Sedimentary basins

Depressions filled by sediments*

Over time, sediments become rocks

Important natural resources: Water, minerals, geothermal, oil & gas, etc.

Often ~1-15km deep & 100s wide

Need to understand their structure to manage resources well

How can we study it without digging?

Gravity disturbances

Disturbances relate to density anomalies inside the Earth

Sedimentary basin rocks have low density causing a negative disturbance

Measure gravity globally with very high accuracy (1e-5 - 1e-11 m/s ²)

Subtract the gravity of a theoretical homogenous Earth to get the gravity disturbance

Modeling basins with gravity

What is the height of the prisms (with known density) that fits the observed gravity disturbances?

To the maths!

Non-linear parametric model: $g(x,y,z) = \sum_{i=1}^{M} G\Delta \rho \int_{-i}^{i} \int_{-i}^{i} \frac{z-z'}{\ell^3} dx' dy' dz'$

$$\frac{d_{i} = f_{i}(\overline{p})}{\|\overline{p}\|_{h_{N}}} = \begin{bmatrix} h_{1} \\ h_{N} \\ \vdots \\ h_{M} \end{bmatrix}_{M \times 1} \frac{y_{1} y_{1} y_{2}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{2}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y_{1}}{\|\overline{q}\|_{h_{N}}} = \frac{y_{1} y_{1} y$$

$$\bar{d} = \bar{f}(\bar{p})$$

$$\phi(\bar{p}) = \left[\bar{d}^{\circ} - \bar{f}(\bar{p})\right]^{\top} \left[\bar{d}^{\circ} - \bar{f}(\bar{p})\right]$$

Exercise:

Derive the expression for the gradient of the misfit function with respect to the parameters.

tip: start by calculating $\frac{\partial \phi}{\partial x}$ tip: the transpose of a scalar is itself the gradient vector the misfit function $\phi(\bar{p}) = [\bar{d}^o - \bar{f}(\bar{p})]^T [\bar{d}^o - \bar{f}(\bar{p})]$ $\frac{\partial \phi}{\partial P_1} = -\frac{\partial f}{\partial F_1} \left[\vec{d}_0 - \vec{f}_1(\vec{p}) \right] - \left[\vec{d}_0 - \vec{f}_1(\vec{p}) \right] \frac{\partial F}{\partial F_1}$

$$\overline{\nabla} \phi = - \lambda \overline{A}^{T}(\overline{p}) [\overline{d}^{\circ} - \overline{F}(\overline{p})]$$

Steepest Descent

$$\overline{P}_0 \Rightarrow \overline{P}_1 = \overline{P}_0 - \overline{\mathbb{V}}\phi(\overline{P}_0) = \overline{P}_0 + \overline{\overline{A}}(\overline{P}_0)[\overline{\overline{A}}^0 - \overline{\overline{f}}(\overline{P}_0)]$$

Non-linear inverse problems with the Gauss-Newton method

Expand the misfit function in a Taylor series: $\phi(\bar{p}) = [\bar{d}^o - \bar{f}(\bar{p})]^T [\bar{d}^o - \bar{f}(\bar{p})]$

$$\phi(\bar{p}) \approx \phi(\bar{p}_{0}) + \bar{\nabla}\phi(\bar{p}_{0}) \Delta \bar{p} + \Delta \bar{p}^{T} \bar{\nabla}\phi(\bar{p}_{0}) \Delta \bar{p} + \rho^{370} = \bar{\Gamma}(\bar{p})$$
Hessian
$$\bar{\nabla}\Gamma = \bar{0} = \bar{\nabla}\phi(\bar{p}_{0}) + \Delta \bar{\nabla}\phi(\bar{p}_{0}) \Delta \bar{p}$$

$$\bar{\nabla}\phi(\bar{p}_{0}) \Delta \bar{p} = -\bar{\nabla}\phi(\bar{p}_{0}) | \text{Newton's method}$$

 $\nabla \phi \sim 2 \bar{A}(p) \bar{A}(p)$

GAUSS-Newton method

DATA DP = DAT (d°-F(PD))

Normal eg. system

 $\frac{\partial f_i}{\partial p_i} \sim \frac{f_i(p_i + S) - f_i(p_i)}{S}$ Jacobian

To the code!

Now we'll see how to code all of this up in Python.

We'll cheat and use ready-made forward modelling.

But you can see the code for all of that in the repository.

Smoothness regularization

$$\begin{array}{c}
\lambda & \bigcirc (\bar{p}) \\
+ \lambda & \bar{p}^T \bar{R}^T \bar{R} \bar{p} \\
+ \lambda & || \nabla_{\chi} \bar{p} ||^2 \\
+ \lambda & || \nabla_{\chi} \bar{p} ||^2
\end{array}$$

$$\frac{1}{R_{7}} = \begin{bmatrix}
P_{3} - P_{1} \\
P_{3} - P_{2}
\end{bmatrix}$$

$$\frac{\partial \overline{P}}{\partial x} \sim \nabla_{x} \overline{P}$$

$$\vdots$$

$$\frac{\partial P_{n-P_{n-1}}}{\partial x} = \frac{\partial \overline{P}}{\partial x} \sim \nabla_{x} \overline{P}$$

$$\overline{\nabla} \phi = \overline{\nabla} \partial A + \overline{\nabla} [\lambda p^T R^T R p] \quad \overline{\nabla} \phi = \underline{A}^T \underline{A} + \overline{\nabla} [\lambda p^T R^T R p]$$

$$\underline{\partial} \Theta = \dots \quad \overline{\nabla} \Theta = \lambda \lambda \overline{R}^T \overline{R} p \quad \overline{\nabla} \Theta = \lambda \lambda \overline{R}^T \overline{R}$$

$$\frac{\left(\overline{A}^{T}\overline{A} + \lambda \overline{R}^{T}\overline{R}\right) \Delta \overline{p}}{\overline{\square} \phi} = \overline{A}^{T} \left(\overline{A}^{0} - \overline{F}\phi_{0}\right) - \lambda \overline{R}^{T}\overline{R}\overline{p}_{0}}$$

$$- \overline{\square} \phi(\overline{p}_{0})$$

Regularized Gauss-Newton solution