Table des matières

Premieres definitions	2
Rappels	2
Classification des EDP linéaires d'ordre 2	3
Conditions aux limites	3
Méthode des différences finies en espace	3
I Méthode des différences finies en espace et en temps	5
Écriture générale d'un schéma numérique	5
Stabilité par la méthode de Fourier	6
Méthode des caractéristiques	8
Équations quasi-linéaires	8
Forme conservative	8
3.3.2 Solution générale de (1)	8 9 9 10 10 11
7	Classification des EDP linéaires d'ordre 2 Conditions aux limites Méthode des différences finies en espace I Méthode des différences finies en espace et en temps Écriture générale d'un schéma numérique Stabilité par la méthode de Fourier Méthode des caractéristiques Équations quasi-linéaires Forme conservative EDP du premier ordre 3.1 Recherche de surface solution 3.2 Comportement du champ $F = (P, Q, R)^T$ 3.3 Définition des courbes caractéristiques 3.3.1 Système déterminant les courbes caractéristiques 3.3.2 Solution générale de (1)

Première partie

Premières définitions

♣ Définition: EDP

Une Équation aux Dérivées Partielles est une équation contenant une fonction inconnue de plusieurs variables ainsi qu'une ou plusieurs de ses dérivées partielles.

❖ Définition: Ordre

L'ordre d'une EDP est un entier correspondant à l'ordre de la plus grande dérivée.

1 Rappels

I Propriété:

Si $f \in \mathcal{C}^1(\bar{\Omega})$ et $g \in \mathcal{C}^1(\bar{\Omega})$, on a pour tout indice $i \in \{1,...,n\}$:

$$\int_{\Omega}\frac{\partial f}{\partial x_i}(x)g(x)dx=-\int_{\Omega}\frac{\partial g}{\partial x_i}(x)f(x)dx+\int_{\Gamma}f(x)g(x)\nu_i(x)d\Gamma(x)$$

en notant $d\Gamma$ la mesure superficielle sur Γ , frontière de Ω et ν_i , la composante d'indice i de la normale unitaire ν à Γ orientée vers l'extérieur de Ω .

i Propriété:

Si $f \in \mathcal{C}^1(\bar{\Omega})$ et $g \in \mathcal{C}^1(\bar{\Omega})$, on a :

$$\int_{\Omega} \Delta f(x) g(x) dx = -\int_{\Omega} \nabla f(x) \cdot \nabla g(x) dx + \int_{\Gamma} \frac{\partial f}{\partial \nu}(x) g(x) d\Gamma(x)$$

où Δ est l'opérateur la placien et $\frac{\partial f}{\partial \nu}$ la projection du vecteur ∇f sur la normale ν , ie :

$$\frac{\partial f}{\partial \nu} = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} \nu_i$$

Enfin, la notation $\nabla f(x).\nabla g(x)$ désigne le produit scalaire dans \mathbb{R}^n des vecteurs $\nabla f(x)$ et $\nabla g(x)$, ie :

$$\nabla f(x).\nabla g(x) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(x) \frac{\partial g}{\partial x_i}(x)$$

2

Si
$$f \in \mathcal{C}^2(\overline{\Omega})$$
 et $g \in \mathcal{C}^2(\overline{\Omega})$, on a :
$$\int_{\Omega} \Delta f(x) g(x) dx = \int_{\Omega} f(x) \Delta g(x) dx + \int_{\Gamma} \left[\frac{\partial f}{\partial \nu}(x) g(x) - \frac{\partial g}{\partial \nu}(x) f(x) \right] d\Gamma(x)$$
 Classification des EDP linéaires d'ordre 2

2 Classification des EDP linéaires d'ordre 2

On prend ici les EDP d'une fonction u à deux variables x et y. Une telle équation s'écrit :

$$a\frac{\partial^2 u}{\partial x^2} + b\frac{\partial^2 u}{\partial x \partial y} + c\frac{\partial^2 u}{\partial y^2} + d\frac{\partial u}{\partial x} + e\frac{\partial u}{\partial y} + fu = g$$

avec a, b, c, d, e constants.

L'équation précédente est dite elliptique si $b^2-4ac<0$, parabolique si $b^2-4ac=0$ et hyperbolique si

3 Conditions aux limites

L'EDP seule est en générale insuffisante pour déterminer une solution de façon unique. Une information supplémentaire sur la frontière Γ de Ω ou sur une partie de Γ est nécessage. Une telle information s'appelle une condition à la limite.

Deuxième partie

Méthode des différences finies en espace

La méthode est simple : on va chercher différents points $u_i \approx u(x_i)$, solution approchée de l'EDP, à l'aide d'une approximation des dérivées. On arrive ainsi à un système linéaire qu'on cherchera à résoudre. Dans le cadre d'une fonction de dimension 1, on pourra par exemple approcher la dérivée première par :

$$\frac{du}{dx} \approx \frac{u(x+h) - u(x-h)}{2h}$$

♦ Définition: Erreur de consistance

On appelle erreur de consistance du schéma $A_h u_h = b_h$ le vecteur de \mathbb{R}^N noté $\varepsilon_h(u)$ défini par :

$$\varepsilon_h(u) = A_h \Pi_h(u) - b_h$$

$$\Pi_h(u) = \begin{pmatrix} u(x_1) \\ \vdots \\ u(x_N) \end{pmatrix}$$

est le vecteur de \mathbb{R}^N qui représente la projection de la solution exacte de u du problème continu sur le maillage.

🔩 Définition: Consistant

On dit que le schéma est consistant au sens de la norme $\| \bullet \|$ de \mathbb{R}^N si :

$$\lim_{h \to 0} \|\varepsilon_h(u)\| = 0$$

♣ Définition: Ordre de consistance

S'il existe une constante C positive indépendante de h telle que pour tout $h \in]0, h_0]$ $(h_0 > 0$ donné), on ait :

$$\|\varepsilon_h(u)\| \le Ch^p$$

alors on dit que le schéma est consistant d'ordre \boldsymbol{p}

Rappels d'analyse matricielle

🔩 Définition: Positivité

On dit qu'un vecteur x est positif si toutes ses composantes sont positives. Une matrice est site positive si tous ses coefficients sont positifs.

♣ Définition: Matrice monotone

On dit qu'une matrice est monotone si elle est inversible d'inverse positive.

⇔ Lemme:

Une matrice $A \in \mathbb{R}^{N \times N}$ si et seulement si pour tout vecteur x de \mathbb{R}^N , on a :

$$Ax \ge 0 \Rightarrow x \ge 0$$

\Rightarrow Lemme:

Soit A la matrice réelle de taille $N \times N$ définie par :

$$A = \begin{pmatrix} a & b & 0 & \cdots & \cdots & 0 \\ b & a & b & \ddots & & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & b & a & b \\ 0 & \cdots & \cdots & 0 & b & a \end{pmatrix}$$

Les valeurs propres de A sont les nombres λ_k , $k \in \{1, ..., N\}$ suivants :

$$\lambda_k = a + 2b \cos\left(\frac{k\pi}{N+1}\right)$$

Le vecteur V_k de composantes $(V_k)_j, \ j \in \{1,...,N\}$ définies par

$$(V_k)_j = \sin\left(j\frac{k\pi}{N+1}\right)$$

est un vecteur propre associé à la valeur propre λ_k : il ne dépend pas des coefficients a et b de la matrice A.

Troisième partie

Méthode des différences finies en espace et en temps

1 Écriture générale d'un schéma numérique

De manière générale, les schémas peuvent s'écrire sous la forme vectorielle suivante $(U^{(j)} \in \mathbb{R}^N, B_k \in \mathbb{R}^{N \times N})$:

$$\begin{split} B_l U^{(j+l)} + B_{l-1} U^{(j+l-1)} + \ldots + B_0 U^{(j)} + \ldots + B_{-m} U^{(j-m)} &= C^{(j)} \\ j \geq m, \ l \geq 0, \ m \geq 0, \ l+m \geq 1, \ B_l \ \text{inversible} \\ U^{(0)}, \ \ldots, U^{(l+m-1)} \ \text{donnés}. \end{split}$$

Un tel schéma est à l+m niveaux. Il est dit explicite si la matrice B_l est diagonale et implicite sinon. Ce schéma numérique permet de calculer à chaque instant t_j une solution discrète $U^{(j)}$ déstinée à approcher le vecteur $\pi_h u(t_j)$.

🛂 Définition: Erreur de consistance

On appelle erreur de consistance à l'instant t_j associée au schéma précédent le vecteur de \mathbb{R}^N noté $\varepsilon(u)^{(j)}$ défini par :

$$\varepsilon(u)^{(j)} = B_l(\pi_h u)(t_{j+l}) + \dots + B_0(\pi_h u)(t_j) + \dots + B_{-m}(\pi_h u)(t_{j-m}) - C^{(j)}$$

On dit que que ce schéma est consistant pour la norme $\| \bullet \|$ de \mathbb{R}^N si :

$$\sup_{j,j\Delta t \le T} \|\varepsilon(u)^{(j)}\| \xrightarrow{\Delta t, h \to 0} 0$$

Si par ailleurs, il existe une constante C>0 et deux nombres p>0 et q>0, tous trois indépendants de Δt et h, tels qu'on ait :

$$\sup_{j,j\Delta t \le T} \|\varepsilon(u)^{(j)}\| \le C \left(\Delta t^p + h^q\right)$$

on dit que le schéma est consistant d'ordre p en temps et q en espace.

🛂 Définition: Convergent

On suppose que les données initiales vérifient :

$$\max_{j_0 \in \{0, \dots, l+m-1\}} \|U^{(j_0)} - \pi_h u(t_{j_0})\| \xrightarrow{\Delta t, h \to 0} 0$$

On dit alors que ce schéma est convergent si :

$$\sup_{j,j\Delta t \le T} \|U^{(j)} - \pi_h u(t_j)\| \xrightarrow{\Delta t, h \to 0} 0$$

♦ Définition: Stabilité

On dit que le schéma est stable pour la norme $\| \bullet \|$ dans \mathbb{R}^N s'il existe des constantes positives $C_1(T)$ et $C_2(T)$, indépendantes de Δt et h telles qu'on ait :

$$\max_{j,j\Delta \leq T} \|U^{(j)}\| \leq C_1 \max_{j_0 \in \{0,\dots,l+m-1\}} \|U^{(j_0)}\| + C_2(T) \max_{j,j\Delta t \leq T} \|C^{(j)}\|$$

et ceci, quelles que soient les données initiales $U^{(j_0)}$ et les sours $C^{(j)}$.

Le schéma est convergent si et seulement s'il est consistant et stable.

2 Stabilité par la méthode de Fourier

On commence par rendre le schéma "continu" en espace puis on applique une transformation de Fourier. En notant la variable dual ξ , on arrive à un schéma du type :

$$\hat{u}^{(j+1)}(\xi) = a(\xi)\hat{u}^{(j)}(\xi)$$

$\overline{f i} Propriét \acute{e}:$

Ce schéma est stable pour la norme dans l'espace $L^2(\mathbb{R})$ si et seulement s'il existe une constante positive C(t), indépendante de Δt et h telle que, pour tout j, $j\Delta t \leq T$:

$$\left[\sup_{\xi\in\mathbb{R}}|a(\xi)|\right]^j\leq C(T)$$

Définition:

Le coefficient $a(\xi)$ s'appelle le coefficient d'amplification du schéma et on dit que ce schéma est stable au sens de Von Neumann si on a :

$$\sup_{\xi\in\mathbb{R}}|a(\xi)|\leq 1$$

Quatrième partie

Méthode des caractéristiques

1 Équations quasi-linéaires

♣ Définition: EDP quasi-linéaire

Une EDP est dit quasi-linéaire si elle est linéaire par rapport aux dérivées partielles d'ordre le plus élebé en chacune des variables.

♣ Définition: Homogène

Une EDP est dite homogène quand elle ne contient que des termes faisant intervernir une fonction et ses dérivées partielles.

2 Forme conservative

♣ Définition: Forme conservative

Une EDP est dite sous forme conservative lorsque tous les termes de dérivation en u peuvent entrer à l'intérieur d'un opérateur de divergence.

⇔ Théorème:

Une équation peut-être mise sous forme conservative si et seulement si elle admet une forme quasi-linéaire.

3 EDP du premier ordre

On note:

$$u_x = \frac{\partial u}{\partial x}$$
 et $u_y = \frac{\partial u}{\partial y}$

Une EDP quasi linéaire du 1^{er}ordre à deux variables indépendantes s'écrit de façon la plus générale :

$$Pu_x + Qu_y = R \tag{1}$$

où P, Q et R sont au plus fonctions de x, y et u.

Pour une EDP quasi-linéaire du premier ordre, la méthode des caractéristiques cherche des courbes appelées caractéristiques le long desquelles l'EDP se réduit à une simple équation différentielle ordinaire.

3.1 Recherche de surface solution

Soit Π la surface solution de (1). Une paramétrisation cartesienne de cette surface est donnée par l'application vectorielle :

$$f: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \\ u(x,y) \end{pmatrix}$$

Soient v_1 et v_2 les vecteurs tangents aux courbes résultant de l'intersection de (Π) avec le plan $y = y_0$ (constante) d'une part, et $x = x_0$ d'autre part en un point M de (Π) .

On note C_1 la courbe résultant de l'intersection de (Π) avec le plan $y = y_0$. Une paramétrisation de C_1 est donnée par :

$$f_1: x \mapsto \begin{pmatrix} x \\ y_0 \\ y(x, y_0) \end{pmatrix}$$

et

$$v_1 = \frac{df_1}{dx}(x_0) = \begin{pmatrix} 1\\0\\\frac{\partial u}{\partial x}(x_0, y_0) \end{pmatrix}$$

De même, on note C_2 la courbe résultant de l'intersection de (Π) avec le plan $x=x_0$. Une paramétrisation de C_2 est donnée par :

$$f_2: y \mapsto \begin{pmatrix} x_0 \\ y \\ y(x_0, y) \end{pmatrix}$$

et

$$v_1 = \frac{df_2}{dy}(y_0) = \begin{pmatrix} 0\\1\\\frac{\partial u}{\partial y}(x_0, y_0) \end{pmatrix}$$

Les vecteurs v_1 et v_2 ne sont pas colinéaires :

$$v_1 \wedge v_2 = \begin{pmatrix} -\frac{\partial u}{\partial x}(x_0, y_0) \\ -\frac{\partial u}{\partial y}(x_0, y_0) \\ 1 \end{pmatrix} \neq 0$$

et ils sont par construction tangents à la surface solution au point M. Le plan tangent à la surface (Π)en M est donc le plan endendré par v_1 et v_2 .

3.2 Comportement du champ $F = (P, Q, R)^T$

Par définition du produit mixte :

$$[v_1, v_2, F] = \langle v_1 \wedge v_2, F \rangle_{\mathbb{R}^3}$$

$$= -\frac{\partial u}{\partial x}(x_0, y_0) P(x_0, y_0, u(x_0, y_0)) - \frac{\partial u}{\partial y}(x_0, y_0) Q(x_0, y_0, u(x_0, y_0)) + R(x_0, y_0, u(x_0, y_0))$$

$$= 0$$

Le vecteur F est donc orthogonal au vecteur $v_1 \wedge v_2$, lui-même normal au plan endengré par v_1 et v_2 . Le vecteur F est donc dans le plan tangent à (Π) au point M. Il est tangent à la surface solution.

3.3 Définition des courbes caractéristiques

La solution de (1) est constituée des courbes intégrales du champ F appelées courbes caractéristiques. Au champ de vecteurs X tracé sur l'ouvert U, on peut associer l'équation différentielle $X' = \gamma(X)$. Les solutions maximales de cette équation différentielle sont appelées courbes intégrales. Le vecteur dérivé en chaque point est donné par le champ en ce point.

3.3.1 Système déterminant les courbes caractéristiques

Soit Γ une courbe caractéristique de (1) admettant la paramétrisation suivante :

$$s \mapsto \begin{pmatrix} x(s) \\ y(s) \\ u(s) \end{pmatrix}$$

et $T = \begin{pmatrix} x'(s) \\ y'(s) \\ u'(s) \end{pmatrix}$ un vecteur tangent à Γ au point M de paramètre s.

On sait d'après ce qui précède que T et F sont colinéaires, donc il existe α tel que $T = \alpha F$, soit :

$$\begin{cases} \frac{dx}{ds} = \alpha P \\ \frac{dy}{ds} = \alpha Q \\ \frac{du}{ds} = \alpha R \end{cases}$$

Ainsi, $\alpha ds = \frac{dx}{P} = \frac{dy}{Q} = \frac{du}{R}$.

IProposition:

L'équation caratéristique de l'équation (1) est donnée par le système :

$$\frac{du}{P} = \frac{dy}{Q} = \frac{du}{R}$$

iRemarque:

Ceci n'est que pour mémorisation. En effet, pour les calculs, il faut vraiment utiliser les relations de base, et qui n'ont aucun problème lorsque P ou Q est nul.

D'abord on intègre Pdy = Qdx pour déterminer les lignes caractéristiques, puis on intègre Rdx = Pdu ou bien Qdu = Rdy pour déterminer la variation de u le long de chaque caractéristique.

On exprime la solution sous la forme

$$\begin{cases} f(x, y, u) = \alpha \\ g(x, y, u) = \beta \end{cases}$$

Géométriquement, la courbe caractéristique apparaît comme l'intersection de deux surfaces.

3.3.2 Solution générale de (1)

Une surface engendrée par une famille de courbes caractéristiques est une surface intégrale de l'équation (1).

iRemarque:

Deux fonctions f et g sont dites fonctionnellement indépendantes dans $\Omega \subset \mathbb{R}^3$ si et seulement si :

$$\nabla f \wedge \nabla g \neq 0$$
 dans Ω

Pour que le problème admette une solution, il faut que les surfaces engendrées aient une interserction non vide. f et g doivent donc être fonctionnellement indépendantes.

10

3.3.3 Solution particulière de (1)

On appelle solution particulière de (1) une solution de (1) passant par une courbe γ donnée.

3.4 Problème de Cauchy et courbes caractéristiques

3.4.1 Problème de Cauchy

♣ Définition: Problème de Cauchy

On appelle problème de Cauchy le problème consistant à trouver une solution de (1) passant par une courbe γ donnée.

3.4.2 Solution du problème de Cauchy : condition d'existance et d'unicité

Soit u donnée le long de la courbe paramétrée $\Gamma = (x(s), y(s))$

⇔ Théorème:

La solution du problème de Cauchy:

- existe si u est analytique (développable en série entoère) sur Γ
- est unique si les données u du problème ne sont pas fournies le long d'une caractéristique

En effet, la variation de u le long de la caractéristique est déterminé par le système caractéristique. On ne peut donc pas l'imposer.