All-Pairs Shortest Paths

Madhavan Mukund

https://www.cmi.ac.in/~madhavan

Mathematics for Data Science 1 Week 12

Two types of shortest path problems of interest

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities

Two types of shortest path problems of interest

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees
- Dijkstra's algorithm (non-negative weights), Bellman-Ford algorithm (allows negative weights)

- Find shortest paths between every pair of vertices *i* and *j*
- Optimal airline, railway, road routes between cities

Two types of shortest path problems of interest

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees
- Dijkstra's algorithm (non-negative weights), Bellman-Ford algorithm (allows negative weights)

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities
- Run Dijkstra or Bellman-Ford from each vertex

Two types of shortest path problems of interest

Single source shortest paths

- Find shortest paths from a fixed vertex to every other vertex
- Transport finished product from factory (single source) to all retail outlets
- Courier company delivers items from distribution centre (single source) to addressees
- Dijkstra's algorithm (non-negative weights), Bellman-Ford algorithm (allows negative weights)

- Find shortest paths between every pair of vertices i and j
- Optimal airline, railway, road routes between cities
- Run Dijkstra or Bellman-Ford from each vertex
- Is there is another way?

■ Recall transitive closure algorithm

- Recall transitive closure algorithm
- Adjacency matrix A represents paths of length 1

- Recall transitive closure algorithm
- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1

- Recall transitive closure algorithm
- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1

- Recall transitive closure algorithm
- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1
- $A^+ = A + A^2 + \cdots + A^{n-1}$

3/9

- Recall transitive closure algorithm
- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1
- $A^+ = A + A^2 + \cdots + A^{n-1}$

An alternative approach

- Recall transitive closure algorithm
- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1
- $A^+ = A + A^2 + \cdots + A^{n-1}$

An alternative approach

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
 - Constraint applies only to intermediate vertices i to j
 - $B^0[i,j] = 1$ if there is a direct edge
 - $B^0 = A$

- Recall transitive closure algorithm
- Adjacency matrix A represents paths of length 1
- Matrix multiplication, $A^2 = A \times A$
 - $A^2[i,j] = 1$ if there is a path of length 2 from i to j
 - For some k, A[i, k] = A[k, j] = 1
- In general, $A^{\ell+1} = A^{\ell} \times A$,
 - $A^{\ell+1}[i,j] = 1$ if there is a path of length $\ell+1$ from i to j
 - For some k, $A^{\ell}[i, k] = 1$, A[k, j] = 1
- $A^+ = A + A^2 + \cdots + A^{n-1}$

An alternative approach

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
 - Constraint applies only to intermediate vertices i to j
 - $B^0[i,j] = 1$ if there is a direct edge
 - $B^0 = A$
- $B^{k+1}[i,j] = 1$ if
 - $B^k[i,j] = 1$ can already reach j from i via $\{0,1,\ldots,k-1\}$
 - $B^k[i, k] = 1$ and $B^k[k, j] = 1$ use $\{0, 1, \dots, k-1\}$ to go from i to k and then from k to j

Mathematics for Data Science 1. Week 12

 The algorithm on the right also computes transitive closure — Warshall's algorithm

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $\bullet B^0[i,j] = A[i,j]$
 - Direct edges, no intermediate vertices
- $B^{k+1}[i,j] = 1$ if
 - $B^k[i,j] = 1$, or
 - $lacksquare B^k[i,k] = 1 \text{ and } B^k[k,j] = 1$

- The algorithm on the right also computes transitive closure — Warshall's algorithm
- $B^n[i,j] = 1$ if there is some path from i to j with intermediate vertices in $\{0,1,\ldots,n-1\}$

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $\bullet B^0[i,j] = A[i,j]$
 - Direct edges, no intermediate vertices
- $B^{k+1}[i,j] = 1$ if
 - $B^k[i,j] = 1$, or
 - $lacksquare B^k[i,k] = 1 \text{ and } B^k[k,j] = 1$

- The algorithm on the right also computes transitive closure — Warshall's algorithm
- $B^n[i,j] = 1$ if there is some path from i to j with intermediate vertices in $\{0,1,\ldots,n-1\}$
- $B^n = A^+$

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $\bullet B^0[i,j] = A[i,j]$
 - Direct edges, no intermediate vertices
- $B^{k+1}[i,j] = 1$ if
 - $B^k[i,j] = 1$, or
 - $lacksquare B^k[i,k] = 1 \text{ and } B^k[k,j] = 1$

- The algorithm on the right also computes transitive closure — Warshall's algorithm
- $B^n[i,j] = 1$ if there is some path from i to j with intermediate vertices in $\{0,1,\ldots,n-1\}$
- $B^n = A^+$
- We adapt Warshall's algorithm to compute all-pairs shortest paths

- $B^k[i,j] = 1$ if there is path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $B^0[i,j] = A[i,j]$
 - Direct edges, no intermediate vertices
- $B^{k+1}[i,j] = 1$ if
 - $B^k[i,j] = 1$, or
 - $lacksquare B^k[i,k] = 1 \text{ and } B^k[k,j] = 1$

- Let $SP^k[i,j]$ be the length of the shortest path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $SP^0[i,j] = W[i,j]$
 - No intermediate vertices, shortest path is weight of direct edge
 - Assume $W[i,j] = \infty$ if $(i,j) \notin E$

- Let $SP^k[i,j]$ be the length of the shortest path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $SP^0[i,j] = W[i,j]$
 - No intermediate vertices, shortest path is weight of direct edge
 - Assume $W[i,j] = \infty$ if $(i,j) \notin E$
- $SP^{k+1}[i,j]$ is the minimum of
 - $SP^k[i,j]$ Shortest path using only $\{0,1,\ldots,k-1\}$
 - $SP^k[i, k] + SP^k[k, j]$ Combine shortest path from i to k and k to j

- Let $SP^k[i,j]$ be the length of the shortest path from i to j via vertices $\{0,1,\ldots,k-1\}$
- $SP^0[i,j] = W[i,j]$
 - No intermediate vertices, shortest path is weight of direct edge
 - Assume $W[i,j] = \infty$ if $(i,j) \notin E$
- $SP^{k+1}[i,j]$ is the minimum of
 - $SP^k[i,j]$ Shortest path using only $\{0,1,\ldots,k-1\}$
 - $SP^k[i, k] + SP^k[k, j]$ Combine shortest path from i to k and k to j
- $SP^n[i,j] = 1$ is the length of the shortest path overall from i to j
 - Intermediate vertices lie in $\{0, 1, ..., n-1\}$

SP^0	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^0	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	8	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	8	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^1	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^1	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	8	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^1	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	∞	∞	8
1	∞	8	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	∞	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	8	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-1	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^2	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^2	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	8	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^2	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	8	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	8	∞	∞	∞	-1	∞	∞
5	∞	∞	-2	∞	∞	∞	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

SP^3	0	1	2	3	4	5	6	7
0	∞	10	∞	∞	∞	12	∞	8
1	∞	∞	∞	∞	∞	2	∞	∞
2	∞	1	∞	1	∞	3	∞	∞
3	∞	∞	∞	∞	3	∞	∞	∞
4	∞	∞	∞	∞	∞	-1	∞	∞
5	∞	-1	-2	-1	∞	1	∞	∞
6	∞	-4	∞	∞	∞	-2	∞	∞
7	∞	∞	∞	∞	∞	∞	1	∞

Summary

- Warshall's algorithm is an alternative way to compute transitive closure
 - $B^k[i,j] = 1$ if we can reach j from i using vertices in $\{0,1,\ldots,k-1\}$
- Adapt Warshall's algorithm to compute all pairs shortest paths
 - $SP^k[i,j]$ is the length of the shorest path from i to j using vertices in $\{0,1,\ldots,k-1\}$
 - $SP^n[i,j]$ is the length of the overall shorest path
 - Floyd-Warshall algorithm
- Works with negative edge weights, assuming no negative cycles