Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" Вариант - 4

Выполнил						
			(фамилия, и.о.)	(подпись		
Проверил			(фамилия, и.о.)	(подпись)		
			(4			
""	_ 20г.		Санкт-Петербург,	20г.		
Работа выполнен	на с оценкой	_				
Лата зашиты "	"	20	r.			

Задание

Цель работы

Изучение частотных характеристик типовых динамических звеньев и способов их построения; построение частотных характеристик, расчёт передаточных функций для заданных типовых звеньев.

В работе предстоит построить АЧХ, ФЧХ, АФЧХ и ЛАФЧХ исследуемых звеньев, а также асимптотические ЛАЧХ, построенные графо-аналитическим методом. На вход исследуемого звена подаётся синусоидальный сигнал постоянной амплитуды. Надо измерить амплитуду выходного сигнала и сдвиг фаз между входным и выходным сигналами при различных частотах - таким образом будут получены данные для построения частотных характеристик.

Таблица 1 – Исходные элементарные звенья

Тип звена	Передаточная функция
Апериодическое 1-го порядка	$\frac{k}{Ts+1}$
Колебательное	$\frac{k}{T^2s^2 + 2\xi Ts + 1}$
Дифференцирующее с замедлением	$\frac{ks}{Ts+1}$

Таблица 2 – Параметры

k	Т	ξ
8	4	0.3

1 Исследование апериодического 1-го порядка

Передаточная функция исследуемого звена:

$$W(s) = \frac{k}{Ts+1} \tag{1}$$

Найдём выражения для АЧХ и ФЧХ:

$$W(j\omega) = \frac{k(1 - T\omega j)}{T^2\omega^2 + 1} \tag{2}$$

$$A(\omega) = \frac{k}{\sqrt{T^2 \omega^2 + 1}} \tag{3}$$

$$\psi(\omega) = -\arctan T\omega \tag{4}$$

Экспериментальные данные, полученные по результатам моделирования, представлены в таблице 3.

Таблица 3 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	1.94	5.76	-75.96
1.26	0.1	1.56	3.85	-78.77
1.58	0.2	1.25	1.91	-81.04
2	0.3	0.99	$-4.71 \cdot 10^{-2}$	-82.86
2.51	0.4	0.79	-2.02	-84.32
3.16	0.5	0.63	-4.01	-85.48
3.98	0.6	0.5	-6	-86.41
5.01	0.7	0.4	-7.99	-87.14
6.31	0.8	0.32	-9.99	-87.73
7.94	0.9	0.25	-11.98	-88.2
10	1	0.2	-13.98	-88.57
12.59	1.1	0.16	-15.98	-88.86
15.85	1.2	0.13	-17.98	-89.1
19.95	1.3	0.1	-19.98	-89.28
25.12	1.4	$7.96 \cdot 10^{-2}$	-21.98	-89.43
31.62	1.5	$6.32 \cdot 10^{-2}$	-23.98	-89.55
39.81	1.6	$5.02 \cdot 10^{-2}$	-25.98	-89.64
50.12	1.7	$3.99 \cdot 10^{-2}$	-27.98	-89.71
63.1	1.8	$3.17 \cdot 10^{-2}$	-29.98	-89.77
79.43	1.9	$2.52 \cdot 10^{-2}$	-31.98	-89.82
100	2	$2 \cdot 10^{-2}$	-33.98	-89.86

Ha рисунке 1 представлены частотные характеристики апериодического 1-го порядка.

Рисунок 1 — Частотные характеристики апериодического 1-го порядка

2 Исследование колебательного

Передаточная функция исследуемого звена:

$$W(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1} \tag{5}$$

Найдём выражения для АЧХ и ФЧХ:

$$W(j\omega) = \frac{k\omega j}{-T^2\omega^2 + 2\xi T\omega j + 1} \tag{6}$$

$$A(\omega) = \frac{k}{\sqrt{(1 - \omega^2 T^2)^2 + 4\xi^2 \omega^2 T^2}}$$
 (7)

$$\psi(\omega) = -\arctan\frac{2\xi\omega T}{1 - \omega^2 T^2} \tag{8}$$

Экспериментальные данные, полученные по результатам моделирования, представлены в таблице 4.

Таблица 4 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	0.53	-5.57	9.09
1.26	0.1	0.33	-9.74	7.07
1.58	0.2	0.2	-13.84	5.54
2	0.3	0.13	-17.91	4.37
2.51	0.4	$7.99 \cdot 10^{-2}$	-21.95	3.45
3.16	0.5	$5.03 \cdot 10^{-2}$	-25.98	2.73
3.98	0.6	$3.17 \cdot 10^{-2}$	-29.99	2.17
5.01	0.7	$1.99 \cdot 10^{-2}$	-34	1.72
6.31	0.8	$1.26 \cdot 10^{-2}$	-38.01	1.36
7.94	0.9	$7.93 \cdot 10^{-3}$	-42.01	1.08
10	1	$5 \cdot 10^{-3}$	-46.02	0.86
12.59	1.1	$3.16 \cdot 10^{-3}$	-50.02	0.68
15.85	1.2	$1.99 \cdot 10^{-3}$	-54.02	0.54
19.95	1.3	$1.26 \cdot 10^{-3}$	-58.02	0.43
25.12	1.4	$7.93 \cdot 10^{-4}$	-62.02	0.34
31.62	1.5	$5 \cdot 10^{-4}$	-66.02	0.27
39.81	1.6	$3.15 \cdot 10^{-4}$	-70.02	0.22
50.12	1.7	$1.99 \cdot 10^{-4}$	-74.02	0.17
63.1	1.8	$1.26 \cdot 10^{-4}$	-78.02	0.14
79.43	1.9	$7.92 \cdot 10^{-5}$	-82.02	0.11
100	2	$5 \cdot 10^{-5}$	-86.02	$8.59 \cdot 10^{-2}$

На рисунке 2 представлены частотные характеристики колебательного

Рисунок 2 — Частотные характеристики колебательного

3 Исследование дифференцирующего с замедлением

Передаточная функция исследуемого звена:

$$W(s) = \frac{ks}{Ts+1} \tag{9}$$

Найдём выражения для АЧХ и ФЧХ:

$$W(j\omega) = \frac{K\omega j}{1 + T\omega j} \tag{10}$$

$$A(\omega) = \frac{K\omega}{\sqrt{1 + T^2 \omega^2}} \tag{11}$$

$$\psi(\omega) = \frac{\pi}{2} - \arctan \omega T \tag{12}$$

Экспериментальные данные, полученные по результатам моделирования, представлены в таблице 5.

Таблица 5 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	1.94	5.76	-14.04
1.26	0.1	1.96	5.85	-11.23
1.58	0.2	1.98	5.91	-8.96
2	0.3	1.98	5.95	-7.14
2.51	0.4	1.99	5.98	-5.68
3.16	0.5	1.99	5.99	-4.52
3.98	0.6	2	6	-3.59
5.01	0.7	2	6.01	-2.86
6.31	0.8	2	6.01	-2.27
7.94	0.9	2	6.02	-1.8
10	1	2	6.02	-1.43
12.59	1.1	2	6.02	-1.14
15.85	1.2	2	6.02	-0.9
19.95	1.3	2	6.02	-0.72
25.12	1.4	2	6.02	-0.57
31.62	1.5	2	6.02	-0.45
39.81	1.6	2	6.02	-0.36
50.12	1.7	2	6.02	-0.29
63.1	1.8	2	6.02	-0.23
79.43	1.9	2	6.02	-0.18
100	2	2	6.02	-0.14

На рисунке 3 представлены частотные характеристики дифференцирующего с замедлением .

Рисунок 3 — Частотные характеристики дифференцирующего с замедлением

Вывод

В лабораторной работе были исследованы следующие элементарные звенья: апериодическое 1-го порядка, колебательное и дифференцирующее с замедлением . Были найдены частотные характеристики, а также построены графо-аналитическим методом асимптотические ЛАЧХ, к которым сходятся полученные экспериментально графики.