Course	21CSE558T	Course	DEEP NEURAL NETWORK ARCHITECTURES	Course	_	PROFESSIONAL ELECTIVE	L	Т	Р	С
Code	2103E3301	Name	DEEP NEURAL NETWORK ARCHITECTURES	Category	_	PROFESSIONAL ELECTIVE	2	1	0	3

Pre-requisite Courses	N	7	Co- requisite Courses	Nil	Progressive Courses	Nil	
Course Offering Department		Scho	ool of Computing	Data Book / Codes / St	tandards	Nil	

Course Learning Rationale (CLR):	The purpose of learning this course is to:				
CLR-1:	understand the fundamental concepts and basic tools of deep neural networks				
CLR-2:	ecognize and appreciate the functionalities of various layers in deep neural networks				
CLR-3:	explorer the application of deep neural networks in image processing				
CLR-4:	comprehend convolutional neural networks and its layer wise functionality				
CLR-5:	getting familiar with transfer learning techniques				

Course Outcomes	At the end of this course, learners will be able to:	Programme Outcomes (PO)			
(CO):			1	2	3
CO-1:	create a simple deep neural network and explain its functions		3	-	1
CO-2:	building neural networks with multiple layers with appropriate activations		1	2	-
CO-3:	application of deep neural networks in Image processing problems		-	2	1
CO-4:	implementation of convolutional neural networks		2	-	1
CO-5:	determine the application of appropriate transfe <mark>r lear</mark> ning techniques		1	3	-

Module-1 - Introduction to Deep Learning

9 Hour

Fundamentals Of Deep Learning Architecture, Motivation: Biological Ne<mark>uron</mark>s, Perceptron Model-AND-OR Models, Multilayer Perceptron -X-OR Problem, Basics of Tensor Flow-Data Structures In Tensorflow, Need and Use Of Activation Functions-Types Of Activation Functions, Layers In Neural Networks, Mathematical Model Of Feedforward Neural Network, Back Propagation In Neural Networks, Loss Functions And It's Types

- T1: Getting Familiar with Tensor Flow Environment
- T2: Working With Tensors
- T3: Building Programs to Perform Basic Operations in Tensors

Module-2 - Optimization And Regularization in Deep Neural Networks

9 Hour

Optimization Algorithms-Gradient Descent Algorithm, Stochastic Gradient Descent, Mini Batch Gradient Descent, Batch Gradient Descent, Unit Saturation- Vanishing And Exploding Gradient, Underfitting, Overfitting. Hyper Parameter Tuning, Learning Rate, Regularization Techniques In Neural Networks-LASSO Regression, Ridge Regression, Dropouts, Early Stopping, Normalization In Neural Networks -Batch Normalization, Group Normalization. Instance Normalization.

- T4: Building basic neural network in Python
- T5: Building neural network using Keras
- T6: Building programs to optimize the neural network using gradient descent

Module-3 - Image Processing And Deep Neural Networks

9 Hour

Fundamentals Of Image Processing- Image Enhancement, Noise Removal Techniques, Edge Detection Techniques, Image Segmentation, ROI Segmentation, Morphological Processing, Feature Extraction from Images-Shape, Colour and Texture, Unstructured Image Structural Data, Image Classification from Extracted Features, Various Applications of Computer Vision

T7: Building Programs on Image Processing Using Open CV

T8: Building Programs to Perform Image Segmentation Using Open CV

T9: Building Programs to Extract Features from Image Using Open CV

Module-4 - Convolutional Neural Network and Transfer Learnings

9 Hour

Biological Motivation for Convolutional Neural Networks, 1D, 2D And 3D CNN, Layered Architecture Of CNN- Convolution Operation, Pooling Layer, Types of Pooling, Fully Connected Layer, Regularization In CNN, Applications in Computer Vision, Stride Convolutions, Introduction To Transfer Learning, Image Net, Pre Trained Network Architectures-Alexnet, VGG, Resnet, Mobilenet, Fine Tuning Transfer Learning.

- T10: Building Programs to Perform Classification Using CNN In Keras
- T11: Building Programs to Perform Multiclass Classification with Data Augmentation
- T12: Building Programme to Develop A LSTM Model

Module-5 - Object Localization and Detection Models

9 Hour

Object localization and object detection models, Single shot approaches (YOLO/SSD), Two stage approaches (RCNN family), RCNN, Fast RCNN, Faster RCNN, IOU, MAP, non-maximal Suppression.

- T13: Building programs to implement prediction using pre-trained model
- T14: Building programs to implement transfer learning with fine tuning
- T15: Building programs to implement object detection using RCNN

Learning	
Resources	

- 1. Chollet F. Deep learning with Python. Simon and Schuster; 2021 Dec 7.
- 2. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, 2017 (available at http://www.deeplearningbook.org)
- 3. Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012
- 4. Brownlee J. Deep learning with Python: develop deep learning models on Theano and TensorFlow using Keras. Machine Learning Mastery; 2016 May 13.
- Weidman S. Deep learning from scratch: Building with python from first principles. O'Reilly Media; 2019 Sep 9.
- 6. Gulli A, Kapoo<mark>r A. TensorFlow 1. x Deep Learning Cookbook: Over 90 unique recipes to solve artificial-intelligence driven problems with Python. Packt Publishing Ltd; 2017 Dec 12.</mark>

Learning Assessm	nent		· 第二個 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图 图					
		Continuous Learning Assessment (CLA)				Cummotivo		
	Bloom's Level of Thinking	Formative CLA-1 Average of unit test (50%)		Life-Long L <mark>earn</mark> ing CLA-2 (10%)		Summative Final Examination (40% weightage)		
		Theory	Practice	Theory	Practice	Theory	Practice	
Level 1	Remember	20%	TIEARN.IE	20%	-	20%	-	
Level 2	Understand	20%		20%	-	20%	-	
Level 3	Apply	30%	-	30%	-	30%	-	
Level 4	Analyze	20%	-	20%	-	20%	-	
Level 5	Evaluate	5%	-	5%	-	5%	-	
Level 6	Create	5%		5%	-	5%	-	
	Total		00 %	10	0 %	10	0 %	

Course Designers		
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts
1. Dr.Sagarika, Senior Data Scientist, Great Learning	1. Dr.S Muthurajkumar, Asst. Professor, Department of Computer Technology, muthuraj@annauniv.edu, Anna University, Chennai	1. Dr. G. Vadivu, SRMIST
2. Dr Srabashi Basu, Senior Faculty, GreatLearning		2. Dr. S. Sharanya, SRMIST