

AoPS Community 1997 USAMO

USAMO 1997

www.artofproblemsolving.com/community/c4495

by MithsApprentice, Chinaboy, Agrippina, Maverick, rrusczyk

Day 1 May 1st

Let p_1, p_2, p_3, \ldots be the prime numbers listed in increasing order, and let x_0 be a real number between 0 and 1. For positive integer k, define

$$x_{k} = \begin{cases} 0 & \text{if } x_{k-1} = 0, \\ \left\{ \frac{p_{k}}{x_{k-1}} \right\} & \text{if } x_{k-1} \neq 0, \end{cases}$$

where $\{x\}$ denotes the fractional part of x. (The fractional part of x is given by $x - \lfloor x \rfloor$ where $\lfloor x \rfloor$ is the greatest integer less than or equal to x.) Find, with proof, all x_0 satisfying $0 < x_0 < 1$ for which the sequence x_0, x_1, x_2, \ldots eventually becomes 0.

- Let ABC be a triangle. Take points D, E, F on the perpendicular bisectors of BC, CA, AB respectively. Show that the lines through A, B, C perpendicular to EF, FD, DE respectively are concurrent.
- Prove that for any integer n, there exists a unique polynomial Q with coefficients in $\{0,1,\ldots,9\}$ such that Q(-2)=Q(-5)=n.

Day 2 May 2nd

- To clip a convex n-gon means to choose a pair of consecutive sides AB,BC and to replace them by the three segments AM,MN, and NC, where M is the midpoint of AB and N is the midpoint of BC. In other words, one cuts off the triangle MBN to obtain a convex (n+1)-gon. A regular hexagon \mathcal{P}_6 of area 1 is clipped to obtain a heptagon \mathcal{P}_7 . Then \mathcal{P}_7 is clipped (in one of the seven possible ways) to obtain an octagon \mathcal{P}_8 , and so on. Prove that no matter how the clippings are done, the area of \mathcal{P}_n is greater than $\frac{1}{3}$, for all $n \geq 6$.
- **5** Prove that, for all positive real numbers *a*, *b*, *c*, the inequality

$$\frac{1}{a^3 + b^3 + abc} + \frac{1}{b^3 + c^3 + abc} + \frac{1}{c^3 + a^3 + abc} \le \frac{1}{abc}$$

holds.

6 Suppose the sequence of nonnegative integers $a_1, a_2, \ldots, a_{1997}$ satisfies

$$a_i + a_j \le a_{i+j} \le a_i + a_j + 1$$

AoPS Community 1997 USAMO

for all $i, j \ge 1$ with $i + j \le 1997$. Show that there exists a real number x such that $a_n = \lfloor nx \rfloor$ (the greatest integer $\le nx$) for all $1 \le n \le 1997$.

These problems are copyright © Mathematical Association of America (http://maa.org).