Examen - Session 1

Durée 3h00. Les documents, la calculatrice, les téléphones portables, tablettes, ordinateurs ne sont pas autorisés. La qualité de la rédaction sera prise en compte. Les exercices sont indépendants.

Analyse

Exercice 1. Soit $(E, \langle \cdot, \cdot \rangle)$ un espace euclidien. Montrer que pour tout $u, v \in E$

$$|\langle u, v \rangle| \le \sqrt{\langle u, u \rangle \langle v, v \rangle}.$$

Exercice 2. On considère l'application

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

 $(x, y, z) \mapsto (xye^z, \cos(yz))$

- 1. Justifier que f est de classe C^1 sur \mathbb{R}^3 .
- 2. Calculer la différentielle L de f au point (1,2,3).
- 3. Déterminer l'ensemble $\{(x, y, z) \in \mathbb{R}^3 | L(x, y, z) = (0, 0)\}.$

Exercice 3. On considère le domaine

$$D = \{(x, y) \in \mathbb{R}^2 | x < 7, 8 - x < y < x + 1 \}$$

- 1. Dessiner D. 2. Calculer $\iint_D \frac{dxdy}{(x+y)^2}$

Pour $(x,y) \in \mathbb{R}^2 \setminus \{(0,0)\}$, on note Exercice 4.

$$f(x,y) = \frac{xy^2}{x^2 + y^2}$$

- 1. Montrer que f se prolonge en une fonction \check{f} continue sur \mathbb{R}^2 .
- 2. En quels points de \mathbb{R}^2 la fonction \check{f} est-elle différentiable?

Exercice 5. Soit la fonction

$$f(x,y) = \exp(-4x^2 - y^2 + 8x + 4y - 8)$$

définie sur \mathbb{R}^2 .

- 1. Étudier la régularité f (continuité, différentiabilité, etc...).
- 2. Déterminer le signe de $(x,y)\mapsto -4x^2-y^2+8x+4y-8$. En déduire l'ensemble image de f.
- 3. Soit

$$E_{\lambda} = \left\{ (x, y) \in \mathbb{R}^2 | f(x, y) \ge \lambda \right\}.$$

Dessiner $E_{e^{-1}}$, $E_{e^{-2}}$ et $E_{e^{-3}}$. L'ensemble $E_{e^{-1}} \cup E_{e^{-2}} \cup E_{e^{-3}}$ est-il ouvert, fermé, les deux, ni l'un ni l'autre? Faire une démonstration.

- 4. Calculer le gradient de f et le représenter succinctement sur la figure de la question 3.
- 5. Calculer la hessienne de f.
- 6. Déterminer le(s) point(s) critique(s) de f et donner leur nature (minimum, maximum, point selle,...).
- 7. On pose $D_1=\{(X,Y)\in\mathbb{R}^2|X^2+Y^2<1\}$ et on donne $\iint_{D_1}\exp(-X^2-Y^2)dXdY=\pi(1-e^{-1})$. En déduire de la valeur de

$$\iint_{D_2} f(x,y) dx dy$$

où
$$D_2 = \{(x, y) \in \mathbb{R}^2 | 4(x - 1)^2 + (y - 2)^2 < 1\}.$$

2 Probabilités

Exercice 6. Soit X une variable aléatoire réelle telle que $\mathbb{E}(X^2) < +\infty$. Montrer que

$$\mathbb{E}((X - \mathbb{E}(X))^2) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2.$$

Exercice 7. Sachant que l'on a obtenu 12 fois «face» en 20 lancers d'une pièce équilibrée, calculer la probabilité que :

- 1. le premier lancer ait amené «face»
- 2. au moins deux des cinq premiers lancers aient amené «face» (on ne demande pas de calculer la valeur numérique approchée, c'est le raisonnement qui sera évalué).