Computability and Complexity COSC 4200

NP-Complete Problems II

Plan for NP-completeness reductions:

Hamiltonian Cycle

Recall that a Hamiltonian cycle in a graph is a cycle that visits all the vertices without repetition. Not all graphs have a Hamiltonian cycle, and determining if a graph has such a cycle is NP-complete.

The decision problem is

 $\operatorname{HAM-CYCLE} = \left\{ G \,|\, G \text{ has a Hamiltonian cycle} \right\}.$

Theorem

HAM-CYCLE is NP-complete.

Proof. We have already seen that $HAM\text{-}CYCLE \in NP$. We will do a reduction from 3SAT. Let

$$\phi = C_1 \wedge \ldots \wedge C_m$$

be a formula over *n* variables x_1, \ldots, x_n .

For each x_i , we construct a ladder H_i of 12m + 7 vertices.

- We have 4m + 2 rungs with 3 vertices in each rung, and a vertex at the bottom and at the top.
- The rungs of the ladders are composed of $u_{i,j}$, $v_{i,j}$, and $w_{i,j}$, where i corresponds to H_i , and j corresponds to the rung.
- There is an edge from $u_{i,j}$ to the u above and below it (or to y_i or y_{i+1}) and an edge to $v_{i,j}$. Similarly with $w_{i,j}$.

This is actually 12m + 8 vertices, but we hook this ladders together at the top and bottom, so we only count, for example, the bottom vertex as belonging to H_i , while the top one belongs to H_{i+1} . The top of the top ladder connects to the bottom of the bottom ladder.

There are two ways to traverse a ladder, either starting by going to the left, or going to the right. Intuitively, going left in H_i corresponds to setting x_i true, and going right corresponds to setting x_i false.

- If C_i contains the literal x_i , we connect z_i to $u_{i,4i-1}$, and $u_{i,4i-2}$.
- If C_i contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

This completes the construction of the graph.

Our claim is that ϕ is satisfiable if and only if the graph has a Hamiltonian cycle.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

- If C_j contains the literal x_i, we connect z_j to u_{i,4j-1}, and u_{i,4j-2}.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

- If C_j contains the literal x_i, we connect z_j to u_{i,4j-1}, and u_{i,4j-2}.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i, we connect z_j to u_{i,4j-1}, and u_{i,4j-2}.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i, we connect z_j to u_{i,4j-1}, and u_{i,4j-2}.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

- If C_j contains the literal x_i , we connect z_j to $u_{i,4j-1}$, and $u_{i,4j-2}$.
- If C_j contains the literal $\neg x_i$, we connect z_j to $w_{i,4j-1}$ and $w_{i,4j-2}$.

$$\phi = (x_1 \vee \neg x_2) \wedge (\neg x_1 \vee x_2)$$

Observe that:

- If we go left in a Hamiltonian cycle in ladder H_i , we will traverse
 - the even edges $(u_{i,2}, u_{i,3}), (u_{i,4}, u_{i,5}), \ldots$ on the left side, and
 - the odd edges $(w_{i,1}, w_{i,1}), (w_{i,3}, w_{i,4}), \ldots$ on the right side.

Observe that:

- If we go left in a Hamiltonian cycle in ladder H_i , we will traverse
 - the even edges $(u_{i,2}, u_{i,3}), (u_{i,4}, u_{i,5}), \ldots$ on the left side, and
 - the odd edges $(w_{i,1}, w_{i,1}), (w_{i,3}, w_{i,4}), \ldots$ on the right side.

If x_i appears as a literal in clause C_j , then z_j will be connected to the endpoints of one of the even edges on the left:

$$(u_{i,4i-2}, u_{i,4i-1}).$$

The cycle could safely visit z_j instead of taking this edge. In this way, going left in H_i corresponds to setting $x_i = T$.

- Similarly, if we go right in a Hamiltonian cycle in ladder H_i , we will traverse
 - the odd edges $(u_{i,1},u_{i,2}),(u_{i,3},u_{i,4}),\ldots$ on the left side, and
 - the even edges $(u_{i,1}, u_{i,2}), (u_{i,3}, u_{i,4}), \ldots$ on the right side.

• Similarly, if we go right in a Hamiltonian cycle in ladder H_i , we will traverse

• the odd edges $(u_{i,1}, u_{i,2}), (u_{i,3}, u_{i,4}), \ldots$ on the left side, and • the even edges $(w_{i,2}, w_{i,3}), (w_{i,4}, w_{i,5}), \ldots$ on the right side.

If $\neg x_i$ appears as a literal in clause C_j , then z_j will be connected to the endpoints of one of the even edges on the right:

$$(w_{i,4j-2}, w_{i,4j-1}).$$

The cycle could safely visit z_j instead of taking this edge. In this way, going left in H_i corresponds to setting $x_i = F$.

Our claim is that ϕ is satisfiable if and only if the graph has a Hamiltonian cycle.	
Transmedian eyele.	

Suppose ϕ is satisfiable and fix a satisfying assignment. We use this assignment to define a cycle that goes left at H_i if $x_i = T$ and goes right if $x_i = F$.

Suppose ϕ is satisfiable and fix a satisfying assignment. We use this assignment to define a cycle that goes left at H_i if $x_i = T$ and goes right if $x_i = F$.

• The z_j 's are connected to the ladders so that if C_j contains $\neg x_i$, then vertex z_j can be visited by a cycle that goes right in ladder H_i .

Suppose ϕ is satisfiable and fix a satisfying assignment. We use this assignment to define a cycle that goes left at H_i if $x_i = T$ and goes right if $x_i = F$.

- The z_j 's are connected to the ladders so that if C_j contains $\neg x_i$, then vertex z_j can be visited by a cycle that goes right in ladder H_i .
- Similarly, if C_j contains x_i , then vertex z_j can be visited by a cycle that goes left in ladder H_i .

Suppose ϕ is satisfiable and fix a satisfying assignment. We use this assignment to define a cycle that goes left at H_i if $x_i = T$ and goes right if $x_i = F$.

- The z_j 's are connected to the ladders so that if C_j contains $\neg x_i$, then vertex z_j can be visited by a cycle that goes right in ladder H_i .
- Similarly, if C_j contains x_i , then vertex z_j can be visited by a cycle that goes left in ladder H_i .

Thus we can extend the cycle to visit all the z_j 's. Therefore if ϕ is satisfiable, then there is a Hamiltonian cycle.

For the other direction, suppose there is a Hamiltonian cycle.

• We set $x_i = T$ if the cycle goes left at H_i and set $x_i = F$ if it goes right.

For the other direction, suppose there is a Hamiltonian cycle.

- We set $x_i = T$ if the cycle goes left at H_i and set $x_i = F$ if it goes right.
- The cycle visits all the z_j 's, so it follows from the construction that this assignment satisfies all clauses of ϕ .

Therefore if there is a Hamiltonian cycle, then ϕ is satisfiable.

For the other direction, suppose there is a Hamiltonian cycle.

- We set $x_i = T$ if the cycle goes left at H_i and set $x_i = F$ if it goes right.
- The cycle visits all the z_j 's, so it follows from the construction that this assignment satisfies all clauses of ϕ .

Therefore if there is a Hamiltonian cycle, then ϕ is satisfiable.

The graph we constructed can computed in quadratic time in the size of the formula. Therefore $3SAT \leq_P HAM\text{-}CYCLE$.

Plan for NP-completeness reductions:

In the traveling salesman problem, a salesman wishes to visit a collection of cities at the minimum possible cost.

- For each pair of cities, A and B, there is a cost associated with traveling from A to B.
- The goal is to find a tour of the cities of the minimum total cost.

In the traveling salesman problem, a salesman wishes to visit a collection of cities at the minimum possible cost.

- For each pair of cities, A and B, there is a cost associated with traveling from A to B.
- The goal is to find a tour of the cities of the minimum total cost.

We model an instance of this problem as follows:

- n = number of cities. The cities are numbered from 1 to n.
- $c: \{1, ..., n\} \times \{1, ..., n\} \rightarrow \mathbb{N}^+$ is a cost function. c(i, j) is the cost of traveling from city i to city j.

A tour of the *n* cities is a sequence $(a_1, \ldots, a_n, a_{n+1})$ where

- $a_i \in \{1, \ldots, n\}$ for all $1 \le i \le n$,
- $a_{n+1} = a_1$, and
- for each $j \in \{1, ..., n\}$, there is some $i \in \{1, ..., n\}$ such that $a_i = j$.

A tour of the *n* cities is a sequence $(a_1, \ldots, a_n, a_{n+1})$ where

- $a_i \in \{1, \ldots, n\}$ for all $1 \le i \le n$,
- $a_{n+1} = a_1$, and
- for each $j \in \{1, ..., n\}$, there is some $i \in \{1, ..., n\}$ such that $a_i = j$.

The cost of the tour is

$$\sum_{i=1}^n c(a_i, a_{i+1})$$

Sometimes this is also called the length of the tour.

A TSP tour of the continental U.S. state capitals.

The traveling salesman decision problem is

$$\text{TSP} = \left\{ \langle n, c, k \rangle \, \middle| \, \begin{array}{c} c \text{ is a cost function and there} \\ \text{is a tour with cost at most } k \end{array} \right\}$$

It is easy to see that $TSP \in NP$. The witnesses are the tours. We can easily check if the cost of a tour is at most k.

TSP is NP-complete.

Before we prove this theorem, let's discuss the consequences.

In the TSP decision problem, we only have to decide if a tour with cost at most k exists. In practice what we really want is to find a minimum cost tour.

TSP is NP-complete.

Before we prove this theorem, let's discuss the consequences.

In the TSP decision problem, we only have to decide if a tour with cost at most k exists. In practice what we really want is to find a minimum cost tour. A corollary of the theorem is the following.

Corollary

If $P \neq NP$, then there is no polynomial-time algorithm that finds shortest TSP tours.

TSP is NP-complete.

Before we prove this theorem, let's discuss the consequences.

In the TSP decision problem, we only have to decide if a tour with cost at most k exists. In practice what we really want is to find a minimum cost tour. A corollary of the theorem is the following.

Corollary

If $P \neq NP$, then there is no polynomial-time algorithm that finds shortest TSP tours.

Proof. Suppose we have a polynomial-time algorithm for finding the shortest tours. Then given an instance $\langle n,c,k\rangle$ of TSP , we can compute the shortest tour and see if its cost is at most k. This shows that $\mathrm{TSP} \in \mathrm{P}$, so $\mathrm{P} = \mathrm{NP}$ because TSP is NP -complete. \square

TSP is NP-complete.

Proof. We will reduce HAM-CYCLE to TSP. Let G = (V, E) be a graph.

TSP is NP-complete.

Proof. We will reduce HAM-CYCLE to TSP. Let G = (V, E) be a graph.

Define n = |V|, k = n, and

$$c(i,j) = \begin{cases} 1 & \text{if } (i,j) \in E \\ n+1 & \text{if } (i,j) \notin E \end{cases}$$

for all $i, j \in \{1, ..., n\}$.

TSP is NP-complete.

Proof. We will reduce HAM-CYCLE to TSP. Let G = (V, E) be a graph.

Define n = |V|, k = n, and

$$c(i,j) = \begin{cases} 1 & \text{if } (i,j) \in E \\ n+1 & \text{if } (i,j) \notin E \end{cases}$$

for all $i, j \in \{1, ..., n\}$.

We claim that

$$G \in \text{HAM-CYCLE} \iff \langle n, c, k \rangle \in \text{TSP}.$$

Suppose that G has a Hamiltonian cycle. Then that cycle is a tour of length n=k in the TSP instance. Therefore $G \in \mathrm{HAM\text{-}CYCLE}$ implies $\langle n,c,k \rangle \in \mathrm{TSP}$.

Suppose that G has a Hamiltonian cycle. Then that cycle is a tour of length n=k in the TSP instance. Therefore $G \in \text{HAM-CYCLE}$ implies $\langle n, c, k \rangle \in \text{TSP}$.

For the converse, suppose that there is a tour with cost $\leq k = n$. Then that tour never goes from a city i to a city j with a cost of n+1. Therefore, there is an edge in G between every consecutive pair of cities on the tour, so the tour is a Hamiltonian cycle in G. Therefore $\langle n, c, k \rangle \in \mathrm{TSP}$ implies $G \in \mathrm{HAM\text{-}CYCLE}$.

Suppose that G has a Hamiltonian cycle. Then that cycle is a tour of length n=k in the TSP instance. Therefore $G \in \mathrm{HAM\text{-}CYCLE}$ implies $\langle n,c,k \rangle \in \mathrm{TSP}$.

For the converse, suppose that there is a tour with cost $\leq k = n$. Then that tour never goes from a city i to a city j with a cost of n+1. Therefore, there is an edge in G between every consecutive pair of cities on the tour, so the tour is a Hamiltonian cycle in G. Therefore $\langle n,c,k\rangle\in \mathrm{TSP}$ implies $G\in \mathrm{HAM\text{-}CYCLE}$.

Since we can compute $\langle n, c, k \rangle$ from G in polynomial time, we have shown that

HAM-CYCLE \leq_{P} TSP.

Plan for NP-completeness reductions:

Subset Sum

The subset sum decision problem is

$$\text{SUBSET-SUM} = \left\{ \langle L, S \rangle \left| \begin{array}{c} L = (a_1, \dots, a_n) \text{ is a list of } n \text{ integers} \\ \text{and} \\ \exists I \subseteq \{1, \dots, n\} \text{ such that } \sum_{i \in I} a_i = S \end{array} \right. \right\}$$

SUBSET-SUM is NP-complete.

Proof. We've seen that $SUBSET-SUM \in NP$. We'll reduce 3SAT to SUBSET-SUM.

Let $\phi = C_1 \wedge ... \wedge C_m$ be a 3CNF formula over n variables $x_1, ..., x_n$.

SUBSET-SUM is NP-complete.

Proof. We've seen that $SUBSET-SUM \in NP$. We'll reduce 3SAT to SUBSET-SUM.

Let $\phi = C_1 \wedge ... \wedge C_m$ be a 3CNF formula over n variables $x_1, ..., x_n$.

We will define a list of 2n + 2m integers that will all have values between 0 and 10^{n+m} , and a target sum.

We will write them as decimal numbers using exactly n + m digits (using leading 0's when necessary).

For any integer r, let r[k] be the $k^{\rm th}$ most significant digit in the decimal representation of r. So if r=0156, then r[1]=0 and r[4]=6.

For any integer r, let r[k] be the $k^{\rm th}$ most significant digit in the decimal representation of r. So if r=0156, then r[1]=0 and r[4]=6.

We define S, our target sum, by

$$S[k] = \begin{cases} 1 & \text{if } 1 \le k \le n \\ 3 & \text{if } n+1 \le k \le n+m. \end{cases}$$

In other words, S is the number

$$S = \underbrace{11 \dots 1}_{n} \underbrace{33 \dots 3}_{m}.$$

For each $1 \leq j \leq n$ we define two numbers $b_{j,0}$ and $b_{j,1}$ as follows.

For each $1 \le j \le n$ we define two numbers $b_{j,0}$ and $b_{j,1}$ as follows.

• For all $1 \le k \le n$,

$$b_{j,0}[k] = b_{j,1}[k] = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j. \end{cases}$$

For each $1 \le j \le n$ we define two numbers $b_{j,0}$ and $b_{j,1}$ as follows.

• For all $1 \le k \le n$,

$$b_{j,0}[k] = b_{j,1}[k] = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j. \end{cases}$$

• For all $1 \leq k \leq m$,

$$b_{j,0}[n+k] = \begin{cases} 1 & \text{if } \neg x_j \text{ occurs in } C_k \\ 0 & \text{otherwise.} \end{cases}$$

For each $1 \le j \le n$ we define two numbers $b_{j,0}$ and $b_{j,1}$ as follows.

• For all 1 < k < n,

$$b_{j,0}[k] = b_{j,1}[k] = \begin{cases} 1 & \text{if } k = j \\ 0 & \text{if } k \neq j. \end{cases}$$

• For all $1 \le k \le m$,

$$b_{j,0}[n+k] = \left\{ \begin{array}{ll} 1 & \text{if } \neg x_j \text{ occurs in } C_k \\ 0 & \text{otherwise.} \end{array} \right.$$

• For all $1 \le k \le m$,

$$b_{j,1}[n+k] = \begin{cases} 1 & \text{if } x_j \text{ occurs in } C_k \\ 0 & \text{otherwise.} \end{cases}$$

For each $1 \leq i \leq m$ we define two numbers $c_{i,0}$ and $c_{i,1}$ by

$$c_{i,0}[k] = c_{i,1}[k] = \begin{cases} 1 & \text{if } k = n+i \\ 0 & \text{otherwise} \end{cases}$$

for all 1 < k < n + m.

For each $1 \le i \le m$ we define two numbers $c_{i,0}$ and $c_{i,1}$ by

$$c_{i,0}[k] = c_{i,1}[k] = \begin{cases} 1 & \text{if } k = n+i \\ 0 & \text{otherwise} \end{cases}$$

for all 1 < k < n + m.

Let *L* be the list of these numbers:

$$L = (b_{1,0}, b_{2,0}, \ldots, b_{n,0}, b_{1,1}, \ldots, b_{n,1}, c_{1,0}, \ldots, c_{n,0}, c_{1,1}, \ldots, c_{n,1})$$

Note that (L, S) can be computed in polynomial time from ϕ .

For each $1 \le i \le m$ we define two numbers $c_{i,0}$ and $c_{i,1}$ by

$$c_{i,0}[k] = c_{i,1}[k] = \begin{cases} 1 & \text{if } k = n+i \\ 0 & \text{otherwise} \end{cases}$$

for all 1 < k < n + m.

Let L be the list of these numbers:

$$L = (b_{1,0}, b_{2,0}, \ldots, b_{n,0}, b_{1,1}, \ldots, b_{n,1}, c_{1,0}, \ldots, c_{n,0}, c_{1,1}, \ldots, c_{n,1})$$

Note that (L, S) can be computed in polynomial time from ϕ .

Claim

$$\phi \in 3SAT \iff (L, S) \in SUBSET-SUM.$$

As an example, consider

$$\phi = (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3).$$

Then n = m = 3, S = 111333, and

$$egin{array}{llll} b_{1,0} &=& 100101 & & c_{1,0} &=& 000100 \ b_{1,1} &=& 100010 & & c_{1,1} &=& 000100 \ b_{2,0} &=& 010011 & & c_{2,0} &=& 000010 \ b_{2,1} &=& 010100 & & c_{2,1} &=& 000010 \ b_{3,0} &=& 001101 & & c_{3,0} &=& 000001 \ b_{3,1} &=& 001010 & & c_{3,1} &=& 000001 \ \hline \end{array}$$

Observe that for any k, $n < k \le n + m$, there are at most 5 numbers in L with a 1 in the $k^{\rm th}$ digit. This is because each clause has at most 3 literals, and there are 2+(the number of literals in the $k^{\rm th}$ clause) many 1's in the $k^{\rm th}$ digits of numbers in L.

Observe that for any k, $n < k \le n+m$, there are at most 5 numbers in L with a 1 in the $k^{\rm th}$ digit. This is because each clause has at most 3 literals, and there are 2+(the number of literals in the $k^{\rm th}$ clause) many 1's in the $k^{\rm th}$ digits of numbers in L.

Also, for any k, $1 \le k \le n$, there are exactly two numbers with a 1 in the $k^{\rm th}$ digit, namely $b_{k,0}$ and $b_{k,1}$.

Observe that for any k, $n < k \le n + m$, there are at most 5 numbers in L with a 1 in the $k^{\rm th}$ digit. This is because each clause has at most 3 literals, and there are 2+(the number of literals in the $k^{\rm th}$ clause) many 1's in the $k^{\rm th}$ digits of numbers in L.

Also, for any k, $1 \le k \le n$, there are exactly two numbers with a 1 in the k^{th} digit, namely $b_{k,0}$ and $b_{k,1}$.

Therefore to get a sum of S we need to choose a subset of the numbers that

- has exactly three numbers with a 1 in the $k^{ ext{th}}$ position for $n < k \leq n + m$ and
- has either $b_{k,0}$ or $b_{k,1}$ for $1 \le k \le n$.

$$\phi = (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3).$$

$$b_{1,0} = 100101 \qquad c_{1,0} = 000100$$

$$b_{1,1} = 100010 \qquad c_{1,1} = 000100$$

$$b_{2,0} = 010011 \qquad c_{2,0} = 000010$$

$$b_{1,0} = 100101$$
 $c_{1,0} = 000100$
 $b_{1,1} = 100010$ $c_{1,1} = 000100$
 $b_{2,0} = 010011$ $c_{2,0} = 000010$
 $b_{2,1} = 010100$ $c_{2,1} = 000010$
 $b_{2,0} = 001101$ $c_{3,0} = 000001$

$$b_{2,1} = 01011$$
 $c_{2,0} = 000010$ $b_{2,1} = 010100$ $c_{2,1} = 000010$ $c_{3,0} = 001101$ $c_{3,0} = 000001$ $c_{3,1} = 000001$ $c_{3,1} = 000001$ $c_{3,1} = 000001$

Satisfying assignment: $x_1 = F$, $x_2 = F$, and $x_3 = T$

$$\phi = (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3).$$

$$b_{1,0} = 100101 \qquad c_{1,0} = 000100$$

$$b_{1,1} = 100010 \qquad c_{1,1} = 000100$$

$$b_{2,0} = 010011 \qquad c_{2,0} = 000010$$

 $b_{1.0} = 100101 \quad (x_1 = F)$

 $c_{3,1} = 000001$

$$egin{array}{llll} b_{1,1} &=& 100010 & & c_{1,1} &=& 000100 \ b_{2,0} &=& 010011 & & c_{2,0} &=& 000010 \ b_{2,1} &=& 010100 & & c_{2,1} &=& 000010 \ b_{3,0} &=& 001101 & & c_{3,0} &=& 000001 \end{array}$$

$$S=111333$$

Satisfying assignment: $x_1=F$, $x_2=F$, and $x_3=T$

 $b_{3,1} = 001010$

outlooping assignments of the figure of the

Choose:

$$b_{2,0} = 010011 \quad (x_2 = F)$$
 $b_{3,1} = 001010 \quad (x_3 = T)$
 111122

$$\phi = (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3).$$

$$b_{1,0} = 100101 \qquad c_{1,0} = 000100$$

$$b_{1,1} = 100010 \qquad c_{1,1} = 000100$$

$$b_{2,0} = 010011 \qquad c_{2,0} = 000010$$

$$b_{2,1} = 010100 \qquad c_{2,1} = 000010$$

$$b_{3,0} = 001101 \qquad c_{3,0} = 000001$$

$$b_{3,1} = 001010 \qquad c_{3,1} = 000001$$

$$S = 111333$$

Satisfying assignment: $x_1 = F$, $x_2 = F$, and $x_3 = T$

Choose:

$$\begin{array}{rcl} b_{1,0} & = & 100101 & (x_1 = F) \\ b_{2,0} & = & 010011 & (x_2 = F) \\ b_{3,1} & = & \underbrace{001010}_{111122} & (x_3 = T) \end{array}$$

The last three digits of this sum, 122, correspond to the number of literals satisfied in each clause: $\neg x_1$ is satisfied C_1 , $\neg x_2$ and x_3 are satisfied C_2 , and $\neg x_1$ and $\neg x_2$ are satisfied C_3 .

$$\phi = (\neg x_1 \lor x_2 \lor \neg x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor \neg x_2 \lor \neg x_3).$$

$$b_{1,0} = 100101 \qquad c_{1,0} = 000100$$

$$b_{1,1} = 100010 \qquad c_{1,1} = 000100$$

$$b_{2,0} = 010011 \qquad c_{2,0} = 000010$$

$$b_{2,1} = 010100 \qquad c_{2,1} = 000010$$

$$b_{3,0} = 001101 \qquad c_{3,0} = 000001$$

$$b_{3,1} = 001010 \qquad c_{3,1} = 000001$$

$$S = 111333$$

Satisfying assignment: $x_1 = F$, $x_2 = F$, and $x_3 = T$

Choose:

$$b_{1,0} = 100101 \quad (x_1 = F)$$

 $b_{2,0} = 010011 \quad (x_2 = F)$
 $b_{3,1} = 001010 \quad (x_3 = T)$

The last three digits of this sum, 122, correspond to the number of literals satisfied in each clause: $\neg x_1$ is satisfied C_1 , $\neg x_2$ and x_3 are satisfied C_2 , and $\neg x_1$ and $\neg x_2$ are satisfied C_3 .

To finish, we also choose $c_{1,0}$, $c_{1,1}$, $c_{2,0}$, and $c_{3,0}$ to reach S.

We must show that $\phi \in 3\mathrm{SAT} \Rightarrow (L, S) \in \mathrm{SUBSET\text{-}SUM}$. So assume that ϕ is satisfied by an assignment τ to the variables x_1, \ldots, x_n . We define a sublist L' of L as follows.

We must show that $\phi \in 3SAT \Rightarrow (L, S) \in SUBSET-SUM$. So assume that ϕ is satisfied by an assignment τ to the variables x_1, \ldots, x_n . We define a sublist L' of L as follows.

For each j, $1 \le j \le n$,

- If $\tau(x_j) = F$, then put $b_{j,0}$ in L'.
- If $\tau(x_j) = T$, then put $b_{j,1}$ in L'.

We must show that $\phi \in 3SAT \Rightarrow (L, S) \in SUBSET-SUM$. So assume that ϕ is satisfied by an assignment au to the variables x_1, \ldots, x_n . We define a sublist L' of L as follows.

For each i, 1 < i < n,

- If $\tau(x_i) = F$, then put $b_{i,0}$ in L'.
- If $\tau(x_i) = T$, then put $b_{i,1}$ in L'.

For each i, 1 < i < m,

- If τ satisfies 3 literals in C_i , do nothing.
- If τ satisfies 2 literals in C_i , put $c_{i,0}$ in L'.
- If τ satisfies 1 literal in C_i , put both $c_{i,0}$ and $c_{i,1}$ in L'.

We must show that $\phi \in 3SAT \Rightarrow (L, S) \in SUBSET\text{-}SUM$. So assume that ϕ is satisfied by an assignment τ to the variables x_1, \ldots, x_n . We define a sublist L' of L as follows.

For each j, 1 < j < n,

- If $\tau(x_i) = F$, then put $b_{i,0}$ in L'.
- If $\tau(x_j) = T$, then put $b_{j,1}$ in L'.

For each i, 1 < i < m,

- If τ satisfies 3 literals in C_i , do nothing.
- If τ satisfies 2 literals in C_i , put $c_{i,0}$ in L'.
- If τ satisfies 1 literal in C_i , put both $c_{i,0}$ and $c_{i,1}$ in L'.

Then $\sum_{a,l} a = S$. Therefore $(L, S) \in SUBSET-SUM$.

We make two observations.

• We know that for each j, $1 \le j \le n$, L' has exactly one of $b_{j,0}$ or $b_{j,1}$. There's no other way to get a one in each column. Picking neither gives us a 0, and picking both gives us a 2.

We make two observations.

- We know that for each j, $1 \le j \le n$, L' has exactly one of $b_{j,0}$ or $b_{j,1}$. There's no other way to get a one in each column. Picking neither gives us a 0, and picking both gives us a 2.
- Furthermore, we don't have to worry about carry-over from another column because we are working in decimal notation and the largest possible sum in a column is 5.

We make two observations.

- We know that for each j, $1 \le j \le n$, L' has exactly one of $b_{j,0}$ or $b_{j,1}$. There's no other way to get a one in each column. Picking neither gives us a 0, and picking both gives us a 2.
- Furthermore, we don't have to worry about carry-over from another column because we are working in decimal notation and the largest possible sum in a column is 5.

We define our assignment τ as follows.

$$\tau(x_j) = \begin{cases} T & \text{if } L' \text{ contains } b_{j,1} \\ F & \text{if } L' \text{ contains } b_{j,0} \end{cases}$$

For each i, $1 \le i \le m$, the $(n+i)^{\rm th}$ digit in the sum of L' is 3, so in L' there must be some $b_{j,0}$ or $b_{j,1}$ that has the $(n+i)^{\rm th}$ digit equal to 1. This is because from $c_{i,0}$ and $c_{i,1}$ we can get at most a sum of 2 in the $(n+i)^{\rm th}$ column, so we must get at least one 1 from the $b_{j,k}$'s.

For each i, $1 \le i \le m$, the $(n+i)^{\rm th}$ digit in the sum of L' is 3, so in L' there must be some $b_{j,0}$ or $b_{j,1}$ that has the $(n+i)^{\rm th}$ digit equal to 1. This is because from $c_{i,0}$ and $c_{i,1}$ we can get at most a sum of 2 in the $(n+i)^{\rm th}$ column, so we must get at least one 1 from the $b_{j,k}$'s.

• Suppose it is a $b_{j,0}$. Then $\neg x_j$ is a literal in clause C_i and $\tau(x_j) = F$, so our assignment satisfies that clause.

For each i, $1 \le i \le m$, the $(n+i)^{\rm th}$ digit in the sum of L' is 3, so in L' there must be some $b_{j,0}$ or $b_{j,1}$ that has the $(n+i)^{\rm th}$ digit equal to 1. This is because from $c_{i,0}$ and $c_{i,1}$ we can get at most a sum of 2 in the $(n+i)^{\rm th}$ column, so we must get at least one 1 from the $b_{i,k}$'s.

- Suppose it is a $b_{j,0}$. Then $\neg x_j$ is a literal in clause C_i and $\tau(x_j) = F$, so our assignment satisfies that clause.
- Similarly, suppose it is a $b_{j,1}$. Then x_j is a literal in clause C_i and $\tau(x_j) = T$, so our assignment satisfies that clause.

For each i, $1 \le i \le m$, the $(n+i)^{\rm th}$ digit in the sum of L' is 3, so in L' there must be some $b_{j,0}$ or $b_{j,1}$ that has the $(n+i)^{\rm th}$ digit equal to 1. This is because from $c_{i,0}$ and $c_{i,1}$ we can get at most a sum of 2 in the $(n+i)^{\rm th}$ column, so we must get at least one 1 from the $b_{i,k}$'s.

- Suppose it is a $b_{j,0}$. Then $\neg x_j$ is a literal in clause C_i and $\tau(x_i) = F$, so our assignment satisfies that clause.
- Similarly, suppose it is a $b_{j,1}$. Then x_j is a literal in clause C_i and $\tau(x_i) = T$, so our assignment satisfies that clause.

Therefore, τ satisfies all the clauses of ϕ , so ϕ is satisfiable, and $\phi \in 3\mathrm{SAT}$.

For each i, $1 \le i \le m$, the $(n+i)^{\rm th}$ digit in the sum of L' is 3, so in L' there must be some $b_{j,0}$ or $b_{j,1}$ that has the $(n+i)^{\rm th}$ digit equal to 1. This is because from $c_{i,0}$ and $c_{i,1}$ we can get at most a sum of 2 in the $(n+i)^{\rm th}$ column, so we must get at least one 1 from the $b_{j,k}$'s.

- Suppose it is a $b_{j,0}$. Then $\neg x_j$ is a literal in clause C_i and $\tau(x_j) = F$, so our assignment satisfies that clause.
- Similarly, suppose it is a $b_{j,1}$. Then x_j is a literal in clause C_i and $\tau(x_j) = T$, so our assignment satisfies that clause.

Therefore, τ satisfies all the clauses of ϕ , so ϕ is satisfiable, and $\phi \in 3\mathrm{SAT}$.

Since the construction is polynomial-time computable, we have shown that $3SAT \leq_P SUBSET\text{-}SUM$.

NP-Completeness Summary

Let us review the method of showing a problem B is NP-complete.

• Show that $B \in NP$. It is usually easy to show this, but it is a step that shouldn't be overlooked.

NP-Completeness Summary

Let us review the method of showing a problem B is NP-complete.

- Show that $B \in NP$. It is usually easy to show this, but it is a step that shouldn't be overlooked.
- Choose some NP-complete problem A that is a candidate for reduction to B. Often we try to find a problem that is similar to B or use 3SAT.

NP-Completeness Summary

Let us review the method of showing a problem B is NP-complete.

- Show that $B \in NP$. It is usually easy to show this, but it is a step that shouldn't be overlooked.
- Choose some NP-complete problem A that is a candidate for reduction to B. Often we try to find a problem that is similar to B or use 3SAT.
- 3 Reduce A to B.

For this, we need to define a mapping of instances I of A to instances I' of B.

 $I\mapsto I'$

For this, we need to define a mapping of instances I of A to instances I' of B.

$$I\mapsto I'$$

Then we need to prove that for every instance I of A,

$$I \in A \iff I' \in B$$
.

For this, we need to define a mapping of instances I of A to instances I' of B.

$$I\mapsto I'$$

Then we need to prove that for every instance I of A,

$$I \in A \iff I' \in B$$
.

This involves showing two implications: $I \in A \implies I' \in B$ and $I' \in B \implies I \in A$.

For this, we need to define a mapping of instances I of A to instances I' of B.

$$I\mapsto I'$$

Then we need to prove that for every instance I of A,

$$I \in A \iff I' \in B$$
.

This involves showing two implications: $I \in A \implies I' \in B$ and $I' \in B \implies I \in A$.

• To show that $I \in A \implies I' \in B$, assume that $I \in A$. Then there is some witness w for I that shows I is a member of A. We use this witness to construct a witness w' that shows $I' \in B$.

For this, we need to define a mapping of instances I of A to instances I' of B.

$$I\mapsto I'$$

Then we need to prove that for every instance I of A,

$$I \in A \iff I' \in B$$
.

This involves showing two implications: $I \in A \implies I' \in B$ and $I' \in B \implies I \in A$.

- To show that $I \in A \implies I' \in B$, assume that $I \in A$. Then there is some witness w for I that shows I is a member of A. We use this witness to construct a witness w' that shows $I' \in B$.
- To show the converse, assume that $I' \in B$. Then there is some witness w' for I'. We use w' to construct a witness w that shows $I \in A$.

For this, we need to define a mapping of instances I of A to instances I' of B.

$$I\mapsto I'$$

Then we need to prove that for every instance I of A,

$$I \in A \iff I' \in B$$
.

This involves showing two implications: $I \in A \implies I' \in B$ and $I' \in B \implies I \in A$.

- To show that $I \in A \implies I' \in B$, assume that $I \in A$. Then there is some witness w for I that shows I is a member of A. We use this witness to construct a witness w' that shows $I' \in B$.
- To show the converse, assume that $I' \in B$. Then there is some witness w' for I'. We use w' to construct a witness w that shows $I \in A$.

Finally, we have to verify that the mapping is polynomial-time computable. Usually this doesn't require formal analysis of the algorithm.

Summary of NP-completeness reductions:

