1

Digital Synchronization Techniques for Reliable Communication

Theresh Babu Benguluri, Raktim Goswami, Abhishek Bairagi, Siddharth Maurya, Pappu Manasa, Sandeep Khyalia and G V V Sharma*

CONTENTS

1	Time O 1.1	Flots	1
2	-	ncy Offset: LR Technique	1
	2.1	Plots	2
3	Phase C	Offset: Feed Forward Maximum	
Likeli	hood (F	F-ML)technique	2
	3.1	Plots	2
4	Automa	tic Gain Controller (AGC):	
Data-	Aided Vo	ector-Tracker (DA-VT)	2
	4.1	Plots	3
5		Synchronization: Global Sum-	
mation of SOF/PLSC Detectors 3			
	5.1	Global Threshold Calculation	4
	5.2	Plots	4
References			4

Abstract—This manual provides a brief description about the design and implementation of digital synchronization techniques for reliable communication.

1. Time Offset: Gardner TED

Let the *m*th sample in the *r*th received symbol time slot be

$$Y_k(m) = X_k + V_k(m), \quad k = 1, ..., N, m = 1, ..., M.$$
(1.1)

where X_k is the transmitted symbol in the kth time slot and $V_k(m) \sim \mathcal{N}(0, \sigma^2)$. The decision variable for the kth symbol is [1]

$$U_{k} = \frac{1}{N} \sum_{i=1}^{N} Y_{k-i} \left(\frac{M}{2}\right) \left[Y_{k-i+1}\left(M\right) - Y_{k-i}\left(M\right)\right]$$
 (1.2)

*The authors are with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in.

Fig. 1: SNR vs BER for varying τ .

A. Plots

Fig. 1 is generated by the following code

https://github.com/gadepall/EE5837/raw/master/synctech/codes/time_sync_offsets.py

and shows the variation of the BER with respect to the SNR with different timing offsets τ for N = 6.

2. Frequency Offset: LR Technique

Let the frequency offset be Δf [2]. Then

$$Y_k = X_k e^{j2\pi\Delta f k M} + V_k, \quad k = 1, ..., N$$
 (2.1)

From (2.1),

$$Y_k X_k^* = |X_k|^2 e^{j2\pi\Delta f k M} + X_k^* V_k \tag{2.2}$$

$$\implies r_k = e^{j2\pi\Delta fkM} + \bar{V}_k \tag{2.3}$$

where

$$r_k = Y_k X_k^*, \, \bar{V}_k = X_k^* V_k, |X_k|^2 = 1$$
 (2.4)

The autocorrelation can be calculated as

$$R(k) \stackrel{\Delta}{=} \frac{1}{N-k} \sum_{i=k+1}^{N} r_i r_{i-k}^*, 1 \le k \le N-1$$
 (2.5)

Fig. 2: Error variation with respect to frequency offset.

Fig. 3: Error variation with respect to the SNR. $\Delta f = 5$ MHz, Center frequency $f_c = 25$ GHz

Where N is the length of the received signal. For large centre frequency, the following yields a good approximation for frequency offset upto 40 MHz.

$$\Delta \hat{f} \approx \frac{1}{2\pi M} \frac{\sum_{k=1}^{P} \operatorname{Im}(R(k))}{\sum_{k=1}^{P} k \operatorname{Re}(R(k))}, \quad P\Delta f M << 1 \quad (2.6)$$

where *P* is the number of pilot symbols.

A. Plots

The number of pilot symbols is P = 18. The codes for generating the plots are available at

Fig. 2 shows the variation of the error in the offset estimate with respect to the offset Δf when the SNR = 10 dB. Similarly Fig. 3 shows the variation of the error with respect to the SNR for $\Delta f = 5$ MHz.

3. Phase Offset: Feed Forward Maximum Likelihood (FF-ML) technique

Let the phase offset be $\Delta \phi$ [3] . Then for the kth pilot,

$$Y_k = X_k e^{j\Delta\phi_k} + V_k, \quad k = 1, ..., P$$
 (3.1)

From (3.1),

$$Y_k X_k^* = |X_k|^2 e^{j\Delta\phi_k} + X_k^* V_k \tag{3.2}$$

$$\implies r_k = e^{j\Delta\phi_k} + \bar{V}_k \tag{3.3}$$

where

$$r_k = Y_k X_k^*, \, \bar{V}_k = X_k^* V_k, |X_k|^2 = 1$$
 (3.4)

From (3.3), the estimate for the kth pilot is obtained as

$$\Delta \hat{\phi}_k = \arg\left(r_k\right) \tag{3.5}$$

The phase estimate is then obtained using $\Delta \hat{\phi}_k$ in the following update equation as

$$\Delta \theta_k = \Delta \theta_{k-1} + \alpha SAW \left[\Delta \hat{\phi}_k - \Delta \theta_{k-1} \right]$$
 (3.6)

Where SAW is sawtooth non-linearity

$$SAW[\phi] = \left[\phi\right]_{-\pi}^{\pi} \tag{3.7}$$

and $\alpha \leq 1$. The estimate is then obtained as $\Delta \theta_P$.

A. Plots

Fig. 4 is generated using

and shows the variation of the phase error in the offset estimate with respect to the pilot symbols when the SNR = 10 dB and α = 0.5.

Similarly Fig. 5 generated by

shows the variation of the error with respect to the SNR for pilot symbols P = 18 and $\alpha = 1$.

4. Automatic Gain Controller (AGC): Data-Aided Vector-Tracker (DA-VT)

Let the random AGC offset α , then the received symbol equation with amplitude offset as,

$$Y_k = \alpha X_k + V_k \quad k = 1, \dots, P \tag{4.1}$$

Fig. 4: Phase error variation with respect to pilot symbols

where $\alpha = \alpha_I + j\alpha_Q$ is the gain parameter. According to [4], the $\hat{\alpha}_k$ estimate for the kth pilot is

$$\alpha_{k+1} = \alpha_k - \gamma \left[\alpha_k Y_k^p - X_k^p \right] \left[X_k^p \right]^*, \tag{4.2}$$

where γ is the AGC step size.

A. Plots

The following code plots the real and imaginary parts of the gain parameter α with respect to the number of pilot symbols P. in Fig. 6. $\gamma = 10^{-3}$, SNR = 10dB.

https://github.com/gadepall/EE5837/raw/master/ synctech/codes/ Digital_AGC_with_fixed_SNR.py

Fig. 5: $\Delta f = 5$ MHz

Fig. 6: Convergence of Digital AGC with resepct to P.

5. Frame Synchronization : Global Summation of SOF/PLSC Detectors

Let the frequency offset be Δf and phase offset be $\Delta \phi$. Then,

$$Y_k = X_k e^{j(2\pi\Delta f kM + \phi_k)} + V_k, \quad k = 1, \dots, N$$
 (5.1)

assuming that no pilot symbols are trasmitted. Let the phase information be θ_k , and defined as

$$\theta(k) = \frac{Y_k}{|Y_k|} \tag{5.2}$$

At the receiver, the header information is available in the form of

$$g_i(l) = x_s(l)x_s(l-i), l = 0, \dots, SOF - 1$$
 (5.3)

$$h_i(l) = x_p(l)x_p(l-i), l = 0, \dots, PLSC - 1$$
 (5.4)

where x_s are the mapped SOF symbols, x_p are the scrambled PLSC symbols, both modulated using $\pi/2$ BPSK for i = 1, 2, 4, 8, 16, 32. A special kind of correlation is performed to obtain

$$m_i(k) = \sum_{l=0}^{PLSC-1} e^{j(\theta(k-l) - \theta(k-l-i))} h_i(l),$$
 (5.5)

$$n_i(k) = \sum_{l=0}^{SOF-1} e^{j(\theta(k-l) - \theta(k-l-i))} g_i(l),$$
 (5.6)

$$k = 1, \dots, N \tag{5.7}$$

Compute

$$p_{i}(k) = \begin{cases} \max (|n_{i}(k - PLSC) + m_{i}(k)|, \\ |n_{i}(k - PLSC) - m_{i}(k)|) & k > PLSC \\ \max |m_{i}(k)| & k < 64 \end{cases}$$
(5.8)

GLOBAL variable $G_{R,T}(k)$ [5] defined as,

$$G_{R,T}(k) = \sum_{i \ge 1} p_i(k), \quad i = 1, 2, 4, 8, 16, 32$$
 (5.9)

At the receiver, let us consider we have sent two types of transmission. One is PLHEADER+DATA (Y_{k1}) and another is only DATA (Y_{k2}) and the GLOBAL variables for (Y_{k1}) and (Y_{k2}) from (5.9) are $G1_{R,T}(k)$, $G2_{R,T}(k)$ respectively.

A. Global Threshold Calculation

The Global Threshold variable is defined as

$$T = \max(\max(G1_{R,T}(k)), \max(G2_{R,T}(k)))$$
 (5.10)

The probability of false detection of plheader when only DATA frame (Y_{k2}) has been sent is defined as

$$P_{FA} = \frac{\sum \frac{sign(|Y_{k2} - T|) + 1}{2}}{N}$$
 (5.11)

The probability of missed detection of plheader when PLHEADER+DATA (Y_{k1}) has been sent is defined as

$$P_{MD} = \frac{\sum \frac{sign(T - |Y_{k1}|) + 1}{2}}{N + PLSC + SOF}$$
 (5.12)

B. Plots

Fig. 7: Frame Synchronization Receiver Operating Characteristcs (ROC)

Fig.7 shows the ROC curve $(P_{FA}vsP_{MD})$ at the receiver for frame synchronization at $\frac{E_b}{N_0} = -2$ dB.

References

- [1] F. Gardner, "A BPSK/QPSK Timing-Error Detector for Sampled Receivers," *IEEE Transactions on Communications*, vol. 34, no. 5, pp. 423–429, May 1986. [Online]. Available: https://doi.org/10.1109/TCOM.1986.1096561
- [2] M. Luise and R. Reggiannini, "Carrier frequency recovery all-digital modems burst-mode for transmissions,' IEEE Transactions on Communications, vol. 43. no. pp. 1169–1178, Feb 1995. [Online]. Available: 2/3/4, https://doi.org/10.1109/26.380149
- [3] E. Casini, R. D. Gaudenzi, and A. Ginesi, "DVB-S2 modem algorithms design and performance over typical satellite channels," *International Journal of Satellite Communications and Networking*, vol. 22, no. 3, pp. 281–318, 2004. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/sat.791
- [4] R. De Gaudenzi and M. Luise, "Analysis and design of an all-digital demodulator for trellis coded 16-QAM transmission over a nonlinear satellite channel," *IEEE Transactions on Communications*, vol. 43, no. 2/3/4, pp. 659–668, Feb 1995. [Online]. Available: https://doi.org/10.1109/26.380085
- [5] H. Miyashiro, E. Boutillon, C. Roland, J. Vilca, and D. DÃaz, "Improved Multiplierless Architecture for Header Detection in DVB-S2 Standard," in 2016 IEEE International Workshop on Signal Processing Systems (SiPS), Oct 2016, pp. 248–253. [Online]. Available: https://doi.org/10.1109/SiPS.2016.51