# Causal Modeling With GSS Data Using Multiple Approaches

Andy Grogan-Kaylor

25 Aug 2020 09:03:52

## Research Question

What is the *possibly causal* association of *education* with *job satisfaction*, while accounting for factors that may possibly have an association with *level of education*?

## Causality

A variable x can only be considered to have *causal* association with y if the following conditions are met (Holland, 1986):

- 1. x is correlated with y.
- 2. x precedes y in time order.
- 3. The association between x and y can not be accounted for by any third variable z.

Hence, for this particular data, we are exploring:

What happens to the association of *education* and *job satisfaction* when we control for possible confounding variables z using various statistical strategies?

## To Be Added To Each Analysis

- Assumptions
- Equation
- Stata Command
- Conclusion

## Setup

- . clear all
- . cd "/Users/agrogan/Desktop/newstuff/causal-modeling"/Users/agrogan/Desktop/newstuff/causal-modeling

### Get Data

. use "/Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey Panel Data/GSS\_panel2 > 010w123\_R6 - stata.dta", clear

#### **ID** Variable

. generate ID = id\_1

### Keep Only Relevant Variables

. keep ID satjob\_? educ\_? race\_? incom16\_?

#### Describe Data

. describe

Contains data from /Users/agrogan/Box Sync/DATA WAREHOUSE/General Social Survey Panel Dat >  $a/GSS_panel2010w123_R6 - stata.dta$ 

obs: 2,044 vars: 13 size: 32,704

5 Jul 2020 13:27

| variable name                          | storage<br>type               | display<br>format                | value<br>label                   | variable label                                                                    |
|----------------------------------------|-------------------------------|----------------------------------|----------------------------------|-----------------------------------------------------------------------------------|
| educ_1                                 | byte                          | %8.0g                            | EDUC_1                           | educ_1: HIGHEST YEAR OF SCHOOL COMPLETED educ_2: HIGHEST YEAR OF SCHOOL COMPLETED |
| educ_2                                 | byte                          | %8.0g                            | EDUC_2                           |                                                                                   |
| educ_3                                 | byte                          | %8.0g                            | EDUC_3                           | educ_3: HIGHEST YEAR OF SCHOOL COMPLETED                                          |
| incom16_1                              | byte                          | %8.0g                            | INCOM16                          | incom16_1: RS FAMILY INCOME WHEN 16 YRS OLD                                       |
| incom16 2                              | byte                          | %8.0g                            | V1318 A                          | incom16_2: RS FAMILY INCOME WHEN 16 YRS OLD                                       |
| incom16_3                              | byte                          | %8.0g                            | V1319_A                          | incom16_3: RS FAMILY INCOME WHEN 16 YRS OLD race_1: RACE OF RESPONDENT            |
| race_1                                 | byte                          | %8.0g                            | RACE_1                           |                                                                                   |
| race_2                                 | byte                          | %8.0g                            | RACE_2                           | race_2: RACE OF RESPONDENT race_3: RACE OF RESPONDENT satjob 1: JOB OR HOUSEWORK  |
| race_3                                 | byte                          | %8.0g                            | RACE_3                           |                                                                                   |
| satjob_1                               | byte                          | %8.0g                            | SATJOB 1                         |                                                                                   |
| satjob_1<br>satjob_2<br>satjob_3<br>ID | byte<br>byte<br>byte<br>float | %8.0g<br>%8.0g<br>%8.0g<br>%9.0g | SATJOB_1<br>SATJOB_2<br>SATJOB_3 | satjob_3: JOB OR HOUSEWORK<br>satjob_3: JOB OR HOUSEWORK                          |

Sorted by:

Note: Dataset has changed since last saved.

### Codebook For Selected Variable(s)

.  $codebook satjob_3$ 

satjob\_3 satjob\_3: JOB OR HOUSEWORK

type: numeric (byte)
label: SATJOB\_3

range: [1,4] units: 1
unique values: 4 missing .: 0/2,044
unique mv codes: 3 missing .\*: 1,086/2,044

 tabulation:
 Freq.
 Numeric
 Label

 483
 1
 VERY SATISFIED

 367
 2
 MOD. SATISFIED

 69
 3
 A LITTLE DISSAT

39 4 VERY DISSATISFIED
4 .d DK
1,073 .i IAP
9 .n NA

## Analyses Relying On Wide Data

#### Correlation

. pwcorr satjob\_3 educ\_3, sig

|          | satjob_3          | educ_3 |
|----------|-------------------|--------|
| satjob_3 | 1.0000            |        |
| educ_3   | -0.0774<br>0.0166 | 1.0000 |

## Regression With 1 Independent Variable

. regress satjob\_3 educ\_3

| υ .             | , – –               |           |                |                |                   |      |                    |
|-----------------|---------------------|-----------|----------------|----------------|-------------------|------|--------------------|
| Source          | SS                  | df        | MS             | Numb           | er of obs         | =    | 957                |
|                 |                     |           |                | F(1,           | 955)              | =    | 5.76               |
| Model           | 3.53828635          | 1         | 3.53828635     | Prob           | > F               | =    | 0.0166             |
| Residual        | 586.493062          | 955       | .61412886      | R-sq           | uared             | =    | 0.0060             |
|                 |                     |           |                | Adj            | R-squared         | =    | 0.0050             |
| Total           | 590.031348          | 956       | .617187602     | Root           | MSE               | =    | .78366             |
|                 |                     |           |                |                |                   |      |                    |
| satjob_3        | Coef.               | Std. Err. | t              | P> t           | L95% Co           | onf. | Interval]          |
| educ_3<br>_cons | 0216864<br>1.954439 | .0090349  | -2.40<br>15.06 | 0.017<br>0.000 | 039416<br>1.69973 |      | 003956<br>2.209139 |
|                 |                     |           |                |                |                   |      |                    |

## Regression With Multiple Independent Variables

. regress satjob\_3 educ\_3 i.race\_3 incom16\_3

| Source    | SS         | df        | MS         | Number of obs | =   | 951                  |
|-----------|------------|-----------|------------|---------------|-----|----------------------|
|           |            |           |            | F(4, 946)     | =   | 2.36                 |
| Model     | 5.81703392 | 4         | 1.45425848 | Prob > F      | =   | 0.0517               |
| Residual  | 582.580442 | 946       | .615835563 | R-squared     | =   | 0.0099               |
|           |            |           |            | Adj R-squared | =   | 0.0057               |
| Total     | 588.397476 | 950       | .619365765 | Root MSE      | =   | .78475               |
|           | Γ          |           |            |               |     | <del></del>          |
| satjob_3  | Coef.      | Std. Err. | t          | P> t  [95% Co | nf. | <pre>Interval]</pre> |
| educ_3    | 0215151    | .0092674  | -2.32      | 0.020039702   | 1   | 0033281              |
| race 3    |            |           |            |               |     |                      |
| black     | .1267666   | .0708898  | 1.79       | 0.074012352   | 8   | .2658861             |
| other     | .0677238   | .0985112  | 0.69       | 0.492125601   | .9  | .2610495             |
| i16 2     | .0115275   | .0280601  | 0.41       | 0.681043539   |     | .0665947             |
| incom16_3 |            |           |            |               | -   |                      |
| _cons     | 1.89556    | .144649   | 13.10      | 0.000 1.6116  | 9   | 2.17943              |

## **Propensity Score**

#### Data Wrangling Since Propensity Score Requires a Binary Treatment Variable

- . generate twelve\_years\_3 = educ\_3 >= 12 // 12 or more years of education
- . generate twelve\_years\_2 = educ\_2 >= 12 // 12 or more years of education

- . generate twelve\_years\_1 = educ\_1 >= 12 // 12 or more years of education
- . label variable twelve\_years\_3 "12 or more years of education"
- . label variable twelve\_years\_2 "12 or more years of education"
- . label variable twelve\_years\_1 "12 or more years of education"

#### Propensity Score Analysis

| satjob_3                    | Coef.   | AI Robust<br>Std. Err. | z     | P> z  | [95% Conf. | Interval] |
|-----------------------------|---------|------------------------|-------|-------|------------|-----------|
| ATE twelve_years_3 (1 vs 0) | 0410168 | .1083808               | -0.38 | 0.705 | 2534393    | .1714057  |

### Assess Balance of Propensity Score Model $^1$

. tebalance summarize note: refitting the model using the generate() option  $% \left( 1\right) =\left( 1\right) \left( 1\right$ 

Covariate balance summary

|                 | Raw | Matched |
|-----------------|-----|---------|
| Number of obs = | 952 | 1,904   |
| Treated obs =   | 854 | 952     |
| Control obs =   | 98  | 952     |

|                          | Standardized<br>Raw | differences<br>Matched | Vari<br>Raw          | ance ratio<br>Matched |
|--------------------------|---------------------|------------------------|----------------------|-----------------------|
| incom16_3                | .5429864            | 0077616                | .9418824             | .9726307              |
| race_3<br>black<br>other | 1354119<br>0248378  | 0199848<br>.0326166    | .7873145<br>.9163586 | .9638265<br>1.114865  |

- . tebalance density, scheme(michigan)
  note: refitting the model using the generate() option
- . graph export mydensity.png, width(500) replace (file mydensity.png written in PNG format)  $\,$

### Cross Lagged Regression

## Analyses Relying On Long Data

### Reshape The Data

. reshape long satjob\_ educ\_ twelve\_years\_ incom16\_ race\_, i(ID) j(wave)

 $<sup>^1\</sup>mathrm{With}$  many thanks to Jorge Cuartas for the ideas for earlier versions of this code.



Figure 1: Density Plot of Propensity Score

```
(note: j = 1 2 3)
Data
                                       wide
                                                    long
                                       2044
                                                     6132
Number of obs.
                                               ->
Number of variables
                                         16
                                               ->
j variable (3 values)
                                               ->
                                                    wave
xij variables:
              satjob_1 satjob_2 satjob_3
   educ_1 educ_2 educ_3
                                                    satjob_
                                              ->
                                                    educ_
twelve_years_1 twelve_years_2 twelve_years_3->
                                                    twelve_years_
           incom16_1 incom16_2 incom16_3
                                               ->
                                                    incom16_
                     race_1 race_2 race_3
                                                    race_
```

#### Clean Up Variable Names

```
. rename satjob_ satjob
```

. rename educ\_ educ

. rename incom16\_ incom16

. rename race\_ race

. rename twelve\_years\_ twelve\_years

#### Multilevel Model

```
. mixed satjob wave educ incom16 i.race || ID:
Performing EM optimization:
Performing gradient-based optimization:
Iteration 0: log likelihood = -4161.775
Iteration 1: log likelihood = -4161.7476
Iteration 2: log likelihood = -4161.7476
```

| Computing star | ndard errors:  |           |         |         |                     |             |
|----------------|----------------|-----------|---------|---------|---------------------|-------------|
| Mixed-effects  | _              |           |         | Number  |                     | 0,000       |
| Group variable | e: ID          |           |         | Number  | of groups =         | 1,661       |
|                |                |           |         | Obs per | group:              |             |
|                |                |           |         |         | min =               | 1           |
|                |                |           |         |         | avg =               | 2.2         |
|                |                |           |         |         | max =               | 3           |
|                |                |           |         | Wald ch | i2(5) =             | 42.38       |
| Log likelihood | d = -4161.7476 |           |         | Prob >  | chi2 =              | 0.0000      |
|                |                |           |         |         |                     |             |
| satjob         | Coef. S        | Std. Err. | z       | P> z    | [95% Conf           | . Interval] |
| wave           | 018625         | .014015   | -1.33   | 0.184   | 0460938             | .0088439    |
| educ           | 018976 .       | 0054133   | -3.51   | 0.000   | 0295859             | 008366      |
| incom16        | 0350535 .      | 0154559   | -2.27   | 0.023   | 0653465             | 0047606     |
|                |                |           |         |         |                     |             |
| race           | 1005500        | 0454474   | 3.76    | 0.000   | 0044044             | 0570000     |
| black<br>other |                | 0451171   | 0.66    | 0.508   | .0811311<br>0704776 | .2579868    |
| other          | .035975 .      | 0543135   | 0.66    | 0.508   | 0704776             | .1424276    |
| _cons          | 2.049073 .     | 0843019   | 24.31   | 0.000   | 1.883845            | 2.214302    |
|                |                |           |         |         |                     |             |
| Random-effec   | cts Parameters | Estima    | ate Std | l. Err. | [95% Conf           | . Interval] |
| ID: Identity   |                |           |         |         |                     |             |
|                | var(_cons)     | .2305     | 185 .01 | .61162  | .2009999            | .2643722    |
|                | var(Residual)  | .4174     | 209 .01 | .31143  | .3924927            | .4439323    |

LR test vs. linear model: chibar2(01) = 322.95 Prob >= chibar2 = 0.0000

## Fixed effects regression

| . xtreg satjob  | o wave educ in                              | ncom16 i.rac | e, i(ID) | fe        |             |           |  |
|-----------------|---------------------------------------------|--------------|----------|-----------|-------------|-----------|--|
| Fixed-effects   | (within) regr                               | ression      |          | Number    | of obs =    | 3,595     |  |
| Group variable  | e: ID                                       |              |          | Number    | of groups = | 1,661     |  |
| R-sq:           |                                             |              |          | Obs per   | group:      |           |  |
| within =        | = 0.0052                                    |              |          | _         | min =       | 1         |  |
| between =       | = 0.0148                                    |              |          |           | avg =       | 2.2       |  |
| overall =       | = 0.0122                                    |              |          |           | max =       | 3         |  |
|                 |                                             |              |          | F(5,192   | 9) =        | 2.03      |  |
| corr(u_i, Xb)   | = -0.0714                                   |              |          | Prob >    | F =         | 0.0711    |  |
| satjob          | Coef.                                       | Std. Err.    | t        | P> t      | [95% Conf.  | Interval] |  |
| wave            | 0237842                                     | .0152551     | -1.56    | 0.119     | 0537023     | .006134   |  |
| educ            | 0087664                                     | .0158008     | -0.55    | 0.579     | 0397548     | .022222   |  |
| incom16         | 047186                                      | .0228265     | -2.07    | 0.039     | 0919531     | 0024189   |  |
| race            |                                             |              |          |           |             |           |  |
| black           | .3226033                                    | .2025604     | 1.59     | 0.111     | 0746572     | .7198637  |  |
| other           | .0383663                                    | .104807      | 0.37     | 0.714     | 1671806     | .2439132  |  |
| _cons           | 1.928458                                    | .227991      | 8.46     | 0.000     | 1.481323    | 2.375593  |  |
| sigma_u         | .6861769                                    |              |          |           |             |           |  |
| sigma_e         | .64822634                                   |              |          |           |             |           |  |
| rho             | .52841711                                   | (fraction    | of varia | nce due t | o u_i)      |           |  |
| F test that all | F test that all u_i=0: F(1660, 1929) = 2.18 |              |          |           |             |           |  |

## "Hybrid" Model

The contention here is that the *between person* coefficient replicates the effect of the fixed effects regression coefficient while the *within person* coefficient is simultaneously estimated.

#### Generate Within And Between Variables

(1,240 missing values generated)

```
. bysort ID: egen educ_mean = mean(educ)
(6 missing values generated)
. generate educ_deviation = educ - educ_mean
```

#### Estimate The Model

. mixed satjob wave educ\_mean educ\_deviation incom16 i.race || ID:

Performing EM optimization:

Performing gradient-based optimization:

Iteration 0: log likelihood = -4161.3224
Iteration 1: log likelihood = -4161.2951
Iteration 2: log likelihood = -4161.2951

Computing standard errors:

| Mixed-effects ML regression | Number of obs    | = 3,595  |  |
|-----------------------------|------------------|----------|--|
| Group variable: ID          | Number of groups | = 1,661  |  |
|                             | Obs per group:   |          |  |
|                             | min =            | = 1      |  |
|                             | avg =            | = 2.2    |  |
|                             | max =            | = 3      |  |
|                             | Wald chi2(6)     | = 43.30  |  |
| Log likelihood = -4161.2951 | Prob > chi2      | = 0.0000 |  |

| satjob                                | Coef.                                    | Std. Err.                                    | z                                | P> z                             | [95% Conf.                               | Interval]                                  |
|---------------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|----------------------------------|------------------------------------------|--------------------------------------------|
| wave educ_mean educ_deviation incom16 | 0197009<br>0208983<br>0054971<br>0343579 | .0140588<br>.0057775<br>.0151667<br>.0154712 | -1.40<br>-3.62<br>-0.36<br>-2.22 | 0.161<br>0.000<br>0.717<br>0.026 | 0472556<br>0322221<br>0352233<br>0646809 | .0078537<br>0095745<br>.0242292<br>0040349 |
| race<br>black<br>other                | .1684699<br>.0342568                     | .0451261                                     | 3.73<br>0.63                     | 0.000<br>0.528                   | .0800245<br>0722414                      | . 2569154<br>. 140755                      |
| _cons                                 | 2.075849                                 | .088866                                      | 23.36                            | 0.000                            | 1.901675                                 | 2.250023                                   |

| Random-effe  | cts Parameters | Estimate | Std. Err. | [95% Conf. | Interval] |
|--------------|----------------|----------|-----------|------------|-----------|
| ID: Identity | var(_cons)     | .2304651 | .0161097  | . 2009581  | . 2643046 |
|              | var(Residual)  | .4173132 | .0131099  | .3923934   | .4438157  |

LR test vs. linear model: chibar2(01) = 323.08 Prob >= chibar2 = 0.0000

### Difference In Difference Model

## References

Holland, P. W. (1986). Statistics and Causal Inference. Journal of the American Statistical Association, 81(396), 945-960. https://doi.org/10.1080/01621459.1986.10478354