Tópicos de Matemática Discreta

Resolução do 2.º teste — 13 de janeiro de 2021 — duração: 105 minutos —

Grupo I

Este grupo é constituído por 6 questões. Em cada questão, deve dizer se a afirmação indicada é verdadeira (V) ou falsa (F), assinalando o respetivo quadrado. Em cada questão, a cotação atribuída será 1 valor, -0,25 valores ou 0 valores, consoante a resposta esteja certa, errada, ou não seja assinalada resposta, respetivamente. A cotação total neste grupo é no mínimo 0 valores.

,		V	F
1.	Sendo A e B conjuntos, (A,\emptyset) é um elemento de $\mathcal{P}(A)\times\mathcal{P}(B)$ e de $\mathcal{P}(A\times B)$.		
2.	Existem exatamente 3 relações binárias de $\{4,5,6\}$ para $\{1,2,3,4\}$ cuja imagem é $\{1\}.$		
3.	Se uma relação binária R num conjunto não vazio A é simétrica e antissimétrica, então $R \setminus \mathrm{id}_A = \emptyset.$		
4.	$\{[x-1,x+2[:x\in\mathbb{Z}\}$ é o conjunto quociente de \mathbb{R} por alguma relação de equivalência em $\mathbb{R}.$		
5.	Se (A,\leq) é um cpo e $X\subseteq A$ tem um elemento máximo, então X tem elemento maximal.		
6.	$\{(a,1),(b,3),(c,2)\} \text{ \'e uma aplicaç\~ao sobrejetiva de } \{a,b,c,d\} \text{ em } \{1,2,3\}.$		

Grupo II

Este grupo é constituído por 5 questões. Responda, <u>sem justificar</u>, no espaço disponibilizado a seguir à questão.

1. Dê um exemplo de conjuntos A, B e C que não verificam a igualdade $(A \times B) \cap C = (A \cap C) \times (B \cap C)$.

```
Resposta: A = B = C = \{1\} (OBS.: Note-se que A \times B = \{(1,1)\}, que (A \times B) \cap C = \{(1,1)\} \cap \{1\} = \emptyset e que (A \cap C) \times (B \cap C) = \{1\} \times \{1\} = \{(1,1)\})
```

2. Considere os conjuntos $A=\{2,3,4,5\}$ e $B=\{4,8,9,15,25,49\}$ e a relação binária R em A definida, para quaisquer $x,y\in A$, por $(x,y)\in R$ quando $x^y\in B$. Dê exemplo de uma relação binária S de B para A tal que $R\circ S\neq\emptyset$ e $S^{-1}\circ R=\emptyset$.

```
Resposta: S = \{(4,5)\} (OBS.: Note-se que R = \{(2,2),(2,3),(3,2),(5,2)\})
```

3. Considere a função $f: \mathbb{R} \to \mathbb{R}$ tal que, para todo $x \in \mathbb{R}$, $f(x) = \max\{m \in \mathbb{Z} : m \le x\}$. Indique $[\pi]_{\rho}$, onde $\rho = \{(x,y) \in \mathbb{R}^2 : f(x) = f(y)\}$ é o núcleo da função f.

```
Resposta: [\pi]_{\rho} = \{x \in \mathbb{R} : f(x) = f(\pi)\} = [3, 4[
```

(OBS.: Note-se que $f(\pi)$ é o maior inteiro m tal que $m \le \pi$, ou seja, $f(\pi) = 3$. Assim, a classe de equivalência de π é formada pelos reais cuja imagem por f é 3, isto é, por todos os reais x para os quais o maior inteiro menor ou igual a x é 3)

4. Sejam $A=\{1,2,3,4,5\}$ e $T=\{(1,2),(1,3),(3,5)\}$. Indique uma relação binária R em A tal que $R\cup T$ é uma ordem parcial em A.

```
Resposta: R = \{(1,1), (2,2), (3,3), (4,4), (5,5), (1,5)\}
```

(OBS.: Para que $R \cup T$ seja reflexiva, é necessário que $\mathrm{id}_A \subseteq (R \cup T)$. Assim, R tem de conter (1,1),(2,2),(3,3),(4,4),(5,5). Além disso, como $(1,3),(3,5) \in T$, também $(1,3),(3,5) \in R \cup T$. Para que $R \cup T$ seja transitiva, é necessário que (1,5) pertença a $R \cup T$. Para a escolha de R apresentada, prova-se que $(R \cup T) \cap (R \cup T)^{-1} \subseteq \mathrm{id}_A$, pelo que $R \cup T$ é antissimética, e que $(R \cup T) \circ (R \cup T) \subseteq (R \cup T)$, donde $R \cup T$ é transitiva.)

 $\text{5. Indique } f^{\leftarrow}\left(\{-1,0,1,2\}\right) \text{ para a função } f:\mathbb{R} \rightarrow \mathbb{R} \text{ definida por } f(x) = \left\{ \begin{array}{ll} x+1 & \text{se } x<1 \\ 0 & \text{se } x=1 \\ x^2 & \text{se } x>1 \end{array} \right.$

Resposta: $f^{\leftarrow}(\{-1,0,1,2\}) = \{-2,-1,0,1,\sqrt{2}\}$

(OBS.: Para determinar o conjunto pretendido, temos de resolver as equações f(x)=-1, f(x)=0, f(x)=1 e f(x)=2. Para tal, é preciso considerar os vários ramos de f. Para resolver f(x)=0, devemos resolver x+1=0 com x<1, 0=0 com x=1, e $x^2=0$ com x>1. Assim, f(x)=0 se e só se x=-1 ou x=1, uma vez que $x+1=0 \Leftrightarrow x=-1$ e -1<1, e $x^2=0 \Leftrightarrow x=0$, mas $0 \not> 1$. Para resolver f(x)=2, devemos resolver x+1=2 com x<1, 0=2 com x=1, e $x^2=2$ com x>1. Temos que f(x)=2 se e somente se $x=\sqrt{2}$, uma vez que $x+1=2 \Leftrightarrow x=1$, mas $1 \not< 1$, 0=2 é impossível, e $x^2=2 \Leftrightarrow x=\pm\sqrt{2}$, $\sqrt{2}>1$ mas $-\sqrt{2}\not>1$.)

Grupo III

Este grupo é constituído por 3 questões. Responda na folha de exame, justificando todas as suas respostas.

- 1. Seja ρ a relação de equivalência em $\mathcal{P}(\mathbb{N})$ definida por: $X\rho Y$ sse $X\cap\{3\}=Y\cap\{3\}$. Determine:
 - (a) a classe de equivalência $[\{2020, 2021\}]_{\rho}$;

$$\begin{array}{lll} [\{2020,2021\}]_{\rho} & = & \{Y \in \mathcal{P}(\mathbb{N}) : \{2020,2021\} \cap \{3\} = Y \cap \{3\}\} & (\textit{por def. de classe de eq.}) \\ & = & \{Y \in \mathcal{P}(\mathbb{N}) : \emptyset = Y \cap \{3\}\} & (\textit{pq. } \{2020,2021\} \cap \{3\} = \emptyset) \\ & = & \{Y \in \mathcal{P}(\mathbb{N}) : 3 \notin Y\} & (\textit{pq. } Y \cap \{3\} = \emptyset \textit{ sse } 3 \notin Y) \end{array}$$

(b) o conjunto quociente $\mathcal{P}(\mathbb{N})/\rho$.

Por definição, $\mathcal{P}(\mathbb{N})/\rho=\{[X]_{\rho}:X\in\mathcal{P}(\mathbb{N})\}$. Na alínea anterior, já calculámos $[X]_{\rho}$ para $X=\{2020,2021\}$. Calculemos agora para $X=\{3\}$.

$$\begin{array}{lll} [\{3\}]_{\rho} & = & \{Y \in \mathcal{P}(\mathbb{N}) : \{3\} \cap \{3\} = Y \cap \{3\}\} & \textit{(por def. de classe de eq.)} \\ & = & \{Y \in \mathcal{P}(\mathbb{N}) : \{3\} = Y \cap \{3\}\} & \textit{(pq. } \{3\} \cap \{3\} = \{3\}) \\ & = & \{Y \in \mathcal{P}(\mathbb{N}) : 3 \in Y\} & \textit{(pq. } Y \cap \{3\} = \{3\} \textit{ sse } 3 \in Y) \end{array}$$

As classes $[\{2020,2021\}]_{
ho}$ e $[\{3\}]_{
ho}$ são diferentes. Vamos agora argumentar que

$$\mathcal{P}(\mathbb{N})/\rho = \{ [\{2020, 2021\}]_{\rho}, [\{3\}]_{\rho} \}$$

ou seja, as duas classes já calculadas são as únicas classes de equivalência da relação ρ . Queremos provar que: para todo $X \in \mathcal{P}(\mathbb{N})$, $[X]_{\rho} = [\{2020, 2021\}]_{\rho}$ ou $[X]_{\rho} = [\{3\}]_{\rho}$. Ora, dado $X \in \mathcal{P}(\mathbb{N})$, temos dois casos.

- Primeiro caso: $3 \in X$. Então $X \rho \{3\}$, donde $[X]_{\rho} = [\{3\}]_{\rho}$.
- Segundo caso: $3 \notin X$. Então $X \rho \{2020, 2021\}$, donde $[X]_{\rho} = [\{2020, 2021\}]_{\rho}$.
- 2. Considere o cpo (A, R) com o seguinte diagrama de Hasse associado:
 - (a) Determine $X = \{x \in A : dRx\}$.

Pelo diagrama de Hasse, sabemos que dRd, dRg, dRf e dRh.

Sendo R uma relação reflexiva, sabemos que $(d,d) \in R$, ou seja, dRd.

Como g e f estão representados acima de d e existe um segmento a unir os pontos correspondentes a d e g e outro a unir os pontos correspondentes a d e f, podemos afirmar que dRg e dRf. Além disso, como existe um

a d e f, podemos afirmar que dRg e dRf. Além disso, como existe um segmento a unir os pontos correspondentes a f e h, estando este último representado acima do de f, sabemos que fRh. Temos que dRf e fRh e, sendo R transitiva, dRh. Não existe mais nenhum ponto acima do correspondente a d ao qual este esteja unido por um segmento para além dos pontos correspondentes a f e g. Mais, o ponto correspondente a h é o único acima do ponto correspondente a f. Podemos, assim, concluir que os únicos elementos x de A, distintos de d, tais que dRx são f, g e h.

Logo,
$$X = \{d, f, g, h\}.$$

- (b) Dê exemplo de, ou justifique que não existe,
 - i. um elemento x de A tal que $\{b,x\}$ não admite supremo.

O único elemento x de A tal que $\{b, x\}$ não admite supremo é x = g.

Sabemos que, se x é tal que xRb, então $\sup\{b,x\}=b$ e, se x é tal que bRx, então $\sup\{b,x\}=x$. Assim, para não existir $\sup\{b,x\}$, b e x têm de ser incomparáveis. Os elementos x de A tais que b e x são incomparáveis são c, d e g. Note-se que $\sup\{b,c\}=e$ e $\sup\{b,d\}=f$. Dado que $\min\{b,g\}=\emptyset$, não existe $\sup\{b,g\}$.

ii. um subconjunto Y de A com exatamente 3 elementos minimais.

Consideremos $Y = \{b, c, d\}$.

Não existe algum elemento $x \in Y$ distinto de b tal que xRb. Logo, b é elemento minimal de Y. Como não existe algum elemento $x \in Y$ diferente de c tal que xRc, c é elemento minimal de Y. Finalmente, dado que não existe nenhum elemento $x \in Y$ distinto de d tal que xRd, d é elemento minimal de Y. Portanto, Y tem d0 elementos minimals.

(c) Determine o maior subconjunto Z de A tal que $a \notin Z$ e $Maj(Z) = \{f, h\}$.

Consideremos $Z = \{b, d, f\}$.

Para f e h serem majorantes de Z, temos de ter xRf e xRh, para todo $x \in Z$. Assim, h não pode pertencer a Z, uma vez que hRf. Dado que eRh, eRh e gRh, e, e e g não podem pertencer a Z. Como xRf e xRh, para todo $x \in \{b,d,f\}$, podemos concluir que o maior subconjunto Z de A tal que $a \notin Z$ e $\mathrm{Maj}(Z) = \{f,h\}$ é $Z = \{b,d,f\}$.

- 3. Seja $f:A\to A$ uma aplicação, seja ${\rm Im}(f)$ a imagem de f e seja ${\rm Fix}(f)=\{a\in A:f(a)=a\}$ o conjunto dos pontos fixos de f. Mostre que:
 - (a) Se $f = f \circ f$, então Im(f) = Fix(f).

Suponhamos que $f = f \circ f$, ou seja, que

$$\forall_{a \in A} \ f(a) = f(f(a)). \tag{1}$$

Queremos provar que Im(f) = Fix(f). Tal será feito por dupla inclusão.

 (\subseteq) Seja $a \in Im(f)$. Então

$$\exists_{x \in A} \ f(x) = a. \tag{2}$$

Logo,

$$f(a) = f(f(x))$$
 por (2) e por f ser aplicação (e portanto unívoca)
$$= f(x)$$
 por (1)
$$= a$$
 por (2) ,

donde $a \in Fix(f)$. Dado que a é um elemento qualquer de Im(f), deduz-se que $Im(f) \subseteq Fix(f)$.

 (\supseteq) Seja $a \in Fix(f)$). Então f(a) = a, donde $a \in Im(f)$ pois existe algum $x \in A$ tal que f(x) = a. Provou-se assim que $Fix(f) \subseteq Im(f)$.

Finalmente, de $Im(f) \subseteq Fix(f)$ e $Fix(f) \subseteq Im(f)$, conclui-se que Im(f) = Fix(f).

(b) Se $f = f \circ f$ e f é sobrejetiva, então f é a aplicação identidade.

Suponhamos que $f=f\circ f$ e que f é sobrejetiva. Pela alínea (a), de $f=f\circ f$ resulta que ${\rm Im}(f)={\rm Fix}(f)$. Por outro lado, ${\rm Im}(f)=A$ dado que f é sobrejetiva por hipótese. Logo ${\rm Fix}(f)=A$, o que significa que

$$\forall_{a \in A} \ f(a) = a. \tag{3}$$

Portanto f é a aplicação identidade.

Cotações	I	Ш	III
Cotações	6	5	2,5+4+2,5