$f\left(\frac{k-1}{n}\pi\right) \cdot f\left(\frac{k\pi}{n}\right) < 0$. 从而至少存在一点 $\xi_k \in \left(\frac{(k-1)}{n}\pi, \frac{k\pi}{n}\right)$ 使 $f(\xi_k) = 0$. 即 在 (0.2π) 上 f(x) = 0 至少有 2n 个根.

下面证明:
$$f\left(\frac{k-1}{n}\pi\right) \cdot f\left(\frac{k}{n}\pi\right) < 0$$
.

如 k 为偶数,则
$$f\left(\frac{k}{n}\pi\right) = a_n + a_{n-1}\cos\frac{(n-1)k\pi}{n} + \dots + a_1\cos\frac{k\pi}{n} + a_0 \geqslant a_n - a_{n-1} - \dots - a_1 + a_0 \geqslant a_n - (|a_{n-1}| + \dots + |a_1| + |a_0|) > 0$$
,而 $f\left(\frac{k-1}{n}\pi\right) = -a_n + a_{n-1}\cos\frac{(n-1)(k-1)}{n}\pi + \dots + a_1\cos\frac{(k-1)\pi}{n} + a_0 \leqslant -a_n + |a_{n-1}| + \dots + |a_1| + |a_0| < 0$. 故 k 为偶数时, $f\left(\frac{k-1}{n}\pi\right) \cdot f\left(\frac{k\pi}{n}\right) < 0$.

同理可证 k 为奇数时,结论成立.

综合练习题

1. 设有一对新出生的兔子,两个月之后成年. 从第三个月开始,每个月产一对小兔,且新生的每对小兔也在出生两个月之后成年,第三个月开始每月生一对小兔. 假定出生的兔均无死亡,(1)问一年后共有几对兔子?(2)问n个月之后有多少对兔子?(3)若n个月之后有 F_n 对兔子,试求 $\lim_{n\to\infty} \frac{F_n}{F_{n+1}}$ (题中所讲的一对兔子均是雌雄异性的).

说明:该问题是意大利数学家 Fibonacci 于 13 世纪初(1202 年)研究兔子繁殖过程中数量变化规律时提出来的,其中的数列 $\langle F_n \rangle$ 被后人称为 Fibonacci 数列. 有趣的是,极限 $\lim_{n\to\infty}\frac{F_n}{F_{n+1}}=\frac{\sqrt{5}-1}{2}\approx 0$. 618 正是"黄金分割"数,在优选法及许多领域得到很多新的应用.

解 第 n 月有小兔 F_n 对,且这 F_n 对小兔到第 n+1 月均成熟,所以第 n+2 月新生小兔 F_n 对,故 $F_{n+2} = F_{n+1} + F_n$.

- (1) $F_1 = 1$, $F_2 = 1$, $F_3 = 2$, $F_4 = 3$, $F_5 = 5$, $F_6 = 8$, $F_7 = 13$, $F_8 = 21$, $F_9 = 34$, $F_{10} = 55$, $F_{11} = 89$, $F_{12} = 144$, $F_{13} = 233$.
- (2) 差分方程 $F_{n+2} = F_{n+1} + F_n$ 的特征方程为 $x^2 = x+1$,解之得特征根 $x_1 = \frac{1+\sqrt{5}}{2}$, $x_2 = \frac{1-\sqrt{5}}{2}$,则 $F_n = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + c_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$,由 $F_1 = 1$, $F_2 = c_1 \left(\frac{1+\sqrt{5}}{2}\right)^n$

1 得
$$c_1 = \frac{1}{\sqrt{5}}$$
, $c_2 = -\frac{1}{\sqrt{5}}$, 所以
$$F_n = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right].$$
(3) $\lim_{n \to \infty} \frac{F_n}{F_{n+1}} = \lim_{n \to \infty} \frac{\left(1+\sqrt{5} \right)^n - \left(1-\sqrt{5} \right)^n}{2^n} \cdot \frac{2^{n+1}}{\left(1+\sqrt{5} \right)^{n+1} - \left(1-\sqrt{5} \right)^{n+1}}$

$$= 2\lim_{n \to \infty} \frac{1}{\sqrt{5}+1} \left[\frac{1 - \left(\frac{1-\sqrt{5}}{1+\sqrt{5}} \right)^n}{1 - \left(\frac{1-\sqrt{5}}{1+\sqrt{5}} \right)^{n+1}} \right] = \frac{2}{\sqrt{5}+1} = \frac{\sqrt{5}-1}{2}.$$

2. 所谓蛛网模型是在研究市场经济的一种循环现象中提出来的,现以猪肉的产量与价格之间的关系为例来说明. 若去年猪肉的产量供过于求,它的价格就会降低;价格降低会使今年养猪者减少,使猪肉的产量供不应求,于是肉价上扬;价格上扬又使明年猪肉产量增加,造成新的供过于求,如此循环下去. 设 x_n 为第 n 年的猪肉产量, y_n 为其价格,由于当年的产量确定当年价格,所以 $y_n = f(x_n)$,称为需求函数. 而第 n 年的价格又决定第 n+1 年的产量,故 $x_{n+1} = g(y_n)$,称为供应函数. 产销关系呈现出如下过程:

$$x_1 \rightarrow y_1 \rightarrow x_2 \rightarrow y_2 \rightarrow x_3 \rightarrow y_3 \rightarrow x_4 \rightarrow \cdots$$

在平面直角坐标系中描出下面的点列:

$$P_1(x_1, y_1), P_2(x_2, y_1),$$

 $P_3(x_2, y_2), P_4(x_3, y_2),$
 $P_{2k-1}(x_k, y_k), P_{2k}(x_{k+1}, y_k), (k=1, 2, \cdots),$

其中所有的点 P_{2k} 都满足 x=g(y), P_{2x-1} 满足 y=f(x), 如图所示. 由于这种关系很像一个蛛网, 所以称为蛛网模型.

据统计,某城市 1991 年猪肉产量为 30 万吨,肉价为 6 元/kg;1992 年猪肉产量为 25 万吨,肉价为 8 元/kg.已知 1993 年的猪肉产量为 28 万吨.若维持目前的消费水平和生产模式,并假定猪肉当年的价格与当年的产量之间、来年的产量与当年的价格之间都是线性关系.

- (1) 试确定需求函数 $y_n = f(x_n)$ 和供应函数 $x_{n+1} = g(y_n)$;
 - (2) 求 lim x_{n+1}与 lim y_{n+1};
- (3) 问若干年后猪肉的产量与价格是否会趋于稳定?若能够稳定,求出稳定的产量和价格.

解 (1) 设 $x_{n+1} = ay_n + c$, $y_n = -bx_n + d$. 将 $x_1 = 30$, $y_1 = 6$, $x_2 = 25$, $y_2 = 8$, $x_3 = 28$ 代入上式,则 $a = \frac{3}{2}$, c = 16, $b = \frac{2}{5}$, d = 18. 即需求函数为 $y_n = -\frac{2}{5}x_n + 18$, 供应函数 $x_{n+1} = \frac{3}{2}y_n + 16$.

(2)
$$\Re y_n = -\frac{2}{5}x_n + 18 \, \text{RA} \, x_{n+1} = \frac{3}{2}y_n + 16 \, \text{R}$$

$$x_{n+1} = -\frac{3}{5}x_n + 43$$

$$= \left(-\frac{3}{5}\right) \left[-\frac{3}{5}x_{n-1} + 43\right] + 43 = \left(-\frac{3}{5}\right)^2 x_{n-1} + 43 \left[1 + \left(-\frac{3}{5}\right)\right]$$

$$= \cdots$$

$$= \left(-\frac{3}{5}\right)^n x_1 + \left[1 + \left(-\frac{3}{5}\right) + \cdots + \left(-\frac{3}{5}\right)^{n-1}\right] \times 43,$$

$$x_{n+1} = \left(-\frac{3}{5}\right)^n x_1 + \frac{1 - \left(-\frac{3}{5}\right)^n}{1 + \frac{3}{5}} \times 43,$$

(3) 经过若干年后猪肉的产量与价格将趋于稳定,稳定后的价格为 $\frac{29}{4}$ = 7.25 元/kg. 产量为 $\frac{215}{8}$ 万吨.

所以 $\lim_{n\to\infty} x_{n+1} = \frac{5}{8} \times 43 = \frac{215}{8}$,进而 $\lim_{n\to\infty} y_n = -\frac{2}{5} \lim_{n\to\infty} x_n + 18 = \frac{29}{4}$.