Replication and Recomputation in Scientific Experiments

Lars Kotthoff

05 August 2014

When theory meets practice

What your research supposedly looks like:

Figure 1. Experimental Diagram

Figure 2. Experimental Mess

Recomputable?

What does it mean to be "recomputable"?

- ability to rerun experiments
- ability to get the same results
- ▷ ability to get the same behaviour

Same behaviour

- often the "behaviour" is unspecified and only known through the results
- how the results are achieved is secondary
- ▷ in practice not necessary to replicate behaviour

Same results

- experiments often stochastic/randomised
- results may require analysis/aggregation
- in practice often enough to get qualitatively similar results

Rerun

- non-standard equipment or lots of resources may be necessary
- ⊳ if it runs, it doesn't mean that it will finish
- cannot guarantee that everything will run all the time
- How do I know it's right?

Pragmatic approach

- work with authors of experiments
- they say how to "recompute"
- ▶ they can control/check results

Experiences

- recomputation as tutorial at CP 2013 and ECAI 2014
- ▷ invite authors of accepted papers to participate and make their experiments recomputable
- b at CP by us, at ECAI with our help

Experiences

- ▶ 11 expressions of interest and 6 recomputable experiments for CP 2013
- $ho \approx 15$ expression of interest and so far 1 recomputable experiment for ECAI 2014
- ▷ lots of enthusiasm, but can be a lot of work to get done

Overhead

- some authors have everything "ready to go"
- others use specific setup that's hard to replicate
- ▷ ...and people in between

Challenges: Getting it to work

- need to replicate environment experiments were run in
- ▷ operating system, libraries, . . .

Challenges: Getting it to work

- experiments may rely on specific software versions
- b these may not be available anymore
- excellent motivation for our approach

Challenges: Getting it to work

- level of detail in paper not enough to run experiments
- parameters, processing of output, etc
- need to elicit this information from busy authors

"So, you will need approximately 50.000.000 seconds [1.6 years] of computation on 2.27 GHz processors, memory limit of 3.9 GB (timeout is 2h)."

"It requires a GPU/CUDA card of a certain version. I don't know if virtual machines work."

"[the script] delegates the theorem proving tasks to Geoff Sutcliffe's automated theorem proving servers in Miami."

"My experiments are based on games that humans played with/against a computer-agent in lab conditions. In order to run these experiments, it's needed to have a research assistant in the lab that will take care on the process of the experiment [...]. My experiments were done only by students from specific departments and mean age."

- experiments may require specific type/number of CPUs, specific amount of memory
- cannot guarantee this
- may be unable to recompute because of this

Challenges: Licenses

- some experiments use proprietary software such as IBM CPI FX
- some authors use other people's tools that they don't own
- cannot include in virtual machine image and distribute
- solution: allow user to provide relevant software on host machine

- virtualised clocks are less reliable than non-virtualised
- no control over how virtualised CPU runs on host CPU
- can we measure CPU time accurately on virtualised hardware?

- ightharpoonup three C(S|O)P − n-Queens (seconds), BIBD (minute), Golomb Ruler (hours)
- ▶ 10 repetitions
- run on non-virtualised hardware, private cloud, Amazon cloud, Rackspace cloud
- ▶ Kotthoff, Lars. "Reliability of Computational Experiments on Virtualised Hardware." Journal of Experimental and Theoretical Artificial Intelligence 26, no. 1 (2014): 3349.

- ▷ only half the story
- rarely evaluate algorithms in isolation
- do algorithms behave the same in relation to each other?

- ▶ harder scenario: algorithm configuration
- configure on virtualised, test on non-virtualised hardware
- Daniel Geschwender, Frank Hutter, Lars Kotthoff, Yuri Malitsky, Holger H. Hoos, and Kevin Leyton-Brown. "Algorithm Configuration in the Cloud: A Feasibility Study." In LION 8, 2014.

	Desktop	UBC	UCC	Azure	EC2-c1
Desktop	0.54 (0.67)	0.52 (0.76)	0.96 (0.46)	0.59 (0.68)	0.59 (0.57)
UBC	0.07 (0.21)	0.01 (0.11)	0.17 (0.21)	0.22 (0.45)	0.19 (0.18)
UCC	0.54 (0.51)	0.53 (0.52)	0.56 (0.09)	0.60 (0.07)	0.59 (0.61)
Azure	0.78 (1.14)	0.78 (1.11)	0.81 (1.03)	0.81 (1.02)	0.81 (1.00)
EC2-c1	0.53 (0.52)	0.16 (0.51)	0.59 (0.43)	0.58 (0.40)	0.26 (0.41)
EC2-m1	0.58 (0.99)	0.58 (1.01)	0.59 (0.93)	0.65 (0.92)	0.62 (0.85)
EC2-m3	0.00 (0.55)	- 0.02 (0.59)	0.56 (0.51)	0.18 (0.44)	0.30 (0.42)
	EC2-m1	EC2-m3	median		
Desktop	0.80 (0.62)	0.59 (0.54)	0.59 (0.62)		
UBC .	0.19 (0.16)	0.15 (0.31)	0.17 (0.21)		
UCC	0.58 (0.42)	0.58 (0.42)	0.58 (0.42)		
Azure	0.81 (1.01)	0.82 (0.99)	0.81 (1.02)		
EC2-c1	0.22 (0.41)	0.55 (0.52)	0.53 (0.43)		
EC2-m1	0.62 (0.88)	0.57 (0.89)	0.59 (0.92)		
EC2-m3	0.16 (0.46)	0.16 (0.42)	0.16 (0.46)		

recomputation tutorial

30 second Vagrant

Do try this at home

```
vagrant init myExperiment \
    http://files.vagrantup.com/precise64.box
vagrant up
vagrant ssh
[set up virtual machine and experiments]
vagrant halt
vagrant package —output myExperiment.box
```

This is all you need.

Do try this at home – run automatically

```
vagrant init myExperiment \
    http://files.vagrantup.com/precise64.box
vagrant up
vagrant ssh
[set up, single script recompute.sh to run everything]
vagrant halt
[edit Vagrantfile, add line
config.vm.provision :shell, :inline => "./recompute.sh"
before "end"]
vagrant package — vagrantfile Vagrantfile \
    —output myExperiment.box
```


RECOMPUTATION.ORG