VIP Cheatsheet: First-order ODE

Afshine AMIDI and Shervine AMIDI

September 8, 2020

Introduction

 \Box Differential Equations – A differential equation is an equation containing derivatives of a dependent variable y with respect to independent variables x. In particular,

- Ordinary Differential Equations (ODE) are differential equations having one independent variable.
- Partial Differential Equations (PDE) are differential equations having two or more independent variables.

 \Box **Order** - An ODE is said to be of order n if the highest derivative of the unknown function in the equation is the n^{th} derivative with respect to the independent variable.

 \square Linearity – An ODE is said to be linear only if the function y and all of its derivatives appear by themselves. Thus, it is of the form:

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \dots + a_1(x)y' + a_0(x)y + b(x) = 0$$

Direction Field Method

□ Implicit form – The implicit form of an ODE is where y' is not separated from the remaining terms of the ODE. It is of the form:

$$F(x,y,y') = 0$$

Remark: Sometimes, y' cannot be separated from the other terms and the implicit form is the only one that we can write.

Explicit form – The explicit form of an ODE is where y' is separated from the remaining terms of the ODE. It is of the form:

$$y' = f(x,y)$$

 \square Direction field method – The direction field method is a graphical representation for the solution of ODE y' = f(x,y) without actually solving for y(x). Here is the procedure:

- Determine the values (x_i, y_i) that form the grid.
- Compute the slope $f(x_i,y_i)$ for each point of the grid.
- Report the associated vector for each point of the grid.

Separation of variables

□ Separable – An ODE is said to be separable if it can be written in the form:

$$f(x,y) = g(x)h(y)$$

 \square Reduction to separable form – The following table sums up the variable changes that allow us to change the ODE y'=f(x,y) to u'=g(x,u) that is separable.

Original form	Change of variables	New form
$y' = f\left(\frac{y}{x}\right)$	$u \triangleq \frac{y}{x}$	u'x + u = f(u)
$y' = f\left(ax + by + c\right)$	$u \triangleq ax + by + c$	$\frac{u'-a}{b} = f(u)$

Equilibrium

□ Characterization – In order for an ODE to have equilibrium solutions, it must be (1) autonomous and (2) have a value y^* that makes the derivative equal to 0, i.e:

(1)
$$\boxed{ \frac{dy}{dt} = f(x,y) = f(y) } \quad \text{and} \quad (2) \quad \boxed{ \exists \ y^*, \frac{dy^*}{dt} = f(y^*) = 0 }$$

☐ Stability – Equilibrium solutions can be classified into 3 categories:

- Unstable: solutions run away with any small change to the initial conditions.
- Stable: any small perturbation leads the solutions back to that solution.
- Semi-stable: a small perturbation is stable on one side and unstable on the other.

Linear first-order ODE technique

□ Standard form – The standard form of a first-order linear ODE is expressed with p(x), r(x) known functions of x, such that:

$$y' + p(x)y = r(x)$$

Remark: If r = 0, then the ODE is homogeneous, and if $r \neq 0$, then the ODE is inhomogeneous.

General solution – The general solution y of the standard form can be decomposed into a homogenous part y_h and a particular part y_p and is expressed in terms of p(x), r(x) such that:

$$y = y_h + y_p$$
 with $y_h = Ce^{-\int pdx}$ and $y_p = e^{-\int pdx} \times \int [re^{\int pdx}] dx$

Remarks: Here, for any function p, the notation $\int pdx$ denotes the primitive of p without additive constant. Also, the term $e^{-\int pdx}$ is called the basis of the ODE and $e^{\int pdx}$ is called the integrating factor.

□ Reduction to linear form – The one-line table below sums up the change of variables that we apply in order to have a linear form:

Name, setting	Original form	Change	New form
Bernoulli, $n \in \mathbb{R} \setminus \{0,1\}$	$y' + p(x)y = q(x)y^n$	$u \triangleq y^{1-n}$	u' + (1-n)p(x)u = (1-n)q(x)

Existence and uniqueness of an ODE

Here, we are given an ODE y' = f(x,y) with initial conditions $y(x_0) = y_0$.

□ Existence theorem – If f(x,y) is continuous at all points in a rectangular region containing (x_0,y_0) , then y'=f(x,y) has at least one solution y(x) passing through (x_0,y_0) . Remark: If the condition does not apply, then we cannot say anything about existence.

□ Uniqueness theorem – If both f(x,y) and $\frac{\partial f}{\partial y}(x,y)$ are continuous at all points in a rectangular region containing (x_0,y_0) , then y'=f(x,y) has a unique solution y(x) passing through (x_0,y_0) .

Remark: If the condition does not apply, then we cannot say anything about uniqueness.

Numerical methods for ODE - Initial value problems

In this section, we would like to find y(t) for the interval $[0,t_f]$ that we divide into N+1 equally-spaced points $t_0 < t_1 < ... < t_N = t_f$, such that:

$$\frac{dy}{dt} = f(t,y) \quad \text{with} \quad y(0) = y_0$$

□ Error – In order to assess the accuracy of a numerical method, we define its local and global errors ϵ_{local} , ϵ_{global} as follows:

$$\frac{\epsilon_{\text{local}} = |y^{\text{exact}}(t_n) - y^{\text{numerical}}(t_n)|}{\epsilon_{\text{global}}} \quad \text{and} \quad \epsilon_{\text{global}} = \sqrt{\frac{1}{N} \sum_{n=1}^{N} |y^{\text{exact}}(t_n) - y^{\text{numerical}}(t_n)|^2}$$

Remarks: If $\epsilon_{local} = O(h^k)$, then $\epsilon_{global} = O(h^{k-1})$. Also, when we talk about the 'error' of a method, we refer to its global error.

□ Taylor series – The Taylor series giving the exact expression of y_{n+1} in terms of y_n and its derivatives is:

$$y_{n+1} = y_n + hy'_n + \frac{h^2}{2}y''_n + \frac{h^3}{6}y'''_n + \dots = \sum_{k=0}^{+\infty} \frac{h^k}{k!}y_n^{(k)}$$

We can also have an expression of y_n in terms of y_{n+1} and its derivatives:

$$y_n = y_{n+1} - hy'_{n+1} + \frac{h^2}{2}y''_{n+1} - \frac{h^3}{6}y'''_{n+1} + \dots = \sum_{k=0}^{+\infty} \frac{(-h)^k}{k!}y_{n+1}^{(k)}$$

□ Stability – The stability analysis of any ODE solver algorithm is performed on the model problem, defined by:

$$y' = \lambda y$$
 with $y(0) = y_0$ and $\lambda < 0$

which gives $y_n = y_0 \sigma^n$, for which h verifies the condition $|\sigma(h)| < 1$.

□ Euler methods – The Euler methods are numerical methods that aim at estimating the solution of an ODE:

Type	Update formula	Error	Stability condition
Forward Euler	$y_{n+1} = y_n + hf(t_n, y_n)$	O(h)	$h < \frac{2}{ \lambda }$
Backward Euler	$y_{n+1} = y_n + hf(t_{n+1}, y_{n+1})$	O(h)	None

 \square Runge-Kutta methods – The table below sums up the most commonly used Runge-Kutta methods:

Type	Method	Update formula	Error	Stability condition
RK1	Euler's	$y_{n+1} = y_n + hk_1$ where $k_1 = f(t_n, y_n)$	O(h)	$h < rac{2}{ \lambda }$
RK2	Heun's	$y_{n+1} = y_n + h\left(\frac{1}{2}k_1 + \frac{1}{2}k_2\right)$ where $k_1 = f(t_n, y_n)$ and $k_2 = f(t_n + h, y_n + hk_1)$	$O(h^2)$	$h < \frac{2}{ \lambda }$

System of linear ODEs

 \square **Definition** – A system of n first order linear ODEs

$$\begin{cases} y_1' = a_{11}y_1 + \dots + a_{1n}y_n \\ \vdots \\ y_n' = a_{n1}y_1 + \dots + a_{nn}y_n \end{cases}$$

can be written in matrix form as:

$$\vec{y}' = A\vec{y}$$

where
$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nn} \end{pmatrix}$$
 and $\vec{y} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$

□ System of homogeneous ODEs – The resolution of the system of 2 homogeneous linear ODEs $\vec{y}' = A\vec{y}$ is detailed in the following table:

Case	$\textbf{Eigenvalues} \leftrightarrow \textbf{Eigenvectors}$	Solution
Real distinct eigenvalues	$\begin{array}{c} \lambda_1 \leftrightarrow \vec{\eta}_{\lambda_1} \\ \lambda_2 \leftrightarrow \vec{\eta}_{\lambda_2} \end{array}$	$\vec{y} = C_1 \vec{\eta}_{\lambda_1} e^{\lambda_1 t} + C_2 \vec{\eta}_{\lambda_2} e^{\lambda_2 t}$
Double root eigenvalues	$\lambda \leftrightarrow \vec{\eta}$ $\vec{\rho}$ s.t. $(A - \lambda I)\vec{\rho} = \vec{\eta}$	$\vec{y} = [(C_1 + C_2 t)\vec{\eta} + C_2 \vec{\rho}]e^{\lambda t}$
Complex conjugate eigenvalues	$\begin{array}{c} \alpha + i\beta \leftrightarrow \vec{\eta}_R + i\vec{\eta}_I \\ \alpha - i\beta \leftrightarrow \vec{\eta}_R - i\vec{\eta}_I \end{array}$	$\vec{y} = C_1(\cos(\beta t)\vec{\eta}_R - \sin(\beta t)\vec{\eta}_I)e^{\alpha t} + C_2(\cos(\beta t)\vec{\eta}_I + \sin(\beta t)\vec{\eta}_R)e^{\alpha t}$

VIP Cheatsheet: Second-order ODE

Afshine Amidi and Shervine Amidi

September 8, 2020

General case

 \Box General form – The general form of a second-order ODE can be written as a function F of x, y, y' and y'' as follows:

$$F(x,y,y',y'') = 0$$

 \square Methods of resolution – The table below summarizes the general tricks to apply when the ODE has the following classic forms:

Old form	Trick	New form
$F\left(x,y',y''\right)=0$	$y' \triangleq u, y'' = \frac{du}{dx}$	$G\left(x, u, \frac{du}{dx}\right) = 0$
$F\left(y,y^{\prime},y^{\prime\prime}\right)=0$	$y' \triangleq u, y'' = u \frac{du}{dy}$	$G\left(y, u, \frac{du}{dy}\right) = 0$
$F\left(y',y''\right)=0$	$y' \triangleq u, y'' = \frac{du}{dx}$ $y' \triangleq u, y'' = u\frac{du}{dy}$	Missing- y approach $G\left(u,\frac{du}{dx}\right) = 0$ Missing- x approach $G\left(u,\frac{du}{dy}\right) = 0$

 \square Standard form of a linear ODE – The standard form of a second-order linear ODE is expressed with p, q and r known functions of x such that:

$$y'' + p(x)y' + q(x)y = r(x)$$

for which the total solution y is the sum of a homogeneous solution y_h and a particular solution y_p :

$$y = y_h + y_p$$

Remark: if r = 0, then the ODE is homogeneous (and we have $y_p = 0$). If $r \neq 0$, then the ODE is said to be inhomogeneous.

□ Linear dependency – Two functions y_1 , y_2 are said to be linearly dependent if $\frac{y_2}{y_1} = C$ constant. Conversely, they are linearly independent if $\frac{y_2}{y_1} \neq C$.

Linear homogeneous - Variable coefficients

□ Method of reduction of order – Let y_1 be a solution to the equation y'' + p(x)y' + q(x)y = 0. By noting C_1 , C_2 constants, the global solution y_h is written as:

$$y_h = C_1 y_1 + C_2 y_1 \int \frac{e^{-\int p \, dx}}{y_1^2} \, dx$$

Remark: Here, for any function p, the notation $\int pdx$ denotes the primitive of p without additive constant.

Linear homogeneous - Constant coefficients

 \Box General form – The general form of a linear homogeneous second-order ODE with a,b,c constant coefficients is:

$$ay'' + by' + cy = 0$$

□ Resolution – Based on the types of solution of the characteristic equation $a\lambda^2 + b\lambda + c = 0$ and by noting $\Delta = b^2 - 4ac$ its discriminant, we distinguish the following cases:

Name	Case	Roots	Solution
Two distinct real roots	$\Delta > 0$	$\lambda_1 = \frac{-b + \sqrt{\Delta}}{2a}$ $\lambda_2 = \frac{-b - \sqrt{\Delta}}{2a}$	$y_h = C_1 e^{\lambda_1 x} + C_2 e^{\lambda_2 x}$
Double real root	$\Delta = 0$	$\lambda = -\frac{b}{2a}$	$y_h = [C_1 + C_2 x]e^{\lambda x}$
Complex conjugate roots	$\Delta < 0$	$\lambda_1 = \alpha + i\beta$ $\lambda_2 = \alpha - i\beta$ where $\alpha = -\frac{b}{2a}$ and $\beta = \frac{\sqrt{ \Delta }}{2a}$	$y_h = [C_1 \cos(\beta x) + C_2 \sin(\beta x)] e^{\alpha x}$

A special case: the Euler-Cauchy equation

 \square General form – The Euler-Cauchy equation is a special case of linear homogeneous ODEs and has the following general form, where each $a_i \in \mathbb{R}$ is a constant coefficient:

$$a_n x^n y^{(n)} + a_{n-1} x^{n-1} y^{(n-1)} + \dots + a_1 x y' + a_0 y = 0$$

 \square Second-order case – For n=2, by noting $y=x^m$, the ODE provides the indicial equation:

$$am^2 + (b-a)m + c = 0$$

with discriminant $\Delta = (b-a)^2 - 4ac$ and where the resolution of the ODE depends on the cases summarized in the table below.

Name	Case	Roots	Solution
Two distinct real roots	$\Delta > 0$	$m_1 = \frac{-b + a + \sqrt{\Delta}}{2a}$ $m_2 = \frac{-b + a - \sqrt{\Delta}}{2a}$	$y_h = C_1 x^{m_1} + C_2 x^{m_2}$
Double real root	$\Delta = 0$	$m = -\frac{b-a}{2a}$	$y_h = [C_1 + C_2 \ln x]x^m$
Complex conjugate roots	$\Delta < 0$	$m_1 = \alpha + i\beta$ $m_2 = \alpha - i\beta$ where $\alpha = -\frac{b-a}{2a}$ and $\beta = \frac{\sqrt{ \Delta }}{2a}$	$y_h = \left[C_1 \cos(\beta \ln x) + C_2 \sin(\beta \ln x) \right] x^{\alpha}$

Linear inhomogeneous - Variable coefficients

 \square Wronskian – Given y_1 and y_2 the two solutions of the homogeneous equation, we define the Wronskian W as follows:

$$W = y_1 y_2' - y_2 y_1'$$

 \square Method of Variation of Parameters – The particular solution y_p of the inhomogeneous ODE is given by:

$$y_p = -y_1 \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$$

Linear inhomogeneous – Constant coefficients

□ Undetermined coefficients method – The particular solution y_p of the inhomogeneous ODE ay'' + by' + cy = r(x) is determined from the correspondence table below:

Form of r	Form of y_p
C	A
$x^n, n \in \mathbb{N}^*$	$A_0 + A_1 x + \dots + A_n x^n$
$e^{\gamma(x)}$	$Ae^{\gamma x}$
$\cos(\omega x) \text{ or } \sin(\omega x)$	$A\cos(\omega x) + B\sin(\omega x)$
$x^n e^{\gamma x} \cos(\omega x)$ or $x^n e^{\gamma x} \sin(\omega x)$	$(A_0 + A_1x + \dots + A_nx^n)\cos(\omega x)e^{\gamma x} + (B_0 + B_1x + \dots + B_nx^n)\sin(\omega x)e^{\gamma x}$

Remark: all new constants are determined after plugging back y_p into the ODE.

 \square Modification rule – If the particular solution y_p picked from the above table matches either y_1 or y_2 , then has to be multiplied by the lowest power of x such that it is no more the case.

 \square Sum rule – If r(x) is a sum of functions of the first column of the above table, then y_p is the sum of its associated particular solutions.

VIP Cheatsheet: Applications

Afshine Amidi and Shervine Amidi

September 8, 2020

Physics Laws

□ Gravitational force – A mass m is subject to the gravitational force \vec{F}_g , which is expressed with respect to \vec{g} of magnitude 9.81 m · s⁻² and directed towards the center of the Earth, as follows:

$$\vec{F}_g = m\vec{g}$$

 \square Spring force – A spring of constant k and of relaxed position \vec{x}_0 attached a mass m of position \vec{x} has a force \vec{F}_s expressed as follows:

$$\vec{F}_s = -k(\vec{x} - \vec{x}_0)$$

 \square Friction force – The friction force F_f of constant coefficient β applied on a mass of velocity \vec{v} is written as:

$$\vec{F}_f = -\beta \vec{v}$$

□ Mass moment of inertia – The mass moment of inertia of a system of mass m_i located at distance r_i from point O, expressed in point O is written as:

$$J_0 = \sum_i m_i r_i^2$$

 \Box Torque – The torque \vec{T} of a force \vec{F} located at \vec{r} from the reference point O is written as:

$$\vec{T} = \vec{r} \times \vec{F}$$

□ Newton's second law – A mass m of acceleration \vec{a} to which forces \vec{F}_i are applied verifies the following equation:

$$m\vec{a} = \sum_i \vec{F_i}$$

- In the 1-D case along the x axis, we can write it as $mx'' = \sum_{i} F_{i}$.
- In the rotationary case, around point O, we can write it as $J_0\theta''=\sum_i T_i.$

Spring-mass system

□ Free undamped motion – A free undamped spring-mass system of mass m and spring coefficient k follows the ODE $x'' + \frac{k}{m}x = 0$, which can be written as a function of the natural frequency ω as:

$$x'' + \omega^2 x = 0$$
 with $\omega = \sqrt{\frac{k}{m}}$

□ Free damped motion – A free damped spring-mass system of mass m, of spring coefficient k and subject to a friction force of coefficient β follows the ODE $x'' + \frac{\beta}{m}x' + \frac{k}{m}x = 0$, which can be written as a function of the damping parameter λ and the natural frequency ω as:

$$x'' + 2\lambda x' + \omega^2 x = 0$$
 with $\lambda = \frac{\beta}{2m}$ and $\omega = \sqrt{\frac{k}{m}}$

which has the following cases summed up in the table below:

Condition	Type of motion
$\lambda > \omega$	Over damped
$\lambda = \omega$	Critically damped
$\lambda < \omega$	Under damped

□ Forcing frequency – A forcing function F(t) is often modeled with a periodic function of the form $F(t) = F_0 \sin(\gamma t)$, where γ is called the forcing frequency.

□ Forced undamped motion – A forced undamped spring-mass system of mass m and spring coefficient k follows the ODE $x'' + \frac{k}{m}x = F_0 \sin(\gamma t)$, which can be written as a function of the natural frequency ω as:

$$x'' + \omega^2 x = F_0 \sin(\gamma t) \quad \text{with} \quad \omega = \sqrt{\frac{k}{m}}$$

which has the following cases summed up in the table below:

Condition	Type of motion
$\gamma \neq \omega$	General response
$\gamma pprox \omega$	Beats
$\gamma = \omega$	Resonance

□ Forced damped motion – A forced damped spring-mass system of mass m, of spring coefficient k and subject to a friction force of coefficient β follows the ODE $x'' + \frac{\beta}{m}x' + \frac{k}{m}x = F_0 \sin(\gamma t)$, which can be written as a function of the damping parameter λ and the natural frequency ω as:

$$x'' + 2\lambda x' + \omega^2 x = F_0 \sin(\gamma t)$$
 with $\lambda = \frac{\beta}{2m}$ and $\omega = \sqrt{\frac{k}{m}}$

Boundary Value Problems

 \square Types of boundary conditions – Given a numerical problem between 0 and L, we distinguish the following types of boundary conditions:

Name	Boundary values
Dirichlet	y(0) and $y(L)$
Neumann	y(0) and $y'(L)$
Robin	$y(0)$ and $\alpha y(L) + \beta y'(L)$

□ Numerical differentiation – The table below sums up the approximation of the derivatives of y at point x_j , knowing the values of y at each point of a uniformly spaced set of grid points.

Order of derivative	Name	Formula	Order of error
First derivative	Forward difference	$y_j' = \frac{y_{j+1} - y_j}{h}$	O(h)
	Backward difference	$y_j' = \frac{y_j - y_{j-1}}{h}$	O(h)
	Central difference	$y_{j}' = \frac{y_{j+1} - y_{j-1}}{2h}$	$O(h^2)$
Second derivative	Central difference	$y_j'' = \frac{y_{j+1} - 2y_j + y_{j-1}}{h^2}$	$O(h^2)$

 \Box Direct method – The direct method can solve <u>linear ODEs</u> by reducing the problem to the resolution of a linear system Ay=f, where A is a tridiagonal matrix.

 \square Shooting method – The shooting method is an algorithm that can solve ODEs through an iterative process. It uses a numerical scheme, such as Runge-Kutta, and converges to the right solution by iteratively searching for the missing initial condition y'(0).

Remark: in the linear case, the shooting method converges after the first two initial guesses.