2 mun, 2 zadara

 \mathcal{D} а се докаже, те ней - добройо равномерно щиблинение En(f) с полиноми ощ IIn за ф-ята $f(x) = \cos x$ в E-1, 1I удов ле творява не равенството: $En(f) \leq \frac{1}{2^n(n+1)!}$

Нека $P_n(x)$ е номиномъй, който интерномира $f(x) = \cos x$ във възми нумийе на $T_{n+1}(x)$ (гебициовите възми)

Тът е поминомът на Себициов от $\frac{n+1}{n+1}$ ственен.

Да одначим възмите с x_0, x_1, \ldots, x_n (n+1 на $\delta poù$).

За всямо $x \in E^{-1}, 1$ съществува $g \in E^{-1}, 1$, за $x_0 \in E^{-1}, 1$ ($f(x) = \frac{f(n+1)}{(n+1)!}$ ($f(x) = \frac{f(n+1)}{(n+1)!}$ ($f(x) = \frac{f(n+1)}{(n+1)!}$ $f(x) = \frac{f(n+1)}{(n+1)!}$

 $\leq \frac{1}{2^n(n+1)}$

Той като най-добройо щиблитение е по-добро от всеко друго:

 $En(f) \leq ||f-P_n|| \leq \frac{1}{2^n(n+1)!}$