Decision Tree Algorithm

ID3

The ID3 Algorithm

- If all examples have the same label:
 - return a leaf with that label
- Else if there are no features left to test:
 - return a leaf with the most common label
- Else:
 - choose the feature \hat{F} that maximises the information gain of S to be the next node using Equation (12.2)
 - add a branch from the node for each possible value f in \hat{F}
 - for each branch:
 - * calculate S_f by removing \hat{F} from the set of features
 - * recursively call the algorithm with S_f , to compute the gain relative to the current set of examples

Impurity function - Formula

$$Gain(S, F) = Entropy(S) - \sum_{f \in values(F)} \frac{|S_f|}{|S|} Entropy(S_f).$$
 (12.2)

Entropy
$$(p) = -\sum_{i} p_i \log_2 p_i$$
,

Classification Example

Deadline?	Is there a party?	Lazy?	Activity
Urgent	Yes	Yes	Party
Urgent	No	Yes	Study
Near	Yes	Yes	Party
None	Yes	No	Party
None	No	Yes	Pub
None	Yes	No	Party
Near	No	No	Study
Near	No	Yes	TV
Near	Yes	Yes	Party
Urgent	No	No	Study