Indução nos números naturais

Princípio de indução (simples) para №

Seja P(n) um predicado sobre os números naturais.

Se conseguirmos demonstrar que

- 1. P(1) é verdadeira; e
- 2. para todo o natural k, se P(k) é verdadeira, então P(k+1) também é verdadeira;

podemos concluir que P(n) é verdadeira para todo o número natural n.

A 1. chamamos **base de indução**; e a 2. chamamos **passo de indução**. À hipótese P(k) na implicação do passo de indução chamamos **hipótese de indução** (HI).

Ex.: Seja P(n) o predicado " $5^n - 1$ é múltiplo de 4".

- 1. P(1) é verdadeira, pois $5^1 1 = 4$;
- seja k um número natural qualquer e suponhamos que P(k) é verdadeira, isto é, que 5^k 1 é múltiplo de 4; [queremos agora provar que P(k+1) é verdadeira, ou seja, que 5^{k+1} 1 é múltiplo de 4] então existe algum natural m tal que 5^k 1 = 4m; assim,
 5^{k+1} 1 5^k × 5 1 (4m+1) × 5 1 4 × 5m + 5 1 4 (5m+1)

 $5^{k+1} - 1 = 5^k \times 5 - 1 = (4m+1) \times 5 - 1 = 4 \times 5m + 5 - 1 = 4(5m+1)$, que é um múltiplo de 4; portanto, se P(k) é verdadeira, P(k+1) também é.

portanto, se P(k) e verdadella, P(k+1) também e.

Por 1. e 2. e pelo princípio de indução, concluímos que, para todo o natural n, $5^n - 1$ é múltiplo de 4.

Princípio de indução (simples) para \mathbb{Z} , com base n_0

Sejam n_0 um número inteiro e P(n) um predicado sobre os números inteiros (ou pelo menos sobre os números inteiros maiores ou iguais a n_0).

Se conseguirmos demonstrar que

- 1. $P(n_0)$ é verdadeira; e
- 2. para todo o inteiro $k \ge n_0$, se P(k) é verdadeira, então P(k+1) também é verdadeira;

podemos concluir que P(n) é verdadeira para todo o número inteiro $n \ge n_0$.

[Inclui o princípio de indução para \mathbb{N}_0 .]

Ex.: Seja P(n) o predicado $7n < 2^n$.

- 1. P(6) é verdadeira, pois $7 \times 6 = 42 < 64 = 2^6$;
- 2. seja k um número inteiro tal que $k \ge 6$ e suponhamos que P(k) é verdadeira, isto é, que $7k < 2^k$; então $7(k+1) = 7k + 7 < 2^k + 7 < 2^k + 2^k = 2 \times 2^k = 2^{k+1}$;

portanto, se P(k) é verdadeira, P(k+1) também é.

Por 1. e 2. e pelo princípio de indução, concluímos que, para todo o inteiro $n \ge 6$, $7n < 2^n$.

[Nota: P(5) é falsa, já que $7 \times 5 = 35 \not< 32 = 2^5$.]

Princípio de indução forte para №

Seja P(n) um predicado sobre os números naturais. Se conseguirmos demonstrar que

- 1. P(1) é verdadeira; e
- 2. para todo o natural k, se $P(1), P(2), \dots, P(k)$ são verdadeiras, então P(k+1) também é verdadeira;

podemos concluir que P(n) é verdadeira para todo o número natural n.