отдел п

неопределенный интеграл

§ 1. Простейшие неопределенные интегралы

1°. Понятне неопределенного витегорала. Если функция $\frac{1}{b}(x)$ определена и непрерывна на промежутке (a, b) и F(x)— ее первообразная, т. е. $F^{tt}(x)$ — $\frac{1}{b}(x)$ при a < x < b, то

$$\int i(x) dx = F(x) + C, \quad a < x < b.$$

где С — произвольная постоянная.
2°. О с новиме свойства неопределенного

a)
$$d \left[\int f(x) dx \right] = f(x) dx$$
; 6) $\int d\Phi(x) = \Phi(x) + C$;

a)
$$\int_{0}^{\infty} Af(x) dx = A \int_{0}^{\infty} f(x) dx (A - \text{const}; A \neq 0)$$

c)
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$
.

3°. Таблица простейшах нитегралов:

1.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C \ (n \neq -1).$$

II.
$$\int \frac{dx}{x} = \ln |x| + C \quad (x \neq 0).$$

III.
$$\int \frac{dx}{1+x^2} = \begin{cases} \arctan x + C, \\ -\arctan x + C. \end{cases}$$

IV.
$$\int \frac{dx}{1-x^3} = \frac{1}{2} \ln \left| \frac{1+x}{1-x} \right| + C.$$

V.
$$\int \frac{dx}{\sqrt{1-x^2}} = \begin{cases} \arcsin x + C, \\ -\arccos x + C. \end{cases}$$

VI.
$$\int \frac{dx}{\sqrt{x^2 \pm 1}} = \ln|x + \sqrt{x^2 \pm 1}| + C.$$

VII.
$$\int a^{x}dx = \frac{a^{x}}{\ln a} + C \ (a > 0, \ a \neq 1); \ \int e^{x}dx = e^{x} + C.$$

VIII.
$$\int \sin x dx = -\cos x + C$$
. IX. $\int \cos x dx = \sin x + C$.