Homework 3

Matt Swartz and John Tippie

Problem 1 (Golan 124). Let F be a field and let (K, \bullet) be an associative unital F-algebra. If A and B are subsets of K, we let $A \bullet B$ be the set of all elements of K of the form $a \bullet b$, with $a \in A$ and $b \in B$ (in particular, $\emptyset \bullet B = A \bullet \emptyset = \emptyset$). We know that the set V of all subsets of K is a vector space over GF(2). Is (V, \bullet) a GF(2)-algebra? If so, is it associative? Is it unital?

Solution. (type your solution here)

Problem 2 (Golan 132). Let F be a field and let L be the set of all polynomials $f(X) \in F[X]$ satisfying the condition that f(-a) = -f(a) for all $a \in F$. Is L a subspace of F[X]?

Solution. L is the set of odd polynomials (i.e. only odd powers of x). To show that L is a subspace of F[X], we need to show that L is a vector space in its own right with respect to the addition and scalar multiplication defined on F. Let $f, g \in L$, then $f(X) + g(X) = \sum_{i=0}^{\infty} a_{2i+1}X^{2i+1} + \sum_{i=0}^{\infty} b_{2i+1}X^{2i+1} = \sum_{i=0}^{\infty} (a_{2i+1} + b_{2i+1})X^{2i+1} = \sum_{i=0}^{\infty} c_{2i+1}X^{2i+1} \in L$. Let $c \in F$, then $cf(X) = c\sum_{i=0}^{\infty} a_{2i+1}X^{2i+1} = \sum_{i=0}^{\infty} ca_{2i+1}X^{2i+1} = \sum_{i=0}^{\infty} b_{2i+1}X^{2i+1} \in L$. Thus, L is a subspace of F[X].

Problem 3 (Golan 133). Let F be a field and let L be the set of all polynomials $f(X) \in F[X]$ satisfying the condition that $\deg(f)$ is even. Is L a subspace of F[X]?

Solution. L is the set of polynomials with the highest power of even order. To show that L is a subspace of F[X], we need to show that L is a vector space in its own right with respect to the addition and scalar multiplication defined on F. Let $f, g \in L$, then $f(X) + g(X) = \sum_{i=0}^{\infty} a_{2i}X^{2i} + \sum_{i=0}^{\infty} b_{2i}X^{2i} = \sum_{i=0}^{\infty} (a_{2i} + b_{2i})X^{2i} = \sum_{i=0}^{\infty} c_{2i}X^{2i} \in L$. Let $c \in F$, then $cf(X) = c\sum_{i=0}^{\infty} a_{2i}X^{2i} = \sum_{i=0}^{\infty} ca_{2i}X^{2i} = \sum_{i=0}^{\infty} b_{2i}X^{2i} \in L$. Thus, L is a subspace of F[X].

Problem 4 (Golan 142). For a field F, compare the subsets $F[X^2]$ and $F[X^2+1]$ of F[X].

Solution. $f(X) \in F[X]$ is defined as $\sum_{i=0}^{\infty} a_i X^i$, $f(X) \in F[X^2]$ is defined as $\sum_{i=0}^{\infty} a_{2i} X^{2i}$, and $f(X) \in F[X^2 + 1]$ is defined as $\sum_{i=0}^{\infty} a_{2i}(X^2 + 1)^i$. So, $F[X^2] = \{1, X^2, X^4, X^6, ...\}$ and $F[X^2 + 1] = \{1, X^2 + 1, (X^2 + 1)^2, (X^2 + 1)^3, ...\} = \{1, X^2 + 1, X^4 + 2X^2 + 1, X^6 + 3X^4 + 2X^4 + 1, X^6 + 3X^4 + 2X^4 + 1, X^6 + 3X^4 + 1, X^6 + 3X^6 + 1, X^6 + 3X^6 + 1, X^6 + 1, X^6$ (e.g. $X^4 + 2X^2 + 1 = n_3 + 2n_2 + n_1$ for $n_i \in F[X^2]$). Similarly, $F[X^2 + 1] \subseteq F[X^2]$ (e.g. $X^6 = m_4 - 3m_3 + 3m_2 - m_1$ for $m_i \in F[X^2 + 1]$). Thus, $F[X^2] = F[X^2 + 1]$.

Problem 5 (Golan 154). Let F be a field and let $K = F^{\mathbb{N}}$. Define operations + and \bullet on K by setting $f + g : i \mapsto f(i) + g(i)$ and $f \bullet g : i \mapsto \sum_{j+k=i} f(j)g(k)$. Show that K is a an associative and commutative unital F-algebra. Is it entire?

Solution. To show that K is an associative commutative unital F-algebra, we want to show the following conditions hold: let $u, v, w \in K, a \in F$

1.
$$u \bullet (v + w) = u \bullet x = \sum_{j+k=i} u(j)x(k) = \sum_{j+k=i} u(j)[v(k) + w(k)] = \sum_{j+k=i} u(j)v(k) + \sum_{j+k=i} u(j)w(k) = u \bullet v + u \bullet w,$$

2.
$$(u+v) \bullet w = x \bullet w = \sum_{j+k=i} x(j)w(k) = \sum_{j+k=i} [u(j)+v(j)]w(k) = \sum_{j+k=i} u(j)w(k) + \sum_{j+k=i} v(j)w(k) = u \bullet w + v \bullet w,$$

3. $a(v \bullet w) = a \sum_{j+k=i} v(j)w(k) = \sum_{j+k=i} [av(j)]w(k) = (av) \bullet w = \sum_{j+k=i} v(j)[aw(k)] = v \bullet (aw),$

3.
$$a(v \bullet w) = a \sum_{j+k=i} v(j)w(k) = \sum_{j+k=i} [av(j)]w(k) = (av) \bullet w = \sum_{j+k=i} v(j)[aw(k)] = v \bullet (aw),$$

- 5. $v \bullet e =$

6.
$$v \bullet w = \sum_{j+k=i} v(j)w(k) = \sum_{k+j=i} w(k)v(j) = w \bullet v$$

6. $v \bullet w = \sum_{j+k=i} v(j)w(k) = \sum_{k+j=i} w(k)v(j) = w \bullet v$, If $v, w \neq 0$, then $v \bullet w = \sum_{j+k=i} v(j)w(k)$ could be equal to 0 if the vectors v and w are orthogonal. Therefore, K is not entire.

Problem 6 (Golan 157). A trigonometric polynomial in $\mathbb{R}^{\mathbb{R}}$ is a function of the form $t \mapsto$ $a_0 + \sum_{h=1}^{k} [a_h \cos(ht) + b_h \sin(ht)]$, where $a_0, \dots, a_k, b_1, \dots, b_k \in \mathbb{R}$. Show that the subset, K, of $\mathbb{R}^{\mathbb{R}}$ consisting of all trigonometric polynomials is an entire \mathbb{R} -algebra.

Solution. Let $u, v, w \in K$ and $a \in \mathbb{R}^{\mathbb{R}}$. To show that K is an entire \mathbb{R} -algebra, we want to show the following:

1.
$$u \bullet (v + w) = u \bullet x = \sum_{j+k=i} u(j)x(k) = \sum_{j+k=i} u(j)[v(k) + w(k)] = \sum_{j+k=i} u(j)v(k) + \sum_{j+k=i} u(j)w(k) = u \bullet v + u \bullet w,$$

$$\sum_{j+k=i} u(j)w(k) = u \bullet v + u \bullet w,$$

$$\sum_{j+k=i} u(j)w(k) = u \bullet v + u \bullet w,$$
2. $(u+v) \bullet w = x \bullet w = \sum_{j+k=i} x(j)w(k) = \sum_{j+k=i} [u(j) + v(j)]w(k) = \sum_{j+k=i} u(j)w(k) + \sum_{j+k=i} v(j)w(k) = u \bullet w + v \bullet w,$
3. $a(v \bullet w) = a \sum_{j+k=i} v(j)w(k) = \sum_{j+k=i} [av(j)]w(k) = (av) \bullet w = \sum_{j+k=i} v(j)[aw(k)] = v \bullet (aw).$
Let $f_i = a_0 + \sum_{h=1}^k [a_h \cos(ht) + b_h \sin(ht)] = a_0 + b_0$ and $g_i = c_0 + \sum_{h=1}^k [c_h \cos(ht) + b_h \sin(ht)] = a_0 + b_0$ and $g_i = c_0 + \sum_{h=1}^k [c_h \cos(ht) + b_h \sin(ht)] = a_0 + b_0$ and $g_i = c_0 + \sum_{h=1}^k [c_h \cos(ht) + b_h \sin(ht)] = a_0 + b_0$ and $g_i = c_0 + \sum_{h=1}^k [c_h \cos(ht) + b_h \sin(ht)] = a_0 + b_0$ and $g_i = c_0 + \sum_{h=1}^k [c_h \cos(ht) + b_h \sin(ht)] = a_0 + b_0$

3.
$$a(v \bullet w) = a \sum_{j+k=i} v(j)w(k) = \sum_{j+k=i} [av(j)]w(k) = (av) \bullet w = \sum_{j+k=i} v(j)[aw(k)] = v \bullet (aw).$$

Let $f_i = a_0 + \sum_{h=1}^k [a_h \cos(ht) + b_h \sin(ht)] = a_0 + b_0$ and $g_i = c_0 + \sum_{h=1}^k [c_h \cos(ht) + d_h \sin(ht)] = a_0 + d_0$. If $f_i, g_i \neq 0$, then $f_i \bullet g_i = (a_0 + b_0)(c_0 + d_0) = a_0c_0 + a_0d_0 + b_0c_0 + b_0d_0$. Here, we have 4 cases:

- 1. $a_0 = 0, b_0 \neq 0$ $c_0 = 0, d_0 \neq 0$
- 2. $a_0 = 0, b_0 \neq 0 c_0 \neq 0, d_0 = 0$
- 3. $a_0 \neq 0, b_0 = 0, c_0 = 0, d_0 \neq 0$
- 4. $a_0 \neq 0, b_0 = 0 c_0 \neq 0, d_0 = 0$

Problem 7 (Golan 163). Let $F = \mathbb{Q}$. Is the subset

$$\left\{ \begin{bmatrix} 4\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\4 \end{bmatrix} \right\}$$

of F^3 linearly independent? What happens if F = GF(5)?

Solution. To see if the subset $\left\{ \begin{bmatrix} 4\\2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\3\\4 \end{bmatrix} \right\}$ of F^3 is linearly independent, we can perform row operations to reach a RREF form of the matrix

$$\left[\begin{array}{ccc}
4 & 1 & 1 \\
2 & 0 & 3 \\
1 & 0 & 4
\end{array}\right]$$

We proceed as follows:

$$\begin{bmatrix} 4 & 1 & 1 \\ 2 & 0 & 3 \\ 1 & 0 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 \\ 4 & 1 & 1 \\ 2 & 0 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -15 \\ 0 & 0 & 5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -15 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Thus, the subset is linearly independent.

Problem 8 (Golan 177). Show that the subset

$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\2 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}$$

is a linearly independent subset of $GF(p)^3$ if and only if $p \neq 3$.

Solution. Let p = 3. Perform row reductions as follows:

$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Thus, The set is linearly dependent if p = 3.

Let $p \neq 3$. Then if we set

$$a\begin{bmatrix}1\\2\\0\end{bmatrix}+b\begin{bmatrix}0\\1\\2\end{bmatrix}=c\begin{bmatrix}2\\0\\1\end{bmatrix}$$
, we get the system of equations $a=2c,2a+b=0,2b=c$.

Substituting, we then get $2(2c) + b = 0 \Rightarrow 4c + b = 0 \Rightarrow 4(2b) + b = 0 \Rightarrow 9b = 0$, which only happens if p = 3. Thus, if $p \neq 3$, then the set is linearly independent.

Clarification/amplification of Props 5.12 and 5.13. Let V be a vector space, and let $\{W_{\omega} : \omega \in \Omega\}$ be a collection of subspaces of V. Recall that $\sum_{\omega \in \Omega} W_{\omega}$ denotes the subspace of all (finite) linear combinations of vectors in $\{W_{\omega} : \omega \in \Omega\}$, which is equivalent to the subspace of vectors w of the form $w = \sum_{\lambda \in \Lambda} w_{\lambda}$, where $w_{\lambda} \in W_{\lambda}$ and Λ is a finite subset of Ω .

We call the set $\{W_{\omega} : \omega \in \Omega\}$ independent if and only if it satisfies the following condition: If Λ is a finite subset of Ω , if $w_{\lambda} \in W_{\lambda}$ for each $\lambda \in \Lambda$, and if $\sum_{\lambda \in \Lambda} w_{\lambda} = 0_V$, then $w_{\lambda} = 0_V$ for all $\lambda \in \Lambda$.

Problem 9. Let

$$W_1 = \left\{ \begin{bmatrix} a \\ 0 \end{bmatrix} : a \in \mathbb{R} \right\}, \ W_2 = \left\{ \begin{bmatrix} b \\ b \end{bmatrix} : b \in \mathbb{R} \right\}, \ W_3 = \left\{ \begin{bmatrix} 0 \\ c \end{bmatrix} : a \in \mathbb{R} \right\}.$$

- 1. Would our textbook author describe $\{W_1, W_2, W_3\}$ as "pairwise disjoint?" (explain)
- 2. Describe the space $W_1 + W_2 + W_3$.
- 3. Describe the space $W_i + W_j$ for each pair $i \neq j$ in $\{1, 2, 3\}$.
- 4. Is the set $\{W_1, W_2, W_3\}$ independent?

Solution. (type your solution here)

Problem 10. Below is an alleged theorem that attempts to combine Propositions 5.12 and 5.13 of the textbook. Prove it, or disprove it by providing a counterexample. If you find a counterexample, what additional hypothesis would fix the theorem?

Proposition. Suppose $\{W_{\omega} : \omega \in \Omega\}$ is a collection of subspaces of a vector space, and suppose, for each $\omega \in \Omega$, the set B_{ω} is a basis for W_{ω} . Then the following are equivalent:

- 1. The set $\{W_{\omega} : \omega \in \Omega\}$ is independent.
- 2. Every $w \in \sum_{\omega \in \Omega} W_{\omega}$ can be written as $w = \sum_{\lambda \in \Lambda} w_{\lambda}$ in exactly one way.
- 3. For every $\lambda \in \Omega$, $W_{\lambda} \cap \sum_{\omega \neq \lambda} W_{\omega} = \{0_V\}$.
- 4. The set $B = \bigcup_{\omega \in \Omega} B_{\omega}$ is a basis for $\sum_{\omega \in \Omega} W_{\omega}$.

(type your proof or counterexample here)

Final remark. We use $\bigoplus_{\omega \in \Omega} W_{\omega}$ to denote $\sum_{\omega \in \Omega} W_{\omega}$ only when the set $\{W_{\omega} : \omega \in \Omega\}$ is independent. When I mentioned this in class, instead of only when, I used the phrase when and only when. This is incorrect since the expression $\sum_{\omega \in \Omega} W_{\omega}$ does not necessarily imply that the set $\{W_{\omega} : \omega \in \Omega\}$ is dependent.