

Super-resolution and Deblurring

Prof. Seungchul Lee Industrial AI Lab.

Image Restoration

- Image restoration
 - to recover original image from degraded one with prior knowledge of degradation process.
- The sources of corruption in digital images arise during image acquisition (digitization) and transmission.
 - Imaging sensors can be affected by ambient conditions.
 - Interference can be added to an image during transmission.

Image Restoration

Degraded image

Restored image

Inverse Problem

- Inverse problems involve modeling of degradation and applying the inverse process in order to recover the original image from inadequate observations.
- The observations contain incomplete information about the target parameter or data due to physical limitations of the measurement devices.
- Consequently, solutions to inverse problems are non-unique.

Image Super-resolution

• Restore High Resolution (HR) image from Low Resolution (LR) image

SISR: Try to recover HR from its LR counterpart

Numerous learning-based SR approaches

Lab: SR on Material Images


```
# upsampling layer
x = tf.keras.layers.Conv2DTranspose(
                    filters = 16,
                    kernel_size = (4,4),
                    strides = (2,2),
                    padding = 'SAME',
                    activation = 'relu')(x)
# 3x3 convolutional layer
outputs = tf.keras.layers.Conv2D(
                    filters = 1,
                    kernel_size = (3,3),
                    padding = 'SAME',
                    activation = 'sigmoid')(x)
model = tf.keras.Model(inputs, outputs)
```

Training

Result

Super-resolved image

Image Deblurring

Training

Result

