

프로그램 조각별 따로분석의 이론적 틀

이준협

2023년 8월 23일

SIGPL 2023 여름학교

풀고자 한 문제

프로그램 전체를 분석하지 않고, 일부만 미리 분석해놓고 싶다!

- 상황 1: 외부 모듈에 대한 가정 없이 분석 후 재사용
- 상황 2: 예전에 다른 모듈과 합쳐서 분석했던 결과를 재사용

풀고자 한 문제

프로그램 전체를 분석하지 않고. 일부만 미리 분석해놓고 싶다!

- 상황 1: 외부 모듈에 대한 가정 없이 분석 후 재사용
- 상황 2: 예전에 다른 모듈과 합쳐서 분석했던 결과를 재사용

가정이 부족한 분석?

분석 결과의 재사용?

목표

부족했던 것: **의미구조 정의**부터 자연스럽게 따로분석이 이끌어지는 틀

- 1. 프로그램의 실행의미가 실제 실행기의 동작과 가깝고,
- 2. 분석 디자이너가 신경 쓸 것이 많이 없는,
- 3. 그러나 정밀성을 임의로 조절할 수 있는 틀, 그리고 안전성 증명.

모듈이 있는 언어

주요 정리

분석을 위해 신경 쓸 것

모듈이 있는 언어

겉모습

Identifiers x, MVar Expression value identifier χ function $\lambda x.e$ ее application linked expression $e \propto e$ empty module ε M module identifier let x e ebinding expression let M e ebinding module

예시

주요 정리

따로분석이란?

최종목표: S에서 출발한 $e_1 \gg e_2$ 의 결과 : $|\llbracket e_1 \gg e_2 \rrbracket S|$

따로분석이란?

최종목표: S에서 출발한 $e_1 \gg e_2$ 의 결과 : $|[[e_1 \gg e_2]]S|$

- 원래는, 먼저 *S*에서 출발해 *e*₁의 결과를 계산 : |[[*e*₁]]*S*|
- *e*₁ 의 결과에서 출발해 *e*₂ 의 결과를 계산 : | [[*e*₂]] | [[*e*₁]] | S||

$$|[[e_1 \times e_2]]S| = |[[e_2]]|[[e_1]]S||$$

최종목표: S에서 출발한 e₁ ≫ e₂ 의 결과: ||[e₁ ≫ e₂]|S|

- 원래는, 먼저 S에서 출발해 e₁의 결과를 계산: |[[e₁]]S|
- e₁ 의 결과에서 출발해 e₂ 의 결과를 계산 : | [[e₂]]| [[e₁]] S||

$$|[[e_1 \times e_2]]S| = |[[e_2]]|[[e_1]]S||$$

- 대신, **가정된** *S*₂에서 출발해 *e*₂을 가능한 곳까지 계산 : [[*e*₂]]*S*₂
- 이후, e_1 의 결과가 S_2 와 나머지로 분리되나 확인 : $|[[e_1]]S| \cong S_1 \triangleright S_2$
- 부족했던 부분인 S_1 을 합쳐서 최종 결과 계산 : $S_1 \gg \llbracket e_2 \rrbracket S_2$

$$|\llbracket e_1 \otimes e_2 \rrbracket S| \cong |S_1 \otimes \llbracket e_2 \rrbracket S_2|$$

분석을 위해 신경 쓸 것

실행의미는 T(Time)이라는 집합과 tick이라는 함수로 매개화되어있다.

- T: 실행중 프로그램 지점을 구별해줌, 메모리 주소로도 쓰임.
- tick: 현재 환경을 받아서, 증가된(지금껏 안 쓰인) 시간을 줌.

분석

요구사항: $\alpha: \mathbb{T} \to \mathbb{T}^{\#}$

- 1. $\operatorname{tick}^{\#} \circ \alpha = \alpha \circ \operatorname{tick}$ 인 $\operatorname{tick}^{\#}$ 사용.
- 2. $\forall t^{\#}: \alpha^{-1}(t^{\#})$ 는 \mathbb{T} 의 순서에 대해 윗뚜껑이 없다.

분석 방법: $|[e_1 \times e_2]]^\# S^\#|$ 어림잡기

- 1. 가정($S_2^{\#}$)하고 분석($[e_2]^{\#}S_2^{\#}$)하라
- 2. 가정이 성립 $(S_1^\# \rhd^\# S_2^\# \cong^\# | \llbracket e_1 \rrbracket^\# S^\# |)$ 하면, 합쳐라 $(S_1^\# \rhd^\# \llbracket e_2 \rrbracket^\# S_2^\#)$

모듈이 있는 언어

포스터에 언어의 실행의미 등 더 자세한 설명이 적혀있습니다!