作业十八: Compressive Sensing

数据集 & 任务

本题使用的数据集可以从 [此链接] 下载。该数据集是一张包含 40×30 个像素点的图片 (tree.png)。为了方便,图片已经转化成了一个二维数组(tree.txt),其中 0 表示黑点,1 表示白点。

任务

- 1. 令 n 表示像素点总数, k 表示所有像素中 1 的数量。请输出 k/n 的值。注意到 Compressive Sensing 只对稀疏向量有效,因此我们期望看到一个较小的 k/n。
- 2. 请生成一个 1200×1200 的矩阵 A,其中每个元素独立地从标准高斯分布 $\mathcal{N}(0,1)$ 中采样。令 A_r 表示矩阵 A 的前 r 行组成的矩阵。将 tree.txt 中的 0-1 矩阵转化成一个长度为 1200 的 0-1 向量,记为 x。我们用 $b_r = A_r x$ 表示对图片的压缩。

根据课堂内容,我们可以利用线性规划从 b_r 计算出 $x_r \approx x$ 。请你从 b_{600} 中还原出 x_{600} ,并计算 $||x_{600} - x||_1$.

- 3. 令 r^* 表示最小的 r,使得 $||x_r x||_1 \le 0.001$ 。请计算 r^* 。(提示:建议使用二分查找。)
- 4. 请画出当 r 取值从 $r^* 10$ 增长到 $r^* + 2$ 时, $||x_r x||_1$ 的变化趋势图。你应该可以看到一个断崖式下降。画图可以参考使用之前作业给出的使用 matplotlib 的方法。

本次作业不限编程语言,并且你可以调用任何类库或者开源代码动实现线性规划算法。当 然也可以自己实现一个。

提交作业

你需要提交代码以及 PDF 格式的实验报告,请将所有提交文件以压缩包的形式提交至教学网,压缩包命名为"HW18+学号+姓名"。

分数组成

实验报告没有格式要求,但是需要清楚地回答**任务**中的四个问题。提交的答案需要与提交的代码一致(即运行代码可以得到你提交的答案;对于随机算法,你可以考虑在程序中固定一个随机种子),否则给 0 分。具体要求以及得分占比如下:

- 1. 对于第 1 题,实验报告需要包含一个实数表示 k/m,分数占比为 5%.
- 2. 对于第 2 题,实验报告需要包含代码以及一个实数表示 $\|x_{600} x\|_1$,分数占比为 45%.
- 3. 对于第 3 题,实验报告需要包含代码以及一个整数表示 r^* ,分数占比为 30%.
- 4. 对于第 4 题,实验报告需要包含一张趋势图,分数占比为 20%.