

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

Course Title: Wireless Sensor Networks

Course Code: P18CS644 | Semester: 6 | L:T:P: 2:2:0 | Credits: 3

Contact Period: Lecture: 52 Hrs, Exam: 3 Hrs Weightage: CIE:50%, SEE:50%

Course Content

Unit-1

Introduction: The vision of Ambient Intelligence, Application Examples, Types of applications, Challenges for WSNs, Enabling Technologies for wireless sensor networks. Single-node architecture: Hardware components, Operating systems: and execution environments: Embedded OS, Programming paradigms and application programming interfaces. Network Architecture: Sensor network scenarios, Optimization goals and figures of merit, Design principles for WSNs: Distributed organization, data centricity Gateway concepts.

Self Study Component: In-network processing

11 Hours

Unit-2

Physical Layer: Introduction, Spread spectrum communications:, Packet transmissions and synchronization, quality of wireless channels and measures for improvement. **MAC protocols:** Fundamentals of MAC protocols: Requirements and design constraints for wireless MAC protocols, important classes of MAC protocols. MAC Protocols for WSNs: LEACH. IEEE802.15.4 MAC protocol

Self Study Component: SMAC protocol

10 Hours

Unit-3

Routing protocols: The many faces of forwarding and routing, Gossiping and agent based unicast forwarding – Basic idea, Randomized forwarding, Random walks, Energy efficient Unicast: Multipath Unicast routing, Broadcast and Multicast: Overview, Mesh-based Protocols, Mobile nodes.

Self Study Component: Geographic routing

11 Hours

Unit-4

Data Aggregation in WSN: Challenges in data aggregation, data aggregation techniques, **Localization and Positioning:** Properties of localization and positioning procedures, Possible approaches, Mathematical basics for the lateration problem, Single hop localization <u>Self Study Component</u>: Positioning in multihop environments

10 Hours

Unit-5

Naming and addressing: Fundamentals, Address and name management in wireless sensor networks, Assignment of MAC addresses, Distributed assignment of locally unique addresses: Address assignment algorithm. Time Synchronization: Introduction to time synchronization problem, Protocols based on sender/receiver synchronization: Light weight time synchronization protocol

Self Study Component: Timing –Sync protocol

10 Hours

Text Book:

1. Holger Karl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", 2013, Wiley Publications

Reference Books:

Department of Computer Science and Engineering

P.E.S College of Engineering, Mandya, (An Autonomous Institution under VTU)

- 1. Wireless Sensor Network by KazemSohraby, Daniel Minoli, and TaiebZnati P, Wiley
- 2. Wireless sensor networks Edited by C. S. Raghavendra Pub: Springer
- 3. C. Siva Ram Murthy & B. S. Manoj, "Ad hoc Wireless, Networks Architecture and Protocols", Prentice Hall, 2004, ISBN 013-147-023x

Course Outcomes:

- 1. Explain Fundamental Concepts, applications and network architectures of WSN.
- 2. Describe the physical layer and MAC protocol concepts for communication in WSN
- 3. Discuss the different routing protocols and issues
- 4. Discuss the different data aggregation techniques and different positioning and localization algorithms
- 5. Describe the naming, addressing and time synchronization in WSN

CO-PO Mapping

Semester: 6 Course			code: P18CS644				Title: Wireless Sensor Networks							ks		
	Statement		PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS
CO			1	2	3	4	5	6	7	8	9	10	11	12	01	02
CO1	Explain Fundamental Con-	cepts,	1											1	1	
	applications& network architector of WSN.	ctures														
CO2	Explain the physical layer MAC protocol concepts communication in WSN		1	1										1	1	
CO3	Analyze the different roprotocols and issues	uting	1	1										1	`1	
CO4	Analyze the different aggregation techniques different positioning localization algorithms	data and and	1	1	1									1	1	
CO5	Explain the naming, addressing time synchronization in WSN	g and	1	1										1	1	
			1	0.8	0.2									1	1	