Programovacia úloha č. 1

(25b)

Téma: Bézierova krivka

Ciel': Ciel'om prvej programovacej úlohy je:

- 1. implementovať vykresľovanie aproximácie Bézierovej krivky získanej prostredníctvom adaptívneho zjemnenia riadiacej lomenej čiary,
- 2. vytvoriť grafické používateľské rozhranie, ktoré bude slúžiť na zobrazenie spomínanej aproximácie a na manipuláciu s ňou.

Zadanie: Vytvorte aplikáciu, ktorá vizualizuje nasledovné typy kriviek:

- **5b Bézierova krivka zadaná riadiacimi vrcholmi** pre uniformovanú Bézierovu krivku $\mathbf{b}(t)$ stupňa n používateľ zadáva jej riadiace vrcholy $\mathbf{v}_0, ..., \mathbf{v}_n$ klikaním do plochy (napr. ľavým tlačidlom myši). Taktiež môže meniť ich pozíciu ťahaním myši a vybraný riadiaci vrchol odstrániť (napr. pravým tlačidlom myši). Výsledná krivka sa vykresľuje priebežne, po každej zmene riadiacej lomenej čiary. Taktiež je možné vymazať krivku a začať ju modelovať odznova.
- **5b Uzlová kubika** táto krivka je zadaná nasledujúcim predpisom:

$$\mathbf{u}(t): x(t) = a - bt^{2} + \frac{c_{w}}{2},$$

$$y(t) = t(a - bt^{2}) + \frac{c_{h}}{2}, \qquad t \in \mathcal{I},$$
(1)

kde hodnoty c_w a c_h určujú šírku, resp. výšku vykresľovacieho plátna. Parametre a,b je možné používateľom meniť a môžu nadobúdať hodnoty v intervale $\langle 0,200\rangle$. Takisto je možné meniť hodnotu parametra $s\in\langle 0,10\rangle$, ktorý určí definičný interval $\mathbf{u}(t)$ ako

$$\mathcal{I} = \langle -\frac{s}{2}, \frac{s}{2} \rangle. \tag{2}$$

Vašou úlohou je krivku $\mathbf{u}(t)$ reprezentovať ako Bézierovu krivku stupňa 3, t.j. určiť jej riadiace vrcholy. Výsledná krivka sa prekresľuje pri každej zmene niektorého z parametrov.

10b V oboch prípadoch vykresľujete krivku pomocou adpatívneho zjemnenia riadiacej lomenej čiary s parametrom $\varepsilon > 0$, ktorého hodnotu môže používateľ menit (minimálna nastaviteľ ná hodnota je 10).

Najprv pripomeňme, že Bézierovu krivku stupňa n možno v ľubovoľnom jej bode rozdeliť na dva segmenty a tieto reprezentovať ako samostatné krivky stupňa n. Na výpočet riadiacich vrcholov segmentov krivky sa používa de Casteljauov algoritmus. Ak zoberieme postupnosť prvých bodov a postupnosť posledných bodov z každého riadku algoritmu, tieto tvoria hľadané riadiace vrcholy. Konkrétne, nech $\mathbf{b}_i^k(t)$ sú body z de Casteljauovho algoritmu pre nejakú hodnotu parametra t. Potom postupnosti

$$\langle \mathbf{b}_0^k(t) \mid k = 0, \dots, n \rangle \text{ a } \langle \mathbf{b}_{n-k}^k(t) \mid k = n, \dots, 0 \rangle$$
(3)

predstavujú riadiace vrcholy segmentov krivky pre intervaly $\langle 0, t \rangle$ a $\langle t, 1 \rangle$. Oba segmenty sú definované opäť nad intervalom $\langle 0, 1 \rangle$.

<u>Poznámka</u>: Pri výpočte uvažujte hodnotu parametra $t = \frac{1}{2}$, ktorá zodpovedá rovnomernému prerozdeleniu krivky.

Pre vykreslenie krivky využijeme vlastnosť, že riadiaca lomená čiara "dobre" aproximuje prislúchajúcu Bézierovu krivku. Uvažujme teda lomenú čiaru s vrcholmi $\mathbf{w}_0, ..., \mathbf{w}_n$. Podrozdelenie príslušného segmentu vykonáme vtedy, ak

$$\|\mathbf{w}_{i+1} - \mathbf{w}_i\| \ge \varepsilon \tag{4}$$

pre aspoň jedno $i \in \{0, ..., n-1\}$. To znamená, že parameter ε určuje maximálnu prípustnú dĺžku úsečky v riadiacej lomenej čiare pre daný segment krivky.

Takýmto spôsobom našu krivku rozdelíme na niekoľko na seba nadväzujúcich segmentov, ktorých príslušné riadiace lomené čiary vykreslíme na plátno.

5b Ďalšou časťou úlohy je pre používateľom zvolený parameter t vykresliť bod krivky, vypočítaný de Casteljauovým algoritmom. Pre tento bod vizualizujte aj postup výpočtu – lomené čiary prislúchajúce jednotlivým riadkom de Casteljauovho algoritmu. Následne vykreslite dotykový a normálový vektor krivky v tomto bode. Veľkosť vykreslených vektorov nemusí zodpovedať analyticky vypočítaným vektorom – dĺžku môžete upraviť podľa potreby tak, aby sa vektory zmestili na obrazovku. Objekty vykresľujte pri všetkých vizualizačných prístupoch, ktoré ste implementovali.

Výstup:

Kód musí byť **dostatočne** komentovaný a **prehľadne** formátovaný. Nedostatočné komentáre a neprehľadné formátovanie môže byť penalizované stratou bodov.

Použitie výlučne externých knižníc je zakázané.

Vzorová aplikácia je dostupná na MS Teams.