Računarske mreže (30ER5003)

Uvodni čas

Auditivne vežbe

1

UVOD

Značaj, podele, referentni model, mrežni hardver

ZNAČAJ MREŽA ZA KOMPANIJE

- Deljenje resursa (programa, opreme, podataka)
- Visoka pouzdanost (pouzdaniji je sistem sa više računara nego sa jednim)
- Ušteda novca (bolji odnos cena/performanse sistem sa više jeftinijih računara od jednog velikog (brži 10x skuplji 1000x))
- Skalabilnost (sistem se lakše proširuje dodavanjem jednog novog računara, nego zamenom *mainframe-*a)
- Moćni komunikacioni medijum (udaljeni saradnici mogu zajedno obavljati neki posao)

ZNAČAJ MREŽA ZA POJEDINCE

- Socijalne mreže
- Interaktivna zabava
- Pristup udaljenim informacijama
- Komunikacija (e-mail, newsgroups, videoconference, ...)

MREŽE DELIMO PREMA ...

- Tehnologiji transmisije:
 - Broadcast
 - Point-to-point

- Pristupu:
 - Javne
 - Privatne

Veličini:

- → 1 m Personal Area Network
- → 10 m (soba)
- → 100 m (zgrada)
- → 1 km (kampus)
- → 10 km (grad)
- ≥ 100 km (zemlja)
- → 1000 km (kontinent)
- 10 000 km (planeta)

LAN

Local Area Network

MAN Metropolitan Area Network

WAN

Wide Area Network

ISO OSI (Open System Interconnection) referentni model

- 7. Application 6. Presentation 5. Session 4. Transport 3. Network 2. Data Link 1. Physical
- Standardni servisi visokog nivoa i interfejs prema čoveku
- Usaglašavanje predstavljanja podataka, kompresija, enkripcija
- Upravlja ulogama u komunikaciji, uspostavljanjem i raskidanjem komunikacije
- Segmentacija podataka, kontrola toka, pouzdanost
- Logičko globalno adresiranje, nalaženje najbolje rute
- Uokviravanje, fizičko adresiranje, kontrola grešaka, kontrola pristupa medijumu
- Mehanička, električna, funkcionalna i proceduralna komponenta

ENKAPSULACIJA

ISO OSI i TCP/IP uporedni prikaz

MREŽNI HARDWARE

- Medijum za prenos
- Mrežne kartice
- Komponente za povezivanje
 - ripiteri
 - mostovi
 - ruteri
 - gateway-i

MEDIJUMI ZA PRENOS

STP (Shielded Twisted Pair)

Coaxial Cable

Unshielded Twisted Pair (UTP)

Fiber Optic Cable

MREŽNE KARTICE

REPEATER I TRANSCEIVER

Radi na fizičkom nivou i vrši regeneraciju i pojačanje signala. Povećava domet mreže. Ne odvaja kolizione domene. Ne čita niti interpretira podatke.

HUB

Hub je višeportni repeater (obično 6 - 12).

SWITCH

Nalikuje *Hub*-u ali je mnogo "inteligentniji". Moguće je uspostaviti više "simultanih" veza.

BRIDGE

Radi na Data-Link nivou, kopira frejmove sa jedne mreže na drugu, vrši preformatiranje i filtriranje paketa.

ROUTER

Radi na mrežnom nivou, kopira pakete sa jedne na drugu mrežu, vrši konverziju različitih mrežnih protokola, vrši filtriranje i određuje optimalnu trasu za prosleđivanje paketa.

RUTERI

GATEWAY

Može biti na bilo kom nivou iznad mrežnog (obično je na aplikativnom), vrši konverziju protokola odgovarajućeg nivoa (prevođenje), enkripciju i enkapsulaciju (omogućuje povezivanje servisa iako međumreže ne podržavaju odgovarajuće protokole za komunikaciju).

OSI NIVOI I KOMPONENTE

Application Presentation 5 Session Transport Network **Data Link Physical**

Gateway

Router Bridge, Switch Repeater, Hub Layer 3 switch ima i funkcije rutiranja

Layer 4 switch može da analizira TCP zaglavlje i vrši balansiranje opterećenja

SIMBOLI U ŠEMAMA

Router

LAN Switch

LAN Hub

Server

Desktop Computer

Laptop

Firewall

IP Phone

Wireless Access Point

Wireless Router

WAN Media

LAN Media

Wireless Media

ORGANIZACIJA MREŽE

2

FIZIČKI NIVO

Physical Layer

FIZIČKI SLOJ (PHYSICAL LAYER)

Prenosi bitove preko kom.kanala. Čine ga:

- Mehanička komponenta tip konektora i raspored pinova (ISO 2110 25-pinski konektor)
- Električna komponenta karakteristike el. signala
 - tip linijskog koda (Mančester, NRZ, ...)
 - naponski nivo 0 i 1 (1 < -3V, 0 > 3V)
 - signal rate (< 20kbps)
 </pre>
 - rastojanje (< 15m)

Proceduralna komponenta

- funkcionalna komponenta značenje pojedinih pinova i signala
 - protokol uspostavljanje i raskidanje veze (DCE Ready,...)

KOAKSIJALNI KABL

Coaxial Cable Design

SHIELDED TWISTED-PAIR (STP) KABL

UNSHIELDED TWISTED-PAIR (UTP) KABL

RJ-45 KONEKTOR

TIA/EIA-568-A T568A Wiring

TIA/EIA-568-B T568B Wiring

TIA/EIA-568-B T568B Wiring				
Pin	Pair	Wire	C	olor
1	2	tip	1	white/orange
2	2	ring	1	orange
3	3	tip	①	white/green
4	1	ring	0	blue
5	1	tip	①	white/blue
6	3	ring	0	green
7	4	tip	①	white/brown
8	4	ring	0	brown

OPTIČKI KABLOVI

Fiber Media Cable Design

Fiber Connectors

KONEKTORI OPTIČKIH KABLOVA

Fiber Media Connectors

ST Connector

Straight Tip (ST) connector is widely used with multimode fiber

SC Connector

Subscriber Connector (SC) is widely used with single-mode fiber

Single-Mode (LC)

Single-Mode Lucent Connector (LC)

Multimode (LC)

Multimode LC Connector

Duplex Multimode (LC)

Duplex Multimode LC Connector

SERIJSKI PRIKLJUČAK

Types of WAN Connections - Serial

STRAIGHT-THROUGH KABL

CROSSOVER KABL

T568A

T568B

TIPOVI KABLOVA

PREDSTAVLJANJE SIGNALA U KOMUNIKACIONOM KANALU

Representations of Signals on the Physical Media

Sample electrical signals transmitted on copper cable

Representative light pulse fiber signals

Microwave (wireless) signals

NAČINI KODIRANJA DIGITALNIH PODATAKA

Ways to Represent a Signal on the Medium

LINIJSKI KODOVI

Prilagođavaju slanje podataka komunikacionom kanalu (liniji)

Kodiranje je poslednja faza u obradi podataka i neposredno prethodi njihovom slanju

ZAŠTO SE UVODE?

- Osnovni zadatak je da omoguće uspešan prenos digitalnog signala kroz komunikacioni kanal.
- Definišu naponske ili strujne talasne oblike (šablone) koji se koriste za predstavljanje 0 i 1-ca.
- Uklanjaju jednosmernu komponentu signala (ona se ne može uspešno preneti na velikim rastojanjima)
- Omogućuju sinhronizaciju ugradnjom informacije o kloku u talasni oblik signala
- Poželjno je da imaju strukturu koja omogućuje otkrivanje grešaka
- Prilagođeni su karakteristikama prenosnog medijuma

PODELE

Polarnost

- Unipolarni (i 0 i 1 su istog polariteta)
- Polarni (u upotrebi samo bipolarni)

Faznost

- Monofazni
- Dvofazni (Mančester)

Kodiranje istih vrednosti

- Uniformno
- Alternativno
 - Kontekstno (skremblovanje)
- Tip kodiranja
 - Kodiranje vrednosti
 - Kodiranje promene (NRZI, diferencijalni Mančester,...)

NON-RETURN-TO-ZERO (NRZ)

- Bipolarni kod koji 1-cu predstavlja jednim, a 0 drugim naponskim nivoom (ili fazom), bez "neutralnog položaja"
- Ima više energije nego RZ, ali nema sinhronizaciju (klok)
- Zahteva manji propusni opseg nego RZ ili Mančester

NON-RETURN-TO-ZERO-INVERTED (NRZI)

Promena naponskog nivoa ako se prenosi 0, i odsustvo promene za 1

RETURN-TO-ZERO (RZ)

- Signal se vraća na nultu vrednost između svaka dva impulsa
- Ugrađen klok
- Javlja se jednosmerna komponenta, kao i kod prethodnih kodova, kada se prenosi veći broj uzastopnih nula ili jedinica

ALTERNATE MARK INVERSION (AMI)

- Bipolarni
- 1 mark, naizmenično menja polaritet

MANČESTER

- Kombinuje podatke i klok
- Svaki bit se kodira promenom u sredini bitskog intervala
- Nema jednosmernu komponentu
- Omogućuje otkrivanje grešaka (ako nema promene na sredini bitskog intervala)
- Zahteva širi propusni opseg (2x širi od NRZ)

DIFERENCIJALNI MANČESTER

- 1 se kodira odsustvom promene naponskog nivoa na početku bitskog intervala, a 0 promenom na početku bitskog intervala
- Obzirom da je bitna samo promena nivoa, a ne i polarnost signala, diferencijalno kodiranje je otporno na invertovanje (zamenu žica)

MLT-3

- Koristi 3 naponska nivoa
- MLT-3 interfejs emituje manju elektromagnetnu interferencu i zahteva manji propusni opseg za istu brzinu prenosa podataka (od npr. Mančestera i AMI)
- Prolazi kroz stanja −1, 0, +1, 0 svaki put kada naiđe jedinica, dok nula ne menja nivo

SKREMBLOVANJE

- Sekvenca koja izaziva konstantan napon u kanalu zamenjuje se sekvencom iste dužine koja omogućuje održavanje sinhronizacije
- Dobre strane:
 - Nema DC komponente
 - Nema dugog niza binarnih vrednosti koje ne pobuđuju kanal
 - Nema redukcije prenosa podataka
 - Mogućnost otkrivanja grešaka

B3ZS

- B3ZS je skraćenica za bipolar with three-zero substitution
- Zasniva se na AMI
- Da ne bi došlo do gubljenja sinhronizacije kod više uzastopnih nula, svaka grupa od po 3 nule zamenjuje se sekvencom koja narušava AMI
- Zamene mogu biti 00V ili B0V
- Da ne bi dve uzastopne 00V zamene imale istu polarnost (i time stvorile jednosmernu komponentu), koriste se B0V zamene (italik u sledećem primeru).
- Npr. $100100010000010000000 \rightarrow +00-00-+00+00-00-+0+$

B8ZS

- B8ZS je skraćenica za binary eight with zero substitution
- Zasniva se na AMI kodu
- Američki standard
- Grupa od 8 sukcesivnih nula zamenjuje se određenim šablonom koji narušava AMI (kao i HDB3)
 - O00+-0-+, ako je poslednji impuls neposredno pre ovog okteta bio pozitivan
 - O00-+0+-, ako je poslednji impuls neposredno pre ovog okteta bio negativan

HDB3

- High Density Bipolar of order 3 code
- Evropski standard
- Umesto grupe od po 4 uzastopne 0, na kraju ove sekvence ubacuje se V (violation) impuls, koji je istog polariteta kao i prethodna jedinica i lako se otkriva i zamenjuje na odredištu.
- Da ne bi došlo do stvaranja DC komponente, uvodi se i **B** (*balancing*) impuls. On se stavlja na mesto prve 0 u četvorki koja se menja, i istog je polariteta kao i V impuls u datoj smeni, a suprotnog u odnosu na prethodni V impuls.
- Ukoliko između dve supstitucije postoji neparan br. 1-ca, B-impuls se ne javlja.

Polaritet prethodnog	Br. bipolarnih impulsa (1-ca) od poslednje zamene	
impulsa	Neparan	Paran
-	000-	+00+
+	000+	-00-

4B/5B

Data Codes

4B Code	5B Symbol
0000	11110
0001	01001
0010	10100
0011	10101
0100	01010
0101	01011
0110	01110
0111	01111
1000	10010
1001	10011
1010	10110
1011	10111
1100	11010
1101	11011
1110	11100
1111	11101

Control and Invalid Codes

4B Code	5B Symbol
idle	11111
start of stream	11000
start of stream	10001
end of stream	01101
end of stream	00111
transmit error	00100
invalid	00000
invalid	00001
invalid	00010
invalid	00011
invalid	00100
invalid	00101
invalid	00110
invalid	01000
invalid	10000
invalid	11001

JOŠ NEKI ČESTO KORIŠĆENI KODOVI

- **8B/10B**
- 64B/66B

ZADATAK

Prikazati izgled signala u kanalu pri prenosu zadate poruke, ako se koristi HDB3 linijsko kodiranje. Poruka je oblika:

1000 0000 0000 0100 0100 0011 0000 0000 1110

Rešenje:

100000000000010001000011000000001110

1000VB00VB00V10001B00V11B00VB00V1110

Polaritet prethodnog	Br. bipolarnih impulsa (1-ca) od poslednje zamene	
impulsa	Neparan	Paran
-	000-	+00+
+	000+	-00-

PITANJA

