Lecture 38 Mixture of Experts Neural Network

Outline

- Committee Classifier
 - Linear Committee Classifiers
 - General Committee Classifiers
- Mixture of Experts Based Approach
 - Gating Network
 - Design Procedure
- Examples

The Concept of A Committee

- Decomposition of a learning task into subtasks and learned by cooperative modules.
- Committee Machine A committee of expert classifiers to perform classification task jointly.

Potential Benefits

Potential Benefit

- Better overall performance
- Reuse existing pattern classification expertise
- Heterogeneity
 - Expert classifiers need not be of the same type.
 - Different features can be used for different classifiers.
- Anonymity:
 - Black-box, proprietary expert classifiers can be used

Potential pitfalls

Higher computation cost

Combination Rules

Committee Classifier

Unconditional combination rules: <u>independent</u> of individual feature vector

Mixture of experts Classifier
 Conditional combination rules
 (gating network): depend on individual feature vector

Committee Classifier

Basic Ideas:

Combination rule = A meta classifier Output of each expert = meta feature

Combination rules:

- (weighted) linear combination
- (weighted) voting,
- Stack generalization (classifier of classifier).

Linear Committee Classifier: Minimum Variance Estimate

$$y(x) = \sum_{i} w(x,i)y(x,i)$$

- Assume each expert gives an UNBIASED estimate of the posterior prob., i.e., $E\{\epsilon(x,i)\} = 0$; and the covariance $E\{\epsilon(x,i) \epsilon(x,k) | x\} = \sigma_i^2(x)\delta_{k,i}$ is known.
- Find $\{w(x,i); 1 \le i \le n\}$ subject to $\sum_i w(x,i) = 1$ such that $Var\{y(x)\} = Var\{\sum_i w(x,i)y(x,i)\}$ is minimized.
- Optimal solution: Let $C = 1/\sum_k [1/\sigma_k^2(x)]$, then $Var\{y(x)\} \ge C$, and $w(x,i) = C/\sigma_i^2(x)$ Note that $C \le \sigma_k^2(x)$.

Minimum Variance Solution

$$Var\{y(x)\} = Var\{\sum_{i} w(x,i)y(x,i)\} = \sum_{i} w^{2}(x,i)Var\{y(x,i)\}$$

Use Lagrange multiplier, solve unconstrained optimization problem:

$$C = \sum_{k} w^{2}(x,k) \sigma_{k}^{2}(x) + \lambda (1 - \sum_{k} w(x,k))$$

Solution: $w(x,i) = P/\sigma_i^2(x)$ where

$$P = \sum_{k} [1/\sigma_{k}^{2}(x)] = \min. \text{ Var}\{y(x)\}$$

If $\{\varepsilon(x,i)\}$ are correlated, w(x,i) may assume negative values in order to minimize $Var\{y(x)\}$.

Stack Generalization – Nonlinear Committee Machines

- Treat output of experts as new features
- Perform pattern classification on these new features
- A "classifier of classifier" approach!
- Most general combination rules.
- Results mixed.
- Aliasing Problem:
 - Same feature vector (composed of output of expert classifiers) with different labels.

Examples of Aliasing Problem

x1	x2	T	y1	y2	у3
0	0	0	0	1	0
0	1	1	0	1	1
1	0	1	1	1	0
1	1	0	1	0	0

If only y1 and y2 are used, it is impossible to tell whether y1=0 and y2 = 1 implies T = 0 or T = 1!

Mixture of Expert Network

Are Many Experts Better Than One?

Theorem:

Denote R_i(x) to be the region in feature space x that classifier #i classifies correctly. Then, the region of correct classification of the MoE classifier

$$R(x) \subseteq \bigcup R_i(x)$$

Mixture of Expert Model

$$\begin{split} z(x) &= P\{y|x\} = \sum_{i} P\{y \text{ ,Ei}|x\} \\ &= \sum_{i} P\{y|\text{Ei},x\} P\{\text{Ei}|x\} \\ &= \sum_{i} [P\{y,\text{Ei},x\} / P\{\text{Ei},x\}] [P\{\text{Ei},x\} / P\{x\}] \\ &= \sum_{i} y(x,i) \ g(x,i) \end{split}$$

 $P\{y|x, Ei\}$: Ei's estimate of posterior Pr. given x.

P{Ei|x}: (Conditional) prior Pr. that p{y|x} is contributed by expert classifier Ei

Gaussian Mixture Model

Assume $y(x,i) \sim \exp\{-0.5[x-m(i)]^T \Sigma^{-1}(i) [x-m(i)]\}$, and g(x,i) = w(i) is indep. of x, then

$$z(x) = \sum_{i} y(x,i) w(i)$$

is a Gaussian mixture.

Given $\{m(i), \Sigma(i); 1 \le i \le n\}$, and t(x) for $x \in training set, w(i) can be found via least square solution:$

$$YW = T$$

 $\{m(i), \Sigma(i); 1 \le i \le n\}$ are often found via clustering of training set data using unsupervised learning.

MoE Design: An Over-parameterized Problem

Z = g yGiven Z, find g and y?-> Many possible answers!

- Assume Expert Classifiers (y) are fixed.
 Find g such that z achieves highest performance.
- 2. Assume Gating network (g) is fixed. Find y to maximize performance of z.
- 3. Fine tune g and y simultaneously.

Approach I. Fixed Experts

- Assume Experts classifiers' output (0≤ y(x,i) ≤1) are given and not to be changed.
- Task: For each x in training set, choose $g_i(x)$ to minimize

$$|| T(x) - z(x) || = || T(x) - \sum_{i} y(x,i) g(x,i) ||$$

subject to: $\sum_{i} g(x,i) = 1$, and $0 \le g(x,i) \le 1$

Solution: $g(x,i^*) = 1$, If $|| T(x) - y(x,i^*) || \le || T(x) - y(x,i) ||$ for $i \ne i^*$, = 0 otherwise

 When all experts' opinions (y(x,i)) are fixed for each x, the best strategy (under the contraint) is to pick the winner!

SoftMax Synaptic Weights

Generalized linear model:

$$g_i(x) = \exp[v_i^t x] / \Sigma_k \exp[v_k^t x]$$

Radial basis network model:

$$g_i(x) = \exp[-||x-v_i||^2] / \Sigma_k \exp[-||x-v_i||^2]$$

- Both satisfy $\sum_{i} g(x,i) = 1$, and $0 \le g(x,i) \le 1$.
- {v_k}: parameters to be estimated from data.
- Gradient descent algorithm can be used to find v_i.

Approach II. Fixed Gating Network

- Assume: g(x,i) are specified for each x in training set.
 If g(x,i)= 0, no restriction on y(x,i).
 If g(x,i) > 0, y(x,i) = T(x).
- <u>Separate training</u>: For expert i, derive a (hopefully simpler) training set = {(x,T(x))| g(x) > 0}, and train each expert independently, may be in parallel!
- <u>Joint training</u>: Let $z(x) = \sum_i y(W(i),x,i) \ g(x,i)$ then $W(i,t+1) = W(i,t) + \eta \ e(i,t)g(x,i) \{ dy(W(i,t),x,i)/dW(i) \}$ gradient descent with add'l g(x,i)!

Approach III. Iterative Approach

- <u>Initiation</u>: Cluster training data into clusters.
 Initialize each expert classifier by training it with data from a single cluster.
 - Initialize each corresponding gating network by training it so that g(x,i) = 1 for that cluster, = 0 otherwise.
- Fix gating network, refine individual classifier using approach II.
- Fix expert classifiers, refine gating network using approach I.
- Repeat until convergence criteria met.