

S	TU	DE	IT	DN	0	
T	T	1				
						1

MULTIMEDIA UNIVERSITY

FINAL EXAMINATION

TRIMESTER 3, 2015/2016

EEL2216 – CONTROL THEORY

(All sections / Groups)

2nd JUNE 2016 9.00 a.m - 11.00 a.m (2 Hours)

INSTRUCTIONS TO STUDENTS

- 1. This question paper consists of SEVEN pages including cover page with FOUR questions only.
- 2. Answer ALL questions and print all your answers in the answer booklet provided.
- 3. All questions carry equal marks and the distribution of the marks for each question is given.

(a) A feedback control system is shown in Figure 1.1. Assume zero initial condition,

Figure 1.1

i. Find the closed-loop transfer function, Y(s)/R(s).

- [2 marks]
- ii. Determine the output, Y(s) when R(s) is a unit step input.
- [2 marks]

iii. Based on the result in part (a)(ii), compute y(t).

- [5 marks]
- (b) Write the modeling equation in Laplace transform for the translational mechanical system shown in Figure 1.2. [4 marks]

Figure 1.2

(c) Derive the transfer function, T(s) = C(s)/R(s) of the signal flow graph shown in Figure 1.3 by using Mason's rule. [12 marks]

Figure 1.3

(a) Consider a negative unity feedback system shown in Figure 2.1.

Figure 2.1

- i. State the system type and determine the value of K for a 10% error in the steady state. [5 marks]
- ii. Given K = 6, evaluate if the system is underdamped, critically damped or overdamped. [5 marks]
- (b) A negative feedback system has a loop transfer function given by,

$$G(s)H(s) = \frac{K(s+1)}{(s-1)(2s^2+5)}$$
.

- i. Find the starting and ending points, root loci on real axis, angle of departures, and asymptotes at infinity.
- ii. Sketch the root loci.

[3 marks]

iii. Based on the root loci, analyse the overall system stability when the gain, K value increases from $0 \to \infty$.

- (a) As a control engineer, you are always required to determine the stability of a closed loop system. One unique method to measure stability is the use of Nyquist stability criterion. Describe in your own words, the definitions of:
 - i. Nyquist sampling theorem.

[3 marks]

ii. Phenomenon of aliasing in sampling process.

[2 marks]

(b) A processing plant can be represented by a block diagram as shown in Figure 3.1.

Figure 3.1

i. Simplify the loop transfer function and rewrite it in terms of $j\omega$.

[4 marks]

ii. Determine the magnitude response of the loop transfer function.

[3 marks]

iii. Determine the phase response of the loop transfer function.

[3 marks]

iv. Calculate the real and imaginary crossing points for the polar plot.

[6 marks]

v. Sketch the Nyquist diagram.

[4 marks]

- (a) For a compensated system, choose a suitable controller and state ONE reason how it can fulfill each of the specifications below separately:
 - i. the steady state error needs to be zero.

[2 marks]

ii. the system requires no additional amount of energy supply.

[2 marks]

iii. the settling time is reduced and the step error constant is increased.

[2 marks]

(b) A system with a plant transfer function, $G(s) = \frac{1}{(s+3)(s+5)}$ is shown in Figure 4.1. Given that a PD controller has a transfer function of $K_{PD}(s) = k_a s + k_b$ and PI controller has a transfer function of $K_{PI}(s) = \frac{k_c s + k_d}{s}$.

Figure 4.1

- i. Design the K(s) as a PD controller if the system requires a damping ratio, $\zeta = 0.8$ and an angular frequency, $\omega_n = 15 \,\text{rad/s}$. [6 marks]
- ii. Design the K(s) as a PI controller if the system requires a steady-state error less than 0.05 for a unit ramp input without changing the transient response.

[9 marks]

iii. What are the steps to follow if you need to design a PID controller in a single system? [4marks]

Appendix - Laplace Transform Pairs (continued)

f(t)	F(s)		
Unit impulse $\delta(t)$	1		
Unit step 1(t)	1 2		
t	$\frac{1}{s^2}$		
$\frac{t^{n-1}}{(n-1)!} (n=1, 2, 3, \ldots)$	$\frac{1}{s^2}$ $\frac{1}{s^n}$		
t'' $(n = 1, 2, 3,)$	$\frac{n!}{s^{n+1}}$		
e^{-ct}	$\frac{1}{s+a}$		
te ^{-at}	$\frac{1}{(s+a)^2}$		
$\frac{t^{n-1}}{(n-1)!}e^{-at} (n=1, 2, 3, \ldots)$	$(s+a)^n$		
$t''e^{-at}$ $(n=1, 2, 3,)$	$\frac{n!}{(s+a)^{n+1}}$		
sin ωt	$\frac{\omega}{s^2 + \omega^2}$		
cos ωt	$\frac{s}{s^2 + \omega^2}$		
sinh <i>wt</i>	$\frac{\omega}{s^2 - \omega^2}$		
cosh ωt	$\frac{s}{s^2-\omega^2}$		
$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$		
$\frac{1}{b-a}(e^{-at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$ $\frac{s}{(s+a)(s+b)}$		
$\frac{1}{b-a}(be^{-bt}-ae^{-at})$			
$\frac{1}{ab}\left[1+\frac{1}{a-b}(be^{-at}-ae^{-bt})\right]$	$\frac{1}{s(s+a)(s+b)}$		

Appendix - Laplace Transform Pairs

$\frac{1}{a^2}(1-e^{-at}-ate^{-at})$	$\frac{1}{s(s+a)^2}$
$\frac{1}{a^2}(at-1+e^{-at})$	$\frac{1}{s^2(s+a)}$
$e^{-at}\sin \omega t$	$\frac{\omega}{(s+a)^2+\omega^2}$
$e^{-at}\cos\omega t$	$\frac{s+a}{(s+a)^2+\omega^2}$
$\frac{\omega_n}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin\omega_n\sqrt{1-\zeta^2}t$	$\frac{\omega_n^2}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$-\frac{1}{\sqrt{1-\zeta^2}}e^{-\zeta\omega_n t}\sin(\omega_n\sqrt{1-\zeta^2}t-\phi)$ $\phi = \tan^{-1}\frac{\sqrt{1-\zeta^2}}{\zeta}$	$\frac{s}{s^2 + 2\zeta\omega_n s + \omega_n^2}$
$1 - \frac{1}{\sqrt{1 - \zeta^2}} e^{-\zeta \omega_n t} \sin(\omega_n \sqrt{1 - \zeta^2} t + \phi)$ $\phi = \tan^{-1} \frac{\sqrt{1 - \zeta^2}}{\zeta}$	$\frac{\omega_n^2}{s(s^2+2\zeta\omega_n s+\omega_n^2)}$
$1-\cos\omega t$	$\frac{\omega^2}{s(s^2+\omega^2)}$
$\omega t - \sin \omega t$	$\frac{\omega^2}{s(s^2 + \omega^2)}$ $\frac{\omega^3}{s^2(s^2 + \omega^2)}$
$\sin \omega t - \omega t \cos \omega t$	$\frac{2\omega^3}{(s^2+\omega^2)^2}$
$\frac{1}{2\omega}t\sin\omega t$	S
$t\cos\omega t$	$\frac{(s^2 + \omega^2)^2}{s^2 - \omega^2}$ $\frac{s^2 - \omega^2}{(s^2 + \omega^2)^2}$
$\frac{1}{\omega_2^2 - \omega_1^2} (\cos \omega_1 t - \cos \omega_2 t) \ (\omega_1^2 \neq \omega_2^2)$	$\frac{s}{(s^2 + \omega_1^2)(s^2 + \omega_2^2)}$
$\frac{1}{2\omega}(\sin\omega t + \omega t\cos\omega t)$	$\frac{s^2}{(s^2+\omega^2)^2}$

End of Paper