

5.5 可编程逻辑器件和时序逻辑电路的VHDL及其仿真

- 5.5.1 可编程逻辑器件 (PLD)
 (Programmable Logic Device)
- 一、PLD的基本结构和分类
- 1. 基本结构

2. 分类

(1) 按可编程情况分

分类	与阵列	或阵列	输出电路	出现年代
PROM	固定	可编程	固定	70年代初
PLA	可编程	可编程	固定	70年代中
PAL	可编程	固定	固定	70年代末
GAL	可编程	固定	可组态	80年代初

PROM

— 可编程只读存储器

(Programmable Read Only Memory)

缺点:

- 只能实现标准 与或式
- 芯片面积大
- 利用率低,不经济

用途:

- 存储器
- 函数表
- •显示译码电路

PLA

— 可编程逻辑阵列

(Programmable Logic Array)

优点:

- 与阵列、或阵列 都可编程
- 能实现最简与或式

缺点:

- 价格较高
- 门的利用率不高

• PAL — 可编程阵列逻辑

(Programmable Array Logic)

优点:

- 速度高
- 价格低
- 采用编程器现场编程

缺点:

- 输出方式固定
 - 一次编程

优点:

- 具有 PAL 的功能
- 采用逻辑宏单元 使输出自行组态
- 功能更强,使用灵活,应用广泛

(2) 按可编程和改写方法分

PLD	编程方式	改写方法	特点、用途
第一代	一次性掩模 (厂家)	不能改写	固定程序、数据、函数表、字符发生器
第二代	编程器(用户)	紫外光擦除	先擦除,后编程
第三代	编程器(用户)	电擦除	擦除、编程同时进行
第四代	在系统可编程	软件	直接在目标系统或线 路板上编程

علم والمراطع والمراطع المراطع والمراطع والمراطع والمراطع والمراطع والمراطع والمراطع والمراطع والمراطع والمراطع

(3) 按组合、时序分

组合 PROM、PLA 时序 F 电路 组合型 PAL 电路 [

时序 时序型 PAL

电路 GAL (也可实现组合电路)

二、PLD的基本原理

PROM的原理已在第三章介绍,不赘述。

PAL的输出方式固定而不能重新组态,且编程是一次性的,使用有较大的局限。

1. GAL16V的基本结构

输入缓冲

2. 输出逻辑宏单元

输出逻辑宏单元 (OLMC — Out Logic Cell)

- OLMC 有 5 种不同的输出组态
- 5种输出组态由结构控制字来决定
- 通过编程对GAL芯片内部的结构控制字寄存器 进行设置

(2) FMUX的输出与三个结构控制字的关系

(3) OLMC 的输出组态

SYN	AC_0	$AC_1(n)$	功能	注	
0	0	0		不用	
0	0	1		不用	
0	1	0	寄存器输出	纯时序输出	
0	1	1	组合与寄存 器输出	本宏单元为组合输出,一个以上宏单元寄存器输出	
1	0	0	纯组合输出	无内部反馈和使能控制	
1	0	1	纯输入方式	输入为I /O (m) 三态门禁止	
1	1	0		不用	
1	1	1	组合输出	组合I/O 输出,乘积项P ₁ 控 制输出使能	

3. GAL的主要特点

(1) 通用性强

- 每一个OLMC均可组态成组合或时序电路
- · 输入引脚不够时可将OLMC组合成输入端
- 可构成较复杂的时序电路
- (2) 100%可编程
 - 可重复擦写上百次甚至万次, PAL为一次编程
- (3) 100%可测试
- (4) 隐含成本低
 - 与原始成本大致相同

4. 几种常见的GAL器件

型号	与阵列规模 (乘积项×输入项)	OLMC 最大输出数	特点
GAL16V8	64 × 32	8	普通型
GAL20V8	64 × 40	8	普通型
isp GAL16Z8	64 × 32	8	可擦写万次
GAL39V18	64 × 78	10	与、或阵列 均可编程

三、高密度可编程逻辑器件HDPLD

是一种高密度、高性能的超大规模集成电路

分类

阵列型 HDPLD 在GAL基础上发展起来 主体为与、或阵列

单元型 HDPLD 由许多逻辑宏单元组成阵列

四、PLD编程

5.5.2 时序逻辑电路的VDHL描述及仿真

列5.5.11 十进制计数器的VHDL描述及仿真 🖔 count10.scf - Waveform Editor _ | _ | × | 0.0ns Time: 913.0ns 913.0ns Ref: Interval: 0.0ns 100.0ns 200.0ns 300.0ns 400.0ns 500.0ns 600.0ns 700.0ns 800.0ns 900.0ns Value: Name: 🖚 ср **-** □ q H O3 **ARCHITECTURE** one OF count10 IS **SIGNAL count :STD_LOGIC_VECTOR(3 DOWNTO 0); BEGIN** PROCESS (cp) BEGIN IF cp'EVENT AND cp='1' THEN **IF** count <="1001" **THEN** count ="0000"; **ELSE** count <= count +1; END IF; END IF; **END PROCESS**; q<= count; **END** one;

[例5.5.2] 4位基本寄存器的VHDL描述及仿真

