

Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Eléctrica EL7012 – Control inteligente de Sistemas

Manual de uso: Toolbox para identificación de modelo difuso

Contenido

1. Instalació	ón	1
2. Descripci	ión de funciones del toolbox	2
2.1. Funcio	nes de modelación	2
2.1.1. taka	agisugeno1	2
2.1.2. ysir	n	3
2.1.3. clus	sters_optimo	3
2.1.4. sen	nsibilidad	4
2.1.5. erro	ortest	5
3. Ejemplo .		7

1. Instalación

El primer paso corresponde a la instalación del toolbox, para esto se deben seguir los siguientes pasos:

- 1. Abrir el software MATLAB instalado en nuestro computador
- 2. En la ventana de comandos de MATLAB escribir "pathtool", lo que desplegará una ventana como se muestra a continuación

3. En la ventana Set Path se usa la opción Add Folder, se busca y selecciona el toolbox, una vez hecho esto se presiona el botón Save y luego Close.

Si los pasos fueron seguidos correctamente el toolbox ya se encuentra instalado y podremos usar las funciones del toolbox sin tener que cambiar de directorio.

U. de Chile, FCFM, DIE ~1~

2. Descripción de funciones del toolbox

En esta sección se explicarán las principales funciones del toolbox, las funciones que no son detalladas no se usan por el usuario solo son utilizadas por las funciones principales que se describirán a continuación.

2.1. Funciones de modelación

2.1.1. takagisugeno1

Esta función corresponde a la función utilizada para obtener un modelo difuso TS a partir de datos de salida y de datos de entrada del modelo. Su sintaxis es la siguiente:

[model, result]=takagisugeno1(iden y,iden x,reglas,opcion)

La siguiente tabla explica a que corresponden las entradas y salidas de esta función:

Nombre	Entrada/Salida	Descripción
model	Salida	Corresponde a un conjunto de
		matrices que dan origen al
		modelo difuso entre ellos
		model.a, model.b y model.g
		que son necesarios para luego
		construir la salida del modleo
		difuso
result	Salida	
lden_y	Entrada	Es la salida con la que se
		identifica el modelo difuso.
lden_x	Entrada	Es la matriz cuyas columnas
		son las entradas con las que se
		identificará el modelo.
reglas	Entrada	Corresponde al número de
		clusters a utilizarse.
opcion	Entrada	Corresponde a la opción con la
		que se identificará el modelo
		utilizar "[2 2]"

2.1.2. ysim

Esta función construye la salida estimada a partir de un modelo difuso TS. Su sintaxis es la siguiente:

y=ysim(X,a,b,g)

La siguiente tabla explica a que corresponden las entradas y salidas de esta función:

Nombre	Entrada/Salida	Descripción
У	Salida	Corresponde a la salida
		predicha por el modelo difuso
		obtenido.
X	Entrada	Corresponde a la matriz cuyas
		columnas son las variables de
		entrada del modelo difuso
		obtenido
а	Entrada	Es una matriz que muestra el
		inverso de los anchos de las
		funciones de pertenencia para
		cada entrada del modelo y
		para cada regla.
b	Entrada	Es la matriz que muestra
		donde está centrada la función
		de pertenencia para cada
		entrada del modelo en cada
		regla.
g	Entrada	Corresponde a la matriz cuyas
		filas son los parámetros que
		acompañan a las entradas del
		modelo para cada regla

Funciones de identificación

2.1.3. clusters_optimo

Esta función es la encargada de encontrar el número de clusters óptimo de acuerdo a la matriz de entradas candidatas utilizada, para esto esta función grafica los errores de entrenamiento y de test en función del número de clusters en donde es posible sleccionar el número óptimo. Su sintaxis es la siguiente:

[errtest,errent]=clusters_optimo(ytest,yent,Xtest,Xent,max_clusters)

La siguiente tabla explica a que corresponden las entradas y salidas de esta función:

Nombre	Entrada/Salida	Descripción
errtest	Salida	Es un vector que contiene el
		error cuadrático medio de test
		para cada número de clusters.
errent	Salida	Es un vector que contiene el
		error cuadrático medio de
		entrenamiento para cada
		número de clusters.
ytest	Entrada	Corresponde al vector salida
		de nuestro conjunto de test
yent	Entrada	Corresponde al vector salida
		de nuestro conjunto de
		entrenamiento
Xtest	Entrada	Es la matriz cuyas columnas
		corresponden a las entradas
		candidatas para el modelo
		difuso utilizando el conjunto
		de test.
Xent	Entrada	Es la matriz cuyas columnas
		corresponden a las entradas
		candidatas para el modelo
		difuso utilizando el conjunto
		de entrenamiento.
max_clusters	Entrada	Es el número máximo de
		clusters al que se quiere llegar
		en el estudio de errores según
		cantidad de clusters.

2.1.4. sensibilidad

Esta función realiza un análisis de sensibilidad dada una cantidad de clusters y una matriz de entradas candidatas del modelo, devolviendo los índices para cada entrada candidata y cual debería eliminarse. Su sintaxis es la siguiente:

[p indice] = sensibilidad(yent, Xent, reglas)

La siguiente tabla explica a que corresponden las entradas y salidas de esta función:

Nombre	Entrada/Salida	Descripción
р	Salida	Es el número correspondiente
		a la columna de la matriz de
		variables de entrada
		candidatas que se debe
		eliminar según el análisis de
		sensibilidad.
indice	Salida	Es el vector que contiene los
		índices del análisis de
		sensibilidad para cada una de
		las variables de entrada
		candidatas para el modelo.
yent	Entrada	Corresponde al vector salida
		de nuestro conjunto de
		entrenamiento
Xent	Entrada	Es la matriz cuyas columnas
		corresponden a las entradas
		candidatas para el modelo
		difuso utilizando el conjunto
		de entrenamiento.
reglas	Entrada	Corresponde al número de
		clusters a utilizarse.

2.1.5. errortest

Esta función es utilizada para obtener el error de test dada una matriz candidata y un numero optimo de clusters asociado. Su sintaxis es la siguiente:

err=errortest(yent, Xent, ytest, Xtest, reglas)

La siguiente tabla explica a que corresponden las entradas y salidas de esta función:

Nombre	Entrada/Salida	Descripción
err	Salida	Es un vector que contiene el
		error cuadrático medio de test
		para cada número de clusters.
yent	Entrada	Corresponde al vector salida
		de nuestro conjunto de
		entrenamiento
Xent	Entrada	Es la matriz cuyas columnas
		corresponden a las entradas
		candidatas para el modelo
		difuso utilizando el conjunto
		de entrenamiento.
ytest	Entrada	Corresponde al vector salida
		de nuestro conjunto de test
Xtest	Entrada	Es la matriz cuyas columnas
		corresponden a las entradas
		candidatas para el modelo
		difuso utilizando el conjunto
		de test.
reglas	Entrada	Corresponde al número de
		clusters a utilizarse.

3. Ejemplo

En esta sección se dará un ejemplo de cómo realizar identificación de modelo difuso TS utilizando este toolbox.

Supongamos se tienen 5000 datos de una cierta salida y(k) de un sistema, y 5000 datos de la entrada u(k) de este sistema. El primer paso corresponde a dividir nuestros conjuntos de datos en conjunto de entrenamiento, de test y de validación. Por ejemplo el 50% de los datos se destinan para el entrenamiento mientras que para validación y test se deja el 25% de los datos para cada uno.

Para realizar identificación difusa es necesario seguir los siguientes pasos:

- 1. Definir conjunto de variables de entrada candidatas para el modelo difuso TS
- 2. Obtener el número de clústeres mediante los errores de test y entrenamiento
- 3. Calcular error de test del modelo difuso con las entradas candidatas y clústeres obtenidos
- 4. Calcular índices de sensibilidad de las entradas candidatas
- 5. Eliminar variable de menor índice de sensibilidad
- 6. Si el conjunto de entradas tiene más de una entrada volver al paso 2

Una vez definidos los conjuntos es necesario definir las entradas candidatas para el modelo difuso, supongamos que por nuestra experiencia construyendo modelos lineales para la misma problemática sabemos que utilizando 5 autorregresores para la salida y la entrada presente más 4 autorregresores como variables de entrada candidatas para el modelo, lo más probable es que el modelo final resulte con menos entradas de las iniciales. Construimos en matlab los autorregresores necesarios para $y_{ent}(k)$ y $u_{ent}(k)$ utilizando nuestros conjuntos de entrenamiento y a partir de estos nuestra matriz de variables de entrada candidatas para el modelo:

$$X_{ent} = (y_{ent}(k-1) \quad y_{ent}(k-2) \quad \cdots \quad y_{ent}(k-5) \quad u_{ent}(k) \quad \cdots \quad u_{ent}(k-4))$$

Donde cada una de las entradas es un vector de 2500x1 donde 2500 es el largo del conjunto de entrenamiento con lo que nuestra matriz queda de 2500x10. Hacemos lo mismo con los datos de test ya que será necesario para luego obtener el número óptimo de clusters:

$$X_{test} = (y_{test}(k-1) \quad y_{test}(k-2) \quad \cdots \quad y_{test}(k-5) \quad u_{test}(k) \quad \cdots \quad u_{test}(k-4))$$

Ahora es necesario obtener el número de clusters óptimo para nuestro X_{ent} para esto es necesario utilizar:

[errtest,errent]=clusters optimo(ytest,yent,Xtest,Xent,max clusters)

Utilizamos como entradas: $y_{test}(k)$ [1250x1] , $y_{ent}(k)$ [2500x1], X_{ent} [2500x10], X_{test} [1250x10] y como número máximo de clusters utilizaremos 6. Obteniéndose el siguiente resultado:

Se puede observar que para 4 clusteres el error de test es mínimo por lo tanto este es escogido como el número óptimo de clusters.

En esta parte es necesario caclular el error de test para nuestro número óptimo de clusters y las variables de entrada candidatas, para esto se utiliza:

```
err=errortest(yent, Xent, ytest, Xtest, reglas)
```

Utilizamos como entradas: $y_{test}(k)$ [1250x1] , $y_{ent}(k)$ [2500x1], X_{ent} [2500x10], X_{test} [1250x10] y como reglas el número óptimo de clusters obtenido 4.

```
err = 0.4236
```

Este error debe ser alamcenado en un vector en cada iteración ya que será necesario al final-

Ahora es necesario calcular el índice de sensibilidad de las variables candidatas, para esto se utiliza:

```
[p indice] = sensibilidad(yent, Xent, reglas)
```

Utilizamos como entradas:, $y_{ent}(k)$ [2500x1], X_{ent} [2500x10] y como reglas el número óptimo de clusters, es decir, 4. Obteniendose el siguiente resultado:

p=3

Por lo tanto se debe eliminar la entrada candidata correspondiente a la tercera columna de X_{ent} , que corresponde a y(k-3)

Con esto se sigue iterando hasta solo tener una entrada candidata.

Finalmente luego de realizar estos pasos para cada iteración se utiliza el error de test obtenido en cada iteración y se escoge el de menor error, nuestro modelo queda identificado con el número de clusters y las entradas del modelo asociadas a este error:

Acá se ve que el menor error de test corresponde a cuando el modelo contaba con 4 entradas y su número de clusters asociado. Así finalmente se obtiene que el modelo debe ser utilizando 2 clusters y de la forma:

$$\hat{y}(t) = f^{TS}(y(k-1), y(k-2), u(k), v(k-1))$$

Ahora se puede obtener nuestro modelo utilizando:

```
[model, result]=takagisugenol(iden y,iden x,reglas,opcion)
```

Con nuestra salida de entrenamiento y la matriz de entrenamiento con las variables de entrada del modelo obtenidas, con reglas=2 y opción=[2 2].

Posteriormente se usa:

$$y=ysim(X,a,b,g)$$

Con X como la matriz de entrenamiento de variables de entrada obtenidas y con a, b y g obtenidos dentro de model del paso anterior, y obtenemos la salida de nuestro modelo final.

U. de Chile. FCFM. DIE ~10~