

MA0301 Elementary discrete mathematics Spring 2018

Norwegian University of Science and Technology Department of Mathematics

Exercise 8

Section 1, Supplimentary Exercises

[16] b) How many distinct terms are there in the complete expansion of

$$\left(\frac{x}{2} + y - 3z\right)^5$$
?

c) What is the sum of all coefficients in the complete expansion?

b) Determine the number of non-negative integer solutions to the pair of equations

$$x_1 + x_2 + x_3 \le 6, \qquad x_1 + x_2 + \dots + x_5 \le 15$$

where $x_i \geq 0$ and $1 \leq i \leq 5$.

28 **b)** In how many ways can one travel in the xy-plane from (1,2) to (5,9) if each move is one of the following types:

(R): $(x,y) \to (x+1,y)$

(U): $(x, y) \to (x, y + 1)$

(D): $(x,y) \to (x+1,y+1)$

Section 2, Supplimentary Exercises

 $\boxed{7}$ a) For primitive statements p, q, find the dual of the statement

$$(\neg p \land \neg q) \lor (T_0 \land p) \lor p$$
.

b) Use the laws of logic to show that your result from part a) is logically equivalent to

$$p \wedge \neg q$$
.

10 Establish the validity of the argument

$$[(p \to q) \land [(q \land r) \to s] \land r] \to (p \to s).$$

Section 3, Supplimentary Exercises

a) For positive integers m, n, r, with $r \leq \min(m, n)$, show that

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{k} \binom{n}{r-k} \tag{1}$$

b) For n a positive integer, show that

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

9 Let $A, B, C \in \mathcal{U}$. Prove that

$$(A \cap B) \cup C = A \cap (B \cup C)$$

if and only if $C \subseteq A$.

Section 4, Supplimentary Exercises

 $\boxed{6}$ For $n \in \mathbb{Z}^+$ define the sum s_n by the formula

$$s_n = \frac{1}{2!} + \frac{2}{3!} + \frac{3}{4!} + \dots + \frac{(n-1)}{n!} + \frac{n}{(n+1)!}$$

- d) Conjecture a formula for the sum of the terms in s_n and verify your conjecture for all $n \in \mathbb{Z}^+$ by the Principle of Mathematical Induction.
- 7 For all $n \in \mathbb{Z}$, $n \ge 0$ prove that
 - **d)** $n^3 + (n+1)^3 + (n+2)^3$ is divisible by 9.