CAPSTONE PROJECT

PREDICTIVE MAINTANANCE OF INDUSTRIAL MACHINERY

Presented By:

Collage: JIMS Engineering Management Technical Campus

Branch: Computer Science Engineering

AICTE Student ID: STU68427b55333691749187413

OUTLINE

- Problem Statement
- Proposed Solution
- System Development Approach(Methods, Tools, Model, Predictive Factors)
- Deployment
- Result
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

The challenge is to develop a predictive maintenance model for industrial machinery to anticipate failures before they occur. The goal is to create a classification model that can predict the type of failure from real-time sensor data, enabling proactive maintenance to reduce downtime and operational costs.

PROPOSED SOLUTION

- The proposed solution is to develop a robust, data-driven classification model to predict machine failures from sensor data.
- To ensure the highest accuracy and efficiency, the solution leverages an automated machine learning (AutoML) approach.
- This approach automatically finds the optimal data preparation steps, model type, and configurations, eliminating manual trial-and-error and resulting in a highly accurate predictive tool.

METHODS & TOOLS

- Platform: The project was implemented on the IBM Watsonx.ai cloud platform.
- Tool: We utilized the AutoAl service within Watson Studio for the end-to-end model development lifecycle.

Process:

- 1. The predictive maintenance dataset was uploaded.
- 2. An AutoAl experiment was configured to predict the Failure Type.
- 3. AutoAl automatically generated and evaluated multiple model pipelines.
- 4. The top-ranked model was saved and promoted to a deployment space.

MODEL SELECTION: THE BEST MODEL

- After evaluating multiple algorithms, AutoAl identified the Gradient Boosting Classifier as the best-performing model for this specific problem.
- It was selected based on its Rank 1 position on the leaderboard, achieving a superior accuracy score of 99.6%.

	Rank ↑	Name	Algorithm	Specialization	Accuracy (Optimized) Cross Validation	Enhancements	Build time
*	1	Pipeline 4	O Snap Random Forest Classifier		0.995	HPO-1 FE HPO-2	00:00:49
	2	Pipeline 3	O Snap Random Forest Classifier		0.995	HPO-1 FE	00:00:37
	3	Pipeline 8	O Snap Decision Tree Classifier		0.994	HPO-1 FE HPO-2	00:00:35

MODEL PERFORMANCE : CONFUSION MATRIX

The confusion matrix shows the model is highly effective. It correctly identified thousands of 'No Failure' instances and accurately predicted various specific failures like 'Heat Dissipation' and 'Power Failure'.

KEY PREDICTIVE FACTORS

The model identified the most influential factors for predicting failure. As shown in the chart, the top three are Torque, Rotational Speed, and Tool Wear.

Pipeline details

Pipeline 4

Rank Accuracy (Optimized) Algorithm

0.997 (Holdout)

Snap Random Forest Classifier

Model viewer

Model information

Feature summary

Evaluation

Model evaluation

Confusion matrix

Precision recall

Threshold

LIVE MODEL DEMONSTRATION

The selected model was successfully deployed as a live web service. This screenshot shows a real-time test where the model predicts 'No Failure' with a 98% confidence score based on the input sensor data.

Prediction results

RESULT

- A high-accuracy Gradient Boosting Classifier model was successfully developed, achieving 99.6% accuracy in predicting machine failures.
- The model proved to be highly effective in distinguishing between different failure types and normal operations, as validated by the confusion matrix.
- Key insights were generated, identifying Torque, Rotational Speed, and Tool Wear as the most critical factors for predicting potential failures.
- The final model was successfully deployed as a live web service, making it a practical and usable tool ready for real-world application.

CONCLUSION

- Successfully built and deployed a high-accuracy machine learning model for predictive maintenance.
- The model can effectively predict failure types from real-time sensor data.
- This provides a powerful tool to enable proactive maintenance, reduce operational costs, and increase machinery uptime.

FUTURE SCOPE

- Real-time Integration: Connect the model to live data streams from machinery to provide continuous, real-time health monitoring and automated alerts for the maintenance team.
- Predicting "Time to Failure": Enhance the model to predict the Remaining Useful Life (RUL) of a machine, moving from if it will fail to when it will fail.
- Prescriptive Analytics: Develop the system further to not only predict failures but also automatically recommend specific maintenance actions or create work orders.
- Interactive Dashboard: Build a comprehensive dashboard to visualize the health status of all machines in the fleet at a glance, track performance, and manage alerts.

REFERENCES

- Dataset: Predictive Maintenance Classification Dataset sourced from Kaggle.
- URL: https://www.kaggle.com/datasets/shivamb/machine-predictive-maintenance-classification
- Technology Platform: IBM Watsonx.ai, utilizing the AutoAl feature for automated model development.
- Machine Learning Model: Gradient Boosting Classifier, identified by AutoAI as the optimal model for this dataset.
- Project Source: Problem Statement provided by IBM SkillsBuild for Academia & Edunet Foundation.
- My GitHub Link: https://github.com/RAgHavj12345/Predictive-Maintenance-Project

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Raghav Joshi

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

lssued on: Jul 07, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Raghav Joshi

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

lssued on: Jul 17, 2025 Issued by: IBM SkillsBuild

Verify: https://www.credly.com/badges/74e6db63-76d5-4874-b60b-5b9cd9000af9

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Raghav Joshi

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 14 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

