

Grundlagen Datenbanken: Übung 02

Tanmay Deshpande

Gruppe 20 & 21

E-Mail: ge94vem@mytum.de

QR-Code für die Folien

Wiederholung

Woche 02

Aggregation und Generalisierung

- Generalisierung: Untergeordnete
 Entities bekommen alle Attribute von
 übergeordneter Entity + eigene
 Attribute
- Aggregation: Ein Entity durch eine Kombination von mehreren Entitys gebildet

Relationales Schema

- Relationale Datenbanken bestehen aus einer Menge von **Relationen** $R \subseteq D_1 \times D_2 \times \cdots \times D_n$
- Relationen als Tabellen dargestellt
- Relationales Schema hilft uns, die Struktur dieser Tabelle festzulegen
- Bsp: studenten $\subseteq integer_{matrnr} \times string_{name} \times integer_{semester}$

matrnr	name	semester
24002	Xenokrates	18
25403	Jonas	12
26120	Fichte	10
26830	Aristoxenos	8
27550	Schopenhauer	6
28106	Carnap	3
29120	Theophrastos	2
29555	Feuerbach	2

Schema:

Studenten: {[matrnr: integer, name:

string, semester: integer]}

ER Modell zu relationallem Schema

Entity:

Assistenten: {[PersNr: integer, Name: string, Fachgebiet: string]}

- Attribute der Entität werden zu Attributen des Schemas
- Schlüssel bleibt erhalten

ER Modell zu relationallem Schema

Beziehung:

- Schlüsselattribute der beteiligten Entitäten + eigene Attribute der Beziehung werden zur Attribute des Schemas
- Was wird zum Schlüssel?:
 - 1:N/N:1 Beziehung => Schlüsselattribute von "N-Entity" werden zu Schlüssel
 - 1:1 Beziehung => Schlüsselattribute von einer der beiden Entitäten als Schlüssel gewählt
 - N:M Beziehung => Schlüsselattribute von beiden formen gemeinsam den Schlüssel
- Daumregel: Entitys gegenüber die "1" bestimmen Schlüssel!

Verfeinerung des relationalen Schemas

- Vorlesungen: {[VorlNr, Titel, SWS]}
 Professoren: {[PersNr, Name, Rang, Raum]}
 Vorlesungen: {[VorlNr, Titel, SWS, gelesenVon]}
 Professoren: {[PersNr, Name, Rang, Raum]}
- Verfeinerung durch eliminieren von Beziehungen und zusammenfassen von Relationen
- Nur Relationen mit gleichem Schlüssel zusammenfassen!
- 1:N / N:1 Beziehungen:
 - Beziehungsrelation verschwindet
 - Attribute der Beziehung + Fremdschlüssel der '1-Entity' in 'N-Entity' hinzugefügt
- 1:1 Beziehungen:
 - Beziehungsrelation + Eine der Entitys verschwindet,
 - Attribute der Beziehung + Attribute der entfernten Entity in verbleibende Entity übernommen

Null-Werte

- Entstehen, wenn es in einer Relation nicht zu jedem Tupel Einträge zu allen Attribute gibt
- Sollte man möglichst vermeiden
- Eine Methode wäre die Relation in Teilrelationen aufzuteilen

					ID	Titel	
					1	God of Wa	ar
D	Titel	Jahr	GOTY ¹	_	2	Final Fanta Remake	asy VII
1	God of War	2018	2018		3	Ghost of T	sushima
2	Final Fantasy VII Remake	2020	-		4	It Takes Tw	vo
3	Ghost of Tsushima	2020	-		Jahr		GOT
4	It Takes Two	2021	2021		2018		1
					2010		-
					2021		4

Relationale Algebra

- Menge von Operationen, die es ermöglichen, Relationen zu manipulieren
- Abgeschlossen (Ergebnis einer Operation ist immer eine Relation, auf die weitere Operationen geführt werden können)
- Tool zum Üben: https://dbis-uibk.github.io/relax/calc/local/uibk/local/1

Selektion o

• Filtriert die Zeilen von der Tabelle heraus, die die Selektionsbedingung erfüllen

Selektion

$$\sigma_{\text{Semester} > 10}$$
 (Studenten)

$\sigma_{Semester > 10}$ (Studenten)				
MatrNr	Name	Semester		
24002	Xenokrates	18		
25403	Jonas	12		

Projektion π

Wähle die erwähnten Spalten aus der Relation aus

 $\Pi_{\mathsf{Rang}}(\mathsf{Professoren})$

$\Pi_{Rang}(Professoren)$
Rang
C4
C3

Kartesisches Produkt x

• Alle mögliche Kombinationen von Tüpeln aus den beiden Relationen

Kartesisches Produkt Professoren x hören

	höı	ren			
PersNr	Name	Rang	Raum	MatrNr	VorlNr
2125	Sokrates	C4	226	26120	5001
2125	Sokrates	C4	226	29555	5001
2137	Kant	C4	7	29555	5001

Umbennung p

Umbenennung von Relationen Beispiel: Ermittlung indirekter Vorgänger 2. Stufe der Vorlesung 5216

```
\Pi_{V1. \ Vorgänger}(\sigma_{V2. \ Nachfolger=5216 \ \land \ V1. \ Nachfolger= \ V2. \ Vorgänger} ( \rho_{V1} (voraussetzen) x \rho_{V2} (voraussetzen)))
```

Umbenennung von Attributen

 $\rho_{Voraussetzung} \leftarrow Vorgänger$ (voraussetzen)

Natural Join ⋈

- Ähnlich wie kartesisches Produkt, aber:
 - Kombiniert nur die Einträge, in denen alle Attribute mit gleichem Namen den gleichen Wert haben
 - Doppelte Spalten werden wegprojiziert

CID	Name	CEO
1	Twitter	Elon Musk
2	Facebook	Mark Zuckerberg
3	Apple	Tim Cook

CID	Headquarters
1	San Francisco
2	Menlo Park
3	Cupertino
4	Mountain View

	CID	Name	CEO	neauquarters
_	1	Twitter	Elon Musk	San Francisco
	2	Facebook	Mark Zuckerberg	Menlo Park
	3	Apple	Tim Cook	Cupertino

Angenommen, die linke Tabelle heißt L und die rechte R. Was hier eigentlich passiert:

$$\pi_{L.CID, L.Name, L.CEO, R.Headquarters} (\sigma_{L.CID = R.CID} (L \times R))$$

Theta Join \bowtie_{θ}

- Ähnlich wie natural Join, aber es gilt:
 - Kombiniert nur die Einträge, in denen die Bedingung θ gilt
 - Doppelte Spalten werden nicht wegprojiziert
 - **Equi-Join:** Sonderform der Theta-Join, wo die Bedingung der Form a = b ist

Beispiel: $\rho_L(L\ddot{a}nder) \bowtie_{L.LID=R.LID \land L.LID=1} \rho_R(Regierungschefs)$

Länder		
LID	LName	
1	USA	
2	Deutschland	
3	VR China	

Regierungschefs			
RID	RName	LID	
1	Olaf Scholz	2	
2	Xi Jinping	3	
3	Joe Biden	1	

$L \bowtie_{L.LID=R.LID \land L.LID=1} R$				
LID	LName	RID	RName	LID
1	USA	3	Joe Biden	1

Was hier eigentlich passiert:

 $\sigma_{L.LID=R.LID \land L.LID=1}(\rho_L(L"ander) \times \rho_R(Regierungschefs))$

Aufgaben

Woche 02

Aufgabe 1

- Erstellen Sie ein ER-Modell womit sich kausale Zusammenhänge darstellen lassen (Prinzip von Ursache und Wirkung). Nehmen Sie an, dass eine Ursache mehrere Wirkungen haben kann, und dass eine Wirkung auf maximal eine Ursache zurückzuführen ist.
- Geben Sie die Funktionalitäten an. Verwenden Sie die (min,max)-Notation.
- Geben Sie außerdem eine (beispielhafte) mögliche Ausprägung Ihres ER-Modells an.

Lösungsvorschlag 1

U	Ursa	ache	Wir	kung
I	D	Bezeichnung	ID	Bezeichnung
0)	Big Bang	1	Beginn der Zeit
		:		:
1	0	Fahrzeugpanne	11	Stau auf der A99
1	1	Stau auf der A99	12	Student verpasst Vorlesung
1	1	Stau auf der A99	13	Telekom-Techniker verspätet sich mit DSL-Anschluss
		:		:

folgt ⊆ Ursache : Ereignisse × Wirkung : Ereignisse

Aufgabe 2

- a) Übertragen Sie das ER-Modell in ein relationales Schema.
- b) Verfeinern Sie das relationale Schema durch Elimination von Relationen.
- c) Kann das Attribut date des Entity-Typs Tweet stattdessen der Relationship writes zugeordnet werden? Kann das Attribute date der Relationship likes dem Entity-Typen Tweet zugeordnet werden?

Lösungsvorschlag 2

```
User: { [id,name] }

User: { [id,name] }

Tweet: { [id,date,text] }

follows: { [follower_id,follows_id] }

writes: { [tweet_id,user_id] }

likes: { [user_id,tweet_id,date] }
```

c) *date* (aus *Tweet*) kann auch *writes* zugeordnet werden. Nach der Verfeinerung sind alle Attribute von *writes* und von *Tweet* in einer Relation zusammengefasst. Für das relationale Schema ist es also egal, ob das Attribut ursprünglich zu writes oder zu Tweet gehört hat.

date (aus likes) kann keinem anderen Entity-Typen zugeordnet werden, da weder User noch Tweet wegen ihrer n-zu-m-Beziehung ein eindeutiges "like_date"-Attribut haben können.

Aufgabe 3

- a) Fügen Sie bei den Beziehungen Funktionalitätsangaben hinzu.
- b) Übertragen Sie das ER-Modell in ein relationales Schema.
- c) Verfeinern Sie das relationale Schema soweit möglich durch Eliminierung von Relationen

Bemerkung: *verbindet* modelliert ein Teilstück einer Verbindung. Bsp: .Auf der Strecke München → Hamburg gibt es einen Eintrag für die Teilstrecke von München nach Nürnberg, einen Eintrag für Nürnberg nach Würzburg, einen Eintrag für die Teilstrecke Würzburg nach Göttingen und einen Eintrag von Göttingen nach Hamburg.

Lösungsvorschlag 3a

Lösungsvorschlag 3b

```
Städte: {[Name: string, Bundesland: string]}

Bahnhöfe: {[Name: string, #Gleise: integer]}

Züge: {[ZugNr: integer, Länge: integer]}

liegt_in: {[BName: string, SName: string, Bundesland: string]}

Start: {[ZugNr: integer, BName: string]}

Ziel: {[ZugNr: integer, BName: string]}

verbindet: {[VonBahnhof: string, NachBahnhof: string,

ZugNr: integer, Abfahrt: date, Ankunft: date]}
```


Lösungsvorschlag 3c

Städte : $\{[Name : string, Bundesland : string]\}$

Bahnhöfe : $\{[Name: string, \#Gleise: integer,$

SName: string, Bundesland: string]}

Züge : {[ZugNr : integer, Länge : integer,

StartBahnhof: string, ZielBahnhof: string]}

verbindet : {[VonBahnhof:string, NachBahnhof:string,

 $ZugNr: integer, Abfahrt: date, Ankunft: date]\}$

Aufgabe 4

- Formulieren Sie die folgenden Anfragen auf dem bekannten Universitätsschema in Relationenalgebra.
 Geben Sie die Lösungen in der Operatorbaum-Darstellung an.
- a) Geben Sie alle Studenten an, die die Vorlesung Wissenschaftstheorie gehört haben.
- b) Geben Sie die Titel der Vorlesungen an, die die Vorlesung Wissenschaftstheorie direkt voraussetzen.
- c) Geben Sie Paare von Studenten(-Namen) an, die sich aus der Vorlesung Grundzüge kennen

Lösungsvorschlag 4a

Die Namen aller Studenten, die die Vorlesungen Wissenschaftstheorie gehört haben

Lösungsvorschlag 4b

Die Titel aller Vorlesungen, die die Vorlesung Wissenschaftstheorie direkt voraussetzen

Lösungsvorschlag 4c

Paare von Studenten(-Namen) an, die sich aus der Vorlesung Grundzüge kennen

