Fachbereich Mathematik

Prof. Dr. Thomas Streicher

Dr. Sven Herrmann

Dipl.-Math. Susanne Pape

Wintersemester 2009/2010 24./25. November 2009

7. Übungsblatt zur Vorlesung "Mathematik I für Informatik"

Gruppenübung

Aufgabe G1 (Grenzwerte von Funktionen)

Berechnen Sie die folgenden Grenzwerte oder weisen Sie deren Nichtexistenz nach:

(a)

$$\lim_{x \to 2} \frac{x^2 - 6x + 8}{x^3 - 4x^2 + 3x + 2},$$

(b)

$$\lim_{x\to\infty}\sin(2\pi x).$$

Aufgabe G2 (Geometrische Reihe)

Sei $(a_k)_{k\in\mathbb{N}_0}$ eine Folge reeller Zahlen, und

$$s_n := \sum_{k=0}^n a_k$$

für alle $n \in \mathbb{N}_0$. Dann heißt die Folge $(s_n)_{n \in \mathbb{N}_0}$ eine (unendliche) *Reihe*. Für diese Reihe schreibt man auch $\sum_{k=0}^{\infty} a_k$. Die a_k heißen *Glieder* der Reihe, die s_n heißen *Partialsummen*.

Gegeben ist die geometrische Reihe $\sum_{k=0}^{\infty} q^k$.

(a) Zeigen Sie per Induktion, dass

$$s_n = \sum_{k=0}^n q^k = \begin{cases} \frac{q^{n+1}-1}{q-1} & \text{für } q \neq 1, \\ n+1 & \text{für } q = 1. \end{cases}$$

(b) Beweisen Sie die Konvergenz von $\sum\limits_{k=0}^{\infty}q^k$ für |q|<1 und die Divergenz für $|q|\geq 1.$

Aufgabe G3 (Stetigkeit)

(a) Sei $f: D \to \mathbb{R}$ eine Funktion und $a \in D$. Zeigen Sie, dass f genau dann stetig in a ist, wenn $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$.

(b) Sei $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ gegeben mit

$$f(x) = x^2 \cdot \sin\left(\frac{1}{x}\right)$$

Wie könnte man f an der Stelle $x_0 = 0$ definieren, sodass die entstehende Funktion \tilde{f} stetig ist?

Hinweis: Die so entstehende Funktion \tilde{f} ist eine stetige Fortsetzung der Funktion

$$\hat{f} = x^2 \cdot \sin\left(\frac{1}{x}\right), \qquad x \in \mathbb{R} \setminus \{0\}$$

im Punkt 0 (vgl. Definition II.3.17).

Aufgabe G4 (Häufungspunkte)

Bestimmen Sie für die untenstehenden Folgen alle Grenzwerte (sofern sie existieren) und alle Häufungspunkte der Mengen $M = \{a_n : n \in \mathbb{N}\}.$

- (a) $a_n = \frac{1}{n}$ für alle $n \in \mathbb{N}$
- (b) $a_n = (-1)^n$ für alle $n \in \mathbb{N}$
- (c) $a_n = (-1)^n + \frac{1}{n}$ für alle $n \in \mathbb{N}$
- (d) $a_n = n^{(-1)^n}$ für alle $n \in \mathbb{N}$.

Hausübung

(In der nächsten Übung abzugeben.)

Aufgabe H1 (Polynome als stetige Funktionen)

(1+1+1) Punkte

Gegeben sei das Polynom P mit

$$P(x) = x^5 + 2x^3 - x^2 - 2$$

und das abgeschlossene Intervall I = [-2, 2].

- (a) i. Ist P stetig auf I?
 - ii. Ist P auf I beschränkt?
 - iii. Besitzt P auf I ein Maximum bzw. ein Minimum?
- (b) Berechnen Sie P(-2) und P(2) mit dem Hornerschema.
- (c) i. Zeigen Sie, dass P in [-2, 2] mindestens eine Nullstelle besitzt.
 - ii. Begründen Sie, dass die Gleichung P(x) = -1 mindestens eine Lösung $x_0 \in [0,1]$ besitzt.

Aufgabe H2 (Stetigkeit und Beschränktheit)

 $(1+1\frac{1}{2}+1\frac{1}{2})$ Punkte)

- (a) Zeigen Sie, dass jede Lipschitz-stetige Funktion gleichmäßig stetig ist. Zur Erinnerung: für $D \subseteq \mathbb{R}$ heißt eine Funktion $f: D \to \mathbb{R}$ Lipschitz-stetig, falls eine Konstante L > 0 existiert, so dass $|f(x) f(y)| \le L|x y|$ ist für alle $x, y \in D$.
- (b) Zeigen Sie, dass die Funktion $g:[0,1]\to\mathbb{R}$, $x\mapsto \sqrt{x}$ gleichmäßig stetig aber nicht Lipschitzstetig ist.
- (c) Seien $D \subseteq \mathbb{R}$ und $f: D \longrightarrow \mathbb{R}$ stetig in einem Punkte $x \in D$. Zeigen Sie, dass es ein Intervall U = (a, b) mit $x \in U$ gibt, so dass $f: U \cap D \longrightarrow \mathbb{R}$ beschränkt ist.

Aufgabe H3 (Stetigkeit)

 $(1\frac{1}{2} + 1\frac{1}{2} \text{ Punkte})$

(a) Sei $f: D \to \mathbb{R}, \ D =]\frac{1}{2}, \infty[$ gegeben durch

$$f(x) = \begin{cases} 5 + \tan(\pi x) & x \in]\frac{1}{2}, 1[\\ x^2 + 2x + 2 & x \in [1, 3[\\ \frac{17}{x} & x \in [3, \infty[.]] \end{cases}$$

Für welche $x \in D$ ist f stetig?

(b) In welchen Punkten ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit

$$f(x) = \begin{cases} 0 & x \le 0\\ \frac{1}{n} & \frac{1}{n} \le x < \frac{1}{n-1}, n \in \mathbb{N} \setminus \{1\}\\ 1 & x \ge 1. \end{cases}$$

stetig?

Hinweis: Skizzieren Sie den Funktionsverlauf.