BIS101 F2013 Lecture 7: Genomics and Phylogenetics

Reading

Genomics

what is "the genome"?

what's it good for:

- reference for understanding function, mechanism, evolution
- a "map" on which you place other information
- show browswer

sequencing costs. human genome cost \$3 billion dollars

- now to **resequence** genome only \$4K.
- by time any of you is a Dr. human genom seq. < \$1K (cheaper than any genetic test)

What can you do w/ sequencing ?

- learn the sequence: detect SNPs and other variants
- bisulfite seq. methylated C's -> T seq. compare to normal
- transcriptome
- proteome
- · nuclease digestion
- CHip-seq seq. all DNA bound by protein

I can sequence your entire genome in 27 hours. In very near future, you will go to Dr. and to diagnose they may:

- sequence your transcriptome (what is?) at time series along the day to identify genes regulated oddly or responding to infection etc.
- multiple tissues: sequencing tumors to figure out what is wrong or find mutation
- methylome, etc. etc.
- proteome to see if some protein level is off.

good example of why programming important for biology -- genetic analysis is a computational discipline

• i sequence your genome, I get 90Gb of A,C,T,G plus related information -- 200Gb of data to analyze. can't do that in excel.

• show fastq file.

How to sequence a genome

You can't just sequence end to end each chromosome.

Whole-genome shotgun -- draw chromosome, sequences, assembly.

Resequencing is easier (but still tricky) as you are mapping to "known" reference.

as we saw w/ Liu et al. paper, ref. is not static!
Annotation

so how do i know where the genes are? how to annotate ?

• RNA sequence, etc.

Phylogenetics

Study of evolutionary relationships among species. Will not get into much detail here.

Usually use gene sequences to determine relatedness. For example:

laccoon	
ATGGGA	
ear	
ATGGGA	
Cat	
AACGGT	
Mongoose	
AACGGA	
latypus	
GTCTTA	

Parsimony method, but really people use whole genomes and very complex statistical methods.

Draw tree, label nukes. Define **outgroup** allowing you to put an ancestral root on the tree.

Does this mean platypus is "basal" or "ancestral" to all mammals ? No.

Useful for understanding when things evolved, for identifying conservation, for studying gene origin and evolution.

Gene duplication

Homolog closely related gene.

Two kinds.

ortholog paralog

separated by speciation vs. separated by duplication

draw examples.ß

duplication important form of change.

define synteny

draw how synteny can inform which gene is ortholog.

fates of a new gene duplicate: Sub vs. neo vs. pseudo

what would happend to a pseudogene over time?

Gene evolution

Purifying selection removes new deleterious mutations. Important genes with functions will be under stronger ? or weaker purifying selection?

How to identify.

Define **nonsynonymous** and **synonymous** changes.

If both have no effect on function, expect equal proportions. Can compare gene sequences along a phylogeny and count nonsyn and syn changes. if dN/dS << 1, constraint! if dN/dS >> 1, rapid adaptation!