Early grasping trajectories and later neural representations of infant fingers

Melissa N. Horger, Kaitlyn Campbell, Peter J. Marshall, Valentina Parma

Hand movements as an experimental window on motor development

- Ecologically valid
- Well practiced

Finger position as an indicator of grasp maturity

Grasping precision improves from 9 months

For review, see von Hofsten & Rosander, 2018)

The pincer grasp evolves with finger independence

Pre-precision

Sacrey, Karl, & Whishaw, 2012

Finger independence and neural representations in somatosensory cortex

- Large relative to anatomical size
- Neuroplasticity
 - Marshall & Meltzoff, 2015
 - Dall'Orso et al., 2018

Tactile experience affects the neural representation of digits

For a more recent review, see Olszewska et al., 2021

Elbert et al., 1995

sMMN as a neural window into relations between fingers

sMMN =
somatosensory
mismatch negativity

Shen et al., 2018

sMMN as a neural window into relations between fingers

Shen et al., 2018

Does grasp maturity at 9 months have an impact on the neural representation of infant fingers at 14 months?

Participants

• N = 10 (80% Female)

Age M(SD)	Household income	Race	Ethnicity
At in-home grasp task 290.78 (6.86) days At lab visit 440.7 (9.7) days	20% <\$50,000 20% \$50-99,000 60% >\$100,000	70% White 10% Black 20% multiracial	20% of Hispanic origin

In-home grasping task

Steps:

1. Define frame of start, first contact, and end

Steps:

- 1. Define frame of start, first contact, and end
- 2. Define length of card

Steps:

- 1. Define frame of start, first contact, and end
- 2. Define length of card
- 3. Track the hand

Steps:

- 1. Define frame of start, first contact, and end
- 2. Define length of card
- 3. Track the hand
- 4. Track the skeleton

Extracted kinematic variables

- Distance from thumb-to-middle (TM)
- Distance from thumb-to-little (TL)

Kinematic profile of grasp maturity at 9 months

Distance between digits at first contact

Kinematic profile of grasp maturity at 9 months

Finger stimulation and EEG recording in the lab

Finger stimulation protocol

Experimental (oddball) paradigm 80% of stimuli to middle 10% of stimuli to thumb 10% of stimuli to little

Control paradigm

1 minute to thumb only

1 minute to little only

EEG processing

• Channels of interest:

Based on Shen et al., 2020

- Epochs range from -100 ms before stimulus presentation to 500 ms after
- Minimum of 40 good epochs per condition

sMMN

Control Grand mean wave plot FC1 Deviant Amplitude (μ v) Time (in ms) -100 100 300 400 500 0

sMMN

Amplitude of sMMN across finger comparisons

Shen et al., 2018

Smaller finger distance is associated with more distinct thumb representation

Infants with smaller finger distances

Larger finger distance is associated with more distinct representation of the little finger?

Relation between brain and behavior

- Takeaways:
 - Kinematic profiles
 - Smaller finger distance = greater coupling across all fingers
 - Greater finger distance = more independence
 - Neural representations (sMMN)
 - In both groups, thumb is emerging as differentiated
 - In those with greater distances, little finger also becoming distinct

Future (and in-progress) research

- Development of reaching-to-grasp from 6 to 14 months
- Additional behavioral measures at lab visit

Acknowledgements

Thank you to the families!

Thank you to the research assistants of the Developmental Science Lab: Helene Paris, Nick Scheri, Spense Dawkins-Halko, David Halfin, Kate Hill, Rachel Kelly, Lauren Mochnal, Meghan Hernandez, and Olivia Shapiro.

This research is supported by a McDonnell Foundation grant to PJM and VP: https://doi.org/10.37717/2020-1209

JAMES S. McDonnell Foundation

