高级机器系统设计架构及运动控制

NI区域应用工程师 _____刘南洋

议程

- · 智能机器设计趋势
- 关键技术
- · 经验证的设计架构
 - FPGA控制
 - 实时序列发生器
- 运动视觉集成

机器制造领域

具有更高**吞吐量**的 机器

更低的能耗, 更高的效率

自动化生产制造

最大化正常运行时间

世界范围的竞争

灵活的生成制造

创新 or 淘汰

更高的质量,容忍零缺陷

智能机器

设计

什么是智能机器(Smart Machine)

自主操作

- 模块化生产设备
- ●高度灵活性
- ●环境意识

避免和纠正处理错误

- •自我分析和自我修复能力
- 动态修改进程计划

学习和预测

- •基于模型控制及自适应控制
- ●模拟

与其他机器和系统交互

- ●互连系统 智能工厂
- 共享的数据结构

现代制造机器

智能机器的设计挑战

- 环境、机器进程和状态等信息
- 不同的任务集成在一个控制器
- 网络和数据存储
- 高性能的控制系统
- ·产品上市时间压力

应用举例:晶圆处理

- •新的挑战:
 - 新材料和更薄的晶圆需要机械切割装置以更低的速度操作
 - 硅片抛光机需要承担越来越高的温度,需要在进程中予以考虑
- · 创新的机器制造商的机会:
 - 利用激光技术实现不同的切割工艺
 - 测量控制回路以监控抛光过程

应对日益增加的复杂性

嵌入式系统

- 异构计算
- 集成多个自动化任务
- 模块化I/O
- 底层自定义

通信

- •时间关键和非时间关键型通信
- 工业协议
- IT集成
- 云计算

以软件为中心的设计方法

应对日益增加的复杂性

合并

软件抽象

异构计算

LabVIEW RIO架构

用于智能机器和智能制造的NI技术

以软件为中心的机器设计

LabVIEW附加模块

LabVIEW工具包和第三方工具

逻辑

控制算法

仿真

运动

机器视觉

工业通信

HMI, SCADA

- 实时
- FPGA
- MathScript RT模块
- 控制设计与 仿真模块
- NI SoftMotion
- 视觉开发模块
- LV DSC模块

- 信号处理工具包
- 声音和振动工具包
- 自适应滤波器工具包
- 数据库连接工具包
- 更多 ...
- 专家控制 ——控制器参数 化工具
- Digimetrix机器人库
- •更多 ...

重要功能

确定性、无人工 干预操作

- 确定性执行
- 无干预系统同步
- 与上位机系统 通信(SCADA 、HMI、PLC)

任务排序

- 状态机/状态 逻辑/序列发生 器
- 过渡/触发/事件处理

安全操作设计

- 看门狗
- 安全状态
- 冗余架构

I/O连接和信号 处理

- 图像处理
- 数据记录/波 形采集和分析

1/0扫描

- I/O扫描
- 报警处理
- 数据记录

运动控制

- 监测控制
- 轨道生成
- 电机控制

与其他自动化 组件集成

• 工业通信

重要功能

确定性、无人工 干预操作

- 确定性执行
- 无干预系统同步
- 与上位机系统 通信(SCADA 、HMI、PLC)

任务排序

- 状态机/状态 逻辑/序列发生 器
- 过渡/触发/事件处理

安全操作设计

- 看门狗
- 安全状态
- 冗余架构

I/O连接和信号 处理

- 图像处理
- 数据记录/波 形采集和分析

I/O扫描

- I/O扫描
- 报警处理
- 数据记录

运动控制

- 监测控制
- 轨道生成
- 电机控制

与其他自动化 组件集成

• 工业通信

设计考虑因素

- •可扩展性
- · 灵活性
- •可维护性
- · 易用性
- •性能
- 开发成本

LabVIEW 项目范例是什么?

- · 应用程序开发的起点,展示可扩展架构的应用
- · 基于LabVIEW项目模板
- · 优势
 - 以预编程的应用程序为基础 ,减少开发时间
 - · 以NI推荐的经验证的架构为 起点,确保设计的可靠性

LabVIEW项目范例

- 控制模板
 - LabVIEW FPGA控制
 - LabVIEW Real-Time控制
 - · LabVIEW Real-Time序列发生器

- · 数据采集模板
 - LabVIEW FPGA波形采集和数据记录
 - LabVIEW Real-Time控制(NI-DAQmx)
 - · LabVIEW Real-Time波形采集和记录(NI-DAQmx)

- · SCADA模板
 - · 借助NI数据记录和监控(DSC)模块实现LabVIEW SCADA

项目范例 - CompactRIO上实现FPGA控制

• 内含功能

- · 基于FPGA的控制(PID)
- 安全状态
- 无干预操作
- · RT-UI通信接口
- 用于查看和配置修改的远程用户界面

确定性执行

- •精确定时
- 更高可靠性
- · 优先级排序
- · 实时操作系统 V.S. FPGA

CompactRIO上进行FPGA控制指南

ni.com/china 20

看门狗定时器

- 使用硬件功能验证软件执行
- · 软件崩溃安全恢复

人体控制器看门狗

安全状态

- 在启动和初始化阶段定义输出状态
- 故障时定义输出状态
- · cRIO故障-安全控制参考设计
 - http://zone.ni.com/devzone/cda/epd/p/id/5984

与上位机系统通信

- 通信方式
 - 确定性和非确定性通信
 - 主从通信和发布-订阅通信
 - 单点和缓冲通信
 - 网络服务

新网络服务体验

- · 为LabVIEW应用程序提供远程接入
- 之前属于生成规范项
- 现在属于项目项-更快速编辑和部署

新网络服务体验

可调试网络服务集成至LabVIEW项目

*调试时保留的VI

新网络服务体验

包含并可自动部署新EXE生成规范类别

确定性执行

- 精确定时
- 更高可靠性
- · 优先级排序
- · 实时操作系统 V.S. FPGA

项目范例 - cRIO上进行LabVIEW实时控制

- 内含功能
 - 确定性执行
 - PID控制
 - 安全状态
 - 错误处理
 - 无干预操作
 - · RT-UI通信接口
 - 用于查看和配置修改的远程用户界面

cRIO上进行LabVIEW实时控制指南

ni.com/china 29

状态机/状态逻辑/序列发生器

- 状态机主要用于控制、排序和协调其他数字子系统的行为
- · 状态图可轻松转化为LabVIEW
- 实现状态机有多种方式

使用实时序列发生器项目范例的原因

- 内含功能
 - · 基于FPGA的控制(PID)
 - 安全状态
 - 无干预操作
 - · RT-UI通信接口
 - 用于查看和配置修改的远程UI
 - 实时序列发生器

项目范例 - LabVIEW 2013实时序列发生器

- · 包含于LabVIEW 2013
- ·UI可允许用户定义和排序步骤
- · 步骤在实时序列发生器引擎内执行
- · FPGA用于硬件I/O和控制

序列发生器引擎

运动控制与机器视觉集成

图形化开发平台—集成运动控制与机器视觉

基于CompactRIO搭建智能机器控制系统

实现运动控制的高确定性分布式同步

实时以太网

NI 9144实时以太网扩展机箱

NI 9144扩展机箱

- 纳秒级确定性
- · 开放的FPGA编程
- 通过普通网线连接
- 通过菊花链扩展到更多机箱

运动控制-机器视觉高度集成

协同集成

● 应用举例: Web Inspection

同步集成

体化水平

• 应用举例: High-speed sorting

视觉引导运动

• 应用举例: Flexible Feeding

视觉伺服控制

视频演示: Ball Balancer Demo

ni.com/china 42

案例: 基于CompactRIO的高精度研磨系统

今天没有讨论的内容

- 无干预系统同步 http://sine.ni.com/nips/cds/view/p/lang/en/nid/210830
- 图像处理
- www.ni.com/vision
- 冗余参考架构
 http://zone.ni.com/devzone/cda/epd/p/id/5997
- · 数据记录
- · 波形采集和分析
- 监测控制
- 轨道生成
- 电机控制
- www.ni.com/motion
- 工业通信

更多资源

- 通用机器控制架构
 - http://www.ni.com/white-paper/6145/en
- ·参考设计(社区)
 - https://decibel.ni.com/content/groups/reference-designs
- ·NI核心产品白皮书和讲义
 - www.ni.com/smartmachines
- 在线教程
 - www.ni.com/smartmachinewebcastseries
- 模板和项目范例
- 随附范例
- · 借助NI系统工程工具,进行概念验证

其他相关演讲

时间	名称
14:30-15:15	基于CompactRIO平台的状态监测应用及案例分析
15:30-16:15	NI RIO 架构为嵌入式应用提供领先的嵌入式开 发平台
15:30-16:15	完整的嵌入式系统解决方案灵活应对复杂项目开发

