PATTERN RECOGNITION IMAGE SEGMENTATION

PROBLEM STATEMENT

We intend to perform image segmentation. Image segmentation means that we can group similar pixels together and give these grouped pixels the same label. The grouping problem is a clustering problem. We want to study the use of K-means on the Berkeley Segmentation Benchmark. Below we will show the needed steps to achieve the goal of the assignment. This task is achieved by following the steps above...

DOWNLOAD DATASET & UNDERSTAND THE FORMAT

Our database of subject is very simple. We used Berkeley Segmentation Benchmark. The dataset has 500 images. The test set is 200 images only . We will report our results on the first 50 images of the test set only.

Here is an examples of download training (JPG images) dataset...

1. VISUALIZE THE IMAGE AND THE GROUND TRUTH SEGMENTATION.

The following steps must be done:

- Function that reads an image
- Display an image with its associated ground truth segmentation(s) (mat file)
- Here is the implementation code ...

Reading .JPG images and corresponding GroundTruth images from Train Data

SEGMENTATION USING K-MEANS

each pixel of an image is an instanace in data set and each pixel has 3 features : RGB .

```
Returns index of the corresponding cluster assignment
    # Returns Index of the Contemporary

def min_RGB(p,centroids):
    minInd = -1
    minDis = sys.maxsize
    for i in range (0,len(centroids)):
        dis = math.sqrt( (p[0]-centroids[i][0])**2 + (p[1]-centroids[i][1])**2 + (p[2]-centroids[i][2])**2 )

if dis < minDis</pre>
              minDis = dis
minInd = i
       return minInd
    #Kmeans algorithm
    def K_Means(dataSet,k,e):
        # number of iterations
        #initialize k random UNIQUE centroids
       centroids = []
chosenIndx = []*k
        for i in range(0,k):
           t = random.randint(0,len(dataSet)-1)
while t in chosenIndx :
    t = random.randint(0,len(dataSet)-1)
           chosenIndx.append(t)
x = dataSet[t][:]
           centroids.append(x)
  while True:
       t = t + 1
       #initialize label holding clustered dataset
       labels = [None] * len(dataSet)
       #initialize clusters -each row contains data set of same cluster-
        clusters =[]
       for q in range(0,k):
             clusters.append([])
       #clusters & labels assignment
        for i in range(0,len(dataSet)):
             j = min RGB(dataSet[i],centroids)
             clusters[j].append(dataSet[i])
             labels[i] = j
       #centroids update
        l = len(centroids)
        prevCentroids = []
        prevCentroids = copy.deepcopy(centroids)
        centroids = []
        for i in range (0,1):
             sumR = 0
             sumG = 0
             sumB = 0
             for j in range (0,len(clusters[i])):
                   sumR = sumR + clusters[i][j][0]
                   sumG = sumG + clusters[i][j][1]
                   sumB = sumB + clusters[i][j][2]
```

```
centroids = []
       for i in range (0,1):
           sumR = 0
           sumG = 0
           sumB = 0
           for j in range (0,len(clusters[i])):
              sumR = sumR + clusters[i][j][0]
              sumG = sumG + clusters[i][j][1]
               sumB = sumB + clusters[i][j][2]
           X = []
           x.append(sumR/len(clusters[i]))
           x.append(sumG/len(clusters[i]))
           x.append(sumB/len(clusters[i]))
           centroids.append(x)
       #stopping condition - can be added here: max # of iterations 't's
       if np.all(prevCentroids) == np.all(centroids) :
           break
   print ("k: ",k)
   print("Iterations: ",t)
   return labels, centroids
############# TEST MAIN ####
print("K-Means Implementation function loaded Successfully")
```

(-Means Implementation function loaded Successfully

NORMALIZED-CUT

We did our own normalized cut and we also try the built in function

Normalized Cut Implementation:

```
#resizing image
   #img = imresize(img, 0.3) / 255
#img = cv2.resize(np.array(img), dsize=(100, 100), interpolation=cv2.INTER_CUBIC)
   imageW, imageH = img.size
img = cv2.resize(np.array(image), dsize=(int(imageW*0.25), int(imageH*0.25)), interpolation=cv2.INTER_CUBIC)
   print("Resized Image")
plt.imshow(img)
   plt.show()
   n = img.shape[0]
m = img.shape[1]
   img = img.reshape(-1, img.shape[-1])
   # gamma is ignored for affinity='nearest_neighbors'
# n_neighbors is ignore for affinity='rbf'
# n_jobs = -1 means using all processors
   gamma=gamma,
                                n_neighbors=n_neighbors,
                                n_jobs=-1,
eigen solver='arpack'
                                ).fit_predict(img)
    labels = labels.reshape(n, m)
    plt.imshow(labels)
   plt.show()
```

Normalized Cut Implementation (From Scratch)

```
def getDegreeMatrix(dataMatrix):
    inFunctionDegreeMatrix = []
      for i in range(len(dataMatrix)):
inFunctionDegreeMatrix.append([0] * len(dataMatrix))
      for i in range(len(dataMatrix)):
    couter = 0
            for j in range(len(dataMatrix)):
    if dataMatrix[i][j] != 0:
                         couter +=1
      inFunctionDegreeMatrix[i][i] = couter-1
return inFunctionDegreeMatrix
def graphSimilarityMatrix(similarityMatrix,n):
    inFunctiontempSimilarityMatrix = []
    for i in range(len(similarityMatrix)):
      inFunctiontempSimilarityMatrix.append([0] * len(similarityMatrix))
for i in range(len(similarityMatrix)):
      listofNum = get3NearestNeighbour(similarityMatrix[i],n)
for j in range(1,n+1):
    inFunctiontempSimilarityMatrix[i][listOfNum[j][1]] = 1
return inFunctiontempSimilarityMatrix
def get3NearestNeighbour(list,n):
    listOfNums = []
    for i in range(len(list)):
        listOfNums.append(([list[i]],i))
        listOfNums.sort(reverse=True)
        i = nange(i).
      for i in range(n+1):
listOfNums.append(listOfNums[i][1])
      return listOfNums
def Normalized_Cut_Scratch(similarityMatrix,k):
      #calculate similarity matrix from data
      #similarityMatrix = rbf_kernel(dataSet, gamma = 0.1)
```

```
#Using 5-NN graph normalized cut
   NNval = 5
   NNgraph = np.array(graphSimilarityMatrix(similarityMatrix,NNval))
   #print(np.array(NNgraph))
   delta = getDegreeMatrix(NNgraph)
   L = np.subtract(delta, NNgraph)
  deltaInvers= np.linalg.inv(delta)
  La = np.dot(deltaInvers.L)
   # Produce normalized Eigen vectors
   eigenValues, eigenVector = np.linalg.eigh(La)
  #print(eigenVector.shape)
  #taking k minimum eigen vectors
   eigenVectToPlot = []
  for i in range (0,k):
    eigenVectToPlot.append(eigneVector[:,i]/np.linalg.norm(eigneVector[:,i]))
#print(np.array(eigenVectToPlot).shape)
  return K_Means(eigenVectToPlot,k,0)
print("Normalized Cut Implementation function loaded Successfully")
```

External Measures Evaluation Implementation (From Scratch):

```
def calc_condEntropy(l,gt,k):
   gt_k = gt_kcount(gt)
   clusters_dict = prepare_result_clusters(1,gt,k,gt_k)
   conditionalEntropy = 0
   for i in range(0,k):
       #c - total count for each label in a cluter i
       in_cluster_count = total_count(clusters_dict['c'+str(i)],k,gt_k)
       #x - current cluster labels
       current cluster = clusters dict['c'+str(i)]
       tempCond = 0
       for j in range(0,len(in_cluster_count)):
         t = in_cluster_count[j]/len(current_cluster)
         if t != 0:
           tempCond = tempCond - ( t * math.log(t,2) )
          #tempCond = tempCond - ( t * math.log10(t) )
       conditionalEntropy = conditionalEntropy + ( (len(current_cluster)/len(gt)) * tempCond)
   print("Conditional Entropy: ",conditionalEntropy)
   return conditionalEntropy
```

Test Segmentation (K-means & Normalized cut) on .JPG Image & Test Evaluation Measures

Normalized Cut Test Resized Image

/usr/local/lib/python3.6/dist-packages/sklearn/manifold/spectral_embedd warnings.warn("Graph is not fully connected, spectral embedding" Normalized cut resutls

K means Test

rgb: (79, 85, 49)

k: 5

Iterations: 70737

154401

Conditional Entropy: 0.5172830453188827

F-Measure: 0.29289933092743503

Apply K-means on k = [3,5,7,9,11] on Training set images - Comparing measures for each k - Decide best to be run on Test - Showing measure results on Test set

```
## different vals of k
k = [3,5,7,9,11]
## Arrays definitions
#rows = 200 #of training imgs
rows = 10 #of training imgs
cols = 5 # of vals of k
## 2 x 2-D array holding Entropy & F-measure
 # row -> image i in training set
 # col -> each value j of possible k
 # a[i][j] --> [entropy] or [fmeasure]
kMeans_entropy_results = [[]]
kMeans_entropy_results = [[0 for i in range(cols)] for i in range(rows)]
kMeans_fMeasure_results = [[]]
kMeans_fMeasure_results = [[0 for i in range(cols)] for i in range(rows)]
## 2-D array holding results of K-means
 # row -> image i in training set
  # col -> each value j of possible k
  # a[i][j] --> entropy/fmeasure (minimum is better)
kMeans_Train_results = [[]]
kMeans_Train_results = [[0 for i in range(cols)] for i in range(rows)]
# i -> image
# i -> k val
for i in range(0,rows):
 for j in range (0,cols):
    image = train_dict_image[str(i)]
    kMeans_labels = do_Kmeans(image,k[j])
    avg_condEntropy = AVG_condEntropy(kMeans_labels,train_dict_groundtruth[i],k[j])
    avg_Fmeasure = AVG_Fmeasure(kMeans_labels,train_dict_groundtruth[i],k[j])
    kMeans_entropy_results[i][j] = avg_condEntropy
    kMeans_fMeasure_results[i][j] = avg_Fmeasure
    kMeans_Train_results[i][j]
                                = avg_condEntropy / avg_Fmeasure
print("done!")
```

Entropy Results

k: 3 Entropy: 1.9148283464606712

k: 5 Entropy: 1.683395038418417

k: 7 Entropy: 1.5396021951774561

k: 9 Entropy: 1.5033250043440773

k: 11 Entropy: 1.3251069882372934

F-measure Results

k: 3 F-measure: 0.9574141732303356

k: 5 F-measure: 0.8416975192092085

k: 7 F-measure: 0.7698010975887281

k: 9 F-measure: 0.7516625021720387

k: 11 F-measure: 0.6625534941186467

Best K values [min 'entropy/fmeaure' value]

K -> 9

Bonus - Spatial K-means (Implementation from Scratch)

```
if dis < minDis:
             minDis = dis
             minInd = i
#Kmeans algorithm
def spatial_Kmeans(dataSet,k,e):
     # number of iterations
    t = 0
#initialize k random UNIQUE centroids
centroids = []
chosenIndx = []*k
for i in range(0,k):
    t = random.randint(0,len(dataSet)-1)
    while t in chosenIndx :
        t = random.randint(0,len(dataSet)-1)
    chosenIndx angenity
         chosenIndx.append(t)
        x = dataSet[t][:]
centroids.append(x)
    while True:
t = t + 1
        #initialize label holding clustered dataset
labels = [None] * len(dataSet)
#initialize clusters -each row contains data set of same cluster-
clusters =[]
for q in range(0,k):
            clusters.append([])
         #clusters & labels assignm
         for i in range(0,len(dataSet)):
    j = min_RGB(dataSet[i],centroids)
             clusters[j].append(dataSet[i])
labels[i] = j
```

```
#centroids update
    1 = len(centroids)
    prevCentroids = []
    prevCentroids = copy.deepcopy(centroids)
    centroids = []
    for i in range (0,1):
        sumR = 0
        sumG = 0
        sumB = 0
        for j in range (0,len(clusters[i])):
            sumR = sumR + clusters[i][j][0]
            sumG = sumG + clusters[i][j][1]
            sumB = sumB + clusters[i][j][2]
        X = []
        x.append(sumR/len(clusters[i]))
        x.append(sumG/len(clusters[i]))
        x.append(sumB/len(clusters[i]))
        centroids.append(x)
    #stopping condition - can be added here: max # of iterations 't's
    if np.all(prevCentroids) == np.all(centroids) :
        break
print ("k: ",k)
print("Iterations: ",t)
return labels, centroids
```

Bonus - Spatial K-means VS K-means

```
Entropy Results
* Standard K-means *
k: 3 Entropy: 1.9148283464606712
k: 5 Entropy: 1.683395038418417
k: 7 Entropy: 1.5396021951774561
k: 9 Entropy: 1.5033250043440773
k: 11 Entropy: 1.3251069882372934
* Spatial K-means *
k: 3 Entropy: 1.8211354288391708
k: 5 Entropy: 1.6761856755361655
k: 7 Entropy: 1.5175131991682886
k: 9 Entropy: 1.269291468762939
k: 11 Entropy: 1.2549991267942109
F-measure Results
* Standard K-means *
k: 3 F-measure: 0.9574141732303356
k: 5 F-measure: 0.8416975192092085
k: 7 F-measure: 0.7698010975887281
k: 9 F-measure: 0.7516625021720387
k: 11 F-measure: 0.6625534941186467
* Spatial K-means *
k: 3 F-measure: 0.9105677144195854
k: 5 F-measure: 0.8380928377680827
k: 7 F-measure: 0.7587565995841443
k: 9 F-measure: 0.6346457343814695
k: 11 F-measure: 0.6274995633971054
```

