

32 位 ARM® Cortex®-M0+ 微控制器

数据手册

产品特性

- 32MHz Cortex-M0+32 位 CPU 平台
- HC32L110 系列具有灵活的功耗管理系统,超 低功耗性能
 - 0.5μA@3V深度睡眠模式: 所有时钟关闭, 上电复位有效, IO 状态保持, IO 中断有效, 所有寄存器, RAM 和 CPU 数据保存状态 时的功耗
 - 1.0μA @3V 深度睡眠模式+ RTC 工作
 - 6μA@32.768kHz 低速工作模式: CPU 和外 设模块运行,从 flash 运行程序
 - 20μA/MHz@3V@16MHz 睡眠模式: CPU 停
 止工作,外设模块运行,主时钟运行
 - 120μA/MHz@3V@16MHz 工作模式: CPU
 和外设模块运行,从 flash 运行程序
 - 4μS 超低功耗唤醒时间,使模式切换更加灵活高效,系统反应更为敏捷
 - 上述特性为室温下典型值,具体的电气特性, 功耗特性参考电气特性一章
- 16K/32K 字节 flash 存储器, 具有擦写保护功能
- 2K/4K 字节 RAM 存储器, 附带奇偶校验, 增强系统的稳定性
- 通用 I/O 管脚 (16IO/20pin, 12IO/16pin)
- 时钟、晶振
 - 外部高速晶振 4MHz~32MHz
 - 外部低速晶振 32.768KHz
 - 内部高速时钟 4M, 8M, 16M, 22.12M,24MHz
 - 内部低速时钟 32.8K / 38.4KHz
 - 硬件支持内外时钟校准和监控
- 定时器/计数器
 - 3个通用16位定时器/计数器
 - 1个低功耗 16 位定时器/计数器

- 3 个高性能 16 位定时器/计数器,支持 PWM 互补,死区保护功能
- 1 个可编程 16 位定时器/计数器,支持捕获 比较, PWM 输出
- 1 个 20 位可编程计数看门狗电路, 内建专用 超低功耗 RC-OSC 提供 WDT 计数

● 通讯接口

- UART0-UART1 标准通讯接口
- LPUART 支持使用低速时钟的超低功耗通 信接口
- SPI 标准通讯接口
- I2C 标准通讯接口
- 蜂鸣器频率发生器,支持互补输出
- 硬件万年历 RTC 模块
- 硬件 CRC-16 模块
- 唯一10字节 ID 号
- 12 位 1Msps 采样的高速高精度 SARADC,内 置运放,可测量外部微弱信号
- 集成 6 位 DAC 和可编程基准输入的 2 路电压 比较器 VC
- 集成低电压侦测器 LVD,可配置 16 阶比较电平,可监控端口电压以及电源电压
- 嵌入式调试解决方案,提供全功能的实时调试 器
- 工作温度: -40~85°C
- 工作电压: 1.8~5.5V
- 封装形式: QFN20, TSSOP20, TSSOP16

支持型号

HC32L110C6UA	HC32L110C6PA
HC32L110C4UA	HC32L110C4PA
HC32L110B6PA	HC32L110B4PA

声明

- ▶ 用户对 HDSC 产品的选择和使用承担全部责任,用户将 HDSC 产品用于其自己或指定第三方产品上的,HDSC 不提供服务支持且不对此类产品承担任何责任。
- ▶ HDSC 在此确认未以明示或暗示方式授予任何知识产权许可。
- ▶ HDSC 产品的转售,若其条款与此处规定不同,HDSC 对此类产品的任何保修承诺无效。
- ➤ 任何带有"®"或"TM"标识的图形或字样是 HDSC 的商标。所有其他在 HDSC 产品上显示的产品或服务 名称均为其各自所有者的财产。
- ▶ 本通知中的信息取代并替换先前版本中的信息。

©2019 华大半导体有限公司 - 保留所有权利

目 录

产	品特	性		1
声		明		2
目	:	录		3
1.	简介	·		4
2.	产品	占阵容		14
3.	引胠	配置		17
4.	引胠	叩力能说	明	19
5.	框图]		23
6.	存储	皆区映射	图	24
7.	电气	〔特性…		26
	7.1	测试条	件	26
		7.1.1.	最小和最大数值	26
		7.1.2.	典型数值	26
		7.1.3.	供电方案	27
	7.2	绝对最	大额定值	28
	7.3	工作条	件	30
		7.3.1.	通用工作条件	30
		7.3.2.	上电和掉电时的工作条件	30
		7.3.3.	内嵌复位和 LVD 模块特性	31
		7.3.4.	内置的参考电压	33
		7.3.5.	工作电流特性	33
		7.3.6.	从低功耗模式唤醒的时间	35
		7.3.7.	外部时钟源特性	36
		7.3.8.	内部时钟源特性	39
		7.3.9.	存储器特性	40
		7.3.10.	EFT 特性	40
		7.3.11.	ESD 特性	41
		7.3.12.	端口特性	41
		7.3.13.	RESETB 引脚特性	44
		7.3.14.	ADC 特性	44
		7.3.15.	VC 特性	47
8.	封装	長信息		48
	8.1	封装尺	寸	48
	8.2	丝印说	明	51
9.	订败	信息		52
10	版本	记录 &	7 联系方式	53

1. 简介

HC32L110 系列是一款旨在延长便携式测量系统的电池使用寿命的超低功耗、Low Pin Count、宽电压工作范围的 MCU。集成 12 位 1M sps 高精度 SARADC 以及集成了比较器、多路 UART、SPI、I²C 等丰富的通讯外设,具有高整合度、高抗干扰、高可靠性和超低功耗的特点。本产品内核采用 Cortex-M0+ 内核,配合成熟的 Keil & IAR 调试开发软件,支持 C 语言及汇编语言,汇编指令。

超低功耗 MCU 典型应用

- 传感器应用,物联网应用;
- 智能交通,智慧城市,智能家居;
- 火警探头,智能门锁,无线监控等智能传感器应用;
- 各种对于电池供电和对于功耗苛求的便携式设备等。

32 位 CORTEX M0+ 内核

ARM® Cortex®-M0+ 处理器源于 Cortex-M0, 包含了一颗 32 位 RISC 处理器,运算能力达到 0.95 Dhrystone MIPS/MHz。同时加入了多项全新设计,改进调试和追踪能力、减少每条指令循环(IPC)数量和改进 Flash 访问的两级流水线等,更纳入了节能降耗技术。Cortex-M0+ 处理器全面支持已整合 Keil & IAR 调试器。

Cortex-M0+ 包含了一个硬件调试电路, 支持 2-pin 的 SWD 调试界面。

ARM Cortex-M0+ 特性:

指令集	Thumb / Thumb-2
流水线	2级流水线
性能效率	2.46 CoreMark / MHz
性能效率	0.95 DMIPS / MHz in Dhrystone
中断	32个快速中断
中断优先级	可配置4级中断优先级
增强指令	单周期32位乘法器
调试	Serial-wire 调试端口,支持4个硬中断(break point)
	以及2个观察点(watch point)

16K/32K Byte Flash

内建全集成 Flash 控制器,无需外部高压输入,由全内置电路产生高压来编程。支持 ISP、IAP、ICP 功能。

2K/4K Byte RAM

根据客户选择不同的超低功耗模式,RAM 数据都会被保留。自带硬件奇偶校验位,万一数据被意外破坏,在数据被读取时,硬件电路会立刻产生中断,保证系统的可靠性。

时钟系统

- 一个频率为 4M~24MHz 可配置的高精度内部时钟 RCH。在配置 16MHz 下,从低功耗模式到工作模式的唤醒时间为 4uS,全电压全温度范围内的频率偏差 <±2.5%,无需外接昂贵的高频晶体。
- 一个频率为 4M~32MHz 的外部晶振 XTH。
- 一个频率为 32.768KHz 的外部晶振 XTL, 主要提供 RTC 实时时钟。
- 一个频率为 32.8/38.4KHz 的内部时钟 RCL。

工作模式

- 1) 运行模式(Active Mode): CPU 运行,周边功能模块运行。
- 2) 休眠模式(Sleep Mode): CPU 停止运行,周边功能模块运行。
- 3) 深度休眠模式(Deep sleep Mode): CPU 停止运行,高速时钟停止运行,低功耗功能模块运行。

硬件实时时钟 RTC

RTC(Real Time Counter)是一个支持 BCD 数据的寄存器,采用 32,768Hz 晶振作为其时钟,能实现 万年历功能,中断周期可配置为年/月/日/小时/分钟/秒。24/12 小时时间模式,硬件自动修正闰年。具有精确度补偿功能,最高精度为 0.96ppm。可使用内部温度传感器或外部温度传感器进行精确度补偿,可用软件+1/-1 调整年/月/日/小时/分钟/秒,最小可调精度为 1 秒。

用于指示时间和日期的 RTC 日历记录器在 MCU 受外部因素影响而复位时不会清除保留值,是需要永久高精度实时时钟的测量设备仪表的最佳选择。

通用 IO 端口

最多可提供 16个 GPIO 端口,其中部分 GPIO 与模拟端口复用。每个端口由独立的控制寄存器位来控制。支持边沿触发中断和电平触发中断,可从各种超低功耗模式下把 MCU 唤醒到工作模式。支持Push-Pull CMOS 推挽输出、Open-Drain 开漏输出。内置上拉电阻、下拉电阻,带有施密特触发器输入滤波功能。输出驱动能力可配置,最大支持 12mA 的电流驱动能力。16个通用 IO 可支持外部异步中断。

中断控制器

Cortex-M0+处理器内置了嵌套向量中断控制器(NVIC),支持最多 32 个中断请求(IRQ)输入;有四个中断优先级,可处理复杂逻辑,能够进行实时控制和中断处理。

32 个中断入口向量地址,分别为:

中断向量号	中断来源
[0]	GPIO_P0
[1]	GPIO_P1
[2]	GPIO_P2
[3]	GPIO_P3
[4]	-
[5]	-
[6]	UART0
[7]	UART1
[8]	LPUART
[9]	-
[10]	SPI
[11]	-
[12]	I ² C
[13]	-
[14]	Timer0
[15]	Timer1
[16]	Timer2
[17]	LPTimer
[18]	Timer4
[19]	Timer5
[20]	Timer6
[21]	PCA
[22]	WDT
[23]	RTC
[24]	ADC
[25]	-
[26]	VC0
[27]	VC1
[28]	LVD
[29]	-
[30]	RAM FLASH fault
[31]	Clock trim

复位控制器

本产品具有 7 个复位信号来源,每个复位信号可以让 CPU 重新运行,绝大多数寄存器会被重新复位,程序计数器 PC 会复位指向 00000000。

	中断来源
[0]	上电掉电复位 POR BOR
[1]	外部 Reset Pin 复位
[2]	WDT 复位
[3]	PCA 复位
[4]	Cortex-M0+ LOCKUP 硬件复位
[5]	Cortex-M0+ SYSRESETREQ 软件
	复位
[6]	LVD 复位

定时器/计数器

		位宽	预除频	计数方向	PWM	捕获	互补输出
基本定时	Timer0	16/32	1/2/4/8/16	上计数	无	无	无
器			32/64/256				
	Timer1	16/32	1/2/4/8/16/	上计数	无	无	无
			32/64/256				
	Timer2	16/32	1/2/4/8/16/	上计数	无	无	无
			32/64/256				
低功耗定	LPTimer	16	无	上计数	无	无	无
时器							
可编程计	PCA	16	2/4/8/16/32	上计数	5	5	无
数阵列							
高级定时	Timer4	16	1/2/4/8/16/	上计数/	2	2	1
器			64/256/1024	下计数/			
				上下计数			
	Timer5	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			
	Timer6	16	1/2/4/8/16/	上计数/	2	2	1
			64/256/1024	下计数/			
				上下计数			

基本定时器包含三个定时器 Timer0/1/2。Timer0/1/2 功能完全相同。Timer0/1/2 是同步定时/计数器,可以作为 16 位自动重装载功能的定时/计数器,也可以作为 32 位无重载功能的定时/计数器。Timer0/1/2 可以对外部脉冲进行计数或者实现系统定时。

低功耗定时器是异步 16 位定时/计数器,在系统时钟关闭后仍然可以通过内部低速 RC 或者外部低速

晶体振荡计时/计数。通过中断在低功耗模式下唤醒系统。

PCA(可编程计数器阵列 Programmable Counter Array)支持最多 5 个 16 位的捕获/比较模块。该定时/计数器可用作为一个通用的时钟计数/事件计数器的捕获/比较功能。PCA 的每个模块都可以进行独立编程,以提供输入捕捉,输出比较或脉冲宽度调制。另外模块 4 有额外的看门狗定时器模式。

高级定时器是一个包含三个定时器 Timer4/5/6。Timer4/5/6 功能相同的高性能计数器,可用于计数产生不同形式的时钟波形,1个定时器可以产生互补的一对 PWM 或者独立的2 路 PWM 输出,可以捕获外界输入进行脉冲宽度或周期测量。

高级定时器基本的功能及特性如表所示:

波形模式	锯齿波、三角波
	• 递加、递减计数方向
	• 软件同步
	• 硬件同步
基本功能	• 缓存功能
圣 华切郎	• 正交编码计数
	• 通用PWM输出
	• 保护机制
	• AOS关联动作
	计数比较匹配中断
 中断类型	计数周期匹配中断
下砌天空	死区时间错误中断
	短路监测中断

看门狗 WDT

WDT (Watch Dog Timer) 是一个可配置的 20 位定时器,在 MCU 异常的情况下提供复位;内建 10k 低速时钟输入作为计数器时钟。调试模式下,可选择暂停或继续运行;只有写入特定序列才能重启 WDT。

通用异步收发器 UART0~UART1, LPUART

2 路通用异步收发器(Universal Asynchronous Receiver/Transmitter) 通用 UART 基本功能:

- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验

- 1/2-Bit 停止位
- 四种不同传输模式
- 多机通讯
- 硬件地址识别

1 路低功耗模式下可以工作的异步收发器(Low Power Universal Asynchronous Receiver/Transmitter)LPUART 基本功能:

- 传输时钟 SCLK (SCLK 可选择 XTL、RCL 以及 PCLK)
- 系统低功耗模式下收发数据
- 半双工和全双工传输
- 8/9-Bit 传输数据长度
- 硬件奇偶校验
- 1/2-Bit 停止位
- 四种不同传输模式
- 多机通讯
- 硬件地址识别

同步串行接口 SPI

1 路同步串行接口(Serial Peripheral Interface),支持主从模式。

SPI 基本特性:

- 通过编程可以配置为主机或者从机
- 四线传输方式,全双工通信
- 主机模式7种波特率可配置
- 主机模式最大波特率为 1/2 系统时钟
- 从机模式最大波特率为 1/4 系统时钟
- 可配置的串行时钟极性和相位
- 支持中断
- 8位数据传输,先传输高位后低位

I²C 总线

1路 I2C, 采用串行同步时钟, 可实现设备之间以不同的速率传输数据。

I2C 基本特性:

- 支持主机发送/接收,从机发送/接收四种工作模式
- 支持标准(100Kbps) / 快速(400Kbps) / 高速(1Mbps) 三种工作速率
- 支持7位寻址功能
- 支持噪声过滤功能
- 支持广播地址
- 支持中断状态查询功能

蜂鸣器 Buzzer

3 个与定时器基本定时器与 1 个低功耗定时器功能复用输出为 Buzzer 提供可编程驱动频率。该蜂鸣器端口可提供 16mA 的 sink 电流,互补输出,不需要额外的三极管。

时钟校准电路

内建时钟校准电路,可以通过外部精准的晶振时钟校准内部 RC 时钟,亦可使用内部 RC 时钟去检验外部晶振时钟是否工作正常。

时钟校准基本特性:

- 校准模式
- 监测模式
- 32 位参考时钟计数器可加载初值
- 32 位待校准时钟计数器可配置溢出值
- 6 种参考时钟源
- 4种待校准时钟源
- 支持中断方式

唯一ID号

每颗芯片出厂前具备唯一的 10 字节设备标识号,包括 wafer lot 信息,以及芯片坐标信息等。ID 地址 0x0010 0E76-0x0010 0E7F

CRC16 硬件循环冗余校验码

符合 ISO/IEC13239 中给出的多项式 $F(x) = X^{16} + X^{12} + X^5 + 1$ 。

12 Bit SARADC

单调不失码的 12 位逐次逼近型模数转换器,在 24M ADC 时钟下工作时,采样率达到 1Msps。参考电压可选择片内精准电压(1.5v 或 2.5v)或从外部输入或电源电压。12 个输入通道,包括 9 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 电源电压、1 路内建 BGR 1.2V 电压。内建可配置的输入信号放大器以检测弱信号。

SAR ADC 基本特性:

- 12 位转换精度;
- 1M SPS 转换速度;
- 12 个输入通道,包括 8 路外部管脚输入、1 路内部温度传感器电压、1 路 1/3 AVCC 电压、1 路内建 BGR 1.2V 电压、3 路 OPA 输出;
- 4 种参考源: AVCC 电压、ExRef 引脚、内置 1.5v 参考电压、内置 2.5v 参考电压;
- ADC 的电压输入范围: 0~Vref;
- 3 种转换模式: 单次转换、顺序扫描连续转换、连续转换累加;
- 输入通道电压阈值监测;
- 软件可配置 ADC 的转换速率;
- 内置信号放大器,可转换高阻信号;
- 支持片内外设自动触发 ADC 转换,有效降低芯片功耗并提高转换的实时性。

电压比较器 VC

芯片管脚电压监测/比较电路。8个可配置的正/负外部输入通道;5个内部输入通道,包括1路内部温度传感器电压、1路内建 BGR 2.5V 参考电压、1路内建 BGR 1.2V 电压、1路 64 阶电阻分压。VC输出可供基本定时器、低功耗定时器、高级定时器与可编程计数阵列 PCA 捕获、门控、外部计数时钟使用。可根据上升/下降边沿产生异步中断,从低功耗模式下唤醒 MCU。可配置的软件防抖功能。

低电压检测器 LVD

对芯片电源电压或芯片引脚电压进行检测。16档电压监测值(1.8v~3.3v)。可根据上升/下降边沿产生

异步中断或复位。具有硬件迟滞电路和可配置的软件防抖功能。

LVD 基本特性:

- 4路监测源, AVCC、PC13、PB08、PB07;
- 16 阶阈值电压, 1.8V~3.3V 可选;
- 8种触发条件,高电平、上升沿、下降沿组合;
- 2种触发结果,复位、中断;
- 8 阶滤波配置, 防止误触发;
- 具备迟滞功能,强力抗干扰。

嵌入式调试系统

嵌入式调试解决方案,提供全功能的实时调试器,配合标准成熟的 Keil/IAR 等调试开发软件。支持 4个硬断点以及多个软断点。

在线编程模式

支持在线编程,复位完成后的数毫秒为 ISP 模式,之后进入用户模式。

高安全性

加密型嵌入式调试解决方案,提供全功能的实时调试器。

2. 产品阵容

产品名称

	HC 32 L 1 1 0 C 6 U A
华大半导体	
CPU位宽 32: 32bit	
产品类型	
L: 超低功耗 CPU类型 1: Cortex-M0+	
性能识别码 1: 基本型	
功能配置识别码	
引脚数	
C: 20Pin B: 16Pin	
FLASH容量 6: 32KB 4: 16KB	
封装类型 P: SOP	
U: QFN 环境温度范围	
A: -40-85°C	

功能

产品名称		HC32L110C6UA/HC32L110C6PA HC32L					
		HC32L110C4UA/ HC32L110C4PA	HC32L110B6PA				
引脚数	:	20	16				
通用引	脚数 GPIO	16	12				
	内核	Cortex M0+					
CPU	频率	32MHz					
电源电	压范围	1.8 ~5.5V					
单/双电	3源	单电源					
温度范	围	-40 ∼ 85°C					
调试功	能	串行线调试接口					
唯一识	别码	支持					
		UART0/1					
	串行接口	LPUART					
(UART	C/SPI/I ² C)	SPI I ² C					
		Timer0/1/2					
定时器		LPTimer					
		Advanced Timer4/5/6					
液晶控	制器(LCDC)	无					
12位 /	A/D 转换器	12bit					
模拟电	压比较器	VC0/1					
实时时钟		1					
端口中断		16					
低电压检测复位/中断		1					
	内部高速振荡器	IRC4M/8M/16M/22.12M	И/24M				
时钟	内部低速振荡器	IRC32.8K/38.4K					
	外部高速晶振振荡器	4M/8M/16M/32M					

产品名称		HC32L110C6UA/HC32L110C6PA	HC32L110B4PA	
		HC32L110C4UA/ HC32L110C4PA HC32L110I		
外部低速晶振振荡器		32.768kHz		
蜂鸣器		Max 4ch		
闪存安全保护		支持		
RAM 奇偶校验		支持		

3. 引脚配置

HC32L110C6UA / HC32L110C4UA

HC32L110C6PA / HC32L110C4PA

HC32L110B4PA / HC32L110B6PA

4. 引脚功能说明

Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	TSSOP16			
1	4	3	RESETB	RESETB	复位输入端口,低有效,芯片复位
			P00	GPIO	P00 数字输入
2	5	4	P01	GPIO	P01 通用数字输入/输出引脚
				UART0_RXD	UARTO RXD
				I ² C_SDA	I ² C 数据
				UART1_TXD	UART1 TXD
				TIM0_TOG	Timer0 翻转输出
				TIM5_CHB	Timer5 捕获输入/比较输出 B
				SPI_SCK	SPI 时钟
				TIM2_EXT	Timer2 外部时钟
				AIN7/VC7	模拟输入
				XTHI	外部 XTH 晶振时钟 输入
3	6	5	P02	GPIO	P02 通用数字输入/输出引脚
				UART0_TXD	UART0 TXD
				I ² C_SCL	I ² C 时钟
				UART1_RXD	UART1 RXD
				TIM0_TOGN	Timer() 翻转反相输出
				TIM6_CHA	Timer6 捕获输入/比较输出 A
				SPI_CS	SPI CS
				TIM2_GATE	Timer2 门控
				AIN8	模拟输入
				XTHO	外部 XTH 晶振时钟 输出
4	7	6	VSS	GND	芯片地
5	8	7	Vcap	Power	LDO 内核供电输出(仅限内部电路 使用,连接 4.7uF 的电容)
6	9	8	VDD	Power	芯片电源 1.8v~5.5v
7	10	注	P03	GPIO	P03 通用数字输入/输出引脚
				PCA_CH3	PCA 捕获输入/比较输出 3
				SPI_CS	SPI CS
				TIM6_CHB	Timer6 捕获输入/比较输出 B
				LPTIM_EXT	LPTimer 外部时钟输入
				RTC_1HZ	RTC 1Hz 输出
				PCA_ECI	PCA 外部时钟输入
				VC0_OUT	VC0 输出
				LVDIN1	模拟输入
8	11	9	P15	GPIO	P15 通用数字输入/输出引脚
				I ² C_SDA	I ² C 数据
				TIM2_TOG	Timer2 翻转输出
				TIM4_CHB	Timer4 捕获输入/比较输出 B
				LPTIM_GATE	LPTimer 门控
				SPI_SCK	SPI 时钟
				UART0_RXD	UARTO RXD

Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	TSSOP16			
				LVD_OUT	LVD 输出
				XTLO	外部 XTL 晶振时钟输出
9	12	10	P14	GPIO	P14 通用数字输入/输出引脚
				I ² C_SCL	I ² C 时钟
				TIM2_TOGN	Timer2 翻转反相输出
				ECI	PCA 外部时钟输入
				ADC_RDY	ADC ready
				SPI_CS	SPI CS
				UART0_TXD	UART0 TXD
				XTLI	外部 XTL 晶振时钟输入
10	13	11	P23	GPIO	P23 通用数字输入/输出引脚
				TIM6_CHA	Timer6 捕获输入/比较输出 A
				TIM4_CHB	Timer4 捕获输入/比较输出 B
				TIM4_CHA	Timer4 捕获输入/比较输出 A
				PCA_CH0	PCA 捕获输入/比较输出 0
				SPI_MISO	SPI 模块主机输入从机输出数据信号
				UART1_TXD	UART1 TXD
				IR_OUT	38K 载波输出
				LVDIN2/VC0	模拟输入
11	14	12	P24	GPIO	P24 通用数字输入/输出引脚
				TIM4_CHB	Timer4 捕获输入/比较输出 B
				TIM5_CHB	Timer5 捕获输入/比较输出 B
				HCLK_OUT	HCLK 输出
				PCA_CH1	PCA 捕获输入/比较输出 1
				SPI_MOSI	SPI 模块主机输出从机输入数据信号
				UART1_RXD	UART1 RXD
				VC1_OUT	VC1 输出
				AIN0	模拟输入
12	15	13	P25	GPIO	P25 通用数字输入/输出引脚
				SPI_SCK	SPI 时钟
				PCA_CH0	PCA 捕获输入/比较输出 0
				TIM5_CHA	Timer5 捕获输入/比较输出 A
				LVD_OUT	LVD 输出
				LPUART_RXD	LPUART RXD
				I ² C_SDA	I ² C 数据
				TIM1_GATE	Timer1 门控
				LVDIN3/VC1	模拟输入
13	16	14	P26	GPIO	P26 通用数字输入/输出引脚
				SPI_MOSI	SPI 模块主机输出从机输入数据信号
				TIM4_CHA	Timer4 捕获输入/比较输出 A
				TIM5_CHB	Timer5 捕获输入/比较输出 B
				PCA_CH2	PCA 捕获输入/比较输出 2
				LPUART_TXD	LPUART TXD
	1	İ			
				I ² C_SCL	I ² C 时钟

Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	TSSOP16			
				AIN1	模拟输入
14	17	15	P27	GPIO	P27 通用数字输入/输出引脚
				SPI_MISO	SPI 模块主机输入从机输出数据信号
				TIM5_CHA	Timer5 捕获输入/比较输出 A
				TIM6_CHA	Timer6 捕获输入/比较输出 A
				PCA_CH3	PCA 捕获输入/比较输出 3
				UART0_RXD	UART0 RXD
				RCH_OUT	24M 振荡输出
				XTH_OUT	32M 振荡输出
				SWDIO	SWDIO
15	18	16	P31	GPIO	P31 通用数字输入/输出引脚
				TIM3_TOG	Timer3 翻转输出
				PCA_ECI	PCA 外部时钟
				PCLK_OUT	PCLK 输出
				VC0OUT	VC0 输出
				UART0_TXD	UART0 TXD
				RCL_OUT	RCL 振荡输出
				HCLK_OUT	HCLK 输出
				SWCLK	SWCLK
16	19	注	P32	GPIO	P32 通用数字输入/输出引脚
				TIM3_TOGN	LPTimer 翻转反向输出
				PCA_CH2	PCA 捕获输入/比较输出 2
				TIM6_CHB	Timer6 捕获输入/比较输出 B
				VC10UT	VC1 输出
				UART1_TXD	UART1 TXD
				PCA_CH4	PCA 捕获输入/比较输出 4
				RTC_1HX	RTC1HZ 输出
				AIN2/VC2	模拟输入
17	20	注	P33	GPIO	P33 通用数字输入/输出引脚
				LPUART_RXD	LPUART RXD
				PCA_CH1	PCA 捕获输入/比较输出 1
				TIM5_CHB	Timer5 捕获输入/比较输出 B
				PCA_ECI	PCA 外部时钟
				UART1_RXD	UART1 RXD
				XTL_OUT	32K 振荡输出
				TIM1_TOGN	Timer1 翻转反向输出
				AIN3/VC3	模拟输入
18	1	注	P34	GPIO	P34 通用数字输入/输出引脚
				PCA_CH0	PCA 捕获输入/比较输出 0
				LPUART_TXD	LPUART TXD
				TIM5_CHA	Timer5 捕获输入/比较输出 A
				TIM0_EXT	Timer0 部时钟输入
				TIM4_CHA	Timer4 捕获输入/比较输出 A
				RTC_1HZ	RTC1HZ 输出
				TIM1_TOG	Timer1 翻转输出

Pin No.	Pin No.	Pin No.	Pin Name	Pin Type	Description
QFN20	TSSOP20	TSSOP16			
				AIN4/VC4	模拟输入
19	2	1	P35	GPIO	P35 通用数字输入/输出引脚
				UART1_TXD	UART1 TXD
				TIM6_CHB	Timer6 捕获输入/比较输出 B
				UART0_TXD	UART0 TXD
				TIM0_GATE	Timer0 门控
				TIM4_CHB	Timer4 捕获输入/比较输出 B
				SPI_MISO	SPI 模块主机输入从机输出数据信号
				I ² C_SDA	I ² C 数据
				AIN5/VC5	模拟输入
20	3	2	P36	GPIO	P36 通用数字输入/输出引脚
				UART1_RXD	UART1 RXD
				TIM6_CHA	Timer6 捕获输入/比较输出 A
				UART0_RXD	UART0 RXD
				PCA_CH4	PCA 捕获输入/比较输出 4
				TIM5_CHA	Timer5 捕获输入/比较输出 A
				SPI_MOSI	SPI 模块主机输出从机输入数据信号
				I ² C_SCL	I ² C 时钟
				AIN6/VC6/	模拟输入
				AVREF	

注:需要将该封装相对 TSSOP20 未引出的 IO 引脚设为输入并使能上拉。

5. 框图

功能模块

图 5-1 功能模块

6. 存储区映射图

HC32L11 HC32L11 HC32L11	0C6PA	HC32L11 HC32L11 HC32L11	0C4PA	
0x2000_1000	保留		保留	
0x2000_0000	SRAM (4KByte)	0x2000_0800 0x2000_0000	SRAM	
0x0000_8000	保留		保留	
	主闪存区 (32KByte)	0x0000_4000	主闪存区 (16KByte)	
0x0000_0000		0x0000_0000		

7. 电气特性

7.1 测试条件

除非特别说明,所有的电压都以 VSS 为基准。

7.1.1. 最小和最大数值

除非特别说明,在生产线上通过对 100%的产品在环境温度 TA=25°C 和 TA=TAmax 下执行的测试 (TAmax 与选定的温度范围匹配),所有最小和最大值将在最坏的环境温度、供电电压和时钟频率条件 下得到保证。

在每个表格下方的注解中说明为通过综合评估、设计模拟和/或工艺特性得到的数据,不会在生产线上进行测试;在综合评估的基础上,最小和最大数值是通过样本测试后,取其平均值再加减三倍的标准分布(平均 $\pm 3\Sigma$)得到。

7.1.2. 典型数值

除非特别说明,典型数据是基于 TA=25℃ 和 VCC=3.3V(1.8V≤VCC≤5.5V 电压范围)。这些数据仅用于设计指导而未经测试。

典型的 ADC 精度数值是通过对一个标准的批次采样,在所有温度范围下测试得到,95%产品的误差 小于等于给出的数值(平均±2Σ)。

7.1.3. 供电方案

注意:

- 每组电源都需要一个去耦电容,去耦电容尽量靠近相应电源管脚。

7.2 绝对最大额定值

加在器件上的载荷如果超过"绝对最大额定值"列表中给出的值,可能会导致器件永久性地损坏。这里只是给出能承受的最大载荷,并不意味在此条件下器件的功能性操作无误。器件长期工作在最大值条件下会影响器件的可靠性。

符号	描述	最小值	最大值	单位
VCC - VSS	外部主供电电压(包含AVCC和DVCC) ⁽¹⁾ -0.3 5.5		V	
V _{IN}	在其它引脚上的输入电压(2)	VSS-0.3	VCC + 0.3	V
ΔVCCx	不同供电引脚之间的电压差		50	mV
VSSx - VSS	不同接地引脚之间的电压差		50	mV
V _{ESD} (HBM)	ESD静电放电电压(人体模型)	参考绝对最大值电气参数		V

表 7-1 电压特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS, AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。

符号	描述	最大值(1)	单位
Ivcc	经过DVCC/AVCC电源线的总电流(供应电流) (1)	300	mA
Ivss	经过VSS地线的总电流(流出电流) (1) 300		mA
	任意I/O和控制引脚上的输出灌电流	25	mA
I_{IO}	任意I/O和控制引脚上的输出电流	-25	mA
	RESETB引脚的注入电流	+/-5	mA
I _{INJ(PIN)} ^{(2) (3)}	XTH的XTHI引脚和XTL的XTLI引脚的注入电流	+/-5	mA
	其他引脚的注入电流(4)	+/-5	mA
$\sum I_{\text{INJ(PIN)}}^{(2)}$	所有I/O和控制引脚上的总注入电流 ⁽⁴⁾	+/-25	mA

表 7-2 电流特性

- 1. 所有的电源(DVCC,AVCC)和地(DVSS,AVSS)引脚必须始终连接到外部允许范围内的供电系统上。
- 2. $I_{INJ(PIN)}$ 绝对不可以超过它的极限,即保证 V_{IN} 不超过其最大值。如果不能保证 V_{IN} 不超过其最大值,也要保证在外部限制 $I_{INJ(PIN)}$ 不超过其最大值。当 V_{IN} > V_{CC} 时,有一个正向注入电流;当 V_{IN} < V_{SS} 时,有一个反向注入电流。
- 3. 反向注入电流会干扰器件的模拟性能。
- 4. 当几个 I/O 口同时有注入电流时, \sum I $_{\text{INJ(PIN)}}$ 的最大值为正向注入电流与反向注入电流的即时绝对值之和。该结果基于在器件 4 个 I/O 端口上 \sum I $_{\text{INJ(PIN)}}$ 最大值的特性。

符号	描述	数值	单位
T _{STG}	储存温度范围	-60 ~ + 150	°C
T_{J}	最大结温度	105	°C

表 7-3 温度特性

7.3 工作条件

7.3.1. 通用工作条件

符号	参数	条件	最小值	最大值	单位
fHCLK	内部AHB时钟频率		0	48	MHz
fPCLK	内部APB时钟频率		0	48	MHz
DVCC	标准工作电压		1.8	5.5	V
AVCC ⁽¹⁾	模拟部分工作电压	必须与DVCC ⁽²⁾ 相同	1.8	5.5	V
PD	功率耗散 TA=85℃	TSSOP20		283	mW
TA	环境温度	最大功率消耗	-40	85	°C
		低功率消耗(3)	-40	105	°C
ТЈ	结温度范围		-40	105	°C

表 7-4 通用工作条件

- 1. 当使用 ADC 时,参见 ADC 电气参数。
- 2. 建议使用相同的电源为 DVCC 和 AVCC 供电,在上电和正常操作期间, DVCC 和 AVCC 之间最多允许有 300mV 的差别。
- 3. 在较低的功率耗散的状态下,只要 T_I 不超过 T_{Jmax} , T_A 可以扩展到这个范围。

7.3.2. 上电和掉电时的工作条件

符号	参数	条件	最小值	最大值	单位
tVcc	VCC上升速率		0	8	μs/V
tVcc	VCC下降速率		10	8	μs/V

表 7-5 上电和掉电的工作条件

7.3.3. 内嵌复位和 LVD 模块特性

图 7-1 POR/Brown Out 示意图

1. 设计保证,不在生产中测试。

符号	参数	条件	最小值	典型值	最大值	单位
Vpor	POR 释放电压(上电过程)		1.45	1.50	1.65	V
	BOR 检测电压(掉电过程)					

表 7-6 POR/Brown Out

符号	参数	条件	最小值	典型值	最大值	单位
Vex	外部输入电压范围		0		VCC	V
Vlevel	检测阈值	LVD_CR.VTDS=0000		1.8		V
		LVD_CR.VTDS =0001		1.9		
		LVD_CR.VTDS =0010		2.0		
		LVD_CR.VTDS =0011		2.1		
		LVD_CR.VTDS =0100		2.2		
		LVD_CR.VTDS=0101		2.3		
		LVD_CR.VTDS=0110		2.4		
		LVD_CR.VTDS=0111		2.5		
		LVD_CR.VTDS=1000		2.6		
		LVD_CR.VTDS=1001		2.7		
		LVD_CR.VTDS=1010		2.8		
		LVD_CR.VTDS=1011		2.9		
		LVD_CR.VTDS=1100		3.0		
		LVD_CR.VTDS=1101		3.1		
		LVD_CR.VTDS=1110		3.2		
		LVD_CR.VTDS=1111		3.3		
Icomp	功耗			0.12		uA
Tresponse	响应时间			80		uS
Tsetup	建立时间			400		uS
Vhyste	迟滞电压			40		mV
Tfilter	滤波时间	LVD_debounce = 000		7		uS
		LVD_debounce = 001		14		
		LVD_debounce = 010		28		
		LVD_debounce = 011		112		
		LVD_debounce = 100		450		
		LVD_debounce = 101		1800		
		LVD_debounce = 110		7200		
		LVD_debounce = 111		28800		

表 7-6 LVD 模块特性

7.3.4. 内置的参考电压

符号	参数	条件	最小值	典型值	最大值	单位
VREF25	Internal 2.5v Reference Voltage	常温25℃ 3.3V	2.475	2.5	2.525	V
VREF25	Internal 2.5v Reference Voltage	-40C~85C; 2.8V~5.5V	2.463	2.5	2.525	V[1]
VREF15	Internal 1.5v Reference Voltage	常温25℃ 3.3V	1.485	1.5	1.515	V
VREF15	Internal 1.5v Reference Voltage	-40C~85C; 1.8V~5.5V	1.477	1.5	1.519	V[1]
TCoeff	Internal 2.5v 1.5v temperature	-40 ~ 85°C			120	Ppm/°
1COEII	coefficient	-40 ~ 63 C			120	C

1. 数据基于考核结果,不在生产中测试。

7.3.5. 工作电流特性

电流消耗是多种参数和因素的综合指标,这些参数和因素包括工作电压、环境温度、I/O 引脚的负载、产品的软件配置、工作频率、I/O 脚的翻转速率、程序在存储器中的位置以及执行的代码等。 微控制器处于下列条件:

- 所有的 I/O 引脚都处于输入模式,并连接到一个静态电平上——VCC 或 VSS(无负载)。
- 所有的外设都处于关闭状态,除非特别说明。
- 闪存存储器的访问时间调整到 fHCLK 的频率(0~24MHz 时为 0 个等待周期, 24~48MHz 时为 1 个 等待周期)。
- 当开启外设时: fPCLK = fHCLK。

Symbol	Parameter	Conditions			Тур	Max ⁽¹⁾	Unit
	All			4M	220		
,	peripherals	VCAD 155V	DCH	8M	400		
I _{DD}	clock OFF,	VCAP=1.55V	RCH clock source	16M	740		uA
(Run in RAM)	Run While(1)	V _{CC} =3.3V	clock source	24M	1080		
	in RAM.			32M	1400		
	All			4M	670		
,	peripherals			8M	1300		
I _{DD} (Run	clock OFF,	VCAP =1.55V	RCH	16M	2380		uA
CoreMark)	Run	V _{CC} =3.3V	clock source	24M	3410		uA
Corciviark)	CoreMark in			32M	2520		
	Flash.			(Flash Wait= 1)	3530		
IDD	All	VCAP =1.55V	RCH	4M	700	880	uA

(Run mode)	peripherals	V _{CC} =1.8-5.5V	clock source	8M	1350	1600	
	clock ON,			16M	2500	3000	-
	Run while(1) in Flash			24M	3600	4300	
				4M	550	750	
	All peripheral			8M	1050	1300	
	clock OFF,	VCAP =1.55V	RCH	16M	1900	2400	_
	Run while(1)	V _{CC} =1.8-5.5V	clock source	24M	2700	3300	_
	in Flash			32M (Flash Wait= 1)	2850	3000	
				4M	260	280	
	All peripheral	VCAP =1.55V	RCH	8M	500	520	1
	clock ON	$V_{CC}=1.8-5.5V$	clock source	16M	950	970	
				24M	1400	1420	-
IDD				4M	110	125	uA
(Sleep mode)				8M	190	210	
	All peripheral	VCAP =1.55V	RCH	16M	330	360	-
	clock OFF V _{CC} =1.8-5.5V	clock source	24M	470	500	1	
				32M	580	610	1
	All			$TA = -40 \text{ to } 25^{\circ}C$	7	9	
	peripherals		XTL	TA = 50 °C	7.3	9.2	1
	clock ON,	VCAP =1.55V V _{CC} =1.8-5.5V	32.768KHz				
	Run while(1)		(Driver = 1)				
IDD	in Flash			TA = 85 °C	8.9	11.3	uA
(LP Run)	All			$TA = -40 \text{ to } 25^{\circ}C$	6	8	uA
	peripherals	VCAP =1.55V	XTL	TA = 50 °C	6.1	8.2	
	clock OFF,	VCAI =1.55 V Vcc=1.8-5.5 V	32.768KHz				
	Run while(1)	1.66 1.6 0.6	(Driver = 1)				
	in Flash			TA = 85 °C	7.7	10.1	
	All	VCAP =1.55V	XTL	$TA = -40 \text{ to } 25^{\circ}C$	3.3	3.5	
	peripherals	V _{CC} =1.8-5.5V	32.768KHz	TA = 50 °C	3.6	3.8	_
	clock ON		(Driver = 1)	TA = 85 °C	5.4	5.8	
IDD	All			$TA = -40 \text{ to } 25^{\circ}\text{C}$	2.2	2.4	1.
(LP Sleep)	peripherals		XTL	TA = 50 °C	2.5	2.6	uA
	clock OFF	VCAP =1.55V	32.768KHz				
	except	V _{CC} =1.8-5.5V	(Driver = 1)				
	LPTimer and RTC			TA = 85 °C	4.2	4.6	
				TA = 85 °C TA = -40 to 25 °C	1.5	1.65	
IDD	All peripherals	VCAP =1.55V		$TA = -40 \text{ to } 25^{\circ}\text{C}$ $TA = 50 ^{\circ}\text{C}$	1.85	2.2	uA
(DeepSleep)		V _{CC} =1.8-5.5V		TA = 85 °C	3.5	4.2	L u.A.
	clock OFF		1A = 83 C	3.3	4.2		

		1	T	1		1
	except RTC					
	WDT、					
	LPTimer					
	All		$TA = -40 \text{ to } 25^{\circ}C$	1.2	1.3	
	peripherals	VCAP =1.55V	TA = 50 °C	1.5	1.8	
	clock OFF	V _{CC} =1.8-5.5V				
	except WDT		TA = 85 °C	3.1	3.7	
	All		$TA = -40 \text{ to } 25^{\circ}C$	0.9	1	
	peripherals	VCAP =1.55V	TA = 50 °C	1.1	1.3	
	clock OFF	Vcc=1.8-5.5V				
	except	VCC=1.8-3.3 V				
	LPTimer		TA = 85 °C	2.6	3	
	All		$TA = -40 \text{ to } 25^{\circ}C$	1.0	1.1	
	peripherals	VCAP =1.55V	TA = 50 °C	1.2	1.5	
	clock OFF	V _{CC} =1.8-5.5V				
	except RTC		TA = 85 °C	2.6	3.4	
	All	V 1.55V	$TA = -40 \text{ to } 25^{\circ}C$	0.42	0.6	
	peripherals	Vcore=1.55V	TA = 50 °C	0.75	0.95	
	clock OFF	V _{CC} =1.8-5.5V	 TA = 85 °C	2.2	2.7	

- 1. 若没有其他指定条件,该 Typ 的值是在 $25 \, ^{\circ}$ C & $V_{CC} = 3.3 V$ 测得。
- 2. 若没有其他指定条件,该 Max 的值是 Vcc = 1.8-5.5 & Temperature = N40 85 ℃ 范围内的最大值。
- 3. 数据基于考核结果,不在生产中测试。

表 7-9 工作电流特性

7.3.6. 从低功耗模式唤醒的时间

唤醒时间是在 RCH 振荡器的唤醒阶段测量得到。唤醒时使用的时钟源依当前的操作模式而定:

- 休眠模式:时钟源是 RCH 振荡器
- 深度休眠模式:时钟源是进入深度休眠时所使用的时钟是 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Twu	休眠模式唤醒时间			1.8		μs
	深度休眠唤醒时间	FMCLK = 4MHz		9.0		μs
		FMCLK = 8MHz		6.0		μs
		FMCLK = 16MHz		5.0		μs
		FMCLK = 24MHz		4.0		μs

1. 唤醒时间的测量是从唤醒事件开始至用户程序读取第一条指令。

7.3.7. 外部时钟源特性

外部输入高速时钟

符号	参数	条件	最小值	典型值	最大值	单位
fXTH_ext	用户外部时钟频率(1)		0	8	32	MHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				20	ns
Tf(XTH)	下降的时间(1)				20	ns
Tw(XTH)	输入高或低的时间(1)		16			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		40		60	%
IL	输入漏电流				±1	μΑ

1. 由设计保证,不在生产中测试。

外部输入低速时钟

符号	参数	条件	最小值	典型值	最大值	単位
fXTH_ext	用户外部时钟频率(1)		0	32.768	1000	KHz
VXTHH	输入引脚高电平电压		0.7VCC		VCC	V
VXTHL	输入引脚低电平电压		VSS		0.3VCC	V
Tr(XTH)	上升的时间(1)				50	ns
Tf(XTH)	下降的时间(1)				50	ns
Tw(XTH)	输入高或低的时间(1)		450			ns
Cin(XTH)	输入容抗(1)			5		pF
Duty	占空比		30		70	%
IL	输入漏电流				±1	μΑ

1. 由设计保证,不在生产中测试。

高速外部时钟 XTH

高速外部时钟(XTH)可以使用一个 4~32MHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于使用下表中列出的典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTH 晶振⁽¹⁾⁽²⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率		4		32	MHz

ESR _{CLK}	支持的晶振ESR范围	32M		30	60	Ohm
		4M		400	1500	Ohm
C _L x ⁽³⁾	负载电容	两个管脚都有负载电容	12		24	pF
Duty	占空比		40	50	60	%
$\mathrm{Idd}^{(4)}$	电流	32M Xtal, CL=12pF,		600		uA
Idd\'	· 电机	ESR=30ohm				
T _{start} (5)	启动时间	32MHz		400		us
		@ XTH_CR.Driver=1111				
		4MHz		2		ms
		@ XTH_CR.Driver=0011				

- 1. 谐振器的特性参数由晶体/陶瓷谐振器制造商给出。
- 2. 由综合评估得出,不在生产中测试。
- 3. C_{LX} 指 XTAL 的两个管脚负载电容 C_{L1} 和 C_{L2} 。对于 C_{L1} 和 C_{L2} ,建议使用高质量的、为高频应用而设计资介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,应该根据晶振的频率和 ESR 等参数,并且将 PCB 和 MCU 引脚的容抗考虑在内。在晶振频率为 32M 时, C_{LX} 需要选择小的电容值,XTH_CR.Driver 为 1110 时,可以选择 C_{LX} 为 12pF。
- 4. 电流跟随频率变化而变化,测试条件: XTH CR.Driver=1110
- 5. T_{start} 是启动时间,是从软件使能 XTH 开始测量,直至得到稳定的 32MHz/4MHz 振荡这段时间。 这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

低速外部时钟 XTL

低速外部时钟(XTL)可以使用一个 32.768kHz 的晶体/陶瓷谐振器构成的振荡器产生。本节中所给出的信息是基于典型外部元器件,通过综合特性评估得到的结果。在应用中,谐振器和负载电容必须尽可

能地靠近振荡器的引脚,以减小输出失真和启动时的稳定时间。有关晶体谐振器的详细参数(频率、封装、精度等),请咨询相应的生产厂商。

外部 XTL 晶振⁽¹⁾

符号	参数	条件	最小值	典型值	最大值	单位
FCLK	振荡频率			32.768		KHz
ESRCLK	支持的晶振ESR范围			65	85	kOhm
$C_{Lx}^{(2)}$	负载电容	两个管脚都有负载电容	0	12		pF
DCACLK	占空比		30	50	70	%
Idd ⁽³⁾	电流	ESR= 65 kOhm		850	1000	nA
	电视	CL=12 pF				
Tstart	启动时间	ESR=65 kOhm,		500		ms
		CL=12 pF,				
		40% - 60% duty cycle has				
		been reached				

- 1. 由综合评估得出,不在生产中测试。
- 2. C_{LX} 指 XTAL 的两个管脚负载电容 C_{L1} 和 C_{L2} 。对于 C_{L1} 和 C_{L2} ,建议使用高质量的资介电容器,并挑选符合要求的晶体或谐振器。通常 C_{L1} 和 C_{L2} 具有相同参数。晶体制造商通常以 C_{L1} 和 C_{L2} 的串行组合给出负载电容的参数。在选择 C_{L1} 和 C_{L2} 时,应该将 PCB 和 MCU 引脚的容抗考虑在内。
- 3. 典型值为 XTL_CR.Driver=1001 时的功耗。选择具有较小 ESR 值的高质量振荡器(如 MSIV-TIN32.768kHz),可以通过减小 XTL_CR.Driver 设置值以优化电流消耗。
- 4. T_{start} 是启动时间,是从软件使能 XTL 开始测量,直至得到稳定的 32768 振荡这段时间。这个数值是在一个标准的晶体谐振器上测量得到,它可能因晶体制造商和型号的不同而变化较大。

7.3.8. 内部时钟源特性

内部 RCH 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCH振荡器精度	User-trimmed with clock_trim		0.25		%
		for given VCC and TA conditions				
		VCC = 1.8V ~ 5.5V	-2.5		+2.5	%
		$T_{AMB} = -40^{\circ}C \sim 85^{\circ}C$				
		VCC = 1.8V ~ 5.5V	-2.0		+2.0	%
		$T_{AMB} = -20$ °C ~ 50 °C				
FCLK	振荡频率		4.0	4.0	24.0	MHz
				8.0		
				16.0		
				22.12		
				24.0		
I _{CLK}	功耗	$F_{MCLK} = 4MHz$		80		μА
		$F_{MCLK} = 8MHz$		100		μА
		F _{MCLK} = 16MHz		120		μА
		F _{MCLK} = 24MHz		140		μA
DC _{CLK}	占空比(1)		45	50	55	%

1. 由综合评估得出,不在生产中测试。

内部 RCL 振荡器

Symbol	Papameter	Conditions	Min	Тур	Max	Unit
Dev	RCL振荡器精度	User-trimmed with clock_trim		0.5		%
		for given VCC and TA				
		conditions				
		$VCC = 1.8V \sim 5.5V$	-2.0		+2.0	%
		$T_{AMB} = -40^{\circ}C \sim 85^{\circ}C$				
		VCC = 1.8V ~ 5.5V	-1.5		+1.5	%
		$T_{AMB} = -20^{\circ}C \sim 50^{\circ}C$				
F _{CLK}	振荡频率			38.4		KHz
				32.768		
TCLK	启动时间			150		uS
DC _{CLK}	占空比(1)		25	50	75	%
I _{CLK}	功耗			0.25		μΑ

1. 由综合评估得出,不在生产中测试。

7.3.9. 存储器特性

符号	参数	条件	最小值	典型值	最大值	单位
ECFLASH	擦写次数	Regulator voltage=1.5v,	20K			cycles
		$T_{AMB} = 25$ °C				
RETFLASH	数据保存期限	$T_{AMB} = 85$ °C	20			Years
		常温	100			Years
Tw_prog	编程时间		6		7.5	μs
Tp_erase	页擦除时间		4		5	ms
Tm_erase	整片擦除时间		30		40	ms

7.3.10. EFT 特性

芯片复位可以使系统恢复正常操作。

符号	级别/类型
EFT to IO	2kV
(IEC61000-4-4)	Class:4
EFT to Power	4kV
(IEC61000-4-4)	Class:4

软件建议

软件的流程中必须包含程序跑飞的控制,如:

- 被破坏的程序计数器
- 意外的复位
- 关键数据被破坏(控制寄存器等.....)

在进行 ESD 测试时,可以把超出应用要求的电压直接施加在芯片上,当检测到意外动作的地方,软件部分需要加强以防止发生不可恢复的错。

7.3.11. ESD 特性

使用特定的测量方法,对芯片进行强度测试以决定它的电气敏感性方面的性能。

符号	参数	条件	最小值	典型值	最大值	单位
VESD _{HBM}	ESD @ Human Body Mode			4		KV
VESD _{CDM}	ESD @ Charge Device Mode			1		KV
VESD _{MM}	ESD @ machine Mode			200		V
Ilatchup	Latch up current			200		mA

7.3.12. 端口特性

输出特性——端口

Symbol	Parameter	Conditions	Min	Max	Uuit
VoH	High level output voltage	Sourcing 4 mA, VCC = 3.3 V	VCC-0.25		V
	Source Current	(see Note 1)			
		Sourcing 6 mA, VCC = 3.3 V	VCC-0.6		V
		(see Note 2)			
Vol	Low level output voltage	Sinking 4 mA, VCC = 3.3 V		VSS+0.25	V
	Sink Current	(see Note 1)			
		Sinking 6 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			
V_{OHD}	High level output voltage	Sourcing 8 mA, VCC = 3.3 V	VCC-0.25		V
	Double source Current	(see Note 1)			
		Sourcing 12 mA, VCC = 3.3V	VCC-0.6		V
		(see Note 2)			
V _{OLD}	Low level output voltage	Sinking 8 mA, VCC = 3.3 V		VSS+0.25	V
	Double Sink Current	(see Note 1)			
		Sinking 12 mA, VCC = 3.3 V		VSS+0.6	V
		(see Note 2)			

表 7-10 端口输出特性

NOTES:

- 1. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 40 mA to satisfy the maximum specified voltage drop.
- 2. The maximum total current, IOH(max) and IOL(max), for all outputs combined, should not exceed 100 mA to satisfy the maximum specified voltage drop.

图 7-2 输出端口 VOH/VOL 实测曲线

输入特性——端口 P0,P1,P2,P3, RESET

符号	参数	条件	最小值	典型值	最大值	单位
V_{IH}	Positive-going input	VCC=1.8v	1			V
	threshold voltage	VCC=3.3v	1.75			V
		VCC=5.5v	2.8			V
V _{IL}	Negative-going input	VCC=1.8v			0.8	V
	threshold voltage	VCC=3.3v			1.5	V
		VCC=5.5v			2.4	V
V _{hys(1)}	Input voltage hysteresis	VCC=1.8v		0.3		V

	(V _{IH} - V _{IL})	VCC=3.3v	0.4	V
		VCC=5.5v	0.6	V
R _{pullhigh}	Pullup resistor	Pullup enabled	80	Kohm
		VCC=3.3V		
R _{pulllow}	Pulldown resistor	Pulldown enabled	40	Kohm
		VCC=3.3V		
Cinput	Input capacitance		5	pf

1. 由综合评估得出,不在生产中测试。

端口外部输入采样要求——Timer Gate/Timer Clock

Symbol	Papameter	Conditions	VCC	Min	Max	Uuit
t(int)	External interrupt	External trigger signal for the	1.8v	30		ns
	timing	interrupt flag (see Note 1)	3.3v	30		ns
			5.5v	30		ns
t(cap)	Timer capture timing	Timer4/5/6 capture pulse width	1.8v	0.5		us
		Fsystem = 4MHz	3.3v	0.5		us
			5.5v	0.5		us
t(clk)	Timer clock frequency	Timer0/1/2/4/5/6 external clock	1.8v		PCLK/2	MHz
	applied to pin	input	3.3v		PCLK/2	MHz
		Fsystem = 4MHz	5.5v		PCLK/2	MHz
t(pca)	PCA clock frequency	PCA external clock input	1.8v		PCLK/8	MHz
	applied to pin	Fsystem = 4MHz	3.3v		PCLK/8	MHz
			5.5v		PCLK/8	MHz

NOTE:

1. The external signal sets the interrupt flag every time the minimum $t_{(int)}$ parameters are met. It may be set even with trigger signals shorter than $t_{(int)}$.

端口漏电特性——P0,P1,P2,P3

Symbol	Papameter	Conditions	VCC	Max	Unit
$I_{lkg(Px.y)}$	Leakage current	V _(Px.y) (see Note 1,2)	1.8 V/3.6 V	±50	nA

NOTES:

- 1. The leakage current is measured with VSS or VCC applied to the corresponding pin(s), unless otherwise noted.
- 2. The port pin must be selected as input.

7.3.13. RESETB 引脚特性

RESETB 引脚输入驱动使用 CMOS 工艺,它连接了一个不能断开的上拉电阻。

符号	参数	条件	最小值	典型值	最大值	单位
VIL(RESETB) (1)	输入低电平电压		-0.3		0.8	
VIH(RESETB)	输入高电平电压		0.8*VCC		VCC+0.5	
Vhys(RESETB)	施密特触发器电压迟滞			200		mV
RPU	弱上拉等效电阻	VIN = VSS		80		kΩ
VF(RESETB) (1)	输入滤波脉冲				100	ns
VNF(RESETB) (1)	输入非滤波脉冲		300			ns

1. 由设计保证,不在生产中测试。

7.3.14. ADC 特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{ADCIN}	Input voltage range	Single ended	0		V _{ADCREFIN}	V
Vadcrefin	Input range of external reference voltage	Single ended	0		AVCC	V
I _{ADC1}	Active current including reference generator and buffer	200Ksps		2		Ma
I _{ADC2}	Active current without reference generator and buffer	1MSPS		0.5		Ma
Cadcin	ADC input capacitance			16	19.2	Pf
R _{ADC} ⁽¹⁾	ADC sampling switch impedance			1.5		Kohm
R _{AIN} ⁽¹⁾	ADC external input resistor ⁽²⁾				100	Kohm
FADCCLK	ADC clock Frequency				24M	Hz
T _{ADCSTART}	Startup time of reference generator and ADC core			30		Ms
TADCCONV	Conversion time		20	24	28	cycles
ENOB	Effective Bits	1MSPS@VCC>=2.7v 500KSPS@VCC>=2.4v 200KSPS@VCC>=1.8v REF=EXREF		10.3		Bit
		1MSPS@VCC>=2.7v		10.3		Bit

		1		_		
		500KSPS@VCC>=2.4v				
		200KSPS@VCC>=1.8v				
		REF=VCC				
		200KSPS@VCC>=1.8v		0.4		D'4
		REF=internal 1.5V		9.4		Bit
		200KSPS@VCC>=2.8v		0.4		D.:
		REF=internal 2.5V		9.4		Bit
		1MSPS@VCC>=2.7v				
		500KSPS@VCC>=2.4v		69.2		DI
		200KSPS@VCC>=1.8v		68.2		Db
		REF=EXREF				
		1MSPS@VCC>=2.7v				
G) ID	Signal to Noise	500KSPS@VCC>=2.4v		60.2		D.
SNR	Ratio	200KSPS@VCC>=1.8v		68.2		Db
		REF=VCC				
		200KSPS@VCC>=1.8v		60		DI
		REF=internal 1.5V		60		Db
		200KSPS@VCC>=2.8v				
		REF=internal 2.5V		60		Db
DMI (1)	D:00 .: 1 1: ::	200KSps;	1		1	I CD
DNL ⁽¹⁾	Differential non-linearity	VREF=EXREF/AVCC	-1		1	LSB
ъп (1)	T. 1 1: '	200KSps;	2		2	I CD
INL ⁽¹⁾	Integral non-linearity	VREF=EXREF/AVCC	-3		3	LSB
Eo	Offset error			0		LSB
Eg	Gain error			0		LSB

- 1. 由设计保证,不在生产中测试。
- 2. ADC 的典型应用如下图所示:

对于 0.5LSB 采样误差精度要求的条件下,外部输入阻抗的计算公式如下:

$$R_{AIN} = \frac{M}{F_{ADC} * C_{ADC} * (N+1) * ln(2)} - R_{ADC}$$

其中 F_{ADC} 为 ADC 时钟频率,寄存器 ADC_CR0<3:2>可设定其与 PCLK 的关系,如下表:

下表为 ADC 时钟频率 F_{ADC} 和 PCLK 分频比关系:

ADC_CR0<3:2>	N
00	1
01	2
10	4
11	8

M 为采样周期个数,由寄存器 ADC_CR0<13:12>设定。

下表为采样时间 t_{sa} 和 ADC 时钟频率 F_{ADC} 的关系:

ADC_CR0<13:12>	М
00	4
01	6
10	8
11	12

下表为 ADC 时钟频率 F_{ADC} 和外部电阻 R_{AIN} 的关系(M=12,采样误差 0.5LSB 的条件下):

R _{AIN} (Kohm)	$F_{ADC}(\mathrm{KHz})$
10	5600
30	2100
50	1300
80	820
100	660
120	550
150	450

对于上述典型应用,应注意:

- 尽量减小 ADC 输入端口 AIN_X 的寄生电容 $C_{PARACITIC}$;
- 除了考虑 R_{AIN} 值外,如果信号源 V_{AIN} 的内阻较大时,也需要加入考虑。

7.3.15. VC 特性

符号	参数	条件	最小值	典型值	最大值	单位
Vin	Input voltage range		0		5.5	V
Vincom	Input common mode range		0		VCC-0.2	V
Voffset	Input offset	常温25℃ 3.3V	-10		+10	mV
Icomp	Comparator's current	VCx_BIAS_SEL=00		0.3		uA
		VCx_BIAS_SEL=01		1.2		
		VCx_BIAS_SEL=10		10		
		VCx_BIAS_SEL=11		20		
Tresponse	Comparator's response time	VCx_BIAS_SEL=00		20		uS
	when one input cross another	VCx_BIAS_SEL=01		5		
		VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Tsetup	Comparator's setup time when	VCx_BIAS_SEL=00		20		uS
	ENABLE.	VCx_BIAS_SEL=01		5		
	Input signals unchanged.	VCx_BIAS_SEL=10		1		
		VCx_BIAS_SEL=11		0.2		
Twarmup	From main bandgap enable to			20		uS
	1.2V BGR reference. Temp					
	sensor voltage. ADC internal					
	1.5V \ 2.5V reference stable					
Tfilter	Digital filter time	VC_debounce = 000		7		μS
		VC_debounce = 001		14		
		VC_debounce = 010		28		
		VC_debounce = 011		112		
		VC_debounce = 100		450		
		VC_debounce = 101		1800		
		VC_debounce = 110		7200		
		VC_debounce = 111		28800		

8. 封装信息

8.1 封装尺寸

QFN20 封装

	OFN	20 (3x3) milli	meter				
Symbol	Min	Nom	Max				
A	0.70	0.75	0.80				
A1	0.70	0.02	0.05				
	0.15						
b	0.15	0.20	0.25				
С	0.18	0.20	0.25				
D	2.90	3.00	3.10				
D2	1.55	1.65	1.75				
e		0.40BSC					
Ne		1.60BSC					
Nd		1.60BSC					
Е	2.90	3.00	3.10				
E2	1.55	1.65	1.75				
L	0.35	0.40	0.45				
h	0.20	0.25	0.30				
L/F 载体尺 寸(Mil)	75 x 75						

TSSOP20 封装

	TSSOP20 millimeter								
Symbol	Min	Nom	Max						
A			1.20						
A1	0.05		0.15						
A2	0.80	1.00	1.05						
A3	0.39	0.44	0.49						
b	0.20		0.29						
b1	0.19	0.22	0.25						
c	0.13		0.18						
c1	0.12	0.13	0.14						
D	6.40	6.50	6.60						
Е	6.20	6.40	6.60						
E1	4.30	4.40	4.50						
e		0.65BSC							
L	0.45	0.60	0.75						
L1		1.00BSC							
θ	0		8°						

NOTE:

 Dimensions "D" and "E1" do not include mold flash.

TSSOP16 封装

SECTION B-B

	TSSOP16 millimeter								
Symbol	Min	Nom	Max						
A			1.20						
A1	0.05		0.15						
A2	0.90	1.00	1.05						
A3	0.39	0.44	0.49						
b	0.20		0.28						
b1	0.19	0.22	0.25						
С	0.13		0.17						
c1	0.12	0.13	0.14						
D	4.90	5.00	5.10						
Е	6.20	6.40	6.60						
E1	4.30	4.40	4.50						
e		0.65BSC							
L	0.45	0.60	0.75						
L1		1.00BSC							
θ	0		8°						

NOTE:

 Dimensions "D" and "E1" do not include mold flash.

8.2 丝印说明

QFN20 封装

TSSOP20 封装

TSSOP16 封装

9. 订购信息

Part Number	Flash	RAM	UART	LPUART	SPI	I2C	ADC	VComp	I/O	RTC	LVD	Timer	LPTimer	PWM	PCA	CRC16	Vdd	Package	脚间距	芯片厚度
HC32L110C6UA-SFN20TR	32K	4K	2	1	1	1	9*12Bit	2	16+1	√	√	6*16Bit	1*16Bit	6*16Bit	√	√	1.8~5.5v	QFN20(3*3)	0.4mm	0.75mm
HC32L110C6PA-TSSOP20	32K	4K	2	1	1	1	9*12Bit	2	16+1	√	√	6*16Bit	1*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP20	0.65mm	1.2mm
HC32L110B6PA-TSSOP16	32K	4K	2	1	1	1	6*12Bit	2	12+1	√	√	6*16Bit	1*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP16	0.65mm	1.2mm
HC32L110C4UA-SFN20TR	16K	2K	2	1	1	1	9*12Bit	2	16+1	√	√	6*16Bit	1*16Bit	6*16Bit	√	√	1.8~5.5v	QFN20(3*3)	0.4mm	0.75mm
HC32L110C4PA-TSSOP20	16K	2K	2	1	1	1	9*12Bit	2	16+1	√	√	6*16Bit	1*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP20	0.65mm	1.2mm
HC32L110B4PA-TSSOP16	16K	2K	2	1	1	1	6*12Bit	2	12+1	√	√	6*16Bit	1*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP16	0.65mm	1.2mm
HC32L110B4PA-TSSOP16TR	16K	2K	2	1	1	1	6*12Bit	2	12+1	√	√	6*16Bit	1*16Bit	6*16Bit	√	√	1.8~5.5v	TSSOP16	0.65mm	1.2mm

10. 版本记录 & 联系方式

版本	修订日期	修订内容摘要
Rev1.0	2018/1/23	HC32L110 系列数据手册初版发布。
Rev1.1	2018/4/4	版本更新。
Rev1.2	2018/4/17	修正 Flash 参数。
Rev1.3	2018/5/3	更新 VC 电气参数。
Rev1.4	2018/9/25	调整版式,更新第7章电气特性,增加第9章订购信息。
Rev1.5	2018/11/15	第 8 章中增加"丝印说明",更正 QFN20 / Tssop20 / Tssop16 封装尺寸。
Rev1.6	2018/11/27	修改名称: UART2→LPUART, 第 3、4 章增加"注"。
Rev1.7	2019/2/22	修正以下数据: ①ADC 特性 ②ESD 特性 ③存储器特性中 ECFLASH 最小值 ④
		QFN20/TSSOP16 封装丝印说明 ⑤封装尺寸中增加 NOTE ⑥更新订购信息 ⑦引脚
		配置中加入 AVCC/AVSS。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址:上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

