Øvingsforelesning 7

TDT4120 - Algoritmer og datastrukturer

Øving 6

- Problemet må kun ha én riktig løsning.
- Input må kun bestå av heltall.
- Man må bruke rekursive funksjoner for å løse problemet.
- Problemet må ha optimal delstruktur.
- Det må finnes overlappende delproblemer.

- Problemet må kun ha én riktig løsning.
- Input må kun bestå av heltall.
- Man må bruke rekursive funksjoner for å løse problemet.
- Problemet må ha optimal delstruktur.
- Det må finnes overlappende delproblemer.

- Problemet må kun ha én riktig løsning.
- Input må kun bestå av heltall.
- Man må bruke rekursive funksjoner for å løse problemet.
- Problemet må ha optimal delstruktur.
- Det må finnes overlappende delproblemer.

- Problemet må kun ha én riktig løsning.
- Input må kun bestå av heltall.
- Man må bruke rekursive funksjoner for å løse problemet.
- Problemet må ha optimal delstruktur.
- Det må finnes overlappende delproblemer.

Oppgave 2: Hvilke egenskaper må et problem ha for at det skal gi mening å bruke dynamisk programmering til å løse problemet?

Oppgave 3: Hva vil det si at et problem har optimal delstruktur?

Oppgave 2: Hvilke egenskaper må et problem ha for at det skal gi mening å bruke dynamisk programmering til å løse problemet?

Oppgave 3: Hva vil det si at et problem har optimal delstruktur?

En optimal løsning på en instans kan konstureres fra optimal løsninger på delinstansene.

Oppgave 2: Hvilke egenskaper må et problem ha for at det skal gi mening å bruke dynamisk programmering til å løse problemet?

Oppgave 3: Hva vil det si at et problem har optimal delstruktur?

En optimal løsning på en instans kan konstureres fra optimal løsninger på delinstansene.

Oppgave 4: Hva vil det si at et problem har overlappende delproblemer?

Oppgave 2: Hvilke egenskaper må et problem ha for at det skal gi mening å bruke dynamisk programmering til å løse problemet?

Oppgave 3: Hva vil det si at et problem har optimal delstruktur?

En optimal løsning på en instans kan konstureres fra optimal løsninger på delinstansene.

Oppgave 4: Hva vil det si at et problem har overlappende delproblemer?

Flere oppdelinger av problemet inneholder noen av de samme delproblemene.

Oppgave 5: La n = 7 og $p = \langle 1, 4, 3, 6, 8, 5, 9 \rangle$ være en instans av stavkuttingsproblemet. Hva blir da den maksimale inntekten, r_7 ?

Oppgave 5: La n=7 og $p=\langle 1,4,3,6,8,5,9 \rangle$ være en instans av stavkuttingsproblemet. Hva blir da den maksimale inntekten, r_7 ?

Oppgave 5: La n=7 og $p=\langle 1,4,3,6,8,5,9 \rangle$ være en instans av stavkuttingsproblemet. Hva blir da den maksimale inntekten, r_7 ?

$$r_1=\max(p_1)=1$$

Oppgave 5: La n=7 og $p=\langle 1,4,3,6,8,5,9 \rangle$ være en instans av stavkuttingsproblemet. Hva blir da den maksimale inntekten, r_7 ?

$$r_1 = \max(p_1) = 1$$

 $r_2 = \max(r_1 + r_1, p_2) = 4$

Oppgave 5: La n=7 og $p=\langle 1,4,3,6,8,5,9 \rangle$ være en instans av stavkuttingsproblemet. Hva blir da den maksimale inntekten, r_7 ?

14

$$r_1 = \max(p_1) = 1$$

 $r_2 = \max(r_1 + r_1, p_2) = 4$
 $r_3 = \max(r_1 + r_2, p_3) = 5$

Oppgave 5: La n=7 og $p=\langle 1,4,3,6,8,5,9 \rangle$ være en instans av stavkuttingsproblemet. Hva blir da den maksimale inntekten, r_7 ?

15

$$r_1 = \max(p_1) = 1$$

 $r_2 = \max(r_1 + r_1, p_2) = 4$
 $r_3 = \max(r_1 + r_2, p_3) = 5$
 $r_4 = \max(r_1 + r_3, r_2 + r_2, p_4) = 8$

Oppgave 5: La n=7 og $p=\langle 1,4,3,6,8,5,9 \rangle$ være en instans av stavkuttingsproblemet. Hva blir da den maksimale inntekten, r_7 ?

Kan regne ut iterativt.

$$\begin{aligned} r_1 &= \max(p_1) = 1 \\ r_2 &= \max(r_1 + r_1, p_2) = 4 \\ r_3 &= \max(r_1 + r_2, p_3) = 5 \\ r_4 &= \max(r_1 + r_3, r_2 + r_2, p_4) = 8 \\ r_5 &= \max(r_1 + r_4, r_2 + r_3, p_5) = 9, \\ r_6 &= \max(r_1 + r_5, r_2 + r_4, r_3 + r_3, p_6) = 12 \\ r_7 &= \max(r_1 + r_6, r_2 + r_5, r_3 + r_4, p_7) = 13 \end{aligned}$$

16

Oppgave 6: Oppdeling i lengde 2 og 4 er den eneste optimale løsningen for n = 6. Hvilke alternativer er da garantert **ikke** løsninger for n = 8?

17

Oppgave 6: Oppdeling i lengde 2 og 4 er den eneste optimale løsningen for n = 6. Hvilke alternativer er da garantert **ikke** løsninger for n = 8?

Ingen løsninger for n=8 kan være optimale hvis de inneholder et subsett av staver som summerer til 2,4 eller 6 uten at dette subsettet er $\langle 2 \rangle, \langle 4 \rangle$ eller $\langle 2, 4 \rangle$.

18

Oppgave 6: Oppdeling i lengde 2 og 4 er den eneste optimale løsningen for n = 6. Hvilke alternativer er da garantert **ikke** løsninger for n = 8?

Ingen løsninger for n=8 kan være optimale hvis de inneholder et subsett av staver som summerer til 2,4 eller 6 uten at dette subsettet er $\langle 2 \rangle, \langle 4 \rangle$ eller $\langle 2,4 \rangle$.

- 8 staver av lengde 1.
- 2 staver av lengde 4.
- 2 staver av lengde 2 og 1 stav av lengde 4.
- 1 stav av lengde 3 og 1 stav av lengde 5.
- 2 staver av lengde 3 og 1 stav av lengde 2.
- 4 staver av lengde 2.

Oppgave 6: Oppdeling i lengde 2 og 4 er den eneste optimale løsningen for n = 6. Hvilke alternativer er da garantert **ikke** løsninger for n = 8?

Ingen løsninger for n=8 kan være optimale hvis de inneholder et subsett av staver som summerer til 2,4 eller 6 uten at dette subsettet er $\langle 2 \rangle, \langle 4 \rangle$ eller $\langle 2,4 \rangle$.

- 8 staver av lengde 1.
- 2 staver av lengde 4.
- 2 staver av lengde 2 og 1 stav av lengde 4.
- 1 stav av lengde 3 og 1 stav av lengde 5.
- 2 staver av lengde 3 og 1 stav av lengde 2.
- 4 staver av lengde 2.

Oppgave 6: Oppdeling i lengde 2 og 4 er den eneste optimale løsningen for n = 6. Hvilke alternativer er da garantert **ikke** løsninger for n = 8?

Ingen løsninger for n=8 kan være optimale hvis de inneholder et subsett av staver som summerer til 2,4 eller 6 uten at dette subsettet er $\langle 2 \rangle, \langle 4 \rangle$ eller $\langle 2, 4 \rangle$.

- 8 staver av lengde 1.
- 2 staver av lengde 4.
- 2 staver av lengde 2 og 1 stav av lengde 4.
- 1 stav av lengde 3 og 1 stav av lengde 5.
- 2 staver av lengde 3 og 1 stav av lengde 2.
- 4 staver av lengde 2.

Deling av metallstykker - Programmering

Oppgave 7: Ønsker å dele et metallstykke i rektangulære stykker for å maksimere prisen. (2D-stavkutting).

Deling av metallstykker - Programmering

Oppgave 7: Ønsker å dele et metallstykke i rektangulære stykker for å maksimere prisen. (2D-stavkutting).

```
SHEET-CUTTING(w, h, p)

1 for i = 1 to w

2 for j = 1 to h

3 for k = 1 to \lfloor j/2 \rfloor

4 p[i,j] = \max(p[i,j-k] + p[i,k], p[i,j])

5 for k = 1 to \lfloor i/2 \rfloor

6 p[i,j] = \max(p[i-k,j] + p[k,j], p[i,j])

7 return p[w, h]
```

- Man har generelt mindre overhead.
- Man kan potensielt ende opp med å løse færre delinstanser.
- Man vil alltid oppnå en bedre tidskompleksitet.
- Man slipper å løse samme delinstans flere ganger.

- Man har generelt mindre overhead. [Iterasjon]
- Man kan potensielt ende opp med å løse færre delinstanser.
- Man vil alltid oppnå en bedre tidskompleksitet.
- Man slipper å løse samme delinstans flere ganger.

- Man har generelt mindre overhead. [Iterasjon]
- Man kan potensielt ende opp med å løse færre delinstanser.
 [Memoisering]
- Man vil alltid oppnå en bedre tidskompleksitet.
- Man slipper å løse samme delinstans flere ganger.

- Man har generelt mindre overhead. [Iterasjon]
- Man kan potensielt ende opp med å løse færre delinstanser.
 [Memoisering]
- Man vil alltid oppnå en bedre tidskompleksitet.
- Man slipper å løse samme delinstans flere ganger.

- Man har generelt mindre overhead. [Iterasjon]
- Man kan potensielt ende opp med å løse færre delinstanser.
 [Memoisering]
- Man vil alltid oppnå en bedre tidskompleksitet.
- Man slipper å løse samme delinstans flere ganger.

Oppgave 10: Kan vi bruke memoisering i quicksort til å oppnå en bedre tidskompleksitet?

29

Oppgave 10: Kan vi bruke memoisering i quicksort til å oppnå en bedre tidskompleksitet?

Quicksort deler rekursivt opp i to og to delinstanser ved hjelp av PARTITION.

30

Oppgave 10: Kan vi bruke memoisering i quicksort til å oppnå en bedre tidskompleksitet?

Quicksort deler rekursivt opp i to og to delinstanser ved hjelp av PARTITION.

31

Partition garanterer at delinstansene er unike.

Oppgave 10: Kan vi bruke memoisering i quicksort til å oppnå en bedre tidskompleksitet?

Quicksort deler rekursivt opp i to og to delinstanser ved hjelp av PARTITION.

32

Partition garanterer at delinstansene er unike.

Dekomponeringen har ikke overlappende delproblemer.

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

Oppgave 12: Hvor mange måter kan man komme fra (1,1) til (5,7)?

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

Oppgave 12: Hvor mange måter kan man komme fra (1,1) til (5,7)?

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

	1	2	3	4	5
1	1	1	1	1	1
2					
3					
4					
5					
6					
7					

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

	1	2	3	4	5
1	1	1	1	1	1
2	1				
3	1				
4	1				
5	1				
6	1				
7	1				

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

	1	2	3	4	5
1	1	1	1	1	1
2	1	2			
3	1				
4	1				
5	1				
6	1				
7	1				

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

	1	2	3	4	5
1	1	1	1	1	1
2	1	2	3		
3	1				
4	1				
5	1				
6	1				
7	1				

Oppgave 11: I et rutenett hvor vi kun kan gå til høyre eller ned i hvert steg. På hvor mange måter kan man komme fra (1,1) til (2,3)?

	1	2	3	4	5
1	1	1	1	1	1
2	1	2	3	4	5
3	1	3	6	10	15
4	1	4	10	20	35
5	1	5	15	35	70
6	1	6	21	56	126
7	1	7	28	84	210

Oppgave 13: Implementer kode som finner lengste strengt synkende delfølge av en følge, $S = \langle s_1, s_2, \dots s_n \rangle$.

44

Oppgave 13: Implementer kode som finner lengste strengt synkende delfølge av en følge, $S = \langle s_1, s_2, \dots s_n \rangle$.

Den lengste delfølgen av S er den lengste delfølgen som slutter i en av s_i -ene.

45

Oppgave 13: Implementer kode som finner lengste strengt synkende delfølge av en følge, $S = \langle s_1, s_2, \dots s_n \rangle$.

Den lengste delfølgen av S er den lengste delfølgen som slutter i en av s_i -ene.

Alle de lengste delfølgene som slutter på s_i er enten kun $\langle s_i \rangle$ eller er den lengste delfølgen som slutter i et tall $s_i > s_i$ hvor j < i.

46

Oppgave 13: Implementer kode som finner lengste strengt synkende delfølge av en følge, $S = \langle s_1, s_2, \dots s_n \rangle$.

Den lengste delfølgen av S er den lengste delfølgen som slutter i en av s_i -ene.

Alle de lengste delfølgene som slutter på s_i er enten kun $\langle s_i \rangle$ eller er den lengste delfølgen som slutter i et tall $s_i > s_i$ hvor j < i.

47

1. La løsningen på problemet for i = 1 være $\langle s_1 \rangle$.

Oppgave 13: Implementer kode som finner lengste strengt synkende delfølge av en følge, $S = \langle s_1, s_2, \dots s_n \rangle$.

Den lengste delfølgen av S er den lengste delfølgen som slutter i en av s_i -ene.

Alle de lengste delfølgene som slutter på s_i er enten kun $\langle s_i \rangle$ eller er den lengste delfølgen som slutter i et tall $s_i > s_i$ hvor j < i.

48

- 1. La løsningen på problemet for i = 1 være $\langle s_1 \rangle$.
- 2. Løs problemet for iterativt for i > 1 ved å:

Oppgave 13: Implementer kode som finner lengste strengt synkende delfølge av en følge, $S = \langle s_1, s_2, \dots s_n \rangle$.

Den lengste delfølgen av S er den lengste delfølgen som slutter i en av s_i -ene.

Alle de lengste delfølgene som slutter på s_i er enten kun $\langle s_i \rangle$ eller er den lengste delfølgen som slutter i et tall $s_i > s_i$ hvor j < i.

- 1. La løsningen på problemet for i = 1 være $\langle s_1 \rangle$.
- 2. Løs problemet for iterativt for i > 1 ved å:
 - a. Finn den lengste delfølgen S^* blant løsningene for j < i, hvor $s_j > s_i$ og la løsningen for i være $S^* + \langle s_i \rangle$.

49

Oppgave 13: Implementer kode som finner lengste strengt synkende delfølge av en følge, $S = \langle s_1, s_2, \dots s_n \rangle$.

Den lengste delfølgen av S er den lengste delfølgen som slutter i en av s_i -ene.

Alle de lengste delfølgene som slutter på s_i er enten kun $\langle s_i \rangle$ eller er den lengste delfølgen som slutter i et tall $s_j > s_i$ hvor j < i.

- 1. La løsningen på problemet for i = 1 være $\langle s_1 \rangle$.
- 2. Løs problemet for iterativt for i > 1 ved å:
 - a. Finn den lengste delfølgen S^* blant løsningene for j < i, hvor $s_j > s_i$ og la løsningen for i være $S^* + \langle s_i \rangle$.

50

b. Hvis S* ikke finnes sett løsningen for i til $\langle s_i \rangle$.

Oppgave 13: Implementer kode som finner lengste strengt synkende delfølge av en følge, $S = \langle s_1, s_2, \dots s_n \rangle$.

Den lengste delfølgen av S er den lengste delfølgen som slutter i en av s_i -ene.

Alle de lengste delfølgene som slutter på s_i er enten kun $\langle s_i \rangle$ eller er den lengste delfølgen som slutter i et tall $s_i > s_i$ hvor j < i.

- 1. La løsningen på problemet for i = 1 være $\langle s_1 \rangle$.
- 2. Løs problemet for iterativt for i > 1 ved å:
 - a. Finn den lengste delfølgen S^* blant løsningene for j < i, hvor $s_j > s_i$ og la løsningen for i være $S^* + \langle s_i \rangle$.
 - b. Hvis S^* ikke finnes sett løsningen for i til $\langle s_i \rangle$.
- 3. Returner den lengste løsningen funnet i 1. og 2.

Oppgave 14: Har to sekvenser av heltall, A og B, og ønsker å finne ut om det er mulig å dele opp A slik at hver segment summerer til et tall i B. Gir det mening å anvende dynamisk programmering med sammenhengende segmenter av A som delinstanser?

52

Oppgave 14: Har to sekvenser av heltall, A og B, og ønsker å finne ut om det er mulig å dele opp A slik at hver segment summerer til et tall i B. Gir det mening å anvende dynamisk programmering med sammenhengende segmenter av A som delinstanser?

For en A er dette kun mulig hvis det finnes en i slik at dette er mulig for $\langle a_1, a_2, \dots, a_i \rangle$ og $(\sum_{j=i+1}^n a_j) \in B$.

53

Oppgave 14: Har to sekvenser av heltall, A og B, og ønsker å finne ut om det er mulig å dele opp A slik at hver segment summerer til et tall i B. Gir det mening å anvende dynamisk programmering med sammenhengende segmenter av A som delinstanser?

For en A er dette kun mulig hvis det finnes en i slik at dette er mulig for $\langle a_1, a_2, \dots, a_i \rangle$ og $(\sum_{i=i+1}^n a_i) \in B$.

Kan først sjekke om dette er mulig for $\langle a_1 \rangle$. Så for $\langle a_1, a_2 \rangle$ ved å sjekke i = 1 og i = 2, og bruke resultatet for $\langle a_1 \rangle$.

54

Oppgave 14: Har to sekvenser av heltall, A og B, og ønsker å finne ut om det er mulig å dele opp A slik at hver segment summerer til et tall i B. Gir det mening å anvende dynamisk programmering med sammenhengende segmenter av A som delinstanser?

For en A er dette kun mulig hvis det finnes en i slik at dette er mulig for $\langle a_1, a_2, \dots, a_i \rangle$ og $(\sum_{i=i+1}^n a_i) \in B$.

Kan først sjekke om dette er mulig for $\langle a_1 \rangle$. Så for $\langle a_1, a_2 \rangle$ ved å sjekke i = 1 og i = 2, og bruke resultatet for $\langle a_1 \rangle$.

Kan fortsette å gjøre dette for alle segmenter av A på formen $\langle a_1, a_2, \dots a_j \rangle$, med større og større verdier for j.

Oppgave 15: Ønsker å finne lengste vei mellom A og B som kun bruker samme veistrekning en gang. Gir det mening å anvende dynamisk programmering for dette hvis hver delinstans er den lengste veien mellom to steder?

Oppgave 15: Ønsker å finne lengste vei mellom A og B som kun bruker samme veistrekning en gang. Gir det mening å anvende dynamisk programmering for dette hvis hver delinstans er den lengste veien mellom to steder?

Oppgave 15: Ønsker å finne lengste vei mellom A og B som kun bruker samme veistrekning en gang. Gir det mening å anvende dynamisk programmering for dette hvis hver delinstans er den lengste veien mellom to steder?

Den lengste veien fra A til B går igjennom C. Men, den lengste veien fra A til C er A - B - D - C og den lengste veien fra C til B er C - D - B eller C - A - B.

Oppgave 15: Ønsker å finne lengste vei mellom A og B som kun bruker samme veistrekning en gang. Gir det mening å anvende dynamisk programmering for dette hvis hver delinstans er den lengste veien mellom to steder?

Den lengste veien fra A til B går igjennom C. Men, den lengste veien fra A til C er A - B - D - C og den lengste veien fra C til B er C - D - B eller C - A - B.

Har ikke optimal delstruktur.

Oppgave 15: Ønsker å finne lengste vei mellom A og B som kun bruker samme veistrekning en gang. Gir det mening å anvende dynamisk programmering for dette hvis hver delinstans er den lengste veien mellom to steder?

Oppgave 16: Gir det mening å bruke dynamisk programmering hvis alle veiene er enveiskjørt og det ikke er mulig å kjøre i sirkel?

Oppgave 15: Ønsker å finne lengste vei mellom A og B som kun bruker samme veistrekning en gang. Gir det mening å anvende dynamisk programmering for dette hvis hver delinstans er den lengste veien mellom to steder?

Oppgave 16: Gir det mening å bruke dynamisk programmering hvis alle veiene er enveiskjørt og det ikke er mulig å kjøre i sirkel?

For et sted C på veien mellom A og B kan ikke den lengste veien mellom A og C bruke noen av de samme veiene som mellom C og B.

Oppgave 15: Ønsker å finne lengste vei mellom A og B som kun bruker samme veistrekning en gang. Gir det mening å anvende dynamisk programmering for dette hvis hver delinstans er den lengste veien mellom to steder?

Oppgave 16: Gir det mening å bruke dynamisk programmering hvis alle veiene er enveiskjørt og det ikke er mulig å kjøre i sirkel?

For et sted C på veien mellom A og B kan ikke den lengste veien mellom A og C bruke noen av de samme veiene som mellom C og B.

Oppgave 17: Finn en algoritme som løser det kontinuerlige ryggsekkproblemet med tidskompleksitet $O(n \lg n)$.

Oppgave 17: Finn en algoritme som løser det kontinuerlige ryggsekkproblemet med tidskompleksitet $O(n \lg n)$.

- 1. Sorter gjenstandene basert på verdi per vektenhet, v_i/w_i .
- 2. Inntil du er tom for plass, plukk så mye du kan av den gjenværende gjenstanden med høyest verdi per vektenhet.

Oppgave 17: Finn en algoritme som løser det kontinuerlige ryggsekkproblemet med tidskompleksitet $O(n \lg n)$.

Oppgave 18: Finn en algoritme som løser det ubegrensede ryggsekkproblemet med tidskompleksitet O(nW).

Oppgave 17: Finn en algoritme som løser det kontinuerlige ryggsekkproblemet med tidskompleksitet $O(n \lg n)$.

Oppgave 18: Finn en algoritme som løser det ubegrensede ryggsekkproblemet med tidskompleksitet O(nW).

```
Knapsack(n, W)
                                               Unlimited-Knapsack(n, W)
   let K[0..n, 0..W] be a new array
                                                1 let K[0..n, 0..W] be a new array
 2 for i = 0 to W
                                                2 for j = 0 to W
        K[0, i] = 0
                                                        K[0, i] = 0
   for i = 1 to n
                                                4 for i = 1 to n
 5
        for i = 0 to W
                                                        for i = 0 to W
 6
             x = K[i-1,j]
                                                            x = K[i-1,j]
             if i < w_i
                                                            if i < w_i
 8
                 K[i,j] = x
                                                                 K[i, j] = x
 9
                                                            else y = K[i, j - w_i] + v_i
             else y = K[i - 1, j - w_i] + v_i
                                                                 K[i, j] = \max(x, y)
                 K[i, j] = \max(x, y)
                                               10
10
```

Oppgave 17: Finn en algoritme som løser det kontinuerlige ryggsekkproblemet med tidskompleksitet $O(n \lg n)$.

Oppgave 18: Finn en algoritme som løser det ubegrensede ryggsekkproblemet med tidskompleksitet O(nW).

Oppgave 19: Er det mulig å løse det begrensede ryggsekkproblemet med lavere tidskompleksitet for all k enn hvor raskt man kan løse det binære ryggsekkproblemet?

Oppgave 17: Finn en algoritme som løser det kontinuerlige ryggsekkproblemet med tidskompleksitet $O(n \lg n)$.

Oppgave 18: Finn en algoritme som løser det ubegrensede ryggsekkproblemet med tidskompleksitet O(nW).

Oppgave 19: Er det mulig å løse det begrensede ryggsekkproblemet med lavere tidskompleksitet for all k enn hvor raskt man kan løse det binære ryggsekkproblemet?

 ${\tt Knapsack}(n,{\tt W})$

1 return Limited-Knapsack(n, W, 1)

Oppgave 17: Finn en algoritme som løser det kontinuerlige ryggsekkproblemet med tidskompleksitet $O(n \lg n)$.

Oppgave 18: Finn en algoritme som løser det ubegrensede ryggsekkproblemet med tidskompleksitet O(nW).

Oppgave 19: Er det mulig å løse det begrensede ryggsekkproblemet med lavere tidskompleksitet for all k enn hvor raskt man kan løse det binære ryggsekkproblemet?

KNAPSACK(n, W)1 return LIMITED-KNAPSACK(n, W, 1)

Det begrensede ryggsekkproblemet er minst like vanskelig som det binære ryggsekkproblemet.

Sømfjerning - Programmering

Oppgave 20: Implementer en funksjon som gitt en todimensjonall tabell av tall finner stien fra toppen til bunnen av tabellen.

70