תורת השדות - הגדרות בלבד

מבנים אלגבריים (2) - 80446

מרצה: שי אברה

מתרגל: אור רז

סוכם עייי שריה אנסבכר

סמסטר בי תשפייד, האוניברסיטה העברית

תורת השדות - הגדרות בלבד

תוכן העניינים

3	התחלה	1
3	הרחבת שדות	2
1	שדות פיצול	3

בהכנת סיכום זה נעזרתי רבות בספר "מבנים אלגבריים" מאת: דורון פודר, אלכס לובוצקי ואהוד דה-שליט.

* * *

סביר להניח שהסיכומים שלי מכילים טעויות רבות - אני מוצא כאלה כל יום (רשימת טעויות נפוצות), אני מפציר בכם לעדכן אותי בכל טעות שאתם מוצאים (ממש כל טעות ללא יוצא מן הכלל); אתם מוזמנים להגיב על גבי המסמכים ב-Google Drive, לשלוח לי דוא"ל או למלא פנייה באתר.

> : לסיכומים נוספים היכנסו אקסיומת השלמות - סיכומי הרצאות במתמטיקה https://srayaa.wixsite.com/math

2 הרחבת שדות

1 התחלה

ראו גם את הקובץ ייעל שדותיי. 🧍

. שדה \mathbb{F} יהי

הגדרה 1.1. המציין של $\mathbb F$ (נקרא גם המאפיין של $\mathbb F$) הוא הסדר של $\mathbb F$ בחבורה החיבורית של $\mathbb F$ כאשר סדר זה סופי, ואם אינו סופי יהיה המציין $\mathbb F$ 0, בכל מקרה נסמן את המציין ב-($\mathbb F$ 1).

למה להגדיר את המציין להיות 0 ולא ∞ ? כך לא יהיה צורך לחלק למקרים וזה טבעי הרבה יותר.

 $\operatorname{char}\left(\mathbb{F}
ight)=0$ - אוא מספר ראשוני או ש $\operatorname{char}\left(\mathbb{F}
ight)$

.0 ניתן לשיכון בכל שדה ממציין עראשוני, ו- \mathbb{P}_p ניתן לשיכון בכל שדה ממציין מסקנה. \mathbb{F}_p

 $\mathbb F$ אם $\mathbb P$ אם השדה הראשוני, ואחרת יהיה $\mathbb P$ אם הוא $\mathbb F$ אם הוא $\mathbb F$ אם השדה הראשוני של $p:=\operatorname{char}\left(\mathbb F\right)$

2 הרחבת שדות

 \mathbb{E} . יהיו \mathbb{E} שדה ו- $\mathbb{E}\subseteq\mathbb{E}$ תת-שדה, במקרה כזה נאמר ש- \mathbb{E} הוא שדה <u>הרחבה</u> של \mathbb{F} או ש- \mathbb{E} מרחיב את \mathbb{F} ונסמן $\mathbb{E}^{\mathbb{E}}$. שדה \mathbb{E} ייקרא שדה ביניים של ההרחבה \mathbb{F} אם \mathbb{F} הוא תת-שדה של \mathbb{E} והא תת-שדה של \mathbb{E} .

פעמים רבות נכתוב "תהא \mathbb{E}/\mathbb{F} הרחבת שדות" וכדומה, וכוונתנו תהיה "ייהיו \mathbb{E} ווא שדה הרחבה של \mathbb{E}/\mathbb{F} איי.

. תהא \mathbb{E}/\mathbb{F} הרחבת שדות

 $\mathbb E$ אז נוצר סופית כמרחב וקטורי מעל $\mathbb F$ אז נסמן ב-ש נוצר סופית כמרחב וקטורי מעל נוער מעל $\mathbb E$

 \mathbb{E}/\mathbb{F} ונאמר ש \mathbb{E}/\mathbb{F} היא הרחבה של \mathbb{E} היא הרחבה של \mathbb{E} היא הרחבה של \mathbb{E}/\mathbb{F} היא הרחבה של $\mathbb{E}/\mathbb{F}/\mathbb{F}$ היא הרחבה אין-סופית. $\mathbb{E}/\mathbb{F}/\mathbb{F}$ ונאמר ש $\mathbb{E}/\mathbb{F}/\mathbb{F}$ היא הרחבה אין-סופית.

טענה. תהא X קבוצת תתי-שדות של שדה \mathbb{F} , החיתוך של כל תתי-השדות ב-X הוא תת-שדה של \mathbb{F} , וזהו השדה הגדול ביותר (ביחס להכלה) שמוכל בכל תתי-השדות ב-X.

הגדרה ב.2. תהא $\mathbb{F}(S)$, $\mathbb{F}(S)$, $\mathbb{F}(S)$ המכילים את החיתוך של כל תתי-השדות של כל המכילים את את החיתוך של כל החיתוך של כל המנצר עייי S הנוצר עייי S.

zמסקנה 2.4. תהא $S\subseteq\mathbb{E}$ תת-קבוצה, מתקיימים שלושת הפסוקים הבאים

- \mathbb{E} הוא תת-שדה של $\mathbb{F}(S)$.1
 - $.S\subseteq \mathbb{F}\left(S
 ight)$.2
- $\mathbb{F}(S) \subseteq E$ מתקיים S את המכיל את $E \subseteq \mathbb{E}$ מתקיים 3.

 $\mathbb{F}\left(s_1,s_2,\ldots,s_n
ight):=\mathbb{F}\left(\left\{s_1,s_2,\ldots,s_n
ight\}
ight)$ נכתוב גם $\left\{s_1,s_2,\ldots,s_n
ight\}\subseteq\mathbb{E}$ שימון:

[.] אין שום קשר לחוג מנה, זהו סימון בלבד שאינו קשור בשום צורה שהיא. $^{\mathrm{1}}$

תורת השדות - הגדרות בלבד

 $\mathbb{K}=\mathbb{F}\left(S
ight)$ אם \mathbb{K} אם מעל \mathbb{K} אם קבוצת יוצרים אל היא קבוצה אתת-קבוצה שתת-קבוצה אתרשדה, נאמר שתת-קבוצה אתרשדה ב.2.5.

הגדרה 2.6. \mathbb{E}/\mathbb{F} תיקרא הרחבה נוצרת סופית אם קיימת קבוצה סופית אם $S\subseteq\mathbb{E}$ כך ש- $S\subseteq\mathbb{E}/\mathbb{F}$ ותיקרא הרחבה פשוטה אם קיים הגדרה 2.6. \mathbb{E}/\mathbb{F} כל ש- \mathbb{E}/\mathbb{F} מעל \mathbb{E}/\mathbb{F} ביומים הייקרא יוצר פרימיטיבי של \mathbb{E}/\mathbb{F} מעל \mathbb{E}/\mathbb{F}

:למה. לכל $lpha\in\mathbb{E}$ מתקיים

$$\mathbb{F}\left(\alpha\right) = \left\{ \begin{array}{c|c} \frac{P(\alpha)}{Q(\alpha)} & P, Q \in \mathbb{F}\left[x\right], \ Q\left(\alpha\right) \neq 0 \end{array} \right\}$$

. אחרת ייקרא $P\left(\alpha\right)=0$ כך ש-0 $P\in\mathbb{F}\left[x\right]$ אם קיים עול \mathbb{F} אם הגדרה ייקרא $\alpha\in\mathbb{E}$ איבר $\alpha\in\mathbb{E}$ איבר $\alpha\in\mathbb{E}$ איבר $\alpha\in\mathbb{E}$ אחרת ייקרא אובריים מעל \mathbb{E} אובריים מעל \mathbb{E} אחרת היקרא אוברית אם כל איברי \mathbb{E}

העובדה שאיבר $\alpha \in \mathbb{E}$ הוא אלגברי מעל \mathbb{F} אומרת שלמרות שבלמה האחרונה אין מגבלה על דרגת הפולינומים, בפועל $\alpha \in \mathbb{E}$ הוא אלגברי מעל שארית) את הפולינומים בפולינום שמאפס את α ולקחת רק את השארית.

$$I_{lpha}:=\{P\in\mathbb{F}\left[x
ight]:P\left(lpha
ight)=0\}$$
 נסמן $lpha\in I$ לכל $lpha\in I$

 $I_lpha
eq \{0\}$ טענה. $\mathbb F$ אם איבר אלגברי הוא lpha, ו- lpha הוא אידיאל של הוא אידיאל של I_lpha

 I_{lpha} איבר אלגברי מעל $\mathbb F$, הפולינום המינימלי של $\mathbb F$ מעל $\mathbb F$ הוא הפולינום המתוקן היוצר את האידיאל $\alpha\in\mathbb E$ יהי $\alpha\in\mathbb E$ יהי $\alpha\in\mathbb E$ איבר אלגברי מעל $\mathbb F$ מעל $\mathbb F$ מעל $\mathbb F$ וכמו כן הדרגה של α מעל $\mathbb F$ תוגדר עייי מומן ב- m_{lpha} וכמו כן הדרגה של α מעל $\mathbb F$ תוגדר עייי

3 שדות פיצול

. תהא \mathbb{E}/\mathbb{F} הרחבת שדות

הגדרה 3.1. נאמר שפולינום $\mathbb E[x]$ בשדה הרחבה $\mathbb E[x]$ אם ניתן להציגו כמכפלה של גורמים ליניאריים ב $f\in\mathbb F[x]$ כלומר אם $f\in\mathbb F[x]$ כלומר אם קיימים $a_1,a_2,\ldots,a_{\deg f},c\in\mathbb E$

$$f(x) = c \cdot \prod_{i=1}^{\deg f} (x - \alpha_i)$$

היחיד הביניים היחיד $\mathbb E$ הוא שדה הרחבה $\mathbb E$ הוא שדה הביניים של פולינום f אם הוא $f\in\mathbb F[x]$ הוא שדה הביניים היחיד של פולינום f שבו f

- אנחנו נראה בהמשך שלכל פולינום יש שדה פיצול, ובהמשך נראה גם ששדה פיצול הוא יחיד עד כדי איזומורפיזם, א״כ מוצדק לדבר עליו בה״א הידיעה.
 - . \mathbb{F} יש שורש ב- deg $f\geq 1$ כך ש $f\in\mathbb{F}\left[x
 ight]$ כל פולינום אם סגור אלגברית הוא שדה סגור אלגברית אם לכל פולינום
 - . הגדרה שודה הרחבה שדה הרחבה \mathbb{E} הוא \mathbb{E} הוא שלגברי של \mathbb{E} אם הא הרחבה אלגברית ו- \mathbb{E} סגור אלגברית שלגברית.
 - . משפט. קיימת הרחבת שדות \mathbb{E}/\mathbb{F} כך ש \mathbb{E} סגור אלגברית
 - מכאן שלכל שדה יש סגור אלגברי.
 - לא הוכחנו זאת, אך לכל שדה יש שדה סגור אלגברית מינימלי (ביחס לשיכון!) יחיד (עד כדי איזומורפיזם).

 $\mathbb F$ נסמן את אותו שדה סגור אלגברית מינימלי ב $\mathbb F$ ונקרא לו הסגור האלגברי שדה סגור אלגברית מינימלי