SAMPLE MOTIVIC GEOMETRY SYLLABUS

Overview -

- (1) Classical interpolation results
 - discuss N_1, N_2, N_3, N_4 over \mathbb{C}
- (2) Quantum cohomology and Gromov-Witten classes
 - Brief overview of stacks
 - Define virtual fundamental classes
- (3) Quantum cohomology and Gromov-Witten classes II
 - Explain the recursive formula for N_d
- (4) Interpolation over \mathbb{R}
 - Discuss the Degtyarev–Kharlamov paper
 - Define Welschinger invariants for planar real rational curves
- (5) Welschinger invariants
 - \bullet Define symplectic manifolds and J-holomorphic curves
 - Present Welschinger invariants via Welschinger's original work
- (6) Welschinger invariants via open Gromov–Witten theory
 - Jake Solomon's thesis
- (7) Relative orientations
 - Define relative orientations a la Okonek-Teleman's intrinsic signs paper
 - Explain the connection to Pin structures and symplectic manifolds
- (8) \mathbb{A}^1 -enumerative geometry
 - Black box motivic spaces, discuss (quadratic) versions of relative orientations of vector bundles
 - Give some examples
- (9) Global and local \mathbb{A}^1 -degrees
 - Define a relative orientation of a map $f: X \to Y$
 - Explain how to compute local and global A¹-Brouwer degrees
- (10) Welschinger invariants in \mathbb{A}^1 -homotopy theory
 - Recap norms and traces on Grothendieck-Witt rings
 - Give Levine's quadratically enriched version of Welschinger invariants
- (11) KLSW, part I $(S = \mathbb{P}^2 \text{ and } D = \mathcal{O}(d))$
 - Carefully define the Konsevich moduli space $\overline{\mathcal{M}}_{0,n}(\mathbb{P}^2,\mathcal{O}(d))$, and the evaluation map. Set $S = \mathbb{P}^2$ and $D = \mathcal{O}(d)$ for simplicity throughout.
 - Study the geometry of this moduli space via the singularities of curves, define the relevant loci on the moduli stack
- (12) KLSW, part II $(S = \mathbb{P}^2 \text{ and } D = \mathcal{O}(d))$
 - Prove the evaluation map is relatively oriented in characteristic zero and in positive characteristic
- (13) KLSW, part III $(S = \mathbb{P}^2 \text{ and } D = \mathcal{O}(d))$
 - Compute the local degree of the evaluation map
 - State the main theorem
- (14) KSLW, part IV (time pending)
 - State the general result for del Pezzo surfaces.
- (15) Jaramillo-Puentes—Pauli (time pending)
 - Tropical enumeration of rational curves though points on a toric surface