Champ et énergie électrostatiques

P5 – Chapitres 1 et 2

		Charge	Champ électrostatique	Force de Coulomb	Potentiel électrostatique	Energie électrostatique
Discrète	Charge ponctuelle	Q = ke	$\overline{E_i}(M) = \frac{q_i}{4\pi\varepsilon_0} \frac{\overline{P_i M}}{P_i M^3}$	$\overrightarrow{\overline{f_{t\to t}}} = q_t \overrightarrow{E_t}(M)$	$V_i(M) = \frac{q_i}{4\pi\varepsilon_0} \frac{1}{P_i M} + cst$	$U_E = \frac{1}{2} \sum_{i=1}^{N} q_i V(M_i)$
	Discrète	$\sum q_i$	$\vec{E}(M) = \sum \overrightarrow{E_l}(M)$	$\overrightarrow{f_{1,\dots,N\to t}} = q_t \sum_{i=1}^N \overrightarrow{E_i}(M)$	$V(M) = \sum V_i(M)$	$U_E = \frac{1}{2} \sum_{i=1}^{N} \sum_{\substack{j=1 \ j \neq i}}^{N} \frac{q_i q_j}{4\pi \varepsilon_0} \frac{1}{M_i M_j}$
Continue	Différentielle	d^xq	$d^{x}\vec{E}(M) = \frac{d^{x}q}{4\pi\varepsilon_{0}}\frac{\overrightarrow{PM}}{PM^{3}}$		$d^{x}V(M) = \frac{d^{x}q}{4\pi\varepsilon_{0}} \frac{1}{PM}$	$d^x U_E = \frac{1}{2} V(P) d^x q$
	Volumique	$Q = \iiint_V \rho(P) d^3 \tau_P$	$\vec{E}(M) = \iiint_{V} \frac{\rho(P)}{4\pi\varepsilon_{0}} \frac{\overrightarrow{PM}}{PM^{3}} d^{3}\tau_{P}$		$V(M) = \iiint_{V_{dist}} \frac{\rho(P)}{4\pi\varepsilon_0} \frac{d^3\tau_P}{PM} + c$	$U_E = \frac{1}{2} \iiint_{V_{dist}} \rho(P) V(P) d^3 \tau_P$
	Surfacique	$Q = \iint_{S} \sigma(P) \ d^{2}S_{P}$	$\vec{E}(M) = \iint_{S} \frac{\sigma(P)}{4\pi\varepsilon_0} \frac{\overrightarrow{PM}}{PM^3} d^2S_P$		$V(M) = \iint_{S} \frac{\sigma(P)}{4\pi\varepsilon_0} \frac{d^2S_P}{PM} + c$	$U_E = \frac{1}{2} \iint_{S} \sigma(P) V(P) d^2 S_P$
	Linéique	$Q = \int_{L} \lambda(P) \ dl_{P}$	$\vec{E}(M) = \int_{L} \frac{\lambda(P)}{4\pi\varepsilon_0} \frac{\overrightarrow{PM}}{PM^3} dl_P$		$V(M) = \int_{L} \frac{\lambda(P)}{4\pi\varepsilon_{0}} \frac{dl_{P}}{PM} + c$	Ø

Relation locale avec \vec{E} :

$$\vec{E}(M) = -\overrightarrow{\operatorname{grad}_{M}}V(M)$$

Relation intégrale avec
$$\vec{E}$$
:
$$\int_{A}^{B} \vec{E}(M) \cdot \vec{dr} = V(A) - V(B)$$

Relation de Poisson:

$$\Delta_M V(M) + \frac{\rho(M)}{\varepsilon_0} = 0$$

Théorème de Gauss:

Soient
$$V_{dist}$$
 dist. volumique S_{Gauss} surface qcque englobant V_{Gauss} $P \in V_{dist}$ $M \in S_{Gauss}$

$$\phi = \iint_{S_{Gauss}} \vec{E}(M) \cdot d^2 S_M = \iiint_{V_{Gauss}} \frac{\rho(P)}{\varepsilon_0} d^3 \tau_P = \frac{Q_{Gauss}}{\varepsilon_0}$$

$$div_P \vec{E}(P) = \frac{\rho(P)}{\varepsilon_0}$$
Formelocale

Forme intégrale

$$\operatorname{div}_{P} \vec{E}(P) = \frac{\rho(P)}{\varepsilon_{0}}$$

Champ et énergie électrostatiques

P5 - Chapitres 1 et 2

I. Le champ électrostatique

1. Propriétés de la charge

La charge est quantifiée (Q = ke) grandeur extensive, conservative, et scalaire.

2. Invariances

Translation: Distribution identique ∀ z ⇒ E(x, y, z) identique ∀ z.
 Rotation: Distribution identique ∀ φ ⇒ E(ρ, φ, z) identique ∀ φ.

3. Symétries

• Symétrie plan : $\vec{E} \in \text{(plan de symétrie)}$ • Symétrie axiale : $\vec{E} \in \text{(axe de symétrie)}$ • Antisymétrie plane : $\vec{E} \perp \text{(plan de symétrie)}$

4. Discontinuité de la composante normale du champ à la traversée d'une surface chargée

$$\lim_{\substack{M_1 \to M \\ M_2 \to M}} \left[\vec{E}(M_2) - \vec{E}(M_1) \right] = \frac{\sigma(M)}{\varepsilon_0} \; \overrightarrow{n_{1 \to 2}}$$

II. Le potentiel électrostatique

1. Propriétés de la fonction potentiel

a. Surface équipotentielle

Le champ électrique est perpendiculaire en tout point de la surface équipotentielle.

b. Lignes de champ

Ces sont des courbes **tangentes** en tout point **au champ**. $V \supseteq$ en suivant la ligne de champ. Elles **divergent d'une charge positive** (V_{max}) et **convergent vers une charge négative** (V_{min}) .

2. L'énergie en fonction du champ électrique

$$U_E = \frac{\varepsilon_0}{2} \iiint_{B(O,R)} E^2(P) d^3 \tau_P$$
 à grande distance