MA-107 Summary

1 Supply and Demand

2 Recurrence equations

Equations relating values of y at discrete points in time, expressing value y_t of y at time t as a function of y_{t-1} , one unit of time before time t.

2.1 Solving recurrence equations

Solving recurrence equation refers to finding value of y_t as a function of t.

Problem

Solve the recurrence equation

$$y_t = ay_{t-1} + b$$

for $t \geq 0$ given that $y_0 = C$.

Solution

After making sure that the equation you're solving is in the form

$$y_t = ay_{t-1} + b$$

you proceed as follows:

- 1. If a = 1 your solution is $y_t = y_0 + bt$. Otherwise:
- 2. Make sure that your recurrence equation is of the form $y_t = ay_{t-1} + b$ for a, b constants.
- 3. Find $y^* = \frac{b}{1-a}$ where a, b are constants from the equation above.
- 4. Solution is $y(t) = y^* + (y_0 y^*)a^t$

2.2 Long term behaviour

Describing behaviour of function y_t as $t \to \infty$.

Problem

Given $y_t = ay_{t-1} + b$ how does y_t behave as t tends to infinity?

Solution

Assume recurrence equation $y_t = ay_{t-1} + b$ and time independent solution y^* , long term behaviour of y_t depends on coefficient a:

- If 1 < a, then the function increases unboundedly $(y_t \to +\infty)$ if $y_0 > y^*$ and the function decreases unboundedly $y_t \to -\infty$ $y_0 < y^*$
- If 0 < a < 1, then the function increases towards $y^*(y_t \to y^*)$ if $y_0 > y^*$ and the function decreases towards $y^*(y_t \to y^*)$ if $y_0 < y^*$
- If -1 < a < 0, then y_t oscillates towards y^* .
- If -1 < a < 0, then y_t oscillates unboundedly.

2.3 Investment schemes

Comparing return from different investments in terms of their present value.

Problem

Given access to a bank account with interest rate r accrued annually at the end of each year and an asset with value function V(t) calculate present value of selling said asset after t years.

Solution

Present value P(t) is given by the equation

$$P(t) = V(t)(1+r)^{-t}$$

Problem

Given access to a bank account with continuously compounded interest with rate r and an asset with value function V(t) calculate present value of selling said asset after t years.

Solution

Present value P(t) is given by the equation

$$P(t) = V(t)e^{-tr}$$