

Monte Cimone v2: Down the Road of **RISC-V High-Performance Computers**

Emanuele Venieri¹, Simone Manoni¹, Giacomo Madella¹, Federico Ficarelli², Daniele Gregori³, Daniele Cesarini², Luca Benini^{1,4}, Andrea Bartolini¹

¹University of Bologna, Italy, ²CINECA, Italy, ³E4 Company S.p.A., ⁴ETH Zürich Switzerland

emanuele.venieri2@unibo.it

Outline

- RISC-V & HPC
- Monte Cimone
- Performance evaluation
- BLAS vectorization
- Results

RISC-V & HPC

- HPC platform requirements:
 - High core count + vector/matrix extensions
 - Large amount of system memory
 - PCIe support (accelerators, network cards, fast storage)
 - Software: OS, job schedulers, monitoring systems, packages and libraries

- RISC-V is mature in embedded domain
- How to foster RISC-V ISA uptake in HPC?

nonte Cimono

RISC-V HPC timeline

Monte Cimone v2 bring up

Stanting Stoth Monteition one v1

Cluster environment

- SLURM
- Examon
- Shared NFS
- Spack + new tools
 - New compilers:
 - Xuantie GNU Toolchain
 - GCC 14
 - New BLAS libraries:
 - OpenBLAS

Monte Cimone v2 benchmark

- Performance assessment of new hardware:
 - STREAM
 - HPL + OpenBLAS w/ Xuantie GNU Toolchain
- BLIS library adapting and optimization:
 - Developing an alternative for the community compilable with stock GCC 14
 - Improving found suboptimal micro-kernel

BLIS kernels optimization

- BLIS comes with RVV 1.0 generic micro-kernels written in assembly for DGEMM
- SG2042 has an RVV 0.7.1 vector unit, GCC 14 supports it as theadvector
- Steps of our BLIS micro-kernel optimization:
 - Porting from RVV 1.0 to 0.7.1
 - First tests: suboptimal implementation
 - Optimization using register grouping

Our optimization strategy

В

vectorization

strategy

BLIS

AB

STREAM Results

Monte Cimone v1 node:

• Max: 1.2 GB/s

Milk-V Pioneer Box:

- 64 threads
- 4 memory channels
- Max: 41.9 GB/s

E4 RSV10 dual socket:

- 64 threads
- 8 memory channels
- Max: 82.9 GB/s

HPL Results

- Reference results of SG2042:
 - HPL + vanilla OpenBLAS
 - HPL + optimized OpenBLAS
- Single nodes performance:
 - 1 core:
 - 3.6 Gflop/s
 - 64 cores:
 - 144 Gflop/s
 - 128 cores:
 - 244.9 Gflop/s

- Decreasing efficiency with incremental core count
- Optimized OpenBLAS experience the same bottlenecks as vanilla ones
- The bottleneck was identified as the memory subsystem

HPL Results

MCv1 full cluster:

- Linear scaling in multi node runs
- HPL: 12.65 Gflop/s

MCv2 single node, single socket:

- 64 cores
- HPL: 144.0 Gflop/s

MCv2 dual node, single socket:

- 128 cores
- Ethernet 1Gbit/s network
- HPL: 190.4 Gflop/s

MCv2 single node, dual socket:

- 128 cores
- On board communication
- HPL: 244.9 Gflop/s

HPL BLIS Results

- The available vectorized BLIS micro-kernel performed poorly
- Boost in performance post optimization:
 - 49% w.r.t. original vectorized BLIS (dual socket and 128 core runs)
 - Performance on par with OpenBLAS
 - Effectiveness of register grouping

Conclusions

- MCv1 vs. MCv2: rapidly evolving RISC-V ecosystem
 - Analysis of the first server style platforms
 - In two years a performance improvement obtained in average in eight years (Top500)
- BLIS library optimization:
 - Feasability of enhancing RISC-V software ecosystem
 - Contributed to the HPC community

This activity has been supported by the HE EU Graph-Massivizer (g.a. 101093202), DECICE (g.a. 101092582), and DARE (g.a. 101143421) projects, as well as the Italian Research Center on High Performance Computing, Big Data, and Quantum Computing.

