Отчёт по практическому заданию (2) в рамках курса «Суперкомпьютерное моделирование и технологии» Вариант 5

Никифоров Никита Игоревич, гр. 621 nickiforov.nik@gmail.com
Октябрь 2022

1 Задача

Необходимо реализовать численный метод Монте-Карло нахождения значения интеграла в заданной области. Для реализации метода предлагается использовать языки программирования C/C++, с использованием библиотеки параллельного вычисления MPI.

Необходимо провести исследование реализованного численного метода для заданного интеграла, области и точности на параллельных вычислительных системах BMK МГУ: IBM Blue Gene/P, IBM Polus

2 Математическая постановка задачи

Пусть функция $f(x,y,z)=x^3*y^2*z$ — непрерывна в ограниченной замкнутой области $G\subset \mathbb{R}^3$. Требуется вычислить определённый интеграл:

$$I = \iiint_G f(x, y, z) \, dx dy dz = \iiint_G x^3 * y^2 * z \, dx dy dz, \tag{1}$$

где область $G=(x,y,z): \ -1 \leq x \leq 0, \ -1 \leq y \leq 0, \ -1 \leq z \leq 0$

3 Численный метод решения задачи (Монте-Карло)

Пусть заданная область G ограниченна параллелепипедом $P: a_1 \le x \le b_2, \ a_2 \le y \le b_2, \ a_3 \le z \le b_3$ Рассмотрим функцию определённую на параллелепипеде P:

$$F(x,y,z) = \begin{cases} f(x,y,z), & (x,y,z) \in G \\ 0, & (x,y,z) \notin G \end{cases}$$
 (2)

Преобразуем искомый интеграл 1 - подставив функцию 2.

$$I = \iiint_G f(x, y, z) \, dx dy dz = \iiint_P F(x, y, z) \, dx dy dz, \tag{3}$$

Пусть $p_1: (x_1, y_1, z_1), \ p_2: (x_2, y_2, z_2), \dots, p_n: (x_n, y_n, z_n)$ — случайные точки равномерно распределённые по области P. Тогда в качестве приближённого значения интеграла 3 предлагается использовать выражение:

$$I \approx |P| * \frac{1}{n} * \sum_{i=1}^{n} F(p_i),$$
 (4)

где |P| — объём параллелепипеда P, $|P| = (b_1 - a_1)(b_2 - a_2)(b_3 - a_3)$.

4 Аналитическое решение задачи

Найдём аналитически интеграл 1:

$$I = \iiint_{G} x^{3} * y^{2} * z \, dx dy dz = \int_{-1}^{0} dx \int_{-1}^{0} dy \int_{-1}^{0} x^{3} * y^{2} * z \, dz =$$

$$\frac{x^{4}}{4} \Big|_{-1}^{0} \frac{y^{3}}{3} \Big|_{-1}^{0} \frac{z^{2}}{2} \Big|_{-1}^{0} = \frac{1}{24} * x^{4} y^{3} z^{2} \Big|_{-1}^{0} = \frac{1}{24} \approx 0.0416(6)$$
(5)

5 Программная реализация

Для программной реализации предложенного метода используется язык C++, а также библиотека параллельного программирования MPI. Программа разделяется на независимые процессы, каждый из которых генерирует свой набор из 100 случайных точек, и считает свою частичную сумму. Принципиально алгоритм состоит из следующих шагов:

- 1. Каждый процесс генерируют набор из 100 случайных точек.
- 2. Каждый процесс считает сумму $S_j = \sum_{i=1}^n F(p_i)$, где j ранк процесса, n=100 количество случайных точек, генерируемых процессом за итерацию.
- 3. С использованием функции MPI_AllReduce, происходит вычисление суммы по всем процессам: $S_{global} = \sum_{i=0}^{size-1} S_j$., где size количество независимых MPI процессов.
- 4. В каждом процессе вычисляется приближённое значение интеграла: $I_{global} = |P| * \frac{1}{n} * S_{global}$.
- 5. Вычисляется ошибка: $err = |I_{global} I_{analitical}|$.
- 6. Если ошибка меньше заданной вычисление прекращается, если больше, то алгоритм повторяется.

```
std::pair<double, int64_t> monte_carlo(std::mt19937 &gen,
2
                                              std::uniform_real_distribution<> &dis,
                                              double eps, double solution, double volume,
 3
                                              double (*func)(Point)) {
 4
 5
        double integ = 0.0;
        double err = std::abs(integ - solution);
        double global_sum = 0.0;
 8
        int64_t point_counter = 0;
9
        while (err > eps) {
10
            double local_sum = 0;//global_sum;
11
12
            for (int i = 0; i < POINTS_PER_CPU; i++) {</pre>
13
                local_sum += func(Point(dis, gen));
14
            }
15
16
            double now_sum = 0.0;
17
            MPI_Allreduce(&local_sum, &now_sum, 1, MPI_DOUBLE, MPI_SUM, MPI_COMM_WORLD);
18
            global_sum += now_sum;
19
20
            point_counter += POINTS_PER_CPU * size;
21
            integ = volume * global_sum / (point_counter + 0.0);
22
            err = std::abs(integ - solution);
23
24
25
        }
26
27
        return {integ, point_counter};
28 }
```

6 Исследование программной реализации

Для исследования использовалась система Polus и домашний компьютер. Характеристики узла системы параллельного вычисления Polus (на данный момент имеет в работе 3 узла):

- 2 десятиядерных процессора IBM POWER8 (каждое ядро имеет 8 потоков) всего 160 потоков
- Общая оперативная память 256 Гбайт (в узле 5 оперативная память 1024 Гбайт) с ЕСС контролем
- 2 x 1 ТБ 2.5" 7K RPM SATA HDD
- 2 x NVIDIA Tesla P100 GPU, 16Gb, NVLink
- 1 порт 100 ГБ/сек

Характеристики домашнего РС:

- 1 шестнадцати ядерный процессор AMD Ryzen 5950X, всего 32 потока на частоте 4.4Ghz
- Оперативная память 32 Гбайт
- SSD NVMe Samsung 500 ΓΕ
- AMD RX 5600XT

Для каждого значения требуемой точности $eps = \{1.5e-6, 5.0e-6, 3.0e-5\}$ и каждого количества процессов $cpus = \{1, 4, 8, 16, 32\}$ проводилось по 10 запусков, значения усреднялись.

Ускорение считалось как отношение времени вычисления одной точки при разном количестве MPI процессов, что позволяет исключить случайность процесса при вычислении ускорения. А также как отношение общего времени выполнения на одном MPI-процессе ко времени вычисления на заданном количестве MPI-процессов. Составим таблицу для системы Polus:

Таблица 1: Результаты исследования на машине Polus

Точность	число MPI процессов	Время работы (c)	Ускорение по времени	Ускорение	Ошибка
$3.0*10^{-5}$	1	0.024625	1	1	0.000012
$3.0*10^{-5}$	4	0.021700	1.13	3.09	0.000013
$3.0*10^{-5}$	8	0.053036	0.46	4.83	0.000018
$3.0*10^{-5}$	16	0.081705	0.30	7.56	0.000019
$3.0*10^{-5}$	32	0.093178	0.26	12.27	0.000017
$5.0*10^{-6}$	1	0.745260	1	1	0.000003
$5.0*10^{-6}$	4	0.068947	10.8	3.09	0.000002
$5.0*10^{-6}$	8	0.345431	2.15	4.76	0.000003
$5.0*10^{-6}$	16	0.043465	17.14	9.84	0.000003
$5.0*10^{-6}$	32	0.072755	10.24	14.28	0.000003
$1.5 * 10^{-6}$	1	27.415805	1	1	8.013453e-07
$1.5 * 10^{-6}$	4	2.434363	11.26	3.13	9.394432e-07
$1.5 * 10^{-6}$	8	0.223442	122.69	5.46	8.698047e-07
$1.5 * 10^{-6}$	16	4.428387	6.19	10.35	7.874600e-07
$1.5 * 10^{-6}$	32	0.192503	142.41	15.12	6.611632e-07

Рис. 1: График зависимость времени вычисления одной точки от количества процессов МРІ

Рис. 2: График зависимость времени вычисления одной точки от количества процессов МРІ

Рис. 3: График зависимость времени вычисления одной точки от количества процессов МРІ

Рис. 4: График зависимость времени вычисления значения интеграла от количества процессов МРІ

Рис. 5: График зависимость времени вычисления значения интеграла от количества процессов МРІ

Рис. 6: График зависимость времени вычисления значения интеграла от количества процессов МРІ