Ferienkurs Mathematik für Physiker I Blatt 2 (28.03.2017)

Aufgabe 1: Lineare (Un-)Abhängigkeit und Linearkombinationen

- (a) Prüfen Sie die folgenden Vektoren in den jeweiligen Vektorräumen auf lineare Abhängigkeit.
 - (a₁) $1, \sqrt{2}, \sqrt{3}$ im \mathbb{Q} -Vektorraum \mathbb{R} .
 - (a₂) (1,2,3), (4,5,6), (7,8,9) im \mathbb{R}^3
- (b) Für welche $t \in \mathbb{R}$ sind die Vektoren

$$\begin{pmatrix} 1 \\ 3 \\ 4 \end{pmatrix}, \begin{pmatrix} 3 \\ t \\ 11 \end{pmatrix}, \begin{pmatrix} -1 \\ -4 \\ 0 \end{pmatrix}$$

linear Abhängig?

Lösung

(a) (a₁) Wir machen den Ansatz

$$\lambda_1 \cdot 1 + \lambda_2 \cdot \sqrt{2} + \lambda_3 \cdot \sqrt{3} = 0$$

wobei $\lambda_i \in \mathbb{Q}$. Es gilt folglich

$$\lambda_2 \cdot \sqrt{2} + \lambda_3 \cdot \sqrt{3} = -\lambda_1 \in \mathbb{O}$$

und daher ist auch

$$(-\lambda_1)^2 = 2\lambda_2^2 + 2\lambda_2\lambda_3\sqrt{6} + 3\lambda_3^2 \in \mathbb{Q}$$

Nun folgt aber für $\lambda_2, \lambda_3 \neq 0$ dass $\sqrt{6} \in \mathbb{Q}$. Für $\lambda_2 \neq 0, \lambda_3 = 0$ folgt $\sqrt{2} \in \mathbb{Q}$ sowie für $\lambda_2 = 0, \lambda_3 \neq 0$ dass $\sqrt{3} \in \mathbb{Q}$ - allesamt widersprüchliche Aussagen. Es muss also $\lambda_i = 0 \ \forall i \in \{1, 2, 3\}$ gelten, woraus die lineare Unabhängigkeit der (eindimensionalen) Vektoren über \mathbb{Q} folgt.

- (a_2) Da $2 \cdot \begin{pmatrix} 4 \\ 5 \\ 6 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} 7 \\ 8 \\ 9 \end{pmatrix}$ gilt, sind die Vektoren linear abhängig.
- (b) Als Matrix geschrieben ergibt das Gleichungssystem

$$\begin{pmatrix} 1 & 3 & 4 \\ 3 & t & 11 \\ -1 & -4 & 0 \end{pmatrix}$$

Welches nach Zeilenumformungen auf

$$\begin{pmatrix} 1 & 3 & 4 \\ 0 & 4t - 37 & 0 \\ 0 & -1 & 4 \end{pmatrix}$$

führt. Lineare Abhängigkeit ist Gleichbedeutend mit dem verschwinden der zweiten Zeile (rang< 3) und damit der Bedingung 4t=37 oder $t=\frac{37}{4}$.

Aufgabe 2: Vektorräume

Bestimmen Sie ob die folgenden Teilmengen T_i Untervektorräume (UVR) der angegebenen Vektorräume sind.

(a)
$$T_1 = \{(x_1, x_2, x_3, x_4)^T \in \mathbb{R}^4 | x_2 + x_3 - 2x_4 = 0\} \subset \mathbb{R}^4$$

(b)
$$T_2 = \{(x_1, x_2, x_3)^T \in \mathbb{R}^3 | x_1 + x_2 = 1\} \subset \mathbb{R}^3$$

(c)
$$T_3 = \{(x_1, \dots, x_n)^T \in \mathbb{R}^n | x_1 \in \mathbb{Q}\} \subset \mathbb{R}^n$$

(d)
$$T_4 = \{(x_1, x_2) \in \mathbb{R}^2 | x_1^2 + x_2^4 = 0\} \subset \mathbb{R}^2$$

(e)
$$T_5 = \{ f \in Abb(\mathbb{R}, \mathbb{R}) | f(x) = f(-x) \ \forall x \in \mathbb{R} \} \subset Abb(\mathbb{R}, \mathbb{R})$$

Lösung

- (a) T_1 ist ein UVR.
- (b) T_2 ist keiner, da z.B.: $(1,0,0)^T \in T_2$ aber $2 \cdot (1,0,0)^T = (2,0,0)^T \notin T_2$.
- (c) T_3 ist ebenfalls kein UVR, da $\sqrt{2} \cdot (1,0,\ldots,0)^T \notin T_3$. Es gibt also ein lineares Vielfaches mit einem Element aus dem zugrundeliegenden Körper (\mathbb{R}) eines Vektors der in T_3 liegt welches selbst nicht mehr in T_3 liegt ($\sqrt{2} \notin \mathbb{Q}$).
- (d) Da $x_1^2 + x_2^4 > 0 \ \forall \ (x_1, x_2) \in \mathbb{R}^2 \setminus (0, 0)$ gilt, folgt dass (0, 0) das einzige Element in T_4 ist. Die Bedingungen an einen Untervektorraum sind also trivial erfüllt. Der Nullvektor ist Teil jedes Vektorraums.
- (e) T_5 ist ein UVR. Die Nullabbildung ist trivial enthalten. Weiter gilt: (f+g)(x) = f(x) + g(x) = f(-x) + g(-x) = (f+g)(-x) sowie $(\lambda f)(x) = \lambda \cdot f(x) = \lambda \cdot f(-x) = (\lambda f)(-x)$ da sowohl f als auch g in T_5 liegen.

Aufgabe 3: Erzeugendensysteme und Basis

(a) Sei

$$\mathbf{v_1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \ \mathbf{v_2} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \ \mathbf{v_3} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ \mathbf{v_4} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

Prüfen Sie nun ob $B:=\{v_1,v_2,v_3,v_4\}$ eine Basis des $\mathbb{R}^{2\times 2}$ bildet.

(b) Bestimmen Sie eine Basis des von der Menge

$$X := \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -1 \\ -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 0 \\ -1 \\ 0 \end{pmatrix} \right\}$$

erzeugten UVR $T = \langle X \rangle$ des \mathbb{R}^4

Lösung

(a) Der Vektorraum $\mathbb{R}^{2\times 2}$ hat die Dimension 4 (da vier Freiheitsgrade). Es ist daher ausreichend die lineare Unabhängigkeit von B zu zeigen, da vier linear Unabhängige Vektoren eines vierdimensionalen Raumes eine Basis bilden. Machen wir also den Ansatz:

$$\lambda_1 \mathbf{v_1} + \cdots + \lambda_4 \mathbf{v_4} = \mathbf{0}$$

ausgeschrieben lautet diese Gleichung

$$\begin{pmatrix} \lambda_1 + \lambda_2 & \lambda_2 + \lambda_3 \\ -\lambda_3 + \lambda_4 & \lambda_1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

Wir können ablesen, dass $\lambda_1 = 0$ gelten muss. Damit folgt $\lambda_2 = 0$ und so müssen auch die restlichen skalare null sein, damit die Gleichung erfüllt ist. Da also die einzige Möglichkeit unseren Ansatz zu erfüllen die Wahl aller $\lambda_i = 0$ ist, folgt nach der Definition der linearen Unabhängigkeit auch selbige für die Menge B. B ist also eine Basis des $\mathbb{R}^{2\times 2}$

(b) Um zur Lösung zu gelangen schreibt man die in der Aufgabenstellung gegebenen erzeugenden Vektoren von U als Zeilen in eine Matrix

$$\begin{pmatrix} 0 & 1 & 0 & -1 \\ 1 & 0 & 1 & -2 \\ -1 & -2 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 1 & 0 & -1 & -1 \\ 2 & 0 & -1 & 0 \end{pmatrix}$$

welche sich auf Zeilenstufenform gebracht folgendermaßen aussieht:

$$\begin{pmatrix} 1 & 0 & 1 & -2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -3 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Wir erkennen also, dass die ersten vier Zeilen linear unabhängig sind. Damit sind aber auch die korrespondierenden ersten vier Vektoren von X linear unabhängig. Also bildet

3

$$B := \left\{ \begin{pmatrix} 0 \\ 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ -2 \end{pmatrix}, \begin{pmatrix} -1 \\ -2 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \right\}$$

eine Basis von $\langle X \rangle = \mathbb{R}^4$.

Man kann dieses Verfahren etwas abkürzen: Sobald man erkennt dass die Matrix den Rang 4 hat, weiß man dass der aufgespannte Untervektorraum vierdimensional ist. Deshalb ist eine beliebige Basis des \mathbb{R}^4 als Basis von T wählbar; etwa die Standardbasis $E_4 = \{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3, \mathbf{e}_4\}.$

Aufgabe 4: Lineare Abbildungen 1

Untersuchen Sie die folgenden Abbildungen auf Linearität

(a)
$$\mathbb{R}^2 \to \mathbb{R}^2$$
, $(x, y) \mapsto (3x + 2y, x)$

(b)
$$\mathbb{R} \to \mathbb{R}$$
, $x \mapsto ax + b$ für $b \neq 0$ und $b = 0$.

(c)
$$\mathbb{Q}^2 \to \mathbb{R}$$
, $(x,y) \mapsto x + \sqrt{2}y$ (über \mathbb{Q})

(d)
$$\mathbb{C} \to \mathbb{C}$$
, $z \mapsto \bar{z}$

(e)
$$Abb(\mathbb{R}, \mathbb{R}) \to \mathbb{R}, f \mapsto f(1)$$

(f)
$$\mathbb{C} \to \mathbb{C}$$
, $z \mapsto \bar{z}$ (über \mathbb{R})

Lösung Es werden mit Ausnahme von Teilaufgabe (e) alle gegebenen Abbildungen mit f bezeichnet.

(a) Es gilt $\forall \lambda_1, \lambda_2 \in \mathbb{R}$ und $\forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2$:

$$f(\lambda_1(x_1, y_1) + \lambda_2(x_2, y_2)) = f(\lambda_1 x_1 + \lambda_2 x_2, \ \lambda_1 y_1 + \lambda_2 y_2)$$

$$= (3(\lambda_1 x_1 + \lambda_2 x_2) + 2(\lambda_1 y_1 + \lambda_2 y_2), \ \lambda_1 x_1 + \lambda_2 x_2)$$

$$= \lambda_1 (3x_1 + 2y_1, \ x_1) + \lambda_2 (3x_2 + 2y_2, \ x_2)$$

$$= \lambda_1 f(x_1, y_1) + \lambda_2 f(x_2, y_2)$$

und somit ist F linear

- (b) Für $b \neq 0$ gilt $f(0) \neq 0$ und somit $\lambda f(0) = \lambda b \neq b = F(\lambda \cdot 0) = f(0)$ für $\lambda \neq 1$ also $\lambda f(0) \neq F(\lambda \cdot 0)$. Damit ist f nicht linear. Für b = 0 hingegen ist f linear, was einfach und nachgerechnet werden kann.
- (c) (c) ist linear, was Analog zu (a) nachgerechnet werden kann

(d)
$$\forall z = x + iy \in \mathbb{C}$$
 gilt $f(x + iy) = x - iy$. Mit $\lambda = i$ und $z = i$ gilt

$$F(\lambda \cdot z) = f(i^2) = f(-1) = -1$$

aber

$$\lambda \cdot f(z) = i \cdot f(i) = i \cdot (-i) = 1$$

womit F nicht linear ist.

(e) Es bezeichnet φ die gegebene Abbildung und f ein Element aus $\mathrm{Abb}(\mathbb{R},\mathbb{R})$ dem Vektorraum der Funktionen von \mathbb{R} nach \mathbb{R} . Die \mathbb{R} -Linearität folgt unmittelbar aus den Eigenschaften des Vektorraumes und des Körpers der reellen Zahlen. Es gilt

$$\varphi(\lambda_1 f_1 + \lambda_2 f_2) = (\lambda_1 f_1 + \lambda_2 f_2)(1)$$

$$= (\lambda_1 f_1)(1) + (\lambda_2 f_2)(1)$$

$$= \lambda_1 \cdot f_1(1) + \lambda_2 f_2(1)$$

$$= \lambda_1 \cdot \varphi(f_1) + \lambda_2 \cdot \varphi(f_2)$$

womit die Linearität gezeigt ist.

(f) Im Gegensatz zu (d) ist füber $\mathbb R$ linear. Es gilt für $z_r=x_r+iy_r\colon$

$$f(\lambda_1 z_1 + \lambda_2 z_2) = f(\lambda_1 (x_1 + iy_1) + \lambda_2 (x_2 + iy_2))$$

$$= f(\lambda_1 x_1 + \lambda_2 x_2 + i(\lambda_1 y_1 + \lambda_2 y_2))$$

$$\stackrel{(*)}{=} \lambda_1 x_1 + \lambda_2 x_2 - i(\lambda_1 y_1 + \lambda_2 y_2)$$

$$= \lambda_1 (x_1 - iy_1) + \lambda_2 (x_2 + iy_2)$$

$$= \lambda_1 f(z_1) + \lambda_2 f(z_2)$$

wobei an der stelle (*) verwendet wurde, dass $\lambda \in \mathbb{R}$ sein muss. Somit ist f \mathbb{R} -linear, aber nicht \mathbb{C} -linear.

Aufgabe 5: Lineare Abbildungen 2

Gegeben sei die lineare Abbildung $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ mit $\varphi \circ \varphi = \mathrm{id}_{\mathbb{R}^2}$ (d.h.: $\forall \mathbf{v} \in \mathbb{R}^2$ gilt $\varphi(\varphi(\mathbf{v})) = \mathbf{v}$), aber $\varphi \neq \pm \mathrm{id}_{\mathbb{R}^2}$ (d.h. $\varphi \notin \{\mathbf{v} \mapsto \mathbf{v}, \mathbf{v} \mapsto -\mathbf{v}\}$). Zeigen Sie Es gibt eine Basis $\mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ des \mathbb{R}^2 mit $\varphi(\mathbf{b}_1) = \mathbf{b}_1$ und $\varphi(\mathbf{b}_2) = -\mathbf{b}_2$.

Hinweis: Wählen Sie geeignete Vektoren \mathbf{v} und \mathbf{v}' . Betrachten Sie dann $\mathbf{v} + \varphi(\mathbf{v})$ und $\mathbf{v}' - \varphi(\mathbf{v}')$.

Lösung Wegen $\varphi \neq \pm \mathrm{id}_{\mathbb{R}^2}$ existiert ein $\mathbf{v} \in \mathbb{R}^2$ mit $\varphi(\mathbf{v}) \neq -\mathbf{v}$ also $\mathbf{v} + \varphi(\mathbf{v}) \neq \mathbf{0}$ und ebenso existiert ein $\mathbf{v}' \in \mathbb{R}^2$ mit $\varphi(\mathbf{v}') \neq \mathbf{v}'$ und folglich $\mathbf{v}' - \varphi(\mathbf{v}') \neq \mathbf{0}$. Wir setzen $\mathbf{b}_1 := \mathbf{v} + \varphi(\mathbf{v})$ und $\mathbf{b}_2 := \mathbf{v}' - \varphi(\mathbf{v}')$. Es gilt:

$$\varphi(\mathbf{b}_1) = \varphi(\mathbf{v} + \varphi(\mathbf{v})) = \varphi(\mathbf{v}) + \varphi^2(\mathbf{v}) = \varphi(\mathbf{v}) + \mathbf{v} = \mathbf{b}_1$$

$$\varphi(\mathbf{b}_2) = \varphi(\mathbf{v}' - \varphi(\mathbf{v}')) = \varphi(\mathbf{v}') - \varphi^2(\mathbf{v}') = \varphi(\mathbf{v}') - \mathbf{v}' = -\mathbf{b}_2$$

Nun muss noch gezeigt werden, dass $\{\mathbf{b}_1, \mathbf{b}_2\}$ eine Basis des \mathbb{R}^2 bildet. Wir wählen $\alpha, \beta \in \mathbb{R}^2$ so dass $\alpha \mathbf{b}_1 + \beta \mathbf{b}_2 = \mathbf{0}$ gilt. Dann folgt durch Anwenden dieser Identität

$$\mathbf{0} = \varphi(\mathbf{0}) = \varphi(\alpha \mathbf{b}_1 + \beta \mathbf{b}_2) = \alpha \varphi(\mathbf{b}_1) + \beta \varphi(\mathbf{b}_2) = \alpha \mathbf{b}_1 - \beta \mathbf{b}_2$$

Mit Addition oder Subtraktion der beiden Identitäten kann gefolgert werden kann, dass $2\alpha \mathbf{b}_1 = \mathbf{0}$ und $2\beta \mathbf{b}_2 = \mathbf{0}$ womit $\alpha = \beta = 0$ sein muss. Damit sind \mathbf{b}_1 und \mathbf{b}_2 linear unabhängig und aus Dimensionsgründen eine Basis des \mathbb{R}^2 .