See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/248738668

Bioactive 12-Oleanene Triterpene and Secotriterpene Acids from Maytenus u ndata

ARTICLE in JOURNAL OF NATURAL PRODUCTS · MAY 2000

Impact Factor: 3.8 · DOI: 10.1021/np990456y

READS

CITATIONS

37 50

9 AUTHORS, INCLUDING:

Muhammad Ilias

University of Mississippi

120 PUBLICATIONS 1,408 CITATIONS

SEE PROFILE

Khalid El Sayed

University of Louisiana at Monroe

136 PUBLICATIONS 1,968 CITATIONS

SEE PROFILE

Samir Jaber

Centre Hospitalier Universitaire de Montpellier

479 PUBLICATIONS 9,149 CITATIONS

SEE PROFILE

Alejandro M S Mayer

Midwestern University

77 PUBLICATIONS 2,531 CITATIONS

SEE PROFILE

Bioactive 12-Oleanene Triterpene and Secotriterpene Acids from *Maytenus* undata

Ilias Muhammad,^{†,§} Khalid A. El Sayed,[†] Jaber S. Mossa,*,[†] Mansour S. Al-Said,[†] Farouk S. El-Feraly,[†] Alice M. Clark,[‡] Charles D. Hufford,[‡] Stephen Oh,^{||} and Alejandro M. S. Mayer^{||}

Medicinal, Aromatic and Poisonous Plants Research Center (MAPPRC) and Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia, National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences and Department of Pharmacognosy, School of Pharmacy, University of Mississippi, University, Mississippi 38677, and Pharmacology Department, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515

Received September 15, 1999

The aerial parts of Maytenus undata yielded four new 12-oleanene and 3,4-seco-12-oleanene triterpene acids, namely, 3-oxo-11α-methoxyolean-12-ene-30-oic acid (1), 3-oxo-11α-hydroxyolean-12-ene-30-oic acid (2), 3-oxo-olean-9(11), 12-diene-30-oic acid (3), and 3,4-seco-olean-4(23), 12-diene-3,29-dioic acid (20-epikoetjapic acid) (5), together with the known 3,11-dioxoolean-12-ene-30-oic acid (3-oxo-18 β -glycyrrhetinic acid) (4), koetjapic acid (6), and the 12-oleanene artifact 3-oxo-11α-ethoxyolean-12-ene-30-oic acid (7). Koetjapic acid (6) inhibited the growth of Staphylococcus aureus, methicillin-resistant S. aureus, and Pseudomonas aeruginosa, with an MIC range of 3.125-6.25 μg/mL. The new 3,4-secotriterpene acid 20epi-koetjapic acid (5) potently inhibited rat neonatal brain microglia phorbol ester-stimulated thromboxane B_2 (IC₅₀ = 0.5 μ M) and superoxide anion (IC₅₀ = 1.9 μ M) generation.

Plants of the genus *Maytenus*, Family Celastraceae, are widely used in folk medicine as antitumor, antiseptic, antiasthmatic and fertility-regulating agents, as well as for stomach problems and as sialogogues. 1,2 These plants display a diverse range of secondary metabolites, including triterpenes,^{3,4} oligo-nicotinated sesquiterpenes and sesquiterpene pyridine alkaloids,^{5,6} phenolic glucosides,^{7,8} and agarofurans.⁹ Many of these metabolites exhibited interesting biological effects, including antiinflammatory, analgesic and antipyretic, ¹⁰ antiulcerative, ¹¹ antimicrobial, ^{12,13} antitumor, ^{14,15} anti-HIV, ¹⁶ insecticidal, and antifeedant activities.9

Maytenus undata (Thunb.) is a shrub or tree, 1.5-10 m high, widespread in tropical southern Africa and in south and southwestern Arabia.¹⁷ This plant has not been recorded in Saudi Arabian folk medicine probably due to its rare occurrence, but the closely related species *Maytenus* ovatus is used as a decoction for stomach problems.1 A bioautography (antibacterial) assay-guided fractionation of an ethanol extract of M. undata has led to the isolation of the antibacterial 12-oleanene and 3,4-seco-12-oleanene triterpene acids (1-7). The present study deals with their isolation, characterization, and bioactivities.

Results and Discussion

The HRFABMS of 1 displayed a pseudomolecular ion peak at m/z 485.3639 [M + 1]⁺, suggesting the molecular formula C31H48O4 and eight degrees of unsaturation. Its IR spectrum showed a broad absorption band at v_{max} 3300– 3560 cm⁻¹, indicating a carboxyl group. It also showed absorption bands consistent with the presence of a free carboxyl carbonyl and a ketone functionality.

Midwestern University.

§ Current address: National Center for Natural Products Research, Thad Cochran Research Center, University of Mississippi.

Figure 1. Important ¹H-¹³C-GHMBC (solid lines), ¹H-¹H-NOESY (dotted lines), and COSY (bold lines) correlations of 1a.

The ¹³C and ¹H NMR spectra of 1 (Tables 1 and 2) were consistent with an olean-12-ene.18-20 The 13C NMR spectrum of 1 demonstrated the presence of a trisubstituted double bond (δ 122.8, δ 148.9), a ketone group (δ 218.6), a carboxylic acid group (δ 183.3), a methoxy group (δ 54.1), and seven methyl groups consistent with a 3-oxo-12oleanene-30-oic acid carbon skeleton. 18-20 The oxygenated doublet of doublets at δ 3.94 (Table 2), which correlated to the methine carbon at δ 76.6 in the HETCOR spectrum, was assigned to H-11. This was based on the observed COSY coupling with the olefinic proton doublet resonating at δ 5.46 (H-12) and the proton doublet absorbing at δ 1.81 (H-9). The β -orientation of H-11 was suggested by the high $J_{9.11}$ value (9.3 Hz), indicating diaxial coupling, as well as by NOESY experiments on its methyl ester 1a (vide infra). Upon methylation with CH₂N₂, **1** afforded ester **1a**. The gross structure of 1a was established by complete spectral analyses (Tables 1 and 2). The ¹H-¹³C-GHMBC data of **1a** (Figure 1) supported the proposed structure. Thus, the ³J-HMBC correlations between both C-23 and C-24 methyl protons and the ketone carbon resonating at δ 218.2 (Table 1) confirmed its location at C-3. The ³*J*-HMBC correlations between C-23, C-24, and C-25 methyl protons and C-5 supported the assignments of ring A. The H-9 proton displayed ³J-HMBC correlations with C-25 and

^{*} To whom correspondence should be addressed. Tel: +966-1-467-7259. +966-1-467-7245. E-mail: mail to: fferaly@ksu.edu.sa.

[†]MAPPRC and Department of Pharmacognosy, King Saud University.

†National Center for Natural Products Research, Thad Cochran Research
Center and Department of Pharmacognosy, University of Mississippi.

| Pharmacology Department, Chicago College of Osteopathic Medicine,

C-26 methyl carbons as well as to the olefinic methine carbon at C-12, confirming the assignments of rings B and C. The ³*J*-HMBC correlation between the C-27 methyl proton and the olefinic quaternary carbon C-13, in addition to the ³J-HMBC correlation between the C-28 methyl protons and C-18, supported the assignments of ring D. In addition, the C-29 methyl protons displayed ³J-HMBC correlations with the carbonyl ester C-30 and the methylene carbons C-19 and C-21, confirming the assignments of

The relative stereochemistry of 1 and 1a was based on the NOESY data of the latter (Figure 1). Therefore, H-5, H-9, and C-23 were proved to be α -oriented, while H-11, H-18, H₃-25, H₃-26, and H₃-28 were on the β -side of the molecule. On the basis of the foregoing data, compound 1 was found to be the new triterpene 3-oxo-11α-methoxyolean-12-ene-30-oic acid.

Compound 2, C₃₀H₄₆O₄, exhibited ¹³C and ¹H NMR data (Tables 1 and 2) that were closely similar to 1, but it lacked the methoxy group at C-11, which was hydroxylated instead. Methylation of 2, using CH₂N₂, afforded ester 2a, which exhibited spectral data (Tables 1 and 2) close to those of 1a, except for the presence of the C-11 OMe group. Therefore, the identity of 2 was established as 3-oxo- 11α hydroxyolean-12-ene-30-oic acid, a new compound.

Compound **3**, C₃₀H₄₄O₃, completed the series, by having a conjugated diene system at $\Delta^{9,11}$ and Δ^{12} based on its 13 C and ¹H NMR data (Tables 1 and 3). Compound 3 was therefore identified as the new triterpene 3-oxoolean-9(11),12-diene-30-oic acid.

Compound 4 was found to be 3-oxoglycyrrhetic acid, also known as 3-oxo-18 β -glycyrrhetinic acid. It had previously been reported as a semisynthetic derivative of 18β -glycyrrhetic acid,²¹ and it was also used as a starting material during the synthesis of antiinflammatory glycyrrhetic acid derivatives.^{22,23} Furthermore, 3-oxoglycyrrhetic acid has previously been isolated from Glycyrrhiza uralensis,24 and its data were reported in the Chinese literature only. The ¹³C NMR spectral data of 4 were indistinguishable from those of 3-oxo-18 β -glycyrrhetinic acid, previously reported as a microbial metabolite of glycyrrhizic acid,25 while complete unambiguous assignments of its ¹H NMR spectral data, with the aid of 2D NMR, are reported herein for the first time (Table 2).

The triterpenes 5 and 6 both analyzed for the formula C₃₀H₄₆O₄, corresponding to eight degrees of unsaturation. The ¹³C and ¹H NMR data of 5 (Tables 1 and 3) and 6 suggested the presence of C-3,4-seco-olean-4,12-diene carbon skeleton. 18,20 The physical and spectral data of **6** were indistinguishable from those of the known triterpene koetjapic acid (3,4-seco-olean-4(23),20-diene-3,30-dioic acid) previously reported from the stems of Sandoricum koetjapie (Meliaceae). 26 Complete 13C NMR data and relative stereochemical assignments for 6 were achieved with the aid of HMBC and NOESY experiments. It is worth noting that both chemical shift values of C-5 and C-9 reported for koetjapic acid (6)26 were transposed and should be now reversed, based on the 3J-HMBC correlation between H₂-23 and H₃-24 with C-5, as well as the ³J-HMBC correlation between H-12 and H₃-26 with C-9.

Compound **5** formed the dimethyl ester **5a**, by treatment with CH₂N₂, and its ¹³C and ¹H NMR data (Tables 1 and 3) suggested that it was the C-20 epimer of 6. In contrast with the stereochemistry C-20 in **6**, the β -orientation of the C-30 methyl singlet of 5 was based on its NOESY correlations with the axial β -oriented H-18 and the β -oriented H₃-28 signals. Therefore, 5 was shown to be the new triterpene 3,4-seco-olean-4(23),12-diene-3,29-dioic acid (20epi-koetjapic acid).

Compound 7, C₃₂H₅₀O₄, displayed spectral data that were generally similar to those of 1, but with an ethoxy group instead of the methoxy functionality. The ¹H NMR data of **7** (Table 3) displayed methyl doublet of doublets at δ 1.15, J = 7.1, 6.8 Hz, which was coupled to the geminally coupled methylene protons doublet of quartets at δ 3.62 and 3.36. This pattern was consistent with the presence of an ethoxy group attached to the chiral C-11, rather than as an ethyl ester group located on the C-29 carbonyl.27 While compound 1 was detected by TLC in a fresh chloroformic extract of the plant material, compound 7 was not, and it appeared to be an artifact formed during the course of isolation. Hence, compound 7 was shown to be 3-oxo-11 α -ethoxyolean-12-ene-30-oic acid, hitherto unreported from any source.

Triterpenes 1-3, 5, 6, and 7 were tested for antimicrobial activities against a wide range of microorganisms (Table 4), using a modified microtiter-plate assay. 28 Koetjapic acid

Table 1. ¹³C NMR Data of Compounds 1, 1a, 2, 2a, 3, 5, 5a, and 7^a

C no.	1	1a	2^{b}	2a	3	5^d	5a	7
1	40.6, t	40.7, t	42.5, t	41.5, t	42.4, t	29.3, t	29.4, t	40.4, t
2	34.8, t	34.8, t	35.3, t	34.8, t	34.4, t	34.1, t	34.4, t	34.4, t
2 3 4	218.6, s	218.2, s	217.0, s	218.2, s	217.7, s	181.5, s	175.0, s	218.2, s
4	48.4, s	48.1, s	48.6, s	48.1, s	47.2, s	147.7, s	147.8, s	47.8, s
5	55.9, d	55.9, d	56.8, d	56.0, d	51.7, d	50.8, d	50.8, d	55.9, d
6	20.1, t	20.1, t	20.9, t	20.1, t	19.5, t	24.9, t	24.9, t	19.7, t
7	31.5, t	31.6, t	32.2, t	31.6, t	30.9, t	31.7, t	31.8, t	31.0, t
8	44.4, s	43.3, s	44.3, s	43.6, s	40.4, s	39.9, s	39.9, s	42.9, s
9	50.7, d	50.9, d	55.4, d	55.3, d	152.5, s	38.1, d	38.2, d	50.4, d
10	38.1, s	38.1, s	38.9, s	38.0, s	34.0, s	39.5, s	39.5, s	37.7, s
11	76.6, d	76.6, d	68.3, d	68.3, d	117.4 ^c , d	24.2, t	24.1, t	75.2, d
12	122.8, d	122.7, d	128.7, d	126.8, d	121.3^{c} , d	123.1, d	123.0, d	123.2, d
13	148.9, s	148.8, s	147.2, s	148.4, s	146.4, s	144.2, s	144.4, s	147.6, s
14	42.2, s	42.2, s	43.0, s	42.2, s	44.4, s	42.7, s	42.9, s	41.8, s
15	26.5, t	26.5, t	27.3, t	26.5, t	25.6, t	26.3, t	26.7, t	26.1, t
16	27.2, t	27.2, t	28.0, t	27.2, t	27.1, t	27.3, t	27.3, t	26.7, t
17	32.3, s	32.2, s	33.1, s	32.2, s	31.6, s	32.8, s	32.8, s	31.9, s
18	48.1, d	48.2, d	49.0, d	47.9, d	46.2, d	46.4, d	46.5, d	47.7, d
19	42.6, t	42.7, t	43.3, t	42.7, t	38.2, t	40.4, t	40.9, t	42.0, t
20	43.3, s	44.5, s	44.8, s	44.6, s	42.9, s	42.9, s	43.1, s	43.9, s
21	33.3, t	33.3, t	34.2, t	33.2, t	31.2, t	28.9, t	28.8, t	33.0, t
22	38.6, t	38.7, t	39.5, t	38.6, t	37.7, t	36.2, t	36.2, t	38.7, t
23	27.0, q	27.0, q	27.4, q	28.9, q	26.8, q	114.0, t	114.0, t	26.6, q
24	21.9, q	21.9, q	22.2, q	21.9, q	21.2, q	23.8, q	23.9, q	21.4, q
25	16.7, q	16.8, q	17.0, q	16.6, q	19.9, q	20.0, q	19.9, q	15.8, q
26	18.4, q	18.4, q	18.9, q	18.3, q	20.5, q	17.3, q	17.3, q	18.0, q
27	25.5, q	25.5, q	26.3, q	26.3, q	25.1, q	26.2, q	26.2, q	25.1, q
28	29.0, q	28.7, q	29.3, q	28.6, q	28.4, q	28.6, q	28.6, q	28.2, q
29	29.3, q	28.8, q	29.3, q	26.9, q	28.5, q	186.2, s	177.9, s	28.6, q
30	183.3, s	177.9, s	178.9, s	177.9, s	182.0, s	19.5, q	19.7, q	182.6, s
11-OMe	54.1, q	54.2, q	,	,	,	· 1		,
11-OEt	1	, 1						61.7, t
								15.4, q
3-OMe							52.0, q	, 1
29-OMe							52.2, q	
30-OMe		52.0, q		52.1, q			, 1	

 $[^]a$ In CDCl₃, 125 MHz. Carbon multiplicities were determined by DEPT135 $^\circ$ experiments. b In acetone- d_6 . c Assignments could be reversed.

Table 2. ¹H NMR Data of Compounds 1, 1a, 2, 2a, and 4^a

H no.	1	1a	2^{b}	2a	4
1	2.29, m	2.24, m	2.59, ddd (13.2, 7.3, 3.9) 1.62, m	2.22, m	2.96, m
	1.62, m	1.62, m		1.43, m	1.42, m
2	2.49, ddd (15.7, 10.7, 7.3)	2.49, ddd (15.9, 10.8, 7.5)	2.52, m 2.31, ddd	2.33, m 2.13, m	2.61, m
	2.38, m	2.35, m	(15.7, 6.8, 3.6)		
					2.33, m
5	1.31, m	1.33, m	1.43, m	1.12, m	1.28, m
6	1.49, 2H, m	1.45, 2H, m	1.53, 2H, m	1.28, 2H, m	1.56, m
7	1.94, m 1.33, m	1.92, m 1.28, m	1.89, m 1.35, m	1.71, m, 1.07, m	2.02, m, 1.38, m
9	1.81, d (9.3)	1.76, d (9.4)	1.76, d (9.2)	1.41, m	2.44, s
11	3.94, dd (9.3, 3.1)	3.87, dd (9.4, 3.2)	4.25, dd (9.2, 3.0)	4.02, dd (8.9, 3.6)	
12	5.46, d (3.1)	5.41, d (3.2)	5.30, d (3.2)	5.10, brs	5.75, s
15	1.72, m, 1.01, m	1.67, m, 0.95, m	1.73, m, 1.03, m	1.52, m, 0.78, m	1.83, m, 1.22, m
16	1.98, m, 0.92, m	1.95, m, 0.78, m	2.05, m, 1.01 m	1.72, m, 0.67, m	2.03, m, 1.21, m
18	2.07, dd (13.0, 3.9)	1.93, m	1.99, dd (13.1, 3.9)	1.68,m	2.19, m
19	1.94, m, 1.63, m	1.88, m, 1.52, m	1.85, m, 1.68, m	1.85, m, 1.68, m	1.91, m, 1.68, m
21	1.50, m, 1.33, m	1.46, m, 1.33, m	1.53, m, 1.35, m	1.65, m, 1.36, m	1.75, m, 1.45, m
22	1.37, 2H, m	1.35, m, 1.20, m	1.37, 2H, m	1.13, m, 1.02, m	1.43, m
23	1.11, 3H, s	1.05, 3, s	1.07, 3H, s	0.87, 3H, s	1.10, 3H, s
24	1.06, 3H, s	1.00, 3H, s	1.04, 3H, s	0.83, 3H, s	1.06, 3H, s
25	1.21, 3H, s	1.11, 3H, s	1.21, 3H, s	0.96, 3H, s	1.27, 3H, s
26	1.05, 3H, s	0.96, 3H, s	1.10, 3H, s	0.82, 3H, s	1.17, 3H, s
27	1.22, 3H, s	1.18, 3H, s	1.26, 3H, s	0.99, 3H, s	1.38, 3H, s
28	0.82, 3H, s	0.74, 3H, s	0.80, 3H, s	0.56, 3H, s	0.85, 3H, s
29	1.15, 3H, s	1.09, 3H, s	1.15, 3H, s	0.90, 3H, s	1.22, 3H, s
11-OMe	3.26, 3H, s	3.21, 3H, s			
29-OMe		3.64, 3H, s		3.45, s	

^a In CDCl₃, 500 MHz. Coupling constants (*J*) are in Hz. ^b In acetone-d₆.

(6) showed the most prominent antibacterial activity by inhibiting the growth of S. aureus, methicillin-resistant S. aureus, and P. aeruginosa with an MIC range of $3.125-12.50~\mu g/mL$ (Table 4). The antibacterial activities of

related 12-oleanene, 2,3-seco-oleanene, and 3,4-seco-oleanene triterpenes have been previously reported. 18,19

Table 5 illustrates the effect of compounds ${\bf 1-5}$ on the release of neonatal rat brain microglia (BM Φ) superoxide

Table 3. ¹H NMR Data of Compounds 3, 5, 5a, and 7^a

H no.	3	5	5a	7
1	1.91, m, 1.60, m	2.40, m 2.17, m	2.36, m, 2.12, m	2.36, m, 1.67, m
2	2.60, m 2.51, m	1.74, m 1.42, m	1.74, m 1.45, m	2.51, m, 2.41, m
5	1.51, m	2.03, m	1.80, m	1.38, m
6	1.60, 2H, m	1.75, m, 1.42, m	1.76, m 1.42, m	1.50, 2H, m
7	1.41, 2H, m	1.99, m, 1.50, m	1.98, m 1.52, m	1.95, m, 1.37, m
9		2.02, m	1.95, m	1.84, d (9.5)
11	5.65, s	1.75, 2H, m	1.75, 2H, m	4.02, dd (9.5, 2.9)
12	5.65, s	5.23, brs	5.23, brs	5.44, d (2.9)
15	1.90, m, 1.10, m	1.79, m, 1.03, m	1.77, m, 1.02, m	1.73, m, 1.01, m
16	1.97, m, 0.95, m	1.52, m, 1.28, m	1.53, m, 1.29, m	1.95, m, 0.91, m
18	2.19, brd (10.8)	2.23, m	2.17, m	2.04, m
19	1.43, 2H, m	2.17, m, 1.80, m	2.22, m, 1.80, m	1.93, m, 1.66, m
21	1.95, m, 1.75, m	2.06, dd (16.7, 3.7), 0.91, m	1.98, m, 0.93, m	1.50, m, 1.35, m
22	2.22, m, 1.88, m	1.93, 2H, m	1.76, 2H, m	1.38, 2H, m
23	1.12, 3H, s	4.87, brs, 4.67, brs	4.87, brs, 4.67, brs	1.10, 3H, s
24	1.08, 3H, s	1.75, 3H, brs	1.77, 3H, brs	1.06, 3H, s
25	0.98, 3H, m	0.94, 3H, s	0.85, 3H, s	1.21, 3H, s
26	1.16, 3H, m	1.02, 3H, s	1.20, 3H, s	1.05, 3H, s
27	1.27, 3H, s	1.19, 3H, s	1.02, 3H, s	1.22, 3H, s
28	0.88, 3H, s	0.86, 3H, s	0.93, 3H, s	0.81, 3H, s
29	1.21, 3H, s			1.15, 3H, s
30		1.24, 3H, s	1.21, 3H, s	
11-OEt				1.15, 3H, dd (7.1, 6.8
				3.62, dq (15.8, 6.9)
				3.36, dq (15.6, 7.1)
3-OMe			3.64, 3H, s	* * * * * * * * * * * * * * * * * * * *
29-OMe			3.66, 3H, s	

^a In CDCl₃, 500 MHz. Coupling constants (*J*) are in Hz.

Table 4. Antibacterial Activity of Compounds 1−3, 5, 6, and 7^a

	MIC μ g/mL			
compound	S. aureus	MR. S. aureus	P. aeruginosa	
1	>10	>10	10	
2	>6.25	>6.25	>6.25	
3	>50.0	>50.0	6.25	
5	>3.25	>6.25	6.25	
6	>6.25	12.5	6.25	
7	>12.5	50	12.5	

^a MIC values after 48 h of incubation at 37 °C.

Table 5. Antiinflammatory Activity of Compounds $1-5^a$

compound	${ m IC_{50}~O_2}^-$, $\mu{ m M}$	IC_{50} TXB ₂ , μM	LDH ₅₀ , μM
1	15	5	>30
2	3.2	3.6	>1
3	>100	>100	>30
4	6.7	2.3	>10
5	1.9	0.5	>1

 $[^]a$ Effect on rat neonatal BM Φ PMA [1 μM]-stimulated release of O_2^- , TXB2, and LDH. Data shown corresponds to two independent experiments. The detailed experiment protocol used is described in the Experimental Section.

anion (O2-) and thromboxane B2 (TXB2), mediators thought to be involved in neuroinflammatory conditions29 and lactate dehydrogenase (LDH), a marker for cell toxicity.30 The new secotriterpene acid 20-epi-koetjapic acid (5) dosedependently inhibited phorbol ester-stimulated neonatal $BM\Phi$ thromboxane B_2 (IC₅₀ = 0.5 mM) and superoxide anion (IC $_{50} = 1.9 \mu M$) release (Table 5). LDH release was minimally above basal levels, thus suggesting that compound 5's effect on BMΦ O2- and TXB2 release was of a pharmacological rather than of a toxicological nature. Compounds 1, 2, and 4 were less effective in inhibiting BM Φ thromboxane B₂, IC₅₀ = 5, 3.6, and 2.3 μ M, respectively, and superoxide anion generation, $IC_{50} = 15$, 3.2, and 6.7 mM, respectively (Table 5). Although less potent than compound 5, compounds 1 and 4 are particularly interesting in view of their low lactate dehydrogenase release, indicating low toxicity to the BM Φ (Table 5). Despite its

low toxicity, compound 3 did not show effects on both BM Φ superoxide anion and thromboxane B_2 release.

Experimental Section

General Experimental Procedure. Melting points (uncorrected) were recorded on an Electrothermal 9100 instrument. UV spectra were obtained in MeOH, using a Varian DMS 90 spectrophotometer, and IR spectra were taken as KBr disks/CHCl₃ solution on a Perkin-Elmer 5808 spectrophotometer. The ¹H and ¹³C NMR spectra were recorded in CDCl₃ or acetone- d_6 , using TMS as internal standard, on Bruker AMX NMR spectrometers operating at 300 or 500 MHz for ¹H and 75 or 125 MHz for ¹³C NMR. The MS spectra were measured using an E. I. Finnigan model 3200 (70 eV ionization potential) with the INCOS data system, an E. I. Finnigan model 4600 quadruple system, or a Shimadzu QP500 GC/mass spectrometer. Low-resolution chemical ionization mass spectra were obtained using a Finnigan instrument with isobutane or ammonia as the ionizing gases. HRMS were measured using a VG ZAB-SE mass spectrometer. Optical rotation values were recorded at ambient temperature, in CHCl₃, unless otherwise stated, using a Perkin-Elmer 241 MC polarimeter. TLC analyses were carried out on precoated silica gel G_{254} 1000 μm , with the following developing system: CHCl₃-(CH₃)₂CO-AcOH (90:10:0.1). For flash column chromatography, Si gel 60, 40 μm was used and CHCl₃-MeOH mixture as a solvent system. Centrifugal preparative TLC (CPTLC) was performed with a Chromatotron (Harrison Research Inc. model 7924), 1 or 4 mm Si gel G $PF_{254}\, disk,$ using a flow rate of 3 mL/min. The isolated compounds were visualized using UV light (λ_{max} 254 nm) and 1% vanillin-H₂SO₄ spray reagent.

Plant Material. The aerial parts of *Maytenus undata* were collected in August 1995, near Abha, in the Southern Region of Saudi Arabia. The plant was identified at the College of Pharmacy, King Saud University, and a voucher specimen has been deposited at the Herbarium of Medicinal, Aromatic and Poisonous Plants Research Center, King Saud University (MAPPRC 13328, 1995).

Extraction and Bioautography. The powdered air-dried aerial parts of M. undata (1.3 kg) were extracted with EtOH (95%, 3×2 L), and the combined extracts were evaporated under reduced pressure (yield 160 g). A portion of the anti-

microbially active EtOH extract was subjected to bioautography 31 on silica gel plates (5 × 10 cm, solvent system: CHCl $_3$ -(CH₃)₂CO-AcOH, 90:10:0.1), using Bacillus subtilis (NCTC 10400) as a test organism. Two clear elongated inhibition zones with R_f values 0.20 and 0.55 were observed after 24 h of incubation. Hence, a portion of the active EtOH extract (50 g) was dissolved in CH₃CN (3 L), and the CH₃CN-soluble fraction (30 g) was partitioned with *n*-hexane (3 \times 500 mL), after presaturation with each other. The combined *n*-hexane and CH₃CN fractions were separately filtered and dried (7.5 and 22 g, respectively). Antimicrobial screening of all fractions showed that the activity resided in the CH₃CN-soluble fraction.

Isolation of Triterpenes. A part of the active CH₃CN fraction (10 g) was flash-chromatographed on Si gel 60 (250 g) using CHCl₃-MeOH (99:1) as a solvent system to give several fractions of mixtures and semipure triterpenes that were pooled according to their TLC patterns. Mixtures were further subjected to repeated CC followed by CPTLC, using the system CHCl₃-(CH₃)₂CO-AcOH (90:10:0.1) to afford 1 $(237 \text{ mg}, R_f 0.30), 2 (219 \text{ mg}, R_f 0.12), 3 (30 \text{ mg}, R_f 0.58), 4 (29)$ mg, R_f 0.32), **5** (160 mg, R_f 0.18), **6** (105 mg, R_f 0.21), and **7** $(210 \text{ mg}, R_f 0.42).$

3-Oxo-11α-methoxyolean-12-ene-30-oic acid (1): colorless powder, mp 83 °C; $[\alpha]_D^{25}$ +200° (c 0.13, CHCl₃); UV λ_{max} $(\log \hat{\epsilon})$ (MeOH) 218 (3.18) nm; IR $\nu_{\rm max}$ (KBr) 3420 (OH), 2985— 2820, 1725 (C=O), 1700 (C=O) cm⁻¹; ¹³C and ¹H NMR, see Tables 1 and 2; EIMS [m/z] (% relative intensity): 484 [M]⁺ (25); HRFABMS m/z 485.3639 [M + 1]⁺ (calcd for C₃₁H₄₉O₄, 485.3633).

3-Oxo-11α-hydroxyolean-12-ene-30-oic acid (2): colorless powder, mp 205–207 °C; [α] $_{\rm D}^{25}$ +101° (c 0.10, CHCl $_{\rm 3}$); UV $\lambda_{\rm max}$ (log ϵ) (MeOH) 210 (3.49) nm; IR $\nu_{\rm max}$ (KBr) 3300–3500 (OH), 2950-2820, 1720 (C=O), 1700 (C=O), cm⁻¹; ¹³C and ¹H NMR, see Tables 1 and 2; EIMS [m/z] (% relative intensity) 470 [M]⁺ (3); HRFABMS m/z 471.3470 [M + 1]⁺ (calcd for C₃₀H₄₇O₄, 471.3476).

3-Oxoolean-9(11),12-diene-30-oic acid (3): colorless powder, mp 259 °C; [α]_D²⁵ +200° (c 0.11, CHCl₃); UV $\lambda_{\rm max}$ (log ϵ) (MeOH) 210 (3.98), 235 (2.85) nm; IR $\nu_{\rm max}$ (KBr) 3550–3400 (OH), 2990–2800, 1705 (C=O), cm⁻¹; ¹³C and ¹H NMR, see Tables 1 and 3; EIMS [m/z] (% relative intensity): 452 $[M]^+$ (66); HRFABMS m/z 453.3368 [M + 1]⁺ (calcd for C₃₀H₄₅O₃, 453.3371).

3,11-Dioxoolean-12-ene-30-oic acid (4): colorless powder, mp 270 °C (dec); $[\alpha]_D^{25}$ +93° (c 0.06, CHCl₃) [lit.²² mp 270° (recrystallized from MeOH) [α]_D²⁵ +184° (CHCl₃); UV λ _{max} (log ϵ) (MeOH) 210 (4.05), 250 (3.65) nm; IR $\nu_{\rm max}$ (KBr) 3600-3400(OH), 2950-2820, 1725 (C=O), 1680 (C=O), 1590 cm⁻¹; ¹³C NMR data were in agreement with literature;25 1H NMR, see Table 2; EIMS $[m/\tilde{z}]$ (% relative intensity) 468 $[M]^+$ (15); HRFABMS m/z 469.3320 [M + 1]⁺ (calcd for $C_{30}H_{45}O_4$, 469.3333).

3,4-Seco-olean-4(23),12-diene-3,29-dioic acid (5): colorless amorphous solid, mp 179 °C; $[\alpha]_D^{25}$ +32° (c 0.19, CHCl₃); UV $\lambda_{\rm max}$ (log ϵ) (MeOH) 219 (3.30) nm; IR $\nu_{\rm max}$ (KBr) 3600–3300 (OH), 2950–2800, 1720, 1690 (C=O), cm $^{-1}$; 13 C and 1 H NMR, see Tables 1 and 3; CIMS [m/z] (% relative intensity) 471 [M + H]⁺(100); HRFABMS m/z 471.3482 [M + 1]⁺ (calcd for C₃₀H₄₇O₄, 471.3476).

3,4-Seco-olean-4(23),12-diene-3,30-dioic acid (6): colorless amorphous solid, mp 315–318 °C; $[\alpha]_D^{25}$ +120° (c 0.11, MeOH) [lit. 26 mp 296–298 °C, $[\alpha]_D^{25} + 114$ °; UV; IR; 13C and 1H NMR were in agreement with those reported for koetjapic acid;²⁶ CIMS [m/z] (% relative intensity) 471 $[M + H]^+$ (100); HRFABMS m/z 471.3480 [M + 1]⁺ (calcd for $C_{30}H_{47}O_4$, 471.3476).

3-Oxo-11α-ethoxyolean-12-ene-30-oic acid (7): colorless powder, mp 138 °C; $[\alpha]_D^{25}$ +81° (c 0.12, CHCl₃); UV λ_{max} (log ϵ) (MeOH) 218 (3.21) nm; IR ν_{max} (KBr) 3450 (OH), 2950–2820, 1730 (C=O), 1700 (C=O), 1225 cm $^{-1}$; 13 C and 1 H NMR, see Tables 1 and 3; EIMS [m/z] (% relative intensity) 498 $[M]^+$ (35); HRFABMS m/z 499.3796 [M + 1]⁺ (calcd for $C_{32}H_{51}O_4$, 499.3789).

Methylation of 1, 2, and 5. Compounds 1 (110 mg), 2 (100 mg), and 5 (61 mg) were separately methylated using ethereal CH_2N_2 , which yielded compounds **1a** (41 mg, R_f 0.63), **2a** (29 mg, R_f 0.25), and **5a** (16 mg, R_f 0.88) after regular workup and purification using CPTLC (Si gel G PF₂₅₄ 1 mm disk, system: CHCl₃-(CH₃)₂CO-AcOH (90:10:0.1)).

3-Oxo-11α-methoxyolean-12-ene-30-oic acid methyl es**ter (1a)**: colorless powder, mp 189–191 °C; $[\alpha]_D^{25} + 14^\circ$ (c 0.10, CHCl₃); UV $\lambda_{\rm max}$ (log ϵ) (MeOH) 219 (3.27) nm; IR $\nu_{\rm max}$ (KBr) 2990–2800, 1730 (C=O), 1700 (C=O), 1225 cm⁻¹; $^{13}{\rm C}$ and 1 H NMR, see Tables 1 and 2; EIMS [m/z] (% relative intensity) 498 $[M]^+$ (18); HRFABMS m/z 499.3781 $[M+1]^+$ (calcd for $C_{32}H_{51}O_4$, 499.3789).

3-Oxo-11α-hydroxyolean-12-ene-30-oic acid methyl es**ter (2a)**: viscous oil, $[\alpha]_D^{25}$ +84° (c 0.05, CHCl₃); UV λ_{max} (log ϵ) (MeOH) 215 (3.58), 251 (2.92) nm; IR $\nu_{\rm max}$ (CHCl₃) 2970–2800, 1730 (C=O) and 1695 (C=O) cm⁻¹; ¹³C and ¹H NMR, see Tables 1 and 2; EIMS [m/z] (% relative intensity) 484 [M](5); HRFABMS m/z 485.3649 [M + 1]⁺ (calcd for C₃₁H₄₉O₄, 485.3633).

3,4-Seco-olean-4(23),12-diene-3,29-dioic acid dimethyl **ester (5a)**: colorless powder, mp 179 °C; $[\alpha]_D^{25}$ +43° (c 0.05, CHCl₃); UV $\lambda_{\rm max}$ ($\log \epsilon$) (MeOH) 202 (3.09), 287 (2.42) nm; IR $\nu_{\rm max}$ (KBr) 2950–2856, 1720 (C=O) and 1690 (C=O) cm⁻¹; ¹³C and ¹H NMR, see Tables 1 and 3; EIMS [m/z] (% relative intensity) 498 [M]⁺ (3); HRFABMS m/z 499.3780 [M + 1]⁺ (calcd for $C_{32}H_{51}O_4$, 499.3789).

Antibacterial Assay. The preliminary antibacterial activities of the crude extracts/fractions were determined by using agar dilution assay, 32 and the MIC values of compounds 1-3, 5, 6, and 7 were determined by using a modified microtiter plate assay protocol with a 96-well format plate, as recommended by the National Committee for Clinical Laboratory Standards. 28 The test organisms used are ATCC strains of Š. aureus (# 6535), methicillin-resistant S. aureus (#33591), and P. aeruginosa (# 15442). Rifampin and DMSO were used as positive and negative controls, respectively.

Antiinflammatory Assay. BM Φ (2 \times 10⁵ cells) were seeded into each well of 24-well flat-bottom culture clusters and stimulated with bacterial lipopolysaccharide (LSP) (0.3 ng/mL) in Dulbecco's modified Eagle medium + 10% fetal bovine serum + penicillin + streptomycin for 17 h in a humidified 5% CO₂ incubator at 37 °C. ³⁰ Media were then removed, and BMP was washed with warm (37 °C) Hanks' balanced salt solution (HBSS) and then incubated with compounds **1–5** (0.01-30 mM) or vehicle (DMSO) for 15 min prior to stimulation with phorbol 12-myristate 13-acetate (PMA) (1 μ M). All experimental treatments were run in triplicate and in a final volume of 1 mL. Seventy minutes after PMA stimulation, HBSS was aspirated from each well and O₂-, TXB₂, and LDH release were determined as described elsewhere.³⁰ Table 5 shows the data for each compound from two representative experiments and are expressed as the compound's inhibitory concentration 50% (IC₅₀) for the measured mediator.

Acknowledgment. From the College of Pharmacy, KSU, we thank Dr. Sultanul Abdin for taxonomical identification of the plant material and Mr. Ahmed F. Ramadan for technical assistance. Mr. Frank Wiggers, NCNPR, University of Mississippi, is acknowledged for assistance in obtaining the NMR spectra. The expert technical assistance for the TXB₂, O₂⁻, and LDH assays by Jieun Roh from the Chicago College of Pharmacy, Midwestern University, is gratefully acknowledged. The antiinflammatory studies described in this paper were funded by a grant to A.M.S.M. from the National Sea Grant College Program, National Oceanic and Atmospheric Administration, U.S. Department of Commer, under grant number NA66RG0477, project R/MP 73, through the California Sea Grant College System. The views expressed herein are those of the author(s) and do not necessarily reflect the views of NOAA or any of its subagencies. The U.S. Government is authorized to reproduce and distribute this publication for governmental purposes.

References and Notes

- (1) Ghazanfar, S. A. Handbook of Arabian Medicinal Plants; CRC Press: Boca Raton, 1994; p 83.
 (2) Flores A. F. Advances in Economic Botany, Vol. 1, Ethnobotany in
- the New Tropics; Prance, G. T., Kallunti, J. A., Eds.; The New York
- Botanical Garden: New York, 1984; pp 1–8. Shirota, O.; Tamemura, T.; Morita, H.; Takeya, K.; Itokawa, H. *J. Nat. Prod.* **1996**, *59*, 1072–1075.
- (4) Shirota, O.; Morita, H.; Takeya, K.; Itokawa, H. Chem. Pharm. Bull. **1998**, 46, 102-106.
- Corsino, J.; Furlam, M.; Bolzani, V.; Pereira, A. M. S.; Franca, S. E. *Phytochemistry* **1998**, *49*, 2181–2183. (6) Piacente, S.; De Tommasi, N.; Pizza, C. *J. Nat. Prod.* **1999**, *62*, 161–
- Sannomiya, M.; Vilegas, W.; Rastrelli, L.; Pizza, C. Phytochemistry **1998**, 49, 237-239.
- Munoz, O.; Galeffi, C.; Federici, E.; Garbarino, J. A.; Piovano, M.;
- Nicoletti, M. *Phytochemistry* **1995**, *40*, 853–855. Gonzalez, A. G.; Jimenez, I. A.; Ravelo, A. G.; Sazatornil, G.; Bazzocchi, I. L. *Tetrahedron* **1993**, *49*, 697–702.
- (10) Backhouse, N.; Delporte, C.; Negrete, R.; Munoz, O.; Ruiz, R. Int. J. Pharmacogn. 1994, 32, 239-244.
- (11) Nakamura, M.; Nakasumi, T.; Yoshizawa, T.; Minagawa, Y. Eur. Pat.
- Appl. Application: EP 96-106837 960430, 1997. CAN 127:70824.
 (12) Gonzalez, A. G.; Alvarenga, N. L.; Ravelo, A. G.; Jimenez, I. A.; Bazzocchi, I. L.; Canela, N. J.; Moujir, L. M. Phytochemistry 1996, 43, 129-132.
- Alvarenga, N. L.; Velazquez, C. A.; Gomez, R.; Canela, N. J.; Bazzocchi, I. L.; Ferro, E. A. *J. Nat. Prod.* **1999**, *62*, 750–751.
 Kuo, Y. H.; Chen, C. H.; Kuo, L. M. Y.; King, M. L.; Wu, T. S.; Haruna, M.; Lee, K. H. *J. Nat. Prod.* **1990**, *53*, 422–428.
 Shirota, O.; Morita, H.; Takeya, K.; Itokawa, H. *Nat. Med. (Tokyo)*
- **1998**, *52*, 184-186.
- Kashiwada, Y.; Wang, H.-K.; Nagao, T.; Kitanaka, S.; Yasuda, I.; Fujioka, T.; Yamagishi, T.; Cosentino, M. L.; Kozuka, M.; Okabe, H.; Ikeshiro, Y.; Hu, C.-Q.; Yeh, E.; Lee, K.-H. J. Nat. Prod. 1998, 61, 1090 - 1095.

- (17) Collenette, S. An Illustrated Guide to the Flowers of Saudi Arabia; Kingdom of Saudi Arabia, Flora, Publication No. 1, Scorpion Publishing Ltd.: London, 1985; p 114.
- (18) Nick, A.; Wright, A. D.; Rali, T.; Sticher, O. Phytochemistry 1990, 40, 1691-1695
- (19) Nick, A.; Wright, A. D.; Sticher, O.; Rali, T. J. Nat. Prod. 1994, 57, 1245-1250.
- (20) Chen, T. K.; Ales, D. C.; Baenziger, N. C.; Wiemer, D. F. J. Org. Chem. **1983**, 48, 3525-3531.
- Baran, J. S.; Longford, D. D.; Liang, C.-D.; Pitzele, B. S. J. Med. Chem. **1974**, 17, 184-190.
- Logemann, W.; Lauria, F.; Tosolini, G. Chem. Ber. 1957, 90, 601-604.
- (23) Pitzele, B. S. J. Med. Chem. 1974, 17, 191-194.
- (24) Shen, F.-J.; Hu, J.-F.; Yu, Y.-C.; Xu, Z.-D. Gaodeng Xuuexio Huaxue Xuebao 1995, 16, 572. CAN: 123:138758t.
- (25) Yamada, Y.; Nakamura, A.; Yamamoto, K.; Kikuzaki, H. Biosci. Biotech. Biochem. 1994, 58, 436-437.
- Kaneda, N.; Pezzuto, J. M.; Kinghorn, A. D.; Farnsworth, N. R.; Santisuk, T.; Tuchinda, P.; Udchachon, J.; Reutrakul, V. J. Nat. Prod. **1992**, 55, 654-659.
- (27) Hufford, C. D.; ElSohly, H. N. Spectrosc. Lett. 1987, 20, 439-444.
- (28) National Committee for Clinical Laboratory Standards. Methods for Dilution. Antimicrobial Susceptibility Test for Bacteria that Grow Aerobically. Approved Standard M7-A, 4th ed.; National Committee for Clinical Laboratory Standards: Wayne, PA, 1997.
- (29) Mayer, A. M. Medicina (Buenos Aires) 1998, 58, 377-385.
- (30) Mayer, A. M. S.; Oh, S.; Ramsey, K. H.; Jacobson, P. B.; Glaser, K. B.; Romanic, A. M. SHOCK 1999, 11, 180-186.
- (31) Hamburger, M. O.; Cordell, G. A. J. Nat. Prod. 1987, 50, 19-22.
- (32) Mitscher, L. A.; Leu, R.-P.; Bathala, M. S.; Wu, W.-N.; Beal, J. Lloydia **1972**, 35, 157-166.

NP990456Y