#_ Becoming a <u>Data Scientist</u> [the StudyPlan]

Phase 1: Foundational Knowledge

Duration: 2 months

1. Mathematics

- Linear Algebra (15 hours)
 - Study concepts like vectors, matrices, eigenvalues, and eigenvectors.
 - Resources: Khan Academy's Linear Algebra course Khan Academy - Linear Algebra
- o Calculus (15 hours)
 - Learn about differentiation, integration, limits, and derivatives.
 - Resources: Khan Academy's Calculus courses Khan Academy - Calculus
- Probability and Statistics (15 hours)
 - Study probability theory, random variables, distributions, and basic statistics.
 - Resources: Khan Academy's Probability and Statistics courses Khan Academy - Probability and Statistics

2. Programming

- Puthon (60 hours)
 - Syntax and Basic Concepts (10 hours)
 - Data Structures (15 hours)
 - Control Structures (10 hours)
 - Functions (10 hours)
 - Object-Oriented Programming (15 hours)
 - Resources: Python.org's official tutorial <u>Python.org</u> Official Tutorial
- R (optional) (20 hours)
 - If you choose R as well, allocate time for syntax and basic concepts.
 - Resources: "R for Data Science" by Hadley Wickham and Garrett Grolemund R for Data Science

🐍 Phase 2: Data Manipulation and Visualization

Duration: 2 months

1. Data Manipulation

- Numpy (Python) (20 hours)
 - Learn how to work with arrays and matrices.
 - Resources: Numpy documentation Numpy Documentation
- Pandas (Python) (30 hours)
 - Study data structures like Series and DataFrames for data manipulation.
 - Resources: "Python for Data Analysis" by Wes McKinney Python for Data Analysis
- Dplyr (R) (20 hours)
 - If you chose R, learn data manipulation using dplyr.
 - Resources: DataCamp's "Introduction to the Tidyverse" course <u>Introduction to the Tiduverse</u>

2. Data Visualization

- Matplotlib (Python) (20 hours)
 - Start with basic plotting techniques.
 - Resources: Matplotlib documentation <u>Matplotlib</u> Documentation
- Seaborn (Python) (20 hours)
 - Explore more advanced and aesthetic visualizations.
 - Resources: Seaborn documentation <u>Seaborn Documentation</u>
- ggplot2 (R) (20 hours)
 - If you chose R, learn data visualization using gaplot2.
 - Resources: "Data Visualization with gaplot2" by Hadley Wickham Data Visualization with gaplot2
- Interactive Visualization Tools (10 hours)
 - Explore libraries like Plotly and Bokeh for interactive visualizations.
 - Resources: Plotly documentation <u>Plotly Documentation</u>

📊 Phase 3: Exploratory Data Analysis and Preprocessing

Duration: 1 month

1. Exploratory Data Analysis (EDA) (20 hours)

- Study techniques like histograms, scatter plots, box plots, and correlation matrices.
- Resources: DataCamp's "Exploratory Data Analysis in Python" course Exploratory Data Analysis in Python

2. Feature Engineering (15 hours)

- Understand techniques to create new features from existing data.
- o Resources: "Feature Engineering for Machine Learning" by Alice Zheng and Amanda Casari Feature Engineering for Machine Learning

3. Data Cleaning (10 hours)

- Learn about identifying and handling missing values, duplicates, and inconsistencies.
- o Resources: DataCamp's "Cleaning Data in Python" course Cleaning Data in Python

4. Handling Missing Data (10 hours)

- Study methods like imputation and understand the implications of missing data.
- o Resources: "Handling Missing Data in R" on DataCamp <u>Handling</u> Missing Data in R

5. Data Scaling and Normalization (5 hours)

- Understand the importance of scaling and normalizing data for certain algorithms.
- o Resources: "Feature Scaling in Machine Learning" on Analytics Vidhya Feature Scaling in Machine Learning

6. Outlier Detection and Treatment (10 hours)

- Learn how to identify and handle outliers in your data.
- Resources: <u>Techniques of Outlier Detection and Treatment</u>

Phase 4: Machine Learning

Duration: 3 months

- 1. Supervised Learning: Regression (25 hours)
 - Linear Regression (10 hours)
 - Polynomial Regression (5 hours)
 - Regularization Techniques (10 hours)
 - Resources: "Introduction to Machine Learning with Python" by Andreas C. Müller and Sarah Guido <u>Introduction to Machine</u> Learning with Python
- 2. Supervised Learning: Classification (35 hours)
 - Logistic Regression (10 hours)
 - k-Nearest Neighbors (k-NN) (5 hours)
 - Support Vector Machines (SVM) (10 hours)
 - Decision Trees (5 hours)
 - Random Forest (5 hours)
 - Gradient Boosting (10 hours)
 - Resources: Coursera's "Machine Learning" by Andrew Ng <u>Machine</u>
 <u>Learning</u>
- 3. Unsupervised Learning: Clustering (15 hours)
 - K-means (5 hours)
 - o **DBSCAN** (5 hours)
 - Hierarchical Clustering (5 hours)
 - Resources: "Introduction to Unsupervised Learning" on DataCamp <u>Introduction to Unsupervised Learning</u>
- 4. Unsupervised Learning: Dimensionality Reduction (15 hours)
 - Principal Component Analysis (PCA) (5 hours)
 - t-Distributed Stochastic Neighbor Embedding (t-SNE) (5 hours)
 - Linear Discriminant Analysis (LDA) (5 hours)
 - Association Rule Learning (5 hours)
 - o Resources: Introduction to Unsupervised Learning
- 5. Model Evaluation and Validation (20 hours)
 - Cross-validation (5 hours)
 - Hyperparameter Tuning (5 hours)
 - Model Selection Techniques (5 hours)

- Evaluation Metrics (5 hours)
- Resources: scikit-learn documentation on Model Selection and Evaluation scikit-learn Model Selection and Evaluation

Phase 5: Deep Learning

Duration: 3 months

- 1. Neural Networks (20 hours)
 - o Perceptron (5 hours)
 - Multi-Layer Perceptron (MLP) (15 hours)
 - Resources: Coursera's "Neural Networks and Deep Learning" by
 Andrew Ng Neural Networks and Deep Learning
- 2. Convolutional Neural Networks (CNNs) (25 hours)
 - Image Classification (10 hours)
 - Object Detection (10 hours)
 - o Image Segmentation (5 hours)
 - Resources: Deep Learning Specialization on Coursera by Andrew
 Ng <u>Deep Learning Specialization</u>
- 3. Recurrent Neural Networks (RNNs) (20 hours)
 - Sequence-to-Sequence Models (10 hours)
 - Text Classification (5 hours)
 - Sentiment Analysis (5 hours)
 - Resources: "Natural Language Processing Specialization" on Coursera by deeplearning.ai <u>Natural Language Processing</u> Specialization
- 4. Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU) (15 hours)
 - Time Series Forecasting (10 hours)
 - Language Modeling (5 hours)
 - Resources: "Sequence Models" course on Coursera by deeplearning.ai Sequence Models
- 5. Generative Adversarial Networks (GANs) (15 hours)
 - Image Synthesis (5 hours)
 - o Style Transfer (5 hours)
 - Data Augmentation (5 hours)

Resources: "Generative Adversarial Networks (GANs)
 Specialization" on Coursera by deeplearning.ai <u>Generative</u>
 Adversarial Networks (GANs) <u>Specialization</u>

Phase 6: Advanced Topics

Duration: 3 months

- 1. Natural Language Processing (NLP) (30 hours)
 - Text Preprocessing (10 hours)
 - Word Embeddings (10 hours)
 - Recurrent Neural Networks for NLP (5 hours)
 - o Transformer Models (e.g., BERT, GPT) (5 hours)
 - Resources: "Natural Language Processing in Action" by Hobson Lane, Cole Howard, and Hannes Hapke <u>Natural Language</u>
 Processing in Action
- 2. Time Series Analysis (20 hours)
 - Time Series Decomposition (5 hours)
 - Autoregressive Integrated Moving Average (ARIMA) (5 hours)
 - Seasonal ARIMA (SARIMA) (5 hours)
 - Exponential Smoothing Methods (5 hours)
 - o Prophet (5 hours)
 - Resources: "Time Series Analysis and Its Applications" by Robert H. Shumway and David S. Stoffer <u>Time Series Analysis</u> and <u>Its Applications</u>

** Phase 6: Advanced Topics (Continued)

Duration: 3 months

- 3. Recommender Systems (15 hours)
 - Collaborative Filtering (5 hours)
 - Content-Based Filtering (5 hours)
 - o Matrix Factorization (5 hours)
 - Hybrid Methods (5 hours)
 - Resources: "Recommender Systems Handbook" by Francesco Ricci,
 Lior Rokach, and Bracha Shapira <u>Recommender Systems Handbook</u>

- 4. Causal Inference (15 hours)
 - Experimental Design (5 hours)
 - Observational Studies (5 hours)
 - Propensity Score Matching (5 hours)
 - Instrumental Variable Analysis (5 hours)
 - o Resources: "Causal Inference: What If" by Miquel A. Hernán and James M. Robins <u>Causal Inference</u>: What If
- 5. Advanced Deep Learning (25 hours)
 - Advanced Architectures (10 hours)
 - Generative Models (10 hours)
 - Advanced Techniques for NLP and Computer Vision (5 hours)
 - Resources: "Dive into Deep Learning" by Aston Zhang, Zachary C. Lipton, and Mu Li Dive into Deep Learning
- 6. Bayesian Statistics and Probabilistic Programming (20 hours)
 - Bayesian Inference (5 hours)
 - Markov Chain Monte Carlo (MCMC) (5 hours)
 - Probabilistic Graphical Models (5 hours)
 - Stan, PyMC3, or Edward (5 hours)
 - Resources: "Probabilistic Programming & Bayesian Methods for Hackers" by Cam Davidson-Pilon Probabilistic Programming & Bayesian Methods for Hackers

Phase 7: Big Data Technologies

Duration: 2 months

- 1. Cloud Services (15 hours)
 - Cloud Providers (5 hours)
 - AWS Services (Optional) (10 hours)
 - Resources: AWS Documentation AWS Documentation
- 2. **Spark** (20 hours)
 - Understanding RDDs (5 hours)
 - DataFrames (5 hours)
 - MLlib (10 hours)
 - o Resources: "Learning Spark" by Holden Karau, Andy Konwinski, Patrick Wendell, and Matei Zaharia Learning Spark

 \circ

- 3. NoSQL Databases (15 hours)
 - MongoDB (5 hours)
 - Cassandra (5 hours)
 - HBase and Couchbase (5 hours)
 - Resources: MongoDB Documentation MongoDB Documentation
- 4. Stream Processing Frameworks (10 hours)
 - Apache Kafka (5 hours)
 - Apache Flink (2.5 hours)
 - Apache Storm (2.5 hours)
 - Resources: Apache Kafka Documentation <u>Apache Kafka</u>
 Documentation

📊 Phase 8: Data Visualization and Reporting

Duration: 1 month

- 1. Dashboarding Tools (15 hours)
 - o Tableau (5 hours)
 - o **Power BI** (5 hours)
 - o Dash (Python) (2.5 hours)
 - Shiny (R) (2.5 hours)
 - Resources: <u>Tableau Public Gallery</u>
 - Resources: Power BI Learning Resources <u>Power BI Learning</u>
 <u>Resources</u>
 - Resources: Plotly Dash Documentation <u>Plotly Dash</u>
 Documentation
 - Resources: Shiny Gallery Shiny Gallery
- 2. Storytelling with Data (10 hours)
 - o "Storytelling with Data" by Cole Nussbaumer Knaflic (Book)
 - Resources: "Storytelling with Data" by Cole Nussbaumer Knaflic Storytelling with Data
- 3. Effective Communication (5 hours)
 - o "Communicating Data Science Results" on Coursera
 - Resources: "Communicating Data Science Results" on Coursera by the University of Washington <u>Communicating Data Science</u> Results

Phase 9: Domain Knowledge and Soft Skills

Duration: Ongoing

1. Industry-specific Knowledge (Ongoing)

o Stay updated with industry trends, use cases, and challenges.

2. **Problem-solving** (Ongoing)

• Regularly solve coding challenges and participate in data science competitions.

3. Communication Skills (Ongoing)

o Engage in discussions, write blog posts, and present your findings.

4. Time Management (Ongoing)

o Continuously adjust your schedule based on your progress and qoals.

5. Teamwork (Ongoing)

o Collaborate on projects, join data science communities, and attend meetups.

🔒 Phase 10: Ethical Considerations and Bias in Data Science

Duration: Ongoing

1. Fairness in Machine Learning (Ongoing)

o Follow recent research and quidelines on bias and fairness in AI.

2. Bias Detection and Mitigation (Ongoing)

 Stay informed about techniques and tools for detecting and mitigating bias.

3. Privacy and Data Security (Ongoing)

 Keep up with best practices and regulations related to data privacy.

Phase 11: Deployment and Productionisation

Duration: Ongoing

- 1. Model Deployment Techniques (Ongoing)
 - Explore various deployment platforms and techniques.
- 2. Containerization (e.g., Docker) (Ongoing)
 - Learn how to package and deploy models using containers.
- 3. Model Serving and APIs (Ongoing)
 - Experiment with building APIs for serving models.
- 4. Scalability and Performance Optimization (Ongoing)
 - o Study strategies to optimize model performance and scalability.