מרצה: רון ליפשיץ מתרגל: נועם רימוק

תרגיל בית 5

שאלה 1 – כוח אלקטרוסטטי בין גופים לא טעונים

- א. השתמשו בביטוי עבור שדה חשמלי של דיפול כדי לחשב את האנרגיה הפוטנציאלית של $\mathbf{R} = \mathbf{r}_1 \mathbf{r}_2$ כתלות בוקטור $\mathbf{r}_2 \mathbf{r}_3$ בקואורי $\mathbf{r}_3 \mathbf{r}_3$ כתלות בוקטור
 - ב. מצאו את האנרגיה בכל אחד מהמצבים הבאים:
 - a) הדיפולים מקבילים זה לזה ול-R.
 - b) הדיפולים מקבילים זה לזה וניצבים ל-R.
 - .R-הדיפולים אנטי מקבילים זה לזה ומקבילים ל
 - .R-הדיפולים אנטי מקבילים זה לזה וניצבים ל
 - e) הדיפולים ניצבים זה לזה ול-R.
 - ג. מהו הכוח שדיפול אחד מפעיל על השני?

שאלה 2 – מומנט מגנטי של קליפה כדורית מסתובבת

- σ שמרכזה בראשית עם צפיפות מטען משטחית אחידה R א. נתונה קליפה כדורית ברדיוס אחידה $\mathbf{B}(\mathbf{r})$ ו $\mathbf{A}(\mathbf{r})$ בכל המרחב. במהירות זוויתית ω מצאו את בער סביב ציר במהירות זוויתית מער בייני אחידה מסתובבת סביב ביר
- בכל המרחב, $\mathbf{B}_{\mathrm{dip}}(\mathbf{r})$ ו $\mathbf{A}_{\mathrm{dip}}(\mathbf{r})$ בכל המרחב, ב. מצאו את מומנט הדיפול המגנטי של הקליפה. כתבו את r>R הם זהים לפתרון המדויק שנמצא בסעיף א.
- ג. היעזרו בסעיף הקודם כדי להוכיח שעבור התפלגות מטען בעלת סימטריה כדורית, שמסתובבת סביב ציר z במהירות זוויתית ω , כל המולטיפולים המגנטיים מתאפסים, פרט לדיפול.

שאלה 3 – הקשר בין רכיבים כדוריים וקרטזיים של מולטיפולים

Q, באמצעות רכיבי המונופול M_{lm} עבור M_{lm} עבור הסיבוריים הכדוריים הסיצוניים M_{lm} עבור החיצוניים את המולטיפולים הקרטזיים. p_i הקרטזיים.

שאלה 4 – פוטנציאל חשמלי של התפלגות מטען כדורית

מצאו את הפוטנציאל החשמלי בכל המרחב במקרים הבאים (בשני המקרים שרטטו את $\varphi(r)$ ואת הפוטנציאל החשמלי בכל המרחב במקרים הבאים (בשני המקרים שרטטו את $\varphi(r)$:

- σ וצפיפות מטען משטחית אחידה R א. קליפה כדורית ברדיוס
- .lpha>0 ב. התפלגות גאוסיאנית $ho(r)=
 ho_0e^{-lpha r^2}$ ב. erf $(x)=rac{2}{\sqrt{\pi}}\int_0^x e^{-s^2}ds$ בסעיף זה ניתן להשתמש בהגדרת הפונקציה

שאלה 5 – מולטיפולים אזימותיים

- בכל $\varphi(\mathbf{r})$ א. השתמשו במומנטי המולטיפול האזימותיים כדי למצוא את הפוטנציאל החשמלי (בכל $\sigma(\theta) = \sigma_0 \cos(\theta)$ של קליפה כדורית ברדיוס R עם צפיפות מטען משטחית
 - $\mathbf{E}(\mathbf{r})$ ב. שימו לב אילו מולטיפולים שונים מאפס והיעזרו בכך כדי למצוא את השדה החשמלי בכל המרחב.