Problema 834

Construïu un triangle donats en posició B, C i H_a (peu de l'altura de A) i conegut b-c. Proposat per Julián Santamaría tobar.

Solució Ricard Peiró i Estruch:

Suposem que B és obtús.

$$Siga \ d=b+c \ , \ m=\overline{BH_a} \leq \frac{a}{2} \, .$$

$$\overline{CH_a} = a + m$$
.

Aplicant el teorema de Pitàgores als triangles rectangles $\,A\overset{\Delta}{H_a}B\,,\,\,A\overset{\Delta}{H_a}C\,:$

$$\overline{AH_a}^2 = c^2 - m^2 \, , \, \, \overline{AH_a}^2 = b^2 - (a+m)^2 \, . \label{eq:add_amplitude}$$

Igualant les expressions:

$$b^2 - c^2 = a(2m + a)$$
.

$$(c+b)(c-b) = a(2m+a)$$
:

$$\begin{cases} c-b = \frac{a(2m+a)}{d} \\ b+c = d \end{cases}.$$
 Sumant les dues expressions:

$$2b = \frac{a(2m+a)}{d} + d$$
.

$$Siga \ x = \frac{a(2m+a)}{d} \, .$$

$$\frac{x}{a} = \frac{2m + a}{d}$$
.

Passos de la construcció:

a) Construïm x com quart proporcional:

- b) Construïm $\overline{KM} = x + d$
- c) Construïm b = $\frac{\overline{KM}}{2}$

d) Dibuixem el triangle $\stackrel{\vartriangle}{\mathsf{ABC}}$

Suposem que B és agut $B \ge C$

Siga
$$d = b + c$$
, $m = \overline{BH_a} \le \frac{a}{2}$.

$$\overline{CH_a} = a - m$$
.

Aplicant el teorema de Pitàgores als triangles rectangles $\overrightarrow{AH_aB}$, $\overrightarrow{AH_aC}$:

$$\overline{AH_a}^2 = c^2 - m^2$$
, $\overline{AH_a}^2 = b^2 - (a - m)^2$.

Igualant les expressions:

$$b^2 - c^2 = a(a - 2m)$$
.

$$(c+b)(c-b) = a(a-2m)$$
:

$$\begin{cases} c - b = \frac{a(a - 2m)}{d} \\ b + c = d \end{cases}$$
. Sumant les dues expressions:

$$2b = \frac{a(a-2m)}{d} + d.$$

Siga
$$x = \frac{a(a-2m)}{d}$$
.

$$\frac{x}{a} = \frac{a - 2m}{d}.$$

Passos de la construcció:

a) Construïm x com quart proporcional:

d=b-c B Ha C

- b) Construïm $\overline{KM} = x + d$
- c) Construïm b = $\frac{\overline{KM}}{2}$

d) Dibuixem el triangle $\stackrel{\vartriangle}{\mathsf{ABC}}$

