Introdução à Probabilidade e Estatística

Testes de Hipóteses Não Paramétricos

Departamento de Matemática Universidade de Évora

Teste de Ajustamento do Qui-Quadrado

Podemos efectuar os testes do Qui-Quadrado de Ajustamento **Exemplo.** As classes que se seguem resultam da geração de 20 números pseudo-aleatórios que se supõe que tenham distribuição normal reduzida:

Classes	n_i
≤ -0.5	5
]-0.5, 0.5]	8
> 0.5	7

Teste, aos níveis usuais de significância, a normalidade dos dados.

Aos valores de n_i chama-se Valores Observados e representa-se por O_i . Os valores de E_i são designados por Valores Esperados.

Teste de Ajustamento do Qui-Quadrado

Os valores de E_i obtêm-se calculando as probabilidade, através da distribuição postulada, p_i e multiplicando estas pela dimensão da amostra. Ou seja, $E_i = nP_i$.

Após a determinação dos E_i procede-se ao cálculo da seguinte estatística de teste:

$$\chi^{2} = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \frown \chi^{2}_{(k-p-1)}$$

k representa o nº de classe ou categorias e p o nº de parâmetros que tivermos de estimar para o cálculo das probabilidades p_i .

Rejeita-se a hipótese H_0 se $\chi^2_{Obs} > \chi^2_{(k-p-1);1-\alpha}$.

Testes do Qui-Quadrado: Requisitos

Requisitos:

- 1. As observações (individuais) são independentes;
- 2. 80% das frequências esperadas (E_{ij}) são superiores ou iguais a 5;
- 3. Nenhuma frequência esperada é inferior ou igual a 1.

Teste de Ajustamento do Qui-Quadrado

Classes	O_i	p_i	E_i
≤ -0.5	5	0.3085	6.17
]-0.5, 0.5]	8	0.383	7.66
> 0.5	7	0.3085	6.17

$$\chi_{obs}^2 = \frac{(5 - 6.17)^2}{6.17} + \frac{(8 - 7.66)^2}{7.66} + \frac{(7 - 6.17)^2}{6.17} = 0.3486$$

Dado que $\chi^2_{obs} < 5.991 (=\chi^2_{2;0.95})$, não se rejeita H_0 para um nível de significância de 5%. Ou seja, não existe evidência estatística suficiente para rejeitar a hipótese de que os dados não provenham de uma distribuição normal reduzida.

Teste de independência do Qui-Quadrado

Pretende-se testar a independência entre duas variáveis aleatórias, X e Y, que se encontram agrupadas em classes ou categorias mutuamente exclusivas e exaustivas. As hipóteses a testar são, pois,

 H_0 : X e Y são independentes

 H_1 : X e Y não são independentes

A classificação dos elementos da amostra dá lugar a uma tabela de dupla entrada, designada por Tabela de Contigência:

	Y	B_1	B_2		B_{j}		B_C	Total
\boldsymbol{X}								
A_1		O_{11}	O_{12}		O_{1j}		O_{1C}	$O_{1.}$
A_2		O_{21}	O_{22}		O_{2j}		O_{2C}	$O_{2.}$
A_i		O_{i1}	O_{i2}		O_{ij}		O_{iC}	$O_{i.}$
•••				•••		•••		
A_L		O_{L1}	O_{L2}		O_{Lj}	•••	O_{LC}	$O_{L.}$
Total		<i>O</i> _{.1}	O _{.2}		$O_{.j}$		$O_{.C}$	n

L = número de categorias da v.a. X (nº de linhas); C = número de categorias da v.a. Y (nº de colunas); n = dimensão total da amostra

 O_{ij} = frequência absoluta simples, conjunta, das categorias A_i e B_i , i = 1, 2, ..., L, j = 1, 2, ..., C;

 O_{i}^{y} = frequência absoluta marginal da categoria A_{i} , de X, i = 1, 2, ..., L;

 O_j = frequência absoluta marginal da categoria B_j , de Y, j = 1, 2, ..., C.

Procedemos ao cálculo das freqências esperadas

$$E_{ij} = \frac{O_{i.} \times O_{.j}}{n}.$$

A estatística de teste é dada por

$$\chi^{2} = \sum_{i=1}^{L} \sum_{j=1}^{C} \frac{\left(O_{ij} - E_{ij}\right)^{2}}{E_{ij}} \sim \chi^{2}_{(L-1) \times (C-1)}.$$

Rejeitamos a hipótese de independência entre as variáveis, X e Y, ao nível de significância α , quando $\chi^2_{obs} > \chi^2_{(L-1)\times(C-1),1-\alpha}$.

Condições de aplicabilidade: **não mais de 20% de** $E_{ij} < 5$; **todos os** $E_{ii} > 1$.

Quando alguma destas condições falha deve-se proceder à agregação dessas classes com as adjacentes.

No caso das tabelas 2×2 costuma-se efectuar a correcção de Yates, para melhorar a aproximação à distribuição χ^2 , que consiste em considerar a seguinte estatística de teste:

$$\chi^{2} = \sum_{i=1}^{L} \sum_{j=1}^{C} \frac{\left(|O_{ij} - E_{ij}| - 0.5\right)^{2}}{E_{ij}}$$

$$= \frac{n\left(O_{11}O_{22} - O_{12}O_{21} - 0.5n\right)^{2}}{O_{1.}O_{2.}O_{.1}O_{.2}} \sim \chi^{2}_{(L-1)\times(C-1)=1}$$

NOTA: Para tabelas 2×2 que não cumpram as condições de aplicabilidade (amostras pequenas) é calculado o teste Exacto de Fisher.

Outros Testes Não Paramétricos

Quando falha alguma das condições de aplicabilidade dos testes paramétricos que estudámos anteriormente, como por exemplo a normalidade e/ou a homogeneidade (ou igualdade) das variâncias populacionais, existem testes não paramétricos alternativos os quais não exigem pressupostos tão rígidos como os paramétricos e são aplicáveis independentemente da forma da distribuição.

- ► Teste do Sinal e Teste de Wilcoxon: alternativa aos testes paramétricos para a média ou comparação de médias no caso em que se tem uma amostra ou duas amostras emparelhadas;
- Teste de Mann-Whitney: alternativa aos testes paramétricos para comparação de médias no caso em que se tem duas amostras independentes;