Homework Assignment 1

CS 663: Digital Image Processing

2021-08-17

Exercise-3

We are given two images I and J whose intensity values (in each location) are randomly drawn from the known probability mass functions (PMFs) $p_I(i)$ and $p_J(j)$ respectively. Let image K be defined as I+J Assuming that intensity values lie in the set $\{0,1,2,...L-1\}$, intensity values in image K will lie in the set $\{0,1,2,...2L-2\}$.

Let (x_0,y_0) denote a pixel in each image: K,I,J. The probability that $K(x_0,y_0)=k$ will be equal to the sum of the probability for $[(I(x_0,y_0)=0 \text{ and } J(x_0,y_0)=k) \text{ or } (I(x_0,y_0)=1 \text{ and } J(x_0,y_0)=k-1) \text{ or } (I(x_0,y_0)=2 \text{ and } J(x_0,y_0)=k-2) \dots$ or $(I(x_0,y_0)=k \text{ and } J(x_0,y_0)=0)]$. Mathematically, this can be computed as:

$$p_K(k) = (p_I(0) \times p_J(k)) + (p_I(1) \times p_J(k-1)) + (p_I(2) \times p_J(k-2)) + \dots + (p_I(k) \times p_J(0))$$

$$= \sum_{m=0}^k p_I(m)p_J(k-m)$$

$$= (p_I * p_J)(k)$$
(1)

The expression resembles the **convolution** operation!