คู่มือปฏิบัติการ ชุดสาธิตการทดลองพลังงานความร้อนใต้พิภพไฟฟ้า

รายการอุปกรณ์ชุดทดลอง

- 1. อุปกรณ์ผลิตไฟฟ้าจากแหล่งความร้อน
- 2. หน้าจอแสดงผล
- 3. ตู้ควบคุม
- 4. Emergency Switch
- 5. สวิตซ์ เปิด-ปิด เครื่อง
- 6. อุปกรณ์แปลงพลังงานความร้อนเป็นไฟฟ้า

<u>หน้าจอแสดงผลและควบคุม</u>

- 1. ปรับระดับความร้อน
- 2. แสดงผลอุณหภูมิความร้อนใต้พิภพ (องศาเซลเซียส)
- 3. ส่วนควบคุมการ เริ่ม หยุด และรีเซต
- 4. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 5. แสดงผลการจับเวลา
- 6. แสดงผลอุณหภูมิและความชื้น

Web application

- 1. ปุ่มปรับระดับความร้อน
- 2. ปุ่มกดเชื่อมต่อกับชุดแลปสาธิต เริ่ม หยุด และแสดงผลเวลา
- 3. แสดงผลอุณหภูมิ (องศาเซลเซียส) และความร้อน (เปอร์เซ็นต์)
- 4. แบบทดสอบ
- 5. แสดงผลอุณหภูมิและความชื้น
- 6. แสดงผลค่าทางไฟฟ้า

แรงดันไฟฟ้า (โวลต์)

กระแสไฟฟ้า (แอมป์)

กำลังไฟฟ้า (วัตต์)

พลังงานไฟฟ้า (วัตต์ - ชั่วโมง)

- 7. คู่มือปฏิบัติการ
- 8. คีย์แสดงผลการจับคู่
- 9. ข้อมูลโรงไฟฟ้าพลังงานแสงอาทิตย์

หลักการและทฤษฎี

หลักการทำงานพื้นฐานของระบบผลิตไฟฟ้าจากพลังงานความร้อนใต้พิภพ แบบ Organic Rankine Cycle คือ เมื่อนำของเหลวจากแหล่งความร้อนใต้พิภพ ซึ่งอาจจะเป็น น้ำร้อน ไอน้ำ หรือ ไอน้ำผสมน้ำร้อน ผ่านมาตามท่อส่ง และ เข้าไปในอุปกรณ์แลกเปลี่ยนความร้อน (Heat exchanger) เพื่อแลกเปลี่ยนความร้อน กับสารทำงานที่อยู่ในระบบปิด โดยสารทำงานที่อยู่ในระบบปิดจะเป็นลักษณะของสารทำงานทุติยภูมิ ซึ่งจะมี คุณสมบัติของจุดเดือดต่ำ เช่น แอมโมเนีย ฟรีออน เพนเทน หรือ บิวเทน สารทำงานเหล่านี้เมื่อได้รับพลังงาน ความร้อนจากน้ำร้อน จะระเหยกลายเป็นไอและถูกส่งไปขับให้กังหัน (Turbine) หมุน และไปหมุน เครื่องปั่น ไฟฟ้า (Generator) เพื่อผลิตไฟฟ้า สารทำงานที่ผ่านกังหันจะถูกระบายความร้อนออกที่ชุดคอนเดนเซอร์ (Condenser) และกลับไปยังอุปกรณ์และเปลี่ยนความร้อนเพื่อรับความร้อนอีกครั้งหนึ่ง ซึ่งการทำงานของ สารทำงานในระบบปิดจะเป็นวัฏจักรอยู่เช่นนี้ สำหรับน้ำร้อนที่ถ่ายเทความร้อนให้สารทำงานในอุปกรณ์ แลกเปลี่ยนความร้อนแล้ว จะถูกปล่อยไปยังใต้ดิน โดยได้แสดงแผนผังแสดงแนวคิดพื้นฐานของระบบสอง วงจร (Binary) แบบ ORC ในรูปที่ 1

รูปที่ 1 หลักการทำงานของระบบผลิตไฟฟ้าแบบสองวงจร (Binary)

ที่มา : ORC-Based Geothermal Power Generation and CO_2 -Based EGS for Combined Green Power Generation and CO_2 Sequestration

การประเมินศักยภาพพลังงานความร้อนใต้พิภพ จะใช้อุณหภูมิของน้ำพุร้อน และอัตราการไหล มาใช้ ในการประเมินศักยภาพการผลิตไฟฟ้า ดังนี้

ความร้อนที่ได้จากน้ำร้อน

ทำการประเมินจากสมการ

 $\dot{Q}=\dot{m}\, imes\,c_p\, imes\,\Delta T$ $\dot{Q}\,$ คือ ความร้อนที่ได้จากน้ำร้อน หน่วย กิโลวัตต์ โดยที่

 \dot{m} คือ อัตราการไหลน้ำร้อน หน่วย ลิตร/วินาที

 c_p คือ ค่าความจุความร้อนของน้ำ มีค่า 4.18 กิโลจูล/กิโลกรัม-เคลวิน

 ΔT คือ ผลต่างของอุณหภูมิน้ำก่อนเข้ากับน้ำออกจากระบบ หน่วย องศาเซลเซียส

กำลังการผลิตไฟฟ้า

ทำการประเมินจากสมการ

 $\dot{W} = (\frac{\eta}{100}) \times \dot{Q}$

โดยที่

 \dot{W} คือ กำลังการผลิตไฟฟ้า หน่วย กิโลวัตต์

 η คือ ประสิทธิภาพของระบบผลิตไฟฟ้า หน่วย เปอร์เซ็นต์

 $\dot{m{O}}$ คือ ความร้อนที่ได้จากน้ำร้อน หน่วย กิโลวัตต์

พลังงานไฟฟ้าที่ผลิตได้ใน 1 ปี

ทำการประเมินจากสมการ

 $E = \dot{W} \times d \times v$

โดยที่

E คือ พลังงานไฟฟ้าที่ผลิตได้ใน 1 ปี หน่วย กิโลวัตต์-ชั่วโมง/ปี

 \dot{W} คือ กำลังการผลิตไฟฟ้า หน่วย กิโลวัตต์

d คือ จำนวนชั่วโมงผลิตไฟฟ้าต่อวัน หน่วย ชั่วโมง/วัน

v คือ จำนวนวันผลิตไฟฟ้าต่อปี หน่วย วัน/ปี

ข้อดี-ข้อจำกัด ของการผลิตไฟฟ้าจากพลังงานความร้อนใต้พิภพ

ข้อดีและข้อจำกัดของการผลิตไฟฟ้าจากพลังงานความร้อนใต้พิภพ สามารถสรุปได้ดังตารางดังนี้

ข้อดี		ข้อจำกัด		
1.	เป็นแหล่งพลังงานที่ไม่มีวันหมด	1.	แหล่งพลังงานบางแหล่งอยู่ลึกเกินกว่าที่จะ	
2.	มีต้นทุนในการดำเนินงานการผลิตที่ต่ำกว่า		นำมาใช้ได้	
	เชื้อเพลิงชนิดอื่น	2.	แหล่งพลังงานบางแหล่งมีขนาดเล็กเกินกว่าที่	
3.	พลังงานสะอาดไม่ก่อให้เกิดการปล่อยก๊าซเรือน		จะนำมาใช้ประโยชน์ได้	
	กระจกสู่ชั้นบรรยากาศ	3.	พลังงานความร้อนใต้พิภพจะมีเฉพาะบางพื้นที่	
4.	ช่วยให้เกิดงานในชุมชน และมีพลังงานใช้ใน		เท่านั้น	
	แหล่งที่ห่างไกล	4.	ถ้าน้ำหล่อเย็นมีปริมาณไม่เพียงพอ หรือน้ำร้อน	
			ที่ระบายสู่แหล่งน้ำธรรมชาติ มีอุณหภูมิสูง	
			เกินไป อาจเป็นอันตรายต่อสัตว์น้ำและระบบ	
			นิเวศน์ท้องถิ่น	
		5.	บ่อน้ำร้อนบางแห่งอาจมีปริมาณไอน้ำน้อย	
			หรือไม่มีเลยในบางฤดู ชุมชนที่ต้องพึ่งไฟฟ้าอาจ	
			มีไฟฟ้าไม่พอใช้ได้	

ขั้นตอนการใช้งาน

- 1. เสียบปลั๊กแหล่งจ่ายไฟฟ้ากระแสสลับ 220 โวลต์ให้กับชุดแลปสาธิต
- 2. ดำเนินการเปิดเบรกเกอร์ตัดต่อไฟฟ้าไปอยู่ตำแหน่ง ON

- 3. บิดสวิชท์ไปยังตำแหน่ง ON ด้านขวา
- 4. เข้า Web application URL : https://encamppowerplant.com/lablite/geothermal/

และกดปุ่มเชื่อมต่อ กรณีมีการเชื่อมต่ออยู่จะมีหน้าต่างแจ้งเตือน

เมื่อเชื่อมต่อได้แล้วจะแสดงผลค่าต่าง ๆ และคีย์การเชื่อมต่อ

และสถานะการเชื่อมต่อที่หน้าจอแสดงผลที่ชุดแลปสาธิตขึ้นสถานะ connect

5. กดปุ่มควบคุม On line เพื่อให้ควบคุมการทำงานผ่าน web application

6. เริ่มการทดลองโดยกดปุ่มเริ่มการทำงาน เวลาการทำการทดลองจะเริ่มจับเวลา

7. เมื่อทำการทดลองเสร็จให้กดหยุด และกดยกเลิกการเชื่อมต่อ

วัตถุประสงค์

- 1. เพื่อศึกษาการทำงานของชุดผลิตกระแสไฟฟ้าโดยพลังงานความร้อนใต้พิภพผลิตไฟฟ้า
- 2. เพื่อศึกษาความสัมพันธ์ระหว่างอุณหภูมิ กับพลังงานไฟฟ้าที่สามารถผลิตได้

วิธีการทดลอง

- 1. ตั้งค่าอุณหภูมิของเครื่องควบคุมอุณหภูมิ
- 2. รอให้อุปกรณ์ผลิตไฟฟ้าจากแหล่งความร้อนทำงาน
- 3. บันทึกผลค่าอุณหภูมิแหล่งความร้อน ค่าแรงดันและกระแสไฟฟ้าที่ผลิตได้
- 4. ปรับเพิ่มอุณหภูมิอีก 3 ค่าและบันทึกผล
- 5. ปิดสวิทช์หยุดการทำงานของเครื่อง

ตารางบันทึกผลการทดลอง

ลำดับ	ระดับอุณหภูมิ	แรงดันไฟฟ้า	กระแสไฟฟ้าที่ได้	กำลังไฟฟ้าที่ผลิตได้
สาเตบ	(°C)	(V)	(A)	(W)

การวิเคราะห์ผลการทดลอง
สรุปผลการทดลอง