

Bayes Nets Representation: joint distribution and conditional independence

Yi Zhang 10-701, Machine Learning, Spring 2011 February 9th, 2011

Parts of the slides are from previous 10-701 lectures

Outline

- Conditional independence (C. I.)
- Bayes nets: overview
- Local Markov assumption of BNs
- Factored joint distribution of BNs
- Infer C. I. from factored joint distributions
- D-separation (motivation)

Conditional independence

X is conditionally independent of Y given Z

$$(\forall x, y, z) P(X = x | Y = y, Z = z) = P(X = x | Z = z)$$

• In short:

$$P(X \mid Y, Z) = P(X \mid Z)$$

Equivalent to:

$$P(X,Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

Bayes nets

- Bayes nets: directed acyclic graphs express sets of conditional independence via graph structure
 - All about the joint distribution of variables!
 - Conditional independence assumptions are useful
 - Naïve Bayes model is an extreme example

Three key questions for BNs

- Representation:
 - What joint distribution does a BN represent?
- Inference
 - How to answer questions about the joint distribution?
 - Conditional independence
 - Marginal distribution
 - Most likely assignment
- Learning
 - How to learn the graph structure and parameters of a BN from data?

Local Markov assumptions of BNs

 A variable X is independent of its nondescendants given (only) its parents

Intuition: "flu" and "allergy" causes "headache" only

through "sinus"

Local Markov assumptions of BNs

 A variable X is independent of its nondescendants given (only) its parents

	parents	non-desc	assumption		
S	F,A	-	_	Flu	Allergy
Н	S	F,A,N	$H \perp \{F,A,N\} \mid S$		
Ν	S	F,A,H	$N \perp \{F,A,H\} S$		<
F	-	Α	$F \perp A$	Sinu	ıs)
Α	-	F	$A \perp F$		
E I	^ LI I I	TE ALLS	N I (E V FI) I C	Headache	Nose
$F \perp A$, $H \perp \{F,A\} \mid S$,		[F,A]]3,	$N \perp \{F,A,H\} \mid S$		

Local Markov assumptions of BNs

- Local Markov assumptions only express a subset of C.I.s on a BN
 - Is X_M conditionally independent of X_1 given X_2 ?

But they are sufficient to infer all others

 A BN can represent the joint distributions of the following form:

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

 A BN can represent the joint distributions of the following form:

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

P(F, A, S, H, N)

= P(F) P(A) P(S|F,A) P(H|S) P(N|S)

 Local Markov assumptions imply the factored joint distribution

P(F, A, S, H, N)

= P(F) P(F|A) P(S|F,A) P(H|S,F,A) P(N|S,F,A,H)

Chain rule

= P(F) P(A) P(S|F,A) P(H|S) P(N|S)

Markov Assumption

 $F \perp A$, $H \perp \{F,A\} \mid S$, $N \perp \{F,A,H\} \mid S$

- Naïve Bayes
 - Local Markov assumptions: $X_i \perp X_1,...,X_{i-1},X_{i+1},...,X_n \mid Y$
 - Factored joint distribution:

$$P(X_1,...,X_n,Y) =$$

 $P(Y)P(X_1|Y)...P(X_1|Y)$

Infer C.I. from the factored joint distribution

- We already see: local Markov assumptions ->
 factored joint distribution
- Also, factored joint distribution all C.I. in the BN

Infer C.I. from the factored joint distribution

Factored Joint distribution

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

• Show that $a \perp \!\!\!\perp b \mid c$

$$p(a, b|c) = \frac{p(a, b, c)}{p(c)}$$

$$= \frac{p(a|c)p(b|c)p(c)}{p(c)}$$

$$= p(a|c)p(b|c)$$

$$= p(a|c)p(b|c)$$

Infer C.I. from the factored joint distribution

Factored Joint distribution

$$p(a, b, c) = p(a|c)p(b|c)p(c)$$

• Do we have $a \perp \!\!\! \perp b$? In general, no.

$$p(a,b) = \sum_{c} p(a,b,c)$$
$$= \sum_{c} p(a|c)p(b|c)p(c)$$

Cannot be written into two separate terms of a and b

D-separation: motivation

• Is X_M conditionally independent of X_1 given X_2 ?

- Intuitively yes: X_1 affects X_M only through X_2 .
- Method I: using factored joint distribution to derive

$$p(x_1, x_M | x_2) = \frac{p(x_1, x_2, x_M)}{p(x_2)}$$

$$= \frac{\sum_{x_3, x_4, \dots, x_{M-1}} p(x_1, x_2, \dots, x_M)}{\sum_{x_1, x_3, x_4, \dots, x_{M-1}, x_M} p(x_1, x_2, \dots, x_M)}$$

Method II: D-separation
 —— not today