eigenvalue decomposition summarized

- Let $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_n$ be the eigenvectors of matrix A and let $\lambda_1,\lambda_2,\ldots,\lambda_n$ be corresponding eigenvalues
- Consider now a matrix Q whose columns are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$
- We have now

$$AQ = A \begin{bmatrix} 1 & 1 & 1 & 1 \\ \overrightarrow{v_1} & \overrightarrow{v_2} & \dots & \overrightarrow{v_1} \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ A\overrightarrow{v_1} & A\overrightarrow{v_2} & \dots & A\overrightarrow{v_1} \\ 1 & 1 & 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ \lambda_1\overrightarrow{v_1} & \lambda_2\overrightarrow{v_2} & \dots & \lambda_n\overrightarrow{v_1} \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

eigenvalue decomposition summarized

- Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ be the eigenvectors of matrix A and let $\lambda_1, \lambda_2, \ldots, \lambda_n$ be corresponding eigenvalues
- Consider now a matrix Q whose columns are $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$
- We have now

$$AQ = A \begin{bmatrix} | & | & | & | \\ \overrightarrow{v_1} & \overrightarrow{v_2} & \dots & \overrightarrow{v_1} \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} | & | & | & | \\ A\overrightarrow{v_1} & A\overrightarrow{v_2} & \dots & A\overrightarrow{v_1} \\ | & | & | & | \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \overrightarrow{v_1} & \lambda_2 \overrightarrow{v_2} & \dots & \lambda_n \overrightarrow{v_1} \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

$$= \begin{bmatrix} \begin{vmatrix} 1 & 1 & 1 & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

$$= QD$$