Numerical Analysis Assignment 13

Chuan Lu

November 29, 2017

Problem 1. Problem 5.14

Sol. The result is as follows. We can see the result is better than the simple trapezoidal and simpson rule when n=2 and n=3.

```
1
   function res = gauss_legendre(f, n)
2
3
       x = [-0.5773502692, 0.5773502692];
       w = [1.0, 1.0];
4
   elseif n == 3
5
       x = [-0.7745966692, 0, 0.7745966692];
6
7
       w = [5/9, 8/9, 5/9];
   elseif n == 4
8
9
       x = [-0.8611363116, 0.8611363116, -0.3399810436, 0.3399810436];
       w = [0.3478546451, 0.3478546451, 0.6521451549, 0.6521451549];
10
   elseif n == 5
11
12
       x = [-0.9061798459, 0.9061798459, -0.5384693101, 0.5384693101, 0];
13
       w = [0.2369268851, 0.2369268851, 0.4786286705, 0.4786286705,
          0.5688888889];
   elseif n == 6
14
       x = [-0.9324695142, 0.9324695142, -0.6612093865, 0.6612093865,
15
          -0.2386191861, 0.2386191861];
       w = [0.1713244924, 0.1713244924, 0.3607615730, 0.3607615730,
16
          0.4679139346, 0.4679139346];
17
   elseif n == 7
       x = [-0.9491079123, 0.9491079123, -0.7415311856, 0.7415311856,
18
          -0.4058451514, 0.4058451514, 0];
       w = [0.1294849662, 0.1294849662, 0.2797053915, 0.2797053915,
19
          0.3818300505, 0.3818300505, 0.4179591837;
   elseif n == 8
20
21
       x = [-0.9602898565, 0.9602898565, -0.7966664774, 0.7966664774]
          -0.5255324099, 0.5255324099, -0.1834346425, 0.1834346425];
22
       w = [0.1012285363, 0.1012285363, 0.2223810345, 0.2223810345,
          0.3137066459, 0.3137066459, 0.3626837834, 0.3626837834];
23
   end
24
25
  res = sum(f(x).*w);
```

```
f1 = @(x) 0.5*exp(-1/4*(x+1).^2);
1
  f2 = @(x) 0.5^3.5*(x+1).^2.5;
2
3
  f3 = 0(x) 4./(1+16*x.^2);
   f4 = @(x) pi./(2-cos(pi*x));
4
5
  f5 = Q(x) pi/2*exp(pi/2*(x+1)).*cos(2*pi*x);
6
7
  N = 7;
8
  res = zeros(N, 5);
  for i = 1:N
9
10
       res(i, 1) = gauss_legendre(f1, i+1);
       res(i, 2) = gauss_legendre(f2, i+1);
```

```
res(i, 3) = gauss_legendre(f3, i+1);
12
13
       res(i, 4) = gauss_legendre(f4, i+1);
       res(i, 5) = gauss_legendre(f5, i+1);
14
15
   end
   err = abs(res(2:N, :)-res(1:N-1, :))/res(1:N-1, :);
16
   dlmwrite('prob1_res.m', res, 'delimiter', ' ', 'precision', '%2.10f');
   n = 2 \ 0.7465946883 \ 0.2864594283 \ 1.2631578947 \ 2.8042191325 \ -19.2448713255
    = 3 0.7468145842 0.2857539965 3.9748427673 4.0574495156 9.0897287043
     = 4 0.7468243265 0.2857198254 2.0472848847 3.4509852799
   \mathtt{n} \ = \ 5 \ 0.7468241268 \ 0.2857155443 \ 3.0886190193 \ 3.7088410791
    = 6 0.7468241329 0.2857146571 2.4116889285 3.5921379211
                                                                   1.3298098528
    = 7 0.7468241328 0.2857144179 2.8076823087 3.6434274583
                                                                   1.3003438200
   \mathtt{n} \ = \ 8 \ \ 0.7468241329 \ \ 0.2857143396 \ \ 2.5600801699 \ \ 3.6206081804
```

Problem 2. Problem 5.15

Sol. In fact, this problem is just (3) in Problem 1, the result of which is the third column listed above. When compared to Newton-Cotes, we can see that Newton-Cotes formula does not converge when n gets larger, but Gauss-Lengendre quadrature seems to converge when n becomes larger.

Problem 3. Problem 5.17

Sol. From Problem 4.20 we know, with weight function $w(x) = -\ln(x)$,

$$\varphi_0(x) = 1, \ \varphi_1(x) = \frac{12}{\sqrt{7}}(x - \frac{1}{4}), \ \varphi_2(x) = \frac{\sqrt{647}}{180\sqrt{7}}(x^2 - \frac{5}{7}(x - \frac{1}{4}) - \frac{1}{9}) = \frac{\sqrt{647}}{180\sqrt{7}}(x^2 - \frac{5}{7}x + \frac{17}{252})$$

Thus the roots of $\varphi_2(x)$ are

$$x_{1,2} = \frac{15 \pm \sqrt{106}}{42}$$

and by (5.3.7),

$$w_1 + w_2 = 1,$$

$$w_1 x_1 + w_2 x_2 = \frac{1}{2}$$

we get

$$w_1 = \frac{1}{2} + \frac{3}{\sqrt{106}}, \ w_2 = \frac{1}{2} - \frac{3}{\sqrt{106}}.$$

Hence,

$$I(f) = (\frac{1}{2} + \frac{3}{\sqrt{106}})f(\frac{15 + \sqrt{106}}{42}) + (\frac{1}{2} - \frac{3}{\sqrt{106}})f(\frac{15 - \sqrt{106}}{42}).$$

Problem 4. Problem 5.19

Sol. From Problem 4.24 we know,

$$S_n(x) = \frac{1}{n+1} T'_{n+1}(x) = \frac{1}{\sqrt{1-x^2}} \sin((n+1)\cos^{-1}x).$$

Then the roots of $S_n(x)$ are

$$x_{n,j} = \cos(\frac{j\pi}{n+1}), \ j = 1, 2, \dots, n.$$

From the recursion relation we know $a_n = 2$, $c_n = \frac{\gamma_n}{\gamma_{n-1}} = 1$. Since

$$\gamma_0 = (S_0, S_0) = \int_{-1}^1 \sqrt{1 - x^2} dx = \frac{\pi}{2}$$

we know $\gamma_n = \frac{\pi}{2}$. Thus

$$w_j = \frac{-a_n \gamma_n}{S'_n(x_j) S_{n+1}(x_j)} = -\frac{\pi \sin^2 \frac{j\pi}{n+1}}{(n+1)\cos(j\pi)} = \begin{cases} -\frac{\pi}{n+1} \sin^2 \frac{j\pi}{n+1}, & n = 2k \\ \frac{\pi}{n+1} \sin^2 \frac{j\pi}{n+1}, & n = 2k+1 \end{cases}$$

From (5.3.10) we also know the error

$$E_n = \frac{\gamma_n}{A_n^2(2n)!} f^{(2n)}(\eta) = \frac{\pi}{2^{n+1}(2n)!} f^{(2n)}(\eta),$$

for some $\eta \in [-1, 1]$.