Real Analysis

Aayush Bajaj

Version 1.0

2025-06-24

Table of Contents

1.	Foundations	3
2.	Russell's Paradox	. 4
3.	Constructing Sets	. 4
4.	Cartesian Product	. 4
5.	Axiom of Choice (AC)	. 5
6.	Functions	. 5
	6.1. Types of Functions	. 5
7.	Cardinality	5
	7.1. Properties	. 5
	7.2. Notations	. 5
8.	Schröder-Bernstein Theorem	. 6
9.	Finite and Infinite Sets	. 6
10.	Countability	. 6

1. Foundations

Definition 1.1

Analysis Concepts

- 1. **Metric:** An abstract notion of distance in a space (not necessarily \mathbb{R}^n).
- 2. **Topology:** An abstract notion of convergence (even in spaces with no underlying notion of distance).

2. Russell's Paradox

Let

$$S = \{T : T \text{ is a set and } T \notin T\}. \tag{1}$$

Is $S \in S$?

3. Constructing Sets

1. Unions: If $S = \{T_i\}_{i \in I}$, then

$$\bigcup_{i \in I} T_i = \{x : \exists i \in I \text{ such that } x \in T_i\}$$
 (2)

is a set.

2. **Subsets with Conditions:** If S is a set and $\varphi(x)$ is a condition on elements, then

$$\{x \in S : \varphi(x)\}\tag{3}$$

is a set.

3. **Power Set:** If S is a set, then

$$\mathscr{P}(S) = \{T : T \subseteq S\} \tag{4}$$

is a set.

4. Cartesian Product

If A and B are sets, then

$$A \times B = \{(a,b) : a \in A, b \in B\}. \tag{5}$$

More generally, if $\left\{S_i\right\}_{i\in I}$ is a collection of sets, we can form the product

$$\prod_{i \in I} S_i. \tag{6}$$

An element is a tuple $\left(s_{i}\right)_{i\in I}$ such that $s_{i}\in S_{i}.$ Formally,

$$\prod_{i \in I} S_i = \left\{ f : I \to \bigcup_{i \in I} S_i : f(i) \in S_i \text{ for all } i \in I \right\}.$$
 (7)

5. Axiom of Choice (AC)

Proposition 5.1

Axiom of Choice

A Cartesian product of non-empty sets is non-empty.

6. Functions

A function $f:A\to B$ assigns each element of A exactly one element of B. Formally,

 $f \subseteq A \times B$ is a function $\iff \forall x \in A, \exists ! y \in B \text{ such that } (x, y) \in f.$ (8)

6.1. Types of Functions

- 1. Injective: $\forall x_1, x_2 \in A, f(x_1) = f(x_2) \Longrightarrow x_1 = x_2.$
- 2. Surjective: $\forall y \in B, \exists x \in A \text{ such that } f(x) = y.$
- 3. **Bijective:** f is both injective and surjective.

Definition 6.1

Cardinality Equivalence

Two sets A and B have the same cardinality if there exists a bijection $f:A\to B.$ We write $A\sim B.$

Theorem 6.2

Cantor's Theorem

For any set S, the power set $\mathscr{P}(S)$ has strictly greater cardinality than S: $S \neg \sim \mathscr{P}(S)$.

7. Cardinality

7.1. Properties

- 1. $A \sim A$ (reflexive)
- 2. $A \sim B \Longrightarrow B \sim A$ (symmetric)
- 3. $A \sim B$ and $B \sim C \Longrightarrow A \sim C$ (transitive)

7.2. Notations

- 1. $A \leq B$: there exists an injective map $f: A \to B$
- 2. $A = B: A \sim B$
- 3. A < B: $A \le B$ and $A \neg \sim B$

8. Schröder-Bernstein Theorem

Theorem 8.1

Schröder-Bernstein Theorem

If there are injective maps $f:A\to B$ and $g:B\to A$, then there exists a bijection $h:A\to B$.

9. Finite and Infinite Sets

Definition 9.1 Finite Sets

A set S is finite if $\mid S \mid = \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$. Otherwise it is infinite.

Definition 9.2

Dedekind-Infinite Sets

A set S is Dedekind-infinite if there exists a bijection from S to a proper subset of itself. Otherwise, it is Dedekind-finite.

10. Countability

Definition 10.1

Countable Sets

A set S is **countable** if $S \leq \mathbb{N}$. If countable and infinite, we say it is **countably infinite**. Otherwise, it is **uncountable**.

Theorem 10.2

Countable Union of Countable Sets

Let I be a countable set, and let $\left\{S_i\right\}_{i\in I}$ be a countable collection of countable sets. Then

$$\bigcup_{i \in I} S_i \tag{9}$$

is countable.