CLAIMS

1	1. A process for multivariate data analysis comprising the steps of:
2	using a computer in conjunction with a Gram-Schmidt
3	orthogonalization process to determine normal Gram-Schmidt vectors
4	corresponding to observable normal values of a plurality of normal datum
5	where at least one of said plurality of normal datum has zero standard
6	deviation;
7	computing abnormal Gram-Schmidt vectors corresponding to
8	observable abnormal values of a plurality of abnormal datum;
9	computing a signal to noise ratio for said normal Gram-Schmidt vectors
10	and said abnormal Gram-Schmidt vectors to obtain abnormal predicted values;
11	and
12	using said abnormal predicted values for a future prediction.
1	2. The process of claim 1 further comprising the step of:
2	computing dynamic signal to noise ratios for said normal Gram-
3	Schmidt vectors and for said abnormal Gram-Schmidt vectors.
1	3. The process of claim 2 wherein said dynamic signal to noise
2	ratio, η_j is equivalent to:
3	$\beta_i^2/V_e \tag{13}$

- where $\beta_j = \left[\sum_{i=1}^t M_i \ U_{ij}\right] / r$, M_i is the i^{th} value of said plurality of abnormal
- datum, Uij is selected from the group consisting of: said normal Gram-Schmidt
- 6 vectors and said abnormal Gram-Schmidt vectors, Ve is

$$\left(\sum_{i=1}^{t} U_{ij}^{2} - \left(1/r \right) \left[\sum_{i=1}^{t} M_{i} U_{ij} \right]^{2} \right) / (t-1)$$

- 8 where i is an integer between 1 and t, and j is an integer between 1 and k.
- 1 4. The process of claim 1 further comprising the step of:
- 2 comparing said abnormal predicted values to said observable abnormal values
- 3 of said plurality of abnormal datum.
- 1 5. The process of claim 1 wherein said observable abnormal values
- 2 are assigned.
- 1 6. The process of claim 1 wherein said observations on k variables
- 2 relates to medical diagnosis.
- The process of claim 1 wherein said observations on k variables
- 2 relates to quality of a manufactured product.
- 1 8. The process of claim 1 wherein said observations on k variables
- 2 relates to financial markets.

- 1 9. The process of claim 1 wherein said observations on k variables 2 relates to voice recognition.
- 1 10. The process of claim 1 wherein said observations on k variables
 2 relates to TV picture recognition.
- 1 11. A process for multivariate analysis comprising the steps of:
- 2 using a computer to calculate Gram-Schmidt orthogonal vectors 3 satisfying the equation:
- 4 $U_1 = (u_{11}, u_{12}, ..., u_{1n})$
- 5 $U_2 = (u_{21}, u_{22}, ..., u_{2n})$
- 6
- 7 $U_k = (u_{k1}, u_{k2}, ..., u_{kn})$
- for a sample size n and observations on k variables, wherein the mean of said
- 9 Gram-Schmidt orthogonal vectors is zero;
- 10 calculating for each of said Gram-Schmidt vectors has a standard
- 11 deviation; and
- calculating a Mahalanobis distance corresponding to each of the k
- observations that satisfies the equation:
- 14 $MD_{j} = (1/k) [(u_{1j}^{2}/s_{1}^{2}) + (u_{2j}^{2}/s_{2}^{2}) + ... + (u_{kj}^{2}/s_{k}^{2})]$
- where j is an integer from 1...n.

ASI-10003/03 31209gs

1

2

- 1 12. The process of claim 11 further comprising creating a
 2 Mahalanobis space database comprising Gram-Schmidt vector means, Gram3 Schmidt standard deviations, Gram-Schmidt coefficients, and Mahalanobis
 4 distances corresponding to the k observations.

 1 13. The process of claim 11 wherein said observations on k
 2 variables relates to medical diagnosis.
- 1 14. The process of claim 11 wherein said observations on k
 2 variables relates to quality of a manufactured product.
- 1 15. The process of claim 11 wherein said observations on k
 2 variables relates to financial markets.
 - 16. The process of claim 11 wherein said observations on k variables relates to voice recognition.
- 1 17. The process of claim 11 wherein said observations on k
 2 variables relates to TV picture recognition.