Spherical Sliced-Wasserstein

Clément Bonet¹, Paul Berg², Nicolas Courty², François Septier¹, Lucas Drumetz³, Minh-Tan Pham²

¹Université Bretagne Sud, LMBA ²Université Bretagne Sud, IRISA ³IMT Atlantique, Lab-STICC

> CAp 03/07/2023

Motivation

Optimal Transport widely use nowadays in Machine Learning

- Domain Adaptation [Courty et al., 2016]
- Generative Models (e.g. WGAN [Arjovsky et al., 2017])
- Document Classification [Kusner et al., 2015]
- ...

Data generally lie on manifolds, e.g. on the sphere $S^{d-1}=\{x\in\mathbb{R}^d,\ \|x\|_2=1\}$:

- Directional data, meteorology, cosmology...
- Also used as embeddings for VAEs, Self-supervised learning...

Wasserstein Distance on the Sphere

- Sphere: $S^{d-1} = \{x \in \mathbb{R}^d, \|x\|_2 = 1\}$
- Geodesic distance: $\forall x, y \in S^{d-1}, \ d(x,y) = \arccos(\langle x, y \rangle)$

Definition (Wasserstein distance)

Let $p \ge 1$, $\mu, \nu \in \mathcal{P}_p(S^{d-1})$, then

$$W_p^p(\mu,\nu) = \inf_{\gamma \in \Pi(\mu,\nu)} \int d(x,y)^p \, d\gamma(x,y), \tag{1}$$

where
$$\Pi(\mu,\nu) = \{ \gamma \in \mathcal{P}(S^{d-1} \times S^{d-1}), \ \pi_{\#}^1 \gamma = \mu, \pi_{\#}^2 \gamma = \nu \}$$
 and $\pi^1(x,y) = x, \pi^2(x,y) = y, \ \pi_{\#}^1 \gamma = \gamma \circ (\pi^1)^{-1}.$

Wasserstein Distance on the Sphere

Let
$$\mu, \nu \in \mathcal{P}_p(S^{d-1})$$
, $x_1, \ldots, x_n \sim \mu$, $y_1, \ldots, y_n \sim \nu$, $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\hat{\nu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$.

Numerical computation with plug-in estimator: Linear program

$$W_p^p(\hat{\mu}_n, \hat{\nu}_n) = \min_{\gamma \in \Pi(\hat{\mu}_n, \hat{\nu}_n)} \langle C, \gamma \rangle, \tag{2}$$

with $C = (d(x_i, y_j))_{i,j}$.

Complexity: $O(n^3 \log n)$ [Peyré et al., 2019]

Wasserstein Distance on the Sphere

Let
$$\mu, \nu \in \mathcal{P}_p(S^{d-1})$$
, $x_1, \ldots, x_n \sim \mu$, $y_1, \ldots, y_n \sim \nu$, $\hat{\mu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$ and $\hat{\nu}_n = \frac{1}{n} \sum_{i=1}^n \delta_{y_i}$.

Numerical computation with plug-in estimator: Linear program

$$W_p^p(\hat{\mu}_n, \hat{\nu}_n) = \min_{\gamma \in \Pi(\hat{\mu}_n, \hat{\nu}_n)} \langle C, \gamma \rangle, \tag{2}$$

with $C = (d(x_i, y_j))_{i,j}$.

Complexity: $O(n^3 \log n)$ [Peyré et al., 2019]

Proposed Solutions:

- Entropic regularization + Sinkhorn $O(n^2)$ [Cuturi, 2013]
- Minibatch estimator [Fatras et al., 2020]
- Sliced-Wasserstein [Rabin et al., 2011b, Bonnotte, 2013] but only on Euclidean spaces

Sliced-Wassertein on \mathbb{R}^d

Figure: Illustration of the projection of distributions on different lines.

Wasserstein on \mathbb{R} :

$$\forall p \ge 1, \forall \mu, \nu \in \mathcal{P}_p(\mathbb{R}), \ W_p^p(\mu, \nu) = \int_0^1 |F_{\mu}^{-1}(u) - F_{\nu}^{-1}(u)|^p \, \mathrm{d}u$$
 (3)

Sliced-Wassertein on \mathbb{R}^d

Definition (Sliced-Wasserstein [Rabin et al., 2011b])

Let $\mu, \nu \in \mathcal{P}_p(\mathbb{R}^d)$,

$$SW_p^p(\mu,\nu) = \int_{S^{d-1}} W_p^p(P_\#^\theta \mu, P_\#^\theta \nu) \, d\lambda(\theta), \tag{4}$$

where $P^{\theta}(x) = \langle x, \theta \rangle$, λ uniform measure on S^{d-1} .

Properties:

- Distance
- Topologically equivalent to the Wasserstein distance [Nadjahi et al., 2019]
- Monte-Carlo approximation in $O(Ln(\log n + d))$

SW on the Sphere

Goal: defining SW discrepancy on the sphere taking care of geometry of the manifold

	SW	SSW
Closed-form of ${\cal W}$	Line	?
Projection	$P^{\theta}(x) = \langle x, \theta \rangle$?
Integration	S^{d-1}	?

Table: SW to SSW

SW on the Sphere

Goal: defining SW discrepancy on the sphere taking care of geometry of the manifold

	_
ine ?	
$=\langle x,\theta\rangle$?	
?	

Table: SW to SSW

- Generalization of straight lines on manifolds: geodesics
- ullet On S^{d-1} , geodesics = great circles

Wasserstein on the Circle

Let $\mu, \nu \in \mathcal{P}(S^1)$ where $S^1 = \mathbb{R}/\mathbb{Z}$.

- ullet Parametrize S^1 by [0,1[
- $\forall x, y \in [0, 1[, d_{S^1}(x, y) = \min(|x y|, 1 |x y|)]$
- $\forall \mu, \nu \in \mathcal{P}(S^1)$, [Rabin et al., 2011a]

$$W_p^p(\mu,\nu) = \inf_{\alpha \in \mathbb{R}} \int_0^1 |F_\mu^{-1}(t) - (F_\nu - \alpha)^{-1}(t)|^p \, dt.$$
 (5)

• To find α : binary search [Delon et al., 2010]

Particular Cases

• For p = 1, [Hundrieser et al., 2021]

$$W_1(\mu,\nu) = \int_0^1 |F_{\mu}(t) - F_{\nu}(t) - \text{LevMed}(F_{\mu} - F_{\nu})| \, dt, \tag{6}$$

where

$$LevMed(f) = \inf \left\{ t \in \mathbb{R}, \ Leb(\left\{ x \in [0, 1[, \ f(x) \le t \right\}) \ge \frac{1}{2} \right\}. \tag{7}$$

• For p=2 and $\nu=\mathrm{Unif}(S^1)$,

$$W_2^2(\mu,\nu) = \int_0^1 |F_\mu^{-1}(t) - t - \hat{\alpha}|^2 dt \quad \text{with} \quad \hat{\alpha} = \int x d\mu(x) - \frac{1}{2}.$$
 (8)

In particular, if $x_1 < \cdots < x_n$ and $\mu_n = \frac{1}{n} \sum_{i=1}^n \delta_{x_i}$, then

$$W_2^2(\mu_n, \nu) = \frac{1}{n} \sum_{i=1}^n x_i^2 - \left(\frac{1}{n} \sum_{i=1}^n x_i\right)^2 + \frac{1}{n^2} \sum_{i=1}^n (n+1-2i)x_i + \frac{1}{12}.$$
 (9)

Sliced-Wasserstein on the Sphere

- \bullet Great circle: Intersection between 2-plane and S^{d-1}
- Parametrize 2-plane by the Stiefel manifold

$$\mathbb{V}_{d,2} = \{ U \in \mathbb{R}^{d \times 2}, \ U^T U = I_2 \}$$

• Projection on great circle C: For a.e. $x \in S^{d-1}$,

$$P^C(x) = \underset{y \in C}{\operatorname{argmin}} \ d_{S^{d-1}}(x, y),$$

where
$$d_{S^{d-1}}(x,y) = \arccos(\langle x,y \rangle)$$
.

• For $U \in \mathbb{V}_{d,2}$, $C = \operatorname{span}(UU^T) \cap S^{d-1}$,

$$P^{U}(x) = U^{T} \operatorname*{argmin}_{y \in C} d_{S^{d-1}}(x, y)$$
$$= \frac{U^{T} x}{\|U^{T} x\|_{2}}.$$

Figure: Illustration of the geodesic projections on a great circle (in black). In red, random points sampled on the sphere. In green the projections and in blue the trajectories.

Spherical Sliced-Wasserstein

Definition (Spherical Sliced-Wasserstein)

Let $p \geq 1$, $\mu, \nu \in \mathcal{P}_p(S^{d-1})$ absolutely continuous w.r.t. Lebesgue measure,

$$SSW_p^p(\mu,\nu) = \int_{\mathbb{V}_{d,2}} W_p^p(P_{\#}^U \mu, P_{\#}^U \nu) \, d\sigma(U), \tag{10}$$

with σ the uniform distribution over $V_{d,2}$.

	SW	SSW
Closed-form of ${\it W}$	Line	(Great)-Circle
Projection	$P^{\theta}(x) = \langle x, \theta \rangle$	$P^{U}(x) = \frac{U^{T}x}{\ U^{T}x\ _{2}}$
Integration	S^{d-1}	$\mathbb{V}_{d,2}$

Table: Comparison SW-SSW

Is SSW a Distance?

Question: Is SSW a distance?

Proposition

Let $p \ge 1$, then SSW_p is a pseudo-distance on $\mathcal{P}_{p,ac}(S^{d-1})$.

- Lacking property (for now): indiscernibility property, *i.e.* $SSW_p(\mu, \nu) = 0 \implies \mu = \nu$.
- Need to show that $P_{\#}^U\mu=P_{\#}^U\nu$ for $\sigma\text{-ae }U\in\mathbb{V}_{d,2}$ implies $\mu=\nu.$
- Idea: relate P^U to a well chosen (injective) Radon transform which integrates along $\{x \in S^{d-1}, \ P^U(x) = z\}$ for $U \in \mathbb{V}_{d,2}$ and $z \in S^1$.

Projections Sets

Proposition

Let $U \in \mathbb{V}_{d,2}$, $z \in S^1$. The projection set on $z \in S^1$ is

$${x \in S^{d-1}, \ P^{U}(x) = z} = {x \in F \cap S^{d-1}, \ \langle x, Uz \rangle > 0},$$
 (11)

where $F = \operatorname{span}(UU^T)^{\perp} \oplus \operatorname{span}(Uz)$.

Figure: The set of projection on the blue point $Uz \in \operatorname{span}(UU^T) \cap S^{d-1}$ is plotted in blue.

A Spherical Radon Transform

Definition (Spherical Radon Transform)

Let $f\in L^1(S^{d-1})$, then we define a Spherical Radon transform $\tilde R:L^1(S^{d-1})\to L^1(S^1\times \mathbb V_{d,2})$ as

$$\forall z \in S^1, \ \forall U \in \mathbb{V}_{d,2}, \ \tilde{R}f(z,U) = \int_{S^{d-1}} f(x) \ d\sigma_d^z(x), \tag{12}$$

with σ^z_d a suitable measure on $\{x \in S^{d-1}, \ P^U(x) = z\}$.

Results on the injectivity of \tilde{R} so far:

- In our work: linked it with the Hemispherical Radon transform studied in [Rubin, 1999]
- In [Quellmalz et al., 2023]: showed that it a distance on S^2

Gradient Flows

Goal:

$$\underset{\mu}{\operatorname{argmin}} SSW_2^2(\mu, \nu),$$

where we have access to ν through samples, i.e. $\hat{\nu}_m = \frac{1}{m} \sum_{j=1}^m \delta_{y_j}$ with $(y_j)_j$ i.i.d samples of ν .

(a) Target: Mixture of vMF

(b) KDE estimate of 500 particles

Figure: Minimization of SSW with respect to a mixture of vMF.

Wasserstein Autoencoders

Autoencoder with spherical latent space [Davidson et al., 2018, Xu and Durrett, 2018]

SSWAE:

$$\mathcal{L}(f,g) = \int c(x, g(f(x))) d\mu(x) + \lambda SSW_2^2(f_{\#}\mu, p_Z), \tag{13}$$

Figure: Latent space of SWAE and SSWAE for a uniform prior on S^2 (on MNIST).

Table: FID on MNIST (Lower is better).

Method / Prior	$Unif(S^{10})$
SSWAE	$\textbf{14.91}\pm\textbf{0.32}$
SWAE	15.18 ± 0.32
WAE-MMD IMQ	18.12 ± 0.62
WAE-MMD RBF	20.09 ± 1.42
SAE	19.39 ± 0.56
Circular GSWAE	15.01 ± 0.26

Density Estimation

Goal: learn a normalizing flow T such that $T_{\#}\mu = p_Z$ with $p_Z = \mathrm{Unif}(S^{d-1})$:

$$\underset{T}{\operatorname{argmin}} \ SSW_{2}^{2}(T_{\#}\mu, p_{Z}), \tag{14}$$

Table: Negative test log likelihood.

where we have access to $\boldsymbol{\mu}$ through samples.

Density:

$$\forall x \in S^{d-1}, \ f_{\mu}(x) = p_Z(T(x))|\det J_T(x)|.$$
 (15)

	Earthquake	Flood	Fire
SSW	$0.84_{\pm 0.07}$	$1.26{\scriptstyle\pm0.05}$	$0.23_{\pm0.18}$
SW	$0.94_{\pm 0.02}$	$1.36_{\pm 0.04}$	$0.54_{\pm 0.37}$
Stereo	$1.91_{\pm 0.1}$	$2.00_{\pm 0.07}$	$1.27_{\pm 0.09}$

Figure: Density estimation of models trained on earth data. We plot the density on the test data.

Conclusion

Conclusion

- First SW discrepancy on manifolds
- Good performance on ML tasks

Perspectives and follow-up works:

- Study statistical properties
- Try other Spherical Sliced-Wasserstein discrepancies via other Radon transforms
- Study other Riemannian manifolds: Hyperbolic spaces [Bonet et al., 2022],
 SPDs [Bonet et al., 2023]
- Implemented in POT [Flamary et al., 2021]

Conclusion

Conclusion

- First SW discrepancy on manifolds
- Good performance on ML tasks

Perspectives and follow-up works:

- Study statistical properties
- Try other Spherical Sliced-Wasserstein discrepancies via other Radon transforms
- Study other Riemannian manifolds: Hyperbolic spaces [Bonet et al., 2022],
 SPDs [Bonet et al., 2023]
- Implemented in POT [Flamary et al., 2021]

Thank you!

References I

- Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial networks. In *International conference on machine learning*, pages 214–223. PMLR, 2017.
- Clément Bonet, Laetitia Chapel, Lucas Drumetz, and Nicolas Courty. Hyperbolic sliced-wasserstein via geodesic and horospherical projections. arXiv preprint arXiv:2211.10066, 2022.
- Clément Bonet, Benoît Malézieux, Alain Rakotomamonjy, Lucas Drumetz, Thomas Moreau, Matthieu Kowalski, and Nicolas Courty. Sliced-wasserstein on symmetric positive definite matrices for meeg signals. 2023.
- Nicolas Bonnotte. *Unidimensional and evolution methods for optimal transportation*. PhD thesis, Paris 11, 2013.
- Nicolas Courty, Rémi Flamary, Devis Tuia, and Alain Rakotomamonjy. Optimal transport for domain adaptation. *IEEE transactions on pattern analysis and machine intelligence*, 39(9):1853–1865, 2016.
- Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural information processing systems*, 26, 2013.

References II

- Tim R. Davidson, Luca Falorsi, Nicola De Cao, Thomas Kipf, and Jakub M. Tomczak. Hyperspherical variational auto-encoders. In Amir Globerson and Ricardo Silva, editors, *Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI 2018, Monterey, California, USA, August 6-10, 2018*, pages 856–865. AUAI Press, 2018. URL http://auai.org/uai2018/proceedings/papers/309.pdf.
- Julie Delon, Julien Salomon, and Andrei Sobolevski. Fast transport optimization for monge costs on the circle. *SIAM Journal on Applied Mathematics*, 70(7): 2239–2258, 2010.
- Kilian Fatras, Younes Zine, Rémi Flamary, Remi Gribonval, and Nicolas Courty. Learning with minibatch wasserstein: asymptotic and gradient properties. In Silvia Chiappa and Roberto Calandra, editors, *Proceedings of the Twenty Third International Conference on Artificial Intelligence and Statistics*, volume 108 of *Proceedings of Machine Learning Research*, pages 2131–2141. PMLR, 26–28 Aug 2020. URL https://proceedings.mlr.press/v108/fatras20a.html.

References III

- Rémi Flamary, Nicolas Courty, Alexandre Gramfort, Mokhtar Z Alaya, Aurélie Boisbunon, Stanislas Chambon, Laetitia Chapel, Adrien Corenflos, Kilian Fatras, Nemo Fournier, et al. Pot: Python optimal transport. *The Journal of Machine Learning Research*, 22(1):3571–3578, 2021.
- Shayan Hundrieser, Marcel Klatt, and Axel Munk. The statistics of circular optimal transport. *arXiv preprint arXiv:2103.15426*, 2021.
- Matt Kusner, Yu Sun, Nicholas Kolkin, and Kilian Weinberger. From word embeddings to document distances. In *International conference on machine learning*, pages 957–966. PMLR, 2015.
- Kimia Nadjahi, Alain Durmus, Umut Simsekli, and Roland Badeau. Asymptotic guarantees for learning generative models with the sliced-wasserstein distance. *Advances in Neural Information Processing Systems*, 32, 2019.
- Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. *Foundations and Trends®* in Machine Learning, 11(5-6):355–607, 2019.
- Michael Quellmalz, Robert Beinert, and Gabriele Steidl. Sliced optimal transport on the sphere. arXiv preprint arXiv:2304.09092, 2023.

References IV

- Julien Rabin, Julie Delon, and Yann Gousseau. Transportation distances on the circle. *Journal of Mathematical Imaging and Vision*, 41(1):147–167, 2011a.
- Julien Rabin, Gabriel Peyré, Julie Delon, and Marc Bernot. Wasserstein barycenter and its application to texture mixing. In *International Conference on Scale Space and Variational Methods in Computer Vision*, pages 435–446. Springer, 2011b.
- Boris Rubin. Inversion and characterization of the hemispherical transform. *Journal d'Analyse Mathématique*, 77(1):105–128, 1999.
- Jiacheng Xu and Greg Durrett. Spherical latent spaces for stable variational autoencoders. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun'ichi Tsujii, editors, *Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October 31 November 4, 2018*, pages 4503–4513. Association for Computational Linguistics, 2018.
- Mingxuan Yi and Song Liu. Sliced wasserstein variational inference. In Fourth Symposium on Advances in Approximate Bayesian Inference, 2021.

Runtime Comparisons

Method	Complexity
Wasserstein + LP	$O(n^3 \log n)$
Sinkhorn	$O(n^2)$
$SSW_2 + BS$	$O(L(n+m)(d+\log(\frac{1}{\epsilon})) + Ln\log n + Lm\log m)$
SSW_1	$O(L(n+m)(d+\log(n+m)))$
$SSW_2 + Unif$	$O(Ln(d+\log n))$

Table: Complexity

Wasserstein Autoencoders

Figure: Autoencoder with spherical latent space.

SSWAE:

$$\mathcal{L}(f,g) = \int c(x, g(f(x))) d\mu(x) + \lambda SSW_2^2(f_{\#}\mu, p_Z), \tag{16}$$

Much interest in using a spherical latent space [Davidson et al., 2018, Xu and Durrett, 2018], e.g. uniform.

24 / 26

Variational Inference

Goal:

$$\underset{\mu}{\operatorname{argmin}} SSW_2^2(\mu, \nu),$$

where we know the density of ν up to a constant.

Algorithm SWVI [Yi and Liu, 2021]

Input: V a potential, K the number of iterations of SWVI, N the batch size, ℓ the number of MCMC steps

Initialization: Choose q_{θ} a sampler

$$\quad \text{for } k=1 \text{ to } K \text{ do}$$

Sample
$$(z_i^0)_{i=1}^N \sim q_\theta$$

Run ℓ MCMC steps starting from $(z_i^0)_{i=1}^N$ to get $(z_j^\ell)_{j=1}^N$

// Denote
$$\hat{\mu}_0=\frac{1}{N}\sum_{j=1}^N\delta_{z_j^0}$$
 and $\hat{\mu}_\ell=\frac{1}{N}\sum_{j=1}^N\delta_{z_\ell^j}$

Compute
$$J = SW_2^2(\hat{\mu}_0, \hat{\mu}_\ell)$$

Backpropagate through J w.r.t. θ

Perform a gradient step

end for

Variational Inference

Goal:

$$\underset{\mu}{\operatorname{argmin}} SSW_2^2(\mu, \nu),$$

where we know the density of ν up to a constant.

- Use SSW instead of SW
- Use Normalizing flows + MCMC on the sphere

Figure: Amortized SSWVI with a normalizing flow w.r.t. a mixture of vMF.

Figure: Comparison of the ESS between SWVI et SSWVI with the mixture target (mean over 10 runs).