FALL 2003 FINAL EXAM FOR SM261 0755 DECEMBER 11, 2003

SHOW ALL WORK

PART 1. On this part you may **NOT** use a calculator. Show all your work.

- 1. Complete the following definitions.
 - **a.** A subset W of \mathbb{R}^n is called a subspace of \mathbb{R}^n if...
 - **b.** If $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ are vectors in \mathbb{R}^n , then span $(\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n) = \dots$
 - **c.** If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then the image of T is...
 - **d.** A set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m\}$ in a subspace V of \mathbb{R}^n forms a basis for V if...
 - **e.** If V is a subspace of \mathbb{R}^n , then the dimension of V is...
- 2. Consider the linear system of equations

$$x + y + 5z = 9$$
$$-x + 2y + z = 6$$
$$3x - y + 7z = 7$$

- **a.** If we write the system in the matrix form $A\vec{v} = \vec{b}$, what are A, \vec{v} and \vec{b} ?
- **b.** Find the reduced row echelon form of the augmented matrix $[A|\vec{b}]$ for this system. Show all steps.
- **c.** Solve the system.
- **d.** Is the solution set a subspace of \mathbb{R}^3 ? Explain. If so, what is its dimension?

- **e.** Is the solution set of the corresponding homogenous system Av = 0 a subspace of \mathbb{R}^3 ? Explain. If so, what is its dimension?
- 3. Find the determinant of the matrix

$$\begin{bmatrix} 1 & 0 & 0 & 3 \\ 3 & 1 & 2 & 2 \\ 4 & 0 & 0 & 2 \\ 3 & 4 & 5 & 0 \end{bmatrix}.$$

4. Find the inverse of the matrix

$$\begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix}.$$

5. Find the product AB, where

$$A = \begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & -1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 5 & 1 \\ 2 & -1 \\ 3 & 4 \end{bmatrix}.$$

This is the end of Part 1. Turn in your answers and proceed to Part 2.

PART 2. You may use a calculator on this part. Show all your work.

6. Suppose $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation whose matrix is

$$\begin{bmatrix} 1 & 3 & 0 \\ 4 & 0 & 1 \end{bmatrix}$$

and $S: \mathbb{R}^2 \to \mathbb{R}^3$ is a linear transformation whose matrix is

$$\begin{bmatrix} 2 & 0 \\ 4 & 1 \\ 0 & 3 \end{bmatrix}.$$

Find the matrix of the linear transformation $S \circ T$. (Recall that $S \circ T(v) = S(T(v))$.)

7. $T: \mathbb{R}^3 \to \mathbb{R}^2$ is a linear transformation such that $T \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 3 \end{bmatrix}$, $T \begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $T \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$. Find the matrix of T.

8. Let A be the matrix

$$\begin{bmatrix} 1 & 0 & -1 & 0 & 1 & -2 \\ 0 & 1 & -2 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 2 & -3 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

a. Find a basis for ker(A).

b. Find $\dim(\ker(A))$.

c. Find a basis for im(A).

d. Find rank(A).

9. Let $V = \text{span}(\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4)$, where $\vec{v}_1 = \begin{bmatrix} 2\\1\\3\\0 \end{bmatrix}$, $\vec{v}_2 = \begin{bmatrix} -2\\-3\\-1\\4 \end{bmatrix}$, $\vec{v}_3 = \begin{bmatrix} 0\\-1\\1\\2 \end{bmatrix}$, and $\vec{v}_4 = \begin{bmatrix} \frac{4}{5}\\3\\-6 \end{bmatrix}$.

a. Find a basis for V.

b. Is the vector $\begin{bmatrix} 5 \\ 0 \\ 1 \\ 2 \end{bmatrix}$ in V?

- **10.** Let V be the subspace of \mathbb{R}^4 which consists of all multiples of the vector $\begin{bmatrix} 1\\ -1\\ 3 \end{bmatrix}$. Find a basis for V^{\perp} .
- **11.** Let V be the subspace of \mathbb{R}^3 with basis $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \right\}$. Find the \mathcal{B} -coordinate vector $[\vec{v}]_{\mathcal{B}}$ for $\vec{v} = \begin{bmatrix} 3 \\ 5 \\ 2 \end{bmatrix}$.
- **12.** Use the Gram-Schmidt process to find an orthonormal basis for the subspace V of \mathbb{R}^3 spanned by the vectors $\vec{v}_1 = \begin{bmatrix} 2 \\ 2 \\ 1 \end{bmatrix}$ and $\vec{v}_2 = \begin{bmatrix} 1 \\ 1 \\ 5 \end{bmatrix}$.
- **13.** Let V be the subspace of \mathbb{R}^3 spanned by $\begin{bmatrix} 3 \\ 0 \\ 4 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.
 - **a.** Find the matrix of the orthogonal projection of \mathbb{R}^3 onto V.
 - **b.** Find the orthogonal projection of the vector $\begin{bmatrix} 1\\2\\0 \end{bmatrix}$ onto V.
- **14.** Find the linear function a + bt which best fits the data points (0, 4), (1, 5) and (2, 0) using least squares.
- **15.** Suppose that $T: \mathbb{R}^5 \to \mathbb{R}^8$ is a linear transformation and $\dim(\ker(T)) = 2$. What are the possible values of $\dim(\operatorname{im}(T))$?

In Problems 16-19, do all calculations by hand and show all steps. You may check your work with a calculator.

16. Let A be the matrix

$$\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix}.$$

- **a.** Find the characteristic polynomial $f_A(\lambda)$ of A.
- **b.** Find the eigenvalues of A. Find the algebraic multiplicity of each eigenvalue.
- **c.** For each eigenvalue λ , find a basis for the eigenspace E_{λ} .
- **d.** Is A diagonalizable? If so, find an eigenbasis for A and a diagonal matrix D which is similar to A. If not, give your reasons and evidence.

17. Repeat Problem 16 for

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 2 \end{bmatrix}.$$

18. Repeat Problem 16 for

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

19. a. Find the 4-volume of the parallelepiped in \mathbb{R}^4 formed from the vectors

$$\begin{bmatrix} 2\\2\\4\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\-4\\0 \end{bmatrix}, \begin{bmatrix} 3\\1\\1\\5 \end{bmatrix}, \begin{bmatrix} 4\\2\\1\\7 \end{bmatrix}.$$

b. Use Cramer's Rule to solve the linear algebraic system below. No credit for other methods.

$$2x_1 + 3x_3 + 4x_4 = 1$$
$$2x_1 + x_3 + 2x_4 = 0$$
$$4x_1 - 4x_2 + x_3 + x_4 = 0$$
$$2x_1 + 5x_3 + 7x_4 = 0$$

c. Let $T\vec{x} = A\vec{x}$ be the linear transformation from \mathbb{R}^4 to \mathbb{R}^4 where A is the matrix whose columns are the 4 vectors shown above in part (a). If we apply T to a cube whose 4-volume is 6, what will be the volume of the image?

- **20.** True or False. If true, give a reason. If false, give a reason or a counterexample.
 - **a.** If A is a square matrix and $A^4 = I$, then A is invertible.
 - **b.** Any set of vectors which spans \mathbb{R}^n is a subset of some basis of \mathbb{R}^n .
 - c. Every square matrix has at least one real eigenvalue.
 - **d.** If V is the set of all vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 with |x| = |y|, then V is a subspace of \mathbb{R}^2 .
 - **e.** If $T \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y+1 \\ x+y-1 \end{bmatrix}$, then T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 .

END OF TEST