PGCD-BEZOUT-GAUSS

Table des matières

1	Activités mentales	1
2	PGCD	2
3	Algorithme d'Euclide	2
4	Théorème de Bézout	3
5	Théorème de Gauss	3
6	PPCM	4
7	Équation du type $ax + by = c$	4

1 Activités mentales

EXERCICE 1:

Déterminer de tête et à l'aide des règles de divisibilité, les PGCD des entiers suivants :

1. 12 et 42.

3. 92 et 69.

2. 45 et 105.

4. 72 et 108.

EXERCICE 2:

Sur un vélodrome, deux cyclistes partent en même temps d'un point M et roulent à vitesse constante.

Le coureur A boucle le tour en 35 secondes; le coureur B en 42 secondes.

Au bout de combien de temps le coureur A aura-t-il un tour d'avance sur le coureur B?

EXERCICE 3:

- 1. On veut découper un rectangle de 24 cm sur 40 cm en carrés dont le côté est le plus grand possible, sans perte. Combien doit mesurer le côté du carré ?
- **2.** On dispose d'un grand nombre de rectangles du type précédent que l'on veut assembler bord à bord pour former le carré le plus petit possible.

Combien doit mesurer le côté du carré?

EXERCICE 4:

Utiliser l'algorithme d'Euclide pour trouver le PGCD des nombres suivants :

1. 78 et 108.

3. 202 et 138.

2. 144 et 840.

EXERCICE 5:

 $Montrer\ que\ deux\ entiers\ naturels\ consécutifs\ non\ nuls\ sont\ premiers\ entre\ eux.$

EXERCICE 6:

En utilisant le théorème de Gauss, déterminer les couples d'entiers relatifs (x; y) qui vérifient les équations suivantes :

1.
$$5(x+3) = 4y$$

2.
$$41x + 9y = 0$$

EXERCICE 7:

Trouver un couple d'entiers relatifs (x; y) qui vérifie l'équation : 7x + 5y = 1.

EXERCICE 8:

Existe-il des couples d'entiers (x; y) solutions de chacune des équations suivantes ?

1.
$$37x + 25y = 1$$

2.
$$51x + 39y = 1$$

3.
$$51x + 39y = 2016$$

2 PGCD

EXERCICE 9:

Dresser la liste des diviseurs positifs de 72 et de 60. En déduire leur PGCD.

EXERCICE 10:

Si, en un point donné du ciel, un astre A apparaît tous les 28 jours et un astre B tous les 77 jours, avec quelle périodicité les verra-t-on simultanément en ce point?

EXERCICE 11:

Déterminer tous les entiers naturels n inférieurs à 200 tels que : PGCD(n;324) = 12.

EXERCICE 12:

a et b sont deux entiers naturels non nuls tels que a > b.

- **1.** Démontrer que : PGCD(a; b) = PGCD(a b; b).
- 2. Calculer les PGCD des entiers suivants par cette méthode, répétée autant de fois que nécessaire :
 - **a.** 308 et 165.

c. 735 et 210.

b. 1 008 et 308.

3 Algorithme d'Euclide

EXERCICE 13:

Utiliser l'algorithme d'Euclide pour trouver le PGCD des nombres suivants :

1. 441 et 777.

2. 2004 et 9185.

EXERCICE 14:

Utiliser l'algorithme d'Euclide pour trouver le PGCD des nombres suivants :

1. 2012 et 7545.

2. 1386 et 546.

EXERCICE 15:

Utiliser l'algorithme d'Euclide pour trouver le PGCD des nombres suivants :

1. 4935 et 517.

2. 1064 et 700.

EXERCICE 16:

Les entiers suivants sont-ils premiers entre eux?

1. 4847 et 5633.

2. 5617 et 813.

EXERCICE 17:

Si on divise 4294 et 3521 par un même entier positif, on obtient respectivement 10 et 11 comme reste.

Quel est cet entier?

EXERCICE 18:

En divisant 1 809 et 2 527 par un même entier naturel, les restes sont respectivement 9 et 7.

Quel est le plus grand nombre que l'on peut obtenir comme diviseur?

EXERCICE 19:

On note n un naturel non nul, a = 3n + 1 et b = 5n - 1.

- 1. Montrer que le PGCD(a, b) est un diviseur de 8.
- **2.** Pour quelles valeurs de n, PGCD(a, b) est-il égal à 8?

EXERCICE 20:

n est un entier relatif quelconque. On pose :

$$A = n - 1$$
 et $B = n^2 - 3n + 6$.

1. a. Démontrer que le PGCD de A et de B est égal au PGCD de A et de 4.

b. Déterminer, selon les valeurs de l'entier n, le PGCD de A et de B.

2. Pour quelles valeurs de l'entier relatif $n, n \neq 1$,

$$\frac{n^2-3n+6}{n-1}$$
 est-il un entier relatif?

Théorème de Bézout

EXERCICE 21:

Soit l'égalité de Bézout : «Soit a et b deux entiers non nuls et D leur PGCD. Il existe un couple d'entiers relatifs telle que au + bv = D».

- 1. Démontrer le théorème de Bézout «a et b sont premiers entre eux si, et seulement si, il existe un couple d'entiers relatifs (u; v) tel que au + bv = 1 ».
- **2.** En déduire que si PGCD(a;b) = D, alors a = Da' et b = Db' avec PGCD(a';b') = 1.

EXERCICE 22:

Démontrer que, pour tout relatif k,

(7k+3) et (2k+1) sont premiers entre eux.

EXERCICE 23:

n est un entier naturel, a = 7n + 4 et b = 5n + 3.

Montrer, pour tout n, que a et b sont premiers entre eux.

EXERCICE 24:

Démontrer que pour tout relatif n, les entiers (14n+3) et (5n+1) sont premiers entre eux. En déduire PGCD(87;31).

EXERCICE 25:

Prouver que la fraction $\frac{n}{2n+1}$ est irréductible pour tout entier naturel n.

EXERCICE 26:

Prouver que la fraction $\frac{2n+1}{n(n+1)}$ est irréductible pour tout entier naturel n.

La fraction $\frac{n^3 + n}{2n + 1}$ est-elle irréductible pour tout entier naturel n?

Montrer que 17 et 40 sont premiers entre eux puis déterminer un couple d'entiers relatifs (x; y) tel que : 17x - 40y = 1.

EXERCICE 29:

Montrer que 23 et 26 sont premiers entre eux puis déterminer un couple d'entiers relatifs (x; y) tel que : 23x + 26y = 1.

EXERCICE 30:

L'équation 6x + 3y = 1 admet-elle des solutions entières? Et l'équation 7x + 5y = 1?

EXERCICE 31:

Montrer que 221 et 331 sont premiers entre eux puis déterminer un couple d'entiers relatifs (x; y) tel que : 221x - 331y = 1.

EXERCICE 32: Vrai ou faux?

S'il existe deux entiers relatifs u et v tel que au + bv = 3, alors le PGCD de a et de b est égal à 3. Justifier.

EXERCICE 33:

Résoudre dans \mathbb{N}^2 les systèmes suivants.

On donnera la réponse sous forme d'un tableau.

1.
$$\begin{cases} xy = 1512 \\ PGCD(x, y) = 6 \end{cases}$$

2.
$$\begin{cases} xy = 300 \\ PGCD(x, y) = 5 \end{cases}$$

Théorème de Gauss

EXERCICE 34:

En utilisant le théorème de Gauss, déterminer les couples d'entiers relatifs (a; b) qui vérifient :

$$33a - 45b = 0$$
.

EXERCICE 35:

1. En utilisant le théorème de Gauss, déterminer les couples d'entiers relatifs (x; y) qui vérifient :

$$7(x-3) = 5(y-2).$$

2. De la question précédente, déterminer les entiers naturels x tels que : $7x \equiv 1$ (5).

EXERCICE 36:

En utilisant le théorème de Gauss, démontrer le corollaire du théorème de Gauss : «Si b et c divisent a et si b et c sont premiers entre eux, alors bc divise a ».

EXERCICE 37:

Montrer que si $n \equiv 0$ (8) et $n \equiv 0$ (9), alors $n \equiv 0$ (72).

6 PPCM

EXERCICE 38:

Soit deux entiers relatifs a et b.

On appelle PPCM(a;b) le plus petit multiple strictement positif de a et de b.

- **1.** Calculer *PPCM*(18; 12) et *PPCM*(24; 40).
- 2. Calculer $\frac{7}{6} + \frac{11}{15}$. Que représente *PPCM*(6; 15)?

EXERCICE 39:

On appelle D = PGCD(a; b) et

M = PPCM(a; b).

- **1.** Montrer que si a = Da' et b = Db', alors M = Da'b'.
- **2.** En déduire que : $D \times M = ab$.

7 Équation du type ax + by = c

EXERCICE 40:

Soit l'identité de Bézout : «Soit a et b deux entiers non nuls et D leur PGCD. Il existe un couple d'entiers relatifs tel que au + bv = D ».

Démontrer le corollaire du théorème de Bézout : «L'équation ax + by = c admet des solutions entières si, et seulement si, c est un multiple du PGCD(a; b) ».

EXERCICE 41:

Soit l'équation (E) : 4x - 3y = 2.

- 1. Déterminer une solution particulière entière à (E).
- 2. Déterminer l'ensemble des solutions entières.

EXERCICE 42:

Soit l'équation (F) : 3x - 4y = 6.

- 1. Déterminer une solution particulière entière à (F).
- 2. Déterminer l'ensemble des solutions entières.

EXERCICE 43:

Soit l'équation (G) : 5x + 8y = 2.

- 1. Déterminer une solution particulière entière à (G).
- 2. Déterminer l'ensemble des solutions entières.

EXERCICE 44:

Soit l'équation 13x - 23y = 1.

- 1. Déterminer une solution particulière entière, à l'aide de l'algorithme d'Euclide, à cette équation.
- 2. Déterminer l'ensemble des solutions entières.

EXERCICE 45:

1. Déterminer l'ensemble des couples (x; y) des nombres entiers relatifs, solutions de l'équation :

(E) :
$$8x - 5y = 3$$
.

2. Soit m un nombre entier relatif tel qu'il existe un couple (p;q) de nombres entiers vérifiant :

$$m = 8p + 1$$
 et $m = 5q + 4$.

Montrer que le couple (p, q) est solution de l'équation (E).

3. Déterminer le plus petit de ces nombres entiers *m* supérieur à 2 000.

EXERCICE 46:

1. On considère l'équation (E) à résoudre dans $\mathbb Z$:

$$7x - 5y = 1.$$

- a. Vérifier que le couple (3; 4) est solution de (E).
- **b.** Montrer que le couple d'entiers (x; y) est solution de (E) si, et seulement si, 7(x-3) = 5(y-4).
- **c.** Montrer que les solutions entières de l'équation (E) sont exactement les couples (*x*; *y*) d'entiers relatifs tels que :

$$\begin{cases} x = 5k + 3 \\ y = 7k + 4 \end{cases} \text{ où } k \in \mathbb{Z}.$$

2. Une boîte contient 25 jetons, des rouges, des verts et des blancs. Sur les 25 jetons, il y a *x* jetons rouges et *y* jetons verts.

Sachant que 7x - 5y = 1, quels peuvent être les nombres de jetons rouges, verts et blancs ?

	Exercice 1:	0/
	1. $PGCD(12; 42) = 6$ 3. $PGCD(92; 69) = 23$	
4.	2. $PGCD(45; 105) = 15$ 4. $PGCD(72; 108) = 36$	
	2. 1 GOD (13, 100) = 10	
	Exercice 2:	0/
	$PGCD(35, 42) = 7$ et $35 = 7 \times 5$, $42 = 7 \times 6$.	
	Lorsque le coureur A aura fait 6 tours, le coureur B aura fait 5 tours, soit un temps de $35 \times 6 = 210$ s.	
	Exercice 3:	0/
	1. $PGCD(24; 40) = 8$. Le côté du carré doit diviser 24 et 40, donc le plus grand côté possible est de 8 cm.	
2.	2. $40 = 8 \times 5$ et $24 = 8 \times 3$	
	Pour former le plus petit carré, il faut mettre 3 fois la longueur et 5 fois la largeur du rectangle, soit	
	120 cm.	
	Exercice 4:	0/
		0,
	1. $PGCD(78;108) = 6 \text{ car}$	
	$108 = 78 \times 1 + 30$	
	$78 = 30 \times 2 + 18$	
	$30 = 18 \times 1 + 12$	
	$18 = 12 \times 1 + 6$	
	$12 = 6 \times 2$	
	2. <i>PGCD</i> (144;840) = 24 car	
	$840 = 144 \times 5 + 120$	
3.	$144 = 120 \times 1 + 24$	
	$120 = 24 \times 5$	
	3. $PGCD(202;138) = 2$ car	
	$202 = 138 \times 1 + 64$	
	$138 = 64 \times 2 + 10$	
	$64 = 10 \times 6 + 4$	
	$10 = 4 \times 2 + 2$	
	$4 = 2 \times 2$	
	Exercice 5:	0/
	(-1)n+1(n+1)=1. Donc d'après le théorème de Bézout, n et $(n+1)$ sont premiers entre eux.	
	Exercice 6:	0/

		I		
	1. 4 divise $5(x+3)$. Or $PGCD(4,5) = 1$, donc d'après le théorème de Gauss, 4 divise $(x+3)$.			
	On a donc $x + 3 = 4k$.			
	En remplaçant dans l'équation, on obtient $y = 5k$.			
	Les couples solutions sont : $\begin{cases} x = -3 + 4k \\ y = 5k \end{cases}, k \in \mathbb{Z}$			
2.	2. $41x = 9(-y)$ (1)			
	9 divise $41x$. Or $PGCD(9,41) = 1$, donc d'après le théorème de Gauss, 9 divise x .			
On a donc $x = 9k$.				
	En remplaçant dans l'équation, on obtient $y = -41k$.			
	Les couples solutions sont : $\begin{cases} x = 9k \\ y = -41k \end{cases}, k \in \mathbb{Z}$			
	$(y - 41\kappa)$			
	Exercice 7:	0/		
	(-2;3) est solution.			
	Exercice 8:	0/		
	1. Oui car $PGCD(37; 25) = 1$, donc d'après le théorème de Bézout, il existe au moins un couple solu-			
	tion.			
	2. Non car $PGCD(51; 39) = 3$ et comme 1 n'est pas multiple de 3, d'après le corollaire de Bézout, il			
3.	n'y a pas de solution.			
	3. Oui car <i>PGCD</i> (51; 39) = 3 et comme 2016 est divisible par 3, d'après le corollaire du Bézout, il			
	existe des solutions entières.			
	Exercice 9:			
	Exercice 10: Exercice 11:			
	Exercise 11:			
	Exercise 12:			
	Exercice 13:			
	1. <i>PGCD</i> (441; 777) = 21 car			
	$777 = 441 \times 1 + 336$			
	$441 = 336 \times 1 + 105$			
	$336 = 105 \times 3 + 21$			
	$105 = 21 \times 5$			
2.	2. <i>PGCD</i> (9185; 2004) = 167 car			
	$9185 = 2004 \times 4 + 1169$			
	$2004 = 1169 \times 1 + 835$			
	$1169 = 835 \times 1 + 334$			
	$835 = 334 \times 2 + 167$			
	$334 = 167 \times 2$			
	Exercice 14:			
	Exercice 15:	0/		
	Exercice 16: 0/			
	Exercice 17:			
	Exercice 18:	0/		

Exercice 19:		0/
Exercice 20:		0/
Exercice 21:		0/
Exercice 22:		0/
(-2)(7k+3) +	-7(2k+1) = -14k - 6 + 14k + 7 = 1.	
D'après le thé	Forème de Bézout, $(7k+3)$ et $(2k+1)$ sont premiers entre eux pour tout entier relatif k .	
Exercice 23:		0/
Exercice 24:		0/
Exercice 25:		0/
Exercice 26:		0/
Exercice 27:		0/
Exercice 28:		0/
	gorithme d'Euclide :	
$40 = 17 \times 2 + 6$	• •	
$17 = 6 \times 2 + 5$	(2)	
$6 = 5 \times 1 + 1$	(3)	
40 et 17 sont	donc premiers entre eux.	
On remonte l	'algorithme d'Euclide :	
de (3), on obt		
On remplace	dans (2):	
	donc $6 \times 3 = 17 + 1$	
On multiplie	(1) par 3	
$40 \times 3 = 17 \times 6$		
= 17 × 6	5+17+1	
$=17\times7$	7+1	
On a alors 17	$7 \times (-7) - 40 \times (-3) = 1.$	
Exercice 29:		0/
Exercice 30:		0/
Exercice 31:		0/
Exercice 32:	Vrai ou faux?	0/
Exercice 33:		0/
Exercice 34:		0/
Exercice 35:		0/
Exercice 36:		0/
Exercice 37:		0/
Exercice 38:		0/
Exercice 39:		0/
Exercice 40:		0/
Exercice 41:		0/

2.

- (2; 2) est une solution particulière.
- Soit (x; y) la solution générale, on écrit :

$$\begin{cases} 4x - 3y = 2\\ 4(2) - 3(2) = 2 \end{cases}$$

En soustrayant termes à termes, on obtient :

4(x-2) = 3(y-2) (1)

3 divise 4(x-2). Or PGCD(4;3)=1, donc d'après le théorème de Gauss, 3 divise (x-2). On a alors : x-2=3k.

En remplaçant dans (1), on obtient : y-2=4k.

L'ensemble des couples solutions est de la forme :

$$\begin{cases} x = 2 + 3k \\ y = 2 + 4k \end{cases} \quad k \in \mathbb{Z}$$

Exercice 42:	0/
Exercice 43:	0/
Exercice 44:	0/
Exercice 45:	0/
Exercice 46:	0/