REAL ANALYSIS: HOMEWORK SET 3

DUE WED. OCT. 17

Exercise 1. Let $\{f_n\} \subseteq L^+$, $f_n \to f$ a.e. and $\int f = \lim \int f_n < \infty$.

- (1) Show that for any measurable set $E \in \mathcal{M}$, $\int_E f = \lim_{n \to \infty} \int_E f_n$.
- (2) Show that this need not be true if $\lim_{n \to \infty} \int f(x) dx = \int_{-\infty}^{\infty} f(x) dx$.

Exercise 2. Let $f \in L^+$ satisfy $\int f < \infty$. Show that for every $\epsilon > 0$ there is $E \in \mathcal{M}$ with $\mu(E) < \infty$ such that $\int_E f > \int f - \epsilon$.

Exercise 3. Let $\{f_n\} \subseteq L^1(\mu)$ and $f_n \to f$ uniformly.

- (1) Assume that $\mu(X) < \infty$ and show that $f \in L^1(\mu)$ and $\int f_n \to \int f$.
- (2) Give an example showing that this can fail when $\mu(X) = \infty$.

Exercise 4. Let $f_n, g_n, f, g \in L^1$ with $f_n \to f$ and $g_n \to g$ a.e. Assume that $|f_n| \leq g_n$ and $\int g_n \to \int g$ and show that $\int f_n \to \int f$.

Exercise 5. Let $f_n, f \in L^1, f_n \to f$ a.e. Show that $\int |f_n - f| \to 0$ if and only if $\int |f_n| \to \int |f|^2$

Exercise 6. Let $f \in L^2(m)$ and $F(x) = \int_{(-\infty,x)} f dm$. Show that F is continuous.

Exercise 7. Compute the following limits (use the appropriate convergence theorems to justify your calculations).

- (1) $\lim_{n\to\infty} \int_0^\infty (1+\frac{x}{n})^{-n} \sin(\frac{x}{n}) dx$ (2) $\lim_{n\to\infty} \int_0^1 (1+nx^2)(1+x^2)^{-n} dx$ (3) $\lim_{n\to\infty} \int_0^\infty n \sin(\frac{x}{n})[x(1+x^2)]^{-1} dx$ (4) $\lim_{n\to\infty} \int_a^\infty \frac{n}{1+n^2x^2} dx$

Note: the answer depends on whether a > 0, a = 0 or a < 0.

Exercise 8. Recall that $f_n \to f$ almost uniformly, if $\forall \epsilon > 0$ there is E with measure $\mu(E) < \epsilon$ such that $f_n \to f$ uniformly on E^c . Show that if $f_n \to f$ almost uniformly then $f_n \to f$ in measure, and $f_n \to f$ a.e

¹Hint: Rework the proof of the dominant convergence theorem

²Hint:use previous exercise.

Exercise 9. Assume that $|f_n| < g \in L^1$ and $f_n \to f$ in measure, show that $f_n \to f$ in L^1 .

Exercise 10. Let $f:[a,b]\to\mathbb{C}$ be Lebesgue measurable. Show that for any $\epsilon>0$ there is a compact set $E\subset [a,b]$ with $m(E^c)<\epsilon$ and such that $f_{|E|}$ is continuous. (Note: this does not mean that f is continuous at E).