目录

1	实验目的	1
2	实验器材	1
3	实验内容: OC 门实验和流水灯设计 3.1 功能要求 3.2 已知条件 3.3 实验具体要求及注意事项 3.4 测量内容	1 1 2 2 2
4	实验原理及参考电路 4.1 OC 门电路	3 3 3
5	实验内容 5.1 OC 门实验	5 5
1	实验目的	
	1. 掌握 OC 门电路设计测试方法;	
	2. 掌握用触发器设计实现时序逻辑电路 (计数器)	
	3. 掌握译码器的设计实现方法	
	4. 掌握逻辑电路的调试和测试方法	
2	实验器材	
3	实验内容: OC 门实验和流水灯设计	
3.	1 功能要求	
	1. OC 门任务 7 电路功能	

名称	型号(参数)	数量
数字集成电路	74HC03	1
	74HC00	2
	74HC74	1
	74HC10	2
电阻	510 Ω \$	1
	$1\mathrm{k}\Omega$	2
LED		5

- 2. 流水灯电路功能
- 3. 流水灯电路 1kHz 时钟脉冲时各输出波形, 特别是如何观测相位关系

3.2 已知条件

对于流水灯,须用触发器设计一个 4 进制计数器,再用与非门设计 2-4 线译码器,使四个发光管仅有一个亮灯且轮流亮灯

3.3 实验具体要求及注意事项

- 1. 各单元电路的电源要求连在一起
- 2. 布局、布线要规范。要求: 电源线用红色线, 地线用黑色, 信号线用其它颜色
- 3. 输入信号用正方波
- 4. 用示波器观察波形时,用 DC 耦合输入方式
- 5. 画输入、输出波形时,要求上、下排列
- 6. 实验结果的记录要求规范

3.4 测量内容

- 1. 计算 R_L, R_D
- 2. 画出 v_i, v_o, v_{o1}, v_{o2} 的波形并标出 V_{OH}, V_{OL} 的值;
- 3. 画出逻辑电路图

- 4. 用示波器观察波形时, 用 DC 耦合输入方式
- 5. 画输入、输出波形时,要求上、下排列
- 6. 实验现象及测试结果记入自拟表格中。将电路 CP 改为 1kHz 输入,示波器用直流耦合输入方式,用 Y_3 ,作为触发信源,用坐标纸画出 EN=0 时 CP,Q_1,Q_0 和译码器输出波形,注意波形的时序关系,并总结观察多个相关信号时序关系的方法

4 实验原理及参考电路

4.1 OC 门电路

因 OC 门输出端是悬空的,使用时一定要在输出端与电源之间接一电阻 R_L ,实验电路如下 其中, R_L 的范围有下列等式标定:

图 1: OC 门电路

$$R_{\text{Lmax}} = \frac{V_{\text{CC}} - V_{\text{OHmin}}}{nI_{\text{OH}} + m'I_{\text{IH}}}, R_{\text{Lmin}} = \frac{V_{\text{CC}} - V_{\text{OLmax}}}{I_{\text{OL}} - mI_{\text{L}}}$$

4.2 流水灯电路

用 D 触发器设计实现模 4 计数器, 用与非门设计实现 2/4 线译码器, 主要设计如下图所示:

图 2: 整体框架

图 3: 模四计数器 (用 74HC74 和 74HC00 实现)

图 4: 译码器 (用两个 74HC10 实现)

5 实验内容

5.1 OC 门实验

取发光二极管 D 正向导通压降 Vi=1.5V, 导通电流 2mA, 计算限流电阻 R_o ,负载电阻 R_{Lmax} , R_{Lmin} 调整信号源,使其输出 1kHZ、4V 的正方波,将其连接到 v_i 点,使用示波器 "直流耦合"输入方式观察波形,在坐标纸上画出 v_i,v_o,v_{o1},v_{o2} 的波形,并标出 V_{oH},V_{oL} 的电平值