

描述

AS4950 是一款全桥 DMOS 有刷电机驱动芯片,最大工作范围可以达±3.5A 和 40V 输入电压,用 PWM 来控制马达驱动的速度和方向。如果将两个输入均置为低电平,则电机驱动器将进入低功耗休眠模式。

AS4950集成电流限制功能,该功能基于模拟输入 VREF 以及 LSEN 引脚的电压。该器件能够将电流限制在某一已知水平,这可显著降低系统功耗要求,并且无需大容量电容来维持稳定电压,尤其是在电机启动和停转时。

内部关断功能包含过流保护、短路保护、欠压锁定和过温保护。

AS4950 提供一种带有裸露焊盘的 SOP-8 封装,能有效改善散热性能,且是无铅产品,引脚框采用 100% 无锡电镀。

应用

- 打印机及办公自动化设备
- 电器
- 机器人
- 工业设备

型号选择

产品型号	封装	包装		
AS4950	SOP8-PP	料管, 100颗/管; 卷带, 3k/盘		

特点

- 宽电压供电, 8V-40V
- R_{DS(ON)}电阻为600mΩ
- ●3.5A峰值驱动输出,2A持续输出能力
- 支持欠压锁定保护
- 低功耗休眠模式
- PWM电流整流/限流/调向
- 支持短路保护
- 支持过温关断电路
- 自动故障恢复

封装形式

SOP8 with PAD

功能框图

Page 1 of 7 09/2020, V1.0

电路工作极限

Characteristic	Symbol	Notes	Rating	Unit
功率电源	VP		40	V
逻辑输入	$V_{\rm IN}$		-0.3 ~ 6	V
V _{LSEN} 输入范围	V_{LSEN}		-0.3 ~ 6	V
Sense Voltage (LSEN pin)	V_{LSEN}		−0.5 ~ 0.5	V
输出电流	I_{OUT}	Duty cycle = 100%	3.5	A
工作温度	T_{A}	Temperature Range E	-40 ~ 85	°C
最大结温	T _J (max)		150	°C
储藏温度	$T_{ m stg}$		−55 ~ 150	°C

管脚定义

Number	Name	Function		
1	GND	地		
2	IN2	逻辑输入 2		
3	IN1	逻辑输入1		
4	VREF	模拟输入		
5	VP	功率电源		
6	OUT1	DMOS 全桥输出 1		
7	LSEN	检测电阻连接		
8	OUT2	DMOS 全桥输出 2		
_	PAD	散热 pad		

电特性参数

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
General			·			
Load Supply Voltage Range	VP		8	_	40	V
R _{DS(on)} Sink + Source Total	D	$I_{OUT} = 1 \text{ A} , T_{J} = 25^{\circ}\text{C}$	_	0.6	0.8	Ω
K _{DS(on)} SHIK + Source Total	R _{DS(on)}	$I_{OUT} = 1 \text{ A} , T_{J} = 150^{\circ}\text{C}$	_	1	1.4	Ω
	T	$f_{PWM} < 30 \text{ kHz}$	_	5	20	mA
Load Supply Current	I_{VP}	Low Power Standby mode	_	-	10	μΑ
	V	Source diode, $I_f = -2.5 \text{ A}$	_	_	1.5	V
Body Diode Forward Voltage	V_{f}	Sink diode, $I_f = 2.5 A$	_	-	1.5	V
Logic Inputs						
	V _{IN(1)}		2.0	_	_	V
Logic Input Voltage Range	V _{IN(0)}		_	_	0.8	V
	V _{IN(STANDBY)}	Low Power Standby mode	_	_	0.4	V
	I _{IN(1)}	$V_{IN} = 2.0 \text{ V}$	_	40	100	μΑ
Logic Input Current	$I_{IN(0)}$	$V_{\rm IN} = 0.8 \ V$	_	16	40	μΑ
Logic Input Pull-Down Resistance	R _{LOGIC(PD)}	$V_{IN} = 0 V = IN1 = IN2$	_	50	_	kΩ
		Timing				
Crossover Delay	t_{COD}		50	_	500	ns
V _{REF} Input Voltage Range	V_{REF}		0	_	5	V
Current Gain	A_{V}	V_{REF} / I_{SEN} , $V_{REF} = 5 V$	9.5	_	10.5	V/V
Blank Time	t _{BLANK}		2	3		μs
Constant Off-time	t _{off}		16	25	34	μs
Standby Timer t _{st}		$IN1 = IN2 < V_{IN(STANDBY)}$	_	1	1.5	ms
Power-Up Delay	t _{pu}		-	_	30	μs
		Protection Circuits				
UVLO Enable Threshold	V_{UVLO}	V _p increasing	7	7.4	7.8	V
UVLO Hysteresis	V _{UVLOhys}		_	300	_	mV
Thermal Shutdown Temperature	T_{JTSD}	Temperature increasing	_	160	_	°C
Thermal Shutdown Hysteresis	T_{TSDhys}	$Recovery = T_{JTSD} - T_{TSDhys}$	_	15		°C

模块功能描述

AS4950 是一款有刷直流电机驱动器,VP 单电源供电,内置电荷泵。两个逻辑输入控制 H 桥驱动器,该驱动器由四个 N-MOS 组成,能够以高达 3.5A 的峰值电流双向控制电机。该芯片利用电流衰减预置最大输出电流,能够将电流限制在某一已知水平。如果将两个输入均置为低电平,则电机驱动器将进入低功耗休眠模式。内部关断功能包含过流保护、短路保护、欠压锁定和过温保护。

Characteristic Performance

PWM Control Timing Diagram

PWM Control Truth Table

IN1	IN2	$10 \times V_S > V_{REF}$	OUT1	OUT2	Function
0	1	False	L	Н	Reverse
1	0	False	Н	L	Forward
0	1	True	H/L	L	Chop (mixed decay), reverse
1	0	True	L	H/L	Chop (mixed decay), forward
1	1	False	L	L	Brake (slow decay)
0	0	False	Z	Z	Coast, enters Low Power Standby mode after 1 ms

Note: Z indicates high impedance.

CurrentControl

通过固定频率的 PWM 电流整流器,流过电机驱动桥臂的电流是被限制的或者是被控制的。在 DC 电机应用中,电流控制功能作用于限制开启电流和停转电流。

当一个 H 桥被使能,流过相应桥臂的电流以一个斜率上升,此斜率由直流电压 VP 和电机的电感特性决定。当电流达到设定的阈值,驱动器会关闭此电流,直到下一个 PWM 循环开始。注意,在电流被使能的那一刻,LSEN 管脚上的电压是被忽略的,经过一个固定时间后,电流检测电路才被使能。这个消隐时间一般固定在 2μs。这个消隐时间同时决定了在操作电流衰减时的最小 PWM时间。

PWM 目标电流是由比较器比较连接在 LSEN 管脚上的电流检测电阻上的电压乘以一个 10 倍因子和一个参考电压决定。参考电压通过 VREF 输入。以下公式为100% 计算目标电流:

$$I_{\text{Trip}}(A) = \frac{V_{\text{REF}}(V)}{A_{V} \times R_{\text{LSEN}}(\Omega)} = \frac{V_{\text{REF}}(V)}{10 \times R_{\text{LSEN}}(\Omega)}$$

电流衰减时序

当电流达到 I_{Trip}, H桥的两个下管打开,维持一个 t_{off} 时间(25μs),然后相应上管再打开。

DEAD TIME

当输出由高电平转变成低电平,或者由低电平转变为高电平,死区时间的存在是为了防止上下管同时导通。死区时间内,输出是一个高阻态。当需要在输出上测量死区时间,需要根据相应管脚当时的电流方向来测量。如果电流是流出此管脚,此时输出端电压是低于地电平一个二极管压降;如果电流是流入此管脚,此时输出端电压是高于电源电压 VP 一个二极管压降。

休眠模式

当 IN1、IN2 都为低维持 1ms 以上,器件将进入休眠模式,从而大大降低器件空闲的功耗。进入休眠模式后,器件的 H 桥被禁止,电荷泵电路停止工作。在 VP 上电时候,如果 IN1、IN2 都为低,芯片是立马进去休眠模式。当 IN1 或 IN2 翻转为高电平且至少维持 5μs,经过延迟约 50μs,芯片恢复到正常的操作状。

保护电路

AS4950 有过流保护,过温保护和欠压保护。

过流保护

芯片内置电流监测以保护芯片不被烧坏。如果输出短路到 VP 或 GND,芯片会输出高阻态并关断输出。这种锁存状态只能通过芯片重新上电来消除。在过流保护过程中,允许芯片超出最大工作条件一段时间后才会触发锁存。

过温保护 (TSD)

如果结温超过安全限制阈值,H 桥的 FET 被禁止。一旦结温降到一个安全水平,所有操作会自动恢复正常。

欠压锁定保护(UVLO)

在任何时候,如果 VP 管脚上的电压降到低于欠压锁定阈值,内部所有电路会被禁止,内部所有复位。当 VP上的电压上升到 UVLO 以上,所有功能自动恢复。

Mixed Decay 运行模式

Page 6 of 7 09/2020, V1.0

Package LJ, 8-Pin SOICN with exposed thermal pad

上海聚迹科技有限公司

www.assemstar.com

Page 7 of 7 09/2020, V1.0