HTTP

Damien Gros

19 octobre 2023

Plan du cours

Préambule

Versions HTTP HTTP v0.9 HTTP v1.0 HTTP v1.1

Les fonctionnalités d'HTTP

Les cookies HTTP et la sécurité Authentification Un peu d'admin.. Autour d'HTTP

Plan du cours

Préambule

```
Versions HTTP
HTTP v0.9
HTTP v1.0
HTTP v1.1
```

Les fonctionnalités d'HTTF

Les cookies HTTP et la sécurité Authentification Un peu d'admin.. Autour d'HTTP

Hyper Text Transfert Protocol

- Protocole de la couche application;
- ► Fondement du World Wide Web (www);
- ► HTTP : créé en 1990 par Berners-Lee
- Différentes versions :
 - ► HTTP v0.9 : non normalisé, 1990 ;
 - ► HTTP v1.0 : RFCc1945, en 1996
 - ► HTTP v1.1 : RFC2068, en 1997
 - ► HTTP v2.0 : en cours de rédaction par IETF (The Internet Engineering Task Force)
- ▶ NB : Request For Comments : définition des standards.

HTTP

- Protocole simple :
 - Établissement d'une connexion TCP entre un client et un serveur;
 - Le client envoie une requête au serveur (demande de document);
 - Le serveur envoie la réponse au client (envoie du document);
 - Le serveur ferme la connexion.
- ▶ Objectif : échanger des ressources entre un client et un serveur.
 - Protocole de rapatriement de documents;
 - Protocole de soumission de formulaires.

Couches inférieures

- ► HTTP est un protocole de la couche application (7);
- ▶ Il n'a pas conscience des protocoles utilisés en dessous ;
- ▶ On peut donc faire de l'HTTP sur TCP et UDP;
- ▶ Dans la pratique, on le fait sur TCP (on le verra comme ça tout au long de ce cours).

Communication HTTP basique

Un peu de vocabulaire

- ► Terminologies :
 - ► HTTP : Hyper Text Transport Protocole;
 - URL : Uniform Ressource Locator;
 - URI : Uniform Ressource Identifier;
 - HTML: Hyper Text Markup Language;

Différences entre URI et URL?

(extrait des RFC):

- URI is a compact sequence of characters that identifies an abstract or physical resource;
- ▶ URL refers to the subset of URIs that, in addition to identifying a resource, provide a means of locating the resource by describing its primary access mechanism (e.g., its network "location").
- www.esiea.fr : URI
- http://www.esiea.fr: URL
- ► ftp://www.esiea.fr: URL
- ▶ Idap ://www.esiea.fr : URL

HTTP

- Les éléments du HTTP
 - Serveurs : éléments qui se contentent de répondre à un client ;
 - ► IIS, Apache, Light httpd, Zeus Web Server, nginx, etc.
 - Clients : plus complexes que les serveurs, présentent les données envoyées par le serveur à l'utilisateur;
 - "Classiques": IE, Opéra, Firefox, Chrome, Safari, SeaMonkey, etc.
 - "Textuels": lynx, elinks, curl, links, etc
 - "En ligne de commande" : wget ;
 - Aspirateurs de site;
 - Robots d'indexation;
 - Tout programme capable de traverser un proxy HTTP.

Rôle du serveur HTTP

- Transformation de l'URL en fichier ou en script;
- Vérification d'identité
 - Le client est-il celui qu'il prétend être?
- Vérification d'accès
 - Le client est-il autorisé à effectuer cette requête?
 - ACL, etc.
- Constitution de l'entête de la réponse
 - Type MIME des données (détaillé par la suite)
 - mime.types fichier de correspondance extension vers type MIME
- ► Taille des données, Langage, etc.
- Envoi de la réponse au client
 - éventuellement transformé à la volée
- ► Mise à jour des journaux d'audit (log) access_log, error_log, ...

Types de requête

- ▶ GET : demande une ressource, la plus courante, ne modifie pas la ressource;
- ► HEAD : demande des informations sur la ressource, mais ne demande pas la ressource;
- POST : pour ajouter une ressource;
- OPTIONS : obtention des informations sur les options de connexion ;
- CONNECT : pour utiliser un proxy comme tunnel de connexion ;
- ► TRACE : pour diagnostiquer la communication ;
- PUT : ajoute/remplace une ressource sur le serveur;
- DELETE : supprimer une ressource;

Plan du cours

Préambule

```
Versions HTTP
HTTP v0.9
HTTP v1.0
HTTP v1.1
```

Les fonctionnalités d'HTTP

Les cookies HTTP et la sécurité Authentification Un peu d'admin.. Autour d'HTTP

HTTP V0.9

- 1. Connexion du client HTTP au serveur HTTP;
- 2. Utilisation de la méthode GET;
- 3. Réponse du serveur HTTP;
- 4. Le serveur ferme la connexion HTTP \rightarrow fin de la connexion.

Une connexion par fichier!

HTTP V0.9

Illustration avec un serveur local et telnet

HTTP V0.9

- On ne spécifie pas la version du protocole utilisé (le serveur la reconnait);
- Le serveur répond directement!

```
Requête du client HTTP
```

```
GET /
```

Réponse du serveur HTTP

```
<html>
[..]
</html>
```

- Utilisation des entêtes, des MIME;
- ► MIME :
 - ► Multi-Purpose Internet Mail Extensions;
 - Définit le type de média que le serveur envoie;
- ▶ Même gestion des communications qu'en HTTP/0.9
 - 1. Connexion du client HTTP au serveur HTTP;
 - 2. Utilisation de la méthode GET;
 - Réponse du serveur HTTP : envoie de l'entête puis du reste (contenu du fichier) séparé par une ligne vide;
 - 4. Le serveur ferme la connexion HTTP \rightarrow fin de la connexion.

Illustration avec un serveur local et telnet.

- On spécifie la version HTTP utilisé;
- On laisse une ligne vide;
- Le serveur envoie une entête puis le corps du message.

Requête envoyée par le client HTTP :

```
GET / HTTP/1.0
Host: foo.com
Referer: http://foo.com
User-Agent: Firefox 3.5
< ligne vide >
```

- Type de requête avec la version du protocole utilisé;
- ► Host : précise le nom du serveur quand il y a plusieurs serveurs web sur la même IP (hébergement mutualisé);
- ► Referer : d'où vient le visiteur ;
- User-Agent : nom du client HTTP (version et parfois OS).

Réponse envoyé par le serveur

```
HTTP/1.1 403 Forbidden
Date: Tue, 02 Sep 2014 08:36:56 GMT
Server: Apache/2.4.6 (Cent0S)
Last-Modified: Tue, 17 Jun 2014 16:00:47 GMT
Accept-Ranges: bytes
Content-Length: 4880
Content-Type: text/html; charset=UTF-8

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd"><html><hed><meta http-equiv="content-type" content="text/html; charset=UTF-8">
```

Structure d'une requête

- ► GET / HTTP/1.0
- ► GET : méthode de communication avec le serveur : je désire un fichier;
- / : je veux le truc à la racine du serveur HTTP;
- /index.html : je veux le fichier index.html à la racine du serveur HTTP :
- /toto/index.html : je veux le fichier index.html qui se trouve dans le dossier toto
- ► HTTP/1.0 : je fais cette requête en utilisant le protocole HTTP version 1.0

- Version du protocole utilisé, statut HTTP et signification textuelle;
- Date : quand la page a été générée ;
- Server : Nom du programme faisant office de serveur, version, OS;
- Last-Modified : dernière modification de la page;
- Content-Type : type MIME de la ressource ;
- ► Content-Length : taille de la ressource (en octet).

Statut HTTP

- ▶ 1XX : informatif, non utilisé à ce jour;
- 2XX : Succès de l'opération :
 - 200 OK, requête réussie;
 - 201 OK, nouvelle ressource créée (commande POST);
 - 202 Requête acceptée, mais traitement incomplet;
 - 204 OK, mais pas de contenu à renvoyer.
- 3XX : redirection, suite d'opérations à la charge du client :
 - 301 La ressource demandée a déménagé à une autre URL de façon permanente;
 - 302 La ressource demandée a déménagé à une autre URL de façon temporaire;
 - 304 Le document n'a pas changé (GET conditionnel)

Statut HTTP

- ▶ 4XX : erreur du client :
 - ▶ 400 Requête mal formulée;
 - ▶ 401 Interdit, la requête nécessite une authentification ;
 - 403 Interdit, sans raison spécifique;
 - 404 Non trouvé
- > 5XX : erreur du serveur :
 - ▶ 500 Erreur interne du serveur :
 - 501 Non implémenté;
 - 502 Mauvaise passerelle; réponse invalide d'une passerelle;
 - 503 Service temporaire indisponible.

- Meilleur gestion du cache;
- En-tête Host devient obligatoire dans les requêtes;
- Pour limiter les connections lors de l'envoi d'une page complexe, on envoie tout par la même connexion → pipeline ⇒ accélère les communications et diminue la charge réseau.
- Supporte la négociation du contenu;
- Nouvelles entêtes.

Bad Request

Requête du client HTTP

```
\% telnet 127.0.0.1 80 GET / HTTP/1.1
```

Réponse du serveur HTTP

```
HTTP/1.1 400 Bad Request
Date: Tue, 02 Sep 2014 14:15:32 GMT
Server: Apache/2.4.6 (CentOS)
Content-Length: 226
Connection: close
Content-Type: text/html; charset=iso-8859-1

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">
<html>head>
<title>400 Bad Request</title>
</head>body>
<htsBad Request</ht>
>p>Your browser sent a request that this server could not understand.<br/>
browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-browser-brows
```

Forbidden

Requête du client HTTP

```
damien@ossus:4A/cours_reseau_2014_2015/cours_2% telnet 127.0.0.1 80 Trying 127.0.0.1... Connected to 127.0.0.1. Escape character is '^]'. GET / HTTP/1.1 Host: localhost
```

Réponse du serveur HTTP

```
HTTP/1.1 403 Forbidden
Date: Tue, 02 Sep 2014 14:19:49 GMT
Server: Apache/2.4.6 (CentOS)
Last-Modified: Tue, 17 Jun 2014 16:00:47 GMT
ETag: "1310-4fc0a3f32a9c0"
Accept-Ranges: bytes
Content-Length: 4880
Content-Type: text/html; charset=UTF-8
```

Echange HTTP

- + Frame 6: 68 bytes on wire (544 bits), 68 bytes captured (544 bits) on interface 0
- ⊕ Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00), Dst: 00:00:00_00:00:00 (00:00:00:00:00)
- ⊕ Internet Protocol Version 4, Src: 127.0.0.1 (127.0.0.1), Dst: 127.0.0.1 (127.0.0.1)
- 🕀 Transmission Control Protocol, Src Port: 47181 (47181), Dst Port: http (80), Seq: 17, Ack: 1, Len: 2
- ⊕ [2 Reassembled TCP Segments (18 bytes): #4(16), #6(2)]
- ─ Hypertext Transfer Protocol
 ⊕ GET / HTTP/1.1\r\n

\r\n

[HTTP request 1/1]

[Response in frame: 8]

Plan du cours

Préambule

```
Versions HTTP
HTTP v0.9
HTTP v1.0
HTTP v1.1
```

Les fonctionnalités d'HTTP

Les cookies HTTP et la sécurité Authentification Un peu d'admin.. Autour d'HTTP

Suivi de Sessions avec HTTP (Session Tracking)

- Motivations :
 - La notion de session est importante dans une application conversationnelle de commerce électronique j'ajoute ce produit à mon panier (existant)

- Cependant HTTP est un protocole stateless : le serveur ne maintient pas d'informations liées aux requêtes précédentes d'un même client. HTTP est donc sessionless
- ► Comment implanter la notion de session sur plusieurs requêtes HTTP documents, CGI, SSS, Servlet/JSP, ASP, PHP,

Suivi de Sessions avec HTTP (Session Tracking)

Méthodes

- Le serveur génère un identificateur de session et associe un état (et une date limite de validité) à une session;
- Le client renvoie l'identificateur de session à chaque requête HTTP vers le serveur.

Échange et Stockage de l'identificateur de session

- ► Input HIDDEN dans les formulaires
- Réécriture des URLs (EXTRA_PATH)
- Cookies (désactivable)
- Identificateur de session SSL (Secure Socket Layer)

Suivi de session avec HTTP

Une session s'étend sur plusieurs requêtes documents

- CGI, SSS, Servlet, ASP
- le serveur maintient un contexte de session et y associe un identifiant de session

3 solutions de suivi

- ▶ input HIDDEN : contient l'identifiant de la session
- ▶ la Ré-écriture d'URL
- l'identifiant dans chaque URL (dans les documents)
- les Cookies
 - information positionnée par le serveur sur le client
 - la durée de vie du cookie dépasse la session
 - puis envoyé par le client à chaque requête

Positionnement des cookies

Requête:

 $\begin{array}{lll} {\tt GET} & /{\tt index.html} & {\tt HTTP}/1.1 \\ {\tt Host: www.exemple.org} \end{array}$

Réponse :

HTTP/1.1 200 OK Content—type: text/html Set—Cookie: name=value

Suivant:

GET /spec.html HTTP/1.1 Host: www.exemple.org Cookie: name=value

HTTPS

- ► Motivation :
 - Sécuriser (authentification, confidentialité) l'accès à un service Web SSL/TLS
- Phase 1 : Authentification du serveur et/ou du client par PKI
- ▶ Phase 2 : Chiffrage avec une clé (secrète) symétrique de session
- Phase 2bis : Reprise après déconnexion
- HTTP over SSL (TLS) :
 - URL : https ://host/document (Port TCP par défaut : 443)
 - ► HTTPS dans le JDK JSSE (javax.net.ssl.*) inclus dans J2SE 1.4
 - classe javax.net.HttpsURLConnection
 - Voir cours JCE (http://www-adele.imag.fr/users/Didier.Donsez/cours/jce.pdf)
- ► Serveurs :Apache/SSL, iPlanet, MS IIS, OracleAS, IBM WebSphere

Introduction à la crypto

- Ce n'est pas un cours de crypto, mais vous devez comprendre!
- 2 types de crypto utilisés :
 - Chiffrement symétrique;
 - Chiffrement asymétrique.

Introduction à la crypto

- ► Chiffrement symétrique :
 - Les deux correspondants utilisent la même clé pour chiffrer et déchiffrer les messages;
 - Nécessite un canal de communication sûr si la clé est échangée sur le réseau;
 - Généralement, les algorithmes sont rapides;
- Enigma : créée par Turing ;
- Vigenère ;
- AES : Advanced Encryption Standard;
- DES : Data Encryption Standard;

Introduction à la crypto

- ► Chiffrement asymétrique :
 - Nécessite deux clés : une clé pour chiffrer et une clé pour déchiffrer ;
 - ▶ Je chiffre avec ma clé privée, vous déchiffrez avec ma clé public ;
 - Assure la non-répudiation des messages émis.
- RSA : Ronald Rivest, Adi Shamir et Leonard Adleman
- ► DSA : Digital Signature Algorithm

Secure Socket Layer

- un protocole à négociation : handshake SSL;
- La connexion assure :
 - La confidentialité des données;
 - Intégrité des données;
 - Vérification de l'identité des correspondants;
 - La connexion est fiable!
- ► SSL v1, v2, v3, TLS, etc.
- Authentification par certificat x509;
- Chiffrement des échanges par clés symétriques négociées.
- ► Faire un schéma!

Authentification dans HTTP

- ► Indiqué dans les ACL
- ► Mode d'authentification
 - ► BASIC (RFC 2617) :
 - nom d'utilisateur et mot de passe échangé en clair (base64)!
 - base des mots de passe dans un fichier htpasswd utilitaires de gestion du fichier
 - ▶ DIGEST (RFC 2617)
 - sécurisation de BASIC
 - hachage sécurisé MD5 du (nom,password,URI, méthode,nombre aléatoire fourni par le serveur)

Authentification dans HTTP

- ► SSL/TLS
 - Secure Socket Layer (TLS : Transport Layer Security)
 - ▶ authentification avec CA du serveur (2.0) et du client (3.0)
 - confidentialité avec DES/AES, etc.
 - ▶ puis dialogue HTTP sur la connexion SSL
- ▶ Remarque : utilisation des cartes PKI pour l'identification du client

L'authentification applicative

- Motivations
 - interface de login
 - authentification plus forte (SSL)
 - ► Base d'identité
 - Fichier htpasswd, BD, Annuaire LDAP, ... (voir mod_auth_xxx de Apache)

L'authentification applicative

- L'application gère l'authentification de l'usager
 - formulaire d'accueil HTML (nom, password)
 - ▶ attention le mot de passe circule en "clair" : Utilisez une fonction JavaScript de hachage (MD5,SHA1) du mot de passe avec un nombre aléatoire pour éviter le "replay "
 - gestion des tables d'usager
 - une session est ensuite ouverte associé à un usager authentifié (ou non : par exemple rejet à bout de 3 tentatives)
- Remarque
 - TomCat peut de préciser les documents de login et d'erreur pour une arborescence de documents/servlets/JSP

Contrôle d'Accès dans HTTP

- ► ACL (Access Control List) :
 - spécifie les autorisations (ALLOW) ou les interdictions (DENY) d'accès à une arborescence virtuelle du serveur
 - en fonction de l'authentification de la localisation du client, sous domaine DNS, réseau ou adresse IP
- ► ACF (Access Control File)
 - fichier regroupant les ACL
 - global : access.conf dans Apache
 - par arborescence : .htaccess
 - combinaison des ALLOW et des DENY

Audit des Requêtes

- Journaux des requêtes
 - les accès (access.log, refferee.log), et les erreurs (error.log), sont journalisés
- Exploitation des Journaux
 - rreur dans les liens, ...
 - clientèle, analyse d'activité, ...
- Reporting (Présentation Synthétique)
- Pour Apache
 - AccessWatch, Wusage, Analog, wwwstat
- ► IIS, NS
 - intégré et visualisé par un script
- Généraux
 - Net Analysis (Net Genesis), Enterprise Suite (Web Trends)

Proxy

- Proxy
 - seul point de passage entre le réseau d'entreprise et l'extérieur (sécurité, firewall)
 - accès à des protocoles non implémentés par les clients Web;
- Cache
 - soulager les accès externes (moins de bande passante)
- Miroir
 - réplication d'une base documentaire
 - améliorer le temps de réponse, soulager le réseau
- Robot
 - récupération online/offline d'une arborescence de documents
 - constitution d'un miroir local

Autour d'HTTP

- ► Mise à jour de sites
 - copie publique / copies de travail
- ► Portail
 - Point d'accès centralisant à un ensemble de sources Web
- ► Embedded Web Server
 - Serveur HTTP pour informatique embarquée

Proxy

- Fonctions
 - seul point de passage entre le réseau d'entreprise et l'extérieur
 - firewall, contrôler le profil d'utilisation, portail vers des ressources externes contrôlées (banques de données, ...)
 - accès à des protocoles non implémentés par les clients Web
 - ► WAIS, LDAP...
- Passerelle réseau de niveau applicatif
- ⇒ FIGURE

Fonctionnement Proxy

Fonctionnement du Proxy/Cache figure

Cache Web

- ▶ But d'un cache Réseau
 - Usager
 - Améliorer les performances du browser en utilisant les documents présents dans le cache local
 - ► ISP (Internet Service Provider)
 - Soulager le réseau fédérateur en cachant les documents demandés par les usagers du sous-réseau
 - Provider Web
 - Soulager les serveurs applicatifs

Cache Web

- Documents
 - ► Textes (HTML, XML, ...) et Images fixes
 - ► Flux Audio et Video
 - têtes de réseau câble pour la Buffered-VOD
- Serveurs
 - ► Il fonctionne en mode Proxy
 - Squid, Harvest, Apache, MicroSoft, Sun, iPlanet, OracleAS WebCache, WebSphere