Aula 3

1.1 Função

1.1.1 Definição (Bijeção)

f:A
ightarrow B é bijetora se, e somente se é injetora e sobrejetora ou seja

$$f \ bijetora \iff \forall y \in B, \exists ! x \in A | f(x) = y$$

f é bijetora se, e somente para qualquer $y \in B$, existe um único $x \in A$ tal que f(x) = y

Composição de funções 1.2

sejam

$$f: S \to T$$

 $q: T \to U$

observe que $\forall s \in S, f(s) \in T$ e T é o domínio de g. Logo, a função g pode ser calculada em f(s) que serulta em $g(f(s)) \in U$.

1.2.1 Definição

Sejam $f:S \to T$ e $f:T \to U$

A função composta $g\circ f$ é a função de S em U definida por $(g\circ f)(s)=g\circ f(s)=g(f(s))$

1.3 Função Inversa

1.3.1 Observação

Considere uma função bijetora de A em B, ou seja, todo elemento de B é imagem de um único elemento $\operatorname{de} A$.

$$f: A \to B$$

$$\forall b \in B, \exists ! a \in A, f(a) = b$$

b é imagem de a pelo f.

Neste caso podemos definir a função inversa de f.

1.3.2 Definição

Seja f:A o B bijetora, a **função inversa de** f é a função que leva a um elemento $b\in B$ o único elemento $a\in A$ tal que f(a)=b. A função inversa de f é indicada por f^{-1} .

Assim,
$$f^{-1}=a$$
 quando $f(a)=b$

1.3.3 Observação

Não confundir f^{-1} com $\frac{1}{f(x)}, f^{-1}$ e $\frac{1}{f(x)}$ não são iguais.

1.3.4 Observação

Uma função bijetora é chamada de inversível (ou invertível) ou seja possui inversa.

2 **A**pril 6, 2019