Concepteur Intégrateur Cybersécurité

SECDEV 2 - Sécurité des applicatifs Python

Nicolas Palpacuer

FizzBuzz

Afficher les nombres de 1 à 100, mais

Multiple de 3 : Fizz

Multiple de 5: Buzz

Multiple de 3 et de 5:

FizzBuzz

Tables de multiplication au résultats impairs

Afficher les table de multiplication dont les résultats sont impairs:

Ex:

$$1 \times 1 = 1$$

$$1 \times 3 = 3$$

List overlap – nombres communs

Trouver les nombres communs aux deux listes et les afficher

Reference vs Copy

>>> def foo(bar=[]): # bar is
optional and defaults to [] if not
specified

.. bar.append("baz")

... return bar

>> foo()

Exceptions

```
>>> try:
```

... except ValueError, IndexError:

.. pass

Exceptions

```
>>> try:
```

... except ValueError, IndexError:

... pass

. . .

Traceback (most recent call last):

File "<stdin>", line 3, in <module>

IndexError: list index out of range

Exceptions

```
>>> try:
```

... except (ValueError, IndexError): #
To catch both exceptions, right?

... pass

Scope

$$>>> x = 10$$

...
$$x += 1$$

. . .

Règle #1

Règle #1

Un code propre a moins de bugs et de failles de sécurité

"Any fool can write code that a computer can understand. Good programmers write code that humans can understand." – Martin Fowler

Fichiers de code

https://github.com/NickPPC/python_training

Heartbleed

Heartbleed - SSL

http://heartbleed.com/

"En informatique, un dépassement de tampon ou débordement de tampon (en anglais, **buffer overflow**) est un bug par lequel un processus, lors de l'écriture dans un tampon, écrit à l'extérieur de l'espace alloué au tampon, écrasant ainsi des informations nécessaires au processus" - Wikipedia

Heap vs Stack

Buffer overflow – Stack

Buffer overflow -Buffer

Buffer overflow – Stack attack

- Variables locales
- Return address
- Variables autres procedures

Buffer overflow -Heap attack

Corruption de données

Buffer overflow – ASLR

Address Space Layout Randomization

Buffer overflow – SSP

Stack-Smashing Protector

Canaries

Règle #2

Ne <u>jamais</u> faire confiance aux utilisateurs

"L'expérience prouve que celui qui n'a jamais confiance en personne ne sera jamais déçu." – Leonard de Vinci

Multithreading -Synchronisation

Multithreading -Synchronisation

Locks

Multithreading -Synchronisation

Semaphores

Règle #3

La sécurité du système est aussi bonne que votre maillon le plus faible

""Companies spend millions of dollars on firewalls, encryption and secure access devices, and it's money wasted; none of these measures address the weakest link in the security chain." – Kevin Mitnick, "The World's Most Famous Hacker"

Règle #3 bis

Le maillon faible est souvent humain

"If you think technology can solve your security problems, then you don't understand the problems and you don't understand the technology."

Bruce Schneier

Bonnes pratiques

Bonnes pratiques

OWASP checklist

Ressources

Cours gratuits de Python sur Openclassroom:

https://openclassrooms.com/fr/courses/235344-appr enez-a-programmer-en-python

Cours gratuits dans le domaine de l'IT et de la cybersécurité (en anglais):

https://www.cybrary.it/

Il existe aussi des vidéos sur Youtube pour tous les niveaux de Python