LIBRARY

Now 1 - DITGRADUATE SCHOOL

MONTEKEY, CALIFURNIA 93940

NAVAL POSTGRADUATE SCHOOL. Monterey, California

HYDROGRAPHIC DATA FROM THE OPTOMA PROGRAM,
OPTOMA15,
24 JANUARY - 23 FEBRUARY 1985

by

Paul A. Wittmann Edward A. Kelley, Jr. Christopher N.K. Mooers

April 1985

Approved for public release; distribution unlimited.

FEDDOCS D 208.14/2 NPS-68-85-016

Prepared for:
Office of Naval Research
Environmental Sciences Directorate (Code 420)
Arlington, VA 22217

F. don! 202182. 113-68-82-014

DUDLEY KNOX LIBRARY
NAVAL POSTGRADUATE SCHOOL
MONTEREY 98943-5101

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943

Commodore R.H. Shumaker Superintendent

David A. Schrady Provost

This report is for the research project "Ocean Prediction Through Observations, Modeling and Analysis" sponsored by the Physical Oceanography Program of the Office of Naval Research under Program Element 61153N.

Reproduction of all or part of this report is authorized.

This report was Prepared by:

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION	READ INSTRUCTIONS BEFORE COMPLETING FORM	
NPS 68-85-016	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
Hydrographic Data From The OPTO OPTOMA15	5. TYPE OF REPORT & PERIOD COVERED Report for October 1982 to April 1985	
24 Jan to 23 Feb 1985 AUTHOR(*) Paul A. Wittmann, Edward A. Kei Christopher N.K. Mooers	lley, Jr.,	6. PERFORMING ORG. REPORT NUMBER 8. CONTRACT OR GRANT NUMBER(*)
Performing organization name and address Naval Postgraduate School Monterey, CA 93943	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 61153W NO001484WR24501	
Office of Naval Research Code 420 Arlington, VA 22217	April 1985 13. NUMBER OF PAGES 105	
MONITORING AGENCY NAME & ADDRESS(II different	from Controlling Office)	15. SECURITY CLASS. (of this report) Unclassified 15e. DECLASSIFICATION DOWNGRADING SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the ebetrect entered in Block 20, If different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse elde if necessary and identify by block number)

California Current System Physical Oceanography Dynamic Oceanography

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)

The two cruises, Leg DI and DII, and one AXBT flight Leg P were undertaken in January and February 1985. This report presents the hydrographic data acquired by XBT, AXBT and CTD casts, from the cruises and the flight.

Hydrographic Data from the OPTOMA Program:

OPTOMA15 24 January - 23 February, 1985

by

Paul A. Wittmann
Edward A. Kelley, Jr.
Christopher N. K. Mooers

Chief Scientists: E. A. Kelley, Jr., M. C. Colton

The **OPTOMA** Program is a joint program of

Department of Oceanography Naval Postgraduate School Monterey, CA 93943. Center for Earth and Planetary Physics Harvard University Cambridge, MA 02138.

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	ii
LIST OF FIGURES	iii
INTRODUCTION	2
DATA ACQUISITION	2
DATA PROCESSING	3
DATA PRESENTATION	4
SECTION 1: LEG DI	7
SECTION 2: LEG P	47
SECTION 3: LEG DII	61
ACKNOWLEDGEMENTS	101
REFERENCE	101
INITIAL DISTRIBUTION LIST	102

LIST OF TABLES

Table No.	Caption	Page
1.	Scientific instruments aboard USNS DE STEIGUER	6
2.	Leg DI Station Listing	11
3.	Leg Leg P Station Listing	51
4.	Leg DII Station Listing	65

LIST OF FIGURES

Figure	No.	Caption	Page
1.		The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.	1
2.		The cruise track for OPTOMA15, Leg DI.	8
3.		XBT and CTD locations for OPTOMA15, Leg DI.	9
4.		Station numbers for OPTOMA15, Leg DI.	10
5	(a)-(k).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA15, Leg DI).	16
6	(a)-(c).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA15, Leg DI).	27
7.	(a)-(b).	Casts deeper than 800m (OPTOMA15, Leg DI).	30
8.		Casts deeper than 1600m (OPTOMA15, Leg DI).	32
9	(a)-(1).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA15, Leg DI).	33
10	(a)-(c).	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA15, Leg DI).	39
11.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA15, Leg DI).	42
12.		Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA15, Leg DI).	43
13.		(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA15, Leg DI).	44
14.		Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (\cdots) . (OPTOMA15, Leg DI).	45

Figure	No.	Caption	Page
15.		The flight track for OPTOMA15, Leg P.	48
16.		AXBT locations for OPTOMA15, Leg P.	49
17.		Station numbers for OPTOMA15, Leg P.	50
18	(a)-(b).	AXBT temperature profiles, staggered by multiples of 5C (OPTOMA15, Leg P).	52
19	(a)-(i).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA15, Leg P).	54
20.		Mean temperature profile, with + and - the standard deviation. (OPTOMA15, Leg P).	60
21.		The cruise track for OPTOMA15, Leg DII.	62
22.		XBT and CTD locations for OPTOMA15, Leg DII.	63
23.		Station numbers for OPTOMA15, Leg DII.	64
24	(a)-(m).	XBT temperature profiles, staggered by multiples of 5C (OPTOMA15, Leg DII).	70
25	(a)-(c).	CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA15, Leg DII).	83
26.		Casts deeper tham 800m (OPTOMA15, Leg DII).	86
27.		Casts deeper than 1600m (OPTOMA15, Leg DII).	87
28	(a)-(1).	Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA15, Leg DII).	88
29	(a)-(b).	Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA15, Leg DII).	95
30.		Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation. (OPTOMA15, Leg DII).	97

Figure No.	Caption	Page
31.	Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA15, Leg DII).	98
32.	(a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown. (OPTOMA15, Leg DII).	99
33.	Mean N^2 profile $()$, with $+$ and $-$ the standard deviation $()$. The N^2 profile from $T(z)$ and $S(z)$ is also shown (\cdots) . (OPTOMA15, Leg DII).	100

Figure 1: The NOCAL and CENCAL subdomains of the OPTOMA Program. Isobaths are shown in meters.

INTRODUCTION

The OPTOMA (Ocean Prediction Through Observations, Modeling and Analysis)
Program, a joint NPS/Harvard program sponsored by ONR, seeks to understand the mesoscale (fronts, eddies, and jets) variability and dynamics of the California Current System and to determine the scientific limits to practical mesoscale ocean forecasting. To help carry out the aims of this project, a series of cruises has been planned in two subdomains, NOCAL and CENCAL, shown in Figure 1.

The two cruises and one AXBT flight comprising OPTOMA15 were undertaken, during January and February 1985, in the USNS DE STEIGUER and a Reserve Patrol Wing P3B aircraft. Hydrographic data were acquired off the coast of California in an area which covered and extended the NOCAL region.

Leg DI was carried out from 24 January to 6 February, Leg P on 27 January and Leg DII from 8 to 23 February. Legs DI and DII sampled an area approximately 300 km square and Leg P sampled an area approximately 260 km square, both areas centered about 190 km off the coast between Pt. Reyes and Pt. Arena.

On each cruise track, transect extremes are identified by letter to aid in cross-referencing the data presented in subsequent figures. On each of these cruises, hydrographic stations were occupied at approximately 19 km along the track. For the AXBT flight, the along-track station spacing varied between about 28 km and about 46 km.

DATA ACQUISITION

Data acquired during Legs DI and DII include XBT and CTD profiles; whereas data acquired during Leg P are AXBT profiles. Bucket surface temperature and water samples for salinity were taken at most CTD stations. A rosette sampler was used on Leg DII to acquire deep salinity samples. These salinity samples

were used for calibration purposes as well as contributions to the data base.

All data were digitized using a Sippican MK9 unit, recorded on data disks using a HP200 series computer, and transferred ashore to the IBM 3033 mainframe computer at the Naval Postgraduate School for editing and processing.

Station positions were determined by Loran C fixes and are claimed to be accurate to within about 0.1 km. Table 1 on page 6 summarizes the various sensors used on the USNS DE STEIGUER and their accuracy. The salinity samples were determined by a Guildline Model 8400 "Autosal" salinometer with an accuracy of +0.003ppt at the Naval Postgraduate School.

During Leg P, shallow (305 m) and deep (750 m) AXBT's were deployed. The aircraft maintained an altitude of approximately 1500 ft and an airspeed of approximately 170 knots. Station positions are accurate to within 1 km, temperature values to within 0.2°C and depth values to within 2% or 5 m (whichever is larger).

DATA PROCESSING

The data processing, such as estimating depth profiles for the XBT and AXBT temperature profiles based on descent speed, and conversion of CTD conductivity to salinity using the algorithm given in Lewis and Perkin (1981), was carried out on the IBM 3033. The data were then edited by removing obvious salinity spikes and eliminating cast failures that were not identified during the cruise. Approximately 99%, 88%, and 99%, of casts were retained in the data sets of Legs DI, P, and DII, respectively. Two Neil Brown CTD's were used as a result of one having a malfunction. From a comparison of the CTD salinities with the salinity samples from the bottles, it was determined that the first CTD's salinities had an offset of -.015 ppt and the second CTD's salinities had an offset of -.012 ppt. The salinities were adjusted acordingly. The CTD data

were interpolated to 5 m intervals and then up and down casts were averaged.

The data have been transferred on digital tape to the National Oceanographic Data Center in Washington, DC.

DATA PRESENTATION

The cruise track, station locations (with XBT's, CTD's and AXBT's identified) and station numbers are shown in the first three figures of each of the next three sections, which present the data from Legs DI, P, and DII, respectively. These figures are followed by a listing of the stations, with their coordinates, the date and time at which the station was occupied, and the surface information obtained at the station.

Vertical profiles of temperature from the XBT casts are shown in staggered fashion. The location of these profiles may be found by reference to the various maps of the cruise tracks. Transect extremes are identified as nearly as possible. The first profile on each plot is shown with its temperature unchanged; to each subsequent profile an appropriate multiple of 5C has been added. Vertical profiles from the CTD's follow (except Leg P). Profiles of temperature are staggered by 5C and those of salinity by 4 ppt.

Isotherms for each transect are shown in the next pages, followed (except Leg P) by isopleths of temperature, salinity and sigma-t, from the CTD's, when four or more casts were acquired along a transect. Based on instrument accuracy and the vertical temperature gradient, it is estimated that depths of isotherms in the main thermocline are uncertain to +20m. The tick marks identify station positions and, again, the transect extremes are shown on these plots.

Each section includes mean profiles of temperature from the XBT's. In addition, for Sections 1 and 3, mean profiles of temperature, salinity and sigma-t from the CTD's are given, as well as a scatter diagram of the T-S pairs

and the mean S(T) curve, with the \pm standard deviation envelope; the data presentation concludes with a plot of the mean N^2 (Brunt-Vaisala frequency squared) profile, with \pm the standard deviation. On the sigma-t and N^2 plots, the appropriate profiles derived from the mean temperature and mean salinity profiles are also shown.

Table 1: Scientific instruments aboard the USNS DE STEIGUER

Instrument	Variable	Sensor	Accuracy	Resolution
Neil Brown CTD Mark IIIb	pressure temperature conductivity	strain gage thermistor electrode cell	1.6 db 0.005 C 0.005 mmho	0.025 db 0.0005 C 0.001 mmho
Sippican BT	temperature depth	thermistor descent speed	0.2 C greater of 4.6 and 2% of dept	

Section 1
OPTOMA15 Leg DII

Figure 2: The cruise track for OPTOMA15, Leg DI.

Figure 3: XBT and CTD locations for OPTOMA15, Leg DI.

Figure 4: Station numbers for OPTOMA15, Leg DI.

Table 2: Leg DI Station Listing

STN	TYPE	YR/DAY	GMT		LONG (WEST) (DDD.MM)	TEMP		Y TEMP	SALINITY
1 2 3 4 5	XBT XBT XBT XBT XBT	85025 85025 85025 85025 85025	357 456 557 707 810	37.49 37.55 38.01 38.04 38.05	122.53 123.05 123.16 123.31 123.42	11.0 11.6 12.1 12.2 12.0			
6 7 8 9	CTD XBT XBT XBT XBT	85025 85025 85025 85025	952 1136 1236 1344 1439	38.05 38.08 38.11 38.13 38.16	123.43 124.04 124.09 124.25 124.38	12.1 12.3 12.1 12.2 11.8	33.11	12.2	33.14
11 12 13 14	XBT XBT XBT XBT	85025 85025 85025 85025	1538 1621 1752 1905	38.18 38.21 38.23 38.27	124.51 125.06 125.19 125.34	11.8 11.8 12.1 12.1			
15 16 17 18 19	XBT XBT XBT XBT XBT	85025 85025 85025 85025 85026	2327 30	38.28 38.32 38.34 38.37 38.39	125.45 125.57 126.11 126.25 126.39	12.2 12.1 11.9 12.4 12.1			
20 21 22 23 24	XBT XBT XBT XBT XBT	85026 85026 85026 85026 85026	131 231 335 432 532	38.42 38.45 38.47 38.50 38.53	126.54 127.05 127.19 127.31 127.44	12.2 12.3 12.6 12.4 12.5			
25 26 27 28 29	XBT XBT CTD XBT XBT	85026 85026 85026 85026 85026	640 738 907 1027 1126	38.56 38.48 38.38 38.31 38.22	127.59 127.56 127.50 127.41 127.35	13.2 12.1 12.3 12.0 12.0	32.74	12.1	32.74
30 31 32 33	XBT XBT XBT CTD	85026 85026 85026 85026	1231 1323 1431 1627	38.14 38.05 37.55 37.47	127.29 127.22 127.15 127.08	12.1 12.0 12.1 11.7	32.99	11.7	33.00
34 35 36 37 38	XBT XBT XBT XBT XBT	85026 85026 85026 85026 85026	1821 1922 2016 2111 2202	37.38 37.29 37.20 37.11 37.03	127.01 126.55 126.49 126.40 126.32	12.1 12.0 12.3 13.7 14.2			
39 40 41 42	XBT CTD XBT XBT	85026 85027 85027 85027	2252 23 143 247	36.56 36.45 36.36 36.40	126.27 126.20 126.15 126.02	14.4 14.5 14.4 14.5	33.26	12.0	33.33
43 44 45	XBT XBT CTD	85027 85027 85027	353 513 640	36.46 36.57 37.05		13.6 14.3 14.0	33.14	13.8	33.28

STN	TYPE	YR/DAY	GMT		LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SALINI	TY TEMP	SALINITY
46 47 48 49 50 51 52	XBT XBT XBT CTD XBT XBT XBT	85027 85027 85027 85027 85027 85027	825 935 1047 1235 1425 1517 1619	37.14 37.23 37.32 37.40 37.50 37.58	126.10 126.16 126.23 126.29 126.36 126.43	11.9 12.0 11.7 11.8 11.9 11.7	32.97	12.0	32.98
53 54 55 56 57 58	XBT CTD XBT XBT XBT XBT	85027 85027 85027 85027 85027 85028	1725 1857 2027 2130 2338 33	38.16 38.24 38.33 38.42 38.51 38.59	126.57 127.04 127.13 127.18 127.23 127.30	12.3 12.0 12.1 12.3 12.4 12.5	33.04	12.2	32.97
59 60 61 62 63	CTD XBT XBT XBT CTD	85028 85028 85028 85028	210 400 444 539 743	39.08 39.13 39.18 39.10 39.00	127.37 127.24 127.15 127.10 127.02	12.3 12.3 12.4 12.4	32.70	12.2	32.51
64 65 66 67 68	XBT XBT XBT XBT CTD	85028 85028 85028 85028 85028	943 1038 1135 1239 1356	38.51 38.43 38.36 38.27 38.16	126.55 126.49 126.44 126.37 126.29	12.4 12.4 12.1 12.0	32.95	11.9	32.94
69 70 71 72 73	XBT CTD XBT XBT CTD	85028 85028 85028 85028 85029	1635 1958 2211 2300 113	38.09 37.59 37.51 37.43 37.32	126.22 126.16 126.10 126.03 125.56	12.1 12.0 11.7 11.7	33.00 32.88	12.2	33.03 32.90
74 75 76 77 78	XBT XBT XBT CTD XBT	85029 85029 85029 85029 85029	319 402 453 651 902	37.22 37.15 37.06 36.57 37.01	125.48 125.43 125.37 125.29 125.18	11.9 12.1 11.7	32.78	12.2	32.82
79 80 81 82 83 84	XBT XBT XBT XBT XBT XBT	85029 85029 85029 85029 85029 85029	1002 1142 1339 1531 1657 1819	37.06 37.17 37.25 37.35 37.44 37.53	125.08 125.14 125.22 125.28 125.33 125.40	11.6 11.7 11.9 12.1 11.9			
85 86 87 88 89	XBT XBT XBT XBT XBT XBT	85029 85029 85029 85030 85030	1957 2133 2253 24 138 332	38.02 38.10 38.18 38.27 38.36 38.45	125.45 125.55 126.01 126.08 126.14 126.21	12.0 12.0 11.7 11.8 12.4 12.3			

STN TYPE	YR/DAY	GMT		LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SALINIT		SALINITY
91 CTI 92 XBT 93 XBT 94 XBT 95 XBT 96 XBT	85030 85030 85030 85030	518 726 909 1106 1252 1536	38.53 39.02 39.10 39.18 39.27 39.39	126.27 126.33 126.41 126.47 126.54 126.45	12.3 12.1 12.2 12.3 12.0 12.5	32.83	12.0	32.84
97 CTI 98 XBT 99 XBT 100 XBT 101 XBT 102 XBT 103 XBT	85030 85030 85030 85030 85030 85030 85031	1821 1947 2050 2144 2235 2333 29	39.37 39.29 39.20 39.12 39.04 38.56 38.48	126.31 126.24 126.15 126.08 126.03 125.56 125.51	12.5 12.4 12.2 12.2 12.2 12.1	32.84	12.6	32.86
104 XBT 105 CTT 106 XBT 107 XBT 108 XBT 109 XBT 110 XBT 111 XBT 112 XBT 113 XBT 114 XBT 115 XBT 116 XBT 117 XBT 118 XBT 119 XBT 119 XBT 120 XBT 121 XBT 122 XBT 123 XBT 124 XBT 125 XBT 126 XBT 127 XBT 128 XBT	85031 85031 85031 85031 85031 85031 85031 85031 85031 85031 85031 85032 85032 85032 85032 85032 85032 85032 85032 85032	131 402 522 626 734 859 1019 1135 1238 1344 1443 1544 1819 1946 2205 43 306 539 800 1011 1223 1442 1614 1750 1933	38.38 38.29 38.21 38.12 38.03 37.54 37.45 37.28 37.20 37.14 37.12 37.22 37.29 37.37 37.46 37.55 38.04 38.12 38.31 38.41 38.49 38.57 39.05	125.44 125.37 125.31 125.24 125.18 125.10 125.03 124.56 124.50 124.43 124.32 124.28 124.28 124.23 124.29 124.37 124.43 124.49 124.57 125.05 125.10 125.17 125.20 125.29 125.36	12.1 11.6 11.9 11.5 11.8 11.9 11.9 11.9 12.2 12.2 12.1 12.5 12.0 11.9 12.0 11.9 11.7 11.7 11.6 11.7	33.11	11.7	33.13
129 XBT 130 XBT 131 XBT 132 XBT 133 XBT 134 XBT 135 XBT	85032 85033 85033 85033	2142 2346 246 606 910 1121 1315	39.13 39.21 39.31 39.38 39.48 39.57 40.05	125.40 125.47 125.56 126.03 126.08 126.05 126.05	11.8 11.7 11.8 11.7 11.8			

STN	TYPE	YR/DAY	GMT		LONG (WEST) (DDD.MM)	SURFACE TEMP (DEG C)	SALINIT	TY TEMP	SALINITY
136 137 138 139	XBT XBT XBT XBT	85033 85033 85033 85033	1523 1725 1827 1916	40.14 39.58 39.48 39.40	126.02 125.45 125.38 125.32	11.8 11.6 11.9 11.7			
140 141 142	CTD XBT XBT	85033 85033 85033	2046 2211 2258	39.32 39.22 39.15	125.27 125.20 125.15	11.5 11.5 11.5	32.76	11.5	32.82
143	CTD	85034	14	39.07	125.07	11.6	32.88	11.7	32.96
144 145 146 147	XBT CTD XBT XBT	85034 85034 85034 85034	205 309 548 659	38.56 38.50 38.41 38.32	125.02 124.54 124.49 124.40	11.7 11.5 11.6 11.7	33.22	11.5	33.28
148	CTD	85034	836	38.24	124.34	11.4	33.21	11.8	33.24
149 150 151	XBT CTD XBT	85034 85034 85034	1025 1200 1347	38.15 38.06 37.57	124.28 124.22 124.13	11.6 11.7 12.0	33.30	11.8	33.33
152 153 154 155 156	XBT XBT XBT XBT XBT	85034 85034 85034 85034	1443 1547 1705 1811 1922	37.49 37.39 37.42 37.50 37.58	124.07 124.01 123.47 123.37 123.46	11.6 11.8 11.6 11.7 11.7			
157 158 159 160 161	XBT XBT CTD XBT XBT	85034 85034 85035 85035	2033 2132 2255 217 346	38.07 38.15 38.26 38.34 38.42	123.53 123.59 124.07 124.12 124.18	11.5 11.5 11.7 11.6 11.5	33.29	11.6	33.35
162 163 164 165	XBT XBT XBT XBT		522 713 925 1127	38.51 39.00 39.09 39.16	124.25 124.32 124.40 124.46	11.2 11.5 11.4 11.6			
166 167	XBT XBT	85035 85035	1414 1633	39.26 39.34	124.52 124.58	10.9 10.8			
168	XBT	85035	1830	39.41	125.05 125.13	10.7			
169 170	XBT XBT	85035 85035	2202	39.52 39.59	125.19	10.9			
171 172	XBT XBT	85035 85036	2338 238	40.09 40.24	125.26 125.18	11.1 10.9			
173 174	XBT XBT		443 544	40.18 40.10	125.05 124.58	10.7 10.5			
175 176	XBT XBT	85036	643 746	40.01	124.50 124.43	10.6			
177	CTD	85036	914	39.44	124.36	10.6	32.93	10.5	33.03
178 179	XBT XBT	85036 85036	1056 1150		124.30 124.23	$10.6 \\ 11.1$			
180	XBT	85036	1244	39.19	124.18	11.3			

STN TYPE	YR/DAY	GMT	LAT (NORTH) (DD.MM)		SURFACE TEMP (DEG C)	SALINIT		BOTTLE SALINITY (PPT)
181 XBT 182 CTD 183 XBT 184 XBT 185 XBT	85036 85036 85036 85036 85036	1340 1515 1636 1719 1816	39.10 39.01 38.53 38.44 38.35	124.11 124.06 123.56 123.50 123.44	11.1 11.2 10.9 10.6 10.8	32.83	11.0	33.13
186 XBT 187 CTD 188 XBT 189 XBT 190 XBT 191 XBT 192 XBT 193 XBT 194 XBT 195 XBT 196 XBT 197 XBT 198 XBT	85036 85036 85036 85037 85037 85037 85037 85037 85037 85037	1911 2010 2127 2255 12 135 248 340 446 556 651 838 1106	38.27 38.19 38.25 38.34 38.41 38.49 38.30 38.22 38.16 38.10 38.00 37.54	123.36 123.39 123.50 123.59 124.08 124.01 123.56 123.48 123.36 123.24 123.18 123.05	10.9 11.0 10.9 11.1 11.2 11.3 10.9 11.1 11.0 11.3 11.4	33.11	10.9	33.88

Figure 5(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA15, Leg DI).

Figure 5(g)

Figure 5(i)

Figure 5(j)

Figure 6(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles, staggered by multiples of 4ppt (OPTOMA15, Leg DI).

Figure 6(b)

Figure 6(c)

Figure 7(a): Casts deeper than 800m (OPTOMA15, Leg DI).

Figure 7(b)

Figure 8: Casts deeper than 1600m (OPTOMA15, Leg DI).

Figure 9(a): Along-track isotherms. Tick marks along the upper horizontal axis show station positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA15, Leg DI).

Figure 9(d)

Figure 9(e)

Figure 9(j)

Figure 9(k)

Figure 9(1)

Figure 10(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA15, Leg DI).

Figure 10(c)

Figure 11: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA15, Leg DI).

Figure 12: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA15, Leg DI).

Figure 13: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA15, Leg DI).

Figure 14: Mean N^2 profile(—), with + and - the standard deviation (---). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (...) (OPTOMA15, Leg DI).

THIS PAGE INTENTIONALLY LEFT BLANK

Section 2

OPTOMA15 Leg P

Figure 15: The flight track for OPTOMA15, Leg P.

Figure 16: AXBT locations for OPTOMA15, Leg P.

Figure 17: Station numbers for OPTOMA15, Leg P.

Table 3 : Leg P Station Listing

STN	TYPE	YR/DAY	GMT	(NORTH)	LONG (WEST) (DDD.MM)	TEMP
1 2 3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19 20 21 22 23 24 25 6 27 28 29 30 31 32 33 34 35 36 37 38 9 40 41 42		85027	1651 1701 1712 1722 1728 1738 1751 1757 1807 1813 1824 1830 1846 1902 1918 1929 1937 1947 1953 2040 2050 2102 2111 2127 2137 2142 2152 2213 2213 2225 2232 2309 2315 2327	37.50 38.06 38.30 38.52 39.04 39.26 39.46 39.38 39.23 39.15 39.00 38.52 38.32 37.52 37.43 37.52 37.43 37.18 37.02 36.47 36.54 37.37 38.15 38.48 39.20 30.20 30.20 30.20 30.20 30.20 30.20 30.20 30.20 30.20 30.20 30.20 30.20 30	123.40 123.53 124.10 124.26 124.36 124.52 125.18 125.37 126.09 127.00 127.18 127.41 127.12 127.02 126.44 126.28 126.08 125.50 125.50 125.21 125.02 124.14 124.28 124.53 125.33 125.33	12.4 12.0 12.2 12.6 12.0 12.3 11.6 11.8 12.3 12.2 12.5 12.1 11.9 11.9 11.8 13.7 14.5 14.6 14.3 11.8 11.7 12.5 12.1 12.1 12.1 12.2 12.0 12.1 12.1 12.1
43 44	AXBT AXBT		2330 2336	38.36 38.16	125.37 125.43	

Figure 18(a): AXBT temperature profiles, staggered by multiples of 5C (OPTOMA15, Leg P).

ш

C

മ

4

station positions. Some station numbers are given. Dashed lines are used if the cast Figure 19(a): Along-track isotherms. Tick marks along the upper horizontal axis show was too shallow (OPTOMA15, Leg P).

Figure 19(e)

Figure 19(f)

Figure 19(g)

Figure 19(h)

Figure 19(i)

Figure 20: Mean temperature profile, with + and - the standard deviation (OPTOMA15, Leg P).

Section 3
OPTOMA15 Leg DII

Figure 21: The cruise track for OPTOMA15, Leg DII.

Figure 22: XBT and CTD locations for OPTOMA15, Leg DII.

Figure 23: Station numbers for OPTOMA15, Leg DII.

Table 4: Leg DII Station Listing

STN	TYPE	YR/DAY	GMT			TEMP	SALINIT	TEMP	BOTTLE SALINITY (PPT)
1 2 3 4 5	XBT XBT XBT XBT XBT	85040 85040 85040 85040 85040	253 318 432 528 646	37.49 37.51 37.55 38.00 38.04	122.53 122.58 123.11 123.17 123.29	11.6 11.7 11.1 10.9			
6 7 8 9	CTD XBT XBT XBT	85040 85040 85040 85040	903 1109 1257 1359	38.05 38.06 38.09 38.13	123.43 123.57 124.14 124.23	11.0 11.3 11.3 11.4 11.8	33.16	11.5	33.18
10 11 12 13 14	XBT XBT XBT XBT XBT	85040 85040	1531 1652 1803 1925 2033	38.15 38.18 38.21 38.23 38.26	124.36 124.50 125.03 125.18 125.30	11.9 11.6 11.4 11.3			
15 16 17 18 19	XBT XBT XBT XBT XBT	85040 85040 85041		38.28 38.30 38.32 38.35 38.39	125.45 125.58 126.10 126.28 126.36	11.3 11.5 12.1 12.2 12.1			
20 21 22 23	XBT XBT XBT XBT	85041 85041 85041 85041	318 419 528 631	38.42 38.45 38.48 38.51	126.50 127.02 127.16 127.29	12.0 11.7 11.7 11.8			
24 25 26 27 28	XBT XBT XBT CTD XBT	85041 85041	747 906 1023 1140 1331	38.54 38.56 38.44 38.39 38.31	127.44 127.59 127.51 127.47 127.41	11.8 11.8	32.81	11.8	32.83
29 30 31 32	XBT XBT XBT XBT	85041 85041 85041 85041	1434 1535 1642 1744	38.22 38.14 38.05 37.56	127.35 127.28 127.21 127.14	11.7 11.9 11.5 11.4	33 07	11 5	33.06
33 34 35 36 37	CTD XBT XBT XBT XBT	85041 85041 85041 85042	2113 2208 2313 11	37.31		11.7 11.6	33.07	11.5	33.06
38 39 40 41 42	XBT XBT CTD XBT XBT	85042 85042 85042 85042 85042	111 202 307 611 706	37.03 36.55 36.46 36.41 36.46	126.34 126.28 126.22 126.01 125.52	12.7	32.90	12.8	32.90
42 43 44 45	XBT CTD XBT	85042 85042	811 925 1056	36.57 37.05		12.4 11.6	33.05	11.8	33.07

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM		SALINIT	Y TEMP	BOTTLE SALINITY (PPT)
46 47 48 49 50 51 52	XBT XBT CTD XBT XBT XBT XBT	85042 85042 85042 85042 85042 85042 85042	1152 1256 1409 1616 1716 1824 1922	37.22 37.32 37.40 37.49 37.58 38.07 38.16	126.18 126.24 126.30 126.36 126.44 126.50 126.57	11.7 11.8 11.4 11.6 11.4 11.4	33.08	11.6	33.10
53 54 55 56 57	XBT CTD XBT XBT XBT	85042 85042 85042 85043 85043	2027 2152 2330 39 135	38.24 38.33 38.42 38.52 38.59	127.04 127.11 127.15 127.22 127.26	11.5 11.9 11.7 12.1 12.3	32.78	12.0	32.80
58 59 60 61	CTD XBT XBT XBT	85043 85043 85043 85043	257 517 556 725	39.09 39.14 39.18 39.04	127.26 127.36 127.23 127.15 127.05	11.9 12.1 12.0 12.0	32.76	12.1	32.79
62 63 64 65	CTD XBT XBT XBT	85043 85043 85043 85043	802 1022 1130 1223	39.01 38.52 38.43 38.35	127.02 126.54 126.46 126.40	11.7 11.9 11.8 12.1	32.80	11.9	32.80
66 67 68 69 70	XBT CTD XBT XBT XBT	85043 85043 85043 85043 85043	1325 1430 1628 1727 1825	38.26 38.18 38.07 37.59 37.51	126.35 126.29 126.22 126.15 126.06	11.6 11.4 11.8 11.4 11.5	32.81	11.5	32.81
71 72 73 74 75	XBT CTD XBT XBT XBT	85043 85043 85044 85044 85044	1924 2239 131 225 318	37.42 37.32 37.23 37.14 37.06	126.03 125.56 125.50 125.43 125.37	11.5 11.9 11.9 11.8 12.1	33.19	12.0	33.19
76 77 78 79 80 81 82	XBT XBT CTD XBT XBT XBT XBT	85044 85044 85044 85044 85044 85044 85044	428 542 709 856 959 1102 1213	36.56 37.02 37.07 37.16 37.25 37.33 37.43	125.30 125.18 125.08 125.16 125.22 125.28 125.36	11.6 11.7 11.7 11.7 11.7 11.9	32.97	11.7	33.01
83 84 85 86 87 88	XBT XBT CTD XBT XBT	85044 85044 85044 85044 85044	1315 1427 1703 1916 2016	37.51 38.01 38.10 38.18 38.26	125.41 125.48 125.57 126.01 126.08	11.8 12.0 11.6 11.3 11.8	33.20	11.6	33.21
8 9 9 0	XBT XBT CTD	85044 85044	2117 2228 1	38.35 38.44 38.53	126.15 126.21 126.27	12.3 12.5 12.0	32.77	12.1	*

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM			SALINIT	Y TEMP	BOTTLE SALINITY (PPT)
91 92 93 94 95 96	XBT XBT XBT XBT	85045 85045 85045	143 242 343 443 557 639 735	39.02 39.10 39.19 39.27 39.33 39.36	126.33 126.40 126.47 126.54 126.40 126.31 126.24	12.2 12.5 12.3 11.1 12.0 11.9			
98 99 100 101 102 103	XBT CTD XBT XBT XBT XBT		834 951 1107 1210 1327 1339	39.21 39.13 39.04 38.55 38.46 38.38	126.18 126.12 126.05 125.58 125.51 125.45	12.0 11.8 11.8 12.1 12.1 11.9	32.79	11.9	*
104	CTD	85045	1700	38.30	125.39	11.7	33.31	11.8	*
105 106	XBT CTD	85045 85045	1902 2019	38.19 38.11	125.33 125.26	11.8 11.8	33.25	12.1	*
107	XBT	85045	2322	38.02	125.21	11.9	00125		
108 109	XBT XBT	85046 85046	18 123	37.54 37.45	125.14 125.05	12.0 11.7			
110	CTD		225	37.45	124.58	11.7	33.14	12.0	*
111	XBT	85046	356	37.28	124.51	12.0			
112	XBT	85046	501	37.19	124.44	11.6			
113 114	XBT XBT		602 659	37.24 37.29	124.33 124.23	11.7			
115	XBT		809	37.37	124.29	11.8			
116	XBT	85046	922	37.46	124.36	11.9			
117	XBT	85046	1039	37.55	124.43	11.9	22 11	11 0	*
118 119	CTD XBT	85046 85046	1159 1447	38.04 38.13	124.49 124.57	11.6 12.1	33.11	11.8	^
120	XBT	85046	1543	38.21	125.03	12.0			
121	CTD	85046	1753	38.32	125.10	11.3	32.86	10.9	*
122	XBT	85046	2011	38.40	125.17	11.4			
123 124	XBT XBT	85046 85046	2153 2352	38.48 38.56	125.23	11.9 11.8			
125	XBT	85047	206	39.05	125.36	11.8			
126	XBT	85047	446	39.14	125.42	12.1			
127	XBT	85047	705	39.22	125.49	12.0			
128 129	XBT XBT	85047 85047	906 1125	39.31 39.38	125.55 126.03	11.2 11.2			
130	XBT	85047	1450	39.48	126.03	11.7			
131	XBT	85047	1844	39.59	126.07	11.3			
132	XBT	85047	2133	40.05	126.05	11.3			
133 134	XBT XBT	85048 85048	109	40.13 40.06	126.01 125.53	11.4 11.3			
135	XBT	85048	306 413	39.58	125.33	10.8			

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM			BUCKET Y TEMP (DEG C)	SALINITY	ζ
136 137 138 139	XBT XBT XBT XBT	85048 85048 85048 85048	517 627 727 828	39.50 39.41 39.32 39.24	125.40 125.33 125.26 125.20	10.8 10.7 11.1 11.0				
140 141 142 143	XBT XBT XBT XBT	85048 85048 85048 85048	927 1030 1127 1230	39.16 39.07 38.59 38.51	125.13 125.06 124.59 124.54	11.1 11.5 11.3 11.5				
144 145 146	XBT XBT XBT	85048 85048 85048	1348 1451 1550	38.40 38.32 38.24	124.47 124.42 124.35	11.4 11.4 11.7				
147 148 149 150	XBT XBT XBT XBT	85048 85048 85048 85048	1703 1832 1927 2030	38.15 38.04 37.57 37.48	124.27 124.19 124.14 124.07	11.6 11.6 11.4 11.1				
151 152 153	XBT XBT XBT	85048 85048 85049	2138 2258 336	37.39 37.33 37.45	124.01 123.49 123.52	11.1 11.3 11.6				
154 155 156 157	XBT XBT XBT XBT	85049 85049 85049 85049	632 851 1127 1343	37.54 38.02 38.11 38.19	123.56 124.02 124.09 124.16	11.2 11.5 11.1 11.4				
158 159 160	XBT XBT XBT	85049 85049 85049	1531 1711 1836	38.28 38.37 38.46	124.23 124.30 124.36	11.6 11.1 11.1				
161 162 163 164	XBT XBT XBT XBT	85049 85049 85049 85050	1955 2124 2239 33	38.54 39.04 39.12 39.20	124.43 124.47 124.52 125.02	11.3 11.8 10.7 10.9				
165 166 167 168	XBT XBT XBT XBT	85050 85050 85050 85050	159 339 506	39.28 39.36 39.45	125.08 125.14 125.22 125.28	11.2 11.1 10.7				
169 170 171	XBT XBT XBT	85050 85050 85050	831 1119 1357	40.03 40.17 40.08	125.35 125.34 125.26	10.7 10.9 11.1				
172 173 174 175	CTD XBT XBT XBT	85050 85050 85050 85050	1616 1746 1847 1946	39.59 39.51 39.43 39.34	125.19 125.12 125.05 124.59	10.9 10.5	32.78	10.9	*	
176 177 178	XBT XBT CTD	85050 85050 85050	2039 2141 2255	39.26 39.17 39.09	124.51 124.44 124.39	10.4 10.5 10.4	32.91	10.5	*	
179 180	XBT XBT		31 128		124.31 124.24					

STN	TYPE	YR/DAY	GMT	LAT (NORTH) DD.MM	LONG (WEST) DDD.MM	TEMP	SURFACE BUCKET BOTTLE SALINITY TEMP SALINITY (PPT) (DEG C) (PPT)
181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 207 208 209 210 211 212 213 214 215 217 218 219 219 219 219 219 219 219 219 219 219	XBT	85051 85051 85051 85051 85051 85051 85051 85051 85052 85052 85052 85052 85052 85053 85053 85053 85053 85053 85053 85054 850554	214 306 414 502 600 656 747 917 1927 2125 130 627 1119 1456 1757 2225 405 722 1017 1370 1730 2019 2133 2241 2341 30 117 206 257 300 442 528 621 718 801 902 1100 1139 1227 1322 1411 1556 1647 1800	38.43 38.34 38.24 38.15 38.07 37.58 37.50 37.45 38.07 38.13 38.22 38.39 38.39 38.48 39.30 39.39 39.39 39.48 39.57 40.03 39.52 39.43 39.52 39.39 39.48 39.57 40.03 39.52 39.48 39.57 40.03 39.52 39.48 39.57 40.03 39.52 39.39 39.48 39.57 40.03 39.52 39.48 39.57 40.03 39.52 39.48 39.57 40.03 39.52 39.52 39.68 39.78 39.68 39.78 39.68 39.78 39	124.19 124.07 124.00 123.53 123.45 123.49 123.41 123.43 123.48 123.57 124.06 124.15 124.19 124.31 124.52 124.52 124.52 124.52 124.52 124.52 124.52 124.52 124.52 124.53 124.17 124.11 124.04 123.58 124.17 124.11 124.04 123.58 123.44 123.47 124.11 124.04 123.58 123.17 124.11 124.04 123.58 123.17 123.19 123.20 123.11 123.21 123.21	11.0 11.4 11.1 10.7 11.0 10.8 11.0 10.9 10.6 10.5 10.3 11.1 10.9 10.4 10.7 10.4 10.4 10.7 10.4 10.9 10.9 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.7 10.6 10.7 10.6 10.7 10.7 10.6 10.7 10.6 10.7 10.7 10.6 10.7 10.7 10.6 10.7 10.7 10.6 10.7 10.6 10.7 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.6 10.7 10.7 10.6 10.7 10.7 10.8 10.7 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.8 10.9 10.9 10.8 10.9 10.8 10.9 10.9 10.8 10.9	

Data not available

Figure 24(a): XBT temperature profiles, staggered by multiples of 5C (OPTOMA15, Leg DII).

Figure 24(d)

Figure 24(e)

Figure 24(f)

Figure 24(g)

Figure 24(h)

Figure 24(i)

Figure 24(j)

Figure 24(k)

Figure 24(1)

Figure 25(a): CTD temperature profiles, staggered by multiples of 5C, and salinity profiles staggered by multiples of 4 ppt (OPTOMA15, Leg DII).

Figure 25(b)

Figure 25(c)

Figure 26: Casts deeper than 800m (OPTOMA15, Leg DII).

Figure 27: Casts deeper than 1600m (OPTOMA15, Leg DII).

positions. Some station numbers are given. Dashed lines are used if the cast was too shallow (OPTOMA15, Leg DII). Tick marks along the upper horizontal axis show station Figure 28(a): Along-track isotherms.

Figure 28(b)

Figure 28(c)

Figure 28(d)

Figure 28(e)

Figure 28(f)

Figure 28(g)

Figure 28(h)

Figure 28(i)

Figure 28(j)

Figure 28(k)

Figure 29(a): Isopleths of (1) temperature and salinity and (2) sigma-t from the CTD's (OPTOMA15, Leg DII).

Figure 30: Mean temperature profiles from (a) XBT's and (b) CTD's, with + and - the standard deviation (OPTOMA15, Leg DII).

Figure 31: Mean profiles of (a) salinity and (b) sigma-t, with + and - the standard deviations, from the CTD's (OPTOMA15, Leg DII).

Figure 32: (a) T-S pairs and (b) mean T-S relation, with + and - the standard deviation, from the CTD's. Selected sigma-t contours are also shown (OPTOMA15, Leg DII).

Figure 33: Mean N^2 profile (---), with + and - the standard deviation (----). The N^2 profile from $\overline{T(z)}$ and $\overline{S(z)}$ is also shown (...) (OPTOMA15, Leg DII).

ACKNOWLEDGEMENTS

This research was sponsored by the ONR Physical Oceanography Program. The success of the fieldwork was strongly dependent on the competent, willing support of the crews of the USNS DE STEIGUER and the P3 Reserve Patrol Wing aircraft. Members of the scientific cruise party were:

Leg DI - Dr. Edward A. Kelley, Jr., Chief Scientist, NPS
Mr. Don Martens, Watch Chief, NPS
Mr. Paul Wittmann, Watch Chief, NPS
ENS Carolyn Dyke, FNOC
Mr. Billie Payne, NPS
Mr. Jon Raugust, NPS
Ms. Joyce Kelley, NPS

Leg P - Ms. Marie Colton, NPS LT Mark Johnson, USN

Leg DII - Dr. Edward A. Kelley, Jr., Chief Scientist, NPS
Mr. Michael McCann, Watch Chief, NPS
Mr. Jon Raugust, Watch Chief, NPS
Mr. James Stockel, Watch Chief, NPS
Mr. Lance Miller, NPS
Mr. Billie Payne, NPS
ENS Charlotte Kelchner, FNOC
AGAN Mary Tighe, NPS

REFERENCE

Lewis, E.L. and R.G. Perkin, 1981: The Practical Salinity Scale 1978: conversion of existing data. Deep Sea Res. 28A, 307-328.

INITIAL DISTRIBUTION LIST

1.	Naval Postgraduate School Department of Oceanography Monterey, CA 93943	
	Prof. Christopher N.K. Mooers Dr. Michele M. Rienecker Dr. Edward A. Kelley Ms. Marie C. Colton Mr. Paul A. Wittmann Dr. Mary L. Batteen Dr. Laurence C. Breaker LCDR J. Edward Johnson, USN	33 1 1 1 1 1 1
2.	Harvard University Division of Applied Sciences Pierce Hall, Room 100D Cambridge, MA 02138	
	Prof. Allan R. Robinson Dr. James A. Carton Dr. Everett F. Carter Mr. Leonard J. Walstad Mr. Wayne G. Leslie Ms. Nadia Pinardi Prof. Myron B. Fiering	1 1 1 1 1 1
3.	Office of Naval Research (ONR) 800 N. Quincy St. Arlington, VA 22217	,
	Dr. Thomas W. Spence Dr. Thomas B. Curtin	1 1
4.	College of Oceanography Oregon State University Corvallis, OR 97331	
	Prof. Robert L. Smith Dr. Adrian Huyer	1 1
5.	Jet Propulsion Laboratory (JPL) California Institute of Tech. 4800 Oak Grove Road Pasadena, CA 91109	
	Dr. Denise E. Hagan (Code 183-501) Dr. Mark Abbott (also at Scripps)	1 1

	103	
6.	Commanding Officer Fleet Numerical Oceanography Center (FNOC) Monterey, CA 93943	
	CDR John F. Pfeiffer, USN Mr. R. Michael Clancy Mr. Ken Pollak Ms. Evelyn Hesse LCDR Michael R. Frost, RN	1 1 1 1
7.	Sandia National Laboratories Div. 6334 Albuquerque, NM 97185	
	Dr. Mel Marietta Dr. Eugene S. Hertel Dr. Stuart L. Kupferman	1 1 1
8.	Marine Products Branch, W/NMC21 National Meteorological Center National Weather Service, NOAA Washington, D.C. 20233	
	LCDR Craig S. Nelson, NOAA Corps	1
9.	National Center for Atmospheric Research (NCAR) P.O. Box 3000 Boulder, CO 80307	
	Dr. Dale B. Haidvogel	1
10.	Scripps Institution of Oceanography University of California, San Diego La Jolla, CA 92093	
	Prof. Russ E. Davis Dr. Jerome A. Smith Mr. Phillip Bogden	1 1 1
11.	Princeton University Geophysical Fluid Dynamics Program P.O. Box 308 Princeton, NJ 08540	
	Prof. George L. Mellor	1
12.	Tulane University Department of Mathematics 6823 St. Charles New Orleans, LA 70118	
	Dr. Robert N. Miller	1

13.	Woods Hole Oceanographic Institution Department of Physical Oceanography Woods Hole, MA 02543	
	Dr. Kenneth H. Brink Dr. Robert C. Beardsley	1
14.	Naval Ocean Research and Development Activity (NORDA) NSTL Station Bay St. Louis, MS 39525	
	Dr. Steve A. Piacsek Dr. Dana A. Thompson Dr. Harley C. Hurlburt Dr. Alexander Warn-Varnas	1 1 1 1
15.	Mathematics Department 121-1984 Mathematics Road University of British Columbia Vancouver, British Columbia CANADA V6T 1Y4	
	Prof. Lawrence A. Mysak	1
16.	Department of Oceanography University of Hawaii 2525 Correa Road Honolulu, HI 96822	
	Prof. Lorenz Magaard	1
17.	NAVOCEANCOMFAC Keflavik Iceland FPO NY 09571	
	LTJG Diane C. Durban, USN	1
18.	Ocean Circulation Division Atlantic Oceanography Laboratory Bedford Institute of Oceanography Dartmouth, N.S. Box 1006 CANADA B2Y 4A2	
	Dr. Motoyoshi Ikeda	1
19.	Precision Marine Meteorologic Nationale 2 Ave. RAPP 75340 Paris CEDEX 07 France	
	Dr. Jacques Saurel	1

20.	Div. of Oceanography RSMAS University of Miami 4600 Rickenbacker Causeway Miami, FL 33149	
	Dr. Otis Brown	1
21.	Applied Physics Laboratory University of Washington 1013 NE 40th Str. Seattle, WA 98105	
	Dr. Thomas B. Sanford	1
22.	School of Oceanography University of Washington Seattle, WA 98195	
	Dr. Steven C. Riser	1
23.	California Space Institute MS-A021 Scripps Institution of Oceanography La Jolla, CA 92093	
	Dr. Robert L. Bernstein	1
24.	Marine Sciences Research Center State University of New York Stony Brook, NY 11794	
	Dr. Dong-Ping Wang	1
25.	Applied Physics Laboratory Johns Hopkins University Laurel, MD 20707	
	Dr. Jack Calman	1
26.	Pacific Marine Environmental Lab NOAA Bldg. 3 7600 Sand Point Way, NE Seattle, WA 98115	
	Mr. James R. Holbrook	1
27.	Defense Technical Information Center Cameron Station Alexandria, VA 22314	2
28.	Dudley Knox Library Code 0142 Naval Postgraduate School Monterey, CA 93943	2

