<u>1 רגרסיה ומודלים סטטיסטיים תרגיל</u>

שאלה 1:

- א. תהי $A\in R^{n\times n}$ זוגות של וקטורים עצמיים וע"ע של $A\in R^{n\times n}$ א. תהי $u_1^tu_2=0$ הראו כי $\lambda_1\neq\lambda_2$. הראו כי שמתקיים שהערכים העצמיים $\lambda_1\neq\lambda_2$
 - . נסמן $V=I+\theta A, \theta \in R$ הוכיחו ש- u_1 . הוכיחו ש- $U=I+\theta A, \theta \in R$ ב.
- ג. נניח כעת כי A הפיכה ונכתוב $U\Lambda U^T$ כאשר המטריצות מוגדרות באותו האופן בו הגדרנו בכיתה. $u_1,\dots,u_n;~\lambda_1,\dots,\lambda_n$ בטאו את A^{-1} במונחי

:2 שאלה

- : שקולים: $A = X^T X$ ונסמן n > p -ש- א. ער הבאים שקולים: $X \in \mathbb{R}^{n \times p}$ א.
 - .הפיכה A (1)
 - עמודות X בת"ל. (2)
 - חיובית מוגדרת. A
 - $.\lambda_i>0, orall n\geq i\geq 1$ ע"ע של $\lambda_1,\ldots,\lambda_n$ (4)
 - . orall heta > 0 ב. הסיקו מהסעיף הקודם כי המטריצה A + heta I הפיכה

שאלה 3:

 $A \in \mathbb{R}^{3 \times 3}$ ואת המטריצה S ל-

$$A = \begin{bmatrix} 1 & -2 & 1 \\ 3 & -1 & 0 \\ 1 & 4 & -2 \end{bmatrix} \quad \text{and} \quad S = \{u_1, u_2, u_3\} = \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \right\}$$

. תזכורת: A היא מטריצה המייצגת את ההעתקה A ביחס לבסיס הסטנדרטי

.(בתחום ובטווח). S מצאו את המטריצה A המייצגת את ההעתקה A ביחס לבסיס

יים: מתקיים \mathcal{C},\mathcal{B} מתקיים: \mathcal{G} מתקיים

$$[G]_C = [I]_C^B [G]_B [I]_B^C$$

בהתאמה. V,W,Uוכן $T:V \to W$ בסיסים ל- $F:W \to U$ וכן זכן $T:V \to W$ בסיסים ל-ב. - נניח הראו כי:

$$[F \circ T(v)]_D = [F(T(v))]_D = [F]_D^C [T]_C^B [v]_B$$

כלומר, שניתן לייצג הרכבת העתקות לינאריות על ידי כפל במטריצות המייצגות את ההעתקות.

- הניחו כעת כי V=W וכן B=C וכן הפיכה אם"ם הפיכה אם"ם - B=C וכן אוכן V=W - הניחו כעת כי T הראו ש

:4 שאלה

תהי $\beta \in R^p$ וקטור מקדמים. בתרגול הוכחנו את $Y \in R^n$ אטריצה מדרגה מלאה, $X \in R^{n \times p}$ וקטור כלשהו את מטריצה מדרגה מלאה, הנגזרות הבאות:

נגזרת של מכפלה סקלרית של וקטורים:

$$\frac{\partial}{\partial x} (b^T x) = \frac{\partial}{\partial x} (x^T b) = b$$

$$\frac{\partial}{\partial x} \left(x^T x \right) = 2x$$

עבור מטריצה סימטרית A נקבל

$$\frac{\partial}{\partial x} \left(x^T A x \right) = 2Ax$$

א. השתמשו בתכונות אלו על מנת להראות:
$$\beta^* = argmin_{\beta \in R^p} \left| |Y - X\beta| \right|^2 = (X^TX)^{-1}X^TY$$

וכן:

$$X\beta^* = P_X Y$$

: מהצורה $X \in R^{n imes 2}$ למקרה בו $eta^* = (eta_0^*, eta_1^*)$ מהצורה בו מצאו ביטוי מפורש עבור

$$egin{bmatrix} 1 & x_1 \ 1 & x_2 \ 1 & x_3 \ 1 & x_4 \ 1 & x_5 \ 1 & x_6 \ 1 & x_7 \end{bmatrix}$$

הסבירו מדוע למעשה כבר פתרתם את הבעיה הזו בקורסים קודמים.