1 Koordinatentransformation

Bestimmen Sie allgemeine Formeln für die Geschwindigkeit $\dot{r}(t)$ sowie die Beschleunigung $\ddot{r}(t)$ eines Teilchens in Zylinderkoordinaten ρ, ϕ, z .

Drücken Sie zuerst die Position r(t) mit den Einheitsvektoren e_{ρ} , e_{ϕ} , e_{z} aus bevor Sie nach der Zeit ableiten.

2 Integration

2.1 Wegintegrale von Vektorfeldern

2.1.1 Aufgabe

Berechnen Sie folgende Wegintegrale

$$\begin{array}{ll} f(x,y) = (y,x) & \gamma(t) = (t,t^2) & t \in [0,1] \\ f(x,y) = (x^2,y^2) & \gamma(t) = (2t,4t) & t \in [0,1] \\ f(x,y) = (e^x,e^y) & \gamma(t) = (t,t^2) & t \in [0,1] \\ f(x,y,z) = (x^2+5y+3xy, \quad 5x+3xy-2, \quad 3xy-4z) & \gamma(t) = (-sin(t),cos(t),0) & t \in [0,2\pi] \end{array}$$

2.1.2 Aufgabe

Sei $G \subseteq R^n$ offen und zusammenhängend und $v \in C^1(G, R)$. Zeigen Sie, dass man die Funktion v aus ihrem Gradienten und einem Anfangswert $v(x_0)$ rekonstruieren kann.

$$v(x) = v(x_0) + \int grad v(y) dy$$

Dabei bezeichne γ eine stückweise stetig differenzierbare und ganz in G verlaufende Kurve mit Anfangspunkt $x_0 \in G$ und Endpunkt $x \in G$.

2.2 Oberflächenintegrale von Skalarfeldern

2.2.1 Aufgabe

Berechnen Sie das Integral der Funktion $f:R^3\to R,\quad f(x,y,z)=z$ über die Hälfte $z\ge 0$ einer Vollkugel vom Radius R>0

2.3 Oberflächenintegrale von Vektorfeldern

2.3.1 Aufgabe

Berechnen Sie den Fluss des Vektorfeldes $f: \mathbb{R}^3 \to \mathbb{R}^3$

$$f(x, y, z) = (0, 0, z)$$

durch die obere Hälfte $S^+ \mathrm{der}$ Kugeloberfläche

$$S^+ = \{(x, y, z) \in R^3 | x^2 + y^2 + z^2 = 1, z > 0\}$$

2.3.2 Aufgabe

Integrieren Sie folgendes Vektorfeld über die Oberfläche der im Ursprung des \mathbb{R}^3 zentrierten Kugel vom Radius $\mathbb{R}>0$:

$$A(x) = g(|x|)\frac{x}{|x|} \qquad A: R^3 \to R^3$$

Finden Sie ein Potentail $\Phi: R^3 \to R$ $A = -\nabla \Phi$ zu dem das Vektorfeld gehört.

2.3.3 Aufgabe

Integrieren Sie das Vektorfeld:

$$B(x, y, z) = (y^2, x^2, z)$$

über die Oberfläche des Ellipsoides:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$
 $a, b, c > 0$

2.3.4 Aufgabe

Integrieren Sie die folgenden Vektorfelder über die Oberfläche der im Ursprung des \mathbb{R}^3 zentrierten Kugel vom Radius 1

$$A(x, y, z) = (1 - x^{2}, 0, 2x^{2}z - x)$$

$$B(x, y, z) = (x + z, -y - z, x + y)$$

2.4 Volumenintegrale von Skalarfeldern

2.4.1 Aufgabe

Berechnen Sie den Flächeinhalt einer Ellipse mit Halbachsen a, b > 0.

2.4.2 Aufgabe

Berechnen Sie die folgenden Integrale:

$$J_1 = \int_{\Lambda} (x^6 y^2 - x^7 y^3) dx dy$$

$$J_2 = \int_{\Lambda} (x^6 y^2 - x^7 y^3) dy dx$$

mit $\Lambda = [0,1] \times [0,1]$. Begründen Sie das Ergebnis.

2.4.3 Aufgabe

Berechnen Sie das Volumen eines Ellipsoides mit Halbachse a,b,c>0

2.4.4 Aufgabe

Berechnen Sie das Volumen des Körpers, der durch einen Kreiszylinder mit Radius R aus einer Vollkugel vom Radius 2R ausgeschnitten wird, wenn das Kugelzentrum auf der Zylinderachse liegt

2.4.5 Aufgabe

Sei D das Dreieck mit dem Ecken (0,0), (1,0), (1,1). Berechnen Sie:

$$\int \frac{\sin x}{x} \, dx dy$$

2.4.6 Aufgabe

Sei $B_{R(0)}$ die Vollkugel vom Radius R>0 um den Ursprung im R^3 . Zeigen Sie, dass das folgende uneigentliche Integral existiert und berechnen Sie seinen Wert:

$$\int_{B_R(0)} \frac{1}{|x|} d^3x$$

2.5 Volumenintegrale von Vektorfeldern

2.5.1 Aufgabe

Bestimmen Sie den Schwerpunkt

$$S = \frac{1}{|K|} \int_K dx dy dz (x, y, z)$$

des Kugeloktanten K. (dabei bezeichnet |K| das Volumen von K)

$$K = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 + z^2 \le 1, \quad x, y, z \ge 0\}$$