Capítulo 3

LA RECTA EN \mathbb{R}^2

Está bien celebrar el éxito, pero es más importante prestar atención a las lecciones del fracaso.

BILL GATES

LOGRO DE LA SESIÓN:

"Al finalizar la sesión, el estudiante genera las distintas ecuaciones de una recta mediante dos puntos y resuelve ejercicios aplicados a la ingeniería donde utiliza el concepto de Pendiente de la Recta"

3.1. La Recta

De manera sencilla uno puede ubicar dos puntos en una hoja y unirlos mediante una regla, a dicha grafica se le llama recta, pero la matemática muchas veces, solicita hallar la ecuación de dicha recta y no solo eso; sino una forma específica (su forma vectorial, paramétrica, simétrica, general, ordinaria, etc.). ¿Cómo hacerlo?...

La Recta Mediante la Teoría de Vectores

Para hallar la ecuación de una recta, es necesario un punto de paso y un vector director

3.1.1. Ecuación Vectorial

Denota la ecuación de una recta L como aquella que pasa por un punto P_0 y en la di-

rección de un vector \overrightarrow{v} , está dada por:

$$L: \mathbf{P} = \mathbf{P_0} + \mathbf{t}\overrightarrow{v}$$

Donde:

 \mathbf{P} :punto cualquiera (x, y)

 $\mathbf{P_0}$: punto de paso (x_0, y_0)

 \mathbf{t} : parametro $t \in \mathbb{R}$

 \overrightarrow{v} : vector director (v_1, v_2)

3.1.2. Ecuacion Paramétrica

Es aquella ecuación que resulta de aplicar toda la teoría de vectores a la ecuación vectorial, está dada por:

$$L: \left\{ \begin{array}{l} x = x_0 + tv_1 \\ y = y_0 + tv_2 \end{array} \right.$$

3.1.3. Ecuación Simétrica

Es aquella ecuación que resulta de despejar el parámetro t en cada una de las ecuaciones parámetricas e igualarlas

$$L: \frac{x-x_0}{v_1} = \frac{y-y_0}{v_2} = \mathbf{t}$$

3.1.4. Ecuación General de la Recta

Es aquella que resulta de resolver la ecuación anterior y llegar a la forma:

$$L: Ax + By + C = 0$$

Ejemplo 19. Determine todas las ecuaciones de la recta que pasa por los puntos A(-1,2) y B(7,-4)

Solución. :

La Recta Mediante la Geometría Analítica Para hallar la ecuación de una recta, es necesario un punto de paso y la pendiente de la recta

3.1.5. Ecuación Ordinaria

La ecuación de una recta L que pasa por un punto $P_{\theta}\left(x_{\theta},y_{\theta}\right)$ y cuya pendiente es m, está dada por:

$$L: \quad y - y_0 = m \left(x - x_0 \right)$$

Donde: $m = \frac{y_2 - y_1}{x_2 - x_1}$, siendo (x_1, y_1) ; (x_2, y_2) dos puntos cualesquiera de la recta.

3.1.6. Ecuación General de la Recta

Es aquella que resulta de resolver la ecuación anterior y llega a la forma:

$$L: Ax + By + C = 0$$

Nota: Si se tiene la ecuación general de una recta, se puede obtener su pendiente mediante la fórmula:

$$m = -\frac{A}{B}$$

Ejemplo 20. Determine la Ecuación General de la Recta que pasa por los puntos A(-1,2) y B(7,-4) y halle sus puntos de intersección con los ejes coordenados. Grafique

Solución.:

3.2. Distancia de un Punto a una Recta

La distancia de un punto $Q_{\theta}(x_{\theta}, y_{\theta})$ a la recta $L: Ax + By + C = \theta$ está dada por la fórmula:

$$d(Q_0, L) = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}}$$

Ejemplo 21. Halle la distancia del punto P(6, 12) a la recta que pasa por los puntos A(2, 5) y B(8, 9).

Solución. :

INTRODUCCIÓN A LA MATEMÁTICA PARA INGENIERÍA

Semana 4 Sesión 01

EJERCICIOS EXPLICATIVOS

1. Hallar la ecuación general de la recta que pasa por los puntos $A(\frac{-3}{2},5)$ y $B(7,\frac{-1}{2})$

Solución. :

2. Determine el punto de paso y el vector director de la recta cuya ecuación es: $\frac{7-3x}{-2} = \frac{2y+7}{3}$

Solución. :

R:
$$22x + 34y - 137 = 0$$

3. El dueño de una papelería le compra 100 libretas a un precio de S/12,50 cada una, pero si compra 120 el precio de cada libreta disminuye en S/0,50. Encuentre una ecuación que represente esta relación y determine el costo de cada libreta si se compran 160 libretas.

Solución.:

R:
$$(\frac{7}{3}, -\frac{7}{2}) \overrightarrow{v} = (\frac{2}{3}, \frac{3}{2})$$

4. Determine k tal que el punto P(k,4) sea equidistante de las rectas: $L_1: 13x - 9y - 10 = 0$ y $L_2: x + 3y - 6 = 0$

Solución. :

R:
$$y = -0.025x + 15$$
; 11soles

5. Halle la distancia del punto C=(6,9) a la recta que pasa por los puntos A=(2,5) y B=(10,11)

Solución.:

R:
$$\left\{\frac{16}{18}; \frac{76}{8}\right\}$$

6. Halle los valores de k para que la recta 4x - 2 = -3y - k tenga una distancia de 5 unidades al punto P(2, -3).

Solución. :

INTRODUCCIÓN A LA MATEMÁTICA PARA LA INGENIERÍA

EJERCICIOS PROPUESTOS

Determine todas las ecuaciones de la recta que pasa por los puntos (2, 5) y (4, 8) mediante la teoría de vectores y la geometría analítica.

Solución. :

2. Halle un punto de paso de la recta: 3x - 5y = 20 Luego halle su ecuación vectorial paramétrica y simétrica.

Solución. :

R:
$$3x - 2y + 4 = 0$$

3. Determine la ecuación general y la pendiente de la recta de ecuación: $\begin{cases} x=2+3\alpha\\ y=-1-6\alpha \end{cases}$

Solución.

R:
$$(0, -4)$$
 $P = (0, -4) + t(5, 3)$

4. En una empresa se emite la siguiente información: para producir 10 unidades de un producto el costo es de \$ 40 y el costo para 20 unidades es de \$ 70. Si el costo C está relacionado de forma lineal con la producción q, determine el costo de producir 35 unidades.

Solución.:

R:
$$2x + y - 3 = 0$$

INTRODUCCIÓN A LA MATEMÁTICA PARA LA INGENIERÍA

TAREA DOMICILIARIA

- 1. Determine todas las ecuaciones de la recta que pasa por: A(-1,-5); B(3,1) y C(5,4)
- 2. Grafique la recta de ecuación: $\frac{2-x}{3} = \frac{3y+5}{2}$
- 3. Hallar la ecuación general de la recta que pasa por A(1,5) y tiene como vector director $\overrightarrow{v}=(-2,1)$
- 4. Sabemos que una recta pasa por el punto A(3,2) y que determina sobre los ejes coordenados, segmentos de doble longitud en el eje de abscisas, que en el de ordenadas. Hallar la ecuación de esta recta.
- 5. El precio de un automóvil es de \$20000, si se deprecia de manera lineal, de tal manera que después de 10 años de uso su precio es de \$4000.
 - a. Expresar el valor del automóvil como función de los años de uso.
 - b. Determinar cuál será el precio del automóvil después de 7 años.
- 6. El costo de fabricar 10 maquinas de escribir al día es de \$ 350, mientras que cuesta \$ 600 producir 20 maquinas del mismo tipo al día. Suponiendo un modelo de costo lineal.
 - a) Determinar la expresión del costo total de producir dichas maquinas en función del numero de maquinas.
 - b) Determinar cuál será el costo de producir 40 maquinas.
- 7. Determine la ecuación de la recta que pasan por el punto P(k-1,3k), siendo k>0 y cuyo vector director es $\overrightarrow{v}=(\frac{3}{2},1)$ y además su distancia del punto mencionado a la recta $L_1:4y-3x-5=0$ es de 5 unidades
- 8. El precio de una máquina es de \$ 300, si se deprecia de manera lineal, de tal manera que después de 7 años de uso su precio es de \$20. Hallar un expresión para el precio en función de los años de uso x y encontrar el valor de la máquina después de 4 años de uso.

Respuesta:

```
1: 6x - 4y - 14 = 0

3: x + 2y - 11 = 0

4: x + 2y - 7 = 0

5: y = 20000 - 1600x; 8800

6: y = 25x + 100; 1100

7: 2x - 3y + 23 = 0

8: $ 140
```