Part 4: Beyond Physical Memory

The "RealWorld"™ -- Time to add swapping

An Implicit Assumption

Simple Paging: the entire address space of a proc fits into physical name

The RealWorld™:

- · 32-bit address space (4GB)
 · 64-bit address space (17 billion GB)

The Crux of the Problem

How do we go beyond the constraint of phys. Mem?

-> use disk

Introduction

Swap Space: Reserved space on disk for swapped out pages

Address Translation

On TLB *miss*:

spage toppe

1. Fetch the PTE

this is a perfective of a perf

- 2. if valid, theck "present" bit
 - a) if 1, all good (page is in RAM)
 - b) if 0, no physical addr. (page has been swapped or)

throws error

Page fault: the act of accessing a page not in phys mem

On Page Fault its on interupt

- 1. Set requesting process to blocked
- 2. if memory is fult, swap out a page from RAM to disk
 - > which page? => replacement policy decides
- 3. issue 110 request to disk
- 4. Update the page table entry (PTE)
- 5. set requesting process to Ready

Metric of Choice

-bigger is better netric

page fault

Replacement Policy #1: FIFO

First-in, First-out

- 1. Place pages into a queue when swapped in
- 2. Choose head of queue when you need to replace a page

doesn't care if its used of ten, does not take locality into account

coldnisses

Example: FIFO

Access	Hit/Miss?	Evict	State
0	M		O
1	M		01
2	M		012
0	H		012
1	H		012
3		0	123
0	M	1	230
3	H		230
1	M	2	301
2	M H	3	012
1	H		012

1 phys mem | = 3 pages and RAM starts empty

$$HR = \frac{HH}{HH+HM}$$

$$= \frac{4}{4+7} = \frac{4}{11}$$

$$= \frac{367}{1}$$

IPM1=3 Just For Fun: Belady's Anomaly IPM1=4

#	H/M?	Evict	State		#	H/M?	Evict	State	
1	M		1	3 = 25	11	M		1 2=1	H.
2	M		12	12	2	M		12	
3	M		123		3	M		123	
4	M	1	234		4	\mathcal{M}		1234	
1	M	2	341		1	H		1234	
2	M	3	412		2	H		1234	
5	M	ч	125		5	M	1	2345	
1	H		125		1	M	2	3451	
2	H		125		2	M	3	4512	
3	M	1	253		3	M	4	5123	
4	M	2	534		4	M	5	1234	
5	H		534		5	M	1	2345	

Replacement Policy #2: LRU

Least Recently usech

- -> replace the page which has not been referenced for the longest time
- -> embraces locality, in general code has lots of locality

Example: LRU

Access	Hit/Miss?	Evict	State
0			0
1	M		01
2			012
0	H		120
1	H		201
3	M	2	013
0	H		130
3	H		103
1	H		031
2	M	O	312
1	H		321

14m1=3 pages starts erupty

$$\frac{6}{6+5} = 54.5\%$$

cru has high
overhead
state
changes everytime

Replacement Policy #3: CLOCK

Approximates LRU

- 1. add a "use" bit to every page
- 2. Whenever a page is referenced set use = 1
- 3. Os uses the "clock" algorithm on page replacement
 - > all pages are stored as a circular list
 - > a "clock" hand points to some page
 - while (p.use == 1): p.use = 0 pattre p += 1

CLOCK Visual

(a) State of buffer just prior to a page replacement

"Replacement Policy #4": OPT

Optimal

- 1. assume we have perfect knowledge of the future
- 2. replace the page which is accessed furthest in the future

OPT Example

Access	Hit/Miss?	Evict	State
0	M		0)
1	M		01
2	M		0125
0	H		012
1	H		012 ms
3	M	2	013 doesn't
0	H		013 3
3	H		013
1	H		013
2		3	012 (
1	17		012

$$\frac{6}{6+5} = 54.5\%$$

Replacement Comparison

Part 5: Some Loose Ends

Terminology

- Thrashing: When the system spends majority time handling page faults rather than doing useful work
- Frame Locking: a locked frome cannot be removed from RAM.
- -> typically used for the hernel

PAGE_FAULT_IN_NONPAGED_AREA

Your PC ran into a problem and needs to restart. We're just collecting some error info, and then we'll restart for you. (0% complete)

If you'd like to know more, you can search online later for this error

PAGE FAULT IN NONPAGED AREA

Non-Paged Area: Locked frames

Resident Set Management

Resident Set: Portion of the proc's addr space in RAM

- > set of pages w/ present = 1
- > typically limited by the os
- > fixed or dynamic

Replacement Scope:

- > Global: all unlocked pages
- Local: replace pages in proc's resident set

Fetch Policies

Demand Paging: only swap in a page on page fault

Jots of cold misses

Prepaging: pre-fetch pages in some way

-) fix cold misses