学習指導案

2023年11月30日更新

授業日 11月11日1校時

 学級
 3年A組

 指導科目
 数学III

使用教科書 数学 III 数研出版

授業者 溝口洸熙

Ⅰ 単元の指導計画・評価計画

- 1. 単元名 回転体の体積
- 2. 単元の目標
 - 目標 1
 - 目標 2
- 3. 単元観

単元観を書く、\par で改行字下げする.

4. 評価規準

知識・技能 [A]	思考・判断・表現 [B]	主体的に学習に取り組む態度 [C]
A1 知識があるといいね A2 技能があるといいね	B1 思考があるといいね B2 判断があるといいね B3 表現があるといいね	C1 主体的に学習に取り組む態度があるといいね

5. 単元の授業計画並びに評価計画

時間	学習活動	評価規準	評価方法
第1時間目	1時間目の学習活動を書く.	A1, B2	観察・小テスト・自己評価
第2時間目	2時間目の学習活動を書く.	B1, B2	観察・ワークシート
第3時間目	3時間目の学習活動を書く.	C1, B1	観察・ワークシート・自己評
			価

6. 生徒の実態

現在の生徒の実態を記入する. \par で改行字下げする.

▮本時の計画

- 7. 本時の到達目標 (評価規準)
 - 本時の到達目標その 1.
 - 本時の到達目標その 2.
- 8. 本時のポイント

本時のポイントを書く. \par で改行字下げする.

■ 本時の展開

段階	学習活動	指導上の留意点	評価の観点
導入	この指導計画表は、何も意味がありません. ただ、できる ことを羅列しているだけです.		
	\dotfill\\で,点線を挿入できる.		
	復習問題 1 曲線 $y=\sqrt{x}$ と x 軸,及び 2 直線 $x=1, x=2$ で囲まれた部分の面積を求めよ. 解答 (期待する解答)	\begin{framed} で,囲いができる. \end{framed}	
	$S = \int_{1}^{2} \sqrt{x} dx$ $= \left[\frac{2}{3}x^{\frac{3}{2}}\right]_{1}^{2}$ $= \frac{2}{3} \cdot 2^{\frac{3}{2}} - \frac{2}{3}$ $y = \sqrt{x}$ $O = \sqrt{x}$		

展開 a

align, equation で、数式に番号を振ったり、=で揃えたり. \begin{equation}

\begin{aligned}

 $=\frac{2}{3}\left(2\sqrt{2}-1\right)$

V & = \int_{1}^{2} S(x) dx\\

& = $\left[\frac{1}^{2}\right]$

 $\left(\frac{x}\right)^2 dx = \pi$

\end{aligned}

\end{equation}

$$V = \int_{1}^{2} S(x)dx$$

$$= \pi \int_{1}^{2} \left\{ \sqrt{x} \right\}^{2} dx = \pi$$
(1)

一般化

一般的に、曲線 y=f(x) と x 軸,及び 2 直線 x=a,x=b(a< b) で囲まれた部分を、x 軸の周りに 1 回転させてできる立体の体積を V とすると、以下の公式が得られる.

$$V = \pi \int_{a}^{b} \left\{ f(x) \right\}^{2} dx = \pi \int_{a}^{b} y^{2} dx \tag{2}$$

(a < b)

頑張ったら回転体も描ける.

 $y = \sqrt{x}$

列を跨いで, いろいろできる. オイラーの公式とオイラーの等式

$$e^{i\theta} = \cos \theta + i \sin \theta$$

$$e^{i\pi} = -1$$
(3)

微分の定義(tcolorbox を利用)

$$f'(x) = \frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$_{n}C_{r} = \frac{n!}{r!(n-r)!}$$