1 基本定义

- 1. 参考教材: An Introduction of Mathmatical Theory of Inverse Problem(前三章), Kirsch;
- 2. 反问题举例:
 - (a) 确定空间分布物体的密度: 即已知 $u(x,y,z) = \iint_{\Omega} \frac{\rho(\xi,\eta,\zeta)d\xi d\eta d\zeta}{\left(\sqrt{(x-\xi)^2+(y-\eta)^2+(z-\zeta)^2}\right)^3}$, 求 $\rho(\xi,\eta,\zeta)$;
 - (b) 逆热传导方程的反问题: 根据热传导方程 $\begin{cases} \frac{\partial u}{\partial t} = a^2 \frac{\partial^2 u}{\partial x^2} + f(x,t) & x \in \mathbb{R} \\ u|_{t=0} = \phi(x) & , \end{cases}$ 已知正问题的值 $u(x,t) = \frac{1}{2a\sqrt{\pi t}} \int_{-\infty}^{+\infty} \phi(\xi) e^{-\frac{(x-\xi)^2}{4a^2t}} d\xi + \frac{1}{2a\sqrt{\pi}} \int_0^t \int_{-\infty}^{+\infty} \frac{f(\xi,\tau)}{\sqrt{t-\tau}} e^{-\frac{(x-\xi)}{4a^2\sqrt{t-\tau}}} d\tau ,$ 求 $\phi(x) = u(x,0)$;
- 3. 适定性 (well-posedness): 设 X, Y 是赋范空间, 算子 $K: X \to Y, Kx = y$ 称为适定的若解 x 满足:
 - (a) 存在性: 对每个 $y \in Y$, 至少有一个 $x \in X$, 满足 Kx = y;
 - (b) 唯一性: 对每个 $y \in Y$, 至多由一个 $x \in X$, 满足 Kx = y;
 - (c) 稳定性: x 连续依赖于 y. 即若 $\{x_n\} \subseteq X$, $\lim_{n\to\infty} Kx_n = Kx$, 则 $x_n \to x$;
- 4. 不适定性 (ill-posedness): 不满足任意适定性条件, 也称为病态性;
- 5. 设 X, Y 是赋范空间, 线性紧算子 $K: X \to Y$, 记核空间 $\mathcal{N}(K) = \{x \in X: Kx = 0\}$. 若商空间的维数无穷 $\dim \frac{X}{\mathcal{N}(K)} = \infty$, 则 $\exists \{x_n\} \subset X$ 满足 $Kx_n = 0$ 但 $\{x_n\}$ 不收敛;
 - (a) 特别地, K^{-1} 是无界的;
- 6. 不适定问题举例:
 - (a) (反问题) 第一类 Fredholm 积分方程: 对于 $\int_a^b K(x,t)Z(t)dt = u(x)$, $x \in [c,d]$, 已知 u(x) 求 Z(t). 其中核函数 K(x,t) 在 $[c,d] \times [a,b]$ 上连续;

已知 $Z_1(t)$ 是 $u_1(x)$ 的解, 构造 $Z_2(t) = Z_1(t) + N \sin \omega t$,

得到
$$u_2(x) = \int_a^b K(x,t) Z_2(t) dt = \int_a^b K(x,t) [Z_1(t) + N \sin \omega t] dt = u_1(x) + N \int_a^b K(x,t) \sin \omega t dt;$$

固定 N, 令 $\omega \to \infty$ 充分大, 则由 Riemann-Lebesgue 引理: 因为 K(x,t) 连续, 则 $\int_a^b K(x,t) \sin \omega t dt \to 0$ 充分

由
$$||u_1(x) - u_2(x)||_2 = \left| \left| N \int_a^b K(x,t) \sin \omega t dt \right| \right|_2 = |N| \left\{ \int_c^d \left[\int_a^b K(x,t) \sin \omega t dt \right]^2 dx \right\}^{\frac{1}{2}} \to 0,$$
得 $||Z_1(t) - Z_2(t)||_2 = |N| \left\{ \int_a^b \sin^2 \omega t dt \right\}^{\frac{1}{2}} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2b\omega - \sin 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\sin 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{\frac{b-a}{2} - \frac{1}{4\omega} (\cos 2a\omega - \cos 2a\omega)} = |N| \sqrt{$

当 $\omega \to \infty$ 充分大, $||Z_1(t) - Z_2(t)||_2 \to |N|\sqrt{\frac{b-a}{2}}$. 即 $u_2 \rightarrow u_1$, $\not\sqsubseteq Z_2 \nrightarrow Z_1$;

$$||Z_1(t) - Z_2(t)||_{\infty} = \max_{t \in [a,b]} |N \sin \omega t| = |N|;$$

即测量值 u_2 相对精确值 u_1 存在充分小的误差, 但反问题 的解的误差不一定充分小;

(b) (正问题) 二维 Laplace 方程的 Cauchy 问题: 对于定解问题 $\begin{cases} \Delta u(x,y) = 0 & -\infty < x < +\infty \\ u(x,0) = f(x) & \frac{\partial u(x,y)}{\partial y} \Big|_{y=0} = \varphi(x,y) \end{cases}$

$$\begin{cases} \Delta u(x,y) = 0 & -\infty < x < +\infty \\ u(x,0) = f(x) & \frac{\partial u(x,y)}{\partial y} \Big|_{y=0} = \varphi(x) \end{cases}$$

其中 $f(x), \varphi(x)$ 已知, 求 u(x,y);

取 $f_1(x) \equiv 0, \varphi_1(x) = \frac{\sin ax}{a} (a > 0)$,则 $u_1(x, y) = \frac{1}{a^2} \sin ax$ · sinh ay 是该问题的解;

取
$$f_2(x) = 0$$
, $\varphi_2(x) = 0$, 则 $u_2(x,y) = 0$;
则 $||f_1(x) - f_2(x)||_{\infty} = 0$, $||\varphi_1(x) - \varphi_2(x)||_{\infty} = \sup_{x \in \mathbb{R}} \left|\frac{\sin ax}{a}\right| = \frac{1}{a}$, $||u_1(x) - u_2(x)||_{\infty} = \sup_{x,y} \left|\frac{1}{a^2}\sin ax \cdot \sinh ay\right| = \frac{1}{a^2}\sinh ay$ (当 $a > 0$ 充分大 $a \to \infty$, 该范数任意大);

(c) (反问题) 计算机层析成像 (CT) 问题: 已知射线强度为 I, 射线围绕 被观测组织参考系旋转的角度为 δ , 射线经过路程参数化为 u, 组 织的射线吸收率为常数 γ , 组织的密度为 ρ , 则 $dI = -\gamma \rho I du$ (解为 $\ln I(u) = -\gamma \int_{u_0}^u \rho(x,y) du$). 射线源到组织参考系的距离为 s, 测量 点的坐标为 $se^{i\delta}+uie^{i\delta}$, 则相对强度损失 $\ln I(u)=-\gamma\int_{u_0}^u\rho(se^{i\delta}+uie^{i\delta})$ $uie^{i\delta})du$. 求组织的密度分布 ρ ;

> 定义 Radon 变换: $R\rho := \int_{-\infty}^{+\infty} \rho(se^{i\delta} + uie^{i\delta})du;$ 假定 ρ 径向对称为 $\rho(r)$, 射线为 (x,0), 则相对射线强度 $v(x) := \ln I(\infty) = -2\gamma \int_0^\infty \rho(\sqrt{x^2 + u^2}) du,$

令
$$r^2 = x^2 + u^2$$
, 则 $v(x) = -2\gamma \int_x^R \frac{r}{\sqrt{r^2 - x^2}} \rho(r) dr$,
其中 $R \to \infty$ 是组织的最大厚度;

(d) (反问题) 微分问题: 已知积分方程 $y(t) = \int_0^t x(s)ds$ 和 y(t), 求 x(t) = y'(t);

对 y(t) 作扰动 $y(t)+\delta\sin\frac{t}{\delta^2}$, 对应的解 $x(t)=y'(t)+\frac{1}{\delta}\cos\frac{t}{\delta^2}$;

考虑 $K: X \to Y$,

取 $K: C[0,1] \to C[0,1]$ 且 y(0) = 0,则 $||y_1 - y_2||_{\infty} = \max_{t \in [0,1]} \left| \delta \sin \frac{t}{\delta^2} \right| = \delta$, $||x_1 - x_2||_{\infty} = \max_{s \in [0,1]} \left| \frac{1}{\delta} \cos \frac{t}{\delta^2} \right| = \frac{1}{\delta}$. 此时方程不适定;

取 $K: C[0,1] \to Y := \{ y \in C^1[a,b], \exists y(0) = 0 \},$ 则 $||y||_Y = \max_{t} |y'|, ||y_1 - y_2||_Y = \max_{t} \left| \frac{1}{\delta} \cos \frac{t}{\delta^2} \right| = \frac{1}{\delta}.$ 此时方程适定;

- 7. 紧积分算子定理: 设 J = [a.b], 且 K(s,t) 在 [a,b] 上连续, 则 $(TX)(s) = \int_{a}^{b} K(s,t)X(t)dt$ 所定义的算子 $K: J \to J$ 是紧算子;
- 8. 最坏的误差: 对于 $\int_0^t x(s)ds = y(t), t \in [0,1], x \in C[0,1];$

已知: y(t) 且 $||y''||_{\infty} \le E$. 实际观测值为 $\tilde{y}(t)$, 误差 $z(t) := y(t) - \tilde{y}(t)$;

条件: z(0) = z'(0) = 0 且 $z'(t) \ge 0$, 观测误差 $||z||_{\infty} < \delta$; 计算: $|x(t) - \tilde{x}(t)|^2 = |z'(t)|^2 = \left| \int_0^t \frac{d}{ds} |z'(t)|^2 ds \right| = \int_0^t 2z'(s)z''(s)ds \le 4E \int_0^t z'(s)ds = 4Ez(t);$

结论: $|x - \tilde{x}|_{\infty}^2 \le 4E\delta$, 即 $||x - \tilde{x}||_{\infty} \le 2\sqrt{E\delta}$;

- 9. 范数强弱: 已知线性有界算子 $K: X \to Y$, Banach 空间 X, Y, 子空间 $X_1 \subset X$, 定义 X_1 上的范数为 $||\cdot||_1$, X 上的范数为 $||\cdot||_1$ 若 $\forall x \in X_1$, $\exists c > 0$, s.t. $||x|| \le c||x||_1$, 则称 $||\cdot||_1$ 是比 $||\cdot||$ 更强的范数;
 - (a) 记号: 对于误差 δ , 理想观测值二阶导数上界 E, 记 $F(\delta, E, ||\cdot||_1) := \sup\{||x||_1 : ||Kx|| \le \delta, ||x||_1 \le E\}.$ 当 $\delta \to 0$, 有 $F \to 0$;
 - (b) 注意: ||·||1 不是指 1- 范数;
- 10. 引理: 设 $K: X \to Y$ 是线性紧算子, 且 dim $\frac{X}{N(K)} = \infty$, 则存在 c, δ_0 , 使 得 $\forall \delta \in (0, \delta_0), F(\delta, E, ||\cdot||_1) \geq c$;

11. 紧算子奇异分解 (singular value decomposition): 设 $K: X \to Y$ 是紧算子, X, Y 是 Hilbert 空间, 伴随算子 (共轭算子) $K^*: Y \to X$, 其中 $\mu_1 \ge \mu_2 \ge \mu_3... > 0$ 是 K 的奇异值, 则存在标准正交系 $\{x_j\} \subset X$, $\{y_j\} \subset Y$. 有 $Kx_j = u_j y_j$, $K^* y_j = u_j x_j$, $j \in J$, 且 $x = x_0 + \sum_{j \in J} (x, x_j) x_j$, $Kx = \sum_{j \in J} u_j(x, x_j) y_j$. 称 (u_j, x_j, y_j) 为 K 的奇异系;

- 12. 定理: $F(\delta, E, ||x'||_{L^2}) \leq \sqrt{\delta E}$, $F(\delta, E, ||x''||_{L^2}) \leq \delta^{\frac{2}{3}} E^{\frac{1}{3}}$;
- 13. 定理: $K: X \to Y$ 是线性紧算子, X, Y 是 Hilbert 空间, K 有稠密的值域, 共轭算子 $K^*: Y \to X$, 则:
 - (a) 若 $X_1 := K^*(Y), ||x||_1 := ||(K^*)^{-1}x||_Y, x \in X_1, 则:$
 - i. $F(\delta, E, ||\cdot||_1) \leq \sqrt{\delta E}$;
 - ii. 存在 $\delta_n \to 0$, 使得 $F(\delta_n, E, ||\cdot||_1) = \sqrt{\delta_n E}$;
 - (b) 若 $X_2 := K^*K(X), ||x||_2 := ||(K^*K)^{-1}x||_X, x \in X_2, 则:$
 - i. $F(\delta, E, ||\cdot||_2) \leq \delta^{\frac{2}{3}} E^{\frac{1}{3}};$
 - ii. $\exists \delta_n \to 0, s.t. : F(\delta_n, E, ||\cdot||_2) = \delta_n^{\frac{2}{3}} E^{\frac{1}{3}};$
- 14. 例题: 对于 $\begin{cases} \frac{\partial u(x,t)}{\partial t} = \frac{\partial^2 u(x,t)}{\partial x^2} & x \in [0,\pi], t > 0 \\ u(0,t) = u(\pi,t) = 0 & u(x,0) = u_0(x) \end{cases}$ 有精确解 u(x,t) = u(x,t

$$\frac{2}{\pi} \sum_{n=1}^{\infty} e^{-n^2 t} \sin(nx) \cdot \int_0^{\pi} u_0(y) \sin(ny) dy := \sum_{n=1}^{\infty} a_n \cdot e^{-n^2 t} \sin(nx), 其中 a_n = \frac{2}{\pi} \int_0^{\pi} u_0(y) \sin(ny) dy.$$
 已知 $u(x,T)$, 逆求 $u(x,\tau)$, $\tau < T$;

解可写成 $u(x,t) = \frac{2}{\pi} \int_0^{\pi} K(x,y) u_0(y) dy$, 其中 $K(x,y) = \sum_{n=1}^{\infty} e^{-n^2 t} \sin(nx) \sin(ny)$; 若 $\tau \in (0,T)$, 则 $F(\delta, E, ||\cdot||_1) \leq E^{1-\frac{\tau}{T}} \delta^{\frac{\tau}{T}}$;

15. 例题: 数值微分 $N(t) = \begin{cases} \frac{1}{h}[y(t+h) - y(t)] & t \in (0, \frac{1}{2}), \\ \frac{1}{h}[y(t) - y(t-h)] & t \in (\frac{1}{2}, 1), \end{cases}$, 计算 $||N(t) - y'||_{L^2}, y \in H^2(0, 1);$

$$y(t\pm h)=y(t)\pm y'(t)h+\int_t^{t+h}(t\pm h-s)y''(s)ds;$$
 当 $t\in(0,\frac{1}{2})$ 时,

$$\begin{split} N(t)-y'(t)&=\tfrac{1}{h}\int_t^{t+h}(t+h-s)y''(s)ds, \diamondsuit \tau=t+h-s, \\ \text{for } N(t)-y'(t)&=\tfrac{1}{h}\int_0^h y''(t+h-\tau)\tau d\tau; \end{split}$$

$$\begin{split} h^2 \int_0^{\frac{1}{2}} |N(t) - y'(t)|^2 dt &= \int_0^{\frac{1}{2}} \int_0^h y''(t+h-\tau)\tau d\tau \cdot \\ \int_0^h sy''(t+h-s) ds dt &= \int_0^h \int_0^h \tau s \left[\frac{y''(t+h-\tau)}{y''(t+h-s)} dt \right] d\tau ds \leq \\ \int_0^h \int_0^h \tau s d\tau ds \frac{\left[\int_0^{\frac{1}{2}} y''(t+h-\tau)^2 dt \right]^{\frac{1}{2}}}{\left[\int_0^{\frac{1}{2}} y''(t+h-\tau) dt \right]^{\frac{1}{2}}} &= \left[\int_0^h \int_0^h \tau s d\tau ds \right] ||y''||_{L^2(0,\frac{1}{2})}^2 = \\ ||y''||_{L^2(0,\frac{1}{2})}^2 \cdot \frac{h^4}{4}; \\ \Leftrightarrow \Im \int_0^{\frac{1}{2}} |N(t) - y'(t)|^2 dt \leq &= ||y''||_{L^2(0,\frac{1}{2})} \cdot \frac{h^2}{4} \leq \frac{1}{\sqrt{2}} Eh; \\ \Leftrightarrow t \in (\frac{1}{2},1) \ \text{F}, \\ \Leftrightarrow \Im \int_{\frac{1}{2}}^1 |N(t) - y'(t)|^2 dt \leq &= ||y''||_{L^2(0,\frac{1}{2})} \cdot \frac{h^2}{4}; \end{split}$$

2 第一类积分方程的正则化方法

- 1. 正则化策略 (正则化方法): 对于线性积分算子 (紧算子) $K: X \to Y$, Kx = y, $\dim X = \infty$. 近似已知 $y \approx y^{\delta}$ 即 $||y y^{\delta}|| \leq \delta$, 求解 $Kx^{\delta} = y^{\delta}$. 由于 K^{-1} 无界, 所以用有界线性算子族 $R_{\alpha} \approx K^{-1}$, 其中 $\alpha > 0$ 为 参数, R_{α} 称为正则化算子. 有界线性算子族 R_{α} 称为一个正则化策略. $R_{\alpha}: Y \to X$, $\alpha > 0$, 满足 $\lim_{\alpha \to 0} R_{\alpha}Kx = x$, $\forall x$ (即 $R_{\alpha}K$ 逐点收敛于 I);
 - (a) $\exists \alpha_i, s.t. ||R_{\alpha_i}|| \to \infty, j \to \infty;$
 - (b) $R_{\alpha}K$ 不一致收敛于 I;
- 2. Young 不等式: $||f + g||_p \le ||f||_1 \cdot ||g||_p$, $1 \le p \le 2$;
- 3. 例题: 取 $\alpha = h$, 中心差分 $R_h y(t) := \begin{cases} \frac{1}{h} \left[4y(t + \frac{h}{2}) y(t + h) 3y(t) \right] & 0 < t < \frac{h}{2} \\ \frac{1}{h} \left[y(t + \frac{h}{2}) y(t \frac{h}{2}) \right] & \frac{h}{2} \le t \le 1 \frac{h}{2}, \\ \frac{1}{h} \left[3y(t) y(t h) 4y(t \frac{h}{2}) \right] & 1 \frac{h}{2} < t \le 1 \end{cases}$ 证明 R_h 就是一个正则化策略. 即证明:

(a) $||R_hK||_{L^2(0,1)} \leq C$, 即 R_hK 一致有界; $R_hy(t) = \frac{1}{h} \int_{t-\frac{h}{2}}^{t+\frac{h}{2}} y'(s) ds = \frac{1}{h} \int_{-\frac{h}{2}}^{\frac{h}{2}} y'(r+t) dr, 其中 s := r+t; \\ ||R_hy(t)||_{L^2(\frac{h}{2},1-\frac{h}{2})}^2 = \int_{\frac{h}{2}}^{1-\frac{h}{2}} |R_hy(t)|^2 dt = \frac{1}{h^2} \int_{\frac{h}{2}}^{1-\frac{h}{2}} \left[\int_{-\frac{h}{2}}^{\frac{h}{2}} y'(r+t) dr \right]^2 dt \leq \frac{1}{h^2} \int_{\frac{h}{2}}^{1-\frac{h}{2}} ||y'||_{L^2(0,1)}^2 \cdot \left(\int_{-\frac{h}{2}}^{\frac{h}{2}} ds \right)^2 dt = \int_{\frac{h}{2}}^{1-\frac{h}{2}} dt \cdot ||y'||_{L^2(0,1)}^2 \leq ||y'||_{L^2(0,1)}^2;$

所以 $||R_hKx||_{L^2(0,1)} = ||R_hy(t)||_{L^2(0,1)} \le ||y'||_{L^2(0,1)}$, 即 R_hK 一致有界. 其他区间同理;

- 4. 例题: 对于 $Kx = \int_0^t x(s)ds$, $K: L_0^2(0,1) \to L^2(0,1)$, $L_0^2(0,1) = \{z \in L^2(0,1): \int_0^1 z(s)ds = 0\}$. Gauss 核 $\psi_\alpha(t) = \frac{1}{\alpha\sqrt{\pi}}e^{-\frac{t^2}{\alpha^2}}$, $\int_{-\infty}^{+\infty}\psi_\alpha(t)dt = 1$, $||\psi_\alpha'||_{L^1} = \frac{2}{\alpha\sqrt{\pi}}$. 定义 $\psi_\alpha * y := \int_{-\infty}^{+\infty}\psi_\alpha(t-s)y(s)ds = \int_{-\infty}^{+\infty}\psi_\alpha(s)y(t-s)ds$, 由 Young 不等式 $||\psi_\alpha * y||_{L^2} \le ||\psi_\alpha||_{L^1} \cdot ||y||_{L^2} = ||y||_{L^2}$ 知卷积算子是一致有界算子. 证明 K 是一个正则化策略:
 - (a) 准备知识: $||\psi_{\alpha} * z z||_{L^{2}} \to 0$, $\alpha \to 0$, $z \in L^{2}(0,1)$, $||\psi_{\alpha} * z z||_{L^{2}(\mathbb{R})} \le \sqrt{2\alpha}||z'||_{L^{2}(0,1)}$; β 定义 $\mathcal{F}z(t) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} z(s)e^{-ist}ds$, 则 $\mathcal{F}z'(t) = (-it)\mathcal{F}z(t)$; $||\psi_{\alpha} * z z||_{L^{2}(\mathbb{R})} = ||\mathcal{F}(\psi_{\alpha} * z) \mathcal{F}(z)||_{L^{2}(\mathbb{R})} = ||[\sqrt{2\pi}\mathcal{F}(\psi_{\alpha}) 1]\mathcal{F}(z)||_{L^{2}(\mathbb{R})} = ||\psi_{\alpha}(t)it\mathcal{F}(z')||_{L^{2}(\mathbb{R})}$; $\psi_{\alpha}(t) = \frac{1}{it}(1 e^{-\frac{\alpha^{2}t^{2}}{4}})$ 所以 $||\psi_{\alpha} * z z||_{L^{2}(\mathbb{R})} = ||\psi_{\alpha}\mathcal{F}(z')||_{L^{2}} \le ||\psi_{\alpha}||_{\infty} \cdot ||z'||_{L^{2}(0,1)}$;
 - (b) 证明:

2 第一类积分方程的正则化方法

$$x)(t) - x(t) - \int_0^1 [(\psi_\alpha * x)(s) - x(s)] ds, \text{ If if } ||R_\alpha K x - x||_{L^2(0,1)} \le 2||\psi_\alpha * x(t) - x(t)||_{L^2(0,1)} \le 2\sqrt{2}\alpha||x'||_{L^2(0,1)};$$

7

- 5. 设线性紧算子 K 的滤波函数 $q(\alpha, \mu)$ 满足: (1). $|q(\alpha, \mu)| \leq 1, 0 < \mu < ||K||$; (2). $\exists C(\alpha)$, s.t. $|q(\alpha, \mu)| \leq C(\alpha)\mu$, $\forall \mu$; (3). $\lim_{\alpha \to 0} q(\alpha, \mu) = 1$, $\forall \mu$. 则 $R_{\alpha}: Y \to X$, $R_{\alpha}y := \sum_{j=1}^{\infty} \frac{q(\alpha, \mu)}{\mu_{j}}(y, y_{j})x_{j}, y \in Y$ 是一个正则化策略, 且 $||R_{\alpha}|| \leq C(\alpha)$;
 - (a) 其中 (μ_i, x_i, y_i) 是算子 R_{α} 的奇异系;
- 6. 引理: 对于 Hilbert 空间 $X, Y, \exists \hat{x} \in X, s.t. ||K\hat{x} y|| \le ||Kx y||, x \in X$ 等价于 $K^*K\hat{x} = K^*y$ (法方程);
- 7. Tikhonov 正则化方法: 求解 Tikhonov 泛函的极小问题;
 - (a) Tikhonov 泛函: 对于线性紧算子 $K: X \to Y$, $\alpha > 0$, $J_{\alpha}(x) = ||Kx y||^2 + \alpha ||x||^2$;
 - (b) $J_{\alpha}(x)$ 的极小值问题有唯一解 x^{α} ;
 - (c) 极小化 x^{α} 是法方程 $\alpha x^{\alpha} + K^*Kx^{\alpha} = K^*y$ 的唯一解;
- 8. 定义 $R_{\alpha} := (\alpha I + K^*K)^{-1}K^*$, 对于线性紧算子 $K: X \to Y$, 有
 - (a) $\alpha I + K^*K$ 有有界逆,则 R_{α} 是正则化策略. $||R_{\alpha}|| \leq \frac{1}{2\sqrt{\alpha}}, R_{\alpha}y^{\delta}$ 满足 $(\alpha I + K^*K)x^{\alpha,\delta} = K^*y^{\delta}$. 当 $\alpha(\delta) \to 0, \delta \to 0, \frac{\delta^2}{\alpha(\delta)} \to 0$ 时, $\alpha(\delta)$ 是容许的;
 - (b) $x = K^*z \in K^*(Y)$, $\mathbbm{1} \alpha(\delta) = c\frac{\delta}{E} \text{ iff}$, $||x^{\alpha,\delta} x|| \leq \frac{1}{2}(\frac{1}{\sqrt{c}} + \sqrt{c})\sqrt{\delta E}$;
 - (c) $x = K^*Kz \in K^*K(x)$, $\mathbb{R} \alpha(\delta) = c(\frac{\delta}{E})^{\frac{2}{3}} \mathbb{H}$, $||x^{\alpha,\delta} x|| \le (\frac{1}{2\sqrt{c}} + c)E^{\frac{1}{3}}\delta^{\frac{2}{3}}$;
- 9. Landeweber 迭代: 对于 $Kx = y, x = x aK^*Kx + aK^*y = (I aK^*K)x + aK^*y, a > 0$. 即迭代格式 $\begin{cases} x^0 = 0 \\ x^m = (I aK^*K)x^{m-1} + aK^*y & m = 1, 2... \end{cases}$
 - (a) 设 $\psi: X \to R$, $\psi(x) = \frac{1}{2}||Kx y||^2$, 则 $\psi(x)$ 的 Frechet 导数 $\psi'(z)x = Re(Kz y, Kx) = Re(K^*(Kz y), x)$, $xz \in X$. 因此, $\psi'(z)$ 可以由 $K^*(Kz y)$ 得到, 即 Landweber 迭代 $x^m = x^{m-1} aK^*(Kx^{m-1} y)$;

- 10. 已知线性紧算子 $K:X\to Y$, 取 $\alpha=\frac{1}{m}$, 则 R_m 就是正则化策略, 且 $||R_m||\leq C(\alpha)=\sqrt{\frac{a}{\alpha}}=\sqrt{am};$
 - (a) $m(\delta) \to 0, (\delta \to 0),$ 且 $\frac{\delta^2}{\alpha(\delta)} \to 0,$ 则 $m(\delta)$ 是容许的;