

The Vector Space \mathbb{R}^n

Objectives

Subspaces and Spanning sets

Independence and Dimension

- Orthogonality
- Rank of a Matrix

Subspace of Rⁿ

Definition of subspace of R^n .

- Let Ø≠U be a <u>subset</u> of Rⁿ
- U is called a subspace of Rⁿ if:
 - **1** S₁. The zero vector **0** is in U
 - **2** S₂. If **X,Y** are in U then **X+Y** is in U
 - **3** S₃. If X is in U then aX is in U for all real number a.

- lacktriangle the zero vector of R³, (0,0,0) \in U
- **2** (a,a,0), (b,b,0) \in U \Rightarrow (a,a,0)+(b,b,0)=(a+b,a+b,0) \in U
- **3** If $(a,a,0) \in U$ and $k \in R$, then $k(a,a,0)=(ka,ka,0)\in U$
- Ex2. U={(a,b,1): a,b \in R} is not a **subspace** of R³
 - \bullet (0,0,0) $\not\in$ U \Rightarrow U is not a *subspace*
- Ex3. U={(a, |a|,0)|a ∈R} is not a *subspace* of R³ ② (-1,|-1|,0), (1,|1|,0)∈U but (0,2,0) \notin U \Rightarrow U is not a *subspace*

 \mathbb{R}^n

aX

X+Y

Subspaces or not - Do yourself

- $V = \{ [0 \text{ a } 0]^T \text{ in } \mathbb{R}^3 : a \in Z \}$
- U={[a 0 a+1]^T in \mathbb{R}^3 : a \in R}
- W={[a b a-b]^T in \mathbb{R}^3 : a,b \in R}
- Q={[a b $|a+b|]^T$: $a \in \mathbb{R}$ }
- $H=\{[a \ b \ ab]^T: a \in \mathbb{R}\}$
- $P=\{(x,y,z) \mid x-2y+z=0 \text{ and } 2x-y+3z=0\}$. P is called the *solution* space of the system x-2y+z=0 and 2x-y+3z=0.

Null space and image space of a matrix

- A is an mxn matrix, if X is nx1 matrix then AX is mx1 matrix
- nullA = {X in Rⁿ: AX=0}

nullA = $\{X \in R^n: AX=0\}$ is a subspace of $R^n:$

- **1** A.0=0⇒0∈nullA
- **2** $X,Y \in \text{nullA} \Rightarrow AX=0$, AY=0
- \Rightarrow A(X+Y)=AX+AY=0 \Rightarrow (X+Y) \in nullA
- **3** $X \in \text{nullA}$, $a \in R \Rightarrow AX = 0 \Rightarrow$
- $A(aX)=a(AX)=0 \Rightarrow aX \in nullA$

 $imA = {AX:X \in R^n}is a subspace of R^m$:

- **1** 0=A.0⇒0∈nullA
- **2** $AX,AY \in imA \Rightarrow AX+AY=A(X+Y)=AZ$
- \Rightarrow AX+AY \in imA
- **3** AX \in imA, a \in R \Rightarrow a(AX)=A(aX)=AZ
- \Rightarrow a(AX) \in imA

Null space nullA={X:AX=0}

• For example, $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 1 \end{bmatrix}_{2\times 3}$

$$nullA = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : A \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\} = \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

$$= \left\{ \begin{bmatrix} x \\ y \\ z \end{bmatrix} : \left\{ \begin{aligned} x - y &= 0 \\ 2x + 3y + z &= 0 \end{aligned} \right\} = \left\{ \begin{bmatrix} t \\ t \\ -5t \end{bmatrix} : t \in \mathbb{R} \right\}$$

Eigenspaces (không gian riêng)

- Suppose A is an nxn matrix and λ is an eigenvalue of A
- $E_{\lambda}(A) = \{X: AX = \lambda X\}$ is an subspace of \mathbb{R}^n
- For example,

$$A = \begin{bmatrix} -3 & -1 \\ 0 & 2 \end{bmatrix} \Rightarrow c_A(x) = \det(xI - A) = \begin{vmatrix} x+3 & 1 \\ 0 & x-2 \end{vmatrix} = (x+3)(x-2)$$

$$c_A(x) = 0 \Leftrightarrow x = -3 \lor x = 2$$

$$x = -3 : \begin{bmatrix} 0 & 1 & 0 \\ 0 & -5 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow X = \begin{bmatrix} t \\ 0 \end{bmatrix} \text{ (or } X = (t,0))$$

$$x = 2 : \begin{bmatrix} 5 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow X = \begin{bmatrix} t \\ -5t \end{bmatrix}$$

$$E_{-3} = \{X : AX = -3X\} = \{(t,0) : t \in \mathbb{R}\}$$

$$E_2 = \{X : AX = 2X\} = \{(t, -5t) : t \in \mathbb{R}\}$$

Các không gian riêng ứng với GTR

Spanning sets

- $Y=k_1X_1+k_2X_2+...+k_nX_n$ is called a *linear combination* of the vectors $X_1,X_2,...,X_n$
- The <u>set</u> of all *linear combinations* of the the vectors $X_1, X_2, ..., X_n$ is called the *span* of these vectors, denoted by $span\{X_1, X_2, ..., X_n\}$.
- This means, span $\{X_1, X_2, ..., X_n\} = \{k_1X_1 + k_2X_2 + ... + k_nX_n : k_i \in \mathbb{R} \text{ is arbitrary}\}$
- span $\{X_1, X_2, ..., X_n\}$ is a subspace of \mathbb{R}^n .
- For example, span $\{(1,0,1),(0,1,1)\}=\{a(1,0,1)+b(0,1,1):a,b\in R\}$.
- And we have $(1,2,3) \in \text{span}\{(1,0,1),(0,1,1)\}$ because (2,-3,-1)=2(1,0,1)+-3(0,1,1).
- $(2,3,2) \notin \text{span}\{(1,0,1),(0,1,1)\}$ because $(2,3,2) \neq a(1,0,1) + b(0,1,1)$ for all a,b.

Examples

1); $v_2 = (1,1,-1)$; $v_3 = (1,0,2)$; then the coefficient of v_3 is:

A. 2

- B. 3 C. -2 ✓ D. 1

- E. 0
- x is expressed as a linear combination of v_1 , v_2 , v_3 means $x=av_1+bv_2+cv_3$ for some a,b,c and c is called the *coefficient* of v_3 .
- the system is

$$a + b + c = 1$$

a+b = 3

a - b + 2c = -5

1	1	1	1
1	1	0	3

1	1	1	1
0	0	-1	2
0	-2	1	-6

1	1	1	1
0	-2	1	-6
0	0	-1	2

 \Rightarrow c =-2

 \Rightarrow a = 1

 \Rightarrow b = 2

- Which of the vectors below is a *linear combination* of u=(1,1,2); v=(2,3,5)?
- A. (0,1,1) \checkmark B. (1,1,0) C. (1,1,1)

- D. (1,0,1) \checkmark E. (0,0,1)
- Có thể giải bằng biến đổi sơ cấp trên ma trận chứa các vector cột như sau:

u	V	Α	В	С	D	Е
0	2	0	1	1	1	0
1	3	1	1	1	0	0
2	5	1	0	1	1	1

u	V	Α	В	С	D	Е
0	-2	0	1	1	1	0
0	0	1	0	0	-1	0
0	1	1	-2	-1	-1	1

u	V	Α	В	С	D	E
0	-2	0	1	1	1	0
0	0	1	0	0	-1	0
0	0	0	-2	-1	0	1

Theorem

- U=span{X₁,X₂,...,X_n} is in Rⁿ and U is a subspace of Rⁿ
- If W is a subspace of $\mathbf{R}^{\mathbf{n}}$ such that $\mathbf{X}_{\mathbf{i}}$ are in W then $U \subset W$

Linear Independence

A set of vectors in R^m { $X_1, X_2, ..., X_n$ } is called <u>linearly independent</u>

Ex1. The set $\{[1 -1]^T, [2 3]^T\}\subset \mathbb{R}^2$ is called <u>linearly independent</u> since $t_1[1 -]^T + t_2[2 3]^T = [0 0]^T$ follows $t_1 = t_2 = 0$.

Ex2. A set of vectors that containing <u>zero vector</u> never linearly independent. Ex3. The set $\{(0,1,1), (1,-1,0), (1,0,1)\}$ is not linearly independent because the system $t_1(0,1,1)+t_2(1,-1,0)+t_3(1,0,1)=(0,0,0)$ has one solution $t_1=1$, $t_2=1$, $t_3=1$

Examples

• Show that $\{(1,1,0);(0,1,1);(1,0,1)\}$ is linearly independent in \mathbb{R}^3

$$t_{1}(1,1,0) + t_{2}(0,1,1) + t_{3}(1,0,1) = (0,0,0)$$

$$\Rightarrow \dots \Rightarrow t_{1} = t_{2} = t_{3} = 0$$

$$t_{1}(1,1,0) + t_{2}(0,1,1) + t_{3}(1,0,1) = (0,0,0)$$

$$\Leftrightarrow \begin{cases} 1t_{1} + 0t_{2} + 1t_{3} = 0 \\ 1t_{1} + 1t_{2} + 0t_{3} = 0 \Leftrightarrow 0 \end{cases} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 2 & 0 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$\Rightarrow t_{1} = t_{2} = t_{3} = 0 \Rightarrow independent$$

<u>More ex</u>. {(1,0,-2), (2,1,0), (0,1,5), (-1,1,0)} is <u>not linearly</u> <u>independent</u> (number of leading 1s = number of vectors)

1	2	0	-1
0	1	1	1
-2	0	5	0

1	2	0	-1
0	1	1	1
0	4	5	2

1	2	0	-1
0	1	1	1
0	0	1	-2

Examples – do yourself

- Determine whether each the following sets is linearly independent or linearly dependent.
- **(**-1,2,0)}
- **(**(0,0,0); (1,2,3); (-3,0,1)}
- **(**(1,1,-1); (-1,1,1); (1,-1,1)}
- **(**(-2,3,4,1); (4,-1,5,0); (-2,1,0,3)
- **(**(1,1,0); (-2,3,1); (5,0,1); (-1,0,2)}
- {X-Y+Z,3X+Z,X+Y-Z}, where {X,Y,Z} is an independent set of vectors. (see below)

1	3	1
-1	0	1
1	1	-1

1	3	1
0	3	2
0	-2	-2

0	3	1
0	1	1
0	3	2

0	3	1
0	1	1
0	0	-1

0	3	1
0	1	1
0	0	0

⇒independent

Fundamental Theorem

- <u>Theorem.</u> Let U be a subspace of Rⁿ is spanned by m vectors, if U contains k linearly independent vectors, then k≤m
- This implies if k>m, then the set of k vectors is always linear dependece.
- For example, Let U be the space spanned by {(1,0,1), (0,-1,1)} and S={(1,0,1), (0,-1,1), (2,-1,3)} ⊂U. Then, S is not linearly independent (m=2, k=3).

Basis and dimension

- <u>Definition of basis</u>: Suppose U is a subspace of R^n , a <u>set</u> $\{X_1, X_2, ..., X_k\}$ is called a <u>basis</u> of U if $U=span\{X_1, X_2, ..., X_k\}$ and $\{X_1, X_2, ..., X_k\}$ is linear independence
- <u>Ex1</u>. Let $U=\{(a,-a)|a\in R\}$. Then U is a *subspace* of R^2 . Consider the set $B=\{(1,-1)\}$. B is *linearly independent* and $U=\{(a,-a):a\in R\}=\{a(1,-1):a\in R\}$ = span $\{(1,-1)\}$. So, B is a *basis* of U.
- Note that $B'=\{(-1,1)\}$ is also a *basis* of U.
- But {(1,1)} is not a basis of U because U can not be spanned by {(1,1)}
- <u>Ex2</u>. Given that V=span{(1,1,1), (1,-1,0), (0,2,1)}. Then, B={(1,1,1), (1,-1,0), (0,2,1)} is <u>not linearly independent</u>, because (0,2,1)=(1,1,1) (1,-1,0) \Rightarrow B is not a *basis* of U.
- Consider B'= $\{(1,1,1), (1,-1,0)\}$. B' is *linearly independent* and all vectors in V are spanned by B' because a(1,1,1)+b(1,-1,0)+c(0,2,1)=a(1,1,1)+b(1,-1,0)+c(1,1,1)-c(1,-1,0)=(a+c)(1,1,1)+(b-c)(1,-1,0). So, B' is a *basis* of V.

Some important theorems

- <u>Theorem 1</u>. The following are <u>equivalence</u> for an nxn matrix A.
 - **1** A is invertible.
 - 2 the columns of A are linearly independent.
 - 3 the columns of A span Rⁿ.
 - 4 the rows of A are linearly independent.
 - **5** the rows of A span the set of all 1xn rows.
- <u>Theorem 2</u>. (Invariance theorem). If $\{a_1, a_2, ..., a_m\}$ and $\{b_1, b_2, ..., b_k\}$ are bases of a subspace U of \mathbb{R}^{n_r} then m=k. In this case, m=k is called <u>dimension</u> of U and we write <u>dimU=m</u>.
- Ex1. Let U={(a,-a)|a∈R} be a subspace of R². Then, B={(1,-1)} is a *basis* of U and B'={(-1,1)} is also a *basis* of U. In this case, dimU=1.
- <u>Ex2</u>. {(1,0), (0,1)} is a basis of R² and {(1,-2), (2,0)} is also a basis of R². But {(1,0), (-1,1), (1,1)} is not a basis of R². We have dimR²=2.
- The basis $\{(1,0), (0,1)\}$ is called **standard basis** of \mathbb{R}^2 .
- Ex3. Which of the following is a basis of R³?
 - **1** {(1,0,1), (0,0,1)}
 - **2** {(2,1,0), (-1,0,1), (1,0,1), (0,-1,1)}
 - **3** {(0,1), (1,0)}
 - None of the others

Some important theorems

- *Theorem 3*. Let U≠0 be a subspace of Rⁿ. Then:
 - \bullet U has a basis and dimU \leq n.
 - 2 Any independent set of U can be enlarged (by adding vectors) to a basis of U.
 - 1 If B spans U, then B can be cut down (by deleting vectors) to a basis of U.

<u>Ex1</u>. Let U=span{(1,1,1), (1,0,1), (1,-2,1)} be a subspace of R³. This means, B= {(1,1,1), (1,0,1), (1,2,1)} spans U.

- \bullet U has a basis and dimU \leq 3,
- \bullet B can be cut down to a basis of U: $\{(1,0,1), (1,1,1)\}$ is a basis of U, dimU=2
- $2 \Rightarrow$ construct a basis for U: $\varnothing \rightarrow \{(1,0,1)\} \rightarrow \{(1,0,1), (1,1,1)\}$.

1/	1	1
1	0	-2
1	1	1

1	1	1
0	-1	-3
0	0	0

1	1	1
0	1	3
0	0	0

- <u>Theorem 4</u>. Let U be a subspace of Rⁿ and B= $\{X_1, X_2, ..., X_m\} \subset U$, where dimU=m. Then B is independent if and only if B spans U.
- Theorem 5. Let $U\subseteq V$ be subspaces of \mathbb{R}^n . Then:
 - \bullet dimU \leq dimV.
 - 2 If dimU=dimV, then U=V.

Examples

Determine whether U is a subspace of R ³ .
$U = \{[0 \text{ a b}]^T : a,b \in R\} \checkmark$
$U=\{[0\ 1\ s]^T:s\in R\}$
$U=\{[a b a+1]^T:a,b \in R\}$
$U=\{[a\ b\ a^2]^T: a,\ b\in R\}$

1	0	2
0	1	m
1	1	1

0	0	2
0	1	m
0	1	-1

0	0 2				
0	0 m				
0	0	-1-m			

Find all m such that the set {(2,m,1),(1,0,1),(0,1,1)} is linearly
independent.
m≠-1 ✓
m=-1 only
m=0 only
m≠0
None of the others

A basis for the subspace $U=\{[a\ b\ a-b]^T: a,b \in R\}$ is...

- a. $\{[1\ 0\ 1]^{\mathsf{T}}, [0\ 1\ -1]^{\mathsf{T}}\}$
- b. $\{[1\ 1\ 0]^T\}$
- c. { $[1\ 0\ 1]^T$, $[-1\ 0\ -1]^T$, $[0\ 1\ -1]^T$ }
- d. None of the others.

Exercises

The dimension of the subspace U=span{(-2, 0, 3),								3),	
(1, 2, -1),(-2, 8, 5),(-1, 2, 2)} is									
a. 2 ✓ 1 -2 -1 -2 1 -2 -1 -2									
b. 4		-2	-1	-2		1	-2	-1	-2
c. 3	2	8	2	0		0	12	4	4
d. 1	-1	5	2	3		0	3	1	1

- không thể là b vì dimU≤dimR³=3
- kiểm tra bằng biến đổi sơ cấp

1	-2	-1	-2	0
only 2 0	1/3	1/3	1	0
	0	0	0	0

Let u and v be vectors in R^3 and $w \in \text{span}\{u,v\}$. Then ... a. {u,v,w} is linearly dependent. b. {u,v,w} is linearly independent. c. {u,v,w} is a basis of R³ d. the subspace is spanned by {u,v,w} has the dimension 3.

Let {u,v,w,z} be independent. Then is also independent.												
a. {u,v+w,z} ✓	1	1	0	0		1	1	0	0	1	1	
b. {u,v,v-z-u,z} c. {u+v,u-w,z, v+z+w}	1	0	0	1		0	-1	0	1	0	0	
d. {u,v,w,u-v+w}	0	-1	0	1		0	-1	0	1	0	0	
	0	0	1	1		0	0	1	1	0	0	

0	1	0	0
0	1	0	-1
0	0	0	1
0	0	0	0

Exercises

- Let $U=span\{(1,-1,1), (0,2,1)\}$. Find all value(s) of m for which $(3,-1,m)\in U$.
- $(3,-1,m) \in U \Leftrightarrow (3,-1,m) = a(1,-1,1) + b(0,2,1)$ for some a,b. Solve for a,b \Rightarrow m=4
- Find all values of m so that {(2,-1,3); (0,1,2); (-4,0; m)} spans R³.
- <u>Theorem 4</u>. Let U be a subspace of Rⁿ and B= $\{X_1, X_2, ..., X_m\}\subset U$, where dimU=m. Then B is independent if and only if B spans U.
- So, $\{(2,-1,3); (0,1,2); (3,1; m)\}$ spans $R^3 \Leftrightarrow$ it is linearly independent \Leftrightarrow m≠10

2	0	-4
-1	1	0
3	2	m

0	-1	0
2	0	-4
3	2	m

0	-1	0
0	2	-4
0	5	m

0	-1	0
0	1	2
0	5	m

0	-1	0
0	1	2
0	0	m-10

Find a basis for the solution space to the homogeneous system

$$x - y + 2z=0$$

 $2x + y + z=0$

1	-1	2	0
0	3	-3	0

0	-1	2	0
0	1	-1	0

Solution: z=t, y=t, x=-t Solution space: $U=\{(-t,t,t) | t \in R\}$ = $\{t(-1,1,1) | t \in R\}$ =span $\{(-1,1,1)\}$ A basis for U: $\{(-1,1,1)\}$

dimU=1

Definitions

Dot product:

Suppose $X = [x_1 \ x_2 ... \ x_n]^T$, $Y = [y_1 \ y_2 ... \ y_n]^T$ are vectors in R^n . The **dot product** of two vectors X and Y, denoted as $X \bullet Y$, is a number defined by $X \bullet Y = x_1 y_1 + x_2 y_2 + ... + x_n y_n$

Length:

The length of the vector $X=[x_1 \ x_2 \ ... \ x_m]^T$ (or $(x_1,x_2,...,x_n)$) is

$$||X|| = \sqrt{X \cdot X} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

- Unit vector: a vector with length 1
- Distance: d(X,Y)= ||X-Y||

Theorem

- Let X,Y, and Z denote vectros in Rⁿ. Then:
 - **1** X•Y=Y•X
 - $2 \times (Y+Z)=XY+XZ$

 - **4** $X \cdot X = ||X||^2$
 - **6** $||X|| \ge 0$, $||X|| = 0 \Leftrightarrow X = 0$
 - **6** ||aX||=|a|.||X||
- <u>Ex.</u> Suppose that $R^n = \text{span}\{F_1, F_2, ..., F_n\}$. If $X \bullet F_i = 0$ for each I, where X is a vector in R^n . Show that X = 0 (zero vector).

 R^n =span $\{F_1, F_2, ..., F_n\}$ and $X \in R^n \Rightarrow X = k_1F_1 + k_2F_2 + ... + k_nF_n$ for some $k_i \in R^n$.

We have $||X||^2 = X \cdot X = X \cdot (k_1 F_1 + k_2 F_2 + ... + k_n F_n) = k_1 X \cdot F_1 + k_2 X \cdot F_2 + ... + k_n X \cdot F_n = 0 \Rightarrow ||X|| = 0 \Leftrightarrow X = 0$

Theorem

- If X, Y and Z are vectors in Rⁿ, we have:
 - **1** $d(X,Y) \ge 0$
 - $2d(X,Y) = 0 \Leftrightarrow X=Y$
 - d(X,Y) = d(Y,X)
 - \bullet triangle inequality: $d(X,Y)+d(Y,Z)\geq d(X,Z)$
- *Corolary.* $||X+Y|| \le ||X|| + ||Y||$
- Cauchy Inequality: X•Y≤||X||.||Y||

Definitions

Orthogonal set

A set $\{x_1, x_2, ..., x_m\}$ is called **orthogonal set** if x_i is not zero vector and $x_i \cdot x_j = 0$ for all $i \neq j$.

For example, $\{(1,-1);(1,1)\}$ is an orthogonal set in \mathbb{R}^2 $\{(1,1,1);(-1,0,1);(0,1,0)\}$ is not a orthogonal set but $\{(-1,0,1);(0,1,0)\}$ is a orthogonal set.

Orthonormal set

A orthogonal set $\{x_i\}$ is called orthonormal set (hệ trực chuẩn) is x_i is unit vector for all i. For example, $\{1,0,0\}$; $\{0,1,0\}$ is orthonormal.

 $\{(-3,0,4);(4,5,3)\}$ is a orthogonal set, not a orthonormal set.

However, the set
$$\left\{\frac{1}{5}(-3,0,4); \frac{1}{5\sqrt{2}}(4,5,3)\right\}$$
 is orthonormal

Examples

- The standard basis of Rⁿ {E₁,E₂,...,E_n} is orthonormal
- If $\{F_1, F_2, ..., F_k\}$ is orthogonal then $\{a_1F_1, a_2F_2, ..., a_kF_k\}$ is also orthogonal for any nonzero scalar a_i
- Every orthogonal set is a linearly independent set
- If u,v are <u>unit orthogonal</u> vectors then $(3u-5v) \cdot (4u+2v) = 12u \cdot u + 6u \cdot v 20v \cdot u 10v \cdot v = 12||u||^2 10||v||^2 = 12-10=2$

Pythagoras's Theorem

• If $\{F_1, F_2, ..., F_k\}$ is orthogonal then

$$||F_1 + F_2 + ... + F_k||^2 = ||F_1||^2 + ||F_2||^2 + ... + ||F_k||^2$$

Expansion Theorem

 Let {F₁,F₂,...,F_k} be a orthogonal basis of a subspace U and X is in U. Then

$$X = \frac{X \bullet F_1}{\|F_1\|^2} F_1 + \frac{X \bullet F_2}{\|F_2\|^2} F_2 + \dots + \frac{X \bullet F_n}{\|F_n\|^2} F_k$$

5.4. Rank of a matrix

Rank of a matrix

- If A is carried to row-echelon form then rankA=number of leading 1's
- If a is an mxn matrix then rankA≤min{n,m}
- rankA=rank(A^T)

rowA and colA subspaces

- rowA=span{rows of matrix A}
- colA=span{columns of A}
- dim(rowA)=dim(colA)=rankA
- For example, find bases of colA and rowA if

$$A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 3 & 2 & 0 & 5 \\ -2 & -3 & 3 & -4 \\ 1 & 1 & -1 & 3 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 3 & 2 & 0 & 5 \\ -2 & -3 & 3 & -4 \\ 1 & 1 & -1 & 3 \\ 0 & 1 & -1 & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & -1 & 3 & -1 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 1 & -1 & 2 \\ 0 & -1 & 3 & -1 \\ 0 & 0 & -2 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis of rowA is $\{r_1,r_2,r_3,r_4\}$ and dim(rowA)=4

A basis of colA is $\{c_1, c_2, c_3, c_4\}$ and dim(colA)=4

Theorem

- An nxn matrix A is invertible if and only if rankA=n
- If an mxn matrix B has rank n then the n columns of B is linearly independent
- If A is mxn matirx and m>n then the set of m rows of A is not independent

For example, If A is an 3x5 matrix with rank 3 then 5 columns are dependent and 3 rows are independent.

Theorem

If an mxn matrix A has rank r then:

- The equation AX=0 has n-r basic solutions $X_1, X_2, ..., X_{n-r}$
- $\{X_1, X_2, ..., X_{n-r}\}$ is a basis of nullA= $\{X:AX=0\}$
- ❸ dimnullA=n-r
- **4** imA=colA and
- 6 dimimA=dimcolA=rankA=r

Thanks