

# UNIVERSITÀ DEGLI STUDI DI MILANO

### FACOLTÀ DI SCIENZE E TECNOLOGIE

Corso di Laurea in Informatica

## CONVERSIONE DI STRUMENTI VINTAGE PER LA DATA PHYSICALIZATION

Relatore: Andrea Trentini

Tesi di Laurea di: Davide Busolin

Matr. 930814

Anno Accademico 2020/2021

# Indice

| 1 | Introduzione                                                          | 2 |
|---|-----------------------------------------------------------------------|---|
| 2 | Funzionamento 2.1 Attori coinvolti 2.2 Modalità API 2.3 Modalità MQTT | 4 |
| 3 | Cap3                                                                  | 6 |
| 4 | Conclusioni                                                           | 7 |

# Capitolo 1 Introduzione

TCP/IP over Avian Carriers[1]

## Capitolo 2

## **Funzionamento**

#### 2.1 Attori coinvolti

Prima di parlare del funzionamento dell'oggetto è il caso di soffermarsi su chi interagisce con esso:

#### Sviluppatore

È in grado di apportare modifiche al codice sorgente. Può aggiungere, rimuovere e modificare funzionalità del programma e apportare modifiche dirette ai file di configurazione.

#### Utente esperto

Conosce le API ed è in grado di comprendere il formato dei dati che restituiscono. Gli è sufficiente un'interfaccia anche spartana per selezionare la sorgente dei dati e il campo specifico che vuole rappresentato.

#### Utente inesperto

Non conosce le API né il formato JSON: ha bisogno di un prodotto già pronto che richieda la minima configurazione possibile e questa deve essere particolarmente intuitiva, ad esempio una piccola interfaccia web per scegliere la rete WiFi e inserirne la password al primo avvio. La sorgente dei dati deve essere preconfigurata e se ne viene resa disponibile più di una la scelta deve essere molto semplice, possibilmente tramite interazione fisica con il dispositivo.

#### 2.2 Modalità API

Questa modalità di operazione si basa sull'esecuzione ad intervalli di tempo configurabili di richieste HTTP o HTTPS ad API REST e sulla conversione del risultato in una tensione di uscita. La configurazione è salvata nella memoria flash del microcontrollore in formato JSON, esempio:

```
1
    "apiUrl": "http://api.coindesk.com/v1/bpi/
2
       currentprice/USD.json",
    "filterJSON": "{bpi:{USD:{rate_float:true}}}",
3
    "path": "bpi/USD/rate_float",
4
    "min_value": 58700,
5
    "max_value": 58900,
6
    "min_pwm": 0,
7
    "max_pwm": 1023,
8
    "request_interval_ms": 15000
9
10
```

Dove:

- apiUrl è l'URL alla risorsa (stringa)
- post\_payload in caso di richiesta POST contiene la stringa da inviare nel body
- filterJSON è un documento JSON che contiene true come placeholder del/i campi che si vuole considerare dalla risposta (stringa/oggetto)
- path è una stringa che contiene il "percorso" del campo che si vuole rappresentare fisicamente (campo: float, path: stringa)
- min\_value indica il valore minimo della scala per rappresentare il valore (float)
- max\_value indica il valore massimo (float)
- min\_pwm indica il valore minimo di uscita della PWM da mappare al valore restituito dalle API (int)
- max\_pwm indica il valore massimo [su ESP il duty cycle massimo equivale a 1023] (int)
- request\_interval\_ms indica l'intervallo di tempo in millisecondi che trascorre tra una richiesta e l'altra alle API (int)

La configurazione può essere alterata tramite una pagina web accessibile all'indirizzo IP nella rete locale del microcontrollore.

#### [SCREENSHOT PAGINA WEB]

I form sono precompilati con la configurazione in esecuzione (running-conf) ed è presente una sezione che riporta la configurazione salvata nella flash (saved-conf).

È possibile inoltre inviare un JSON di configurazione tramite MQTT al topic Phys/setFromJSON. I campi possono essere modificati singolarmente ai topic:

- Phys/setApiUrl
- Phys/setFilterJson
- Phys/setPath
- Phys/setMinValue
- Phys/setMaxValue
- Phys/setMinPwm
- Phys/setMaxPwm
- Phys/setRequestIntervalMs

Le modifiche non sono automaticamente salvate nella memoria flash ma ciò deve essere richiesto esplicitamente. Nei form di configurazione è presente una checkbox da spuntare in caso si voglia che questo avvenga.

## 2.3 Modalità MQTT

Non ancora implementata, ma l'idea è che consenta di visualizzare un valore ricevuto direttamente tramite sottoscrizione a un topic MQTT invece che andarlo a reperire tramite richieste HTTP(S).

Capitolo 3

Cap3

Capitolo 4

Conclusioni

# Bibliografia

[1] David Waitzman. Standard for the transmission of ip datagrams on avian carriers. Technical report, 1990.