Propriétés : Soit a, b des nombres réels et nun entier. On a :

$$e^0 = 1$$

$$e^1 = e$$

$$e^{-a} = \frac{1}{e^a}$$

$$\mathrm{e}^{a+b}=\mathrm{e}^a imes\mathrm{e}^b$$

$$e^0 = 1$$
 $e^1 = e$ $e^{-a} = \frac{1}{e^a}$ $e^{a+b} = e^a \times e^b$ $e^{a-b} = \frac{e^a}{e^b}$ $e^{an} = (e^a)^n$

$$e^{an} = (e^a)^n$$

Écrire les nombres suivants sous forme d'une puissance de e :

e variety endissance de e :
$$e \times e^{2} \qquad e^{-1} \times e \qquad \frac{1}{e} \qquad \frac{1}{e^{-1}}$$

$$e^{4} \times e \qquad e^{3} \times e^{-1} \qquad \left(\frac{1}{e^{2}}\right)^{3} \qquad \left(e^{-3}\right)^{2}$$

$$\frac{e}{e^{-1}} \qquad \frac{e^{-2}}{e^{-1}} \qquad \frac{e^{3} \times e^{-2}}{e^{-2}} \qquad \left(e^{-5}\right)^{-1}$$

E2 Simplifiez les expressions suivantes :

$$\frac{e^{-1} \times (e^{0,2})^{-2}}{e \times e^{-1,4}}$$

$$\left(\frac{\left(\mathrm{e}^{\frac{4}{3}}\right)^3\times\mathrm{e}^{-\frac{2}{3}}}{\mathrm{e}^{\frac{5}{6}}}\right)$$

Simplifiez les expressions suivantes sous la forme e^A :

la forme
$$e^A$$
:
$$(e^x)^2 \qquad e^{4x} \times e^{-7} \qquad \frac{e^{12x}}{e^{6x}}$$

$$\frac{e^{2x}}{e^{-3x}} \qquad e^{-x} \times e^{2x} \times e^x \qquad \left(\frac{e^x}{e^{-2x}}\right)^3$$

$$\left(\frac{e^{4x}}{e^x}\right)^{-1} \qquad e^{3x+3} \times e^{2x-1} \qquad \frac{e^{2x} \times e^{-x}}{e^{x+1}}$$

$$\frac{e^{-x} \times e^{-(x+3)}}{e^{-2x-1}} \qquad \left(\frac{e^{2x-3}}{e^{7x+5}}\right)^{-2} \qquad \frac{e^{(x-3)^2}}{(e^{x+2})^2}$$

Développez puis simplifiez les expressions suivantes :

expressions suivantes :
$$\mathrm{e}^x\left(\mathrm{e}^x+\mathrm{e}^{-x}
ight) \ \left(\mathrm{e}^{2x}-\mathrm{e}^{3x}
ight)^2$$

$$egin{aligned} \left({
m e}^x + {
m e}^{-x}
ight)^2 \ \left({
m e}^{-5x} + {
m e}^{2x}
ight) \left({
m e}^{-5x} - {
m e}^{2x}
ight) \end{aligned}$$

Propriétés : Soit x un nombre réel. On a :

- Pour tout x, $\mathrm{e}^x>0$ et $\mathrm{e}^{-x}>0$;
- $\mathrm{e}^x > 1$ (ou $\mathrm{e}^{-x} < 1$) si et seulement si x>0;
- $\mathrm{e}^x < 1$ (ou $\mathrm{e}^{-x} > 1$) si et seulement si x < 0.

E5 Déterminez le signe des expressions suivantes :

$$f_1(x)=4\mathrm{e}^x-x\mathrm{e}^x$$

$$f_2(x)=x^2\mathrm{e}^{-x}+5x\mathrm{e}^{-x}$$

$$f_3(x) = x^2 e^x - 9e^x$$

$$f_A(x) = x\mathrm{e}^x - \mathrm{e}^{x+1}$$

E6 Déterminez le signe des expressions suivantes à l'aide d'une factorisation :

$$f_1(x)=\mathrm{e}^x-\mathrm{e}^{2x}$$
 $f_2(x)=\mathrm{e}^{2x}-\mathrm{e}$ $f_3(x)=\mathrm{e}^{-x}-\mathrm{e}^x$

On se propose de déterminer le signe de $\overline{ t l'}$ expression ${
m e}^{2x}+3{
m e}^x-4$.

- **a.** Résoudre l'équation $X^2 + 3X 4 = 0$.
- b. En déduire une factorisation de l'expression $e^{2x} + 3e^x - 4$.
- c. Conclure.

Propriété : Pour tous réels a et b, $e^a = e^b$ si et seulement si a = b.

E8 Résolvez les équations suivantes : $e^x = e^{2x+1}$ $e^x e = e^{3x+2}$ $e^{x^2-2x} = \frac{1}{2}$ $5e^{7x+21} - 1 = 4$

Propriété : Pour tous réels a et b, $e^a < e^b$ si et seulement si a < b.

E9 Résolvez les inéquations suivantes : $e^{2x+1} < e^{8x-1}$ $e^{7x-3} < e^{4x^2}$ $2e^{12x-36} + 3 \le 5$

lacksquare On considère la fonction f définie sur ${\mathbb R}$ par $f(x) = 20e^{-0.346 \, 5x}$.

a. Montrez que pour tous réels x, $f(x+2) = e^{-0.693x} f(x)$.

b. Sachant que $e^{-0.693}pprox 0, 5$, complétez le tableau de valeurs suivant :

x	0	2	4	6
f(x)				

c. Tracez la fonction f dans le repère suivant.

Ell On considère les fonctions suivantes définies sur $\mathbb R$:

$$f(x)=e^{0,5x} \qquad g(x)=e^{1,2x} \qquad h(x)=e^{2x} \ i(x)=e^{-0,5x} \qquad j(x)=e^{-1,2x} \qquad k(x)=e^{-2x}$$

- **a.** Comparer les fonctions f, g et h.
- **b.** Comparer les fonctions $i,\ j$ et k .
- c. En déduire à quelles fonctions correspondent les courbes en les repassant d'une couleur différente.