Statistical Machine Learning Approaches to LiverDisease Prediction

IBM-Project-9305-1658993012

NALAIYA THIRAN PROJECT BASED LEARNING ON PROFESSIONAL READLINESSFOR INNOVATION, EMPLOYNMENT AND ENTERPRENEURSHIP

A PROJECT REPORT

Submitted By

ESWARAN S [921319205030]

HARI KISHORE B [921319205037]

KAMESH P [921319205054]

KARMEGAM R[921319205055]

TEAM ID: PNT2022TMID05432

INDUSTRY MENTOR: Nidhi

FACULTY MENTOR: N.Pandeeswari

EVALUATOR: Mrs. Nithya

PSNA College Of Engineering and Technology Dindigul 624622

Project Report

1. INTRODUCTION

- a. Project Overview
- b. Purpose

2. LITERATURE SURVEY

- a. Existing problem
- b. References
- c. Problem Statement Definition

3. IDEATION & PROPOSED SOLUTION

- a. Empathy Map Canvas
- b. Ideation & Brainstorming
- c. Proposed Solution
- d. Problem Solution fit

4. REQUIREMENT ANALYSIS

- a. Functional requirement
- b. Non-Functional requirements

5. PROJECT DESIGN

- a. Data Flow Diagrams
- b. Solution & Technical Architecture
- c. User Stories

6. PROJECT PLANNING & SCHEDULING

- a. Sprint Planning & Estimation
- b. Sprint Delivery Schedule
- c. Reports from JIRA

7. CODING & SOLUTIONING (Explain the features added in the project along with code)

a. Feature 1

- b. Feature 2
- c. Database Schema (if Applicable)

8. TESTING

- a. Test Cases
- b. User Acceptance Testing

9. **RESULTS**

- a. Performance Metrics
- 10. ADVANTAGES & DISADVANTAGES
- 11. **CONCLUSION**
- 12. **FUTURE SCOPE**
- 13. APPENDIX
 - a. Source Code
 - b. GitHub & Project Demo Link

1. INTRODUCTION

a. Project overview:

Liver is the largest internal organ in the human body, it is essential for digesting food and releasing the toxic element of the body and plays a major role in metabolism and serving several vital functions. The liver is the largest glandular organ of the body. It weighs about 3 lb (1.36 kg) .The liver's main job is to strain the blood coming from the digestive tract, before passing it to the rest of the body. The liver also detoxifies chemicals and metabolizes drugs. As it does so, the liver hides bile that ends up back in the intestines. The liver also makes proteins important for blood clotting and other functions. The liver supports almost every organ in the body and is vital for our survival. Liver disease may not cause any symptoms at earlier stage or the symptoms may be vague, like weakness and loss of energy. Symptoms partly depend on

the type and the extent of liver disease. Liver diseases are diagnosed based on the liver functionaltest

b. Purpose

With a growing trend of sedentary and lack of physical activities, diseases related to liver have become a common encounter nowadays. In rural areas the intensity is still manageable, but in urban areas, and especially metropolitan areas the liver disease is a very common sighting nowadays. Liver diseases cause millions of deaths every year. Viral hepatitis alone causes 1.34 million deaths every year. Problems with liver patients are not easily discovered in an early stage as it will be functioning normally even when it is partially damaged. An early diagnosis of liver problems will increase patient's survival rate. Liver failures are at high rate of risk among Indians. It is expected that by 2025 India may become the World Capital for

Liver Diseases. The widespread occurrence of liver infection in India is contributed due to deskbound lifestyle, increased alcohol consumption and smoking. There are about 100 types of liver infections. With such alarming figures, it is necessary to have a concern towards tackling these diseases. Afterall, we cannot expect a developed and prosperous nation, with unhealthy youths. In this project we have taken UCI ILPD Dataset which contains 10 variables that are age, gender, total Bilirubin, direct Bilirubin, total proteins, albumin, A/G ratio, SGPT, SGOT and Alkphos and contains 415 as liver disease patients and 167 as non-liver disease patients. As we got through the next parts of this paper, we will explain what process as taken place for the selection of best model and building necessary system for the prediction of liver disease.

The major outcomes that can be expected through this project are:

- 1. Increased convenience for predicting a liver disease
- 2. Reduction in number of deaths due to liver diseases More accurate diagnosis of liver disease by the doctors.

2. LITERATURE SURVEY

a. Existing problem

Medical diagnoses have important implications for improving patient care, research, and policy. For a medical diagnosis, health professionals use different kinds of pathological methods tomake decisions on medical reports in terms of the patients' medical conditions. Recently, clinicians have been actively engaged in improving medical diagnoses. The use of artificial intelligence and machine learning in combination with clinical findings has further improved disease detection. In the modern era, with the advantage of computers and technologies, one can collect data and visualize many hidden outcomes such as dealing with missing data in medical research. Statistical machine learning algorithms based on specific problems can assist one to make decisions. To detect disease, healthcare professionals need to collect samples from patients which can cost both time and money. Often, more than one kind of test or many samples are needed from the patient to accumulate all the necessary information for a better diagnosis. Using machine learning algorithms to predict disease is made possible by increasing access to hidden attributes in medical data sets. Various kinds of data sets, such as blood panels with liver function tests, histologically stained slide images, and the presence of specific molecular markers in blood or tissue samples, have been used to train classifier algorithms to predict liver disease with good accuracy. The ML methods described in previous studies have been evaluated for accuracy by a combination of confusion matrix, receiver operating characteristic under area under curve, and k-fold cross-validation. Chronic liver disease is detected by clinicians who are well trained in identifying significant observations and classifying them as normal or abnormal using background information and other context clues. ML algorithms can be trained to detect the possibility of liver disease in a similar way to assist healthcare workers. Using the correlation of each variable with the risk of liver disease to train the model, ML methods were able to identify which blood donors were healthy and which had liver disease with high accuracy.

b. References

- 1.Liver Disease Prediction System using Machine Learning Techniques, Rakshith D B, Mrigank Srivastava, Ashwani Kumar, Gururaj S P, International Journal of Engineering Research & Technology (IJERT), Vol. 10 Issue 06, June-2021
- 2.A Prediction Model of Detecting Liver Diseases in Patients using Logistic Regression of Machine Learning PSM Keerthana, Nimish Phalinkar, Riya Mehere, Koppula Bhanu Prakash Reddy, Nidhi Lal, INTERNATIONALCONFERENCEON INNOVATIVE COMPUTING AND COMMUNICATION (ICICC-2020).
- 3. Prediction of Liver Disease Using Machine Learning Algorithm and Genetic Algorithm B.Poonguzharselvi, Mohammad Mahaboob Ali Ashraf, Vadlamani V S S Subhash, S.Karunakaran, Annals of R.S.C.B, 2021: Volume 25: Issue 4.
- 4. Machine Learning Techniques in Analysis and Prediction of Liver Disease Dr. Dattatreya P Mankame , Harshitha R , Navya N C , Nitin Ravichander, July 2021 | IJIRT | Volume 8 Issue 2 | ISSN: 2349-6002.
- 5. A Comparative Study On Liver Disease Prediction Using Supervised Machine Learning Algorithms A.K.M Sazzadur Rahman, F. M. Javed Mehedi Shamrat, Zarrin Tasnim, INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 8, ISSUE 11, NOVEMBER 2019 ISSN 2277-8616.

c. Problem Statement Defifinition

The main objective of this project is to analyse the parameters of various classification algorithms and compare their precision, recall, F1 score and accuracies so as to find out the best classifier for determining the liver disease. Here we are building a model by applying various machine learning algorithms to find the best accurate model and integrate it to a flask-based web application. User can predict the disease by entering the values in the web

application. So many statistical and machine learning approaches (e.g., simulation modelling, classification, and inference) have been used by researchers and lab technicians for better prediction. The clinical results are more data driven than model-dependent.

Problem Statement (PS)	I am (Customer)	I am trying to	But	Because	Which makes me feel
PS-1	Patient	Check if I have Liver disea se	The implementati onof this idea is difficult	Thereare variationsin accuracies, whichare unavoidab le	depressed

PS-2	Patient	Simply experim ent with the app	The implementati on of this project is difficult	There are variati ons in accura cies, which are unavoi	Sad
				unavoi dabl e	

3. IDEATION & PROPOSED SOLUTION

a. Empathy Map Canvas

- i. An empathy map is a collaborative tool teams can use to gain a deeper insight into their customers. Much like a user persona, an empathy map can represent a group of users, such as a customer segment. The empathy map was originally created by Dave Gray and has gained much popularity within the agile community.
- ii. An empathy map is an effective visualization template that helps analyse the behaviour and emotions of customers and users. Empathy maps not only detect the behaviours but highlight possible mediums for brands to communicate with their customers in a better way
- iii. Empathy maps can also be used to collect data directly from the users. Used alongside user interviews, survey answers, etc., you can also have a user fill in an empathy map themselves. This often reveals aspects of the user that may have remained unsaid or not thought of.
- iv. Each of the four quadrants comprises a category that helps us delve into the mind of the user. The four empathy map quadrants look at what the user says, thinks, feels, and does.

b.Ideation & Brainstorming

c. Proposed Solution

S.No	Parameter	Description
2.	Problem Statement (Problemto be solved) Idea / Solution description	Discovering the existence of liver diseases at early stage is a complex task for doctors. The challenge is to predict the liver disease patient fast and accurate and to diagnose the patients in early stage. Machine learning model which uses statistical data to predict the
		liverdisease of the patients.
3.	Novelty / Uniqueness	Accurately classifies the intensity of the liver disease from the patients concentrating on relationship between a key list of enzymes, proteins, age and gender using them to predict the likeliness of the liver disease
4.	Social Impact / CustomerSatisfaction	 Capable of predicting the liverdisease in early stage Works accurately and precisely to predict the liver disease Doctors can be able to diagnose the live patients in early stage to save many lives

5.	Business Model (RevenueModel)	 This system can be integrated with any Health sector domain, It solves the complex process of predicting the liver disease of patients and makes ease to
		the doctors to diagnose the liver disease.The user can be able to get consulting with doctors
6.	Scalability of the Solution	 Can be extended to predict many classification of diseases in early stage This can be integrated to with any hospitals and health sectors to get patient records securely through APIs

d. Problem Solution Fit

4. REQUIREMENT ANALYSIS

a. Functional Requirements

Following are the functional requirements of the proposed solution.

FR	Functional Requirement	Sub Requirement (Story / Sub-Task)
No.	(Epic)	
FR-1	User Registration	New user account can be created through
		web application.
FR-2	User Confirmation	The system gives an approval message
		after the user accountis activated.
FR-3	User medication data	Data should be fed to the dashboard
		text fields in the application.
FR-4	Database Management	User data will be saved in the database
		and will be used forfuture reference.
FR-5	Reporting	Predicting liver disease using given data
		and generating themedical report for
		future use.

b. Non-Functional Requirement

Following are the non-functional requirements of the proposed solution.

FR	Non-Functional	Description
No.	Requirement	
NFR-	Usability	The whole system can be
1		accessed through web
		application. Hence it is very

		easy to use.
NFR-	Security	Security requirements ensure that the
2		software is protected from unauthorized
		access to the system and its stored in
		data.
NFR-	Reliability	Support vector machine (SVM),
3		Random Forest algorithm and KNN
		algorithm have been employed for
		developing liver disease risk prediction
		model and obtained the accuracy.
NFR-	Performance	Application effectively compares user
4		given parameters with the required
		dataset. Hence performance would be
		considerably good.
NFR-	Availability	It is gauged by period that
5		system's functionality & services
		are available for use with all
		operations.
NFR-	Scalability	Application can be used in any kind of
6		operating system either in small or
		large OS so the scalability is very
		high.

5. PROJECT DESIGN

a. Data Flow Diagrams

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

b.Solution and Technical Architecture

SOLUTION ARCHITECTURE

Technical Architecture:

c. User Stories

Use the below template to list all the user stories for the product

User Type	Functional	User	User Story /	Acceptance	Priority	Release
	Requirement	Story	Task	criteria		
	(Epic)	Number				
Customer	Registration	USN-1	As a user, I	I can access	High	Sprint-1
(Mobile			canregister	my account /		
user)			forthe	dashboard		
			application by			
			enteringmy			
			email,			
			password, and			
			confirming			
			my password.			
		USN-2	As a user, I	I can receive	High	Sprint-1
			will receive	confirmation		
			confirmation	email & click		
			email once I	confirm		
			have			
			registered for			
			the			
			application			
	Login	USN-3	As a user, I	I can access	High	Sprint-1
			can log into	the dashboard		
			the			
			application by			
			entering email			

	& password		

	Dashboard	USN-4	As a user, I	I can retrieve	Medium	Sprint-2
			must enter my	information		•
			details	anywhere		
	Dashboard	USN-5	As a user, I	I can view	High	Sprint-1
			must enter my	various pages		1
			details	1 0		
Customer	Upload Images	USN-6	As a user, I	Can get result	Medium	Sprint-3
(Web			can upload	based on the		
user)			the image that	information		
			required for	provided.		
			finding			
			whether liver			
			disease is			
			there are not.			
	Enter data	USN-7	As a user, I	Can get result	High	Sprint-3
			can enter the	based on the		
			required data	information		
			from the	provided		
			scanned			
			report.			
	Report	USN-8	As a user, I	Result can be	Low	Sprint-4
			can generate	generated in		
			the report in	PDF format in		
			PDF format.	user login.		
	Search	USN-9	As a user, I	I can receive	Low	Sprint-4
			can search for	information		
			the specialist	on various		
			and best	doctors and		
			hospital in	hospitals.		
			that			
			respective			
			field.			
Administrator	Analyse	USN-10	As an admin,	I can analyse	High	Sprint-2
			I will analyse	the given data.		
			the given data			

6. PROJECT PLANNING & SCHEDULING

a. Sprint Planning & Estimation

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint- 1	Registration	USN-1	As a user, I can register for the applicationby enteringmy email, password, and confirming my password.	5	High	Eswaran S
Sprint- 1		USN-2	As a user, I will receive confirmation email Once I have registered for the application	5	High	Kamesh P

			As a user, I			
			can log into			
		USN-	the			
Sprint-	Login	3	application	10	High	Karmegam R
1	by entering					
			email &			
			password			
			As a user, I			
			can give			
	Input		Input Details			
Sprint-	Necessary	USN-	to Predict	15	High	Kamesh P
2	Details	4	Likeliness of			
			Liver			
			Disease.			

Sprint-	Data pre- processing	USN- 5	Transform raw data into suitable format for prediction.	5	High	Eswaran S
Sprint- 3	Prediction of Liver Disease	USN- 6	As a user, I can predict Liver Disease Using machine learning model.	15	High	Hari KishoreB
Sprint- 3			As a user, I can get accurate prediction of Liver disease.	5	Medium	Karmegam R
Sprint- 4	Review	UNS- 8	As a user, I can give feedback of The application	20	High	Eswaran S

b. Sprint Delivery Schedule

Sprint	Total	Duration	Spri	Spri	Story	Sprint Release
	Story		nt	nt	Points	Date(Actual)
	Poin		Start	End	Complet	
	ts		Date	Date(Planned)	ed(as	
					on	
					Plann	
					edEnd	
					Date)	
Sprint-1	20	6 Days	24	29 Oct 2022	18	08 Nov 2022
			Oct2022			

Sprint-2	20	6 Days	31 Oct	05 Nov 2022	17	06 Nov 2022
			2022			
Sprint-3	20	6 Days	07 Nov	12 Nov 2022	18	08 Nov 2022
			2022			
Sprint-4	20	6 Days	14 Nov	19 Nov 2022	17	10 Nov 2022
			2022			

c. Reports from JIRA

JIRA has categorized reports in four levels, which are –

- i. Agile
- ii. Issue Analysis
- iii. Forecast & Management
- iv. Others

VELOCITY: SPRINT - 1

Sprint duration = 5 days

Velocity of team = 20 points

Average Velocity (AV) =

Velocity

Sprint duration

AV = 20/5 = 4

Average Velocity = 4

VELOCITY: Sprint 1 - 4

Sprint duration = 20 days

Velocity of team = 80 points

Average Velocity (AV) = Velocity

Sprint duration

AV = 80/20 = 4

Total Average Velocity = 4

7. CODING & SOLUTIONING

a.Feature 1

Flaskapp.py

```
app = Flask(<u>    name    </u>)
model = pickle.load(open('SVM.pkl', 'rb'))
@app.route('/',methods=['GET'])
def predict():
int(request.form['Aspartate_Aminotransferase'])
np.array([[Age,Gender,Total_Bilirubin,Direct_Bilirubin,Alkaline_Phosphotase,Ala
mine_Aminotransferase,Aspartate_Aminotransferase,Total_Protiens,Albumin,Albumin
```

```
return render_template('result.html', prediction=prediction)

if __name__ == "__main__":
    app.run(debug=True)
```

b. Feature 2

Scoringendpoint.py

```
API_KEY = "AluxVbb0jio3fHsuNSWWK-rZXX54vtrvqLSJTj5QTt4I"
token_response = requests.post('https://iam.cloud.ibm.com/identity/token',
mltoken = token_response.json()["access_token"]
print("mltoken", mltoken)
header = {'Content-Type': 'application/json', 'Authorization': 'Bearer ' +
mltoken}
app = Flask(<u>__</u>name<u>__</u>)
model = pickle.load(open('SVM.pkl', 'rb'))
@app.route('/',methods=['GET'])
def Home():
@app.route("/predict", methods=['POST'])
```

```
Alkaline_Phosphotase = int(request.form['Alkaline_Phosphotase'])
    Alamine_Aminotransferase =
int(request.form['Alamine_Aminotransferase'])
    Aspartate_Aminotransferase =
int(request.form['Aspartate_Aminotransferase'])
    Total_Protiens = float(request.form['Total_Protiens'])
    Albumin = float(request.form['Albumin'])
    Albumin_and_Globulin_Ratio =
float(request.form['Albumin_and_Globulin_Ratio'])

    values =
np.array([[Age, Gender, Total_Bilirubin, Direct_Bilirubin, Alkaline_Phosphotase, Alamine_Aminotransferase, Aspartate_Aminotransferase, Total_Protiens, Albumin_and_Globulin_Ratio]])
    prediction = model.predict(values)

    return render_template('result.html', prediction=prediction)

if __name__ == "__main__":
    app.run(debug=True)
```

8. TESTING

Test Cases

- The home page and the result page is tested .It is working wellwithout issues.
- The app was tested for functionality .

• The scoring end point application is slower than the normal flask app.

9. RESULTS

a.Performance metrics

Support Vector Matrix Confusion Matrix

Accuracy

	Machine Learning Algorithm	Accuracy_Score
0	Support Vector Machine	65.714286

Classification Result

	precision	recall	f1-score	support
1	0.66	1.00	0.79	115
2	0.00	0.00	0.00	60
accuracy			0.66	175
macro avg	0.33	0.50	0.40	175
weighted avg	0.43	0.66	0.52	175

Comparision with other matrix

	Machine Learning Algorithm	Accuracy_Score	Precision_Score	Recall_Score	F1_Score	Mean_Absolute_Error	Root_Mean_Square_Error
0	Support Vector Machine	65.714286	65.714286	100.000000	79.310345	34.285714	58.554004
1	Logistic Regression	68.571429	69.230769	93.913043	79.704797	31.428571	56.061191
2	Random Forest Classifier	66.857143	69.127517	89.565217	78.030303	33.142857	57.569833
3	Decision Tree Classifier	59.428571	68.644068	70.434783	69.527897	40.571429	63.695705
4	K Nearest Neighbours	64.571429	65.497076	97.391304	78.321678	35.428571	59.521905

Hypertune the model using GrideSearch CV

```
from sklearn.svm import SVC
  model=SVC()
  param grid = {'C': [0.1,1, 10,50,100,200,1000], 'gamma': [1,0.1,0.01,0.001,0.0001], 'kernel': ['rbf']}
  from sklearn.model selection import GridSearchCV
  grid = GridSearchCV(SVC(),param_grid,refit=True,verbose=3)
  grid.fit(X train,y train)
  Fitting 5 folds for each of 35 candidates, totalling 175 fits
  [CV 1/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.707 total time=
  [CV 2/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.707 total time=
                                                                       0.05
  [CV 3/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.707 total time=
                                                                       0.05
  [CV 4/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.716 total time=
                                                                       0.05
  [CV 5/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.716 total time=
  [CV 1/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.707 total time=
   GridSearchCV(estimator=SVC(),
                    param_grid={'C': [0.1, 1, 10, 50, 100, 200, 1000],
                                    'gamma': [1, 0.1, 0.01, 0.001, 0.0001],
                                    'kernel': ['rbf']},
                    verbose=3)
svm predictions=grid.predict(X test)
```

	precision	recall	f1-score	support
0	0.00	0.00	0.00	43
1	0.75	1.00	0.86	132
accuracy	0.20	0.50	0.75	175
macro avg	0.38	0.50	0.43	175
weighted avg	0.57	0.75	0.65	175

10. ADVANTAGES AND DISADVANTAGES

Advantages:

- This helps in early diagnosis of liver disease.
- It makes the process simple and easier.
- We are able to monitor the patient in an effective manner.
- We can also help patients who are not in a condition to directly consult a doctor.

Disadvantages:

- There are inaccuracies which cannot be avoided.
- For people who have difficulty in accessing internet or those who do not have electronic gadgets, this is not a feasible solution.

11. CONCLUSION

Classification is the major data mining technique which is primarily used in healthcare sectors for medical diagnosis and predicting diseases. This project work used classification algorithms namely Support Vector Machine (SVM) for liver disease prediction.

Comparisons of different algorithms are done and it is based on the performance factors classification accuracy and execution time. From the experimental results, we concluded that SVM classifier is considered as the best.

12. FUTURE SCOPE

In future , we can add extra features for training the model in our proposed system . We can use different machine learning algorithms and test the performance of them based on . If we find a better algorithm with high accuracy , we can use it. Then we can add extra suggestions like reminders for medicines etc.

13. APPENDIX

Github link: https://github.com/IBM-EPBL/IBM-Project-9305-1658993012

Demolink: https://drive.google.com/drive/folders/14JMU9gV8ndsLGOyTQbUQeA
oRuhsinUB2?usp=share_link nYw/view?usp=sharing