ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ТЕСТ ПО МАТЕМАТИКА – 06 юли 2015 г. ВАРИАНТ ВТОРИ

ПЪРВА ЧАСТ

Всяка от следващите 20 задачи има само един верен отговор. Преценете кой от предложените пет отговора на съответната задача е верен. Върху талона за отговори от теста (последната страница) заградете с овал и нанесете кръстче върху тази буква, която считате, че съответства на правилния отговор. Например

За всеки верен отговор получавате по 1 точка. За грешен или непопълнен отговор, както и за посочени повече от един отговори на една задача, точки не се дават и не се отнемат.

- 1. Стойността на израза $2^{-\frac{1}{4}} \cdot 32^{0.25} + \left(27^2\right)^{\frac{1}{6}} \left(\sqrt[3]{64}\right)^{\frac{1}{2}}$ е равна на: б) 2. в) 3.
 - a) 1,

- д) 5.
- 2. Ако 120% от a е равно на 40% от b , то $a \colon b$ е равно на:
- б) $\frac{1}{4}$, в) $\frac{1}{3}$, г) $\frac{2}{3}$, д) $\frac{1}{2}$.

- 3. Ако x_1 и x_2 са корените на уравнението $12x^2 7x 12 = 0$, то стойността на израза $x_1^2 + x_2^2$ е равна на:
- a) $-\frac{239}{144}$, б) $\frac{51}{144}$, в) $\frac{7}{4}$, г) $\frac{47}{144}$, д) $\frac{337}{144}$.

- 4. Даден е квадратният тричлен $f(x) = x^2 + ax + 4$, където a е реален параметър. Най-малката цяла стойност на a, за която f(x) > 0 за всяка реална стойност на x, е равна на:
 - a) -3, 6) -4,

- в) 3, г) 2, д) 0.
- 5. Корените на уравнението $\sqrt{x+1} + \sqrt{x-2} = \sqrt{x+6}$ принадлежат на интервала:
- а) (-6;-1], б) [-6;3), в) (-7;2], г) [2;7], д) [-1;2].

- 6. Броят на членовете на аритметичната прогресия -1,5,...,491 е равен на:
 - a) 38,
- б) 81,
- в) 82,
- г) 83.

7. 3a	геометричната	прогресия	$\{a_n\}$	e	известно,	че	$a_1 + a_5 = 51$	И
a_2 -	$+a_6 = 102$. Yactho	то на прогре	есията	e pa	авно на:			
a) $\frac{1}{2}$, б) 2,	в)	3,		Γ) $\frac{1}{3}$,		д) 4.	

- a) 2, б) 3, в) 4, г) 5, д) 6.
- 9. Ако $\cos \alpha = -\frac{3}{5}$ и $\alpha \in \left(\pi; \frac{3\pi}{2}\right)$, то стойността на $\sin \alpha$ е равна на:
- a) $\frac{4}{5}$, 6) $-\frac{3}{4}$, B) $\frac{3}{5}$, Γ) $-\frac{\sqrt{2}}{5}$, Π) $-\frac{4}{5}$.
- 10. Ако (x, y) е решение на системата $\begin{vmatrix} x^3 y^3 = 72, \\ x y = 6, \end{vmatrix}$ то произведението x y = 6,
- a) -8, б) -7, в) -6, г) 8, д) 12.
- 11. На графиката на функцията y = f(x) са отбелязани девет точки x_i , i = 1,...,9. Броят на точките x_i , в които производната на функцията е отрицателна, е равен на:

б) 3,

a) 4,

- 12. В урна има 12 бели и 8 черни топки. По случаен начин се изтеглят три топки. Вероятността точно две от изтеглените топки да са бели е:
- a) $\frac{8}{19}$, б) $\frac{44}{95}$, b) $\frac{3}{40}$, г) $\frac{3}{20}$, д) $\frac{44}{285}$.

B) 2.

- 13. Aro $a = \lim_{x \to -1} \frac{x^2 + 10x + 9}{x^2 + 3x + 2}$, To:
- а) $a = \frac{9}{2}$, б) a = 1, B $a = \frac{10}{3}$, C a = -8, D a = 8.
- 14. Решение на уравнението $2^{x} \left(\frac{1}{2}\right)^{14-4x} = 64$ е числото:
- a) $\frac{8}{5}$, 6) $-\frac{8}{5}$, B) 4, Γ) -4, \Box 2.

15. Множеството от допустими $f(x) = \sqrt{4 - \log_2(x - 5)}$ е:	те стойности	на х за	функцията
a) (0;4), б) [5;21], в) (5;21], г) (¬	∞;4), д	$)$ $(4;\infty)$.
16. Медицентърът на равнобед вписаната в триъгълника окр Страната <i>АВ</i> има дължина:	ъжност, чийто	радиус е ра	вен на r .
a) $\sqrt{6}r$, 6) $6r$, B) 7	$2\sqrt{3}r$, Γ) 3	$\sqrt{2}r$, д	() $2\sqrt{2}r$.
17.В правоъгълен трапец с осттокръжност. Диаметърът на тазиа) 5 <i>cm</i> , б) 4 <i>cm</i> , в)	окръжност е рав	ен на:	
18. В триъгълник две от страните	е са с дължини	5 <i>ст</i> и 8 <i>сп</i>	<i>i</i> , а ъгълът
срещу третата страна има голе	мина 60° . Радиу		
триъгълника окръжност е равен		_	
a) $7 cm$, 6) $3.5 cm$, B) $\frac{7.5}{100}$	$\frac{\sqrt{2}}{2}$ cm, Γ) $\frac{7\sqrt{3}}{3}$	$\frac{3}{2}$ cm, д)	$7\sqrt{3}$ cm.
19. В правилна шестоъгълна пира сключва с основата ъгъл с голе		-	
$\frac{3a^3\cot\theta}{4}$, 6) $\frac{2a^3\sin\alpha}{3}$, B) $\frac{4a^3\cos\theta}{3}$	$\frac{a^3\cos\alpha}{3}$, Γ) $\frac{9a^3}{3}$	$\frac{^{3} \operatorname{tg} \alpha}{4}$, д)	$\frac{3a^3 \operatorname{tg} \alpha}{4} .$
20. Дадена е функцията $f(x) = a$	$x^2 - (a-1)x + 2a$	+1, където	а е реален
параметър. Стойностите на а	, при които урав	внението $f($	(x) = 0 има
два реални корена, принадлежа	т на интервала:	_	
a) $\left[-1;0\right) \cup \left[0;\frac{1}{7}\right],$ 6) $\left(-\infty\right)$;-1],	B) $\left[\frac{1}{7};\infty\right)$,	
$_{\Gamma}$) $\left[-1;\frac{1}{7}\right]$, $_{\Box}$	$\left[\frac{1}{7}\right]$.		

a)

Следващите 10 задачи са без избираем отговор. Върху талона за отговорите от теста (последната страница) в празното поле за отговор на съответната задача запишете само отговора, който сте получили. За всеки получен и обоснован верен отговор получавате по 2 точки. За грешен отговор или за непопълнен отговор точки не се дават и не се отнемат.

ВТОРА ЧАСТ

21. Да се реши уравнението: $\log_3(x^2-4) = 2\log_9(2x-1)$.

- 22. Да се намери най-голямата цяла стойност на x, за която е изпълнено неравенството: $\left(\frac{1}{7}\right)^{x^2+x} > \left(\frac{1}{49}\right)^{16-x}$.
- 23. Да се реши неравенството: $\frac{x^2(x+1)}{(x^2-x+1)(2-x)} \ge 0$.
- 24. Да се намерят всички корени на уравнението $\frac{1}{\cos^2 x} + 2\sin^2 x 3 = 0$, които принадлежат на затворения интервал $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.
- 25. Два различими правилни шестстенни зара се хвърлят еднократно. Да се намери вероятността сборът от точките върху двата зара да е равен на десет или на дванадесет.
- 26. Върху окръжност са взети 10 точки. Да се намери максималният брой на различните хорди с краища в тези точки.
- 27. Даден е правоъгълен ΔABC с катети $AC = 2\,cm$ и $BC = 1\,cm$. Хипотенузата му служи за катет на равнобедрен правоъгълен ΔABD $(AB \perp BD)$ като точките C и D са от различни страни на AB. Ако BM е медиана в ΔABD , намерете дължината на отсечката CM.
- 28. Катетите на правоъгълен триъгълник сключват с равнина α ъгли с големина β и γ , а хипотенузата му лежи в равнината α . Да се определи синусът на ъгъла φ , ($\varphi \neq 90^\circ$) между равнината α и равнината на триъгълника.
- 29. Дадена е функцията $f(x)=(k-1)x^4-kx^2+k+1$, където k е реален параметър. Да се намери при коя стойност на k графиката на f(x) минава през точката M(1;-1).
- 30. Даден е тричленът $f(x) = ax^2 + bx + 8$, където a и b са реални параметри. Определете стойностите на a и b така, че при x = -1 тричленът f(x) да има екстремум, равен на 2.

ВРЕМЕ ЗА РАБОТА 4 АСТРОНОМИЧЕСКИ ЧАСА

Драги кандидат-студенти, попълвайте внимателно отговорите на задачите от теста <u>само върху талона за отговор (последната страница)!</u>

НА ВСИЧКИ КАНДИДАТ-СТУДЕНТИ ПОЖЕЛАВАМЕ УСПЕХ!

ОТГОВОРИ НА ВАРИАНТ ВТОРИ на ТЕСТ ПО МАТЕМАТИКА – 06 юли 2015 г. за КАНДИДАТ-СТУДЕНТИ от ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ПЪРВА ЧАСТ

1 в	2 в	3 д	4 a	5 г	6 г	7б	8б	9 д	10 a
11 б	12 б	13 д	14 в	15 в	16 a	17 г	18 г	19 д	20 a

ВТОРА ЧАСТ

21. x = 3

22. x = 4

23. $x \in [-1;2)$

24. $x = \pm \frac{\pi}{4}$

25. $\frac{1}{9}$

26. 45

27. $\frac{3\sqrt{2}}{2}cm$

28. $\sin \varphi = \sqrt{\sin^2 \beta + \sin^2 \gamma}$

29. k = -1

30. a = 6; b = 12