Generative Models

Given training data, generate new samples from same distribution

Training data $\sim p_{data}(x)$

Generated samples $\sim p_{model}(x)$

Want to learn $p_{model}(x)$ similar to $p_{data}(x)$

Addresses density estimation, a core problem in unsupervised learning **Several flavors**:

- Explicit density estimation: explicitly define and solve for $p_{\text{model}}(x)$
- Implicit density estimation: learn model that can sample from p_{model}(x) w/o explicitly defining it

Slide credit: Fei-Fei Li & Justin Johnson & Serena Yeung

Why Generative Models?

- Realistic samples for artwork, super-resolution, colorization, etc.

- Generative models of time-series data can be used for simulation and planning (reinforcement learning applications!)
- Training generative models can also enable inference of latent representations that can be useful as general features

Flgures from L-R are copyright: (1) Alec Radford et al. 2016; (2) David Berthelot et al. 2017; Phillip Isola et al. 2017. Reproduced with authors permission

Taxonomy of Generative Models

Slide credit: Justin Johnson

	Autoregressive Models	VAE	GAN	Diffusion Models
Pros	simple and stable training process Currently gives the best log likelihood Tractable likelihood	Efficient inference with approximate latent variables	Generate sharp image No need for any Markov Chain or approx networks during sampling	Simple and stable training process Best samples!
Cons	Relatively inefficient during sampling	Generated samples tend to be blurry	Difficult to optimize due to unstable training dynamics	Relatively inefficient during 14 sampling