FORMULACIÓN Y NOMENCLATURA INORGÂNICA

Conceptos previos

Rodrigo Alcaraz de la Osa

Números de oxidación

Los números de oxidación están relacionados con la capacidad de un determinado elemento para ceder (nº oxidación positivo) o captar electrones (nº oxidación negativo).

Secuencia de los elementos

Sistemas de nomenclatura IUPAC 2005

Composición

También llamada estequiométrica, los nombres se indican junto con los prefijos que dan la estequiometría completa del compuesto.

NÚMERO DE ÁTOMOS	PREFIJO	NÚMERO DE ÁTOMOS	PREFIJO
1	mono	6	hexa (hexakis)
2	di (bis)	7	hepta (heptakis)
3	tri (tris)	8	octa (octakis)
4	tetra (tetrakis)	9	nona (nonakis)
5	penta (pentakis)	10	deca (decakis)

Ejemplos $O_3 \to \text{trioxígeno}$; NaCl $\to \text{cloruro de sodio}$; $PCl_3 \to \text{tricloruro de fósforo}$.

Sustitución

Muy utilizada en **química orgánica**, en inorgánica se emplea para nombrar **derivados** de **hidruros** de algunos **no metales**.

Ejemplos $PH_3 \rightarrow fosfano, PH_2Cl \rightarrow clorofosfano, PHCl₂ \rightarrow diclorofosfano.$

Adición

Utilizada sobretodo para nombrar **complejos** o compuestos de coordinación, también puede emplearse para nombrar **oxácidos**.

Ejemplos PCl₅ → pentaclorurofósforo.

Hidrógeno

Anteponiendo la palabra *bidrogeno*, utilizada por ejemplo para nombrar los **oxácidos** del **Cr** y del **Mn** o **sales ácidas**.

Ejemplos NaHCO $_3$ \rightarrow hidrogenocarbonato de sodio.

Otras nomenclaturas

Stock

Utilizando **números de oxidación** en **números romanos** (y sin signo). Si solo hay un único número de oxidación éste se omite.

Ejemplos $PCl_5 \rightarrow cloruro de fósforo(V); MnO_2 \rightarrow óxido de manganeso(IV).$

Nombres vulgares

Utilizados (y recomendados) por ejemplo para nombrar **oxácidos** y **oxisales**.

Ejemplos

- $H_2SO_4 \rightarrow \text{ácido sulfúrico}$.
- $HNO_3 \rightarrow \text{ácido nítrico.}$
- $H_2CO_3 \rightarrow \text{ácido carbónico}$.
- $CuBrO_2 \rightarrow bromito de cobre(I)$.
- NaClO₄ \rightarrow perclorato de sodio.

FORMULACIÓN Y NOMENCLATURA INORGÁNICA

Recomendaciones de la IUPAC de 2005

Rodrigo Alcaraz de la Osa

Óxidos E20n Compuestos binarios formados por un **elemento** (E), con nº de oxidación n, y **oxígeno**. + ELEMENTO (Nº OXIDACIÓN) (números romanos) NOMBRE CON NÚMERO NOMBRE COMPOSICIÓN FÓRMULA ESTEQUIOMÉTRICO DE OXIDACIÓN monóxido de disodio óxido de sodio Na₂O dióxido de titanio óxido de titanio(IV) TiO₂ trióxido de azufre óxido de azufre(VI) difluoruro de oxígeno fluoruro de oxígeno(II) OF_2

Peróxidos M₂(O₂)_n

Compuestos binarios formados por un **metal** (M), con nº de oxidación n, o **hidró- geno(1+)**, unidos al **anión peróxido O** $_2^{2-}$.

Compuestos binarios formados por un **elemento** (E), con nº de oxidación n, e **H**.

FÓRMULA	NOMBRE COMPOSICIÓN ESTEQUIOMÉTRICO	NOMBRE CON NÚMERO DE OXIDACIÓN	
LiH	monohidruro de litio	hidruro de litio	
AlH_3	trihidruro de aluminio	hidruro de aluminio	
HCl	cloruro de hidrógeno		
H_2S	sulfuro de dihidrógeno		

Hidruros progenitores

FÓRMULA	NOMBRE	FÓRMULA	NOMBRE	FÓRMULA	NOMBRE
BH_3	borano	CH_4	metano	NH_3	azano (amoniaco)
AlH_3	alumano	SiH_4	silano	PH_3	fosfano
GaH_3	galano	GeH_4	germano	AsH_3	arsano
InH_3	indigano	SnH_4	estannano	SbH_3	estibano
TlH_3	talano	PbH_4	plumbano	BiH_3	bismutano
H_2O	oxidano (agua)	H_2S	sulfano	HCl	clorano

Formados por un **metal** (M), con nº de oxidación n, y el grupo **hidroxi OH**⁻. PREFIJO (monos) + HIDRÓXIDO + DE + ELEMENTO HIDRÓXIDO + DE + ELEMENTO + (Nº OXIDACIÓN) (púmeros romanos)

HIDR	ÓXIDO + DE + ELEMENTO +	(Nº OXIDACIÓN) (números romanos)
FÓRMULA	NOMBRE COMPOSICIÓN ESTEQUIOMÉTRICO	NOMBRE CON NÚMERO DE OXIDACIÓN
NaOH	monohidróxido de sodio	hidróxido de sodio
$Ca(OH)_2$	dihidróxido de calcio	hidróxido de calcio
$Cr(OH)_3$	trihidróxido de cromo	hidróxido de cromo(III)
$Pt(OH)_4$	tetrahidróxido de platino	hidróxido de platino(IV)

Oxácidos Haxboc

Compuestos ternarios formados por hidrógeno(1+), un elemento central, X, y oxígeno(2-). X puede ser un no metal o un metal en estado de oxidación alto, como el cromo(VI) o el manganeso(VI) y el manganeso(VII).

Ácidos modelo

FÓRMULA	Nº OXIDACIÓN X	NOMBRE VULGAR	TRANSFORMACIÓN
HClO ₄	+VII	ácido perclórico	
$HClO_3$	+V	ácido clórico	$Cl \rightarrow Br, I$
$HClO_2$	+III	ácido cloroso	$CI \rightarrow DI, I$
HClO	+I	ácido hipocloroso	
H_2SO_4	+VI	ácido sulfúrico	\mathbf{c} \mathbf{c} \mathbf{c}
H_2SO_3	+IV	ácido sulfuroso	$S \rightarrow Se, Te$
HNO_3	+V	ácido nítrico	
HNO_2	+III	ácido nitroso	
H_2CO_3	+IV	ácido carbónico	

Ácidos de Cr y Mn

FÓRMULA	Nº OXIDACIÓN X	NOMBRE (HIDRÓGENO)
H_2CrO_4	+VI	dihidrogeno(tetraoxidocromato)
H_2MnO_4	+VI	dihidrogeno(tetraoxidomanganato)
$HMnO_4$	+VII	hidrogeno(tetraoxidomanganato)

Ácidos meta y orto

ELEMENTO	ÁCIDO META	$\acute{\mathbf{A}}$ CIDO+1 \mathbf{H}_{2} O	ÁCIDO ORTO $(+2 H_2O)$
В	HBO_2	H ₃ BO ₃ (ácido bórico)	-
Si	H_2SiO_3	H ₄ SiO ₄ (ácido silícico)	_
P	HPO_3	H ₃ PO ₄ (ácido fosfórico)	_
I	_	_	H_5IO_6
Te	_	_	H_6 TeO ₆

Ácidos di, tri, etc. n moléculas de ácido pueden condensar perdiendo n-1 de agua. $H_4P_2O_7 \rightarrow$ ác. difosfórico; $H_2Cr_2O_7 \rightarrow$ dihidrogeno(heptaoxidodicromato).

Sales

Sales neutras binarias X_nY_m

Formadas por **dos elementos cualesquiera** (salvo H y O), X e Y, con nº de oxidación m y n, respectivamente. El elemento que está a la derecha se **termina en** *-uro* al nombrarse.

FÓRMULA	NOMBRE COMPOSICIÓN ESTEQUIOMÉTRICO	NOMBRE CON NÚMERO DE OXIDACIÓN
NaCl	monocloruro de sodio	cloruro de sodio
MgF_2	difluoruro de magnesio	fluoruro de magnesio
FeS	monosulfuro de hierro	sulfuro de hierro(II)
NBr_3	tribromuro de nitrógeno	bromuro de nitrógeno(III)

Sales neutras ternarias u oxisales $M_a(X_bO_c)_n$

Compuestos ternarios formados por un **metal**, M, con nº de oxidación n, un **elemento central**, X, y **oxígeno(2-)**. **Derivan de oxácidos** sustituyendo todos los átomos de H por M y cambiando las terminaciones *ico* y *oso* de los ácidos por *ato* e *ito*, respectivamente.

_	FÓRMULA	ÁCIDO	SAL
	NaClO	HClO (ác. hipocloroso)	hipoclorito de sodio
	$Fe_2(SO_4)_3$	H ₂ SO ₄ (ác. sulfúrico)	sulfato de hierro(III)
	$Ca_3(PO_4)_2$	H ₃ PO ₄ (ác. fosfórico)	fosfato de calcio
	$BaCO_3$	H ₂ CO ₃ (ác. carbónico)	carbonato de bario

Sales ácidas M_a(H_bX_cO_d)_n

Compuestos cuaternarios formados por un **metal**, M, con nº de oxidación n, **hidrógeno(1+)**, un **elemento central**, X, y **oxígeno(2-)**. **Derivan de oxácidos** sustituyendo parte de los átomos de H por M. Se nombran utilizando la **nomenclatura de hidrógeno**, cambiando las terminaciones *ico* y *oso* de los ácidos por *ato* e *ito*, respectivamente.

FÓRMULA	ÁCIDO	SAL
$Fe(HSO_3)_2$	H ₂ SO ₃ (ác. sulfuroso)	hidrogenosulfito de hierro(II)
$NH_4H_2PO_4$	H ₃ PO ₄ (ác. fosfórico)	dihidrogenofosfato de amonio
$NaHCO_3$	H ₂ CO ₃ (ác. carbónico)	hidrogenocarbonato de sodio
KH ₂ BO ₃	H_3BO_3 (ác. bórico)	dihidrogenoborato de potasio

ones

Cationes

FÓRMULA	NOMBRE	FÓRMULA	NOMBRE	FÓRMULA	NOMBRE
H^+	hidrógeno(1+)	Cu ⁺	cobre(1+)	Cu ²⁺	cobre(2+)
Cr ³⁺	cromo(3+)	H_3O^+	oxonio	NH_4^+	amonio

Aniones

FÓRMULA	NOMBRE	FÓRMULA	NOMBRE	FÓRMULA	NOMBRE
H ⁻	hidruro	$H_2PO_3^-$	dihidrogenofosfito	S ²⁻	sulfuro
ClO_{4}^{-} O^{2-}	perclorato	HCO_3^-	hidrogenocarbonato	NO_3^-	nitrato
	óxido		dihidrogenoborato	SO_3^{2-}	sulfito
CrO_4^{2-}	cromato	$Cr_2O_7^{2-}$	dicromato	MnO_4^-	permanganato