FCC TEST REPORT

For

Shenzhen Toplink Technology Development Co.,LTD

Wireless module

Model No.: TOP-MS04

Additional Model No.: TOP-MS04-33, TOP-MS04-50

Prepared for : Shenzhen Toplink Technology Development Co.,LTD

Address : 2F, Bldg B, Jingdingsheng Industrial Park, DaHe Road, Longhua,

Shenzhen, China

Prepared by : Shenzhen LCS Compliance Testing Laboratory Ltd.

Address : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Tel : (+86)755-82591330 Fax : (+86)755-82591332 Web : www.LCS-cert.com

Mail : webmaster@LCS-cert.com

Date of receipt of test sample : May 18, 2016

Number of tested samples :

Date of Test : May 18, 2016- May 27, 2016

Date of Report : May 27, 2016

FCC TEST REPORT
FCC CFR 47 PART 15 C(15.247): 2015

Report Reference No.: LCS1605181622E

Date of Issue.....: May 27, 2016

Testing Laboratory Name: Shenzhen LCS Compliance Testing Laboratory Ltd.

Address.....: 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

Testing Location/ Procedure: Full application of Harmonised standards

Partial application of Harmonised standards \square

Other standard testing method \square

Applicant's Name.....: Shenzhen Toplink Technology Development Co.,LTD

Address.....: 2F, Bldg B, Jingdingsheng Industrial Park, DaHe Road, Longhua,

Shenzhen, China

Test Specification

Standard.....: FCC CFR 47 PART 15 C(15.247): 2015

Test Report Form No.....: LCSEMC-1.0

TRF Originator.....: Shenzhen LCS Compliance Testing Laboratory Ltd.

Master TRF : Dated 2011-03

Shenzhen LCS Compliance Testing Laboratory Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test Item Description.....: Wireless module

Trade Mark.....: TopLink

Model/ Type reference: TOP-MS04

Ratings..... DC 5V

Result Positive

Compiled by:

Supervised by:

Approved by:

) · · · · · · · · ·

Glin Lu / Technique principal

Gavin Liang/ Manager

FCC -- TEST REPORT

Test Report No.: LCS1605181622E

May 27, 2016

Date of issue

Type / Model..... : Wireless module EUT..... : TOP-MS04 Applicant..... : Shenzhen Toplink Technology Development Co.,LTD Address..... : 2F, Bldg B, Jingdingsheng Industrial Park, DaHe Road, Longhua, Shenzhen, China Telephone..... : / : / Fax..... Manufacturer..... : Shenzhen Toplink Technology Development Co.,LTD Address..... : 2F, Bldg B, Jingdingsheng Industrial Park, DaHe Road, Longhua, Shenzhen, China Telephone..... : / Fax.... : Shenzhen Toplink Technology Development Co.,LTD Factory..... Address..... : 2F, Bldg B, Jingdingsheng Industrial Park, DaHe Road, Longhua, Shenzhen, China Telephone..... : / Fax.....

Test Result	Positive
-------------	----------

The test report merely corresponds to the test sample.

It is not permitted to copy extracts of these test result without the written permission of the test laboratory.

Revision History

Revision	Issue Date	Revisions	Revised By
00	May 27, 2016	Initial Issue	Gavin Liang

TABLE OF CONTENTS

1. GENERAL INFORMATION	6
1.1. DESCRIPTION OF DEVICE (EUT) 1.2. SUPPORT EQUIPMENT LIST 1.3. EXTERNAL I/O CABLE	6
1.4. DESCRIPTION OF TEST FACILITY	7
1.7. DESCRIPTION OF TEST MODES	8
2. TEST METHODOLOGY	9
2.1 EUT CONFIGURATION	
2.2 EUT EXERCISE 2.3 GENERAL TEST PROCEDURES	
3. SYSTEM TEST CONFIGURATION	
3.1. JUSTIFICATION	
3.2. EUT EXERCISE SOFTWARE	
3.3. SPECIAL ACCESSORIES	
3.4. BLOCK DIAGRAM/SCHEMATICS	
3.5. EQUIPMENT MODIFICATIONS	
4. SUMMARY OF TEST RESULTS	11
5. SUMMARY OF TEST EQUIPMENT	12
6. TEST RESULT	13
6.1. MAXIMUM CONDUCTED OUTPUT POWER MEASUREMENT	
6.2. POWER SPECTRAL DENSITY MEASUREMENT	
6.3. 6 dB Spectrum Bandwidth Measurement	
6.4. OCCUPIED BANDWIDTH	
6.5. RADIATED EMISSIONS MEASUREMENT	
6.6. CONDUCTED SPURIOUS EMISSIONS AND BAND EDGES TEST	
7. ANTENNA REQUIREMENT	
7.1 STANDARD APPLICABLE	
7.2 ANTENNA CONNECTED CONSTRUCTION	

1. GENERAL INFORMATION

1.1. Description of Device (EUT)

EUT : Wireless module

Model Number : TOP-MS04

Power Supply : DC 5V

Hardware Version : V1.1

Software Version : V1.1

WIFI

Frequency Range : 2412.00-2462.00MHz

Channel Spacing : 5MHz

Channel Number 11 Channels for 20MHz Bandwidth

7 Channels for 40MHz Bandwidth

Modulation Technology IEEE 802.11b: DSSS(CCK,DQPSK,DBPSK)

: IEEE 802.11g: OFDM(64QAM, 16QAM, QPSK, BPSK)

IEEE 802.11n: OFDM (64QAM, 16QAM,QPSK,BPSK)

Data Rates IEEE 802.11b: 1-11Mbps

: IEEE 802.11g: 6-54Mbps

IEEE 802.11n: MCS0-MCS7

Antenna Description : External Antenna, 2.0dBi (Max.)

Additional models No.					
TOP-MS04-33	TOP-MS04-50				
Remark: PCB board, structure and internal of these model(s) are the same, So no additional models were tested.					

1.2. Support equipment List

Manufacturer	Description	Model	Serial Number	Certificate
		-1		

1.3. External I/O Cable

I/O Port Description	Quantity	Cable
	-1	

1.4. Description of Test Facility

Site Description

EMC Lab. : CNAS Registration Number. is L4595.

FCC Registration Number. is 899208.

Industry Canada Registration Number. is 9642A-1. VCCI Registration Number. is C-4260 and R-3804.

ESMD Registration Number. is ARCB0108. UL Registration Number. is 100571-492. TUV SUD Registration Number. is SCN1081.

TUV RH Registration Number. is UA 50296516-001

Name of Firm : Shenzhen LCS Compliance Testing Laboratory Ltd.

Site Location : 1/F., Xingyuan Industrial Park, Tongda Road, Bao'an Avenue,

Bao'an District, Shenzhen, Guangdong, China

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according

to ANSI C63.4:2014 and CISPR 16-1-4:2010 SVSWR

requirement for radiated emission above 1GHz.

1.5. Statement of the Measurement Uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. To CISPR 16 – 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the LCS quality system acc. To DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

1.6. Measurement Uncertainty

Test Item		Frequency Range	Uncertainty	Note
		9KHz~30MHz	3.10dB	(1)
		30MHz~200MHz	2.96dB	(1)
Radiation Uncertainty	:	200MHz~1000MHz	3.10dB	(1)
		1GHz~26.5GHz	3.80dB	(1)
		26.5GHz~40GHz	3.90dB	(1)
Conduction Uncertainty	:	150kHz~30MHz	1.63dB	(1)
Power disturbance	:	30MHz~300MHz	1.60dB	(1)

^{(1).} This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

1.7. Description of Test Modes

The EUT has been tested under operating condition.

This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X position.

Worst-case mode and channel used for 150 kHz-30 MHz power line conducted emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode (Low Channel).

Worst-case mode and channel used for 9kHz-1000 MHz radiated emissions was the mode and channel with the highest output power, that was determined to be 802.11b mode(Low Channel).

Worst-Case data rates were utilized from preliminary testing of the Chipset, worst-case data rates used during the testing are as follows:

802.11b Mode: 1 Mbps, DSSS.

802.11g Mode: 6 Mbps, OFDM.

802.11n Mode HT20:.MCS0, OFDM.

802.11n Mode HT40:.MCS0, OFDM.

Channel List & Frequency

802.11b/g/n(HT20)

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1	2412	7	2442
	2	2417	8	2447
2412~2462MHz	3	2422	9	2452
2412~2402NITIZ	4	2427	10	2457
	5	2432	11	2462
	6	2437		

802.11n(HT40)

Frequency Band	Channel No.	Frequency(MHz)	Channel No.	Frequency(MHz)
	1		7	2442
	2		8	2447
2422~2452MHz	3	2422	9	2452
2422~2432WITIZ	4	2427	10	
	5	2432	11	
	6	2437		

^{***}Note: Using a temporary antenna connector for the EUT when the conducted measurements are performed.

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.10-2013, FCC CFR PART 15C 15.207, 15.209, 15.247.

2.1 EUT Configuration

The EUT configuration for testing is installed on RF field strength measurement to meet the Commissions requirement and operating in a manner that intends to maximize its emission characteristics in a continuous normal application.

2.2 EUT Exercise

The EUT was operated in the engineering mode to fix the TX frequency that was for the purpose of the measurements.

According to its specifications, the EUT must comply with the requirements of the Section 15.207, 15.209, 15.247 under the FCC Rules Part 15 Subpart C and RSS-247.

2.3 General Test Procedures

2.3.1 Conducted Emissions

The EUT is placed on the turntable, which is 0.8 m above ground plane. According to the requirements in Section 6.2.1 of ANSI C63.10-2013 Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz using Quasi-peak and average detector modes.

2.3.2 Radiated Emissions

The EUT is placed on a turn table 0.8 meter above ground for below 1GHz and 1.5m for above 1GHz. The turntable shall rotate 360 degrees to determine the position of maximum emission level. EUT is set 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical. In order to find out the maximum emissions, exploratory radiated emission measurements were made according to the requirements in Section 6.3 of ANSI C63.10-2013

3. SYSTEM TEST CONFIGURATION

3.1. Justification

Note: The EUT was programmed to be in continuously transmitting mode and the transmit duty cycle is not less than 98%.

3.2. EUT Exercise Software

N/A

3.3. Special Accessories

N/A

3.4. Block Diagram/Schematics

Please refer to the related document

3.5. Equipment Modifications

Shenzhen LCS Compliance Testing Laboratory Ltd. has not done any modification on the EUT.

3.6. Test Setup

Please refer to the test setup photo.

4. SUMMARY OF TEST RESULTS

Applied Standard: FCC Part 15 Subpart C				
FCC Rules	Description of Test	Result		
§15.247(b)	Maximum Conducted Output Power	Compliant		
§15.247(e)	Power Spectral Density	Compliant		
§15.247(a)(2)	6dB Bandwidth	Compliant		
§15.247(a)	Occupied Bandwidth	Compliant		
§15.209, §15.247(d)	Radiated and Conducted Spurious Emissions	Compliant		
§15.205	Emissions at Restricted Band	Compliant		
§15.207(a)	Conducted Emissions	Compliant		
§15.203	Antenna Requirements	Compliant		

5. SUMMARY OF TEST EQUIPMENT

Item	Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
1	Power Sensor	R&S	NRV-Z51	100458	2015-06-18	2016-06-17
2	Power Sensor	R&S	NRV-Z32	10057	2015-06-18	2016-06-17
3	Power Meter	R&S	NRVS	100444	2015-06-18	2016-06-17
4	DC Filter	MPE	23872C	N/A	2015-06-18	2016-06-17
5	RF Cable	Harbour Industries	1452	N/A	2015-06-18	2016-06-17
6	SMA Connector	Harbour Industries	9625	N/A	2015-06-18	2016-06-17
7	Spectrum Analyzer	Agilent	N9020A	MY50510140	2015-10-27	2016-10-26
8	Signal analyzer	Agilent	E4448A(Exter nal mixers to 40GHz)	US44300469	2015-06-18	2016-06-17
9	RF Cable	Hubersuhne	Sucoflex104	FP2RX2	2015-06-18	2016-06-17
10	3m Semi Anechoic Chamber	SIDT FRANKONIA	SAC-3M	03СН03-НҮ	2015-06-18	2016-06-17
11	Amplifier	SCHAFFNER	COA9231A	18667	2015-06-18	2016-06-17
12	Amplifier	Agilent	8449B	3008A02120	2015-06-18	2016-06-17
13	Amplifier	MITEQ	AMF-6F-2604 00	9121372	2015-06-18	2016-06-17
14	Loop Antenna	R&S	HFH2-Z2	860004/001	2015-06-18	2016-06-17
15	By-log Antenna	SCHWARZBEC K	VULB9163	9163-470	2015-06-18	2016-06-17
16	Horn Antenna	EMCO	3115	6741	2015-06-18	2016-06-17
17	Horn Antenna	SCHWARZBEC K	BBHA9170	BBHA9170154	2015-06-18	2016-06-17
18	RF Cable-R03m	Jye Bao	RG142	CB021	2015-06-18	2016-06-17
19	RF Cable-HIGH	SUHNER	SUCOFLEX 106	03СН03-НҮ	2015-06-18	2016-06-17
20	EMI Test Receiver	ROHDE & SCHWARZ	ESCI	101142	2015-06-18	2016-06-17
21	Artificial Mains	ROHDE & SCHWARZ	ENV216	101288	2015-06-18	2016-06-17
22	EMI Test Software	AUDIX	Е3	N/A	2015-06-18	2016-06-17
23	temporary antenna connector	LCS	LCS-RF-2015 0413	N/A	N/A	N/A

6. TEST RESULT

6.1. Maximum Conducted Output Power Measurement

6.1.1. Standard Applicable

According to §15.247(b): For systems using digital modulation in the 2400-2483.5 MHz and 5725-5850 MHz band, the limit for maximum peak conducted output power is 30dBm. The limited has to be reduced by the amount in dB that the gain of the antenna exceeds 6dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3dB that the directional gain of the antenna exceeds 6dBi.

Systems operating in the 5725-5850 MHz band that are used exclusively for fixed, point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi without any corresponding reduction in transmitter peak output power.

6.1.2. Measuring Instruments

Please refer to section 6 of equipments list in this report.

6 1 3 Test Procedures

The transmitter output (antenna port) was connected to the power meter.

6.1.4. Test Setup Layout

6.1.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.1.6. Test Result of Maximum Conducted Output Power

Temperature	25°C	Humidity	60%
Test Engineer	Dick	Configurations	802.11b/g/n

802.11b

Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Max. Limit (dBm)	Result
1	2412	16.86	30	Complies
6	2437	17.63	30	Complies
11	2462	17.24	30	Complies

802.11g

Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Max. Limit (dBm)	Result
1	2412	19.28	30	Complies
6	2437	20.37	30	Complies
11	2462	19.70	30	Complies

802.11n HT20

	*			
Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Max. Limit (dBm)	Result
1	2412	19.85	30	Complies
6	2437	19.92	30	Complies
11	2462	20.79	30	Complies

802.11n HT40

Channel	Frequency (MHz)	Conducted Peak Power (dBm)	Max. Limit (dBm)	Result
3	2422	21.63	30	Complies
6	2437	20.32	30	Complies
9	2452	21.19	30	Complies

Note: The relevant measured result has the offset with cable loss already.

6.2. Power Spectral Density Measurement

6.2.1. Standard Applicable

According to §15.247(e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

6.2.2. Measuring Instruments

Please refer to section 6 of equipments list in this report.

6.2.3. Test Procedures

- 1. The transmitter was connected directly to a Spectrum Analyzer through a directional couple.
- 2. The power was monitored at the coupler port with a Spectrum Analyzer. The power level was set to the maximum level.
- 3. Set the RBW = 3 kHz.
- 4. Set the VBW \geq 3*RBW
- 5. Set the span to 1.5 times the DTS channel bandwidth.
- 6. Detector = peak.
- 7. Sweep time = auto couple.
- 8. Trace mode = max hold.
- 9. Allow trace to fully stabilize.
- 10. Use the peak marker function to determine the maximum power level in any 3 kHz band segment within the fundamental EBW.

6.2.4. Test Setup Layout

6.2.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.2.6. Test Result of Power Spectral Density

Temperature	25°C	Humidity	60%
Test Engineer	Dick	Configurations	802.11b/g/n

802.11b

Channel	Frequency (MHz)	Power <i>Density</i> (dBm/3KHz)	Max. Limit (dBm/3KHz)	Result
1	2412	-13.386	8	Complies
6	2437	-14.761	8	Complies
11	2462	-14.672	8	Complies

802.11g

Channel	Frequency (MHz)	Power <i>Density</i> (dBm/3KHz)	Max. Limit (dBm/3KHz)	Result
1	2412	-19.117	8	Complies
6	2437	-20.208	8	Complies
11	2462	-20.882	8	Complies

802.11n HT20

Channel	Frequency (MHz)	Power <i>Density</i> (dBm/3KHz)	Max. Limit (dBm/3KHz)	Result
1	2412	-19.866	8	Complies
6	2437	-21.218	8	Complies
11	2462	-21.342	8	Complies

802.11n HT40

Channel	Frequency (MHz)	Power <i>Density</i> (dBm/3KHz)	Max. Limit (dBm/3KHz)	Result
	,	,	. ,	0 "
3	2422	-21.247	8	Complies
6	2437	-21.893	8	Complies
9	2452	-22.573	8	Complies

Note: The measured power density (dBm) has the offset with cable loss already.

802.11b power density

802.11g power density

802.11n HT20 power density

802.11n HT40 power density

6.3. 6 dB Spectrum Bandwidth Measurement

6.3.1. Standard Applicable

According to §15.247(a)(2): For digital modulation systems, the minimum 6 dB bandwidth shall be at least 500 kHz.

6.3.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

6.3.3. Test Procedures

- 1. The transmitter output (antenna port) was connected to the spectrum analyzer in peak hold mode.
- 2. The resolution bandwidth and the video bandwidth were set according to KDB558074 D01 v03r03.
- 3. Measured the spectrum width with power higher than 6dB below carrier.

6.3.4. Test Setup Layout

6.3.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.3.6. Test Result of 6dB Spectrum Bandwidth

Temperature	25°C	Humidity	60%
Test Engineer	Dick	Configurations	802.11b/g/n

802.11b

Channel	Frequency 6dB Bandwidth (MHz)		Min. Limit (kHz)	Result
1	2412	11.54	500	Complies
6	2437	11.30	500	Complies
11	2462	11.31	500	Complies

802.11g

Channel	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Result
1	2412	16.49	500	Complies
6	2437	16.48	500	Complies
11	2462	16.49	500	Complies

802.11n HT20

Channel	Frequency		Min. Limit (kHz)	Result
1	2412	17.67	500	Complies
6	2437	17.65	500	Complies
11	2462	17.66	500	Complies

802.11n HT40

Channel	Frequency	6dB Bandwidth (MHz)	Min. Limit (kHz)	Result
3	2422	36.43	500	Complies
6	2437	36.42	500	Complies
9	2452	36.44	500	Complies

802.11b channel, 6dB bandwidth

802.11g channel, 6dB bandwidth

802.11n HT20 channel, 6dB bandwidth

802.11n HT40 channel, 6dB bandwidth

6.4. Occupied Bandwidth

6.4.1. Standard Applicable

According to §15.247(a): Operation under the provisions of this section is limited to frequency hopping and digitally modulated intentional radiators that comply with the following provisions:

For systems using digital modulation techniques, the EUT may operate in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands. The minimum 6dB bandwidth shall be at least 500 kHz.

6.4.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of the Spectrum Analyzer.

Spectrum Parameter	Setting
Attenuation	Auto
Span Frequency	> RBW
RBW	1% to 3% of the band
VBW	3 times the RBW
Detector	Peak
Trace	Max Hold
Sweep Time	100ms

5

6.4.3. Test Procedures

The transmitter output is connected to the spectrum analyzer. The RBW is set to 1% to 3% of the bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal bandwidth measurement function is utilized.

6.4.4. Test Setup Layout

6.4.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.5. Radiated Emissions Measurement

6.5.1. Standard Applicable

According to §15.247 (d): 20dBc in any 100 kHz bandwidth outside the operating frequency band. In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Frequencies(MHz)	Field Strength(microvolts/meter)	Measurement Distance(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

5.5.2. Measuring Instruments and Setting

Please refer to section 6 of equipments list in this report. The following table is the setting of spectrum analyzer and receiver.

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	10th carrier harmonic
RB / VB (Emission in restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average
RB / VB (Emission in non-restricted band)	1MHz / 1MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB/VB 200Hz/1KHz for QP/Average
Start ~ Stop Frequency	150kHz~30MHz / RB/VB 9kHz/30KHz for QP/Average
Start ~ Stop Frequency	30MHz~1000MHz / RB/VB 120kHz/1MHz for QP/Average

6.5.3. Test Procedures

1) Sequence of testing 9 kHz to 30 MHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 0.8 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions.

- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna height is 0.8 meter.
- --- At each turntable position the analyzer sweeps with peak detection to find the maximum of all emissions

Final measurement:

- --- Identified emissions during the premeasurement the software maximizes by rotating the turntable position (0° to 360°) and by rotating the elevation axes (0° to 360°).
- --- The final measurement will be done in the position (turntable and elevation) causing the highest emissions with QPK detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

2) Sequence of testing 30 MHz to 1 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height changes from 1 to 3 meter.
- --- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter.
- --- The final measurement will be done with QP detector with an EMI receiver.
- --- The final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

3) Sequence of testing 1 GHz to 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 3 meter.
- --- The EUT was set into operation.

Premeasurement:

- --- The turntable rotates from 0° to 315° using 45° steps.
- --- The antenna is polarized vertical and horizontal.
- --- The antenna height scan range is 1 meter to 2.5 meter.
- --- At each turntable position and antenna polarization the analyzer sweeps with peak detection to find the maximum of all emissions.

Final measurement:

- --- The final measurement will be performed with minimum the six highest peaks.
- --- According to the maximum antenna and turntable positions of premeasurement the software maximize the peaks by changing turntable position (\pm 45°) and antenna movement between 1 and 4 meter. This procedure is repeated for both antenna polarizations.
- --- The final measurement will be done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement with marked maximum final measurements and the limit will be stored.

4) Sequence of testing above 18 GHz

Setup:

- --- The equipment was set up to simulate a typical usage like described in the user manual or described by manufacturer.
- --- If the EUT is a tabletop system, a rotatable table with 1.5 m height is used.
- --- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- --- Auxiliary equipment and cables were positioned to simulate normal operation conditions
- --- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- --- The measurement distance is 1 meter.
- --- The EUT was set into operation.

Premeasurement:

--- The antenna is moved spherical over the EUT in different polarizations of the antenna.

Final measurement:

- --- The final measurement will be performed at the position and antenna orientation for all detected emissions that were found during the premeasurements with Peak and Average detector.
- --- The final levels, frequency, measuring time, bandwidth, correction factor, margin to the limit and limit will be recorded. Also a plot with the graph of the premeasurement and the limit will be stored.

6.5.4. Test Setup Layout

For radiated emissions below 30MHz

Below 30MHz

For radiated emissions above 30MHz

Below 1GHz

Above 1GHz

Above 10 GHz shall be extrapolated to the specified distance using an extrapolation factor of 20 dB/decade form 3m to 1.5m.

Distance extrapolation factor = 20 log (specific distanc [3m] / test distance [1.5m]) (dB); Limit line = specific limits (dBuV) + distance extrapolation factor [6 dB].

5.5.5. EUT Operation during Test

The EUT was programmed to be in continuously transmitting mode.

6.5.6. Results of Radiated Emissions (9 kHz~30MHz)

Temperature	25°C	Humidity	60%
Test Engineer	Dick	Configurations	802.11b/g/n

Freq.	Level	Over Limit	Over Limit	Remark
(MHz)	(dBuV)	(dB)	(dBuV)	
-	-	-	-	See Note

Note:

The amplitude of spurious emissions which are attenuated by more than 20 dB below the permissible value has no need to be reported.

Distance extrapolation factor = 40 log (specific distance / test distance) (dB);

Limit line = specific limits (dBuV) + distance extrapolation factor.

6.5.7. Results of Radiated Emissions (30MHz~1GHz)

Temperature	25°C	Humidity	60%
Test Engineer	Dick	Configurations	802.11b (Low CH)

Test result for 802.11b (Low Channel)

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark	
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ		
1	30.96		0.39	12.32	<u> 15.06</u> –	40.00	-24.94		
2	50.41	8.10	0.54	13.23	21.87	40.00	-18.13	QP	
3	108.65	14.96	0.68	12.37	28.01	43.50	-15.49	QP	
4	232.53	23.30	0.98	11.76	36.04	46.00	-9.96	QP	
5	368.11	8.77	1.22	14.49	24.48	46.00	-21.52	QP	
6	768.75	16.51	1.76	19.67	37.94	46.00	-8.06	OP	

Note: 1. All readings are Quasi-peak values.

^{2.} Measured= Reading + Antenna Factor + Cable Loss

^{3.} The emission that ate 20db blow the offficial limit are not reported

Env./Ins: pol:

24°C/56% VERTICAL

	Freq	Reading	CabLos	Antfac	Measured	Limit	Over	Remark
	MHz	dBuV	dВ	dB/m	dBuV/m	dBuV/m	dВ	
1	32.86	2.72	0.37	12.31	15.40	40.00	-24.60	QP
2	49.36	1.88	0.54	13.29	15.71	40.00	-24.29	QP
3	99.88	9.56	0.60	13.15	23.31	43.50	-20.19	QP
4	215.27	12.03	0.95	11.05	24.03	43.50	-19.47	QP
5	576.64	15.08	1.49	18.01	34.58	46.00	-11.42	QP
6	768.75	16.28	1.76	19.67	37.71	46.00	-8.29	QP

Note:

Pre-scan all modes and recorded the worst case results in this report (802.11b (Low Channel)). Emission level $(dBuV/m) = 20 \log Emission level (uV/m)$.

 $Corrected\ Reading: Antenna\ Factor + Cable\ Loss + Read\ Level - Preamp\ Factor = Level.$

Note: 1. All readings are Quasi-peak values. 2. Measured= Reading + Antenna Factor + Cable Loss

^{3.} The emission that ate 20db blow the offficial limit are not reported

6.5.8. Results for Radiated Emissions (Above 1GHz) 802.11b

Channel 1

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4824.00	51.63	33.06	35.04	3.94	53.59	74	-20.41	Peak	Horizontal
4824.00	36.38	33.06	35.04	3.94	38.34	54	-15.66	Average	Horizontal
4824.00	46.87	33.06	35.04	3.94	48.83	74	-25.17	Peak	Vertical
4824.00	32.24	33.06	35.04	3.94	34.20	54	-19.80	Average	Vertical

Channel 6

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4874.00	48.85	33.16	35.15	3.96	50.82	74	-23.18	Peak	Horizontal
4874.00	39.88	33.16	35.15	3.96	41.85	54	-12.15	Average	Horizontal
4874.00	55.59	33.16	35.15	3.96	57.56	74	-16.44	Peak	Vertical
4874.00	42.86	33.16	35.15	3.96	44.83	54	-9.17	Average	Vertical

Channel 11

Freq. MHz	Reading dBuv	Ant. Fac. dB/m	Pre. Fac. dB	Cab. Loss dB	Measured dBuv/m	Limit dBuv/m	Margin dB	Remark	Pol.
4924.00	50.19	33.26	35.14	3.98	52.29	74	-21.71	Peak	Horizontal
4924.00	33.81	33.26	35.14	3.98	35.91	54	-18.09	Average	Horizontal
4924.00	51.95	33.26	35.14	3.98	54.05	74	-19.95	Peak	Vertical
4924.00	36.76	33.26	35.14	3.98	38.86	54	-15.14	Average	Vertical