Package 'frab'

July 20, 2023

Type Package

2 frab-package

Index 15

An Alternative Interpretation of Named Vectors frab-package

Description

An alternative interpretation of named vectors as generalized tables, so that c(a=1,b=2,c=3) + c(b=3,a=-1) will return c(b=5,c=3). Uses 'disordR' discipline (Hankin, 2022, <doi:10.48550/ARXIV.2210.03856>). Extraction and replacement methods are provided. The underlying mathematical structure is the Free Abelian group, hence the name.

Details

The DESCRIPTION file:

Package: frab Type: Package

Title: An Alternative Interpretation of Named Vectors

Version: 0.0 - 1

Authors@R: person(given=c("Robin", "K. S."), family="Hankin", role = c("aut", "cre"), email="hankin.robin@gma

Maintainer: Robin K. S. Hankin hankin.robin@gmail.com

Description: An alternative interpretation of named vectors as generalized tables, so that c(a=1,b=2,c=3) + c(b=3,a=1)

License: GPL (>= 2)Depends: R (>= 3.5.0)

knitr, markdown, rmarkdown, testthat Suggests:

knitr VignetteBuilder:

Rcpp (>= 1.0-7), mathjaxr, disordR (>= 0.9-8-1), methods Imports:

LinkingTo:

URL: https://github.com/RobinHankin/frab https://github.com/RobinHankin/frab BugReports:

RdMacros:

Author: Robin K. S. Hankin [aut, cre] (https://orcid.org/0000-0001-5982-0415)

Index of help topics:

Compare-methods Comparision methods

arith Extraction and replacement methods for class

'"frab"'

extract Extraction and replacement methods for class

'"frab"'

frab Creating 'frab' objects

Class "frab" frab-class

frab-package An Alternative Interpretation of Named Vectors

Named vectors and the frab package is.namedvector

Miscellaneous functions misc

Parallel maxima and minima for frabs pmax

Methods for printing frabs print

rfrab Random frabs

table Tables and frab objects The zero frab object zero

Arith 3

Author(s)

NA

Maintainer: Robin K. S. Hankin hankin.robin@gmail.com

Examples

```
x <- frab(c(a=1, b=2, c=5))
y <- frab(c(b=-2, c=1, d=8))
x+y</pre>
```

Arith

Extraction and replacement methods for class "frab"

Description

The frab class provides basic arithmetic methods for frab objects. Low-level helper functions c_frab_eq() amd c_frab_pmax() are documented here for consistency; but technically c_frab_eq() is a Comparison operator, and c_frab_pmax() is an "Extremes" function. They are documented at Compare.Rd and pmax.Rd respectively.

Usage

```
frab_negative(x)
frab_reciprocal(x)
frab_plus_frab(F1,F2)
frab_multiply_numeric(e1,e2)
frab_power_numeric(e1,e2)
numeric_multiply_frab(e1,e2)
numeric_power_frab(e1,e2)
frab_unary(e1,e2)
frab_arith_frab(e1,e2)
frab_arith_numeric(e1,e2)
numeric_arith_frab(e1,e2)
```

Arguments

```
e1, e2, x, F1, F2 Objects of class frab, coerced if needed
```

Value

Return frab objects

Methods

```
Arith signature(e1="frab", e2="missing"): blah blah blah
Arith signature(e1="frab", e2="frab"): ...
Arith signature(e1="frab", e2="numeric"): ...
Arith signature(e1="numeric", e2="frab"): ...
Arith signature(e1="ANY", e2="frab"): ...
Arith signature(e1="frab", e2="ANY"): ...
```

4 Compare-methods

Author(s)

Robin K. S. Hankin

See Also

Compare

Examples

```
x <- frab(c(a=1,b=2,c=3))
y <- frab(c(b=-2,d=8))
x+y</pre>
```

Compare-methods

Comparision methods

Description

Methods for comparison (greater than, etc) in the **frab** package.

Functions frab_gt_num() etc follow a consistent naming convention; the mnemonic is the old Fortran .GT. scheme [for "greater than"].

Function frab_eq() is an odd-ball, formally documented at Arith.Rd. It is slightly different from the other comparisons: it calls low-level helper function c_frab_eq(), which calls its C namesake which is written for speed (specifically, returning FALSE as soon as it spots a difference between its two arguments).

Usage

```
frab_eq(e1,e2)
frab_compare_frab(e1,e2)
frab_eq_num(e1,e2)
frab_gt_num(e1,e2)
frab_ge_num(e1,e2)
frab_lt_num(e1,e2)
frab_le_num(e1,e2)
frab_compare_numeric(e1,e2)
num_eq_frab(e1,e2)
num_gt_frab(e1,e2)
num_ge_frab(e1,e2)
num_lt_frab(e1,e2)
num_le_frab(e1,e2)
num_le_frab(e1,e2)
numeric_compare_frab(e1,e2)
```

Arguments

e1,e2

Objects of class frab

Extract 5

Value

Generally, return a frab or a logical

Author(s)

Robin K. S. Hankin

See Also

Arith

Examples

```
rfrab()
a <- rfrab(26,sym=letters)
a[a<4] <- 100</pre>
```

Extract

Extraction and replacement methods for class "frab"

Description

The frab class provides basic arithmetic and extract/replace methods for frab objects.

Class *index* is taken from the excellent **Matrix** package and is a setClassUnion() of classes numeric, logical, and character.

Value

Generally, return a frab object.

Methods

```
[ signature(x = "frab", i = "character", j = "missing"): x["a"] <- 33
[ signature(x = "frab", i = "disord", j = "missing"): x[x>3]
[ signature(x = "frab", i = "missing", j = "missing"): x[]
[<- signature(x = "frab", i = "character", j = "missing", value = "ANY"): x["a"] <- 3
[<- signature(x = "frab", i = "disord", j = "missing", value="frab"): x[x<0] <- -x[x<0];
    not implemented
[<- signature(x = "frab", i = "ANY", j = "ANY", value = "ANY"): not implemented
[<- signature(x = "frab", i = "disindex", j = "missing", value = "numeric"): x[x>0] <- 3
Double square extraction, as in x[[i]] and x[[i]] <- value, is not currently defined.</pre>
```

Author(s)

6 frab

Examples

```
frab(setNames(seq_len(0),letters[seq_len(0)]))
a <- rfrab(26,sym=letters)
a<4
a[a<4]
a[a<4] <- 100
a

x <- rfrab()
values(x) <- values(x) + 66

x <- rfrabb()
v <- values(x)
v[v<0] <- abs(v[v<0]) + 50
values(x) <- v</pre>
```

frab

Creating frab objects

Description

Package idiom for creating frab objects

Usage

```
frab(x)
as.frab(x)
is.frab(x)
list_to_frab(L)
```

Arguments

x object coerced to, or tested for, frab

L List of two elements, a numeric vector named values and a character vector named names

Details

Function frab() is the creation method, taking a named numeric vector as its argument; it is the only function in the package that actually calls new("frab", ...).

Function as.frab() tries a bit harder to be useful and can coerce different types of object to a frab. If given a list it dispatches to list_to_frab(). If given a table it dispatches to table_to_frab(), documented at table.Rd.

Value

Returns a frab, or a boolean

Author(s)

frab-class 7

See Also

```
frab-class
```

Examples

```
as.frab(c(a=2,b=1,c=77))
as.frab(list(names=letters[5:2],values=1:4))
```

frab-class

Class "frab"

Description

The formal S4 class for frab objects

Usage

```
## $4 method for signature 'frab'
names(x)
## $4 method for signature 'frab'
namedvector(x)
```

Arguments

Х

Object of class frab

Objects from the Class

Formal class frab has a single slot x which is a named numeric vector.

The class has three accessor methods: names(), values(), and namedvector().

Author(s)

Robin K. S. Hankin

```
new("frab", x=c(a=6,b=4,c=1)) # formal creation method (discouraged) frab(c(a=4,b=1,c=5)) # use frab() in day-to-day work frab(c(a=4,b=0,c=5)) # zero entries are discarded frab(c(a=4,b=3,b=5)) # repeted entries are summed frab(c(apple=4,orange=3,cherry=5)) # any names are OK x \leftarrow frab(c(d=1,y=3,a=2,b=5,rug=7,c=2)) (y \leftarrow rfrab())
```

8 misc

```
x+y  # addition works as expected
x + 2*y  # arithmetic
x>2  # extraction
x[x>3] <- 99 # replacement

# sum(x)  # some summary methods implemented
# max(x)</pre>
```

misc

Miscellaneous functions

Description

This page documents various functions that work for frabs, and I will add to these from time to time as I add new functions that make sense for frab objects. To use functions like sin() and abs() on frab object x, work with values(x) (which is a disord object). However, there are a few functions that are a little more involved:

- length() returns the length of the data component of the object.
- which() returns a disind object when given a Boolean frab
- is.na() returns a logical disord object

Usage

```
## S4 method for signature 'frab'
length(x)
```

Arguments

Χ

Object of class frab

Value

Generally return frabs

Note

note here

Author(s)

Robin K. S. Hankin

See Also

extract

namedvector 9

Examples

```
(a <- frab(c(a=1,b=NA,c=44,x=NA,h=4)))
is.na(a)

(x <- frab(c(x=5,y=2,z=3,a=7,b=6)))
which(x>3)
x[which(x>3)]
x[which(x>3)] <- 4
x

is.na(x) <- x<3
x
x[is.na(x)] <- 100
x</pre>
```

namedvector

Named vectors and the frab package

Description

Named vectors are closely related to frab objects, but are not the same. However, there is a natural coercion from one to the other.

Usage

```
is.namedvector(v)
is.namedlogical(v)
is.unnamedlogical(v)
is.unnamedvector(v)
```

Arguments

٧

Argument to be tested or coerced

Details

Coercion and testing for named vectors. Function nv_to_frab(), documented at frab.Rd, coerces a named vector to a frab.

Value

Function is.namedvector() returns a boolean, function as.namedvector() returns a named vector.

Author(s)

10 pmax

Examples

```
x <- c(a=5, b=3, c=-2,b=-3, x=33)
is.namedvector(x)
as.namedvector(frab(x))

x <- c(a=5, b=3, c=-2)
y <- c(p=1, c=2, d= 6)

x
y
x+y

frab(x) + frab(y)</pre>
```

pmax

Parallel maxima and minima for frabs

Description

Parallel (pairwise) maxima and minima for frabs.

Usage

```
pmax_pair(F1,F2)
pmin_pair(F1,F2)
pmax_dots(x, ...)
pmin_dots(x, ...)
## S4 method for signature 'frab'
pmax(...)
## S4 method for signature 'frab'
pmin(...)
```

Arguments

```
F1, F2, x, ... Frab objects
```

Details

Pairwise minima and maxima for frabs, using names as the primary key.

```
Functions pmax_pair() calls c_frab_pmax() and pmin_pair() use
```

Functions pmax() and pmin() use the same mechanism as cbrob() of the **Brobdingnag** package, originally due to John Chambers (pers. comm.)

Value

Returns a frab object

Author(s)

print 11

Examples

```
x <- rfrab()
y <- rfrab()</pre>
```

print

Methods for printing frabs

Description

Methods for printing frabs nicely

Usage

```
## S4 method for signature 'frab'
show(object)
frab_print(object)
```

Arguments

object

An object of class frab

Details

The method is sensitive to option frab_print_hash. If TRUE, the hash code is printed; otherwise it is not.

Function frab_print() returns its argument, invisibly.

There is special dispensation for the empty frab object.

Value

Returns its argument, invisibly

Author(s)

Robin K. S. Hankin

```
print(rfrab()) # default

options(frab_print_hash = TRUE)
print(rfrab()) # prints hash code

options(frab_print_hash = NULL) # restore default
```

12 rfrab

rfrab Random frabs

Description

Random frab objects, intended as quick "get you going" examples

Usage

```
rfrab(n = 9, v = seq_len(5), symb = letters[seq_len(9)])
rfrabb(n = 100, v = -5:5, symb = letters)
rfrabbb(n = 5000, v = -10:10, symb = letters, i=3)
```

Arguments

n	Length of object to return

v Values to assign to symbols (see details)

symb Symbols to use

i Exponentiating index for rfrabbb()

Details

What you see is what you get, basically. If a symbol is chosen more than once, as in, c(a=1,b=2,a=3), then the value for a will be summed.

Use function rfrab() for a small, easily-managed object; rfrabb() and rfrabbb() give successively larger objects.

Value

Returns a frab object

Author(s)

Robin K. S. Hankin

```
rfrab()
```

table 13

table

Tables and frab objects

Description

Various methods and functions to deal with tables in the frab package.

Usage

```
## S4 method for signature 'frab'
as.table(x,...)
table_to_frab(x)
```

Arguments

x Object of class frab or table

... Further arguments, currently ignored

Details

If a frab object has non-negative entries it may be interpreted as a table. However, in base R, table objects do not have sensible addition methods which is why the **frab** package is needed.

Function is.1dtable() checks for its argument being a one-dimensional table. The idea is that a table like table(sample(letters, 30, TRUE)), being a table of a single observation, is accepted but a table like table(data.frame(rnorm(20)>0, rnorm(20)>0)) is not acceptable because it is a *two*-dimensional contingency table.

Value

Generally return a table or frab.

Note

The order of the entries may be changed during the coercion, as per **disordR** discipline. Function as.frab() takes a table, dispatching to table_to_frab().

Author(s)

Robin K. S. Hankin

```
X <- table(letters[c(1,1,1,1,2,3,3)])
Y <- table(letters[c(1,1,1,1,3,4,4)])
Z <- table(letters[c(1,1,2,3,4,5,5)])

X+Y  # defined but nonsense

# X+Z  # returns an error

as.frab(X) + as.frab(Y)  # correct answer</pre>
```

14 zero

```
plot(as.table(rfrab()))
```

zero

The zero frab object

Description

Test for a frab object's being zero (empty).

Usage

```
zero(...)
is.zero(x)
is.empty(x)
```

Arguments

x Object of class frab

... Further arguments (currently ignored)

Details

Function zero() returns the empty frab object; this is the additive identity 0 with property x+0=0+x=x.

Function is.zero() returns TRUE if its argument is indeed the zero object.

Function is.empty() is a synonym for is.zero(). Sometimes one is thinking about the free Abelian group, in which case is.zero() makes more sense, and sometimes one is thinking about maps and tables, in which case is.empty() is more appropriate.

Value

Function zero() returns the zero frab object, function is.zero() a Boolean

Author(s)

Robin K. S. Hankin

```
zero()
zero() + zero()
x <- rfrab()
x+zero() == x
is.zero(zero())</pre>
```

Index

```
!, frab-method (misc), 8
                                                 [<-, frab, disindex, missing, numeric, ANY-method
* classes
                                                          (Extract), 5
                                                 [<-,frab,disindex,missing,numeric-method
    frab-class, 7
                                                          (Extract), 5
* math
                                                 [<-,frab,disord,missing,frab-method
    Compare-methods, 4
                                                          (Extract), 5
    print, 11
                                                 [<-,frab,disord,missing,numeric-method
* methods
                                                          (Extract), 5
    Compare-methods, 4
                                                 [<-,frab,disord,missing-method
* package
                                                          (Extract), 5
    frab-package, 2
                                                 [<-,frab,missing,missing,ANY-method
* symbolmath
                                                          (Extract), 5
    zero, 14
[(Extract), 5
                                                 Arith, 3, 5
[, ANY, frab, ANY-method (Extract), 5
                                                 arith (Arith), 3
[,frab,ANY,ANY-method(Extract),5
                                                 Arith, ANY, frab-method (Arith), 3
[,frab,ANY,missing,ANY-method
                                                 Arith, frab, ANY-method (Arith), 3
        (Extract), 5
                                                 Arith, frab, frab-method (Arith), 3
[,frab,character,missing,ANY-method
                                                 Arith, frab, missing-method (Arith), 3
        (Extract), 5
                                                 Arith, frab, numeric-method (Arith), 3
\hbox{\tt [,frab,character,missing-method]}
                                                 as.frab(frab), 6
        (Extract), 5
                                                 as.namedvector(namedvector), 9
[,frab,disindex,missing,ANY-method
                                                 as.table(table), 13
        (Extract), 5
                                                 as.table, frab-method (table), 13
[,frab,disord,missing,ANY-method
        (Extract), 5
                                                 c_frab_add (Arith), 3
[,frab,disord,missing-method(Extract),
                                                 c_frab_eq(Arith), 3
                                                 c_frab_identity (Arith), 3
[,frab,frab,missing,ANY-method
                                                 c_frab_pmax (Arith), 3
        (Extract), 5
                                                 Compare, 4
[,frab,frab,missing-method(Extract),5
                                                 Compare, frab, frab-method
[,frab,missing,index-method(Extract),5
                                                          (Compare-methods), 4
[,frab,missing,missing,ANY-method
                                                 Compare, frab, numeric-method
        (Extract), 5
                                                          (Compare-methods), 4
[,frab,missing,missing-method
                                                 Compare, numeric, frab-method
        (Extract), 5
                                                          (Compare-methods), 4
[,frab-method(Extract), 5
                                                 Compare-methods, 4
[.frab (Extract), 5
[<- (Extract), 5
                                                 empty (zero), 14
[<-, frab, ANY, ANY, ANY-method (Extract), 5
                                                 Extract, 5
[<-, frab, character, missing, numeric-method
                                                 extract, 8
        (Extract), 5
                                                 extract (Extract), 5
[<-,frab,character,missing-method
        (Extract), 5
                                                 frab, 6
```

16 INDEX

ods),
ods),
ods),
ods),
ods),
ct), 5
act),
,,