AMENDMENT TO THE CLAIMS

- (Currently Amended) A cryptographic method, including:
 - generating, at a first entity, a first public key $M_{\rm B}$, the first public key $M_{\rm B}$ being session specific;
 - receiving, at the first entity, a second public key M_A , the second public key M_A being session specific;
 - generating, at the first entity, a first secret S_B using a combining equal to a sequence of hash functions f_B on applied to at least a first password P_B , the first public key M_B , and the second public key M_A ;
 - generating, at the first entity, a first session key K_B , the first session key K_B being different from the first secret S_B , both the first session key K_B and the first secret S_B being computed from the second public key M_A ;
 - encrypting, at the first entity, a first random nonce N_B with the first session key K_B or the first secret S_B to obtain a first encrypted result, the first random nonce N_B being unrelated to both K_G and S_B:
 - encrypting, at the first entity, the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce; transmitting the encrypted random nonce from the first entity to the second entity; receiving a response to the encrypted random nonce; and
 - authenticating through determining whether the response includes a correct modification of the first random nonce N_B.
- (Canceled)
- (Previously Presented) The method of claim 1 wherein authenticating through determining whether the response includes a correct modification includes: checking whether a received modification of the first random nonce N_B equals a modification of the first random nonce N_B applied by the first entity.

- 4. (Previously Presented) The method of claim 1 wherein said authenticating includes: checking whether a received modification of the first random nonce less a modification thereof as applied thereto by the first entity equals the first random nonce.
- (Previously Presented) The method of claim 1 wherein generating the first session key K_B includes:

generating a first random number R_B , and computing the first session key K_B from the second public key M_A raised to the exponential power of the first random number R_B , modulo a parameter B_B .

6-7. (Canceled)

- (Previously Presented) The method of claim 1 wherein said generating the first secret S_B includes:
 - combining the second public key M_A and the first public key M_B with a first password P_B to produce a first result, and
 - hashing the first result with a secure hash.
- 9. (Original) The method of claim 8 wherein the secure hash is a one-way hash function.
- (Original) The method of claim 9 wherein the one-way hash function is one of the Secure
 Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash,
 and the Gosudarstvennyl Standard.
- 11. (Previously Presented) The method of claim 1 wherein said generating the first secret S_B includes:
 - combining a first password P_B and at least one of the second public key M_A and the first public key M_B to generate a first combined result, and
 - combining the first combined result and at least one of the second public key M_A, the first password P_B, and the first public key M_B to generate a second combined result.

- (Previously Presented) The method of claim 1 wherein the first random nonce N_B is encrypted using a symmetrical encryption algorithm.
- (Original) The method of claim 12, wherein the symmetrical encryption algorithm is one
 of the Data Encryption Standard and the block cipher CAST.
- (Previously Presented) The method of claim 1 wherein encrypting the first random nonce Nn includes superencrypting the first random nonce Nn.
- 15. (Previously Presented) The method of claim 14, wherein superencrypting the first random nonce N_B includes: encrypting the first random nonce N_B with the first secret S_B to produce the first encrypted

encrypting the first encrypted result using the first session key K_B.

result: and

- 16. (Previously Presented) The method of claim 15 wherein said authenticating includes: decrypting the response using the first session key $K_{\rm B}$ to generate a first decrypted result; and
 - decrypting the first decrypted result using the first secret $S_{\rm B}. \label{eq:secret}$
- 17. (Previously Presented) The method of claim 1, wherein the response includes a combination of a second random nonce N_A and a modification of the first random nonce; and wherein the method further includes:

extracting the second random nonce NA from the response;

modifying the second random nonce N_A to obtain a modified second random nonce; encrypting the modified second random nonce using the first session key K_B and the first

secret S_B to obtain an encrypted package; and

transmitting the encrypted package from the first entity.

- 18. (Previously Presented) The method of claim 17 wherein said encrypting the modified second random nonce includes:
 - generating a string of random bits IB;
 - encrypting a combination of the string of random bits I_B and the modified second random nonce using the first secret S_B to generate a first result; and
 - encrypting the first result using the first session key KB.
- (Previously Presented) The method of claim 17 wherein the encrypted package is transmitted for authentication of the first entity in opening a two-way communication channel.
- (Currently Amended) A computer readable storage medium containing executable
 computer program instructions which, when executed, cause a first computer system to
 perform a cryptographic method including:
 - generating, at the first computer system, a first public key M_B , the first public key M_B being session specific;
 - receiving, at the first computer system, a second public key M_A , the second public key M_A being session specific;
 - generating, at the first computer system, a first secret S_B -using a combining equal to a sequence of hash functions applied to function f_B -on-at least a first password P_B , the first public key M_B , and the second public key M_A ;
 - generating, at the first computer system, a first session key K_B , the first session key K_B being different from the first secret S_B , both the first session key K_B and the first secret S_B being computed from the second public key M_A ;
 - encrypting, at the first computer system, a first random nonce N_B with the first session key K_B or the first secret S_B to obtain a first encrypted result, the first random nonce N_B being unrelated to both K_B and S_B ;
 - encrypting, at the first computer system, the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce;
 - transmitting the encrypted random nonce from the first computer system to the second computer system; and

- authenticating through determining whether a response to the encrypted random nonce includes a correct modification of the first random nonce N_B .
- 21. (Currently Amended) A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a computer cryptographic method through a network, the method comprising:
 - generating at the first computer system a first public key M_B , the first public key M_B being session specific;
 - generating at the second computer system a second public key M_A , the second public key M_A being session specific;
 - receiving at the first computer system the second public key MA;
 - generating, at the first computer system, a first secret S_B using a combining function f_B on-equal to a sequence of hash functions applied to at least a first password P_B , the first public key M_B , and the second public key M_A ;
 - generating at the first computer system a session key K_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;
 - generating at the first computer system a first random nonce N_B, the first random nonce

 N_B, being unrelated to both K_B, and S_B;
 - encrypting at the first computer system the first random nonce N_B with the first session $\ker K_B$ or the first secret S_B to obtain a first encrypted result;
 - encrypting at the first computer system the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random nonce;
 - transmitting the encrypted random nonce and the first public key M_B from the first computer system to the second computer system to establish the session key at the second computer system;
 - receiving at the first computer system from the second computer system a response to the encrypted random nonce; and

- authenticating the second computer system at the first computer system through determining whether the response includes a correct modification of the first random nonce Nn.
- (Currently Amended) A computer system for performing a cryptographic method through a network, the computer system comprising:
 - a processor;
 - a network interface coupled to the network and coupled to the processor, the network interface to receive a request including information on a user identification; and
 - a storage device coupled to the processor, the storage device to store a user password corresponding to the user identification, and wherein the processor is to perform a method, including:
 - receiving a second public key M_{Λ} through the network interface, the second public key M_{Λ} being session specific;
 - generating, at the first computer system, a first secret S_B using a combining $\frac{function f_B \text{ on equal to a sequence of hash functions applied to at least a}{first password P_B, the first public key <math>M_B$, and the second public key M_A ;
 - generating a first session key K_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;
 - generating a first public key M_B , the first public key M_B being session specific; generating a first random nonce N_B , the first random nonce N_B , being unrelated to both K_B and S_B :
 - encrypting the first random nonce N_B with the session key K_B or the first secret S_B to obtain a first encrypted result;
 - encrypting the first encrypted result with the other one of the session key K_B or the first secret S_B to obtain an encrypted random nonce;
 - transmitting the encrypted random nonce and the first public key M_B through the network interface:
 - authenticating through determining whether a response to the encrypted random nonce includes a correct modification of the first random nonce.

- 23. (Previously Presented) The computer system of claim 22 wherein the network is a network operating according to a hypertext transfer protocol; and the first public key M_B is transmitted with the encrypted random nonce for session key exchange.
- (Currently Amended) A cryptographic method, comprising:
 receiving at a first entity a second public key M_A and an encrypted second random

number:

- generating a first secret S_B using a combining function f_B -on-equal to a sequence of has functions applied to at least a first password P_B , a first public key M_B , and the second public key M_A ;
- generating a first session key K_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_{Λ} ;
- decrypting, using the first secret S_B and the first session key K_B , to retrieve a second random number N_A from the encrypted second random number;
- modifying the second random number N_A to obtain a modified second random number; encrypting the modified second random number with the first session key K_B or the first secret S_B to obtain a first encrypted result, the modified second random number being unrelated to both K_B and S_B ;
- encrypting the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random package; and transmitting the encrypted random package from the first entity.
- 25. (Previously Presented) The method of claim 24, wherein said decrypting includes: decrypting the encrypted second random number using the first session key K_B to generate the first decrypted result; and decrypting the first decrypted result using at least a first password P_B and the second public key M_A.
- 26. (Previously Presented) The method of claim 24 wherein said generating the first session key $K_{\rm B}$ includes:

generating a first random number R_B , and computing the first session key K_B from the second public key M_A raised to the exponential power of the first random number R_B , modulo a parameter B_B .

27-28. (Canceled)

- 29. (Previously Presented) The method of claim 24 wherein said generating the first secret S_B includes: combining the first public key M_B with the first password P_B to produce a first result, and hashing the first result with a secure hash.
- 30. (Original) The method of claim 29 wherein the secure hash is a one-way hash function.
- (Original) The method of claim 30 wherein the one-way hash function is one of the Secure Hash Algorithm, the Message Digest 5, Snefru, Nippon Telephone and Telegraph Hash, and the Gosudarstvennyl Standard.
- (Previously Presented) The method of claim 24 wherein said generating the first secret S_B includes:
 - combining the first password P_B and the first public key M_B to generate a first combined result, and
 - combining the first combined result and at least one of the second public key M_A , the first password P_B , and the first public key M_B to generate the first secret S_B .
- (Previously Presented) The method of claim 24, wherein said encrypting the modified second random number includes superencrypting the modified second random number.
- (Previously Presented) The method of claim 24, further including: generating a first random number N_B; and wherein said encrypting the modified second random number includes:

- encrypting a combination of the first random number N_{B} and the modified second random number.
- 35. (Previously Presented) The method of claim 34 which further includes:
 - receiving at the first entity a response to the encrypted random package;
 - decrypting the response to obtain a combination of a string of random bits and a modified first random nonce; and
 - retrieving the modified first random nonce from the combination of the string of random bits and the modified first random nonce:
 - determining whether the modified first random nonce was correctly modified from the first random number $N_{\rm B}$.
- 36. (Previously Presented) The method of claim 35 wherein said determining whether the modified first random nonce was correctly modified includes:
 - checking whether the modified first random nonce equals a modification of the first random nonce as applied to the first random nonce by the first entity.
- 37. (Previously Presented) The method of claim 35 wherein said determining whether the modified first random nonce was correctly modified includes:
 - checking whether the modified first random nonce less a modification thereof as applied thereto by the first entity equals the first random nonce.
- 38. (Currently Amended) A computer readable storage medium containing executable computer program instructions which, when executed, cause a first computer system to perform a cryptographic method including:
 - receiving at the first computer system a second public key M_A and an encrypted second random number:
 - generating a first secret S_B -using a combining function f_B on equal to a sequence of hash functions applied to at least a first password P_B , a first public key M_B , and the second public key M_A ;

- generating a first session key K_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;
- decrypting, using the first secret S_B and the first session key K_B , to retrieve the second random number N_A from the encrypted second random number;
- modifying the second random number N_A to obtain a modified second random number; encrypting the modified second random number with the first session key K_B or the first secret S_B to obtain a first encrypted result, the modified second random number being unrelated to both K_B and S_B :
- encrypting the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random package;
- transmitting the encrypted random package from the first computer system for authentication.
- 39. (Currently Amended) A distributed readable storage medium containing executable computer program instructions which, when executed, cause a first computer system and a second computer system to perform a cryptographic method through a network, the method including:
 - receiving, from the second computer system and at the first computer system, a second public key $M_{\rm A}$ and an encrypted second random number;
 - generating a first secret S_B using a combining function f_B on equal to a sequence of hash functions applied to at least a first password P_B , a first public key M_B , and the second public key M_A :
 - generating a first session key K_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;
 - decrypting, using the first secret S_B , to retrieve a second random number N_A from the encrypted second random number;
 - modifying the second random number NA to obtain a modified second random number;

- encrypting the modified second random number with the first session key K_B or the first secret S_B to obtain a first encrypted result, the modified second random number being unrelated to both K_B and S_B;
- encrypting the first encrypted result with the other one of the first session key K_B or the first secret S_B to obtain an encrypted random package;
- transmitting the encrypted random package from the first computer system to the second computer system.
- (Currently Amended) A computer system for performing a cryptographic method through a network, the computer system comprising:
 - a processor;
 - a network interface coupled to the network and coupled to the processor, the network interface to receive a request including information on a user identification; and a storage device coupled to the processor, the storage device to store a user password associated with the user identification, and wherein the processor is to perform a method, including
 - generating a first public key MB;
 - receiving a second public key M_A and an encrypted second random number through the network interface;
 - generating a first secret S_B using a combining function f_B on equal to a sequence

 of hash functions applied to at least a first password P_B, a first public key

 M_B, and the second public key M_A;
 - generating a first session key K_B , the session key K_B being different from the first secret S_B , both the session key K_B and the first secret S_B being computed from the second public key M_A ;
 - decrypting, using the first secret S_B and the first session key K_B , to retrieve the second random number N_A from the encrypted second random number;
 - modifying the second random number N_A to obtain a modified second random number:

encrypting the modified second random number with the first session key K_B or the first secret S_B to obtain a first encrypted result, the modified second random number being unrelated to both K_B and S_B;

encrypting the first encrypted result with the other one of the first session key $K_{\rm B}$ or the first secret $S_{\rm B}$ to obtain an encrypted random package;

transmitting the encrypted random package through the network interface.

41. (Previously Presented) The computer system of claim 40 wherein the network is a network operating according to a hypertext transfer protocol; and the first public key M_B is transmitted for session key exchange before the encrypted second random number is received.