TRANSFORMATIONS of EM DESCRIPTORS under P(parity), T(time-veversal), & C(charge-conjugation).

QUANTITY	NAME	tran	transformunder P T C		overall	Remarks
r=(x, y, z)	position	(poler)		+	-	It is the prototype polar vector.
v= dr/dt	velocity	(polar)		+	+	V is T-odd; a = dev is T-even.
I=m rxv	angular momentum	+ (exial)		+	_	I is the prototype axial vector.
ρ , $\phi = \int \frac{\rho}{R} dV$	Scalar density & potential	+	+	•	-	p is Eventz invariant { P&T signs are by convention,
$J, A = \int \frac{J}{R} dV$	vector density & potential	 (polar)		-	-	J=nev is widently bolu.
E; D=&E, P=\frac{1}{4\pi}(D-E)	electric field vectors	tpolar)	+	-	+	$E = -\nabla \phi - \frac{1}{c} (\partial A/\partial t)$ is polar.
H; B= MH , $M = \frac{1}{4\pi}(B-H)$	magnetic field vectors	+ (ankind)	-	_	+	B= Vx A is evidently axial.
F=PE+1 JxB	Loventz Porce / unit volume	(polar)	+	+	_	follows from E&B, P&I transforms. Both elec. & mag. terms transformsame way.
u= 1/81 (E.D+H.B)	EM field energy density	+	+	+	+	follows from E4 B transforms.
$S = \frac{c}{4\pi} (E \times H), g = \frac{\mu \epsilon}{C^2} S$	Poynting (transport) vectors	- (poeus)	_	+	+	ditto.
$T_{ik} = \frac{1}{4\pi} (E_i D_k + H_i B_k) - u \delta_{ik}$	Maxwell stress tensor	+	+	+	+	ditto.

† Augments Table (6.1), p. 249 of J.D. Jackson "Classical Electro Dynamics" (Wiley, 2nd ed., 1975).

Sym Sym