

Matrix Completion from a Few Entries

Raghunandan H. Keshavan, Andrea Montanari, Sewoong Oh, Department of Electrical Engineering, Stanford University

What is Matrix Completion?

Problem: How many revealed entries |E| do we need to get $\frac{1}{mn} ||M - \widehat{M}||_F^2 \le \delta$?

Algorithm

Algorithm [OptSpace]

Trim: Trim M^E to M^E ;

Project : Project M^{E} onto $Tr(M^{E})$;

Clean: Minimize Cost F(X,Y),

s.t. X,Y orthogonal.

SVD:
$$Tr(M^E) = \frac{mn}{|E|} \sum_{i=1}^r x_i \sigma_i y_i^T$$

Problem: $\sigma = \Omega(\log(n)/\log\log(n))$

Histogram of singular values of a partially revealed random rank 3 matrix before(left) and after(right) trimming

Main Results

Theorem (Keshavan, Montanari, Oh, 2009 [1])

Assume r = O(1), and let M be an $n\alpha \times n$ matrix satisfying (μ_0, μ_1) -incoherence with $\sigma_1(M)/\sigma_r(M) = O(1)$. If $|E| \geq C' n \log n$, then OPTSPACE returns, whp., the matrix M.

Theorem (Keshavan, Montanari, Oh, 2009 [2])

Let N = M + Z with M as above and Z any $n\alpha \times n$ matrix. If $|E| \geq C' n \log n$, then (under appropriate technical conditions) OPTSPACE with input N^E returns M such that whp.,

$$\frac{1}{\sqrt{mn}}||M-\widehat{M}||_F \le C\frac{n\sqrt{\alpha r}}{|E|}||Z^E||_2$$

Implementation

(m = n = 1000, r = 10)

Figure 2: RMSE vs. Number of samples revealed (m = n = 600, r = 2

References

- [1] R.H.Keshavan, A. Montanari, and S. Oh, Matrix Completion from a few entries, arXiv:0901.3150, January 2009.
- [2] R.H.Keshavan, A. Montanari, and S. Oh, Matrix Completion from noisy entries, arXiv:0906.2027, June 2009.