

#31
JM

①
THE UNITED STATES PATENT AND TRADEMARK OFFICE

Attorney Docket No. 16781/276/BEDL

In re patent application of Allowed: May 31, 1994
Daniel CAPUT et al. Batch: B21
Serial No. 07/920,519 Group Art Unit: 1814
Filed: July 28, 1992 Examiner: D. Schmickel
For: URATE OXIDASE ACTIVITY PROTEIN, RECOMBINANT GENE
CODING THEREFOR, EXPRESSION VECTOR,
MICROORGANISMS AND TRANSFORMED CELLS

SUBMISSION OF FORMAL DRAWINGS

The Honorable Commissioner of
Patents and Trademarks
Washington, D.C. 20231

Sir:

Applicants submit herewith fifteen (15) sheets
of formal drawings for this case.

Respectfully submitted,

Bernhard D. Saxe
Registration No. 28,665

August 31, 1994

Date

FOLEY & LARDNER
3000 K Street, Suite 500
P.O. Box 25696
Washington, DC 20007-8696
Tel.: (202) 672-5300

07/920,519

5382518

REPROD. BY
FIG. NO. 5382518
1971

FIG. 1

FIG. 2

ELUTION PROFILE BY MEASUREMENT OF THE OPTICAL DENSITY AT 218 nm
OF THE PRODUCT OF DIGESTION OF URATE OXIDASE WITH PROTEASE V8

FIG. 3

1	AAAC CCTCACTGCCCTCTCATTCCTTCCG	GTGCCCGATCCTCAATCCAAC TGTACA	60
61	TACTTCTCCCAACTCTGCTTATCCTTC	ATATTCCCATAC TACAAGATGTCCGAGTA	120
121	AAAGCAGCCCCGCTACGGCAAGGACAATGTC	CGCGTCTACAAGGTTACAAGGACGGAGAAG	180
181	ACCGGTGTCCAGACGGGTACGGAGATGACC	GTCTGTGTGCTTCTGGAGGGTAGATTGAG	240
241	ACCTCTTACACCAAGGCCGACAACGGGTC	ATTGTGCCAACCGACTCCATTAAAGAACACC	300
301	ATTTACATCACGCCAAGCAGAACCCCGTT	ACTCCTCCCGAGCTGTTGGCTCCATCCTG	360
361	GGCACACACTTCATTGAGAAGTACAAACCAC	ATCCATGGCCGTCAACATTGTCTGC	420
421	CACCGCTGGACCCGGATGGACATTGACGGC	AAGCCACACCCCTCACTCCTCATCCGGAC	480
481	AGCGAGGGAGAAGGGAAATGTGCCAGGTGGAC	GTGGTGGAGGGCAAGGGCATCGATA TCAAG	540
541	TCGTCTCTGTCCGGCCCTGACCCGTGCTGAAG	AGCACCAACTCGCAGTTCTGGGGCTTCCTG	600
601	CGTGACCGAGTACACCCACAGTTAAGGAGACC	TGGGACCGGTATCCTGAGCACCAGCTCGAT	660
661	GCCACTTGGCAGTGGAGAATTTCAGTGGAA	CTCCAGGAGGTCCGCTCGCACGTGCCCTAAG	720
721	TTCGATGCTACCTGGCCACTGCTGGCGAG	GTCACCTGAAGACTTTGCTGAAGATAAAC	780
781	AGTGCCAGCGTGCAGGCCACTATGTACAAG	ATGGCAGAGCAAATCCTGGCGGCCAGCAG	840
841	CTGATCGAGACTGTGAGTACTCGTTGCCCT	AACAAGCACTATTGAAATCGACCTGAGC	900
G*			
901	TGGCACAAAGGGCTCCAAAACACCGGCAAG	AACGCCAGGGTCTTCGCTCCTCAGTCGGAC	960
961	CCCAACGGTCTGATCAAGTGTACCGTCCGGC	CGGTCCCTCTCTGAAGTCTAAATTGTAAACC	1020
1021	ACATGATTCTACGTTCCGGAGTTCCAA	GGCAAACCTGTATATAAGTCTGGGATAGGGTA	1080
1081	TAGCATTCACTTACTTGTGTTTACTTTCCA	AAAAAAA... .	

NUCLEOTIDE SEQUENCE OF CLONE 9C AND OF PART OF CLONE 9A
 : START OF CLONE 9A

FIG. 4A

109 ATGTCCGCAGTAAAAGCAGCCCCGCTACGGC AAGGACAATGTCCGGCTTACAAGGGTTCAC 168
 1 Met Ser Ala Val Lys Ala Arg Tyr Gly Lys Asp Asn Val Arg Val Tyr Lys Val His 20

169 AAGGACGAGAAAGACGGGTGTCCAGACGGTG TACCGACATGACCGTCTGTGCTTCGGAG 228
 21 Lys Asp Glu Lys Thr Gly Val Gln Thr Val Tyr Glu Met Thr Val Cys Val Leu Glu 40

229 GGTGAGATTGAGACCTCTTACACCAAGGCC GACAAACAGCGTCAATTGTCGGCAACCGACTCC 288
 41 Gly Glu Ile Glu Thr Ser Tyr Thr Lys Ala Asp Asn Ser Val Ile Val Ala Thr Asp Ser 60

289 ATTAAGAACACCATTTACATCACCGCCAAAG CAGAACCCCCGTTACTCCTCCCAGGCCGTTC 348
 61 Ile Lys Asn Thr Ile Tyr Ile Tyr Ile Lys Gln Asn Pro Val Thr Pro Glu Leu Phe 80

349 GGCTCCCATCCTGGCCACACACTTCATTGAG AAGTACAAACACATCCATGCCGCTCACCGTC 408
 81 Gly Ser Ile Leu Gly Thr His Phe Ile Glu Lys Tyr Asn His Ile His Ala His Val 100

409 AACATTGTCTGCCACCCGCTGGGACCCGGATG GACATTTGACGGCAAGCCACACCCCTCACCTCC 468
 101 Asn Ile Val Cys His Arg Trp Thr Arg Met Asp Ile Asp Gly Lys Pro His Pro His Ser 120

469 TTCAATCCGGACACGGAGGAAGCGGAAT GTGCAGGGTGGACGTTGGTCGAGGGCAAGGGC 528
 121 Phe Ile Arg Asp Ser Glu Glu Lys Arg Asn Val Gln Val Asp Val Val Glu Gly Lys Gln 140

529 ATCGATATCAAGTCGTCTCTGTCGGCCTG ACCGGTGGCTGAAGAGCCACCAACTCGCAGTTTC 588
 141 Ile Asp Ile Lys Ser Ser Leu Ser Gly Leu Thr Val Leu Lys Ser Thr Asn Ser Gln Phe 160

589 TGGGGCTTCCTGCGTGACGGAGTACACCA CTTAAGGAGACCTGGACCCGTATCCTGAGC 648
 161 Trp Gly Phe Ile Leu Arg Asp Glu Tyr Thr Thr Leu Lys Glu Thr Trp Asp Arg Ile Leu Ser 180

649 ACCGACGTCGATGCCACCTGGCAGTGGAAAG AATTTCAGTGGACTCCAGGAGGTCCGGCTCG 708
 181 Thr Asp Val Asp Ile Asp Val Asp Ile Asp Ser Gly Leu Glu Ile Leu Val Arg Ser 200

↑ TO FIG. 4B

TO FIG. 4B

FIG. 4B

↑ FROM FIG. 4A

FROM FIG. 4A†

709 CACGTGCCTAAGTTCGATGCTACCTGGCC	ACTGCTCGGAGGGTCACTCTGAAGACTTT	768
201 HisValProLysPheAspAlaThrTrpAla	ThrAlaArgGluValThrLeuLysThrPhe	220
↓		
769 GCTGAAGATAAACAGTGCCAGCGTGCAGGCC	ACTATGTCACAAGATGGCAGAGCAAATCCTG	828
221 AlaGluAspAsnSerAlaSerValGlnAla	ThrMetTyrLysMetAlaGluGlnIleLeu	240
↓		
829 GCGGCCAGCAGCTGATCGAGACTGTCGAG	TACTCGTTGCCTAACAAAGCACTATTTCGAA	888
241 AlaArgGlnGlnLeuIleGluThrValGlu	TyrSerLeuProAsnLysHistYrPheGlu	260
↓		
889 ATCGACCTGAGCTGGCACAAAGGGCCTCCAA	AACACCGGCAAGAACGCCGAGGTCTTCGCT	948
261 IleAspLeuSerTrpHisLysGlyLeuGln	AsnThrGlyLysAsnAlaGluValPheAla	280
↓		
949 CCTCAGTCGGACCCCAACGGTCTGATCAAG	TGTACCGTGGCCGGTCTCTGAAGTCT	1008
281 ProGlnSerAspProAsnGlyLeuIleLys	CysThrValIleArgSerSerLeuLysSer	300
↓		
1009 AAATTGTAA		
301 LysLeuEnd		

DNA SEQUENCE OPENED BY ATG IN POSITION 109 IN FIGURE 3

AND POLYPEPTIDE CODED FOR.

THE SEQUENCED PEPTIDES OBTAINED BY HYDROLYSIS OF A. FLAVUS URATE OXIDASE WITH TRYPSIN AND PROTEASE V8 ARE SHOWN BY ARROWS OPPOSITE THE POLYPEPTIDE CODED FOR, ACCORDING TO

TRYPTIC PEPTIDE
↓
PEPTIDE OBTAINED BY HYDROLYSIS WITH
PROTEASE V8.

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

FIG. 10

FIG. 11

APPROVED U.G. FIG.
BY CLS SUCCESS

FIG. 12

FIG. 13

FIG. 14

