

2010-2011-第一学期 工科数学分析期中试题解答(信二学习部整理)

$$-$$
. 1. $[e^{f^2(x)}2f(x)f'(x)+f'(\arcsin x^2)\frac{2x}{\sqrt{1-x^4}}]dx$

3.
$$\frac{1}{6}$$

4.
$$-\frac{1+t^2}{t^3}$$

5.
$$x = 1, x = 0$$

$$\lim_{x \to 0} \left(\frac{\sin x}{x}\right)^{\frac{1}{x^2}} = \lim_{x \to 0} \left(1 + \frac{\sin x - x}{x}\right)^{\frac{1}{x^2}} \tag{2 }$$

$$= \lim_{x \to 0} \left[\left(1 + \frac{\sin x - x}{x} \right)^{\frac{x}{\sin x - x}} \right]^{\frac{\sin x - x}{x^3}}$$
 (4 分)

$$= e^{\lim_{x \to 0} \frac{\sin x - x}{x^3}} = e^{\lim_{x \to 0} \frac{\cos x - 1}{3x^2}} = e^{-\frac{1}{6}}$$
 (8 $\%$)

$$\equiv . \qquad e^{y} \frac{dy}{dx} \cdot \cos x - e^{y} \sin x + 1 + \frac{dy}{dx} = 0 \qquad (4 \%)$$

解得
$$\frac{dy}{dx} = \frac{e^y \sin x - 1}{e^y \cos x + 1}$$
 (5分)

在已知方程中令
$$x=0$$
, 得 $e^y+y=1$, $y=0$ (7分)

$$\frac{dy}{dx}\Big|_{x=0} = \frac{e^{y}\sin x - 1}{e^{y}\cos x + 1}\Big|_{x=0, y=0} = -\frac{1}{2}$$
 (8 $\%$)

$$a_2 = \frac{a_1 + 3}{4} = \frac{3}{4} > a_1$$

设
$$a_n > a_{n-1}$$
,则有 $\frac{a_n + 3}{4} > \frac{a_{n-1} + 3}{4}$,即 $a_{n+1} > a_n$

又
$$a_1 < 1$$
,设 $a_n < 1$,则有 $a_{n+1} = \frac{a_n + 3}{4} < \frac{1+3}{4} = 1$

即
$$\{a_n\}$$
有上界,因此 $\{a_n\}$ 有极限.(6分)

设
$$\lim_{n\to\infty} a_n = A$$
,则有 $A = \frac{A+3}{4}$,解得 $A=1$,即 $\lim_{n\to\infty} a_n = 1$ (9 分)

$$\stackrel{\text{def}}{=} x > 0, \quad f'(x) = 2x \sin \frac{1}{x} - \cos \frac{1}{x}$$
 (5 \(\frac{\pi}{x}\)

$$\stackrel{\underline{\mathsf{u}}}{=} x < 0, \quad f'(x) = 2\sin x^2 - \frac{1}{r^2} (1 - \cos x^2) \tag{7}$$

$$f'_{+}(0) = \lim_{x \to 0^{+}} x \sin \frac{1}{x} = 0$$

$$f'_{-}(x) = \lim_{x \to 0^{-}} \frac{1 - \cos x^{2}}{x^{2}} = \lim_{x \to 0^{-}} \frac{\frac{1}{2}x^{4}}{x^{2}} = 0$$

$$\therefore f'(0) = 0 \qquad(9 \%)$$

$$V = \frac{2}{3}\pi r^{3} + \pi r^{2}h = a \qquad h = \frac{a - \frac{2}{3}\pi r^{3}}{\pi r^{2}}$$

$$S = 2\pi r^{2} + 2\pi rh = \frac{2}{3}\pi r^{2} + \frac{2a}{r}$$

$$\Leftrightarrow \frac{dS}{dr} = \frac{4}{3}\pi r - \frac{2a}{r^{2}} = 0 \qquad \Leftrightarrow r = \sqrt[3]{\frac{3a}{2\pi}}$$

由问题的实际意义,..., 故当 $r = \sqrt[3]{\frac{3a}{2\pi}}$ 时,所用材料最少,此时h = 0......(9分)

七. 定义域为(-∞,-1)∪(-1,+∞)

$$\lim_{x \to -1} y = \infty \quad 有垂直渐近线 x = -1 \qquad \qquad (1 分)$$

$$\lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{x^3}{(1+x)^3} = 1$$

$$\lim_{x \to \infty} (y - x) = \lim_{x \to \infty} (\frac{x^3}{(1+x)^3} - x) = -3 \quad \text{fightar} \quad \text{fightar} \quad \text{(3 f)}$$

$$y' = \frac{x^4 + 4x^3}{(1+x)^4}$$
 $\Rightarrow y' = 0$, $\forall x = 0, x = -4$ (5 \Rightarrow)

$$y'' = \frac{12x^2}{(1+x)^5}$$

x	(-∞,-4)	-4	(-4,-1)	-1	(-1,0)	0	(0,+∞)
<i>y</i> '	+	0	_		_	0	+
<i>y</i> "	_		_		+		+
y		极大值 - 256 27		间断		极小值 0	1

九. (1) 由
$$\lim_{x\to 0} \frac{\tan x - \sin x}{ax^k} = \lim_{x\to 0} \frac{\tan x (1 - \cos x)}{ax^k}$$

$$= \lim_{x \to 0} \frac{x \cdot \frac{1}{2} x^2}{ax^k} = \lim_{x \to 0} \frac{\frac{1}{2} x^3}{ax^k} = 1$$
 (3 $\%$)

得
$$a = \frac{1}{2}$$
 $k = 3$ (5 分)

(2)
$$\lim_{x \to 0} \frac{\tan x - \sin x}{f(x)} = \lim_{x \to 0} \frac{\frac{1}{2}x^3}{f(x)} = 1$$
 (7 $\frac{1}{2}$)

得
$$f(x) = \frac{1}{2}x^3 + o(x^3)$$
(8分)

由
$$\frac{1}{2} = \frac{f'''(0)}{3!}$$
 得 $f'''(0) = 3$ (10 分)

+.
$$\lim_{x \to 0} \frac{f''(x)}{\ln(1+x)} = \lim_{x \to 0} \frac{f''(x)}{x} = -1$$

得
$$f''(0) = \lim_{x \to 0} f''(x) = 0$$
 (3分)

且在
$$x=0$$
的某去心邻域内有 $\frac{f''(x)}{x}$ <0(5 分)

故在此邻域内当x < 0, f''(x) > 0, 当x > 0, f''(x) < 0

因此
$$(0, f(0))$$
 是曲线 $y = f(x)$ 的拐点 (7 分)

则F(x)在[$\frac{1}{2}$,1]连续,

$$F(\frac{1}{2}) = 1 - \frac{1}{2} = \frac{1}{2} > 0$$
 $F(1) = -1 < 0$

根据介值定理, $\exists \eta \in (\frac{1}{2},1)$, 使 $F(\eta) = 0$, 即 $f(\eta) = \eta$;(4分)

则G(x)在 $[0,\eta]$ 连续,在 $(0,\eta)$ 可导,

$$\mathbb{H} G(0) = 0, \quad G(\eta) = 0,$$

根据罗尔定理, $\exists \xi \in (0,\eta)$, 使

$$G'(\xi) = 0$$
, $(f'(\xi) - 1)e^{\xi} + (f(\xi) - \xi)e^{\xi} = 0$

由于
$$e^{\xi} \neq 0$$
,有 $f'(\xi) - 1 + f(\xi) - \xi = 0$ (9分)