Acceptance by NFA

Definition (Acceptance by NFA)

A non-deterministic finite state automaton (NFA) $A=(Q,\Sigma_\epsilon,\delta,q_0,q_f)$, is said to accept a word $w\in\Sigma^*$, where $w=w_1w_2\dots w_n$ if

w can be written as $y_1y_2...y_m$, where each $y_i \in \Sigma_{\epsilon}$ and $m \ge n$ there exists a sequence of states $p_0, p_1, ..., p_m$ s.t.

 $p_0=q_0$,

 $p_m \in F$,

 $p_{i+1} \in \delta(p_i, y_{i+1})$ for all $0 \le i \le m-1$.

An NFA A is said to recognize a language L if $L = \{w \mid A \text{ accepts } w\}$.

Notation: Let A be an NFA/DFA. We use L(A) to denote the language recognized by A.

Power of NFAs

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

We will work it out for an example.

 $\{0, 1, 2\}$

$$\{0,1\}$$

$$\{0,1,2\}$$
 $\{0,1\}$ $\{2\}$

$$\{0, 1\}$$

$$\{0, 1, 2\}$$

$$\{0, 2\}$$

$$\{0,2\}$$

Subset construction

From now on we will not distinguish between Σ and $\Sigma_{\varepsilon}.$

Definition

Let $A=(Q,\Sigma,\delta,q_0,F)$ be an NFA. Let $\hat{\delta}:2^Q\times\Sigma\to 2^Q$ be defined as follows:

Let
$$S \subseteq Q$$

$$\hat{\delta}(S,\epsilon):=S$$
 If A has epsilon transitions, then $\hat{\delta}(S,\epsilon)$ will be defined accordinly

$$\hat{\delta}(S,xa) := \bigcup_{q \in \hat{\delta}(S,x)} \delta(q,a)$$

Definition

An NFA A is said to accept a word $w \in \Sigma^*$ if $\hat{\delta}(\{q_0\}, w) \cap F \neq \emptyset$.

Subset construction

Lemma

Let A be an NFA. Then L(A) is a regular language. That is, NFA and DFA accept the same set of languages.

Proof.

Let $A = (Q, \Sigma, \delta, q_0, F)$. We will construct a DFA $B = (Q', \Sigma, \delta', q'_0, F')$ such that L(A) = L(B).

Subset construction

$$Q'=2^Q$$

$$\delta'(S,a) = \hat{\delta}(S,a)$$
, where $S \subseteq Q$ and $a \in \Sigma$,

$$q_0'=q_0$$
,

$$F' = \{ S \subseteq Q \mid S \cap F \neq \emptyset \}.$$

Correctness

Try to prove it yourself. The definition of $\hat{\delta}$ will be useful here.