Vertex of the Quadratic

Given a quadratic $p(w) = a w^2 + b w + c$ compute its value at $w_1 = -\frac{b}{2a}$ namely $p(w_1) = c - \frac{b^2}{4a}$ Now compute the same quadratic at $w_1 + h$, namely

Now compute the same quadratic at w_1+h , namely $p(w_1+h) = -\frac{b^2}{4a} + ah^2 + c$

Compute $\triangle = p(w_1 + h) - p(w_1) = a h^2$ Since $h^2 > 0$, therefore if a > 0 then $\triangle > 0$ or vertex is the

global minimum!

Example 1. $p(w) = 2 w^2 + 12 w - 35$

p(w) = 2 w

