Non-linear Hypothesis Introduction of Multilayer Perceptron

Machine Learning (CS 306)

Instructor:

Dr. Moumita Roy

Teaching Assistants: Indrajit Kalita, Veronica Naosekpam

Email-ids:

moumita@iiitg.ac.in

veronica.naosekpam@iiitg.ac.in indrajit.kalita@iiitg.ac.in

Mobile No: +91-8420489325 (only for emergency quires)

Reference: https://www.cse.iitm.ac.in/~miteshk/CS6910/Slides/Lecture2.pdf

Regression vs. Classification (considering linear hypothesis)

Regression

Linear Relation between independent and dependent variables

Try to find best fit one by minimizing cost function

classification X

Data set is linearly separable

Try to find linear DB by minimizing cost function

Consider binary classification

Scenarios (Non-linear hypothesis)

Polynomial Regression

Introduce more featmen

$$\chi_1 = \chi$$
 $\chi_2 = \chi^2$
 $\chi_3 = \chi^3$
Remate the hypothesis,
 $h(z) = n_0 + w_1 x_1 + w_2 x_2 + w_3 x_3$
Can we Solve now?!

Non-linear classification

Observations

- Introducing more features (mainly polynomial terms; complex non-linear hypothesis)
- These features help the model to use existing learning algorithm to handle the problem (linear regression/logistic regression)
- Such hand-crafted feature engineering is not desirable option to solve non-linear problems (with more features)

ANN

- ANN is a very powerful and widely used model to learn a complex non-linear hypothesis
- ANN Representation helps us to automatically extract such features

 Solve XOR problem with ANN topics discussed so far (MP neuron, Perceptron, Sigmoid neuron)

XOR Problem (using MP neuron)

Geometrical representation for XOP Problem

Introduce multiple layers in ANN

Multilayer Perceptron (MLP)

- It has one input layer, one output layer, and multiple hidden layers (feed-forward architecture).
- Number of input neurons= number of features+1
- Number of output neurons=number of classes
- Number of hidden layers and hidden neurons in each layer are fixed experimentally (application depended)
- We consider, number of hidden layers=1
- Activation function has been considered in each hidden neuron and output neuron.

Neural representation for non-linear hypothesis

- MLPs can be trained to implement any given nonlinear input-output mapping (hypothesis).
- Here, multiple hidden neurons (with non-linear activation function) are helpful to extract hidden features automatically.
- MLP is basically transformation of the original input space into a new one, where the classification task becomes linearly separable.
- In this regard, Cover's theorem may be referred:
 A complex pattern-classification problem, cast in a high-dimensional space nonlinearly, is more likely to be linearly separable than in a low-dimensional space.

Training Process of MLP

- Design a MLP to solve a non-linearly separable problem (2 features and two classes)
 - Data preprocessing (one hot encoding)
 - Architecture
 - Training algorithm (?)
 - Cost function: MSE
 - Activation function: Sigmoid/logistic function

Architecture

Start training (wing incremental GOD)

Input to hidden layer

Random initialized the treignts

Hidden to output

Training GD
$$E_{irr} = \frac{1}{2}\sum_{j=1}^{2} (y_{j}-d_{j})^{2}$$

Error in each oweput human.

 $e_{1} = y_{1}-d_{1}$
 $e_{2} = y_{2}-d_{2}$
 $w_{jj} := w_{jj} + \alpha (y_{j}-d_{j}) d_{j}(1-d_{j})^{2}i$

Update the recignt between hidden to oweput:

 $w_{2} = w_{2} + \alpha (y_{1}-d_{1}) d_{1}(1-d_{1})^{4}h_{0}$

Same for others

Updaz neight between input to hidden

$$w_{10} = w_{10} + \alpha (? - h_1) h_1 (1 - h_1) \chi_0$$

erris (not | known)

Solution: back-propagating errors for Output heurons to hidden numerous

Back-propagation learning algorithm

Step1: Forward pan

Step2: Backward pan

Back-propagation algorithm

Back-propagation algorithm

```
Forward Pan (updation for one sample)
Input to hidden layer
 9, = W110 X0 + W111 X1 + W210 X2
 U2 = Same ...
 U3 = Same -..
 h = g (v1) = 1+exp(-v1)
 h, = same ...
 hz: same ....
```

Hidden to output

Backward pan

Error calculation to the pattern $E_{1+r} = \frac{1}{2} \sum_{j=1}^{2} (d_{j} - \gamma_{j})^{2}$

weight updation in Ged

$$W_{ji} := W_{ji} + \alpha \left((Y_j - d_j) \right) \left(1 - d_j \right) d_j \approx i$$

erm in each output node
$$e_{1} = (Y_{1} - d_{1})$$

$$e_{2} = (Y_{2} - d_{2})$$

local gradient of erm in each output mode

$$82_1 = d_1(1-d_1)(Y_1-d_1)$$

 $82_2 = d_2(1-d_2)(Y_2-d_2)$

local goodient ay com in each hidden node

$$\delta I_1 = (\delta 2_1 * W 2_{11} + \delta 2_2 * W 2_{21}) 4_1 (1 - 4_1)$$

 $\delta I_2 = (\delta 2_1 * W 2_{12} + \delta 2_2 * W 2_{22}) 4_2 (1 - 4_2)$
 $\delta I_3 = ?$

Back-propagation algorithm

Updation of weights

hidden to oneput

$$W2_{10} := W2_{10} + 0 \times 82_1 \times 1_0$$

Input to hidden

$$W|_{10} := W|_{10} + \alpha \times 811 \times 20$$
 $W|_{11} := W|_{11} + \alpha \times 811 \times 21$

Stopping criteria $\frac{1}{\text{Cpoch I}: Ein=\sum_{j=1}^{n} \sum_{j=1}^{n} (y_{j}-d_{j})^{2}}$ Update weights for each Sample epocn2: $E_{i+1} = \sum_{j=1}^{m} \sum_{j=1}^{2} (\gamma_{j} - d_{j})^{2}$ Until | Ein-1 - Eitr | > small value ar no. of epochs < large value