TMA4140: Homework Set 2

Basic structures: Sets, Functions, Sequences

and Sums

RETTES

Henry S. Sjoen

September 14, 2018

Contents

1	Chapter 2.1 - Sets			
	1.1	Exercise 5	2	
		Exercise 24		
2	Cha	apter 2.2 - Set Operations	2	
	2.1	Exercise 18c	2	
	2.2	Exercise 18d		
		Exercise 46		
3	Chapter 2.3 - Functions			
	3.1	Exercise 12c	3	
		Exercise 38	3	
		Exercise 42	3	
4	Cha	apter 2.4 - Sequences and Summations	3	
	4.1	Exercise 12c	3	
		Exercise 33d		
5	Cha	apter 2.5 - Cardinality of Sets	4	
		Exercise 16	4	

1 Chapter 2.1 - Sets

1.1 Exercise 5

Determine whether each of these pairs are equal.

- a) $\{1, 3, 3, 3, 5, 5, 5, 5\}, \{5, 3, 1\} \Rightarrow True.$
- b) $\{\{1\}\}, \{1, \{1\}\} \Rightarrow False$.
- c) \emptyset , $\{\emptyset\} \Rightarrow False$

1.2 Exercise 24

Determine wether each of these sets is the power set of a set, where a and b are distinct elements.

- a) Ø
- b) $\{\emptyset, \{a\}\}$
- c) $\{\emptyset, \{a\}, \{\emptyset, a\}\}$
- d) $\{\emptyset, \{a\}, \{b\}, \{a, b\}\}$

2 Chapter 2.2 - Set Operations

2.1 Exercise 18c

Let A, B and C be sets. Show that: $A \cap B$ $\subseteq (A \cup B \cup C)$

$$A \cap B) \subseteq (A \cup B \cup C) \tag{1}$$

2.2 Exercise 18d

Let A, B and C be sets. Show that: $(A - B) - C \subseteq A - C$

$$(A-B)-C\subseteq A-C\tag{2}$$

2.3 Exercise 46

Show that if A, B, and C are sets, then: ¹

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C| \quad (3)$$

 $^{^{1}}$ This is a special case of the inclusion-exclusion principle, which will be studied in Chapter 8.

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |A \cap C| - |B \cap C| + |A \cap B \cap C|$$

$$|A \cup B \cup C| = |A \cup B \cup C|$$
(4)

3 Chapter 2.3 - Functions

3.1 Exercise 12c

Determine whether each of these functions from Z to Z is one-to-one.

$$f(n) = n^3 (5)$$

3.2 Exercise 38

Let f(x) = ax + b and g(x) = cx + d, where a,b,c, and d are constants. Determine necessary and sufficient conditions on the constants a,b,c, and d so that $f \cdot g = g \cdot f$.

3.3 Exercise 42

Let f be the function from R to R defined by $f(x) = x^2$. Find:

- a) $f^{-1}(\{1\})$
- b) $f^{-1}(\{x|0 < x < 1\})$
- c) $f^{-1}(\{x|x>4\})$

4 Chapter 2.4 - Sequences and Summations

4.1 Exercise 12c

Show that the sequence a_n is a solution of the recurrence relation $a_n = -3a_{n-1} + 4a_{n-2}$ if $a_n = (-4)^n$

$$a_n = -3a_{n-1} + 4a_{n-2} = (-4)^n (6)$$

4.2 Exercise 33d

Compute the double sum:

$$\sum_{i=0}^{2} \sum_{j=1}^{3} ij =$$

$$= something$$

$$= somethingelsebutstillthesame$$
(7)

5 Chapter 2.5 - Cardinality of Sets

5.1 Exercise 16

Exercise: Show that a subset of a countable set is also countable. Answer: A set is countable if it is finite or is the same size as N. To show that A is countable, it is sufficient to show that there is an injection from A to N.