MA1200 Exercise for Chapter 6 Limits, Continuity and Differentiability

Limits

- Evaluate the following limits:
 - (a) $\lim_{x \to \infty} \frac{x^2 + 1}{2x^3 x}$

- (b) $\lim_{x \to \infty} \frac{x + \sqrt{x^4 x^2 + 1}}{2x^2 + 1 + \sqrt{x^4 + 1}}$
- (c) $\lim_{x\to 0} \frac{m\sin(mx) n\sin(nx)}{\tan(mx) + \tan(nx)} \quad (m \neq -n)$
- Evaluate the following limits: 2.
 - (a) $\lim_{x \to \infty} \frac{x + \sqrt{x^4 x^2 + 1}}{2x^2 + 1 + \sqrt{x^4 + 1}}$
 - *(b) $\lim_{x\to 0} \frac{1+2^{1/x}}{3+2^{1/x}}$

(Hint: For $x \to 0^+$, $\frac{1}{x} \to +\infty$, $2^{\frac{1}{2}x} \to +\infty$. We can consider $\lim_{x\to 0^+} \frac{1+2^{1/x}}{3+2^{1/x}}$ as $\lim_{y\to\infty} \frac{1+y}{3+y}$)

(c) $\lim_{x \to 0} \frac{\sin ax}{\sin bx}$

(d) $\lim_{x \to 0} \frac{|x|}{|x|+1}$

(e) $\lim_{x \to 0} \frac{(\sin 3x)^2}{x^2 \cos x}$

(f) $\lim_{x\to 0} \frac{\sin 2x}{2x^2+x}$

- (g) $\lim_{x \to 3^{-}} \frac{x^2 9}{|x 3|}$
- Evaluate $\lim_{n\to\infty} \frac{n}{2} r^2 \sin \frac{2\pi}{n}$, where r is a constant. Interpret this limit geometrically.
- *4. Evaluate $\lim_{n\to\infty} \cos\frac{\theta}{2}\cos\frac{\theta}{4}\cos\frac{\theta}{8}\cdots\cos\frac{\theta}{2^n}$, where $\theta\neq 0$.

Continuity

Discuss the continuity of the following functions at x = 0

(a)
$$f(x) = \frac{x^2}{x}$$

(b)
$$h(x) = \begin{cases} /x/ & \text{for } x \neq 0 \\ 1 & \text{for } x = 0 \end{cases}$$

1

(a)
$$f(x) = \frac{x^2}{x}$$
 (b) $h(x) = \begin{cases} /x/ & \text{for } x \neq 0 \\ 1 & \text{for } x = 0 \end{cases}$ (c) $f(x) = \begin{cases} \frac{x^2}{x} & \text{for } x \neq 0 \\ 0 & \text{for } x = 0 \end{cases}$

- Define f(0) for the following functions such that they are continuous at x = 0.
 - (a) $f(x) = \sin x \sin \frac{1}{x}$ (b) $f(x) = \frac{\tan(2x)}{x}$

7. Sketch the graph of the following function on [0,2]

$$f(x) = \begin{cases} \sqrt{1 - x^2} & 0 \le x < 1 \\ 1 & \text{for } 1 \le x < 2 \\ 2 & x = 2 \end{cases}$$

- (a) For what values of c in the domain does $\lim_{x\to c} f(x)$ exist?
- (b) At what points does only the left-hand limit exist?
- (c) At what points does only the right-hand limit exist?
- 8. Given the function y = f(x) defined as follows:

$$f(x) = \begin{cases} 0, & x^2 = 1\\ 1, & \text{otherwise} \end{cases}$$

Sketch the function. At what points is the function discontinuous? Explain.

Differentiability

9. Given $f(x) = \begin{cases} \frac{1}{2}(x^2 - 4) & 0 < x < 2, \\ 0 & x = 2, \\ \frac{2}{x^2}(x^2 - 4) & x > 2. \end{cases}$ Show that f is differentiable at x = 2.

-End-