

File công thức phần giữa kì 231

probability and statics (Ho Chi Minh City University of Technology)

Scan to open on Studocu

TRƯỜNG ĐẠI HỌC QUỐC GIA HỒ CHÍ MINH TRƯỜNG BÁCH KHOA HỒ CHÍNH MINH

HCMUT-CNCP & CÔNG THỨC GIỮA KÌ XÁC SUẤT THỐNG KÊ HK231

HCMUT CNCP

TÀI LIÊU ĐẠI CƯƠNG BÁCH KHOA

Biên soạn: Nguyễn Quốc Vương

Chủ sở hữu:....

Mục lục

1.Các phép toán xác suất	3
a/Phép cộng	3
b/Phép nhân	3
2.Xác suất có điều kiện	3
3. Xác suất hình học	3
4. Định lý bernoully	4
5. Công thức xác suất đầy đủ	4
6. Công thức Bayes	4
7. Bảng phân phối xác suất, hàm phân phối xác suất, hàm mật độ xác suất	5
a/Bảng phân phối xác suất (chỉ có ở biến ngẫu nhiên rời rạc)	5
b/Hàm mật độ xác suất (chỉ có ở biến ngẫu nhiên liên tục)	5
c/Hàm phân phối xác suất	5
8. Các đặc trưng của biến ngẫu nhiên	6
a/ Các bấm máy tính các giá trị đặt trưng	6
a/ Các bấm máy tính các giá trị đặt trưngb/ Các công thức tính các giá trị đặt trưng	7
9. Các hàm phân phối	8
a/ Phân phối mũ	
b/Phân phối Poisson	9
Mối quan hệ giữa phân phối poisson và phân phối mũ	9
c/ Phân phối chuẩn	10
Cách bấm máy tính tìm Φa	12
d/ Phân phối nhị thức	12
e/ Phân phối đều	13
f/ Phân phối siêu bội	13
10. Định lý giới hạn trung tâm (không thi giữa kì)	
11. Vecto ngẫu nhiên	
a/ Lý thuyết	
h/ Cách hấm máy tính	16

Công Thức Thi Giữa Kì

1.Các phép toán xác suất

a/Phép cộng

$$P(A+B)=P(A)+P(B)-P(A.B)$$

P(A+B): Ý nghĩa là xác suất để A xảy ra hoặc B xảy ra

Mở rộng: P(A+B+C)=P(A)+P(B)+P(C)-P(A.B)-P(B.C)-P(A.C)+P(A.B.C)

b/Phép nhân

$$P(A.B)=P(B/A).P(A)$$

TÀI LIÊU ĐAI CƯƠNG BÁCH KHOA

P(A.B): Ý nghĩa là xác suất để cả A và B đều xảy ra

Nếu A, B là 2 biến cố độc lập thì P(A.B)= P(A).P(B)

Tổng quát A,B,C,... là các biến cố đọc lập thì P(A.B.C...)= P(A).P(B).P(C).....

2.Xác suất có điều kiện

 $P(B/A) = \frac{P(AB)}{P(A)}$ là xác suất biến cố B xảy ra với điều kiện biến cố B đã xảy ra.

3. Xác suất hình học

Biến cố có không gian mẫu là hình tròn B và phép thử đúng là hình tròn A thì:

$$P(A) = \frac{S_A(diện tích hình tròn A)}{S_B(diện tích hình tròn B)}$$

4. Định lý bernoully

Thực hiện n phép thử độc lập với nhau, xác suất thành công của một phép thử không đổi là p. Xác suất có đúng k phép thử thành công trong n lần thử là

$$C_n^k p^k \cdot (1-p)^{n-k}$$

5. Công thức xác suất đầy đủ

Cho $\{A1, A2, A3\}$ là hệ biến cố đầy đủ khi đó P(A1)+P(A2)+P(A3)=1

$$P(F) = P(A1).P(F/A1) + P(A2).P(F/A2) + P(A3).P(F/A3)$$

6. Công thức Bayes

TÀI LIỆU ĐẠI CƯƠNG BÁCH KHOA

$$P(Ai/F) = \frac{P(Ai).P(F/Ai)}{P(F)} V \acute{o}i \ i = 1,2,3..$$

7. Bảng phân phối xác suất, hàm phân phối xác suất, hàm mật độ xác suất

a/Bảng phân phối xác suất (chỉ có ở biến ngẫu nhiên rời rạc)

Cho biến cố ngẫu nhiên rời rac $X = \{x1, x2, x3, ...\}$. Ta có pi = P(X=xi)

X	x1	x2	•••	xn	••••
P	p1	p2		pn	••••

Tính chất:

$$p1+p2+p3+....+pn+...=1$$

b/Hàm mật độ xác suất (chỉ có ở biến ngẫu nhiên liên tục)

Môt số tính chất

- $\bullet \quad \int_{-\infty}^{+\infty} f(x) dx = 1$
- $f(x) \ge 0$
- $P(X = xi) \approx 0$ (gần bằng 0) $P(a \le X \le b) = \int_a^b f(x) dx$

Một số trường hợp hay dùng

- P(X = a) = f(a)
- $P(X \le a) = \int_{-\infty}^{a} f(x)dx = 1 \int_{a}^{+\infty} f(x)dx$
- $P(X \ge a) = \int_a^{+\infty} f(x) dx = 1 \int_{-\infty}^a f(x) dx$
- $P(a \le X \le b) = \int_a^b f(x) dx$

c/Hàm phân phối xác suất

Cho một biến cố ngẫu nhiên X. Ta có hàm

F(x) = P(X < x) được gọi là hàm phẩn phối xác suất của X

Một số tính chất

- $F(+\infty) = 1$
- $F(-\infty) = 0$
- $P(a \le X \le b) = F(a) F(b)$

Mối liên hệ giữa hàm phân phối xác suất và mật độ xác suất của 1 biến cố ngấu nhiên liên tục

$$f(x) = F'(x)$$
 và $F(x) = \int_{-\infty}^{x} f(t)dt$

8. Các đặc trưng của biến ngẫu nhiên

a/ Các bấm máy tính các giá trị đặt trưng

Casio 570, Vinacal	Casio 580
Step1: Mở tần số	Step 1: Mở tần số
Shift \rightarrow Mode $\rightarrow \nabla \rightarrow 4 \rightarrow ON$	Shift \rightarrow Menu $\rightarrow \nabla \rightarrow 3 \rightarrow 1$
Step2: Nhập bảng	Step2: Nhập bảng
Mode \rightarrow Thống kê (3) \rightarrow 1	Menu → Thống kê(6) \rightarrow 1(Tính tke 1-biến)
Nhập giá trị X và cột X và nhập xác suất của biến đó vào cột Freq, xong rôi ấn AC	Nhập giá trị X và cột X và nhập xác suất của biến đó vào cột Freq, xong rôi ấn AC
Step 3 : Shift $\rightarrow 1 \rightarrow 4$	Step 3 : Option (OPTN) $\rightarrow \nabla \rightarrow 2$
• $E(x) = \bar{x}$ (kì vọng) • $\sigma_x = \sqrt{D(x)}$ (độ lệch chuẩn)	• $E(x) = \bar{x}$ (kì vọng) • $\sqrt{D(x)} = \sigma_x$ (độ lệch chuẩn) • $D(x) = \sigma_x^2$ (độ lệch chuẩn)

b/ Các công thức tính các giá trị đặt trung

	Biến rời rạc	Biến liên tục
Kì vọng E(x) Tính chất của E(X)	E(aX + b) = c $ E(X + Y) = E$	
Kì vọng E(Y) với Y=M(X)	$\sum M(xi). pi$	$\int_{-\infty}^{+\infty} M(x)f(x)dx$
Phương sai D(X)		$E(X)^2$ với (nếu là biến rời rạc) $f(x)dx$ (nếu là biến liên tục)
Tính chất phương sai D(X)	$D(aX + b) = a^{2}D$ $D(X + Y) = D(X)$ $D(Y) \text{ n\'eu } X \text{ v\'e } Y$ $D(X - Y) = D(X)$	0(X)) + độ <i>c lập</i>
Mod	Là giá trị của biến ngẫu n là lớn nhất	hiên X tại đó xác suất sảy ra

Trung vị	$\begin{cases} P(X < med(X)) \le 0.5 \\ P(X > med(X)) \ge 0.5 \end{cases}$
	, ,
	Cách tìm trung vị của biến ngẫu nhiên liên tục khi biết hàm mật độ f(x) là giải phương trình sau
	$\int_{-\infty}^{x} f(t)dt = 0.5$

9. Các hàm phân phối

a/ Phân phối mũ

Thường áp dụng cho các bài có cho biến ngẫu nhiên X là khoảng thời gian giữa 2 sự kiện xảy ra.

Biến ngẫu nhiên X có phân phối mũ khi có hàm mật độ có dạng

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, x \ge 0\\ 0, & x < 0 \end{cases}$$

Trong đó: $\lambda =$

Ký hiệu: $X \sim E(\lambda)$

Lưu ý cần nhớ

- $D(X) = \frac{1}{\lambda^2}$ $Med(X) = \frac{\ln(2)}{\lambda}$

Các trường hợp tính xác suất hay hay gặp $(X \le a \text{ hay } X < a \text{ thì cũng dùng công thức})$ này)

- $P(X = a) = f(a) = \lambda e^{-\lambda a}$
- $P(X \le a) = \int_0^a f(x) dx$
- $P(X \ge a) = 1 \int_0^a f(x) dx$
- $P(a \le X \le b) = \int_a^b f(x) dx$

Trường hợp lưu ý, giả sử biến cố ngẫu nhiên X1, X2, X3,... Xn có phân phối mũ với tương ứng là $\lambda 1$, $\lambda 2$, $\lambda 3$, ... λn . Biến cố ngẫu nhiên Y = min{X1, X2, X3,...Xn} cũng có dạng phân phối mũ với $\lambda = \lambda 1 + \lambda 2 + \lambda 3 + \dots + \lambda n$

b/Phân phối Poisson

Thường áp dụng cho các bài có cho biến ngẫu nhiên X là chỉ số lượng đối tượng Biến ngẫu nhiên **rời rạc** X có phân phối Poisson sẽ có bảng phân phối xác suất như sau

X	0	1	2	••••	k
P	$\frac{e^{-\lambda}.\lambda^0}{0!}$	$\frac{e^{-\lambda}.\lambda^1}{1!}$	$\frac{e^{-\lambda}.\lambda^1}{2!}$		$\frac{e^{-\lambda}.\lambda^k}{n!}$

hay
$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!}$$
, kí hiệu: $X \sim P(\lambda)$

Trong đó
$$E(X) = D(X) = \lambda$$

Các trường hợp tính xác suất hay hay gặp:

•
$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!}$$
•
$$P(X \le k) = \sum_0^k \frac{e^{-\lambda} \cdot \lambda^k}{k!}$$
•
$$P(X \ge k) = 1 - \sum_0^k \frac{e^{-\lambda} \cdot \lambda^k}{k!}$$
•
$$P(a \le X \le b) = \sum_{k=a}^b \frac{e^{-\lambda} \cdot \lambda^k}{k!}$$

Giả sử biến cố ngẫu nhiên X1, X2, X3,... Xn và độc lập có phân phối Poisson với tương ứng là $\lambda 1$, $\lambda 2$, $\lambda 3$, ... λn . Biến cố ngẫu nhiên Y = X1+X2+X3+... cũng có dạng phân phối Poisson với $\lambda = \lambda 1 + \lambda 2 + \lambda 3 + \cdots + \lambda n$

Mối quan hệ giữa phân phối poisson và phân phối mũ

Khi đề bài cho số lượng trung bình đối tượng trong 1 khoảng thời gian

- Nếu hỏi là trong một khoảng thời gian thì xác suất có x đối tượng xuất hiện hoặc sự kiện xảy ra thì dùng phân phối Poisson
- Nếu hỏi là xác suất trong một khoảng thời gian x thì đối tượng (sự kiện) tiếp theo xuất hiện là bao nhiều thì chuyển poisson về phân phối mũ để giải.

Cụ thể:

• Tính thời gian trung bình khoảng thời gian giữa 2 đối tượng (E(X))

This document is available free of charge on

• Vậy phân phối mũ là

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases} \text{ với } \lambda = \frac{1}{E(X)} (x \text{ là thời gian giữa 2 đối tượng})$$

Ví dụ: Số lượng xe bus 08 đi qua trạm KTX Khu A tuân theo phân phối Poisson, trung bình 5 xe / 1 giờ .

➤ Tính xác suất để trong 2 tiếng có 12 xe đi qua KTX Khu A? Dùng Poisson

Ta có, trong một giờ thì có 5 xe vậy trong 2 giờ sẽ có 10 xe $\Rightarrow E(X) = \lambda = 10$

X là số xe đi qua trạm KTX khu A trong 2 tiếng có phân phối Poisson là:

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!} \implies P(X = 12) = \frac{e^{-10} \cdot 10^{12}}{12!} \approx 0.0948$$

> Tính xác suất để trong 10 phút nữa có xe tiếp theo đến?

Dùng phân phối mũ

Thời gian trung bình giữa 2 xe đi qua trạm là $E(x) = \frac{1}{5}(gi\dot{\sigma}/xe)$ ý nghĩa là trung bình 0.2 giờ lại có 1 xe đi qua trạm KTX khu A

Vậy
$$\lambda = \frac{1}{E(X)} = \frac{1}{1/5} = 5$$

Ta có X là biến ngẫu nhiên thời gian giữa 2 xe đến trạm xe buýt có phân phối mữ là:

$$f(x) = \begin{cases} 5e^{-5x}, x \ge 0\\ 0, & x < 0 \end{cases}$$

Vậy xác suất để trong 10 phút (đổi thành 1/6 giờ) nữa có xe tiếp theo đến là:

$$P(X \le 1/6) = \int_0^{1/6} 5e^{-5x} dx \approx 0.565$$

c/ Phân phối chuẩn

Biến ngẫu nhiên X gọi là có phân phối chuẩn nếu hàm mật độ xác suất có dạng

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-a)^2}{2\sigma^2}}$$

Trong đó:

- a=E(X)
- $\bullet \quad \sigma^2 = D(X)$

Kí hiệu: $X \sim N(a, \sigma^2)$

Phân phối chuẩn chỉnh tắc $X \sim N(0,1)$

$$f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}$$

Đồ thị hàm phân phối chuẩn chỉnh tắc

Hàm phân phối xác suất của biến cố ngẫu nhiên có phân phối chuẩn chỉnh tắc

$$F(x) = \Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$

Để xác định giá trị $\Phi(x)$ thì dùng bảng phân phối chuẩn hoặc casio

Một số tính chất hay sử dụng

•
$$P(X = m) = f(m) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(m-a)^2}{2\sigma^2}}$$

•
$$P(X \le m) = \int_{-\infty}^{m} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \int_{-\infty}^{\frac{m-a}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \Phi\left(\frac{m-a}{\sigma}\right)$$

•
$$P(X \ge m) = \int_{m}^{+\infty} \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \int_{\frac{m-a}{\sigma}}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = 1 - \Phi\left(\frac{m-a}{\sigma}\right)$$

$$P(m \le X \le n) = \int_m^n \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-a)^2}{2\sigma^2}} dx = \int_{\frac{m-a}{\sigma}}^{\frac{n-a}{\sigma}} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} dx = \Phi\left(\frac{n-a}{\sigma}\right) - \Phi\left(\frac{m-a}{\sigma}\right)$$

Lưu ý, luôn luôn để từ một phân phối chuẩn về phân phối chuẩn chỉnh tắc để làm

Trường hợp lưu ý

Giả sử biến cố ngẫu nhiên X1, X2, X3,... Xn và độc lập có phân phối chuẩn với tương ứng là $(a1, \sigma 1^2)$, $(a2, \sigma 2^2)$, $(a3, \sigma 3^2)$, Biến cố ngẫu nhiên Y = X1+X2+X3+... cũng có dạng phân phối chuẩn tương ứng $(a1 + a2 + a3 + ..., \sigma 1^2 + \sigma 2^2 + \sigma 3^2 + ...)$.

This document is available free of charge on

Cách bấm máy tính tìm $\Phi(a)$

Casio 570, Vinacal	Casio 580
Step1: Bật tính năng thống kê	Step 1: Bật tính năng thống kê
Mode $\rightarrow 3 \rightarrow 1 \rightarrow AC$	$Menu \rightarrow 6 \rightarrow AC$
Step2 : Tîm $\Phi(a)$	Step2 : Tim $\Phi(a)$
Nhấn Shift $\rightarrow 1 \rightarrow 5 \rightarrow 1 (P)$	Option $\rightarrow \nabla \rightarrow 4$
Nhập P(a)	Nhập P(a)
CHI DI HEMI	TCNCD

d/ Phân phối nhị thức

TÀI LIỆU ĐẠI CƯƠNG BÁCH KHOA

Đại lượng ngẫu nhiên X có phân phối nhị thức thì

$$P(X = k) = C_n^k p^k \cdot (1 - p)^{n-k}$$

Kí hiệu: : $X \sim B(n, p)$

Một số tính chất

- E(X) = np
- $\quad D(X) = np(1-p)$

Các trường hợp tính xác suất hay hay gặp:

- $P(X = k) = C_n^k p^k \cdot (1 p)^{n-k}$
- $P(X \le k) = \sum_{0}^{k} C_n^k p^k \cdot (1-p)^{n-k}$
- $P(X \ge k) = 1 \sum_{n=0}^{k} C_n^k p^k \cdot (1-p)^{n-k}$
- $P(a \le X \le b) = \sum_{k=a}^{b} C_n^k p^k \cdot (1-p)^{n-k}$

Lưu ý:

- Nếu n rất lớn (n>30) và $p \le 5\%$ ta xấp sỉ phân phối nhị thức về phân phối Poisson. Với $\lambda = E(X) = np$
- Nếu n rất lớn (n>30) và p > 5% ta xấp sỉ phân phối nhị thức về phân phối chuẩn. Với a = E(X) = np, $\sigma^2 = D(X) = np(1-p)$

Lưu ý, cho các biến ngẫu nhiên

$$X_1 \sim B(n_1; p), X_2 \sim B(n_2; p), X_3 \sim B(n_3; p), \dots, X_n \sim B(n_n; p),$$

thì
$$Y = X_1 + X_1 + X_1 + \cdots + X_n$$
 thì $X_n \sim B(n_1 + n_2 + \cdots + n_n; p)$

e/ Phân phối đều

Đại lượng ngẫu nhiên X gọi là có phân phối đều trên đoạn [a, b] nếu hàm mật độ của X là

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \neq [a,b] \end{cases}$$

Kí hiệu: $X \sim U(a, b)$

hiệu:
$$X \sim U(a, b)$$

• $E(X) = \frac{a+b}{2}$

• $D(X) = \frac{(b-a)^2}{12}$

Các trường hợp tính xác suất hay hay gặp ($X \le a$ hay X < a thì cũng dùng công thức này)

- $P(X = m) = \frac{1}{h-a}$
- $P(X \le m) = \int_{a}^{m} f(x) dx$
- $P(X \ge m) = 1 \int_a^m f(x) dx = \int_m^b f(x) dx$
- $P(m \le X \le n) = \int_{-\infty}^{n} f(x) dx$

f/ Phân phối siêu bôi

Cho đại lương ngẫu nhiên X gọi là phân phối siêu bôi nếu tồn tại các số tư nhiên M, N sao cho $n \le M \le N$ thỏa

$$P(X = k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$$

Kí hiệu: $X \sim H(N, M, n)$

Cần nhớ:

$$E(X) \sim np$$
, $D(X) = npq \frac{N-n}{N-1}$

Trong đó:
$$p = \frac{M}{N}$$
, $q = 1 - p$

Các trường hợp tính xác suất hay hay gặp:

- $P(X=k) = \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$
- $P(X \le k) = \sum_{0}^{k} \frac{C_M^k C_{N-M}^{n-k}}{C_N^n}$
- $P(X \ge k) = 1 \sum_{0}^{k} \frac{C_{M}^{k} C_{N-M}^{n-k}}{C_{N}^{n}}$
- $P(a \le X \le b) = \sum_{k=a}^{b} \frac{c_M^k c_{N-M}^{n-k}}{c_N^n}$

Lưu ý, nếu N quá lớn, ta có thể sấp xỉ về phân phối nhị thức

$$\frac{C_M^k C_{N-M}^{n-k}}{C_N^n} = C_M^k. \, p^k. \, q^{n-k}$$

10. Định lý giới hạn trung tâm (không thi giữa kì)

Cho các biến ngẫu nhiên $X1 + X2 + X3 + \cdots Xn$ có cùng quy luật phân phối bất kì và có cùng kì vọng a=E(X) và phương sai σ^2 .

- Với BNN Y = $X1 + X2 + X3 + \cdots Xn$ thì BNN Y sẽ có quy luật phân phối chuẩn $Y \sim N(n, a; \sigma^2)$.
- Với BNN Y= $Y = \frac{X_1 + X_2 + X_3 + \cdots + X_n}{n}$ thì BNN Y sẽ có quy luật phân phối chuẩn là $Y \sim N(\alpha; \sigma^2/n)$

11. Vecto ngẫu nhiên

a/ Lý thuyết

Bảng phân phối xác suất đồng thời của vecto ngẫu nhiên 2 chiều (X,Y)

XY	y_1	y_2		\mathcal{Y}_n
x_1	p_{11}	p_{12}	•••	p_{1n}
x_2	p_{21}	p_{22}	•••	p_{2n}
···			•••	•••
x_m	p_{m1}	p_{m2}		p_{nm}

Tính chất

• $P(X=x_i,Y=y_j)=p_{ij}$ • $\sum_i^m \sum_j^n p_{ij}=1$ Lưu ý, nếu $p_{ij}=P(X=x_i).P(Y=y_j)$ đúng cho mọi p_{ij} trong phân phối xác suất đồng thời thì X và Y độc lập

Bảng phân phối xác suất thành phần X

X	x_1	x_2	 x_n
P	$\sum_{j=0}^{m} p_{1j}$	$\sum_{j=0}^{m} p_{2j}$	 $\sum_{j=0}^{m} p_{nj}$

Bảng phân phối xác suất thành phần Y

X	y_1	y_2	 у
P	$\sum_{j=0}^{n} p_{i1}$	$\sum_{j=0}^{n} p_{i2}$	 $\sum_{j=0}^{n} p_{im}$

KHÓA HỌC XÁC SUẤT THỐNG KÊ

Ví dụ :Cho bảng phân phối xác suất đồng thời của vecto ngẫu nhiên 2 chiều (X,Y)

X Y	1	2	3
6	0.1	0.05	0.15
7	0.05	0.15	0.1
8	0.1	0.2	0.1

- a) Tính xác suất đồng thời P(X=4, Y=2)
- b) Lập bảng phân phối xác suất từng thành phần
- c) Tính E(X), E(Y), D(X), D(Y), D(2X + 3)
- d) Tính E(X/Y=7), E(Y/X=1)
- e) Tính P(X=8, Y>1), P(X<8, Y>1)
- f) Tính P(X=1/Y=2), P(Y=7/X=8),
- g) Tính E(XY), D(XY)
- h) X, Y có độc lập hay không

b/ Cách bấm máy tính

Cach Dain may timi	
Casio 570, Vinacal	Casio 580
Step1: Mở tần số	Step 1: Mở tần số
Shift \rightarrow Mode $\rightarrow \nabla \rightarrow 4 \rightarrow ON$	Shift \rightarrow Menu $\rightarrow \nabla \rightarrow 3 \rightarrow 1$
Step2: Nhập bảng	Step2 : Nhập bảng
Mode \rightarrow Stat (3) \rightarrow 2 (a+bx)	Menu → Thống kê(6) →2(Tính tke 1-biến)
Nhập giá trị X vào cột X, nhập giá trị Y vào cột Y và nhập xác suất của biến đó vào cột Freq, xong rôi ấn AC	Nhập giá trị X vào cột X, nhập giá trị Y vào cột Y và nhập xác suất của biến đó vào cột Freq, xong rôi ấn AC
Step 3 : Shift $\rightarrow 1 \rightarrow 4$	Step 3 : Option (OPTN) $\rightarrow \nabla \rightarrow 2$
 E(x) = x̄ (kì vọng x) σ_x=√D(x) (độ lệch chuẩn của x) E(y) = ȳ (kì vọng y) σ_y=√D(y) (độ lệch chuẩn của y) E(xy)=∑xy (kì vọng của xy) 	• $E(x) = \bar{x}$ (kì vọng x) • $\sqrt{D(x)} = \sigma_x$ (độ lệch chuẩn x) • $D(x) = \sigma_x^2$ (phương sai x) • $E(y) = \bar{y}$ (kì vọng y) • $\sigma_y = \sqrt{D(y)}$ (độ lệch chuẩn của y) • $D(y) = \sigma_y^2$ (phương sai y) • $E(xy) = \sum xy$ (kì vọng của xy)

