Department of Mathematics, Bennett University Engineering Calculus (EMAT101L) Tutorial Sheet 1

- 1. Find the infimum and supremum of the following sets:
 - (a) $S = \{1 + (-1)^n : n \in \mathbb{N}\}.$
 - (b) $S = \{ \frac{(-1)^n}{n^2} : n \in \mathbb{N} \}.$
 - (c) $S = \{ \sin\left(\frac{n\pi}{3}\right) : n \in \mathbb{N} \}.$
 - (d) $S = \{ \frac{1}{n+m} : n, m \in \mathbb{N} \}.$
- 2. Let S be a non-empty subset of \mathbb{R} and α be a real number. If $\alpha = \sup S$, then show that $s \leq \alpha$ for all $s \in S$ and for any $\epsilon > 0$, there is some $s_0 \in S$ such that $\alpha \epsilon < s_0$.
- 3. If $x + \epsilon > y$ holds for each $\epsilon > 0$, then show that $x \ge y$.
- 4. If for any $\epsilon > 0$, $|x y| < \epsilon$, then show that x = y.
- 5. Use the Archimedean property to show that $\bigcap_{n\in\mathbb{N}}(-\frac{1}{n},\frac{1}{n})=\{0\}.$
- 6. Let $r \in \mathbb{R}$. Prove that there exists a sequence $\{x_n\}$ of rational numbers such that $\lim_{n\to\infty} x_n = r$.
- 7. By the definition of convergence, prove the limit of the following:
 - (a) $\lim_{n \to \infty} \frac{2n}{2+n} = 2.$
 - (b) $\lim_{n \to \infty} \frac{5}{1+n^2} = 0.$
 - (c) For p > 0, show that $\lim_{n \to \infty} \frac{1}{n^p} = 0$.
 - (d) For $n \in \mathbb{N}$, let $a_n = \frac{9}{10} + \frac{9}{10^2} + \dots + \frac{9}{10^n}$. Then show that $\lim_{n \to \infty} a_n = 1$.
- 8. Let $a, a_1 \in \mathbb{R}$. For $n \geq 1$, the sequence a_n is defined by $2a_{n+1} + a_n = a$. Show that the sequence converges and its limit is $\frac{a}{3}$.
- 9. Prove or disprove (true or false) the following:
 - (a) The sequence $\left\{\sum_{i=1}^{n} \frac{1}{\sqrt{n^2+i}}\right\}$ converges to 1.
 - (b) The sequence $\sum_{k=0}^{n} \frac{1}{(n+k)^2}$ converges to 0.
 - (c) If 0 < a < b, $\lim_{n \to \infty} \left(\frac{a^{n+1} + b^{n+1}}{a^n + b^n} \right) = a$.
- 10. If $\{a_n\}$ is a bounded sequence and $\{b_n\}$ is another sequence which converges to 0, show that the product sequence also converges to 0. What can you say about the product sequence, if $\{b_n\}$ converges, but to a non-zero point?

1