Tópicos Especiais em Matemática Aplicada - 2025-1 UERJ

09 - Elementos Finitos - Caso 2D

Rodrigo Madureira rodrigo.madureira@ime.uerj.br

Github: https://github.com/rodrigolrmadureira/ElementosFinitos

Sumário

1 Discretização do domínio - 2D

- Aplicação no problema da condução de calor
- Bibliografia

Figura: Fonte: Hughes, T.J.R., The Finite Element Method, 1987

Algumas definições:

- **Nós**: são os pontos discretizados do domínio $\overline{\Omega} = \Omega \cup \Gamma$, onde:
- Γ: é a fronteira do domínio (curva fechada que faz o contorno do domínio);
- Ω : é a região que contém os nós que não pertencem à fronteira Γ , ou seja, contém os nós interiores no domínio.

Figura: Fonte: Hughes, T.J.R., The Finite Element Method, 1987

Considere uma partição de Ω em subregiões Ω^e , onde:

$$\left\{ \begin{array}{l} \Omega = \bigcup_{e=1}^{\textit{Nel}} \Omega^e, \\ \Omega_i \cap \Omega_j = \emptyset, \; \text{se } i \neq j, \end{array} \right.$$

onde Nel é o número de subregiões, chamadas de Elementos Finitos.

Usualmente, os elementos finitos em \mathbb{R}^2 são triângulos ou quadriláteros.

Podemos determinar a quantidade de nós em cada elemento finito Ω^e :

 Q_n : quadrilátero com n nós;

 T_n : triângulo com n nós.

Figura: Fonte: Hughes, T.J.R., The Finite Element Method, 1987

Neste curso, trabalharemos somente com elementos do tipo Q_4 .

Figura: Fonte: Hughes, T.J.R., The Finite Element Method, 1987

Algumas definições:

- N_{no}: quantidade total de nós da malha de elementos finitos;
- *n*_{no}: quantidade total de nós em cada elemento finito.

No caso de Q_4 , $n_{no} = 4$.

- $N = \{1, 2, 3, \dots, N_{no}\}$: conjunto de nós da malha de elementos finitos;
- N_p : conjunto de nós cuja solução u(x,y) já é conhecida (prescrita), ou seja, $u|_{N_p}=p$.
- $N N_p$: conjunto de nós nos quais a solução aproximada u_h será determinada com número de nós igual a Neq (número de equações).

Figura: Fonte: Hughes, T.J.R., *The Finite Element Method*, 1987

Exemplo de malha:

$$N_{no} = 12;$$
 $N = \{1, 2, 3, ..., 12\};$
 $N_p = \{1, 4, 7, 10\};$
 $N - N_p = \{2, 3, 5, 6, 8, 9, 11, 12\};$
 $Neq = \#(N - N_p) = 8.$

Figura: Fonte: Hughes, T.J.R., *The Finite Element Method*, 1987

O número do nó da malha é chamado de **nó global**.

O número do nó da malha relativo ao elemento é chamado de **nó local**.

Obs.: Os nós locais são numerados sempre no **sentido anti-horário**.

Neste exemplo, no elemento 2:

Numeração local (sentido anti-horário): {1,2,3,4}.

Numeração global (sentido anti-horário): {2,3,6,5}.

Para associar o número global A do nó da malha com o número local a no elemento finito Ω^e , usamos uma **matriz LG** (*Local-Global*).

No exemplo anterior:

a e	1	2	3	4	5	6
1	1	2	4	5	7	8
2	2	3	5	6	8	9
3	5	6	8	9	11	12
4	4	5	7	8	10	11

Tabela: Matriz LG

Para relacionar a numeração global *A* com o número da equação no sistema linear, usamos o vetor **EQ**:

No exemplo anterior:

										11	
0	1	2	0	3	4	0	5	6	0	7	8

Tabela: Vetor EQ

Vamos relacionar o que vimos até agora com o problema aproximado da condução de calor:

$$\sum_{j=1}^{N_{no}} a(\varphi_i, \varphi_j) \ c_j = (f, \varphi_i) - (\bar{q}, \varphi_i)_{\Gamma_q} - \sum_{j=1}^{N_{no}} a(\varphi_i, \varphi_j) \ p_j,$$
para todo $i = 1, 2, \dots, N_{no}$,
$$(1)$$

onde vimos que a solução aproximada não prescrita (desconhecida) é dada por:

$$w_h(x,y) = \sum_{i=1}^{N_{no}} c_i \varphi_i(x,y)$$
 (2)

Aqui, podemos restringir $w_h(x, y)$ aos nós globais não prescritos $B = (x_B, y_B)$ do conjunto dos nós não prescritos $N - N_p$. Ou seja, podemos reescrever w_h como:

$$\mathbf{w}_h(\mathbf{x}, \mathbf{y}) = \sum_{B \in N - N_p} c_B \, \varphi_B(\mathbf{x}, \mathbf{y}), \tag{3}$$

onde $\varphi_A(x, y)$ é a função de interpolação (função da base) associada ao nó global A, tal que;

$$\varphi_A(x_B, y_B) =
\begin{cases}
1, \text{ se } A = B, \\
0, \text{ se } A \neq B.
\end{cases}$$

Note que nos nós globais não prescritos $B \in N - N_p$,

$$w_h(x_B, y_B) = c_B$$

Vimos também que a solução prescrita (conhecida) $p_h(x, y)$ é dada por:

$$p_h(x,y) = \sum_{j=1}^{N_{no}} p_j \, \varphi_j(x,y) \tag{4}$$

Logo, restringindo p_h ao conjunto dos nós prescritos N_p , podemos reescrevê-la como:

$$p_h(x,y) = \sum_{A \in N_p} p_A \varphi_A(x,y). \tag{5}$$

Note que nos nós globais prescritos $A \in N_p$,

$$p_h(x_A, y_A) = p_A$$

Assim, podemos reescrever o problema aproximado da Eq. (1) como:

$$\sum_{B \in N-N_p} a(\varphi_A, \varphi_B) c_B = (f, \varphi_A) - (\bar{q}, \varphi_A)_{\Gamma_q} - \sum_{B \in N_p} a(\varphi_A, \varphi_B) p_B,$$

$$\text{para todo } A \in N - N_p.$$
(6)

Usando em (6) a notação matricial:

$$K_{IJ} = a(\varphi_A, \varphi_B) = (\nabla \varphi_A, k \cdot \nabla \varphi_B);$$

$$F_I = (f, \varphi_A) - (\bar{q}, \varphi_A)_{\Gamma_q} - \sum_{B \in N_n} a(\varphi_A, \varphi_B) \ p_B,$$

onde I = EQ[A] e J = EQ[B] são os índices dos nós das soluções não prescritas, ou seja, dos nós que pertencem ao conjunto $N - N_p$, então obtemos o sistema linear:

$$Kc = F$$
.

Referências I

- Fish, J.; Belytschko, T.. A First Course in Finite Elements. Wiley, 2007.
- Becker, E. B.; Carey, G. F.; Oden, J. T.. Finite Elements An Introduction. Prentice-Hall, 1981.
 - Liu, I.S.; Rincon, M.A.. Introdução ao Método de Elementos Finitos, Análise e Aplicação. IM/UFRJ, 2003.