Features of OS

Features of OS

Jobs of OS in Process Management

Process Concept

Process Concept

- An operating system executes a variety of programs:
 - Batch system jobs
 - Time-shared systems user programs or tasks
- Textbook uses the terms job and process almost interchangeably.
- Process a program in execution;

A process includes:

- program counter
- stack
- data section
- text section

Process in memory

Process Control Block (PCB)

Information associated with each process.

- Process state
- Program counter
- CPU registers
- CPU scheduling information
- Memory-management information
- Accounting information
- I/O status information

Process Control Block (PCB)

Stack **pointer:** required to be saved when the process is switched from one state to another to retain the current position of the process.

Accumulator, base, **registers** and general purpose **registers**.

process pointer state process number program counter registers memory limits list of open files

CPU Switch From Process to Process

Process State

- As a process executes, it changes *state*
 - new: The process is being created.
 - ready: The process is waiting to be assigned to a processor.
 - running: Instructions are being executed.
 - waiting: The process is waiting for some event to occur.
 - terminated: The process has finished execution.

Diagram of Process State

Process scheduling queues

(3) Device queues – set of processes waiting for an I/O device.

Process migrates between the various queues.

Representation of Process Scheduling

Schedulers

• Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready queue.

• Short-term scheduler (or CPU scheduler) – selects which process should be executed next and allocates CPU.

Addition of Medium Term Scheduling

Schedulers (Cont.)

- Short-term scheduler is invoked very frequently (milliseconds)
 ⇒ (must be fast).
- Long-term scheduler is invoked very infrequently (seconds, minutes)
 ⇒ (may be slow).
- The long-term scheduler controls the degree of multiprogramming.
- Processes can be described as either:
 - I/O-bound process spends more time doing I/O than computations.
 - CPU-bound process spends more time doing computations.

Dispatcher:

- It is the module that gives control of the CPU to the process selected by the short-time scheduler.
- A dispatcher switches execution from one process to another process called context switching. It also setup user registers, memory mapping, etc.
- Dispatch latency: amount of time taken by the system to stop one process and give permission to another process to being execution.

context switch

- When CPU switches to another process, the system must save the state of the old process and load the saved state for the new process.
- Context-switch time is overhead; the system does no useful work while switching.
- Time dependent on hardware support.

Six and Seven state process model:

END