Context free grammar G= (N, E, P, S)

Porse tree is afree satisfying the following

- 1. Each interior node is labelled with an element
- 2. Each leaf node is labelled with £ or E.
- 3. if an interior node is labelled A and its Children are labelled Bi, -- Bk.

Then $A \rightarrow B$, B_2 , ... $B_k \in P$.

575+5 | 5x5 | (s) | I

I > a | b

String at axb

5-> S+5-> S+ 5*5-> a+a*6.

5 -> 53 -> 05 -> 6)

 $G = (N, \xi, P, S)$ $S \rightarrow SS \mid O|1| \epsilon.$

S->551011

5 1 55 1 555 1 555 1 555 2 555 2 555 → 05 → 01

Chomsky Normal Form. (CNF)

G= (N, E, P, S) is in CNF if all productions

A→BC A→a A,B,CEN, aE E.

Example. $5 \rightarrow [5] | SS| = \Rightarrow G_1$ $G_2 J$

S→AB AC SS C→SB A→[B→]

L(G1) = L(G2).

5-# of Nonterminals increase by 1

one step progress.

-# of terminal increase by 1.

Theorem. For any CFG G, Here is a CFG G' in Chomsky normal form st $L(G') = L(G) - \mathcal{EG}$.

Lemma 1. For any CFG G= (N, Z, P, S) Here 15 a CFG G' with no E-productions or unit-productions Such that L(G') = L(G) - EE'S Proof. Let P be the smallest Set of productions containing Pand closed under the rules: (a) if A → &BB and B → E are in P Han A→ &B EP (b) if A→B and B→8 are in P Han A→8 ∈P. Note: P is finite - 2 (Finitely many new production rules are added ? LEach new RHS is a substring of an old RHS.) G = (N, Z, P, S) We have $L(G) \subseteq L(G)$ Since $P \subseteq P$ L(G)=L(G)- each new production was included be cause of rule (a) or (b) - can be Simulated in 2 steps by two productions that coused it to be included.

Claim 2. For any non-null x E E, any devivation $S \stackrel{*}{\Longrightarrow} \propto e_0^4$ minimum length does not use ϵ -or unit productions.

Proof. Let $x \neq \epsilon$. Let $5 \xrightarrow{*} x$ be the minimum length derivation.

Suppose an E-production $B \rightarrow E$ is used at some point $S \stackrel{*}{\widehat{G}} \rightarrow VBS \stackrel{1}{\widehat{G}} \rightarrow VS \stackrel{*}{\widehat{G}} \rightarrow \infty$

At least one of 8 or 5 is non-null=> B was introduced from a production of the form A-> & BB.

 $S \xrightarrow{m} \eta A O \xrightarrow{1} \eta \chi B B O \xrightarrow{n} \delta B S \xrightarrow{1} \delta S \xrightarrow{k} \chi$ $for M, n, k \ge 0$

By rule (a) $A \rightarrow \lambda \beta \in \hat{P}$.

But then we have a strictly shorter derivation of x

This gives a contradiction.

Unit Productions

Let $x \neq \epsilon$. Consider a derivation $S \stackrel{*}{\Rightarrow} x = \epsilon$ minimum/ength. Suppose a unit production $A \rightarrow B$ is used at some point $S \stackrel{*}{\Rightarrow} \lambda AB \stackrel{!}{\rightarrow} \lambda BB \stackrel{*}{\Rightarrow} x$.

B must be removed later by applying a production $B \rightarrow 8$.

S\$ dAB \$\frac{1}{\hat{G}} \dBB \frac{\hat{\hat{B}}}{\hat{G}} \dBB \frac{\hat{\hat{B}}}{\hat{G}} \dBB \frac{\hat{\hat{B}}}{\hat{G}} \dBB \frac{\hat{\hat{B}}}{\hat{G}} \dBB \frac{\hat{\hat{B}}}{\hat{G}} \dagger \pi.

By rule (b), $A \rightarrow \forall \in \hat{P}$.

Claim 2 implies we can remove the E-productions and writ productions from P without changing the language.

Chomsky Normal Form.

By Lemma 1, L(G)=L(G) and P does not have E-productions or unit productions.

For each terminal $a \in \Sigma$ introduce a new nonterminal Aa and add the production rule $Aa \rightarrow a$.

Replace all occurrences of a on the RHS of old productions (except productions of the form B-a) with Aa. Then all productions are of the form:

 $A \rightarrow a$ or $A \rightarrow B_1 B_2 - B_k$ $k \ge 2$

For any production of the form $A \rightarrow B_1B_2 - - B_k$ with $k \ge 3$, introduce a new nonterminal C and seplace with

A→B, C and C→B2...Bk.

Repeat until all RHS of all productions ore of length of most 2.

(a) if $A \rightarrow \alpha B\beta$ and $B \rightarrow \epsilon$ are in \hat{P} than $A \rightarrow \alpha\beta \in \hat{P}$ (b) if $A \rightarrow B$ and $B \rightarrow V$ are in \hat{P} than $A \rightarrow \hat{J} \in \hat{P}$. Example 1: $\{a^1b^1 \mid n \geq 0\}$. $\{\epsilon\} = \{a^nb^n \mid n \geq i\}$. $S \rightarrow a Sb \mid \epsilon$

5-> a5b|ab Add nonterminals A,B

 $S \rightarrow ASB|AB$ $A \rightarrow a$ $B \rightarrow b$ Add nonterminal C, replace $S \rightarrow ASB$ with $S \rightarrow AC$, $C \rightarrow SB$ $G: S \rightarrow AB|AC$, $C \rightarrow SB$, $A \rightarrow a$, $B \rightarrow b$ Balanced Parantess $S \rightarrow [S]|SS|E$

S→[S]|SS|[] Add new nonterminals A,B

S-) ASB | SS | AB , A-)[, B-)]

Add a new nonterminal C. Replace S-ASB with S-> AC and C-> SB.

G: S→ABIACISS, C→SB, A→[, B→]