Logique du premier ordre (HAI504I)

Licence Informatique Département Informatique Faculté des Sciences de Montpellier Université de Montpellier

TD $N^{\circ}2$

Exercice 1

Soient le prédicat P et la relation Q définis comme suit :

- $P(x) \equiv x$ a réussi son examen;
- $Q(x,y) \equiv x$ a posé des questions à y.
- 1. Traduire en formules les énoncés suivants :
 - Quelqu'un a raté l'examen et n'a été questionné par personne;
 - Tous ceux qui ont réussi à l'examen ont posé des questions à quelqu'un;
 - Tous ceux qui ont réussi à l'examen ont été questionnés par quelqu'un;
 - Personne n'a posé de question à tous ceux qui ont réussi à l'examen;
 - Tous ceux qui ont posé des questions à quelqu'un, ont posé des questions à quelqu'un qui a réussi l'examen.
- 2. Soit l'interprétation I avec $D_I = \{Anatole, Boris, Catarina, Diana\}$. Dans cette interprétation, seuls Boris et Catarina ont réussi l'examen. Les garçons (Anatole et Boris) ont posé des questions aux filles (Catarina et Diana), Diana a posé des questions à Boris, Catarina à Diana et ce sont les seuls cas d'entraide.
 - Donner les définitions de I(P) et I(Q);
 - Donner la sémantique des formules précédentes dans cette interprétation.

Exercice 2

Soient a une constante et P un prédicat (unaire).

- 1. Trouver différentes interprétations (si c'est possible) telles que :
 - La formule P(a) soit vraie et la formule $\exists x. P(x)$ soit vraie;
 - La formule P(a) soit fausse et la formule $\exists x. P(x)$ soit vraie;
 - La formule P(a) soit vraie et la formule $\exists x. P(x)$ soit fausse;
 - Les deux formules P(a) et $\exists x. P(x)$ soient fausses.
- 2. Pour chacune des interprétations trouvées précédemment, quelle est la sémantique des formules suivantes (faire le calcul)?
 - $-- (\exists x. P(x)) \Rightarrow P(a);$
 - $-- \forall x. P(x).$

Que dire de ces formules?

- 3. Que dire des formules suivantes (le démontrer)?
 - $-P(a) \Rightarrow \exists x.P(x)$:
 - $-P(a) \wedge \neg \exists x. P(x).$

Exercice 3

Démontrer la validité des formules suivantes :

- 1. $\forall x. P(x) \Rightarrow \exists y. P(y) \lor Q(y)$
- 2. $(\exists x. P(x) \lor Q(x)) \Rightarrow (\exists x. P(x)) \lor (\exists x. Q(x))$
- 3. $(\forall x. P(x)) \land (\forall x. Q(x)) \Rightarrow \forall x. P(x) \land Q(x)$
- 4. $(\forall x. P(x) \land Q(x)) \Rightarrow (\forall x. P(x)) \land (\forall x. Q(x))$
- 5. $(\forall x. \neg P(x)) \Rightarrow \neg (\exists x. P(x))$
- 6. $\neg(\forall x.P(x)) \Rightarrow \exists x.\neg P(x)$

Exercice 4

Soit l'énoncé suivant :

« Si quelqu'un résout ce problème, alors tout mathématicien le résout. Cabot est mathématicien et ne résout pas ce problème. »

Peut-on en conclure que personne ne résout ce problème? Quelle que soit la réponse, le démontrer.

Exercice 5

Démontrer que le raisonnement suivant est incorrect (autrement dit que la conclusion n'est pas conséquence logique des hypothèses) :

Hypothèses

Conclusion

1. $\exists x.P(x)$;

 $-\exists x.R(x).$

- $2. \exists x. Q(x);$
- 3. $\forall x. P(x) \land Q(x) \Rightarrow R(x)$.