OBJECTIFS 3

- Modéliser une situation à l'aide d'une suite.
- Calculer un terme de rang donné d'une suite définie par une relation fonctionnelle ou une relation de récurrence.
- Réaliser et exploiter la représentation graphique des termes d'une suite.
- Savoir étudier une suite (mode de génération, sens de variation, représentation graphique).

I Définitions

EXEMPLE 9

La suite (u_n) définie pour tout $n \ge 6$ par $u_n = \frac{1}{n-5}$ a pour premier terme $u_6 = \frac{1}{6-5} = 1$.

Il Modes de génération

1. Expression explicite

EXERCICE 1

Calculer les cinq premiers termes de la suite (u_n) définie pour tout $n \in \mathbb{N}$ par $u_n = 2n$.

√Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/suites/#correction-1.

2. Relation de récurrence

EXERCICE 2

- **1.** Calculer les cinq premiers termes de la suite (v_n) définie par $v_0 = 0$ et tout $n \in \mathbb{N}$ par $v_{n+1} = v_n + 2$.
 - **a.** $v_0 = \dots$ **b.** $v_1 = \dots$ **c.** $v_2 = \dots$ **d.** $v_3 = \dots$ **e.** $v_4 = \dots$

- 2. Que pourrait-on conjecturer à propos de la suite (v_n) et de la suite (u_n) de l'exercice précédent? ...

Représentation graphique

EXERCICE 3

Représenter ci-dessous les premiers termes de la suite (u_n) définie pour tout $n \in \mathbb{N}^*$ par $u_n = 2 + \frac{1}{n}$.

Sens de variation

EXERCICE 4

- 1. Représenter ci-dessous les premiers termes de la suite (u_n) définie par $u_0=2$ et pour tout $n\in\mathbb{N}^*$ par $u_{n+1}=0,5u_n$.
- **2.** Conjecturer le sens de variation de la suite (u_n)

Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/suites/#correction-4

À RETENIR 33

EXERCICE 5

Étudier les variations de la suite (u_n) définie pour tout $n\in\mathbb{N}$ par :

1.
$$u_n = n^2 + n$$
.

2.
$$u_n = \frac{2^n}{5^{n+1}}$$
.

 $\hbox{$\checkmark$ Voir la correction: https://mes-cours-de-maths.fr/cours/premiere-stmg/suites/\#correction-5.}$