

M904

Bluetooth SiP Module

-BT 4.0 LE

Preliminary DATASHEET 23rd February, 2018

Table of Contents

1	Р	rod	luct Brief	1
2	F	eatu	ures and Applications	2
3	В	Block	k Diagram3	3
4	Т	ech	nical Specifications2	1
	4.1	,	Absolute Maximum Ratings	1
	4.2	١	Voltage	1
	4.3	١	Wireless Specifications	1
	4.4	ı	Radio Specifications – Bluetooth 4.0 Low Energy	1
	4.5	ı	Power Consumption 5	5
	4.6	-	Transmitter Specification	7
	4.7	,	Antenna Reference Specification 8	3
		4.7.	.1 Built-In Antenna Performance 8	3
		4.7.	.2 Antenna Pattern)
	4.8	9	System Design Guide)
5		Dime	ensions	1
6	Р	in A	Assignments	2
7	R	Reco	ommended Footprint	3
8	R	Refer	rence Design Circuit	1
9	R	Reco	ommended Reflow Profile	5
1(o s	iP M	Module Preparation16	ĵ
	10.	1 I	Handling	ĵ
	10.	2 9	SMT Preparation	ĵ
1	1 P	acka	age Information	7
1	2 г	ocu	iment History 18	2

1 Product Brief

The SiP module M904 is a small size module with antenna inside. The module provides full function of Bluetooth 4.0 Low Energy in a tiny module via 48 pins LGA Foot Print. The M904 module provides everything required to create Bluetooth 4.0 Low Energy product with RF, baseband, MCU, qualified Bluetooth v4.0 stack and customer application running on a single IC.

M904 enables ultra-low power connectivity and basic data transfer for applications previously limited by the power consumption, size constraints and complexity of other wireless standards. The low power consumption and excellent radio performance make it the best solution for OEM /ODM customers who require embedded Bluetooth 4.0 Low Energy feature, such as, IP camera, car key, sport and fitness watch, mouse, led light bulb etc.

For the software and driver development, we provide extensive technical document and reference software code for the system integration.

Hardware evaluation kit and development utilities will be released base on listed OS and processors to OEM customers.

KEY FEATURES

- Bluetooth® Smart
- ARM® Cortex™-M0 32-bit processor
- Up to +4dBm output power
- 256kB flash
- 32kB RAM
- LGA-48 package, 6.5 x 6.5 mm
- I²C/UART
- Built-in antenna

2 Features and Applications

Feature List

- Bluetooth® v4.0 LE radio technology
- -90 dBm sensitivity in Bluetooth® low energy mode
- 250kbps, 1 Mbps, 2 Mbps supported data rates
- TX Power -20 to +4 dBm in 4 dB steps
- TX Power -30 dBm Whisper mode
- 12 mA peak RX, 10 mA peak TX (0 dBm)
- 256 kB embedded flash program memory
- Supply voltage range: 1.8 ~ 3.6 V
- SPI master/slave
- Low power comparator
- Temperature sensor
- Two-wire master (I²C compatible)
- UART (CTS/RTS)
- AES HW encryption
- Real Timer Counter (RTC)
- Antenna on Package (AoP)
- LGA-48 package, 6.5 x 6.5 mm

Applications

- IoT
 - > Smart home
 - Sensor networks
 - > Building automation
 - > Industrial
 - > Retail
 - Smart Lighting
- Personal area networks
 - Medical devices
 - Key-fobs and wrist watches
- Beacons
- Remote control toys

3 Block Diagram

M904 supports UART command line interface to connect to the host processor. The simplified block diagram is depicted in the figure as below.

4 Technical Specifications

Operation and storage condition

4.1 Absolute Maximum Ratings

Item		Description	Value	Unit				
Ratings Over Operating Free-Air Temperature Range								
1	Supply voltage	All supply pins must have the same voltage	-0.3 ~ 3.9	V				
2	Voltage on any pin		-0.3 ~ 3.9	V				
3	Operating ambient to	emperature range	-25 ~ 75	°C				
4	Storage temperature	range	-35 ~ 75	°C				
5	Bluetooth RF output	(Тур.)	4±1	dBm				

4.2 Voltage

Operating Condition	Min	Typical	Max	Unit
DVDD_3V3	1.8	3.3	3.6	V
I/O supply voltage (VDD_PADS)	1.2	3.3	3.6	V

4.3 Wireless Specifications

Features	Description
Bluetooth Standards	Bluetooth core v4.0 Low Energy
Antenna Port	Support Single Antenna for Bluetooth
Frequency Band	2.402 – 2.480 GHz

4.4 Radio Specifications – Bluetooth 4.0 Low Energy

Features	Description
Features	Bluetooth core v4.0 Low Energy
Frequency Band	2.402 – 2.480 GHz
Number of selectable sub channels	40 Channels
Modulation	GFSK
Support Rates	<2Mbps
Maximum receive level	-10dBm (with PER<30.8%)

Operating Condition	Min	Typical	Max	Unit
RX Sensitivity		-90		dBm
Maximum Input			-10	dBm
Frequency Range	2400		2483	MHz
Output Power Adjustment Ranger	-20	-	4	dBm
Output Power		2		dBm
Output Power Variation		4		dB

4.5 Power Consumption

Item	Typical	Unit
TX Mode 3.3V	10	mA
RX Mode 3.3V	12	mA
MCU ON, Bluetooth sleep	5.14	mA
MCU sleep, Bluetooth sleep	0.42	uA

Power Management

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
I _{OFF}	Current in SYSTEM OFF, no RAM retention.			0.61		μΑ	2
I _{OFF, RET, 8k}	Additional current in SYSTEM OFF per retained RAM block (8 kB)			0.6 ¹		μΑ	2
I _{OFF2ON}	OFF to CPU execute transition current.			400		μΑ	1
t _{OFF2ON}	OFF to CPU execute.			9.6	10.6	μs	1
I _{ON,16k}	SYSTEM-ON base current with 16 kB RAM enabled.			2.61		μΑ	2
I _{ON,32k}	SYSTEM-ON base current with 32 kB RAM enabled.			3.8 ¹		μΑ	2
t _{1V2}	Startup time for 1V2 regulator.			2.3		μs	1
I _{1V2XO16}	Current drawn by 1V2 regulator and 16 MHz XOSC when both are on at the same time.	See <i>Table 33</i> on page 48.		810 ²		μА	1

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
t _{1V7}	Startup time for 1V7 regulator			2	3.6	μs	1
I _{1V7}	Current drawn by 1V7 regulator			105		μΑ	2
F _{DCDC}	DC/DC converter current conversion factor.		0.654		1.24		1

 F_{DCDC} will vary depending on VDD and Internal radio current consumption (I_{DD}). Please refer to the *nRF51 Series Reference Manual*, v3.0 or later, for a method to calculate $I_{DD,DCDC}$. See *Figure 11* on page 50 for a DC/DC conversion factor chart.

Radio Current Consumption

Symbol	Description	Note	Min.	Тур.	Max.	Units	Test level
I _{TX,+4dBm}	TX only run current at $P_{OUT} = +4 \text{ dBm}$.	1		16		mA	4
I _{TX,0dBm}	TX only run current at $P_{OUT} = 0$ dBm.	1		10.5		mA	4
I _{TX,-4dBm}	TX only run current at $P_{OUT} = -4$ dBm.	1		8		mA	2
I _{TX,-8dBm}	TX only run current at $P_{OUT} = -8$ dBm.	1		7		mA	2
I _{TX,-12dBm}	TX only run current at $P_{OUT} = -12$ dBm.	1		6.5		mA	2
I _{TX,-16dBm}	TX only run current at $P_{OUT} = -16$ dBm.	1		6		mA	2
I _{TX,-20dBm}	TX only run current at $P_{OUT} = -20$ dBm.	1		5.5		mA	2
I _{TX,-30dBm}	TX only run current at $P_{OUT} = -30$ dBm.	1		5.5		mA	2
I _{START,TX}	TX startup current.	2		7		mA	1
I _{RX,250}	RX only run current at 250 kbps.			12.6		mA	1
I _{RX,1M}	RX only run current at 1 Mbps.			13		mA	4
I _{RX,2M}	RX only run current at 2 Mbps.			13.4		mA	1
I _{START,RX}	RX startup current.	3		8.7		mA	1

- 1. Valid for data rates 250 kbps, 1 Mbps, and 2 Mbps.
- Average current consumption (at 0 dBm TX output power) for TX startup (130 μs), and when changing mode from RX to TX (130 μs).
- 3. Average current consumption for RX startup (130 $\mu s)$, and when changing mode from TX to RX (130 $\mu s)$.

4.6 Transmitter Specification

Symbol	Description	Min.	Тур.	Max.	Units	Test level
P _{RF}	Maximum output power.		4		dBm	4
P _{RFC}	RF power control range.	20	24		dB	2
PRFCR	RF power accuracy.			±4	dB	1
P _{WHISP}	RF power whisper mode.		-30		dBm	2
P _{BW2}	20 dB bandwidth for modulated carrier (2 Mbps).		1800	2000	kHz	2
P _{BW1}	20 dB bandwidth for modulated carrier (1 Mbps).		950	1100	kHz	2
P _{BW250}	20 dB bandwidth for modulated carrier (250 kbps).		700	800	kHz	2
P _{RF1.2}	1 st Adjacent Channel Transmit Power. ±2 MHz (2 Mbps).			-20	dBc	2
P _{RF2.2}	2 nd Adjacent Channel Transmit Power. ±4 MHz (2 Mbps).			-45	dBc	2
P _{RF1.1}	1 st Adjacent Channel Transmit Power. ±1 MHz (1 Mbps).			-20	dBc	2
P _{RF2.1}	2 nd Adjacent Channel Transmit Power. ±2 MHz (1 Mbps).			-40	dBc	2
P _{RF1.250}	1 st Adjacent Channel Transmit Power. ±1 MHz (250 kbps).			-25	dBc	2
P _{RF2.250}	2 nd Adjacent Channel Transmit Power. ±2 MHz (250 kbps).			-40	dBc	2
t _{TX,30}	Maximum consecutive transmission time, $f_{TOL} < \pm 30$ ppm.			16	ms	1
t _{TX,60}	Maximum consecutive transmission time, f_{TOL} < ± 60 ppm.			4	ms	1

4.7 Antenna Reference Specification

4.7.1 Built-In Antenna Performance

Item	Freq. Band	Gain	Return Loss	VSWR
Spec	2.4 ~ 2.5GHz	>-5dBi	<-8.5dB	2.2 max
Item	Impedance	Polarization	Directivity	Efficiency
Spec	50 ohm	Linear	Omni-directional	>30%

2-Way Communication Range at ISM-Band 2440MHz (Tx: 0dBm; Rx=-90dBm; Fm:9dB)

4.7.2 Antenna Pattern

Omnidirectional Radiation

4.8 System Design Guide

Keep-Out area: As shown in following figures

EVB DESIGN GUIDE

Keep A, G, I & K = 3 mm

Keep B, H, J & L = 3 mm

Keep C = 0.8 mm

Keep D & E = 0.9 mm

Keep M = 1.7 mm

Connect to system ground from F (2nd layer)

The L-shaped ground leg is required for antenna performance. Don't cut-off L-shaped ground leg and accommodate routes.

Route signal trace out of module from side A on 3rd layer to maintain 1st & 2nd layer system ground plan integrity.

5 Dimensions

The size and thickness of the M904 module 6.5mm (W) \times 6.5mm (L) \times 1.2mm (H):

Top View & Side View:

Dimension Detail

		Symbol	Common Dimensions	
Package :		PIM		
Body Size:	X	E D	6.500 6.500	
Ball Pitch :	X	eE eD	0.500 0.500	
Total Thickness :	А	1.300±0.100		
Mold Thickness :	М	1.100 Ref.		
Substrate Thickness :	S	0.200 Ref.		
S/R Opening :		0.450*0.450/0.250*0.450		
Stand Off :	A1	~		
Ball Width :	b	~		
Package Edge Tolerance :	aaa	0.100		
Mold Flatness :	bbb	0.100		
Coplanarity:	ddd			
Ball Offset (Package) :	eee			
Ball Offset (Ball) :	fff			
Ball Count :	n	48		
Edge Ball Center to Center :	X	E1 D1	4.500 5.500	

6 Pin Assignments

Pin number	Pin name	Pin function	Description
1 to 9	VSS	Power	Ground (0V)
10	RF	BLE RF (antenna connection)	BLE RF (antenna connection)
11	ANT	Antenna	Antenna feed
12	VSS	Power	Ground (0V)
13	DEC2	Power	Power supply decoupling
14	SWDCLK	Digital input	Hardware debug and flash programming I/O
15	SWDIO/ nRESET	Digital I/O	System reset (active low). Also hardware debug and flash programming I/O.
16	P0_16	Digital I/O	General purpose I/O pin.
17	P0_15	Digital I/O	General purpose I/O pin.
18	P0_14	Digital I/O	General purpose I/O pin.
19	P0_13	Digital I/O	General purpose I/O pin.
20	P0_09	Digital I/O	General purpose I/O pin.
21	P0_08	Digital I/O	General purpose I/O pin.
22	P0_06	Digital I/O	General purpose I/O pin.
23	AIN6	Analog input	ADC/LPCOMP input
24	AIN5	Analog input	ADC/LPCOMP input
25	AIN4	Analog input	ADC/LPCOMP input
26	AIN2	Analog input	ADC/LPCOMP input
27	AIN3	Analog input	ADC/LPCOMP input
28	AREF0	Analog input	ADC/LPCOMP reference input
29	PWR	Power	Power supply
30	VSS	Power	Ground (0V)
31	AIN1_XL1	Analog input Analog output	ADC/LPCOMP input Connection for 32.768 kHz crystal.
32	AINO_XL2	Analog input Analog input	ADC/LPCOMP input 1 Connection for 32.768 kHz crystal or external 32.768 kHz clock reference.
33	VSS	Power	Ground (OV)
34	ANT_TEST	Antenna test	Antenna open/short test
35	VSS	Power	Ground (OV)
36	AVDD	Power	Analog power supply
37 to 48	VSS	Power	Ground (OV)

7 Recommended Footprint

Suggest on PCB: SMD (1:1)

8 Reference Design Circuit

9 Recommended Reflow Profile

Profile Condition

a. Suitable for lead-free solder

b. Between 155 ~ 160°C: 60 ~ 90 sec.

c. Above 220°C: 60 ~ 90 sec.

d. Peak temperature: 240 ~ 245 °C (<10 sec.)

10 SiP Module Preparation

10.1 Handling

Handling the module must wear the anti-static wrist strap to avoid ESD damage. After each module is aligned and tested, it should be transport and storage with anti-static tray and packing. This protective package must be remained in suitable environment until the module is assembled and soldered onto the main board.

10.2 SMT Preparation

- 1. Calculated shelf life in sealed bag: 6 months at <40°C and <90% relative humidity (RH).
- 2. Peak package body temperature: 250°C.
- 3. After bag was opened, devices that will be subjected to reflow solder or other high temperature process must.
 - a. Mounted within: 72 hours of factory conditions <30°C /60% RH.
 - b. Stored at \leq 10% RH with N2 flow box.
- 4. Devices require baking, before mounting, if:
 - a. Package bag does not keep in vacuumed while first time open.
 - b. Humidity Indicator Card is >10% when read at 23 ± 5 °C.
 - c. Expose at 3A condition over 8 hours or Expose at 3B condition over 24 hours.
- 5. If baking is required, devices may be baked for 12 hours at $125\pm5^{\circ}$ C.

11 Package Information

將包好的包裝盤,連同粉紅色抗靜電氣泡布放入內箱中 Put The Packaged Tray And Pink Antistatic Bubble Warp

外箱內未滿6盒時,請以緩衝材填塞,不須另補空盒 Please place the cushion but the empty box to fill the spare space in the outer box, if the inner box q'ty is less than 6.

12 Document History

Date	Modifications	Version
Jan. 23, 2014	Preliminary Version	1.0
Jun. 14, 2016	Add antenna design guide, and modify power consumption information	1.1
Nov. 24, 2016	Revise the reference scheme	1.2
Feb. 26, 2018	Renew format & Add the item "Voltage any pin" in 4.1	1.3

MtM+ Technology Corporation

7F, 178 MinQuan East Road Section 3, Songshan District, Taipei, Taiwan (R.O.C.)

+886-2-7736-7386

http://www.mtmtech.com.tw

http://blog.mtmtech.com.tw

https://www.facebook.com/MtMTechnologyCorporation

http://www.Instagram.com/mtmtech

© 2018 MtM+ Technology Corporation

DISCLAIMER: The information in this document is provided in connection with MtM+ Technology products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of MtM+ Technology products. MTM+ TECHNOLOGY ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTSINCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENTSHALL MTM+ TECHNOLOGY BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LI MITATION, DAMAGESFOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF MTM+ TECHNOLOGY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. MtM+ Technology makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. MtM+ Technology does not make any commitment to update the information contained herein. MtM+ Technology products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: MtM+ Technology products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety -Critical Applications") without an MtM+ officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. MtM+ Technology products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by MtM+ Technology as military-grade.