

Varianta 91

Subjectul I.

$$\mathbf{a)} \left| \sin 1 - i \cos 1 \right| = 1$$

b)
$$\frac{11\sqrt{14}}{7}$$
.

c)
$$\vec{v} \cdot \vec{w} = 3$$
.

d)
$$\sin 1 > \cos 1 \iff tg \ 1 > 1 \iff tg \ 1 > tg \frac{\pi}{4}$$
, adevărat.

e)
$$V_{OBCD} = 3$$
.

f)
$$a = -64$$
 și $b = 0$.

Subjectul II.

1

a)
$$\log_3 4 > \log_3 3 = 1 = \log_4 4 > \log_4 3$$
.

b) Probabilitatea căutată este
$$p = \frac{4}{12} = \frac{1}{3}$$
.

c)
$$g(5)=1$$
.

d)
$$x = 0$$
.

e)
$$\sqrt{110} \approx 10.4$$

2.

a)
$$f'(x) = 2^x \cdot \ln 2 - 1$$
, $\forall x \in \mathbf{R}$.

b)
$$\int_{0}^{1} f(x) dx = \frac{1}{\ln 2} - \frac{3}{2}$$
.

c)
$$f''(x) > 0$$
, $\forall x \in \mathbf{R}$, deci funcția f este convexă pe \mathbf{R} .

d)
$$\lim_{x \to 1} \frac{f(x) - f(1)}{x - 1} = 2 \cdot \ln 2 - 1$$
.

e)
$$\lim_{x\to\infty}\frac{f'(x)}{f(x)}=\ln 2.$$

Subjectul III.

- a) Calcul direct.
- b) Se folosesc relațiile lui Viète:

c)
$$x_1$$
 rădăcină a lui $f \iff x_1^3 + ax_1^2 + bx_1 + c = 0 \implies x_1^{n+3} + a \cdot x_1^{n+2} + b \cdot x_1^{n+1} + c \cdot x_1^n = 0$.

Analog obţinem
$$x_2^{n+3} + a \cdot x_2^{n+2} + b \cdot x_2^{n+1} + c \cdot x_2^n = 0$$
 şi $x_3^{n+3} + a \cdot x_3^{n+2} + b \cdot x_3^{n+1} + c \cdot x_3^n = 0$.

Adunând ultimele trei egalități rezultă $S_{n+3}+aS_{n+2}+bS_{n+1}+cS_n=0$, $\forall n \in \mathbb{N}$.

- **d)** $S_3 a^3 + 3ab 3c$, iar $S_4 = a^4 4a^2b + 4ac + 2b^2$.
- e) Se verifică prin calcul direct.

$$\mathbf{f}) \ \Delta = \begin{vmatrix} S_0 & S_1 & S_2 \\ S_1 & S_2 & S_3 \\ S_2 & S_3 & S_4 \end{vmatrix} = \begin{vmatrix} S_0 & S_1 & b \\ S_1 & S_2 & -3c \\ b & -3c & b^2 - 2ac \end{vmatrix} = a^2b^2 - 4a^3c - 4b^3 + 18abc - 27c^2.$$

g) " \Rightarrow " Considerăm $x_1, x_2, x_3 \in \mathbf{R}$. Atunci $\det(A) \in \mathbf{R}$, $\det(\det(A))^2 \ge 0$. Mai mult, $\Delta = \det(A \cdot A^T) = \det(A) \cdot \det(A^T) = (\det(A))^2 \ge 0$.

"\(\infty\) Avem
$$\Delta = (\det(A))^2 = ((x_2 - x_1)(x_3 - x_1)(x_3 - x_2))^2 \ge 0$$
 (1)

Presupunem că f nu are toate rădăcinile reale.

Atunci, rădăcinile sale sunt de forma $\begin{cases} x_1 = -2d - a \\ x_2 = d + e \cdot i \text{ , cu } d, e \in \mathbf{R}, e \neq 0 \\ x_3 = d - e \cdot i \end{cases}$

iar (1)
$$\Leftrightarrow -4e^2((3d-a)^2+e^2)^2 \ge 0$$
, fals.

Subjectul IV.

- **a**) $f'(x) = a \cdot x^{a-1}$, $\forall x > 0$.
- **b**) Funcția f este funcție Rolle pe fiecare dintre intervalele $\begin{bmatrix} 17,19 \end{bmatrix}$ și $\begin{bmatrix} 1974,1976 \end{bmatrix}$ și conform teoremei lui Lagrange, există $c(a) \in (17,19)$ și $d(a) \in (1974,1976)$, astfel încât $\frac{f(19)-f(17)}{19-17} = f'(c(a))$ și $\frac{f(1976)-f(1974)}{1976-1974} = f'(d(a))$.
- c) Ecuația din enunț are soluțiile x = 0 și x = 1.

Pentru x > 1, avem $(g(x))^{x-1} < 19^{x-1} < 1974^{x-1} < (h(x))^{x-1}$, deci nu există soluții, iar pentru x < 1, rezultă analog că nu avem soluții.

d) Pentru $x \in \mathbf{R}$ şi funcția $f:(0,\infty) \to \mathbf{R}$, $f(t) = t^x$, din **b**) deducem că există $c(x) \in (17,19)$ şi $d(x) \in (1974,1976)$, astfel încât $19^x - 17^x = 2x(c(x))^{x-1}$ şi $1976^x - 1974^x = 2x(d(x))^{x-1}$.

Ecuația din enunț devine: $2x(c(x))^{x-1} = 2x(d(x))^{x-1}$ și din **c**) obținem că singurele soluții ale ecuației (3) sunt x = 0 și x = 1.

- e) Se demonstrează prin calcul direct, ridicând la pătrat inegalitatea, sau alegând $x = \frac{1}{2}$ și raționând ca la demonstrația punctului c).
- **f**) Din **b**) deducem că pentru $x \in [0,1]$ avem $19^x + 1974^x \ge 17^x + 1976^x$ și integrând această inegalitate pe intervalul [0,1] obținem concluzia.
- g) Pentru $x \in [1, 2]$, obținem $19^x + 1974^x \le 17^x + 1976^x$, și integrând această inegalitate pe intervalul [1, 2] deducem concluzia.