Gestion de flux dans le réseau

TD n $^{\circ}$ 5

Modélisation mathématique

Q4

Sibylle Roux

Juliette Arazo Tanguy Thomas Nicolas Le Gallo

29 novembre 2017

Table des matières

1	\mathbf{Ess}	Essaies randoms					
	1.1	Loi Hypergeometrique	3				
	1.2	Preuve mathématique	3				
2	Etude mathématique de la loi tente						
	2.1	Densité	4				
		2.1.1 Fonction	4				
		2.1.2 Représentation graphique	5				
	2.2	Fonction de répartition	6				
		2.2.1 Fonction	6				
		2.2.2 Représentation graphique	7				
	2.3	Inverse	7				
		2.3.1 Fonction	7				
		2.3.2 Représentation graphique	8				
3	Inverse de la fonction de répartition de la loi exponentielle 8						
	3.1	Fonction	8				
	3.2	Représentation graphique	9				
4	Mesure de l'écart						
5	Conclusion						
A	Etude mathématique de la loi tente						
	A.1	Représentation graphique de la densité	10				
	A.2		10				
	A.3 Représentation graphique de la fonction inverse						
В	Inverse de la fonction de répartition						
	B.1 Représentation graphique de la fonction inverse						

1 Essaies randoms

1.1 Loi Hypergeometrique

1.2 Preuve mathématique

Paramètres

$$N = 20; n = 3; m = 2 : P = \frac{2}{20} \tag{1}$$

$$P(X=0) = \frac{\binom{m}{0} \times \binom{N-m}{3}}{\binom{N}{n}}$$
 (2)

$$P(X=0) = \frac{\binom{2}{0} \times \binom{18}{3}}{\binom{20}{3}} = \frac{\frac{18 \times 17 \times 16}{3 \times 2 \times 1}}{\frac{20 \times 19 \times 18}{3 \times 2}} = 0.7158$$
 (3)

$$P(X=1) = \frac{\binom{2}{1} \times \binom{18}{2}}{\binom{20}{3}} = \frac{2 \times \frac{18 \times 17}{2}}{\frac{20 \times 19 \times 18}{3 \times 2}} = 0.2684$$
 (4)

$$P(X=2) = \frac{\binom{2}{2} \times \binom{18}{1}}{\binom{20}{3}} = \frac{1 \times 18}{\frac{20 \times 19 \times 18}{3 \times 2}} = 0.0158$$
 (5)

```
N=N-1;
P=M/N;
end
end
endfunction
N=20; n=3; P=2/20;t=[]; nb=10000
for j=1:nb+1
    t(j)=hypergeo(N,n,P); //100 tirages de loi hypergeo
end
frequences=tabul(t)// on calcule les frequences obtenues
frequences(:,2)=frequences(:,2)/nb
disp(frequences)
```

Resultats d'un essai

nombre de succès	0	1	2
resultats programme	0.0172	0.2728	0.7101
resultats mathématiques	0.0158	0.2684	0.7158

Les valeurs obtenues par le programme sont proches des valeurs mathématiques. On peut en conclure que le programme retranscrit bien une loi hypergéométrique.

2 Etude mathématique de la loi tente

2.1 Densité

2.1.1 Fonction

$$f(x) = \begin{cases} 1 - |x| & \text{si } -1 \le x \le 1\\ 0 & \text{sinon} \end{cases}$$

2.1.2 Représentation graphique

2.2 Fonction de répartition

2.2.1 Fonction

$$f(x) = \begin{cases} f(x) = 0 & \text{pour } x < -1\\ f(x) = 1 + x & \text{pour } -1 < x < 0\\ f(x) = 1 - x & \text{pour } 0 < x < 1\\ f(x) = 0 & \text{pour } x > 1 \end{cases}$$
 (6)

$$<=> F(x) = \begin{cases}
\int_{-\infty}^{x} 0 \, dx & \text{pour } x < -1 \\
\int_{-\infty}^{\infty} 0 \, dx + \int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
\int_{-\infty}^{-1} 0 \, dx + \int_{-1}^{0} 1 + x \, dx + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
\int_{-\infty}^{-1} 0 \, dx + \int_{-1}^{0} 1 + x \, dx + \int_{0}^{1} 1 - x \, dx + \int_{1}^{x} 0 \, dx & \text{pour } x > 1
\end{cases} \tag{7}$$

$$<=> F(x) = \begin{cases}
0 & \text{pour } x < -1 \\
0 + \int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
0 + \frac{1}{2} + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
0 + \frac{1}{2} + \frac{1}{2} + \int_{1}^{x} 0 \, dx & \text{pour } x > 1
\end{cases} \tag{8}$$

$$<=> F(x) = \begin{cases}
0 & \text{pour } x < -1 \\
\int_{-1}^{x} 1 + x \, dx & \text{pour } -1 < x < 0 \\
\frac{1}{2} + \int_{0}^{x} 1 - x \, dx & \text{pour } 0 < x < 1 \\
1 & \text{pour } x > 1
\end{cases} \tag{9}$$

$$<=> F(x) = \begin{cases}
0 & \text{pour } x < -1 \\
\frac{1}{2} + x + \frac{x^2}{2} & \text{pour } -1 < x < 0 \\
\frac{1}{2} + x - \frac{x^2}{2} & \text{pour } 0 < x < 1 \\
1 & \text{pour } x > 1
\end{cases} \tag{10}$$

$$<=> F(x) = \begin{cases} 0 & \text{pour } x < -1\\ \frac{1}{2} \times (1 + 2x + x^2) & \text{pour } -1 < x < 0\\ -\frac{1}{2} \times (-1 - 2x + x^2 + 1 - 1) & \text{pour } 0 < x < 1\\ 1 & \text{pour } x > 1 \end{cases}$$
 (11)

2.2.2Représentation graphique

2.3Inverse

2.3.1 Fonction

On va donc inverser les deux fonctions de répartitions de la loi tente

$$\begin{cases} y_1 = \frac{(1+x)^2}{2} & \text{pour } -1 < x < 0 \\ y_2 = \frac{2-(1-x)^2}{2} & \text{pour } 0 < x < 1 \end{cases}$$
 (13)

$$y_{1} = \frac{(1+x)^{2}}{2}$$

$$2y_{1} = (1+x)^{2}$$

$$\sqrt{2y_{1}} = 1+x$$

$$x = \sqrt{2y_{1}} - 1$$

$$y_{2} = \frac{2-(1-x)^{2}}{2}$$

$$2y_{2} = 2-(1-x)^{2}$$

$$2-2y_{2} = (1-x)^{2}$$

$$x = 1-\sqrt{2-2y_{2}}$$
(14)
$$2 = \frac{2}{2}$$

$$2 = \frac{2-(1-x)^{2}}{2}$$
(15)

$$2y_1 = (1+x)^2 2y_2 = 2 - (1-x)^2 (15)$$

$$\sqrt{2y_1} = 1 + x \qquad 2 - 2y_2 = (1 - x)^2 \tag{16}$$

$$x = \sqrt{2y_1} - 1 \qquad x = 1 - \sqrt{2 - 2y_2} \tag{17}$$

Donc la fonction inverse est :

$$F^{-1}(x) = \begin{cases} \sqrt{2x} - 1 & \text{pour } 0 < x < \frac{1}{2} \\ 1 - \sqrt{2 - 2x} & \text{pour } \frac{1}{2} < x < 1 \end{cases}$$
 (18)

2.3.2 Représentation graphique

3 Inverse de la fonction de répartition de la loi exponentielle

3.1 Fonction

$$y = 1 - e^{-\lambda t} \tag{19}$$

$$e^{-\lambda t} = 1 - y \tag{20}$$

$$-\lambda t = \ln(1 - y) \tag{21}$$

$$t = -\frac{\ln(1-y)}{\lambda} \tag{22}$$

Donc la fonction inverse est :

$$F^{-1}(t) = -\frac{\ln(1-y)}{\lambda}$$
 (23)

3.2 Représentation graphique

- 4 Mesure de l'écart
- 5 Conclusion

A Etude mathématique de la loi tente

A.1 Représentation graphique de la densité

```
t = linspace(-1, 1, 301);
T = t;
i1 = (t>=-1) & (t<=1);
i2 = t>1 & t<-1;
T(i1)=1-abs(T(i1));
T(i2)=0
plot2d(t,T,style=2)
legend("Fonction de densité de la loi tente")</pre>
```

A.2 Représentation graphique de la fonction de répartition

```
t = linspace(-1, 1, 301);
R=t;
i1 = t<-1;
i2 = (t>=-1) & (t<=0);
i3 = (t>0) & (t<=1);
i4 = t>1;
R(i1) = 0;
R(i2) = 0.5 + R(i2) + ((R(i2)^2)/2)
R(i3) = 0.5 + R(i3) - ((R(i3)^2)/2)
R(i4) = 1;
plot2d(t,R,style=2)
legend("Fonction de répartition de la loi tente")
```

A.3 Représentation graphique de la fonction inverse

```
function t = tente(n)
    u = rand(n, 1);
    t = u
    i1 = u < 1/2
    i2 = u >= 1/2
    t(i1) = sqrt(2*t(i1))-1;
    t(i2) = 1-sqrt(2-2*t(i2));
endfunction
histplot(20,tente(10000))

// Fonction de densité

t = linspace(-1, 1, 301);
T = t;
i1 = (t>=-1) & (t<=1);</pre>
```

```
\label{eq:continuous} \begin{split} &\text{i2 = t>1 \& t<-1;} \\ &\text{T(i1)=1-abs(T(i1));} \\ &\text{T(i2)=0} \\ &\text{plot2d(t,T,style=1)} \\ &\text{legend("Fonction de densit\'e de la loi tente","Simulation de la loi tente")} \end{split}
```

B Inverse de la fonction de répartition

B.1 Représentation graphique de la fonction inverse

```
function t = expo(1,n)
    u = rand(n, 1);
    t = u
    t = -log(1-t)/1
endfunction
histplot(20,expo(1,100000))

// Fonction de densité de la loi exponentielle
a=0:0.01:12;
lambda=1;
b=lambda*exp(-lambda*a);
plot2d2(a,b,style=1)

legend("Simulation de la loi exponentielle", "Densité de la loi exponentielle")
```