脑肿瘤分级详情及计划

脑肿瘤分级详情及计划 任务目标及计划 模型及输入 模型训练计划

Data

训练可用数据类别比例

对比参考1 参考2

2020

任务目标及计划

- 时间 2019-12-30 到 2020-01-03
 - 。 数据预处理(已完成)
 - 。 模型搭建(已完成)
- 时间 2020-01-06 到 2020-01-10
 - 。 进行模型训练
 - 。 达到模型指标 baseline: 4个任务,单任务2分类达到准确率0.85以上,AUC 0.8以上,特异性、敏感性0.70以上

完整的评价指标:

ACC(准确率)、AUC(ROC曲线下面积)、SN(敏感度)、SP(特异性)、PPV(阳性预测率)、NPV(阴性预测率)。

模型及输入

目前模型使用 ResNet18 3D。

模型输入数据尺寸(155, 240, 240, 4), 最后一维为4, 一共4个模态(t1, t2, t1ce, flair), 每个模态的尺寸为(155, 240, 240)。

输入数据根据前景进行均值方差归一化。

-- (2020-01-06)

目前模型搭建完毕,还未训练出有效的模型。

目前只是训练了任务1中的子任务1,验证集100个样本,28个LGG,72个HGG,模型训练保持验证的准确率为0.72,说明模型未学到相关的有用信息,预测的结果都为HGG。网络输入需调整。

模型训练计划

https://maxiang.io

- 1. 输入 (155, 240, 240, 4) 4个模态数据, 数据尺寸较大。
- 2. 输入(155, 240, 240, 4)使用肿瘤分割的mask是针对肿瘤区域进行分类。
- 3. 对输入尺寸进行降维,减小图像的尺寸,进行训练。
- 4. 输入裁剪,裁剪patch,至少包含肿瘤区域(可限定大小)每个样本裁多个patch可扩充数据集。
- 5. 2D模型训练。

我们的数据做了 归一化 的操作,变为标准的brats模版形式,与李医生的数据(未做处理,层数少)有一些差异,处理方法需要改变。

Data

任务	提供数据量	训练可用数据	未处理数据	模态缺失数据
grade	521	500	146	21
Ki67	512	494	96	18
IDH	513	497	100	16

训练可用数据类别比例

任务一:级别分类总的数据情况:

grade	AG_3	GBM_4	LGG_2
数量	105	256	139
比例	1	2.43	1.32

子任务1: 高级别, 低级别

grade	高级别 AG_3,GBM_4	低级别 LGG_2
数量	361	139
比例	1	2.6

子任务2: 高级别3, 高级别4

grade	高级别 AG_3	高级别 GBM_4		
数量	105	256		
比例	1	1.9		

任务 2: Ki67分类

Ki67	ki67_01	ki67_23
数量	254	240
比例	1	1.016

任务3: IDH分类

IDH	IDH_tub	IDH_yes
数量	218	279
比例	1	1.28

包含任务1中的子任务,一共有 4 个任务需要跑。目前已经处理完所有的数据(2020-01-06)。

任务图:

目前之后肿瘤级别存在级连关系

对比参考1

参考论文:

Molecular Subtyping of Diffuse Gliomas using Magnetic Resonance

Imaging: Comparison and Correlation between Radiomics and Deep

Learning

验证集具体指标:

Classification (Subject Number)	Model	AUC	Accuracy	Sensitivity	Specificity
Task I: Grading	Radiomics	0.84	0.76	0.72	0.80
GBM vs. LGGs (335 vs. 445)	Radiomics ensemble	0.84	0.76	0.69	0.82
	DCNN	0.89	0.83	0.81	0.84
Task II: LGGs_IDH.	Radiomics	0.82	0.74	0.78	0.68
IDH mut vs. wt in LGGs (254 vs. 191)	Radiomics ensemble	0.82	0.71	0.68	0.77
	DCNN	0.89	0.80	0.81	0.79
Task III: LGGs_IDH_1p19q.	Radiomics	0.77	0.79	0.83	0.73
1p/19q codel vs. noncodel in IDH mut	Radiomics ensemble	0.78	0.75	0.79	0.70
LGGs (138 vs. 116)	DCNN	0.85	0.83	0.85	0.79
Task IV: GBM_IDH.	Radiomics	0.68	0.69	0.42	0.74
IDH mut vs. wt in GBMs (60 vs. 275)	Radiomics ensemble	0.67	0.64	0.53	0.67
	DCNN	0.66	0.74	0.47	0.80

Numbers in bold font represent the best performance among different models.

Data:

所有数据	1016
训练集	780
验证集	236

数据未做 去脑壳 ,配准到模版的操作,为原始数据,层厚较大,层数较少。

任务:

每个任务都是2分类任务:

• 任务1: Grading —— 335 vs 445

• 任务2:LGGs_IDH -- 254 vs 191

• 任务3:LGGs_IDH_1p19q -- 138 vs 116

• 任务4:GBM_IDH -- 60 vs 275

https://maxiang.io 4/7

分类级连图

结果:

DCNN models:

数据	数据 accuracies	
训练集	0.90-0.94	0.99–1.00
验证集	0.74-0.83	0.66-0.89

四个不同的二值分类任务指标如下:

任务	训练集auc	验证集auc		
Grading	0.99	0.89		
LGGs-IDH	0.99	0.89		
LGGs-IDH-1p19q	1.00	0.85		
GBM-IDH	1.00	0.66		

是4个任务的准确率结果范围。看结果而言存在过拟合,GBM-IDH结果较差。。

参考2

Multi-Classification of Brain Tumor Images Using Deep Neural Network

HOSSAM H. SULTAN[®], NANCY M. SALEM[®], AND WALID AL-ATABANY[®]
Department of Biomedical Engineering, Faculty of Engineering, Helwan University, Cairo 11792, Egypt
Corresponding author: Hossam H. Sultan (hossam.sultan@h-eng.helwan.edu.eg)

主要的处理框架:

https://maxiang.io

主要的处理框架

模型结构:

模型结构

confusion matrix 结果:

confusion matrix 结果

指标结果:

TABLE 3. Accuracy metrics in terms of TP, TN, FP, FN, precision, sensitivity, specificity, and accuracy.

Metrics Method	Tumor Type	ŢŢ	N.	FP	Z	Precision	Sensitivity	Specificity	Accuracy	Total no.	
Proposed	Meningioma	512	1744	22	24	0.958	0.955	0.987	97.54%	547	
Model	Glioma	1021	1195	33	61	0.972	0.944	0.951	95.81%	1069	
for Study I	Pituitary	675	1566	34	48	0.952	0.934	0.97	96.89%	697	
Proposed	Grade II	31	46	0	0	1	1	1	100%	31	
Model	Grade III	19	57	0	1	1	0.95	1	95%	20	
for Study II	Grade IV	26	50	1	0	0.963	1	0.98	100%	26	