ASSIGNMENT 2

Name:Harshdeep J. Roll no: SE21UARI044

Introduction

Differential Evolution: These algorithms overcome the disadvantages faced by Genetic Algorithms. Every candidate has its mutant vector with which its crossover is done and the resultant is called a trial vector. Selection of this trial vector as the next iteration of the respective candidate depends upon Elitism.

Link to all Codes: Github

Particle Swarm Optimization: In these class of algorithms, each candidate maintains its individual identity and travels through the solution space through exchange of information

Comparision

EggHolder:-959.6407				HolderTable Function:-19.2085			
	NUMBER OF GENERATIONS						
POPULATION SIZE		50		100		200	
	20	-950.7785 91591233 9	-18.87641 84131889 08	-955.9719 44891347 9	-19.1817 1712633 8736	-949.960 6426718 97	-19.2084 4463431 8635
	50	-934.0118 34441406 1	-18.87641 84131889 08	-956.1986 58908717 3	-19.2066 0096967 0674	-954.900 8672137 268	-19.2084 4463431 8635
	100	-933.5944 02437273 9	-19.16948 65467657 3	-957.2417 06260202 2	-19.2070 3192710 531	-952.733 4280730 804	-19.2085 0239615 0905
	200	-945.0461 75738673 4	-19.18197 44643852 7	-957.9116 82560621 2	-19.2080 8265521 4888	-957.179 1077649 787	-19.2085 0239615 0905

Differential Evolution

EggHolder Function with population size of 200 and 50,100 and 200 generations:

HolderTable Function with population size of 200 and 50,100 and 200 generations:

Particle Swarm Optimization:

EggHolder Function with population size of 200 and 50,100 and 200 generations:

HolderTable Function with population size of 200 and 50,100 and 200 generations:

Observations:

- The pace of convergence towards the optimal solution depends on the initial assignments
- Increasing population increases the chances of getting the most minimum value quickly but also slows down the pace of the convergence of mean of all the candidates towards that minimum(in majority of the cases).
- Increasing the Iterations/Generations increases the chances of convergence given that the initial assignment of coordinates remain the same.
- PSO is generally computationally more expensive than Differential Evolution algorithms. However
 PSO can find better solutions that Differential Evolution algorithm.