

2º Trabalho Laboratorial

Redes de Computadores

Licenciatura em Engenharia Informática e Computação 1º Semestre - 2023/2024

Redes de Computadores - Turma 7

João Filipe de Menezes Falcão e Sousa Guedes (<u>up202108711@up.pt</u>)

Eduardo Afonso Soares Ferreira Machado (<u>up202105337@up.pt</u>)

Porto, 15 de Dezembro de 2023

Indíce

Sumário	
Introdução	3
Parte 1 - Aplicação de Download	3
Arquitetura	3
Resultados	4
Parte 2 - Configuração e Análise da Rede	4
Exp 1 - Configuração de uma Rede IP	4
Exp 2 - Implementar duas pontes num switch	5
Exp 3 - Configurar um Router no Linux	5
Exp 4 - Configurar um Router Comercial e Implementar NAT	6
Exp 5 - DNS	7
Exp 6 - Conexões TCP	7
Conclusões	8
Referências	8
Anexos	8
Guião	8
Experiência 1	8
Experiência 2	8
Experiência 3	9
Experiencia 4	10
Experiência 5:	11
Código	11
download.c	11
download.h	20
Logs (Wireshark)	20
Exp 1 - Ping do tux4 no tux3	21
Exp 2 - Ping Broadcast no Tux3	21
Exp 2 - Ping Broadcast no Tux2	21
Exp 3 - Capturado no tux4, ping do tux2 no tux3	21
Exp 4 - Tux3 ping ao tux4	21
Exp 4 - Tux3 ping ao tux2	21
Exp 4 - Tux3 ping ao Router	21
Exp 4 - Ping do router no tux3 (pré-disable do NAT)	22
Exp 4 - Ping do router no tux3 (pós-disable do NAT)	
Exp 5 - Ping google.com	
Exp 6 - Primeira transferência (um ficheiro)	22
Exp 6 - Segunda transferência (dois ficheiros)	

Sumário

Este projeto foi realizado no âmbito da unidade curricular de Redes de Computadores com o objetivo de desenvolvimento de uma aplicação de *download* de ficheiros usando o protocolo FTP (File Transfer Protocol). Permitindo também a aprendizagem sobre conceitos como: TCP/IP, RFCs, servidores DNS, entre outros. Graças a este projeto conseguimos aplicar a matéria dada em relação ao protocolo FTP e a utilização de uma rede de computadores.

Introdução

O projeto foi desenvolvido com a realização de seis experiências e a aplicação de download que usa o protocolo FTP e configuração de uma rede de computadores. O relatório está dividido nas seguintes partes:

- Parte 1 Aplicação de Download
 - Arquitetura
 - Resultados
- Parte 2 Configuração e Análise da Rede
 - Para cada experiência (1 a 6)
 - Arquitetura de rede, objetivos da experiência, principais comandos de configuração, logs relevantes;
 - Análise dos logs capturados que são relevantes para os objetivos de aprendizagem;
- Conclusões

Parte 1 - Aplicação de Download

Arquitetura

Esta aplicação foi desenhada com o objetivo de realizar um download de um ficheiro alocado num servidor utilizando um protocolo de transferencia de ficheiros (FTP). O programa está dividido em várias funções, cada uma responsável por uma parte específica do protocolo FTP ou da operação do programa.

A função *main()* é o ponto de entrada do programa. Esta função analisa os argumentos introduzidos pelo utilizador na linha de comando e inicializa a estrutura de URL. Para além dos elementos préviamente referidos o papel principal desta função é assegurar o bom funcionamento do programa em geral, uma vez que se encarrega de chamar as outras funções na ordem correta para estabelecer uma conexão com o servidor FTP, autenticar, mudar para o modo passivo, solicitar/descarregar o arquivo e, finalmente, encerrar a conexão.

A função *parseURL()* é responsável por analisar o URL. Para tal, a função utiliza expressões regulares para verificar o formato do URL e, em seguida, extrai diversos dados sendo eles: o host (nome do servidor), user, password, caminho do recurso do URL, e o ficheiro (nome e extensão). Par além da extração de dados, a função *parseURL()* também encarrega-se da tradução do host para um endereço IP—através do serviço DNS.

A função establishSocketConnection() cria um socket TCP, conecta-o ao endereço IP e a porta. Utiliza as chamadas de sistema socket() e connect() para o fazer. Se ocorrer um erro durante esse processo, imprime uma mensagem de erro e encerra o programa. A função authenticateConnection() envia os comandos user e pass para autenticar-se no servidor. Escreve esses comandos no socket da conexão ao servidor e, em seguida, retorna a resposta do mesmo.

A função *passiveMode()* envia o comando FTP PASV para mudar para o modo passivo. No modo passivo, o cliente inicia todas as conexões, o que pode ajudar a evitar problemas com firewalls e NAT. A resposta do servidor ao comando PASV inclui o endereço IP e a porta aos quais o cliente deve conectar-se para a transferência do ficheiro.

A função *readSocketResponse()* foi criada para ler a resposta do servidor. Ela lê a resposta byte a byte e guarda-a em um buffer. A função *sendFileRequest()* envia o comando FTP RETR para solicitar o ficheiro. A resposta do servidor a este comando inclui o tamanho e o início da transferência do arquivo. A função *transferFileFromServer()* lê os dados do ficheiro no servidor e escreve-os em um ficheiro local. Esta função só termina uma vez que todos os dados do servidor tenham sido transferidos.

Finalmente, a função *closeSocketConnection()* envia o comando FTP QUIT para fechar a conexão e, em seguida, fecha o socket.

Resultados

Testamos o funcionamento da nossa aplicação download ao realizar o download de vários ficheiros de diferentes tamanhos. Testamos o input de URLs errados, URLs com user e password ou anónimos. Em caso de erro, o programa lança na consola uma mensagem ligada ao erro ocorrido tal como termina o programa para ser realizado outra vez de forma correta.

Parte 2 - Configuração e Análise da Rede

Exp 1 - Configuração de uma Rede IP

O objetivo desta experiência foi a configuração de dois endereços IP de dois computadores distintos, tux3 e tux4, ligados a um switch permitindo que eles comunicassem entre eles. Para esta experiência foram utilizados os comandos *ifconfig* para configurar o IP em cada computador, tux53 (IP - 172.16.50.1/24, endereço MAC - 00:22:64:19:09:5c) e tux54 (IP - 172.16.50.254/24, endereço MAC - 00:21:5a:61:2c:54).

Ao executar o comando *ping* em cada um dos computadores, podemos observar criação de pacotes ARP (Address Resolution Protocol), que establecem a ligação entre o IP e o endereço fisíco, o endereço MAC (Media Access Control), do computador. Os pings enviam o IP do computador destino e do computador origem no mesmo pacote, e, como resposta, o computador destino envia um pacote ARP com o seu endereço MAC, permitindo assim a comunicação entres os dois; esta conexão entre IP e MAC é guardada na tabela ARP. O processo também gera pacotes ICMP (Internet Control Message Protocol), permitindo o envio de mensagems de controlo e erro entre os computadores.

Podemos distinguir que tipo de pacote é enviado sobre a trama receptora Ethernet nas capturas no Wireshark na coluna Protocol. Esta distinção sobre pacotes também está presente nos dois primeiros bytes do cabeçalho da frame Ethernet (0x0800 para IPs/ICMPs e 0x0806 para ARPs). Também é possível observar o tamanho da trama na coluna Length.

A interface de "loopback" é uma interface numa rede de computadores que permite a comunicação interna (ou seja transimissão e receção de dados) sem que seja necessário o envolvimento de qualquer tipo de hardware físico. O "loopback" facilita o processo de teste e debugging uma vez que permite verificar se as ligações de rede estão devidamente configuradas.

A captura do <u>log</u> e <u>configuração</u> da experiência estão disponíveis nos anexos.

Exp 2 - Implementar duas pontes num switch

O objetivo desta experiência foi a implementação de duas pontes ligadas ao switch, uma com tux3 e tux4, e outra com apenas o tux2.

Para esta experiência, repetimos o processo de configurar os IPs do tux3 e 4. No tux2, configuramos um novo IP (172.16.51.1). Com o comando /interface bridge port remove [find interface=etherX] removemos as portas as quais os tux2/3/4 estão ligadas por default. A seguir, adicionamos novas portas, /interface bridge port add bridge=bridgeX0/1 interface=etherY. Verificamos as portas criadas com /interface bridge port print. No tux3, damos ping ao tux4 e 2. No tux2, damos ping ao tux3 e 4.

Concluímos que existem dois domínios de broadcast correspondentes as bridges criadas, uma vez que ao correr o comando ping -b (broadcast) a partir do tux3, o tux 4 era alcançado, no entanto o tux2 é unreachable. Ao realizar a experiencia no tux2, nem o tux3 nem o tux4 são alcancaveis. Só existe conexão entre tux3 e 4, o tux 2 está numa ponte diferente.

A captura do log e configuração da experiência estão disponíveis nos anexos.

Exp 3 - Configurar um Router no Linux

O objetivo desta experiência é a configuração de um router que permite a comunicação entre dois computadores em redes distintas. O tux4 estará ligado a duas redes, eth0 com o tux3 e em eth1 com o tux2, permitindo então a comunicação previamente não disponível entre tux2 e 3.

Com o tux4 conectado à eth1, configuramos o seu IP. Eliminamos as portas às quais o tux2 estava ligado por default e adicionamos uma nova porta, /interface bridge port remove [find interface=etherY] e /interface bridge port add bridge=bridgeX1 interface=etherY. Ativamos o IP forwarding e desativamos o ICMP (echo 1 > /proc/sys/net/ipv4/ip_forward e echo 0 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts). Adicionamos as seguintes rotas: no tux2, route add -net 172.16.Y0.0/24 gw 172.16.Y1.253; no tux3, route add -net 172.16.Y1.0/24 gw 172.16.Y0.253, agora estes conseguem alcançar um ao outro através do tux4. Finalizamos a dar os pings necessário no tux3, limpamos as tabelas ARPs em todos os tuxs e damos ping ao tux2 no tux3.

Durante a experiência verificamos a existencia de duas routes, uma na tux2 e outra na tux3, ambas têm o tux4 como gateway pois é comum às duas bridges criadas. Na tabela de forwarding também encontramos informação sobre a *destination* (IP destino), *genmask* (netmask da rede destino), *gateway* (IP para qual a mensagem vai ser enviada), *interface*

(rede, eth0/1), *metric* (custo da rota), *flags* (informação sobre a rota), *ref* (numero de referencia para a rota) e *use* (contador do numero de consultas à rota).

Como visto anteriormente, a ARP liga o MAC address ao IP, mas ao dar ping ao tux2 no tux3, ele não recebe o endereço MAC do tux2, o endereço observado é do tux4 (o gateway) e não do computador destino, pois é com ele que tem ligação. O tux3 não consegue comunicar diretamente com o tux2.

Observamos pacotes ICMP Request e Reply, que contém o IP origem (tux3) e o IP destino (tux2) — o que demonstra que a rede foi bem configurada. No entanto, o tux2 e 3 estão em redes diferentes, portanto são enviados dois pacotes, um com o IP e endereço MAC do tux3 e 4 e outro com o IP e endereço MAC do tux4 e 2, ligando as duas bridges.

A captura dos logs e configuração da experiência estão disponíveis nos anexos.

Exp 4 - Configurar um Router Comercial e Implementar NAT

O objetivo desta experiência foi configurar um router comercial com NAT implementado, de modo a permitir acesso à rede externa.

Para esta experiência mantemos a rede configurada na experiência 3. Temos duas bridges: numa temos tux3 e 4; noutra temos tux4 e 2, com o tux4 a conectar os tux3 e 2. Começamos por conectar o eth1 do router à porta PY.1 e o eth2 do router à porta da ponte Y1 no Switch. Eliminamos as portas default do etherY do switch e ligamos o etherY à ponteY1: /interface bridge port remove [find interface=etherY] e /interface bridge port add bridge=bridgeY1 interface=etherY. Para as configurações do router, configuramos os IP pela consola do router no GTKterm no tux2: /ip address add address=172.16.1.49/25 interface=ether1 e /ip address add address=172.16.Y1.254/24 interface=ether2. Adicionamos o router como gateway default nos tuxs: route add default gw 172.16.XY.254. Por fim, adicionamos rotas default no router: /ip route add dst_address=172.16.Y0.0/24 gateway=172.16.Y1.253 e /ip route add dst_address=0.0.0.0/0 gateway=172.16.1.254.

Para podemos configurar uma rota estática num router comercial, como na experiência, temos de dar reset as suas configurações, adicioná-lo à ponte correspondente e atribuir um IP interno e externo.

Os caminhos seguidos pelos pacotes na experiência foram reencaminhados através do router implementado até ao endereço IP de destino, isto acontece porque não temos ligação do tux2 ao tux4. Mas depois não houve qualquer reencaminhamento porque a ligação mais curta da rede estava disponível.

Para configurar a NAT num router comercial, corremos o comando /ip firewall nat enable 0 na consola do router. O NAT (Network Address Translation) permite que vários dispositivos em uma rede local compartilhem um único endereço IP público para aceder à Internet. Ele traduz os endereços IP privados internos para um único endereço IP público, e vice-versa, otimizando o uso de endereços IP e oferecendo uma camada de segurança adicional ao ocultar os endereços internos da Internet. Permite reduzir o número de endereços publicos utilizados.

A captura dos logs e configuração da experiência estão disponíveis nos anexos.

Exp 5 - DNS

O objetivo desta experiência é configurar o DNS (Domain Name Server) para a tradução do nome dos domínios dos sites para endereços IP.

Para esta experiência mantivemos a configuração da rede efetuada ao longo das quatro experiências anteriores. Começamos por introduzir em todos os tuxs a linha 'nameserver 172.16.1.1' ao ficheiro /etc/resolv.conf. E, em todos os tuxs, demos ping ao google.com. Desta forma, configuramos os serviços DNS no host: adicionando o "namerserver <IP>" no ficheiro /etc/resolv.conf. E esperamos que o hostname nos pacotes enviados pelo DNS seja identificado e traduzido para um IP.

A captura dos logs e configuração da experiência estão disponíveis nos anexos.

Exp 6 - Conexões TCP

O objetivo desta experiência foi testar o funcionamento da rede configurada ao longo destas experiências, e testar o funcionamento da nossa aplicação de protocolo FTP.

Para avaliar a nossa aplicação, no tux3, fazemos download de um ficheiro do servidor FTP. E depois, no tux2 e 3, fazemos download de dois ficheiros do servidor FTP nos respetivos tuxs; um ficheiro de maior tamanho no tux3, e um ficheiro de tamanho inferior no tux2 para que seja feito download a meio do download do ficheiro no tux3.

Na nossa aplicação FTP, foram efetuadas duas conexões TCP (Transmission Control Protocol), uma para enviar comandos de controlo e recepção de mensagens do servidor, onde é transportada a informação de controlo FTP, e outra para receber o ficheiro.

A conexão TCP tem três fases: conexão, transeferência de dados e fim da conexão.

O ARQ (Automatic Repeat reQuest) é um método de controlo de erros para transmissão de dados que usa ACK (acknowledgements) e timeout para obter uma transmissão de dados confiável através de um canal de comunicação não confiável. Se não for recebido um ACK antes do timeout, ele reenviará o pacote até receber uma confirmação ou exceder um número predefinido de retransmissões. Os campos importantes no TCP são: o sequence number, ACK numbers, window size e flags.

O TCP tem um mecanismo de controlo de congestão que controla o fluxo de dados, que usa um algoritmo que inclui vários aspectos tais como um esquema de additive increase, na transferência seguinte envia mais um pacote que na anterior; juntamente com outros esquemas, como o slow start, que começa com um tamanho de janela de congestão de 1, 2, 4 ou 10 MSS (maximum segment size), depois o valor do tamanho da janela pode ser aumentado em 1 MSS com cada ACK recebida, efetivamente duplicando o tamanho da janela a cada round-trip, para evitar redes congestionadas (perda de pacotes).

Depois de efetuar o download, podemos observar o impacto do TCP no gráfico obtido. Observamos que após a taxa de tranferência aumentar ao longo dum período de tempo, segue-se uma descida no número de transferências que remonta a uma taxa de transferência inferior ao número original no intervalo de tempo anterior.

Na segunda parte da experiência, durante o download de um ficheiro de maior tamanho no tux3, realizou-se outro download de um ficheiro mais pequeno no tux2. Observa-se que quando este último foi inicializado, houve uma queda de velocidade no download no tux3. Isto deve-se ao TCP.

A captura dos logs da experiência estão disponíveis nos anexos.

Conclusões

Ao concluir este projeto, o desenvolvimento de uma aplicação de transferência de ficheiros utilizando o protocolo FTP, foi-nos possível entender os conceitos necessários, e que nos eram pedidos no guião, para compreender como funcionam e como são postos em prática os protocolos que se encontram numa rede de computadores para a transferência de dados entre cada máquina, tal como conhecer como se configura uma rede de computadores.

Referências

- 1. https://en.wikipedia.org/wiki/TCP_congestion_control#Slow_start
- 2. https://en.wikipedia.org/wiki/Automatic repeat request
- 3. https://beej.us/quide/bgnet/pdf/bgnet_a4_c_2.pdf

Anexos

Guião

Experiência 1

Tux 3/4: ifconfig eth0 up ifconfig eth0 <IP> - 172.16.Y0.1/24 para o Tux3 - 172.16.Y0.254/24 para o Tux4

Tux3:

ping 172.16.Y0.254

Tux4:

ping 172.16.Y0.1

Tux 3:

arp -a

arp -d 172.16.Y0.254/24

arp -a

Experiência 2

Switch console:

/system reset configuration

tux2:

ifconfig eth0 up

ifconfig eth0 172.16.Y1.1/24

Switch console:

- > /interface bridge add name=bridgeY0
- > /interface bridge add name=bridgeY1
- > /interface bridge port remove [find interface=ether1]
- > /interface bridge port remove [find interface=ether2]
- > /interface bridge port remove [find interface=ether3]
- > /interface bridge port add bridge=bridgeY0 interface=ether1
- > /interface bridge port add bridge=bridgeY0 interface=ether2
- > /interface bridge port add bridge=bridgeY1 interface=ether3
- >/interface bridge port print

tux3:

ping 172.16.Y0.254 ping 172.16.Y1.1

ping -b 172.16.Y0.255

tux2:

ping -b 172.16.Y1.255

Experiência 3

tux4:

ifconfig eht1 up

ifconfig eht1 172.16.Y1.253/24

Switch console:

/interface bridge port remove [find interface=ether4]

/interface bridge port add bridge=bridgeY1 interface=ether4

tux4:

echo 1 > /proc/sys/net/ipv4/ip_forward

echo 0 > /proc/sys/net/ipv4/icmp_echo_ignore_broadcasts

tux2:

route add -net 172.16.Y0.0/24 gw 172.16.Y1.253

tux3:

route add -net 172.16.Y1.0/24 gw 172.16.Y0.254

tux3:

ping 172.16.Y0.254

ping 172.16.Y1.253

ping 172.16.Y1.1

tux2:

arp -d 172.16.Y1.253

tux3:

arp-d 172.16.T0.254

tux4:

arp -d 172.16.Y0.1 arp -d 172.16.Y1.1

Experiencia 4

Switch console:

/interface bridge port remove [find interface=ether5]
/interface bridge port add bridge=bridgeY1 interface=ether5

Router console:

/system reset-configuration

/ip address add address=172.16.1.Y9/24 interface=ether1 /ip address add address=172.16.Y1.254/24 interface=ether2 /ip route add dst-address=172.16.Y0.0/24 gateway=172.16.Y1.253 /ip route add dst-address=0.0.0.0/0 gateway=172.16.1.254

tux2:

route add default gw 172.16.Y1.254

tux3:

route add default gw 172.16.Y0.254

tux4:

route add default gw 172.16.Y1.254

tux3:

ping 172.16.Y0.254 ping 172.16.Y1.1 ping 172.16.Y1.254

tux2:

echo 0 > /proc/sys/net/ipv4/conf/eth0/accept_redirects echo 0 > /proc/sys/net/ipv4/conf/all/accept_redirects route del -net 172.16.Y0.0 gw 172.16.Y1.253 netmask 255.255.255.0 ping 172.16.Y0.1 traceroute -n 172.16.Y0.1 echo 1 > /proc/sys/net/ipv4/conf/eth0/accept_redirects

```
echo 1 > /proc/sys/net/ipv4/conf/all/accept_redirects
```

tux3:

ping 172.16.1.254

Router console:

/ip firewall nat disable 0

tux3:

ping 172.16.1.254

Router console:

/ip firewall nat disable 0

Experiência 5

tux 2,3,4:

colocar a seguinte linha ao ficheiro /etc/resolv.conf -> nameserver 172.16.1.1 ping google.com

Código

download.c

```
#include "download.h"

int parseURL(char *inputURL, struct URL *url)
{
    struct hostent *h;

    regex_t regex;
    regcomp(&regex, "/", 0);

    if (regexec(&regex, inputURL, 0, NULL, 0))
    {
        return -1;
    }

    regcomp(&regex, "0", 0);

    if (regexec(&regex, inputURL, 0, NULL, 0) != 0)
```

```
strcpy(url->user, "anonymous");
      strcpy(url->password, "password");
  sscanf(inputURL, "%*[^/]/%*[^/]/%s", url->resource);
  strcpy(url->file, strrchr(inputURL, '/') + 1);
  if ((h = gethostbyname(url->host)) == NULL)
  strcpy(url->ip, inet_ntoa(*((struct in_addr *)h->h_addr)));
  return !(strlen(url->host) && strlen(url->user) &&
strlen(url->password) && strlen(url->resource) && strlen(url->file));
```

```
perror("Error in socket()");
sizeof(server addr)) < 0)</pre>
       perror("Error in connect()");
  sprintf(userCommand, "user %s\n", user);
  if (readSocketResponse(fd, answer) != 331)
```

```
return readSocketResponse(fd, answer);
  if (readSocketResponse(fd, answer) != 227)
&ip3, &ip4, &port1, &port2);
  sprintf(ip, "%d.%d.%d.%d", ip1, ip2, ip3, ip4);
.nt readSocketResponse(const int fd, char *buffer)
```

```
int index = 0;
responseStatus state = START;
memset(buffer, 0, 500);
```

```
.nt sendFileRequest(const int fd, char *resource)
 return readSocketResponse(fd, answer);
int transferFileFromServer(const int fd1, const int fd2, char
 FILE *fd = fopen(filename, "wb");
```

```
int bytes;
return readSocketResponse(fd1, buffer);
```

```
int fd1;
ftp://[<user>:<password>@]<host>/<url-path>\n");
       exit(-1);
      printf("Parse error. INVALID! Use the following format:
  printf("Host: %s\nResource: %s\nFile: %s\nUser: %s\nPassword: %s\nIP
Address: %s\n", url.host, url.resource, url.file, url.user,
url.password, url.ip);
  fd1 = establishSocketConnection(url.ip, 21);
  if (fd1 < 0 || readSocketResponse(fd1, answer) != 220)</pre>
21);
url.user, url.password);
```

```
if (passiveMode(fd1, ip, &port) != 227)
if (sendFileRequest(fd1, url.resource) != 150)
if (transferFileFromServer(fd1, fd2, url.file) != 226)
```

download.h

```
1 #include <stdio.h>
 2 #include <sys/socket.h>
4 #include <arpa/inet.h>
5 #include <stdlib.h>
6 #include <netdb.h>
7 #include <unistd.h>
8 #include <string.h>
9 #include <regex.h>
10 #include <termios.h>
12 struct URL
       char host[500];
       char resource[500];
       char file[500];
       char user[500];
       char password[500];
        char ip[500];
       START,
      SINGLE,
      MULTIPLE,
       END
28 } responseStatus;
30 int parseURL(char *inputURL, struct URL *url);
31 int establishSocketConnection(char *ip, int port);
int authenticateConnection(const int fd, const char *user, const char *pass);
int readSocketResponse(const int fd, char *buffer);
34 int passiveMode(const int fd, char *ip, int *port);
35 int sendFileRequest(const int fd, char *resource);
36 int transferFileFromServer(const int fd1, const int fd2, char *filename);
37 int closeSocketConnection(const int socketA, const int socketB);
```

Logs (Wireshark)

Exp 1 - Ping do tux4 no tux3

No.		Time	Source	Destination	Protocol	Length	Info						
	6	9.262986864	HewlettPacka_19:09	Broadcast	ARP	42	Who I	nas 172	.16.50.1	? Tell 172.10	6.50.254		
	7	9.263095398	HewlettPacka_61:2c	HewlettPacka_19:09	ARP	60	172.	16.50.1	is at 00	0:21:5a:61:2	c:54		
	8	9.263117887	172.16.50.254	172.16.50.1	ICMP	98	Echo	(ping)	request	id=0×1394,	seq=1/256,	ttl=64	(reply in 9)
	9	9.263207772	172.16.50.1	172.16.50.254	ICMP	98	Echo	(ping)	reply	id=0x1394,	seq=1/256,	ttl=64	(request in 8)
	10	10.010702758	Routerboardc_1c:95	Spanning-tree-(for	STP	60	RST.	Root =	32768/0,	/c4:ad:34:1c	:95:c8 Cos	t = 0 F	ort = 0x8004
	11	10.292155658	172.16.50.254	172.16.50.1	ICMP	98	Echo	(ping)	request	id=0x1394,	seq=2/512,	ttl=64	(reply in 12)
	12	10.292284445	172.16.50.1	172.16.50.254	ICMP	98	Echo	(ping)	reply	id=0x1394,	seq=2/512,	ttl=64	(request in 11)
	13	11.312158481	172.16.50.254	172.16.50.1	ICMP	98	Echo	(ping)	request	id=0x1394,	seq=3/768,	ttl=64	(reply in 14)
	14	11.312287617	172.16.50.1	172.16.50.254	ICMP	98	Echo	(ping)	reply	id=0x1394,	seq=3/768,	ttl=64	(request in 13)

Exp 2 - Ping Broadcast no Tux3

39 58.063520179	Routerboardc_1c:95	Spanning-tree-(for	STP	60	RST	Root	= 32768	3/0/c4:ad:34:1	c:95:d1 Cos	t = 0 F	Port = 0x8002	
40 58.903328038	172.16.50.1	172.16.50.254	ICMP	98	Echo	(pin	g) reque	st id=0x3966	, seq=3/768,	ttl=64	(reply in 41)	
41 58.903457104	172.16.50.254	172.16.50.1	ICMP	98	Echo	(pin	g) reply	/ id=0x3966	, seq=3/768,	ttl=64	(request in 4	0)
42 59.927322396	172.16.50.1	172.16.50.254	ICMP	98	Echo	(pin	g) reque	est id=0x3966	, seq=4/1024	, ttl=64	(reply in 43)
43 59.927482750	172.16.50.254	172.16.50.1	ICMP	98	Echo	(pin) reply	/ id=0x3966	, seq=4/1024	, ttl=64	(request in	42)

Exp 2 - Ping Broadcast no Tux2

17 22.441105168	172.16.51.1	172.16.51.255	ICMP	98	Echo	(ping)	request	id=0x4e0a,	seq=2/512,	ttl=64 (no	response	found!)
18 23.465108894	172.16.51.1	172.16.51.255	ICMP	98	Echo	(ping)	request	id=0x4e0a,	seq=3/768,	ttl=64 (no	response	found!)
19 24.026188811	Routerboardc_1c:95	Spanning-tree-(for	STP	60	RST.	Root =	32768/0/	c4:ad:34:1c	:95:d2 Cost	t = 0 Port	= 0x8001	
20 24.489106474	172.16.51.1	172.16.51.255	ICMP	98	Echo	(ping)	request	id=0x4e0a,	seq=4/1024	, ttl=64 (n	o response	found!)
21 25.513109222	172.16.51.1	172.16.51.255	ICMP	98	Echo	(ping)	request	id=0x4e0a,	seq=5/1280	, ttl=64 (n	o response	found!)

Exp 3 - Capturado no tux4, ping do tux2 no tux3

311		HewlettPacka_a7:26	HewlettPacka_a7:26 HewlettPacka_5a:78 172.16.21.1		42	172.1	16.20.2	54 is at (1? Tell 172 00:22:64:a7 id=0x0f62,	:26:a2	ttl=64	(reply in 313)
313	167.8645682	172.16.21.1	172.16.20.1	ICMP	98	Echo	(ping)	reply	id=0x0f62,	seq=4/1024,	ttl=63	(request in 312)
314	168.1826723	Routerboardc_2b:fa	Spanning-tree-(for	STP	60	RST.	Root =	32768/0/	c4:ad:34:2b	:fa:15 Cost	= 0 Po	rt = 0x8002
315	168.8883882	172.16.20.1	172.16.21.1	ICMP	98	Echo	(ping)	request	id=0x0f62,	seq=5/1280,	ttl=64	(reply in 316)
316	168.8885463	172.16.21.1	172.16.20.1	ICMP	98	Echo	(ping)	reply	id=0x0f62,	seq=5/1280,	ttl=63	(request in 315)
317	169.9123938	172.16.20.1	172.16.21.1	ICMP	98	Echo	(ping)	request	id=0x0f62,	seq=6/1536,	ttl=64	(reply in 318)
318	169.9125527	172.16.21.1	172.16.20.1	ICMP	98	Echo	(ping)	reply	id=0x0f62,	seq=6/1536,	ttl=63	(request in 317)

Exp 4 - Tux3 ping ao tux4

12 8.039238532	172.16.50.1	172.16.50.254	ICMP	98 Echo (ping) request id=0x66ad, seq=4/1024, ttl=64 (reply in 13	3)
13 8.039361316	172.16.50.254	172.16.50.1	ICMP	98 Echo (ping) reply id=0x66ad, seq=4/1024, ttl=64 (request in	12)
14 9.063239243	172.16.50.1	172.16.50.254	ICMP	98 Echo (ping) request id=0x66ad, seq=5/1280, ttl=64 (reply in 15	j)
15 9.063394644	172.16.50.254	172.16.50.1	ICMP	98 Echo (ping) reply id=0x66ad, seq=5/1280, ttl=64 (request in	14)

Exp 4 - Tux3 ping ao tux2

301 23.584891058	172.16.50.1	172.16.51.1	ICMP	98 Echo (ping) request	id=0x66be, seq=1/256, ttl=64 (reply in 302)	
302 23.585323035	172.16.51.1	172.16.50.1	ICMP	98 Echo (ping) reply	id=0x66be, seq=1/256, ttl=63 (request in 301)	

Exp 4 - Tux3 ping ao Router

392	43.911210951	HewlettPacka_61:2d	HewlettPacka_c3:78	ARP	42 Who has 172.16.50.254? Tell 172.16.50.1
393	43.911349938	HewlettPacka_c3:78	HewlettPacka_61:2d	ARP	60 172.16.50.254 is at 00:21:5a:c3:78:70
394	44.021548293	Routerboardc_1c:8b	Spanning-tree-(for	STP	60 RST. Root = 32768/0/c4:ad:34:1c:8b:c6 Cost = 0 Port = 0x8001
395	44.295244368	172.16.50.1	172.16.51.254	ICMP	98 Echo (ping) request id=0x66cb, seq=5/1280, ttl=64 (reply in 396)
396	44.295523809	172.16.51.254	172.16.50.1	ICMP	98 Echo (ping) reply id=0x66cb, seq=5/1280, ttl=63 (request in 395)
397	45.319244664	172.16.50.1	172.16.51.254	ICMP	98 Echo (ping) request id=0x66cb, seq=6/1536, ttl=64 (reply in 398)
398	45.319516841	172.16.51.254	172.16.50.1	ICMP	98 Echo (ping) reply id=0x66cb, seq=6/1536, ttl=63 (request in 397)

Exp 4 - Ping do router no tux3 (pré-disable do NAT)

22	7.165080819	HewlettPacka_c3:78	HewlettPacka_61:2d	ARP	60 Who has 172.16.50.1? Tell 172.16.50.254	
23	7.165101772	HewlettPacka_61:2d	HewlettPacka_c3:78	ARP	2 172.16.50.1 is at 00:21:5a:61:2d:72	
24	7.998661706	Routerboardc_1c:8b	Spanning-tree-(for	STP	60 RST. Root = 32768/0/c4:ad:34:1c:8b:c6	1
25	8.136569752	172.16.50.1	172.16.1.254	ICMP	98 Echo (ping) request id=0x687b, seq=7/1792, ttl=64 (reply in 2	26)
26	8.136965411	172.16.1.254	172.16.50.1	ICMP	98 Echo (ping) reply id=0x687b, seq=7/1792, ttl=62 (request in	n 25)
27	9.160565547	172.16.50.1	172.16.1.254	ICMP	98 Echo (ping) request id=0x687b, seq=8/2048, ttl=64 (reply in 2	28)
28	9.160980972	172.16.1.254	172.16.50.1	ICMP	98 Echo (ping) reply id=0x687b, seq=8/2048, ttl=62 (request in	n 27)

Exp 4 - Ping do router no tux3 (pós-disable do NAT)

15	10.071262823	HewlettPacka_61:2d	HewlettPacka_c3:78	ARP	42	Who I	has 172	.16.50.25	4? Tell 172	.16.50.1			
16	10.071391822	HewlettPacka_c3:78	HewlettPacka_61:2d	ARP	60	172.	16.50.2	54 is at	00:21:5a:c3	:78:70			
17	10.103278244	172.16.50.1	172.16.1.254	ICMP	98	Echo	(ping)	request	id=0x68e6,	seq=6/1536,	ttl=64 (n	response	found!)
18	11.127279419	172.16.50.1	172.16.1.254	ICMP	98	Echo	(ping)	request	id=0x68e6,	seq=7/1792,	ttl=64 (n	response	found!)
19	12.013006362	Routerboardc_1c:8b	Spanning-tree-(for	STP	60	RST.	Root =	32768/0/	c4:ad:34:1c	:8b:c6 Cost	= 0 Port	= 0x8001	
20	12.151302105	172.16.50.1	172.16.1.254	ICMP	98	Echo	(ping)	request	id=0x68e6,	seq=8/2048,	ttl=64 (n	response	found!)
21	13.175278765	172.16.50.1	172.16.1.254	ICMP	98	Echo	(ping)	request	id=0x68e6,	seq=9/2304,	ttl=64 (n	response	found!)

Exp 5 - Ping google.com

1	1 11.047663401	172.16.51.1	193.136.28.10	DNS	70 Standard query 0xabe7 A google.com
1	2 11.047673946	172.16.51.1	193.136.28.10	DNS	70 Standard query 0x40f0 AAAA google.com
1	3 11.048294617	193.136.28.10	172.16.51.1	DNS	334 Standard query response 0xabe7 A google.com A 142.250.184.174 NS ns3.
1	4 11.048353353	193.136.28.10	172.16.51.1	DNS	346 Standard query response 0x40f0 AAAA google.com AAAA 2a00:1450:4003:80
1	5 11.048641444	172.16.51.1	142.250.184.174	ICMP	98 Echo (ping) request id=0x5fa1, seq=1/256, ttl=64 (reply in 16)
1	11.063983747	142.250.184.174	172.16.51.1	ICMP	98 Echo (ping) reply id=0x5fa1, seq=1/256, ttl=108 (request in 15)
1	7 11.064076145	172.16.51.1	193.136.28.10	DNS	88 Standard query 0x223e PTR 174.184.250.142.in-addr.arpa
1	3 11.064638150	193.136.28.10	172.16.51.1	DNS	385 Standard guery response 0x223e PTR 174.184.250.142.in-addr.arpa PTR m

Exp 6 - Primeira transferência (um ficheiro - tux3)

8 12.506785	07 172.16.50.1	193.136.28.10	DNS	76 Standard query 0x7a44 A netlab1.fe.up.pt
9 12.507687	60 193.136.28.10	172.16.50.1	DNS	286 Standard query response 0x7a44 A netlabl.fe.up.pt A 192.168.109.136 NS ns1.fe.up.pt NS cns1.fe.up.pt NS cns2.fe.u
10 12.507848	882 172.16.50.1	192.168.109.136	TCP	74 51278 → 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=2964992497 TSecr=0 WS=128
11 12.508449	350 192.168.109.136	172.16.50.1	TCP	74 21 → 51278 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=1539790828 TSecr=2964992497 WS=128
12 12.508467	70 172.16.50.1	192.168.109.136	TCP	66 51278 → 21 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2964992498 TSecr=1539790828
13 12.510153	53 192.168.109.136	172.16.50.1	FTP	100 Response: 220 Welcome to netlab-FTP server
14 12.510163	40 172.16.50.1	192.168.109.136	TCP	66 51278 → 21 [ACK] Seq=1 Ack=35 Win=64256 Len=0 TSval=2964992500 TSecr=1539790830
15 12.510229	40 172.16.50.1	192.168.109.136	FTP	81 Request: user anonymous
16 12.510694	10 192.168.109.136	172.16.50.1	TCP	66 21 → 51278 [ACK] Seq=35 Ack=16 Win=65280 Len=0 TSval=1539790830 TSecr=2964992500
17 12.510748	67 192.168.109.136	172.16.50.1	FTP	100 Response: 331 Please specify the password.
18 12.510802	14 172.16.50.1	192.168.109.136	FTP	80 Request: pass password
19 12.511358	14 192.168.109.136	172.16.50.1	TCP	66 21 → 51278 [ACK] Seq=69 Ack=30 Win=65280 Len=0 TSval=1539790831 TSecr=2964992500
20 12.512690	355 192.168.109.136	172.16.50.1	FTP	89 Response: 230 Login successful.
21 12.512730	55 172.16.50.1	192.168.109.136	FTP	71 Request: pasv
22 12.513246	28 192.168.109.136	172.16.50.1	TCP	66 21 → 51278 [ACK] Seq=92 Ack=35 Win=65280 Len=0 TSval=1539790833 TSecr=2964992502
23 12.513384	73 192.168.109.136	172.16.50.1	FTP	119 Response: 227 Entering Passive Mode (192,168,109,136,169,79).
24 12.513472	42 172.16.50.1	192.168.109.136	TCP	74 41362 → 43343 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=2964992503 TSecr=0 WS=128
25 12.514095	282 192.168.109.136	172.16.50.1	TCP	74 43343 → 41362 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=1539790834 TSecr=2964992503 WS=128
26 12.514106	26 172.16.50.1	192.168.109.136	TCP	66 41362 → 43343 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2964992503 TSecr=1539790834
27 12.514121	81 172.16.50.1	192.168.109.136	FTP	79 Request: retr pub.txt
28 12.514683	50 192.168.109.136	172.16.50.1	TCP	66 21 → 51278 [ACK] Seq=145 Ack=48 Win=65280 Len=0 TSval=1539790834 TSecr=2964992504
29 12.514826	33 192.168.109.136	172.16.50.1	FTP	132 Response: 150 Opening BINARY mode data connection for pub.txt (672 bytes).
30 12.515015	63 192.168.109.136	172.16.50.1	FTP-D	738 FTP Data: 672 bytes (PASV) (retr pub.txt)
31 12.515024	372 172.16.50.1	192.168.109.136	TCP	66 41362 → 43343 [ACK] Seq=1 Ack=673 Win=64128 Len=0 TSval=2964992504 TSecr=1539790834
32 12.515027	55 192.168.109.136	172.16.50.1	TCP	66 43343 → 41362 [FIN, ACK] Seq=673 Ack=1 Win=65280 Len=0 TSval=1539790835 TSecr=2964992503
	31 172.16.50.1	192.168.109.136	TCP	66 41362 → 43343 [ACK] Seq=1 Ack=674 Win=64128 Len=0 TSval=2964992547 TSecr=1539790835
34 12.557595	49 172.16.50.1	192.168.109.136	TCP	66 51278 → 21 [ACK] Seq=48 Ack=211 Win=64256 Len=0 TSval=2964992547 TSecr=1539790834
35 12.558262	377 192.168.109.136	172.16.50.1	FTP	90 Response: 226 Transfer complete.

Exp 6 - Segunda transferência (dois ficheiros)

tux3 - (ínicio e fim)

_					
	4 2.305794431	193.136.28.10	172.16.50.1	DNS	286 Standard query response 0xfaa6 A netlab1.fe.up.pt A 192.168.109.136 NS cns1.fe.up.pt NS ns1.fe.up.pt NS ns2.fe.up.r
- 1	5 2.305966937	172.16.50.1	192.168.109.136	TCP	74 54834 → 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=2968263047 TSecr=0 WS=128
- 1	6 2.306794757	192.168.109.136	172.16.50.1	TCP	74 21 → 54834 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=1543061377 TSecr=2968263047 WS=128
	7 2.306814662	172.16.50.1	192.168.109.136	TCP	66 54834 → 21 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2968263048 TSecr=1543061377
	8 2.308914837	192.168.109.136	172.16.50.1	FTP	100 Response: 220 Welcome to netlab-FTP server
	9 2.308927478	172.16.50.1	192.168.109.136	TCP	66 54834 → 21 [ACK] Seq=1 Ack=35 Win=64256 Len=0 TSval=2968263050 TSecr=1543061379
	10 2.308995643	172.16.50.1	192.168.109.136	FTP	76 Request: user rcom
	11 2.309726594	192.168.109.136	172.16.50.1	TCP	66 21 → 54834 [ACK] Seq=35 Ack=11 Win=65280 Len=0 TSval=1543061380 TSecr=2968263050
	12 2.309798320	192.168.109.136	172.16.50.1	FTP	100 Response: 331 Please specify the password.
	13 2.309852796	172.16.50.1	192.168.109.136	FTP	76 Request: pass rcom
	14 2.310316398	192.168.109.136	172.16.50.1	TCP	66 21 → 54834 [ACK] Seq=69 Ack=21 Win=65280 Len=0 TSval=1543061381 TSecr=2968263051
	15 2.319677617	192.168.109.136	172.16.50.1	FTP	89 Response: 230 Login successful.
	16 2.319724759	172.16.50.1	192.168.109.136	FTP	71 Request: pasv
	17 2.320159517	192.168.109.136	172.16.50.1	TCP	66 21 → 54834 [ACK] Seq=92 Ack=26 Win=65280 Len=0 TSval=1543061390 TSecr=2968263061
	18 2.320331185	192.168.109.136	172.16.50.1	FTP	120 Response: 227 Entering Passive Mode (192,168,109,136,187,143).
	19 2.320430568	172.16.50.1	192.168.109.136	TCP	74 37630 → 48015 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=2968263061 TSecr=0 WS=128
- 1	20 2.320953744	192.168.109.136	172.16.50.1	TCP	74 48015 → 37630 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=1543061391 TSecr=2968263061 WS=128
_ [21 2.320971204	172.16.50.1	192.168.109.136	TCP	66 37630 → 48015 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=2968263062 TSecr=1543061391
	22 2.320985382	172.16.50.1	192.168.109.136	FTP	109 Request: retr files/archlinux-2023.03.01-x86_64.iso
	23 2.321506811	192.168.109.136	172.16.50.1	TCP	66 21 → 54834 [ACK] Seq=146 Ack=69 Win=65280 Len=0 TSval=1543061392 TSecr=2968263062
	24 2.321659273	192.168.109.136	172.16.50.1	FTP	168 Response: 150 Opening BINARY mode data connection for files/archlinux-2023.03.01-x86_64.iso (849686528 bytes).
	25 2.321946946	192.168.109.136	172.16.50.1	FTP-D	1514 FTP Data: 1448 bytes (PASV) (retr files/archlinux-2023.03.01-x86_64.iso)

400	74.910242050	172.16.50.1	192.168.109.136	TCP	66 37630 → 48015 [ACK] Seq=1 Ack=849683505 Win=2856064 Len=0 TSval=2968335651 TSecr=1543133973
400	74.910357845	192.168.109.136	172.16.50.1	FTP-D	1514 FTP Data: 1448 bytes (PASV) (retr files/archlinux-2023.03.01-x86_64.iso)
400	74.910482581	192.168.109.136	172.16.50.1	FTP-D	1642 FTP Data: 1576 bytes (PASV) (retr files/archlinux-2023.03.01-x86_64.iso)
400	74.910501158	172.16.50.1	192.168.109.136	TCP	66 37630 → 48015 [ACK] Seq=1 Ack=849686530 Win=2855424 Len=0 TSval=2968335651 TSecr=1543133973
400	74.911351886	192.168.109.136	172.16.50.1	FTP	90 Response: 226 Transfer complete.
400	74.911362013	172.16.50.1	192.168.109.136	TCP	66 54834 → 21 [ACK] Seq=69 Ack=272 Win=64256 Len=0 TSval=2968335652 TSecr=1543133982
400	75.535512844	172.16.50.1	192.168.109.136	FTP	71 Request: quit
400	75.536272570	192.168.109.136	172.16.50.1	TCP	66 21 → 54834 [ACK] Seq=272 Ack=74 Win=65280 Len=0 TSval=1543134607 TSecr=2968336276
400	75.536313496	192.168.109.136	172.16.50.1	FTP	80 Response: 221 Goodbye.
400	75.536325579	172.16.50.1	192.168.109.136	TCP	66 54834 → 21 [ACK] Seq=74 Ack=286 Win=64256 Len=0 TSval=2968336277 TSecr=1543134607
400	75.536344715	192.168.109.136	172.16.50.1	TCP	66 21 → 54834 [FIN, ACK] Seq=286 Ack=74 Win=65280 Len=0 TSval=1543134607 TSecr=2968336276
400	75.536376912	172.16.50.1	192.168.109.136	TCP	66 54834 → 21 [FIN, ACK] Seq=74 Ack=287 Win=64256 Len=0 TSval=2968336277 TSecr=1543134607
400	75.536392486	172.16.50.1	192.168.109.136	TCP	66 37630 → 48015 [FIN, ACK] Seq=1 Ack=849686530 Win=2857216 Len=0 TSval=2968336277 TSecr=1543133973
400	75.536791834	192.168.109.136	172.16.50.1	TCP	66 21 → 54834 [ACK] Seq=287 Ack=75 Win=65280 Len=0 TSval=1543134607 TSecr=2968336277
400	75.536833180	192.168.109.136	172.16.50.1	TCP	66 48015 → 37630 [ACK] Seq=849686530 Ack=2 Win=65280 Len=0 TSval=1543134607 TSecr=2968336277

tux2 -

12 20.572062325	172.16.51.1	193.136.28.10	DNS	76	Standard query 0x14a4 A netlab1.fe.up.pt
13 20.577354635	193.136.28.10	172.16.51.1	DNS	286	Standard query response 0x14a4 A netlab1.fe.up.pt A 192.168.109.136 NS cns2.fe.up.pt NS ns1.fe.up.pt NS ns2.fe.
14 20.577486497	172.16.51.1	192.168.109.136	TCP	74	48848 → 21 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=3024883620 TSecr=0 WS=128
15 20.579522614	192.168.109.136	172.16.51.1	TCP	74	21 - 48848 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=1543068637 TSecr=3024883620 WS=128
16 20.579541681	172.16.51.1	192.168.109.136	TCP	66	48848 → 21 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=3024883623 TSecr=1543068637
17 20.588103314	192.168.109.136	172.16.51.1	FTP	100	Response: 220 Welcome to netlab-FTP server
18 20.588117073	172.16.51.1	192.168.109.136	TCP	66	48848 → 21 [ACK] Seq=1 Ack=35 Win=64256 Len=0 TSval=3024883631 TSecr=1543068647
19 20.588184820	172.16.51.1	192.168.109.136	FTP	76	Request: user rcom
20 20.589980120	192.168.109.136	172.16.51.1	TCP	66	21 → 48848 [ACK] Seq=35 Ack=11 Win=65280 Len=0 TSval=1543068647 TSecr=3024883631
21 20.589986126	192.168.109.136	172.16.51.1	FTP	100	Response: 331 Please specify the password.
22 20.590038927	172.16.51.1	192.168.109.136	FTP	76	Request: pass rcom
23 20.599309531	192.168.109.136	172.16.51.1	TCP	66	21 → 48848 [ACK] Seq=69 Ack=21 Win=65280 Len=0 TSval=1543068658 TSecr=3024883633
24 20.610419296	192.168.109.136	172.16.51.1	FTP	89	Response: 230 Login successful.
25 20.610465601	172.16.51.1	192.168.109.136	FTP	71	Request: pasv
26 20.612360007	192.168.109.136	172.16.51.1	TCP	66	21 - 48848 [ACK] Seq=92 Ack=26 Win=65280 Len=0 TSval=1543068670 TSecr=3024883653
27 20.612365385	192.168.109.136	172.16.51.1	FTP	120	Response: 227 Entering Passive Mode (192,168,109,136,191,179).
28 20.612459952	172.16.51.1	192.168.109.136	TCP	74	40050 → 49075 [SYN] Seq=0 Win=64240 Len=0 MSS=1460 SACK_PERM TSval=3024883655 TSecr=0 WS=128
29 20.620951184	192.168.109.136	172.16.51.1	TCP	74	49075 → 40050 [SYN, ACK] Seq=0 Ack=1 Win=65160 Len=0 MSS=1460 SACK_PERM TSval=1543068676 TSecr=3024883655 WS=12
30 20.620964803	172.16.51.1	192.168.109.136	TCP	66	40050 → 49075 [ACK] Seq=1 Ack=1 Win=64256 Len=0 TSval=3024883664 TSecr=1543068676
31 20.620985546	172.16.51.1	192.168.109.136	FTP	80	Request: retr pipe.txt
32 20.623433663	192.168.109.136	172.16.51.1	TCP	66	21 → 48848 [ACK] Seq=146 Ack=40 Win=65280 Len=0 TSval=1543068681 TSecr=3024883664
33 20.623439041	192.168.109.136	172.16.51.1	FTP	134	Response: 150 Opening BINARY mode data connection for pipe.txt (1863 bytes).
34 20.623590459	192.168.109.136	172.16.51.1	FTP-D	1929	FTP Data: 1863 bytes (PASV) (retr pipe.txt)
35 20.623598910	172.16.51.1	192.168.109.136	TCP	66	40050 → 49075 [ACK] Seq=1 Ack=1864 Win=63488 Len=0 TSval=3024883667 TSecr=1543068681
36 20.623602612	192.168.109.136	172.16.51.1	TCP	66	49075 → 40050 [FIN, ACK] Seq=1864 Ack=1 Win=65280 Len=0 TSval=1543068681 TSecr=3024883664
37 20.666921747	172.16.51.1	192.168.109.136	TCP	66	40050 → 49075 [ACK] Seq=1 Ack=1865 Win=64128 Len=0 TSval=3024883710 TSecr=1543068681
38 20.666926007	172.16.51.1	192.168.109.136	TCP	66	48848 → 21 [ACK] Seq=40 Ack=214 Win=64256 Len=0 TSval=3024883710 TSecr=1543068681
39 20.675971648	192.168.109.136	172.16.51.1	FTP	90	Response: 226 Transfer complete.
40 20.675977376	172.16.51.1	192.168.109.136	TCP	66	48848 → 21 [ACK] Seq=40 Ack=238 Win=64256 Len=0 TSval=3024883719 TSecr=1543068728
41 20.676022564	172.16.51.1	192.168.109.136	FTP	71	Request: quit
42 20.677669727	192.168.109.136	172.16.51.1	FTP	80	Response: 221 Goodbye.
43 20.677709677	192.168.109.136	172.16.51.1	TCP	66	21 - 48848 [FIN, ACK] Seq=252 Ack=45 Win=65280 Len=0 TSval=1543068736 TSecr=3024883719
44 20.677719804	172.16.51.1	192.168.109.136	TCP	66	48848 → 21 [FIN, ACK] Seq=45 Ack=253 Win=64256 Len=0 TSval=3024883721 TSecr=1543068736
45 20.677730560	172.16.51.1	192.168.109.136	TCP	66	40050 → 49075 [FIN, ACK] Seq=1 Ack=1865 Win=64128 Len=0 TSval=3024883721 TSecr=1543068681
46 20.679443725	192.168.109.136	172.16.51.1	TCP	66	21 - 48848 [ACK] Seq=253 Ack=46 Win=65280 Len=0 TSval=1543068737 TSecr=3024883721
47 20.679455249	192.168.109.136	172.16.51.1	TCP	66	49075 → 40050 [ACK] Seq=1865 Ack=2 Win=65280 Len=0 TSval=1543068737 TSecr=3024883721