STAT231 course note

Chenxuan Wei Jan 2022

Contents

1	Introduction to statistical sciences	3
	1.1 Empiral studies and staticical Science	3
	1.2 Data Collection	4
	1.3 Data Summaries	5
	1.4 Graphical Summaries	6
	1.5 Probability Distributions and statistical models	7
	1.6 Data Analysis and statistical Inference	8
2	Statistical Model	9
	2.1 Statistical Models and probability distributions	9
	2.2 Max likelihood	10
	2.3 Likelihood function for continuous distribution	11
	2.4 Likelihhod funtions for mutinomial distribution	13
	2.5 checking the fit of the Model	14
	2.6 CDFs	15
3	Planning and conducting empirical studies	16
4	estimation	18
	4.1 Statistical Models and estimation	18
	4.2 Estimator and sampling distributions	18
	4.3 Interval Estimation Using the likelihood function	18
	4.4 Confidence interval and pivital quantity	19
	4.5 The Chi-squared and t distributions	20
	4.6 Likelihood-Based Confidence Interval	21
	4.7 Likelihood-Based CI	22
	4.8 Some data for CI	23
5	Hypothesis Testing	25
	5.1 Introduction	25
	5.2 Hypothesis testing for parameters in the $G(\mu, \sigma)$ model	26
	5.3 Likelihood Ratio Test of hypotheses - One parameter	28
	5.4 Useful tables	29
6	Gaussian response models	31
	6.1 Introduction	31
	6.2 Simple Linear Regression	32
	6.3 Comparison of Two population Means	36
7	MULTINOMIAL MODELS AND GOODNESS OF FIT TESTS	39
	7.1 Likelihood Ratio Test for the Multinomial Model	39
	7.2 Goodness of fir tests	40
	7.3 Two-way contigency table	41
8	Useful infomation for note taking	42

1 Introduction to statistical sciences

1.1 Empiral studies and staticical Science

1. Empircal stury is one in which we learn by observation or experimentation, involve un-

2. Terms

- Population: collection of units
- Process is a system by which units are produced
- Variates are characteristics of the units
 - Continuous variates
 - Discrete variates
 - categorical variates
 - complex variates
- Attributes

a population or process is a function of variates which is defined for all units in the population or process

1.2 Data Collection

1. Sample Surveys

Infomation of finite population is obtained by selected a "representative" sample of units from the population, and determining the variates of interest for each unit in the sample

2. Observation studies

Information about a population is collected without any attempt to change one or more variates

3. Experimetal Studies

change or sets the value of one or more variates for the units in the study

Data Summaries 1.3

1. Measures of Location

Assume a data set is $\{y_1, y_2 \dots y_n\}$

- sample mean $= \frac{1}{n} \sum_{i=1}^{n} y_i$
- sample median first find order statistic such $y_{(1)} \dots y_{(n)}$ where 1 is min and n is max sample median = $y_{(\frac{n+1}{2})}$ if n is odd $= \frac{1}{2} * (y_{(\frac{n}{2})} + y_{(\frac{n}{2}+1)})$
- sample mode: most common value
- 2. Measure of variability

Assume a data set is $\{y_1, y_2 \dots y_n\}$

• sample variance

$$s^2 = \frac{1}{n-1} \sum_{i=1}^n (y_i - \overline{y})^2 \text{ where } \overline{y} \text{ is the mean}$$
$$= \frac{1}{n-1} [\sum_{i=1}^n y_i^2 - n(\overline{y})^2]$$

• sample standard deviation = sif data are roughly symmetric then

$$-$$
68 % will lay $\operatorname{in}(\overline{y}-s,\overline{y}+s)$

$$-95\%$$
 will lay $\operatorname{in}(\overline{y}-2s,\overline{y}+2s)$

- range = $y_{max} y_{min}$
- interquaritile range
 - pth percentile

is the value such p percent of data below this value

$$* k = (n+1)p$$

* if not int, use the close ints

$$IQR = q(0.75) - q(0.25)$$

- 3. Measures of shape
 - sample skewness

$$= \frac{\frac{\frac{1}{n} * \sum_{i=1}^{n} (y_i - \overline{y})^3}{\left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2\right]^{\frac{3}{2}}}$$

 $=\frac{\frac{1}{n}*\sum_{i=1}^{n}(y_i-\overline{y})^3}{\left[\frac{1}{n}\sum_{i=1}^{n}(y_i-\overline{y})^2\right]^{\frac{3}{2}}}$ positive will have more < mean, negative will have more > mean

• sample kurtosis

$$= \frac{\frac{1}{n} * \sum_{i=1}^{n} (y_i - \overline{y})^4}{[\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2]^2}$$

 $= \frac{\frac{1}{n} * \sum_{i=1}^{n} (y_i - \overline{y})^4}{[\frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2]^2}$ look normal = 3, peak > 3, uniform = 1.2

1.4 Graphical Summaries

- 1. Hisrogram
 - Standard all interval are equal in width and heights are equal
 - Relative height of rectangle = $\frac{f_j/n}{a_j-a_{j-1}}$ Sum of areas of rectangles = 1
- 2. Emprical CDF

if there are n object
$$\overline{F}(y) = \frac{\#ofy_iwhich \leq y}{n}$$

3. Boxplots

give a pircture of the shape of the distribution how to construct one

- (a) draw a box with height at IQR
- (b) draw horizontal line at median
- (c) draw a line down from the with length = q(0.25) 1.5IQR
- (d) draw a line up from the box
- (e) plot any addition point as outliers
- 4. Scatterplot
- 5. Scample Correlation(r)

Let
$$\{(x_i, y_i)\}\$$

$$r = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - n\overline{xy}$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n(\overline{y})^2$$

1.5 Probability DIstributions and statistical models

- 1. Statiscal model model to incorprates probability
- 2. Response variate and explanatory varite $Y = {\rm Response} = {\rm determine} \ {\rm by} \ {\rm distribution}, \ {\rm x} = {\rm explanatory} = {\rm independent} \ {\rm variable}$

1.6 Data Analysis and statistical Inference

1. Descriptive statistic is the portrayal of the data, in numerical and graphical ways to show features of interest

2. Statistical Inferences

A process of drawing general conclusions about a population or process based on data collected in a study of the population or process

3. estimation problem interested in estimating one or more attributes of a process or population

4. Hypothesis testing problem use data to assess the truth of some question or hypothesis

5. Prodiction problem use data to predit future value of a variate for a unit to be selected from the population or process

2 Statistical Model

2.1 Statistical Models and probability distributions

1. Binomial distribution

model for outcomes in repeated independent trails with 2 possible outcomes on each trial

$$f(y;\theta) =_n C_y \theta^y (1-\theta)^{n-y}$$

$$E(Y) = n\theta, Var(Y) = n\theta(1-\theta)$$

2. Poisson distribution

used for random ocurence of events
$$f(y;\theta) = \frac{\theta^y e^{-\theta}}{y!}$$

$$E(Y) = \theta, Var(Y) = \theta$$

3. Exponential distribution

used to model the distributions of the waiting times until the occurence of an event of interest

$$f(y;\theta) = \frac{1}{\theta}e^{-\frac{y}{\theta}}$$

$$E(Y) = \theta, Var(Y) = \theta^{2}$$

4. Normal (Gaussian) distribution

used to model to represent the distributions of continuous measurements such as teh heights or weights of individuals

$$f(y; \mu; \theta) = a$$
 bunch of stuff $E(Y) = \mu, Var(Y) = \theta^2$

5. Multinomial distribution
$$f(y_i; \theta) = \frac{n!}{\prod y_i!} \prod \theta^{y_i}$$

2.2 Max likelihood

- 1. Estimate of a parameter θ Is the value of a function of the observed data y in form of $y=(y_i)$ θ hat $=\theta(y)$ where we define the θ
- 2. Likelihood function $L(\theta) = L(\theta; y) = P(Y = y; \theta),$ product of all $f(y_i; \theta)$ = probability that we ebserve the datat y as a function of θ
- 3. Maximum likelihood estimate The value of θ that maximizes $L(\theta)$ is the maximum likelihood estimate of θ , and denoted by $\overline{\theta}$ $L(\theta) = \theta^y (1-\theta)^{n-y}$
- 4. Log likelihood Function $l(\theta) = ln(L(\theta))$
- 5. Relative likelihood function $R(\theta) = \frac{L(\theta)}{L(\overline{\theta})}$
- 6. Binomial likelihood function $L(\theta) = (\text{n choose y}) \theta^y (1-\theta)^{n-y} \\ = \theta^y (1-\theta)^{n-y}$
- 7. y_i likelihood function for random sample $L(\theta) = L(\theta; y) = \prod_{i=1}^{n} f(y_i; \theta)$
- 8. For poisson distribution $L(\theta) = \theta^{n\overline{y}}e^{-n\theta}$ $l(\theta) = n(\overline{y}ln(\theta) \theta)$ $dl(\theta) = \frac{n}{\theta}(\overline{y} \theta)$

2.3 Likelihood function for continuous distribution

Named Distribution	Observed Data	Maximum Likelihood Estimate	Maximum Likelihood Estimator	Relative Likelihood Function
$Binomial(n,\theta)$	y	$\hat{\theta} = \frac{y}{n}$	$\tilde{\theta} = \frac{Y}{n}$	$R(\theta) = \left(\frac{\theta}{\tilde{\theta}}\right)^{y} \left(\frac{1-\theta}{1-\tilde{\theta}}\right)^{n-y}$ $0 < \theta < 1$
$\operatorname{Poisson}(heta)$	y_1, y_2, \dots, y_n	$\hat{ heta} = ar{y}$	$\tilde{\theta} = \overline{Y}$	$R(\theta) = \left(\frac{\theta}{\theta}\right)^{n\hat{\theta}} e^{n(\hat{\theta} - \theta)}$ $\theta > 0$
Geometric(heta)	y_1, y_2, \dots, y_n	$\hat{ heta} = rac{1}{1+ar{y}}$	$\tilde{\theta} = \frac{1}{1+\overline{Y}}$	$R(\theta) = \left(\frac{\theta}{\bar{\theta}}\right)^n \left(\frac{1-\theta}{1-\bar{\theta}}\right)^{n\bar{y}}$ $0 < \theta < 1$
Negative Binomial (k, θ)	y_1, y_2, \dots, y_n	$\hat{\theta} = \frac{k}{k + \bar{y}}$	$\tilde{\theta} = \frac{k}{k + \overline{Y}}$	$R(\theta) = \left(\frac{\theta}{\theta}\right)^{nk} \left(\frac{1-\theta}{1-\theta}\right)^{n\tilde{y}}$ $0 < \theta < 1$
$\texttt{Exponential}(\theta)$	y_1, y_2, \dots, y_n	$\hat{ heta}=ar{y}$	$\tilde{\theta} = \overline{Y}$	$R(\theta) = \left(\frac{\theta}{\theta}\right)^n e^{n(1-\theta/\theta)}$ $\theta > 0$

can write the likelihood function as

$$L(\mu, \sigma) = \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \bar{y})^2\right\} \exp\left[-\frac{n(\bar{y} - \mu)^2}{2\sigma^2}\right]$$

1e log likelihood function for ${\pmb \theta} = (\mu, \sigma)$ is

$$l(\pmb{\theta}) = l(\mu,\sigma) = -n\log\sigma - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \bar{y})^2 - \frac{n(\bar{y} - \mu)^2}{2\sigma^2} \quad \text{for } \mu \in \Re \text{ and } \sigma > 0$$

maximize $l(\mu, \sigma)$ with respect to both parameters μ and σ we solve the two equations

$$\frac{\partial l}{\partial \mu} = \frac{n}{\sigma^2} \left(\bar{y} - \mu \right) = 0 \quad \text{and} \quad \frac{\partial l}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (y_i - \bar{y})^2 = 0$$

nultaneously. We find that the maximum likelihood estimate of θ is $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$, where

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y}$$
 and $\hat{\sigma} = \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2\right]^{1/2}$

2.4 Likelihhod funtions for mutinomial distribution

1. Basic

$$L(\theta) = \frac{n!}{\prod y_i!} \prod \theta_i^{y_i}$$
$$l(\theta) = \sum_{i=1}^k y_i ln(\theta_i)$$

2. Invariance Property of the Maximum likelihood estimate If θ is the MLE for θ , then $g(\theta)$ is for $g(\theta)$ too

2.5 checking the fit of the Model

- 1. expected frequency $e_j = (n)(p_j)$ where $p_j = \text{PDF}$ for the expected model
- 2. Graphical checkes add PDF on relative frequency histogra to check if curve agress add a CDF to ECDF to check the curves

2.6 CDFs

- 1. empiricial cdf $\overline{F}(y) = \frac{\#y_i \le y}{n}$
- 2. Normal Qqplots plot like $(\phi^{-1}(\frac{i}{n+1}), y_i)$ where ϕ^{-1} is the inverse cdf of G(0, 1)
- 3. some QQ graph a stright line \rightarrow normal distribution a curve line s shape \rightarrow uniform distribution a u ship \rightarrow exponential (positive skewed) a upside-down U shape is negatively skewed

3 Planning and conducting empirical studies

1. PPDAC

• Problem: clear statment of study's objective

• Plan: The procedures that will be used to carry out the study

 $\bullet\,$ Data: physical collnection of the data

Analysis: do it to dataConlusion: just conlusion

2. Problem:

- Target population or process collection of units to which the experimenters who are conducting the empirical study wish the conclusions to apply
- Variate is characteristic of every unit
- attribute is a function of the variates over a population
- Type of problems
 - Descriptive determine a particular attribute of the population
 - Causative determine the existence of a causal relationship between 2 variates
 - Predictive: predict the response of a variate in future

3. Plan

- The study population collection of units available to be included in the study
- Study error if the attributes in the study population differ from those in the target population then this differ is study error
- sampling protocal procedure used to select a sample of units from the study population. number of units is sample size
- Sample error if the attributes in the sample differ from those in the study population difference is called sample error
- Measurement error if the measured value and the true value of a variate are not identical, the difference is called measurent error
- 4. Data: nothing important
- 5. Analysis: nothing important
- 6. Conclusion: even a shorter video

4 estimation

4.1 Statistical Models and estimation

1. nothing important

4.2 Estimator and sampling distributions

1. point estimate $\overline{\theta}$ if a function $\overline{\theta}=g(y_i)$ of the observed data y_i used to estimate the unkown parameter θ

is a numerical

- 2. point estimator θ_{bolang} $\theta_{bolang} = g(Y_i)$ of random variables Y_i it is a random variable, a rule that indicates how to process the data to obtain an estimate of the unknown parameter θ
- 3. Sampling distribution is the distribution for θ_{bolang}
- 4. Note

for
$$Y_i \sim G(\mu, \sigma)$$

 $\mu_{bolang} = \overline{Y} \sim G(\mu, \sigma/\sqrt{n})$
 $\sigma_{bolang}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2$

5. Inverval estimation

in form of
$$|L(y), U(y)|$$
 are both a function on data y ex. for normal data, $[\overline{y} - \frac{2s}{\sqrt{n}}, \overline{y} + \frac{2s}{\sqrt{n}}]$

4.3 Interval Estimation Using the likelihood function

1. 100p%

for
$$\theta$$
 is the set $\{\theta : R(\theta) \ge p\}$

2. log relative likelihood function

$$r(\theta) = log R(\theta) = l(\theta) - l(\overline{\theta})$$

for $x\%$ likelihood interval $r(\theta) = log(x)$

4.4 Confidence interval and pivital quanlity

- 1. 100p % confidence interval let interval estimator [L(Y), U(Y)] has the property that $P\{\theta \in [L(Y), U(Y)]\} = P[L(Y) \le \theta \le U(Y)] = p$
- 2. A pivotal quantity $Q = Q(Y; \theta)$ is a function of the data Y and the unknown parameter θ such that the distribution of the random variable Q is full known

that is probability statments such as $P(Q \leq b)$ and $P(Q \geq a)$ depend on a and b but not θ

- 3. Construct a 95% CI for $Q(Y:\mu)$
 - $0.95 = P(a \le Q \le b)$
 - $= P(\overline{Y} b/sqrtn \le \mu \le \overline{Y} a/\sqrt{n})$
 - $[\overline{y} b/\sqrt{n}, \overline{y} a/\sqrt{n}]$ is 95% CI for μ based on y
 - ullet determine a and b
 - 95% = 1.96 z score
- 4. Notes
 - $Q(Y;\mu) = \frac{\overline{Y} \mu}{\sigma/\sqrt{n}} \sim G(0,1)$
 - BY central Limit Theorem random variable = $\frac{\overline{theta} \theta}{sd}$
 - $sd(\theta) = \sqrt{\frac{\overline{\theta}*(1-\overline{\theta})}{n}}$
- 5. Choose sample size
 - given $\leq 2(t)$
 - set $A \le t$, A is the A100p% without +-
 - choose θ to maximize A
 - calculate n based on it

4.5 The Chi-squared and t distributions

- 1. Gamma function $=\Gamma(\alpha)=\int_0^\infty x^{\alpha-1}e^{-x}dx, \alpha>0$
- 2. Property of Gamma function
 - $\Gamma(\alpha) = (\alpha 1)\Gamma(\alpha 1)$
 - $\Gamma(\alpha) = (\alpha 1)!$
 - $\Gamma(1) = 1$
 - $\Gamma(\frac{1}{2}) = \sqrt{\pi}$

3. CHI-squared distribution
$$f(x;k)=\frac{1}{2^{\frac{k}{2}}\Gamma(\frac{k}{2})}x^{\frac{k}{2}-1}e^{-\frac{x}{2}} \text{ for } x>0 \text{ and } k\in Zs$$

k is degree of freedom

$$f(f; k = 2) = \frac{1}{2}e^{-\frac{x}{2}}$$
 which is exponential(2)

- 4. Properties of CHI-squared distribution
 - \bullet E(X) = k
 - Var(X) = 2k
 - $M(t) = E(e^{tx}) = (1 2t)^{\frac{k}{2}}$
 - k > 2, unimodels
- 5. Theorem 29

Suppose
$$W_i$$
 are independent random variables with $W_i = x^2(k_i)$, then $S = \sum_{i=1}^n W_i \sim x^2(\sum_{i=1}^n k_i)$

6. Theorem 30

if
$$Z = N(0, 1)$$
, then $W = Z^2 \sim X^2(1)$

- 7. Corollary
 - Let X_i be independent and idnetically distributied $N(\mu, \sigma^2)$ $S = \sum_{i=1}^n (\frac{X_i \mu}{\sigma})^2 \sim X^2(n)$

8. Student t distribution
$$f(x;k) = c_k (1 + \frac{x^2}{k})^{-\frac{k+1}{2}}$$

$$c_k = \Gamma(\frac{k+1}{2})$$

9. Theorem

Suppose
$$Z \sim G(0,1),$$
 and $U \sim X^2(k)$ are independent $T = \frac{Z}{\sqrt{\frac{U}{k}}}$ then $T \sim t(k)$

10. Property

if
$$df \geq 30$$
, we trest $t(df) = G(0,1)$

Likelihood-Based Confidence Interval 4.6

1. Relative likelihood $R(\theta) = \frac{L(\theta)}{L(\overline{\theta})}$

$$R(\theta) = \frac{L(\theta)}{L(\overline{\theta})}$$

 $\overline{\theta} = \text{maximum likelihood estimate}$

$$\lambda(\theta) = -2log[\frac{L(\theta)}{L(\overline{\theta})}]$$

2. likelihood ratio statistic $\lambda(\theta) = -2log[\frac{L(\theta)}{L(\overline{\theta})}]$ $\overline{\theta} = \text{maximum likelihood estimator}$

 $3. \ \, {\rm Theorem} \,\, 34$

100p likelihood vs 100q CI
$$q = 2P(Z \le \sqrt{-2ln(p)})$$

4.7 Likelihood-Based CI

1. Theorem 34 we have 100p%LI and 100q%CI $q = 2P(z \le \sqrt{-2ln(p)}) - 1$

4.8 Some data for CI

 $\begin{array}{c} {\rm Table}~4.3 \\ {\rm Approximate~Confidence~Intervals~for~Named~Distributions} \\ {\rm based~on~Asymptotic~Gaussian~Pivotal~Quantities} \end{array}$

Named Distribution	Observed Data	Point Estimate $\hat{\theta}$	Point Estimator $\widetilde{ heta}$	Asymptotic Gaussian Pivotal Quantity	Approximate 100p% Confidence Interval
${\tt Binomial}(n,\theta)$	y	<u>y</u> n	$\frac{Y}{n}$	$\frac{\bar{\theta} - \theta}{\sqrt{\frac{\bar{\theta} (1 - \bar{\theta})}{\nu_1}}}$	$\hat{\theta} \pm a\sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}$
$\operatorname{Poisson}(heta)$	y_1, y_2, \dots, y_n	ÿ	\overline{Y}	$\frac{\bar{\theta} - \theta}{\sqrt{\frac{\bar{\theta}}{n}}}$	$\hat{\theta} \pm a\sqrt{\frac{\hat{\theta}}{n}}$
Exponential(θ)	y_1, y_2, \dots, y_n	$ar{y}$	\overline{Y}	$\frac{\overline{\theta} - \theta}{\frac{\overline{\theta}}{\sqrt{n}}}$	$\hat{\theta} \pm a \frac{\hat{\theta}}{\sqrt{n}}$

Note: The value a is given by $P\left(Z \leq a\right) = \frac{1+p}{2}$ where $Z \sim G\left(0,1\right)$. In R, $a = \operatorname{qnorm}\left(\frac{1+p}{2}\right)$

Model	Unknown Quantity	Pivotal Quantity	100p% Confidence/Prediction Interval
$G(\mu, \sigma)$ σ known	μ	$rac{\overline{Y}-\mu}{\sigma/\sqrt{n}}\sim G\left(0,1 ight)$	$\bar{y} \pm \alpha \sigma / \sqrt{n}$
$G(\mu, \sigma)$ σ unknown	μ	$\frac{\overline{Y} - \mu}{S / \sqrt{n}} \sim t \left(n - 1 \right)$	$ar{y} \pm bs/\sqrt{n}$
$G(\mu, \sigma)$ μ unknown σ unknown	Y	$\frac{\frac{Y-\overline{Y}}{S}}{S\sqrt{1+\frac{1}{n}}} \sim t \left(n-1\right)$	100p% Prediction Interval $ar{y} \pm bs\sqrt{1+rac{1}{n}}$
$G(\mu, \sigma)$ μ unknown	σ^2	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$	$\left[\frac{(n-1)s^2}{d}, \frac{(n-1)s^2}{c}\right]$
$G(\mu, \sigma)$ μ unknown	σ	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$	$\left[\sqrt{\frac{(n-1)s^2}{d}},\sqrt{\frac{(n-1)s^2}{c}}\right]$
$\texttt{Exponential}(\theta)$	θ	$\frac{2n\overline{Y}}{\theta}\sim\chi^{2}\left(2n\right)$	$\left[\frac{2n\bar{y}}{d_1},\frac{2n\bar{y}}{c_1}\right]$

Notes: (1) The value a is given by $P\left(Z \leq a\right) = \frac{1+p}{2}$ where $Z \sim G\left(0,1\right)$. In R, $a = qnorm(\frac{1+y}{2})$

- (2) The value b is given by $P\left(T \leq b\right) = \frac{1+p}{2}$ where $T \sim t\left(n-1\right)$. In R, $b = \operatorname{qt}\left(\frac{1+p}{2}, n-1\right)$ (3) The values c and d are given by $P\left(W \leq c\right) = \frac{1-p}{2} = P\left(W > d\right)$ where $W \sim \chi^2\left(n-1\right)$. In R, $c = \operatorname{qchisq}\left(\frac{1-p}{2}, n-1\right)$ and $d = \operatorname{qchisq}\left(\frac{1+p}{2}, n-1\right)$ (4) The values c_1 and d_1 are given by $P\left(W \leq c_1\right) = \frac{1-p}{2} = P\left(W > d_1\right)$ where $W \sim \chi^2\left(2n\right)$. In R, $c_1 = \operatorname{qchisq}\left(\frac{1-p}{2}, 2n\right)$ and $d_1 = \operatorname{qchisq}\left(\frac{1+p}{2}, 2n\right)$

5 Hypothesis Testing

5.1 Introduction

1. Definition

A hypothesis is a statment about population paramaters

 $2. H_0$

null hypotheses is then main "guess", H_1 is used for against it

3. p-value of a test

is the probability of observing the sample or worse given the null hypothesis is true

if it is low, means there is evidence against H_0

if p < 0.05 we should reject H_0

4. Test Statistic D

a way to measure the discrepancy between data and \mathcal{H}_0

let d be observed value od D given data/sample, $p = P(D \ge d)$, where we know distribution of Y

$$D = |Y - H_0|$$

- 5. steps
 - Construct the null and alternative hypotheses

 $H_0: \theta = \theta_0, H_1 \neq \theta_0$

• Construct test statistic D

$$D = |Y - \theta_0|, d = |y - \theta_0|$$

• Calculate p value

$$p = P(D \ge d) = P(|Y - \theta_0| \ge d)$$

- Conclusion based on p value
- 6. One side/two side

 $H_a: \theta > ?$

 $D = max[\ldots]$

 $H_a:\theta<?$

D = min[...]

- 7. Notes in case I forgot
 - $P(|Y| \ge z) = 2(1 P(Y \le z))$, Y be any distribution

5.2Hypothesis testing for parameters in the $G(\mu, \sigma)$ model

- 1. Things need to remember for $G(\mu, \sigma)$
 - maximum like lihood estimators

$$\begin{array}{l} \mu_{bolang} = \overline{Y} \sim G(\mu, \sigma/\sqrt{n}) \\ \sigma_{bolang}^2 = \frac{1}{n} \sum_{i=1}^n (Y_i - \overline{Y})^2 \end{array}$$

- Sample Variance estimator $S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (Y_{i} \overline{Y})^{2}$ $= \frac{\sum_{i=1}^{n} y_{i}^{2} n(\overline{y})^{2}}{n-1}$
- 2. Test of Hypothesis for μ , two sided
 - $H_0: \mu = \mu_0$
 - Test statistic $D = |T| = \frac{|\overline{Y} \mu_0|}{S/\sqrt{n}} \sim t(n-1)$
 - $d = \frac{|\overline{y} \mu_0|}{s/\sqrt{n}}$

• p-value =
$$P(D \ge d) = P(|T| \ge d) = 2[1 - P(T \le d)]$$

= $2[1 = P(T \ge -d)] = P]$
= $2P(T \ge d)$
= $2P(T \le -d)$

3. One-sided test of hypothesis for μ

Similarly to two-sided, but $H_A: \mu > \mu_0$ now

$$D = \max(\frac{\overline{Y} - \mu_0}{S/\sqrt{n}}, 0) \text{ if } > \text{in } H_A$$

$$D = \min(\frac{\mu_0 - \overline{Y}}{S/\sqrt{n}}, 0) \text{ if } < \text{in } H_A$$

$$D = \min(\frac{\mu_0 - Y}{S/\sqrt{n}}, 0) \text{ if } < \text{in } H_A$$

d just change \overline{Y} to \overline{y} , S to s

p-value =
$$P(D \ge d) = P(T \ge d) = 1 - P(T \le d)$$

4. Relationship between Interval estimation

let y_i be random sample, $H_0 = \mu = \mu_0$, then

p-value
$$> b \iff$$

$$P(D \ge d) = P(\frac{|Y - \mu_0|}{S/\sqrt{n}} \ge \frac{|\overline{y} - \mu_0|}{s/\sqrt{n}}) \ge b \iff$$

p-value
$$\geq b \iff$$

$$P(D \geq d) = P(\frac{|\overline{Y} - \mu_0|}{S/\sqrt{n}} \geq \frac{|\overline{y} - \mu_0|}{s/\sqrt{n}}) \geq b \iff$$

$$P(|T| \geq d) = P(|T| \geq \frac{|\overline{y} - \mu_0|}{s/\sqrt{n}}) \geq b \ T \sim t(n-1) \iff$$

$$P(|T| \leq d) \leq (1-b) \iff$$

$$d \leq a \text{ where } P(|T| \leq a) = (1-b) \iff$$

$$P(|T| \le d) \le (1-b) \iff$$

$$d \le a$$
 where $P(|T| \le a) = (1 - b) \iff$

$$\mu_0 \in [\overline{y} - as/\sqrt{n}, \overline{y} + as/\sqrt{n}]$$

5. General relationship

 θ_0 is inside 100p CI \iff p value of $H_0: \theta = \theta_0$ is greater than or equal to 1-p

- 6. Test of Hypothesis for σ

 - $H_0: \sigma = \sigma_0$ $U = \frac{(n-1)S^2}{\sigma_0^2}$ $U \sim X^2(n-1)$ $u = \frac{(n-1)s^2}{\sigma_0^2}$
 - p-value = $2P(U \le u)$

5.3 Likelihood Ratio Test of hypotheses - One parameter

- 1. P-value
 - $H_0: \theta = \theta_0$
 - $\lambda(\theta_0) = -2ln(R(\theta_0))$ where $R(\theta_0)$ is relative likelihood function evaluated at $\theta = \theta_0$
 - P- value = $P(W \ge \lambda(\theta_0))$ where $W \sim X^2(1)$ = $2[1 P(Z \le \sqrt{\lambda(\theta_0)})]$

5.4 Useful tables

Table 5.2 Hypothesis Tests for Named Distributions based on Asymptotic Gaussian Pivotal Quantities

Named Distribution	Point Estimate $\hat{\theta}$	Point Estimator $\tilde{\theta}$	Test Statistic for $H_0: \theta = \theta_0$	Approximate $p-valu$ based on Gaussian approximation
$\mathrm{Binomial}(n,\theta)$	<u>y</u> n	$\frac{Y}{n}$	$\frac{\left \theta-\theta_{0}\right }{\sqrt{\frac{\theta_{0}\left(1-\theta_{0}\right)}{r_{1}}}}$	$2P\left(Z \ge \frac{\left \hat{\theta} - \theta_0\right }{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}}\right)$ $Z \sim G\left(0, 1\right)$
$\operatorname{Poisson}(\theta)$	ÿ	\overline{Y}	$\frac{\left \tilde{\theta} - \theta_0\right }{\sqrt{\frac{\theta_0}{r_t}}}$	$2P\left(Z \geq rac{\left ilde{ heta} - heta_0 ight }{\sqrt{rac{ ilde{ heta}_0}{n}}} ight)$ $Z \sim G\left(0,1 ight)$
$\texttt{Exponential}(\theta)$	ÿ	\overline{Y}	$\frac{\left \tilde{\theta} - \theta_0\right }{\frac{\theta_0}{\sqrt{\tau_2}}}$	$2P\left(Z \geq rac{\left \hat{\pmb{ heta}} - heta_0 ight }{rac{ar{ heta}_0}{\sqrt{n}}} ight)$ $Z \sim G\left(0,1 ight)$

Note: To find $2P\left(Z\geq d\right)$ where $Z\sim G\left(0,1\right)$ in R, use $2*\left(1-\mathtt{pnorm}(d)\right)$

Table 5.3 Hypothesis Tests for Gaussian and Exponential Models

Model	Hypothesis	Test Statistic	$\begin{array}{c} \text{Exact} \\ p-value \end{array}$
$G(\mu, \sigma)$ σ known	H_0 : $\mu = \mu_0$	$\frac{\left \overline{Y} - \mu_0\right }{\sigma/\sqrt{n}}$	$2P\left(Z \geq rac{ ar{y} - \mu_0 }{\sigma/\sqrt{n}} ight)$ $Z \sim G\left(0, 1 ight)$
$G(\mu,\sigma)$ σ unknown	H_0 : $\mu = \mu_0$	$\frac{\left \overline{Y} - \mu_0\right }{S/\sqrt{n}}$	$2P\left(T \geq rac{ ar{y} - \mu_0 }{s/\sqrt{n}} ight)$ $T \sim t (n-1)$
$G(\mu,\sigma)$ μ unknown	$H_0: \sigma = \sigma_0$	$\frac{(n-1)S^2}{\sigma_0^2}$	$\min(2P\left(W \le \frac{(n-1)s^2}{\sigma_0^2}\right),$ $2P\left(W \ge \frac{(n-1)s^2}{\sigma_0^2}\right))$ $W \sim \chi^2 (n-1)$
$\operatorname{Exponential}(\theta)$	H_0 : $ heta= heta_0$	$\frac{2n\bar{Y}}{\theta_0}$	$\min(2P\left(W \le \frac{2n\bar{y}}{\theta_0}\right),$ $2P\left(W \ge \frac{2n\bar{y}}{\theta_0}\right))$ $W \sim \chi^2(2n)$

Notes:

30

- (1) To find $P\left(Z \geq d\right)$ where $Z \sim G\left(0,1\right)$ in R, use $1-\operatorname{pnorm}(d)$
- (2) To find $P\left(T\geq d\right)$ where $T\sim t\left(k\right)$ in R, use $1-\operatorname{pt}(d,k)$
- (3) To find $P\left(W\leq d\right)$ where $W\sim\chi^{2}\left(k\right)$ in R, use $\mathrm{pchisq}(d,k)$

6 Gaussian response models

6.1 Introduction

- 1. Definition $Y \sim G(\mu(x), \sigma)$ with $\mu(x_i) = \beta_0 + \sum_{j=1}^k \beta_j x_{ij} s$
- 2. Maximum likelihood estimator $\mu = \overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i$ also least square estimator

6.2Simple Linear Regression

1. another definition

$$Y_i \sim G(\alpha + \beta x, \sigma)$$

$$= \alpha + \beta x_i + R_i$$

$$= \mu(x_i) + R_i$$

$$\mu(x_i) = \alpha + \beta x_i$$

$$\alpha$$
: if $x_i = 0$, average Y_i

$$\beta$$
: everytime $x_i + = 1$, average $Y_i + = \beta$

2. ML estimates

•
$$\hat{\beta} = \frac{S_{xy}}{S_{xx}}$$

$$\bullet \ \hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$

$$\bullet \hat{\sigma}^2 = \frac{1}{n} (S_{yy} - \hat{\beta} S_{xy})$$

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$= \sum_{i=1}^{n} x_i^2 - n\overline{x}^2$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2$$

$$= \sum_{i=1}^{n} y_i^2 - n\overline{y}^2$$

•
$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

= $\sum_{i=1}^{n} y_i x_i - n \overline{x} \overline{y}$

•
$$\hat{\mu}_i = \hat{\alpha} + \hat{\beta}x_i$$

$$\bullet \ \hat{r_i} = y_i - \hat{\mu_i}$$

3. Sum of squared error (SSE) $\sum_{i=1}^n \hat{r_i}^2$

$$\sum_{i=1}^{n} \hat{r_i}^2$$

4. Least square estimator

Least square estimator
$$\alpha, \beta$$
 are the same as ML estimator LSE of σ^2 is $s_e^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{\alpha} - \hat{\beta}x_i)^2 = \frac{1}{n-2} (S_{yy} - \hat{\beta}S_{xy})$, also called mean squared error(MSE) $S_e^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \tilde{\alpha} - \tilde{\beta}x_i)^2$

$$S_e^2 = \frac{1}{n-2} \sum_{i=1}^n (Y_i - \tilde{\alpha} - \tilde{\beta} x_i)^2$$

5. fitted regression line

$$y = \alpha + \beta x$$

6. Distribution of
$$\tilde{\beta}$$

$$\tilde{\beta} \sim G(\beta, \frac{\sigma}{\sqrt{S_{xx}}})$$

$$E(\tilde{\beta}) = \beta$$

$$Var(\tilde{\beta}) = \frac{\sigma^2}{S_{xx}}$$

7. CI for
$$\beta$$
 and test hypothesis for no relationship
$$\frac{\tilde{\beta}-\beta}{S_e/\sqrt{S_{xx}}} \sim t(n-2)$$

$$\frac{(n-2)S_e^2}{\sigma^2} \sim X_{n-2}^2$$
 100p ci: $\hat{\beta} \pm \alpha s_e/\sqrt{S_{xx}}$ where $P(T \le a) = \frac{1+p}{2}$
$$se(\tilde{\beta}) = \frac{s_e}{\sqrt{S_{xx}}}$$

$$d = \frac{|\hat{\beta}-\beta_0|}{se(\hat{\beta})}$$

8. CI for
$$\sigma^2$$
 100p ci: $\left[\frac{(n-2)s_e^2}{b}, \frac{(n-2)s_e^2}{a}\right]$

9. CI for mean response $u(x) = \alpha + \beta x$

• MLE:
$$\tilde{\mu} = \tilde{\alpha} + \tilde{\beta}x = \overline{Y} + \beta(x - \tilde{x})$$

= $\frac{1}{n} + (x - \tilde{x})\frac{(x_i - \overline{x})}{S_{xx}}$

• identities

$$-\sum_{i=1}^{n} b_{i} = 1$$

$$-\sum_{i=1}^{n} b_{i} x_{i} = x$$

$$-\sum_{i=1}^{n} b_{i}^{2} = \frac{1}{n} + \frac{(x_{i} - \overline{x})}{S_{xx}}$$

 \bullet distribution

$$\tilde{\mu}(x) = G(\mu(x), \sigma\sqrt{\frac{(x_i - \overline{x})}{S_{xx}}}$$

• CI

$$[\hat{\mu}(x) - a * s_e \sqrt{\frac{1}{n} + \frac{(x_i - \overline{x})}{S_{xx}}}, \hat{\mu}(x) + a * s_e \sqrt{\frac{1}{n} + \frac{(x_i - \overline{x})}{S_{xx}}}]$$

•
$$d = \frac{|\hat{\alpha} + \hat{\beta}x - \mu(x)_0|}{s_e \sqrt{\frac{1}{n} + \frac{(x - \overline{x})^2}{S_{xx}}}}$$

10. Prediction INterval For future Response

• Prediction I
$$[\hat{\mu}(x) - a * s_e \sqrt{1 + \frac{1}{n} + \frac{(x_i - \overline{x})}{S_{xx}}}, \hat{\mu}(x) + a * s_e \sqrt{1 + \frac{1}{n} + \frac{(x_i - \overline{x})}{S_{xx}}}]$$

Table 6.1 Confidence/Prediction Intervals for Simple Linear Regression Model

Unknown Quantity	Estimate	Estimator	Pivotal Quantity	100p% Confidence/ Prediction Interval
β	$\hat{\beta} = \frac{S_{xy}}{S_{xx}}$	$\tilde{\beta} = \frac{\sum_{i=1}^{n} (x_i - \bar{x}) Y_i}{S_{xx}}$	$\frac{\tilde{\beta} - \beta}{S_e/\sqrt{S_{xx}}}$ $\sim t (n-2)$	$\hat{\beta} \pm as_e/\sqrt{S_{xx}}$
α	$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$	$ ilde{lpha} = \ \overline{Y} - ilde{eta} ar{x}$	$\frac{\frac{\tilde{\alpha} - \alpha}{S_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}}}}}{\sim t (n - 2)}$	$\hat{\alpha} \pm as_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}}}$
$\mu(x) = \alpha + \beta x$	$\hat{\mu}(x) =$ $\hat{\alpha} + \hat{\beta}x$	$\tilde{\mu}(x) =$ $\tilde{\alpha} + \tilde{\beta}x$	$\frac{\tilde{\mu}(x) - \mu(x)}{S_e \sqrt{\frac{1}{n} + \frac{(x - \tilde{x})^2}{S_{xx}}}}$ $\sim t (n - 2)$	$\hat{\mu}(x) \pm as_e \sqrt{\frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}}}$
σ^2	$s_e^2 = \frac{S_{yy} - \hat{\beta}S_{xy}}{n-2}$	$S_e^2 = \frac{\sum_{i=1}^n (Y_i - \tilde{\alpha} - \tilde{\beta}x_i)^2}{n-2}$	$\frac{(n-2)S_{\epsilon}^{2}}{\sigma^{2}}$ $\sim \chi^{2} (n-2)$	$\left[\frac{(n-2)s_e^2}{c}, \frac{(n-2)s_e^2}{b}\right]$
Y			$\frac{Y - \tilde{\mu}(x)}{S_e \sqrt{1 + \frac{1}{n} + \frac{(x - \tilde{x})^2}{S_{xx}}}}$ $\sim t \left(n - 2\right)$	Prediction Interval $\hat{\mu}(x) \pm as_e \sqrt{1 + \frac{1}{n} + \frac{(x-\bar{x})^2}{S_{xx}}}$

Notes: The value a is given by $P\left(T \leq a\right) = \frac{1+p}{2}$ where $T \sim t\left(n-2\right)$. The values b and c are given by $P\left(W \leq b\right) = \frac{1-p}{2} = P\left(W > c\right)$ where $W \sim \chi^2\left(n-2\right)$.

Table 6.2 Hypothesis Tests for Simple Linear Regression Model

Hypothesis	Test Statistic	p-value
$H_0: \beta = \beta_0$	$\frac{\left \tilde{\beta} - \beta_0\right }{S_e/\sqrt{S_{xx}}}$	$2P\left(T \ge \frac{\left \hat{\beta} - \beta_0\right }{s_e/\sqrt{S_{xx}}}\right)$ where $T \sim t (n-2)$
$H_0: lpha = lpha_0$	$\frac{ \tilde{\alpha} - \alpha_0 }{S_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}}}}$	$2P\left(T \ge \frac{ \hat{\alpha} - \alpha_0 }{s_e \sqrt{\frac{1}{n} + \frac{(\bar{x})^2}{S_{xx}}}}\right) \text{where } T \sim t \left(n - 2\right)$
$H_0: \sigma = \sigma_0$	$\frac{(n-2)S_{\epsilon}^2}{\sigma_0^2}$	$\min\left(2P\left(W \le \frac{(n-2)s_e^2}{\sigma_0^2}\right), 2P\left(W \ge \frac{(n-2)s_e^2}{\sigma_0^2}\right)\right)$ $W \sim \chi^2 (n-2)$

Comparison of Two population Means 6.3

1. 2 with common variance

•
$$s_n^2 = \frac{n_1 + n_2}{n_1 + n_2 - 2} * \hat{c}$$

•
$$s_p^2 = \frac{n_1 + n_2}{n_1 + n_2 - 2} * \hat{\sigma}$$

• CI for $\mu_1 - \mu_2$
 $\overline{y_1} - \overline{y_2} \pm a * s_p * \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$

• p-value
$$2[1 - P(T \le \frac{|\overline{y} - \overline{y} - 0|}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}})]$$

$$T \sim t(n_1 + n_2 - 2)$$

• CI for
$$\sigma$$

$$\left[\sqrt{\frac{(n_1+n_2-2)*s_p^2}{b}}, \sqrt{\frac{(n_1+n_2-2)*s_p^2}{a}}\right]$$

$$P(U \le a) = \frac{1-p}{2}, P(U \le b) = \frac{1+p}{2}, U \sim X^2(n_1+n_2-2)$$

- 2. Unequal Variances
- 3. Tables

Table 6.3 Confidence Intervals for Two Sample Gaussian Model

Model	Parameter	Pivotal Quantity	100p% Confidence Interval
$G(\mu_1, \sigma_1)$ $G(\mu_2, \sigma_2)$ σ_1, σ_2 known	$\mu_1-\mu_2$	$\frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$ $\sim G\left(0, 1\right)$	$\bar{y}_1 - \bar{y}_2 \pm a\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
$G(\mu_1, \sigma_1)$ $G(\mu_2, \sigma_2)$ $\sigma_1 = \sigma_2 = \sigma$ σ unknown	$\mu_1 - \mu_2$	$\frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $\sim t \left(n_1 + n_2 - 2 \right)$	$\bar{y}_1 - \bar{y}_2 \pm b s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
$G(\mu_1, \sigma)$ $G(\mu_2, \sigma)$ μ_1, μ_2 unknown	σ^2	$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma^2}$ $\sim \chi^2 (n_1 + n_2 - 2)$	$\left[\frac{(n_1+n_2-2)s_p^2}{d}, \frac{(n_1+n_2-2)s_p^2}{c}\right]$
$G(\mu_1, \sigma_1)$ $G(\mu_2, \sigma_2)$ $\sigma_1 \neq \sigma_2$ $\sigma_1, \sigma_2 \text{ unknown}$	$\mu_1-\mu_2$	asymptotic Gaussian pivotal quantity $\frac{\overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ for large n_1, n_2	approximate $100p\%$ confidence interval $\bar{y}_1 - \bar{y}_2 \pm a\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Notes:

The value a is given by $P\left(Z \leq a\right) = \frac{1+p}{2}$ where $Z \sim G\left(0,1\right)$. The value b is given by $P\left(T \leq b\right) = \frac{1+p}{2}$ where $T \sim t\left(n_1 + n_2 - 2\right)$. The values c and d are given by $P\left(W \leq c\right) = \frac{1-p}{2} = P\left(W > d\right)$ where $W \sim \chi^2\left(n_1 + n_2 - 2\right)$.

Table 6.4
Hypothesis Tests for
Two Sample Gaussian Model

Model	Hypothesis	Test Statistic	p-value
$G(\mu_1, \sigma_1)$ $G(\mu_2, \sigma_2)$ $\sigma_1, \sigma_2 \text{ known}$	$H_0: \mu_1 = \mu_2$	$\frac{\left \overline{Y}_1 - \overline{Y}_2 - (\mu_1 - \mu_2)\right }{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$2P\left(Z \ge \frac{ \bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2) }{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}\right)$ $Z \sim G(0, 1)$
$G(\mu_1, \sigma)$ $G(\mu_2, \sigma)$ σ unknown	$H_0: \mu_1 = \mu_2$	$\frac{\left \overline{Y}_{1} - \overline{Y}_{2} - (\mu_{1} - \mu_{2})\right }{S_{p}\sqrt{\frac{1}{n_{1}} + \frac{1}{n_{2}}}}$	$2P\left(T \ge \frac{ \bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2) }{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}\right)$ $T \sim t \left(n_1 + n_2 - 2\right)$
$\begin{array}{c} G\left(\mu_{1},\sigma\right)\\ G\left(\mu_{2},\sigma\right)\\ \\ \mu_{1},\mu_{2} \text{ unknown} \end{array}$	$H_0: \sigma = \sigma_0$	$\frac{(n_1 + n_2 - 2)S_p^2}{\sigma_0^2}$	$\min(2P\left(W \le \frac{(n_1 + n_2 - 2)s_p^2}{\sigma_0^2}\right),$ $2P\left(W \ge \frac{(n_1 + n_2 - 2)s_p^2}{\sigma_0^2}\right))$ $W \sim \chi^2 (n_1 + n_2 - 2)$
$G(\mu_1, \sigma_1)$ $G(\mu_2, \sigma_2)$ $\sigma_1 \neq \sigma_2$ $\sigma_1, \sigma_2 \text{ unknown}$	$H_0: \mu_1 = \mu_2$	$\frac{\left \overline{Y}_{1}-\overline{Y}_{2}-(\mu_{1}-\mu_{2})\right }{\sqrt{\frac{S_{1}^{2}}{n_{1}}+\frac{S_{2}^{2}}{n_{2}}}}$	approximate $p-value$ $2P\left(Z \ge \frac{ \bar{y}_1 - \bar{y}_2 - (\mu_1 - \mu_2) }{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}\right)$ $Z \sim G\left(0, 1\right)$

MULTINOMIAL MODELS AND GOODNESS OF FIT TESTS

Likelihood Ratio Test for the Multinomial Model

- 1. likelihood equality of MUltinomial Parameter
 - $H_0 = \theta_i = \theta_j$
 - \bullet statistic

$$e_i = \frac{n}{i}$$

$$d = \lambda = 2 \sum y_j log(\frac{y_j}{e_j})$$

• p value
$$\sum X^2(k-1)$$

- \bullet conclusion
- 2. Good fit test $d = \sum \frac{(y_j e_j)^2}{e_j}$

7.2 Goodness of fir tests

Like lihood ratio test

- 1. Null hypothesis: $H_0: \theta_i = \theta_i(\alpha)$
- 2. Likelihood ration statistic calculate estimate of θ_I calculate $\hat{\theta_i}$ calculate $e_i = n\hat{\theta_i}$ $d = \lambda = 2\sum y_j log(\frac{y_j}{e_j})$
- 3. P
value $= 1 P(W \le \lambda) \sim X^2(k-1-p)$ P is number of unkonwn
- 4. Conclusion

Good ness of fit test

$$1. \ d = \sum \frac{(y_j - e_j)^2}{e_j}$$

7.3 Two-way contigency table

- 1. Terms
 - y_{ij} = number that have A-type A_i and Btype B_j
 - $r_i = \sum_{j=1}^b y_{ij}$
 - $\bullet \ c_j = \sum_{i=1}^a y_{ij}$
 - $n = \sum y_{ij}$
- 2. Likelihood Ratio test
 - $H_0 = a_i \times b_j$
 - Test statistic calculate estimate of $\hat{a_i} = \frac{r_i}{n}$, $\hat{b_j} = \frac{c_j}{n}$ $e_{ij} = n * \hat{a_i} * \hat{b_j} = \frac{r_i c_j}{n}$ $d = \lambda = 2 \sum y_j log(\frac{y_j}{e_j}) \sim x^2 (k-1-p)$ p = (a-1) + (b-1)
 - P value if df = 1 pvalue= $2[1 P(Z \le \sqrt{\lambda})]$ if df = 2 pvalue = $e^{(-\frac{\lambda}{2})}$
 - ullet conclusion

8 Useful infomation for note taking

Named Distribution	Observed Data	Maximum Likelihood Estimate	Maximum Likelihood Estimator	Relative Likelihood Function
$Binomial(n,\theta)$	y	$\hat{\theta} = \frac{y}{n}$	$\tilde{\theta} = \frac{Y}{n}$	$R(\theta) = \left(\frac{\theta}{\overline{\theta}}\right)^{y} \left(\frac{1-\theta}{1-\overline{\theta}}\right)^{n-y}$ $0 < \theta < 1$
${\tt Poisson}(\theta)$	y_1, y_2, \dots, y_n	$\hat{\theta} = \bar{y}$	$\tilde{\theta} = \overline{Y}$	$R(\theta) = \left(\frac{\theta}{\theta}\right)^{n\theta} e^{n(\theta-\theta)}$ $\theta > 0$
$Geometric(\theta)$	y_1, y_2, \dots, y_n	$\hat{ heta} = \frac{1}{1+\bar{y}}$	$\tilde{\theta} = \frac{1}{1+\overline{Y}}$	$R(\theta) = \left(\frac{\theta}{\tilde{\theta}}\right)^n \left(\frac{1-\theta}{1-\tilde{\theta}}\right)^{n\tilde{y}}$ $0 < \theta < 1$
Negative Binomial (k, θ)	y_1, y_2, \dots, y_n	$\hat{\theta} = \frac{k}{k + \bar{y}}$	$\tilde{\theta} = \frac{k}{k + \overline{Y}}$	$\begin{split} R\left(\theta\right) &= \left(\frac{\theta}{\theta}\right)^{nk} \left(\frac{1-\theta}{1-\theta}\right)^{n\tilde{y}} \\ &0 < \theta < 1 \end{split}$
$\texttt{Exponential}(\theta)$	y_1, y_2, \dots, y_n	$\hat{\theta} = \bar{y}$	$\tilde{\theta} = \overline{Y}$	$R(\theta) = \left(\frac{\theta}{\theta}\right)^n e^{n\left(1-\frac{\theta}{\theta}/\theta\right)}$ $\theta > 0$

can write the likelihood function as

$$L(\mu, \sigma) = \sigma^{-n} \exp\left\{-\frac{1}{2\sigma^2} \sum_{i=1}^{n} (y_i - \bar{y})^2\right\} \exp\left[-\frac{n(\bar{y} - \mu)^2}{2\sigma^2}\right]$$

1e log likelihood function for $\pmb{\theta} = (\mu, \sigma)$ is

$$l(\pmb{\theta}) = l(\mu,\sigma) = -n\log\sigma - \frac{1}{2\sigma^2} \sum_{i=1}^n (y_i - \bar{y})^2 - \frac{n(\bar{y} - \mu)^2}{2\sigma^2} \quad \text{for } \mu \in \Re \text{ and } \sigma > 0$$

maximize $l(\mu, \sigma)$ with respect to both parameters μ and σ we solve the two equations

$$\frac{\partial l}{\partial \mu} = \frac{n}{\sigma^2} \left(\bar{y} - \mu \right) = 0 \ \ \text{and} \ \ \frac{\partial l}{\partial \sigma} = -\frac{n}{\sigma} + \frac{1}{\sigma^3} \sum_{i=1}^n (y_i - \bar{y})^2 = 0$$

nultaneously. We find that the maximum likelihood estimate of θ is $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$, where

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} y_i = \bar{y}$$
 and $\hat{\sigma} = \left[\frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y})^2 \right]^{1/2}$

Sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$

Model	Unknown Quantity	Pivotal Quantity	100p% Confidence/Prediction Interval
$G(\mu, \sigma)$ σ known	μ	$rac{\overline{Y}-\mu}{\sigma/\sqrt{n}}\sim G\left(0,1 ight)$	$ar{y}\pm a\sigma/\sqrt{n}$
$G(\mu, \sigma)$ σ unknown	μ	$rac{\overline{Y}-\mu}{S/\sqrt{n}}\simt(n-1)$	$ar{y} \pm bs/\sqrt{n}$
$G(\mu, \sigma)$ μ unknown σ unknown	Y	$\frac{\frac{Y-\overline{Y}}{S}}{S\sqrt{1+\frac{1}{n}}} \sim t \left(n-1\right)$	$100p\%$ Prediction Interval $ar{y}\pm bs\sqrt{1+rac{1}{n}}$
$G(\mu, \sigma)$ μ unknown	σ^2	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$	$\left[\frac{(n-1)s^2}{d},\frac{(n-1)s^2}{c}\right]$
$G(\mu, \sigma)$ μ unknown	σ	$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2 (n-1)$	$\left[\sqrt{\frac{(n-1)s^2}{d}},\sqrt{\frac{(n-1)s^2}{c}}\right]$
$\texttt{Exponential}(\theta)$	θ	$rac{2n\overline{Y}}{\theta}\sim\chi^{2}\left(2n ight)$	$\left[rac{2nar{y}}{d_1},rac{2nar{y}}{c_1} ight]$

Notes: (1) The value a is given by $P\left(Z \leq a\right) = \frac{1+p}{2}$ where $Z \sim G\left(0,1\right)$. In R, $a = qnorm(\frac{1+p}{2})$

(2) The value b is given by $P\left(T \leq b\right) = \frac{1+p}{2}$ where $T \sim t \, (n-1)$. In R, $b = \operatorname{qt}\left(\frac{1+p}{2}, n-1\right)$ (3) The values c and d are given by $P\left(W \leq c\right) = \frac{1-p}{2} = P\left(W > d\right)$ where $W \sim \chi^2 \, (n-1)$. In R, $c = \text{qchisq}\left(\frac{1-p}{2}, n-1\right)$ and $d = \text{qchisq}\left(\frac{1+p}{2}, n-1\right)$

(4) The values c_1 and d_1 are given by $P\left(W \le c_1\right) = \frac{1-p}{2} = P\left(W > d_1\right)$ where $W \sim \chi^2\left(2n\right)$. In R, $c_1=\operatorname{qchisq}\left(\frac{1-p}{2},2n\right)$ and $d_1=\operatorname{qchisq}\left(\frac{1+p}{2},2n\right)$

Table 4.3
Approximate Confidence Intervals for Named Distributions based on Asymptotic Gaussian Pivotal Quantities

Named Distribution	Observed Data	Point Estimate $\hat{\theta}$	Point Estimator $\widetilde{ heta}$	Asymptotic Gaussian Pivotal Quantity	Approximate 100p% Confidence Interval
${\tt Binomial}(n,\theta)$	y	<u>y</u> n	$\frac{Y}{n}$	$\frac{\bar{\theta} - \theta}{\sqrt{\frac{\bar{\theta} (1 - \bar{\theta})}{\nu_1}}}$	$\hat{\theta} \pm a\sqrt{\frac{\hat{\theta}(1-\hat{\theta})}{n}}$
${\tt Poisson}(\theta)$	y_1, y_2, \dots, y_n	\bar{y}	\overline{Y}	$\frac{\bar{\theta} - \theta}{\sqrt{\frac{\bar{\theta}}{n}}}$	$\hat{\theta} \pm a\sqrt{\frac{\hat{\theta}}{n}}$
$\texttt{Exponential}(\theta)$	y_1, y_2, \dots, y_n	$ar{y}$	\overline{Y}	$\frac{\overline{\theta} - \theta}{\frac{\overline{\theta}}{\sqrt{r_0}}}$	$\hat{\theta} \pm a \frac{\hat{\theta}}{\sqrt{n}}$

Note: The value a is given by $P\left(Z\leq a\right)=\frac{1+p}{2}$ where $Z\sim G\left(0,1\right)$. In R, $a=\mathtt{qnorm}\left(\frac{1+p}{2}\right)$

Table 5.2 Hypothesis Tests for Named Distributions based on Asymptotic Gaussian Pivotal Quantities

Named Distribution	Point Estimate $\hat{\theta}$	Point Estimator $\tilde{\theta}$	Test Statistic for $H_0: \theta = \theta_0$	Approximate p — value based on Gaussian approximation
${\tt Binomial}(n,\theta)$	<u>y</u> n	$\frac{Y}{n}$	$\frac{\left \tilde{\theta} - \theta_0\right }{\sqrt{\frac{\theta_0\left(1 - \theta_0\right)}{r_t}}}$	$2P\left(Z \ge \frac{\left \hat{\theta} - \theta_0\right }{\sqrt{\frac{\theta_0(1 - \theta_0)}{n}}}\right)$ $Z \sim G\left(0, 1\right)$
$\operatorname{Poisson}(\theta)$	$ar{y}$	\overline{Y}	$\frac{\left \tilde{\theta} - \theta_0\right }{\sqrt{\frac{\theta_0}{r_t}}}$	$2P\left(Z \geq rac{\left heta - heta_0 ight }{\sqrt{rac{ heta_0}{n}}} ight)$ $Z \sim G\left(0,1 ight)$
$\texttt{Exponential}(\theta)$	$ar{y}$	\overline{Y}	$\frac{\left \tilde{\theta}-\theta_{0}\right }{\frac{\theta_{0}}{\sqrt{n}}}$	$2P\left(Z \geq rac{\left \hat{\theta} - \theta_0 ight }{rac{\hat{\theta}_0}{\sqrt{n}}} ight)$ $Z \sim G\left(0, 1 ight)$

Note: To find $2P\left(Z\geq d\right)$ where $Z\sim G\left(0,1\right)$ in R, use $2*\left(1-\operatorname{pnorm}(d)\right)$

Table 5.3 Hypothesis Tests for Gaussian and Exponential Models

Model	Hypothesis	Test Statistic	$\begin{array}{c} \text{Exact} \\ p-value \end{array}$
$G(\mu, \sigma)$ σ known	$H_0: \mu = \mu_0$	$\frac{\left \overline{Y} - \mu_0\right }{\sigma/\sqrt{n}}$	$2P\left(Z \geq rac{ ar{y} - \mu_0 }{\sigma/\sqrt{n}} ight)$ $Z \sim G\left(0, 1 ight)$
$G\left(\mu,\sigma ight)$ σ unknown	H_0 : $\mu = \mu_0$	$\frac{\left \overline{Y} - \mu_0\right }{S/\sqrt{n}}$	$2P\left(T \geq \frac{ \bar{y} - \mu_0 }{s/\sqrt{n}}\right)$ $T \sim t \left(n - 1\right)$
$G\left(\mu,\sigma ight)$ μ unknown	$H_0: \sigma = \sigma_0$	$\frac{(n-1)S^2}{\sigma_0^2}$	$\min(2P\left(W \le \frac{(n-1)s^2}{\sigma_0^2}\right),$ $2P\left(W \ge \frac{(n-1)s^2}{\sigma_0^2}\right))$ $W \sim \chi^2 (n-1)$
$\text{Exponential}(\theta)$	H_0 : $ heta= heta_0$	$\frac{2n\bar{Y}}{\theta_0}$	$\min(2P\left(W \le \frac{2n\bar{y}}{\theta_0}\right),$ $2P\left(W \ge \frac{2n\bar{y}}{\theta_0}\right))$ $W \sim \chi^2(2n)$

Notes:

47

- (1) To find $P\left(Z \geq d\right)$ where $Z \sim G\left(0,1\right)$ in R, use $1-\operatorname{pnorm}(d)$
- (2) To find $P\left(T\geq d\right)$ where $T\sim t\left(k\right)$ in R, use $1-\operatorname{pt}(d,k)$
- (3) To find $P\left(W\leq d\right)$ where $W\sim\chi^{2}\left(k\right)$ in R, use $\mathrm{pchisq}(d,k)$