9. Übungsaufgabe zu

Fortgeschrittene funktionale Programmierung

Thema: Equational Reasoning ausgegeben: Di, 05.06.2012, Abgabe: keine. Freies Üben

- In Kapitel 4.2 der Vorlesung ist mittels "equational reasoning" ein Algorithmus zur Lösung des MNSS-Problems entwickelt worden, dessen Berechnungsaufwand linear in der Länge der Argumentliste ist.
 - Versuchen Sie auf ähnliche Weise zu einer möglicherweise effizienteren Variante Ihres Verfahrens zur Berechnung der maximalen Abschnittssumme einer Liste zu gelangen, d.h. zu einer effizienteren Lösung für das MAS-Problem von Aufgabenblatt 5.
- Samurai-Puzzles sind, wie in der folgenden Abbildung illustriert, aus 5 sich überlappenden Sudoku-Puzzles zusammengesetzt. Wie beim Sudoku ist es die Aufgabe, alle leeren Felder so mit Zahlen von 1 bis 9 zu füllen, dass in jeder Zeile, Reihe und 3 × 3-Kasten die Zahlen von 1 bis 9 genau einmal vorkommen. In Kapitel 4.3 der Vorlesung wird mittels "equational reasoning" ein Algorithmus zur Lösung von Sudoku-Puzzles entwickelt. Erweitern Sie diese Lösung so,

dass Sie zur Lösung von Samurai-Puzzles verwendet werden kann.

	3	7	8		6			5					3	7	8		6			5
		5	2	7			3							5	2	7			3	
				3	5		6	8								3	5		6	8
		1					9	3						1					9	3
		2		5		4								2		5		4		
5	7					8						5	7					8		П
2	1		5	6					8		6	2	1		5	6				
	4			2	1	5			2	7			4			2	1	5		
6			3		7	2	4			3	5	6			3		7	2	4	
								1					9	3						_
								2		5		4								
						5	7					8								
	3	7	8		6			5	5	6		_	3	7	8		6			5
		5	2	7	0		3		-	2	1			5	2	7			3	
			_	3	5		6	8	3	_	7				_	3	5		6	8
Н		1	Н		3		9	3			,			1		,	3	Н	9	3
		2		_		4	,	3						2		_			9	3
\vdash				5		4						_	_			5	_	4		\vdash
5	7					8						5	7					8		
2	1		5	6								2	1		5	6				
	4			2	1	5							4			2	1	5		
6			3		7	2	4					6			3		7	2	4	