Chapitre 12

Loi Continue de Probabilité

12.1 Introduction

Cas Discret : on lance 1 dé de 1 à 6 et on définit la V.A. discrète X associée au résultat

- $X(\Omega) = \{1, \dots, 6\}$
- à X, on associe 1 loi de probabilité : $\mathbb{P}(X=k)=\frac{1}{6}$ où $k\in[1..6]$
- ightarrow il existe des évènements élémentaires dont la probabilité est <u>non nulle</u>

 $\underline{\textit{Cas Continue}}: X$ la V.A.R. $\underline{\textit{continue}}$ associée à la durée d'1 communication téléphonique

- $X(\Omega) = \mathbb{R}_+$
- \Rightarrow pour chaque évènement élémentaire, la probabilité est $\underline{nulle}: \forall x \in \mathbb{R}_+$, $\mathbb{P}(X=x)=0$
- (pour contourner ce problème), on mesure les probabilités sur des intervalles, ici de \mathbb{R}_+ : $\Rightarrow \mathbb{P}(a \leqslant X \leqslant b)$ où $a,b \in \mathbb{R}_+$
- par exemple:
 - la probabilité qu'1 appel dure exactement 5 minutes est (toujours) nulle
 - mais la probabilité qu'1 appel dure entre 5 et 6 minutes vaut $\frac{1}{10}$...

L'objet de ce chapitre est donc de présenter les propriétés de ces "nouvelles" lois continues au travers de 2 lois importantes : <u>la loi uniforme</u> et <u>la loi exponentielle</u>; la loi loi normale fera l'objet d'1 chapitre à part entière ...

12.2 Densité de Probabilité et Espérance Mathématique

 $\boldsymbol{\textit{D\'efinition}}:$ soit 1 V.A.R. X continue

• la densité de probabilité de X est 1 fonction f continue et positive sur I intervalle de $\mathbb R$ tq :

•
$$\mathbb{P}(X(\Omega)) = \int_{I} f(x) \, \mathrm{d}x = 1$$

•
$$\forall [a,b] \subset \mathbb{R}$$
, $\mathbb{P}(a \leqslant X \leqslant b) = \int_a^b f(x) \, \mathrm{d}x$

• la $fonction de \ r\'epartition$ de X est 1 fonction F tq :

•
$$\forall x \in \mathbb{R}$$
, $F(x) = \mathbb{P}(X \leqslant x) = \int_{-\infty}^{x} f(t) dt$

• l'espérance de
$$X$$
 est $\mathbb{E}(X) = \int_I x f(x) dx$

Remarque, exemple :

• pour une loi à densité continue, $\forall a,b \in \mathbb{R}$, $\mathbb{P}(a < X < b) = \mathbb{P}(a \leqslant X < b) = \mathbb{P}(a < X \leqslant b) = \mathbb{P}(a \leqslant X \leqslant b)$

- $\int_I f(x) dx = 1$ dit que l'aire totale sous f vaut 1
- $\mathbb{P}(\alpha < X < \beta) = \int_{\alpha}^{\beta} f(x) dx$ calcule l'aire sous f entre α et β :
- $F(x) = \mathbb{P}(X < x) = \int_{-\infty}^{x} f(t) dt$ indique l'aire sous f entre $-\infty$ et x:

12.3 Loi Uniforme sur $[a,b]: X \leadsto \mathscr{U}([a,b])$

 $\textbf{\textit{D\'efinition}}$ - $\textbf{\textit{Propri\'et\'e}}$: $a,b\neq\mathbb{R}$, I intervalle de \mathbb{R}

- X suit 1 loi uniforme sur l'intervalle [a,b] si sa fonction de densité f est constante
- $notation : X \leadsto \mathscr{U}([a,b])$
- des calculs rapides (AF) mq :

•
$$\forall x \in [a, b]$$
, $f(x) = \frac{1}{b-a}$

•
$$\forall \alpha, \beta \in [a, b]$$
, $\mathbb{P}(\alpha < X < \beta) = \frac{\beta - \alpha}{b - a}$

•
$$\mathbb{E}(X) = \frac{a+b}{2}$$
 et $\mathbb{V}(X) = \frac{(b-a)^2}{12}$

Remarque, exemple:

- la formule de $\mathbb{P}(\alpha < X < \beta)$ se retient facilement en la voyant c'est $\frac{aire favorable}{aire totale}$
- on choisit au hasard 1 nombre X sur [0;5]; calculer $\mathbb{P}(X>4)$ puis $\mathbb{P}(e < X < \pi)$

Approfondissement 1 : méthode de Monte-Carlo par Espérance

 $a, b \neq \mathbb{R}$, I intervalle de \mathbb{R}

- Objectif : savoir utiliser la méthode qui permet d'approximer 1 intégrale (dont le calcul est peut-être très compliqué)
 - on génère des valeurs $f(x_i)$ "au hasard sur [a,b]" de la fonction f
 - la <u>moyenne des valeurs</u> tend vers $\frac{1}{b-a} \int_a^b f(x) dx$
- $\underline{H.P.}$: la théorie (simple) repose 2 théorèmes (compliqués) :
 - on pose X = f(U) où $U \leadsto \mathscr{U}([a,b])$
 - la Loi des Grands Nombres montre que $\sum_{i=1}^n \frac{X_i}{n} \underset{n \to +\infty}{\longrightarrow} \mathbb{E}(X)$
 - le Théorème du Transfert montre que $\boxed{\mathbb{E}(X) = \frac{1}{b-a} \int_a^b f(x) \, \mathrm{d}x}$

Approfondissement 1 (suite) : approximation de π

- Méthode MC en dimension 1 :
 - vérifier que $\frac{\pi}{4} = \int_0^1 \sqrt{1-t^2} \, dt$; estimer l'intégrale permet alors d'estimer π
 - générer 100 $U_i \leadsto \mathscr{U}([0,1])$
 - calculer les 100 $X_i = f(U_i)$ puis calculer $\sum_{i=1}^n \frac{X_i}{100}$
 - vérifier que vous obtenez 1 approximation de l'ordre $\pm \frac{1}{\sqrt{100}} = \pm 0.1$
 - recommencer pour n = 1000 puis n = 10000
- H.P.: Méthode MC en 2 dimensions:
 - générer 100 $X_i \rightsquigarrow \mathscr{U}([0,1])$
 - générer 100 $Y_i \rightsquigarrow \mathscr{U}([0,1])$
 - comprendre que : $\frac{\pi}{4} = \int \int_{Disque} x^2 + y^2 dx dy$
 - calculer les 100 $Z_i = f(X_i, Y_i) = X_i^2 + Y_i^2$ puis calculer $\sum_{i=1}^n \frac{Z_i}{100}$
 - vérifier que vous obtenez 1 approximation de l'ordre $\pm \frac{1}{\sqrt{100}} = \pm 0.1$
 - recommencer pour n = 1000 puis n = 10000
 - <u>complément</u>: on peut montrer que cette méthode est légèrement moins performante que la précédente; le constatez-vous numériquement?

Remarque, exemple:

- la méthode de MC est bien moins performante en dimension 1 que la méthode rectangle ou trapèze
- elle peut être utilisée $\underline{\grave{a}}$ l'identique dans n'importe quelle dimension et sur n'importe quel domaine d'intégration
- elle devient plus efficace à partir de la dimension 4
- elle est très simple à utiliser sur un domaine d'intégration implicite

Approfondissement 2 : méthode de Monte-Carlo par test IN/OUT

 $a,b \neq \mathbb{R}$, I intervalle de \mathbb{R}

- Même objectif : savoir utiliser la méthode pour approximer 1 intégrale
 - on va créer une E.A. permettant d'estimer $\frac{\pi}{4}$
 - l'intégrale $\int_0^1 \sqrt{1-t^2} \, \mathrm{d}t$ correspond à l'aire sous la fonction $f(t) = \sqrt{1-t^2}$
 - on place cette aire dans le pavé [0,1]x[0,1] l'aire sous la courbe (donc l'intégrale) est associée au succès l'autre partie de l'aire à l'échec

•
$$\frac{\int_{0}^{1} \sqrt{1 - t^{2}} \, dt}{Aire_{Pave}} = \frac{Aire_{Courbe}}{Aire_{Pave}} = \frac{\frac{\pi}{4}}{1 \times 1} = \frac{\pi}{4}$$
 en créant n points aléatoires (X_{i}, Y_{i}) on crée n tests $T_{i} \leadsto \mathcal{B}(\frac{\pi}{4})$ associé à n succès ou échec d'être dans le $\frac{1}{4}$ cercle

- la proportion $\frac{succes}{total}$ tend vers $\mathbb{E}(X) = \int_0^1 \sqrt{1-t^2} \, dt = \frac{\pi}{4}$ (résultat de seconde)
- $\underline{H.P.}$: la théorie (simple) repose 1 théorème (compliqué) :
 - $X_i \leadsto \mathscr{B}(\frac{\pi}{4}) \Rightarrow$ la Loi des Grands Nombres montre que $\sum_{i=1}^n \frac{X_i}{n} \xrightarrow[n \to +\infty]{} \mathbb{E}(X) = \frac{\pi}{4}$

Approfondissement 2 (suite) : approximation de π :

La seule difficulté maintenant est de générer les points. Pour cela, on considère 2 méthodes.

• Méthode 1 : sous la courbe

- générer $100 X_i \rightsquigarrow \mathcal{U}([0,1])$ (abscisse du point) et $100 Y_i \rightsquigarrow \mathcal{U}([0,1])$ (ordonnée du point)
- effectuer 100 tests : $Y_i \leq f(X_i)$ qui correspondent à (attention pas évident à comprendre) le point est dans le cercle
- compter le nombre de tests réussis et en déduire l'estimation

• recommencer pour n = 1000 puis n = 10000

• *Méthode 2*: $\cos^2 x + \sin^2 x = 1$

- générer 100 $X_i \rightsquigarrow \mathscr{U}([0,1])$
- générer 100 $Y_i \leadsto \mathcal{U}([0,1])$
- effectuer 100 tests : $X_i^2 + Y_i^2 \leqslant 1$ qui correspondent à le point est dans le cercle
- compter le nombre de tests réussis et en déduire l'estimation
- vérifier que vous obtenez 1 approximation de l'ordre $\pm \frac{1}{\sqrt{100}}$
- recommencer pour n = 1000 puis n = 10000
- Visualisation de l'expérience d'approximation de π sous GeoGebra ou Python

12.4 Loi Exponentielle : $X \rightsquigarrow \mathscr{E}(\lambda)$

Définition - **Propriété** : $a, b \neq \mathbb{R}$, I intervalle de \mathbb{R}

- X suit 1 loi exponentielle de paramètre $\lambda > 0$ si sa fonction de densité f est $\begin{cases} 0 & si & t \in \mathbb{R}^*_- \\ f(t) = \lambda e^{-\lambda t} & si & t \in \mathbb{R}_+ \end{cases}$
- notation: $X \leadsto \mathscr{E}(\lambda)$
- $\forall a \in \mathbb{R}_+$, $FR(a) = \mathbb{P}(X \leqslant a) = 1 e^{-\lambda a}$ $\mathbb{E}(X) = \frac{1}{\lambda}$ et $\mathbb{V}(X) = \frac{1}{\lambda^2}$

 $f(x) = \lambda e^{-\lambda x}$ aL'aire bleue correspond à $p(X \le a)$

• la loi exponentielle est sans mémoire :

$$\forall t>0$$
 , $\forall h>0$, $\mathbb{P}_{X\geqslant t}(X\geqslant t+h)=\mathbb{P}(X\geqslant h)$

Remarque, exemple:

- AF : vérifier que f ainsi définie est bien une densité de probabilité sur $\mathbb R$
- AF : retrouver la FR de f
- \underline{AF} : retrouver l'espérance et la variance de X associée à f Preuve : loi exponentielle
- loi exponentielle ⇔ loi sans mémoire :
 - $AF \Rightarrow :$ la loi exponentielle vérifie cette propriété
 - <u>Admis \(\in : \)</u> cette propriété est caractéristique de cette loi (si 1 loi vérifie cette propriété alors il s'agit obligatoirement d'1 loi exponentielle)
- Exemple : la durée de vie, en année, d'un composant électronique est une variable aléatoire notée T qui suit une loi sans vieillissement de paramètre λ. Une étude statistique a montré que pour ce type de composant, la durée de vie ne dépasse pas 5 ans avec une probabilité de 0.675.
 - 1) calculer la valeur λ
 - 2) quelle est la probabilité qu'un composant de ce type dure moins de 8 ans? plus de 10 ans? au moins 8 ans sachant qu'il fonctionne au bout de 3 ans?
 - 3) quelle est l'espérance de vie de ce composant?

12.5 Applications en Physique

La désintégration radioactive est un phénomène aléatoire. c'est à dire que l'on ne peut pas, à l'échelle « microscopique », dire quand un noyau va se désintégrer. Néanmoins, à l'échelle macroscopique, on a pu établir que la durée de vie d'un noyau radioactif suit une loi de durée de vie sans vieillissement c'est à dire une loi exponentielle de paramètre λ . λ étant la constante radioactive (en s^{-1}) qui caractérise un radionucléide.

On appelle T la variable aléatoire associée à la durée de vie d'un noyau. La probabilité p qu'un noyau ne soit pas désintégré à l'instant t est donc :

$$p = P(T \ge t) = e^{-\lambda t}$$

Si au départ on compte N_0 noyaux au bout d'un temps t, on en comptera N(t) qui vérifie :

$$N(t) = N_0 e^{-\lambda t}$$

On appelle demi-vie $t_{1/2}$, le temps nécessaire pour que le nombre de radionucléides soit divisé par 2. On a alors :

$$e^{-\lambda t_{1/2}} = \frac{1}{2} \quad \Leftrightarrow \quad -\lambda t_{1/2} = -\ln 2 \quad \Leftrightarrow \quad t_{1/2} = \frac{\ln 2}{\lambda}$$

Enfin la durée de vie moyenne τ d'un radionucéide est donnée par l'espérance mathématique :

$$\tau = \frac{1}{\lambda}$$
 or $\lambda = \frac{\ln 2}{t_{1/2}}$ donc $\tau = \frac{t_{1/2}}{\ln 2} \simeq 1,44 \, t_{1/2}$

Remarque: La demi-vie $t_{1/2}$ n'est pas égale à la durée de vie moyenne $\tau = E(X)$ car la courbe de densité de probabilité \mathscr{C}_f n'est pas symétrique par rapport à la droite verticale d'abscisse E(X).

12.6 Lien entre Loi discrète et Loi Continue

Discret	Continu
Univers Ω	Intervalle I ou IR
Événement E sous-ensemble de Ω	Événement <i>J</i> sous-intervalle de I
Probabilités p_i des événements élémentaires $\sum p_i = 1$	Densité de probabilité $\int_{(\mathrm{I})} f(t) \mathrm{d}t = 1$
Espérance de la variable aléatoire X $E(X) = \sum p_i x_i$	Espérance de la variable aléatoire X $E(X) = \int_{(I)} t f(t) dt$
Équiprobabilité $P(E) = \frac{\text{nbre de cas favorables}}{\text{nbre de cas possibles}}$	Loi uniforme $P(X \in J) = \frac{\text{longueur de } J}{\text{longueur de I}}$

12.7 Sujet de Bac

Ex1: Antilles 2015

Partie A

On considère une variable aléatoire X qui suit la loi exponentielle de paramètre λ avec $\lambda > 0$. On rappelle que, pour tout réel a strictement positif,

$$P(X \leqslant a) = \int_0^a \lambda e^{-\lambda t} dt.$$

On se propose de calculer l'espérance mathématique de X, notée E(X), et définie par

$$E(X) = \lim_{x \to +\infty} \int_0^x \lambda t e^{-\lambda t} dt.$$

On note R l'ensemble des nombres réels.

On admet que la fonction F définie sur \mathbb{R} par $F(t) = -\left(t + \frac{1}{\lambda}\right)e^{-\lambda t}$ est une primitive sur \mathbb{R} de la fonction f définie sur \mathbb{R} par $f(t) = \lambda t e^{-\lambda t}$.

1. Soit x un nombre réel strictement positif. Vérifier que

$$\int_0^x \lambda t e^{-\lambda t} dt = \frac{1}{\lambda} \left(-\lambda x e^{-\lambda x} - e^{-\lambda x} + 1 \right).$$

2. En déduire que $E(X) = \frac{1}{\lambda}$.

Partie B

La durée de vie, exprimée en années, d'un composant électronique peut être modélisée par une variable aléatoire notée X suivant la loi exponentielle de paramètre λ avec $\lambda > 0$. La courbe de la fonction densité associée est représentée en **annexe 2**.

- 1. Sur le graphique de l'annexe 2 (à rendre avec la copie) :
 - **a.** Représenter la probabilité $P(X \le 1)$.
 - **b.** Indiquer où se lit directement la valeur de λ .
- **2.** On suppose que E(X) = 2.
 - a. Que représente dans le cadre de l'exercice la valeur de l'espérance mathématique de la variable aléatoire X?
 - **b.** Calculer la valeur de λ .
 - **c.** Calculer $P(X \le 2)$. On donnera la valeur exacte puis la valeur arrondie à 0,01 près. Interpréter ce résultat.

d. Sachant que le composant a déjà fonctionné une année, quelle est la probabilité que sa durée de vie totale soit d'au moins trois années? On donnera la valeur exacte.

Partie C

Un circuit électronique est composé de deux composants identiques numérotés 1 et 2. On note D_1 l'évènement « le composant 1 est défaillant avant un an » et on note D_2 l'évènement « le composant 2 est défaillant avant un an ».

On suppose que les deux évènements D_1 et D_2 sont indépendants et que $P(D_1) = P(D_2) = 0,39$.

Deux montages possibles sont envisagés, présentés ci-dessous :

- 1. Lorsque les deux composants sont montés « en parallèle », le circuit A est défaillant uniquement si les deux composants sont défaillants en même temps. Calculer la probabilité que le circuit A soit défaillant avant un an.
- 2. Lorsque les deux composants sont montés « en série », le circuit B est défaillant dès que l'un au moins des deux composants est défaillant. Calculer la probabilité que le circuit B soit défaillant avant un an.

Ex2: (série ES) Centre Étranger 2013

Tous les jours, Guy joue à un jeu en ligne sur un site, avec trois amis.

- Paul se connecte sur le site. La durée D (en seconde) qu'il faut pour réunir les quatre joueurs est une variable aléatoire qui suit une loi uniforme sur l'intervalle [20; 120].
 - a. Déterminer la probabilité que les quatre joueurs soient réunis au bout de 60 secondes.
 - $\textbf{b.} \ \ \text{Calculer l'espérance mathématique de } D. \ \ \text{Interpréter ce résultat}.$
- 2. L'équipe est maintenant réunie et la partie peut commencer. La durée J (en minute) d'une partie est une variable aléatoire qui suit la loi normale $\mathcal{N}(120, 400)$.
 - a. Déterminer l'espérance et l'écart-type de la variable aléatoire J.
 - b. Montrer l'équivalence :

$$90 < J < 180 \Leftrightarrow -1, 5 < \frac{J - 120}{20} < 3$$

- **c.** On définit la variable aléatoire X par $X = \frac{J 120}{20}$. Déterminer la loi suivie par la variable aléatoire X.
- d. Déterminer la probabilité que la partie dure entre 90 et 180 minutes, à 0,001 près.