

Introducción

propuesto

Método y

Trash and Recycled Material Identification using Convolutional Neural Networks (CNN)

Alhely González Luna

2024-10-24

https://www.researchgate.net/publication/346886608_Trash_and_ Recycled_Material_Identification_using_Convolutional_Neural_ Networks_CNN

Tabla de contenidos

Introduccion

Matadalagís

Método y Resultados Introducción

Modelo propuesto

Metodología

Método y Resultados

Motivación

Introducción

Modelo propuesto

Metodologí

Método y Resultado La OMS indicó que en 2022 más de 1.5 billones de personas no tienen acceso a servicios sanitarios básicos. Mientras que paises de primer mundo tienen un manejo adecuado de residuos, para los paises en desarrollo es muy costoso y no hay suficientes servicios de recolección.

En este paper se muestra el primer paso para desarrolar un robot que recolecte basura en las calles de una ciudad, esto es un modelo capaz de detectar, classificar y recolectar basura que se encuentra en las calles o es introducida al robot por un transeunte.

Diagrama para la toma de decisiones

Introducción de Producción

Modelo

Metodología

Método y Resultado

Arquitectura

Modelo

propuesto

AlexNet es una arquitectura de red convolucinal diseñada por Alex Krizhevsky en colaboración con Ilya Sutskever y Geoffrey Hinton, tiene 60 millones de parámetros y 650.000 neuronas, con 8 capas es capaz de clasificar imágenes en 1000 categorías.

En este estudio se utilizó la versión de MATLAB de AlexNet, que consiste en 25 capas incluyendo 5 convolucionales y 3 totalmente conectadas. La estructura de la red queda como sigue

Table 1: MATLAB AlexNet Layer Configuration			
Layer	Type		
1	Data (227x227x3 Size Images)		
2	96 kernels of size 11x11x3 Convolutions		
3	ReLU		
4	Cross Channel Normalization		
5	3x3 Max Pooling		
6	256 kernels of size 5x5x48 Convolutions		
7	ReLU		
8	Cross Channel Normalization		
9	3x3 Max Pooling		
10	384 kernels of size 3x3x256 Convolutions		

11	ReLU
12	384 kernels of size 3x3x192 Convolutions
13	ReLU
14	256 kernels of size 3x3x192 Convolutions
15	ReLU
16	3x3 Max Pooling
17	4096 Fully Connected Layer
18	ReLU
19	50% Dropout
20	4096 Fully Connected Layer
21	ReLU
22	50% Dropout
23	1000 Fully Connected Layer
24	Softmax
25	Classification Output

Introducción

Metodología

Método y Resultado

Áreas de estudio

El presente estudio se condujo en los distritos de Arsi y Bale en las montañas del sudeste de Etiopía, ambas áreas localizadas en Oromia y son estados representativos en la producción de trigo.

Bale se encuentra 2300 msnm, con dos temporadas de lluvia llamadas Boona (Julio a Diciembre) y Ganna (Marzo a Junoio), con un rango anual de 875 mm de precitación las temperaturas varian entre 13° C y 30° C

Clases

Modelo

Metodología

Método y Resultados Se llevaron a cabo las siguientes 4 pruebas:

- Entrenar AlexNet con la base de imagenes TrashNet que contiene 5 tipos de residuos metal, plastico, vidrio, papel, cartón.
- 2 Se probó la red entrenada con imágenes tomadas en tiempo real en interior.
- Se entrenó AlexNet con imágenes de exterior para clasificarlas en "tomar" o "no tomar"
- Se entrenó AlexNet con imágenes de exterior para clasificarlas reciclable o basura.

Las primeras dos pruebas son para confirmar la exactitud de la red AlexNet para esta tarea, las pruebas 3 y 4 están enfocadas al desarrollo futuro del robot.

Introducción

propuesto

Metodología

Método y Resultados

Prueba 1: Cinco categorías en un ambiente de interior controlado

Para este paso se utilizaron las imágenes de TrashNet que son tomadas en interior y con el mismo setting de luz en cada imágen

Table 2: Results of CNN classification using TrashNet indoor images

Category	Total count of images	Count of correctly detected images	Accuracy (%)
Metal	41	39	91.68
Plastic	48	38	81.25
Paper	59	53	89.83
Cardboard	40	37	92.5
Glass	50	46	92
Overall	238	213	89.50

Prueba 2: Imágenes de interior

Modelo

Metodologí:

Método y Resultados En un fondo blanco se tomaron fotos de 13 objetos rotándolos para así obtener 260 imágenes, se probó cada imagen con la red entrenada previamente. La red tuvo problemas con tres objetos papel café, vidrio transparente y cajas de plástico, los resultados se muestran en la siguiente tabla

Table 3: Results of AlexNet CNN classification using indoor camera, trained on TrashNet images

Object number	Object	Actual Category	Detected Category
1	Green Plastic bag	Plastic	100% Plastic
2	Plastic bottle	Plastic	100% Plastic
3	Plastic box	Plastic	100% Plastic
4	White glass mug	Glass	100% Glass
5	Red Plastic cup	Plastic	80% Plastic, 20% metal
6	Brown paper	Paper	70% cardboard, 30% plastic
7	White paper with	Paper	70% Paper, 30% cardboard

Prueba 3: Tomar o no tomar

Introducción

NA - 11 - 2

Método y Resultados

Se capturaron 1054 imágenes de objetos de exterior y se clasificarion en dos "tomar" y "no tomar", se entrenó AlexNet en este conjunto

Table 4: Results of CNN classification using outside images with 2 categories

Category	Total count of images	Count of correctly detected images	Accuracy (%)
"take"	210	205	97.6
"non-take"	106	91	85.9
Overall	316	296	93.6

Introducción Modelo

Makadalawa

Método y Resultados

Prueba 4: Clasificando las imágenes de exterior en basura o reciclable

De las imágenes clasificadas como "tomar" en el paso anterior se subclasifican en reciclable o basura, se entrenó AlexNet con 700 de estas imágenes con las dos subclases y se obtuvieron los siguientes resultados

Table 5: Results of CNN classification using outside images with 2 categories

Category	Total count of images	Count of correctly detected images	Accuracy (%)
"recycle"	68	61	89.7
"trash"	107	100	93.5
Overall	175	161	92

Conclusiones

Tradital de Clandes de la Cempatro

Método y Resultados

Modelo propuesto

Metodología

La exactitud para los modelos desarrollados varía entre 89.7 y 93.5%, lo cual es bastante aceptable, como trabajo futuro se desea integrar este sistema de procesamiento a un robot que de forma automática separe y recoja los residuos de una ciudad.