Midterm practice problems – STA 250/MTH 342 Fall 2017

1. Let X_1, X_2, \dots, X_n be i.i.d. data from a Beta $(\theta, 1)$ distribution. So the pdf of each observation is

$$f(x|\theta) = \theta x^{\theta-1}$$
 for $0 < x < 1$
= 0 otherwise.

- (a) Find the MLE $\hat{\theta}(\mathbf{X})$ of θ .
- (b) What is the Fisher's information for θ from a single observation X_1 ?
- (c) Use the Fisher's information you found in (b), find an approximate sampling distribution of $\hat{\theta}(\mathbf{X})$ when n is large.
- (d) Find the sampling distribution of $Y = \max_{1 \le i \le n} X_i$ by giving its pdf.
- (e) Now suppose we do not observe the original random variables X_1, X_2, \ldots, X_n , but only observe Y, find the MLE $\hat{\theta}(Y)$ of θ .
- 2. Let X_1, X_2, \ldots, X_n be i.i.d. data from a $N(\mu, \sigma^2)$ distribution where μ is unknown while $\sigma = 2$ is known.
 - (a) What is the mean and variance of $T(\mathbf{X}) = \sum_{i=1}^{40} (X_i \mu)^2$? What is the sampling distribution of $T(\mathbf{X})$?
 - (b) Find P(T(X) > 200) in terms of the cdf of the sampling distribution of the T(X) or in numeric values using a distribution table.
 - (c) Find P(T(X) > 200) approximately by applying the central limit theorem.
- 3. Let X_1, X_2, \ldots, X_n be i.i.d. data from a Poisson(θ) distribution. However, we do *not* observe the X_i 's directly. Instead, for each X_i we observe

$$Y_i = \begin{cases} 0 & \text{if } X_i = 0\\ 1 & \text{if } X_i \ge 1. \end{cases}$$

- (a) Find the likelihood function of θ for the sample Y_1, Y_2, \dots, Y_n .
- (b) Find the MLE $\hat{\theta}(\mathbf{Y})$ for θ .
- (c) Denote by $p_0 = P(X_1 = 0)$. Find the MLE $\hat{p}_0(\mathbf{Y})$ for p_0 , and find its mean squared error (MSE).
- (d) Denote by $p_1 = P(X_1 = 1)$. Find the MLE $\hat{p}_1(Y)$ for p_1 .

4. Let X_1, X_2, \ldots, X_n be i.i.d. data from a Geometric (p) distribution. So each has pmf

$$P(X_i = k) = p(1-p)^k, \quad k = 0, 1, 2, \dots$$

where $p \in (0,1)$ is unknown.

- (a) Find the MLE for p. Is it unbiased?
- (b) Apply Fisher's approximation to find the approximate normal sampling distribution of the MLE.
- (c) If we take a Bayesian perspective and place a Beta(α, β) prior on p that is

$$\pi(p) \propto p^{\alpha - 1} (1 - p)^{\beta - 1}$$
 for $0
= 0 otherwise.$

find the posterior distribution of p. Give its name and parameter(s), or its pdf (including the normalizing constant) for all $p \in \mathbb{R}$.

- (d) Under this prior, what is the Bayes estimator for p under squared error loss?
- (e) Now with a Uniform (0,1) prior on p, find an interval [a,b] such that

$$\pi(a \le p \le b|X_1 = 0) = 0.90$$
, with $\pi(p < a|X_1 = 0) = \pi(p > b|X_1 = 0)$.

Remark: Such an interval is called the 90% central credible interval of p.