Problemos

- 1. Obtenha a distribuição de \hat{p} quando p=0,2 e n=5. Depois calcule $E(\hat{p})$ e $Var(\hat{p})$.
- 2. Encontre um limite superior para $Var(\hat{p})$ quando n=10, 25, $100 \, \mathrm{e} \, 400$. Faça o gráfico em cada caso.
- 3. Suponha um experimento consistindo de n provas de Bernoulli, com probabilidade de sucesso p. Seja X o número de sucessos, e considere os estimadores

(a) $\hat{p}_1 = X/n$; (b) $\hat{p}_2 = \begin{cases} 1, & \text{se a primeira prova resultar sucesso,} \\ 0, & \text{caso contrário.} \end{cases}$

Determine a esperança e a variância de cada estimador. Por que \hat{p}_2 não é um "bom" estimador?

- 4. Verifique se \hat{p}_1 e \hat{p}_2 do Problema 3 são consistentes.
- 5. Tem-se duas fórmulas distintas para estimar um parâmetro populacional θ . Para ajudar a escolher a melhor, simulou-se uma situação em que θ = 100. Dessa população retiraram-se 1.000 amostras de dez unidades cada uma, e aplicaram-se ambas as fórmulas às dez

unidades de cada amostra. Desse modo, obtêm-se $1.000\,\mathrm{valores}$ para a primeira fórmula t_1 e outros $1.000\,\mathrm{valores}$ para a segunda fórmula t_2 , cujos estudos descritivos estão resumidos abaixo. Qual das duas fórmulas você acha mais conveniente para estimar θ . Por quê?

Fórmula 1	Fórmula 2
$\overline{t}_1 = 102$ $Var(t_1) = 5$	$t_2 = 100$ Var $(t_2) = 10$
Mediana = 100	Mediana = 100
Moda = 98	Moda = 100

ie

1-X

IO

a-

'), 1e

0

X-

or

э"

os

a-

1)

3)

10

de

os

Problemas

- 6. Estamos estudando o modelo $y_r = \mu + \epsilon_r$, para o qual uma amostra de cinco elementos produziu os seguintes valores para y_r : 3, 5, 6, 8, 16.
 - (a) Calcule os valores de $S(\mu) = \sum_{i} (y_i \mu)^2$, para $\mu = 6, 7, 8, 9, 10$, e faça o gráfico de $S(\mu)$ em relação a μ . Qual o valor de μ que parece tornar mínimo $S(\mu)$?

- (b) Derivando $S(\mu)$ em relação a μ , e igualando o resultado a zero, você encontrará o EMQ de μ . Usando os dados acima, encontre a estimativa para μ e compare com o resultado do item anterior.
- 7. Os dados abaixo referem-se ao índice de inflação (y_i) de 1967 a 1979.

Ano (t)	1967	1969	1971	1973	1975	1977	1979
Inflação (y,)	128	192	277	373	613	1.236	2.639

- (a) Faça o gráfico de y_t contra t.
- (b) Considere ajustar o modelo $y_t = \alpha + \beta t + \varepsilon_t$ aos dados. Encontre as estimativas de mínimos quadrados de α e β .
- (c) Qual seria a inflação em 1981?
- (d) Você teria alguma restrição em adotar o modelo linear nesse caso?
- 8. No Problema 7, determinamos os estimadores de mínimos quadrados para o modelo $y_t = f(t) + \varepsilon_t$, no qual $f(t) = \alpha + \beta t$. Suponha agora que

$$f(t) = \alpha + \beta x_t, \quad t = 1, \dots, n,$$

ou seja, temos n valores fixos x_1, \ldots, x_n de uma variável fixa (não aleatória) x. Obtenha os EMQ de α e β para esse modelo.

9. Aplique os resultados do Problema 8 para os dados a seguir:

t	1	2	3	4	5	6	7	8	9	10
x_{t}	1,5	1,8	1,6	2,5	4,0	3,8	4,5	5,1	6,5	6,0
y_t	66,8	67,0	66,9	67,6	68,9	68,7	69,3	69,8	71,0	70,6

Proplemos.

Na função de verossimilhança L(p) da binomial, suponha que n=5 e x=3. Construa o gráfico da função para os possíveis valores de p=1/5, 2/5, 3/5, 4/5, e verifique que o máximo ocorre realmente para p=3/5.

Observa-se uma sequência de ensaios de Bernoulli, independentes, com parâmetro P, até a ocorrência do primeiro sucesso. Se X indicar o número de ensaios necessários:

(a) Mostre que $P(X = x) = (1 - p)^{x-1}p$ (distribuição geométrica).

- (b) Repetiu-se esse experimento n vezes e, em cada um deles, o número de ensaios necessários foram x_1, x_2, \ldots, x_n . Encontre o EMV para p.
- Usando uma moeda, repetiu-se esse experimento 5 vezes, e o número de ensaios necessários até a ocorrência da primeira coroa foi 2, 3, 1, 4, 1, respectivamente. Qual a estimativa de MV para p = probabilidade de ocorrência de coroa nessa moeda? Existiria outra maneira de estimar p?
- Suponha que X seja uma v.a. com distribuição normal, com média μ e variância 1. Obtenha o EMV de μ , para uma amostra de tamanho n, (x_1, \ldots, x_n) .
- 13. Considere Y uma v.a. com distribuição de Poisson, com parâmetro $\lambda > 0$. Obtenha a EMV de λ , baseado numa amostra de tamanho n.