POCKET-BOOK FOR CHEMISTS,

CHEMICAL MANUFACTURERS,
METALLURGISTS, DYERS, DISTILLERS,
BREWERS, SUGAR REFINERS,
PHOTOGRAPHERS, STUDENTS, ETC., ETC.

BY

THOMAS BAYLEY, Assoc. R.C.Sc.I., ANALYTICAL AND CONSULTING CHEMIST AND ASSAYER.

FOURTH EDITION.

London: E. & F. N. SPON, 125, STRAND.

NEW YORK: 35, MURRAY STREET.

1886.

PREFACE.

In the course of a varied analytical practice I have often felt the want of a collection, in a convenient form, of factors, atomic weights, and other useful data. To supply this want, I have collected the matter which in every-day experience proved to be useful, and the result is this little work.

In offering it to chemists, the author has no expectation that it will be found faultless; but he hopes from the care with which the manuscript was prepared, and from the rigorous comparison with the original sources to which the proofs were submitted, that the book will prove a trustworthy companion to the working chemist, and an efficient aid to the student in the laboratory. For the use of the latter, certain portions have been especially introduced; such are the analytical tables and the part on chemical calculation; in constructing the former, the methods were chosen not so much because of their intrinsic superiority, but because, while being on the whole as good as others, they are, owing to several circumstances, perhaps the most widely used in school laboratories. the greater part of the matter relating to solubility, I am indebted to Storer's 'Dictionary of Solubilities,' and for the Table of Boiling Points and Vapour Densities to Watts' 'Dictionary.' To enumerate the sources both English and foreign

A 2

am indebted for assistance in preparing the list of sons. To Messra. Jackson, of the Barbican, also, I but also for sid in preparing the plate of comparicomplete table for converting grams and grains, Dawson, not only for his contribution of a very friends who have aided me, especially to Mr. the authors and my thanks to a few personal this opportunity of expressing my obligations to work would be impossible; but I cannot neglect that have contributed to the remainder of the

tables, which rarely happens, a calculation must by experiment are identical with those in the unnecessary; whereas, unless the numbers found vantage over tables, that it renders calculations -be sint and noitenesenterion beat this adsolutions of substances in common use; such The chart on page vi shows the strength of prices.

printed as they were found scattered throughout The greater number of the tables have been be made when the latter are used.

others are compilations of useful matter published the length and breadth of chemical literature;

for the first time in the present form.

complete, handy, useful, and accurate. duction of a Pocket-Book for Chemists, at once gestions, to aid me in a labour of love—the prothey may meet with, and, by communicating sugto favour me by pointing out any accidental errors In conclusion, I ask those who use this little book

THOMAS BAYLEY.

SYNOPSIS OF CONTENTS.

(For Index, see page 468.)

PAGE
1 to 22
23 to 42
43 to 58
59 to 70
71 to 111
112 to 172
173 to 228
1.0 00 220
229 to 303
304 to 309
310 to 316
317 to 388
011 10 300
389 to 408
408 to 468

CHEMISTS' POCKET-BOOK

TABLE OF THE SYMBOLS, ATOMIC WEIGHTS, AND ATOMICITIE OF THE ELEMENTS.

Element.	Symbol and Atomicity.	Atomic Weight.	Element.	Symbol and Atomicity.	Atomic Weight.
Aluminium	Al ^{IV}	27.5	Chromium	Cr ^{VI}	52.5
Antimony	$\mathrm{Sb}^{\mathbf{v}}$	122	Cobalt	Co ^{VI}	58.8
Arsenic	$\mathbf{As}^{\mathbf{V}}$	75	Copper	Cu ^{II}	63.5
Barium	- Ba ^{II}	137	Didymium	D_{II}	96
Bismuth	Bi^{V}	208	Fluorinė	$\mathbf{F}^{\mathbf{I}}$	19
Boron	B_{III}	11	Glucinum	$\mathrm{Be}^{\mathrm{II}}$	$9 \cdot 2$
Bromine	Br ^I	80	Gold	AuIII	196.7
Cadmium	$\operatorname{Cd}^{\operatorname{II}}$	112	Hydrogen	$\mathbf{H}^{\mathfrak{t}}$	1-30-
Cæsium	$\mathrm{Cs}^{\mathtt{I}}$	133	Indium	${ m In}^{ m II}$	113:4
Calcium	$\mathrm{Ca}^{\mathbf{II}}$	40	Iodine	$\mathbf{I}_{\mathbf{III}}$	127
Carbon	$\mathbf{C_{IA}}$	12	Iridium	$\operatorname{Ir}^{\operatorname{VI}}$	198
Cerium	Ce ^{VI}	92	Iron	${ m Fe}^{{f V}{f I}}$	56
Chlorine	Cl ¹	35.2	Lanthanum	Γ_{it}	92

TABLE OF THE SYMBOLS, &C.-continued.

٠,		1			1	i	
	06	$\mathbf{z}_{\mathbf{r}}$	• • .	Zirconium	701	$\mathbf{E}^{n_{\Lambda_{1}}}$	Ruthenium
	99	Z ^{II} uZ	• •	oniZ	9.98	$\mathbf{E}\mathbf{p_{I}}$	muibiduA
	89	X _{II}	• •	Muirty	₹01	$ B_{\Lambda_{\mathbf{I}}} $	muibodA
	2.19	$_{\Lambda}\Lambda$	• •	muibanaV	6E	$\mathbb{K}_{\mathbf{I}}$	muisseto4
	120	$\Omega^{\mathbf{L}_{\mathbf{A}\mathbf{I}}}$	• •	muinsrU	7·461	$\mathbf{bf}_{\mathbf{I}\Lambda}$	minitela
	₽8I	IAM	• •	Tungsten	31	\mathbf{b}_{Λ}	Phosphorus
	20	VI _I T	••	muiastiT	901 ا	$\mathbf{P}^{\mathbf{q}^{\mathbf{I}\mathbf{\Lambda}}}$	muiballad
	118	_{AI} uS	••	niT	91	O_{II}	· · nəgyxO
	231.2	$_{f A}{f r}^{f L}$	• •	mnirodT	66T	IV sO	· · muimeO
	₹0₹	${ m L}I_{ m III}$	••	muilladT	₹I	Λ^{N}	negortiN
	128	${ m Te}^{{ m VI}}$	•••	Tellurium	9 • 46	$M^{p}_{\mathbf{IA}}$	muidoiM
	9.481	$^{ m VI}_{ m g}{ m T}$	••	mulatuaT	8-89	$^{\mathrm{IV}}$ iN	Wickel
	32	$_{ ext{I}\Lambda} ext{S}$	••	andqlus	7 6	$^{\mathrm{IV}}$ oM	Molybdenum
	9.48	$\mathbf{z_{r_{II}}}$	••	Strontium	003	${ m H}^{ m II}$	Mercury
	23	$^{1}_{\mathcal{B}}N$	••	muibo2	22	IValV	esensgarM
	801	¹ 3A	7	rəvliz	24	mgM.	muisənzaM
	9.87	AIIS	••	nosilis	4	I _i ,I	muidti.I
اي	64	IV ₉ 2	••	Selenium	402	$\mathrm{Pp}_{\mathrm{I}\Lambda}$	bead
	Atomic Weight.	Symbol and Atomicity,		Element.	Atomic Weight.	lodmyg bna toimoth	Element.

TABLE GIVING THE ATOMIC WEIGHT OF THE ELEMENTS, ACCORDING TO THE LATEST DETERMINATIONS.

1			
Name.	Atomic Weight.	Name.	Atomic Weight.
Aluminium Antimony Arsenic Barium Beryllium Bismuth Boron Bromine Cadmium Casium Calcium Carbon Chlorine Cerium Chromium Chromium Chromium Chromium Chromium Indium Indium Iron Lanthanum Lead Lithium Magnesium Manganese Mercury	27·3 122·0 74·9 136·8 9·0 210·0 11·0 79·75 111·6 133·0 39·9 11·97 35·37 141·2 52·4 58·6 63·0 147·0 169·0 19·1 196·2 1 113·4 126·53 196·7 55·9 139·0 206·4 7·01 23·94 54·8 199·8	Molybdenum Nickel. Niobium Nitrogen Osmium Oxygen Palladium Phosphorus Platinum Potassium Rhodium Rubidium Ruthenium Selenium Silicon Silver Sodium Surontium Sulphur Tantallum Tellurium Thallium Thorium Tin Titanium Tungsten Uranium Vanadium Yttrium Zinc Zirconium	95.6 58.6 94.0 14.01 198.6 15.96 106.2 30.96 196.7 39.04 104.1 85.2 103.5 78.0 28.0 107.66 22.96 87.2 31.98 182.0 128.0 203.6 231.5 117.8 48 184.0 240.0 51.2 93.0 64.9 90.0

ť

E 'Elements.	Chromium. Vanadium. Molybdenum. Tungsten.	Iron. Cobalt. Nickel. Manganese.	Platinum. Palladium. Rhodium. Iridium. Ruthenium. Osminm.
GROUPING OF TH	Nitrogen. Phosphorus. Arsenic. Antimony.	Cerium. Lanthanum. Didymium.	Potassium. Sodium. Lithium. Cæsium. Rubidium.
Table showing the Grouping of the Elements.	Chlorine. Bromine. Iodine. Fluorine.	Barium. Strontium. Calcium. Magnesium.	
ta. '	Oxygen. Sulphur. Selenium. Tellurium	Silicon. Titanium. Tantalum. Niobium.	Cadmium. Zinc.

ATOM, VOLUME, AND MOLECULAR WEIGHT OF THE ELEMENTS KNOWN IN THE STATE OF VAPOUR.

(After A. W. Hofmann.)

Name.	Symbol of Atom.	Symbol of Molecule.	Volume Weight.	Molecular Weight.
Hydrogen Arsenic Bromine Cadmium Chlorine Iodine Mercury Nitrogen Oxygen Phosphorus Selenium Sulphur	H As Br Cd Cl I Hg N O P Se S	$egin{array}{c} \mathbf{H_2} \\ \mathbf{As_4} \\ \mathbf{Br_2} \\ \mathbf{Cd} \\ \mathbf{Cl_2} \\ \mathbf{I_2} \\ \mathbf{Hg} \\ \mathbf{N_2} \\ \mathbf{O_2} \\ \mathbf{P_4} \\ \mathbf{Se_2} \\ \mathbf{S_2} \\ \mathbf{S_2} \\ \end{array}$	1 150 80 56 35·5 127 100 14 16 62 79 32	2 300 160 112 71 254 200 28 32 124 158 64

Table for the Estimation of various Substances by weighing the CO_2 evolved.

Substance.	Sought.	Factor.	Logarithm.
Sodium carbonate (crystallized).	Na ₂ CO ₃ +10H ₂ O	6.5000	0, 81291
Potassium carbonate Manganese peroxide	${ m K_2CO_3} { m MnO_2}$	3·1409 •9886	0, 49705 1, 99502
Acetic acid	$egin{array}{c} \mathrm{C_2H_4\tilde{O}_2} \ \mathrm{N_2O_5} \end{array}$	1·364 1·228	0, 13481 0, 08920
Hydrochloric acid Sulphuric anhydride	HCl . SO ₃	·830 1·1137	T, 91908 0, 0 5576

EACTORS FOR USE IN BIOLOGICAL ANALYSES.

1.862	Hæmoglobine	Ьe	norl
<i>ት</i> ተኛ9•	Creatinine	$^{\mathrm{c}}_{4}\mathrm{H}_{7}\mathrm{N}_{3}\mathrm{O}_{2}, \ \mathrm{ZnCl}_{2}$	Double chloride of sinc and creatinine.
ĬŦOŦ•	Urea.	Baco ₃	roplatinate. Barium carbonate
·3030	Drea Lord	1 Pt 4 CI,	Platinum munital -oldo muinomm A
Coefficient.	.tdgno8	Formula,	•bano4

TABLE FOR ESTIMATION OF UREA BY YVON'S PROCESS.

16.2 18.9 24.3 27.0	ot 6 8 2 9	9.81 8.01 8.9 4.2 4.3	3 4 5 1
forams of Urea per Urea per Litre of Urine.	O. c. of M. at 0° C. and 760 mm, derived from 1 c. c. of Urine.	Grams of Urea per Urite of Litre of Urine.	C. c. of M. at 0° C. and 760 mm. derived from 1 c. c. of Urine.

TRANSFORMATION O	\mathbf{F}	Columns	OF	WATER	INTO	Columns
		OF MERCI	URY			

Millim.	Millim.	Millim.	Millim.	Millim.	Millim.	Millim.	Millim.
of	of	of	of	of	of Mer-	of	of Mer-
Water.	Mercury.	Water.	Mercury.	Water.	cury.	Water.	cury,
1 2 3 4 5 6 7	·074 ·15 ·22 ·30 ·37 ·44 ·52	8 9 10 15 20 25 30	*59 *66 *74 1:12 1:48 1:84 2:21	35 40 45 50 55 60	2.58 2.95 3.32 3.69 4.06 4.43	65 70 75 80 85 90	4·80 5·17 5·54 5·90 6·27 6·64

VARIOUS USEFUL DATA.

To reduce specific gravity with regard to air to specific gravity with regard to hydrogen, multiply by 14.438.

To reduce specific gravity with regard to hydrogen to specific gravity compared to air, multiply by .06926.

To reduce weight in air to weight in vacuo:

P = weight required in vacuo.

q =weight in air.

 \vec{V} = volume of body weighed.

v =volume of the weights.

s = specific gravity of air (weight of one cubic unit).

$$P = q \times s (V - v)$$

To find the area of a circle:

$$a = \text{area.}$$
 $r = \text{radius.}$ $a = \pi r^2$.

To find the contents of a sphere = c:

$$c = 4.1888 \, r^3$$
.

To find the contents of a cylinder = c: c =area of base \times height.

To find the contents of a rectangular vessel = c:

a =length of one side. a =length.

b = length of other side. $c = a \times b \times h.$

To convert the degrees of Twaddle's hydrometer into specific gravity, multiply by 5, and add 1000; this gives the specific gravity with reference to water as 1000.

USEFUL DATA—continued.

To convert lbs. per square inch into kilograms per square centimetre, multiply by '0703.

To convert kilograms per square centimetre

into lbs. per square inch, multiply by 14.2247.

To reduce inches to metres, multiply by .02540, To reduce inches to centimetres, multiply by 2.540,

To reduce centimetres to inches, multiply by

.7898.

To reduce kilograms to pounds, multiply by 2.2046,

To reduce litres to gallons, multiply by . 22.

To reduce gallons to litres, multiply by 4.548. To reduce pints to cubic centimetres, multiply by 567.936.

To reduce grains to grains, multiply by 15.432, To reduce grains to grains, multiply by .0648,

To reduce ounces to grams, multiply by 28.349,

The following data are useful in calculations
—: ris of gringles.

To find the quantity of nitrogen by volume corresponding to I volume of oxygen, multiply

To find the quantity of oxygen by volume

by '265182, corresponding to 1 volume of nitrogen, multiply corresponding to 1 volume of nitrogen, multiply

To find the quantity of nitrogen by weight of oxygen, corresponding to I part by weight of oxygen, multiply by 3.313022.

To find the quantity of oxygen by weight of nitrogen, corresponding to I part by weight of nitrogen,

To find the quantity of nitrogen by volume corresponding to I part by weight of oxygen, multiply by 2.6865411.

USEFUL DATA—continued.

To find the quantity of oxygen by volume corresponding to 1 part by weight of nitrogen, multiply by 2730071.

To find the quantity of nitrogen by weight corresponding to 1 part by volume of oxygen,

multiply by 3.6629154.

To find the quantity of oxygen by weight corresponding to 1 part by volume of nitrogen, multiply by '3792848.

FACTORS USED IN ORGANIC ANALYSIS.

Weight of H_2O divided by 9 or multiplied by 1111 = Hydrogen. Weight of CO_2 multiplied by $\frac{3}{11} = \text{Carbon}$.

FORMULA FOR THE ESTIMATION OF NITROGEN BY VOLUME.

w =weight of Nitrogen.

v =volume of Nitrogen.

p =pressure corrected for tension of aqueous vapour.

t = temperature in degrees C.

$$w = \frac{\cdot 0012562 \times v \times p}{(1 + \cdot 00367 t)760}.$$

For value of log. $\frac{.0012562}{(1 + .00367 t) 760}$, see Table.

TABLE OF COEFFICIENTS GIVING THE AMOUNT OF THE CONSTITUENT SOUGHT BY SIMPLE MULTIPLICATION.

		,			
			OH2.	arseniate.	
		anhydride.	$^{42}(^{4}OsA)_{2}$	oisənysım Otsigozro	
20129.	$A_{S_2}O_3$	suoinsziA	*HNBM)	oinomm A	
30103	OSV	Siroidobay	OHS	.etsinesis	
		anhydride.	$\Lambda_{\rm SO_4}$	magnesic	
92909.	${ m V}^{2}{ m O}^{2}$	Arsenic	(MgNH4	oiuomm A	
1 00,000	O • V	anhydride.	TITE TEX	.apidqlus	
96786	$A_{S_2}O_5$	Arsenic	$\mathrm{As}_{2}\mathrm{S}_{3}$	suoinssrA	
	0 ,	anhydride.	5 ,	anlphide	
88708·	$^{6}\mathrm{O}_{2}\mathrm{sA}$	Arsenious	. 88 <u>8</u> 8A	suoinsarA	
		anhydride.		anhydride.	
48098	${ m kG}_{\hat{f x}}{ m gA}$	anoinsarA	${ m As_2O_5}$	oin927A	
				anbydride.	
41799.	${ m s_{S}V}$	Arsenic	$ m As_2O_5$	oinesiA	-
		[anhydride.	
89494	${f asA}$	Arsenic	${ m ko_2}{ m eA}$	suoinsa A	Arsenic
1		ebixo suoiu	- -	tetroxide.	
908₹6•	${ m Sp}_{2}{ m O}_{3}$	-omitnA	$^{*}\mathrm{O}_{\mathbf{Z}}\mathrm{dS}$	Diantimonic	
	0 7	.ebixo suoin	0.7	.abidqlua	
·88882	${ m Sp}_{2}{ m O}_{3}$	-omitaA	$\mathrm{Sp}_{2}\mathrm{S}_{3}$	anoinomitnA	
	7	C	C ~ 7 ~ ~	.abidqlua	
99414.	$^{7}\mathrm{Pp}^{3}$	YnomitnA	${ m Sp}_{{ m g}}{ m S}^{3}$	anoinomitnA	
	7 m m	Construction	C 0 7 7 7	.abixo	Crroning
83262	$^{\mathrm{gp}_{3}}$	V nomitnA	${ m Sp}_{\Omega}$	anoinomitnA	Antimony
			₹ron r	PITTO CITTO ATTIG	
ETOIO	STEATE	MITOTITIES	2NH [†] CI,	Ammonio pla- tinic chloride.	
₹1940.	2NH ₃	sinommA	D. HNO	chloride.	
70818.	8HN	sinommA	IO [‡] HN	SinommA objectes	mninommA
10016.	HIN	o i a o a a a a	ID HIN	J. W.	an a caract
86889	21A	muinimulA	$\epsilon_{ m O_{ m S}IA}$	animulA	muinimulA
00002		, , , , , , , , , , , , , , , , , , ,			
'OUTTOOO	1777.70.77	gongpt.	• TIT TO OT	Found.	Element.
Coeffic.	Form,	#dwno2	Form.	parton	+40000 [J]
1	<u> </u>	<u> </u>		!	<u>!</u>

CHEMISTS' PÖCKET-BOOK.

TABLE OF COEFFICIENTS, &c.—continued.

					·
Element.	Found.	Form.	Sought.	Form.	Coeffic.
Barium	Baryta Baric sulphate Bariccarbonate Baric silico- fluoride.	$\begin{array}{c} \operatorname{BaO} \\ \operatorname{BaSO_4} \\ \operatorname{FaCO_3} \\ \operatorname{BaF_2}, \operatorname{SiF_4} \end{array}$	Barium Baryta Baryta Baryta	Pa BaO BaO BaO	•89542 •65665 •77665 • 5 4839
Bismuth	Bismuthous oxide.	$\mathrm{Bi}_2\mathrm{O}_3$	Bismuth	Bi_2	*89655
Boron	Boracic anhydride.	$\mathrm{B}_2\mathrm{O}_3$	Boron	${f B_2}$	•31429
Bromine	Argentic bromide.	AgBr	Bromine	Br	· 42 560
Cadmium	Cadmic oxide	CdO	Cadmium	Cd	87500
Calcium	Lime (calcic oxide).	CaO	Calcium	Ca	•71429
	Calcic sulphate Calcic carbonate	${ m CaSO_4} \ { m CaCO_3}$	Lime Lime	CaO CaO	·41176 ·56000
Carbon	Carbonic	CO_2	Carbon	\mathbf{C}	·27273
	anhydride. Calcic carbonate.	${ m CaCO_3}$	Carbonic anhydride.	$\mathrm{CO_2}$	• 4 4000
Chlorine	Argentic	AgCl	Chlorine	Cl	•24724
	chloride. Argentic chloride.	AgCl	Hydro- chloric acid.	HC1	• 2 5421
Chromium	Chromic oxide Chromic oxide	$\mathrm{Cr_2O_3} \ \mathrm{Cr_2O_3}$	Chromium Chromic	$\mathrm{Cr}_2 \ \mathrm{2CrO}_3$	•68619 1•31381
	Plumbic chromate.	PbUrO ₄	anhydride. Chromic anhydride.	CrO ₃	· 3 1062
Cobalt	Cobalt	Co	Cobaltous	CoO	1.27119
	Cobaltic intermediate oxide.	Co ₁₂ O ₁₉	oxide. Cobalt	Co ₁₂	•69991

1					
		,	7-2	chloride,	
28 2274•	ЪР	Lead	₽ЬСІ2	sulphate. Plumbic	
41889.	dΦ	oxide. Lead	${ m PPZO}^{\mathfrak F}$	eulphate, pidmulq	
46984	ьрО	Plumbic	PbSO_{4}	Plumbic	
92826.	ФР	Lead	\mathbf{PbO}	Plumbic oxide	baad
98989•	9 . II	.ebixo nori	FeS	Ferrous sulphide.	
00006	2FeO	Ferrous	Fe ₂ 03	Ferric oxide	• • •
00004	${ m Fe}_2$	norl	${ m I\!E}^{65}{ m O}^3$	Ferric oxide	norl
99904	$\mathbf{z}^{\mathbf{I}}$	enibol	21bq	Palladious.	
6707g.	Ĭ	eniboI	IgA	Argentic iodide	ənibol
mm.	\mathbf{H}_{2}	Hydrogen	$O_{\Omega}H$	Water	Hydrogen
44084 • 81487 •	F.2 F.4	Fluorine Fluorine	CgF_{2}	Oalcic fluoride Silicic fluoride	Fluorine
01401.	- LAL	ougaonia	T.O.D.	1	outaonty
67864	z_{n_O}	Copper	$S^{z_n}O$	anorquO abidqlua	
6 7 864•	nõ	Copper	OuO	Oupric oxide	Copper
	7	•	$3K_2S\hat{O}_4$.	tassic sulphate.	
14171.	c_{o_2}	oxide.	3K ₂ SO ₄ .	tassic sulphate.	
91081.	COO	Cobaltous	+40SoOs	Cobaltous po-	
			2042.		
		.exide.	$3K_2O$	sic nitrite.	
84671.	CoOz	Cobaltons	Co2O3,	tetroxide. Cobaltic potas-	
₱₱₱₴₺∙	c_{o3}	oxide. Cobalt	[‡] O ₈ o ₃	sulphate.	
48 E 87•	CoO	Cobaltous	CoSO₹	Cobaltous	·(mamaraa
T4889•	C_{03}	Cobalt	CosO5	Tricobaltic pentoxide.	-noo) tladoO tinued).
Coeffic.	Form.	-3daus	Form.	Hound.	Element.
	• <i>p</i> ə	unitnos—.əx	LEIGIENLE' S	TABLE OF CORI	I

TABLE OF COEFFICIENTS, &c.—continued.

			1		
Element.	Found.	Form.	Sought.	Form.	Coeffic.
Lead (con- tinued).	Plumbic chloride.	$PbCl_2$	Plumbic oxide.	PbO	*80239
	Plumbic sulphide.	${ m PbS}$	Plumbic oxide.	PbO	•93305
Lithium	Lithiccarbonate Lithic sulphate	$ m Li_2CO_3 \ Li_2SO_4$	Lithic oxide Lithic oxide	$_{ m Li_2O}^{ m 2O}$	·40541 ·27273
	Lithic phosphate.	$\operatorname{Li_3PO_4}^4$	Lithic oxide	$\overline{\text{Li}_2}$ O	•38793
Magnesium	Magnesic oxide Magnesic	${ m MgO} \ { m MgSO_4}$	Magnesium Magnesic	$egin{array}{l} { m MgO} \end{array}$	•60000 •33350
	sulphate. Magnesic	$\mathrm{Mg_2P_2O_7}$	oxide. Magnesic	2MgO	•36036
	pyrophosphate.		oxide.		
Manganese	Manganous oxide.	MnO	Manganese	$\mathbf{M}\mathbf{n}$	•77465
	Trimanganic tetroxide.	$\mathrm{Mn_3O_4}$	Manganese	Mn_3	•72052
	Manganic oxide Manganous	$rac{ m Mn_2O_3}{ m MnSO_4}$	Manganese Manganous	$rac{\mathrm{Mn}_2}{\mathrm{MnO}}$	·69620 ·47020
	sulphate. Manganous	MnS	oxide. Manganous	MnO	•81609
	sulphide.	MnS	oxide.	Mn	•63218
	Manganous sulphide.	MIN	Manganese	14111	03210
Mercury	Mercury	$2 \mathrm{Hg}$	Mercurous oxide.	Hg_2O	1.04000
	Mercury	$_{ m Hg}$	Mercuric oxide.	$_{\rm HgO}$	1.08000
	Mercurous chloride.	$\rm Hg_2Cl_2$	Mercury	2Hg	•84940
	Mercuric sulphide.	HgS	Mercury	Hg	•86207
Nickel	Nickelous oxide	NiO	Nickel	Ni	•78667
Nitrogen	Ammonic platinic chloride.	2NH ₄ Cl, PtCl ₄ .	Nitrogen	${f N}_2$.06271

TABLE OF COEFFICIENTS, &C.—continued.

Z869T ·	^	Oxygen	$K^{5}O$	Potassic oxide	
\$21333 \$2091.	0	Oxygen	OiN O-N	Nickelousoxide	
40740	0	Oxygen	OgH	Mercuric oxide	
40740.	O	donad	Onn	oxide.	İ
97880.	0	Oxygen	$ m O_{SBH}$	Mercurous	
30380	$^{6}_{ m O}$	Oxygen	Mn2O3	Manganic oxide	
006064	U	4022210	. 0 -14	tetroxide.	
47647.	[*] О	Oxygen	$_{ m PO_gnM}$	Trimanganic	
4,040.	U		0 -76	oxide.	1
.55235	0	Oxygen	OnM	Manganous	1
04668	ŏ	Oxlgen	OBM	Magnesic oxide	
14987.	ŏ	Oxygen	CaO	Calcic oxide	
94140.	ŏ	ÖxYgen	$\tilde{\mathrm{Oqd}}$	Plumbic oxide	l
00008.	$_{ m EO}$	Oxygen	${ m Fe}_{ m SQ}$	Ferric oxide	
22222	Ŏ	Oxygen	FeO	Ferrous oxide	
19102.	ŏ	Oxygen	$\overline{\text{Ou}}$	Oupric oxide	
21333	Ō	Oxygen	CoO	Sobaltous oxide	
18818.	$\epsilon_{ ilde{ ext{O}}}$	Oxygen	$^{ m Cr}_{ m \Sigma}{ m O}_{ m 3}$	Ohromic oxide	
17200	0	Oxygen	CqO	Sadmic oxide	
				.abixo	
10342	$\epsilon_{\rm O}$	Oxygen	${ m gO}_{ m Z}{ m i}{ m H}$	Bismuthous	
10458	0	Oxygen	O_B	Baric oxide	
				anhydride.	1
£874E•	^{g}O	Oxygen	${ m Ag}_{2}{ m O}_{5}$	oin921A	
	•		0.7	anhydride.	
24242	eO 3	Oxygen	${ m As_2O_3}$	suoinsarA	
]	0	0.0	0.7	.exide,	1
8849I	O_3	Oxygen	${}^{\rm E}{}_{\rm O_2^{\rm Z}}{}_{\rm O_3^{\rm Z}}$	suoinomitaA	1 C
7099₺•	^{6}O	Oxygen	$_{ m EO_S}$ IA	snimulA	Oxygen]
				sonren Co	
		cyanic acid.	1708	cyanide.	
.20156	HCM	Hydro-	NUgA	olinegra.	
	1-0	ra Roran Co	NOST	cyanide.	
01761.	CM	Cyanogen	NOgA	oitnegrA	
70007	907.	anhydride.	BaSO4	Baric sulphate	(continue)
46352	$N_{\tilde{Q}_{\tilde{Q}}}^{\tilde{Q}_{\tilde{Q}}}$	Dirtin		Platinum ated	negorii/
99171.	$N^{\bar{5}}$	Nitrogen	Jd .	miraiteld	donou, ile
:0772005		1079200	'TITY O. T	·numo a	.inemona
Coeffic.	Form.	Sought.	Form.	Found.	Element.
		1	<u> </u>		

TABLE OF COEFFICIENTS, &c.—continued.

Element.	Found.	Form.	Sought.	Form.	Coeffic.
Oxygen	Silicic	SiO_2	Oxygen	O_2	•53333
(continued).	anhydride. Argentic oxide	$\mathbf{Ag}_2\mathbf{O}$	Oxygen	0	· 0689 8
	Sodic oxide	Na_2O	Oxygen	0	•25810
	Strontic oxide	SrŌ	Oxygen	0	•15459
Si	Stannic oxide	SnO_2	Oxygen	$\mathbf{O_2}$	•21333
	Water	H_2O	Oxygen	0	•88889
	Zincic oxide	ZnO	Oxygen	. 0	•19740
Phosphorus	Phosphoric anhydride.	P_2O_5	Phosphorus	P_2	•43662
	Magnesic pyrophosphate.	$Mg_2P_2O_7$	Phosphoric anhydride.	P_2O_5	•63964
	Magnesic pyrophosphate.	MgP_2O_7	••	2PO ₄	•8 55 85
	Ferric phosphate.	$\rm Fe_2P_2O_8$	Phosphoric anhydride.	P ₂ O ₅	•47020
	Phosphoric anhydride.	P_2O_5	··	2PO ₄	1·33 802
	Argentic phosphate.	Ag_3PO_4	Phosphoric anhydride.	$(P_2O_5)_{\frac{1}{2}}$	•16949
	Uranylic	$\mathrm{U_4P_2O_{11}}$	Phosphoric	P_2O_5	•19916
	pyrophosphate. Argentic pyrophosphate.	$Ag_4P_2O_7$	anhydride. Phosphoric anhydride.	P ₂ O ₅	· 2 3437
Potassium	Potassic oxide	$\mathbf{K}_{2}\mathbf{O}$	Potassium	Ko	•83018
	Potassic sulphate.	$K_2 SO_4$	Potassic oxide.	$egin{array}{c} \mathbf{K_2} \\ \mathbf{K_2} \mathrm{O} \end{array}$	•54080
	Potassic nitrate	KNO_3	Potassic oxide.	(K ₂ O) _{1/2}	•46590
	Potassic chloride.	KCI	Potassium	K	•52445
	Potassic chloride.	KCl	Potassic oxide.	(K ₂ O) ₁	•63173
	Potassic pla-	2KCl,	Potassic	K_2O	•19272
	tinic chloride. Potassic pla-	PtCl ₄ . 2KCl,	oxide. Potassic	2KCl	·30507
	tinic chloride.	PtCl ₄ .	chloride.		

TABLE OF COEFFICIENTS, &C.—continued.

1					-
18049. 91988. 98080	nZ OnZ nZ	oniX ebixo oloniX oniX	OnZ SnZ SnZ	Sincic oxide birdqlus oioniX ebirdqlus oioniX ebirdqlus oioniX	·· əniZ
88868. 49984.	nS OnS	niT auonnast abixo	$z^{ m OnS}_{ m 2OnS}$	Stannic oxide Stannic oxide	niT
1.20000	*OS	anbydride.	^g OS	Sulphuric sahydride.	
•34332	${ m gos}$	oirudqlu2	$\mathrm{B}^q\mathrm{SO}^{\mathfrak{F}}$	Barric sulphate	
77068. 78481.	$^{\epsilon_{ m S}}$	Sulphur IndqinS	${ m B_8SO_4} { m A_S_2S_3}$	Baric sulphate Arsenious sulphide,	Sulphur
69104•	OïS	Strontic Strontic oxide.	SrCO_3	Strontic Strontic carbonate,	
6049 G • 14 4 41	ar Ors	Strontium Strontic oxide,	Ors Posis	ebixo oitnort2 sitnort2 estaqIna	Strontium
4878 9. 48868.	$O_{2}N$	Godium Sodic oxide	$N_{ m 8CI}$	Sodic chloride Sodic carbonate	
22023	$(N_{32}O_{3})$	Sodic oxide	N_{aCI}	Sodic chloride	
9979E. 89987. 06174.	${{\rm C}_2^{R}N} \atop {{\rm C}_2^{R}N} \atop {{ brace} \atop {rac{1}{4}}} ({{ m C}_2^{R}N})$	Sodium Sodic oxide Sodic oxide	$egin{array}{l} \mathrm{O}_{\mathrm{g}8}\mathrm{N} \\ \mathrm{_{4}OS_{\mathrm{g}}8}\mathrm{N} \\ \mathrm{_{8}ON_{8}N} \end{array}$	Sodic oxide Sodic sulphate Sodic nitrate	·· muibo2
₱ 9 808•	(O23A)	Argentic oxide,	$\mathrm{ID}_{\mathbf{g}}\mathbf{A}$	chloride. Argentic ehloride.	
94234.	ãÅ	Silver	$\mathbf{A}_{\mathrm{S}}\mathbf{C}\mathbf{I}$	oitnegr A	Silver
4999₹•	IS	nosilia	$_{ m 2Oi8}$	Silicic anhydride.	., nosilië
Соеща.	Form.	Sought.	Form.	Found,	Element.

STOCHIOMETRY, OR CHEMICAL CALCULATIONS.

Conversion of Thermometer Degrees.

°C to °R, multiply by 4 and divide by 5.

°C to °F, multiply by 9, divide by 5, then add 32.

°R to °C, multiply by 5 and divide by 4.

°R to °F, multiply by 9, divide by 4, then add 32. °F to °R, first subtract 32, then multiply by 4, and divide by 9.

°F to °C, first subtract 32, then multiply by 5, and divide by 9.

To find the Percentage Composition having the Formula given.

Find the molecular weight from the formula then

Molecular weight _ Weight of constituent in a molecule. Percentage of constituent.

Or we may proceed thus:

Multiply the atomic weight of the element by 1, 2, 3, &c., according to the number of atoms of the element there are in the molecule; multiply the number thus obtained by 100, and divide by the molecular weight.

To find the Weight of any Element contained in any given Weight of a Compound Substance.

Molecular weight _ Weight of constituent in a molecule. Given weight Required weight.

Or, Multiply the atomic weight of the element by 1, 2, 3, &c., according to the number of atoms of the element there are in the molecule; multiply the number thus obtained by the given weight, and divide by the molecular weight.

To find the Empirical Formula of a Body from its
Percentage Composition.

Divide the percentage of each element by the atomic weight of that element to three places of decimals, and divide all the numbers thus obtained by the lowest; if the quotients are not whole numbers reduce them to their simplest relation in whole numbers, and to these whole numbers prefix the symbol to which each refers.

To find the Weight of a Substance required to yield, liberate, or produce, a given Weight of a Substance.

Write the equation expressing the chemical

required DOVIDAGE given, involved Stance of molecules anpatance of molecules stance X Number: resulting :: stance X Number: nal subof resulting sub-·igi10 to -dua Isnigiro to 10 Molecular weight Quantity Meight Molecular weight change; then

solve Problems involving Volumes of the stand

Write the equation expressing the chemical change, and underneath the gaseous product write the sign \square for each molecule (if there are more than one), thus:

 $MnO_2 + 4HCI = MnCI_2 + CI_2 + 2OH_2$ $\square \qquad \square \qquad \square$ $\square \qquad \square \qquad \square$ $\square \qquad \square \qquad \square$

4 volumes of hydrochloric acid gas yield I volume of chlorine and 2 volumes of water vapour. Any problem is readily solved by this method with the aid of simple proportion. The following data must be borne in mind.

An atomic weight of an element taken in grams

occupies 11.2 litres, at 0° C. and 760 mm. pressure, but As and P occupy 5.6 litres, and Hg occupies 22.4 litres.

A molecular weight of a compound taken in grams occupies 22.4 litres, unless the vapour density of the compound is abnormal.

1 litre of hydrogen weighs 1 crith = $\cdot 0896$ gram.

FORMULA FOR CORRECTING THE VOLUME OF GASES FOR TEMPERATURE AND PRESSURE.

V = original volume.

 $\mathbf{V}' = \mathbf{corrected}$ volume.

 $t = \text{original temperature C}^{\circ}$.

 $t' = \text{final temperature C}^{\circ}$.

P = original pressure.

 $\frac{\mathbf{P'} = \text{final pressure.}}{\mathbf{V'}} = \frac{(273 + t)}{(273 + t')} \frac{\mathbf{P'}}{\mathbf{P}}.$

FORMULA FOR REDUCING GASEOUS VOLUMES IN THE ANALYSIS OF GASES.

V' = correct volume.

 $\mathbf{V} = \mathbf{volume}$ found in the table, and corresponding to the observed height of the mercury in the eudiometer, the meniscus error being included.

 $\mathbf{B} = \text{height of barometer.}$

B' = difference of level between the two surfaces of mercury.

 $t = \text{temperature in } \circ C.$

V = tension of aqueous vapour in mm. of mercury. Then V'= $\frac{V \times (B - B' - V)}{760 \times (1 + .003665 t)}$, where 760

mm. is taken as the normal pressure; if 1000 mm. is taken, substitute 1000 for the 760 in the above formula.

RULES FOR INDIRECT ANALYSIS.

-Ins as aN bas X to noitenimistab tosribal

ppstea:-

4.4072; the product expresses the quantity of the sulphates, and multiply the remainder by by 2.17775, deduct from the product the sum of Multiply the sulphuric anhydride (SO3) found

Indirect determination of K and Va as chlothe sodium sulphate.

chlorides, and multiply the remainder by 3.6288; by 2.1029, deduct from the product the sum of the Multiply the quantity of chlorine in the mixture -: səpir

chloride present in the mixture. the product expresses the quantity of sodium

Indirect determination of Sr and Ca as car-

Multiply the carbonic anhydride (CO2) found ponates:--

2.10526; the product gives the weight of the the carbonates, and multiply the difference by by 3.3523, deduct from the product the sum of

Indirect determination of Cl and Br, as AgBr calcium carbonate.

-: IOgA as and then as AgOl :-

find the amount of silver bromide present in the Multiply the decrease of weight by 4.22025 to

Indirect determination of Ba and Ca as sulmixture.

Let w = substance taken; phates:—

 $x = \text{BaSO}_4$ present in the substance;

ueul $y = CasO_4$

 $\cdot n = h + x$ [T]

When the whole of SO_3 is converted into $BaSO_4$, x will remain unaltered, but y will be increased in the proportion $\frac{233}{136}$; therefore

$$x + \frac{233}{136}y = w', [2]$$

where w' is the weight of the resulting BaSO₄. Now, subtracting equation [1] from [2], we get $\frac{233}{136}y - y = w' - w$; that is,

$$y\left(\frac{233}{136} - 1\right) = w' - w,$$

hence

$$y = \frac{w' - w}{\frac{233}{136} - 1},$$

from which the percentage of y can be found.

When the mixture consists of K_2SO_4 and Na_2SO_4 , $x = Na_2SO_4$, $y = K_2SO_4$; therefore

$$x + y = w, \qquad [1]$$

and

$$\frac{233}{142}x + \frac{233}{174}y = w'.$$
 [2]

Multiplying [1] by $\frac{233}{142}$, we get

$$\frac{233}{143}x + \frac{233}{142}y = \frac{233}{142}w.$$
 [3]

pur

therefore

Now, subtracting [8] from [2],

$$\sqrt{282} - \sqrt{882} - \sqrt{882} = \sqrt{241} - \sqrt{471}$$

 $n = \frac{283}{442} - m = \frac{283}{442} = w = \frac{283}{442} = w$

$$\frac{382}{471} - \frac{147}{471} = 8$$

efficient of y. Generally, when a = coefficient of x, $b = c_{\text{coefficient}}$

$$f(z) = hq + xp$$

$$f(z) = hq + xp$$

 $\cdot \frac{n-q}{mn-m} = n \quad \text{pur} \quad \text{and} \quad n = n - nq$ Subtracting [3] from [2],

or easy estimation. positive or negative, common to both, and capable two substances containing one radical, either The principle is applicable to any mixture of

WEIGHTS AND MEASURES OF THE METRICAL SYSTEM.

Weights.

1 milligram 1 centigram 1 decigram 1 gram	=	·1 gram. weight of a cubic centimetre of
1 decagram 1 hectogram 1 kilogram	=	

Measures of Capacity.

1 millilitre	Year	2 00000 0000000000000000000000000000000
		measure of 1 gram of water.
1 centilitre		10 cubic cent.
1 decilitre		100 cubic cent.
1 litre	=	1000 cubic cent.

Measures of Length.

1 millimetre	= '001 metre.
1 centimetre	= ·01 metre.
1 decimetre	= ·1 metre.
1 metre	= the ten millionth part of a
	quarter of the earth's meridian.

METRICAL MEASURES OF LENGTH.

	In English Inches.	In English Feet.	In English Yard.	In English Fathoms.	In English Miles.
Millimetre	.03937	.003281	.0010936	.0005468	9000000.
Centimetre	.39371	• 032809	.0109363	.0054682	.0000062
Decimetre	3.93708	.328090	•1093633	.0546816	.0000621
Metre	39.37079	3.280899	1.0936331	.5468165	.0006214
Decametre	393.70790	32.808992	10.9363306	5.4681653	.0062138
Hectometre	3937.07900	328.089917	109.3633056	54.6816528	.0621382
Kilometre	39370 1900	3280.899167	1093.6330556	546.8165278	-6213824
Myriametre	393707-9000	32808.991667	10936-3305556	5468.1652778	6.2138242

1 yard = 0.9143835	1 mile == 1.6093149
1 inch = 2.539954 centimetres.	1 foot $= 3.0479449$ decimetres.

POCKET-BOOK.

1 yard = 0.9143835 metre. 1 mile = 1.6093149 kilometre.

Mrannya.r Ma

CHEMISTS,

	n In English Acres.	. 9538290 . 0009885 . 0002471 . 9538290 . 0988457 . 0247114 . 3828959 9 . 8845724 2 . 4711431
	In English Roods.	· 000988 • 098845
CE.	In English In English In English Roods. Acres.	. 0395383 3.9538290 395.3828959
RES OF SURFA	In English Square Yards.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
MEIRICAL MEASURES OF SURFACE.	In English Square Feet.	1076-429934 107642-993419
171.55		Centiare, or square metres 10.764299 1.196033 0395383 0009885 0002471 Are, or 10,000 square metres 107642.993419 119.60.332602 395.3828959 0.08845724 2.4711431

1 square yard = $\cdot 83609715$ square metre. 1 acre = $\cdot 40467102$ hectare. 1 square mile = 2.58989451. 1 square inch = 6.4513669 square centimetres.
1 square foot = 9.2899683 square decimetres.

METRICAL MEASURES OF CAPACITY.

cubic decim		toot = 28	1 cub. t £•543458	76 cub. cent. 1 cub. toot = 1 callon = 4.543458 litres.	1 cub. inch = 16.386176 cub. cent. 1 cub. toot = 28.312612 1 cub. inch = 16.386176 cub. cent. 1 cub. toot = 28.312612
$\begin{array}{c c} 01 & \cdot 0000275 \\ 067 & \cdot 0275121 \end{array}$	·0002201 ·2200967	1.76077 22009	·06103 ·000035 [·02705 ·035317	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Millilitre or cub. cent Litre or cub. decim
In Bushels.	In Gallons.	In Pints.	In Cubic Feet.	In Cubic Inches.	

METRICAL MEASURES OF WEIGHT.

1 grain = .064799 g 1 lb. avoir. = .453593 k	Milligram -01543 Centigram 1.5432 Grains. 1.5432 Gram 1.54323
1 grain = ·064799 gram. 1 troy ounce = 31·103496 grams. b. avoir. = ·453593 kilogram. 1 cwt. = 50·802377 kilograms	In Troy Ounces. •000032 •000322 •003215
	In Avoirdupois Pounds. -0000022 -0000220 -0002205 -0022046
	In Cwts0000000 -0000002 -0000020 -0000197
ns. rams.	In Tons0000000 -0000000 -0000001 -00000010

PHARMACOPOEIA OF 1867. WEIGHTS AND MEASURES OF THE BRITISH

·sth gisW

I pound, lb. = 16 oz. = 7000zo 'eouno T = 437.5 grains. I grain, gr.

Measures of Capacity.

I gallon siniq 8 =O auid I = 20 fluid ounces. O zo y 'eouno piny i = 8 fluid drachms. 1 minim, fl. drm. = 60 minims. I fluid drachm, fl. drm.

Measures of Length.

12 ... = 1 foot. 13 ... = 3 feet 13 ... = 3 feet. I inch = $\frac{1}{8981 \cdot 98}$ seconds—pendulum. I line = $\frac{1}{2}$ inch.

30 inch Barom. = 252.458 grains.) (I cubic inch of distilled water at 62° F. and

Relations of Measures to Weights.

I fluid drachm is the measure of 54.68 grains of I minim is the measure of 0.91 grain of water.

grains of water. I fluid ounce is the measure of 1 ounce or 437.5

grains of water. 0.0378 to brond 32.1 lo enusament si triq I

grains of water. I gallon is the measure of 10 pounds or 70,000 I

WEIGHTS AND MEASURES.

AVOIRDUPOIS WEIGHT.

drachms.	ozs.	lbs.	. qrs.	cwts.	ton.	French grammes.
1=	0625 =	0039	=:000139	-000035	=:000001	74 = 1.771846
16 =	1=	0625	= .00223	= 000558	= 000028	$=28 \cdot 34954$
256 =	16 =	1	= 0357	=:00893	= 000447	
7168=	448 =	28	=1	= .25	= .0125	=12,700
28672 =	1792 =	112	=4	=1	= .05	=50,802
573440 = 3	35840 =	2240	=80	=20	=1	=1,016,048

TROY WEIGHT.

amain a	Arrita	ord		lb.		French
grains.	awis.	ozs.		10.	1	grammes.
1=	.04167=	• 0020	8=	•0001736	=	• 0648
24 =	1 =	• • 05	=	$\cdot 004167$	=	1.555
480 =	20 =	= 1	=	.0833		31·103 5
5760 =	240 =	=12	==	1	=3	73 • 242

175 lbs. troy = 144 lbs. avoirdupois.
lbs. avoirdupois × ·82286 = lbs. troy.
lbs. troy .. × 1·2153 = lbs. avoirdupois.

LONG MEASURE.

ins.	feet.	,	yards	. :	fath.	ŀ	oles	3.	furl.	. 1	mile.	_	French nètres.
1=	= .083	=:	02778	=:	0139	=:	005	=:0	0012	3=-00	00015	3=	.0254
12=	= 1	=	.333	=:	1667	<u> </u>	0600	6 = 0	0151	=.00	001894	1=	·3048
36=	= 3	_	1	=	•5	=:	182	=:0	0454	=.00	00568	=	$\cdot 9144$
72=	= 6		$\dot{f 2}$	=	1	=:	364	= 0	091	=.00	1136	=	1.8287
	= 16									=:00	3125	===	5.0291
7920=										=:12	25 .	=	201.16
63360=										$\equiv 1$		=1	609 315

WEIGHTS AND MEASURES—continued.

WINE MEASURE.

```
pints 2 = 1 quart.

2 = 4 = 1 gallon.

336 = 168 = 42 = 1 tierce.

504 = 252 = 63 = 14 = 1 hogshead.

672 = 336 = 84 = 2 = 1\frac{1}{3} = 1 puncheon.

672 = 336 = 84 = 2 = 1\frac{1}{3} = 1 puncheon.

1008 = 504 = 126 = 3 = 2 = 1 tun.

2016 = 1008 = 252 = 6 = 4 = 3 = 2 = 1 tun.
```

ALE AND BEER MEASURE.

```
864 = 432 = 108 = 12 = 6 = 3 = 2 = 14 = 1 butt.
 576 = 288 = 72 = 8 = 4 = 2 = \frac{1}{8} = 1 puncheon.
      54 = 6 = 3 = 14 = 1 hogspead.
                                       432 = 516 =
             36 = 4 = 2 = 1 barrel.
                                      = 771 = 887
               18 = 2 = 1 kilderkin.
                                       = z \iota
                                             = **I
                       9 = 1 firkin.
                                       = 98
                                             = 72
                             1 gallon.
                                      = Þ
                                             = 8
                                    I quart.
                                             = z
                                                pints
```

MEASURE OF CAPACITY.

```
-120 = 640 = 320 = 80
      92.9067=79.701=
                                                                                                                       T =
                                                                                                                                                                =10 = 5
                                                                                                                                                                                                 = 900 = 350 = 100 = 40
921.8971=618.19=
                                                                                                                     g.=
                                                                                                                                                              =
                                                                                                                                                             z = \hat{1} =
                                                                                                                                                                                                                             8 = 28 = 48 = 213
      979.067=797.01=
                                                                                                                     \mathbf{I} = \mathbf{I}
                                                                                                =.152 = .052 = .0152
                                                                                                                                                                                                                                   I = V
                                                                                                                                                                                                                                                                                  =8
  =1.583 = 36.35816
                                                                                                                                                                                                                                                                                                                =79
           =.03125 = .00625 = .00312 = .3208 = 9.082
                                                                                                                                                                                                                                   5 = 1 = .52
                                                                                                                                                                                                                                                                                                                    =91
           =.152 = .0126 = .00312 = .00126 = .1604 = .4.541
                                                                                                                                                                                                                                                                       g = I
      9299. = 70. = 961000. = 96100. = 97910. = 9790. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 9710. = 97
                                                                                                                                      ints, gall, peck, bushel, quarter, wey.
                                                                                                  last.
          cub. It. litres.
```

```
I gallon in wine, ale, or dry measure

= 2774 cubic inches = ·16 cubic foot

= 10 lbs. of distilled water =

Cube feet × 6.2355 = gallons.

Cube ins. × ·003607 = gallons.

I bushel = 2218·19 cube inches = 1·28 cube foot.

Cube feet × ·78 = bushels.

Cube ins. × ·00045 = bushels.
```

15.36 Dutch and Belgio 13.71 Austrian grains.

16·116 Danish grains.15·36 Dutch and Belgic grains.

16·16 Swedish grains. 20·373 Portuguese grains. 20·815 Italian grains.

16.419 Old Prussian grains.

16.103 Russian and Swiss grains.

Table showing a Comparison of the Weights and Measures of the Metric System with THOSE OF VARIOUS COUNTRIES.

9	CHEMISTS' POCKE	T-BOOK	•	
	Foot Foot Elle Foot	Metre	Name.	Measu
COMPARI 15·432 E 16·116 D	·30479 ·316103 2·465 A. ft. ·30479 ·71119 ·30000	11	Value in Metres.	Measures of Length.
COMPARISON OF THE GRAM WI One gram equals— 15.432 English grains. 16.116 Danish grains.	Sq. foot Sq. foot Sq. foot	Sq. metre	Name.	Measures of Surface.
E GRAM equals— ns. is.	·092894 ·0999 	11	Value in Sq. Metres.	Surface.
WITH THE	Gallon Cub. foot Wedro Malter Cub. foot	Cub. metre Litre	Name.	Measur
COMPARISON OF THE GRAM WITH THE MEDICINE-GRAINS OF VARIOUS COUNTRIES. One gram equals— 15.432 English grains. 16.116 Danish grains. 16.26 Datch and Relatio grains 16.27 Datch and Relatio grains 16.28 Datch and Relatio grains 16.29 Datch and Relatio grains	**O2831 cub. Pound metre 4 * 543458 litres **O309 cub. metre Pound 12 * 299 litres Pound 150 litres Pound **O270 cub. metre Po	11	Value.	Measures of Capacity.
RAINS OF VARIO One gram equipments of the Spanish grains. Swedish grains. Portuguese gra	Pound Pound Pound Pound Pound	Gram	Name.	Mea of W
One gram equals—panish grains. wedish grains. orthoriese grains	453·592 560·012 409·52 500·00	11	Value in Grams.	Measures of Weight.
Countries.	England, United States. Austria. Russia. Switzerland.	France, Germany, Italy, (England), Holland.	Where used.	

The Polar System of Weights and Introduced by Prof. H. Hennessey, F.R.S.; it is a decimal by Prof. H. Hennessey, F.R.S.; it is a decimal system, resembling the ordinary metrical system in many respects; but it has this advantage, that it is derived from the length of the earth's axis, which is a fixed quantity, while the French metrical system is derived from the circumference of the earth, which varies with longitude. The of the earth, which varies with longitude. The Polar inch, also, is a more convenient unit than Polar inch, also, is a more convenient unit than

the centimetre.

I Polar link = $\frac{1}{50000000}$ of earth's axis = $1 \cdot 000967$ inches.

I Polar quart = $\frac{1}{2}$ link cubed = $2 \cdot 0539$ litres.
I stat = the weight of the water contained by $\frac{1}{20}$ = $2 \cdot 0539$ grams. link cubed

FOREIGN MONEY, WEIGHTS AND MEASURES, COMPARED

Length in inches, English. 12. 12. 35 12. 35 12. 35 12. 35 12. 35 12. 35 12. 35 12. 35 12. 35 12. 35 12. 35 12. 35 12. 35		Name of Measure. Hoot Metre Metre Metre Metre	Varinber in £1 English, 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9 6.9	Mone Mame of Coin, Coin, Coin, Dollar Florin Franc Franc Franc Milreis Milreis Mouble Bouble Dollar	England America Austria Denmark France France Wortugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal Portugal
--	--	---	---	---	--

Table for the Conversion of Grams into Grains. (Contributed by Mr. W. Dawson.)

Grms.	Grains.	Grms.	Grains.	Grms.	Grains.	Grms.	Grains.	Grms.	Grains.
1.000	$15 \cdot 432$	•960	14.815	•920	14.197	.880	13.580	·840	12.963
	15.416		14.799	•919	14.182		13.565	•839	12.947
	15.401	•958	14.784	•918		t	13.549	•838	$12 \cdot 932$
	15:386	1	14.768	l .	14.151		13.534	•837	12.916
	15.370	1	14.753		14.136	i	13.518	•836	12.901
L	15.355	1	14.737		14.120	1	13.503	•835	12.886
	15.339	1	14.722	3	14.105	1	13.487	•834	12.870
1	15.324	l I	14.707		14.089		13.472	•833	12.855
1	15.308	•952	14.691	•912	14.074	i	13.457	832	12.839
1	15.293	•951	14.676	•911	14.058	.871	13.441	831	12.824
•990	15.278	•950	14.660	•910	14.043	1	13.426	•830	12.808
•989	15.262	•949	14.645	•909	14.028	5	13.410	*829	12.793
	15.247	•948	14.629	•908	14.012		13.395	•828	12.778
•987	15.231	•947	14.614	•907	13.997	•867	13.379	827	12.762
•986	15.216	•946	14.599	•906	13.981	.866	13.364	826	12.747
•985	15.200	•945	14.583	•905	13.966	.865	13.349	*825	12.731
•984	15.185	•944	14.568	•904	13.950	•864	13.333	•824	12.716
•983	15.169	•943	14.552	•903	13.935	*863	13.318	•823	12.700
•982	15.154	•942	14.537	•902	13.920	862	13.302	•822	12.685
•981	15.138	•941	14.521	•901	13.904	.861	13.287	.821	12.670
•980	15.123	•940	14.506	•900	13.889	•860	13.271	*820	12.654
•979	15.108		14.491	•899	13.873	859	13.256	· 819	12.639
•978	15.092	•938	14:475	•898	13.858	•858	13.241	•818	12.623
•977	15.077	•937	14.460	897	13.842	857	$13 \cdot 225$	•817	12.608
•976	15.061	•936	14.444	896	13.827	•856	13.210	*816	12.592
975	15.046			•895	13.812	•855	13.194	*815	12.577
•974	15.031	934	14.413	•894	13.796		13.179		12.562
•973	15.015	933	14.398	893	13.781	•853	13.163	•813	12.546
1	$2[15\cdot000]$	11	ı	41	13.765	1 I	13.148	*812	12.531
	14.984		14.367	4 1	13.750	11	13.133	1 1	12.515
	14.969				13.734	:)	13.117	1	12.500
	14.954	i i		11	13.719		13.102	.809	12.484
2	14.938	!			13.704		13.086		12.469
	14.923				13.688		13.071		12.453
	14.907	926	14.290		13.673		13.055		
	14.892		14.275	: 1	13.657		13.040	l 1	i .
1	14.876	1 1	14.259	11	13.642		13.025	l F	!
1	14.861) (14.244		13.626		13.009	1 1	12.391
	14.845	11	14.228		13.611		12.994	1	12.376
1 .861	14.830	$\parallel \cdot 921$	14.213	•881	13.595	841	12.978	.801	12.361
<u> </u>	 == -,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		1		i	l 1]	1	l

TABLE FOR THE CONVERSION OF GRAMS INTO GRAINS—continued.

I		11					1		
942.6	109.	768.6	1₹9•	609.01	189.	921.11	TZJ.	774.11	TQ1.
9.290	209.	406.6	7₹9.	10.626		241.11		694 · II	
908.6	£09·	8.923	€₹9•	10.240	1 i	491.11		744.II	
128.6	₹09•	886.6	₹₹9.	10.222		741.11		064.11	
988.6	909.	₹96.6	9₹9.	149.01	:	881.11		908.11	
398.6	909.	696.6	979	989.01		11.203		11.821	
498.6	409.	₹86.6	479	209.01		11.219		1 /	
888.6	809.	10.000		419.01		11.234		988·II	
868.6	609	10.012		EE9.01		11.250		11.822	
817·6	019.	10.030		879.01		29Z.II		498 · II	
624.6	119.	970.0I		899.0I		11.280		II • 883	
₹₹₹•6	219.	190.01		649.01				868 - 11	
09₹•6	819.	840.0T		₹69.0I		967.11	, .	11.913	
947.6	₹19.	260.01				11.312		11.929	
067.6	919.	801.01		974.01		478.II	1 .	₱₱6·II	
909.6	919.	10.123	939.	I74.0I	1 1	11.342		096.11	
123.6	419.	681.01		994.01		11.328		946.11	
489.6	819.	₹91.01		144.01		646 II		166.11	
799.6	619	041.01		484.0T	1 1	11.389		12.006	
899.6	029	981.01			• 1	₹0₹·II		120.21	
889 6	129.	10.200		818.01		6I7·II		12.037	
669-6	229.	912.01		10.833		11.432		12.052	
₹19.6	623.	10.231				11.420		890.71	
679.6	₹79.	472.01		678.0I		997.11		12.083	
979.6	979.	292.01		₹98.0I		187.11		12.099	
099.6	979.	842.01		648.01		967·II		12.114	
949.6	479.	10.293		968.01		11.212		12.129	1
169.6	879.	10.308		016.01		11.228		371-21	
404.6	679			976.01		11.243	· ,	091.21	1
774.6	089.	10.33 [†]		I76.01		699.11	674	941.71	
484.6	189.	10.322		746.01 746.01		749.II	094.	161.71	
894.6	289	048.01		486.0I		689.11		17.207	
894.6	883.	988.01	- , -	E00.II		909.11	,	77.77	
₹84.6	₹89.	107.01		810.11		11.620		12.237	
664.6	989	417.01		11.034		989.11		17.253	
918.6	989.	264.01			1	11.651		12.268	
088.6	489.	477.01		670·II		999·II		12.284	
9₹8.6	889.	897.0I		990·II		789·II		17.299	
198.6	689.	847.0I		960·11		469·II		12.315	
948.6	079.	767.0I		1	,	714.II		17.330	
	079.	707.01	009.	111.11	027•	874.11	094•	12.346	008•
Grains.	Grms.	Grains.	Grms.	Grains.	Grms.	Grains.	Grms.	Grains.	Grms.
•manatan		<u> </u>	<u> </u>	<u>!</u>			l		

TABLE FOR THE CONVERSION OF GRAMS INTO GRAINS—continued.

·							,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
Ġrms.	Grains.	Grms.	Grains.	Grms.	Grains	Grms.	Grains.	Grms.	Grains.
•600	9 • 259	.560	8.642	•520	8.025	•480	7.407	•440	6.790
•599	$9 \cdot 244$	•559	8.636	•519	8.009	•479	7.392	•439	6.775
•598	9.228	•558	8.621	•518	7.994	•478	7.376	•438	6.759
•597	9.213	•557	8.606	•517	7.978	.477	7.361	•437	6.744
•596	9.197	•556	8.590	•516	7.963	.476	7.346	•436	6.728
•595	9.182	•555	8.574	•515	7.947	•475	7.330	•435	6.713
•594	9.167	•554	8.559	•514	7.932	•474	7.315	•434	6.698
•593	9.151	•553	8.543	•513	7.917	•473	7.300	•433	6.682
•592	9.136	•552	8.518	.512	7.901	•472	7.284	•432	6.667
•591	$9 \cdot 120$	•551	8.503	.511	7.886	•471	7.268	•431	6.651
•590	9.105	•550	8.488	•510	7.870	•470	7.253	•430	6.636
•589	9.089	•549	8.472	.509	7.855	•469	7.238	•429	6.620
•588	9.074	•548	8.457	•508	7.839	•468	$7 \cdot 222$	•428	6.605
•587	9.058	•547	8.441	•507	7.824	•467	7.207	•427	6.589
•586	9.043	•546	8.426	•506	7.808	•466	7.191	•426	6.574
•585	9.028	• 545	8.410	•505	7.793	•465	7.176	•425	6.559
•584	9.012	•544	8.395	•504		•464	7.160	•424	6.543
•583	8.997	•543	8.379	•503	L.	•463	7.145	•423	6.528
·58 2	8.981	•542	8.364	•502	I.	462	7.130	422	6.512
•581	8.965	•541	8.349	501	7.731	•461	7.114	421	6.497
•580	8.950	•540	8.333	500	7.716	•460	7.099	•420	6.481
•579	8.935	•539	8.318	•499	7.700	•459	7.083	•419	6.466
•578	8.920	•538	8.305	498	7.685	•458	7.068	•418	6.450
•577	8.904	•537	8.287	497	7.670	•457	7.052	417	6.435
•576	8.889	•536	8.271	•496		456	7.037	•416	6.420
•575	8.873	•535	8.256	495	7.639	•455	7.021	•415	6.404
•574	8.858	∙534	8.241	•494	1	•454	7.006	•414	6.389
•573	8.842	•533	8.225	493	7.608	•453	6.991	413	6.373
572	8.827	•532	8.210	1492	7.592	1452	6.975	•412	6.358
•571	8.812	•531	8.194	491	7.577	451	6.960	•411	6.342
•570	8.796	•530	8.179	•490	7.561	•450	6.944	410	6.327
•569	8.781	•529	8.163	•489	7.546	•449	6.929	•409	6.312
•568	8.765	•528	8.148	488	7.531	•448	6.913	•408	6.296
•567	8.750	527	8.133	•487	7.515	447	6.898	•407	6.281
.566	8.734	526	8.117	•486	7.500	! !	6.883	•406	6.265
565	8.719	525	8.102	485	7.484	445	6.867	•405	6.250
564	8.704	•524	8.086	484	7.469	444	6.852	404	6.234
563	8.688	•523	8.071	•483	7.454	443	6.836	•403	6.219
•562	8.673	•522	8.055	482	7.436	•442	6.821	402	6.204
•561	8.657	•521	8.040	•481	7.423	•441	6.805	•401	6.188
L	1	11	i		1	1]		11	1

3.102	102.	614.8	142.	₹•338	182.	€96.7	128.	149.9	198.
411.8	202	\$64.E	242.	4.322	787.	696 • ₹		989.9	298.
3.133	.203	094.8	•243	498.₹	582.	₹86.₹		209.9	898
3•148	₹07.	994.8	177.	₹•383	₹87•	000.9	1 1	419.9	₹98•
3.163	.505	184.8	977.	868.7	282.	910.9	928.	2.633	392
64I.E	907.	964.8	977.	£14.4	987.	160.3	928.	879.9	998.
76I∙E	402.	3.812	472.	624.4	457.	910.9	428.	899.9	498.
3.210	802.	428⋅€	8₽7•	₱₱₱•₱	887.	290.9	828	649.9	898.
3.225	607.	3.842	677.	097.7	687.	440.9	628.	₹69.9	698
3.241	.210	3.858	092.	947.7	067.	260.9		014.9	048.
3.256	112.	8.873	192.	I6₹•₹	167.	801.9	188	2.7.5	148.
142.8	.212	688·E	.727	909.₹	767.	6.123	1	174.9	248.
487∙€	£12.	₹06.€	.253	4.22I	£67.	681.9	•333	994.9	848.
3.302	112.	3.920	₹97.	489.₹	₹67•	\$91.g	₹88•	144.9	₹48•
3.318	212.	3:935	997.	₹.225	967.	041.9		484.9	378
3.333	912.	3.950	997.	899.₹	967.	981.9		208.9	948-
3·3 4 6	412.	996∙€	492.	₹.283	467.	2.200		818.9	448.
₹98.€	812.	186.8	822.	669.₹	867.	917.9	888.	2.833	848.
3.380	612.	466⋅€	697.	₹19.₹	667.	162.3		678.9	648.
368.8	022.	4.012	097.	0€9.₺	•300	477.9	078.	₱98.9	088.
3.410	122.	4.028	197.	979.7	106.	292.9	178.	648.9	188.
924∙6	777.	€₹0.₽	197.	099 ⋅ ₱	308	847.9	342	968.9	388
3∙₹₹Ӏ	.223	690.₺		949.₺	.303	6.293	818·	016.9	.383
49₹•€	1.224	₹40.₹		169.₹	₹0€•	608.9	₹₹€•	976.9	₹8£•
274.8	• 525	680 ⋅ ₱	997.	404.₹	308.	₽-354	948	176.9	388
88⊉∙€	922.	901.7	997.	777.7	908	078.9	9₹€•	496.9	386
3.203	722.	4.120	497.	884.₹	408•	2325	4₽€•	246.9	488.
3.518	822.	981.₹	892.	€94.7	808	048.9	8⊉€•	486.9	888.
3.23₹	622.	191.7	697.	894.7	•309	988.9	678.	800.9	688.
6₹9∙€	•230	491.7	072-	₹84.₹	018.	107.9	•320	810.9	068
3.565	122.	4.182	172.	008.₹	116.	417.9	136.	₹80.9	168
3.580	.232	461.7	272.	318·4	.312	5.432	.352	6₹0.9	392
969.8	•233	4.213	£72.	₫.830	•313	477.9	.323	990.9	-393
3.611	•234	4.228	122.	948.4	*1E.	294.9	192€	080.9	∌6 €•
9.626	• 235	4.244	942.	198.7	315.	847.9	•322	$960 \cdot 9$	968.
3.642	• 536	4.259	947.	948.₹	918.	₹6₹•9	998.	$ $ III $\cdot 9$	968•
499.8	482.	4.275	447.	268 ⋅ ₺	418.	609.9	498.	971.9	468.
849.8	862.	062.₺	872.	406.₺	818	2.625	838.	241.9	868.
889 • 8	•239	908.7	622.	4.922	918.	079.9	698.	491.9	668.
₹04·E	077.	4.321	082.	886.₹	•320	999.9	098.	E4T • 9	00₺•
Grains.	Guma.	Grains.	Grms.	Grains.	Grma.	Grains.	Grms	Grains.	Grms.
 		l				1			
·pənuiti	100—SI	GRAIN	OLNI S	GRAM	ion or	ONAEBS	О ант	E FOR	18 А.Т

TABLE FOR THE CONVERSION OF GRAMS INTO GRAINS—continued.

Grms.	a	1							
	Grains.	Grms.	Grains.	Grms.	Grains.	Grms.	Grains.	Grms.	Grains.
200	3.086	•160	2.470	.120	1.852	1.080	1.234	.040	0.617
199	3.071	•159	$2 \cdot 454$	•119	1.836	.079	1.219	•039	0.602
198	3.055	•158	2.438	•118	1.821	.078		•038	0.586
197	3.040	157	$2 \cdot 423$	•117	1.805	.077	1.188	.037	0.571
196	3.025	•156	$2 \cdot 407$	•116	1.790	.076	1.173	•036	0.555
195	3.009	•155	$2 \cdot 392$	115	1.775	.075	1.157	035	0.540
194	2.994	•154	$2 \cdot 376$	•114	1.759	.074	1.142	•034	0.525
•193	2.978	•153	2.361	•113	1.744	.073	1.126	.033	0.509
192	2.963	•152	2.346	112	1.728	.072	1.111	•032	0.494
191	2.947	•151	2.330	•111	1.713	.071	1.096	•031	0.478
190	2.932	•150		•110	1.697	.070	1.080	•030	0.463
189	2:917	•149	2.299	•109	1.682	.069	1.065	•029	0.447
•188	2.901	•148	2.284	108	1.667	068	1.049	•028	0.432
187	2.886	•147	2.268	•107	1.651	•067	1.034	.027	0.417
186	2.870	•146		•106	1.636	.066	1.018	•026	0.401
185	2.855	•145	2.238	105	1.620	•065	1.003	.025	0.386
184	2.839	•144		104	1.605	•064	0.987	.024	0.370
183	2.824	•143	2.207	•103	1.589	.063	0.972	•023	0.355
182	2.809	142	2.191	102	1.574	.062	0.957	.022	0.339
•181	2.793	•141	2.175	•101	1.559	.061	0.941	•021	0.324
180	2.778	•140	2.160	•100	1.543	.060	0.926	•020	0.309
179	2.762	•139	2.145	.099	1.528	.059	0.910	•019	0.293
178	2.747	•138	2.130	.098	1.512	•058	0.895	•018	0.278
	2.731	•137	2.114	097	1.497	•057	0.880	•017	0.262
	2.716	•136	2.099	•096	1.481	056	0.862	•016	0.247
	2.701	•135	2.083	•095	1.466	.055	0.849	•015	0.231
	2.685	•134	2.068	•094	1.451	.054	0.833	•014	0.216
	2.670	•133	2.052	.093	1.435	.053	0.818	.013	0.200
	2.654	•132	2.037	•092	1.420	•052	0.802	.012	0.185
	2.639	•131	2.021	.091	1.404	•051	0.787	•011	0.170
	2.623	•130	2.006	.090	1.389	050	0.772	.010	0.154
	2.608	•129	1.991	•089	1.373	.049	0.756	009	0.139
	2.592	•128	1.975	•088	1.358	•048	0.741	008	0.123
	2.577	•127	1.960	•087	1.342	•047	0.725	•007	0.108
1	2.562	•126	1.944	•086	1.327	•046	0.710	.006	0.092
	2.546	•125	1.929	•085	1.312	.045	0.694	.005	0.077
	2.531	•124	1.913	·084	1.296	•044	0.679	.004	0.062
	2.515	•123	1.898	.083	1.281	•043	0.663	.003	0.046
	2.500	122	1.883	.082	1.265	.042	0.648	.002	0.031
161	2.484	•121	1.867	.081	1.250	•041	0.633	•001	0.012
1				1	11	{	-	1	

TABLE FOR THE CONVERSION OF GRAIS INTO GRAINS—continued.

11	1	41		
- 11	1			1
1000	200.500	130	₹6 7 • 419	0₹
006	1821 885	120	540.132	32
008	899.4691	110	$046 \cdot 797$	30
1.1	1643.235	100	$608 \cdot 988$	35
		92	4 7 9 · 808	20
		06	331. 482	12
11		82	124.323	OI
	1734.288	08	138.881	6
		94	153.428	8
- 11			108.056	4
		99	769.76	9
1 1		09	791.44	g
		1 11	67.19	₽
11		09	462·9¥	3
1 H		1 1	30.865	7
", "	02, 700			
Grams.	tains.	Grams.	Grains.	Grams.
		006 788.1981 004 927.2491 004 927.2491 009 116.8821 007 924.1121 008 889.421 007 927.4911 061 492.0801 081 801.2001 041 146.926 091 644.878 091 644.878 091 419.144 091 997.769	006 288.1981 021 008 829.4691 011 009 640.9971 66 009 670.9351 60 000 670.9351 60 000 670.9351 60 000 670.9351 60 000 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 001 670.9351 60 002 670.9351 60 003 670.9351 60 004 670.9351 60 005 670.9351 60 006 670.9351	006 288.1981 021 021 040.29% 008 899.4691 011 076.23% 000 008.08% 009 600.00 600.00 000.00<

			GEAMS.			
OTNI	GRAINS	OŁ	COUVERSION	THE	LOR	TABLE

GI.

ŦΙ

13

12

11

0276

3L06.

·8454

9111.

8217.

0967·I

1.2312

₹99I·I

9101.1

8980·I

Grams.

20

6I

81

LI

91

Grns.

0879

.5832

₹8IG.

·4236

8888

01

6

8

L

9

Grns. Grams. Grams. Grams. Grams.

.3540

-5295

₹¥6I•

9671.

8790.

8

 \mathbf{z}

TABLE FOR THE CONVERSION, &c .- continued.

Grains.	Grams.	Grains.	Grams.	Grains.	Grams.
01	1.9000		0.0047	0.7	
21	1.3608	51	3.3047	81	5.2487
22	1:4256	52	3.3695	82	5.3135
23	1.4904	53	3.4343	83	5.3783
24	1.5552	54	3.4991	84	5.4431
25	1.6200	55	3.5639	85	5.5079
26	1.6848	56	3.6287	86	5.5727
27	1.7496	57	3.6935	87	5.6375
28	1.8144	58	3.7583	88	5.7023
29	1.8792	59	3.8231	89	5.7671
30	1.9440	60	3.8879	90	5.8319
31	2.0088	61	3.9527	91	5.8967
32	2.0736	62	4.0175	92	5.9615
33	$2 \cdot 1384$	63	4.0823	98	6.0263
34	$2 \cdot 2032$	64	4.1471	94	6.0911
35	$2 \cdot 2680$	65	$4 \cdot 2119$	95	6.1559
36	$2 \cdot 3328$	66	$4 \cdot 2767$	96	$6 \cdot 2207$
37	$2 \cdot 3976$	67	4.3415	97	6.2855
38	$2 \cdot 4624$	68	4.4063	98	6.3503
39	$2\cdot 5272$	69	4.4711	99	6.4151
40	2.5920	70	4.5359	100	6.4799
41	2.6568	71	4.6007	101	$6 \cdot 5447$
42	2.7216	72	4.6655	102	6.6095
43	2.7863	73	$\frac{1}{4} \cdot 7303$	103	6.6743
44	2.8511	74	4.7951	104	6.7391
$\overline{45}$	2.9159	$\parallel \tilde{75}$	4.8599	105	6.8039
$\overline{46}$	2.9807	76	4.9247	106	6.8687
47	3.0455	$\parallel \overset{\cdot}{77}$	4.9895	107	6.9335
$\overline{48}$	3.1103	7 8	5.0543	108	6.9983
49	3.1751	79	5.1191	109	$7 \cdot 0631$
50	3.2399	80	5.1839	110	$7 \cdot 1279$
		li l			

TABLE FOR THE CONVERSION, &C.—continued.

	1	· · · · · · · · · · · · · · · · · · ·	7	1				
6864.79	0001	8910.11	04I	8120.6	071			
0618.89	006	0196.01	691	$0200 \cdot 6$	681			
2688.13	008	7988.01	891	8.9455	881			
8698.9₽	004	₱178.01	291	<i>\$118.8</i>	LSI			
₹648·88	009	9994.01	991	7218.8	981			
38.3995	009	8169.01	99I	6L7L.8	132			
9616.22	00F	0723.01	₹9I	1889.8	₽81			
768 ₽· 61	300	7599·01	163	8819.8	133			
466I·9I	022	₹26₹•01	162	9899.8	132			
15.9598	200	10.4326	191	7884⋅8	ISI			
8118-21	061	8298.01	091	6624.8	130			
12.2470	681	10.3030	6 9 I	1698.8	129			
12.1822	881	10.2382	89I	8.2943	128			
12.1174	L81	1871.01	121	8.5592	721			
12.0526	981	9801.01	126	<i>L</i> ₹91.8	126			
8786-11	981	10·0438	122	$6660 \cdot 8$	125			
11.9230	781 │	0646.6	₽GI	1980.8	121			
11.8582	183	3+16⋅6	123	8046·4	123			
₹64.11	182	₹6₹8·6	152	2906·L	155			
$11 \cdot 7286$	181	9₹84.6	IGI	70£8·7	ITI			
8899-11	081	8614.6	120	6922.2	120			
11.2990	64I	0999.6	6+I	IIIL·L	611			
11.5342	87.I	8.5902	841	8949.7	811			
₹69 ₹· 11	LLT	₽939.6	L₹I	9189.7	LII			
9707·II	94T	909₹ • 6	9₹I	<i>LL</i> IG · <i>L</i>	911			
$8688 \cdot 11$	GLI	$8968 \cdot 6$	gfi	619F.L	GII			
11.2750	₹LT	6.3310	77I	1788·7	₹II			
11.2102	871	$7997 \cdot 6$	143	7.3223	EII			
4641·11	271	4012·6	142	3732·7	112			
9080 • 11	ILI	9981.6	IŧI	7291.7	III			
Grams.	Grains.	Grams.	Grains.	Grams.	Grains.			
TABLE FOR THE CONVERSION, &CCORRECTION.								

TABLE SHOWING EQUIVALENT RATES PER LB., CWT., AND TON.

Per lb.	Per cwt.	Per ton.	Per lb.	Per cwt.	Per ton.
<u>d.</u>	s. d.	£ s. d.		s. d.	·
4	2 4	2 6 8	64	58 4	58 6 8
्रंच ⊣ऽा लंब	4 8	4 13 4	$6\frac{1}{2}$	60 8	60 13 4
3 4	7 0	7 0 0	63	63 0	63 0 0
1	9 4	9 6 8	7	$65 ext{ } 4$	65 6 8
$1\frac{1}{4}$	11 8	11 13 4	74	67 8	67 13 4
14 14 13	14 0	14 0 0	71	70 0	70 0 0
13/4	16 4	16 6 8	73	$72 ext{ 4}$	72 6 8
2	18 8	18 13 4	8	74 8	74 13 4
$2\frac{1}{4}$	21 0	21 0 0	81	77 0	77 0 0
$2\frac{1}{2}$	23 4	·: 2 3 6 8	81	79 4	79 6 8
$2\frac{3}{4}$	25 8	25 13 4	83	81 8	81 13 4
3	28 0	28 0 0	9	8 4 0	84 0 0
34	30 4	30 6 8	91	86 4	86 6 8
$3\frac{1}{2}$	32 8	32 13 4	$ 9\frac{1}{2} $	88 8	88 13 4
$3\frac{3}{4}$	35 0	35 0 0	93	91 0	91 0 0
4	37 4	37 6 8	10	$93 ext{ 4}$	93 6 8
$4\frac{1}{4}$	39 8	39 13 4	10분	95 8	95 13 4
4½	42 0	42 0 0	$10\frac{1}{2}$	98 0	98 0 0
44	44 4	44 6 8	$10\frac{2}{4}$	100 4	100 6 8
5	46 8	46 13 4	11	102 8	102 13 4
5 <u>₹</u>	49 0	49 0 0	114	105 0	105 0 0
$5\frac{1}{2}$	51 4	51 6 8	$11\frac{1}{2}$	107 4	107 6 8
$5\frac{3}{4}$	53 8	53 13 4	$11\frac{2}{3}$	109 8	109 13 4
6	56 0	56 0 0	12	112 0	112 0 0
<u>'</u>		!			-

DECIMAL EQUIVALENTS OF PENCE AND SHILLINGS.

Decimar Equivatents of Les., Qrs., and Cwis.

	20N1	<u></u>	ana sar	, moc	1 44		V 4X11.	ro'a⊤	IVALUE		
1166.	42	3	1174.	48	7	1167.	4 2	τ	1172.	47	0
2286	97	- 1	7322	97	z	74825·	97	- 1	.2322	97	
7876	52	3	2827	22	2	2874.	25		2223	22	
€₹96•	7₹	3	ETIL.	₹	2	£797·	₹ ₹		.2143	₹3	
₹996•	23	3	₹904.	23	2	₹99₹•	23		₹907•	23	
₹9₹6•	22	3	₹969.	22	7	₱9₱₱•	77		₹961•	77	
9486	77	3	9489	17	7	9487	12		9481.	12	
9876	20	3	9849	20	7	9877.	02		9841	20	
9616.	61	Š	9699•	61	2	9617.	61		9691	61	
4016.	81	3	4099	8 <u>I</u>	7	401₹•	8T		4091.	81	
8106.	41	3	8199.	41	z	8107.	Žī		8191.	4 [
6768	91	3	6779.	91	7	6268	9t		6771	91	
6883	91	3	6889	91	7	6888.	gī		6881	12	
948.	₹İ	3	979.	ħΙ	7	948.	₹ī		172	ħΙ	
1998	13	8	1919.	13	7	1998.	13	i	1911.	13	
1498.	71	8	1409.	17	7	1498.	12	ì	1401.	12	
78₹8•	11	8	2869.	II	7	3482	II	1	7860.	II	
8333	10	8	£689·	10	7	.3393	01	1	£680·	01	
·8303	6	3	.2803	6	7	•3303	6	τ	£080·	6	0
₹178•	8	3	₹149·	8	2	+12ۥ	8	τ	₹140·	8	0
·8132	4	3	9799.	4	\mathbf{z}	.3125	4	τ	9790	Z,	0
9808	9	3	. 2236	9	\overline{c}	9808.	9	τ	9890.	9	0
9₹64•	Ğ	8	9779.	Ġ	\mathbf{z}	9767.	ç	Ţ	9770.	g	0
4984•	₹	ε	4989•	₹	7	4987	₱	I	4980	₹	0
8944•	8	8	8979.	3	\mathbf{z}	8947.	8	τ	8970.	3	0
6494•	\mathbf{z}	8	6419.	\mathbf{z}	\mathbf{z}	6497.	7	τ	6410.	2	0
6894•	Ι	3	6809.	Ι	\mathbf{r}	6897.	Ι	I	6800 •	Ι	0
94.		€		=0	$\mathbf{z}_{\underline{}}$	97.	=0	T _	9₹00.=	= ¥0	0
cwis.	.edI	.srp	cwts,	.edI	qrs.	cwts.	.ed1	arp.	cwta.	'sqt	įrs.
•									C		

94896 9486 9486 9488 94888	91 12 14 14 14 13 13 13 13	92184. 94814. 94819. 92999.	104 11 114 124 124	94897· 9487· 97907·	6 78 8 74 4	.1875 .21826 .21876 .21876 .34876	₹ 3¥	9489¥0·	FT T
EZ.	DECIMAL EQUIVALEATS OF POUNDS AND OUNCES,								

TABLE FOR THE CONVERSION OF PERCENTAGE INTO CWTS. AND LBS. PER TON, AND INTO LBS. PER CWT.

Per	Per Ton.		Per Cwt.	Per	Per	Ton.	Per Cwt.
Cent.	Cwts.	Lbs.	Lbs.	Cent.	Cwts.	Lbs.	Lbs.
1	********	22.4	1.12	26	5	22.4	29.12
2		44.8	$2 \cdot 24$	27	5	$ 44 \cdot 8 $	$30 \cdot 24$
3		$ 67 \cdot 2 $	$3 \cdot 36$	28	5	$ 67 \cdot 2 $	31.36
4		89.6	4.48	29	5	89.6	32.48
5	1	0	5.60	30	6	0	33.60
ថ	1	$ 22 \cdot 4 $	$6 \cdot 72$	31	6	$22 \cdot 4$	$34 \cdot 72$
7	1	44.8	7.84	32	6	44.8	$35 \cdot 84$
8	1	$ 67 \cdot 2 $	8.96	33	6	$ 67 \cdot 2 $	36.96
9	1	89.6	10.08	34	6	89.6	38.08
10	2	0	11.20	35	7	0	$39 \cdot 20$
11	2	$ 22 \cdot 4 $	$12 \cdot 32$	36	7	$22 \cdot 4$	$40 \cdot 32$
12	2	44.8	13.44	37	7	44.8	41.44
13	2	$ 67 \cdot 2 $	14.56	38	7	67.2	$42 \cdot 56$
14	2	89.6	15.68	39	7	89.6	43.68
15	3	0	16.8	40	8	0	44.80
16	3	$22 \cdot 4$	$17 \cdot 92$	41	8	$22 \cdot 4$	$45 \cdot 92$
17	3	44.8	19.04	42	8	44.8	$47 \cdot 04$
18	3	$67 \cdot 2$	$20 \cdot 16$	43	8	$67 \cdot 2$	$48 \cdot 16$
19	3	$89 \cdot 6$	21 28	44	8	89.6	$49 \cdot 28$
20	4	0	$22 \cdot 40$	45	9	0	50.40
21	4	$22 \cdot 4$	$23 \cdot 52$	46	9	$22 \cdot 4$	51.52
22	4	44.8	24.64	47	9	44.8	$52 \cdot 64$
23	4	$67 \cdot 2$	25.76	48	9	$67 \cdot 2$	$53 \cdot 76$
24	4	89.6	26.88	49	9	89.6	54.88
25	5	0	28.00	50	10	0	56.00
		· · · · · · · · · · · · · · · · · · ·		1	دم میطر بیشنده		······································

TABLE FOR THE CONVERSION OF PERCENTAGE INTC CWTS, AND LES, &C.—continued.

		.					
115.00	0	02	100	00.₽8	0	GI	\mathbf{g}_L
88.011		6I	66	88.48	9.68_{1}	7I	₹L
94.60I		6I	86	94.18	2.79	ħΙ	73
₹9.801	8.77	61	<i>L</i> 6	79.08	8.44	ħΙ	ZL
79.401	₹.77	61	96	26.67	55∙ ₹	ÐΙ	IL
07.90I	.0	61	9 6	0₹.87	0	ÐΙ	02
102.28		81	1 6	82.77	9.68	13	69
91.701	1	·	86	91.94	$[2 \cdot 73]$	13	89
103.04		: 1	76	10.GL	8 1	13	L 9
76.101	.!	81	16	78.95	₹.22	13	99
08.001	1	81	06	15.80	0	EI	ç 9
89.66	9.68	LI	68	89.17	9.68	12	₹9
	7.49	1 !	88	99.07	2.79	12	63
	8.77	1 1	L 8	₹₹•69	8.17	12	79
78.96	75.4	LI	98	$28 \cdot 89$	22·4	15	19
02.26	0	LI	$\ddot{\mathbf{c}}8$	$02 \cdot 70$	0	71	09
80.76	9.68	91	₹8	80.99	9.68	II	62
96.26	2.73	91	83	96.79	2.79	II	83
†8·16	8.77	91	78	₹8.89	8.44	Π	LG
3L.06	₹.77	91	18	77.79	₹.22	II	9 c
09.68	0	91	08	$09 \cdot 19$	0	II	çç
87.88	9.68	ĞI	64	81.09	9.68	10	₽9
98.48	2.73	31	84	98.69	2.73	01	53
₹7.98	8.77	1	LL	₽8.54	8.44		23
82.12	₹.77	ĞI	94	57.12	22.4	01	13
.sd.I	Lbs,	Civts.	Cent.	Lbs.	Lbs.	.estwD	Jue Juent.
Per Cwt.	.noT	T ₉ T	Per	Per Cwt.	.ron.	Per	Per

COMPARISON OF DIFFERENT THERMOMETERS.

Centigrade or Celsius.	Réaumur.	Fahren- heit.	Centigrade or Celsius.	Réaumur.	Fahren- heit.
+260 259 258 257 256 255	+208 207·20 206·40 205·60 204·80	494.60	+225 224 223 222 221 220	+180 179·20 178·40 177·60 176·80	+437 435·20 433·40 431·60 429·80 428
254 253 252 251	203 · 20 202 · 40 201 · 60 200 · 80	489·20 487·40 485·60 483·80	219 218 217 216	175 · 20 174 · 40 173 · 60 172 · 80	426·20 424·40 422·60 420·80
250 249 248 247 246	200 199·20 198·40 197·60 196·80	476.60	215 214 213 212 211	172 171·20 170·40 169·60 168·80	419 417·20 415·40 413·60 411·80
245 244 243 242 241	196 195·20 194·40 193·60 192·80	467.60	210 209 208 207 206	168 167 · 20 166 · 40 165 · 60 164 · 80	410 408·20 406·40 404·60 402·80
240 239 238 237 236	192 191·20 190·40 189·60 188·80	458.60	205 204 203 202 201	164 163·20 162·40 161·60 160·80	397·40 395·60
235 234 233 232 231	188 187·20 186·40 185·60 184·80	451·40 449·60	200 199 198 197 196	160 159·20 158·40 157·60 156·80	392 390·20 388·40 386·60 384·80
230 229 228 227 226	184 183·20 182·40 181·60 180·80	442·40 440·60	195 194 193 192 191	156 155·20 154·40 153·60 152·80	383 381·20 379·40 377·60 375·80

COMPARISON OF DIFFERENT THERMOMETERS—continued.

				_	مبروس سندني والمساول
249.80	08.96	121	312.80	124.80	126
221.60	09 - 46	122	314.60	172.60	491
723.40	07.86	123	316.40	126.40	891
255.20	07.66	124	318.20	127.20	691
292	00T	125	320	128	091
•					
228.80	100·80	126	321.80	128.80	191
0 9 · 09 7	09.101	431	323.60	129.60	162
07.797	102.40	821	325.40	130.40	163
764.20	103.20	129	02.428	131.20	₹91
992	701	130	379	132	1 62
08.497	08.70T	131	330.80	132.80	991
09.697	102 · 60	132	932.60	133.60	49T
07.147	07.90I	133	934∙40	134.40	891
02.842	0Z · 40I	781	336.20	132.20	691
275	801	132	338	981	041
08-972	08·80I	136	08.688	139.80	
09.847	09.601	48I	08.055 09.148		ILI
05.020	05.001 07.011	461 881		09.481	24I
282.20	111.20	139	343.40	138.40	ELI
78₹	717		345.20	139.20	74I
		140	478	0 ₹ I	94I
08.582	112.80	T₹T	08⋅8₹8	140.80	· 941
$09 \cdot 482$	113.60	7†I	320.60	09•I † I	44T
07.682	07·7II	143	322.40	742·40	84 T
291.20	112.20	₹ ₹ ₹	324.20	143.20	64T
E6 Z	911	g₹t	998	₽₽I	081
0 8•₹6 7	116.80	971	08.498	144.80	181
09.967	09·4II	47 I	09.698	09.97T	2 81
07.867	07·8II	8 † I	361.40	07.97T	£81
$300 \cdot 20$	02.611	6 † I	363.20	07 · 47 I	₹8 T
302	120	120	392	8₹1	381
303 • 80	120.80	121	08.998	08.871	981
302.60	121.60	152	09.898	09·67I	78I
07.408	122.40	153	07.048	07·09I	881
309.20	123.20	₹9T	372.20	151.20	68T
116+	+124	4125	₹48+	4152	061+

heit.	Réaumur.	or Celsius.	heit.	Resumur.	or Celsius.
-полиян	ya	Oentigrade	Fabren-	a diameter	Centigrade
			· · · · · · · · · · · · · · · · · · ·	·	·

COMPARISON OF DIFFERENT THERMOMETERS—continued.

			·····		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Centigrade or Celsius.	Réaumur.	Fahren- heit.	Centigrade or Colsius.	Réaumur.	Fahren- heit.
+120	+96	+248	+85	+68	+185
119	95·20	246·20	. 84	67·20	183·20
118	94·40	244·40	. 83	66·40	181·40
117	93·60	242·60	. 82	65·60	179·60
116	92·80	240·80	. 81	64·80	177·80
115	92	239	80	64	176
114	91·20	237 · 20	79	63·20	174·20
113	90·40	235 · 40	78	62·40	172·40
112	89·60	233 · 60	77	61·60	170·60
111	88·80	231 · 80	76	60·80	168·80
110	88	230	75	60	167
109	87·20	223 · 20	74	59·20	165·20
108	86·40	226 · 40	73	58·40	163·40
107	85·60	224 · 60	72	57·60	161·60
106	84·80	222 · 80	71	56·80	159·80
105	84	221	70	56	158
104	83·20	219·20	69	55·20	156·20
103	82·40	217·40	68	54·40	154·40
102	81·60	215·60	67	53·60	152·60
101	80·80	213·80	66	52·80	150·80
100	80	212	65	52	149
99	79·20	210·20	64	51·20	147·20
98	78·40	208·40	63	50·40	145·40
97	77·60	206·60	62	49·60	143·60
96	76·80	204·80	61	48·80	141·80
95	76	203	60	48	140
94	75·20	201·20	59	47·20	138·20
93	74·40	199·40	58	46·40	136·40
92	73·60	197·60	57	45·60	134·60
91	72·80	195·80	56	44·80	132·80
90	72	194	55	44	131
89	71·20	192·20	54	43·20	129·20
88	70·40	190·40	53	42·40	127·40
87	69·60	188·60	52	41·60	125·60
86	68·80	186·80	51	40·80	123·80

COMPARISON OF DIFFERENT 'THERMOMETERS-continued.

\$\begin{array}{c ccccccccccccccccccccccccccccccccccc						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			OT			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				00.00	00.07	
07.61 09.9 4 07.61 07.61 72 07.12 08.7 9 07.91 07.61 72 08.71 08.81 08.82 09.12 42 07.61 72 08.82 09.1 09.08 09.12 42 07.02 92 08.92 09.1 09.08 09.12 42 08.02 92 09.93 09.1 09.08 09.12 42 09.08 09.12 42 09.93 09.02 09.1 09.08 09.08 09.12 42 09.08 09.12 42 09.08 09.08 09.08 12 09.08 09.08 12 09.08 09.08 12 09.08 09.08 12 09.08 09.08 99 98 98		•			-	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ,	1		-	•	
89 + 91 + 92 + 93 + 94 + 95 + <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td></td<>						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		- · · · · · · · · · · · · · · · · · · ·				-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	₹	ç	44	20	25
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	08.77	3.20	₹ `	08.87	08.07	97
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	i :	- 1				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.			,
38 \$\frac{1}{2}\$	t I					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				00	, ,	0.6
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	f 1			· ·		18
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92.60	09•I		09.68	09.97	32
Th	07·48	0₹•₹0	3	0ħ.16	07.97	33
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	39.20	3.20	₹	$03 \cdot \epsilon_6$	02.42	34
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ιħ	₽	9	96	8 7	35
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08.2₽	08∙₹	9	08.96	08.82	98
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	09∙₹₹	09.9	4	09.86	$09 \cdot 67$	48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07.97	0₹.9		07·0 :I	30.40	8 E
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	02⋅8⊅	02.4	6	102.20	31.50	68
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	B I			₹01	32	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		_				Ů,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	08.19	08 • 8	11	08-90I	35.80	Ιħ
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	93.60	$09 \cdot 6$	12	09.40I	93.60	₹5
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	22.40	0₹•0I	13	0₹•60I	34.40	43
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	07.19	11.20	ÞΙ	111.20	32.20	₽ ₽
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	69	12	12	113	36	97
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		•				
+ 50 + 40 + 50 + 60 + 60 + 60 + 60 + 60 + 60 + 60 + 6	08.09	12.80	91	114.80	36.80	97
+ 50 + 40 + 40 + 50 + 60 + 60 + 60 + 60 + 60 + 60 + 60 + 6	09.79	13.60	41	09.911	09.48	47
+50 +40 +40 +40 +40 +40 +122 +20 19·20 16·20 16·20	07.79	07·7I		07 8II	38.40	1
+50 +40 +122 +20 +16 +68	1	12.50	61	120.20	39.20	1
	89+	91+		+155	07+	
147477	!					
THEIR PRINCE PR	heit.		or Celsius.	heit.		'enteree to
Centigrade Résumur. Fahren- Centigrade Résumur. Fahren- or Celsius. Résumur. heit.		Réaumur.	venugrade	-nsinsu	Réaumur.	
o pounitable	1-4-61	,		1 24		

WALKER'S LIST OF FRIGORIFIC MIXTURES.

WALKERD DE	JI (T I	101	Olul	10 1.22	1010		
						Degree	er sinks s F.	
Ammonium Nitrate	• •	• •	1 }	part	From	+ 400	to + 4°)
Water	• •	• •	1	,,	}	•	•	
Ammonium Chloride	• •	• •	5]	parts ")			
Potassium Nitrate	• •	• •	5	,,	From	+ 50°	to + 10	O_{ϵ}
Water		• •		,,	•			
Ammonium Chloride	• •	• •	5 x	parts	1			
Potassium Nitrate	• •				B		to + 4°	•
Sodium Sulphate		••	8	11	From	+ 50°	to + 4	•
Water			16		}			
***************************************		• •			•			
Sodium Nitrate			3 1	parts	} Enom	1 500) to 3(0
Nitric acid, diluted			2	•	From	7 50	' to — 3'	
	•	•		,,				
Ammonium Nitrate			1	part	7			
Sodium Carbonate	• •		1	part	From	+ 50°	to - 7	O
Water			1	,,	•	•	7 to — 7	
ALUMICI	••	••	_	"	•			
Sodium Phosphate			۵	narts	·) _			-0
-	• •	• •	A	Parts	From	1 + 50°	o to — 1	20
Nitric acid, diluted	• •	• •	4.	"	,			
Codium Culphata			ĸ	narte	. `		_	_
Sodium Sulphate		• •	J	<i>yar 02</i>	' { Fron	$n + 50^{\circ}$	o to + 3	O
Sulphuric acid, diluted	l • •	• •	4	**	,			
Cadina Culmbata			c	narta				
Sodium Sulphate	• •		4	parts	'			
Ammonium Chloride	• •	••	4 2	"	Fron	a + 50	° to — 1	00
Potassium Nitrate	• •	• •			1	•		
Nitric acid, diluted	• •	• •	4	**	j			
~								
Sodium Sulphate		• •		parts	·)		0.4-	
Ammonium Nitrate	• •	•,•	5		Fron	a + 50	○ to — 4	fO,
Nitric acid, diluted	• •	• •	4	***	J			

Walker's List of Friedriffic Mixtures-continued.

Snow Snow $\frac{3 \text{ parts}}{4}$ From $+32^{\circ}$ to -51° Snow Snow Calcium Chloride, crystallized 3 ,, $\begin{cases} 2 & \text{parts} \\ \text{n.} \end{cases}$ From $+ 32^{\circ}$ to $- 50^{\circ}$ Snow Shoride $\frac{4 \text{ parts}}{6}$ From $+ 32^{\circ}$ to $- 40^{\circ}$ Snow Snow $\frac{7}{4}$ From $\frac{7}{4}$ From $\frac{1}{4}$ 32° to $\frac{1}{4}$ Witric acid, diluted $\frac{1}{4}$ $\frac{1}{4$ Snow Snow $\frac{8 \text{ parts}}{6 \text{ a. c.}}$ From $\frac{8 \text{ parts}}{6 \text{ a. c.}}$ From $\frac{8 \text{ parts}}{6 \text{ a. c.}}$ Snow Sulphuric acid, diluted $\frac{3 \text{ parts}}{2}$ From $+ 32^{\circ}$ to $- 23^{\circ}$ Saring 21 ... soli behanog ro, wond & ... d ... soli behanog ro wond Boding G ... d ... soli behanog ro wond Boding G ... d ... soli behanog ro wond Boding G ... d ... soli behanog ro wond Boding G ... d ... solid behanog ro wond Boding G ... d ... solid behanog ro wond Boding G ... d ... d ... solid behanog ro wond Boding G ... d ... to - 520081 - 01 Snow, or pounded ice parts & ... Snowled ice Sodium Chloride ... I shiroldo muinommA to -12° Snow, or pounded ice ... s parts Sodium Chloride ... sodium Chloride Degrees F. Thermometer sinks

Table showing a Comparison of the Degrees of Wedgewood's Pyrometer with Degrees C. and DEGREES R.

Wedge- wood.	°R.	°C.	
0	460	578	
) 1	518	648	Incipient glowing.
2	576	720	
3	634	793	Incipient cherry red.
4	692	865	
5	750	938	Red.
6	808	1010	
7	866	1083	Orange.
8 -	924	1155	Yellow.
9	9 8 2	1228	White.
10	1040	1300	Steel melts, 1350° C.
11	1098	1373	Strong white.
12	1156	1445	Dazzling white.
13	1214	1518	
14	1272	1590	
15	1330	1663	Wrought iron melts, 1600°C.
16	1388	1735	
17	1446	1808	
18	1504	1880	
19	1562	1953	
20	1620	2023	
21	1678	2098	
23	1736	2170	1
23	1794	2243	
24	1852	2315	
25	1910	2388	
26	1968	2460	
27	2026	2 533	Platinum melts, 2534° C.
2 8	2084	2605	
29	2142	2678	Iridium melts, 2700° C.
30	2200	2750	
			أحببوه والمرابع والمرابع والمنظورة والمسهول والمواق المراب والمناورة

The following table affords a somewhat rough method of estimating high temperatures:—

1200	Oszzling white	806	Oherry red
1300	otidW	002	bar kred
1120	• • • • • • • • • • • • • • • • • • •	225	the dark
	Bright cherry red		ni zaiwolz teut
\circ C	•	•00	

TABLE SHOWING A COMPARISON OF THE MERCURIAL THERMOMETER, OF THE AIR THERMOMETER,

(According to Magnus.)

	مستقصف معوجينها بالمصيحات والماضان هوالارام أباسانا أأكال الماكات
76.07C	Acc
$380 \cdot 92$	930
13.492	300
545.39	250
$6 lat \cdot \mathcal{L} 6 \mathfrak{I}$	500
₹4.8₹1	031
100.00	100
Degrees of the TiA.	Degrees (C) of the Mercurial Thermometer.

TABLE FOR THE CORRECTION OF THERMOMETERS IN DETERMINATION OF BOILING POINTS, &c.

T being the temperature indicated by the thermometer. N the number of degrees occupying the length of the mercurial column projecting out of the apparatus, &c. t the temperature of the column taken as the point $T-\frac{1}{2}N$,

then the following corrections must be added to T.

N	$T-t=20^{\circ}$	50°	809	100°	120°
20	0.06	0.15	0.25	0.31	0.37
40	0.12	0.31	0.50	0.62	0.74
60	0.18	0.46	0.74	0.92	1.11
80	0.25	0.62	0.99	1.23	1.48
100	0.31	0.77	1.23	1.54	1.85
120	0.37	0.92	1.48	1.85	2.26
140	0.43	1.08	1.72	2.16	2.59
160	0.49	1.23	1.97	2.46	2.96
180	0.56	1.39	2.22	2.77	3.33
200	0.62	1.54	2.46	3.08	3.70

COEFFICIENTS OF EXPANSION (LINEAR) OF

Glass.	Brass.
•000007567	•000018782
•000015133	·000037564
•000022700	•000056346
•000030267	•000075128
•000037833	·000093910
•000045400	.000112692
•000052967	•0001314 74
•000060533	$\cdot 000150256$
•000068100	•000169038
	•000007567 •000015133 •000022700 •000030267 •000037833 •000045400 •000052967 •000060533

COMPARISON OF THE BRITISH AND METRICAL BAROMETERS.

1			i	1	1
678.827	85.87	649·014	86.77	6/6 - 769	84.72
178.227			1	127 · 269	97.72
722 - 363				896.969	£4.72
228 · 127				969 • 969	24.72
721.347				Z+6.969	27.40
-, 0 102				2,0 200	0, 20
688.027	88.87	681.804	88.47	68F·969	88.72
188.027				186.469	57.36
828.617	1 1			69 4 · 4 23	₹8.72
918.614	1	1	} 1	216.869	28 · 72
203.817		1.4	1 = i	Z07 · 869	27.30
662.817	! 1		1	$668 \cdot 769$	87.47
162.212	1 1		4 -	168.269	92.72
882.717	!	l .	1	888 · 169	₽2 • 23
977-917	28.22	940. FOL	27.72	978-169	22.72
716.267	58.20	499·804	$0L \cdot L_2$	298.069	$07 \cdot 72$
694.914	81.87	690.807	$89 \cdot 72$	698.069	81.72
115.251	91.87	166.207	$99 \cdot 72$	I98·689	91.72
847.417	₹1.87	702.043	₹9.72	€₹€ • 689	₽I · 72
714.235	28.12	701.535	$29 \cdot 72$	988 - 889	21.72
713.727	28.10	701 - 027	$09 \cdot 72$	$888 \cdot 358$	01.72
713.219	1	11	1	$ 028 \cdot 788 $	80.72
117.217				218·788	90.72
712.203				₹08 • 989	
969 117		_	i	962.989	l
781·117	00.82	<i>L</i> 8₹⋅869	02 · 72	$88L \cdot 989$	00.72
metres.		metres.		metres.	
-HIIM	Inches.	-illiM	Inches.	-illiM	Inches.
		METERS.	CATTLOT		

COMPARISON OF THE BRITISH AND METRICAL BAROMETERS—continued.

		<u> </u>			
Inches.	Milli- metres.	Inches.	Milli- metres.	Inches.	Milli- metres.
28.50	$723 \cdot 887$	29.00	736 • 587	29.50	749 · 286
28.52			$737 \cdot 095$		$749 \cdot 794$
28.54	$724 \cdot 903$	29.04	$737 \cdot 603$	29.54	$750 \cdot 302$
28.56	725.411	29.06	738 · 111	29.56	750.810
28.58	$725 \cdot 919$	$[29 \cdot 08]$	738.619	29.58	751.318
28 ·60	$ 726 \cdot 427 $	$ 29 \cdot 10 $	$739 \cdot 127$	29.60	751.826
$28 \cdot 62$			739.635		$752 \cdot 334$
28.64			740.143		$752 \cdot 842$
28.66	$727 \cdot 951$	29.16	740.651	29.66	$753 \cdot 350$
28.68	$728 \cdot 439$	29.18	741 · 159	29.68	$753 \cdot 858$
28.70	1	1	741 · 667		$754 \cdot 366$
$28\!\cdot\!72$			$742 \cdot 175$		$754 \cdot 874$
28.74			$742\cdot683$		$755 \cdot 382$
28.76	1 - 1	1	$743 \cdot 191$		755 · 89 0
28.78	$730 \cdot 999$	29 28	$743 \cdot 699$	$29 \cdot 78$	$756 \cdot 398$
$28 \cdot 80$	731 · 507	29.30	$744 \cdot 206$	29 80	756.906
$28 \cdot 82$	732.015	29:32	744.714	29.82	757 • 414
$28 \cdot 84$	$732 \cdot 523$	29.34	$745 \cdot 222$	29.84	$757 \cdot 922$
28.86	$733 \cdot 031$		$ 745 \cdot 730 $		$758 \cdot 430$
28.88	$733 \cdot 539$	29.38	$746 \cdot 228$	29 88	$758 \cdot 938$
2 8·90	$734 \cdot 047$	29.40	$746 \cdot 746$	$29 \cdot 90$	$759 \cdot 446$
28.92	1 -		$747 \cdot 254$	i	$759 \cdot 954$
$28 \cdot 94$		1	$747 \cdot 762$	1	$760 \cdot 462$
$28 \cdot 96$	1	1	$748 \cdot 270$	1 1	$760 \cdot 970$
28.98	736.079	$ 29 \cdot 48 $	$748 \cdot 778$	29.98	$761 \cdot 478$
			. [
				ومنهوب والمستوب	

COMPARISON OF THE BRITISH AND METRICAL BAROMETERS—continued.

		094.844	99.08	₹11.07 2	36.08
.848.984	86.08	778 · 242	,		30.30
048 984	1 1	₹81.777			80.28
798.987		977 - 777			$30 \cdot 58$
₹98.984	1 1	814.944	,	. 1	30.54
978.784	80.90	013-944	$99 \cdot 98$	749.49L	$30 \cdot 55$
888.487	88.08	204.944	30.24	990 - 191	30 50
783.830	$98 \cdot 08$	₹61.9 <i>LL</i>	30.25	866 - 558	$81 \cdot 08$
783.322	₹8.08	$989 \cdot 742$	$90 \cdot 20$	090.99L	91.08
418.487	38.08	8LI • 7-LL	8F · 08	745·542	₹1.08
908 - 387		049.844			$30 \cdot 12$
864 - 184		291.877			$30 \cdot 10$
062 · 184		772 - 654			$80 \cdot 08$
287.087	₽7.08	941.277	30.40	163.510	$90 \cdot 08$
180.274	27.08	889 · ILL	86.08	$200 \cdot 897$	₹0.08
$994 \cdot 644$	90.70	081-177	$98 \cdot 08$	767·79 <i>L</i>	$30 \cdot 08$
822.677	89.08	229 · 077	₹8.08	$986 \cdot 192$	30.08
Milli- metres.	.sədənI	Milli- metres.	Inches.	Milli- metres.	rsəqəu]

REDUCTION OF BAROMETERS TO 0° C. (Exact Formula).

$$y = H \frac{2220 + t}{2220} (1. + k t)$$

h = corrected heights. H = observed height, corrected for capillarity. t = temperature at time of observation. k = coef. of linear expansion of scale (see page 51). 18·33 21·11

-0.091 -0.093 -0.094 -0.096 -0.098 -0.100 -0.101

		CF	IEM	IST	s' f	OCI	KET	-BO	o Ķ.		
2	18.33	15.55	12.77	10.00	7.22	4.44	1.66	- 1.11	- 3.88	Temp,	CORRECTION TO ENGRAVED ON
!	65	60	55	50	15	40	හු	30	25	Temp.	ED ON
	079	067	055	043	- ·031	019	007	+.005	+.017	Inches,	-1 -
)	0.79 - 0.81	068	056	044	032	020	007	+ .005 + .005 + .005 + .005	$+ \cdot 017 + \cdot 017 + \cdot 017 + \cdot 018 + \cdot 018 + \cdot 01$	Inches, 28.5	GLASS, TO REDUCE THE OBSERVATIONS TO
))	082	069	057	- · 045	032	020	007	4.005	+.017	Inches, 29.0	O BAR
		071	058	046	033	020	008	+.005	+.018	Inches,	ометек 16 Овы
	083085081	072	059	046	- · 033	021	008	÷ 005	+.018	Inches,	S, THE
:	086	074	060	047	- · 034	021	008	4.00		Inches,	I PĀ
	088	075	061	810	035	021	008	+.005	+.019	Inches, 31.0	32° F. (0° C.).
	- 089	076	062	610	036	022	008	5 + .005 + .005	8+.019 +.019	Inches, 31·5	of which are 2° F. (0° C.).

	725 mm.	720 mm.	'ww 912	017 mm	.ana 705	00L	Height =bevrede	
-		*\$8	pld no b	ક ાઉ પજગ્			tive for posi	-
•	subtrac	rees, and	gəb əviti		additive	si noito	Price corresponds and	
٠	METERS	в Вуво	у Керпс	PLIED TO		OT SNO	Соквестю	

1.332

107.I

890.I

•83₹

T08.

L99.

.23₹

00₹.

197.

·133

·mm

087

767.I

1.163

1.033

₹06·

944.

979.

219.

888.

897.

671.

·ww

QQL

1.240

911.1

766.

898.

774.

079.

967.

372.

877.

•15₹

1.356

1.193

190 · I

876.

964.

£99·

.230

868.

997.

133

·mm

914

1.383

99I.I

120 · I

868 •

024.

779.

·213

388.

497.

178

·ww

420

1.232

.601 · I

986.

798.

684.

919.

· 463

.340

977.

173

1.317

98T · I

₹90·I

776.

064.

699.

123.

968.

.263

135

·mm

044

997.I

1.140

1.013

988.

094.

£89.

909.

088.

897.

121.

·ww

0FL

1.212

I .033

746.

098.

674.

209.

987.

₹98.

• 5₹3

171.

947.I

LTI.I

070 · I

768.

994.

7637

.210

385

.522

121.

·ww

GPL.

1.223

101.1

646.

998.

784

719.

687.

498.

.542

771.

I • 303

841.1

140.I

916.

981.

₹99.

.25₫

.393

797.

131

·mm

991

1.258

78I · I

900·I

088.

994.

679.

.203

175.

.525

971.

·mm

432

1.506

980·I

996.

778.

₹77.

£09.

· 483

398.

177.

171.

1.300

02I · I

070·I

018.

099.

079.

.390

097.

·130

·mm

094

677.I

1.154

666.

748·

674.

979.

.200

948.

.320

172

·ww

730

86I · I

840 · I

896.

888

614.

669 •

64F.

698•

077.

071.

10

6

84

9

g

Ŧ

8

z

 $t = t_0 C$

opserved=

Height

OT

6

84

9

Ç

Þ

3

7

 $t = t_0 C$

opaetked=

Height

0T

6

8

L

9

g

Ŧ

3

7

 $t = t_0 G$

CORRECTIONS TO BE APPLIED TO BAROMETERS—continued.

The correction is additive for negative degrees, and subtractive for positive degrees.

With Scales engraved on Brass.

		Democs	*****				المستعدد والنسب	
Height observed=	700 mm.	705 mm.	710 mm.	•	715 mm		720 mm.	725 mm.
$t=1^{\circ}$ C.	•1130	•1138	•11	46	•11	54	•1162	•1170
2	•226	•228	•22		•23		•232	•234
3	•339	•341	•34	- 1	•34		•349	•351
4	•452	•455	•45		•46		•465	•468
5	•565	•569	•57		•57		•581	•585
6	•678	•683	•68		• 69	2	•697	•702
7	•791	.797	•80	2	•80	8	•813	. 819
8	•904	•910	•91	7	•92	3	•930	•936
. 9	1.017	1.024	1.03	1	1.03	9	1.046	1.053
								<u> </u>
Height	730	735	740		745	;	750	755
observed=	mm.	mm.	mm	.	mm	۱.	mm.	mm.
$t=1^{\circ}$ C.	•1128	•1186	•11	94	•12	202	•1210	•1218
2	•236	•237	•23	1	•24		•242	•244
3	•353	•356	•358		•361		•363	•365
4	•471	•474	*47		•48	I		•487
5	· 5 8 9	•593	• 59		i i		605	•609
6	•707	.712	•71		•721		.726	•731
7	825	•830	•836		• 84	1	•847	•853
8	•942	•949	•95	55	. •96	· ·		•974
9	1.060	1.067	1.07	' 5	1.08	3 2	1.089	1.096
-			,		<u> </u>		!	1
Height	760	765	1	77	0		775	78 0
observed=	mm.	mm.		mı	n.		mm.	mm.
$t = 1^{\circ} C.$	•1227	•123	25	• 1	243	********	•1251	•1259
2	245	247	1		49		250	•252
3	•368	•370			73		•375	•378
4	•491	•494	1		97		•500	•504
5	•613	617			21	•625		•629
6	•736	•74]			46		•751	•755
7	859	•864			70		·876	•881
8	•982	•988		•9	94	1	. 001	1.007
9	1.104	1.111		1 • 1	19	1	•126	1.133
1	1	1						

CORRECTION TO BE ADDED TO BAROMETERS FOR CAPILLARITY. F = height of meniscus in mm. Correction is in mm.

	_	_		****			-	_	-	_	_	_	_	_	_	_	_	_	_	_	_		_
1.6			l	1	1	1	1	1.24	1.10	16.	98.	11.	· 68	.61	•54	.49	*	•39	.35	.32	.28	25	
1.5		1	-		1	İ	1.37	1.20	1.06	. 94	.83	. 74	99.	.59	.52	27.	.42	.37	•34	.30	.27	24	
1.4		ı	1	1	1	1.51	•	1.16	•	06.	08.	.71	.63	.56	• 50	.45	.40	.36	.32	.29	. 26	.23	
1.3		1	1	1	•	٠.	1.27	•	86.	98.	94.	19.	09.	.53	.47	.42	.38	•34	•30	.27	•24	22	
1.2		1		• .	1.61	٠.	•	1.06	.93	.81	.72	.64	.56	.50	.45	.40	.35	.32	.28	.26	.23	2	•
1.1		1	$\overline{}$	1.78	•	•	1.14	1.00	18.	94.	29.	.59	.53	.47	.42	.37	•33	•30	.26	.24	.21	1.9	
1.0			1.98			1.24	1.07	.93	.81	.71	.62	. 55	•49	.45	• 38	•34	.31	.27	.24	.22	.20	•18	
6.		•	1.83	•	•	•	66.	98.	.75	.65	.57	.50	.45	•40	.35	.31	.28	.25	.22	.20	•18	91.	
æ		•	1.71	•	•	•	06.	.78	89.	.59	.52	.46	•40	.36	.32	.28	.25	. 22	.20	•18	.16	•14	*
. 7.		•	1.54	•	•	.93	08.	69.	09.	.52	97.	•40	.36	.32	.23	.25	.22	.20	•18	91.	•14	•13	-
မှ		•	1.36	•	96.	.82	02.	09.	.52	.46	•40	.35	.31	.27	•24	.22	•19	11.	.15	•14	.12	.11	
rċ		• .	1.16	16.	.81	69.	.59	.51	•44	•38	•34	.30	.26	.23	.20	•18	91.	•14	•13	.12	01.	60.	
4.		1.16	.95	64.	99.	.56	•48	.41	.36	.31	.27	.24	.21	•19	91.	.15	.13	.12	01.	60.	• 08	20.	
က်		68.	.72	09.	• 50	•43	•36	.31	.27	.23	•21	.18	.16	•14	.12	11.	.10	60.	.08	20.	90.	90.	••
F=-2		09.	.49	.40	.34	.29	.24	.21	•18	•16	•14	.12	•11	60.	80.	20.	10.	90.	.05	.05	•04	•04	
Radius of Tube.	mm.	2	2.5	2.4					3.4				_	4.4	_	_	22	_		5.6		9	

SPECIFIC AND ATOMIC HEAT OF ELEMENTS.

,						
Elements.	Specific Heat of Equal Weights.	Equi- valent.	Specific Heat X Equi- valent.	Atomic Weight.		Weights containing Equal Quantities of Heat.
Diamond	0.1468	6 -	0.8808	48?	6.0464	44.84
Graphite	0.2018	6	1.2108	33 ?	6.6594	32.79
Wood char-	0.2415	6	1.4490	••	• •	27.27
Silicon, fused	0.1750	14	2.450	35 ?	6.125	37.63
" crystal.	0.1767	• •		••	• •	37.12
Boron, crystal	0 · 250	10.9	2.725	• •	• • •	26.34
Sulphur, } native	0.1776	16.0	2.8416	32	5·6 832	32.51
Selenium	0.0837	39.7	3.3145	79.5	6.6541	86.47
Tellurium	0.04737	64.5	3.0553	129	6 • 1107	139.02
Magnesium	0.2499	12.0	2.9988	24	5.9976	26.35
Zinc	0.09555	32.5 .	3.1054	65	6.2108	68.92
Cadmium	0.05669	56.0	3.1741	112	6.3482	116.17
Aluminium	0.2143	13.7	2.9359	27.5	5.8730	30.73
Iron	0.11379	28:0	3.861	56	6.3722	57.87
Nickel	0.10863	29.5	3.2045	59	6.4090	59.44
Cobalt	0.10696	29.5	3.1553	59	6.3106	61.23
Manganese	0.1217	27.5	3.3467	55	6.6934	51.11
Tin	0.05623	59.0	3.3178	118	6.6356	117.12
Tungsten	0.03343	92.0	3.0746	184	6.1492	197.06
Molybdenum	0.07218	48.0	3.465	96	6.931	91.24
Copper	0.09515	31.7	3.0162	63.5	6.0419	66.21
Lead	0.03140	103.5	3.2499	207	6.4999	209.73

Specific and Atomic Heat, &c.—continued.

				<u> </u>		
10.602	4448.9	9.961	••	• •	₱₱₹80•0	Gold
112.22	0491.9	801	•.•.	• •	10490.0	Silver
3₹∙80	4678.9	31	•/•	• •	04881.0	osphorus
22.40	0874.9	23	••	•••	0+263+0	muibo2
₹8.8£	8219.9	39	••	•••	99691.0	muissatoq
20.802	236E · 9	z · 461	9461.8	9.86	E∳ZE0 • 0	amaitel
•••	0799 9	500	0268 • 8	0.00I	ZEEE0 · 0	bi u pil "
26.902	0788.9	200	3.1920	0.001	26180.0	Mercury, solid
Equal Quantities of Heat.	Atomic Weight.	'JdgisW 	tgun-	valellev.	Equal Weights.	10arrorrane
etdgieW guiniatnoo	1 0000		Specific X 3a9H	-inpA	Specific To traff	Elements,
1	<u> </u>	l	<u> </u>			

TABLE SHOWING THE PHYSICAL STATE OF THE METALS.

Hard and Brittle Metals.

Antimony, Arsenic, Chromium, Iridium, Cobalt (?), Manganese (?), Molybdenum, Ruthenium, Bismuth, Tungsten.

Hard but Ductile Metals.

Aluminium, Cadmium, Copper, Magnesium, Nickel, Palladium, Platinum, Rhodium, Silver, Uranium, Zinc (only between 100° and 150°).

Soft Metals.

Lead, Calcium, Cerium, Iron (chemically pure), Gold, Indium, Potassium, Lithium, Sodium, Rubidium, Tin,

ATOMIC HEAT OF COMPOUNDS.

Class of Compounds.	General Formula.	Specific Heat X Atomic Weight.	Atomic Heat.
Protoxides	$\mathbf{M}^{\mathrm{II}}\mathbf{O}$	11.30	5.65
Sesquioxides	$\mathbf{M_2^{IIJ}O_3}$	$27 \cdot 15$	5.43
Dioxides	$\mathbf{M}^{\mathrm{IV}}\mathbf{O_2}$	13.84	4.61
Trioxides	$M_{\Lambda I}O^3$	18.98	4.74
Sulphides	$\mathbf{M}^{\mathbf{H}}\mathbf{S}$	18.88	6.29
Sesquisulphides	$\mathrm{M_{2}^{III}S_{3}}$	$\mathbf{29 \cdot 77}$	5.95
Disulphides	$M^{IV}S_2$	20.8	6.93
Chlorides	MCl	12.69	6.34
Dichlorides	$\mathbf{M}^{\mathrm{II}}\mathbf{Cl_2}$	18.72	6.24
Trichlorides	$M^{III}Cl_3$	30.36	7.59
Bromides	\mathbf{MBr}	13.70	6.85
Dibromides	$\mathbf{M^{II}Br_2}$	19.36	6.45
Iodides	MI	13.46	6.73
Biniodides	$M^{II}I_2$	19.35	6.45
Nitrates	MNO_3	24 · 137	4 82
Chlorates	MClO ₃	25.68	5.13
Sulphates	M_2SO_4	33.04	4.72
Carbonates	M_2CO_3	29.48	4.91
Phosphates	${ m M_3^{11}2PO_4}$	63.66	4.89

SPECIFIC AND ATOMIC HEAT OF ORGANIC LIQUIDS.

	Atomic Heat.	20.64 24.65 16.77 28.29 30.54 37.96 37.96 41.71 45.30 43.65 43.04 53.20 63.51 57.93
IQUIDS.	Specific Heat of Equivalent Weights.	.613 .536 .2206 .615 .508 .513 .485 .517 .474 .503 .450 .3499 .4159
F. OKGANIC	Molecular Weight.	32 46 46 60 60 44 44 44 44 88 88 88 123 133 138
SFECIFIC AND ATOMIC LIEAT OF VIGANIC LIQUIDS	Empirical Formula.	CH40 CH202 CS2 C2H602 C2H602 C3H602 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C4H802 C10H8
SPECIFIC AL	Compound.	Wood spirit Formic acid Sulphide of carbon Alcohol Acetic acid Acetone Methyl acetate Formic ether Ether Acetic ether Butyric acid Ethyl Sulphidaline Nitro-benzol Nitro-benzol Naphthaline Oll of turpentine Terebenthine

SPECIFIC HEATS OF GASES AND VAPOURS.

	For Equal Volumes.	For Equal Weights.
Air	$\left\{ egin{array}{l} 0.2374 \ 0.2389 \end{array} ight\}$	0.2374
Oxygen	0.2405	$0 \cdot 2175$
Nitrogen	0.2368	0.2438
$\mathbf{Hydrogen}$	0.2359	$3 \cdot 4090$
Chlorine	0.2964	0.1210,
Bromine	0.3040	$0\ 0555$
Nitrous oxide	$\left\{ \begin{array}{c} 0.3447 \\ 0.3014 \end{array} \right\}$	$0 \cdot 2262$
Nitric oxide	0 2406	$0\cdot 2317$
Carbonic oxide	$\left\{\begin{array}{c}0.2370\\0.2346\end{array}\right\}$	0.2450
Carbonic anhydride	$\left\{\begin{array}{c} 0.3307 \\ 0.2985 \end{array}\right\}$	0.20216
Carbonic disulphide	0.4122	0.1569
Ammonia	$\left\{\begin{array}{c}0\cdot2996\\0\cdot2952\end{array}\right\}$	0.5083
Marsh gas	0.3277	0.5929
Ethylene	0.4160	0.4040
Sulphurous anhydride	0.3414	0.1553
Hydrochloric acid	0.2333	0.1852
Sulphuretted hydrogen	0.2857	0.2432
Water	0.2989	0.4805
Alcohol	0.7171	0.4534
Ether	1.2266	0.4796
Chloroform	0.6461	0.1567
Benzol	1.0114	$0.\overline{3754}$
Acetone	0.8244	0.4125
Spirits of turpentine	$2 \cdot 3776$	0.5061
	 #	

Тавье showing the Relations existing ветwеем тне Уогиме ог тне моке імроктамт Сомвизтівье Gases ами тне Реориста ог тне Ехрьовіом.

Oarbonic Anhydride produced. O I I S S S S S S S S S S S S S S S S S	retian noit	Oxygen	of Combustible das. I I I I I I I I I I I I I I I I I I	Mame of Gas. Hydrogen, H Carbonic oxide, CO Methylic hydride, C ₂ H ₂ Methylic hydride, C ₂ H ₃ Methyl, CH ₃ , CH ₃ Ethylic hydride, C ₂ H ₅ Propylene, C ₃ H ₆ Propylene, C ₃ H ₆ Propylene, C ₃ H ₆ Ethylic hydride, C ₂ H ₅ Butylene, C ₄ H ₈ Ethylic hydride, C ₄ H ₉
Anhydride		-uoO	of Com- bustible	Vame of Gas.

TABLE SHOWING THE VOLUMES OF VARIOUS GASES ABSORBED BY I VOLUME OF WOOD CHARCOAL.

94.1 9.4 97.6 98.45	Fthylene Carbon oxide. Oxygen Mitrogen Hydrogen	98 99 99 98 98	Ammonia Hydrochloric acid Sulphurous anhydride Hydrogen sulphide Mitrous oxide Carbonic anhydride
Gas.	увть.	Gas.	увтей.

Kopp's Table, showing the Expansion of Water from 0° C. to 100° C. (32° F. to 212° F.).

<u> </u>	1	[1
Temp. Cent.	Temp Fahr.	Volume.	Temp. Cent.	Temp. Fahr.	Volume.
0 0	32	1.000000	21	69.8	1.001776
1	33 8	999947	22	71.6	1.001995
2	35.6	999908	23	73.4	1.002225
3	37 4	999885	24	75.2	1.002465
4	39.2	•999877	25	77.0	1.002715
5	41.0	•999883	30	86.0	1.004064
6	42.8	•999903	35	95.0	1.005697
7	44.6	•999938	40	104.0	1.007531
8	46.4	•999986	45	113.0	1.009541
9	$48 \cdot 2$	1.000048	50	122.0	1.011766
10	$50 \cdot 0$	1.000124	55	131.0	1.014100
11	$51 \cdot 8$	1.000213	60	140.0	1.016590
12	53.6	1.000314	65	149.0	1.019302
13	$55 \cdot 4$	1.000429	70	158.0	1.022246
14	$57 \cdot 2$	$ 1 \cdot 000556 $	75	167.0	1.025440
15	59.0	1.000695	80	$176 \cdot 0$	1.028581
16	60.8	1.000846	85	185.0	1.031894
17	$62 \cdot 6$	1.001010	90	194.0	1.035397
18	64 • 4	1.001184	95	$203 \cdot 0$	1.039094
19	66.2	1.001370	100	$212 \cdot 0$	1.042986
20	68.0	1 001567			

MULTIPLES OF THE COEFFICIENT OF DILATION (CUBICAL) OF ORDINARY GLASS.

900000 \$\frac{1}{2}0000 \$\frac{1}{2}0000 \$\frac{1}{2}0000 \$\frac{1}{2}0000 \$\frac{1}{2}0000 \$\frac{1}{2}0000 \$\frac{1}{2}0000	7897000. \$82000. \$841000. \$611000. \$611000. \$620000. \$620000.	6192000 • 82820000 • 84800	\$861000. \$990000. \$990000. \$990000. \$990000.	\$420000. \$280000. \$011000. \$022000. \$022000. \$022000.	6 8 4 9 9 7 8 7
From 0° C. to 300° C.	From 0° C. to 250° C.	From 0° C. to 200° C.	From 6° C.	From 0°C.	.T

TABLE SHOWING THE TENSION OF MERCURY VAPOUR.

\$264 \$284 \$284 \$384 \$384 \$384 \$384 \$388 \$384 \$384 \$3	250 210 200 480 480 480 480 480 480 480 480 480	96.4891 14.9781 99.9611 99.796 74.464 81.899 98.879 16.097 84.898 69.667 91.777	007 088 088 098 098 098 098 098 098 098 098	21.991 10.821 84.96 94.94 98.97 96.97 96.61 78.71 160.8	022 023 040 027 027 027 020 020 013 002 013 003 013 003 013 003 013 013 013	20. 20. 20. 20. 20. 20. 20. 20.	180 180 170 170 170 170 170 170 170 170 170 17
Millim.	o o	Millim.	O O.	.milliM	o C	.milliM	o Q.

Table showing the Tension of Aqueous Vapour in Millimetres of Mercury, from 30° C. to 230° C.

Temp.	Ten-	Temp.	Tension.	Temp.	Tension.	Temp.	Ten-
-30	•39	21	18.5	94	610.4	105	907
-25	•61	22	19.7	94.5	622.2	107	972
-10^{-0}	•9	23	20.9	95	633.8	110	1077
-15	1.4	24	22.7	95.5	645.7	115	1273
-10	2.1	25	23.6	96	657.5	120	1491
- 5	3.1	26	25.0	96.5	669.7	125	1744
- 2	4.0	27	26.6	97	682.0	130	2030
-1	4.3	28	28.1	97.5	694.6	135	2354
0	4.6	29	29.8	98	707.3	140	2717
1	4.95	30	31.6	98.5	721.2	145	3125
2	5.3	35	41.9	99	732.2	150	3581
3	5.7	40	55.0	99.1	735.9	\parallel 155 \mid	4088
4	6.1	45	71.5	99.2	738.5	160	4551
5	6.5	50	92.0	99.3	741.2	165	5274
6	7.0	55	117.5	99.4	743.8	170	5961
7	7.5	60	148.0	99.5	746.5	175	6717
8	8.0	65	186.0	99.6	749.2	180	7547
9	8.6	70	232.0	99.7	751.9	185	8453
10	9.1	75	287.0	99.8	754.6	190	9443
11	9.7	80	354.0	99.9	757.3	195	10520
12	10.4	85	432.0	100	760	200	11689
13	11.1	90	525.4	100.1	762.7	205	12956
14	11.9	90.5	535.5	$100 \cdot 2$	765.5	210	14325
15	12.7	91	545.8	100.4	772.0	215	15801
16	13.5	91.5	556.2	100.6	776.5	220	17390
17	14.4	92	566.8	101	787.0	225	19097
18	15.3	92.5	577.3	102	816	230	20926
19	16.3	93	588.4	103	845	-	
20	17.4	93.5	599.5	104	876	-	
	<u> </u>		<u> </u>		1		!

Degrees C .. 120 134 144 152 159 171 180 199 213 225 Atmospheres 2 3 4 5 6 8 10 15 20 25

Tensions of the Vapours of some Liquifiable Gases in Centimetres of Mercury at various Temperatures C.

7.74 	2.21 	98.08 887 98.08 781 9.7 9.7 9.7 89	881	• 744	97.84 8.184 7.787 4.691 0.27 98.4 77.7 47.1 79.	- 30 - 20 - 20 0 - 10 30 50 120 150 Boiling Oding oding of
Ethyl Iodide.	Ethyl Chloride.	Benzine,	Chloroform,	Ether:	Alcohol.	Temperature.
4.03- 	041 0022 041 0042 062 0248 		84- 199 098 047 807 191	9-88- 9-38- 9191 048 497 818 917 071 98	287 	- 30 - 02 - 01 0 01 03 06 01 001 01 001 001 001 001 001 001 00
Cyanogen.	Nitrous Oxide.		Carbonic	Ammonia	Sulphurous Anhydride.	Temperature.

Table of the Properties of Saturated Steam. (Taken from 'Molesworth's Pocket-Book.')

		l				
	osphere	Tem-			Atmos	here
inc	luded.		Specific	No. of	exclud	
Lbs. per	Inches of	of Steam.	Vol.	Atmo-	T1 P	—
Sq. In.	Mercury.	F.		spheres.	Inches of Mercury.	Lbs. per Sq. Inch.
						eq. mon.
1	2 0355	102.1	20582	•068	-27.886	70.5
$\hat{2}$	4.0701		10721	•136	-27.880 -25.851	-13.7
3	6.1065		7322	2 04	-23.815	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
4	8.142	153.1	5583	$^{\circ}272$	-23.813 -21.780	-10.7
5	10.178	162.3	4527	•340	-19.744	-10.7 -9.7
6	12.213	$170 \cdot 2$	3813	•408	-17.709	$-\frac{9}{8.7}$
$\overset{\circ}{7}$	$14 \cdot 249$	176.9	3298	•476	-15.673	$-\frac{0.7}{7.7}$
8	16.284	182.9	2909	•544	-13.638	-6.7
9	18.320	188.3	2604	•612	-13.602	-5.7
10	20.355	193.3	2358	680	-9.567	-4.7
11	$22 \cdot 391$	197 8	2157	•748	- 7·531	-3.7
12	$24 \cdot 426$	202.0	1986	816	- 5.496	-2.7
13	26.462	$205 \cdot 9$	1842	•884	- 3.460	$-\tilde{1}\cdot\tilde{7}$
14	28.497	$209 \cdot 6$	1720	•952	- 1.425	-0.7
14.706	$29 \cdot 922$	$212 \cdot 0$	1642	1.000	∓ 0.000	∓ 0.0
15	30.533	213.1	1610	1.020	0.611	0.3
16	32.568	216.3	1515	1.088	$2 \cdot 646$	1.3
17	34.604	219.6	1431	1.156	4.682	$2 \cdot 3$
18	36.639	$222 \cdot 4$	1357	1.224	$6 \cdot 717$	3.3
19	38.675	$225\cdot 3$	1290	1.292	8.753	4.3
20	40.710	$228 \cdot 0$	1229	1.360	10.788	5.3
21	42.746	$230 \cdot 6$	1174	1.428	12.842	$6 \cdot 3$
22	44.781	233.1	1123	1.496	14.859	7.3
23	46.817	$235 \cdot 5$	1075	1.564	16.895	8.3
24	48.852	237.8	1036	1.632	18.930	9.3
25	50.888	$240 \cdot 1$	996	1.700	20.966	10.3
30	61.065	$250 \cdot 4$	838	2.040	31.143	15.3
35	$71 \cdot 243$	$259 \cdot 3$	726	2.380	41.321	20.3
40	81.420	267.3	640	2.720	51·49 8	$25\cdot 3$
45	91.598	274.4	572	3.060	61.676	30.3
50	101.776	281.0	518	3.400	71.854	35 · 3
		•			,	
	-					

Table of the Properties of Saturated Steam-continued.

				Annual Control of the		
0.000	Z002.288	000 00	31	g.97g	7032·210	1000
8.986		000.89		233·6	1831 • 626	006
882.3	180.2081	002.19	34			008
8.984	987·869I	007.79	38	9.619	807·879I)
882.3	1394.935	009.47	€₽	1.709	1424·857	004
8.989	788·1611	008.07	20	0.487	1221 306	009
485.3	88.486	34.000	69	9.497	994.410T	200
₹32.3	890.988	30.600	99	4.997	086.916	097
385.3	787. ₹8 4	002.43	84	6.777	\$14.20¢	007
335.3	703.289	23.800	83	₹30.1	624.217	320
286.3	184.089	20.400	96	9.417	010·023	300
235.3	996.847	000.41	₹II	1.104	848 809	250
185.3	377-180	13.600		381.7	701 ⋅ 407	200
E-671	356.825	12.920	8 ⊉ I	3.778	474.98€	061
165.3	044.988	12.240	331	6.278	268.398	180
155.3	316.115	099.11		2.898	4€0∙9₹€	041
145.3	$094 \cdot 967$	088.01	₹41	₹.898	325 682	091
135.3	275.405	10.200	781	8.838	305 327	120
125.3	640.632	079.6	461	322.9	146.787	0₹I
116.3	₹69•₹87	078.8	711	3.17.2	919.797	130
105.3	214.336	091.8	477	34I•I	192.772	120
E.36	₹86•86I	08₹.4	478	9.₹€€	906.822	110
85.3	679 • 841	008.9	047	6 • 478	199.802	100
ۥ08	164.681	097.9	283	324·I	E48.86I	96
E-94	153.274	6.120	867	320.2	961.881	06
€ 04	143.096	084.g	∌1£	316 I	810.841	9 8
8.39	132.919	077·G	333	312.0	178.791	08
€.09	177.221	2.100	353	9.408	122·663	94
5.68	112.263	094.₹	848	305.9	987.77I	04
6.03	102.386	024.4	907	0.867	132.308	99
€.9₹	607.76	080 ⋅₹	4€₹	4.767	122.131	09
€.04	1 20.2 8	0 74 .8	₹4₹	1.482	111.923	99
Sq. Inch.	Merenry.				Mercury.	Sq. n.
Tpg. per	To sedent	Atino- spheres.	Vol.	of Steam. F.	To settouI	rpa ber
	onloxə Tsomi A	to, oV	Specific	Tem-T 9untried	sabbere nded,	

Table of Boiling Points, Specific Gravity, Observed Vapour Density, and Solubility of Various Liquids.

/1 	الارود سوند			<u> </u>		EM	L I i		מ			O.D.		1.	- 10)K.			1
$\overset{\circ}{\mathrm{C}_{3}}\overset{\circ}{\mathrm{H}_{5}}$	C2H6C	$C_3H_4O_2$	C_3H_4O	C_3H_6O	$C_0H_{14}O_6$	$C_7H_{19}O_5^{\frac{7}{2}}$	$C_{\kappa}H_{10}O_{4}$	$C_2H_6O_2$	$C_4H_8O_2$	$C_0H_{10}O_2$	$C_7H_{14}O_2$	0	$C_{\kappa}H_{\kappa}O$	$C_4^{\prime}H_6^{\dagger}O_3^{\prime\prime}$	$C_9H_4O_9$	C ₂ H ₅ NO	$C_6H_{14}O_2$			
Allyl	Aldehvde	Acrylic acid	Acrolein	Acetone	Triacetin	Diacetin	Acetin	of methyl	" of ethyl	of benzyl	" of amyl		Acetate of allyl	Acetic anhydride	Acetic acid, liquid	Acetamide	Acetal	Name.		
59	20.8	70	52.4	56	1	280	1	56.3	74.3	210	133.3		98-100	137.5	119	221	1050	Point, °C.	Boiling	
•684	.8000		1	.792	1.174	1.85	1.20	.956	.910	1	.857		1	1.073	1.063	1	•821	Water=1.	Specific	
2.92	1.532	3 1	1.897	2.0025	Ī	1	1	2.563	3.06	1	4.458		1	3.47	2.00	Ì	4.141	Density.	Vapour	
1 :	y 3	Soluble	1 in 40	Soluble	Insoluble	99	3,3	,,	Soluble	3	Insoluble	insoluble	Nearly	3	y	Soluble	1 in 18	Water.	ŭ	
	Alcohol, ether.			Alcohol, ether			Ether.	33 33	Alcohol, ether.	Alcohol.	, , ,		Alcohol, ether.		Alcohol.	Alcohol, ether.	Ether, alcohol.	Other Solvents.	Solubility.	

TABLE OF BOILING POINTS, &C.—continued.

Ž			_			
ä		Boiling	Specific	Vapour	Ø	Solubility.
	Name.	CO.	Water=1.	Density.	Water.	Other Solvents.
-	Allyl alcohol	103]	j	Soluble	Alcohol, ether.
•	" bromide, mono-	62	1.47	!	; - -	Alcohol.
r3	" bromide, tri	217	2.432]	Insoluble	
	" iodide	101	1.789	1	•	Alcohol, ether.
 O	" oxide	82-84	1	I	Nearly	
	1				insoluble	
ss Ss	" sulphide	140	1	I	Soluble	
₩ •	Allyl-mercaptan	90	1	l	1	
∀	Allylene	84.4	1.170	i	Insoluble	,
₹	Amyl	155-159	22.	ļ	:	Alcohol.
. ~	" bydride	. 30	•638	2.382	` :	Alcohol, ether.
<u> </u>	" iodide	146	1.51	6.675	Nearly	
	1				insoluble	
$c_{10}\mathrm{H}_{22}\mathrm{O}$	" oxide	180	1		Insoluble	Concentrated
	mercantan	126	25.25	2.63		Alcohol ether
25	Amylamine	76			Solution .	Trecords 6 company
; E	Signar lamino	1 6	2		Morale	**************************************
<u> </u>	Diamy lamine	0)1	I	I	insoluble	Acids.
$c_{15}H_{33}N$ T	Triamylamine	257	l	1		66

Table of Boiling Points, &c .- continued.

	CHEMISTS	POURET-BOOK.	
$\mathrm{As}(\mathrm{C}_2\mathrm{H}_5)_3$	${f SbC_6H_{15}\atop SbC_6H_{15}Cl_2}\atop {f SbC_6H_{15}Br_2}\atop {f AsBr_3}\atop {f AsCl_3}$	$C_5H_{12}O_2 \ C_5H_{10}O \ C_7H_8O$	C£H10
Arsentriethyl	Antimonides. Stibethyl chlor. bromide Arsenic bromide chloride	hydrate oxide Anisol Anisyl hydride	Name.
140	158·5 ———————————————————————————————————	1 <i>77</i> 95 152 255	Boiling Point, °C.
1.51	1·324 1·953	.987 .824 .991	Specific Gravity, Water=1.
5.278	7·44 	2:982	Vapour Density.
quantity of water Insoluble	Insoluble " Soluble in	Soluble Insoluble	Water. Insoluble
Olive oil, ether. Absolute alcohol, spirit, ether.	" " " Alcohol, oil of	phuric acid, bromine. Alcohol, ether. Alcohol, ether, fuming sulphuric acid. Alcohol, ether.	Other Solvents. e Fuming sul-

TABLE OF BOILING POINTS, &C.—continued.

		Boiling	Specific	Vapour	S	Solubility.
	Name.	Point, °C.	Gravity, Water=1.	Density.	Water.	Other Solvents.
$rac{ ext{As(CH}_3)}{ ext{As(CH}_3)_2}$	Arsenmethyl Arsendimethyl (cacodyl).	133 170	11	7.101	Soluble	Alcohol, ether, chloride of ethyl
$\begin{array}{c} {\rm As(CH_3)_2CN} \\ {\rm As_2C_4H_12O} \\ {\rm As_2C_4H_12S} \end{array}$	Cacodyl cyanide oxide sulphide	140 120 above 100	111	4.63	" Nearly insoluble	Alcohol, ether. Alcohol.
C_6H_6	Benzol	80.4	30.	2.11	Insoluble	Alcohol, ether, acetone.
$ m C_6H_5Br$	Bromobenzine	150	1	5.631	6	Concentrated sulphuric acid.
$^{ m C_6H_5NO_2}_{ m C_7H_6O_2}$	Dibromobenzine Nitrobenzine Benzoic acid	219 213–220 249·2	1.186	4.4	"Soluble	Ether. Alcohol, ether. Alcohol, ether, oils.
$ m C_8H_8O_2$	Benzoate of methyl	198.5	1.10	4.714	Nearly insoluble	Alcohol, ether.
$\mathrm{C_9H_{10}O_2}$	" ethyl	212.9	1.055	5.406	Slightly soluble	99

Table of Boiling Points, &c .- continued.

5	CHEMISTS	POCKET	DOOK.	
$\begin{array}{c} \mathrm{C_{14}H_{12}O_{2}} \\ \mathrm{C_{13}H_{10}O} \\ \mathrm{C_{7}H_{5}N} \\ \mathrm{C_{7}H_{5}OCI} \\ \mathrm{C_{8}H_{5}NO} \end{array}$	$C_7H_5NO_4 \\ C_9H_9NO_4 \\ C_1_4H_{10}O_8 \\ C_{10}H_{12}O_4$	$C_{13}H_{10}U_{2} \\ C_{7}H_{5}BrO_{2} \\ C_{7}H_{5}ClO_{2}$	$C_{16}H_{14}O_{4} \\ C_{12}H_{16}O_{2} \\ C_{10}H_{10}O_{2} \\ C_{14}H_{12}O_{2}$	
Benzoin	Nitrobenzoic acid Nitrobenzoate of ethyl. Benzoic anhydride Benzoate of glycyl	Bromo-benzoic acid. Chlorobenzoic acid	Benzoate of ethylene amyl allyl benzyl	Name.
315 190·6 196 206-208	298 310 320		260·7 230-240 345	Boiling Point, °C.
1·196 1·0230	1.228	1 []	•9925	Specific Gravity, Water=1.
3.7		1 1		Vapour Density.
Soluble Insoluble	Soluble Insoluble	Sparingly soluble Insoluble in cold	Insoluble " " " " " " " " " " " " " " " " " " "	Water.
	Alcohol, ether, benziue.		Ether. Alcohol, ether. Ether. Alcohol, ether.	Solubility. Other Solvents.

Table of Boiling Points, &c.-continued.

		Boiling	Specific	Vapour	Σ.	Solubility.
	Name.	Point, °C.	Gravity, Water=1.	Density.	Water.	Other Solvents.
C_7H_6O	Hydride of benzoyl	179.1	1.0499	1	Soluble	Alcohol, ether.
C_7H_7C1	Chloride of benzyl	170-176	1.117	1 6	Insoluble	33 33
C_7H_0N	Hydride of benzyl Benzylamine	103.7-114 198	7.8.	3.51	Sparingly	Alcohol, ether.
					soluble	acetone, CS_2 .
C ₇ H ₆ Cl ₉	Chloride of benzylene	206-208	1	5.595	Insoluble	Alcohol, ether.
$C_7H_8O_7$	Benzylic alcohol	206.5	1.051	3.85	22	Alcohol, ether,
,						.Z25
$C_{14}H_{14}O$	" ether	300-315	1	1	•	
Bri	Bromide of boron	90	2.69	8.48	1	
BCI3	Chloride of boron	17	1.35	4.06-4.08	}	
$(C_5H_{11})_3BO_3$	Borate of amyl	270-275	18.	10.55		
C ₂ H ₂ BrO ₂	Bromacetic acid	208	1	ŀ	Soluble	
$ ho_3 m H_5 Bro_2^2$	Bromacetate of	144	1	l	Insoluble	
1	methyl.					
$ m C_4H_7BrO_2$	Bromacetate of ethyl	159	1	1	1	•
$C_2H_2Br_2O_2$	Dibromacetic acid	225-230	2.25	1	Soluble	Alcohol, ether.
$C_3H_7Br_4O_2$	Mono-brombydrin	l	1	Ī		Ether.
$ m \ddot{C}_3H_6Br_2\ddot{O}$	Di "	219	2.11	1	Insoluble	Ether, absolute
						alcohol.

Table of Boiling Points, &c .- continued.

77	CI	HEMISTS'	POCKET	-BOOK.	
$^{\mathrm{C_{11}H_{20}O_{5}}}_{\mathrm{C_{7}H_{14}O}}$	$^{\mathrm{C}_{10}\mathrm{H}_{18}\mathrm{O}_{4}}_{^{\mathrm{C}_{5}\mathrm{H}_{10}\mathrm{O}_{2}}}$ $^{\mathrm{C}_{5}\mathrm{H}_{10}\mathrm{O}_{2}}_{^{\mathrm{C}_{7}\mathrm{H}_{14}\mathrm{O}_{4}}}$	$C_4H_6U1_2U_2 \\ C_8H_14U_3 \\ C_7H_12O_2 \\ C_9H_18O_2 \\ C_6H_{12}O_2$	$C_4H_8O \\ C_4H_8O_2 \\ C_4H_6Br_2O_2$	$egin{array}{c} C_3H_5Br_3 \ Br_2 \ CHBr_3 \end{array}$	
Dibutyrin Butyrone	" ethylene " methyl Monobutyrin	Butyric anhydride Butyrate of allyl " amyl " ethyl	Butyraldehyde Butyric acid Dibromo-butyric acid	Tribromhydrin Bromine Bromoform	Name.
320 144	239–241 102	190 140 17·6	68 –75 157	175-180 45-63	Boiling Point, °C.
1.081	1·024 1·0293	.978 	.80 .9886	3·1872 2·13	Specific Gravity, Water=1.
4:0	3.52	5·38 4·04	3:7	55.	Vapour Density.
Insoluble	Insoluble All Sparingly Et	Insoluble "" Sparingly Spaningly	Soluble Slightly soluble	Soluble Nearly insoluble	Water
Alcohol, ether Alcohol.	Ether. Alcohol, ether. Ether.	Ether. Alcohol, ether.		Alcohol, ether.	Solubility. Other Solvents.

Ē

		Boiling	Specific	Vapour	Σ.	Solubility.
	Name.	Foint, °C.	Gravity, Water=1.	Density.	Water.	Other Solvents.
0C1	Chloride of butyryl	95	1	1	l	
10,	lodide of butyryl	146-148			1	
$c_{10}^{\dagger}\dot{H}_{16}$	Cajputene	160-165	1	•	1	Ether, oil of turnentine.
	iso- · ·	176-178	.857	4.5	j	4
Hoo		310-316	1	96.4	1	
$^{20}_{10}^{-32}_{ m H_{18}}^{-32}_{ m C_9H_{16}}$	Camphin	167-170	.827	ì	Insoluble	Strong alcohol, rock oil, ether,
1						oil of turpentine.
\mathtt{I}_{16}	Caoutchin	175.5	.8423	$\{4.461\}$	$\left\{ egin{array}{ll} 4.461 \\ 4.65 \end{array} \right\} \ \ 1 \ { m in} \ 2000 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	Alcohol, ether.
$\mathrm{C_6H_{12}O_2}$	Caproic acid	198	.931		Sparingly soluble	Alcohol.
$_{6}O_{2}$	Caproate of ethyl	162	.882	4.97	Insoluble	
0^{2}	Caprone	165	1	I		Alcohol, ether.
$\overline{^60}_2$	Caprylic acid	236-238	.911	5.31	•	33 33
$^{16}_{0}$	Caprylic aldehyde	171	.818	1	•	
$\frac{1}{30}$ 03	Caprylic anhydride	280	1	1		Ether.
2002	Caprylate of ethyl	214	.8738	6.1	Insoluble	Alcohol, ether.

Table of Boiling Points, &c .- continued.

79 		CI	HEM	ISTS	s PO	CKE'	Т-ВОО	к.	ļ.	
$^{\mathrm{C}_{16}\mathrm{H}_{33}\mathrm{UI}}_{(\mathrm{C}_{16}\mathrm{H}_{33})_2\mathrm{O}}$	$C_{11}H_{22}O_3 \\ C_5H_{10}O_3$	CSCl_2	CS_2 .	$\mathrm{C_2Cl_4}$	$\begin{array}{c} \mathrm{CCl_4} \\ \mathrm{C_2Cl_6} \end{array}$	$\mathrm{C_{5}H_{11}NO_{2}}$	$egin{array}{c} \mathrm{C_2H_5N_2O} \\ \mathrm{C_3H_7NO_2} \end{array}$			
Chioride of cetyl Cetyl oxide	Carbonate of amyl Carbonate of ethyl	Carbonic sulpho- chloride.	Carbonic disulphide	Carbonic proto-	Carbonic chloride Carbonic sesqui-	Ethyl-carbamate of ethyl	Carbamate of methyl ethyl	Caprylone	Name.	
300	224-225 125	70	46.6	₹122 ₹116.7	77 182	174-175	177 180	178	°C.	Boiling
	.975	1.46	1.293	(SOLIG)	1:56 2:0	•9862	11		Water=1.	Specific
11	4.09-4.24	1	2.67	5.82	5·24-5·33 Insolu 8·157 Sparin	4.071	2·62 3·14	1	Density.	Vapour
1 3	2 2	¥	ä	Insoluble	Insoluble Sparingly	1	Soluble	Insoluble	Water.	2
Alcohol, ether.	Alcohol, ether.	j	Alcohol, oils,	Alcohol, ether,	Alcohol, ether.	Concentrated sulphuric acid.	Alcohol, ether. Alcohol, ether, spirit	Alcohol, ether,	Other Solvents.	Solubility.

Table of Boiling Points, &c.—continued.

Solubility.	Other Solvents.	Alcohol, ether,	acerone, CS2.		Alcohol, ether.		Alcohol (hot),	ether.	Finer.	6						Alcohol (cold).	Alcohol, con-	centrated sul-	Alcohol, ether.	
02	Water.	Sparingly	Soluble	*		: :	Insoluble	0.1.1.1	Soluble	Insoluble		1		1		Insoluble	Insoluble	in cold	Sparingly soluble	
Vapour	Density.	4.519	İ	5.3	5.13	6.32	1		1]	1	}	1	1	1	1	3.832		4.199	
Specific	Water=1.	1:081		_	_	1.603		ç	1.31	1.37	1	I	1		.1	1	1.139		1.491	
Boiling Point	°C.	238	185-187.8	195-200	94.4-98.6	118	I	1),7.7	178	155	120 - 130	120	200	176	270	94		61	
Nomo	1101100	Chinoline	Chloracetic acid	Trichloracetic acid	Chloral	Chloraldehyde	Chloralide	The man of I can be and with	Monochiorny arm	Dichlorhydrin	Trichlorhydrin	Epichlorhydrin	Epidichlorbydrin	Dibromochlorhydrin	Bromodichlorhydrin	Chlorobenzil	Chlorocarbonate of	ethyl.	Chloroform	
 		C_9H_7N	$\mathbf{C_2H_3ClO}$	$\mathrm{C_2HCl_3O_2}$	$\rm C_2HCl_3O$	C_2CI_3OCI	$^{\mathrm{C}_{5}\mathrm{H}_{2}\mathrm{Cl}_{6}\mathrm{O}_{3}}$	0.5 1	C3117C1O2	$C_3H_6Cl_2O$	$C_3H_5Cl_2$	C_3H_5C10	$C_{\rm SH_4Cl_2}$	$C_3H_5Br_2CI$	$C_3H_5BrCl_2$	$C_{14}H_{11}ClO_2$	$\mathrm{C_3H_5CiO_2}$	***	CHCI3	

1	Alcohol.	1	1 5	•929	250-260	Cubebs, oil of	$C_{15}H_{24}$	
	"	:	1.936		203	Cresylic alcohol	$\ddot{C}_7 H_8 O^-$	
	Alcohol, ether.	×	4.98	1.0894	218	Creosol	$_{\mathrm{C},\mathrm{H}_{10}\mathrm{O}_{2}}$	
	Alcohol, ether, oils, acetone.	3		1	168-212	Conine	$C_8H_{15}N$	
	ether.	soluble	ا ~~	1.142	280	Citrate of ethyl	$(C_6H_5O_4) \{ O_3$	
•	Ether, fatty oils		4.73	.8569	165	Citrene	C ₁₀ H ₁₆	
		l	l	7.007	၁၉၁	methyl.		
	Alcohol, ether		I		200	Nitrocinnamate of	$\mathrm{C}_{10}\mathrm{H}_{9}\mathrm{NO}_{4}$	
10	in alcohol.	Slightly	1	1	270 with	•	$\mathrm{C_9H_7^{\circ}(NO_2)}\mathrm{O}_2}$	
	A		1	١	180?	" cinnyl	$C_1 \circ H_{16} \circ 0$	
		l	١,	1.106	241	_	$C_{10}^{11}H_{10}^{12}O_{2}^{2}$	
	33	Insoluble	6.537	1.3	262	Cinnamate of ethyl	C ₁₁ H ₁₉ O ₉	
))	Soluble	1	.924	145.75	Cinnamene	C.H.	
	3 9	Insoluble	1	1.098	305	Cinnamein	C1. H1. O2	
	Alcohol, ether.	Sparingly scluble	i	1.665	120	Chloropicrin	CCl ₃ NO ₂	
	Other Solvents.	Water.	Density.	Gravity, Water=1.	Poiut, °C.	Name.		
	Solubility.	So	Vapour	Specific	Boiling			
4								

TABLE OF BOILING POINTS, &C .- continued.

	Mono	Boiling	Specific	Vapour	Ω̈́	Solubility.
	Taute.	comt,	Water=1.	Density.	Water.	Other Solvents.
$^{\mathrm{C_9H_{12}}}_{\mathrm{C_9H_{13}N}}$	Cumene Cumenylamine	144 225	.9526	40-4.3	Insoluble Sparingly	Alcohol, ether.
$rac{ ext{C}_{10} ext{H}_{12} ext{O}_2}{ ext{C}_{12} ext{H}_{16} ext{O}_2}{ ext{C}_{10} ext{H}_{11} ext{N}}$	Cuminic acid Cuminate of ethyl Cumonitrile	250 240 239	.765	9.9	soluble Insoluble Slightly	CS2. Alcohol, ether. Alcohol, Alcohol,
C10H110 C10H120 C10H120	Cumyl Hydride of cumyl	300 220–236 956 958	.9727	5.24	soluble ————————————————————————————————————	Hot alcohol. Alcohol.
$^{\rm C_{10}H_{12}^{-0.12}}_{ m C_{4}H_{5}^{-0.12}}$	Cumylene chloride Cyanate of allyl	255–260 82		3.045	Insoluble Soluble with	Alcohol, ether. Ammonia-
$\substack{\text{C}_3\text{H}_5\text{NO}\\\text{C}_2\text{H}_3\text{NO}\\\text{C}_7\text{H}_5\text{NO}}$	ethyl methyl phenyl	60 90 178–180	6868.	2.475	decom.	Alcohol, wood-
C_4H_5N	Cyanide of allyl	92-106	+64•		Soluble	carbolic acid. Alcohol, ether.

TABLE OF BOILING POINTS, &c .-- continued.

$^{ m C_{10}H_{14}O}_{ m C_{12}H_{18}}$	$\mathrm{C_{10}H_{15}N}$	$rac{ ext{C}_{3} ext{N}_{3} ext{H}_{9} ext{O}_{3}}{ ext{C}_{10} ext{H}_{14}}$	$C_9N_3H_{15}O_3$	$C_2 \widetilde{\mathrm{H_2Cl_2}}$	$C_3H_3NO_2$ CNB_1	C_5H_9N	C_2H_3N	$C_4H_4N_2$	$\begin{array}{c} \mathrm{C_6H_{11}N} \\ \mathrm{C_3H_5N} \end{array}$		
Cymylic alcohol	Cymylamine	Cymene methyl	Cyanurate of ethyl	Chloride of cyanogen	Acetate of cyanogen Bromide of cyanogen	" butyl"	" hydrogen " methyl	" ethylene	Cyanide of amyl	Namo.	Z S
243 173–175	250	274 171·5	235	15.5	80-85	125-128	26·5 77	Į	146 82	°C.	Boiling
.825	l	.857	ļ	1 1		.81	.7058	1 6	·8061	Water=1.	Specific
11	1	5·98 4·59-470	7.4	1 5	3.607	2.892	.947 1.45	1	3.335	Density.	Vapour
Insoluble	Slightly soluble	Insoluble	Slightly	Insoluble	Soluble.	3 3	* **	3 3	Soluble	Water.	N N
Ether.	Alcohol, ether.	Alcohol. Alcohol, ether,	» »	*		Alcohol, ether.	Alcohol.))))))	Alcohol.	Other Solvents.	Solubility.
	Cymylic alcohol 243 — Insoluble Cynene 173–175 825 — Insoluble	Cymylamine 250 — Slightly soluble Cymylic alcohol 243 — Insoluble Cynene 173–175 825 — Insoluble	Cymene 171.5 5.98 Insoluble Cymylamine 250 Slightly Cymylic alcohol 243 Insoluble Cynene 173-175 .825 Insoluble	Cyanurate of ethyl. 235 — 7.4 Slightly soluble solu	Chloride of cyanogen 15·5 — Insoluble (liquid). Cyanurate of ethyl 235 — 7·4 Slightly soluble Insoluble Cymplamine	Acetate of cyanogen Bromide of cyanogen Chloride of cyanogen (liquid). 80-85 — 3.607 Soluble Insoluble Insoluble Cyanurate of ethyl. 235 — 7.4 Slightly soluble Cymene 171.5 .857 4.59-470 " Cymylamine 243 — Slightly soluble Insoluble Cynene 173-175 .825 — Insoluble Insoluble	Jouryl acetate of cyanogen Bromide of cyanogen Chloride of cyanogen (liquid). 125–128	" hydrogen 26.5 .7058 .947 " " methyl 77	## Cymylic alcohol	Cyanide of amyl 146 -8061 3:335 Soluble "" ethylene 82 -78 - "" "" hydrogen 26:5 -7058 -947 "" "" hydrogen 26:5 -7058 -947 "" "" hydrogen 125-128 -81 2:892 "" Acetate of cyanogen 80-85 - 3:607 Soluble Chloride of cyanogen 15:5 - 3:607 Soluble Cyanurate of ethyl. 235 - 7:4 Slightly Soluble " soluble Cymene 171:5 -857 4:59-470 " Cymene 173-175 -825 - Slightly Soluble Insoluble Insoluble	Cyanide of amyl

G 2

Table of Boiling Points, &c.—continued.

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Boiling		Specific	Vanour	Ø	Solubility,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	me.	Poin °C.		vity, er=1.	Density.	Water.	Other Solvents.	vents.
Etherin 260 Etherol 280 Ethyl-amyl 280 $G_{c}H_{15}B$ Ethyl-tetryl $G_{c}H_{15}B$ Boride of ethyl $G_{c}H_{5}B$ Bromide of ethyl $G_{c}H_{5}B$ Chloride of ethyl $G_{c}H_{5}B$ Chloride of ethyl $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 10 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 $G_{c}H_{5}B$ 11 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td>F F</td> <td></td> <td>140</td>						F F		140
H_5 , C_5H_{11} Etherol 280 H_5 , C_4H_9 Ethyl-amyl 88 $C_6H_{15}B$ Ethyl-tetryl 62 C_2H_5B Boride of ethyl 95 C_2H_5B Bromide of ethyl 11 C_2H_5C Chloride of ethyl 10 C_2H_5 Cyanide of ethyl 104-107 C_2H_5 Oxide of ethyl 10 C_2H_5 Oxide of ethyl 11 C_2H_5 Oxide of ethyl 11 C_2H_5 Oxide of ethyl 13 C_2H_5 Sulphide of ethyl 73 C_2H_5 Disulphide of ethyl 151 C_2H_5 Sulphydrate of ethyl 61-63	therin	$\cdot \cdot \mid 260$		-	1	Insoluble	Alcohol, ether.	ether.
H_5 , C_5H_{11} Ethyl-amyl 88 H_5 , C_4H_9 Ethyl-tetryl 62 $C_6H_{15}B$ Boride of ethyl 95 C_2H_5B Bromide of ethyl 11 C_2H_5B Chloride of ethyl 104-107 C_2H_5 Cyanide of ethyl 104-107 C_2H_5 Oxide of ethyl 10-72.2 C_2H_5 Oxide of ethyl (ether) 35.6 C_2H_5 Oxide of ethyl (ether) 11 C_2H_5 Ethylate of methyl 11 C_2H_5 Sulphide of ethyl 73 C_2H_5 Disulphide of ethyl 151 C_2H_5 Sulphydrate of ethyl 61-63	therol	280)21	I	•	2	•
H_5 , C_4H_9 Ethyl-tetryl 62 C_2H_5B Boride of ethyl 95 C_2H_5B Bromide of ethyl 11 C_2H_5C Chloride of ethyl 104-107 C_2H_5I Cyanide of ethyl 70-72·2 C_2H_5I Oxide of ethyl (ether) 35·6 C_2H_5I Ethylate of methyl 11 C_2H_5I Ethylate of ethyl 73 C_2H_5I Sulphide of ethyl 73 C_2H_5I Disulphide of ethyl 151 C_2H_5I Sulphydrate of ethyl 61-63	thyl-amyl	88		6901	3.522	1		
	thyl-tetryl	62		1102	3.053	1		
Bromide of ethyl 40·7 Chloride of ethyl 104-107 Iodide of ethyl 70-72·2 Oxide of ethyl (ether) 35·6 Ethylate of methyl 11 Sulphide of ethyl 73 Disulphide of ethyl 73 Disulphide of ethyl 73 Sulphide of ethyl 73 Sulphide of ethyl 73 Sulphydrate of ethyl 61-63	oride of ethyl	95	_	1969	3.4006	Insoluble		
Chloride of ethyl Cyanide of ethyl 104—107 Iodide of ethyl 70–72·2 Oxide of ethyl (ether) 35·6 Ethylate of methyl 11 Sulphide of ethyl 73 Disulphide of ethyl 73 Sulphide of ethyl 73 Sulphide of ethyl 73 Sulphydrate of ethyl 61–63	romide of ethyl	40.		47	3.754	Sparingly		ž.
Chloride of ethyl Cyanide of ethyl 104—107 Iodide of ethyl 70–72·2 Oxide of ethyl (ether) 35·6 Ethylate of methyl Sulphide of ethyl 73 Disulphide of ethyl 73 Sulphide of ethyl 73 Sulphide of ethyl 73 Sulphide of ethyl 73 Sulphydrate of ethyl 61–63						soluble		
Cyanide of ethyl 104–107 Iodide of ethyl 70–72·2 Oxide of ethyl (ether) 35·6 Ethylate of methyl 11 Sulphide of ethyl 73 Disulphide of ethyl 151 Sulphydrate of ethyl 61–63	bloride of ethyl	11	•	920	2.219		2	*
Iodide of ethyl 70–72·2 Oxide of ethyl (ether) 35·6 Ethylate of methyl 11 Sulphide of ethyl 73 Disulphide of ethyl 151 Sulphydrate of ethyl 61–63	yanide of ethyl	104-1		431	4.26	Insoluble	6	93
Oxide of ethyl (ether) 35.6 Ethylate of methyl 11 Sulphide of ethyl 73 Disulphide of ethyl 151 Sulphydrate of ethyl 61-63	odide of ethyl	70-72		946	5.475	Sparingly	33	2
Oxide of ethyl (ether) 35.6 Ethylate of methyl 11 Sulphide of ethyl 73 Disulphide of ethyl 151 Sulphydrate of ethyl 61-63			-			soluble	,	•
Ethylate of methyl Sulphide of ethyl Disulphide of ethyl Sulphydrate of ethyl 61-63	xide of ethyl (eth			723	2.586	•	Alcohol, chloro-	hloro-
$egin{array}{l} H_5 \\ H_5 \\ H_5 \\ H_6 \\ $,			orm, acetone.	etone.
Sulphide of ethyl 73 Sulphide of ethyl 151 Sulphydrate of ethyl 61–63	thylate of methy				2.158	Sugntly		
Sulphide of ethyl 73 Sulphide of ethyl 151 Sulphydrate of ethyl 61–63	out two or moved				2	eranjos	,	•
S Disulphide of ethyl 151 Sulphydrate of ethyl 61–63	ulphide of ethyl	73		325	3.00	Insoluble	Alcohol, ether.	ether.
S Sulphydrate of ethyl 61-63	isulphide of ethy		, 	1	4.270	66	*	;
	ulphydrate of eth			332	2.11	Sparingly	£	8
		•				soluble		

Table of Boiling Points, &c .- continued.

									~	_	0,	-11						
	$\mathrm{C_2H_4Cl_2}$	$\mathrm{C_6 H_{11} ClO_2}$	$C_{10}H_{18}O_{4}$	$C_2H_4Br_2$	$\mathrm{C_6H_{10}O_4}$	$C_4H_8U_3$	C9H21N	1	$_{6}\mathrm{H}_{15}\mathrm{N}$	$C_4H_{11}N$	C_2H_7N	C_4H_9NO		$\mathrm{C_4H_{10}Te}$	$\mathrm{C_{3}H_{8}S}$	$\mathrm{C_7H_{16}S}$		
	Chloride of ethylene	Butyroxychloride of	Butyrate of ethylene	Bromide of ethylene	Diacetate of ethylene	Monacetate of ethy- lene.	Diethylamylamine		Triethylamine	Diethylamine	Ethylamine	Ethylacetamide		Telluride of ethyl	Sulphethylate of methyl.	Sulphethylate of amvl.		Namo
	82-5-85	190	240	129	186-187	182	154		1	57	18.7	200	100	below	58.8	132-133.5	°C.	Boiling
	1.25	1.085	1.024	2.16	1.128	1	1		1	I	.696	I		1	ı	I	Water=1.	Specific
	I	1	ļ	6.845	4.744	I	1		ı	1	1.576	1		i	2.609	4.49	Density.	Vapour
insoluble	Nearly	3 :	:	Insoluble	3	Soluble	33	soluble	Sparingly	3	99	Soluble	soluble	Slightly	Sparingly	Insoluble	Water.	S
	Alcohol, ether.	Alcohol.		3	Alcohol, ether.	3					y	•	×			Alcohol.	Other Solvents.	Solubility.

TABLE OF BOILING POINTS, &C .- continued.

		Boiling	Specific	Vapour	Ø	Solubility.
	Name,	CC.	Water=1.	`	Water.	Other Solvents.
$\mathbb{C}_2\mathbf{H_3Cl_3}$	Chloride of chlor-	115	1.42	4.72-4.67	4.72-4.67 Insoluble	Alcohol, ether.
$egin{aligned} & ext{C}_2 ext{H}_2 ext{Cl}_2 \ ext{C}_2 ext{H}_2 ext{Cl}_4 \end{aligned}$	Dichlorethylene Chloride of dichlor-	35-40 135	1.25	3·321 5·796		93
$\mathbf{c_2}_{ ext{HCl}_5}$	etnylene. Chloride of trichlor-	153.8	1.662	7.087		
$\mathrm{C}_2\mathrm{H}_4\mathrm{CH}$	eunylene. Chloriodide of ethylene	145-147	2.151	I	Slightly	99
$\mathrm{C_6H_{14}O_2}$	Diethylate of ethy-	123.5	664.	4.095	soluble —	
$\mathrm{C_2H_6O_2}$	Ethylenic alcohol	197.5	1.125	1	Soluble	Alcohol.
$ ilde{C}_4 ilde{H}_{10} ilde{O}_3$	(glycol). Diethylenicalcohol	245	1	3.78		Alcohol, ether.
$^{6} m H_{14} m O_{4}$	Triethylenic alcohol	290	1	1		
$_{8}^{ m H_{18}O_{5}}$	Tetrethylenic alcohol	above	l	1	I	
$\mathbb{C}_2\mathbf{H}_5\mathbf{ClO}$	Hydroxychloride of	300 128	i	ı	Soluble	
$ m C_2H_4I_2$	ethylene. Iodide of ethylene	i		I	Insoluble	99 99

TABLE OF BOILING POINTS, &c .- continued.

C_5H_6S	C_5H_4	$C_4 \hat{H}_2 \hat{O}_2 \hat{C} I_2$	C_4H_2	C_2H_4	— С.Н.	$C_6H_{12}O_2$	$\mathrm{CH_{2}O_{2}}$	·		C10H1000	U4H8C	C_2H_4O	2 -4	C.H.CII		
					ς 									_,		
Disulphide of fusyl	Furfurol	Chloride of fumaryl	Fumaric anhydride.	methyl	ethvl	Formate of amyl	Formic acid	Eupione		Eugenic acid	lene.	Oxide of ethylene	lene.	Todo oblorida of other		Name.
112	162.8-	160	176	36-38	л 	116	2 105·3 C	47	i H	949	95	13.5	141	1. 7	°C.	Boiling
•880	1.1648]	1019	.010	•8809	1.2352	65			İ	i]		Water=1.	Specific
1	3.334	I	1 1	2.083		1	$\frac{2.12}{2.14}$			r.	1	1.422	1		Density.	Vapour
Insoluble	Soluble		aron rostr	Solution le	soluble	Slightly	Soluble	Insoluble	soluble	Chain ala	Inscluble	Soluble	Slightly soluble		Water.	ζ.
Alcohol, ether.	Alcohol.			Ether, alcohol.			Alcohol.		aikalies.		Alcohol, ether.	Alcohol.			Other Solvents.	Solubility.

Table of Boiling Points, &c.—continued.

		Boiling	Specific	Vapour)SS	Solubility.	
	Name.	Point, °C.	Gravity, Water=1.	Density.	Water.	Other Solvents.	ents.
	Glycerides.						**************************************
C.H.O.	Fthvlin	225-230	1	1	Soluble		· · · · · · · · · · · · · · · · · · ·
C H (10)	Ethylchlorhydrin	180	I	1	Insoluble	ŗ	
C51110102	Amylin	260-262	86.	1	Soluble	Etner.	
C%111803	Amylchlorhydrin	235	1.0	1	Insoluble		
Con 17002	Diamvlin	272-274	1	1			74 <u>122 PO</u>
C1342803	Ethylamylin	238-240	1	ľ	••		
C1012203	Amylglycide	188	1	1	.		
C.H. 002	Ethylglycide	128-129	1	1	Soluble		
C.H. BrO	k piprombydrin	138-140	1	1		41°°1°	*04*
C3H5CIO	Epichlorhydrin	118-119	I	3.21	Insoluble	Alconor, concr.	enner.
C.H.O.	Hthel-elecollic acid	200	1	1	I	.,	
$C_9H_{18}O_3$	Ethyl-glycollate of	180-190	1	1	1	ç	2
$C_6H_{10}O_4$	anyl. Acetoglycollate of	179	1.009	1	i		
$ _{\mathrm{C}_7\mathrm{H}_{14}\mathrm{0}_3}$	ethyl. Amyl-glycollic acid	235	₹.003	l .	Sparingly soluble.	2	56
$C_9H_{18}O_3$	Amyl-glycollate of	212	1	1			
•	ethyl						

Table of Boiling Points, &c .-- continued.

				···		S JV		<i>J</i> .1.			. 0	C1	CE.			Ο.		~ •		
$^{ m C_8H_{18}O}_{ m C_{12}H_{26}}$	$C_9H_{20}O$	$C_7H_{15}I$	$C_7H_{13}C1$	$C_7H_{14}Cl_2$	C_7 H ₁₄	$C_{12}H_{26}O$	$C_7H_{17}N$	$C_7H_{16}S$	C7H15L	C7H16-	$C_7H_{16}O$	1	$\mathrm{C_7H_{14}Cl_2}$,	$\mathrm{C_7H_{15}Cl}$	$C_9H_{18}O_2$	à 4 >			
Heptyl-methylic ether Hexyl	Heptyl-ethylic ether	Hydriodate of hepty-	Chlorheptylene	Chloride of heptylene	Heptylene	Heptylamylic ether	Heptylamine	Sulphydrate "	lodide	Hydride of heptyl	Heptyl alcohol	chloride of heptyl	Monochlorinated	• 1	Chloride ,,	Acetate of heptyl		Guaicol	маше.	Namo
161 202	177	170	155	191	95-99	220 - 221	145-147	155-158	190	92-99	155-179		190	B 175	α 150	180		205-210	°C.	Boiling
·830 ·754	-791	l	1] -	•718	-608	l	1	1	.712	.819		i		.891] -		1.125	Water=1.	Specific
$\frac{4 \cdot 2}{5 \cdot 983}$	5.095	1	1		3.320	6.57	I	I	1	3.49	4.019		1	•	İ	1	,	1	Density.	Vapour
"	Insoluble	1	1	1	1	[Soluble	l	I	1	Insoluble		1		l	1	soluble	Sparingly	Water.	<i>∞</i>
99 99 99	Alcohol, ether.				Alcohol.						3 3						•	Alcohol, ether	Other Solvents.	Solubility.

TABLE OF BOILING POINTS, &c. -continued.

N.	Boiling	Specific	Vapour	Ø	Solubility.
	rount, °C.	Gravity, Water=1.	Density.	Water.	Other Solvents.
Acetate of hexyl					
:	145	1	.]	1	
β Hown aloohal	156	118.	.1	Insoluble	
· ·	ָאר. האַר				•
•	100	4000	1	î	
(9) elyaphala (1)	197	7700	!	Cno wingle	,,,
(*) an fr	171	670	1	Soluble Soluble	
β Chloride of hexyl Hydride of hexyl	120	l	1		
:	89	849.	1	1	
.:	1	.6645	1	1	
lodide of hexyl					
•	172-175		1	i	
:	167.5	1.447	I	l	
β Hexyl oxide	203-208	I	[1	
	•				
*	112	1	1		
•	02-89	l	1	Insoluble	

TABLE OF BOILING POINTS, &c .- continued.

-					annyuriue.		θL
		l	1	212	Bromomaleic		
	ä	1	1	160 with	Maleic acid	$\mathrm{C_4H_4O_4}$	
	Soluble	3.839		163-168	8		
(P	Insoluble	5.241	•9613	175	Diamyline-lepidine Leucate of ethyl Lutidine	$\begin{array}{c} { m C}_{20}^{1}{ m H}_{32}^{2}{ m N}_{2} \\ { m C}_{8}^{2}{ m H}_{6}^{6}{ m O}_{3} \\ { m C}_{7}^{2}{ m H}_{9}^{2}{ m N} \end{array}$	HEMI
		5.14	1.072	266-271	Plumbotetramethyl Lepidine	PbC ₄ H ₁₂ C ₁₀ H ₀ N	
	Insoluble	1	1.62	above 200	Plumbotetrethyl	V ₁₄ 1128∪2 PbC ₂ H ₂₀	
	Soluble. "." Insoluble Ether.	8.11	1·134 ·86	23 5 269	Dilactate of ethyl Lactate of methyl Laurate of ethyl	$\begin{array}{c} { m C_8H_{14}O_5} \\ { m C_4H_8O_3} \\ { m C_4H_8O_3} \end{array}$	
	Insoluble.	5.052	9203	195–198 156• 5	Ethyl-lactic acid Ethyl-lactate of ethyl.	$C_5H_{10}O_3$ $C_7H_{14}O_3$	
	Soluble	6·73 4·14	1.042	208 156	Butyrolactate of ethyl Lactate of ethyl	$\begin{array}{c} C_5H_{11}NC_2 \\ C_9H_{16}O_4 \\ C_7H_{10}O_2 \end{array}$	
Alcohol.	!		1	260	Lactethylamide	OH NO	
1	Water.	Density.	Gravity, Water=1.	Point, °C.	Name.		
	Solubility.	Vanour	Specific	Boiling			
ı			,				

TABLE OF BOILING POINTS, &c.—continued.

		Boiling	Specific	Vapour	∞	Solubility.
	Name.	Point,	Gravity, Water=1.	` · · }	Water.	Other Solvents.
$C_{30}H_{60}$	Melene	370–380	68•	10.0-11.8	10.0-11.8 Insoluble	Alcohol (hot),
$C_{10}H_{18}$	Menthene	163	.851	4.93	•	Alcohol, ether.
C10H19	Menthyl	222 - 224	1	1	İ	
$G_{4}\widetilde{H}_{sc}\widetilde{O}_{s}$	Butyrate of mentbyl	230 - 240	1	I	1	•
C, H, C.	Chloride	204		1	Soluble	Alcohol.
Hg	Mercury	346-360	13.52	2.9	Insoluble	
CoHi	Mesitylene	155-160	!	4.282		,
CeH100	Metacetone	. 84	1]		Alcohol, ether.
AloCeH10	Methide aluminic	130	1	4.4	1	
CHaBr	Bromide of methyl	13	1	1	Insoluble	55 55
CH,O	Methyl alcohol	99-09	.8142	I	Soluble	33
CH_3I	iodide of	42.3	2.199	4.88	Insoluble	£. 5
$CH_3 > 0$	oxide	-20	1		Soluble	99
C_2H_6S	sulphide	41	.845	2.115	Insoluble	
$\mathrm{C_2H_6S_2}$	disulphide	116.118	1.046	-	Sparingly	Alcehol, ether.
3 HZ	calmbardrate	1.6	1	. 1	Soluble	
$C_2H_6^{2}\Gamma_6$	telluride	82		1	Insoluble	-
		`				

Table of Boiling Points, &c .- continued.

•		4.54			,	
99.	Insoluble	4.071	1	110-140	Nonylene	$ {C_9H_{18}}$
	Soluble	1	1	190-192	Nonylamine	$C_0H_{21}N$
,		i	.889	196	Chloride of nonyl	$C_9H_{19}Cl$
	I	4.50	1	134-137	Nonyl, hydride of	C_9H_{20}
	I	-	.951	176.8	Nitrosethylin	$\mathrm{C_4H_{10}N_20}$
	1	1	}	-12	" methyl	$\mathrm{CH_3NO_2}$
33	Soluble	İ	i	18	" ethyl	$\mathrm{C_2H_5NO_2}$
	·	1	7.78	96	Nitrite of amyl	$\mathrm{C}_5 \mathrm{H}_{11} \mathrm{NO}_2$
"	3			300	Naphthylamine	$\mathbf{C_{10}H_{9}N}$
Alcohol, ether.	3	4.528	1.153	218	Naphthalene	$\mathrm{C}_{10}\mathrm{H_8}$
	Insoluble	1	3.342	1	Lodide of methylene	$\mathrm{CH_2I_2}$
	: 1		1	40	Chloride of methylene	CH ₂ Cl ₂
	Insoluble	1	l	225-230	Methyl-camphrene	$C_{10}H_{16}O$
	1	3.13	-827	111	Methyl-butyral	$C_5H_{10}O$
					lene.	H
	}	3.165	.8787	63-64	Methylate of ethy-	$C_AH_{10}O_{2}$
A!cohol.	3	1	1	9	Trimethylamine	C_2H_0N
	:	1	1	8-9	Dimethylamine	C_9H_7N
Alcohol, ether.	Soluble	2.625	.8551	42	Methylal	$\mathrm{C_3H_8O_2}$
Other Solvents.	Water.	Density.	Water=1.	°C.	Name.	A de la companya de l
Solubility.	Ω	Vapour	Specific	Boiling		-

TABLE OF BOILING POINTS, &C .- continued.

	s,		er.			er.								-		<u>ن</u>	ei.		_		•	-
	lvent	: . .	l, eth		: ـ ئــ	l, eth	3			3			ζ.	÷	;	oq) [1, etb		2	•		
ility.	Other Solvents.	Alcohol.	Alcohol, ether.	-	Alconol.	Alcohol, ether.	2			33			:	\$,	Alcohol (hot).	Alcohol, ether.		ç	2		
Solubility.	0	-	4		•	4				به		_	e,	გ.		-						
	· Water.	Insoluble	"] .	Insoluble	. 33	8	\$	1	Insoluble	}	,	Insoluble	Sparingly	soluble		Insoluble	1	Soluble	2	1	
Vapour	Density.	l	4.55	4.01			3.86 - 4.17	1		ı	1		8.6	4.08		!	1		2.4	4.1		
	.i.			~			က			~			~				2,5	٠.		_:_	55	
Specific	Gravity, Water=1.	.892	.823	.128	1.31	984.		• 814	1	.932			-862	.827		1	.9167	.825	1]	1.055	
Boiling	Point, °C.	168-175	180	119	193–211	64-175	15-125	250	240-250	235-240	204-208		225 - 230	151-158		230	148 - 218	264	290	271	206-207	
BO	Ă. ———	168	_	_	193	164	115	21	240	233	204		225	15]			148				20	
		:	:	:	:	:	:	:	ene		$_{ m of}$		•	:		•	:	•	:	:	:	
		octyl	101	Hydride of octyl		:	:	ne	Acetate of octylene	٠ :	Hydratochloride		ther	:		ol :	(Enanthylic acid	de .	•	•	ıllyl	
		e of (alcol	e of (nine	le	style	$\stackrel{\circ}{\circ}$ of 0	ڻ و	ochle	ne.	hic e	hol		antho	hvlic	hvlor	,	n	e of a	
	ne.	Chloride of octyl	Octylic alcohol	$^{\prime}$ drid	Iodide	Octylamine	Octylene.	Meta-octylene.	etate	Hydrate	ydrat	octylene.	Enanthic ether	Enanthol		Wetenanthol	nant	Gnanthylone	Orein	Resorcin	Oxalate of allyl	
	Name.	Ch.	<u> </u>	Hy	Loc	ဝ	Oc	Me	Ac	H	H,	_	E	8		Z.	(E	(E	Ċ	7	ő	
		5	OE	α	اسا ر	Z	હ	ر م د	[]	# °	010			Q	, H	Ç	, C) } }	7. C	, 0 *	
		.H1	H_{17}	$C_{o}H_{1}$, H	.H10	$\ddot{G}_{o}H_{c}$	H	H	H 10		- -		C,H140	-	H	H110	Hot	H (1)	H)8H1(
		0	်ပံ		<u>ں</u>		, –	_	ن	ਰ ੂ	' ర					_						

TABLE OF BOILING POINTS, &c .- continued.

90	CHEM	TOTO I	OURE.	Г-ВОО К.	
$egin{array}{c} C_6H_6 \ C_6H_5O \ \end{array} \ egin{array}{c} C_6H_5 = 1 \ C_6H_5 \end{array}$	$c_{14}H_{12}N_2O_2$	$\begin{array}{c} C_{9}H_{1}8V_{3} \\ C_{14}H_{28}O_{3} \\ C_{4}H_{7}NO_{3} \\ C_{6}H_{11}NO_{3} \end{array}$	$\begin{array}{c} { m C_4H_6O_4} \\ { m C_4H_8O_3} \end{array}$	$egin{array}{c} C_{12}H_{22}O_4 \ C_6H_{10}O_4 \ C_5H_8O_4 \ \end{array}$	
Parabenzene	Diphenyloxamide	Diamoxalate of ethyl Oxamate Dimethyloxamate of	methyl. Oxalate of methyl. Dimethoxalic acid	Oxalate of amyl ethyl Oxalate of ethyl-	Name.
97·5 187–188 216 239–240	320	224-225 262 220 250-260	161 212	262 183-184 160-170	Boiling Point, °C.
	ı	-9137 	311	1.0824	Specific Gravity, Water=1.
11 11	l	8.4	311	8·4 5·08? 4·677	Vapour Density.
Sparingly soluble	Insoluble	Soluble	Soluble	Sparingly soluble	Water. S
Alcohol, ether. Benzine, CS ₂ . Alcohol.	Sparingly soluble in	Alcohol.	Alcohol, ether.	Alcohol.	Solubility. Other Solvents

TABLE OF BOILING POINTS, &C .- continued.

Solubility.	Other Solvents.	Alcohol, ether.	Strong sul- phuric acid.	Éther.		Alcohol, ether,	Alcohol, ether,	₹		Ether, bromide of amyl.
δ	Water.	Sparingly soluble	Insoluble	6	Insoluble	ç	Slightly	Insoluble Sparingly soluble	Soluble Sparingly	
Vapour	Density.	1	1	i	1 i	1	3.210	[]	11] J
Specific	Gravity, Water=1.	1	ı	1	1.09	1.078	1.020	l I	l'l']
Boiling	Point, °C.	182.5-	152-154	219	136 292•5	165	182	300 above 200	285 185	285
	Name.	Cyanide of phenyl	Monobromobenzene	Dibromobenzene	Monochlorobenzene Sulphide of phenyl	Sulphydrate of phenyl	Phenylamine	(aniline). Tribromaniline Chloraniline	Nitraniline α Dinitraniline	Amylaniline
		C ₇ H ₅ N	$ m C_6H_5Br$	$C_6H_4Br_9$	$egin{array}{c} ext{C}_6 ext{H}_5 ext{CI} \ ext{C}_12 ext{H}_10 ext{S} \end{array}$	C_6H_6S	C ₆ H ₇ N	$c_{6}^{}H_{4}^{}Br_{3}^{}N$	$C_6H_6N_2O_2$ $C_6H_5N_3O_4$	$\mathrm{C}_{11}\mathrm{H}_{17}\mathrm{N}$

TABLE OF BOILING POINTS, &c.—continued.

_		,					_																	1
	$ m C_7H_8^{ m S}$	C_8H_{10}	1 1	$C_{15}H_{14}O_{2}$. 10	$C_{15}H_{16}O$!	$ ext{C}_{26} ext{H}_{22} ext{O}$	$C_{13}H_{10}O$	$C_{11}H_6$	$\mathrm{C_{13}H_{13}N}$!	$C_{18}H_{15}N$	C_{1} ₂ H_{1} ₁ N	C_7H_9N	$C_{13}H_{21}N$	$C_{11}H_{15}N$	$\mathrm{C_{10}H_{15}N}$	$C_8H_{11}N$	$\mathrm{C_{16}H_{27}N}$				
	Phenyl-methyl	Phenyl-ethyl		Benzydrolic acetate	late.	Benzhydrolic ethy-		Benzydrol	Phenyl-benzoyl	Phenyl-amyl	Tolylaniline		Triphenylamine	Diphenylamine	Methylaniline	Ethyl-amyl-aniline	Ethyl-allyl-aniline	Diethylaniline	Ethylaniline	Diamylaniline		Name.		
	111	133		301-302		183		297-298	315	195	334.5		140-150	310	192	262	220-225	213.5	204	275-280		Point,	Boiling	
	•881	1		1		1.029	\	1	J	.859	1		1	1	1	1	1	•936	.954	١		Water=1.	Specific	
	I	1	•	1		[1		1		1	1	1	I	I	1	.	1		Density.	Vapour	
	ſ	1		ı		Insoluble	soluble	Sparingly	Insoluble	: !		soluble	Sparingly	Insoluble	1	Insoluble	1	į	1	l	1	Water.	ğ	
			benzene.	Alcohol, ether,	benzene.	Alcohol, ether,		33	39				3	Alcohol, ether.				2	Alcohol.			Other Solvents.	Solubility.	

H

TABLE OF BOILING POINTS, &C.—continued.

-	•	Boiling	Specific	∇ apour	Sc	Solubility.
	Name.	Point, °C.	Gravity, Water=1.	Density.	Water.	Other Solvents.
$C_8H_{10}O$	Phloretol	190-200	1.0374	4.22	Sparingly	Alcohol, ether.
$rac{ ext{P4}}{ ext{PCI}_3}$	Phosphorus Trichloride of phos-	250-290	1.45-	4.35	Insoluble	CS_2 , PCl_3
. PCI ₅	phorus. Pentachloride of	above	1.61	3.656	l	
. \mathbf{P}	phosphorus. Oxychloride of phos-	148 110	1.1	1	1	
$C_2H_{1\kappa}PO_4$	phorus. Triethylic phosphate	215	1.072	j	Soluble	Alcohol, ether.
PoBr ₃	Oxybromide of phos-	195	2.822	l]	
PSCl_3	phorus. Sulphochloride of	124-127	1.631	5.963	1	
$C_6H_{15}P$	phosphorus. Triethyl-phosphine	127.5	.812	1 4	Insoluble Soluble	Alcohol.
$ m c_{611151}$ $ m C_{11}H_{14}O_{3}$		305	l	· I	Insoluble	Alcohol, ether.
C_6H_7N	Picoline	135	.9613	3.290	(cold) Soluble	35

Table of Boiling Points, &c .-- continued.

							ethyl.	
			1		1	262	Methylsalicylate of	$\mathrm{C_{10}H_{12}O_{3}}$
			ı	1	1	248	Methylsalicylate of	$\mathrm{C_9H_{10}O_3}$
	**	3	soluble	. 1	} ;	1		0 0 0
	: :	: :	Sparingly	5.42	1.18	222	Methvlsalicylic acid	CoHoO
		;	Soluble]	1	270	Salicylamic acid	C7H7NO2
	3	3	Insoluble	4.843	[150	Rutylene	$\mathbf{C_{10}H_{18}}$
	, ether	Alcohol, ether.	Sparingly	2.40	1.077	133	Pyrrol	$\mathrm{C_4H_5N}$
		Oils.	Soluble	2.91	.985	117	Pyridine	$\mathrm{C_5H_5N}$
	ether	Alcohol, ether.	Insoluble	1	1	104-107	Dichloropropionitrile	$C_3H_3Cl_2N$
	•	Alcohol.	Soluble	I	I	180-200	Ethylic iodopropion- ate.	$\mathrm{C_5H_9IO_2}$
			1	4.9		OCT	pionate.	$C_5H_9UIO_2$
	3	3	8	2.04	.79	55-65	굨.	C_3H_6O
	3	97	3	1	I	205.5	Bromopropionic acid	$\mathrm{C_3H_5BrO_2}$
	ž	y	Soluble	1	1	140	Propionic acid	$\mathrm{C_3H_6O_2}$
	, ether	Alcohol, ether.	Insoluble	i	1	101	Propione	$C_5H_{10}O$
	lvents.	Other Solvents.	Water.	Density.	Water=1.	°C.	Name.	•
		olubility.	Sc	Vapour	Specific	Boiling		
ł		Willeston Contractors						

H2

	Solubility.	Other Solvents.	Alcohol, ether.		Alcohol.		Alcohol, ether.											
Table of Boiling Points, &c.—continued.		Water.	Sparingly soluble	Insoluble	Insoluble			*	1	1	1		1	l	l	!		
	Vapour Density.		Ī	1	4.276	1	15.2	7.32	1	12.025	20.2		94.9	6.378	l		1	
	Specific Gravity, Water=1.		1.097		1.173	i	898•	.933	1.079	1.012	1.048		1.44	1.291	1	, ,	CIA.	
	Boiling Point, °C.		221-229	270	$182 - 196 \cdot 5$	308	322-325	165-166	350	about 240	157		137	104	216-225	1	745-250	
	Name.		Ethylsalicylic acid	Amylsalicylic acid	Salicylol	occasio or microstration of the state of the	Tetramylic silicate	Tetrethylic ,,		Hexetbylic disilicate about 240	Ethylsilicic mono-	chlorbydrin.	Ethylsilicic dichlor-	Ethylsilicic tri-	chiornyariu. Triethylamylic	silicate.	Dietnyldlamylic	SLINGARC.
			C9H10O3	$c_{12}\mathrm{H_{16}O_{3}}$	$C_7 H_6 O_2$	C12H22O4	Co. H. SiO.	C.H. SiO.	C, H, SiO.	C. 9H20SisO7	CeH15CISIO3	7 77 0	$C_4 H_{10} Cl_2 SiO_2$	$\mathrm{C_2H_5Cl_3SiO}$	$\mathrm{C}_{11}\mathrm{H}_{26}\mathrm{SiO}_{4}$		C ₁₄ H ₃₂ SiO ₄	

Table of Boiling Points, &c .- continued.

TOT			CI	1 E M	19.1.2	ь Р 	OUK	.E.T	BOO	rs,		
	$\mathrm{C_8H_{14}O_4}$	$rac{ ext{C}_4 ext{H}_4 ext{O}_2 ext{C} ext{I}_2}{ ext{C}_6 ext{H}_{10} ext{O}_4}$	$C_{12}H_{22}O_{4}$	$C_{20}H_{40}O_{2}$	$\mathrm{C}_{12}\mathrm{H}_{28}\mathrm{SiO}_{4}$	$\mathrm{C_7H_{18}SiO_4}$	$C_6H_{16}SiO_4$	$\mathrm{C_5H_{14}SiO_4}$	$C_8H_{18}SiO_5$	$\mathrm{C_{17}H_{38}SiO_{4}}$		
	" ethyl	Succinate of methyl	Suberate of ethyl	Stearate of ethyl	Dimethyldiamyl silicate	Triethylmethylic silicate.	Diethyldimethylic	Ethyltrimethyl	Tehethyl-acetyl-	Ethytriamylic silicate	Name.	
	214	198	230-260	224 (F.?) 292	225-235	155-157	143-146	133-135	190	280-285	Point, °C.	Boiling
	1.036	1.179	1.003	11		•981	1.004	ì	1	•913	Water=1.	Specific
	6.22	5.29	1 1	8.4	1		6.178	1	١	I	Density.	Vapour
	Slightly soluble	Nearly insoluble	1 1	Insoluble	1	l	1		İ	1	Water.	S
		Alcohol, ether.	Ether.	Alcohol, ether.	,						Other Solvents.	Solubility.

TABLE OF BOILING POINTS, &c.-continued.

Monosulphocarbonate
Disulphocarbonate of
Trisulphocarbonate of $237-240$
Disulphocarbonate of 170-172
Sulphocyanate of allyl
amyl ethyl

TABLE OF BOILING POINTS, &c .- continued.

$\mathrm{C_2H_6SO_4}$	$^{ m H_{2}SO_{4}}_{ m C_{4}H_{1}_{0}SO_{4}}$	$S_2O_5Cl_2$	$ m C_3H_8SO_3$,	$\mathrm{C_2H_6SO_3}$	$\mathrm{C}_{7}^{\mathrm{T}}\mathrm{H}_{16}^{\mathrm{T}}\mathrm{SO}_{3}^{\mathrm{S}}$	$C_4H_{10}SO_3$	C10HooSO2	· Cl ₂ S ₂	$\mathrm{C_2H_3NS}$	$\mathrm{C_7H_{13}NS}$		
Sulphate of methyl	Sulphate of ethyl 110–120(?)	Chlorosulphuric oxide	Sulphite of methyl 140-141.5	Sulphite of methyl	Sulphite of ethyl and	, ethyl	Sulphite of amyl	Disulphide of chlorine	Sulphocyanate of methyl.	Sulphocyanate of	Name.	
188	110-120(?)	р	140-141.5	121.5	210-225	160	230-250	136-139	132-133	215-220	Point, °C.	Boiling
1.385	1.120	1.762	1.067	1.045	İ	1.085	1	1.687	1.115	•992	Water=1.	Specific
1		j	4.304	3.703		4.78	I	4.77	2·57- 2·549	l	Density.	Vapour
	Insoluble			Sparingly	l	Insoluble	1	1	Sparingly soluble	1	Water.	Sc
acid.	Alcohol, ether, fuming nitric			. 3		3		*	Alcohol, ether.		Other Solvents.	Solubility.
	ther, itric			ÿ	نسبخبون	*		CS_2	ther.		nts.	

TABLE OF BOILING POINTS, &C.—continued.

		Boiling	Specific	Vapour	х	Solubility.	
	Name.	Foint,	Gravity, Water=1.	Density.	Water.	Other Solvents.	vents.
Ha	Tetryl (Butyl)	106-108.5	•694	3.88	Insoluble	Alcohol, ether.	ether.
\mathbf{H}_{20}	Tetryl-amyi	132	.724	4.46	1		
H_{14}^{20}	Tetryl-ethyl	62	102.	3.053	İ		
$H_{ij}^{L_{ij}}$	Tetryl-hexyl	155-160		4.917	l		
061	Acetate of tetryl	114	.844	4.073			
$\vec{\mathrm{H}}_{10}^{20}$	Tetryl alcohol, a	110	.803	2.589	Soluble		25
$\mathbf{I}_{10}^{_{10}}$	Secondary tetryl	95-98	.85	I	*	2	2
	alcohol.		;	,	,		
$\mathbf{I}_{9}\mathbf{Br}$	Bromide of tetryl	68	1.274	4.72	Insoluble		
$^{4}_{4}\mathrm{H_{9}Cl}$	Chloride "	20	88•	1			
$ ilde{ m H}_{10}$	Hydride "	İ	09.	2.11	•		2
Į.	lodide " a	121	1.604	6.217			
$ m H_{ m g}I$	Secondary iodide of	118	1.632	6.597			2
	tetryl.				1		
$H_{11}N$	Tetrylamine	04-69	l	1	Soluble		ž
$_4^4\mathrm{H}_8$	Tetrylene	pelow 0	j	1.933	•	"	ζ.
	Apototo of totrolono	1 6 4 00	:		TreoInhle		
1404	Totacionio alcohol	102 104		01.6	Coluble	٤	ŧ.
1002	really tentic arconor	#01_co1	1	8T.5	aranioa	£	2

Table of Boiling Points, &c .-- continued.

			 				
$\mathrm{SnC_2H_6Cl_2}$ $\mathrm{SnC_3H_9I}$	$rac{\mathrm{SnC_6H_{15^1}}}{\mathrm{SnC_2H_6Br_2}}$	$\operatorname{SnC}_6\mathrm{H}_{15}\mathrm{Cl}$	$rac{ m SnC_4H_{10}I_2}{ m SnC_6H_{15}Br}$	$egin{array}{l} C_4H_6O_2S \ SnC_4H_{10}Br_2 \ SnC_4H_{10}Clo \end{array}$	$egin{array}{c} \mathrm{C_4H_8Br_2} \\ \mathrm{C_4H_8Cl_2} \end{array}$		
Chloride of stannodi- methyl. Iodide of stannotri- methyl.	Stannic ethide Bromide of stannodi-	Stannotriethyl chloride.	stanuotriethyl	Thiacetic anhydride Stannethyl bromide	Bromide of tetrylene Chloride ,,	Name.	
188–190 188–1 9 0	181 208–210	209	245	121 232 290	158 123	Point, °C.	Boiling
 2·153	1.87	1.428	1.630		1.112	Gravity, Water=1.	Specific
7·73 10·325	8.02	8•43	9.924	11.64	4.426	Density.	Vapour
"	soluble Soluble	soluble	Sparingly	Soluble	Insoluble	Water.	Ø
Alcohol, ether	Alcohol.	3	3 3 3 3 1	: 3	Alcohol, ether	Other Solvents.	Solubility.
her.					her.	ig	-

TABLE OF BOILING POINTS, &C.—continued.

Solubility.	Other Solvents.		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Alcohol, ether,									
ß	Water.		1	1	1	Insoluble	l	l	ı	1	I	1	ŀ	elaniosur	I
Vapour	Density.	6.715	8:839	l	5.1	i	1	1	1	ì	I	I		i	i
Specific	Gravity, Water=1.	1.243	1.232	l	.858	.872	1.409	1	1.08]	1.295	1.44		ļ	1
Boiling	Point,	140-145 123-128	144–146	162 - 163	Η	110.3	179-183	198-202	157 - 164	below 200	206	240	!	215	276
	Name.	Stannic methide Stannic ethotri-	Stannic diethodime-	Stannic triethomethide	Tolene	Toluol (toluene)	Monobromotoluene	Benzylic bromide	Monochlorotoluene	Chlorobenzylic	chloride.	Dichlorobenzylic	chloride.	Benzotrichloride	Tetrachlorotoluene
		$ m SnC_4H_{12} \ SnC_5H_{14}$	$\mathrm{SnC}_6\mathrm{H}_{16}$	$\mathrm{SnC}_{r}\mathrm{H}_{1}$	C10H16	$\hat{\mathbf{C}}_7^{\mathbf{H}_8^{\mathbf{T}}}$	C_7H_7Br	C_7H_7Br	C_7H_7CI	$\mathrm{C_7H_6Cl_2}$	$^{\circ}$ $\mathrm{C}_{ au}\mathrm{H}_{\kappa}\mathrm{Cl}_{\mathfrak{d}}$	$\mathrm{G_7H_5^\circ Gl_3^2}$, ;	$ m C_7H_5Cl_3$	$_{r}$ $\mathrm{C}_{7}\mathrm{H}_{4}\mathrm{Cl}_{4}$

TABLE OF BOILING POINTS, &c .- continued.

					01	111	1111	10) J.		.F		دان	. P.	T.	ъ.	U)K.		
	C_7H_7	C ₈ H ₉ Cl	$C_8H_{10}O$	$C_{16}H_{18}$	C_{13} H_{13} N	C_7H_9N	$C_{14}H_{15}N$	$C_{13}H_{13}N$	1	C_7H_9N	? * *	$\mathrm{C}_{10}\mathrm{H}_{12}\mathrm{O}_2$	\tilde{C}_8H_7OCI	O8H8O	$C_8H_8O_2$	$C_7H_7NO_2$	0.08 ± 10	C_9H_{12}		
	Tolyl (benzyl)	chloride	Toluylic alcohol	Toluyi	Phenylbenzylamine	Benzylamine	Benzyltoluidine	Phenyltoluidine	1	Toluidine		Ethylic toluate	chloride	Totuic aldehyde	Alphatoluic acid	Monontrotoluene	Methylloruene	Ethylotluene	Name.	W _{cm}
	284	193	217	296	above 310	182-183	355-360	330		205-206		228	214-216	204	265.5	238	139-140	159-160	°C.	Boiling
	1	1	ļ	İ]	1		1		1		1	1.175	1	1.077	1	-862	.865	Water=1.	Specific
	1	I	I	İ	1	1	1	1		1		1	i	1	1	I	1	i	 	Vapour
	Insoluble	I	Soluble	1	Insoluble	Soluble	1	I	soluble.	Slightly	soluble	Sparingly	1	1	Soluble	I	1	1	Water.	20
US ₂ .	Alcohol, ether,		3		Alcohol, ether.										Alcohol.				Other Solvents.	Solubility.

TABLE OF BOILING POINTS, &C.—continued.

	عددنجه		بيدسي	_			-													
Solubility.	Other Solvents.	Alcohol, ether.	33	99		-									39 95		Etner.			
ŭ	Water.	Soluble	Insoluble	Soluble in hot	Soluble	ž		*		1	1	Insoluble	Soluble				•	1	Insoluble	
Vapour	Density.		1	l	1	1	1	1		 .	1	1	1		i		1	1	I	
Specific	Gravity, Water=1.		ļ	I	-895	.943	1	.791		1.320	.874	1.70	1		1.051		1.109	1.974	1.151	
Boiling	Point, °C.	310-350	232	280	186	148	96-97(?)	83-84		60 - 63	36–38	8990	50		188-189		186	144	103	
	Name.	Tolvlacetamide	Tolylbenzamide	Tolylene diamine	Triethylin	Trimethylin	Trityl alcohol (nor.)	Isopropyl alcohol (or	Isotrytyl alcohol).	Bromide of isopropyl	Chloride "	Iodide "	Tritylamine (propy-	lamine.)	Tritylenic alcohol	(Propylglycol).	Trytylenic acetate	" bromid	" chloride	
		CoH11NO	C14H13N	$\mathrm{C}_7^{\dagger}\mathrm{H}_{10}^{\dagger}\mathrm{N}_2$	$C_0H_{90}O_3$	$C_6^{\prime}H_{14}^{20}0_3^{\prime}$	$\ddot{C}_2H_2^{\dagger}O$	C_3H_8O))	$\mathrm{C_3H_7Br}$	C_3H_7CI	$ m C_3H_7I$	C_3H_9N	,	$\mathrm{C_3H_8O_2}$	1	$\mathrm{C}_7\mathrm{H}_{12}\mathrm{O}_4$	$C_3H_6Br_2$	$ ext{C}_3 ext{H}_6 ext{Br}_2$	

Table of Boiling Points, &c .-- continued.

09	CHEMISTS' P	OCKET-BOOK.	
$\begin{array}{c} \mathtt{C_{10}H_{20}O_{2}} \\ \mathtt{C_{8}H_{16}O_{3}} \\ \mathtt{C_{9}H_{18}O} \\ \mathtt{C_{5}H_{8}} \end{array}$	$C_5H_9BrO_2$ $C_10H_18O_3$ C_5H_9OBr C_5H_9OC1 C_5H_9OI $C_6H_12O_2$ $C_7H_14O_2$	$egin{array}{c} C_3 H_6 C \mathbf{y}_2 \ C_{10} H_{16} \ C_5 H_{10} O \ C_5 H_{10} O_2 \end{array}$	
Valeroglyceral Valerone Valerylene	Valeric anhydride Valeric anhydride bromide chloride jodide Valerate of methyl valerate of methyl	Tritylenic cyanide Turpentine oil, or terebenthene. Valeral	Name.
187-196 224-228 165 44-46	226-230 215 143 115-120 108 116 116 133	277-290 161 96-97 175	Boiling Point, °C.
*864 1.027	.886 .894	·864 ·805 ·955	Specific Gravity; Water=1.
6·1 5·526 — 2·356	6.23	3.66	Vapour Density.
Insoluble	Sparingly	Soluble Insoluble Soluble	Water.
" Alcohol, ether.	Alcohol.	Alcohol, ether. Alcohol, ether, strong acetic acid.	Solubility. Other Solvents.

TABLE OF BOILING POINTS, &C .- continued.

	Point, Gravity, Density. Water. Other Solvents.	166-172	125-130	20	202-205	320 — Soluble Alcohol, ether.	139 .86 -	203-212 1.335 -	190-195			183-184 .878	165-166 1	240	213 — Insoluble " "		1.022 6.95	118 1.189 4.259	76 7.386 9.901
NT		$C_5H_8Br_2$ Valerylene dibromide	C ₅ H ₇ Br Bromovalerylene	C_5H_6 Valylene	$C_8H_{10}O_2$ Veratrol	C ₁₂ H ₁₁ N Xenylamine	C_8H_{10} Xylene (or Xylol)	C ₈ H ₉ Br Bromo-xylene	C ₈ H ₉ Cl Toluylic chloride	isomeric with	chloroxylene.	$C_{10}H_4$ Ethylxylene	C ₉ H ₁₂ Methylxylene	$C_8H_9NO_2$ Nitroxylene	C ₈ H ₁₀ S Xylene sulphyrate	$C_9H_{10}O_2$ Xylylic acid	$ZnC_{10}H_{22}$ Zincamyl	$\operatorname{ZnC}_{4}H_{10}$ Zincethyl	ZnC_oH_c Zincmethy]

TABLE SHOWING THE MELTING POINTS AND BOILING POINTS OF THE METALS AND SOME OTHER ELEMENTS.

1				
Element.		Melting Point.	Boiling Point.	Diff. between Melting and Boiling Point.
Aluminium Antimony Arsenic Bismuth Bromine Cadmium Calcium Chlorine Cobalt Copper Gold Indium Iodine Iron— " cast " steel " wrought Lead Lithium Magnesium Mercury Nickel Phosphorus Potassium Platinum Silver Selenium Sodium Sulphur Tellurium Thallium		700° C. 425° 412° 270° -7° 320° (?) (?) 1050°—1200° 1250° 176° 107° 1050°—1200° 1300°—1400° 1500°—1600° 330° -40° 1500°—1600° 44° 62°·5 2600° 1000° 217° 96° 115° 380° 290°	412° C. 59° 860° 1040° -50° 187° 1040° 350° 440°	80° 710° 390° 473° 325°
Tin Zinc	••	235° 412°	10400	628 0

KLEVER'S TABLE SHOWING THE SOLUBILITY OF SALTS IN

100 parts of Glycerine dissolve at 15.5° C.

oo •• omudina "	dI bios oilaxO
de atedalus	02 9bir
04 • abiboI "	Morphine Hydrochlo-
Od obirofilo oniX	oz ətatəəA
1 anir1sr9√	dt ənidqroM
0д вэтU	72 əbinayO "
Tartar emetic 5.5	Mercuricum Chloride 7.5
03 bios sinnsT	Lead Acetate 20
" Sulphate 22.50	e·1 ənibol
4 strati N ,,	Sulphate 30
Strychnine S	Opper Acetate 10
oi undding	3.0 "
" Chlorate 20	Ginchonine Sulphate 6.7
" Carbonate 98	dalcium Sulphide 5
8 Bicarbonate &	Brucine Sariouria
Biborate	Boric acid 10
Sodium Arsenate 50	Benzoic acid 10
ds etritial	Barium Chloride 10
g. ··· ·· ənining	ee ətradinə "
04 abibol "	g aniqortA.
28 əbinryO "	02 əbixO əinəsıA
" Chlorate 3.5	02 biss suoinserA
Bromide 25	Ammonium Chloride 20
Potassium Arsenate 50	Ammonium Carbonate 20
Phosphorus surodqsodq	04 smilA
Weight.	Weight.
Parts by	Parts by
	•

TABLE SHOWING THE SOLUBILITY OF LEAD IN WATER IN THE PRESENCE OF VARIOUS SALTS.

		UNCE O	e van					
					Lead Di	issolved	•	
Name of Salt in Solution.	Grams per	Grains per	Milligra	ıms per	Litre.	Grain	s per G	allon.
DOI WAO	Litre.	Gallon.	24 hours.	48 hours.	72 hours.	24 hours.	48 hours.	72 hours.
Ammonium { Nitrate }	•02	1.4	13	• •	35	•91	• •	1.75
» »	•04	2.8	15	15	32	1.05	1.05	2.24
Potassium 7	.08	5.6	15	• •	•••	1.05	••	• •
Nitrate }	•02	1.4	2	2		•14	•14	
Sodium Sul- }	•05	3.5		_				
Potassium } Nitrate	•04	2.8	•8	1	1.2	•05	•07	.08
Sodium Sul- } phate	•212	14.7		<u> </u>				
Potassium Nitrate	•045	3.1			.3			.021
Sodium Car-) bonate	•308	21.5				''		
Potassium } Nitrate	•078	5.4			•5			•035
Potassium Carbonate	•504	35.2				"	''	035
Calcium Sulphate	•252	17.5	•4		•8	.02		.05
,, ,,	•458	28.5	•4		1.0	.02	••	.07
Potassium Carbonate	•31	21.7	••		•2		•••	•014
,, ,,	•516	36.1	••		•2		•••	•014
Calcium Chloride }	•25	17.5	•5	•5	•5	•04	•04	•04
	•51	35.7	.3		•4	•028	3	•028
Sodium Sul-) phate	•20	14.0			•8		`	•05
, ,,	•40	28.0		••	•5			.03
Ammonium Nitrate	102	1.4	•	••	1.8		••	•126
Calcium Nitrat	e •06	4.2	<u>'</u>			*		

TABLE SHOWING THE SOLUBILITY OF LEAD-continued.

						(0		(- lu2 muibo2
						(0.₹1	.50	tell (- first muibos
						14.0	$07 \cdot$	'
400.	••		τ.	••	.• •	8.2	₹0 •	phate Potassium } Potassium Carbonate
901.	40•	40•	g•1	I	I	(0.2	.10	Salcium (Chloride) Chloride) Gariria Hood Katrine (Chloride)

SOLUBILITY OF AIR IN WATER.

22810. 26710. 26710. 26710. 26710.	07 61 81 21 91 51	08020 08020 08020 01610 08020 08020	8 8 01 6 81 81	90420. 54820. 78220. 78220. 78220. 82120.	2 1 2 5 0
Yolume of Air.	.qm ₉ T	To smuloV	.qməT	Yolume of it.	.Temp,
 of Water a es under a of 760 mm, Do 1 ta	vlossib 9ressure	of Water a street of 160 of 160 at to °C.	viossib pressi	of Water es under a re of 760 are of 760 and at t. °C.	vlossib Jessy

																_								
Ammonia	39 99	Sulphurous anhydride		Hydrogen sulphide	Ethane	Butane		Olefiant gas	0	Marsh gas	Nitric oxide		Nitrous oxide		Carbonic oxide		Carbonic anhydride		Oxvgen		Hydrogen		Nitrogen	Gas.
: :	:	: :	3	: :	3 :	3	3	9 7	.	3	3	3	ž	3	3	٠ •	3	ž	3	ŭ	3	٠.	in	
water water	alcobol	water	alcohol	, water	water	, water	alcohol	, water	alcohol	water	, water	alcohol	water	alcohol	water	alcohol	water	alcohol	water	alcohol	water	alchol	water	
1049.6 -02471	328 62	79.789	17.891	4.3706	.0874	.03147	3.5950	•2568	•52259	.05449	•31606	4.1780	1.3052	•20443	.03287	4.3295	1.7987	28397	.04114	.06925	.01930	•12634	.02035	0° C.
941.9	265.81	69.828	15.373	4.0442	.0748	.02770	3.3750	-2227	•51135	.04993	•30290	3.9085	1.1346	•20443	.02987	3.9736	1.5126	.28397	.03717	.06867	•01930	12476	•01838	4° C.
812.8 -01953	_	56.647		∞		.02355	3.0859	.1837	•49535	.04372	28609	3.5408	.9196	20443	•02635	3.5140	1.1847	•28397	03250	.06786	01930	12276	.01607	10° C.
3 .01795	144.55	47.276	9.539	3.2326	.0508	.02147	2.8825	.1615	•48280	.03909	27478	3.2678	.7778	.20443	.02432	3.1993	1.0020	•28397	•02989	.00725	•01930	•12142	.01478	15° C.
01704	114.48	39.374	7.415	2.9053	.0447	02065	2.7131	•1488	.47096	03499	26592	3.0253	.6700	•20443	.02312	2.9465	.9014	28397	.02838	.066668	01930	·12038 c	.01403	20° C.

1	-		
36·9 42·3 56·9 118·0 203·3	Đ	CuSO ₄ +	Disso
5.52 9 9.16 3 13.66 3 19.29 9 27.27 36.51 51.29 71.97 71.97 187.82	Parts of the Salt—	(NH ₄) ₂ Al ₂ (SO ₄) ₄ + 24 Aq.	DISSOLVED BY
5.52 3.90 9.16 9.52 13.66 15.13 19.29 22.01 27.27 30.92 36.51 44.11 51.29 66.65 71.97 90.67 103.08 134.47 187.82 209.31 421.90 357.48	Salt-	K ₂ Al ₂ (SO ₄) ₄ + 24 Aq.	WATER
36 77:5		K ₄ FeCy ₆ +3Aq.	R AT
•32 •40 •57 •90 1•31 1•81 1•81 2•40 3•20 3•20 5•70 6•90		KHC ₄ H ₄ O ₆ (H. Pot. Tart.).	•
Temp. 10 11.95 15.5 20 24.1 25.5 30 35.4 41.4.6 104.6 104.78			Different 'J
5·0 8·18 		BaN ₂ O ₆ .	Еже
23·33 7·08 40·94 16·66 ——————————————————————————————————		Na ₂ CO ₃ + 10 Aq.	TEMPERATURES
7.08 16.66 		Na ₂ CO ₃ .	1
60		KClO ₃ .	NTIG
35.98		MgSO ₄ .	(CENTIGRADE).
· 82		AgNO ₃ .	۱
4480 4480 5528 5711	1 Ps	CaSO ₄ + 2 Aq.	
1·87 1·55 1·34 1·18 1·18	Parts	KBr.	
1·29 1·13 1·13 1·96 1·96 1·89	rt of the Salt re	NaBr.	
2·27 1·88 2·70 2·70 1·54 1·18 1·08	Part of the Salt requires Parts of Water—	SrCl ₂ .	
4·38 4·38 1·92 1·92 1·02 	uires	BaCl ₂ O ₆ .	
1.64 1.43 1.43 1.43 1.43 1.43		FeSO ₄ + 7 Aq.	
100 100 100 100 100 100 100 100 100 100	Temp	erature.	

SUBSTANCE
SOME OF THE MOST IMPORTANT
MOST
THE
OF
SOME
E
Ö
Solubilities of
THE SOLUBILIT
THE SOLUBILIT
THE SOLUBILIT

A DICTIONAR: Formula. C4H603 C2H402 C2H402 C6H9Sb06 BaC4H604+Aq C6H9Bi06 C4H6Cd04+3Aq C12H18Cr2012 C20H24N20. C20H26C00. C20	Acetic anhydride Acetate of aluminium acid Acetate of aluminium barium barium cadmium chromium chromium chromidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin cinchonidin	Formula. Formula. Formula. Formula. Formula. Formula. Formula. Formula. Acetic anhydride Solublity. C ₄ H ₆ O ₃ Acetic anhydride Soluble in water, alcohol, hydrochloric, sulphuric, and nitric acids. The presence of water renders it insoluble in ether. Soluble in water to 10.6 per cent. at 12.5. soluble in water, sparingly soluble in alcohol. Ath ₆ O ₄ +AAq Berium Soluble in water. Soluble in water.
$C_4H_6Cu_2O_4$ $C_4H_6CuO_4+Aq$	" copper (ous) " " (ic)	Insoluble in water; partially soluble in alcohol. Soluble in water and in alcohol; insoluble in ether.

A DICTIONARY OF THE SOLUBILITIES, &c.-continued.

	$C_2H_3KO_2$,, potassium . $C_{20}H_{24}N_2O_2$,, quinine	Aq " nickel nicotin	$C_4H_6HgO_4$, (ic)	$C_4H_6MgO_4+4Aq$ "magnesium Soluble in $C_4H_6MnO_4+4Aq$ "manganese $C_4H_6Hg_2O_4$ "mercury (ous) Sparingly	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C ₁₂ H ₁₈ Fe ₂ O ₁₂ Acetate of iron (ic) . Soluble in	Formula. Name.	
Soluble in water, readily soluble in cvanide of	Soluble in water, alcohol, acetic acid, but insoluble in ether. Soluble in water and in alcohol.	Soluble in water, in alcohol, and in chloroform. Soluble in water; insoluble in alcohol. Soluble in water in alcohol and in the	(with decom.); insoluble in alcohol. Soluble in water; decomposed by alcohol and by ether	Soluble in water and in alcohol. Sparingly soluble in cold soluble in the cold solubl	Soluble in water and in alcohol; insoluble in ether. Soluble in water, less soluble in alcohol. Soluble in water and in alcohol; sparingly soluble in ether.	Soluble in water and in alcohol; insoluble in	Solubility.	

A DICTIONARY OF THE SOLUBILITIES, &C. -continued.

Formula.	Name.	Solubility.
$C_2H_3NaO_2+3Aq$	C ₂ H ₃ NaO ₂ +3Aq Acetate of sodium	Soluble in water, alcohol, and boiling creosote; insoluble in ether.
$C_4H_6SrO_4+xAq$	" strontium	Soluble in water and in alcohol; insoluble in creosote.
$C_{21}H_{22}N_{2}O_{2}$.	" strychnine	Soluble in water and in alcohol.
$C_2H_4U_2$ $C_4H_6\mathrm{SnO_4}$ $C_8H_{1.9}\mathrm{SnO_8}$	", tin (ous)	Soluble in water; insoluble in alcohol. Soluble in water.
C°H°O°(Ω°O)	titanium	Soluble in water and in alcohol.
C4H6ZnO4+3Aq	zinc zinc	Soluble in alcohol, in water, and in creosote. Soluble in water; insoluble in alcohol and in
I	dification). Albumen (insoluble mo-	ether. Insoluble in water, in alcohol, and in ether;
$c_2 H_6 O$	Alcohol	phoric acids. Soluble in wood-spirit, chloroform, ether, naphtha,
NH ₃	Ammonia	Soluble in water (see Sp. Gr. Tables). Nearly all insoluble, or very slightly soluble in
		** ***********************************

A DICTIONARY OF THE SOLUBILITIES, &c .- continued.

				•	<i>,</i>		LJ.I	LN	1.9						17	,	-	•		
PbBr ₂ O ₆ +Aq	Fe ₂ Br ₆ O ₁₈	$CuBr_2O_6 + 5Aq$	$CoBrO_6 + 6Aq$	$Cr_2Br_6O_{18}$	$CaBr_{2}O_{6} + Aq$	$CdBr_{2}O_{6} + Aq$	$BaBr_2O_6 + Aq$	$(NH_4)BrO_3$	$\mathrm{Al_2Br_6O_{18}}$	HBrO ₂				2	BH ₂ O ₂		I		1	Formula.
" lead	" iron (1c) ··	" copper	" cobalt	" chromium	" calcium	" cadmium	" barium	" ammonium	Bromate of aluminium	Bromic acid				Borates	Boric acid	1	Benzoates		Arseniates	Name.
99 99	33	Soluble in water.	Soluble in water and in ammonia water.	Soluble in water.	Soluble in 1.1 part of cold water.	3	3)	y)	Soluble in water.	Soluble in water, decomposed by alcohol and ether.	soluble in boric acid.	and insoluble, or nearly insoluble, in alcohol;	and ammonium, are difficultly soluble in water,	All the borates, except those of the alkali metals	Soluble in water (especially if hot) and in alcohol.	is sparingly soluble.	Nearly all soluble in water; benzoate of silver	are soluble	Nearly all insoluble, or nearly insoluble, in	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

Formula.	Name.	Solubility.
$\begin{array}{c} \text{LiBrO}_3\\ \text{MgBr}_2\text{O}_6 + 6\text{Aq}\\ \text{Hg}_2\text{Br}_2\text{O}_6 \end{array}$	Bromate of lithium magnesium mercury (ous)	8
$\mathrm{HgBr}_2\mathrm{O}_6+2\mathrm{Aq}$	" " (ic)	Soluble in 650 parts of cold and in 64 parts of
$ m NiBr_2O_6+6Aq m KBrO_3$	" nickel " potassium	Soluble in 3.58 parts of cold water. Soluble in 15.2 parts of water at 15° ; much more soluble at 100° ; insoluble in absolute
$AgBrO_3$	" silver	alcohol. Insoluble in water and in nitric acid; soluble in
$\begin{array}{c} \text{NaBrO}_3\\ \text{SrBr}_2\text{O}_6+\text{Aq}\\ \text{ZnBr}_3\text{O}_6+\text{6Aq} \end{array}$	sodium strontium	ammonia. Soluble in 2.7 parts of water at 15°. Soluble in 3 parts of cold water. Soluble in water
Br ₂	Bromine	Soluble in 33.3 parts of water at 15°, in alcohol, in ether, in CSo: insoluble in benzine.
$rac{ ext{A1}_2 ext{Br}_6}{ ext{NH}_4 ext{Br}}$	Bromide of aluminium ,, antimony	Soluble in water and in alcohol. Soluble in water; sparingly soluble in alcohol. Decomposed by water.
AsBr ₃	" arsenic	

A DICTIONARY OF THE SOLUBILITIES, &c .- continued.

MgBr ₂ +6Aq MnBr ₂	LiBr	PbBr ₂	CuBr ₂ +5Aq AuBr ₃	CoBr ₂ Cu ₂ Br ₂	$CaBr_2$	BiBr ₃ BBr ₃ CdBr ₂	$BaBr_2 + 2Aq$	Formula.
Aq "	· · · · · · · · · · · · · · · · · · ·	3 3	Aq ,,	3 3	23	3 3 3	1	
magnesium manganese	lithium	lead	gold iron (ic)	cobalt copper (ous)	calcium	boron cadmium	Bromide of barium	Name.
Soluble in water and in alcohol. Soluble in water.	solutions of ammonium chloride or nitrate. Soluble in •70 part of water at 0°, and in •37	Sparingly soluble in boiling water; soluble in hydrochloric, nitric, and acetic acids, and in	Soluble in water. Soluble in water and in ether. Soluble in water, in alcohol, and in ether.	Soluble in water, in alcohol, and in ether. Soluble in hydrochloric and hydrobromic acids; insoluble in water and in sulphuric acid; soluble in ammonia.	Soluble in .80 part of water at 0°; in .32 part at	Soluble in water, in alcohol, in ether, and in wood-spirit.	Soluble in water and in alcohol.	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

Formula.	Name.	Solubility.
${ m Hg_2Br_2}$	Bromide of mercury (ous)	Bromide of mercury (ous) Insoluble in water and in alcohol; soluble in
${ m HgBr}_2$	" (ic)	Soluble in 250 parts of cold, and in 25 parts of boiling water soluble in alcohol and in other
$ m NiBr_2 + 3Aq m KBr$	" nickel "	Soluble in water, in alcohol, and in ether. Soluble in 4 parts of cold, and in 1 part of boiling,
AgBr		water, soluble in alcohol. Insoluble in water; sparingly soluble in ammonia; sparingly soluble in KI, KBr, and
$\frac{\text{NaBr}}{\text{SrBr}_2}$	sodium strontium	some other solutions. Soluble in water; sparingly soluble in alcohol. Soluble in water, and somewhat soluble in
SnBr_2	" tin (ous)	alcohol. Soluble in water.
$rac{ m SnBr_4}{ m ZnBr_2}$	" (ic) " " " in zinc "	Soluble in water, in alcohol, in ether, in ammonia,
$C_4H_8O_2$	Butyric acid	Soluble in alcohol, in water, and in wood-spirit;
1	Butyrates	All the butyrates are soluble in water.

A DICTIONARY OF THE SOLUBILITIES, &C .- continued.

			4
Insoluble in water; soluble in solutions of alkaline carbonates and in some ammonium salts.	" cadmium	CdCO3	
ammonic nitrate and choloride. Insoluble in water; soluble int arimonic car-	" bismuth	$\mathrm{Bi}_2\mathrm{O}_3.\mathrm{CO}_2$	
N 00	Carbonates of ammonium Carbonate of barium	BaCO ₃	HEMIS'
insoluble in water; soluble in alcohol, ether CS ₂ , oil of turpentine.	Carbonic anhydride (liquid).	CO_2	
Carbamates of amyl, butyl, ethyl, methyl; soluble	Carbamates	l	
Soluble in water in alcohol, and in ether. Caproates of Ba. Mg, K, Ag (sparingly), Na, Sr,	Caproic acid	$^{\mathrm{C_6H_{12}O_2}}$	XET-I
Soluble in 1000 parts of water; soluble in alcohol, in ether in acetone, and in benzine	Camphor	$\mathrm{C_{10}H_{16}O}$	
Soluble in hot water, in alcohol, and sparingly soluble in ether; soluble in chloroform.	Caffein	$\mathrm{C_8H_{10}N_4O_2}$	
Solubility.	Name.	Formula.	

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

Formula.	Name.	Solubility.
CuCO ₃	Carbonate of copper	Insoluble in water; sparingly soluble in carbonic acid water; soluble in many ammonium
${ m PbCO_3}$	" lead	salts, and in ammonia. Slightly soluble in water; soluble in ammonium
$CaCO_3$	" calcium	Slightly soluble in carbonic acid, in ammonium chloride, and in some potash and soda salts.
$rac{ ext{Li}_2 ext{CO}_3}{ ext{MgCO}_3+ ext{xAq}}$	" lithium magnesium	Difficultly soluble in cold, soluble in hot, water. Slightly soluble in water; soluble in some ammonium salts
$rac{ m MnCO_3}{ m Hg_2CO_3}$	manganese " mercury	Insoluble in water; soluble in ammonium chloride. Decomposed by hot water; soluble in ammonium
$\begin{array}{c} \operatorname{HgCO_3} \\ \operatorname{NiCO_3} + \operatorname{xAq} \\ \operatorname{K_2CO_3} \end{array}$	mercury(ic) nickel potassium	mercury(ic) Soluble in ammonium chloride. Soluble in about 1 part of water at ordinary tempotassium
KHC03	Bicarbonate of ",	Soluble in 3.5 parts of water at 15°; insoluble in
Na ₂ CO ₃	Carbonate of sodium	Soluble in about 6 parts of water at 15°; insoluble in alcohol.

A DICTIONARY OF THE SOLUBILITIES, &c .-- continued.

127	7					CI	HE	EM	IS	ST	s'	P	°00	CK	E'	Г-	В	00	K	•		
	AgClO ₃	KClO ₃	$NiCl_2O_6 + 6Aq$	HgCl ₂ O ₆	Hg ₂ Cl ₂ O ₆	$MgCl_2O_6+6Aq$	$1.001_20_6 + Aq$	1 Fe2C16O18	$CaCl_2O_6 + 6Aq$	$CoCl_2O_6 + 6Aq$	$CaCl_2O_6 + 2Aq$	} }	$BaCl_2O_6 + Aq$	•	$(NH_4)ClO_3$	HClO ₃		$C_{18}H_{30}O_{15}$	$ZnCO_3 + Aq$; ;	$SrCO_3$	Formula.
	silver	" potassium	" nickel	¥	" mercury (ous)	,, magnesium	y	" iron (ic)	99	,, cobalt	" calcium		,, barium		Chlorate of ammonium	Chloric acid		Cellulose	zinc	" strychnine	Carbonate of strontium	Name.
	Soluble in water and in alcohol.	Almost the least soluble of all chlorates.	Soluble in water and in alcohol.	Soluble in about 4 parts of cold water.	There is a soluble and an insoluble modification.	39	Soluble in water and in alcohol.	Soluble in water; the basic salt is insoluble.	39 39 39	33	Soluble in water and in alcohol.	insoluble in alcohol.	Soluble in 4 parts of cold and less warm water;		(Explosive if kept); soluble in water and in	Soluble in water.	in solution of ammonio-cupric oxide.	Insoluble in water, alcohol, ether, or oils; soluble	Soluble in ammonium chloride.	Soluble in carbonic acid water.	Soluble in ammonium chloride.	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

Solubility.	Soluble in water; somewhat soluble in alcohol. Soluble in water, soluble in alcohol. Soluble in water and in alcohol. Soluble in water, alcohol, ether (see Sp. Gr. Table of HCI).	water, alcohol, and ether.	Sp. Gr. Al_2Cl_6 Sp. Gr. Al_2Cl_6 at 15° .per cent.at 15° .per cent.1 .00721 .19671 .03605 1.24221 .073310 1.29051 .112515 1.34151 .153720Soluble in about 2.8 parts of water at ordinary temperature; soluble in alcohol; insoluble in ether and in CS_2 .Sp. Gr.NH ₄ ClSp. Gr.NH ₄ Clat 15° .per cent.at 15° .per cent.1 .00321104521 .015851 .05931 .0308101 .0730
Name.	Chlorate of sodium strontium zinc	Chloride of aluminium	" ammonium
Formula.	$\begin{array}{c} \text{NaClO}_3\\ \text{SrCl}_2\text{O}_6+5\text{Aq}\\ \text{ZnCl}_2\text{O}_6+6\text{Aq}\\ \text{HCl} \end{array}$	Al_2Cl_6	NH4CI

A DICTIONARY OF THE SOLUBILITIES &c.-continued.

	$CaCl_2 + 6Aq$	$\mathrm{CdCl}_2\!+\!2\mathrm{Aq}$	${ m BiCl}_3$		$BaCl_2 + 2Aq$	$\mathbf{AsCl_3}$	SbCl_3	Formula.
	*	÷	3		y	33	Chloride of antimony	P.
•	calcium	cadmium	bismuth		barium	arsenic	antimony	Name.
	:	:	:		:	:	:	
Sp. Gr. CaCl ₂ Sp. Gr. CaCl ₂ at 15°. per cent. at 15°. per cent. 1 · 0085 . 1 1 · 1822 . 20 1 · 0426 . 5 1 · 2336 . 25 1 · 0869 . 10 1 · 2879 . 30 1 · 1336 . . 15 1 · 3443 . . 35	about 1.5 part of water a ature; soluble in alcohol.	Soluble in '7 part of water at 20°; soluble in	Decomposed by water; soluble in hydrochloric	Sp. Gr. BaCl ₂ Sp. Gr. BaCl ₂ at 15°. per cent. at 15°. per cent. 1·0092 1 1·1485 15 1·0458 5 1·2061 20 1·0951 10 1·2702 25	Soluble in water; insoluble in alcohol.	Decomposed by much water; soluble in alcohol	Decomposed by water; soluble in alcohol and in	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C .- continued.

Formula.		Name.	Solubility.
$\mathrm{Cr}_2\mathrm{Cl}_6$	Chlorideo	f chromium (ic)	Chloride of chromium (ic) Soluble in water and in alcohol; violet chloride
$CoCl_2$	*	cobalt	Soluble in water, in alcohol, and sparingly in
$\mathrm{Cu}_2\mathrm{Cl}_2$		copper (ous)	etner. Insoluble in water; sparingly soluble in ether; soluble in strong hydrochloric acid in am-
$CuCl_2 + Aq$		" (ic)	monia, and in sodium chloride. Soluble in water, in alcohol, and in ether.
			Sp. Gr. sp. Gr. at 12·5°. Per cent. 1:054 10 1:176 30 1:111 20 1:247 38
$\mathbf{A}_{\mathrm{UCI}_3}$	*	gold	Soluble in water, in alcohol, in ether, and in
$_{\rm FeCl_2}^{\rm ICI}$	6. 6.	iodine (ous) iron (ous)	Soluble in water, in alcohol, and in ether. Soluble in water and in alcohol; insoluble in
$\mathrm{Fe}_2\mathrm{Cl}_6$:	" (ic) "	Soluble in water, in alcohol, and in ether.
)			

A DICTIONARY OF THE SOLUBILITIES, &c.-continued.

1	- Line			r.T.⊷RO	OK.		
FiCI ₄	$^{ m HgCl_2}_{ m NiCl_2}$	$\frac{\mathrm{MnCl_2}}{\mathrm{Hg_2Cl_2}}$		${ m MgCl}_2$	LiCl	$PbCl_2$	Formula.
" piatinum	" nickel (ic)	" manganese " mercury (ous)		" magnesium	" lithium	Chloride of lead	Name.
Soluble in water, in alcohol, and in ether.	warm nitrate or chloride of ammonium. Soluble in water, in alcohol, and in ether. Freshly sublimed, it is difficultly soluble in water; soluble in alcohol.	Soluble in water (in 1.6 at 10° C.) and in alcohol. Insoluble in water, in alcohol, and in ether; soluble, with decomposition, in warm hydrochloric acid or sodium chloride; soluble in	M; per	Soluble in water (in 1.8 at 15° C.); soluble in alcohol.	Intensely deliquescent; insoluble in alcohol,	Sparingly soluble in cold (in 135 parts at 12.5°C.),	Solubility.

A DICTIONARY OF THE SOLUBLITTIES, &C.-continued

Formula.	Name.	Solubility.
KCI	Chloride of potassium	water (in 3 parts at 15° C.).
		Sp. Gr. KCl Sp. Gr. KCl at 15°. per cent. at 15°. per cent. 1 0065 1 1 1004 15 1 0325 5 1 1361 20 1 0658 10 1 1723 24 19
Aga	" silver	Soluble in alcohol; insoluble in ether and in CS ₂ . Insoluble in water; soluble in ammonia, in alkaline chlorides and hyposulphites; soluble in glycerine.
NaCl	sodium	100 parts of water dissolve about 36 parts of it at all temperatures; soluble in alcohol; in-
$\begin{array}{c} \operatorname{SrCl}_2 + 6\operatorname{Aq} \\ \operatorname{SnCl}_2 + 2\operatorname{Aq} \\ \operatorname{SnCl}_4 \end{array}$	strontium tin (ous) (ic)	Soluble in water; soluble in alcohol. Soluble in water; soluble in alcohol. Soluble in water; soluble in alcohol. Soluble in water;
ZnCi2	,, ZIIIO	$^{\text{InCl}_2}_{2}$ Sp. Gr. Zn r cent. at 19·5°. per
		1.115 20 1.425 64 1.236 40 1.598 78

A DICTIONARY OF THE SOLUBILITIES, &c.-continued.

3	3 CHEMISTS POCKET-BOOK.		ر معد المساعد المساعد	
	H ₂ CrO ₄		Formula.	
	chlorides of platinum). Chromic acid	Chloronlatinates (double	Name.	
		Chloronlatinates of allylamine, tetrallylamin,	Solubility.	

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

Formula.	Name.	Solubility.
Ī	Cinchonidine	Nearly insoluble in water; soluble in alcohol
$C_{20}H_{24}N_{20}$	Cinchonine	Sparingly soluble in boiling water; soluble in hot alcohol, in chloroform (sparingly), and in
$ m C_9H_8O_2$	Cinnamic acid	Sparingly soluble in ether. Sparingly soluble in cold; soluble in hot water;
1	Cinnamates	Cinnamates of Al, Am, Ba, Ca, K, Na, Zn, Mn, Mr are soluble in hot water
		The following are insoluble:—Cinnamates of Cd, Co, Ni, Pb, Ag, Cu (decomposed).
$\mathrm{C}_5\mathrm{H}_6\mathrm{O}_4$	Citraconic acid	Many cinnamates are soluble in alcohol. Soluble in water, in alcohol, and in ether.
, _ C.H.sO.	Citric acid	nates of Ba, Pb, Ca, Ni, Mg, K, Ag, Na, Sr. Soluble in water, in alcohol, and spar, in ether
$C_8H_{15}N$.00	Most of the citrates are soluble in water. Sparingly soluble in water; soluble in alcohol.
$c_8H_{10}O_2$	Creosol	ether, oils. Insoluble in water; soluble in alcohol, ether, and alkalies.

A DICTIONARY OF THE SOLUBILITIES, &c .- continued.

150		CF	len 	418	TS		POU	KE	(T-)	BOO)K.	•	
	(C,H,),	$\mathrm{C}_{21}\mathrm{H}_{24}\mathrm{O}_{13}$			$C_6H_{10}O_5$	CN				KC _y O	$c_9 H_6 O_9$	I	Formula.
Ethylamine (mono-, di-, and tri-).	Ethyl	Esculin		Elaidates	Dextrin	Cyanogen		,	Cyanides	Cyanate of potassium	Cumarin.	Creosote	Name.
Soluble in water and acids.	Are generally a little soluble in water, and soluble in alcohol and in ether. Insoluble in water: soluble in old little	Soluble in hot water and hot alcohol.	alkalies, are insoluble in water, but decom-	The metallic elaidates, except those of the	Soluble in hot water; insoluble in alcohol.	Absorbed by water, alcohol, and ether.	and of Hg" are soluble; all others are in- coluble (Gerhardt).	water; the cyanides of the alkaline earths	alcohol; soluble in hot spirit of 82 per cent. The cvanides of the alkalies are soluble in	Soluble in water; insoluble in cold absolute	Soluble in hot water and in alcohol	Sparingly soluble in water; soluble in alcohol,	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

C ₂ H ₄ Ethylanilin Soluble in alcohol. Ethylene Soluble in water, alcohol. ether. Ethyl-phosphoric acid Soluble in water, alcohol. ether. Ethyl phosphates Soluble in water and in alcohol. Ethylsulphate of barium Soluble in water; insoluble in alcohol. Ethylsulphates A trace only of natural fats dissipated of natural fats dispated of natural fats dispated of natural fats dispated of natura	Formula.	Name.	Solubility.
Ethyl-phosphoric acid Ethyl-phosphoric acid Ethylsulphuric acid Ethylsulphate of barium Ethylsulphates Fats Ferrates Ferricyanhydric acid Ferricyanhydric acid Ferricyanides	$C_8H_{11}N$	Ethylanilin	Soluble in alcohol.
Ethyl phosphoric acid Ethylsulphuric acid Ethylsulphate of barium Ethylsulphates Fats Ferricyanhydric acid Ferricyanhydric acid Ferricyanides	C_2H_4	Ethylene	Sparingly soluble in water, alcohol, ether.
Ethylsulphuric acid Ethylsulphate of barium Ethylsulphates Fats Ferrates Ferricyanhydric acid Ferricyanides	$C_2H_7FO_4$	Ethyl-phosphoric acid Ethyl phosphates	Soluble: Am, Ba, Cu, Fe, Mg, Mn, Ni, Pt, K,
Ethylsulphates Fats Fats Ferrates Ferricyanhydric acid Ferricyanides	C.H.SO.	Ethylsulphuric acid	Na. Insoluble: Pb, Ca (sparingly soluble), Ag Soluble in water and in alcohol.
Ethylsulphates Fats Ferrates Ferricyanhydric acid Ferricyanides	*000TTZ0	Ethylsulphate of barium	Soluble in water; insoluble in cold absolute
Ethylsulphates Fats Ferrates Ferricyanhydric acid Ferricyanides			alcohol.
Ferrates]	Ethylsulphates	Soluble in water, especially if hot. Only the
Ferricyanhydric acid So Ferricyanides Th	ł	Fats	A trace only of natural fats dissolves in water;
Ferrates			sparingly soluble in alcohol; soluble in ether,
Ferrates			naphtha, benzin.
Ferricyanhydric acid Ferricyanides Th	ļ	Ferrates	All the ferrates, except those of the alkalies, are
Ferricyanhydric acid So Ferricyanides Tl			insoluble in water.
Ferricyanides TI	$\mathrm{H_6Fe_2Cy_{19}}$	Ferricyanhydric acid	Soluble in water and in alcohol.
		Ferricyanides	The ferricyanides of metals, the oxides of which
in solutions of ammon The following are sol cyanides of quinine, A		•	are soluble in ammonia, are themselves soluble
The following are sol		,	in solutions of ammonia and potash (Reynoso).
cyanides of quinine,			The following are soluble in water:-Ferri-
6			cyanides of quinine, Am, Ba, Ca, Pb (slightly), Mo. K. Na.

A DICTIONARY OF THE SOLUBILITIES, &c.-continued.

A DICTIONARY OF THE SOLUBILITIES, &C .- continued.

Formula.	Name.	Solubility.
$\substack{\text{Fe}_2\text{F1}_6\\\text{PbF1}_2}$	Fluoride of iron (ic)	Soluble in water. Very slightly soluble in water; soluble in hydro-
$\begin{array}{c} \text{LiFI} \\ \text{MgFI}_2 \\ \text{Mn}_2 \text{FI}_6 \end{array}$	" lithium magnesium manganese	Sparingly soluble in water. Insoluble in water, nearly insoluble in acids. Soluble in small quantity of water.
${ m Hg}_2{ m Fl}_2$	nercury	Insoluble in water.
$\begin{array}{c} \mathrm{HgFl}_2 \\ \mathrm{NiFl}_2 \\ \mathrm{Pt} \end{array}$	mercury (ic) nickel notations (ic)	Soluble in water (decomposed?). Slightly soluble in water; soluble in HF.
KFI SiFI ₄	" potassium silicon	Soluble in water; sparingly soluble in alcohol. Soluble in water, with decomposition; soluble in
AgF1 NaF1	silver	alcohol and in ether. Soluble in water (equally in cold as in hot);
$rac{ m SnFl_2}{ m ZnFl_2}$	" tin (ous) " ; zinc	insoluble in alconol. Soluble in water. Sparingly soluble in water; soluble in acids and in ammonia.

A DICTIONARY OF THE SOLUBILITIES, &C .- continued.

Gum arabic (arabin) Soluble in water; insoluble ether.
Soluble in water and in alcohol; insoluble in ether.
Nearly insoluble in water
are insoluble or sparingly soluble. Soluble in hot water and in alcohol; insoluble in ether.
water; those of Sb, Ba, Cd, Cu, Fe ^{IV} , Pb, Zn,
Soluble in water, in alcohol, and in ether. Those of Am, aniline, Ca, K, Na, are so
Insoluble, except those of the alkalies; soluble in alcohol: sparingly soluble in ether.
Soluble in water (1 in 100 cold—1 in 3 hot); soluble in alcohol; less soluble in ether.
sparingly soluble in water,
The fluosilicates of Al, Am, Cd, Co, Cr, Fe, Pb, Cu, Mn, Mg, Na (sparingly), Zn, are soluble; those of Li, K, Hg', Ba, Ca, are insoluble, or

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

Formula.	Name.	Solubility.
1	Hippurates	The acid is soluble in hot water and in alcohol, insoluble in ether.
		All the hippurates (except of terricum) are soluble in hot water, many of them in hot alcohol.
1	Hydrates	Vide oxides.
$ m H_2$	Hydrogen	of it; 100 volumes of alcohol ('84 sp. gr.)
l	Hypophosphites	The acid is soluble in water and in alcohol; all the salts are soluble in water.
I	Hyposulphates (thiosulphates).	The acid is soluble in water; decomposed by boiling. All the normal salts are soluble in water, but insoluble or sparingly soluble in
$c_8H_5{ m NO}$	Indigo (blue)	alcohol. Insoluble in water, alcohol, ether; soluble in fuming sulphuric acid.
HIO_3	Iodic acid	Soluble in water; insoluble in absolute
ı	Iodates	The metallic iodates, except those of the alkalies, are insoluble in water, and all are insoluble in alcohol.
·		

A DICTIONARY OF THE SOLUBILITIES, &c.-continued.

		1
Soluble in hot water, very sparingly in cold.	" lead	$ ext{FeI}_2 + 4 ext{Aq} \ ext{PbI}_2$
Soluble in water in alcohol, and in glycerine.	in Const	•
Insoluble in cold, decomposed by hot water and	" gold (ous)	AuI
KI.	,, copper (ous)	$\mathrm{Cu}_2 \mathbf{\tilde{I}}_2$
Soluble in water and in alcohol.	cobalt	Cols
Soluble in water.	chromium (ic)	Crols
Soluble in water and in absolute accuror.	calcium	CaI_2
Soluble in water, alcohol, in boiling ether (spar.).	cadmium	· Cdl
Decomposed by water.	bismuth	Bil
Soluble in water and in alcohol.	barium	Ra.I.
alcohol.		
quantity decomposes it); soluble in hot	3	ASIS
iantity of	arsenic	٠
Decomposed by water.	antimony	2514
Soluble in water and in alcohol.	ammonium	NHZTO
Soluble in water.	lodide of aluminium	AlaTa
Soluble in water and in alcohol.	Hydriodic acid	H
Solubility.	Name.	Formula.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

Formula.	Name,	Solubility.
LiI	Iodide of lithium	Soluble in water.
MgI_2	" magnesium	. Soluble in water; partially decomposed in eva-
		poration.
MnI_2	, manganese	Soluble in water.
$\mathrm{Hg_{9}I_{9}^{2}}$	mercury (ous)	
Hgl.		
1		KI, and many other salts.
$NiI_o + 6Aa$	nickel	Soluble in water.
PdI.	palladium	Insoluble in water, alcohol, ether, or KI; soluble
1		in ammonia (with decomposition).
PtI	platinum (ous)	
PtI,		
KI	potassium,	Soluble in water (1 in ·7 at 16° C.), alcohol,
	1	glycerine.
AgI	silver	. Insoluble in water and nearly insoluble in
)		NH ₄ HO; soluble in KU, NaCl (conc.).
NaI	sodium	. Soluble in water and in alcohol.
$SrI_{\mathfrak{d}}$	strontium	• Soluble in water.
۱ ٔ	sulphur	Insoluble in water; decomposed by alcohol.
SnI_2	tin (ous)	. Sparingly soluble in water.
$\operatorname{Snl}_4^{ ilde{L}}$; (ic)	. Decomposed by water; soluble in alcohol.
$\mathrm{ZnI}_2^{ ilde{z}}$	" zinc	. So uble in water and in alcohol.
1		

A DICTIONARY OF THE SOLUBILITIES, &c .- continued.

L4 !		CHEI	MIS'	TS	POC	K	ET-	B00	к.	·
	$\mathrm{C_{12}H_{24}O_{2}}_{\mathrm{Pb}}$		I	$\mathrm{C_3H_6O_3}$	•		$\mathrm{C_4H_6O_6}$			Formula.
	Lauric acid		Lactates	Lactic acid	Kinates, or Quinates .	Itaconates	Isotartaric acid		Iron	Name.
	absolutely insoluble in ether. Soluble in alcohol and in ether. Soluble in dilute nitric acid; feebly attacked by HCl or H ₂ SO ₄ .	cold water and in alcohol; a few of them are soluble in hot alcohol; but in general boiling water dissolves them readily: they are all	in ether. Most of the lactates are difficultly soluble in	Water, but insoluble in absolute alcohol. Very soluble in water; soluble in alcohol and	Most of the metallic quinates are soluble in	The acid is soluble in water, in alcohol, and in	strong solutions of the alkaline bicarbonates. Soluble in water and in alcohol.	sulphuric and hydrochloric acids; soluble in CuSO ₄ with precipitate of Cu; soluble in	Unacted on by cold concentrated nitric acid; dissolved by the dilute acid, as by dilute	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

Formula,	Name.	ne.			Solubility.
Mg	Magnesium	:	:		Soluble in dilute acids; difficultly soluble in concentrated H ₂ SO ₄ . Most of its salts are
$C_4H_6O_5$	Malic acid Malates	• •	• •	::	Soluble in water, spirit, and ether. Most malates are soluble in water; only a few are soluble in alcohol; the latter dissolve in
$C_4H_4O_4$	Maleic acid Maleates	• •	• •	• •	Soluble in water, alcohol, ether. The metallic maleates, except those of Pb, Ag, and Cu, are generally soluble in water; the alkaline maleates are soluble in water, in-
$ m C_6H_{14}O_6$	Mannite	:	•		soluble in alcohol. Soluble in hot water and hot alcohol; insoluble in ether
	Margarates	•	•	•	The normal alkaline margarates are soluble in warm water and in warm alcohol; they are almost insoluble in ether. The alkaline earthy and earthy salts are insoluble in water or ether, and many of them are insoluble in alcohol.
CONTRACTOR DESCRIPTION OF THE PROPERTY OF THE			l		

A DICTIONARY OF THE SOLUBILITIES, &c .- continued.

oluble, or diffi- alkaline molyb- are soluble. cohol, ether, or alcohol, ether, ter, alcohol, or ally soluble in	water and in alcohol, insoluble in				
oluble, or diffi- alkaline molyb- are soluble. cohol, ether, or alcohol, ether,	Soluble in all proportions in water, alcohol, or ether; it forms salts generally soluble in	:	•	Nicotin	$^{*}\mathrm{C_{10}H_{14}N_{2}}$
oluble, or diffi- alkaline molyb- are soluble. cohol, ether, or	Insoluble in water; soluble in alcohol, ether,	:	•	Naphthalin	$C_{10}H_8$
oluble, or diffi- alkaline molyb-	dates and magnesic molybdate are soluble. Insoluble in water; soluble in alcohol, ether, or	:	ieral)	Naphtha (mineral)	Ī
	even in acids. Except the Am. salt, all are insoluble, or difficultly soluble, in water. The alkaline molyb-	:	•	Molybdates .	, 1
ble in hot solu- 4, KCl, MgSO ₄ , sence of excess ers it insoluble	trated acid in the cold. Sparingly soluble in water; soluble in hot solutions of many salts (NH ₄) ₂ SO ₄ , KCl, MgSO ₄ , NaCl, alkalies, &c.). The presence of excess of ammonic molybdate renders it insoluble	of	phate	Molybdophosphate ammonium.	l
	Insoluble in water; scarcely acted (even if hot and concentrated);	•.	•	Mercury	Hg
L	Solubility.		9	Name.	Formula.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

	A DICTIONARI O	aur.	A DICTIONARY OF THE SOLUBILITIES, &C.—Continued.
Formula.	Name.		Solubility.
I	Nitrates	:	All nitrates, except some basic salts, are soluble
			The following are among those soluble in alcohol: —Nitrates of Al, Am, Cd, Co, Cu, Be, Ca, Li, Mg, Mn, Ag, Ur, Zn. The following are insoluble in absolute alcohol:—Nitrates of Pb, Ni, K,
I	Nitrites	•	All the normal nitrites, except nitrite of silver, are soluble in water, but as a rule less soluble
$\frac{N_2}{C_6H_5NO_9}$	Nitrogen	::	than the nitrates. Nearly insoluble in all known solvents. Almost insoluble in water; soluble in alcohol
, ,	Nitroprussides .	•	and ether; soluble in warm concentrated nitric and sulphuric acids. The following are soluble:—The acid, nitro-
$ m C_{18}H_{34}O_{2}$	Oleic acid	•	prussides of Am, Ba, Ca, FD, A, Ma. The following are insoluble:—Nitroprussides of Cu, Ni, Co, Fe', Ag, Zn (in cold). Insoluble in water; soluble in alcohol, ether, oils, and creosote.

A DICTIONARY OF THE SOLUBILITIES, &c.-continued.

			, 		E MI			. 001	KET'-E	OUK.			
	$CoC_2O_4 + 2Aq$	$\widetilde{C}_{12}C_{6}O_{12}$	$-CdC_2O_4 + 2Aq$	${ m Bi}_2{ m C}_6{ m O}_{12}$ + 15Aq	$BaC_2O_4 + Aq$		(NH.),C,O, + A	$\mathrm{Al_2C_6O_{12}}$	$\mathrm{C_{2}H_{2}O_{4}+2Aq}$		i	Formula.	***
	" cobalt	" chromium	" cadmium	" bismuth	" barium	" aniline		Oxalate of aluminium	Oxalic acid		Oleates	Name.	
ammonium salts.	Insoluble in water; soluble in ammonia and in	Soluble in water.	Insoluble in water, alcohol, or ether; soluble in	Insoluble in water; soluble in oxalic acid and	Sparingly soluble in water; insoluble in alcohol	Soluble in water; difficultly soluble in alcohol;	soluble in dilute acids.	Insoluble in water; slightly soluble in alcohol;	soluble in water and in alcohol; difficultly soluble in ether All its salts are soluble	of the alkalies, are insoluble. As a general rule the oleates are soluble in cold absolute	The normal alkaline oleates are soluble in water,	Solubility.	

L 2

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

			Solubility.
· · · · · · · · · · · · · · · · · · ·	talate of	Oxalate of copper (ous)	Soluble in ammonia and in ammonium carbonate. Insoluble in water; soluble in ammonia and in
$\begin{array}{c c} \operatorname{FeC}_2 \operatorname{V}_4 + 2\operatorname{Aq}. \\ \operatorname{Fe}_2 \operatorname{C}_6 \operatorname{O}_{12} \end{array}$	8 8	iron (ous)	Insoluble in water. Insoluble in water, soluble in oxalic acid, and
${ m PbC}_2{ m O}_4$	\$	lead	Insoluble in water, in alcohol, and in hot oxalic
CaC ₂ O₄	2	calcium	Insoluble in water, in oxalic and acetic acids;
$\begin{array}{c} \operatorname{Li}_2\mathrm{C}_2\mathrm{O}_4 \\ \operatorname{MgC}_2\mathrm{O}_4 + 2\mathrm{Aq} \\ \operatorname{MnC}_2\mathrm{O}_4 \end{array}$	* * *	lithium magnesium manganese	Soluble in water; insoluble in alcohol. Very sparingly soluble in water and in alcohol. Insoluble in water, alcohol, or ether; soluble in
$ m Hg_2C_2O_4+Aq$	•	mercury (ous)	the mineral acids and in some ammonium salts. Insoluble in water, alcohol, or ether; sparingly
$\mathrm{HgC}_2\mathrm{O}_4$ + Aq	2	" (ic)	soluble in ammonium salts. Insoluble in water, alcohol, or ether; soluble in
$NiC_2O_4 + 2Aq$	8	nickel	Insoluble in water; soluble in ammonia and in
$C_{10}H_{14}N_{2}$ $H_{2}C_{2}O_{4}$	£	nicotine	Soluble in water and in alcohol; insoluble in ether.

A DICTIONARY OF THE SOLUBILITIES, &c.—continued.

149	CHI	EMIST	.'s' 1	POCI	(ET	-B00	OK.		
$\mathrm{Al}_2\mathrm{O}_3,3\mathrm{Aq}$	Al ₂ O ₃ , 2Aq	$\mathrm{Al}_2\mathrm{O}_3$	$ZnC_2O_4 + 2Aq$	$\mathrm{SnC}_2\mathrm{O}_4$	${ m SrC}_2{ m O}_4$	$^{ m H_2C_2O_4}_{ m Na_2C_2O_4}$	2C20H24N2O2.	$K_2C_2O_4 + Aq$ $KHC_2O_4 + Aq$	Formula.
		Oxide of aluminium	" zinc	" tin (ous)	" strontium	" sodium	" quinine	Oxalate of potassium	Name.
by many salts. Insoluble in water; soluble in potassic and sodic hydrates; slightly soluble in ammonia, especially in the absence of ammonium salts.	soluble in warm fuming HCl. Soluble form. The solution is coagulated by mineral acids and by most organic acids, also	salts. Corundum is unacted upon by acids. The	Insoluble in water; soluble in acids, in am-	Very sparingly soluble in water and in cold	Insoluble in water; moderately soluble in am-	Very difficultly soluble in water; insoluble in	Nearly insoluble in water; soluble in hot alcohol.	Soluble in water; insoluble in alcohol.	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &c.—continued.	Solubility.	Sparingly soluble in water, best in boiling; soluble in cold solutions of (NH ₄)Cl.	(NH ₄)NO ₃ ; soluble in tartaric and acetic acids and in HCl; insoluble in nitric acid; insoluble in dilute, but soluble in concentrated, alkaline solutions.	The hydrate is soluble in dilute alkaline solutions.	. Sparingly soluble in water.	Sp. Gr. of BaO.	1.6 30	$1.02 \dots 1.08$ $1.01 \dots 1.09$	Soluble in alcohol; insoluble in ether. The hydrate is very soluble, especially in hot water. Most of the salts of barium are in-	soluble; but all, except the sulphate, are soluble in dilute HCl and HNO ₃ .
A DICTIONARY OF TH	Name.	Oxide of antimony .			" barium					
	Formula.	Sb ₂ O ₃			Ba0				BaH ₂ O ₂ +8Aq	

A DICTIONARY OF THE SOLUBILITIES, &c.—continued.

) T	· ·	HEM	IISTS':	POCKET	-BOOK.	
	$\mathrm{Cr_2H_6O_6}$	$\mathrm{Cr}_2\mathrm{O}_3$	CaO	CdO	Bi ₂ O ₃	Formula,
		" chromium	" calcium	" cadmium	Oxide of bismuth	Name.
		•	:	:	•	
	The hydrate is insoluble in water, soluble in caustic alkalies, but separated on boiling. When well washed it is insoluble in ammonia.	ヷ	soluble in about 750 parts of water at ordinary temperature; less soluble in hot than in cold water; nearly insoluble in alcohol; insoluble in ether; soluble in sugar solution and in	Insoluble in water; very soluble in ammonia. The cadmium salts are for the most part soluble in water; the insoluble salts dissolve in dilute acids.	Insoluble in water; easily soluble in those acids with which it forms soluble salts. Most of its salts are decomposed by water with precipitation of an insoluble basic salt, which is, however, soluble in HNO ₃ or HCl.	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

Formula,	Name.	Solubility.
000	Oxide of cobalt	Insoluble in water; soluble in acids; soluble
$ m CoH_2O_2$		The hydrate is insoluble in water and in caustic alkalies; soluble in ammonia and in some
a a	$c_{0_30_4}$, $c_{0_20_3}$, $c_{0_30_5}$, $c_{0_{12}0_{19}}$.	ammonia salts. Co_3O_4 is insoluble in water and in HCl; soluble in H_2SO_4 . Co_3O_5 and $Co_{12}O_{19}$ when hydrated are soluble in dilute HCl with evolution
$c_{\rm u20}^{\rm Cu_20}$	Oxide of copper (ous) " (ic)	of Cl; Co ₂ O ₃ (anhydrous) is soluble in boiling concentrated HCl. Insoluble in water; soluble in acids. The hydrate is soluble in acids in ammonia and
$\mathtt{Au}_2\mathrm{O}$	" (sno) plog	in ammonium salts. When dried the hydrate is insoluble in water; the hydrate sometimes dissolves; soluble in
$\mathrm{Au_2O_3}$	" (ic) "	aqua regia. Insoluble in water and in most acids; soluble in HCl and in aqua regia; when precipitated it is soluble in boiling alkalies
		Gring Gring II Aming Crist

CHEMIZLS, LOCKEL-BOOK.

A DICTIONARY OF THE SOLUBILITIES, &c .- continued.

potash and soda; sparingly soluble in alcohol.			120
phuric, or acetic acids. Soluble in water, but to a less extent than	:	. lithium .	T; O
Insoluble in water; decomposed by cold, HCl; insoluble in moderately strong nitric, sul-	:	" (per)	PbO_2
Insoluble in water; dilute acids dissolve out	:	39	Pb_2O_3
glycerine to some extent, in warm solutions of $(NH_4)Cl$ or $(NH_4)NO_3$; and in hot caustic alkalies: soluble in sugar.			
Not entirely insoluble in water; soluble in acids —best in nitric and acetic acids, soluble in	:	lead	Pb0
After ignition it is difficultly soluble in acids, but most freely in HCl. The hydrate is nearly insoluble in caustic alkalies and in	•	" " (ic)	$\mathrm{Fe}_2\mathrm{O}_3$
	•	Oxide of iron (ous)	FeO
Solubility.		Name.	Formula.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

MgO Oxide of magnesium The hydrate is soluble in water. The hydrate is soluble in ammonia water, but not in potash. MnO Mn2O3, Mn3O4, MnO Coxide of mercury (ous) MiO MiO MiO MiO MiO MiO MiO Mi			
Oxide of magnesium The hydrate is soluble in ammonia wath not in potash. " manganese Mn ₂ O ₃ , Mn ₃ O ₄ , MnO ₂ Oxide of mercury (ous) " in dilute HCl or dilute HNO ₃ ; soluble in water, alcohol, or ether; instingulate in water, alcohol, or ether; instingulate in water. The hydrate is insolute in water; slowly soluble in acids, ammonia, after ignition. The hydrate is insolute water, but soluble in acids, ammonia, monium carbonate, also in boiling (NH ₄ Cl. Insoluble in water. The hydrate is insolute after ignition. The hydrate is insolute monium carbonate, also in boiling (NH ₄ Cl. Insoluble in water, alcohol, or ether; instantiated states and in ammonia with tion to protoxide. Ni ₂ O ₃ is not known in the hydrated state soluble in acids and in ammonia with tion to protoxide. Ni ₃ O ₅ is unstable dissolves in acids with evolution of Cl.	Formula.	Name.	Solubility.
manganese Oxides on exposure to air. Insoluble in water; easily soluble in soluble in a bciling solution of NH ₄ Cl. The oxides dissolve in HCl on heating evolution of Cl. Insoluble in water, alcohol, or ether; instingtion. (ic) (ic) MIO ₂ Mi ₂ O ₃ , Ni ₃ O ₅ (ic) Mater, but soluble in acide and in ammonia, monium carbonate, also in boiling (NH ₄)Cl. Insoluble in water; slowly soluble in acide ammonia, monium carbonate, also in boiling (NH ₄)Cl. Insoluble in acide and in ammonia with tion to protoxide. Ni ₃ O ₅ is unstable dissolves in acids with evolution of Cl.	MgO	Oxide of magnesium	Nearly insoluble in water. The hydrate is soluble in ammonia water, but
Mn ₂ O ₃ , Mn ₃ O ₄ , MnO ₂ Oxide of mercury (ous) """ """ """ """ """ """ """	MnO		not in potash. Oxides on exposure to air. Insoluble in water; easily soluble in acids;
Oxide of mercury (ous) "" (ic) "nickel Ni ₂ O ₃ , Ni ₃ O ₅	1	Mn ₂ O ₃ , Mn ₃ O ₄ , MnO ₂	
" " (ic) " nickel Ni ₂ O ₃ , Ni ₃ O ₅	${ m Hg_20}$	Oxide of mercury (ous)	Insoluble in water, alcohol, or ether; insoluble in dilute HCl or dilute HNO ₃ ; soluble in
" nickel Ni ₂ O ₃ , Ni ₃ O ₅	$_{ m g}$	*	(NH ₄)Cl. Insoluble in water. The hydrate is insoluble in
:	NiO		water and in animonia. Insoluble in water; slowly soluble in acids, even after ignition— The hydrate is insoluble in
	1	Ni ₂ 0 ₃ , Ni ₃ 0 ₅	water, but soluble in acids, ammonia, or ammonium carbonate, also in boiling (NH ₄)Cl. Ni ₂ O ₃ is not known in the hydrated state, it is soluble in acids and in ammonia with reduction to protoxide. Ni ₃ O ₅ is unstable, and dissolves in acids with evolution of Cl.

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

]	L5 5		CHEMI	sts'	POCK	ET-BC	ook.		
		SnO_2	SnO	SrO	Na_2O	Ag_20	$ m K_2 O$	Pt0	Formula.
		,, tin (ic)	" tin (ous)	" strontium	" sodium	" silver	" potassium	Oxide of platinum (ous)	Name.
	sparingly soluble in acids.	ammonia. Insoluble in water, acids, or alkalies. The ordinary hydrate is soluble in acids and in alkalies. Wetastannic acid is insoluble or	The hydrate is also soluble in water. Insoluble in water; soluble in acids; insoluble in dilute alkaline solutions. The hydrate is soluble in dilute alkalies, but insoluble in	Sparingly soluble in water; very sparingly soluble in alcohol; and insoluble in ether.	Soluble in water. The hydrate is soluble in water and in alcohol, and sparingly soluble in	Slightly soluble in water; soluble in ammonia and in alkaline hyposulphites, chlorides, and	Soluble in water. The hydrate is soluble in water and in alcohol; sparingly soluble in ether. The compounds of K are in general less	Soluble in sulphurous and in concentrated sulphuric acids, also in cold HCl.	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

Formula.	Name.	Solubility.
ZnO	Oxide of zinc	Insoluble in water; soluble in acids even after ignition. The hydrate is soluble in alkalies
11	Oxypromides and oxy-	and in ammonia. Are in general insoluble in water. Many of them are insoluble in water.
I	Paratartrates	Paratartrates of Am, Cr, Co (sparingly), Cu', Cu",
j	Darchlorates	Fe' Fe ^{IV} , Mg (sparingly), Ni (sparingly), K, Na are soluble in water. The salts of Ba, Cd, Pb, Ca, Ag, Sr, Zn are insoluble. Many of the latter are sparingly soluble in boiling water, and many of those soluble in water are insoluble in alcohol.
	Periodates	soluble in 15 parts of water at 15° C. These are for the most part insoluble in water:
C_6H_5HO	Phenic acid (carbolic acid).	the salts of the alkalies are soluble. Soluble in alcohol, ether, &c. sparingly soluble in water. It forms salts with the alkalies and alkaline earths soluble in water.

A DICTIONARY OF THE SOLUBILITIES, &c .- continued.

•	OZIZIA.	IISTS PO	OCKET-	BOOK.	
BaHPO ₄	$\mathrm{H(NH_{4})_{2}PO_{4}}$	$^{ m H_3PO_4}_{ m Al_2P_2O_8}$	$\mathrm{H_4P_2O_7}$	HPO ₃	Formula.
Phosphate of antimony barium (ordinary).	$(NH_4)_3 PO_4$ and	Orthophosphoric acid Phosphate of aluminum	Pyrophosphoric acid (and its salts).	Phosphoric acids: Metaphosphoric acid (and its salts).	Name.
Insoluble in cold, decomposed by boiling water. Very sparingly soluble in water; soluble in (NH ₄)Cl, and in dilute HCl, H ₃ PO ₄ , HNO ₃ .	citric acid. Soluble in water; insoluble in alcohol. These salts are soluble in water.	alkaline pyrophosphates. Soluble in water and in alcohol. Insoluble in water or in (NH ₄)Cl; soluble in acids, even in acetic?) and in caustic potash, and the process of the second of	part, precipitates. Soluble in water. The alkaline pyrophosphates are soluble in water; most of the other salts are precipitates, but soluble in solutions of	Soluble in water, especially when free from earthy impurities. The salts it forms with the alkalies are soluble, those with the alkaline earths and metallic oxides are, for the most	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

Formula.	Name.	Solubility.
Cd ₃ P ₂ O ₈	Phosphate of cadmium Phosphates of calcium.	Insoluble in water; soluble in cold (NH ₄)Cl.
${ m CaH_4P_2O_8}$	mono onom	Soluble in water, precipitated with decomposition
${ m Ca_2H_2P_20_8} + { m 4Aq}$	di	Insoluble in water and in alcohol; nearly insoluble in acetic, but soluble in nitric and
$\mathrm{Ca_3P_2O_8}$	tri-	hydrochloric acids. Insoluble in water, alcohol, ether. Easily soluble in nitric and hydrochloric acids; less
$\frac{\mathrm{Cr}_2\mathrm{P}_2\mathrm{O}_8}{\mathrm{Co}_3\mathrm{P}_2\mathrm{O}_8+8\mathrm{Aq}}$	Phosphate of chromium cobalt	easily in acetic acid. Insoluble in water; easily soluble in acids. Insoluble in water; soluble in acids and in
$\mathrm{CuHPO_4}$	" copper	Insoluble in water; soluble in acids, even in
$^{\circ}$ $^{ m Fe}_{ m 2} { m P}_{ m 2} { m O}_{ m 8}$	" iron (ic)	aceuc. Insoluble in water; nearly insoluble in acetic acid: slightly soluble in a solution of COo.
${ m Pb_3P_2O_8}$	" lead	Soluble in acids, but reprecipitated by alkalies, alkaline, carbonates, and acetates. Insoluble in water, acetic acid, or ammonia; soluble in nitric acid.

CHEMISLS, BOCKEL-BOOK.

.59			CHI	EMIS	TS'	POCI	KE!	Г- ВО	OK	•		
	$Mn_3P_2O_8+7Aq$	$MnHPO_4 + 3Aq$		$(NH_4)_2Mg_2P_2O_8 + 12Aq$	${ m Mg_3P_2O_8}$	$MgHPO_4+7Aq$	$H_4MgP_9O_8$		$\mathrm{Li}_3\mathrm{PO}_4$	${ m LiH_9P0_4}$	$PbHPO_4$	Formula.
	tri	di	Phosphate of manganese	Phosphate of magnesium and ammonium.	tri-	di	mono	magnasium	"	" lithium	Phosphate of lead	Name.
and in acids.	Sparingly soluble in water; insoluble in alcohol; soluble in some ammonium salts	in water or a	soluble in presence of ammonia.	Very sparingly soluble in water, a little more soluble in presence of (NH ₄)Cl; nearly in-	Insoluble in water; difficultly soluble in acetic; soluble in dilute acids.	dilute acids, even in acetic acid; insoluble in alcohol.	Soluble in water; tolerably soluble in spirit.	dilute acids.	Sparingly soluble (1 in 833 at 12°) in water;	Soluble in water.	Insoluble in water or acetic acid; soluble in nitric acid and in potash or soda.	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

		TOTAL OF THE BONDERING WO. CORREGUES.
Formula.	Name.	Solubility.
${ m Hg_6P_2O_8}$	Phosphate of mercury	Insoluble in water, decomposed by HCl.
${ m Hg_3P_2O_8}$	Phosphate of mercury	mercury Insoluble in water; soluble in ammonium salts
Ni ₃ P ₂ 0 ₈ +7Aq	Phosphate of nickel	Insoluble in water; soluble in sulphuric, nitric, hydrochloric, and phosphoric acids.
H°KPO,	" potassium:	Soluble in water: insoluble in alcohol
HK_2PO_4	di-	Soluble in water and in alcohol.
$\mathrm{K_3P0_4}^{-}$	tri-	Soluble in water; insoluble in alcohol.
${ m HAg_2PO_4}$	di	Decomposed by water; insoluble in absolute
$\mathrm{Ag_3P0_4}$	tri	alcohol or ether; soluble in phosphoric acid. Insoluble in water; soluble in nitric and
,		phosphoric acids, also in acetic acid; soluble in ammonia, ammonium chloride, alkaline
	Phosphate of sodium:	hyposulphites.
NaH2PO4+Aq		Soluble in water; nearly insoluble in alcohol.
Na2HPO4+12Aq		Soluble in water; insoluble in alcohol.
Na ₃ Fo ₄ + 12Aq	tri	Soluble in water.

101	CHEMISTS	´ POC	KET-F	800K	•		
1	$\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{2}$	- L- 4-	(U ₂ O ₂) ₂ H ₂ P ₂ O ₈ + xAq Zn ₂ P ₂ O ₈ , 2Aq	2SnO ₂ , P ₂ O ₅ ,	$\mathrm{Sn_3P_2O_8}$	$SrHPO_4$	Formula.
Silicates	Quinine	Phosphorus	" uranium	" " (ic)	" tin (ous)	Phosphate of strontium	Name.
	•	• •			ъ ——	ш — —	
	ether, freely soluble in CS ₂ and in SCl ₂ . Amorphous phosphorus is insoluble in water, alcohol, ether, CS ₂ ; very soluble in strong nitric acid. Slightly soluble in water; soluble in alcohol and ether, also in chloroform; soluble in dilute	in some ammonium salts, and in potash. Ordinary phosphorus is insoluble in water, slightly soluble in alcohol more soluble in	Insoluble in water or acetic acid; soluble in mineral acids. Insoluble in water; soluble in acids, in ammonia.	(NH_4) Cl and in caustic potash. Insoluble in nitric acid.	taining ammonium salts or free acids. Insoluble in water; soluble in mineral acids, in	Insoluble in water; soluble in water con-	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &c.-continued.

Formula.	N ₈	Name.			Solubility.
Ag	Silver	:	•	•	Unacted upon by water and by vegetable acids. Slightly attacked by boiling hydrochloric acid:
$c_{18}H_{30}O_{15}$	Starch	;	:	:	soluble in nitric acid and in hydriodic acid. Insoluble in cold water, alcohol, or ether. It
$c_{18}H_{36}O_{2}$	Stearic acid	:	•	:	Insoluble in water; soluble in alcohol and in
	Stearates	:	:	:	ether, benzine, and CS ₂ . The normal alkaline stearates are soluble in
					small quantities of pure water, but decomposed by larger portions. All other stearates are insoluble in water. All of them are insoluble
					in ether, and all, except those of the alkalies,
$C_{21}H_{22}N_2O_{21}$	Strychnine	:	:	:	Almost insoluble in water; sparingly soluble in
$\mathrm{C_8H_8}$	Styrol	:	:	:	Most of its salts are soluble in water. Slightly soluble in water; soluble in alcohol and
1	Suberates	:	:	•	in ether. The acid is sparingly soluble in cold, more
					soluble in hot, water; soluble in alcohol, ether, fatty and volatile oils. The alkaline suberates and those of the alkaline earths are soluble in
	···				water.

A DICTIONARY OF THE SOLUBILITIES, &C .- continued.

$rac{ ext{Cr}_2(ext{SO}_4)_3 + 15 ext{Ag}}{ ext{CoSO}_4}$	$\frac{\text{CdSO}_4 + 4\text{Aq}}{\text{CaSO}_4}$	BaSO ₄	$(\mathrm{NH_2C_6H_5})\mathrm{HSO_4}$	${{ m H}_2{ m SO}_4}\atop {{ m Al}_2({ m SO}_4)_3+18{ m Aq}}\atop {{ m (NH}_4)_2{ m SO}_4}$	$C_{12}H_{22}O_{11}$.	Formula.
" chromium " cobalt	" cadmium	" barium	" anilin	Sulphuric acid Sulphate of aluminium ammonium	Sugar (cane)	Succinates	Name.
NaCl and some other salts than in water. Soluble in water; less soluble in spirit. Difficultly soluble in cold, more soluble in hot, water; insoluble in alcohol.	and in ether. Soluble in water. Slightly soluble in water; insoluble in water at 140-150° C. More soluble in presence of	Insoluble in water; a little soluble in cold dilute acids; boiling hydrochloric acid dissolves a considerable amount of it. Insoluble in alcohol	Very soluble in water; soluble in alcohol; in-	Soluble in water. (See Tables.) Soluble in water; insoluble in alcohol. Soluble in water; sparingly soluble in absolute alcohol: more soluble in dilute alcohol.	all are soluble in potassic acetate. Soluble in water and in alcohol (sparingly); insoluble in ether.	The acid is soluble in water, in alcohol, and in ether. Most succinates are soluble in water;	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &c.—continued.

Formula.	Na.	Name.	Solubility.
Cu ₂ SO ₄	Sulphate of	Sulphate of copper (ous)	Insoluble in water or in concentrated sulphuric
CuSO4+5Aq		" (ic)	Soluble in water; soluble in dilute alcohol. (See Solubility Tables.)
$FeSO_4 + 7Aq$	6	iron (ous)	Soluble in water. (See Tables.)
${ m Fe}_2({ m SO}_4)_3$	s :	" (¹c)	Soluble in water; soluble in alcohol. Insoluble in water; more soluble in presence of
##))))	`		ammonium salts; insoluble in alcohol; soluble in hot concentrated hydrochloric acid and in
			nitric acid if warm and concentrated; soluble
			in hot potash or soda-lye, and in warm am-
			monia; sparingly soluble in strong sulphuric acid, precipitated on dilution.
$\text{Li}_2 \text{SO}_4 + \text{Aq}$	•	lithium	Soluble in water; sparingly (?) soluble in
MgSO4+7Aq	9	magnesium	Soluble in water; insoluble in alcohol.
MnSO4		manganese	Soluble in water; insoluble in alcohol and in
3	•	(ons).	ether.
$\mathrm{Mn_2(SO_4)_3}$	2	manganese (ic).	Decomposed by water, by unue actus, and by alcohol.
${ m Hg_2SO_4}$	٤,	of mercury	Sparingly soluble in water.
		(Sno)	

A DICTIONARY OF THE SOLUBILITIES, &c.—continued.

165	CHE	MISTS	s' P00	CKET-BOOK.	
$ZnSO_4$ Al_2S_3 $(NH_4)_2S$	Na_2SO_4 $SrSO_4$	${ m Ag_2SO_4}$	$^{2\mathrm{C}_{20}\mathrm{H}_{24}\mathrm{N}_{2}\mathrm{O}_{2}}_{\mathrm{H}_{2}\mathrm{SO}_{4}}.$	$\begin{array}{c} \mathrm{HgSO_4} \\ \mathrm{NiSO_4} + 7\mathrm{Aq} \\ \mathrm{K_2SO_4} \end{array}$	Formula.
Sulphide of aluminium , ammonium	" sodium	" silver	" quinine (normal).	Sulphate of mercury (ic) " nickel " potassium	Name.
Soluble in water; insoluble in alcohol. Decomposed by water. Soluble in water.	Soluble in water (see Tables); soluble in glycerine; very sparingly soluble in alcohol. Insoluble in water (more soluble than BaSO ₄), almost absolutely insoluble in alcohol.	Sparingly soluble in water; insoluble in alcohol; soluble in dilute acids to a greater extent than	Soluble in water; soluble in hot alcohol; soluble in glycerine; very soluble in dilute sulphuric	Decomposed by water. Soluble in water; insoluble in alcohol or ether. Soluble in water; insoluble in absolute alcohol. Sp. Gr. K_2SO_4 Sp. Gr. K_2SO_4 Sp. Gr. K_2SO_4 12.5 C. per cent. 12.5 C. per cent. 1.00795 1 1.05240	Solubility.

A DICTIONARY OF THE SOLUBILITIES, &C.—continued.

Formula.	Name.	Solubility.
$\mathrm{Sb}_2\mathrm{S}_3$	Sulphide of antimony (precipitated).	Insoluble in water or dilute acids; soluble in concentrated acids and in caustic alkalies, and in alkaline sulphides.
$\mathrm{Sb}_2\mathrm{S}_3$	Sulphide of arsenic (precipitated).	Sparingly soluble in hot water (?); insoluble in acids; soluble in aqua regia and in caustic alkalies and alkaline sulphides.
$8aS$ Bi_2S_3	Sulphide of barium	Soluble in water with decomposition. Insoluble in water, dilute acids, solutions of alkalies, alkaline sulphides, or cyanide of
CdS	" cadmium	potassium. Insoluble in water, dilute acids, alkalies, alkaline sulphides, or cyanide of potassium; soluble in concentrated HCl or HNO ₂ .
CaS	" calcium	Insoluble in water; calcic hydric sulphide is
$\mathrm{Cr}_2\mathrm{S}_3$	" chromium.	Insoluble in water; soluble in nitric acid, and more easily in aqua regia; insoluble in caustic
CoS	obalt,	potash or in potassic surprine. Obtained by precipitation; it is insoluble in water and in caustic or carbonated alkalies;
		sparingly soluble in dilute mineral acids; more readily soluble in strong acids; soluble in aqua regia.

A DICTIONARY OF THE SOLUBILITIES, &C .- continued.

Formula.	Name.	Solubility.
Cu ₂ S	Sulphide of copper (ous)	Insoluble in solution of ammonium sulphide; difficultly soluble in strong boiling hydro-
CuS	" " (ic)	P
		or in alkaline sulphides; soluble in strong hydrochloric and nitric acids and in aqua regia; soluble, with decomposition, in solution
$ m Au_2S_3$	" gold	of potassium cyanide. Insoluble in water or hydrochloric or nitric acid;
		soluble in aqua regia; soluble in yellow sulphide of ammonium, in caustic alkalies, and in alkaline sulphides.
FeS	" iron	Insoluble or slightly soluble in water; insoluble in ammonium sulphide; soluble in cold dilute
PbS	" lead	mineral acids. Insoluble in water, dilute acids, solutions of
		alkalies, or of alkaline sulphides; soluble in hot concentrated hydrochloric or nitric acid.
m MgS	" ithium magnesium	Soluble in water. Very sparingly soluble in cold water; soluble in acids with decomposition.

A DICTIONARY OF THE SOLUBILITIES, &c.-continued.

Formula.	Name.	Solubility.
MnS	Sulphide of manganese	
${ m Hg}_2{ m S}$	" mercury (ous).	Insoluble in cold water or dilute nitric acid, or in hot solutions of caustic ammonia, or of
HgS	" mercury (ic)	(ic) Obtained by precipitation; it is insoluble in water and in hot acids; soluble in aqua regia;
NiS	" nickel	insoluble in caustic alkalies, in potassium cyanide, and in ammonium sulphide. Insoluble in water; sparingly soluble in ammonia and in a mixture of ammonia and ammonium sulphide; insoluble in dilute
$\frac{\mathrm{K_2S}}{\mathrm{Ag_2S}}$	" potassium. " silver	
Na ₂ S SrS SnS	sodium strontium tin (ous)	&&£
	1	<u> </u>

A DICTIONARY OF THE SOLUBILITIES, &c .-- continued.

Formula.	Name.	Solubility.
SnS_2	Sulphide of tin (ic)	Insoluble in water; soluble in caustic alkalies, and in alkaline sulphides; also in hot, strong
$\mathbf{z}_{\mathrm{n}}\mathbf{s}$	" zinc	hydrochloric acid. Insoluble in water, in caustic alkalies or
$(\mathrm{NH_4})_2\mathrm{SO_3}$	Sulphite of ammonia	Soluble in water; sparingly soluble in absolute
$BaSO_3$	" barium	Scarcely at all soluble in water; soluble in sul
CdSO ₂	" cadmium	Difficultly soluble in water; insoluble in alcohol.
$CaSO_3^{\circ}$	" calcium	Slightly soluble in water; soluble in sulphurous
$CdSO_3$	" cobalt	Almost insoluble in water; insoluble in alcohol.
PbSO3	" ·lead	Insoluble in water; sparingly soluble in sulphurous acid.
$ ext{Li}_2 ext{SO}_3 + 6 ext{Aq} \\ ext{MgSO}_3$	" lithium " magnesium	Soluble in water; insoluble in alcohol. Difficultly soluble in water; insoluble in alcohol;
${ m MnSO}_3$	" manganese	Insoluble in water, alcohol, or ether; soluble in
$NiSO_3 + 6Aq$	" nickel	Insoluble in water; soluble in sulphurous acid.

A DICTIONARY OF THE SOLUBILITIES, &C.-continued.

Formula.	Name	Solubility.
K ₂ SO ₃ + 2Aq	Sulphite of potassium	Soluble in water; very sparingly soluble in
$ m Ag_2SO_3$	" silver	Very slightly soluble in water; almost insoluble in enlaborations and
$ m Na_2SO_3 + 7Aq \ SrSO_3$	sodium	Soluble in water; insoluble in alcohol. Scarcely at all soluble in water; soluble in
ZnSO3	"zinc Sulphocyanides	Surphurous acid. Sparingly soluble in water; insoluble in alcohol. The following are soluble in water: sulphocy- anides of allyl (spar.), Al, Ba, Ca, Co, Cu (spar.).
ςΩ	Sulphur (ordinary)	Fe ^{IV} , Mg, Mn, Ni, K, Na, Sr, Ur, Zn, Sn. These are insoluble: sulphocyanides of Ag, Hg', Cu', amyl, Bi, Cd, ethyl, Pb, methyl. Insoluble in water: slightly soluble in alcohol
	Sulphydrates	ether, benzine, oil of turpentine, and in general in the fatty and essential oils, especially when these liquids are warm; soluble in CS ₂ . The following are soluble: sulphydrates of Am, Ba, Ca, K, Na, Sr.

A DICTIONARY OF THE SOLUBILITIES, &c.—continued.

Hydrated; insoluble in water; soluble i slightly soluble in alkaline carbonates			i
cepting HF), or solutions bonated alkalies.	:	_ 1 mainc acid	ı
ammonia, acetic acid, and caustic alkalies	•		
Sparingly soluble in boiling water, and still less	:	Theobromin	$\mathrm{C_7H_8N_4O_2}$
chloric and nitric acids, and, excepting those of silver and mercury, in caustic alkalies; also in			
are insoluble in			,
hand, are mostly soluble, except those of			
alkalies, are but sparingly soluble or insoluble in water; the acid salts, on the other			
The normal tartrat	:	Tartrates	1
in ether or in oil of turpentine.			-
Soluble in water; soluble in alcohol; insoluble	:	Tartaric acid	$C_4H_6O_6$
Solubility.	`	Name.	Formula.

A DICTIONARY OF THE SOLUBILITIES, &c.—continued.

Formula.	Ž	Name.			Solubility.
I	Tungstates	:	:	•	The alkaline tungstates are soluble in water, but all the others, with the exception of the
	Urates	:	:	:	Mg salt, appear to be insoluble in water. The acid is insoluble in water, alcohol, ether; the urates of the fixed alkalies and alkaline
					earths are difficultly soluble in cold, more easily soluble in hot, water; those of the other metallic oxides, and the ammonium salt, are
٠					insoluble. All the urates are decomposed by acids, even by acetic acid.
1	Vanadiates	:	•.	:	Most of the bivanadiates are readily soluble in
	Wor				soluble in water, and insoluble in alcohol.
I	•• XXX	•	:	:	waxes are insoluble in water, rather difficultly soluble in alcohol and in alkaline solutions. Easily soluble in ether and oils: soluble in
					benzin or chloroform, and in oils both fixed and essential.
Zn	Zinc	:	:	:	Easily soluble in dilute hydrochloric, nitric or sulphuric acids.
				_	

SPECIFIC GRAVITY.

DETERMINATION OF SPECIFIC GRAVITY.

Solids.

1. Solids heavier than, and insoluble in, water.

a. By weighing in air and water.

Sp. gr. =
$$\frac{\text{(weight in air)}}{\text{(loss of weight in water)}}$$
.

b. By Nicholson's hydrometer.

Let w_1 be the weight required to sink the instrument to the mark on the stem, the weight of the instrument being W; to take the specific gravity of any solid substance, place a portion of it weighing less than w_1 in the upper pan, with such additional weight, say w_3 , as will cause the instrument to sink to the zero mark. The weight of the substance is then $w_1 - w_3$. Next transfer the substance to the lower pan, and again adjust with weight w_4 to the zero mark.

Sp. gr. =
$$\frac{w_1 - w_3}{w_4 - w_8}$$
.

c. By the specific gravity bottle (applicable to powders).

Weigh the flask filled to the mark with water, then place the substance, of known weight, in the flask, fill to the mark with water, and weigh again.

Sp. gr. = $\frac{\text{(weight of substance in air)} + \text{(weight of flask and water and substance)}}{\text{(weight of substance in air)}}.$

2. Solids lighter than, and insoluble in, water.

The solid is weighted by a piece of lead of known specific gravity, and weighed in water.

Sp. gr. = (weight of substance in air)
(weight of lead in water) - (weight of lead and substance in water) + (weight of substance in air)

3. Solids heavier than, and soluble in, water.

Proceed as in 1 a, using instead of water some liquid without action on the solid.

(weight of bulk of liquid equal to substance) = (weight of substance in air) - (weight of substance in liquid).

(weight of bulk of water equal to substance) = $\frac{\text{(weight of bulk of liquid equal to substance)} \times \text{(sp. gr. of water)}}{\text{(sp. gr. of liquid)}}$

Sp. gr. = $\frac{\text{(weight of substance in air)}}{\text{(weight of bulk of water equal to substance)}}.$

ridnids.

1. By the hydrometer.

2. By the specific gravity bottle.

again when filled to the mark with liquid. Weigh the bottle filled to the mark with water, and

Sp. gr. = $\frac{\text{(weight of liquid and bottle)} - \text{(weight of bottle)}}{\text{(weight of water and bottle)} - \text{(weight of bottle)}}$.

Cases.

the specific gravity of gases, consult some standard work. For the description of the processes used in determining

weight (W) of the substance at the temperature T, We first determine the volume (V) occupied by a I. The method of Gay-Lussac.

sure, is then found by the following formula: under a pressure P. The weight (W_1) of the same volume (V) of air, at the same temperature and pressure

 $\cdot \frac{4}{007} \cdot \frac{1}{\text{T } 70000 \cdot + 1} \cdot \text{V} \cdot \text{merg section} \cdot = \text{IW}$

$${
m Sp.\,gr.}=rac{W}{{
m W}}$$
 .

page 181, For the Table by which to calculate $\left(\frac{1}{1+.00367\,\mathrm{T}}\right)$, see

2. The method of Dumas.

$$\operatorname{Sp. gr.} = \frac{\operatorname{P} + \operatorname{V} n_t}{\operatorname{V} + \operatorname{V} (v - \operatorname{V})} = \operatorname{Tr}.$$

with air and filled with vapour. P= the difference in weight between the globe filled

V =capacity of balloon in cub. cent.

 $n_{t}=\mathrm{weight}$ of 1 c, c, of air at the temperature of

sealing the globe. $n_{\nu}=$ weight of I c. c. of air at the temperature of weighing the balloon filled with air.

For Tables by which to calculate n_t and n_{th} see page 179. For more exact formulæ, see Watts' 'Dictionary,' vol. v. 371, and Brown ('Chem. Soc. J.' [2], iv. 72).

TABLE SHOWING THE SPECIFIC GRAVITY OF THE ELEMENTS.

Name.	Specific Gravity.	Observer.
Aluminium (cast)	2.56	Wöhler and Deville.
,, (hammered)	2.67	"
Antimony	6.7	Karsten.
,,	6.697	Marchand, Scheerer.
Arsenic	5.63	Karsten.
,,	5.96	Guibourt.
Barium	4.0	Clarke.
Bismuth (quickly cooled)	7.677	Deville.
" (slowly cooled)	9.935	3177hlon on 3 D
Boron	2.68	Wöhler and Deville.
Bromine	2.966	Balard.
Cadmium	8.45	Kopp.
(as foil)	8.69	R. Wagner.
Calcium	1·58 1·6-1·8	Bunsen.
Control (Househol)	3.52	Caron. Brisson.
Carbon (diamond)	2.33	Karsten.
,, (graphite)	5.5	Wöhler.
Cerium	1:38	Faraday.
Chlorine (liquid) Chromium	6.2	Wöhler.
Chromium	7.01	Bunsen & Frankland.
Cobalt	8.43-8.9	Dunsen & Frankland
Cobait	8.957	Rammelsberg.
Copper (hammered)	8.958	Schröder.
Ion and Boombon	8.952	
,, (reduced by gai- vanism).	0 002	**
Glucinum	2.1	Debray.
Gold (cast)	$19.\overline{26}$	Brisson, Matthiessen.
, (hammered)	19.55-19.6	
Indium	7.36	Winckler.
Iodine	4.948	Gay-Lussac.
Iridium	21.15	Deville and Debray.
Iron	7.79	Karsten.
" (steel)	7 • 62 – 7 • 81	
Lead	11.33	Kopp.
	11.39	Karsten.
Lithium	•594	Bunsen.
Magnesium	1.70	Kopp.
	-	· -

TABLE SHOWING THE SPECIFIC GRAVITY, &C .- continued.

1	1	
Troost.	OT. To	•• •• •• •• ••
Bolley.	91.7	Zirconium
Rollow	91.4	
Kopp.	£1.7	Zinc
Roscoe.	9.9	$\sqrt{\text{ansibans}}$
Peligot.	₹•8 I	muiner U
Bernouilli, Wöhler.	E-81-1-41	Tungstin
	18.7-62.7	uiT
	964.4	, *************************************
Chydenius.	-499.4	Thorium
Crookes.	18.11	Thallium (east).
Löwe.	081.9	Tellurium .
K. Hermann.	84.01	Tantalum
" "	946·I	(anorphoms) "
Зереекег.		
Marchand and	40.2	Sulphur (rhombic)
Bunsen,	3.2₹5	
Schröder.	986.	Strontium
Thenard.	4000	,
Gay - Lussac and	2276 •	• • • • • • • • • • • • • • • • • • • •
G. Rose.	10.23	muipos
Wöhler.	67.7	Silver (cast)
4 46 14 11K	08.7	Silicon.
Count Schaffgotsch.		(amilio4DMMO)
Deville and Debray.	8Z.7	Selenium (amorphous)
Deville and Debuga	₹•II-0•II	Ruthenium (cast)
Bunsen,	919.1	muibiduA
Deville and Debray.	12.1	Rhodium (cast).
Gay - Lussac and Thenard,	000	
	998.	Potassium
Deville and Debray.	21.12	Platinum (cast)
• *	2.106	" (b91) "
Schrötter.	048•1	Phosphorus
"	07.11	Palladium
Deville and Debray.	21.32	mujarso
Hermann, Marignac.	48.4-49.9	muidoiN
_	9.6-₹.8	Nickel
Loughlin	99.8	Molybdenum
Regnault, Kopp.	13.60	Mercury
Bachmann,	8.03	Manganese
Wöhler.	048.1	Magnesium
Observer.	Gravity	*OTTO
	Specific	увть.
ITY, &C.—continued.	A WATE OF TROP	

Table showing a Comparison of the Degrees of Baumé, Cartier, and Beck's Areometers, with Specific Gravity Degrees.

A.—For Liquids lighter than Water.

-		1		m	1	1	_
Degs. of Baumé,	Baumé.	Cartier.	Beck.	Baumé,		Cartier.	Beck.
Cartier, Beck.	Sp. Gr.	Sp. Gr.	Sp. Gr.	Cartier, Beck.	Sp. Gr.	Sp. Gr.	Sp. Gr.
0			1.000	36	0.848	0.837	0.8252
1			0.9941	37	0.843	0.831	0.8212
2	••		0.9883	38	0.838	0.826	0.8173
3			0.9826	39	0.833	0.820	0.8133
4			0.9770	40	0.829	0.815	0.8095
5			0.9714	41	0.824	0.810	0.8061
6	• •		0.9659	42	0.819	0.805	0.8018
7	• •		0.9604	43	0.815	0.800	0.7981
8	• •		0.9550	44	0.810	• •	0.7944
9			0.9497	45	0.806	• •	0.7907
10	1.000	· •	0.9444	46	0.801	• •	0.7871
11	0.993	1.000	0.9392	47	0.797	• •	0.7834
12	0.986	0.992	0.9340	48	0.792	• •	0.7799
13	0.979	0.985	0.9289	49	0.788	• •	0.7763
14	0.973	0.977	0.9239	50	0.784	• •	0.7727
15	0.967	0.969	0.9189	51	0.781	• •	0.7692
16	0.960	0.962	0.9139	52	0.776	••	0.7658
17	0.954	0.955	0.9090	53	0.771		0.7623
18	0.948	0.948	0.9042	54	0.769	••	0.7589
19	0.942	0.941	0.8994	55	0.763		0.7556
20	0.935	0.934	0.8947	56	0.759		0.7522
21	0.929	0.927	0.8900	57	0.755		0 7489
22	0.924	0.920	0.8854	58	0.751	• •	0.7456
23	0.918	0.914	0.8808	59	0.748	• •	0.7423
24	0.912	0.908	0.8762	60	0.744	••	0.7391
25	0.906	0.901	0.8717	61	0.740	• •	0.7359
26	0.901	0.895	0.8673	62	0.736		0.7328
27	0.895	0.889	0.8629	63		• •	0.7296
2 8	0.889	0.883	0.8585	64		• •	0.7265
29	0.884	0.877	0.8542	65		• •	0.7234
30	0.879	0.871	0 8500	66		• •	0.7203
31	0.873	0.865	0.8457	67		••	0.7173
32	0.868	0.859	0.8415	6 8		•.•	0.7142
33	0.863	0.853	0.8374	69			0.7112
34	0.858	0.848	0.8333	70	• •		0.7083
35	0.853	0.842	0.8292				ļ
		1			- 1		

Second Beame, Beach, B	Communication of Communications		1	ii	**************************************	1
19		· .		1.2680	1.354	98
Oct Oct	• •	096.T	72	1)	Proceedings of the control of the co	
Secondary Seco	•••	N			1	
Secondary Seco	0004 · I	606·I		1.2409	1	
Secolar Seco	7:883 T	1.885	69	1.2319		1
Secol. S	4999 · I	₹98·I	89	1.2230	197 · I	31
Beck Sp. Gr.	3099·I	688·I	49	1.2143		1
Beck, Sp. Gr. Sp. Gr	9₹89•1	1.81 2	99	1.205 T	1.545	67
Beck, Sp. Gr. Sp. Gr	0619.1	€64•I	99	746I·I	7.532	82
Beok. Sp. dr	8E09·I	144.1	₹9	8881.1	1.225	42
Beok. Sp. Gr	I • \$888	094.I	E9	9081.1	312.I	92
Beck., Sp. dr.	I749.I	1.729	79	₹241.1	1.502	22
Beck., Sp. dr.	9699·I	604 · I	19	1.1644	961 · I	5₹
Sech. Sp. 17 Sech. Sech. Sp. 48 Sp. 18 Sech. Sp. 17 Sech.	1.2424	069·I	09	1.1265	1.182	23
Sech. Sp. 17 Sech. Sech. Sp. 48 Sp. 18 Sp. 19 Sech.	1.6315	149.1	69	9871.1	941.1	22
Bech. Sp. I Sp.	6419·I	1.653	8 9	60†I·I	991.1	12
Beck. Sp. dr. Sp. dr. Beck. Sp. dr. Sp	1-2044	₹89·I	49	EEE1.1	49T · T	02
Beck. Sp. Gr. Sp. Gr. Beck. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Beck. Sp. Gr. Sp.	1.4912	919.1	99	1.1258	47 I · I	61
Bech., Bech., Sp. dr., Beck., Sp. dr., Sp. dr., Sp. dr., Beck., B	£844.I	969.I	99	₹8II.I	I-138	81
Bech., Beck., 1 1000 1 000 1 0 10 10 10 10 10 10 10 1	999 ₹• T	849.I	₹9	TITT.	1.130	4T
Bech., Beck., 1 1000 1 000 1 37 1 5167 1 1000 1 000 1 01 01 01 01 01 01 01 01	1.4530	1.262	23	680I·I	121.1	91
Beck, Beck, Bp. Gr. Beck, Beck, Bp. Gr. Beck, Be	40**·I	97g.I	23	8960 · I	1.113	12
Bech, Beck, Bp. Gr. Beck, Beck		1.531	19	4680·I	₹01.I	₹T
Bech., Beck., Be	491 ₹ •1	1.212	90	1.0828	960·T	13
Bech., Bp. Gr., Bech., Bech., Sp. Gr., Sp. Gr., Sp. Gr., Bech., B	1.4050		6₹	6940·T	880·I	12
Bech., Bp. Gr., Beck., Sp. Gr., Beck., Sp. Gr., Sp. Gr., Beck., Sp. Gr., Beck., Sp. Gr., Beck., Sp. Gr				Z690·I	1.080	TT
Beck, Beck, Bp. Gr. Beck, Beck, Bp. Gr. Beck, Be	1		•	1:0625	740•T	OI.
Beumé, Beck, Sp. Gr. Sp. Gr. Beck, Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Beck,	1			1.0259	₹90·I	
Beck, Beck, Sp. Gr. Sp. Gr. Beck, Sp. Gr. Sp. Gr. Sp. Gr. 1 1000 1 000 37 1 356 1 358 1 3188		1		₹6₹0•I	490 · I	
Beumé, Beck, Sp. Gr. Sp. Gr. Beck, Sp. Gr. Sp. Gr. Sp. Gr. 1 1028 1.0241 41 1.019 39 1.349 1.378 1.3178 1 1028 1.0241 41 1.349 1.357 1.378 1 1028 1.0241 41 1.349 1.388 1.3178 2 1.000 1.000 37 1.349 1.2582 1 1028 1.0241 41 1.349 1.3878 1.3178 2 1.000 1.000 37 1.349 1.2582 3 1.000 1.000 37 1.349 1.3878 1.3178 4 1.028 1.0241 41 1.318 1.3178 5 1.028 1.0241 41 1.318 1.3178	1	1	1	1		
Beumé, Beck, Sp. Gr. Sp. Gr. Beck, Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. 1 · 000 1 · 000 37 1 · 357 1 · 25879 2 1 · 000 1 · 000 38 1 · 349 1 · 2879 2 1 · 2879 2 1 · 000 1 · 000 38 1 · 349 1 · 2879 38 1 · 349 1 · 2879 38 1 · 000	t				· ·	
Beumé, Beck. Sp. Gr. Sp. Gr. Beck. Sp. Gr. Beck. Sp. Gr. Beck. Sp. Gr. Beck. Sp. Gr. Beck. Sp. Gr.	I			1		
Beumé, Beck. Sp. Gr. Sp. Gr. Sp. Gr. Beck. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. Sp. Gr. 1 · 000 1 · 000 37 1 · 2782 1 · 2879 1 · 014 1 · 019 39 1 · 349 1 · 2879 2 · 1 · 014 1 · 019 39 1 · 361 1 · 2879 3 · 1 · 014 1 · 019 39 1 · 361 1 · 2879 4 · 1 · 010 1 · 0119 39 1 · 361 1 · 2879 5 · 1 · 014 1 · 0119 39 1 · 361 1 · 2879 7 · 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 8 · 1 · 014 1 · 016 1 · 010 1 · 010 1 · 010 9 · 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 010 1 · 0	3	1 1		1		
Baumé, Bp. Gr. Sp. Gr. Beck. Sp. Gr. S		, ·		1		
Baumé, Beck. Sp. Gr. Sp. Gr. Beck. Sp. Gr. Sp. Gr. Beck. Sp. Gr. Sp. Gr.		5 1		1 1	· ·	
Beumé, Bp. Gr. Sp. Gr. Beck. Sp. Gr. Sp. Gr.		1		I I		
Baumé, Baumé,	784Z•I	48E • I	<u> 48</u>	1.000	1.000	0
	Sp. Gr.	Sp. Gr.	Beck.	Sp. Gr.	Sp. Gr.	
	Веск.	Bsum6:		Beck.	Baumé.	

Table showing Comparison of Degrees—continued. B.—For Liquids heavier than Water.

WEIGHT OF ONE C. C. OF AIR AT DIFFERENT TEMPERATURES, FROM 0° C. TO 300° C. AT 760 MM.

Temp. C.	Grams.	Temp. C.	Grams.	Temp. C.	Grams.	Temp. C.	Grams.
0	•001293	38	·001134	76	•001011	114	.000911
1	•001288	39	.001131	77	.001008	115	.000909
2	.001284	40	.001128	78	.001005	116	.000907
3	.001279	41	.001124	79	.001002	117	000905
4	.001275	42	.001121	80	.001000	118	•000903
5	.001270	43	.001118	81	1000997	119	.000900
6	.001266	44	.001114	82	*000994	120	•000898
7	.001261	45	•001111	83	.000992	121	•000896
8	.001257	46	•001108	84	· 000989	122	.000894
9	.001252	47	.001105	8 5	.000986	123	.000891
10	.001248	48.	.001102	86	·000983	124	•000889
11	.001243	49	•001098	87	.000980	125	.000887
12	.001239	50	.001095	88	.000977	126	·000884
13	.001234	51	001091	89	.000974	127	·000882
14	.001230	52	•001088	90	•000972	128	•000880
15	.001225	53	•001084	91	•000969	129	•000878
16	.001221	54	.001081	92	.000967	130	•000876
17	.001217	55	.001077	93	•000964	131	000874
18	•001213	56	001074	94	.000962	132	-000871!
19	.001209	57	•001070	95	.000959	133	•000869
20	.001205	58	•001067	96	•000956	134	•000867
21	.001201	59	.001063	97	•000953	135	·000865 }
22	•001197	60	•001060	98	.000951	136	•000863
23	•001193	61	.001057	99	.000948	137	.000860
24	•001189	62	.001053	100	•000946	138	•000858
25	.001185	63	.001050	101	•000943	139	•000856
26	•001181	64	.001047	102	.000941	140	.000854
27	•001177	65	'001044	103	•000938	141	•000852
2 8	.001173	66	.001041	104	•000936	142	•000850
29	•001169	67	.001038	105	•000933	143	•000848
30	001165	68	.001035	106	.000931	144	*000846
31	.001161	69	•001032	107	•000928	145	000844
32	.001157	70	.001029	108	•000926	146	.000842
33	.001154	71	•001026,.	109	.000923	147	.000840
34	.001150	72	•001023	110	.000921	148	.000838
35	•001146	73	001020	111	.000919	149	•000836
36	.001142	74	•001017	112	.000916	150	.000834
37	•001138	75	•001014	113	•000914	151	•000832

WEIGHT OF ONE C. C. OF AIR, &C.—continued.

i		i	11	_	1	·		
į							E94000 ·	681
	919000.	300	899000.	897	902000.	977	994000	881
ı	419000.	667	699000	797	804000	225	494000	48T
	819000.	867	099000	192	604000	224	694000	981
1	619000.	467	299000	097	014000	223	044000	981
1	079000.	967	£99000·	697	214000	222	744000.	₹8I
ı	129000.	967	₹99000•	897	£14000.	221	₹44000.	E81
	229000.	₹67	999000	497	914000	220	944000.	281
-	.000623	293	999000	256	914000	219	444000.	181
1	₹79000•	767	899000	255	814000	812	644000	081
	929000.	167	699000	₹97	614000	412	184000	641
	979000.	067	049000	253	127000	216	784000	841
	429000.	687	749000	252	224000.	215	₹84000.	44T
ı	829000.	882	E49000 ·	192	₹74000•	214	984000	941
1	679000.	487	₩ ₹49000•	250	974000	213	884000	941
1	069000.	987	949000	6₹8	424000	212	684000	741
1	1E9000.	285	449000	877	874000	III	164000	84I
	• 000633	₽87	849000	478	084000.	210	864000	271
1	₽ 89000⋅	283	649000	246	184000.	602	₹64000•	TAT
}	• 000635	787	I89000.	245	£84000·	802	964000	041
Į	989000.	182	289000	344	₹84000.	402	864000	691
Į	8 £ 9000•	082	£89000 ·	243	984000.	902	008000	891
1	6E9000·	642	989000	242	484000	202	208000	491
Ì	0₹9000•	848	989000	177	684000	₹0₹	₹08000•	991
	I₱9000.	442	889000.	240	074000	203	908000	991
8	Z†9000·	942	689000.	682	€₹4000•	202	408000.	₹91
	£49000.	948	069000.	882	₱₱4000•	102	608000	E91
	₱₱9000•	747	169000.	462	974000	200	118000.	291
Ĭ	979000·	847	269000.	536	8₹4000•	66T	£18000.	191
	919000	747	₱69000 •	235	6 7 4000.	861	918000.	091
	879000	172	969000.	73₹	194000.	461	418000.	691
	099000.	072	469000.	233	794000.	961	618000.	128
	199000	697	869000.	232	₱94000•	961	128000.	491
	799000	897	669000.	73T	994000.	₹6I	228000.	991
C)	.000623	49%	104000	230	494000	193	₹28000.	122
	₹9000•	997	204000	529	894000.	761	978000	79I
	999000	997	£04000•	228	094000.	161	828000.	123
	499000	797	904000•	722	294000•	06T	088000	122
	Grams.	Temp.	Grams.	Temp. C,	Grams.	Temp. O.	Grams.	Temp. C.
į						. [

Table for the Calculation of $\left(\frac{1}{1+00367 \text{ T}}\right)$.

		1	1	11	1				
Т.		T.		Т.		T.		T.	
1	•99634	31	89785	61	·81708	91	•74964	101	- 60040
2	99271	32	89490	62	*81464	92	14904	<i>(</i>)	69249
3	98911	33	89197	63	81221		•74554	I i	
4	98553	34	88906	64	80979	94		1	
5	98198	35	88617	65	80740		·74148	124	
6	97845	36	88330	66	80501	96	.73947	$\begin{array}{ c c }\hline 125\\126\\\end{array}$	
7	•97495	37	*88044	67	80264	97	.73747	$\begin{array}{c c} 120 \\ 127 \end{array}$	
8	97148	38	87761	68	*80028		.73548	128	·68209
9	96803	39	87479	69	.79794			129	
10	96460	40	87199	70	.79561	100	·73153	130	·67869 ·67700
11	96120	41	86921	71			72957	131	67532
12	95782	42	*86645	72	- 1		$\begin{array}{c} \textbf{72762} \\ \end{array}$	132	67365
13	•95446	43	*86370	73			72568	133	67199
14	95113	44	*86097	74			·72376	134	67034
15	94782	45	*85826	75			·72184	135	66870
16	94454	46	*85556	76		106	71993	136	66706
17	•94127	47	*85289	77		107	71803	137	·66543
18	93803	48	*85022	78	•77745	108	71615	138	66380
19	•93482	49	84758	79			71427	139	66219
20	•93162	50	84495	80			71240	1 1	·66059
21	•92844	51	*84234	81	•77085		71055	141	65899
22	•92529	52	*83974	82				142	65740
23	92216	53	83716	83			70686	1 1	65582
24	•91905	54	*83460	84	1.4	114			•65424
25	•91596	55	*83205	85			70321	145	65268
26	·912s9	56	*82952	86			70140	1 1	65112
27	•90984	57	82700	87	11		69960	1 1	•64957
2 8	•90682	58	*82450	88	1 7	,	69781	1	64802
29	•90381	59	*82201	89	. 1		69603		64648
30	90082	60	81954	90			_ 11	1	64495
						- 1			7.200
			THE RESERVE	-		-			

TABLE SHOWING THE SPECIFIC GRAVITY OF SOME COMMON SUBSTANCES.

TABLE SHOWING THE DEUSITY OF WATER AT ORDIVARY TEMPERATURE.

	A CONTRACTOR OF THE PERSON NAMED IN				
		Ł ₹0866•	12	<i>L</i> ₹ 2 666•	10
099896	001	$697866 \cdot$	07	₹8666	6
994966	30	097866	$6I^{\parallel}$	988666	8
I90966	67	1 9866 ⋅	81	886666	L
188966	87	1₹8866 •	21	046666	9.
809966	22	500666.	91	066666	Ç
998966	97	091666	GI	000000 · I	₹
021766	52	667666	₹I	166666	8
198166	5₹	087666	13	696666	7
109466	53	6¥9666·	12	876666	I
978766	55°C	29666	II.C.	148666.	O _O C
Density.	Temp.	Density.	Temp.	Density.	.qm9T

-	18	3	1				(CI	(E	M.	IS	TS	3	P(ÓC	K	E	r -	BC	0	K.					
" " potassium	y, ,, lead	Lodide of silver	Ferrocyanide of potassium	" " potassium	Chromate of lead	" " sodium	" " potassium	" mercuricum	" " mercurosum	,, ,, calcium (crys.)	,, ,, calcium (fus.)	" " barium (crys.)	,, silver	Chloride of ammonium	Chlorate of potassium	" " sodium (crys.)	" " potassium	" " lead	Carbonate of barium	of petassium	Bromide of silver	Borax (cryst.)	Bichromate of potassium	,, (ammonium)	Alum (potassium)	Provide Autority
3.66	6.38	5.61	1.83	2.64	6.1	2.16	1.95	5.42	7.0	1.61	2.21	3.05	or or	1.5	2.35	1.45	2.27	6.4	4.3	2.42	6.35	1.69	2.60	1.63	1.73	Specific Gravity.
" mercury	ferrosum	stannicum	" " stannosum	" " cupricum	" silver	Sulphide of antimony	" " " zinc (crys.)	" sodium (crys.)	,, potussium	", ", magnesium	" " iron	" copper (crys.)	" " calcium (gyp.)	Sulphate of barium	" , ammonium	" sodium (crys.)	Phosphate of calcium	" " potassium (acid)	", ", lead	Oxalate of silver	" strontium	" sodium	", ", potassium	" " barium	Nitrate of silver	
8.13	4.4	4.6	4.97	4.16	6.85	4.62	2.04	1.5	2.66	1.75	1.97	2.3	2.33	4.5	1.5	1.52	3.18	3.06	6.38	5.61	2.8	2.26	$2 \cdot 12$	3.2	4.36	Specific Gravity.

OTTO'S TABLE OF THE STRENGTH OF SULPHURIC ACID (OIL OF VITRIOL) OF DIFFERENT DENSITIES AT THE TEMPERATURE OF 15° C.

£9·1₹	0807·I	13	₹0.79	0989·I	94
42.45	0817·I	23	98.79	0869 · I	LL
97.84	1.4280	23	29.89	00IL·I	84
20·##	0887 ⋅ 1	₽Ĝ	81.19	I · 7220	62
68·++	0877·I	$\mathbf{c}\mathbf{c}$	08.39	1.7340	08
17.34	9897·I	$\tilde{9}$	71.99	09+L·I	18
46.23	069₹•1	Žĝ	₹6.99	099L·I	78
₹8.2₹	008 ₹ ·I	89	92.29	029Z·I	83
91.87	006 ₹· I	$\tilde{69}$	LG . 89	$0LLL \cdot I$	₹8
86.87	1.5010	$0\overline{9}$	88.69	0984·I	ç 8
64·67	1.2120	19	01.04	0₹64·I	98
19.09	I · 2530	79	20.17	I · 8050	<i>L</i> 8
21.42	1.2340	89	71.83	0608·I	88
22.2₫	0979 · I	₹9	99.77	0918·I	68
23.02	0299 · I	9	74·87.	1.8550	06
28.89	0989 · I	99	82.77	1.8270	16
69.79	1.5800	L 9	01.94	0188·I	76
69.99	076G · I	89	16.92	1 ⋅ 83 ₹0	63
26.32	0709·I	69	87.97	9988·I	Ŧ6
71.LG	0919·I	04	99.22	9788·I	9 6
96·49	1 · 6270	IL	98.87	₹888•I	96
LL 89	0689·I	7 <i>L</i>	81.64	00₹8·I	<i>L</i> 6
69.69	0199.1	82	00.08	90₹8·I	86
07.09	1.6630	<i>₹L</i>	18.08	1.8420	66
$22 \cdot 19$	0949·I	92	89 · 18	92 1 8·I	100
·s ^{OS 10}	Gravity.	·\$OS2H	·sOS lo	Gravity.	·\$OSgH
Per cent.	Specific	to	Per cent.	Specific	10 IO
	J. 2. D	Per cent.	' •		Per cent.
<u> </u>		<u> </u>	[1	<u> </u>	<u> </u>

OTTO'S TABLE OF STRENGTH OF SULPHURIC ACID OF DIFFERENT DENSITIES—continued.

Per cent.		,	Per cent.	~	
of	Specific	Per cent.	of	Specific	Per cent.
H_2SO_4 .	Gravity.	of SO_3 .	H ₂ SO ₄ .	Gravity.	of SO ₃ .
			\ <u></u>		
50	1.3980	40.81	25	1.1820	20.40
49	1.3866	40.00	24	1.1740	19.58
48	1.3790	39.18	23	1.1670	18.77
47	1.3700	38.36	22	1.1590	17.95
$\overline{46}$	1.3610	37.55	21	1.1516	17.14
45	1.3510	36.73	20	1.1440	$16 \cdot 32$
44	1.3420	35.82	19	1.1360	15.51
43	1.3330	35.10	18	1.1290	14.69
42	$\overline{1} \cdot 3240$	34.28	17	1.1210	13.87
41	1.3150	33.47	16	1.1136	13.06
40	1.3060	32.65	15	1.1060	$12 \cdot 24$
39	1.2976	31.83	14	1.0 980	11.42
38	1.2890	31.02	13	1.0910	10.61
37	1.2810	$30 \cdot 20$	12	1.0830	9.790
36	1.2720	29.38	11	1.0756	8.980
35	1.2640	28.57	10	1.0680	8.160
34	$\frac{1}{1} \cdot 2560$	$27 \cdot 75$	$\parallel 9$	1.0610	7.340
33	1.2476	26.94	8	1.0536	6.530
32	1.2390	26.12	7	1.0464	5.710
31	1.2310	$25 \cdot 30$	6	1.0390	4.890
30	1.2230	24.49	5	1.0320	4.080
29	1.2150	23.67	4	1.0256	$3 \cdot 260$
$\frac{28}{28}$	1.2066	22.85	3	1.0190	2.445
$\overline{27}$	1.1980	$22 \cdot 03$	2	1.0130	1.630
$-\overline{26}$	1.1900	$21 \cdot 22$	1	1.0064	0.816
					-

Anthon's Table by which to prepare Sulphuric Acid (Oil of Vitriol) of any Strength by mixing the Acid of 1.86 Specific Gravity with Water.

_	البرون والمترون ويوالين ويوالين والمتراوية		أث المتابة الطفات من في المداد المشار البراني	_	
		614.1	360	1.438	150
784·I	009	₹14·I	320	1.420	011
084·I	069	014.1	340	86E•I	001
844•I	088	904.1	330	1.386	9 6
444·T	099	004 · T	350	278-1	06
944·I	220	689·I	310	498•T	8 8
₹44·I	079	849·T	300	1.340	0 8
744-I	230	499·T	06Z .	1.336	94
044-T	220	₹99·I	082	1.312	04
894·I	919	879·I	048	46Z•I	99
994·I	200	0₹9•1	. 092	1.280	09
£94∙I	06₱	1.630	220	1.265	22
094.1	08₱	1.620	2₹0	877.1	20
494•I	04₹	909.1	230	1.539	97
₹94•I	09₹	E69.I	220	1.210	0 7
094·I	09₹	1.580	210	481.1	32
974·I	0 ታታ	899-1	200	991.1	98
ε₹4•I	₹30	1.226	06I	0 71.1	3 2
0 74 · I	0ZÞ	1.243	180	1.113	02
484·I	017	1.230	04T	060.I	12
EE4.1	007	1.210	091	090·I	10
084•I	990	06₹•1	120	1.032	g
424 · I	380	£4₹•I	7₹0	910·I	7
1.723	048	997.1	130	600·I	I
Give an Give an Specific Gravity.	100 parts of Water at 150 to 200 being mixed with parts of Sulphuric Acid of I 86 sp. gr.	Give an Give an Specific Gravity.	100 parts of to Tat 150 to Water at 150 200 200 being mixed with parts of Sulphuric Acid Sulphuric Acid of 1 86 ap. gr.	Give an Acid of Specific Gravity.	100 parts of Water at 15° to 20° being mixed with parts of Sulphuric Acid Sulphuric Acid of 1.86 sp. gr.

TABLE SHOWING THE STRENGTH OF NITRIC ACID (AQUA-FORTIS) (HNO₃) BY SPECIFIC GRAVITY.

	·	[]			
	Specific	Specific		Specific	Specific
Per cent.	Gravity.	Gravity.	Per cent.	Gravity.	Gravity.
	At 0° Č.	At 15° C.		At 0° Č.	At 15° C.
100.00	1.559	1.530	67.00	1.430	1.410
99.84	1.559	1.530	66.00	1.425	1.405
99.72	1.558	1.530	65.07	1.420	1.400
99.52	1.557	1.529	64.00	1.415	1.395
97.89	1.551	1.523	63.59	1.413	1.393
97.100	1	1.520	62.00	1.404	1.386
96.00	1.544	1.516	61.21	1.400	1.381
95.27	1.542	1.514	60.00	1.393	1.374
94.00	1.537	1.509	59.59	1.391	1.372
93.01	1.533	1.506	58.88	1.387	1.368
92.00	1.529	1.503	58.00	1.382	1.363
91.00	1.526	1.499	57.00	1.376	1.358
90.00	1.522	1.495	56.10	1.371	1.353
89.56	1.521	1.494	55.00	1.365	1.346
88.00	1.514	1.488	54.00	1.359	1.341
87.45	1.513	1.486	53.81	1.358	1.339
86.17	1.507	1.482	53.00	1.353	1.335
85.00	1.503	1.478	52.33	1.349	1.331
84.00	1.499	1.474	50.99	1.341	1.323
83.00	1.495	1.470	49.97	1.334	1.317
82.00	1.492	1.467	49.00.	1.328	1.312
80.96	1.488	1.463	48.00	1.321	1.304
80.00	1.484	1.460	47.18	1.315	1.298
79.00	1.481	1.456	46.64	1.312	1.295
77.66	1.476	1.451	45.00	1.300	1.284
76.00	1.469	1.445	43.53	1.291	1.274
75.00	1.465	1.442	42.00	1.280	1:264
74.01	1.462	1.438	41.00	1.274	1.257
73.00	1.457	1.435	40.00	1.267	1.251
72.39	1.455	1.432	39.00	1.260	1.244
71.24	1.450	1.429	37.95	1.253	1.237
69.96	1.444	1.423	36.00	1.248	1.225
69.20	1.441	1.419	35.00	1.234	1.218
68.00	l l	1.414	33.86	1.226	1.211
7					

Table showing the Strength of Mitric Acid (HMO3) by Specific Gravity—continued.

000.I 010.I 770.I 970.I 490.I 440.I 680.I 901.I	000.I 970.I 970.I 940.I 980.I 980.I 981.I	00.0 00.7 00.4 1.41 00.51 00.31 74.41	071.1 881.1 491.1 991.1 741.1 981.1 761.1	ZEI.I EGI.I 14I.I 08I.I 48I.I 76I.I 00Z.I 40Z.I 71Z.I	30.00 30.00 30.00 28.00 28.00 28.00 29.00 30.00 30.00
Specific Gravity. At 150 C,	Specific Gravity, O O 14	Per cent.	Specific, Gravity, Gravity, At 150 C,	Specific Gravity, At 0° C,	Per cent.

Table showing the Strength of Solutions of Oxalic Acid by Specific Gravity at 17.5° C.

4020 · I 9220 · I 1700 · I 1700 · I 9200 · I 9200 · I	2I 0I 6 8 2	2800 · I 4000 · I 8210 · I 8210 · I 8210 · I	1 8 4 5 6
Specific Gravity.	Per cent. $\mathrm{C}_{2}\mathrm{H}_{2}\mathrm{O}_{4},$ $\mathrm{2}\mathrm{H}_{2}\mathrm{O}_{.}$	Specific Gravity.	Per cent. $C_2H_2O_4$, $2H_2O_4$.

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF NITRIC ACID (AQUA-FORTIS) BY SPECIFIC GRAVITY.

1					
Specific Gravity.	Liquid Acid (sp.gr.1·5) in 100 parts.	Dry Acid in 100 parts.	Specific Gravity.	Liquid Acid (sp.gr.1·5) in 100 parts.	Dry Acid in 100 parts.
1.5000	100	79.700	1.4189	75	59.775
1.4980	99	78.903	1.4147	74	58.978
1.4960	98	$ 78 \cdot 106 $	1.4107	73	58 · 181
1.4940	97	$ 77 \cdot 309 $	1.4065	72	57.384
1.4910	96	$76 \cdot 512$	1.4023	$7\overline{1}$	56.557
1.4880	95	$75 \cdot 715$	1.3978	$\overline{70}$	55.790
1.4850	94	74.918	1.3945	69	54.993
1.4820	93	$74 \cdot 121$	1.3882	68	$54 \cdot 196$
1.4790	92	$73 \cdot 324$	1.3833	67	53 · 339
1.4760	91	$72 \cdot 527$	1.3783	66	$52 \cdot 602$
1.4730	90	71.730	1.3732	65	51.805
1.4700	89	70.933	1.3681	64	51.068
1.4670	88	$70 \cdot 136$	1.3630	63	50.211
1.4640	87	$69 \cdot 339$	1.3579	62	49.414
1.4600	86	68.542	1.3529	61	48.617
1.4570	85	67.745	1.3477	60	47.820
1.4530	84	66.948	1.3427	59	$47 \cdot 023$
1.4500	83	$66 \cdot 155$	1.3376	58	46.226
1.4460	82	$ 65 \cdot 354 $	1.3323	57	$45 \cdot 429$
1.4424	81	$ 64\cdot557 $	1.3270	56	44.632
1.4385	80	$ 63\cdot760 $	1.3216	55	43.836
1.4346	79	$62 \cdot 963$	1.3163	54	43.038
1.4306	78	$ 62\cdot 166 $	1.3110	53	$42 \cdot 241$
1.4269	77	$ 61\cdot 369 $	1.3056	52	$41 \cdot 444$
1.4228	76	$ 60\cdot572 $	1.3001	51	40.647

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF MITRIC ACID—continued.

262.0	Ι	I · 0023	20.722	97	19 ₹ I • I
769 · I	7	90I0·I	716.12	22	9191.1
168.2	8	6910·I	22.316	82	1.1587
8.138	₽	1.0212	23.113	67	8 1 91·1
3.985	\mathbf{g}	1 · 0567	006.82	30	60LI · I
787.₽	9	I · 0350	707·42	18	$02L\mathbf{I} \cdot \mathbf{I}$
629.9	L	1.0375	52.20f	38	I 1833
948.9	8	I · 0430	108.97	33	968I · I
871.7	6	1.0485	860 - 27	₽8	8961.1
$0.26 \cdot L$	10	0790·I	268 - 72	98	6107·I
<i>L</i> 9 <i>L</i> · 8	11	$9690 \cdot 1$	769.87	98	₹802·I
₹99.6	12	1990.1	687.67	28	1.2148
898·01	13	8040·I	982.08	88	1.2212
891.11	₹I	₹940·I	880 · 18	68	1.2277
996·11	gI	1380·1	988.18	0₽	1.2341
12.752	91	8480 · I	778-58	I₽	I · 2402
646.8I	LI	1 · 0932	33.474	7₽	I · 5462
9₽8.₽1	8I	8660·I	172·48	43	I • 5523
841.GI	61	1901-1	$890 \cdot 98$	₹₹	1.2583
12.940	50	6011·I	398.38	₽₽	1.2644
787.91	12	8911.1	86.662	9₹	I . 2705
17-534	77	1.1227	697·78	$L \mathfrak{F}$	3972·I
188.81	23	1.1286	98.598	8₹	1.2826
19.128	7₹	948I•I	89 · 68	6₹	1.2887
19.925	25	I.1403	098.68	03	7+62·1
	parts.			parts.	
airsq 001	001 ni	Gravity.	100 parts.	001 ni	Gravity.
nion Cici	(3.1.13.qs)	Specific	nion (10	(d'1.18.qs)	Specific
Dry Acid	binpid bioA		Dry Acid	biupiJ bibA	
	E arrow: I			F;~; 1	
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	····	

TABLE SHOWING THE STRENGTH OF HYDROCHLORIC ACID (SPIRIT OF SALT) BY SPECIFIC GRAVITY.

Specific Gravity	Per cent. of HCl.	Per cent. of Acid of 1 · 20 sp. gr.	Specific Gravity.	Per cent. of HCl.	Per cent. of Acid of 1.20 sp. gr.
1·2000 1·1982 1·1964 1·1946 1·1928 1·1910 1·1893 1·1875 1·1857 1·1846 1·1822 1·1762 1·1762 1·1762 1·1761 1·1681 1·1641 1·1641 1·1641 1·1659 1·1578 1·1578	40·777 40·369 39·961 39·554 39·146 38·738 38·330 37·923 37·516 37·108 36·292 35·884 35·476 35·476 34·660 34·252 33·845 33·437 33·029 32·621 32·213 31·805 31·398		1·1515 1·1494 1·1473 1·1452 1·1431 1·1410 1·1389 1·1369 1·1328 1·1328 1·1267 1·1247 1·1247 1·1246 1·1164 1·1164 1·1143 1·1102 1·1082 1·1061 1·1041 1·1041 1·1020	30·582 30·174 29·767 29·359 28·951 28·544 28·136 27·728 27·321 26·913 26·505 26·690 25·282 24·847 24·466 24·058 23·650 23·242 22·834 22·426 22·019 21·611 21·203 20·796	58 57 56 55 54 53 52
1.1536	30.990	76	I IUAU	20 700	

TABLE SHOWING THE STRENGTH OF HYDROCHLORIO ACID (SPIRIT OF SALT)—continued.

F		·	1		
l	80₹・	1 · 0020	97	709·01	2190·I
2	918.	0500·I 0₹00·I	72	010.11	7530.I
8	1.224	0900·I	87	814.11	2690.1 2690.1
7	189·1	0800 · I	67		L490.1
1 '			ł I	978·11	
g	680.7	0010.1	98	12.233	2690 I
9	744.2	I · 0120	18	12.641	7130 · I
<i>L</i>	₹98.7	0710.1	35	13.049	7680 I
8	3.262	09I0·I	33	13·428	∠ 990 · I
6	079.8	08I0·I	34	13.863	LL90 · I
10	840.7	$1.020 \cdot I$	32	14.271	∠690 · I
II	98₹•₹	1.0220	98	649·7I	8170·I
12	€68.4	I · 0539	78	L80.GI	8870·I
13	108·3	1.0529	88	₹6₹·GI	8940·I
ħΙ	604.9	6720 · I	89	706·91	8770 · I
gī	911.9	8620 · I	0₹	16.310	8640·I
91	₽79.9	1.0318	ΙĐ	814.91	8180 1
LI	6.932	1.0337	45	17.126	1.0838
8I	0₹8.7	7680 · I	€₽	17·534	6980 · I
61	L7L.L	1.0377	₽ ₽	I76.71	6280 · T
50	8.122	1.0397	g₹	18.349	6680·I
12	8.263	2170·I	9₹	18.757	6160·I
22	176.8	78£0∙1	L₹	991.6I	6860 · I
23	678.6	1940 · I	8₹	749·61	0960·I
5₫	984.6	4470 · I	6₹	$086 \cdot 61$	0860 · I
25	₹6I·0I	Z6₹0·I	20	888.02	000T · T
sp. gr.		1	sp. gr.		
of 1.20	of HCl.	Gravity.	02.1 to	ot HCI.	Gravity.
bioA To	Per cent.	Specific	bioA to	Per cent.	Specific
Per cent.		ı	Per cent.		
			<u> </u>		

OUDEMANN'S TABLE, SHOWING THE STRENGTH OF SOLUTIONS OF ACETIC ACID (VINEGAR) BY SPECIFIC GRAVITY.

				*******	<u> </u>
Acetic Acid,	Den	sity.	Acetic Acid,	Den	sit y.
C ₂ H ₄ O ₂ , per cent.	15° C.	40° C.	C ₂ H ₄ O ₂ , per cent.	15° C.	40° Ü.
1	1.0007	0.9936	26	1.0363	1.0217
2	1.0022	0.9948	27	1.0375	1.0227
3	1.0037	0.9960	28	1.0388	1.0236
4	1.0052	0.9972	29	1.0400	1.0246
5	1.0067	0.9984	30	1.0412	1.0255
6	1.0083	0.9996	31	1.0424	1.0264
7	1.0098	1.0008	32	1.0436	1.0274
8	1.0113	1.0020	33	1.0447	1.0283
9	1.0127	1.0032	34	1.0459	1.0291
10	1.0142	1.0044	35	1.0470	1.0300
11	1.0157	1.0056	36	1.0481	1.0308
12	1.0171	1.0067	37	1.0492	1.0316
13	1.0185	1.0079	38	1.0502	1.0324
14	1.0200	1.0090	39	1.0513	1.0332
15	1.0214	1.0101	40	1.0523	1.0340
16	1.0228	1.0112	41	1.0533	1.0348
17	1.0242	1.0123	$\frac{1}{42}$	1.0543	1.0355
18	1.0256	1.0134	$4\overline{3}$	1.0552	1.0363
19	1.0270	1.0144	44	1.0562	1.0370
20	1.0284	1.0155	45	1.0571	1.0377
21	1.0298	1.0166	46	1.0580	1.0384
$2\overline{2}$	1.0311	1.0176	47	1.0589	1.0391
$\overline{23}$	1.0324	1.0187	48	1.0598	1.0397
$\frac{1}{24}$	1.0337	1.0197	49	1.0607	1.0404
25	1.0350	1.0207	50	1.0615	1.0410
				_ 0010	1
					<u>\$</u>

OUDEMANN'S TABLE, SHOWING THE STRENGTH OF SOLUTIONS OF ACETIC ACID—continued.

	;		,		1		
1.0273	1.0223	001	1020.1	91/0·I	GL		
1080.1	0890·I	66	0090·I	₹₹40·I	₹ <u>Z</u>		
1.0327	7090·I	86	6670·I	7+70-1	87		
0320 I	3290 · I	26	86 1 0 · I	0740·I	77		
0280 · I	₱₱90 · I	96	∠6₹0·I	I • 0737	IL		
8880·I	0990·I	9 6	96₹0·I	I · 0733	04		
I · 0403	₹490·I	Ŧ6	£6₹0·I	6270 • 1	69		
9I70·I	$9890 \cdot I$	63	[16 ₹0·1]	I · 0725	89		
1.0428	$9690 \cdot 1$	76	88₽0·I	1.0721	<i>L</i> 9		
1.0438	9070 · I	16	98₹0·I	L170 · I	99		
1.04±0 · I	1.0713	06	28±0·I	1.0712	9 9		
I-0#22	1.0720	68	64₹0·I	L0L0 · I	1 9		
1.0462	1.0726	88	37 <u>4</u> 0⋅I	1.0702	E 9		
69 1 0 · I	1870 · 1	L8	27±0·I	∠690 · I	79		
27±0·1	9840 · I	98	89₹0 • [I690·I	19		
18#0·I	6870 · I	c 8	₹9₹0·I	9890 ⋅ 1	09		
1.0485	2470·I	₩8	09 ₹0 · I	6490·I	69		
68±0·I	₽₽70 · I	83	99₹0·I	8730 · I	89		
1.0492	9740 · I	85	09₹0·I	9990·I	LG.		
\$6₹0·I	7470 · I	I8	9₽₽0·I	$0990 \cdot I$	9c		
16+0·1	8470·1	08	0770·I	I • 0653	gg		
66 † 0·I	8740·I	62	I · 0 #3 #	9 1 90 · I	₹9		
C090 · I	8470.1	84	1.0429	8890 · I	53		
1050·I	8£70·I	LL	I 0423	1890 · 1	22		
1.050.1	7470 · I	94	9140.1	8290 · I	13		
40° C.	TPo G'	per cent.	40° C.	I2º C.	per cent.		
	<u> </u>	$G_2H_4O_2$			CSH4OS,		
Density.		Acetic,	ity.	Dens	Acetic Acid,		
	0,700 V						

Mohr's Table, showing the Strength of Solutions of Acetic Acid (Vinegar) by Specific Gravity.

	···		·	1	
Specific Gravity.	Per cent. of $C_2H_4O_2$.	Specific Gravity.	Per ceut. of $C_2H_4O_2$.	Specific Gravity.	Per cent. of C ₂ H ₄ O ₂ .
1.000	0	1.045	34	1.0700	68
1:000	$\begin{bmatrix} 0 & \cdot \\ 1 & \end{bmatrix}$	1.045	35	1.0700	69
1.001	2	1.040	36	1.0700	70
1.002	3	1.048	37	1.0710	71
1.004	4	1.049	38	1.0710	72
1.0055	5		39	1.0720	73
1.0067	6	1.050 1.0513	40	1.0720	74
1.008	7	1	41	1.0720	75
1.010		1.0515	42	1.0720	76
1.012	8	1.052	1 -	1.0730	77
1.013	9	1.053	43	1.0732	
1.012	10	1.054	44		78
1.016	11	1.055	45	1.0735	79
1.017	12	1.055	46	1.0735	80
1.018	13	1.056	47	1.0732	81
1.020	14	1.058	48	1.0730	82
1.022	15	1.059	49	1.0730	83
1.023	16	1.060	50	1.0730	84
1.024	17	1.061	51	1.0730	85
1.025	18	1.062	52	1.0730	8 6
1.026	19	1.063	53	1.0730	87
1.027	20	1.063	54	1.0730	88
1.029	21	1.064	55	1.0730	89
1.031	22	1.064	56	1.0730	90
1.032	. 23	1.065	57	1.0721	91
1.033	24	1.066	58	1.0716	92
1.034	25	1.066	59	1.0708	93
1.035	26	1.067	60	1.0706	94
1.036	27	1.067	61	1.0700	95
1.038	28	1.067	62	1.0690	96
1.039	29	1.068	63	1.0680	97
1.040	30	1.068	64	1.0670	98
1.041	31	1.068	65	1.0655	99
1.0424	32	1.069	66	1.0635	100
1.044	33	1.069	67		
		- 000			
I	1	1 1	1	1	1

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF PHOSPHORIC ACID BY SPECIFIC GRAVITY AT 15° C.

		COOT TOOL	177 00	COOT
099.81		2684 · I 087		1 1
12.934	-	1084.1.4301		1 1
802.21	89	328 1.4207		1
78₺ · I1	5 LG	£114·1 209	·6I 72	
994.0		2201 · 1 978		· · · · · · · · · · · · · · · · · · ·
0.030	F GG	150 I · 3931		· ·
₹08.68	3 79	424 I 3840		1 '' " '
878.88	23	,0948 · I 869		
758.7	25	1998 1 276	· GI 22	1.1329
971.4	8' IG	8768 1 3573	.GI 15	1
00F-9		9848·I 023	· † I 07	9611.1
749.9	E Company	6688 · I †64	.ei 61	1.1130
876.7	1	E188 · 1 890	81 T3	[9 01.1
4.222	8 LF	7228 · 1 248	12.	1001.1
967.8		816.1.3143)·II 91	I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
$0.49 \cdot 7$	1	6908 · I 068	3.0I G1	I \ \P\$\langle 180 \cdot I \
₹†6·1	8 77	9467 1 791	[₹ [10•]	
812.1		188 I - 5884	$6 \mid 8$	[6740·I
76₹ 0	1	2182.1.2812	2.8 7	[8890·I
994 • 6		1872-1 386	$3 \cdot L \mid 1$	I \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
070.6	₹0 58	1997 1 098	$3 \cdot L \mid 0$	
₹18·8	_	2722 I 488	$3.9 \mid 6$	1.0208
889.4	1 .	8642 · I 808	$8 \cdot 9 \mid 8$	6 7 70·1
798.9	37 28	82 1.2415	$0.9 \mid L$	I · 0390
981.9	36 2	8882 1 99	8.7 9	T · 0383
017.9	i _	30 1 - 5565	$9.8 \mid g$	9720 · I
1 89 1		9812 · 1 70		I · 0220
896.8	- 1	1112.184	3 2.1	₹910·I
282.8		52 I 2036	F · I 7	6010·I
909.7		2961 • 1 97	L. I	₹900·I
$^{5}\mathrm{O}^{2}\mathrm{d}$	$_{ m 40}_{ m 4}{ m PO}_{ m 8}{ m H}_{ m 1}$	o Gravity. o	$^{10}_{4}$ $^{10}_{1}$	Specific Per c
t cent.	Per cent. Pe	nt. Specific I	ent. Per ce	a red affiners
				

Table showing the Strength of Solutions of Tartabi's Acid by Specific Gravity at 15° C.

Specific Gravity.	Per cent. of C ₄ H ₆ O ₆ .	Specific Gravity.	Per cent. of C ₄ H ₆ O ₆ .	Specific Gravity.	Per cent. of C ₄ H ₆ O ₆ .
1.0045	1	1.1020	21	1.2078	40
1.0090	2	1.1072	22	1.2138	41
1.0136	3	1.1124	23	1.2198	42
1.0179	4	1.1175	24	1.2259	43
1.0224	5	1.1227	25	1.2317	44
1.0273	6	1.1282	26	1.2377	45
1.0322	7	1.1338	27	1.2441	46
1.0371	8	1.1393	28	1.2504	47
1.0420	9	1.1449	29	1.2568	48
1.0469	10	1.1505	30	1.2632	49
1.0517	11	1.1560	31	1.2696	50
1.0565	12	1.1615	32	1.2762	51
1.0613	13	1.1670	33	1.2828	52
1.0661	14	1.1726	34	1.2894	53
1.0709	15	1.1781	35	1 2961	54
1.0761	16	1.1840	36	1.3027	55
1.0813	17	1.1900	37	1.3093	56
1.0865	18	1.1959	38	1.3159	57
1.0917	19	1.2019	39	1.3220	57.9
1.0969	20				

Many tables are compared to water at 15° C.; to reduce them so as to compare with water at 4° C. (maximum density), multiply the given densities by .99916. For most purposes, however, the difference may be disregarded.

Table showing the Strength of Solutions of Tannic Acid by Specific Gravity at 15° C.

1			
0.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	1.010.1 1.0192 1.0192 1.0192 1.0193 1.0193 1.0194 1.0194 1.0195 1.0196 1.019	6.5 6.7 6.7 6.7 6.7 6.7 7.7 7.7 8.7 9.7 9.7 9.7 9.7 9.7 9.7 9.7 9	0200 · I 0200 · I 0200 · I 0300 · I 0400 · I 0500 ·
8.2	1 0128	۷٠	1.0028
6 · 7 8 · 7 2 · 7 9 · 7	1.010 1.0108 1.0116	7. 2. I.	1.000°I 1.000°I 1.000°I
Per cent. of Tannic Acid.	Specific Gravity.	Per cent. of Tannic Acid.	Specific Aravity.

Table showing the Quantity of Potassium Oxide, Potassium Hydrate (Caustic Potash), in Solutions at 15° C.

The first part of the Table is Tünnerman's; the second is taken from that constructed by Richter.

<u> </u>				<u> </u>	
Per cent. of K_2O .	Per cent. of KHO.	Specific Gravity.	Per cent. of K_2O .	Per cent. of KHO.	Specific Gravity.
$\begin{array}{c} \text{of } \text{K}_2\text{O}. \\ \hline & \cdot 5658 \\ \textbf{1} \cdot 697 \\ \textbf{2} \cdot 829 \\ \textbf{3} \cdot 961 \\ \textbf{5} \cdot 002 \\ \textbf{6} \cdot 224 \\ \textbf{7} \cdot 355 \\ \textbf{8} \cdot 487 \\ \textbf{9} \cdot 619 \\ \textbf{10} \cdot 750 \\ \textbf{11} \cdot 882 \\ \textbf{13} \cdot 013 \\ \end{array}$	0.738 2.021 3.369 4.717 5.957 7.412 8.760 10.108 11.456 12.803 14.151	1.0050 1.0153 1.0260 1.0369 1.0478 1.0589 1.0703 1.0819 1.1059 1.1182 1.1308	23.764 24.895 26.027 27.158 28.290 29.34 30.74 32.14 33.46 34.74 35.99 37.97	28 303 29 650 30 998 32 345	1·2648 1·2805 1·2966 1·3131 1·3300 1·30 1·32 1·34 1·36 1·38 1·40 1·42
14·145 15·277 16·408	16 · 846 18 · 195 19 · 542	1.1437 1.1568 1.1702	40·17 42·31 44·40	47·84 50·39 52·88	1·44 1·46 1·48
17.540 18.671 19.803	$22 \cdot 237$ $23 \cdot 585$	1.1839 1.1979 1.2122 1.2268	48.46 50.09	55·32 57·71 59·65 61·43	1 · 50 1 · 52 1 · 54 1 · 56
20.935 21.500 22.632	25.606	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	53.06	63.19	1.58

Table showing the Strength of Solutious of Solutions of Solution decipies of Specific Gravity at 15° C.

8\$\(\lambda\)\cdot \I \(\frac{969 \cdot \I}{8\partial \cdot \I}\) \(\frac{169 \cdot \I}{88\partial \cdot \I}\) \(\frac{1}{28\partial \cdot \I}\)	064.I 674.I 499.I 689.I 689.I 944.I III.I	02 99 09 99 97 07	930 · I 911 · I 922 · I 972 · I 972 · I 988 · I	1.036 1.037 1.124 1.126 1.349 1.349	20 30 30 30 30 30 30 30 30 30 30 30 30 30
Specific Gravity, MaHU,	Specific Gravity, KHO.	Per cent,	Specific Gravity, OHM.	Specific Gravity, KHO.	Per cent.

TABLE SHOWING THE QUANTITY OF FUSED POTASSA IN CAUSTIC LYE OF DIFFERENT DENSITIES.

00.0	1.00	98.47	87.1	41.07	77.[
₹.2	Z0.I	₹8.67	1.30	42.31	9₹•1
44.7	₱0• T	₹4.08	1.35	07.77	8 ₹•I
70-4	90.I	37∙I₫	₹8•T	97.97	1.60
07.6	80·T	33.46	1.36	97.87	79•T
11.28	01.1	₹4.₽8	I • 38	60.09	79∙1
44.78	77. I	66.98	07·I	89.19	99·I
₹6.97	1.26	46.48	7₹·I	90.89	1.58
per cent.	Specific Gravity.	K 3O	Specific Gravity.	per cent.	Specific Gravity.

TABLE CONSTRUCTED BY DALTON, CONFIRMED BY MEHRENS, SHOWING THE STRENGTH OF SOLUTIONS OF POTASH.

Specific Gravity.	KHO per cent.	K ₂ O per cent.	Specific Gravity.	KHO per cent.	K ₂ O per cent.
2.4		100.0	1.42	40.97	34.4
2.2	100.5	84.0	1.39	38.59	32.4
2.0	86.22	72.4	1.36	35.01	29.4
1.88	75.74	63.6	1.33	31.32	26.3
1.78	67.65	56.8	1.28	27.87	23.4
1.68	60.98	51.2	1.23	23.22	19.5
1.60	55.62	46.7	1.19	19.29	16.2
1.52	51.09	42.9	1.15	15.48	13.0
1.47	47.16	39.6	1.11	11.31	9.5
1.44	43.83	36.8	1.06	5.59	4.7

RICHTER'S TABLE, SHOWING THE QUANTITY OF SODIUM OXIDE CONTAINED IN LYES OF DIFFERENT DENSITIES.

Specific	Na ₂ O	Specific Gravity.	Na ₂ O	Specific	Na ₂ O
Gravity.	per cent.		per cent.	Gravity.	per cent.
1.00	0:00	1·14	12.81	1·28	26·33
1.02	2:07	1·16	14.73	1·30	28·16
1.04	4:02	1·18	16.73	1·32	29·96
1.06	5:89	1·20	18.71	1·34	31·67
1.08	7:69	1·22	20.66	1·35	32·40
1.10	9:43	1·24	22.58	1·36	33·08
1.12	11:10	1·26	24.47	1·38	34·41

TÜNNERMAN'S TABLE, SHOWING THE QUANTITY OF SODIUM OXIDE IN SOLUTIONS AT 15° C.

	,		
2.18.1 2.18.1 3.18.1 3.18.1 3.28.2 3.48.1 3.48.2 3.48.1 3.48.2	20.220 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200 20.200	1.2392 1.2392 1.2392 1.13428 1.1539 1.153	11.91 106.81
8418·I 8618·I	\$98 · 22	8460·I	8 7 9·9
8762 · I 8772 · I 8772 · I 8772 · I 8772 · I	79:051 18:61 18:41 87:41	1.0546 1.0546 1.0530 1.0506 1.0587	818·I 814·2 814·3 814·3 814·3 8181
Specific Gravity. I.2453 I.2515	Per cent, of Na ₂ O. 15.714 ** 16.319	Specific Gravity. 1.0040 1.0081	Per cent. of Na2O.

DAVY'S TABLE, SHOWING THE STRENGTH OF SOLUTIONS OF AMMONIA.

Specific Gravity.	Per cent. of Ammonia.	Specific Gravity.	Per cent. of Ammonia.	Specific Gravity.	Per cent. of Ammonia.
*8750 *8875 *9000 *9054 *9166 *9255	32·30 29·25 26·00 25·37 22·07 19·54	•9326 •9385 •9435 •9476 •9513	17·52 15·88 14·53 13·46 12·40	•9545 •9573 •9597 •9619 •9692	11:56 10:82 10:17 9:60 9:50

Table showing the Strength of Solutions of Ammonia by Specific Gravity at 14° (?C.).

Specific Gravity.	Per cent. of NH ₃ .	Specific Gravity.	Per cent. of NH ₃ .	Specific Gravity.	$\begin{array}{c} \operatorname{Per cent.} \\ \operatorname{of NH_3.} \end{array}$
•9959	1	•9484	13	•9106	25
·9915 ·9873	$egin{array}{c} 2 \\ 3 \\ \end{array}$	·9449 ·9414	\ \begin{array}{c c} 14 & \\ 15 & \\ \end{array}	9078 9052	26 27
·9831 ·9790	$egin{array}{c} 4 \\ 5 \end{array}$	·9380 ·9347	$egin{array}{c c} 16 \\ 17 \end{array}$	9026 9001	28 29
.9749 .9709	$egin{array}{c} 6 \\ 7 \end{array}$	·9314 ·9283	18 19	·8976 ·8953	30 31
·9670 ·9631	8 9	.9251 .9221	$\begin{array}{ c c } 20 \\ 21 \end{array}$	·8929 ·8907	32 33
·9593 ·9556	10 11	.9191 $.9162$	$egin{array}{c} 22 \ 23 \end{array}$	$.8885 \\ .8864$	34 35
•9520	12	•9133	$\begin{vmatrix} 26 \\ 24 \end{vmatrix}$.8844	36

DALTON'S TABLE, SHOWING THE STRENGTH OF SOLUTIONS OF AMOUIA.

442 118 911 441 118 442 118 948 948 948	961 481 841 971 781 781 011 86 98 74 79 09	6.62 6.62 6.63 6.61 6.61 6.61 6.61 6.61 6.61 6.61	066. 086. 046. 096. 076. 076. 016. 006. 068. 088. 048. 098.
997 767	92	3.68	038•
Volumes of Gas on One Volume of the Solution.	Boiling Point, P. o	Grains of Ammonia in a Hundred of the Liquid.	Specific Gravity.

URE'S TABLE, SHOWING THE STRENGTH OF SOLUTIONS OF

Table showing the Strength of Solutions of Potassium Carbonate by Specific Gravity **ат** 15° С.

Specific Gravity.	Per cent. of K_2CO_3 .	Specific Gravity.	Per cent. of $\mathrm{K}_2\mathrm{CO}_3$.
1.00914	1	1.27893	28
1.01829	$oldsymbol{\hat{2}}$	1.28999	$\frac{1}{29}$
1.02743	3 .	1.30105	$\overline{30}$
1.03658	$f{4}$	1.31261	31
1.04572	$\bar{5}$	1.32417	32
1.05513	6	1.33573	33
1.06454	7	1.34729	34
1.07396	8	1.35885	35
1.08337	9	1.37082	36
1.09278	10	1.38279	37
1.10258	11	1.39476	38
1.11238	$\overline{12}$	1.40673	39
1.12219	13	1.41870	40
1.13199	14	1.43104	41
1.14179	15	1.44338	42
1.15200	16	1.45573	43
$1 \cdot 16222$	17	1.46807	44
$1 \cdot 17243$	18	1.48041	45
1.18265	19	1.49314	46
1.19286	20	1.50588	47
$1 \cdot 20344$	21	1.51861	48
$1 \cdot 21402$	22	1.53135	49
$1 \cdot 22459$	23	1.54408	50
1 23517	24	1.55728	51
1.24575	25	1.57048	52
1.25681	26	1.57079	52.024
1.26787	27		

Table showing the Strength of Solutions or Sodium Carbonate ("Soda") by Specific Gravity at 23° C.

Second S						
	10.00.01 685.03.03.03.03.03.03.03.03.03.03.03.03.03.	01 08 05 05 05 05 05 05 05 05 05 05 05 05 05	1.1035 1.1035 1.1035 1.1540 1.	200 ₂ s ₁ 200 ₂ s ₂ 200 ₂ s ₂ 200 ₂ s ₃ 200 ₂	1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1	Specific diravity. I 1.0036 1.0056 1.
Per cent. Per cent. Per cent. Per cent.		$N_{ m g} { m CO}_{ m g}$		10	$\log_{2} CO_3$	Specific

Table showing the Strength of Solutions of Sodium Sulphate at 19° C.

201				UH	Li D	118	TE		PU	UK	ET	:-B	:OC)K.	
1.0601	$1 \cdot 0560$	•	1.0479	•	1.0398		•	1.0278	•	•	1.0158		$1 \cdot 0079$	1.0040	Specific Gravity.
15	14	13	12	11	10	9	∞	7	6	හැ	4	ပ	2	—	Per cent. of $Na_2SO_4 + 10Aq$.
1 .			5.292	•	•	•			•	•	1.764	1.323	-882	•441	Per cent. of Na ₂ SO ₄ .
1.1226	1.1184	$1 \cdot 1142$	1.1100	1.1057	1.1015	1.0973	1.0931	1.0890	•	•	1.0766	1.0725	1.0683	1.0642	Specific Gravity.
30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	Per cent. of Na ₂ SO ₄ +10Aq.
13.230	12.789	12.348	11.907	11.466	11.025	10.584	10.143	9.702	9.261	8.820	8.379	7.938	7.497	7.056	Per cent. of Na ₂ SO ₄ .

Table showing the Strength of Solutions of Sulphate of Annonium by Specific Gravity at 19° C.

09 0682. 84 9942. 84 9942. 84 9942. 85 253. 86 323. 87 2043. 88 333. 88 323. 88 323. 88 3213. 88 3213. 98 9902.	1 07 07	1.1948 1.1948 1.1821 1.	71 91 91 91 91 91 91 91	2110.1 2080.1 2080.1 2080.1 2080.1 2080.1 2090.1 2090.1 2090.1 2090.1 2090.1 2090.1
98 0902.	centage. G	Specific Gravity. I · 1095 I · 1092	Per- centage. I Z	Specific Gravity. I.0057 I.0115

To find the strength of a solution of glycerine by specific oranity. Let D = observed density.

$$\frac{1266-1000 \, \mathrm{D}}{2\cdot 66} = \text{Percentage of water by measure.}$$

$$\frac{1266-1000 \text{ D}}{2\cdot 66 \times D} = \text{Percentage of water by weight.}$$

Table showing the Strength of Solutions of Magnesium Sulphate (Epsom Salts) by Specific Gravity at 15° C.

	ORAVIII AI	10 0.	
Specific Gravity.	Per cent. of $MgSO_4 + 7Aq$.	Specific Gravity.	Per cent. of $MgSO_4 + 7Aq$.
1.006	•99	1.120	23.07
$1 \cdot 010$	1.96	1.124	$23 \cdot 66$
1.016	$2 \cdot 91$	1.128	$24 \cdot 24$
1.020	3.84	1.131	24.81
1.024	4.76	1.134	$25 \cdot 37$
1.029	5.66	1.137	$25 \!\cdot\! 92$
1.034	6.54	1.140	$26 \cdot 47$
1.039	7.41	1.143	$27 \cdot 01$
1.043	$8 \cdot 25$	1.145	$27 \cdot 53$
1.046	9.09	1.147	28.05
1.050	$9 \cdot 91$	$1 \cdot 150$	$28 \cdot 57$
$1 \cdot 055$	10.71	1.153	$29 \cdot 07$
$1 \cdot 059$	11.50	1.155	$\boldsymbol{29\cdot 57}$
1.064	12.28	1.158	30.06
1.068	13.04	1.161	30.55
1.072	13.79	1.164	31.03
1.075	$14\cdot 52$	1.166	31.51
1.080	15.25	1.168	31.97
1.084	15.96	1.170	$32 \cdot 43$
1.088	16.66	1.172	32.88
1.091	17:35	1.174	33.33
1.095	18.03	1.207	37.50
1.098	18.69	1.230	41 · 17
1.101	19.35	1.250	44.44
1.104	20.00	1.270	47:36
1.107	20.63	1.282	50.00
1.111	21.26	$1 \cdot 294$	52.38
1.114	21.87	1.304	54.54
1.117	22:48		

Table showing the Strength of Solutions of Sing Sulphate (White Vitriol) at 20.5° C.

		The same of the sa			·
98·08 98·18	99 92	290₹·I ₹968·I	15·12 15·68	87 28	044I · I 669I · I
89.63	₽ G 83	1488 · I	99.71	25 26	1.12629
21.62	23	8898 · I	13.44	5₹	16#I·I
98.88	IG	6698 · I	12.88	23	1.1423
00.87	90	1198.1	12.32	22	1.1322
₽₽·72	6₹	1.3424	94.11	21	1.1288
88.97	8₹	1 · 3338	11.20	50	1.1222
26.32	L₽	1.3252	10·9¢	6I	1.1126
25.76	9₹	4918·I	80.01	8I	1601 · I
25.20	S₽	I · 3083	79.6	LI	1.1026
₹9.₹7	₽₽	1.3000	96.8	91	3960 · I
80.42	. 8 <u>4</u>	1.2917	0₹.8	GI	6680 · I
23.52	45	1.2834	₹8·L	ÐΙ	I · 0832
96.22	I₹	₽372•I	82.7	EI	7-0772
22.40	0₹	₹493·I	$ 7L \cdot 9 $	12	0140·I
21·84	68	1.5292	91.9	II	6₹90·I
21.28	88	7132.I	$09 \cdot 9$	01	88 90 · I
27.02	<i>L</i> 8	1 · 5436	₹0.9	6	1.0527
20.16	98	1.2362	8₺.₺	8	49₹0 · I
09.61	32	1.2285	3.92	L	70±0 ⋅ I
₹0.6I	₽8	1.2209	98.8	9	1∙03₹8
87.81	88	1.2134	$08 \cdot 7$	g .	1.0589
26·71	32	1.2060	73.7₹	₽	I • 0231
98.7I	31	7861·1	89 · I	8	8710 · I
08.91	$\cdot 08$	₹161•1	1.12	7	G110.1
16.24		1.1842	99.	I	7300·I
Percent. To SnSO ₄ .	Per cent, of ZnSO_4	Specific Gravity.	Per cent. of SnSO ₄ .	Per cent. of ZnSO ₄ + 70H ₂ .	Specific Gravity.
	\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				

Table showing the Strength of Solutions of FERROSUM SULPHATE (GREEN VITRIOL, PROTOSULPHATE OF IRON) BY SPECIFIC GRAVITY AT 17.2° C.

Specific Gravity.	Per cent. of $FeSO_4 + 7Aq$.	Per cent. of $FeSO_4$.	Specific Gravity.	Per cent. of FeSO ₄ +7Aq.	
1·0052 1·0105 1·0158 1·0212 1·0266 1·0321 1·0377 1·0433 1·0490 1·0547 1·0605 1·0664 1·0723 1·0782 1·0842 1·0903 1·0964 1·1026	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	.547 1.094 1.641 2.188 2.735 3.282 3.829 4.376 4.923 5.470 6.017 6.564 7.111 7.658 8.205 8.752 9.299 9.846	1·1214 1·1278 1·1343 1·1408 1·1473 1·1539 1·1606 1·1673 1·1740 1·1808 1·1876 1·1945 1·2014 1·2014 1·2084 1·2154 1·2296 1·2368	21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	11·487 12·034 12·581 13·128 13·675 14·222 14·769 15·316 15·863 16·410 16·957 17·504 18·051 18·598 19·145 19·692 20·239 20·786
1·1088 1·1157	19 20	$10.393 \\ 10.940$	1 · 2440 1 · 2513	39 40	$21 \cdot 333 \\ 21 \cdot 880$

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF COPPER SULPHATE (BLUE STONE, BLUE VITRIOL) BY SPECIFIC GRAVITY AT 18° C.

ı		ļ		1 '		· 1
	19.125	90	1.2146	799.6	gi	E660 · I
	98‡·8I	67	1.2063	8.925	₹I	I · 0923
	8 1 8.71	87	0861.1	782.8	81	₹ 9 80 · I
	112.71	L Z	8681.1	099.4	12	3870·I
	₽78·81	93	7181.1	210.7	II	9140·I
-	12.938	55	8871.1	6.375	10	6₹90·I
	12.300	₽7	6991.1	282.9	6	I 0285
	14.662	23	1.1585	2.100	8	9190.1
	14.025	22	1091.1	4.462	L	1·0420
	186-81	12	1241.1	3.825	9	1∙038∉
	12.750	20	1.1354	781.8	ç	6180·1
	111.21	6 I	1821-1	2.550	₹	1.0554
	₹८₹·II	81	1.1208	216·I	8	06I0·I
	788·01	LI	1.1135	372·I	7	1.0126
	10.200	-91	1.1063	LE9 ·	I	£900·I
	Per cent. of CuSO ₄ .	Percent. of CuSO ₄ +5OH ₂ .	Specific Gravity.	Per cent. of CuSO ₄ .	Per cent. of CuSO ₄ + 5OH ₂ .	Specific Gravity.

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF POTASSIUM AND AMMONIUM ALUM BY SPECIFIC Gravity at 17.5° C.

Per cent.	$K_2Al_2(SO_4)_4 + 24$ Aq. Density.	$(NH_4)_2Al_2(SO_4)_4 + 24$ Aq. Density.
1 2 3 4 5 6	1·0065 1·0110 1·0166 1·0218 1·0269 1·0320	$egin{array}{c} 1 \! \cdot \! 0060 \\ 1 \! \cdot \! 0109 \\ 1 \! \cdot \! 0156 \\ 1 \! \cdot \! 0200 \\ 1 \! \cdot \! 0255 \\ 1 \! \cdot \! 0305 \\ \end{array}$

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF POTASSIUM CHROMATE (YELLOW CHROMATE) BY SPECIFIC GRAVITY AT 19.5° C.

Specific Gravity.	Per cent. of K ₂ CrO ₄ .	Specific Gravity.	Per cent. of K ₂ CrO ₄ .	Specific Gravity.	Per cent. of K ₂ CrO ₄ .
1.0080	1	1.1287	15	1.2592	28
1.0161	2	1.1380	16	1.2700	29
1.0243	3	1.1474	17	1.2808	30
1.0325	4	1.1570	18	1.2921	31
1.0408	5	1.1667	19	1.3035	32
1.0492	6	1.1765	20	1.3151	33
1.0576	7	1.1864	21	1.3268	34
1.0663	8	1.1964	22	1.3386	35
1.0750	9	1.2066	23	1.3505	36
1.0837	10	1.2169	24	1.3625	37
1.0925	, 11	1.2274	25	1.3746	38
1.1014	12	1.2379	26	1.3868	39
1.1104	13	1.2485	27	1.3991	40
1.1195	14				
<u> </u>	1		1		

Table showing the Strength of Solutions of Potassium Nitrate (Nitre, Saltpetre) by Specific Gravity at 21° C.

Per cent. of KNO ₃ . 19 20 21 18 19 20 21 22 23	Specific diracity. 4 1 1 1 2 4 2 1 1 1 2 4 2 1 1 1 2 4 2 1 1 1 2 4 2 1 1 1 2 4 2 1 1 1 1	Per cent. of 13 10 11 12 12 13 14 15 16 16 16 17 18 18 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10	Specific dravity. 1.0555 1.0621 1.0686 1.0752 1.0819 1.0887 1.0887 1.0956	Per cent. Of I S A A S A A S A S A S A S A S A S A S A S A S A S A A S A S A S A S A S A S A S A S A S A S A A S A S A S A S A S A S A S A S A S A S A A S A S A S A S A S A S A S A S A S A S A	Specific Gravity. 1.0068 1.0178 1.0239 1.0363 1.0425
--	---	---	--	---	--

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF SOPIUM MITRATE (CHILI MITRE, CHILI SALTPETRE) BY SPECIFIC GRAVITY AT 20.2° C.

		Michigan September			THE PERSON NAMED IN
		₹	1.2589	41	₹81 1. †
09	081 ∳∙1	33	1.2500	91	60II·I
. 6₹	₹40₹•I	32	1.2412	12	I-1032
8₹	896E•I	18	1.2325	ÞΙ	Z960 · I
4₹	₹98 € · I	30	1.2239	13	6880 · I
9₹	1948•T	67	1.2124	15	4180·I
97	699E•I	82	0402.1	TT	9₹40•T
77	4998 · I	42	4861.1	OT	9490 · T
£\$	99₹8•1	97	₹06I•I	6	9090·I
2 p	1.3325	22	1.1822	8	4890 · T
Ιħ	1.3265	7₹	074I.I	4	89 ₹0 · I
07	9918• T	23	6991·I	9	66E0∙I
68	1.3022	22	849I · I	g	1.0332
88	896Z·T	12	86 ₹I·I	₹	₹970.1
48	£982.1	02	1.1 418	3	4610 T
98	0772.I	61	1.1338	7	1.0131
38	649Z · E	8I	1.1260	Ι	9900·I
lo .EONBN	Gravity.	to • EON BN	Gravity.	NaNO3.	Gravity.
Рег септ.	officed	Per cent.	Specific	Per cent.	Specific

Table showing the Strength of Solutions of Barium Nitrate (Nitrate of Baryta) by Specific Gravity at 12.5° C.

Specific Gravity.	Per cent. of Ba(NO ₃) ₂ .	Specific Gravity.	Per cent. of Ba(NO_3) ₂ .
1.0062 1.0123 1.0185	1	1·0250	4
	2	1·0320	5
	3	1·0409	6

Table showing the Strength of Solutions of Calcium Nitrate (Nitrate of Lime) by Specific Gravity at 12.5° C.

Specific Gravity.	Per cent. of (Crystal- lized?) Salt.	Specifi c Gravity.	Per cent. of (Crystallized?) Salt.
1.0052 1.0104 1.0156 1.0208 1.0260 1.0310 1.0361 1.0411 1.0481 1.0510 1.0601	1 2 3 4 5 6 7 8 9 10 12	1.0690 1.0777 1.0864 1.0950 1.1044 1.1112 1.1185 1.1257 1.1320 1.1383	14 16 18 20 22 24 26 28 30 32

I.0220

8070.1

9910·I

1.0152

I . 0083

I+00+I

Gravity.

Specific

OF COPPER MITRATE AT 12.5° C. TABLE SHOWING THE STRENGTH OF SOLUTIONS

			
99 79 79 99 99 98 98 98 98 98 98	I.2505 I.464.1 I.4686 I.4686 I.3549 I.3549 I.3520 I.3529 I.3520 I	52 02 81 91 91 91 91 91 91 91 91	1.0192 1.0192 1.0252 1.031.1 1.021.1 1.051.1 1
97 87	1.1915 1.1915	I Z	6200·I
Per cent. of Cu(NO ₃)2.	Specific Gravity.	Per cent. of Cu(NO ₃) ₂ .	Specific g.vitvs1D

HYDROGEN PHOSPHATE BY SPECIFIC GRAVITY AT 19° C.

I • 0203

0970·I

8170·I

97E0·I

1.0333

7670·I

Gravity.

Specific

₹94.₹

498.₽

3.970

849.8

941.8

644.7

Na₂HPO.

Per cent.

17

II

10

6

8

4

H≱OTH₂ HYO. ISAq.

Per cent. of

288.2

986·I

889.I

161.1

₹64.

468.

Na2HPO4.

Per cent.

g

Ŧ

ε

7

τ

H₂HPO₄+ I2Aq.

Per cent. of

DIGOSI(I 40 SN	H OF SOLUTION	THE STRENGT	ABLE SHOWING
		5₹	9141.1
99	1.2502	22	1721.1
₹ĝ	₹₹6₹·Ī	02	1.1320
25	989¥•I	81	1021.1
0g	0 555 . I	91	090I·I
87	1.4206	₹I	$8160 \cdot I$
9₹	8768 · I	12	8440 · I
11	6478·1	or	2 990 · I
2₽	1.3233	6	$2620 \cdot I$
0 1	1.3320	8	J · 0256
88	1.3113	L	1970 · I
98	1.2912	9	1.0390
1 8	1.2712	g	I · 0320
28	1.5513	₹	1.0252
30	1.2320	8	1.0192
82	1112.1	I Z	6110·1
92	9161·I	I	6900·I
Cu(NO ₃)2.	Specific Gravity.	Per cent. of Cu(NO ₃) ₂ .	Specific Gravity.

Table showing the Strength of Solutions of Lead Nitrate at 17.5° C.

217	CHEMISTS'	POCKET-BOOK.	
1·0869 1·0963 1·1059	1.0502 1.0591 1.0682 1.0775	1.0080 1.0163 1.0247 1.0331 1.0416	Specific Gravity.
10 11 12	9876	<u>н</u> си 4 го	Per cent. of $Pb(NO_3)_2$.
1·2132 1·2251 . 1·2372	1·1677 1·1788 1·1902 1·2016	1·1157 1·1257 1·1359 1·1463 1·1569	Specific Gravity.
22 23 24	18 19 20 21	13 14 15 16	Per cent. of $Pb(NO_3)_2$.
1·3702 1·3848 1·3996	1·3140 1·3276 1·3416 1·3558	1 · 2495 1 · 2620 1 · 2747 1 · 2876 1 · 3007	Specific Gravity.
34 35	33 33 33 33 13 33	25 26 27 28 29	Per cent. of $Pb(NO_3)_2$.

Table showing the Strength of Solutions of Potassium Chloride by Specific Gravity at 15° C.

Water at 15° C. = 1.

77 77 73 73 71 71	#6741.1 89991.1 87891.1 88091.1 8#6#1.1	41 91 91 71 E1 E1	99†II·I 0940I·I 9800I·I 9†860·I 79980·I	6 8 4 9 9	1.05504 1.05248 1.05250 1.05250 1.05250 1.05250
61	₹6821•1	II	14240.1	2	1.01300
81	64121.1	or	I-08280	· [1.00650
Per cent.	Specific Gravity.	Per cent. of KCl.	Specific Gravity.	Per cent. of KCl.	Specific Gravity.

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF SODIUM CHLORIDE (COMMON SALT) BY SPECIFIC GRAVITY AT 15° C.

	1	1		ĺ	
368.92	1.20433	81	1.13623	6	I-06593
- 97	1.20098	41	1.12730	8	1.05851
35	87761.1	91	1.11938	2,	1.05108
7₹	₹0₹8₹•₹	12	97111.1	9	99€₹0∙1
23	08941.1	₹ĭ	₹8801.1	9	1.03624
22	99491.1	13	7.09622	₹	I • 05899
រុះ	1:12931	12	69880•I	8	₹4170·I
20	10191.1	II	46080·I	8	1.01450
13	1.14315	10	38870·1	τ	1.00725
		!			
Per cent. of MaCl.	Specific Gravity.	Per cent. of NaCl.	Specific Gravity.	Per cent. of NaOI.	Specific Gravity.
<u> </u>		i		<u> </u>	

Table showing the Strength of Solutions of Ammonium Chloride by Specific Gravity at 15° C.

Specific Gravity.	Per cent. of NH ₄ Ol.	Specific Gravity.	Per cent. of NH ₄ Cl.	Specific Gravity.	Per cent. of NH ₄ Cl.
1.00316	1	1.03081	10	1.05648	19
1.00632	2	1.03370	11	1.05929	20
1 00948	3	1.03658	12	1.06204	21
1.01264	4	1.03947	13	1.06479	22
1.01580	5	1.04325	14	1.06754	23
1.01880	6	1.04524	15	1.07029	24
1.02180	7	1.04805	16	1.07304	25
1.02481	8	1.05086	17	1.07575	26
1.02781	9	1.05367	18	1.07658	26.297

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF MAGNE-SIUM CHLORIDE BY SPECIFIC GRAVITY AT 15° C.

Specific Gravity.	Per cent. of MgCl ₂ .	Specific Gravity.	Per cent. of MgCl ₂ .	Specific Gravity.	Per cent. of MgCl ₂ .
1.00844 1.01689 1.02533 1.03378 1.04222 1.05096 1.05970 1.06844 1.07718 1.08592 1.09495	1 2 3 4 5 6 7 8 9 10	1·11300 1·12203 1·13106 1·14045 1·14984 1·15922 1·16861 1·17800 1·18787 1·19775 1·20762	13 14 15 16 17 18 19 20 21 22 23	1·22737 1·23777 1·24817 1·25857 1·26897 1·27937 1·29029 1·30121 1·31213 1·32305 1·33397	25 26 27 28 29 30 31 32 33 34 35
1.10398	12	1.21750	24	1.33406	35·00 8

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF BARIUM CHLORIDE BY SPECIFIC GRAVITY AT 21.5° C.

1	1		Y.		
449.97	30	1.2750	684.71	91	1121.1
₹74.72	67	1.2636	986·II	₹T	1.1122
148.62	87	1.2523	780.II	13	1.1034
23.019	43	1.2413	162.01	77	4760 · I
22.166	97	1.230₫	648.6	ΤΙ	1980•I
21.314	22	4612.1	8.256	10	9440 · T
197.02	₹	1.2090	849.4	6	Z690 · I
609.6T	23	9861.1	128.9	. 8	0190·I
994.8T	22	7881 I	896.9	2,	I.0230
₹06.4T	7.7	E841.1	911.9	9	I-0425
190.41	20	1.1683	€97.7	g	₹480 · I
661.91	61	789I.I	3.410	7	8620·I
97E-9T	81	8871.I	899.7	3	1.0222
₱ 6 ₱•₱┃	41	₹681.I	904.I	7	4710·1
13.641	91	1.1302	823	Ī	€400 · I
<u> </u>					
of BaCla.	BaCla+2Aq.	Gravity.	of BaCla.	BaCla+2Aq.	Gravity.
Per cent.	Per cent. of	Specific	Per cent.	Per cent. of	Specific
<u> </u>			}		

TABLE SHOWING THE STRENGTH OF SOLUTIOUS OF CALCIUM CHLORIDE BY SPECIFIC GRAVITY AT 15° C.

	99·07 07 68 88 48 98 98	#011#.1 0880#.1 09168.1 04648.1 01998.1 084#8.1 70888.1	87 57 57 57 53 53 53 53 53	1.18222 1.2619 1.2619 1.2619 1.2619 1.2619 1.2619 1.2619 1.2619	#I EI EI II OI 6 8 4	7.12421.1 1.105631 1.00632 1.00632 1.00633 1.00633 1.00633
,	Per cent. of CaCl ₂ . 29 30 31 32	Specific of 1826.1	Per cent. of OaOls. 15	Specific Gravity. 1 · 13360 1 · 14332 1 · 16305 1 · 16201	Per cent. of OaOl ₂ . I S S A A	Specific Gravity. 1.00852 1.01704 1.02555 1.03407

Table showing the Strength of Solutions of Aluminium Chloride by Specific Gravity at 15° C.

Specific Gravity.	Per cent. of Al_2Cl_6 .	Specific Gravity.	Per cent. of Al ₂ Cl ₆ .
$\overline{1\cdot00721}$	1	1.17092	22
1.01443	2	$1 \cdot 17953$	23
1.02164	3	1.18815	24
$1 \cdot 02885$	4	$1\cdot 19676$	25
1.03603	5	$1 \cdot 20584$	26
1.04353	6	$1 \cdot 21493$	27
1.05099	7	1.22406	28
1.05845	8	1.23310	29
1.06591	9	$1 \cdot 24219$	30
1.07337	10	1.25184	31
1.08120	11	1.26149	32
1.08902	12	1.27115	33
1.09684	13	1.28080	34
1.10466	14	1.29046	35
1.11248	15	1.30066	36
$1 \cdot 12073$	16	1.31086	37
$1 \cdot 12897$	17	1.32106	38
$1 \cdot 13721$	18	1.33126	39
$1 \cdot 14545$	19	1.34146	40
1.15370	20	$\boldsymbol{1.35224}$	41
1.16231	21	$1 \cdot 35359$	41.126
	1		

TABLE SHOWING THE STRENGTH OF SOLUTIOUS OF ZING CHLORIDE BY SPECIFIC GRAVITY AT 12.5° C.

84 94 74 74 04 89 99 79 79	4869.I 0049.I 4249.I 4919.I 0064.I 9494.I 4944.I 8924.I 1404.I 0068.I 8848.I	79 09 87 07 07 88 98 78	##ZE.I 040E.I 4Z6Z.I 884Z.I 6E9Z.I 46#Z.I 901Z.I 901Z.I 4961.I 4961.I	8 10 12 14 16 18 18 20 20 20 20 30 40	2480.1 2080.1
Per cent. of the Orystal-lized Salt.	Specific Gravity. 1.3502 1.3567 1.3567	Per cent. of the Crystal- lized Salt. 28 30 32	Specific Gravity. 1.1614 1.1514 1.1814	Per cent. Orystal- lized Salt. 2 4	Specific Gravity. I · 0144 I · 0228 I · 0342

Table showing the Strength of Solutions of

below	1.159 1.254 1.232 1.232	00T 06 08 04 09	- 1° C. - 17°5 - 3°5 - 6	901·I 920·I 190·I	10 30 40 40 90		
Freezing Point.		Glycerine per cent.	Freezing Point.		Glycerine per cent.		
CALYCERINE BY SPECIFIC GRAVITY.							

Table showing the Strength of Solutions of Potassium Iodide by Specific Gravity at 21° C.

	1	. 1	,		
Specific Gravity.	Per cent. of K1.	Specific Gravity.	Per cent. of KI.	Specific Gravity.	Per cent. of KI.
1.0075	1	1.1807	21	1.4224	41
1.0151	2	1.1911	22	1.4371	42
1.0227	3	1.2016	23	1.4520	43
1.0305	4	1.2122	24	1.4671	44
1.0384	5	1.2229	25	1.4825	45
1.0464	6	1.2336	26	1.4982	46
1.0545	7	1.2445	27	1.5142	47
1.0627	8	1.2556	28	1.5305	48
1.0710	9	1.2699	29	1.5471	49
1.0793	10	1.2784	30	1.5640	50
1.0877	11	1.2899	31	1.5810	51
1.0962	12	1.3017	32	1.5984	52
1.1048	13	1.3138	33	1.6162	53
1.1136	14	1.3262	34	1.6343	54
1.1226	15	1.3389	35	1.6528	55
1.1318	16	1.3519	36	1.6717	56
$1 \cdot 1412$	17	1.3653	37	1.6911	57
1.1508	18	1.3791	38	1.7109	58
1.1605	19	1.3933	39	1.7311	59 ₋
1.1705	20	1.4079	40	$1 \cdot 7517$	60

Table showing the Strength of Solutions of Sodium Thiosulphate (Hyposulphite of Sodium Specific Gravity at 19° C.

i					
CCO TC	0.0	T007 T	170 OT	07	TOOT T
917 TC	20	t I	276.91	25	1881 1
812.18	6 ₹	,	12.290	₹ 7	1.1322
30.280	8₹	1 · 2822	14.653	23	1.1263
876·67	∠ ₹	1.2756	910. ₹ I	22	1.1204
908.67	9₹	$ \mathbf{I} \cdot 5690 $	678 · 81	12	GFII·I
$699 \cdot 87$	G₽	1.2624	12.742	02	7801 · 1
$28 \cdot 032$	₹Ŧ	1.5558	12.105	6 I	I • I 03I
27·395	8₽	76₽2·I	734·11	8I	9460 · I
887.92	45	1.2427	10.830	LI	$6160 \cdot I$
121.92	TÞ	1.2362	861·01	91	E980 · I
₽84.62	0₽	1 · 5594	$999 \cdot 6$	ĞI	1 · 0804
948.46	89	1 · 2234	616.8	₹I	1920 · 1
24.209	88	1.2172	8.282	81	9690·I
23.572	78	1.2110	979·L	12	$ 6890 \cdot I $
22.935	98	1.2048	$800 \cdot L$	II	₹890 · I
$862 \cdot 22$	32	986I · I	178.9	10	I · 0259
199 . 12	₹8	761.1	£87.3	6	94 1 0 · I
21.024	33	798I · I	960.9	8	1 · 0453
20.387	32	008I · I	697·7	L	0780 · I
092.61	18	8871 · I	3.822	9	7180 · I
811.61	90	949I · I	3.185	ç	₹970 · I
924·81	53	L191 · I	₹86.2	₹	1120.1
17.838	88	8661·1	116·1	8	8910·1
17.201	72	66†I·I	1.274	2	9010·1
799·91	97	07+I·I	L89·0	Ţ	1.0052
.gO	.pAd	Gravity.	.°EO	.pAd	Gravity.
Jugarie 1	Per cent. of $N_{82}S_{2}O_{3}+$	Specific		+ 6O2S28N	ATTOOATO
74400 #00	To tren red	3. ~	, trantag	Per cent, of	
·			·	 	

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF SODIUM ACETATE BY SPECIFIC GRAVITY AT 12 · 5° C.

Gravity	Per cent. of the Salt.	Specific Gravity.	Per cent. of the Salt.	Specific Gravity.	Per cent. of the Salt.
1:0028	1	1:0361	12	1·1018	32
1:0058	, 2	1:0424	14	1·1090	34
1:0087	, 3	1:0488	16	1·1165	36
1:0117	, 4	1:0553	18	1·1242	38
1:0146	, 5	1:0619	20	1·1320	40
1:0176	, 6	1:0685	22	1·1399	42
1:0206	, 7	1:0751	24	1·1482	44
1:0237	, 8	1:0817	26	1·1567	46
1:0267	, 9	1:0883	28	1·1656	48
1:0299	, 10	1:0955	30	1·1755	50

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF LEAD ACETATE (SUGAR OF LEAD) BY SPECIFIC GRAVITY AT 12.5° C.

Specific Gravity.	Per cent. of the Salt.	Specific Gravity.	Per cent. of the Salt.	Specific Gravity.	Per cent. of the Salt.
1·0070 1·0140 1·0211 1·0283 1·0366 1·0430	1 2 3 4 5 6	1:0505 1:0580 1:0655 1:0731 1:0891 1:1055	7 8 9 10 12 14	1·1221 1·1330 1·1560 1·1740 1·1928	16 18 20 22 24

ζ

TABE SHOV (YELL	TABE SHOWING THE STRENGTH OF SOLUTIONS OF POTASSIUM FERROCYANIDE (YELLOW PRUSSIATE OF POTASH) BY SPECIFIC GRAVITY AT 15° C.	INGTH OF SC OF POTASH)	INSTH OF SOLUTIONS OF POTASSIUM OF POTASH) BY SPECIFIC GRAVITY	Potassium Fe c Gravity at	Ferrocyanide at 15° C.
Specific Gravity.	Per cent. of K_4 FeCy ₆ +3Aq.	Per cent. of K_4 FeCy ₆ .	Specific Gravity.	Per cent. of K_4 FeCy ₆ + 3Aq.	Per cent. of K ₄ FeCy ₆ .
1.0058		0.872	1.0669	11	9.592
1.0116	67	1.744	1.0734	12	10.464
1.0175	ಣ	2.616	1.0800	13	11.336
1.0234	44	3.488	1.0866	14	12.208
1.0295	ŭ	4.360	$1 \cdot 0932$	15	13.080
1.0356	9	5.232	1.0999	16	13.952
1.0417	L	6.104	1.1067	17	14.824
1.0479	8	926.9	1.1136	18	15.696
1.0542	6	7.848	$1 \cdot 1205$	19.	16.568
1.0605	10	8.720	1.1275	20	17.440

Table showing the Strength of Solutions of Potassium Ferricyanide (Red Prussiate of Potash) by Specific Gravity at 13° C.

Specific	Per cent.	Specific	Per cent. of K_6 Fe ₂ Cy ₁₂ .
Gravity.	of K ₆ Fe ₂ Cy ₁₂ .	Gravity.	
1:0051 1:0103 1:0155 1:0208 1:0261 1:0315 1:0370 1:0426 1:0482 1:0538	1 2 3 4 5 6 7 8 9	1.0653 1.0771 1.0891 1.1014 1.1139 1.1266 1.1396 1.1529 1.1664 1.1802	12 14 16 18 20 22 24 26 28 30

TABLE SHOWING THE STRENGTH OF SOLUTIONS OF HYDRO-CYANIC ACID (PRUSSIC ACID) BY SPECIFIC GRAVITY.

Specific	Per cent.	Specific	Per cent.
Gravity.	of HCy.	Gravity.	of HCy.
•9570	16·0	•9945	3·6
•9768	10·6	•9952	3·2
. 9815 9840	9 1 8.0	•9958 •9964	3.0
·9870 ·9890	7.3	·9967 ·9970	2.5
·9900	5·8	•9973	2·1
·9914	5·3	•9974	2·0
·9923	5·0	•997 5	1.77
•9930	4·6	•9978	
•9940	4.0	•9979	1.60

Table showing the Strength of Alcoholic Solutions of Ether by Specific Gravity.

02 01 0	918 · 828 · 088 ·	08 07 09	892 · 892 ·	02 08 06 00I	992. 782. 027.
Бег септ.	Specific Gravity.	ber cent.	Specific Gravity.	Ether, per cent.	Specific Gravity.

TABLE SHOWING THE STRENGTH OF SOLUTIOUS OF ALBUMIN.

1.135	09	840·T	02	810·I	01
1.106	0 1	840·T	08	920·I	g
Specific Gravity.	Per cent.	Specific Gravity.	Per cent.	Specific Gravity.	Per cent.

SOLUBILITY OF LIME IN SOLUTIONS OF SUGAR.

4.₹8 6.18 9.18 7.18 7.08 6.64	8.81 8.81 8.61 1.07	1.080 1.080 1.080 1.083 1.083	810.1 020.1 020.1 890.1 80.1 960.1	30 20 16 16 10 6
9·64 64	2.02 3.02	991• 1 641•1	1.122	32 07
100 Parts of the Residue dried at 120° C. contain Lime, Sugar,		Density after saturation with Lime,	Density of Syrup.	ni raguz straq 001 sterv retaW to

TABLE FOR CORRECTION OF VOLUMES OF GASES FOR TEMPERATURE ACCORDING TO THE FORMULA

$$\mathbf{V}^{\scriptscriptstyle \text{I}} = \frac{\mathbf{V} \times \mathbf{B}}{760 \times (1 + \delta t)}.$$

 $1 + \delta t$ from 0° to 30°, $\delta = 0.003665$.

					
t	$1 + \delta t$.	$\operatorname{Log.}(1+\delta t).$	t	$1 + \delta t$.	$Log. (1+\delta t).$
0			0		
0.0	1.0000000	0.0000000	$2 \cdot 6$	1.0095290	0.0041188
• 1	1.0003665	1591	7	1.0098955	2765
·2	1.0007330	3182	.8	1.0102620	4341
.3	1.0010995	4772	2.9	1.0106285	5916
•4	1.0014660	$ \qquad 6362 $	3.0	1 0109950	0.0047490
0.5	1.0018325	7951	1	1.0113615	9063
.6	1.0021990	9519	•2	1.0117280	0.0050636
.7	1.0025655	0.0011127	.3	1.0120945	2210
.8	1.0029320	2714	•4	1.0124610	3782
•9	1.0032985	4301	3.5	1.0128275	5354
1.0	1.0036650	0.0015888	•6	1.0131940	6926
1	1.0040315	7474	.7	1.0135605	8497
•2	1.0043980	9059	.8	1.0139270	0.0060067
.3	1.0047645	0.0020643	3.9	1.0142935	1636
•4	1.0051310	2227 $ $	4.0	1.0146600	0.0063205
1.5	1.0054975	3810	•1	1.0150265	4773
.6	1.0058640	5393	•2	1.0153930	6341
.7	1.0062305	6974	3	1.0157595	7 909
.8	1.0065970	8556	•4	1.0161260	9476
1.9	1.0069635	0.0030137	4.5	1.0164925	0.0071042
2.0	1.0073300	0.0031718	.6	1.0168590	2607
1	1.0076965	32 98	.7	1.0172255	4172
.2	1.0080630	4877	8	1.0175920	57 36
.3	1.0084295	6455	4.9	1.0179585	7 300
•4	1.0087960	8033	5.0	1.0183250	0.0078864
2.5	1.0091625	9611	. [1.0186915	0.0080427
		_			

TABLE FOR CORRECTION OF VOLUMES OF GASES—continued.

		. ,			
9839	9717170.1	8.	9698	1.0300530	7.
∠0 ∠₽	0870170.1	7.	0904	9989620 · I	Ĭ.
8718	\$1890\tau.I	I.	0.0152204	1.0293200	0.8
8491710.0	1	0.11	2968	1.0289535	$6 \cdot L$
8110710.0	1	1 1	1	1.0285870	8.
L898		8.	2980210.0	1.0282205	\tilde{L} .
9904	1.0392155	2.	₽186	1.0278540	$\bar{9}$.
₽29\$	0678880·I	$9 \cdot$	9977	1.0274875	9.1
3668	1.038†852	9.01	9179	1.0271210	₹•
5 4 29	091180.1	₹.	999₹	I-0567545	8.
9760910.0		8.	3116	I · 05883880	7.
7686	1.0373830	7.	1265	1.0260215	Ĭ٠
L98L		1.	6.0110013	I · 0529220	$\tilde{0} \cdot L$
0.0126321	I · 0399200	0.01		I · 0525885	6.
987 <u>4</u>	1.0362835	6.6	6069	I · 0249220	8.
3549	0.16980 1	8-	9286	1.0542222	Ž.
STLI	I.0322202	2.	3805	1.0241890	$\overline{9}$.
9410910.0	1.0321840	9.	7 1 22	I · 0538555	9.9
8898	G718480 · I	9.6	2690010.0	1.0234560	₹.
0014	1.0344210	₹.	9816	I · 0230895	.3
1999	G480480·I	8.	0894	1.0227230	7.
402I	1.0337180		6023	I · 0223565	Ţ.
18481	I · 0333212	I.	9977600.0	1.0219900	0.9
0760710.0	$1.0386280 \cdot 1$	0.6	8067	I · 0516235	$6 \cdot 9$
6686	1.0326185	6.8	0681600.0	1.0212570	8.
L98L	1.0322520	8.	1626	3068020·I	Ž.
6315	1.0318822	۷٠	8535	I · 0502540	9.
7.LL V	0613180·I	9.	7 499	1.0201575	g.g
3559	1.0311525	1	2113	0162610 · 1	
989 I	0984080·I	₹.	1997	1.0194245	
0.0130141	961₹080·I	8.3	6861800.0	08906IO·I	
	· · · · · · · · · · · · · · · · · · ·	0		- 1	0
Log: (1+8t)	.48+1	3	Log. (1+8t).	.18+1	3

TABLE FOR CORRECTION OF VOLUMES OF GASES—continued.

		1	<u> </u>	1 :	 ,
ŧ	$1 + \delta t$.	$\log.(1+\delta t).$	t	$1+\delta t$.	$\log. (1+\delta t).$
0			0		
11.4	1.0417810	[0.0177764]	14.5	1.0531425	0.0224871
11.5	1.0421475	9292	•6		6382
•6	1.0425140	0.0180819	.7	1.0538755	7893
.7	1.0428805	2346	.8	1.0542420	9403
•8	1.0432470	3872	$14 \cdot 9$	1.0546085	0.0230193
11.9		5397	$15 \cdot 0$	1.0549750	[0.0232422]
12.0	1.0439800	0.0186922	• 1	1.0553415	3930
•1	1.0443465	8446	2	1.0557080	54 38
	1.0447130	9970	.3	1.0560745	6945
•3		0.0191493	•4	1.0564410	8452
•4	1.0454460	3016	$15 \cdot 5$	1.0568075	9959
12.5		4538	• 6	1.0571740	0.0241465
.6	1.0461790	6060	•7	1.0575405	2970
.7	1.0465455	75 81	.8		4475
•8	1.0469120	9102	15.9	1.0582735	5979
$12 \cdot 9$	1.0472785	0.0200622	$16 \cdot 0$		 0·02474 83
13.0	1.0476450	0.0202141	• 1		8986
•1	1.0480115	3 6 60	•2		[0.0250489]
•2		5179	ľ		1991
•3	-	6697	•4		3492
•4	1.0491110	1	16.5		4993
13.2	1.0494775	9731	.6		6494
. 6	1.0498440	0.0211248	.7		7994
•7	1.0502105	2764	.8		9494
.8	1.0505770	4279	16.9		[0.0260993]
	1.0509435		1 1	1.0623050	.,
		0.0217308		1.0626715	3990
. ,	1.0516765	8821	•2	1.0630380	5488
	1.0520430	0.0220334		1.0634045	6985
	1.0524095	1847	, ,	1.0637710	8482
•4	1.0527760	3359	17.5	1.0641375	9978
		· .		· .	1

0667940.T 9.

0994を20・1 す・

3 I · 0743995

9410180 0 0880740 1 3.

20.5 I · 0751325

0144 19999840·I I. 0870980 · I 7 · ₹698 1127080 · 0 0000870 · 1 | 0 · 02 8767 9199780·I I· |9458||520 1 0 0962480 | 0 0 62 || 8249 9886740 · I \6 · 6I | 0755670 | 1 | 8 · 4544 55.9 I · 0839589 0 · 0320000 8228 0799880 · I '8 · 0943 1.0722005 T 94 1 · 0718340 · 0301275 690L9961880 · I 1/2 · 0646 0678780·I 9· 949+140-1 9-61 6699 | 0101140 · 1 | 7 · 6214 8304 25 2 1 0884625 8997 0960780 · I ₺ · 3 I · 0707345 8189 43 1 • 0817295 | 0 • 0341187 0898040.1 7. **5331** 9146 0898180 · 1 · 7 · 3844 | \$1000L0 · I | I · ₽₽78 9988680 0 0989690 · I |0 · 6I 9966080 · I I · 1449880·0|0089080·1 0·27|8980670·0 9897690·1 |6·81 8679 9892080 · I · 6 · IZ 6486 0706890 · I |8 · 7884 3874 0468640 · I · 8 · 1 6884 9999890 · I L. 9089640·I 4. 6487 6689 0691890 · I |9 · |\frac{1}{2}\delta 280880 \cdot 0 \delta 91640 \cdot 1 \delta \cdot \delta \delta 1 2208780 · 1 | 6 · 81 606¥ 3418 21 3 1 0 1 8 1 4 8 0987730 I P. 6866 1927 9690190 · I E · ₹76L 0184870·I 4· **L**\$\$9 9₹908Z0·I S• 9840820 · 0 0 0 0 0 0 1 | 7 · 1161 0869440·I 7· 8943 19988990 · I | I · GIES770-111. 8493 18.01 1.065970 0.0277450 $|9107380 \cdot 0| \, 0996940 \cdot 1 \, |0 \cdot 13| \, |9969$ 9809990 · I |6 · LI |8890780 · 0| 9869940 · 1 |6 · 07| |7944 ·8 I 0652370 8906 ·8 I · 0762320 8967 9078430 I 7. | 1 • 0.128922 | 0 • 0311280 |L.03||\fL\f\IL30.0|\0\f09\f90.I||9.LI (18+1) BOT (18+1).304 78+I 2 13 + I 7 TABLE FOR CORRECTION OF VOLUMES OF CARSES—continued,

0019

0797

8**9**91

68LI

60888487

*LL*89

9098980 · T 2 ·

0194980·1 b.

9768980·I 8.

9471980 • 1 | 9 • 87 | 6818

|₹<u>₩</u>

Table for Correction of Volumes of Gases—continued

•		\	i)	1	1
t	$1 + \delta t$.	$\log.(1+\delta t).$	t	$1 + \delta t$.	$\log.(1+\delta t).$
ο.	•		ο `		
23.8	1.0872270	0.0363203	27.0	1.0989550	0.0409800
4	1.0875935	4666	1	Į.	0.0411248
$24 \cdot 0$		0.0366129	\cdot_2	1.0996880	2696
1	1.0883265	7592	.3	1.1000545	4143
$\cdot 2$	1.0886930	9054	$\parallel \cdot 4$	1.1004210	5589
•3	1.0890595	0.0370516	$ 27\cdot 5 $	1.1007875	7035
• 4	1.0894260	1978	6	1.1011540	8481
24.5	1.0897925	3439	.7	1.1015205	9926
•6	1:0901590	4899	.8	1.1018870	0.0421371
.7	1.0905255	6359	$27 \cdot 9$	$1 \cdot 1022535$	2815
. •8	1.0908920	7818	$28 \cdot 0$	1.1026200	0.0424259
24 · 9	1.0912585	9276	1	1.1029865	5702
$25 \cdot 0$	1.0916250	0.0380734	•2	1.1033530	7145
-1	1.0919915	2192	•3	1.1037195	8587
•2	1.0923580	3649	•4	1.1040860	0.0430029
.3	1.0927245	5106	28.5	$1 \cdot 1044525$	1470
. •4	1.0930910	6563	• 6	1.1048190	2911
25.5	1.0934575	8019	7	1:1051855	4352
•6	1.0938240	9474	.8	1.1055520	5792
.7	1.0941905	0.0390929	$28 \cdot 9$	1.1059185	7232
.8	1.0945570	2384	$ 29 \cdot 0 $	$1 \cdot 1062850$	0.0438671
$25 \cdot 9$	1.0949235	3838	•1		0.0440110
$26\cdot0$	1.0952900	0.0395291		1.1070180	1548
•1	1.0956565	6744	.3	1.1073845	2 986
•2	1.0960230	8197	•4		4423
1	1.0963895		, ,	1.1081175	5859
	1.0967560	1	1 1	1.1084840	7295
	1.0971225	2552		1.1088505	8730
	1.0974890	4003		1.1092170	
- 1	1.0978555		$29 \cdot 9$	1.1095835	1600
_ 1	1.0982220	6902			·
26.9	1.0985885	8351	30.0	1.1099500	0.0453035

TABLE FOR CORRECTION OF VOLUMES OF GASES FOR

$\frac{(i \delta + 1) \times 007}{7} = 14$	
$\Lambda_{\rm i} = \frac{1}{\Lambda \times B}$	
GIVING THE DIVISOR FOR THE FORMULA	Темрекатике,

			-		
8998	9903.747	τ.	ム サムム	9896 - 994	3.2
0007888 · 2	0729 - 877	0.9	6919	$0989 \cdot 992$	₹.
9879	9879.877	6.	169 1	₹90₹ • 994	8.
3788	6698 • 822	8.	3013	6721.997	₹.
8082	₹160·844	L.	2.8841434	8678.997	Į.
8±70888·2	8218.277	9.	₹986888 • 7	8076.607	0.2
8416	772.5343	9.7	8728	$8262 \cdot 997$	$6 \cdot$
2194	772.2558	₹•	7 699	L810.99L	8.
9 1 09	2779-177	8.	IIIG	764.7352	L .
LL $\overline{\nu}$ $\overline{\nu}$	L869 · ILL	z.	8228	9997·79L	9.
6067	1024.177	Į.	9761	1841.794	g.1
1481788.2	9171-122	0.7	S · 8830363	9668 • 894	₱•
<i>3LL</i> 6	1898 • 044	6.	6228	763.6210	8.
8028	9789.077	8.	2617	163·3425	7.
6633	$0908 \cdot 022$	4.	0199	6890.891	1.
2909	₽720 · 077	9. •	2.8824024	₹987.297	0 · I
06₹8	6874-694	3.5	78 <u>4</u> 37	$6909 \cdot 792$	6.
8161	₹04₹·694	₽.	0980788.7	$762 \cdot 2283$	8.
\$\cdot 8860345	8161.694	8.	.8976	8676.192	L .
<i>7</i> .17.8	8816.894	7.	9 292	2179 197	9.
6614	LF89.89L	1.	L 809	768 • 197	9.0
2.8822626	768.3562	$9 \cdot 6$	86₹₹	761 - 1142	₹•
4052	LLL0.89L	$6 \cdot$	8067	9988.094	8.
77 <u>4</u> 2	1664 - 494	8.	8181188 · 2	1766.657	7.
1060988.7	9073.797	L.	L276	2872.097	Į.
7.8849324	0212.797	9.7	3.8808136	0000.092	0.0
		0			0
$\cdot [(3 \delta + 1)$	$(1+\delta t).$.[(18+1)	$.(3 \delta + 1)$	2
X.097].20JI	× 094	3	X 097] .BorI	X 094	+
					!

TABLE FOR CORRECTION OF VOLUMES OF GASES—continued.

	[Ti		
t 	$ \begin{array}{c} 760 \times \\ (1 + \delta t). \end{array} $	$\begin{array}{c} \text{Log.} [760 \times \\ (1 + \delta t)]. \end{array}$	t	$\begin{array}{c} 760 \times \\ (1 + \delta t). \end{array}$	Log. [760 \times (1 + δt)].
0			0		
$5\cdot 2$	774 4841	2.8890125	8.3	783 · 1188	2.8938277
.3	774.7626		•4		
•4	775.0412		8.5	1	
5.5	$ 775 \cdot 3197$.6	$783 \cdot 9544$	2908
•6	775.5982	6368	.7		
.7	775.8768		8.	784 · 5115	5993
.8	776 · 1553		.9	784.7901	7535
•9	776 • 4339		9.0	$785 \cdot 0686$	2.8949076
6.0	$776 \cdot 7124$	2.8902602	•1	$785 \cdot 3471$	2.8950617
•1	776.9909	4159	.2	$785 \cdot 6257$	2157
•2	$777 \cdot 2695$	5716	•3	$785 \cdot 9042$	3697
.3	$777 \cdot 5480$	7272	•4	$786 \cdot 1828$	5236
.4	777.8266	8828	9.5	786.4613	6774
6.5	$778 \cdot 1051$	2.8910383	•6	$786 \cdot 7398$	8311
•6	778:3836	1938	•7	787 · 0184	9848
.7	778 6622	3492	.8	$787 \cdot 2969$	2.8961385
.8	778 • 9407	5045	. 9	787.5755	2921
.9	779 · 2193	6597	$ 10\cdot 0 $	787.8540	2.8964457
$7 \cdot 0$	779 • 4978	2.8918149	•1	$788 \cdot 1325$	5993
•1	779.7763	9701	1 1		7528
•2	780.0549	$2 \cdot 8921252$.3	788.6896	9062
•3	780:3334	2802	1	788.9682	2.8970595
4	780 - 6120	4352	1 1	$789 \cdot 2467$	2128
7.5	780 · 8905	5901	ı ı	789.5252	3660
6	781 · 1690	7450	•7	789 · 8038	5192
.7	781 . 4476	8998		790.0823	6723
.8	781.7261	2.8930546		790 · 3609	8254
	782.0047	t i		790 6394	2.8979784
	782 2832	2.8933640		$790 \cdot 9179$	2.8981314
1	782.5617	5186		791 · 1965	2843
2	782 • 8403	6732 \parallel	.3	$791 \cdot 4750$	4372
				_	- (

Table for Correction of Volumes of Gases—continued.

X.T.T.O	CEEL OAG	CIT	CCTTCCC 7	OCOT AGO	_
₽118	977L-808	1	\$691£06.7		} {
8199	099 * · 808	*	8866	7188 • 861	
1213	\$281.808		07 <u>4</u> 8	72667	
₹798	$6806 \cdot 208$		L969	1472.667	
2126	$8089 \cdot 208$	1	2.9025444		
$8290709 \cdot 2$	8138.708	11	9980	1717-867	
9129	8870 · 708	1	2415	9884·867	
089L	<i>L</i> ₹6 <i>L</i> · 908		$0060206 \cdot 7$	0091.86L	
0819	806.5162	$L \cdot$	₹886	4188·797) P
089₹	$ 9762 \cdot 308 $	$9 \cdot$	L98L	$6709 \cdot 767$	13.2
6218906.2	$1696 \cdot 908$	[9.91]	0 989	₹\$1.797	₹•
1628	$9089 \cdot 908$	1 3	4833	8970.767	ϵ .
7210906.2	802.4020	$ \mathfrak{s} \cdot $	3315	8292.962	$2 \cdot$
8625	805.1235	7.	96 L I	L 88₹•96L	I.
2217	6778.708	T.	7720106.2	2012.967	13.0
6199906.7	₹999.₹08	0.91	8278	L186.96L	$6 \cdot$
GIIT	6782.408	$ 6\cdot $	8827	1899.964	8.
1197	8600 ⋅ ₹08	∖8∙	L112	9478.897	L .
9011906.2	8087-808	L .	961₹	0960 • 962	$9 \cdot$
1096	803.4522	$ 9\cdot $	₹297	9218·₹62	15.2
9608	7871.808	9.91	7.3001127	0683 ⋅ ₹67	₹•
8899	2968.208	₹•	6796	₹09Z·₹6L	8.
1809	9919.208	6	9018	6186.864	7.
₹258	1868 · 208	7.	7899	8807.867	Ţ.
9907	805.059	1 1	8909668.7		
8990106.7	0184 · 108	[0.91]		8971.867	1 1
6₹06	801.2052	1	8008	778.267	
6897	801.2239		7870668·Z		1 1
6209	l -	1	9968	3018.267	i l
8197	8999.008	1	8247	1380.267	1 '
2.9033007	888.008	1	0069868.2	9894 . 164	1
		0			0
$\frac{1}{2}(3 + 1)$	$\frac{(3\delta+1)}{}$		$\cdot [(3\delta + 1)$	·(a o 4. 7)	
X 097] .30.1	× 094	7	X 097] .20J	$\begin{array}{c c} \times 094 \\ \hline \times 094 \end{array}$	7
			7.0043 201	7.004	

TABLE FOR CORRECTION OF VOLUMES OF GASES—continued,

1				· · · · · · · · · · · · · · · · · · ·	
t	$760 \times (1 + \delta t).$	$\begin{array}{c} \text{Log.} [760 \times \\ (1 + \delta t)]. \end{array}$	$oldsymbol{t}$	$760 \times (1 + \delta t).$	$\begin{array}{c} \text{Log.} [760 \times \\ (1 + \delta t)]. \end{array}$
J			0		
17.6	809.0230	2.9079609	$20 \cdot 7$	817 · 6578	2.9125716
•7	809:3016	2.9081104	.8	$817 \cdot 9363$	7195
.8	$809 \cdot 5801$	2598	.9	$818 \cdot 2149$	8674
•9		4092	$21 \cdot 0$	818 • 4934	2.9130152
$18 \cdot 0$	-	2.9085586	•1	818.7719	1630
.1	810 · 4175	7079	\cdot_2	_	3107
2	810 · 6943	8571	•3	l	4583
.3	1	2.9090063	•4		6059
•4	811.2514	1554	21.5		7535
18.5	811 · 5299	3045	•6		9010
• 6	811.8084	4535	.7	$820 \cdot 4432$	2.9140485
.7	812.0870	6025	•8	820.7217	1960
.8	$812 \cdot 3655$	7515	$ \cdot 9 $	821.0003	3434
.9	812 · 6441	9004	$22 \cdot 0$	$821 \cdot 2788$	2.9144907
19.0	$812 \cdot 9226$	2.9100492	• 1	$821 \cdot 5573$	6380
•1	$813 \cdot 2011$	1980	•2	821 · 8859	7852
•2		3467	•3	$822 \cdot 1144$	9323
.3	813.7582	4954	•4	$822 \cdot 3930$	2.9150794
•4	,	6440	22.5	822 · 6715	2265
19.5		7926	•6	$822 \cdot 9500$	3735
6		9411	.7	823 • 2286	5205
.7		2.9110896	8 • 8	823.5071	6674
8		2380	9	$823 \cdot 7857$	8143
.9	ł	3864	$23 \cdot 0$	824 · 0642	2.9159611
$ 20\cdot 0 $	i i	2.9115347	•1	$824 \cdot 3427$	2.9161079
1	815.9865	6830	•2	$824 \cdot 6213$	2 546
•2		8312	•3	$824 \cdot 8998$	4013
	816.5436	9794	•4		5479
•	816.8222	2.9121275	1	825 4569	6945
	817.1007	2756		$825 \cdot 7354$	8410
6	$817 \cdot 3792$	4236	.7	826.0140	9875

1411976 · 7 | 0799 · 848 | 0 · 08 | **L8**₹9 834 - 9273 6. 2038 7844-6487 8. 9846 ·8 843·5832 6898 884.3702 L. 1088 6700.878 8. 6817 9160.788 9. 9989 ₹977.2£8 7· 8890176.7 833·813I G . 97 ISPG 845.4478 1876 833.2346 ₽. 2668 8691.718 9.67 9811 0993.888٤. 6997 8068 · I †8 † • 6553 835.9775 7, . 251122 2219.148 8. 088₽ Τ. $6869 \cdot 788$ ¥896 72 841-3337 7.9203427 0.97832.4204 9178 IGG0.148.1. **₽**161 832-1419 $6 \cdot$ 7089<u>¥</u>26·2 2.9200520 9944.078 0.67 881.8633 8. 8989 1867.018 6. **9**906 831.2848 ۷. 8368 2612.018 8. 0194 7908 · ISS 9. 2488 0176.688 L. 9919616.7 831 · 0277 9.97 LF01776.7 7799.688 9. 669¥ 880.7492 ₹. 9096876.7 6888 688 6 889 3242 90747088 ٤. 9918 ₱\$01.688 ₱. **1785** 1261 · 088 7. 6723 8978 888 8 8780616.7 829.9135 T. 1879 888.2483 0788816.2 7. 0.970989.6788888 L697 · 888 Ι. 2112 9998.628 $6 \cdot$ 2.62323927166.488 0.881**₹**969 6240.6388. 1960876.7 7217 - 758 $6 \cdot$ **96₽₽** ₹66L·878 L. 2096 1484.4841 3032 8079 878 9. 9991.488 4. 2908 GLGI 828.2423 9.77 **LI99** $0778 \cdot 388 \cdot 399$ 7.9180114 8896 - 178 ₽. ILIG 9869.988 9.47 7987589.728 8. 3725 0078·988 F. 0614 **490**₹ · **478** 7. 6222 *I+0.988 g. 8749 1821-728 Ι. [5.6550835]6794.9887. 2977716·2 9678.9780.77 **1886** 832.4843 2082 Į. 1178.528 $6 \cdot$ 9862176.7 5.9171339 8907 988 0 27 2767.978 8.870 $.[(3 \delta + 1)$ $(1+\delta t)$ $(1+\delta t)].$ $(1+\delta t).$ 2 2 X 091] .Bod Log. [760 X \times 094 X 094

TABLE FOR CORRECTION OF VOLUMES OF CASES—continued.

Tension of Aqueous Vapour in Millimetres of Mercury, from -9.9° to $+35^{\circ}$ C.

	1 .						· · · · · · · · · · · · · · · · · · ·
0	nim.	0	mm.	0	mm.	0	mm.
-9.9	2:0.6	-7.3	2.603	-4.7	3.206	$-2 \cdot 1$	3.925
•8	•114	• 2	624	6	•231	-2.0	.955
•7	132	•1	•645	•5	257	j .	3.985
•6	150	-7.0	1 '	-4.4	1	I .	4.016
•5	:	-6.9	2.688		•	•7	
-9.4		.8		$\cdot \hat{2}$		•6	
•3		.7		•1		.5	
$\cdot 2$		• 6				-1.4	
$\cdot \bar{1}$.5	.776	1	3.414	-1.1	
-9.0		-6.4				•2	. 1
	2.280	. 3	821	.7		.1	: .
•8		$\cdot \dot{ extbf{2}}$.844	6		-1.0	i i
•7	1 1 1	•1	·867	.5		l	$4 \cdot 299$
$\cdot 6$	1	-6.0	.890	-3.4		-0.8	
•5	- 1	-5.9	914	$\begin{bmatrix} -3 & 4 \\ & 3 \end{bmatrix}$		9	
-8.4	1	-9.8		1		·7	
$\begin{bmatrix} - \circ \cdot 3 \end{bmatrix}$	396	•7	1	1		6	, .
	1	-		1		•5	
•2		$\cdot 6$	1			-0.4	
•1	1 !		3.010	1	3.691	.3	
-8.0			3.034	.8		•2	
	2.477		1	•7	, , – ,	• 1	
.8	1 1	•2			i	ł	$4 \cdot 600$
•7	1	•		i			4.600
•6	1 !	-5.0		-2.4		•1	-
.5			$[3 \cdot 156]$	1	·865	•2	
-7.4	•582	•8	•181	•2	· 89 5	~3	•700
· .							
Security and the second secon		OR PERSONAL PROPERTY OF THE PERSONS IN COLUMN 1		-	-		أبرجين بمحروب

686. 8. 987.894. g.g₽• 089.9. .653 7. 181. 8. LIL.₽. 167. 5.2 768. T. 156 z. 1149. ₽**₽**₽• 8. ₽. 0.11 270. 767.6T. **979.** 7. 917. 8. 6.01 210.8 874. 0.8Ţ. 089. 878 7. **999**. 8. ₹96. $6 \cdot$ ₽86.9 0.9.340 T. ۷. 109. 016 8. 067.6.₽ 2.305 $0 \cdot 7$.237 9.**L**98. ۲. Gtt. 8. 97.6·I **TLT**. 9.01 F08. 9. IOF. L. 8. 877. 412 9.1 ₽• IGL.L 768. 9. 161. L. 098. 8. $669 \cdot$ ₹. g.₽ 818. 9. GGI. 887. 7. **L**₹9. 8. $0.72 \cdot$ ₽. 811. 9.1 122· 969 , T. 7. 977. 8. 780.₽. 0 01 779. 991.6 T. 183 7. **L**₹0. 8. COI. $6 \cdot 6$ 767·L $0 \cdot L$ Ţ. 7. 011. 110.9 9.042 8. 777. 6.9460.9926. T: 0.7 **986. L**. **768**. 8. 990. $0 \cdot I$ 6.8 076. **976**. 9. 348. L. ₹10·9 8. $6 \cdot 0$ 906.**998**. $\mathbf{g.6}$ 767. 746. 9. L. 178. 8. **L08**. ₽. 242· 9.9086. 9. 988. L. 8. 8£4. · · 163 ₽. 688. 9.29. 108. $069 \cdot \cdot$ 7. ₽₽I. 8. 848. ₹• $L9L \cdot$ 9.0 8.632 I · 6 $960 \cdot L$ 7.92.807 4.733 ₽•+ $8 \cdot 8$ ·ww ·mm ·ww mm. 0 0 0 TENSION OF AQUEOUS VAPOUR—continued.

688.

778.

997.

781.

071.

#90.01 F.

6.11 778.8

G.II 748.

LIG.

19₺.

₹0₹•

167.

8.

L.

9.

 $0.\check{6}$

6.8

8.

 $L \cdot$

9.

9.8

±70·L

866.9

196.

₹06·

L98.

 $018 \cdot$

Ι.

0.9

 $6 \cdot 9$

8.

L.

9.

L9L •

LZL.

 L_{79} .

809.

 $699 \cdot$

489.G

7.

T.

 $3 \cdot 0$

6.7

8.

4.

TENSION OF AQUEOUS VAFOUR—continued.

			1			1	i i	i
0		mm.	0	mm.	0	mm.	0	mm.
+12	$\cdot 0$	10.457	$14 \cdot 9!$	12.619	17.8	15.167	20.7	18.198
	•1	526	15.0	12.699	•9	•262	.8	$\cdot 271$
1	•2	$\cdot 596$	•1	·781	18.0	15.357	$ 20 \cdot 9 $	•383
	•3	6.5		.864			$21 \cdot 0$	$18 \cdot 495$
1.	•4	·734		•947		•552		610
19				13.029	1	650		$\cdot 724$
1	$\cdot 6$		15.5		1	•747		839
1	.77	• 947	· 6	•197	18.5	845		
1	· Q	11.019	•7	281	.6	•945	21.5	
	• 0	.010	1 .8	·281 ·366	1 .7	16.045	6	187
119	3.0	11.169	15.9	451		3:145	•7	1 7
110	$\cdot 1$	•925	16.0	13.536				•423
	$\cdot \overset{1}{2}$	$\cdot 309$		623	19:0	16.346		
1	•3	•383		.710	1.1	.449	$\frac{1}{2} \frac{1}{2} \cdot 0$	19.659
1		$\cdot 456$		•797		$\cdot 552$		•780
1,	$rac{\cdot 4}{3 \cdot 5}$		• [1		655		
1 16			1:5			655 6758	$\parallel \cdot \bar{3}$	20.022
	6			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10.	861	\parallel . •4	143
1	•7	l .		14.002		$\begin{vmatrix} \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot \end{vmatrix}$	$22 \cdot 5$	1
1 .	8.	1 _				7 17 . 078		
	$3.\overline{9}$			241		3 .179	111	514
1		11.908	5 16 6	331			11	
ł	•1	1) I.V. (14.421	19.9			1 3
		12.06	* 1		201	$0.17 \cdot 391$	1 22 6	100
	.3	I				1 .500		20.888
	•4	1		697	1	$2 \cdot 608$	I L	21.016
1		12.298			1	$3 \cdot 71$		
1	•6	1		5 .882	: 1	4 .826	1	3 • 272
	·· 7	1	3 • 6	3° $\cdot 977$	$7 20^{\circ}$	5 93		400
	•8	•538	3 1	7,15.072	2	$6^!_1 18 \cdot 04'$	7 23	5 .528
]	
Name and Address of the Owner, where		-	-					

TENSION OF AQUEOUS VAPOUR—continued.

L78•			1	}	, .		
178	13	094.	z.	902	g.	889.	₹.
.=UU:			· ·	30.131	! I		g.
	- 11	82.329					ž.
	8.	691.68	$6 \cdot 18$	784.67	0.62	25.138	Ĭ.
981 . 14	۱. ا	6 9 $6 \cdot$	8.	.612	6.82	886.₽7	0.97
206.	$oldsymbol{9} \cdot \parallel$	194.	۱.				6.97
089	34.5	₹99.	9.	172.	۷٠	L69·	8.
		898•	31.5	101.62	9.	.222	۷٠
•530	£•	₹4.174	₹•	186.82			$9 \cdot$
200·0₽	1.0		8.	992.	₽•	197.	25.5
1				669.		24·119	₽•
39.262	: 1	1		i - ·	7.	946.	$\epsilon \cdot$
		99.405	$0 \cdot 18$	792.	I.	₹88 •	₹.
39 · 154	- 1			101.87	0.82	$769 \cdot$	I.
90 6 • ,	1	$930 \cdot 68$	8.	$686 \cdot$		$023 \cdot 550$	0.62
h 1				844.		II.	$6 \cdot$
E 1		0 9 \cdot		719.		.273	8.
		E9 .			$9 \cdot$	23 · 132	L •
GF0.88	L L		$lat{v} \cdot \mid$	1		,	$9 \cdot$
		₹60 • 78		981 - 72		828	24.5
				876.		$\cdot 723$	₹ •
97·410			1.	·850		889.	$\epsilon \cdot$
		846.18				£64.	$2 \cdot$
		698			$5.0 \cdot 7.2$	918	1.
9 .	1 1		8.	168.		181.22	
1	1	110.18	t	861.)	820.22	1
	$32 \cdot 5$	1 ' '	$9 \cdot$	970.97		126.	8.
36.165	4 ° ' ' ' ' '			168		062 •	L.
.mm .mm	1 1	64.08	i .	887.69	1	69.17	
l uu	0	uu	0	.anar	0	mm.	0

LOGARITHM OF NUMBERS FROM 0 TO 1000.

				1		1	1	1	I		
No.	0	1	2	3 .	4	5	6	7	8	9	Prop.
0	0	00000	30103	47712	60206	69897	77815	84510	90309	95424	
10	00000	00432	00860	01284	01703	02119	02530	02938	03342	03743	415
11	04139	04532	04922	05307	05690	06070	06446	06819	07188	07555	379
12	o 79 18	08279	08637	08990	09342	09691	10037	10380	10721	11059	344
13	11394	11727	12057	12385	12710	13033	13354	13672	13988	14301	323
14	14613	14922	15229	15533	15836	16137	16435	16732	17026	17319	298
15	17609	1789 8	18184	18469	18752	19033	19312	19590	19866	20140	281
16	20412	2 0683	20952	21219	21484	21748	22011	22272	22531	22789	264
17	23045	233 00	23553	23805	24055	24304	24551	24797	25042	25285	249
18	25527	2576 8	26007	26245	26482	26717	26951	27184	27416	27646	234
119	27875	28103	28330	28556	28780	29003	29226	29447	29667	29885	222
20	30103	3032 0	30535	30749	30963	31175	3 1386	31597	31806	32015	212
21	32222	32428	3263 3	3283 8	33041	33244	33445	33646	33846	34044	202
22	34242	34439	34635	34830	35025	35218	35411	35603	35793	35984	193
23	36173	36361	36549	36736	36922	37107	37291	37475	3765 8	37840	185
24	38021	38202	38382	38561	38739	38916	39094	39270	39445	39619	177
25	39794	39967	40140	40312	40483	40654	40824	40993	41162	41330	170
20	41497	41664	41830	41996	42160	42325	42488	42651	42 813	42975	164
27	43136	43297	43457	43616	43775	43933	44091	44248	44404	44560	158
28	44710	44871	45025	45179	45332	45484	45637	45788	45939	46090	153
20	40240	40389	40001	46687	46835	46982	47129	47276	47422	47567	148
30	4//12	47857	48001	48144	48287	48430	48572	48714	48855	48996	143
21	40726	40076	10178	10821	10000	40007		* 0.00	* 00.40	" • • • • •	
33	4010U	49410 50651	49410:	49004	49693	49831	49969	50106	50243	50379	38
32	81981	K1005	50114	50044	50075	21189	51322	01400	51587	51720	134
34	521/2	52075	K2402	52444 52500	5265e	52004	52634 53908	52763	54150	53020	130
35	54407	5/521	546K4	54777	53000 54000	55000	55145	04033	54108	54283	126
36	55630	55751	55971	55001	5611A	56000	56348	50207	00388	55509	122
37	56820	56937	57054	57171	57997	57409	57519	57694	57740	57000	112
38	57978	58093	58206	58320	58432	5954£	58659	50771	50000	50005	110
39	59106	9218	59328	59430	59550	50880	59770	50070	50000 50000	60005	119
40	0206	50314	30423	30531	60638	60745	60853	ROCKO	61066	61170	107
-)				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00000	5,0 1.20	00000	66600	01000	01112	70.4
!.								1	{		ŧ

Indices of Logarithms:— Log. 4030 = 3.60530 , 403 = 2.60530 40.3 = 1.60530 Log. 4·03 = ·60530 , ·403 = $\overline{1}$ ·60530 , ·0403 = $\overline{2}$ ·60530 , ·00403 = $\overline{3}$ ·60530

LOGARITHM OF MUMBERS FROM 0 TO 1000-continued.

	{	8069 1	pərinp	No. re		08 270 1	ι.ε = j	dnireq	og, re	Ţ	
ζ=·	r Dia	8 =81	-Prop.	. 269 :	Diff.	····	 '				₹
					1	₹30	=	g	Diff.		10.1
804	$4 \cdot \varepsilon = 3 \cdot t$	006 9	70. 700	mnu n	au i	91702	=3.5	C	908 to 808 to		ntit
714	4.8	20, T	lo red	առս բ	(d) <u>(d</u>				OF POS	90 I F	
1		Ì	Ī		1						
79	9098	82003	7 7678	08878	6 1 8 1 8	494 †8	96978	7E978	74978	0 I 9 † 8	04
£9 [†]	84448	98278	84323	19778	86178	98178	84018	11018	87688	83882	69
£9	77888	69488	96988	2E9E8	69988	90988	83445	84888	83312	183261	88
79	183187	83123	69088	856628	87930	99878	87807	48728	74978	40978	49
99	87243	84428	82413	14628	8228	41228	85121	9802 8	02028	†9618	99
49	68818	81853	49418	06918	₽ 7918	81228	16718	81425	81358	16218	35
89	81774	87778	06018	81023	99608	6 8808	12808	†94 08	98908	81908	150
69	80220	28408	₹1₹0 8	9 ₽£08	77208	60208	0+108	27. 0 8	80008	†8664	88
04	99864	96464	42464	49964	88964	81367	67164	64864	60864	68264	25
14	69164	66064	67064	89684	88884	41884	97484	91981	70984	EE387	15
74	79 ₹8 <i>L</i>	06884	61884	4 ₹784	94184	F0184	ZE084	09644	48844	91844	09
84	557777	04944	16911	97911	29777	64844	90844	25277	69144	98044	69
72	7.1011	88694	₹9894	06494	91494	11994	49994	76794	81794	E₹E94	85
94	89791	26194	81197	27094	49694	16894	91894	07494	₱9994	48994	45
44	T1992	15435	15358	78237	20297	82194	12027	74674	96874	6I87 <i>4</i>	<u> </u>
81	17272	14663	98971	4097L	67774	19874	 E4774	†6I7L	91174	9E074	ĞĞ
08	49684	84884	66484	61484	68984	¦099E <i>1</i>	08 7 84	66884	73320	68284	79
18	69184	84084	46674	91674	72832	75754	E7827	16927	60974	82427	83
28	97824	89774	18127	66024	91024	EE617	09814	49414	₹8914	00912	789
⊉ 8	11914	EE#17	67814	29214	18114	96014	21017	47604	Z7804	49404	LS
98	27907	98904	10904	91704	62804	ET 704	49104	02004	₹8669	46869	0
88	01869	82769	98969	87969	19769	84869	98769	46169	80169	07069	6
06	18689	77889	68753	79989	₱4989	98789	96889	90889	1289	7 7189	8.
76	±2089	E7649	29819	19119	69949	84949	98749	76849	Z0E49	01249	L
96	LTT19	97049	78699	68839	97199	79999	89999	†9 †99	104899	94799	9
96	18199	148099	76699	96899	10899	90499	60999	₱1999	8 I †99	12639	Ğ
86	977.99	87199	12099	8£649	98879	88748	107979	Z7979	1 77779	197879	171
66	61246	47179	87079	67689	6¥8£9	67489	6₹9€ 9	87989	87789	47889	3
Z01	97789	PT 189	63043	117679	68839	148478	II7€979	TE979	182428	975579	<i>S</i>
₩ 01	12229	81129	₹1029	60619	90819	00419	96919	06719	48819	84619	_
Prop.	6	8	4	9	g	₹	8	2	τ	0	No.

LOGARITHM OF NUMBERS FROM 0 TO 1000-continued.

No.	0	1	2	3	4	5	6	7	8	9	Prop.
71	8 5126	85187	85248	85309	85370	85431	85491	85552	85612	85673	61
72	85733	85794	85854	85914	85974	86034	86094	86153	86213	86273	60
								86747			59
74	86923	86982	87040	87099	87157	87216	87274	87332	87390	87448	58
75	87506	87564	87622	87680	87737	87795	87852	87910	87967	88024	57
76	88081	88138	88196	88252	88309	88366	88423	88480	88536	88593	57
77	88649	88705	08762	88818	88874	88930	88986	89042	89098	89154	56
78	89209	89265	89321	89376	89432	89487	89542	89597	89653	89708	55
79	89763	89818	89873	89927	89982	90037	90091	90146	90200	90255	54
80	90309	90363	90417	90472	90526	90580	90634	90687	90741	90795	54
						1					
81	90848	96902	90956	91009	91062	91116	91169	91222	91275	91328	53
82	91381	91434	91487	91540	91593	91645	91698	91751	91803	9185 5	53
83	91908	91960	92012	92065	92117	92169	92221	92273	92324	92376	52
84	92428	92480	92531	92583	92634	92686	92737	92789	92840	92891	51
85	92942	92993	93044	93095	93146	93197	93247	93298	93349	93399	51
								93802			50
87	93952	94002	94052	94101	94151	94201	94250	94300	94349	94398	49
88	94448	94498	94547	94596	94645	94694	94743	94792	94841	94890	49
89	94939	94988	95036	95085	95134	95182	95231	95279	95328	95376	4.8
90	95424	95472	95521	95569	95617	95665	95713	95761	95809	95856	48
1		<u> </u>	1	ļ							
91	95904	95952	95999	96047	96095	96142	96190	96237	96284	96332	48
92	96379	96426	96473	96520	96567	96614	96661	96708	96755	96802	47
								97174			47
94	97313	97359	97405	97451	97497	97543	97589	97635	97681	97727	46
95	97772	97818	97864	97909	97955	98000	98046	98091	98137	98182	46
96	98227	98272	98318	98363	98408	98453	98498	98543	985 88	98632	45
								98989			45
								99432			44
								99870			44
			l	!	ļ	i	1	•			

To multiply by logarithms, add the logarithms together and find

the corresponding number.

To divide by logarithms, subtract one from the other.

To extract the root, divide the logarithm by the index of the root and find the number corresponding to it.

To raise a number to any power, multiply the logarithm by the index of the power and find the corresponding number.

Rules for Converting Parts fer 100,000 into Graius per Gallon, or the reverse.

To convert parts per 100,000 into grains per gallon, multiply by 0.7.

To convert grains per gallon into parts per 100,000, divide by 0.7.
To convert grains per litre into grains per gallon, multiply by 70.

I grain per gallon = .01425 grain per litre.

Log. $\frac{0.0012562}{(1+.00367\ t)\,760}$ for each tenth of a degree from 0° to

REDUCTION OF CUBIC CENTIMETRES OF MITROGEN TO

								i		·
8 7 7	6 43	69 7	4 7 7	06₹	202	123	989	223	499	8
£ 83	869	₹19	679	9₹9	199	949	769	804	£27	4
684	994	044	984	108	418	EE 8	8 7 8	₹9 8	64802.9	9
9 68∗	116*	976*	7 ₹6*	496 *	E46*	686*	₹00	020	032	g
190	490	883	860	ħΙΙ	130	37 2	191	44T	76 <u>T</u>	₹
802	223	5 38	322	042	987	302	318	333	6₹8	ε
₹98	380	968	412	4 ሪ ት	EPP	69 7	947	16≯	409	7
223	883	₹99	049	989	109	419	EE9	679	999	I
189	469	E14	674	974	194	244	E64	808	<u>6</u> .21824	0
				ļ						0
6.0	8.0	4.0	9.0	9.0	₹.0	E.0	2.0	1.0	0.0	.D.1
		1						<u> </u>		

REDUCTION OF CUBIC CENTIMETRES, &c.—continued.

tC.	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
0										
9	413	397	3 8 2	366	351	335	320	304	289	274
10	259	244	22 8	213	198	182	167	151	136	121
11	106	090	075	060	045	029	014	*999	*9 84	*969
12	6.19953	938	923		892	877	862			816
13	800	785	770	755	740	724	709	694	679	664
14	648	633	618	603	5 88	573	55 8	543	52 8	513
15	497	482	467	452	437	422	407	392	377	362
16	346	331	316	301	2 86	271	256	241	226	211
17	196	181	166	157	136	121	106	091	076	061
18	046	031	016	001	*986	*971	*956	*941	*926	* 911
1										
19	6.18897	882	867	852	837	822	807	792	777	762
20	748	733	718	703	6 88	673	659	644	629	614
21	600	585	570	555	540	526	511	496	481	466
22	452	437	422	408	393	378	363	349	334	319
23	305	290	275	261	246	231	216	202	187	172
24	158	143	128	114	099	084	070	055	041	026
25	012	*997	*9 82	*968	*953	*938	*924	*909	*895	*880
26	6.17866	851	837	822	-808	793	779	764	750	735
27	721	706	692	677	663	648	634	619	605	590
2 8	576	561	547	532	5 18	503	489	475	460	446
29	432	417	403	3 88	374	360	345	331	316	302

CLARR'S TABLE OF HARDYESS OF WATER.

	0.58	91
L · I	8.08	91
8.1	28.5	1 [
8.1	7.92	13
8·I	6.43	21
8.1	1.82	II
8.1	21.3	01
6 · I	†·61	6
6 · I	$ \sqrt{2} \cdot L \mathbf{I}$	8
6·I	9.31	L
0.2	9.81	9
0.2	9.11	Ĝ
0.2	$9 \cdot 6$	₽ .
0.2	$9 \cdot L$	8
2.2	$\mathcal{F} \cdot \mathcal{G}$	7
2.2	$3 \cdot 8$	I
8 · I	₹·I	с0
Differences for the next to VI hardness.	Measures of Soap Solution,	Degrees of Hard- ness (Pure Water).

Each measure equals 10 grains, the quantity of water operated upon equals 1000 grains, and each "degree of hardness" indicates I grain of calcium carbonate per gallon.

TABLE OF HARDNESS, PARTS IN 100,000. (50 c. c. of water operated upon.)

Volume of Soap Solution.	CaCO ₃ per 100,000.	Volume of Soap Solution.	CaCO ₃ per 100,000.	Volume of Soap Solution.	CaCO ₃ per 100,000.
		<u> </u>		<u> </u>	
c. c.	.00	c. c.		c. c.	
0.7	.00	4.2	4.86	7.7	9.86
0.8	•16	•3	5.00	•8	10.00
0.9	*32	•4	•14	.9	•15
1.0	•48	•5	•29	8.0	.30
.1	. 63	.6	•43	•1	•45
•2	•79	.7	•57	•2	.60
•3	•95	•8	•71	3	.75
4	1.11	.9	•86	•4	•90
•5	•27	5.0	6.00	•5	11.05
.6	•43	•1	•14	• 6	•20
• 7	•56	•2	•29	•7	•35
•8	•69	•3	•43	₩ •8	•50
•9	•82	•4	•57	•9	•65 .
2.0	•95	•5	•71	9;0	•80
•1	2.0 8	•6	•86	•1	•95
•2	•21	• 7	7.00	$ \cdot_2 $	12.11
•3	•34	•8	•14	•3	•26
•4	•47	•9	•29	•4	•41
•5	•60,	6.0	•43	•5	•56
•6	•73	•1	•57	• 6	•71
•7	•86	•2	•71	.7	•86
•8	•99	•3	•8 6	1 .8	13.01
.9	3.12	•4	8.00	•9	•16
3.0	•25	•5	•14	10.0	•31
•1	•38	•6	•29	·i	•46
\cdot_2	•51	-7	•43	$\cdot \hat{2}$	•61
•3	•64	•8	.57	•3	•76
•4	•77	•9	•71	•4	•91
•5	•90	7.0	•86	•5	14.06
•6	4.03	i i	9.00	•6	•21
•7	•16	$\mathbf{\tilde{2}}$.14	.7	•37
•8	•29	•3	•29	.8	•52
•9	•43	•4	•43	.9	· 68
4.0	•57	•5	•57	11.0	•84
1	.71	•6	.71	11 0	15.00
	-	ŭ	• •		10 00
	() 				

 $M_{S_2}CO_3$

 $MgU]_2$

OgM

CaSO.

 $\widetilde{\mathrm{C}^g}\widetilde{\mathrm{CO}^3}$

 C^gOI^s

OaO

Form.

TABLE OF HARDNESS-continued.

20.40 20.40 20.72 38. 30.72 38. 38. 39. 39. 39. 39. 39. 39. 39. 39	0.91 6. 8. 4. 9. 2. 1. 0.91 6. 8. 4. 9. 9. 9.	77. 80.07 76. 94. 99. 67. 81.61 46. 18. 99. 67. 20.81	**************************************	04. 79. 88. 77. 90.41 06. 94. 69. 27. 11.91 96. 64. 89. 87. 78. 91.91	8. 4. 9. g. T. 10.21 6. 8. 4. 9. g. T. 11 '0 '0
CaCO ₃ per 100,000,	Volume Qsog to Golution,	CaCO ₃ per 100,000.	Volume Solution.	CaCO ₃ Per 100,000.	Volume Qso2 to Solution.

TABLE SHOWING THE QUANTITIES OF THE FOL-

<u> </u>						
	Матев.	E OE	ятіЛ А	NI	ISSOFAED	MHEN D
(due)	вотім є ткі	HAD	з(реске	NES	OF HARD	Денне
ONE	PRODUCE	\mathbf{OT}	CIRED	ЯĘ	BODIES	FOMIKG
_						

 $\mathrm{CO}_{\mathbf{z}}$ (gas)

 $\operatorname{CI}_{\operatorname{SO}^3}$

Va2SO4

MgSO₄

Form,

5 c. c.

.0078

7800.

9710.

.0150

.0152

Grams.

8800.

0600.

· 0045

0110.

.0103

₹110·

L900 ·

Grams.

TABLE I.—FOR DEW POINT.

To obtain the dew point, multiply the difference of reading of the thermometers by the factor opposite the dry-bulb reading and subtract the product from the dry-bulb reading.

		_		! _	1		
Dry- bulb Ther. F.	Factor.	Dry- bulb Ther. F.	Factor.	Dry- bulb Ther. F.	Factor.	Dry- bulb Ther. F.	Factor.
10	8.78	33	3.01	56	1.94	78	1.69
11	8.78	34	2.77	57	1.92	79	1.69
12	8.78	35	2.60	5 8	1.90	80	1.68
13	8.77	36	2.50	59	1.89	81	1.68
14	8.76	37	2.42	60	1.88	82	1.67
15	8.75	38	2.36	61	1.87	·8 3	1.67
16	8.70	39	2.32	62	1.86	84	1.66
17	8.62	40	2.29	63	1.85	85	1.65
18	8.50	41	2.26	64	1.83	86	1.65
19	8.34	42	2.23	65 '	1.82	87	1.64
20	8.14	43	2.20	66	1.81	88	1.64
21	7.88	44	2.18	67	1.80	89	1:63
22	7.60	45	2.16	6 8	1.79	90	1.63
23	7.28	46	2.14	69	1.78	91	1.62
24	6.92	47	2.12	70	1.77	92	1.62
25	6.23	4 8	2.10	71	1.76	93	1.61
26	6.08	49	2.08	72	1.75	94	1.60
27	5.61	5 0	2.06	73	1.74	95	1.60
2 8	5.12	51	2.04	74	1.73	96	1.59
29	4.63	52	2.02	75	1.72	97	1.59
30	4.15	53	2.00	76	1.71	98	1.58
31	3.70	54	1.98	77	1.70	99	1.58
32	3.32	55	1.96				

TABLE II., SHOWING THE MAXIMUM ELASTIC FORCE OF AQUEOUS VAPOUR IN INCHES OF MERCURY FOR EVERY DEGREE FAHR, FROM 0° TO 100°.

99 99 99 99 99 99 99 99 99 99 99 99 99	816.1 798.1 908.1 194.1 469.1 969.1 849.1 109 1 909.1 877.1 87	001 66 86 46 96 96 76 88 88 88 88 88 88 88 88 88 88 88 88 88	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	199. 689. 419. 969. 949. 949. 959. 819. 687. 888. 818. 888. 818. 888. 412. 497. 497. 497. 497. 497. 497. 497. 497	19999999999999999999999999999999999999	844449999999999999999999888888888888888	881. 181. 741. 091. 621. 471. 171. 981. 621. 811. 801. 801. 801. 801. 800. 760. 740. 140. 890. 790.	01234567899113416111123456782333333334567899113456789923333456789933333333333333333333333333333333333
Di K.	Force of Vapour. Inch. of Mercury.	Temp.	Dia:	Force of Vapour, Inch, of Mercury,	Temp. Fahr.	Di u .	Force of Vapour, Inch, of Mercury,	Temp. Fahr.

TABLE III.—FOR DEW POINT.

0 0.55 606.37 606.03 56 5.04 540.45 537. 5 0.68 599.83 599.40 57 5.21 539.40 536. 10 0.84 593.44 592.94 58 5.39 538.36 535. 15 1.04 587.18 586.55 59 5.58 537.32 534. 20 1.30 581.05 580.26 60 5.77 536.28 532. 25 1.61 575.05 574.08 61 5.97 535.25 531. 30 1.97 569.17 567.99 62 6.17 534.22 530. 32 2.13 566.85 565.58 63 6.38 533.20 529. 35 2.39 563.42 561.99 64 6.59 532.18 528. 40 2.86 557.77 556.03 65 6.81 531.17 527. 41 2.97 556.66	Temperature, Fahr.	Weight of a Cubic Foot of Saturated Vapour.	Weight of a Cubic Foot of Dry Air.	Weight of a Cubic Foot of Air satu- rated with Vapour.	Temperature, Fabr.	Weight of a Cubic Foot of Saturated Vapour.	Weight of a Cubic Foot of Dry Air.	Weight of a Cubic Foot of Air satu- rated with Vapour.
5 0.68 599.83 599.40 57 5.21 539.40 536.10 10 0.84 593.44 592.94 58 5.39 538.36 535.15 15 1.04 587.18 586.55 59 5.58 537.32 534.20 20 1.30 581.05 580.26 60 5.77 536.28 532.2 25 1.61 575.05 574.08 61 5.97 535.25 531.3 30 1.97 569.17 567.99 62 6.17 534.22 530.3 32 2.13 566.85 565.58 63 6.38 533.20 529.3 35 2.39 563.42 561.99 64 6.59 532.18 528.4 40 2.86 557.77 556.03 65 6.81 531.17 527.4 41 2.97 556.66 554.86 66 7.04 530.16 526.4 42 3.08 <td< td=""><td>0</td><td></td><td></td><td></td><td>5.6</td><td></td><td></td><td>Grains.</td></td<>	0				5.6			Grains.
10 0·84 593·44 592·94 58 5·39 538·36 535·15 15 1·04 587·18 586·55 59 5·58 537·32 534·20 20 1·30 581·05 580·26 60 5·77 536·28 532·25 25 1·61 575·05 574·08 61 5·97 535·25 531·3 30 1·97 569·17 567·99 62 6·17·534·22 530·32 32 2·13 566·85 565·58 63 6·38 532·18 528·40 35 2·39 563·42 561·99 64 6·59 532·18 528·40 40 2·86 557·77 556·03 65 6·81 531·17 527·41 41 2·97 556·66 554·86 66 7·04 530·16 526·44 42 3·08 555·55 553·69 67 7·27 529·15 524·44 43 3·20 554·48 <td>l i</td> <td></td> <td>ì</td> <td> </td> <td></td> <td>1</td> <td>1</td> <td></td>	l i		ì			1	1	
15 1·04 587·18 586·55 59 5·58 537·32 534·20 20 1·30 581·05 580·26 60 5·77 536·28 532·25 25 1·61 575·05 574·08 61 5·97 535·25 531·3 30 1·97 569·17 567·99 62 6·17 534·22 530·3 32 2·13 566·85 565·58 63 6·38 533·20 529·3 35 2·39 563·42 561·99 64 6·59 532·18 528·4 40 2·86 557·77 556·03 65 6·81 531·17 527·41 41 2·97 556·66 554·86 66 7·04 530·16 526·44 42 3·08 555·55 553·69 67 7·27 529·15 524·4 43 3·20 554·44 552·52 68 7·51 528·14 522·4 45 3·44 <	1		i]	1	i .	:	
20 1·30 581·05 580·26 60 5·77 536·28 532· 25 1·61 575·05 574·08 61 5·97 535·25 531· 30 1·97 569·17 567·99 62 6·17·534·22 530· 32 2·13 566·85 565·58 63 6·38 533·20 529· 35 2·39 563·42 561·99 64 6·59 532·18 528· 40 2·86 557·77 556·03 65 6·81 531·17 527· 41 2·97 556·66 554·86 66 7·04 530·16 526· 42 3·08 555·55 553·69 67 7·27 529·15 524· 43 3·20 554·44 552·52 63 7·51 528·14 523· 45 3·44 552·24 550·19 70 8·01 526·15 521· 46 3·56 551·15 549·	1			1	1	j		ĺ
25 1 · 61 575 · 05 574 · 08 61 5 · 97 535 · 25 531 · 30 30 1 · 97 569 · 17 567 · 99 62 6 · 17 · 534 · 22 530 · 32 32 2 · 13 566 · 85 565 · 58 63 6 · 38 533 · 20 529 · 33 35 2 · 39 563 · 42 561 · 99 64 6 · 59 532 · 18 528 · 40 40 2 · 86 557 · 77 556 · 03 65 6 · 81 531 · 17 527 · 41 41 2 · 97 556 · 66 554 · 86 66 7 · 04 530 · 16 526 · 42 42 3 · 08 555 · 55 553 · 69 67 7 · 27 529 · 15 524 · 43 43 3 · 20 554 · 44 552 · 52 68 7 · 51 528 · 14 523 · 44 43 3 · 24 552 · 24 550 · 19 70 8 · 01 526 · 15 521 · 46 3 · 56 551 · 15 549 · 02 71 8 · 27 525 · 16			1 '	!!!	i		!	
30 1.97 569.17 567.99 62 6.17.534.22 530. 32 2.13 566.85 565.58 63 6.38 533.20 529. 35 2.39 563.42 561.99 64 6.59 532.18 528. 40 2.86 557.77 556.03 65 6.81 531.17 527. 41 2.97 556.66 554.86 66 7.04 530.16 526. 42 3.08 555.55 553.69 67 7.27 529.15 524. 43 3.20 554.44 552.52 68 7.51 528.14 523. 44 3.32 553.34 551.35 69 7.76 527.14 522. 45 3.44 552.24 550.19 70 8.01 526.15 521. 46 3.56 551.15 549.02 71 8.27 525.16 520. 47 3.69 547.89 545.				!	j .) : ,	' i	531.69
32 2·13 566·85 565·58 63 6·38 533 20 529·35 35 2·39 563·42 561·99 64 6·59 532·18 528·40 40 2·86 557·77 556·03 65 6·81 531·17 527·41 41 2·97 556·66 554·86 66 7·04 530·16 526·44 42 3·08 555·55 553·69 67 7·27 529·15 524·44 43 3·20 554·44 552·52 6s 7·51 528·14 523·44 44 3·32 553·34 551·35 69 7·76 527·14 522·4 45 3·44 552·24 550·19 70 8·01 526·15 521·4 46 3·56 551·15 549·02 71 8·27 525·16 520·4 47 3·69 550·06 547·85 72 8·54 524·17 519·4 48 3·82 548·97 546·69 73 8·82 523·18 517·4 49	30			,	1	!	1	530.55
35 2·39 563·42 561·99 64 6·59 532·18 528·40 40 2·86 557·77 556·03 65 6·81 531·17 527·41 41 2·97 556·66 554·86 66 7·04 530·16 526·44 42 3·08 555·55 553·69 67 7·27 529·15 524·44 43 3·20 554·44 552·52 6s 7·51 528·14 523·44 44 3·32 553·34 551·35 69 7·76 527·14 522·4 45 3·44 552·24 550·19 70 8·01 526·15 521·4 46 3·56 551·15 549·02 71 8·27 525·16 520·4 47 3·69 550·06 547·85 72 8·54 524·17 519·4 48 3·82 548·97 546·69 73 8·82 523·18 517·4 49 3·96	32		1 ' 1				!	529.42
40 2·86 557·77 556·03 65 6·81 531·17 527·41 41 2·97 556·66 554·86 66 7·04 530·16 526·44 42 3·08 555·55 553·69 67 7·27 529·15 524·4 43 3·20 554·44 552·52 6s 7·51 528·14 523·4 44 3·32 553·34 551·35 69 7·76 527·14 522·4 45 3·44 552·24 550·19 70 8·01 526·15 521·2 46 3·56 551·15 549·02 71 8·27 525·16 520·3 47 3·69 550·06 547·85 72 8·54 524·17 519·3 48 3·82 548·97 546·69 73 8·82 523·18 517·4 49 3·96 547·89 545·53 74 9·10 522·20 516·3 50 4·10 <td< td=""><td>35</td><td></td><td> :</td><td></td><td></td><td></td><td>ĺ</td><td>528 • 28</td></td<>	35		:				ĺ	528 • 28
41 2.97 556.66 554.86 66 7.04 530.16 526. 42 3.08 555.55 553.69 67 7.27 529.15 524. 43 3.20 554.44 552.52 63 7.51 528.14 523. 44 3.32 553.34 551.35 69 7.76 527.14 522. 45 3.44 552.24 550.19 70 8.01 526.15 521. 46 3.56 551.15 549.02 71 8.27 525.16 520. 47 3.69 550.06 547.85 72 8.54 524.17 519. 48 3.82 548.97 546.69 73 8.82 523.18 517. 49 3.96 547.89 545.53 74 9.10 522.20 516.3 50 4.10 546.81 544.37 75 9.39 521.22 515.6 51 4.24 545.74 543.21 80 10.98 516.39 509.9 52 4.	40		i :	•			1	527 • 14
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	41	2.97	556.66		i		. !	526.01
43 3 · 20 554 · 44 552 · 52 63 7 · 51 528 · 14 523 · 34 44 3 · 32 553 · 34 551 · 35 69 7 · 76 527 · 14 522 · 14 45 3 · 44 552 · 24 550 · 19 70 8 · 01 526 · 15 521 · 16 46 3 · 56 551 · 15 549 · 02 71 8 · 27 525 · 16 520 · 16 47 3 · 69 550 · 06 547 · 85 72 8 · 54 524 · 17 519 · 19 48 3 · 82 548 · 97 546 · 69 73 8 · 82 523 · 18 517 · 19 49 3 · 96 547 · 89 545 · 53 74 9 · 10 522 · 20 516 · 3 50 4 · 10 546 · 81 544 · 37 75 9 · 39 521 · 22 515 · 6 51 4 · 24 545 · 74 543 · 21 80 10 · 98 516 · 39 509 · 9 52 4 · 39 544 · 67 542 · 06 85 12 · 78 511 · 65 504 · 9	42	3.08	555.55	553.69	1		f	524.86
44 3·32 553·34 551·35 69 7·76 527·14 522·14 45 3·44 552·24 550·19 70 8·01 526·15 521·1 46 3·56 551·15 549·02 71 8·27 525·16 520·1 47 3·69 550·06 547·85 72 8·54 524·17 519·1 48 3·82 548·97 546·69 73 8·82 523·18 517·1 49 3·96 547·89 545·53 74 9·10 522·20 516·3 50 4·10 546·81 544·37 75 9·39 521·22 515·6 51 4·24 545·74 543·21 80 10·98 516·39 509·3 52 4·39 544·67 542·06 85 12·78 511·65 504·3	43	3.20	554.44	552.52	i	,	1	523.71
45 3·44 552·24 550·19 70 8·01 526·15 521·4 46 3·56 551·15 549·02 71 8·27 525·16 520·2 47 3·69 550·06 547·85 72 8·54 524·17 519· 48 3·82 548·97 546·69 73 8·82 523·18 517· 49 3·96 547·89 545·53 74 9·10 522·20 516·3 50 4·10 546·81 544·37 75 9·39 521·22 515·6 51 4·24 545·74 543·21 80 10·98 516·39 509· 52 4·39 544·67 542·06 85 12·78 511·65 504·	44	$3 \cdot 32$	553.34	551.35	69	7.76	ł	522.56
46 3.56 551.15 549.02 71 8.27 525.16 520.1 47 3.69 550.06 547.85 72 8.54 524.17 519.1 48 3.82 548.97 546.69 73 8.82 523.18 517.1 49 3.96 547.89 545.53 74 9.10 522.20 516.3 50 4.10 546.81 544.37 75 9.39 521.22 515.1 51 4.24 545.74 543.21 80 10.98 516.39 509.3 52 4.39 544.67 542.06 85 12.78 511.65 504.2	45	3.44	552.24	550.19	70	8.01		521.41
47 3.69 550.06 547.85 72 8.54 524.17 519. 48 3.82 548.97 546.69 73 8.82 523.18 517.9 49 3.96 547.89 545.53 74 9.10 522.20 516.3 50 4.10 546.81 544.37 75 9.39 521.22 515.0 51 4.24 545.74 543.21 80 10.98 516.39 509.9 52 4.39 544.67 542.06 85 12.78 511.65 504.2	46	3.56	551.15	$549 \cdot 02$	71	8.27	, ,	520.27
48 3·82 548·97 546·69 73 8·82 523·18 517·9 49 3·96 547·89 545·53 74 9·10 522·20 516·3 50 4·10 546·81 544·37 75 9·39 521·22 515·6 51 4·24 545·74 543·21 80 10·98 516·39 509·3 52 4·39 544·67 542·06 85 12·78 511·65 504·3	47	3.69	550.06	547.85	72	8.54		519.12
49 3.96 547.89 545.53 74 9.10 522.20 516.3 50 4.10 546.81 544.37 75 9.39 521.22 515.6 51 4.24 545.74 543.21 80 10.98 516.39 509.3 52 4.39 544.67 542.06 85 12.78 511.65 504.3	48	3.82	548.97	546.69	!	8.82	ı [517.98
50 4·10 546·81 544·37 75 9·39 521·22 515·6 51 4·24 545·74 543·21 80 10·98 516·39 509·3 52 4·39 544·67 542·06 85 12·78 511·65 504·3	49	3.96	547.89	545.53	74	9.10	1	516.83
51 4 · 24 545 · 74 543 · 21 80 10 · 98 516 · 39 509 · 9 52 4 · 39 544 · 67 542 · 06 85 12 · 78 511 · 65 504 · 9	50	4.10	546.81	544.37	75	9•39	521 • 22	515.69
52 4.39 544.67 542.06 85 12.78 511.65 504.	51	4.24	545.74	543 · 21	1			509.97
	52	4.39	544 • 67	542.06	1	. 1		504.19
1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 3	4.55	543.61	540.89	90	14.85	506.99	498.43
54 4.71 542.55 539.75 95 17.18 502.41 492.	54	4.71	542.55	539.75	95	17.18	502.41	492.56
55 4.87 541.50 538.60 100 19.84 497.93 486.6	55	4.87	541.50	538.60	100	19.84	497 • 93	486.65

BEHAVIOUR OF METALS WITH AIR.

Metal.	Colour.	Behaviour at Ordinary Temperatures.	Behaviour at High Temperatures.
Aluminium	White	It remains bright	Heated to reduess it burns with a white light to AloO.
Antimony	8		It oxidizes at the melting point, forming Sb ₂ O ₃ .
Arsenic Bismuth	Grey-white Reddish-	It gradually tarnishes It is unaltered in dry air, tar-	It oxidizes to As_2O_3 . It burns to Bi_2O_3 when strongly
Cadmium	white. White	nished by moist air. It remains bright in air free	heated. It burns to CdO.
Cæsium	Light-	It behaves like K. It remains bright for some time	It burns to CaO.
Cerium	grey-white	In ary arr, extures in moist. It becomes covered with a blue	It burns to Ce ₃ O ₄ , if further
Chromium	Steel-grey	It remains bright	It oxidizes on the surface to
Cobalt	Grey-white	It is unacted on by dry air, slowly exidized by moist	Strongly heated it burns with a red light, forming Co.O.
Copper	Red	It is unacted upon by dry air, in the presence of water va-	It burns at high temperatures with a green light, forming
		pour and CO ₂ it tarnishes.	CuO.

BEHAVIOUR OF METALS WITH AIR—continued.

255		C	HE	M	IST	S' PO	CK	ET-1	300K	•	
Platinum .	Palladium .	Osmium .	Nickel	Melwhale.	Manganese .	Lithium	Lead	Iron	Iridium	Gold	Metal.
	•		•	-	•			<u>:</u>			<u> </u>
	White	Bluish-	= :	3	White	Silver-white		*	White	Yellow Tin-white	Colour.
37 37	It is unacted on))	It does not tarnish It is unoxidized	Unacted on	It forms Mn ₃ O ₄	It tarnishes, becoming slightly yellow.	but rusts in moist air.	It remains bright in dry air,	It does not oxidize	It does not oxidize It remains bright	Behaviour at Ordinary Temperatures
:	:	: :	::	:	:	ing	st ai	in	:	::	Ter
:	:	: :		:	:	slig	F	dry	:	::	nper
:	:	: :	::	:	:	thtly	•	air,	:	::	atures.
ignition. It is unacted on.	At low red heat it forms PdO,	It forms OsO ₄ , which volatilizes.	It forms McO ₃ . It forms NiO	It forms HgO.	with peroxide. It oxidizes to Mn_3O_4 .	Heated above 180° C. it burns to Li ₂ O, said to be mixed	It forms Dhooms of the section of th	it oxidizes slowly. It forms Fe ₃ O ₄ .	If it has been reduced by hydrogen at a low temperature	It does not oxidize. It melts, and colours the flame	Behaviour at High Temperatures.

BEHAVIOUR OF METALS WITH AIR—continued.

			The state of the s
Metal.	Colour.	Behaviour at Ordinary Temperatures.	Behaviour at High Temperatures.
Potassium .	. White	It instantly tarnishes	It forms K_2O_4 mixed with K_2O_4
Rhodium	•	It is not oxidized	It oxidizes.
Kubidium .	. Yellowish-	It instantly oxidizes	It burns to oxide.
	white.		다.
Silver	. White	It is unacted upon, it is black-	It is not oxidized.
		ened if SH ₂ be present.	The American Strawn Strawn Commence of
Sodium		It oxidizes	Na O and Na. O.
Strontium	Gold-vellow	It tarnishes in moist air, but	It forms Si O.
			•
Thallium .	. Tin-white	It rapidly tarnishes, forming	It forms Tl ₂ O ₃ mixed with a
		$T1_2O$ and a little $T1_2O_3$.	little Tl_2O .
Tin	White	It is unacted on	It forms SnO ₂ mixed with SnO.
Titanium .	. Grey-	It is not oxidized	It forms TiO ₂ .
	powder.	1	
Tungsten .	. Steel-grey	It is unoxidized	It forms WO3 if pulverulent.
Uranium.	. White	It tarnishes	It forms U3O4 if pulverulent.
Vanadium .	•	It is unoxidized	It forms $\sqrt{205}$ (probably).
Zinc	. Bluish-	It slightly tarnishes	It forms ZnO.
	white.		(t
Zirconium	Greyish-	It tarnishes	It forms ZrO ₂ .
(amorphous)) white.		:

BEHAVIOUR OF THE METALS WITH ACIDS.

With Sulphuric Acid.

Not attacked (by Gold, iridium, osmium, plastrong or dilute) { tinum, rhodium, ruthenium.

With Dilute Sulphuric Acid.

Not attacked at ordinary temperatures.

Antimony, arsenic, lead, chromium, copper, molybdenum, mercury, silver, titanium, uranium, bismuth, tin, zirconium; palladium is slightly attacked.

Soluble with evolution of hydrogen at ordinary temperatures—

Easily Soluble.

Superficially

attacked.

Glucinum.

Cerium.

Iron.

Magnesium.

Manganese.

Thallium.

Zinc.

Cadmium.

Calcium

Strontium

Barium

Cæsium.

Rubidium.

Potassium.

Sodium.

Lithium.

Slowly Soluble.

Aluminium.

Indium.

Cobalt.

Nickel.

Chromium Soluble on

Tin

heating.

.bioA oiruhdluz gnordz AsiW

Antimony, arsenic, lead, copper, palladium (diff.), mercury, silver, biamuth, zirconium.	Soluble in hot con- centrated acid, with evolution of SO ₂ ,
Glucinum, molybdenum, indium.	Hasily soluble in cold concentrated seid.
Cadmium, iron, cobalt, man-ganese, nickel, zinc.	-pred no eldulos
Antimony, arsenic, lead, chromium, gold, iridium, copper, osmium, mercury, palladium, platinum, rhodium, ruthenium, silver, titanium, bismuth, zirtitanium,	bloo ni əldulozn I biəs bətsıtnəənoə

With Nitric Acid.

Not attacked by hot comium, gold, iridium, rho-or cold acid. dium, ruthenium,

With Dilute Nitric Asid.

Insoluble. { Aluminium, arsenic, palla slightly soluble—Glucinum, indium.

Lead, cadmium, calcium, iron, cobalt, copper, magnesium, Easily soluble.

manganese, nickel, mercury, silver, strontium, thallium, uranium, bismuth, zinc, the alkali metals; antimony and tin are oxidized, but not dis-

With Strong Acid.

Iridium.

Zirconium.

Not attacked— Aluminium)

Arsenic in the Platinum.

Palladium cold. Rhodium.

Titanium Ruthenium.

Iron (in the passive Strontium.

state).

· Calcium.

Chromium.

Gold.

Soluble in strong acid, but not soluble (or only slightly soluble) in dilute acid.

/Aluminium (on digesting), arsenic (on heating), glucinum, indium, osmium (only as powder), palladium (on heating), tita-

With Hydrochloric Acid.

Not attacked.

Antimony, gold, iridium, copper (air being excluded), molybdenum, osmium, mercury, platinum, rhodium, ruthenium, vanadium.

Slightly attacked. Arsenic, lead, palladium, silver (on the surface), bismuth and zirconium (slowly on digesting).

Aluminium, cadmium, calcium, cerium, chromium, cobalt, glucinum, iron, indium, magnesium, manganese, nickel, strontium, thallium, titanium, tin, tinc, alkali metals,

Soluble.

BEHAVIOUR OF METALS WITH SODA AND POTASH.

Antimony, iron, indium, gold, copper, molybdenum, mer-cury, nickel, silver, bismuth, vanadium. The following are attacked by fused alkali, but not by solutions: Platinum, osmium, iridium, pallatum, indium, pallatum, indium, pallatum, dium.

Insoluble.

.Aluminium, glucinum, zinc,

Soluble.

TABLE SHOWING THE BEHAVIOUR OF THE METALS (COMMON AND RARE) WITH A BORAX BEAD.

Contractions: 1. q. means large quantity, and s q. small quantity.

Colour of	In Oxidizing	Flame when	In Reducing	Flame when
Bead.	Hot.	Cold.	Hot.	Cold.
Colourless	Si, Al, Sn, Ba, Sr, Ca, Mg, Gl, Y, Zr, Tb, La, Te, Ta, Nb, W, Mo, Ti. Zn, Cd, Pb, Bi, Sb, in s. q., if not yellow.	Si, Al, Sn, Ba, Sr, Ca, Mg, Gl, Y, Zr, Th, La, Te, Ta, Nb, Ti, W, Mo, Zn, Cd. Pb, Bi, Sb, Ag. Fe in s. q.	Si, Al, Sn, Ba, Sr, Ca, Mg, Gl, Y, Zr, Th, La, Di, Mn. Nb in s. q. Ag, Zn, Cd, Pb, Ni, Bi, Sb, Te, on long heat.; if not grey and opaque.	Si, Al, Sn, Di, Mn; Ba, Sr, Ca, Mg, Gl, Y, Zr, Th, La, Ce, Ta. Nb in s. q. Ag, Zn, Cd, Pb. Br, Sb, Ni, Te, on long heat.; if not grey and opaque. Fe in s. q.
Grey and opaque.		••••	Ag, Zn, Cd, Pb, Sb, Ni, Fe, on short heat.; if not colourless. Nb in l. q.	Ag, Zn, Cd, Pb, Bi, Sb, Ni, Fe, on short heat.; if not colour- less. Nb in l. q.
Pale yellow.	Ag, Cd, Zn, in l. q.	Ag	• et succession • et successio	— — —
Yellow.	Ti, W, Pb, Sb, Mo, in l. q. U in s. q.	Va, Fe; Ce; U.	Ti in s. q., if not violet-blue Mo in s. q.; if in l. q., brown. W, Va.	Mo, in 1. q opaque and brown. W, in 1. q brown.
Reddish yellow. Red.	Cr. Fe, in s. q. Bi in l. q.		່່ ບໍ່	— —
Dark red.	Ce Fe in l. q.	Mn (viola-	_	
Brownish red.	Cr, U	ceous). Ni	Cu	Cu
Violet. Blue.	Mn, Ni, Di Co	Di Co; Cu (green- ishwhile cool- ing.	Co	Ti Co; Cu nearly colourless on long heat.
Green.	Cu	Cr (yellowish	Fe. Cr (brownish), Cu, nearly colourless on long heat.	Fe, U, Cr, Va

TABLE SHOWING THE BEHAVIOUR OF THE METALS (COMMON AND RARE)
WITH A BEAD OF MICROCOSMIC SALT.

Contractions: I. q. means large quantity, and s. q. small quantity.

87				The state of the s	
	Fe while cooling. Cu, opaque Cu, opaque Co, W; Mb in very I. q. Co, W; Mo, Tr	Fe in s. q.; Vs. Fe (brown) Cr, Fe Cr, Fe Wh in J. q. Co, W; Wh in very I. q. very I. q.	Ni in I. q.	Cr, Fe, in l. q. Mi; Fe, Cr, in very l. q. Mn, Di Co Cu; Mo (yel- lowish).	Reddish yellow. Red. Dark red. red. Violet. Blue. Blue.
	Fe in s. q. Ag, Zn, Cd, Fb, Bi, Sb, Te, Ni, Fe (greenish) in l. q. in l. q.	Ag, Zn, Cd, Te, Ni, — — Ti	Ag, F9 Ag, Ing. q. Ai ing. g. q. U (Sreenish). Ag	Eb, Zn in I. q. Pb in very I. q. Bi, Cd, Ta, Ti, W, in I. q. Ag, Ce, Ni, U, Ag, Ce, Xi, U,	Grey and opaque, Pale Pale yellow. Yellow.
	Al, Sn; Ba, Sr, Ca, Mg, Sr, Ca, Mg, Tr, Tr, La; Ce, Di, Mn, Ta; Ag, Zn, Cd, Fr, Tr, Te, on strong ignition; if not grey and opaque.	Al, Sn, Ba, Sr, Ca, Mg, Gl, Y, Zr, Tb, La, Ce, Di, Mn; Ta, Ag, Zn, Cd, Fb, Bi, Sb, Ni, Te, onstrong ignition; if not grey and opaque,	Al, Sn; Ba, Sr, Ca, Mg, Gl, Y, Zr, Th, La, Te, Ce, Mb, Ta, Ti, W, Zn, Cd, Pb, Bi, Sb, Fe in s. q.	Al, Sn, Ba, Sr, Ca, Mg, Gl, Y, Zr, Th, La, Nb, Te, in all pro- portions. Ta, Ti, W, Zn, Gd, Pb, Bi, Sb, in s, q., if not yel- if not yel- if not yel- if not yel- if not yel- if not yel-	ske.'' Jeton.'' Colourless
	ទេ	īs	is	is	-inoloO less, with guison a
	Cold,	.toH	Cold.	Hot.	Bead.
	Flame when	In Reducing	Евто мреп	anizibixO aI	To ruoloD
Ę					

Examination of Solids in the Dry Way.

263	CHEMISTS' POCKET-BOOK.	
	Heat in a piece of hard glass tube, closed at one end.	Experiment
CO, with marked charring Cl ₂ , Br ₂ , l ₂ , test by colour and odour (CN) ₂ , test by odour and crimson flame SH ₂ , test by odour and formation of PbS	The substance— blackens becomes— yellow when hot white when cold yellowish brown when hot yellow when cold white to yellowish brown when hot dirty light yellow when cold white to orange when hot pale yellow when cold brownish red to black when hot brownish red when cold yellow to dark orange when hot gives off water, which, if alkaline, indicates Am., if acid, indicates volatile acids. gives off gas or fumes— O2, test by splint SO2, test by colour and odour CO2, test by drop of lime water on watch-glass	Observation.
Formatos. Formatos. Chlorides, promides, or Cyanides. Cyanides. Sulphides containing water.	Organic matter. \{ Zn. \} Pb. \} Sn. \} Bi. \} \{ Fe. \} K_2CrO_4. \} Water of crystallization, of hydration; or moisture. \} Peroxides, chlorates, nitrates. Sulphates, &c. Nitrates of heavy metals. Carbonates, oxalates.	Presence of

Experiment.	Observation.	Presence of
Heat in a piece of hard glass tube, closed at one end.	The substance—gives off gas or fumes—NH3, test by odour and turmeric paper	Ammonium salts, also cyanides and other nitro-
	forms a sublimate of—	Persulphides.
	S2 \ solid and yellow when cold	Persulphides.
	White matter	Ammonium salts, HgCl ₂ (yellow-hot), Hg ₂ Cl ₂ , As ₂ O ₃ (crystals), oxalic acid.
	As ₄ black mirror	AS4.
	Hg mirror and globules HoS black (turns red if rubbed)	Hø.
	Sb ₂ O ₃ yellow liquid before subliming, then	Sb.
Heat by the reducing flame	a sublimate of crystalline needles. fuses and is absorbed by the charcoal leaves an infusible white residue (if alkaline,	Alkaline salts. Ba, Sr, Ca, Mg, Al, Zn, SiO ₂ .
in a cavity on charcoal.	Ba, Sr, Ca, Mg). which moistened with cobalt nitrate [blue	Al, SiO ₂ , alkaline earthy phosphates.
	and again heated, becomes green.	Zn. Mg.
	deflagrates	Nitrates, chlorates.

265	CHEMISTS'	POCKET-BOOK.	
ment in a bead of microcosmic salt, or of borax. (See Table for beads.)	$ m _{Na_2CO_3}$ and $ m _{Na_2CO_3}$.	Heat by the reducing flame in a cavity on charcoal. — mixed with	Experiment.
green; on cooling, blue; in reducing flame, red green, unaltered in reducing flame reddish; yellow or colourless on cooling amethyst red, colourless in reducing flame brownish red; light yellow, on cooling; in reducing flame: yellow, hot; green, cold.	tation. forms metallic scales, with incrustation, as above— malleable bead	The substance— forms an incrustation— white, distant from flame, garlic odour. white nearer to flame yellow when hot, white when cold faint yellow when hot, white when cold, close to flame. yellow dark orange yellow while hot lemon yellow when cold brownish red or yellow dark red (slight) forms metallic beads or scales without incrus-	Observation.
Cu. Cu. Cr. Ni. Mn. Fe.	Ni (magnetic scales). Sn, Pb. Bi ₄ , Sb ₄ .	As ₄ . Sb ₄ . Zn. Sn. Pb. Pb. Ag. Ag. Au, Cu (beads), Fe, Co,	Presence of

Experiment.		Observation.	vation	:					Presence of
Heat on a platinum wire	The S	r flame	1						
with HCl.	yellow	•	:	•	•	:	:	:	Na2.
	violet	:	:	:	:	:	:	:	• K_2 (observe through cobalt
	co omino								grado).
	Crimson	•	•	•	:	•	•	:	
	brick red	•	•	:	:	:	:	•	Ca.
	green	:	:	:	:	:	:	:	Cu, B.
·	plae	:	:	:	:	•	:	:	As4, Sb4, Pb, Cu.

EXAMINATION OF THE NEUTRAL OR ACID SOLUTION IN THE WET WAY.

BOCKEL-BOOK'

If the solution is alkaline, the addition of hydrochloric acid may produce a precipitate consisting of, a salt of lead or silver insoluble in hydrochloric acid, SiH_4O_4 , As_2S_3 , Sb_2S_3 , SnS_2 , S_2 , Au_2S_3 , PtS₂, HgS, CuS, NiS, &c., this must be examined separately.

<

CHEMISTS

Add moderate excess of HCl, filter. Wash the precipitate twice with cold water, and add the washings to the trate. Examine the filtrate by B. Treat the precipitate on the filter with hot water.

The filtrate from the washing with hot water may con-	SH ₂ , H ₂ SO ₄ and alcohol, or by K ₂ CrO ₄ .
Residue—treat on the filter with warm dilute AmHO, after well ing with hot water may conshing with hot water in presence of lead.	Residue is black, indi- ting Hg. Confirm. Filtrate, reacidulate with HNO_3 . A SH_2 , H_2SO_4 and alcohol, or by K_2CrO_4 .
Residue—treat on the filter with warm dilu washing with hot water in presence of lead.	Residue is black, indicating Hg. Confirm.

solution by C.) Dilute the filtrate from A if very acid, and pass excess of SH2, filter and wash. Examine the filtrate by C. The residue is gently heated in a test tube with water and a little yellow ammonium sulphide (in presence of Cu and absence of Hg use sodium hydrate), filter, treat the residue once more with a little ammonium sulphide, and mix the two filtrates. (A small quantity or this filtrate should be treated with SH₂, if no precipitate forms, proceed to examine the bulk of the

B.—Examination of the Filtrate from A.

6 7	CHEMISTS'	POCKET	-B00K.
and heat in a bulb tube with Na ₂ CO ₃ when metallic beads indicate Hg.	Residue — dissolve in HCl by ad the aid of KClO ₃ , and test for Hg cip by a strip of disconner Or dry	Residue—boil in $(NH_4)H_3$ C_2O_2 , and filter when cool.	Residue—wash, then boil with dilute HNO ₃ (neglect sulphur clot which forms), and filter off a few drops, to which add H ₂ SO ₄ and alcohol. If lead is present, a white precipitate forms. In the absence of lead, filter the whole of the liquid, and examine for Bi, Cu, and Cd by addition of AmHO, as below. In presence of lead add H ₂ SO ₄ and alcohol, and filter.
	Filtrate—add K ₂ CrO ₄ , a yellow precipitate indicates Pb.	$(\mathrm{NH_4})\mathrm{H_3}$ n cool.	hen boil wims), and find. If lete absence of fead
add much water; a milkiness indicates Bi.	Precip.— dissolve in dilute HCl, evaporate nearly to	Filtrate—I hol, if any add excess and filter.	th dilute HN lter off a few ad is present of lead, filter and Cd by add l add H ₂ SO ₄
add much a yellow precip. water; a ind. Cd. In the milkiness absence of blue indicates Bi. colour pass SH ₂ at once.	Filtrate* — if blue, Cu is present; add KCy till the blue disappears, and then has SH	Filtrate—boil off the alco- hol, if any is present, and add excess of AmHO; boil and filter.	O ₃ (neglect suldrops, to which a white precitive whole of the ition of AmHO, and alcohol, and
water and mixed with HgCl ₂ , gives a precipitate of Hg ₂ Cl ₂ , at first white, but changing afterwards to grey Hg. This indicates presence of Sn.	insoluble in cold sodic hypochlorite. The residue on the zinc must be detached by scraping, and boiled with HCl and a piece of platinum foil. The solution diluted with	small flask containing a strip of pure zinc and fitted with a delivery tube, SbH ₃ is evolved if Sb is present. The	
	Collerm.	with HCl, a yellow pre- cipitate in- dicates As.	If the pre- vn or black, present.)

to SH₂. Place a large drop of the ammoniacal liquid, if blue, on Swedish filter paper, and, after the drop has spread, expose A bright yellow ring fringing the black patch is formed, if Cd be present in sufficient quantity.

C.—Examination of the Filtrate from B.

Evaporate till free from SH₂, add a little nitric acid and take down to dryness; ignite to redness if organic matter (or oxalates) be suspected. Treat with a little strong HCl, and then add water. SiO₂ is left insoluble if present. Test* this solution for phosphoric acid with ammonic molybdate. In the absence of phosphoric acid examine by Ca, if phosphoric acid is present, by Cb.

part of it often precipitates with the iron, and is best tested for by

Caraca noncon no	e filtrate by ld excess of NaHO, boil	and filter.			Filtrate—add SH ₂ .	A white precipitate indicates Zn.		ding a quantity
nor, and to or	and examing in HCl, action HCl, action HCl, action HCl, add	en excess of	Solution— add AmHO,	Amcl, and SAm ₂ . A flesh-co-	cipitate indicates Mn.			at tube, and ad
Add AmHO in excess, warm and filter. (If Mn is present, part of it often precipitates with the 10^{10} , and 10^{10} and 10^{10} .)	Filtrate—add SAm ₂ , filter and examine filtrate by D. Precipitate—wash, dissolve in HCl, add excess of Descriptate wash dissolve in HCl add NaHO, boil	slight excess of AmHO and then excess of H ₄ C ₅ O ₅ . Pass SH ₅ .	Precipitate—dissolve in HCl Solution—and KClO ₃ , nearly neutralize add AmHO,	AmHO dissolves (filter here if not Affesh-co-less) boil; a dissolves (filter here if not Affesh-co-less)	A blue precipi- yellow precipitate white gela- pears, cool, add NaClO, warm, cipitate intate in- and allow to stand until a dicates Mn.	black precipitate forms. Preci- Solution—evaporate pitate is a few drops to dryness,	Presence in a borax bead. Blue of Ni. bead indicates Co.	it is the said motordate colution and nitric soid in a test tube and adding a quantity
f Mn is present, p and KNO ₃ .)	g g	Filtrate—	add excess of dilute HCl,	slight excess of AmHO and boil; a	white gela- cinous pre- cinitate in-		<u> </u>	A mith molabde
Add AmHO in excess, warm and filter. (If Mn is press fusing some of the $\text{Fe}_2\text{H}_6\text{O}_6$ with Na_2CO_3 and KNO_3 .)	The precipitate, after being washed, is dissolved HCl, and excess of pure NaHO added. The guid is boiled and filtered.	olve in HCl and boil	with NaHO and NaClO in excess. Filter.	Residue—dis- Filtrate is yellow, slight excess solve in HCl and add acetic acid and boil; a and boil; a	yellow precipitate indicates Cr.	Or, Residue—fuse with Na ₂ CO ₃ and KNO ₃ , treat with hot water, and filter.	Residue—treat Filtrate is yellow, as above for Fe, treat as above for Cr.	
Add AmHO in exc fusing some of the F	The precipitate, after in HCl, and excess of liquid is hoiled and fil	Residue—dissolve in	with NaHO and Filter.	Residue—dis- solve in HCl and add K, FeCve.	A blue precipi- tateindicates Fe.	Or, Residue—and KNO ₃ , tres	Residue—treat as above for Fe.	8

of fairly strong ammonia, so as to cause the latter to float. Somewhere between the two the conditions will be most favourable * This is best effected by mixing the liquid with molybdate solution and nitric acid in a test tube, and adding a quan for the formation of the precipitate, and there a yellow ring will form in presence of a mere trace of phosphoric acid.

Add AmHO in excess and filter. To the filtrate add SAm₂ and filter; examine this filtrate by **D**. Wash the two precipitates separately, transfer them to the same dish, and digest with SAm₂. Filter. Precipitate—wash, dissolve in HCl (if the precipitate is black and also requires the addi-

reddish brown, pitate, and if a precipitate forms, filter. add excess of NaHO in the cold, and amine the solution by Table Ca.) Add excess of NaH₃C₂O₂ and H₄C₂O₂, warm and filter. Cr, Al, Ba, Sr, Ca, Mg, as phosphates. (In the absence of phosphoric acid, proceed to extion of KClO3 to dissolve it, Ni and Co are present), add a few drops of strong HNO3, and test a small portion for phosphoric acid by molybdate. The presence of this acid indicates indicates Precipitate—wash, dissolve in HCl, Filtrate—add Fe₂Cl₆ (if no white or reddish precigreen, indicates of acetic acid. Precip.— Filtrate—add Zn, Mn, Ni, cates Cr as A white precipitate examine Na₂HPO₄. A white Co, Al, Cr, by phosp. indicates Al as by D for precipitate indicates Table Ca. Precipitate, Solution—add exgreen, indi-cess of acetic acid. Precip.— Confirm. Filtrate—boil for some time, phosp. Confirm. Ba, Sr, Ca. Mg as phos. Confirm. D.—Examination of the Filtrate from C. pitate forms on testing a small portion, proceed to add AmHO and Am₂CO₃ to the remainder), as long | Filtrate—add AmCl, AmHO, and SAm₂; filter. | Precias a precipitate forms, boil, and filter hot. Filtrate—Add Am₂CO₃. Filtrate—add examine Precipitatefor pitate, negphosphates. Ni, Co, Zn, sence indicates its premixture, acid by Mg phosphoric test for

Add AmCl and Am₂CO₃, digest and filter. Examine the filtrate by E. Wash the precipitate and dissolve in HCl, evaporate the solution to dryness, pulverize the residue, and digest it with absolute alcohol; filter.

water and add K2CrO4. indicates Ba A yellow precipitate Residue—dissolve in with strong Am₂SO₄ and a little AmHO, and filter. Confirm by flame. Filtrate—add dilute H₂SO₄, allow to stand, and filter. Residue indicates Sr. A white precipitate indicates Ca Filtrate—dilute well, and add ammonium oxalate. Digest the precipitate

E.—Examination of the Filtrate from D.

Divide it into two portions. To one add Na₂HPO₄ in the cold, a white crystalline precipitate indicates Mg. Evaporate a portion of the remainder and test by the flame for K and Na. Confirm K by PtOl₄.

THE	-	pitate Dlack	4
TABLE S. AOWING THE BEHAVIOUR OF THE The vertical columns give the	AmH0.	W MgH ₂ O ₂ No precipitate No precipitate No precipitate W ZnH ₂ O ₂ W MnH ₂ O ₂ W MnH ₂ O ₂ W MnH ₂ O ₂ W Al ₂ H ₆ O ₆ BC Cr ₂ H ₂ O ₆ W Sh ₂ O ₃ W Sh ₂ O ₃ W SnH ₂	
TABLE S.	K2CO3, or Na2CO3.	Color	
	KHO, or NaHO.	— W MgH ₂ O ₂ W BaH ₂ O ₂ W SrH ₂ O ₂ W SrH ₂ O ₂ W SrH ₂ O ₂ W SrH ₂ O ₂ W ZnH ₂ O ₂ W MnH ₂ O ₂ C NiH ₂ O ₂ B1 CoH ₂ O ₂ +xCoO R Fe ₂ H ₅ O ₆ W SnH ₂ O ₃ W ShH ₂ O ₃ W ShH ₂ O ₃ W ShH ₂ O ₃ W ShH ₂ O ₃ W ShH ₂ O ₃ W ShH ₂ O ₃ W BiH ₃	
	Metal.	Naa KK KK Shaa	

		!	Other	r Reagents:
$\mathrm{Am_2CO_3}.$	SH ₂ .	SAm ₂ .	Name of Reagent.	Precipitate.
1	No precipitate	No precipitate	KSbO ₃	W NaSbO3
1	•	3	PtCl ₄	Y 2KO, PtOL
I	3	3	PiCI4	Y ZAMCI, Pici
W BaCO.	: 3	3 3	H ₂ SO ₄	W BaSO ₄
₩ SrCO?	: 3	2 3	H ₂ SO ₄	W SrSO ₄
₩ CaCOa	: 3	3	$A\tilde{m}_2C_2O_4$	$\mathbf{W} \operatorname{CaC}_2 \mathbf{\hat{O}}_4$
	* :	W ZnS	1	1
		F MnS	1	[
•••	No pp. if acid	B Nis	NaClO	B Ni ₃ O ₅ , 4H ₂ O
CoCO 1+1COO	\$	B CoS	NaC10	B $\text{Co}_3\text{O}_5, 4\text{H}_2\text{O}$
	No precipitate		K ₄ FeCy ₆	Bl Fe4(FeCy6)3
G Basic carbonate	3	BIC Cr2H2Oc	1	1
₩ Basic carbonate	3	W Al2H6O6	1	ı
1	Y As ₂ S ₃ .	Y As2S3	1	ĺ
W Sb ₂ O ₃		O Sb2O3	1	J
	Y SnS2	Y SuS2	1	.]
	-	Br SnS	1	i
	→ CdS	Y cas	1	1
CBl Basic		BB CuS	K4FeCy6	RBr Cu ₂ FeCy ₆
W Bi202CO3	BB Bi ₂ S ₃	BB Bi2S3	# 20	Osta M
W PbCO3+xPbO		_	# 2004	D Hal
€	B HgS	B HgV		T Lgia
ľ	B Ag ₂ S	B Hg ₂ S	HCI	W Hg ₂ Cl ₂ W AgCl

TABLE SHOWING THE CHARACTERISTIC REACTIONS OF THE COMMON ACTOS. The vertical columns give the formulæ of the precipitates.

Acid	<u>ن</u> م	RaCl	AONO	C ₂ CI	Pb(H3	Other	Other Reagents.	Nature of
	-03046	.5.7.00	**6*103	CaOrg.	$C_2O_2)_2$.	Name.	Precipitate, &c.	Solu- tion.
H2SO4	!	W BaSO₄	1	1			-	سرا
H_4SiO_4] 		I	1	1	AmCl	B H ₄ SiO ₄	
H_4 $\mathbb{F}eCy_6$	$\left\{ \mathbf{Bd}_{\mathbf{Cv}_{o}}^{\mathbf{Fe}_{\pm}}(\mathbf{Fe}) \right\}$	ſ	، نـر	ı	1	FeSO4	BI K. Fe'/Fe	ith
	365	1	These torm pp. with	ı	i	CuSO 4	RBr Cu.	M Pi
${ m H_6Fe_2Cy_{12}}$	Br Colora-	1	AgNO ₃ insol. in	!	1	1	9(79.7	otali OH
HCyS	R Colora-	l	HNO3	ı	ı	ı	ŀ	rbio
2HF, SiF,	WS BaF2,	1	1	1		İ	Ī	A
HCI	arc -	1	W Aggl	1	ı	1	ı	•
HBr	1	1	YW AgBr	1		1	1	pə 8C
HBrO3	1	İ	W AgBros	1	1	1	j	te.
HI		I	Y AgI	1	1	+ Caso +	W Cu ₂ I ₂	H q
HIO3	1	ı	W AgIO ₃	1	ŀ	****	1	ioA Tiv
HCy	1]	W AgCy	l	1	1	1	 A
HF	ı	I	ı	W CaF2	1	The acid	1	dii ,bic
H3C204	1	1	1	1	1	CaSO 4	W CaC, O.	W.
H2CrO4	1	l	1	1	Y PbCrO4	1		bi: tic
H ₃ PO ₄	YW Fe ₂ F ₂	1	i	i	1	l	l	A 90A
$\overline{\mathrm{T}}\mathrm{H}_{2}\mathrm{O}_{3}$, 1	ì	!	W T CaO2	1	Forms Ag Mirror	l	tral.
CH303	1	l	ı	W Ci2Ca3O6*	1	ì	ı	иеи

CHEMISTS, FOCKET-BOOK.

DIRECTIONS FOR MAKING THE ORDINARY REAGENTS USED IN LABORATORIES.

ACIDS.

Sulphuric Acid (H₂SO₄), oil of vitriol. Im-

purities, Pb, As, Fe, Ca, HNO2, N2O4.

Dilute Sulphuric Acid. Pour 1 part by measure of the pure concentrated acid into 5 parts of distilled water contained in a porcelain dish.

Nitric Acid (HNO₃), common. Impurities,

H₂SO₄, HCl.

Dilute Nitric Acid. Dilute 1 part of the strong pure acid with 2 parts of water.

Hydrochloric Acid (HCl), common. The im-

purities are Cl, Fe₂Cl₆, H₂SO₄, SO₂, As.

Dilute Hydrochloric Acid. Dilute 1 part of pure

concentrated acid with 3 parts of water.

Nitro-hydrochloric Acid (Aqua regia). Prepare when required by adding 4 parts of strong hydrochloric acid to 1 part of strong nitric acid.

Acetic Acid (H₄C₂O₂). Impurities, H₂SO₄, HCl,

Cu, Pb, Fe, Ca.

Dilute Acetic Acid. Mix 1 part of pure commercial acid of specific gravity 1:04 with 1 part of water.

Carbonic Acid (H₂CO₃). Make a solution of CO₂

by passing it into cold water.

Sulphurous Acid (H₂SO₃). Make a solution of SO₂ in water and preserve in well-stoppered bottles.

Oxalic Acid (H₂C₂O₄). Impurities, Fe, K, Na, Ca. Dissolve 1 part of crystallized acid in 10 parts by measure of water.

Tartaric Acid (C₄H₆O₆). Impurities, Ca, H₂SO₄.

I part of acid in 3 parts of water. Make a solution when required by dissolving

purchased. It should be kept in a guttapercha Hydrofuoric Acid (HF). This acid is best

bottle.

tube, should convey the evolved gas. Filter the mercury at the bottom to cover the end of the beaker of water containing enough on a sand bath. A wide delivery tube, dipping 6 parts of concentrated sulphuric acid, and heat capacious flask I part of sand, I part of CaF2, Hydrofussiticic Acid (H₂SiF₆). Place in a

solution thus obtained.

bottles rendered opaque by varnish. made and preserved for some time in stoppered cases be previously washed. A solution may be this reagent in the gaseous state; it should in all Sulphuretted Hydrogen (SH2). It is best to use

VIKVLIES.

soda) of specific gravity 1.27 should be used. can be bought. For organic analysis potash (not Pure sodie hydrate for the separation of alumina phosphates, sulphates, and chlorides. stick sods in 20 parts of water. Impurities, Al, (KHO). For most purposes of the laboratory sodic hydrate should be used. Dissolve the Sodie Hydrate (NaHo), or Potassic Hydrate

Ammonic Hydrate (NH, HO). Impurities, sul-

Dilute Ammonic Hydrate. A solution of specific phate, chloride, carbonate, tarry matter.

2 vol. of water) should be used. gravity '96 (1 vol. of strong ammonia '980 and

Baric Hydrate (BaH2O2). Dissolve I part of

the crystals (BaH₂O₂ + 8Aq) in 20 parts of water. Filter, and preserve in well-stoppered bottle.

Calcic Hydrate (CaH₂O₂). Dissolve lime in water, filter, and preserve in stoppered bottle.

SALTS.

Salts of Alkalies.

Sodic Hydric Sulphite. Dissolve 1 part of the

salt in 5 parts of water.

Disodic Hydric Phosphate. Impurities, sulphate, chloride, alkaline earthy phosphates. Dissolve

the recrystallized salt in 10 parts of water.

Sodic Hypochlorite (NaClO). Obtained by passing chlorine into a cold dilute solution of soda, or by treating 1 part of fresh bleaching powder with 8 parts of water, and precipitating the solution with strong sodic carbonate solution. Filter for use.

Sodic Thiosulphate (Na₂S₂O₃). Dissolve 1 part

of the salt in 30 parts of water.

Sodic Acetate (NaC₂H₃O₂). Impurities, sulphates. Dissolve 1 part of the commercial salt (if pure) in in 10 parts of water. The pure salt may be made by neutralizing sodic carbonate with pure acetic acid.

Sodic Acetate and Acetic Acid solution. Prepare by dissolving 25 grams of crystallized sodic acetate in 200 c. c. of water, and adding 50 c. c. of

strong acetic acid.

Sodic Ammonic Hydric Phosphate (Microcosmic salt) (Na(NH₄)HPO₄). The salt must be dried and powdered. It can be made as follows: dissolve 7 parts of disodic hydric phosphate and 1 part of ammonic chloride in 2 parts of boiling

 \mathbf{T} 2

It is purified by recrystallizing from hot water water and allow to cool, when the salt forms.

containing a little ammonia.

expel water of crystallization, powder, and Sodic Borate (NazB4O7). Heat the crystals to

preserve in bottles.

water. To strag & mi tles anothydas and evlossid by repeated recrystallization of the commercial can be obtained by heating the bicarbonate or phosphates, sulphates, silicates. A purer product Sodic Carbonate (NazCO3). Impurities, chlorides,

the commercial salt after the addition of ammonia, Ammonic Sulphate $((NH_4)_2SO_4)$. Recrystallize

and make a strong solution.

5 parts of water. hydrochloric acid and crystallize. Dissolve in ammonia, filter, neutralize the filtrate with Purify the commercial salt by the addition of Ammonic Chloride (NH,CI). Impurity, iron.

A saturated Ammonic Nitrate ((HU)) strates.

beriuper nedw ebam si noitulos

commercial salt, and then dissolve in 4 parts of Pb, Fe, sulphates, chlorides. Scrape the ordinary Ammonic Carbonate ((NH4)2CO3). Impurities, ammonic oxalate is dissolved in 20 parts of water. Ammonic Oxalate $((\mathbf{WH_4})_z O_z O_4)$. Recrystallized

gravity .880. water, and add I part of ammonia of specific

thus obtained when required. CO2 into strong ammonia, dissolve the crystals Ammonic Hydric Carbonate ((NH4)HCO3). Pass

Ammonic Molybdate ((MH4), MO4). The salt is

dissolved in strong ammonia, and the clear fluid decanted into strong nitric acid till the precipitate redissolves. A very delicate reagent for the detection of phosphoric acid is made by taking the following proportions.

60 grams ammonic molybdate

500 c. c. nitric acid (specific gravity 1.4)

400 c. c. ammonia (specific gravity 96)

400 c.c. water.

Ammonic Sulphide ((NH₄)₂S). Saturate 3 parts of ammonia with SH2, and then add 2 parts of ammonia.

Yellow Ammonic Sulphide ((NH₄)₂S₂). Digest the neutral SAm2 with flowers of sulphur, and filter. This reagent is best bought.

Ammonic Arseniate is prepared by neutralizing arsenic acid with ammonic carbonate and evapo-

rating to dryness. Dissolve in water.

Potassic Sulphate (K2SO4). Dissolve 1 part of

the salt in 10 parts of water.

Potassic Nitrite (KNO₂). Dissolve 1 part of the commercial salt in 2 parts of water when required.

Potassic Iodide (KI). The commercial salt is dissolved in 50 parts of water. Impurities,

iodate, carbonate.

Potassic Chromate (K₂CrO₄). Impurities, sulphates. Dissolve in 10 parts of water.

Potassic Bichromate (K₂CrO₇). Dissolve in 10

parts of water. Impurities, sulphates.

Potassic Metantimoniate (KSbO3). Heat 1 part of Sb with 4 parts of nitre in a crucible; boil the powdered mass with 12 parts of water for some hours, then filter.

Potassic Ferrocyanide (K₄FeCy₆). Dissolve the commercial salt in 12 parts of water.

Potassic Fermicyanide (K₆Fe₂Cy₁₂). Dissolve 1 part of the salt in 12 parts of water when required.

Potassic Sulphocyanate (KCyS). Dissolve I part foured.

of the salt in 10 of water.

Salts of Alkaline Earths.

Baric Chloride (BaCl₂). Purify the commercial salt if not pure by first passing SH₂ and then crystallizing. Dissolve in 10 parts of water.

France Metwete (BaM O) Dissolve in 15 parts

Baric Nitrate (BaN₂O₆). Dissolve in 15 parts

of water.

Baric Carbonate (BaCO₃). To a solution of BaCl₂ add ammonia and then excess of ammonic carbonate, and wash the precipitate, which must distributed and wash the precipitate, which must distribute and wash the precipitate, which must distribute and wash the precipitate, which must distribute and wash the precipitate, which must distribute and wash the precipitate.

carbonate, and wash the precipitate, which must then be preserved moist in wide-mouthed stoppered bottles.

Caloic Chloride (CaOl2) Impurity, Fe. Dis-

solve in 5 parts of water. Calcic Sulphate (CaSO₄). Make the solution by shaking up gypsum with water and then filtering.

shaking up gypsum with water and then interng.
Magnesic Sulphate (MgSO₄). Dissolve in 10
parts of water.

Magnesia Mixture (see page 408).

Salts of Heavy Metals.

Ferrous Sulphate (FeSO4). Dissolve in 10 parts

of cold water.

Ferric Chloride (Fe₂Cl₆). Dissolve pure Fe₂H₆O₆, and in pure HCl. Leave an excess of Fe₂H₆O₆, and filter. When cool dilute with 2 volumes of water. Cobaltous Witrate (CoN₂O₆). Dissolve in 10 parts

of water. Impurities, Fe, Ni, &c.

Plumbic Acetate (PbC₄H₆O₄). Dissolve in 10 parts of water.

Lead free from silver is prepared by precipitat-

ing pure plumbic acetate with metallic zinc.

Plumbic Peroxide (PbO₂). Digest red lead in

hot dilute nitric acid, filter, and wash.

Cupric Sulphate (CuSO₄). Impurities, Fe, Zn. Dissolve the recrystallized salt in 10 parts of water.

Cupric Chloride (CuCl₂). Dissolve CuO in HCl,

keeping the former in excess; filter.

- Cuprous Chloride (Cu₂Cl₂). Prepared by digesting CuCl₂ with Cu and HCl.

Mercuric Chloride (HgCl₂). Dissolve corrosive sublimate in 20 parts of water with the aid of heat.

Mercurous Nitrate (Hg₂N₂O₆). Dissolve the commercial salt in 20 parts of water acidulated with 1·2 part of nitric acid. Put some metallic mercury into the filtered solution.

Auric Chloride (AuCl₃). Dissolve gold in aqua regia, evaporate on the water bath, add water,

and filter.

Platinic Chloride (PtCl₄). Dissolve scrap platinum in aqua regia, add ammonic chloride, and evaporate on the water bath. Wash the residue with alcohol; decompose it by ignition. Dissolve the resulting platinum in aqua regia; evaporate to dryness with HCl, and dissolve in 10 parts of water.

Argentic Nitrate (AgNO₃). Dissolve the com-

mercial salt in 20 parts of water.

Stannous Chloride (SnCl₂). Dissolve pure tin in strong HCl in presence of platinum foil. Dilute with four volumes of dilute hydrochloric acid. Keep in a stoppered bottle containing some pieces of granulated tin.

MISCELLAN EOUS.

oxide in water, kept cool, and pass a current of Hydric Peroxide (H2O2). Suspend baric perpreserve in well-stoppered bottles in a dark place. Chlorine (Cl2). Pass the gas into cold water, and

CO2. Filter off the precipitate from the solution,

which should be dilute.

filter. to redissolve. Then add 120 c.c. of potash, and with constant shaking until the precipitate ceases water; add the mercury solution to the other 20 c. c. of water, and then the latter in 60 c. c. of ari remre of HgCl2; dissolve the former in Messler's Solution. Take 7 grams of KI and

add the indigo in small portions to the acid with ; biog oitudqlus gaimut to strag 8 of 4 bag ogib Indigo Solution. Take I part of powdered in-

rise of temperature. After the solution has stood constant stirring, at the same time preventing

water, and filter. a day or two, pour it into 20 times its volume of

Litmus Solution. Boil powdered litmus with

distilled water.

preserve in stoppered bottles. few drops of potash. Dry and cut up, then H₂SO₄, and if blue papers are required, with a has been previously treated with a few drops of litmus solution, which, if red papers are required, they are well drained, soak them in the above it into strips, and soak these in hot water. After Litmus Papers. Take Swedish filter paper, cut

papers. See also pages 288 and 408. papers with this solution as directed for litmus turmeric in 5 parts of weak alcohol. Make the Steep 1 part of bruised $oldsymbol{t}$ su $dn_{oldsymbol{\mathcal{J}}}$ Turmeric

VOLUMETRIC ANALYSIS.

Factors useful in Volumetric Analysis.

-nM -nM

.702 = bool

 $1 \, \mathrm{c.\,c.} \, N$ permanganate N $= \dots$ bead. N $= \dots$ $= 1 \, \mathrm{lead}$. N $= \dots$ $= 1 \, \mathrm{lead}$. N $= \dots$ $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$. N $= 1 \, \mathrm{lead}$.

Mercury = 20.

Chromium = 52.5.

= $\cdot 00492 \text{ gram } \text{K}_2\text{Cr}_2\text{O}_7$.

Iodine = 127.

1 c.c. $\frac{N}{10}$ thiosulphate = .0127 gram iodine. = ·0166 gram KI.

Cyanogen, CN = 26.

1 c.c. $\frac{N}{10}$ silver solution = $\cdot 0052$ gram CN.

" = .0054 gram HCN. = .01302 gram KCN. = .003255 gram KCN.

1 c. c. $\frac{\ddot{N}}{10}$ iodine

Potassium Ferrocyanide.

 $K_4 \text{FeCy}_6 + 3H_2 O = 422.$

 \times 7.541 = Crystallized salt. Metallic iron Double iron salt $\times 1.077 =$

Potassic Ferricyanide:

 $K_6Fe_2Cy_{12}=658.$

$$\text{Metallic iron} = 88 \cdot 3 \times \text{not betallic iron} \\
 \text{Ouble iron salt} \times 1 \cdot 68 = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron} \\
 \text{Metallic iron} = 80 \cdot 1 \times \text{not betallic iron}$$

 $\cdot u$ əbonb $_H$ pəqqən $_H$

$$48 = 8$$

I e.e. $\frac{N}{10}$ arsenious solution = '00255 gram H_2S .

TABLE FOR THE ESTIMATION OF MIXTURES OF SODIUM AND POTASSIUM CARBONATES BY TITRATION WITH MORMAL MITRIC ACID.

\$8∙8I	<i>(</i>	1.00	+	00	\parallel	97.91	66	97.	+	gg.
18.65	"	96.	+	90.		16.23	"	0₹•	+	09.
0⊅.81	66	06•	+	01.		10.91	"	.32	_	çg.
61.81	66	98.	+	91.		64.9I	66	•30		02.
46.4T	"	08 •	+	$\cdot 50$		49.9T	"	.52		94.
94 · 4T	"	94.		97.		12.32	"	07.		08.
99.4T	66	04.		•30		71.91	"			28 •
17.33	"	99.		98.		76.⊅I	"	٥ī٠		06.
11.41	"	09.		0₹•		69.₹1	"	90.		96.
68.91	require	99.		g₽•	\parallel	4₹·₹[require			00·I
Acid,	•	'st	uer	9		Acid.			me.i	
IsmroN	•1	la _a CO _a	N ·ε	K CO		IsmrioN	. 8 (oo ^z e.	Ν·ε	$\mathbf{R}^{\mathfrak{r}}\mathbf{CO}$
to .O .D					11	to O.O				

|| 49.9T

" 0g. + 0g.

TABLE FOR THE SYSTEMATIC ANALYSIS OF ALKALIES, ALKALINE EARTHS, AND ACIDS.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ains, and Acii			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Substance.	Formula.	cular	to be weighed so that 1 c. c. of Normal Solution= 1 per cent. of Sub-	
Citric acid $C_6O_7H_8+H_2O_210$ 7.0 070	" hydrate " carbonate " bicarbonate " hydrate " carbonate " bicarbonate " carbonate " bicarbonate " bicarbonate Ammonia Ammonium carbonate Calcium oxide (lime) " hydrate " carbonate Barium hydrate " (cry.) " carbonate Strontium oxide " carbonate Strontium oxide " carbonate Nitric acid Hydrochloric acid Sulphuric acid Oxalic acid Acetic acid Tartaric acid	$\begin{array}{c} \text{NaHO} \\ \text{Na}_2\text{CO}_3 \\ \text{Na}_4\text{CO}_3 \\ \text{K}_2\text{O} \\ \text{KHO} \\ \text{K}_2\text{CO}_3 \\ \text{KHCO}_3 \\ \text{NH}_3 \\ (\text{NH}_4)_2\text{CO}_3 \\ \text{CaO} \\ \text{CaO}_2 \\ \text{CaCO}_3 \\ \text{BaH}_2\text{O}_2 \\ \text{CaCO}_3 \\ \text{BaH}_2\text{O}_2 \\ \text{SrO} \\ \text{SrO} \\ \text{SrCO}_3 \\ \text{MgO} \\ \text{MgCO}_3 \\ \text{HNO}_3 \\ \text{HCI} \\ \text{H}_2\text{CO}_4 \\ \text{H}_4\text{C}_2\text{O}_2 \\ \text{H}_6\text{C}_4\text{O}_6 \\ \end{array}$	40 106 84 94 56 138 100 17 96 56 74 100 171 315 197 103.5 147.5 40 84 63 36.5 98 126 60 150	3·1 4·0 5·3 8·4 4·7 5·6 6·9 10·0 1·7 4·8 2·8 3·7 5·0 8·55 15·75 9·85 5·175 2·00 4·20 6·3 3·6 4·9 6·9 6·9 7·5	.040 .053 .084 .017 .056 .069 .100 .017 .048 .037 .050 .0855 .1575 .0985 .0575 .07375 .020 .042 .063 .0365 .049 .063

In order to find the amount of pure substance present in the material examined, multiply the number of c. c. by the "normal factor."

^{*} In using grain weights, move the decimal place one figure to the right in both columns.

Table for approximately determining the Proportion of Sodium and Potassium in Mixed Chlorides.

2.71 grams of the pure, dry, mixed chlorides are dissolved in water and the solution made up to 100 c.c. The chlorine in 10 c.c. of this solution is then estimated by $\frac{N}{10}$ silver nitrate solution and chromate indicator.

gL 0L	8•8 *	22	8.88 8.88
92	8·2 1	gī	8.78
09	€.24	01	8.78
2 2	8.14	Ğ	$8 \cdot 98$
20	8·I4	₽	7.98
Ç₽	8.0₺	8	9.98
0₽	€•0₽	3	3.98
32	8.68	I	₹.98
90	8.68	0	£.98
Per cent. of NaCl.	C. c. N Silver used.	Per cent, of MaCl.	$C, c, \frac{N}{10} Silver$ used.

TABLE SHOWING THE ALTERATION OF THE VOLUME OF GLASS VESSELS BY HEAT, THE VOLUME AT 15° C. BEING TAKEN AS UNITY.

Temp.	Volume.	Temp °C.	Volume.	Temp	Volume.
0	•99961210	15	1.00000000	30	1.00038790
i	•99963796	16	1.00002586	35	1.00051720
$ar{2}$	99966382	17	1.00005172	40	1.0006!650
3	•99968968	18	1.00007758	45	1.00077580
4	•99971554	19	1.00010344	50	1.00090510
5	•99974140	20	1.00012930	55	1.00103440
6	•99976726	21	1.00015516	60	1.00116370
7	•99979313	22	1.00018102	65	1.00129300
- 8	•99981898	23	1.00020688	70	1.00142230
9	•99984484	24	1.00023274	75	1.00155160
10	•99987070	25	1.00025860	80	1.00168090
11	•99989656	26	1.00028446	85	1.00181020
$\overline{12}$	•99992242	27	1.00031032	90	1.00193950
13	•99994828	28	1.00033618	95	1.00206880
14	.99997414	29	1.00036204	100	1.00219810
				!	

THE WEIGHT OF 1000 C. C. OF PURE WATER AT t° C. WHEN DETERMINED BY MEANS OF BRASS WEIGHTS, IN AIR OF 0° C., AND OF A TENSION ·76 M., IS EQUAL TO 1000 - x Grams.

t°	0	1	2	3	4	5	6	7	8	9
x	1.25	1.20	1.15	1.13	$1 \cdot 12$	1.12	1.14	1.16	1.21	1.27
to	10	11	12	13	14	15	16	17	18	19
x	1.34	1.43	1.52	1.63	1.76	1.89	$2 \cdot 04$	2.20	2.37	2.55
to.	20	21	22	23	24	25	- 26	27	2 8	29
x	2.74	2.95	3.17	3.39	3.63	3.88	4.13	4.39	4.67	4.94
								ļ !		

PREPARATION OF THE SOLUTIONS USED IN VOLUMETRIC ANALYSIS.

(In all cases distilled water is meant, unless otherwise stated).

Indicators used in Alkalimetry.

Litmus Solution. Digest 10 grams of solid litmus with 500 c. c. of water for some hours, decant the clear liquid, add a few drops of dilute nitric acid to produce a violet colour, and preserve in an open bottle. Or, better, boil the powdered litmus twice with 80 per cent. spirit, rejecting the liquid; then digest the litmus with cold water till all soluble colouring matter is discold water till all soluble colouring matter is dissolved; allow the decoction to settle. Next add solved; allow the decoction to settle. Next add becomes quite red, boil, then add baryta water until the neutral tint appears.

Cochineal Solution. Boil 3 grams of the powder

in 250 cub. cent. of 20 per cent. spirit.

Turmeric Paper. Digest the root in small pieces, first several times with water, and then with alcohol. Strips of Swedish paper dipped into the solution and dried are sometimes used in the

volumetric analysis.

.snoitulo2 snilbAlA bnb bisA lbmroN

Normal Sodium Carbonate, Dissolve 53 grams of pure, dry monocarbonate, prepared by igniting the bicarbonate to redness, in water, and make up to I litre.

N Sulphuric Acid. Dilute about 30 c.c. of pure sulphuric acid (sp. gr. 1.840) to 1 litre; then determine the strength of this solution by titration with normal alkali or alkaline carbonate, and dilute so as to make 1 c.c. of the sulphuric acid neutralize 1 c.c. of the alkali; after dilution check the strength by further titration.

N Oxalic Acid. Dissolve 63 grams of pure (recrystallized) oxalic ac.d, dried between paper,

in 1 litre of water.

N Hydrochloric Acid. Dilute 181 grams of the pure acid, of sp. gr. 1·10, to 1 litre; check by titration with $\frac{N}{10}$ silver solution or by sodium

carbonate.

N Nitric Acid. Take pure nitric acid and dilute to 1 litre. The strength of this solution must be ascertained, and the acid diluted accordingly. The most exact method of checking the nitric acid is by pure calcium carbonate, 1 gram of which requires 20 c. c. of normal acid.

N Caustic Alkali. Take about 42 grams of pure sodium hydrate and dissolve in 800 c. c. of water; titrate with normal acid and dilute until it corresponds with the acid volume for volume. Normal potassium hydrate may be made in a similar

manner.

N Ammonium Hydrate is made by diluting strong ammonia to the required strength, and checking by titration with standard acid.

The following Table gives the strengths of the above solutions:—

I c.c. of

Normal sodium hydrate, = .040 gram MaHO \cdot $_{6}$ O₂N merg 4 60 \cdot = $_{6}$ ON merg 2 00 \cdot = Normal nitric acid, = .063 gram HVO₃ = .0322 gram Cl. Normal hydrochloric acid, = .0365 gram HCl Normal oxalic acid, = $^{\cdot}$ 063 gram $H_2O_2O_4$, $^{\cdot}$ 2 $H_2O_2O_4$ eram O_2O_4 . \cdot 508 merg 040 \cdot $^{+0.6}$ merg 840 \cdot $^{-1}$ Normal sulphuric acid, = .049 gram M_2SO_4 \sim 030 gram CO $_{3}$ = .022 gram CO $_{2}$ \sim Normal sodium carbonate, = .053 gram Na2CO₈

A Ammonio-copper Solution for Acids. Dissolve

Normal ammonium hydrate, = $^{\cdot 017}$ gram $^{\circ}$ HO. = $^{\circ}$ Gram $^{\circ}$ HO. = $^{\circ}$ Gram $^{\circ}$ HO. = $^{\circ}$

. A merg $eeo. = O_2$ M merg $7 \pm o. =$ Normal potassium hydrate, = .056 gram KHO

-031 gram $N_{\rm a2O}$ = 023 gram $N_{\rm a}$.

till the solutions correspond to normal acid. reached, a permanent precipitate forms. Dilute the liquid, and titrate by normal sulphuric or nitric acid. As soon as the neutral point is which first forms is nearly dissolved; now filter in water, and add ammonia till the precipitate pure recrystallized copper sulphate, or nitrate,

Potassium Permanganate Solution. Dissolve

3.16 grams of the pure salt to 1 litre.

17.85 c. c. = .1 gram Fe. = .0056 gram Fe. $1~{
m e.\,e.}=00316~{
m gram~K_zMm_zO_s}$

This solution should always be titrated before use.

Titration by Fe(NH₄)₂S₂O₈, 6H₂O,

 \cdot 7 gram = \cdot 1 gram Fe.

Titration by oxalic acid,

·1125 gram = ·1 gram Fe.

 $\frac{N}{10}$ Potassium Bichromate Solution. Dissolve 4.917 grams to 1 litre; the salt is dried by gentle

ignition.

1 c. c. = $.004917 \text{ gram } \text{K}_2\text{Cr}_2\text{O}_7$ $= .0056 \, \overline{\text{gram Fe}}$ = .0072 gram FeO= '0127 gram I = .0069 gram Pb.

 $\frac{N}{10}$ Iodine Solution. Dissolve 12.7 grams of sublimed iodine in water containing about 18 grams KI, and dilute to 1 litre.

 $\frac{1}{10}$ Sodium Thiosulphate Solution. Dissolve $24 \cdot 8$

grams of crystallized salt, Na₂S₂O₃, 5H₂O, to I litre, and check with decinormal iodine.

Starch Solution. Pour 200 parts of boiling water upon 1 part of powdered starch, allow to settle, and decant the clear liquid. The strength of the last two standard solutions is as follows:

1 c. c. = $\cdot 0127 \text{ gram I}$ $= .0158 \, \text{gram Na}_2 \text{S}_2 \text{O}_3$ $= .0248 \text{ gram Na}_{2}S_{2}O_{3}, 5H_{2}O_{3}$ = $\cdot 00495$ gram As_{2O_3} .

Volium Arsenite Solution. Dissolve 4.95 of the purest sublimed arsenious anhydride in 250 c. c. of water in which about 25 grams of the purest sodium monocarbonate has previously been dissolved. The solution is effected by boiling and shaking for some time. Finally, dilute to litre. Test this solution by standard iodine.

I e. e. = .0127 gram I = .00355 gram Cl.

Malver Nitrate Solution. Dissolve 10.8 grams of pure silver in pure dilute nitric soid, gently heated, and dilute to I litre; or, if a neutral solution is required, take 17 grams of pure silver nitrate and dissolve in water to I litre.

I e. e. = $\cdot 0108$ gram Ag. = $\cdot 017$ AgNO₃ = $\cdot 0.0355$ gram Ol. = $\cdot 0.0355$ gram Ol.

Sodium Chloride Solution. Dissolve 5.85 grams of pure sodium chloride, dried by gentle ignition, to I litre.

I c. c. = .00585 gram NaCl = .00355 gram Cl = .0108 gram Ag.

N Barium Chloride Solution. Dissolve 122.00 grams of barium chloride, dried between paper, to I litre.

1 c. c. = :049 gram H₂SO₄ = :048 gram SO₄ = :040 gram SO₃ = :1220 gram BaCl₂, 2OH₂ = :104 gram BaCl₂ = :0685 gram Ba.

Stannosum Chloride Solution. Dissolve about 6 grams of pure tin, in thin pieces, in about 200 c. c. of strong hydrochloric acid, by the aid of pieces of platinum foil; dilute to 1 litre, and preserve in stoppered bottles. This solution must be titrated with $\frac{N}{10}$ iodine solution every day when used.

Standard Iron Solution for Colorimetric Estimation of Iron. Dissolve 1 004 gram of pianoforte wire in aqua regia, precipitate as hydrate with ammonia, wash, dissolve in a little hydrochloric acid, and dilute to 1 litre.

$$1 \text{ c. c.} = .001 \text{ Fe} \\ = .0012857 \text{ FeO.}$$

A more dilute solution is made by diluting the above solution with nine times its bulk of water; then

$$1 \text{ c. c.} = .0001 \text{ gram I.}$$

Iudicator. 1 part of potassic ferrocyanide in 10 of water.

Standard Copper Sulphate Solution. Dissolve 39.291 grams of crystallized salt, dried between paper (CuSO₄, 5OH₂), to 1 litre.

$$1 \text{ c. c.} = \cdot 01 \text{ gram Cu.}$$

Standard Copper Sulphate Solution for Colorimetric Estimation of Copper. Dissolve '3929 gram of the crystallized salt to 1 litre.

I e. e. = .0001 gram Cu.

The Ammonium Nitrate solution, which is used in this process, is made by dissolving 100 grams to I litre; and the Potassium Ferrocyanide solution, by dissolving I part in 25 parts of water.

Standard Zinc Sulphate Solution. Dissolve 44.12 grams of pure crystallized zinc sulphate to I litre. The salt should be dried between paper.

I e. e. = .01 gram Zn.

"Standard Salt Solution." Dissolve 5.4145 grams of pure NaCl to I litre.

I e.e. = .01 gram Ag.

"Decimal Salt Solution." Dilute 100 c. c. of the

I c.c. = .001 gram Ag.

"Decimal Silver Solution." Dissolve I gram of pure silver in warm nitric acid, and dilute to I litre,

I e.e. = .001 gram Ag.

Standard Zine Solution for Alkaline Sulphides. Dissolve 3.253 grams of pure zine in hydrochloric

acid, supersaturate with ammonia, and dilute to 1 litre.

1 c. c. = .0016 gram sulphur

= .0039 gram sodium sulphide

= '00551 gram potassium sulphide' = '0034 gram ammonium sulphide.

STANDARD SOLUTIONS FOR ESTIMATION OF PHOSPHATES.

Standard Uranium Solution. Take about 40 grams of uranium acetate, dissolve in water, add about 25 c.c. of glacial acetic acid, and make up to 1 litre. This solution is then titrated against the sodium phosphate and diluted until 20 c.c. are equivalent to 50 c.c. of the latter.

1 c. c. =
$$\cdot 005 \text{ gram } P_2O_5$$

= $\cdot 00669 \text{ gram } PO_4$.

Standard Sodium Phosphate Solution. Take 10.085 grams of pure, crystallized, non-effloresced, disodium hydrogen phosphate, dried between paper, and dissolve to 1 litre. Check this solution by evaporating 50 c. c. to dryness and igniting. The residue should weigh 1874 gram.

50 c. c. = '1 gram
$$P_2O_5$$
.

Sodium Acetate Solution. Dissolve 100 grams of the salt in water, add 100 c.c. of pure acetic acid (sp. gr. 1.04), and dilute to 1 litre. Exact quantities are not necessary.

Standard Tannin Solution. Dissolve 2 grams of pure tannin to 1 litre.

I e.e. = .002 gram tannin.

Standard Copper Solution (Fehling). Dissolve 34.64 grams of pure crystallized copper sulphate in water; in another vessel dissolve 173 grams of Rochelle salt in 480 c. c. of soda (sp. gr. 1·14); mix the two solutions, and make up to 1 litre.

I e.e. = .005 gram $\mathrm{G}_{6}\mathrm{H}_{12}\mathrm{O}_{6}$.

Standard Mercuricum Cyanide Solution (for Sugar). Dissolve 10 grams of mercuricum cyanide in 600 c. c. of water, add 100 c. c. of soda (sp. gr. 1·145), and dilute to I litre.

Standard Mercuricum Nitrate Solution (for Cl in Urine). Dissolve 18.42 grams of the purest red oxide in nitric scid (1.20), evaporate off excess of acid, and dilute to I litre.

I e. e. = .01 gram NaOl = .006065 gram Ol.

Standard Mercuricum Nitrate (for Urea). Dissolve 77.2 grams of red oxide, as before, and dilute to 1 litre.

I e. e. = .01 gram urea.

Standard Barium Chloride (for Sulphates in Urine). Dissolve 30.5 grams of barium chloride, dried between paper, and dilute to 1 litre.

1 c. c. = .01 gram SO_3 .

REAGENTS USED IN WATER ANALYSIS.

Nessler's Solution. Take 62.5 grams of KI and dissolve in 250 c. c. of water, reserve about 10 c. c., and then add to the larger portion a solution of HgCl₂ until the precipitate ceases to be dissolved. Now add the 10 c. c. of KI solution, and continue the cautious addition of HgCl₂ solution until a slight permanent precipitate forms.

Then dissolve 150 grams of stick potash in 150 c.c. of distilled water, and when cool add it gradually to the above solution, and dilute the

mixture to 1 litre.

Standard Ammonium Chloride. Dissolve 1.9107 gram of dry ammonium chloride to 1 litre, then take 100 c. c. of this solution and dilute to 1 litre.

1 c. c. = .00005 gram N.

Or, dissolve 1.5735 gram to 1 litre, and treat as above.

1 c.c. = $\cdot 00005 \text{ gram NH}_3$.

Standard Water for Hardness. Dissolve 2 gram of pure CaCO₃ in HCl without loss, and drive off excess of HCl by one or two evaporations. Dissolve to 1 litre.

Standard Soap Solution. Take 150 parts of lead plaster (emplast. plumbi) and 40 parts of dry potassic carbonate, mix well in a mortar, and then add spirit (methylated) to form a cream; allow to stand for some hours, then throw the mass on to a filter and wash with spirit. The soap solution thus obtained must be diluted with a mixture of one volume of distilled water and two of spirit (considering the soap solution as spirit), until 14.25 c.c. are required to form a permanent lather with 50 c.c. of "Standard Water for Hardness."

CHEMICAL MANIPULATION.

To bend Glass Tube.—Heat the tube in the broad flame of an ordinary fish-tail or bat's-wing broad flame of an ordinary fish-tail or bat's-wing burner until it begins to bend by its own weight. Then it may easily be bent to the required shape without creasing if removed from the flame. In bending wide tubes (say '5 inch diameter), it is better either to heat a considerable length of them to redness in a charcoal or combustion furnace, and then make the required bend, or to heat successnet portions in the large blow-pipe flame, and bend each portion, and so make the bend by degrees.

Slass in the blow-pipe flame, at the point where glass in the blow-pipe flame, at the point where the jet is required, while slowly turning it round, until it thickens. When it is heated equally all round, withdraw it from the flame and draw it out to the required jet. Next cut off at the middle out to the required jet. Next cut off at the middle of the narrow part, and heat the end in the flame for a moment to fuse the sharp edges.

To mend a Test-tube.—Test-tubes frequently break at the bottom, and may then be mended as

follows:—Fasten a piece of scrap tube on to the broken end by making both soft in the flame, and immediately draw off the test-tube as near as postest-tube as near as postest-tube

sible to the broken end. The fine point of the blow-pipe flame must then be directed upon the narrowed portion so as to produce an extremely narrowed neck as shown, and the two portions must then be severed by drawing off at the narrowed point. This leaves a small lump of glass; to remove this, heat the lump in the flame until

it is soft, and blow it out to a small bubble at the end of the tube. Now heat the whole end in a large blow-pipe flame, or in the flame of a good Bunsen burner, keeping it turning all the time, until it shrinks-in regularly to a flattened hemisphere. Then blow gently into the tube, when the end expands into a uniformly thin hemispherical bottom. The small tubes of hard glass for use in blow-pipe analysis are made in the same way.

To cut Glass Tube. To cut off ordinary quill tubing, nick the tube with the edge of a sharp three-cornered file (if the file is sharp, one stroke across the glass is sufficient), and then placing the thumbs one on each side of the nick give the hands a quick movement as if to bend the tube, which then easily snaps off. Thick, wide tubing is cut by filing a deeper nick into it some distance round, and wrapping it in a towel before attempting to break it. The end of a combustion tube is trimmed by the pincers. The tube is held in the left hand, and the pincers in the right; one of the handles being between the thumb and forefinger, and the other between the two last fingers. By moving the latter handle and at the same time smartly turning the wrist, a nibbling motion given to the points of the pincers, easily enabling the operator to level the end of the tube, which must afterwards be fused for a moment in the blowpipe flame.

Thin tubes cannot be cut by the file, it is better to lead a crack round them by a hot glass rod. Broken flasks and bottles may often be put to valuable use by cutting them in the same way. A crack is started by the pincers, or by pressing a hot rod upon them, and then touching the heated

part with the wet finger; this is then led round the vessel in any direction by keeping the end of the bot rod a little in advance of the crack.

To giving Glass.—The ends of thick tubes may be ground level upon a stone with turpentine, the addition of sand, or, still better, emery powder

increases the action.

To fuse a Platinum Wive into a Tube.—Draw out the tube to a narrow jet and insert the clean end of the wire, then heat the end in the flame until the glass shrinks and clasps the wire. Cool slowly. To make a T piece.—The glass for this purpose

a straight line, by heating the two ends, bring-In the same way two pieces of tube are joined in until the line of division disappears. Cool slowly. shrunken part; go round the juncture in this way the tube is hot, blow in gently to expand the the juncture fuse together and shrink in. While flame upon the joint until the two portions forming feetly made joint. Now direct the point of a hot blow gently into the tube. This gives an impertogether, withdraw the glass from the flame and end of the second tube and the sides of the hole by the finger. When the glass is hot, bring the keeping the unclosed end of the first tube stopped heat the projecting edges of this hole and the end of the second piece of tube in the same flame, about as large as the diameter of the tube. Now heated, blow out a bubble, and break this by a tap upon the table. This should leave a hole the point of the flame. When the spot is well the closed piece at one point near the middle by lengths, and close the end of one. Then heat Out two pieces of the same tube into convenient must be soft; lead glass, however, is not the best.

ing them together, and then going round the joint

till it disappears.

To clean Vessels.—A mop made by fixing a bit of sponge to the end of a thick wire is very useful in cleaning test-tubes. Care must be taken that no projecting portion of the wire is left to break the bottom of the tube. According to the solubility of the substance defiling the vessel to be cleaned, a little common acid or alkali may be used: but in very many cases water alone suffices. Vessels contaminated with substances of the nature of pitch, tar, &c., are cleaned by heating a little strong sulphuric acid in them. To clean evaporating basins, beakers, &c., a little sea sand (which has no sharp edges) or furnace ashes may be used to scour them. Platinum crucibles are cleansed by gentle scouring with sea sand and the finger. Sometimes a little acid sulphate of potassium fused in them, will remove obstinate impurities. Aqua regia should never be used to clean platinum. All vessels must finally be rinsed with distilled water.

To remove Stoppers that have become fixed.—Heat the neck of the bottle by pouring hot water round it, or by rotating it once quickly in a flame; this expands the neck and allows the stopper to be withdrawn; or tap the stopper gently with some wooden object until it is loose. Sometimes a stopper may be extracted by holding the bottle in the hand, inserting the flat part of the stopper into a crevice of a door, &c., and turning the bottle. Stoppers may often be removed by soaking in hot water or by placing a little oil round them, which after a time sinks in and loosens them.

To cleanse Mercury.—Leave the mercury in a flat

mercury, and stir occasionally for some hours. dish with dilute nitric acid, containing nitrate of

Sulphuric acid diluted with twice its weight of

water may also be used.

This removes scum. breathing several times into the bottle containing sugar, previously slightly damped by should be shaken in a bottle with a little powdered recommends that before being filtered, the mercury making a small pin hole at the bottom. Faraday piece of writing paper in the usual way and mercury through a filter, made by bending off at the bottom. It is often advisable to filter The mercury is introduced at the top and drawn and bottom, together with strong sulphuric acid. by placing it in a funnel tube, stoppered at top For gas analysis, mercury is cleansed and dried

and then adding one part of venetian red or red parts of resin, and one part of yellow beeswax, laboratory. It is made by melting together five Faraday's Cap Cement.—This is of great use in a

possible while cooling. The cement should be stirred as long as

one part, turpentine one part, and a little venetian A soft Cement is made by taking yellow becawax

red to colour.

its strength. weak glue in the preparation of this lute, increases to the joint. The use of milk, lime water, or Mix up the meal to a paste with water, and apply Linseed Meal is useful as a lute in some cases.

white of egg with quick lime into a paste. lass articles, a good cement is made by mixing the best glue in acetic acid; and for mending Cements.—A useful cement is made by dissolving

LIST OF NAMES GIVEN IN THE OLDER LANGUAGE OF CHEMISTRY TO VARIOUS COMPOUNDS.

Old Name.	Modern Name.
Salt (ammoniacal, fixed)	Calcium chloride.
" (ammoniacal, secret) of	Ammonium sulphate.
Glauber.	
,, (arsenical, neutral) of	Potassium hydrogen arsenate.
Macqueer.	
" (bitter, cathartic)	Magnesium sulphate.
" (common)	Sodium chloride.
" (digestive) of Sylvius	Potassium acetate.
" (diuretic)	Potassium acetate.
, (Epsom)	Magnesium sulphate.
" (febrifuge) of Sylvius	Potassium chloride.
,, (fusible)	Ammonium phosphate.
" (fusible) of urine	Sodium ammonium phosphate.
" (Glauber's) " (marine)	Sodium sulphate. Sodium chloride.
(marino arrillaccours)	Aluminium chloride.
(microccomic)	Sodium ammonium phosphate.
(nitrong ammonigael)	Ammonium nitrate.
of amhar	Succinic acid.
" of benzoin	Benzoic acid.
" of canal	Magnesium sulphate.
" of colcothar	Ferrosum sulphate.
" of egra	Magnesium sulphate.
" of lemons (essential)	Potassium hydrogen oxalate.
of saturn	Lead acetate.
" of sedlitz	Magnesium sulphate.
of sedlitz	Sodium potassium tartrate.
,, of soda	Sodium carbonate.
" of sorrel	Potassium hydrogen oxalate.
" of tartar	Potassium carbonate.
" of vitriol	Zinc sulphate.
" of wisdom	Ammonio-mercury chloride.
" (perlate) " (polychrest) of Glaser	Disodium phosphate. Potassium sulphate.
(a. ditira)	Boric acid.
Conjust of	Hydrochloric acid.
(gulphurooug) of Ctobl	Pota-sium sulphite.
" (wonderful)	Sodium sulphate.
" (wonderful, perlate)	Disodium phosphate.
	* * * * * * * * * * * * * * * * * * *

GLOSSARY OF THE MOST IMPORTANT MINERALS, GIVING THE FORMULÆ, HARDNESS, SPECIFIC

Specific C	GRAVITY, AND BEHAVIOUR WITH ACIDS. I = insoluble in or unaffected by acids; S = soluble in or decomposed by acids.	EHAVIOUR Wids; S = solu	rrr# Ac lble in or	rbs. : decompos	ed by acids.
	•	Name.	Hard- ness.	Specific Gravity.	Crystalline System.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		der der der cime llusite ydrite thite gonite gonite gonite te	2-2.5 2-2.5 2-2.5 7-7.5 3-3.5 6 2-2.5 3.5-4.0 5-6 6.5-7 3.5-4.2 3-3.5 7.5-8 2.5-3	2.6-2.67 1.75-1.9 1.0-1.1 2.1-2.25 3.1-3.2 6.2-6.35 6.2-6.35 2.8-3.0 1.4-1.7 7.0-7.4 2.9-3.0 1.1-1.2 3.2-3.3 3.7-3.8 4.3-4.7 2.85-2.9 2.85-2.9	Triclin. Tess. Irreg. Tess. Rhomb. Rhomb. Triclin. Irreg. Triclin. Irreg. Monoclin. Triclin. Monoclin. Hexag. Hexag. Liquid. Monoclin.

I = insoluble in or unaffected by acids; S = soluble in or decomposed by acids. GLOSSARY OF THE MOST IMPORTANT MINERALS-continued.

Brown coal 5-1-5 Ir Calaite 6 2-6-2-8 Ir Calcite 3 2-6-2-8 Ir Cassiterite 3-3-5 6-7-6-6 R Cerussite 3-3-5 6-4-6-6 R Chlorite 1-1-5 2-78-2-96 H Chromite 5-5 4-4-4-5 Tr Chromite 5-5 6-0-6-3 Tr Cobaltine 7-7-5 2-5-2-7 R Corundum 5-5-7 3-3-3-7 Tr Cyanose 5-5-5 2-2-2-3 Tr Cyanose 5-5-5 2-2-2-3 Tr Chromite 5-5-5 2-2-2-3 Tr Cryanose 5-5-5 2-2-2-		Less.		, , ,			
Brown coal		3		10	:	1 Diamond	
Brown coal		Monoclin.		5-5.5	:	S Datholite	$CaAO_1B_2O_3 + CaO_12SiO_2 + H_2O_1$
Brown coal		Triclin.	2.2-2.3	2.5	:	S Cyanose	CuO.SO ₃ + 5H ₂ O
Brown coal 5-1-5 Ir Calaite 6 2.6-2.8 Ir Calaite 3 2.6-2.8 Ir Calcite 3 2.6-2.8 Ir Cassiterite 3-3.5 3.9-4.0 R. Cerussite 3-3.5 6.4-6.6 R. Chlorite 1-1.5 2.78-2.96 H. Chromite 5.5 4.4-4.5 The Chrysolite 6.5-7 3.3-3.5 R. Chapter 6.5-7 1.8-2.7 Ir Cobaltine 5.5 6.0-6.3 The Cordierite 7-7.5 2.5-2.7 R. Corundum 3.5-4 5.7-6.0 The Chrysolite 5.5 6.0-6.3 The Chrysolite 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5 6.0-6.3 The Corundum 5.5-2.7 R. S. S. S. S. S. S. S. S. S. S. S. S. S.		Triclin.	3.5-3.7	5-7	:		$A1_2O_3$. Si O_2
Brown coal 5-1-5 Ir Calaite 6 2.6-2.8 Ir Calcite 3 2.6-2.8 Ir Cassiterite 3-3.5 3.9-4.0 R Cerussite 3-3.5 6.4-6.6 R Chlorite 1-1.5 2.78-2.96 H Chromite 5.5 4.4-4.5 Tr Chrysolite 6.5-7 3.3-3.5 R Cordierite 5-5 6.0-6.3 Tr Cobaltine 5-5 6.0-6.3 Tr Cordierite 7-7.5 2.5-2.7 R Cordierite 5-5 6.0-6.3 Tr Cordierite 5-5 6		Tess.	5.7-6.0	3.5-4	:	S Cuprite	$\operatorname{Cu}_2\mathrm{O}$
Brown coal 5-1-5 Ir Calaite 6 2.6-2.8 Ir Calcite 3 2.6-2.8 Ir Cassiterite 3-3.5 8-7.0 Telestine 3-3.5 6.4-6.6 R Chlorite 1-1.5 2.78-2.96 H Chromite 5.5 4.4-4.5 Telestine 6.5-7 3.3-3.5 R Cobaltine 5.5 6.0-6.3 Telestin	-	Hex., Rhombo.	3.9-4.2	9	:	_	$\tilde{\mathbf{A}}_{12}$ 03
Brown coal 5-1-5 Ir Calaite 6 2-6-2-8 Ir Calcite 3 2-6-2-8 Ir Cassiterite 3-3-5 6-8-7-0 T Celestine 3-3-5 6-4-6-6 R Chlorite 1-1-5 2-78-2-96 H Chromite 5-5 4-4-4-5 T Chay 6-5-7 3-3-3-5 R Cobaltine 5-5 6-0-6-3 To		Rhomb.	2.5-2.7	7-7.5	:	1 Cordierite	$2A1_2U_3.3SiU_2 + 2(MgU.SiU_2)$
Brown coal		Tess.	6.0-6.3	55	:	S Cobaltine	$\cos_2 + \cos_2$
Brown coal 5-1.5 Calaite 6 2.6-2.8 Calcite 3 2.6-2.8 Cassiterite 6-7 6.8-7.0 Celestine 3-3.5 6.4-6.6 Chlorite 1-1.5 2.78-2.96 Chrysolite 5.5 4.4-4.5 Chrysolite 6.5-7 3.3-3.5		TILES.	1.7-0.1		:	Cro.y	SiO ₂ , &c.
Brown coal 5-1-5 In Calaite 6 2.6-2.8 In Calcite 3 2.6-2.8 In Cassiterite 6-7 6.8-7.0 The Cerusite 3-3.5 6.4-6.6 R Chlorite 1-1.5 2.78-2.96 H Chrysolite 6.5-7 3.3-3.5 R Chrysolite 6.5-7 6.5-7 9.5-7		Transce	1.00		:	Clow	
Brown coal 5-1-5 In Calaite 6 2.6-2.8 In Calcite 3 2.6-2.8 In Cassiterite 6-7 6.8-7.0 The county of the co		Rhombic.	3-3-5	6.5-7	•	S Chrysolite	2(Mg. Fe)0.Si0,
Brown coal 5-1-5 Ir Calaite 6 2.6-2.8 Ir Calcite 3 2.6-2.8 Ir Cassiterite 6-7 6.8-7.0 T Celestine 3-3.5 6.4-6.6 R Chlorite 1-1.5 2.78-2.96 H		Tesseral.	4.4-4.5		•	I Chromite	G G
Brown coal 6 2.6–2.8 In Calaite 6 2.6–2.8 In Calcite 3 2.6–2.8 H Cassiterite 6–7 6.8–7.0 T Celestine 3–3.5 3.9–4.0 R Cerussite 3–3.5 6.4–6.6 R		Hexag.	2.78-2.96	1-1.5	:	S Chlorite	$2(2\text{KO}.\text{SiO}_2) + \text{Al}_2\text{O}_3.3\text{H}_2\text{O}$
Brown coal		Rhomb.	6.4-6.6	3-3.5	:		Pb0.C02
Brown coal 6 2.6–2.8 In Calcite 3 2.6–2.8 H Cassiterite 6-7 6.8–7.0 T		Rhomb.	3.9-4.0		:		$Sr0.SO_3$
Brown coal		-	6.8-7.0	_	•	1 Cassiterite	$\tilde{sn}0_2$
Brown coal	ಶ	Н	2.6-2.8		:	S Calcite	$C_{a}O.CO_{3}$
Brown coal		Ħ	2.6-2.8	6	:	S Calaite	$2Al_2O_3.P_2O_5+5H_2O$
TO-0 # 0 -0 # 0 -0 -1		Irreg.	.5-1.5	•	:	- Brown coal	C, H, N, O, &c.
Romite 2 1.0 K.1		Tess.	4.9-5.1	ယ	:	S Bornite	3Cu ₂ S.Fe ₂ S ₃
Name. Hard-Specific Crystalline System.		Crystalline System.	Specific Gravity.	Hard- ness.		Name.	Formula.

<i>ued.</i> sed by acids.	Crystalline System.	Hexag. Rhomb. Monoclin. Tess. Irreg. Tess. Rhomb. Rhomb. Hexag. or Monocl. Rhomb. Tess. Rhomb. Hexag. or Monocl. Rhomb. Tess. Tess. Tess. Tess. Tess.
s—contini decompo	Specific Gravity.	2.6-2.8 3.1-3.3 3.2-3.5 2.9-3.0 1.8-2.0 7.2-7.6 3.3-3.5 3.5-4.3 3.8-4.4 1.9-2.2 2.3-2.5 2.4-2.5 2.9-3.4 4.3-5.0
fineral: ible in or	Hard- ness.	7.5-8.0 6-7.5 6-7.5 1.5-2.5 1-1.5 2.2.5 5-2.5 5-1 5-5.5 5-5.5 3.5-4 5-6 6.5 3
GLOSSARY OF THE MOST IMPORTANT MINERALS—continued. luble in or unaffected by acids; S == soluble in or decomposed	Name.	I Emerald I Enstatite S Epidote S Fluorite Fullers' earth S Galmei S Garnet S Goslarite S Götheite S Harmotome S Harmotome S Hauyne S Hauyne S Hornblende S Idocrase S Idocrase S Idocrase S Ilmenite S Idocrase S Ilmenite
GLOSSARY OF THE MOST IMPORTANT MINERALS—continued. $I = insoluble in or unaffected by acids; S = soluble in or decomposed by acids.$	Formula.	Al ₂ O ₃ .3SiO ₂ +3(GiO.SiO ₂) 3(Al ₂ O ₃ .SiO ₂ +CaO.SiO ₂)+ CaO.H ₂ O 3CoO.As ₂ O ₃ +8H ₂ O CaF ₂ Al ₂ O ₃ , (Fe, Mg, Ca, H,)O, SiO ₂ , &c. PbS 2ZnO.SiO ₂ +H ₂ O 3(Mg, Ca) C.SiO ₂ +(Al.Fe) ₂ O ₃ .SiO ₂ +(Al.Fe) ₂ ZnO.SiO ₃ +7H ₂ O Fe ₂ O ₃ .H ₂ O Fe ₂ O ₃ .H ₂ O CaO.SiO ₂ +7H ₂ O Fe ₂ O ₃ .H ₂ O CaO.SiO ₂ +7H ₂ O Fe ₂ O ₃ -7H ₂ O CaO.SiO ₂ +7H ₂ O CaO.SiO ₂ +7H ₂ O CaO.SiO ₂ +7H ₂ O CaO.SiO ₂ +5H ₂ O CaO.SiO ₂ +5H ₂ O CaO.SiO ₂ +5H ₂ O

CHEMISLS, LOCKET-BOOK.

I = insoluble in or unaffected by acids; S = soluble in or decomposed by acids. GLOSSARY OF THE MOST IMPORTANT MINERALS-continued.

Formula. H ₂ O.Al ₂ O ₂ + H ₂ O.2SiO ₂	Name.		Hard- ness.	Specific Gravity.	Crystalline System.
${ m H_2O.Al_2O_3 + H_2O.2SiO_2} \\ { m Al_5O_2.2SiO_2 + RO.SiO_2}$	S Kaolin S Labradorite	:	6 H	2.6-2.74	Irreg.
SiO ₂ , SÕ ₃ ,CaO, AI ₂ O ₃ , Na ₂ Ō, &c.	S Lapis-lazuli	•		2.3-2.42	Tess.
$-\text{Al}_2\text{O}_3.\text{SiO}_2+\text{Li}_2\text{O}.\text{SiO}_2$	S Lepidolite.	:	2-3		Monoc
$Al_2O_3 \cdot 3SiO_2 + K_2O \cdot SiO_2$	S Leucite	:	5.5-6		Tess.
FeAs ₂	S Leucopyrite	:	5-5-5	7.0-7.4	Rhom
$Fe_2O_3.SiO_2 + 3(2RO.SiO_2) + H_2O$	S Lievrite	:	5.5-6		Rhom
$\text{FeO.Fe}_2\text{O}_3$	S Magnetite	:	5.5-6.5	4.9-5.2	Tess.
$(CuO.H_2O + CuO.CO_2)$	S Malachite	:	3.5-4	$3 \cdot 6 - 4 \cdot 0$	Monoclin.
$Fe0.SO_3 + 7H_2O$	S Melanterite	:	2		Monoc
$3(3Pb0.As_2O_5) + PbCl_2$	S Mimetesite	•	3.5-4.0	3.5-4.0 7.19-7.25	Hexag
$FeS_2 + FeAs_2$	S Mispickel.	:	5.5-6.0		Rhomb.
MoS	S Molybdenite	:	1-1.5		Hexag
$Al_2O_3.SiO_2 + K_2O.SiO_2$	I Muscovite	:	2 <u>-</u> 3	2.8-3.1	Rhom]
	S Natrolite	•	5-5-5	2.17-2.26	Rhom
$Na_2O.CO_2 + 10H_2O$	S Natron	:	1-1.5	1.4-1.5	Mono
Al ₂ O ₃ .2SiO ₂ +RO.SiO ₂	S Nepheline	:	5.5-6	2.58-2.64	Hexap
N_2O_5	S Nitre	:	8	$1 \cdot 9 - 2 \cdot 0$	Rhomb.
Al ₂ O ₃ , MgO, K ₂ O, Na ₂ O, SiO ₂ , &c.	1 Obsidian	:	6-7	$2 \cdot 2 - 2 \cdot 6$	Irreg.
$2(Al_2O_3.3SiO_2) + 2(Na_2O.CaO).$	1 Oligoclase	:		2.64-2.68	Triclin.
$35iO_2$					

I = insoluble in or unaffected by acids; S = soluble in or decomposed by acids. GLOSSARY OF THE MOST IMPORTANT MINERALS-continued.

Formula.	Name.	Hard- ness.	Specific Gravity.	Crystalline System.
S Och + Soot ASO	Olivenite	က	4.1-4.6	Rhomb.
SiO 3Ho Ois	Opal	5.2-6.2	2-3.5	Irreg.
I ALO, 3SiO, 4 KoO, 3SiO,	se ···	9	2.53-2.58	Monoclin.
Al ₂ O ₃ , (Ca.Fe.Mg.Na ₂)O, Fe ₂ O ₃ , I	Pitchstone	2.2-6.0	5.5-6.0 2.2-2.3	Irreg.
SiO ₂ , &c.	;		0	Dt 1.
$1.41_{\circ}O_{\circ}$ SiO ₀ + 2(CaO, SiO ₀) + H ₀ O S	Prehnite	2-9	0.5-8.7	Kuomo.
S A S S A S S A S S S S S S S S S S S S	Proustite		5.5-5.6	Khombo.
ATO MED KO NACO SIOS &C. I	Pumice	ಬ	2.5	Irreg.
A1203, 1120, 1120, 1120, 1121,	Pyrites	6-6-5	4.9-5.2	Tess.
S SOUTH DECLE S	Pyromorphite.	3.5-4.0	0.2-6.9	Hexag.
S ETOS TO S	Pyrrhotine	3.5-4.5	4.5 - 4.6	Hexag.
SCZOZ CZOZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ CZ	Quartz	7	2.5 - 2.8	Hexag.
2000 2000 2000 2000 2000	Realgar	1.5-2	3.4 - 3.6	Monoclin.
I.O.	Rutile	9-9-9	4.2-4.3	Tetrag.
	Sal-ammoniac	1.5-2	1.5 - 1.6	Tess.
B.O. +3H.O	Sassoline		1.4-1.5	Triclin.
S WOS WOS	Scheelite	4-4.5	5.9 - 6.5	Tetrag.
A1202 2SiO2+C2O SiO2+3H2O S	-	5-5-5	$2 \cdot 2 - 2 \cdot 3$	Monoclin.
S Since Sinc		3-3.5	2.5 - 2.7	
S SELECTION OF BUILDING	S Siderite	3.5-4.5	3.7-3.9	Hex., Rhombo.
COAS		5.2	6.4 - 7.3	Tess.
1				

I = insoluble in or unaffected by acids; S = soluble in or decomposed by acids. GLOSSARY OF THE MOST IMPORTANT MINERALS-continued.

$\begin{array}{c} {\bf 3Fe0.P_{2}O_{5}+8H_{2}O} \\ {\bf Mn(Ca.Ba.K_{2})O.Mn_{2}O_{3}+3H_{2}O} \\ {\bf 3Al_{2}O_{3}.2P_{2}O_{5}+12H_{2}O} \\ {\bf BaO.CO_{2}} \\ {\bf Fe0.MnO.WO_{3}} \end{array}$	$Zn0.CO_2$ ZnS ZnS ZnS $CaO.2SiO_2 + CaO.2TiO_2$ $MgO.Al_2O_3$ $(A1.Fe)_2O_3.SiO_2 + (Fe.Mg)O.SiO_2$ $Al_2O_3.3SiO_2 + CaO.3SiO_2 + 6H_2O$ $SrO.CO_2$ $SrO.CO_2$ $3(MgO.SiO_2) + H_2O.SiO_2$ $4(Cu_2.Ag, Fe, Zn, Hg)S.Sb_2S_3$ $Na_2O.SO_3$ $RAl_2S_2O_8 + 5H_2O$ $5(Al_2O_3.SiO_2) + Al_2F_6.SiF_4$ $B_2O_3, MgO, CaO, (Na.K)_2O, SiO_2,$ KC	Formula.
S Wivianite S Wad S Wavellite S Witherite S Wolfram	S Smithsonite S Sphalerite. S Sphene I Spinel S Staurolite. S Stilbite S Strontianite S Strontianite S Talc I Talc S Tetrahedrite S Thenardite S Thomsonite I Topaz I Tourmaline	Name.
01 W C1 W 10 01 W C1 W 10 01 O1 14	3.5.4 3.5.4 3.5.4 3.5.4 3.5.4 3.5.4 3.5.4 3.5.5 3.5.4	Hard- ness.
2.6-2.7 2.3-3.7 2.3-2.5 4.2-4.3 7.1-7.5	3.3-3.5 3.9-4.2 3.4-3.6 3.5-3.8 2.1-2.2 2.6-2.8 1.9-2.1 2.6-2.8 2.3-2.4 3.4-3.6 3.3-3.8	Specific Gravity.
Monoclin. Irreg. Rhomb. Rhomb. Monoclin.	Rhomb. Tess. and Tetra. Monoclin. Tess. Rhomb. Rhomb. Rhomb. Rhomb. or Monocl. Tess. and Tetrahed. Rhomb. Rhomb.	Crystalline System.

Assay Table for Lead Ores.

22 0 22 11 11	2 1 1 1	6 6 6 6	161 061 681 881 481	22 0 0 11 9	3 3 3 3	1, 1, 1, 1, 1,	891 491 991 991 791	22 11 11 2	T 0 0 0 0	9 9 9 9	152 153 153 155	11 22 0 23 11	7 7 7 1 1	ን ን ን ን	76 16 06 68 88
22 0 23	I O	6 6 6	981 981 781	ç	7 7	1, 1, 1,	151 152 153	22 0 0	3	9 9	811 811 118	II g 0	I I I	₹ ₹	48 98 98
91 11 9	0 0 0 0	6 6 6	181 181 281 183	0 77 11	I I I	1, 1, 1, 1,	091 671 871 471	22 0 5 11	2 3 3 3	9 9 9 9	411 911 911 7 11	77 11 20 20 20 20 20 20 20 20 20 20 20 20 20	0 0 0 0	፣	78 78 83 18
77 11	3	8 8 8	64T 84T 44T	22 0 3	I I 0	1, 1, 1,	9†I 9†I ††I	9I II g	7 7 7	çı Çı	111 112 113	22 22 16	3 0 0	£ 8	08 64 84
22 0 3	3	8 8	94T 94T 74T	9I II g	0 0 0	1, 1, 1,	143 141	91	I I	9 9 9	011 601 801	11 g 0	8 8 8	3	94 94 94
91 11 9	7 7 7 7	8 8 8	841 841 141 041	11 22 0	3 3 3	4 9 9	0†I, 68I, 88I 48I	22 0 11	I I I 0	9 9 9	401 901 901 701	11 11 27	7 7 7 7	0 0 0 0 0 0 0	74 84 84 14
77 11 11	I I	8 8 8	691 891 491	22 0 3	2 3 3	9 9	981 981 781	9I II g	0 0 0	ទ ទ	101 201 201	0 77 91	I I	3	04 69 89
22 0 16 16	I 0 0	8 8 8	991 991 791 891	91 11 9 0	2 2 2 3	9 9 9	131 132 133	0 77 91	3 3 0	g F F	001 66 86	11 9 0	I I	3 3	49 99 99
	0 0 0	8 8	19I 19I 19I	11 22 22	I I I	9 9 9	121 129 130	22 0 11	2 3 3	レ す す す	46 96 96 76	91 11 2	0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	79 89 79 19
. lbs.	3	4	691	.edl .a	τ	9	126	sdI.	7	₹	63	on Ibs.	0	3	09
	d°ie i late ìo n	Me	400 grains of Ore give Grains of Metal.	n a. Ore.		9 TAT	400 grains of Ore give Grains of Metal.	tof n a. Ore,	dgid i lat lo t	ЭИ	400 grains of Ore give Grains of Metal.	r u	hagie i lai	OTAT	400 grains of Ore give Grains of Metal.

ASSAY TABLE FOR LEAD ORES-continued.

400 grains of Ore give Grains of Metal.	Me	eigh etal i n of	in a	400 grains of Ore give Grains of Metal.	M	eigh etal i n of	iu a	400 grains of Ore give Grains of Metal.	Me	etal	at of in a Ore.	400 grains of Ore give Grains of Metal.	M	etal	nt of in a Ore.
			s. 1bs.		cwt	s. qr	s. 1bs.		cwis	 3. qr	s. 1bs.		cwi	s, ar	s. lbs.
192	9	2	11	225	11	ĺ	0	258		$\hat{3}$	1.6	291	14	2	5
193	9	2	16	226	11	1	5	259		3	22	292	14	2	11
194	9	2	22	227	11	1	11	260		0	0	293		2	16
195	9	3	0	22 8	11	1	16	261	13	0	5	294		2	22
196	9	3	5	229	11	1	22	262		0	11	295		3	0
197 198	9	3 3	11 16	230	11	2	0	263		0	16	296		3	5
198	9	3	22	231 232	11	2	5	264		0	22	297		3	11
200	10	0	0	232	11	$egin{array}{c} 2 \\ 2 \end{array}$	11 16	$\begin{array}{c} 265 \\ 266 \end{array}$		1 1	0 5	298		3	16
201	10	0	5	234	11	$\frac{2}{2}$	$\frac{10}{22}$	$\begin{array}{c} 266 \\ 267 \end{array}$		1	11	299		3.	22
202	10	. 0	11	235	11	3	0	268		1	16	300 301		$\begin{array}{c} 0 \\ 0 \end{array}$	0
203	10	0	16	236	11	3	5	269		1	$\frac{10}{22}$	301		0	5 11
204	10	Ō	22	237	11	3	11	270		$\hat{2}$	0	303		0	16
205	10	1	0	238	11	3	16	11 1	13	$\tilde{2}$	5	304		0	22
206	10	1	5	239	11	3	22		13	$ar{2}$	11	305		ì	0
207	10	1	11	240	12	0	0	273		2	16	306		ĩ	5
208	10	1	16	241	12	0	5		13	2	22	307		ī	11
209	10	1	22	242	12	0	11	275	13	3	0	308		1	16
210	10	2	0	243	12	0	16	i) !	13	3	5	309	15	1	22
211	10	2	5	244	12	0	$\bf 22$		13	3	11		15	2	0
212	10	2	11	245	12	1	0	11 1	13	3	16	311	· 5	2	5
213	10	2	16	246	12	1	5		13	3	22	312		2	11
$\begin{array}{c} 214 \\ 215 \end{array}$	10	2 3	22	247	12	1	11		14	0	0	313		2	16
215 216	10 10	3	$\begin{bmatrix} 0 \\ 5 \end{bmatrix}$	248	12	1	16	1 1	14	0	5	314		2	22
217	10	3	11	249 250	$\frac{12}{12}$	$egin{array}{c} 1 \\ 2 \end{array}$	22	1 1	14	0	11	315		3	0
218	10	3	16	250 251	12	2	0	283		0	16	316		3	5
219		3	22	252		$\overset{2}{2}$	5 11	284 285		0 1	22	317		3	11
	11	0	0	1 1	12	$\mathbf{\hat{2}}$	16	286		1	0 5	318 319		3 3	16 22
221		Ŏ	5	, ,	12	$\frac{2}{2}$	22	287		ì	11	320		0	0
222		Ŏ	11	, ,	12	3	0	288		ì		321		0	5
223		0	16	256		3	5	289		ī	22	322		0	11
224	11	0	22	: 1	12	3	11	290		2	0	323		0	16
<u> </u>	<u>.</u>			<u> </u>										~	

TABLE SHOWING THE WEIGHT OF SILVER TO THE TOU OF OREIGHT IN GRAINS OF MINERAL,

		11	
8 EI 918 0 0 GEL	000·01 000·6	8 8 8 0 <i>L L</i> 91 01 9	00I • 060 • 080 •
91 9 899 8 81 129 0 0 06 7	000·8 000·4 000·9	8 71 G 0 81 7 91 I 7	040· 090· 020·
\$ \$1 928 \$ \$1 988 \$ \$1 98	000.3 000.₹ 000.8	91 21 1 8 2 8 8 1 1 1	020· 040· 040·
91 9 891 8 81 18 0 01 82	000·I 000·2 000·8	8 9I 0 9I 7I 0 I 8I 0	010 · 600 · 800 ·
91 9 99 8 8 49 0 0 67	008 · 004 · 009 ·	0I II 0 6I 6 0 7 8 0	200 900 900
0 01 1 2 8 81 28 91 91 0 1	00 9 • 00 7 • 00 8 •	21 9 0 9 8 0	200· ±00·
oz, dwts, grs.	Fine Metal.	oz, dwts, grs.	Fine Metal.
ar O fo noT I field.	If 400 grains or Ore give	orO to noT I	aniary 004 11 evig evid to

WEIGHT OF SILVER TO THE TON OF LEAD ORE CORRESPONDING TO THE WEIGHT IN GRAINS OBTAINED FROM AN ASSAY ON 1 OZ. OF MINERAL.

Grs.	Oz.	Dwts.	Grains.	Grs.	Oz.	Dwts.	Grains.
.001		1	11.840	•600	44	16	0.000
$\cdot 002$		2	23.680	•700	$\overline{52}$	5	8.000
$\cdot 003$		4	11.520	.800	5 9	14	16.000
.004		5	23.360	•900	67	4	0.000
.005		7	11.200		74	13	8.000
$\cdot 006$		8	23.040	2.000	149	6	16.000
.007		10	10.880	3.000	224	0	0.000
$\cdot 008$	• •	11	$22 \cdot 720$	4.000	298	13	8.000
$\cdot 009$	••	13	10.560	5.000	373	6	16.000
.010	• •	14	$22 \cdot 400$	6.000	448	0	0.000
.020	1	9	20.800	7.000	522	13	8.000
.030	2	4	$19 \cdot 200$	8.000	597	6	16.000
•040	2	19	$ 17 \cdot 600 $	9.000	672	0	0.000
.050	3	14	16.000	10.000	74 6	13	8.000
.060	4	9	14.400	20.000	1493	6	16.000
$\cdot 070$	5	4	12.800	30.000	2240	0	0.000
· 0 80	5	19	$11 \cdot 200$	40.000	2986	13	8.000
.090	6	14	9.600	50.000	3733	6	16.000
100	7	9	8.000	60:000	4480	0	0.000
$\cdot 200$	14	18	16.000	70.000	5226	13	8.000
.300	22	8	0.000	80.000	5973	6	16.000
•400	29	17	8.000	90.000	6720	0	0.000
•500	37	6	16.000	$[100 \cdot 000]$	7466	13	8.000
						ļ	

TABLE FOR THE COUVERSION OF CARATS INTO EQUIVALENTS.

1.302	9.4		,
1.215	4	1000.000	77
1.042	9	828.222	53
898.0	g	499.916	77
₹69.0	₹	000.948	77
179.0	3	833.333	50
4₹€•0	2	499 • 164	61
₹4 1.0	τ	000.094	81
		£68.333	21
Decimal Equivalent	Excess Grains.	499 • 999	91
		000.279	12
417.01	8	£83·333	ÞΙ
911.6	4	499·IFG	13
718.4	9	200.000	71
019.9	g	428·222	11
802.9	Ŧ	499.917	10
906∙€	3	000-948	6
₹09•7	7	333.333	8
1.302	τ	499.167	L ,
		220.000	9
Decimal Equivalent	E:ghths.	208.333	g
		499.99T	₹
499·I7	₱	125.000	3
31.250	3	88.333	\boldsymbol{z}
20.833	8	499.17	τ
417.01	I		
Decimal Equivalent.	Carat Grains.	Decimal Equivalent.	Carata.

TABLE SHOWING THE QUANTITY OF LEAD NECES-SARY FOR THE CUPELLATION OF ALLOYS OF SILVER AND COPPER.

Silver in	Lead to be added	Silver in	Lead to be added to 1 gram of Alloy.
Thou-	to 1 gram of	Thou-	
sandths.	Alloy.	sandths.	
1000 950 900 800 700 600	0.3 gram 3 grams 7 ,, 10 ,, 12 ,, 14 ,,	$egin{array}{c} 500 \\ 400 \\ 300 \\ 200 \\ 100 \end{array} ight\}$	16 to 17 grams.

TABLE SHOWING THE CORRECTIONS TO BE APPLIED IN DETERMINATIONS OF SILVER BY CUPELLA-TION OF ALLOYS OF SILVER AND COPPER.

True Value.	Value by Cupella- tion.	Differ- ences.	True Value.	Value by Cupella- tion.	Differ- ences.
1000 950 900 850 800 750 700 650	998·97 947·50 896·60 845·85 795·70 745·48 695·25 645·29	1·03 2·50 4·00 4·15 4·30 4·52 4·75 4·71	600 550 500 400 300 200 100	595·32 545·32 495·32 396·05 297·40 197·47 99·12	4.68 4.68 4.68 3.95 2.60 2.53 .88

TABLE SHOWING THE CORRECTIONS TO BE APPLIED IN DETERMINATIONS OF GOLD BY CUPELLATION.

09. 09. 09. 09. –	869.20 869.20 869.20 869.20	400 300 200 100		00.004 00.009 00.004 900.006	009 009 004 008 006
Differ- ences.	Gold (Value Found).	Gold (True Value in Thou-Value in Thou-	Differ- ences.	told (Value).	Gold ('Irue Value in 'I'hou- sandths).

TABLE SHOWING THE QUANTITY OF LEAD NECESSARY FOR THE CUPELLATION OF ALLOYS OF GOLD AND COPPER.

to remove the Copper.	100 300 \$200 \$200 \$200 \$200 \$200 \$200 \$20	Copper. Copper. I part I part I part I copper. I	-toold The sandths. 1000 9001 0001 0001 0001 0001 0001 000
to ytitusuQ	ni ənlsV	To Yithneug	ni əulsV
Yrsssoon bea.I	ni bloĐ	Lead necessary	ni bloĐ

URE'S TABLE, SHOWING THE PERCENTAGE AMOUNTS OF METHYL ALCOHOL (WOOD SPIRIT) OF SPECIFIC GRAVITY '8136 IN AQUEOUS SOLUTIONS AT 15.5° C.

Specific Gravity.	Real Spirit per cent.	Over Excise Proof.	Specific Gravity.	Real Spirit per cent.	Over Excise Proof.
·8136 ·8216 ·8256 ·8320 ·8384 ·8418 ·8470 ·8514 ·8564 ·8596 ·8642 ·8742 ·8742 ·8742 ·8742 ·8784 ·8820 ·8842 ·8856 ·8930 ·8950 ·8984 ·9008	72·46 71·43 70·42	$64 \cdot 10$ $61 \cdot 10$ $58 \cdot 00$ $55 \cdot 50$ $52 \cdot 50$ $49 \cdot 70$ $47 \cdot 40$ $46 \cdot 60$ $42 \cdot 20$ $39 \cdot 90$ $37 \cdot 10$ $35 \cdot 00$ $27 \cdot 90$ $26 \cdot 00$ $24 \cdot 30$ $22 \cdot 20$ $20 \cdot 60$ $18 \cdot 30$ $16 \cdot 16$ $15 \cdot 30$.9032 .9060 .9070 .9116 .9154 .9184 .9218 .9248 .9266 .9296 .9344 .9386 .9414 .9484 .9484 .9518 .9540 .9564 .9564 .9584 .9600 .9620	68·50 67·56 66·66 65·00 63·30 61·73 60·24 58·82 57·73 56·18 53·70 51·84 50·00 47·62 46·00 43·48 41·66 40·00 38·46 37·11 35·71	13·10 11·40 9·30 7·10 4·20 2·10 Under Proof. ·60 2·50 4·00 7·00 11·00 15·30 17·80 20·80 25·10 28·80 31·90 34·20 35·60 38·10 40·60

DEVILLE'S TABLE, SHOWING THE PERCENTAGE AMOUNTS OF METHYL ALCOHOL (WOOD SPIRIT) IN SOLUTIONS AT 10° C.

2986. -1926. -6026. 9296.	08 02 01 3	2526 2706 2788 2788 1758 1758	09 09 04 08 06
Specific Gravity.	Methyl, Alcohol,	Specific Gravity.	Methyl Alcohol. I 00

TABLE SHOWING THE VOLUMES OF ALCOHOL AND WATER REQUIRED TO MAKE 100 VOLUMES.

00.001	0	974.89	90	
18.96	1 [1	44.87	22	
	g	84·8 *	09	
74.06	10	319.88	99	
86.20	12	33•1₹	04	
74 · 1 8	02	81.82	94	
₹ 7.44	32	48.22	08	
74.74	30	47.41	98	
₹1.89	32	₹6•II	06	
₹₹•€9	07	81.9	96	
₹9.89	9₹	00.0	001	
Water,	Alcohol.	Water.	Alcohol,	
To amuloV	Yolume of	Volume of	To amuloV	
Spirit contain at . (15° C.).	To səninioy 001 Tagə °83	100 Volumes of Spirit contain at 59° Fahr. (15° C.).		

Table by Lowitz, giving the Per Cent. of Absolute Alcohol by Weight, from the Specific Gravity at 68° Fahr. (20° C.).

Per cent. of Alcohol by Weight.	Specific Gravity at 68°.	Per cent, of Alcohol by Weight.	Specific Gravity at 68°.	Per cent. of Alcohol by Weight.	Specific Gravity at 68°.
100	791	66	8.77	32	952
99	794	65	880	31	954
98	797	64	882	30	956
97	800	63	885	29	957
96	803	62	887	28	959
95	805	61	88 9	27	961
94	808	60	89 2	26	963 "
93	811	59	894	25	965
92	813	58	896	24	966
91	816	57	899	23	968
90	818	56	901	23	970
89	821	55	903	21	971
88	823	54	905	20	973
87	826	53	907	19	974
86	8 2 8	52	909	18	976
85	831	51	912	17	977
84	834	50	914	16	978
83	836	49	917	15	980
82	839	48	919	14	981
81	842	47	$\begin{array}{c} 913 \\ 921 \end{array}$	13	98 3
80	844	46	923	12	98 5
79	847	45	925		98 6
78	849	44	927	10	987
77	851	43	930	9	988
76	853	42	932	8	989
75	856	42	934		991
74	859	40	936	6	$\begin{array}{c} 991 \\ 992 \end{array}$
73	1	39	938	5	994
73	861 863	38	940	4	994 995
71	. 863 866	38	940 942	3	995 997
70	868	36	942	2	997 998
69	870	35	944		999
68	870 872	34	946 948	0	1000
68	872 875	1.1	948 950	U	7000
61	919	33	ขอบ		
		<u> </u>		11 -	

TABLE OF THE PROPORTION BY WEIGHT OF REAL OR ABSO-DIFFERENT SPECIFIC GRAVITIES, AT THE TEMPERATURE OF 60° FAHR.

~ 				1	
					. Line of the
		49	£648•	33	· 9528
70 0	8864•	99	9188•	32	* ***********************************
. 66	6964	99	0788∙	31	0996•
86	1008	₹9	£988•	30	8496•
46	1808.	E9	9888•	67	696 •
96	1908.	79	8068•	82	6096•
96	6808	19	7868 •	47	• 9653
• ₹6	8118	09	9968•	92	8 896 •
- 63	9₹18•	69	6468	32	7996 •
7.6	2718•	89	1006.	7₹	9996•
16	6618.	49	• 3052	23	8496
06	8228	99	4₹06•	22	1696.
68	₹\$ 78 €	99	6906	21	₹046 •
88	6428•	₹9	0606	02	9146
48	9088 •	23	£116•	61	8276
98	1888•	23	9816•	81	T746.
98	4988•	19	0916.	4T	E946 •
7 8	7 8 2 8•	09	₹816•	91	9946•
£ 8	8078	6₹	9076	12	8446.
7 8	₱₿₱₿∙	8₹	$8776 \cdot$	₽T	6846
18	69₹8•	47	6776·	13	2086 •
08	£ 8₹8 3	9₹	0476•	12	9186
64	8098•	97	7676	II	$8886 \cdot$
84	•8 233	77	₹186•	10	1₹86•
44	4998•	€₽	9886•	6	9986•
94	T898•	77	9986•	8	69 8 6 •
94	£098·	ΙĐ	9486•	4	₹88 6•
7 4	9798•	0₹	9686•	9	8686•
84	6₹98•	68	91₹6•	9	₹166•
.74	7498.	38	₱ ₽₽6•	Ŧ	• 6630
T.4	9698.	48	7 9₹6•	, ε	4766
04	1748 ·	98	04 7 6•	2	9966•
69	9 ₹48•	32	06₹6•	τ	1866 •
89	6948•	7€	1196.	9.0	1666•
Alcohol.	Giavity.	Alcohol.	Gravity.	Alcohol.	Gravity.
to age	Specific	to ogs	Specific	to ega	Specific
Per Cent-	-9:0	Per Cent-		Per Cent-	-
	•			[]	

TABLE OF COMPARISON BETWEEN THE PER CENT. OF ALCOHOL BY VOLUME AT 60° FAHR.— TRALLES'—AND PER CENT. BY WEIGHT.

TIMBELS MID TEN CENT. BI WEIGHT.									
Pe	er cent.	Per cent.							
By Volume.	By Volume. By Weight.		By Volume.						
0	0.	0	0.						
5	4.00	5	6.25						
10	8.02	10	14.42						
15	$12 \cdot 15$	15	$18 \cdot 52$						
20	$16 \cdot 28$	20	$24\cdot 57$						
25	$20\cdot 46$	25	$30 \cdot 55$						
30	24.69	30	$36 \cdot 45$						
35	$28 \!\cdot\! 99$	35	$42\cdot 25$						
40	33.39	40	$47 \cdot 92$						
45	37.90	45	$53 \cdot 43$						
50	$42\cdot 52$	50	58.79						
55	$\boldsymbol{47\cdot 29}$	55	63.97						
60	$52\cdot 20$	60	$68 \cdot 97$						
65	$57 \cdot 25$	65	73.79						
70	$62\cdot 51$	70	78 • 40						
75	$67 \cdot 93$	75	$82 \cdot 80$						
80	$73 \cdot 59$	80	86.97						
85	$79 \cdot 50$	85	90.88						
90	$85 \cdot 75$	90	$94 \cdot 46$						
95	$92 \cdot 46$	95	97.61						
100	100.00	100	100.00						

		0	-	
		50		11 255 43 67 100 150 233 399
		55	-	0.35 8.84 1.25 1.29 1.29 1.29 1.29 1.29 1.29
				198089179
ног.	100 volumes of Alcohol of per cent. by vol.	09	Ì	9.47 20.47 34.46 51.43 73.08 101.71 141.65 201.43 301.07
АССОНОГ	nt. 1		er.	76 002 003 003 003 006 006 006 006 006 006 006
OF A	per ce	65	require volumes of water	8 19 31. 46. 64. 87. 118. 162. 226. 334.
- 1	ol of		nes o	
DILUTION	lcoh	70	volur	8 177 28 41 102 1136 1136 1136 601
5	s of A	īe	uire	2.81 2.81 2.81 2.81 2.81 2.81 2.81
THE	ume	1	rec	1652 153 163 163 163 1652 1652 1652
FOR T	lov 0	08		7.20 5.35 5.44 5.04 8.07 8.07 1.05 1.05 2.88 2.88 2.88
	10			15 15 15 15 15 15 15 10 17 17 17 17 17 17 17 17 17 17 17 17 17
TABLE		85		
ij		8		6 23 33 33 57 73 117 118 245 245 329 329 329 329 329
				25.05.05.05.05.05.05.05.05.05.05.05.05.05
1		06		113 1130 1130 1130 1130 1130 1130 1130 1130 1205 1305 1
•	7	Strength in per cent.		85 77 70 75 80 80 80 80 80 10 10 10

CHEMISLS, LOCKET-BOOK.

Correspondence between the Specific Gravities and Per Cents. of Alcohol over and under Proof at 60° Fahr.

				,		,			
Specific Gravity.	Per cent. over Proof.	Specific Gravity.	Per cent. over Proof.	Specific Gravity.	Per cent. over Proof.	Specific Gravity.	Per cent. over Proof.	Specific Gravity.	Per cent. over Proof.
0·8156 6 8160 6 8163 6 8167 6 8170 6 8174 6 8178 6 8185 6 8185 6 8199 6 8203 6 8206 6 8210 6 8214 6 8214 6 8221 6 8224 6 8227 8231 8234	57.0 66.8 66.6 66.3 66.1 65.9 65.6 65.6 65.5 65.6 64.8 64.7 64.5 64.3 64.3 64.3 64.3	0·8273 8277 8280 8284 8287 8291 8294 8305 8305 8315 8315 8319 8322 8326 8329 8333 8336 8344 8347	61·3 61·1 60·9 60·7 60·5 60·4 60·2 60·0 59·8 59·6 59·5 59·3 59·1	0·8390 8393 8396 8400 8403 8407 8410 8413 8417 8420 8424 8427 8431 8434 8438 8441 8445 8448 8452 8455 8459	55·3 55·1 55·0 54·8 54·6 54·4 54·2 54·1 53·9 53·5 53·3 53·3 52·7 52·5 52·3 51·9 51·5 51·3	0 * 8503 8506 8510 8513 8516 8520 8523 8527 8530 8533 8537 8540 8543 8547 8550 8553 8556 8560 8563	48·9 48·7 48·5 48·3 48·0 47·8 47·6 47·4 47·2 47·0 46·8 46·6 46·4 46·2 45·8 45·6 45·8 45·6 45·8 45·8	\$\sigma 5\$ \[\sigma 5 \\	42·0 41·7 41·5 41·3 41·1 40·9 40·6 40·4 40·2 40·0 39·8 39·6 39·3 39·1 38·9 38·7 38·4 38·2 38·6 37·8 37·6 37·3
8234 8238 8242 8245 8249 8252 8256 8259 8263 8266 8270	63·1 62·9 62·5 62·3 62·2 62·0 61·8	8354 8358 8362 8365 8369 8372 8376 8379	57·3 57·1 56·9 56·8 56·6 56·4 56·2 55·9 55·7	8469 8472 8476 8480 8482 8486 8490 8493 8496	50.9 50.7 50.5 50.3 50.1	8577 8581 8583 8587 8590 8594 8694 8604 8608 8611	44·2 43·9 43·7 43·5 43·3	8695 8699 8702 8706 8709	36·9 36·7 36·4 36·2 35·9 35·7 35·5 35·2

Correspondence retween the Specific Gravities, &c.—

\$\frac{1}{2}\$ \$\frac{1}{2}\$<	7286 7286 7286 7286 7286 7286 7386	E.I 6.0 9.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	7176 9176 9077 9077	9.8 6.6 6.0 9.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	4606 6806 9806 7806 6406 9406 1406 4906 9906 7906 6706 9706 6706 9706 8006 9706 8006 9706 1106 8006 9706 1106 8006 1106 8006 1106 8006 1106 8006 1106 8006 1106 8006 1106 8006 80	26.03 26	968 968 968 968 968 968 968 968	2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5	788 788 888 888 7888 7888 7888 7888 78
8·2 3·1	4876 8876	8.9 1.4	9116 1116 4016	*•9 9•9 6•9 7•4	[68 68	72.8 72.8 72.8	9988 1988 8988	33.8 1.78 24.3	1 7 48 4848
Per cent. under Proof.	Specific Gravity.	Per cent. over Proof.	Specific Gravity.	over Proof.		Per cent. over Proof.	Specific Gravity.	Per cent. over Proof.	Specific Gravity.

CORRESPONDENCE BETWEEN THE SPECIFIC GRAVITIES, &c.---

TABLE SHOWING THE BOILING POINTS OF

99 99 81 81 81 81	81 82 83 10 10 10	0·001 2·86 9·26 0·96 2·6 9·36 7·16 0·06 2·88	92 98 98 98 98 98 98 98 98 98 98	\$2 \$2 \$3 \$4 \$2 \$2 \$2 \$4 \$2 \$3 \$4 \$4 \$5 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6 \$6	2.98 0.98 2.18 0.08 4.64 4.84 5.28 5.28 5.28 5.28 5.28
IL	02	g.18	86	76	2.77
Alcohol per cent. by vol. in the Uistillate.	Alcohol per cent. by vol. in the Boiling Liquid.	Temp. to Yapour Oc.	Alcohol per cent, by vol, in the Distillate,	Alcohol per cent. by vol. in the Boiling Liquid.	Temp. to Vapour Oo

Tralles' Table I. gives the strength of mixtures of alcohol and water at 60° F., water at its maximum density being taken as I. Tralles' Table II. gives the necessary data for obtaining the percentage of alcohol when the temperature at the time of percentage of alcohol when the temperature at the time of

experiment is above or below 600 F.

Tralles' Table III, gives the densities as given by a glass instrument between 30° and 85°, while Table IV. gives the corrections by means of which the readings of Table III. can be made to correspond with the readings of a brass instrument.

Tralles' Table V. gives the percentage of absolute alcohol by volume, reference being had to the volume of the liquid at the temperature of the experiment. Table VI. gives the corrections to reduce the readings of Table V. to those of a brass instrument. Tralles' Table VII. is for use with Tralles' alcoholometer; it

is graduated for 60° F.

TRALLES' TABLE I.

Per cent. of Alcohol, by Volume.	Specific Gravity of the Liquid at 60° F.	Difference of the Specific Gravities.	Per cent. of Alcohol, by Volume.	Specific Gravity of the Liquid at 60° F.	Difference of the Specific Gravities.	Per cent. of Alco-hol, by Volume.	Specific Gravity of the Liquid at 60° F.	Difference of the Specific Gravities.
ľ	9976	15	35	9583	13	69	8917	24
$\overline{2}$	9961	15	36	9570	13	70	8892	25
2 3	9947	14	37	9556	14	71	8867	25
4	9933	14	38	9541	15	72	8842	25
4 5 6 7 8	9919	14	39	9526	15	73	8817	25
6	9906	13	40	9510	16	74	8791	26
7	9893	13	41	9494	16	75	8765	26
	9881	12	42	9478	16	76	8739	26
9	9869	12	43	9461	17	77	8712	27
10	9857	12	44	9444	17	78	8685	27
11	9845	12	45	9427	17	79	8658	27
12	9834	11	46	9409	18	80	8631	27
13	9823	11	47	9391	18	81	8603	28
14	9812	11	48	9373 9354	18 19	82 83	8575	28
15 16	9802 9791	$\begin{array}{c c} 10 \\ 11 \end{array}$	49 50	9335	19	84	8547 8518	28
17	9781	10	51	9315	20	85	8488	29 30
18	9771	10	52	9295	20	86	8458	30
19	9761	10	53	9275	20	87	8428	30
20	9751	10	54	9254	21	88	8397	31
21	9741	10	55	9234	20	89	8365	32
$\overline{22}$	9731	10	56	9213	21	90	8332	33
23	9720	11	57	9192	21	91	8299	33
24	9710	10	58	9170	22	92	8265	34
25	9700	10	59	9148	22	93	8 2 30	35
26	9689	11	60	9126	22	94	8194	36
27	9679	10	61	9104	22	95	8157	37
2 8	9668	11	62	9082	22	96	8118	39
29	9657	11	63	9059	23	97	8077	41
30	9646	11	64	9036	23	98	8034	43
31	9634	12	65	9013	23	99	7988	46
32	9622	12	66	8989	24	100	7939	49
33	9609	13	67	8965	24	1		<u> </u>
1	<u> </u>	1 (1		1		<u> </u>	

TRALLES' TABLE II.

Per cent., by Volume,	Specific Gravity of the	Increa	ase o	Spec Temp	ific Gr eratur	Increase of Specific Gravity at the Indicated Temperature $below$ 60°.	ut the 60°.	A	ecreas	e of S ₁ Ten	ecific aperat	Gravit ure ab	Decrease of Specific Gravity at the Indicated Temperature above 600.	Indica	ted
ofabsolute Alcohol.	Liquid at 60° F.	+ 520	50°	45°	40°	35°	30°	650	°07	750	008	85°	06	95°	1000
	0.9991	4	7	6	6	6	7		11	17	24	32	40	. 22	60
ro	9919	4	7~	6	10	10	6	-	11	18	25	33	42	5.1	62
10	9857	ಒ	6	12	14	15	15	9	13	20	29	37	47	57	89
15	9802	9	12	17	21	23	25	1-	15	25	34	44	55	49	64
20	9751	∞	16	23	29	35	39	6	19	30	41	53	99	79	93
. 25	0046	10	21	31	39	48	56	11	24	36	20	63	78	93	109
30	9646	13	26	33	51	62	73	14	28	43	59	75	16	108	125
35	9583	16	31	46	61	75	89	17	33	50	68	98	104	122	141
40	9510	18	35	52	20	28	103	18	37	99	75	94	114	136	154
45	9427	19	39	24	94	94	112	20	40	09	80	101	122	143	154
50	9335	20	40	09	80	66	118	21	42	63	84	106	128	150	173
55	9234	21	42	63	84	104	124	22	43	65	87	109	132	155	178
09	9126	22	43	65	98	101	127	22	44	19	90	113	136	159	183
65	9013	22	45	29	88	109	130	22	45	89	92	115	138	162	187
20	8892	22	45	89	06	112	133	23	46	69	93	117	141	165	190
75	8765	23	46	89	16	113	135	23	46	20	94	119	143	167	192
80	8631	23	47	20	92	115	137	23	47	7.1	96	120	144	169	194
85	8488	23	47	20	93	116	139	24	48	72	96	121	145	170	195
06	8332	24	48	7.1	94	117	140	24	48	72	26	121	146	171	961
	·										_				

	TRALLES,
	TARLE
,	TIT

	329)			C	H)	EN	11	ST	's	']	PO	C1	ζE	T	-B	00	OK	ζ.					
•0005	300			90	85	80	75	70	65	60	55	50	45	40	သ္ဌ	30	25	20	15	10	Οī	0	by Volume.	Per cent. of
•0004	35°	,		8469	8623	8764	8896	9021	9140	9249	9354	9449	9535	9609	9668	9715	9752	9786	9823	9868	9924	-9994	300	
•0003	40°	To be sul		8446	8601	8743	8875	9001	9120	9230	9335	9431	9518	9594	9655	9705	9745	9782	9×22	9869	9926	-9997	350	Specific Gravity
.0002	45°	be subtracted.		8423	8579	8721	8854	8980	9099	9210.	9316	9413	9500	9577	9641	9694	9737	9777	9820	9868	9926	-9997	40°	of the
.0002	500		Tı	8401	8556	8699	8832	8958	9078	9189	9295	9393	9482	9560	9627	9683	9729	9772	9817	9867	9925	9998	450	Liquid, ascertained by
2 •0001	55°		TRALLES'	8379	8533	8676	8810	8936	9056	9168	9275	9374	9464	9544	9612	9671	9720	9766	9813	9865	9925	9997	50°	scertain
1 —	60°	·	TABLE	8355	8510	8653	8787	8913	9034	9147	9254	9354	9445	9527	9598	9658	9709	9759	9807	9861	9922	9994	55°	ed by Gla
•0001	650		IV.	8332	8488	8631	8765	8892	9013	9126	9234	9335	9427	9510	9583	9646	9700	9751	9802	9857	9919	9991	600	Glass Instruments,
1 .0002	700	T		8309	8465	8609	8743	8870	8992	9105	9213	9315	9408	9493	9567	9633	9690	9743	9796	9852	9915	.9987	65°	iments,
02 •0	7	To be add		8285	8441	8585	8720	8847	8969	90×3	9192	9294	9388	9474	9551	9619	9678	9733	9788	9845	9909	.9981	700	at the In
002	50	ed.		8262	8418	8562	8697	8825	8947	9061	.9171	9274	9369	9456	9535	9605	9666	9723	9779	9839	9903	9976	750	dicated
•0003	80°			8238	8394	8538	8673	8801	8924	9039	9150	9253	9359	9438	9518	9590	9653	9713	9771	9831	9897	9970	800	Temperatures
.0004	850			8214	8370	8514	8649	8778	8901	9016	9128	9232	9329	9419	9500	9574	9640	9701	9761	9823	9889	.9962	850	tures.

expressed	ratures.	850	.9962	6886	9823	9761	9700	9638	9572	9495	9412	9320	9221	9114	0006	8882	8756	8622	8483	8333	8171
. liquid	1 Tempe	008	.9970	2686	9831	9771	9711	9652	9588	9514	9433	9342	9244	9139	9056	8909	8784	8652	8514	8365	8204
TRALLES' TABLE V. perature, from the specific gravity, the quantity of absolute alcohol in a liquid expressed in volume centesimally, at the indicated temperature.	Gravity of the Liquid, ascertained by Glass Instruments, at the Indicated Temperatures.	750	9266.	8903	9839	9779	9722	9665	9603	9532	9452	9364	9267	9163	9051	8936	8812	8681	8544	8396	8236
lute alcaure.	s, at the	200	1866.	6066	9845	9788	9733	8496	9618	9549	9472	9385	9290	9187	9046	8962	8839	8710	8573	8427	8568
of abso emperat	trument	650	1866.	9915	9852	9646	9743	0696	9632	9266	9491	9406	9313	9211	9102	8868	9988	8738	8602	8458	8300
TRALLES' TABLE V. Ire, from the specific gravity, the quantity of absolute in volume centesimally, at the indicated temperature	Glass Ins	09	.9991	9919	9857	9802	9751	9700	9646	9583	9510	9427	9335	9234	9126	9013	8892	8765	8631	8488	8332
TRALLES' TABLE V pecific gravity, the quantesimally, at the indicate	ined by	550	-9994	9922	1986	2086	9759	6046	9659	9599	9528	9447	9356	9256	9150	9038	8917	8792	8659	8517	8363
RALLES cific gra	, ascerta	50°	1666.	9925	9865	9813	9946	9720	9672	9614	9546	9467	9378	9279	9174	9063	8944	8820	8898	8547	8395
T the spe e centes	Liquid	45°	.9998	9926	1986	9817	9772	9729	9684	9629	9563	9486	9399	9302	9198	8806	8970	8847	8716	8577	8425
e, from volum	y of the	40°	1666.	9926	9868	9820	2226	9738	9695	9644	9581	9206	9420	9325	9222	9113	9668	8873	8744	9098	8455
perature in	c Gravit	350	1666.	9926	6986	9822	9782	9746	9707	9658	9598	9525	9440	9347	9245	9138	9021	8890	8771	8635	8486
ıny teml	Specific	300	-9994	9924	8986	9823	9846	9753	9717	1296	9615	9544	9460	9368	9267	9162	9046	8925	8798	8663	8517
To asceriain at any tem	Per cent. of Ab-	in the Liquid as measured.	0	ıo	10	15	20	25	30	35	40	45	50	52.0	09	65	20	75	80	85	06

CHEMIZLZ, LOCKEL-BOOK.

	3	<u>د</u>	000	1 1 1 1	2000					1177		-	_	1 1 1	_
	09	6	267	9245	9222			9150		9102	9016	1006		9000	
	63.	· 6.	162	9138	9113			9038		8868	8962	8936		8882	
	20	ਰ —	046	9021	9668			8917		9988	8839	8812		8756	
	75	- ŏĊ	925	8890	8873			8792		8738	8710	8681		8622	
	80	- ōo	798	8771	8744			8659		8602	8573	8544		8483	
	85	· 66	663	8635	9098			8517		8458	8427	8396		8333	
	96	· ∞	8517	8486	8455	8425	8395	8363	8332	8300	8268	8236	8204	8171	
A.						TR	TRALLES'	TABLE	VI.						
٠			To	To be added	ed.					To	To be subtracted	racted.			
!	300	35°	400	-	450	50°	550	009	650	02		750	80°	820	
	.0005	•000₹	.0003	·	.0002	.0002	.0001		.0001	1 .0002	<u></u>	-0003	.0003	.0004	
j															

TRALLES' TABLE VII.

						•		
Per cent. of Alco-hol, by Volume.	Length of immersed part of Stem.	Distance between Degrees of Scale indicating per cent.	Per cent. of Alcohol, by Volume.	Length of immersed part of Stem.	Distance between Degrees of Scale indicating per cent.	Per cent. of Alcohol, by Volume.	Length of immersed part of Stem.	Distance between Degrees of Scale indicating per cent.
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 31 32 32 32 32 32 32 32 32 32 32 32 32 32	9 24 39 54 68 82 95 108 121 133 145 157 169 180 191 202 213 224 235 245 356 266 277 288 299 310 321 332 344 355 367 380 393	15 15 15 14 14 13 13 13 12 12 12 12 11 11 11 11 11 11 11 11 11	34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 66 66 66 67	420 434 449 465 481 498 515 533 551 569 588 608 628 648 669 6712 735 758 782 806 830 854 879 905 931 957 984 1011 1039 1067 1096 1125	13 14 15 16 16 17 17 18 18 18 19 20 20 21 21 22 23 23 24 24 24 24 25 26 26 26 27 27 28 28 29 29	68 69 70 71 72 73 74 75 76 77 78 80 81 82 83 84 85 86 87 88 99 91 92 93 94 95 96 97 98 99 100	1184 1215 1246 1278 1310 1342 1375 1409 1443 1478 1514 1550 1587 1624 1662 1701 1740 1781 1823 1866 1910 1955 2002 2050 2099 2150 2203 2259 2318 2380 2447 2519 2597	30 31 32 32 32 33 34 35 36 37 38 39 39 41 43 44 45 47 48 49 51 56 59 62 78
33	407	14	"	1154	29-			

TRALLES' TABLE VIII.

ind tl perc	To find the true percentage	percentag indicated	age of aled by a	osolute glass al	bsolute alcohol by volunglass alcoholometer at	by volu neter af	me, in	n a liquid at 60° Fa other temperature	at 60°] peratu	Fahr. from t re (degrees	om the obse ees Fahr.).	percentage of absolute alcohol by volume, in a liquid at 60° Fahr. from the observed indicated by a glass alcoholometer at any other temperature (degrees Fahr.).
	35°	400	450	200	550	09	°09	65°	004	750	800	850
	10.4	0.4	- 0.5	4.0 -	- 0.2	0	0	+ 0.5	•			+ 1.9
	+ 4.5	+	+	+ 4.6	+ 4.8	ಸ್	ιĊ	5.3	2.8	6.5	2.9	7.3
	6		6	9.3	•	10	10	•	•	11.6	12.3	
		13		•		15	15	15.6		17.1	•	•
			17.	18.5	•	20	20	•	•	22.8	•	
		21	22.	•	24.1	25	25	•	27.0	28.5	•	•
i.			26.		28.8	30	30	31.1	-	33.4	•	•
		30	31.	•	33.8	35	35	36.5		38.4	•	•
		35		•	39.0	40	40	41.1		•		45.4
		46	41.	42.9	43.9	45	45	46.1	47.	•	•	•
		45	46.			50	20	51.0	52.	•	54.0	•
		2 12	52.	53.0	Ω.		55	54.9	•	24.9	•	•
54.2		56	57.	58.1	29.0	60	09	•	61.9	6.79	63.8	64.9
		61	62.	•	64.0		65	•		•		•
		99	. 49	•	•	70	20	•		72.6	•	74.5
		71	72.		•	75	75	75.8	-			•
		92	2.17	78.4	•	80	80	•		•	83.2	•
			82.	83.5	84.3	82	85	•	_	•	0.88	8.88
	86.4	87		9.88	89.3	06	06	2.06	91.4	92.0	92.1	93.4
					,							

TRALLES' TABLE IX.

True për ceut.			Observed	Observed per cent, indicated by the Glass Alcoholometer.	t. indicat	ed by th	e Glass A	lcoholon	neter.		
by Volume, at 60° Fahr.	30°	350	400	450	50°	55°	65°	700	750	800	850
0	- 0.2	- 0.4	- 0.4	0.5	- 0.4	- 0.2	+ 0.2	•		4	+ 1.9
טו פ				+ 4.5	+ 4.6	+ 4.8	5.	5.8	6.2	6.7	7.
10 10	9	9	•	9	9.	٠	10.4	•		12.3	
ו ו אוני		•	13.3	13.6	14.1	14.5	15.6	16.3		18.0	
20 20		•	17.4		18.5		•	•		23.9	
25	19.8		21.3		•	$24 \cdot 1$	•			29.5	
ప్ర		24.3	25.5	-	•	•	•			34.6	
ప్ర	27.7	28.9	30.2	31.4	•	•	36.3			39.7	
40	32.5	33.8	35.1	•	37.7	•	•			44.6	
45i	37.8	39.1	40.3	41.5	42.7	•	•	47.3		49.6	
50	43.1	44.2	45.4	_	47.	•	51.1			54.5	
වැ (වැ (48.3	49.4	50.5	_	52.		•			59.4	
60 9	53.4	54.5	55.6	56.7	57.	58.9	61.1			64.4	
රා ද	58.4	59.5	60.6	61.7	62.	63.9	0.99	-		69.3	
70	63.5	64.6	65.7	8.99	67.	69.0	71.0	72.1		74.3	
75	68.6	69.7	70.7		72.		76.0	-		79.2	
	73.7	74.8	75.8	76.9		79.0		_		84.1	
80))		•			200	
85	78.00	79.8	80.9	6.18	83.0	84.0	00.0			0	

TRALLES' TABLE X.

To find the true percentage of absolute alcohol in a liquid of any temperature, from the observed 12.6 18.6 30.3 35.5 45.6 50.5 55.5 60.4 65.3 70.2 75.2 $80.1 \\ 85.0$ 24.0 40.4 850 + 74.2 6.5 12.0 17.7 23.7 64.3 79.1 84.0 49.4 54.4 59.3 69.2 29.5 34.4 39.5 6.88 800 percentage indicated by a brass alcoholometer at the same temperature. + 6.0 6·1 11·4 17·0 38.4 43.4 48.3 58.2 63.2 28.1 1.89 750 Observed per cent, indicated by the Brass Alcoholometer. + 5.6 0.2 32.2 52.2 42.5 200 + 0.2 10.3 15.5 25.8 31.1 36.266.0 71.0 76.0 61.0 41.1 51.1 56.0 46.1 65° + 0.2 4.8 7. 14.6 19.3 24.2 28.9 33.9 39.0 43.9 48.9 54.0 58.9 63.6 0.69 74.0 550 + ١ 18.7 23.3 27.8 0.3 4.7 9.5 32.8 47.8 52.9 57.8 62.814.0 37.9 6.19 72.9 42.7 50° ı + 8.8 0.3 18.1 22.4 26.8 31.6 36.7 41.6 51.8 26.8 61.8 6.99 71.9 46.7 Ç 450 + I $0.2 \\ 4.7$ 20.4 21.6 25.8 30.4 35.4 40.4 45.6 55.7 60.7 65.8 6.04 75.9 40° + ı 13.5 17.3 20.9 24.7 4.8 29.3 34.1 39.3 44.5 49.6 54.6 64.8 8.69 74.9 59.7 35° I + 23.8 28.5 32.9 38.1 43.4 48.5 53.6 58.6 8.89 63.7 30° + ı True per cent. of Alcohol, by Volume.

(Gay-Lussac.)—Alcoholometric Table I.

To find the percentage by volume in a liquid at 59° from the observed percentage at any other temperature. (The temperature Centigrade is below that of Fahrenheit.)

999	CHEMISTS	POCKET-BOO	71X •	
6 C. 44.6 7 C. 46.4 8 C. 48.2 9 C.	37.4 3 C. 39.2 4 C. 41.0 5 C. 42.8	32.0° 0° C. 33.0 1 C. 35.6	Temp. Fahr.	
	1.4	1.3	1 per cent.	
	2.5	1·3 2·4 3·4 900 1000 1000	2 per cent.	
	3·5	3·4 1000	2 3 per per cent. cent.	
	4·5 1001	4·4 1000	4 per cent.	
	5·5 1001	5·4 1000	5 per cent.	
	6.6	6·5 1001	6 per cent.	
	7·7 1001	7·5 1001	7 per cent.	Obs
	8·7 1001	8·6 1001	8 per cent.	erved
	9·8 1001	9·7 1001	9 per cent.	percei
	1001	1001	10 per cent.	ıtage
	12·1 1001	12·2 1001	11 per cent.	of the
1001 1001 1002 10 13 14.2 15.4 16 1001 1001 1001 10 13 14.1 15.3 16 1001 1001 1001 10 12.9 14 15.1 16 1001 1001 1001 10	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4567891011121314151617perperperperperperperperperperperperperperperperperperpercent.cent.cent.cent.cent.cent.cent.cent.cent.cent.cent.cent.	Observed percentage of the Alcoholometer.
1001 1001 1002 1001 13	13.3 14.6 13.9 1 1001 1002 1002 1 13.3 14.5 15.8 1 1001 1002 1002 1 13.2 14.4 15.7 1 1001 1001 1002 1 13.1 14.3 15.6 1	13.4 14.7 16.1 1 1002 1002 1002 1 13.4 14.7 16 1 1002 1002 1002 1 13.4 14.7 16 1 13.4 14.7 16 1 1002 1002 1002 1	13 per cent.	olome
1002 15·4 1001 15·3 1001 15·1 1001	15.8 1002 15.8 1002 15.7 1002 15.6	16·1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	14 per cent.	ter.
16.6 16.6 1002 16.4 16.4 1001 16.2	1002 16.9 1002 1002 16.8 1002 16.8	17.5 1002 17.3 1002 17.2 17.2	15 per cent.	
1002 17.7 1002 17.5 17.5 1001 17.3 1001	18.1 1002 18.1 1002 1002 118 17.8	18.9 1003 18.7 1003 18.5 1003	16 per cent.	
1002 18.8 1002 18.6 18.6 18.4	19.6 1003 19.4 1002 1002 19.2 1002	20·3 1003 20 20 1003 19·8 1003	17 per cent.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1003 1003 1003 1003 20.4 1003 20.2	21.6 1004 21.3 21.3 1003 1003 21.1	18 19 20 per per per cent. cent. cent	
1003 21 1002 1002 20.7 1002 20.5	1003 21.8 1003 1003 21.5 1003 21.3	22.9 1004 22.6 22.6 1004 22.3 1004	19 per cent.	
1003 22·1 1002 21·8 1002 1002 21·6	1004 1004 23 1003 1003 1003 1003 22.4	24·2 1004 23·9 1004 23·6 1004 1004	20 per cent.	

(GAY-LUSSAC.)—TABLE I.—continued.

							opsı	rved	percer	tage (Observed percentage of the Alcoholometer.	Alcob	olome	ter.						
Temp. Fahr.	1 per cent.	2 per cent,	3 per cent.	4 per cent.	5 per cent.	6 per cent.	7 per cent.	8 per cent.	9 per cent.	10 per cent.	11 per cent.	12 per cent.	13 per cent.	14 per cent.	15 per cent.	16 per cent.	17 per cent;	18 per cent.	19 per cent.	20 per cent.
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1000 1000 1000 1000 1000 1000 1000 100	2.2 1000 1000 1000 1000 1000 1000 1000 1	3.3 4.8 10001 3.3 3.3 10000 3.3 100000 10000 10000 10000 10000 10000 10000 10000 10000 100000 10000 10000 10000 10000 10000 10000 10000 10000 100000 100000 10000 10000 10000 10000 10000 10000 10000 10000 10000 1	4.5 1001 1000 1000 1000 1000 1000 1000 10	1001 1001 1001 1000 1000 1000 1000 100	100 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1000 1	1.0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	7.5 8.5 000 1000 1000 1000 1000 1000 1000 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10.6 11.7 1001 1001 10.5 11.6 1001 1001 10.4 11.5 1000 1000 10.2 11.2 1000 1000 10.2 11.2 1000 1000 9.9 10.9 1000 1000 9.8 10.8 1000 1000 9.8 10.8 1000 1000 9.8 10.8 1000 1000 9.9 10.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.7 1001 12.6 1000 12.5 1000 12.2 1000 11.9 1000 11.6 1000 11.6 1000 11.4 1000 11.4	13.8 14.9 16 1001 1001 1001 13.6 14.7 15.8 1001 1001 1001 13.5 14.6 15.6 1001 1001 1001 13.2 14.4 15.4 1000 1000 1000 13.2 14.2 15.2 1000 1000 1000 12.9 13.9 14.9 1000 1000 1000 12.7 13.7 14.7 1000 1000 1000 12.7 13.7 14.7 1000 1000 1000 12.7 13.7 14.7 1000 1000 1000 12.7 13.7 14.7 12.9 13.9 14.5 12.9 13.9 14.5 12.9 13.9 14.5 12.1 13.7 14.7 12.2 13.7 14.7 12.3 13.3 14.5 12.4 13.3 14.3 12.4 13.3 14.3 12.4 13.3 14.3	14.9 16 1001 1001 14.7 15.8 1001 1001 14.6 15.6 1001 1000 14.2 15.2 1000 1000 14.9 15.0 1000 1000 13.9 14.9 1000 1000 13.7 14.7 1000 1000 13.5 14.5 999 999	14.9 16 1001 1001 14.7 15.8 1001 1001 14.6 15.6 1000 1000 14.2 15.2 1000 1000 13.9 14.9 1000 1000 13.7 14.7 1000 1000 13.7 14.7 1000 1000 13.3 14.3 13.3 14.3 13.3 14.3	17 18.1 1001 1001 16.8 17.9 1001 1001 16.6 17.6 1001 1001 16.2 17.2 1000 1000 15.9 16.9 1000 1000 15.6 16.6 15.6 16.6 15.6 16.6 15.7 16.3 999 999	17 18.1 19.2 20.2 1001 1000 10	1 19.2 1 1001 1 1001 1 1001 1 1001 1 1001 1 1000	200-2 1001 1001 190-7 1000 190-2 1000 180-7 1000 180-7 180-8	21:3 1001 1001 1000 1000 1000 1000 19:4 19:1 19:8 999 18:8

(1) CO 1		TOCKET-BOOK.	
27 C. 82.4 28 C. 28 C. 29 C. 29 C. 86.0 30 C.	24 C. 77.0 78.8 26 C.	68.0°C. 69.8 21.C. 71.6 71.6 72.C. 73.4 75.3	Temp.
		0.5 999 0.4 999 0.3 999 0.1 999	1 per cent.
998 0·3 997 0·1 997 0·0 997	998 0.7 0.8 998	1.5 999 1.4 999 1.3 999 1.1	2 per cent.
998 1·3 997 1·1 1·1 997 997	1.7 1.7 1.7 998 1.6	2.4 999 2.3 999 2.2 999 2.1 999	per cent.
998 2·2 997 997 2 997 1·9 997	2.9 998 2.7 998 2.6 998	3.4 999 3.3 999 3.2 999 3.1	4 per cent.
998 3·1 997 2·9 2·9 997 2·8	3.6 866 866 866	4·4 999 4·3 999 4·1 999	5 per cent.
998 4.1 997 997 3.9 997 997	4.8 998 4.6 998 4.4 998	5.4 999 5.2 999 5.1 5.1 999 4.9	6 per cent.
998 5 5 997 997 4.8 997 4.6	5.5 998 5.5 998 4.8 998	6·4 999 6·2 999 6·1 999 5·9	Ob per cent.
5.9 5.9 5.9 5.7 5.7 997 997	1 00 00 00 00 -1	7.3 999 7.1 999 7 999 6.8 998	served 8 per cent.
6.8 6.8 997 6.6 6.6 997 6.4	7.6 998 7.4 998 7.2 998	8·3 999 8·1 999 7·8 998	perce per cent.
7.9 998 7.7 7.7 997 7.5 997 997	8.5 998 8.3 998 8.3	9.3 999 9.1 999 8.9 999 8.7	Observed percentage 7 8 9 10 per per per per cent. cent.
8.8 997 8.6 997 8.4 997 8.1		10·3 999 10·1 999 9·9 999	of the 11 per cent.
9.7 997 9.5 9.5 997 9.2 9.2 997 996		11·2 999 11 999 10·8 999 10·6 998	
3 7 7 7 8 7 6		12·2 999 11·9 999 11·7 999 11·5	Alcoholometer 12 13 1; per per per per
303 L 8 L 8 L	919292	13·1 999 12·8 999 12·6 998 12·4 998	14 per cent.
997 997 997 1.8 1.8 1.5 1.5 1.5 1.5	13·1 998 12·8 998 12·6	14 999 13.7 999 13.5 998 13.3	15 per cent.
13.1 997 997 12.8 996 12.6 996 2.3 1	13.9 998 13.6 13.6 998 13.4	14.9 .999 14.6 .999 14.4 .998 14.1	16 per cent.
14 997 997 996 996 3.4 996 996 996	14.8 998 14.5 14.5 997 14.2	15.8 999 15.5 998 15.3 998 15	17 per cent.
14.8 997 997 14.5 996 996 996	15·7 998 15·4 15·4 997 15·1	16.7 999 16.4 998 16.2 998 15.9	18 per cent.
15·6 997 997 996 1 996 1 996	16.5 997 16.2 16.2 997 997	17.6 999 17.3 998 17 998 16.7	19 per cent.
.5 12·3 13·1 14 14·8 15·6 16·5 97 997 997 997 997 997 997 997 997 997 997 997 997 997 997 996 16·1 996 <t< td=""><td>17.4 997 17.1 997 16.8 997</td><td>18.5 999 18.2 998 17.9 998 17.6</td><td>20 per cent.</td></t<>	17.4 997 17.1 997 16.8 997	18.5 999 18.2 998 17.9 998 17.6	20 per cent.

(GAY-LUSSAC.)—TABLE I.—continued.

	40 per cent.	$\begin{array}{c} 35.3 \\ 36.3 \\ 37.3 \\ 36.4 \\ 37.3 \\ 38.4 \\ 35.8 \\ 36.8 \\ 37.5 \\ 38.8 \\ 39.8 \\ 39.8 \\ 39.8 \\ 39.8 \\ 40.8 \\ 41.8 \\ 42.7 \\ 43.7 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.5 \\ 44.6 \\ 45.7 \\ 43.7 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 43.8 \\ 33.8 \\ 34.8 \\ 35.8 \\ 34.8 \\ 34.8 \\ 35.8 \\ 34$
	39 per cent.	45 1010 1010 1010 44.6 1010 43.9 1009 43.9 1007 11007 11005 41.6 11004 41.6 11004 41.6 11009 41.6
	38 per cent.	44 1010 1009 1009 1009 42.9 1007 1007 1006 41.8 40.8 40.8 40.8 40.8 1004 40.8 1004 40.8
	37 per cent.	43.1 44 45 1010 1010 1010 42.7 43.7 44.6 1009 1009 1010 42.3 43.3 44.2 1008 1009 1009 42 42.9 43.9 1008 1008 1008 41.1 42.9 43.5 1007 1007 1007 41.1 42.1 43.1 1007 1007 1007 40.2 41.8 42.2 1005 1005 1005 39.8 40.8 41.8 1004 1004 1004 39.4 40.4 41.4 1004 1004 1004 39.4 40.4 41.4 1004 1004 1004 39.4 40.4 41.4 1004 1004 1004 39.4 40.4 41.4
	36 per cent.	35.3 36.3 37.3 38.3 39.2 40.2 41.1 42.1 43.1 44.1 1008 1008 1008 1009 1009 1010 1010 101
	35 per cent.	41.1 1009 1009 1009 1009 1007 39.5 1007 39.5 1005 38.2 1005 37.4 37.4 37.4 37.4 37.4 37.4 37.4 37.4
ter.	34 per cent.	$\begin{array}{c} 730.9 \\ 23.1 \\ 23.2 \\ 230.4 \\ 23.1 \\ 23.2 \\ $
Observed percentage of the Alcoholometer.	33 per cent.	39.2 38.8 38.8 1009 1008 38.4 1007 37.5 1005 36.2 1005 36.2 1005 36.2 1005 36.3 36.3 36.3 36.3 36.3 36.3 36.4 36.3 36.4 36.3 36.4 36.3 36.4 36.3
Alcoh	32 per cent.	38.33 37.83 1009 11007 11007 11007 11005 11005 11005 11004 34.8 11003 34.8 11003 34.8
f the	31 per cent.	36.3 37.3 1008 1009 35.8 36.8 1008 1008 35.4 36.4 1007 1007 1007 1007 34.9 36 34.5 35.5 1006 1006 33.2 34.7 1005 1005 1004 1004 32.8 33.8 1003 1003 1003 1003 1002 1003
tage c	30 per cent.	36.3 1008 35.8 1008 35.4 1007 1007 34.5 1005 33.6 1005 33.6 1003 32.4 1003 32.4 1003
jercen	29 per cent.	35.3 36.3 37 1008 1008 1008 1008 34.8 35.8 36 1007 1008 1008 100 34.4 35.4 36 1007 1007 1007 100 33.9 34.9 36 1007 1007 1007 100 33.5 34.5 35 1005 1005 10 32.2 33.2 34 1004 1004 10 1003 1003 10 31.4 32.4 33 1003 1003 10 31. 32 33. 33. 33. 33. 33. 33. 33. 33. 33. 33.
rved I	28 per cent.	34.3 1008 33.8 10007 33.3 33.3 1006 32.9 1005 32.1 1005 31.6 1005 31.0 1003 30.8 1003 30.8
opse	27 per cent.	1.0 20.0 22.1 33.2 34.3 34.0 35.0 32.1 33.2 34.3 34.0 30.4 30.9 32.1 33.2 34.3 33.0 30.6 1006 1006 1007 1
	26 per cent.	1.7 30.9 32.1 33.2 1.6 1007 1007 1007 1.2 30.4 31.6 32.7 1.2 30.4 31.6 32.7 1.3 30.9 31.2 32.3 1.4 29.6 30.8 31.9 1.5 1005 1006 1006 1.6 28.8 30 31.4 1.6 28.8 30 31.4 1.6 28.8 30 31.4 1.6 28.8 30 31.6 1.7 2 28.4 29.6 30.6 1.8 29.2 30.2 1.9 28 29.2 30.2 1.0 3 1004 1004 1005 1.0 4 1004 1004 1005 1.0 5 27.6 28.8 29.8 1.0 1002 1003 1003 1.0 5 27.6 28.8 29.8 1.0 5 27.6 28.8 29.8 1.0 5 27.6 28.8 29.8 1.0 5 27.6 28.8 29.8 1.0 5 27.6 28.8 29.8 1.0 5 27.6 28.8 29.8 1.0 7 2 28.4 29.4 1.0 7 2 28.4 29.4 1.0 7 2 28.4 29.4 1.0 7 2 28.4 29.4 1.0 7 2 28.8 29.8
	25 per cent.	7 30.9 32.1 6 1007 1007 5 30.4 31.6 6 1006 1006 8 30. 31.2 5 1006 1006 5 1006 1006 5 1005 1006 6 28.8 30 6 28.8 30 6 28.8 30 7 20.8 29.6 9 28 29.6 9 28 29.6 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 27.2 28.4 1 26.8 27.9
	24 per cent.	29.000 1000 1000 1000 1000 1000 1000 1000
	23 per cent.	4.00 6.00
	22 per cent.	
	21 per cent.	C. 1005 1005 1006 S. 25.6 27 28.4 S. 25.3 26.7 28 C. 1005 1005 1005 C. 1004 1005 1005 C. 1004 1005 1005 C. 1004 1005 1005 C. 1004 1005 1005 C. 1004 1005 1005 C. 1004 1005 1005 C. 1004 1005 1005 C. 1003 1003 1004 C. 1003 1003 1003 C. 1002 1003 1003 C. 1002 1002 1003 C. 1002 1002 1002 C. 1002 1002 1002 C. 1002 1002 1003 C. 1002 1002 1002 C. 1001 1002 1002 C. 1001 1002 1002 C. 1001 1002 1002 C. 1001 1002 1002 C. 1001 1002 1002 C. 1001 1002 1002 C. 1001 1002 1002
	Temp. Fahr.	32.0° C. 1005 33.8 25.3 1 C. 1005 2 C. 1004 37.4 24.6 39.2 24.3 41.0 24 5 C. 1003 42.8 23.3 7 C. 1003 44.6 C. 1003 8 C. 1003 8 C. 1003 8 C. 1003 9 C. 1003 9 C. 1003 10 C. 1002

(GAY-LUSSAC.
Ac.)
Ţ
-
LABLE
•
1.—continued.
~
Ō
Q

20	83	19	66	18	64.	17	62	16	60	15	59	14	57	13	55	12 C.	53	11	51		Fa	
Ċ	ċ	C	ė	Ç	*	Ç	6	Ç	<u></u>	Ω.	ċ	Ç	ż	Ç			တ်	11°C.	·80		Temp. Fahr.	
999	19.5	999:	19.8	999	20.1	999	$20 \cdot 4$	1000	20.7	1000	21	1000	$21 \cdot 2$	1001 1001	21.5	1001	21.8	1001 1001	22.1	1 -	21 per	
998	$20 \cdot 5$	999	20.8	999	$21 \cdot 1$	999	21.4	1000	21.7	1000	22	1000	$22 \cdot 3$	1001	$22 \cdot 6$	1001	21.8 22.9 24	1001	23.2	cent.	per	
998	21.4	999	21.7	999	22	999	22.4	1000	22.7	1000	23	1000	23.3	1001	$23 \cdot 6$	1001	24	1001	24.3	·•	23 per	
998	$21 \cdot 4 22 \cdot 4$	999	22.7	999	23	999	23.4	1000	23.7	1000	24	1000	24.3	1001	24.7	1001	$25 \cdot 1$	1001	25.4	cent.	24 .	
998	23.324.3	999 999 998 998 998 998	23.6	999	24	999	21.4 22.4 23.4 24.4 25.4 26.3 27.3 28.2	1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000	24.7	1000	25	1000	$21 \cdot 2 \cdot 22 \cdot 3 \cdot 23 \cdot 3 \cdot 24 \cdot 3 \cdot 25 \cdot 3 \cdot 26 \cdot 4 \cdot 27 \cdot 4 \cdot 28 \cdot 4 \cdot 29 \cdot 4 \cdot 30 \cdot 4 \cdot 31 \cdot 4 \cdot 32 \cdot 4$	1001	25.7	1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001	$25 \cdot 1 26 \cdot 1 27 \cdot 2 28 \cdot 2$	1002	24.3 25.4 26.5 27.6 28.6	1 3.	25 per	
998	24.3	998	24.6	999	25	999 999 999 999	25.4	1000	25.7	1000	26	1,00	26.4	1001	26.8	1001	$27 \cdot 2$	1002	27.6	<u>! • </u>	26	
998	25 • 2 26 • 1 27 • 1	998	25.5	999 999	$25 \cdot 9.26 \cdot 9$	999	$26 \cdot 3$	1000	$26 \cdot 6$	1000	27	1000	27.4	1001	$27 \cdot 8$	1001	28.2	1002		٠	per	Obs
998	$26 \cdot 1$	998	26.5	999	$26 \cdot 9$	999	$27 \cdot 3$	1000	$27 \cdot 6$	1000	28	1000	28.4	1001	28.8	1001	29.2	1002	29 • 6		28	erved
	27.1	998	$27 \cdot 4$	999	27.8	999	28.2	1000	28.6	1000	29	1000	$29 \cdot 4$	1001	29.8	1001	$30 \cdot 2$	1002	29.6 30.6 31.6	<u>' • .</u>	29 per	percer
998	28	998	28.4	999	27.8 28.8 29.8 30.8	999 999	$29 \cdot 2 \cdot 30 \cdot 2 \cdot 31 \cdot 2$	1000	$29 \cdot 6$	1000	30	1000	30.4	1001	$30 \cdot 8$	1001	29 • 2 30 • 2 31 • 2 32 • 2 33 • 2	1002	$31 \cdot 6$	1 .	30 Der	Observed percentage of the Alcoholometer
998	29	998	29.430.4	999	29.8	999	$30 \cdot 2$	1000	30-6	1000	<u>3</u>	000	$31 \cdot 4$	1001	31.8	1001	$32 \cdot 2$	1002	32.6	1	per	of the
998	30	998	30.4	999	30.8	999	$31 \cdot 2$	1000	$31 \cdot 6$	1000	32	1000	32.4:	1001	32.8	1001	33.2	1002	33.6	' `	32 ———	Alcoho
997	30.9	998	31.3	998	31.7	999	$32 \cdot 1$	999	32.5	1000	33	1001	33.4	1001	33.8	1002	34.2	1002	34.6	1	58 	olome
	31.93	998	32.3	866 866 86	31 .7 32 .7 33	999 999 99	33.1	1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 999 999	33.5	$1000 \ \ 1000 \ $	34	$1000 1000 1000 1000 1000 1 \cdot 00 1000 100$	34.4	1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001 1001	$22 \cdot 6 23 \cdot 6 24 \cdot 7 25 \cdot 7 26 \cdot 8 27 \cdot 8 28 \cdot 8 29 \cdot 8 30 \cdot 8 31 \cdot 8 32 \cdot 8 33 \cdot 8 34 \cdot 8 35 $	1002	35.236.	1001 1002	35.6	1	34 Der	er.
997	32.9	998	33.3	866	33.7	999	34.1	999	34.5	1000	35	1001	35.4	1001	35.8	1002	$36 \cdot 2$	1002	36.6	+	ger Der	_
997	33.9	998	34.3	998	34.7	999	35.1	999	35.5	1000	36	1001	36.4	1001	36.8	1002	37.2	1002	37.6		per 86	_
997	34.9 3	998	35.3	998	35.7	999	$36 \cdot 1$	999	36.5	1 000 1	37	1001	37.4:	1 001	37.8	1002	38.2	1002	38.6		per	
997 997 997 997 997	35-9 5	998	36.3	998	36.7 3	999	37.1 8	999	37.5	1 000 1	38	1 1001	38.4	1 1001	38.8	1002	$39 \cdot 2 _{4}$	1002	6.6 37.6 38.6 39.6 40.6 41.6	cent. cent.	38 	-
997	36.9	997	37.3	998	37.9	999	38.1	999	38.5	[000 1	39 4	1 1001	39.44	1001	39.84	002	10.24	1003	$[0.6]_{4}$	cent.	39 Der	
997	37.9	997	38.3	998	38·7	999	[1.68]	999	39.5	000	<u>(</u>	100	0.4	100	8.03	002	1.2	003	9.13	cent.	per.	

(GAY-LUSSAC.)—TABLE I.—continued.

Temp. 21 22 23 24 25 25 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20
21 22 23 24 per cent. ce
F. 21 22 22 24 25 25 25 25 25
• 55 FM-MUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUM

σ
Ġ.
H
_ <u></u> 4
્, કે
_
-LUSSAC
SSD
ໜ
ลัก
h
1
Q
. •
$\overline{}$
- 1
٠,

- 7
-
~
_
Ì.
LABLE
हि
E

							Obs	erved	percei	ntage	of the	Alcoh	Observed percentage of the Alcoholometer.	ter.						
Temp. Fahr.	41 per cent.	42 per cent.	43 per cent.	44 per cent.	45 per cent.	46 per cent.	47 per cent.	48 per cent.	49 per cent.	50 per cent.	51 per cent.	52 per cent.	53 per cent.	54 per cent.	55 per cent.	56 per cent.	57 per cent.	58 per cent.	59 per cent.	60 per
32.00	46.9	47.9	48.8	49.8	50.7	51.7	52.6	53.5	54.5	55.4	56.4	57.3	58.3	59.2	$60 \cdot 2$	$\frac{1}{61 \cdot 2}$	62-1	63.1		22
0° C.	1011	1011	1011	1011	-)11	\sim	1012	12	$01\overline{2}$	01	012	012	5	10 t	12	1012 1012	1013	1013 ₁	
œ	46.5	47.5	48.4	49.4	50.3	51.3	$52 \cdot 2$	53.2	54.2		Ġ	!	9		ပ်	60.9	67.8	62.8		• +
1 C.	1010	1010	1010 1010		1010 1011	1011 1011	1011	1011	1011 1011	1011	011	011	011	1011	بسز	1011	1011	1011 1012	1012	1012
` ດ.	46.1	47.1	48.1	49	49.9	50.9	51.8	52.8	53.8 54.7	54.7	55.7	56.6	57.6	58.5	59.5	60.5	$61 \cdot 5$	$62 \cdot 4 0$	53.4^{-1}	
Ç	60	1009 1009	1009	1009	1010	1010 1010	1010	1010	1010	1010	1010	1010	1010	1010	1010	1011	1011	1011	1011	1011
4 ⊆	45.8	46.7	47.7 48.6		49.6	50.5	51.5	52.4	153.454.3	54.3	55.3		$57 \cdot 2$	58.2	$59 \cdot 2$	$60 \cdot 2$	$61 \cdot 1$	60.2 61.1 62.1 63.1 64.	53 • 1	64.1
	1008	1009	1009	1009	1009 1009	1009	1009	1009	1009	1009	6001	1009		1010	1010	1010	1010	1010	1010	1010
ì &	45.4	46.4	47.4	48.3	49.2	250.251.1	51.1	52.1	53	54	ည်	56	56.9	57.9	58.9	59.8	60.8	61.76	$52 \cdot 7^{-1}$	63 • 7
C	1008	1008	1008	1008	1008	1008	1008	1008	1008	1009	6001	1009	1009	1009	1009	1009	1009	1009	$\frac{1}{1009}$	1009
` .		45.9 46.9	46.9	47.9	48.8	49.8	50.7	51.7 52.7 53.6	52.7	53.6	54.6	55.6	56.6	57.5	58.5	59.5	60.4	61.4	52.4	63.4
Ç	1007	70	1007	1007	1007	1007	1007	$1008'_{1}$	1008	1008	8001	1008	1008		1008	1008	1008	1008	1008	1008
2 oc	44.6	45.5	46.5	47.5	48.4	49.4	50.4	451.452.453.3	$52 \cdot 4$	53.3	3	$55 \cdot 2$	$56 \cdot 2$	57-1	58·1	$59 \cdot 1$	$60 \cdot 1$	61	32	<u>ගි</u>
	1006	1006	1006	1007	1007	1007	1007	1007	1007	1007	7001	70	1007	1007	~	7001	1007	1008	8001	1008
တ	44.2	45.1	46.1	47.1	48.1	$49 \cdot 1$	50.1	51	52	52.9	53.9	54.9	6.56	56.8	57.8	5×.×	59·x	60.7	31.7	$62 \cdot 7$
C	1005	1006	1006	9001	1006	1006	1006	1006 1006	1006			90	600	1006	a)	1006	1007	1007	7001	$\frac{1007}{1007}$
	43.8	44.8	45.8	8.93	47.7	48.7	49.7	50.6	6.16	$52 \cdot 6$	53.6	54.6	55.5	56.5	\circ	58.5	59.5	60.4	31.4	$62 \cdot 4$
Ç	1005	1005	1005	1005	1005	1005	1005	1005	1005		1005	1005	1006	1006	1006	1006	1006	1006	[006]	1006
b	43.4	44.4	45.4	46.4	47.3	48.3		$50 \cdot 2$	51.2	$52 \cdot 2$	$53 \cdot 2$	54.2	$55 \cdot 1$	1.99		58.1	59.1	60 (31	53
Ċ	1004	1004	1004	1004	1004	1004	1005	1005 1005	1005	1005	1005	1005		1005	1005	1005	1005	5 1005 1005 1005 1005	[c001	1005

(GAY-LUSSAC.)—TABLE I.—continued.

							Obse	rved]	percer	ıtage (of the	Alcoh	Observed percentage of the Alcoholometer,	ter.					,	
Temp. Fahr.	41 per cent.	42 per cent.	43 per cent.	44 per cent.	45 per ceut.	46 per cent.	47 per cent.	48 per cent.	49 per cent.	50 per cent.	51 per cent.	52 per cent.	53 per cent.	54 per cent.	55 per cent.	56 per cent.	57 per cent.	58 per cent.	59 per cent.	60 per cent.
50.0°C. 51.0°C. 51.8°C. 51.8°C. 53.6°C. 55.4°C. 55.4°C. 62.6°C. 62.6°C. 64.4°C. 64.4°C. 64.4°C.		444 1004 10004 10003 10002 10001 10001 1000 41.29 999 998 998 998 998	45 46 45 1004 1003 1003 1003 1000 1000 1000 1000	40.00.00.00.00.00.00.00.00.00.00.00.00.0	46 45.9 1004 1004 45.6 46.6 1003 1003 45.2 46.2 1002 1002 1002 1002 1001 1001 44.4 45.4 1000 1000 1000 1000 43.6 44.6 999 43.2 44.2 998 998 998 998 998	 	7.9 48.9 7.6 48.6 7.6 48.6 7.6 48.6 7.2 48.2 6.8 47.8 6.9 47.4 6.1 1001 6.4 47.4 6.4 47.4 6.4 47.4 6.4 47.4 6.7 46.6 9.9 9.9 9.9 9.9 4.9 45.9 4.5 45.9	49.9 1004 1003 1003 1002 1002 48.8 48.8 1000 47.6 699 699 699 698	49.9 50.9 1004 1(04 49.5 50.5 1003 1003 49.2 50.2 1002 1002 18.4 49.4 18.4 49.4 1001 1001 148 49 17.6 48.6 999 999 17.2 48.3 17.2 48.3 19.8 998 16.9 47.9 998 998	50.9 51.8 52.8 53.8 54.8 10.04 1004 1004 1004 50.5 51.5 52.5 53.5 54.4 1003 1003 1003 1003 50.2 51.1 52.1 53.1 54.1 1002 1002 1002 1003 49.8 50.8 51.8 52.7 53.7 1002 1002 1002 1002 49.8 50.4 51.4 52.7 53.3 1001 1001 1001 1001 48.6 49.6 50.6 51.6 52.6 999 999 999 999 999 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998 998	52.8 53.8 54.8 1004 1004 1004 52.5 53.5 54.4 1003 1003 1003 52.1 53.1 54.1 1002 1002 1002 51.8 52.7 53.7 1001 1001 1001 51.4 52.3 53.3 1000 1000 1000 50.6 51.6 52.6 999 999 999 50.3 51.3 52.3 998 998 998 49.9 50.9 51.6	53.8 1004 1004 1003 1003 1002 1001 1001 1000 51.6 999 998 998	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	54.8 55.8 56.8 57.8 58.8 59.7 60.7 1004 1004 1004 1004 1004 1004 54.4 55.4 56.4 57.4 58.4 59.4 60.4 1003 1003 1003 1003 1003 1003 1002 1002 1002 1002 1002 1002 53.7 54.7 55.7 56.7 58.7 59.7 1002 1002 1002 1002 1002 1001 1001 1001 1001 1001 53.3 54.3 55.3 56.3 57.6 58.6 53.6 54.6 56.6 57.6 58.6 59.9 50.9 999 999 999 999 999 999 50.3 54.3 55.3 56.3 57.3 58.3 50.3 53.3 54.3 55.9 56.9 57.9 50.3 53.9	55.8 56.8 57.8 58.8 59.7 60.7 1004 1004 1004 1004 1004 1004 15.4 56.4 57.4 58.4 59.4 60.4 1003 1003 1003 1003 1003 55 56 57 58 59 60 1002 1002 1002 1002 1002 1002 54.7 55.7 56.7 57.7 58.7 59.7 1001 1001 1001 1001 1001 1001 54.3 55.3 56.3 57.3 58.3 59.3 1001 1001 1001 1001 1001 54.6 55.6 56.6 57.6 58.6 53.6 54.6 55.6 56.6 57.6 58.3 53.3 54.3 55.3 56.3 57.3 58.3 53.3 54.3 55.6 56.9 57.9 59.9	57.8 58.8 59.7 60.7 61.7 1004 1004 1004 1004 1004 57.4 58.4 59.4 60.4 61.4 1003 1003 1003 1003 1003 57 58 59 60 61 1002 1002 1002 1002 1002 56.7 57.7 58.7 59.7 60.3 1002 1002 1002 1002 1002 56.3 57.3 58.3 59.3 60.3 1001 1001 1001 1001 1001 56 57.6 57.6 59.6 59.6 1000 1000 1000 1000 1000 55.6 56.6 57.6 58.6 59.6 55.3 56.3 57.3 58.9 59.8 998 998 998 998 998 998 998 998 998 998	58.88 10044 10003 10002 10002 10001 10001 1000 56.66 56.83 57.33 56.33 5	58.8 59.7 60.7 1004 1004 1004 58.4 59.4 60.4 1003 1003 1003 58 59 60 1002 1002 1002 57.7 58.7 59.7 1002 1002 1002 57.3 58.3 59.3 1001 1001 1001 56.6 57.6 58.6 999 999 999 56.3 57.3 58.3 998 999 999 998 998 998	60.7 61.7 1004 1004 60.4 61.4 1003 1003 60 61 1002 1002 59.7 60.7 1002 1002 59.3 60.3 1001 1001 59.6 59.6 999 999 58.3 59.3 58.3 59.3 58.9 59.3 58.9 59.3 58.9 59.3	611.4 611.4 611.0 611.0 601.0 600.3
19 C.	997	997	997	166	997	997	166	166	166	266	166	997			166	997	997	266	997	997

939	CHEMISIS TOOKET BOOK.	
27 82.4 28 C. 84.2 29 C. 30 C.	20°C. 21°C. 21°C. 21°C. 22°C. 23°C. 23°C. 24°C. 25°C. 26°C. 26°C.	Temp. Fahr.
	39 39 38.6 996 38.2 996 37.8 37.8 37.4 995 37.4 994 36.5 993 36.5	41 per cent.
992 992 35.7 36.8 992 992 35.3 36.3 35.3 36.3 991 991 34.9 35.9 991 991	40 40 40 40 40 40 40 40 40 40	42 per cent.
992 992 36·8 37·8; 992 992 36·3 37·4; 991 991 35·9 37 991 990	397 40 41 997 997 997 38·6 39·6 40·6 4 996 996 996 38·2 39·2 40·2 4 996 995 995 37·8 38·8 39·8 4 995 995 995 37·4 38·4 39·4 4 994 994 994 37 38 39 36·5 37·6 38·6 3 993 993 993 36·1 37·2 38·2 3	43 per cent.
992 38·9 991 38·5 991 38·1 990	39 40 41 42·1 43 397 997 997 997 997 9 38·6 39·6 40·6 41·7 42 39·6 996 996 996 996 9 38·2 39·2 40·2 41·3 42 996 995 995 995 995 9 37·8 38·8 39·8 40·9 41 39·8 39·8 40·9 41 39·8 39·8 40·9 41 39·8 39·8 40·9 41 39·8 39·8 40·9 41 39·8 39·8 40·9 41 39·8 39·8 39·8 40·1 41 39·8 39·8 39·8 39·7 40 36·5 37·6 38·6 39·7 40 36·1 37·2 38·2 39·3 40·1	44 per cent.
992 992 992 37·8 38·9 39·9 992 991 991 37·4 38·5 39·5 991 991 991 37 38·1 39·1 990 990 990	100.00.00.00.00.00.00.00.00.00.00.00.00.	45 per cent.
992 41 991 40·6 990 40·2 990	44·1 996 43·7 996 43·3 995 42·9 42·9 42·2 994 41·8 992	46 per cent.
42 42 991 41.6 990 41.2 990	45·1 46·1 996 996 44·8 45·8 5 996 996 344·3 45·3 6 995 995 995 995 43·9 44·9 43·6 44·6 994 994 994 994 994 994 994 994 994 994 994 994 43·2 44·2 43·2 44·2 43·2 44·2 43·8 43·8 992 992	Obs 47 per cent.
43 991 42.6 42.6 990 42.3 989	46·1 996 45·3 995 44·9 44·9 994 44·2 994 44·2 993 43·8	erved 48 per cent.
992 991 991 991 42 43 44·1 45·1 991 991 991 990 41·6 42·6 43·7 44·7 990 990 990 990 41·2 42·3 43·3 44·3 990 989 989 989	1 47·2 48·2 4 996 996 3 46·8 47·8 4 995 995 8 46·4 47·4 4 994 994 994 994 993 993 946·6 45·6 46·6 4 993 993 993 993 993 993 993 993 993 993 993 993	perces 49 per cent.
991 45·1 990 44·7 990 44·3 989	48·2 996 47·8 995 47·4 995 47·4 995 46·3 993 46·3 993 45·9	.50 per cent.
5·1 5·7 5·7 5·7 990 990 989	20000000000000000000000000000000000000	of the 51 per cent.
47·2 990 46·8 989 46·4 989	500.2 996 996 995 995 995 994 994 994 994 993 48.3 993 993	Observed percentage of the Alcoholometer. 17 48 49 .50 51 52 58 .55 18 per per per per per per per per per per
48·2 990 47·8 989 47·5 989	50.2 50.8 50.8 50.4 50.4 50.1 50.1 50.1 60.1 60.1 60.1 60.1	olome 53 per cent.
49·2 99.0 48·9 989 48·5 988	51.8 996 995 11.4 994 51.1 994 50.7 50.7 50.3 993 50.3	# # #
50·3 50·3 990 49·9 989 49·6 988	53.2 996 52.9 52.5 52.5 52.1 52.1 52.1 52.1 994 51.4 993 51.4	55 per cent.
51·3 990 51 51 989 50·6 988	54.2 996 995 53.5 994 53.1 52.4 52.4 52.4 52.4 993	56 per cent.
52·3 990 51·6 988	55.2 996 54.5 997 54.5 994 53.8 993 53.4 993 53.4 993	57 per cent.
53 · 3 989 52 · 6 988	55.55 55	58 per cent.
54·4 989 54 989 989	57.2 56.9 56.9 56.9 56.1 59.3 55.8 55.8 55.9 55.1 59.2 59.3	59 per cent.
55.4 989 54.7 988	53.2 54.2 55.2 56.2 57.2 58.2 996 996 996 996 996 996 52.9 53.9 54.9 55.9 56.9 57.9 995 995 995 995 995 995 52.5 53.5 54.5 55.5 56.5 57.5 59.4 99.4 99.4 99.4 99.4 99.4 52.1 53.1 54.1 55.1 56.1 57.1 51.8 52.8 53.8 54.8 55.8 56.8 51.4 52.4 53.4 54.4 55.5 56.5 51.4 52.4 53.4 54.4 55.5 56.5 51.4 52.4 53.4 54.4 55.5 56.5 51.5 52.2 53.4 54.4 55.1 56.1 50.7 51.7 52.7 53.7 54.8 55.8 50.7 51.7 52.7 53.7 54.8 55.8 50.7 51.7 52.7 53.7 54.8 55.8 50.7 51.7 52.7 53.7 54.8 55.8 50.7 50.7 50.7 53.7 5	60 per cent.

(GAY-LUSSAC.)—TABLE I.—continued.

73 - 69	\ -		15	THE COLUMN TO SOME THE COLUMN TH			-	-	- 6	;	1	5	1	£	É	8
65 per cent.		66 per cent.	67 per cent.	68 per cent.	69 per cent.	70 per cent.	71 per cent.	72 per cent.	73 per cent.	74 per cent.	75 per cent.	76 per cent.	77 per cent.	78 per cent.	79 per cent.	% per cent
6.696	6	20.8	71.8	72.7	73.7	74.7	75.6	9.94	77.6 78.6	9.8/	79.5	80.5	81.5	82.4	83.3	84.3
3 1013	<u></u>	1013	1013 1013 1013		1014 1014	1014	1014	1014	1014 1014 1014 1014	10141	1014	1014]	4 +1	1014	1014	1014
69	छ		21.5	72.4	73.4	74.3	75.3	76.3	77.3	78.3 79.2	9.28	80.5	81.2	82.1	83.1	84
1012 1012 1012	C	1012	1012	1012]	1013	13	1013	13	13	1013 1013	0131	1013	1013	1013	1013	1013
69.3	က	70.2	2.17		73.1	74	75	92	12	78 7	18.9 7	8 6.64	80.981.9	6.18	82.8	83.7
1011 1011 1011	H	1011	1 1011	1012]	1012	1012 1012	[012]	012	1012	1012 1	10121012	012	1012 1012	1012	1012 1012	1012
6.8	<u>6</u>	6.69	20.	8 7	72.8	73.7	74.7 7	2.4	12.91	22.22	18.67	39.64	80.681.6	9	82.5	83.5
010	0 1	1011	1011	1011	1011 1	101	1011	1011	1011	1011	1011	1011 101 101	101	1011	1011	1011
9.8	99	69.2	20.2	71.5.7	72.5	73.4	74.47	5.0	76.37	77.3 78.3	8.37	79.380.381.3	30.38	81.3	82.283.2	83.2
1000 1000 1000 6001	0 1	1010	1010	10101	1010	10101	10101	10101	10101	10101	10101	10101	1010	1010	1010 1010	1010
3.3	39	69.5	70.2	71.27	72.27	73.1	74.1	75	1 92	2 22	78 7	8 64	3. 08	81	81.982.9	82.9
60(91(1009	1000	1009 1	1000	1000	1009	1009	1000	10091	10001	1009 1009		1009	1010 1010	1010
~	<u> </u>	6.89	6.69	16.01	71.97	72.87	73.87	74-7 75-7	5.7	1.81 1.11 1.91	1.1	4.4.8	19.7	2.08	81.682.6	85.6
1008	8 10	1008	1008	10081	1008 1	1008	1008 1008	.008	1008 1	1008 1008 1008	008 1	008 1		1008	1008 1009	6001
2.89 9.49 4	<u>89</u> 9		9.04 9.69		11.57	72.5 73.5	3.5 7	74.4	75.47	76.4 77.4 78.4 79.4	7.47	8.47	9.48	80.4	81.482.3	32.3
1001 1001 1001	$\frac{1}{100}$	20	1001	1001	1007 1	1001,1001	1 200	1001	1001	1007 1007	0071	1001		1001	1001	1008
4,67.3,68.3	398		69.3 70.2		71.2 7	72.2 73.2	3.2 7	74.1	75.17	76.1 77.1	7.1 7	78.17	79.18	80.1	81.1	82
90	6.1(1006	1006 1006		10061	1006 1006 1006 1006	006 1	006 1	006 1	1006,1006	006	10061		1001	1001	1001
29	9	6.49	6.69 6.89		70-9 71-9	1.97	72.97	73.87	74.87	5.876.8	18.9	8.828.22		8.61	8.08	81.7
$1005\ 1005\ 1005\ 1$	5	1005	1005 1005		10051	1005 1005	005 1	1005 1	10051	10021	1005 1005 1006	005 1		9001	1006 1006	1006
2.49 4.99 4	9/2	9.2	9.89	2 9.69	29-02	71.672.6	2.67	73.57	74.5 7	5.5 76.5 77.5	6.57	7.57	78.57	79.5	80.5	81.5
1004 1004 10	4 10	1004	1004 1	10041	1004 1	1004 1	1004 1	1004 1	1002 1	1005,1	1002 1	10021	005 1	1005	1005	1005
					_	_	-	-			_			-	_	_

(GAY-LUSSAC.)-
-TABLE
1.—continued.

20 C.	0.89	19 C.	66.2	IS C.	64.4	17 C.	62.6	16 C.	8.09	15 C.	0.6ª	114 C.	57·2 2	13 C.	€. cc	12 C.	20.00	1100	51.80			Temp.	
996	59.2	997	3.69	997								_					62		62.4	- cent.		61	
996	_	997	60 661.6	997	61	998	60.3 61.3 62.3 63.3 64.3 65.3 66.3	999	61.7	1000	61 62 63 64 65 66 67 68 69 70 71 72 73 74 75	$\frac{1001}{1001} \frac{1001}{1001} \frac{1001}{1001} \frac{1001}{1001} \frac{1001}{1001} \frac{1001}{1001} \frac{1001}{1001}$	61.3 62.3 63.3 64.3 65.3 66.3 67.3 68.3 69.3 70.3 71.3 72.3 73.3 74.3 75.	1002	62.7	1002	63	S S	63.4	Cent.	per	62	
996	$61 \cdot 3$	997	$61 \cdot 6$	997	62	998	62.3	999	62.7	1000	63	1001	63.3	1002	63.7	1002	64	T003	64.4	cent.	per	63	
996	62.3	997	62.7	997	63	998	63.3	999	63.7	1000	64	1001	64.3	1002	64.7	1002	65	1003	65.4	cent.	per	64	
996	63.3	997	63.7	997	64	998	64.3	999	64.7	1000	65	1001	65.3	1002	65.7	1002	66	1003 1003	66.4	cent.	per	65	
996	4.3	997	64.7	997 997 997 997	65	998	65.3	999	65.7	1000	66	1001	66.3	1002	7.99	1002 1002 1002 1002 1003 1003 1003 1003	67	1003	67.3	cent.	per	66	
996	65.4	997	65.7	997	66	998 998	66.3	999	66.7	1000	67	1001	67.3	1002	67.7	1003	89	1003	68.3	cent.	per	67	Obs
996	66.4	997	66.7	997 997	67	998	67.3	999	67-7	1000	68	1001	$68 \cdot 3$	1002	68.7	1003	69	1004	69.3	cent.	per	68	erved
966 966	67-4	997 996 996	67-7	997	68	998	68.3	999	68.7	1000	69	1001	69.3	1002	69.6	1003	70	1004 1004 1004 1004	69-3 70-3 71-3 72-3	cent.		69	perce
	68.4	996	68-7	997	69	998	$69 \cdot 3$	999	69.7	1000	70	1001	70.3	1002	70.6	1003		1004	71.3	cent.	per	70	ntage
996	69.4	996	69.7	997	70	998	70.3	999	70-7	1000	71	1001	71.3	1002	71.6	1003	72	1004	72.3	cent.	per	7	of the
996	70.4	996	70.7	997		366		999	71.7	1000	72	1001	72.3	1002	72.6	1003	72.9 73.9	1004	73.2	cent.	per	72	Alcoh
995	71.4	996 996 996	71 - 7	997	72	998	72:3	999	72.7	1000	73	1001	73.3	1002	73.6	1003	73.9	1004 1004	74.2	cent.	per	73	Observed percentage of the Alcoholometer
995		996	72-7	997	3	998	73.3	999	73.7	1000	74	1001	74.3	1002	74.6	1003	74.9	1004	75-2		•	74	ter.
995	73.4	996	73.7	99	7.4	99	74.	999	74.7	1000	75	1001	75.3	1002	75.6	1003	75.9	100	76.	cent.	per	75	
995	74.4	996	74.7	997	75.1	998	75.4	999	75.7	1000	76	1001	76.3	1002	76.6	1003	76.9	1004	77-2	cent.	per	76	
995	75.5	996	75.8	997	76.1	998	76.4	999	76-7	1000	77	1001	77.3	1002	77-6	1003	77.9	1004	78.2	cent.	per	77	
5 995 995 995 995	76.5	996	76.8	997	77.1	998	77.4	999	77-7	[1000]	78	1001	78.3	1002	78.6	1003	78.9	1004	79.2	cent.	per	78	
995	77.5	996	77.8	997	78.1	998	78.4	999	78.7	1000	79	1001	79.3	1002	79.6	1003	79.9	1004	80.2		per	79	
995	78.5	996	78.8	766	79.1	998	79.4	999	79.7	1000	80	1001	80.3	1002	80.6	1003	$80 \cdot 9$	1004	81.2		per	80	

(GAY-LUSSAC.)—TABLE 1.—continued.

							Obse	rved p	ercen	tage o	f the	Alcobo	Observed percentage of the Alcoholometer.	er.						
Temp. Fahr.	61 per cent.	62 per cent.	63 per cent.	64 per cent.	65 per cent.	66 per cent.	67 per cent.	68 per cent.	69 per cent.	70 per cent.	71 per cent.	72 per cent.	73 per cent.	74 per cent.	75 per cent.	76 per cent.	77 per cent.	78 per cent.	79 per cent.	80 per cent.
8.89 8.88 8.47 8.48 8.88 8.89 8.89 8.89 8.89 8.89 8.80 9.90 9.9	58.9 995.5 995.5 58.1 58.1 57.5 992.5 56.4 988.6 56.4 988.6 56.4 988.6 56.4 988.6 56.4 988.6 56.4 988.6 56.4 988.6 56.4	59.9 995 995 994 992 992 992 997 57.1 996 986 986 986	61 835 60.6 994 60.2 993 993 993 983 983 983 983 984		52 63 64 65 66 67 68·1 69·1 70 995 995 995 995 995 995 995 995 995 995 995 995 995 995 995 995 995 994 993	64 63.7 63.7 63.7 63.7 63.7 63.7 63.7 63.8 63.8 63.8 63.8 63.8 62.8 61.9 61.9 61.9 61.9 661.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63	65 66 64.7 65.7 64.7 65.7 64.3 65.4 64.3 65.4 64.3 65.4 692 992 992 63.7 64.7 63.7 64.3 63.8 64 9 63 63 64 9 63 64 9 63 64 9 63 64 9 63 64 9 63 64 9 68 988	56 59 59 59 50 59 50 50 50 50 50 50 50 50 50 50	67 66.7 994 66.4 66.4 66.4 65.7 65.7 65.3 65.3 65.3 65.3 65.3 65.3 65.3 65.3	67 68.1 69 66.7 67.8 68 994 994 9 66.4 67.4 68 66.4 67.4 68 66.6 67.1 68 66.6 67.1 68 66.6 67.1 69 1 992 992 99 1 65.7 66.7 67 65.0 66 67 65.0 67 67 67 67 67 68 68 68 68 68 68 68 68 68 68	68.1 69.1 7 995 995 67.8 68.8 6 994 994 67.4 68.4 6 993 993 67.1 68.1 6 992 992 66.7 67.8 6 991 991 66.4 67.4 6 999 999 66.4 67.1 6 999 999 66.7 66.8 6 998 988 65.7 66.8 6 65.7 66.8 6 988 988 65.4 66.4 66.4 6	9.4.4.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	995 995 994 994 993 990 990 990 988 988 988 987 986 986 986 986 986	72.1 73.1 7 994 994 7 994 993 7 994 993 7 71.5 72.5 7 993 992 70.5 71.5 7 991 991 70.5 71.5 7 990 990 70.9 7 69.5 70.6 7 986 986 986 986 986 986 986 986 986 986	93.1 93.4 93.5	4.1 99.1 99.1 99.2 99.2 99.2 99.2 99.3 9	75.27 99.47 74.98 74.55 74.25 73.90 74.50 75.90 75	76.2 77.2 78.2 994 994 994 993 993 993 993 993 993 993	77.5 994 76.9 993 76.6 992 75.6 990 75.3 988 74.7 986 986	76.2 77.2 78.2 994 994 994 993 993 993 75.5 76.6 77.6 992 992 992 75.2 76.3 77.3 991 991 991 74.6 75.6 76.7 990 990 990 74.3 75.3 76.3 988 988 73.7 74.7 75.7 987 987 987 987 987 987

/ _N	
വ	
7	
JAY-	
H	
• 1	
\vdash	
Lussac	
딮	
ξŽ	
ZSS.	
₽-	
a	
ر- ک	
Y	
ł	
ાં -	
\rightarrow	
h-	
\Box	
œ	
ABLE	
\vdash	
· . '	
1	
1	
C	
0	
3	
nti	
جن.	
3	
inued	
2	
10	
~~	

32.00 33.83.00 35.00 37.40.00 44.00 46.40.00 46.40.00 90.20 90.20	Temp. Fahr.
0° 85·2 0° 85·2 0° 1014 8 85 0° 1013 0° 1012 0° 1012 1011	p. 81 per cent
2 86·2 85·9 81013 3 1013 7 85·6 7 85·6 1 1011 1 1011 1 1011 1 1011 1 1011 1 1011 1 1011 1 1010 6 84·5 9 1009 9 1009 9 1009 1 1007 7 1007 7 1007	82 per cent.
87.1 1014 86.8 1015 86.6 1015 86.1 1011 85.1 1000 85.1 1000 85.1 1000 85.1	83 per cent.
88 1014 887 : 8 1012 87 : 1011 1011 1011 1001 1002 1002 1002 1002	84 per cent.
88.9 89.9 9 1014 1015 1014 1015 1013 1014 1015 1013 1014 1015 1015 1015 1015 1015 1015 1015	85 per cent.
9 89.9 90.8 91.7 92.6 93.6 9 4 1015 1015 1015 1015 1015 1015 1 7 89.6 90.5 91.5 92.4 93.3 9 3 1014 1014 1014 1014 1014 1014 1 5 89.4 90.3 91.2 92.2 93.1 9 2 89.2 90.1 91 91.9 92.9 9 1 1012 1012 1012 1012 1012 1012 1 9 88.9 89.8 90.8 91.7 92.7 9 1 1011 1011 1011 1011 1011 1 7 88.6 89.6 90.5 91.5 92.4 9 0 1010 1010 1010 1010 1010 1 4 88.4 89.3 90.2 91.2 92.2 9 9 1009 1009 1009 1009 1009 1 9 87.9 88.8 89.8 90.7 91.7 9 1 1007 1007 1007 1007 1007 1 6 87.6 88.6 89.5 90.5 91.5 9 1 1006 1006 1006 1006 1006 1	86 per ceut.
90·8 91·7 1015 1015 90·5 91·5 1014 1014 90·3 91·2 1013 1013 90·1 91 1012 1012 89·8 90·8 1011 1011 89·3 90·2 1009 1009 89·1 90	Obser 87 per 1
8 91.7 92.6 1015 1015 91.5 92.4 1014 1014 1012 1013 1013 1013 1012 1012 1012 1012 1011 1011 6 90.5 91.5 1010 1010 1009 1009 1009 1009 1 90 91 8 1008 1008 8 89.8 90.7 7 1007 1007 6 89.5 90.5 6 1006 1006	erved pe 88 8 per p cent. ce
92.6 93.6 1015 1015 92.4 93.3 1014 1014 92.2 93.1 1013 1013 91.9 92.9 1012 1012 91.7 92.7 1011 1011 91.2 92.2 1009 1009 91 91.9 1008 1008 1007 1007 1007 1007 90.5 91.5	percentage 89 90 per per cent.
93.6 94.5 1015 1015 93.3 94.3 1014 1014 93.1 94 1013 1013 92.9 93.8 1012 1012 92.7 93.6 1011 1011 92.4 93.4 1010 1010 92.2 93.1 1009 1009 91.9 92.9 91.9 92.9 1008 1008 91.7 92.7 1007 1007 91.5 92.5 1006 1006	ge of the 91 per per per per per per per per per per
3.6 94.5 95.3 9 015 1015 1015 1 3.3 94.3 95.1 9 014 1014 1014 1 3.1 94 94.9 9 013 1013 1013 1 2.9 93.6 94.7 9 011 1011 1011 1 2.4 93.4 94.3 9 010 1010 1010 1 2.2 93.1 94.1 9 0.09 1009 1009 1 1.9 92.9 93.9 9 1.7 92.7 93.6 9 007 1007 1007 1 1.5 92.5 93.4 9 1.5 92.5 93.4 9 006 1006 1006 1	Observed percentage of the Alcoholometer. 7
3 96·2 5 1015 1 96 4 1014 9 95·8 9 95·8 1 3 1013 3 1013 3 1013 7 1010 1 1011 1 1011 1 95·2 1 1010 1 95·8 1 1010 1 95·8 1 1010 1 95·8 1 1010 1 95·8 1 1010 1 95·8 1 1010 1 95·8 1 1010	oholome 93 per t. cent.
97.1 96.9 96.9 96.7 8 96.7 1014 96.5 6 96.5 2 1013 6 96.3 1 1011 1 1011 1 1010 9 1009 9 1009 9 1009 9 1008 6 95.5 7 1007 4 95.3 6 1006	94 per cent.
20101010101010101010	95 per cent.
98·8 99·7 1015 1016 1016 1014 1014 1014 108·5 99·3 1013 1014 108·5 99·3 1013 1014 108·5 99·3 1012 1012 1012 1012 1011 1011 1010 1010 1010 1010 1009 1009 1009 1009 1008 1008 1007 1007 1007 1007 1006 1006	96 per cent.
98·8 99·7 1015 1016 98·6 99·5 1014 1014 98·5 99·3 1013 1014 98·3 99·2 1012 1012 1012 1012 98·1 99 1011 1011 1011 1010 97·8 98·7 1009 1009 97·6 98·5 1008 1008 97·4 98·3 1007 1007 97·2 98·1 1006 1006	97 per cent.
1012 99-9 1011 1011 1010 99-6 1009 1008 1008 1007 1006	98 per :
1007 1006	99 ; per 1
	100 per cent.

(GAY-LUSSAC.)—TABLE I.—continued.

	,						Obs	erved	percer	Observed percentage of the Alcoholometer.	of the	Alcohe	olomei	er.						
Temp. Fahr.	81 per cent.	82 per cent.	83 per cent.	84 per cent.	85 per cent.	86 per cent.	87 per cent.	88 per cent.	89 per cent.	90 per cent.	91 per cent.	92 per cent.	93 per cent.	94 per cent.	95 per cent.	96 per cent.	97 per cent.	98 per cent.	99 per cent.	100 per cent.
50.00	00.00 82.4	83.4	84.4	4.5	86.4	87.4	88.3	89.3	90.2	91.2	92.2	93.2	93.2 94.2 95.1	95.1	96	97	98	98.9	99.9	
51.8	82.2	1005 1005 82.2 83.1	84.1 85	5 ⊢ €	86.1	87.1	88	68	06	91	92	92.9	93.9 94.9 95.8	94.9	35.8	8.96	8.46	98.7	2.66	
11 C.	1004	1004 1004 1004 100	1004	4	1004 1004 1004	1004	004	1004	1004	1004 1004 1004 1004 1004	1004	1004	1004	1004 1004	1004	1004	1004 1004	1004	1004	•
53.6 81	81.9	81.9 82.9 83.9 84.	83.9	$84.8 \\ 1003$	885.886.88	86.81003	87.8 1003	88.789.7 10031003	89.7	87.888.789.790.791.792.793.794.795.6	$\frac{91.7}{1003}$	$\frac{92.7}{1003}$	93.7 1003	94 · 7 1003	. 9. ce	1003	97.698.5 10031003		99.5 1003	
55.4	81.6	81.682.683.684	83.6	84.6	685.5	86.5	87.5	88.589.5	89.5	90.5 91.5	91.5	92.5	92.5 93.5 94.4 95.4	94.4	35.4	96.4 97.4	97.4	98.4	99.3	
13 C.	1002	1002 1002 100	1002	1002	1002	1002	1002	1002	1002	1002 1002 1002 1002 1002 1002 1002 1002	1002	1002	1002	1002	1002	1002 1002	1002	1002	1002	
57.2	81.3	82.5	83.3	84.3	85.3	86.3	87.3	88.2	89.2	30.5	91.2	92.2	93.2	94.2	35.2	96.2	97.2	96.2.97.2 98.2 99.2	99.2	
14 C.	1001	1001	1001 1001	\dashv	1001	1001	1001 1001	1001	1001	1001 1001	1001	1001	1001 1001 1001	1001	1001	1001	01	1001	1001	
59.0	81	82	83		85	98	28	88	68	06	91	92	93	94		96	16	86	66	100
15 C.	1000	1000 1000 1000 100	1000	0	1000	1000	1000	1000 1000 1000		1000 1000 1000 1000 1000 1000	1000	1000	1000	1000		1000 1000	$1000'_{1}$	1000 1000 1000	1000	1000
8.09		80.7 81.7 82.7 83.	82.7	83.7	7.84.7	85.2	85.2 86.7 87.7 88.7	87.7		89.7 90.8 91.8 92.8	8.06	91.8	92.8	93.8 94.8	94.8	92.8	8.96	8.66 8.86 8.46 8.96	8.86	8.66
16 C.		666	666	666	666	666	666 666 666 6	666	666	666	666	666	666	666	666	666	666	666 666 666 666 6	666	666
62.6		80.481.482.483.	82.4	83.4	84.4	85.4	86.4	87.4	88.4	89.5 90.5 91.5 92.6	90.2	91.5	95.6	93.6,94.6	94.6	92.6	9.96	9.16	1.86	1.66
17 C.		998	866	6	998	866	866	998	866	866	866	998	866	866 866	998	866	966	866	998	998
64.4	-	80 • 1 81 • 1 82 • 1 83	82.1	H	84.1	85.2	86.287	87.2	87.2.88.2	89.2,90.2,91.3	90.2	91.3	92.3 93.3 94	93.3	94.3	1.3 95.4	7.96	97.4	98.5	99.5
18 C.	166	266	166	G	266	997	166	997;	997	166	266	: 166	997	266	997	266	997	266	997	266
66.5	79.8	$80.8^{1}81$	6.1	82.9	83.9	84.98	5.9	86.98	6.2	88 9 90		91.1	92.1	93.1	94.1	95.2	2.96	. 46	398.3	99.3
19 C.	966	966	966	966	966	966	966	966	966	966	966	966	966	966	966	966	966	966	966	966
								_	-	_							_		_	

(GAY-LUSSAC.)
TABLE
I.—continued.

049	CHEMISTS	POCKET-BOOK.	
	24 77.0 78.8 26.0 27.0 27.0 4.2		Temp. Fahr.
88.78	991 78 991 77.7 990 77.4 989 77.1		81 per cent.
988 77.8 987 77.7 986	991 79 991 989 78·4 988 78·4	80.5 995 80.2 89.4 19.9 179.6 179.6	82 per cent.
987 78-9 78-6 78-6 986	991 990 990 79.8 79.5 989 988 79.5	81.6 995 81.3 994 81 993 80.7 80.4	83 per cent.
987 79.9 986 79.6	991 81·1 990 80·8 986 986 986 986	82.6 995 82.3 994 82 82 993 81.7 993	84 per cent.
987 80·9 986 80·6 985	991 991 82·1 83·2 990 990 81·8 82·9 989 989 981·5 82·6 81·5 82·6 81·5 82·3	83 · 6 83 · 3 8 · 83 · 3 8 · 994 8 · 994 8 · 993 8 · 82 · 7 8 · 993 8 · 993 8 · 993 8 · 993 8 · 994 8 · 994 8 · 995 8 · 905 8	85 per cent.
987 82 986 986 81•7	991 83·2 990 82·9 989 989 988	34.6 995 994 994 34 993 993 993 993	86 per cent.
987 83 986 82-7 985	991 84-2 990 83-9 989 989 83-6	85 · 6 85 · 6 85 · 6 85 · 6 85 · 6 85 · 6 85 · 6 87 · 6 88 · 88 · 88 · 88 · 88 · 88 · 88 · 88	Obser 87 per cent.
987 84·1 986 83·8 985	991 85·2 990 84·9 989 989 84·7 988	86.6 86.4 86.4 86.1 85.8 85.8 85.8 85.8	rved p 88 per cent.
987 85·1 986 84·9 985	991 286·3 990 990 986 989 989 185·7	5 86 - 8 8 6 - 5 8	Observed percentage of ger per per per per per per per per per p
987 86•23 986 86 985	991 87.4 990 87.1 989 86.8 988 988	38.7 995 994 994 993 993 993 993	age of
987 87·3 986 987·1 985	991 88·4 990 88·2 989 87·9 87·6	89.7 89.5 89.5 89.5 89.2 89.2 89.2 89.2	the 91 per ent.
986 986 986 985	991 89·5 990 89·2 989 988 988 988 988	90.8 90.5 90.5 90.2 90.2 90.2 90.2 90.2 90.2	Alcoholometer. 92 93 9 per per per per cent. cent. ce
89.3 986 985	99.6 90.6 990 989 989 988 988 988 988	91.8 99.5 91.6 91.3 91.3 91.1 99.3 90.8	lomete 93 per cent.
986 90.6 9 986 90.4 9 985	990 990 990 990 989 989 988 988	92.9 995 92.6 92.6 92.4 93.1 92.1 92.1 93.9 93.9 93.9 93.9 93.9 93.9	er nt.
987 986 986 985	991 990 990 990 989 989 988 988	995 995 995 996 996 996 996 996 996 996	95 per cent.
987 986 986 985	990 990 990 990 980 980 980 980 980 980	995 995 994 994 993 993 993 993	96 per cent.
987 986 986 985	991 990 990 989 988 988 988	995 995 995 995 995 995 995 995 995 995	97 per cent.
986 986 986 985	2 3 3 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	93.9 95 96 97.1 98.1 98 995 995 995 995 995 9 93.7 94.7 95.8 96.9 97.9 98 1 994 994 994 994 994 8 1 93.4 94.5 95.6 96.7 97.7 98 1 93.2 94.3 95.4 96.5 97.5 98 1 93.2 94.3 95.4 96.5 97.5 98 1 93.2 94.3 95.4 96.5 97.5 98 1 93.2 94.3 95.4 96.5 97.5 98 1 93.2 94.3 95.4 96.5 97.5 98 1 93.2 94.3 95.4 96.5 97.5 98 1 93.2 94.3 95.4 96.5 97.5 98 1 93.2 94.3 95.4 96.5 97.5 98	98 per cent.
985 985 985 984	97.1 98.2 97.1 98.2 99.0 99.0 96.9 98.1 98.7 97.9 96.5 97.7 96.5 97.7	995 995 977-98 994 997-78 993 993 992	99 per cent.
97.5 97.5 985 97.3 984	987 980 980 989 989 987 987 987	99-1 99-5 99-8 98-8 98-8 99-8 99-8 99-8	100 per cent.

To find directly the percentage of absolute alcohol of a liquid at any temperature from the observed percentage at the same temperature. (GAY-LUSSAC.)—ALCOHOLOMETRIC TABLE II.

	20 per cent	23 24.3 22.7 24 22.7 24 22.1 23.4 21.9 23.1 21.6 22.8 21.4 22.5 20.7 21.8 20.5 21.8 20.5 21.3 19.7 20.7 19.5 20.5 19.8 21.3 18.7 19.7 18.7 19.7 18.8 219.7
	19 per cent.	21.4 23 21.2 22.4 21.2 22.7 20.9 22.1 20.7 21.9 20.3 21.4 20.3 21.4 19.5 20.5 19.5 20.5 19.5 20.5 18.7 19.7 18.5 19.7 18.8 19.7 17.8 18.7 17.8 18.7 17.9 18.7
	18 per cent.	2012 2012 2012 2012 2012 2013 2013 2013
		20.4 21.7 20.9 21.2 21.9 21.2 21.2 21.2 21.2 21.2 21
	17 per cent.	20.4 6 19.9 7 19.5 1 19.4 7 19.5 1 19.7 1 19
	16 per cent.	
	15 per cent.	read=00ro40 0040 0rc
	- •	16.1 17. 16.1 17. 16.1 17. 15.9 17. 15.6 16. 15.6 16. 14.9 16. 14.0 15. 14.0 15. 14.0 15. 14.0 15. 13.9 14. 13.9 14.
eter	14 per cent.	7 116 1 1 7 1 1 6 1 1 1 7 1 1 6 1 1 7 1 1 6 1 1 7 1 1 6 1 1 7 1 1 6 1 1 7 1 1 6 1 1 7 1 1 6 1 1 7 1 1 6 1 1 7 1 1 6 1 1 7 1 1 6 1 1 7 1 1 1 7 1 1 1 7 1 1 7 1 1 7 1 1 7 1 1 7 1 1 7 1 1 7 1 1 7 1 1 7 1 1 1 7 1 1 1 7 1 1 1 7 1
olom	13 per cent.	44488844444444444444444444444444444444
Alcob	12 per cent.	44446666666666666666666666666666666666
Observed percentage of the Alcoholometer.	11 per cent.	1 • 1 1 2 1 1 1 • • • • • •
авео	10 per cent.	10.9 12 10.9 12 10.6 11 10.5 11 10.3 11 10.9 10 9.9 10 9.8 10
cent		12 0 ro 4 to 61 d o 00 to
per	9 per cent.	
erved	8 per cent.	<u>α</u> α α α α α α α α α α α α α α α α α α
SqO	7 per cent.	r r r r r r r r r r r r r r r r r r r
	6 per cent.	0 0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	per cent.	ro ro<
	I	4
	per cent	म म मममम ममम
	3 per cent.	
	2 per cent.	9 9 9999999999999999999999999999999999
	per cent.	1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1
		0 + 2 2 4 2 3 2 2 3 2 4 2 3 2 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 4 2 3 2 3
	Temp. F. C.	33.2.0 33.3.0.0 37.0.0 4.4.0.0 5.0.0.0 5.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.0.0 6.0.0

~
h-
-
GAY-1
٠,
.•
_
LUSSAC.
_
-7
ďΩ
75
9/2
P
_
\sim
\.Z
. •
-
ı
٠.
<u> </u>
-
-
_
ᄍ
_
5
E
LABLE
TE II.
11.—con
11.—con
11.—con
11.—con
11.—con
11.—contina
11.—contina
11.—contina
11.—contina
11.—contina
11.—contina
11.—contina
11.—con
11.—contina

OOT	011	EMISIS FOCKET-BOOK.	
32.0 33.8 35.6 37.4	Temp.	Temp. F. C. 66.2 1 69.8 2 71.6 2 715.2 2 717.0 2 888 2 886 2	
3210	C, P	322324432210	
25.7 25.4 25.4 24.7	21 per cent.	1 per cent. 0.6 0.6 0.1 0.1	
27·1 26·8 26·4 26	22 per cent.	2 per cent. 1.6 1.5 1.4 1.3 1.1 1.1 1.0 0.5	
28.5 28.1 27.6 27.3	28 per cent.	9 per cent. 2.6. 2.4. 2.3. 2.3. 1.5. 1.5. 1.5. 1.5. 1.5. 1.5. 1.5. 1	
29·9 29·4 28·9 28·6	24 per cent.	per cent. 3.6 3.4 4 2.9 2.6 5.1 2.6 2.9 2.6 2.9 2.4 4 2.9 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6	
31·1 30·6 30·2 29·8	25 per cent.	7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	I
32·3 31·8 31·4	26 per cent.	cent. cent.	
33.4 32.5 1	27 per cent.	4.4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	Obse
34.5 33.5 33.1	28 per cent.	5.5.7 1.5 cent. 5.5.7 5.	rved
35.6 35.1 34.6 34.1	29 per cent.	6.66 2 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	регсел
25.0 25.0 25.0 25.0	30 per cent.	10 per cent. 7.5.7.7.5.7.5.7.5.7.5.7.5.7.5.7.5.7.5.	tage
37.6 37.1 36.7 36.2	31 per cent.	11 per cent. 10.5 10.5 10.3 10.3 9.5 9.5 8.6 8.6 8.6 8.6 8.7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	of the
37.7 37.7 37.7	32 per cent.	12 per cent. 111.4 111.2 110.6 110.4 10.2 9.9 9.5	Observed percentage of the Alcoholometer.
39.6 40.6 39.1 40.1 38.7 39.7 38.3 39.3	33 per cent.	13 per cent. 12.4 12.2 11.5 11.6 11.6 11.6 11.7 11.7 11.7 11.7 11.7	olome
	34 per cent.		ter.
41.5 41.2 40.7 40.3	35 per cent.	per per cent. 114.3 114.3 113.5 113.	
42.5 42.2 41.7 41.3	36 per cent.	16 per cent. 15.2 14.6 14.4 13.6 13.6 13.1 12.8 12.8	
43.5 44 43.1 44 42.7 43 42.3 43	37 per cent.	16 17 per per cent. cent. 15.2 16.1 14.9 15.8 14.6 15.5 14.1 15.3 14.1 15.3 13.6 14.5 13.6 14.5 13.6 14.5 13.6 14.5 13.6 14.5 13.6 14.5 13.6 14.5 13.6 14.5 13.6 14.5	İ
44 1 1 2 2 4	38 per cent.	18 per cent. cent. 16.4 16.2 16.2 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	
45·4 46 45 46 44·6 45 44·2 45	39 per cent.	19 per cent. 17.9 117.9 115.9 115.9 114.9	
46.4 45.5 45.2	40 per cent.	20 per cent. 18.8 18.5 17.6 17.1 16.7 15.7	

(GAY-LUSSAC).—TABLE II.—continued.

		
	40 per cent.	444.8 444.8 44.8 44.8 44.8 44.8 45.0 46.0
	39 per cent.	
	38 per cent.	
	37 per cent.	41.4 40.4
	36 per cent.	8.6.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
	35 per cent.	8 6 8 8 7 7 9 9 6 6 8 8 8 7 7 9 9 6 6 8 8 8 7 7 9 9 9 7 7 7 4 4 8 8 8 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1
ter.	34 per cent.	88776999674448887711100 888946717884 7119484 92
olome	33 per cent.	34.7.1 36.93 37.33 37.33 38.93 38.93 39.93 30.93 31.93 31.93 31.93 32.93 33.93 3
Alcoholometer.	32 ¢ per cent.	2000 4 4 4 4 6 6 6 4 4 4 6 6 6 6 7 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
$^{ ext{the}}$	31 per cent.	35.77 35.33 36.33 37.73 37
Observed percentage of	30 per cent.	34.33.83.33.83.33.83.33.83.33.33.33.33.33.
percer	2:9 per cent.	EEEEE 22 22 11 11 12 00 00 00 00 00 00 00 00 00 00 00 00 00
erved	28 per cent.	
Obs	27 per cent.	6 2 8 8 8 6 7 7 7 8 8 8 7 7 7 7 8 8 7 7 7 7
	26 per cent.	30.6 30.6 30.7 229.7 228.9 24.7 25.7 25.7 25.7 25.7 25.7 25.7 25.7 25
	25 per cent.	29.3 28.5 28.5 28.5 27.7 26.1 26.1 27.7 27.3 27.3 27.3 27.3 27.3 27.3 27.3
	24 per cent.	222224.7.7.2222222222222222222222222222
	23 per cent.	26.9 26.5 26.5 26.1 26.1 25.4 22.4 22.4 22.4 22.4 22.4 22.4 22.4
	22 per cent.	25. 22. 24. 27. 25. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.
	21 per cent.	24. 223. 4. 23. 4. 23. 4. 23. 4. 23. 4. 22. 22. 22. 22. 22. 22. 22. 22. 22.
	ap.	40000000000000000000000000000000000000
	Temp. F. C	39.2 442.8 446.4 46.4 46.4 60.0 60.0 60.0 60.0 60.

AY-LUSSAC.)
-TABLE
II.—continued.

6 27 17 3 18 2 19 1 20 20 8 21 7 22 6 23 5 24 3 25 2 26 1 27 1 27 9 4 28 16 9 17 9 18 8 19 6 20 5 21 4 22 2 23 1 23 9 24 8 25 7 26 6 27 5 2 29 16 6 17 5 18 4 19 3 20 2 21 21 8 22 7 23 6 24 4 25 2 26 2 27 1 0 30 16 3 17 2 18 1 19 19 8 20 7 21 5 22 4 23 2 24 24 9 25 8 26 7 1 cmp.	Dec. per per per per per per per per per per	Observed percentage of the Alcoholometer.
--	--	---

(GAY-LUSSAC.)—TABLE II.—continued.

	Temp.	é			9	:	4	97	Obs	erved	percer	Observed percentage of the Alcoholometer. $\begin{vmatrix} 7 & 40 & 40 & 60 & 60 & 60 & 60 & 60 & 60$	of the	Alcoh	olome	ster.	10	30	7.7	ά	97	60
	ë		41 per cent.	per cent.	per cent.	per cent	per cent.	per cent.	per cent.	per cent.	per cent.	per cent.	per cent.	per cent.	per cent.	per cent.	per cent.	per	per cent.	per cent.	per cent.	per cent.
00K.	50.0 51.8	10,	43.1	44.1	45.1	46.	47.	48. 47.	49.	50·1 49·7		ن بر د		, r- c	55.00	56 55.6	57 56.6	58 57 6	59 58.6	9 6 6	• •	6.61.6
a-T	53.6 55.4		42.3 41.9	42.343.3 $41.942.9$	44.3	45. 44.	45.	46.	÷ 14 ;	848.9 9.034	ن ق	50.9	7 6 7	4 00	1 20	1 xx 3	1 20 -		0.5	7 00 9		09
KE	57.2 59.0	4 5	41.4 41	42.4 42.4	4. 4.	44. 44.	4. č4.	46.4 46	4.74	გგ. გგ.	4.64	50°4 50	4	4	4	#	#	,	4	4		,
DC A	8.09	16,	9 -	41°6	42.6 42.1	43.6	44.6	45.6 45.2	46.64 46.24	6.7.5	9 2	49.6 49.2	50.6 50.2	51.6		0 0	ာ က	55.6 55.2	6 3	57.6 57.2	58.6 58.2	59 59
'ET	64.4 66.3	8 6	39.7	40.7	39·7 40·7 41·7	42.	43.7	44.8 44.44	45.8 45.4	46.8	47.8	48.8	49.8	50.8 50.4	51.8	52.8 52.4	∞ 4	54.8 54.4	55.8 55.4	56.8 56.4	8.7.0 4.70	58.8 58.4
SIW	0.89	202	88. 8. 8. 9. 4.	39.9	39 9 40 9 39 4 40 4	42.			45 44·6	45.6	47 46·6	48 47.6	49 48-6	50 49·6	50.6	~ ·	53 52·6	9	55 54.6	56 55·6	57.	58 57·6
эне	71.6	222	38	39 38.6 38.6	348	41. 40.	.2. 41	1 43·1 6 42·6	44.1	45·1 44·6	46.1	47.14	48.1	49·1	$50 \cdot 1$ $49 \cdot 8$	51.150.8	2.2	⇔ ∞	54.2 53.8	55.2 54.8	56.2 55.8	57·2 56·8
)	75.2	245	22	38.2	39.2	40.39	$\begin{array}{c} 41.2 \\ 40.8 \end{array}$	42.2	43.3	44·3 43·9	45·3 44·9	46.34	47.3	48.4 ¹ ,	4	₩	4	4.	4	4	55.4 55	56.4 56
	78.8 80.6	92	ώ φ.	37.3		. 6g	404	41.	33:	43.5	रु न	10 H	் ம் ப	ו היי טי	2		50.5		20 21	70 CA C	(a)	55.6 55.2
₽ 9	$82.4 \\ 84.2$	22.33	- #		37.5				41.	47.0		- ش ا	- m	9 9	- ന	ა დ. - 44.	0.41	o 🐴	, i.i.	2 CT (ν 4	. •
8	0.98	30	34.6	35.6	9.98	37.7	38.7	39.8	40.8	41.8	8.74	43.84	44.9	45.9	4.1	848	8	2	10	7.0	53	24

33 33 33 33 33 33 33 33 33 33 44 42 42 43 44 55 55 55 55 57 57 57 57 57 57 57 57 57	Ħ	<u>—</u>
3.0 3.8 3.8 3.8 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	C	Temp.
66. 66. 66. 66. 66. 66. 66. 66. 66. 66.	per cent.	
59: 59: 59: 59: 59: 59: 59: 59:	f per	-
8 68 6 67 6 67 6 67 6 67 6 67 6 67 6 67	r per	
64. 62. 62. 66. 66. 66. 66. 66. 66. 66. 66	r per	-
8 70 6 69 6 69 6 68 6 68 6 68 6 67 6 67 6 67 6 68 6 69 6 69 6 68 6 68 6 68 6 69 6 68 6 68	f 65 r per	-
65. 66. 66. 66. 66. 66. 66. 66. 66. 66.	r per	
3 67 65 65 65 65 65 67 67 67 67 67 67 67 67 67 67	r per	0
66. 66. 66. 66.	68 r per t. cent.	Observed
774. 774. 773. 772. 772. 772. 772. 770.	69 per t. cent.	
775 774 773 773 773 773 773 773 773 773 771 771	70 per t. cent.	percentage
776 776 776 776 777 777 777 778 778 778	t. cent	e of the
770 69	72 per t. cent.	
7711	73 per t. cent.	Alcoholometer
772.886 4.88172.11.11.11.11.11.11.11.11.11.11.11.11.11	74 per cent.	neter.
200 200 200 200 200 200 200 200	75 per cent	
80 77 79 77 77 77 77 77 77 77 77	76 per cent.	
779.5 77	per cent.	
83 83 83 83 83 83 83 81 81 81 81 81 81 81 81 81 81	78 per cent.	
84. 84. 84. 83. 83. 83. 83. 83. 83. 83. 83	79 per cent.	į
778.11.00.66 A 20.66 A	80 per cent.	į
$\frac{1}{2}$	A 2	·

(GAY-LUSSAC.)—TABLE II.—continued.

					-	İ	Ö	serve	l perc	entage	Observed percentage of the Alcoholometer.	e Alco	holon	eter.						
Temp. F. C.	61 per	62 per	63 per	64 per cent.	65 per cent.	66 per cent.	67 per cent.	68 per cent.	69 per cent.	70 per cent.	71 per cent.	72 per cent.	73 per cent.		75 per cent.	76 per cent.	77 per cent.	78 per cent.	79 per cent.	90 per cent.
71.6 73.4 75.2 75.2 74.0 78.8 80.6 82.4 82.4 84.2 86.0 30	2.5.4. 5.5.5.4. 5.5.5.4. 5.5.5.5.5.5.5.5.		59.85 59.85 59.85 58.85 58.35 57.17 57.17			63.3 62.9 62.5 62.1 61.7 61.3 60.9 60.5	53.9 53.9 53.7 52.7 61.9 61.7 61.1	64.5 64.5 64.1 63.7 63.3 62.9 62.1	66.3 65.9 65.1 64.7 64.3 64.3 63.9	67.3 66.9 66.5 66.1 65.7 65.3 64.9 64.5	68.3.69.3 67.9.68.9 67.1.68.1 66.7.67.7 66.3.67.7 66.3.67.3 66.66.6 65.2.66.6	69.3 68.9 68.9 68.1 67.7 67.3 67.3 66.6	E 001004 FE	71.3 72 71 72 70.6 71 70.2 71 69.8 70 69.4 70 69.1 70 68.7 69 68.3 69	72.3 71.6 71.2 70.8 70.4 70.1 69.7 69.3	73.3 72.5 72.2 71.8 71.1 70.7	74.3 73.6 73.6 72.8 72.4 72.1 71.1 71.1	4.05.4 4.4.6 4.05.4 4.0	077 077 077 077 077 077 077 077 077 077	4 777 4 777 4 8 3 76 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
Tem! F.	81 per	82 per	83 per cent.	84 per cent.	85 per cent.	86 per cent.	87 per cent.	88 per cent.	89 per cent.	90 per cent.	91 per cent.	92 per cent.	93 per cent.	94 per cent.	95 per cent.	96 per cent.	97 per cent.	98 per cent.	99 per cent.	100 per cent.
0 8 9 4 2 0 8 9		87.4 86.6 86.3 86.3 85.0 85.0 84.9			· · · · · · · · · · · · · · · · · · ·		93.2.2 91.5 90.8 90.5 89.8	93.1 92.8 92.1 92.1 91.4 91.4	94 93.7 93.4 92.7 92.4 92.4	95 94.6 94.3 94.3 93.7 93.3 93.8	95.9 95.9 95.6 95.2 94.9 94.3 93.6	96.8 96.1 96.1 95.2 94.9	97.7 97.4 97.4 96.7 96.2 95.9	98.6 98.3 97.9 97.4 97.4 96.8	99999999999999999999999999999999999999	100.3 100 99.8 99.5 99.2 98.9 98.4		01.2 00.3 00.4 00.1 101 99.8 100.7 99.6 100.5		

Temp. 81 82 83 84 85 86 87 88 87 89 4 90 4 91 92 93 94 95 96 97 98 99 99 400 4 46.4 8 83.6 84.6 85.6 86.5 87.5 88.5 89.4 90.4 91.3 92.3 93.3 94.3 95.3 96.2 97.1 98.1 99 99.8 83.2 84.2 85.2 86.2 87.1 88.1 89.1 90 91 92.7 93.7 94.7 95.6 96.5 97.5 98.5 99.4 100.4 91.8 92.8 93.8 94.8 85.8 84.8 85.7 86.7 188.1 89.1 90 91.7 92.7 93.7 94.7 95.6 96.5 97.5 98.2 99.1 100.1 181.8 22.8 83.8 84.4 85.4 86.4 87.4 88.4 89.4 90.4 91.4 92.4 93.3 94.3 95.3 96.2 97.2 98.2 99.1 100.1 181.8 28.8 83.8 84.4 85.4 86.4 87.4 88.4 89.4 90.4 91.4 92.4 93.3 94.3 95.3 96.2 97.2 98.2 99.1 100.1 181.8 28.8 83.8 84.4 85.4 86.4 87.4 88.4 89.4 90.4 91.4 92.4 93.3 94.3 95.3 96.2 97.2 98.2 99.1 100.1 181.8 28.8 83.8 84.4 85.4 86.4 87.4 88.3 89.3 90.3 91.3 92.3 93.3 94.3 95.3 96.2 97.2 98.2 99.1 100.1 181.8 28.8 83.4 84.6 85.6 86.7 187.7 188.8 189.3 90.3 91.3 92.3 93.3 94.3 95.3 96.2 97.3 98.3 99.3 99.8 99.8 99.8 99.8 99.8 99	357	CHEMISTS'	POCKET-BOOK.		
Section Sect	0 4 60	44000440	44000044000	Temp.	
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 91 82 83 84 4 85 86 87 88 78 94 90 4 91 32 23 33 34 35 36 36 37 2 98 3 99 90 91 92 93 94 95 96 97 98 97 98 99 90 91 92 93 94 95 96 97 98 97 99 90 91 92 93 94 95 96 97 9 98 99 99 99 99 99 99 99 99 99 99 99 9	44444	18.79 19.79 19.79 20.79 21.78 22.78 22.78 23.78 24.77	80 81 81 82 82 83 83		-
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 99 99 99 90 91 92 93 94 95 96 97 98 99 100 98 84 85 86 87 88 87 88 87 88 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 90 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 98 99 99 100 91 92 93 94 95 96 96 97 97 98 99 99 91 92 98 99 91 92 98 99 91 92 98 99 91 92 98 99 91 92 98 99 91 92 98 91 92 98 91 92 98 91 92 98 91 92 98 91 92 98 91 92 98 91 92 98 91 92 98 91 92 91	777	78.000 779.000 779.000 779.000	83 83 83 83 83 83 83 83 83 83 83 83 83 8		
State Stat	78 78 77 77	79	35.6 35.2 34.8 34.4 34.4 34.4 83.8 83.8 83.8 83.4		
St 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	79 79 78 78	82.6 82.6 81.8 81.4 80.7	86.58 85.58 85.58 84.48 83.66 84.48 83.66 84.48		
Observed percentage of the Alcoholometer. 86 87 88 89 90 91 92 93 94 95 96 97 98 99 99 98 99 98 99 98 99 9	80 80 79 79	33.9 33.6 33.2 33.2 32.4 32.1 33.1 33.1	1004 54 60		
Observed percentage of the Alcoholometer. 87 88 89 90 91 92 93 94 95 96 97 98 99 100		84.6 84.6 83.8 83.4 83.1 83.1	10 H 0 H 0 C		
the Alcoholometer. 92 98 94 95 96 97 98 99 100	1	35.09 35.09 34.83 34.83 34.83 35.11	4 1 1 2 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	87 per cent.	ၞ
the Alcoholometer. 92 98 94 95 96 97 98 99 100	828838	86 85 85 85 84 84	4 74 7 6 6 6	88 per cent.	erved
the Alcoholometer. 92 98 94 95 96 97 98 99 100	83.4.4.5	88888877	91.3 91.3 90.7 90.4 90.4 89.7 89.3 89.3 89.3	89 per cent.	perce
the Alcoholometer. 92 98 94 95 96 97 98 99 100	223333	88 88 88 88 88 88 88 88 88 88 88 88 88	ယ် င်းနို င်းယံ လဲယံ	90. per cent	ntage
Alcoholometer. Alcoholometer. Alcoholometer. Alcoholometer. Alcoholometer. Alcoholometer. Alcoholometer. Alcoholometer. Alcoholometer. Alcoholometer. Alcoholometer. By 93 94 95 96 97 97 98 99 99 99 99 99 99 99 99 99 99 99 99	86 86 86 87	8 8 8 8 8 8 8	93·3 93 93 92·7 92·4 92 91·3 91·3 91·3 90·7	# "	of the
95 96 97 98 99 100 per per per per per per per per per per	86. 87. 86.	90.7 90.3 90.3 89.6 89.3	0 7 0 7 0 7 0		Alcob
95 96 97 98 99 100 per per per per per per per per per per	89 88 6	91.7 91.3 91.3 91.3 90.7 90.4 90.4	£		olome
96 97 98 99 100 per per per per per per per per per per	89		နှံ့သည်က ယက်လေ့သိ		ter.
97 98 99 100 per per per per per per cent.	91·1 91·1 90·8 90·4 90·1	7-4 H M 4 H M	437 3692578		
97 98 99 100 per per per per per cent. cen	1 3 3 3 5 5	T (O k) (T (O H) (T (O H	187 000250	96 per cent.	
98 99 100 per per per per cent. cent. cent. cent. cent. cent. cent. cent. cent. per per per per per per per per per cent. cent. cent. cent. cent. cent. cent. per per per per per per per per per per	93.3	9999555	999 98.7 98.2 98.2 97.9 97.6 97.3		
99 100 per per cent. cen	94·3 94·1 93·8	96.9 96.9 96.3 96.3 95.7 95.3	99.1 99.1 99.1 99.6 99.6 99.6	98 per cent.	
100 per cent. 100 99. 99. 99. 99. 99. 99. 99. 99. 99. 9	95 94 94	96. 96. 96.	100.4 100.4 100.1 100.1 99.8 99.3 99.3 98.7	99 per cent.	
	95 96 96	98 98 97 97 97	100	100 per cent.	

TABLE I.

Table of Specific Gravities by Sikes' Hydrometer, adapted to Field's Alcoholometer for Cordialized Spirits.

1401						I]	1	1					· · · · · · · · · · · · · · · · · · ·
OSI	1								129	[09	1 2	10,	1 (120	'980T	07
091											7	0 T	I	3	1082	6
000 000 000 000 000 000 000 000 000 00						,			E .	1			-, -	3	080 I	8
001 011 001 006 08 004 009 000 010 010 010 010 010 010 010 010	1									, ,					840I	4
080		1 .									•				9401	9
060	1 1 1			:					,				1		-	
081 011 000 100 06 08 07 09 09 09 09 09 09 09 09 09 09 09 09 09				-						1 *			1 1			
060		1 -				1	•		1							
060 1063 140 11000 100 100 100 100 100 100 100 1		4 '												:		
40 40<									i				t			
051 011 001 000 100 100 100 100 100 100		- i-		_	41	-	, L L	091	4011	09	rla	80	r: O	71	890 L	081
021 011 001 000 100 186 06 196 08 746 07 09 130 021 011 001 000 000 08 07 09 130 020 020 020 020 020 020 020 020 020 0	.a. G. G.	H .	S , C	·3,	41	٠£	s.c	.3W	s.e.	J.W.		9.8	3 3	M	g. G.	.iW
021 011 001 06 08 07 09 09 09 09 09 09 09 09 09 09 09 09 09	180	1	02	ı			69	I	0:	31		() †[_	30	1
021 011 001 06 08 07 09	1901 6 8901 8 9901 4 7901 9 3901 7 8701 8 9701 7 7701 1	020 \$20 \$20 \$20 \$70 \$70 \$70 \$70 \$70 \$70 \$70 \$70 \$70 \$7	1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0		900 900 900 900 900 900 900		6 8 4 9 9 7 8 7 8 7 1001	666 466 266 866 166 686 486 986 186	6 8 4 9 9 7 9 9 9 1 0 6	646 446 946 846 146 696 496 996 896	6849 997 801 108	3	696 496 896 196 676 476 876 876	68499 704 104	076 86 936 76 830 830 830 830 830 830 830 830 830 830	6 8 4 9 9 7 8 7 8 7 8 7
00 00 00	120		II	- -				ļ	'		 -	-				
								<u> </u>				1			Ī	9

Table showing the Lbs. of Sugar per Gallon in Cordialized Spirits, with the Percentages to be added to the Indicated Strength, per the Alcoholometer. TABLE II.

<i>555</i>					·	/ I I	Ea f	11.1	SJ	ιъ		P	JU	K.	E I		BOC	K.	
962 964	960	958	956	954	952	950	948	945	943	940	938	935	932	929	926	923	920	Spec. Grav. of Spirit.	Difference Lbs. of Suga
42.5	•	37.5	35.	32.5	30.	27.5	25.	22.5	$20 \cdot$	17.5	15.	12.5	10.	i.	ۍ.	2.5	Proof	Per cent. of Spirit.	Difference of Gravity. Lbs. of Sugar per Gallon.
6.	.9				1.1											1.6	1.6	or 25 to 100.	10 4 oz.,
1.5	7.5	1.6	1.6	1.7	1.8	$1 \cdot 9$	$1 \cdot 9$	2.0	$2 \cdot 0$	$2 \cdot 1$	2.1	2.2	2.2	2.3	2.4	2.5	2.5	37g to 100.	15 6 oz.,
1.9																		to 100.	20 8 oz.,
5.0 0.0		•	•	•		•			_	-	_	_	-	_	_	_	_	62 <u>}</u> to 100.	25 10 oz.,
0																	ဗၢ ယ	75 to 100.	30 12 oz.,
မ မ • ၈																		87½ to 100.	35 14 oz.,
4·1 4·0																	7.1	1.0.	40
44.60.70																		oz. 1·2.	45
တ တ ည် ဆိ																	9.0	oz. 1·2.	50
42.5	40.	37.5	35.	32.5	30.	27.5	25.	22.5	$20\cdot$	17.5	15.	12.5	10.	7.5	ů.	ζ, 2	Proof	Per cent. of Spirit.	Difference Lbs. of Sugar
962 964	960	958	956	954	952	950	948	945	943	940	938	935	932	929	926	922	920	Spec. Grav. of Spirit.	Difference of Gravity. Lbs. of Sugar per Gallon.

Table II.—continued.

Difference of Gravity. Lbs. of Sugar per Gallon.	Spec. Grav. of Spirit.	965	196	696	940	972	973	974	946	246	626	086	. 982	983	984	986	886	966	992	994	966	866	
Difference Lbs. of Suga	Per cent. of Spirit.	47.5		52.5	55	57.5	.09	62.2	65.	67.5	.02	72.5	75.	77.5	•08	82.2	85.	87.5	-06	92.2	95.	97.5	
50	oz. 1·4.	4.9	•	•	•	•	9.8	•	3.1	•	•	2.3	٠	•	•	1.4	1.2	1.0	6.	<u></u>		9.	
45	oz. 1·2.	4.4	4.3	•	3.8	•	•	•	8.7	•	٠	2.1	•	9.1	1.4	1.2	1.0	6.	œ		9.	i	
40	1.0.	3.9	3.8	•	3.4	•	•		2.2	2.3	2.1	• .	9.1	1.4	1.2	1.0	6.	œ	2.	9.	i		i
35 14 oz.	87½ to 100.	3.4	•	3.1		•	•	•	2.5	•	1.8	1.6	1.4	1.2	1.0	6.	ø	2.	9.	ič	₹.	c.)
30	75 to 100.	2.9		5.6	•	•	•	•	•	•	•	 	1.2	1.0	6.	œ	7	9	ic	•	ů	· ·	·
25	62½ to 100.	2.4	•	2.5	•	•	1.8	1.1	1.5	1.4	•	•	1.0	, G	• •	<u>.</u>	9.	rċ	•	ů	3	-	4
20	—	1.9	•	1.1	• .	1.5	1.4	•	•		· -	. •	· •		. 9	· ro	4.	÷	.2		•	1	:
15	37. 100 100	1.4	•	1.2	•	•	1.0	. •	. •	×	•		٠ ي	,	•	,	• 5		:			•	:
	4 oz., or 25 to 100.	ox.	œ.		7.	. 9	9		, re		. :	₩ 4	H 67			- ·		•	-	1	:	:	•
Difference of Gravity. bs. of Sugar per Gallon.	Per cent. of Spirit.	47.5	¥. 0	50 50 50	ر ا برد د	7.7.7.13		00 7.00		00 a		79.6	٠.	1.0. 17.1		89. 89.	٠.	0 0 1	٠.	900 900 700	٠.) C	0.78
Difference of Gravi Lbs. of Sugar per Ga	Spec. Grav. of Spirit.	966	967	969	920	646	073	97.5	470	010	270	200	000	200	900	#00	880	000	000	004	400		866

Table showing the Strength of Sugar Solutions by Specific Gravity at 17.5° C

Sugar per	Specific accord	Gravity ling to	Sugar	Specific accor	Gravity
cent.	Balling.	Niemann.	cent.	Balling.	Niemann.
1	1.0040	1.0035	19	1.0788	1.0784
. 2	1.0080	1.0070	20	1.0832	1.0830
3	1.0120	1.0106	21	1.0877	1.0875
4	1.0160	1.0143	22	1.0922	1.0920
5	1.0200	1.0179	23	1.0967	1.0965
6	1.0240	1.0215	24	1.1013	1.1010
7	1.0281	1.0254	25	1.1059	1.1056
8	1.0322	1.0291	26	1.1106	1.1103
9	1.0363	1.0328	27	1.1153	1 1150
10	1.0404	1.0367	28	1.1200	1.1197
11	1.0446	1.0410	29	1.1247	1.1245
12	1.0488	1.0456	30	1.1295	1.1293
13	1.0530	1.0504	31	1.1343	1.1340
14	1.0572	$1 \cdot 0552$	32	1 · 1391	1.1388
15	1.0614	1.0600	33	1.1440	1.1436
16	1.0657	1.0647	34	1.1490	1.1484
17	1.0700	1.0693	35	1.1540	1.1533
18	1.0744	1.0738	36	1.1590	1.1582

Table showing the Strength of Sugar Solutions, &c.—continued.

I • 3658	0948·I	₹L	1.2602	0197.1	22
1.3287	9698·I	82	1.2546	1.5223	₽9
1.3232	8898·I	7.5	1.2490	6 2 1 7.7	23
1.3483	0738·I	IL	1.2434	1+5+1	22
1.8430	1.8207	04	1.2378	I.5385	13
1.8877	2 1 +2-1	69	1.2322	1.5859	00
I · 3354	E888 · I	89	1.2265	1.2274	6 †
1.3270	1388 · 1	L 9	1.2209	1 2219	84
1.3215	1.3260	99	1.2153	I • 5165	L₹
0918·I	0618.1	9	860Z·I	1112.1	94
3018·1	6818.1	₹9	1.2043	1.2057	G₽
1.3020	620g I	8 9	686I · I	I ⋅ 5004	₹₹
₹667•I	6108.1	79	3861·1	1961-1	€₽
1.2938	1.2959	19	1.1883	8681.1	45
7887 I	0062.1	09	1.1832	9481.1	ΙĐ
9787·I	1.2841	69	1841-1	₹6LI.I	0₹
1.2770	1.2783	89	1841-1	8471·1	68
1.2714	1.2725	73	1891.1	769I·I	88
892.1	∠997·I	99	1:1631	1+91-1	78
Viemann.	Bailling.	cent.	Viemann.	Balling.	cent.
	O offloogS ribrooor	Sugar Per		Specific C sccordi	Sugar per

TABLE BY DR. URE, SHOWING THE QUANTITY OF SUGAR IN POUNDS AVOIRDUPOIS CONTAINED AT SUCCESSIVE DEGREES OF SPECIFIC GRAVITY, AT 60° FAHR. (15.5° C.).

		1	, 21.1	00 1.2	mr. (15	10° C.).	
Spec. Grav.	Lbs. per Gallon.	Spec. Grav.	Lbs. per Gallon.	Spec. Grav.	Lbs. per Gallon.	Spec. Grav.	Lbs. per Gallon.
1.000	0.0000	1.037	0.9449	1.074	1.9385	1.111	0.0000
1.001		1.038	0.9768	1.075	1.9653	1.111	2.9263
1.002			1.0090	1.076	1.9928	1.113	2.9522
1.003	1	11	1.0400	1.077		1.113	2.9780
1.004			1.0653	1.078	2.0465	1.114	3.0045
1.005			1.0906	1.079			3.0304
1.006			1.1159	1.080		1.116	3.0563
1.007			1.1412	1.081	2.1275	1.118	3.0821
1.008			1.1665	1.082	2.1543		3.1080
1.009			1.1918	1.083	2 1343	1.119	3.1343
1.010		1.047	1.2171	1.084	2.2080	1.120 1.121	3.1610
1.011	0.2805	1.048	1.2424	1.085	2.2359	1.121	3.1871
1.012		1.049	1.2687	1.086	2.2627	1.122	3.2130
1.013		1.050	1.2940	1.087	2.2894	1.123	3.2399
1.014		1.051	1.3206	1.088	2.3161	1.124	3.2658
1.015		1.052	1.3472	1.089	2.3438	1.125	3.2916
1.016	0.4180	1.053	1.3738	1.090	2.3710	1.126	3.3174
1.017	0.4335	1.054	1.4004	1.091	2.3987		3.3431
1.018	0.4590	1.055	1.4270	1.092	2.4256	1.128	3.3690
1.019	0.4845	1.056	1.4536	1.093	2.4524	1.129	3.3949
1.020	0.5100	1.057	1.4802	1.094	2.4792		3.4211
1.021	0.5351	1.058	1.5068	1.094	2.2061	1.131	3.4490
1.022	0.5602		1.5334	1.096	2.5329	1.132	3.4769
1.023	0.5853	1.060	1.5600	1.096	2.5598	1.133	3.5048
1.024	0.6104	1.061	1.5870	1.098	2.5866	f .	3.5326
1.025	0.6355	ł I	1 6142	1.099	2.6130	1.135	3.5605
1.026	0.6606	1 . 1	1.6414	1.100	2.6404	1.136	3.5882
1.027	0.6857	1	1.6688	1.100	2.6663		3.6160
1.028	0.7108		1.6959	1.101	2.6921	1.138	3.6437
1.029	0.7359		1.7228	1.102	2.6921	1.139	3.6716
1.030	0.7610	1	1.7496	1.103	2.7188	1.140	3.7000
1.031	0.7861		1.7764	1.104	2.7704	1.141	3.7281
1.032	0.8112		1.8033	1.106	2.7704	1.142	3.7562
1.033	0.8363	- 1	1.8300	1.100	2.7961	1.143	3.7840
1.034	0.8614		1.8571	1.104		1.144	3.8118
1.035	0.8866		1.8843	1.108	2·8485 2·8740	1.145	3.8398
1.036	0.9149		1.9116	1.110		1.146	3.8677
		- 010	T 0110	1.110	2.9001	1.147	3.8955

TABLE BY DR. URE, SHOWING THE QUANTITY OF SUGAR IN POUNDS A OIRDUPOIS, &C.—continued.

			1			0086.7	11.186
		EE00 0	1.262	6.9523	1.224		1.18
1001.8	1.300		197.1	2426.3	1.223		1.18
6140.8	1.299	0196.9	196.1	2968.9	1.222		1.183
8 • 0 • 48	1.298		II	0898.9	1.221		381.1
8.0120	46Z•I	1268.9	I - 529	1078.9	1.220	1	181.1
6486 • 4	96Z · I	£198.9	1.258		1.219		1.180
0096.4	1 · 295	7988.9	I - 267	8018.9	1.218		34I · I
1286.7	,	1808.9	1.256	₹184·9			341.1
2:06.4	1.293	0084.9	1.255	2267.8	112.1		441.T
8948 • 4	767 · I	1237.9	1.254	5.7233	1.216		941.1
7878.4	162.1	0127.8	1.253	2769.9	1.215	1 1	
1028.4	1.290	0969.9	1.252	1999.9	1.214		94T · T
0164.4	1.289	1899.9	1.251	6.6360	1.213	7+6242	
0794.4	1.288	7079.9	1.250	1409 • 9			84I • I
1884.4	187.I	7919.9	6₹2.1	9849.9	1		741 • T
8704.4	t i	£069·9	8₽2•I	9099.9			171.1
8949 - 4		1999.9	472.I	6623.3			041.1
6919.4	1 .	7079.9	1.246	646 7 •9		£264.4	691 · I
0819.4		6.5153	1.245	0244.9		₹997.7	891.1
1689.4	1	Z067.9	1.244	2977.9		 ₹•4383	49I · I
0099.4		0997.9	1.243	2.4203		9117.7	991.1
4089 - 4	1	1077.9	1.242	1768.9			991.1
2009.2	1	2917.9	1.241	1898.9	1.203	8498•₹	₹9T · T
8047-4		£06E.9	1.240	2.3422	1.202	608€ • ₱	1.163
60 pt - 4		1898 9	I • 336	0918.9	1.201	070E · 7	1-162
6017-2		2988.9	1 238	1067.9	1.200	17727	191.1
4088 - 4		8608.9	1.237	6897.9	661.1	₹.2502	
9098 - 2	• (2282.9	1 236	1882.9	86I · I	8212.4	
₹028.7		1997.9	1.232	17312	3 46T · T	1281.7	1.128
2062	·	11 .	706.1		961.1	889I.7	191.1
1097		1 i	1	1 1			1.126
0082		11	1	i I	4		1.122
8861		- 13	18	11			791.I
8491	* 1	11	1		· 1	1 I	1.123
6981	• 1	11	1	11			1.125
0901	. 1	1 '	1	1.1	1	1 1 1	l .
1940	· 1	1.		11.	1	13	
\$\$\$0·	- 1	1 1		1 !	1	LI .	l .
\$E10.	, ,	[1	1	. 11	1	1 i	
0010.	4 636.1	1, 1000.3	20071		_	-	
allon,	Grav.	Gallon.	Grav.	allon.	Grav. G		Grav.
ba, per	_~				Spec. L	Lba. per	Spec.
<u> </u>		1,		11) TE 60		

TABLE SHOWING THE STRENGTH OF SUGAR SOLUTIONS BY THE DEGREES OF BEAUME'S HYDROMETER.

		,	
Beaumé Degrees.	Sugar per cent.	Beaumé Degrees.	Sugar per cent.
1	$1 \cdot 72$	21	$38\cdot 29$
2	$3 \cdot 50$	22	40.17
3	$5 \cdot 30$	23	42.03
4	$7 \cdot 09$	24	$43 \cdot 92$
5	8.80	25	$45\cdot 79$
6	10.71	26	47.70
7	$12 \cdot 52$	27	49.60
Ŗ	14.38	28	$51 \cdot 50$
9	$16 \cdot 20$	29	$53 \cdot 42$
10	18.04	30	55 ·36
11	19.88	31	57·31
12	21.71	32	59.27
13	$23 \cdot 54$	33	$61 \cdot 23$
14	25.34	34	63.18
15	$27 \cdot 25$	35	65 · 19
16	$\boldsymbol{29\cdot 06}$	36	67 · 19
17	$30 \cdot 89$	37	69 • 19
18	32.75	38	$71 \cdot 22$
19	34.60	39	73 · 28
2 0	36.40	40	75.35

USE OF LAURENT'S SACCHARIMETER.

Weigh 16.2 grams of the sugar, dissolve to 100 c. c., and

add 10 c. c. of basic acetate of lead if necessary.

The 20 centimetre tube is used, or the 22 centimetre tube if the basic acetate has been added. The percentage of saccharose is given by the degrees of the instrument, the quantity

of sugar per litre by the following Table:—
Divisions. Sugar per Litre, Divisions. Sugar per Litre.

gar per Litre.	ng	*Stro	isivia	ber Litre.	Sugar		·su	oisiviC	ľ
.72 grains.	6 ''	• •	9	grams.	1.65	• •	• •	I	
" ₹E:		• •	4	" _	3.54	• •	• •	z	
" 96·	7I	• •	8	"	98.7	• •	• •	8	
" ខ្ពុច្ច.ៈ		• •	6	"	87.9	• •	• •	₹	
•					$8 \cdot 10$	• •	• •	9	

If it is necessary to invert, A being the sum or difference of the observed degrees, and T the temperature of.

P (rotative power) =
$$\frac{200 \times A}{T - 882}$$
; P × 1.62 = sugar per litre.

USE OF SOLEIL'S SACCHARIMETER.

Dissolve 16.35 grams of the sugar in 60 c. c. of water, remove colouring matter if present by adding 2 or 3 c. c. of basic acetate of lead, dilute to 100 c. c. and filter if necessary. The 20 centimetre tube is used. The observed degrees give the percentage of crystallizable sugar, in the absence of other active substances. If other sugars are present, invert by adding 5 c. c. of pure fuming hydrochloric acid to the substance dissolved to 50 c. c. The whole is heated to 68° C, in the water bath and cooled. The whole is heated to 68° C, in the water bath and cooled. The whole is heated to 68° C, in the water bath and cooled. The whole is heated to 68° C, in the water bath and cooled. The 368) is used, is used, is used, is used,

Boussingault's Solution (for Sugar).—Dissolve 40 grams copper sulphate (crys.) in 200 c. c. of water. Take 160 grams of neutral potassium tartrate and 130 grams of fused sodium hydrate, and dissolve in 600 c. c. of water. Mix the two solutions, dilute to I litre, and boil for some minutes. This solution is unalterable. The ingredients must be pure.

Basic Acetate of Lead.—Dissolve 50 grams of lead acetate in 900 c. c. of water, and digest for 10 hours with 50 grams

titharge.

TABLE FOR THE DETERMINATION OF THE VALUE IN SUGAR OF BEETROOT JUICE AND OTHER LIQUIDS BY MEANS OF THE POLARIMETER OF FRÈZE OR THE APPARATUS OF LAURENT.

Observed Degrees, 20 c. c. Tube.	Corrected Degrees for 22 c. c. Tube.	Grams of Sugar per 100 c. c. of Solu- tion.	Specific Gravity of Solution.	Grams of Sugar per 100 grams of Liquid.	Observed Degrees, 20 c. c. Tube.	Corrected Degrees for 22 c. c. Tube.	Grams of Sugar per 100 c. c. of Solution.	Specific Gravity of Solution.	Grams of Sugar per 100 grams of Liquid.
8 8 · 50 8 · 50 8 · 75 9 · 25 9 · 50 9 · 75 10 · 50 10 · 50 11 · 50 11 · 50 11 · 75 12 · 12 · 50 12 · 75 13 · 50 13 · 75 14 · 50 14 · 50 14 · 75 15 · 25	8·8 9·07 9·35 9·62 9·90 10·17 10·45 10·72 11·55 11·82 12·65 12·92 13·47 14·30 14·57 14·85 15·12 15·67 15·95 16·22 16·50 16·77	6.6 6.8 7.01 7.22 7.43 7.63 7.84 8.04 8.25 8.45 8.66 8.87 9.28 9.49 9.69 9.90 10.10 10.52 10.73 10.93 11.14 11.55 11.75 11.96 12.17 12.38 12.58	1·0255 ·0263 ·0271 ·0279 ·0287 ·0295 ·0303 ·0311 ·0319 ·0326 ·0335 ·0343 ·0351 ·0358 ·0366 ·0374 ·0382 ·0390 ·0398 ·0406 ·0414 ·0422 ·0431 ·0438 ·0445 ·0453 ·0461 ·0469 ·0477 ·0485	6·44 6·63 7·02 7·22 7·41 7·61 7·80 7·99 8·18 8·38 8·58 8·77 8·96 9·15 9·34 9·54 9·72 9·92 10·11 10·30 10·49 10·68 11·24 11·43 11·62 11·82 11·99	16 16·25 16·50 16·75 17·25 17·50 17·75 18·25 18·50 19·50 19·50 20·25 20·50 20·75 21·25 21·50 21·75 22·25 22·50 22·75 23 23·25	17.60 17.87 18.15 18.42 18.70 18.97 19.52 19.52 20.07 20.35 20.62 20.90 21.17 21.45 21.72 22.00 22.27 22.3.10 23.37 23.65 23.92 24.75 25.02 25.30 25.57	13·20 13·40 13·61 13·82 14·03 14·23 14·44 14·64 15·05 15·26 15·47 15·68 16·29 16·50 16·70 16·91 17·12 17·33 17·53 17·74 18·35 18·56 18·77 18·98 19·18	1.0509 .0517 .0524 .0533 .0541 .0548 .0556 .0564 .0572 .0580 .0588 .0596 .0604 .0611 .0619 .0627 .0635 .0643 .0651 .0660 .0667 .0664 .0674 .0682 .0690 .0698 .0706 .0714 .0722 .0729 .0738	12.56 12.74 12.93 13.12 13.31 13.49 13.68 13.86 14.04 14.23 14.41 14.60 14.79 14.97 15.15 15.33 15.51 15.69 15.88 16.06 16.24 16.42 16.61 16.78 17.32 17.51 17.69 17.86
15·50 15·75		12·79 12·99	•0493 •0501	12·19 12·37		25·85 26·12	19·39 19·59	·0746 1·0753	18.04

I 49 • 89 **7**7 26.30 ₹9·I 76 · I 48 · I 68•I 98.49 **77.89** 'N 'N 'N 12° C. 20° C. TO OT 'N 12° C. 10° C. 30° C. SACCHARIMETER IN THE ESTIMATION OF SUGAR. CLERGET'S TABLE FOR CORRECTING THE INDICATIOUS OF SOLEIL'S

96.79 66.99 134.1 **Ż**8 112.0 1.711 E0.49 ΙĐ 6.60I 60.78 132.4 18 9.801 6.011 1.211 07.99 0₽ 24.63 53.63 79.99 8.0EI 33 42.29 92.89 08 Z - 40I 109.3 111.3 44.89 97.79 88 £6.09 06.19 1.671 64 6.90I 6.40I 6.60I PI.79 98.799.421 9.90I 9.80I 09.09 48 69.67 89.09 47.19 84 9.70T 97.87 91.67 6.971 44 T - 201 18.89 9880.09 103.2 102.5 32 2.42I 6 · 101 8.E0I 4.90T ₹8.49 16.97|08.47| 89.87 94 9.771 102.4 T04.3 09.99 ₹ 49.97 87.97 02.47 94 9.001 33 121.0 74 101.1 6.70I 46.89 82.77 40.97 06.97 61.66 35 68.27 04.87 19.77 119.3 98.46 04.66 9.101 22.33 84 31 43.12 42.33 41.65 4.4IT 74 19.96 88.33Z.00I 69.0930 12.07 46.07 74.17 1.911 14 41.96 96.9644.86 90.67 7.7II 09.9688.46 24.44 67 48.8E | 09.6E | ₱E.0₱ 04 $68 \cdot 88$ 87 89.48 97.88 76.88 8.211 69 97.76 00.9684.97 09.76 47 61.98 06.98 49.48 2.111 91.77 89 91.16 06.7669.76 98.78 89.98 41.98 9.601 97 49 $78 \cdot 68$ **79.16** 93.2019.27 6.40I 99 84.88 91.0618.16 88.07 52 19.88 91.78 77.45 E.901 38.72 77 91.78 64.78 33.38 99 7I.48 08.88I7.06 23 31.42 30.83 9.101 ₹9 08.98 E₹•48 70.68 19.48 31.99 97.78 67 · 67 | 90 · 08 | 103.0 **E9** |90.98|79.48 86.98 7799.087·101 28 89 88 12 79 $83 \cdot 15$ 89.78 97.98 34.34 12 12.62 £4.66 20 18.92 18.42 19 84.18 18·88 98.78 37.70 78.47 01.86 ₹6·18 97.88 31.06 **6**T 47.97 06.97 E4.92 09 80∙₹3 81 24.62,24.13 ₹0.92 97.96 69 01.64 69.08 40.78 £₱•67 £8.76 89.08 64.47 4 T 23.25 22.79 33.65 89 94.44 77.64 97.12,88.12 $63 \cdot 50$ 91.97 9 T 22.26 49 77·94 98.44 $67 \cdot 64$ 20.51,20.11 99 • 16 67.94 06 - 44 24.52 gī 98.0299 80.94 $68 \cdot 63$ 99 74·E4 21.94 19.94 68.77ħΙ 44.81 71.61 47.6I 67.8821.94 97.17 EI ET.41 44.41 80.81 79 07.27 92.84 68.24 99.98 E4 • E4 79·61 71 60.91 07.91 69.9I 53 90.14 10.98 66.4I 94.71 80.91 12.30 II 79 14.69 70·14 ₽8.24 88 • 88 0 I 17.81 99.81 16.35 13.91 19 48.89 99.6996.04 94 • 18 9 $80 \cdot 49$ 67.8949.69 14.7I 6 90.21[62.21]15.25 21.08 6₹ 89.99 76.99 41.89 13.08 8 10.93 10.72 11.13 87.84 4 ₹₹.II 86.6 99.6 ₹**4.6** 87 78.79 99.9944.99 98.94 9 ₹0·8 61.8 8.32 17 00.6961.79 86.3918.6 72.94 g 9₹ 99.19 78.79 21.8 $04 \cdot 9$ E8 · 9 96.9 $66 \cdot 89$ Ŧ 89.84 98.9 97 28.09 $97 \cdot 19$ 69.79₹9.9 97.9 99.9 96 - 14 ₹₽ 8 ₹0.7 01.7 91.7 86.89 $60 \cdot 09$ $07 \cdot 19$ 16.₽ 16.04 3 43 89.7£4.7 84 **· T** ₹9.49 E4 • 89 18.69 42·E

CLERGET'S TABLE FOR CORRECTING, &c.-continued.

10° C.	15° C.	20° C.	N.	N'.	10° C.	15° C.	20° C.	N.	N'.
115.5	113.3	111.3	83	135 7	148.8	146.1	143.4	107	174.9
116 9	114.7	112.6	84	137.3	150.2	147.5	144.8	108	176.6
118 2	116.1	113.9	85	139.0	151.6	148.8	146.1	109	178.2
119.6	117.4	115.3	86	140.6	153.0	150.2	$147 \cdot 4$	110	179.8
121.0	118.8	116.6	87	142.2	154.4	151.6	148 8	111	181.5
122.4	120 2	118.0	88	143.9	155.8	153.0	150 · 1	112	183.1
123.8	121.5	$119 \cdot 3$	89	145.5	157.2	154.4	151.5	113	184.7
125 2	$122 \cdot 9$	120.6	90	147.1	158.6	155.7	152.8	114	186.4
126.6	124.3	122.0	91	148.7	160.0	157.0	154.2	115	188.0
128·0	125.6	123.3	92	150.4	161.3	158.4	155.4	116	189.7
129.4	127.0	124.7	93	152.1	162.7	159.8	156.8	117	191.3
130.8	128.4	126.0	94	153.7	164.1	161.2	158.2	118	192.9
132 • 2	129.7	127.4	95	155.3	165.5	162.5	159.5	119	194.6
133.6	131.1	128.7	- 96	156.9	166.0	163.9	160.8	120	196.2
134.9	1	130.0	97	$ {f 158.6} $	168.3	165.3	162.2	121	197.8
136.3	133.8	131 • 4	9 8	$ {\bf 160 \cdot 2} $	169.7	166.6	163.5	122	199.5
137.7	135 2	132.7	99	161•9	171.1	168.0	164.9	123	201.1
139 1	136.6	134.0	100	163.5	172.5	169.4	166.2	124	202.7
140.5	137.9	135 4	101	165.1	173.9	170.7	167.6	125	204.4
141.9	139.3	136.7	102	166.8	175.3		168.9	126	206.0
143.3	140.7	138.1	103	168.4	176.6	173.5	170.2	127	207.6
144.7	142.0	139.4	104	170:0	178.0	174.8	171.6	128	209.3
146.0	$ 143 \cdot 4 $	140.8	105	171.7	179.4	176.2	$172 \cdot 9$	129	210.9
147.4	144.8	$ 142 \cdot 1 $	106	173•3	180 8	177.5	174.2	130	212.6
	! ************************************]			<u> </u>	<u> </u>			1

Use of this Table.

Number observed upon the Scale before immersion = D. after ... = D'.

Temperature C. $\ldots \ldots = T$.

1. The two figures indicated upon the scale are read to right and left of zero, the sum D + D = A.

In the column of temperature nearest to that at the time of observation we find the figure approaching nearest to A, following the line horizontally we find under N and N' figures indicating the quantity of sugar.

figures indicating the quantity of sugar.

The sugar employed contains N per pent. of crystallized sugar or N' grams per litre.

2. The sugar solution being preparation being preparation being preparation D' to the same side of zero, D' = A, and proceed as before.

The following approximate ala can be used instead of the Table—

P (rotative power) = $\frac{200 \times A}{288 - T}$; P × 1.635 = sugar in 1 litre.

AEEN THE SPECIFIC

GRAVITY OF SOLUTIONS OF THEY CONTA. TABLE SHOWING THE RELATIC

0912.1	00 · 47	00.03	009 + 009
1.1670	00 · 45	\$2.33	000 + 009
1.1360	00 · 45	\$0.00	000 + 009
1.1130	00 · 45	\$0.00	0001 + 009
Specific Gravity.	Sugar in 100.	Malt Extract in 100.	Malt Water. Extract,

THE STRENGTH OF WORT CORRESPONDING TO SPIRIT INDICATION (FOR THE DISTILLATION PROCESS). TABLE BY GRAHAM, HOFFMAN, AND REDWOOD, SHOWING

6.69,8.6 8.79,8.8 6.69,7.8 8.89,8.8	9 4 · 89 7 9 6 · 29 7 9 4 · 79 7 9 4 · 79 7	I • † 4 9 • 8 4 3 • 89 9 • 49 4 • 79 7 • 79 5 • 49 6 • 99 5 • 79 4 • 19 9 • 4 • 19	1.49 9 9.19 7.99 6 7.19 9 0.97 9	9 69 6 1 99 7 1 90 9 1 79 9	·99 7·99 ·09 0·09 ·99 6·79 ·09 9·67 ·97 1·77	8.79 7.69 8.79 0.67	11 21 31 14 14
9 · 8 2 0 · 8 2 · 8 2 8 · 2 9 · 8 3 1 · 8 1 · 6 1 9 · 8	E 9 · 4 E 0 E 7 · 7 E 4 7 7 • 4 7 6 5 7 4 · 2 7 7 8 1 7 · 8 1 1	3.24 4.14 0.48 9.98 4.18 3.18 6.93 7.93 3.33 8.13 4.41 8.41	6.98 1 4.08 3 0.97 9 8.17 0 8.91	7.988 7.084 9.970 6.077 7.910	. 78 8 . 78 . 67 7 . 67 . 97 9 . 77 . 07 6 . 61 . 91 9 . 91	4.88 8.87 1.77 9.61 1.91	9 9 7
7.01 8.6 7.9 6.9	6 F.6 C	8.6 8.6 8.6 8.6 8.6 9.8	7·8 7·7	8 • 4 1 1 • 1 4	.4 0.4 .8 8.8	3.0	0 I 2 S
6. 8	4.	9. 9.	₹•	£•	z. 1.	0.	Degrees fritt friction.

Tables used in the Analysis of Beer, &c.

Table A.—Specific Gravity and Strength of Spirits.

Volume per cent.	Weight per cent.	Specific Gravity.	Volume per cent.	Weight per cent.	Specific Gravity.
1.0	0.80	0.99850	4.6	3.68	0.99336
1.1	0.88	0.99835	4.7	3.76	0.99322
1.2	0.96	0.99820	4.8	3.84	0.99308
1.3	1.04	0.99805	4.9	3.92	0.99294
1.4	1.12	0.99790	5.0	4.00	0.99280
1.2	1.20	0.99775	5.1	4.08	0.99267
1.6	1.28	0.99760	5.2	4.16	0.99254
1.7	1.36	0.99745	5.3	4.24	0.99241
1.8	1.44	0.99730	5.4	4.32	0.99228
1.9	1.52	0.99715	5.5	4.40	0.99215
2.0	1.60	0.99700	5.6	4.48	0.99202
2.1	1.68	0.99686	5.7	4.56	0.99189
2.2	1.76	0.99672	5.8	4.64	0.99176
2.3	1.84	0.99658	5.9	4.72	0.99163
2.4	$\boldsymbol{1.92}$	0.99644	6.0	4.81	0.99150
2.5	2.00	0:99630	6.1	4.89	0.99137
2.6	2.08	0.99616	6.2	4.97	0.99124
2.7	2.16	0.99602	6.3	5.05	0.99111
2.8	2.24	0.99588	6.4	5.13	0.99098
2.9	$2 \cdot 32$	0.99574	6.5	5.21	0.99085
3.0	2.40	0.99560	6.6	5.30	0.99072
3.1	2.48	0.99546	6.7	5.38	0.99059
3.2	2.56	0.99532	6.8	$5 \cdot 46$	0.99046
3.3	2.64	0.99518	6.9	5.54	0.99033
3.4	2.72	0.99504	7.0	$5 \cdot 62$	0.99020
3.2	2.80	0.99490	7.1	5.70	0.99008
3.6	2.88	0.99476	7.2	5.78	0.98996
3.7	2.96	0.99462	7.3	5.86	0.98984
3.8	3.04	0.99448	7.4	5.94	0.98972
3.9	3.13	0.99434	7.5	$6 \cdot 02$	0.98960
4.0	3.20	0.99420	7.6	6.11	0.98949
4.1	3.28	0.99406	7.7	6.19	0.98936
4.2	3.36	0.99392	7.8	6.27	0.98924
4.3	3.44	0.99378	7.9	6.35	0.98912
4.4	3.52	0.99364	8.0	6.43	0.98900
4.5	3.60	0.99350	1		-, 13

Table B.—Specific Gravity and Strength of Mall Extract.

			969-11	4₹0•T	094.9	1.023
	000-41	040.1	11.333	970·I	2.200	1.022
	494-91	690·I	960-11	970·I	092.9	1.021
١	76.534	890·I	498.01	₹\$0·I	000.9	1.020
	16.302	490 · T	619.01	I • 0 43	094.₹	610.1
	040-91	990.1	186.01	1.042	009.₹	1.018
	488.9T	1.065	10.142	170·I	₹.250	410·I
	₹09.91	₹90·I	106-6	070·I	000∙₹	1.016
	148.91	1.063	499.6	6E0·T	094.8	1.015
	16.139	1.062	6.413	1.038	3.200	₹10•1
1	₹06.₹1	190.1	041.6	4E0.1	3.250	1.013
١	999.₹1	090·I	8.925	1.036	3.000	1.012
	14.428	1.029	189.8	1.032	094.7	110.1
١	061.71	1.028	864.38	₹80•I	2.200	1.010
	13.952	190·I	8.195	1.033	2.250	600·I
	₹14.EI	1.026	096-4	1.032	000.2	-800∙T
	947.81	1 •022	904-4	1.031	094-I	400·T
	13.238	7.02¢	E97·4	1.030	1.500	900·I
	13.000	1.023	617 . 4	1.059	1.250	I-002
1	194.71	1.052	946.9	1.028	1.000	₹0 0∙ 1
	17.223	190.1	184.9	1.027	094.0	1.003
	12.285	1.020	887.9	J-026	0.200	I-005
	170·21	670·I	₹₹₹₹	1.025	0.250	100.1
	608-11	8₹0•1	000.9	1.024	000.0	7⋅000
	Malt Extract in 100 parts of Liquid.	Gravity.	tlaM ni terrect stract 001 stract 100 Liquid.	Gravity.	Malt Extract in 100 parts of Liquid.	Specific Gravity.

Table showing the Quantity of Hops per Quarter of Malt of any Gravity from 70 to 105 pounds, at the Ratio of $\frac{1}{8}$ to 14 lbs. per Quarter.

Gravity. 1 4 ½ 4 1 1½ 70 0.1250 0.2500 0.5000 0.7500 1.0000 1.2500 71 0.1267 0.2535 0.5070 0.7607 1.0142 1.2678 72 0.1284 0.2570 0.5140 0.7714 1.0284 1.2856 73 0.1301 0.2605 0.5210 0.7821 1.0426 1.3034 74 0.1318 0.2640 0.5280 0.7928 1.0568 1.3212 75 0.1335 0.2675 0.5350 0.8035 1.0710 1.3390 76 0.1352 0.2745 0.5420 0.8142 1.0852 1.3568 77 0.1369 0.2745 0.5490 0.8249 1.0994 1.3746 78 0.1369 0.2745 0.5490 0.8249 1.0994 1.3746 79 0.1403 0.2815 0.5630 0.8463 1.1278 1.4102 80 0.1420		8				····	
71 0·1267 0·2535 0·5070 0·7607 1·0142 1·2856 72 0·1284 0·2570 0·5140 0·7714 1·0284 1·2856 73 0·1301 0·2605 0·5210 0·7821 1·0426 1·3034 74 0·1318 0·2640 0·5280 0·7928 1·0568 1·3212 75 0·1352 0·2675 0·5350 0·8035 1·0710 1·3390 76 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1366 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5700 0·8570 1·1420 1·4280 81 0·1437 0·2885 0·5700 0·8784 1·1704 1·4458 82	Gravity.	18	4	1	3	1	1‡
71 0·1267 0·2535 0·5070 0·7607 1·0142 1·2856 72 0·1284 0·2570 0·5140 0·7714 1·0284 1·2856 73 0·1301 0·2605 0·5210 0·7821 1·0426 1·3034 74 0·1318 0·2640 0·5280 0·7928 1·0568 1·3212 75 0·1352 0·2675 0·5350 0·8035 1·0710 1·3390 76 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1366 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5700 0·8570 1·1420 1·4280 81 0·1437 0·2885 0·5700 0·8784 1·1704 1·4458 82	70	0.1250	0.2500	0.5000	0.7500	1.0000	1.2500
72 0·1284 0·2570 0·5140 0·7714 1·0284 1·2856 73 0·1301 0·2605 0·5210 0·7821 1·0426 1·3034 74 0·1318 0·2640 0·5280 0·7928 1·0568 1·3212 75 0·1335 0·2675 0·5350 0·8035 1·0710 1·3390 76 0·1352 0·2745 0·5490 0·8142 1·0852 1·3568 77 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1386 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5700 0·8570 1·1420 1·4280 81 0·1437 0·2885 0·5770 0·8677 1·1562 1·4458 82 0·1464 0·2920 0·5840 0·8784 1·1704 1·4636 83							
73 0·1301 0·2605 0·5210 0·7821 1·0426 1·3034 74 0·1318 0·2640 0·5280 0·7928 1·0568 1·3212 75 0·1335 0·2675 0·5350 0·6035 1·0710 1·3390 76 0·1352 0·2715 0·5420 0·8142 1·0852 1·3568 77 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1386 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5700 0·8570 1·1420 1·4280 81 0·1437 0·2885 0·5770 0·8677 1·1562 1·4458 82 0·1454 0·2920 0·5840 0·8784 1·1704 1·4636 83 0·1471 0·2955 0·5910 0·8891 1·1846 1·4812 84				1			
74 0·1318 0·2640 0·5280 0·7928 1·0568 1·3212 75 0·1335 0·2675 0·5350 0·8035 1·0710 1·3390 76 0·1352 0·2710 0·5420 0·8142 1·0852 1·3568 77 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1386 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5700 0·8570 1·1420 1·4280 81 0·1420 0·2850 0·5770 0·8677 1·1420 1·4280 81 0·1421 0·2885 0·5770 0·8677 1·1562 1·4458 82 0·1454 0·2920 0·5840 0·8784 1·1704 1·4636 83 0·1471 0·2955 0·5910 0·8891 1·1846 1·4812 84				I I			
75 0·1335 0·2675 0·5350 0·8035 1·0710 1·3390 76 0·1352 0·2710 0·5420 0·8142 1·0852 1·3568 77 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1386 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5770 0·8677 1·1420 1·4280 81 0·1437 0·2885 0·5770 0·8677 1·1562 1·4458 82 0·1454 0·2920 0·5840 0·8784 1·1704 1·4636 83 0·1471 0·2955 0·5910 0·8891 1·1846 1·4812 84 0·1488 0·2990 0·5980 0·8998 1·1988 1·4992 85 0·1505 0·3025 0·6050 0·9105 1·2130 1·5160 86				1			
76 0·1352 0·2710 0·5420 0·8142 1·0852 1·3568 77 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1366 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5700 0·8570 1·1420 1·4280 81 0·1437 0·2885 0·5770 0·8677 1·1562 1·4458 82 0·1454 0·2920 0·5840 0·8784 1·1704 1·4636 83 0·1471 0·2955 0·5910 0·8891 1·1846 1·4412 84 0·1488 0·2990 0·3890 0·8998 1·1988 1·4992 85 0·1505 0·3025 0·6050 0·9105 1·2130 1·5160 86 0·1522 0·3060 0·6120 0·9212 1·2272 1·5338 87		1					
77 0·1369 0·2745 0·5490 0·8249 1·0994 1·3746 78 0·1386 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5700 0·8570 1·1420 1·4280 81 0·1437 0·2885 0·5770 0·8677 1·1562 1·4458 82 0·1454 0·2920 0·5840 0·8784 1·1704 1·4636 83 0·1471 0·2955 0·5910 0·8891 1·1846 1·4812 84 0·1488 0·2990 0·5980 0·8998 1·1988 1·4992 85 0·1505 0·3025 0·6050 0·9105 1·2130 1·5160 86 0·1522 0·3060 0·6120 0·9212 1·2272 1·5338 87 0·1539 0·3095 0·6190 0·9319 1·2414 1·5516 88		1					
78 0·1386 0·2780 0·5560 0·8356 1·1136 1·3924 79 0·1403 0·2815 0·5630 0·8463 1·1278 1·4102 80 0·1420 0·2850 0·5700 0·8570 1·1420 1·4280 81 0·1437 0·2885 0·5770 0·8677 1·1562 1·4458 82 0·1454 0·2920 0·5840 0·8784 1·1704 1·4636 83 0·1471 0·2955 0·5910 0·8891 1·1846 1·4812 84 0·1488 0·2990 0·5980 0·8998 1·1988 1·4992 85 0·1505 0·3025 0·6050 0·9105 1·2130 1·5160 86 0·1522 0·3060 0·6120 0·9212 1·2272 1·5338 87 0·1539 0·3095 0·6190 0·9319 1·2414 1·5516 88 0·1573 0·3165 0·6300 0·9533 1·2698 1·5872 90		0.1369	0.2745		0.8249		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78		0.2780	0.5560	0.8356		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.1403	0.2815	0.5630	0.8463		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1		1		l i	
83 0·1471 0·2955 0·5910 0·8891 1·1846 1·4812 84 0·1488 0·2990 0·5980 0·8998 1·1988 1·4992 85 0·1505 0·3025 0·6050 0·9105 1·2130 1·5160 86 0·1522 0·3060 0·6120 0·9212 1·2272 1·5338 87 0·1539 0·3095 0·6190 0·9319 1·2414 1·5516 88 0·1556 0·3130 0·6260 0·9426 1·2556 1·5694 89 0·1573 0·3165 0·6330 0·9533 1·2698 1·5872 90 0·1590 0·3200 0·6400 0·9640 1·2840 1·6050 91 0·1607 0·3235 0·6470 0·9747 1·2982 1·6228 92 0·1624 0·3270 0·6540 0·9854 1·3124 1·6406 93 0·1641 0·3305 0·6610 0·9961 1·3266 1·6584 94 0·1658 0·3340 0·6680 1·0068 1·3408 1·6762 <t< th=""><th></th><th>0.1437</th><th>0.2885</th><th>0.5770</th><th>0.8677</th><th>1.1562</th><th></th></t<>		0.1437	0.2885	0.5770	0.8677	1.1562	
83 0·1471 0·2955 0·5910 0·8891 1·1846 1·4812 84 0·1488 0·2990 0·5980 0·8998 1·1988 1·4992 85 0·1505 0·3025 0·6050 0·9105 1·2130 1·5160 86 0·1522 0·3060 0·6120 0·9212 1·2272 1·5338 87 0·1539 0·3095 0·6190 0·9319 1·2414 1·5516 88 0·1556 0·3130 0·6260 0·9426 1·2556 1·5694 89 0·1573 0·3165 0·6330 0·9533 1·2698 1·5872 90 0·1590 0·3200 0·6400 0·9640 1·2840 1·6050 91 0·1607 0·3235 0·6470 0·9747 1·2982 1·6228 92 0·1624 0·3270 0·6540 0·9854 1·3124 1·6406 93 0·1641 0·3305 0·6610 0·9961 1·3266 1·6584 94 0·1658 0·3340 0·6680 1·0068 1·3408 1·6762 <t< th=""><th>82</th><th>0.1454</th><th>0.2920</th><th>0.5840</th><th>0.8784</th><th>1.1704</th><th>1.4636</th></t<>	82	0.1454	0.2920	0.5840	0.8784	1.1704	1.4636
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	83	0.1471	0.2955	0.5910	0.8891	1.1846	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	84	0.1488	0.2990	0.5980	0.8998	1.1988	1.4992
87 0·1539 0·3095 0·6190 0·9319 1·2414 1·5516 88 0·1556 0·3130 0·6260 0·9426 1·2556 1·5694 89 0·1573 0·3165 0·6330 0·9533 1·2698 1·5872 90 0·1590 0·3200 0·6400 0·9640 1·2840 1·6050 91 0·1607 0·3235 0·6470 0·9747 1·2982 1·6228 92 0·1624 0·3270 0·6540 0·9854 1·3124 1·6406 93 0·1641 0·3305 0·6610 0·9961 1·3266 1·6584 94 0·1658 0·3340 0·6680 1·0068 1·3408 1·6762 95 0·1675 0·3375 0·6750 1·0175 1·3550 1·6940 96 0·1692 0·3410 0·6820 1·0282 1·3692 1·7118 97 0·1709 0·3445 0·6890 1·0389 1·3834 1·7296 98 0·1726 0·3480 0·6960 1·0496 1·3976 1·7474 <t< th=""><th>85</th><th>0.1505</th><th>0.3025</th><th>0.6050</th><th>0.9105</th><th></th><th></th></t<>	85	0.1505	0.3025	0.6050	0.9105		
88 0·1556 0·3130 0·6260 0·9426 1·2556 1·5694 89 0·1573 0·3165 0·6330 0·9533 1·2698 1·5872 90 0·1590 0·3200 0·6400 0·9640 1·2840 1·6050 91 0·1607 0·3235 0·6470 0·9747 1·2982 1·6228 92 0·1624 0·3270 0·6540 0·9854 1·3124 1·6406 93 0·1641 0·3305 0·6610 0·9961 1·3266 1·6584 94 0·1658 0·3340 0·6680 1·0068 1·3408 1·6762 95 0·1675 0·3375 0·6750 1·0175 1·3550 1·6940 96 0·1692 0·3410 0·6820 1·0282 1·3692 1·7118 97 0·1709 0·3445 0·6890 1·0389 1·3834 1·7296 98 0·1726 0·3480 0·6960 1·0496 1·3976 1·7474 99	86	0.1522	0.3060	0.6120	0.9212	1.2272	1.5338
89 0·1573 0·3165 0·6330 0·9533 1·2698 1·5872 90 0·1590 0·3200 0·6400 0·9640 1·2840 1·6050 91 0·1607 0·3235 0·6470 0·9747 1·2982 1·6228 92 0·1624 0·3270 0·6540 0·9854 1·3124 1·6406 93 0·1641 0·3305 0·6610 0·9961 1·3266 1·6584 94 0·1658 0·3340 0·6680 1·0068 1·3408 1·6762 95 0·1675 0·3375 0·6750 1·0175 1·3550 1·6940 96 0·1692 0·3410 0·6820 1·0282 1·3692 1·7118 97 0·1709 0·3445 0·6890 1·0389 1·3834 1·7296 98 0·1726 0·3480 0·6960 1·0496 1·3976 1·7474 99 0·1743 0·3550 0·7100 1·0710 1·4260 1·7830 101	87	0.1539	0.3095	0.6190	0.9319	1.2414	1.5516
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	88	0.1556	0.3130	0.6260	0.9426	1.2556	1.5694
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	89	0.1573		0.6330	0.9533	1.2698	1.5872
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90	0.1590	0.3200	0.6400	0.9640	1.2840	1.6050
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	91	0.1607	0.3235	0.6470	0.9747	1:2982	1.6228
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	92	0.1624		0.6540	0.9854	1.3124	1.6406
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.1641	0.3302	0.6610	0.9961	1.3266	1.6584
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.1658	0.3340	0.6680	1.0068	1.3408	1.6762
97 0·1709 0·3445 0·6890 1·0389 1·3834 1·7296 98 0·1726 0·3480 0·6960 1·0496 1·3976 1·7474 99 0·1743 0·3515 0·7030 1·0603 1·4118 1·7652 100 0·1760 0·3550 0·7100 1·0710 1·4260 1·7830 101 0·1777 0·3580 0·7170 1·0817 1·4402 1·8008 102 0·1794 0·3620 0·7240 1·0924 1·4544 1·8186 103 0·1811 0·3655 0·7310 1·1031 1·4686 1·8364 104 0·1828 0·3698 0·7380 1·1138 1·4828 1·8542		1		1	1.0175	1.3550	1.6940
98 0·1726 0·3480 0·6960 1·0496 1·3976 1·7474 99 0·1743 0·3515 0·7030 1·0603 1·4118 1·7652 100 0·1760 0·3550 0·7100 1·0710 1·4260 1·7830 101 0·1777 0·3580 0·7170 1·0817 1·4402 1·8008 102 0·1794 0·3620 0·7240 1·0924 1·4544 1·8186 103 0·1811 0·3655 0·7310 1·1031 1·4686 1·8364 104 0·1828 0·3698 0·7380 1·1138 1·4828 1·8542							1.7118
99 0·1743 0·3515 0·7030 1·0603 1·4118 1·7652 100 0·1760 0·3550 0·7100 1·0710 1·4260 1·7830 101 0·1777 0·3580 0·7170 1·0817 1·4402 1·8008 102 0·1794 0·3620 0·7240 1·0924 1·4544 1·8186 103 0·1811 0·3655 0·7310 1·1031 1·4686 1·8364 104 0·1828 0·3698 0·7380 1·1138 1·4828 1·8542			1	1	L		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						I	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		1		l .	•	j .	
102 0·1794 0·3620 0·7240 1·0924 1·4544 1·8186 103 0·1811 0·3655 0·7310 1·1031 1·4686 1·8364 104 0·1828 0·3698 0·7380 1·1138 1·4828 1·8542			ı		t	ľ	
103 0.1811 0.3655 0.7310 1.1031 1.4686 1.8364 104 0.1828 0.3698 0.7380 1.1138 1.4828 1.8542	•			l .		l .	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		1		1		1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
	105	0.1845	0.3725	0.7450	1.1245	1.4970	1.8720

Table showing the Quantity of Hops per Quarter of Malt, &c.—continued.

4.1220	0₹44.€	3678.8	9466.7	2.6250	3.2490	901
₹.0828	9484.8	₹178.8	0696.7	0009.7	9477.7	₹0I
9640.4	3.7012	8.3093	2·3405	0678.2	7.2062	103
₱₱00•₱	8799.8	2442.8	2.9120	2.2200	8481.7	201
3.9652	₹879.€	3.2451	2.8835	8.2220	₹91.7	101
3.6760	3.2920	3.2130	2.8220	S.2000	2.1420	100
8988 · E	3.2226	3.1809	2.8265	0944.2	2.1206	66
9478.8	3.5192	3.1488	0864.7	3.4200	7.0992	
₹808•€	8787.8	4911.8	9694.7	2.4250	8140.7	
7694·E	3.4464	9₹80 €	0174.2	S.4000		96
00€4∙€	3.4100	3.0525	2.7125	0948.2	2.0320	96
8069⋅€	9848.8	3.020₫		2.3200		†6
3.6216	2788.8	£886.Z	9999.8	1	7766.1	86
3.6124	8008 • 8	7996.7	0479.7	2.3000		76
3673.8	3.2644	0₹76.7	1	0947.7	₱6₱6•I	16
3.2340	3.2280		0049.7		0876·I	06
8767.8	3191.6	6698.7		2.2250		68
3.4226	3.1225	8428.2		2.2000		88
3.4164	8811.8		3 1842			48
2778.8	3.0824	9894.7	3.4260			98
3.3380	3.0460	3.7315	3724.2		1.8210	
8862.8	9600∙€	₹669·Z		2.1000		7 8
9697.8	2576.2	8499.7	9048.7			83
3.220₫	8986.2	2689.2	2.3420		8994 · I	28
3.1812	₹006.2	1809.2	2.3135	'	1.7354	18
3.1420	0798.7	0149.7	7.2850		0714·I	08
3.1028	9428.2	2.5389	2.2565		9769 · 1	64
3.0636	7164.7	8909.7	2.2280		7149·I	84
3.0244	8794.7	4747.8	3661.2		86 7 9 · I	44
7986.2	\$814.2	2.4426		0006·I	78 79 ·1	94
0976.2	0289.2	2017·2		0948 · T		94
8906.2	9979.7	7848.7		I-8200	9989·I	74
9498.7	7609.7	5978. 7	2.0855		7.5642	82
₹878.7	8278 .2	2.3142		0008•I	1.6428	74
7684.7	7929.7	1282.2	2.0286	0944·I	1.5214	14
0094.7	0009.2	7.2500	2.0000	0094 · I	1.2000	04
		00,000	0000-0	0024-1	OUUAFE	04
24	7 7	- * 7	7	₹I	- 	Gravity.

Table showing the Quantity of Hops per Quarter of Malt, &c.—continued.

Gravity.	3	34	31	33	4	41
70	3.0000	3.2500	3.5000	3.7500	4.0000	4.2500
71	3.0428	3.2964	3.5500	3.8035	4.0571	4.3107
72	3.0856	3.3428	3.6000	3.8570	4.1142	4.3714
73	3.1284	3.3892	3.6500	3.9105	4.1713	4.4321
74	3.1712	3.4356	3.7000	3.9640	4.2284	4.4928
75	3.2140	3.4820	3.7500	4.0175	4.2855	4.5535
76	3.2568	3.5284	3.8000	4.0710	4.3426	4.6142
77	3.2996	3.5748	3.8500	4.1245	4.3994	4.6749
78	3.3424	3.6212	3.9000	4.1780	4.4568	4.7356
79	3.3852	3.6676	3.9500	4.2315	4.5139	4.7963
80	3.4280	3.7140	4.0000	4.2850	4.5710	4.8570
81	3.4708	3.7604	4.0500	4.3385	4.6281	4.9177
82	3.5136	3.8068	4.1000	4.3920	4.6852	4.9784
83	3.5564	3.8532	4.1500	4.4455	4.7423	5.0391
84	3.5992	3.8996	4.2000	4.4990	4.7994	5.0998
85	3.6420	3.9460	4.2500	4.5525	4.8565	5.1605
86	3.6 848	3.9924	4.3000	4.6060	4.9136	5.2212
87	3.7276	4.0388	4.3500	4.6595	4.9707	5. 2819
88	3.7704	4.0852	4.4000	4.7130	5.0278	5.3426
89	3.8132	4.1316	4.4500	4.7665	5.0849	5.4033
90	3.8560	4.1780	4.5000	4.8200	5.1420	5.4640
91	3.8988	$4 \cdot 2244$	4.5500	4.8735	5.1991	5.5247
92	3.9416	4.2708	4.6000	4.9270	5.2562	5.5854
93	3.9844	4.3172	4.6500	4.9805	5.3133	5.6461
94	4.0272	4.3636	4.7000	5.0340	5.3704	5.7068
95	4.0700	4.4100	4.7500	5.0875	5.4275	5.7675
96	4.1128	4.4564	4.8000	5.1410	5.4846	5.8282
97	4.1556	4.5028	4.8500	5.1945	5.5417	5.8889
98	4.1984	4.5492	4.9000	$5 \cdot 2480$	5.5988	5.9496
99	4.2412	4.5956	4.9500	5.3015	5.6559	6.0103
100	4.2840	4.6420	5.0000	5.3550	5.7130	6.0710
101	4.3268	4.6884	5.0500	5.4085	5.7701	6.1317
102	4.3696	4.7348	5.1000	5.4620	5.8272	6.1924
103	4.4124	4.7812	5.1500	5.5155	5.8843	6.2531
104	4.4552	4.8276	5.2000	5.5690	5.9414	6.3138
105	4.4980	4.8740	5.2500	5.6225	5.9985	6.3745

Table showing the Quantity of Hops per Quarter of Malt, &c.—continued.

						
		0010	0.007	AORT I	OFF O	007
8 6235	8.2475	0948 • 4	0667.4	7.1230	0474.9	901
\$1\$G.8	0691.8	0008.4	9724.7	7.0552	6.6828	₹0I
869₹•8	9060.8	7.7250	7.3562	₹486·9	9819.9	E01
2448.8	8.0120	0099-4	8782.4	9616.9	PP99.9	70T
1362.8	9886.4	0949-4	7.2134	8198.9	206 ₹ •9	101
8.2130	0998.4	0009.4	7.1420	0184.9	6.4260	100
6081.8	9944-4	7.4250	9040 - 4	7914.9	8198.9	66
8870.8	0869.4	0098.4	7666.9	7879·9	9762.9	86
4996-4	9619.4	0942-4	8476.9	9089.9	₽662.334	46
9788.4	0179.4	0002.4	₹998.9	8212.9	691.9	96
9208-4	9797.4	4.1250	0984.9	0977.9	0901.9	96
₹074-4	0₹8€•4	4.0200	9814.9	2778.9	8070.9	₹ 6
£8£9·4	9908-4	0946.9	2249·9	₹608•9	9946 • 9	6 6
2999.4	0422.4	$0006 \cdot 9$	8049.9	9177.9	P-3154	76
1747.4	9871.4	$0978 \cdot 9$	₹66₹•9	8641.9	28482	16
0268.4	0040-4	0094.9	087₹.9	0901.9	0784.9	06
6608 - 4	9166.9	0949.9	9998.9	2880.9	8614.9	68
8422.4	0616.9	$0009 \cdot 9$	6.2852	₱046·9	9999.9	88
4971.4	9788.9	0979.9	8:13.9	9706.9	₱169.9	48
9890.4	0994.9	0097.9	6.1424	8188.9	2723.3	98
3186.9	9449.9	0948.9	0140.9	0494.9	2.4630	9 8
₹668.9	0669.9	0008.9	9666 9		8668.9	7 8
£448.9	6:5205	6.2250	1	ľ	9788.9	83
6.1325	0244.0	0.1200	8998.9	1	₹047.9	. 7 8
16,6531	9898.9	0940.9	₱ 9 84.9	8967.9	2902.9	18
0149.9	6.2850	0000.9	0714.9	1	02+I⋅G	08
6887.9	9.2065	0976.9	9779.9	1	8440.9	64
8907.9	0821.9	0098.9	2149.9	₹767.9	9810.9	84
4728.9	9670.9	0944.9	8667.9	L .	1	44
9777.9	0126.9	0002.9	₹87.9	1	1	97
9091.9	9768.9	9.6250	0498.9	L .	1	94
₹840.9	0718.9	0099.9	9.282.9	1	1	₹4
£966 · 9	9984.9	0947.9	5.2142			
2716.9	0.299.9	0007.9	8241.5	1		74
1288.3	6876.8	6.3250	7140·9	t		14
0094.9	2.2000	2.2500	0000.9	1 '	1	04
ŧg	₹ 9	ŧg	ç	₹₽	<u>5</u> 7	Gravity.
			-			
*	··					

TABLE SHOWING THE QUANTITY OF HOPS PER QUARTER OF MALT, &c.—continued.

Gravity.	6	61	61	<i>Q3</i>	7	7‡
Gravity.	ь	61	$6\frac{1}{2}$	63		· 4
70	6.0000	6.2500	6.2000	6.7500	7.0000	$7 \cdot 2500$
71	6.0857	6.3392	6.5928	6.8464	7.1000	7.3535
72	6.1714	6.4284	6.6856	6.9428	7.2000	7.4570
73	6.2571	6.5176	6.7784	7.0392	7.3000	7.5605
74	6.3428	6.6068	6.8712	7 · 1356	7 4000	7.6640
75	6.4285	6.6960	6.9640	7 • 2320	7.5000	7.7675
76	6.5142	6.7852	7.0568	7.3284	7 6000	7.8710
77	6.5999	6.8744	7 • 1496	7.4240	7.7000	7.9745
78	6.6856	6.9636	7 · 2424	7.5212	7.8000	8.0780
79	6.7713	7.0528	7.3352	7.6176	7.9000	8.1812
80	6.8570	7.1420	7.4280	7.7140	8.0000	8 • 2850
81	6.9427	7.2312	7.5208	7.8104	8.1000	8.3885
82	7.0284	7.3204	7.6136	7.9068	8.2000	8.4920
83	7.1141	7.4096	7.7064	8.0032	8.3000	8.5955
84	7.1998	7.4988	7.7992	8.0996	8.4000	8.6996
85	7.2855	7.5880	7.8920	8.1960	8.5000	8.8025
86	7.3712	7.6772	7.9848	$8 \cdot 2924$	8.6000	8.9060
87	7.4569	7.7664	8.0776	8.3888	8.7000	9.0095
88	7.5426	7.8556	8.1704	8.4852	8.8000	9.1130
89	7.6283	7.9448	8.2632	8.5816	8.9000	9.2165
90	7.7140	8.0340	8.3560	8.6780	9.0000	9.3200
91	7.7997	8.1232	8.4488	8.7744	9.1000	9.4235
92	7.8854	8.2124	8.5416	8.8708	9.2000	9.5270
93	7.9711	8.3016	8.6344	8.9672	9.3000	9.6305
94	8.0568	8.3908	8.7272	9.0636	9.4000	9.7340
95	8.1425	8.4800	8.8200	9.1600	9.5000	9.8375
96	8·22×2	1	8.9124	9.2564	9.6000	9.9410
97	8.3139	8.6584	9.0056	9.3528	9.7000	10.0445
98	8.3996	_	9.0984	9.4492	9.8000	10.1480
99	8.4853		9.1912	9.5456	9.9000	10.2515
100	8.5710	8.9260	9.2840	9.6420	10.0000	10.3550
101	8.6567	9.0152	9.3768	9.7384	10.1000	10.4585
102	8.7424	•	i i	9.8348	10.2000	10.5620
102	8.8281	1	t.	1	10.3000	10.6655
104	8.9138	-	1	10.0276	10.4000	10.7690
105	8.9995		i .	10.1240	10.5000	10.8725
100	3 3000	0.20		= = = = = = = = = = = = = = = = = = =		
1	_1	1	1	1		

Table showing the Quantity of Hops per Quanter of Male, &c.—continued.

-			· · · · · · · · · · · · · · · · · · ·	i		
	0.051.77	0010 71	0466-11	 3 7 79.TT	28#Z.II	102
13.1220	12.7490	12.3730	8288·II	2010.TT	BYBT.IT	70I
13.0000	13.6267	7481.81	00001.11	11.4031	11.0349	103
12.8750	17.2062	9610.21	5504 · LL	5Z6Z.II	7.26.01	102
12.7500	17.3848	8106.11	11.2402	TRITT	1078.01	101
12.6250		0784·II	0977.11	T10.T1	10.7130	100
12.2000	12.1420	7999·II	8118-118	2096.01	6909.01	66
12.3750	12.0206	7879·11	9461-11	10.8 4 8	10.4988	86
12.2500	7668.11	11.4306	5201-11	10.4388	1168.01	46
12.1250	8444·II	8218.11	7696·01	7879.01	9787.01	96
12.0000	7999·II	0967.11	0000.01	CLTC.NI	97.71.01	96
0948-11	11.2220	2440.11		2907.0T	#070.01	7 6
0094-11	9814.11	₹196.01				63
11.6250	7767-11	9148.01		#08T.01	Z998.6	76
11.2000	8041-11	1	706C.0T	10.01	16#1.6	16
0948.11	₹6₹0·II	1	10.2840	0706.6	0279.6	06
11.2500			8691.01	CCCS.6	67E9.6	68
11.1250	9008.01	!	9091.01		8477.6	88
11.0000	1	1		6189.6	4028 • 6	48
0948.01				8.6212	9813.6	98
0094.01	(1		9017.6	9901.6	88
10.6250		1		8662.6	₹666.8	7 8
10.5000	1	L .	8669.6	1681.6	8.8923	£ 8
0948.01			9787.6	•	2984.8	28
10.2500		9899.6	7048.6	₹840·6	1849.8	18
10.1250	1	8979.6	7997.6	4496.8	0149.8	08
0000.01		0824.6	9.1420	0498.8	6E97·8	64
0948.6	4269.6	9.3102	8420.6	8974.8	i	84
0094.6	2174.6	₹761.6	9816.8	8.6356	8998.8	124
0979.6	86+8.6	9740.6	₹664.8	6779.8	1 '	94
0009.6	₱877.6	8996.8	8.6852	8-4142	8.1426	94
0678.6	0401.6	8.8390	0149.8	8.3032	8.0322	74
0097.6	0986.8	8.7212	8997.8	8.1928	₹876 • 4	84
9.1250	2498.8	₹609.8	9248.8	1280.8	F128-7	
0000.6	8247.8	9987.8	₹872.8	₱146·4	71742	74
0948.8	₹179 -8	8498.8	8-1142	14098 • 4	1	14
0094.8	8.5000	8.2500	0000.8	0094 • 4	0009 • 4	04
±8	¥8	1 8	8	₹4	§ 4	ravity.

Table showing the Quantity of Hops per Quarter of Malt, &c.—continued.

					,	
Gravity.	9	91/4	91/2	93	10	10‡
63	9.0000	0.0500	0.5000	0.7500	10-0000	30 0500
(\$.3 (18)	9.1285	9.2500		(10.0000	10.2500
-		9.3821	9.6357	9.8892	10.1428	10.3964
72	9.2570	9.5142	9.7714	10.0284	10.2856	10.5428
73	9.3855	9.6463	9.9071	10.1676	10.4284	10.6892
74	9.5140		10.0428		10.5712	10.8356
75	9.6425		10.1785		10.7140	10.9820
76			10.3142	ł	10.8568	11.1284
77		10.1747		10.7244	10.9996	11.2748
78			10.5856		11.1424	11.4212
79			10.7213	11.0028	11.2852	11.5676
80		10.5710		11.1420	11.4280	11.7140
81		10.7031		11.2812	11.5708	11.8604
82	10.5420	10.8352	11.1284	11.4204	11.7136	12.0068
83	10.6705	10.9673	$11 \cdot 2641$	11.5596	11.8564	12.1532
84	10.7990	11.0994	11.3998	11.6988	11.9992	12.2996
85	10.9275			11.8380	12.1420	12.4460
8 6	11.0560	11.3636	11.6712	11.9772	12.2848	12.5924
87	11.1845			12.1164	12.4276	12.7388
	11.3130			12.2556	12.5704	12.8852
89	11.4415			12.3948	12.7132	13.0316
90	11.5700			12.5340	12.8560	13.1780
91	11.6985			12.6732	12.9988	13.3244
92	11.8270			12.8124	13.1416	13.4708
	11.9555			12.9516	13.2844	13.6172
	12.0840			13.0908	13.4272	13.7636
95	12.2125			13.2300	13.5700	13.9100
i	12.4410			13.3692	13.7128	14.0564
l.	12.5695			13.5084	13.8556	14.2028
	12.6980			13.6476	13.9984	14 2028
	12 8265			13.7868	14.1412	14.4956
	12.9550			13.9260	14 1412	14.6420
	13.0835			14.0652	i.	
	13.2120			14.0032	14·4268 14·5696	14·7884 14·9348
	13.3405			14.3436		- ,
	13.4680			14.3436	14.7124	15.0812
i i	13 50 55			14.4828	14.8552	15.2276
100	10 0.30	ra 0199	14 2490	14.0220	14.9980	15.3740
	<u> </u>				والمراجعة والمراجعة والمراجعة والمراجعة	

Table showing the Quantity of Hops per Quarter of Malt, &c.—continued.

0442-41	27.42.25			1	
OFFICE OF	9748·91 8814·91	9867.91 7178.91	12.9690	0094.9T 0009.9T	102 104
8780 - 41		£481.91	9918-91	12.4500	103
9816.91	16.5531 16.3924	16.0272	12.6620	12.3000	201
7000 01	4162.91	1048.91	12.2085	12.1500	101
7069·9I	0140.91	0814.91	12.3220	12.0000	100
16.4260	E016.91	6999.91	12.2015	0098.₹1	66
819Z·9I 9460·9I	9674.9T	16.3988	12.0480	0004.₹1	86
₹866.91	6889.9I	12.2417	9768·7I	14.2200	46
7694.91	15.4282	9780.91	0174.71	000₺・₺ፒ	96
0909.91	9497.91	9426.71	9489.₹1	14.2500	96
12.4408	8901-91	₹044.₹I	14.4340	0001.≯1	₹6
9942.91	1976.71	££19.₹I	14.2805	13.9500	66
12.1124	₱984.₱I	74.4562	0421.₱1	13.8000	76
7876·7I	14.6247	1662.₽1	9846·81	13.6500	16
0784.71	0797·7I	14.1420	13.8200	13.2000	06
8619.71	14.3033	6786.81	13.6665	13.3200	6 8
9997.71	14.1426	8728·EI	13.2130	13.2000	88
14.2914	6186.81	1049 · EI	13.3292	13.0200	48
14.1272	13.8212	13.5136	13.2060	12.9000	98
13.9630	13.6605	13.3265	13.0525	13.4200	98
13.7988	8667·EI	₹661.81	12.8990	12.6000	7 8
13.6346	1688.81	13.0423	9944.71	12.4500	£ 8
₹04₹-€1	₹841.81	12.8852	12.5920	12.3000	2 8
13.3062	4410·EI	1874-71	12.4385	12.1500	18
13.1420	0298.71	12.5710	12.2850	12.0000	08
8446.71	12.6963	12.4139	12.1315	11.8200	64
12.8136	17.2326	12.2568	0846-11	0004-11	84
12.6494	12.3749	4660.21	11.8245	11.2200	44
12.4852	12.2142	9776.11	0149.11	0007·II	94
12.3210	12.0535	9984-11	9419-11	11.2500	94
12-1568	8268-11	₹879.11	0798.11	11.1000	74
9766-11	1784.11	E174.11	11.2105	0096.01	£7
₽828•11	#149.11	11.3142	0490-11	10.8000	74
7799.11	4017·11	1761-11	10.9035	10.6500	14
11.2000	11.2500	0000.11	0094-01	10.2000	04
¥11	₹ II	11	₹0I	For	Gravity.

TABLE SHOWING THE QUANTITY OF HOPS PER QUARTER OF MALT, &c.—continued.

Gravity.	113	12	121	12 1	124
70	11·7500	12.0000	12·2500	12.5000	12·7500
71	11·9178	12.1714	12·4250	12.6785	12·9321
72	12·0856	12.3428	12·6000	12.8570	13·1142
73	12·2534	12.5142	12·7750	13.0320	13·2963
74	12·4212	12.6856	12·9500	13.2105	13·4784
75	12·5890	12.8570	13·1250	13.3890	13·6605
76	12·7568	13.0284	13·3000	13.5675	13·8426
77	12·9246	13.1998	13·4750	13.7460	14·0247
78	13·0924	13.3712	13·6500	13.9245	14·2068
79	13·2602	13.5426	13·8250	14.1030	14·38×9
80	13·4280	13.7140	14·0000	14.2815	14·5710
81	13·5958	13.8885	14·1750	14.4600	14·7531
82	13·7636	14.0568	14·3500	14.6385	14·9352
83 84 85 86 87 88 89 90 91 92 93	13·9314 14·0992 14·2670 14·4348 14·6026 14·7704 14·9382 15·1060 15·2738 15·4416 15·6094 15·7772	14·2282 14·3996 14·5710 14·7424 14·9138 15·0852 15·2566 15·4280 15·5994 15·7708 15·9422 16·1136	14.5250 14.7000 14.8750 15.0500 15.2250 15.4000 15.7500 15.7500 16.1000 16.2750 16.4500	14.8170 14.9955 15.1740 15.3525 15.5310 15.7095 16.0665 16.2450 16.4235 16.6020 16.7805	15·1173 15·2994 15·4815 15·6636 15·8457 16·0278 16·3920 16·5741 16·7562 16·9383 17·1204
95	15.9450	16·2850	16.6250	16.9590	17·3025
96	16.1128	16·4564	16.8000	17.1375	17·4846
97	16.2806	16·6278	16.9750	17.3160	17·6667
98	16.4484	16·7992	17.1500	17.4945	17·8488
99	16.6162	16·9706	17.3250	17.6730	18·0309
100	16.7840	17·1420	17.5000	17.8515	18·2130
101	16.9518	17·3134	17.6750	18.0300	18·3951
102	17.1196	17·4848	17.8500	18.2085	18·5772
103	17.2874	17·6562	18.0250	18.3870	18·7593
104	17.4552	17·8276	18.2000	18.5655	18·9414
105	17.6230	17·9990	18.3750	18.7440	19·1235

Table showing the Quantity of Hops per Quarter of Malt, &c.—continued.

Ì			1	1	1
21.0000	20.6240	20.2480	0088-61	9667.61	102
20.8000	9424.02	20.02	8069-61	8818-61	₹0T
20.6000	20.2312	₹798.61	9109.61	1821-61	103
20.4000	8780.03	9699.61	19.3124	18.9424	102
20.2000	₹888.61	8947-61	19.1232	4994.81	101
20.0000	19.61	19.2840	18.6340	0149-81	100
19.8000	9977.61	7160.61	8774·81	18.3823	66
0009.6T	7677·61	₱868.81	18.222	9661.81	86
0007.6I	19.0528	9904.81	₹998.81	18.0139	46
19.2000	₹998·8I	18.2128	7441.81	7878 · 41	96
0000·61	0099.81	18.3200	0886-41	9779-41	96
000∺∙81	18.4636	2721-81	8864.41	8 9 97-41	₹ 6
18.6000	7497·81	₹₹6.4T	9609·4T	1142.41	63
18.4000	8040-8I	9174.41	\$01\$.41	₱98 0 -41	76
18.2000	₱₱48•4T	88 79.4 I	17.2212	4668·91	16
18.0000	0849-41	099E • 4T	12.0320	9714.91	06
0008.4I	9187.41	7891.41	8648·9I	16.5283	68
0009.4T	7987.41	₹046 . 91	9799.9I	16.3426	88
0007·21	1880.41	9444.91	₹9 ₹9 ₹	6991.91	48
0002.4T	7768·9I	16.5848	7947.91	12.9712	98
0000-41	0969.91	16.3920	0480·91	9984.91	9 8
0008.91	966 †•9 I	2661.91	8468.91	8669.91	₹8
0009.91	16.3032	₹900.91	9804.91	15.4141	83
000₹•91	8901.91	15.8136	₹619.9T	12.2284	7 8
16.2000	₹016 . 91	15.6208	16.3302	4240·91	18
16.0000	0714.91	15.4280	12.1410	0498·7T	08
15.8000	9419.91	15.2352	14.9528	£176•41	64
12.6000	15.3212	15.0424	9894.₹1	9987·7I	84
12.4000	15.1248	9678·7I	₹₹49.₹I	14.2999	44
12.2000	.\$876·\$I	8999•₹[14.3852	14.1142	94
12.0000	14.7320	0494.41	0961.₱1	13.9285	94
14.8000	14.2326	14.2712	8900.₱1	13.7428	74
0009.₹1	14.3392	₹840.₹1	9418-81	1499.81	84
0007.71	14.1428	9988-81	13.6284	7148·EI	74
14 2000	13.9464	8269.81	13.4392	13.1867	14
0000.₺ፗ	0094.81	13.2000	13.2500	13.0000	04
ħΙ	133	134	13 ‡	13	Gravity.

RICHARDSON'S TABLE, SHOWING THE VOLUME OF WORT IMBIBED BY HOPS.

Hops used.	Wort imbibed.	Hops used.	Wort imbibed.
lbs.	bar.	lbs.	bar.
1	0.01	30	0.50
2	0.03	40	0.96
3	0.05	50	0.83
4	0.06	60	1.00
5	0.08	70	1.16
6	0.10	80	1.33
7	0.11	90	1.50
8	0.13	100	1.66
9	0.15	200	$3 \cdot 33$
10	0.16	300	$5 \cdot 00$
11	0.17	400	$6 \cdot 66$
12	0.19	500	$8 \cdot 33$
13	0.21	600	$10 \cdot 00$
14	0.22	700	11.66
15	0.24	800	$13 \cdot 32$
16	0.26	900	15.00
17	0.27	1000	16.66
18	0.29	2000	33.30
19	0.31	3000	50.00
20	0.33	4000	66.66

13.20	13.00	10.20	00.6	09-4	00.9	8.62	94
13.33	₹8•11	10.36	88.88	07·4	26.9	23.3	₹4
13∙1∉	89.11	10.22	94.8	08.4	₹8.9	4.77	E4
12.96	11.22	10.08	₹9.8	02-4	94.9	22.2	74
12.78	11.36	76⋅6	8.23	01.4	89.9	9.12	14
12.60	11.20	08.6	07.8	00.4	09.9	1.12	04
12.42	₹0·11	99.6	87.8	06.9	29.9	20.2	69
12.24	88.01	6.25	91.8	08.9	₹₹•9	0.02	89
12.06	74.0T	86.6	₹0.8	04.9	98.9	₹•6I	49
88.11	10.26	₹7.6	76.4	09.9	82.9	18.8	99 (
09.11	07.01	01.6	08.4	09.9	2.20	£ • 81	99
11.42	10∙24	96.8	89.4	07.9	21.9	4.41	7 9
11.54	80.01	2 8 • 8	99.4	08.9	₹0.9	Z-4I	63
90.11	76.6	89.8	77.4	6.20	96∙₹	9.91	79
10.88	94.6	₹ ⊈•8	ZE • 4	01.9	88∙₹	1.91	19
04.01	09.6	07∙8	07.4	00.9	08.₹	12.2	09
10.25	₹₹•6	97.8	80.4	06.9	74.₹	12.0	69
₹₹•01	87.6	8.12	96.9	08.9	₹9.₹	₹•₹[89
10.26	8.12	86.4	₹8 ∙9	04.9	99.₹	13.8	49
80.01	96.8	₹8•4	24.9	9.9	8₹•₹	13.3	26
06.6	08.8	04.4	09.9	2.20	0₹•₹	4.21	22
74.6	₹9.8	99.4	8 ₹∙9	07·9	₹•35	12.2	₹g
₱ 9⋅6	84.8	ZF · 4	98.9	2.30	₹•5₹	9.11	.23
98.6	8.32	82.4	₽7.9	6.20	91.7	1.11	79
81.6	91.8	₹T•4	21.9	01.9	80.₹	10.5	19
00.6	00.8	00.4	00.9	2.00	00∙₹	10 ₀	Fahr. 50°
Nine Pounds per Quarter.	Eight Pounds per Quarter.	Беуеп Роилда Опатег.	Six Pounds per Quarter.	Five Pounds per Quarter.	Fourds Pounds per Quarter.	rir ne of	egmeT to ifT ta verd

In the first column under each class the temperature of the air is given; the next columns show the degrees the water should stand at to bring the mash to the temperature given at the top of the column, while at the foot of the column is given the temperature at which the tap stands. LEVESQUE'S TABLE.

			<u> </u>	HE		LO	T 12)	FU	/Cr	CET-B(
70	60	71 51 51 0	45	40	ပ္သ မ	25	20	5	100	Fahr.	at Mashing.	Temperature
176·87 175·04	178.70	182.36	184.19	186.02	189.68	191.51	193.34	195.17	197.00		Firkins per Quarter, 6.	Class I. Heat of Mash, 146° to 148°.
	3 40			44	4 0	4 0	4 0	4 0		hrs. min.	of the Mash.	Time of Standing
65 70	60 55	50	45	A 85	30	25	20	15	100	Fahr.	at Mashing.	Temperature
171.62 170.04	174·78 173·20	176.36	177.94	180.10	182.68	184.26	185.84	187.42	189.00		Firkins per Quarter, 7.	Clas Heat of t 145° to
168·49 167·07	171·31 169·90	172.72	174.13	176.95	178.36	179.77	181.18	182.59	184.00		Firkins per Quarter, 8.	Class II. Heat of the Mash, 145° to 147°.
2 30 2 15											of the Mash.	Time of Standing

 $\overline{2}$ σ

LEVESQUE'S TABLE—continued.

the degrees the water should stand at to bring the mash to the temperature given at the top of the column, while at the foot of the column is given the temperature at which the tap stands. In the first column under each class the temperature of the air is given; the next columns show

•							
Tempera-	Class III. Heat of the Mash, 144° to 146°.	s III he Mash,	Time of	Tempera-	Class IV. Heat of the Mash, 143° to 145°.	s IV. he Mash, 145°.	Time of
ture of Air at Mashing.	Firkins per Quarter, 9.	Firkins per Quarter, 10.	of the Mash.	Air at Mashing.	Firkins per Quarter, 11.	Firkins per Quarter, 12.	of the Mash.
			hrs. min.	Fahr.			hrs. min.
Fanr.	178.60	175.00	2 0	100	172.00	170.00) T
7 F	176.84	173.92	2 0	15	171.00	169.19	0 1
2 6	175.68	172.84	70	20	170.00	168.28	0
9 C	174.52	171.76	2 0	25	169.00	167.37	0
3 6	173.36	170.68	2 0	30	168.00	166.46	0 1
) to	172.20	169.60	2 0	35	167.00	165.55	1 0
3 5		168.52	2 0	40	166.00	164-64	1 0
A A	169.88	167.44	2 0	45	165.00	163.73	0 1
א א	168.79	166,36	2 0	50	164.00	162.82	1 0
בי ניי	167.56	165.28	2 0	rċ rc	163.00	161.91	1 0
00	106.40	164.90	1 50	9	162.00	161.10	0 55
0 0	0# 00T	61.691	1 40	65	161.00	160.19	0 20
	164.09	169.04	1 30	70	160.00	159.28	0 45
•	50 £01	100					
	_						

Levesque's Table, showing what Gravity the original Wort should possess to afford a GYLE OF A CERTAIN STRENGTH AFTER ONE Hour's Boiling.

Gravity required after One Hour's Boiling.	Gravity required in the Raw Wort.	Gravity required after One Hour's Boiling.	Gravity required in the Raw Wort.
8	6.60	27	21.60
9	$7 \cdot 20$	28	$22\cdot 40$
10	8.00	29	23.20
11	8.80	30	$24 \cdot 00$
12	9.60	31	24.80
13	10.40	32	25.60
14	11.20	33	26.40
15	$12 \cdot 00$	34	$27 \cdot 20$
16	$12 \cdot 80$	35	28.00
17	13.60	36	$28 \cdot 80$
- 18	14.40	37	$29\cdot 60$
19	$15\cdot 20$	38	30:40
20	16.00	39	$31 \cdot 20$
21	16.80	40	$32\cdot00$
22	17.60	41	$32 \cdot 80$
23	18.40	42	33.60
24	$19 \cdot 20$	43	$34 \cdot 40$
25	20.00	44	$35 \cdot 20$
26	20.80	45	36.00
			0 ~ 0

 $2 \circ 2$

BATES' TABLE, SHOWING THE DECREASE IN THE SPECIFIC GRAVIT" OF WORTS AT TEMPERA-

TABLE SHOWING THE SIGNS USED IN WRITING MEDICAL PRESCRIPTIONS.

$\frac{1}{2}$ grain	• •	••	½ gr. gr. j, or gr. i.
11	••		gr. iss.
2 grains	••		gr. ii, or gr. ij.
0.1	••		gr. iiss.
4	••		gr. iv.
0 "			-
0 ,,	••	• •	gr. viii, or gr. viij.
$\frac{1}{2}$ scruple	• •	••	\mathfrak{Z} ss.
1 "	. • •	••	\mathfrak{Z} i, or \mathfrak{Z} j.
$1\frac{1}{2}$,	••	• •	Θ iss.
2 scruples	• •	• •	∋ ii, or ∋ ij.
1 drachm	••	• •	3 i, or 3 j.
$1\frac{1}{2}$,,	• •	••	3 iss.
2 drachms	• •	• •	3 ii, or 3 ij.
3 ,,	• •	• •	з iii, or з iij.
$3\frac{1}{2}$,,	• •	••	3 iiiss.
$7\frac{1}{2}$,,	••	• •	3 viiss.
$\frac{1}{2}$ ounce	••	••	3 ss.
1 "	• •	••	3 i, or 3 j.
$1\frac{1}{2}$,,	••	• •	3 iss.
$\frac{1}{2}$ pint	• •	••	Oss.
1 ,,	••	••	0.

Table for the Comparison of Alkalimetric Degrees (for $\mathbf{K}_{\mathbf{z}}\mathbf{O}$).

25 30 45 55 50 55 50 50 50 50 50 50 50 50 50 50	\$6.97 \$6	2 5 6 8 7 8 7 8 1 9 8 1 9 8 1	25.6I 24.4I 19 6 29.8 69.4 84.9 74.9 18.4 98.8 88.7 76.I 96.
02.18 03.18 19.19 19.19 19.29 19.29 19.29 19.29 19.38 19.38	80 90 90 90 90 90 90 90 90 90 90 90 90 90	08.07 09.21 07.01 98.6 78.8 87.7 77.9 17.9 17.9 91.7 71.8	1 8 7 8 7 8 10 10 10
Descroizille's Alkalimetric Degrees.	Degrees Ponderal, equal equal per cent.	Descroizille's Alkalimetric Degrees.	Degrees Ponderal, equal per cent.

TABLE (BY MR. J. PATTINSON) FOR THE COMPARISON OF THE VARIOUS ALKALI-METRIC DEGREES (FOR SODA).

rf Na ₂ O. Na ₂ CO ₃ . ees. Per o. Eq. Degrees, H ₂ SO ₄ , I by 100 f Na ₂ O.	CO3.	0.00 jes
Per cent. of Na ₂ O Eq. = 3 ₁ . Per cent. of Na ₂ CO ₃ . English Degrees. Per cent. of Na ₂ O. Eq. = 32. Descroizille's Degrees, Weight of H ₂ SO ₄ , neutralized by 100 parts. Per cent. of Na ₂ O. Eq. = 31.	Per cent. of Na ₂ CO ₃ . English Degrees. Per	Bescroizille's Degrees. Weight of H ₃ SO ₄ . neutralized by 100 parts.
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	71.81 42	55 66.39
30.5 52.14 30.90 48.21 42.5	72.66 43	06 67.18
31.0 53.00 31.41 49.00 43.0	73.52 43	57 67.97
31.5 53.85 31.91 49.79 43.5	74.37 44.	07 68.76
$oxed{32.0 \ 54.71 \ 32.42 \ 50.58 \ 44.0}$	75 • 23 44 •	58 69.55
32.5 55.56 32.92 51.37 44.5	76.08 45	08 70.34
33.0 56.42 33.43 52.16 45.0	76.95 45	59 71.13
33.5 57.27 33.94 52.95 45.5	77.80 46.	10 71.92
34.0 58.13 34.44 54.74 46.0	78.66 46.	60 72.71
34.5 58.98 34.95 54.33 46.5	79·51 47·	11 73.50
35.0 59.84 35.46 55.92 47.0 8	80 · 37 47 ·	62 74.29
35.5 60.69 35.96 56.11 47.5	81.22 48.	12 75.08
36.0 61.55 36.47 56.90 48.0	82.07 48.	63 75.87
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	82.93 49.	14 76.66
37.0 63.26 37.48 58.48 49.0	83 • 78 49 •	64 77.45
37.5 64.11 37.99 59.27 49.5	84.64 50.	15 78.44
38.0 64.97 38.50 60.06 50.0	85 • 48 50 •	66 79.03
38.5 65.82 39.00 60.85 50.5	86·34 51·	16 79.82
39.0 66.68 39.51 61.64 51.0	87 • 19 51 •	67 80.61
$\begin{bmatrix} 39.5 & 67.53 & 40.02 & 62.43 & 51.5 & 8 \end{bmatrix}$	88.05 52.	18 81.40
$oxed{40.0 \ 68.39 \ 40.52 \ 63.22 \ 52.0 \ 8}$	88.90 52.	68 82.19
$oxed{40.5 \ 69.24 \ 41.03 \ 64.01 \ 52.5 \ 8}$	89.76 53.	19 82.98
$ 41 \cdot 0 $ 70 \cdot 10 $ 41 \cdot 54 $ 64 \cdot 81 53 \cdot 0 9	90.61 53.	70 83.77
41.5 70.95 42.04 65.60 53.5	91 • 47 54 •	20 84.56

TABLE (BY MR. J. PATTIMSON) FOR THE COMPARISON OF THE VARIOUS ALKALI-METRIC DEGREES (FOR SODA)—continued.

1	· · · · · · · · · · · · · · · · · · ·			11	·		,
155.20	79.84	132.50	9.44	103.23	98.99	66-111	9.99
121.74	10.84	131.62	0.44	₹4.701	98.99	₱ [•][[0.99
120.92	T9-44	64.081	9.94	96-101	98.39	82.011	9.79
120.13	00.44	₹6.6ZI	0.94	91.101	₹8.₹9	€₱.60I	0.79
₹E•611	6 7 •94	80.621	9.94	48.00T	€€∙₹9	49.80T	63.5
118.22	66.94	128.23	0.94	89.66	63.83	74.40I	0.89
94.411	87.94	48.471	9.74	64.86	63.32	98.901	9.79
46.911	46.74	156.52	0.74	00.86	78.79	10.901	0.79
81.911	47.74	125.66	9.84	17.46	18.29	102.12	9.19
68.911	96.84	18.421	0.84	₹.96	08 • 19	10₹•30	0.19
09. ₹ II	43.42	96.871	9.74	89.96	08 • 19	₹₹ 103.44	9.09
113.81	96.74	123.10	0.74	₹8.₹6	64.09	103.28	0.09
113.02	₹₹.24	122.24	9.14	90.₹6	82.09	E4.IOI	9.69
112.23	E6.14	121 · 39	0.14	92.86	44.69	48.001	0.69
111.43	E7.14	120.53	9.04	47.76	42.69	100.00	9.89
₹9.011	76.04	69.611	0.04	89.16	94.89	91.66	0.89
98 • 601	I7.04	118.83	9.69	68.06	92.89	18.86	9.49
90.601	16.69	86.411	0.69	01.06	94.49	97-46	0.49
42.801	0₹•69	21.411	9.89	18.68	ተ ፘ-49	09.96	9.99
87.401	68.89	42.911	0.89	79:88	74·99	₹4·96	0.99
69.901	68.89	IF.GII	9.49	74.48	26.23	68.76	9.99
102.90	88 - 49	99.711	0.49	86.98	74.99	€0.76	0.99
11.901	48 • 49	04.811	9.99	₹1.98	22.99	81.86	9.79
104.35	48.99	112.85	0.99	98.32	14.79	28.26	0.79
Descroizi Weigh neutra parts.	English cent. = 32.	Per c	Per (Descroizille Weight o neutralize parts.	English cent. = 32.	Per	Per c Eq.
oizi igh itra	lish] nt. o 32.	cent, of Na ₂ CO ₃	cent. (escroizille s Weight of neutralized parts.	32.t-si	cent.	cent. $_{l}$ = 31.
lle's t of lized	Deg of N	<u>e</u> ,	31.	ille s t of lize	Deg of N		22.
s De	egrees.	Na.	🛱	_ HA	Degrees. of Na_2O .	of Na ₂ CO ₃	<u>≅</u> ,
ogre ogre		3D &	Na ₂ 0.	1 2 3 1		35.	Na ₂ (
100± 8.890	Per Eq.	3.	0.	100 100	Per Eq.	3.	်.
·momara	100—(W	TOT TOT	Comman	and othi	ET TO TOTAL	THE OO	

TABLE (BY MR. E. JACKSON) SHOWING FROM THE PERCENTAGE OF OXYGEN FOUND THE NUMBER OF CUBIC FEET OF RESIDUAL GASES PASSING AWAY FROM THE SULPHURIC ACID CHAMBERS PER TON OF STONE BURNT.

This Table is calculated on the assumption that 45 per cent. of sulphur is available, but can be made to answer for any other percentage by multiplying the number in the Table by the percentage of sulphur consumed and dividing by 45.

			·		<i>≈j</i> 10.
Oxygen, per cent.	Residual Gases. Cubic Feet per Ton of Stone.	Oxygen, per cent.	Residual Gases, Cubic Feet per Ton of Stone.	Oxygen, per cent.	Residual Gases. Cubic Feet per Ton of Stone.
\cdot_1	85451	3.2	100474	6.3	121905
$\cdot \mathbf{\hat{2}}$	85865	3.3	101047	6.4	122749
•3	86283	3.4	101626	6.5	123606
•4	86706	3.5	$\begin{array}{c} 102212 \end{array}$	6.6	124474
•5	87132	3.6	102805	$\begin{vmatrix} 6.7 \end{vmatrix}$	125355
•6	87562	3.7	103406	6.8	126248
•7	87998	3.8	104013	6.9	127155
•8	88437	3.9	104627	7.0	128074
•9	88881	4.0	105248	7.1	129006
1.0	89328	4.1	105877	$1 \cdot 7 \cdot 2$	129953
1.1	89781	4.2	106514	$7\cdot\bar{3}$	130913
1.2	90238	4.3	107158	7.4	131887
1.3	90701	4.4	107810	7.5	132876
1.4	91167	4.5	108471	7.6	133881
1.5	91639	4.6	109138	7.7	134900
1.6	92115	4.7	109816	7.8	135935
1.7	92597	4.8	110500	7.9	136986
1.8	93083	4.9	111194	8.0	138053
1.9	93575	5.0	111896	8.1	139138
2.0	94072	5.1	112607	8.2	140239
2.1	94574	5.2	113327	8.3	141358
2.2	950S2	5.3	114057	8.4	142494
2.3	95594	5.4	114796	8.5	143650
2.4	96113	5.5	115544	8.6	144824
2.5	96637	5.6	116303	8.7	146018
2.6	97167	5.7	117072	8.8	147232
2.7	97703	5.8	117850	8.9	148465
2.8	98245	5.9	118639	9.0	149719
2.9	98793	6.0	119439	9.1	150996
3.0	99346	6.1	120250	$9 \cdot 2$	152294
3.1	99907	6.2	121072	9.3	153614

TABLE BY MR. E. JACKSON—continued.

					·····
		19880₹	9.91	223322	6.21
2126024	0.02	879668	₹•9I	220541	12.8
783881	6.61	318068	16.3	088417	1.21
₹89¥14I	8.61	846286	7.91	781917	15.6
1563252	4.61	374300	1.91	212602	17.2
1436501	9.61	366555	0.91	180012	₹.71
1328762	9.61	321668	6.9T	619407	12.3
1236062	7.6I	321390	8.91	₹12302	17.2
4779911	19.3	342133	4.91	202865	12.1
404780I	19.2	338238	9.91	895002	12.0
1022127	1.61	932190	12.2	198323	6 · II
848996	0.61	940978	₹•91	821961	8.11
688916	6.81	320183	12.3	616861	4.11
028148	8.81	314200	12.3	648161	9.11
647088	4.81	309018	1.91	189823	9.11
163864	9.81	414808	0.91	118481	₹·II
₹67694	18.2	869867	6•₹I	178 9 81	11.3
060874	7.8T	6₹9£6Z	8•₹[183912	11.3
878669	18.3	198887	4.71	182023	1.11
£64749	7.81	477₹8 7	9.₹[141081	0.11
841879	1.81	074647	9.71	898841	6.01
108329	0.81	168942	₹•₹[189941	8.01
£86£09	6.41	941147	14.3	488₹4T	4.01
£40₹8 9	8.41	880497	Z•₱I	621241	9.01
1£₹999	4.41	121892	[• † [E97141	10.2
₱ ₱64₱9	9.41	142692	0.71	018691	₹.01
909189	9.41	255531	13.9	8618 91	10.3
270919	7.41	568097	8.EI	919991	70.7
201420	E-41	998842	7.51	₹90991 .	1.01
07948₹	2.71	244932	13.6	163540	0.01
899747	1.41	241593	13.5	162045	6.6
84179¥	0.41	238343	₹.81	94909I	8.6
624034	6.91	332172	13.3	129134	4.6
1926€₽	8.91	232099	13.2	914491	$9 \cdot 6$
₹898₹	4.91	760622	13.1	156325	9.6
418608	9.91	741977	13.0	8 9 6₹9 T	₹.6
	·			1077626 76	
per Ton	_	per Ton of Stone.		per Ton of Stone.	
tee Feet roT req	per cent.	tee'l oiduO	per cent.	Cubic Feet	Oxygen, per cent.
Gases.	Oxygen,	Gazes.	Oxygen,	Gases.	UODAA()
IsnhiseA		Residual		Residual	
1	1		1	l l	1

TABLE (BY MR. J. PATTINSON) SHOWING A COM-PARISON OF THE ENGLISH AND FRENCH CHLORO-METRIC DEGREES.

The French Degrees indicate how many litres, at 0° C. and 760 mm., are yielded by 1 kilo. of the Bleaching Powder.

The English Degrees, which are also used in Germany, in Russia, and in America, show the percentage of "active" Chlorine.

French Degrees.	English Degrees.	French Degrees.	English Degrees.	French Degrees.	English Degrees.
63	20.02	85	$27 \cdot 01$	107	$34 \cdot 00$
64	20.34	86	$27 \cdot 33$	108	$34 \cdot 32$
65	20.65	87	$27 \cdot 65$	109	$34 \cdot 64$
66	20.97	88	$27 \cdot 96$	110	34.95
67	$21 \cdot 29$	89	28.28	111	$35 \cdot 27$
68	21.61	90	28.60	112	35.59
69	21.93	91	$28 \cdot 92$	113	35.91
70	$22 \cdot 24$	92	$29 \cdot 23$	114	$36 \cdot 22$
71	22.56	93	$29 \cdot 55$	115	36.54
72	$22 \cdot 88$	$\parallel 94$	$29 \cdot 87$	116	36.86
73	$23 \cdot 20$	95	30 · 19	117	37.18
74	23.51	96	30.51	118	37.50
75	23.83	97	30.83	119	37.81
76	$24 \cdot 15$	98	31 · 14	120	38.13
77	$24 \cdot 47$	99	31.46	121	38.45
78	$24 \cdot 79$	100	31.78	122	$38 \cdot 77$
79	25.10	101	$32 \cdot 09$	123	$39 \cdot 08$
- 80	25.42	102	$32 \cdot 41$	124	39.40
81	25.74	103	$32 \cdot 73$	125	$39 \cdot 72$
82	26.06	104	$33 \cdot 05$	126	40.04
83	26.37	105	33.36	127	40.36
84	26.69	106	33.68	128	40.67

TABLE FOR PROPORTION OF BASES IN MANGAMESE MUD.

This is used in the analysis of manganese mud to determine the proportion of bases to MnO₂. A certain volume of the mud being taken, then the number of grains of crystallized ferrosum sulphate is to the number of grains of crystallized oxalic acid decomposed and neutralized as 100 is to a figure in column A of the table. Opposite this figure in column B is the proportion of bases per equivalent of MnO₂.

		1			
€87•	22.99	189.	94.09	648•	97.99
₹6₹•	09.99	769.	00.19	068•	09.99
909.	94.99	804.	97.19	106•	94.99
919.	00.49	₹14•	91.50	716.	00.99
479.	97.49	974.	94.19	.923	92.99
8 2 9•	09.49	984.	00.29	₹6•	09.99
6†g.	94.49	474.	97.79	916.	94.99
099.	00.89	894.	95.29	996•	00 - 49
T49•	28.32	694	94.79	496•	92.49
789.	09.89	084	63.00	846.	09.49
£69•	94.89	164.	63.25	686.	94-49
7 09∙	00.69	208.	63.50	000·I	00.89
919.	97.69	•813	94.89	110.1	92.89
979.	09.69	₹78 •	00.79	1.022	09.89
4E9•	94.69	.832	97.79	I • 033	94.89
8₹9•	00.09	978.	09.₹9	₩₩0•T	00.69
699•	92.09	498•	94.79	I-022	92.69
049•	60.50	898•	00.39	990·I	9.69
В,	.A	В.	·v	B ,	.A
<u> </u>		1	1		!

I litre of chlorine at 0° C, and 760 mm, pressure weighs 3.17 grams.

1 c.c. $\frac{N}{10}$ arsenious or thiosulphate solution = .00355 grm. Cl.

1.2267 grm. $\text{MnO}_2 = 1$ grm. Cl.

REIMAN'S TABLES SHOWING THE COMPOSITION OF THE VARIOUS KINDS OF ANILINE OILS FOUND IN COMMERCE.

_	7 6.5	
		1
		တ္
		10
		19
		42
7 4	7 4.5	
		ω
4		
K=60 K= B=40 B=	K=50 B=50	K=60 K=50 K=37. B=40 B=50 B=62.

Toluidine (para- and meta-)	Aniline	Water, odorine, &c			
• •	:	:			
0	90	Ø1	per cent.	K = Kuphaniline.	
30	5	1	per cent.	B == Baraniline.	

KROUBER'S TABLES, SHOWING THE GENERAL CHARACTERS OF THE BENZOLS, NITROBENZOLS

HER.	Tint of Colour communicated to Goods Dyed therewith,		t contain chieffy		mauvaniline with a little	rosaniline.			Tibe de	<u>ဗ</u>	ish \ chrystolui- dine.			
THE OT			Dirty violet	Reddish violet	$box{Violet}{red}$	Red	Red.	Red.	Red.	Red	Yellowish red	Red.	Red.	
E FROM THE OTHER.	Yield of Colour ob- tainable, Crystalli- zable Fuschine = 1000.		70		110	160	230	270	240	260	360	200	180	
BLE ON	Specific Gravity of Aniline Oil at 16°.		1.0205	1.0199	1.0181	1.0139	1.0109	1.0060	1.0018	1.0009	0.9975	0.9943	0.9926	
Anilines, and Fuschines, derivable one	Principal Boiling Point of Aniline Oil.		180-185 1.0205	180-185 1.0199	185-190 1.0181	185-190 1.0139	$190-195 1 \cdot 0109$	$195-200 1 \cdot 0060$	$195-200 1 \cdot 0018$	$200-205 1 \cdot 0009$	200-205 0.9975	205-210 0.9943	205-210 0.9926	
USCHINES	Yield of, Aniline Oil per 100 parts of Nitro- benzol.		59	55	56	63	99	73	44	69	74	73	74	
AND F	Specific Gravity of Nitro- benzol at 16°.		1.1591	1.1617	1.1577	1.1445	1.1425	1.1365	1.1319	1.1235	1.1187	1.1182	1.1093	
INITINES,	Principal Boiling Point of Nitro- benzol.		205-210 1-1591	205-210 1-1617	210-215 1.1577	210-215 1-1445	$215 - 220 1 \cdot 1425$		$220 - 225 1 \cdot 1319$	225-230 1-1235	225-230 1.1187	230-235 1-1182	230-235 1 1093	
₹	Specific Gravity of Benzol at 15°.		0.9118	85 0.9263	0.9154	0.9210	6806.0	0.9071	0.9048	0.9033	0.9022	6006.0	1006.0	
	Boiling Point of Benzol.	Deg. C.	a 83-84 0.911	8 -08 q	c 85- 90 0·915	$d = 90 - 95 \cdot 0.921$	e 95-100 0.9089	$f_{100-105}$	g105-110	h 110-115	i 115–120 0.9022	j 120-125 0 · 9009	k125-130	

Krouber's Tables, showing the General Characters of the Benzols, &c.—continued.

Nitro- benzol			Rar	nge o	f Te	mper	atur	e, De	gree	s C.	,	;	Total
from Benzol marked		$\begin{array}{c} 200 \\ 205 \end{array}$											Distil- late.
													——
а	2	3	93	2			-						100
b			52	40	7	1			_				100
c			11	64	13	9	3		_				100
d		-3	5	52	32	7	1			-		_	100
e.	-	2	2	11	38	15	11	1	-				100
f	 —		3	4	2 8	43	16	5	1			_	100
			1	3	4	48	31	11	2				100
ħ			1	3	. 4	18	51	18	4	1	 		100
i				2	2	6	41	34	11	4			100
$egin{array}{c} g \\ h \\ i \\ j \\ k \end{array}$				2	2	-6	24	40	13	9	4		100
k				1	3	3	10	37	29	13	3	1	100

Aniline		Rang	ge of	Tem	pera	ture	, Deg	rees	c.		m. t1
from Benzol marked	Below 180							210 215			Total Distillate.
			 				 	<u> </u>	<u> </u>		
a	5	92	3					_	·		100
ь	4 1	78	14	4	_						100
c	3	28	61	8		—		_		<u> </u>	100
d	l —	5	60	29	6			_			100
e	-	4	9	64	16	7					100
f			4	38	46	8	4	_	-		100
				5	54	2 9	8	4			100
$egin{array}{c} g \ h \end{array}$	-	-		4	32	53	7	4		-	100
i			<u> </u>		5	62	24	6	3		100
j k				-	4	25	50	15	6		100
k						6	52	29	8	5	100
1									<u> </u>	<u> </u>	

Table showing the Tension of the Vapour of Petroleum of Good Quality, free from products with density below .73 and above .82.

TABLE FOR THE APPROXIMATE DETERMINATION OF THE COMPOSITION OF MILK BY THE LACTODENSIMETER (QUEVENUE).

28.23 23.19 19.16	71-71 71-02 71-71	10 10 10 10 10 10 10	36-5-32 36-5-32 36-5-32-5	6Z-8E 9Z-6Z 9Z-6Z	01 01 1 0
Degree of Milk, Skimmed.	Degree of Milk, Unskimmed.	Water added.	Degree of Milk, Skimmed.	Degree Of Milk, Degree	Water added.

Table for the Correction of the Degrees of the Lactodensimeter (Quevenne) for Temperature.

(The instrument is adjusted to 15° C.)

Degrees of		nskimn		k			ed Milk	
Degrees of Instrument.		Tempe	rature.			Tempe	rature.	1
	5° C.	10° C.	20° C.	25° C.	5° C.	10° C.	20° C.	25° C.
15	-0.9	-0.6	+0.8	+1.8				ۈن
$\frac{10}{20}$	1.1	0.7	0.9	1.9	-0.7	-0.5	+0.8	+1.7
f 22	1.2	0.7	1.0	1	0.7	0.5		1.7
${\bf 24}$	1.2	0.7	1.0	2.1	0.9	0.6	0.8	1.7
26	1.3	0.8	1.1	2.2	1.0	0.7	0.8	1.8
28	1.4	0.9	1.2	2.4	1.0	0.7	0.9	1.9
30	1.6	1.0	1.2	2.5	1.1	0.7	0.9	1.9
32	1.7	1.0	ł			0.7	1.0	2.1
34	1.9	1.1	1.3	2.8	1.2	0.8	1.0	2.2
<u> </u>	<u> </u>						<u> </u>	!

TABLE SHOWING THE COMPOSITION OF TALLOW BY THE FUSION POINT.

4 per cent. is deducted for Glycerine, and 1 per cent. for Moisture, Impurity, &c.

Fusion Point °C.	Per cent. of Stearic Acid.	Per cent. of Oleic Acid.	Fusion Point °C.	Per cent. of Stearic Acid.	Per cent of Oleic Acid.
40 40·5 41 41·5 42·5 43·5 44 44·5	35·15 36·10 38 38·95 39·90 42·75 43·70 44·65 47·50 49·50 51·30	59.85 58.90 57 56.05 55.10 52.25 51.30 50.35 47.50 45.60 43.70	45 5 46 46 5 47 47 5 48 48 5 49 49 5 50	52·25 53·20 55·10 57·95 58·90 61·75 66·50 71·25 71·20 75·05	42.75 41.80 39.90 37.05 36.10 33.25 28.50 23.75 22.80 19.95

QUANTITIES CORRESPONDING TO VARIOUS SALTS, &C., USED IN PHOTOGRAPHY.

	07.7 T	770.0	7.50	т	016.0	464.0
-I	I•1₫8	176.0	270 200		864.0	769.0
148·0	1.220	1.000	201		496.0	448.0
I • 063	1.102	806.0	401	·I	₹48.0	994.0
096·0 660·I	29Z•I	1.032	971	_	• I	948.0
1.255	I\$\$.I	181.1	208		1.142	1.1
			_		<u>'</u>	_'[
Sinc.	mnimba .ebiboI	,	- (mmonium Iodide.	A Sodine.
•1	629.1	916.	0 80) • I	148.0	114.0
•L ₹99•0].	699.	I	9.0	049.0	997.0
	1		-	[•[796.0	244.0
	660 · I 149 · I		0 33	• I	6.823	749.0
	96.0 977.I		1	7 · I	·I	918.0
471 · I 907 · I	71.I 794.I			₹• [1.225	313.0 .I
	901.6		_			
Sinc Bromide.	mnimb ediator (pA 4)	\mathbf{a}_{\perp} abimo	CE 1	Potass Rron	muinomn stomide.	
119	·I	907	Ι·0 • Ι		7794 · 0 7784 · 0	8767·0 1947·0
611		o co	ۥI	"	•I	9879.0
622			1.2		779.1	•I
blot) to a	Ohloride S bas	bloD to e		•	obiroIdO	Gold.
•1	. 0	08.0	019.0	n	627.0	9697.0
092.1	7	·I	E94 ·		706.0	7749.0
889-1		18.1	654	1	981.1	8794.0
788.1		01.1	₩8.	-	•I	6.6353
941.7		74. I	828		₹49·I	1.1
,onibe		Bromic	loride.	СР	Nitrate.	Silver.

LIST OF THE PRICES OF MOST IMPORTANT APPARATUS.

Assay A	nnarat	119							-		_
Anvils		ub-	-				each	s. 1		s.	
Cupels		••	••	• •	• •	• •			_	to 15	
Hämm		• •		• •	• •	• •	per doz		_	,, 10	
Mallet		• •	.• •	• •	• •	• •	each	1		,, 3	
Pliers	- • -	• •	• •	• •	• •	• •	"	2		,, 4	_
	ers, $2\frac{1}{2}$	in d	• • • · · · · · · · · · · · · · · · · ·	• •	• •	• •	,, ,,,	1		., 2	6
	, coppe			• •	• •	• •	per doz			_	
Shears		. 1	• •	• •	• •	• •	each	2	^	,, 5	
Vices		• •	• •	• •	• •	• •	,,	2	_	,, 4	
Balances		• •	• •	• •	• •	• •	"	5	0	" 15	0
Chemi								_			
		• •	• •	• •	• •	• •	,,		0 18	_	
Assay		• '•	• •	• •	• •	• •	,,	3	,, 18	33	
Grain we				0.7							,
From .	10,000 g	gran	is to	.01	gran	n	per set			£3 1	
Gram we	600	,,,	21	.01	.,,,,,	*	"			£1]	
Gram we	ights, 1	KII	o. to	1 m	illigi	ram	>> '			£3.]	l5s.
Rolange	Amath		ioa				1	8.		8.	d.
Balances,			ies	• •	• •	• •	each	2		o 30	0
Basins, P							-		lin.	Germ	an.
	h diam	•	• •	• •	• •	• •	per doz.	4	0		
4	"		• •	• •	• •	• •	••	10	-	4	-
6	"		• •	• •	• •	• •		21	0	10	0
10	,,		• •	• •	• •	• •		54	0		
14			• •	• •	• •	• •	,, 1	00	0		
Beakers,					• •	• •	19	1		o 19	0
Bell glass		$5\frac{3}{4}$	to 12	\times 1	.0₺	• •	each	2	9,	, 7	6
Blowpipe											
Black's		• •	• •	• •	• •	• •	**	0	9.		
Brass .		• •	• •	• •	• •	• •	99	1	-		
Commo	n brass	3	• •	• •	• •	• •	"	0	6		
Bottles—											
White	English	i flii			₫ 0Z	to					
80 oz.	. capaci	ity	• •	• •	• •	• •	per doz.	3	6 to	36	0
\mathbf{W} hite	Bohem	ian	glas	s, 🖠	oz.	\mathbf{to}					
	. capaci		• •	• •	• •	• •	,,	1	6,,	5	6
Burettes,			_			•					
With I	ndiarul	ober	tube	e an	d gl	ass					
jet, 2	0 c. c. t	o 50	c.c.	• •	• •	• •	each	1	10 ,,	3	2
With g	ass sto	pcoc	k, 50	c. c	in :	2 50 (div. "	5	0 "		
9		- ;;		,,	5			5	6		
							~	D	2		
							-	•	_		

• •						
	·nan	านาวน๐ว				
	L .					
APFARATUS-	TMEORTERAL	L MOSL	BICES O	THE L	\mathbf{OE}	TSI
STERL CLOCK	mir i macoasti		• •	J.		-

0	8	"	9	2	"	••	••	· · ·	ngys o c c	Preumatic tro
3	I	"	₹	0	66	• •	••	ue	บาบาย บายเ	Pipettes, gradu 1 c. c. to 100
^	Λ	"	3	0	66	• •	• •	• • 8.1Ə1	$c\lambda ma$	Pipettes, plain
9	0 ₹	"	8	2	"	• •	• •	'ui 9	× 01 (7 × 34 in. to
v	,		Ū	•						—вәшиМ
6	Ţ	41	ç	0	басћ	• •	• •	• •	diam.	.ai d od .ai L
-					nisləə	por	iməs	niI19A	setles,	Mortars and pe
9	8I	"	10	0	65	• •	• •		msib (ai Li od .ni L
		,,		_	"		300W	\mathbf{W} edge	səffes.	ii d ot .ni 1.1 Mortars and p
0	£9	"	0	₹	**			2800C	esties, raih r	q bas sastoM
_	_	66		Ψ.	במרוז		• •	• • • •	BUU UUR	Isamps, Bunsel
9	8		3	I I	евср		• •		••	braH
			0	I	per lb.	• •	• •	• • • •	• •	··· · · · · · · · · · · · · · · · · ·
			U	L	di man					Glass tubing—
0	ng	oj	0	17	66	• •	• •		• •	Gas bags
	oi		£Ŧ		ϵ g c μ	• •	• •	•• 5	groi .n	14 in. to 30 i
•	·	Ī			_				roitsuc	Furnaces, com
0	6	"	9	τ	"	• •	цsр	्राष्ट्रियस	66 -	<i>.</i>
0	₹8	66	9	\mathbf{z}	per doz.	• •	nsim	. Boher	.msib .	ni 01 of an I
		.,		_						o os, to 320 o Funnels, glass—
0	ħ	••	3	0	баср			ໝາອກເ		Flasks, Bohemi
			^	т.	66	• •		seln ha	ioq uo	dsibəw2
			0	7	per quire		• •		• •	Asilgad
			U	L	outin wou					Filter paper—
9	9	"	9	3	басћ	• •	• •	• • • •	• ••	mm 008
J	J		Ü	Ū		"· u	aw 0	1,8° 52	gruzeu	Eudiometers,]
0	91		6	3	46	• •	• •	nəssiə	W _	"
9	91		6	\mathbf{z}	per doz.	• •	• •	nilrə	cap, ${f B}$	λ ο δ ο δ ο δ ο δ ο δ ο δ ο δ ο δ ο δ ο
										Crucibles—
0	9	"	0		per set	••	• •	••••		Corks
0	7	Ι "	0	7	seorg req	•	• • •	0000		
C	3	66	9	7	tosa	••	• •	รรษโร	a staid	Cobalt glasses, Liel
			6	2	per doz.					Clips, watch glass
			7 6	0	"		nada			Chloride calcium
٥	7	"			(6 • •		P3040	4-11		bilos
0	G		U		"w	ara	uı 77	or .ni	bers, $\frac{8}{8}$	Caoutchouc stop
9	4	0	1 9) 7		•••	•••	•••	• • •	Burette stands
. F	· •	:	' ·p		•					•
						.1	onuit	เนอว	~~~~~~	· ····································

LIST	OF	THE	PRICES	OF	MOST	IMPORTANT	APPARATUS-
					ontini		

	con	tinu	ed.						
Retorts—					8.	d.		8.	d.
2 oz. to 100 oz. cap, p	lain	• •		each	0		to		
,, ,, tı	ıbul.			,,	0	4	,,	2	0
Retort stands—								_	_
13 in. to 24 in. high	• •		• •	,,	2	0	,,	8	0
Sand baths, iron—									_
4 in. to 12 in. diam.	• •	• •	• •	"	0	4	,,		0
Spitulas, steel	• •	• •	• •	,,	0	7	,,	1	3
Sulphuretted hydrogen	appa	ratus							
Kipps	••		• •	99	7	6	,,	12	0
Test tubes —				_		_		_	_
Sizes $2 \times \frac{1}{4}$ to 10×2	• •	• •	• •	per doz.	0	3	,,	3	6
Test-tube brushes	• •	• •	• •	each	0	2			
Test-tube stands, with	pegs-				_	_		_	-
6 to 24 holes	• •	• •	• •	"	1	0	,,	3	6
Tongs, crucible, iron-					_	_		_	•
6 in. to 21 in. long	• •	• •	• •	per pair	1	0	"	3	6
Tongs, crucible, brass-	-				_	_			
6 in. long	• •	• •	• •	**	1	6			
9 in. long · · · ·	• •	• •	• •	,,_	1	_		_	•
Wash bottles	• •	• •	• •	\mathbf{each}	1	0	,,	2	0
Wash bottles, Bayley's					_				•
For continuous jet		• •		,,	3	6	,,	4	6
Watch glasses—				•	_	_		_	^
1½ in. to 3 in. diam.	• •		• •	per doz.	0	9	,,	5	0
Water baths, copper, w	rith 4	ring	s			_		•	
30 oz			• •	\mathbf{each}	8	0			
60 oz		• •	• •	**	10	6		_	^
Weighing bottles .		• •	• •	"	0	3	"	1	0
Wire gauze		• •	$\mathbf{p}\mathbf{e}$	r sq. foot	1	0			
Woulffe's bottles—						_		- ^	_
5 oz. to 320 oz. capa	city, 2	2 nec	KS	each	0	9	,,	10	
99 99 - 1		3 nec	KS	**	1	0	"	12	0

WAGES TABLE.

					, 		-01				
6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	**	7087087807807807807807807807807807807807	813568 13568 1311111111111111111111111111111111111	£0000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	21 10 10 10 10 10 10 10 10 10 10 10 10 10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 01 0 01 0 01 0 01 0 01 0 01 0 01 0 0	32 23 4 4 5 5 5 6 6 8 8 7 7 8 8 8 4 4 5 5 5 5 5 1 1 0 £	### ### ### ### ### ### ### ### ### ##
Per Per Per Month. Per Month. Per Day.											Wages Per Year,

Fixerist Coins. A pound sterling consists of gold .. 113.001 grains.

1 shilling =87.273 grains. 12 pence. . .=\ 1b. avoir. 20 shillings= 3.636 oz. troy. Or pence in £ =5 lbs. ..
1 lb. troy (37 silver to 3 alloy) =66s.

COPPER COINAGE.—A lb. avoir. of copper is coined into 24 pence or 48 halfpence.

Bronze Coinage.—95 copper, 4 tin, 1 zinc, is coined into 40 pence, 80 halfpence, 160 farthings.

407 CHEMISTS' POCKET-BOOK.

READY RECKONER.

1	2	3	4	5	6	7	8	9	10
d. 本文章 14文章 4文章 4文章 4文章 4文章 4文章 4文章 4文章 4文章 4文章	$\begin{array}{c} \textbf{s. 0} & \textbf{0.1} \\ \textbf{0.1} & \textbf{1.1} \\ \textbf{2.12} & \textbf{1.2} \\ \textbf{0.0} & \textbf{0.0} \\ 0$	s. 0 0	s. d. 1 2 3 4 5 6 7 8 9 10 10 1 2 3 4 5 6 6 7 8 9 10 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	c. 1424 d. 1424 d. 1234 1235 6780 11013 4568 9000 1111 1224 1679 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1102 1234 1245<	$\begin{array}{c} 3. \frac{1}{2} & \frac{1}{4$	る. 3 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3	$\begin{array}{c} 3.246800001111468002468002468002468002468002468002468000246800024680000000000$	3. 14 24 44 44 45 55 55 56 66 66 67 77 77 88 88 88 88	$\begin{array}{c} d.\frac{1}{2} \\ 2.5 \\ 7.0 \\ 10.3 \\$

THE ELEMENTS ARRANGED BY MENDELEJEFF ACCORDING TO NEWLAND'S (PERIODIC) CLASSIFICATION.

•		 												
			i	Z	28.6	Pd	106.5	1	!	4	2.961			
	VIII.			පි	58.6	Rh	104.1			Ļ	196.7	I		RO_4
				Fe	55.9	Ru	85.2				198.6	1		
	VII.	FI	19.1	Mn	54.8				ļ					$ brace{R_2O_7}$
	VI.	0	-15.96	Č.	52.4	Mo	95.6		!	M	184.0	Ur.	240.0	RO3
	V.	Z]	اج ھ	182.0	,		$ m R_2O_5$
Even.	IV.	Ö	11.97	Ti	48.0	Zr	0.06	Ce	141.2	Di.	147.0	Tp	231.5	RO_z
	III.	A	11.0		1	$\Lambda_{\rm t}$	93.0	La	139.0	H	$169 \cdot 0$			$ m R_2O_3$
	II.	Be	0.6	Ç,	39.9	Ġ	87.2	Ba	136.8		1			RO
	i	ij	$7 \cdot 01$	<u> </u>	39.04	Rh	85.2	$^{ m c}$	133.0					$ m R_2O$

THE ELEMENTS ARRANGED BY MENDELEJEFF ACCORDING TO NEWLAND'S (Periodic) Classification—continued.

			-	TOTAL) Onas	OT L TOTAL TIC	(+ ENTODIO) CHASSIFICATION—CONTINUEU.	nueu.		
							Odd.			
		VIII.		Ĭ.	H.	III.	IV.	Ψ.	IA.	VII.
				T H						
Χ.				Na	S. Mo	AI	3. S.		co.	01
DI	편 e	3	Z:	0n 0n			0.87	Ο,	21.98 20.13	35.37
БN	55.9	58.6	58·6	63.0 63.0	64.9	fig Cla		74.0	70.00 00.00	TO Br
.PP	Ru	$\widetilde{\mathbf{R}}\mathbf{h}$	Pd	Ag	පදි	H C	r S			(C), (C)
ł	85.2	104.1	$106 \cdot 2$	107.66 111.6	111.6	113.4	117.8	_	128.0	126.53
					1	1		1]	1
	$0s$ $198 \cdot 6$	$\frac{\mathrm{Ir}}{196\cdot7}$	Pt 196·7	Au 196·2	Hg 199-8	T1 203-6	Pb 906·4	210.0	1 .	1
	İ	-		1	1	1	ŀ]	1	
409		RO_{4}		$\mathbb{R}_{2}0$	RO	R ₀ O	RO,	r,o	RO,	구 그
				,						

USEFUL DATA.

Formulæ for Alcohol (Allen).

D = Density of liquid. $\mathbf{W} = \mathbf{Per}$ cent. of alcohol by weight.

 $\mathbf{P} = \mathbf{P}$ er cent. of proof spirit by volume. $\mathbf{V} = \mathbf{Per}$ cent, of alcohol by volume.

 $(1) \quad V = P \times 0.5706.$

$$\frac{\mathrm{GW}}{8897 \cdot 0} = V (s)$$

$$\cdot 3237 \cdot 1 \times V = \frac{V}{3073 \cdot 0} = \mathbf{q} \quad (8)$$

$$.803 \cdot 2 \times \text{GW} = \text{T (4)}$$

D = Density at 60° F. (water = 1000). Formulæ for Beer and Wort (Allen).

E = D - 1000.

 $E \times .36 = \text{saccharometer gravity}.$

$$\frac{.36}{\text{Sacch. gravity}} = \text{E.}$$

$$\frac{\text{Sacch. gravity}}{8000} + 1000 = D.$$

 $Twaddell \times 5 = E.$

 $\mathbf{T} = 0001 + 3 \times 100$

$$\mathbf{A} = \frac{14,800}{5000000} = \mathbf{D}.$$

 $\frac{E}{3.85}$ = lbs. solid extract per 10 gallons.

 $\mathbf{E} \times 26 = 1$ bs. solid extract per 10 gallons.

 $\frac{\mathbf{E} \times 260}{\mathbf{D}} = \text{lbs. solid extract per 100 lbs. of}$ wort.

 $E \times .935 = lbs.$ solid extract per barrel.

For Correction of Density for Temperature.

d =observed density of hot wort.

t = temperature of hot wort (Fahr.).

$$d - 1000 = e$$
.

$$t - 60^{\circ} \text{ F.} = f.$$

$$\mathcal{D} = \left(1 + \frac{4e}{1000} + \frac{f}{100}\right) \frac{f}{10} + d.$$

Corrections of densities of solutions of cane sugar for temperature may be made by the same method.

TABLE SHOWING THE STRENGTH OF SOLUTION OF AMMONIA BY SPECIFIC GRAVITY (WACHSMUTH).

onsists of Liquid Ammomia in O,O,	.D.O ai tetW	I Litre contains Ammonia in Arams,	I Kilo. contains Ammonia in Grams,	pecific Gravity O °21 ta
9•99 7 9• 79 7	243·4 232·4	9.878 9.₹€	6•94E 7•78E	048 . 748
8.877	2.199	8.226	₹•698	₹48
T • T • •	6.899	1.718	962.0	948
433.3	4.999	8.118	9.₹98	848
g.97₹	9.749	302.2	3.148	088
8.417	2.283	8.662	0 ∙ 0 †€	7 88
410.5	8 • 689	2. ⊉62	832.9	7 88
402.6	₹•469	9.882	8.928	9 88
968	0.909	0.883	318 7	888
E • 48E	4.719	8.442	9.116	068
4.648	6.029	4.172	2.₹08	76 8
2.27E	8 · 479	2.992	8 · 467	₹6 8
9.₹98	₹•989	9.097	6.067	968
1.498	6.249	722 I	1.78Z	868
3.648	9.099	9.677	E · 447	006
342.1	6.499	244·I	4.047	206
4.₹88	8.999	7.882	1.797	₹06
7·478	9.749	₹•883	4.497	906
320.2	8.649	2.822	251.3	806
8.218	Z·489	8.777	6.777	016
9.908	₹•₹69	9.417	238.6	216
8.862	4.104	212.3	232.3	₹16
291.0	0.604	0.702	. 0.977	916
283.6	₹.914	9.102	4.613	816
8.943	4.834	€.96I	₹.513	920
1.692	6.084	1.161	8.402	226
6.192	1.887	6.981	201.2	₹76
9.797	₹·9₹4	9.08[1.961	976
₱• ८ ₹८	9.794	7.94T	0.681	826

Table showing the Strength of Solution of Ammonia by Specific Gravity—continued.

		1 Litre		onsists of
Specific Gravity at 12° C.	1 Kilo. contains Ammonia in Grams.	contains Ammonia in Grams.	Water in C.C.	Liquid Ammonia in C.C.
930 932 934 936 938 940 942 944 946 948 950 952 954 956 958 960 962 964 966 968 970 972 974 976 978	182·9 176·9 170·9 164·9 158·9 152·9 147·1 141·3 135·6 129·9 124·2 118·7 113·2 107·8 102·4 97·0 91·6 86·2 80·8 75·5 70·2 65·2 60·2 55·2 50·2	170·1 164·8 159·6 154·3 149·0 143·7 138·5 133·3 128·2 123·1 118·0 103·0 103·0 98·1 93·1 88·1 83·0 78·0 73·0 68·0 63·3 58·6 53·8 49·1	759·9 767·2 774·4 781·7 789·0 796·3 803·5 810·7 817·8 824·9 832·0 839·0 846·0 853·0 859·9 866·9 873·9 881·0 888·0 895·0 902·0 908·7 915·4 922·2 928·9	240·1 232·8 225·6 218·3 211·0 203·7 196·5 189·3 182·2 175·1 168·0 161·0 144·0 147·0 140·1 133·1 126·1 119·0 112·0 105·0 98·0 91·3 84·6 77·8 71·1
980 982 984 986 988 990	45·3 40·4 35·5 30·6 25·8 21·0	44·3 39·6 34·9 30·1 25·5 20·7	935·7 942·4 949·1 955·9 962·5 969·3	64·3 57·6 50·9 44·1 37·5 30·7

100 1.2691 75 1.2016 50 1.1320 25 1.0603 99 1.2664 74 1.1999 49 1.1293 24 1.0603 98 1.2634 72 1.1945 47 1.1238 22 1.0525 96 1.2534 70 1.1889 45 1.1123 20 1.0498 94 1.2534 70 1.1886 44 1.1120 21 1.0498 94 1.2534 69 1.1886 44 1.1120 20 1.0498 92 1.2478 69 1.1886 42 1.1120 1.0446 92 1.2478 66 1.1762 42 1.1100 17 1.0446 91 1.2478 66 1.1762 42 1.1045 1.0446 91 1.2478 66 1.1762 42 1.1042 81 $1.$	Per cent. Anhydrous Glycerine.	Specific Gravity at 12-14° C.	Per cent. Anhydrous Glycerine.	Specific Gravity at 12-14° C.	Per cent. Anhydrous Glycerine.	Specific Gravity at 12-14° C.	Per cent. Anhydrous Glycerine.	Specific Gravity at 12-14° C.
1.2664 74 1.1999 49 1.1265 23 1.2637 73 1.1945 48 1.1265 23 1.2634 71 1.1945 47 1.1238 22 1.2534 71 1.1889 46 1.1150 20 1.2557 69 1.1858 44 1.1155 19 1.2504 68 1.1826 43 1.1177 18 1.2451 66 1.1764 41 1.107 16 1.2455 66 1.1764 41 1.107 16 1.2455 65 1.1733 40 1.1045 16 1.2372 65 1.1670 36 1.0934 11 1.2345 62 1.1640 36 1.0934 11 1.2345 63 1.1640 36 1.0934 11 1.2238 60 1.1580 32 1.0830 9 1.2356 56 1.1480		1.2691	75	1.2016	50	1.1320	25	1.0635
1.2637 73 1.1973 48 1.1265 23 1.2584 71 1.1945 47 1.1238 22 1.2584 71 1.1918 46 1.1238 22 1.2584 71 1.1918 46 1.1238 20 1.2554 69 1.1858 44 1.1155 19 1.2504 68 1.1826 42 1.1100 17 1.2451 66 1.1764 41 1.107 18 1.2451 66 1.1764 41 1.107 18 1.2452 65 1.173 40 1.1045 15 1.2398 64 1.1702 39 1.1045 13 1.2318 63 1.1640 37 1.0952 12 1.2236 59 1.1640 34 1.0852 8 1.2238 58 1.1640 34 1.0852 8 1.2215 56 1.1480 <	66	•	74	1.1999	49	•	24	1.0608
1.2610 72 1.1945 47 1.1238 22 1.2584 71 1.1918 46 1.1210 21 1.2584 70 1.1889 45 1.1183 20 1.2531 69 1.1858 44 1.1155 19 1.2504 68 1.1795 42 1.1100 17 1.2451 66 1.1764 41 1.1072 18 1.2455 66 1.1764 41 1.1072 16 1.2345 62 1.1671 38 1.0953 13 1.2345 62 1.1671 38 1.0962 12 1.2345 62 1.1640 37 1.0963 13 1.2238 61 1.1640 36 1.0963 13 1.2256 59 1.1550 33 1.0852 8 1.2212 56 1.1480 31 1.0798 6 1.2185 56 1.1480	86	•	73	1.1973	48		23	1.0580
1.2584 71 1.1918 46 1.1210 21 1.2557 70 1.1889 45 1.1183 20 1 1.2531 69 1.1858 44 1.1155 19 1 1.2504 68 1.1856 43 1.1157 18 1 1.2451 66 1.1795 42 1.100 17 1 1.2455 65 1.1764 41 1.1072 15 1 1.2338 64 1.1762 39 1.1045 13 1 1.2345 62 1.1671 38 1.0962 13 1 1.2345 62 1.1640 37 1.0962 12 1 1.2256 59 1.1650 33 1.0852 8 1 1.2212 56 1.1480 31 1.0798 6 1 1.2159 55 1.1480 31 1.0774 4 1 1.2062	26	•	72	1.1945	47	•		1.0553
1.2557 70 1.1889 45 1.1183 20 1 1.2531 69 1.1858 44 1.1155 19 1 1.2504 68 1.1826 43 1.1127 18 1 1.2478 67 1.1795 42 1.1100 17 1 1.2425 66 1.1764 41 1.1045 17 1 1.2398 64 1.1702 39 1.1045 14 1 1.2345 62 1.1640 37 1.0962 13 1 1.2345 62 1.1640 37 1.0962 13 1 1.2318 61 1.1640 37 1.0962 12 1 1.2255 59 1.1640 34 1.0850 9 1 1.2156 56 1.1480 31 1.0779 6 1	96	•	1.1	1.1918	46	1.1210		1.0525
1.2531 69 1.1858 44 1.1155 19 1 1.2504 68 1.1826 43 1.1127 18 1 1.2478 67 1.1795 42 1.1107 18 1 1.2451 66 1.1764 41 1.1072 16 1 1.2425 65 1.1762 39 1.1045 16 1 1.2398 64 1.1702 39 1.1017 14 1 1.2345 63 1.1671 38 1.0989 13 1 1.2346 62 1.1640 37 1.0962 13 1 1.2318 61 1.1640 36 1.0962 12 1 1.2265 59 1.1582 35 1.0880 9 1 1.2218 56 1.1480 31 1.0798 6 1 1.2186 56 1.1480 31 1.0774 4 1 <tr< td=""><td>95</td><td>•</td><td>70</td><td>1.1889</td><td>45</td><td>1.1183</td><td>20</td><td>1.0498</td></tr<>	95	•	70	1.1889	45	1.1183	20	1.0498
1.2504 68 1.1826 43 1.1127 18 1 1.2478 67 1.1795 42 1.1100 17 1 1.2451 66 1.1764 41 1.1072 16 1 1.2451 66 1.1764 40 1.045 16 1 1.2398 64 1.1702 39 1.1017 14 1 1.2345 62 1.1640 37 1.0962 13 1 1.2345 62 1.1640 37 1.0962 13 1 1.2345 61 1.1610 36 1.0962 13 1 1.2292 60 1.1682 35 1.0962 11 10 1.2265 59 1.1656 34 1.0826 9 1 1.2185 56 1.1480 31 1.0798 6 1 1.2186 55 1.1430 29	94	1.2531	69	1.1858	. 44	1.1155	19	1.0471
1.2478 67 1.1795 42 1.1100 17 1.2451 66 1.1764 41 1.1072 16 1.2425 65 1.1764 40 1.1045 16 1.2398 64 1.1702 39 1.1017 14 1.2345 63 1.1640 37 1.0962 13 1.2345 61 1.1640 36 1.0962 13 1.2318 61 1.1640 36 1.0962 12 1.2265 59 1.1680 36 1.0934 11 1.2265 59 1.1582 35 1.0880 9 11 1.2238 58 1.1556 33 1.0825 8 1 1.2185 56 1.1480 31 1.0798 6 1 1.2160 55 1.14403 29 1.0744 4 1 1.2049 52 1.1348 26 1.0689 2 <	93	•	89	1.1826	43	1.1127	18	1.0446
1.2451 66 1.1764 41 1.1072 16 1.2425 65 1.1733 40 1.1045 15 1.2398 64 1.1702 39 1.1017 14 1.2372 63 1.1640 37 1.0989 13 1.2345 62 1.1640 37 1.0962 12 1.2345 61 1.1640 36 1.0962 13 1.2292 60 1.1582 35 1.0962 12 1.2265 59 1.1582 34 1.0880 9 1.2238 58 1.1530 33 1.0852 8 1.2185 56 1.1480 31 1.0798 6 1.2189 55 1.1480 31 1.0771 5 1.2159 54 1.1430 29 1.0774 4 1.2079 53 1.1375 27 1.0689 2 1.2042 51 1.1375 27 1.0689 2	92	•		1.1795	42	1.1100	17	1.0422
1.2425 65 1.1733 40 1.1045 15 1.2398 64 1.1702 39 1.1017 14 1.2345 63 1.1640 37 1.0962 13 1.2345 62 1.1640 37 1.0962 13 1.2318 61 1.1610 36 1.0962 12 1.2292 60 1.1582 35 1.0934 11 1.2265 59 1.1556 34 1.0850 9 1.2238 58 1.1556 33 1.0852 8 1.2185 56 1.1480 31 1.0798 6 1.2185 56 1.1480 31 1.0798 6 1.2189 54 1.1430 29 1.0774 4 1.2079 52 1.1375 28 1.0689 2 1.2042 51 1.1374 26 1.0669 2	91	•	99	1.1764	41	1.1072	91	1.0398
1.2398 64 1.1702 39 1.1017 14 1.2372 63 1.1640 37 1.0989 13 1.2345 62 1.1640 37 1.0962 13 1.2318 61 1.1610 36 1.0962 12 1.2292 60 1.1582 35 1.0934 11 1.2265 59 1.1556 34 1.0880 9 1.2238 58 1.1556 33 1.0852 8 1.2218 56 1.1480 31 1.0779 6 1.2159 55 1.1455 30 1.0774 4 1.2132 54 1.1430 29 1.0774 4 1.2065 53 1.1375 28 1.0689 2 1.2079 52 1.1375 26 1.0663 1	06	•	65	1.1733	40	1.1045	15	1.0374
1.2372 63 1.1671 38 1.0989 13 1.2345 62 1.1640 37 1.0962 12 1.2345 61 1.1610 36 1.0962 12 1.2292 60 1.1582 35 1.0934 11 1.2265 59 1.1556 34 1.0880 9 1.2238 58 1.1530 33 1.0852 8 1.2185 56 1.1480 31 1.0798 6 1.2159 55 1.1430 29 1.0774 4 1.2132 54 1.1430 29 1.0744 4 1.2079 53 1.1403 28 1.07689 2 1.2074 51 1.1375 27 1.0689 2 1.2074 51 1.1348 26 1.0669 2	68	• `	64	1.1702	39	1.101.1	14	1.0349
1.2345 62 1.1640 37 1.0962 12 1 1.2318 61 1.1610 36 1.0934 11 11 1.2292 60 1.1582 35 1.0907 10 11 1.2265 59 1.1556 34 1.0880 9 1 1.2238 58 1.1550 33 1.0852 8 1 1.2185 56 1.1480 31 1.0798 6 1 1.2159 55 1.14403 29 1.0774 4 1 1.2079 53 1.1403 28 1.0776 3 1 1.2079 52 1.1375 27 1.0689 2 1 1.2042 51 1.13748 26 1.0689 2 1	88	•	63	1.1671	38	1.0989	13	1.0322
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	87	٠	62	1.1640	37	1.0962	12	1.0297
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	•	61	1.1610	36	1.0934	11	1.0271
1.2265 59 1.1556 34 1.0880 9 1 1.2238 58 1.1530 33 1.0852 8 1 1.2212 57 1.1505 32 1.0825 7 1 1.2185 56 1.1480 31 1.0798 6 1 1.2159 55 1.1455 30 1.0771 5 1 1.2106 53 1.1430 29 1.0744 4 1 1.2079 52 1.1375 27 1.0689 2 1 1.2042 51 1.1348 26 1.0663 1 1	85	•	09	1.1582	35	1.0907	10	1.0245
1.2238 58 1.1530 33 1.0852 8 1 1.2122 57 1.1505 32 1.0825 7 1.2185 56 1.1480 31 1.0798 6 1 1.2159 55 1.1455 30 1.0771 5 1 1.2132 54 1.1430 29 1.0744 4 1 1.2106 53 1.1403 28 1.0716 3 1 1.2079 52 1.1375 27 1.0689 2 1 1.2042 51 1.1348 26 1.0663 1 1	84	•4	59	1.1556	34	1.0880	ග	1.0221
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	83	•	58	1.1530	33	1.0852	∞	1.0196
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	82	•	57	1.1505	32	1.0825	1-	1.0172
$ \begin{array}{c cccccccccccccccccccccccccccccc$	7,	•	56	1.1480	31	1.0798	9	1.0147
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	1.2159	55	1.1455	30	1.0771	rO	1.0123
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	64-	1.2132	54	1.1430	29	1.0744	4	1.0098
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	48	1.2106	53	1.1403	28	1.0716	က	1.0074
	22	1.2079	52	1.1375	27	1.0689	લ	1.0049
	92	1.2042	51	-	26	1.0663	H	1.0025

TABLE SHOWING THE BOILING POINTS OF SATURATED SOLUTIONS.

Salt in Solution.		Boiling Point °C.	Salt per 100 of Water.
Potassium acetate	••	169	800
Sodium "	••	124.4	209
Potassium carbonate	••	135	205
Sodium "	••	$104 \cdot 6$	48.5
Ammonium chloride	• •	$114 \cdot 2$	89
Barium "	••	$104 \cdot 4$	60
Calcium ,,	••	$179 \cdot 5$	325
Potassium ,,	••	108.4	59.4
Sodium "	• •	108.4	40.2
Ammonium nitrate		164	209
Calcium ,,	••	151	362 .
Potassium ,,		116	335
Sodium phosphate	••	106.6	112.6

TABLE I.—FOR CALCULATING THE VALUE OF CUBIC CENTIMETERS WITH DIFFERENT CORRECTIONS (WORRALL).

These tables are for use in volumetric anglesis when standard solutions are used which are not exactly normal or

decinori meters s have be	tables ar mal. Th at the left en used, t	e for use in the "factor" Fand side.	is given a Thus suprue is 18°3.	c analysis of the the description of the the solution of the s	when stand of the co lution to k	nard solutions, and se weak, and	the number its factor	to be '915,	inting the	These tables are for use in voluments analysis when standard solutions are used which are not exactly normal of decinormal. The "factor" is given at the head of the columns, and the numbers representing the cubic centimeters at the left-hand side. Thus suppose the solution to be weak, and its factor to be '915, if 20 cubic centimeters have been used, the real value is 18.3.
	006.	-905	.910	.915	.920	.925	.930	•935	046-	.945
2		1.81	1.82	1.83	1.84	1.85	1.86	1.87	1.88	1.89
က		•	2.73	2.745	2.76	2.775	2.79	2.805	2.83	2.835
4	3.6	3.62	3.64	3.66	3.68	3.7	3.72	3.74	3.46	3.78
	4		4.55	4.575	4.6	4.625	4.65	4.675	4.7	4.725
9		5.43	5.46	5.49	5.52	5.55	5.58	5.61	5.64	29.9
7		6.335	6.37	6.405	6.44	6.475	6.51	6.545	6.58	6.615
· ∞		•	7.28	7.32	•	7.4	7.44	7.48	7.52	7.56
6	•	8.145	8.19	8.235	•	8.325	8.37	8.415	8.46	8.505
10	•	•	9.1	9.15	9.2	9.25	•	9.35	9.4	9.45
11		9.955	10.01	10.065	10.12	10.175	10.23	10.285	10.34	10.395
12		10.86	10.92	10.98	11.04	11.1	11.16	11.22	11.28	11.34
13	11.7	11.765	11.83	11.895	11.96	12.025	12.09	12.155	12.22	12.285
14		12.67	12.74	12.81	12.88	12.95	13.02	13.09	13.16	13.23
15	•	13.575	13.65	13.725	13.8	13.875	13.95	14.025	14.1	14.175
16		14.48	14.56	14.64	14.72	14.8	14.88	14.96	15.04	15.12
17		15.385	15.47	15.555	15.64	15.725	15.81	15.895	15.98	16.065
18		16.29	16.38	16.47	16.56	16.65	16.74		16.92	17.01
19		17.195	17.29	17.385	17.48	17.575	19.41	17.765	17.86	17.955
20	18.	18.1	18.2	18.3	18.4	18.5	•	18.1	18.8	18.9
21	18.9	19.005	19.11	19.215	19.32	19.425	19.53	9	19.74	19.845
22	19.8	19.91	20.02	20.13	20.24	20.35	20.46	20.57	20.68	20.19
23	20.1	20.815	20.93	21.045	21.16	21.275	21.39	21.505	21.62	21.735

	-							-											-				•
23	22	21	02	61	8	11	16	, L	14	3	12	1	i L	, (× 00	~	r σ:	. e	ı # 2	. cu	8		
21.85	20.9	19.95	19.	18.05	17.1	16.15	15.2	14.25	13.3	12.35	11.4	10.45	9.5	8.55	7.6	6.65	5.7	4.75	<u>د</u> 0	2.85	1.9	.950	TABLE
	$21 \cdot 01$			18.145			15.28		13.37		11.46			8.595	7.64	6.685	5.73	4.775	3.82	2.865	1.91	.955	I.—For
22.08	21.12	20.16	19.2	18.24	17.28	16.32	15.36	14.4	13.44	12.48	11.52	10.56	9.6	8.64	7.68	6.72	5.76	4.8	3.84	2.88	1.92	-960	CALCULATING
22.195				18.335			15.44						9.65			6.755	-	_	_		1.93	-965	TING THE
22.31	21.34	20.37	19.4	18.43	17.46	16.49	15.52	14.55	13.58	12.61	11.64	10.67	9.7	8.73	7.76	6.79	5.82	4.85	3.88	2.91	1.94	-970	VALUE
22.425	21.45						15.6		13.65		11.7	10.725	9.75	8.775	7.8	6.825	5.85	4.875	3.9	•	1.95	.975	OF CUBIC
22.54																					1.96	•980	CENTIMETERS,
22.655	21.67	20.685	19.7	18.715	17.73	16.745	15.76	14.775	13.79	12.805	11.82	10.835	9.85	8.865	7.88	6.895	5.91	4.925	3.94	2.955	•	•985	TERS, &c.
22.77	21.78	20.79	19.8	18.81	17.82	16.83	15.84	14.85	13.86	12.87	11.88	10.89	9.9	8.91	7.92	6.93	5.94	4.95	3.96	2.97	1.98	.990	continued.
22.885	21.89	20.895	19.9	18-905	17.91	16.915	15.92	14.925	13.93	12.935	11.94	10.945	9.95	8.955	7.96	6.965	5.97	4.975	3.98	2.985	1.99	-995	red.

TABLE I. FOR CALCULATING THE VAIUE OF CUBIC CENTIMETERS, &Ccontinued	
TABLI	

-900 -905 -910 -910 21.6 21.72 21.84 21.96 22.08 22.5 22.625 22.75 22.875 23.92 23.4 23.53 23.66 23.79 23.92 24.3 24.435 24.57 24.705 24.84 25.2 25.34 25.48 25.62 25.76 26.1 26.245 26.39 26.55 26.55 27.1 26.39 26.53 26.53 26.68 27.1 26.245 26.39 26.53 26.68 27.1 26.245 26.39 26.55 25.76 27.1 26.245 26.39 26.68 26.68 27.1 27.15 27.45 27.66 28.0 25.28.21 28.365 28.52 28.52 28.8 28.96 30.03 30.195 30.36 31.6 31.67 31.85 32.94 31.24 32.3 34.38 33.45	920 .925 .930 .935 .940 .945	22.32 22.44 22.56 22	25 23.25 23.375 23.5 23	24.05 24.18 24.31 24.44 24	24.975 25.11 25.245 25.38 25	25.9 26.04 26.18 26.32 26	26.825 26.97 27.115 27.26 27	27.75 27.9 28.05 28.2 28	28.675 28.83 28.985 29.14 29	29.6 29.76 29.92 30.08 30	30.525 30.69 30.855 31.02 31	31.45 31.62 31.79 31.96 32	32.375 82.55 32.725 32.9 33	33.3 33.48 33.66 33.84 34	34.225 34.41 34.595 34.78	35.15 35.34 35.53 35.72 35	36.075 36.27 36.465 36.66 36	37. 37.2 37.4 37.6 37	37.925 38.13 38.335 38.54 38	38.85 39.06 39.27 39.48 39	39.775 39.99 40.205 40.42 40	40.7 40.92 41.14 41.36 41	41.625 41.85 42.075 42.3 42	42.55 42.78 43.01 43.24 45	43.475 43.71 43.945 44.18 44	44.4 44.64 44.88 45.12 45.	325 45.57 45.815 46.06	.25 46.5 46.75 47. 47.
00 55 57 57 58 59 59 50 50 50 50 50 50 50 50 50 50		96 22.	875	79 23	705 24	62 25	535 26	45 27	365 28	28 29	$195 \mid 30$	11 31	$0.025 \mid 32$	94 33	855 34	.77 34	.685 35	98 9.	.515 37	.43 38	$.345 \mid 39$.26 40	175 41	.09 42.	005 43	-92 44.	835 45	55
8 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.910	21.84	22.75	23.66	24.57	25.48	26.39	27.3	28.21	29.12	30.03	30.94	31.85	32.76	33.67	34.58	35.49	36.4	37.31	38.22	39.13	40.04	40.95	41.86	42.77	43.68	44.59	45.5
	-905		•		•	•	•		•		•		•		•	•	•		•	•	•		•	•	•	•	•	•
	006.		•	•	•	•				•			•	•		•		•		•	•	•		•			•	•

APPENDIX,

50	49	48	47	46	45	44	43	42	41	40	39	38	37	36	35	34	33	32	31	30	29	28	27	26	25	24	
•	46.55	•	•		•	•			•	38.	37.05	$36 \cdot 1$	$35 \cdot 15$	$34 \cdot 2$	33.25	32.3	31.35	30.4	$29 \cdot 45$	28.5	27.55	26.6	25.65	24.7	•	•	950
47.75	46.795	45.84	44.885	43.93	42.975	42.02	41.065	40.11	39.155	38.2	37.245	$36 \cdot 29$	35 · 335	34.38	33.425	32.47	31.515	30.57	29.615	28.66	27.705	26.75	25.795	24.83	23.875	22.92	-955
48.	•	46.08	•	•	•	42.24	•	•	•	38.4	•	36.48	•	•	•	•	31.68	•		•	•		•	•	24.	23.04	.960
48.25	47.285	$46 \cdot 32$	45.355	44.39	43.425	$42 \cdot 46$	41.495	40.53	39 - 565	38•6	37.635	36.67	35.705	34.74	33.775	32.81	31.845	30.88	29.915	28.95	27.985	$27 \cdot 02$	26.055	25.09	24.125		.965
	47.53	•	•	•	•	•	•	•	•	•		•	•		•	•	32.01	•	•	•	28.13	•	26.19	•	•	23.28	.970
48.75	47.775		45.825			42.9					38.025	37.05	36.075	35.1	34.125	33.15	32.175	31.2	$30 \cdot 225$	29.25	28.275	27.3	26.325	25.35	24.375	23.4	.975
49•	48.02	•	•	•	44.1	43.12	42.14	41.16	40.18	39.2	38.22	37.21	36.26	35.28	34.3	33.32	32.34	31.36	•	•	28.42	27.44	•	•	24.5		.980
49.25	48.265	47.28	46.295	45.31	44.325	43.34	42.355	41.37	40.385	39.4	38.415	37.43	•	•	34.475	•	32.505	•		•	28.565		•	·61	•	23.64	-586-
49.5	48.51												36.63	35.64	34.65	33.66	32.67	31.68	30.69	29.7	28.71	-1	6.7	2	4.7		066.
49.75	48.755	•	-7	-1	-7	.78	-1	67.	-7	•		•		•	•		32.835	•	30.845	•	•	•	•	•	•	•	. 995

TABLE I .- FOR CALCULATING THE VALUE OF CUBIC CENTIMETERS, &c .- continued.

ξ ť

_	Savey and the			بمبوعه			سب	-	-		-			LC RE			-						-		
	1.05	2.10	3.15	4.2	5.25	6.3	7.35	8.4	9.45	10.5	11.55	12.6	13.65	14.7	15.75	16.8	17.85	18.9	19.92	$21\cdot$	22.05	23.1	24.15	25.2	26.25
s, &c.	1.045	5.09	3.135	4.18	5.225	6.27	7.315	8.36	9.405	10.45	11.495	12.54	13.585	14.63	15.675	16.72	17.765	18.81	19.855	50.9	21.945	22.99	24.032	25.08	26.125
NTIMETER	1.04	2.08	3.12	4.16	2.5	6.24	7.28	8.32	9.36	10.4	11.44	12.48	13.52	14.56	15.6	16.64	17.68	18.72	19.46	8.02	21.84	22.88	23.92	24.96	.92
CUBIC CENTIMETERS,	1.035	2.07	3.105	4.14	5.175	6.21	7.245	8.28	9.315	10.35	11.385	12.42	13.455	14.49	15.525	16.56	17.595	18.63	19.665	20.1	21.735	22.77	23.805	24.84	25.875
VALUE OF	1.03	2.06	3.09	4.12	5.15	6.18	7.21	8.24	9.27	10.3	11.33	12.36	13.39	14.42	15.45	16.48	17.51	18.54	19.57	9.03	21.63	22.66	23.69	24.72	25.75
THE	1.025	2.05	3.075	4.1	5.125	6.15	7.175	8.5	9.225	10.25	11.275	12.3	13.325	14.35	15.375	16.4	17.425	18.45	19.475	20.5	21.525	22.55	23.575	24.6	25.625
CULATING	1.02	2.04	3.06	4.08	5.1	6.12	7.14	8.16	9.18	10.5	11.22	12.24	13.26	14.28	15.3	16.32	17.34	18.36	19.38	20.4	21.42	22.44	23.46	24.48	25.5
IIFOR CALCULATING	1.015	2.03	3.045	4.06	5.075	80.9	7.105	8.12	9.135	10.15	11.165	12.18	13.195	14.21	15.225	16.24	17.255	18.27	19.285	20.3	21.315	22.33	23.345	24.36	25.375
1	1.010	2.03	3.03	4.04	5.05	90.9	7.07	80.8	60.6	10.10	11.11	12.12	13.13	14.14	15.15	16.16	17.17	18.18	19.19	20.2	21.21	22.22	23.23	24.24	25.25
TABLE	1.005	2.01	3.015	4.02	5.025	6.03	7.035	8.04	9.045	10.05	11.055	12.06	13.065	14.07	15.075	16.08	17.085	18.09	19.095	20.1	21.105	22.11	23.115	24.12	25.125
		2	1 es	4	ı	9	~	00	6.	10		12	13	14	5.	91	17	18	19	20	21	22	23	24	25

42	L									A	P]	P.E	N.	DI	X	•								
25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	∞	7	6	ಲಾ	4	ယ	10	
26.375	25.32	24.265	23.21	22.155	21.1	20.045	18.99	17.935	16.88	15.825	14.77	13.715	12.66	11.605	10.55	9.495	8.44	7.385	6.33	5.275	4.22	3.165	2.11	1.055
26.5	25.44	24.38	23.32	22.26	$21 \cdot 2$	20.14	19.08	18.02	16.96	15.9	14.84	13.78	12.72	11.66	10.6	9.54	8.48	7.42	6.36	တ	4.24	3.18	2.12	1.06
26.625	25.56	$24 \cdot 495$	23.43	22.365	21.3	20.235	19.17	18.105	17.04	15.975	14.91	13.845	12.78	11.715	10.65	9.585	8.52	7.455	6.39	5.325	4.26	3.195	2.13	1.065
26	25	24	23	22	21	20	19.26	18	17	16	14	13	12	11	10	9	00	7	6	ت ت	4	ယ	2	1.07
26.875	25.8	24.725	23.65	22 . 575	21.5	20.425	19.35	18.275	17.2	16.125	15.05	13.975	12.9	11.825	10.75	9-675	8.6	7.525	6.45	5.375	4.3	3.225	2.15	1.075
27.							19.44																	1.08
27.125	26.04	24.955	23.87	22.785	21.7	20.615	19.53	18.445	17.36	16.275	15.19	14.105	13.02	11.935	10.85	9.765	8.68	7.595	6.51	5.425	4.34	3.255	2.17	1.085
							19.62																	1.09
27.375	26.28	25.185	24.09	22.995	21.9	20.805	19.71			16.425	15.33	14.235	13.14	12.045	•	9.855	•	7.665	•	5.475	•	3.285	2.19	1.095
27.5	26.4	25 3	24.2	23.1	22.	20.9	19.8	18.7	17.6	16.5	15.4	14.3	13.2	12.1	11.	9.9	8.8	7-7	6.6	en en	4.4	3.3	2.2	1·1

TABLE II .- FOR CALCULATING THE VALUE OF CUBIC CENTIMETERS, &c .- continued.

APPENDIX.

•	TABLE II.	For	CALCULATING THE	ING THE	VALUE	of Cubic	CENTIMETERS, &	TERS, &c	-continued,	red.
	1.055	1.06	1.065	1.07	1.075	1.08	1.085	1.09	1.095	1.1
26		27.56	27.69	27.82	27.95	28.08	28.21	28.34	œ ا	28.6
27	28.	$28 \cdot 62$	28.755	28.89	•	$29 \cdot 16$	29.295	•	29.565	29.7
28	29.	•	•	•	30.1	30.24	30.38	30.52	30.66	30.8
29	30.	30.74	30.885	•	31.175	31.32	31.465	•	31.755	31.9
30	31	31.8	31.95	$32 \cdot 1$	32.25	32.4	32.55		32.85	ယ္
31		$32 \cdot 86$	33.015	33.17	33.325	33-48	33.635	33.79	33.945	34.1
32		33.92	34.08	$34 \cdot 24$	34.4	34.56	34.72	34.88	35.04	35.2
33		34.98	35.145	35.31	35.475	35.64	35.805	35.97	36.135	36.3
34		$36 \cdot 04$	$36 \cdot 21$	36.38	36.55	36.72	36.89	37.06	37.23	37.4
35		37.1	37 · 275	37.45	37.625	37.8	37.975	38.15	38.325	38.5
36		$38 \cdot 16$	38.34	38.52	38.7	38.88	39.06	39.24	39.42	39.6
37		$39 \cdot 22$	39.405	39.59	39.775	39.96	40.145	40.33	40.515	40.7
38		40.28	40.47	40.66	40.85	41.04	41.23	41.42	41.61	41.8
. 39		41.34	41.535	.41.73	41.925	$42 \cdot 12$	42.315	42.51	42.705	42.9
40	42.2	42.4	42.6	42.8	•	43.2	43.4	43.6	43.8	44.
41		43.46	43.665	43.87	44.075	$44 \cdot 28$	44.485	44.69	44.895	45.1
42		44.52	44.73	44.94	•	45.36	45.57	45.78	45.99	46.2
43		45.58	45.795	46.01	46 225	46.44	46.655	46.87	47.085	47.3
44		46.64	46.86	47.08	47.3	47.52	47.74	47.96	48.18	48.4
45		47.7	47.925	48.15	48.375	48.6	48 825	49.05	49.275	49.5
46		48.76	48.99	49.22	49.45	49.68	49.91	50.14	50.37	50.8
47		49.82	50.055	$50 \cdot 29$	50.525	50.76	50.995	51.23	51.465	51.7
48		50.88	51.12	51.36	51.6	51.84	52.08	52.32	52.56	52.8
49		51.94	52.185	52.43	52 675	52.92	53.165	53.41	53.655	53.9
50		53.	53.25	53.5	53.75	54.	54.25	54.5	54.75	55.

MAGNESIA MIXTURE.

Dissolve 83 grams of crystallized magnesium sulphate in boiling water, add 5 c. c. of hydrochloric scid, and then 82 grams of crystallized barium chloride previously dissolved in water. Filter off a few drops of the solution and add add a little more magnesium sulphate. Then add a little more magnesium sulphate. Then concentrate by evaporation. When cool transfer concentrate by evaporation. When cool transfer concentrate by evaporation, when cool transfer concentrate hask, add 165 grams of pure ammonium chloride, 260 c. c. of ammonia, and then water to the mark. Allow to stand a few days and filter if necessary.

DRY REAGENTS.

Fusion Mixture. Mix 10 parts of anhydrous sodium carbonate with 13 parts of anhydrous potassium carbonate.

Blux Flux. Ignite Rochelle salt to redness in

a covered crucible.

Soda Lime. Take caustic soda of known sp. gr. and calculate the weight of NaHO present, add twice the latter weight of good quicklime, allow the slaking to take place and evaporate to dryness in an iron dish. Heat the residue to redness in a crucible, and then reduce it to coarse redness in a crucible, and then reduce it to coarse powder by sifting.

.esnutxiM noisuA prizibixO

(1) Anhydrous sodium carbonate 6 parts, potassic nitrate 4 parts.

(2) Anhydrous sodium carbonate 6 to 8 parts, potassic chlorate I part

A
>
18
ম
E.O.
Η
TABLE OF THE ATOMIC WEIGHTS AS RE-CA
\triangleright
MOL
Š
G
₹
E.
<u> </u>
Ï
53
S
3 RE
က်
I
Ö
뒫
2
ALCULATED BY F.
벖
Ħ
<u> </u>
¥
.4
G
Δ
RE
Ħ

42	5									A	lΡ	PΙ	EN	D:	IX	ζ.							
GR.	, rz] <u> </u>	בל	Cu	}	Nb	င္ပင္	Ç.	<u>C</u>	}	Ce	C	Ç ₂	S. Cs	Cd) tr	w W	<u>B</u>	Ва	As	dS	AI	Symbol.
Galilum	Fluorine	Erbium	Didymium	Copper	Niobium	Columbium or	Cobalt	Chromium	Chlorine		Cerium	Carbon	Calcium	Cæsium	Cadmium	Bromine	Boron	Bismuth	Barium	Arsenic	Antimony	Aluminium .	Name.
	•	<u>.</u>	-	•		_	-	•	: 		: 	: 	:	<u>:</u>	: 	:	: 	: _	: _	<u>:</u>	<u>:</u>	<u>:</u>	
68.854	18.984	165.891	142.121	63.173		93.812	58.887	52.009	35.370		140.424	11.9736	39.990	132.583	111.835	79.768	10.941	207.523	136.763	74.918	119.955	27.009	H = 1.
;	,, 0.0065	3	"	,, 0.011		••	,, 0.008	,, 0.025	,, 0.014		,, 0.017	,, 0.0028	,, 0.010	,, 0.024	"0.024	,, 0.019	,, 0.023	,, 0.082	" 0·031	,, 0.016	" 0·036	± 0.003	1.
68.963	19.027	166.273	142.502	63.318		94.027	59.023	52.129	35.451		140.747	12.0011	40.082	132.918	112.092	79.951	10.966	208.001	137.007	75.090	120.231	27.075	0 = 16.
imperfectly determined.		From Cleve's data only.				From one ratio only.		Siewert's data.		0 = 16.	Buehrig's data give 141.523							Schneider's data.			Cooke's and Schneider's data.		Remarks.

A Table of the Atomic Weights, &c.-continued.

Symbol.	Name.		H	: :	0 = 16.	Remarks.
Ī	Glucinum	:	9.085	∓ 0.0055	9.106	Nilson and Petterson's data.
Au	Gold	:	196.155	,, 0.095	196.606	Imperfectly determined.
	Hydrogen	:	1.000	"	3	
	Indium	•	113.398	,, 0.047		Imperiectly determined.
	Iodine	:	126.221	, 0.022	126.848	•
	Iridium	:	192.651	, 0.033	$193 \cdot 094$	Seubert's data.
	Iron	:	55.913	, 0.012	56.042	
	Lanthanum	:	$138 \cdot 019$,, 0.025	138.336	
	Lead	:	206.471	, 0.021	206.946	
	Lithium	:	7.0073	200.0 "	7.0235	
	Magnesium	:	23.959	,, 0.005	24.014	Marchand and Scheerer's data.
	Manganese.	:	54.855	910.0	54.981	
	Mercurv	•	199-712	, 0.042	200.171	
	Molyhdenum	:	95.527	10.02	95-747	•
	Nickel	:	57.928	., 0.022	29.082	Schneider, Sommaruga and Lee.
	Nitrogen	:	14.021	., 0.0035	14.029	,
	Osmium	:	198.494	66	198.861	Very doubtful.
	Oxygen	:	15.9633	3, 0.0035	16.000	
	Palladium	:	105.737	"	105.981	Badly determined.
	Phosphorus	•	30.958	,, 0.007	31.029	
	Platinum	:	194.415	,, 0.049	194.867	Seubert's data.
	Potassium	:	$39 \cdot 019$, 0.012	39 • 109	•
	Rhodium	:	104.055	"	104.285	Badly determined.

A Table of the Atomic Weights, &c .- continued.

FORMULÆ, MOLECULAR WEIGHTS, AND PERCENTAGE COMPOSITION OF IMPORTANT COMPOUNDS.

Name.	Formula.	Mol. Wt.	Percentage Composition.
Aluminium oxide	A1203	102.8	Al 53.30; O 46.70
, hydrate	$Al_2H_60_6$	156.8	-
bromide	$\mathrm{Al}_2\mathrm{Br}_6$	534.8	Al 10.28; Br 89.72
chloride	Al ₂ Cl ₆	267.8	20.50;
fluoride	AlgFe	337.6	Al 32.46; F 67.54
iodide	$Al_{o}^{2}I_{e}^{\circ}$	816.8	Al 6.73; I 93.27
sulphate crys.	A19(8.999	Al_2O_3 15.40; SO_3 36.00; H_2O 48.60
Alum (potash)	7	949	$A_{12}O_{3}10.84$; SO_{3} 33.73; $H_{2}O_{4}5.52$;
٠.	_ +24Aq		K ₂ O 9·91
(ammonia)	$Al_9(SO_4)_3 \text{Åm}_2$	206	Al ₂ O 3 11 35; NH 3 75; SO 35 29;
	SO4+24Aq		H_2O 49.61
Ammonia	NH3	17	N 82.35; H 17.65
Ammonium carbonate	$H_{13}N_3\tilde{C}_90_5$	157	NH ₃ 32.49; CO ₂ 56.05; H ₂ O 11.46
chloride	NH, CI	53.5	NH ₃ 31·77; HCl 68·23
nitrate	NH, NO3	80	$NH_3 21.25$; $N_2O_5 67.50$; $H_2O 11.25$
sodinm	$AmN^{\dagger}_{a}HPO_{4}$	209	NH ₃ 8·13; Na ₂ O 14·83; P ₂ O ₅ 33·97;
nhosnhate	+4Aq		H ₀ O 43 · 06
02	Am_2SO_4	132	NH_3^2 25·76; SO_3 60·61; H_2O 13·63
sulphocya-	AmCyS	94	NH3 22.37; H 1.31; CN 34.21;
nate.			8 42.11

FORMULE, MOLECULAR WEIGHTS, &c.-continued.

ŤĄč										2.3			4 L 1	درد	X	.•							
" sulphate	,, chloride	" carbonate	Cadmium oxide	" acid	Boric anhydride	sulphate	" carbonate	" bydrate	Barium oxide	Arsenic sulphide	sulphide	Arsenious chloride	Arsenic oxide	Arsenious oxide	Antimonic sulphide	" sulphide.	Antimonious iodide	Antimonic chloride	" chloride	Antimonious bromide	Antimonic oxide	Antimonious oxide	Name.
CdSO ₄ ,4Aq	CdCl ₂	CdCO ₃	CdO	H_3BO_3	B_2O_3	BaSO ₄	BaCO ₃	$B_0H_2O_2$	BaO	$\mathbf{As}_{2}\mathbf{S}_{5}$	As_2S_3	$AsCl_3$	As_2O_5	As_2O_3	$\mathrm{Sb}_2\mathrm{S}_5$	$\mathrm{Sb}_2\mathrm{S}_3$	SbI_3	SbCl ₅	SbCl ₃	SbBr ₃	$\mathrm{Sb}_2\mathrm{O}_5$	$\mathrm{Sb}_2\mathrm{O}_3$	Formula.
280	183	172	128	62	70	233	197	171	153	310	246	181.5	230	198	404	340	503	299.5	228.5	362	324	292	Mol. Wt.
CdO 45·72; SO ₃ 28·57; H ₂ O 25·71		CdO 74·42; CO ₂ 25·58	Cd 87·50; O 12·50	B_2O_3 56·45; H_2O 43·55	B 31·43; 0 69·57	BaO 65·66; SO ₃ 34·33	BaO 77.60; CO ₂ 22.40		_	٠.	As 60.98; S 39.02	41.40;	As 65·30; O 34·70	••	••	Sb 71·80; S 28·20	24.26;	Sb 40.73; Cl 59.27	Sb 53·39; Cl 46·61	Sb 33·70; Br 66·30	Sh 75·00; O 25·00	Sb 83·56; O 16·44	Percentage Composition.

FORMULÆ, MOLECULAR WEIGHTS, &C.-continued.

Name.	Formula.	Mol. Wt.	Percentage Composition.
Calcium oxide	CaO	56	Ca 71.43; O 28.57
hydrate	CaH_2O_2	74	CaO 75.67; H ₂ O 24.33
carbonate	$CaCO_3$	100	CaO 56.00; CO, 44.00
phosphate	$Ca_3P_2\ddot{O}_8$	310	CaO 54·19; $P_9\tilde{O}_5$ 45·81
sulphate	$\tilde{\mathrm{CaSO}}_4$	136	CaO 41·18; SÕ ₃ 58·82
chloride	$CaCl_2$	111	Ca 36.05; Cl 63.95
fluoride	CaF_2	&.	Ca 51.28; F 48.72
sulphide	CaS_	72	Ca 55.56; 0 44.44
sulphide (per)	CaS_5	200	Ca 20.00; S 80.00
thiosulphate	$CaS_2 \widetilde{O}_3$	152	••
Carbonic oxide	ς Ω	28	0
anhvdride	Ś	44	C 27•27; O 72•73
Chromium oxide	$\operatorname{Cr}_2\widetilde{\operatorname{O}}_3$	152.2	Cr 68.60; O 31.40
Cobalt oxide	CoO.	74.8	Co 78.61; O 21.39
Copper suboxide	Cn ^o O	143	Cu 8×80; O 11·20
oxide.	Cu On	79.5	Cu 79.87 · O 20.13
sulphate	$CuSO_4, 5Aq$	249.5	CuO 31.86; SO, 32.06; H ₂ O 36.08
subsulphide	Co.S	159.5	20
sulphide	CúS	95.2	Cu 66.50; S 33.50
Hydrochloric acid	HCI	36.2	Cl 97·26; H 2·74
Iron oxide	${ m Fe}_2 0_3$	160	Fe 70.00; O 30.00
" hydrate (ferric)	$\mathrm{Fe_2H_6O_6}$	214	${ m Fe}_2{ m O}_3$ 74.80; ${ m H}_2{ m O}$ 25.20
" chloride (ferrous)	${ m FeCl}_2$	121	Fe 44.09; CI 55.91

FORMULE, MOLECULAR WEIGHTS, &c .- continued.

Formula. Fe ₂ Cl ₆ FeS FeS FeS ₂ FeSO ₄ ,7Aq PbO PbCO ₃ PbSO ₄ PbSO ₄	Formula. Mol. Wt. Fe ₂ Cl ₆ 325 FeS 83 FeS ₂ 120 FeSO ₄ ,7Aq 278 PbCO ₃ 223 PbCO ₃ 267 PbCl ₂ 278 PbSO ₄ 303 PbSO ₄ 339
	Mol. Wt. 325 83 120 278 223 227 227 303

FORMULE, MOLECULAR WEIGHTS, &ccontinued.	Percentage Composition.	Hg 85·00; Cl 15·00 Hg 73·80; Cl 26·20 Hg 86·20; S 13·80 Mo 66·55; O 33·45 Mo 49·86; S 50·13 Ni 78·60; O 21·40 Ni 26·63; SO ₃ 28·50; H ₂ O 44·87 N 63·64; O 36·36 N 46·67; O 53·33 N 30·44; O 69·56 N $_2$ O $_5$ S·70; H $_2$ O 14·30 Pt 58·13; Cl $_4$ 1·86 K 82·98; O 17·02 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 68·12; CO $_2$ 31·88 K $_2$ O 47·00; CO $_2$ 44; H $_2$ O 9·00 K $_2$ O 38·37; Cl 28·98; O 32·65 K 53·56; Fe 17·02; CN 47·42 K 35·56; Fe 17·02; CN 47·42 K 35·56; Fe 13·25; CN 36·93; H $_2$ O 12·79 K 23·49; I 76·51 K 23·49; I 76·51
в Wеленте	Mol. Wt.	471 232 143.5 191.5 74.8 280.8 44 30 46 63 339.18 94 56 138 100 122.5 74.5 658 422
MULÆ, MOLECULAI	Formula.	Hg2Cl2 HgCl2 HgS MoO3 MoO3 NiO NiO NiO NO2 HNO3 HCl4 KHO K2CO3 KHCO3 KClO3 KClO3 KClO3 KGNO3 KON
For	Name.	Mercury subchloride " sulphide " sulphide " sulphate " sulphate Nitrous oxide " peroxide " acid Potassium oxide " carbonate " bicarbonate " bicarbonate " carbonate " carbonate " cinloride " cinloride " cinloride " iodide

FORMULÆ, MOLECULAR WEIGHTS, &c .- continued.

40	<i>U</i>								A	.P1	P.E	IN.	נט	LX.	. •							
" carbonate	" carbonate	" borate	" iodide	" bromide	" chloride	" hydrate	Sodium oxide	,, lodide	" bromide	" chloride	" nitrate	,, carbonate	Silver oxide	Silica	Selenium dioxide		" sulphocyanate	" sulphate	chloride.	" platinum	Potassium permanganate	Name.
$Na_2CO_3, 10Aq$	Na ₂ CO ₃	Na ₂ B ₄ O ₇ ,10Aq	NaI	NaBr	NaCl	NaH0	Na_2O	AgI	$_{ m AgBr}$	AgCl	AgNO3	Ag_2UO_3	Ag_20	SiO_2	SeO_2		KCNS	$ m K_2SO_4$	1	K_2 PtCl ₆	$KMnO_{4}$	Formula.
286	106	382	150	103	58.5	40	6£	235	188	143.5	170	276	252	60	111		97	174	,	488-18	158	Mol. Wt.
Na ₂ O 21·80; CO ₂ 15·40; H ₂ O 62·80	Na ₂ O 58·50; CO ₂ 41·50	Na ₂ O 16·30; B ₂ O ₃ 36·60; H ₂ O	Na 15·33; I 84·67	Na 22·30; Br 77·70	Na 39·35; Cl 60·65	Na ₂ O 77·50; H ₂ O 22·50	Na 74·20; O 25·80	Ag 46.00; I 54.00	Ag 57.50; Br 42.50	Cl 24.73	Ag ₂ O 68·00; N ₂ O ₅ 32·00	Ag ₂ 0 84·00; CO ₂ 16·00	Ag 93·10; 0 6·90	Si 46·67; O 53·33	Se 71·17; 0 28·83	•	K 40.21; C 12.37; N 14.43;	K ₂ O 54·02; SO ₃ 45·98		Pt 40·39; Cl 43·63; K 15·98	K ₂ O 29·75: Mn ₂ O ₇ 70·25	Percentage Composition.

Ė

TABLE SHOWING THE EQUIVALENCE OF WEIGHTS AND MEASURES.

Contributed by Mr. G. M. Jones.

```
= 1 lb. = 16 oz. = 7000 grains = 453.59
  lb. avoirdupois
                               grammes
                          = 1.21527 fb. trov
1 lb. apoth. or troy
                          = 1 \text{ fb.} = 123 = 5760 \text{ grains} = 373.242
                               grammes
                          = 0.82285714 lb. avoir.
1 oz. avoir.
                 = 1 oz. = 437 \cdot 5 grains = 28 \cdot 35 grammes
                         = 0.9114583 3
1 ounce anoth. or troy = 13 = 480 grains = 31 \cdot 10 grammes
                          = 1.0973714 \text{ oz.}
1 dram avoir.
                          = 27.31375 \text{ grains} = 1.77184 \text{ grammes}
                          = drachm apoth. .455729
1 drachm apoth. or troy = 1.3 = 3.9 (scruples) = 60 grains
                         = drams avoir. 2.1942857
                         = 3.88752 grammes
I pint = 0 = 20 3 \text{ fl.} = The volume occupied by 20 oz. avoir.
                            of water at 60^{\circ} F. = 15.5^{\circ} C.
1 fluid oz. = 3 fl. i = The volume occupied by 1 oz. avoir. of
                            water at 60° F. =\frac{1}{60}th pint
1 fluid drachm = 3 \text{ fl. i} = 60 \text{ minims} = 54.6875 \text{ grain measures}
                              = 3.549 c.c.
1 minim = \cdot9114583 grain measure = \cdot0591583 c.c.
1 grain measure = 1.09714285 minim = the vol. occupied by
                        1 gr. of water at 60^{\circ} F. = 15.5 C.
        1 cub. cent. = 1 c.c. = 3 \text{ fl. } \cdot 282
        1
                                = cab. inch \cdot 0610270734
                           ,,
        1
           ,,
                                = 3 \text{ fl. } \cdot 0352
                  ,,
                           "
```

HQUIVALENCE OF WEIGHTS AND MEASURES—continued.

i8841000. 4l =	61	Ţ
758241000·d1=		Ţ
$=$ gramme $\cdot 064792$		Ī
= I grain apoth, or troy	grain avolr.	
= grains 15.432348		τ
7497· Σ =		Ţ
736493 marb =		I
$= 3 \cdot 03215$		Ţ
e78200 · dI =		Ţ
423E0· ·zo ==	"	Ţ
= lb. · 002204	gramme	Ţ
= litre .567920	66	T
= cub. inch. 34.659	66	Ī
= cnp. it020027	66	Ī
616.499 '0'0 =	đuiq	I
= cab. inch. 1.7329	66	I
= c.c. 28·396	oz. fl.	
302.490 0 0 —	B	•
194.1 Juid =	"	τ
= 3 ft. 35·23	46	Ţ
= cap. inch. 61.0270	46	I
$= galloa \cdot 220096$	66 61	Ţ
= cub. ft035316		τ
= 3 d. 281·85	Pitre	I
= pint .02882		τ
773· · f =	46 66	1
= litre .0164	16 16	I
#9909£00. uolleg =	"	l
919.₹ 'Y € =	66 66	l
= c.c. 16·386	cub, inch	Ι
= litre 4 54346	46	τ
= cub. inch. 277.274	46	Ţ
= cnp. ft16046	gallon	

1

,,

EQUIVALENCE OF WEIGHTS AND MEASURES—continued.

```
1 mile per unit of time = 1.609315 kilometres per same unit
                       = .44703 metre per second
        ,,
           hour
   "
                        = 26.8219 metres per minute
1
   •
        ,,
            "
1 gramme per sq. cent. = \cdot 2275632 oz. avoir. per sq. inch
                       = 32.7691 oz. av. per sq. ft.
1
                        = 0.0142227 lb. av. per sq. inch
1
     "
1 kilo. per sq. decimetre = 2.2756 oz. av. per sq. inch
1 gramme per sq. cent. = 2.0480688 lb. av. per sq. ft.
1 cwt. per sq inch
                        =7874.675 grammes per sq. cent.
                        = 5468.52432 grammes per sq. decim.
              foot
1 lb. av. per sq. inch
                        = 70.3096 grammes per sq. cent.
                        =48.82611 grammes per sq. cent.
              {f foot}
1
           ,,
1 calorie
                        = 1 kilo. of water raised 1° C.
1 centigrade thermal \} = 1 lb. av. raised 1° C.
1 Fahr. therm. unit
                        = 1 lb. av. raised 1° F.
                        = 1 kilogramme raised 1 metre
1 kilogrammetre
1 foot-pound
                        = 1 lb. av. raised 1 foot
                        = cent. therm. units 2.20462
1 calorie
                                            3.96832
1
                        = Fahr.
                        = foot-pounds 3066.85127
1
    ••
                        = kilogrammetres 424.00000
    ,,
1 cent. th. unit
                        = calorie •45359
                        = Fahr. th unit 1.80000
1
      ,,
                        = kilogrammetres 192:32329
1
     11
            "
                        = ft. pounds 1391 · 10127
1
     ••
            "
1 Fahr. th. unit
                        = calorie ·25199
                        = cent. th. unit .555...
1
             12
                        = kilogrammetres 106.84627
1
             ,,
1
                        = ft. pounds 772.83404
                        = calorie · 0023585
1 kilogrammetre
                        = cent. th. unit .0051996
1
        "
                        = Fahr. th. unit .0093592
1
```

= ft. pounds 7.2331398

EQUIVALENCE OF WEIGHTS AND MEASURES—continued.

= polse-power .0002252	64	"	66	Ť
= cpeval-vapeur .0002	'ujut	46	66	Ť
= pole-bomer .0132156	"	"	44	•
= cheval-vapeur .013	ecc.	ı. ber	logrmt	i Ki
•			•	• • -
0.0034 .nint =			66	τ
= kilogrammet, per sec. 75.0000.			66	ì
= " min. 32549·1291			66	ì
= it. pd. per sec. 542.485			6.6	ī
= horse-power ·986712	ı	ınədı	east-va	go į
9·0924 .mim			6r	*
= kilogrammet, per sec. 76.01			66	į. T
= " min. 33000			66	ī
= if. pd. per sec. 550			"	7
= cheval-vapeur 1.01346.		Wer	orse-po	ų i
= kijogrammetre •138252542			"	.
= Fahr. th. unit .001293845			ci	L T
= cent. th. unit .000718855			16 .	L T
= calorie • 000326967		pu	nod-400	oj <u>I</u>
80000000000000000				

TABLE FOR CORRECTION OF VOLUMES OF GASES FOR TEMPERATURA

I. The volume at 0° C. being known, to find the corresponding volume at any temperature between 0° and 30° C., multiply the number of c.c. by the factor in the first column, and add the result to the original volume.

Ġ.	Correction for 1° C.			Mu	ltiples of	Correcti	on.		
Temp.	Corr for]	2	3	4 ·	5	6	7	8	9
1	•00369	.00738	.01107	.01476	.01845	.02214	.02583	.02952	.03321
2	.00742	.01484	.02226	.02968		.04452	.05194		
3		.0218	.0327	.0436	.0545	.0654	.0763	.0872	0981
4		.0292	.0438	.0584	.0730	.0876	1022	·1168	1314
5		.0366	.0549	.0732	.0915	•1098	·1281	·1464	·1647
6		.0438	.0657	.0876	1095	•1314	•1533	1752	•1971
7	.0256	.0512	.0768	1024	·1280	•1536	·1792	2048	·2304
8	0293	·0586	.0879	1172	·1465	·1758	.2051	•2344	2637
9	.0330	.0660	.0990	1320	·1650	·1980	•2310	.2640	•2970
10	.0366	.0732	•1098	·1464	·1830	2196	•2562	·2928	•3294
11	0403	.0806	1209	1612	·2015	•2418	·2821	.3224	.3627
12	.0440	.0880	•1320	•1760	•2200	·2640	·3080	•3520	•3960
13	•0475	·0950	·1425	•1900	2375	2850	•3325	•3800	•4275
14	.0511	.1022	•1533	•2044	·2555	• 3066	3577	•4088	·4599
15	.0548	·1096	·1644	·2192	.2740	•3288	·3836	•4384	•4932
16	• 0585	•1170	1755	•2340	•2925	•3510	·4095	·4680	•5265
17	0622	.1244	·1866	·2488	:3110	•3732	·4354	•4976	•5598
18	.0660	1320	1980	.2640	•3300	·396 0	•4620	•5280	•5940
19	0696	1392	.2088	·2784	•3480	•4176	·4872	5568	·6264
20	.0732	1464	2196	2928	.3660	•4392	•5124	•5856	·6588
21	.0770	1540	2310	•3080	3850	•4620	•5390	·6160	·6930
22	.0804	·1608	•2412	·3216	4020	•4824	•5628	•6432	·7236
23	.0842	·1684	.2526	·3368	·4210	•5052	•5894	6736	•7578
24	.0876	1752	*2 62 8	.3504	•4380	•5256	·6132	·7008	·7884
25	.0914	*18 2 8	.2742	- 3656	4570	•5484	•6398	.7312	·8 226
26	.0952	1904	·2856	•3808	4760	•5712	·6664	.7616	·8568
27	.0988	1976	.2964	•3952	4940	•5928	·6916	.7904	·88 92
2 8		.2050	3075	4100	•5125	6150	·7175	·8209	•9225
	1063	2126	•3189	•4252	•5315	6378	•7441	8504	9567
30	•1100	•2200	•3300	•4400	•5500	6600	7700	.8800	9900

TABLE FOR CORRECTION OF VOLUMES OF GASES FOR TEMPERATURE.

II. The volume at any temperature between 0° and 30° C. being known, to find the corresponding volume at 0° C., multiply the number of c.c. by the factor in the first column and subtract the result from the original volume.

-	-		<u> </u>	lo golditl	<u> </u>	1		Correction for 1 c.c.	Temp.
6	8	L	9	g	7	8	8	5.8	Te
• 0333	9670•	6970	.0222	9810.	8410.	1110.	₹400•	4800	I
4990•	₱890•	1190.	86⊉0•	9980	2620.	6120.	9710.	£400•	2
1860	2480 •	E940·	₱990•	9₹90•	•0436	4280	8120·	6010.	3
9671.	1122	800T•	₱980•	0740.	9490.	76432	8820•	₹₹10•	Þ
1620	0771.	1260	1080	0060•	0740.	0₽90•	0980	0810	g
9861.	0241.	9091.	0621.	9401.	0980	G190·	•0₹30	.0312	9
-5520	.2000	0941	1200	1720	.1000	0920.	•0200	0220.	4
.5226	2722.	8861.	₹04I•	1420	9811.	2 380•	ե990•	₹870·	8
1487	.5225	•2233	₱16I·	9691.	9421.	4960.	8890.	6180.	6
4418.	7887∙	1472.	8112.	9941.	2141.	6901.	9040.	£9£0.	01
•3483	9608•	6042.	.2322	1932	87gI.	1911.	₹440•	4880.	II
6848	8988	4 6 6 7 •	9797.	2012.	7891.	1263	7180	1240.	12
980₺・	₹898.	8418.	+2724	0722.	9181.	1395	8060.	₱ 9₱0.	EI
•₹383	9688.	60⊅€•	· 2922	.5435	8761.	1971.	7460·	2870	FI
089⊅•	091₹	0₹9€•	.3150	0092.	0807	0991.	0701.	0220	31
226F·	\$\$\$\$.	1786.	8168.	9942.	.2212	6991.	901I.	.0223	91
₹479.	889₹•	7017·	9128.	.2930	77EZ.	8941.	7411.	9890	41
2999.	₹6₹•	9787	8048	0608.	2472.	₹281.	1236	8190	81
6989.	8079	1997·	9068.	3255	₹097	£261.	1302	1990	61
8813	9919.	₹44₹•	Z: 07.	0178.	8747.	9707	†9EI.	2890	oz
9779	2149.	8667.	†8 7 ₹	0498.	5826	2142	877I	₹140.	12
9049	0969	9179.	04bb.	9248.	0867	.2235	067I.	G#40.	22
₹869•	8029	2643	9991.	0888.	₹018.	8282	1225	9440	23
E974.	9979.	6599.	7787·	9807.	3228	1272.	₹19I·	4080	77
2 ₹94•	₹049•	9989.	8203.	0617∙	3322	₹19Z•	9491.	8880	25
1284	7969	£809·	₹183°	9787	9478.	4092	884T	6980	98
1608	7614.	6299	7689∙	9677	9698.	4692.	864T ·	6680	12
0488	0774.	0199.	0899.	0997	0748	0642.	0981.	0860	82
0198	0894	0749	0949.	0087	0₹8€•	0887	1920	0960	67
6168.	8764.	4869.	9769.	9965.	₹96€•	846Z .	Z86T•	1660.	30

TABLE FOR CORRECTION OF VOLUMES OF GASES TO NORMAL BAROMETER PRESSURE OF 760 M.M.

Multiply the observed number of c.c. by the factor opposite the observed pressure and add or subtract the result.

	,				
Pressure in m.m.	Factor.	Pressure in m.m.	Factor.	Pressure in m.m.	Factor.
710	.06579	730	•03947	750	.01316
711	.06447	731	•03816	751	•01184
712	•06316	732	•03684	752	•01053
713	06184	733	•03553	753	·00921
714	•06052	734	•03421	754	.00784
715	•05921	735	·03289	755	.00658
716	•0 789	736	•03153	756	.00526
717	•05658	737	•03026	757	•00395
7 18	.05525	738	·02895	758	· 0 0263
719	•05395	739	.02763	759	•00132
720	.05263	740	.02631	760	.00000
721	.05132	741	.02500	761	.00132
722	.05000	742	.02368	762	· 0 6 2 63
723	.04868	743	.02237	763	•00395
724	.04737	744	.02105	764	·00526
725	.04605	745	•01973	765	.00658
726	.04474	746	.01842	766	.00784
727	.04342	747	.01710	767	.00921
728	.04210	748	.01579	768	.01053
729	•04079	749	•01447	769	.01184

TABLE OF THE FUSING POINTS OF VARIOUS SUBSTANCES.

Conscion to the contract of th	6.65 airsgreM
585-804 · · · • • • • • • • • • • • • • • • •	Pelargonic 12
724 ISIT	thylic ("
724 · · · · · 18gA	Enan- ?
Ba(ČlO ₃) ₂ 414	Stearic " ciraetz
Galg	Palmitic " 62
Far Sar 394	Capric " 30
888 · · · · · 3.2 Idq	Caprylic " 16
ZOE · · · · · · · · · · · · · · · · · · ·	Caproic " ciorqeO
zez · · · · · · · · · · · · saz	Butyric " 0
Hgors 293	Acetic " oitesA
$^{\mathrm{FI}_{2}\mathrm{CO}_{3}}$ $^{\mathrm{273}}$	80I " oisləZ »
792 · · · · · EONIA	a Pimetic " 102
218 H	taric (")
010	Pyrotar-} " {-ratory
соно, соно, соно	Sebic " aldəs
Aga gonga	Suberic " 140
H ₃ BO ₃ · · · · · εO ₃ εH	841 · · · aiqibA
94I	Succinic acid 180
K_2CO_3 838	Stearin
KBr	Ceresin 71.35
KI 639	Beef suct . 43.5–45
KCI 434	4.44-3.94 tous notiuM
KCIO ³ 312	Nutmeg butter 70–80
3.018 ¿ON&N	Gecao britter 33.5
606 · · · · · 8() NA	Japan wax So.4-51
GaCl2, 3H2, 0. 28.5	99
ref · · · · · uZ	Stearic acid Stearic acid
0001 3A	E.99)
gez · · · · · us	Spermaceti Spermaceti
Gd 320	9.87
Bi ia	7.63-7.23)
701	Paraffin niffaraq
gii 8	₹9-9·29
28E dq	9.67
ъъ · · · · d	8.19 of 644M
ee 3H	Yellow bees'-wax 63.4
° C'	o G'

FUSING POINTS OF VARIOUS SUBSTANCES—continued.

0.0	0.0
° C.	o C.
TlI 439	KI 634
LiI 446	RbI 642
ZnI_2 446	$Sr(NO_3)_2 \dots 645$
AgCl 451	$Na_4V_2O_7 \dots 654$
TlBr 458	$Ag_2SO_4 \dots 654$
$AgPO_3 \dots \dots 482$	V_2O_5 658
$CuCl_2$ 498	$CaBr_2 \dots 676$
$PbCl_2$ 498	RbBr 683
$PbBr_2$	Li_2CO_3 695
SrI_0	$MgBr_2$ 695
$CdF_2 \dots \dots 520$	KBr 699
Agl 527	NaBr 708
$CdCl_2 \dots \dots \dots 541$	$MgCl_2$
LiBr 547	RbCl 710
$Cu(NO_3)_2$ 561	$CaCl_2 \dots \dots 719$
$Na_2B_4O_7$ 561	KCl 734
$NaVO_3$ 562	$ZnF_2 \dots 734$
$Na_{12}V_{8}O_{26}$ 562	RbF 753
Tl_3VO_4 566	MoO_3 759
$CdBr_2 \dots \dots 571$	NaCi 772
$Ba(NO_3)_2 \dots \dots 593$	KF 789
B_2O_3 577	$Pb(PO_3)_2 \dots \dots 800$
$Ag_4P_2O_7$ 585	LiF 801
LiCi 598	$Pb_2P_2O_7$ 806
Cu_2I_2 601	$BaBr_{2}$. 812
$NaPO_3$ 617	Na_2CO_3 814
NaI 628	Li_2SO_4 818
$SrBr_2 \dots \dots 630$	$ \operatorname{SrCl}_2 $ 825
CaI_2 631	K_2CO_3 834
Tl_2SO_4 632	Na_2SO_4 861
1	
	1

Note.—This table may be used to ascertain the temperature of furnaces, etc. A selection of salts is made and the temperature found by observing the behaviour of the salts in the furnace.

TABLE SHOWING THE BEHAVIOUR OF VARIOUS ORGANIC SUBSTANCES WITH SOLVENTS.

		Remarks. (The sign ∞ signifies that the substance and solvent are miscible in all proportions).	Any contained water is separated by excess of		nme of water. Decomposed by boiling soda solution. Soluble	in wood spirit. Decomposed by soda with separation of chloroform.
is.		Petroleum Ether.	8	8	H:	8 M
alys		Benzene,	8	8	₩;	8 w
c An	of	Carbon Disul- phide.	တ	8	н:	8 w
rgani	erts	Chloroform,	8	8	H:	8 x
ial O	100 I	Ether.	8	8	HQ	8 x
merc	lity in	Amylic Alcohol.	8	8	::	8 :
Com	Solubility in 100 Parts of	Rectified Spirit.	8	8	8 x3	8 cc
en's '	01	10 per cent. AsHO Solution.	8	75 75	8 H	10 (S)
From Allen's 'Commercial Organic Analysis.'		Boiling Water.	8	•	8 H	:w
Fron	·,	Cold Water.	8	2 ‡	8 H	10
		Formula.	C_2H_6O	$C_5H_{12}O$	$^{\mathrm{C_{3}H_{8}O_{3}}}_{\mathrm{C_{3}H_{5}N_{3}O_{9}}}$	$c_2^{ m H^{10}O}_2^{ m H^{2}O_1^{ m H_2}O}$
		Name of Substance.	Ethyl alcohol	Amyl alcohol	Glycerin Nitroglycerin	Ether Chloral hydrate.

TABLE SHOW	SHOWING THE BEHAVIOUR OF VARIOUS ORGANIC SUBSTANCES WITH	IOUR	HO.	VARIC	ous C)RGA	NIC S	UBST	ANCE	S WI	HIT	Solvents—continued.
				Sc	Solubility in 100 Parts of	ty in	100 Pa	rts of				
Name of Substance.	Formula.	Cold Water.	Boiling Water.	10 per cent. NaHo Solution.	Rectified Spirit.	Amylic Alcohol.	Ether.	Chloroform.	Carbon Disul- phide.	Benzene,	Petroleum Ether.	Remarks. (The sign ∞ signifies that the substance and solvent are miscible in all proportions).
Chloroform	CHCl ₃ CHL ₃	нн	HH	нн	S 12	8	. xv 8	% 8	ω 8	8	(S) 8	Dissolved by 13,000 parts
Acetic acid	$\mathrm{C}_{2}\mathrm{H}_{4}\mathrm{O}_{2}$	8	8	8	8	8	(S)	:	:	:	:	Soluble in ether only
<u>ڦ</u>	$C_2H_2O_4$, $2H_2O_4$	∞	350	8	15	•	Œ	H	:		H	Soluble in ether to extent of 14 per cent.
Succinic acid	$\begin{array}{c} { m C_3H_6O_3} \\ { m C_4H_6O_4} \end{array}$	∞ 8	68	w w	122	: 02	1 5	HS)	::	⊢:	::	Soluble in 13 parts absolute alcohol. Decom-
Tartaric acid	$\mathrm{C_4H_6O_6}$	25	100	∞	41	:	\Box	Ħ	•	H	H	posed on boiling. Soluble in ether to extent of 4 per cent. Decom-
Citric acid	$G_6H_8O_7$, H_2O	133	200	Ω	53	:	24	H	:	H	<u> </u>	posed by fusion. Absolute alcohol dis- solves 39 per cent.

TABLE SHOWING THE BEHAVIOUR OF VARIOUS ORGANIC SUBSTANCES WITH SOLVENTS-continued.

5												
				Ω	lubili	ity in	Solubility in 100 Parts of	rts of				
Name of Substance.	Formula.	Cold Water.	Holling Water.	10 per cent. NaHo Solntion.	Rectified Spirit.	Amylic Alcohol.	Ефрег.	Chloroform,	Carbon Disul- phide,	Вепхепе.	Petroleum Ether.	Remarks. (The sign ∞ signifies that the substance and solvent are miscible in all proportions).
Meconic acid C7H4O7,	$C_7H_4O_7$, $3H_2O_7$	6.	SZ	\omega	12	:	I	;	:	:	:	Soluble in about 150
Gallic acid	C ₇ H ₆ O ₅ , H ₂ O	Н	33	α	23	•	* 2	•	•	.:	:	parts of ether. Decomposed by heat. Very soluble in abso-
Pyrogallic acid	$C_6H_6O_3$	33	ಬ	w	Ω	:	S	H	:	:	:	Solution in soda turns
Gallotannic	Indefinite	Š	ಯ	Ø	w	. :	Ξ	H	1-	Н	H	Soluble in acetic ether.
Sulphophenic	$C_6H_6SO_4$	Ω	Ω	Ø	Ω	•	H	н	:	:	:	Decomposed on boiling.
Picric acid Benzoic acid	$C_6H_3N_3O_7$ $C_7H_6O_2$		$\infty \infty \langle$	w w	S 2 3	ω:	3 I	$\infty \infty$	$\infty \infty$	w w	$\infty \infty$	
Salicylic acid	C7H6O3	$\overline{\oplus}$	Ŋ	Ŋ	4 2	:	2 €	:	:	Ω	:	Very singuity soluble in
Phthalic acid	$C_8H_6O_4$	44 r3	·00	Ø	Ω	•	Ø	•	:	ß	:	
		-				-	-				١	

Name of Substance. Formula. In the substance of Substance. Formula. In the substance of Substance. Formula. In the substance of Substance of Substance. Formula. In the substance of Subst		8	8	Ω	8	8	<u>:</u>	8	H	i i	⊢	$\mathrm{C_6H_6}$	Benzene
C10H16 Various I I Cold Water. C10H16 I I I S S S S S S S S S S S S S S S S	Soluble in hot absolute alcohol, insoluble in cold.	:w	∞:	ن <u>ب</u>	0 00	ر د م	::	Ð	H		HH	$^{\mathrm{C}_{10}\mathrm{H}_{16}\mathrm{O}}_{\mathrm{C}_{n}\mathrm{H}_{2}n_{2}+2}$	Camphor Paraffin wax
fatty Various I Cold Water. I Cold Water. I Cold Water. I Der cent. NahO Solution. I Der cent. NahO Solution. I Der cent. NahO Solution. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Cold Water. I Der cent. NahO Solution. Carbon Disulphide. Cold Water. Der cent. NahO Solution. Carbon Disulphide. Cold Water. Der cent. NahO Solution. Carbon Disulphide. Cold Water. Der cent. NahO Solution. Carbon Disulphide. Cold Water. Der cent. NahO Solution. Carbon Disulphide. Cold Water. Der cent. NahO Solution. Der cent. NahO Solution. Der cent. NahO Solution. Der cent. NahO Solution. Der cent. NahO Solution. Der cent. NahO Solution. Der cent. NahO Solution. Der cent. NahO Solution. Der cent. N		8	8	2 8	2 8	2 8	S	2 8			- H	$C_{10}H_{16}$	Oil of turpentine
Various Clothynog Cl	excess of soda. Castor oil is soluble in spirit and insoluble in petroleum ether.	മ	202	202	∞	Ø	8	(1)	H		H	Various	Fixed oils
C ₉ H ₉ NO ₃ I Cold Water. Boiling Water. Do w loper cent. NaHO Solution. Rectified Spirit. Amylic Alcohol· H w Ether. Carbon Disulphide. Rectoleum Ether. Petroleum Ether.	Aqueous and alkali stions precipitated	% :	∞:	∞:	:w	∞-	ω:	∞-	w w		H		id
Clothoroform. Clarbon Disulphide. Clothoroform. Carbon Disulphide. Cheroleum Ether. Clothoroform. Carbon Disulphide. Carbon Ether. Carbon Disulphide. Carbon Ether. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide. Carbon Disulphide.	, b-7	:	I	:	H		:	S	. w	(SO		$\mathbf{C_9H_9NO_3}$	Hippuric acid
Cold Water. Boiling Water. 10 per cent. NaHO Solution. Rectified Spirit. Amylic Alcohol· Ether. Chloroform. Carbon Disulphide. Benzene. Petroleum Ether.	Alkaline solution purple-red.	3	Ø	:	Ø	ß	:	∞	20	Œ	Н	$C_{15}H_{10}O_4$	Chrysophanic
S. lubility in 100 Parts of	Remarks. (The sign ∞ signifies the substance and solver miscible in all proportio	Petroleum Ether.	Benzene.		Chloroform.	Ether.	Amylic Alcohol		10 per cent. NaHO Solution.	Boiling Water.	Cold Water.	Formula.	Name of Substance.
					arts o	100 F	lity in	5. lubi	FC.				

				ω	Solubility in 100 Parts of	ity in	100 Pa	arts of	£			
	Formula.	Cold Water.	Boiling Water.	10 per cent. ŅaHO Solution.	Rectified Spirit.	Amylic Alcohol.	Еџрет.	Chiloroform.	-Carbon Disul- phide.	Веплепе	Petroleum Ether.	Remarks. (The sign α signifies that the substance and solvent are miscible in all proportions).
•	$C_6H_5NO_2$ $C_{10}H_8$	нн	нн	нн	8 x	::	8 w	:w	:w	8 x	; 02	Sparingly soluble in cold
	$^{\mathrm{C}_{14}\mathrm{H}_{10}}_{\mathrm{C}_{14}\mathrm{H}_{8}\mathrm{O}_{4}}$	нн	1	нα	\mathfrak{S}^{∞}	::	$\infty \infty$	ω:	$\infty \infty$	യയ	⊕:	Slightly soluble in hot
•	$\mathrm{C_{19}H_{14}O_{3}}$	 	Н	ω.	Ø	:	Ø		Н	Н	∞	Slightly soluble in water.
~~	$ m C_{16}H_{10}N_{2}O_{4}$	H	Н	H)— (Ø	H	Ø	ω	H	•	Soluble in hot aniline, phenol, and creasote, and in strong sulphuric
	C_6H_6O	+k2 60	Ø	Ø	8	•	8	8	8	8	Ω	acid. Sparingly soluble in cold
	$ m C_6H_6O_2$	ω	လ	Ø	Ø	•	Ω	Н	н	(3)	:	Soluble in hot benzene; deposited on cooling.

		-			_								
Soluble with difficulty in soda. Insoluble in am-	8	8	8	8	8	•	T.	Ø)	:	∪81110∪2; &C.		ture).
in 1000 of water.	:	Ø	:	:	Ø	:	0 0 0	H	⊣	 	$\begin{bmatrix} \vdots \\ G^{10}H_{20}O \end{bmatrix}$	miv:	Menthol.
line solutions. Insoluble in small quantities of soda. Soluble	•	•	•	•	∞	:	100	Ø	:	(J)	$\mathrm{C_{10}H_{14}O}$:	Thymol .
Soluble with difficulty in hot water and in alka-	:	∞	:	:	∞	•	Ω	•	8	8	$C_7H_6O_2+H_2O$:	Orcinol .
Remarks. (The sign ∞ signifies that the substance and solvent are miscible in all proportions).	Petroleum Ether.	Benzene.	Carbon Disul- phide.	Chloroform.	Ether.	Amylic Alcohol.	Rectified Spirit.	10 per cent. NaHO Solution.	Boiling Water.	Cold Water.	Formula.	of ce.	Name of Substance
			of	Parts	1 100 1	lity in	Solubility in 100 Parts of						

2 G

TABLE SHOWING THE BEHAVIOUR OF VARIOUS ORGANIC SUBSTANCES WITH SOLVENTS-continued,

may be further separated by agitating the liquid with water petroleum products, rosinas nitro-Ethers and their Allies; as ether, chloroform, compound Comphors; as laurel-camphor, Certain Glucosides, &c.; as sa-THE IMMISCIBLE LAYER Will contain hydrocarbons, oils, various Solid Hydrocarbons; as pa-Alcohols insoluble or nearly Certain Weak Alkaloids; as caffeine, colchicine, narcoraffin, naphthalene, anthra-Neutral Resins and Colouring and cetyl alcohous, cholestine, piperine, theobromine. acids, resins, colouring matters, phenols, glucosides, &c., which Essential Oils; as turpentine. insoluble in water; as amyl On agitating the substance with water, acidulated with sulphuric acid, and a suitable solvent immiscible therewith (such as IN THE ALKALINE AQUEOUS | IN THE IMMISCIBLE LAYERponin, digitalin, santonin. Fixed Oils. Fats, and Waxes. containing caustic soda, when there will be obtained:-Liquid Hydrocarbons; ethers, nitro-glycerin. borneol, menthol. Nitro-compounds; ether, chloroform, amylic alcohol, benzene, or petroleum ether), the following distribution will occur: oil, benzene. Table showing the Behaviour of Organic Substances with Immiscible Solvents. benzene. matters.terin. cene. Certain Glucosides, &c.; as Various other Acids, as ben-Acid Dyes and Colouring Matters; as picric and chryso-phanic acids, alizarin, zoic, salicylic, phthalic, Phenols; as carbolic and cresylic acids, thymol, creasote. santonin, cantharidin, pi-Fatty Acids; as stearic, oleic, Acid Resins; as colophony. From Allen's 'Commercial Organic Analysis.' aurin, bilirubin. meconic. crotoxin. LIQUIDvaleric. (cinchonine, morphine, the THE ACIDILATED AQUEOUS LIQUID WIll contain carbohydrates, may be further separated by adding a moderate excess of Most Vegetable Alkaloids; as quinine, strychnine, aconi-Coal Tar Bases; as aniline and its homologues (rosaniline), chrysotoluidine (pyridine), IN THE ALKALINE AQUEOUS | IN THE IMMISCIBLE LAYERtine, atropine, nicotine, soluble alkaloids and acids, organic buses, proteids, &c., which soda, and again shaking with a suitable immiscible solvent, last two with difficulty). homologues of pyridine. when there will be obtained:— Soluble Acids; as acetic, oxalic, lactic, malic, tartaric, Jertain Alkaloids or Organic ossibly cinchonine, mor-Certain Colouring Matters; as Proteids and their Allies; as Soluble Alcohols; as methyl alcohol, ethyl alcohol, glyand Bases; as curarine, urea, sugars, albumin, casein, gelatin. glycocine, solanine, phine, and pyridine. SS indigo products. gums, dextrin. sulphophenic. Carbohydrates; Liouid cerin.

APPENDIX.

451		A	PPENDI	X.		. 4		
Ros. acid.	Ph phth.	Ph acet.	Met org.	Litm.	Indi- cator.	Table showing Indications given by Lithus, Methyl-orange, Phthalein and Rosolic Acid with various Salts of Alkalie with Ammonia and with some Acids. (From R. T. Thompson		
Sharp	Sharp		Sharp Cold	Sharp	мно.	BLE SHOWING INDICATIONS GIVEN BY LITMUS, METHYL-ORANGE, PHEN! PHTHALEIN AND ROSOLIC ACID WITH VARIOUS SALTS OF ALKALIES (M=WITH AMMONIA AND WITH SOME ACIDS. (FROM R. T. THOMPSON'S RES		
M ₂ O Boil.	M ₂ O Boil.		M ₂ O Cold	M ₂ O Boil	M ₂ CO ₃ MHCO ₃ .	NDICATION ROSOLIC AND WIT		
M ₂ O Boil.	Neutral Cold, M ₂ O Boil.	ACID WI						
M ₂ CO ₃ MHCO ₃ together. Tot. Alk. by Met org. on separate quantity. Add known MHO in excess to separate quantity, and de- termine MHO by BaCl ₂ and Phph. in cold. The MHO which dis- appears converts MHCO ₃ into M ₂ CO ₃ .								
Fair.	Useless.		Good results.		Free Ammonia.	TMUS, METHYL-ORANGE, PHENACETOLIN, PHENOL-RIOUS SALTS OF ALKALIES (M = K or Na, not Am) (From R. T. Thompson's Results.)		

Table showing Indications, &c.—continued.

$1 sO_2$.	Good Total M20	cated.	,	Low	Same as litm.
NaA		gg.		J	Same as litm.
$M_3 ext{AsO}_4 ext{NaAsO}_2.$	Slow indistinct	$\frac{2}{3}$ M ₂ O	Same as litm.	$\frac{1}{3}M_{2}O$	Same as litm.
M Borates.	Indis- tinct.	Good.	Indis- tinct.	Useless.	Indis- tinct.
M Alu- minate.	High indis- tinct.	Sharp.	[000]	i n n n	High.
M Silicate.	Sharp.	Sharp.	Indis- tinct.	Low.	Sharp boiling.
$ m M_3PO_4$, $ m M_2HPO_4$ Silicate.	gM ₂ O www.but Meorg. Me.org. sharpest.			Almost neutral.	indis-
$ m M_3PO_4.$	² M ₂ O but Me.org.	others indis-		$^{1}_{3}\mathrm{M}_{2}\mathrm{O}$ cold	² 3M ₂ O indis- tinct.
M_2S .	Good boiling	Good	Good	₹M2O cold	$ m M_2O$ boiling
$M_2S_2O_3$. M_2SO_3 . $MHSO_3$.	4 M ₂ 0 of	ind. MHSO3	Meorg. best.	M_2SO_3 neutral	
M ₂ S ₂ O ₃ .			Neutral.		
Indi- cator.	Litm.	Met org.	Phac.	Ph phth.	Ros.

Table showing Indications, &c.—continued.

T		411.	ENDIX.		
Rosac.	Phphth.	Phac.	MeOrg.	Litm.	Indi- cator.
Good boiling.	Good boiling.	Good if carb.	Good cold.	Good boiling.	HCJ, HNO ₃ H ₂ SO ₄ .
Sharp.	Sharp.	Low.	Useless.	Sharp.	{ COHO.
Useless.	Sharp.	Low.	Useless.	Low.	{ CH ₃ COHO.
Fair.	Good.	Low.	Useless.	Fair.	Tartaric Acid.
Useless.	Sharp.	Cocress.		Low.	Citric Acid.
Pale yellow to pink by alkali; am. salts decrease sharpness. Alcoh soln.	Colorless when acid or neutral; fine red when alkaline. Alcoh. soln.	Faint yellow with MHO; dark pink with M ₂ CO ₃ and NH ₃ , more intense with MHCO ₃ ; golden yellow with acids. Alcoh. soln.	Yellow when alkaline; pink with acid; MCl, M ₂ SO ₄ , MNO ₃ decrease sharpness; useless with nitrites. Alcoh. soln.	Acids change blue to red; alkalies turn red to blue. Aq. soln.	Remarks.

PHOTOGRAPHIC SECTION.

Every care has been taken in choosing the matter for this section to select only such Tables and Formulæ as are given on good authority, or have been found useful from personal experience. It is scarcely necessary to point out that much information of value to photographers is to be found in the sections on Weights and Measures, found in the sections on Weights and Measures,

Thermometry, &c., in the body of the work.

In order to avoid the errors and confusion which often result from the similarity of the contraction for grains and grammes, the symbol G signifying gramme or grammes has been adopted, and the

use of this symbol will be extended in future editions of the Pocket-book.

Grains are indicated by gr. or grus.

TABLE SHOWING THE EQUIVALENCE OF VARIOUS SALTS USED IN PHOTOGRAPHY.

Weight of silver chloride produced .844; of silver bromide 1.106; of	Ammonium bromide Potassium Sodium Cadmium , com. Zinc Ammonium chloride Sodium Ammonium iodide Potassium Sodium Sodium Sodium Sodium Cadmium Soluble compound required	
lver ch	—————————— 1	Ammonium Bromide.
ıloride	1 -823 -951 -57 -72 -87 1-832 1-675 -676 1·215 1 1·156 -692 -876 1·058 2·226 2·036 -821 1·051 -865 1 -599 -757 -915 1·925 1·761 -71 1·55 1·444 1·67 1 1·265 1·527 3·215 2·94 1·186 1·387 1·141 1·32 ·79 1 1·207 2·542 2·324 -938 1·149 -945 1·093 -655 -828 1 2·104 1·925 -776 -546 -449 -519 -311 -393 -475 1 -925 -776 -597 -491 -568 -34 -43 -519 1·093 1 -403 1·479 1·217 1·408 -843 1·066 1·287 2·712 2·478 1 1·53 1·259 1·456 -872 1·103 1·332 2·803 2·564 1·034 1·867 <td< td=""><td>Potassium Bromide.</td></td<>	Potassium Bromide.
produ	.951 1.156 1.67 1.32 1.093 .519 .568 1.408 1.408 1.456 1.776 1.776	Sodium Bromide.
3. papt	951 ·57 ·156 ·692 ·67 1 ·32 ·79 ·093 ·655 ·519 ·311 ·568 ·843 ·612 ·965 ·456 ·872 ·776 1 ·064 ·606 1 ·012 ·548 ·915	Cadmium Bromide. (Coml.)
3 44 ; of	72	Cadmium Bromide. (Anhyd.)
fsilve	.87 1 1.058 2 .915 1 1.527 3 1.207 2 1.475 1 2.475 1 1.475 3 1.475 3 1.475 3 1.663	Zinc Bromide.
r brom	1.832 1.67 2.226 2.03 1.925 1.76 3.215 2.94 3.215 2.32 2.542 2.32 2.104 1.92 1.093 1 1.093 1 1.093 1 2.712 2.47 2.712 2.47 3.104 2.83 2.803 2.56 3.42 3.12 3.12 3.315 3.44 3.315 3.44	Ammonium Chloride.
nide 1.	1.675 2.036 1.761 2.94 2.324 1.925 1.914 1	Sodium Chloride.
106;	.676 .821 .71 1.186 .938 .776 .369 .403 1 1.145 1.034 1.262 .853	Ammonium Iodide.
Ø.	.59 .717 .62 1.035 .819 .678 .322 .352 .352 .352 .973 1	Potassium Iodide.
llver iodid e 1·3 82.	•653 •794 •686 1•146 •906 •75 •356 •356 •39 •966 1•107 1 1•22 •882	Sodium Iodide.
de 1·3	•535 •651 •563 •94 •743 •615 •292 •319 •792 •319 •792 •907 •819 1	Cadmium Iodide.
82.	1.734 1.427 1.650 1.509 1.509 3.177 2.906 2.906 1.172 1.172 1.173	Silver Nitrate
	1.518 1.578 1.825 1.825 1.620 1.620 1.566 1.284	Silver Compound produced.

Re-marks. object from optical centre. v =distance of image and u =distance of ment. œ 1-Times of Enlargement or Reduction. ဖ S 4 ന 3 44669677886661111111111111111 Reduc-35353535353535353535 Focus of Lens. 15. 2.7 က ့်က္လို 7. 1√2 Ę. 10

S	; ' ;			Times o	of Enlarge	Times of Enlargement or Reduction	leduction.				
Lens.	tion.	1 .	2	ယ	4		6.	7	8	Enlarge- ment.	Re- marks.
in.]											
7 5	u	14	21	28	ည္	.42	49	ະ ເ	က်သ	2	
	v	14	10}	91	οο ω	& 2	, , , ,	x 6	7,0	2 0	
715	u	15	$22\frac{1}{2}$	ಜ್ಜ	<u>ي</u> المراد	45°	523 324	 	χ (χ	3 8	of
; ~	છ	15	11 11 14	10	(O)	9.	00 1	x 6	× 6	2 0	çe
∞ ~~	u	16	24	32	40	48	56	64	72	3 8	an
~	e.	16	12	$10\frac{2}{3}$	10	9,3	9.	91	ာ	2 (is t e.
\$ #8	u	17	$25\frac{1}{2}$	نې د ۱	$42\frac{1}{2}$	51,	594:	င်္ခ တွေ	77,	3 8	di tr
~ ~ ~	v	17	12^{3}_{+}	111	105	101	9 7	9 (9.5	2 (= en
9	u	18	27	36	45	55 1	63 1	72	<u>o</u>	3 8	$\frac{u}{c}$
~	િ	18	$13\frac{1}{2}$	12	114	$10\frac{7}{6}$	101	$10^{\frac{2}{2}}$	10 <u>:</u>	2 ,	nd ca
) † 6	n	19	281	38	472	57	£99	6	တွေ	e ;	aı eti
1	ь	19	144	122	$11\frac{7}{8}$	11 12 12 2	11-1-	105	105	\$	ge op
10 >	и	20	30	40	50	60	70 -	80	90 %	3 5	na m
~	ь	20	15	131	$12\frac{1}{2}$	12	112	113]]	<i>3.</i>	in ro
103	u	21	311	° 42	521	63	732	84	95	e :	of t f
-	e	21	15 3,2	14	13}	123	123	12	112	n .	ce ec
11 ~	u	22	83	44	57.00	66	77	88	.99°	3	ın bj
~	8	22	163	420	135			124	123	<i>z</i>	sta C
113	u	23	34.2	46	572			92	104	3	di
~	e	23	174	J 5 1	148			131	13	z ·	=
12 }	u	24	36	48	60	72	84	96	108	જ :	v
	e 	24	18	16	15	142	14	135	132	u	
	-	-	_		_						

FORMULÆ FOR PREPARATION OF PYROXYLINE.

, Wallington by Market Spinger		Sulphuric Acid.	Nitric Acid (or Nitre).	Water.	$\begin{array}{c} \textbf{Dry Cotton} \\ \textbf{Wool} \\ \textbf{(purified).} \end{array}$	Remarks.
1. Metrical English	::	219 c.c. 74 fl. 3 S.G. 1·845	73 c.c. 2\frac{1}{5} S.G. 1.457	57.5 c.c. 2 fl. 3	160 grns.	Hardwick's formula.
2. Metrical English	::	219 c.c. 74 fl. 3 S.G. 1·845	83 c.c. 2\frac{4}{4} fl. \frac{3}{5} S.G. 1 - 45	51.5 c.c. 13 fl. 3	10 G. 150 grns.	Hardwick's formula.
3. Metrical English	::	425 c.c. 14½ fl. 3 S.G. 1-84	248 G. 8½ oz. potash nitre	71 c.c. 2½ fl. 3	10 G. 150 grns.	Hardwick's formula.
4. Metrical English	• •	282 c.c. 9\frac{2}{4} ff. \frac{2}{5} S.G. 1 \cdot 84	188 c.c. 6½ fl. 3 S.G. 1•36	• •	10 G. 150 grns.	Simpson's formula.
5. Metrical English	::	262 c.c. 9 ff. 3	174 c.c. 6 fl. 3	75 c.c. 19 3	10 G. 150 grns.	$\left. egin{aligned} & ext{Warnerke's} \\ & ext{formula.} \end{aligned} ight.$
Nore.—The wool be at a temp. of 150 impregnated with 3	ool sh 150° 1 b 3 G.	Note.—The wool should be purified by digestion with sodium carbonate, washed and dried. The acid should be at a temp. of 150° F. = 65·5° C. when the wool is immersed. In Warnerke's form, the wool is previously impregnated with 3 G. or 46 grains respectively of gelatin.	gestion with sodium he wool is immersed rely of gelatin.	carbonate, wash i. In Warnerke	rbonate, washed and dried. The acid should In Warnerke's form, the wool is previously	The acid should ol is previously

VARIOUS FORMULÆ FOR IODIZED COLLODION.

)			ANDIX.
Cadmium " Collodion	Ammonium iodide Cadmium " Ammonium bromide	-	Ammonium iodide Cadmium " Ammonium bromide Cadmium " Collodion
20 gr. 10 oz.	16.6 gr. 22.5 gr.		No. 1. 45 gr. 2 20 gr. 1 10 oz. 2
1·15 G. 250 c.c	. 88 G.	No. 5.	 -90 G. -14 G. 50 c.c.
			36 gr. 20 gr. 10 oz
— 10 oz.	40 gr.	No. 6.	No. 2. 2 · 05 G. 1 · 14 G. 250 c.c.
250 c.c.	2.5 G.	6.	No. 3. 35 gr. 2 10 · 8 gr. 10 oz. 2
. 10	44		3. 2·0 G. — — ·62 G. 250 c.c.
oz,	, gr	No. 7.	30 gr. 5 gr. 16.5 gr. 10 oz.
250 c.c.	2·5 G.		No. 4: 1.76 G. 29 G. gr. 8.8 G. 250 c.c.

FORMULE FOR WET-PLATE DEVELOPERS.

eating the general nature	These formulæ are given as indicated as indi
DEIL SITIS IZ —	copper surprise crys.
- " 02	Alcohol A in the state of the s
8 G. 225 grns. or 14 G. 8 c.c. 225	ZO F DIOR Organ and an an an an an an an an an an an an an
77 1017	Ferrous sulphate crys. 110 grns. or
M O ON MARKET OF THE O	.I .oN

and vice versa. amount of ferrous salts increases the intensity of their action vary greatly in strength and composition, Increase in the of the developers made with ferrous salts. These developers

INTENSIFIER FOR WET PLATES.

.o.o dz	"	.Z0 1	• •	• •	Water
9.8	"	5 T	• •	• •	* internation
1.2 "	"		• •		Acetic acid.
	"	90		• •	Citric acid
.6 G.		$10~\mathrm{grns}$.	• •	• •	Sol. 2. Silver nitrate
250 cc.	"	zo ot	• •	• •	in the second
		30 grns.	• •		Water
K) 0. L		30 0000		h	Sol. I. Pyrogallic acid

cover the plate. Mix a few drops of Sol. 2 with enough of Sol. 1 to well

FIXING SOLUTION FOR WET AND DRY PLATES.

Water 250 c.c. Sodium thiosulphate (hypo) .. 14 oz. or 42 (4.

FORMULA FOR A MEGATIVE VARIEH.

"	9	"	វរា ខ្ម	• •		 Chloroform
"	87	"	" T	• •	• •	 Chloroform
"	277	"	" <u>*</u> 8	• •		 Oil of lavender
G.	324	or	'ZO ‡[••	••	Sandarae Alcohol

РОВМИГА FOR A МЕСАТІУЕ УАВИІЗН.

250 c.c.	"	70 n		• •	• •	·· ·· lodoolA
" 7.4	66	" _₹ "				[0405] A
" 9·4I	"	" }		• •		Turpentine oil Isavender oil Isavender oil A
32 G.	or	13 3 OZ,	• •	• •	• •	Sandarae Turnentine oil

FORMULA FOR A RETOUCHING VARNISH.

Sandarae	• •	• •		$1\frac{1}{2}$ oz.	or	42	3.
Cistor on				$-120~\mathrm{orns}$! .	ケ・ケス	
Absolute Alcoh	101	• •	• •	9 oz.	,,	250 c.	c.

FORMULÆ FOR VARNISH TO IMITATE GROUND GLASS.

				(1.		_		
Sandara	c	• •	• •	• •		360 grns.	or	25 G.
WEASUIC				4.		80		B
1301161	• •	• •	• •			8 02.		250 c c
Denzole	• •	• •	• •	• •	• •	2 to 6 oz.	**	60 to 200 c.c.

The effect produced depends upon the amount of the benzole.

(2)

A solution of white wax in ether.

VARIOUS PYROGALLOL DEVELOPERS FOR GELATIN PLATES. Calculated by Mr. Geo. Marsh Jones.

It is assumed that the solutions when made up according to the maker's formulæ measure the following quantities.

	0 1		
	No. 1.	No. 2.	No. 3.
1. "Maudsley's studio"	3	3	3
2. Middaley a studio	110	80	
2. ,, other form. concd	8	8	
	16	16	
4. London ordinary 5. instantaneous	1	1	1
5. " instantaneous	2	3	
6. Newark extra concision		_	
6. Newark extra sensitive	16	16	
7. Kingston special	8	8	
8. Clarke's	10	6,80	r 10.
9. "Britannia" or La Brillantine	6	20	
\$7°			

Note.—No. 4 Plates. Begin development with 31 (30 c.c.) of No. 1 Solution, and m 3 (3 drops) each of Solutions 2 and 3; more of No. 2 to follow.

No. 5 Plates. Soak in water, then apply pyro. solution 3 2 and begin with \mathfrak{m} 5 of ammonia; after lights are out \mathfrak{m} 15 to \mathfrak{m} 20 more of ammonia solution.

No. 7 Plates. Dilute 31 of each solution with 315 water, and use equal quantities of each.

No. 1 Solution.

		-	-		market a restriction	
.50 c.c.	01 £	.5.5 052	915		— оз	Hard water
.Đ 43	1000 gr.	_		_	_ {	bromide
		3.28 G.	4gr.		_ (Oitric acid muinommA
	:_	D 00-0				(24.1)
.9.9 96	ભ દદ					Mitric acid
				.5.5 03Z	ot &	Alcohol ot (.flt.) to
_				41.65 c.c.	1 2 50	Glycerol
*I∙29 G:	.7 <u>8</u> 627	2.28G.	40 gr.	31 · 19 G.	.13 143 m & &	Pyrogallol
	ONT	•0.4			ONT	
<u> </u>	οN	.8 (.T.		
.5.0 05g	01 £	250 c.c.	oi E	.5.0 c.c.	01 2 03	Hard water
_	_	_			- {	bromide
			_		_ (Citric acid Ammonium
					· ((24.1)
_	·				zeril Eresi	ot (.nltom) viric acid
_		- .		1	laon'il	Alcohol
_		_				Glycerol
1.14 G.	.13 02	1.71 G.	.rg 0£	1.14 G.	.13 OC	Pyrogallol
.9	.oV	·9	oM	'₹	.oV	
	1	1	1 c		0.7 C 00	TOOM A DIMIT
Q, 111	35	250 c.c.	01 &	.5 o 032	01 5 01	bromide Hard water
15·6 dilut	of			-	\ - \ \{	muinommA
ted t	No.	8.56 G.	150 gr.	.32 G.	.13 d.d	(1.142) bioa oirtiO
<u>~</u>	5 2	-			-	Nitric acid
of N 250	dilu 10.					Alcohol (meth.) to
No. 2 50 c.c.	uted to					Glycerol
5 %	ot 1	31 · 19 G.	547 gr.	2.27 G.	.13 7.68	Pyrogallol
3.	.oV	2.	.oV	1.	.oV	
J						1

No. 2 Solution.

1							
	N o	. 1.	No	o. 2.	Ń	o. 3.	
Ammonia S.G. 880 Ammonium bromide Potassium bromide Glycerol Water to	}31 } — }20 gr. 310	3·12 c.c. 1·14 G. 250 c.c.	31 37 37.5 to 310 — 310	46.9 c.c. 25 to 35 c.c. 250 c.c.	3 5 of No. 2 di- luted to 3 10.	15.6 cc. of No, 2 diluted to 250 c.c.	
	No	. 4. •	N o	. 5.	No. 6.		
Ammonia S.G. •880	}310	• 31 • 24c.c.	3 3 m 3 2 40	83·32 c.c.	m122 · 5	5·86 c.c.	
Ammonium bromide	} -		-	· e-43	37·5 gr.		
Potassium bromide	} -		33 20gr .	11·41 G.	-		
Glycerol Water to	3 10	250 c.c.	3 10	250 c.c.	<u>3</u> 10	250 c.c.	
	No	o. 7.	No	. 8.	No. 9.		
Ammonia S.G. ·880	} 3 10	31·24 c.c.		3 to 5 c.c.	უ 90	4.7 c.c.	
Ammonium bromide	} -		3 1. 20 to 33 gr.	1 · 1 to 2 G.		·	
Potassium; bromide	} 250 gr.	1	—	<i>24 Cd</i> •	.=	-	
Glycerol Water to	3 10 3 10	31 cc. 250 c.c.	3 10	250 c.c.	<u>3</u> 10	250 c.c.	

No. 3 Solution.

This is required for No. 4 (London ordinary) and consists of

Potassium bromide 150 gr. or {8.55 G.
Water to ... 3 10 } or {250 c.c.

GELATIN MEGATIVES,									
EROM	Foc	Свет	Remoni x 3	FOR	Solution	ABMEY'S			

.5.2 001 "e	'ZO ₹		• •	. • • • •	• • • • • • • • • • • • • • • • • • •
. 2	30 %	• •	• •	romide.	Potassium b Water
or 3 G.	.smrg od	• •	• •	əbire	Iron perchic

FOR REDUCING DENSITY OF GELATIN MEGATIVES.

02	• •	• •	• •	• •	• •		• •	Water
suva z	• •	• •	• •	• •	ລາ	277.00	CULL	HIDTOWNO T
1 part.	• •	• •	• •	• •	Jan	Mod	Sun	Dry bleach
						O CL	wa:	decold will

Mix the bleaching powder with three-fourths of the water, dissolve the carbonate in the remainder, mix, boil, and filter.

```
CLEARING SOLUTION TOR GELATIN PLATES.

(To remove pyro. stains after developing.)

Alum... 2 oz. or 50 G.
Citric acid... 1 ... 25 ...

Vater... 10 ... 250 c.c.
```

INTENSIFIERS FOR GELATIN PLATES.

.50 0 c.c.	• 6	• • •	07	• •	• •	• •	Water dist
25 G.		66	T	• •	• •	• •	Albumen (1 egg)
50 c.c.		66	z.		• •	• •	
° 22		66	T	• •	• •	• •	ragar
25 G.	or	'zo	ĩ	un	mon	ıwı	bns nori to stangluë
					(.1	.)	

A few drops of silver nitrate solution, 4 grns. per oz. or 2 G. per 100 c.c., must be used with this intensifier.

250 c.c		'ZO	01	• •	•	• •	• •	• •	• •	•	•	afer	4.A
15 "			007	٠.	•	• •	əpr	TOL	cp	wi	1111		Û
12 G.	JO	grns.		• •	'	• •	• •	•	٠ ((əşt	uu	ugns	
				ÐΛ	iso	l.l.	(60	opį.	lor	сµ	ııc	inorel	N
					(.9							_	-

Followed by ammonia solution: 10 drops ammonia (1880)

APPENDIX.

(3.)

Uranium nitrate 30 grns. or 2 G.
Potassium ferricyanide (red
prussiate) 30 ,, ,, 2 ,,
Water 8 oz. ,, 250 c.c.

In all cases the negative must be washed perfectly free from thiosulphate before intensification.

SOLUTIONS FOR PREPARING SENSITIVE PAPER.

For albumenizing:

Ammonium chloride 200 to 400 grns. or 6 to 12 G. Alcohol $\frac{1}{2}$ oz. , 15 c.c. Water 9 , , 250 , Albumen 30 , , , 500 ,

Add the albumen when the other ingredients are dissolved, shake well, and filter through a bit of sponge.

For sensitizing:

The amount of nitrate should be less in printing from a hard negative, and increased when the negative is weak. Paper floated after sensitizing on a bath of citric acid (2 G. per 30 c.c. water) will keep longer than ordinary paper.

FORMULÆ FOR TONING BATHS.

(1.)

This gives warm tones and must not be used until one day old. Wash prints well previous to toning.

(2.)

This must be used at once.

~				(·#)			• • •		
.1 G. Jong.	ε " ι	grns oz,	30 30	• •	• •	• •	 [dsot	lqib	Gold.ch Sodium Tater Teyver	
			• •	LDIX	bez	[4A				99

chalk, filter, and cool. This may be used immediately and Raise to boiling, and add a slight excess of precipitated 300 c.c.

Gold chloride I grn. or 'I G.

" i. "

" I

(.3) will keep.

., 10 oz. ,, 300 c.c. Water 100 grns. or 8 G. (b) Borax 10 oz. " 300 c.c. Water (a) Gold chloride I grin. or 'I G.

keep. Wash the prints well before toning, keep, but the mixture, which can be used at once, will not Mix equal volumes of a and b. The solutions a and b will

FORMULA FOR FIXING PRINTS.

o.o 00d " daiq I Sodium thiosulphate (hypo.) 4 oz. or 100 G.

GROUND, FORMULA FOR PRINTING IN BLUE, WHITE LINES ON BLUE

30 " eno c'c' • • Water " 09T " " g • • Ammonio-citrate of iron Potassium ferricyanide 5 oz. or 150 G.

ing in water, one side of the paper. Expose to light and develop by float-Dissolve each of the salts in half the water, mix, and coat

APPENDIX.

10. MII EMDIX.	
Pellet's Process for Printing in Blue on a Ground, is said to be:—	Wнітв
Common salt	;; ;; res.
Dissolve the gum in half of the water and mix. Of sized paper with the mixture in a dim light and dry Expose and float on a saturated solution of potassit cyanide. Float on clean water for a few minutes upon	rapidly. ım ferro-
Hydrochloric acid	ŧ
Then wash with water and dry.	
ENCAUSTIC PASTE.	
White beeswax Gum elemi 500 grns. or 50 Benzole 220 ,, ,, 22 Oil of lavender 330 ,, ,, 33 Oil of spike 50 ,, ,, 5	" " "
(2.)	
White wax	1t.
Solutions for Mounting Prints,	
(1.) Gelatin	.G. 0 c.c. G. 0 c.c.
(2.)	
Gelatin 1 pa Alcohol (meth.) 10 pa	rt. rts.
Swell the gelatin with water and boil with the alco	

(897 **)**

327-334	• •	• •	• •	Tralles' Tables for Strength of
322	• •	• •	• •	Rable Tot aldsT
329, 360	• •	• •	• •	Jiriq S bəzilsibro Ani ragus ————————————————————————————————————
319-321	• •	• •	• •	Strength of, by Weight
838	• •	eter	utor	Bpecific Gravity by Sikes, Alcoho
911	• •	• •	• •	Solubility of Gases in
373-372	• •	• •	• •	Proof and Percentage compared
317, 318	• •	• •	• •	Methyl, Strength of Solutions
918	• •	• •	• •	To witz, Table for Strength of
335-357	• •	• •	JO 1	Gay-Lussac's Tables for Strength
322	• •	• •	• •	to notifulid —
ne 371	into	A pu	or vi	Comparison of Per Cent. by Weig
928	• •		• •	Boiling Point of Aqueous
818	• •	• •	SLLE	Alcohol and Water, Volumes of, in 100 pa
877	• •	• •	• •	Albumin, Strength of Solutions
08I ··	• •	• •	• •	
253	• •	• •	• •	too I sidud to thate W
06	• •	• •	nar.	— Thermometer compared with Mercu.
₹II · ·	• •	• •	• •	Solubility in Water
8	• •	• •	• •	of Zafialer Relations relating to
254-256	• •	• •	• •	Air, Behaviour of Metals with
282	• •	• •	• •	· · · · To sialysis of — Volumetric Analysis
272	• •	• •	• •	singsents
608-408	• •	• •	• •	divisionally to
257-260	• •	• •	• •	Acids, Behaviour of Metals with
261	• •	• •	• •	Tartaric, Strength of Solutions
861	• •	• •	• •	Tannic, Strength of Solutions
381 '48I	• •	• •	• •	- Sulphuric, Strength of Solutions
961	••	• •	• •	Phosphoric, Strength of Solutions
881	• •	• •	• •	Oxalic, Strength of Solutions
061-481	• •	• •	• •	Mitric, Strength of Solutions
722	• •		• •	Hydrochloric, Strength of Solutions Hydrocyanic, Strength of Solutions
261,161	• •	• •	• •	- Hydrochloric, Strength of Solutions
261-661	• •	• •	• •	Acid, Acetic, Strength of
261-E6I	• •	• •	• •	Acetic Acid, Strength of
225		• •	• •	Sodium, Strength of Solutions
225	• •	• •	• •	Acetate of Lead, Strength of Solutions
₹9 ··	• •	• •	• •	Absorption of Gases by Charcoal
PAGE				

		PAGE
Alkalies, Behaviour of Metals with		260
Volumetric Analysis of		285
Alkalimetric Degrees, Comparison of		390-392
Alkaline Carbonates, Indirect Estimation		284
Earths, Volumetric Analysis of		285
Alteration of Volume of Glass Vessels by Heat		287
Aluminium Chloride, Strength of Solutions		221
Alum, Strength of Solutions		213
Ammonia, Strength of Solutions		213 203, 204
Ammonium Alum, Strength of Solutions	• •	213
Chloride, Strength of Solutions		219
Sulphate, Strength of Solutions	• •	208
Analysis, Biological Factors for	• •	6
Coefficients for TI Our and it is	• •	10-16
T7 . • . • . • . • . · . · . · . · . · . ·		
		6
of Acids Albelias and Albelias Touth	• •	20
of Acids, Alkalies, and Alkaline Earths		285
of Beer, Tables for		371, 372
Organic, Factors for		6
Analytical Tables		281-284
Analytical Tables		263-269
Aniline Oils, Composition of		397
Anilines, Characters of Commercial	• •	399
Apparatus, Prices of		403-405
Aqueous Vapour, Force of (°F.)		252
Tension of	67,	239-242
Weight of 1 Foot		253
Areometers compared with Specific Gravity		177, 178
Assay Table for Lead Ores		310, 311
Atomic Heat of Compounds		61
Elements		59, 60
Atomicity of Elements Atomic Weights of Elements		1, 2
Atomic Weights of Elements	• •	1-3
(Latest) of Elements		3
Caused of Elements		•••
Barium Chloride, Strength of Solutions		220
—— Nitrate, Strength of Solutions		215
Barometers, Comparison of British and Metrical	• •	*
Correction for Capillarity	• •	52-54
Correction for Capillarity Corrections for Temperature Reseas in Management Mud	• •	58
Bases in Manganese Mud	• •	55-57
Bates' Table for Decrease in Density of Worts	• •	396
Regumé's Argometer compared with Smalle Com	• •	388
Begame's Areometer compared with Specific Grav	пу	177, 178

IXDEX.

878 ••	4 6	6 5		ss of Water	Clark's Lable of Hardne
213	• •	• • sı	cornrou		Chromate of Potassium,
268	• •	. • •		o nostradino	Chlorometric Degrees, C
9 68 · ·	• •	• •	•• •• •	IO HOSTLE	Chlorine Degrees, Compa
982	• • *	• •		J	Chlorides, Mixed, Table
222	• •	• •			Chlemides Mined Streng
812	• •	• •			erte , annibos ————————————————————————————————————
910			prostrifo	S to dividity	Potassium, S
219		1 181	cottutos	To diameria	, mulasngaM ———
220					alcium, Str
330	••				Barium, Stre
6 t 7	• •	·· su	Solution	Strength of	muluommA ———
122 .,	• •	•• su	Solution	Strength of	Chloride of Aluminium,
61 '41	• •	• 4	• • • •	•• •• ••	Chemical Calculations
₱Ŷ · ·	• •	• •	• • • • •	Gases by	Charcoal, Absorption of
202 '102	1007	• 6	• • • •		—— Zoga, Strength c
107 '007		• •	• · · · · · · · · · · · · · · · · · · ·		Caustic Potash, Strengti
44T		LARIE	วทาวอดีต	iparen wini	Cartler's Areometer con
<u> </u>		• •	· · to sec	rr Ka siskipi	Carbonic Anhydride, A
•-		ara f	ose of	T vd sisvier	Carbonates, Mixed, Tab
₹8₹ · ·	• •	pipy	for A 10.	withal roft sal	dell haviM setemodrel)
900			ntions	os to dividir	ts 'unipos
205			rotanto8	to dignerals	Potassium,
205	• •	• •			Carbonate of Potash, St
718 · ·	• •	., s			Carata, Conversion into
83	• •	• •	Tol s	ot Barometer	Capillarity, Correction o
25	• •	• •	• • • •	to sorue	Capacity, Metrical Meas
				/ J. 198	00. + 1)
181	• •	• •	• • • •	(==================================	Calculation of $\left(\frac{1}{10000000000000000000000000000000000$
CTIT	• •				I MONTHOUS CHIOTENINOINO
61-41		• •		n	Calculations, Chemical
215					eritinate of, Stre
022	• •	• 6	suo	itulo2 to div	Calcium Chloride, Streng
то				• • • • • •	Brass, Linear Expansion
	• •				
197		4.6 00			Borax Beads, Metals in
III		5 81	Klemen	reand other	of Liqui
011-14				· · · sp	inpld to
326	•••	••	• • • •	fodool A prro	ono V 30
13	guid	et ai			Boiling Points, Correcti
9	• •	• •	. ui		Biological Analysis, Fac
66E	• •	• •	• • • •		Benzols, Table for Chara
498	• •		• • •		Beetroot Juice, Valuati
248,178	• •	• •	• • • •		Beer Analysis, Tables f
841 441		HARTI	ogyood	S diw bered	Beck's Areometer comp
PAGE			•••	·- • •	. , , , ,
				•ছলবেজা	O.I.T.

. ، بد عاملات في الح			PAGE
Clerget's Table for Saccharimeter		• 4	368, 369
Coefficients giving Amount of Constituents		• 4	10-16
Coins, Composition of			406
Combustion Products of Gases Common Substances, Specific Gravity of	• 4	• 1	64
Common Substances, Specific Gravity of	• 4		64 182
Comparison of Alkalimetric Degrees			390-392
Barometers	• •		52-54
Thermometers	• •		43-46
Barometers Thermometers Compounds, Atomic Heat of		••	43-46
Conversion of Carats into Decimal Equivalent	g		314
Grains into Grams		• •	36-38
Grams into Grains	••	• •	31-36
Copper Alloys, Lead to be used in Cupellation	of.		315, 316
Nitrate Strongth of Solutions	1 01		
Nitrate, Strength of Solutions	• • ,	• •	216
Cordialized Spirita Super in			212
Cornection of Class Beauty Galax	• •	• •	359, 360
Correction of Glass Barometer Scales	• •	• •	, 54-57
Cubical Dilation of Glass	• •		66
Cupellation, Table for Addition of Lead	• •		315, 316
Cubical Dilation of Glass Cupellation, Table for Addition of Lead Cupellation, Tables for	• •	• •	312-316
Data, Various	• •	• •	7, 8, 9
Decimal Equivalents, Conversion of Carats in	to	• •	314
Decimal Equivalents, Conversion of Carats in	• •	• •	40
Density of Elements			175, 176
Gases Method of Ohtaining			174
- Minerals - Water			304 - 309
			182
			173
Dew Point Tables			251-253
Dew Point Tables Dictionary of Solubilities Dilution of Alcohol, Table for	••		118-172
Dilution of Alcohol Table for	• •		322
Sulphuric Acid, Table for	• •		186
			273-280
Directions for making Reagents	• •	• •	
preparing volumetric solutions	• •	• •	288-297
Floments Atomic Host of			50
Atomic Volume and Melandan T	* * 7 o i 1	• • h 4 ~ ~	09 2
Crowning of	eigi	nts c	11 5
Totat Alexai Weight a	• •	• •	4
Elements, Atomic Heat of	• •	• •	3
Melting and Boiling Points Specific and Atomic Heat	• •	• •	111
Specific and Atomic Heat	• •	• •	59
Specific Gravity of			175 176

Gold, Cupellation of, Lead to be added 316
Strength of, by Specific Gravity 208
GII ni sils Io yilidulo ,enirenyle
788 tash yd smuloV do noitarsifA ,alsaseV ——
1d Tanear Expansion of
Glass, Cubic Dilation of
Gay-lingsac's Tables for Strength of Alcohol 1358-388 follool A to fly find the state of t
171
89 suoine V to mode V to noise I'
dli lodoolA bar reteW ai tilidulo2 ——
Sez-ess, et 19, 229-238
89 fo the Heat of the Appenia and Vapours, Specific Heat of
Gases, Absorption of, by Charcoal 64
Fusion Point of Tallow 401
Prigorific Mixtures 47, 48
798
French and English Chlorine Degrees compared
200 horacimo sociroli origidali dellariti Butacort
Freezing Mixtures 47, 48
608-408 sirraniM to
Formulæ for Correcting Barometers
es To nosiraquo, Comparison of Aeights and Measures, Comparison of
Foreign Money, Weights, and Measures compared 30
Ferrous Sulphate, Strength of Solutions are serious Mercanges assumed the state of
errocyanide of Potassium, Strength of Solutions
Ferricyanide of Potassium, Strength of Solutions 227
482-182 sisyland biriemoloV —————
9 sisyland fanglogical mi 92U
Factors for Organic Analysis
o piemfor A circon O not protocit
OO II II II II II II TO OTGOT TOOMII TO
Linear, of Brass and Glass of Water, Table of
Id Linear, of Brass and Glass
Bxpansion, Cubical, of Glass
EXCISE TROIG FOR WOLF 370
Ether, Strength of Alcoholic Solutions
od serutrangment dgiH to ———————————————————————————————————
definition by Loss of CO2
Hquivalent Rates for Weights and Money 39, 40
08 ngiəro'i
English Money, Weights, and Measures, compared with
Elements, Symbols, Atomic Weights, and Atomicities of 1, 2, 3
PAGE Cumbola Atomic Wolfelelita and Atomicities of Platform
M M T UA

PAGE
Gold, Cupellation Tables 316
Graduating Vessels, Table for Use in 287
Grains, Conversion of Grams into
——— into Grams, Conversion of 36–38
—— Medical, of various Countries 29
——— per Gallon converted into Parts per 100,000 246
Grams, Conversion of Grains into 36-38
Grams, Conversion of Grains into
Grouping of Elements 4
ϵ .
Hardness of Metals
———— of Minerals
——— Table of Parts per 100,000 249, 250
———— Quantities to produce 1 Degree 250
Heat, Atomic, of Compounds
——— Specific, of Elements
Gases and Vapours 63
Gases and Vapours
Hennessey's System of Weights and Measures 30
Hennessey's System of Weights and Measures 30 High Temperature, Means of Estimating
Hops, Increase of, by Heat
ner Quarter of Malt 373-389
per Quarter of Malt
Hundredweights Fanivalent Rates for 30 40
Hydrita of Potagium Straigth of Solutions 100 000 001
Hydrate of Potassium, Strength of Solutions 199, 200, 201
Sodium, Strength of Solutions 200, 201, 202
Hydrochloric Acid, Strength of Solutions 191, 192
Hydrocyanic Acid, Strength of Solutions
Hyposulphite of Sodium, Strength of Solutions 224
Indirect Analysis
by loss of CO_2 5
by loss of CO_2
Iodide of Potassium, Strength of Solutions 223
Iron Sulphate, Strength of Solutions
-
Kopp's Table for Expansion of Water 65
Krouber's Table for Benzols, &c
Lactodensimeter, Table for 401
Laurent's Apparatus Table for 365
Lead Acetate, Strength of Solutions
Lead Acetate, Strength of Solutions

INDEX'

Minerals, Formulæ, Hardness, Specific Gravity, &c. 304-309
Milk, Lactodensimeter 400, 401
Microcosmic Salt, Metals with Bead of
62 sorius
Metric System compared with Foreign Weights and Mea-
Metrical Barometer compared with British
818,718 solutions of Solutions of Alechor, Strength of Solutions desired family Marketing and Alechory of the Alechory of Solution o
Ob Thysical State of
III striog Boiling Boiling ———
262 Bead Bead in Microcosmic Salt Bead
192 bead xarot ni ———
172,072 stangents ————————————————————————————————————
172,072 straggents ————
Metals, Behaviour with Acids and Alkalies 257-260
7 To sumulo of columns of T
Mercury, Tension of Vapour of
Mercurial Thermometer compared with Air Thermometer compared with Air I learn 172
O
Medicine Grains of various Countries
Veights and
Measures, Foreign, compared with English 30
20E-862 inoitsluqinsM
988 ni səsad rol əldaf , bull əsənaşnaM
Malt Extract, Strength of Solutions 370
802 Sulphate, Strength of Solutions
Magnesium Chloride, Strength of Solutions
Magnesia Mixture 424
yor and all all all all all all all all all al
Logarithms of Mumbers around to 1000 or 0 mort eradum N to smithingod
· · · · · · · · · · · · · · · · · · ·
29 Organic, Specific Heat of
Methods of obtaining Specific Gravity of
oll-27 To Viilidulo bas
Liquids, Boiling Points, Specific Gravity, Vapour Density,
Linear Expansion of Brass and Glass 51
852 Solubility in Solutions of Sugar
Lime, Solutions of Salts of (see Calcium).
Levesque's Tables 385–387. Lime, Solutions of Salts of (see Calcium).
Length, Metitical Measures of 24
to be added in Cupellations 315, 316
Solubility of, in Water
IIE, 018
Ele ale and ore, Table for Silver in a side T vess A send
APAT

Molecular Weight, of Tu				•	PAGE
Molecular Weights of Elements			• • •		. 5
The Carrier of the Control of the Co					30
Mud, Manganese, Table for Bases		• •			
Names of Salts, Ancient and Modern					000
Nitrate of Barium, Strength of Solutions	• •				303
Unicilim Strangth of Columbiana	• •	• •			215
Copper, Strength of Solutions			-		215
Lead Strongth of St. 1	• •	• •	• •		216
Lead, Strength of Solutions	• •				217
Potassium, Strength of Solutions	S				214
DUU IIIII. Dirength of Solutions	• •				214
Acid, Strength of Solutions	• •			187	
ATTO OUCHZOIS. I ADIA for Characters of			-		
AUDIOSER, Estimation by Volume Terring		'nr		••	
in Air, Quantity of	~ 1				
in Air, Quantity of Reduction of C. C. to Grams Normal Solutions	• •	• •		0.40	
* Of that Dolutions		• •		246	
Numbers, Logarithms of	• •	• •		288-	
The state of the s	• •	• •	• •	243-	-245
Old Names & Q. 14					
Old Names for Salts Ores of Lead, Assay Table Organic Analysis, Factors for	• •				303
Ores of Lead, Assay Table			• •	310	311
		••	• • •	• •	67
0 0,, 01 11 01 03	• •	• •	• •	• •	10
Oxalle Acid, Strength of Solutions					700
Uxlue 401 Potassium Strength of Solutions			* ^ ^	• •	
Sodium Strength of Solutions	• •	• •	199,	200,	201
Sodium, Strength of Solutions Oxygen in Air Quantity of	• •	• •	200,	201,	202
- J Com and Little Williams (1)					8
cent. of	•	٠.	•	393.	394
•					
Parts per 100,000 converted into Grains per	r G	allo	n		246
* once, Equivalent Bates for Shillings				• •	
TOTOLING COLLESIONNING IN FIRE CHIEF, to	O 10	l' ~			
Tomologing, Tension of Vancur			••		
+ - writing operational interesting and the property of			• •	• •	
+ pospulate of Southing Strength of Solutions	9	• •	• •		
Phosphoric Acid, Strength of Solutions	•	• •	• •		216
Photography, Table of Salts used in	•	• •	• •		196
Physical State of Metals	•	• •	• •	• • •	40 2
Plumbic Acetate Strongth of Galice	•	• •	• •	• •	60
Plumbic Acetate, Strength of Solutions Polar Weights and Manual	•	• •	• •		225
Polar Weights and Measures	•	• •	• •	• •	30
Polarimeter of Frèze, Table for					367

INDEX'

Residual Gas in Vitriol Chambers, Table for	
Reckoner, Ready	
Yolumetric, Preparation of 288–297	
TOTAL STRUCTULE	
Respense Density of Moral and an area	
Heady Reckning	
401 CONTRACT GOODS	
01, 65 Lbs Star. Lor Cwis. Dis.	
Pyrometer Degrees compared with Temperature 49	
oze-eze to nostrending grantagued bus hourd	
Slitered A to some	
Prescriptions, Signs used in writing	
Periminal Washington of Solids of So	
Pounds, Edulyalent Kates for Cwts, and Tons	
TOT GOOD GOOT (* * SHOTTING TO HIBITALIS THAT	
TITUE PRINCIPLE OF THE	•
org	•
TOT (OOT (OOT PRINTING IO HIGHE) PARISHED H	-
Participation of the manage and the property of the participation of the	-
The second of th	_
ora	_
Chloride, Strength of Solutions	-
cos Right Stringth of Solution and the stringth of the	
CHIOLIGES, ESTIMATION OF MARKET	-
Fox nonsumest regimes, thoused as the	-
E12 Subjuil S to diament and the decision of	ı,
smoithlos to digneral session	L
TOT GOT GET SHOLDHOS TO ALOUATE	_
Acc-occ See 1890 of the first of the first may a second of the first of the f	T
obs iliju gladeli 10 mojvedag dagto	l T
olarimeters, Use of	Ţ
PAGE	
•VIUNT 9/3	7

Colombial Character To 12 at			AGE
Saturated Steam, Properties of	• .•	69	9,70
Shillings, Equivalent Rates for Pence	, * *	.• •.	
Silver Cupellation, Lead to be added		315,	
in Lead Ore, Table for		312,	313
—— in Lead Ore, Table for Soda, Behaviour of Metals with		• •	260
— Comparison of Alkalimetric Degrees		391,	392
Strength of Solutions		201,	
Sodium Acetate, Strength of Solutions			225
and Potassium Carbonates, Indirect Estim	ation	n of	284
——————————————————————————————————————	liva	-1	286
Carbonate, Strength of Solutions Chloride, Strength of Solutions Hydrata Strength of Solutions		•	206
Chloride, Strength of Solutions		• •	218
reverse, sergious of solutions	26163	92A1 T	909
	l C		916
— Hyposulphite, Strength of Solutions	~ .	• •	224
Hyposulphite, Strength of Solutions Nitrate, Strength of Solutions	• •	• •	214
Uxide Strength of Solutions	200	201	202
——————————————————————————————————————	200,	201,	207
Thiosulphate, Strength of Solutions	••		224
Solids. Analysis of in Dry Way	• •	263-	
Solids, Analysis of, in Dry Way Specific Gravity of, Methods for Obtaining	• •		
Solubility of Air in Water			173
Solubility of Air in Water			114
- Lord in Water	• •		115
Lead in Water Liquids Minerals in Acids		• • H	
Minorals in Asids		71-	
Solta in Chroning		304-	
Salts in Glycerine		••	
Substances at various Temperatures		116,	
Substances, Dictionary of		118-	
Dorations, Examination of	• •	266-	
Volumetric, Directions for Preparing	• •	2 88-	
Specific Gravity compared with Areometers		177,	
Methods of Obtaining	• •	173,	174
of Common Substances		• •	
Elements	٠,٠	175,	176
Elements Gases, Methods of Obtaining		• •	174
Liquids		71-	-110
Gases, Methods of Obtaining Liquids	• •	~ ~ .	-309
			183
Salts Water at various Temperatur Specific Heat of Elements	es		182
Specific Heat of Elements Gases and Vapours		• ••	59
Gases and Vapours			63
Organic Liquids			62

INDEX'

,	• •	** ** ** ** ATOLITOO OF GOODERS OF OTHER
₹65-33¢	• •	Twaddle Degrees, to Convert
96° 40° 40° 40° 40° 40° 40° 40° 40° 40° 40		Tralles' Tables for Strength of Alcohol
		Tons, Equivalent Rates per Lbs. and Owts.
₹77		Thiosulphate of Sodium, Strength of Solutions
19		Formulæ for Correction of
21		Degrees, Rules for Converting
09		IgirupuaM bug ri A
9 †- 8†	••	Thermometers, Comparison of
89	• •	** Agour of Liquenable Gases
99	• •	MERCHLY VADOUT
239-242	• •	Tension of Aqueous Vapour in mm, of Mercury
13	• •	To Correct Thermometers
09	• •	Itsimation of High
49-99	• •	Correction of Barometers for
67	• •	Temperature compared with Pyrometer Degrees
261 ···	• •	Tartaric Acid, Strength of Solutions
861	• •	Tannic Acid, Strength of Solutions
107	• •	Tanny, rusion round of Schrisper
107		Tallow, Fusion Point of
z 'ı ··	• •	** ** ** ** ** CONTINUES TO STORY SO
77	• •	Surface, metrical measures of
981	• •	
981 '781	• •	Table for Diluting
201 101		Sulphuric Acid, Strength of
		Sulphates, Alum, Strength of Solutions
210	• •	Zine, Strength of Solutions
407	• •	Sodium, Strength of Solutions
000	• •	Magnesium, Strength of Solutions
112		Iron, Strength of Solutions
212		Copper, Strength of Solutions
802	••	Sulphate of Ammonium, Strength of Solutions
798 '898	• •	Table, Ure's
361-365	• •	Strength of Solutions
228	• •	di ami, lo vilidilos —————
398	• •	Solutions, Strength by Beaume Degrees
698-998	• •	Polarimeter for Estimating
926, 866	• •	stiriqg bəzilstər ni
49E ··	• •	Sugar in Beetroot and other Juices
411 '911		T T to t when G at mount
	1819 (meT suoirsy the seltilities of Table of Tem
741-811	LII	Substances Solubility of
41	• •	Stochiometry Stochiometry
04 '69	• •	Steam Properties of
048	01 2	Spirit Indication, Strength of Wort correspondin
PAGE		"The manual destat to discourt anitable tiring
· -		

Times Wahle for Haller att				PAGE
Urea, Table for Estimation	• •		• •	,. €
Ure's Sugar Table			• •	363
Useful Data	• •		• •	7, 8, 9
Vapour Densities of Liquids				71-110
of Mercury, Tension of of Petroleum, Tension of	• •	••	• •	66
—— of Petroleum, Tension of	• •	••		400
- of Water, Tension of	••	67.	239-	-242, 252
——— Tension of Liquefiable Gases	••			68
Vapours and Gases, Specific Heat of	• •	••	•••	
Vessels, Alteration of Volume by Heat		••	••	
Vinegar, Strength of, by Specific Gravity	••	• •		193-195
Volume of Glass Vessels, Alteration of, 1	ω H	Toot	• •	4-
Gases, Correction of				229-238
Volumes of Alcohol and Water in 100 Pa	rta	• •	•	
Gases, Problems involving	11 00	• •	• •	
1/ a langua a landa		• •	. ••	
Solutions, Preparations of	• •			281-284
VALUMA WAShir of Plansonia	• •	• •		288-297
volume vveights of Elements	• •	• •		5
Wagag Table			,	
Wages Table	• •	• •	• •	406
Water Analysis, Reagents for	` a` •	• •	• •	297
—— Clark's Table of Hardness	• •	• Į	• •	248
—— Density of	• •	• •	• •	182
Expansion of	• •	• •		65
Solubility of Air in		• •	• •	114
Gases in	• •			115
	• •	• •		113
—— Quantities to produce Hardness				250
——— Transformation of Columns of				7
Weight of 1000 C.C.			• •	287
Vapour, Tension of	• •	• •	• •	239-242
Wedgewood's Pyrometer		••		49
Weight of 1000 C.C. of Water	• • •	•••	• • •	287
Weights and Measures		••	• •	23-42
Metrical			• •	23-42
Polar				30
Comparison of English and Fore	ian	• •	• •	
Equivalent Rates for	aign		• •	30
Metrical Measures	• •	• •	• •	39, 40
Parantaga garraganading to T	ha.	0-	.4~	23
Percentage corresponding to I	JUS.,	UW	ıs.,	per
Ton, &c	• •	• •	• •	41, 42
TY UP DICERUU UL ALUALYSIS, 1 adie of				266-269

INDEX'

Worts, Decrease in Specific Gravity, by Temperature

210

222

9

888 ..

48E ..

946 ..

.. Sulphate, Strength of Solutions ...

Zinc Chloride, Strength of Solutions

.. no it in Indiang to Spirit Indication ...

in Hops, Table for Original Gravity, Table

£\$\$	442 ,	. • •	ธอวน	peta	ns sn	oin.	V To	sjuje	ाह्र फुट	usn,	я әр	110	Table
I P P	• •	• •	• •	* *	• •	m.	\mathfrak{m}_0	94 Jo	anns	2Fes	GL	owe	Bar
	lsm	nol	to I	Ses	9 IO	Sət	unto	A IO	HOIL	rec	CO	ror	9IdgT
011	687	, • -	• •	• •	• •	• •	••	• •	• •	• •	• •	LLG	ព្
	era-	dw	or Te	of es	t Gas	o sə	uni	oY Yo	uoij	rrec	con .	or s	Tables
8E1	-984	•••	•	, •		. , .	• •	• •	(89	uor	, .M	. U.	IMI)
	29.II	easi	M ba	ir-sti	Igi $9V$	l lo	ence	iivale	Fd1	tpe	gūiw	ous	Table
₽£₽.	-87₽	. • •		. • •	• •	• •	spun	odwo	nt C	olia	(dw	I to	uon
			ge Go	entag	Perc	pu	s .eti	ďgis√	lar V	րթթլ	[oM]	'æĮr	Form
724.	- 62£	. • •	. • •	• •	••		••	• •	• •	• •	д ұ.	Clar	.W
	\mathbf{E}	$\mathbf{A}\mathbf{q}$	bets.	լոշլԵ	re-c	SB	ghts	$M_{\rm ei}$	omic	1A	ф	lo	Dry E
424	••	• •	• •	• •	• •		• •	• •	• •	• •	stas	great	$\mathbf{D^{L}_{A}}\mathbf{E}$
424			• •	• •		• •	• •	••	9	ant	xiM	kizə	Magn T
	420-		. • •		• •				• •	-	.ox	ers.	1900
		9O	oidut) lo	ənje	Λ (eqi (guitti	[noIn(\mathbf{r}	HE	,1I	$9 \mathrm{ldsT}$
617	917			. • •	- (II)	B1'1C	M)	suoir	orre) ta	1949Î	tib t	$\mathfrak{lti}_{\mathcal{T}}$
	sret	əwi	Juent	oidu	O 10	∍nเย	\mathbf{V} and	d ani	taluə	Cal	ToT-	—.I	Table
	suc)itin	log b	94811	rteS 1	o sa	mioq	anili	ioď 9	g tp	aniw	ous	Table
717					• •				$^{4}\mathrm{T})$ 4	MIA	Gra	offic	əag
^	Aqe	uir	HVCE) 10	snoil.	uloč	to t	figns	ndZ o	գ, եր	uiw	oųs	Table
814	'ZI₹			•.•)	uanu	achsr	$\Lambda()$ Λ	Tiivi	Gra	offic	eas .
• • •	Aq	giu	mu.	A To	uoiti	afoS	to t	enet!	ris Str	dt 2	niw	oųs	9IdsT
117	• •		9.1	naga	euwe /	T'')} A4	Dens	to n	oito	orre	O 10	Æ
					(uəll			pur					
014	• •	• •	• •	• •	• •	ζı	fəII A) lod	ool A.				
007	 (0.07					٠					-: BJ1	$\int_{\mathbb{R}} \mathbf{G} \cdot \mathbf{J}$	ulseU
607	'80 ₹				. • • . • • •		TOLLE	office	sD (oibo	rr94) 8,[land
	$-\mathbf{w}_{\Theta}$	Νo	t oni	hroon	ıs Həi	əfət	Men	'vd b	элиг.	TTR'	enta	məl;	Lpe F
					37 T	α \	T EN	T ~ .	r *P				
					$\mathbf{X}\mathbf{I}$	\mathbf{u}	TET 6	$^{\prime}\mathrm{bE}$	V				

PAGE
Table showing the Behaviour of various Organic Sub-
stances with Solvents (Allen)
Table showing the Behaviour of Organic Substances with
Immiscible Solvents
Immiscible Solvents
orange, Phenacetolin, Phenol-phthalein, and Rosolic
Acid with various Salts of Alkalies, with Ammonia,
and with some Acids (R. T. Thompson) 451-453
•
PHOTOGRAPHIC SECTION:—
Table showing the Equivalence of various Salts used
in Photography
Table for Enlargement or Diminution 456, 457
Formulæ for Preparation of Pyroxyline 458
Various Formulæ for Iodized Collodion 459
Formulæ for Wet-plate Developers
Intensifier for Wet Plates 460
Intensifier for Wet Plates
Formulæ for a Negative Varnish 460
Formula for a Retouching Varnish 461
Formulæ for Varnish to imitate Ground Glass 461
Various Pyrogallol Developers for Gelatin Plates
(Mr. Geo. Marsh Jones) 461-463
(Mr. Geo. Marsh Jones)
Gelatin Negatives
For reducing Density of Gelatin Negatives 464
Clearing Solution for Gelatin Plates 464
Intensifiers for Gelatin Plates 464, 465
Solutions for preparing Sensitive Paper 465
Formulæ for Toning Baths 465, 466
Formula for Fixing Prints 466
Formula for Fixing Prints
Ground 466
Ground
Ground
Encaustic Paste
Ground

LONDON: PRINTED BY WILLIAM CLOWES AND SONS, LIMITED, STAMFORD STREET AND CHARING CROSS.

A POCKET-BOOK

 \mathbf{OE}

USEFUL FORMULÆ & MEMORANDA

EOE

CIAIP VAD MECHANICAL ENGINEERS.

BY GUILFORD L. MOLESWORTH,

MEM. INST. C.E.,

Consulting Engineer to the Government of India for State Railways.

Twenty-first Edition, 32mo, roan, 6s. Ditto, interleaved with ruled paper for Office use, 9s. Ditto, printed on India paper, 6s.

SLONS,

TABLES AND MEMORANDA FOR

BY J. T. HURST, C.E.,

Author of 'Architectural Surveyors' Handbook,' 'Hurst's Tredgold's Carpentry,' &c.

64mo, roan, gilt edges, seventh edition, revised and improved, 1s.; or in cloth case, 1s. 6d.

E. & F. N. SPON, 125, Strand, London.
New York: 35, Murray Street.

In 33 Numbers, price 2s. each, or 5 Divisions, Super Royal 8vo, cloth, Divs. 1 to 4, 13s. 6d. each, Div. 5, 11s. 6d., with numerous Illustrations.

SPONS' ENCYCLOPÆDIA

OF THE

INDUSTRIAL ARTS, MANUFACTURES, AND COMMERCIAL PRODUCTS.

THIS Encyclopædia gives, in a readily-accessible form, general and technical information not elsewhere easily obtainable. Though works of a similar character are in existence, the ground which they were designed to cover is, at the present time, to a large extent unoccupied. This circumstance is due partly to the progress made of late in those sciences upon which the industrial arts largely depend. During the past decade, the science of Chemistry, essential to all the important industries, has made great and rapid strides. In consequence of a better acquaintance with the nature of the substances dealt with, and a fuller understanding of fundamental principles and laws, new processes have been devised, and wider applications of well-known materials have been discovered. These new combinations and discoveries have given rise to new manufactures, and led to the modification of the old methods of production. Hence has arisen the necessity for a new work, such as that now issued, to meet the requirements of the altered state of things brought about by this advance in scientific knowledge.

Among the more important of the subjects treated of are the following:—

Paper. FLOOT-CLOUD, tures. Paint. Fibrous Substances. Woollen Manufacstances. F'eathers. Moot. Oils and Fatty Sub-Explosives. Wax, .stuN Electro-Metallurgy. Vinegar. Narcotics. .estufis, Varnish. Printing. Mordants. Timber. Matches, Dyeing and Calico Lea. Manures. Drugs. Tannin, Linen Manufactures tures. anuding Leather. Manufac-Cotton Sugar. Lace, COTE. Starch. Hosiery Coffee, Sponge. Knitted Pabrics-Cocos. Spices. Jute Manufactures. Coal-tar Products. .qso2 LVOLY. Clay. Small Goods. Ink. Cements. Skins. factures. Celluloid. Silk Manufactures. -nasM reddursibal Carbon Bisulphide. Silk. tce. Candles. Salt. Horn, Bleaching. коре .aqoH Bleaching Powder, Honey. my Substances. Blacks, Resinous and Gum-Hats. Blacking. Kags. Hair Manufactures. Беуегадея. graving. Hair. .gaiyassA Printing and En-Graphite. Asphalt. Pottery. Glass. 'mnI A Pigments. Gems. .avollA Photography. Gas, Coal. Alkalies. Perfumes. Fur. Alcoholic Liquora. Pearl and Coral. Jini4 Alcohol. Paraffin. Food Preservation, Acids.

E. & F. N. SPON, 125, Strand, London.

Crown 8vo, cloth, with Illustrations, price 5s.

WORKSHOP RECEIPTS,

FOR THE USE OF

Manufacturers, Mechanics, and Scientific Amateurs.

BY ERNEST SPON.

CONTENTS.

Bookbinding — Bronzes — Candles — Cement — Cleaning—Concretes — Dyeing—Electro-Metallurgy — Enamels — Engraving — Etching — Firework Making — Freezing — Fulminates — Furniture Creams, Oils, Polishes, Lacquers, and Pastes — Gilding — Glass Cutting — Glass Making — Graining — Gums — Horn Working — India-rubber — Ink — Japans — Lacquers — Marble Working — Matches — Mortars — Paper Hanging — Painting in Oils — Photography — Polishes — Pottery — Silvering — Soap — Solders — Taxidermy — Treating Horn, Mother-o'-Pearl, and like substances — Varnishes — Veneering — White-washing, &c., &c.

E. & F. N. SPON, 125, Strand, London. New York: 35, Murray Street.

Oroun 8vo, cloth, with Illustrations, price 5s.

MOBKSHOD BECEIPTS

(SECOND SEKIES)

BY ROBERT HALDANE.

Devoted mainly to subjects connected with Ohemical Manufactures.

YN ENLIKELY NEW VOLUME.

Uniform in Size, Style, and Type with the Original Workshop Receipts?

CONTENTS.

Acidimetry and Alkalimetry—Albumen—Alcohol—Alkaloids—Baking Powders—Bitters—Bleaching—Boiler Incrustations—Cements and Lutes—Cleansing—Confectionery—Copying—Disinfectants—Dyeing—Staining and Colouring—Essences—Extracts—Pireproofing—Gelatine—Glue and Size—Glycerine—Fireproofing—Gelatine—Glue and Size—Clycerine—or Luminous Bodies—Ivory Substitutes—Leather—form—Isinglass—Ivory Substitutes—Leather—Parchment—Perchloric Acid—Pigments—Paper—Parchment—Perchloric Acid—Pigments—Paper—Painting—Painting—Painting—Painting—Painting—Painting—Painting—Painting—Preserving.

E. & F. N. SPON, 125, Strand, London.

Crown 8vo, cloth, with Illustrations, price 5s.

WORKSHOP RECEIPTS

(THIRD SERIES).

BY C. G. WARNFORD LOCK, F.L.S.

Devoted mainly to Electrical & Metallurgical subjects.

CONTENTS.

Alloys — Aluminium — Antimony — Barium — Beryllium — Bismuth — Cadmium — Casium — Calcium — Cerrium — Chromium — Cobalt — Copper — Didymium - Electrics (including alarms, batteries, bells, carbons, coils [induction, intensity, and resistance, dynamo-electric machines, fire risks, measuring, microphones, motors, phonographs, photophones, storing, telephones) - Enamels and Glazes - Erbium —Gallium—Glass—Gold—Indium—Iridium—Iron -Lacquers-Lanthanum-Lead-Lithium-Lubricants-Magnesium-Manganese-Mercury-Mica-Molybdenum — Nickel — Nisbium — Osmium — Palladium — Platinum — Potassium — Rhodium — Rubidium — Ruthenium — Silenium — Silver — Slag — Sodium - Strontium - Tantalum - Terbium - Thallium — Thorium — Tin — Titanium — Tungsten — Uranium-Vanadium-Yttrium-Zinc-Zirconium.

E. & F. N. SPON, 125, Strand, London.

New York: 35, Murray Street.

MOBKSHOD BECEIPTS

ese soing Orown 8vo, cloth, with Illustrations,

(FOURTH SERIES).

BK C' C' MYENEOED FOCK' E'F'S'

Devoted mainly to Handicrafts & Mechanical

'stoeldus

general Index to the four Series. 250 Illustrations, with complete Index and a

CONTENTS.

solutions, and applications to modern illustrative purposes. apparatus, numerous recipes for sensitising and developing PHOTOGRAPHY: recent development in rapid processes, handy AND WATCH MENDING: adapted for intelligent amateurs repair of pianos, harmoniums, musical boxes, etc. -- Clock etc. - Musical Instruments: the preservation, tuning, and -STRAW PLAITING and the fabrication of baskets, matting, plaster and paper processes - Bookbinding in all its details MACERATING - ELECTROTYPING - STEREOTTPING by both water, and solutions of various kinds — Percolating and photographers — Evaporatice: saline and other solutions, and liquids demanding special precautions — Filtering: holic liquids — Emulsifying as required by pharmacists and pharmaceutical preparations, essences, perfumes, and alcoartificial products — Distilling: water, tinctures, extracts, water-ovens, and other appliances for drying natural and sive, tenacious, and other liquids - Desiccating: air- and and supplying water on a moderate scale, and moving corro-AND SYPHONS, embracing every useful contrivance for raising low temperatures, making ice, cooling syrups and solutions, and separating salts from liquors by refrigeration—Puyrs LEATHER POLISHES - COOLING AIR AND WATER, producing - Embalming and Preserving anatomical specimens to ignition, apt to suffer from insects or damp, or easily broken of delicate odour or colour, of a deliquescent character, liable miscellaneous preparations,—Packing and Storing articles . WATERPROOFING: rubber goods, cuprammonium processes,

E. & F. M. SPON, 125, Strand, London.

Mew York: 35. Murr