

Project 1 - Quantum Walks and Monte Carlo

Gaël-Pacôme Nguimeya Tematio

August 10, 2025

- Aims of the project
 - Building quantum circuits that realize a Galton Box-style Monte Carlo process, following the Universal Statistical Simulator.
 - Implementing a generalized L-layer quantum Galton board to produce samples and study quantum-walk behavior.

■ Problem and its Significance

- Mapping Monte Carlo sampling to quantum circuits for problems representative of high-dimensional systems.
- The Galton Box is a standard Monte Carlo model used for PDE solution methods in settings with complex interactions (e.g., particle transport and quantum systems).
- Establishing a correct circuit construction matters because it clarifies how quantum hardware can simulate and potentially accelerate such sampling tasks.

Objectives

- ➤ Implement each task efficiently
- ➤ Obtain the best possible accuracy

Approach

- > Generalized L-layer QGB: reusable coin qubit, CSWAP sweep, mid-circuit reset.
- Rescaling by block-sum (size 8) to compare with Gaussian prediction.
- \triangleright Additional samplers: exponential target ($\lambda = 0.4$) and 1D Hadamard walk (6 steps).
- > Tools: Python, Qiskit Aer, NumPy, Matplotlib etc...

Case L = 4

Figure 1: a) Rescaled 4-layer QGB simulated output, (b) Exponential distribution (n = 5, $\lambda = 0.4$), (c) Hadamard quantum walk (6 steps)

																		Fidelity Score
																		0.483 0.54629
EXP	- i	4	1	0.10	Ì	medium	İ	8192	ĺ	ibm_toronto	İ	27	ĺ	5	İ	26	Ĺ	0.999 0.95936
WALK		4		steps=5		low		8192	ı	ibm_toronto		27		1972	ı	2641		0.548 0.59842

Figure 2: Optimized metrics

- Provides a clear, reproducible template for QGB-based Monte Carlo and quantum-walk studies.
 - Baseline for evaluating sampling accuracy and circuit design choices in NISQ-era workflows.
 - ➤ Goals met partially due to limited computational resources.

Next steps:

- ➤ Scale *L* and shots; batch and vectorize simulations for speed.
- Add backend-specific noise models and transpiler tuning for CSWAP; test unitary clean-up in place of reset.
- ➤ Introduce per-row bias schedules for shaped targets and automate parameter search.
- Run small-L hardware experiments with error mitigation and report distances with confidence intervals.

Limitations and needs

- lacktriangle Main constraint: computational resources to simulate larger L and more shots.
- Needed: more CPU/GPU time, memory, and access to quantum hardware for validation.

Thank you!!!

Project 1 - Quantum Walks and Monte Carlo