Exercise Response - 3

Exercise Response - 3

Important Definitions

- \lesssim is the symbol for simulation
- $P \lesssim Q$ implies that if $P \to^{\alpha} P'$ then $\exists Q'$ such that $Q \to^{\alpha} Q'$ and $P' \mathcal{R} Q'$
- $P \lesssim Q$ means Q simulates P, intuitively that Q can do everything P can do
- \sim is the symbol for bisimulation
- $P \sim Q$ implies that $P \lesssim Q$ and $Q \lesssim P$
- For all intents and purposes (from an outside perspective), if $P \sim Q$, then P and Q are identical

Knowledge Test

- **1. Prove that the empty relation is a bisimulation** For \sim to be a bisimulation, it must be true that for all $(P,Q) \in$, there must be P', α such that $P \to^{\alpha} P'$, and Q', α such that $Q \to^{\alpha} Q'$. Because $P,Q \notin$, there is actually nothing to prove.
- **2.** Prove that the identity relation id (P id P for all P) is a bisimulation. Assume that we retain the identities of P, but create two copies: R, S. If there exists $Q' \in R$ such that $Q \to^{\mathcal{U}} Q'$, then it stands that there also exists $Q' \in S$ such that $Q \to^{\mathcal{U}} Q'$. Because these two processes have the same identity, then $Q' \in R$ is also a bisimulation of $Q' \in S$.

Now if we add any arbitrary attribute (state? transition?) Z to P, and thus both R and S, then it we can repeat the logic above to prove $R \cup Z \sim S \cup Z$.

Old explanation:

So I can understand this better, I'll rewrite this as * Prove that $P \sim P$, $\forall P$

To prove this, we can simply refer to the definition of bisimilarity, and note that it is innately reflexive in definition, such that $P \sim P$. Therefore, For all P, Q, if $P \sim Q$, then $Q \sim P$. Thus, $P \sim P$ for all P.

3. Prove that a|a and a.a are bisimilar Assume that we act invoke CCS's act rule on both processes. By definition, if $a|a \to a X$, and $a.a \to a Y$, a|a and a.a are bisimilar if X = Y and $X \sim Y$.

In this case, X = a|0 which can be reduced to a, and Y = 0, so X = Y. Repeating this step on X and Y will yield the same results.

Sources and Materials

- https://homes.cs.washington.edu/~djg/msr_russia2012/sangiorgi.pdf
- http://pauillac.inria.fr/~leifer/teaching/mpri-concurrency-2005/c4/cours.pdf