MATH 7520 Homework 4

Andrea Bourque

December 15, 2023

Problem 18

Show than an n-connected, n-dimensional CW complex X is contractible.

Proof. If n=0, then X is a point, which is contractible by definition. Thus let n>0. Let $f:X\to \bullet$ be the map to a point. Since X is n-dimensional, $H_k(X)=0$ for k>n. By the Hurewicz theorem (Theorem 4.32 in Hatcher), we have $\tilde{H}_i(X)=0$ for i< n+1. Thus, f induces isomorphisms $H_i(X)\to H_i(\bullet)$ for all i>0, since the only map $0\to 0$ is an isomorphism. For i=0, we know that $H_0(X)\cong \mathbb{Z}$ with generator $\bullet\hookrightarrow X$. The image under f_* is $\bullet\hookrightarrow \bullet$, which generates $H_0(\bullet)$. Thus, by Corollary 4.33 in Hatcher, f is a homotopy equivalence, so X is contractible.

Problem 19

- (31) For a fiber bundle $F \to E \to B$ such that the inclusion $F \hookrightarrow E$ is homotopic to a constant map, show that the long exact sequence of homotopy groups breaks up into split short exact sequences giving isomorphisms $\pi_n(B) \cong \pi_n(E) \oplus \pi_{n-1}(F)$.
- (32) Show that if $S^k \to S^m \to S^n$ is a fiber bundle, then k=n-1 and m=2n-1.
- (33) Show that if there were fiber bundles $S^{n-1} \to S^{2n-1} \to S^n$ for all n, then the groups $\pi_i(S^n)$ would be finitely generated free abelian groups computable by induction, and nonzero for $i \ge n \ge 2$.

Proof. (31) Since homotopic maps induce the same maps in homotopy groups, the inclusion $F \hookrightarrow E$ induces the 0 map $\pi_n(F) \to \pi_n(E)$, since a constant map induces the 0 map. Using the definition of exactness, the map $\pi_n(E) \to \pi_n(B)$ has kernel equal to the image of $\pi_n(F) \to \pi_n(E)$, which is 0, so $\pi_n(E) \to \pi_n(B)$ is injective. Similarly, the image of $\pi_n(B) \to \pi_{n-1}(F)$ is the kernel of the 0 map $\pi_{n-1}(F) \to \pi_{n-1}(E)$, which is $\pi_{n-1}(F)$, so $\pi_n(B) \to \pi_{n-1}(F)$ is surjective. Thus the sequence $0 \to \pi_n(E) \to \pi_n(B) \to \pi_{n-1}(F) \to 0$ is exact.

To show that these sequences are split, we construct a left inverse to $\partial : \pi_n(B) \to \pi_{n-1}(F)$ and apply the splitting lemma. All maps will be pointed, but I will not bother writing out basepoints.

Let $f: S^{n-1} \to F$ be a map. Since $F \hookrightarrow E$ is nullhomotopic, f extends to a map $\tilde{f}: (D^n, S^{n-1}) \to (E, F)$ (I developed this construction in the last homework sheet). This extension is well-defined up to homotopy. Using $p: (E, F) \to B$, we get $p\tilde{f}: (D^n, S^{n-1}) \to B$. Since post-composition takes homotopic maps to homotopic maps, the assignment $f \mapsto p\tilde{f}$ is well-defined up to homotopy. We can identify $p\tilde{f}$ with a map $\hat{f}: S^n \to B$ by precomposing with an isomorphism $S^n \cong D^n/S^{n-1}$. Composition with isomorphisms preserves homotopy, so $f \mapsto \hat{f}$ is well-defined up to homotopy. In other words, we have a function $\kappa: \pi_{n-1}(F) \to \pi_n(B)$.

We must check two things. First, that κ is a group homomorphism for $n \geq 2$. Second, that κ is a left inverse to ∂ .

I think we also need to show that κ is a homomorphism, but I'm not sure how to do that.

Let us recall the definition of ∂ . ∂ takes (the homotopy class of) a map $f:S^n\to B$, precomposes by the quotient isomorphism $S^n\cong D^n/S^{n-1}$ to get $f:(D^n,S^{n-1})\to B$, lifts (which exists and is unique up to homotopy by Hatcher -2-27-78-637 + 73-) to $\overline{f}:(D^n,S^{n-1})\to (E,F)$, and then restricts to

$$\partial \overline{f}: S^{n-1} \to F.$$

Now we show that $\partial \kappa = \text{id.}$ Since ∂ is well-defined up to homotopy, it suffices to show that $[f] = \partial[\hat{f}]$. When ∂ calls for us to lift $\hat{f} : (D^n, S^{n-1}) \to B$, we note that \hat{f} is the projection of \tilde{f} , so we can take the lift to be \tilde{f} . Then we restrict \tilde{f} to S^{n-1} , and by definition this is f. Thus, the short exact sequences split.

(32) We first discard trivial cases.

Suppose n=0. If m>0, then the map $S^m\to S^0$ must be constant, which it can't be $(E\to B \text{ must be surjective})$. Thus m=0, and the map $S^0\to S^0$ is a homeomorphism. It follows that the fiber would have to be a singleton, which no sphere is. Thus n>0.

If m = 0, then $S^0 \to S^n$ can't be surjective, since S^n has infinitely many points. Thus m > 0, and S^n and S^m are path-connected.

If k=0, then by Example 4.42 in Hatcher, $S^m \to S^n$ is a covering space, with $|S^0|=2$ sheets. By Proposition 1.32 of Hatcher, $p_*(\pi_1(S^m))$ has index 2 in $\pi_1(S^n)$. But $\pi_1(S^m)$ (resp. $\pi_1(S^n)$) is either $\mathbb Z$ or 0, according to whether m=1 (resp. n=1) or m>1 (resp. n>1). If either of these groups are 0, then it is impossible to have the index 2 condition. The only possibility is m=n=1. In this case, we have k=n-1 and m=2n-1 as desired. We henceforth assume k>0.

Pick an open subset U in S^n so that $p^{-1}(U) \cong U \times S^k$. S^n is locally homeomorphic to \mathbb{R}^n , so that U is as well. Then $p^{-1}(U)$ is locally homeomorphic to \mathbb{R}^{n+k} . But as an open subset of S^m , it is also locally homeomorphic to \mathbb{R}^m . By comparing compactly supported cohomology, we then have m = n + k. Since n, k > 0, we get n, k < m.

Since k < m, the map $S^k \hookrightarrow S^m$ is homotopic to a constant map by cellular approximation. Thus, by the previous problem, we have $\pi_n(S^n) \cong \pi_n(S^m) \oplus \pi_{n-1}(S^k)$. The left hand side is \mathbb{Z} . Since n < m, $\pi_n(S^m) = 0$, so $\pi_{n-1}(S^k) = \mathbb{Z}$. Thus $n-1 \ge k$.

Assume n-1 > k. Then from the long exact sequence of homotopy groups, we have $\pi_{k+1}(S^n) \to \pi_k(S^k) \to \pi_k(S^m)$ is exact. But k+1 < n and k < m, so this sequence reads $0 \to \mathbb{Z} \to 0$, which is not exact. Thus n-1 = k. Combining with m = n + k gives m = 2n - 1.

(33) Let us ignore the case $S^0 \to S^1 \to S^1$, so that n > 1, 2n - 1 > n, and all the spheres are path-connected. We know that $\pi_i(S^n) = 0$ for i < n by cellular approximation. For $i \ge 2$, we have by problem (31) group isomorphisms $\pi_i(S^n) \cong \pi_i(S^{2n-1}) \oplus \pi_{i-1}(S^{n-1})$. Putting i = n, we get $\pi_n(S^n) \cong \pi_{n-1}(S^{n-1})$.

Since this is valid for all $n \geq 2$, we get $\pi_n(S^n) \cong \pi_1(S^1) \cong \mathbb{Z}$ by induction.

Since $\pi_i(S^1) = 0$ for i > 1, putting n = 2 gives $\pi_i(S^2) \cong \pi_i(S^3)$ for $i \geq 3$.

Putting n=3 gives $\pi_i(S^3)\cong \pi_i(S^5)\oplus \pi_{i-1}(S^2)$. Assuming $i\geq 3$ and using the previous isomorphism, we get $\pi_i(S^2)\cong \pi_i(S^5)\oplus \pi_{i-1}(S^2)$. Since we know $\pi_i(S^5)$ for $i\leq 5$, we get $\pi_i(S^2)$ (and $\pi_i(S^3)$) for $i\leq 5$. By induction on the isomorphisms $\pi_i(S^n)\cong \pi_i(S^{2n-1})\oplus \pi_{i-1}(S^{n-1})$ for n>3, and using n+2<2n-1 for n>3, we acquire $\pi_i(S^n)$ for all (i,n) such that $i\leq n+2$.

Suppose we know $\pi_i(S^n)$ for all (i,n) such that $i \leq n+k$, and $k \geq 2$. Then in order to get to know $\pi_i(S^n)$ for all (i,n) such that $i \leq n+k+1$, we need to know the groups $\pi_{k+3+j}(S^{2j+3})$ for $j \in \{1,\ldots,k-1\}$. These groups are not trivially 0 or \mathbb{Z} , since k+3+j>2j+3. But each of these groups have already been computed, since $k+3+j\leq 2j+3+k$.

Thus, we can inductively compute any $\pi_i(S^n)$. Since they are all obtained by direct summation, and our base cases were 0 and \mathbb{Z} , they are all finitely generated and free abelian.

To establish the last claim, we run through our procedure again, this time using the that $\pi_i(S^n)$ is finitely generated and free abelian; we denote its rank by r(i,n). We only need to show non-vanishing, so we will not bother with the exact values (if non-zero). By our preliminary work, we have $r(i,n) \geq 0$ for all (i,n), r(n,n) > 0 for all n, and r(i,2) = r(i,3) for $i \geq 3$. The splitting gives the recurrence relation r(i,n) = r(i,2n-1) + r(i-1,n-1). Consider the claim: r(i,n) > 0 for $i \geq n \geq 2$ such that $i-n \leq k$, with $k \geq 0$. The case k=0 has already been proven. Assume it is true for some fixed k. We want to show that r(n+k+1,n) > 0 for $n \geq 2$. For the base case, we have r(3+k,2) = r(3+k,3) > 0. Then the inductive step follows from the recurrence relation: $r(n+k+2,n+1) = r(n+k+2,2n+1) + r(n+k+1,n) \geq r(n+k+1,n) > 0$. Thus $\pi_i(S^n)$ is non-zero for $i \geq n \geq 2$.

Problem 20

If $F \to E \to B$ is a fiber bundle with fiber F, and $F \hookrightarrow E$ is a retract, how are the homotopy groups $\pi_n(E), \pi_n(F), \pi_n(B)$ related?

Proof. Let $r: E \to F$ be such that the composition $F \hookrightarrow E \xrightarrow{r} F$ is the identity on F. Then the map $\pi_n(F) \to \pi_n(E)$ has left inverse r_* , so it must be injective. This means that the maps $\pi_{n+1}(B) \to \pi_n(F)$ are 0, so we get short exact sequences $0 \to \pi_n(F) \to \pi_n(E) \to \pi_n(B) \to 0$. By the splitting lemma, the existence of the left inverse r_* implies that these short exact sequences split, so $\pi_n(E) \cong \pi_n(B) \oplus \pi_n(F)$.