Triple DES

•••

Group member: Mengshi Feng, Yiyi Chen, Tian Qiu, Siyi Cai

<u>Lab section: 5</u>

OVERMEN

What have we designed?

Our design is to implement 3DES algorithm (Data Encryption Standard algorithm) on FPGA.

Why would someone want to use your design?

We optimized the speed of current 3DES by pipelining data, which will decrease total number of rounds.

Why is this design appropriate for ASIC?

3DES algorithm is ideal for hardware, which use arithmetic and logic operations, 64-bit numbers (plaintext and keys). It is appropriate for ASIC design using system verilog, which allows concurrent statement and combinational logic. Parallel calculation will maximum the efficiency of the implementation.

Architecture diagram

Main feature:

Triple-DES encrypt and decrypt

Avalon bus communicate with FPGA Pipelining to improve speed

Design flow chart

The cipher is symmetric, so decryption uses the same keys with reversed order and the same algorithm as in encryption.

DES pipeline

External interface:

Results – Success Criteria Status and Results

1. Test benches exist for all top level components and the entire design. The test benches for the entire design can be

demonstrated or documented to cover all of the functional requirements given in the design specific success criteria. (2 pts)

2. Entire design synthesizes completely, without any inferred latches, timing arcs, and, sensitivity list warnings (4 pts)

Point	Incr	Path
des1/cnt1_8/rollover_flag_reg/CLK (DFFSR) des1/cnt1_8/rollover_flag_reg/Q (DFFSR)	0.00 0.60	0.00 r 0.60 f
des1/cnt1_8/rollover_flag (flex_counter_NUM_CNT_BIT	S4_5)	
	0.00	0.60 f
des1/rollover1 (DES block temp 2)	0.00	0.60 f
rollover1 (out)	0.00	0.60 f
data arrival time		0.60
(Path is unconstrained)		

Results – Success Criteria Status and Results

3. Source and mapped version of the complete design behave the same for all test cases. The mapped version simulates without timing errors except at time zero (2 pts)

Result - Success Criteria Status and Results

4. Acomplete IC layout is produced that passes all geometry and connectivity checks (2 pts)

FPGA

5. The entire design complies with targets for area, pin count, throughput (if applicable), and clock rate. The final targets for these parameters will be determined by course staff based on your design review. Failure to reach any of the targets will result a score of 1 out of 2 provided that you are within 50% on area, 10% on pin count, and 25% on throughput. Doing worse in any category will result in a score of 0. (2 pts)

FPGA

Evidence that our FPGA works

Evidence that our FPGA works

Data Log: 14

Hierarchy Display:

Evidence that our FPGA works

Evidence that our FPGA works

4. The result of PPGA shows that the design is capable to implement an Avalon bus protocol.(2 pts)

		. The result of 11 Grishows that the design is eapable to implement		
[<				
3	⁵ Value ³⁶	50 51 5	2 53	54
1]	61626364h	6162	3364h	
1]	65666768h	6566	3768h	
1]	0000001Bh	0000	01Bh	
31]	00000000h	00000000h	One clock	E55B2D88h
1]	00000000h	CSR_REGISTER 00000000h	cycle	2F3B399Fh
1]	00000000h	0000	0000h	
1]	00000000h	0000	0000h	
1]	00000000h	0000	0000h	
1]	00000000h	0000	0000h	
1]	00000002h	0000	0002h	
	1			
		37333638	36353732h	
		37333638	36353732h	
		37333638	36353732h	
	1			
	00000005h		007h	
	00000000h	OUTPUTOOF		0000001h
		DES BLOCK 61626364	55666768h	
0]		00000000000000h	E55B2D882F3B399Fh	000000000000000h
	n	4)

Results – Layout Quartus report

Slo	Slow 1200mV 85C Model Fmax Summary									
	Fmax	Restricted Fmax	Clock Name	Note						
1	59.1 MHz	59.1 MHz	altera_reserved_tck							
2	61.19 MHz	61.19 MHz	clock_50_1							
3	94.85 MHz	94.85 MHz	amm_master_inst pcie_ip pcie_internai.cycloneiv_hssi_pcie_hip coreclkout							

Flow Summary	
Flow Status	Successful - Sun May 1 16:35:00 2016
Quartus II 64-Bit Version	14.0.0 Build 200 06/17/2014 SJ Full Version
Revision Name	master_example
Top-level Entity Name	master_example
Family	Cyclone IV GX
Device	EP4CGX150DF31C7
Timing Models	Final
Total logic elements	36,303 / 149,760 (24 %)
Total combinational functions	19,478 / 149,760 (13 %)
Dedicated logic registers	27,765 / 149,760 (19 %)
Total registers	27883
Total pins	171 / 508 (34 %)
Total virtual pins	0
Total memory bits	1,706,728 / 6,635,520 (26 %)
Embedded Multiplier 9-bit elements	0 / 720 (0 %)
Total GXB Receiver Channel PCS	1/8(13%)
Total GXB Receiver Channel PMA	1/8(13%)
Total GXB Transmitter Channel PCS	1/8(13%)
Total GXB Transmitter Channel PMA	1/8(13%)
Total PLLs	2/8(25%)

Fitt	er Resource Usage Summary	
	Resource	Usage
1	Total logic elements	36,264 / 149,760 (24 %)
1	Combinational with no register	8498
2	Register only	16780
3	Combinational with a register	10986
2		
3	Logic element usage by number of LUT inputs	
1	4 input functions	12625
2	3 input functions	4630
3	<=2 input functions	2229
4	Register only	16780
4		
5	E Logic elements by mode	
1	normal mode	18097
2	arithmetic mode	1387
6		
7	□ Total registers*	27,884 / 152,165 (18 %)
1	Dedicated logic registers	27,766 / 149,760 (19 %)
2	I/O registers	118 / 2,405 (5 %)
8	-	
9	Total LABs: partially or completely used	3,090 / 9,360 (33 %)
10	- Virtual pins	0
11	⊟ I/O pins	171 / 508 (34 %)
1	Clock pins	2 / 10 (20 %)
	+ +	

Conclusion

- The most challenge part of our design is to get familiar with Quartus and using Signaltap to debug while doing FPGA part. It also takes a while to think out how Atom communicate with FPGA through software. For the hardware part, pipeline takes some time to debug.
- ☐ Utilize Avalon bus master controller and put all the input data in the SDRAM instead of CSR register, so that there's no input data size limit can process more data input.
- ☐ Have more complicated pipeline structure, send input data every four clock cycles, instead of eight.

Reference

[1] Understanding Static RAM Operation, Application notes by IBM, http://www.engr.uconn.edu/~omer.khan/courses/ece4401_f1 2/sramop.pdf

[2] Beuchat, R. (2011). Avalon Interconnect and SOPC Component. Chu/Embedded Embedded SoPC Design with Nios II Processor and VHDL Examples, 305-339.

http://page.math.tu-berlin.de/~kant/teaching/hess/krypto-ws2006/des.htm

http://tripledes.online-domain-tools.com/

Question?

3DES RTL

P-box1 Pe	rmutation	table				
57	49	41	33	25	17	9
1	58	50	42	34	26	18
10	2	59	51	43	35	27
19	11	3	60	52	44	36
63	55	47	39	31	23	15
7	62	54	46	38	30	22
14	6	61	53	45	37	29
21	13	5	28	20	12	4

P-box2 Pe	rmutation	table					
13	16	10	23	0	4	2	27
14	5	20	9	22	18	11	3
25	7	15	6	26	19	12	1
40	51	30	36	46	54	29	39
50	44	32	47	43	48	38	55
33	52	45	41	49	35	28	31

16 round subkey generator

Keys are 64-bit numbers & Every 8th bit is unused, So 8, 16, 24, 32, 40, 48, 56, 64 bit are ignored, and p_box1
Only permute the rest bits.

Iteration #	# of shifts
1	1
2	2
3	4
4	6
5	8
6	10
7	12
8	14
9	15
10	17
11	19
12	21
13	23
14	25
15	28
16	0

Single DES Iteration Round

Substitution Box (S-box)

S ₅			Middle 4 bits of input														
		0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
	00	0010	1100	0100	0001	0111	1010	1011	0110	1000	0101	0011	1111	1101	0000	1110	1001
Outer bits	01	1110	1011	0010	1100	0100	0111	1101	0001	0101	0000	1111	1010	0011	1001	1000	0110
Outer bits	10	0100	0010	0001	1011	1010	1101	0111	1000	1111	1001	1100	0101	0110	0011	0000	1110
	11	1011	1000	1100	0111	0001	1110	0010	1101	0110	1111	0000	1001	1010	0100	0101	0011

- Each S-box replaces a 6-bit input with a 4-bit output.
- Given a 6-bit input, the 4-bit output is found by selecting the row using the outer two bits, and the column using the inner four bits.

S ₁	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0yyyy1	0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
1yyyy0	4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
1yyyy1	15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13
S₂	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
0yyyy1	3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
1yyyy0	0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
1yyyy1	13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9
S ₃	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
0yyyy1	13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
1yyyy0	13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1yyyy1	1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12
S ₄	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	7	13	14	3	0	6	9	10	1	2	8	5	11	12	4	15
0yyyy1	13	8	11	5	6	15	0	3	4	7	2	12	1	10	14	9
1yyyy0	10	6	9	0	12	11	7	13	15	1	3	14	5	2	8	4
1yyyy1	3	15	0	6	10	1	13	8	9	4	5	11	12	7	2	14
S ₅	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	2	12	4	1	7	10	11	6	8	5	3	15	13	0	14	9
0yyyy1	14	11	2	12	4	7	13	1	5	0	15	10	3	9	8	6
1yyyy0	4	2	1	11	10	13	7	8	15	9	12	5	6	3	0	14
1yyyy1	11	8	12	7	1	14	2	13	6	15	0	9	10	4	5	3
S ₆	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	12	1	10	15	9	2	6	8	0	13	3	4	14	7	5	11
0yyyy1	10	15	4	2	7	12	9	5	6	1	13	14	0	11	3	8
1yyyy0	9	14	15	5	2	8	12	3	7	0	4	10	1	13	11	6
1yyyy1	4	3	2	12	9	5	15	10	11	14	1	7	6	0	8	13
S,	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x	x1100x	x1101x	x1110x	x1111x
0уууу0	4	11	2	14	15	0	8	13	3	12	9	7	5	10	6	1
0yyyy1	13	0	11	7	4	9	1	10	14	3	5	12	2	15	8	6
1yyyy0	1	4	11	13	12	3	7	14	10	15	6	8	0	5	9	2
1yyyy1	6	11	13	8	1	4	10	7	9	5	0	15	14	2	3	12
S.	x0000x	x0001x	x0010x	x0011x	x0100x	x0101x	x0110x	x0111x	x1000x	x1001x	x1010x	x1011x		x1101x	x1110x	x1111x
0уууу0	13	2	8	4	6	15	11	1	10	9	3	14	5	0	12	7
0yyyy1	1	15	13	8	10	3	7	4	12	5	6	11	0	14	9	2
1yyyy0	7	11	4	1	9	12	14	2	0	6	10	13	15	3	5	8

Substitution Box (S-box)

P box permutation

P-box perr	mutation						
15	15 6		20	28	11	27	16
0	14	22	25	4	17	30	9
1	7	23	13	31	26	2	8
18	18 12		5	21	10	3	24