Example 1. Let us view the natural numbers N and all integers Z as objects in the category Mon.

The inclusion $i: N \to Z$ provides a natural morphism within Mon of which we will show that it is monomorph.

For this let $g, h \in Hom(Z, N)$ and $i \circ g = i \circ h$. This implies for any $x \in Z$, g(x) = h(x) and so g = h.

Next, we show i is epimorph as well.

For this, let us first make a simple observation:

For any morphism $f: Z \to N$ and positive $n \in Z$ we have by definition of morphisms in Mon,

$$0 = f(n-n) = f(n) + f(-n)$$

which implies

$$-f(n) = f(-n)$$

Now assume $f \circ i = g \circ i$ for $f, g \in Hom(Z, N)$. This trivially implies f(z) = g(z) for $z \in Z \cap N$. For negative $z \in Z$, we have by the previous remark

$$f \circ i(-z) = f(-z) = -f(z)$$

and the same for g

$$g \circ i(-z) = -g(z)$$

Combined this yields,

$$-g(z) = -f(z)$$

Hence g(z) = f(z).

Altogether this shows f = g and thus i is epimorph.

Interestingly i is **not** isomorph! Otherwise there would be a morphism $i^{-1}: Z \to N$ such that $i \circ i^{-1}(-1) = -1$, but this is impossible since $-1 \notin N$.

For readers with knowledge in topology:

Example 2. This example comes from topology and regards the category Top which objects are topological spaces and the morphisms are taken to be all continuous maps. Consider the identity map $id:(N,\tau)\to(N,\sigma)$, where N denotes the set of natural numbers one time equipped with the discrete topology τ and one times with the chaotic topology σ . The latter consists of the sets N and \emptyset only. Trivially this map is an monomorphism and epimorphism, but it does not have an inverse. This inverse necessarily would be the map $id:(N,\sigma)\to(N,\tau)$, but this is not continuous.