Os pontos Humpty-Dumpty Jorge Craveiro

Resumo: Vamos ver algumas propriedades interessantes de dois tipos de pontos em um triângulo. Em vários exemplos, veremos como identificá-los, para assim matar problemas bem mais facilmente. Esses pontos de que vamos falar não têm um nome específico, então o autor do artigo os chamou de Humpty e Dumpty. Esses pontos dependem do vértice do triângulo, então os chamaremos de X-Humpty, e X-Dumpty, aos relativos ao vértice X.

1 Humpty

Definição 1. No triângulo ABC, o ponto A-Humpty, P_A , é definido como o ponto interno ao triângulo tal que $\angle P_ABC = \angle P_AAB$ e $\angle P_ACB = \angle P_AAC$.

Proposição 1. P_A está sobre a mediana de A no triângulo ABC.

Proposição 2. P_A está sobre o círculo de Apolônio de A no triângulo ABC, ou seja, $\frac{PAB}{PAC} = \frac{AB}{AC}$.

Proposição 3. B, P_A , H e C são concíclicos, sendo H ortocentro de ABC.

Proposição 4. P_AH e P_AA são perpendiculares, ou seja, o A-Humpty é a projeção de H na mediana de A.

2 Dumpty

Definição 2. No triângulo ABC, o ponto A-Dumpty, Q_A , é definido como o ponto interno ao triângulo tal que $\angle Q_ABA = \angle Q_AAC$ e $\angle Q_AAB = \angle Q_ACA$.

Proposição 5. Q_A está na simediana de A no triângulo ABC.

Proposição 6. Q_A é o centro de roto-homotetia dos triângulos AQ_AC e CQ_AB , ou seja, a que transforma AC em BA.

Proposição 7. B, Q_A , O e C são concíclicos, em que O é circuncentro do triângulo ABC.

Proposição 8. Q_AO e Q_AA são perpendiculares, ou seja, o A-Dumpty é a projeção de O na simediana de A.

3 Humpty-Dumpty

Além disso note:

Proposição 9. Os pontos A-Humpty e A-Dumpty são conjugados isogonais.

4 Problemas olímpicos

Problema 1. (ELMO 2014) No triângulo ABC, H e O são ortocentro e circuncentro, respectivamente. O círculo (BOC) intersecta o círculo de diâmetro AO no ponto M. A reta AM intersecta (BOC) novamente em X. Da mesma maneira, (BHC) intersecta o círculo de diâmetro AH em N, e AN intersecta (BHC) novamente em Y. Mostre que MN é paralelo a XY.

Problema 2. (USAMO 2008) No triângulo ABC, M e N são os pontos médios de AB e AC. As mediatrizes de AB e AC cortam a mediana de A nos pontos D e E, respectivamente. BD e CE se cortam em F. Mostre que AMFN é inscritível.

Problema 3. (USA TST 2015) ABC é um triângulo escaleno. K_A , L_A , M_A são, respectivamente, as interseções de BC com a bissetriz interna, bissetriz externa e mediana de A. O círculo (AK_AL_A) intersecta AM_A novamente em X_A . De maneira análoga, defina os pontos X_B e X_C . Mostre que o circuncentro do triângulo $X_AX_BX_C$ está na reta de Euler do triângulo ABC.

Problema 4. (USA TST2005) P é um ponto interno ao triângulo ABC tal que os ângulos PAB e PBC são iguais, bem como PAC e PCB. A mediatriz de AP corta BC em Q. Se O é circuncentro de ABC, prove que $\angle AQP$ é o dobro de $\angle OQB$.

5 Exercícios

Problema 5. No triângulo ABC, a simediana de A intersecta o circuncírculo em K. O simétrico de K em relação a BC é K^* . Prove que AK^* é a mediana.

Problema 6. Um ponto P varia sobre BC, lado do triângulo ABC. Os pontos M e N estão sobre AB e AC, respectivamente, de tal forma que $PM \parallel AC$, e $PN \parallel AB$. Prove que, ao variar P, o círculo (AMN) passa por um ponto fixo além de A.

Problema 7. Os pontos M e N estão sobre uma semicircunferência de diâmetro AB e centro O. A reta MN intersecta a AB em X. Os círculos (MBO) e (NAO) se cortam em K. Mostre que XK é perpendicular a KO4.

Problema 8. Q_A é o A-Dumpty do triângulo ABC. Seja AD altura de A. Prove que DQ_A bissecta a base média relativa a BC no triângulo ABC.

Problema 9. P é um ponto na simediana de A no triângulo ABC. O_1 e O_2 são circuncentros dos triângulos APB e CAP. Se O é circuncentro do triângulo ABC, prove que AO bissecta O_1O_2 .

Problema 10. AD é altura de A no triângulo ABC. Um círculo de centro sobre AD é tangente externamente ao (BOC) em X, em que O é circuncentro de ABC. Mostre que AX é simediana de A.