Modelo E-R **Base de datos I**

Giovanny Hidalgo

Keypoints

- ❖ MODELO ENTIDAD RELACION (MER)
- Entidad
- Atributo
- Relación

¿QUÉ ES EL MODELO E - R?

• Un diagrama o modelo Entidad-Relacion (a veces denominado por sus siglas. E-R "Entity relationship" o "DER" O "MER" Modelo de Entidad relación).

Es una herramienta para el modelado de datos de un sistema de información sus inter-relaciones y propiedades

HISTORIA

Dr. PETER CHEN

Creador del modelo E-R. Durante muchos años, se ha utilizado este modelo para representar las interdependencias entre los datos. Desde los 70 hasta ahora, el modelo ha sufrido gran cantidad de cambios y modificaciones, introducidos no necesariamente por su autor, hasta llegar al punto de coexistir múltiples variantes de los diagramas Entidad/Relación.

Elmasri, Ramez y **Navathe** Shamkant B. Sistemas de Bases de Datos: Conceptos Fundamentales. Addison-Wesley. 1976.

¿PARA QUE SIRVE?

- Mediante modelo E-R se pretende visualizar los objetos que pertenecen la Base de Datos como Entidades las cuales tienen unos atributos y se vinculan mediante Relaciones
- Aunque siguen siendo utilizados, los diagramas E/R van cayendo en el desuso debido a la progresiva implantación del lenguaje unificado de modelado (UML)

¿CÓMO SE HACE?

- Se parte de una descripción textual del problema o sistema de información a automatizar
- Se hace una lista de los sustantivos y verbos que aparecen
- Los sustantivos son posibles entidades o atributos
- Los verbos son posibles relaciones

¿CÓMO SE HACE?

 Analizando las frases se determina la cardinalidad de las relaciones y otros detalles

Se elabora el diagrama Entidad – Relacion

• Se completa el modelo con listas de atributos y una descripción de otras restricciones que no se pueden reflejar en el diagrama

¿CÓMO SE HACE?

- El modelado de datos no acaba con el uso de esta técnica. Son necesarias otras técnicas para lograr un modelo directamente implementable en una base de datos (modelo relacional).
- DADO LO RUDIMENTARIO DE ESTA TÉCNICA SE NECESITA CIERTO ENTRENAMIENTO Y EXPERIENCIA PARA LOGRAR BUENOS MODELOS DE DATOS

PARA TENER EN CUENTA...

 Para realizar un diagrama Entidad Relación Debemos tener claros los siguientes conceptos

- Entidad
 - Objeto del mundo real
 - Cada entidad tiene una llave
- Conjunto Entidad (Tipo)
 - Colección de entidades similares
- Atributos
 - Valores describiendo propiedades de una entidad
- Relaciones (Conjunto Relación)
 - Conexiones entre dos o más conjuntos entidad
 - Tienen nombres asociados (pueden ser bidireccionales)

ENTIDAD

- Representa una cosa u objeto del mundo real con existencia independiente, es decir, se diferencia de cualquier otro objeto o cosa, incluso siendo del mismo tipo. Ejemplo:
- Una casa: Aunque sea exactamente igual a otra, aùn se diferenciará en su dirección
- Un automóvil: Aunque sean de la misma marca, el mismo modelo, tendrán atributos diferentes como el número del motor
- Persona: ...

ENTIDAD

 Las entidades se representan con un rectángulo, y en su interior el nombre de la entidad:

Entidad

 Los ejemplos más habituales de entidades son: Factura, persona, empleado, casa, salón...

ATRIBUTOS

- Los atributos son las propiedades que describen a cada entidad en un conjunto de entidades.
- Asociados con dominios
- Conectados a conjuntos entidad
- Simples o compuestos
- Llave: atributo especial
- Representados por

Entidades y atributos:

- Conjunto Entidad = rectángulo.
- Atributo = óvalos, conectados con líneas a su conjunto entidad. Atómicos o compuestos (múltiples componentes atómicos).

RELACIÓN

- Una relación conecta dos o más entidades.
- Grado de tipo relación: número de tipos de entidad que participan en ella
- Puede tener atributos propios
- El rol de una entidad en una relación representa su propósito en la relación
- Nombre de relación con significado

Un profesor ofrece una asignatura

• En los extremos de las líneas que parten del rombo se añaden unos números que indican la cantidad de entidades que intervienen en la interrelación: 1, n. Esto también se suele hacer modificando el extremo de las líneas. Si terminan con un extremo involucran a una entidad, si terminan en varios extremos, (generalmente tres), involucrarán a varias entidades:

Tipos de asociaciones:

1-1 = uno a uno **1-n**, 1-m = uno a muchos **m-n** = muchos a muchos

CARDINALIDAD - ASOCIACIONES

Define los atributos numéricos de la relación entre dos entidades o conjuntos de entidades. Las tres relaciones cardinales principales son

Tipos de asociaciones:

- uno a uno
- uno a muchos
- muchos a muchos

En una relación muchos-muchos, una entidad de un conjunto se puede conectar a muchas entidades de otro conjunto.

E.g., un estudiante matricula muchas asignaturas y una asignatura es matriculada por muchos estudiantes.

Muchos a muchos

- Algunas relaciones binarias son muchos -uno (uno-muchos) entre dos entidades.
- Cada entidad del primer conjunto está conectado a lo sumo con una entidad del segundo conjunto.
- Pero, una entidad del segundo conjunto puede estar conectada a cero, uno o muchas entidades del primer conjunto.

- Un computador tiene asignado un solo espacio
- Sin embargo, en un espacio puede haber varios equipos

Muchos a uno

Muchos a uno

- En una relación uno-uno, cada entidad de alguno de los conjuntos entidad está relacionada a lo sumo con una entidad del otro conjunto entidad
- Un equipo tiene a los sumo un estudiante líder y un estudiante líder lidera a lo sumo un equipo

Siempre siempre poner atención a la siguiente:

- Claves (Tardieu et al. 1979): Reglas de entidad
 - Tener existencia propia
 - Instancias de un conjunto entidad distinguibles unas de otras
 - Instancias de un conjunto entidad con iguales propiedades

Siempre siempre poner atención a la siguiente:

- Evita redundancia.
- Uso de entidades débiles limitado.
- No usar un conjunto entidad cuando sea atributo

Siempre siempre poner atención a la siguiente:

- Redundancia = decir lo mismo de dos formas diferentes
- Ahorrar espacio y reducir inconsistencias.
 - Dos representaciones del mismo hecho se vuelven inconsistente si se cambia una y se olvida cambiar la otra.

Probemos si aprendi... Correcto o Incorrecto

• Ejemplo incorrecto

Este diseño define al fabricante de equipos dos veces: como atributo y como una entidad relacionada.

• Ejemplo incorrecto

Se repite dirección del fabricante una vez por cada equipo. Se puede perder la dirección si no hay, temporalmente, equipos de un fabricante.

Ejemplo correcto

Este diseño da la dirección de cada fabricante exactamente una vez.

 La idea es simple, aparentemente, pero a la hora de construir modelos sobre realidades concretas es cuando surgen los problemas. La realidad es siempre compleja. Las entidades tienen muchos atributos diferentes, de los cuales debemos aprender a elegir sólo los que necesitemos. Lo mismo cabe decir de las interrelaciones. Además, no siempre está perfectamente claro qué es un atributo y qué una entidad; o que ventajas obtenemos si tratamos a ciertos atributos como entidades y viceversa.

EJERCICIO M-E-R (Se revisa en clase OJO)

- Nos enfrentamos al siguiente problema que debemos modelar.
- Se trata de una base de datos que debe almacenar la información sobre varias estaciones meteorológicas, en una zona determinada. De cada una de ellas recibiremos y almacenaremos un conjunto de datos cada día: temperatura máxima y mínima, precipitaciones en litros/m2, velocidad del viento máxima y mínima, y humedad máxima y mínima.
- El sistema debe ser capaz de seleccionar, añadir o eliminar estaciones. Para cada una almacenaremos su situación geográfica (latitud y longitud), identificador y altitud.

Ya tenemos la descripción del proceso, así que pasemos al segundo paso:

JUNTOS LLEGAREMOS A LA META

Gracias.