LOGIC AND TRUTH TABLES Lesson 4

INTRODUCTION

 Propositional calculus (or logic) is the study of the logical relationship between objects called propositions and forms the basis of all mathematical reasoning and all automated reasoning.

Definition

A proposition is a statement that is either true or false, but not both (we usually denote a proposition by letters; p, q, r, s, . . .).

The value of a proposition is called its truth value; denoted by T or 1 if it is true and F or 0 if it is false.

Opinions, interrogative and imperative sentences are not propositions.

Examples

Example (Propositions)

- Today is Monday.
- The derivative of sin x is cos x.
- Every even number has at least two factors.

Example (Not Propositions)

- C++ is the best language.
- When is the pretest?
- Do your homework.

Logical Connectives

Connectives are used to create a compound proposition from two or more other propositions.

- Negation (denoted ¬ or !)
- And (denoted ^) or Logical Conjunction
- Or (denoted _) or Logical Disjunction
- Exclusive Or (XOR, denoted)
- Implication (denoted !)
- Biconditional; "if and only if" (denoted \$)

Negation

• A proposition can be negated. This is also a proposition. We usually denote the negation of a proposition p by $\neg p$.

Example (Negated Propositions)

- Today is not Monday.
- It is not the case that today is Monday.
- It is not the case that the derivative of sin x is cos x.

P	¬р
0	1
1	0

Logical And

• The logical connective And is true only if both of the propositions are true. It is also referred to as a conjunction

Example (Logical Connective: And)

- It is raining and it is warm.
- $(2+3=5) \wedge (\sqrt{2} < 2)$
- Cat is dead and Cat is not dead.

p	q	p ^q
0	0	0
0	1	0
1	0	0
1	1	1

Logical Or

• The logical disjunction (or logical or) is true if one or both of the propositions are true.

Example (Logical Connective: Or)

- It is raining or it is the second day of lecture.
- $(2+2=5) \text{ v} (\sqrt{2} < 2)$
- You may have cake or ice cream

	_	
p	q	p vq
0	0	0
0	1	1
1	0	1
1	1	1

Exclusive Or

• The exclusive or of two propositions is true when exactly one of its propositions is true and the other one is false.

Example (Logical Connective: Exclusive Or)

- The circuit is either is on or off.
- Let ab < 0, then either a < 0 or b < 0 but not both.
- You may have cake or ice cream, but not both.

p	q	p Oq
0	0	0
0	1	1
1	0	1
1	1	0

Implications

Definition

Let p and q be propositions. The implication $p_{\rightarrow}q$ is the proposition that is false when p is true and q is false and true otherwise.

Here, p is called the "hypothesis" (or "antecedent" or "premise") and q is called the "conclusion" or "consequence".

p	q	$p \rightarrow q$
0	0	1
0	1	1
1	0	0
1	1	1

Implications

The implication $p\rightarrow q$ can be equivalently read as

- if p then q
- p implies q
- if p, q
- p only if q
- q if p
- q when p
- q whenever p
- p is a sufficient condition for q (p is sufficient for q)
- q is a necessary condition for p (q is necessary for p)
- q follows from p

Examples

- If you buy your air ticket in advance, it is cheaper.
- If x is a real number, then $x^2 \ge 0$.
- If it rains, the grass gets wet.
- If the sprinklers operate, the grass gets wet.
- If 2 + 2 = 5 then all unicorns are pink.

Exercise

Which of the following implications is true?

- If -1 is a positive number, then 2 + 2 = 5.
- **true:** the hypothesis is obviously false, thus no matter what the conclusion, the implication holds.
- If -1 is a positive number, then 2 + 2 = 4.

true: for the same reason as above

- If $\sin x = 0$ then x = 0.
- **false:** x can be any multiple of π ; i.e. if we let $x=2\pi$ then clearly $\sin x=0$, but $x\neq 0$. The implication "if $\sin x=0$ then $x=k\pi$ for some integer k" is true.

Bi conditional

The bi conditional $p \rightarrow q$

is the proposition that is true when p and q have the same truth values. It is false otherwise

Note that it is equivalent to $(p \rightarrow q) \land (q \rightarrow p)$

p	q	p → q	q → p	p⇔q
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

Examples

p⇔q can be equivalently read as

- p if and only if q
- p is necessary and sufficient for q
- if p then q, and conversely
- x > 0 if and only if x^2 is positive.
- The alarm goes off iff a burglar breaks in.
- You may have pudding if and only if you eat your meat

Exercise

Which of the following biconditionals is true?

• $x^2 + y^2 = 0$ if and only if x = 0 and y = 0

true: both implications hold.

• 2+2=4 if and only if $\sqrt{2} < 2$

true: for the same reason above.

• $x^2 \ge 0$ if and only if $x \ge 0$.

false: The converse holds. That is, "if $x \ge 0$ then $x^2 \ge 0$ ". However, the implication is false; consider x = -1. Then the hypothesis is true, $(-1)^2 = 1^2 \ 0$ but the conclusion fails

Truth Tables

• Truth Tables are used to show the relationship between the truth values of individual propositions and the compound propositions based on them

\boldsymbol{p}	q	$p \wedge q$	$p \lor q$	p ⊕ q	$p \rightarrow q$	$p \leftrightarrow q$
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	0
1	1	1	1	0	1	1

Using Logical Equivalences

• Logical equivalences can be used to construct additional logical equivalences.

Example: Show that $(p \land q) \rightarrow q$ is a tautology

$$\begin{array}{cccc} ((p \wedge q) \rightarrow q) & \Longleftrightarrow & \neg (p \wedge q) \vee q & \text{Implication Law} \\ & \Longleftrightarrow & (\neg p \vee \neg q) \vee q & \text{De Morgan's Law (1st)} \\ & \Longleftrightarrow & \neg p \vee (\neg q \vee q) & \text{Associative Law} \\ & \Longleftrightarrow & \neg p \vee 1 & \text{Negation Law} \\ & \Longleftrightarrow & 1 & \text{Domination Law} \end{array}$$

Using Logical Equivalences

Example (Exercise 17)1: Show that

$$\neg(p \leftrightarrow q) \iff (p \leftrightarrow \neg q)$$

Sometimes it helps to start out with the second proposition. $(p \leftrightarrow \neg q)$

$$\iff (p \to \neg q) \land (\neg q \to p) \qquad \text{Equivalence Law} \\ \iff (\neg p \lor \neg q) \land (q \lor p) \qquad \text{Implication Law} \\ \iff \neg (\neg ((\neg p \lor \neg q) \land (q \lor p))) \qquad \text{Double Negation} \\ \iff \neg (\neg (\neg p \lor \neg q) \lor \neg (q \lor p)) \qquad \text{De Morgan's Law} \\ \iff \neg ((p \land q) \lor (\neg q \land \neg p)) \qquad \text{De Morgan's Law} \\ \iff \neg ((p \land q) \lor (\neg p \land \neg q)) \qquad \text{Commutative Law} \\ \iff \neg (p \leftrightarrow q) \qquad \text{Equivalence Law} \\ \iff \neg (p \leftrightarrow q) \qquad \text{Equivalence Law} \\ \end{cases}$$

Using Logical Equivalences

Show that

$$\neg (q \rightarrow p) \lor (p \land q) \iff q$$

$$\neg (q \rightarrow p) \lor (p \land q)$$

$$\iff (\neg (\neg q \lor p)) \lor (p \land q) \quad \text{Implication Law}$$

$$\iff (q \land \neg p) \lor (p \land q) \quad \text{De Morgan's \& Double Negation}$$

$$\iff (q \land \neg p) \lor (q \land p) \quad \text{Commutative Law}$$

$$\iff q \land (\neg p \lor p) \quad \text{Distributive Law}$$

$$\iff q \land 1 \quad \text{Identity Law}$$

$$\iff q \quad 1 \quad \text{Identity Law}$$

THANK YOU