사물인터넷의 개념 및 IoT 디바이스 제작

2019. 10. 28

김 학 용

Speaker: 김학용 교수/공학박사/작가/칼럼니스트

- 現) 순천향대학교 loT보안연구센터 교수
- 現) 서울특별시 혁신성장위원회 위원 (IoT)
- 現) 삼성물산 Creative Director
- 現) IoT전략연구소 대표
- 前) LG유플러스 M2M사업담당 부장
- 前) 삼성SDS 신사업추진센터 차장

이메일 : IoTStLabs@gmail.com

honest72@sch.ac.kr

전 화 : 010-4711-1434

사물인터넷(Internet of Things, IoT)이란?

◆ 인터넷에 연결되는 Smart Connected Device를 만드는 것

사물인터넷(Internet of Things, IoT)이란!!

- ◆ 컴퓨터나 스마트폰을 포함한 모든 사물들이 서로 연결된 것
 - 사물(Things) : 센싱, 컨트롤, 통신 기능을 포함하여 컴퓨터화 된 사물
 - 사물에는 전자제품이나 기계장치뿐만 아니라 사람, 동식물, 공간, 개념 등도 포함

'Internet of Things'라는 용어의 시작

- ◆ Kevin Ashton이 1999년에 자신의 논문에 이 용어를 처음 사용
 - 사물인터넷은 RFID 개념을 일반화 하는 데에서 시작
 - → 만약 세상에 있는 모든 사물(things)에 RFID를 붙인다면 무슨 일이 일어날까??

사물인터넷의 등장

- ◆ 1999년, Kevin Ashton이 Internet of Things라는 용어 처음 사용
- ◆ 하지만, 오래 전부터 우리들의 상상 속에서는 존재했던 개념임

사물인터넷이 이제서야 주목 <u>받는 이유</u>

- ◆ 기술의 성숙으로 경제성이 확보됨
 - 반도체 기술의 소형화, 저전력화, 저가화로 인해 사물인터넷 개념의 현실화 가능
 - 지난 20년 사이에 반도체 집적도는 10,000배 증가
 - 지난 20년 사이에 메모리(1MB) 가격은 100,000분의 1로 하락 (1995~2015)

Historical Cost of Computer Memory and Storage 1.00E+09 1.00E+08 1.00E+07 1.00E+06 1.00E+05 1.00E+04 1.00E+03 1.00E+02 1.00E+01 1.00E+00 1.00E-01 1.00E-02 1.00E-03 1.00E-04 1.00E-05

단위 면적당 메모리 용량

플래시 메모리 가격 추이

※ 출처 : Future Timeline ※ 출처 : ars Technica

사물인터넷이 이제서야 주목 받는 이유

- ◆ 기술의 성숙으로 경제성이 확보됨
 - IBM, 2023년이면 초소형 컴퓨터의 가격이 10센트(100원) 이하로 하락

NodeMCU 모듈 (2016)

IBM의 초소형 컴퓨터 (메인보드, 2018)

2023년 경에 상용화 될 초소형 컴퓨터 (1x1 mm)

※ 출처: 키뉴스, 2018.03.21

사물을 연결하면 뭐가 달라질까요?

- ◆ 원격에서 그 사물의 상태를 확인하거나 제어하는 것이 가능해짐
- ◆ 모니터링 결과 → 최적화(Optimization) 및 자율화(Autonomy)도 가능

Control

사물인터넷 시연 (원격 제어 및 모니터링)

◆ 음성 명령으로 천안에서 수원 사무실의 장치들을 제어 및 상태 확인

사물인터넷 시연 (원격 모니터링)

◆ 미세먼지, 온도, 습도와 같은 정보를 측정 → 공기청정기, 에어컨 제어

스마트홈(Smart Home)

◆ 집과 관련된 사물인터넷 장치들을 모아 놓으면 '스마트홈(Smart Home)'

스마트 오피스 / 팩토리 / 팜 / 스트리트 / •••

◆ 스마트 오피스

◆ 스마트 팜

◆ 스마트 팩토리

◆ 스마트 스트리트

<u>스마트 시티</u>: 사물인터넷의 집합체

- ◆ 지자체의 운영 효율 재고 & 서비스 품질 개선 → 시민들의 복지를 향상
 - 상기의 목적을 달성하기 위해 ICT 기술을 이용해서 정보를 공유하는 모든 노력

사물인터넷의 동작 원리

- ◆ 디지털 쌍둥이(Digital Twin)와 가상물리시스템(Cyber-Physical System)
 - → 우리가 살고 있는 세상을 디지털로 인식하고 새로운 관계를 형성

디지털로 현실을 이해 → 새로운 가치 발굴 능력 중요

◆ 제품, 서비스, 사람, 도시 인프라 등 모든 것을 연결하는 데서 시작

연결(connectivity)이 바꾸는 변화

- ◆ 제품의 서비스화 Servitization
 - 사물인터넷 제품을 판매/구매하는 대신 이용하는 만큼 비용을 지불
 - 정기구독 모델, 사용량 기반의 모델, 관리 서비스 모델 등
- ◆ 제품과 서비스의 결합 Product + Service → Provice
 - 사물인터넷 제품을 기존 서비스를 활성화하는 수단으로 활용 → 주문 수단의 변화
 - 디지털 컨텐츠, 상품 판매(리테일), 오프라인 서비스 판매와 결합
- ◆ 고객 맞춤형 제품의 주문 및 생산 Mass Customization
 - 고객 스스로 자신이 원하는 제품을 디자인한 후 주문 → 개별 생산 및 배송
 - 제품의 생산 및 유통의 전 과정에 변화 발생
- ◆ 다채널화 및 옴니채널화 (Multi-Channel and Omni-Channel)
- ◆ 수익 모델의 변화 → 교차보조금(Cross-Subsidy) 모델의 보편화
 - 수익의 파편화 및 수익 발생의 지연

서비스 경제(as-a-Service Economy)로의 전환

- ◆ 물건을 소유하기 보다는 필요할 때에만 이용 → Servitization
 - 제품보다는 제품이 제공하는 기능이나 가치가 더 중요
 - 여전히 프리미엄 제품을 중심으로 소유하려는 욕망은 존재 → 프리미엄 시장과 제너릭 가전(Generic Appliance) 시장으로 양분
 - 어떤 제품이 인터넷에 연결되면서 무엇을 사용했으며 얼마나 어떻게 사용했는지 파악하는 것이 용이해졌음 → 비용 지불/청구 방식의 변화
 - 사용할 때마다 데이터 발생 > 서비스 자동화 및 융합 서비스 가능
 - On-Demand Economy, Geek Economy, Zero-Click Economy, Outcome Economy

마이크로 모빌리티 서비스

Winterhalter의 PPW

Shine Hub의 태양광 발전 시스템

융합 비즈니스의 증가

- ◆ 제품과 서비스가 결합한 다양한 형태의 융합 비즈니스 증가
 - 제품과 온라인 컨텐츠의 결합
 - 제품과 오프라인 상품의 결합
 - 제품과 오프라인 서비스의 결합 .
- Product + Service -> Provice (프로비스)

- ◆ 커넥티드 디바이스 중심의 플랫폼 생태계 형성
 - 인공지능 스피커, 스마트 가전, 서비스 로봇, 커넥티드카 등이 후보

운동 기구와 레슨을 함께 판매

오븐보다는 밀킷을 파는 토발라

출동보안 서비스 연계

Digital AnyWare를 통한 도미노피자의 도약

개인 맞춤형 생산(Mass-Customization)의 보편화

개인 맞춤형 생산(Mass-Customization)의 보편화

- ◆ 기성품을 구매하기보다는 자신의 취향이나 기호에 맞는 제품 주문 제작
 - 자신이 직접 제품을 디자인 하거나 자신의 취향에 맞는 색상 등을 선택
 - → 완전자동화보다는 모듈화 기반(flexible)의 스마트 공장이 전제조건

Programmable Logic Controller SIMATIC S7

Human Machine Interface SIMATIC HMI

다양한 채널을 통한 가치의 전달

- ◆ PC와 스마트폰은 1대였지만, 서비스 디바이스는 여러 대가 존재
- Multi-Channelization & Omni-Channelization

Multi-Channel & Omni-Channel

- ◆ 멀티채널: 서비스의 개시 및 전달 채널이 다양화됨
- ◆ 옴니채널 : 다양한 채널에서의 사용자 경험을 일치시키는 것

디바이스는 기존 서비스를 활성화 하기 위한 수단

◆ Step 1: 디바이스 가격을 수용 가능한 수준으로 낮게 책정하고...

- ◆ Step 2: 디바이스를 이용한 다른 수익원을 발굴 → 전체 수익 개선
 - → 디바이스의 서비스화
 - → 디바이스와 연계 가능한 기존 서비스
 - → 디바이스 데이터 기반의 새로운 서비스

수익 창출 방식의 다변화 & 수익의 파편화

▶ 수익의 파편화 및 지불시점 변화 ◆ 돈 내는 주체의 변화

- - 디바이스를 이용해서 더 큰 가치를 만들어내는 주체가 비용 지불
 - 교차보조금 모델의 일반화

사물인터넷의 구조

사물인터넷 디바이스

- ◆ 기존의 사물에 센서, 엑츄에이터, 통신 모듈, 마이크로프로세서를 추가
 - 센서 : 물리적, 환경적인 변화를 전기적인 변화로 바꾸는 장치 → 데이터를 생성
 - 엑츄에이터 : 전기 신호를 물리적인 변화로 바꾸는 장치 (모터, 스피커, 램프 등)
 - → 데이터 분석 결과를 이용

사물인터넷 디바이스의 개발

- ◆ 스마트 디바이스 만드는 방법
 - 일반 사물에 RFID나 BLE 비콘 등을 부착해서 만들 수도 있음

사물인터넷 디바이스의 개발

- ◆ 스마트 디바이스 만드는 방법
 - 일반 사물에 센서 디바이스를 부착해서 만들 수도 있음

사물인터넷 디바이스의 개발

- ◆ Open Source Hardware Platform (OSHP)을 이용
 - 상용제품보다는 시제품 제작 (with 3D Printer) → 개념 검증이 주목적

- Arduino
- Raspberry Pi
- ♦ Beaglebone Black
- Garileo
- Edison
- ♦ Banana Pi

사물인터넷 디바이스의 개발 : 온습도 측정 장치

Arduino Uno


```
for (var i=0; i<10; i++)
{
   echo("Hello");
}

var count = 0;
while (count <= 10)
{
   echo("Value is " + count);
   count++;
}</pre>
```


사물인터넷 디바이스의 개발 사례

◆ 강우 알람 장치

◆ 스마트 플러그

◆ 네트워크 시계

◆ 미세먼지 측정장치

◆ 디지털 사이니지

전국 서점 및 온라인 서점에서 절찬리 판매 중!!

NodeMCU로 시작하는 사물인터넷 DIY

사물인터넷 시대의 색다른 욜로 라이프

김학용 저 | 지앤선(志&蟬) | 2017년 12월 19일

★★★★ 10.0 ∨ 회원리뷰(2건) 판매지수 1038 ?

정가 15,000원

판매가 14,250원 (5% 할인)

YES포인트 ? 300원 (2% 적립)

5만원이상 구매 시 2천원 추가적립 ?

센서 및 엑츄에이터

- ◆ 센서(sensor) : 물리적 환경적 변화를 전기적인 신호로 바꾸는 장치
 - 서비스의 기반인 데이터를 생성 (온도, 습도, 압력, 미세먼지 등)
 - 통신기기의 MAC 주소 등도 센서 역할 → 사용자 인증용으로도 활용
 - 인터페이스 방식을 변화 (음성인식, 지문인식, 사용자 인식 등)
 - 센싱한 데이터의 신호 처리 및 성능 개선을 위한 인공지능 기술 활용
 - 센서 퓨전(sensor fusion)을 활용한 상황(context) 인식
- ◆ 엑추에이터(actuator) : 전기적 신호를 물리적 변화로 바꾸는 장치
 - 센싱 결과 혹은 컴퓨팅 결과를 바탕으로 동작
 - 빛, 소리, 열, 진동 등

센서(Sensor)의 종류

11 - C-SR04 | C-SR04

초음파(거리) 센서

(HC-SR04)

VOC 센서

(cds)

미세먼지 센서 (GP2Y1023AU0F)

강우(raindrop) 센서

압력 센서

엑츄에이터(Actuator)의 종류

스테핑 모터

스마트폰 진동 모터 (Vibrator)

Pneumatic micro-valve

1ch 릴레이

Buzzer

LED Lamp

사물인터넷의 구조

사물인터넷 디바이스의 유형별 분류

사물인터넷을 위한 무선통신 기술

이동통신 기술의 세대별 특성

- ◆ 세대별 이동통신 기술의 특성 비교
 - → 지금까지의 이동통신 기술은 통신 속도를 높이는 방향으로 진화

	1G	2G	3G	4G	5G
서비스 개시	1984년 3월	1996년 1월	2002년 1월	2011년 7월	2019년 4월
통신 방식	아날로그	디지털	디지털	디지털	디지털
교환 방식	회선 교환	회선(음성) + ^피	내킷(데이터)	패킷 교환	패킷 교환
통신 속도	_	14.4~153.6Kbps	2~14.4Mbps	75~1000Mbps	1~20Gbps
주요 서비스	음성	음성 문자 저속인터넷	음성 고속 인터넷 영상통화	고음질 통화 초고속 인터넷 고화질 동영상	AR/VR 홀로그램 자율주행차 스마트시티 등

5G 이동통신 기술이란?

◆ ITU-T에서는 5G를 IMT-2020이라는 명칭으로 사용

4G: IMT-Advanced
 3G: IMT-2000
 2G: GSM
 IMT-2000 (3G)
 IMT-Advanced (4G)

IMT-2020 (5G)

- ◆ 통신 속도 향상뿐 아니라 다수 기기 접속, 초저지연 통신도 목표
 - 4G까지는 데이터 전송속도를 향상하는 것이 주된 목표 → 이제는 3가지 특성 제공
 - 5G는 통신 기반의 다양한 서비스를 더 잘 이용하도록 하는 것이 목표
- ◆ eMBB, mMTC, URLLC의 목표를 비전으로 개발된 이동통신 기술
 - eMBB : Enhanced Mobile Broadband → 최대 전송속도 향상
 - mMTC : Massive Machine Type Communications → 다수 기기 연결
 - URLLC: Ultra-Reliable and Low Latency Communications → 초저지연 고신뢰 통신

5G 이동통신 기술의 주요 특성

- ◆ 기존 이동통신 기술에 비해 고속, 저지연, 대용량 특성이 우수
 - 4G LTE에 비해 최대 20배 빠른 통신 속도
 - 4G LTE에 비해 최대 30~40배 짧은 지연(latency)
 - 1Km² 공간에서 최대 100만개의 기기 수용 가능

고속

- 최대 20Gbps
- 현재의 LTE보다 20배 빠른 속도

저지연

- LTE보다 최대 30~40배 빠른 응답속도 (0.001초)
- '실시간성'이 중요한 서비스의 핵심 요소

대용량

- LTE보다 더 많은 수의 기기 동시 접속 지원
- 1km² 당 100만개 이상의 기기 접속

※ ATLAS 정근호 팀장 자료 부분 이용

5G 주파수 대역별 특성

- ◆ 3.5GHz 대역 (Below 6GHz) 총 280MHz 대역 (100:100:80)
 - 4G LTE 대역과 함께 음성 통화 및 저속 데이터 통신용
- ◆ 28GHz 대역의 mmWave (Above 6GHz) 총 2400MHz (800:800:800)
 - 물리적 특성상 낮은 주파수에 비해 멀리 전파되지 못하고 장애물 투과력이 약함 → 더 많은 수의 기지국(small cell) 필요 → 인프라 투자비 증가의 요인
 - 와이파이처럼 근거리에서의 고속 데이터 통신용으로 이용 (FWA 서비스)

※ 출처: 삼성전자, "5G 국제표준의 이해," 2018.06.

네트워크 슬라이싱 (Network Slicing)

- ◆ 4G에서는 서비스의 유형을 Voice와 Data로만 구분
 - Voice에 대해서만 별도의 서비스 품질(Quality of Service)을 보장
 - Data 서비스 내에서는 모든 서비스들이 하나의 자원을 공유 → 품질 차별화 불가능
- ◆ 5G에서는 각각의 서비스 유형별로 차별화된 서비스 품질 보장
 - 각각의 Data 서비스들에 대해 독립적인 네트워크 자원 할당
 - 다른 서비스의 영향을 받지 않도록 함으로써 서비스 품질 보장
 - → 이통사들은 특화 서비스에 대한 별도의 과금체계를 도입할 수 있음

네트워크 슬라이싱의 개념

※ 출처: 삼성전자, "5G 국제표준의 이해," 2018.06.

5G 에지 클라우드 (5G Edge Cloud)

- ◆ 초저지연, 대용량 서비스를 가능하게 해주는 네트워크 인프라
 - 사용자 단말에서 발생하는 데이터를 최대한 사용자와 가까운 곳에서 처리
 → 데이터 전송 시 지연 시간을 현저하게 줄일 수 있음
 - KT의 경우 대전, 제주 등에 6개의 5G 에지 클라우드 구축 예정
 - → 기존 방식에 비해 40~60% 빠른 응답속도

※ 출처: 경향신문, "더 빠른 5G 잡아라...'에지 클라우드' 날선 주도권 경쟁,"2019.05.12.

5G 상용화 추진 현황

- ◆ 2019년 4월 3일 밤 11시, 5G 서비스 "전격" 상용화 개시
 - 미국의 버라이즌(Verizon)은 우리보다 2시간 늦게 공식 상용화
 - 국내에서는 2018년 평창 올림픽에서 시범 서비스
 - 2018년 12월 1일 5G 첫 전파 발사 (라우터 이용)

5G 네트워크 구축 현황 (KT vs. SKT, 2019.04.27)

사가

나가시

5G 네트워크 구축 (KT)

- ◆ 5G 기지국 수는 LTE 기지국 대비 11% 수준 → 2년 정도 더 필요
- ◆ 지상도 문제지만 실내나 지하에서는 "오지게" 안 터진다고 봐야 함
 - 기지국 장비의 97.5%가 옥외 기지국에 설치됨

통신사	지상	옥내	지하	터널	합계	LTE(3월)	LTE 대비
SKT	21,954	483	80	543	23,060	376,829	6.1%
KT	36,210	391	31	338	36,970	215,010	17.2%
LG U+	30,365	24	335	1	30,725	240,551	12.8%
합계	88,529	898	446	882	90,755	832,390	10.9%
SKT	24.8%	53.8%	17.9%	61.6%	25.4%	45.3%	56.1%
KT	40.9%	43.5%	7.0%	38.3%	40.7%	25.8%	157.7%
LG U+	34.3%	2.7%	75.1%	0.1%	33.9%	28.9%	117.1%
합계	97.5%	1.0%	0.5%	1.0%	100.0%	100.0%	100.0%

※ 출처: 과학기술정보통신부, 2019.9.19 준공신고 기준.

5G 서비스 가입자 현황 및 전망 (국내)

- ◆ 2019년 8월 말 기준 297만명 → 연말까지 500만 가능
 - 이통사별 가입자 현황 → 122.4만: 86.5만: 70.5만 (44%: 31%: 25%)

구분	통신사	4월	5월	6월	7월	8월
가입자수	SKT	95,265	319,976	530,336	791,241	1,224,490
	KT	104,696	251,541	419,316	596,612	864,981
	LG U+	71,725	212,698	387,203	523,852	705,065
	합계	271,686	784,215	1,336,855	1,911,705	2,794,536
가입자 순증	SKT	95,265	224,711	210,360	260,905	433,249
	KT	104,696	146,845	167,775	177,296	268,369
	LG U+	71,725	140,973	174,505	136,649	181,213
	합계	271,686	512,529	552,640	574,850	882,831
점유율	SKT	35.1%	40.8%	39.7%	41.4%	43.8%
	KT	38.5%	32.1%	31.4%	31.2%	31.0%
	LG U+	26.4%	27.1%	29.0%	27.4%	25.2%
	합계	100.0%	100.0%	100.0%	100.0%	100.0%

와이파이(Wi-Fi, IEEE 802.11) 통신 기술

Improve average throughput per user by at least four times in dense or congested environments

Deliver up to 40 percent higher peak data rates for a single client device

INCREASE NETWORK **EFFICIENCY**

By more than four times

EXTEND BATTERY LIFE

Of client devices

2003

Bluetooth Low Energy (BLE)

- ◆ 주요 특징
 - 초저전력 통신 기술이 필요한 분야에 이용할 목적으로 2006년 Nokia에 의해 개발된 WiBree라는 기술을 기반으로 함
 - 2010년 블루투스 SIG에 의해 블루투스 4.0 스팩에 포함됨
 - 2011년 10월, 아이폰 4S에 최초로 적용 (iBeacon)
- ◆ 블루투스 동작 모드
 - BLE가 사용되면 Bluetooth Smart 혹은 Single Mode로 동작한다고 함

Bluetooth 4.2 : 인터넷 직접 접속 지원

- ◆ 인터넷에 직접 접속 가능 (2015.01.22)
 - 인터넷 프로토콜 지원 프로파일(IPSP) 적용
 → HPS (HTTP Proxy Service) 지원으로 B/T 디바이스가 HPS Client처럼 동작
 - IPv6 (6LoWPAN) 지원으로 개별 디바이스 구분 가능
- ◆ 블루투스 4.1 대비 2.5배 빠른 전송속도
- ◆ 높아진 보안성 (Wi-Fi와 같은 128bit AES 암호화 기술 적용)

기술도 중요하지만, 서비스 시나리오가 더 중요

- ◆ BLE 비콘은 주기적으로(1초에 한번씩) 정해진 신호를 송출
- ◆ 동일한 신호에 대해서 어떤 서비스를 정의/연결하느냐에 따라 다양한 서비스를 제공하는 것이 가능

똑같은 기술을 다양하게 활용 가능

사물인터넷의 구조

사물인터넷, 무엇을 연결해야 하나?

- ◆ 사물들만 서로/인터넷에 연결되는 것이 아님
 - → 사물을 통해 사람과 비즈니스가 연결될 때 더 큰 가치가 있음
 - → 기존의 비즈니스 방식이 데이터(context)를 중심으로 전환됨

아마존이 전자레인지를 출시한 이유는?

- ◆ 2018년 9월 20일, 전자레인지 등 스마트홈 디바이스 출시 발표
 - 700W, 10 power levels, 0.7 ft³, voice control with an Echo device (24+)
 - Alexa 버튼과 Popcorn 버튼 존재, 팝콘 자동 주문 기능 포함 (10% 할인)
- ◆ 2018년 11월 전자레인지 공식 판매 \$59.99
- ◆ 고객들의 오프라인 정보(생활 데이터) 확보가 1차 목적
 - 어떤 식료품을 주문하고 몇 시에 무엇을 하는지 생활 패턴 분석
 - → 기존 전자상거래 및 오프라인(WholeFoods) 비즈니스의 활성화를 위해 활용

어떤 데이터를 모아서 어떤 서비스를 할 것인가?

데이터 → 컨택스트 정보 → 비즈니스 인사이트

- ◆ 스마트 침대에서 얻을 수 있는 데이터
 - 침대에 누운 시간
 - 잠에 든 시간, 일어난 시간
 - 수면 패턴 (깊은 잠, 얕은 잠)
 - 수면 건강 (코골이, 무호흡증)
 - 매트리스의 온도, 습도, 청결도 등

데이터 분석 > 인사이트 도출

- 새벽 2~3시 사이에 잠에 듬
 - → 야식을 먹을 가능성이 있겠는걸!!
- 수면 중 매트리스의 습도가 높고
 다른 사람들보다 뒤척임이 심함
 - → 통기성이 좋은 침구를 팔 수 있겠군!!

→ 침대와 관련된 비즈니스적인 인사이트를 찾아내는 것이 중요

데이터를 누구에게 제공할 것인가?

◆ 빅데이터를 생성하는 것도 중요하지만, 누구에게 제공하느냐가 더 중요함

3달만 운동하시면 살은 5Kg 빠지고 근육량은 10% 늘어 건강해질 수 있습니다.

서비스 플랫폼: 디바이스 데이터와 서비스의 연결

- ◆ 어떤 상태나 조건에 따라 그에 맞는 서비스를 제공
 - 센서/데이터와 서비스 사이의 유의미한 관계를 찾고 정의하는 것이 핵심

서비스 플랫폼 : 디바이스 데이터와 서비스의 연결

- ◆ 대표적인 상용 플랫폼 : 아마존의 AWS IoT, MS의 Azure IoT 등
 - IFTTT를 이용해서 기본적인 IoT 플랫폼의 기능을 간단히 구현해 볼 수도 있음

AWS IoT를 이용한 Industrial IoT 구축 예시도

초심자용 사물인터넷 플랫폼

- ◆ Matlab에서 제공하는 ThingSpeak (https://thingspeak.com/)
 - 실습 교육에서 가장 많이 사용하는 플랫폼 (300만 패킷까지 무료)
 - 무료 버전은 업데이트 주기가 13초로 제한되어서 실시간 응용에 부적합
- ◆ 비쥬얼화에 특화된 Free Board (http://freeboard.io/)
- ◆ 비쥬얼화에 특화된 Cayenne (https://cayenne.mydevices.com)

사물인터넷의 구조

사물인터넷 서비스의 유형

X Source : HBR 2014.11

사물인터넷 서비스化 노력이 부족

- ◆ 대부분 데이터를 센싱한 후 분석하는 과정을 반복 → 서비스화 필요
 - 사물인터넷 & 빅데이터 분석 도입 시 활용 목적을 명확히 해야 함

Thank You!!

For more information, please visit

- IoT Strategy Labs Homepage http://weshare.kr
- 사물인터넷 카페 : http://cafe.naver.com/iotioe
- 김학용 블로그 : http://blog.naver.com/honest72
- https://www.facebook.com/hakyong.kim.12139

or contact me

- phone : 010-4711-1434
- e-mail : iotstlabs@gmail.com