

definite and indefinite integral

indefinite integral

definite and indefinite integral

example

Consider $f(t) = t^2$ and let's calculate the area under $y = t^2$ between 0 and 1.

The area up to
$$x$$
 is represented by $A(x) = \int_0^x t^2 dt$ integral integral

We know
$$A'(x) = x^2 \implies A(x) = \frac{1}{3}x^3$$

This holds for any constant
$$C$$
: $\frac{d}{dx} \left(\frac{1}{3x^3} + C \right) = x^2$

Further we have
$$A(1) = \frac{1}{3}x^3 \Longrightarrow \int_0^1 t^2 dt = A(1) - A(0)$$
 where $A'(x) = x^2$

= 0 $e A'(x) = x^2$

definite integral

the fundamental theorem of calculus, part 1