队伍编号	21230010021
题号	В

基于随机森林与团簇几何构型的最优结构预测探索

摘要

为了解决应用传统理论计算团簇全局最优结构时迭代次数过多,且高精度的理论计算时间呈指数增长的问题,我们欲引入机器学习算法辅助求解团簇全局最优结构,从而更有助于发现新型团簇材料的结构和性能。

针对问题一给出的 1000 个金团簇Au₂₀的结构,我们进行数据剥离,循环读取文件生成新的数据表单,从而直观的看出了团簇能量与团簇内各原子坐标之间的关系。同时,我们引入辅助量**原子密度、团簇体积来特征化**地表示其对于能量值的影响,并带入 **LJ 团簇势能公式**,发现其波动与能量曲线波动一致,证实了 AU 团簇的能量构成主要来源为**势能**。针对预测模型,我们重点比对了 **BP 神经网络与随机森林算法**的优劣,最终选取随机森林算法构建 62 个特征值的**预测模型**。为了缩小搜索量,我们采用 **K-means 算** 法进行聚类,并以 **SVM 分类器**辅助验证聚类效果良好。从而将坐标**搜索跨度**减小为特定类别的各项坐标跨度,很大程度减轻了搜索原理。最终随机生成 **100 万**条数据成功构建出了较为优化的Au₂₀构型: **类正四面体构型**。

针对问题二求解Au₃₂的全局最优结构,由于第一问得到的模型为输入端 62 个数据,因而无法直接带入求解。我们欲转化Au₃₂的 96 个坐标,进行**降维**,循环转化为 60 个坐标,分批次带入一种模型得到预测能量值,取预测值的均值为最终预测结果,从而构建出了一组较优坐标值。我们推测Au₃₂的全局最优结构为类似足球的**多个六边形组成的正多面体**。考虑到问题一的最优构型为正四面体,我们在此基础上**对四面体进行扩充**,不断构造新的四面体并得到多组**异构体**从中筛选出最优。

针对问题三、四,我们仿照一、二的求解流程,考虑了硼团簇的**电负性**对于能量值造成的影响以及关于B₄₀的处理方式,考虑对预测模型**引入 5 组无关坐标**,保持输入端一致进行预测,我们推测硼团簇B₄₅的全局最优结构为**多折叠、无空缺类型**; B40-的全局最优结构为**对称**且具备两个六边形的孔洞。

关键词: K-means 聚类 随机森林 搜索跨度 BP SVM 几何构型

目录

一 、	问题背景	. 1
二、	问题分析	. 1
2.1	问题一的分析	. 1
2.2	问题二的分析	. 1
2.3	问题三的分析	. 1
2.4	问题四的分析	. 1
三、	基本假设	. 1
四、	问题一的模型建立与求解	. 2
4.1	数据预处理	. 2
4.2	模型的建立	. 2
4.3	模型的求解	. 4
4.	3.1 Au20的结构探索	. 4
4.	3.2 特征值的选取与预测模型的构建	. 5
4.	3.3 K-means 聚类与 SVM 分类实现	. 6
4.	3.4 最优坐标区间的选取与数据集准备	. 6
4.	3.5 模型结果分析	. 7
4.4	模型的改进	. 8
五、	问题二的模型建立与求解	. 8
5.1	正四面体的拓展模型建立	. 8
5.2	模型的求解	. 9
六、	问题三的模型建立与求解	10
6.1	数据预处理	10
6.2	模型的建立与求解	10
七、	问题四的模型建立与求解	13
7.1	数据预处理	13
7.2	模型的建立与求解	13
八、	模型的优缺点	14
8.1	模型的优点	14
8.2	模型的缺点	14
参考	文献	14
附录.		15

一、问题背景

团簇是由几个至上千个原子、分子或离子组成的相对稳定的微观或亚微观聚集体,是介于原子、分子与宏观的固体物质之间的一种新层次,具有许多奇特的性质。团簇的结构和性质与其包含原子的数目和种类密切,其物理和化学性质随所包含的原子数目而变化。其中,金属团簇由于其独特的催化性质、光学性质和结构,受到研究者的广泛关注。硼团簇的几何结构往往较为复杂,单纯的实验很难直接确定硼团簇的精确结构。因此,硼团簇的研究往往需要理论与实验想结合的方法。为了更好地了解团簇的性质及结构、预测新型团簇的全局最优结构,我们需要深入研究团簇的结构优化问题——即是团簇最低能量结构的预测问题。然而,由于其构型空间随团簇尺度的增加而呈指数型增长。故对于此类问题,发展高效的全局优化算法具有重要的理论和现实意义。

二、问题分析

2.1 问题一的分析

针对问题一,首先,我们将.xyz 文件转换为.txt 文件,把 999 个数据文件输入 python 获取训练集 (999×62)。接下来,我们采用机器学习算法,对比了 logistics、LSTM、BP 神经网络、随机森林等算法,最后选用随机森林算法测算。我们采用随机模拟的方法生成多条数据,预测全局最优结构。具体后文有阐释。

2.2 问题二的分析

考虑到问题一的输入集度量为 60 个坐标,而我们需要 96 个坐标。因此,我们考虑 把 96 个坐标转换为 60 个坐标,分批次输入训练,选取每组预测值均值为预测结果,从 而得到最优坐标解,借用 Matlab 画出三维图。

2.3 问题三的分析

仿照问题一,我们发现数据集扩倍较大,并引入了电负性的概念进一步优化求解。

2.4 问题四的分析

仿照问题二, 欲设置 5 个无关坐标, 仍保持输入集为 45 进行预测。

三、基本假设

为了使得问题更易于理解,我们作出以下合理假设:

- 1. 假设团簇的能量仅受原子密度、原子体积和附件中所给各原子坐标影响。
- 2. 假设所选指标能够代表所要研究对象的整体情况。
- 3. 假设各坐标对欧氏距离的贡献是同等的,欧氏距离效果理想。
- 4. 假设量化处理的数据无错误无丢失。
- 5. 忽略相对论效应的影响。
- 6. 假设题目给出的数据真实可靠。

四、问题一的模型建立与求解

针对问题一,关于预测团簇分子、结构的问题,我们采用多种预测模型进行比较分析。考虑到现有结合机器学习的预测团簇构型方法较少,我们查阅大量文献,结合金属团簇的物理、化学性质,选取了影响Au团簇能量的相关指标,剔除粘合性,尽量保持变量的独立性,构建了较为完善的预测模型,并预测其全局最优结构,同时以三维结构图呈现。

4.1 数据预处理

通过分析比对,发现附件只给出 999 个金团簇数据文件,第 155 号数据缺失。我们分别对坐标数据、能量数据、原子名称进行分离,得到了999×62的数据表单。对能量值进行画图,得到能量值域。取前十与后十个数据,载入 VMD 进行直观分析,对金团簇的构型有初步认知。

4.2 模型的建立

我们查阅文献,了解到影响团簇稳定性的因素——平均结合能,能隙值、电负性(排斥力、吸引力)、能量二阶差分、平均键长等。考虑到已知数据较少,我们引入原子密度、原子体积进行辅助分析。

基于论文,对于许多大尺度 LJ (Lennard-Jones)实例,其最低能量构型是无中心原子的二十面体。我们想要求得最稳定、能量最低的团簇构型,那么可知团簇的中心原子越少越好。处于内层结构的原子受到外层原子的挤压,内层原子间的距离比外层原子间的距离更小,因此,越内层的原子,原子密度越大。我们可以得出,团簇内两两原子间距越小,其密度越大,金属键结合能力更强,团簇的热力学稳定性越高。

我们将原子i的密度定义为

$$D(i) = \sum_{\substack{j=1(\neq i)\\d_{ij} \le \sqrt[6]{2}}}^{N} \frac{1}{d_{ij}^{3}}$$
(1)

其中, d_{ij} 表示原子i与原子j之间的距离,N为团簇尺度,此处统一为20。

对于体积的计算,我们在三维空间内可以将含n个原子的团簇放入长、宽、高分别为 x_1 , y_1 , z_1 的长方体(或立方体)空间,该团簇体积应小于此长方体体积。设团簇的体积为 V_1 ,长方体的体积为 $V_2 = x_1 \times y_1 \times z_1$ 。用统计方法随机地在 V_2 范围内产生n个三维空间内的点,n有50%的概率落在 V_1 内或 V_1 外。我们把产生的m个点看作随机变量,则n个点在 V_2 范围内为均匀分布。设落在 V_1 内的点数为 n_{V_1} 。综上,我们用随机模拟的统计方法求解,得到体积计算式为

$$V_1 = \left(\frac{n_{V_1}}{n}\right) V_2 \tag{2}$$

我们假定,同类型 Au_{20} 之间的原子运动速率基本一致。使得随机模拟的概率保持一致。

我们令 x_1 , y_1 , z_1 为团簇内原子在x、y、z轴上的最大跨度,得到计算公式(ε 为干扰项)如下:

$$x_1 = \max\{\text{atom}_x(x, y, z)\} - \min\{\text{atom}_x(x, y, z)\} + \varepsilon$$
 (3)

$$y_1 = \max\{\text{atom}_y(x, y, z)\} - \min\{\text{atom}_y(x, y, z)\} + \varepsilon$$
 (4)

$$z_1 = \max\{\text{atom}_z(x, y, z)\} - \min\{\text{atom}_z(x, y, z)\} + \varepsilon$$
 (5)

查阅文献,我们引入 LJ 团簇的势能函数。表示如下:

$$E_{LJ} = 4\varepsilon \sum_{i=1}^{N-1} \sum_{j=i+1}^{N} \left[\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^{6} \right]$$
 (6)

其中,N表示原子个数,此处为20, r_{ij} 表示原子i与原子j之间的距离, $\varepsilon = 1.0$, $\sigma = 1.0$ 。

构成物体的分子的能量由两部分构成——分子动能和势能。我们欲验证团簇的能量大部分是由势能提供,由于量纲差异,无法确定其准确性,但可由其波动性确认势能与能量波动一致。

图 1 Au₂₀的能量波动图

图 2 Au₂₀的势能波动图

由图 1、图 2 可知, Au_{20} 的势能与其能量波动情况一致,均在第 78 个文件所指的结构时达到峰值,在 energy 为-1530.908363 时,势能为-0.221525215463521。在第 350 个文件所指的结构时达到谷值,在 energy 为-1557.20946 时,势能为-0.764308644879803。

后续我们将势能和题给能量作为因变量进行测试,增加结果的可信度。

4.3 模型的求解

4.3.1 Au₂₀的结构探索

我们对能量值排列前后二十位的.xyz 文件通过 VMD 进行可视化,得到一些结果,如下图。

图 3 稳定构型的 VMD 可视化

图 4 稳定构型的样例

图 5 非稳定构型的 VMD 可视化

图 6 非稳定构型的样例

我们发现,第 315 号和第 958 号与图 4 的样例相似度较高,第 317 号和第 586 号贴近于平面图形,与图 6 的样例重合度较高,第 351 号是所给数据中能量最低对应的最优构型,第 78 号是所给数据中能量最高对应的最差构型。

我们猜想,构型单支数越多、连接度越弱、立体感越差的构型稳定性越差。

4.3.2 特征值的选取与预测模型的构建

图 7 模型构建流程图

我们欲采用随机森林算法或 BP 神经网络建立Au₂₀能量预测模型。选取 20 组三维坐标、原子密度、团簇体积作为输入集,能量值、势能值作为输出集。选用全体数据的 90% 作为训练集,另 10%作为预测集,验证、比对得到最佳模型。

采用随机森林法,是因为它对多元共线性不敏感(对于多元回归中特征值粘黏性的数据集影响较小)。我们无法确定坐标之间是否有粘黏性,因为我们推测稳健的构型是对称的,所以坐标之间一定是有关联的。此外,随机森林对缺失数据和非平衡数据比较稳健,可以很好地预测多达几千个解释变量的作用。我们不采用 LSTM 等单一特征值算法,是因为我们输入的特征值多达 62 个,而随机森林可以很好的解决这个问题,并且能避免陷入过拟合的情况。

采用 BP 神经网络法,是因为已经被证实,三层 BP 神经网络能够逼近任何有理函数。由于我们的内部映射机制比较复杂,BP 神经网络可以解决任何复杂非线性映射。

我们采用两种算法,得到了如表1的误差结果。

评价指标	MSE	RMSE	MAE	\mathbb{R}^2	MAPE
随机森林	0.2997	0.5475	0.3134	0.9637	0.0202
BP 神经网络	240638	155125	155124	-291321.1646	100.0000

表 1 测试效果对比

由上表看出,随机森林的 R² 逼近 1,且误差值贴近 0,预测效果较好。而 BP 误差较大,结果极度不合理,我们猜测它是陷入了局部极小化的问题,在初始化网络的时候参数设定错误,使得其过度局部收敛,陷入僵局。同时,BP 输入的自变量意义度较低,均导致失败。故我们采用随机森林构建模型。

4.3.3 K-means 聚类与 SVM 分类实现

K-means 算法取输出参数k,将一组n个对象分成k个簇,使同一簇内的相似性最高,不同簇间的相似性较低。我们将 K-means 使用的点集变成 $\left(E_{\dot{\mathbb{D}}},Ep\right)$,我们对 E_p 扩充量级,使得它与 $E_{\dot{\mathbb{D}}}$ 处于同一量级,经过测试,我们发现K=4聚类效果最好。如图 7 所示,数据集被很好地切割成 4 个部分。

图 8 K-means 聚类

我们采用 K-means 聚类是为了找到最优坐标的区间,即对于 20 个坐标分别估计其合适区间,缩小搜索跨度,并能进一步减小步长,提高搜索精度。为了使 K-means 分类效果最高,我们同时采用 SVM 分类器进行验证。SVM 的优点是针对于小样本进行训练,可以实现高维度的非线性映射,正好适用于我们的数据集,分类效果较好。SVM 的最终准确率为 81.5%。

4.3.4 最优坐标区间的选取与数据集准备

我们对 K-means 聚类得到的第二类(能量最低)进行描述性统计。

					描处犹订								
	N	范围	最小值	最大值	合计	均	值	标准 偏差	方差	66	度	幅	华度
	统计	统计	统计	统计	统计	统计	标准 错误	统计	统计	统计	标准错误	统计	标准 错误
Energy	213	2.740686	-1557.209460	-1554.468774	-331291.618	-1555.35971	.042605498	.621806776	.387	906	.167	1.403	.332
X1	213	6.65361774	-3.45053383	3.20308391	22.93648989	.1076830511	.0827738461	1.208044513	1.459	136	.167	2.009	.332
Y1	213	7.24634007	-3.28538130	3.96095877	00973288	0000456943	.0708261593	1.033673764	1.068	.425	.167	5.562	.332
Z1	213	8.88812105	-5.21001501	3.67810604	-11.58645364	0543964960	.1509614321	2.203209568	4.854	394	.167	778	.332
X2	213	7.73111404	-4.28058025	3.45053379	-20.27857012	0952045546	.0838363958	1.223551915	1.497	534	.167	2.916	.332
Y2	213	7.24634007	-3.96095877	3.28538130	-11.29855076	0530448392	.0657528431	.9596311526	.921	484	.167	7.191	.332
Z2	213	8.88811664	-3.67810604	5.21001060	12.09297054	.0567745096	.1573198905	2.296008213	5.272	.386	.167	820	.332
X3	213	7.49913892	-3.54649127	3.95264765	49.01099157	.2300985520	.1484452050	2.166486442	4.694	.017	.167	-1.291	.332
Y3	213	7.39612427	-3.30844042	4.08768385	39.91421069	.1873906605	.0962970800	1.405409613	1.975	.329	.167	.522	.332
Z3	213	7.79630511	-4.31193637	3.48436874	-102.968752	4834213726	.1162425473	1.696504125	2.878	.147	.167	.074	.332
X4	213	7.41479355	-3.97526122	3.43953233	-96.22881663	4517784818	.1125480646	1.642584925	2.698	073	.167	.030	.332
Y4	213	7.39629632	-4.08785589	3.30844043	6.99396148	.0328354999	.1362748529	1.988866001	3.956	167	.167	-1.243	.332
Z4	213	8.59316393	-4.22485791	4.36830602	24.09213112	.1131085968	.1270773912	1.854633467	3.440	.090	.167	196	.332
X5	213	8.18319297	-4.64300592	3.54018705	19.23164090	.0902893939	.1295343280	1.890491279	3.574	.019	.167	738	.332
Y5	213	7.38634325	-3.49577216	3.89057109	25.29805928	.1187702314	.1338945761	1.954127005	3.819	.136	.167	-1.005	.332
Z5	213	7.53586709	-4.22944029	3.30642680	17.34603610	.0814367892	.1057753403	1.543740268	2.383	333	.167	.576	.332
X6	213	7.82903018	-3.18602427	4.64300591	-24.51346213	1150866767	.1357697156	1.981493764	3.926	.224	.167	899	.332
Y6	213	7.58345665	-4.08768385	3.49577280	-127.576055	5989486132	.1270442655	1.854150013	3.438	.016	.167	625	.332
Z6	213	6.53545083	-3.22901852	3.30643231	-1.99255801	0093547324	.0949248841	1.385383074	1.919	.204	.167	.206	.332

图 9 描述性统计

第二类共有 213 个数据,我们成功将x, y, z的坐标区间由原本的[-8,8]缩小为现在的[-3,3]。接下来,我们利用 RAND()函数随机生成 100 万条数据(坐标包含在缩小后的区间内),准备批量导入随机森林预测模型。

4.3.5 模型结果分析

我们将 100 万条数据分成 10 次导入模型,选取预测结果最佳的 4 条数据进行构图。 其预测值与最低能量极为贴切,最低能量为-1557.20946。

X	Y	Z	X	Y	Z
1.032969	-1.06001	1.036414	-0.9886	0.929053	0.977141
-0.96369	-1.00063	-0.88549	0.927707	0.869489	-0.98307
-0.98718	-1.00144	2.927839	0.90583	0.899616	2.756109
-0.82021	0.965641	-2.84768	0.820528	-0.87931	-2.82381
0.972615	2.90605	0.911178	-1.04825	-2.91271	0.856655
2.793802	-1.02891	-0.98656	-2.80378	0.939459	-0.83632
-0.8578	2.782448	-0.88898	0.868657	-2.83006	-0.87043
-2.79407	-2.71378	2.819605	2.860111	2.621133	2.688232

表 2 最优坐标解

作三维图,如下图所示。观察为类正四面体,验证猜想。

图 10 最优结构图

4.4 模型的改进

通过阅读大量文献,我们了解到求解全局最优结构的算法可分为有偏算法和无偏算法。无偏算法是指从随机生成的构型开始,基于随机扰动的方式进行优化操作,使用该算法能够找到实例的最低能量构型。本文选择的随机生成构型的方法,导致算法的计算速度受限、成功率尚可。为了进一步发展团簇的结构优化算法,我们期待使用无偏优化算法中的 DLS-TPIO 算法来有效地提高算法的效率。在 DLS-TPIO 算法中,内部操作、两阶段局部搜索、动态格点搜索方法分别起了重要的作用。在优化的前一阶段,内部操作将某些能量较高的表面原子转移至团簇的内部,从而降低团簇的能量。同时,两阶段局部搜索方法引导搜索进入可能性更高的构型区域。这种方式极大地提高了算法的成功率。在优化的后一阶段,该算法使用动态格点搜索方法对表面原子的位置作进一步优化,再一次降低了团簇的能量。

随着研究的逐渐深入,我们也希望将 DLS-TPIO 算法应用于其他原子团簇的结构优化。

五、问题二的模型建立与求解

针对问题二,我们首先查阅资料, Au_{20} 、 Au_{32} 、 Au_{58} 等具有较高的稳定性。研究表明,原子数小于 10 的 Au_n 呈平面结构,在n=19时会向金字塔结构转变,在n=20左右呈金字塔结构,在 $n=29\sim32$ 范围内呈现为类富勒烯结构。下图为团簇稳定性与原子数的关系示意图。

图 11 团簇稳定性与原子数的关系

5.1 正四面体的拓展模型建立

由问题 1 可得,稳定结构为正四面体。我们推测Au₃₂的整体结构可拆分为多个正四面体。Au₃₂比Au₂₀多了 12 组三维坐标,我们猜想,分别由四面体的四个表面,由表面中心作该面垂线,在垂线上找寻一点,成为Au₃₂的点集中的一员。做完一轮可以扩充四个点,我们需要扩充 12 个点,因此可以在新生成的面上继续重复操作,以此类推,得到多种异构体,并希望在其中探寻最优结构体。

图 12 正四面体拓展方式

由于三角形是最稳定的,我们希望每个面扩充后仍为三角形,因此,我们重复扩充四面体的操作,希望这样可以探寻到最优解。

5.2 模型的求解

问题一中我们建立了 62 输入—2 输出的模型,而现在输入量变为 96+2,因此,我们进行循环操作,每次取 96 组坐标中的 60 组,希望可以一直输出四面体的构型并存储能量预测值,使预测值始终较低水平。同样类似问题一,我们选取合适的区间,扩充 100 万次数据,找到了一些不规则的异构体,以下为异构体的图像。

图 13 Au₃₂异构体

由于模型较为简陋,输出效果不佳,但我们推测Au₃₂的最优结构体应当类似足球结构,为多个正六边形或三角形组成的多面体。以下放入理想构图:

图 14 Au₃₂较优结构体 第 9 页 共 17 页

六、问题三的模型建立与求解

仿照问题一,我们发现二者差异仅在原子属性、电负性上。大体结构仍仿照问题一 求解。

6.1 数据预处理

通过分析比对,我们同样分别对 3751 个坐标数据、能量数据、原子名称进行分离,得到了 3751×137 的数据表单。对能量值进行画图,得到能量值域。取前十与后十个数据,载入 VMD 进行直观分析,对硼团簇的构型有初步认知。

相较问题一, 硼团簇应当引入电子相关能。电子之间存在库仑排斥, 不能独立运动, 每个电子在自己的周围建立了一个"库伦穴", 降低其他电子进入的概率。但事实上, 电子相关能在体系中的占比并不大, 约为 0.3%~1%。因此, 我们可以忽略这种影响。

图 15 硼团簇能量一势能对比图

我们发现,对比于金团簇,硼团簇二者相差较大。我们猜想,除去势能,电子的动能对于该结果的影响较大,由于题给参数不足,我们无法估测电子的动能,故舍去势能。

6.2 模型的建立与求解

我们对能量值排列前后二十位的.xyz 文件通过 VMD 进行可视化,得到一些结果,如下图。

第 273 号

第 3488 号

第 3470 号

图 16 稳定构型的 VMD 可视化

图 17 稳定构型的样例

第 2746 号

第105号

图 18 非稳定构型的 VMD 可视化

图 19 非稳定构型的样例

我们发现,第 273 号和第 3488 号与图 15 的样例相似度较高,第 2746 号和第 105 号贴近于平面图形,与图 17 的样例重合度较高,第 273 号是所给数据中能量最低对应的最优构型,第 2746 号是所给数据中能量最高对应的最差构型。

我们猜想,呈笼状结构、无缺口、立体感越好的构型稳定性越好。

仿照问题一,我们同样进行 K-means 聚类,并以K = 4为最佳分类结果。依据结果,我们进行数据扩充,同样扩充至 100 万条,准备批量导入随机森林预测模型。

图 30 K-means 聚类

我们将 100 万条数据分成 10 次导入模型,选取预测结果最佳的 6 条数据进行构图。 其预测值与最低能量极为贴切,最低能量为-113946.567430971。

X	Y	Z
1.654844227	0.051877268	0.046985998
1.872800069	-1.912661439	-0.357629898
0.524717562	0.811565758	-0.140634709
-0.700720138	2.422807206	0.185242188
0.647158448	0.103044684	-0.096928558
-1.042741456	1.610892512	-1.868209911
-2.178610254	0.737882018	0.548381411
3.143530274	0.442988409	0.455917537
-1.462937498	1.971429787	0.188885546
3.308450073	-2.014165114	1.174318168
-1.161030792	3.887579207	-0.428305378
-3.069408751	-1.227435834	0.456302376
-3.174556231	0.90276027	-0.750356501
-3.920902346	-0.752117851	-0.103923758
0.26446033	-0.823308359	-0.386955292
-1.626217419	-1.999895516	0.360313173
-3.158693688	-1.006896194	0.503343569
-4.133557922	-0.564603594	0.974602173
-3.822304926	-1.978143411	1.26744404
-2.250139183	-2.282558922	0.661546209
-1.009572797	-3.486453952	0.542007611
-0.216801661	-3.013144927	0.615624792
-0.000218341	-3.88597359	0.753005352
2.459385772	-2.942040693	0.380307297
1.343573255	-3.668582337	0.486548016
2.942170366	-1.337492411	0.05720938
4.297708917	-2.525168748	0.659507804
3.758890234	-0.946180391	-0.110114507
1.261656694	-2.304379265	-0.111945266
0.997902214	1.921722276	-0.460630916

第 12 页 共 17 页

-2.768829021	-1.127592999	-0.688041126
1.57498224	-0.161583775	-0.760109257
-4.274944925	-1.547028551	0.463599447
5.351363641	-0.079879405	1.032268896
5.151842812	-0.57751979	0.661839196
5.078087396	-1.171088692	0.674129617
6.115617342	-0.640570887	0.60903108
6.105179948	-0.619064693	0.423190593
-1.139510448	-0.242612538	-0.472601601
3.034779822	0.695632405	-0.328340717
-0.223829226	0.5938022	-0.328380783
-4.517087209	-0.712214191	1.202721582
-5.843813568	-0.275267964	2.025996145
-4.97614701	-0.58886126	1.446525643
0.695144192	0.375805023	-0.353275799

表 3 最优坐标解

作三维图,如下图所示。观察为较复杂的折叠构型,验证猜想。

图 20 最优结构图

七、问题四的模型建立与求解

7.1 数据预处理

仿照问题二,现在题中要求输入 40 个坐标,我们欲设置 5 个无关坐标,仍保持输入集为 45 进行预测。

7.2 模型的建立与求解

我们通过预测值,通过排序找到能量最低的结构坐标,并以三维图呈现。

图 21 最优结构图

经过查阅资料,我们得知 B_{40} 团簇有两个共存的全局最优结构:其一为准平面构型并有 C_S 对称性,另一则是较为罕见的具有 D_{2d} 对称性的三维高对称立体结构。

八、模型的优缺点

8.1 模型的优点

采用随机森林算法,经检验为预测模型中兼容性较好的算法,对于数据的要求度不高,使得预测结果较为理想。

8.2 模型的缺点

采用的搜索算法为随机模拟与暴力枚举、耗时费力、可以采用梯度下降的方法进行 优化、或者对搜索结果进行剪枝处理。此外,应当去考虑结合团簇构型的空间搜索算法 得到坐标最优解,更符合化学特征。

参考文献

[1]高锦花. 金纳米团簇的结构及其构效关系研究[D].北京理工大学,2016.

[2]赖向京,许如初,黄文奇.Lennard-Jones 团簇最低能量构型的预测[J].中国科学:化学,2011,41(07):1137-1144.

[3]姚文志. 硼氧及硼金团簇结构与性质的理论研究[D].山西大学,2010.

附录

```
import pandas as pd
import numpy as np
import os
import csv
import math
#Au 的势能和原子密度
Potential Energy = np.zeros(999)
Atomic Density=np.zeros(999)
for k in range(1,1000):
    for i in range((k-1)*20,k*20-1):
         for j in range(i+1,k*20):
euclidean temp=(X[i]-X[j])*(X[i]-X[j])+(Y[i]-Y[j])*(Y[i]-Y[j])+(Z[i]-Z[j])*(Z[i]-Z[j])
              euclidean result=pow(euclidean temp,0.5)
              if(euclidean result==0):
                  print(i,j)
              euclidean_result=pow(euclidean_result,-1)
              temp1=pow(euclidean result,12)
              temp2=pow(euclidean result,6)
              t=temp1-temp2
              temp3=pow(euclidean result,3)
              Potential Energy[k-1]+=t
              Atomic Density[k-1]+=temp3
    Potential Energy[k-1]=Potential Energy[k-1]*4
#Au 的体积
max x=np.zeros(999)
max y=np.zeros(999)
max z=np.zeros(999)
min x=np.zeros(999)
min y=np.zeros(999)
```

```
min z=np.zeros(999)
volumn result=np.zeros(999)
flag=0
for k in range(1,1000):
     for i in range((k-1)*20,k*20):
         if(max x[k-1] < X[i] or flag==0):
              \max x[k-1]=X[i]
         if(max y[k-1] < Y[i] or flag==0):
              \max y[k-1]=Y[i]
         if(max z[k-1] < Z[i] or flag==0):
              \max z[k-1]=Z[i]
         if(min x[k-1]>X[i] or flag==0):
              min x[k-1]=X[i]
         if(min y[k-1]>Y[i] or flag==0):
              min y[k-1]=Y[i]
         if(min z[k-1]>Z[i] or flag==0):
              min z[k-1]=Z[i]
         flag=1
    flag=0
volumn result[k-1]=(\max x[k-1]-\min x[k-1])*(\max y[k-1]-\min y[k-1])*(\max z[k-1]-\min z[k-1])
[k-1]
#B kmeans
from sklearn.cluster import KMeans
from sklearn import preprocessing
import pandas as pd
import numpy as np
import os
kmeans = KMeans(n clusters=4)
# 归一化
min max scaler=preprocessing.MinMaxScaler()
train x=min max scaler.fit transform(train x)
# kmeans 算法
                                     第 16 页 共 17 页
```

```
kmeans.fit(train x)
predict y = kmeans.predict(train x)
# 合并聚类结果
result = pd.concat((data,pd.DataFrame(predict y)),axis=1)
result.rename({0:u'聚类'},axis=1,inplace=True)
result.to csv('B kmeans 4.csv')
#SVM 分类器
from sklearn import svm
from sklearn import metrics
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScal
train,test = train test split(data,test size = 0.2)
#数据规范化
standard scaler = StandardScaler()
train x = \text{standard scaler.fit transform}(\text{train } x)
test x = \text{standard scaler.fit transform(test } x)
#创建 SVM 分类器
model = svm.SVC()
#训练数据
model.fit(train X,train y.astype('int'))
#模型评估
prediction = model.predict(test x)
print('准确率:',metrics.accuracy score(prediction,test y))
```