10.

Задача: построить алгоритм, который находит оптимальный маршрут в задаче TCP в форме задачи распознавания за полиномиальное время.

Дано: Алгоритм \mathcal{A} , принимающий на вход конечное множество вершин \mathcal{V} и функцию стоимости $\mathcal{V} \times \mathcal{V} \to \mathbb{N}$. Будем искать алгоритм с таким же входом. Входные данные можем представлять как полный взвешенный граф.

Решение:

- 1. Выбираем произвольную вершину $v \in \mathcal{V}$. Запускаем на входных данных алгоритм \mathcal{A} и запоминаем стоимость оптимального маршрута.
- 2. Перебираем все пары рёбер, инцидентных этой вершине. Это можно сделать за $O(n^2)$ (где n мощность множества \mathcal{V}). Для каждой пары рёбер мы "удаляем"все остальные рёбра, которые инцидентны вершине v. Под "удалением"будем понимать следующее: модифицируем весовую функцию, увеличив веса всех других рёбер, инцидентных вершине v на величину суммарного веса всех рёбер. И запускаем для исходного множества \mathcal{V} и модифицированной функции весов алгоритм \mathcal{A} . Если значение стоимости оптимального маршрута не изменилось, значит зафиксированная пара рёбер принадлежит оптимальному маршруту.
- 3. Обозначим концы найденных рёбер за v_1 и v_2 . Берём v_1 , и для него перебираем n-1 инцидентное ребро, рассматривая пары рёбер $v-v_1,v_1-v_i$, также, как и в пункте (2). Таким образом находим все рёбра, принадлежащие оптимальному маршруту. Заканчиваем перебор, когда второй конец найденного ребра равен v_2 .
- 4. При помощи описанной выше процедуры находим последовательность вершин из \mathcal{V} , которая задаёт оптимальный маршрут, алгоритм работает за $O(n^2p(n))$, где p(n) полиномиальная оценка сложности для алгоритма \mathcal{A} .