Course Facilitator:		L	T	P	C	
Lavanya Kovvuru	Course/subject Name: Signals	3	1		4	
	and Systems					
	Total Contact Hours: 70					
	Prerequisite: Ordinary differential equations and					
	Integrals					

Course Objective:

- ➤ Understand the representation of continuous time and discrete time signals and be able to do the transformations on them
- ➤ Use the convolution tool to find the response of an Linear Time Invariant Systems
- Express any periodic waveform in terms of linear combination of harmonically related signals
- ➤ Provide the knowledge about the principles behind the Fourier transform in both CT and DT
- ➤ Understand how Laplace Transforms converges for a broader class of signals than does the Fourier Transform
- ➤ Analyze the discrete time systems using Z Transforms
- ➤ Give the knowledge about the most important issues in sampling and reconstruction

Syllabus:

Unit-I: Basics of Signals and Systems

Introduction, Representation of signals, Continuous time and discrete time signals, Exponential and sinusoidal signals, Transformations of the independent variable, Elementary signals in CT and DT, Expressing signals in terms of elementary signals, Continuous and discrete time systems, Basic system properties

Unit-II: Linear Time Invariant Systems

Introduction, Discrete Time LTI Systems: The convolution sum, Continuous Time LTI Systems: The convolution Integral, Properties of LTI systems

Unit-III: Signals in Frequency Domain

Introduction, Response of LTI systems to complex exponentials, Fourier series representation of periodic continuous time signals, Convergence of Fourier series, Properties of continuous time Fourier series, Representation of Aperiodic signals:

Continuous time Fourier transform, Fourier transform of periodic signals, Properties of continuous time Fourier transform, Discrete Time Fourier Transform and its properties

UNIT -IV: Laplace Transforms

Introduction, The Region of Convergence for Laplace transforms, Inverse Laplace transform, Properties of Laplace transform, Analysis and Characterization of LTI systems using Laplace transform, Unilateral Laplace transform

UNIT -V: Z-Transforms

Introduction, The Region of convergence for the Z-Transform, The inverse Z-Transform, Properties of Z-Transforms, Analysis and Characterization of LTI systems using Z-Transforms, Unilateral Z-Transforms

UNIT -VI: Sampling

Introduction, Representation of continuous time signals by its samples, Sampling theorem, Reconstruction of signal from its samples, Effect of under sampling: Aliasing

Lecture Plan:

Lecture	Lecture name	Topics	Video reference
No			
1	Basics of Signals	Introduction to the course and basic	Lecture 1
	and Systems	concepts	
2		Signals and their Transportation	Lecture 2
3		Elementary signals	Lecture 3
4		Characterization of signals	Lecture 4
5	LTI Systems	Basic concepts of Linear Time	Lecture 5
	-	Systems	
6		Convolution Inevitability, &	Lecture 6
		Stability Causality	
7		Stability Unit, Step Response and	Lecture 7
		Differential Equations	
8		Systems described by Differential	Lecture 8
		& Difference Equations	
9	Signals in	Fourier Series	Lecture 9
	Frequency		
	Domain		
10		More About Fourier Series (With	Lecture 10
		Uncomfortable Questions)	

11		Those Uncomfortable Questions about the Existence of Fourier & Series and Some More	Lecture 11
12	Continuous Time Fourier Transform	Introduction to Fourier Transform	Lecture 12
13		Fourier Transform of Periodic Function & Fourier Transform Properties	Lecture 13
14		More Properties of Fourier Transformation	Lecture 14
15		Modulation, Convolutions and Other Interesting Properties of Fourier Transform	Lecture 15
16		A Deeper Look at the Modulation Property of Fourier Transform	Lecture 16
17	Discrete Time Fourier Transform	More About Fourier Transform of Discrete Time Signals	Lecture 17
18		Further Look into the Properties of DTFT	Lecture 18
19		Convolution, Modulation & Other Properties of DTFT	Lecture 19
20	Laplace Transforms	Introduction to Laplace Transform	Lecture 20
21		Region of Convergence of Laplace Transform & Properties of Laplace Transform	Lecture 21
22		Properties of Laplace Transform (Contd.)	Lecture 22
23		Concluding Discussion on Laplace Transform	Lecture 23
24	Z-Transforms	Introduction to Z Transform	Lecture 24
25		Properties of Z Transform	Lecture 25
26		Further Discussion on Properties of Z Transform	Lecture 26
27	Sampling	Introduction to sampling	Lecture 27
28		More About Sampling	Lecture 28

Text books:

- 1. Allan V Oppenheim. , S. Wilsky and S. H. Nawab, "Signals and systems", 2nd edition, PHI
- 2. B.P.LATHI," Signal Processing and Linear Systems", Barkley Cambridge Press