A számításelmélet alapjai I.

6. előadás

előadó: Tichler Krisztián ktichler@inf.elte.hu

Nyelv adott szóra vonatkozó maradéknyelve

Definíció

Az A és A' automaták ekvivalensek, ha L(A) = L(A').

Definíció

Adott L nyelv $p \in T^*$ -ra szóra vonatkozó maradéknyelve L_p , ahol $L_p := \{v \mid pv \in L\}$.

 L_p tehát azokat a v szavakat tartalmazza, amelyekkel p-t jobbról kiegészítve L-beli szót kapunk.

Például, ha $L = \{ab, aac, bc, aabc\}$, akkor $L_{aa} = \{c, bc\}$.

Tulajdonságai:

- $\blacktriangleright (L_p)_q = L_{pq},$
- $ightharpoonup L_{\varepsilon} = L$,
- $\triangleright \ \varepsilon \in L_p \iff p \in L.$

Automata adott állapotra vonatkozó maradéknyelve

Legyen $A = \langle Q, T, \delta, q_0, F \rangle$ véges determinisztikus automata.

Definíció

Az $L(A,q) := \{v \in T^* \mid qv \Rightarrow_A^* p, p \in F\}$. nyelvet az A automata $q \in Q$ állapotra vonatkozó maradék nyelvének nevezzük.

Alternatív definíció: $L(A, q) := \{v \in T^* \mid \delta(q, v) \in F\}.$

Az L(A, q) tehát azokat a v szavakat tartalmazza, amelyek hatására az automata q-ból indítva végállapotba kerül.

Azaz, L(A, q) lenne az elfogadott nyelv, ha a kezdőállapotot q-ra változtatnánk.

Tulajdonságai:

- $L(A,q)_w = L(A,\delta(q,w)) \quad (w \in T^*),$
- ► $L(A, q_0) = L(A)$,
- $\triangleright \ \varepsilon \in L(A,q) \iff q \in F.$

Myhill—Nerode tétel

$$L \in \mathcal{L}_3 \iff |\{L_p\}_{p \in T^*}| < \infty$$
, ahol T az L nyelv ábécéje.

Bizonyítás:

Konstruálunk egy véges, determinisztikus automatát, melynek az állapothalmaza $\{L_p\}_{p\in T^*}$. Ez a feltétel szerint véges halmaz.

Az L_p állapottól azt várjuk, hogy a kezdőállapotból p input elolvasása után ő legyen az aktuális állapot.

$$A_L^{MN} := \langle \{L_p\}_{p \in T^*}, T, \delta, L_{\varepsilon}, F \rangle,$$

ahol $F := \{L_p \mid \varepsilon \in L_p\}, \text{ és } \delta(L_p, t) := L_{pt}.$

Ekkor A_L^{MN} tulajdonságai:

- 1) δ jól definiált, azaz $L_p = L_q$ esetén $\delta(L_p, t) = \delta(L_q, t)$.
- Ugyanis $L_p = L_q \implies (L_p)_t = (L_q)_t \implies L_{pt} = L_{qt} \implies \delta(L_p, t) = \delta(L_q, t).$
- 2) Minden $u \in T^*$ esetén $\delta(L_p, u) = L_{pu}$.
- A δ definíciója segítségével az u szó hosszára vonatkozó indukcióval belátható.
- 3) $L_p \in F \iff p \in L$.

Már csak azt kell belátni, hogy $L(A_L^{MN}) = L$.

Ez pedig könnyen igazolható, hiszen

$$u \in L(A_L^{MN}) \iff \delta(L_{\varepsilon}, u) \in F \iff L_{\varepsilon u} = L_u \in F \iff u \in L.$$

 (\Rightarrow) :

Legyen $L \in \mathcal{L}_3$. Tudjuk, hogy létezik olyan $A = \langle Q, T, \delta, q_0, F \rangle$ véges, determinisztikus automata, amely az L nyelvet fogadja el, azaz L = L(A).

Ekkor biztos, hogy $|\{L(A,q)\}_{q\in Q}| \le |Q| < \infty$, mert A véges állapotszámú.

Vegyük tetszőleges $u \in T^*$ -ra az L_u maradéknyelvet. Ekkor $L_u = (L(A, q_0))_u = L(A, \delta(q_0, u)).$

Így nyilván fennáll, hogy

$$\{L_u\}_{u\in T^*}\subseteq \{L(A,q)\}_{q\in Q},$$

amivel a tételt beláttuk.

1. Példa:

$$L = \{a^n b^n \mid n \in \mathbb{N}\}.$$

Ekkor
$$L_{a^k} = \{a^{n-k}b^n \mid n \ge k\}. (k \in \mathbb{N})$$

$$b^i \in L_{a^k} \iff i = k,$$

Tehát ez a végtelen sok maradéknyelv páronként különböző, így $L \notin \mathcal{L}_3$.

2. Példa:

Jelölje $|u|_x$ az u szóban szereplő x betűk számát.

 $L = \{w \in \{a, b\}^* : |w|_a \text{ és } |w|_b \text{ páros}\}.$

 $L_u = ?$ Könnyen látható, hogy $|u|_a$ illetve $|u|_b$ paritásától (párosságától) függően az

 $L_{\varepsilon} = \{v \in \{a,b\}^* : |w|_a \equiv |w|_b \equiv 0 \pmod{2}\},$ $L_b = \{v \in \{a,b\}^* : |w|_a \equiv 0 \pmod{2}, |w|_b \equiv 1 \pmod{2}\},$ $L_a = \{v \in \{a,b\}^* : |w|_a \equiv 1 \pmod{2}, |w|_b \equiv 0 \pmod{2}\},$ $L_{ab} = \{v \in \{a,b\}^* : |w|_a \equiv |w|_b \equiv 1 \pmod{2}\},$ nyelvek egyike. Például $L_{abbabbbab} = L_a$. Tehát $L \in \mathcal{L}_3$.

Minimális automata

Mivel A_L^{MN} állapothalmaza $\{L_u\}_{u\in T^*}$, ezért az alábbi következményt kapjuk:

Következmény

Az A_L^{MN} automata állapotszáma kisebb vagy egyenlő, mint tetszőleges, az L nyelvhez adott véges, determinisztikus automata állapotszáma.

Bizonyítás: A bizonyítás végén látott $\{L_u\}_{u \in T^*} \subseteq \{L(A, q)\}_{q \in Q}$ összefüggésből azonnal adódik.

Definíció

Az A véges determinisztikus automata minimális állapotszámú (minimális automata), ha nincs olyan A-val ekvivalens A' véges determinisztikus automata, aminek kevesebb állapota van mint A-nak. Egy L nyelv minimális automatája alatt egy L-et felismerő minimális véges determinisztikus automatát értünk.

Tehát A_L^{MN} az L nyelv minimális automatája.

Minimális automata készítése

Cél: Adott automatához minél kevesebb állapotú, vele ekvivalens, azaz az eredeti automata által felismert nyelvet elfogadó automatát megadni. Két lépésben fogjuk ezt elérni:

1) Összefüggővé alakítás:

Nyilván átmeneteikkel együtt elhagyhatók azok az állapotok, melyekbe nem tud eljutni az automata. Az átmenetdiagramon ez annak felel meg, hogy nincs a kezdőállapotból irányított út a csúcsba.

2) Ekvivalens állapotok összevonása:

Ha két állapotból pontosan ugyanazon szavak hatására kerül az automata végállapotba, akkor az elfogadás szempontjából mindegy, hogy a működés során a két állapotba kezül melyikbe került az automata. Ezek az állapotok nyilván összevonhatók.

Összefüggővé alakítás (emlékeztető)

Emlékeztetőül:

Definíció

Legyen $A = \langle Q, T, \delta, q_0, F \rangle$ véges determinisztikus automata. A q állapotot a kezdőállapotból **elérhetőnek** mondjuk, ha létezik $q_0x \Rightarrow^* q$ redukció, ahol $x \in T^*$.

Az $A = \langle Q, T, \delta, q_0, F \rangle$ véges determinisztikus automatát összefüggőnek mondjuk, ha minden állapota elérhető a kezdőállapotból.

Definiáljuk a H halmazt a következőképpen. Legyen

$$H_0 = \{q_0\},\$$

$$H_{i+1} = H_i \cup \{r \mid \delta(q, a) = r, q \in H_i, a \in T\}, i = 1, 2, ...$$

Mivel $H_0 \subseteq H_1 \subseteq \cdots \subseteq H_k \subseteq Q$ ezért létezik olyan $k \ge 0$, amelyre $H_k = H_{k+1}$. Ekkor minden $\ell \ge k$ -ra $H_\ell = H_k$. Legyen $H := H_k$. Könnyen látható, hogy H azoknak az állapotoknak a halmaza, amelyek a kezdőállapotból elérhetők.

Összefüggővé alakítás (emlékeztető)

A $(Q \setminus H)$ -beli állapotok elhagyásával kapott $A' = \langle H, T, \delta |_H, q_0, F \cap H \rangle$ determinisztikus véges automata összefüggő és A-val ekvivalens.

Példa:

	а	b
$\rightarrow q_0$	q ₂	Q 4
$\leftarrow q_1$	q ₃	q 0
$\leftarrow q_2$	q 0	q ₂
9 3	<i>q</i> ₁	q ₂
Q 4	9 5	q ₂
<i>← q</i> ₅	9 4	q ₂

$$H_0 = \{q_0\}$$
 $H_1 = \{q_0, q_2, q_4\}$
 $H_2 = \{q_0, q_2, q_4, q_5\} = H_3 = H$
a b

 $\Rightarrow q_0 \qquad q_2 \qquad q_4$
 $\leftarrow q_2 \qquad q_0 \qquad q_2$
 $q_4 \qquad q_5 \qquad q_2$
 $\leftarrow q_5 \qquad q_4 \qquad q_2$

Redukált automata

Definíció

Legyenek $q, q' \in Q$ állapotok. q-t és q'-t nevezzük **megkülönböztethetetlennek**, ha L(A, q) = L(A, q'). Jelölése: $q \sim q'$.

Észrevétel:

- ~ ekvivalenciareláció
- ▶ ha $q \sim q'$, akkor minden $t \in T$ -re $\delta(q, t) \sim \delta(q', t)$ teljesül. (erre a tulajdonságra úgy hivatkozunk majd, hogy \sim ún. jobb-kongruencia reláció)

Definíció

Egy véges determinisztikus automata **redukált**, ha nincsenek megkülönböztethetetlen állapotai.

Definíció

Legyen \sim az $A = \langle Q, T, \delta, q_0, F \rangle$ automata megkülönböztethetetlenségi relációja. Definiáljuk A $A/\sim = \langle Q', T, \delta', q'_0, F' \rangle$ faktorautomatáját a kövezkezőképpen.

- ▶ Legyen Q' a Q ~ szerinti ekvivalenciaosztályai.
- ► Ha $t \in T$ és $r \in q'$ a $q' \in Q'$ ekvivalenciaosztály egy tetszőleges reprezentánsa, akkor $\delta'(q', t)$ legyen $\delta(r, t)$ ekvivalenciaosztálya.
- q₀ legyen q₀ ekvivalenciaosztálya.
- ▶ $F' = \{q' \in Q' \mid q' \text{ valamely } r \in Q \text{ reprezentánsára } r \in F\}.$
- δ' definíciójában mindegy melyik reprezentánst választjuk, hiszen \sim jobb-kongrencia reláció.
- ▶ Ha egy ekvivalenciaosztály valamelyik reprezentánsa F-beli, akkor minden reprezentánsa F-beli (ε -ra se lehet őket megkülönböztetni).

Definíció

Legyenek $A = \langle Q, T, \delta, q_0, F \rangle$ és $A' = \langle Q', T, \delta', q'_0, F' \rangle$ véges determinisztikus automaták. A két automata **izomorf**, ha van olyan $\varphi : Q \to Q'$ bijekció, melyre

- $\qquad \qquad \varphi(q_0) = q'_0.$
- $ightharpoonup \forall q \in Q, t \in T \text{ eset\'en } \varphi(\delta(q,t)) = \delta'(\varphi(q),t).$

Tétel

Az A automata A/\sim faktorautomatája

- 1. ekvivalens A-val,
- 2. redukált, továbbá
- 3. izomorfia erejéig az egyetlen összefüggő, redukált A-val ekvivalens automata.

Lemma

Legyen $q \in Q$ tetszőleges és $q' \subseteq Q$ a $q \sim$ szerinti ekvivalenciaosztálya. Ekkor $L(A,q) = L(A/\sim, q')$.

Bizonyítás: Legyen $u \in T^*$ tetszőleges. Először vegyük észre, hogy $\delta'(q', u)$ éppen $\delta(q, u)$ ekvivalenciaosztálya.

Ez |u|-ra vonatkozó teljes indukcióval bizonyítható. Valóban, |u|=0 esetén nyilvánvaló. Ha minden |u|-nál rövidebb szóra tudjuk, akkor legyen u=vt ($v\in T^*, t\in T$). Ekkor $\delta'(q',vt)=\delta'(\delta'(q',v),t)$. v-re teljesül az indukciós feltétel, tehát $\delta'(q',v)$ éppen $\delta(q,v)$ osztálya, így választhatjuk $\delta(q,v)$ -t $\delta'(q',v)$ reprezentánsának. Így $\delta'(\delta'(q',v),t)$ éppen $\delta(\delta(q,v),t)=\delta(q,vt)=\delta(q,u)$ ekvivalenciaosztálya.

Ekkor viszont

$$u \in L(A,q) \Leftrightarrow \delta(q,u) \in F \Leftrightarrow \delta'(q',u) \in F' \Leftrightarrow u \in L(A/\sim,q').$$

- 1. Azonnal adódik a Lemmából q_0 -ra alkalmazva.
- **2.** Legyenek $q', r' \in Q'$ tetszőleges A/\sim -ben megkülönböztethetetlen ekvivalenciaosztályok, azaz $q' \sim r'$. Ekkor $L(A/\sim, q') = L(A/\sim, r')$. A lemma miatt tetszőleges $q \in q', r \in r'$ reprezentánsokra L(A, q) = L(A, r), azaz $q \sim r$. Tehát q' = r', azaz a faktorautomata redukált.
- 3. Következik az alábbi, általánosabb lemmából:

Lemma

Legyenek $A = \langle Q, T, \delta, q_0, F \rangle$ és $A' = \langle Q', T, \delta', q'_0, F' \rangle$ összefüggő, redukált és egymással ekvivalens véges determinisztikus automaták. Ekkor A és A' izomorfak.

Az izomorfizmus:

$$\varphi(\delta(q_0,u)) := \delta'(q'_0,u)$$

minden $u \in T^*$ -ra. Mivel az automaták összefüggőek, ezért $\mathsf{Dom}(\varphi) = Q$ és $\mathsf{Ran}(\varphi) = Q'$.

Legyenek $u, v \in T^*$ tetszőleges szavak.

$$\delta(q_0, u) = \delta(q_0, v) \overset{\text{redukáltság}}{\Longleftrightarrow} L(A, \delta(q_0, u)) = L(A, \delta(q_0, v)) \Longleftrightarrow$$

$$L(A, q_0)_u = L(A, q_0)_v \overset{\text{ekvivalencia}}{\Longleftrightarrow} L(A', q_0')_u = L(A', q_0')_v \Longleftrightarrow$$

$$L(A', \delta'(q_0', u)) = L(A', \delta'(q_0', v)) \overset{\text{redukáltság}}{\Longleftrightarrow} \delta'(q_0', u) = \delta'(q_0', v).$$

Az első \iff (\Rightarrow) iránya nyilván teljesül, míg a (\Leftarrow) irány A redukáltságából következik. Az utolsó \iff -ra hasonlóan.

Tehát φ jól definiált és bijektív.

tetszőleges $\delta(q_0, u) \in Q$ állapot és $t \in T$ esetén $\varphi(\delta(\delta(q_0, u), t)) = \varphi(\delta(q_0, ut)) = \delta'(q'_0, ut)$, és $\delta'(\varphi(\delta(q_0, u)), t) = \delta'(\delta'(q'_0, u), t) = \delta'(q'_0, ut)$,

azaz φ valóban izomorfizmus, a lemmát és így a tételt beláttuk.

Jelölés:
$$T^{\leq i} := \{ w \in T^* \mid |w| \leq i \}$$

q és q' megkülönböztethetetlensége azt jelenti, hogy:

$$q \sim q' \iff L(A,q) = L(A,q') \iff \iff \delta(q',u) \in F \iff \delta(q',u) \in F$$
.

Definíció

Azt mondjuk, hogy $q \in Q$ *i*-megkülönböztethetetlen $(i \ge 0)$ $q' \in Q$ -tól (jelölés: $q \stackrel{i}{\sim} q'$), ha

$$\forall u \in T^{\leq i} : \left(\delta(q, u) \in F \iff \delta(q', u) \in F\right).$$

A $\varrho_2 \subseteq X \times X$ reláció a $\varrho_1 \subseteq X \times X$ reláció **finomítása** (jelölés: $\varrho_1 < \varrho_2$), ha minden $x, y \in X$ esetén $x\varrho_2 y \Rightarrow x\varrho_1 y$.

 $\stackrel{i}{\sim}$ tulajdonságai:

- $\stackrel{i}{\sim}$ ekvivalenciareláció,
- ▶ $q \stackrel{0}{\sim} q'$, ha $(q \in F \Leftrightarrow q' \in F)$,
- minden $q, q' \in Q$ -ra $q \stackrel{i+1}{\sim} q' \Leftrightarrow q \stackrel{i}{\sim} q' \land (\forall t \in T : \delta(q, t) \stackrel{i}{\sim} \delta(q', t)),$
- $\stackrel{0}{\sim} \prec \stackrel{1}{\sim} \prec \stackrel{2}{\sim} \prec \cdots \prec \sim,$

 $\stackrel{i}{\sim}$ egy ponton túl tehát nem finomodhat tovább.

 $i_0 := \min\{i \mid \stackrel{i}{\sim} = \stackrel{i+1}{\sim}\}.$ Ekkor $i_0 \le |Q| - 1$, és $\sim = \stackrel{i_0}{\sim}.$

Példa: Redukáljuk a következő automatát!

9

{1,2,3,6,7,8,9}

{4,5}

{1,2,3,6,7,8,9}

{1,2,3,6,7,8,9}

$$\stackrel{1}{\sim}$$
: $\{1, 2, 3\}$, $\{4, 5\}$, $\{6, 7, 8\}$, $\{9\}$

 $\{4,5\} \mid \{1,2,3,6,7,8,9\}$

{4,5} | {1,2,3,6,7,8,9} |

				a	b		а	b
	а	b	1	{1,2,3}	{4,5}	6	{6,7,8}	{6,7,8}
4	{4,5}	{6,7,8}	2	{1,2,3}	{4,5}	7	{6,7,8}	{6,7,8}
5	{4,5}	{6,7,8}	3	{1,2,3}	{4,5}	8	{9}	{6,7,8}

$$\stackrel{2}{\sim}$$
: {1,2,3}, {4,5}, {6,7}, {8}, {9}

$$\stackrel{2}{\sim}$$
: {1,2,3}, {4,5}, {6,7}, {8}, {9}

				а	b			
	а	b	1	{1,2,3}	{4,5}		а	b
4	{4,5}	{6,7}	2	{1,2,3}	{4,5}	6	{8}	{6,7}
5	{4,5}	{6,7}	3	{1,2,3}	{4,5}	7	{8}	{6,7}

$$\stackrel{3}{\sim} = \stackrel{2}{\sim} = \sim$$

A redukált automata:

Az átmenetek és elfogadó állapotok meghatározásához tetszőleges reprezentánst tekinthetünk. Az eredeti kezdőállapotot tartalmazó ekvivalenciaosztály lesz az új kezdőállapot.

Minimális automata – összegzés

Tehát egy A véges determinisztikus automatához minimális automatát készíthetünk úgy, hogy

- az elérhetetlen állapotait elhagyjuk ezzel előállítva egy A-val ekvivalens összefüggő automatát,
- 2. majd a már összefüggő automata $\stackrel{i}{\sim}$ relációnak meghatározása segítségével a fenti módon algoritmikusan előállítunk egy redukált automatát.
- Az így kapott automata, összefüggő, redukált és ekvivalens A-val, ezért korábbi tételünk alapján izomorf az A/\sim -vel,
- ▶ mivel az A_L^{MN} automata, ahol L = L(A) szintén összefüggő, redukált (minden minimális automata redukált kell legyen) és A-val ekvivalens, ezért A_L^{MN} ugyanezen tétel alapján szintén izomorf a faktorautomatával,
- mivel A_L^{MN} minimális automata, ezért a faktorautomata és az $\stackrel{i}{\sim}$ által algoritmikusan meghatározott automata is minimális automata, és ezek izomorfia erejéig ugyanazok.