CONTRÔLE RO MIAGE

 $Nom\ et\ N^o\ \acute{e}tudiant$:

4 décembre 2024

Consignes générale :

- Toute réponse devra être justifiée
 - (référence à un théorème, à un algorithme, démonstration, trace d'algorithme, etc.).
- La clarté de la rédaction pourra être prise en compte dans la notation.
- Toute tentative de recherche (même incomplète) pourra être prise en compte.
- Tout appareil électronique est interdit (sauf aménagement d'examen).
- Hormis une feuille manuscrite (recto), tout autre document est interdit.
- En cas de suspicion d'erreur ou de doute d'interprétation, indiquer les choix fait.

Exercice 1 : On considère le programme linéaire suivant

$$\max z = 4x_1 + x_2
 -x_1 + 3x_2 \le 9 (C1)
 x_1 + x_2 \le 7 (C2)
 2x_1 - x_2 \le 8 (C3)
 x_1 , x_2 \ge 0$$

Question 1 – Représentez ce programme graphiquement. Indiquez clairement la représentation de chaque contrainte, le domaine admissible. Justifiez simplement la construction.		

Question 2 – Résolvez-le graphiquement. Indiquez la solution et la valeur de l'objectif associée. Justifiez simplement la résolution.

Question 3 – Mettre le programme sous forme standard.

Question 4 — Résolvez-le à l'aide de l'algorithme de Simplexe, avec $x_1=0, x_2=0$ comme solution initiale. A chaque itération spécifiez les variables de base, les variables hors base, et la valeur de la fonction objective. Indiquez également sur le graphique la position du point extrême correspondant.

Solution pour le simplexe : Optimum en $x_1 = 5$, $x_2 = 2$, valeur optimum de l'objectif : 22.		

<u>Exercice 2</u>: Une usine fabrique du jus ou de la purée à partir de tomates. Les ventes maximales et prix de ventes sont donnés par :

	Ventes maximales (litre)	Prix de vente (€/litre)
Jus de tomate	5000	3
Purée de tomate	2000	5

On cherche à maximiser le profit de l'usine.

Question 1 — Modélisez ce problème sous forme d'un programme linéaire. Vous indiquerez clairement la signification de chaque variable et de chaque contrainte ainsi que l'unité des variables (par exemple, litres, kilos, euros. . .).

