Cardiovascular Disease Prediction Project Flow

I. GitHub

Purpose: To use GitHub as a data source.

- 1. Create a GitHub public repository.
- 2. Upload the dataset file to the repository.
- 3. Get the "raw" URL of the dataset file.

II. Azure Cloud

1. Resource Group

Purpose: Simplify resource management by grouping all related resources.

1. Create a resource group (e.g., big_data_project) and attach every Azure service/resource to this group.

2. Storage Account

Purpose: To store data securely in Azure cloud.

- 1. Create a storage account (e.g., cardiodisease), enabling the hierarchical storage option.
- 2. Create a container (e.g., dataset) to hold your data.
- 3. Create a directory inside the container (e.g., cardio_data) to store the dataset.

3. Data Factory (for data ingestion)

Purpose: Ingest and transfer data from GitHub to Azure storage.

- 1. Create a Data Factory resource (e.g., dataset-ingestion).
- 2. Go to "Author" → Create pipeline → Select "Move and Transform" → Drag "Copy data".
- 3. Name the pipeline (e.g., data_ingestion_pipeline).
- 4. Add source to the pipeline: Select new source \rightarrow HTTP \rightarrow Choose file format (CSV).
- 5. Add sink to the pipeline: Choose Azure Data Lake Storage Gen2 → Select file format (CSV).
- 6. Validate and debug the pipeline to ensure it's working correctly.

4. App Registration (to give Databricks access)

Purpose: Allow Databricks to access your Azure Storage account.

- 1. Search for App Registration in Azure and name it (e.g., App_cardio_disease).
- 2. Copy the "Application (client) ID" and "Directory (tenant) ID".
- 3. Go to "Certificates & Secrets" \rightarrow Create new secret \rightarrow Copy the value.

5. Databricks (for machine learning)

Purpose: To run machine learning models using Spark MLlib in a distributed environment.

- 1. Create a Databricks resource (e.g., databricks_cardiodisease).
- 2. Create a new cluster and give it a name.
- 3. Create a new notebook and write the code for machine learning models.

Flow Diagram

