Optimizing Mobility-on-Demand Systems for High Throughput

Ph.D. Oral Exam

Harshal A. Chaudhari

January 16, 2018

Problem Motivation

U.S. Department of Transportation

"Mobility-on-Demand (MoD) is an innovative, user-focused approach which leverages emerging mobility services, integrated transit networks, real-time data, and cooperative Intelligent Transportation Systems to allow for a more traveler-centric transportation, providing improved mobility options to all travelers and users of the system in an efficient and safe manner."

1

U.S. Department of Transportation

"Mobility-on-Demand (MoD) is an innovative, user-focused approach which leverages emerging mobility services, integrated transit networks, real-time data, and cooperative Intelligent Transportation Systems to allow for a more traveler-centric transportation, providing improved mobility options to all travelers and users of the system in an efficient and safe manner."

• Bike-share: Hubway, NYC CitiBike, etc.

U.S. Department of Transportation

"Mobility-on-Demand (MoD) is an innovative, user-focused approach which leverages emerging mobility services, integrated transit networks, real-time data, and cooperative Intelligent Transportation Systems to allow for a more traveler-centric transportation, providing improved mobility options to all travelers and users of the system in an efficient and safe manner."

- Bike-share: Hubway, NYC CitiBike, etc.
- Ride-share: Zipcar, Car2Go, Enterprise Carshare, etc.

U.S. Department of Transportation

"Mobility-on-Demand (MoD) is an innovative, user-focused approach which leverages emerging mobility services, integrated transit networks, real-time data, and cooperative Intelligent Transportation Systems to allow for a more traveler-centric transportation, providing improved mobility options to all travelers and users of the system in an efficient and safe manner."

- Bike-share: Hubway, NYC CitiBike, etc.
- Ride-share: Zipcar, Car2Go, Enterprise Carshare, etc.
- Ride-hail: Uber, Lyft, etc.

Common issue of the demand heterogeneity

Figure 1: NYC CitiBike pickups and drop-offs during rush hours¹.

• Modeling:

• Control:

• Applications:

- Modeling:
 - Traffic models: Wardrop (1900) and Treiber, Hennecke, and Helbing (2000)
- Control:

• Applications:

Modeling:

 Traffic models: Wardrop (1900) and Treiber, Hennecke, and Helbing (2000)

• Control:

- Dynamic Traffic Assignment: Friesz et al. (1989), Merchant and Nemhauser (1978), and Waller et al. (2013)
- Demand analysis: Froehlich, Neumann, and Oliver (2008) and Raviv, Tzur, and Forma (2013), Schuijbroek, Hampshire, and Van Hoeve (2017)
- Load balancing: Pavone et al. (2012), Smith et al. (2013)

• Applications:

Modeling:

 Traffic models: Wardrop (1900) and Treiber, Hennecke, and Helbing (2000)

• Control:

- Dynamic Traffic Assignment: Friesz et al. (1989), Merchant and Nemhauser (1978), and Waller et al. (2013)
- Demand analysis: Froehlich, Neumann, and Oliver (2008) and Raviv, Tzur, and Forma (2013), Schuijbroek, Hampshire, and Van Hoeve (2017)
- Load balancing: Pavone et al. (2012), Smith et al. (2013)

Applications:

- Taxi dispatch: Zhang et al. (2017)
- Customer incentives: Singla et al. (2015)
- Dynamic pricing: Castillo, Knoepfle, and Weyl (2017), Banerjee,
 Johari, and Riquelme (2016)

Service Level Requirements

Paper 1: Inventory Rebalancing and Vehicle Routing in Bike Sharing Systems

- Jasper Schuijbroek
 Eindhoven University of Technology
- Robert Hampshire Carnegie Mellon University
- Willem-Jan van Hoeve Carnegie Mellon University

Definition

Let S represent the set of bike sharing stations. For each station $i \in S$:

- C_i denotes capacity of the station.
- ullet Poisson process for bike drop-offs with rate λ_i
- \bullet Poisson process for bike pickups with rate μ_i

Definition

Let S represent the set of bike sharing stations. For each station $i \in S$:

- C_i denotes capacity of the station.
- ullet Poisson process for bike drop-offs with rate λ_i
- ullet Poisson process for bike pickups with rate μ_i

The service level requirements at station $i \in \mathcal{S}$ are:

$$\frac{\mathbb{E}[\text{Satisfied pickup demands}]}{\mathbb{E}[\text{Total pickup demands}]} \ \geq \ \beta_i^-$$

$$\frac{\mathbb{E}[\text{Satisfied dropoff demands}]}{\mathbb{E}[\text{Total dropoff demands}]} \geq \beta_i^+$$

for given $\beta_i^-, \beta_i^+ \in [0, 1]$.

5

Each station is a M/M/1/K queue with $K = C_i$. Markov Chain for inventory $S_i(t)$ is:

Each station is a M/M/1/K queue with $K=C_i$. Markov Chain for inventory $S_i(t)$ is:

- $p_i(s, \sigma, t)$ = probability that inventory at station i equals σ at time $t \ge 0$ given starting inventory s

6

Each station is a M/M/1/K queue with $K = C_i$. Markov Chain for inventory $S_i(t)$ is:

- $p_i(s, \sigma, t)$ = probability that inventory at station i equals σ at time $t \ge 0$ given starting inventory s
- $-g_i(s,\sigma) = \frac{1}{T} \int_0^T p_i(s,\sigma,t) dt$

Each station is a M/M/1/K queue with $K = C_i$. Markov Chain for inventory $S_i(t)$ is:

- $p_i(s, \sigma, t)$ = probability that inventory at station i equals σ at time $t \ge 0$ given starting inventory s
- $-g_i(s,\sigma) = \frac{1}{T} \int_0^T p_i(s,\sigma,t) dt$

Service Level Requirements:

$$\frac{\mathbb{E}[\text{Satisfied pickup demands}]}{\mathbb{E}[\text{Total pickup demands}]} = 1 - g_i(s, 0)$$

$$\frac{\mathbb{E}[\text{Satisfied dropoff demands}]}{\mathbb{E}[\text{Total dropoff demands}]} = 1 - g_i(s, C_i)$$

Service Level Requirements for Hubway

Figure 2: Observation period 8–9AM on weekdays with $\beta_i^-=\beta_i^+=95\%$ on Friday, June 1, 2012².

 $^{^2}$ Schuijbroek, Hampshire, and Van Hoeve 2017.

Service Level Requirements for Hubway

Figure 2: Observation period 8–9AM on weekdays with $\beta_i^-=\beta_i^+=95\%$ on Friday, June 1, 2012².

Authors use Maximum Likelihood Estimator for Poisson variables, but they do not have data for unfulfilled demand!

²Schuijbroek, Hampshire, and Van Hoeve 2017.

Routing Problem for bike-share

Problem (P1): Given $\mathcal V$ re-balancing trucks, each with a capacity of Q, re-balance the bike inventory such that service level at each station is met, minimize the maximum tour length of the re-balancing truck to obtain $H^*(\mathcal S,\mathcal V)$.

Problem (P1): Given \mathcal{V} re-balancing trucks, each with a capacity of Q, re-balance the bike inventory such that service level at each station is met, minimize the maximum tour length of the re-balancing truck to obtain $H^*(\mathcal{S}, \mathcal{V})$.

Constraints:

- service level
- vehicle and station capacity constraints
- flow conservation

Problem (P1): Given \mathcal{V} re-balancing trucks, each with a capacity of Q, re-balance the bike inventory such that service level at each station is met, minimize the maximum tour length of the re-balancing truck to obtain $H^*(\mathcal{S}, \mathcal{V})$.

Constraints:

- service level
- vehicle and station capacity constraints
- flow conservation
- integrality constraints

Problem (P1): Given $\mathcal V$ re-balancing trucks, each with a capacity of Q, re-balance the bike inventory such that service level at each station is met, minimize the maximum tour length of the re-balancing truck to obtain $H^*(\mathcal S,\mathcal V)$.

Constraints:

- service level
- vehicle and station capacity constraints
- flow conservation
- integrality constraints

Pure MIP approach: Intractable for realistic scenarios with $|\mathcal{S}| \geq 50$ and $|\mathcal{V}| \geq 3.$

Problem (P2): Find a clustering solution that assigns disjoint clusters of stations $S_v \subseteq S$ to vehicles $v \in V$ such that the service level requirements can be satisfied using *only* within-cluster vehicle routing.

Problem (P2): Find a clustering solution that assigns disjoint clusters of stations $S_v \subseteq S$ to vehicles $v \in V$ such that the service level requirements can be satisfied using *only* within-cluster vehicle routing.

• Extended set-partitioning problem.

Problem (P2): Find a clustering solution that assigns disjoint clusters of stations $S_v \subseteq S$ to vehicles $v \in V$ such that the service level requirements can be satisfied using *only* within-cluster vehicle routing.

- Extended set-partitioning problem.
- Approximate within-cluster routing costs.

Problem (P2): Find a clustering solution that assigns disjoint clusters of stations $S_v \subseteq S$ to vehicles $v \in V$ such that the service level requirements can be satisfied using *only* within-cluster vehicle routing.

- Extended set-partitioning problem.
- Approximate within-cluster routing costs.
- Impose triangle inequality within-cluster routing costs lower bounded by length of shortest Hamiltonian path.

Problem (P2): Find a clustering solution that assigns disjoint clusters of stations $S_v \subseteq S$ to vehicles $v \in V$ such that the service level requirements can be satisfied using *only* within-cluster vehicle routing.

- Extended set-partitioning problem.
- Approximate within-cluster routing costs.
- Impose triangle inequality within-cluster routing costs lower bounded by length of shortest Hamiltonian path.

Maximum Spanning Star approximation:

Problem (P2): Find a clustering solution that assigns disjoint clusters of stations $S_v \subseteq S$ to vehicles $v \in V$ such that the service level requirements can be satisfied using *only* within-cluster vehicle routing.

- Extended set-partitioning problem.
- Approximate within-cluster routing costs.
- Impose triangle inequality within-cluster routing costs lower bounded by length of shortest Hamiltonian path.

Maximum Spanning Star approximation: $SPS_i(S_v) = \sum_{j \in S_v} d_{ij}$.

Problem (P2): Find a clustering solution that assigns disjoint clusters of stations $S_v \subseteq S$ to vehicles $v \in V$ such that the service level requirements can be satisfied using *only* within-cluster vehicle routing.

- Extended set-partitioning problem.
- Approximate within-cluster routing costs.
- Impose triangle inequality within-cluster routing costs lower bounded by length of shortest Hamiltonian path.

Maximum Spanning Star approximation: $SPS_i(S_v) = \sum_{j \in S_v} d_{ij}$. Maximum-cost spanning star $\left(\max_{i \in S_v} SPS_i(S_v)\right)$ approximates within-cluster routing cost.

Heuristic 1

Clustered MIP (H1):

- 1. Solve (P2)
- 2. Solve (P1) for each cluster of stations $S = S_v$ and $V = \{v\}$ to obtain $H^*(S_v, \{v\})$
- 3. $H^* = \max_{v \in \mathcal{V}} H^*(\mathcal{S}_v, \{v\})$

Heuristic 1

Clustered MIP (H1): (Sub-optimal)

- 1. Solve (P2)
- 2. Solve (P1) for each cluster of stations $S = S_v$ and $V = \{v\}$ to obtain $H^*(S_v, \{v\})$
- 3. $H^* = \max_{v \in \mathcal{V}} H^*(\mathcal{S}_v, \{v\})$

Heuristic 2

Clustered MIP with Cuts (H2):

- 1. Initialize a cut set of stations $\mathcal{C} = \emptyset$
- 2. Solve (P2) with additional constraint $\forall v : \mathcal{S}_v \not\subseteq \mathcal{C}$ to obtain H^*
- 3. Solve (P1) for each cluster of stations $S = S_v$ and $V = \{v\}$ to obtain $H^*(S_v, \{v\})$
 - If $\max_{v \in \mathcal{V}} H^*(\mathcal{S}_v, \{v\}) < H^*$ or $\mathcal{C} = \emptyset$, redefine H^* and store routing solution.
 - For each $v \in \mathcal{V}$ with $H^*(\mathcal{S}_v, \{v\}) \geq H^*$, redefine $\mathcal{C} = \mathcal{C} \cup \{\mathcal{S}_v\}$
- 4. Go to step 2.

Heuristic 2

Clustered MIP with Cuts (H2):

- 1. Initialize a cut set of stations $\mathcal{C} = \emptyset$
- 2. Solve (P2) with additional constraint $\forall v : \mathcal{S}_v \not\subseteq \mathcal{C}$ to obtain H^*
- 3. Solve (P1) for each cluster of stations $S = S_v$ and $V = \{v\}$ to obtain $H^*(S_v, \{v\})$
 - If $\max_{v \in \mathcal{V}} H^*(\mathcal{S}_v, \{v\}) < H^*$ or $\mathcal{C} = \emptyset$, redefine H^* and store routing solution.
 - For each $v \in \mathcal{V}$ with $H^*(\mathcal{S}_v, \{v\}) \geq H^*$, redefine $\mathcal{C} = \mathcal{C} \cup \{\mathcal{S}_v\}$
- 4. Go to step 2.

Break sub-optimal clusters by dividing their stations over many different vehicles.

Computation Results for Hubway

	$ \mathcal{V} $	MIP			Clustered MIP		Clustered MIP with Cuts		
Family		LP bound	Best found	Time	Solution	Time	Solution	Iterations	Time
8-9AM	2	3228.18	4625	5220.51	4495	0.66	4229	82	60.05
8-9AM	3	1660.29	3758	6139.66	3097	0.55	2669	57	60.09
4-5PM	2	3347.55	4674	5787.08	4656	0.88	4429	76	60.03
4-5PM	3	1674.90	3399	6558.48	3285	0.53	2699	51	60.14

Figure 3: Averaged results over 41 runs of algorithms³.

 $^{^3\}mbox{Schuijbroek},$ Hampshire, and Van Hoeve 2017.

Summary

Positives:

- Simple framework for evaluating service level requirements.
- Heuristic algorithm for re-balancing problem in bike-share.

Summary

Positives:

- Simple framework for evaluating service level requirements.
- Heuristic algorithm for re-balancing problem in bike-share.

Concerns:

- Tradeoff between routing costs and revenue loss due to imbalance.
- Assumption of negligible demand during the re-balancing operation.

Routing problem for autonomous

ride-share

Paper 2: Robotic load balancing for mobility-on-demand systems

- Marco Pavone Stanford University
- Stephen L. Smith University of Waterloo
- Emilio Frazzoli
 Massachusetts Institute of Technology
- Daniela Rus
 Massachusetts Institute of Technology

Fluid model

Figure 4: Fluid model for autonomous cars⁴.

⁴Pavone et al. 2012.

Let ${\mathcal A}$ be set of assignments of α that verify equation

$$\sum_{j\neq i} \alpha_{ij} + \lambda_i = \sum_{j\neq i} \alpha_{ji} + \sum_{j\neq i} \lambda_j p_{ji}$$

for each $i \in \mathcal{S}$,

Let ${\mathcal A}$ be set of assignments of α that verify equation

$$\sum_{j\neq i} \alpha_{ij} + \lambda_i = \sum_{j\neq i} \alpha_{ji} + \sum_{j\neq i} \lambda_j p_{ji}$$

for each $i \in \mathcal{S}$, and let

$$V_{\alpha} = \sum_{ij} T_{ij} (p_{ij}\lambda_i + \alpha_{ij})$$

Let ${\mathcal A}$ be set of assignments of α that verify equation

$$\sum_{j\neq i} \alpha_{ij} + \lambda_i = \sum_{j\neq i} \alpha_{ji} + \sum_{j\neq i} \lambda_j p_{ji}$$

for each $i \in \mathcal{S}$, and let

$$V_{\alpha} = \sum_{ij} T_{ij} (p_{ij}\lambda_i + \alpha_{ij})$$

then,

- 1. if $V > V_{\alpha}$, then there exists an equilibrium assignment of α .
- 2. if $V \leq V_{\alpha}$, then no equilibrium exists.

Let ${\mathcal A}$ be set of assignments of α that verify equation

$$\sum_{j\neq i} \alpha_{ij} + \lambda_i = \sum_{j\neq i} \alpha_{ji} + \sum_{j\neq i} \lambda_j p_{ji}$$

for each $i \in \mathcal{S}$, and let

$$V_{\alpha} = \sum_{ij} T_{ij} (p_{ij}\lambda_i + \alpha_{ij})$$

then,

- 1. if $V > V_{\alpha}$, then there exists an equilibrium assignment of α .
- 2. if $V \leq V_{\alpha}$, then no equilibrium exists.

 $V^* = \min_{\alpha \in \mathcal{A}} V_{\alpha}$ is minimum number of vehicles required for existence of equilibrium.

Optimal Re-balancing

Minimize

$$\sum_{ij} T_{ij} \alpha_{ij}$$

subject to

$$\sum_{j\neq i} \alpha_{ij} + \lambda_i = \sum_{j\neq i} \alpha_{ji} + \sum_{j\neq i} \lambda_j p_{ji} \qquad \forall i \in \mathcal{S}$$
$$\alpha_{ij} \ge 0 \qquad \forall i, j \in \mathcal{S}$$

Optimal Re-balancing

Minimize

$$\sum_{ij} T_{ij} \alpha_{ij}$$

subject to

$$\sum_{j\neq i} \alpha_{ij} + \lambda_i = \sum_{j\neq i} \alpha_{ji} + \sum_{j\neq i} \lambda_j \rho_{ji} \qquad \forall i \in \mathcal{S}$$
$$\alpha_{ij} \ge 0 \qquad \forall i, j \in \mathcal{S}$$

Minimizing $\sum_{ij} T_{ij} \alpha_{ij}$ also leads to minimizing V_{α} (total vehicle utilization).

Optimal Re-balancing

Minimize

$$\sum_{ij} T_{ij} \alpha_{ij}$$

subject to

$$\sum_{j\neq i} \alpha_{ij} + \lambda_i = \sum_{j\neq i} \alpha_{ji} + \sum_{j\neq i} \lambda_j p_{ji} \qquad \forall i \in \mathcal{S}$$
$$\alpha_{ij} \ge 0 \qquad \forall i, j \in \mathcal{S}$$

If we impose triangle inequality on travel times T_{ij} , then stations can be divided into those with a *surplus* (S) and those with a *deficit* (D), where $S = \{i \in S | \lambda_i < \sum_j \lambda_j p_{ji} \}$ and $D = S \setminus S$.

Continuous bipartite matching

Minimize

$$\sum_{i \in S, j \in D} T_{ij} \alpha_{ij}$$

subject to

$$\sum_{j \in D} \alpha_{ij} = -\lambda_i + \sum_{j \neq i} \lambda_j p_{ji} \qquad \forall i \in S$$

$$\sum_{i \in S} \alpha_{ij} = \lambda_j - \sum_{i \neq j} \lambda_i p_{ij} \qquad \forall j \in D$$

$$\alpha_{ij} \ge 0 \qquad \forall i, j \in S$$

Continuous bipartite matching

Minimize

$$\sum_{i \in S, j \in D} T_{ij} \alpha_{ij}$$

subject to

$$\sum_{j \in D} \alpha_{ij} = -\lambda_i + \sum_{j \neq i} \lambda_j p_{ji} \qquad \forall i \in S$$

$$\sum_{i \in S} \alpha_{ij} = \lambda_j - \sum_{i \neq j} \lambda_i p_{ij} \qquad \forall j \in D$$

$$\alpha_{ij} \ge 0 \qquad \forall i, j \in S$$

• Fewer variables and fewer constraints.

Continuous bipartite matching

Minimize

$$\sum_{i \in S, j \in D} T_{ij} \alpha_{ij}$$

subject to

$$\sum_{j \in D} \alpha_{ij} = -\lambda_i + \sum_{j \neq i} \lambda_j p_{ji} \qquad \forall i \in S$$

$$\sum_{i \in S} \alpha_{ij} = \lambda_j - \sum_{i \neq j} \lambda_i p_{ij} \qquad \forall j \in D$$

$$\alpha_{ij} \ge 0 \qquad \forall i, j \in S$$

- Fewer variables and fewer constraints.
- Linear Program.

Summary

Positives:

- Fluid models make it easy to analyze system dynamics.
- Allows us to study stability of equilibrium.

Summary

Positives:

- Fluid models make it easy to analyze system dynamics.
- Allows us to study stability of equilibrium.

Concerns:

- Only for the case of constant flow rates.
- Susceptible to perturbations in p_{ij} .

Role of dynamic pricing in Uber

Paper 3: Surge Pricing Solves the Wild Goose Chase

- Juan Camilo Castillo Stanford University
- Dan Knoepfle
 Uber Technologies
- E. Glen Weyl Microsoft Research

Ride Hailing

- Uber, Lyft: more efficient matching technology than taxis
 - Cramer and Krueger (2016): Utilization rate increases by 30-50%
 - Potential welfare gain is substantial

Ride Hailing

- Uber, Lyft: more efficient matching technology than taxis
 - Cramer and Krueger (2016): Utilization rate increases by 30-50%
 - Potential welfare gain is substantial
- Challenges to get market design right
 - Matching passengers with drivers
 - Pricing (dynamic?)

Ride-hailing systems are prone to wild goose chases

Ride-hailing systems are prone to wild goose chases

- Too many ride requests
- Drivers spend more time picking up passengers
- Number of completed trips drop

Ride-hailing systems are prone to wild goose chases

- Too many ride requests
- Drivers spend more time picking up passengers
- Number of completed trips drop

Driver Life:

 $\mathsf{Idle}\ \mathsf{Time} \to \mathsf{Pickup}\ \mathsf{Time} \to \mathsf{Travel}\ \mathsf{Time}$

Ride-hailing systems are prone to wild goose chases

- Too many ride requests
- Drivers spend more time picking up passengers
- Number of completed trips drop

Driver Life:

Idle Time \rightarrow Pickup Time \rightarrow Travel Time

Ride-hailing systems are prone to wild goose chases

- Too many ride requests
- Drivers spend more time picking up passengers
- Number of completed trips drop

Driver Life:

Idle Time \rightarrow Pickup Time \rightarrow Travel Time

Research problem: How to avoid Wild Goose Chases?

Ride-hailing systems are prone to wild goose chases

- Too many ride requests
- Drivers spend more time picking up passengers
- Number of completed trips drop

Driver Life:

Idle Time \rightarrow Pickup Time \rightarrow Travel Time

Research problem: How to avoid Wild Goose Chases?

WGCs can be avoided by setting higher prices

 $\bullet~$ ${\it T}$: Waiting time for customer = Pickup time for driver

- T: Waiting time for customer = Pickup time for driver
- *p* : Price point

- T: Waiting time for customer = Pickup time for driver
- p : Price point
- L: Labor supply (total number of drivers)

- T : Waiting time for customer = Pickup time for driver
- *p* : Price point
- L : Labor supply (total number of drivers)
- Q : Quantity (total number of completed rides)

- T : Waiting time for customer = Pickup time for driver
- p : Price point
- L : Labor supply (total number of drivers)
- Q : Quantity (total number of completed rides)
- D(T, p): Demand function

- T : Waiting time for customer = Pickup time for driver
- p : Price point
- L : Labor supply (total number of drivers)
- Q : Quantity (total number of completed rides)
- D(T, p): Demand function
- S(T, L) : Supply function

Demand

Figure 5: Demand curve⁵.

 $^{^{5}\,\}mbox{Castillo},$ Knoepfle, and Weyl 2017.

Supply

Figure 6: Supply curve⁶.

⁶Castillo, Knoepfle, and Weyl 2017.

Empirical supply

Figure 7: Quintiles of empirical supply⁷.

 $^{^{7}\}mathsf{Castillo},\,\mathsf{Knoepfle},\,\mathsf{and}\,\,\mathsf{Weyl}\,\,2017.$

Equilibrium

Figure 8: Equilibrium point⁸.

⁸Castillo, Knoepfle, and Weyl 2017.

Equilibrium

Figure 9: Equilibrium point.

Wild Goose Chase

Figure 10: Wild Goose Chase.

Wild Goose Chase

Figure 11: Wild Goose Chase.

Market Collapse

Figure 12: Market Collapse.

Market Collapse

Figure 13: Market Collapse.

 $\label{eq:Welfare} Welfare = Customer\ Utility\ +\ Driver\ earnings\ +\ Platform\ earnings$

```
\label{eq:Welfare} Welfare = Customer\ Utility\ +\ Driver\ earnings\ +\ Platform\ earnings
```

Weak market = low demand (11am-noon)

Strong market = high demand (6pm-7pm)

 $\label{eq:Welfare} Welfare = Customer\ Utility\ +\ Driver\ earnings\ +\ Platform$ earnings

Weak market = low demand (11am-noon) Strong market = high demand (6pm-7pm)

Figure 14: Need for dynamic pricing⁹.

⁹Castillo, Knoepfle, and Wevl 2017.

 $\label{eq:Welfare} Welfare = Customer\ Utility\ +\ Driver\ earnings\ +\ Platform$ earnings

Weak market = low demand (11am-noon) Strong market = high demand (6pm-7pm)

Figure 14: Need for dynamic pricing⁹.

⁹Castillo, Knoepfle, and Wevl 2017.

Summary

Positives:

 $\bullet\,$ Formulation of endogenous relationship between supply and demand.

Summary

Positives:

• Formulation of endogenous relationship between supply and demand.

Concerns:

- Location-based discrimination?
- Oblivious to re-balancing problem. Uber POV surge pricing helps with re-balancing.

Open Problems

• Strategic drivers

Putting Data in the Driver's Seat: Optimizing Earnings for On-Demand Ride-Hailing (*To appear in WSDM 2018 proceedings*)

- Strategic drivers
 Putting Data in the Driver's Seat: Optimizing Earnings for
 On-Demand Ride-Hailing (To appear in WSDM 2018 proceedings)
- Effect of strategic drivers on the platform (Work in progress)

- Strategic drivers
 Putting Data in the Driver's Seat: Optimizing Earnings for
 On-Demand Ride-Hailing (To appear in WSDM 2018 proceedings)
- Effect of strategic drivers on the platform (Work in progress)
- Robust Re-balancing strategies

- Strategic drivers
 Putting Data in the Driver's Seat: Optimizing Earnings for
 On-Demand Ride-Hailing (To appear in WSDM 2018 proceedings)
- Effect of strategic drivers on the platform (Work in progress)
- Robust Re-balancing strategies
- Maintaining service levels with strategic market design

- Strategic drivers
 Putting Data in the Driver's Seat: Optimizing Earnings for
 On-Demand Ride-Hailing (To appear in WSDM 2018 proceedings)
- Effect of strategic drivers on the platform (Work in progress)
- Robust Re-balancing strategies
- Maintaining service levels with strategic market design
- Optimal earning strategies for human drivers in presence of autonomous agents

- Strategic drivers
 Putting Data in the Driver's Seat: Optimizing Earnings for
 On-Demand Ride-Hailing (To appear in WSDM 2018 proceedings)
- Effect of strategic drivers on the platform (Work in progress)
- Robust Re-balancing strategies
- Maintaining service levels with strategic market design
- Optimal earning strategies for human drivers in presence of autonomous agents
- Strategic platform monitoring
 Efficient Markov Chain Monitoring (To appear in SDM 2018 proceedings)

THANK YOU!

References

Siddhartha Banerjee, Ramesh Johari, and Carlos Riquelme. "Dynamic pricing in ridesharing platforms" . In: ACM SIGecom Exchanges 15.1 (2016), pp. 65–70.

Judd Cramer and Alan B Krueger. "Disruptive change in the taxi business: The case of Uber". In: *The American Economic Review* 106.5 (2016), pp. 177–182.

Juan Camilo Castillo, Dan Knoepfle, and Glen Weyl. "Surge pricing solves the wild goose chase". In: *Proceedings of the 2017 ACM Conference on Economics and Computation*. ACM. 2017, pp. 241–242.

References ii

Jon Froehlich, Joachim Neumann, and Nuria Oliver. "Measuring the pulse of the city through shared bicycle programs". In: *Proc. of UrbanSense08* (2008), pp. 16–20.

Terry L Friesz et al. "Dynamic network traffic assignment considered as a continuous time optimal control problem". In: *Operations Research* 37.6 (1989), pp. 893–901.

Junming Liu et al. "Rebalancing Bike Sharing Systems: A Multi-source Data Smart Optimization". In: *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.* KDD '16. 2016.

Deepak K Merchant and George L Nemhauser. "Optimality conditions for a dynamic traffic assignment model". In: *Transportation Science* 12.3 (1978), pp. 200–207.

References iii

Marco Pavone et al. "Robotic load balancing for mobility-on-demand systems". In: *The International Journal of Robotics Research* 31.7 (2012), pp. 839–854.

Tal Raviv, Michal Tzur, and Iris A Forma. "Static repositioning in a bike-sharing system: models and solution approaches". In: *EURO Journal on Transportation and Logistics* 2.3 (2013), pp. 187–229.

J Schuijbroek, Robert C Hampshire, and W-J Van Hoeve. "Inventory rebalancing and vehicle routing in bike sharing systems". In: *European Journal of Operational Research* 257.3 (2017), pp. 992–1004.

Adish Singla et al. "Incentivizing Users for Balancing Bike Sharing Systems.". In: *AAAI*. 2015, pp. 723–729.

References iv

Stephen L Smith et al. "Rebalancing the rebalancers: Optimally routing vehicles and drivers in Mobility-on-Demand systems". In: *American Control Conference (ACC), 2013.* IEEE. 2013, pp. 2362–2367.

Martin Treiber, Ansgar Hennecke, and Dirk Helbing. "Congested traffic states in empirical observations and microscopic simulations". In: *Physical review E* 62.2 (2000), p. 1805.

S Travis Waller et al. "Linear programming formulation for strategic dynamic traffic assignment". In: *Networks and Spatial Economics* 13.4 (2013), pp. 427–443.

JG Wardrop. "Journey speed and flow in central urban areas". In: *Traffic Engineering & Control* 8.8 (1900).

References v

Lingyu Zhang et al. "A taxi order dispatch model based on combinatorial optimization". In: *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.* ACM. 2017, pp. 2151–2159.