Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina

Departamento Acadêmico de Eletrônica

Curso Engenharia Eletrônica

Técnicas de layout (leiaoute) aplicadas para o desenvolvimento de PCI

SANTA CATARINA

Prof. Joabel Moia

Florianópolis, março de 2019

- Premissas do desenvolvimento PCI:
 - Cada circuito tem suas características próprias:
 - As táticas empregadas para desenvolver o leiaute de uma PCI para um determinado circuito não são necessariamente as mesmas táticas para outro circuito.
 - Nesta aula, algumas dicas para fazer um leiaute de uma PCI:
 - Normalmente atende bem uma faixa de aplicações em eletrônica na questão design da PCI.

- Planejamento da PCI (1ª Etapa):
 - Dimensional da PCI:
 - Área da PCI;
 - Cuidado: A inserção dos componentes (manual ou insersora) PTH e SMD deve ser viável;

- Custo-benefício da PCI:
 - Face simples, dupla, multicamadas;
 - Furo metalizado;
 - Processo de solda (solda por onda, forno de refusão).

Planejamento da PCI (1ª Etapa):

- Alguns componentes empregados para a fabricação de produtos nas empresas empregam formatação pré-definidas;
 - Cuidar com a furação para os componentes.

- Estrutura mecânica da PCI:
 - Fixação no gabinete/invólucro ou em outros.

Exemplo de estrutura mecânica:

- Deve-se prever:
 - Dissipadores na PCI, ventilação forçada (quando for o caso);
 - Fixação;
 - Conectores de entrada e saída (fios, outra PCI, cabos, bornes, terminais e etc);
 - Placa para uma família de produtos (potências diferentes).

 Alguns exemplos de componentes com terminais pré-formatados:

 Fontes de Ruídos (comutação dos semicondutores):

Fontes de Ruídos (comutação dos semicondutores):

Elevado di/dt

Ainda existem as fontes de ruídos externas.

 Fontes de Ruídos (comutação dos semicondutores):

Buck Síncrono

Fonte: PCB Layout Considerations for Non-Isolated Switching Power Supplies- Linear

 Fontes de Ruídos (comutação dos semicondutores):

Flyback

 Fontes de Ruídos (comutação dos semicondutores):

Figure 3. Minimize the High di/dt Loop Area in the Synchronous Buck Converter.

(a) High di/dt loop (Hot Loop) and its Parasitic PCB Inductors, (b) Layout Example

Fonte: PCB Layout Considerations for Non-Isolated Switching Power Supplies- Linear

- Fontes de Ruídos na PCI

Figure 3. Typical op amp circuit, as designed (a) and with parasitics (b).

Boas práticas PCI – Indicação do Fabricante

Boas práticas PCI – Indicação do Fabricante

Figure 4. Continuous and Pulsating Current Paths of a Boost Converter

Fonte: PCB Layout Considerations for Non-Isolated Switching Power Supplies- Linear

- Disposição dos componentes (2ª Etapa):
 - Um bom projeto de uma PCI requer posicionamento adequado dos componentes;
 - Preferencialmente começar pelos componentes maiores (discretos – capacitores, indutores, transistores, sensores de corrente e etc);
 - Evite colocar componentes que esquentem próximos.
 - Fazer com que o fluxo de potência seja linear, evitando fazer muitas curvas na placa (preferencialmente entrada em lado da placa e a saída pelo outro lado);

Disposição dos componentes (2ª Etapa):

 Componentes na PCI devem ser agrupados de acordo com sua funcionalidade, tais como, seções analógicas, seções digitais, fonte de alimentação, circuitos de baixa velocidade, circuitos de alta velocidade, e assim por diante. As trilhas para cada grupo devem permanecer em sua área designada.

- Disposição dos componentes (2ª Etapa):
 - Evitar a proximidade de dois elementos magnéticos (indutores e/ou transformadores) que operem em alta frequência (cuidar o fluxo magnético).

• Exemplo:

Disposição dos componentes:

- Evitar a proximidade de sensores de corrente e tensão e elementos magnéticos que operem em alta frequência;
- Procure colocar os componentes analógicos pertinentes a um circuito integrado o mais próximo do mesmo.
- Em caso de uso de semicondutores do tipo SMD, calcular a área de cobre necessária para dissipar o calor na placa.

Exemplo dissipação de transistores SMD na PCI:

Figure 3: R_{THJ-PCB} versus drain pad area for D²PAK

Exemplo dissipação de transistores SMD na PCI:

Disposição dos componentes:

- Dica importante: Se for o caso, pense na possibilidade de fazer manutenção na PCI, especialmente em protótipos e produtos que possam ser reutilizados.
 - Problemas em placa dupla face sem furo metalizado gera muitos problemas.

• Exemplo de difícil manutenção na PCI:

Exemplo Placa Dupla Face sem Furo Metalizado:

- Roteamento da PCI:
 - Evitar fazer trilhas com ângulo de 90°, especialmente em circuitos comutados (chaveados);
 - Ângulo reto, a largura da trilha é aumentada para 1.414 vezes a sua largura original. Isso atrapalha as características da linha de transmissão, especialmente a capacitância distribuída e a indutância, resultando em reflexão

- Roteamento da PCI:
 - No caso de tensão ou corrente comutada (chaveada) fazer a trilha mais curta possível;
 - Dimensionar a largura das trilhas e a distância entre quaisquer entidades empregadas conforme a corrente e a tensão envolvidas;
 - Alguns produtos tem norma para distância mínimas entre as entidades, incluindo o invólucro.

Distância de Isolamento e Escoação

Ponto	Tensão de pico	Distância de escoamento [mm]		Foto
	[\(\)]	Mínima	Medida	(Anexo)
P7	300	1,0	0,70	
P11	492	1,47	0,50	3
P14	320	1,05	0,80	

- Roteamento da PCI:
 - O crosstalk pode existir entre duas quaisquer trilhas sobre uma PCI e acontece por conta da indutância mútua e capacitância mútua. É dependente da distância entre as duas trilhas, a frequência do sinal, e a impedância das trilhas

- Roteamento da PCI:
 - Se forem utilizadas mais do que duas camadas, uma camada completa pode ser utilizada como um plano de terra. No caso de uma placa de quatro camadas, a camada por baixo do plano de terra deve ser utilizada como um plano de VCC

- Distância mínima:

 FR4 has an initial dielectric rating of 800-900 Volts per <u>mil</u> but due to aging effects, a more realistic value is only 300 Volts

Material Type	Max. Operating Temperature (°C)	T/G °C	Voltage (V/mil) Note 1	Aged rating (V/mil)	W°C/m
FR4	105-130	160	800	300/150	0.21
FR4 Hi-Temp.	130-150	170	800	300/150	0.22
BT Epoxy	140-160	180	1300	600/400	0.40
Polyimide	150-190	200	900	700/500	0.25
HVPF*	180-200	210	3000 to 7000	3000/2000	0.28

Exemplo de observação de distâncias mínimas:
 Trafo de pulso com isolação de 2,5 kV (6 camadas)

– Roteamento da PCI:

- Separar o potencial GND (referência) do circuito de sinal do potencial GND do circuito de alta potência:
 - Fazer uma ligação somente do GND de sinal ao GND de alta potência;
 - Evitar fazer um caminho fechado (loop) no sinal do GND com o sinal GND de potência
- Em caso de utilização de circuitos para acionamento (drivers) de transistores, colocá-los próximos dos mesmos. Para isto, levar o sinal de PWM em trilhas paralelas e próximas até o driver.

Exemplo: Separar o potencial GND (referência) do circuito de sinal do potencial GND do circuito de alta potência:

Exemplo: Separar o potencial GND (referência) do circuito de sinal do potencial GND do circuito de alta potência:

Exemplo: Separar o potencial GND (referência) do circuito de sinal do potencial GND do circuito de alta potência:

180 V

Exemplo: Separar o potencial GND (referência) do circuito de sinal do potencial GND do circuito de alta potência:

Exemplo: Separar o potencial GND (referência) do circuito de sinal do potencial GND do circuito de alta potência:

- Roteamento da PCI:
 - Quando possível separar sinais de alta potência de sinais de baixa potência.
 - Quando possível, fazer uma placa de controle e uma de potência.

Placa única

- Roteamento da PCI:
 - Sempre que possível, levar as trilhas de sinais de medidas paralelas e próximas (sinal medido e referência);
 - Evitar a proximidade entre trilhas de sinais de medidas e elementos magnéticos e/ou capacitores chaveados;
 - Sempre colocar, o mais próximo possível, um capacitor multicamadas entre o pino Vcc e GND de qualquer circuito integrado.

Valor típico empregado = 100 nF.

– Roteamento da PCI:

 Circuito Integrado: Sempre observar as características do datasheet do CI na seção PCB Design ou Layout ou seção análoga;

4.2 Ideal Component Placement

Figure 5 shows ideal component placement and single sided PC trace connections for all critical power and EMI components with the ST204A schematic (Figure 3) used for reference.

A checklist is provided on the next page which is useful for uncovering potential PC layout related problems in any *TOPSwitch* power supply.

Exemplo: TOP202YAI - Power Integrations

Roteamento da PCI:

T: core THOMSON-CSF B1ET2910A (ETD 29 x 16 x 10mm) OR EQUIVALENT primary 90T of Litz wire 10 x 0.2mm secondary 7T of #27 AWG (0.15mm) gap 1.25mm for a total primary inductance of 0.8mH

Exemplo: L6560 - ST

– Roteamento da PCI:

 Circuito Integrado: Sempre observar as características do datasheet do CI na seção PCB Design ou Layout ou seção análoga;

10 Layout

10.1 Layout Guidelines

Standard PCB rules apply to routing the LM555. The 0.1-µF capacitor in parallel with a 1-µF electrolytic capacitor should be as close as possible to the LM555. The capacitor used for the time delay should also be placed as close to the discharge pin. A ground plane on the bottom layer can be used to provide better noise immunity and signal integrity.

Figure 20 is the basic layout for various applications.

- · C1 based on time delay calculations
- C2 0.01-µF bypass capacitor for control voltage pin
- C3 0.1-µF bypass ceramic capacitor
- C4 1-µF electrolytic bypass capacitor
- · R1 based on time delay calculations
- U1 LMC555

10.2 Layout Example

Exemplo: LM555

Figure 20. Layout Example

- Roteamento da PCI:
 - LM555 sem capacitor de desacoplamento na alimentação

- Roteamento da PCI:
 - LM555, capacitor de 10nF;

- Roteamento da PCI:
 - LM555, capacitor de 100nF;

- Roteamento da PCI:
 - Priorizar correntes de modo diferencial em uma PCI:

- Roteamento da PCI:

 Ao lidar com circuitos digitais, deve ser dada atenção extra para os sinais de clock e outros sinais de alta velocidade. Trilhas de ligação desses sinais devem ser as mais curtas possíveis e estarem ao lado do plano de terra

Problemas de compatibilidade

Medida sem referência

- Roteamento da PCI:
 - Utilizar filtro de modo comum do tipo LC entre dois estágios de potência (dois conversores chaveados).
 - Um bom sistema de referência (malhas de aterramento/ground/GND) é fundamental para evitar a disseminação de ruído em uma PCI.
 - Em caso de protótipos, prever na PCI pontos de medidas de corrente e de tensão.

– Malha de referência (terra):

- Indutâncias parasitas de retorno são minimizadas;
- Todas as referências do circuito têm praticamente o mesmo potencial (equipotencial/baixa impedância).

Plano de terra

 O plano de terra esteja sempre entre as trilhas de sinal de alta frequência e o plano de VCC. Se planos de alimentação separados não puderem ser usados, então a trilha de terra deve correr em paralelo com a de VCC para manter a alimentação sem ruídos

Blindagem

 Blindagem não é uma solução elétrica, mas uma abordagem mecânica para reduzir EMC. Caixas metálicas, feitos de materiais condutores e/ou magnéticos, são usados para evitar que a EMI irradie para fora do sistema.

