## CSc 135 Course overview Computing Theory and Programming Languages

Course overview
Three basic concepts
Set theory: a brief review

Languages: set notation and operations

#### **Course Goals**

#### **Course Goals**

#### To provide students with:

- 1. familiarity with the theoretical foundations of Computer Science.
- 2. facility with the concepts, notations, and techniques of the theories of automata, formal languages, and Turing machines.
- 3. understanding of selected programming language features and their implementation.
- 4. experience using and implementing a recursive-descent parser.
- 5. experience writing programs using functional and logic language paradigms.



 3 tests – 25 - 40 min. each, focus on computing theory and key concepts in programming languages

 exam – combining Computing Theory (CT) and Programming Languages (PL)

# CT Home works and PL Assignments

#### Computing Theory Home works

 Each CT homework will be discussed and presented in class activity session

#### Programming Language Assignments

- Each PL assignment contains a set problems on:
  - (1) Parsing and Recursive-descent parser algorithm
  - (2) functional programming
  - (3) logic programming
  - (4) Web programming Recursive-descent parser
- Subset of CT hw and key concepts of PL assignments will be included in tests/exam

# Flipped Classroom Idea -- Students do the learning

- Students are responsible to: read textbook, lecture notes, and other course related materials, HW
  - 1 required CT exercises presentation
  - Attend class regularly
  - Participate group discussion
- Instructor will support class activities with:
  - Tests
  - Study Guideline and examples solutions of problems
  - Lecture and notes

## Computing theory: Three Major Concepts - 1

- Languages
  - 4 formal languages
- Language generators
  - 4 grammars (language generators) for 4 languages
- Languages recognizers
  - 4 automata (language recognizers) for 4 languages



### Three Major Concepts - 2

- 4 formal languages
  - Communication vehicle between man and machine
    - Regular Language (RL)
    - Context-Free Language (CFL)
    - Context-Sensitive Language (CSL)
    - Recursively Enumerable Language (REL)



#### Three Major Concepts - 3

- Language generators 4 Grammars for 4 languages
  - RG for RL
  - CFG for CFL
  - CSG for CSL
  - Unrestricted Grammar for REL



#### Three Major Concepts - 4

- Language recognizers 4 automata for 4 languages
  - Finite Automata (FA) for RL
  - Push Down Automata (PDA) for CFL
  - Bounded TM for CSL
  - Turing Machine (TM) for REL

# Automata: an abstract model of a digital computer





#### Languages and Abstractions

- Why do we need to study formal languages?
  - Formal language is a powerful abstraction that we can use it to design and implement new programming languages and study other computation problems
- What is an abstraction?
  - A method/language for working with one aspect of a design
  - All abstractions have limitations

# 4

### Set Theory – a brief review

- Sets, subsets, empty set, multiset
- Cartesian product of A and B
- Power set of A:
  - 2<sup>A</sup> -- set of all subsets of A
- Cardinality of A: size of set A
- Sets operations:
  - Union, intersection, difference, universal set



## Languages in Set Notation - 1

- Alphabet: a finite, nonempty set S of symbols
- Strings: finite sequences of symbols from S
- Language: a set of strings from S



#### Languages in Set Notation - 2

- S\* set of strings obtained by concatenating zero or more symbols from S
- Empty string λ and empty set
- $S^+ = S^* \{\lambda\}$
- Language: a subset of S\*
- Example: S = {a, b}. What are S\* and S+

# 4

## Language Operations - 1

- A language L is a set
- set operations => language operations
- Complement of L, S\* L
- Concatenation (product) of languages
  - $L_1 L_2 = \{xy: x \text{ from } L_1, y \text{ from } L_2\}$
  - Example of product when
    - L<sub>1</sub>=  $\{0, 1\}$  and L<sub>2</sub> =  $\{a, b\}$
    - $L_1 L_2 = ?$



#### Language Operations - 2

- Power of L
  - $L^0 = \{\lambda\}$
  - $L^{n} = L L^{n-1}$
  - Example of power: given L = {a<sup>n</sup>b<sup>n</sup>: n≥ o?}
  - What is L<sup>2</sup>?

## Summary

- See Class website for latest details:
  - http://gaia.ecs.csus.edu/~mei/135/index.html
- To do well in this class, you need to
  - Read before/after class and attend class
  - Review lecture notes and HW before activities and tests
  - Do homework and participate in discussions
  - Ask questions in class and office hours



#### Homework

- Review set theory,
  - a quiz on set theory next class
- Read chapter 1 and 2 of (text or notes)
- Free PDF is available online



## Quiz scope on set theory

- Subsets, notation and concepts
- Member of a set
- Empty set
- Power set
- Set operations: Product, union, intersection, difference