0.1 Mi a gráf?

Def: G = (V, E) egyszerű, irányítatlan gráf

Példa: Ha $V \neq 0$ és $E \subseteq \binom{V}{2}$, ahol $\binom{V}{2} = \{\{u,v\} : u,v \in V, u \neq v\}$. V a G csúcsainak (vagy (szög)pontjainak), E pedig G éleinek halmaza.

Példa: $G = (\{a, b, c, d\}, \{a, b\}, \{a, c\}, \{b, c\}, \{b, d\})$

Def: A G = (V, E) gráf diagramja a G egy olyan lerajzolása, amiben V-nek a sík különböző pontjai felelnek meg, és G minden $\{u, v\}$ élének egy u-t és v-t összekötő görbe felel meg.

Terminológia & konvenciók: Gráf alatt rendszerint egyszerű, irányítatlan gráfot értünk. Ha G egy gráf, akkor V(G) a G csúcshalmazát, E(G) pedig G élhalmazát jelöli, azaz G = (V(G), E(G)). Az $e = \{u, v\}$ élt röviden uv-vel jelöljük.

Ekkor e az u és v csúcsokat köti össze. Továbbá u és v az e végpontjai, amelyek az e élre illeszkednek, és e mentén szomszédosak.

0.2 Multigráfok és irányított gráfok

Megj: Ha egy gráf nem egyszerű, akkor lehetnek párhuzamos élei, hurokélei vagy akár párhuzamos hurokélei is.

Def: Az irányított gráf olyan gráf, aminek minden éle irányított.

Def: G = (V, E) véges gráf, ha V és E is véges halmazok.

Def: Az n-pontú út, n-pontú kör, ill. n-pontú teljes gráf jele rendre P_n , C_n , ill. K_n . $(P_1, P_2, P_3 \text{ elfajulók.})$ **Megf:** $K_1 = P_1, P_2 = C_2, C_3 = K_3$

Def: $c \in V(G)$ esetén a v-re illeszkedő élek száma a v fokszáma. Jelölése $d_g(v)$ vagy d(v), a hurokél kétszer számít. (Irányított gráf esetén $\delta(v)$ (Delta) ill. $\rho(v)$ (Rho) a v ki- ill. befokát jelöli.)

Def: A G gráf maximális ill. minimális fokszáma $\Delta(G)$ ill. $\delta(G)$. G reguláris, ha minden csúcsának foka ugyanannyi: $\Delta(G) = \delta(G)$, G pedig k-reguláris, ha minden csúcsának pontosan k a fokszáma.

Megf: Minden kör 2-reguláris, K_n pedig (n-1)-reguláris.

0.3 Handshaking lemma

Kézfogás-lemma (KFL): Ha G=(V,E) véges, nem feltétlenül egyszerű gráf, akkor $\sum_{v\in V} d(v)=2|E|$, azaz a csúcsok fokszámösszege az élszám kétszerese.

Általánosított kézfogás-lemma: Tetsz. G = (V, E) véges irányított gráfra $\sum_{v \in V} \delta(v) = \sum_{v \in V} \rho(V) = |E|$, azaz a csúcsok ki- és befokainak összege is az élszámot adja meg.

Biz: Az egyes csúcsokból kilépő éleket megszámolva G minden irányított élét pontosan egyszer számoljuk meg. Ezért a kifokok összege az élszám. A belépő éleket leszámlálva hasonló igaz, ezért a befokok összege is az élszám. \square

 ${f A}$ KFL bizonyítása: Készítsükel a G' digráfot úgy, hogy G minden élét egy oda-vissza irányított élpárral helyettesítjük. Ekkor

$$\sum_{v \in V} d_G(V) = \sum_{v \in V} \delta_{G'}(v) = |E(G')| = 2|E(G)| \quad \Box$$

Megj: Úgy is bizonyíthattuk volna az általánosított kéfogás-lemmát, hogy egyenként húzzuk be G-be az éleket. 0-elű (üres)gráfokra a lemma triviális, és minden egyes él behúzása pontosan 1-gyel növeli az élszámot is és a ki/befokok összegét is.

Megj: Úgy is bizonyíthattuk volna a kézfogás-lemmát, hogy egyenként húzzuk be G-be az éleket. Üresgráfokra a lemma triviális, és minden egyes él behúzása pontosan 2-vel növeli a kétszeres élszámot és a csúcsok fokszámösszeget is.

0.4 Komplementer és izomorfia

Def: A G egyszerű gráf komplementere $\overline{G} = (V, (G), \binom{v}{2} \setminus E(G))$.

Megj: G és \overline{G} csúcsai megegyeznek, és két csúcs pontosan akkor szomszédos \overline{G} -ben, ha nem szomszédosak G-ben.

Példa:

Megf: Ha G = (V, E) egyszerű gárf és a |V(G)| = n, akkor $d_G(v) + d_{\overline{G}} = n - 1$ teljesül G bármely v csúcsra.

Biz: A K_n teljes frág minden éle a G és \overline{G} gráfok közül pontosan az egyikhez tartozik. Ezért $d_G(v) + d_{\overline{G}}(v)$ megyegyezik a v csúcs K_n -beli fokszámával, ami n-1. \square

Def: A G és G' gráfok akkor izomorfak, ha mindekét gráf csúcsai úgy számozhatók meg az 1-től n-ig terjedő egész számokkal (alkalmas n esetén), hogy G bármely két u, v csúcsa között pontosan annyi él fut G-ben, mint az u-nak és v-nek megfelelő sorszámú csúcsok között G'-ben. Jelölése: $G \cong G'$.

Példa:

Megf: Ha $G \cong G'$, akkor G és G' lényegében ugyanúgy néznek ki. Így például minden fokszám ugyanannyiszor lép fel G-ben mint G'-ben, ugyan annyi C_{42} kör található G-ben, mint G'-ben, stb.

0.5 Gráfoperációk

Def: Éltörlés, csúcstörlés, élhozzáadás.

Def: Feszítő részgráf: éltörlésekkel kapható gráf.

Feszített részgráf: csúcstörlésekkel kapható gráf.

Részgráf: él- és csúcstörlésekkel kapható gráf.

Példa: H_1 , H_2 , H_3 : a G feszítő, feszített, jelzőnélküli részgráfjai.

Megf: H a G részgráfja $\iff V(H) \subseteq V(G)$ és $E(H) \subseteq E(G)$.

H a G feszítő részgráfja $\iff V(H) = V(G)$ és $E(H) \subseteq E(G)$.

H a G feszített részgráfja $\iff V(H) \subseteq V(G)$ és E(H) a H.

Megj: A gráf definíciója megengedi, hogy a gráf egyik részéből egyáltalán ne vezessen él a gráf maradék részébe, azaz a gráf egyik csúcsáből ne lehessen eleken kereszül eljutni a gráf egy másik csúcsába. Ez történik pl. az üresgráf (alias $\overline{K_n}$) esetén.

0.6 Háromféle elérhetőség, összefüggőség

Def: Legyen G = (V, E) (irányított vagy irányítatlan) gráf.

Elsorozat: $(v_1, e_1, v_2, e_2, \dots, v_k, e_k, v_{k+1})$, ahol $e_i = v_i v_{i+1} \forall i$. (Tulajdonképp egyik csúcsból eljutunk egy másik csúcsba mindig élek mentén haladva.)

Séta: olyan élsorozat, amelyikban nincsen ismétlődő él.

Út: olyan séta, amelyikben nincs ismétlődő csúcs.

Terminológia: Ha a kezdőpont u, a végpont v, akkor uv-élsorozatról, uv-sétáról, ill. uv-útról beszélünk. Ha hangsúlyozni szeretnénk, hogy u = v, de a kezdő (és vég)pontot nem akarjuk megnevezni, akkor zárt élsorozatról, körsétáról ill. körről beszélünk.

Megf: G-ben $\exists uv$ -út \Rightarrow G-ben $\exists uv$ -élsorozat \square

Állítás: G-ben $\exists uv$ -élsorozat \Rightarrow G-ben $\exists uv$ -út \square

Def: G irányítatlan gráf u-ból v **elérhető** $(u \sim v)$, ha $\exists uv$ -út G-ben.

Def: A G irányítatlan gráf összefüggő, ha $u \sim v \forall u, v \in V(G)$.

Megj: (1) Az összefüggőség szokásos definíciója nem a \sim reláció segítségével történik, hanem valahogy így: a G irányítatlan gráfot akkor mondjuk öszefüggőnek, ha G bármely két csúcsa között vezet út G-ben.

Megj: (2) Az előző definíciót irányított gráfokra is kterjeszthető: a G irányított gráfot akkor mondjuk **erősen összefüggő**nek, ha G bármely $u, v \in V(G)$ esetén van **irányított** uv-út G-ben.

Megj: (3) Irányított gráf másfajta összefüggősége is értelmezhető: a G irányított gráfot akkor mondjuk gyengén összefügőnek, ha a G-nek megfelelő irányítatlan gráf összefüggő.

Köv: Ha G irányítatlan gráf, akkor \sim ekvivalenciareláció:

(1) $\forall u \in V(G) : u \sim u$, (2) $\forall u, v \in V(G) : u \sim v \Rightarrow v \sim u$, és (3) $\forall u, v, w \in V(G) : u \sim v \sim w \Rightarrow u \sim w$. \square

Def: A G gráf (összefüggő) komponense a \sim ekvivalenciaosztálya. Az egyelemű komponens neve izolált pont.

0.7 Gráfok összefüggősége a gyakorlatban

Lemma: (1) $K \subseteq V(G)$ pontosan akkor komponense G-nek, ha K-ból nem lép ki éle G-nek, de $\forall v, v' \in \text{eset\'en } v \sim v'$.

(2) Minden G irányítatlan gráf csúcshalmaza egyértelműen bomlik fel G komponenseinek diszjunkt uniójára. \square

Megj: A G komponense alatt sokszor nem csupán a G csúcsainak egy K részhalmazát, hanem a K által feszített részgráfot értjük.

Megf: G pontosan akkor összefüggő, ha egy komponense van. \square

Élhozzáadási lemma (ÉHL): Legyen G irányítatlan gráf és G' = G + e. Ekkor az alábbi két esetből pontosan egy valósul meg.

- (1) G és G' komponensei megegyeznek, de G'-nek több köre van, mint G-nek.
- (2) G és G' körei megegyeznek, de G'-nek eggyel keveseb komponense van, mint G-nek.

0.8 Fák és erdők

Def: A körmentes irányítatlan gráfot erdőnek nevezzük. Az öszefüggő, körmentes irányítatlan gráf neve fa.

Megf: G erdő \iff G minden komponense fa.

Példa:

Megf: (1) P_n fa minden $n \ge 1$ egész esetén. (2) Fához egy új csúcsot egy éllel bekötve fát kapunk:

Lemma: G n-csúcsú, k-komponensű erdő $\Rightarrow |E(G)| = n - k$.

Biz: Építsük fel G-t a $\overline{K_n}$ üresgráfból az élek egyenkénti behúzásával. G körmentes, ezért az ÉHL miatt minden lé zöld: behúzásakor 1-gyel csökken a komponensek száma. A $\overline{K_n}$ üresgráfnak n komponense van, G-nek pedig k. Ezért pontosan n-k zöld élt kellett behúzni G felépítéséhez.

Köv: Ha F egy n-csúcsú fa, akkor élszáma |E(F)| = n - 1.

Biz: F egy 1-komponensű erdő, így az előző Lemma alkalmazható k=1 helyettesítéssel.

Állítás: Tetsz. n-csúcsú G gráf esetén az alábbi három tulajdonság közül bármely kettőből következik a harmadik. (a) G körmentes. (b) G összefüggő. (c) |E(G)| = n - 1.

Biz: $(a) + (b) \Rightarrow (c) : \checkmark$

- $(a) + (c) \Rightarrow (b)$: Építsük fel G-t élek egyenkénti behúzásával. n-1 él egyikének behúzása se hoz létre kört, ezért az ÉHL miatt minden él zöld, és 1-gyel csökkenti a komponensszámot. Végül n-(n-1)=1 komponens marad, tehát G összefüggő.
- $(b)+(c)\Rightarrow (a)$: Építsük fel G-t élek egyenkénti behúzásával. Mivel a komponensek száma végül 1 lesz, ezért n-1 zöld élt kellett behúzni. (c) miatt G összes éle zöld, piros éle nincs. Az ÉHL miatt G körmentes. \square

0.9 Fák további tulajdonságai

Állítás: Legyen F egy tetszőleges fa n csúcson. Ekkor

- (1) (F-e)-nek pontosan két komponense van $\forall e \in E(F)$ -re.
- (2) F-nek pontosan egy uv-útja van $\forall u, v \in V(F)$ -re.
- (3) (F+e)-nek pontosan egy köre van $\forall e \notin E(F)$ -re.
- (4) Ha $n \ge 2$, akkor F-nek legalább két levele van.

Def: A G irányítatlan gráf v csúcsa levél, ha d(v) = 1.

Biz: (1): F - e erdő, hisz körmentes. F = (F - e) + e, és mivel F is körmentes, e zöld az ÉHL miatt. Ezért F-nek 1-gyel kevesebb komponense van, mint (F - e)-nek. Mivel F-nek 1 komponense van, (F - e)-nek 2. \square

Biz: (2): F összefüggő, ezért van (legalább egy) uv-útja, mnodjuk P. Ezen P út bármely e élét elhagyva, a kapott F - e grágnak (1) miatt két komponense van, melyek közül az egyik u-t, a másik v-t tartalmazza. Ezért (F - e)-ben nincs uv-út. Azt kaptuk, hogy P minden éle benne van F minden uv-útjában, ezért F-ben P-n kívül nincsmás uv-út. \square

Biz: (3): Tfh e = uv. Minden F körmentes, ezért F + e minden köre e-ből és F egy uv-útjából tevődik össze. Ezért F + e köreinek száma megegyezik az F fa uv-útjainka számával, ami (2) miatt pontosan 1. \square

Biz: (4): (Algebrai út) A KFL miatt $\sum_{v \in V(G)} (d(v) - 2) = \sum_{v \in V(G)} d(v) - 2n = 2(n-1) - 2n = -2$. F minden v csúcsára $d(v) \ge 1$ teljesül, ezért $d(v) - 2 \ge -1$. A fenti összeg csak úgy lehet -2, ha F-nek legalább 2 levele van. \square

Biz: (4): (Kombinatorikus út) Induljunk el F egy tetszőleges v csúcsából egy sétán, és haladjunk, amíg tununk. Ha sosem akadunk el, akkor előbb-utóbb ismétlődik egy csúcs, és kört találunk. Ezért elakadunk, és az csakis egy v-től különböző u levélben történhet. Ha d(v) = 1, akkor v egy u-tól különböző levél. Ha $d(v) \geq 2$, akkor sétát indulhatjuk v-ből egy másik él mentén. Ekkor egy u-tól különböző levélben akadunk el. \square

0.10 Feszítőfák

Építsük fel a G gráfot az élek egymás utái behúzásával, és az ÉHL szerinti kiszínezésével! Legyen G' a G gráf piros élei törlésével keletkező feszítő részgráf! G' biztosan körmentes lesz, hiszen a zöld élek sosem alkottak kört a korábbi élekkel. G' minden K' komponense részhalmaza G egy K komponensének. Ha $K' \neq K$, akkor G-nek van olyan éle, ami kilép K'-ből. Ezen élek mind pirosak K' definíciója miatt. Legyen e ezek közül az elsőnek kiszínezett. Az e él nem tudott kört alkotni a korábbn kiszínezettekel, így nem leht piros: ellentmondás. Ezek szerint G egy G' komponensei megegyeznek.

Köv: A G gráf zöld élei olyan G' feszítő részgráfot alkotnak, ami erdő, és komponensei megegyeznek G komponenseivel. \square

Def: F a G gráf feszítőfája (ffája), ha F egy G-ből éltörlésekkel kapható fa.

Állítás: (G-nek van feszítőfája) \iff (G összefüggő)

 $\mathbf{Biz:} \Rightarrow$: Legyen F a Gfeszítőfája. Fösszefüggő, és V(F) = V(G),tehát Gbármely két csúcsa között vezet F-beli út.

 \Leftarrow : Építsük fel G-t az álek egyenkénti behúzásával és kiszínezésével. Láttuk, hogy a zöld élek egy F erdőt alkotnak, aminek egyetlen komponense van, hiszen G is egykomponensű. Ezek szerint F olyan fa, ami G-ből éltörlésekkel kapható. \square

Megj: Ha egy nem feltétlenül összefüggő G gráf éleit a fenti módon kiszínezzük, akkor a zöld élek G minden komponensének egy F feszítőfáját alkotják. Nem összefüggő G esetén a zöld élek alkotta feszítő részgráf neve a G feszítő erdeje.