5. Hausaufgabe – Theoretische Grundlagen der Informatik 3

WS 2012/2013

Stand: 19.11.2012

Abgabe: 29.11.2012 in der Vorlesung

Hausaufgabe 1 5 Punkte

Zwei Formeln φ, ψ der Aussagenlogik heißen erfüllbarkeitsäquivalent, wenn entweder beide Formeln erfüllbar oder beide unerfüllbar sind. Eine Formel φ ist ein 3-KNF genau dann, wenn φ in KNF ist und jede Klausel höchstens 3 Literale enthält. Sei

$$\varphi := (A \to (B \land C)) \lor (D \land A) \lor (\neg B \land \neg C).$$

- (i)Wandeln Sie φ in eine Formel φ' in KNF um.
- (ii) Wandeln Sie φ' in eine erfüllbarkeitsäquivalente Formel φ'' in 3-KNF um, die weder \top noch \bot enthält.

Hausaufgabe 2 5 Punkte

Sei φ eine aussagenlogische Formel, die nur aus Variablen und Junktoren aus der Menge $\{\land, \lor, \neg, \top, \bot\}$ dargestellt ist. Zeigen Sie, dass es eine in Polynomialzeit berechenbare zu φ erfüllbarkeitsäquivalente Formel ψ in KNF gibt, sodass jede Klausel von ψ maximal 3 Literale enthält. Beachten Sie, dass φ im allgemeinen nicht in KNF ist.

Hinweis: Betrachten Sie die Menge aller Unterformeln von φ und führen Sie für jede Unterformel $\xi \in \operatorname{sub}(\varphi)$ eine neue Variable V_{ξ} ein.

Hausaufgabe 3 5 Punkte

Sei Φ eine erfüllbare Formelmenge mit $var(\Phi) = \{X_1, \dots, X_n\}$. Zeigen Sie, dass folgende Aussagen äquivalent sind.

- (i) Für alle Formeln φ mit $var(\varphi) \subseteq var(\Phi)$ gilt $\Phi \models \varphi$ oder $\Phi \models \neg \varphi$.
- (ii) Es existiert genau eine Belegung β von $var(\Phi)$ mit $\beta \models \Phi$.

Hausaufgabe 4 5 Punkte

Wir sagen, dass eine aussagenlogische Formel φ in H-Form ist, wenn φ in KNF ist und jede Klausel höchstens ein positives Literal enthält. Für zwei Belegungen β, β' mit $\operatorname{dom}(\beta) = \operatorname{dom}(\beta')$ definieren wir eine neue Belegung $(\beta \sqcap \beta')$ durch $(\beta \sqcap \beta')(X) = 1$ gdw. $\beta(X) = 1$ und $\beta'(X) = 1$ für alle $X \in \operatorname{dom}(\beta)$.

(i) Geben Sie für jede der folgenden Formeln an, ob diese in H-Form ist oder nicht. In diesem Aufgabenteil müssen Sie Ihre Antwort nicht begründen.

$$\begin{split} \varphi_1 &:= (X_1 \vee \neg X_2) \wedge (\neg X_2 \vee \neg X_3 \vee \neg X_2) \\ \varphi_2 &:= (X_1 \wedge \neg X_2) \vee (X_1 \wedge \neg X_2) \\ \varphi_3 &:= (X_1 \vee X_2) \wedge (X_2 \vee X_3). \end{split}$$

- (ii) Zeigen Sie, dass für jede Formel φ in H-Form folgendes gilt: Wenn $\beta \models \varphi$ und $\beta' \models \varphi$, dann auch $(\beta \sqcap \beta') \models \varphi$.
- (iii) Zeigen Sie, dass nicht jede Formel der Aussagenlogik äquivalent zu einer Formel in H-Form ist.