Telenor Handset Model Prediction

A Binary Classification Problem

Chentian Jiang

The Binary Classification Problem

- Will the customer accept an Apple offer from Telenor?
- Predict: yes (1) or no (0)
- Dataset: 583,291 customers x 345 features, 1 binary label column
 - MPP: child
 - CU: parent who buys the subscription
- Imbalance: ~0.5% yes
 - yes: 2907
 - no: 580,384

Metrics for Unbalanced Data

- Accuracy = true / all
- **Precision** = TP / (TP + FP)
 - FP: annoy customer with more offers
- Recall = TP / (TP + FN)
 - FN: lose potential profit from customer

Feature Selection

- Preprocessing
 - Encoded categorical features into -1 and 1
 - Standardized numerical features
- f statistic (ANOVA): ratio of two variances
 - Between each feature and the label
- Correlation between each feature and the label (>0.04)
- Split the dataset into 2 groups: data with label=-1 and data with label=1
 - Difference in mean (>0.5)
 - Difference in variance (>1.5)
 - Difference in median (>0.5)

Benchmark 1: Random Model

- numpy random generator: [0, 1)
 - threshold=0.5
- Tested on the whole label column
- Precision: ~**0.5**%
- Recall: ~50%
- Accuracy: ~50%

Preprocessing

- Categorical
 - one-hot
 - 1/0
- Numerical
 - standardized
 - binary features encoded as 1/0

Benchmark 2: Humberto's NN Model with TERM Features

- 10 epochs
- Results (on test data):
 - Precision: **1.72**%
 - Recall: 42.9%
 - Accuracy: 82.7%

(Main) Benchmark 3: Humberto's NN Model with F Statistic Features

- 10 epochs
- Results (on test data):
 - Precision: **1.89**%
 - Recall: 43.5%
 - Accuracy: 83.8%

Gradient Boosting: XGBoost

- Ensemble of weak learners (e.g. decision trees): each learner improves upon the previous
- Uses gradient descent to minimize a loss function

Model 1: XGBoost with F Statistic Features

- Scale positive weight: neg examples/ pos examples
 - "oversampling"
- Results (on test data):
 - Precision: 1.49% (lower)
 - Recall: 74.2% (higher)
 - Accuracy: 75.5% (lower)

Deep Learning Model: Starting Point

- Humberto's neural network model
 - Preprocessing:
 - Categorical: one-hot, integer (with embeddings), hashing
 - Numerical: standardization, pca whitening
 - Binary/Categorical encoding: 0/1, -1/1
 - Feed-forward neural network with oversampling

Note: Google's Wide and Deep Learning Model

- Tensorflow tutorial: tflearn
- no oversampling
- 0 precision, 0 recall, 99.5% accuracy (worse than random model)

Complementary Neural Networks (CMTNN)

- Murdoch University
- Take-aways:
 - Experiment with thresholds
 - Experiment with ratio (data with label=0 to data with label=1) in the training examples
 - oversampling ratio = 3 (negative to positive)
 - Improve the model itself

Fig. 1. Complementary neural network [11]

Model 2: CMTNN for Humberto's NN Model with F Statistic Features

- Truth/Normal Model Results (on test data):
 - Precision: **1.72**% (same)
 - Recall: 44.0% (same)
 - Accuracy: 81.8% (same)
- CMTNN Model Results (on test data):
 - Precision: **1.82**% (same)
 - Recall: 57.1% (higher)
 - Accuracy: 84.5% (same)

Product-Based Neural Networks (PNN)

Fig. 1: Product-based Neural Network Architecture.

- Shanghai Jiao Tong University, University College London, click-through-rate
- "high-order latent patterns" in sparse categorical data
- PNN1, PNN2, LR, FM, FNN, CCPM
- higher oversampling ratio —> higher precision, higher accuracy but lower true positive rate

Model 3: PNN with All Categorical Features, Ratio=3

- Plug in Oversampling Batch Generator
- Results (on test data):
 - Precision: 2.67% (higher)
 - Recall: 42.2% (same)
 - Accuracy: 92.1% (higher)

Model 4: PNN with F Statistic Features (cat+num), Ratio=3

- Plug in Oversampling Batch Generator
- Numerical Model: Multilayer Perceptron
 - no dropout, no batch normalization
 - 3 hidden layers, 128 nodes each, ReLU
- Categorical Model: PNN
- Results (on test data):
 - Precision: 2.17% (higher)
 - Recall: 41.0% (same)
 - Accuracy: 90.5% (higher)

PNN with F Statistic Features (cat+num), Ratio=3, cont.

- from epoch to epoch: model tries to find a balance between true positives and false positives
- somehow the test precision and test recall are more than x2 of their training counterparts
- not as good as PNN with all cat features
 - maybe the F Statistic Features (15) are too few? —> tried with all features I found through feature selection (not much difference)
 - or we don't really need numerical features?

Thoughts...

Anomaly Detection?