Regression

Regression Model

Linear Regression

Decision Tree Regression

Random Forest Regression

Machine Learning A-Z

J	informations about relevance of features	J
Polynomial Regression	Works on any size of dataset, works very well on non linear problems	Need to choose the right polynomial degree for a good bias/variance tradeoff
SVR	Easily adaptable, works very well on non linear problems, not biased by outliers	Compulsory to apply feature scaling, not well known, more difficult to understand

Interpretability, no need for feature scaling,

works on both linear / nonlinear problems

Powerful and accurate, good performance

on many problems, including non linear

Pros

Works on any size of dataset, gives

Cons

The Linear Regression Assumptions

Poor results on too small datasets,

overfitting can easily occur

No interpretability, overfitting can easily

occur, need to choose the number of trees

© SuperDataScience

Classification

Classification Model

Logistic Regression

IZ NINI

Random Forest Classification

Machine Learning A-Z

K-ININ	Simple to understand, fast and efficient	need to choose the number of neighbours k
SVM	Performant, not biased by outliers, not sensitive to overfitting	Not appropriate for non linear problems, not the best choice for large number of features
Kernel SVM	High performance on nonlinear problems, not biased by outliers, not sensitive to overfitting	
Naive Bayes	Efficient, not biased by outliers, works on nonlinear problems, probabilistic approach	Based on the assumption that features have same statistical relevance
Decision Tree Classification	Interpretability, no need for feature scaling, works on both linear / nonlinear problems	Poor results on too small datasets, overfitting can easily occur

Powerful and accurate, good performance on

many problems, including non linear

Pros

Probabilistic approach, gives informations

about statistical significance of features

Cimple to understand foot and officient

Cons

The Logistic Regression Assumptions

Need to shoops the number of neighbours k

No interpretability, overfitting can easily

occur, need to choose the number of trees

© SuperDataScience

Clustering

Clustering Model

Hierarchical Clustering

Machine Learning A-Z

K-Means	Simple to understand, easily adaptable, works well on small or large datasets, fast, efficient and performant	Need to choose the number of clusters

The optimal number of clusters can be

obtained by the model itself, practical

visualisation with the dendrogram

Pros

Cons

Not appropriate for large datasets

© SuperDataScience