Table 9: Unlearning performance of 10 unlearning methods on CIFAR-10 with ResNet-18 in 10% random data forgetting scenario. The results are reported in the format $a\pm b$, where a is the mean and b is the standard deviation from 3 independent trials. The performance gap relative to Retrain method is represented in (•).

Methods	α	Coverage		Set	Size	0			
ivietilous	ı a	$\mathcal{D}_f \downarrow$	$\mathcal{D}_{test} \uparrow$	$\mathcal{D}_f \uparrow$	$\mathcal{D}_{test} \downarrow$	$\mathcal{D}_f \downarrow$	$\mathcal{D}_{test} \uparrow$	\hat{q}	
RT UA8.6%, RA99.7%, TA91.8%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.941_{\pm 0.002}(0.000) \\ 0.881_{\pm 0.000}(0.000) \\ 0.820_{\pm 0.002}(0.000) \\ 0.780_{\pm 0.007}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.944_{\pm 0.005}(0.000) \\ 0.895_{\pm 0.010}(0.000) \\ 0.839_{\pm 0.008}(0.000) \\ 0.808_{\pm 0.004}(0.000) \end{array}$	$ \begin{vmatrix} 1.089_{\pm 0.002}(0.000) \\ 0.934_{\pm 0.004}(0.000) \\ 0.841_{\pm 0.009}(0.000) \\ 0.789_{\pm 0.002}(0.000) \end{vmatrix} $	$\begin{array}{c} 1.074_{\pm 0.011}(0.000) \\ 0.947_{\pm 0.008}(0.000) \\ 0.867_{\pm 0.009}(0.000) \\ 0.824_{\pm 0.009}(0.000) \end{array}$	$ \begin{vmatrix} 0.864_{\pm 0.004}(0.000) \\ 0.943_{\pm 0.011}(0.000) \\ 0.975_{\pm 0.001}(0.000) \\ 0.988_{\pm 0.006}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.879_{\pm 0.004}(0.000) \\ 0.945_{\pm 0.001}(0.000) \\ 0.968_{\pm 0.003}(0.000) \\ 0.981_{\pm 0.007}(0.000) \end{array}$	$ \begin{array}{ c c c c c }\hline 0.883_{\pm 0.007} \\ 0.192_{\pm 0.001} \\ 0.015_{\pm 0.011} \\ 0.003_{\pm 0.002} \\ \end{array} $	
FT UA3.8%, RA98.1%, TA91.6%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.994_{\pm 0.001}(0.053) \\ 0.968_{\pm 0.001}(0.087) \\ 0.915_{\pm 0.003}(0.095) \\ 0.861_{\pm 0.010}(0.081) \end{vmatrix} $	$\begin{array}{c} 0.951_{\pm 0.004}(0.007) \\ 0.899_{\pm 0.005}(0.004) \\ 0.848_{\pm 0.002}(0.009) \\ 0.806_{\pm 0.008}(0.002) \end{array}$	$ \begin{vmatrix} 1.008_{\pm 0.003}(0.081) \\ 0.969_{\pm 0.001}(0.035) \\ 0.916_{\pm 0.003}(0.075) \\ 0.861_{\pm 0.010}(0.072) \end{vmatrix} $	$\begin{array}{c} 1.026_{\pm 0.008}(0.048) \\ 0.924_{\pm 0.008}(0.023) \\ 0.860_{\pm 0.001}(0.007) \\ 0.811_{\pm 0.009}(0.013) \end{array}$	$ \begin{vmatrix} 0.986_{\pm 0.003}(0.122) \\ 0.998_{\pm 0.001}(0.055) \\ 1.000_{\pm 0.000}(0.025) \\ 1.000_{\pm 0.000}(0.012) \end{vmatrix} $	$\begin{array}{c} 0.927_{\pm 0.004}(0.048) \\ 0.972_{\pm 0.003}(0.027) \\ 0.986_{\pm 0.002}(0.018) \\ 0.993_{\pm 0.001}(0.012) \end{array}$	$ \begin{array}{ c c c c c }\hline 0.721_{\pm 0.045} \\ 0.079_{\pm 0.013} \\ 0.008_{\pm 0.000} \\ 0.002_{\pm 0.000} \\ \end{array} $	
RL UA7.6%, RA97.4%, TA90.6%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.970_{\pm 0.006}(0.029) \\ 0.913_{\pm 0.010}(0.032) \\ 0.825_{\pm 0.006}(0.005) \\ 0.755_{\pm 0.021}(0.025) \end{vmatrix} $	$\begin{array}{c} 0.949_{\pm 0.005}(0.005) \\ 0.897_{\pm 0.007}(0.002) \\ 0.843_{\pm 0.009}(0.004) \\ 0.798_{\pm 0.005}(0.010) \end{array}$	$\begin{array}{c} 1.242_{\pm 0.151}(0.153) \\ 0.975_{\pm 0.028}(0.041) \\ 0.854_{\pm 0.010}(0.013) \\ 0.774_{\pm 0.020}(0.015) \end{array}$	$\begin{array}{c} 1.197_{\pm 0.098}(0.123) \\ 0.980_{\pm 0.025}(0.033) \\ 0.888_{\pm 0.017}(0.021) \\ 0.832_{\pm 0.009}(0.008) \end{array}$	$ \begin{vmatrix} 0.788_{\pm 0.089}(0.076) \\ 0.936_{\pm 0.022}(0.007) \\ 0.966_{\pm 0.006}(0.009) \\ 0.976_{\pm 0.002}(0.012) \end{vmatrix} $	$\begin{array}{c} 0.796_{\pm 0.061}(0.083) \\ 0.916_{\pm 0.019}(0.029) \\ 0.949_{\pm 0.009}(0.019) \\ 0.959_{\pm 0.005}(0.022) \end{array}$	$ \begin{vmatrix} 0.877_{\pm 0.057} \\ 0.572_{\pm 0.059} \\ 0.329_{\pm 0.021} \\ 0.234_{\pm 0.028} \end{vmatrix} $	
GA UA0.6%, RA99.5%, TA94.1%	0.05 0.1 0.15 0.2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.945_{\pm 0.008}(0.001) \\ 0.905_{\pm 0.019}(0.010) \\ 0.848_{\pm 0.004}(0.009) \\ 0.805_{\pm 0.022}(0.003) \end{array}$	$ \begin{array}{c} 1.002_{\pm 0.010}(0.087) \\ 0.990_{\pm 0.014}(0.056) \\ 0.969_{\pm 0.014}(0.128) \\ 0.924_{\pm 0.007}(0.135) \end{array} $	$\begin{array}{c} 1.009_{\pm 0.010}(0.065) \\ 0.928_{\pm 0.005}(0.019) \\ 0.858_{\pm 0.019}(0.009) \\ 0.811_{\pm 0.013}(0.013) \end{array}$	$ \begin{vmatrix} 0.994_{\pm 0.016}(0.130) \\ 0.998_{\pm 0.002}(0.055) \\ 1.000_{\pm 0.014}(0.025) \\ 0.998_{\pm 0.013}(0.010) \end{vmatrix} $	$\begin{array}{c} 0.936_{\pm 0.011}(0.057) \\ 0.973_{\pm 0.012}(0.028) \\ 0.986_{\pm 0.008}(0.018) \\ 0.992_{\pm 0.012}(0.011) \end{array}$	$ \begin{vmatrix} 0.621_{\pm 0.015} \\ 0.062_{\pm 0.016} \\ 0.006_{\pm 0.009} \\ 0.003_{\pm 0.005} \end{vmatrix} $	
Teacher UA0.8%, RA99.4%, TA93.5%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.991_{\pm 0.022}(0.050) \\ 0.967_{\pm 0.000}(0.086) \\ 0.913_{\pm 0.006}(0.093) \\ 0.865_{\pm 0.009}(0.085) \end{vmatrix} $	$\begin{array}{c} 0.941_{\pm 0.001}(0.003) \\ 0.898_{\pm 0.007}(0.003) \\ 0.845_{\pm 0.007}(0.006) \\ 0.806_{\pm 0.021}(0.002) \end{array}$	$ \begin{array}{c} 1.003_{\pm 0.012}(0.086) \\ 0.963_{\pm 0.007}(0.029) \\ 0.912_{\pm 0.014}(0.071) \\ 0.866_{\pm 0.009}(0.077) \end{array} $	$\begin{array}{c} 1.021_{\pm 0.009}(0.053) \\ 0.929_{\pm 0.018}(0.018) \\ 0.859_{\pm 0.005}(0.008) \\ 0.816_{\pm 0.012}(0.008) \end{array}$	$ \begin{vmatrix} 0.993_{\pm 0.021}(0.129) \\ 0.998_{\pm 0.000}(0.055) \\ 0.996_{\pm 0.018}(0.021) \\ 0.998_{\pm 0.008}(0.010) \end{vmatrix} $	$\begin{array}{c} 0.922_{\pm 0.015}(0.043) \\ 0.969_{\pm 0.013}(0.024) \\ 0.983_{\pm 0.015}(0.015) \\ 0.988_{\pm 0.016}(0.007) \end{array}$	$ \begin{vmatrix} 0.744_{\pm 0.015} \\ 0.591_{\pm 0.005} \\ 0.481_{\pm 0.009} \\ 0.426_{\pm 0.007} \end{vmatrix} $	
FF UA59.9%, RA40.1%, TA41.1%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.973_{\pm 0.009}(0.032) \\ 0.933_{\pm 0.020}(0.052) \\ 0.888_{\pm 0.029}(0.068) \\ 0.835_{\pm 0.048}(0.055) \end{vmatrix} $	$\begin{array}{c} 0.949_{\pm 0.001}(0.005) \\ 0.899_{\pm 0.001}(0.004) \\ 0.852_{\pm 0.008}(0.013) \\ 0.794_{\pm 0.012}(0.014) \end{array}$	$ \begin{array}{l} 7.966_{\pm 0.212}(6.877) \\ 7.129_{\pm 0.148}(6.195) \\ 6.431_{\pm 0.078}(5.590) \\ 5.750_{\pm 0.034}(4.961) \end{array} $	$\begin{array}{c} 7.408 \pm 0.000 \left(6.334 \right) \\ 6.566 \pm 0.166 \left(5.619 \right) \\ 5.903 \pm 0.262 \left(5.036 \right) \\ 5.219 \pm 0.368 \left(4.395 \right) \end{array}$	$ \begin{array}{ c c c c c }\hline 0.122_{\pm 0.002}(0.742)\\ 0.131_{\pm 0.000}(0.812)\\ 0.138_{\pm 0.003}(0.837)\\ 0.145_{\pm 0.007}(0.843) \end{array}$	$\begin{array}{c} 0.128_{\pm 0.000}(0.751) \\ 0.137_{\pm 0.004}(0.808) \\ 0.144_{\pm 0.008}(0.824) \\ 0.153_{\pm 0.013}(0.828) \end{array}$	$ \begin{vmatrix} 0.999_{\pm 0.000} \\ 0.998_{\pm 0.001} \\ 0.996_{\pm 0.002} \\ 0.993_{\pm 0.003} \end{vmatrix} $	
SSD UA0.5%, RA99.5%, TA94.2%	0.05 0.1 0.15 0.2	$ \left \begin{array}{l} 0.996_{\pm 0.004}(0.055) \\ 0.987_{\pm 0.003}(0.106) \\ 0.967_{\pm 0.016}(0.147) \\ 0.922_{\pm 0.006}(0.142) \end{array} \right. $	$\begin{array}{c} 0.945_{\pm 0.002}(0.001) \\ 0.902_{\pm 0.010}(0.007) \\ 0.849_{\pm 0.009}(0.010) \\ 0.803_{\pm 0.000}(0.005) \end{array}$	$\begin{array}{c} 0.999_{\pm 0.019}(0.090) \\ 0.990_{\pm 0.003}(0.056) \\ 0.965_{\pm 0.000}(0.124) \\ 0.923_{\pm 0.009}(0.134) \end{array}$	$\begin{array}{c} 1.008_{\pm 0.011}(0.066) \\ 0.926_{\pm 0.017}(0.021) \\ 0.862_{\pm 0.012}(0.005) \\ 0.811_{\pm 0.005}(0.013) \end{array}$	$ \begin{vmatrix} 0.994_{\pm 0.006}(0.130) \\ 0.998_{\pm 0.020}(0.055) \\ 1.002_{\pm 0.019}(0.027) \\ 1.002_{\pm 0.020}(0.014) \end{vmatrix} $	$\begin{array}{c} 0.936_{\pm 0.014}(0.057) \\ 0.973_{\pm 0.002}(0.028) \\ 0.990_{\pm 0.002}(0.022) \\ 0.992_{\pm 0.009}(0.011) \end{array}$	$ \begin{vmatrix} 0.622_{\pm 0.019} \\ 0.063_{\pm 0.022} \\ 0.007_{\pm 0.007} \\ 0.001_{\pm 0.005} \end{vmatrix} $	
NegGrad+ UA8.7%, RA98.8%, TA92.2%	0.05 0.1 0.15 0.2	$ \left \begin{array}{l} 0.934_{\pm 0.007}(0.007) \\ 0.895_{\pm 0.004}(0.014) \\ 0.851_{\pm 0.013}(0.031) \\ 0.800_{\pm 0.006}(0.020) \end{array} \right.$	$\begin{array}{c} 0.948_{\pm 0.007}(0.004) \\ 0.898_{\pm 0.008}(0.003) \\ 0.851_{\pm 0.016}(0.012) \\ 0.799_{\pm 0.001}(0.009) \end{array}$	$\begin{array}{c} 1.068_{\pm 0.017}(0.021) \\ 0.964_{\pm 0.008}(0.030) \\ 0.896_{\pm 0.016}(0.055) \\ 0.832_{\pm 0.006}(0.043) \end{array}$	$\begin{array}{c} 1.086_{\pm 0.022}(0.012) \\ 0.950_{\pm 0.013}(0.003) \\ 0.876_{\pm 0.019}(0.009) \\ 0.813_{\pm 0.001}(0.011) \end{array}$	$ \begin{vmatrix} 0.875_{\pm 0.008}(0.011) \\ 0.928_{\pm 0.005}(0.015) \\ 0.950_{\pm 0.003}(0.025) \\ 0.961_{\pm 0.002}(0.027) \end{vmatrix} $	$\begin{array}{c} 0.873_{\pm 0.011}(0.006) \\ 0.946_{\pm 0.005}(0.001) \\ 0.971_{\pm 0.003}(0.003) \\ 0.983_{\pm 0.001}(0.002) \end{array}$	$ \begin{vmatrix} 0.989_{\pm 0.013} \\ 0.044_{\pm 0.041} \\ 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \end{vmatrix} $	
Salun UA3.7%, RA98.9%, TA91.8%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.987_{\pm 0.002}(0.046) \\ 0.936_{\pm 0.010}(0.055) \\ 0.871_{\pm 0.005}(0.051) \\ 0.788_{\pm 0.010}(0.008) \end{vmatrix} $	$\begin{array}{c} 0.950_{\pm0.001}(0.006) \\ 0.896_{\pm0.008}(0.001) \\ 0.849_{\pm0.008}(0.010) \\ 0.794_{\pm0.001}(0.014) \end{array}$	$\begin{array}{c} 1.132_{\pm 0.007}(0.043) \\ 0.956_{\pm 0.012}(0.022) \\ 0.881_{\pm 0.006}(0.040) \\ 0.794_{\pm 0.010}(0.005) \end{array}$	$\begin{array}{c} 1.143_{\pm 0.002}(0.069) \\ 0.954_{\pm 0.011}(0.007) \\ 0.886_{\pm 0.010}(0.019) \\ 0.821_{\pm 0.004}(0.003) \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.832_{\pm 0.003}(0.047) \\ 0.939_{\pm 0.003}(0.006) \\ 0.958_{\pm 0.002}(0.010) \\ 0.966_{\pm 0.003}(0.015) \end{array}$	$ \begin{array}{c c} 0.867_{\pm 0.001} \\ 0.489_{\pm 0.029} \\ 0.314_{\pm 0.020} \\ 0.221_{\pm 0.005} \end{array} $	
SFRon UA4.8%, RA97.4%, TA91.4%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.977_{\pm 0.003}(0.036) \\ 0.945_{\pm 0.004}(0.064) \\ 0.895_{\pm 0.002}(0.075) \\ 0.857_{\pm 0.008}(0.077) \end{array} $	$\begin{array}{c} 0.953_{\pm 0.004}(0.009) \\ 0.905_{\pm 0.005}(0.010) \\ 0.847_{\pm 0.002}(0.008) \\ 0.808_{\pm 0.002}(0.000) \end{array}$	$\begin{array}{c} 1.100_{\pm 0.023}(0.011) \\ 0.986_{\pm 0.005}(0.052) \\ 0.912_{\pm 0.004}(0.071) \\ 0.868_{\pm 0.007}(0.079) \end{array}$	$\begin{array}{c} 1.143_{\pm 0.021}(0.069) \\ 0.977_{\pm 0.008}(0.030) \\ 0.879_{\pm 0.001}(0.012) \\ 0.826_{\pm 0.005}(0.002) \end{array}$	$ \begin{vmatrix} 0.889_{\pm 0.015}(0.025) \\ 0.958_{\pm 0.001}(0.015) \\ 0.982_{\pm 0.002}(0.007) \\ 0.988_{\pm 0.002}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.834_{\pm0.012}(0.045) \\ 0.927_{\pm0.003}(0.018) \\ 0.963_{\pm0.003}(0.005) \\ 0.978_{\pm0.004}(0.003) \end{array}$	$ \begin{array}{c c} 0.926_{\pm 0.018} \\ 0.435_{\pm 0.043} \\ 0.082_{\pm 0.007} \\ 0.025_{\pm 0.005} \end{array} $	

Table 10: Unlearning performance of 10 unlearning methods on **CIFAR-10** with **ResNet18** in **50**% **random data forgetting** scenario.

Methods	α	Coverage			Size	0		
Wethous	a	$\mathcal{D}_f\downarrow$	$\mathcal{D}_{test} \uparrow$	$\mathcal{D}_f \uparrow$	$\mathcal{D}_{test} \downarrow$	$\mathcal{D}_f\downarrow$	$\mathcal{D}_{test} \uparrow$	\hat{q}
RT UA11.0%, RA99.8%, TA89.2%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.955_{\pm 0.004}(0.000) \\ 0.898_{\pm 0.011}(0.000) \\ 0.833_{\pm 0.007}(0.000) \\ 0.782_{\pm 0.005}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.947_{\pm 0.005}(0.000) \\ 0.904_{\pm 0.010}(0.000) \\ 0.847_{\pm 0.005}(0.000) \\ 0.814_{\pm 0.004}(0.000) \end{array}$	$ \begin{vmatrix} 1.287_{\pm 0.001}(0.000) \\ 1.023_{\pm 0.005}(0.000) \\ 0.883_{\pm 0.002}(0.000) \\ 0.812_{\pm 0.010}(0.000) \end{vmatrix} $	$\begin{array}{c} 1.214_{\pm 0.010}(0.000) \\ 1.021_{\pm 0.003}(0.000) \\ 0.906_{\pm 0.003}(0.000) \\ 0.850_{\pm 0.009}(0.000) \end{array}$	$ \begin{vmatrix} 0.742_{\pm 0.005}(0.000) \\ 0.878_{\pm 0.003}(0.000) \\ 0.943_{\pm 0.010}(0.000) \\ 0.964_{\pm 0.005}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.780_{\pm 0.006}(0.000) \\ 0.886_{\pm 0.003}(0.000) \\ 0.934_{\pm 0.005}(0.000) \\ 0.958_{\pm 0.003}(0.000) \end{array}$	$ \begin{array}{c c} 0.984_{\pm 0.002} \\ 0.650_{\pm 0.004} \\ 0.090_{\pm 0.004} \\ 0.018_{\pm 0.006} \end{array} $
FT UA2.6%, RA99.1%, TA91.8%	$\begin{array}{c c} 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \end{array}$	$ \begin{vmatrix} 0.996_{\pm 0.000}(0.041) \\ 0.975_{\pm 0.006}(0.077) \\ 0.936_{\pm 0.004}(0.103) \\ 0.859_{\pm 0.010}(0.077) \end{vmatrix} $	$\begin{array}{c} 0.952_{\pm 0.002}(0.005) \\ 0.896_{\pm 0.013}(0.008) \\ 0.854_{\pm 0.004}(0.007) \\ 0.790_{\pm 0.010}(0.024) \end{array}$	$ \begin{vmatrix} 1.007_{\pm 0.000}(0.280) \\ 0.976_{\pm 0.006}(0.047) \\ 0.936_{\pm 0.004}(0.053) \\ 0.859_{\pm 0.010}(0.047) \end{vmatrix} $	$\begin{array}{c} 1.029_{\pm 0.004}(0.185) \\ 0.921_{\pm 0.017}(0.100) \\ 0.867_{\pm 0.006}(0.039) \\ 0.795_{\pm 0.011}(0.055) \end{array}$	$ \begin{vmatrix} 0.989_{\pm 0.001}(0.247) \\ 0.999_{\pm 0.000}(0.121) \\ 1.000_{\pm 0.000}(0.057) \\ 1.000_{\pm 0.000}(0.036) \end{vmatrix} $	$\begin{array}{c} 0.925_{\pm 0.002}(0.145) \\ 0.972_{\pm 0.004}(0.086) \\ 0.985_{\pm 0.002}(0.051) \\ 0.993_{\pm 0.001}(0.035) \end{array}$	$ \begin{array}{ c c c c c }\hline 0.738_{\pm 0.014} \\ 0.081_{\pm 0.033} \\ 0.011_{\pm 0.002} \\ 0.001_{\pm 0.000} \\ \end{array} $
RL UA10.5%, RA93.9%, TA85.8%	$\begin{array}{c c} 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \end{array}$	$ \begin{array}{c c} 0.976_{\pm 0.001}(0.022) \\ 0.942_{\pm 0.011}(0.043) \\ 0.891_{\pm 0.013}(0.058) \\ 0.834_{\pm 0.003}(0.051) \end{array}$	$\begin{array}{c} 0.949_{\pm 0.002}(0.002) \\ 0.907_{\pm 0.009}(0.003) \\ 0.856_{\pm 0.012}(0.009) \\ 0.799_{\pm 0.005}(0.016) \end{array}$	$ \begin{vmatrix} 1.973_{\pm 0.396}(0.686) \\ 1.227_{\pm 0.103}(0.204) \\ 1.009_{\pm 0.047}(0.125) \\ 0.897_{\pm 0.026}(0.086) \end{vmatrix} $	$\begin{array}{c} 1.971_{\pm 0.406}(0.757) \\ 1.235_{\pm 0.107}(0.214) \\ 1.011_{\pm 0.045}(0.105) \\ 0.893_{\pm 0.025}(0.043) \end{array}$	$ \begin{vmatrix} 0.508_{\pm 0.100}(0.234) \\ 0.771_{\pm 0.064}(0.107) \\ 0.884_{\pm 0.039}(0.059) \\ 0.929_{\pm 0.024}(0.034) \end{vmatrix} $	$\begin{array}{c} 0.495_{\pm 0.098}(0.285) \\ 0.738_{\pm 0.064}(0.147) \\ 0.847_{\pm 0.037}(0.087) \\ 0.895_{\pm 0.022}(0.063) \end{array}$	$ \begin{vmatrix} 0.899_{\pm 0.012} \\ 0.837_{\pm 0.016} \\ 0.770_{\pm 0.022} \\ 0.713_{\pm 0.028} \end{vmatrix} $
GA UA0.6%, RA99.5%, TA94.3%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.996_{\pm 0.000}(0.041) \\ 0.985_{\pm 0.006}(0.087) \\ 0.966_{\pm 0.006}(0.133) \\ 0.929_{\pm 0.004}(0.147) \end{array} $	$\begin{array}{c} 0.945_{\pm 0.008}(0.002) \\ 0.902_{\pm 0.009}(0.002) \\ 0.848_{\pm 0.007}(0.001) \\ 0.809_{\pm 0.007}(0.005) \end{array}$	$ \begin{array}{c} 1.003_{\pm 0.007}(0.284) \\ 0.989_{\pm 0.006}(0.034) \\ 0.966_{\pm 0.002}(0.083) \\ 0.932_{\pm 0.000}(0.120) \end{array}$	$\begin{array}{c} 1.005_{\pm 0.007}(0.209) \\ 0.926_{\pm 0.006}(0.095) \\ 0.857_{\pm 0.009}(0.049) \\ 0.817_{\pm 0.005}(0.033) \end{array}$	$ \begin{vmatrix} 1.050_{\pm 0.007}(0.308) \\ 1.095_{\pm 0.004}(0.217) \\ 1.141_{\pm 0.001}(0.198) \\ 1.150_{\pm 0.002}(0.186) \end{vmatrix} $	$\begin{array}{c} 0.945_{\pm 0.007}(0.165) \\ 0.916_{\pm 0.006}(0.030) \\ 0.879_{\pm 0.006}(0.055) \\ 0.871_{\pm 0.001}(0.087) \end{array}$	$ \begin{array}{c} 0.616_{\pm 0.008} \\ 0.057_{\pm 0.005} \\ 0.005_{\pm 0.007} \\ 0.001_{\pm 0.007} \end{array} $
Teacher UA1.6%, RA98.3%, TA91.7%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.985_{\pm 0.015}(0.030) \\ 0.949_{\pm 0.012}(0.051) \\ 0.885_{\pm 0.010}(0.052) \\ 0.818_{\pm 0.014}(0.036) \end{array} $	$\begin{array}{c} 0.944_{\pm 0.018}(0.003) \\ 0.909_{\pm 0.016}(0.005) \\ 0.849_{\pm 0.018}(0.002) \\ 0.798_{\pm 0.014}(0.016) \end{array}$	$ \begin{vmatrix} 1.066_{\pm 0.003}(0.221) \\ 0.970_{\pm 0.006}(0.053) \\ 0.894_{\pm 0.017}(0.011) \\ 0.823_{\pm 0.009}(0.011) \end{vmatrix} $	$\begin{array}{c} 1.143_{\pm 0.012}(0.071) \\ 0.986_{\pm 0.014}(0.035) \\ 0.893_{\pm 0.010}(0.013) \\ 0.826_{\pm 0.002}(0.024) \end{array}$	$ \begin{vmatrix} 0.923_{\pm 0.010}(0.181) \\ 0.980_{\pm 0.001}(0.102) \\ 0.992_{\pm 0.002}(0.049) \\ 0.997_{\pm 0.015}(0.033) \end{vmatrix} $	$\begin{array}{c} 0.823_{\pm 0.017}(0.043) \\ 0.918_{\pm 0.009}(0.032) \\ 0.950_{\pm 0.013}(0.016) \\ 0.971_{\pm 0.007}(0.013) \end{array}$	$ \begin{vmatrix} 0.857_{\pm 0.013} \\ 0.834_{\pm 0.005} \\ 0.813_{\pm 0.013} \\ 0.793_{\pm 0.012} \end{vmatrix} $
FF UA60.0%, RA40.1%, TA40.6%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.972 \pm 0.006 \left(0.017\right) \\ 0.930 \pm 0.020 \left(0.032\right) \\ 0.887 \pm 0.024 \left(0.054\right) \\ 0.840 \pm 0.046 \left(0.058\right) \end{array}$	$\begin{array}{c} 0.954_{\pm0.002}(0.006) \\ 0.897_{\pm0.003}(0.007) \\ 0.852_{\pm0.006}(0.005) \\ 0.803_{\pm0.015}(0.012) \end{array}$	$ \begin{vmatrix} 8.023_{\pm 0.189}(6.736) \\ 7.091_{\pm 0.151}(6.068) \\ 6.402_{\pm 0.034}(5.519) \\ 5.805_{\pm 0.042}(4.994) \end{vmatrix} $	$\begin{array}{l} 7.461_{\pm 0.019}(6.247) \\ 6.521_{\pm 0.171}(5.501) \\ 5.837_{\pm 0.438}(4.931) \\ 5.253_{\pm 0.376}(4.403) \end{array}$	$ \begin{vmatrix} 0.121_{\pm 0.002}(0.621) \\ 0.131_{\pm 0.000}(0.747) \\ 0.139_{\pm 0.004}(0.804) \\ 0.145_{\pm 0.007}(0.819) \end{vmatrix} $	$\begin{array}{c} 0.128_{\pm 0.000}(0.652) \\ 0.138_{\pm 0.004}(0.748) \\ 0.146_{\pm 0.010}(0.788) \\ 0.153_{\pm 0.014}(0.804) \end{array}$	$ \begin{vmatrix} 0.999_{\pm 0.000} \\ 0.998_{\pm 0.001} \\ 0.996_{\pm 0.001} \\ 0.993_{\pm 0.003} \end{vmatrix} $
SSD UA0.5%, RA99.5%, TA94.3%	$\begin{array}{c c} 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \end{array}$	$ \begin{array}{c} 0.993_{\pm 0.005}(0.038) \\ 0.991_{\pm 0.015}(0.093) \\ 0.964_{\pm 0.016}(0.131) \\ 0.930_{\pm 0.018}(0.148) \end{array}$	$\begin{array}{c} 0.944_{\pm 0.011}(0.003) \\ 0.904_{\pm 0.014}(0.000) \\ 0.850_{\pm 0.011}(0.003) \\ 0.807_{\pm 0.002}(0.007) \end{array}$	$ \begin{vmatrix} 0.999_{\pm 0.007}(0.288) \\ 0.991_{\pm 0.001}(0.032) \\ 0.967_{\pm 0.009}(0.084) \\ 0.929_{\pm 0.002}(0.117) \end{vmatrix} $	$\begin{array}{c} 1.001_{\pm 0.009}(0.213) \\ 0.929_{\pm 0.011}(0.092) \\ 0.860_{\pm 0.014}(0.046) \\ 0.814_{\pm 0.017}(0.036) \end{array}$	$ \begin{vmatrix} 0.995_{\pm 0.009}(0.253) \\ 1.000_{\pm 0.011}(0.122) \\ 1.000_{\pm 0.001}(0.057) \\ 1.000_{\pm 0.003}(0.036) \end{vmatrix} $	$\begin{array}{c} 0.941_{\pm 0.013}(0.161) \\ 0.975_{\pm 0.010}(0.089) \\ 0.988_{\pm 0.003}(0.054) \\ 0.992_{\pm 0.001}(0.034) \end{array}$	$ \begin{vmatrix} 0.585_{\pm 0.014} \\ 0.060_{\pm 0.011} \\ 0.005_{\pm 0.010} \\ 0.002_{\pm 0.005} \end{vmatrix} $
NegGrad+ UA2.8%, RA99.6%, TA92.9%	$\begin{array}{c c} 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \end{array}$	$ \begin{array}{c} 0.986_{\pm 0.000}(0.031) \\ 0.951_{\pm 0.005}(0.053) \\ 0.889_{\pm 0.004}(0.056) \\ 0.825_{\pm 0.003}(0.043) \end{array} $	$\begin{array}{c} 0.949_{\pm 0.001}(0.001) \\ 0.903_{\pm 0.004}(0.001) \\ 0.845_{\pm 0.003}(0.002) \\ 0.796_{\pm 0.004}(0.018) \end{array}$	$ \begin{vmatrix} 1.039_{\pm 0.008}(0.248) \\ 0.964_{\pm 0.008}(0.059) \\ 0.892_{\pm 0.004}(0.009) \\ 0.827_{\pm 0.003}(0.015) \end{vmatrix} $	$\begin{array}{c} 1.062_{\pm 0.011}(0.152) \\ 0.944_{\pm 0.010}(0.076) \\ 0.861_{\pm 0.003}(0.045) \\ 0.805_{\pm 0.004}(0.045) \end{array}$	$ \begin{vmatrix} 0.949_{\pm 0.008}(0.207) \\ 0.987_{\pm 0.003}(0.109) \\ 0.996_{\pm 0.000}(0.053) \\ 0.999_{\pm 0.000}(0.035) \end{vmatrix} $	$\begin{array}{c} 0.893_{\pm 0.008}(0.113) \\ 0.956_{\pm 0.007}(0.070) \\ 0.981_{\pm 0.001}(0.047) \\ 0.989_{\pm 0.000}(0.032) \end{array}$	$ \begin{vmatrix} 0.855_{\pm 0.028} \\ 0.177_{\pm 0.055} \\ 0.012_{\pm 0.002} \\ 0.002_{\pm 0.000} \end{vmatrix} $
Salun UA4.3%, RA97.7%, TA89.4%	$\begin{array}{c c} 0.05 \\ 0.1 \\ 0.15 \\ 0.2 \end{array}$	$ \begin{vmatrix} 0.988_{\pm 0.001}(0.034) \\ 0.956_{\pm 0.003}(0.058) \\ 0.910_{\pm 0.005}(0.078) \\ 0.856_{\pm 0.008}(0.074) \end{vmatrix} $	$\begin{array}{c} 0.951_{\pm 0.003}(0.004) \\ 0.897_{\pm 0.005}(0.007) \\ 0.847_{\pm 0.006}(0.000) \\ 0.796_{\pm 0.010}(0.019) \end{array}$	$ \begin{vmatrix} 1.314_{\pm 0.113}(0.027) \\ 1.015_{\pm 0.003}(0.008) \\ 0.937_{\pm 0.009}(0.054) \\ 0.872_{\pm 0.008}(0.060) \end{vmatrix} $	$\begin{array}{c} 1.381_{\pm 0.121}(0.167) \\ 1.021_{\pm 0.001}(0.001) \\ 0.916_{\pm 0.008}(0.010) \\ 0.844_{\pm 0.008}(0.006) \end{array}$	$ \begin{vmatrix} 0.756_{\pm 0.064}(0.014) \\ 0.941_{\pm 0.006}(0.064) \\ 0.972_{\pm 0.004}(0.029) \\ 0.982_{\pm 0.003}(0.019) \end{vmatrix} $	$\begin{array}{c} 0.692_{\pm 0.058}(0.088) \\ 0.878_{\pm 0.004}(0.007) \\ 0.924_{\pm 0.003}(0.010) \\ 0.943_{\pm 0.004}(0.015) \end{array}$	$ \begin{vmatrix} 0.871_{\pm 0.013} \\ 0.776_{\pm 0.002} \\ 0.714_{\pm 0.010} \\ 0.669_{\pm 0.008} \end{vmatrix} $
SFRon UA4.0%, RA97.3%, TA91.6%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.977_{\pm 0.003}(0.022) \\ 0.945_{\pm 0.004}(0.047) \\ 0.895_{\pm 0.002}(0.062) \\ 0.857_{\pm 0.008}(0.075) \end{vmatrix} $	$\begin{array}{c} 0.953_{\pm 0.004}(0.006) \\ 0.905_{\pm 0.005}(0.001) \\ 0.847_{\pm 0.002}(0.000) \\ 0.808_{\pm 0.002}(0.006) \end{array}$	$ \begin{array}{c} 1.100_{\pm 0.023}(0.188) \\ 0.986_{\pm 0.005}(0.037) \\ 0.912_{\pm 0.004}(0.029) \\ 0.868_{\pm 0.007}(0.056) \end{array}$	$\begin{array}{c} 1.143_{\pm 0.021}(0.071) \\ 0.977_{\pm 0.008}(0.044) \\ 0.879_{\pm 0.001}(0.027) \\ 0.826_{\pm 0.005}(0.024) \end{array}$	$ \begin{vmatrix} 0.889_{\pm 0.015}(0.147) \\ 0.958_{\pm 0.001}(0.081) \\ 0.982_{\pm 0.002}(0.039) \\ 0.988_{\pm 0.002}(0.024) \end{vmatrix} $	$\begin{array}{c} 0.834_{\pm0.012}(0.054) \\ 0.927_{\pm0.003}(0.042) \\ 0.963_{\pm0.003}(0.029) \\ 0.978_{\pm0.004}(0.020) \end{array}$	$ \begin{vmatrix} 0.926_{\pm 0.018} \\ 0.435_{\pm 0.043} \\ 0.082_{\pm 0.007} \\ 0.025_{\pm 0.005} \end{vmatrix} $

Table 11: Unlearning performance of 10 unlearning methods on CIFAR-10 with ResNet18 in class-wise forgetting scenario.

	ı		Coverage		I	Set Size		I	CR		I	
Methods	α	$\mathcal{D}_f\downarrow$	$\mathcal{D}_{tf}\downarrow$	$D_{tr}\uparrow$	$\mathcal{D}_f \uparrow$	$D_{tf}\uparrow$	$D_{tr} \downarrow$	$D_f \downarrow$	$D_{tf} \downarrow$	$D_{tr} \uparrow$	\hat{q}_f	\hat{q}_{test}
	0.05	$1.000_{\pm 0.001} (0.000)$	$1.000_{\pm 0.001} (0.000)$	$0.964_{\pm0.008}(0.000)$	10.000±0.000(0.000)	$10.000_{\pm 0.000} (0.000)$	$1.148_{\pm0.013}(0.000)$	$0.100_{\pm 0.000}(0.000)$	$0.100_{\pm 0.000} (0.000)$	$0.840_{\pm 0.002}(0.000)$	$1.000_{\pm 0.000}$	$0.982_{\pm0.003}$
RT	0.1	$1.000_{\pm 0.000}(0.000)$	$1.000_{\pm 0.001}(0.000)$	$0.882_{\pm 0.011}(0.000)$	10.000 _{±0.000} (0.000)	$10.000_{\pm 0.000} (0.000)$	$0.922_{\pm 0.009}(0.000)$	$0.100_{\pm 0.000}(0.000)$	$0.100_{\pm 0.001} (0.000)$	$0.956_{\pm 0.007}(0.000)$	$1.000_{\pm 0.001}$	$0.080_{\pm 0.003}$
UA100%, UA _{tf} 100%, RA99.9%, TA92.4%	0.15	$1.000_{\pm 0.000}(0.000)$ $1.000_{\pm 0.000}(0.000)$	$1.000_{\pm 0.000}(0.000)$ $1.000_{\pm 0.000}(0.000)$	$0.856_{\pm 0.012}(0.000)$ $0.814_{\pm 0.010}(0.000)$	$10.000_{\pm 0.000}(0.000)$ $10.000_{\pm 0.000}(0.000)$	$10.000_{\pm 0.000}(0.000)$ $10.000_{\pm 0.000}(0.000)$	$0.882_{\pm 0.007}(0.000)$ $0.830_{\pm 0.001}(0.000)$	$0.100_{\pm 0.001}(0.000)$ $0.100_{\pm 0.001}(0.000)$	$0.100_{\pm 0.001}(0.000)$ $0.100_{\pm 0.001}(0.000)$	$0.970_{\pm 0.004}(0.000)$ $0.981_{\pm 0.002}(0.000)$	$1.000_{\pm 0.000}$ $1.000_{\pm 0.000}$	$0.018_{\pm 0.010}$ $0.003_{\pm 0.001}$
KA99.9%, IA92.4%								•				
FT	0.05	$0.994_{\pm 0.003}(0.006)$ $0.969_{\pm 0.011}(0.031)$	$0.962_{\pm 0.022}(0.038)$ $0.882_{\pm 0.020}(0.118)$	$0.944_{\pm 0.011}(0.020)$ $0.908_{\pm 0.010}(0.026)$	$9.854_{\pm 0.127}(0.146)$ $9.495_{\pm 0.255}(0.505)$	$9.403_{\pm 0.501}(0.597)$ $8.528_{\pm 0.571}(1.472)$	$1.045_{\pm 0.040}(0.103)$ $0.956_{\pm 0.006}(0.034)$	$0.101_{\pm 0.001}(0.001)$ $0.102_{\pm 0.002}(0.002)$	$0.102_{\pm 0.003}(0.002)$ $0.104_{\pm 0.005}(0.004)$	$0.904_{\pm 0.028}(0.065)$ $0.950_{\pm 0.007}(0.006)$	$1.000_{\pm 0.000}$ $1.000_{\pm 0.000}$	$0.731_{\pm 0.166}$ $0.314_{\pm 0.010}$
UA100%, UA _{tf} 100%,	0.15	$0.951_{\pm 0.014}(0.049)$	$0.840_{\pm 0.011}(0.160)$	$0.851_{\pm 0.031}(0.005)$	9.265 _{±0.279} (0.735)	$8.131_{\pm 0.523}(1.869)$	$0.872_{\pm 0.039}(0.010)$	$0.103_{\pm 0.003}(0.003)$	$0.103_{\pm 0.007}(0.003)$	$0.976_{\pm 0.009}(0.006)$	1.000 ± 0.000	$0.073_{\pm 0.054}$
RA96.7%, TA90.8%	0.2	$0.942_{\pm 0.014}(0.058)$	$0.818_{\pm 0.072}(0.182)$	$0.838_{\pm0.016}(0.023)$	$9.163_{\pm 0.245}(0.837)$	$7.934_{\pm 0.533}(2.066)$	$0.854_{\pm0.019}(0.024)$	$0.103_{\pm 0.003}(0.003)$	$0.103_{\pm 0.010} (0.003)$	$0.981_{\pm 0.005}(0.000)$	$1.000_{\pm 0.000}$	$0.039_{\pm 0.017}$
	0.05	$0.995_{\pm 0.002}(0.005)$	$0.954_{\pm 0.009}(0.046)$	$0.959_{\pm 0.015}(0.005)$	9.993 _{±0.003} (0.007)	$9.900_{\pm 0.011}(0.100)$	$1.170_{\pm 0.155}(0.022)$	$0.100_{\pm 0.000}(0.000)$	$0.096_{\pm 0.001}(0.004)$	$0.828_{\pm 0.097}(0.012)$	$1.000_{\pm 0.000}$	$0.870_{\pm 0.145}$
RL	0.1	$0.984_{\pm0.003}(0.016)$	$0.907_{\pm 0.015}(0.093)$	$0.918_{\pm 0.021}(0.036)$	$9.978_{\pm 0.004}(0.022)$	$9.800_{\pm 0.019}(0.200)$	$0.982_{\pm 0.036}(0.059)$	$0.099_{\pm 0.000}(0.001)$	$0.093_{\pm 0.002}(0.007)$	$0.936_{\pm 0.022}(0.021)$	$1.000_{\pm 0.000}$	$0.469_{\pm 0.250}$
UA 100%, UA _{tf} 100%,	0.15	0.961±0.009(0.039)	0.859±0.014(0.141)	0.870±0.019(0.014)	9.950±0.017(0.050)	9.700 _{±0.066} (0.300)	0.904±0.045(0.021)	0.097±0.001(0.003)	0.089±0.001(0.011)	0.964±0.027(0.006)	1.000±0.000	0.144 _{±0.163}
RA98.0%, TA92.7%		$0.935_{\pm 0.027}(0.065)$	$0.815_{\pm 0.012}(0.185)$	$0.804_{\pm0.016}(0.010)$	9.919 _{±0.035} (0.081)	$9.637_{\pm 0.076}(0.363)$	$0.820_{\pm 0.026}(0.010)$	0.094 _{±0.002} (0.006)	$0.085_{\pm 0.001}(0.015)$	$0.981_{\pm 0.012}(0.000)$	$0.999_{\pm 0.001}$	$0.014_{\pm 0.013}$
GA	0.05	$1.000_{\pm 0.003}(0.000)$ $1.000_{\pm 0.003}(0.000)$	$1.000_{\pm 0.005}(0.000)$ $1.000_{\pm 0.010}(0.000)$	$0.948_{\pm 0.004}(0.016)$ $0.899_{\pm 0.008}(0.017)$	$10.000_{\pm 0.009}(0.000)$ $10.000_{\pm 0.005}(0.000)$	$10.000_{\pm 0.003}(0.000)$ $10.000_{\pm 0.006}(0.000)$	$1.204_{\pm 0.002}(0.056)$ $1.005_{\pm 0.003}(0.083)$	0.100±0.007(0.000)	$0.100_{\pm 0.011}(0.000)$ $0.100_{\pm 0.006}(0.000)$	$0.787_{\pm 0.011}(0.053)$ $0.894_{\pm 0.002}(0.062)$	$1.000_{\pm 0.010}$ $1.000_{\pm 0.000}$	$0.988_{\pm 0.000}$ $0.562_{\pm 0.003}$
UA84.6%, UA, (82.5%,	0.15	$1.000_{\pm 0.003}(0.000)$ $1.000_{\pm 0.006}(0.000)$	$1.000_{\pm 0.010}(0.000)$ $1.000_{\pm 0.001}(0.000)$	$0.843_{\pm 0.011}(0.013)$	10.000±0.005(0.000) 10.000±0.005(0.000)	$10.000_{\pm 0.006}(0.000)$ $10.000_{\pm 0.006}(0.000)$	$0.893_{\pm 0.010}(0.011)$	$0.100_{\pm 0.012}(0.000)$ $0.100_{\pm 0.004}(0.000)$	$0.100_{\pm 0.006}(0.000)$ $0.100_{\pm 0.008}(0.000)$	$0.944_{\pm 0.007}(0.026)$ $0.944_{\pm 0.007}(0.026)$	$1.000_{\pm 0.000}$ $1.000_{\pm 0.001}$	$0.052_{\pm 0.003}$ $0.051_{\pm 0.002}$
RA96.4%, TA89.6%	0.2	$0.828_{\pm 0.003}(0.172)$	$0.782_{\pm 0.011}(0.218)$	$0.838_{\pm 0.010}(0.024)$	$9.550_{\pm 0.007}(0.450)$	$9.366_{\pm 0.002}(0.634)$	$0.884_{\pm 0.000}(0.054)$	$0.087_{\pm 0.008}(0.013)$	$0.084_{\pm 0.005}(0.016)$	$0.948_{\pm 0.010}(0.033)$	$1.000_{\pm 0.002}$	$0.038_{\pm 0.003}$
-	0.05	0.994+0.003(0.006)	$0.959_{\pm 0.002}(0.041)$	$0.939_{\pm 0.003}(0.025)$	$9.877_{\pm 0.000}(0.123)$	9.502 _{±0.003} (0.498)	$1.000_{\pm 0.004}(0.148)$	0.101 _{±0.004} (0.001)	$0.101_{\pm 0.004}(0.001)$	0.939+0.001(0.099)	0.955 _{±0.005}	0.588+0.004
Teacher	0.1	$0.931_{\pm 0.000}(0.069)$	$0.904_{\pm 0.001}(0.096)$	$0.890_{\pm 0.001}(0.008)$	$9.199_{\pm 0.002}(0.801)$	$8.604_{\pm0.004}(1.396)$	$0.914_{\pm0.004}(0.008)$	$0.101_{\pm 0.004}(0.001)$	$0.105_{\pm0.004}(0.005)$	$0.974_{\pm0.003}(0.018)$	$0.926_{\pm 0.004}$	$0.116_{\pm 0.005}$
UA90.1%, UA _{tf} 86.5%,	0.15	$0.879_{\pm 0.004}(0.121)$	$0.881_{\pm 0.001}(0.119)$	$0.834_{\pm 0.001} (0.022)$	$8.730_{\pm0.002}(1.270)$	$8.081_{\pm 0.001}(1.919)$	$0.845_{\pm 0.005}(0.037)$	$0.101_{\pm 0.004}(0.001)$	$0.109_{\pm 0.002}(0.009)$	$0.986_{\pm 0.004}(0.016)$	$0.921_{\pm 0.001}$	$0.017_{\pm 0.002}$
RA99.5%, TA94.0%	0.2	$0.809_{\pm 0.004}(0.191)$	$0.841_{\pm 0.004}(0.159)$	$0.816_{\pm 0.000}(0.002)$	$8.141_{\pm 0.003}(1.859)$	$7.525_{\pm 0.003}(2.475)$	$0.824_{\pm0.003}(0.006)$	$0.099_{\pm 0.002}(0.001)$	$0.112_{\pm 0.003}(0.012)$	$0.990_{\pm 0.002}(0.009)$	$0.916_{\pm 0.005}$	$0.010_{\pm 0.003}$
	0.05	$0.984_{\pm 0.005}(0.016)$	$0.962_{\pm 0.004}(0.038)$	$0.950_{\pm 0.002}(0.015)$	$7.760_{\pm 1.386}(2.240)$	$7.479_{\pm 1.223}(2.521)$	$7.627_{\pm 0.058}$ (6.479)	$0.129_{\pm 0.022}(0.029)$	$0.130_{\pm 0.021}(0.030)$	$0.125_{\pm 0.001}(0.715)$	$0.999_{\pm 0.000}$	$0.997_{\pm 0.003}$
FF UA100%, UA _{1f} 100%,	0.1	$0.964_{\pm 0.013}(0.036)$ $0.922_{\pm 0.006}(0.078)$	$0.917_{\pm 0.037}(0.083)$ $0.852_{\pm 0.015}(0.148)$	$0.909_{\pm 0.006}(0.027)$ $0.863_{\pm 0.017}(0.007)$	$7.360_{\pm 0.999}(2.640)$ $6.941_{\pm 1.088}(3.059)$	$6.988_{\pm 0.749}(3.012)$ $6.562_{\pm 0.856}(3.438)$	$6.853_{\pm 0.390}(5.930)$ $6.278_{\pm 0.232}(5.395)$	$0.132_{\pm 0.020}(0.032)$ $0.134_{\pm 0.020}(0.034)$	$0.132_{\pm 0.019}(0.032)$ $0.131_{\pm 0.015}(0.031)$	$0.133_{\pm 0.007}(0.823)$ $0.138_{\pm 0.008}(0.832)$	$0.998_{\pm 0.000}$ $0.997_{\pm 0.001}$	$0.996_{\pm 0.003}$ $0.994_{\pm 0.006}$
RA34.3%, TA36.1%	0.13	$0.922\pm0.006(0.078)$ $0.897\pm0.001(0.103)$	$0.818_{\pm 0.020}(0.182)$	$0.789_{\pm 0.015}(0.025)$	$6.757_{\pm 0.978}(3.243)$	$6.352_{\pm 0.757}(3.648)$	$5.307_{\pm 0.527}(4.477)$	$0.134_{\pm 0.020}(0.034)$ $0.134_{\pm 0.019}(0.034)$	$0.131_{\pm 0.015}(0.031)$ $0.130_{\pm 0.012}(0.030)$	$0.150_{\pm 0.008}(0.832)$ $0.150_{\pm 0.018}(0.832)$	$0.993_{\pm 0.002}$	$0.993_{\pm 0.006}$ $0.993_{\pm 0.006}$
	0.05	$0.995_{\pm 0.014}(0.005)$	$0.935_{\pm 0.013}(0.065)$	$0.940_{\pm 0.007}(0.024)$	1.030 _{±0.014} (8.970)	1.067 _{±0.013} (8.933)	$0.991_{\pm 0.011}(0.157)$	0.966 _{±0.010} (0.866)	$0.876_{\pm 0.007}(0.776)$	$0.949_{\pm 0.010}(0.109)$	0.804 _{±0.015}	
SSD	0.1	$0.984_{\pm 0.021}(0.016)$	$0.910_{\pm 0.009}(0.090)$	$0.880_{\pm 0.001}(0.002)$	$0.992_{\pm 0.011}(9.008)$	$0.982_{\pm 0.005} (9.018)$	$0.896_{\pm 0.003}(0.026)$	$0.992_{\pm 0.003}(0.892)$	$0.926_{\pm 0.017}(0.826)$	$0.981_{\pm 0.012}(0.025)$	$0.434_{\pm 0.007}$	$0.022_{\pm 0.005}$
UA1.16%, UA _{tf} 7.75%,	0.15	$0.960_{\pm 0.012}(0.040)$	$0.876_{\pm 0.011}(0.124)$	$0.847_{\pm 0.007}(0.009)$	$0.962_{\pm 0.007}(9.038)$	$0.931_{\pm 0.006} (9.069)$	$0.857_{\pm 0.013}(0.025)$	$0.998_{\pm0.016}(0.898)$	$0.941_{\pm 0.002}(0.841)$	$0.989_{\pm 0.002}(0.019)$	$0.215_{\pm 0.007}$	$0.005_{\pm 0.017}$
RA99.5%, TA94.3%	0.2	$0.895_{\pm 0.020}(0.105)$	$0.816_{\pm 0.010}(0.184)$	$0.823_{\pm 0.015} (0.009)$	$0.895_{\pm 0.014}(9.105)$	$0.850_{\pm0.004}(9.150)$	$0.831_{\pm 0.002}(0.001)$	$0.999_{\pm 0.001}(0.899)$	$0.960_{\pm 0.014}(0.860)$	$0.991_{\pm 0.003}(0.010)$	$0.078_{\pm 0.003}$	$0.002_{\pm 0.009}$
	0.05	$0.989_{\pm 0.016}(0.011)$	$0.961_{\pm 0.056}(0.039)$	$0.945_{\pm 0.027} (0.019)$	$9.432_{\pm 0.803}(0.568)$	$9.038_{\pm 1.360}(0.962)$	$1.053_{\pm 0.020} (0.096)$	$0.105_{\pm 0.007}(0.005)$	$0.107_{\pm 0.010} (0.007)$	$0.897_{\pm 0.008}(0.058)$	$1.000_{\pm 0.000}$	$0.835_{\pm0.085}$
NegGrad+	0.1	0.980 _{±0.029} (0.020)	$0.954_{\pm 0.065}(0.046)$	$0.881_{\pm 0.028}(0.001)$	9.250 _{±1.061} (0.750)	8.836 _{±1.647} (1.164)	$0.913_{\pm 0.018}(0.009)$	$0.106_{\pm 0.009}(0.006)$	$0.109_{\pm 0.013}(0.009)$	0.965 _{±0.012} (0.009)	1.000 _{±0.000}	$0.057_{\pm 0.021}$
UA96.2%, UA _{tf} 95.2%, RA97.6%, TA92.8%	0.15	$0.952_{\pm 0.068}(0.048)$ $0.958_{\pm 0.060}(0.042)$	$0.908_{\pm 0.130}(0.092)$ $0.921_{\pm 0.111}(0.079)$	$0.849_{\pm 0.026}(0.007)$ $0.814_{\pm 0.007}(0.001)$	$8.600_{\pm 1.980}(1.400)$ $8.673_{\pm 1.876}(1.327)$	$8.077_{\pm 2.719}(1.923)$ $8.219_{\pm 2.519}(1.781)$	$0.868_{\pm 0.016}(0.014)$ $0.828_{\pm 0.020}(0.002)$	$0.113_{\pm 0.018}(0.013)$ $0.112_{\pm 0.017}(0.012)$	$0.116_{\pm 0.023}(0.016)$ $0.115_{\pm 0.022}(0.015)$	$0.977_{\pm 0.012}(0.007)$ $0.983_{\pm 0.015}(0.001)$	$1.000_{\pm 0.000}$ $1.000_{\pm 0.000}$	$0.012_{\pm 0.003}$ $0.004_{\pm 0.003}$
	0.05	0.996±0.001(0.004)	$0.941_{\pm 0.008}(0.059)$ $0.941_{\pm 0.008}(0.059)$	$0.952_{\pm 0.001}(0.012)$	9.996±0.002(0.004)	$9.892_{\pm 0.003}(0.108)$	$1.028_{\pm 0.008}(0.121)$	0.100±0.000(0.000)	$0.095_{\pm 0.001}(0.005)$	$0.926_{\pm 0.008}(0.087)$	1.000±0.000	$0.785_{\pm 0.049}$
Salun	0.03	$0.990\pm0.001(0.004)$ $0.988\pm0.004(0.012)$	$0.941\pm0.008(0.059)$ $0.906\pm0.011(0.094)$	$0.952\pm0.001(0.012)$ $0.901\pm0.002(0.020)$	9.995±0.002(0.004) 9.985±0.003(0.015)	9.892 ± 0.003 (0.108) 9.817 ± 0.045 (0.183)	$0.928_{\pm 0.008}(0.121)$ $0.928_{\pm 0.006}(0.006)$	$0.100\pm0.000(0.000)$ $0.099\pm0.000(0.001)$	$0.095_{\pm 0.001}(0.005)$ $0.092_{\pm 0.001}(0.008)$	$0.920\pm0.008(0.087)$ $0.971\pm0.004(0.015)$	1.000 ± 0.000 1.000 ± 0.000	0.785 ± 0.049 0.042 ± 0.011
UA100%, UA _{tf} 100%,	0.15	$0.960_{\pm 0.003}(0.040)$	$0.851_{\pm 0.005}(0.149)$	$0.878_{\pm 0.006}(0.022)$	9.952 _{±0.000} (0.048)	$9.677_{\pm 0.088}(0.323)$	$0.896_{\pm 0.005}(0.013)$	$0.096_{\pm 0.000}(0.004)$	$0.088_{\pm 0.000}(0.012)$	$0.980_{\pm 0.001}(0.010)$	1.000 ± 0.000 1.000 ± 0.000	$0.009_{\pm 0.001}$
RA99.6%, TA94.3%	0.2	$0.915_{\pm 0.019}(0.085)$	$0.807_{\pm 0.038}(0.193)$	$0.820_{\pm 0.035}(0.005)$	$9.893_{\pm 0.024}(0.107)$	$9.511_{\pm 0.192}(0.489)$	$0.828_{\pm0.039}(0.002)$	$0.092_{\pm 0.002}(0.008)$	$0.085_{\pm 0.002}(0.015)$	$0.990_{\pm 0.004}(0.009)$	$1.000_{\pm 0.000}$	$0.001_{\pm 0.001}$
	0.05	$1.000_{\pm 0.000}(0.000)$	$1.000_{\pm 0.000}(0.000)$	$0.952_{\pm 0.005}(0.013)$	10.000 _{±0.000} (0.000)	$10.000_{\pm 0.000}(0.000)$	$1.022_{\pm 0.030}(0.127)$	$0.100_{\pm 0.000}(0.000)$	$0.100_{\pm 0.000}(0.000)$	$0.932_{\pm 0.024}(0.092)$	$1.000_{\pm 0.000}$	$0.677_{\pm 0.206}$
SFRon	0.1	$1.000_{\pm 0.000} (0.000)$	$1.000_{\pm 0.000}(0.000)$	$0.908_{\pm0.013}(0.026)$	$10.000_{\pm 0.000}(0.000)$	$10.000_{\pm 0.000} (0.000)$	$0.937_{\pm 0.028} (0.014)$	$0.100_{\pm 0.000}(0.000)$	$0.100_{\pm 0.000} (0.000)$	$0.970_{\pm 0.015} (0.014)$	$1.000_{\pm 0.000}$	$0.089_{\pm 0.092}$
UA100%, UA _{tf} 100%,	0.15	1.000 _{±0.000} (0.000)	$1.000_{\pm 0.000}(0.000)$	0.840 _{±0.026} (0.016)	10.000 _{±0.000} (0.000)	$10.000_{\pm 0.000}(0.000)$	$0.849_{\pm 0.026}(0.033)$	$0.100_{\pm 0.000}(0.000)$	$0.100_{\pm 0.000}(0.000)$	$0.989_{\pm 0.003}(0.019)$	$1.000_{\pm 0.000}$	$0.002_{\pm 0.001}$
RA99.3%, TA94.4%	0.2	$1.000_{\pm 0.000}(0.000)$	$1.000_{\pm 0.000}(0.000)$	$0.807_{\pm 0.024}(0.008)$	$10.000_{\pm 0.000}(0.000)$	$10.000_{\pm 0.000}(0.000)$	$0.813_{\pm 0.025}(0.017)$	$0.100_{\pm 0.000}(0.000)$	$0.100_{\pm 0.000}(0.000)$	$0.992_{\pm 0.003}(0.010)$	$1.000_{\pm 0.000}$	$0.001_{\pm 0.001}$

Table 12: Unlearning performance of 9 unlearning methods on **Tiny ImageNet** with **ViT** in **10**% **random data forgetting** scenario.

	1	Cove	erage	Set S	ize	(R	
Methods	α	$\mathcal{D}_f\downarrow$	$\mathcal{D}_{test} \uparrow$	$\mathcal{D}_f \uparrow$	$\mathcal{D}_{test} \downarrow$	$\mathcal{D}_f\downarrow$	$\mathcal{D}_{test} \uparrow$	\hat{q}
RT UA14.7%, RA98.8%, TA86.0%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.944_{\pm 0.006}(0.000) \\ 0.892_{\pm 0.006}(0.000) \\ 0.841_{\pm 0.024}(0.000) \\ 0.790_{\pm 0.015}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.949_{\pm 0.026}(0.000) \\ 0.900_{\pm 0.025}(0.000) \\ 0.850_{\pm 0.017}(0.000) \\ 0.799_{\pm 0.023}(0.000) \end{array}$	$\begin{array}{c} 1.876_{\pm 0.009}(0.000) \\ 1.151_{\pm 0.002}(0.000) \\ 0.956_{\pm 0.014}(0.000) \\ 0.846_{\pm 0.004}(0.000) \end{array}$	$\begin{array}{c} 1.840_{\pm 0.014}(0.000) \\ 1.144_{\pm 0.018}(0.000) \\ 0.956_{\pm 0.017}(0.000) \\ 0.854_{\pm 0.014}(0.000) \end{array}$	$ \begin{vmatrix} 0.503_{\pm 0.018}(0.000) \\ 0.775_{\pm 0.016}(0.000) \\ 0.880_{\pm 0.014}(0.000) \\ 0.934_{\pm 0.012}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.516_{\pm 0.018}(0.000) \\ 0.786_{\pm 0.026}(0.000) \\ 0.889_{\pm 0.019}(0.000) \\ 0.935_{\pm 0.015}(0.000) \end{array}$	$\begin{array}{c} 0.984_{\pm 0.002} \\ 0.853_{\pm 0.003} \\ 0.539_{\pm 0.001} \\ 0.238_{\pm 0.012} \end{array}$
FT UA6.9%, RA97.9%, TA84.1%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.994_{\pm 0.005}(0.050) \\ 0.978_{\pm 0.007}(0.086) \\ 0.938_{\pm 0.001}(0.097) \\ 0.888_{\pm 0.009}(0.098) \end{vmatrix} $	$\begin{array}{c} 0.950_{\pm 0.019}(0.001) \\ 0.903_{\pm 0.003}(0.003) \\ 0.851_{\pm 0.010}(0.001) \\ 0.801_{\pm 0.012}(0.002) \end{array}$	$\begin{array}{c} 2.133_{\pm 0.008}(0.257) \\ 1.234_{\pm 0.010}(0.083) \\ 1.014_{\pm 0.005}(0.058) \\ 0.915_{\pm 0.006}(0.069) \end{array}$	$\begin{array}{c} 2.440_{\pm 0.011}(0.600) \\ 1.317_{\pm 0.001}(0.173) \\ 1.017_{\pm 0.016}(0.061) \\ 0.885_{\pm 0.000}(0.031) \end{array}$	$ \begin{vmatrix} 0.466_{\pm 0.009}(0.037) \\ 0.792_{\pm 0.018}(0.017) \\ 0.925_{\pm 0.007}(0.045) \\ 0.970_{\pm 0.020}(0.036) \end{vmatrix} $	$\begin{array}{c} 0.389_{\pm 0.016}(0.127) \\ 0.685_{\pm 0.001}(0.101) \\ 0.836_{\pm 0.016}(0.053) \\ 0.905_{\pm 0.005}(0.030) \end{array}$	$\begin{array}{c} 0.994_{\pm 0.020} \\ 0.935_{\pm 0.012} \\ 0.681_{\pm 0.003} \\ 0.326_{\pm 0.011} \end{array}$
RL UA26.9%, RA96.0%, TA81.4%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.969_{\pm 0.021}(0.025) \\ 0.892_{\pm 0.017}(0.000) \\ 0.793_{\pm 0.021}(0.048) \\ 0.681_{\pm 0.010}(0.109) \end{vmatrix} $	$\begin{array}{c} 0.952_{\pm 0.008}(0.003) \\ 0.902_{\pm 0.013}(0.002) \\ 0.855_{\pm 0.008}(0.005) \\ 0.803_{\pm 0.003}(0.004) \end{array}$	$\begin{array}{c} 17.890_{\pm 0.003}(16.014) \\ 2.639_{\pm 0.017}(1.488) \\ 1.225_{\pm 0.013}(0.269) \\ 0.831_{\pm 0.006}(0.015) \end{array}$	$\begin{array}{c} 8.572_{\pm 0.010}(6.732) \\ 1.843_{\pm 0.019}(0.699) \\ 1.164_{\pm 0.000}(0.208) \\ 0.946_{\pm 0.011}(0.092) \end{array}$	$ \begin{array}{c} 0.054_{\pm 0.013}(0.449) \\ 0.338_{\pm 0.022}(0.437) \\ 0.648_{\pm 0.002}(0.232) \\ 0.820_{\pm 0.022}(0.114) \end{array}$	$\begin{array}{c} 0.111_{\pm 0.002}(0.405) \\ 0.489_{\pm 0.013}(0.297) \\ 0.734_{\pm 0.000}(0.155) \\ 0.849_{\pm 0.006}(0.086) \end{array}$	$\begin{array}{c} 0.996_{\pm 0.019} \\ 0.971_{\pm 0.014} \\ 0.894_{\pm 0.022} \\ 0.715_{\pm 0.013} \end{array}$
GA UA3.2%, RA97.4%, TA84.9%	0.05 0.1 0.15 0.2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.947_{\pm 0.002}(0.002) \\ 0.900_{\pm 0.000}(0.000) \\ 0.852_{\pm 0.005}(0.002) \\ 0.800_{\pm 0.007}(0.001) \end{array}$	$\begin{array}{c} 1.539_{\pm 0.004}(0.337) \\ 1.104_{\pm 0.006}(0.047) \\ 1.003_{\pm 0.008}(0.047) \\ 0.946_{\pm 0.008}(0.100) \end{array}$	$\begin{array}{c} 2.018_{\pm0.007}(0.178) \\ 1.224_{\pm0.005}(0.080) \\ 0.993_{\pm0.004}(0.037) \\ 0.871_{\pm0.008}(0.017) \end{array}$	$ \begin{vmatrix} 0.647_{\pm 0.003}(0.144) \\ 0.894_{\pm 0.003}(0.119) \\ 0.964_{\pm 0.005}(0.084) \\ 0.987_{\pm 0.008}(0.053) \end{vmatrix} $	$\begin{array}{c} 0.469_{\pm 0.002}(0.047) \\ 0.736_{\pm 0.006}(0.050) \\ 0.859_{\pm 0.006}(0.030) \\ 0.919_{\pm 0.005}(0.016) \end{array}$	$\begin{array}{c} 0.988_{\pm 0.004} \\ 0.899_{\pm 0.001} \\ 0.632_{\pm 0.009} \\ 0.296_{\pm 0.009} \end{array}$
Teacher UA17.3%, RA86.7%, TA79.0%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.977_{\pm 0.004}(0.033) \\ 0.930_{\pm 0.003}(0.038) \\ 0.873_{\pm 0.003}(0.032) \\ 0.816_{\pm 0.007}(0.026) \end{array} $	$\begin{array}{c} 0.956_{\pm0.003}(0.007) \\ 0.902_{\pm0.008}(0.002) \\ 0.850_{\pm0.009}(0.000) \\ 0.803_{\pm0.009}(0.004) \end{array}$	$\begin{array}{c} 5.473_{\pm 0.006}(3.597) \\ 1.991_{\pm 0.004}(0.840) \\ 1.295_{\pm 0.006}(0.339) \\ 1.020_{\pm 0.006}(0.174) \end{array}$	$\begin{array}{c} 5.080_{\pm 0.004}(3.240) \\ 1.959_{\pm 0.002}(0.815) \\ 1.319_{\pm 0.005}(0.363) \\ 1.058_{\pm 0.004}(0.204) \end{array}$	$ \begin{array}{c} 0.179_{\pm 0.008}(0.324) \\ 0.467_{\pm 0.004}(0.308) \\ 0.674_{\pm 0.007}(0.206) \\ 0.800_{\pm 0.005}(0.134) \end{array}$	$\begin{array}{c} 0.188_{\pm 0.002}(0.328) \\ 0.460_{\pm 0.002}(0.326) \\ 0.645_{\pm 0.003}(0.244) \\ 0.758_{\pm 0.005}(0.177) \end{array}$	$\begin{array}{c} 0.987_{\pm 0.008} \\ 0.971_{\pm 0.007} \\ 0.944_{\pm 0.006} \\ 0.910_{\pm 0.006} \end{array}$
SSD UA1.5%, RA98.5%, TA86.1%	0.05 0.1 0.15 0.2	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c} 0.950_{\pm 0.006}(0.001) \\ 0.897_{\pm 0.008}(0.003) \\ 0.853_{\pm 0.001}(0.003) \\ 0.805_{\pm 0.003}(0.006) \end{array}$	$\begin{array}{c} 1.354_{\pm 0.008}(0.522) \\ 1.039_{\pm 0.002}(0.112) \\ 0.993_{\pm 0.001}(0.037) \\ 0.960_{\pm 0.003}(0.114) \end{array}$	$\begin{array}{c} 1.827_{\pm 0.002}(0.013) \\ 1.134_{\pm 0.008}(0.010) \\ 0.962_{\pm 0.005}(0.006) \\ 0.864_{\pm 0.009}(0.010) \end{array}$	$ \begin{array}{c} 0.737_{\pm 0.008}(0.234) \\ 0.956_{\pm 0.007}(0.181) \\ 0.988_{\pm 0.004}(0.108) \\ 0.996_{\pm 0.005}(0.062) \end{array}$	$\begin{array}{c} 0.520_{\pm 0.008}(0.004) \\ 0.791_{\pm 0.002}(0.005) \\ 0.887_{\pm 0.004}(0.002) \\ 0.932_{\pm 0.002}(0.003) \end{array}$	$\begin{array}{c} 0.985_{\pm 0.005} \\ 0.852_{\pm 0.001} \\ 0.542_{\pm 0.007} \\ 0.249_{\pm 0.006} \end{array}$
NegGrad+ UA19.4%, RA98.3%, TA84.0%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.999_{\pm 0.000}(0.055) \\ 0.995_{\pm 0.001}(0.103) \\ 0.987_{\pm 0.000}(0.146) \\ 0.966_{\pm 0.001}(0.176) \end{array} $	$\begin{array}{c} 0.890_{\pm 0.002}(0.059) \\ 0.848_{\pm 0.000}(0.052) \\ 0.814_{\pm 0.001}(0.036) \\ 0.783_{\pm 0.003}(0.016) \end{array}$	$\begin{array}{c} 0.949_{\pm 0.002}(0.927) \\ 0.898_{\pm 0.000}(0.253) \\ 0.850_{\pm 0.001}(0.106) \\ 0.802_{\pm 0.002}(0.044) \end{array}$	$\begin{array}{c} 1.614_{\pm 0.023}(0.227) \\ 1.093_{\pm 0.005}(0.051) \\ 1.009_{\pm 0.000}(0.053) \\ 0.972_{\pm 0.000}(0.118) \end{array}$	$ \begin{array}{c} 2.184_{\pm 0.052}(1.681) \\ 1.225_{\pm 0.007}(0.450) \\ 1.017_{\pm 0.002}(0.137) \\ 0.922_{\pm 0.004}(0.012) \end{array} $	$\begin{array}{c} 2.499_{\pm 0.059}(1.984) \\ 1.287_{\pm 0.003}(0.501) \\ 1.023_{\pm 0.003}(0.133) \\ 0.891_{\pm 0.001}(0.043) \end{array}$	$\begin{array}{c} 0.995_{\pm 0.000} \\ 0.933_{\pm 0.002} \\ 0.685_{\pm 0.002} \\ 0.320_{\pm 0.001} \end{array}$
Salun UA9.2%, RA97.7%, TA83.6%	0.05 0.1 0.15 0.2	$ \begin{array}{ c c c }\hline 0.995_{\pm 0.003}(0.051)\\ 0.977_{\pm 0.014}(0.085)\\ 0.936_{\pm 0.041}(0.095)\\ 0.870_{\pm 0.081}(0.080) \end{array}$	$\begin{array}{c} 0.964_{\pm 0.026}(0.015) \\ 0.924_{\pm 0.040}(0.024) \\ 0.874_{\pm 0.041}(0.024) \\ 0.810_{\pm 0.017}(0.011) \end{array}$	$\begin{array}{c} 2.803_{\pm 1.607}(0.927) \\ 1.229_{\pm 0.286}(0.078) \\ 0.972_{\pm 0.103}(0.016) \\ 0.845_{\pm 0.036}(0.001) \end{array}$	$\begin{array}{c} 2.726_{\pm 0.727}(0.886) \\ 1.281_{\pm 0.120}(0.137) \\ 1.032_{\pm 0.005}(0.076) \\ 0.925_{\pm 0.046}(0.071) \end{array}$	$ \begin{array}{c} 1.311_{\pm 1.810}(0.808) \\ 0.918_{\pm 0.387}(0.143) \\ 0.935_{\pm 0.087}(0.055) \\ 0.924_{\pm 0.047}(0.009) \end{array} $	$\begin{array}{c} 1.157_{\pm 1.481}(0.641) \\ 0.884_{\pm 0.374}(0.097) \\ 0.893_{\pm 0.124}(0.004) \\ 0.894_{\pm 0.006}(0.041) \end{array}$	$\begin{array}{c} 0.988_{\pm 0.001} \\ 0.939_{\pm 0.005} \\ 0.819_{\pm 0.003} \\ 0.630_{\pm 0.003} \end{array}$
SFRon UA9.3%, RA97.0%, TA83.9%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.989_{\pm 0.001}(0.045) \\ 0.960_{\pm 0.003}(0.068) \\ 0.917_{\pm 0.002}(0.076) \\ 0.866_{\pm 0.006}(0.076) \end{array} $	$\begin{array}{c} 0.948_{\pm 0.001}(0.001) \\ 0.899_{\pm 0.002}(0.001) \\ 0.849_{\pm 0.002}(0.001) \\ 0.802_{\pm 0.003}(0.003) \end{array}$	$\begin{array}{c} 2.000_{\pm 0.059}(0.124) \\ 1.227_{\pm 0.017}(0.076) \\ 1.024_{\pm 0.006}(0.068) \\ 0.916_{\pm 0.004}(0.070) \end{array}$	$\begin{array}{c} 2.208_{\pm 0.037}(0.368) \\ 1.268_{\pm 0.007}(0.123) \\ 1.015_{\pm 0.005}(0.059) \\ 0.892_{\pm 0.005}(0.037) \end{array}$	$ \begin{array}{c} 0.495_{\pm 0.014}(0.008) \\ 0.783_{\pm 0.010}(0.008) \\ 0.896_{\pm 0.007}(0.016) \\ 0.946_{\pm 0.002}(0.012) \end{array} $	$\begin{array}{c} 0.429_{\pm 0.007}(0.086) \\ 0.709_{\pm 0.003}(0.077) \\ 0.837_{\pm 0.004}(0.053) \\ 0.899_{\pm 0.003}(0.036) \end{array}$	$\begin{array}{c} 0.986_{\pm 0.000} \\ 0.902_{\pm 0.003} \\ 0.689_{\pm 0.012} \\ 0.426_{\pm 0.018} \end{array}$

Table 13: Unlearning performance of 9 unlearning methods on **Tiny ImageNet** with **ViT** in **50**% **random data forgetting** scenario.

26.4.1		Cove	erage	Set	Size	C	R	
Methods	α	$\mathcal{D}_f \downarrow$	$\mathcal{D}_{test} \uparrow$	$\mathcal{D}_f \uparrow$	$\mathcal{D}_{test} \downarrow$	$\mathcal{D}_f \downarrow$	$\mathcal{D}_{test} \uparrow$	\hat{q}
RT UA16.0%, RA98.8%, TA84.9%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.946_{\pm 0.001}(0.000) \\ 0.892_{\pm 0.007}(0.000) \\ 0.838_{\pm 0.004}(0.000) \\ 0.786_{\pm 0.005}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.948_{\pm 0.003}(0.000) \\ 0.899_{\pm 0.008}(0.000) \\ 0.847_{\pm 0.001}(0.000) \\ 0.796_{\pm 0.002}(0.000) \end{array}$	$ \begin{array}{c} 2.146_{\pm 0.006}(0.000) \\ 1.222_{\pm 0.002}(0.000) \\ 0.977_{\pm 0.002}(0.000) \\ 0.856_{\pm 0.007}(0.000) \end{array} $	$\begin{array}{c} 2.106_{\pm 0.002}(0.000) \\ 1.211_{\pm 0.007}(0.000) \\ 0.977_{\pm 0.006}(0.000) \\ 0.863_{\pm 0.001}(0.000) \end{array}$	$ \begin{vmatrix} 0.441_{\pm 0.004}(0.000) \\ 0.730_{\pm 0.004}(0.000) \\ 0.858_{\pm 0.008}(0.000) \\ 0.918_{\pm 0.007}(0.000) \end{vmatrix} $	$\begin{array}{c} 0.450_{\pm 0.005}(0.000) \\ 0.742_{\pm 0.002}(0.000) \\ 0.868_{\pm 0.006}(0.000) \\ 0.922_{\pm 0.008}(0.000) \end{array}$	$ \begin{vmatrix} 0.987_{\pm 0.004} \\ 0.889_{\pm 0.009} \\ 0.607_{\pm 0.001} \\ 0.304_{\pm 0.008} \end{vmatrix} $
FT UA5.4%, RA97.1%, TA84.4%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.995_{\pm 0.013}(0.051) \\ 0.979_{\pm 0.021}(0.087) \\ 0.953_{\pm 0.024}(0.112) \\ 0.910_{\pm 0.029}(0.120) \end{vmatrix} $	$\begin{array}{c} 0.949_{\pm 0.024}(0.000) \\ 0.901_{\pm 0.014}(0.001) \\ 0.850_{\pm 0.022}(0.000) \\ 0.806_{\pm 0.024}(0.007) \end{array}$	$ \begin{array}{c c} 1.879_{\pm 0.014}(0.003) \\ 1.183_{\pm 0.018}(0.032) \\ 1.014_{\pm 0.011}(0.058) \\ 0.937_{\pm 0.018}(0.091) \end{array} $	$\begin{array}{c} 2.216_{\pm 0.003}(0.376) \\ 1.281_{\pm 0.020}(0.137) \\ 1.017_{\pm 0.026}(0.061) \\ 0.895_{\pm 0.001}(0.041) \end{array}$	$ \begin{vmatrix} 0.527_{\pm 0.028}(0.024) \\ 0.828_{\pm 0.029}(0.053) \\ 0.940_{\pm 0.027}(0.060) \\ 0.977_{\pm 0.029}(0.043) \end{vmatrix} $	$\begin{array}{c} 0.428_{\pm0.020}(0.088) \\ 0.701_{\pm0.010}(0.085) \\ 0.839_{\pm0.004}(0.050) \\ 0.902_{\pm0.007}(0.033) \end{array}$	$ \begin{vmatrix} 0.992_{\pm 0.019} \\ 0.926_{\pm 0.025} \\ 0.681_{\pm 0.020} \\ 0.345_{\pm 0.016} \end{vmatrix} $
RL UA22.5%, RA93.5%, TA77.1%	0.05 0.1 0.15 0.2	$ \begin{array}{c c} 0.974_{\pm 0.011}(0.028) \\ 0.930_{\pm 0.016}(0.038) \\ 0.875_{\pm 0.011}(0.037) \\ 0.810_{\pm 0.006}(0.024) \end{array}$	$\begin{array}{c} 0.953_{\pm 0.001}(0.005) \\ 0.902_{\pm 0.013}(0.003) \\ 0.856_{\pm 0.008}(0.009) \\ 0.805_{\pm 0.013}(0.009) \end{array}$	$ \begin{array}{c} 26.032_{\pm 0.007}(23.886) \\ 5.277_{\pm 0.001}(4.055) \\ 1.758_{\pm 0.004}(0.781) \\ 1.147_{\pm 0.005}(0.291) \end{array} $	$\begin{array}{c} 23.369_{\pm 0.008}(21.263) \\ 4.621_{\pm 0.007}(3.410) \\ 1.657_{\pm 0.005}(0.680) \\ 1.144_{\pm 0.005}(0.281) \end{array}$	$ \begin{array}{c} 0.038_{\pm 0.015}(0.403) \\ 0.178_{\pm 0.011}(0.552) \\ 0.496_{\pm 0.006}(0.362) \\ 0.707_{\pm 0.004}(0.211) \end{array}$	$\begin{array}{c} 0.038_{\pm0.016}(0.412) \\ 0.197_{\pm0.001}(0.545) \\ 0.516_{\pm0.009}(0.352) \\ 0.707_{\pm0.013}(0.215) \end{array}$	$ \begin{array}{c} 0.994_{\pm 0.010} \\ 0.987_{\pm 0.008} \\ 0.970_{\pm 0.017} \\ 0.945_{\pm 0.005} \end{array} $
GA UA3.9%, RA96.1%, TA84.2%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.998_{\pm 0.007}(0.052) \\ 0.986_{\pm 0.009}(0.094) \\ 0.968_{\pm 0.008}(0.130) \\ 0.931_{\pm 0.011}(0.145) \end{vmatrix} $	$\begin{array}{c} 0.949_{\pm 0.001}(0.001) \\ 0.896_{\pm 0.007}(0.003) \\ 0.850_{\pm 0.002}(0.003) \\ 0.804_{\pm 0.004}(0.008) \end{array}$	$ \begin{vmatrix} 1.807_{\pm 0.001}(0.339) \\ 1.147_{\pm 0.003}(0.075) \\ 1.015_{\pm 0.008}(0.038) \\ 0.948_{\pm 0.000}(0.092) \end{vmatrix} $	$\begin{array}{c} 2.338_{\pm 0.001}(0.232) \\ 1.278_{\pm 0.007}(0.067) \\ 1.020_{\pm 0.002}(0.043) \\ 0.893_{\pm 0.003}(0.030) \end{array}$	$ \begin{vmatrix} 0.552_{\pm 0.006}(0.111) \\ 0.863_{\pm 0.008}(0.133) \\ 0.954_{\pm 0.009}(0.096) \\ 0.983_{\pm 0.006}(0.065) \end{vmatrix} $	$\begin{array}{c} 0.407_{\pm 0.006}(0.043) \\ 0.703_{\pm 0.002}(0.039) \\ 0.835_{\pm 0.002}(0.033) \\ 0.900_{\pm 0.004}(0.022) \end{array}$	$ \begin{vmatrix} 0.992_{\pm 0.006} \\ 0.918_{\pm 0.010} \\ 0.696_{\pm 0.009} \\ 0.363_{\pm 0.002} \end{vmatrix} $
Teacher UA22.1%, RA85.7%, TA76.2%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.967_{\pm 0.013}(0.021) \\ 0.922_{\pm 0.008}(0.030) \\ 0.869_{\pm 0.025}(0.031) \\ 0.814_{\pm 0.020}(0.028) \end{vmatrix} $	$\begin{array}{c} 0.950_{\pm 0.017}(0.002) \\ 0.899_{\pm 0.002}(0.000) \\ 0.852_{\pm 0.002}(0.005) \\ 0.801_{\pm 0.017}(0.005) \end{array}$	$ \begin{array}{c} 6.465_{\pm 0.007}(4.319) \\ 2.202_{\pm 0.012}(0.980) \\ 1.467_{\pm 0.015}(0.490) \\ 1.125_{\pm 0.005}(0.269) \end{array} $	$\begin{array}{l} 6.233_{\pm 0.004}(4.127) \\ 2.167_{\pm 0.005}(0.956) \\ 1.459_{\pm 0.004}(0.482) \\ 1.138_{\pm 0.001}(0.275) \end{array}$	$ \begin{vmatrix} 0.151_{\pm 0.002}(0.290) \\ 0.418_{\pm 0.009}(0.312) \\ 0.591_{\pm 0.005}(0.267) \\ 0.718_{\pm 0.017}(0.200) \end{vmatrix} $	$\begin{array}{c} 0.151_{\pm0.006}(0.299) \\ 0.419_{\pm0.024}(0.323) \\ 0.581_{\pm0.001}(0.287) \\ 0.704_{\pm0.009}(0.218) \end{array}$	$ \begin{vmatrix} 0.990_{\pm 0.014} \\ 0.977_{\pm 0.001} \\ 0.958_{\pm 0.021} \\ 0.927_{\pm 0.017} \end{vmatrix} $
SSD UA1.3%, RA98.4%, TA86.1%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.999_{\pm 0.001}(0.053) \\ 0.995_{\pm 0.001}(0.103) \\ 0.982_{\pm 0.001}(0.144) \\ 0.959_{\pm 0.001}(0.173) \end{array}$	$\begin{array}{c} 0.952_{\pm0.001}(0.004) \\ 0.897_{\pm0.000}(0.002) \\ 0.847_{\pm0.000}(0.000) \\ 0.804_{\pm0.001}(0.008) \end{array}$	$ \begin{array}{c} 1.346_{\pm 0.001}(0.800) \\ 1.033_{\pm 0.001}(0.189) \\ 0.987_{\pm 0.000}(0.010) \\ 0.961_{\pm 0.000}(0.105) \end{array} $	$\begin{array}{c} 1.824_{\pm 0.000}(0.282) \\ 1.135_{\pm 0.001}(0.076) \\ 0.956_{\pm 0.000}(0.021) \\ 0.862_{\pm 0.000}(0.001) \end{array}$	$ \begin{array}{c} 0.742_{\pm 0.000}(0.301) \\ 0.959_{\pm 0.000}(0.229) \\ 0.989_{\pm 0.001}(0.131) \\ 0.995_{\pm 0.001}(0.077) \end{array} $	$\begin{array}{c} 0.522_{\pm 0.001}(0.072) \\ 0.790_{\pm 0.000}(0.048) \\ 0.890_{\pm 0.001}(0.022) \\ 0.932_{\pm 0.001}(0.010) \end{array}$	$ \begin{vmatrix} 0.986_{\pm 0.001} \\ 0.847_{\pm 0.001} \\ 0.517_{\pm 0.001} \\ 0.243_{\pm 0.001} \end{vmatrix} $
NegGrad+ UA11.5%, RA98.7%, TA83.8%	0.05 0.1 0.15 0.2	$ \begin{vmatrix} 0.999_{\pm 0.000}(0.053) \\ 0.996_{\pm 0.000}(0.104) \\ 0.990_{\pm 0.000}(0.152) \\ 0.977_{\pm 0.000}(0.191) \end{vmatrix} $	$\begin{array}{c} 0.979_{\pm 0.001}(0.031) \\ 0.946_{\pm 0.002}(0.047) \\ 0.900_{\pm 0.003}(0.052) \\ 0.848_{\pm 0.003}(0.052) \end{array}$	$ \begin{array}{c} 0.946_{\pm 0.002}(1.200) \\ 0.900_{\pm 0.003}(0.322) \\ 0.853_{\pm 0.004}(0.124) \\ 0.805_{\pm 0.002}(0.052) \end{array} $	$\begin{array}{c} 1.443_{\pm 0.028}(0.663) \\ 1.078_{\pm 0.006}(0.134) \\ 1.008_{\pm 0.002}(0.031) \\ 0.982_{\pm 0.000}(0.119) \end{array}$	$ \begin{vmatrix} 2.248_{\pm 0.063}(1.807) \\ 1.295_{\pm 0.010}(0.565) \\ 1.032_{\pm 0.010}(0.174) \\ 0.909_{\pm 0.004}(0.009) \end{vmatrix} $	$\begin{array}{c} 2.358_{\pm 0.095}(1.908) \\ 1.332_{\pm 0.008}(0.590) \\ 1.033_{\pm 0.011}(0.165) \\ 0.898_{\pm 0.007}(0.024) \end{array}$	$ \begin{vmatrix} 0.992_{\pm 0.001} \\ 0.933_{\pm 0.003} \\ 0.712_{\pm 0.015} \\ 0.381_{\pm 0.009} \end{vmatrix} $
Salun UA9.2%, RA95.7%, TA81.9%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.993_{\pm 0.003}(0.047) \\ 0.976_{\pm 0.011}(0.084) \\ 0.944_{\pm 0.024}(0.106) \\ 0.900_{\pm 0.044}(0.114) \end{array} $	$\begin{array}{c} 0.962_{\pm 0.026}(0.014) \\ 0.924_{\pm 0.039}(0.026) \\ 0.876_{\pm 0.046}(0.029) \\ 0.825_{\pm 0.049}(0.029) \end{array}$	$ \begin{array}{c} 3.284_{\pm 2.048}(1.138) \\ 1.386_{\pm 0.423}(0.164) \\ 1.051_{\pm 0.175}(0.074) \\ 0.910_{\pm 0.097}(0.054) \end{array} $	$\begin{array}{c} 4.112_{\pm 0.813}(2.007) \\ 1.579_{\pm 0.130}(0.368) \\ 1.139_{\pm 0.017}(0.162) \\ 0.969_{\pm 0.037}(0.105) \end{array}$	$ \begin{vmatrix} 1.546_{\pm 2.290}(1.105) \\ 0.922_{\pm 0.566}(0.192) \\ 0.919_{\pm 0.194}(0.061) \\ 0.928_{\pm 0.040}(0.011) \end{vmatrix} $	$\begin{array}{c} 1.558 \pm 2.336 \big(1.108 \big) \\ 0.896 \pm 0.607 \big(0.154 \big) \\ 0.871 \pm 0.226 \big(0.003 \big) \\ 0.876 \pm 0.063 \big(0.045 \big) \end{array}$	$ \begin{vmatrix} 0.989_{\pm 0.001} \\ 0.973_{\pm 0.002} \\ 0.942_{\pm 0.002} \\ 0.893_{\pm 0.002} \end{vmatrix} $
SFRon UA6.3%, RA96.8%, TA82.9%	0.05 0.1 0.15 0.2	$ \begin{array}{c} 0.994_{\pm 0.001}(0.048) \\ 0.980_{\pm 0.006}(0.087) \\ 0.951_{\pm 0.011}(0.113) \\ 0.910_{\pm 0.011}(0.125) \end{array}$	$\begin{array}{c} 0.947_{\pm 0.003}(0.001) \\ 0.900_{\pm 0.003}(0.001) \\ 0.849_{\pm 0.003}(0.001) \\ 0.803_{\pm 0.003}(0.008) \end{array}$	$ \begin{array}{c} 2.010_{\pm 0.188}(0.136) \\ 1.245_{\pm 0.060}(0.023) \\ 1.041_{\pm 0.020}(0.065) \\ 0.947_{\pm 0.006}(0.091) \end{array} $	$\begin{array}{c} 2.327_{\pm 0.087}(0.222) \\ 1.338_{\pm 0.039}(0.126) \\ 1.044_{\pm 0.023}(0.067) \\ 0.910_{\pm 0.022}(0.046) \end{array}$	$ \begin{array}{c} 0.497_{\pm 0.045}(0.057) \\ 0.788_{\pm 0.041}(0.058) \\ 0.913_{\pm 0.028}(0.055) \\ 0.961_{\pm 0.017}(0.044) \end{array}$	$\begin{array}{c} 0.407_{\pm 0.016}(0.043) \\ 0.673_{\pm 0.020}(0.069) \\ 0.813_{\pm 0.016}(0.055) \\ 0.884_{\pm 0.017}(0.038) \end{array}$	$ \begin{vmatrix} 0.983_{\pm 0.002} \\ 0.909_{\pm 0.003} \\ 0.738_{\pm 0.029} \\ 0.523_{\pm 0.068} \end{vmatrix} $

Table 14: Unlearning performance of 9 unlearning methods on **Tiny ImageNet** with **ViT** in **class-wise forgetting** scenario.

Methods	α		Coverage			Set Size			CR			
	<u> </u>	$\mathcal{D}_f\downarrow$	$D_{tf} \downarrow$	$D_{tr}\uparrow$	$\mathcal{D}_f \uparrow$	$D_{tf} \uparrow$	$D_{tr} \downarrow$	$\mathcal{D}_f\downarrow$	$D_{tf} \downarrow$	$D_{tr} \uparrow$	\hat{q}_f	q_{test}
RT	0.05	1.000±0.000(0.000)	$1.000_{\pm 0.000}(0.000)$	$0.950_{\pm 0.003}(0.000)$ $0.903_{\pm 0.009}(0.000)$	200.000 _{±0.000} (0.000)	$200.000_{\pm 0.000}(0.000)$ $193.340_{\pm 2.620}(0.000)$	1.785 _{±0.056} (0.000)	$0.005_{\pm 0.000}(0.000)$ $0.005_{\pm 0.000}(0.000)$	0.005±0.000(0.000)	0.532 _{±0.009} (0.000)	$1.000_{\pm 0.000}$	$0.984_{\pm 0.002}$
UA100%, UA _{tf} 100%,	0.15	$0.936_{\pm 0.011}(0.000)$ $0.904_{\pm 0.039}(0.000)$	$0.960_{\pm 0.016}(0.000)$ $0.960_{\pm 0.046}(0.000)$	$0.903_{\pm 0.009}(0.000)$ $0.853_{\pm 0.005}(0.000)$	$192.882_{\pm 0.912}(0.000)$ $186.791_{+2.173}(0.000)$	$193.340_{\pm 2.620}(0.000)$ $188.880_{\pm 1.802}(0.000)$	$1.146_{\pm 0.002}(0.000)$ $0.957_{\pm 0.010}(0.000)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$ $0.005_{\pm 0.000}(0.000)$	$0.788_{\pm 0.008}(0.000)$ $0.892_{\pm 0.003}(0.000)$	$1.000_{\pm 0.000}$ $1.000_{\pm 0.000}$	$0.859_{\pm 0.004}$ $0.535_{\pm 0.002}$
RA98.7%, TA86.4%	0.2	$0.787_{\pm 0.061}(0.000)$	$0.860_{\pm 0.024}(0.000)$	$0.805_{\pm 0.003}(0.000)$	171.051 _{±3.183} (0.000)	$174.480_{\pm 2.311}(0.000)$	$0.860_{\pm 0.010}(0.000)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$	$0.936_{\pm 0.002}(0.000)$	1.000 ± 0.000	$0.232_{\pm 0.001}$
	0.05	0.993+0.006(0.007)	0.960+0.009(0.040)	$0.952_{\pm 0.006}(0.002)$	8.360+0.007(191.640)	8.280+0.006(191.720)	2.442+0.011(0.657)	0.119+0.018(0.114)	0.116+0.001(0.111)	0.390+0.023(0.142)	$0.999_{\pm 0.006}$	0.993+0.005
FT	0.1	$0.984_{\pm 0.009}(0.048)$	$0.860_{\pm 0.013}(0.100)$	$0.898_{\pm 0.005}(0.005)$	$1.802_{\pm 0.009}(191.080)$	$1.660_{\pm 0.018}(191.680)$	$1.287_{\pm 0.009}(0.141)$	$0.546_{\pm 0.008}(0.541)$	$0.518_{\pm 0.004}(0.513)$	$0.698_{\pm 0.019}(0.090)$	$0.971_{\pm 0.019}$	$0.924_{\pm 0.016}$
UA13.8%, UA _{tf} 22.0%,	0.15	$0.902_{\pm 0.019}(0.002)$	$0.800_{\pm 0.004}(0.160)$	$0.852_{\pm 0.017}(0.001)$	$1.120_{\pm 0.021}(185.671)$	$1.040_{\pm 0.006}(187.840)$	$1.021_{\pm 0.017}(0.064)$	$0.806_{\pm 0.012}(0.801)$	$0.769_{\pm 0.013}(0.764)$	$0.835_{\pm 0.022}(0.057)$	$0.809_{\pm 0.010}$	$0.686_{\pm 0.004}$
RA97.5%, TA84.1%	0.2	$0.860_{\pm 0.021}(0.073)$	$0.760_{\pm 0.003}(0.100)$	$0.800_{\pm 0.018} (0.005)$	$0.969_{\pm 0.002}(170.082)$	$0.960_{\pm 0.003}(173.520)$	$0.882_{\pm 0.010}(0.022)$	$0.888_{\pm 0.005}(0.883)$	$0.792_{\pm 0.002}(0.787)$	$0.907_{\pm 0.006}(0.029)$	$0.595_{\pm0.002}$	$0.338_{\pm0.019}$
	0.05	$0.998_{\pm 0.005}(0.002)$	$0.980_{\pm 0.003}(0.020)$	$0.952_{\pm 0.049}(0.002)$	$199.489_{\pm 0.512}(0.511)$	$195.220_{\pm 1.003}(4.780)$	$2.317_{\pm 0.009}(0.532)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm0.000}(0.000)$	$0.411_{\pm 0.000}(0.121)$	$1.000_{\pm 0.000}$	$0.995_{\pm0.032}$
RL	0.1	$0.971_{\pm 0.013}(0.035)$	$0.900_{\pm 0.017}(0.060)$	$0.900_{\pm 0.002}(0.003)$	$180.442_{\pm 0.710}(12.440)$	$170.960_{\pm 0.948}(22.380)$	$1.237_{\pm 0.050}(0.991)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$	$0.727_{\pm 0.016}(0.061)$	$1.000_{\pm 0.000}$	$0.925_{\pm0.024}$
UA100%, UA _{tf} 100%,	0.15	0.922 _{±0.011} (0.018)	$0.900_{\pm 0.011} (0.060)$	$0.852_{\pm 0.015}(0.001)$	165.884 _{±2.037} (20.907)	159.980±1.012(28.900)	$1.001_{\pm 0.003}(0.044)$	$0.006_{\pm 0.001}(0.001)$	$0.006_{\pm 0.000}(0.001)$	0.851 _{±0.023} (0.041)	$1.000_{\pm 0.000}$	$0.641_{\pm 0.035}$
RA98.2%, TA84.6%	0.2	$0.882_{\pm 0.007}(0.095)$	$0.860_{\pm 0.007}(0.000)$	$0.807_{\pm 0.007}(0.002)$	154.896±2.028(16.155)	149.280 _{±3.013} (25.200)	$0.886_{\pm0.032}(0.026)$	$0.006_{\pm 0.000}(0.001)$	$0.006_{\pm 0.001}(0.001)$	$0.912_{\pm 0.013}(0.024)$	$1.000_{\pm 0.000}$	$0.262_{\pm 0.022}$
C1	0.05	$1.000_{\pm 0.001}(0.000)$ $0.991_{\pm 0.022}(0.055)$	$0.980_{\pm 0.002}(0.020)$	$0.948_{\pm 0.026}(0.002)$	$22.836_{\pm 0.045}(177.164)$ $1.631_{\pm 0.031}(191.251)$	$20.600_{\pm 0.011}(179.400)$ $1.720_{\pm 0.005}(191.620)$	1.781 _{±0.017} (0.004)	$0.044_{\pm 0.017}(0.019)$	0.048±0.028(0.043)	0.532±0.013(0.000)	$1.000_{\pm 0.000}$	$0.984_{\pm 0.033}$
GA UA9.1%, UA _{1f} 20.0%,	0.15	$0.991_{\pm 0.022}(0.053)$ $0.958_{\pm 0.002}(0.054)$	$0.900_{\pm 0.014}(0.060)$ $0.820_{\pm 0.010}(0.140)$	$0.897_{\pm 0.016}(0.006)$ $0.850_{\pm 0.006}(0.003)$	$1.031_{\pm 0.031}(191.251)$ $1.151_{\pm 0.039}(185.640)$	$1.720_{\pm 0.005}(191.620)$ $1.140_{\pm 0.042}(187.740)$	$1.133_{\pm 0.044}(0.013)$ $0.958_{\pm 0.026}(0.001)$	$0.608_{\pm 0.006}(0.603)$ $0.832_{\pm 0.003}(0.827)$	$0.523_{\pm 0.007}(0.518)$ $0.719_{\pm 0.021}(0.714)$	$0.792_{\pm 0.037}(0.004)$ $0.887_{\pm 0.044}(0.005)$	$0.972_{\pm 0.033}$ $0.868_{\pm 0.023}$	$0.849_{\pm 0.039}$ $0.535_{\pm 0.011}$
RA98.6%, TA86.1%	0.13	$0.880_{\pm 0.047}(0.093)$	$0.820\pm0.010(0.140)$ $0.800\pm0.051(0.060)$	$0.803_{\pm 0.025}(0.002)$	$0.929_{\pm 0.002}(170.122)$	$0.900_{\pm 0.009}(173.580)$	$0.861_{\pm 0.006}(0.001)$	$0.947_{\pm 0.036}(0.942)$	$0.719\pm0.021(0.714)$ $0.889\pm0.029(0.884)$	$0.933_{\pm 0.027}(0.003)$	$0.473_{\pm 0.016}$	0.333 ± 0.011 0.238 ± 0.000
	0.05	$0.982_{\pm 0.014}(0.018)$	1.000+0.007(0.000)	0.952+0.025(0.002)	199.971+0.009(0.029)	200.000 _{±0.000} (0.000)	5.095+0.020(3.310)	0.005+0.000(0.000)	0.005+0.000(0.000)	0.187+0.008(0.345)	$1.000_{\pm 0.000}$	0.989+0.001
Teacher	0.03	0.909+0.013(0.027)	$0.940_{\pm 0.007}(0.020)$	$0.903_{\pm 0.025}(0.002)$ $0.903_{\pm 0.032}(0.000)$	199.813+0.009(6.931)	$199.900_{\pm 0.013}(6.560)$	2.033 _{+0.031} (0.887)	$0.005\pm0.000(0.000)$ $0.005\pm0.000(0.000)$	$0.005_{\pm 0.000}(0.000)$ $0.005_{\pm 0.000}(0.000)$	$0.444_{\pm 0.008}(0.344)$	$1.000_{\pm 0.000}$ $1.000_{\pm 0.000}$	$0.965_{\pm 0.001}$
UA100%, UA _{tf} 100%,	0.15	$0.887_{\pm 0.014}(0.017)$	$0.880_{\pm 0.011}(0.080)$	$0.854_{\pm 0.003}(0.001)$	199.667 _{±0.030} (12.876)	$199.760_{\pm 0.026}(10.880)$	$1.331_{\pm 0.012}(0.374)$	$0.004_{\pm 0.000}(0.001)$	$0.004_{\pm 0.001}(0.001)$	$0.641_{\pm 0.010}(0.251)$	$1.000_{\pm 0.000}$	$0.919_{\pm 0.001}$
RA88.8%, TA78.6%	0.2	$0.838_{\pm 0.022}(0.051)$	$0.840_{\pm 0.002}(0.020)$	$0.799_{\pm 0.017}(0.006)$	$199.413_{\pm 0.024}(28.362)$	$199.620_{\pm 0.030}(25.140)$	$1.022_{\pm 0.017}(0.162)$	$0.004_{\pm 0.001}(0.001)$	$0.004_{\pm 0.001}(0.001)$	$0.781_{\pm 0.019}(0.155)$	$1.000_{\pm 0.000}$	$0.825_{\pm0.002}$
	0.05	$1.000_{\pm 0.000}(0.000)$	$1.000_{\pm 0.000}(0.000)$	$0.950_{\pm0.017}(0.000)$	$198.769_{\pm 0.052}(1.231)$	$197.320_{\pm 1.010}(2.680)$	$1.866_{\pm 0.019}(0.081)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm0.000}(0.000)$	$0.509_{\pm 0.013}(0.023)$	$1.000_{\pm 0.000}$	$0.986_{\pm0.006}$
SSD	0.1	$0.949_{\pm 0.017}(0.013)$	$0.900_{\pm 0.012}(0.060)$	$0.897_{\pm 0.007}(0.006)$	171.073 _{±0.209} (21.809)	$169.360_{\pm 2.002}(23.980)$	$1.141_{\pm 0.014}(0.005)$	$0.006_{\pm 0.000}(0.001)$	$0.005_{\pm 0.000}(0.000)$	$0.786_{\pm 0.021}(0.002)$	$1.000_{\pm 0.000}$	$0.854_{\pm0.006}$
UA100%, UA _{tf} 100%,	0.15	$0.913_{\pm 0.007}(0.009)$	$0.880_{\pm 0.020}(0.080)$	$0.852_{\pm 0.015}(0.001)$	$157.140_{\pm 1.209}(29.651)$	$154.960_{\pm 0.907}(33.920)$	$0.959_{\pm 0.011}(0.002)$	$0.006_{\pm 0.001}(0.001)$	$0.006_{\pm 0.000}(0.001)$	$0.888_{\pm 0.012}(0.004)$	$1.000_{\pm 0.000}$	$0.538_{\pm 0.007}$
RA98.4%, TA86.1%	0.2	0.833±0.007(0.046)	$0.800_{\pm 0.013} (0.060)$	$0.806_{\pm0.022}(0.001)$	136.502±3.022(34.549)	136.420±2.422(38.060)	$0.864_{\pm 0.002}(0.004)$	$0.006_{\pm 0.000}(0.001)$	$0.006_{\pm0.000}(0.001)$	$0.932_{\pm 0.015}(0.004)$	$1.000_{\pm 0.000}$	$0.254_{\pm 0.005}$
	0.05	1.000 _{±0.000} (0.000)	$1.000_{\pm 0.000}(0.000)$	$0.947_{\pm 0.002}(0.003)$	200.000 _{±0.000} (0.000)	200.000 _{±0.000} (0.000)	$1.850_{\pm 0.036}(0.065)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$	0.512 _{±0.009} (0.020)	$1.000_{\pm 0.000}$	$0.987_{\pm 0.001}$
NegGrad+ UA100%, UA _{tf} 100%,	0.1	$0.927_{\pm 0.104}(0.009)$ $0.862_{\pm 0.013}(0.042)$	$0.950_{\pm 0.071}(0.010)$ $0.870_{\pm 0.042}(0.090)$	$0.894_{\pm 0.001}(0.009)$ $0.849_{\pm 0.000}(0.004)$	$193.994_{\pm 8.493}(1.112)$ $188.686_{\pm 0.954}(1.894)$	$197.490_{\pm 3.550}(4.150)$ $195.590_{\pm 0.863}(6.710)$	$1.140_{\pm 0.007}(0.006)$ $0.961_{\pm 0.001}(0.004)$	$0.005_{\pm 0.000}(0.000)$ $0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$ $0.004_{\pm 0.000}(0.001)$	$0.784_{\pm 0.004}(0.004)$ $0.884_{\pm 0.000}(0.008)$	$1.000_{\pm 0.000}$ $1.000_{\pm 0.000}$	$0.859_{\pm 0.003}$ $0.537_{\pm 0.003}$
RA99.0%, TA85.8%	0.13	$0.830_{\pm 0.027}(0.043)$	$0.840_{\pm 0.085}(0.020)$	$0.802_{\pm 0.002}(0.003)$	187.219 _{±0.064} (16.168)	194.310 _{±0.948} (19.830)	$0.861_{\pm 0.001}(0.004)$ $0.861_{\pm 0.001}(0.002)$	$0.003\pm0.000(0.000)$ $0.004\pm0.000(0.000)$	$0.004_{\pm 0.000}(0.001)$ $0.004_{\pm 0.000}(0.001)$	$0.931_{\pm 0.001}(0.005)$	$1.000_{\pm 0.000}$ $1.000_{\pm 0.000}$	$0.220_{\pm 0.002}$
	0.05	0.997+0.003(0.003)	0.993+0.012(0.007)	0.949+0.001(0.001)	199.599 _{±0.207} (0.401)	197.440+1 244(2.560)	1.980+0.050(0.196)	$0.005_{\pm 0.000}(0.000)$	0.005+0.000(0.000)	0.479+0.012(0.053)	1.000 _{±0.000}	0.989+0.001
Salun	0.1	0.975+0.019(0.039)	$0.927_{\pm 0.023}(0.033)$	$0.899_{\pm 0.001}(0.003)$	191.973 _{±1.616} (0.910)	185.220 _{+0.918} (8.120)	1.169+0.002(0.023)	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$	$0.769_{\pm 0.001}(0.019)$	1.000 ± 0.000	$0.884_{\pm 0.001}$
UA100%, UA _{tf} 100%,	0.15	$0.961_{\pm 0.022}(0.057)$	$0.860_{\pm 0.040}(0.100)$	$0.850_{\pm 0.001}(0.004)$	187.825±3.461(1.034)	180.307±2.908(8.573)	$0.969_{\pm 0.002}(0.012)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$	$0.877_{\pm 0.002}(0.015)$	$1.000_{\pm 0.000}$	$0.562_{\pm 0.003}$
RA98.4%, TA86.1%	0.2	$0.960_{\pm 0.015}(0.173)$	$0.840_{\pm 0.020} (0.020)$	$0.801_{\pm 0.001} (0.004)$	184.838±3.478(13.787)	$177.647_{\pm 2.627}(3.167)$	$0.863_{\pm 0.004} (0.003)$	$0.005_{\pm 0.000} (0.001)$	$0.005_{\pm0.000}(0.000)$	$0.928_{\pm 0.003} (0.008)$	$1.000_{\pm 0.000}$	$0.230_{\pm0.009}$
	0.05	$1.000_{\pm 0.000}(0.000)$	$1.000_{\pm 0.000}(0.000)$	$0.948_{\pm0.001}(0.002)$	200.000±0.000(0.000)	$200.000_{\pm 0.000}(0.000)$	$2.264_{\pm 0.254}(0.479)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm0.000}(0.000)$	$0.423_{\pm 0.050}(0.110)$	$1.000_{\pm 0.000}$	$0.990_{\pm0.003}$
SFRon	0.1	$1.000_{\pm 0.000}(0.064)$	$1.000_{\pm 0.000} (0.040)$	$0.900_{\pm 0.001} (0.003)$	$200.000_{\pm 0.000}(7.118)$	$200.000_{\pm 0.000}$ (6.660)	$1.266_{\pm 0.044}(0.120)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$	$0.711_{\pm 0.026}(0.077)$	$1.000_{\pm 0.000}$	$0.912_{\pm 0.017}$
UA100%, UA _{tf} 100%,	0.15	1.000 _{±0.000} (0.096)	$1.000_{\pm 0.000}(0.040)$	$0.850_{\pm 0.002}(0.003)$	200.000 _{±0.000} (13.209)	200.000 _{±0.000} (11.120)	$1.009_{\pm 0.012}(0.051)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$	0.843 _{±0.011} (0.049)	$1.000_{\pm 0.000}$	$0.668_{\pm 0.029}$
RA96.1%, TA84.3%	0.2	$1.000_{\pm 0.000}(0.213)$	$1.000_{\pm 0.000}(0.140)$	$0.802_{\pm 0.003}(0.003)$	$200.000_{\pm 0.000}(28.949)$	$200.000_{\pm 0.000}(25.520)$	$0.886_{\pm 0.006}(0.026)$	$0.005_{\pm 0.000}(0.000)$	$0.005_{\pm 0.000}(0.000)$	$0.905_{\pm 0.007}(0.031)$	$1.000_{\pm 0.000}$	$0.358_{\pm0.017}$

Table 15: MIACR performance on CIFAR-10 with ResNet-18.

Methods	α	10% Forge	U	50% Forge	U
		MIACR ↑	\hat{q}	MIACR ↑	\hat{q}
	0.05	$0.091_{\pm 0.001}(0.000)$	$0.877_{\pm 0.004}$	$0.117_{\pm 0.010}(0.000)$	$0.899_{\pm 0.007}$
RT	0.1	$0.147_{\pm 0.000}(0.000)$	$0.589_{\pm 0.008}$	$0.201_{\pm 0.011}(0.000)$	$0.570_{\pm 0.001}$
MIA86.92% (10% Forgetting)	0.15	$0.203_{\pm 0.010}(0.000)$	$0.485_{\pm 0.005}$	$0.272_{\pm 0.011}(0.000)$	$0.472_{\pm 0.009}$
MIA82.79% (50% Forgetting)	0.2	$0.246_{\pm 0.000}(0.000)$	$0.473_{\pm 0.001}$	$0.318_{\pm 0.006}(0.000)$	$0.459_{\pm 0.003}$
	0.05	$0.039_{\pm 0.011}(0.052)$	$0.745_{\pm 0.013}$	$0.036_{\pm 0.001}(0.081)$	$0.780_{\pm 0.011}$
FT	0.1	$0.077_{\pm 0.008}(0.070)$	$0.627_{\pm 0.000}$	$0.103_{\pm 0.011}(0.098)$	$0.558_{\pm 0.012}$
MIA92.00% (10% Forgetting)	0.15	$0.128_{\pm 0.007}(0.075)$	$0.517_{\pm 0.008}$	$0.159_{\pm 0.011}(0.113)$	$0.494_{\pm0.011}$
MIA92.92% (50% Forgetting)	0.2	$0.196_{\pm 0.003}(0.050)$	$0.483_{\pm 0.003}$	$0.244_{\pm 0.010}(0.074)$	$0.476_{\pm 0.004}$
	0.05	$0.083_{\pm 0.010}(0.008)$	$0.627_{\pm 0.011}$	$0.050_{\pm 0.016}(0.067)$	$0.547_{\pm 0.000}$
RL	0.1	$0.178_{\pm 0.027}(0.031)$	$0.572_{\pm 0.005}$	$0.137_{\pm 0.030}(0.064)$	$0.547_{\pm 0.001}$
MIA74.21% (10% Forgetting)	0.15	$0.272_{\pm 0.006}(0.069)$	$0.492_{\pm 0.015}$	$0.194_{\pm 0.031}(0.078)$	$0.547_{\pm 0.001}$
MIA61.15% (50% Forgetting)	0.2	$0.320_{\pm 0.025}(0.074)$	$0.485_{\pm0.011}$	$0.261_{\pm 0.001} (0.057)$	$0.546_{\pm0.000}$
	0.05	$0.012_{\pm 0.002}(0.079)$	$0.862_{\pm 0.016}$	$0.012_{\pm 0.019} (0.105)$	$0.771_{\pm 0.008}$
GA	0.1	$0.032_{\pm 0.003}(0.115)$	$0.502_{\pm 0.016}$	$0.055_{\pm 0.003}(0.146)$	$0.486_{\pm 0.005}$
MIA98.80% (10% Forgetting)	0.15	$0.076_{\pm 0.000}(0.127)$	$0.477_{\pm 0.007}$	$0.107_{\pm 0.016}(0.165)$	$0.474_{\pm 0.015}$
MIA 98.86%~(50%~Forgetting)	0.2	$0.146_{\pm 0.016}(0.100)$	$0.476_{\pm 0.019}$	$0.164_{\pm 0.016}(0.154)$	$0.473_{\pm 0.011}$
	0.05	$0.013_{\pm 0.006}(0.078)$	$0.750_{\pm 0.014}$	$0.031_{\pm 0.003}(0.086)$	$0.635_{\pm 0.018}$
Teacher	0.1	$0.038_{\pm 0.023}(0.109)$	$0.672_{\pm 0.028}$	$0.065_{\pm 0.021}(0.136)$	$0.582_{\pm 0.013}$
MIA87.24% (10% Forgetting)	0.15	$0.072_{\pm 0.013}(0.131)$	$0.625_{\pm 0.029}$	$0.110_{\pm 0.017} (0.162)$	$0.548_{\pm 0.007}$
MIA93.24% (50% Forgetting)	0.2	$0.113_{\pm 0.008}(0.133)$	$0.588_{\pm 0.019}$	$0.159_{\pm 0.017}(0.159)$	$0.532_{\pm 0.006}$
	0.05	$0.038_{\pm 0.009}(0.053)$	$0.500_{\pm0.003}$	$0.043_{\pm 0.003}(0.074)$	$0.508_{\pm0.003}$
FF	0.1	$0.051_{\pm 0.017}(0.096)$	$0.486_{\pm 0.018}$	$0.089_{\pm 0.001}(0.112)$	$0.509_{\pm 0.013}$
MIA71.52% (10% Forgetting)	0.15	$0.080_{\pm 0.015}(0.123)$	$0.474_{\pm 0.013}$	$0.130_{\pm 0.017}(0.142)$	$0.506_{\pm 0.007}$
MIA76.02% (50% Forgetting)	0.2	$0.109_{\pm 0.004}(0.137)$	$0.473_{\pm 0.002}$	$0.168_{\pm 0.010}(0.150)$	$0.499_{\pm 0.006}$
	0.05	$0.011_{\pm 0.011}(0.080)$	$0.861_{\pm0.012}$	$0.012_{\pm 0.002}(0.105)$	$0.748_{\pm0.011}$
SSD	0.1	$0.031_{\pm 0.010}(0.116)$	$0.511_{\pm 0.011}$	$0.051_{\pm 0.005}(0.150)$	$0.488_{\pm 0.001}$
MIA98.78% (10% Forgetting)	0.15	$0.077_{\pm 0.005}(0.126)$	$0.480_{\pm 0.013}$	$0.104_{\pm 0.006}(0.168)$	$0.477_{\pm 0.015}$
MIA98.87% (50% Forgetting)	0.2	$0.139_{\pm 0.011}(0.107)$	$0.475_{\pm 0.013}$	$0.168_{\pm 0.012}(0.150)$	$0.477_{\pm 0.006}$
	0.05	$0.076_{\pm 0.025}(0.015)$	$0.844_{\pm 0.024}$	$0.045_{\pm 0.008}(0.072)$	$0.863_{\pm 0.025}$
NegGrad+	0.1	$0.128_{\pm 0.018}(0.019)$	$0.481_{\pm 0.009}$	$0.109_{\pm 0.007}(0.092)$	$0.511_{\pm 0.008}$
MIA90.30% (10% Forgetting)	0.15	$0.174_{\pm 0.022}(0.029)$	$0.480_{\pm 0.005}$	$0.167_{\pm 0.017}(0.105)$	$0.477_{\pm 0.010}$
MIA93.82% (50% Forgetting)	0.2	$0.213_{\pm 0.012}(0.033)$	$0.480_{\pm 0.004}$	$0.230_{\pm 0.014}(0.088)$	$0.472_{\pm 0.008}$
	0.05	$0.055_{\pm 0.014}(0.036)$	$0.691_{\pm 0.011}$	$0.044_{\pm 0.001} (0.073)$	$0.670_{\pm 0.008}$
Salun	0.1	$0.113_{\pm 0.009}(0.034)$	$0.681_{\pm 0.013}$	$0.115_{\pm 0.009}(0.086)$	$0.630_{\pm 0.009}$
MIA57.58% (10% Forgetting)	0.15	$0.198_{\pm 0.006}(0.005)$	$0.642_{\pm 0.015}$	$0.170_{\pm 0.009}(0.102)$	$0.610_{\pm 0.003}$
MIA59.12% (50% Forgetting)	0.2	$0.267_{\pm 0.009}(0.021)$	$0.608_{\pm 0.011}$	$0.220_{\pm 0.005}(0.098)$	$0.586_{\pm 0.005}$
	0.05	$0.017_{\pm 0.001}(0.074)$	$0.711_{\pm 0.009}$	$0.017_{\pm 0.002}(0.100)$	$0.715_{\pm 0.008}$
SFRon	0.1	$0.040_{\pm 0.004}(0.107)$	$0.626_{\pm 0.025}$	$0.046_{\pm 0.002}(0.155)$	$0.562_{\pm 0.013}$
MIA91.55% (10% Forgetting)	0.15	$0.113_{\pm 0.003}(0.090)$	$0.517_{\pm 0.003}$	$0.134_{\pm 0.013}(0.138)$	$0.498_{\pm 0.003}$
MIA92.52% (50% Forgetting)	0.2	$0.184_{\pm 0.002}(0.062)$	$0.487_{\pm 0.002}$	$0.206_{\pm 0.014} (0.112)$	$0.483_{\pm 0.002}$