STAT 3008: Applied Regression Analysis 2019-20 Term 2 Assignment #3

Revised (Prob 1(b), 1(d), Prob 3 negative AIC and BIC values)

Due: April 27th, 2020 (Monday) at 5:30pm [Extended from Apr 24th (Fri)]

This assignment covers material from Chapter 5 to 6 of the lecture notes.

** Please submit the hardcopy of the R-code and R-outputs for Problem 2 and 4 (Quick and dirty is good enough, R markdown NOT recommended)

You need to show your calculation in details order to obtain full scores.

Problem 1 [25 points]: Consider the scatterplot below with data $\{(x_i, y_i), i = 1, 2, ..., 24\}$:

Suppose the data is fitted to a quadratic regression with mean function

$$E(Y | X = x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

In matrix form,
$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e} = \mathbf{F} \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_{24} \end{pmatrix} = \begin{pmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ \vdots & \vdots & \vdots \\ 1 & x_{24} & x_{24}^2 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{pmatrix} + \begin{pmatrix} e_1 \\ e_2 \\ \vdots \\ e_{24} \end{pmatrix}$$

Given that
$$\bar{x} = 5.833333$$
, $\bar{y} = 56.6275$, $\sum_{i=1}^{24} y_i^2 = \mathbf{Y'Y} = 89882.2642$.

$$\mathbf{X'X} = \begin{pmatrix} 24 & 140 & 1164 \\ 140 & 1164 & 10568 \\ 1164 & 10568 & 98268 \end{pmatrix}$$
, $(\mathbf{X'X})^{-1} = \begin{pmatrix} 0.450020 & -0.242619 & 0.020761 \\ -0.242619 & 0.167181 & -0.015105 \\ 0.020761 & -0.015105 & 0.001389 \end{pmatrix}$, $\mathbf{X'Y} = \begin{pmatrix} 1359.06 \\ 6322.83 \\ 47452.65 \end{pmatrix}$

- (a) [6 points] Compute the OLS estimates for β_0 , β_1 and β_2 .
- (b) [5 points] Compute the RSS and show that $\hat{\sigma} = 13.99$ (12.65 also acceptable).
- (c) [5 points] Let x^* be the optimal value of x which maximizes the response y. What is the point estimate of x^* ?
- (d) [6 points] Construct an ANOVA table to test if $\beta_2 = \beta_1 = 0$ [not $\beta_0 = \beta_1 = 0$] (No testing procedure is required, only the ANOVA table is sufficed).
- (e) [3 points] Suppose x is an experimental EV. Before performing the experiment to obtain the response y, it's known that the optimal value of x is somewhere in the middle of the interval [1.0, 10.0]. Briefly comment on whether the current choice of EV values $\{x_i,$ i = 1, 2, ..., 24 is reasonable.

Problem 2 [33 points]: The data 'salary' from the alr3 library contains salary and other characteristics of all faculty members in a small Midwestern college in early 1980s. Below are the description of selected variables in the data file:

Variable	Notation	Description
Sex	\boldsymbol{S}	1 = Female, 0 = Male
Rank	\boldsymbol{R}	1 = Assistant Professor, 2 = Associate Professor, 3 = Full Professor
Year	\boldsymbol{X}	Number of years in current rank
Salary	Y	Annual salary (in US\$)

> library(car); library(alr3); S<-salary\$Sex; R<-salary\$Rank; X<-salary\$Year; Y<-salary\$Salary

Let U_2 and U_3 be the dummy variables for Associate Professor and Full Professor respectively.

(a) [8 points] Assume that the impact of the number of years in current rank (Year X) is the same for different sex and ranks, we construct a linear model to explain the salary by the 3 other variables:

(Model 1)
$$E(Y \mid S = s, R = j, X = x) = \eta_0 + \eta_1 s + \beta x + \sum_{j=2}^{3} (\eta_{0j} U_j + \eta_{1j} U_j s)$$

Compute the OLS estimates for the parameters $(\eta_0, \eta_1, \beta, \eta_{02}, \eta_{03}, \eta_{12}, \eta_{13}, \sigma^2)$.

- (b) [2 points] Suppose Mary received an offer as Assistant Professor from that college in early 1980s right after she received her PhD. Estimate the annual salary (in US\$) offered by the college to her.
- (c) [3 points] What is the RSS of the model in part (a)?
- (d) [8 points] Construct an ANOVA table for the hypotheses on whether Rank is important to explain the Salary. That is,

$$H_0$$
: $E(Y | S = s, R = j, X = x) = \eta_0 + \eta_1 s + \beta x$ vs

$$H_1$$
: $E(Y \mid S = s, R = j, X = x) = \eta_0 + \eta_1 s + \beta x + \sum_{j=2}^{3} (\eta_{0j} U_j + \eta_{1j} U_j s)$

(e) [3 points] What are the (I) decision and (II) conclusion you would draw from the results in part (d)?

[Part (f) to (i)] Suppose ANOVA is used to test the hypothesis on whether salary for male and female are the same for all the 3 ranks in Model 1.

- (f) [1 point] What is the mean function for H_o ?
- (g) [1 point] What is the mean function for H_i ?
- (h) [4 points] Construct the corresponding ANOVA table.
- (i) [3 points] What are the (I) decision and (II) conclusion you would draw from the results in part (h)?

Problem 3 [21 points] (Modified from Final Exam 2014-15 Term2): Consider a multiple linear regression with 4 terms: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + e$ The table below shows the AIC and BIC for models with different subsets of terms.

Model	x1	x2	x 3	x4	AIC	BIC
1					-68.1	-65.5
2	Х				-151.0	-145.8
3		X			-121.8	-116.6
4	X	X			-609.1	-601.3
5			X		-148.8	-143.6
6	X		X		-149.3	-141.5
7		X	X		-448.7	-440.9
8	X	X	X		-608.2	-597.8
9				X	-66.7	-61.5
10	X			X	-150.9	-143.1
11		X		X	-120.3	-112.5
12	X	X		X	-7317.1	-7306.7
13			X	X	-148.1	-140.3
14	X		X	X	-149.1	-138.6
15		X	X	X	-459.5	-449.1
16	Х	Х	Х	Х	-7317.6	-7304.6

Revised AIC & BIC values at the table: AIC and BIC should be negative in the table instead of positive in the original assignment, since BIC>AIC for each model.

(For instance, AIC = -121.8 for Model 3: $y = \beta_0 + \beta_2 x_2 + e$ BIC = -7304.6 for Model 16: $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \beta_4 x_4 + e$)

- (a) [5 points] Implement the forward selection method using the AIC. Show your steps in details on how you come up with the parsimonious model.
- (b) [10 points] Repeat part (a) if the backward selection method is implemented using the BIC.
- (c) [2 points] What is the sample size n?
- (d) [4 points] Do you think multicollinearity exist in Model 16? If so, identify the terms which are highly collinear with each other.

Problem 4 [21 points]: Consider the Berkeley Guidance Study data mentioned in Section 4.1. Suppose we want to model the height of girls at age 18 by 6 other variables taken at age 2 and age 9 (x1 to x6 in the R codes below):

library(alr3)		x3<-BGSgirls\$WT9	# weight at age 9 (in kg)
y<-BGSgirls\$HT18	# height at age 18 (in cm)	x4<-BGSgirls\$HT9	# height at age 9 (in cm)
x1<-BGSgirls\$WT2	# weight at age 2 (in kg)	x5<-BGSgirls\$LG9	# leg circumference at age 9 (in cm)
x2<-BGSgirls\$HT2	# height at age 2 (in cm)	x6<-BGSgirls\$ST9	# strength at age 9 (in kg)

- (a) [8 points] Based on the *stepAIC* function in *R* (*similar to those from Ch6 p26 and p32*), show that the parsimonious model based on AIC is the same regardless of the (forward/backward) model selection methods
- (b) [8 points] Repeat part (a) based on BIC. How do those parsimonious models differ from the one in part (a).
- (c) [5 points] Note that leg circumference at age 9 (variable x5) is not included in the parsimonious model in part (a) because of multicollinearity. What is the value of variance inflation factor VIF_5 in the full model (i.e. model with all the 6 terms)?

- End of the Assignment -