26.4

+	8ℤ	$2 + 8\mathbb{Z}$	$4+8\mathbb{Z}$	$6+8\mathbb{Z}$		×	8Z	$2 + 8\mathbb{Z}$	$4+8\mathbb{Z}$	$6+8\mathbb{Z}$
8ℤ	8ℤ	$2 + 8\mathbb{Z}$	$4 + 8\mathbb{Z}$	$6 + 8\mathbb{Z}$		$8\mathbb{Z}$	8Z	8ℤ	8ℤ	8ℤ
$2 + 8\mathbb{Z}$	$2 + 8\mathbb{Z}$	$4 + 8\mathbb{Z}$	$6 + 8\mathbb{Z}$	8ℤ		$2 + 8\mathbb{Z}$	8Z	$4 + 8\mathbb{Z}$	8ℤ	$4 + 8\mathbb{Z}$
$4+8\mathbb{Z}$	$4 + 8\mathbb{Z}$	$6+8\mathbb{Z}$	8Z	$2 + 8\mathbb{Z}$	•	$4 + 8\mathbb{Z}$	8ℤ	8ℤ	8ℤ	8ℤ
$6+8\mathbb{Z}$	$6 + 8\mathbb{Z}$	8ℤ	$2 + 8\mathbb{Z}$	$4 + 8\mathbb{Z}$		$6 + 8\mathbb{Z}$	8Z	$4 + 8\mathbb{Z}$	8Z	$4 + 8\mathbb{Z}$

The rings cannot be isomorphic since $2\mathbb{Z}/8\mathbb{Z}$ doesn't have unity but \mathbb{Z}_4 does.

26.9

Let $\phi : \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z} : n \mapsto (n,0)$. ϕ is a homormorphism, however the unity of \mathbb{Z} is 1 and $\phi(1) = (1,0)$ which is not the unity of $\mathbb{Z} \times \mathbb{Z}$.

26.12

The factor ring $\mathbb{Z}/2\mathbb{Z}$ is a field since $\mathbb{Z}/2\mathbb{Z}$ is isomorphic to \mathbb{Z}_2 which is a field.

26.13

The factor ring $\mathbb{Z}/6\mathbb{Z}$ is isomorphic to \mathbb{Z}_6 which has the zero divisor 3.

26.14

In $\mathbb{Z} \times \mathbb{Z}$, (1,0)(0,1) = 0 meaning it has zero divisors, however the factor ring $(\mathbb{Z} \times \mathbb{Z})/(\mathbb{Z} \times \{0\})$ is isomorphic to \mathbb{Z} which has no zero divisors.

26.15

The subring $\{(n,n): n \in \mathbb{Z}\}$ is a subring, however (a,b)(n,n) = (an,bn) will not be an element in the subring if $a \neq b$.

26.18

Proof. Let $\phi: F \to R$ be a ring homorphism and $N = \ker \phi$. Assume that $N \neq \{0\}$. Then there is some element $a \in F$ and $a \in N$. Since F is a field, a is a unit, meaning $a^{-1} \in F$. Since N is also an ideal, then $a^{-1}a \in N$ meaning N contains unity. Therefore $x1 = x \in N$ for all $x \in F$, hence N = F. Therefore every element of F is mapped to 0. If $N = \{0\}$, then ϕ must be one-to-one.

26.20

Proof. By the binomial theorem,

$$(a+b)^p = \sum_{n=0}^p \binom{p}{n} a^n b^{p-n}.$$

Since p is prime, the coefficients $\binom{p}{n}$ for $1 \le n \le p-1$ will all be multiples of p. Since R is of characteristic p, these terms all will go to zero. Therefore for any $a, b \in R$, it follows $(a+b)^p = a^p + b^p$. Therefore

$$\phi_p(a+b) = (a+b)^p = a^p + b^p = \phi_p(a) + \phi_p(b).$$

Trivially $\phi_p(ab) = (ab)^p = a^p b^p = \phi_p(a) \phi_p(b)$. Therefore ϕ_p is a ring homomorphism.

26.22

Part A

Proof. Since an ideal is also a subring, then $\phi[N]$ is a subring of R'. Let $r \in R$ and $n \in N$. Since N is an ideal, then $n \in N$ and $n \in N$. Since ϕ is a ring homomorphism

$$\phi(r)\phi(n) = \phi(rn) \in \phi[N]$$

$$\phi(n)\phi(r) = \phi(nr) \in \phi[N]$$

Therefore $\phi[N]$ is an ideal of $\phi[R]$.

Part B

Take $\phi : \mathbb{Z} \to \mathbb{Q} : x \mapsto x$ and the ideal $3\mathbb{Z}$ of \mathbb{Z} . Since

$$\frac{1}{3} \cdot 3 = 1$$

then if $3\mathbb{Z}$ was an ideal of \mathbb{Q} , it would have to contain unity but it does not. So $3\mathbb{Z}$ is an ideal of \mathbb{Z} but $\phi[3\mathbb{Z}]$ is not an ideal of \mathbb{Q} .

Part C

Proof. Note that N' is a subring of R. Let $r \in R$ and $n \in \phi^{-1}[N']$. That is $\phi(n) \in N'$. Then $\phi(rn) = \phi(r)\phi(n)$. Since N' is an ideal of $\phi[R]$ or R', then $\phi(r)\phi(n) \in N'$ and the same argument shows $\phi(nr) \in N'$. Therefore $\phi^{-1}[N']$ is an ideal of R.

26.26

Proof. Let $x, y \in I_a$. Then ax = 0 and ay = 0. Note that then

$$ax + ay = 0 \implies a(x + y) = 0.$$

Therefore $x+y\in I_a$. Since a0=0, I_a contains the additive identity. Furthermore, a(-x)=-(ax)=0, therefore I_a contains additive inverses. Let $r\in R$. Note that rax=r0=0 and axr=0r=0 meaning $rI_a\subseteq I_a$ and $I_ar\subseteq I_a$. Therefore I_a is an ideal of R.