PRACTICE EXAM #4

General Chemistry I

SPRING 2012

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) No two electrons can have the same four quantum numbers is known as the									
·	A) Aufbau principle B) Hund's rule C) Pauli exclusion principle D) Heisenberg uncertainty principle								
2) Give the set of four quantum numbers that could represent the last electron added (using the Aufbau principle) to the CI atom.									
A) $n = 3$, $l = 0$), $m_I = 1$, $m_S = -\frac{1}{2}$								
B) <i>n</i> = 3, <i>l</i> = 1	$1, m_I = 1, m_S = +\frac{1}{2}$								
C) n = 2, I = 1	$I, m_I = 1, m_S = -\frac{1}{2}$								
D) n = 3, I = 2	$P_{i}, m_{l} = 1, m_{S} = +\frac{1}{2}$								
E) $n = 3$, $l = 2$	$, m_{I} = 1, m_{S} = -\frac{1}{2}$								
3) Give the ground state electron configuration for Se.									
A) [Ar]4s ² 4d	•								
B) [Ar]4s ² 3d	-								
C) [Ar]4s ² 3d									
D) [Ar]3d ¹⁰ 4	•								
E) [Ar]4s ² 3d	10 _{4p} 4								
4) Give the number of core electrons for Cd.									
A) 44	B) 47	C) 48	D) 45	E) 46					
5) How many unpaired electrons are present in the ground state Ge atom?									
A) 1	B) 2	C) 4	D) 3	E) 0	5)				
6) Identify the number of valence electrons for Mn.									
A) 7	B) 2	C) 5	D) 8					
7) Give the complete electronic configuration for Mn.									
A) 1s ² 2s ² 2p63s ² 3p64s ¹ 3d6 B) 1s ² 2s ² 2p63s ² 3p64s ² 3d ⁵									
C) 1s22s22n63s23n64s24d5 D) 1s22s22n63s23n64s24n5									

8) Place the following elements in order of decreasing atomic radius.									
Xe	Rb	Ar							
A) Rb > Xe > Ar B) Ar > Xe > Rb C) Xe > Rb > Ar D) Ar > Rb > Xe E) Rb > Ar > Xe									
9) Place the following in order of increasing radius.									
Br ⁻	Na ⁺	Rb⁺							
A) Na ⁺ < Rb ⁺ < B) Br ⁻ < Rb ⁺ < C) Br ⁻ < Na ⁺ < D) Rb ⁺ < Br ⁻ < E) Rb ⁺ < Na ⁺ <	Na ⁺ Rb ⁺ Na ⁺								
10) Which of the following represent the Lewis structure for N?									
A) :Ņ:	B) . _V :		c) ·ÿ:	D) N·	E) N:				
11) Which of the following represent the Lewis structure for Br ⁻ ?									
A) . Bi:_	B) :Br:-		C) :Br:-	D) :Br:-	E) Br• ⁻				
12) Use Lewis theory to A) Al ₂ O	determine B) Al ₃ O		al formula for the co	ompound formed be D) Al ₂ O ₃	tween Al and O. E) AlO ₂	12)			
13) Identify the compound with the highest magnitude of lattice energy.									
A) KCI	B)	CsCl	C) LiCI	D) NaCI				
14) Place the following elements in order of <u>increasing</u> electronegativity.									
K	Cs P								
A) K < P < Cs B) Cs < P < K C) P < K < Cs D) Cs < K < P E) P < Cs < K									
15) Choose the bond below that is <u>most</u> polar. A) C-C B) C-N C) C-F D) C-O E) F-F									
A) C-C	B) C-N		C) C-F	D) C-O	c) r-r				

A)

B)

C)

D)

E)

- 17) How many of the following elements can form compounds with an expanded octet?
- 17) _____

Ο

Xe

CI

- A) 4
- B) 3
- C) 1
- D) 0
- E) 2
- 18) Determine the electron geometry (eg) and molecular geometry (mg) of CO₂.

18) _____

- A) eg=trigonal planar, mg=bent
- B) eg=trigonal planar, mg=trigonal planar
- C) eg=linear, mg=trigonal planar
- D) eg=tetrahedral, mg=tetrahedral
- E) eg=linear, mg=linear
- 19) Draw the Lewis structure for BrF₅. What is the hybridization on the Br atom?

19) _____

- A) sp^3d^2
- B) sp²
- C) sp³
- D) sp
- E) sp3d

A)
$$C1 = sp$$
, $C2 = sp^2$

B)
$$C1 = sp^2$$
, $C2 = sp^3d$

C)
$$C1 = sp^2$$
, $C2 = sp^3$

D)
$$C1 = sp^3d$$
, $C2 = sp^3d^2$

E)
$$C1 = sp^3$$
, $C2 = sp^3d$

21) Use the molecular orbital diagram to determine which of the following are paramagnetic.

C)
$$B_2^{2+}$$

C)
$$B_2^{2+}$$
 D) N_2^{2+}

E)
$$C_2^{2-}$$

22) Which molecule listed below is a polar molecule?

22)

- A) H₂O
- B) HCN
- C) NH₃
- D) all of the compounds
- E) none of the compounds

23) The number of sigma bonds and pi bonds in the following compound are _____, respectively. 23)

A) 7 and 2

B) 8 and 1

C) 7 and 1

D) 8 and 2

E) 6 and 2

ESSAY. Pick ONLY one of the following two questions. Write your answer in the space provided or on a separate sheet of paper.

24) Draw a correct Lewis structure for HCOOH.

25) Draw the Lewis structure for OCN-. If several resonance structures are available, calculate the formal charges and determine the best structure.