

Руководитель

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИУ «Информатика и сис	гемы управления»	
КАФЕДРА ИУ-7 «Программное обе	спечение ЭВМ и информацио	нные технологии»
РАСЧЕТНО-ПОЯ	СНИТЕЛЬНАЯ З	ВАПИСКА
K KYP	СОВОЙ РАБОТЕ	
1	НА ТЕМУ:	
«Разработка базы данн	ных для проведения	соревнований
Российской Федера	ции Подводного Ры	боловства»
Студент группы ИУ7-64Б		П. А. Егорова
	(Подпись, дата)	(И.О. Фамилия)

(Подпись, дата)

Т. А. Никульшина

(И.О. Фамилия)

СОДЕРЖАНИЕ

BI	ВВЕДЕНИЕ			6		
1	Ана	литиче	ский раздел	7		
	1.1	Требон	вания к приложению	7		
	1.2	1.2 Пользователи системы				
	1.3	1.3 Формализация данных				
	1.4					
		1.4.1	Иерархическая модель	9		
		1.4.2	Сетевая модель	9		
		1.4.3	Реляционная модель	10		
	1.5	Выбор	СУБД	10		
		1.5.1	SQLite	11		
		1.5.2	Firestore	11		
		1.5.3	Realm ot MongoDB	12		
		1.5.4	Выбор СУБД	12		
	1.6	Вывод	из раздела	12		
2	Кон	структо	ррский раздел	13		
	2.1	Проек	гирование базы данных	13		
	2.2	Ролева	я модель	15		
	2.3	Проек	гирование приложения	16		
	2.4	Вывод	из раздела	16		
CI	писс	эк ист	ТОЛЬЗОВАННЫХ ИСТОЧНИКОВ	1 2		

ВВЕДЕНИЕ

Автоматизация — процесс, освобождающий человека от множества механических задач и помогающий ему повысить производительность труда. Автоматизация затронула большое количество процессов в современном мире: от работы кассира в магазине и подсчета стоимости покупок до вычисления значений физических величин в работе ученых. Также подсчет очков на соревнованиях различных дисциплин производится автоматически. Однако существуют организации, судейство созтязаний которых происходит вручную: Российская Федерация Подводного Рыболовства (далее: РФПР) занимается проведением соревнования по подводной охоте [1]. Деятельность федерации, связанная с подсчетом очков и ведением архива участников соревнований, не автоматизирована.

Целью курсовой работы является проектирование и разработка базы данных для проведения соревнований Российской Федерации Подводного Рыболовства.

Для достижения поставленной цели, необходимо решить следующие задачи:

- определить необходимый функционал приложения, предоставляющего доступ к базе данных;
- выделить роли пользователей приложения, а также формализовать данные;
- проанализировать системы управления базами данных и выбрать подходящую систему для хранения данных;
- спроектировать базу данных, описать ее сущности и связи;
- реализовать интерфейс для доступа к базе данных.

Итогом работы станет приложение, предоставляющее доступ к базе данных.

1 Аналитический раздел

В данном разделе будут выдвинуты требования к приложению, определены пользователи системы, формализованы хранимые о системе данные, проведен анализ существующих моделей баз данных и осуществлен ее выбор.

1.1 Требования к приложению

Поскольку взвешивание и судейство происходит на берегах водоемов, чтобы спортсмены имели возможность сразу же после выхода из воды взвесить улов, возможность найти место и поставить ноутбук предоставляется редко. Разрабатываемое приложение было бы удобно использовать на более компактных устройствах, таких как телефон или планшет. В связи с чем выбор пал на платформу iOS — создаваемое программное обеспечение будет разработано для смартфонов и электронных планшетов компании Apple.

Приложение должно поддерживать определенный функционал:

- персонализация пользователей;
- формирование соревнований и их этапов;
- создание команды, деление участников по командам;
- добавление информации об улове участников;
- подсчет очков участников, команд;
- формирование личного и командного рейтингов;
- поиск определенного участника или конкретной команды.

1.2 Пользователи системы

При взаимодействии с приложением обязателен этап персонализации. Будут представлены следующие роли:

- 1) Участник пользователь, обладающий возможностью просматривать командный и личный рейтинги по любым этапам соревнований. Роль не требует авторизации.
- 2) Судья пользователь, обладающий возможностями участника, а также возможностью создавать, удалять и редактировать соревнования, их

- этапы, оперировать профилями участников, команд, вносить сведения об улове участников на определенном этапе. Роль требует авторизации.
- Администратор пользователь, обладающий возможностями участника и судьи, а также возможностью создавать, редактировать и удалять профили судей. Роль требует авторизации.

На рисунке 1 представлена диаграмма использования приложения.

Рисунок 1 – Диаграмма использования приложения

1.3 Формализация данных

База данных должна хранить информацию о следующих сущностях

- соревнование;
- команда;
- участник;
- зачет (результат участника за определенный этап соревнования);
- улов;

В таблице 1 представлены сущности и сведения о них.

Таблица 1 – Сущности и сведения о них

Сущность	Сведения
Участник	Фамилия, имя, отчество, город, дата рождения,
	роль, очки
Команда	Название, участники, соревнования, очки
Соревнования	Название, команды, зачеты
Зачет	Название, участник, соревнование, улов, очки
Улов	Рыба, вес, очки

1.4 Анализ моделей баз данных

Модель данных — это абстрактное, самодостаточное, логическое определение объектов, операторов и прочих элементов, в совокупности составляющих абстрактную машину доступа к данным, с которой взаимодействует пользователь. Эти объекты позволяют моделировать структуру данных, а операторы — поведение данных [3].

В настоящее время разработано множество моделей данных, рассмотрим основные из них.

1.4.1 Иерархическая модель

В иерархической модели данных используется представление базы данных в виде древовидной структуры, состоящей из объектов различных уровней. Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка к потомку, при этом возможна ситуация, когда объект—предок имеет несколько потомков, тогда как у объекта—потомка обязателен только один предок.

1.4.2 Сетевая модель

Сетевая модель базы данных подразумевает, что у родительского элемента может быть несколько потомков, а у дочернего элемента — несколько пред-

ков. Структура такой модели представлена в виде графа, причем каждая вершина графа хранит экземпляры сущностей (записи одного типа) и сведения о групповых отношениях с сущностями других типов. Каждая запись может хранить произвольное количество значений атрибутов (элементов данных и агрегатов), характеризующих экземпляр сущности. Для каждого типа записи выделяется первичный ключ — атрибут, значение которого позволяет однозначно идентифицировать запись среди экземпляров записей данного типа [4].

1.4.3 Реляционная модель

Реляционная модель данных является совокупностью данных и состоит из набора двумерных таблиц. При табличной организации отсутствует иерархия элементов. Таблицы состоят из строк — записей и столбцов — полей. На пересечении строк и столбцов находятся конкретные значения. Для каждого поля определяется множество его значений. За счет возможности просмотра строк и столбцов в любом порядке достигается гибкость выбора подмножества элементов.

Наиболее популярными реляционными СУБД являются Oracle, Microsoft, SQL Server и PostgreSQL.

1.5 Выбор СУБД

Система управления базами данных, сокр. СУБД — совокупность программных и лингвистических средств общего или специального назначения, обеспечивающих управление созданием и использованием баз данных [2].

Основными функциями СУБД являются:

- управление данными во внешней памяти;
- управление данными в оперативной памяти с использованием дискового кэша;
- журнализация изменений, резервное копирование и восстановление базы данных после сбоев;
- поддержка языков БД.

Для ускорения быстродействия разрабатываемого приложения, можно при-

бегнуть к кэшированию данных. Для кэширования данных можно использовать NoSQL [5] in-memory базы данных. Такие базы данных хранят данные в оперативной памяти, что обеспечивает более быстрый доступ к данным.

Основными решениями интеграции баз данных в мобильные приложения под iOS являются SQLite, Firestore и Realm.

1.5.1 SQLite

SQLite — это встроенная в процесс библиотека, которая реализует автономный, бессерверный транзакционный компонент SQL [6]. Код для SQLite находится в общественном достоянии и, таким образом, свободен для использования в любых целях. SQLite — это встроенный движок базы данных SQL.

В отличие от большинства других баз данных SQL, SQLite не имеет отдельного серверного процесса. Транзакции являются ACID, даже если они прерваны системными сбоями или сбоями питания. SQLite

1.5.2 Firestore

Cloud Firestore — это NoSQL, ориентированная на документы база данных. В отличие от базы данных SQL, здесь нет таблиц или строк. Вместо этого вы храните данные в документах, которые организованы в коллекции [7].

Каждый документ содержит набор пар ключ—значение. Облачное хранилище Firestore оптимизировано для хранения больших коллекций небольших документов.

Все документы должны храниться в коллекциях. Документы могут содержать вложенные коллекции и вложенные объекты, оба из которых могут включать примитивные поля, такие как строки, или сложные объекты, такие как списки.

Коллекции и документы создаются неявно в Cloud Firestore. Просто назначьте данные документу в коллекции. Если коллекция или документ не существуют, Cloud Firestore создает их.

1.5.3 Realm or MongoDB

Realm — это реактивная, объектно-ориентированная, кроссплатформенная, NoSQL мобильная база данных [8].

Файлы Realm содержат объектные данные со следующими структурами данных: группы, таблицы, деревья кластеров и кластеры. База данных Realm организует эти структуры данных в древовидную структуру следующего вида:

- верхний уровень, известный как Группа, хранит метаданные объекта, журнал транзакций и коллекцию таблиц;
- каждый класс в схеме realm соответствует таблице в группе верхнего уровня;
- каждый таблица содержит дерево кластеров, реализацию дерева В +;
- листья на дереве кластеров называются кластерами, каждая содержит диапазон объектов, отсортированных по значению ключа;
- кластеры хранят объекты в виде наборов столбцов.

База данных Realm гарантирует, что транзакции совместимы с ACID, а также имеет удобный SDK для внедрения в мобильные приложения.

1.5.4 Выбор СУБД

NoSQL базы данных набирают популярность, причиной чему является простота разработки, функционала и высокая производительности. В связи с наличием интереса к данному подходу проектирования систем, а также из–за наличия удобного SDK для iOS, был выбран Realm от MongoDB.

1.6 Вывод из раздела

В данном разделе были выделены ролевые модели системы, конкретизированы данные и их связь между собой, построены соответствующие диаграммы. Был проведен анализ и выбор модели данных, а также СУБД, подходящей для решения поставленной задачи.

2 Конструкторский раздел

В данном разделе будут представлены этапы проектирования базы данных, выделены конкретные действия ролевой модели и описаны основы проектирования приложения.

Проектирование базы данных 2.1

ект

На основе выделенных ранее сущностей спроектированы следующие объ-		
базы данных.		
Loot — содержит информацию об улове участника:		
— lootId — уникальный идентификатор улова;		
— lootFish — название рыбы;		
— lootWeight — вес рыб;		
— lootScore — очки за рыбу.		
Step — содержит информацию о зачете участника за этап (сколько рыбы		
принес):		
— stepId — уникальный идентификатор зачета;		
— stepName — название зачета;		
— stepParticipant — участник, которому принадлежит зачет (ссылается		
на участника);		
— lootScore — очки за зачет.		
Participant — содержит информацию об участнике и имеет следующие		
поля:		
— participantId — уникальный идентификатор участника;		
— participantFullname — имя участника;		
— participantTeam — команда участника (ссылается на команду);		
— participantCity — город проживания участника;		
— participantBirthday — дата рождения участника;		
— participantRole — роль участника;		
— participantScore — очки участника.		

- 4) Теат содержит информацию о команде и имеет следующие поля:
 - teamId уникальный идентификатор команды;
 - teamName название команды;
 - teamCompetitions соревнования, в которых принимает участие команда (ссылается на соревнования);
 - teamScore очки команды.
- 5) Competition содержит информацию о соревновании и имеет следующие поля:
 - competitionId уникальный идентификатор соревнования;
 - competitionName название соревнования;
 - competitionSteps зачеты, включаемые в соревнование (ссылается на зачет);
 - competitionTeams команды, участвовавшие в соревнованиях (ссылается на команды).

Соответствующая диаграмма по описанным выше данным представлена на рисунке 2 .

Рисунок 2 – ER-диаграмма

2.2 Ролевая модель

Ролевая модель предполагает наличие трех ролей: участника, судьи и администратора. Стоит отметить, что судья обладает всеми правами участника, а администратор — всеми правами судьи.

Для успешной реализации поставленной задачи программа должна предоставлять следующие возможности:

- просмотр профилей участников;
- просмотр профилей команд;
- просмотр личного и командного рейтингов;
- просмотр личного и командного рейтингов по этапам;
- сортировка личного и командного рейтингов по убыванию/по возрастанию;
- сортировка личного и командного рейтингов по этапам по убыванию/по возрастанию.

Дополнительные возможности судьи:

- регистрация;
- авторизация;
- создание/редактирование/удаление соревнования;
- создание/редактирование/удаление команды;
- создание/редактирование/удаление участника;
- создание/редактирование/удаление зачета;
- создание/редактирование/удаление улова;
- внесение улова в зачет;
- добавление зачета в профиль участника;
- добавление участника в команду;
- добавление команды в соревнование;
- добавление зачета в соревнование.Дополнительные возможности администратора:
- создание/редактирование/удаление профилей судей;
- создание/редактирование/удаление профилей администраторов;

2.3 Проектирование приложения

Приложение, разрабатываемое для iOS, может быть разделено на 3 части:

- 1) слой бизнес логики взаимодействия между слоем доступа к данным и приложением: классы данных дублируют структуру базы данных;
- 2) слой доступа к данным подключение к БД, отправка запросов, получение информации из БД;
- 3) слой пользовательского интерфейса (UI) взаимодействие пользователя с программой.

Сохранении последовательности представленных этапов поможет упростить разработку мобильного приложения.

2.4 Вывод из раздела

В данном разделе были спроектированы база данных и приложение, были формализованы требования к программе.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. РФПР | Российская Федерация Подводного Рыболовства [Электронный ресурс]. Режим доступа: http://rfpr.su/, свободный (дата обращения: 16.04.2023)
- 2. Что такое СУБД RU—CENTER [Электронный ресурс]. Режим доступа: https://www.nic.ru/help/chto-takoe-subd_8580.html, свободный (дата обращения: 16.04.2023)
- 3. Дейт К.Дж. Введение в системы баз данных. 8-е изд. М.: «Вильямс», 2006.
- 4. Сетевая СУБД [Электронный ресурс]. Режим доступа: https://www.tadviser.ru/index.php/Статья:Сетевая_СУБД, свободный (дата обращения: 16.04.2023)
- 5. Что такое NoSQL? | Amazon AWS [Электронный ресурс]. Режим доступа: https://aws.amazon.com/ru/nosql, свободный (дата обращения: 16.04.2023)
- 6. About SQLite [Электронный ресурс]. Режим доступа: https://sqlite.org/about.html, свободный (дата обращения: 16.04.2023)
- 7. Документация | Firebase Documentation [Электронный ресурс]. Режим доступа: https://firebase.google.com/docs?hl=ru, свободный (дата обращения: 16.04.2023)
- 8. Realm Database [Электронный ресурс]. Режим доступа: https://www.mongodb.com/docs/realm/sdk/swift/realm-database/, свободный (дата обращения: 16.04.2023)