an HCF domain R and suppose that x is expressible as Proof of Proposition 2. Let x be a non zero non unit in subvalued primes.

 $x = y_1 y_2 \cdots y_m$; y; are packets and $(y_1, y_K) = 1$, $j \neq K$ ---(E). Further suppose that x is also expressible as $x = x_1x_2 \cdot \cdot \cdot x_n$; x_i are packets and $(x_i, x_j) = 1, i \neq j ---(A)$.

is a unit or x_{12} is (cf Def.4). In other words $x_{1} \mid y_{1}$ or and $x_{12} \mid y_{2}y_{3} \dots y_{m}$. But since $(y_{19}y_{8}y_{5} \dots y_{m}) = 1$, either x_{11} Now $x_i | y_1 y_2 \dots y_m$, implies that $x_i = x_{11} x_{12}$ such that $x_{11} | y_1$

contradiction) and obviously for each $x_i \mid x$ in (A) there $x_1 \mid x_k \mid t \cdot e_* \mid k = 1$ (since if $k \neq 1$ then $(x_k, x_1) = 1$ a an x_k such that $y_j|x_k$. Moreover $x_k|y_j$ and $y_j|x_k$ implies that nition of a packet as above, we conclude that there exists process and considering $y_j | x_1 x_2 \dots x_n$ and using the defithere exists only one y; such that x, |y; Reversing the $x_1 \mid_{y_2 y_3 \dots y_m}$, and proceeding in this manner we can show that

of Vj. And consequently n = m and the factorizations (A) and exists a $y_j \mid x$ in expression (B) such that x_i is an associate

(B) are unique up to associates and a suitable permutation

Definition 5. An HCF domain R will be called a Unique of the packets.

expressible as the product of a finite number of mutually Representation Domain if every non zero non unit of R is

Now to show that a URD is not necessarily an HCF ring co-prime packets.

Example 1. Let R be a PID, K its field of fractions and of Krull type we put forward the following

S = R + xK[x] ; called the almost integral closure let x be an indeterminate over R. The integral domain

of R (cf [24] page 9) is a Bezout domain.