The quality of BDR depends on the CCD estimates How does it work when & is high-dimentional?

"High dimensional spaces are wired!"

(do not trust your intuition)

Examples:

(1) Consider a hypercube & an inscribed hypersphere in Rd

Dolumn of hyporphene ULV)= T/(\frac{1}{2}+1)

Gamma function Ph)=SSe-X.Xn-JX

Putil= n!

Volumn of hypercuble
$$(2r)^d$$

Let $Jd = \frac{Volumn \text{ sphere}}{Volumn \text{ cube}} = \frac{TI^{\frac{d}{2}}}{2^d P(\frac{d}{2}+1)}$
 $d \quad | \quad 2 \quad 3 \quad \text{N}$
 $Jd \quad | \quad 0.785 \quad 0.544 \quad 0 \quad \text{factoral overweights}$

As a increases, the volumn of the corner increases.

C= [x1x1x] = --,0]

$$||c||^{2} = dr^{2}$$

$$||p||^{2} = r^{2}$$

$$||p||^{2} = r^{2}$$

$$||c|||p|| = r^{2}$$

Example 2 a hypersphere shell of thickness &

Suppose
$$0 < 2 < \gamma$$
as $d \mathcal{I}$, $\frac{\mathcal{O}(S_1)}{\mathcal{O}(S_2)} \rightarrow 0$
Ushed $\rightarrow \mathcal{O}(S_2)$

All the volumn is in the shell of the hypersphere

Example 3 high-dim Gaussian
lot x ~ V (o, ~I)
i.e. Xi N (0, a) i.i.d. r.v.
Then $E[I] \times III = E[X_1 + X_2 + + X_d^2] = d\alpha^2$ $E[\frac{1}{d} X ^2] = \alpha$
EL d x ^2] = athor
Note UXII2 is a sum of ind. r.v.
By central limin theorem it is concentrated
crownd mean as d-> so
J 1 x1 2 ~ N(02, t)
Sodius or
In high-dim, a browsian is essentially a shell of
radius (orld) Most of the density is in the shell
However, the mean is still 0 and the mean though density is in the Shell in around the mean
Cerse of dimensionality
In theory, add a feature will not
In theory, add a feature will not , never the error of

In practice, for BOR, error increases as the feature dim increases

The problem is the quality of the CCD estimate.

Density estimates in high-dim require more

training samples.

Roughly, desired fraining set size = 0 (e^P)

P= # of parameters

Solution:	things we optimize
	of paramoters (complexity of model)
	eg: full con => diog con
	of features (dimensionality reduction)
	> implicitly reduce # of povametors
3) Create more	, i G
6)	Payesian estimation (uirtual samples)
Cb)	duta augmentation.
	(eg]A > [A] add noise
	IA > A
	 ,

Linear Dinensituality Reduction	aon
---------------------------------	-----

- Summonic completed features w/ faver features.
- How do we find these correlations?

Correlated data "lives" in a lower-dim

subspace (w/ some noise)

PCA CPrinciple Composed Analysis) I dea If the data can fit into a subspace, then it should be floor in full space. of ne fit a Granssian, it will be "skinny" in some directions. let (Vi. Xi) be an eigenpair of convariance matrix Z Z = UATT, U= LV1, V2, --, Vall $\Lambda = \begin{bmatrix} \lambda_1 & 0 \\ 0 & 1 \end{bmatrix}$ each vi defines an axis of ellipse - each >1 defines the width on that axis. Hence, the expansions of 2 tell us which directions the data is Hot => selecto axis vi w/ large eigenvalues as principle components". pcA: Given the dotaget Sxi, xn3 a dim k 7 D Calculate Gaussian. $u = \frac{1}{2} Z_{Xi}, Z = \frac{1}{2} Z_{Xi-u}(X_{i-u})^{T}$