

Problem Statement

OUR GOALS

Analysis

Discover valuable insights to share with Ministry of Water to achieve their mission

Accuracy

Generate a model with > 0.80 accuracy in predicting functionality

Precision

Lowest value of false positives: model predicting a well is functional when it is not

OUR OSEMIN PROCESS

Obtain

Import the data

Scrub

Manage datatypes, resolve missing/duplicate values

Explore

Find patterns among the relationships of variables in the dataset

Model

Create predictive models

iNterpret

Identify insights and visualize findings

OUR DATA

Functional 54%

Non-Functional 38.4%

Functional needs 7.2% Repair

COORDINATES

ELEVATION

CONSTRUCTION YEAR

> Amount of Water **Available**

Key Features

59400 Water Points 40 Descriptors

Water **QUANTITY**

CONSTRUCTION YEAR distribution

OUR MODEL ACCURACY

OUR RANDOM FOREST CLASSIFIER PERFORMANCE

ACCURACY

The best performing model was our Random Forest classifier which accurately predicts functionality 80 of 100 predictions

FALSE POSITIVES

On average for every
100 nonfunctioning
waterpoints, our
model would
predict 20 as
functioning.

OUR RECOMMENDATIONS

Gravity and Handpump wells are the simplest, and most common well type.
Build teams experienced in repair and maintenance of these well types.

Maintenance Specialities

Population per well is important when keeping wear on wells low. Install more wells in those areas with higher populations to increase well longevity.

Population Use Analysis

There is a seasonal pattern to report creation. Locating repair teams in the North West regions during the long dry season, and in the East during the long rain could shorten repair times.

Seasonal Awareness

OUR FUTURE WORK

MORE DATA • • •

Collecting more data, and increasing usage of TAARIFA would improve predictability of models

INCREASE COMPLEXITY • • •

Neural Networks and Quantum Based Classifiers could improve predictive performances for the ministry to get clean water accessible to more citizens

COMPUTER VISION • • •

Investment in Drones with Computer Vision models designed to find visual patterns of functionality could greatly increase predictive performance **CREDITS**: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by Freepik.

Please keep this slide for attribution.

Do you have any questions?

APPENDIX

Code:

- https://www.dataquest.io/blog/settingwithcopywarn ing/
- https://www.analyticsvidhya.com/blog/2015/11/easy -methods-deal-categorical-variables-predictivemodeling/
- https://scikitlearn.org/stable/modules/compose.html
- https://www.kaggle.com/pouryaayria/a-complete-ml-pipeline-tutorial-acu-86
- https://www.kdnuggets.com/2017/03/simplexgboost-tutorial-iris-dataset.html
- https://towardsdatascience.com/fine-tuning-aclassifier-in-scikit-learn-66e048c21e65Landing page template ecology landscape
- People saving the planet ecology concept

Tanzania:

- https://water.org/our-impact/tanzania/
- https://www.maji.go.tz/pages/mission-statement
- https://www.maji.go.tz/uploads/publications/sw158 0706373-
 - 2nd%20%20Call%20for%20Abstract%20&%20Conce pt%20Note_2020%20Maji%20Week%20Scientific%2 0Conference.pdf
- https://www.iaea.org/sites/default/files/documents/ tc/tanzania.pdf

