Część teoretyczna

Model OSI – (Open Systems Interconnection) opublikowany w 1984 roku przez ISO (International Organization for Standarization) jest jednym z powszechnie wykorzystywanych standardów komunikacji między komputerami. Struktura modelu opiera się na wielowarstwowości. Każda warstwa ma zapewniać podzbiór powiązanych ze sobą funkcji. Niższe warstwy wykonują bardziej prymitywne zadania i ukrywają szczegóły działania przed wyższymi.

W sytuacji idealnej zakłada się, że warstwy są niezależne i dokonanie zmian w jednej nie wymaga zmian w pozostałych.

Główną funkcją modelu jest zdefiniowanie zestawu warstw i ustalenie usługi świadczonej przez każdą z nich. Dodatkowo podział grupuje funkcje zgodnie z ich zastosowaniem i zapewnia liczbę warstw wygodną do zarządzania. Liczbą ustaloną przez ISO jest 7.

Warstwy modelu OSI/ISO

7. Warstwa aplikacji

Zawiera protokoły wykorzystywane przez użytkownika końcowego (np. HTTP).

6. Warstwa prezentacji

Odpowiada za kodowanie (enkodowanie i dekodowanie) danych w zależności od kierunku przechodzenia przez model.

5. Warstwa sesji

Pozwala użytkownikom różnych komputerów nawiązywać sesje. Sesja steruje kierunkiem nadawania i synchronizuje (przywraca transmisję w postawionym punkcie kontrolnym).

4. Warstwa transportowa

Dzieli dane z wyższych warstw na mniejsze jednostki i zapewnia, że wszystkie fragmenty dotrą bezbłędnie do miejsca przeznaczenia. Izoluje wyższe warstwy od zmian technologii sprzętu. Określa typy usług świadczonych warstwie sesji (np. dwupunktowy "host-to-host" kanał, przekazujący dane sekwencyjnie, przesył izolowanych wiadomości bez gwarancji doręczenia, rozgłaszanie wiadomości pod wiele adresów). Ta warstwa jest w pełni dwupunktowa.

3. Warstwa sieciowa

Steruje działaniem podsieci. Zawiera funkcje obsługujące trasowanie. Kontrola przepływu (usuwanie zatorów), odpowiada za jakość usług. Powinna zapewnić łączenie niejednakowych sieci, różniących się np. Adresowaniem, czy wielkością akceptowanych pakietów.

2. Warstwa łącza danych

Podział przychodzących bitów na ramki (od kilkuset do kilku tysięcy bajtów) i sekwencyjna transmisja ramek. Sterowanie przepływem danych i obsługa błędów.

1. Warstwa fizyczna

Transmisja bitów kanałem komunikacyjnym. Zagadnienia projektowe wiążą się głównie z interfejsami mechniacznymi, elektrycznymi i zależnościami czasowaymi oraz z fizycznym nośnikiem transmisyjnym, który znajduje się pod wastwą fizyczną.

Architektura TCP/IP – architektura protokołów stworzona w ramach eksperymentalnego projektu ARPANET finansowanego przez DARPA. Protokoły należące do architektury TCP/IP uznawane są przez IAB (Internet Architecture Board) za standardy Internetowe. Podobnie jak model OSI/ISO koncept architektury opiera się na warstwach. TCP/IP jest dużo bardziej przejrzysty od OSI/ISO i łatwiejszy w implementacji.

Warstwy TCP/IP

4. Warstwa aplikacji

Pozwala użytkownikom różnych komputerów nawiżywać sesje. Sesja steruje kierunkiem nadawania i synchronizuje (przywraca transmisję w postawionym punkcie kontrolnym).

3. Warstwa transportowa

Głównymi protokołami w tej warstwie są TCP i UDP.

2. Warstwa Internetu

Definiuje oficjalny format pakietu i Internet Protocol. Zadaniem tej warstwy jest dostarzenie pakietów IP w przewidziane miejsce, zajmuje się ona routingiem i unikaniem zatorów.

1. Warstwa host-sieć/fizyczna/dostępu do sieci

Zajmuje się przekazywaniem danych przez fizyczne połączenia między urządzeniami sieciowymi. Najczęściej są to karty sieciowe lub modemy. Dodatkowo warstwa ta jest czasami wyposażona w protokoły do dynamicznego określania adresów IP.

Pakiet – jednostka informacji składająca się z nagłówka i obszaru danych. Nagłówek zawiera między innymi informacje o adresowaniu, sumę kontrolną, długość pakietu, informacje o protokole. Obszar danych zawiera dane od wyższych warstw. W modelu OSI/ISO jest on skojarzony z warstwą sieciową, a w TCP/IP.

Datagram jest odpowiednikiem pakietu w protokołach zawodnych.

Kapsułkowanie (encapsulation) - polega na dodaniu nagłówka z dodatkowymi informacjami z wyższej warstwy przed przesłaniem do warstwy niższej danego protokołu po stronie nadawczej.

Dekapsułkowanie (de-encapsulation) – proces odwrotny do kapsułkowania, nagłóweki zostają usunięte po odczytaniu przed przesłaniem do wyższej warstwy.

Fragmentacja/defragmetacja -

Część praktyczna

1. Za pomocą programów ping, pathping, tracert, traceroute zbadać dostępność systemów i trasy do nich: a) z sieci laboratoryjnej, b) z sieci ZSK poza laboratorium, c) w dowolnym miejscu w Polsce, d) w dowolnym miejscu poza Polską. Ustalić zarządców tych adresów. Podać przynajmniej jeden przykład dostępności systemu i trasy dla sieci IPv6 (lokalizacja dowolna).

Opis poleceń:

Ping - do diagnozowania połączeń sieciowych. Pozwala na sprawdzenie czy istnieje połączenie pomiędzy hostami testującym i testowanym. Umożliwia on zmierzenie liczby zgubionych pakietów oraz opóźnień w ich transmisji, zwanych lagami. Dostępne w MS Windows i Linux.

Pathping - łączy funkcjonalność polecenia ping oraz tracert. Na początku ustalana jest trasa między hostami, a następnie pingowany jest każdy z węzłów na tej trasie. Dostępne w MS Windows.

Traceroute – ustala trasę między hostami. Dostępne w Linux, odpowiednikiem w systemach z rodziny MS Windows jes tracert.

Zadanie wykonano na systemie Linux

a) > ping -6 10.18.130.6

```
PING 10.18.130.6 (10.18.130.6) 56(84) bytes of data.
64 bytes from 10.18.130.6: icmp_seq=1 ttl=64 time=0.307 ms
64 bytes from 10.18.130.6: icmp_seq=2 ttl=64 time=0.280 ms
64 bytes from 10.18.130.6: icmp_seq=3 ttl=64 time=0.278 ms
64 bytes from 10.18.130.6: icmp_seq=4 ttl=64 time=0.283 ms
64 bytes from 10.18.130.6: icmp_seq=5 ttl=64 time=0.253 ms
64 bytes from 10.18.130.6: icmp_seq=6 ttl=64 time=0.257 ms
--- 10.18.130.6 ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5000ms
rtt min/avg/max/mdev = 0.253/0.276/0.307/0.022 ms
```

> traceroute 10.18.130.6

```
traceroute to 10.18.130.6 (10.18.130.6), 30 hops max, 60 byte packets 1 10.18.130.6 (10.18.130.6) 0.192 ms !X 0.168 ms !X 0.156 ms !X
```

b) > ping -6 212.51.220.1

```
PING 212.51.220.1 (212.51.220.1) 56(84) bytes of data.
64 bytes from 212.51.220.1: icmp_seq=1 ttl=255 time=2.69 ms
64 bytes from 212.51.220.1: icmp_seq=2 ttl=255 time=0.793 ms
64 bytes from 212.51.220.1: icmp_seq=3 ttl=255 time=0.920 ms
64 bytes from 212.51.220.1: icmp_seq=4 ttl=255 time=0.810 ms
64 bytes from 212.51.220.1: icmp_seq=4 ttl=255 time=1.30 ms
```

```
64 bytes from 212.51.220.1: icmp seq=6 ttl=255 time=0.823 ms
```

> traceroute 212.51.220.1

```
traceroute to 212.51.220.1 (212.51.220.1), 30 hops max, 60 byte packets 1 pc-212-51-220-1.p.lodz.pl (212.51.220.1) 18.223 ms * *
```

c) > ping -6 wp.pl

```
PING wp.pl (212.77.100.101) 56(84) bytes of data.
64 bytes from www.wp.pl (212.77.100.101): icmp_seq=1 ttl=246 time=13.4 ms
64 bytes from www.wp.pl (212.77.100.101): icmp_seq=2 ttl=246 time=11.7 ms
64 bytes from www.wp.pl (212.77.100.101): icmp_seq=3 ttl=246 time=11.6 ms
64 bytes from www.wp.pl (212.77.100.101): icmp_seq=4 ttl=246 time=11.9 ms
64 bytes from www.wp.pl (212.77.100.101): icmp_seq=5 ttl=246 time=11.7 ms
64 bytes from www.wp.pl (212.77.100.101): icmp_seq=5 ttl=246 time=11.6 ms

--- wp.pl ping statistics ---
6 packets transmitted, 6 received, 0% packet loss, time 5020ms
rtt min/avg/max/mdev = 11.665/12.026/13.451/0.654 ms
```

> traceroute wp.pl

```
traceroute to wp.pl (212.77.100.101), 30 hops max, 60 byte packets

1 pc-212-51-220-1.p.lodz.pl (212.51.220.1) 19.180 ms 19.359 ms 19.503 ms

2 ckmx-uss.p.lodz.pl (212.51.207.91) 20.004 ms 20.174 ms 20.330 ms

3 pl-cke-gw-0-0-0.man.lodz.pl (212.191.9.193) 20.828 ms 21.021 ms 21.172 ms

4 e-gw1-0-2-0.man.lodz.pl (212.191.9.13) 21.654 ms 21.844 ms 21.998 ms

5 z-lodmana.poznan-gw3.10Gb.rtr.pionier.gov.pl (212.191.224.5) 25.915 ms

26.110 ms 26.280 ms

6 z-poznan-gw3.gdansk.10Gb.rtr.pionier.gov.pl (212.191.224.206) 31.965 ms

13.633 ms 17.722 ms

7 wp-jro4.10ge.task.gda.pl (153.19.102.6) 18.218 ms 18.396 ms 18.552 ms

8 rtr2.rtr-int-2.adm.wp-sa.pl (212.77.96.69) 20.571 ms rtr2.rtr-int-

1.adm.wp-sa.pl (212.77.96.65) 24.755 ms rtr2.rtr-int-2.adm.wp-sa.pl

(212.77.96.69) 20.749 ms

9 www.wp.pl (212.77.100.101) 25.108 ms 25.100 ms 25.205 ms
```

d) > ping -6 www.usa.gov

```
PING a386.dscb.akamai.net (212.191.241.25) 56(84) bytes of data.
64 bytes from 212.191.241.25: icmp_seq=1 ttl=59 time=7.57 ms
64 bytes from 212.191.241.25: icmp_seq=2 ttl=59 time=5.78 ms
64 bytes from 212.191.241.25: icmp_seq=3 ttl=59 time=5.78 ms
64 bytes from 212.191.241.25: icmp_seq=4 ttl=59 time=5.75 ms
64 bytes from 212.191.241.25: icmp_seq=5 ttl=59 time=5.76 ms
64 bytes from 212.191.241.25: icmp_seq=6 ttl=59 time=5.75 ms
64 bytes from 212.191.241.25: icmp_seq=6 ttl=59 time=5.75 ms
```

```
6 packets transmitted, 6 received, 0% packet loss, time 5014ms rtt min/avg/max/mdev = 5.751/6.067/7.570/0.677 ms
```

> traceroute www.usa.gov

```
traceroute to www.usa.gov (212.191.241.9), 30 hops max, 60 byte packets
1 pc-212-51-220-1.p.lodz.pl (212.51.220.1) 18.263 ms 21.891 ms 22.122 ms
2 ckmx-uss.p.lodz.pl (212.51.207.91) 22.604 ms 22.794 ms 22.970 ms
3 pl-cke-gw-0-0-0.man.lodz.pl (212.191.9.193) 23.428 ms 23.623 ms 23.774 ms
4 e-gw1-0-2-0.man.lodz.pl (212.191.9.13) 24.257 ms 24.427 ms 24.597 ms
5 z-lodmana.poznan-gw3.10Gb.rtr.pionier.gov.pl (212.191.224.5) 25.075 ms
28.979 ms 29.127 ms
6 a212-191-241-009.deploy.akamaitechnologies.com (212.191.241.9) 29.528 ms
8.937 ms 14.223 ms
```

2. Zbadać i zmodyfikować ustawienia protokołu IP na własnym stanowisku korzystając zarówno z narzędzi Panelu Sterowania Windows, jak i polecenia ipconfig oraz w systemie Linux (polecenia ip, ifconfig)

ipconfig – służy do wyświetlania konfiguracji interfejsów sieciowych. Dostępne w MS Windows, odpowiednikiem w systemie Linux jest **ifconfig**.

Zadanie wykonane w systemie MS Windows

> ipconfig /all

```
Windows IP Configuration
                 . . . . . . . : test1-PC
  Host Name .
  Primary Dns Suffix . . . . . .
  IP Routing Enabled. . . . . . . . No
  WINS Proxy Enabled. . . . . . : No
  DNS Suffix Search List. . . . : home
Wireless LAN adapter Wireless Network Connection 3:
  Media State . . . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix .:
  Description . . . . . . . . . . . . . Microsoft Virtual WiFi Miniport
Adapter #2
  Physical Address. . . . . . . . 9C-4E-36-8A-39-59
  DHCP Enabled. . .
                          . . . . : Yes
  Autoconfiguration Enabled . . . : Yes
Wireless LAN adapter Wireless Network Connection 2:
  Media State . . . . . . . . . . . Media disconnected
  Connection-specific DNS Suffix .:
  Description . . . . . . . . . . . . . Microsoft Virtual WiFi Miniport
Adapter
```

```
Physical Address. . . . . . . . 9C-4E-36-8A-39-59
  DHCP Enabled. . . . . . . . . . Yes
  Autoconfiguration Enabled . . . . : Yes
Wireless LAN adapter Wireless Network Connection:
  Connection-specific DNS Suffix . : home
  Description . . . . . . . . . : Intel(R) Centrino(R) Wireless-N 2200
  Physical Address. . . . . . . . 9C-4E-36-8A-39-58
  DHCP Enabled. . . . . . . . : Yes
  Autoconfiguration Enabled . . . . : Yes
  Link-local IPv6 Address
fe80::4d0d:ef49:ce6e:6dd7%11(Preferred)
  IPv4 Address. . . . . . . . . . . . . . . 192.168.1.16(Preferred)
  Lease Obtained. . . . . . . . . Sunday, October 20, 2013 4:51:28 PM
  Lease Expires . . . . . . . . . . . . . Monday, October 21, 2013 4:51:28 PM
  Default Gateway . . . . . . . : 192.168.1.254
  DHCP Server . . . . . . . . . . . . . . . . . 192.168.1.254
  DHCPv6 IAID . . . . . . . . . . . . . . . . 245124662
  39-58
  DNS Servers . . . . . . . . . . . . . . . 192.168.1.254
  NetBIOS over Tcpip. . . . . . : Enabled
Tunnel adapter isatap.home:
  Media State . . . . . . . . : Media disconnected
  Connection-specific DNS Suffix . : home
  Description . . . . . . . . . . . . . . Microsoft ISATAP Adapter
  Physical Address. . . . . . . . : 00-00-00-00-00-00-E0
  DHCP Enabled. . . . . . . . . . . . . No
  Autoconfiguration Enabled . . . : Yes
Tunnel adapter Teredo Tunneling Pseudo-Interface:
  Connection-specific DNS Suffix .:
  Description . . . . . . . . . : Teredo Tunneling Pseudo-Interface
  Physical Address. . . . . . . : 00-00-00-00-00-00-E0
  DHCP Enabled. . . . . . . . . . . . . No
  Autoconfiguration Enabled . . . . : Yes
  IPv6 Address. .
2001:0:5ef5:79fb:14b1:14de:3f57:feef(Preferred)
  Link-local
             IPv6 Address
fe80::14b1:14de:3f57:feef%14(Preferred)
  Default Gateway . . . . . . : ::
  NetBIOS over Tcpip. . . . . . : Disabled
```

Zmiana adresu IP.

> ipconfig

```
Windows IP Configuration
[...]
    IPv4 Address. . . . . . . . . : 192.168.1.14
    [...]
```

3. Zbadać tablicę routingu (w szczególności bramę domyślną) na własnym stanowisku korzystając np. z polecenia route.

route – służy do wyświetlania i modyfikacji wpisów w tabeli routingu

```
Interface List
13...9c 4e 36 8a 39 59 .....Microsoft Virtual WiFi Miniport Adapter #2
12...9c 4e 36 8a 39 59 .....Microsoft Virtual WiFi Miniport Adapter
```

```
11...9c 4e 36 8a 39 58 .....Intel(R) Centrino(R) Wireless-N 2200
 1.....Software Loopback Interface 1
15...00 00 00 00 00 00 00 e0 Microsoft ISATAP Adapter
14...00 00 00 00 00 00 00 e0 Teredo Tunneling Pseudo-Interface
______
IPv4 Route Table
______
Active Routes:
                Netmask
Network Destination
                              Gateway
                                         Interface Metric
      0.0.0.0
                  0.0.0.0 192.168.1.254
                                       192.168.1.16
     127.0.0.0
                255.0.0.0
                              On-link
                                          127.0.0.1
                                                    306
     127.0.0.1 255.255.255.255
                              On-link
                                          127.0.0.1
                                                   306
 127.255.255.255 255.255.255
                              On-link
                                          127.0.0.1
                                                   306
                              On-link
    192.168.1.0 255.255.255.0
                                        192.168.1.16
                                                   281
   192.168.1.16 255.255.255.255
                              On-link
                                        192.168.1.16
                                                    281
                                       192.168.1.16
  192.168.1.255 255.255.255
                                                    281
                              On-link
     224.0.0.0
                 240.0.0.0
                              On-link
                                          127.0.0.1
                                                   306
     224.0.0.0
                 240.0.0.0
                              On-link
                                       192.168.1.16
                                                   281
 255.255.255.255 255.255.255
                              On-link
                                        127.0.0.1
                                                   306
 255.255.255.255 255.255.255
                                       192.168.1.16
                                                   281
                              On-link
______
Persistent Routes:
 None
IPv6 Route Table
_____
Active Routes:
If Metric Network Destination Gateway
    58 ::/0
                         On-link
                        On-link
 1
    306 ::1/128
     58 2001::/32
14
                         On-link
    306 2001:0:5ef5:79fd:28fb:3c99:3f57:feef/128
                         On-link
    281 fe80::/64
11
                          On-link
    306 fe80::/64
14
                         On-link
    306 fe80::28fb:3c99:3f57:feef/128
14
                         On-link
    281 fe80::4d0d:ef49:ce6e:6dd7/128
11
                         On-link
 1
    306 ff00::/8
                          On-link
14
    306 ff00::/8
                          On-link
    281 ff00::/8
                         On-link
______
Persistent Routes:
 None
```

4. Zbadać nasłuchujące porty TCP i UDP oraz nawiązane połączenia TCP wykorzystując polecenie netstat. Utworzyć połączenie TCP (np. przeglądarką WWW, klientem poczty, telnet czy ssh) i wykazać jego obecność poleceniem netstat.

> netstat

```
Proto Local Address
                          Foreign Address
                                               State
      0.0.0.0:135
TCP
                          test1-PC:0
                                                LISTENING
      0.0.0.0:445
                          test1-PC:0
TCP
                                               LISTENING
TCP
     0.0.0.0:1025
                          test1-PC:0
                                               LISTENING
     0.0.0.0:1026
TCP
                          test1-PC:0
                                               LISTENING
TCP
     0.0.0.0:1027
                          test1-PC:0
                                               LISTENING
TCP
      0.0.0.0:1028
                          test1-PC:0
                                               LISTENING
     0.0.0.0:1029
0.0.0.0:7520
TCP
                          test1-PC:0
                                                LISTENING
TCP
                          test1-PC:0
                                               LISTENING
TCP
     192.168.1.16:139
                                               LISTENING
                          test1-PC:0
TCP
     [::]:135
                          test1-PC:0
                                               LISTENING
TCP
     [::]:445
                          test1-PC:0
                                               LISTENING
     [::]:1025
                          test1-PC:0
TCP
                                               LISTENING
                           test1-PC:0
      [::]:1026
TCP
                                               LISTENING
                          test1-PC:0
TCP
      [::]:1027
                                               LISTENING
                          test1-PC:0
                                               LISTENING
TCP
     [::]:1028
                                               LISTENING
TCP
     [::]:1029
                          test1-PC:0
TCP
     [::]:7520
                          test1-PC:0
                                               LISTENING
     0.0.0.0:68
                          * : *
UDP
     0.0.0.0:5355
                          *:*
UDP
      127.0.0.1:1900
                           *:*
UDP
     127.0.0.1:55350
                           *:*
UDP
UDP
     192.168.1.16:137
                           * • *
                           * • *
     192.168.1.16:138
UDP
UDP
     192.168.1.16:1900
                           * : *
UDP
     [::]:5355
                           *:*
UDP
      [::1]:1900
                           *:*
                           *:*
UDP
      [::1]:55349
UDP
      [fe80::4d0d:ef49:ce6e:6dd7%11]:546 *:*
UDP
     [fe80::4d0d:ef49:ce6e:6dd7%11]:1900 *:*
```

Uruchomiono program korzystający z sieci (steam.exe).

> netstat

```
Active Connections
 Proto Local Address
                            Foreign Address State
[...]
       192.168.1.16:139
 TCP
                             test1-PC:0
                                                  LISTENING
                                                TIME_WAIT
 TCP
        192.168.1.16:3441
                             208-64-202-69:http
        192.168.1.16:3446
                             fa-in-f138:http
 TCP
                                                 ESTABLISHED
 TCP
       [::]:135
                             test1-PC:0
                                                 LISTENING
 TCP
       [::]:445
                             test1-PC:0
                                                  LISTENING
```