## Networking in GCP

Memi Lavi www.memilavi.com



### Networking

- All aspects of networking in GCP
- Deals with resources' network connections, firewalls, etc.
- Might sound boring and not very important, but...

# Networking is the foundation of cloud security

## ReadIt! Cloud Architecture

### A Word of Caution:

## NEVER leave a VM open to the internet this way

We will learn later on what should be done



- Directly accessible from the internet
- Can be SSHed from anywhere

## ReadIt! Cloud Architecture

### Two main threats:

- Brute force attacks on port 22 (SSH)
- No line of defense in front of the VM web server



- Directly accessible from the internet
- Can be SSHed from anywhere

Networking knowledge is what makes a good cloud architect – an amazing cloud architect

### Networking

We'll talk about 4 networking-related cloud services:

**VPC Subnets Firewall** Load Balancers

- Virtual Private Cloud
- A network in which you can deploy cloud resources
- Many cloud resources are deployed within VPC
  - VMs, Load balancers
- Many cloud services can be deployed in VPC but are not by default
  - App Engine, Cloud SQL and more

"Virtual" as in "based on physical network and logically separated

from other virtual networks"

Resources in VPC can communicate with each other by default



- Think of it as your organization's private network
- Virtual Private Cloud
- Other organizations' networks cannot communicate with

your network

### **VPC** Pricing

- VPCs are free
- Limit of 15 VPCs per project

### Characteristics of VPC

- Global
  - · Resources in different regions can communicate between them
- Automatically created per project
- Can be connected via Peering
- Segmented using Subnets
- Protected using firewall rules

### Security and VPC

The most important thing to think about when designing networking:

How to limit access to the resources in the VPC so that risk is minimized

### Subnet

- A logical segment in the VPC
- Has its own IP range
- Used as a logical group of resources in the VPC
- Is a must. Resources must be placed in a Subnet, cannot be placed directly in a VPC

### Subnet

Resources in a subnet can talk to resources in other subnets in

the same VPC\*

\*By default, can be customized



### **Subnet Pricing**

Subnets are free

### **Subnet Creation Mode**

New VPCs are created using one of two modes:

#### Auto mode

- One subnet from each region is automatically created
- Subnets are automatically assigned IP range
- Subnets' ranges do not overlap
- Ranges fit within the 10.128.0.0/9 CIDR block \*
- When new regions are added, new subnets are automatically added
- More subnets can be added manually
- Default for new projects (can be disabled)
- \* We'll discuss CIDR blocks in the next lecture

### Custom mode

- No subnets are created automatically
- Full control on subnets and IP ranges

### **Subnet Creation Mode**

How to select between the creation modes?

# Preferred for production Scenarios

### Auto mode

- Useful if you want to have subnet in every region
- IP ranges do not overlap with other services (ie. VPN)

### Custom mode

- No need for subnets in every region
- IP ranges overlap with other services
- You want complete control over subnets and IP ranges
- You plan to connect the VPC to other VPC
   and IP ranges will overlap

### **CIDR** Notation

- Classless Inter-Domain Routing
- A method for representing an IP Range
- Composed of an address in the range and a number between 0 and 32
- The number indicates the number of bits that are allocated to the address. The smaller the number – the larger the range

### CIDR Notation Example #1



109.186.149.000 – 109.186.149.255 256 Addresses

Bits refresher: 00000000 = 0 11111111=255

### CIDR Notation Example #2



Bits refresher: 00000000 = 0 11111111=255 109.186.000.000 — 109.186.255.255 65,536 Addresses

Probably way too big...

### CIDR Notation Example #3

149 Dec = 1001 0101 Bin

1001 0000 Bin = 144 Dec

109.186.144.000 - 109.186.159.255 4,096 Addresses

Bits refresher: 00000000 = 0 11111111=255

### **CIDR Notation**

The good news:

You don't have to remember!

- A lot of CIDR calculators
  - ie. <a href="https://www.ipaddressguide.com/cidr">https://www.ipaddressguide.com/cidr</a>

- Sometimes, to increase security, we want to place some resources in a completely different VPC
  - Not just Subnet!
- Examples:
  - Separate systems
  - System layers
  - Sensitive databases

- Main reasoning:
  - Not to place non-public

resources in a VPC

that has public access



• So...



But...



- Allows two VPCs to connect to each other
- From the user's point of view it's a single VPC
- Make sure address spaces are not overlapped!
- Use Firewall Rules for protection
- Works across projects and organizations



### Firewall Rules

- By default, every new VPC blocks incoming traffic
  - Allows outgoing traffic
- Protects the instances in it
- In order to allow traffic use Firewall Rules

### Firewall Rules

- Used to allow or deny traffic based on various parameters
- Traffic should match 5 tuples in order to be allowed:
  - Source IP
  - Destination IP
  - Source port
  - Destination port
  - Protocol

### Firewall Rules

- Target and destinations can be specified also using tags and service accounts
  - We'll discuss both later in this course
- Default network allows access to ports 22, 3389 and the icmp protocol
- New VPCs block everything

### Shared VPC

- The VPCs we used so far are project VPC
- They are part of a single project
  - Called Standalone VPC in a Standalone project
- Project can be part of Organization

- Top level of the hierarchy
- Usually represents the company using the cloud
- Have access to all underlying resources

- Additional grouping mechanism
- Usually model legal entities, departments, teams etc.
- Can contain other folders
- Optional

- Contain the actual resources
- The most important level in the hierarchy
- Resources must be created in a project



### Shared VPC

 Shared VPC allows connecting resources in multiple projects in the same organization

Two types of projects in Shared VPC:

**Host Project** 

Service Project

## Shared VPC

### **Host Project**

- The project where the VPC is created
- Requires special permissions

### Service Project

- Attached to the host project
- Becomes connected to it through the Shared VPC
- Can be connected to a single host project only





## Shared VPC

- Can be created only when there's organization
- Free accounts do not have organization
- We cannot demonstrate it...



#### Architecture: ReadIt Cloud System



## Secure VM Access

- If you're using VMs you need to be aware of its security
- The larger the attack surface the greater the risk
- We want to minimize it as much as possible
- Leaving public IPs open is always a risk we want to avoid
- Not directly related to the app design but important nonetheless

## Secure VM Access

What can be done?

Firewall Rules

**VPN** 

Jump Box

## Firewall Rules

- Limit the SSH / RDP access only to source IPs that really need it
  - The default rule opens these ports to all IPs change it!
- If VM does not need SSH / RDP remove these rules
- In general do not have unneeded firewall rules

## **VPN**

- A secure tunnel to the VPC
- Can be configured so that no one else can connect to the VPC
- Implemented using the Cloud VPN service in GCP
- Requires VPN software and license (not part of GCP)

# Jump Box

- Create another VM in the VPC
- Allow external access (RDP/SSH) ONLY to this VM
- When need to access one of the other VMs connect to this one and connect from it to the relevant VM
- Only one port and IP is open (still kind of a problem...)
- Cost: The additional VM (the Jump Box)

### Jump box Architecture

#### Jump box Architecture



## Secure Access from On-Premises

- Sometimes there's a need to connect the on-prem organizational network to the cloud
- Should be done securely
- Without exposing public IPs

## Secure Access from On-Premises

Two ways of doing that:

**VPN** 

Interconnect

## **VPN**

- A secure tunnel to the VPC
- Uses the public internet infrastructure
- Implemented using the Cloud VPN service in GCP
- Requires VPN software and license (not part of GCP)

## **Cloud Interconnect**

- Direct physical connection between the organization network and
  - Google's network
- Extremely performant
- Up to 100Gbit/s

## Cloud Interconnect Types

#### Direct

- Dedicated physical connection
- Up to 100Gbig/s
- Costly
  - Can reach tens of thousands \$ / month

#### Partner

- Uses partner infrastructure
- Cheaper
- Better if no need for the speed and security of dedicated connection

### **Private Access**

Some resources in the cloud are placed in VPC and some not

#### In VPC

- VM Instances
- GKE
- App Engine Flexible

#### Not in VPC

- App Engine Standard
- Cloud Functions
- Cloud Run
- Cloud Storage
- Cloud SQL
- BigTable
- Lots more...

## **Private Access**

By default, connecting from VPC resources to non-VPC resources
is done using public address on the internet

#### Not secure:

- Traffic goes through the internet
- 2. The Cloud Storage is open to the internet



## **Private Access**

 Private Access allows connecting from VPC to cloud resources using private IP without going through the internet

#### Secure:

- 1. Traffic stays in the cloud
- 2. The Cloud Storage is not open to the internet





## Implementing Private Access

Three types of Private Access implementations in GCP:

Private Google Access

**Private Service Connect** 

**Private Service Access** 

# Private Google Access

- Easy to set-up
- Client VM should NOT have public IP address
  - Or Private Google Access has no effect
- Uses shared pool of private IPs determined by Google

# Private Google Access

- Use when:
  - No public IP on the client VM
  - No fine-grained control is necessary (ie. you don't care about

the IP of the connected service)

# Private Google Access

- Supported services:
  - All non-VPC services in GCP
  - Examples: Cloud Storage, App Engine, BigTable, Spanner etc.

## **Private Service Connect**

- Complex to set-up
- Client VM can have public IP address
- Full control on IP, routing, etc.

## **Private Service Connect**

- Use when:
  - Client VM has public IP
  - Fine-grained control is necessary (ie. setting the IP and DNS of

connected service)

## **Private Service Connect**

- Supported services:
  - All non-VPC services in GCP
  - Examples: Cloud Storage, App Engine, BigTable, Spanner etc.

## Private Service Access

- Used to connect to services that are hosted in VPCs managed by Google or other services providers
- Requires pre-allocating IP range for connecting to the other VPC
- Similar to VPC Peering, but you don't have control on the other VPC

## Private Service Access

- Use when:
  - Need to connect to VPC-hosted services

## Private Service Access

Supported services:

- Al Platform Training
- · AlloyDB for PostgreSQL
- Apigee
- · Backup and DR
- · Cloud Build
- · Cloud Intrusion Detection System
- Cloud SQL (does not support DNS peering)
- Cloud TPU
- Filestore
- Google Cloud VMware Engine
- Looker (Google Cloud core)
- Memorystore for Memcached
- · Memorystore for Redis
- NetApp Cloud Volumes Service
- Vertex Al

# Choosing Private Access Implementation



<sup>\*</sup> See updated list here: <a href="https://cloud.google.com/vpc/docs/private-services-access#private-services-supported-services">https://cloud.google.com/vpc/docs/private-services-access#private-services-supported-services</a>

## **Using Private Access**

 We'll use all three types of Private Access later in the course when connecting the app to the data stores

Private Access took care of connecting from VPC to non-VPC services

What about the other way around?





- Non-VPC services sometimes need access to VPC resources
- Example:
  - App Engine needs access to backend VM Instance in a VPC

By default: using the VM public IP, through the internet

#### Not secure:

- Traffic goes through the internet
- 2. The VM instance is open to the internet



Serverless VPC Access allows secure access from serverless

ie. App Engine to VM

services to services in VPC



#### Secure:

- 1. Traffic stays in the cloud
- 2. The VM instance is not open to the internet



- Supported services:
  - Cloud Run
  - Cloud Functions
  - App Engine standard environment
    - Except PHP 5

- How it works:
  - A Connector is created between the serverless and the VPC
    - Basically a VM instance
    - One of:
      - f1-micro
      - e2-micro
      - e2-standard-4

- Autoscaling as needed
- Min 2 instances, max 10 instances
  - Can be configured
- Pricing: Standard instances pricing
- The instances receive requests from the serverless and relay

them to the VPC

## Using Serverless VPC Access

 We'll use serverless VPC access later in the course when connecting the Cloud Run securely to the data store

# App Engine Firewall Rules

- Firewall Rules can also be defined for App Engine
- Different from Firewall Rules of VPC
- Simpler to set up
- Block or deny requests from specific IP ranges
- Default rule allows access from every IP