



# Temperature regulation PHSL 2000



Mr Khaalid Khan

khaalid.khan@wits.ac.za



## Course outline

#### **Lecture 1:**

- Introduction to temperature regulation
  - Endotherm & Ectotherm
- Body temperature
  - Core temperature & outer shell temperature
  - Why thermoregulation is important
  - Factors that cause changes in body temperature
  - Measuring body temperature

#### **Lecture 2:**

- Mechanisms of heat loss/gain
- Neuronal control of temperature
- Factors affecting heat exchange
  - Heat loss mechanisms
  - Response to a warm environment

#### **Lecture 3:**

- Factors affecting heat exchange
  - Heat gain mechanisms
  - Response to a cold environment
- Neonatal thermoregulation
- Geriatric thermoregulation

#### **Lecture 4:**

- Altered thermoregulation
  - Fever
  - Hyperthermia
  - Hypothermia
- Thermoregulation during exercise
- Acclimatisation



### Temperature regulation

### What is temperature?

Temperature is a measure of the average kinetic energy of molecules in a system.

### What is temperature regulation?

The ability of an organism to regulate its internal temperature to a particular level that provides optimal conditions for metabolic processes to occur.



## Types of thermoregulation

- Endotherms: primarily produces own body heat
- Ectotherm: primarily gains heat from the environment
- Homeotherm: maintains a constant body temperature
- Poikilotherm: body temperature varies according to the environment



### Body temperature

### **Outer shell temperature**

- Temperature of skin, subcutaneous fat
- Rises and falls with changes in ambient temperature

## Regulated through changes in skin perfusion:

- ↑ (vasodilation) or ↓
   (vasoconstriction) of
   blood flow
- ↑ or ↓ sweating



### **Core temperature**

- Temperature of intracranial, thoracic and abdominal regions
- Remains constant despite changes in ambient temperature

Regulated by ↑ or ↓ in heat transfer to shell



### Why is thermoregulation important?

Changes in body temperature alters cellular activity

- Low (cold) temperatures
  - -Slows down cellular chemical reactions
  - -Hypothermia
    - > Rapture of cell membranes
    - > Slows down nerve conduction
- High (hot) temperatures
  - -Speeds up cellular chemical reactions
  - -Hyperthermia
    - > Nerve malfunction
    - > Irreversible protein denaturation



## Circadian variations in temperature

- Varies by about 1°C during the day
- Lowest in the early morning
- Highest in the late afternoon/early evening



### Temperature variations during menstrual cycle

- Low during follicular phase
- High during luteal phase
  - Progesterone increases body temperature
- Contraceptives suppress rhythm & ↑ body temperature



### Measuring body temperature





Skin temperatures on different parts of a nude person measured at different ambient temperatures

Adapted from: Olesen, B.W., 1982, Thermal Comfort, Technical Review, Bruel & Kjaer

## Measuring body temperature

| Site of Measurement | Good measure of core body temperature?                               |
|---------------------|----------------------------------------------------------------------|
| Skin                | No, varies with ambient temperature                                  |
| Axilla              | Practical but unreliable                                             |
| Tympanic            | Fast and convenient, but accuracy varies                             |
| Oral                | Convenient but varies → should be taken in closed mouth for a minute |
| Rectal              | Good but uncomfortable                                               |
| Oesophageal         | Very good but invasive                                               |
| Mixed venous blood  | Best measure but very invasive                                       |













Tympanic

Oral

### Where can we measure body temperature





### Mechanism of heat loss/ gain

- Four mechanisms of heat loss/gain:
  - Conduction
  - Convection
  - Radiation
  - Evaporation
- Heat moves down it's concentration gradient





### Conduction

- Direct transfer of heat from one substance to another
- Heat moves from warmer to cooler object
- Lose or gain heat from the layer of air in direct contact with the body



### Convection

- Transfer of heat energy by air currents
- Aids with conduction
  - Body loses heat by conduction to surrounding cooler air
- Depends on velocity of movement, surface area



### Radiation

- Is the transfer of heat from a warmer to a cooler object by infrared radiation
- Does not require direct contact
- Depends on surface area, colour



### **Evaporation**

- Conversion of a liquids into gaseous vapour
- Depends on relative humidity
- Effective way of dissipating heat



## Control of body temperature





### Neural control of temperature





Thermoreceptors: temperature sensitive receptors which inform the hypothalamus about changes in temperature at the surface of the skin and in the core

### Regulating core temperature

#### **Core Body temperature**





## Factors affecting heat transfer



Body size: Surface area to body ratio (SA:V)  $\rightarrow \downarrow$  body size =  $\uparrow$  SA:V



Insulation: fat, hair, clothing



Blood flow to skin: carrying heat from core to shell



**Behavior** 



### 1. Skin blood flow: Vasoconstriction

- Arterioles constrict
  - −↓ blood flow to skin
  - −↓ heat loss

#### **Cold conditions**



### 2. Shivering

- Involuntary response where skeletal muscles contract
- Rhythmic, oscillating contractions of the skeletal muscle (10-20 per second)
- Produces energy
  - all energy converted to heat as no work is accomplished





#### 3. Piloerection

- Muscles attached to hair follicles contract
  - Hairs become erect
- More air trapped
  - More insulation
  - More heat generated









### 4. Hormonal output

- More thyroxine and adrenaline produced
  - ↑metabolic heat production

### 5. Non-shivering thermogenesis

- · Occurs in extreme cases in adults
- Brown adipose tissue
  - Uncoupling proteins produce heat rather than ATP
- Mediated through thyroxine and adrenaline





## Heat gain mechanisms (behavioural)

#### 6. Behavioural

- Become more active (†physical activity)
- Changes in body position
- Selecting a different micro-climate
- Operant behaviour

#### selecting different microclimate







#### changes in body position





### Response to a cold environment



Activation of heat production/ conservation mechanism e.g.

- Shivering thermogenesis
- Brown adipose tissue thermogenesis
- Cutaneous vasoconstriction





## Neonatal thermoregulation

Neonates have ↑ surface area to body mass ratio → ↑ Heat loss

### Heat gain mechanisms

| 1. | ↑ metabolic rate               | Metabolic processes                                                                                                                                                           |
|----|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | Non-shivering<br>thermogenesis | <ul> <li>Metabolism of brown adipose tissue found<br/>around kidneys, scapula, axilla, neck and<br/>sternum</li> <li>chemical process generate heat instead of ATP</li> </ul> |
| 3. | Peripheral vasoconstriction    | • ↓blood flow to the skin                                                                                                                                                     |
| 4. | Shivering                      | • ↓shivering responses (in severe hypothermia)                                                                                                                                |
| 5. | Behavioural responses          | <ul> <li>Conservation of heat by assuming flexed position to decrease surface area</li> <li>Voluntary muscle activity: restlessness and crying</li> </ul>                     |







Hypothermia in the newborn infant



## Neonatal thermoregulation

### Heat loss mechanisms

| 1. | Sweating                | <ul> <li>↓sweating responses (immature cholinergic receptors)</li> </ul> |
|----|-------------------------|--------------------------------------------------------------------------|
| 3. | Peripheral vasodilation | <ul> <li>†blood flow to the skin</li> </ul>                              |
| 4. | Behavioural responses   | Lying on their backs to increase surface area                            |





## Geriatric thermoregulation



Thermoregulatory competence declines with age



↓ sensitivity to temperature changes in environment → ↓ autonomic AND behavioural responses



 $\downarrow$ insulation,  $\downarrow$ shivering,  $\downarrow$ BMR  $\rightarrow$   $\downarrow$ heat production





↓sweat output per gland



 $\square$   $\square$   $\square$  ability to vasoconstrict

## Heat loss mechanisms (autonomic)

### 1. Skin blood flow: Vasodilation

- Arterioles dilate
  - −↑blood flow to skin
  - -↑ heat loss

#### Warm conditions





Heat loss mechanisms (autonomic)

### 2. Sweating

- Heat loss by evaporation
- Two types of sweat glands
  - Eccrine glands
    - > generalised sweat
  - Apocrine glands
    - > localised sweat
- Also called evaporative cooling







## Heat loss mechanisms (autonomic)

### 3. Pilorelaxation

- Muscles attached to hair follicles relax
  - Hair lie flat
- Less air trapped next to skin
  - -less insulation
- Little effect



### Heat loss mechanisms (behavioural)

### 4. Behavioural

- Changes in body position
- Selecting a different micro-climate
- Operant behaviour

selecting different micro-climate



changes in body position



operant behaviour





### Response to a warm environment

Warm environment with an increase in skin and core body temperature 1 firing of warm-1 firing of warm sensitive thermoreceptors in thermoregulatory neurons in the the skin and deephypothalamus body core Thalamus relays to cerebral cortex → feeling hot

Activation of heat loss mechanisms e.g.

- Eccrine sweating
- Cutaneous vasodilation



Inhibition of heat production/ conservation mechanism e.g.

- · Shivering thermogenesis
- Brown adipose tissue thermogenesis
- Cutaneous vasoconstriction





### Altered thermoregulation

**Setpoint** temperature: Temperature at which core body temperature is maintained. The setpoint is controlled by the hypothalamus.

- 1. Fever: T<sub>setpoint</sub> ↑ above T<sub>core</sub>
- 2. Hyperthermia: T<sub>core</sub> ↑ above T<sub>setpoint</sub>
- 3. Hypothermia:  $T_{core} \downarrow below T_{setpoint}$



## Fever



- Can be caused by bacterial & viral infections, immunological reactions and malignancies.
- Characterised by an ↑ in core body temperature due to resetting of the hypothalamic thermoregulatory set point.
- Pyrogens cause in setpoint temperature

Pyrogens = fever inducing substances





### Biochemistry of the fever pathway

- Cytokines activate hypothalamic-pituitaryadrenal (HPA) axis
  - $-CRH \rightarrow ↓$  appetite
  - Cortisol → anti-inflammatory
- Cytokines transported to the liver
  - Release acute phase proteins
    e.g. C-reactive protein
- Cytokines cross blood-brain barrier
  - Activate prostaglandins
    - → ↑ temperature
    - > Sickness behaviour



## Thermoregulation during a fever





## Hyperthermia: Heat exhaustion

- Heat production/gain exceed heat loss
- † core body temperature above set point temperature

|                       | Heat exhaustion                                                                                                                            |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------|
| How does it occur?    | Consequence of over activity of the heat-loss mechanisms                                                                                   |
| Cause                 | Exposure to hot/humid environments Response to medication→ dehydration Exercising in hot humid weather without drinking water→ dehydration |
| Core body temperature | < 40°C                                                                                                                                     |
| Signs/symptoms        | Sweating Decreased blood pressure→ Faint                                                                                                   |

## Hyperthermia: Heat stroke

- Heat production/gain exceed heat loss
- ↑ core body temperature above set point temperature

|                       | Heat stroke                                                                                                                                                    |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| How does it occur?    | Preceded by heat exhaustion→ Results in the breakdown in thermoregulatory mechanisms                                                                           |
| Cause                 | Preceded by heat exhaustion→ More likely to occur with overexertion in hot humid weather without drinking water                                                |
| Core body temperature | > 40°C                                                                                                                                                         |
| Signs/symptoms        | No sweating (dry skin)/ vasodilation Nerve malfunction→ CNS abnormalities  ↑ Tbody →↑ chemical reactions →↑ metabolic rate →↑ heat production →↑ tissue damage |

## Treating hyperthermia



Moving individual to a cooler environment



Apply wet clothes



Application of ice packs



Spray the body with water



Switch on fan to ↑ evaporative heat loss



Immerse individual in cool bath (10-20°C)









#### **Core temp**

**Fever:** ↑ set point temp, ↑ core

temp

**Hyperthermia:** ↑ heat load, ↑

core temp

#### **Skin blood flow**

**Fever:** ↓ during rising phase, ↑

during falling phase

**Hyperthermia:** ↑ due to

vasodilation to ↑ heat loss

#### **Sweat rate**

**Fever:** ↑ during falling phase

**Hyperthermia:** ↑ to ↑

evaporation to ↑ heat loss

#### **Heat production**

Fever: ↑ during rising & plateau

phases, ↓ during falling phase

Hyperthermia: ↑ heat load ↑

heat loss mechanisms



## **Hypothermia**

- Heat loss exceeds heat production/gain
- tore body temperature (<35°C) below set point temperature</li>

| Primary (accidental) hypothermia                                               | Secondary hypothermia                                                                                                                   |
|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Unanticipated exposure to cold environments in an inadequately prepared person | Any condition that predisposes thermoregulatory failure under cold conditions  • Malnutrition  • Hypothyroidism  • Alcohol intoxication |
|                                                                                |                                                                                                                                         |

## **Hypothermia**

- Heat loss exceeds heat production/gain
- tore body temperature (<35°C) below set point temperature</li>

| Mild     | Core body temperature: 35°C-32 °C  ↑ metabolic rate→ shivering  Excessive vasoconstriction                                                                                     | (3.)                  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Moderate | Core body temperature: 32°C-28 °C Shivering ceases→ no spontaneous recovery Progressive depression of mental functions between (decreased cerebral blood flow), slurred speech | Rody core temperature |
| Severe   | Core body temperature < 28 °C Unconsciousness Cardiac arrhythmias 26-25°C physical activity is impossible Death ~ 25 °C                                                        |                       |





## Thermoregulation during exercise



↑ metabolic heat production



Rise in core body temperature activates heat loss mechanisms → blood flow to both muscles and skin



When heat loss = heat production, body temperature constant



SNS → vasoconstriction, but ↑ core body temperature → vasodilation



Thermal limit to exercise





### **Acclimatisation**



#### **Heat acclimatisation**

- ↑sweat rate
- ↓threshold Tb for sweat activation
- Production of dilute sweat
- Expanded plasma volume



### **Cold acclimatisation**

- ↑BAT and non-shivering thermogenesis
- ↓shivering
- Blunted cutaneous vasoconstriction

