$Lab_Notebook_2024$

Callum Malcolm

Contents

January 2024	3
Tuesday 16-01-2023	9
WILDseq - Mouse Experiment 1: PCR 1 Samples 1-8 / PCR 2 Sample 5	٠
Overview:	3
PCR 1: Samples 1-8	4
Bead Clean Up	4
PCR 2: Samples 5	-
Wednesday 17-01-2023	٤
WILDseq - Mouse Experiment 1: PCR 1 Samples 9-30	8
Overview:	8
PCR 1: Samples 9-30	8
Bead Clean Up	8
Thursday 18-01-2023	1
WILDseq - Mouse Experiment 1: PCR 1 Samples 17/18/29	1
Overview:	1
PCR 1: Samples 17/18/29	1
Bead Clean Up	1
Friday 19-01-2023	2
WILDseq - Mouse Experiment 1: RNA Extraction/RT Samples 31-33	2
RNA extraction Samples 31-33	2
RT Protocol Samples 31-33	2
Monday 22-01-2023	:
PCR 1: Samples 31-33	:
Bead Clean Up	:
PCR 1: Negative Control	-
Tuesday 23-01-2023	7
Made New Media: AR-5	7
Cell Culture	٤
A20	8
HEK	
WS-ME1 Library Prep: Control Test 3	
PCR 1: Negative Control	
Wednesday 24-01-2023 2	(
Cell Culture	
A20	
HEK	

WILDseq - Mouse Experiment 1: Library Prep Attempt 5 - RT	
RT Protocol	
Thursday 25-01-2023	22
Cell Culture	
A20	
HEK	 22
WS-ME1 Library Prep - Attempt 5 PCR 1	 22
PCR 1: Negative Control	 22
Bead Clean Up	 23
Tapestation PCR 1 Samples 1-33	
Friday 26-01-2023	26
Cell Culture	 26
A20	 26
HEK	2
WS-ME1 Library Prep - Attempt 5 PCR 1 repeat and PCR 2 prep	2
PCR2 Prep	2
PCR1 Samples 18-20	2
Bead Clean Up	
Tapestation PCR 1 Samples 18-20	
Tapestation 1 Ort 1 Samples 18-20	 4(
Monday 29-01-2023	28
Cell Culture	28
A20	
HEK	
PCR Step 2 - Samples 1-24	
• •	
Overview	
PCR2 Protocol	
Tapestation	 31
Tuesday 30-01-2023	32
Cell Culture	 32
HEK	 32
A20	 32
Thursday 01-02-2023	33
PCR Step 2 - Samples 1-8, 25-39	 33
Overview	33
PCR2 Protocol	 33
Tapestation	34
Monday 05-02-2023	35
Cell Culture	35
Made DMEM	3!
HEK - Seeded	3!
A20 - Split	 35

January 2024

Tuesday 16-01-2023

WILDseq - Mouse Experiment 1: PCR 1 Samples 1-8 / PCR 2 Sample 5 Overview:

- $\bullet\,$ PCR tests to see if PCR would work for WS-ME1 cDNA previously made
- Started with samples 1-8 so as not to waste sample/reagents if PCR 1 did not work

Sample List

Sample ID	Treatment/Sample	ng/uL	i7 index	i5 index
1	Cyclophosphamide	773.7	N701	S502
2	Cyclophosphamide	545.3	N702	S502
3	Cyclophosphamide	903.6	N703	S502
4	Cyclophosphamide	1056.1	N704	S502
5	Cyclophosphamide	959.1	N705	S502
6	Combination	730.1	N706	S502
7	Combination	602.3	N707	S502
8	Combination	449.6	N710	S502
9	Combination	1002.1	N701	S503
10	Combination	1929.2	N702	S503
11	Methotrexate	861.5	N703	S503
12	Methotrexate	1110.4	N704	S503
13	Methotrexate	1171.0	N705	S503
14	Methotrexate	1347.8	N706	S503
15	Methotrexate	891.4	N707	S503
16	Vehicle	374.5	N710	S503
17	Vehicle	911.2	N701	S505
18	Vehicle	829.8	N702	S505
19	Vehicle	600.1	N703	S505
20	Vehicle	750.3	N704	S505
21	Baseline	401.5	N705	S505
22	Baseline	443.3	N706	S505
23	Baseline	373.4	N707	S505
24	Baseline	444.5	N710	S505
25	Baseline	267.6	N701	S506
26	BLLW 14K	378.7	N702	S506
27	BLLW 2K	362.7	N703	S506
28	BLLW 1K	563.8	N704	S506
29	Methotrexate (outlier)	348.1	N705	S506
30	Combo	380.8	N706	S506
31	RBL2P 2K	173.3	N707	S506
32	RBL2P 7K	2708.0	N7010	S506
33	RBL2P 250K	1418.5	N701	S507
34	$Mock_direct_1$	-	N702	S507
35	$Mock_direct_2$	-	N703	S507
36	$Mock_direct_3$	-	N704	S507
37	$Mock_culture_1$	-	N705	S507
38	$Mock_culture_2$	-	N706	S507
39	Mock_culture_3	-	N707	S507

PCR 1: Samples 1-8

- Checked [cDNA] on NanoDrop of sample 8 to make sure samples were still intact
 - Sample 8 ng/ μ L = 1042.3
 - It is assumed all other cDNA is of similar quality
- 1. Made a master mix of PCR1 reagents
- Made enough for 31 samples
- Primer mix was made earlier

Component	Volume	Master Mix
10uM WS PCR1 Primer Mix	$3~\mu L$	$93~\mu L$
DNAse/RNAse H20	$12 \ \mu L$	$372~\mu L$
Kapa Hifi HotStart Ready Mix $(2X)$	$25 \ \mu L$	$775~\mu\mathrm{L}$

2. Add following components to tubes

Component	Volume
PCR1 MasterMix	$40~\mu L$
cDNA	$10~\mu L$

3. Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 60C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$1 \min$
Hold Step	Step 6: 12C	Hold

10-25 cycles of steps 2-4

Bead Clean Up

Overview

- Clean PCR reaction by removing leftover primers
- This prevents false reads, cleaner indexing in later steps, and higher quality samples

Materials

• For 40 samples

Component	Expected Volume/experiment	Material ID
Ampure Bead Kit	$200~\mu \rm L$	

Protocol

- 1. Equilibrate Ampure beads to room temp (available from supplies cold room)
- 2. Mix well and vortex for 30sec to ensure uniform distribution.
- 3. Add 90ul (1.8X volume) to PCR reaction and mix thoroughly by pipetting.

- 4. Incubate 5min, room temp
- 5. Place on magnet for 2 min and keep on magnet until final elution
- 6. Remove supernatant and add 200ul 70% ethanol (make fresh)
- 7. Incubate 30sec and remove
- 8. Repeat 70% ethanol wash
- 9. Air dry beads 5-10min room temp. Once dry the beads will go from shiny to matt in appearance. Avoid over drying (cracked appearance).
- 10. Add 15 ul EB buffer and resuspend beads by pipetting
- 11. Incubate 2min room temp
- 12. Place on magnet and remove eluate
- 13. Assess PCR product size, contamination and concentration on tapestation.

Expected size = 165-172bp

Tapestation PCR 1 - Samples 1-8

Default image (Contrast 100%)

Sample Info

Well	Conc. [pg/µl]	Sample Description	Alert	Observations
EL1	2350	Electronic Ladder		Ladder
A1	310	1 PCR1	<u> </u>	Caution! Expired ScreenTape device
B1	631	2 PCR1	<u> </u>	Caution! Expired ScreenTape device
Cl	333	3 PCR1	<u> </u>	Caution! Expired ScreenTape device
D1	369	4 PCR1	<u> </u>	Caution! Expired ScreenTape device
E1	90.0	5 PCR1	<u> </u>	Caution! Expired ScreenTape device
F1	266	6 PCR1	<u> </u>	Caution! Expired ScreenTape device
Gl	181	7 PCR1	<u> </u>	Caution! Expired ScreenTape device
H1	206	8 PCR1	<u>^</u>	Caution! Expired ScreenTape device

Inital Test PCR 1

PCR 2: Samples 5

Overview

- Yield from PCR1 is low (.09 .631 ng/ μ L)
- Sample with lowest concentration was taken ahead to PCR 2 (E1 Sample 5)
- PCR to index samples for sequencing by attaching UMI

Materials

Component	Expected Volume/experiment	Material ID
10uM Nxxx Nextera i7 adapter	-	-
10uM Sxxx Nextera i5 adapter	-	-
DNAse/RNAse H20	$1000~\mu\mathrm{L}$	
Kapa Hifi HotStart Ready Mix (2X)	$1200~\mu\mathrm{L}$	KK2601

Protocol

- 1. Prepared samples according to the following table:
- Sample Adaptor pairs in table above

Component	Volume
10uM N705 Nextera i7 adapter	$1.5 \mu L$
10uM S502 Nextera i5 adapter	$1.5~\mu\mathrm{L}$
DNAse/RNAse H20	$21 \ \mu L$
Kapa Hifi HotStart Ready Mix (2X)	$25 \ \mu L$
$10 \text{ng}/\mu\text{L PCR}1$	$1~\mu { m L}$

2. Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation Denaturation Annealing Extension Final Extension Hold Step	Step 1: 95C Step 2: 98C Step 3: 55C Step 4: 72C Step 5: 72C Step 6: 12C	3mins 20s 15s 15s 1 min Hold

8 cycles of steps 2-4

- 3. Performed Ampure bead clean up as above with 90ul beads per 50ul PCR reaction
- 4. Checked size and concentration on tapestation

Tapestation PCR 2

Review

- Contamination/PCR bubble?
- Yield is adequate (assuming it is representative of the correct peak)
- Chris wants to repeat PCR1 for remaining samples, take PCR2 ahead, and re-run sames with D1000 tape (non High-Sensitivity)

Plan for tomorrow

- PCR 1 samples 9-30
- Bead Clean Up
- Tape Station

Default image (Contrast 100%)

Sample Info

Well	Conc. [pg/µl]	Sample Description	Alert	Observations
EL1	2350	Electronic Ladder		Ladder
Al	3180	5 PCR2		Marker(s) not detected; Caution! Expired ScreenTape device

Figure 1: 2024-01-16 Tapestation PCR 2 Test Samples $5\,$

Wednesday 17-01-2023

WILDseq - Mouse Experiment 1: PCR 1 Samples 9-30

Overview:

• Completed PCR 1 for Samples 9-30

PCR 1: Samples 9-30

- 1. Used master mix of PCR1 reagents made 2024-01-16
- 2. Add following components to tubes |Component |Volume| |:----|---| | PCR1 MasterMix | 40 μ L | | cDNA | 10 μ L |
- 3. Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 60C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$1 \min$
Hold Step	Step 6: 12C	Hold

10-25 cycles of steps 2-4

Bead Clean Up

Overview

- Clean PCR reaction by removing leftover primers
- This prevents false reads, cleaner indexing in later steps, and higher quality samples

Materials

• For 40 samples

Component	Expected Volume/experiment	Material ID
Ampure Bead Kit	$200~\mu \rm L$	

Protocol

- 1. Equilibrate Ampure beads to room temp (available from supplies cold room)
- 2. Mix well and vortex for 30sec to ensure uniform distribution.
- 3. Add 90ul (1.8X volume) to PCR reaction and mix thoroughly by pipetting.
- 4. Incubate 5min, room temp
- 5. Place on magnet for 2 min and keep on magnet until final elution
- 6. Remove supernatant and add 200ul 70% ethanol (make fresh)
- 7. Incubate 30sec and remove
- 8. Repeat 70% ethanol wash
- 9. Air dry beads 5-10min room temp. Once dry the beads will go from shiny to matt in appearance. Avoid over drying (cracked appearance).
- 10. Add 15 ul EB buffer and resuspend beads by pipetting
- 11. Incubate 2min room temp

- 12. Place on magnet and remove eluate
- 13. Assess PCR product size, contamination and concentration on tapestation.

Expected size = 165-172bp

Default image (Contrast 100%)

Sample Info

Well	Conc. [pg/µl]	Sample Description	Alert	Observations
EL1	2350	Electronic Ladder		Ladder
A1	88.4	9 PCR 1	<u> </u>	Caution! Expired ScreenTape device
Bl	164	10 PCR 1	<u> </u>	Caution! Expired ScreenTape device
Cl	142	11 PCR 1	<u> </u>	Caution! Expired ScreenTape device
D1	140	12 PCR 1	<u> </u>	Caution! Expired ScreenTape device
El	1070	13 PCR 1	<u> </u>	Caution! Expired ScreenTape device
F1	354	14 PCR 1	<u> </u>	Caution! Expired ScreenTape device
Gl	203	15 PCR 1	<u> </u>	Caution! Expired ScreenTape device
H1	203	16 PCR 1	<u> </u>	Caution! Expired ScreenTape device

Figure 2: 2024-01-17 Tapestation PCR 1 Samples 9-16

Tapestation PCR 1

Tapestation PCR 1

Default image (Contrast 100%)

Sample Info

Well	Conc. [pg/µl]	Sample Description	Alert	Observations
EL1	2350	Electronic Ladder		Ladder
A1		17 PCR 1	<u> </u>	Caution! Expired ScreenTape device
B1	40.7	18 PCR 1	<u> </u>	Caution! Expired ScreenTape device
C1	84.0	19 PCR 1	<u> </u>	Caution! Expired ScreenTape device
D1	226	20 PCR 1	<u> </u>	Caution! Expired ScreenTape device
E1	665	21 PCR 1	<u> </u>	Caution! Expired ScreenTape device
F1	820	22 PCR 1	<u> </u>	Caution! Expired ScreenTape device
Gl	270	23 PCR 1	<u> </u>	Caution! Expired ScreenTape device
HI	423	24 PCR 1	<u> </u>	Caution! Expired ScreenTape device
A2	1290	25 PCR 1	<u> </u>	Caution! Expired ScreenTape device
B2	223	26 PCR 1	<u> </u>	Caution! Expired ScreenTape device
C2	170	27 PCR 1	<u> </u>	Caution! Expired ScreenTape device
D2	71.5	28 PCR 1	<u> </u>	Caution! Expired ScreenTape device
E2	30.5	29 PCR 1	<u> </u>	Caution! Expired ScreenTape device
F2	157	30 PCR 1	<u> </u>	Caution! Expired ScreenTape device

Review

- Samples 10/17/18/29 don't have adequate yield
 - Will need to redo PCR 1
 - Sample 10 has acceptable PCR1 sample from previous run
- Yield is adequate for the rest to move ahead

Plan for tomorrow

- PCR 1 samples 17/18/29
 - Bead Clean Up
 - Tape Station
- PCR 2 for all samples
 - Double check reagents amounts
 - Running low on KAPA (re-ordered) and Nextera Primers

- Chris wants to add 2 additional samples
 - To Do RNA Extraction / RT / PCR 1 / PCR 2
 - Wait until majority of samples have acceptable PCR 2 product

Thursday 18-01-2023

WILDseq - Mouse Experiment 1: PCR 1 Samples 17/18/29

Overview:

• Repeated PCR 1 for Samples 17/18/29

PCR 1: Samples 17/18/29

- 1. Used master mix of PCR1 reagents made 2024-01-16
- 2. Add following components to tubes |Component |Volume| |:----|---| | PCR1 MasterMix | 40 μ L | | cDNA | 10 μ L |
- 3. Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 60C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$1 \min$
Hold Step	Step 6: 12C	Hold

10-25 cycles of steps 2-4

Bead Clean Up

Overview

- Clean PCR reaction by removing leftover primers
- This prevents false reads, cleaner indexing in later steps, and higher quality samples

Materials

 \bullet For 40 samples

Component	Expected Volume/experiment	Material ID
Ampure Bead Kit	$200~\mu L$	

Protocol

- 1. Equilibrate Ampure beads to room temp (available from supplies cold room)
- 2. Mix well and vortex for 30sec to ensure uniform distribution.
- 3. Add 90ul (1.8X volume) to PCR reaction and mix thoroughly by pipetting.
- 4. Incubate 5min, room temp
- 5. Place on magnet for 2 min and keep on magnet until final elution
- 6. Remove supernatant and add 200ul 70% ethanol (make fresh)
- 7. Incubate 30sec and remove

- 8. Repeat 70% ethanol wash
- 9. Air dry beads 5-10min room temp. Once dry the beads will go from shiny to matt in appearance. Avoid over drying (cracked appearance).
- 10. Add 15 ul EB buffer and resuspend beads by pipetting
- 11. Incubate 2min room temp
- 12. Place on magnet and remove eluate
- 13. Assess PCR product size, contamination and concentration on tapestation.

Expected size = 165-172bp

Tapestation PCR 1

Review

- Samples 10/17/18/29 don't have adequate yield
 - Will need to redo PCR 1
 - Sample 10 has acceptable PCR1 sample from previous run
- Yield is adequate for the rest to move ahead

Plan for tomorrow

- PCR 1 samples 17/18/29
 - Bead Clean Up
 - Tape Station
- PCR 2 for all samples
 - Double check reagents amounts
 - Running low on KAPA (re-ordered) and Nextera Primers
- Chris wants to add 2 additional samples
 - To Do RNA Extraction / RT / PCR 1 / PCR 2
 - Wait until majority of samples have acceptable PCR 2 product

Friday 19-01-2023

WILDseq - Mouse Experiment 1: RNA Extraction/RT Samples 31-33

Overview: Extra samples given by Chris for whitelist

RNA extraction Samples 31-33

• Performed RNA extraction of tissue/cell samples according to the following kit:

RT Protocol Samples 31-33

- 1. In PCR strip tubes, prepared 5 μg of RNA in a total volume of 10 μl of RNAse/DNAase-free water.
- 2. Add 1 μ l of WS_RT_UMI_NexteraR2 primer (2 μ M stock)
- 3. Add 1 μl dNTPs (10 mM each).
- 4. Denature at 65 C for 5 mins in the PCR machine, then straight onto ice for at least 2 mins, spin briefly to get liquid to the bottom of the tube.
- 5. Used Master Mix previously made
- 6. Add 7 μ l of RT MM prepared above to each sample and mix, spin briefly to get liquid to the bottom of the tube.
 - Spin briefly to get liquid to bottom of the tube
- 7. In the PCR machine incubate at 53 C for 10 mins followed by 80 C for 10 mins.
- 8. Add 1 μl The molabile Exonuclease I (NEB M0568) to remove excess RT primer.

Component	Volume	MM volume
Thermolabile Exonuclease I	$1~\mu { m L}$	
NEBuffer r3.1*	$2 \mu L$	

Most PCR buffers are compatible

- 9. In PCR Machine: heat at 37C for 4 mins followed by 80C for 1 min
 - Spin briefly to get liquid to bottom of the tube
- 10. Add 1 μ l of RNAse H and incubate at 37 C for 20 mins.
- 11. Checked [cDNA] on NanoDrop
- Added to Sample List

Monday 22-01-2023

PCR 1: Samples 31-33

- Included negative control (MM + H20)
- 1. Used master mix of PCR1 reagents made 2024-01-16
- 2. Add following components to tubes |Component |Volume| |:----|---| | PCR1 MasterMix | 40 $\mu \rm L$ | cDNA | 10 $\mu \rm L$ |
- 3. Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 60C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$1 \min$
Hold Step	Step 6: 12C	Hold

10-25 cycles of steps 2-4

Bead Clean Up

Overview

- Clean PCR reaction by removing leftover primers
- This prevents false reads, cleaner indexing in later steps, and higher quality samples

Materials

• For 40 samples

Component	Expected Volume/experiment	Material ID
Ampure Bead Kit	$200~\mu { m L}$	

Protocol

- 1. Equilibrate Ampure beads to room temp (available from supplies cold room)
- 2. Mix well and vortex for 30sec to ensure uniform distribution.
- 3. Add 90ul (1.8X volume) to PCR reaction and mix thoroughly by pipetting.
- 4. Incubate 5min, room temp
- 5. Place on magnet for 2 min and keep on magnet until final elution
- 6. Remove supernatant and add 200ul 70% ethanol (make fresh)
- 7. Incubate 30sec and remove
- 8. Repeat 70% ethanol wash
- 9. Air dry beads 5-10min room temp. Once dry the beads will go from shiny to matt in appearance. Avoid over drying (cracked appearance).
- 10. Add 15 ul EB buffer and resuspend beads by pipetting
- 11. Incubate 2min room temp
- 12. Place on magnet and remove eluate
- 13. Assess PCR product size, contamination and concentration on tapestation.

Expected size = 165-172bp

Tapestation PCR 1 31-33

Tapestation PCR 1

Default image (Contrast 100%)

Sample Info

Well	Conc. [pg/µl]	Sample Description
EL1	2350	Electronic Ladder
Al	89.4	-RT Control
Bl	46.1	31 PCR 1
Cl	87.3	32 PCR 1
Dl	195	33 PCR 1

!!!! Band present in - Control lane !!!!

PCR 1: Negative Control

- Remade negative control (MM + H20)
- 1. Used master mix of PCR1 reagents made 2024-01-16
- 2. Add following components to tubes |Component |Volume| |:----|---| | PCR1 MasterMix | 40 μL | cDNA | 10 μL |
- $3.\ \,$ Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation Denaturation Annealing	Step 1: 95C Step 2: 98C Step 3: 60C	3mins 20s 15s
Extension Final Extension Hold Step	Step 4: 72C Step 5: 72C Step 6: 12C	15s 1 min Hold

Tapestation Control Test 1

- Compared New -Control to old
 - Wanted to determine if this was a pipetting error

Default image (Contrast 100%)

Sample Info

Well	Conc. [pg/µl]	Sample Description
EL1	2350	Electronic Ladder
Al	89.4	-RT Control
Bl	46.1	31 PCR 1
Cl	87.3	32 PCR 1
DI	195	33 PCR 1

Tapestation Control Test 2

- Wanted to determine if water was contaminated

Default image (Contrast 100%)

Sample Info

Well	Conc. [pg/µl]	Sample Description
EL1	2350	Electronic Ladder
Al	89.4	-RT Control
Bl	46.1	31 PCR 1
Cl	87.3	32 PCR 1
D1	195	33 PCR 1

Tuesday 23-01-2023

Made New Media: AR-5

1. Made new media: AR-5

Solution	ID code	Volume	% Total volume
Advanced RMPI		$500~\mathrm{mL}$	78%
Glutamax		$6.5~\mathrm{mL}$	20%
Pen-Strep	—-	$6.5~\mathrm{mL}$	1%
FBS		$128~\mathrm{mL}$	1%

Cell Culture

A20

- Thawed A20 and seeded in T25
- Spun down CS to remove DMSO, cell pellet small
- Cells didn't look super healthy
- Monitor tomorrow

HEK

- Got T75 flask from Chris
- 70% confluent
- Added 10mL of trypsin and tapped flask until cells were dislodged
- Added 10mL of DMEM (20% FBS) and added to 50mL tube
- Added 25mL of DMEM to 5 T75 flasks
- Mixed CS to get single cell suspension and remvoe clumps
- Transferred 4mL of CS to each flask
- Will grow up for 1-2 days and freeze down 4 T75 flasks
 - Other flask will be used to gorw WILDseq library virus for A20's

WS-ME1 Library Prep: Control Test 3

Overview: question around contaminated primers - Ran PCR1 with new primer/PCR 1 mix

PCR 1: Negative Control

- Remade negative control (MM + H20)
- Remade Primer mix and PCR1 MM

PCR1 Primer Mix

- WILDseq protocol from Kirsty dictates 8 fwd primers mixed in equal amounts with equivilant amount of rev priemr
- Primers were reconsituted at 100 $\mu\mathrm{M}$ so needed to be diluted to 10 μ

Component	Volume
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2~\mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$16 \ \mu L$
DNAse/RNAse~H20	$320~\mu\mathrm{L}$

PCR1 MM

Component	Volume	Master Mix
10uM WS PCR1 Primer Mix	$3 \mu L$	
DNAse/RNAse H20	$12~\mu L$	
Kapa Hifi HotStart Ready Mix (2X)	$25 \ \mu L$	

1. Add following components to tubes

Component	Volume
PCR1 MasterMix H2O	$\begin{array}{c} 40~\mu\mathrm{L} \\ 10~\mu\mathrm{L} \end{array}$

2. Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 60C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$1 \min$
Hold Step	Step 6: 12C	Hold

Tapestation Control Test 3

- \bullet Compared New -Control to old -control
 - Wanted to determine if water was contaminated

Default image (Contrast 100%)

Sample Info

Well	Conc. [ng/µl]	Sample Description
EL1	20.3	Electronic Ladder
A1	2.13	Control 1
B1	2.01	Control 2

Wednesday 24-01-2023

Cell Culture

A20

- Checked cells $\sim 10\%$ confluent
- Cells looked healthy but sparse
- Grow up for inection
- $\bullet\,$ Ask Chris about cell numbers needed for injecting into 12 mice

HEK

- 20% confluent
- Check tomorrow and split or Friday

WILDseq - Mouse Experiment 1: Library Prep Attempt 5 - RT

- Decided to repeat the entire library prep process using RNA extracted previously
- Everything done in PCR room RNA hood

RT Protocol

- 1. In PCR strip tubes, prepared 5 μg of RNA in a total volume of 10 μl of RNAse/DNAase-free water.
- 2. Add 1 μ l of WS RT UMI NexteraR2 primer (2 μ M)
- Diluted primer from stock ($100\mu M$)
- Added 1 μ L RT-Primer stock into 49μ L water
- 3. Add 1 μ l dNTPs (10 mM each).
- 4. Denature at 65 C for 5 mins in the PCR machine, then straight onto ice for at least 2 mins, spin briefly to get liquid to the bottom of the tube.
- 5. Prepare mastermix of RT enzyme and buffers. 1.1x the number of samples.

Component	Volume	MM volume
5x SSIV Buffer	$4~\mu { m L}$	$134~\mu L$
SSIV RT	$1 \mu L$	$33.5~\mu\mathrm{L}$
$100~\mathrm{mM}~\mathrm{DTT}$	$1~\mu \mathrm{L}$	$33.5~\mu\mathrm{L}$
RNAse Out	$1 \ \mu L$	$33.5~\mu L$

- 6. Add 7 μ l of RT MM prepared above to each sample and mix, spin briefly to get liquid to the bottom of the tube.
 - Spin briefly to get liquid to bottom of the tube
- 7. In the PCR machine incubate at 53 C for 10 mins followed by 80 C for 10 mins.
- 8. Add 1 μ l Themolabile Exonuclease I (NEB M0568) to remove excess RT primer.

Component	Volume	MM volume
Thermolabile Exonuclease I NEBuffer r3.1*	$\begin{array}{cc} 1~\mu L \\ 2~\mu L \end{array}$	$33.5 \ \mu L$ $67 \ \mu L$

Most PCR buffers are compatible

- 9. In PCR Machine: heat at 37C for 4 mins followed by 80C for 1 min
 - Spin briefly to get liquid to bottom of the tube
- 10. Add 1 μ l of RNAse H and incubate at 37 C for 20 mins.

Stored at -4C

Plan for tomorrow

- PCR 1 (check for KAPA HIFI amount)
 - Bead Clean Up
 - Tape Station
- Check on cells
- Plan cell numbers needed for A20 mouse injections

Thursday 25-01-2023

Cell Culture

A20

- Checked cells ~50% confluent
- Cells looked healthy but sparse
- Added 10ml of AR-5
- Grow up for injection
- Ask Chris about cell numbers needed for injecting into 12 mice

HEK

- $\bullet\,$ Collected all T175 and froze down
- Left one flask going at 20% confluency

WS-ME1 Library Prep - Attempt 5 PCR 1

Ran PCR1 for attempt 5

PCR 1: Negative Control

- Remade negative control (MM + H20)
- Remade Primer mix and PCR1 MM

PCR1 Primer Mix

- WILDseq protocol from Kirsty dictates 8 fwd primers mixed in equal amounts with equivalent amount of rev primer
- Primers were reconsituted at 100 $\mu\mathrm{M}$ so needed to be diluted to 10 $\mu\mathrm{M}$

Component	Volume
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$2 \mu L$
100uM WS PCR1 Primer Mix	$16 \ \mu L$
${\rm DNAse/RNAse~H20}$	$144~\mu L$

PCR1 MM

Component	Volume	Master Mix
10uM WS PCR1 Primer Mix DNAse/RNAse H20 Q5 Master Mix	$3 \mu L$ $12 \mu L$ $25 \mu L$	

- Used Q5 instead of KAPA
- 1. Add following components to tubes

Component	Volume
PCR1 MasterMix	$40~\mu L$
H2O	$10 \ \mu L$

2. Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 60C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$1 \min$
Hold Step	Step 6: 12C	Hold

Bead Clean Up

Overview

- Clean PCR reaction by removing leftover primers
- This prevents false reads, cleaner indexing in later steps, and higher quality samples

Materials

• For 40 samples

Component	Expected Volume/experiment	Material ID
Ampure Bead Kit	$200~\mu\mathrm{L}$	

Protocol

- 1. Equilibrate Ampure beads to room temp (available from supplies cold room)
- 2. Mix well and vortex for 30sec to ensure uniform distribution.
- 3. Add 90ul (1.8X volume) to PCR reaction and mix thoroughly by pipetting.
- 4. Incubate 5min, room temp
- 5. Place on magnet for 2 min and keep on magnet until final elution
- 6. Remove supernatant and add 200ul 70% ethanol (make fresh)
- 7. Incubate 30sec and remove
- 8. Repeat 70% ethanol wash
- 9. Air dry beads 5-10min room temp. Once dry the beads will go from shiny to matt in appearance. Avoid over drying (cracked appearance).
- 10. Add 15 ul EB buffer and resuspend beads by pipetting
- 11. Incubate 2min room temp
- 12. Place on magnet and remove eluate
- 13. Assess PCR product size, contamination and concentration on tapestation.

Expected size = 165-172bp

Tapestation PCR 1 Samples 1-33

Tapestation PCR 1 1-16

Tapestation PCR 1

Default image (Contrast 100%)

Sample Info

Well	Conc. [ng/µl]	Sample Description	Alert	Observations
EL1	20.3	Electronic Ladder		Ladder
A1	18.8	1 PCR 1		
B1	28.9	2 PCR 1		
C1	4.49	3 PCR 1		
D1	17.5	4 PCR 1		
E1	19.4	5 PCR 1	<u> </u>	Peak out of Sizing Range
Fl	12.7	6 PCR 1	<u> </u>	Peak out of Sizing Range
Gl	5.42	7 PCR 1		
H1	13.6	8 PCR 1		
A2	15.8	9 PCR 1		
B2	3.52	10 PCR 1		
C2	12.2	11 PCR 1		
D2	13.0	12 PCR 1		
E2	18.8	13 PCR 1		
F2	8.74	14 PCR 1		
G2	13.2	15 PCR 1		
H2	6.68	16 PCR 1		

Figure 3: 2024-01-25 Tapestation PCR 1 Samples 1-16

Default image (Contrast 100%)

Sample Info

Well	Conc. [ng/µl]	Sample Description	Alert	Observations
EL1	20.3	Electronic Ladder		Ladder
A1	15.5	17 PCR 1		
B1	2.76	18 PCR 1	<u> </u>	Marker(s) not detected
C1		19 PCR 1	<u> </u>	Marker(s) not detected
D1		20 PCR 1	<u> </u>	Marker(s) not detected
E1	39.1	21 PCR 1		
F1	43.3	22 PCR 1		
Gl	46.2	23 PCR 1		
H1	49.7	24 PCR 1		
A2	47.3	25 PCR 1		
B2	20.2	26 PCR 1		
C2	15.7	27 PCR 1		
D2	18.5	28 PCR 1		
E2	2.85	29 PCR 1		
F2	5.29	30 PCR 1		
Œ	20.4	31 PCR 1		
H2	10.8	32 PCR 1		

Figure 4: 2024-01-25 Tapestation PCR 1 Samples 17-32

Tapestation PCR 1 1-32

Tapestation PCR 1

• Samples 18, 19, and 20 DNW

Tapestation PCR 1 18-20, 33

Default image (Contrast 100%)

Sample Info

Well	Conc. [ng/µl]	Sample Description	Alert	Observations
EL1	20.3	Electronic Ladder		Ladder
A1		17 PCR 1 v2	<u> </u>	Marker(s) not detected
B1		18 PCR 1 v2	<u> </u>	Marker(s) not detected
Cl		20 PCR 1 v2	<u> </u>	Marker(s) not detected
D1	36.1	33 PCR 1		

Figure 5: 2024-01-25 Tapestation PCR 1 Samples 33 and redo 18-20

Tapestation PCR 1

 $\bullet~$ Samples 18, 19, and 20 DNW again

Friday 26-01-2023

Cell Culture

A20

- Expanded to T175
- Grow up for injection
- Ask Chris about cell numbers needed for injecting into 12 mice

HEK

- Split 1/2
- DMEM

WS-ME1 Library Prep - Attempt 5 PCR 1 repeat and PCR 2 prep

- Reran PCR1 for samples 18,19,20
- Prepped PCR2 primers

PCR2 Prep

- Reconstituted PCR2 primers bought by Chris
 - Used DNAse/RNAse Free H20 and diluted to 100 μM
- Diluted into strip tubes working stock $(10\mu M)$
 - 90 μL H20 + 10 μL primer stock

PCR1 Samples 18-20

PCR1 Protocol

• Used Primer Mix previously made on 25-01-2024

Component V	/olume	Master Mix
DNAse/RNAse H20	$egin{array}{l} \mu \mathrm{L} \ 2 \ \mu \mathrm{L} \ 5 \ \mu \mathrm{L} \end{array}$	

- Used Q5 instead of KAPA
- 1. Add following components to tubes

Component	Volume
PCR1 MasterMix	$40~\mu L$
H2O	$10~\mu L$

2. Performed PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 60C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$1 \min$
Hold Step	Step 6: 12C	Hold

Bead Clean Up

Overview

- Clean PCR reaction by removing leftover primers
- This prevents false reads, cleaner indexing in later steps, and higher quality samples

Materials

• For 40 samples

Component	Expected Volume/experiment	Material ID
Ampure Bead Kit	$200~\mu \rm L$	

Protocol

- 1. Equilibrate Ampure beads to room temp (available from supplies cold room)
- 2. Mix well and vortex for 30sec to ensure uniform distribution.
- 3. Add 90ul (1.8X volume) to PCR reaction and mix thoroughly by pipetting.
- 4. Incubate 5min, room temp
- 5. Place on magnet for 2 min and keep on magnet until final elution
- 6. Remove supernatant and add 200ul 70% ethanol (make fresh)
- 7. Incubate 30sec and remove
- 8. Repeat 70% ethanol wash
- 9. Air dry beads 5-10min room temp. Once dry the beads will go from shiny to matt in appearance. Avoid over drying (cracked appearance).
- 10. Add 15 ul EB buffer and resuspend beads by pipetting
- 11. Incubate 2min room temp
- 12. Place on magnet and remove eluate
- 13. Assess PCR product size, contamination and concentration on tapestation.

Expected size = 165-172bp

Tapestation PCR 1 Samples 18-20

Tapestation PCR 1 18-20

Tapestation PCR 1

Monday 29-01-2023

Cell Culture

A20

- Split 1:6
- AR-5
- Ask Chris about cell numbers needed for injecting into 12 mice

HEK

- Split 1/6
- DMEM

PCR Step 2 - Samples 1-24

Overview

- PCR to index samples for sequencing by attaching UMI
- Didn't have enough Q5 to complete all the samples

Default image (Contrast 100%)

Sample Info

Well	Conc. [ng/µl]	Sample Description	Alert	Observations
EL1	20.3	Electronic Ladder		Ladder
A1	8.30	18 PCR 1		
B1	9.76	19 PCR 1		
C1	10.3	20 PCR 1		

Figure 6: 2024-01-26 Tapestation PCR 1 Samples 18-20

PCR2 Protocol

- 1. Prepare samples according to the following table:
- Keep careful note of which adaptors are added to which sample

Component	Volume
10uM Nxxx Nextera i7 adapter 10uM Sxxx Nextera i5 adapter DNAse/RNAse H20	$1.5 \ \mu L$ $1.5 \ \mu L$ $21 \ \mu L$
Q5 10ng/µL PCR1	$25 \mu L$ $1 \mu L$

2. Perform PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 55C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$2 \min$
Hold Step	Step 6: 12C	Hold

8 cycles of steps 2-4

- 3. Perform Ampure bead clean up as above with 90ul beads per 50ul PCR reaction.
- If you don't have a crazy number of samples you might also want to consider doing up to 4 PCR2 reactions per sample and pooling them afterwards just to make sure all your sequences are captured.
- 4. Check size and concentration on tapestation. Dilute and pool samples for sequencing.

Tapestation

Default image (Contrast 100%)

Sample Info

Well	Conc. [ng/µl]	Sample Description	Alert	Observations
EL1	20.3	Electronic Ladder		Ladder
A1	2.72	1 PCR 2	A	Marker(s) not detected
B1		2 PCR 2	A	Marker(s) not detected
C1		3 PCR 2	A	Marker(s) not detected
D1		4 PCR 2	A	Marker(s) not detected
E1		5 PCR 2	A	Marker(s) not detected
F1		6 PCR 2	A	Marker(s) not detected
Gl		7 PCR 2	A	Marker(s) not detected
HI		8 PCR 2	A	Marker(s) not detected
A2	206	9 PCR 2		
B2	88.9	10 PCR 2		
(2	173	11 PCR 2		
D2	159	12 PCR 2		
E2	160	13 PCR 2		
F2	164	14 PCR 2		
Œ	214	15 PCR 2		
H2	149	16 PCR 2		

- 1-8 PCR DNW (suspected issue with bead clean-up)

Default image (Contrast 100%)

Sample Info

Well	Conc. [ng/µl]	Sample Description	Alert	Observations
EL1	20.3	Electronic Ladder		Ladder
A1	167	17 PCR 2		
B1	155	18 PCR 2		
C1	186	19 PCR 2		
D1	200	20 PCR 2		
E1	177	21 PCR 2	<u> </u>	Peak out of Sizing Range
F1	224	22 PCR 2	<u> </u>	Peak out of Sizing Range
Gl	210	23 PCR 2	<u> </u>	Peak out of Sizing Range
H1	184	24 PCR 2	<u> </u>	Peak out of Sizing Range
A2	13.5			
B2	37.3		<u> </u>	Peak out of Sizing Range
C2	2.29			
D2	3.24		A	Marker(s) not detected

• Last 4 samples are from Chris (seperate experiment)

Tuesday 30-01-2023

Cell Culture

HEK

- Unhealthy
- Discarded

$\mathbf{A20}$

• Split 1/6

Thursday 01-02-2023

PCR Step 2 - Samples 1-8, 25-39

• Repeated PCR2 for samples 1-8

Overview

- PCR to index samples for sequencing by attaching UMI
- Didn't have enough Q5 to complete all the samples

PCR2 Protocol

- 1. Prepare samples according to the following table:
- Keep careful note of which adaptors are added to which sample

Component	Volume
10uM Nxxx Nextera i7 adapter	$1.5~\mu L$
10uM Sxxx Nextera i5 adapter	$1.5 \ \mu L$
DNAse/RNAse H20	$21 \ \mu L$
Q5	$25 \mu L$
$10 \text{ng}/\mu\text{L PCR}1$	$1 \mu L$

2. Perform PCR using the following parameters:

Step Name	Steps	Time
Initial Denaturation	Step 1: 95C	3mins
Denaturation	Step 2: 98C	20s
Annealing	Step 3: 55C	15s
Extension	Step 4: 72C	15s
Final Extension	Step 5: 72C	$2 \min$
Hold Step	Step 6: 12C	Hold

8 cycles of steps 2-4

- 3. Perform Ampure bead clean up as above with 90ul beads per 50ul PCR reaction.
- If you don't have a crazy number of samples you might also want to consider doing up to 4 PCR2 reactions per sample and pooling them afterwards just to make sure all your sequences are captured.
- 4. Check size and concentration on tapestation. Dilute and pool samples for sequencing.

Tapestation

Default image (Contrast 100%)

Sample Info

Well	Conc. [ng/µl]	Sample Description	Alert	Observations
EL1	20.3	Electronic Ladder		Ladder
A1	133	1 PCR2		
B1	83.8	2 PCR 2		
C1	20.0	3 PCR2	<u> </u>	Peak out of Sizing Range
D1	130	4 PCR2		
E1	34.0	5 PCR2		
F1	166	6 PCR 2		
Gl	21.2	7 PCR2		
H1	94.9	8 PCR 2		
A2	153	25 PCR 2		
B2	147	26 PCR 2		
C2	29.1	27 PCR 2		
D2	149	28 PCR 2		
E2	81.6	29 PCR 2		
F2	141	30 PCR 2		
G2	104	31 PCR 2		
H2	45.9	32 PCR 2		

Monday 05-02-2023

Cell Culture

Made DMEM

Solution	ID code	Volume	% Total volume
DMEM	— -	$500 \mathrm{\ mL}$	78%
Pen-Strep	—-	$5.5~\mathrm{mL}$	1%
FBS	—-	$55~\mathrm{mL}$	10%

HEK - Seeded

- Seeded New HEK
 - HEK stock are in CM Box 1 -80
- 1. Thawed vial
- 2. Added 1mL DMEM to vial
- 3. Transferred to $15 \mathrm{mL}$ falcon tube
- 4. Slowly added 5mL DMEM
- 5. Spun down at 650rpm for 4min
- 6. Removed supernant and resuspended vial flicking
- 7. Added 1mL DMEM and pipetted multiple times to create single cell suspension
- 8. Added to T25 flask
- 9. Added 14mL of DMEM
- 10. Placed in incubator

A20 - Split

- Split 1/6
- Spliut T25 vial for Emily James (EJ)