House Prediction Task-1

Use a dataset that includes information about housing prices and features like square footage, number of bedrooms, etc. to train a model that can predict the price of a new house

House price prediction is a machine learning task that involves using historical data to build a model capable of estimating the prices of houses based on various features or attributes. This process is essential for real estate, financial planning, and investment decisions. Here's an explanation of the key steps involved in house price prediction:

panda,numpy,matplotlib,seaborn,sklearn are the basic libraries used in the email spam filtering natural language tool kit used to study the data which means a mail and visualized the data in the different graphical form(pictorial representation and here we are using the linear regression to predict the price of a new house

```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   import warnings
   warnings.filterwarnings('ignore')
```

In [4]: file_path="C:\\Users\\prade\\OneDrive\\Documents\\DATASCIENCE\\Intern DataS
Hp_df=pd.read_csv(file_path)
Hp_df

Out[4]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080
21608	263000018	20140521T000000	360000.0	3	2.50	1530	1131
21609	6600060120	20150223T000000	400000.0	4	2.50	2310	5813
21610	1523300141	20140623T000000	402101.0	2	0.75	1020	1350
21611	291310100	20150116T000000	400000.0	3	2.50	1600	2388
21612	1523300157	20141015T000000	325000.0	2	0.75	1020	1076

21613 rows × 21 columns

In [5]: Columns= Hp_df.shape[1]
 Rows=Hp_df.shape[0]
 print('Number of columns :',Columns)
 print('Number of Rows :',Rows)

Number of columns : 21 Number of Rows : 21613

In [6]: Hp_df.head()

Out[6]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	flooi
0	7129300520	20141013T000000	221900.0	3	1.00	1180	5650	1
1	6414100192	20141209T000000	538000.0	3	2.25	2570	7242	2
2	5631500400	20150225T000000	180000.0	2	1.00	770	10000	1
3	2487200875	20141209T000000	604000.0	4	3.00	1960	5000	1
4	1954400510	20150218T000000	510000.0	3	2.00	1680	8080	1

5 rows × 21 columns

→

In [7]: Hp_df.tail()

Out[7]:

	id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot	
21608	263000018	20140521T000000	360000.0	3	2.50	1530	1131	
21609	6600060120	20150223T000000	400000.0	4	2.50	2310	5813	
21610	1523300141	20140623T000000	402101.0	2	0.75	1020	1350	
21611	291310100	20150116T000000	400000.0	3	2.50	1600	2388	
21612	1523300157	20141015T000000	325000.0	2	0.75	1020	1076	

5 rows × 21 columns

→

```
In [8]: Hp_df.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 21613 entries, 0 to 21612
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype	
0	id	21613 non-null	int64	
1	date	21613 non-null	object	
2	price	21613 non-null	float64	
3	bedrooms	21613 non-null	int64	
4	bathrooms	21613 non-null	float64	
5	sqft_living	21613 non-null	int64	
6	sqft_lot	21613 non-null	int64	
7	floors	21613 non-null	float64	
8	waterfront	21613 non-null	int64	
9	view	21613 non-null	int64	
10	condition	21613 non-null	int64	
11	grade	21613 non-null	int64	
12	sqft_above	21613 non-null	int64	
13	sqft_basement	21613 non-null	int64	
14	yr_built	21613 non-null	int64	
15	yr_renovated	21613 non-null	int64	
16	zipcode	21613 non-null	int64	
17	lat	21613 non-null	float64	
18	long	21613 non-null	float64	
19	sqft_living15	21613 non-null	int64	
20	sqft_lot15	21613 non-null	int64	
<pre>dtypes: float64(5), int64(15), object(1)</pre>				
memory usage: 3.5+ MB				

In [9]: Hp_df.dtypes

```
Out[9]: id
                            int64
        date
                           object
        price
                          float64
        bedrooms
                            int64
        bathrooms
                          float64
        sqft_living
                            int64
        sqft_lot
                            int64
        floors
                          float64
        waterfront
                            int64
        view
                            int64
        condition
                            int64
        grade
                            int64
        sqft_above
                            int64
        sqft_basement
                            int64
        yr_built
                            int64
        yr_renovated
                            int64
        zipcode
                            int64
        lat
                          float64
                          float64
        long
        sqft_living15
                            int64
        sqft_lot15
                            int64
        dtype: object
```

In [10]: Hp_df.describe(include='all').T

Out[10]:

	count	unique	top	freq	mean	!
id	21613.0	NaN	NaN	NaN	4580301520.864988	2876565571.3120
date	21613	372	20140623T000000	142	NaN	N
price	21613.0	NaN	NaN	NaN	540088.141767	367127.1964
bedrooms	21613.0	NaN	NaN	NaN	3.370842	0.9300
bathrooms	21613.0	NaN	NaN	NaN	2.114757	0.7701
sqft_living	21613.0	NaN	NaN	NaN	2079.899736	918.4408
sqft_lot	21613.0	NaN	NaN	NaN	15106.967566	41420.5115
floors	21613.0	NaN	NaN	NaN	1.494309	0.5399
waterfront	21613.0	NaN	NaN	NaN	0.007542	0.0865
view	21613.0	NaN	NaN	NaN	0.234303	0.7663
condition	21613.0	NaN	NaN	NaN	3.40943	0.6507
grade	21613.0	NaN	NaN	NaN	7.656873	1.1754
sqft_above	21613.0	NaN	NaN	NaN	1788.390691	828.0909
sqft_basement	21613.0	NaN	NaN	NaN	291.509045	442.5750
yr_built	21613.0	NaN	NaN	NaN	1971.005136	29.3734
yr_renovated	21613.0	NaN	NaN	NaN	84.402258	401.679
zipcode	21613.0	NaN	NaN	NaN	98077.939805	53.5050
lat	21613.0	NaN	NaN	NaN	47.560053	0.1385
long	21613.0	NaN	NaN	NaN	-122.213896	0.1408
sqft_living15	21613.0	NaN	NaN	NaN	1986.552492	685.3913
sqft_lot15	21613.0	NaN	NaN	NaN	12768.455652	27304.1796
4						•

In [13]: Hp_df.drop('id',axis=1,inplace=True)

```
--
KeyError
                                          Traceback (most recent call las
t)
Cell In[13], line 1
----> 1 Hp_df.drop('id',axis=1,inplace=True)
File ~\anaconda3\Lib\site-packages\pandas\core\frame.py:5258, in DataFram
e.drop(self, labels, axis, index, columns, level, inplace, errors)
   5110 def drop(
   5111
            self,
   5112
            labels: IndexLabel = None,
   (\ldots)
   5119
            errors: IgnoreRaise = "raise",
   5120 ) -> DataFrame | None:
            .....
   5121
            Drop specified labels from rows or columns.
   5122
   5123
   (\ldots)
   5256
                    weight 1.0
                                    0.8
  5257
-> 5258
            return super().drop(
   5259
                labels=labels,
                axis=axis,
  5260
                index=index,
   5261
   5262
                columns=columns,
   5263
                level=level,
   5264
                inplace=inplace,
   5265
                errors=errors,
   5266
            )
File ~\anaconda3\Lib\site-packages\pandas\core\generic.py:4549, in NDFram
e.drop(self, labels, axis, index, columns, level, inplace, errors)
   4547 for axis, labels in axes.items():
   4548
            if labels is not None:
-> 4549
                obj = obj._drop_axis(labels, axis, level=level, errors=er
rors)
   4551 if inplace:
            self. update inplace(obj)
File ~\anaconda3\Lib\site-packages\pandas\core\generic.py:4591, in NDFram
e._drop_axis(self, labels, axis, level, errors, only_slice)
   4589
                new axis = axis.drop(labels, level=level, errors=errors)
   4590
            else:
-> 4591
                new axis = axis.drop(labels, errors=errors)
  4592
            indexer = axis.get_indexer(new_axis)
   4594 # Case for non-unique axis
   4595 else:
File ~\anaconda3\Lib\site-packages\pandas\core\indexes\base.py:6699, in I
ndex.drop(self, labels, errors)
   6697 if mask.any():
   6698
            if errors != "ignore":
                raise KeyError(f"{list(labels[mask])} not found in axis")
-> 6699
   6700
            indexer = indexer[~mask]
   6701 return self.delete(indexer)
KeyError: "['id'] not found in axis"
```

```
In [ ]: Hp_df.head()

In [ ]: from sklearn.preprocessing import LabelEncoder
    le=LabelEncoder()
    le

In [ ]: Hp_df['date']=le.fit_transform(Hp_df['date'])
    Hp_df['date'].dtype
```

Exploratory Data Analysis[EDA]

count the number of houses with unique floor values.

```
In [ ]: Hp_df['floors'].value_counts()
In [ ]: Hp_df['floors'].value_counts().unique()
In [ ]: Hp_df['floors'].value_counts().to_frame()
In [ ]: Hp_df.hist(bins=40,figsize=(15,15))
    plt.show()
```

Determine whether houses with a waterfront view or without a waterfront view more price outliers.

```
In [ ]: sns.boxplot(data=Hp_df,x=Hp_df['waterfront'],y=Hp_df['price'])
plt.show()
```

Determine if the feature sqft_above is negatively or positively correlated, with price.

```
In [ ]: sns.regplot(data=Hp_df,x=Hp_df['sqft_above'],y=Hp_df['price'])
plt.show()

In [ ]: sns.boxplot(data=Hp_df,x=Hp_df['sqft_basement'],y=Hp_df['price'])
plt.show()

In [ ]: sns.barplot(data=Hp_df,x=Hp_df['floors'],y=Hp_df['price'])
plt.show()

In [ ]: sns.histplot(data=Hp_df,x=Hp_df['grade'],y=Hp_df['price'])
plt.show()
```

```
Task-1 House Prediction - Jupyter Notebook
        sns.barplot(data=Hp_df,x=Hp_df['grade'],y=Hp_df['price'])
In [ ]:
        plt.show()
In [ ]: corr matrix= Hp df.corr()
        fig, ax = plt.subplots(figsize=(15, 10))
        ax = sns.heatmap(corr_matrix,annot=True,
                          linewidths=0.5,fmt=".2f",cmap="viridis");
        bottom, top = ax.get_ylim()
        ax.set_ylim(bottom + 0.5, top- 0.5)
In [ ]: |correlation_values = Hp_df.drop('price', axis=1).corrwith(Hp_df['price'])
        correlation_values.plot(kind='bar', grid=True, figsize=(10, 6), title="Corr
        plt.show()
In [ ]: |Hp_df.skew()
        splitting the data set
In [ ]: from sklearn.model_selection import train_test_split
        X=np.array(Hp_df.drop(columns="price"))
        y=np.array(Hp_df.drop(columns='price'))
        space=Hp_df["sqft_living"]
        price=Hp_df["price"]
        X_train, X_test, y_train, y_test=train_test_split(X, y, test_size=0.25, random_st
        print(f"the shape of x_train is : {X_train.shape}")
        print(f'the shape of x_test is : {X_test.shape}')
        print(f'the shape of y_tain is : {y_train.shape}')
        print(f'the shape of y_test is {y_test.shape}')
In [ ]: from sklearn.linear_model import LinearRegression
        from sklearn.metrics import r2 score,mean absolute error
        model3=LinearRegression()
        model3.fit(X train,y train)
```

```
y_pred3=model3.predict(X_test)
print(f'R2 Score is : {r2 score(y test,y pred3)}')
print(f'Mae is : {mean_absolute_error(y_test,y_pred3)}')
```

```
In [ ]: plt.scatter(X_train, y_train, color='red')
        plt.plot(X_train, y_train, color='blue')
        plt.title("visualization--")
        plt.xlabel('space')
        plt.ylabel('price')
        plt.show()
```

In []:	<pre>plt.scatter(X_test, y_test, label='Actual data',color='blue') plt.plot(X_test, y_test, color='red') plt.title("visualization") plt.xlabel('space') plt.ylabel('price') plt.show()</pre>
In []:	
In []:	
In []:	