Anatómia-élettan II. félév

Dr. Világi Ildikó Élettani és Neurobiológiai Tanszék

vilagildi@ttk.elte.hu

Tananyagok:

http://physiology.elte.hu/elettan_pszicho.html

Ajánlott tankönyvek:

- · Donáth Tibor: Anatóia Élettan; Medicina Kiadó
- · Hajdú Ferenc: Vezérfonal a neuroanatómiához; Semmelweis Kiadó
- Stephen G. Waxman: Összehasonlító neuroanatómia; Medicina Kiadó
- · Ormai Sándor: Élettan kórélettan; Semmelweis Kiadó
- Fonyó Attila: Élettan gyógyszerészhallgatók számára; Medicina Kiadó

Félévi óraterv

1.	Endokrinológia I.		
2.	Endokrinológia II.		
3.	A központi idegrendszer makroanatómiája		
4.	Környéki idegrendszer anatómiája, kapcsolatai		
5.	Sejtszintű idegrendszeri folyamatok, ingerületvezetés és átadás		
6.	Agyi régiók finomszerkezete, kapcsolatai		
7.	Érzőműködés általános áttekintése, testérzékelés, egyensúlyérzékelés, fájdalomérzékelés		
8.	A látó- és hallórendszer működése		
9.	Mozgásműködés, mozgáskoordináció		
10.	Idegrendszeri vizsgálómódszerek, agyi elektromos aktivitás mérése		
11.	Alvás-ébrenlét szabályozás, ritmikus működések		
12.	Viselkedés, tanulás, elemi tanulási folyamatok		

Endokrinológia I.

Sejtek közti kémiai komunikáció

Autokrin hatás:

Saját magára visszahatás, autoreceptorral történik reguláció

Parakrin hatás:

Extracelluláris térbe ürítés, közelben hatás (szöveti hormonok)

Endokrin hatás:

A kiürített anyagok a vérbe kerülnek, távoli szervekre is hatással lehetnek, a hormon endokrin szervben termelődik

Neuroendokrin hatás:

Speciális eset: a termelő idegsejt

Hormon: endokrin szervben termelődő anyag, mely a vér útján kerül el a hatóhelyre

Hormon hatású anyagok csoportosítása

Kémiai szerkezet alapján:

Kifejtett hatás alapján

peptidek

szteroidok

aminosav származékok (tirozinból)

prosztaglandinok (általában szöveti hormonok)

Anyagcsere befolyásolók: pl. tiroxin, inzulin

Izomaktiválók: pl. oxitocin, adrenalin

Morfogenetikus hatásúak: pl. tiroxin, ösztrögén

Hormon-receptorok jellemzői

A receptorok a plazma membránban vagy a citoplazmában helyezkednek el.

Jellemzőik:

- Specificitás
- · Nagy affinitás a hormonhoz
- · Reverzibilis kötés
- · Dinamikus receptorszám változás
- ·Több féle receptora is lehet egy hormonnak

Hormon-receptor kölcsönhatás I.

Lipid oldékony hormonok hatása – általában hosszabb távú, fehérjeszintézis változik

Hormon-receptor kölcsönhatás II.

Nem lipid oldékony hormonok hatása – általában rövidebb idejű, gyakran reverzibilis

aktiváció másodlagos hírvivők segítségével – cAMP útvonal – Ca²⁺ útvonal

Hormonmennyiség meghatározása

Biológiai titrálás

Radioimmun assay (RIA) - radioktívan jelölt hormon mérése

Enzyme-linked immunosorbent assay (ELISA)

- színreakció mérése

Fő endokrin mirigyek

A hormonszint napi ingadozása

Hipothalamo-hipofizeális rendszer

Hipothalamo-hipofizeális rendszer

Peptid (ACTH), glikoproptein (TSH, FSH, LH) és fehérje (PRL, GH) természetű hormonok

A neurohipofízis hormonjai és hatásaik

A nagysejtes hipothalamikus magcsoport-rendszer

A hormonok a hipothalamikus magokban termelődnek, a hipofízis hátsó lebenyében, a neurohipofízisben tárolódnak

 oxitocin: emlő és méh símaizomzatára hat, összehúzódást vált ki. Ejakulációt segíti.
 9 aminosavból álló peptid.

-vazopresszin: vese gyűjtőcsatornácskákban a vízáteresztés fokozása, másik neve ADH (antidiuretikus hormon) 9 aminosavból épül fel

Középső lebeny

melanocita stimuláló hormon (MSH)
 származéka:proopiomelanokortin (POMC)

Az adenohipofízis hormonjai és hatásaik

A kissejtes hipothalamikus magcsoportrendszer

TSH: tireoida stimuláló hormon ACTH: adrenokortokotrop hormon LH: sárgatest stimuláló hormon FSH: follikulus stimuláló hormon

GH: növekedés hormon

PRL:prolaktin

5-HT: szerotonin ACh: acetilkolin NA: noradrenalin

DA: dopamin

T4: tiroxin, T3: trijódtironin

Az adenohipofízis hormonjai és hatásaik II.

Az adenohipofízis hormonjai és hatásaik III.

Hipotalamikus hormon	Hipofízis hormon	Célszerv	Célhormon	
Testi sejtekre ható hormonok				
GHRH növekedési hormont serkentő GHRIH növekedési hormont gátló	Növekedési h. (GH)	máj és egyéb sejtek	- közvetlen szöveti hatás	
PRIH prolaktint gátló (dopamin)	Prolaktin (PRL)	emlő	- közvetlen szöveti hatás	
Szabályozó peptid hormonok				
TRH TSH elválasztást serkentő	TSH	pajzsmirigy	trijódtironin tiroxin	
CRH ACTH elválasztást serkentő	ACTH	mellékvesekéreg	glukokortikoidok mineralokortikoidok androgének	
GNRH szomatorelin	LH FSH	ivarszervek	ösztrogén progeszteron tesztoszteron	

Szabályozás negatív visszacsatolással

Más belső elválasztású mirigy működését befolyásoló hipofízis hormonok

Elválasztás szabályozás: negatív visszacsatolással

A pajzsmirigy működése

Kialakulás: tireoglobulinból hidrolízissel

Receptor:

TR - citoplazmális, szövetspecifikus

Sejtlégzés befolyásolása: fokozott oxigén fogyasztás, hőtermelés

- növeli a szövetekben az oxidációt
- fokozza a fehérjebontást
- fokozza a zsírok elégetését
- fokozza glikogén leépülését

Fejlődésben: idegrendszeri differenciáció, hiányában kreténizmus

A pajzsmirigy betegségek

A pajzsmirigy túlműködése (hyperthyreosis) testsúlycsökkenéssel, a testhőmérséklet emelkedésével jár, a reflexek élénkülnek, a mentális és a pszichés működések fokozottak. Bazedow-kórban a szemek kidüllednek

A pajzsmirigy alulműködése, hypothyreosis, az alapanyagcsere csökkenésével, a mentális és a pszichés működések lanyhulásával jár, a testsúly nő, mixodéma alakul ki a bőr alatti fehérjeszerkezet megváltozása miatt.

BetegségeK:

Jódhiányos táplálkozás hatására kevés tiroxin termelődik, ez törpenövést okoz (kreténtörpeség)

Felnőttkori rendellenességek: szemgödör dúsul, szemek kidüllednek (Bazedow-kór)
Strúma – megnő a pajzsmirigy mirigyállománya
Golyva – alacsony mirigyműködés – túl nyugodt lesz – gyógyítható tiroxin szedésével

A mellékvese kéreg

A mellékvese kéreg működése

Mineralokortikoidok (aldoszteron)

Glukokortikoidoks (kortizol)

Androgen hormonok (androsztenedion, a tesztoszteron előanyaga, anabolikus szteroidok)

Renin - angiotenzin- aldoszteron rendszer elsősorban a vese nátrium visszavételének serkentése a disztális tubulusokban

ACTH – glukokortikoid rendszer

glukoneogenezist serkenti (májban), más molekulákból, főleg zsírokból ill. aminosavakból glukóz szintézist fokoz

A mellékvese kéreg kóros működése

Mellékvese kéreg középső részének betegsége, túlműködés

Cushing-kór (sok ACTH)
Cushing szindróma (sok kortizol)

- -A mellékvesekéreg fokozott kortikoid termelése következtében kialakuló kétoldali hyperplasia
- zsírszövet felhalmozódás
- szőrösödés
- fokozott inzulin-szekréió mellett inzulin rezisztencia; hiperglikéia

androgén-túladagolás (pl. dopping) is kiválthatja

A mellékvese kéreg (külső és középső réteg) alulműködése

Addison-kór (bronzkór), nincs negatív visszacsatolás, ACTH is magas: POMC nő – pigmentáció

Mellékvese kéreg külső részének betegsége, túlműködés

Conn szindróma – aldoszteron túltermelés: magas vérnyomás, fejfájás, fáradékonyság

A mellékvese velő működése

Szimpatikus határdúclánc eredet, közvetlen beidegzés