Лабораторная работа №2

Традиционные шифры с симметричным ключом

Дугаева Светлана Анатольевна

1 октября 2022

Российский университет дружбы народов, Москва, Россия

Цель работы

Цель данной работы — изучить и программно реализовать шифры перестановки.

Теоретическое введение

Шифры перестановки преобразуют открытый текст в криптограмму путём перестановки его символов. Способ, каким при шифровании переставляются буквы открытого текста, и является ключом шифра. Важным требованием является равенство длин ключа исходного текста.

Выполнение лабораторной работы

Для реализации шифров мы будем использовать Python, так как его синтаксис позволяет быстро реализовать необходимые нам алгоритмы.

Реализация маршрутного шифрования

Код маршрутного шифрования реализуем в виде функции следующего вида:

```
def split text(text, length):
    return [text[i:i+length] for i in range (0, len(text), length)]
def encode(kev. text):
    order = {int(val): num for num, val in enumerate(key)}
    res = ''
    for ind in sorted(order.kevs()):
        for t in split text(text, len(kev)):
            trv:
                res += t[order[ind]]
            except IndexError:
                continue
    return res
print(encode('41253', 'HEYEVERYONEHERE'))
ERHYYEVNEHEEEOR
```

Рис. 1: код1

Реализация шифрования с помощью решеток

Шифрование с помощью решеток реализуем в виде функции следующего вида:

```
def vig(text, kev):
    kev len = len(kev)
    key i = [ord(i) for i in key]
    text i = [ord(i) for i in text]
    res = ''
    for i in range(len(text i)):
        val = (\text{text i}[i] + \text{kev i}[i \% \text{ kev len}]) \% 26
        res += chr(val + 65)
    return res
print(vig('HEYAREYOUSTILLHERE', 'DUCK'))
KYAKUYAYXMVSOFJOUY
```

Рис. 2: код2

Реализация таблицы Виженера

Таблицу Виженера реализуем в виде функций следующего вида:

```
import numpy as np
def resh(text, kev):
    ru_letters = 'абвгдеёжзийклмнопрстуфхцчшщъыьэюя'
    k = 2
    k_2 = [x+1 \text{ for } x \text{ in } range(k*k)]
    matr = [0 \text{ for } x \text{ in } range(2*k)] for y in range(2*k)]
    matr = np.array(matr)
    for x in range(k*k):
         cou = 0
         for x in range(k):
             for v in range(k):
                  matr[x][v] = k 2[cou]
                  cou += 1
        matr = np.rot90(matr)
    d s = \{k: 0 \text{ for } k \text{ in } k 2\}
    d_{ss} = \{1:2, 2:4, 3:3, 4:3\}
    for x in range(k*k):
         for y in range(k*k):
             d s[matr[x][v]] += 1
             if d s[matr[x][v]] != d ss[matr[x][v]]:
```

Реализация таблицы Виженера

Таблицу Виженера реализуем в виде функций следующего вида:

```
cou_p = 0
    text1 = iter(text)
    matr p = [['0'] \text{ for } v \text{ in } range(k*k)] \text{ for } x \text{ in } range(k*k)]
    for d in range(4):
        for x in range(k*k):
             for v in range(k*k):
                 if matr[x][v] == 0:
                      matr_p[x][y] = text[cou_p]
                      coup += 1
         matr = np.rot90(matr. -1)
    key 3 = [ru letters.index(x) for x in key]
    kev sort = sorted(kev 3)
    res = ''
    for i in key_sort:
        for x in range(k*k):
             res += matr p[x][kev 3.index(i)]
    return(res)
print(resh('приветпокаконецс', 'беги'))
```

Выводы

В рамках выполненной лабораторной работы мы изучили и реализовали следующие шифры: маршрутное шифрование, шифрование с помощью решеток, таблицу Виженера.