

- Ultra Low On-Resistance
- P-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free
- RoHS Compliant, Halogen-Free

Description

These P-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

		Standard Pa	ck	
Base Part Number	Package Type	Form	Quantity	Orderable Part Number
IRLML6402TRPbF	Micro3™ (SOT-23)	Tape and Reel	3000	IRLML6402TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	-20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ -4.5V	-3.7	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ -4.5V	-2.2	Α
I _{DM}	Pulsed Drain Current ①	-22	_
P _D @T _A = 25°C	Power Dissipation	1.3	- W
P _D @T _A = 70°C	Power Dissipation	0.8	VV
	Linear Derating Factor	0.01	W/°C
E _{AS}	Single Pulse Avalanche Energy®	11	mJ
V_{GS}	Gate-to-Source Voltage	± 12	V
T _{J,} T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	-20			V	$V_{GS} = 0V, I_D = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		-0.009		V/°C	Reference to 25°C, I _D = -1mA ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.050	0.065	Ω	V _{GS} = -4.5V, I _D = -3.7A ②
' 'DS(on)	State Brain to Godice On Hediotario		0.080	0.135	52	V _{GS} = -2.5V, I _D = -3.1A ②
V _{GS(th)}	Gate Threshold Voltage	-0.40	-0.55	-1.2	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 _{fs}	Forward Transconductance	6.0			S	V _{DS} = -10V, I _D = -3.7A ②
l	Drain-to-Source Leakage Current			-1.0		$V_{DS} = -20V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			-25	μA	$V_{DS} = -20V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	nA	V _{GS} = -12V
IGSS	Gate-to-Source Reverse Leakage			100	I IIA	V _{GS} = 12V
Q _g	Total Gate Charge		8.0	12		I _D = -3.7A
Q _{gs}	Gate-to-Source Charge		1.2	1.8	nC	$V_{DS} = -10V$
Q_{gd}	Gate-to-Drain ("Miller") Charge		2.8	4.2		V _{GS} = -5.0V ②
t _{d(on)}	Turn-On Delay Time		350			V _{DD} = -10V
t _r	Rise Time		48		ns	$I_D = -3.7A$
t _{d(off)}	Turn-Off Delay Time		588		115	$R_G = 89\Omega$
tf	Fall Time		381			$R_D = 2.7\Omega$
C _{iss}	Input Capacitance		633			V _{GS} = 0V
Coss	Output Capacitance		145		pF	$V_{DS} = -10V$
C _{rss}	Reverse Transfer Capacitance		110			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			-1.3		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			-22	Α	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	V	$T_J = 25^{\circ}\text{C}, I_S = -1.0\text{A}, V_{GS} = 0\text{V}$ ②
t _{rr}	Reverse Recovery Time		29	43	ns	$T_J = 25^{\circ}C, I_F = -1.0A$
Q _{rr}	Reverse RecoveryCharge		11	17	nC	di/dt = -100A/µs ②

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- ③ Surface mounted on 1" square single layer 1oz. copper FR4 board, steady state.

^{**} For recommended footprint and soldering techniques refer to application note #AN-994.

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Avalanche Energy Vs. Drain Current

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Micro3 (SOT-23) (Lead-Free) Package Outline

Dimensions are shown in millimeters (inches)

Micro3 (SOT-23 / TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Micro3™(SOT-23/TO-263AB) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION : MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Qualification information[†]

Qualification level	Consumer (per JEDEC JESD47F ^{††} guidelines)				
Moisture Sensitivity Level	Micro3™ (SOT-23)				
RoHS compliant	Yes				

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability
- †† Applicable version of JEDEC standard at the time of product release

Revision History

Date	Comment			
Updated data sheet with new IR corporate template.				
4/00/0044	Updated package outline & part marking on page 7.			
4/28/2014	Added Qualification table -Qual level "Consumer" on page 9.			
	Added bullet point in the Benefits "RoHS Compliant, Halogen -Free" on page 1.			

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit http://www.irf.com/whoto-call/