HappaNotesBooks (试用)

OyamaHappa

电学

目录

第一部分 前	争电场中的能量	1
第1章 电容器		2
1.1 电容 .		2
1.1.1 ⊱	央定式	2
1.2 特点 .		2
1.3 动态变体	ዸ	3
1.3.1 孝	有源	3
	1.3.1.1 以不变	3
	1.3.1.2 下板下移	3
1.3.2 ₹	元源	3
	1.3.2.1 Q不变	3
	1.3.2.2 下板下移	4
1.4 电容器的	的连接	4
1.4.1 目	电容器的串联	4
1.4.2 目	电容器的并联	4
第二部分 电	旦路及其应用	6
第2章 恒稳电池		7
		7
		7
	· · · · · · · · ·	7
	不形电流	7
	も解槽	8
	央定式	8
	東度	8
		8
	勿理意义	8
		9
		9
		9
		9
		10
_	· - ·	10
2.3.2 γ.	2.5.2.1 电动势	
	2.5.2.2 电路	
		10
	·····································	
	^{も色} は ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	

	2.6.2.1 堵转		11
2.7	电源模型		11
	2.7.1 例		12
	2.7.2 效率		12
2.8	P-I 图		13
2.9	U-I 图		13
2.10)电阻 U-I		14
2.1	し 变化量问题		14
2.12	2 $\frac{\Delta U}{\Delta I}$ 问题		14
第3音	长度的测量		16
	估读		
3.1	3.1.1 何时估读		
3.2	游标卡尺		
3.2	3.2.1 读数步骤		16
3 3	螺旋测微器		
5.5	3.3.1 读数		
			10
	电路实验		18
4.1	外接		18
4.1 4.2	外接		18 18
4.1 4.2 4.3	外接 内接 试触法	• • •	18 18 19
4.1 4.2 4.3	外接	• • •	18 18 19
4.1 4.2 4.3 4.4	外接 内接 试触法	• • •	18 18 19
4.1 4.2 4.3 4.4 第5章	外接		18 18 19 19
4.1 4.2 4.3 4.4 第5章	外接		18 19 19 20 20
4.1 4.2 4.3 4.4 第5章	外接 内接 试触法 番外 电阻的测量 伏安法测电阻		18 19 19 20 20
4.1 4.2 4.3 4.4 第5章	外接 内接 试触法 番外 电阻的测量 伏安法测电阻 5.1.1 限流接法		18 19 19 20 20 20
4.1 4.2 4.3 4.4 第 5 章 5.1	外接 内接 试触法 番外 电阻的测量 伏安法测电阻 5.1.1 限流接法 5.1.2 分压接法		18 19 19 20 20
4.1 4.2 4.3 4.4 第 5 章 5.1	外接 内接 试触法 番外 电阻的测量 伏安法测电阻 5.1.1 限流接法 5.1.2 分压接法 5.1.3 流程		18 19 19 20 20 20 20
4.1 4.2 4.3 4.4 第 5 章 5.1	外接 内接 試触法 番外 电阻的测量 伏安法测电阻 5.1.1 限流接法 5.1.2 分压接法 5.1.3 流程 电表改装		18 19 19 20 20 20 20
4.1 4.2 4.3 4.4 第 5 章 5.1	外接 内接 试触法 番外 电阻的测量 伏安法测电阻 5.1.1 限流接法 5.1.2 分压接法 5.1.3 流程 电表改装 电表改装		18 19 19 20 20 20 21 21
4.1 4.2 4.3 4.4 第 5 章 5.1	外接 内接 试触法 番外 电阻的测量 伏安法测电阻 5.1.1 限流接法 5.1.2 分压接法 5.1.2 分压接法 5.1.3 流程 电表改装 电表改装 5.2.1 扩量程 5.2.1.1 电流表并电阻		18 19 19 20 20 20 21 21 21

第一部分 静电场中的能量

第1章 电容器

任何两个彼此绝缘而又互相靠近的导体,都可以看成是一个电容器.这两个导体就是电容器的两个极,两块正对的平行金属板,它们相隔很近而且彼此绝缘,就组成一个最简单的电容器,叫做平行板电容器.

额定电压印着

击穿电压

1.1 电容

电容器带电的时候,它的两极之间产生电势差.实验证明,对任何一个电容器来说,两极间的电势差都随所带电量的增加而增加,而且电量跟电势差成正比,它们的比值是一个恒量,不同的电容器,这个比值一般是不同的.可见,这个比值表征了电容器的特性. 电容器所带的电量跟它的两极间的电势差的比值,叫做电容器的电容. 如果用 Q 表示电容器所带的电量,用 U 表示它的两极间的电势差,用 C 表示它的电容,那么,

$$C = \frac{Q}{U}$$

在国际单位制里,电容的单位是法拉,简称法,国际符号是 F. 一个电容器,如果带 1 库的电量时两极间的电势差是 1 伏,这个电容器的电容就是 1 法.

$$1F = 1C/V$$

法拉这个单位太大,实际上常用较小的单位:微法(μ F)和皮法(pF).它们间的换算关系是:

$$1F = 10^6 \mu F = 10^{12} pF$$

无线电收音机里常用的电容器, 电容从几个皮法到几十个微法的都有.

1.1.1 决定式

由于我们的知识不足,现在还不能从理论上进一步讨论上面的实验结果,可以指出:对于一个平行板电容器,如果两板的正对面积为S,两板的距离为d,两板间充满介电常数为 ε 的电介质,那么,它的电容可以用下式来表示.

$$C = \frac{\varepsilon S}{4\pi kd}$$

k 静电常数

d板间距

式中 S 用 \mathbf{m}^2 作单位,d 用 \mathbf{m} 作单位,静电力恒量 $k=9\times 10^9\mathrm{N\cdot m^2/C^2}$,算出的 C 以法为单位.可以看出,平行板电容器的电容,跟介电常数成正比,跟正对面积成正比,跟极板的距离成反比.这跟上面的实验结果是一致的.

1.2 特点

$$E = \frac{U}{d}$$

C与QU无关只与 εsd 有关

1.3 动态变化

1.3.1 有源

1.3.1.1 U 不变

$$C = \frac{Q}{U} = \frac{\varepsilon S}{4\pi kd}$$

1.3.1.2 下板下移

$$d\uparrow c\downarrow Q\downarrow$$

$$E = \frac{U_{AP}}{d_{AP}} = \frac{\varphi_A - \varphi_B}{d_{AP}}$$

$$E = \frac{U}{d\uparrow} \Rightarrow E \downarrow$$

$$\Rightarrow (\varphi_A - \varphi_B) \downarrow \Rightarrow \varphi_B \uparrow$$

$$U_{AO}(不变) = \varphi_A - \varphi_O \Rightarrow \varphi_A \overrightarrow{\wedge} \mathring{\mathcal{D}}$$

1.3.2 无源

1.3.2.1 Q不变

$$C = \frac{Q}{U} = \frac{\varepsilon S}{4\pi k d}$$

$$d\uparrow,C\downarrow,U\uparrow$$

$$C = \frac{Q}{U} \Rightarrow U = \frac{Q}{C}$$

$$E = \frac{U}{d} = \frac{Q}{cd} = \frac{4\pi kQ}{\varepsilon s} \Rightarrow \overrightarrow{\wedge}$$

1.3.2.2 下板下移

$$E(不变) = \frac{U_{PO}}{d_{PO}} = \frac{\varphi_P - \varphi_O}{d_{PO}}$$
$$\varphi_o = 0, d_{po} \uparrow$$

1.4 电容器的连接

实际使用电容器时,有时会遇到电容器的电容不够或耐压能力不够,这就需要把几个电容器连接起来使用,连接的基本方法有串联和并联两种.

1.4.1 电容器的串联

把几个电容器的极板首尾相接,连成一串,这就是电容器的串联,图 6.40 是三个电容器的串联,接上电压为 U 的电源后,两端极分别带电 +Q 和 -Q. 由于静电感应,中间各极所带的电量也等干 +Q 或 -Q,所以串联时每个电容器带的电量都是 Q. 如果各个电容器的电容分别为 C_1 、 C_2 、 C_3 ,电压分别为 U_1 、 U_2 、 U_3 ,那么,

$$U_1 = \frac{Q}{C_1}, \qquad U_2 = \frac{Q}{C_2}, \qquad U_3 = \frac{Q}{C_3}$$

总电压U等于各个电容器上的电压之和,所以,

$$U = U_1 + U_2 + U_3 = Q(\frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3})$$

设串联电容器的总电容为C,则U = Q/C,所以

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

这就是说, 串联电容器的总电容的倒数等于各个电容器的电容的倒数之和. 电容器串联之后, 相当于增大了两极的距离, 因此总电容小于每个电容器的电容.

图 1.1: 电容器的串联

1.4.2 电容器的并联

把几个电容器的正极连在一起,负极也连在一起,这就是电容器的并联。图 6.41 是三个电容器的并联。接上电压为U的电源后,每个电容器的电压都是U.如果各个电容器的电容分别为 C_1 、 C_2 、 C_3 ,所带电量分别为

 Q_1 、 Q_2 、 Q_3 ,那么,

$$Q_1 = C_1 U, \qquad Q_2 = C_2 U, \qquad Q_3 = C_3 U$$

电器组贮存的总电量Q等于各个电容器所带电量之和,所以,

$$Q = Q_1 + Q_2 + Q_3 = (C_1 + C_2 + C_3)U$$

设并联电容器的总电容为 C,则 Q = CU,所以,

$$C = C_1 + C_2 + C_3$$

这就是说,并联电容器的总电容等于各个电容器的电容之和. 电容器并联之后,相当于增大了两极的面积,因此总电容大于每个电容器的电容.

电容器串联后,电容减小了,但耐压能力提高了,所以要承受较高的电压,可以把电容器串联起来;电容器并联后,电容增大了,耐压能力没有提高,所以在需要大电容时,可把电容器并联起来.

第二部分 电路及其应用

第2章 恒稳电流

2.1 电流

2.1.1 形成电流

①自由电荷 (e, 正负离子)

②两端电压(电势差)

2.1.2 电流强度

电流有强弱的不同,电流的强弱用电流强度来表示. 通过导体横截面的电量跟通过这些电量所用的时间的比值,叫做**电流强度**. 如果时间 t 内通过导体横截面的电量为 q,那么电流强度

$$I = \frac{q}{t}$$

在国际单位制中,电流强度的单位是**安培**,简称安,国际符号是 A, 如果在 1 秒内通过导体横截面的电量是 1 库 \hat{C} ,导体中的电流强度就是 1 安培,常用的电流强度的单位还有毫安(\hat{C} (\hat{C})、微安(\hat{C})。

$$1 \text{mA} = 10^{-3} \text{A}$$

$$1^{-} \text{A} = 10^{-6} \text{A}$$

导体中的电流既可以是正电荷的移动,也可以是负电荷的移动,还可以是正、负电荷沿相反方向的移动.因为负电荷的移动可看作正电荷沿相反方向的移动,所以为了便于分析问题,习惯上规定正电荷的移动方向为电流的方向,这样,在金属导体中电流的方向就与自由电子移动的方向相反.在电解液中,电流的方向与正离子移动的方向相同,与负离子移动的方向相反.我们知道,正电荷在电场力的作用下是从电势高处向电势低处移动,所以导体中电流的方向是从电势高的一端流向电势低的一端,电源上电势高的电极叫正极,电势低的电极叫负极,所以在电源外部的电路中,电流的方向是从电源的正极流向负极.

电路中,如果电流的方向不随时间而改变,这样的电流叫做**直流电**;如果电流的方向和大小都不随时间而改变,这样的电流叫做**稳恒电流**,这一章我们研究稳恒电流.

比值定义法,标量但有方向

2.1.3 环形电流

$$I = \frac{Q}{t} = \frac{e}{T} = \frac{e\omega}{2\pi}$$

2.1.4 电解槽

2.1.5 决定式

v匀速

S导体横截面积

n 单位体积内电子的个数
$$I = \frac{Q}{t} = \frac{v \cdot t \cdot s \cdot n \cdot q}{t} = nqav$$

$$I = nqav$$

2.1.6 速度

电子定向移动 10^{-5} m/s 电子热运动 10^{-5} m/s 电流形式 c

2.2 电动势

电源: 非静电力(化学作用)

电动势反映了电源的一种特性,它在数值上等于电路中通过 *I* 库仑电量时电源所提供的电能. 电源提供的电能是由其形式的能转化来的. 例如,在化学电池中电能是由化学能转化来的,在发电机中电能是由机械能转化来的. 从本质上来说,各种电源都是把其他形式的能转化为电能的装置. 电动势越大,表明电源把其他形式的能转化为电能的本领越大.

$$E = \frac{W}{q}$$

单位:V, 比值定义法

2.2.1 物理意义

电源把其他形式的能转换成电能的本领 标量但有方向, 电源内从负 \rightarrow 正

2.3 内阻

当电路为短路时电源两端在电压在数值上 = 电动势

2.4 电池容量

放电时放出的总电量

$$Q = It$$

单位:Ah

2.4.1 做的功

$$W = UIt$$

2.5 电阻

在导体两端加上电压,导体中就有电流,导体中电流的强弱跟加在导体两端的电压有什么关系呢? 德国物理学家欧姆(1787—1854)通过实验研究,对导体中电流与电压的关系得出了如下的结论: 通过导体的电流跟加在导体两端的电压成正比,即 $I \propto U$. 通常把这个关系写作

$$\frac{U}{I} = R$$

式中 R 是电压与电流的比值,实验表明,对同一根导线来说,不管电压和电流的大小念样变化,比值 R 都是相同的,对于不同的导线,R 的数值一般是不同的. 这表明,R 是一个跟导体本身有关的量,导线的 R 越大,在同一电压下,通过它的电流就越小。可见,比值 R 反映出导线对电流的阻碍作用,我们把它叫做导体的**电阻**.

上面的公式可写成

$$I = \frac{U}{R}$$

这个公式表示**导体中的电流强度跟导体两端的电压成正比,跟导体的电阻成反比**. 这就是我们在初中学过的**欧姆定律**.

根据欧姆定律可以规定电阻的单位,电阻的单位是**欧姆**,简称欧,国际符号是 Ω . 它是这样规定的:如果在某段导线两端加上1伏特电压,通过它的电流强度是1安培,这段导线的电阻就是1欧姆.

$$1\Omega = \frac{1V}{1A}$$

1 常用的电阻单位还有千欧($k\Omega$)和兆欧($M\Omega$).

$$1k\Omega = 10^3\Omega$$

$$1M\Omega = 10^6 \Omega$$

$$R = \frac{U}{I}$$

比值定义法

2.5.1 决定式

导线的电阻跟它的长度成正比, 跟它的横截面积成反比. 这就是电阻定律, 用公式来表示可以写作

$$R = \rho \frac{\ell}{S}$$

式中的比例系数 ρ 跟导体的材料有关系. 在一定的温度下,对同一种材料 ρ 是一个常数,对不同的材料 ρ 的数值不同,横截面积和长度都相等的不同材料的导线. ρ 越大的电阻越大, ρ 越小的电阻越小. 可见, ρ 是一个反映材料导电性好坏的物理量,叫做材料的**电阻率**.

 $T \uparrow \rho \uparrow$

把上面的公式改写作

$$\rho = R \frac{S}{\ell}$$

式中 $\ell=1$ m,S=1m² 时, ρ 的数值等于 R. 可见,材料的电阻率在数值上等于这种材料制成的长 1m、横截面积 1m² 的导体的电阻.

根据上式,可以确定电阻率 ρ 的单位,R 的单位是 Ω ,S 的单位是 \mathbf{m}^2 , ℓ 的单位是 \mathbf{m} . 所以 ρ 的单位是欧姆·米,简称欧·米,国际符号是 Ω ·m.

姆·米,简称欧·米,国际符号是
$$\Omega$$
·m.
$$U = IR = nqsv \cdot \rho \frac{L}{S} = nev \rho L$$

$$E = \frac{U}{L} = nev\rho$$

2.5.2 闭合电路欧姆定律

2.5.2.1 电动势

2.5.2.2 电路

内电路 (内阻) 纯电阻 外电路用电器

2.5.2.3 表达式

电流

$$I_{\mp} = \frac{E}{R+r}$$

纯电阻

电压

$$E_{$$
路端电压} = $U_{$ B + Ir

通用

$$U = -rI + E$$

2.6 电功率

2.6.1 纯电阻

$$P=UI=I^2R=\frac{U^2}{R}$$

2.6.2 非纯电阻 (电动机)

$$\begin{cases} P_{\sharp\sharp\sharp} = I^2 R \\ \\ P_{\sharp\sharp\sharp} = UI - I^2 R \end{cases}$$

$$P = UI$$

$$I<\frac{U}{R}$$

2.6.2.1 堵转

 $P_{\text{M=0}} \Rightarrow$ 纯电阻

2.7 电源模型

$$P_{\mbox{$\stackrel{.}{\boxtimes}$}}=EI$$

$$P_{\triangleright} = I^2 r$$

$$P_{\mathcal{H}}=P_{$$
输出 $}=EI-I^2r=U_{
m B}I$

当 R=r 时, $P_{\text{输出}}$ 最大

2.7.1 例

① P_{R_0} 最大

$$P_{R_0} = I^2 R$$

$2P_{\text{輸出}}$ 最大

$$R_0 + Rp = r$$

③*P_{Rp}* 最大

$$Rp = R_0 + r$$

2.7.2 效率

$$\eta$$
纯电阻 $= rac{P_{ ilde{ ext{m}}}}{P_{ ilde{ ilde{C}}}} = rac{I^2R}{I^2(R+r)} = rac{R}{R+r} = rac{1}{1+rac{r}{R}}$

$$\Rightarrow R \uparrow, \eta \uparrow$$

2.8 P-I 图

$$P_{\Xi}=EI$$

$$P_{\mid \! \mid \mid} = I^2 r$$

$$P_{\text{M}} = EI - I^2r$$

当 R=r 时, $P_{\Lambda}=P_{\Lambda}$ 且 P_{Λ} 最大

2.9 U-I 图

$$E=U_{\mathbb{K}}+Ir$$

$$U_{\mathbb{K}} = -rI + E$$

2.10 电阻 U-I

切线斜率 ≠ 阻值 割线斜率 = 阻值

2.11 变化量问题

串反并同

$$|\Delta U_1| > |\Delta U_2|$$

$$|\Delta U_1|$$
(变大) = $|\Delta U_2|$ (变小) + $|\Delta U_3|$ (变小)

$$|\Delta I_1| < |\Delta I_2|$$

$$|\Delta I_2|$$
(变小) $- |\Delta I_2|$ (变大) $= |\Delta I_{\mp}|$ (变小)

2.12 $\frac{\Delta U}{\Delta I}$ 问题

右拨

$$E = U_1 + I_1(r + R_0)$$

$$\Rightarrow U_1 = -(r + R_0)I_1 + E$$

$$\frac{U_2}{I_2} = R_0 \Rightarrow 不变$$

$$\frac{\Delta U_2}{\Delta I_2} = R_0 \Rightarrow \overline{\Lambda} \mathfrak{Z}$$

$$\frac{U_1}{I_1} = R_p \Rightarrow \uparrow$$

$$\left|\frac{\Delta U_1}{\Delta I_1}\right| = r + R_0 \Rightarrow \overline{\Lambda} \mathfrak{Z}$$

第3章 长度的测量

3.1 估读

在最小分度值后再添一位

3.1.1 何时估读

最小分度值以1结尾

3.2 游标卡尺

主尺读+副尺读数

主尺: 副尺上 0 刻度线左侧的刻度 副尺: 重合刻度 $\times \frac{1mm}{$ 副尺刻度数

3.2.1 读数步骤

- 1. 读取主尺上的"mm"数。(要注意主尺数字的单位为 cm, 但读数时请读"mm"数)
- 2. 找出游标尺上"0"以后的第 n 条刻度线与主尺上的某条刻线对的最齐,读出游标尺的"mm"数。游标尺读数方法如下:

游标卡尺类型	游标尺"mm"	游标尺"mm"数的形式
10 分度	n×0.1 mm	0.x mm (最后一位数字可为 09 中的任意一个整数)
20 分度	n×0.05 mm	0.xx mm(最后一位数字只可能为 0、5 中的一个)
50 分度	n×0.02 mm	0.xx mm(最后一位数字只可能为 0、2、4、6、8 中的一个)

- 3. 待测长度 L = "主尺 mm 读数"+"游标尺 mm"数(注意,游标卡尺读数不用估读哦);
- 4. 如有需要, 讲读数换算成题意要求的单位。

3.3 螺旋测微器

3.3.1 读数

- 1. 读出固定刻度上的 mm 数,注意固定刻度线上的半毫米刻度线是否露出,未露出时为整数,露出时要加 0.5 mm ,如图为 7 mm ;
 - 2. 读出旋转刻度数值,要注意最后的估读数字,其形式一定为 0.xxxmm,如图为

$$29.5 \times 0.01 = 0.295 \text{ mm};$$

3. 待测长度 = "固定刻度的 mm 数"+"可动刻度的 mm 数", 如图 L=7mm+0.295mm=7.295mm; 读数公式:

测量值 = 固定刻度值 + 固定刻度的中心水平线与可动刻度对齐的位置的读数 ×0.01mm

第4章 电路实验

电流表分压 电压表分流 适用于 $R_A R_V$ 约为 \Rightarrow

$$\begin{cases} R_x > \sqrt{R_A R_V} \Rightarrow \text{内接} \\ \\ R_x < \sqrt{R_A R_V} \Rightarrow \text{外接} \\ \\ \begin{cases} \text{大内偏大} \\ \text{小外偏小} \end{cases} \end{cases}$$

⇒ 大电阻用电流表内接法,测量结果偏大 小电阻用电流表外接法,测量结果偏小

4.1 外接

$$\frac{U}{I} < \frac{U}{I - I_V}$$

测<实

外接 $\frac{R_V}{R_r}$ 越大越好

4.2 内接

$$\frac{U}{I} > \frac{U - U_A}{I}$$

测 > 实

内接 $\frac{R_x}{R_A}$ 越大越好

4.3 试触法

若电压变化大 ⇒ 外接 若电流变化大 ⇒ 内接

4.4 番外

若 R_V 已知 \Rightarrow 外接 若 R_A 已知 \Rightarrow 内接 安阻内, 伏阻外

第5章 电阻的测量

5.1 伏安法测电阻

5.1.1 限流接法

- 1. 省电
- $2.R_p = 3 \sim 10R_x$

5.1.2 分压接法

- 1. 可以从 0 起
- 2. 测量小灯泡伏安特性曲线
- $3.R_p < R_x$

5.1.3 流程

1. 计算

$$U_{MAX} = \frac{E}{E}$$
$$I_{MAX} = \frac{E}{R_X}$$

2. 选表

精确 > 量程 $\frac{1}{3}$ 安全防爆表

$3.R_X\sqrt{R_AR_V}$

大内偏大 小外偏小

4. 选结构

分压 限流

5. 选 R_p

5.2 电表改装

5.2.1 扩量程

表量程不够 只给一个 A/V 表且阻值已知 **安阻内伏阻外**

5.2.1.1 电流表并电阻

5.2.1.2 电压表串电阻

5.2.2 伏伏法

已知阻值的电压表当电流表

$$R_{x} = \frac{U_{1} - U_{2}}{\frac{U_{2}}{r_{2}}}$$

$$\frac{U_{2}}{r_{2}}R_{X} = U_{1} - U_{2}$$

$$U_{1} = U_{2} + \frac{U_{2}}{r_{2}}R_{X}$$

$$U_1 = U_2(1 + \frac{R_X}{r_2})$$

$$k = 1 + \frac{R_x}{r_2}$$

5.2.3 安安法

$$R_x = \frac{I_1 r_1}{I_2 - I_1}$$

$$R_x I_2 - R_x I_1 = I_1 r_1$$

 $R_x I_2 = I_1 (R_x + r_1)$

$$I_1 = \frac{R_x}{R_x + r_1} I_2$$