REAL - TIME COMMUNICATION SYSTEM POWERED BY AI FOR SPECIALLY ABLED

NALAIYA THIRAN PROJECT BASED
LEARNING ON PROFESSIONAL
READLINESS FOR INNOVATION
EMPLOYMENT AND
ENTERPRENEURSHIP

A PROJECT REPORT

Submitted by:

SARMILA V BHARATHIDASAN J PRIYA M RAJESH P

Project Report Format

• INTRODUCTION

- Project Overview
- Purpose
- LITERATURE SURVEY
- Existing problem
- References
- Problem Statement Definition
- IDEATION & PROPOSED SOLUTION
- Empathy Map Canvas
- Ideation & Brainstorming
- Proposed Solution
- Problem Solution fit
- REQUIREMENT ANALYSIS
- Functional requirement
- Non-Functional requirements
- PROJECT DESIGN
- Data Flow Diagrams
- Solution & Technical Architecture
- User Stories
- PROJECT PLANNING & SCHEDULING
- Sprint Planning & Estimation
- Sprint Delivery Schedule
- Reports from JIRA

• CODING & SOLUTIONING (Explain the features added in the project along with code)

- Feature 1
- Feature 2
- Database Schema (if Applicable)
- TESTING
- Test Cases
- User Acceptance Testing

9RESULTS

- 9.1 Performance Metrics
- ADVANTAGES &DISADVANTAGES
- CONCLUSION
- FUTURE SCOPE

13APPENDIX

Source Code

GitHub & Project Demo Link

REAL TIME COMMUNICATION SYSTEM POWERED SYSTEM BY AI FOR SPECIALLY ABLED

INTRODUCTION:

1.1 Project Overview:

Deaf and dump is a term means who cloud not either here or both hear speak. The number of deaf and dumb in the increasing and they are introverted closed society. The education of the deaf in the one century old. Since it is the earliest way of communication in the world when there is no appropriate language so, the sign language preferred among the

deaf-dumb people for education. As with other forms of manual communication, sign language depends on figure spelling,. The simplest visual from of figure spelling is simulating the shape of letter in the air, or actually, tracking letters on the hand. Figure spelling can use one hand such as in British sign language .Uneducated Deaf- dumb people can communicative with other people (normal or handicaps) with sign language only, so they offices...etc. Therefore, they effective tool to translate their worlds from sign language to Arabic or English language directly. This toll can facilities heir communication with normal people and English them to learn both Arabic and language. Also Deaf-Dumb kids easily solve most of their problems in one application.

Therefore, the present work aims to:

Help deaf and dumb to interact more with normal people.

- Offer a great tool for parents to teach their deaf and dumb kids
- Introduction sign language keyboard.
- Introduction quizzes and games for training deaf and dumb to identify Arabic and English world.

Hoping this application can give a hand to uneducated Deaf-Dumb people who do not read write Arabic language to communication with others, to learn entertain.

The remainder of this paper is organized as follows. Section discusses the related. Section describes our proposed application in details. Section provide the performs evaluation. Finally section concludes this paper.

Purpose:

The project aims to develop a system that converts the sign language into a human hearing voice in the desired language to convey a message to normal people, as well as convert speech into understandable

sign language for the deaf and dumb.

We are using a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model. This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.

LITERATURE SURVAY

- Existing problem:
 - The specifically a bled in used for RF tab fixed the classroom.

- Wi-Fi and Bluetooth in connected the system to read instructions for students.
- Convolution neural network to create a model that is trained on different hand gestures.

• References:

S.No	Title	Journal	Authors	1	
1	Hand	Journal of the inst.	Dr.Sundarajan	Change of the	
1	Gustur	OfEngineers	Di Sundarajan	color was	
	eRecognition	India		happeningvery	
	system	:series-A		rapidly.	
		vol.17,No.1,pp.45-		Changing in	
		78(2017)		thedifferent	
				lightin	
				g	
				condition, which	
				error or even.	
2	Hand	Journal of computer	Dr.Dasaraju	Does not	
	Gestur	science vol.4, issue-	Srinivasa Rao	consider gesture	
	eRecognition	April(2017)		recognition	
	system using				
	data-acquisition			oftemporal space.	
				Unable to	
	andpre			classify image with	
	processing			complex	
				background.	
3	Hand Gesture	Journal of the into	Dr.Partha	Change in	
	Recognition using	Engineers	Talukdar	the illumination,	
	kinetic camera	India		rotation and	
		:series-A oct(2020)		orientation, scaling	
				problem a	
				special hardware.	

2

• Problem Statement Definition:

- This problem occurs for the people the disabled who find it difficult to communication by the necessary information.
- Through technology grow by day. No means communication by the disabled once. As a result find it very difficult to convey the information. It becomes a huge problem during the emergency times.
- Considering the above situations, if system is designed to capture the hand of fixed related information. Then it would be easier if the solution is not fixed, then issue rise to in the result the unexpected.
- The issue mainly in conveying the information public areas such as railway counters and airports, by the disabled once so, we required advanced encrypted powerful AI data along with uninterrupted to conveys effectively.
- AI enables people with the disabilities to lead in depended life with this app. supporting activities daily with the living conveying the required information.

• IDEATION & PROPOSED SOLUTION:

• Empathy Map Canvas:

Build empathy and keep your focus on the user by outing yourself in their shoes.

Empathy Map Canvas

Gain insight and understanding on solving customer problems

Build empathy and keep your focus on the user by putting yourself in their shoes.

Ideation & Brain storming:

Brainstorming can be used to generate possible solutions for simple problems, but it is unrealistic to expect it to accomplish most problem-solving or planning tasks.

Proposed Solution:

.

Problem Statement

Problem

Solution fit: Problem -

Solution Fit Template:

The Problem-Solution Fit simply means that you have found a problem with your customer and that the solution you have realized for it actually solves the customer's problem. It

helps entrepreneurs, marketers and corporate innovators identify behavioral patterns and recognize what would work and why

5

Purpose:

- Solve complex problems in a way that fits the state of your customers
- Succeed faster and increase your solution adoption by tapping into existing mediums and channels of behavior.
- Sharpen your communication and marketing strategy with the right triggers and messaging.q Increase touch-points with your company by finding the right problembehavior fit and
- Building trust by solving frequent annoyances, or urgent or costly problems.
- Understand the existing situation in order to improve it for your target group.

REQUIREMENT ANALYSIS

Functional requirement:

- Here, Desktop along with Camera is presented as black box.
- Deaf/Dumb is the person, who will show different signs based on the type of
- Information being conveyed. The normal person is the passive user of the desktop.

The **system requirements** that are required are specified below,

- Deaf/Dumb person should be able to perform a sign that represents digit/number
- Deaf/Dumb person should be able to perform a sign that represents a character
- Deaf/Dumb person should be able to perform a sign, where group of characters forms a word.
- Deaf/Dumb person should be able to perform a sign, where a group of words forms a sentence.

- Especially Deaf people should be able to see the translation of sign to text format.
- Dumb person should be able to understand the conversion of text into voice mode.
- Normal user should be able to understand the corresponding information conveyed by disabled through sign language.

Software Requirements	Hardware Requirements
Web camera –(320x260 minimum)	Operating system platform-windows7 and greater
Processor-400 MHz or above	MYSQL Database
RAM-512 MB or above	Adam Boost Face detector
Hard disk-at least 256 MB free	HTML,CSS,Java Script and Angular for webpage
Speaker with a sensitivity of 87-88 D8	Media pipe Framework

Default Operation:

- The user of the app faces the camera and performs the concerned hand sign to convey information.
- System/Desktop analyses the sign made by the user.
- Once analysis gets finished, then the concerned signs together are shown as a text based and also through voice.

Unexpected Operations:

Desktop indicates that user's hand sign is not within the frame or in Region of Interest(ROI).

User of the app show the hand sign towards the camera

- . 2. Desktop shows that sign is not within ROI.
- Still User, make sure to present his/harbinger within frame.

• At Finally, the Desktop finally detects the hand sign.

7

Signs are not recognized:

- Excepts the signs that are trained and included in the dataset, the Desktop will never detect the sign rather than this.
- User Performs the sign and sees that after 50ms, the concerned letter occupies the space of text.

Speech/Voice assistant is implemented:

Speech assistant is to be implemented in order to convert the output text into voice.

Non-Functional requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional Requirement	Description	
NFR-1	Usability	It is used to describe the application and eas	
		to access the application with the guidelines.	
NFR-2	Security	It ensures the security of the application by	
		building a firewall and two steps verification	
		support. Accessed only by the authorized	
		person by given user ID and password or	
		OTP	
		verification	
NFR-3	Reliability	To maintain the application conditions and	
		update the version of the application. System	
		update and software update are possible to	
		increase various features and durability	
		based	
		on technology.	
NFR-4	Performance	This application collects the datasets of	
		hand gusted to provide accurate prediction.	
		Using this method, we can communicate	
		easily at anytime. This application is user	
		friendly and can access by both specially	
		abled and normal	
		people.	

NFR-5	Availability	Depending on the requirements of the user,	
		alrequired functions will be offered. When	
		the usher requests any features. Are made	
		8available in places where users like to	
		know about it.	

8

• PROJECT DESIGN:

5.1 Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data centers and leaves the system, what changes the information, and where data is stored.

5.2. Solution& Technical Architecture:

5.3 User Stories:

Use the below template to listall the user stories for the product.

Sprint	Functional	User story	User story /	Story
	Requirements(Epic)	Number	Task	point
Sprint-1	Register	USN-1	As a user register for the	2
			application by entering my email,	
			and conforming any password	
Sprint -2	Communicate	USN-2	As user, I will receive	1
			conformation email once I have	
			registered, for the application.	
Sprint-1	login	USN-3	As a user I can application by	1
			entering email password	
Sprint-2	Dash board	USN-4	As user, I can log into the	2
			account	
			in a given Dashboard	

Sprint-1	User interface	USN-5	Professional responsible for user	2
			requirements needs.	
Sprint-3	Objective	USN-6	The goal is to describe all the	1
			input and output	
Sprint-4	Privacy	USN-7	The developed application should	2
			be secure for the users	

10

PROJECT PLANNING & SCHEDULING:

• Sprint Planning & Estimation:

Less sprint planning

http://less.works (cc) BY-ND

• SprintDelivery:

Sprint	Total	Duration	Sprint	Sprint	Story point	Sprint
	story		startdate	Enddate	completed	Release
	points			(planned)	(ason	Date
					planned	(Actual)
					End Date)	

Sprint -1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint -2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Oct 2022
Sprint -3	20	6 days	07 Nov 2022	12 Nov 2022	20	07 Oct 2022
Sprint -4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

1

• Reports from JIRA:

• CODING & SOLUTIONING (Explain the features addedin the project along with code)

• Feature 1:

Image preprocessing

From tensorflow.keras.preprocessing.image import

ImageDataGenerator#traning Data gen

Train _data gen =

 $Image Data Generator (rescale = 1/255, zoom_range = 0.2, horizontal_flip = True, vertical_flip = False)$

#traning Data gen

Test_datagen =

imageDataGenerator(rescale=1/255)Import

TensorFlow as tf

 $From \, tensor flow. keras. models \, import \, sequential \,$

From tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout,

Maxpoling2DFrom tensorflow.keras.preprocessing.image import

ImagedataGenerator

Import numpy as np

Import matpotlib.pyplot as

plot Import Ipython.display

as display

From PIL import as display import path lib

From tensorflow.keras.preprocessing. image import ImageDataGenerator

Ptint("This dataset has been created and uploaded by IBM-TeamID-IBM-project-45753-16607032074")

12

model

buildin

g

#create

model

From keras.model import sequential

From keras. Layers import dense

From keras.Layers import

convoltion2DFrom

keras.Layers import dropout

From keras.Layers import

Flatten

From tensorflow.keras.preprocessing.image import

imageDgatGeneratorImport numpy as np

Import matplotlib.pyplot as plt #to graph import

ImageDataGeneratorImport Ipython.display as display

From Pl t import image

```
Import
pathlibx train datagen.flow from directory('dataset',target size(64,64),batch size=300clas
s_mode x_train = test_datagen.flow_from-
directory('dataset',target_size=(64,64),batch_size=300,
Class mod='categorical',
clour_mode="grayscale")A=len(x_train)
B=le
n(x_
test)
Print
(a)
Print
(b)
#cre
at
mod
el
Model=sequential()
Model.add(convolution2D(32,(3,3),input_shape=(64,64,1)activation='
relu')) Model.add(maxpolling2D(pool_size=(2,2))
Initialize
model
Model
sequential=
()
Convoluti
on layer
Model.add(convolution2D(32,(3,3),input_shape=(64,64,1)activation="relu)
Add the pooling layer
                                                 13
Model.add(maxpooling2D(pool_size=(2,2)))
```

```
Add the
flatten layer
Model.add(flatt
en()) Adding
the Dense
layer
Model.add(dense(units=512,activation="rel
u"))
Model.add(Dense(units=9,activation='softm
ax'))Compile the model
Model compile(loss="categorical crassentroypy",optimizer='adam',matrices=['accurancy'])
Fit and save the model
           a. model.save('aslpng1.h5)
   Feature 2:
Build A Flask Application
Import
numpy as
npImport
cv2
Import os
Import keras.models import load_model
Import flask import Flask,render_template,
ResponseImport tensor flow tf
From tensor flow as tf
From gt import gTTs #to convert text to
speechGlobal graph
Global writer
From skimage.transfrom
import resizeWriter= none
```

```
Model = load model('aslpng1.h5')
Vals = ['A','B','C','D','E','F','G','H',,,'I']
App=flask(_name__)
Print("[INFO] accessing video stream...")
Vs = cv2.VideoCparute(0)\#triggers the local camera
                                                     14
Pred=
,,,,
@app.
route('
/')Def
index(
):
Return render_template(index.html)
@app.route('/video feed')
Def video_feed():
Return response(gen(), mimetype='multipart/x-mixed-mixed-
replace;boundary=frame) Name_=='_main_':
pp.run(host=0.0.0.0,debug=True)
```

• Database Schema (if Applicable):

Name	Date modified	Type	Size
Dataset	30-10-2022 21:44	File folder	
== static	30-10-2022 21:44	File folder	
templates	30-10-2022 21:53	File folder	
aslpng1.h5	30-10-2022 21:54	H5 File	0 KB
output	30-10-2022 21:56	AVI File	0 KB
Test.ipynb	30-10-2022 21:56	IPYNB File	0 KB
o text	30-10-2022 21:57	MP3 File	0 KB
Train.ipynb	30-10-2022 21:57	IPYNB File	0 KB
webstreaming	30-10-2022 21:58	Python File	0 КВ

• TESTING:

Test Cases:

from tensorflow.keras.models import

load_model from

tensorflow.keras.preprocessing import image

import cv2 15

model = load _model('/content/Real_time,h5')

 $img = image.load_img('/content/Dataset/test_set/H/107.png', target_size = \\ (100,100))img$

User Acceptance Testing

• RESULTS

• Performance Metrics

17

ADVANTAGES &

DISADVANTAGESADVANTAGES:

We are using a convolution neural network to create a model that is trained on different hand gestures. An app is built which uses this model.

This app enables deaf and dumb people to convey their information using signs which get converted to human-understandable language and speech is given as output.

DISADVANTAGES:

convolution neural network to create a model that is trained on different hand gestures.

· CONCLUSION:

In this paper, we present an efficient application for uneducated deaf-dumb application. This application aims to help deaf dumb by proving them with attractive communication and learning tools. This work introduces a mobile application that communication between uneducated deaf-dumb and normal people in our society.

I

t also developed an aid for deaf people in many fields restaurant, hospital and transport. Moreover, this application introduced an easy translation from sign language to English or Arabic language and vice versa.

• FUTURE SCOPE:

Speech-to-Transcription

We are all different, but that does not mean not equal. all of us have unique abilities, skills and limitations. As a society, we need to make sure that all can provided us with tools to make lead independent in life tools this lives. Assistive technology provided us with tools to make this people, that is with speech to text for disable people is so important today.

The use of speech recognition and voice-to-text dictation has become an internal part of our lives. It estimation that 20 % of people has people doesn't speak clearly enough to be understood by listener, either list either to accommodate a disability or another reason, they can still use their voice to communicate with the computer and computer and reduce in their lives.

18

12. APPENDIX

Sou

rce CodeImage

preprocessing

From tensorflow.keras.preprocessing.image import ImageDataGenerator #traning

Data gen

Train

_data

gen =

ImageDataGenerator(rescale=1/255,zoom_range=0.2,horizontal_flip=True,vertical_flip=Fals

e) #traning Data gen

```
Test_datagen =
imageDataGenerator(rescale=1/255)Import
tensor floe as tf
From tensorflow.keras.models import sequential
From tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout,
Maxpoling2DFrom tensorflow.keras.preprocessing.image import
ImagedataGenerator
Import numpy as np
Import matpotlib.pyplot as
plt Import Ipython.display
as display
From PIL import as display import path lib
From tensorflow.keras.preprocessing. image import ImageDataGenerator
Ptint("This dataset has been created and uploaded by IBM-TeamID-IBM-project-45753-
16607032074")
model
buildin
g
#create
model
From keras.model import
sequentialFrom keras.
Layers import dense
From keras.Layers import
convoltion2DFrom
keras.Layers import dropout
From keras.Layers import
Flatten
From tensorflow.keras.preprocessing.image import
imageDgatGeneratorImport numpy as np
                                                19
```

```
ImageDataGeneratorImport Ipython.display as display
From Plt import image
Import
pathlibx_train_datagen.flow_from_directory('dataset',target_size(64,64),batch_size=300clas
s_mode x_train = test_datagen.flow_from-
directory('dataset',target_size=(64,64),batch_size=300,
Class_mod='categorical',
clour_mode="grayscale")A=len(x_train)
B=le
n(x_
test)
Print
(a)
Print
(b)
#cre
at
mod
el
Model=sequential()
Model.add(convolution2D(32,(3,3),input_shape=(64,64,1)activation='
relu')) Model.add(maxpolling2D(pool_size=(2,2))
Initialize
model
Model
sequential=
```

Import matplotlib.pyplot as plt #to graph import

()

```
Convoluti
on layer
Model.add(convolution2D(32,(3,3),input shape=(64,64,1)activation="relu)
Add the pooling layer
Model.add(maxpooling2D(pool_size=(
2,2)))Add the flatten layer
Model.add(flatten())
Adding the Dense layer
Model.add(dense(units=512,activation="rel
u"))
Model.add(Dense(units=9,activation='softm
ax'))Compile the model
Model compile(loss="categorical crassentroypy",optimizer='adam',matrices=['accurancy'])
Fit and save the model
                                               20
model.save('aslpng1.h
5) Build A Flask
Application Import
numpy as np
I
m
p
or
cv
2
I
m
p
or
```

```
t
os
Import keras.models import load_model
Import flask import Flask,render_template,
ResponseImport tensor flow tf
From tensor flow as tf
From gt import gTTs #to convert text to
speechGlobal graph
Global writer
From skimage.transfrom
import resizeWriter= none
Model = load model('aslpng1.h5')
Vals = ['A','B','C','D','E','F','G','H',,'I']
App=flask(_name__)
Print("[INFO] accessing video stream...")
Vs = cv2.VideoCparute(0)#triggers the local
cameraPred=""
@app.
route('
/')Def
index(
):
Return render_template(index.html)
@app.route('/video feed')
Def video_feed():
```

Return response(gen(), mimetype='multipart/x-mixed-mixed-

replace;boundary=frame) Name_=='_main_':

pp.run(host=0.0.0.0,debug=True)