

DATA SCIENCE & MACHINE LEARNING COURSE

https://www.facebook.com/diceanalytics/ https://pk.linkedin.com/company/diceanalytics

K-Means Consideration

DATASETS

K-Means Clustering

Hierarchical Clustering

Choosing K for Hierarchical Clustering

Distance Measure – Complete Link

Distance Measure – Average Link

Distance Measure – Ward Method

Distance between Clusters A an B

$$\Delta(A,B) = C_1^2 + C_2^2 + C_3^2 + C_4^2$$

$$-A_1^2 - A_2^2$$

$$-B_1^2 - B_2^2$$

Distance Measure – Ward Method

MIN($\Delta(A,B)$, $\Delta(A,C)$, $\Delta(B,C)$)

Hierarchical Clustering Implementation

```
class sklearn.cluster. AgglomerativeClustering (n_clusters=2, affinity='euclidean', memory=None, connectivity=None, compute_full_tree='auto', linkage='ward', pooling_func='deprecated', distance_threshold=None)

[source]
```

https://scikit-

<u>learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html</u>

https://docs.scipy.org/doc/scipy-0.14.0/reference/cluster.hierarchy.html

https://docs.scipy.org/doc/scipy-

0.14.0/reference/generated/scipy.cluster.hierarchy.dendrogram.html#scipy.cluster.hierarchy.dendrogram

Hierarchical Clustering Application

US Senator Clustering through Twitter

Reds are Republicans, Blues are Democrats, Blacks are independent

Hierarchical Clustering Application

Charting Evolution through Phylogenetic Trees

Hierarchical Clustering Application

Tracking Viruses through Phylogenetic Trees

Study was also done for finding the animal that gave the humans the SARS virus

Cluster Validation – External Indices

Matching clustering structure to information we know beforehand

Metric	Range	Available in sklearn
Adjusted Rand Score	[-1,1]	Yes
Fawlks and Mallows	[0,1]	Yes
NMI Measure	[0,1]	Yes
Jaccard	[0,1]	Yes
F-measure	[0,1]	Yes
Purity	[0,1]	No

Cluster Validation – External Indices

Adjusted Rand Index Between -1 and 1

Gives a score using comparison of actual vs cluster label groups and pairs of labels

Actual Labels

Clustering Result

http://faculty.washington.edu/kayee/pca/supp.pdf

Cluster Validation – External Indices

DATA SCIENCE & MACHINE LEARNING COURSE

https://www.facebook.com/diceanalytics/ https://pk.linkedin.com/company/diceanalytics

Density-Based Spatial Clustering of Applications with Noise

epsilon: 1.0 MinPoints: 4

<u>Inputs</u>

Epsilon = 1.0

Inputs

3

Epsilon = 1.0
Search distance around points

Min Points = 5
Minimum points required to form a density cluster

Inputs

3

Epsilon = 1.0 Search distance around points

Min Points = 5
Minimum points required to form a density cluster

Inputs

3

Epsilon = 1.0 Search distance around points

Min Points = 5
Minimum points required to form a density cluster

Inputs

3

Epsilon = 1.0 Search distance around points

Min Points = 5
Minimum points required to form a density cluster

Inputs

3

Epsilon = 1.0
Search distance around points

Min Points = 5
Minimum points required to form a density cluster

- Cluster-1
- Noise Point

Inputs

3

Epsilon = 1.0 Search distance around points

Min Points = 5
Minimum points required to form a density cluster

- Cluster-2
- Cluster-1
- Noise Point

Inputs

3

Epsilon = 1.0 Search distance around points

Min Points = 5
Minimum points required to form a density cluster

- Cluster-2
- Cluster-1
- Noise Point

Inputs

3

Epsilon = 1.0 Search distance around points

Min Points = 5
Minimum points required to form a density cluster

- Cluster-2
- Cluster-1
- Noise Point

DBSCAN Implementation

class sklearn.cluster. DBSCAN (eps=0.5, min_samples=5, metric='euclidean', metric_params=None, algorithm='auto', leaf_size=30, p=None, n_jobs=None) [source]

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

DBSCAN Applications

Color image segmentation using density-based clustering

Pepper Segmented Pepper Plane Segmented Plane

Mountain Segmented Mountain Hand Segmented Hand

Tiger (with texture) Segmented Tiger Cameraman (with noise) Segmented Cameraman

https://www.researchgate.net/publication/4028066_Color_ima ge_segmentation_using_density-based_clustering

DBSCAN Applications

Density Based Clustering to Oil Spill Detection on Satellite Images

https://shodhganga.inflibnet.ac.in/bitstream/10603/25515/11/11_chapter%205.pdf

DBSCAN Applications

Evolution of Star Formation of Dwarf Galaxies within Extragalactic Cluster Substructures

https://www.haystack.mit.edu/edu/reu/2016/files/2016_Archer_Presentation.pdf

Comparing Clustering Algos

Comparing Clustering Algos

Comparing Clustering Algos

DBCV

DBCV – Density Based Cluster Validation

DBCV can validate clustering assignments on non-globular, arbitrarily shaped clusters. In essence, DBCV computes two values:

- > The density within a cluster
- > The density **between** clusters

https://epubs.siam.org/doi/pdf/10.1137/1.9781611973440.96

