

Part 2

Inter-chirp Waveform Modulation Techniques

Agenda

- Inter-Pulse Modulation Techniques
 - Time Division Multiplexing (TDM)
 - Frequency Division Multiplexing (FDM)
 - Doppler Division Multiplexing (DDM)
 - Binary Phase Modulation (BPM)
 - Code Division Multiplexing (CDM)

- TDM scheme requires least demanding hardware
- Transmission switches from one antenna to another sequentially within a pulse
- Simple radars with mass manufacturing requirement need to be cost efficient and majorly apply TDM scheme

Frequency Division Multiplexing (FDM)

- Easy to implement with minimal hardware complexity
- range resolution compromised for more channels

where c = speed of light, B = bandwidth.

- DDM scheme requires advanced transmission hardware
- Consists of dedicated phase shifters with defined alphabet size at every transmit antenna
- Automotive radars have vastly applied this transmission scheme
- Requires identification of the peak corresponding to the real Doppler from the available aliased peaks
- Additional processing steps involved at the receiver

General Transmit Signal Model

$$\mathbf{u}_{m,q}(t) = w_{m,q}e^{j\phi(t)}\frac{1}{T_c}\operatorname{rect}\left(\frac{2t}{T_c}\right)$$
where $\phi(t) = 2\pi(f_ct + \frac{1}{2}St^2)$,
$$m = 1, \dots, M, \quad q = 1, \dots, Q, \text{ and}$$

$$w_{m,q} = \begin{cases} \delta[m - \operatorname{mod}(q - 1, M) - 1], & \operatorname{TDM}^{\#} \\ e^{-j2\pi mq/M}, & \operatorname{DDM} \\ \operatorname{Had}[m, \operatorname{mod}(q - 1, M) + 1], & \operatorname{BPM} \end{cases}$$

M: transmit antenna elements

 T_c : transmit chirp duration

 f_c : center frequency

S: chirp slope

Q: transmit pulses

Had: Hadamard Matrix

 δ : Dirac delta function

mod: modulo operation

Directivity / Beampattern and ULA

- Radiated/received energy from/at radar antenna array is dependent on angle
- Beampattern is a visual representation of intensity of electromagnetic energy transmitted/received by the antenna in all angular directions
- An antenna with Uniform Linear Array layout with one Transmit Antenna and four Receive antennas (Figs) has a steering vector as

$$\mathbf{a}(\theta) \triangleq \begin{bmatrix} a_1(\theta) \\ \vdots \\ a_m(\theta) \\ \vdots \\ a_M(\theta) \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ e^{-j\frac{2\pi}{\lambda}md\sin(\theta)} \\ \vdots \\ e^{-j\frac{2\pi}{\lambda}Md\sin(\theta)} \end{bmatrix}.$$

Filled Array

$$1 \rightarrow Tx3$$

1 Tx4

Filled Array

Magic of MIMO in Radars

MIMO radar: it probes a channel by transmitting multiple signals (separated temporally, spectrally or spatially)
and received with some similar multiplicity*.

* D. W. Bliss and K. W. Forsythe, "Multiple-input multiple-output (MIMO) radar and imaging: degrees of freedom and resolution," *The Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, 2003*, Pacific Grove, CA, USA, 2003, pp. 54-59 Vol.1, doi: 10.1109/ACSSC.2003.1291865.

Waves Connecting Europe

Waves Connecting Europe

Doppler aliased clutter and targets appear in other channels

Waves Connecting Europe

- BPM-MIMO makes use of the device's full transmission capabilities (because all the transmitters
 are active at any time)
- BPM-MIMO may not achieve perfect orthogonality between channels. As a result, when BPM-MIMO is used, more sidelobes are expected.
- BPM-MIMO reduces the unambiguous Doppler range

Inter-Pulse Code Division Multiplexing (CDM)

$$\mathbf{u}_{m,q}(t) = w_{m,q} e^{j\phi(t)} \frac{1}{T} \operatorname{rect}\left(\frac{2t}{T}\right)$$

where $\phi(t) = 2\pi f_c t$,

$$m = 1, ..., M, q = 1, ..., Q,$$
and

 $w_{m,q} = Z(r,n)$, Zadoff-Chu Sequence Set

Further,
$$Z(r, n) = e^{-j\frac{\pi r n(n+1)}{N}}$$
,
where $n = 0, 1, ..., N-1$, and
 r is the root of the sequence coprime with N.

N: chips of duration T_{cp}

M: transmit sequences

T: transmit pulse duration

Q: transmit pulses

Z: Zadoff Chu Matrix

4D MIMO Radars

Waves Connecting Europe

Beampattern for Generic Antenna Layout

Steering vector for the mth antenna is

$$\mathbf{a}(\theta,\phi) = \begin{bmatrix} a_1(\theta,\phi) \\ \vdots \\ a_m(\theta,\phi) \\ \vdots \\ a_M(\theta,\phi) \end{bmatrix}, \text{ where } a_m(\theta,\phi) \triangleq e^{-j\frac{2\pi}{\lambda}}\mathbf{p}_m^T\mathbf{r}(\theta,\phi).$$

Antenna Layout

Beam Pattern GIF for Azimuth-Elevation

Antenna Layouts (Real and Virtual)

Real Antenna Position for Virtual array layout

Angular Resolution Enhancement with Virtual Aperture

Enhancement in angular resolution by increasing the Virtual aperture

Thanks!

