2017/2018 SEMESTER TWO EXAMINATION

Diploma in Computer Engineering Diploma in Electrical and Electronic Engineering 3rd Year Full-Time

EMBEDDED COMPUTER SYSTEMS

Time Allowed: 2 Hours

<u>Instructions to Candidates</u>

- 1. The examination rules set out on the last page of the answer booklet are to be complied with.
- 2. This paper consists of **THREE** sections:

Section A - 10 Multiple Choice Questions, 2 marks each.

Section B - 6 Short Questions, 10 marks each.
Section C - 1 Long Question, 20 marks.

- 3. **ALL** questions are **COMPULSORY**.
- 4. All questions are to be answered in the answer booklet. Start each question in Sections B and C on a new page.
- 5. Fill in the Question Numbers, in the order that it was answered, in the boxes found on the front cover of the answer booklet under the column "Question Answered".
- 6. This paper consists of 9 pages, inclusive of data sheets.

2017/18/S2 (Exam) Page 1 of 9

SECTION A

MULTIPLE CHOICE QUESTIONS [2 marks each]

- 1. Please **tick** your answers in the **MCQ box** on the second page of the answer booklet.
- 2. No marks will be deducted for incorrect answers.
- A1. Which one of the following is *not* the correct reason for using only 10 bits for addressing I/O in a PC/104 system?
 - (a) Less electronic hardware is needed for decoding.
 - (b) There are normally much less I/O devices than memory.
 - (c) The circuit board holding the electronics is smaller and cheaper to manufacture.
 - (d) There is less propagation delay, so there is faster access.

(2 marks)

- A2. The rotational speed of a stepper motor is controlled by the
 - (a) size of the load it is turning.
 - (b) pulse frequency.
 - (c) direction of the current in the stator coil.
 - (d) value of the current in the stator coil.

(2 marks)

- A3. Sample-and-hold circuits in analog-to-digital converters (ADCs) are used to:
 - (a) stabilize the value of the input analog signal during conversion.
 - (b) sample and hold the output of the binary counter during the conversion process.
 - (c) sample and hold the D/A converter staircase wave during the conversion process
 - (d) stabilize the internal comparator threshold voltage during conversion. (2 marks)
- A4. Using Pulse Width Modulation (PWM) to generate an analogue waveform has several advantages over traditional multibit Digital to Analogue (DAC) converters. Which one of the following is not an advantage?
 - (a) Lower pin count.
 - (b) Less heat dissipated.
 - (c) Higher signal switching speed.
 - (d) Less analog filtering needed.

(2 marks)

- A5. Which one of the following is not true about the lower case letters g, j, p, q and y used in text based LCDs?
 - (a) They have a compressed look as compared to other characters.
 - (b) The uppercase versions of these letters are displayed properly.
 - (c) A special version of the CGROM is needed to display them correctly.
 - (d) To display them properly, the LCD needs to use 5x10 character size. (2 marks)

- A6. In small sized embedded computers like those found in smartphones, how should an integrated graphics display be connected to the system?
 - (a) S-video cable.
 - (b) RGB cable.
 - (c) Direct connection to the system bus.
 - (d) Composite video cable.

(2 marks)

- A7. When designing a GUI which uses green colour to indicate an *unsuccessful* operation, which one of the following principles of user interface design does this go against?
 - (a) Consistency.
 - (b) Efficiency.
 - (c) Association with human interface objects.
 - (d) Anthropomorphization.

(2 marks)

- A8. In multitasking environments, which one of the following is not suitable to be used as a synchronization object?
 - (a) Resource Object.
 - (b) Mutex Object.
 - (c) Semaphore Object.
 - (d) Event Object.

(2 marks)

- A9. Which one of the following is not a function of an operating system?
 - (a) Process user input and output.
 - (b) Word processing.
 - (c) Task management.
 - (d) File management.

(2 marks)

- A10. What will happen if an embedded system does not use a file system to access large amounts of data?
 - (a) Its execution time will be slower.
 - (b) The programs have to use global variables more.
 - (c) Data that is needed has to be stored within its programs.
 - (d) The system will cost more.

(2 marks)

SECTION B [60 marks]

- B1. The following questions relate to using programs written in C in an embedded system.
 - (a) In terms of an optimizing C compiler, what is the effect of the volatile keyword? (3 marks)
 - (b) What is the effect of the const keyword and what kind of data should it affect?

 (3 marks)
 - (c) What is one benefit of using global variables? (2 marks)
 - (d) To access an array, why is it better to use pointers rather than indexes? (2 marks)
- B2. The segment of C code in Fig C initializes a LCD and then display a message. Note what needs to be written in the answer booklet.
 - (a) By looking at the numbered comments in the C code, the one line LCD is to be initialized. *List* down the values in hexadecimal. (3 marks)
 - b) After initializing, the program sends data to the LCD. Sketch the expected display. (Hint: some overwriting of data will happen!) (7 marks)

```
char warn[] = "Water at=....(M)";
                   /* 1. 5x7 dot font, 4-bit interface */
/* 2. turn on the display */
/* 3.DDRAM address increment/cursor shift on o/p */
lcdcmd(0x );
lcdcmd(0x__);
lcdcmd(0x );
lcdcmd(0x80); /* function executes LCD COMMAND */
for (j = 0; j < 16; j++)
       k = warn[j];
       lcddata(k);
lcdcmd(0x89);
                   /* function executes LCD COMMAND */
lcddata(0x30);
                     /* function displays LCD data */
lcddata(0x2E);
lcddata(0x31);
lcddata(0x32);
```

Fig C - segment of C code

Assume that functions lcdcmd() and lcddata are available to output commands and data respectively, to the LCD.

- B3. A Digital to Analogue Converter is used to generate a sine wave. For an input of 0FFH, it outputs 4V which will be the *peak to peak* voltage of the signal. One cycle of this wave is sampled at six equal time intervals.
 - (a) List the values needed in table form to produce this signal and sketch the output for a multibit converter. (7 marks)
 - (b) In order to use a single bit PWM for this waveform, sketch the resulting output before filtering. Indicate the width of the pulses as a fraction of 1. (3 marks)

- B4. (a) A device that measures the water level in a tunnel comprises of a water sensor attached to a pole moved by stepper motor with a 1.8 degree step. This motor is connected to a gear which converts a rotary motion into a linear one. One revolution of the motor moves the sensor 2 centimeters. In order to move the sensor at 4 centimeters per minute, what is the time delay required between pulses sent to the motor? (4 marks)
 - (b) Here, the motor phases are connected to a latch so that phase A is connected to bit 0, phase B to bit 1 and so on. Using a table, write down the binary control values required to move the motor for a *two phase on* full step mode. (6 marks)
- B5. As part of a system to detect water in an underground tunnel, a video based solution is proposed based on a PC/104 system. Since the tunnel has poor lighting, high colour fidelity is not needed.
 - (a) Suggest a suitable colour depth to be used for the video. (3 marks)
 - (b) Using a 640 by 480 pixel display, what is a suitable frame display rate that is a multiple or submultiple of 50 Hz? (7 marks)
- B6. (a) What are the three states in which a task can exist? (4 marks)
 - (b) When the time-slice for a task ends, which state will it go into? (2 marks)
 - (c) What happens when processes and threads do not synchronize their operations together? (4 marks)

2017/18/S2 (Exam) Page 5 of 9

SECTION C [20 marks]

C1. A system to measure the water level in a tunnel consists of a movable platform carrying a motor which drives a water sensor vertically along a beam so as to detect new water levels. A LCD connected in 4 bit mode with backlighting will show various messages.

When the water level reaches a threshold, an alarm will sound out periodically.

A 10 button keypad allows users to customize the system.

An 8 bit DAC connected to an amplifier will give out warning sounds if the water level becomes too high.

Using a PC/104 system, design a decoding scheme for controlling the measurement system using a 74LS688 and a 74LS138 with buffers and latches. The starting address is 330₁₆.

(a) What is the minimum number of buffers and latches needed?

Describe how you derive this number. (4 marks)

(b) Draw the I/O map and truth table. (7 marks)

(c) Draw a schematic diagram of the decoding circuit. (5 marks)

(d) Write the one line C code to write a variable to the motor. (4 marks)

APPENDIX

LCD Instruction Table

Instruction	RS	R/W	DB7	DB6	IDB5	DB4	DB3	DB2	DB1	DB0	Description	Execution Time
											Description	(when F_{cp} or f_{osc}
												is 250KHz)
Clear	0	0	0	0	0	0	0	0	0	1	Clears Display and returns cursor to	80uS = 1.64mS
Display											the Home Position (Address 00)	
Return	0	0	0	0	0	0	0	0	1	*	Returns cursor to Home Position.	40uS = 1.6mS
Home											Returns shifted display to original	
											position. Does not clear display	
Entry Mode	0	0	0	0	0	0	0	1	I/D	S	Sets DD RAM counter to increment	40uS
Set											or decrement (I/D) Specifies cursor	
											or display shift during to Data Read	
											or Write (S)	
Display	0	0	0	0	0	0	1	D	С	В		40uS
ON/OFF											ON/OFF (c), and blink character at	
Control											cursor position	
Cursor or	0	0	0	0	0	1	S/C	R/L	*	*	Moves cursor or shifts the display	40uS
Display											w/o changing DD RAM contents	
Shift												
Function	0	0	0	0	1	DL	N	F	*	*		40uS
Set											display lines (N), and character font	
											(F)	
Set CG	0	0	0	1			Α	·CG				40uS
RAM											data is sent and received after this	
Address											instruction	
Set DD	0	0	1				A_{DI})			Sets DD RAM address. DD RAM	40uS
RAM											data is sent and received after this	
Address											instruction	
- · · · · · · · · · · · · · · · · · · ·	0	1	BF				AC				Reads Busy Flag (BF) and address	1uS
Flag &											counter contents	
Address												
Write Data		0			V	Vrite	e Da	ta			Writes data to DD or CG RAM and	40uS
from DD or											increments or decrements address	
CG RAM											counter (AC)	
Read Data	1	1			I	Read	l Da	ta				40uS
from DD or											and increments or decrements	
CG RAM											address counter (AC)	
	I/D=1: Increment										Definitions:	Execution Time
S=1: Displa	y Sr	nitt (n								DD RAM: Display data RAM	changes when
data entry		G1 :									CG RAM: Character generator	Frequency
S/C=1: Disp			t									changes per the
(RAM unchanged)											following	
R/L=1: Shift to the											example:	
Right DL=0: 4 bits							If F_{CP} or f_{osc} is					
										AC: Address Counter used for both		
								DD and CG RAM Address	40uS x 250/270			
					D=0: Display OFF							= 37uS
D=1: Display ON				C=0: Cursor OFF								
					B=0: Blink OFF							
B=1: Blink ON BF=1: Cannot accept				BF=0: Can accept								
	iot a	ccer	Jί	mst	instruction							
instruction * Don't Care												

^{*} Don't Care

Upper 4 Lower 4 Bits	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
xxxx0000	CGRAM (1)			0	a	P		F				-	•9		O:	þ
xxxx0001	(2)			1	H	Q	ij	-4				7	手	ľ	Δi:	q
xxxx0010	(3)		*!	2	5	R	Þ	r-				4	IJ	×	Ü,	8
xxxx0011	(4)		#	3		5	C	=			7	Ż	Ŧ	ŧ	ε	607
xxxx0100	(5)		\$	4	D		d	t			٠,	I	ŀ	þ	Ы	Ω
xxxx0101	(6)		7,	5		U	8	니				7	ナ	1	G	ü
xxxx0110	(7)		8.	6	-	Ų	f	Ų			7	Ħ		3	ρ	Σ
xxxx0111	(8)		7	7	G	W	9	W			7	丰	叉	5	q	Л
xxxx1000	(1)		(8	-	X	h	×			4	7	末	ij	Ţ	X
xxxx1001	(2))	9	I	Y	i	님			Ċ	<u>ተ</u>	ļ	바	-1	4
xxxx1010	(3)		*		J	Z	j	Z			I		ıΊ	ŀ	1	#
xxxx1011	(4)		+-	7	K		K	{			7	#			×	汚
xxxx1100	(5)		7	<		¥	I				tz	3	7	ņ	¢	Ħ
xxxx1101	(6)				M		M	}				Z	ጎ	_,	ŧ.	+
xxxx1110	(7)			>	Н	^	n	→			=	t	.		ħ	
xxxx1111	(8)		/	?	0		0	÷			""	y	7		:O	

2017/18/S2 (Exam) Page 8 of 9

74T.S138	schematic
/ 1 1 2 1 2 0	SCHEMALIC

		INP	JTS			OUTPUTS								
Е	ENABLE			ELEC.	Τ									
G2B	G2A	G1	С	В	Α	Y0	Y1	Y2	Y3	Y4	Y5	Y6	Y7	
Χ	Χ	L	Χ	Χ	Χ	Η	Η	Н	Н	Н	Η	Η	Н	
Х	Н	Χ	Χ	Χ	Χ	Η	Η	Τ	Η	Ι	Η	Η	Н	
Н	Χ	Χ	Χ	Χ	Χ	Н	Η	Н	Н	Н	Η	Η	Н	
L	L	Н	L	L	L	L	Н	Н	Н	Н	Н	Н	Н	
L	L	Н	L	L	Н	Н	L	Η	Н	Н	Η	Η	Н	
L	L	Н	L	Н	L	Н	Н	L	Н	Н	Н	Н	Н	
L	L	Н	L	Н	Н	Η	Η	Н	L	Н	Η	Η	Н	
L	L	Н	Н	L	L	Η	Η	Η	Н	L	Н	Η	Н	
L	L	Н	Н	L	Н	Η	Η	Η	Н	Η	L	Η	Н	
L	Ĺ	Н	Н	Н	Ĺ	Н	Н	Н	Н	Н	Н	L	Н	
L	Ĺ	Н	Н	Н	Н	Η	Η	Н	Н	Н	Η	Η	Ĺ	

Truth table

Ir	<u> </u>					
Data	Enable G	$\overline{P} = Q$				
P,Q	G					
P = Q	L	L				
P > Q	L	Н				
P < Q	L	Н				
X	Н	Н				

74LS688 schematic