1-5 数据与数据结构(Ⅱ)

魏恒峰

hfwei@nju.edu.cn

2017年11月27日

温故而知新 一 孔子

Stackable/Queueable Permutations Treesort Algorithm

Queueable Permutations

$$\mathtt{out} = (a_1, \cdots, a_n) \stackrel{Q=\emptyset}{\longleftarrow} \mathtt{in} = (1, \cdots, n)$$

- (a) Show that the permutations given in Excecise 2.12(b) are queueable.
 - (i) (3,1,2)
 - (ii) (4,5,3,7,2,1,6)

- (a) Show that the permutations given in Excecise 2.12(b) are queueable.
 - (i) (3,1,2)
 - (ii) (4,5,3,7,2,1,6)

- (a) Show that the permutations given in Excecise 2.12(b) are queueable.
 - (i) (3, 1, 2)
 - (ii) (4,5,3,7,2,1,6)


```
X = 0 Q = \emptyset in != EOF
```

```
foreach 'a' ∈ out:
    if ('a' == in)
        read(X)
        print(X)
    else if ('a' > in)
        add-Q-till('a')
    else // ('a' < in)
        cycle-Q-till('a')</pre>
```

```
X = 0 Q = \emptyset in != EOF
```

```
foreach 'a' ∈ out:
    if ('a' == in)
        read(X)
        print(X)
    else if ('a' > in)
        add-Q-till('a')
    else // ('a' < in)
        cycle-Q-till('a')</pre>
```

```
add-Q-till('a'):
   while (('x' \in in) != 'a')
      add(X, Q)
   read(X)
   print(X)
```

```
X = 0
             Q = \emptyset
                         in != EOF
```

```
foreach 'a' ∈ out:
  if ('a' == in)
    read(X)
    print(X)
  else if ('a' > in)
    add-Q-till('a')
  else // ('a' < in)
    cycle-Q-till('a')
```

```
add-Q-till('a'):
  while (('x' \in in) != 'a')
    add(X, Q)
  read(X)
  print(X)
```

```
cycle-Q-till('a'):
  while (('x' \in Q) != 'a')
    remove(X, Q)
    add(X, Q)
  remove(X, Q)
  print(X)
```

```
X = 0
             Q = \emptyset
                         in != EOF
```

```
foreach 'a' ∈ out:
  if ('a' == in)
    read(X)
    print(X)
  else if ('a' > in)
    add-Q-till('a')
  else // ('a' < in)
    cycle-Q-till('a')
```

```
add-Q-till('a'):
  while (('x' \in in) != 'a')
    add(X, Q)
  read(X)
  print(X)
```

```
cycle-Q-till('a'):
  while (('x' \in Q) != 'a')
    remove(X, Q)
    add(X, Q)
  remove(X, Q)
  print(X)
```

(b) Prove that every permutation are queueable.

Proof.

```
foreach 'a' \in out:
    if ('a' >= in)
        add-Q-till('a')
    else // ('a' < in)
        cycle-Q-till('a')</pre>
```

(b) Prove that every permutation are queueable.

Proof.

```
foreach 'a' \in out:
   if ('a' >= in)
      add-Q-till('a')
   else // ('a' < in)
      cycle-Q-till('a')</pre>
```

```
foreach 'a' ∈ out:
   if ('a' ∈ in)
      add-Q-till('a')
   else // ('a' ∈ Q)
      cycle-Q-till('a')
```


(b) Prove that every permutation are queueable.

Proof.

```
foreach 'a' ∈ out:
   if ('a' >= in)
      add-Q-till('a')
   else // ('a' < in)
      cycle-Q-till('a')</pre>
```

```
foreach 'a' ∈ out:
   if ('a' ∈ in)
      add-Q-till('a')
   else // ('a' ∈ Q)
      cycle-Q-till('a')
```


Pseudocode

Pseudocode

Pseudocode

"Executable" at an abstract level.

(b) Prove that every permutation are queueable.

An "AHA!" Proof.

```
foreach 'a' ∈ in:
   add(X, Q)

foreach 'a' ∈ out:
   cycle-Q-till('a')
```

(b) Prove that every permutation are queueable.

An "AHA!" Proof.

```
foreach 'a' ∈ in:
  add(X, Q)

foreach 'a' ∈ out:
  cycle-Q-till('a')
```


(c) Prove that every permutation can be obtained by two stacks.

(c) Prove that every permutation can be obtained by two stacks.

(c) Prove that every permutation can be obtained by two stacks.

We can similarly speak of a permutation obtained by two stacks, if we permit the push and pop operations on two stacks S and S'.

(c) Prove that every permutation can be obtained by two stacks.

(c) Prove that every permutation can be obtained by two stacks.


```
foreach 'a' \in in:
    read(X)
    push(X, S')

foreach 'a' \in out:
    if ('a' <= top(S')) // \in S'
        transfer-till(S', S, 'a')
    else // \in S
        transfer-till(S, S', 'a')
```

Extend the algorithm you were asked to design in Exercise 2.13, so that **if** the given permutation cannot be obtained by a stack, the algorithm will print the series of operations on two stacks that will generate it.

Extend the algorithm you were asked to design in Exercise 2.13, so that **if** the given permutation cannot be obtained by a stack, the algorithm will print the series of operations on two stacks that will generate it.

Extend the algorithm you were asked to design in Exercise 2.13, so that **if** the given permutation cannot be obtained by a stack, the algorithm will print the series of operations on two stacks that will generate it.

two-stackable-perm(in, X, S, S')

Extend the algorithm you were asked to design in Exercise 2.13, so that **if** the given permutation cannot be obtained by a stack, the algorithm will print the series of operations on two stacks that will generate it.

two-stackable-perm(in, X, S, S')

```
if (! stackable-perm(in, X, S))
  two-stackable-perm(in, X, S, S')
```

Extend the algorithm you were asked to design in Exercise 2.13, so that **if** the given permutation cannot be obtained by a stack, the algorithm will print the series of operations on two stacks that will generate it.

two-stackable-perm(in, X, S, S')

```
if (! stackable-perm(in, X, S))
  two-stackable-perm(in, X, S, S')
```

Embedding "transfer" into "stackable-perm".

Extend the algorithm you were asked to design in Exercise 2.13, so that **if** the given permutation cannot be obtained by a stack, the algorithm will print the series of operations on two stacks that will generate it.

Extend the algorithm you were asked to design in Exercise 2.13, so that **if** the given permutation cannot be obtained by a stack, the algorithm will print the series of operations on two stacks that will generate it.

transfer-till(S, S', top(S) == 'a')

DH 2.15: Algorithm for Queueable Permutations

Extend the algorithm you were asked to design in Exercise 2.13, so that **if** the given permutation cannot be obtained by a stack, the algorithm will print the series of operations on two stacks that will generate it.

transfer-till(S, S', top(S) == 'a') transfer-till(S', S, S' == \emptyset)

Step 4: Looking Back!

321

321

A permutation (a_1, \cdots, a_n) is queueable \iff it is not the case that

$$321\text{-Pattern}: \boxed{\mathsf{out} = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_i > a_j > a_k}$$

A permutation (a_1, \dots, a_n) is queueable \iff it is not the case that

$$321\text{-Pattern}: \boxed{\textit{out} = \cdots a_i \cdots a_j \cdots a_k : i < j < k \land a_i > a_j > a_k}$$

Proof.

Left as an exercise.

The number of queueable permutations of $[1 \cdots n]$ is $\binom{2n}{n} - \binom{2n}{n-1}$.

The number of queueable permutations of $[1 \cdots n]$ is $\binom{2n}{n} - \binom{2n}{n-1}$.

The number of queueable permutations of $[1 \cdots n]$ is $\binom{2n}{n} - \binom{2n}{n-1}$.

The number of queueable permutations of $[1\cdots n]$ is $\binom{2n}{n}-\binom{2n}{n-1}$.

Proof.

Left for your research.

The number of queueable permutations of $[1 \cdots n]$ is $\binom{2n}{n} - \binom{2n}{n-1}$.

Proof.

Left for your research.

Cha	pter 2—Information Structures	232
2.1.	Introduction	232
2.2.	Linear Lists	238
	2.2.1. Stacks, Queues, and Deques	238
	2.2.2. Sequential Allocation	244
	2.2.3. Linked Allocation	254
	2.2.4. Circular Lists	273
	2.2.5. Doubly Linked Lists	280
	2.2.6. Arrays and Orthogonal Lists	298
2.3.		308
2.0.	2.3.1. Traversing Binary Trees	318
	2.3.2. Binary Tree Representation of Trees	334
	2.3.3. Other Representations of Trees	348
	2.3.4. Basic Mathematical Properties of Trees	362
	•	363
	2.3.4.1. Free trees	
	2.3.4.2. Oriented trees	372
	*2.3.4.3. The "infinity lemma"	382
	*2.3.4.4. Enumeration of trees	386
	2.3.4.5. Path length	399
	*2.3.4.6. History and bibliography	406
	2.3.5. Lists and Garbage Collection	408
2.4.	Multilinked Structures	424
2.5.	Dynamic Storage Allocation	435
2.6.	History and Bibliography	457

THE CLASSIC WORK NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 1 Fundamental Algorithms Third Edition

DONALD E. KNUTH

THE CLASSIC WORK NEWLY UPDATED AND REVISED

The Art of Computer Programming

VOLUME 1 Fundamental Algorithms Third Edition

DONALD E. KNUTH

Thank You!