Лабораторная работа 6. «Задачи квадратичного программирования»

17 апреля 2020 г.

Определение 1. Квадратная матрица $D=(d_{ij})$ порядка n называется симметричной, если D=D' ($d_{ij}=d_{ji}$ для любых $1\leq i,j\leq n$).

Определение 2. Квадратная матрица $D = (d_{ij})$ порядка n называется положительно полуопределённый (или неотрицательно определённой), если для всякого вектора $x \in \mathbb{R}^n$ имеет место неравенство $x' \cdot D \cdot x \geq 0$

Определение 3. Пусть $x_1, x_2, \ldots, x_n \in \mathbb{R}$ — переменные. Выражение

$$Q(x_1, x_2, \dots, x_n) = \frac{1}{2} \cdot \sum_{i=1}^n \sum_{j=1}^n d_{ij} \cdot x_i \cdot x_j,$$

для которого выполняется условие $d_{ij}=d_{ji}$ для любых $1\leq i,j\leq n$, называется $\kappa вадратичной$ формой. Квадратная матрица D, составленная из коэффициентов d_{ij} , является симметричной.

В матричном виде квадратичная форма записывается так

$$Q(x) = \frac{1}{2} \cdot x' \cdot D \cdot x,$$

где $x' = (x_1, x_2, \dots, x_n)$ — вектор переменных.

Задача квадратичного программирования — это оптимизационная задача вида

$$f(x) = c' \cdot x + \frac{1}{2} \cdot x' \cdot D \cdot x \to \min,$$

$$A \cdot x = b,$$

$$x > 0,$$

в которой матрица D является симметричной положительно полуопределённой.

Определение 4. Допустимый план x задачи квадратичного программирования называется *правильным опорным планом*, если существует подмножество J_b множества индексов переменных $\{1,2,\ldots,n\}$ такое, что

- 1. $|J_b| = rank(A)$;
- 2. матрица A_b , составленная из столбцов матрицы A, чьи индексы принадлежат множеству J_b , является обратимой;
- 3. Найдётся подможество J_{b^*} множества индексов переменных $\{1,2,\ldots,n\}$ такое, что
 - (a) $J_b \subseteq J_{b^*}$;
 - (b) для каждого индекса $j \in J_{b^*}$ выполняется $\Delta_j(x) = 0$, где

$$c'(x) = c' + x' \cdot D \tag{1}$$

$$u'(x) = -c'_{b}(x) \cdot A_{b}^{-1} \tag{2}$$

$$\Delta'(x) = u'(x) \cdot A + c'(x) \tag{3}$$

(с) следующая блочная матрица обратима

$$H = \begin{pmatrix} D^{\star} & A'_{b^{\star}} \\ A_{b^{\star}} & 0 \end{pmatrix},$$

где D^* — это подматрица матрицы D, составленная из элементов, стоящих на пересечении строк и столбцов с индексами из множества J_{b^*} ; A_{b^*} — матрица, состоящая из столбцов матрицы A с индексами из множества J_{b^*} .

Множество J_b называется опорой ограничений, а множество J_{b^\star} — расширенной опорой ограничений.

Пример. Рассмотрим следующую задачу квадратичного программирования:

$$\begin{cases}
-8x_1 - 6x_2 - 4x_3 - 6x_4 + \\
+\frac{1}{2} \cdot \left(2x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3\right) \to \min \\
x_1 + 2x_3 + x_4 = 2 \\
x_2 - x_3 + 2x_4 = 3 \\
x_1 \ge 0, x_2 \ge 0, x_3 \ge 0, x_4 \ge 0
\end{cases}$$
(4)

Покажем, что допустимый план x'=(2,3,0,0) этой задачи является правильным опорным планом с опорой ограничений $J_b=\{1,2\}$ и расширенной опорой ограничений $J_{b^\star}=\{1,2\}$. Составим матрицы A,D и вектор c:

$$c = \begin{pmatrix} -8 \\ -6 \\ -4 \\ -6 \end{pmatrix}, D = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, A = \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 2 \end{pmatrix}.$$

Проверим условия из определения правильного опорного плана:

- 1. Поскольку $|J_b| = 2$ и rank(A) = 2, то $|J_b| = rank(A)$.
- 2. Матрица

$$A_b = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

невырожденная.

- 3. Проверим условия для J_{b^*}
 - (a) $\{1,2\} = J_b \subseteq J_{b^*} = \{1,2\};$
 - (b) Вычислим векторы c(x), u(x) и $\Delta(x)$:

$$c(x) = c + D \cdot x = \begin{pmatrix} -8 \\ -6 \\ -4 \\ -6 \end{pmatrix} + \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ 3 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \\ -2 \\ -6 \end{pmatrix}.$$

$$u'(x) = -c'_b(x) \cdot A_b^{-1} = -(-1 & -1) \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \end{pmatrix}.$$

$$\Delta'(x) = u'(x) \cdot A + c'(x) = \begin{pmatrix} 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & -1 & 2 \end{pmatrix} + \begin{pmatrix} 1 & -1 & -2 & -6 \end{pmatrix} = \begin{pmatrix} 0 & 0 & -1 & -3 \end{pmatrix}$$

Компоненты вектора $\Delta'(x)$ с индексами из множества J_{b^*} не меньше, чем 0.

(с) Матрица

$$H = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix}$$

имеет определитель, отличный от 0, т.е. она обратима.

В рамках лабораторной работы необходимо реализовать метод решения задач квадратичного программирования, работу которого проиллюстрируем на примере.

Пример. Рассмотрим задачу квадратичного программирования (4), взяв в качестве начального правильного опорного плана план x'=(2,3,0,0) с опорой ограничений $J_b=\{1,2\}$ и расширенной опорой ограничений $J_{b^\star}=\{1,2\}$.

Итерация 1.

ШАГ 1. Находим векторы c(x), u(x) и $\Delta(x)$ по формулам (1) – (3). Эти векторы мы уже нашли, когда проверяли выполнимость условий из определения правильного опорного плана для плана x. Приведём результаты:

$$\begin{array}{rcl} c'(x) & = & \left(-1 & -1 & -2 & -6\right), \\ u'(x) & = & \left(1 & 1\right), \\ \Delta'(x) & = & \left(0 & 0 & -1 & -3\right). \end{array}$$

Шаг 2. Проверяем условие оптимальности текущего правильного опорного плана. Если все компоненты вектора $\Delta(x)$ неотрицательные, то метод завершает свою работу и текущий правильный опорный план является оптимальным. В противном случае переходим на следующий шаг.

Шаг 3. Выбираем отрицательную компоненту плана $\Delta(x)$ и индекс выбранной компоненты запоминаем в переменной j_0 . Пусть

$$j_0 = 3$$
.

Шаг 4. По множеству J_{b^*} и j_0 найдём вектор $\ell'=(\ell_1,\ell_2,\ell_3,\ell_4)$. Компоненты этого вектора делятся на два класса

$$\ell_{b^{\star}} = \begin{pmatrix} \ell_1 \\ \ell_2 \end{pmatrix}, \ \overline{\ell_{b^{\star}}} = \begin{pmatrix} \ell_3 \\ \ell_4 \end{pmatrix}.$$

К первому классу относятся все компоненты с индексами из расширенной опоры ограничений J_{b^\star} , ко второму — все компоненты с индексами не из расширенной опоры ограничений. Сперва находим вектор $\overline{\ell_{b^\star}}$ по следующему правилу: $\ell_{j_0}=1$, значения всех остальных компонент $\overline{\ell_{b^\star}}$ полагаем равными 0. В нашем случае $\ell_3=1$ и $\ell_4=0$. Для того, чтобы

найти компоненты вектора ℓ_{b^*} мы составляем матрицу H (см. определение правильного опорного плана) и обращаем её

$$H = \begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{pmatrix} \quad \Rightarrow \quad H^{-1} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & -2 & -1 \\ 0 & 1 & -1 & -1 \end{pmatrix}.$$

Строим вектор b^* . Он состоит из двух частей. Сперва идут элементы столбца матрицы D с индексом j_0 , стоящие в строках с индексами из множества J_{b^*} . Далее идут элементы j_0 -го столбца матрицы A. В нашем случае

$$b^* = \begin{pmatrix} 1 \\ 0 \\ 2 \\ -1 \end{pmatrix}.$$

Находим вектор x по следующей формуле

$$x = -H^{-1} \cdot b^*.$$

Получаем

$$x = \begin{pmatrix} -2\\1\\0\\1 \end{pmatrix}$$

Сколько компонент в искомом векторе ℓ_{b^*} ? Две компоненты. Первые две компоненты вектора x и есть компоненты вектора ℓ_{b^*} :

$$\ell_1 = -2, \ \ell_2 = 1.$$

В итоге получаем $\ell' = \begin{pmatrix} -2 & 1 & 1 & 0 \end{pmatrix}$.

Шаг 5. Для каждого индекса $j\in J_{b^\star}$ найдём величину θ_j , а также вычислим величину θ_{j_0} . Сперва поищем θ_{j_0} . Для этого вычислим значение

$$\delta = \ell' \cdot D \cdot \ell = 2.$$

Затем найдём $heta_{j_0}$ по следующему правилу

$$heta_{j_0} = heta_3 = egin{cases} \infty, & ext{если } \delta = 0 \ rac{|\Delta_{j_0}(x)|}{\delta}, & ext{если } \delta > 0 \end{cases}.$$

Поскольку $\delta=2>0,$ то в нашем случае реализовался второй случай, в соответствии с которым

$$\theta_{j_0} = \theta_3 = \frac{|-1|}{2} = \frac{1}{2}.$$

Для каждого индекса $j \in J_{b^*}$ вычислим

$$heta_j = egin{cases} -rac{x_j}{\ell_j}, & ext{если } \ell_j < 0 \ \infty, & ext{если } \ell_j \geq 0. \end{cases}$$

В нашем случае получаем, что

$$\theta_1 = -\frac{2}{-2} = 1, \quad \theta_2 = \infty.$$

Находим минимум среди всех вычисленных θ_k :

$$\theta_0 = \min(\theta_1, \theta_2, \theta_3) = \min\left(1, \infty, \frac{1}{2}\right) = \frac{1}{2}.$$

Запоминаем индекс, на котором достигается минимум

$$j_{\star} = 3.$$

Если $\theta_0=\infty$, то метод завершает свою работу с ответом: «целевая функция задачи не ограничена снизу на множестве допустимых планом». В противном случае идём на следующий шаг.

Шаг 6. Обновим допустимый план

$$x = x + \theta_0 \cdot \ell = \begin{pmatrix} 2 \\ 3 \\ 0 \\ 0 \end{pmatrix} + \frac{1}{2} \cdot \begin{pmatrix} -2 \\ 1 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1 \\ \frac{7}{2} \\ \frac{1}{2} \\ 0 \end{pmatrix}.$$

Обновим теперь опору ограничений J_b и расширенную опору ограничений J_{b^*} по следующему правилу:

- 1. Если $j_{\star}=j_0$, то J_b не меняем, а в $J_{b^{\star}}$ добавляем j_{\star} .
- 2. Если $j_{\star} \in J_{b^{\star}} \setminus J_b$, то J_b не меняем, а из $J_{b^{\star}}$ удаляем j_{\star} .

- 3. Если $j_\star \in J_b$ (индекс j_\star идёт s-м по счёту в J_b) и существует индекс $j_+ \in J_{b^\star} \setminus J_b$ такой, что s-я компонента вектора $(A_b^{-1} \cdot A_{j_+})$ не равна 0, то в J_b заменяем индекс j_\star на индекс j_+ , а из J_{b^\star} удаляем индекс j_\star .
- 4. Если $j_{\star} \in J_b$ (индекс j_{\star} идёт s-м по счёту в J_b) и ($J_b = J_{b^{\star}}$ или для любого индекса $j_+ \in J_{b^{\star}} \setminus J_b$ выполняется условие: s-ая компонента вектора $(A_b^{-1} \cdot A_{j_+})$ равна 0), то и в J_b , и в $J_{b^{\star}}$ заменяем индекс j_{\star} на индекс j_0 .

В нашем случае $j_{\star}=j_{0}$, т.е. реализовался первый случай. В соответствии с правилом $J_{b}=\{1,2\}$ не меняется, а в $J_{b^{\star}}$ добавляем j_{\star} и получаем $J_{b^{\star}}=\{1,2,3\}$.

С новым правильным опорным планом x, новыми множествами индексов J_b , J_{b^*} идём на следующую итерацию, на котором проделываем все те же действия, что и на первой итерации.