Les grammaires

suite

Dérivation directe

- Un mot m de (N \cup T)* se dérive directement en un mot m' de (N \cup T)* (m \rightarrow m') si :
 - m=uXv pour $X \in N$ et $u,v \in (N \cup T)^*$
 - s'il existe une production X→w dans R
 - m'=uwv pour u, $v \in (N \cup T)^*$
- formalise le fait d'appliquer une fois une production en réécrivant un non terminal en accord avec une production ayant pour membre gauche ce non terminal
- Exemple: 3 dérivations directes pour la grammaire de règles S→ ε|aSb
 - $S \rightarrow aSb$
 - $aSb \rightarrow aaSbb$
 - aaaSbbb → aaabbb

Dérivation en k étapes

- m, mot de $(N \cup T)^*$ se dérive en m', mot de $(N \cup T)^*$ $(m \rightarrow^* m')$ si
 - Il existe k un entier
 - $m_0, m_1, ..., m_k$ des mots de $(N \cup T)^*$ tels que
 - m_{i+1} se dérive directement de m_i, 0≤i<k
 - $m_0=m$ et $m_k=m'$
- formalise le fait d'appliquer successivement k productions
- Exemple : pour la grammaire dont la règle est $S \rightarrow \varepsilon |aSb|$
 - $S \rightarrow^*$ aaaSbbb est une dérivation en 3 étapes
 - $S \rightarrow^*$ aaabbb est une dérivation en 4 étapes

Remarque

- Dans la définition rien ne dit que les mots qui se dérivent directement les uns des autres soient uniques
- Exemple : $S \rightarrow \epsilon | aSb | ab$, ab a 2 dérivations différentes :
 - $S \rightarrow ab$ (directe)
 - $S \rightarrow aSb \rightarrow ab$ (indirecte)

Mots engendrés

Les mots engendrés par une grammaire G=(N,T,R,S) sont les mots $m \in T^*$ (uniquement composés de symboles terminaux) qui peuvent être dérivés depuis l'axiome :

$$S \rightarrow^* m$$

Exemple: pour la grammaire de règle $S \rightarrow \epsilon |aSb|$ aaabbb est un mot engendré par la grammaire

Langage engendré

La grammaire G engendre un langage

$$L(G)=\{m\in T^*: S\to^* m\}$$

- ensemble des mots engendrés par G en dérivant l'axiome
- Pour les grammaires de la forme $X\rightarrow \alpha$, $X\in N$ et $\alpha\in (N\cup T)^*$ (grammaire algébrique), on engendre des langages algébriques.
- Exemple: G=(N,T,R,S)
 - N={S}
 - T={a,b}
 - R={S $\rightarrow \epsilon$, S \rightarrow aSb}
- Définit une grammaire du langage {aⁿbⁿ:n≥0}

Arbre syntaxique

- Un arbre syntaxique illustre graphiquement la manière dont l'axiome se dérive en une chaîne du langage
- Si le non-terminal A définit la production A→XYZ, un arbre syntaxique possède un nœud interne et trois fils étiquetés X, Y et Z de gauche à droite

Arbre syntaxique (définition)

- La racine est l'axiome
- Chaque feuille est soit ε soit un terminal
- Chaque nœud interne est un non-terminal
- Si A est l'étiquette d'un nœud interne de fils (de gauche à droite) $X_1, X_2, ..., X_n$ alors

$$A \rightarrow X_1 X_2 ... X_n$$

est une production de la grammaire

Arbre syntaxique: {anbn:n≥0}

 \blacksquare S $\rightarrow \varepsilon$ aSb, arbre syntaxique pour aaabbb

Avec l'arbre syntaxique d'un mot dont la dérivation contient toutes les règles, on peut retrouver l'ensemble des règles de la grammaire

Arbre & dérivations

- lacktriangle Dérivations ightarrow arbre = représentation graphique de la dérivation
- Dans la dérivation ainsi obtenue, on fait disparaître les choix de l'ordre d'application des règles
 - Pour la grammaire

1.
$$S \rightarrow ASB$$

2.
$$S \rightarrow \varepsilon$$

3.
$$A \rightarrow a$$

4.
$$B \rightarrow b$$

 On peut appliquer les règles selon différents ordres

- S→ASB →aSB →aB →ab
 - 1;3;2;4 Ou
- S→ASB →AB →Ab →ab
 - 1;2;4;3

Dérivation | arbre

- A partir d'une dérivation, on peut construire l'arbre syntaxique :
- Grammaire
 - $E \rightarrow E+E|E*E|(E)|-E|id$
- Mot engendré
 - -(id+id)

$$E \rightarrow -E \rightarrow -(E) \rightarrow -(E+E) \rightarrow -(id+E) \rightarrow -(id+id)$$

Analyse

Données: G une grammaire et m un mot Calcul: trouver (s'il en existe) les dérivations de G qui engendrent m

Grammaire

•
$$E \rightarrow E+E|E*E|(E)|-E|id$$

- Mot engendré
 - -(id+id)

$$E \rightarrow -E$$

$$E \rightarrow E + E$$

Attention

- Pour une grammaire donnée, on peut avoir plus d'une dérivation qui engendre un même mot
 - Soit avec des arbres syntaxiques différents
 - Soit au sein du même arbre syntaxique
- On passe ainsi de l'arbre syntaxique aux dérivations

Exemple

Grammaire

$$E \rightarrow E+E|E*E|(E)|-E|id$$

■Mot engendré

$$E \rightarrow -E \rightarrow -(E) \rightarrow -(E+E) \rightarrow -(id+E) \rightarrow -(id+id)$$

 $E \rightarrow -E \rightarrow -(E) \rightarrow -(E+E) \rightarrow -(E+id) \rightarrow -(id+id)$

deux dérivations pour un même arbre syntaxique

Exemple

•Grammaire

$$E \rightarrow E+E|E*E|(E)|-E|id$$

■Mot engendré id+id*id

$$E \rightarrow E + E \rightarrow id + E \rightarrow id + E + E \rightarrow id + id + E \rightarrow id + id + id$$

$$E \rightarrow E^*E \rightarrow E^*id \rightarrow E+E^*id \rightarrow id+E^*id \rightarrow id+id^*id$$

engendrant le même mot

Deux arbres syntaxiques différents

Dérivations gauches et droites

■ Comme on peut trouver plusieurs dérivations à partir d'un même arbre syntaxique, on parle alors

- De <u>dérivation gauche</u>
- Chaque étape d'une dérivation gauche s'écrit $wA\gamma \rightarrow w\delta\gamma$
- De <u>dérivation droite</u>
- Chaque étape d'une dérivation droite s'écrit $\gamma Aw \rightarrow \gamma \delta w$
- · Pour w un mot formé de terminaux
- γ une chaîne de symboles grammaticaux (de (N \cup T)*)
- · et $A \rightarrow \delta$ est la production utilisée

Dérivation gauche resp droite

- $S \rightarrow aAS | a$
- $A \rightarrow SbA|SS|ba$
- $S \rightarrow aAS$
 - \rightarrow aSSS
 - \rightarrow aaSS
 - \rightarrow aaaASS
 - → aaabaSS
 - → aaabaaS
 - \rightarrow aaabaaa

- $S \rightarrow aAS$
 - $\rightarrow aAa$
 - $\rightarrow aSSa$
 - \rightarrow aSaASa
 - \rightarrow aSaAaa
 - → aSabaaa
 - \rightarrow aaabaaa

Ambiguïté

- Problème
 - G une grammaire
 - G est-elle ambiguë?
- Pour le résoudre, il suffit de trouver un mot qui admet au moins deux dérivations gauches (resp. droites) différentes
- Dans le contexte de la compilation,
 - Soit on essaye d'éviter les grammaires ambiguës,
 - Soit on ajoute des règles pour résoudre les problèmes de conflit liés à l'ambiguïté de la grammaire.
- Pour qu'il y ait unicité de l'analyse

Langages algébriques & grammaires

Rationnels et grammaires linéaires

Questions:

Peut on trouver des grammaires qui engendrent des langages rationnels?

Est-ce que tout langage rationnel peut être engendré par une grammaire?

Rationnels et grammaires linéaires

 Une grammaire algébrique est dite linéaire (droite) si toutes ses règles de dérivation sont de la forme

$$X \rightarrow aY$$

 $X \rightarrow a$
 $X \rightarrow \epsilon$

Avec $X,Y \in \mathbb{N}$ et $a \in \mathbb{T}$

Si L est rationnel, L est engendré par une grammaire linéaire.

Exemple

L=(bbab)* rationnel ⇒il existe AFD qui le reconnaît

Réciproque, exemple

■ $S \rightarrow aA|bB$; $A \rightarrow bC|\epsilon$; $B \rightarrow aD|\epsilon$; $C \rightarrow bC|aA$; $D \rightarrow aD|bB$

- ici on a retrouvé un AFD correspondant à la grammaire linéaire.
- Est-ce vrai pour toute grammaire linéaire?

Réciproque

Si un langage est engendré par une grammaire linéaire alors il est rationnel

- L est engendré par G=(N,T,S,R); on construit un AFND $A=(\Sigma = T,Q = N\cup\{f\},\delta,i = S,T=\{f\})$ tel que L(A)=L(G). La fonction non déterministe δ est
 - à chaque règle de la forme $X \rightarrow wY$ on introduit une transition de la forme $\delta(X,w)=Y$
 - à chaque règle de la forme $X \rightarrow w$ une transition $\delta(X,w)=f$
- Il faudrait montrer par récurrence sur la longueur des dérivations que L(G)=L(A) (raisonnement analogue au précédent).

Remarques & conclusion

- Observons que dans la démonstration on n'a pas de règle qui donne le mot vide.
- On verra qu'il est toujours possible de trouver une grammaire sans ϵ -production qui engendre le même langage (sauf si ϵ appartient au langage).

Un langage est rationnel ssi il est engendré par une grammaire linéaire droite

Les grammaires linéaires gauches

Inéaire droite: productions de la forme $X\rightarrow aY|a|\epsilon$ avec $X,Y\in N$ et a∈T

Inéaire gauche: productions de la forme $X \rightarrow Ya|a|\epsilon$ avec $X,Y \in N$ et a∈T

Intérêt des grammaires linéaires

- Soit la grammaire (qui n'est pas linéaire)
 - Exp \rightarrow var | cst
 - Exp \rightarrow Exp * Exp | Exp + Exp

 On peut lui associer une expression rationnelle (var | cst) [(+|*) (var | cst)]* Et trouver une grammaire linéaire équivalente

décimaux JAVA BNF

- DecimalNumeral: 0 NonZeroDigit [Digits] N
- Digits: Digit | Digits Digit
- Digit: 0 | NonZeroDigit
 A
- NonZeroDigit: one of 123456789 C

$$- C=\{1,2,3,4,5,6,7,8,9\}$$

$$A=C\cup\{0\}$$

- D=A+
- N=0+CD+C=0+CA*

DecimalNumeral=0+(1+2+3+4+5+6+7+8+9)(0+1+2+3+4+5+6+7+8+9)*

Rationnels et compilation

- Si une partie des langages informatiques est rationnelle (et cela est fort utile pour la compilation), ce n'est hélas pas toujours le cas
- L'exemple le plus simple d'une partie de langage informatique non rationnelle est celui des mots de Dyck :

$$G=\{S\},T=\{(,)\},R=\{S\to(S)|SS|\epsilon\},S\};L(G)=D$$

- ■D n'est pas rationnel :
 - Il suffit de considérer D∩(*)* = (n)
 - (*)* est un langage rationnel
 - D∩(*)* devrait être rationnel (propriétés de clôture)
 - Or (")" n'est pas rationnel (c'est a"b")
 - Donc D n'est pas rationnel

Exemple d'EBP*

*Expression Bien Parenthésé

Simplifications de grammaires

Nouvelle notion

 On dit que deux grammaires sont équivalentes si elles engendrent le même langage

$$G \approx G' \Leftrightarrow L(G) = L(G')$$

```
Exemple: \{a^nb^n: n\geq 0\}
```

engendré

soit par

 $S\rightarrow aSb|\epsilon$

soit par

 $S\rightarrow aSb|ab|\epsilon$

Motivation de la simplification

- Il s'agit de « nettoyer » les grammaires pour en retirer tout ce qui n'est pas strictement indispensable à la génération des mots du langage :
 - Retirer les variables et règles inutiles
- on peut ensuite mettre les grammaires sous des formes standard simples :

Les formes normales

Idées

- Comment modifier les grammaires sans pour autant en restreindre l'« expressivité »?
- Un langage algébrique non vide L peut être engendré par une grammaire G vérifiant :
 - Chaque variable doit mener à la génération d'un mot de L (variable productif)
 - Chaque variable doit servir à quelque chose, donc on doit pouvoir le retrouver lors d'une dérivation

(variable accessible)

Supprimer les improductifs

- $X \in \mathbb{N}$ est productif s'il existe $w \in \mathbb{T}^*$ tq $X \rightarrow w$
- Si X n'est pas productif, cela signifie qu'on peut supprimer X sans retirer de mots au langage engendré par la grammaire.
- On construit inductivement P, l'ensemble des variables productives :
 - <u>Base</u> : P₀= ∅
 - Règle: $P_{i+1} = \{X \in \mathbb{N} : X \rightarrow \alpha, \alpha \in (T \cup P_i)^*\}$

On s'arrête lorsque $P_{i+1} = P_i = P$

Étant donnée G=(N,T,S,R) t.q. $L(G)\neq\emptyset$, on peut trouver une grammaire équivalente G'=(N',T,S,R') sans symboles improductifs.

Exemple

- Soit la grammaire
 - \blacksquare S → AB | a, A → a, B → BA

$$P_0 = \emptyset$$

P1={
$$X \in N : X \rightarrow \alpha, \alpha \in T^*$$
}={ S,A }

$$P2=\{X \in N : X \to \alpha, \alpha \in (T \cup \{S,A\})^*\}=\{S,A\}$$

P1 = P2. On en déduit que B est improductif

On supprime les règles contenant B : i.e. $S \rightarrow AB$ et B $\rightarrow BA$ pour obtenir la grammaire équivalente $S \rightarrow a$. $A \rightarrow a$

Retour à l'exemple

Pour la grammaire

$$S \rightarrow AB \mid a, A \rightarrow a, B \rightarrow BA$$

 En supprimant les symboles improductifs on a obtenu la grammaire équivalente

$$S \rightarrow a$$
, $A \rightarrow a$

■ Mais à quoi sert la production $A\rightarrow a$?

Supprimer les inaccessibles

- $X \in N$ est accessible s'il existe α et $\beta \in (N \cup T)^*$ tq $S \rightarrow \alpha X \beta$
- Si X n'est pas accessible, cela signifie qu'on peut supprimer X sans retirer de mots au langage engendré par la grammaire.
- Pour trouver les variables accessibles, il suffit de parcourir les règles en partant de l'axiome (cailloutage)

Étant donnée G=(N,T,S,R), on peut trouver une grammaire équivalente G'=(N',T,S,R') sans symbole inaccessible.

Exemple

- $\emptyset A \rightarrow aACb$
 - $B \rightarrow d$
- \emptyset $C \rightarrow aSbS | aba$

Variables accessibles: {S,A,C}

Nettoyage de grammaires

- En appliquant les deux algorithmes précédents, on peut transformer une grammaire algébrique en une grammaire équivalente qui ne contient pas de symbole inutile (improductif ou inaccessible).
- Observons que si on retire tout d'abord les inaccessibles puis les improductifs, on ne retire pas forcément l'ensemble des symboles inutiles.
- Ordre d'application :
 - 1. Retirer les improductifs
 - 2. Retirer les inaccessibles

Exemple du mauvais ordre

- \emptyset S \rightarrow aAb|bAB|a
- $A \rightarrow aAC$
- $B \rightarrow d$
- \emptyset $C \rightarrow aSbS | aba|$

On retire tout d'abord les inaccessibles Tous les symboles non terminaux sont accessibles

Exemple du mauvais ordre

```
S \rightarrow aAb|bAB|a

A \rightarrow aAC

B \rightarrow d

C \rightarrow aSbS|aba

inaccessibles ! \begin{cases} B \rightarrow d \\ C \rightarrow aSbS|aba \end{cases}

équivalente
```

On retire tous les symboles improductifs:

- $-P_0=\emptyset$
- $P_1 = \{X \in \mathbb{N}: \mathbb{N} \rightarrow a, a \in \mathbb{T}\} = \{S, B, C\}$
- $\blacksquare P_2 = \{X \in \mathbb{N}: \mathbb{N} \rightarrow \alpha, \alpha \in (\{S,B,C\} \cup \mathbb{T})^*\} = \{S,B,C\} = P_1$
- A est donc improductif