Группа Н4

Вариант №1

Задача 1. Реализовать функцию

$$f11(x,y,z) = \sqrt{\frac{\cos y - x^6}{42y - z^7}} - \sqrt{\ln y + z^8} - \frac{\frac{z^7}{92} + 26x^4}{e^x + 37y^6 + 17}.$$

Примеры вычисления f11:

- 1. f11(42,58,26) = -4.57e+05
- 2. f11(52,98,28) = -6.15e+05

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([2007, 2009, 1963, 1967, 1986]) = 10
- 2. f21([1981, 1995, 2009, 1970, 1968]) = 7

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = 52\sum_{i=1}^{n} \sum_{j=1}^{m} (94j^5 - 57j^4) - \sum_{i=1}^{n} \sum_{j=1}^{m} (81j^3 + j^6).$$

Примеры вычисления f13:

- 1. f13(42,13) = 1.94e+11
- 2. f13(75,28) = 3.17e+13

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.dash()	0
o.dash()	1
o.copy()	2
o.dash()	4
o.dash()	6
o.dash()	9
o.dash()	1
o.dash()	3
o.dash()	9
o.dash()	1
o.copy()	2
o.dash()	4
o.copy()	5
o.dash()	8

o = C32()	
o.dash()	0
o.dash()	1
o.dash()	3
o.dash()	9
o.copy()	${\tt RuntimeError}$
o.dash()	1
o.copy()	2
o.copy()	${\tt RuntimeError}$
o.dash()	4
o.copy()	5
o.copy()	7
o.dash()	9
o.dash()	1
o.copy()	2
o.dash()	4
o.dash()	6

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = 10\sum_{i=1}^{n} \sum_{j=1}^{m} (\sin j + \ln j) - \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (j - 34j^{2} + 90)}{55}.$$

Примеры вычисления f13:

- 1. f13(100,16) = 1.22e+05
- 2. f13(63,22) = 1.77e+05

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()o.walk() 0 o.cast() 1 o.walk() 4 o.carve() 5 o.walk() 0 o.cast() 1 o.cast() 3 o.carve() 6 o.cast() RuntimeError o.walk() 7 o.walk() 8 o.carve() 2

o = C32()	
o.carve()	${\tt RuntimeError}$
o.walk()	0
o.walk()	RuntimeError
o.cast()	1
o.walk()	4
o.cast()	3
o.carve()	6
o.cast()	${\tt RuntimeError}$
o.walk()	7
o.carve()	${\tt RuntimeError}$
o.walk()	8
o.cast()	1
o.carve()	5
o.walk()	0
o.carve()	2

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = 55 \sum_{i=1}^{n} \sum_{j=1}^{m} (57i^7 + i^5) + 60 \sum_{i=1}^{n} (i^2 + |i| - 90)$$
.

Примеры вычисления f13:

- 1. f13(76,19) = 8.73e+18
- 2. f13(25,43) = 3.00e+15

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([1983, 'roff', 'asn.1', 'scaml']) = 2
- 2. f21([1983, 'roff', 'golo', 'scaml']) = 8

Задача 1. Реализовать функцию

$$f11(x,y,z) = \sqrt{\frac{57z^7 + 5z^5 + 34}{66x^6 + \lg z}} - \frac{y^3 + 77z^2}{z^6 + x - 46} - \left(18z^3 - \frac{y^7}{67}\right) \,.$$

Примеры вычисления f11:

- 1. f11(11,-5,96) = -1.59e+07
- 2. f11(77, -88, 54) = -6.10e+11

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

- 1. f22(0x6dce2d8c) = 0x16c66dce
- 2. f22(0xf4ab4d98) = 0xa6cc74ab

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = 44 \sum_{i=1}^{n} \left(\frac{i^8}{8} + i^2\right) + 2 \sum_{i=1}^{n} \sum_{j=1}^{m} \left(33j^6 + 36j^8\right).$$

Примеры вычисления f13:

- 1. f13(36,36) = 3.31e+16
- 2. f13(17,10) = 3.01e+11

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

- 1. f22(0x39cf9ea4) = 0x73dce6a4
- 2. f22(0xc6dfe705) = 0xfce36f05

Задача 1. Реализовать итерационную функцию

$$f13(n) = \sum_{i=1}^{n} (78i^3 - 12i^8) - 77 \sum_{i=1}^{n} (i^4 - 9i^8).$$

Примеры вычисления f13:

- 1. f13(53) = 2.71e+17
- 2. f13(98) = 6.60e+19

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([2013, 2009, 2008, 'io']) = 9
- 2. f21([1958, 2009, 1968, 'haxe']) = 0

Задача 1. Реализовать функцию

$$f11(x,y) = \sqrt{\operatorname{tg} y + x^3 + 15} - (e^y - \ln y - 27) + y^8 + \frac{y^5}{96}.$$

Примеры вычисления f11:

- 1. f11(71,14) = 1.47e+09
- 2. f11(37,37) = -1.17e+16

Задача 2. Реализовать функцию-дерево решений:

- 1. f21(['dart', 'flux', 'ncl', 'mql4']) = 5
- 2. f21(['hyphy', 'flux', 'scala', 'xs']) = 6

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} \cos(x^8) + x^6, & x < 21\\ e^{\lg x + \sin x} - x^2, & 21 \le x < 93\\ 62 \left(e^x + \ln x\right)^8 + 23x^3, & x \ge 93 \end{cases}$$

Примеры вычисления f12:

- 1. f12(54) = -2.91e+03
- 2. f12(44) = -1.93e+03

Задача 2. Реализовать функцию-дерево решений:

- 1. f21(['zimpl', 'asp', 'ox', 'sage', 2012]) = 13
- 2. f21(['dylan', 'perl6', 'ox', 'sage', 2012]) = 12

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = 83\sum_{i=1}^{n} \sum_{j=1}^{m} (74j^5 + \ln j) - \sum_{i=1}^{n} \sum_{j=1}^{m} (j^3 + \cos i - 69).$$

Примеры вычисления f13:

- 1. f13(19,86) = 8.15e+15
- 2. f13(78,38) = 2.60e+14

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([1995, 'golo', 1971, 'scaml', 'arc']) = 10
- 2. f21([1990, 'ox', 1971, 'ragel', 'arc']) = 1

Задача 1. Реализовать функцию

$$f11(x,y) = \cos(|y|) + 79y^5 - 51 + \sqrt{x^2 + 5y^7} - \left(y^7 + \frac{y}{73} + 20\right).$$

Примеры вычисления f11:

- 1. f11(-8,92) = -5.53e+13
- 2. f11(-39,86) = -3.44e+13

Задача 2. Реализовать функцию-транскодер из формата

в формат

В решении необходимо использовать побитовые операции.

- 1. f22(0xab07e4eb) = 0xacebc0fc
- 2. f22(0x8db7e1cd) = 0x89cd6efc

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = 57 \sum_{i=1}^{n} \sum_{j=1}^{m} (19j^2 + 3i^5) + 36 \sum_{i=1}^{n} \sum_{j=1}^{m} (i^3 - j^6).$$

Примеры вычисления f13:

- 1. f13(37,48) = -1.16e+14
- 2. f13(28,43) = -4.17e+13

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([1982, 1969, 'abap', 'diff']) = 13
- 2. f21([1982, 1981, 'self', 'ini']) = 8

Задача 1. Реализовать рекуррентную функцию

$$\begin{split} f14(0) &= 6\,,\\ f14(n) &= \frac{1}{42} f14(n-1)^2 + \sin(f14(n-1))\,. \end{split}$$

Примеры вычисления f14:

- 1. f14(5) = 4.99e-01
- 2. f14(9) = 4.48e-01

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

- 1. f22(0xe8887df4) = 0xd1fdf410
- 2. f22(0x59b25434) = 0xb3543464

Задача 1. Реализовать рекуррентную функцию

$$f14(0) = 7$$
,
 $f14(n) = \frac{1}{53}f14(n-1) + \frac{1}{82}f14(n-1)^2$.

Примеры вычисления f14:

- 1. f14(15) = 7.88e-25
- 2. f14(10) = 3.30e-16

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.rig()	0
o.view()	1
o.view()	2
o.view()	3
o.rig()	5
o.rig()	5
o.rig()	5
o.view()	4
o.view()	7
o.view()	1
o.view()	2
o.view()	3
o.view()	4
o.rig()	6
o.rig()	8
o.view()	11

o = C32()	
o.rig()	0
o.view()	1
o.view()	2
o.view()	3
o.view()	4
o.rig()	6
o.rig()	8
o.rig()	10
o.view()	2
o.view()	3
o.rig()	5
o.view()	4
o.view()	7
o.view()	1
o.view()	2

Задача 1. Реализовать функцию

$$f11(x) = \sqrt{\frac{x^8 - 48x^2}{75x^6 - \sin x}} + \frac{|x| + \frac{x^6}{19}}{49x^5 + 30x^8} - \frac{\cos x + \ln x}{49x^5 - \ln x}.$$

Примеры вычисления f11:

- 1. f11(48) = 5.54e+00
- 2. f11(96) = 1.11e+01

Задача 2. Реализовать функцию-дерево решений:

- 1. f21(['tcl', 'gams', 'lex', 1960, 'lua']) = 3
- 2. f21(['xbase', 'slash', 'lex', 1989, 'nit']) = 0

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} \cos(x^7) + \frac{x^4}{91} + 70, & x < -30\\ \frac{\left(58x^2 + x^8 + 87\right)^8}{50} - 74x, & -30 \le x < 45\\ x^2 + \frac{x^5}{15} - 79, & 45 \le x < 82\\ \sin(\frac{x^3}{69} - |x| - 23) - x^2 - 84, & 82 \le x < 153\\ x^7 + x^3, & x \ge 153 \end{cases}$$

Примеры вычисления f12:

- 1. f12(-43) = 3.76e+04
- 2. f12(5) = 1.12e+43

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.place()	1
o.place()	1
o.place()	1
<pre>o.place()</pre>	1
o.color()	0
<pre>o.place()</pre>	2
o.color()	4
<pre>o.place()</pre>	5
o.color()	7
<pre>o.place()</pre>	10
<pre>o.place()</pre>	5
o.color()	7
o.color()	9
<pre>o.place()</pre>	11

o = C32()	
<pre>o.place()</pre>	1
<pre>o.place()</pre>	1
o.color()	0
<pre>o.place()</pre>	2
o.color()	4
<pre>o.place()</pre>	5
o.color()	7
<pre>o.place()</pre>	10
<pre>o.place()</pre>	5
o.color()	7
o.color()	9
<pre>o.place()</pre>	11

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} x^8 - 8x^5 + 91, & x < 97\\ 89x^2 - e^x, & 97 \le x < 185\\ e^{e^x + x^5 + 80} + x^5, & 185 \le x < 200\\ \sin(91x^2 + x^8) - \frac{x^8}{81}, & x \ge 200 \end{cases}$$

Примеры вычисления f12:

- 1. f12(229) = -9.34e+16
- 2. f12(141) = -1.72e+61

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

- 1. f22(0xbe64e2a3) = 0x74e2a3cd
- 2. f22(0x5afe0725) = 0xbe07255e

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (93j^5 + |j|)}{90} + 17 \sum_{i=1}^{n} \left(9i^7 - \frac{i^6}{29}\right).$$

Примеры вычисления f13:

- 1. f13(43,20) = 2.45e+14
- 2. f13(42,21) = 2.03e+14

Задача 2. Реализовать функцию-транскодер из формата

31	25	24 13	12 0		
	C	В	A		
вф	в формат				
31	25	24	12 11 0		
	C	A	В		

В решении необходимо использовать побитовые операции.

- 1. f22(0xe134df22) = 0xe1f229a6
- 2. f22(0xc79cdea4) = 0xc7ea4ce6

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = \sum_{i=1}^{n} \sum_{j=1}^{m} \left(99j^3 - \frac{j}{15} - 30\right) - 81 \sum_{i=1}^{n} \sum_{j=1}^{m} \left(\operatorname{tg} i + e^j - 1\right).$$

Примеры вычисления f13:

- 1. f13(72,99) = -9.12e+46
- 2. f13(95,11) = -6.88e+08

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.scan()	1
o.coat()	3
o.edit()	5
o.coat()	0
o.coat()	2
o.coat()	3
o.scan()	6
<pre>o.edit()</pre>	9
o.coat()	3
o.coat()	4
o.scan()	7
o.coat()	8
o.edit()	9
o.coat()	3

o = C32()	
o.edit()	RuntimeError
o.coat()	0
o.coat()	2
o.coat()	3
o.coat()	4
o.edit()	RuntimeError
o.scan()	7
o.coat()	8
o.edit()	9
o.coat()	3
o.edit()	5
o.scan()	1
o.coat()	3
o.scan()	6
o.edit()	9
o.coat()	3

Задача 1. Реализовать рекуррентную функцию

$$\begin{split} f14(0) &= 4\,,\\ f14(n) &= \cos(f14(n-1)) - \frac{1}{14}f14(n-1)^2\,. \end{split}$$

Примеры вычисления f14:

- 1. f14(8) = 6.73e-01
- 2. f14(15) = 7.23e-01

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.sit()	RuntimeError
o.stop()	0
o.sit()	RuntimeError
o.amble()	1
o.stop()	4
o.stop()	0
o.amble()	1
o.sit()	3
o.sit()	7
o.sit()	8
o.amble()	9
o.stop()	11
o.amble()	2
o.amble()	6
o.stop()	5
o.sit()	7
o.sit()	8
o.sit()	10

o = C32()	
o.stop()	0
o.amble()	1
o.amble()	2
o.amble()	6
o.stop()	5
o.sit()	7
o.stop()	RuntimeError
o.sit()	8
o.stop()	RuntimeError
o.amble()	9
o.stop()	11
o.sit()	3
o.stop()	RuntimeError
o.sit()	7
o.sit()	8
o.sit()	10
o.amble()	1
o.stop()	4
o.stop()	0

Задача 1. Реализовать функцию

$$f11(x,y,z) = 90z - 98x^5 - \sqrt{\frac{x^5 - \cos z}{8y^4 + e^z}} - \sqrt{\frac{44y^8 - 44x}{34z - 7x^2}}.$$

Примеры вычисления f11:

- 1. f11(8,67,78) = -6.05e+06
- 2. f11(12,6,99) = -2.44e+07

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([1982, 'jsx', 'roff', 'grace', 1980]) = 4
- 2. f21([1960, 'sage', 'roff', 'grace', 1980]) = 3

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} \ln(67x^7) + \frac{x^2}{57}, & x < -10\\ \frac{x^8}{52} + 38x + 28, & -10 \le x < 64\\ 34x^7 + \sin x, & 64 \le x < 79\\ 84x^7 - x - 46, & x \ge 79 \end{cases}$$

Примеры вычисления f12:

- 1. f12(110) = 1.64e+16
- 2. f12(20) = 4.92e+08

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.edit()	1
o.edit()	9
o.run()	2
o.start()	4
o.run()	3
o.run()	6
o.run()	7
o.run()	8
o.edit()	9
o.start()	${\tt RuntimeError}$
o.run()	2
o.edit()	5
o.run()	7

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} 69x^3 - 73x^7, & x < -16\\ \sin(39x^3) + x^7 - 86, & -16 \le x < -4\\ 28x^7 - x^6 + 16, & -4 \le x < 6\\ x^4 + 5x, & 6 \le x < 38\\ \cos(14x^4) + 41x^6, & x \ge 38 \end{cases}$$

Примеры вычисления f12:

- 1. f12(-32) = 2.51e+12
- 2. f12(73) = 6.20e+12

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

- 1. f22(0x6dd4af63) = 0x752bd8db
- 2. f22(0x4e080669) = 0x82019a53

Задача 1. Реализовать итерационную функцию

$$f13(n) = 67 \sum_{i=1}^{n} (i^7 - \ln i) - \sum_{i=1}^{n} (\operatorname{tg} i - \frac{i^7}{54})$$
.

Примеры вычисления f13:

- 1. f13(69) = 4.56e+15
- 2. f13(34) = 1.68e+13

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

- 1. f22(0xd06e037d) = 0x76e022fc
- 2. f22(0x684eb536) = 0x9ceb426a

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} \frac{x^7}{98} - 80x^2, & x < -48\\ (|x| - 56x^6 + 59)^3 + x^6, & -48 \le x < 15\\ 68x^4 - \frac{x^2}{79} - 18, & 15 \le x < 63\\ 34x - 34x^7 + 1, & x \ge 63 \end{cases}$$

Примеры вычисления f12:

- 1. f12(9) = -2.64e+22
- 2. f12(30) = 5.51e+07

Задача 2. Реализовать функцию-дерево решений:

- 1. f21(['nsis', 'hyphy', 1994, 'bison']) = 3
- 2. f21(['ecl', 'haxe', 1994, 'bison']) = 4

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = \sum_{i=1}^{n} \left(88i^3 + \frac{i^8}{40}\right) + \sum_{i=1}^{n} \sum_{j=1}^{m} \left(77i + j^4\right).$$

Примеры вычисления f13:

- 1. f13(76,77) = 2.49e+14
- 2. f13(65,47) = 6.16e+13

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.sit()	0
o.spin()	1
o.hurry()	2
o.sit()	4
o.spin()	1
o.hurry()	2
o.spin()	RuntimeError
<pre>o.spin() o.hurry()</pre>	RuntimeError
o.hurry()	3
<pre>o.hurry() o.spin()</pre>	3
<pre>o.hurry() o.spin() o.sit()</pre>	3 6 5

o = C32()	
o.sit()	0
o.spin()	1
o.hurry()	2
o.sit()	4
o.spin()	1
o.hurry()	2
o.hurry()	3
o.spin()	6
o.sit()	5
o.spin()	8
o.spin()	8
o.sit()	RuntimeError
o.spin()	8

Задача 1. Реализовать рекуррентную функцию

$$\begin{split} &f14(0)=10\,,\\ &f14(1)=3\,,\\ &f14(n)=\cos(f14(n-2))+\sin(f14(n-2))+50\,. \end{split}$$

Примеры вычисления f14:

- 1. f14(16) = 5.13e+01
- 2. f14(7) = 5.01e+01

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.sit()	0
o.tail()	2
o.punch()	1
o.sit()	RuntimeError
o.punch()	4
o.punch()	5
o.sit()	7
o.tail()	8
o.tail()	RuntimeError
o.punch()	4
o.punch()	5
o.punch()	6
o.tail()	9

o = C32()	
o.sit()	0
<pre>o.tail()</pre>	2
o.punch()	1
o.punch()	4
o.punch()	5
o.tail()	8
- +1/1	D +
o.tail()	RuntimeError
o.taii() o.punch()	RuntimeError 4
o.punch()	4
<pre>o.punch() o.tail()</pre>	4 RuntimeError
<pre>o.punch() o.tail() o.punch()</pre>	4 RuntimeError 5
<pre>o.punch() o.tail() o.punch() o.sit()</pre>	4 RuntimeError 5

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} |\ln(\ln x + \lg x)| - \cos x, & x < 111 \\ 91x^6 - \cos x + 78, & 111 \le x < 125 \\ \lg(x^4) - 10x^7, & x \ge 125 \end{cases}$$

Примеры вычисления f12:

- 1. f12(92) = 2.38e+00
- 2. f12(89) = 1.31e+00

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

Примеры вычисления функции-транскодера f22:

- 1. f22(0x4ef5f58b) = 0x173bd6bb
- 2. f22(0x1eaa1139) = 0x727aa882

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} \sin(\frac{x^7}{82} + \cos x) - 71x^4, & x < 66\\ 13x^5 - 94x^6, & 66 \le x < 86\\ \left(x^3 + \frac{x^8}{89} - 24\right)^3 + x^2, & 86 \le x < 150\\ \cos(\sin(x^2)) + \frac{x^4}{23}, & x \ge 150 \end{cases}$$

Примеры вычисления f12:

- 1. f12(110) = 1.40e+43
- 2. f12(76) = -1.81e+13

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

Примеры вычисления функции-транскодера f22:

- 1. f22(0xc0f02c11) = 0x81e06c11
- 2. f22(0x876de892) = 0x0edbe892

Задача 1. Реализовать рекуррентную функцию

$$\begin{split} &f14(0)=7\,,\\ &f14(1)=6\,,\\ &f14(n)=\mathsf{tg}(f14(n-2))+\cos(f14(n-1))-79\,. \end{split}$$

Примеры вычисления f14:

- 1. f14(5) = -7.97e+01
- 2. f14(2) = -7.72e+01

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([2013, 1980, 'kit', 1978, 1992]) = 9
- 2. f21([1995, 1963, 'abap', 2020, 1985]) = 2

Задача 1. Реализовать рекуррентную функцию

$$f14(0) = 3$$
,
 $f14(n) = \frac{1}{23}f14(n-1) - \cos(f14(n-1))$.

Примеры вычисления f14:

- 1. f14(14) = -7.57e-01
- 2. f14(5) = -8.36e-01

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([2012, 1968, 1981, 1975]) = 9
- 2. f21([2012, 2007, 1981, 1969]) = 3

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = 3\sum_{i=1}^{n} (i^4 + \ln i + 35) + \frac{\sum_{i=1}^{n} \sum_{j=1}^{m} (i^5 + 88j^4)}{89}.$$

Примеры вычисления f13:

- 1. f13(65,15) = 2.95e+09
- 2. f13(54,90) = 6.95e+10

Задача 2. Реализовать функцию-транскодер из формата

В решении необходимо использовать побитовые операции.

Примеры вычисления функции-транскодера f22:

- 1. f22(0x15729884) = 0x57298841
- 2. f22(0x65600e49) = 0x5600e398

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = \sum_{i=1}^{n} (i^4 + \ln i) - \sum_{i=1}^{n} \sum_{j=1}^{m} (\sin i + 97j^8).$$

Примеры вычисления f13:

- 1. f13(66,46) = -7.22e+17
- 2. f13(38,21) = -3.99e+14

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([1964, 'txl', 2014, 1986, 'nit']) = 0
- 2. f21([1964, 'txl', 1961, 1986, 'diff']) = 9

Задача 1. Реализовать функцию

$$f11(x) = \frac{87x^2 + 68x^4}{e^{17x^5} + 6x^4} - \sqrt{42x^4 + x^5 + 83} + \frac{e^x + 71x^6 + 55}{\operatorname{tg} x + x - 71}.$$

Примеры вычисления f11:

- 1. f11(-34) = -1.05e+09
- 2. f11(-14) = -5.80e+06

Задача 2. Реализовать функцию-дерево решений:

- 1. f21([2014, 'dart', 'jflex', 'golo']) = 10
- 2. f21([1988, 'dart', 'jflex', 'rexx']) = 1

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} \sin(|x| - 18x^7 - 92) - x^6, & x < 57 \\ x^2 - 50x, & 57 \le x < 121 \\ 59x - e^x, & 121 \le x < 212 \\ 33x^3 - \cos x, & 212 \le x < 259 \\ |\sin x - |x|| - x, & x \ge 259 \end{cases}$$

Примеры вычисления f12:

- 1. f12(227) = 3.86e+08
- 2. f12(162) = -2.27e+70

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.lower()	0
<pre>o.paint()</pre>	1
<pre>o.paint()</pre>	2
<pre>o.paint()</pre>	4
o.lower()	7
o.lower()	3
o.lower()	RuntimeError
<pre>o.lower() o.paint()</pre>	RuntimeError 8
o.paint()	8
<pre>o.paint() o.lower()</pre>	8
<pre>o.paint() o.lower() o.paint()</pre>	8 0 1

o = C32()		
o.lower()		0
<pre>o.paint()</pre>	:	1
<pre>o.paint()</pre>		2
<pre>o.paint()</pre>	•	4
o.lower()		7
<pre>o.paint()</pre>		2
<pre>o.paint()</pre>	•	4
<pre>o.paint()</pre>		6
o.lower()		RuntimeError
<pre>o.paint()</pre>	;	8
o.lower()		0
<pre>o.paint()</pre>	;	1
o.lower()		3

Задача 1. Реализовать итерационную функцию

$$f13(n,m) = 26\sum_{i=1}^{n} \sum_{j=1}^{m} (\sin j - j^2) + 5\sum_{i=1}^{n} \left(6i^7 - \frac{i^3}{32}\right).$$

Примеры вычисления f13:

- 1. f13(27,93) = 1.22e+12
- 2. f13(67,11) = 1.62e+15

Задача 2. Реализовать функцию-транскодер из формата

31 29	28	22	21 15	14	0
D	C		В	A	
в фор	мат				
31	25	24 22	21	7	6 0
	C	D		A	В

В решении необходимо использовать побитовые операции.

Примеры вычисления функции-транскодера f22:

- 1. f22(0xbfc19a7d) = 0xff4d3e83
- 2. f22(0xd3b06ab7) = 0x9db55be0

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} \cos(\lg x) + |x| + 75, & x < 80\\ 45x^8 + 30x^7, & 80 \le x < 120\\ x^6 + e^x + 63, & x \ge 120 \end{cases}$$

Примеры вычисления f12:

- 1. f12(18) = 9.34e+01
- 2. f12(49) = 1.23e+02

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.reset()	0
o.amble()	1
o.amble()	3
o.pull()	4
o.amble()	7
o.reset()	8
o.reset()	0
o.amble()	1
o.amble()	3
o.reset()	6
o.reset()	2

o = C32()	
o.reset()	0
o.reset()	2
o.reset()	8
o.reset()	0
o.amble()	1
o.amble()	3
o.reset()	6
o.amble()	1
o.pull()	RuntimeError
o.amble()	3
o.pull()	4
o.amble()	7

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} 74x^4 + 35x^6, & x < -3\\ \ln x + 17x^5, & -3 \le x < 93\\ 14x^4 - 50x^3 - 52, & 93 \le x < 135\\ 62x + x^2, & x \ge 135 \end{cases}$$

Примеры вычисления f12:

- 1. f12(53) = 7.11e+09
- 2. f12(64) = 1.83e+10

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.carve()	1
o.jump()	4
o.spin()	9
o.spin()	6
o.jump()	2
o.spin()	3
o.jump()	5
o.spin()	6
o.carve()	8
o.jump()	5
o.spin()	6
o.jump()	7

o = C32()	
o.spin()	0
o.jump()	2
o.spin()	3
o.jump()	5
o.spin()	6
o.spin()	9
o.carve()	1
o.carve()	RuntimeError
o.jump()	4
o.carve()	8
o.jump()	5
o.spin()	6
o.jump()	7

Задача 1. Реализовать рекуррентную функцию

$$f14(0) = 2$$
,
 $f14(1) = 3$,
 $f14(n) = \frac{1}{59}f14(n-2)^2 + \frac{1}{83}f14(n-1)^3$.

Примеры вычисления f14:

- 1. f14(13) = 1.09e-81
- 2. f14(3) = 1.53e-01

Задача 2. Реализовать конечный автомат Мили в виде класса C32. Начальным состоянием автомата является А. Методы возвращают числовые значения. Если вызываемый метод не реализован для некоторого состояния, необходимо вызвать исключение RuntimeError.

o = C32()	
o.hoard()	1
o.scrub()	9
o.hoard()	5
o.hoard()	6
o.hoard()	8
o.hoard()	1
o.scrub()	1
o.scrub()	4
o.hoard()	5
o.scrub()	7
o.scrub()	2
o.scrub()	3
o.scrub()	4
o.hoard()	5
o.hoard()	6

o = C32()	
o.hoard()	1
o.hoard()	8
o.hoard()	10
o.scrub()	11
o.scrub()	4
o.hoard()	5
o.scrub()	7
o.scrub()	2
o.hoard()	RuntimeError
o.scrub()	3
o.scrub()	4
o.hoard()	5
o.hoard()	6
o.scrub()	9
o.hoard()	5

Задача 1. Реализовать кусочно-линейную функцию

$$f12(x) = \begin{cases} 89 (|x| + e^x)^8 + x^6, & x < 14\\ \frac{x^6}{51} + 4x^7, & 14 \le x < 43\\ e^{13x^7} + x^5 - 2, & 43 \le x < 85\\ \sin(68x^2) + \ln x, & 85 \le x < 101\\ \frac{x^3}{28} + 85x^2, & x \ge 101 \end{cases}$$

Примеры вычисления f12:

- 1. f12(41) = 7.79e+11
- 2. f12(-19) = 1.51e+12

Задача 2. Реализовать функцию-дерево решений:

- 1. f21(['ats', 'rouge', 1975, 'ebnf', 'm']) = 9
- 2. f21(['e', 'elm', 1975, 'yang', 'lex']) = 6