Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ	Г <u>Информатика и системы управления</u>
КАФЕДРА	Системы обработки информации и управления (ИУ5)

Отчет Лабораторная работа №2

«Изучение библиотек обработки данных»

По курсу: «Технологии машинного обучения»

Выполнил: студент группы		Корыткина А.Н.
ИУ5-64Б	(Подпись, дата)	(Ф.И.О.)
П		
Проверил:		Гапанюк Ю.Е.
	(Подпись, дата)	(Ф.И.О.)

Цель лабораторной работы: изучение библиотеки обработки данных Pandas.

Onucanue: выполнение первого демонстрационного задания "demo assignment" под названием "Exploratory data analysis with Pandas" со страницы курса https://mlcourse.ai/assignments.

Текст программы и экранные формы с примерами выполнения программы:

In this task you should use Pandas to answer a few questions about the Adult dataset. (You don't the repository). Choose the answers in the web-form.

import numpy as np

import pandas as pd

pd.set_option('display.max.columns', 100)

to draw pictures in jupyter notebook

%matplotlib inline

import matplotlib.pyplot as plt import

seaborn as sns

we don't like warnings

you can comment the following 2 lines if you'd like to import warnings warnings.filterwarnings('ignore')

data = pd.read_csv('data/adult.data.csv') data.head()

age	workclass	fnlwgt	education	education-num	marital-status	осс
0 39	State-gov	775 16	Bachelors	13	Never-married	Ad
1 50	Self-emp-not- inc	833 11	Bachelors	13	Married-civ- spouse	Exec-m
2 38	Private	21564 6	HS-grad	9	Divorced	Handler s
3 53	Private	23472 1	11th	7	Married-civ- spouse	Handler s
4 28	Private	33840 9	Bachelors	13	Married-civ- spouse	Prof

1) How many men and women (sex feature) are represented in this dataset?

data['sex'].value_counts() # data.groupby('sex').count()

Male 21790 Female 10771 Name: sex, dtype: int64

2) What is the average age (age feature) of women?

data.groupby(['sex'])['age'].mean()

sex

Female 36.858230 Male 39.433547 Name: age, dtype: float64

3) What is the percentage of German citizens (native-country feature)?

4-5) What are the mean and standard deviation of age for those who earn more than 50K per year

```
ages1 = data.loc[data['salary'] == '>50K', 'age'] ages2 = data.loc[data['salary'] == '<=50K', 'age'] print("The average age of the rich: {0} +- {1} years, poor - {2} +- {3} years.".fo round(ages1.mean()), round(ages1.std(), 1), round(ages2.mean()), round(ages2.std(), 1)))

The average age of the rich: 44.0 +- 10.5 years, poor - 37.0 +- 14.0 years.
```

6) Is it true that people who earn more than 50K have at least high school education? (education Assoc-voc, Masters or Doctorate feature)

No, it isn't true

7) Display age statistics for each race (race feature) and each gender (sex feature). Use groupby (men of Amer-Indian-Eskimo race).

0		count	mean	std	mi n	25 %	50 %	75%	ma x
race	sex								
Amer-Indian- Eskimo	Femal e	119.0	37.11764 7	13.11499 1	17. 0	27. 0	36. 0	46.0 0	80. 0
	Male	192.0	37.20833 3	12.04956 3	17. 0	28. 0	35. 0	45.0 0	82. 0
Asian-Pac-Islander	Femal e	346.0	35.08959 5	12.30084 5	17. 0	25. 0	33. 0	43.7 5	75. 0
	Male	693.0	39.07359 3	12.88394 4	18. 0	29. 0	37. 0	46.0 0	90. 0
Bla ck	Femal e	1555.0	37.85401 9	12.63719 7	17. 0	28. 0	37. 0	46.0 0	90. 0
	Male	1569.0	37.68260 0	12.88261 2	17. 0	27. 0	36. 0	46.0 0	90. 0
Oth er	Femal e	109.0	31.67889 9	11.63159 9	17. 0	23. 0	29. 0	39.0 0	74. 0
	Male	162.0	34.65432 1	11.35553 1	17. 0	26. 0	32. 0	42.0 0	77. 0
Whi te	Femal e	8642.0	36.81161 8	14.32909 3	17. 0	25. 0	35. 0	46.0 0	90. 0
	Male	19174. 0	39.65249 8	13.43602 9	17. 0	29. 0	38. 0	49.0 0	90. 0

8) Among whom is the proportion of those who earn a lot (>50K) greater: married or single men (those who have a marital-status starting with Married (Married-civ-spouse, Married-spouse-absconsidered bachelors.

data.loc[(data['sex'] == 'Male') & (~data['marital-status'].str.startswith('Marrie

8

<=50K 7552 >50K 697

Name: salary, dtype: int64

data.loc[(data['sex'] == 'Male') & (data['marital-status'].str.startswith('Married

8

<=50K 7576 >50K 5965

Name: salary, dtype: int64

married > singe men (earn >50K)

9) What is the maximum number of hours a person works per week (hours-per-week feature)? Ho hours, and what is the percentage of those who earn a lot (>50K) among them?

```
max_num = data['hours-per-week'].max()
quantity = data.loc[data['hours-per-week'] == max_num, 'age'].count() per=data[(data['hours-per-week'] ==
max_num) & (data['salary'] == '>50K')].shape[0 print('maximum number of hours a person works per week^ ',
max_num)
print('people work such a number of hours: ', quantity)
print('the percentage of those who earn a lot (>50K): ', round(per, 2), "%")
```


maximum number of hours a person works per week^ 99
people work such a number of hours: 85
the percentage of those who earn a lot (>50K): 29.41 %

10) Count the average time of work (hours-per-week) for those who earn a little and a lot (salary) these be for Japan?

```
pd.options.display.max_rows = 999
data.groupby(['native-country', 'salary'])['hours-per-week'].mean()
```


native-country	salary	
?	<=50K	40.164760
·	>50K	45.547945
Cambodia	<=50K	41.416667
Cambodia	>50K	40.000000
Canada	<=50K	37.914634
Canada	>50K	45.641026
China	<=50K	37.381818
Offinia	>50K	38.900000
Columbia	<=50K	38.684211
Columbia	>50K	50.000000
Cuba	<=50K	37.985714
Cuba	>50K	42.440000
Dominican-Republic	<=50K	42.338235
Dominican-Nepublic	>50K	47.000000
Ecuador	<=50K	38.041667
Lcuadoi	>50K	48.750000
El-Salvador	>50K <=50K	36.030928
El-Salvauoi		
England	>50K	45.000000
England	<=50K	40.483333
Evanas	>50K	44.533333
France	<=50K	41.058824
0	>50K	50.750000
Germany	<=50K	39.139785
	>50K	44.977273
Greece	<=50K	41.809524
	>50K	50.625000
Guatemala	<=50K	39.360656
	>50K	36.666667
Haiti	<=50K	36.325000
	>50K	42.750000
Holand-Netherlands	<=50K	40.000000
Honduras	<=50K	34.333333
	>50K	60.000000
Hong	<=50K	39.142857
	>50K	45.000000
Hungary	<=50K	31.300000
	>50K	50.000000
India	<=50K	38.233333
	>50K	46.475000

Iran	<=50K	41.440000
	>50K	47.500000
Ireland	<=50K	40.947368
	>50K	48.000000
Italy	<=50K	39.625000
	>50K	45.400000
Jamaica	<=50K	38.239437
	>50K	41.100000
Japan	<=50K	41.000000
	>50K	47.958333
Laos	<=50K	40.375000
	>50K	40.000000
Mexico	<=50K	40.003279
	>50K	46.575758
Nicaragua	<=50K	36.093750
	>50K	37.500000
Outlying-US(Guam-USVI-etc)	<=50K	41.857143
Peru	<=50K	35.068966

		>50K	40.000000
	Philippines	<=50K	38.065693
		>50K	43.032787
	Poland	<=50K	38.166667
		>50K	39.000000
	Portugal	<=50K	41.939394
Japa	n <=50K 41.000000 >50K 47.95	8333	
	Scotland	<=50K	39.444444
		>50K	46.666667
	South	<=50K	40.156250
		>50K	51.437500
	Taiwan	<=50K	33.774194
		>50K	46.800000
	Thailand	<=50K	42.866667
		>50K	58.333333
	Trinadad&Tobago	<=50K	37.058824
		>50K	40.000000
	United-States	<=50K	38.799127
		>50K	45.505369

<=50K

37.193548

Vietnam