Statistical Foundations of Learning - Concepts and Key Things to Remember

CIT4230004 (Summer Semester 2024)

Assignment 3: PAC Learning and VC Dimension

Concepts:

- 1. **PAC Learning:** A class H is agnostic PAC learnable if there exists an algorithm that, for every $\epsilon > 0$ and $\delta > 0$, produces a hypothesis h such that the true error $L_D(h) \leq \inf_{h' \in H} L_D(h') + \epsilon$ with probability at least 1δ . **Markov's Inequality:** Used to bound the probability that a non-negative random variable exceeds a certain value.
- 2. **VC Dimension:** The VC dimension of a hypothesis class H is the largest number of points that can be shattered by H. **Sauer's Lemma:** Relates the growth function to the VC dimension.

Key Things to Remember: - Understand the definition and implications of PAC learnability. - Use Markov's inequality and Sauer's lemma for proofs and bounds related to PAC learning and VC dimension. - The VC dimension provides a measure of the complexity of the hypothesis class.

Assignment 4: Validation, Rademacher Complexity, and Gaussian Kernels

Concepts:

- 1. **Validation:** **Leave-One-Out Error:** An unbiased estimator of the true error. **Generalization Error:** Expected error on new, unseen data.
- 2. **Rademacher Complexity:** Measures the ability of a hypothesis class to fit random noise. **Hoeffding's Inequality:** Used for deriving bounds on Rademacher complexity.
- 3. **Gaussian Kernels:** **Universality:** A kernel is universal if it can approximate any continuous function to arbitrary accuracy.
- **Key Things to Remember:** Validation techniques help in estimating the true performance of a model. Rademacher complexity provides a way to measure the capacity of a hypothesis class. Gaussian kernels are powerful due to their universal approximation properties.

Assignment 5: SVM and One-Class SVM

Concepts:

- 1. **SVM (Support Vector Machine):** **Hard SVM:** For separable data, finds the maximum margin separator. **Soft SVM:** For non-separable data, introduces slack variables to allow some misclassifications.
- 2. **One-Class SVM:** Used for anomaly detection. **Tikhonov Regularization:** Regularization technique used to prevent overfitting.
- **Key Things to Remember:** Understand the difference between hard and soft SVM and when to use each. One-Class SVM is useful for detecting outliers or anomalies. Regularization helps in controlling the complexity of the model.

Sample Sheet 1: Probability Bounds and Bayes Risk

Concepts:

- 1. **Probability Bounds:** **Markov's Inequality:** Provides an upper bound on the probability that a non-negative random variable exceeds a certain value. **Cauchy-Schwarz Inequality:** A fundamental inequality in probability and statistics.
- 2. **Bayes Risk:** The minimum possible risk achievable by the best possible classifier (Bayes classifier).
- **Key Things to Remember:** Use Markov's and Cauchy-Schwarz inequalities to derive probability bounds. Bayes risk serves as a benchmark for evaluating classifiers.

Sample Sheet 2: k-Nearest Neighbours and VC Dimension

Concepts:

- 1. **k-Nearest Neighbours (k-NN):** A non-parametric method used for classification and regression. The prediction is based on the majority class among the k nearest neighbours.
- 2. **VC Dimension:** Measure of the capacity of a hypothesis class. **Growth Function:** Number of distinct labelings of a set of points.
- **Key Things to Remember: ** - k-NN relies on distance metrics and the choice of k. - VC dimension helps in understanding the learning capacity of a model.

Sample Sheet 3: Growth Function and Graph Dimension

Concepts:

- 1. **Growth Function:** The maximum number of distinct labelings of a set of points by a hypothesis class.
- 2. **Graph Dimension:** A generalization of VC dimension for multiclass classification
- **Key Things to Remember:** The growth function provides insight into the hypothesis class's capacity. Graph dimension is useful for analyzing multiclass classifiers.

Sample Sheet 4: Agnostic PAC Learnability and Stability

Concepts:

- 1. **Agnostic PAC Learnability:** Extends PAC learnability to scenarios where the best possible hypothesis may not achieve zero error.
- 2. **Stability:** Measures the sensitivity of the learning algorithm to changes in the training set. **On-Average-Replace-One Stability:** A specific form of stability used to bound generalization error.
- **Key Things to Remember:** Agnostic PAC learnability accounts for cases with inherent noise. Stability is crucial for understanding the robustness of learning algorithms.

Sample Sheet 5: Rademacher Complexity and SVM

Concepts:

- 1. **Rademacher Complexity:** A measure of the hypothesis class's capacity to fit random noise.
- 2. **SVM:** **Hard SVM:** For separable data. **Soft SVM:** For non-separable data with slack variables.
- **Key Things to Remember:** Rademacher complexity provides a way to quantify the capacity of a hypothesis class. Understand the conditions under which hard and soft SVM are used.

Sample Sheet 6: k-means++ and Explainable k-means Cost

Concepts:

- 1. **k-means++:** An initialization algorithm for k-means clustering that improves convergence.
- 2. **Explainable k-means Cost:** The cost of clustering when the clusters must be explainable, often higher than the unrestricted k-means cost.
- **Key Things to Remember:** k-means++ helps in achieving better clustering results. Explainable clustering may come at a higher cost due to additional constraints.