POTENSI MUSCLE RELAXANT SENYAWA PIPERIN DAN KARIOFILEN DARI CABAI JAWA TERHADAP HUMAN SERUM ALBUMIN SECARA IN-SILICO

N. W. R. Samidya¹, A. A. C. Wibawa¹ dan D. A. I. Pramitha²*

¹Program Studi S1 Farmasi, Fakultas Farmasi, Universitas Mahasaraswati Denpasar, Denpasar, Bali, Indonesia

²Program Studi D3 Farmasi, Fakultas Farmasi, Universitas Mahasaraswati Denpasar, Denpasar, Bali, Indonesia

*Email: ika.pramitha@unmas.ac.id

ABSTRAK

Ketegangan otot adalah kondisi ketika otot yang kaku dikarenakan otot menerima impuls secara terus menerus. Pada seluruh sel otot, kontraksi bergantung pada peningkatan konsentrasi ion kalsium. Sebagian besar kalsium tubuh terikat pada albumin, sehingga reseptor yang digunakan dalam penelitian ini adalah *Human Serum Albumin* (HSA) yang dapat bertindak sebagai pembawa obat yang efektif. Senyawa uji yang digunakan adalah piperin dan kariofilen, merupakan senyawa yang terdapat dalam tumbuhan cabai jawa. Penelitian ini bertujuan untuk memperoleh kandidat senyawa baru yang berpotensi sebagai *muscle relaxant* dengan protein target HSA sebelum diuji secara *in vivo*. Analisis *in silico* dengan *molecular docking* menggunakan kode PDB 2BXB, dilakukan dengan mengoptimalkan struktur dua dan tiga dimensi, validasi terhadap metode *docking*, *docking* senyawa uji dengan pembanding eperison hidroklorida, serta melakukan prediksi profil farmakokinetik. Hasil *docking* dari senyawa piperin dan kariofilen secara berturut-turut memiliki energi bebas ikatan -6,92 kkal/mol dan -6,74 kkal/mol, sedangkan eperison hidroklorida sebesar -6,77 kkal/mol. Kesimpulannya senyawa piperin dan kariofilen berpotensi menjadi kandidat senyawa baru yang memiliki aktivitas sebagai *muscle relaxant*.

Kata kunci: human serum albumin, in silico, kariofilen, muscle relaxant, piperin.

ABSTRACT

Muscle tension is a condition when muscles become stiff as the muscles continuously receive impulses. In all muscle cells, contraction depends on an increasing concentration of calcium ions. Most of the body's calcium is bound to albumin; therefore, the receptor in this study is Human Serum Albumin (HSA), which can act as an effective drug carrier. The compounds used were piperine and caryophyllene, which were found in *cabai jawa* (Javanese chillie) plants. This study aimed to obtain new compound candidates with potential as muscle relaxants targeting HSA protein prior to in vivo. The analysis of in silico by molecular docking using PDB code 2BXB was carried out by optimizing two-dimensional and three-dimensional structures, validating the docking method, carrying out docking compound tests with eperisone hydrochloride as a comparison and predicting pharmacokinetic profiles. The docking results of the piperine and caryophyllene compounds had binding free energy of -6.92 kcal/mol and -6.74 kcal/mol respectively; while the eperisone hydrochloride was -6.77 kcal/mol. In conclusion, the piperine and caryophyllene compounds are the potential to be used as candidates for muscle relaxants.

Keywords: caryophyllene, human serum albumin, in silico, muscle relaxant, piperine.

PENDAHULUAN

Kesehatan muskuloskeletal mengacu pada kinerja sistem lokomotor. Apabila terjadi gangguan pada sistem muskuloskeletal, dapat menyebabkan berbagai jenis penyakit. Hal ini ditandai dengan adanya gangguan pada otot, tulang, sendi dan jaringan ikat, salah satu gangguan yang terjadi adalah ketegangan otot (spasticity) (Isnenia, 2020). Ketegangan otot merupakan suatu kondisi otot yang kaku

dikarenakan otot menerima impuls secara terus menerus. Saraf yang merangsang otot tidak dapat mengontrol impuls yang masuk, sehingga menyebabkan kelemahan otot dan berdampak terhadap aktivitas otot (Indriasari *et al.*, 2019). Berdasarkan hasil Riset Kesehatan Dasar 2018, prevalensi gangguan muskuloskeletal di Indonesia sebesar 7,30% (Kementerian Kesehatan RI, 2018).

Pada manusia, sekitar 40% massa tubuh tersusun atas otot rangka yang memiliki

(N. W. R. Samidya, A. A. C. Wibawa, dan D. A. I. Pramitha)

kemampuan dalam kontraksi, memanjang dan kembali pada ukuran semula (Rabbani *et al.*, 2017). Pada seluruh sel otot, kontraksi bergantung pada peningkatan konsentrasi ion kalsium (Ca²⁺). Mekanisme kontraksi otot rangka, dimulai dari ion kalsium dilepaskan ke sarkoplasma melalui saluran pelepasan Ca²⁺ (reseptor ryanodin). Ion-ion ini berikatan dengan troponin C dan membentuk kompleks tropomiosin-troponin sehingga terjadi pergeseran aktin dan miosin. Pergeseran kedua filamen ini menyebabkan kontraksi pada otot rangka (Indriasari *et al.*, 2019).

Kalsium berperan penting berbagai fungsi tubuh seperti fungsi sel, transmisi saraf, struktur tulang, pensinyalan intraseluler, dan pembekuan darah. Sekitar 45% kalsium tubuh terikat pada protein plasma, terutama albumin. Albumin adalah protein plasma darah utama manusia (human serum albumin/HSA) dan merupakan penyusun sekitar 55-60% dari semua protein plasma (Bairagi et al., 2015). Karena sebagian besar kalsium tubuh terikat pada albumin, kalsium total harus selalu dilakukan pemeriksaan. Salah gejala, seperti spasme karpopedal merupakan keadaan yang disebabkan karena peningkatan rangsangan neuromuskuler, terkait dengan fungsi ion kalsium pada tingkat sel (terutama di neuron) kemudian yang bermanifestasi sebagai kram (Goyal et al., 2022).

Sebagian besar obat dan molekul bioaktif kecil berikatan secara reversibel dengan HSA, yang berfungsi sebagai molekul pembawa. HSA berfungsi melarutkan asam lemak rantai panjang dalam plasma, meningkatkan stabilitas, dan memodulasi pengiriman ke reseptor seluler. Interaksi antara obat dengan serum albumin sirkulasi menentukan dalam distribusi. konsentrasi terikat/bebas, metabolisme, dan eliminasi. Serum albumin berfungsi sebagai saluran untuk membawa obat lipofilik yang tidak larut dalam plasma ke situs target (Rabbani et al., 2017). Selain itu, HSA dikenal karena kemampuannya berikatan dengan ligan dan dapat bertindak sebagai pembawa obat yang efektif (Bairagi et al., 2015).

Muscle relaxant merupakan pengobatan digunakan dalam mengatasi ketegangan otot. Salah satunya adalah eperison hidroklorida yang bekerja secara sentral dan telah menunjukkan efek potensial dalam manajemen nyeri. Mekanisme kerjanya melibatkan

penghambatan aktivitas saraf dan sensasi nyeri dengan memblokir voltage-gated sodium channels di otak (Pinzon et al., 2020). Selain itu, eperison hidroklorida bekerja dengan bertindak sebagai antagonis kalsium dengan efek vasodilatasi dan antispastik untuk spastisitas. Namun, eperison mengurangi hidroklorida memiliki efek samping seperti nyeri perut (lambung), mual, pusing, nyeri kepala, dan lemas (Widyantanti & Pinzon, 2017). Dalam mekanismenya sebagai muscle relaxant, diduga eperison hidroklorida dapat berikatan dengan HSA karena memiliki aksi untuk memulai pertumbuhan dan perbaikan otot dengan mengaktifkan sel-sel pada (Rabbani et al., 2018). Oleh karena itu, perlu dilakukan pengembangan obat dari herbal, untuk menemukan kandidat senyawa baru dan mampu meminimalkan efek samping yang tidak diinginkan.

Cabai jawa (Piper retrofractum Vahl.) dapat digunakan dalam pengembangan obat herbal. Cabai jawa merupakan salah satu spesies lada dalam famili *Piperaceae* vang sebagian besar dibudidayakan di Indonesia. Beberapa penelitian telah berhasil mengisolasi senyawa kimia dari cabai jawa. Tanaman ini diketahui mengandung piperin dan kariofilen. Piperin merupakan golongan senyawa alkaloid, sedangkan kariofilen merupakan golongan seskuiterpen (Wardani & Leligia, 2021). Kedua senyawa ini memiliki berbagai aktivitas biologis, seperti analgesik, antiinflamasi, antioksidan, antikanker, antitumor, antirematik, kardioprotektif, hepatoprotektif, gastroprotektif, dan efek imunomodulator (Babu et al., 2020; Machado et al., 2018). Pada pengembangan obat secara tradisional umumnya menggunakan metode trial and error, sehingga memakan waktu yang lama, biaya mahal serta memiliki hasil yang rendah (Rai et al., 2016). Oleh karena itu, diperlukan suatu pendekatan untuk menghemat waktu, biaya, hasil yang didapatkan optimal dan menurunkan jumlah hewan percobaan (Putra et al., 2020).

Metode *in silico* dapat digunakan sebagai pendekatan dalam analisis aktivitas farmakologi dari suatu senyawa. Studi *in silico* merupakan metode yang menggunakan simulasi *molecular docking* untuk memprediksi ikatan kimia antara makromolekul dengan molekul kecil (ligan) yang bertujuan untuk mengetahui konformasi dan energi bebas ikatan

(Frimayanti *et al.*, 2021). Sehingga dapat mengoptimalkan penggunaan klinis dan menghindari adanya efek samping (Yeni *et al.*, 2021). Dalam penelitian ini, analisis *docking* dilakukan untuk mengetahui aktivitas dari senyawa piperin dan kariofilen dengan reseptor *Human Serum Albumin* (HSA). Dengan tujuan untuk memperoleh kandidat senyawa baru yang berpotensi sebagai *muscle relaxant* dengan protein target HSA sebelum diuji secara *in vivo*.

MATERI DAN METODE

Bahan

Dalam penelitian ini, bahan yang digunakan adalah makromolekul HSA sebagai protein target yang diperoleh dari *Protein Data Bank* (PDB) yang dapat diakses melalui https://www.rcsb.org/structure/2BXB dengan PDB ID 2BXB. Struktur kimia dua dimensi eperison hidroklorida dengan kode Pubchem CID: 123698, digunakan sebagai senyawa pembanding yang dapat diakses secara *online* melalui

https://pubchem.ncbi.nlm.nih.gov/compound/1 23698. Senyawa uji, yaitu piperin dengan kode Pubchem CID: 638024 (https://pubchem.ncbi.nlm.nih.gov/compound/638024) dan kariofilen oxide dengan kode Pubchem CID: 1742210 (https://pubchem.ncbi.nlm.nih.gov/compound/1742210).

Peralatan

Penelitian ini menggunakan komputer **ASUS** A409JA-EK351TSFHD dengan prosesor Intel CORE i3, RAM 4GB, penyimpanan SSD 512GB, Windows 10 (64 bit) yang dilengkapi dengan program seperti AutoDock Tools versi 1.5.7, MarvinSketch versi 22.19 2022 dari ChemAxon®, Chimera versi 1.16, OpenBabel, PyMOL, Discovery Studio Visualizer v21.1.0.20298. Selain itu, menggunakan website pkCSM memprediksi sifat farmakokinetik dan toksisitas molekul yang dapat diakses di https://biosig.lab.uq.edu.au/pkcsm/.

Cara Keria

Penggambaran Struktur Kimia Senyawa Obat

Struktur Dua Dimensi Senyawa Obat

Struktur dua dimensi senyawa piperin dan kariofilen diperoleh menggunakan program MarvinSketch versi 22.19 2022. Hasilnya disimpan dalam bentuk format ".pdb" dan ".mol2".

Struktur Tiga Dimensi Senyawa Obat

Program Chimera Versi 1.16 digunakan dalam persiapan makromolekul. Struktur kimia tiga dimensi dari senyawa piperin dan kariofilen digambar dan disimpan dalam bentuk format ".mol2".

Molecular Docking Pengunduhan Makromolekul

Protein target yang digunakan dalam penelitian ini yaitu HSA, kemudian strukturnya diunduh dari PDB dengan format ".pdb".

Preparasi Makromolekul

Preparasi makromolekul dilakukan dengan menggunakan AutoDock Tools versi 1.5.7. Beberapa tahapan yang dilakukan termasuk menghilangkan ligan asli, rantai yang tidak diperlukan, molekul air, penambahan hidrogen dan muatan Kollman.

Preparasi Ligan Asli

Preparasi ligan asli dilakukan menggunakan AutoDock Tools versi 1.5.7. Langkah yang dilakukan yaitu penentuan konformasi untuk mendapatkan ligan dengan energi terendah dan disimpan dengan format ".pdb". Kemudian file ligan dibuka pada AutoDock Tools untuk dilakukan penetapan *torsion tree* sehingga dapat diketahui bagian ligan yang *rigid* maupun fleksibel, dan dikonversi menjadi format ".pdbqt".

Validasi Metode Molecular Docking

Validasi terhadap metode *docking* yang digunakan bertujuan untuk menentukan konformasi dari ligan asli. Validasi metode *docking* dilakukan dengan men-*docking*-kan kembali ligan asli pada protein target yang sudah dihilangkan ligan asli-nya pada tahap preparasi makromolekul. Hasil *docking* ligan asli dan makromolekul digabung menggunakan perangkat lunak PyMOL. Metode *docking* dianggap valid apabila nilai *root mean square deviation* (RMSD) yang diperoleh kurang dari 2,0 Å. Untuk mendapatkan metode yang valid, pengaturan *grid box* harus dilakukan.

Pembuatan Struktur Tiga Dimensi Ligan Uji Senyawa uji diunduh melalui *website* Pubchem dalam format ".sdf", kemudian diubah

(N. W. R. Samidya, A. A. C. Wibawa, dan D. A. I. Pramitha)

menggunakan perangkat lunak OpenBabel menjadi format ".pdb".

Proses Molecular Docking

Proses molecular docking menggunakan 1.5.7. AutoDock **Tools** versi Struktur makromolekul dan ligan yang telah dipreparasi ditempatkan dalam folder yang sama. Proses molecular dilakukan docking dengan menggunakan grid box sesuai hasil validasi. Kemudian hasil molecular docking divisualisasikan menggunakan Discovery Studio Visualizer.

Prediksi Profil Farmakokinetik

Sifat fisikokimia piperin dan kariofilen diprediksi menggunakan website pkCSM. Sifat fisikokimia diperoleh dengan memasukkan SMILES dari senyawa uji pada website kemudian tekan submit. Ketika mode prediksi yang dipilih adalah ADMET, maka data prediksi berasal dari sifat absorpsi, distribusi, metabolisme, ekskresi, dan toksisitas senyawa akan ditampilkan. Selain sifat ADMET, data Lipinski Rule of Five dari senyawa uji juga dapat diprediksi. Hal tersebut dapat dilihat dari sifat molekuler misalnya berat molekul, jumlah akseptor ikatan hidrogen, jumlah donor ikatan hidrogen dan nilai Log P.

Analisis Hasil Molecular Docking

Analisis data dilakukan berdasarkan hasil energi bebas ikatan yang diperoleh dari docking. Nilai energi bebas menunjukkan kekuatan ikatan antara senyawa bioaktif vang diselidiki dengan protein target. Nilai energi bebas ikatan selanjutnya dibandingkan untuk masing-masing protein terhadap senyawa uji. Kompleks dari proteinsenyawa uji, kemudian divisualisasikan menggunakan Discovery Studio Visualizer untuk mengetahui interaksi yang terlibat antara senyawa uji dengan residu asam amino dari protein target.

HASIL DAN PEMBAHASAN

Penggambaran Struktur Kimia Senyawa Obat

Pada penelitian ini dilakukan analisis *docking* dari senyawa piperin, kariofilen, dan senyawa pembanding eperison hidroklorida dengan reseptor HSA. Struktur dua dan tiga dimensi dari senyawa piperin, kariofilen dan eperison

hidroklorida diperoleh melalui program MarvinSketch versi 22.19 2022 dari ChemAxon® dan Chimera versi 1.16, yang dapat diamati pada Gambar 1.

Preparasi Makromolekul

Preparasi struktur makromolekul berperan dalam menentukan prediksi interaksi dengan senyawa obat. Struktur makromolekul HSA telah memenuhi kriteria, karena protein target merupakan hasil kristalografi *x-ray* diffraction dan organisme asal protein yang digunakan adalah makromolekul pada manusia (homo sapiens) (Santoso, 2017). Kemudian dilakukan preparasi untuk menghilangkan molekul air di sekitar struktur protein dan senyawa residu non asam amino. Hal ini bertujuan agar senyawa uji atau ligan dapat dipastikan berikatan dengan protein (Susanti et al., 2019). Makromolekul juga dioptimasi dengan menambahkan Kollman charges dan atom hidrogen. Penambahan Kollman charges bertujuan untuk memberikan muatan terhadap residu asam amino. Sedangkan penambahan atom hidrogen dimaksudkan agar suasana docking mendekati suasana pada fisiologis (Kolina et al., 2018). Struktur molekul sebelum dipreparasi dan yang sudah dipreparasi dapat diamati pada Gambar 2.

Validasi Metode Molecular Docking

Validasi metode bertujuan untuk menjamin bahwa metode yang digunakan memberikan hasil yang akurat dengan interaksi yang baik antara protein target dan senyawa bioaktif yang diselidiki (Umar et al., 2021). Selanjutnya dilakukan penentuan grid box dengan ligan asli sebagai pusat dari koordinat berdasarkan ukuran binding site dan ukuran dari ligan asli (Pratama et al., 2021). Hasil redocking ligan asli dengan protein divalidasi dengan perangkat PyMOL. Parameter yang diamati pada validasi adalah nilai root mean square deviation (RMSD). Nilai RMSD digunakan untuk mengukur kesamaan pose ligan asli dari struktur kristal dengan pose ligan hasil redocking. Metode docking dianggap valid apabila menghasilkan nilai RMSD <2,0 Å (Shah et al., 2019). Pada penelitian ini, nilai RMSD yang diperoleh adalah 0,000 Å, sehingga metode molecular docking dalam penelitian ini telah memenuhi syarat. Hasil redocking struktur kristal 2BXB dapat diamati pada Gambar 2.

Gambar 1. Struktur Dua dan Tiga Dimensi dari (a) Eperison hidroklorida, (b) Piperin, (c) Kariofilen

Gambar 2. Struktur Ligan Asli 2BXB (hijau) dengan Ligan Hasil *Redocking* (magenta)

Analisis Hasil Molecular Docking

Berdasarkan hasil *docking* antara reseptor HSA dengan senyawa piperin, kariofilen dan senyawa pembanding eperison hidroklorida, dapat ditunjukkan bahwa hampir semua ligan dapat berinteraksi dengan HSA. Interaksi ini dapat diamati dari nilai energi bebas ikatan dengan nilai yang paling rendah. Semakin rendah energi bebas ikatan artinya ikatan yang dihasilkan semakin stabil. Semakin

stabil pengikatan ligan ke reseptor, semakin signifikan aktivitas yang dapat diprediksi (Mutiah *et al.*, 2021). Dari kedua senyawa uji, piperin dan kariofilen secara berturut-turut memiliki ΔG sebesar -6,92 kkal/mol dan -6,74 kkal/mol. Sedangkan senyawa pembanding yaitu eperison hidroklorida memiliki ΔG sebesar -6,77 kkal/mol. Hasil *docking* dari eperison hidroklorida, piperin dan kariofilen dapat diamati pada Tabel 1.

Tabel 1. Hasil <i>Docking</i> Eperison	n Hidroklorida,	, Piperin dan Kariofilen
	Internalisi D	asidu Asam Amina

Convove	AC (kkal/mal)	Interaksi Residu Asam Amino			
Senyawa	ΔG (kkal/mol)	Ikatan Hidrogen	Ikatan Non-Hidrogen		
Eperison	6 77	Arg222	Ala291, Leu260, Ala261, Ile264,		
Hidroklorida	-6,77		Leu238, His242		
Dinanin	6.02	Lys199	Ala261, Ile264, Leu260, Ile290,		
Piperin -6,92		Lys195, Arg257, Ala291			
		Arg222	Ala291, Leu260, Ile264, Arg257,		
Kariofilen	-6,74	_	Ile290, Val241, His242, Tyr150,		
			Leu238		

Keterangan: Penulisan cetak tebal menandai kesamaan residu asam amino dari ligan uji dengan senyawa pembanding Eperison Hidroklorida

Gambar 3. Visualisasi (a) Interaksi Eperison Hidroklorida dengan HSA, (b) Piperin dengan HSA dan (c) Kariofilen dengan HAS

Berdasarkan hasil visualisasi senyawa piperin dan kariofilen terhadap HSA, kedua senyawa tersebut memiliki residu asam amino yang sama yang dapat berikatan melalui ikatan hidrogen ataupun non-hidrogen dengan senyawa pembanding yaitu eperison Analisis hasil berdasarkan hidroklorida. visualisasi tiga dimensi pada senyawa piperin, menunjukkan bahwa atom oksigen berinteraksi dengan residu Lys199 melalui ikatan hidrogen. Selain itu, terdapat tiga residu asam amino yang terlibat dalam interaksi hidrofobik yaitu residu Ala261, Ile264 dan Leu260 melalui ikatan *alkyl* pada bagian gugus aromatik. Sedangkan, kompleks senyawa kariofilen dengan HSA membentuk ikatan hidrogen pada atom oksigen pada residu Arg222, yang juga terbentuk dalam kompleks eperison hidroklorida dengan HSA.

Hasil visualisasi senyawa kariofilen menunjukkan beberapa kesamaan residu asam amino dengan kompleks eperison hidrokloridaberikatan **HSA** vang melalui interaksi hidrofobik. Kesamaan residu tersebut membentuk ikatan alkyl dengan residu Ile264 dan Leu260 pada gugus metil kariofilen (Rabbani et al., 2017). Visualiasi interaksi antara piperin, kariofilen dan senyawa pembanding terhadap reseptor **HSA** ditunjukkan pada Gambar 3.

Prediksi Profil Farmakokinetik

Analisis sifat fisikokimia dari senyawa obat baru merupakan langkah awal dalam

penentuan kandidat obat oral. Salah satu tahapan yang dilakukan dalam analisis senyawa obat secara in silico adalah memprediksi sifat fisikokimia menurut Lipinski Rule of Five. Aturan ini bertujuan untuk memudahkan penentuan kandidat molekul atau senyawa obat dengan mengidentifikasi sifat permeabilitas dan penyerapannya, sehingga diharapkan senyawa aktif dalam obat mampu berinteraksi dengan baik dalam tubuh (Maftucha et al., 2022). Hasil sifat fisikokimia eperison dari profil hidroklorida, piperin dan kariofilen dapat diamati pada Tabel 2.

Tabel 2. Profil Sifat Fisikokimia Eperison Hidroklorida, Piperin dan Kariofilen

Senyawa	Berat Molekul <500 Da	log P <5	Donor Ikatan Hidrogen <5	Akseptor Ikatan Hidrogen <10
Eperison	295,854	3,9755	0	2
Hidroklorida				
Piperin	285,343	2,9972	0	3
Kariofilen	220,356	3,9364	0	1

Senyawa piperin dan kariofilen memiliki berat molekul secara berturut-turut, yaitu sebesar 285,343 Da dan 220,356 Da, sedangkan eperison hidroklorida memiliki berat molekul sebesar 295,854 Da (Tabel 2). Berdasarkan hasil penelitian, dari kedua senyawa uji berpotensi memiliki daya penetrasi yang baik karena telah memenuhi kriteria yang dipersyaratkan yaitu berat molekul <500 Da. Apabila berat molekul lebih dari 500 Da, maka menyebabkan molekul atau senyawa obat tidak dapat berdifusi melintasi membran (Maftucha et al., 2022).

Kriteria kedua dari *Lipinski Rule of Five* adalah bahwa nilai lipofilik (log P) dari molekul atau senyawa obat yaitu <5. Semakin tinggi nilai log P, semakin hidrofobik senyawa obat tersebut dan toksisitasnya juga lebih tinggi. Hal ini disebabkan karena senyawa atau molekul obat terdistribusi lebih luas sehingga tertahan lebih lama pada *lipid bilayer* (Faqiha *et al.*, 2022). Berdasarkan data dari Tabel 2, kedua senyawa uji telah memenuhi kriteria nilai Log P yaitu <5.

Kriteria selanjutnya yaitu suatu senyawa obat memiliki donor ikatan hidrogen <5 dan setidaknya memiliki akseptor ikatan hidrogen <10. Jumlah donor ikatan hidrogen dan akseptor ikatan hidrogen sebanding dengan

energi yang dibutuhkan senyawa obat untuk terjadinya proses absorpsi. Ketika kapasitas ikatan hidrogen lebih tinggi, maka energi yang dibutuhkan untuk terjadinya absorpsi juga semakin tinggi (Prasetiawati *et al.*, 2021). Berdasarkan hasil penelitian, baik jumlah donor ikatan hidrogen dan akseptor ikatan hidrogen telah memenuhi kriteria yang dipersyaratkan.

Profil farmakokinetik berikutnya yang diamati adalah toksisitas yang ditunjukkan dengan nilai LD₅₀ (Lethal Dose 50). LD₅₀ merupakan dosis yang menyebabkan 50% kematian pada hewan coba (Ayun et al., 2021). Parameter toksisitas diprediksi melalui online predicting small-molecule pharmacokinetic properties using graph-based signatures (pkCSM). Hasil parameter toksisitas dari eperison hidroklorida, piperin dan kariofilen dapat diamati pada Tabel 3. Nilai LD50 dari senyawa piperin dan kariofilen adalah 802,099 mg/kg dan 341,111 mg/kg. Sedangkan senyawa pembanding memiliki nilai LD50 sebesar 838,450 mg/kg. Kedua senyawa uji diklasifikasikan kedalam toksisitas kategori 4, dengan rentang dosis nilai LD50 > 300 mg/kg dan < 2000 mg/kg. Senyawa piperin dianggap lebih aman daripada kariofilen, karena nilai LD₅₀ senyawa piperin lebih luas.

Senyawa	Parameter Toksisitas	Kategori
	$\mathrm{LD}_{50}~\mathrm{mg/kg}$	
Eperison	838,450	4
Hidroklorida		
Piperin	802,099	4
Kariofilen	341,111	4

Tabel 3. Prediksi Toksisitas Eperison Hidroklorida, Piperin dan Kariofilen

SIMPULAN

Berdasarkan analisis secara in silico, dapat disimpulkan bahwa piperin dan kariofilen memiliki potensi sebagai agen muscle relaxant yang memiliki afinitas terhadap protein HSA dengan ΔG sebesar -6,92 kkal/mol dan -6,74 kkal/mol, sedangkan ΔG eperison hidroklorida adalah sebesar -6,77 kkal/mol. Berat molekul piperin adalah 285,343 Da dan diprediksi memiliki aktivitas potensial untuk menembus membran sel dibandingkan dengan kariofilen, sehingga diprediksi menjadi kandidat senyawa baru yang memiliki aktivitas sebagai muscle relaxant. Selain itu, berdasarkan prediksi toksisitas senyawa piperin juga diprediksi lebih aman dari kariofilen. Perlu dilakukan pengujian lebih lanjut baik secara in vitro ataupun in vivo untuk mendukung studi in silico ini.

DAFTAR PUSTAKA

- Ayun, A. Q., Faridah, D. N., Yuliana, N. D., & Andriyanto, A. 2021. Pengujian Toksisitas Akut LD50 Infusa Benalu Teh (Scurrula sp.) dengan Menggunakan Mencit (Mus musculus). *Acta VETERINARIA Indonesiana*. 9(1): 53–63. https://doi.org/10.29244/avi.9.1.53-63
- Babu, M. R., Kumar, B. S., Ragini, B., & Sravani, A. 2020. Emerging Diverse Medicinal Properties of Piperine: A Review. *Acta Scientific Pharmacology*. (10): 30–35.
- Bairagi, U., Mittal, P., & Mishra, B. 2015. Albumin: A Versatile Drug Carrier. *Austin Therapeutics*. 2(2): 1021.
- Faqiha, A. F., Indrawijaya, Y. Y. A., Suryadinata, A., Amiruddin, M., & Mutiah, R. 2022. Potensi Senyawa Nitazoxanide dan Arbidol sebagai Antivirus SARS-CoV-2 terhadap Reseptor NSP5 (7BQY dan 2GZ7) dan ACE2 (3D0G dan 1R4L). Journal of Food

- and Pharmaceutical Sciences, 10(1), 570–583. https://doi.org/10.22146/jfps.3393
- Frimayanti, N., Lukman, A., & Nathania, L. 2021. Studi molecular docking senyawa 1,5-benzothiazepine sebagai inhibitor dengue DEN-2 NS2B / NS3 serine protease. *Chempublish Journal*. 6(1): 54–62.
 - https://doi.org/10.22437/chp.v6i1.12980
- Goyal, A., Anastasopoulou, C., Ngu, M., & Singh, S. 2022. *Hypocalcemia*. NCBI Bookshelf. A service of the National Library of Medicine, National Institutes of Health.
- Indriasari, M., Hardinsyah, , Kustiyah, L., Priosoeryanto, B. P., & Idris, F. H. 2019. Effect of Calcium Consumption on the Spasticity in the Spastic Rats. *Food and Nutrition Sciences*. 10(01): 37–50. https://doi.org/10.4236/fns.2019.101004
- Isnenia. 2020. Penggunaan Non-Steroid Antiinflamatory Drug dan Potensi Obatnya Interaksi Pada Pasien Muskuloskeletal. Pharmaceutical Journal Indonesia. 6(1): 47–55. https://doi.org/10.21776/ub.pji.2020.006. 01.8
- Kementerian Kesehatan RI. 2018. Laporan Nasional RKD2018. In *Badan Penelitian dan Pengembangan Kesehatan*.
- Kolina, J., Sumiwi, S. A., & Levita, J. 2018.

 Mode Ikatan Metabolit Sekunder Di
 Tanaman Akar Kuning (Arcangelisia
 flava L.) dengan Nitrat Oksida Sintase.

 Fitofarmaka: Jurnal Ilmiah Farmasi.
 8(1): 50–58.
 https://doi.org/10.33751/jf.v8i1.1171
- Machado, K. da C., Islam, M. T., Ali, E. S., Rouf, R., Uddin, S. J., Dev, S., Shilpi, J. A., Shill, M. C., Reza, H. M., Das, A. K., Shaw, S., Mubarak, M. S., Mishra, S. K., & Melo-Cavalcante, A. A. de C. 2018. A systematic review on the neuroprotective

- perspectives of beta-caryophyllene. *Phytotherapy Research*. 32(12): 1–13. https://doi.org/10.1002/ptr.6199
- Maftucha, N., RosarioTrijuliamos Manalu, Rika Amelia, Petra Cordia, & Regina Bupu. 2022. Potensi Senyawa Turunan Xanton dari Kulit Buah Manggis (Garcinia mangostana Sebagai L.) Mycobacterium Inhibitor Protein tuberculosis: Studi In Silico. Pharmaceutical Journal of Indonesia. 123-128. https://doi.org/10.21776/ub.pji.2022.007. 02.7
- Mutiah, R., Indrawijaya, Y. Y. A., Dharma, T. J., & Damaiyanti, J. 2021. In Silico Study on the Effect of Heliannuol A, B, C, D, E Compounds of Sunflower (Helianthus annuus L.) on Dual PI3K/mTOR (5OQ4) Enzyme. *Traditional Medicine Journal*. 26(1): 71–78. https://doi.org/10.14499/indonesianjcanc hemoprev12iss1pp37-45
- Pinzon, R. T., Wijaya, V. O., & Bagaskara, D. P. R. R. 2020. Effects of eperisone hydrochloride and non-steroid anti-inflammatory drugs (NSAIDs) for acute non-specific back pain with muscle spasm: A prospective, open-label study. *Drug, Healthcare and Patient Safety.* 12: 221–228.

https://doi.org/10.2147/DHPS.S278467

- Prasetiawati, R., Meilanda, S., Permana, B., & Lubis, N. 2021. Studi In Silico Senyawa Yang Terkandung Di Dalam Rimpang Temulawak (Curcuma xanthorriza Roxb.) Sebagai Antihepatitis B. *Jurnal Insan Farmasi Indonesia*. 4(2): 245–255. https://doi.org/10.36387/jifi.v4i2.788
- Pratama, A. B., Herowati, R., & Ansory, H. M. 2021. Studi Docking Molekuler Senyawa Dalam Minyak Atsiri Pala (Myristica fragrans H.) Dan Senyawa Turunan Miristisin Terhadap Target Terapi Kanker Kulit. *Majalah Farmaseutik*. 17(2): 233. https://doi.org/10.22146/farmaseutik.v17i 2.59297
- Putra, P. P., Fauzana, A., & Lucida, H. 2020. In silico analysis of physical-chemical properties, target potential, and toxicology of pure compounds from natural products analisis sifat fisika-kimia, potensi target dan toksikologi senyawa isolat murni dari bahan alam dengan metode in silico. *Indonesian Journal of Pharmaceutical*

- Science and Technology Journal Homepage. 7(3): 107–117. http://jurnal.unpad.ac.id/ijpst/UNPAD
- Rabbani, G., Baig, M. H., Lee, E. J., Cho, W. K., Ma, J. Y., & Choi, I. 2017. Biophysical Study on the Interaction between Eperisone Hydrochloride and Human Serum Albumin Using Spectroscopic, Calorimetric, and Molecular Docking Analyses. *Molecular Pharmaceutics*. 14(5): 1656–1665. https://doi.org/10.1021/acs.molpharmace ut.6b01124
- Rabbani, G., Lee, E. J., Ahmad, K., Baig, M. H., & Choi, I. 2018. Binding of Tolperisone Hydrochloride with Human Serum Albumin: Effects on the Conformation, Thermodynamics, and Activity of HSA. *Molecular Pharmaceutics*. 15(4): 1445–1456.
 - https://doi.org/10.1021/acs.molpharmace ut.7b00976
- Rai, S., RAJ, U., Tichkule, S., Kumar, H., Mishra, S., Sharma, N., Buddham, R., Raghav, D., & Varadwaj, P. K. 2016. Recent Trends in in-Silico Drug Discovery. *International Journal for Computational Biology*. 5(1); 54–76. https://doi.org/10.34040/ijcb.5.1.2015.71
- Santoso, B. 2017. Pengaruh Volume Gridbox pada Docking Senyawa dalam Stelechocarpus Burahol terhadap Protein Homolog Antiinflamasi TRPV1. *Urecol*. 321–328.
 - http://journal.unimma.ac.id/index.php/urecol/article/view/1369
- Shah, K., Mujwar, S., Gupta, J. K., Shrivastava, S. K., & Mishra, P. 2019. Molecular Docking and in Silico Cogitation Validate Mefenamic Acid Prodrugs as Human Cyclooxygenase-2 Inhibitor. *Assay and Drug Development Technologies*. 17(6): 285–291.

https://doi.org/10.1089/adt.2019.943

- Susanti, N. M. P., Laksmiani, N. P. L., Noviyanti, N. K. M., Arianti, K. M., & Duantara, I. K. 2019. Molecular Docking Terpinen-4-Ol Sebagai Antiinflamasi Pada Aterosklerosis Secara in Silico. *Jurnal Kimia (Journal of Chemistry)*. 13(2): 221–228. https://doi.org/10.24843/jchem.2019.v13. i02.p16
- Umar, H. I., Josiah, S. S., Saliu, T. P., Jimoh, T. O., Ajayi, A., & Danjuma, J. B. 2021. In-

silico analysis of the inhibition of the SARS-CoV-2 main protease by some active compounds from selected African plants. *Journal of Taibah University Medical Sciences*. 16(2): 1–15. https://doi.org/10.1016/j.jtumed.2020.12. 005

Wardani, N. K. S. L. A., & Leliqia, N. P. E. 2021. A Review of Phytochemical and Pharmacological Studies of Piper retrofractum Vahl. *Journal of Pharmaceutical Science and Application*. 3(1): 40–49. https://doi.org/10.24843/jpsa.2021.v03.i0 1.p05

Widyantanti, M. A. S., & Pinzon, R. T. 2017.

Penggunaan Eperisone Hydrocloride Untuk Mengurangi Nyeri Pasien Nyeri Punggung Bawah Akut Di Rumah Sakit Bethesda Yogyakarta. *Media Farmasi: Jurnal Ilmu Farmasi*. 14(2): 177. https://doi.org/10.12928/mf.v14i2.11243

Yeni, Y., Rachmania, R., & Yanuar, M. D. 2021. In Silico Study of Compounds Contained in Hemigraphis alternata Leaves against 5-LOX for Anti-Inflammatory. *Indonesian Journal of Pharmaceutical Science and Technology*. 8(1); 34–41. https://doi.org/10.24198/ijpst.v8i1.29869