Das magnetische Moment des Protons

Proseminar Präsentationstechnik c

Prof. Dr. Harmut Schmieden

Jonas Wortmann

Universität Bonn

28. Oktober 2024

 ${\color{red} \bullet}$ Entdeckung des Protons

- Entdeckung des Protons
- ${\color{red} 2}$ Magnetisches (Dipol–)Moment

- Entdeckung des Protons
- 2 Magnetisches (Dipol-)Moment
- 3 Das Proton als Elementarteilchen

- 1 Entdeckung des Protons
- 2 Magnetisches (Dipol-)Moment
- 3 Das Proton als Elementarteilchen
- Experiment Otto Robert FRISCH & Otto STERN

- 1 Entdeckung des Protons
- 2 Magnetisches (Dipol-)Moment
- 3 Das Proton als Elementarteilchen
- 4 Experiment Otto Robert Frisch & Otto Stern
- 6 Die Substruktur des Protons

- 1 Entdeckung des Protons
- 2 Magnetisches (Dipol-)Moment
- 3 Das Proton als Elementarteilchen
- 4 Experiment Otto Robert Frisch & Otto Stern
- **6** Die Substruktur des Protons
- 6 SLAC Experiment

- 1 Entdeckung des Protons
- 2 Magnetisches (Dipol-)Moment
- 3 Das Proton als Elementarteilchen
- 4 Experiment Otto Robert Frisch & Otto Stern
- ⁶ Die Substruktur des Protons
- 6 SLAC Experiment
- 7 Das Proton als Baryon

- 1 Entdeckung des Protons
- 2 Magnetisches (Dipol-)Moment
- 3 Das Proton als Elementarteilchen
- 4 Experiment Otto Robert Frisch & Otto Stern
- ⁶ Die Substruktur des Protons
- 6 SLAC Experiment
- 7 Das Proton als Baryon
- 8 Ausblick

1913 MARDSEN: Wasserstoff wird mit α -Teilchen beschossen

- → Aufblitzen auf einem Zinksulfidschrim in **großer Distanz**.
- \rightarrow von **H**-Atomen verursacht.[1]

1913 MARDSEN: Wasserstoff wird mit α -Teilchen beschossen

- \rightarrow Aufblitzen auf einem Zinksulfidschrim in **großer Distanz**.
- \rightarrow von **H–Atomen** verursacht.[1]

RUTHERFORD: Stickstoff wird mit α -Teilchen beschossen.

 \rightarrow Aufblitzen von **H**-**Atomen** verursacht.

28. Oktober 2024

1913 MARDSEN: Wasserstoff wird mit α -Teilchen beschossen

- → Aufblitzen auf einem Zinksulfidschrim in **großer Distanz**.
- \rightarrow von **H**-**Atomen** verursacht.[1]

RUTHERFORD: Stickstoff wird mit α -Teilchen beschossen.

 \rightarrow Aufblitzen von **H**-**Atomen** verursacht.

Stickstoff muss H-Atome als Bestandteile besitzen.

1913 MARDSEN: Wasserstoff wird mit α -Teilchen beschossen

- → Aufblitzen auf einem Zinksulfidschrim in **großer Distanz**.
- \rightarrow von **H–Atomen** verursacht.[1]

RUTHERFORD: Stickstoff wird mit α -Teilchen beschossen.

→ Aufblitzen von H-Atomen verursacht.

Stickstoff muss H-Atome als Bestandteile besitzen.

1920 RUTHERFORD: **Jedes** Atom muss aus **H-Atomen** (Protonen) bestehen.

Magnetisches Moment gibt **Stärke** und **Richtung** eines magnetischen Dipols an

$$m = \frac{1}{2} \int d^3 r \left[\mathbf{r} \times \mathbf{j} \left(\mathbf{r} \right) \right] \qquad \overrightarrow{m} = I \cdot \mathbf{A}$$

Magnetisches Moment gibt **Stärke** und **Richtung** eines magnetischen Dipols an

$$m = \frac{1}{2} \int d^3 r \left[\mathbf{r} \times \mathbf{j} \left(\mathbf{r} \right) \right] \qquad \overrightarrow{m} = I \cdot \mathbf{A}$$

Klassische / Quantenmechanische Betrachtung mit **Drehimpuls**

$$\mu_l = \frac{q}{2m_q} l \qquad \hat{\mu}_q = \frac{q}{2m_q} \hat{l} \qquad \hat{\mu}_s = g_s \frac{q}{2m_q} \hat{s}$$

Magnetisches Moment gibt Stärke und Richtung eines magnetischen Dipols an

$$m = \frac{1}{2} \int d^3 r \left[\mathbf{r} \times \mathbf{j} \left(\mathbf{r} \right) \right] \qquad \overrightarrow{m} = I \cdot \mathbf{A}$$

Klassische / Quantenmechanische Betrachtung mit **Drehimpuls**

Bohr'sche Magneton (Elektronen $\ell = 1$) & Kernmagneton (Dirac-Teilchen)

$$\mu_B = \frac{e\hbar}{2m_e} \qquad \mu_N = \frac{e\hbar}{2m_p}$$

ĿŒX

wofür mag moment gut?

Das Proton als Elementarteilchen

DIRAC-Theorie:

$$\left(\mathrm{i}\gamma^{\mu}\partial_{\mu}-m\right)\phi\left(x,t\right)=0$$

Lösungen: erlaubte Zustände elementarer Fermionen.

Das Proton als Elementarteilchen

DIRAC-Theorie:

$$\left(\mathrm{i}\gamma^{\mu}\partial_{\mu}-m\right)\phi\left(x,t\right)=0$$

Lösungen: erlaubte Zustände elementarer Fermionen.

Proton als Dirac-Teilchen.

$$\mu_P = 1\mu_N = 1 \frac{e\hbar}{2m_P} \approx 5.505 \times 10^{-27} \,\mathrm{J/T}$$

CODATA[2]

Experiment Otto Robert Frisch & Otto Stern

BILD EXPERIMENT
BILD BERECHNETES MAGNETON

4

Die Substruktur des Protons

Einteilung der Teilchen: Hadron

 \rightarrow Baryon: Fermion aus 3 Quarks

 \rightarrow Meson: Boson aus 2 Quarks

SLAC Experiment

SLAC Experiment

Elektronen streuen an Nukleonen mit ${\bf großen}$ Winkeln

 \rightarrow Analogie Rutherford: Nukleonen haben punktförmige ${\bf Substruktur}.$

SLAC Experiment

Elektronen streuen an Nukleonen mit großen Winkeln

→ Analogie Rutherford: Nukleonen haben punktförmige **Substruktur**.

Interpretation Feynman & Bjorken: Proton besteht aus **Partonen**.

 \rightarrow Partonen sind als Gell-Manns & Zweigs **Quarks** zu identifizieren.

Proton kein elementares Fermion, sondern ein ${\bf Baryon}$ (u,u,d).

Proton kein elementares Fermion, sondern ein **Baryon** (u,u,d).

$$\mu_P = \frac{3}{4} \mu_u - \frac{1}{3} \mu_d \approx 2.792 \, \mu_N \approx 1.410 \times 10^{-27} \, \mathrm{J/T}$$

CODATA[3]

Proton kein elementares Fermion, sondern ein **Baryon** (u,u,d).

$$\mu_P = \frac{3}{4} \mu_u - \frac{1}{3} \mu_d \approx 2.792 \, \mu_N \approx 1.410 \times 10^{-27} \, \mathrm{J/T}$$

CODATA[3]

Differenz:

$$|\,\mu_{\rm PF} - \mu_{\rm PB}\,| \approx 4.095 \times 10^{-27}\,{\rm J/T}$$

Ausblick

8

28. Oktober 2024

Bibliography

John Campbell.

Rutherford, transmutation and the proton.

 ${\tt https://cerncourier.com/a/rutherford-transmutation-and-the-proton/,\ 8.\ May\ 2019.}$

Letzter Zugriff: 2024-10-27.

CODATA.

https://physics.nist.gov/cgi-bin/cuu/Value?mun|search_for=nuclear+magneton, 2022. Letzter Zugriff: 2024-10-27.

CODATA.

 $\verb|https://physics.nist.gov/cgi-bin/cuu/Value?mup|search_for=magnetic+moment+proton|, 2022|.$

Letzter Zugriff: 2024-10-27.