Detection and Estimation Theory

University of Tehran

Instructor: Dr. Ali Olfat Spring 2020

Homework 7 Due: 99/3/10

Problem 1

Suppose θ is a nonrandom parameter satisfying $\theta > 1$. Suppose further that given $\theta, Y_1, Y_2, ..., Y_n$ are i.i.d. observations with each density

$$f_{\theta}(y) = \begin{cases} (\theta - 1)y^{-\theta}, & y \ge 1\\ 0, & y \le 1 \end{cases}$$

Find a sufficient statistic for θ that has a complete family of distributions. Justify your answer.

Problem 2

Suppose Y is Poisson random variable with parameter $\lambda > 0$

$$P\{Y=k\} = e^{-\lambda} \frac{\lambda^k}{k!} \quad k = 0, 1, \dots$$

Find the MVUE estimate of λ using iid observations Y_1, Y_2, \ldots, Y_n and compute the bias, variance, and Cramer-Rao lower bound.

Problem 3

Suppose θ is a positive nonrandom parameter. Suppose further that we have a sequence of observations $Y_1, Y_2, ..., Y_n$ where given $\theta, Y_1, Y_2, ..., Y_n$ are i.i.d. each with pdf

$$f_{\theta}(y) = \begin{cases} \frac{y^M e^{-y/2\theta}}{(2\theta)^{M+1} M!}, & y \ge 0\\ 0, & y < 0 \end{cases}$$

where M is a known positive integer.

- a. Find the ML estimate of θ .
- b. Compute the bias and variance of the estimate from part a).
- c. Compute the Cramer-Rao lower bound on the variance of the unbiased estimates of θ .

Problem 4

Suppose we observe two jointly Gaussian random variables Y_1 and Y_2 , each of which has zero mean and unit variance. We want to estimate the correlation coefficient $\rho = E(Y_1Y_2)$.

- a. Find the equation for ML estimate of ρ based on observation of (Y_1, Y_2) .
- b. Compute the Cramer-Rao lower bound for unbiased estimates of ρ .

Problem 5

Suppose θ is a positive nonrandom parameter and that we have a sequence $Y_1, Y_2, ..., Y_n$ of observations given by

$$Y_k = \theta^{1/2} N_k, \quad k = 1, ..., n$$

where $\underline{N} = (N_1, ..., N_n)^T$ is a zero mean Gaussian random vector with covariance matrix Σ . Assume that Σ is positive definite.

- a. Find the ML estimate of θ based on $Y_1, Y_2, ..., Y_n$.
- b. Show that the ML estimate is unbiased.
- c. Compute the Cramer-Rao lower bound on variance of the unbiased estimates of θ .
- d. Compute the variance of the ML estimate of θ and compare to the Cramer-Rao lower bound.

Problem 6

Suppose Y_1 and Y_2 are independent Poisson random variables each with parameter λ . Define the parameter θ by

$$\theta = e^{-\lambda}$$

- a. Show that $Y_1 + Y_2$ is a complete sufficient statistic for θ . (Assume λ ranges over $(0, \infty)$.)
- b. Define an estimate $\hat{\theta}$ by

$$\hat{\theta} = \frac{1}{2}[f(y_1) + f(y_2)]$$

where f is defined by

$$f(y) = \begin{cases} 1, & y = 0 \\ 0, & y \neq 0 \end{cases}$$

Show that $\hat{\theta}$ is an unbiased estimate of θ .

- c. Find an MVUE estimate of θ . (Hint: $Y_1 + Y_2$ is Poisson with parameter 2λ)
- d. Find the ML estimate of θ . Is the MLE unbiased?
- e. Compute the Cramer-Rao lower bound on variance of the unbiased estimates of θ .

Problem 7

Suppose $X_1, X_2, ..., X_n$ are i.i.d obsevations of binary random variable with pmf $P\{X=1\}=1-P\{X=0\}=\theta$ where $0<\theta<1$ is a nonrandom parameter.

- a. Find the ML estimate of θ^2 .
- b. Compute the bias and variance of the ML estimator of part a).
- c. Compute the Cramer-Rao lower bound on the variance of the unbiased estimator of θ^2 .
- d. Find MVUE of θ^2 . Which estimator is preferable, ML or MVUE? why?