan mengalami ketinggalan dari data yang sebenarnya bilamana terdapat unsur trend, perbedaan antara nilai pemulusan tunggal dan ganda ditambahkan kepada nilai pemulusan dan disesuaikan untuk trend. Proses inisialisasi menggunakan Persamaan (2.3) – (2.4) dan nilai peramalan dapat dicari dengan menggunakan rumus pada Persamaan (2.5) – (2.9).

- Inisialisasi:

$$S't = S''t = \alpha T \tag{2.3}$$

$$bT = \frac{(X2-X1)+(X4-X3)}{2}$$
 (2.4)

- Rumus Double Exponential Smoothing Brown:

$$S'_t = aX_t + (1-a)S'_{t-1}$$
 (2.5)

$$S''_t = aS'_t + (1-a)S''_{t-1}$$
 (2.6)

$$aT = 2 S't - S''t \tag{2.7}$$

$$bT = \frac{\alpha}{1-\alpha} (S't - S''t) \tag{2.8}$$

$$Ft+m = aT + bT m (2.9)$$

dimana:

S't = Nilai pemulusan tunggal pada waktu ke-t

S"t = Nilai pemulusan ganda pada waktu ke-t

Xt = data aktual pada waktu ke-t

aT, bT = konstanta pemulusan

Ft+m = nilai peramalan AS | S

m = periode masa mendatang

α = parameter Exponential dengan nilai antara 0 - 1

2.6.3 Metode Pemulusan Exponential Musiman/Winter's (Triple Exponential Smoothing)

Sebagaimana halnya dengan persamaan pemulusan *Exponential linier* yang dapat digunakan untuk meramalkan serial data yang memiliki pola *trend*, bentuk persamaan yang lebih tinggi dapat digunakan jika pola dasar serial datanya musiman. Salah satu metode peramalan yang khusus untuk data yang berpola musiman adalah metode pemulusan *Exponential linier* dan musiman dari Winter. Metode ini didasarkan atas tiga persamaan, yaitu unsur stasioner, *trend* dan musiman. Parameter α digunakan untuk menghitung pemulusan keseluruhan, parameter β digunakan untuk menghitung nilai *trend* dan parameter γ digunakan untuk menghitung nilai trend dan parameter γ digunakan untuk menghitung nilai musiman, proses inisialisasi menggunakan Persamaan (2.10) – (2.12) nilai peramalan dapat dicari dengan menggunakan rumus pada Persamaan (2.13) – (2.16).

- Inisialisasi :

$$St = \frac{1}{L} (y_1 + y_2 + \dots + y_L)$$
 (2.10)

$$Tt = \frac{1}{L} \left(\frac{(yL+1-y1)}{L} + \frac{(yL+2-y2)}{L} + \dots + \frac{(yL+L-L)}{L} \right) (2.11)$$

$$SNt = \frac{y_1}{St} \tag{2.12}$$

- Rumus Triple Exponential Smoothing:

$$St = a \frac{Xt}{SNt-1} + (1-\alpha) (S_{t-1} + T_{t-1})$$
 (2.13)

$$Tt = \beta (S_{t}-S_{t-1}) + (1-\beta) T_{t-1}$$
 (2.14)

$$SNt = \gamma \left(\frac{Xt}{St}\right) + (1-\gamma) SN_{t-1}$$
 (2.15)

$$F_{t+m} = S_t + T_t m ag{2.16}$$

dimana:

St = Nilai pemulusan keseluruhan

Xt = Data aktual pada waktu ke-t

Tt = Pemulusan trend

 α, β, γ = parameter Exponential dengan nilai antara 0 dan 1

SNt = pemulusan musiman

Ft+m = nilai peramalan

m = periode masa mendatang

BAB 3 METODOLOGI

Pada bab ini akan dibahas bagaimana tahapan penelitian terkait prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing* (Studi Kasus: PDAM Kota Malang). Metode penelitian kali ini memberikan penjelasan tahapan penelitian secara umum, adapun tahapannya terdiri atas studi literatur, analisa kebutuhan sistem, objek penelitian, pengumpulan data, perancangan sistem, implementasi sistem, pengujian sistem, serta penyelesaian penelitian. Tahapan penelitian tersebut dapat ditampilkan pada Gambar 3.1.

Gambar 3.1 Tahapan Penelitian

3.1 Studi Literatur

Studi literatur merupakan konsep dasar teori yang digunakan sebagai penunjang dalam penelitian kali ini yang berkaitan dengan prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing*. Konsep dasar teori yang digunakan antara lain:

- 1. Teori tentang prediksi
- 2. Teori tentang kebutuhan pemakaian air
- 3. Teori tentang metode Exponential Smoothing

Literatur teori-teori tersebut diperoleh dari berbagai macam sumber mulai dari jurnal, buku, wawancara, situs-situs ilmiah dan juga penelitian terkait sebelumnya.

3.2 Analisis Kebutuhan Sistem

Analisa kebutuhan merupakan suatu digunakan untuk menganalisis kebutuhan yang akan digunakan untuk penelitian yang meliputi spesifikasi media yang akan digunakan. Kebutuhan dari pengguna dapat dikelompokkan menjadi dua jenis yaitu kebutuhan fungsional dan *non* fungsional. Kebutuhan fungsional adalah pernyataan layanan sistem yang harus disediakan, bagaimana sistem bereaksi pada input tertentu dan bagaimana perilaku sistem pada situasi tertentu, kebutuhan fungsional adalah sebagai berikut:

- 1. Sistem mampu memberikan prediksi jumlah kebutuhan pemakaian air konsumen PDAM Kota Malang.
- 2. Sistem mampu memberikan nilai eror hasil prediksi.

Kebutuhan lain yang dibutuhkan sistem adalah kebutuhan non fungsional. Kebutuhan non fungsional adalah batasan layanan atau fungsi yang ditawarkan sistem, kebutuhan non fungsional adalah sebagai berikut:

- 1. Sistem bersifat aman karena hanya pengguna tertentu yang memiliki hak untuk akses data melalui *login*.
- 2. Sistem dapat digunakan kapan saja karena sistem berbasis web.
- 3. Sistem dapat diakses 24 jam non stop.

Kebutuhan yang digunakan dalam pembuatan sistem meliputi:

- 1. Kebutuhan perangkat keras, meliputi:
 - Laptop dengan Processor Intel® Core™ i5-6500U CPU @ 2,60 GHz-2,80 GHz
- 2. Kebutuhan perangkat lunak, meliputi:
 - Sistem Operasi Windows 10 64-bit
 - Google Chrome versi 57.0.2987.133
 - XAMPP versi 7.0.9
 - Sublime Text

3.3 Objek Penelitian

Data yang dibutuhkan, meliputi:

- Data yang digunakan adalah data total pemakaian air pelanggan PDAM per bulan dalam satuan meter kubik (m³).
- Data di dapat dari penelitian Khaira Istiqara pada tahun 2017, data yang digunakan berdasarkan 5 Kecamatan, yang meliputi Kecamatan Blimbing, Kedungkandang, Klojen, Lowokwaru, dan Sukun pada rentang waktu 2008-2013.
- Parameter yang digunakan yaitu data total pemakaian air pelanggan PDAM selama 6 tahun yang dihitung per bulannya, dalam kurun waktu tahun 2008-2013 sehingga menghasilkan 72 data.
- Data volume pemakaian air bulanan PDAM menggunakan satuan meter kubik (m³).

3.4 Pengumpulan Data AS BA

Untuk pengumpulan data pada penelitian ini menggunakan data sekunder. Data sekunder adalah data yang telah dibuat atau dikumpulkan oleh orang lain yang dapat digunakan untuk tujuan penelitian yang diperoleh dengan cara riset kepustakaan, membaca buku atau jurnal yang berkaitan dengan masalah yang dianalisis. Data sekunder yang digunakan pada penelitian ini berupa data yang diberikan oleh Perusahaan Daerah Air Minum (PDAM) Kota Malang yang berupa data total pemakaian air pelanggan PDAM per bulan dalam satuan meter kubik (m3) dalam kurun waktu tahun 2008-2013 sehingga menghasilkan 72 data. Data di dapat dari penelitian Khaira Istiqara pada tahun 2017.

3.5 Perancangan Sistem

Perancangan sistem berisi rancangan langkah kerja sistem secara menyeluruh, model *Exponential Smoothing* digambarkan dalam manualisasi dengan melakukan perhitungan sederhana berdasarkan data pemakaian air air PDAM Kota Malang. Dari manulisasi tersebut diharapkan menghasilkan langkahlangkah penyelesaian masalah mengggunakan model *Exponential Smoothing*. Selain itu perancangan sistem juga dibutuhkan untuk menggambarkan sistem agar memudahkan pengguna dalam menggunakan sistem yang akan diimplementasikan.

3.6 Implementasi Sistem

Implementasi merupakan tahapan yang dilakukan untuk membuat sistem secara nyata. Implementasi mengacu pada perancangan sistem yang telah dibuat pada bab sebelumnya. Implementasi sistem meliputi tiga kegiatan utama yaitu:

1. Membuat antarmuka sebagai media komunikasi antara pengguna

- dengan sistem.
- 2. Memasukkan data ke dalam ruang penyimpangan (*database*) untuk digunakan sebagai informasi bagi sistem dan berfungsi untuk mempermudah melakukan pengolahan data.
- 3. Menerapkan metode Exponential Smoothing

3.7 Pengujian Sistem

Pengujian dan analisis sistem dilakukan untuk mengetahui apakah sistem berjalan sesuai dengan kebutuhan yang telah ditentukan serta untuk mendapatkan hasil akurasi. Kriteria pengujian hasil evaluasi menggunakan rumus statistika *Mean Absolute Percentage Error* (MAPE), apabila sudah memenuhi kriteria yang tepat, maka sistem tersebut dapat memberikan solusi yang baik.

3.8 Penyelesaian Penelitian

Penyelesaian penelitian memuat seluruh kegiatan yang telah dilakukan oleh peneliti. Penyelesaian penelitian akan memuat latar belakang, perancangan, implementasi, pengujian, kesimpulan dan saran terkait prediksi jumlah kebutuhan pemakaian air menggunakan metode *Exponential Smoothing*. Tujuan penulisan laporan adalah agar dapat memberikan kesimpulan yang harus dapat menjelaskan keberhasilan metode yang digunakan untuk memprediksi kebutuhan air PDAM Kota Malang dan agar penelitian lebih terperinci serta dapat digunakan sebagai referensi penelitian-penelitian selanjutnya.

BAB 4 PERANCANGAN

4.1 Formulasi Permasalahan

Perancangan metode *Exponential Smoothing* akan dijabarkan pada bab perancangan dalam bentuk perancangan alur algoritme, manualisasi data aktual, perancangan antarmuka dan perancangan pengujian. Data yang digunakan yaitu data total pemakaian air PDAM Kota Malang yang diperoleh dari Irawan (2015). Data tersebut ditampilkan pada Tabel 4.1 berdasarkan periode 2008-2013, selengkapnya terlampir pada lampiran.

Tabel 4.1 Total pemakaian air pelanggan PDAM

Bulan	Pemakaian Air
Jan-08	1684536
Feb-08	1627438
Mar-08	1592618
Apr-08	1702344
Mei-08	1611804
Jun-08	1658421
Jul-08	1568368
Agu-08	1729248
Sep-08	1546298
Okt-08	1417037
Nov-08	1606972
Des-08	1558064

4.2 Diagram Alir Algoritme Single Exponential Smoothing

Diagram alir algoritme Single Exponential Smoothing untuk menyelesaikan permasalahan prediksi kebutuhan air PDAM Kota Malang bisa dilihat pada Gambar 4.1.

Gambar 4.1 Diagram Alir Algoritme Single Exponential Smoothing

Tahap pertama yang dilakukan dalam proses perhitungan *Single Exponential Smoothing* adalah dengan menentukan nilai parameter *a*. Setelah nilai parameter *a* ditentukan lalu mulai melakukan proses perhitungan *Single Exponential Smoothing*, lalu hitung berapa nilai MAPEnya kemudian cari nilai *a* yang menghasilkan nilai MAPE terendah. Setelah ketemu nilai *a* yang dianggap menghasilkan *error* yang paling kecil, gunakan nilai *a* tadi untuk menghitung prediksi jumlah kebutuhan pemakaian air pada periode mendatang. *Single Exponential Smoothing* juga dikenal sebagai *simple exponential smoothing* yang digunakan pada peramalan jangka pendek, biasanya hanya 1 bulan ke depan. Metode ini mengasumsikan bahwa data berfluktuasi tanpa *trend* atau suatu pola pertumbuhan konsisten tertentu.

4.2.1 Proses Perhitungan Single Exponential Smoothing

Proses perhitungan *Single Exponential Smoothing* ditunjukkan pada Gambar 4.2 yang dirujuk pada Persamaan (2.2).

Gambar 4.2 Diagram Alir Proses Perhitungan Single Exponential Smoothing

24

Dalam proses perhitungan *Single Exponential Smoothing* hal yang pertama dilakukan adalah memberikan nilai *a*, disini nilai *a* ditentukan mulai dari 0,1, 0,2, 0,3 sampai 0.9, lalu masuk ke dalam perhitungan rumus *Single Exponential Smoothing* sesuai dengan Persamaan (2.2), lakukan perulangan sesuai data yang digunakan. Metode *Single Exponential Smoothing* adalah suatu metode yang secara terus menerus memperbaiki prediksi dengan mencari nilai rata-rata masa lalu dari suatu data deret waktu dengan cara menurun (*exponential*).

4.2.2 Proses Perhitungan MAPE

Proses perhitungan MAPE ditunjukkan pada Gambar 4.3 merujuk Persamaan (2.1)

Gambar 4.3 Diagram Alir Proses Perhitungan MAPE

Langkah-langkah dalam menghitung MAPE, yang merupakan perhitungan nilai *error* dalam sebuah kasus prediksi, akan ditampilkan pada Gambar 4.3, dengan penjelasan sebagai berikut:

- 1. Memasukkan data aktual dan data hasil prediksi.
- 2. Untuk setiap data ke *i*, akan dihitung persentasi selisihnya, dengan cara menghitung selisih absolut antara data aktual dan data hasil prediksi lalu dibagikan dengan data aktual, setelah itu dikalikan 100.
- 3. Hitung nilai MAPE dengan cara menjumlahkan seluruh nilai persentase selisih.

4.3 Diagram Alir Double Exponential Smoothing

Diagram alir algoritme *Double Eksponential Smoothing Brown* untuk menyelesaikan permasalahan prediksi kebutuhan air PDAM Kota Malang bisa dilihat pada Gambar 4.4 yang merujuk pada Persamaan (2.3 - 2.9).

Gambar 4.4 Diagram Alir Algoritme Double Exponential Smoothing

Tahap pertama yang dilakukan dalam proses perhitungan *Double Exponential Smoothing* adalah dengan menentukan nilai *a*. Setelah nilai *a* ditentukan lalu mulai melakukan proses perhitungan *Double Exponential Smoothing*, kemudian cari nilai *a* yang menghasilkan nilai MAPE terendah. Setelah ketemu nilai *a* yang dianggap menghasilkan *error* yang paling kecil, gunakan nilai *a* tadi untuk menghitung prediksi jumlah kebutuhan pemakian air. Metode ini cocok digunakan ketika data menunjukkan adanya *trend*. *Double Exponential Smoothing* dengan adanya *trend*. *Trend* adalah estimasi yang dihaluskan dari pertumbuhan rata-rata pada akhir masing-masing periode, apakah data itu cenderung meningkat atau menurun.

4.3.1 Proses Perhitungan Double Exponential Smoothing

Proses perhitungan *Double Exponential Smoothing* ditunjukkan pada Gambar 4.5 merujuk Persamaan (2.3 – 2.9).

Gambar 4.5 Diagram Alir Proses Perhitungan Double Exponential Smoothing

Dalam proses perhitungan *Double Exponential Smoothing* hal yang pertama dilakukan adalah memberikan nilai *a*, disini nilai *a* ditentukan mulai dari 0.1, 0.2, 0,3 sampai 0,9 lalu masuk ke dalam perhitungan rumus *Double Exponential Smoothing*. Langkah pertama proses dalam proses perhitungan yaitu melakukan proses inisialisasi awal, kemudian menentukan nilai *S'*, *S''*, *aT*, *bT* dan terakhir menghasilkan nilai prediksi *Double Exponential Smoothing*. Metode *Double Exponential Smoothing* ini merupakan model linear yang dikemukakan oleh Brown. Di dalam metode *Double Exponential Smoothing* dilakukan proses *smoothing* sebanyak dua kali. Metode *Double Exponential Smoothing* ini biasanya lebih tepat untuk meramalkan data yang berpola *trend*.

4.3.2 Proses Inisialisasi Double Exponential Smoothing

Proses inisialisasi awal *Double Exponential Smoothing* ditunjukkan pada Gambar 4.6 merujuk pada Persamaan (2.3) – (2.4) :

Gambar 4.6 Proses Inisialisasi Double Exponential Smoothing

Proses Inisialisasi digunakan untuk memberikan nilai awal pada parameter S', S'', aT dan bT

4.4 Diagram Alir Triple Exponential Smoothing

Diagram alir algoritme *Triple Eksponential Smoothing Brown* untuk menyelesaikan permasalahan prediksi kebutuhan air PDAM Kota Malang bisa dilihat pada Gambar 4.7.

Gambar 4.7 Diagram Alir Algoritme Triple Exponential Smoothing

Tahap pertama yang dilakukan dalam proses perhitungan *Triple* Exponential Smoothing adalah dengan menentukan nilai α, β, γ. Setelah nilai α, β,

 γ ditentukan lalu mulai melakukan proses perhitungan *Triple Exponential Smoothing*, kemudian cari nilai α , β , γ yang menghasilkan nilai MAPE terendah. Setelah ketemu nilai α , β , γ yang dianggap menghasilkan *error* yang paling kecil gunakan nilai α tadi untuk menghitung prediksi jumlah kebutuhan pemakian air. Metode ini digunakan ketika data menunjukan adanya *trend* dan perilaku musiman.

4.4.1 Proses Perhitungan Triple Exponential Smoothing

Proses perhitungan *Triple Exponential Smoothing* ditunjukkan pada Gambar 4.8 merujuk Persamaan (2.10 – 2.16).

Gambar 4.8 Diagram Alir Proses Perhitungan Triple Exponential Smoothing

Dalam proses perhitungan *Triple Exponential Smoothing* hal yang pertama dilakukan adalah memberikan nilai α , β dan γ , disini nilai ditentukan mulai dari 0.1, 0.2, 0.3 sampai 0.9 lalu masuk ke dalam perhitungan rumus *Triple Exponential Smoothing*. Setelah itu melakukan proses inisialisasi awal, kemudian menentukan nilai *St, Tt, SNt* dan terakhir menghasilkan nilai prediksi *Triple Exponential Smoothing*. Metode ini digunakan ketika data menunjukan adanya trend dan perilaku musiman. Untuk menangani musiman, telah dikembangkan parameter persamaan ketiga yang disebut metode "Holt-Winters" sesuai dengan nama penemunya.

4.4.2 Proses Inisialisasi Triple Exponential Smoothing

Proses inisialisasi awal *Triple Exponential Smoothing* ditunjukkan pada Gambar 4.9 merujuk Persamaan (2.10) – (2.12):

Gambar 4.9 Inisialisasi Triple Exponential Smoothing

Proses Inisialisasi digunakan untuk memberikan nilai awal pada parameter YI, St, Tt dan SNt

4.5 Perancangan Penyelesaian Masalah Menggunakan Metode Exponential Smoothing

Berikut adalah langkah manualisasi dalam penyelesaian masalah dengan algoritme Exponential Smoothing :

4.5.1 Data Latih

Data latih yang digunakan dalam perhitungan manualisasi *Exponential Smoothing* adalah data pemakaian air rentang waktu antara Januari 2012 – Desember 2012 dalam satuan meter kubik (m³) yang bisa dilihat pada Tabel 4.2 :

Tabel 4.2 Data Latih Exponential Smoothing

Bulan	Pemakaian Air
Jan-12	1986071
Feb-12	2014645
Mar-12	1908264
Apr-12	2192472
Mei-12	1999456
Jun-12	2013574
Jul-12	2102384
Agu-12	1934682
Sep-12	2024783
Okt-12	2014573
Nov-12	2240356
Des-12	2374281

4.5.2 Manualisasi Single Exponential Smoothing

Contoh perhitungan untuk a=0.1

-
$$F_{(3)} = \alpha * X_2 + (1-\alpha) * F_2$$

-
$$F_{(4)} = \alpha * X_3 + (1-\alpha) * F_3$$

$$= 0.1 * 1908264 + (1 - 0.1) * 1988928,4$$

•••

...

...

•••

-
$$F_{(12)} = \alpha * X_{11} + (1-\alpha) * F_{11}$$

= $0.1 * 2240356 + (1-0.1) * 2007794,359$
= $2031050,523$

Tabel 4.3 merupakan tabel hasil perhitungan dengan menggunakan metode Single Exponential Smoothing dengan nilai a=0,1 sampai a=0,9:

epos

Tabel 4.3 Manualisasi Single Exponential Smoothing

					Pemaka	ian Air				
Bulan	data aktual	a=0.1	a=0.2	a=0.3	a=0.4	a=0.5	a=0.6	a=0.7	a=0.8	a=0.9
Jan-12	1986071		-				-	-	-	_
Feb-12	2014645	1986071	1986071	1986071	1986071	1986071	2003215.4	1986071	1986071	1986071
Mar-12	1908264	1988928.4	1991785.8	1994643.2	1997500.6	2000358	2010073.16	2006072.8	2008930.2	2011787.6
Apr-12	2192472	1980861.96	1975081.44	1968729.44	2021947.2	1954311	1948987.664	1937606.64	1928397.24	1918616.36
Mei-12	1999456	2002022.964	2018559.552	2035852.208	2115265.6	2073391.5	2095078.266	2116012.392	2139657.048	2165086.436
Jun-12	2013574	2001766.268	2014738.842	2024933.346	2005103.2	2036423.75	2037704.906	2034422.918	2027496.21	2016019.044
Jul-12	2102384	2002947.041	2014505.873	2021525.542	2049098	2024998.875	2023226.362	2019828.675	2016358.442	2013818.504
Agu-12	1934682	2012890.737	2032081.499	2045783.079	2035303.2	2063691.438	2070720.945	2077617.403	2085178.888	2093527.45
Sep-12	2024783	2005069.863	2012601.599	2012452.756	1970722.4	1999186.719	1989097.578	1977562.621	1964781.378	1950566.545
Okt-12	2014573	2007041.177	2015037.879	2016151.829	2020699	2011984.859	2010508.831	2010616.886	2012782.676	2017361.355
Nov-12	2240356	2007794.359	2014944.903	2015678.18	2104886.2	2013278.93	2012947.332	2013386.166	2014214.935	2014851.835
Des-12	2374281	2031050.523	2060027.123	2083081.526	2293926	2126817.465	2149392.533	2172265.05	2195127.787	2217805.584

4.5.3 MAPE Single Exponential Smoothing

Contoh perhitungan MAPE untuk α=0,4:

 $\begin{array}{rcl} \textit{MAPE} & = & \frac{100}{11}* (0,014183144 + 0,046763236 + 0,077777413 + \\ & 0,057920554 + 0,004206848 + 0,025345513 + \\ & 0,052009167 + 0,026699454 + 0,003040843 + \\ & 0,060467979 + 0,03384393) \\ \textit{MAPE} & = & 3.656891647 \end{array}$

Tabel 4.4 merupakan tabel hasil perhitungan MAPE Single Exponential Smoothing dengan nilai a = 0.1 sampai a = 0.9:

repos

Tabel 4.4 Hasil perhitungan MAPE Single Exponential Smoothing

					Pemakaian Air				
Bulan	a=0.1	a=0.2	α=0.3	a=0.4	a=0.5	a=0.6	a=0.7	a=0.8	α=0.9
Jan-12	-	-	-	-	-	-	-	-	-
Feb-12	0.014183144	0.014183144	0.014183144	0.014183144	0.014183144	0.005673258	0.014183144	0.014183144	0.014183144
Mar-12	0.04227109	0.043768472	0.045265854	0.046763236	0.048260618	0.053351717	0.051255382	0.052752764	0.054250146
Apr-12	0.096516644	0.099153175	0.102050361	0.077777413	0.108626701	0.111054707	0.116245662	0.120446127	0.124907246
Mei-12	0.001283831	0.009554375	0.018203055	0.057920554	0.036977808	0.047824141	0.058294052	0.070119597	0.08283775
Jun-12	0.005864067	0.000578495	0.005641385	0.004206848	0.011347857	0.011984117	0.010354185	0.006914178	0.00121428
Jul-12	0.047297239	0.041799275	0.038460366	0.025345513	0.036808273	0.03765137	0.039267481	0.0409181	0.042126222
Agu-12	0.040424595	0.050343932	0.057426016	0.052009167	0.066682503	0.07031592	0.073880567	0.077788954	0.082104165
Sep-12	0.009735926	0.006016151	0.006089662	0.026699454	0.012641494	0.017624319	0.023321205	0.029633606	0.036654029
Okt-12	0.00373867	0.000230758	0.000783704	0.003040843	0.001284709	0.002017385	0.001963748	0.000888687	0.001384092
Nov-12	0.103805663	0.100613963	0.10028666	0.060467979	0.101357583	0.101505594	0.101309718	0.10093979	0.100655505
Des-12	0.14456186	0.132357492	0.122647435	0.03384393	0.104226726	0.094718556	0.085085106	0.075455775	0.065904338
MAPE	4.633479361	4.532720289	4.645796745	3.656891647	4.930885601	5.033828029	5.228729545	5.364006553	5.511099248

Pada kasus ini MAPE terkecil terdapat pada α =0,4, jadi untuk prediksi kedepannya menggunakan α = 0,4,

4.5.4 Manualisasi Double Exponential Smoothing

Tabel 4.5 merupakan tabel inisialisasi awal parameter *S't, S''t, aT, bT* yang merupakan langkah awal perhitungan dengan menggunakan metode *Double Exponential Smoothing*.

Proses inisialisasi:

- Pemakaian Air = S't = S''t = aT = 1986071
- bT = ((data aktual 2 data aktual 1) + (data aktual 4 data aktual 3))/2
 - = ((2014645 1986071) + (2192472 1908264))/2
 - = 156391

Tabel 4.5 Inisialisasi Double Exponential Smoothing

Bulan	Pemakaian Air	S't	S"t	aT	bT	Ft+m
Jan-12	1986071	1986071	1986071	1986071	156391	
Feb-12	2014645	227		A	<	
Mar-12	1908264	S E				
Apr-12	2192472	GU				

Contoh perhitungan a=0.1:

-
$$S't_2$$
 = $\alpha * (data aktual 2) + $(1 - \alpha) * S't_1$
= $0,1 * (2014645) + (1 - 0,1) * 1986071$
= $1988928,40$$

-
$$S''t_2 = \alpha * (S't_2) + (1 - \alpha) * S''t_1$$

= 0,1 * (1988928.40) + (1 - 0,1) * 1986071
= 1986356,74

-
$$aT_2$$
 = 2*S't $_2$ -S"t $_2$
= 2 * 1988928,40 - 1986356,74
= 1991500,06
- bT_2 = $(\alpha/(1-\alpha))$ * $(S't _2 - S''t_2)$
= $(0,1/(1-0,1))$ * $(1988928,40 - 1986356,74)$
= 285,74

```
fT_2
        = aT_1 + bT_1
        = 1986071.00 + 156391.0
        = 2142462
        = \alpha * (data aktual 12) + (1 - <math>\alpha) * S't_{11}
S't<sub>12</sub>
        = 0.1 * (2374281) + (1 - 0.1) * 2031050.52
        = 2065373,57
S''t_{12} = \alpha * (S't_{12}) + (1 - \alpha) * S''t_{11}
        = 0.1 * (2065373,57) + (1 - 0.1) * 1999847,37
        = 2006399,99
aT_{12}
        = 2*S't_{12} - S''t_{12}
        = 2 * 2065373,57 – 2006399,99
        = 2124347,15
        = (\alpha/(1-\alpha)) * (S't_{12} - S''t_{12})
bT_{12}
        = (0,1/(1-0,1)) * (2065373,57 - 2006399,99)
        = 6552,62
fT_{12}
        = aT_{11} + bT_{11}
        = 2062253,68 + 3467,02
        = 2065720,69
```

Tabel 4.6 merupakan table hasil perhitungan dengan menggunakan metode *Double Exponential Smoothing* dengan nilai a = 0.1:

Tabel 4.6 Manualisasi Double Exponential Smoothing

Bulan	Pemakaian Air	S't	S"t	аТ	bT	Ft+m
Jan-12	1986071		1986071.00	1986071.00		
Feb-12	2014645	1988928.40	1986356.74	1991500.06	285.74	2142462.00
Mar-12	1908264	1980861.96	1985807.26	1975916.66	-549.48	1991785.80
Apr-12	2192472	2002022.96	1987428.83	2016617.10	1621.57	1975367.18
Mei-12	1999456	2001766.27	1988862.58	2014669.96	1433.74	2018238.67
Jun-12	2013574	2002947.04	1990271.02	2015623.06	1408.45	2016103.70
Jul-12	2102384	2012890.74	1992532.99	2033248.48	2261.97	2017031.51
Agu-12	1934682	2005069.86	1993786.68	2016353.05	1253.69	2035510.45
Sep-12	2024783	2007041.18	1995112.13	2018970.22	1325.45	2017606.73
Okt-12	2014573	2007794.36	1996380.35	2019208.37	1268.22	2020295.67
Nov-12	2240356	2031050.52	1999847.37	2062253.68	3467.02	2020476.59
Des-12	2374281	2065373.57	2006399.99	2124347.15	6552.62	2065720.69
Jan-13	2127658					2130899.77
Feb-13	1987364		S D			2137452.39
Mar-13	2068653	GILA	OBR	1.		2144005.01
Apr-13	2118364			14.		2150557.63
Mei-13	2092653					2157110.25
Jun-13	1936538	8				2163662.87
Jul-13	2287385					2170215.49
Agu-13	2178435	Not to	一座である。	(/		2176768.11
Sep-13	2278648	N E E				2183320.73
Okt-13	2317424	4				2189873.35
Nov-13	2144479		等原			2196425.97
Des-13	2198034					2202978.59

4.5.5 MAPE Double Exponential Smoothing

Tabel 4.7 merupakan tabel hasil perhitungan MAPE *Double Exponential Smoothing* dengan nilai a = 0.1 sampai a = 0.9:

Tabel 4.7 Hasil perhitungan MAPE Double Exponential Smoothing

	a=0.1	a=0.2	a=0.3	a=0.4	a=0.5	a=0.6	a=0.7	a=0.8	a=0.9
MAPE	3.767	9.241	17.819	27.081	36.270	44.377	50.516	54.031	54.411

Pada kasus ini MAPE terkecil terdapat pada α =0.1, jadi untuk prediksi kedepannya menggunakan α =0,1.

Contoh perhitungan MAPE untuk a = 0.1:

$$MAPE = \frac{100}{12} * (0.001 + 0.075 + 0.036 + \dots + 0.055 + 0.024 + 0.002)$$
 $MAPE = 3.767$

4.5.6 Manualisasi Triple Exponential Smoothing

Poses Inisialisasi:

-
$$YI_{12}$$
 = (data aktual 24 - data aktual 12)
= $2374281 - 1943646$
= 430635
- St_{12} = $\frac{\sum_{1}^{12} (data \ aktual1 + data \ aktual2 + \dots + data \ aktual11 + \ data \ aktual12)}{12}$
(1894655 + 1902542 + 1867345 + 1893539 + 1905850 + 1824748+ 1920348 + 1932854 + 1888674 + 1953525 + 1924508 + 1943646) / 12
= $1904352,83$
- Tt_{12} = $\frac{\sum_{1}^{12} (\gamma l_1 + \gamma l_2 + \dots + \gamma l_11 + \gamma l_12)}{12}$
= $(91416 + 112103 + \dots + 315848 + 430635)^2/12$
= $13564,63$
- SNt_{12} = data aktual₁₂ / St_{12}
= 1943646 / $1904352,83$
= $1,020633$

Tabel 4.8 merupakan tabel inisialisasi awal parameter *Yl, St, Tt, SNt-l, SNt* yang merupakan langkah awal perhitungan dengan menggunakan metode *Triple Exponential Smoothing*:

Tabel 4.8 Inisialisasi Triple Exponential Smoothing

Bulan	Pemakaian Air	ΥI	St	Tt	SNt-I	SNt
Jan-11	1894655	91416				0.994908
Feb-11	1902542	112103				0.999049
Mar-11	1867345	40919				0.980567
Apr-11	1893539	298933				0.994322
Mei-11	1905850	93606				1.000786
Jun-11	1824748	188826				0.958198
Jul-11	1920348	182036				1.008399
Agu-11	1932854	1828				1.014966
Sep-11	1888674	136109				0.991767
Okt-11	1953525	61048				1.025821
Nov-11	1924508	315848				1.010584
Des-11	1943646	430635	1904353	13564.63		1.020633

Manualisasi

-
$$F_1$$
 = $St_{24} + Tt_{24}$
= 217857.692+ 21102,059 * (25-24)
= 2199676.751
....
- F_{12} = $St_{35} + Tt_{35}$
= 217857.692+ 21102,059 * (36-24)
= 2431799.405

Tabel 4.9 merupakan table hasil perhitungan dengan menggunakan metode *Triple Exponential Smoothing* dengan nilai α = 0,1, β = 0,1, γ = 0,1:

Tabel 4.9 Manualisasi Triple Exponential Smoothing

Bulan	Pemakaian Air	Yl	St	Tt	SNt-l	SNt	F	no
Jan-11	1894655	91416				0.994908		1
Feb-11	1902542	112103				0.999049		2
Mar-11	1867345	40919				0.980567		3
Apr-11	1893539	298933				0.994322		4
Mei-11	1905850	93606				1.000786		5
Jun-11	1824748	188826				0.958198		6
Jul-11	1920348	182036				1.008399		7
Agu-11	1932854	1828				1.014966		8
Sep-11	1888674	136109				0.991767		9
Okt-11	1953525	61048				1.025821		10
Nov-11	1924508	315848				1.010584		11
Des-11	1943646	430635	1904352.833	13564.63		1.020633		12
Jan-12	1986071		1925749.394	14347.82	0.994908	0.998549	1917917.465	13
Feb-12	2014645		1947743.750	15112.48	0.999049	1.002579	1940097.218	14
Mar-12	1908264		1961178.883	14944.74	0.980567	0.979812	1962856.228	15
Apr-12	2192472		1999010.565	17233.44	0.994322	1.004567	1976123.627	16
Mei-12	1999456		2014408.132	17049.85	1.000786	0.999965	2016244.003	17
Jun-12	2013574		2038453.823	17749.43	0.958198	0.961158	2031457.983	18
Jul-12	2102384		2059070.192	18036.13	1.008399	1.009663	2056203.258	19
Agu-12	1934682		2060011.076	16326.6	1.014966	1.007386	2077106.320	20
Sep-12	2024783		2072863.085	15979.14	0.991767	0.990271	2076337.679	21
Okt-12	2014573		2076344.426	14729.36	1.025821	1.020264	2088842.229	22
Nov-12	2240356		2103655.710	15987.56	1.010584	1.016024	2091073.789	23
Des-12	2374281		2140307.141	18053.94	1.020633	1.029502	2119643.265	24
Jan-13	2127658				0.998549	-	2155229.648	25
Feb-13	1987364				1.002579	D	2182028.013	26
Mar-13	2068653		PE	人,又	0.979812		2150166.870	27
Apr-13	2118364		- 19		1.004567		2222628.006	28
Mei-13	2092653		A C		0.999965		2230499.465	29
Jun-13	1936538			心 三 137	0.961158		2161289.736	30
Jul-13	2287385				1.009663		2288587.495	31
Agu-13	2178435		引 / 恒		1.007386		2301613.290	32
Sep-13	2278648				0.990271		2280387.975	33
Okt-13	2317424			T	1.020264		2367875.816	34
Nov-13	2144479				1.016024		2376378.094	35
Des-13	2198034				1.029502		2426488.855	36

4.5.7 MAPE Triple Exponential Smoothing

Tabel 4.10 merupakan tabel hasil perhitungan MAPE *Triple Exponential Smoothing*.

Tabel 4.10 MAPE Triple Exponential Smoothing

		β = 0.	α=0.1, γ=0.1			$\alpha = 0.1, \beta = 0.1$				
	α=0.1 α=0.3 α=0.6 α=0.9		$\beta = 0.3$ $\beta = 0.6$ $\beta = 0.9$		y = 0.3 $y = 0.6$ $y = 0.9$		γ = 0.9			
MAPE	5.610	8.211	14.139	18.769	7.339	6.435	4.730	6.009	6.727	7.741

Contoh perhitungan MAPE nilai α = 0.1, θ = 0.9, γ = 0.1 :

$$MAPE = \frac{100}{12} * (0.007 + 0.090 + 0.030..... + 0.003 + 0.088 + 0.084)$$
 $MAPE = 4,730$

4.6 Perancangan Antarmuka

Perancangan antarmuka dilakukan untuk memaparkan antarmuka halaman pada sistem yang dapat memudahkan pengguna untuk berinteraksi dengan sistem. Perancangan antarmuka terdiri dari perancangan anarmuka *login,* antarmuka awal, antarmuka data latih, antarmuka prediksi, dan antarmuka pengujian.

4.6.1 Perancangan Antarmuka Login

Pada halaman ini menampilkan antarmuka *login* yang merupakan halaman pertama yang ditemui ketika mengakses sistem ini. Gambar 4.10 merupakan gambar Perancangan Antarmuka *Login*.

Gambar 4.10 Perancangan Antarmuka Login

Keterangan:

- 1. Logo PDAM
- 2. Kolom username, bagian ini merupakan textfield yang berisikan usename
- 3. Kolom password, bagian ini merupakan textfield yang berisikan password
- 4. *Button login,* bagian ini merupakan *button* yang berfungsi untuk memproses proses *login.*

4.6.2 Perancangan Antarmuka Awal

Pada halaman ini menampilkan antarmuka awal yang merupakan halaman yang pertama di lihat setelah melakokan proses *login*. Pada halaman ini terdapat pilihan menu yang terdapat pada sistem ini. Gambar 4.11 merupakan gambar Perancangan Antarmuka Awal.

Gambar 4.11 Perancangan Antarmuka Awal

- 1. Header
- 2. Menu Prediksi
- 3. Menu Data latih
- 4. Menu Pengujian
- 5. Menu About us
- 6. Footer

4.6.3 Perancangan Antarmuka Prediksi

Pada halaman ini menampilkan antarmuka prediksi yang merupakan halaman yang berisikan inputan bulan dan tahun untuk melihat prediksi pada saat inputan. Pada halaman ini hasil prediksi akan di tampilkan dalam bentuk tabel. Gambar 4.12 merupakan gambar Perancangan Antarmuka Prediksi.

Gambar 4.12 Perancangan Antarmuka Prediksi

- 1. Header
- 2. Pilihan Metode
- 3. Inputan tanggal dan parameter
- 4. Tabel hasil prediksi
- 5. Footer

4.6.4 Perancangan Antarmuka Data

Antarmuka data berisikan data latih dan data uji yang digunakan dalam sistem ini. Data yang digunakan adalah data total pemakaian air pelanggan PDAM yang dijadikan objek penelitian. Data di dapat dari PDAM Kota Malang dalam kurun waktu tahun 2008-2013. Gambar 4.13 merupakan gambar Perancangan Antarmuka Data.

Gambar 4.13 Perancangan Antarmuka Data

- 1. Header
- 2. Pilihan menu data latih dan data uji
- 3. Tabel Data
- 4. Footer

4.6.5 Perancangan Antarmuka Pengujian

Pada halaman ini menampilkan antarmuka pengujian yang merupakan halaman yang berisikan inputan nilai *a* dan berapa hasil MAPE nya. Pada halaman ini hasil prediksi akan di tampilkan dalam bentuk tabel. Gambar 4.14 merupakan gambar Perancangan Antarmuka *Pengujian*

Gambar 4.14 Perancangan Antarmuka Pengujian

- 1. Header
- 2. Pilihan Metode
- 3. Nilai parameter
- 4. Tabel hasil perhitungan dan MAPE
- 5. Footer

4.7 Perancangan Pengujian

Pada sub bab ini akan dijelaskan terkait perancangan pengujian metode terhadap sistem. Pengujian metode dilakukan untuk mandapatkan hasil prediksi yang optimal dengan nilai akurasi yang baik. Pada penelitian ini, pengujian metode dilakukan dengan beberapa parameter, antara lain sebagai berikut:

- 1. Nilai parameter
- 2. MAPE

4.7.1 Perancangan Pengujian Pengaruh Nilai parameter

Dalam skenario pengujian ini, uji coba akan dilakukan dengan menggunakan nilai a sebagai parameter pembanding. Besar ukuran a adalah 0.1 sampai 0.9. Hasil perancangan pengujian akan ditampilkan pada Tabel 4.11.

BRAWIJAYA

Tabel 4.11 Pengujian nilai parameter

data	a=0.1	a=0.2	a=0.3	a=0.4	a=0.5	a=0.6	a=0.7	a=0.8	a=0.9
1									
2									
3									
4									
5									
6									
7									
8									

4.7.2 Perancangan Pengujian MAPE

Mean Absolute Percentage Error (MAPE) dihitung dengan menggunakan kesalahan absolut pada tiap periode dibagi dengan nilai observasi yang aktual untuk periode itu. Kemudian, merata-rata kesalahan persentase absolut tersebut. Pendekatan ini berguna ketika ukuran atau besar variabel ramalan itu penting dalam mengevaluasi ketepatan ramalan. MAPE mengindikasi seberapa besar kesalahan dalam meramal yang dibandingkan dengan nilai aktual. Nilai MAPE di mulai dari a = 0.1 - 0.9, kemudian dicari nilai MAPE terendah. Hasil perancangan pengujian akan ditampilkan pada Table 4.12.

Tabel 4.12 Pengujian MAPE

	a=0.1	a=0.2	a=0.3	a=0.4	a=0.5	a=0.6	a=0.7	a=0.8	a=0.9
MAPE				37.5		3		- //	

BAB 5 IMPLEMENTASI

Pada bab ini akan dibahas terkait implementasi sistem yang akan menerapkan rancangan yang telah dibuat pada bab perancangan. Implementasi yang ada meliputi batasan implementasi, implementasi algoritme dan implementasi antarmuka. Berikut merupakan diagram implementasi sistem yang ditunjukkan pada Gambar 5.1.

Gambar 5.1 Tahapan Implementasi

5.1 Batasan Implementasi

Batasan yang digunakan dalam mengimplementasikan sistem Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode *Exponential Smoothing* adalah sebagai berikut:

- 1. Sistem dibangun merupakan aplikasi bebasis web.
- 2. Data yang digunakan dalam implementasi sistem disimpan kedalam Database Management System (DBMS) MySQL.
- 3. Metode yang digunakan adalah metode *Exponential Smoothing*, yang meliputi *Single Exponential Smoothing*, Double Exponential Smoothing, dan *Triple Exponential Smoothing*.
- 4. Data yang digunakan adalah data total pemakaian air pelanggan PDAM yang dijadikan objek penelitian. Data diperoleh dari PDAM Kota Malang, Jawa Timur. Parameter yang digunakan yaitu data total pemakaian air pelanggan PDAM selama 6 tahun yang dihitung per bulannya, dalam kurun waktu tahun 2008-2013 sehingga menghasilkan 72 data. Data volume pemakaian air bulanan PDAM menggunakan satuan meter kubik (m³).
- 5. Input yang digunakan dalam sistem berupa inputan tanggal dan nilai parameter.
- 6. Output yang diterima pengguna adalah prediksi total pemakaian air dalam satuan meter kubik (m³).

5.2 Implementasi Algoritme dalam Bentuk Program

Pada implementasi algoritme akan dijelaskan terkait *code* dari sistem Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode *Exponential Smoothing* yang mengacu pada bab perancangan dan *sub* bab perancangan yang meliputi proses perhitungan pada setiap langkah yang ada pada algoritme *Exponential Smoothing*.

5.2.1 Implementasi Algoritme Single Exponential Smoothing

Implementasi algoritme Single Exponential Smoothing menjelaskan proses perhitungan dengan menggunakan metode Single Exponential Smoothing. Dalam proses Single Exponential Smoothing, nilai a yang dimasukkan oleh pengguna akan dikalikan dengan data aktual bulan sebelumnya lalu ditambahkan dengan hasil pengurangan 1 dikurangi oleh a yang dikalikan dengan data prediksi bulan sebelumnya yang merujuk pada Persamaan (2.2). Implementasi algoritme Single Exponential Smoothing bisa dilihat pada Source Code 5.1 berikut:

Source Code 5.1 Implementasi Algoritme Single Exponential Smoothing

```
6
                               key = i;
7
                         }
8
                  }
9
10
                  for ($i=0; $i < count($this->dataLatih); $i++) {
11
12
                               if($i === 0){
13
14
                                            $this-
     >dataUjiAlfa[$i][''.$alfa.''] = 0;
15
16
17
                               else if($i === 1){
18
                                            $this-
     >dataUjiAlfa[$i][''.$alfa.''] = number format($alfa * $this-
19
20
     >dataLatih[$i - 1]['kebutuhanair'] + (1 - $alfa) * $this-
21
     >dataLatih[$i - 1]['kebutuhanair'], 3, '.','');
22
23
                               else{
24
25
                                            $this-
     >dataUjiAlfa[$i][''.$alfa.''] = number format($alfa * $this-
26
     >dataLatih[$i - 1]['kebutuhanair'] + (\overline{1} - $alfa) * $this-
27
     >dataUjiAlfa[$i - 1][''.$alfa.''], 3,
28
29
30
31
```

Penjelasan Source Code:

- 1 : Instansiasi fungsi hitungSes
- 3-8 : Membuat perulangan untuk mengambil data latih dan pengecekan tanggal
- 11-31 : Membuat perulangan untung menghitung Single Exponential Smoothing
- 12-16 : Kondisi perhitungan baris pertama (inisialisasi), maka bernilai 0
- 17-22 : Kondisi perhitungan baris kedua (alfa * data aktual sebelumnya +(1-alfa)*data aktual sebelumnya) sesuai Persamaan (2.2)
- 23-31 : Kondisi perhitungan *Single Exponential Smoothing (alfa* * data aktual sebelumnya +(1-*alfa*)*data hasil prediksi sebelumnya) sesuai persamaan (2.2)

5.2.2 Implementasi Algoritme Double Exponential Smoothing

Implementasi algoritme *Double Exponential Smoothing* menjelaskan proses perhitungan dengan menggunakan metode *Double Exponential Smoothing*. Dalam proses *Double Exponential Smoothing*, terlebih dahulu ada inisialisasi nilai pemulusan tunggal, pemulusan ganda, serta konstanta pemulusan. Selanjutnya dilakukan penghitungan sesuai data latih yang ada untuk mendapatkan konstanta pemulusan yang akan digunakan untuk memprediksi nilai yang akan datang.

Implementasi *Double Exponential Smoothing* bisa dilihat pada *Source Code* 5.2 berikut:

```
1
     function hitungDes($tanggal, $alfa){
2
3
4
                  $kev = 0;
5
                        for ($i=0; $i < count($this->dataLatih);
6
     $i++) {
7
                               if($tanggal===$this-
8
     >dataLatih[$i]['bulan']){
9
                                     key = i;
10
11
                        }
12
                  $batas = 59;
13
                  for (\$i=0; \$i < \$key+1; \$i++) {
14
                        for (\$j=0; \$j < 5; \$j++){
15
                              if ($i < 60) {
                                     if ($i==0) {
16
17
                                           if(\$j < 3){
                                                  number format($this-
18
     >dataUjiAlfa[$i][$j]
                              $this->dataLatih[$i]['kebutuhanair'],
19
     3, '.','');
20
21
                                             else if (\$j==3) {
22
23
                                                 number format ($this-
24
     >dataUjiAlfa[$i][$j] = (($this-
     >dataLatih[$i+3]['kebutuhanair']-$this-
25
26
     >dataLatih[$i+2]['kebutuhanair']) + ($this-
27
     >dataLatih[$i+1]['kebutuhanair']-$this-
28
     >dataLatih[$i+0]['kebutuhanair']))/2, 3, '.','');
29
                                            } else if (\$j==4) {
30
31
                                                  $this-
32
     >dataUjiAlfa[$i][$j]
33
34
35
                                     }else {
36
                                           if(\$i == 0){
37
                                                  number format($this-
38
     >dataUjiAlfa[$i][$j] = ($alfa*$this-
39
     >dataLatih[$i]['kebutuhanair'])+((1-$alfa)*$this-
40
     >dataUjiAlfa[$i-1][$j]), 3, '.','');
41
42
                                            else if ($j == 1) {
43
                                                  number format ($this-
44
     >dataUjiAlfa[$i][$j] = ($alfa*$this->dataUjiAlfa[$i][$j-
45
     1])+((1-$alfa)*$this->dataUjiAlfa[$i-1][$j]), 3, '.','');
46
47
                                            else if($j == 2){
48
                                                  number format($this-
49
     >dataUjiAlfa[$i][$j] = 2 * $this->dataUjiAlfa[$i][$j-2] -
50
     $this->dataUjiAlfa[$i][$j-1], 3, '.','');
51
52
                                           else if($j == 3){
53
```

```
number format($this-
55
     >dataUjiAlfa[$i][$j] = ($alfa / (1-$alfa)) * ($this-
56
     >dataUjiAlfa[$i][$j-3] - $this->dataUjiAlfa[$i][$j-2]), 3,
57
     '.','');
58
59
                                           }else{
60
                                                 number format($this-
     >dataUjiAlfa[$i][$j] = $this->dataUjiAlfa[$i-1][$j-2] + $this-
61
     >dataUjiAlfa[$i-1][$j-1], 3, '.','');
62
63
64
65
66
                              }else{
67
68
                                           number format ($this-
     >dataUjiAlfa[$i][$j] = $this->dataUjiAlfa[$batas][$j-2] +
69
70
     $this->dataUjiAlfa[$batas][$j-1] * ($i - $batas), 3, '.','');
71
72
73
74
75
76
```

Source Code 5.2 Implementasi Algoritme Double Exponential Smoothing

Penjelasan Sorce Code:

- 1 : Instansiasi fungsi hitungDes
- 5-11 : Membuat perulangan untuk mengambil data latih dan pengecekan tanggal
- 13-75 : Membuat perulangan untung menghitung Double Exponential Smoothing
- 17-20 : Kondisi inisialisasi *variable* S't, S"t, aT dengan nilai sama dengan data aktual sesuai persamaan
- 22-28 : Kondisi inisialisasi variable bT
- 30-34 : Kondisi inisialisasi nilai prediksi (F) dengan nilai 0
- 35-65 : Kondisi perhitungan *Double Exponential Smoothing (variable S't, S''t, aT,* bT dan F) sesuai Persamaan (2.3 sampai 2.7)
- 66-76 : Kondisi perhitungan nilai prediksi (F)

5.2.3 Implementasi Algoritme Triple Exponential Smoothing

Implementasi algoritme *Triple Exponential Smoothing* menjelaskan proses perhitungan dengan menggunakan metode *Triple Exponential Smoothing*. *Smoothing*. Dalam proses *Triple Smoothing*, terlebih dahulu ada inisialisasi nilai pemulusan *trend*, inisialisasi nilai pemulusan, dan nilai pemulusan musiman. Selanjutnya dilakukan penghitungan sesuai data latih yang ada untuk mendapatkan konstanta pemulusan yang akan digunakan untuk memprediksi nilai

yang akan datang. Implementasi *Triple Exponential Smoothing* bisa dilihat pada *Source Code* 5.3 berikut:

```
function hitungTes($tanggal, $alfa, $beta, $gamma){
2
3
                  for ($i=0; $i < count($this->dataLatih); $i++) {
                      for (\$j=0; \$j < 6; \$j++) {
4
5
                           \frac{\pi}{\pi} = 0;
6
7
                  }
8
9
10
                  $batasSTTT = 11;
                  $batasSNTIF = 12;
11
12
                  sumYl = 0;
13
                  sumAir = 0;
14
                  for ($i=0; $i < count($this->dataLatih); $i++) {
                      for (\$j=0; \$j < 6; \$j++) {
15
                           if(\$j == 0){
16
17
                               if($i < $batasSNTIF){</pre>
18
                                   $this->hasil[$i][$j] = $this-
     >dataLatih[$i+$batasSNTIF]['kebutuhanair'] - $this-
19
20
     >dataLatih[$i]['kebutuhanair'];
                                   $sumYl += $this->hasil[$i][$j];
21
22
                                    $sumAir += $this-
23
     >dataLatih[$i]['kebutuhanair'];
24
                               }else{
25
                                   $this->hasil[$i][$j]
26
                               }
27
                           }else{
28
                               $this->hasil[$i][$j] = 0;
29
30
                      }
31
32
                  $rerataAir = $sumAir/12;
                  rerataYl = sumYl / 12;
33
34
                  $counterSNtl = 0;
35
                  for ($i=0; $i < count($this->dataLatih); $i++) {
36
                      for (\$j=3; \$j < 5; \$j++) {
37
                           if(\$j == 3){
38
                               if($i > $batasSTTT) {
39
                                   $this->hasil[$i][$j] = $this-
40
     >hasil[$counterSNtl][4];
41
                                   $counterSNtl++;
42
                               }else{
43
                                   \frac{1}{5}
44
45
                           else if($j == 4){
46
                               if($i < $batasSNTIF){</pre>
47
                                   \frac{\pi}{\pi}
48
     >hasil[$i][0] / $rerataYl;
49
                               }else{
50
                                   \frac{\sin[\sin[\sin[\sin]])}{\sin[\sin[\sin])} = 0;
51
52
                           }
53
```

```
54
                      if($counterSNtl == 12){
55
                          $counterSNtl = 0;
56
                      }
57
                  }
58
59
                  for (\$i=0; \$i < 12; \$i++) {
60
                      for (\$j=1; \$j < 6; \$j++) {
                          if(\$j == 1 \&\& \$i < 60) {
61
62
                              if($i < $batasSTTT){</pre>
63
                                  this->hasil[i][i]=0;
64
                              }else if($i == $batasSTTT){
65
                                  $this->hasil[$i][$j] = $rerataAir;
66
67
                          else if($j == 2 && $i < 60)
68
                              if($i < $batasSTTT) {</pre>
69
                                  70
                              }else if($i == $batasSTTT){
71
                                  $this->hasil[$i][$j] =
72
     $sumY1/(12*12);
73
74
                          else if($j == 3 && $i < 60){
75
                            $this->hasil[$i][3] = 0;
                           else if(\$j == 4 && \$i < 60){
76
77
                              \frac{\pi}{\pi}
78
     >hasil[$i][0] / $rerataAir;
79
                          }else if($j == 5 ){
80
                             \frac{1}{5} $this->hasil[$i][$j] = ($this-
81
     >hasil[59][1]+$this->hasil[59][2]*($i-59))*$this-
82
     >hasil[$i][3];
83
84
8.5
86
                  for (\$i=12; \$i < count(\$this->dataLatih); \$i++) {
87
88
                      for (\$j=1; \$j < 6; \$j++) {
                          if(\$j == 1 \&\& \$i < 60) {
89
                              $this->hasil[$i][$j] = $alfa*(($this-
90
91
     >dataLatih[$i]['kebutuhanair']/$this->hasil[$i-12][4])) + ((1-
92
     $alfa) * ($this->hasil[$i-1][1]+$this->hasil[$i-1][2]));
93
                          else if($j == 2 && $i < 60)
94
                              \frac{\pi}{\pi} = \frac{\pi}{\pi}  ($this-
95
     >hasil[$i][1]-$this->hasil[$i-1][1]) + (1 - $beta)*$this-
96
     >hasil[$i-1][2];
97
                          else if($j == 3 && $i < 60)
98
                              $this->hasil[$i][3] = $this->hasil[$i
99
     - 12][4];
100
                          else if($j == 4 && $i < 60)
101
                              this-hasil[i][i] = (sgamma *
102
     ($this->dataLatih[$i]['kebutuhanair']/$this->hasil[$i][1])) +
103
     ((1 - $gamma) *$this->hasil[$i][3]);
104
                          else if($j == 5){
105
                              this-hasil[i][i] = (this-
106
     >hasil[$i-1][1]+$this->hasil[$i-1][2])*$this->hasil[$i][3];
107
                          }
108
                      }
109
110
                  for (\$i = 60; \$i < 72; \$i++) {
```

```
111
                       for (\$j = 1; \$j < 6; \$j + +) {
112
                           if(\$j==3){
113
                                $this->hasil[$i][3] = $this->hasil[$i
114
     - 12][4];
                            }else if($j==5){
115
                               this->hasil[$i][5] = ($this-
116
     >hasil[59][1] + $this->hasil[59][2] * ($i+1 - 60)) * $this-
117
118
     >hasil[$i][3];
119
120
```

Source Code 5.3 Implementasi Algoritme Triple Exponential Smoothing

Penjelasan Source Code:

- 1 : Instansiasi fungsi hitungTes
- 3-7 : Membuat perulangan untuk mengambil data latih dan pengecekan tanggal
- 14-124: Membuat perulangan untung menghitung Triple Exponential Smoothing
- 15-31 : Membuat perulangan untuk proses inisialisasi variable Yl
- 32-58 : Membuat perulangan untuk proses inisialisasi variable SNt-1 dan SNt
- 59-86 : Membuat perulangan untuk proses inisialisasi variable St dan Tt
- 87-109: Membuat perulangan untuk menghitung *Triple Exponential Smoothing* (variable St, Tt, SNt-1 SNt, dan F) sesuai Persamaan (2.8 sampai 2.10)
- 110-120: Membuat perulangan untuk menghitung hasil peramalan *Triple Exponential Smoothing* sesuai Persamaan (2.11)

5.2.4 Implementasi Perhitungan MAPE

Implementasi perhitungan MAPE menjelaskan proses perhitungan pencarian nilai *error* hasil prediksi (*forecast error*). menggunakan MAPE (*Mean Absolute Percent Error*). MAPE dihitung dengan menggunakan kesalahan absolut pada tiap periode dibagi dengan nilai observasi yang nyata untuk periode itu. Implementasi *MAPE SES* bisa dilihat pada *source code* 5.4, *MAPE DES* bisa dilihat pada *source code* 5.5, dan *MAPE TES* bisa dilihat pada *Source Code* 5.6 :

```
function hitungMAPE($alfa){
2
3
               kev = 0;
4
                    \text{$batas} = 59;
5
               for (\$i=0; \$i < 72; \$i++)  {
6
7
                        if($i === 0){
8
                                  $this->dataUjiAlfa[$i][''.$alfa.''] =
9
     0;
10
```

```
11
                      else if($i === 1){
12
                              $this->dataUjiAlfa[$i][''.$alfa.''] =
13
     round($alfa * $this->dataLatih[$i - 1]['kebutuhanair'] + (1 -
     $alfa) * $this->dataLatih[$i - 1]['kebutuhanair'], 3);
14
15
                      }
16
                      else{
17
                              $this->dataUjiAlfa[$i][''.$alfa.''] =
18
19
     round($alfa * $this->dataLatih[$i - 1]['kebutuhanair'] + (1 -
20
     $alfa) * $this->dataUjiAlfa[$i - 1][''.$alfa.''], 3);
21
22
23
24
25
26
                  $this->totalMAPE = 0;
27
                  for ($i = 0; $i < 12; $i++) {
28
                        $this->dataMAPE[$i]['MAPE'] =
29
     round(abs(($this->dataLatih[$i+60]['kebutuhanair']) -
                     ($this->dataUjiAlfa[$i+60][''.$alfa.''])) /
30
31
     $this->dataLatih[$i+60]['kebutuhanair'],3);
                        $this->totalMAPE += round($this-
32
     >dataMAPE[$i]['MAPE'],3);
33
34
35
36
                  $this->totalMAPE = round(100/12*($this-
37
     >totalMAPE),3);
```

Source Code 5.4 MAPE Single Exponential Smoothing

Penjelasan Source Code:

- 1 : Inisialisasi hitungMAPE
- 6-23 : Membuat perulangan perhitungan untung mengambil data dan penghitungan Single Exponential Smoothing
- 7-10 : Kondisi perhitungan baris pertama (inisialisasi), maka bernilai 0
- 11-15 : Kondisi perhitungan baris kedua (alfa * data aktual sebelumnya +(1-alfa)*data aktual sebelumnya)
- 16-23 : Kondisi perhitungan *Single Exponential Smoothing* (alfa * data aktual sebelumnya +(1-alfa)*data hasil prediksi sebelumnya) sesuai persamaan (2.2)
- 27-35 : Membuat perulangan untuk mengitung MAPE dari data uji 1 sampai 12 sesuai persamaan (2.1)
- 36 : Perhitungan total MAPE

```
function hitungMAPE($alfa){

    $key =0;
    $batas = 59;

for ($i=0; $i < 72; $i++){</pre>
```

```
for (\$j=0; \$j < 5; \$j++){
8
                              if ($i < 60) {
9
                                    if ($i==0) {
10
                                          if(\$j < 3){
11
                                                 $this-
12
     >dataUjiAlfa[$i][$j] = $this->dataLatih[$i]['kebutuhanair'];
13
14
                                           } else if (\$j==3) {
15
                                                 $this-
16
     >dataUjiAlfa[$i][$j] = (($this-
17
     >dataLatih[$i+3]['kebutuhanair']-$this-
     >dataLatih[$i+2]['kebutuhanair']) + ($this-
18
19
     >dataLatih[$i+1]['kebutuhanair']-$this-
20
     >dataLatih[$i+0]['kebutuhanair']))/2;
21
                                           } else if (\$j==4) {
22
                                                 $this-
23
     >dataUiiAlfa[$i][$i] = 0;
24
25
                                     }else {
26
                                          if(\$j == 0){
27
                                                 $this-
     >dataUjiAlfa[$i][$j] = ($alfa*$this-
28
29
     >dataLatih[$i]['kebutuhanair'])+((1-$alfa)*$this-
30
     >dataUjiAlfa[$i-1][$j]);
31
                                           else if ($j == 1){
32
                                                $this-
     >dataUjiAlfa[$i][$j] = ($alfa*$this->dataUjiAlfa[$i][$j-
33
34
     1])+((1-$alfa)*$this->dataUjiAlfa[$i-1][$j]);
35
                                           else if($j == 2){
                                              $this-
36
     >dataUjiAlfa[$i][$j] = 2 * $this->dataUjiAlfa[$i][$j-2] -
37
38
     $this->dataUjiAlfa[$i][$j-1];
39
                                           else if($j == 3){
40
                                                 $this-
     >dataUjiAlfa[$i][$j] = ($alfa / (1-$alfa)) * ($this-
41
42
     >dataUjiAlfa[$i][$j-3] - $this->dataUjiAlfa[$i][$j-2]);
43
                                           }else{
                                                 $this-
44
45
     >dataUjiAlfa[$i][$j] = $this->dataUjiAlfa[$i-1][$j-2] + $this-
46
     >dataUjiAlfa[$i-1][$j-1];
47
48
49
                              $this->dataUjiAlfa[$i][$j] =
50
     round($this->dataUjiAlfa[$i][$j],3);
51
                              }else{
52
                                    if(\$j == 4){
53
                                           $this->dataUjiAlfa[$i][$j]
54
     = $this->dataUjiAlfa[$batas][$j-2] + $this-
55
     >dataUjiAlfa[$batas][$j-1] * ($i - $batas);
56
57
58
59
                      }
60
61
                  t=0;
62
                  for ($i = 0; $i < 12; $i++) {
63
```

```
$this->dataMAPE[$i]['MAPE'] =
64
65
     round(abs(($this->dataLatih[$i+60]['kebutuhanair']) - ($this-
66
     >dataUjiAlfa[$i+60][4])) / $this-
     >dataLatih[$i+60]['kebutuhanair'],3);
67
                        $this->totalMAPE += round($this-
68
69
     >dataMAPE[$i]['MAPE'],3);
70
                 }
71
72
73
             $this->totalMAPE = round(100/12*($this->totalMAPE),3);
```

Source Code 5.5 MAPE Double Exponential Smoothing

Penjelasan Source Code:

1 : Inisialisasi hitungMAPE

6-60 : Membuat perulangan untung menghitung Double Exponential Smoothing

8 : Kondisi perhitungan data latih

10-14 : Kondisi inisialisasi *variable* S't, S''t, aT dengan nilai sama dengan data

aktual

14-20 : Kondisi inisialisasi variable bT

21-24 : Kondisi inisialisasi nilai prediksi (F) dengan nilai 0

26-50 : Kondisi perhitungan Double Exponential Smoothing (variable S't, S"t, aT,

bT dan F) sesuai Persamaan (2.3) sampai (2.7)

52-56 : Kondisi perhitungan nilai prediksi (F)

63-69 : Membuat perulangan untuk mengitung MAPE dari data uji 1 sampai 12

73 : Perhitungan total MAPE

```
function hitungMAPE($alfa,$beta,$gamma){
1
2
                 for ($i=0; $i < count($this->dataLatih); $i++) {
3
                     for (\$j=0; \$j < 6; \$j++) {
4
                          \frac{\pi}{\pi} = 0;
5
6
7
8
                 $batasSTTT = 11;
9
                 $batasSNTIF = 12;
10
                 \$sumYl = 0;
11
                 sumAir = 0;
12
13
                for ($i=0; $i < count($this->dataLatih); $i++) {
14
                      for (\$j=0; \$j < 6; \$j++) {
15
                          if($j == 0){
16
                              if($i < $batasSNTIF){</pre>
17
                                  this->hasil[$i][$j] = $this-
18
     >dataLatih[$i+$batasSNTIF]['kebutuhanair'] - $this-
19
     >dataLatih[$i]['kebutuhanair'];
                                  $sumYl += $this->hasil[$i][$j];
20
                                  $sumAir += $this-
21
     >dataLatih[$i]['kebutuhanair'];
22
23
                              }else{
24
                                  \frac{\pi}{\pi} = 0;
25
26
                          }else{
27
                             $this->hasil[$i][$j] = 0;
28
                         1
29
30
31
                 $rerataAir = $sumAir/12;
32
                 rerataY1 = sumY1 / 12;
33
                 $counterSNtl = 0;
                 for ($i=0; $i < count($this->dataLatih); $i++) {
34
35
                      for (\$j=3; \$j < 5; \$j++) {
                          if(\$j == 3){
36
                             if($i > $batasSTTT) {
37
38
                                  \frac{\pi}{\pi}
39
     >hasil[$counterSNtl][4];
40
                                  $counterSNtl++;
41
                              }else{
42
                                  \frac{\pi}{\pi}
43
44
                          else if($j == 4){
45
                              if($i < $batasSNTIF){</pre>
                                  \frac{\pi}{\pi}
46
47
     >hasil[$i][0] / $rerataYl;
48
                              }else{
49
                                  \frac{\pi}{\pi} = 0;
50
                              }
51
                          }
52
53
                      if($counterSNtl == 12){
54
                          counterSNtl = 0;
55
56
                 }
57
```

```
58
                   for (\$i=0; \$i < 12; \$i++) {
59
                       for (\$j=1; \$j < 6; \$j++) {
60
                            if(\$j == 1 \&\& \$i < 60){
61
                                if($i < $batasSTTT){</pre>
62
                                     \frac{\pi}{\pi} = 0;
63
                                }else if($i == $batasSTTT){
64
                                     $this->hasil[$i][$j] = $rerataAir;
65
66
                            else if($j == 2 \&\& $i < 60){
67
                                if($i < $batasSTTT) {</pre>
68
                                     \frac{\pi}{\pi}
69
                                }else if($i == $batasSTTT){
70
                                     $this->hasil[$i][$j] =
71
      \sum_{i=1}^{s} \frac{12*12}{i}
72
73
                            else if($j == 3 && $i < 60)
74
                                \frac{\sinh(3)}{\sin(3)} = 0;
75
                            else if($i == 4 \&\& $i < 60)
76
                                this->hasil[i][i] = this-
77
     >hasil[$i][0] / $rerataAir;
78
                            else if($j == 5){
                            \frac{1}{5}
79
     >hasil[59][1]+$this->hasil[59][2]*($i-59))*$this-
80
81
     >hasi1[$i][3];
82
83
84
85
86
                 for ($i=12; $i < count($this->dataLatih); $i++) {
87
                       for (\$j=1; \$j < 6; \$j++) {
88
                           if(\$j == 1 \&\& \$i < 60) {
89
                                \frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac{\pi}{\pi}
90
     >dataLatih[$i]['kebutuhanair']/$this->hasil[$i-12][4])) + ((1-
     $alfa) * ($this->hasil[$i-1][1]+$this->hasil[$i-1][2]));
91
                            else if($j == 2 && $i < 60)
92
                                $this->hasil[$i][$j] = $beta * ($this-
93
     >hasil[$i][1]/$this->hasil[$i-1][1]) + (1 - $beta)*$this-
94
95
     >hasil[$i-1][2];
96
                            else if($j == 3 && $i < 60)
97
                                \frac{1}{3} = \frac{1}{3} = \frac{1}{3}
98
      - 12][4];
                            else if($j == 4 && $i < 60){
99
100
                                \frac{\pi}{\pi}
101
      ($this->dataLatih[$i]['kebutuhanair']/$this->hasil[$i][1])) +
102
      ((1 - $gamma) *$this->hasil[$i][3]);
103
                            else if($j == 5){
104
                                this->hasil[i][i] = (this-
105
     >hasil[$i-1][1]+$this->hasil[$i-1][2])*$this->hasil[$i][3];
106
107
108
109
                   for ($i = 60; $i < 72; $i++) {
110
                       for (\$j = 1; \$j < 6; \$j + +) {
111
                            if(\$j==3){
                                 \frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac{\pi}{\pi} = \frac{\pi}{\pi}
112
113
     - 12][4];
114
                             else if($j==5)
```

```
115
                                  \frac{\text{$this}-\text{$hasil}[\$i][5]}{\text{$this}-\text{$hasil}[\$i][5]} = (\$this-
116
     >hasil[59][1] + $this->hasil[59][2] * ($i+1 - 60)) * $this-
117
     >hasil[$i][3];
118
119
                        }
120
121
122
                    this -> totalMAPE = 0;
               for ($i= 0; $i < 12; $i++) {
123
                    $this->dataMAPE[$i]['MAPE'] = round(abs(($this-
124
125
     >dataLatih[$i+60]['kebutuhanair']) - ($this->hasil[$i+60][5]))
126
      / $this->dataLatih[$i+60]['kebutuhanair'],3);
127
                    $this->totalMAPE += round($this-
128
     >dataMAPE[$i]['MAPE'],3);
129
130
               //total MAPE
               $this->totalMAPE = round(100/12*($this->totalMAPE),3);
131
```

Source Code 5.6 MAPE Triple Exponential Smoothing

Penjelasan Source Code :

- 1 : Instansiasi fungsi hitungMAPE
- 2-7 : Membuat perulangan perhitungan untung mengambil data dan penghitungan *Triple Exponential Smoothing*
- 12-131: Membuat perulangan untung menghitung Triple Exponential Smoothing
- 12-30 : Membuat perulangan untuk proses inisialisasi variable Yl
- 31-57 : Membuat perulangan untuk proses inisialisasi variable SNt-1 dan SNt
- 58-85 : Membuat perulangan untuk proses inisialisasi variable St dan Tt
- 86-108: Membuat perulangan untuk menghitung *Triple Exponential Smoothing* (variable St, Tt, SNt-1 SNt, dan F) sesuai persamaan (2.8 sampai 2.10)
- 109-121: Membuat perulangan untuk menghitung hasil peramalan *Triple Exponential Smoothing* sesuai Persamaan (2.11)
- 122-129: Membuat perulangan untuk mengitung MAPE dari data uji 1 sampai 12
- 131 : Perhitungan total MAPE

5.3 Implementasi Antarmuka

Antarmuka sistem digunakan untuk mempermudah interaksi antara pengguna dengan sistem. Pada bagian ini akan disajikan beberapa halaman yang ada pada sistem, meliputi implementasi antarmuka login, antarmuka awal, antarmuka data latih, antarmuka prediksi, dan antarmuka pengujian.

5.3.1 Implementasi Antarmuka Login

Antarmuka *login* merupakan halaman awal untuk pengguna berinteraksi dengan sistem dan merupakan suatu syarat agar pengguna bisa masuk ke dalam sistem, agar bisa masuk ke dalam sistem pengguna harus menginputkan *username* dan *password* dengan benar. Implementasi antarmuka *login* terdapat pada Gambar 5.2

Gambar 5.2 Implementasi Antarmuka Login

5.3.2 Implementasi Antarmuka Awal

Antarmuka awal merupakan halaman yang ditemui pengguna setelah melakukan *login*, pada antarmuka hlaman awal ini terdapat menu-menu apa saja yang ada dalam sistem ini, seperti menu prediksi, data, dan pengujian. Implementasi antarmuka awal terdapat pada Gambar 5.3

Gambar 5.3 Implementasi Antarmuka Awal

5.3.3 Implementasi Antarmuka Prediksi

Antarmuka prediksi merupakan halaman di mana pengguna bisa melihat hasil prediksi kebutuhan air menggunakan 3 pilihan metode, yaitu Single

Exponential Smoothing, Exponential Smoothing, dan Triple Exponential Smoothing. Dimana pengguna harus menginputkan tanggal dan nilai parameter untuk melihat hasil prediksi. Setelah itu akan muncul nilai peramalan dari bulan Januari 2008 sampai inputan tanggal oleh pengguna. Implementasi antarmuka prediksi terdapat pada Gambar 5.4

Gambar 5.4 Implementasi Antarmuka Prediksi

5.3.4 Implementasi Antarmuka Data

Antarmuka data merupakan halaman dimana pengguna bisa melihat data latih dan data uji yang digunakan dalam perhitunggan pada sistem ini. Pada menu ini pengguna juga bisa menambahkan data latih baru serta melihat data uji yang ada pada sistem ini. Implementasi antarmuka data terdapat pada Gambar 5.5.

Gambar 5.5 Implementasi Antarmuka Data

5.3.5 Implementasi Antarmuka Pengujian

Antarmuka pengujian merupakan halaman untuk mengetahui berapa nilai MAPE dari masing-masing metode berdasarkan nilai parameter yang diinputkan. Pada antarmuka pengujian juga disediakan 3 pilihan metode *Exponential*

Smoothing. Setelah menginputkan nilai parameter akan ditampilkan data aktual, data hasil prediksi dan nilai MAPE nya. Implementasi antarmuka pengujian terdapat pada Gambar 5.6.

Gambar 5.6 Implementasi Antarmuka Pengujian

BAB 6 PENGUJIAN

Pada bagian ini akan dibahas tekait proses pengujian terhadap sistem yang dibuat dengan menggunakan metode *Exponential Smoothing*. Proses pengujian dilakukan berdasarkan perancangan yang telah dibuat sebelumnya. Proses pengujian tersebut meliputi pengaruh nilai parameter dan pengujian MAPE. Pengujian dilakukan untuk mengetahui nilai *error* kesalahan prediksi dari implementasi metode yang telah dilakukan.

6.1 Pengujian Pengaruh Nilai Parameter

Pengujian pengaruh nilai parameter dilakukan untuk mengetahui seberapa berpengaruh atau tidaknya nilai parameter terhadap nilai *error* kesalahan prediksi ketika parameter tersebut diubah, nilai parameter meliputi nilai a, θ , dan γ . Pengujian ini menggunakan rentang nilai parameter 0,1, 0,2, 0,3 sampai 0,9 dan dengan menggunakan 12 data uji.

6.1.1 Pengujian Pengaruh Nilai Parameter Single Exponential Smoothing

Pada pengujian metode Single Exponential Smoothing nilai parameter yang digunakan adalah alfa (a). Pengujian nilai a menggunakan nilai 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, dan 0,9. Pengujian pengaruh nilai a dilakukan untuk mengetahui berpengaruh atau tidaknya nilai a terhadap nilai error kesalahan prediksi ketika parameter tersebut diubah. Pengujian dilakukan dengan cara membandingkan nilai prediksi dengan nilai aktual. Hasil pengujian dapat dilihat pada Tabel 6.1 dan Gambar 6.1 berikut ini.

repos

Tabel 6.1 Pengaruh Nilai Parameter Single Exponential Smoothing

Dulan		Pemakaian Air											
Bulan	aktual	a= 0.1	a= 0.2	a= 0.3	a= 0.4	a= 0.5	a= 0.6	a= 0.7	a= 0.8	a= 0.9			
Jan-13	2127658	2036089.536	2117931.745	2169593.909	2212471.283	2250536.682	2284324.074	2313676.19	2338450.357	2358633.458			
Feb-13	1987364	2045246.383	2119876.996	2157013.136	2178545.97	2189097.341	2190324.43	2183463.457	2169816.471	2150755.546			
Mar-13	2068653	2039458.144	2093374.397	2106118.395	2102073.182	2088230.67	2068548.172	2046193.837	2023854.494	2003703.155			
Apr-13	2118364	2042377.63	2088430.117	2094878.777	2088705.109	2078441.835	2068611.069	2061915.251	2059693.299	2062158.015			
Mei-13	2092653	2049976.267	2094416.894	2101924.344	2100568.665	2098402.918	2098462.828	2101429.375	2106629.86	2112743.402			
Jun-13	1936538	2054243.94	2094064.115	2099142.941	2097402.399	2095527.959	2094976.931	2095285.913	2095448.372	2094662.04			
Jul-13	2287385	2042473.346	2062558.892	2050361.458	2033056.64	2016032.979	1999913.572	1984162.374	1968320.074	1952350.404			
Agu-13	2178435	2066964.512	2107524.114	2121468.521	2134787.984	2151708.99	2172396.429	2196418.212	2223572.015	2253881.54			
Sep-13	2278648	2078111.56	2121706.291	2138558.465	2152246.79	2165071.995	2176019.572	2183829.964	2187462.403	2185979.654			
Okt-13	2317424	2098165.204	2153094.633	2180585.325	2202807.274	2221859.997	2237596.629	2250202.589	2260410.881	2269381.165			
Nov-13	2144479	2120091.084	2185960.506	2221636.928	2248653.964	2269641.999	2285493.051	2297257.577	2306021.376	2312619.717			
Des-13	2198034	2122529.876	2177664.205	2198489.549	2206983.979	2207060.499	2200884.621	2190312.573	2176787.475	2161293.072			

Gambar 6.1 Grafik Pengaruh Nilai Parameter Single Exponential Smoothing

Pada tabel 6.1 menunjukkan hasil perhitugan Single Exponential Smoothing dengan nilai a = 0.1 sampai a = 0.9. Pada bulan Januari 2013 selisih terkecil ada pada nilai α = 0,2 vaitu sebesar 9726,254 m³, pada bulan Februari 2013 selisih terkecil ada pada nilai α = 0,1 yaitu sebesar 57882,382 m³, pada bulan Maret 2013 selisih terkecil ada pada nilai α = 0,6 yaitu sebesar 104,828 m³, pada bulan April 2013 selisih terkecil ada pada nilai $\alpha = 0.3$ yaitu sebesar 23485,22, m³, pada bulan Mei 2013 selisih terkecil ada pada nilai α = 0,2 vaitu sebesar 1763,893 m³, pada bulan Juni 2013 selisih terkecil ada pada nilai a = 0,1 yaitu sebesar 117705,940, m³, pada bulan Juli 2013 selisih terkecil ada pada nilai a = 0.2 yaitu sebesar 224826,107 m³, pada bulan Agustus 2013 selisih terkecil ada pada nilai a = 0,6 yaitu sebesar 6038,571 m³, pada bulan September 2013 selisih terkecil ada pada nilai α = 0,5 yaitu sebesar 113576,0051 m³, pada bulan Oktober 2013 selisih terkecil ada pada nilai a = 0.9 vaitu sebesar 48042,834 m³, pada bulan November 2013 selisih terkecil ada pada nilai a = 0.1 yaitu sebesar 24387,916 m³, pada bulan Desember 2013 selisih terkecil ada pada nilai a = 0.3 yaitu sebesar 455,549 m³. Dan hasil perhitungan Single Exponential Smoothing disajikan dalam bentuk grafik pada Gambar 6.1. Terlihat dalam grafik bahwasannya nilai hasil perhitugan Single Exponential Smoothing kurang bagus dalam mempredisksi data yang polanya naik turun. Hal itu diakibatkan karena dalam perhitugan Single Exponential Smoothing menggunakan nilai aktual dan nilai hasil prediksi periode sebelumnya, dan juga terlihat bahwasanya biasanya trend grafiknya cenderung telat seperti pada bulan ke 6 dan ke 7.

6.1.2 Pengujian Pengaruh Nilai Parameter Double Exponential Smoothing

Pada pengujian metode *Double Exponential Smoothing* nilai parameter yang digunakan adalah alfa (a). Pengujian nilai a menggunakan nilai 0,1, 0,2, 0,3, 0,4, 0,5, 0,6, 0,7, 0,8, dan 0,9. Pengujian pengaruh nilai a dilakukan untuk mengetahui berpengaruh atau tidaknya nilai a terhadap nilai *error* kesalahan prediksi ketika parameter tersebut diubah. Pengujian dilakukan dengan cara membandingkan nilai prediksi dengan nilai aktual. Hasil pengujian dapat dilihat pada Tabel 6.2 dan Gambar 6.2 berikut ini.

repos

Tabel 6.2 Pengaruh Nilai Parameter Double Exponential Smoothing

Bulan		Pemakaian Air											
Bulan	aktual	a= 0.1	a= 0.2	α= 0.3	a= 0.4	a= 0.5	a= 0.6	a= 0.7	a= 0.8	a= 0.9			
Jan-13	2127658	2158592.427	2237601.658	2307687.554	2373464.766	2430214.817	2473946.476	2503205.402	2518224.548	2519784.894			
Feb-13	1987364	2170842.716	2261535.641	2349115.647	2437862.159	2520053.884	2587719.917	2635875.851	2662043.9	2664821.186			
Mar-13	2068653	2183093.005	2285469.623	2390543.741	2502259.552	2609892.951	2701493.358	2768546.299	2805863.253	2809857.478			
Apr-13	2118364	2195343.294	2309403.606	2431971.834	2566656.945	2699732.019	2815266.8	2901216.748	2949682.605	2954893.77			
Mei-13	2092653	2207593.583	2333337.589	2473399.928	2631054.338	2789571.086	2929040.241	3033887.196	3093501.957	3099930.062			
Jun-13	1936538	2219843.873	2357271.571	2514828.021	2695451.732	2879410.153	3042813.682	3166557.645	3237321.31	3244966.354			
Jul-13	2287385	2232094.162	2381205.554	2556256.114	2759849.125	2969249.221	3156587.123	3299228.093	3381140.662	3390002.646			
Agu-13	2178435	2244344.451	2405139.536	2597684.208	2824246.518	3059088.288	3270360.564	3431898.542	3524960.015	3535038.938			
Sep-13	2278648	2256594.74	2429073.519	2639112.301	2888643.911	3148927.356	3384134.005	3564568.99	3668779.367	3680075.23			
Okt-13	2317424	2268845.029	2453007.502	2680540.395	2953041.304	3238766.423	3497907.446	3697239.439	3812598.719	3825111.521			
Nov-13	2144479	2281095.318	2476941.484	2721968.488	3017438.697	3328605.49	3611680.887	3829909.888	3956418.072	3970147.813			
Des-13	2198034	2293345.607	2500875.467	2763396.582	3081836.091	3418444.558	3725454.328	3962580.336	4100237.424	4115184.105			

Gambar 6.2 Grafik Pengaruh Nilai Parameter Double Exponential Smoothing

Pada tabel 6.2 menunjukkan hasil perhitugan Double Exponential Smoothing dengan nilai α = 0,1 sampai α =0,9. Pada bulan Januari 2013 selisih terkecil ada pada nilai a = 0.1 yaitu sebesar 30934,427 m³, pada bulan Februari 2013 selisih terkecil ada pada nilai α = 0,1 yaitu sebesar 183478,716 m³, pada bulan Maret 2013 selisih terkecil ada pada nilai α = 0,1 yaitu sebesar 114440,0053 m³, pada bulan April 2013 selisih terkecil ada pada nilai α = 0,1 yaitu sebesar 76979,294 m³, pada bulan Mei 2013 selisih terkecil ada pada nilai a = 0.1 vaitu sebesar 114940,583 m³, pada bulan Juni 2013 selisih terkecil ada pada nilai $\alpha = 0,1$ yaitu sebesar 283305,872 m³, pada bulan Juli 2103 selisih terkecil ada pada nilai $\alpha = 0.1$ yaitu sebesar 55290,838 m³, pada bulan Agustus 2013 selisih terkecil ada pada nilai a = 0,1 yaitu sebesar 65909,450 m³, pada bulan September 2013 selisih terkecil ada pada nilai α = 0,1 yaitu sebesar 22053,260 m³, pada bulan Oktober 2013 selisih terkecil ada pada nilai a = 0.1 yaitu sebesar 48578,971 m³, pada bulan November 2013 selisih terkecil ada pada nilai a = 0.1 yaitu sebesar 136616,318 m³, pada bulan Desember 2013 selisih terkecil ada pada nilai a = 0.3 yaitu sebesar 95311,607 m³. Dan hasil perhitungan Double Exponential Smoothing disajikan dalam bentuk grafik pada Gambar 6.2. Terlihat dalam grafik bahwasannya nilai hasil perhitugan Double Exponential Smoothing memiliki kecenderungan bahwa semakin tinggi nilai a maka nilai hasil prediksi cenderung semakin naik menjauhi nilai aktualnya, dalam Double Exponential Smoothing nilai inisialisasi memegang peran yang sangat vital terhadap nilai hasil prediksi.

6.1.3 Pengujian Pengaruh Nilai Parameter Triple Exponential Smoothing

Pada pengujian metode *Triple Exponential Smoothing* nilai parameter yang digunakan adalah alfa (a), beta (b), dan gamma (y). Pengujian dilakukan denggan menggunakan dua parameter yang dibuat sama (misal a dan b di buat sama, yaitu 0.1 lalu b di buat berbeda dengan nilai 0,1, 0,3, 0,6, dan 0,9. Pengujian pengaruh nilai a, b, dan b dilakukan untuk mengetahui berpengaruh atau tidaknya nilai b b dan b terhadap nilai b error kesalahan prediksi ketika parameter tersebut diubah. Pengujian dilakukan dengan cara membandingkan nilai prediksi dengan nilai aktual. Pada pengujian ini menggunakan nilai a = 0,1, a = 0,1, dan a0,1 sampai 0,9. Hasil pengujian dapat dilihat pada Tabel 6.3 dan Gambar 6.3 berikut ini

epos

Tabel 6.3 Pengaruh Nilai Parameter Triple Exponential Smoothing

Bulan	Pemakaian Air (m3)											
DUIdII	aktual	γ = 0.1	γ = 0.2	γ = 0.3	γ = 0.4	γ = 0.5	γ = 0.6	γ = 0.7	γ = 0.8	γ = 0.9		
Jan-13	1986071	-22261416.104	3100386.474	2868677.452	2736575.596	2591432.645	2446076.866	2321808.009	2233305.871	2185313.161		
Feb-13	2014645	4034218.375	1693558.911	1873973.096	2041492.165	2151989.939	2211029.491	2231844.614	2228904.172	2215978.586		
Mar-13	1908264	5607986.805	2036962.636	1979792.149	2038796.994	2097543.728	2134600.046	2147364.648	2140333.863	2121480.643		
Apr-13	2192472	504066.342	1799938.820	1885112.848	2041585.339	2180508.925	2283984.904	2350251.646	2384801.484	2397237.322		
Mei-13	1999456	3850141.809	2759632.390	2321478.703	2207143.710	2187312.028	2199124.602	2214852.893	2221659.446	2215556.148		
Jun-13	2013574	98516395.152	2029429.281	1923630.842	1972256.790	2048044.868	2118587.812	2171766.760	2204032.862	2216733.237		
Jul-13	2102384	34327272.747	3411075.364	2672896.370	2403408.282	2299774.241	2273566.901	2281528.474	2298894.170	2311581.006		
Agu-13	1934682	-3096742.154	927458.134	1428812.517	1752356.414	1956795.643	2075678.415	2135902.007	2158715.520	2159259.791		
Sep-13	2024783	13931054.369	2985505.185	2503779.857	2330225.110	2259181.258	2234836.001	2232439.388	2238659.602	2245716.063		
Okt-13	2014573	20120548.080	3720574.185	2928581.451	2585926.735	2410683.955	2321288.745	2278850.663	2260898.806	2253550.671		
Nov-13	2240356	2135716.867	1904106.839	2012919.367	2150881.141	2263391.098	2344150.645	2398378.592	2434381.913	2460107.907		
Des-13	2374281	7084226.032	2772948.813	2502482.917	2441837.160	2443912.721	2468698.494	2500762.996	2533905.616	2566033.478		

Gambar 6.3 Grafik Pengaruh Nilai Parameter Triple Exponential Smoothing

Pada tabel 6.3 menunjukkan hasil perhitugan Triple Exponential Smoothing dengan nilai a = 0,1, $\theta = 0,1$, dan γ 0,1 sampai 0,9. Pada bulan Januari 2013 selisih terkecil ada pada nilai y = 0.9 yaitu sebesar 199242.161 m³, pada bulan Februari 2013 selisih terkecil ada pada nilai y = 0.4 yaitu sebesar 26847.165 m³, pada bulan Maret 2013 selisih terkecil ada pada nilai y = 0.3 yaitu sebesar 71528.149 m^3 , pada bulan April 2013 selisih terkecil ada pada nilai y = 0.5 yaitu sebesar 11963,075 m^3 , pada bulan Mei 2013 selisih terkecil ada pada nilai y = 0,5 yaitu sebesar 187856,028m³, pada bulan Juni 2013 selisih terkecil ada pada nilai y = 0.2 yaitu sebesar 15855,281 m^3 , pada bulan Juli 2013 selisih terkecil ada pada nilai y = 0.6yaitu sebesar 171182,901m³, pada bulan Agustus 2013 selisih terkecil ada pada nilai y = 0,5 yaitu 2211,643 m³, pada bulan September 2013 selisih terkecil ada pada nilai y = 0.7 yaitu sebesar 207656,388 m³, pada bulan Oktober 2013 selisih terkecil ada pada nilai y = 0.9 yaitu sebesar 238977,67m³, pada bulan November 2013 selisih terkecil ada pada nilai y = 0.5 yaitu sebesar 23035, 098m³, pada bulan Desember 2013 selisih terkecil ada pada nilai y = 0.4 yaitu sebesar 67556,160m³. Dan hasil perhitungan Triple Exponential Smoothing disajikan dalam bentuk grafik pada Gambar 6.3. Terlihat pada saat parameter y =0.1 menghasilkan nilai prediksi yang sangat jauh dari nilai aktual, ini dikarenakan tidak ada parameter yang dinilai dominan.

6.2 Pengujian MAPE

Pengujian pengaruh nilai parameter dilakukan untuk mengetahui rata-rata dari keseluruhan persentase kesalahan (selisih) antara data aktual dengan data hasil peramalan dan disajikan kedalam bentuk persentase.

6.2.1 Pengujian MAPE Single Exponential Smoothing

Pengujian MAPE dilakukan dengan cara membandingkan selisih nilai prediksi dengan nilai aktual. MAPE dihitung sebagai rata-rata diferensiasi absolut antara nilai yang diramal dan aktual, dinyatakan sebagai presentase nilai aktual. Hasil pengujian dapat dilihat pada Tabel 6.4.

Tabel 6.4 MAPE Single Exponential Smoothing

a= 0.1	g= 0.2	a= 0.3	a= 0.4	a= 0.5	g= 0.6	a= 0.7	a= 0.8	a= 0.9
4.908								

Pada pengujian MAPE Single Exponential Smoothing, MAPE terkecil didapatkan saat a = 0,2 dengan nilai MAPE sebesar 3,992 dan nilai MAPE terbesar didapatkan saat a = 0,9 dengan nilai MAPE sebesar 5,658. Dengan demikian parameter terbaik untuk peramalan Single Exponential Smoothing adalah pada saat α = 0,2.

6.2.2 Pengujian MAPE Double Exponential Smoothing

Pengujian MAPE dilakukan dengan cara membandingkan selisih nilai prediksi dengan nilai aktual. MAPE dihitung sebagai rata-rata diferensiasi absolut antara nilai yang diramal dan aktual, dinyatakan sebagai presentase nilai aktual. Hasil pengujian dapat dilihat pada Tabel 6.5.

Tabel 6.5 MAPE Double Exponential Smoothing

	a= 0.1	a= 0.2	a= 0.3	a= 0.4	a= 0.5	a= 0.6	a= 0.7	a= 0.8	a= 0.9
MAPE	4.925	10.667	18.358	27.233	36.292	44.375	50.508	54.017	54.408

Pada pengujian MAPE Double Exponential Smoothing, MAPE terkecil didapatkan saat α = 0,1 dengan nilai MAPE sebesar 4,925 dan nilai MAPE terbesar didapatkan saat α = 0,9 dengan nilai MAPE sebesar 54,408. Dengan demikian parameter terbaik untuk peramalan Double Exponential Smoothing adalah pada saat α = 0,1.

6.2.3 Pengujian MAPE Triple Exponential Smoothing

Pengujian MAPE dilakukan dengan cara membandingkan selisih nilai prediksi dengan nilai aktual. MAPE dihitung sebagai rata-rata diferensiasi absolut antara nilai yang diramal dan aktual, dinyatakan sebagai presentase nilai aktual. Hasil pengujian dapat dilihat pada Tabel 6.6.

Tabel 6.6 MAPE Triple Exponential Smoothing

		β = 0.1	., γ=0.1	R	α	=0.1, γ=0.	.1	$\alpha = 0.1, \beta = 0.1$		
	α=0.1	α=0.3	α=0.6	α=0.9	β = 0.3	$\beta = 0.6$	β = 0.9	γ = 0.3	γ = 0.6	γ = 0.9
MAPE	800.47	89.325	47.417	55.992	245.95	158.02	69.17	14.583	6.733	7.333

Pada pengujian MAPE *Triple Exponential Smoothing* dilakukan dengan melakukan perubahan terhadap parameter a, b, dan b untuk mengetahui pengaruh jika nilai parameter itu di ubah, MAPE terkecil didapatkan saat a = 0,1, b = 0,1, dan b =

BAB 7 PENUTUP

Pada bagian ini akan dibahas tekait kesimpulan yang didapatkan terhadap penelitian yang telah dilakukan dan juga usulan saran jika ada penelitian yang serupa atau pengembangan dari penelitian ini.

7.1 Kesimpulan

Berdasarkan serangkaian tahapan yang telah dilakukan, yang dimulai dari perancangan, implementasi dan pengujian, maka diperoleh beberapa kesimpulan, diantaranya:

- 1. Penerapan metode Exponential Smoothing untuk memprediksi jumlah kebutuhan pemakaian air PDAM Kota Malang menggunakan 3 jenis metode Exponential Smoothing, yaitu: Single Exponential Smoothing (SES), Double Exponential Smoothing (DES), Triple Exponential Smoothing (TES). Masing-masing metode sangat dipengaruhi oleh parameter pemulusan (nilai α, β, dan γ). Dan masing-masing metode memiliki langkah yang berbeda satu sama lainnya.
- 2. Proses perhitungan nilai error menggunakan Measure Average Percentage Error (MAPE). MAPE terkecil didapatkan pada saat menggunakan metode Single Exponential Smoothing (SES) pada saat nilai a=0,2 dengan nilai MAPE sebesar 3,992, metode Double Exponential Smoothing (DES) pada saat nilai a=0,1 dengan nilai MAPE sebesar 4,932, dan metode Triple Exponential Smoothing (TES) pada saat nilai a=0,1, $\beta=0,1$, dan $\gamma=0,6$ dengan nilai MAPE sebesar 6,733. Dengan nilai MAPE dibawah 10, maka metode Exponential Smoothing untuk prediksi jumlah kebutuhan air termasuk kedalam kategori sangat baik.
- 3. Prediksi dengan menggunakan Single Exponential Smoothing (SES) di niliai lebih baik dalam memprediksi jumlah kebutuhan pemakaian air PDAM Kota Malang dibandingkan dengan metode Double Exponential Smoothing (DES) dan Triple Exponential Smoothing (TES)

7.2 Saran

Saran yang dapat diberikan terkait kelanjutan penelitian Prediksi Jumlah Kebutuhan Pemakaian Air Menggunakan Metode *Exponential Smoothing* (Studi Kasus: PDAM Kota Malang) antara lain:

- 1. Penelitian selanjutnya diharapkan dapat mengembangkan sistem dengan menggunakan metode yang berbeda atau mengkombinasikan metode *Exponential Smoothing* dengan metode yang lain seperti metode algoritme evolusi, *fuzzy* agar dapat membantu meningkatkan hasil akurasi, karena dengan metode *fuzzy* nilai keabuan dapat diminimalisir serta dapat mengurangi *noise* pada data dan algoritme evolusi bisa digunakan untuk melakukan optimasi perhitungan.
- 2. Menambahkan parameter lain seperti faktor cuaca dan jumlah pelanggan
- 3. Melakukan *update* data, karena data yang diperoleh untuk penelitian kali ini sudah cukup lama.

DAFTAR PUSTAKA

- Andini, Titania Dwi, 2016. *Peramalan Jumlah Stok Alat Tulis Kantor di UD Achmad Jaya Menggunakan Metode Double Exponential Smoothing*. pp. 1-10.
- Chang, P.-C., Wang, Y.-W. & Liu, C.-H., 2007. The Development of a Weighted Evolving Fuzzy Neural Network for PCB Sales Forecasting. Elsevier, 32(Expert Systems with Applications), pp. 86-96.
- Cornellius, Trihendradi, 2005, SPSS 13.0 Analisis Data Statistik, Yogyakarta: Andi.
- Effendi, H., 2003. TELAAH KUALITAS AIR, Bagi Pengelolaan Sumber Daya dan Lingkungan Perairan. Yogyakarta: Kanisius.
- Hadipuro, W., 2010. Indonesia's Water Supply Regulatory Framework: Between Commercialisation and Public Service?. Water Alternatives, 3(3), pp. 475-491.
- Istiqara, Khaira, 2017. Prediksi Kebutuhan Air PDAM Kota Malang Menggunakan Metode Fuzzy Time Series Dengan Algoritme Genetika, pp. 1-10.
- Kurniawati, Erna, 2009. Analisis Rasio Keuangan untuk Menilai Kinerja Perusahaan Daerah Air Minum (Studi Kasus Pada Pdam di Kota Sorong). Analisis, 6(2), pp. 112-122.
- Makridakis, Wheelwright & McGee. 1999, Metode dan Aplikasi Peramalan (terjemahan). Jakarta: Binarupa Ksara
- Maté, A., Peral, J. & Ferrández, A., 2016. A hybrid integrated architecture for energy consumption prediction. *Elsevier*, Volume 63, pp. 131-147.
- Raharja, Alda, 2010. Penerapan Metode Exponential Smoothing untuk Peramalan Penggunaan Waktu Telepon Di PT. Telkomsel Divre3 Surabaya. pp. 1-8.
- Sunaryo, T. M. dkk., 2005. *Pengelolaan Sumber Daya Air.* Malang: Bayumedia PublishingAnggota IKAPI Jatim
- Sungkawa, Iwa., 2011. Penerapan Ukuran Ketepatan Nilai Ramalan Data Deret Waktu dalam Seleksi Model Peramalan Volume Penjualan PT Satriamandiri Citramulia, pp. 1-10.
- Suryadmaja, B., Norken, N. & Dharma, G. S., 2015. *Karakteristik Pola Pemakaian Dan Pelayanan Air Bersih Di Wilayah Usaha Pam PT. Tirtaartha Buanamulia. Spektran, 3(1)*, pp. 20-29.
- Taylor, J. W., 2003. Short-Term Electricity Demand Forecasting Using Double Seasonal Exponential Smoothing. Journal of Operational Research Society, Volume 54, pp. 799-805.

Widiyanti, N. I. P. M. &. R. N. P., 2004. Analisis Kualitatif Bakteri Koliform pada Depo Air Minum Isi Ulang di Kota Singaraja Bali. Jurnal Ekologi Kesehatan, IKIP Negeri Singaraja, pp. 64-73.

