Introduction to deep learning with PyTorch INTRODUCTIONTODEEPLEARNINGWITHPYTORCH

By Hina Ali(Exercises collected from multiple sources)

ML vs DL

- Machine learning: relies on hand-crafted feature engineering
- Deep learning: enables feature learning from raw data
- DEEP LEARNING
- Subset of ML
- Inspired by connections in the human brain
- Models require large amount of data

PyTorch: a deep learning framework

- PyTorch is:
- One of the most popular deep learning frameworks
- The framework used in many published deep learning papers intuitive and user-friendly
- Has much in common with NumPy
- Importing PyTorch and related packages
 - PyTorch import in Python
 - import torch
 - PyTorch supports
 - image data with torchvision audio data with torchaudio text data with torchtext

Tensors: the building blocks of networks in PyTorch

Load from list

```
import torch

lst = [[1, 2, 3], [4, 5, 6]]

tensor = torch.tensor(lst)
```

Load from NumPy array

```
np_array = np.array(array)
np_tensor = torch.from_numpy(np_array)
```

Like NumPy arrays, tensors are multidimensional representations of their elements

Tensor attributes

Tensor shape

```
lst = [[1, 2, 3], [4, 5, 6]]
tensor = torch.tensor(lst)
tensor.shape
```

```
torch.Size([2, 3])
```

Tensor data type

```
tensor.dtype
```

```
torch.int64
```

Tensor device

tensor.device

```
device(type='cpu')
```

Deep learning often requires a GPU, which, compared to a CPU can offer:

- parallel computing capabilities
- faster training times
- better performance

Getting started with tensor operations

Compatible shapes

Addition / subtraction

```
a + b
```

```
<u>tensor(</u>[[3, 3], [5, 5]])
```

Incompatible shapes

Addition / subtraction

```
a + c
```

```
RuntimeError: The size of tensor a

(2) must match the size of tensor b (3)

at non-singleton dimension 1
```

Getting started with tensor operations

Element-wise multiplication

```
tensor([[2, 2],
       [6, 6]])
```

- ... and much more
 - Transposition
 - Matrix multiplication
 - Concatenation
- Most NumPy array operations can be performed on PyTorch tensors

Creating our first neural network

INTRODUCTION TO DEEP LEARNING WITH PYTORCH

One of the Workflows(End to End)

Input Output

Input


```
import torch.nn as nn
```

```
## Create input tensor with three features
input tensor = torch.tensor(
    [[0.3471, 0.4547, -0.2356]]
)
```

Input


```
import torch.nn as nn
```

```
## Create input tensor with three features
input tensor = torch.tensor(
   [[0.3471, 0.4547, -0.2356]])
```

A linear layer takes an input, applies a linear function, and returns output

```
# Define our first linear layer
linear layer = nn.Linear(in features=3, out features=2)
```

Input Output


```
import torch,nn as nn
## Create input tensor with three features
input tensor = torch.tensor(
    [[0.3471, 0.4547, -0.2356]])
# Define our first linear layer
linear layer = nn.Linear(in features=3, out features=2)
# Pass input through linear layer
output = linear layer(input tensor)
print(output)
```

```
<u>tensor(</u>[[-0.2415, -0.1604]],

grad_fn=<AddmmBackward0>)
```

Getting to know the linear layer operation

Each linear layer has a .weight

and bias property

linear layer.weight

```
linear layer.bias
```

```
Parameter containing: tensor([0.0310, 0.1537], requires grad=True)
```

Getting to know the linear layer operation

```
output = linear layer(input tensor)
```

For input x, weights w_0 and bias b_0 , the linear layer performs

$$y_0 = W_0 \cdot X + b_0$$

```
In PyTorch: output = W0 @ input + b0
```

- Weights and biases are initialized randomly
- They are not useful until they are tuned

Our two-layer network summary

- Input dimensions: 1×3
- Linear layer arguments:
 - o in features = 3
 - out features = 2
- Output dimensions: 1×2
- Networks with only linear layers are called fully connected
- Each neuron in one layer is connected to each neuron in the next layer

Input Output

Stacking layers with nn.Sequential()

```
# Create network with three linear layers
model = nn.Sequential(
    nn.Linear(10, 18),
    nn.Linear(18, 20),
    nn.Linear(20, 5)
)
```

Stacking layers with nn.Sequential()

```
print(input_tensor)
```

```
tensor([[-0.0014, 0.4038, 1.0305, 0.7521, 0.7489, -0.3968, 0.0113, -1.3844, 0.8705, -0.9743]])
# Pass input tensor to model to obtain output
output tensor = model(input tensor)
print(output tensor)
```

```
<u>tensor(</u>[[-0.0254, -0.0673, 0.0763, 0.0008, 0.2561]], grad fn=<AddmmBackward0>)
```

- We obtain output of 1×5 dimensions
- Output is still not yet meaningful

Discovering activation functions INTRODUCTION TO DEEPLEARNING WITH PY TORCH

- Stacked linear operations
- We have only seen linear layer networks
- Each linear layer multiplies its respective input with layer weights and adds biases
- Even with multiple stacked linear layers, output still has linear relationship with input

Why do we need activation functions?

- Activation functions add non-linearity to the network
- A model can learn more complex relationships with non-linearity
- SIGMOID Activation Function(first introduced with the algorithm of Logistic regression aka logistic function)
- Binary Classification
- To predict whether animal is 1 (mammal) or 0 (not mammal),
- we take the pre-activation (6), pass it to the sigmoid

Binary Classification

- Obtain a value between 0 and 1. shows probability of x belonging to a particular class.
- Using the common threshold of 0.5:
 - If output is > 0.5, class label = 1 (mammal)
 - If output is <= 0.5, class label = 0 (not mammal)

Logistic Regression

$$\hat{y} = \sigma(X) = \sigma(w_0 x_0 + w_1 x_1 + \dots + w_n x_n)$$

x0

x1

x2

Σ

σ

Prediction

Meet the sigmoid function

```
import torch
import torch.nn as nn
input tensor = torch.tensor([[6.0]])
sigmoid = nn.Sigmoid()
output = sigmoid(input tensor)
```

Activation function as the last layer

```
model = nn.Sequential(
    nn.Linear(6, 4), # First linear layer
    nn.Linear(4, 1), # Second linear layer
    nn.Sigmoid() # Sigmoid activation function
)
```

Note. Sigmoid as last step in network of linear layers is **equivalent** to traditional logistic regression.

Softmax

- used for multi-class classification problems
- takes N-element vector as input and outputs vector of same size
- say N=3 classes:
- bird (0), mammal (1), reptile (2)
- output has three elements, so softmax has three elements
- outputs a probability distribution:
- each element is a probability (it's bounded between 0 and 1)
- the sum of the output vector is equal to

Getting acquainted with softmax

```
import torch
import torch.nn as nn
# Create an input tensor
input tensor = torch.tensor(
    [[4.3, 6.1, 2.3]]
# Apply softmax along the last dimension
probabilities = nn.Softmax(dim=-1)
output tensor = probabilities(input tensor)
print(output tensor)
```

```
tensor([[0.1392, 0.8420, 0.0188]])
```

- dim = -1 indicates softmax is applied to the input tensor's last dimension
- nn.Softmax() can be used as last step in nn.Sequential()

Sigmoid vs SoftMax

- But if both functions map the same transformation. Difference between them?
- Sigmoid is used for binary classification methods where we only have 2 classes,
- while SoftMax applies to multiclass problems. In fact, the SoftMax function is an extension of the Sigmoid function.

Figure 3. Why sigmoid function can't be used for multiclass classification. Notice that the output vector elements don't add up to 1. Image by author

3 yure 5. Using SoftMax we obtain a probability distribution over all the predicted classes. Note: The results have been approximated to 3 decimal places to facilitate reading. Image by author