

Pruebas de acceso a enseñanzas universitarias oficiales de grado

Castilla y León

MATEMÁTICAS II

EJERCICIO

Nº Páginas: 2

INDICACIONES: 1.- OPTATIVIDAD: El alumno deberá escoger libremente cinco ejercicios completos de los diez propuestos. Se expresará claramente cuáles son los elegidos. Si se resolvieran más, sólo se corregirán los 5 primeros que estén resueltos (según el orden de numeración de pliegos y hojas de cada pliego) y que no aparezcan totalmente tachados.

2.- CALCULADORA: Podrán usarse calculadoras no programables, que no admitan memoria para texto, ni para resolución de ecuaciones, ni para resolución de integrales, ni para representaciones gráficas.

CRITERIOS GENERALES DE EVALUACIÓN: Los 5 ejercicios se puntuarán sobre un máximo de 2 puntos. Se observarán fundamentalmente los siguientes aspectos: correcta utilización de los conceptos, definiciones y propiedades relacionadas con la naturaleza de la situación que se trata de resolver; justificaciones teóricas que se aporten para el desarrollo de las respuestas; claridad y coherencia en la exposición; precisión en los cálculos y en las notaciones. Deben figurar explícitamente las operaciones no triviales, de modo que puedan reconstruirse la argumentación lógica y los cálculos.

E1.- (Álgebra)

Dado el sistema
$$\begin{cases} 2x + 2my - z = 0\\ x + 2y + mz = 0\\ x - my + mz = 0 \end{cases}$$

- a) Discuta el sistema el sistema según los distintos valores de m. (1 punto)
- **b**) Resuelva el sistema si m = -2. (1 punto)

E2.- (Álgebra)

Dada la matriz $A = \begin{pmatrix} a & a \\ 0 & 1 \end{pmatrix}$, calcule el valor de a que hace que:

$$A^{2} = A^{-1} + \begin{pmatrix} 0 & 3 \\ 0 & 0 \end{pmatrix}$$
 (2 puntos)

E3.- (Geometría)

- a) Dada la recta $r \equiv \frac{x-1}{2} = \frac{y+2}{1} = \frac{z+1}{4}$ y el plano $\pi \equiv 2x + y + mz = 0$, calcule *m* para que la recta y el plano sean perpendiculares. (1 punto)
- **b**) Calcule el plano perpendicular a los planos $\pi \equiv x + y + z = 1$ y $\pi_1 \equiv x y + z = 2$, que pasa por el punto (1,2,3). (1 punto)

E4.- (Geometría)

Considere el punto P = (2,2,1) y el plano $\pi \equiv 2x + 3y - 3z + 6 = 0$.

- a) Halle la recta que pasa por P y es perpendicular a π . (1 punto)
- **b**) Calcule la distancia del punto Q = (2, 2, -2) al plano π . (1 punto)

E5.- (Análisis)

Dada la función $f(x) = xe^x$, determínense su dominio de definición, asíntotas, intervalos de crecimiento y decrecimiento, extremos relativos, intervalos de concavidad y convexidad y puntos de inflexión. Esbócese también su gráfica. (2 puntos)

E6.- (Análisis)

Calcule:

a)
$$\lim_{x \to 0} \frac{e^x - x - 1}{x^2}$$
 (1 punto)

$$\mathbf{b}) \int_0^1 x e^x dx \tag{1 punto}$$

E7.- (Análisis)

Dadas las curvas de ecuaciones $y = \sqrt{3x}$, $y = \frac{1}{3}x^2$,

- a) Dibuje las curvas y señale el recinto plano comprendido entre ambas. (1 punto)
- b) Calcule el área de dicho recinto. (1 punto)

E8.- (Análisis)

a) Halle el área del recinto del plano limitado por la gráfica de $f(x) = x^3 - 4x$, el eje OX y las rectas x = 0 y x = 2. (1 punto)

b) Calcule
$$\lim_{x\to 0} \frac{x \sin x}{2-2\cos x}$$
 (1 punto)

E9.- (Probabilidad y Estadística)

Una corporación fabrica herramientas de 3 tipos de calidades. Un 10% de calidad Alta; un 70% de calidad Estándar y un 20% de calidad Baja. Se sabe que son defectuosas el 1%; el 10% y el 30% del total de las herramientas respectivamente.

- a) Se elige una herramienta al azar. Definiendo correctamente los sucesos que intervienen, calcúlese la probabilidad de que sea defectuosa.
 (1 punto)
- **b**) Se elige una herramienta que resulta ser defectuosa. Definiendo correctamente los sucesos que intervienen, calcúlese la probabilidad de que la elegida sea de calidad estándar. (1 punto)

E10. (Probabilidad y Estadística)

El tiempo que transcurre hasta la primera avería de una unidad de cierta marca de impresoras viene dado, aproximadamente, por una distribución normal con un promedio de 1500 horas y una desviación típica de 200 horas.

- a) ¿Qué porcentaje de impresoras fallarán antes de 1000 horas de funcionamiento? (1 punto)
- **b**) Si compramos 500 impresoras ¿Cuántas de esas impresoras tendrán la primera avería entre las 1000 y 2000 horas de uso? (1 punto)

Distribución Normal

$$F(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-\frac{1}{2}t^{2}} dt$$

	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	0,5199	0,5239	0,5279	0,5319	0,5359
0,1	0,5398	0,5438	0,5478	0,5517	0,5557	0,5596	0,5636	0,5675	0,5714	0,5753
0,2	0,5793	0,5832	0,5871	0,5910	0,5948	0,5987	0,6026	0,6064	0,6103	0,6141
0,3	0,6179	0,6217	0,6255	0,6293	0,6331	0,6368	0,6406	0,6443	0,6480	0,6517
0,4	0,6554	0,6591	0,6628	0,6664	0,6700	0,6736	0,6772	0,6808	0,6844	0,6879
0,5	0,6915	0,6950	0,6985	0,7019	0,7054	0,7088	0,7123	0,7157	0,7190	0,7224
0,6	0,7257	0,7291	0,7324	0,7357	0,7389	0,7422	0,7454	0,7486	0,7517	0,7549
0,7	0,7580	0,7611	0,7642	0,7673	0,7704	0,7734	0,7764	0,7794	0,7823	0,7852
0,8	0,7881	0,7910	0,7939	0,7967	0,7995	0,8023	0,8051	0,8078	0,8106	0,8133
0,9	0,8159	0,8186	0,8212	0,8238	0,8264	0,8289	0,8315	0,8340	0,8365	0,8389
1,0	0,8413	0,8438	0,8461	0,8485	0,8508	0,8531	0,8554	0,8577	0,8599	0,8621
1,1	0,8643	0,8665	0,8686	0,8708	0,8729	0,8749	0,8770	0,8790	0,8810	0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925	0,8944	0,8962	0,8980	0,8997	0,9014
1,3	0,9032	0,9049	0,9066	0,9082	0,9099	0,9115	0,9131	0,9147	0,9162	0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251	0,9265	0,9279	0,9292	0,9306	0,9318
1,5	0,9332	0,9345	0,9357	0,9370	0,9382	0,9394	0,9406	0,9418	0,9429	0,9441
1,6	0,9452	0,9463	0,9474	0,9484	0,9495	0,9505	0,9515	0,9525	0,9535	0,9545
1,7	0,9554	0,9564	0,9573	0,9582	0,9591	0,9599	0,9608	0,9616	0,9625	0,9633
1,8	0,9641	0,9649	0,9656	0,9664	0,9671	0,9678	0,9686	0,9693	0,9699	0,9706
1,9	0,9713	0,9719	0,9726	0,9732	0,9738	0,9744	0,9750	0,9756	0,9761	0,9767
2,0	0,9772	0,9778	0,9783	0,9788	0,9793	0,9798	0,9803	0,9808	0,9812	0,9817
2,1	0,9821	0,9826	0,9830	0,9834	0,9838	0,9842	0,9846	0,9850	0,9854	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,9875	0,9878	0,9881	0,9884	0,9887	0,9890
2,3	0,9893	0,9896	0,9898	0,9901	0,9904	0,9906	0,9909	0,9911	0,9913	0,9916
2,4	0,9918	0,9920	0,9922	0,9925	0,9927	0,9929	0,9931	0,9932	0,9934	0,9936
2,5	0,9938	0,9940	0,9941	0,9943	0,9945	0,9946	0,9948	0,9949	0,9951	0,9952
2,6	0,9953	0,9955	0,9956	0,9957	0,9959	0,9960	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,9966	0,9967	0,9968	0,9969	0,9970	0,9971	0,9972	0,9973	0,9974
2,8	0,9974	0,9975	0,9976	0,9977	0,9977	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,9982	0,9982	0,9983	0,9984	0,9984	0,9985	0,9985	0,9986	0,9986
3,0	0,9987	0,9987	0,9987	0,9988	0,9988	0,9989	0,9989	0,9989	0,9990	0,9990
3,1	0,9990	0,9991	0,9991	0,9991	0,9992	0,9992	0,9992	0,9992	0,9993	0,9993
3,2	0,9993	0,9993	0,9994	0,9994	0,9994	0,9994	0,9994	0,9995	0,9995	0,9995
3,3	0,9995	0,9995	0,9995	0,9996	0,9996	0,9996	0,9996	0,9996	0,9996	0,9997
3,4	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9997	0,9998
3,5	0,9997	0,9997	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998	0,9998
3,6	0,9998	0,9998	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999	0,9999