

Introduction to NGS

Hubert Rehrauer

NGS Data Increase

Growth of DNA Sequencing

NGS data increases faster than computer speed

functional genomics center zurich

Q · C · Z ·

Ingredients of the NGS success

Key ingredients

- RNA/DNA have evolved over Millions of years into perfect carriers of information
 - they are designed for Read and Write operations
- parallelism
 - the 2018 technology allows in a single experiment the read operation of 10 billion molecules in parallel with high fidelity
- measurements are done by molecular machines
- single molecule manipulation
- Claim: NGS based experiments outperform other Omics technologies in terms of the amount you can learn with a fixed budget

Illumina Flow cell

Cluster generation overview

Illumina Sequencing

The first sequencing cycle begins by adding four labeled reversible terminators, primers, and DNA polymerase.

Phred scores measure base call accuracy

- P
- error probability of a given base call
- Q
- -10log₁₀P
- Assign to each base
- Range from 0-41

1 in 100,000

99.999%

Ewing B, Green P. 1998. Genome Res. 8(3):186-194.

http://en.wikipedia.org/wiki/Phred_quality_score

50

Phred scores are stored with sequences

- FASTQ
 - 4 lines:
 - 1. Header line for Read (starts with "@" and the sequence ID)
 - 2. Sequence
 - 3. Header line for Qualities (starts with "+")
 - 4. Quality score (represented in ASCII format)

Phred scores can be ASCII encoded

- Add an offset and convert the sum to ASCII
- Current format
 - Illumina 1.9 (i.e. Sanger format)
 - Phred scoring: 0-41;
 - Offset: 33
 - 41+33=74 (J)
 - All current sequencers

10 01 101

Dec Hx Oct Char	Dec Hx Oct Html Chr	Dec Hx Oct Html Chr Dec Hx Oct Html Chr
0 0 000 NUL (null)	32 20 040 Space	64 40 100 4#64; 0 96 60 140 4#96;
1 1 001 SOH (start of heading)	33 21 041 6#33;	65 41 101 a#65; A 97 61 141 a#97; a
2 2 002 STX (start of text)	34 22 042 @#34; "	66 42 102 a#66; B 98 62 142 a#98; b
3 3 003 ETX (end of text)	35 23 043 # #	67 43 103 a#67; C 99 63 143 a#99; C
4 4 004 EOT (end of transmission)	36 24 044 \$ 年	68 44 104 D D 100 64 144 d d
5 5 005 ENQ (enquiry)	37 25 045 4#37; %	69 45 105 6#69; E 101 65 145 6#101; e
6 6 006 ACK (acknowledge)	38 26 046 & &	70 46 106 F F 102 66 146 f f
7 7 007 BEL (bell)	39 27 047 ' '	71 47 107 6#71; G 103 67 147 6#103; g
8 8 010 <mark>BS</mark> (backspace)	40 28 050 @#40; (72 48 110 6#72; H 104 68 150 6#104; h
9 9 011 TAB (horizontal tab)	41 29 051 @#41;)	73 49 111 6#73; I 105 69 151 6#105; i
10 A 012 LF (NL line feed, new line		74 4A 112 6#74; J 106 6A 152 6#106; j
ll B 013 VT (vertical tab)	43 2B 053 + +	75 4B 113 6#75; K 107 6B 153 6#107; k
12 C 014 FF (NP form feed, new page		76 4C 114 6#76; L 108 6C 154 6#108; L
13 D 015 CR (carriage return)	45 2D 055 - -	77 4D 115 6#77; M 109 6D 155 6#109; M
14 E 016 SO (shift out)	46 2E 056 . .	78 4E 116 6#78; N 110 6E 156 6#110; n
15 F 017 SI (shift in)	47 2F 057 @#47; /	79 4F 117 6#79; 0 111 6F 157 6#111; 0
16 10 020 DLE (data link escape)	48 30 060 4#48; 0	80 50 120 6#80; P 112 70 160 6#112; P
17 11 021 DC1 (device control 1)	49 31 061 449; 1	81 51 121 6#81; Q 113 71 161 6#113; q
18 12 022 DC2 (device control 2)	50 32 062 4#50; 2	82 52 122 6#82; R 114 72 162 6#114; r
19 13 023 DC3 (device control 3)	51 33 063 3 3	83 53 123 4#83; \$ 115 73 163 4#115; \$
20 14 024 DC4 (device control 4)	52 34 064 6#52; 4	84 54 124 T T 116 74 164 t t
21 15 025 NAK (negative acknowledge)	53 35 065 6#53; 5	85 55 125 6#85; U 117 75 165 6#117; u
22 16 026 SYN (synchronous idle)	54 36 066 @#5 4; 6	86 56 126 V ♥ 118 76 166 v ♥
23 17 027 ETB (end of trans. block)	55 37 067 6#55; 7	87 57 127 4#87; ₩ 119 77 167 4#119; ₩
24 18 030 CAN (cancel)	56 38 070 4#56; 8	88 58 130 4#88; X 120 78 170 4#120; X
25 19 031 EM (end of medium)	57 39 071 9 9	89 59 131 6#89; Y 121 79 171 6#121; Y
26 1A 032 SUB (substitute)	58 3A 072 @#58; :	90 5A 132 6#90; Z 122 7A 172 6#122; Z
27 1B 033 ESC (escape)	59 3B 073 ; ;	91 5B 133 6#91; [123 7B 173 6#123; {
28 1C 034 FS (file separator)	60 3C 074 @#60; <	92 5C 134 6#92; \ 124 7C 174 6#124;
29 1D 035 GS (group separator)	61 3D 075 = =	93 5D 135 6#93;] 125 7D 175 6#125; }
30 1E 036 RS (record separator)	62 3E 076 > >	94 5E 136 6#94; ^ 126 7E 176 6#126; ~
31 1F 037 US (unit separator)	63 3F 077 ? ?	95 5F 137 6#95; _ 127 7F 177 6#127; DEL

Source: www.LookupTables.com

Quality control is to know your reads

- Library construction could introduce bias
 - Fragmentation, ligation, amplification
 - GC bias
 - Over-amplification
 - Contamination

- Sequencing errors
 - Chemical, optical, computational

Platform	Primary error	Error rate (%)
Illumina	Substitution	0.1
PacBio	Indel	12
PGM	Indel	1
454	Indel	1
Oxford Nanopore	Indel	20-40

Per base sequence quality - FastQC

Range of quality values across all bases at each position

Per sequence quality scores - FastQC

Subset of sequences with universally low quality values

Per tile sequence quality - FastQC

 Quality scores from each tile across all bases - loss in quality associated with only one part of the flowcell

Deviation from average quality

Cold colors: ≥ average

Hotter color: worse quality

Good: universal blue

Failure: < average - 5

Per base sequence content - FastQC

• The portion of A, T, G, and C at each position

Biases in Illumina transcriptome sequencing caused by random hexamer priming

Kasper D. Hansen^{1,*}, Steven E. Brenner² and Sandrine Dudoit^{1,3}

Treatment of DNA with bisulfite converts cytosine to uracil, but leaves methylated cytosine unaffected. Therefore, DNA that has been treated with bisulfite retains only methylated cytosines.

Per sequence GC content - FastQC

Distribution of average GC in all reads

Sequence duplication - FastQC

 Relative number of sequences with different degrees of duplication

High duplication levels:

- DNA-seq: PCR over amplification, too little input material
- Normal in RNA-seq: high expression

Overrepresented sequences - FastQC

- Sequences make up >0.1 % of the total
- Compare those with a contamination database for finding contamination (i.e. adaptor dimmers)

Overrepresented sequences

Sequence	Count	Percentage	Possible Source
GGAAGAGCACACGTCTGAACTCCAGTCACCAGATCATCTCGTATGCCGTC	75874	1.5613887498682963	TruSeq Adapter, Index 7 (100% over 50bp)
GGAAGAGCACACGTCTGAACTCCAGTCACCGATGTATCTCGTATGCCGTC	7636	0.15713900010536297	TruSeq Adapter, Index 2 (100% over 50bp)
GGAAGAGCACACGTCTGAACTCCAGTCACACAGTGATCTCGTATGCCGTC	7539	0.1551428656095248	TruSeq Adapter, Index 5 (100% over 50bp)
GGAAGAGCACACGTCTGAACTCCAGTCACGCCAATATCTCGTATGCCGTC	5117	0.10530123933199874	TruSeq Adapter, Index 6 (100% over 50bp)

- Can be normal and biologically meaningful
 - highly expressed transcripts
 - high copy number repeats
 - Less diverse library (amplicons)

10

Adapter Content - FastQC

1 2 3 4 5 6 7 8 9 12-13 18-19 24-25 30-31 36-37 42-43 48-49 54-55 60-61 66-67 72-73 78-79 84-85 90-91 Position in read (bp)

functional genomics center zurich

f. g. c. z.

Millions of reads with base resolution

@HWI-ST1034:40:C08PJACXX:2:1101:20681:1994 1:N:0:ATCACG ${\tt CTCGNAGACTGGCAACTTGTTCTGGTTTACTGCACCTTCTTTTAAAGGCAGAAAGGCTTTTTGATAAAGAAGTTGTGAAAAGGCTACATGAGCTGCTT$ @HWI-ST1034:40:C08PJACXX:2:1101:1907:2005 1:N:0:ATCACG $\mathtt{CTCACCTTCAACTGTATTCACGCTTGGACCACAGATCTTGGCCTTAGTGCGATATAGGACAC$ FACGTGCGCATGCTCGCTCAGCTCTTCCCAGACTACCCAATCCTTGCCAAGTGC @HWI-ST1034:40:CO8PJACXX:2:1101:2463:2168 1:N:0:ATCACG ${\tt CGTTCATATGCAAAAGAAGCTTCTCAGTCTGCTTTACCACCTCTTAAAGGGGGATCAAATGTTGAAGAACATCTTTTTTGAGGTAAAGAACAAATTTGATAT$ MHWI-ST1034:40:C08PJACXX:2:1101:2378:2207 1:N:0:ATCACG BCCFFFFDHHHHHJJJJJJJJJJJJJJJJJJJJJJJIJIGIJHEHBD8>6?:ABCDDDCCDDCCBCCCDEBBBBBACCEEEECCBCDDDCDBBB?BBBDDDDC

Contamination Check - FastqScreen

Data preprocessing common tasks

- 1. Trimming: remove bad bases from (end(s) of) reads
 - Adaptor sequence
 - Low quality bases
- 2. Filtering: remove bad reads
 - Low quality reads
 - Contaminating sequences
 - Low complexity reads (repeats)
 - Short (<20bp) reads they slow down mapping software

Data preprocessing software

University of

- PRINSEQ
 - http://prinseq.sourceforge.net/
 - Quality/hard trimming, quality filtering, reformat, ...
- Trimmomatic
 - http://www.usadellab.org/ cms/?page=trimmomatic
 - Adaptor trimming, quality trimming &filtering, ...
- FlexBar (FAR)
 - http://sourceforge.net/ projects/theflexibleadap/
 - Flexible barcode detection and adapter removal

FASTX

- http://hannonlab.cshl.edu/ fastx_toolkit/
- Reformat, stats, collapse duplicated reads, trim, filter, reverse compliment
- TagCleaner
 - http:// tagcleaner.sourceforge.net
 - Trim MIDs or adaptors, demultiplexing
- DeconSeq
 - http://deconseq.sourceforge.net
 - Remove potential contaminants

Recommendations

- Always generate quality plots for all libraries
- Trim and/or filter data if needed
 - always trim and filter for de-novo transcriptome assembly