Respuestas Práctica 2: Probabilidades

PARTE I: Conjuntos y Conteo

2.

- a. $A \cap \overline{(B \cup C)}$
- b. $(A \cap C) \cap \overline{B}$
- c. $A \cup B \cup C$
- d. $(A \cap B) \cup (A \cap C) \cup (B \cap C)$
- e. $A \cap B \cap C$
- f. $\overline{(A \cap B) \cup (A \cap C) \cup (B \cap C)}$
- g. $\overline{A \cap B \cap C}$
- h. $[(A \cap B) \cup (A \cap C) \cup (B \cap C)] \cap \overline{(A \cap B \cap C)}$

3.

- a. E
- b. $E \cap F$
- c. $F \cup (E \cap G)$

4.

- a. Si $x\in \overline{B}$ entonces, por definición de complemento, $x\not\in B$. Por hipótesis (recordar que $A\subset B$ significa que si $x\in A\Rightarrow x\in B$, lo cual es lógicamente equivalente a que si $x\not\in B\Rightarrow x\not\in A$), entonces sabemos que $x\not\in A$, es decir, $x\in \overline{A}$.
- b. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

Hay que probar la doble inclusión. Primero se prueba que

$$A \cup (B \cap C) \subset (A \cup B) \cap (A \cup C)$$

Si $x \in A \cup (B \cap C)$, por definición de unión, $x \in A$ ó $x \in (B \cap C)$. Por definición de intersección, $x \in A$ ó $(x \in B \ y \ x \in C)$. Esto significa que puede pasar que $x \in A$ ó $x \notin A$, pero en este último caso, debe cumplirse necesariamente que $(x \in B \ y \ x \in C)$. Por lo tanto, podemos reescribir la expresión anterior como $(x \in A \ ó \ x \in B) \ y \ (x \in A \ ó \ x \in C)$. Por definición de unión, tenemos que $(x \in A \cup B) \ y \ (x \in A \cup C)$. Por definición de intersección, $x \in (A \cup B) \cap (A \cup C)$.

Ahora hay que probar la otra inclusión, $(A \cup B) \cap (A \cup C) \subset A \cup (B \cap C)$

Si $x \in (A \cup B) \cap (A \cup C)$, entonces por definición de intersección $(x \in A \cup B) \ y \ (x \in A \cup C)$ y por definición de unión, $(x \in A \ \acute{o} \ x \in B) \ y \ (x \in A \ \acute{o} \ x \in C)$. Razonando igual que en el caso anterior, esto implica que $x \in A \ \acute{o} \ (x \in B \ y \ x \in C)$. Es decir, por definición de unión e intersección, $x \in A \cup (B \cap C)$.

 $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$

Hay que probar la doble inclusión.

Primero se prueba que $A \cap (B \cup C) \subset (A \cap B) \cup (A \cap C)$

Si $x \in A \cap (B \cup C)$, por definición de intersección, $x \in A$ y $x \in (B \cup C)$.

Por definición de unión, $x \in A$ y $(x \in B \ o \ x \in C)$. Esto significa que $x \in A$ ó $x \notin A$, y además se necesita que o bien $x \in B$ ó $x \in C$. Por lo tanto, podemos reescribir la expresión anterior como

 $(x\in A\ y\ x\in B)\ \acute{o}\ (x\in A\ y\ x\in C)$. Por definición de intersección, tenemos que $(x\in A\cap B)\ \acute{o}\ (x\in A\cap C)$. Por definición de unión, $x\in (A\cap B)\cup (A\cap C)$.

Ahora hay que probar la otra inclusión, $(A \cap B) \cup (A \cap C) \subset A \cap (B \cup C)$ Si $x \in (A \cap B) \cup (A \cap C)$, entonces por definición de unión $(x \in A \cap B)$ ó $(x \in A \cap C)$ y por definición de intersección, $(x \in A \ y \ x \in B)$ ó $(x \in A \ y \ x \in C)$. Razonando igual que en el caso anterior, esto implica que $x \in A$ y se necesita además que o $x \in B$ ó $x \in C$). Es decir, por definición de unión e intersección, $x \in A \cap (B \cup C)$.

- d. Si $x\in C$, por hipótesis sabemos que $x\in A$ y $x\in B$. Entonces, por definición de intersección, $x\in A\cap B$, lo que implica que $C\subset A\cap B$
- $A = (A \cap B) \cup (A \cap \overline{B})$

Hay que probar la doble inclusión. Primero se prueba que

$$A \subset (A \cap B) \cup (A \cap \overline{B})$$

Si $x\in A$, puede pasar que $x\in B$ ó $x\not\in B$. Es decir, puede pasar que $x\in A$ y $x\in B$, o $x\in A$ y $x\not\in B$. Por definición de complemento, $x\in A$ y $x\in B$, o $x\in A$ y $x\in B$. Por definición de intersección, $x\in A\cap B$, o $x\in A\cap \overline{B}$. Por definición de unión, $x\in (A\cap B)\cup (A\cap \overline{B})$.

Ahora se prueba la otra inclusión, $(A \cap B) \cup (A \cap \overline{B}) \subset A$.

Si $x\in (A\cap B)\cup (A\cap \overline{B})$, entonces por definición de unión $x\in A\cap B$, o $x\in A\cap \overline{B}$. Por definición de intersección, $x\in A$ y $x\in B$, o $x\in A$ y $x\in \overline{B}$. De aquí se deduce que $x\in A$, probando la inclusión.

$$A \cup B = A \cup (\overline{A} \cap B)$$

Hay que probar la doble inclusión. Primero se prueba que

$$A \cup B \subset A \cup (\overline{A} \cap B)$$

Si $x \in A \cup B$, entonces por definición de unión $x \in A$ ó $x \in B$. Es decir, si

 $x \not\in A$, necesariamente $x \in B$. Por lo tanto, sabemos que

 $x \in A \ \text{\'o} \ (x \notin A \ y \ x \in B)$. Por definición de complemento,

 $x \in A \ \acute{o} \ (x \in \overline{A} \ y \ x \in B)$. Por definición de intersección,

 $x \in A \ \acute{o} \ (x \in \overline{A} \cap B)$. Por definición de unión, $x \in A \cup (x \in \overline{A} \cap B)$.

Ahora se prueba la inclusión $A \cup (\overline{A} \cap B) \subset A \cup B$

Si $x\in A\cup (x\in \overline{A}\cap B)$, por definición de unión $x\in A$ \acute{o} $(x\in \overline{A}\cap B)$. Por definición de complemento e intersección, $x\in A$ \acute{o} $(x\not\in A\ y\ x\in B)$. De aquí se deduce que $x\in A$ \acute{o} $x\in B$. Por definición de unión, $x\in A\cup B$.

- 5.
- a. $4 \times 3 \times 2 = 24$
- b. Considerando un alfabeto de 26 caracteres, se pueden formar $26\times26\times10\times10\times10\times26\times26=456.976.000 \text{ patentes distintas}.$ Sin repetir ninguna letra ni número, se pueden formar $26\times25\times10\times9\times8\times24\times23=258.336.000$ patentes.
- c. Por simplicidad, suponemos que el orden en que salen los números importa. Es decir, los resultados 1-2-1-1 y 2-1-1-1 se cuentan como dos resultados distintos pese a que están conformados por los mismos números. De esta forma, se tienen $6\times 6\times 6\times 6=6^4=1.296$ casos posibles. Con cifras todas distintas, hay $6\times 5\times 4\times 3=360$ resultados posibles. Con exactamente un 4, hay que tener en cuenta que el 4 puede salir en cualquiera de los 4 lanzamientos y que para los lanzamientos restantes sólo hay 5 resultados posibles (no puede salir otro 4). Por lo tanto, la respuesta es $4\times (5\times 5\times 5)=500$ casos posibles.

Para calcular la cantidad de resultados con al menos un 4, una forma es restarle al total de resultados posibles (1.296) la cantidad de resultados con

ningún 4: $5 \times 5 \times 5 \times 5 = 625$. Por lo tanto, la respuesta es 1.296 - 625 = 671

- d. Si el sistema no distingue entre mayúsculas y minúsculas, hay 26 posibilidades para cada letra: $26 \times 26 \times 26 \times 26 = 456.976$. Si sí distingue, hay 52 posibilidades para cada letra: $52 \times 52 \times 52 \times 52 = 7.311.616$
- 6. Cada saludo es un subconjunto de 2 personas del total de 10 que asisten a la reunión. Por lo tanto, la cantidad de saludos es la cantidad de subconjuntos de 2 elementos que se pueden armar de un total de 10 elementos: $\binom{10}{2} = \frac{10!}{2!(10-2)!} = 45$

7.
$$\binom{8}{3} = \frac{8!}{3!(8-3)!} = 56$$

8. Suponiendo un mazo que incluye 8s y 9s (50 cartas, 12 por palo más 2 comodines),

$$\binom{12}{2} = \frac{12!}{2!(12-)!} = 66$$

9.
$$\binom{52}{13} = \frac{52!}{13!(52-13)!} = 6.35 \times 10^{11}$$

10.
$$\binom{10}{7} = \frac{10!}{7!(10-7)!} = 120$$

- 11. Es una permutación con repetición de 6 elementos conformados por grupos de 3 elementos (los 4s), 2 elementos (los 2s) y un elemento (el 7). Por lo tanto, la cantidad de cifras distintas es: $\frac{6!}{3!2!1!} = 60$
- 12. Es una permutación con repetición de 8 elementos conformados por grupos de 4 elementos (las As), 2 elementos (las Ps) y un elemento (la N y la T). Por lo tanto, la cantidad de palabras distintas es: $\frac{8!}{4!2!1!1!} = 840$

La cantidad de palabras que se puede armar con la T al principio es la misma que si la T está al final, y es igual a la cantidad de palabras que se pueden armar con las otras 7 letras: $\frac{7!}{4!2!1!} = 105$

PARTE II: Probabilidades

13.

a.
$$P(A) = 3/10; P(B) = 2/10; P(A \cup B) = 4/10; P(A \cap B) = 1/10;$$

 $P(\overline{A}) = 7/10; P(\overline{B}) = 8/10; P(A \cup \overline{B}) = 9/10; P(\overline{A} \cap B) = 1/10$

b.
$$P(A) = 5/20; P(B) = 6/20; P(A \cup B) = 8/20; P(A \cap B) = 3/20;$$

 $P(\overline{A}) = 15/20; P(\overline{B}) = 14/20; P(A \cup \overline{B}) = 17/20; P(\overline{A} \cap B) = 3/20$

c. No.

- b. No.
- c. $P(A \cup B) = 0.65$
- d. $P(A \cup C) = 0.90$

15.

- a. P(A)=0,55
- b. P(B)=0,50
- c. P(C)=0,70

16.

- a. $P(A \cap B) = 0.08$
- b. P(A | B) = 0.40
- c. $P(A \cup B) = 0.52$

17.

- a. $P(A \cup B) = 0.85$
- b. $P(A \cap B) = 0$
- c. P(A | B) = 0
- d. $P(B \cup C) = 0.70$
- e. No.
- 18. P(N) = 0,31
- 19. $P(\overline{J}) = 0.5208\widehat{3}$

20.

- a. $S = \{1,2,3,4,5,6\}$
- b.
- i. 1/6
- ii. 1/2
- iii. 1/3

21.

- a. 5/14
- b. 15/56
- c. 15/56
- d. 30/56

22.

a.

23.

a.

v.
$$P(\overline{A}) = 0.35$$

vi.
$$P(A \cup B) = 0.72$$

vii.
$$P(A \cap B) = 0.65$$

24.

25.

a. No son mutuamente excluyentes.

b.

c. No.

d.

i.
$$P(A \cup M) = 0.525$$

ii.
$$P(A \cup \overline{M}) = 0.6$$

iii.
$$P(O \cap M) = 0.15$$

iv.
$$P(M \mid A) = 0.4$$

26.

d.
$$P(\overline{A}) = 0.31638$$

e.
$$P(A \cup B) = 0.71675$$

f.
$$P(A \cap B) = 0.09053$$

27.

- a. 0,05
- b. 0,675
- c. 0,125
- 28. 0,433
- 29. 0,41
- 30. 0,657

31.

- a. 0,08
- b. 0,3125

32.

- a. 0,1575
- b. 0,3249
- c. 0,8425

33.

- a. 0,2523
- b. 0,4128

34.

- a. 0,0118
- b. 0,1528

35. 0,4848

36.

- a. 3/10
- b. 1/5
- c. 17/20

37.

- a. 0,73
- b. 0,1
- c. 0,8
- d. 0,222

38.

- a. 1/6
- b. 24/25
- c. No.

39. Demostraciones

a. Si $A \subset B$, podemos reescribir $B = A \cup (\overline{A} \cap B)$, (hacer el gráfico para convencerse que esto es cierto).

Como $^{Ay(\overline{A} \cap B)}$ son conjuntos disjuntos, entonces:

$$P(B) = P(A) + P(\overline{A} \cap B)$$

Como toda probabilidad es mayor o igual a cero, $P(\overline{A} \cap B) \geq 0$ y de la anterior ecuación se desprende que $P(B) \geq P(A)$

b. Utilizando las definiciones de probabilidad condicional, tenemos que:

$$P(A \mid B) + P(\overline{A} \mid B) = \frac{P(A \cap B)}{P(B)} + \frac{P(\overline{A} \cap B)}{P(B)} = \frac{P(A \cap B) + P(\overline{A} \cap B)}{P(B)}$$

Como ${}^{A} \cap {}^{B} y \ \overline{A} \cap {}^{B}$ son conjuntos disjuntos,

$$\frac{P(A \cap B) + P(\overline{A} \cap B)}{P(B)} = \frac{P((A \cap B) \cup (\overline{A} \cap B))}{P(B)}$$

Aplicando propiedad distributiva (demostración 30. d), tenemos que:

$$\frac{P((A \cap B) \cup (\overline{A} \cap B))}{P(B)} = \frac{P(B \cap (A \cup \overline{A}))}{P(B)}$$

Por definición de complemento y de espacio muestral,

$$\frac{P(B \cap (A \cup \overline{A}))}{P(B)} = \frac{P(B \cap S)}{P(B)} = \frac{P(B)}{P(B)} = 1$$

c. En la Práctica 2 se demostró que $A = (A \cap B) \cup (A \cap \overline{B})$. Entonces:

$$P(A) = P((A \cap B) \cup (A \cap \overline{B}))$$

Como $(A \cap B)$ y $(A \cap \overline{B})$ son conjuntos disjuntos, tenemos que:

$$P(A) = P(A \cap B) \cup (A \cap \overline{B}) = P(A \cap B) + P(A \cap \overline{B})$$

Despejando obtenemos que:

$$P(A \cap \overline{B}) = P(A) - P(A \cap B)$$

d. Hay que probar que $P(\overline{A})P(\overline{B}) = P(\overline{A} \cap \overline{B})$ suponiendo que $P(A)P(B) = P(A \cap B)$

$$P(\overline{A} \cap \overline{B}) = 1 - P(A \cup B) = 1 - [P(A) + P(B) - P(A \cap B)]$$

Como A y B son independientes,

$$P(\overline{A} \cap \overline{B}) = 1 - [P(A) + P(B) - P(A)P(B)] = 1 - P(A) - P(B) + P(A)P(B)$$

Sacando factor común:

$$P(\overline{A} \cap \overline{B}) = 1 - P(A) - P(B)(1 - P(A)) = (1 - P(A))(1 - P(B)) = P(\overline{A})P(\overline{B})$$