تمرین سری پنجم

مساله ۱

n در سمت $N_d=10^{16}cm^{-3}$ و p در سمت $N_a=10^{17}cm^{-3}$ در سمت Si با میزان ناخالصی $N_d=10^{16}cm^{-3}$ در سمت $N_d=10^{16}cm^{-3}$

آ) ترازهای فرمی را محاسبه کنید و ساختار نوار انرژی را در حالت تعادلی رسم کنید و مقدار V_{bi} را از روی نمودار محاسبه کنید.

مساله ۲

با استفاده از روش کاشت یون یک نمونه Si را با $N_d=10^{16}cm^{-3}$ ناخالص کردهایم به طوری که پیوند پلهای با سطح مقطع $P=10^{16}cm^{-3}$ ایجاد شده است. فرض کنید چگالی اتمهای ناخالصی سمت $P=10^{16}cm^{-3}$ به میزان محاسبه $P=10^{16}cm^{-3}$ باشد. مقادیر $P=10^{16}cm^{-3}$ باشد. مقادیر $P=10^{16}cm^{-3}$ باشد. مکان و چگالی بار مکان را رسم کنید.

مساله ۳

 $\epsilon_r=12$ و $n_i=10^{10}cm^{-3}$ وبين وريك پيوند $n_i=10^{10}cm^{-3}$ به ميزان $N_d=10^{16}cm^{-3}$ ناخالص شده است. چنانچه و وريك پيوند $\tau_p=50$ به ميزان $\tau_p=50$ و طول عمر الكترون و حفره به ترتيب $n_i=100$ و $n_i=100$ و طول عمر الكترون و حفره به ترتيب $n_i=100$ و $n_i=100$ و طول عمر الكترون و حفره به ترتيب $n_i=100$ و طول عمر الكترون و حفره و حفره را در باياس $n_i=100$ و طول عمر فاصله $n_i=100$ از لبه ناحيه تخليه در سمت $n_i=100$ را محاسبه كنيد. چنانچه آلايش $n_i=100$ دو برابر شود اين جريان چقدر خواهد شد.

مساله ۴ مساله ۴ مساله ۲ مساله ۱ مسخصات زیر است: $n^+ - p$ با سطح مقطع $n^+ - p$ در دمای $n^+ - p$ دارای مشخصات زیر است:

n-side	p-side
$N_d = \text{Very high}$	$N_a = 10^{17} c m^{-3}$
$\tau_p = 10\mu s$	$\tau_n = 0.1 \mu s$
$\mu_n = 100 c m^2 / Vs$	$\mu_n = 700c m^2/Vs$
$\mu_p = 450c m^2/Vs$	$\mu_p = 200 c m^2/V s$

در بایاس معکوس 100Vمقدار بیشینه میدان الکتریکی، خازن پیوند، کل بار ذخیره شده در سمت p و میدان الکتریکی در فاصله زیاد از ناحیه تخلیه را محاسبه کنید.

مساله ۵

بازدهی تزریق الکترون در یک پیوند توسط رابطه I_n/I در $x_p=0$ تعریف می شود.

آ) با فرض آن که پیوند توسط رابطه دیود توصیف شود بازدهی تزریق الکترون را بر حسب ثابت نفوذ، طول نفوذ و چگالی باربرهای اقلیت در حالت تعادلی محاسبه کنید.

pنشان دهید که بازدهی تزریق الکترون را می توان به صورت رابطه زیر نوشت که در آن اندیسهای بالایی نشان دهنده نواحی p و p هستند. برای افزایش بازدهی تزریق یک پیوند چه راهکاری وجود دارد؟

$$I_n/I = [1 + L_n^p p_p \mu_p^n / L_p^n n_n \mu_n^p]^{-1}$$

مساله ۶

یک پیوند p-n با $N_d=10^{17}cm^{-3}$ و $N_a=10^{15}cm^{-3}$ را در نظر بگیرید.

آ) مقدار V_{bi} را محاسبه کنید.

ب)عرض ناحیه تخلیه را محاسبه کنید.

 $\mu_n=1500cm^2/Vs$ با فرض آن که جریان غالب نفوذی است و $V_a=0.5V$ با فرض آن که جریان خالب نفوذی است و $V_a=0.5V$ با فرض آن که جریان خالب توسط کدام نوع باربر ایجاد شده است الکترون $au_p=450cm^2/Vs$ یا حفره و چرا؟ اگر بخواهیم جریان دو برابر شود چه راهکاری وجود دارد؟

مساله ۷

در یک پیوند p^+-n میزان تنها میزان N_d را دوبرابر کردهایم و سایر پارامترها ثابت است. توضیح دهید مقادیر زیر هر کدام افزایش می یابند یا کاهش.

آ) خازن پیوند

ب) ولتاژ داخلی پیوند

پ) ولتاژ شکست

ت) اتلاف توإن اهمى

مساله ۸

مقدار خازن پیوند را در دیود n^+-p با مشخصات $N_a=10^{15}cm^{-3}$ و $N_a=10^{15}cm^{-3}$ در بایاس معکوس مقدار خازن پیوند را در دیود $N_a=10^{15}cm^{-3}$ بر حسب $N_a=10^{15}cm^{-3}$ محاسبه کنید. نمودار برابر $N_a=10^{17}cm^{-3}$ بر حسب $N_a=10^{17}cm^{-3}$ داده نشده است محاسبات فوق را مجدد با $N_a=10^{17}cm^{-3}$ تکرار کنید. با توجه به اینکه آلایش سمت $N_a=10^{17}cm^{-3}$ داده نشده است تقریب مناسبی را اتخاذ کنید.