\rightarrow page 8

Division euclidienne de polynômes

♀ Sur la division euclidienne de polynômes.

Exercice 1. Soit $P = 6X^3 + 3X^2 - 36X - 33$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 7 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 2. Soit $P = X^3 + 2X^2 + X + 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 3. Effectuer la division euclidienne de $A = -X^3 + 12X^2 + 6$ par $B = X^2 + 7X - 22$, c'est-à-dire: \rightarrow page 7 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 4. Soit $P = -X^3 + 2X^2 + X - 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel \to page 7 que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 5. Soit $P = -2X^3 - 2X^2 + 4X + 4$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 7 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 6. Effectuer la division euclidienne de $A = -X^3 - 2X - 5$ par $B = X^2 + X$, c'est-à-dire : déterminer \rightarrow page 7 l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 7. Effectuer la division euclidienne de $A = -X^3 - 9X^2 - 6$ par $B = X^2 + 2X + 1$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 8. Soit $P = 2X^3 - X + 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que : \rightarrow page 8 $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 9. Soit $P = 3X^3 + 5X^2 - 3X - 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel \rightarrow page 8 que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 10. Soit $P = 3X^3 - 3X^2 - 23X + 23$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 8 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 11. Soit $P = 2X^3 + 2X^2 - 12X - 12$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 8 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 12. Effectuer la division euclidienne de $A = -X^3 - 1$ par $B = X^2 + X - 1$, c'est-à-dire : déterminer \rightarrow page 9 l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 13. Soit $P = X^3 - 2X^2 - X + 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 14. Effectuer la division euclidienne de $A = 6X^4 - 3X^2 - 6$ par $B = X^3 - X^2 - 1$, c'est-à-dire: \rightarrow page 9 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et: A = BQ + R.

Exercice 15. Effectuer la division euclidienne de $A = -X^4 - X^2 - 1$ par $B = X^2 + 9X$, c'est-à-dire : déterminer \rightarrow page 9 l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 16. Soit $P = X^3 - 2X + 4$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que : \rightarrow page 10 $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 17. Soit $P = X^3 + 2X^2 + 4X + 3$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 18. Soit $P = -X^3 + 4X^2 - 7X + 6$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 10 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 19. Effectuer la division euclidienne de $A = 4X^5 + 2X^4$ par $B = X^4 + X^3 + 4X$, c'est-à-dire : déterminer l'unique couple $(Q,R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 10

Exercice 20. Effectuer la division euclidienne de $A = -3X^5 - X^4$ par $B = X^2 + 40X + 1$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 10

Exercice 21. Soit $P = 6X^3 - 5X^2 - 7X + 6$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 11

Exercice 22. Effectuer la division euclidienne de $A = -X^5 - 10X^3 - X^2$ par $B = X^4 + 5X^3 - X^2$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 11

Exercice 23. Effectuer la division euclidienne de $A = 12X^4 - X^3 + 12X$ par $B = X^2 + 2X$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 11

Exercice 24. Effectuer la division euclidienne de $A = 6X^3 + 1$ par $B = X^2 + X - 4$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 11

Exercice 25. Effectuer la division euclidienne de $A = -X^5 - X^4 - 11X^3$ par $B = X^3 - X^2 + 2$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 11

Exercice 26. Soit $P = X^3 - X^2 - 2X + 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 12

Exercice 27. Soit $P = -X^3 - X - 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que : $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 12

Exercice 28. Soit $P = 2X^3 + 2X^2 - 21X - 21$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$

 \rightarrow page 12

tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 12

Exercise 29. Soit $P = 2X^3 - 3X^2 + 2X - 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 12

Exercice 30. Soit $P = X^3 - 75X^2 - 62X + 14$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 31. Effectuer la division euclidienne de $A = X^3 - 3X$ par $B = X^2 - 4X - 1$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 12

Exercice 32. Effectuer la division euclidienne de $A = X^5 - X^2 + 2$ par $B = X^3 + X^2 - 1$, c'est-à-dire : déterminer l'unique couple $(Q,R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 13

Exercice 33. Effectuer la division euclidienne de $A = -6X^3 + 2X^2 - 2$ par $B = X^2 - 2X + 1$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 13

Exercice 34. Effectuer la division euclidienne de $A = -2X^3 - 2X^2$ par $B = X^2 + 2X$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 13

Exercice 35. Soit $P = -2X^3 - 5X^2 - 4X - 4$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 13

Exercice 36. Soit $P = 6X^3 + 6X^2 - X - 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 13

Exercice 37. Effectuer la division euclidienne de $A = -X^4 - X^3 - 2X^2$ par $B = X^3 - 3X^2 - X$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 14

Exercice 38. Effectuer la division euclidienne de $A = -3X^3 + 2X + 12$ par $B = X^2 - X - 2$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et: A = BQ + R.

 \rightarrow page 14

Exercice 39. Effectuer la division euclidienne de $A = 5X^3 - 2X + 1$ par $B = X^2 - X - 1$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 14

Exercise 40. Soit $P = X^3 + 10X - 11$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 14

Exercice 41. Soit $P = -X^3 - 2X^2 - 2X - 4$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 14

Exercice 42. Soit $P = X^3 + 28X^2 - 61X + 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 15

Exercice 43. Effectuer la division euclidienne de $A = -20X^3 - 5X$ par $B = X^2 + 4X$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 15

Exercice 44. Soit $P = X^3 + 2X^2 + 4X + 3$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 15

Exercice 45. Soit $P = X^3 - X^2 + 3X - 3$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 15

Exercice 46. Soit $P = -2X^3 + 3X^2 - 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel

 \rightarrow page 15

que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 16

Exercice 47. Soit $P = 3X^3 - 4X^2 + 2X - 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 16

Exercice 48. Effectuer la division euclidienne de $A = 2X^4 + X - 1$ par $B = X^2 - X - 8$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 49. Effectuer la division euclidienne de $A = -5X^3 + X^2 - 1$ par $B = X^2 - 5X + 1$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 16

Exercice 50. Effectuer la division euclidienne de $A = -9X^4 - X^3 + 1$ par $B = X^2 + X + 1$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 16

Exercice 51. Effectuer la division euclidienne de $A = X^5 - X^3 + 2X^2$ par $B = X^3 + 8X^2 + 1$, c'est-à-dire: déterminer l'unique couple $(Q,R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 16

Exercice 52. Soit $P = -X^3 + 29X - 50$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 17

Exercice 53. Soit $P = X^3 - X^2 + X - 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 17

Exercice 54. Soit $P = X^3 - X^2 - 5X + 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel

 \rightarrow page 17

que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 55. Soit $P = -2X^3 + 2X^2 + X - 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 17

Exercice 56. Soit $P = -36X^3 + 39X^2 - 4X + 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 57. Effectuer la division euclidienne de $A = -7X^4 + X^2 - 13$ par $B = X^3 - 2X^2 + 27$, c'est-à-dire: \rightarrow page 17 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 58. Effectuer la division euclidienne de $A = -X^3 + X^2 - 3X$ par $B = X^2 + 7X - 2$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et: A = BQ + R.

 \rightarrow page 18

Exercice 59. Effectuer la division euclidienne de $A = -4X^4 - 3X$ par $B = X^2 - 25X - 4$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 18

Exercice 60. Soit $P = -X^3 + 3X^2 - X - 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 18

Exercice 61. Effectuer la division euclidienne de $A = X^6 - X^3 + X$ par $B = X^2 + 3X$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 18

Exercice 62. Effectuer la division euclidienne de $A = -8X^3 - 5X$ par $B = X^2 - X + 2$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 18

Exercice 63. Soit $P = -X^3 - 4X^2 - 4X - 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 19

Exercice 64. Effectuer la division euclidienne de $A = X^4 - X^2$ par $B = X^2 - 3X + 2$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 19

Exercice 65. Soit $P = X^3 - X^2 + 4X - 4$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 19

Exercice 66. Soit $P = -X^3 + 7X + 6$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que : $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 19

Exercice 67. Effectuer la division euclidienne de $A = 2X^3 + 3X + 1$ par $B = X^2 - 44X - 1$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 19

Exercice 68. Soit $P = -3X^3 - 2X^2 + 7X + 6$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 20

Exercice 69. Soit $P = -X^3 - 3X^2 - X + 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 20

Exercice 70. Effectuer la division euclidienne de $A = 2X^3 - 2X^2 - 1$ par $B = X^2 + 4X - 7$, c'est-à-dire: déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et: A = BQ + R.

 \rightarrow page 20

Exercice 71. Soit $P = -X^3 + 4X^2 - 2X - 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X] \to \text{tel que}: P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 20

Exercice 72. Soit $P = -3X^3 - 6X^2 + 21X - 12$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 20

Exercice 73. Soit $P = -X^3 - 3X^2 - X + 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

 \rightarrow page 21

Exercice 74. Effectuer la division euclidienne de $A = -X^3 + 4X^2 + 6$ par $B = X^2 + X - 1$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 21

Exercice 75. Effectuer la division euclidienne de $A = -X^3 + X + 2$ par $B = X^2 - X - 3$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

 \rightarrow page 21

 \rightarrow page 23

Exercice 76. Effectuer la division euclidienne de $A = -2X^4$ par $B = X^3 - 2X^2 + 2$, c'est-à-dire: déterminer \rightarrow page 21 l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 77. Soit $P = -X^3 + 2X + 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que : \rightarrow page 21 $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 78. Soit $P = -8X^3 - 8X^2 + X + 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 21 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 79. Soit $P = -X^3 + 2X^2 + 9X + 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 22 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 80. Effectuer la division euclidienne de $A = -X^4 - 17$ par $B = X^2 + X + 2$, c'est-à-dire: déterminer \rightarrow page 22 l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 81. Effectuer la division euclidienne de $A = 5X^4 - X^2 + 5$ par $B = X^3 + 24X^2 + 53X$, c'est-à-dire: \rightarrow page 22 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et: A = BQ + R.

Exercice 82. Effectuer la division euclidienne de $A = -X^3 - 4X + 2$ par $B = X^2 - 154X + 1$, c'est-à-dire: \rightarrow page 22 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 83. Soit $P = X^3 - X^2 - X + 1$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 84. Soit $P = X^3 + 4X^2 - 103X + 98$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 23 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 85. Soit $P = X^3 + 3X^2 + 7X + 5$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 86. Effectuer la division euclidienne de $A = X^4 - X^2 - 1$ par $B = X^3 + 4X^2 + 7$, c'est-à-dire: déterminer \rightarrow page 23 l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 87. Effectuer la division euclidienne de $A = 7X^3 + X^2 + 1$ par $B = X^2 - X + 2$, c'est-à-dire : déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 88. Soit $P = -3X^3 - 7X^2 - 3X - 2$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 23 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 89. Effectuer la division euclidienne de $A = -X^5 + X^4 + X$ par $B = X^3 + X^2 + 1$, c'est-à-dire: \rightarrow page 24 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 90. Effectuer la division euclidienne de $A = 6X^4 - 46X + 1$ par $B = X^2 - X + 1$, c'est-à-dire : déterminer \rightarrow page 24 l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 91. Soit $P = X^3 + 2X^2 - 5X - 6$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 92. Effectuer la division euclidienne de $A = -2X^3 + 3X - 1$ par $B = X^2 - 3X + 2$, c'est-à-dire: \rightarrow page 24 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 93. Effectuer la division euclidienne de $A = -2X^4 - 1$ par $B = X^2 - X + 1$, c'est-à-dire : déterminer \rightarrow page 25 l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 94. Effectuer la division euclidienne de $A = -X^6 + X^5 + X^3$ par $B = X^4 - 18X^3$, c'est-à-dire: \rightarrow page 25 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 95. Soit $P = -2X^3 - 3X^2 - X - 6$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ \rightarrow page 25 tel que: $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 96. Effectuer la division euclidienne de $A = 5X^5 + 3X^2 + 1$ par $B = X^4 - X^3 + 3$, c'est-à-dire: \rightarrow page 25 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 97. Soit $P = -X^3 + 4X - 3$. Trouver une racine « évidente » α de P, et expliciter $Q \in \mathbb{R}_2[X]$ tel que : \rightarrow page 25 $P = (X - \alpha) \cdot Q$. On déterminera Q avec une division euclidienne.

Exercice 98. Effectuer la division euclidienne de $A = -3X^5 + 3X^4 + X$ par $B = X^4 + X^3 - 93$, c'est-à-dire: \rightarrow page 25 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 99. Effectuer la division euclidienne de $A = X^4 - 2X^3 - X$ par $B = X^3 - X^2 + X$, c'est-à-dire: \rightarrow page 26 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et : A = BQ + R.

Exercice 100. Effectuer la division euclidienne de $A = -X^5 + 19X^4 + 20X$ par $B = X^4 + 2X^3 - 5$, c'est-à-dire: \rightarrow page 26 déterminer l'unique couple $(Q, R) \in \mathbb{R}[X]^2$ tel que $\deg(R) < \deg(B)$ et: A = BQ + R.

Corrigé 1. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 1

On en déduit : $P = (X + 1) \cdot (6X^2 - 3X - 33)$.

Corrigé 2. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -2$ (vérifiez au besoin que P(-2) = 0 pour vous en convaincre). On en déduit que X + 2 est un facteur de P; on détermine le quotient de P par X + 2 à l'aide de la division euclidienne. On a :

 \leftarrow page 1

On en déduit : $P = (X + 2) \cdot (X^2 + 1)$.

Corrigé 3. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur :

 \leftarrow page 1

On en déduit : A = BQ + R, avec : Q = -X + 19, et : R = -155X + 424.

Corrigé 4. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

← page 1

On en déduit : $P = (X - 1) \cdot (-X^2 + X + 2)$.

Corrigé 5. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

← page 1

On en déduit : $P = (X + 1) \cdot (-2X^2 + 4)$.

Corrigé 6. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur

à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -X + 1, et : R = -3X - 5.

Corrigé 7. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur :

 \leftarrow page 1

On en déduit : A = BQ + R, avec : Q = -X - 7, et : R = 15X + 1.

Corrigé 8. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 1

On en déduit : $P = (X + 1) \cdot (2X^2 - 2X + 1)$.

Corrigé 9. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=-2$ (vérifiez au besoin que P(-2)=0 pour vous en convaincre). On en déduit que X+2 est un facteur de P; on détermine le quotient de P par X+2 à l'aide de la division euclidienne. On a :

← page 1

On en déduit : $P = (X + 2) \cdot (3X^2 - X - 1)$.

Corrigé 10. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 1

On en déduit : $P = (X - 1) \cdot (3X^2 - 23)$.

Corrigé 11. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine

 $\leftarrow \text{page 1}$

le quotient de P par X+1 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X + 1) \cdot (2X^2 - 12)$.

Corrigé 12. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 1

On en déduit : A = BQ + R, avec : Q = -X + 1, et : R = -2X.

Corrigé 13. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=2$ (vérifiez au besoin que P(2)=0 pour vous en convaincre). On en déduit que X-2 est un facteur de P; on détermine le quotient de P par X-2 à l'aide de la division euclidienne. On a :

 \leftarrow page 1

On en déduit : $P = (X - 2) \cdot (X^2 - 1)$.

Corrigé 14. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur :

 \leftarrow page 1

On en déduit : A = BQ + R, avec : Q = 6X + 6, et : $R = 3X^2 + 6X$.

Corrigé 15. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 1 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = -X^2 + 9X - 82$, et : R = 738X - 1.

Corrigé 16. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -2$ (vérifiez au besoin que P(-2) = 0 pour vous en convaincre). On en déduit que X + 2 est un facteur de P; on détermine

le quotient de P par X+2 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X + 2) \cdot (X^2 - 2X + 2)$.

Corrigé 17. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 1

On en déduit : $P = (X + 1) \cdot (X^2 + X + 3)$.

Corrigé 18. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=2$ (vérifiez au besoin que P(2)=0 pour vous en convaincre). On en déduit que X-2 est un facteur de P; on détermine le quotient de P par X-2 à l'aide de la division euclidienne. On a :

 \leftarrow page 1

On en déduit : $P = (X - 2) \cdot (-X^2 + 2X - 3)$.

Corrigé 19. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 2 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = 4X - 2, et : $R = 2X^3 - 16X^2 + 8X$.

Corrigé 20. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 2 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = -3X^3 + 119X^2 - 4757X + 190161$, et : R = -7601683X - 190161.

Corrigé 21. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 2

On en déduit : $P = (X - 1) \cdot (6X^2 + X - 6)$.

Corrigé 22. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 2 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -X + 5, et : $R = -36X^3 + 4X^2$.

Corrigé 23. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 2

On en déduit : A = BQ + R, avec : $Q = 12X^2 - 25X + 50$, et : R = -88X.

Corrigé 24. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 2 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = 6X - 6, et : R = 30X - 23.

Corrigé 25. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 2 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = -X^2 - 2X - 13$, et : $R = -11X^2 + 4X + 26$.

Corrigé 26. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 2

$$\begin{array}{c|ccccc} X^3 & -X^2 & -2X & +2 \\ \hline -(&X^3 & -X^2 & & \\ \hline -(&&& -2X & +2 \\ \hline -(&&&& 0 & \\ \end{array}) & X^2-1 \\ \hline X^2-2 & & \\ \hline \end{array}$$

On en déduit : $P = (X - 1) \cdot (X^2 - 2)$.

Corrigé 27. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 2

On en déduit : $P = (X + 1) \cdot (-X^2 + X - 2)$.

Corrigé 28. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 2

On en déduit : $P = (X + 1) \cdot (2X^2 - 21)$.

Corrigé 29. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 2

On en déduit : $P = (X - 1) \cdot (2X^2 - X + 1)$.

Corrigé 30. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X + 1) \cdot (X^2 - 76X + 14)$.

Corrigé 31. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 2

On en déduit : A = BQ + R, avec : Q = X + 4, et : R = 14X + 4.

Corrigé 32. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 2 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = X^2 - X + 1$, et : $R = -X^2 - X + 3$.

Corrigé 33. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 2 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -6X - 10, et : R = -14X + 8.

Corrigé 34. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -2X + 2, et : R = -4X.

Corrigé 35. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -2$ (vérifiez au besoin que P(-2) = 0 pour vous en convaincre). On en déduit que X + 2 est un facteur de P; on détermine le quotient de P par X+2 à l'aide de la division euclidienne. On a :

 \leftarrow page 2

On en déduit : $P = (X + 2) \cdot (-2X^2 - X - 2)$.

Corrigé 36. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez \leftarrow page 2

au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X+1 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X + 1) \cdot (6X^2 - 1)$

Corrigé 37. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -X - 4, et : $R = -15X^2 - 4X$.

Corrigé 38. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -3X - 3, et : R = -7X + 6

Corrigé 39. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 3 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = 5X + 5, et : R = 8X + 6.

Corrigé 40. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X - 1) \cdot (X^2 + X + 11)$

Corrigé 41. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -2$ (vérifiez au besoin que P(-2) = 0 pour vous en convaincre). On en déduit que X + 2 est un facteur de P; on détermine le quotient de P par X+2 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X + 2) \cdot (-X^2 - 2)$.

Corrigé 42. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=2$ (vérifiez au besoin que P(2)=0 pour vous en convaincre). On en déduit que X-2 est un facteur de P; on détermine le quotient de P par X-2 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X - 2) \cdot (X^2 + 30X - 1)$.

Corrigé 43. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 3

On en déduit : A = BQ + R, avec : Q = -20X + 80, et : R = -325X.

Corrigé 44. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X + 1) \cdot (X^2 + X + 3)$.

Corrigé 45. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X - 1) \cdot (X^2 + 3)$.

Corrigé 46. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X - 1) \cdot (-2X^2 + X + 1)$.

Corrigé 47. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X - 1) \cdot (3X^2 - X + 1)$.

Corrigé 48. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement ← page 3 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = 2X^2 + 2X + 18$, et : R = 35X + 143.

Corrigé 49. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 3 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -5X - 24, et : R = -115X + 23.

Corrigé 50. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement — page 3 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = -9X^2 + 8X + 1$, et : R = -9X.

Corrigé 51. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 3 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = X^2 - 8X + 63$, et : $R = -503X^2 + 8X - 63$.

Corrigé 52. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=2$ (vérifiez au besoin que P(2)=0 pour vous en convaincre). On en déduit que X-2 est un facteur de P; on détermine le quotient de P par X-2 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X - 2) \cdot (-X^2 - 2X + 25)$.

Corrigé 53. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le quotient de P par X - 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X - 1) \cdot (X^2 + 1)$.

Corrigé 54. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=-2$ (vérifiez au besoin que P(-2)=0 pour vous en convaincre). On en déduit que X+2 est un facteur de P; on détermine le quotient de P par X+2 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X + 2) \cdot (X^2 - 3X + 1)$.

Corrigé 55. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 3

On en déduit : $P = (X - 1) \cdot (-2X^2 + 1)$.

Corrigé 56. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X - 1) \cdot (-36X^2 + 3X - 1)$.

Corrigé 57. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 4

On en déduit : A = BQ + R, avec : Q = -7X - 14, et : $R = -27X^2 + 189X + 365$.

Corrigé 58. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 4

On en déduit : A = BQ + R, avec : Q = -X + 8, et : R = -61X + 16.

Corrigé 59. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 4 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = -4X^2 - 100X - 2516$, et : R = -63303X - 10064.

Corrigé 60. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 2$ (vérifiez au besoin que P(2) = 0 pour vous en convaincre). On en déduit que X - 2 est un facteur de P; on détermine le quotient de P par X-2 à l'aide de la division euclidienne. On a :

 \leftarrow page 4

On en déduit : $P = (X - 2) \cdot (-X^2 + X + 1)$.

Corrigé 61. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 4 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = X^4 - 3X^3 + 9X^2 - 28X + 84$, et : R = -251X.

Corrigé 62. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur :

 \leftarrow page 4

On en déduit : A = BQ + R, avec : Q = -8X - 8, et : R = 3X + 16.

Corrigé 63. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 4

On en déduit : $P = (X + 1) \cdot (-X^2 - 3X - 1)$.

Corrigé 64. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur :

← page 4

On en déduit : A = BQ + R, avec : $Q = X^2 + 3X + 6$, et : R = 12X - 12.

Corrigé 65. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=1$ (vérifiez au besoin que P(1)=0 pour vous en convaincre). On en déduit que X-1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

← page 4

On en déduit : $P = (X - 1) \cdot (X^2 + 4)$.

Corrigé 66. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha=-2$ (vérifiez au besoin que P(-2)=0 pour vous en convaincre). On en déduit que X+2 est un facteur de P; on détermine le quotient de P par X+2 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X + 2) \cdot (-X^2 + 2X + 3)$.

Corrigé 67. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 4

On en déduit : A = BQ + R, avec : Q = 2X + 88, et : R = 3877X + 89.

Corrigé 68. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X+1 à l'aide de la division euclidienne. On a :

 \leftarrow page 4

On en déduit : $P = (X + 1) \cdot (-3X^2 + X + 6)$.

Corrigé 69. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X+1 à l'aide de la division euclidienne. On a :

 \leftarrow page 4

On en déduit : $P = (X + 1) \cdot (-X^2 - 2X + 1)$.

Corrigé 70. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 4 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = 2X - 10, et : R = 54X - 71.

Corrigé 71. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X - 1) \cdot (-X^2 + 3X + 1)$.

Corrigé 72. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 4

On en déduit : $P = (X - 1) \cdot (-3X^2 - 9X + 12)$.

Corrigé 73. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -2$ (vérifiez au besoin que P(-2) = 0 pour vous en convaincre). On en déduit que X + 2 est un facteur de P; on détermine le quotient de P par X + 2 à l'aide de la division euclidienne. On a :

 \leftarrow page 4

On en déduit : $P = (X + 2) \cdot (-X^2 - X + 1)$.

Corrigé 74. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 4 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -X + 5, et : R = -6X + 11.

Corrigé 75. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 4

On en déduit : A = BQ + R, avec : Q = -X - 1, et : R = -3X - 1.

Corrigé 76. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -2X - 4, et : $R = -8X^2 + 4X + 8$.

Corrigé 77. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X+1 à l'aide de la division euclidienne. On a :

 \leftarrow page 5

On en déduit : $P = (X + 1) \cdot (-X^2 + X + 1)$.

Corrigé 78. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X+1 à l'aide de la division euclidienne. On a :

 \leftarrow page 5

On en déduit : $P = (X + 1) \cdot (-8X^2 + 1)$.

Corrigé 79. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -2$ (vérifiez au besoin que P(-2) = 0 pour vous en convaincre). On en déduit que X + 2 est un facteur de P; on détermine le quotient de P par X+2 à l'aide de la division euclidienne. On a :

 \leftarrow page 5

On en déduit : $P = (X + 2) \cdot (-X^2 + 4X + 1)$.

Corrigé 80. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 5 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = -X^2 + X + 1$, et : R = -3X - 19.

Corrigé 81. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 5 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = 5X - 120, et : $R = 2614X^2 + 6360X + 5$.

Corrigé 82. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 5

On en déduit : A = BQ + R, avec : Q = -X - 154, et : R = -23719X + 156.

Corrigé 83. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez \leftarrow page 5 au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

$$\begin{array}{c|ccccc}
 & X^3 & -X^2 & -X & +1 \\
 & -(& X^3 & -X^2 & & & \\
 & & & -X & +1 \\
 & -(& & & -X & +1 \\
 & & & & 0
\end{array}) \begin{array}{c|ccccc}
 & X-1 \\
 \hline
 & X^2-1
\end{array}$$

On en déduit : $P = (X - 1) \cdot (X^2 - 1)$.

Corrigé 84. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le quotient de P par X-1 à l'aide de la division euclidienne. On a :

 \leftarrow page 5

On en déduit : $P = (X - 1) \cdot (X^2 + 5X - 98)$.

Corrigé 85. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X+1 à l'aide de la division euclidienne. On a :

 \leftarrow page 5

On en déduit : $P = (X + 1) \cdot (X^2 + 2X + 5)$.

Corrigé 86. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 5 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = X - 4, et : $R = 15X^2 - 7X + 27$.

Corrigé 87. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement

inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = 7X + 8, et : R = -6X - 15.

Corrigé 88. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -2$ (vérifiez au besoin que P(-2) = 0 pour vous en convaincre). On en déduit que X + 2 est un facteur de P; on détermine le quotient de P par X + 2 à l'aide de la division euclidienne. On a :

 \leftarrow page 5

On en déduit : $P = (X+2) \cdot (-3X^2 - X - 1)$.

Corrigé 89. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur :

← page 5

On en déduit : A = BQ + R, avec : $Q = -X^2 + 2X - 2$, et : $R = 3X^2 - X + 2$.

Corrigé 90. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur :

 \leftarrow page 5

On en déduit : A = BQ + R, avec : $Q = 6X^2 + 6X$, et : R = -52X + 1.

Corrigé 91. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -1$ (vérifiez au besoin que P(-1) = 0 pour vous en convaincre). On en déduit que X + 1 est un facteur de P; on détermine le quotient de P par X + 1 à l'aide de la division euclidienne. On a :

 \leftarrow page 5

On en déduit : $P = (X + 1) \cdot (X^2 + X - 6)$.

Corrigé 92. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement

inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -2X - 6, et : R = -11X + 11.

Corrigé 93. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 5

On en déduit : A = BQ + R, avec : $Q = -2X^2 - 2X$, et : R = 2X - 1.

Corrigé 94. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 5 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : $Q = -X^2 - 17X - 306$, et : $R = -5507X^3$.

Corrigé 95. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = -2$ (vérifiez au besoin que P(-2) = 0 pour vous en convaincre). On en déduit que X + 2 est un facteur de P; on détermine le quotient de P par X+2 à l'aide de la division euclidienne. On a :

 \leftarrow page 6

On en déduit : $P = (X + 2) \cdot (-2X^2 + X - 3)$.

Corrigé 96. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 6 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = 5X + 5, et : $R = 5X^3 + 3X^2 - 15X - 14$.

Corrigé 97. En évaluant P en de petites valeurs entières, nous trouvons la racine « évidente » $\alpha = 1$ (vérifiez au besoin que P(1) = 0 pour vous en convaincre). On en déduit que X - 1 est un facteur de P; on détermine le

quotient de P par X-1 à l'aide de la division euclidienne. On a :

On en déduit : $P = (X - 1) \cdot (-X^2 - X + 3)$.

Corrigé 98. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement inférieur à celui du diviseur:

 \leftarrow page 6

On en déduit : A = BQ + R, avec : Q = -3X + 6, et : $R = -6X^3 - 278X + 558$.

Corrigé 99. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement — page 6 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = X - 1, et : $R = -2X^2$.

Corrigé 100. On pose la division euclidienne, en s'arrêtant dès que le reste obtenu est de degré strictement \leftarrow page 6 inférieur à celui du diviseur:

On en déduit : A = BQ + R, avec : Q = -X + 21, et : $R = -42X^3 + 15X + 105$.