Cloning Machine Intelligence

Mridul Gupta

Indraprastha Institute of Information Technology mridul15061@iiitd.ac.in

January 13, 2018

Motivation

Motivation

1. Exploring Intelligence Hacking

Motivation

- 1. Exploring Intelligence Hacking
- 2. A Data-less Approach for Machine Learning Models

General Machine Learning Model

Data-less (Cloned) Machine Learning Model

Introduction

Problem Statement

Given a **Black Box** Machine Learning Model, try an design a **White Box** model that mimics it with a similar level of accuracy.

Terminology

- ▶ Black Box A trained Machine Learning Model provided to us with no access to its data or parameters of the learned function.
- ► White Box An artificially cloned Model created which mimics the behaviour of the Black Box

3

4

5

6

```
Algorithm 1: Algorithm for cloning model using random data
  Data: blackbox, whitebox, number of features, number of samples
  Result: a cloned model
1 data = array of zeros of size [number of features, number of
   samples];
2 for each feature in the data do
     feature = normal distribution (mean = 0,
      standard deviation = 1.0);
     label = blackbox.predict(data);
     whitebox.fit(data, label);
     // Checking the performance of the whitebox on original data
     print whitebox.score(original data, original labels);
```


Figure: Original and Randomly Generated Iris Dataset Without Constraints

Figure: Original and Randomly Generated Make Moons Dataset Without Constraints

Results of Approach 1

Dataset Description	Number of Features	Black Box	Black Box Accuracy	White Box	White Box Accuracy
Iris	2	Logistic Regression	0.99	Logistic Regression	0.97
BUPA	7	Logistic Regression	0.59	Logistic Regression	0.57
Heart	9	Logistic Regression	0.73	Logistic Regression	0.54
Breast Cancer	30	Logistic Regression	0.95	Logistic Regression	0.53
Make Moons*	2	Neural Network	0.99	Random Forest	0.98

Table: Cloned model accuracy on original dataset when trained with random dataset generated under constraints

*The Make Moons Dataset is highly Nonlinear, thus we decided to train it on Neural Networks.

Constraining Data!

Algorithm 2: Algorithm for cloning model using random data under constraints

Data: blackbox, whitebox, number of features, number of samples, range of features

Result: a cloned model

- 1 data = array of zeros of size [number of features, number of samples];
- 2 for each feature in the data do
- feature = uniform distribution under constraints(range of 3 feature);
- label = blackbox.predict(data); 4
- whitebox.fit(data, label);
- // Checking the performance of the whitebox on original data 6
 - print whitebox.score(original data, original labels);

Figure: Original and Randomly Generated Iris Dataset With Constraints

Figure: Original and Randomly Generated Make Moons Dataset With Constraints

Results of Approach 2

We observe an improvement in the White Box Accuracy.

Dataset	Number	Black Box	Black Box	White Box	White Box
Description	of Features		Accuracy		Accuracy
Iris	2	Logistic Regression	0.99	Logistic Regression	0.97
BUPA	7	Logistic Regression	0.59	Logistic Regression	0.57
Heart	9	Logistic Regression	0.73	Logistic Regression	0.72
Breast Cancer	30	Logistic Regression	0.95	Logistic Regression	0.94
Make Moons*	2	Neural Network	0.99	Random Forest	0.98

Table: Cloned model accuracy on original dataset when trained with random dataset generated under constraints

*The Make Moons Dataset is highly Nonlinear, thus we decided to train it on Neural Networks

Observation

Drawbacks of This Approach

Although there has been an improvement in the results, we have made some big assumptions!

- ► Kills the whole idea of a "black box"!
- Assumption of Feature Independence.
- Very time consuming to generate constraints for large number of features

E.g. Gene expression data can have \geq 30,000 features!

Current Approach

Current Approach

Using Multivariate Gaussian Mixture Models

Conclusion

- ► Ability to learn without data, and without model details
- Important Observation in terms of security.
- ▶ We attempt a new basis to classify models, based on whether they can be cloned or not.

Future Work

- Work on the current approach using Multivariate GMM
- ► Compare results for a lot more data and models.

Questions?

Acknowledgements

This project couldn't be done without the immense help of

- ▶ Najeeb Khan, B. Tech Student at Jamia Milia Islamia.
- ▶ Dr. Debarka Sengupta, Assistant Professor at IIIT Delhi.

References

Here are links to the datasets used:

- ▶ Iris, archive.ics.uci.edu/ml/datasets/iris
- ► Make Moons, scikit-learn.org/stable/modules/ generated/sklearn.datasets.make_moons.html
- ► BUPA, archive.ics.uci.edu/ml/datasets/Liver+Disorders
- ▶ Heart, archive.ics.uci.edu/ml/datasets/heart+Disease
- Breast Cancer, archive.ics.uci.edu/ml/datasets/breast+cancer
- ► Adult Census, archive.ics.uci.edu/ml/datasets/breast+cancer
- ► Abalone, archive.ics.uci.edu/ml/datasets/breast+cancer
- Mushrooms.

