(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-139585

(43)公開日 平成6年(1994)5月20日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

G11B 7/085

D 8524-5D

審査請求 未請求 請求項の数3(全 8 頁)

(21)出願番号	特願平4-288001	(71)出願人	000005821
(22)出顧日	平成4年(1992)10月27日		松下電器産業株式会社 大阪府門真市大字門真1006番地
(CC) LLESS L	TM + T (1006) 10/12/1	(72)発明者	
			大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(72)発明者	酒井 博章
	••		大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(72)発明者	松葉 浩幸
			大阪府門真市大字門真1006番地 松下電器 産業株式会社内
	•	(74)代理人	A
		l	

(54) 【発明の名称】 光ディスク装置

(57)【要約】

【目的】 光磁気の記録媒体からデータの再生もしくは 記録・再生をする光ディスク装置において、コンパクト で信頼性を高くすることを目的とする。

【構成】 光ディスク盤1を回転させるためのスピンドルモータ部軸受18と、スピンドルコイル19と、ターンテーブル20と、スピンドルマグネット21で構成と、光を出射・検出するレーザユニット4と、レーザ光を光ディスク盤1に集光させる集光レンズ8と、集光レンズ7をフォーカス方向およびトラッキング方向に駆動するアクチュエータ手段(フォーカスコイル11と、フォーカスマグネット12と、トラッキングコイル13と、トラッキングマグネット16で構成)とを保持したキャリッジベース15をカートリッジ2に対し接離する方向に移動可能とした構成により、無駄な空間を排除してコンパクトで、かつ機械的な振動や光学的な位置精度に起因する信号読み取り性能の劣化を低減できる。

1 光ディスク館 (3 トラッキングコイル 2 カートリッジ (5 キャリッジペース 4 レーゲコニット (8 軸受 8 無光レンズ (9 スピンドルコイル 11 フォーカスコイル 20 ターンデーブル 12 フォーカスマグネット 21 スピンドルマグネット

【特許請求の範囲】

【請求項1】内部に記録媒体を回転可能に収納保持した カートリッジに形設された開口部を介して前記記録媒体 によりデータを再生もしくは記録・再生する光ディスク 装置であって、前記記録媒体を回転させるスピンドルモ ータ部と、レーザ光を出射・検出するレーザユニット と、前記レーザユニットからのレーザ光を前記記録媒体 に集光させる集光レンズと、前記集光レンズをフォーカ ス方向およびトラッキング方向に駆動させるアクチュエ ータ手段と、前記スピンドルモータ部と前記レーザユニ 10 ットと前記集光レンズと前記アクチュエータ手段を保持 しかつ前記カートリッジに対し接離する方向に移動可能 としたキャリッジベースとを備えたことを特徴とする光 ディスク装置。

【請求項2】レーザユニットと集光レンズとアクチュエ ータ手段がトラッキング方向に可動可能とした請求項1 記載の光ディスク装置。

【請求項3】スピンドルモータ部とレーザユニットとア クチュエータ手段を構成する部品が一つの基板上に配設 ・結線された請求項1記載の光ディスク装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、CD-ROMや光磁 気、相変化等の記録媒体からデータの再生もしくは記録 ・再生を行う光ディスク装置に関する。

[0002]

【従来の技術】近年、光ディスク装置は携帯用などの小 形情報機器に搭載できるように小型化・薄型化する傾向 が高まっている(例えば特開平4-195730号公報 · 参照)。

【0003】以下に従来の光ディスク装置について説明 する。図11に示すように、記録媒体の光ディスク盤4 1は、カートリッジ42に回転可能に収納保持されてい る。カートリッジ42の上下両面には開口部42aが穿 設されている。光ディスク装置の筐体43には、カート リッジ42の挿入口43aが形設されている。装置ベー ス44に固定されている光ディスク41を回転させるた めのスピンドルモータ45には光ディスク盤41をクラ ンプするためのターンテーブル46が同期同転するよう に配設されている。光ディスク盤41に情報の記録を行 40 うときに用いられる外部磁界47が、カートリッジ42 の上面側の開口部42aに沿って光ディスク盤41の半 径方向に配置されており、かつカートリッジ42に対し 接離する方向に移動可能とされている。装置ペース44 に固設された固定光学部48には、光ディスク盤41に レーザ光を照射するためのレーザ出射手段や光ディスク 盤41からの戻り光を検出するための検出部および光学 部品等が配設され、可動光学部49には、固定光学部4 7からのレーザ光を光ディスク盤41へ導き集光させる

手段が配設されている。可動光学部48を光ディスク器 41の半径方向に移動させるためのアクセス駆動部50 は、可動光学部49を支持するガイドレールや駆動源と なる永久磁石やコイル等で構成されている。図中の51 は回路が構成された制御基板で、装置ベース44に固設

されている。

【0004】以上のように構成された光ディスク装置に ついて、以下その動作を説明する。図12 (a) に示す ように、カートリッジ42が矢印Aで示した方向に挿入 口43aから筐体43に挿入されると、挿入されたカー トリッジ42は図12 (b) の2点鎖線で示したように 所定位置において開口部42 aが開口した状態で係止さ れた後、その位置から約5mm程度光ディスク盤41の 面に垂直方向(矢印Bで示した方向)に移動手段(図示 せず) によって下降され、図12(b) に示すように、 下面の開口部42aを通じて光ディスク盤41の中心が スピンドルモータ45と同期回転するターンテーブル4 6と嵌合される。このとき、可動光学部49はカートリ ッジ42の下面開口部42aを通じて光ディスク盤41 20 に対向しており、固定光学部48からのレーザ光を光デ ィスク盤41に照射可能となる。また、同時に外部磁界 47が移動手段(図示せず)により上面の開口部42a を通じて光ディスク盤41に近接するように矢印Bで示 した方向に下降され2点鎖線で示した位置に移動する。 この状態において、スピンドルモータ45を駆動し光デ ィスク盤41を回転させ、固定光学部48から出射され たレーザ光は可動光学部49を介して光ディスク盤41 に集光され、さらに反射光が可動学部49を介して固定 光学部48の検出部に戻ることにより記録情報やサーボ 30 エラー情報が得られ、可動光学部49内のフォーカス駆 動手段やトラッキング駆動手段およびアクセス駆動部5 0により光ディスク盤41の情報を記録・再生する。

【0005】次に従来の他の光ディスク装置について説 明する。上記の従来例について説明した構成部分と同じ 部分については同一符号を付しその説明を省略する。

【0006】上述の従来例と異るのは、図13に示すよ うに、スピンドルモータ45が駆動手段(図示せず)に よりカートリッジ42に対し接離する方向(矢印Cで示 した方向)に移動可能とした点である。

【0007】以上のように構成された光ディスク装置に ついて、以下その動作を説明する。図14(a)に示す ように、カートリッジ42が矢印Dで示した方向に挿入 口43aから筐体43に挿入されると、図14(b)に 示すように、挿入されたカートリッジ42は所定位置に おいて開口部42aが開口した状態で係止し、2点鎖線 で示した位置にあったスピンドルモータ45が光ディス ク盤41の面と垂直方向(矢印Eで示した方向)に移動 手段(図示せず)により上昇して、下面の開口部42a を通じて光ディスク盤41の中心がスピンドルモータ4 光学部品およびフォーカス駆動手段やトラッキング駆動 50 4と同期回転するターンテープル46に嵌合される。こ

のとき可動光学部49はカートリッジ42の下面開口部 42aを通じて光ディスク盤41に対向しており、固定 光学部48からのレーザ光を光ディスク盤41に照射可 能となる。この状態において上述の従来例で説明した動 作と同じ動作で光ディスク盤41の情報を記録・再生す る。

[0008]

【発明が解決しようとする課題】しかしながら上記の従 来の構成では、平面における面積が大きいカートリッジ 42を上下動させて光ディスク盤41とスピンドルモー 10 タ45を結合させるため、その移動分を含むカートリッ ジ42の総体積が大きくなり、光ディスク装置全体の体 積が大きくなるという問題点、また面積の小さいスピン ドルモータ45を移動させることにより無駄な空間は減 少させられるが、信号検出の基準となる光学系装置(固 定光学部48、可動光学部49) とスピンドルモータ4 5が分離されているので、機械的ながたによる振動や光 学的な位置精度に起因する信号読み取り性能が劣化する という問題点を有していた。

【0009】本発明は上記従来の問題点を解決するもの 20 で、無駄な空間が排除されコンパクトで、機械的ながた による振動や光学的な位置精度に起因する信号読み取り 性能が劣化しない信頼性の高い光ディスク装置を提供す ることを目的とする。

[0010]

【課題を解決するための手段】この目的を達成するため に本発明の光ディスク装置は、記録媒体を回転させるス ピンドルモータ部と、レーザ光を出射・検出するレーザ ユニットと、レーザ光を記録媒体に集光させる集光レン ズと、集光レンズをフォーカス方向およびトラッキング 30 方向に駆動させるアクチュエータ手段とを保持したキャ リッジペースをカートリッジに対し接離する方向に移動 可能とした構成を有している。

[0011]

【作用】この構成において、平面における面積がカート リッジより大幅に小さいキャリッジペースを移動させて 光ディスク盤とスピンドルモータ部を結合することとな り、信号検出の基準となる光学系装置(レーザユニット と、集光レンズと、アクチュエータ手段で構成) とスピ ととなる。

[0012]

【実施例】以下本発明の一実施例について、図面を参照 しながら説明する。

【0013】図1ないし図4に示すように、レーザを出 射する半導体レーザと受光することにより電流を発生す る光検出器が一体化されたレーザユニット4が、可動べ ース5に配設され、回折格子を設けたホログラムプレー ト6がレーザユニット4に配設されている。レーザユニ ット4から出射されるレーザ光を導くための一対の反射 50

ミラー7が、可動ペース5に固設され、反射ミラー7か らのレーザ光を光ディスク盤1に集光するための集光レ ンズ8が、ポピン9に固設されている。一端を可動べ一 ス5に他端をポピン9に固定された支持ばね10が、可 動ペース5に対してポピン9をフォーカス方向(矢印F で示した方向) に移動可能とされている。

【0014】集光レンズ8をフォーカス方向およびトラ ッキング方向に駆動させるアクチュエータ手段は、ボビ ン9に巻回されたフォーカスコイル11と、可動ベース 5に固定されフォーカスコイル11と対向して配設され た一対のフォーカスマグネット12と、可動ベース5に 固定されたトラッキングコイル13と、2極の分割着磁 面を有するトラッキングマグネット16とで構成され、 キャリッジペース15に固設されている。

【0015】トラッキングコイル13の一部13a、1 3 bには、強磁性体よりなる一対のパックヨーク14が 配設され、可動ペース5の移動範囲においてそれぞれト ラッキングマグネット16の分割面の一面のみと対向し ている。

【0016】光ディスク盤1を回転させるスピンドルモ ータ部は、キャリッジベース15に固設された軸受18 と、軸受18を中心として周りに配設されかつキャリッ ジベース15に固設されたスピンドルコイル19と、軸 受け18と嵌合し回転可動に支持されている光ディスク 盤1を保持するターンテーブル20と、スピンドルコイ ル19と対向しターンテーブル20に固設されたスピン ドルマグネット21とで構成されている。

【0017】光ディスク装置の筐体の一部である装置べ ース22に立設されたスライドシャフト23は、キャリ ッジペース15のスライド軸受部と嵌合しキャリッジペ ース15が装置ベース22に対してスライド移動可能と されている。スライドシャフト23の軸上に配設された スライドばね24は、キャリッジペース15を矢印Gで 示した方向に付勢している。装置ペース22上をスライ ドするスライド板25は、スライド板ばね26により矢 印Hで示した方向に付勢され、また、スライド板25は スライドばね24によりキャリッジペース15に設けら れたガイドピン27と当接している。装置ベース22に 設けられたピン29に回動可能に取り付けられているカ ンドルモータ部がキャリッジペースに一体構成されるこ 40 ートリッジ検出レバー30は、スライド板25に配設さ れトリガーピン28と係合している。

> 【0018】また、キャリッジペース15上のレーザユ ニット4やフォーカスコイル11やトラッキングコイル 13やスピンドルコイル19等の電気部品は一つの基板 33 (図3に斜線で示した部分)上に配設・結線されて いる。

【0019】図中の17は可動ペース5とキャリッジペ ース15をスライドさせるためのシャフト、31はカー トリッジ検出レパー30を付勢するレパーばね、32は 装置ペース22に固定される回路が構成された制御基

板、34は筐体に形設したカートリッジ2の挿入口である。

【0020】光ディスク盤1は、カートリッジ2に回転可能に収納保持されていて、シャッター3が設けられており、通常は光ディスク盤1を保護するために図5に示すようにシャッター3は閉じた状態にある。光ディスク盤1で記録情報を記録・再生するときには、図6に示すように、シャッター3が開かれ、開口部2a、2bがカートリッジ2の上下面に生じる。なお、本実施例は上下面に開口部2a、2bを生じるカートリッジ2であるが、光ディスク盤1に情報を記録・再生するための開口部が少なくとも一ヶ所設けられたカートリッジ2であれば本実施例と同様に取扱いできる。

【0021】以上のように構成された光ディスク装置に ついて、以下その動作を説明する。図7及び図8に示す ように、カートリッジ2が光ディスク装置に筐体の挿入 口34から矢印Iで示した方向に挿入されるとき、キャ リッジペース15はスライド板25とガイドピン27の 係合により下方に位置する。カートリッジ2がさらに奥 へ挿入されると、カートリッジ2がカートリッジ検出レ 20 バー30と当接して、カートリッジ検出レバー30が回 動されると、スライド板ばね26によりカートリッジレ パー30と当接していたトリガーピン28がカートリッ ジ検出レバー30から離れ、スライド板25はスライド 板ばね26の作用により矢印」で示した方向に移動す る。スライド板25が移動すると、スライド板25によ り拘束されていたガイドピン25が解除されることにな り、スライドばね24の作用によりキャリッジペース1 5はスライドシャフト23に沿って上方に移動して図9 および図10に示した状態になり、光ディスク盤1はタ 30 ーンテーブル20と嵌合される。ついで、スピンドルコ イル19に通電すると、スピンドルマグネット21との 電磁作用によりターンテーブル20とターンテーブル2 0に保持された光ディスク盤1が回転する。また、レー ザユニット4から出射されたレーザ光は反射ミラー7に より集光レンズ8に導かれ、フォーカスコイル11に通 電しフォーカスマグネット12との電磁作用により集光 レンズ8をフォーカス方向に動作させることにりより、 最適な状態でレーザ光を光ディスク盤1に集光させるこ とができる。光ディスク盤1からの反射光は、反射ミラ 40 ー7を介してホログラムプレート6によりレーザユニッ ト4内の光検出器に導かれる。さらに、トラッキングコ イル13に通電すると、トラッキングマグネット16と の電磁作用により可動ペース5はキャリッジペース15 に対し光ディスク盤1の半径方向に移動することができ る。以上の動作の複合により光ディスク盤1の情報を記 録・再生することができる。

【0022】カートリッジ2を排出するときは、スライ 段とを保持するキャリッジベースをカートリッジに対し ド板25を押すと前述の動作と逆に、スライド板25と 接離する方向に移動可能とした構成により、無駄な空間 ガイドピン27の係合によりキャリッジベース15は下 50 が排除されコンパクトで機械的ながたによる振動や光学

方に移動され、光ディスク盤1とターンテーブル20の 嵌合が解除される。さらに、トリガーピン28が移動す るためカートリッジ検出レバー30との係合状態が解除 され、カートリッジ検出レバー30はレバーばね31の 作用により回動し、カートリッジ2を排出することがで きる。

【0023】以上のように本実施例によれば、光ディス ク盤1を回転させるためのスピンドルモータ部と、光を 出射・検出するレーザユニット4と、レーザユニット4 からのレーザ光を光ディスク盤1に集光するための集光 レンズ8と、集光レンズ8をフォーカスおよびトラッキ ング方向に駆動するアクチュエータ手段とを保持するキ ャリッジベースベース15をカートリッジ2に対し接離 する方向に移動可能とした構成により、平面における面 積がカートリッジ2より大幅に小さいキャリッジベース 15を移動させることにより光ディスク盤1とスピンド ルモータ部を結合するため、光ディスク装置の無駄な空 間が排除され携帯用に適したコンパクトな装置が可能と なり、さらに信号検出の基準となる光学系(レーザユニ ット4と、集光レンズ8と、アクチュエータ手段で構 成)とスピンドルモータ部がキャリッジペース15に一 体構成されているため、機械的な振動や光学系の位置精 度に起因する読み取り性能の劣化を低減することができ

【0024】また、キャリッジベース15上のレーザユニット4やフォーカスコイル11やトラッキングコイル13やスピンドルコイル19等の電気部品が、一つの基板33上に配設結線されているので組立性および耐ノイズ性に優れている。

【0025】なお、本実施例ではキャリッジペース15の昇降駆動源としてばね力を用いたが、モータを用いてギア等の駆動伝達によりガイドピン27に当節するスライドカムをスライドさせてキャリッジペース15を昇降させたり、モータの代わりに電磁ソレノイドを用いてもよい。

【0026】また、本実施例に示したアクチュエータ手段の構成に限定されるものではなく、集光レンズ8のアクチュエータ手段としてフォーカス駆動手段とトラッキング駆動手段を同一磁気回路を用いて構成してもよく、光学系の部品構成やレイアウトに関しても本実施例で示

[0027]

した構成に限られるものではない。

【発明の効果】以上の説明からも明らかなように本発明は、記録媒体を回転させるスピンドルモータ部と、光を出射・検出するレーザユニットと、レーザ光を記録媒体に集光させる集光レンズと、集光レンズをフォーカス方向およびトラッキング方向に駆動するアクチュエータ手段とを保持するキャリッジペースをカートリッジに対し接離する方向に移動可能とした構成により、無駄な空間が推除されコンパクトで機械的ながたによる振動や光学

系の位置精度に起因する信号読み取り性能が劣化しない 信頼性の高い優れた光ディスク装置を実現できるもので ある。

【図面の簡単な説明】

【図1】本発明の一実施例の光ディスク装置の断面略図

【図2】図1の要部平面図

【図3】同光ディスク装置のキャリッジペース平面図

【図4】図3の要部断面略図

【図5】(a)は同光ディスク装置のカートリッジのシャッターが閉じている状態の平面図

(b) は (a) の底面図

【図6】(a)は同光ディスク装置のカートリッジのシャッターが開いている状態の平面図

(b) は(a) の底面図

【図7】同光ディスク装置のカートリッジの装着開始時 の状態を示す断面略図

【図8】図7の要部平面図

【図9】同光ディスク装置のカートリッジの装着終了時 の状態を示す断面略図

【図10】図9の要部平面図

【図11】従来の光ディスク装置の断面略図

【図12】(a)は同光ディスク装置のカートリッジの

装着開始時の状態を示す断面略図

(b) は同光ディスク装置のカートリッジの装着終了時の状態を示す断面略図

【図13】従来の他の光ディスク装置の断面略図

【図14】(a)は同光ディスク装置のカートリッジの 装着開始時の状態を示す断面略図

(b) は同光ディスク装置のカートリッジの装着終了時 の状態を示す断面略図

【符号の説明】

10 1 光ディスク盤 (記録媒体)

2 カートリッジ

4 レーザユニット

8 集光レンズ

11 フォーカスコイル (アクチュエータ手段)

12 フォーカスマグネット (アクチュエータ手段)

13 トラッキングコイル (アクチュエータ手段)

15 キャリッジペース

16 トラッキングマグネット (アクチュエータ手段)

18 軸受 (スピンドルモータ部)

20 19 スピンドルコイル (スピンドルモータ部)

20 ターンテーブル (スピンドルモータ部)

21 スピンドルマグネット (スピンドルモータ部)

【図1】

/ 光ディスク盤

13 トラッキングコイル

2 カートリッシ

15 キャリッジベース

4 レーサユニット

18 軸受

8 集光レンス

19 スピンドルコイル 20 ターンテーブル

12 フォーカスマグネット

21 スピンドルマグネット

[図4]

【図2】

[図3]

[図6]

. 【図 5】

[図10]

(b)

[図7]

【図8】

[図9]

【図11】

[図12]

【図13】

[図14]

EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

11340491

PUBLICATION DATE

10-12-99

APPLICATION DATE

28-05-98

APPLICATION NUMBER

10146799

APPLICANT: SANYO ELECTRIC CO LTD;

INVENTOR:

IKUSHIMA MASAO;

INT.CL.

H01L 31/042

TITLE

: SOLAR CELL DEVICE

ABSTRACT: PROBLEM TO BE SOLVED: To provide a solar cell device, wherein even a backside is effectively irradiated with light for effective utilization of light.

> SOLUTION: Solar cell panels 1 and so on, wherein a plurality of solar cell elements, which generate power from the light on both front and rear surfaces are connected electrically, are provided. Here, an opening 3 is provided between the solar cell panels 1 and so on, which is attached to a supporting frame 2, and light is introduced to the backsides of the solar cell panels 1, etc., through the openings 3, allowing both the front and rear surfaces of the solar cell panels 1, etc., to which light is made incident.

COPYRIGHT: (C)1999,JPO