## Metodi matematici per l'informatica Corso del professore Carlucci https://sites.google.com/uniroma1.it/mmi2223/home

Lugini Andrea

February 3, 2023

## Contents

| 0.1 | Tecnic    | he di conteggio: Matematica combinatoria     |
|-----|-----------|----------------------------------------------|
|     | 0.1.1     | Principio Moltiplicativo                     |
|     | 0.1.2     | Disposizioni                                 |
|     | 0.1.3     | Combinazioni                                 |
|     | 0.1.4     | Proprietà del coefficiente binomiale         |
|     | 0.1.5     | Principio additivo                           |
|     | 0.1.6     | Insieme potenza                              |
|     | 0.1.7     | PIE: Principio di inclusione ed esclusione 6 |
|     | 0.1.8     | Metodo di riduzione                          |
| 0.2 | Funzio    | mi                                           |
|     | 0.2.1     | Definizione                                  |
|     | 0.2.2     | Immagine e pre-immagine                      |
|     | 0.2.3     | Definizione insiemistica                     |
|     | 0.2.4     | Funzioni a più argomenti                     |
|     | 0.2.5     | Iniettività, Suriettività e Biettività       |
|     | 0.2.6     | Proprietà insiemistiche delle funzioni 8     |
|     | 0.2.7     | Composizione di funzioni                     |
|     | 0.2.8     | Iniettività, Suriettività e Biettività       |
|     | 0.2.9     | Funzione inversa                             |
|     | 0.2.10    | Immagine inversa                             |
| 0.3 | Cardin    | nalità degli insiemi                         |
|     | 0.3.1     | Relazione                                    |
|     | 0.3.2     | Definizione insiemistica insieme N           |
|     | 0.3.3     | Teorema di Cantor-Bernstein-Schroder         |
|     | 0.3.4     | Teorema di Cantor                            |
|     | 0.3.5     | Insiemi infiniti numerabili                  |
|     | 0.3.6     | Insiemi infiniti non numerabili              |
|     | 0.3.7     | Cardinalità del continuo                     |
|     | 0.3.8     | Numeri transfiniti                           |
| 0.4 | Relazioni |                                              |
|     | 0.4.1     | Metodi di rappresentazione                   |
|     | 0.4.2     | Relazione inversa                            |
|     | 0.4.3     | Composizione di relazioni                    |
|     | 0.4.4     | Relazioni transitive                         |
|     | 0.4.5     | Relazione di equivalenza                     |

|     | 0.4.6  | Relazioni d'ordine                            | 17 |
|-----|--------|-----------------------------------------------|----|
| 0.5 | Induzi | one                                           | 21 |
|     | 0.5.1  | Principio di Induzione: versione insiemistica | 21 |
|     | 0.5.2  | Dimostrazione col Principio del Minimo Numero | 21 |
|     | 0.5.3  | Mettere in evidenza il caso base              | 21 |
|     | 0.5.4  | Principio di induzione forte                  | 21 |
| 0.6 | Logica | a proposizionale                              | 22 |
|     | 0.6.1  | Connettivi logici nell'algebra booleana       | 22 |
|     | 0.6.2  | Sottoformule                                  | 22 |
|     | 0.6.3  | Semantica della Logica proposizionale         | 22 |

# 0.1 Tecniche di conteggio: Matematica combinatoria

La matematica combinatoria è la branca della matematica che si occupa dei problemi di conteggio.

Ad esempio il problema del numero di targe automobilistiche disponibili al mondo ricade in questo ambito.

## 0.1.1 Principio Moltiplicativo

Se scelgo un primo oggetto fra  $m_1$ , un secondo oggetto tra  $m_2$ , ..., un t-esimo oggetto fra  $m_t$  oggetti ho  $m_1 \cdot m_2 \cdot ... \cdot m_t$  soluzioni.

## 0.1.2 Disposizioni

Le disposizioni sono sequenze nelle quali l'ordine conta.

Disposizioni con ripetizione di ordine k di n oggetti

$$D_{n,k}^{'}=n^{k}$$

Disposizioni semplici di ordine k di n oggetti

$$C.E. = 1 \le k \le n$$

$$D_{n,k} = \frac{n!}{(n-k)!}$$

Nel caso k = n, parliamo di permutazioni e abbiamo:  $P_n = n!$ .

#### Permutazioni con ripetizioni

Presi n elementi, che si **ripetono rispettivamente**  $k_1, ..., k_n$  volte, le possibili permutazioni sono:

$$P_n^{k_1,\dots,k_n} = \frac{n!}{k_1! \cdot \dots \cdot k_n!}$$

Permutazioni di n oggetti con q vincoli

$$\frac{P_n}{a!}$$

#### 0.1.3 Combinazioni

Le combinazioni sono sequenze nel quale l'ordine non conta

#### Combinazioni semplici

$$C_{n,k} = \frac{D_{n,k}}{P_k} = \binom{n}{k} = \frac{n!}{k! \cdot (n-k)!}$$

#### Combinazioni con ripetizione

Risolvono il problema della **scritture additive** e della distribuzione di k $\operatorname{oggetti}$ identici tra n $\operatorname{insiemi}$ 

 $C'_{n,k} = \binom{n+k-1}{k-1}$ 

## 0.1.4 Proprietà del coefficiente binomiale

$$\binom{n}{k} = \binom{n}{n-k}$$

Dimostrazione per **doppio conteggio**: con  $\binom{n}{k}$  scelgo k oggetti su n, lasciando fuori n-k oggetti. E' quindi equivalente scegliere gli n-k oggetti da lasciare fuori, ovvero  $\binom{n}{n-k}$ 

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Dimostrazione per **partizioni**: dato un insieme N di cardinalità n nel quale vogliamo scegliere k oggetti sappiamo che il numero di possibili soluzioni sono  $\binom{n}{k}$ . Se vogliamo inserire vincoli specifici di scelta, ovvero scegliere k oggetti, tra i quali un oggetto x, nell'insieme n, la totalità dei sottoinsiemi che contengono x è data dalla scelta fissa  $x \cdot$  le **combinazioni** dei restanti k-1 oggetti fra n-1 elementi, ovvero  $\binom{n-1}{k-1}$ . Se invece vogliamo vedere il problema al contrario, ovvero scegliere k oggetti, tra i quali **non vogliamo** x, dobbiamo scegliere k oggetti su n-1 elementi, quindi  $\binom{n-1}{k}$ . Per partizione abbiamo quindi che la totalità delle scelte è data dall'unione delle scelte che includono x e quelle che non includono x, insiemi **disgiunti**, è quindi è dimostrata la formula.

$$\binom{n}{m} \cdot \binom{m}{k} = \binom{n}{k} \cdot \binom{n-k}{m-k}$$

Dimostrazione per **doppio conteggio**: il primo termine a sinistra sveglie m oggetti su n elementi, e il secondo mi fa scegliere k oggetti fra gli m scelti prima. A destra scegliamo k oggetti su n, e poi scegliamo m-k oggetti sui restanti n-k.

Esempio:

Vogliamo fare una squadra di calcio con 3 portieri e 10 giocatori di movimento, scegliendo fra 30 bambini.

A sinistra scegliamo prima i 13 bambini che giocheranno a calcio e poi sceglieremo i 3 fra questi 13 che faranno i portieri.

A destra invece scegliamo prima i 3 portieri fra i 30 bambini, e poi sceglieremo i 10 giocatori di movimento fra i restanti 30 tolti i 3 portieri bambini.

## 0.1.5 Principio additivo

Il principio additivo ci permette di risolvere un problema di conteggio **sommando le numerosità** di n sottoinsiemi, detti **partizioni** dell'insieme da contare, se e solo se i sottoinsieme suddividono la collezione in gruppi **esclusivi ed esaustivi**. E' esprimibile come:

$$\begin{aligned} \forall i \in \{1,...,n\} : A_i \subseteq A \land \\ \forall i,j \in \{1,...,n\} \text{ con } i \neq j : A_i \cap A_j = \emptyset \land \\ \forall a \in A : \exists i \in \{1,...,n\} \text{ t.c. } a \in A_i \\ \Longrightarrow \#A = \Sigma_{i=1}^n \#A_i \end{aligned}$$

#### Metodo inverso

Il principio additivo ci permette di dimostrare il metodo inverso.

Infatti, preso un sottoinsieme A di T ed il suo complementare  $\overline{A}$  in T, definito come  $\forall x \in T$  t.c.  $x \notin A$ , per i quali valgono quindi le proprietà  $A \cup \overline{A} = T$  e  $A \cap \overline{A} = \emptyset$ , è dimostrato quindi il principio additivo, che ci permette di calcolare #T come  $\#A + \#\overline{A}$ , che implica

$$\#A = \#T - \#\overline{A}$$

.

## 0.1.6 Insieme potenza

$$\begin{split} P(A) &= \{S|S \subseteq A\} \\ \#P(A) &= \Sigma_{k=0}^{\#A} \binom{\#A}{k} = 2 \cdot \Sigma_{k=0}^{\#A/2} \binom{\#A}{k} \end{split}$$

Dimostriamo ora per **buona traduzione** che  $\#P(A) = 2^{\#A}$ :

prendiamo due linguaggi,  $L_1$ , che rappresenta tutti  $S \in P(A)$ , ed  $L_2$ , che rappresenta tutte le possibili **stringhe binarie** di lunghezza = #A; se costruiamo queste stringhe ponendo in posizione i 1 se  $e \in S$  e 0 in caso contrario, possiamo notare che, poichè ogni  $S \in P(A)$  è distinto, anche le corrispondenti stringhe saranno distinte.

Quindi, #P(A) = #stringhe binarie con l = #A, ed è banale contare quante stringhe sono presenti in  $L_2$ : 2 possibili valori, 0 ed 1, per #A posizioni, ovvero  $2^{\#A}$ , esattamente quello che volevamo dimostrare.

Possiamo inoltre notare che  $\binom{n}{k}$  = #stringhe binarie con l = #A con esattamente k "1".

## 0.1.7 PIE: Principio di inclusione ed esclusione

L'insieme Q dato da tutti gli elementi distinti degli insiemi A e B è esprimibile come  $(A \cup B) \cap \overline{A \cap B}$ .

Quindi:

$$\#(A \cup B) = \#A + \#B - \#(A \cap B)$$

Più genericamente,

$$\# (A \cup B \cup ... \cup Z) =$$

$$\# A + \# B + ... + \# Z$$

$$-\# (A \cap B) - \# (A \cap Z) - (B \cap Z) - ...$$

$$+\# (A \cap B \cap Z) + ...$$

## 0.1.8 Metodo di riduzione

Il metodo di riduzione consiste nel trasformare un problema in un problema più semplice.

## 0.2 Funzioni

$$f: I \longrightarrow O$$

#### 0.2.1 Definizione

Una funzione è una legge che, preso l'insieme di partenza I detto dominio, e l'insieme di arrivo O detto codominio,  $\exists ! y \text{ t.c. } y = f(x)$ .

## 0.2.2 Immagine e pre-immagine

 $y \in O$  t.c.  $y = f(x \in I)$  è detta immagine di x via f.  $x \in I$  t.c.  $y \in O = f(x)$  è detta pre-immagine di y via f

## 0.2.3 Definizione insiemistica

Presi  $I \in O, f: I \longrightarrow O \subseteq (I \cdot O)$  t.c.  $\forall x \in I \exists ! y \in O$  t.c.  $(x, y) \in f$ 

## 0.2.4 Funzioni a più argomenti

Una funzione a più argomenti può essere vista come una funzione che ha

$$I = I_1 \cdot I_2 \cdot \dots$$

ed e quindi formata da **n-tuple ordinate**.

La notazione usata in questo caso è:

$$f: I^n \longrightarrow O$$

#### 0.2.5 Iniettività, Suriettività e Biettività

Iniettiva:  $\forall x, y \text{ t.c. } x \neq y \Longrightarrow f(x) \neq f(y)$ Suriettiva:  $\forall y \in O \exists x \in I \text{ t.c. } y = f(x)$ 

Biettiva: Iniettiva  $\wedge$  suriettiva.

#### Proprietà dell'iniettiva

$$f: X \longrightarrow Y, f$$
 iniettiva  $\Longrightarrow \exists g: Y \longrightarrow X$  t.c.  $(g \circ f)(x) = x$ 

La dimostrazione è alquanto semplice.

Se  $y \in f(X) \Longrightarrow \exists ! x \in X \text{ t.c. } f(x) = y \text{ in quanto } f \text{ iniettiva.}$ 

Se invece  $y \notin f(X)$  allora non ci interessa il comportamento di g(y).

#### Implicazione dell'esistenza di g

$$\exists g: Y \longrightarrow X (g \circ f)(x) = x \Longrightarrow f \text{ iniettiva}$$

. Procediamo per assurdo, ipotizzando che f non sia iniettiva.

Allora esisterebbero due valori  $x_0, x_1 \in X, x_0 \neq x_1$  t.c.  $f(x_0) = f(x_1)$ . Sappiamo inoltre che  $(g \circ f)(x_0) = x_0$  e  $(g \circ f)(x_1) = x_1$ . In quanto g l'inversa di f e  $f(x_0) = f(x_1)$  allora

$$(g \circ f)(x_0) = (g \circ f)(x_1) \Longrightarrow x_0 = x_1$$

Situazione impossibile per ipotesi.

#### Corollario

$$f$$
 iniettiva  $\iff \exists g \text{ t.c. } (g \circ f)(x) = x$ 

#### Proprietà della suriettività

$$f: X \longrightarrow Y, f$$
 suriettiva  $\Longrightarrow \exists g: Y \longrightarrow X$  t.c.  $(f \circ g)(y) = y$ 

Anche qui la dimostrazione è alquanto banale.

Infatti, prendendo un qualunque  $y \in Y$  basta prendere x t.c. f(x) = y, la cui esistenza è garantita dalla suriettività di f.

Potrebbero esserci diverse  $x \in X$  che soddisfano questa relazione, ma non è importanti quali scegliamo.

#### Implicazione dell'esistenza di q

$$\exists g: Y \longrightarrow X \text{ t.c. } (f \circ g)(y) = y \Longrightarrow f \text{ suriettiva}$$

Procediamo per assurdo, ipotizzando che f<br/> non sia suriettiva. Questo implica che  $\exists y \in Y$  t.c.  $\nexists x \in X$  t.c. y = f(x). Però per ipotesi  $f(g(y)) = y \Longrightarrow \exists x \in X$  t.c. y = f(x), in contraddizione con quanto definito prima.

#### Corollario

$$f$$
 suriettiva  $\iff \exists g \text{ t.c. } (f \circ g)(x) = x$ 

## 0.2.6 Proprietà insiemistiche delle funzioni

Presi  $A, B \subseteq I$ :

$$f$$
 iniettiva  $\Longrightarrow f(A \cap B) = f(A) \cap f(B)$ 

$$f(A \cup B) = f(A) \cup f(B)$$

## 0.2.7 Composizione di funzioni

Prese  $f: X \longrightarrow Y$  e  $g: Y \longrightarrow Z$ ,  $g \circ f = h: X \longrightarrow Z$  definita come h(x) = g(f(x))

La composizione di funzione non è commutativa ma è associativa

## 0.2.8 Iniettività, Suriettività e Biettività

La composizione di 2 funzioni iniettive/suriettive/biettive è iniettiva/suriettiva/biettiva.

#### 0.2.9 Funzione inversa

La funzione inversa  $f^{-1}$  è quella funzione per il quale vale:

$$x = I\left(x\right) = \begin{cases} \left(f^{-1} \circ f\right)\left(x\right) \\ \left(f \circ f^{-1}\right)\left(x\right) \end{cases}$$
$$f: X \longrightarrow Y$$
$$f^{-1}: Y \longrightarrow X$$

Per i corollari definiti nella sezione su iniettiva e suriettiva, la prima condizione implica che f sia iniettiva, mentre la seconda implica che f sia suriettiva. E di conseguenza implicato che

$$\exists f^{-1} \iff f \text{ biettiva}$$

#### 0.2.10 Immagine inversa

$$f: X \longrightarrow Y, \ A \subseteq Y \Longrightarrow$$
 
$$\exists f^{-1}: Y \longrightarrow \mathcal{P}(X) \ \text{ t.c. } \forall a \in A \ f(a) = \{x \in X: f(x) = a\}$$

La pre-immagine non implica l'esistenza della funzione inversa.

Basti pensare ad una funzione f non iniettiva. Possiamo comunque definire le pre-immagini degli elementi del suo dominio, ma non una funzione inversa in quanto f non è biettiva.

## 0.3 Cardinalità degli insiemi

#### 0.3.1 Relazione

Presi due insiemi finiti A, B, se  $\exists f$ :

- iniettiva  $\Longrightarrow \#A \leq \#B$
- suriezione  $\Longrightarrow \#A \ge \#B$
- biezione  $\Longrightarrow \#A = \#B$

Nell'ultimo caso si parla di **equicardinalità**, proprietà **riflessiva**, **simmetrica**, **transitiva** 

#### 0.3.2 Definizione insiemistica insieme N

Metodo usato da Peano per definire N:

- 0: classe degli insiemi in biezione con  $A = \emptyset$
- 1: classe degli insiemi in biezione con  $A = \{\emptyset\}$
- 2: Classe degli insiemi in biezione con  $A = \{\emptyset, \{\emptyset\}\}$
- ...: ...

#### 0.3.3 Teorema di Cantor-Bernstein-Schroder

$$\exists f$$
iniettiva  $A \longrightarrow B \land \exists g$ iniettiva  $B \longrightarrow A \Longrightarrow \#A = \#B$ 

#### Dimostrazione

La dimostrazione a parole è abbastanza semplice, in quanto l'iniettività da A a B implica che  $\#B \geq \#A$ , e l'iniettività da B ad A implica che  $\#A \geq \#B$ , e di conseguenza #A = #B

#### Corollario I

$$\#A \leq \#B \iff \exists \text{ iniezione } f:A \longrightarrow B$$

#### Corollario II

$$\#A < \#B \iff \exists \text{ iniezione } f: A \longrightarrow B \land \nexists \text{ iniezione } g: B \longrightarrow A$$

#### 0.3.4 Teorema di Cantor

$$\#A < \#\mathcal{P}(A)$$

#### Dimostrazione

Ipotizziamo che esista una suriezione  $f:A\to\mathcal{P}(A)$ , quindi deve esistere un  $x \in A$  t.c. f(x) = B, con

$$B = \{ \forall a \in A \text{ t.c. } a \notin f(a) \}$$

Per tale costruzione, possiamo dire che  $x \in B \vee x \not\in B$ Ora abbiamo 2 situazioni:

- $x \in B \Longrightarrow x \in f(x) \Longrightarrow x \notin B \Longrightarrow$  contraddizione
- $x \notin B \Longrightarrow x \notin f(x) \Longrightarrow x \in B \Longrightarrow$  contraddizione

fnon può essere quindi suriettiva, di conseguenza  $\#\mathcal{P}\left(A\right)>\#A.$ 

#### Insiemi infiniti numerabili 0.3.5

Un insieme infinito numerabile è un insieme in biezione con N Alcuni esempi di insiemi infiniti numerabili sono l'insieme  $\mathbf{Q}$ , l'insieme  $\forall n \geq 1$  $0, N^n$ .

#### Dimostrazione della numerabilità di Z

Definiamo  $f: N \longrightarrow Z$  biettiva, dove R è la funzione resto.

$$f\left(n\right) = \left[ \lfloor \frac{n}{2} \rfloor + \frac{1 - \left(-1\right)^{n}}{2} \right] \cdot \left(-1\right)^{n+1}$$

Possiamo facilmente vedere che Z è:

- iniettiva: ad ogni valore  $n \in \mathbb{N}$  viene associato un valore in Z
- suriettiva: rimossi gli elementi 0, ad ogni coppia n, n+1 con n=2x sono associati  $\lceil \frac{n}{2} \rceil, -\frac{n}{2}$ .

Dimostrazione della numerabilità di  $N\cdot N$ 

- $\begin{array}{ccccc} (1,3) & (2,3) & (3,3) & \dots \\ (1,2) & (2,2) & (3,2) & \dots \\ (1,1) & (2,1) & (3,1) & \dots \end{array}$

Ora percorriamo la matrice ottenuta nel seguente modo:

- Prima diagonale: (1,1)
- Seconda diagonale: (1, 2), (2, 2)
- ... diagonale: ....

Possiamo notare come ogni elemento venga iterato una ed una sola volta. Un alto modo per dimostrare che esiste una relazione biettiva è

$$f(h,m) = h_0 m_0 h_1 m_1 \dots$$

Questa relazione associa ad ogni coppia (h,m) un numero  $x \in \{n > 10, \forall n \in N\}$ . Ma poichè possiamo facilmente dimostrare che  $\{n > 10, \forall n \in N\}$  è un insieme infinito numerabile, ne deduciamo che lo è anche  $N \cdot N$ .

Questa dimostrazione può essere estesa per ogni  $N^n, \forall n > 1 \in N$ .

#### Proprietà

Presi A insieme numerabile, B insieme finito o numerabile,  $A \cup B$  è sempre numerabile.

Ogni sottoinsieme di un insieme numerabile è a sua volta numerabile.

#### 0.3.6 Insiemi infiniti non numerabili

#### Sequenze binarie infinite

Prendiamo l'insieme SBI, fatto da sequenze di 0 ed 1 infinite, e ipotizziamo che sia enumerabile. Prendiamo ora una qualuque diagonale che contiene un carattere di ognuna di queste stringhe, e ora invertiamo gli 1 con gli 0.

Ci accorgiamo che è una stringa dove il bit in posizione k è "flippato" rispetto al bit in posizione k della stringa k. Di conseguenza è una stringa che ha almeno un carattere diverso da ogni altra stringa, e che quindi non fa parte delle stringhe "contate".

L'insieme è quindi non enumerabile.

#### Argomento diagonale di Cantor

La dimostrazione usata per le SBI è detta **argomento diagonale di Cantor**, che il matematico usò per dimostrare che l'insieme dei numeri  ${\bf I}$  non è enumerabile (a rendere questo insieme non enumerabile sono in realtà gli irrazionali trascendentali, in quanto gli irrazionali algebrici sono per definizione in biezione con  ${\bf N}$ )

#### 0.3.7 Cardinalità del continuo

Un insieme ha cardinalità del continuo se è in biezione con R.

#### Insieme potenza

Per il principio della buona traduzione, sappiamo che preso un insieme A con #A=n esiste una relazione di biezione tra i sottoinsiemi di A e le stringhe binarie di lunghezza n.

Questo è applicabile per qualsiasi sottoinsieme di  $\mathbf{N}$ , che può essere anche infinito, che viene associato ad una stringa detta **sequenza caratteristica**. Di conseguenza abbiamo che

$$\forall S \subseteq \mathbf{N} \ \exists !SB(S) \Longleftrightarrow \#SBI = \#\mathcal{P}(N)$$

dove  $\mathcal{P}$  è l'insieme potenza (l'insieme di tutti i sottoinsiemi)

$$\Longrightarrow \exists h$$
biettiva  $A \longrightarrow B$ 

#### Insiemi equicardinali di R

$$\#\mathbf{R} = \#\mathcal{P}(N) = \#SBI$$

Dimostriamolo:

poichè sappiamo che  $\#\mathbf{R} = \#[0,1) \Longrightarrow (\#\mathcal{P}(N) = \#[0,1) \Longrightarrow \#\mathcal{P}(N) = \#\mathbf{R})$ . Definiamo ora due iniezioni fra [0,1) e  $\mathcal{P}(N)$ . La prima, f, è definita così: prendiamo la forma decimale espansa di  $r \in [0,1)$ , e costruiamo il sottinsieme  $S \in \mathcal{P}(N)$  come

$$r = 0.d_1d_2d_3... \rightarrow S = \{10 \cdot d_1, 10^2 \cdot d_2, 10^3 \cdot d_3, ...\}$$

.

Possiamo facilmente definire l'iniezione g che funziona al contrario: preso il sottoinsieme  $S \in \mathcal{P}(N)$ , definiamo

$$S = \{d_1, d_2, d_3, ...\} \rightarrow r = 0.d_1d_2d_3...$$

Per il teorema di CBS  $\#\mathbf{R} = \#\mathcal{P}(N)$ 

## 0.3.8 Numeri transfiniti

Sono numeri usati per indicare la **cardinalità di un insieme infinito**, e non condividono le proprietà degli altri numeri.

- $\aleph_0 = \# \mathbf{N}$
- $\aleph_1 = \# \mathcal{P}(N)$
- ...

## 0.4 Relazioni

Presi due insiemi A,B, una relazione R fra A,B è un sottoinsieme  $S\subseteq A\cdot B.$  Osserviamo che:

- Può  $\exists a \in A \text{ t.c. } \#R(a) \in [0, +\infty).$  Questa proprietà esprime la differenza fra relazione e funzione.
- Può esistere R = (A, A), detta relazione binaria
- Ogni R può essere visto come una relazione su un solo insieme. Infatti  $R(A,B) \Longrightarrow R(A \cup B)$

## 0.4.1 Metodi di rappresentazione

#### Grafi diretti

Rappresetazione che collega tramite archi gli elementi  $a \in A$  agli elementi  $b \in B \iff (a,b) \in R(A,B)$ 

Nel caso si tratti di una relazione su un solo insieme possiamo rappresentare una sola volta gli elementi di A e collegare gli elementi  $a_0, a_1 \in A \iff (a_0, a_1) \in R(A)$ 

$$R = \{(a, b) \mid a \in A, b \in B\}$$



Figure 1: Dx: Bigrafo, Sx: Digrafo

#### Matrice binaria

Definiamo una matrice  ${\cal M}_R$  dove

$$M_{i,j} = \begin{cases} 1 & (a_i, b_j) \in R(A, B) \\ 0 & (a_i, b_j) \notin R(A, B) \end{cases}$$

#### 0.4.2 Relazione inversa

Data una relazione, esiste sempre l'inversa

$$R^{-1} = \{(b, a) \, \forall \, (a, b) \in R\}$$

Quando  $R^{-1} = R$  si parla di **relazione simmetrica**.

$$R(A, B)$$
 simmetrica  $\iff$   $(a, b) = (b, a)$ 

#### Corrispondenza con la trasposizione

Questa operazione corrisponde con la trasposizione della matrice  $M_R$ 

$$M_{R^{-1}} = M_R^T$$

Possiamo inoltre facilmente dedurre che

$$R \text{ simmetrica } \iff M_{R^{-1}} = M_R$$

#### 0.4.3 Composizione di relazioni

$$R \subseteq A \cdot B, S \subseteq B \cdot C \Longrightarrow R \circ S = (a, c) \Longleftrightarrow \exists (a, b) \land \exists (b, c)$$

Nei casi di  $R \circ R$  parliamo di **iterazione** 

#### Composizione di relazioni come prodotto fra matrici

$$M_{R,S} = M_R \cdot M_S$$

Dove si usano la somma ed il prodotto booleano

#### Associatività

$$R \circ (S \circ D) = (R \circ S) \circ D$$

In quanto la moltiplicazione fra matrici è associativa, possiamo dedurre che lo è anche la composizione di relazioni in quanto operazioni equivalenti

#### Commutatività

$$R \circ S \circ D \neq R \circ D \circ S$$

Come prima, possiamo dedurlo dal fatto che il prodotto fra matrici non è commutativo

## 0.4.4 Relazioni transitive

$$R \subseteq A \cdot A$$
 transitiva  $\iff$ 

$$(\forall a, b, c \in A, aRb \land bRc \Longrightarrow aRc)$$

#### Chiusura transitiva

E' detta chiusura transitiva di R la più piccola relazione transitiva  $R^T$  tale che:

$$R \subseteq R^T \wedge R^T$$
 transitiva  $\wedge R \subseteq S$ , (S transitiva  $\Longrightarrow R^T \subseteq S$ )

#### Cammino

$$R \subseteq A \cdot A, \exists x_0, x_1, \dots \text{ t.c. } aRx_0Rx_1R...Rb$$
  
 $\iff \exists \text{ cammino } a \to b \text{ di lunghezza } l \ge 1$ 

## 0.4.5 Relazione di equivalenza

- Riflessiva:  $\forall a \in A \,\exists aRa$
- Simmetrica:  $\forall a, b \in A, aRb \Longrightarrow bRa$
- Transitiva:  $\forall a, b, c \in A, aRb \land bRc \Longrightarrow aRc$

#### Classi di equivalenza

Preso  $a \in A$ , possiamo definire l'insieme

$$[a]_R = \{b \in A \mid aRb\}$$

- . Questo insieme è detto classe di equivalenza Possiamo inoltre dire che:
  - per la riflessività,  $\forall a \in A [a]_R \neq \emptyset$
  - per la simmetria e la transitività,  $\forall a,b \in A \, [a]_R \cap [b]_R = \emptyset \vee [a]_R = [b]_R$

#### Partizioni

Una partizione di un insieme A è la famiglia  $\{C_i \mid i \in I\}$  tali che

- $C_i \subseteq A$
- $C_i \neq \emptyset$
- $\forall a \in A \exists i \in I \text{ t.c. } a \in C_i$
- $\forall i, j \in I, i \neq j \Longrightarrow C_i \cap C_j = \emptyset$
- $\bigcup_{i \in I} C_i = A$

Possiamo quindi dire che

 $\{C_i \mid i \in I\}$  partizione  $A, R(A), (aRb \iff \exists i \in I \text{ t.c. } a, b \in C_i) \implies R(A)$  relazione di equivalenza

#### 0.4.6 Relazioni d'ordine

Relazione binaria che gode di alcune proprietà della relazione  $\leq$  (N)

#### Relazione d'ordine totale

- Riflessiva:  $\forall a \in A \,\exists aRa$
- Anti-simmetrica:  $\forall a, b \in A, aRb \land bRa \Longrightarrow a = b$
- Transitiva:  $\forall a, b, c \in A, aRb \land bRc \Longrightarrow aRc$
- Totale:  $\forall a,b \in A, a \leq b \lor b \leq a$ . Se questa proprietà non sussiste si parla di **ordine parziale**

 $\emptyset$  e una qualunque  $R(\emptyset)$  sono relazioni d'ordine.

#### Cicli

$$\forall R(A)$$
 ordine  $\implies$  lunghezza massimo ciclo = 1

#### Dimostrazione

Ipotizziamo per assurdo che esista un ciclo di lunghezza > 1, ovvero tale che

$$a_1Ra_2R...Ra_1$$
, t.c.  $\forall i, j \ i \neq j \Longrightarrow a_i \neq a_j$ 

Per transitività ripetuta abbiamo che  $a_1Ra_i$ , ma anche che  $a_iRa_1, \forall i \neq 1$ . Per antisimmetria ciò implica che  $a_i = a_1$ , ovvero che tutti gli elementi del ciclo sono lo stesso elemento. Ne consegue che il ciclo si può ridurre a  $a_1Ra_1$ , di lunghezza 1.

#### Minimo e massimo di un ordine

$$a \in A$$
 t.c.  $\forall b \in A \exists aRb/bRa \Longrightarrow a$ è minimo/massimo di  $R(A)$ 

Non è garantita l'esistenza di questi elementi.

#### Minimali e massimale di un ordine

E' detto **minimale**  $a \in R(A)$  t.c.  $\forall b \in A, b \neq a, \nexists bRa$ . Analogamente, è detto **massimale**  $a \in R(A)$  t.c.  $\forall b \in A, b \neq a, \nexists aRb$ Inoltre,  $\forall R(A), A$  finito  $\exists a \in A$  minimale  $\land \exists b \in A$  massimale

#### Dimostrazione

Prendiamo il percorso P più lungo  $a_1Ra_2R...Ra_n$ , dove  $a_1$  minimale. Se  $\exists a \in A, a \notin P$ , non può valere  $aRa_1$ , in quanto esisterebbe il percorso  $aRa_1Ra_2R...Ra_n$ , di lunghezza maggiore di P, impossibile per ipotesi. Se invece  $\exists a \in A, a \in P$  ne consegue che esiste un ciclo in P, impossibile in quanto siamo in un ordine parziale.

Ne segue che  $a_1$  è il minimale di  $R\left(A\right)$ 

#### Immersioni tra ordini

Tutti gli ordini sono inclusioni insiemistiche, ovvero:

$$\overset{\leq}{=} (X) \text{ ordine parziale }, \overset{*}{=} (X^*) \text{ ordine parziale } \\ \Longrightarrow \exists f: X \to X^* \text{ iniettiva t.c. } (x \leq y \Longleftrightarrow f(x) \leq^* f(y))$$

#### Immersione nell'insieme potenza

$$\exists \leq (X) \Longrightarrow \exists \text{ immersione } \subseteq (\mathcal{P}(X))$$

#### Dimostrazione

Definiamo

$$f: X \to \mathcal{P}(X), f(x) = \{z \in X \mid z \le x\}$$

Verifichiamo l'iniettività per assurdo:

$$\forall x, y \in X, y \neq x, f(x) = f(y), x \leq x, y \leq y$$
 
$$\Longrightarrow x \in f(x) \land y \in f(y) \Longrightarrow x \in f(y) \land y \in f(x)$$
 
$$\Longrightarrow x \leq y \land y \leq x \Longrightarrow y = x \text{ per anti-simmetria}$$
 
$$\Longrightarrow \text{ contraddizione}$$

Verifichiamo che  $x \leq y \Longrightarrow f(x) \subseteq f(y)$ :

$$\begin{aligned} x &= y \Longrightarrow f\left(x\right) = f\left(y\right) \Longrightarrow f\left(x\right) \subseteq f\left(y\right) \\ x &< y \Longrightarrow x \in f\left(y\right), y \not \in f\left(x\right) \\ \text{Inoltre, per transitività } \forall z \in f\left(x\right), z \leq x < y \Longrightarrow z < y \Longrightarrow z \in f\left(y\right) \\ \Longrightarrow \forall z \in f\left(x\right), z \in f\left(y\right) \land x \in f\left(y\right) \land y \not \in f\left(x\right) \\ \Longrightarrow f\left(x\right) \subset f\left(y\right) \end{aligned}$$

Verifichiamo anche l'implicazione opposta:

$$x \in f(x), f(x) \subseteq f(y) \Longrightarrow x \in f(y) \Longrightarrow x \le y$$

#### Estensioni totali di ordini parziali

$$A = \{a_1, ..., a_n\}, R(A) \text{ ordine parziale } \Longrightarrow \exists R^*(A) \text{ ordine totale t.c. } R \subseteq R^*$$

$$\forall a, b \in A, R(A) \text{ ordine parziale, } \nexists aRb$$

$$\Longrightarrow \exists R'(A) \supseteq R \text{ t.c. } \exists aR'b$$

#### Dimostrazione per casi

$$(a,b) \in A \times A, X = \{x \in A \mid xRa\}(x \le a), Y = \{y \in A \mid bRx\}(x \ge b)$$
  
 $R' = R \cup (X \times Y)$   
 $\nexists aRb \Longrightarrow \nexists x \in X \text{ t.c. } xRa \land bRx \Longrightarrow X \cap Y = \emptyset$ 

R riflessiva  $\Longrightarrow R^{'}$  riflessiva

Dimostriamo l'antisimmetria:

Ipotizziamo 
$$\forall x \in X, y \in Y \exists x R' y \land \exists y R' x$$
  
 $\Longrightarrow (xRy \lor (x,y) \in X \times Y) \land (yRx \lor (y,x) \in X \times Y)$   
Ne consegue per casi:  
 $(x,y), (y,x) \Longrightarrow x \in X \cap Y \Longrightarrow \text{ impossibile}$   
 $(x,y), yRx \Longrightarrow xRa \Longrightarrow yRa \Longrightarrow y \in X \Longrightarrow y \in X \cap Y \Longrightarrow \text{ impossibile}$   
 $xRy, (y,x) \Longrightarrow bRx \Longrightarrow bRy \Longrightarrow y \in Y \Longrightarrow y \in X \cap Y \Longrightarrow \text{ impossibile}$   
 $xRy, yRx \Longrightarrow y = x \text{ per antisimmetria}$ 

Dimostriamo la transitività:

```
Ipotizziamo \forall x,y,z\in X, \exists xR'y\wedge\exists yR'z \Longrightarrow (xRy\vee(x,y)\in X\times Y)\wedge(yRz\vee(y,z)\in X\times Y) Ne consegue per casi: (x,y),(y,z)\Longrightarrow y\in X\wedge y\in Y\Longrightarrow y\in X\cap Y\Longleftrightarrow \text{ impossibile} (x,y),yRz\Longrightarrow y\in Y\Longrightarrow bRy\Longrightarrow bRz\Longrightarrow z\in Y\Longrightarrow (x,z)\in X\times Y\Longrightarrow xR'z xRy,(y,z)\Longrightarrow y\in X\Longrightarrow \exists yRa\Longrightarrow xRa\Longrightarrow x\in X\Longrightarrow (x,z)\in X\times Y\Longrightarrow xR'z xRy,yRz\Longrightarrow xRz\Longrightarrow xR'z
```

#### Dimostrazione per induzione

Consideriamo il problema nel caso A=a. Banale il fatto che R parziale sia anche totale.

Consideriamo ora un generico caso  $A=a_1,...,a_n,$  dove abbiamo che  $\exists a,b\in A$ t.c.  $\nexists aRb \land \nexists bRa$ .

Sappiamo che  $\exists a \in A$  minimale di R, ed escludiamolo da A. Nell'insieme  $R(A \setminus \{a\})$  abbiamo due casi:

•  $R(A \setminus \{a\})$  totale: basta definire un nuovo ordine

$$R_T = R(A \setminus \{a\}) \cup \{aRx \, \forall x \in R(A \setminus \{a\})\}$$

•  $R(A\setminus\{a\})$  parziale: ripetiamo lo stesso procedimento definito sopra finchè non trovaimo un  $R(A\setminus\{a_{i_1},...,a_{i_n}\})$  totale. Sappiamo che suddetto caso esiste in quanto al limite si arriva a un caso dove A=a che sappiamo essere totale.

Di conseguenza, per un qualunque n sappiamo risolvere il caso n-1, ed avendo risolto n-1 sappiamo risolvere n

#### Sottosuccessioni

$$A, \exists S_A \iff \exists j \in [i, i + \#S] \text{ t.c. } S_{j-i} = A_j \, \forall j$$

## Sottosuccessioni monotone ed ordini totali

$$\forall n \geq 1, A = \{a_1, ..., a_{n^2+1}\}$$
 t.c.  $R(A)$  ordine totale  $\Longrightarrow \exists S_A = \{a_i, ..., a_{i+n+1}\}$  monotona

#### Dimostrazione

Ipotizziamo per assurdo che questa successione non esista.

Consideriamo  $f: [1, n^2 + 1] [1, n], f(x) = \ell_{\max} S_A = \{a_i, ..., a_x\}$  monotona

Dato che 
$$\frac{n^2+1}{n} = n$$
 resto  $1 \Longrightarrow \exists \{i_1 < ... < i_{n+1}\} \text{ t.c. } f(i_1) = ... = f(i_{n+1}) = l$ 

Dato che  $\frac{n^2+1}{n}=n$  resto  $1\Longrightarrow \exists \{i_1<...< i_{n+1}\}$  t.c.  $f(i_1)=...=f(i_{n+1})=l$  Consideriamo quindi gli elementi  $a_{i_1},...,a_{i_{n+1}}$  che sappiamo avere lo stesso  $\ell_{\max}$ . Preso una qualunque coppia adiacente  $a_{i_k}, a_{i_{k+1}}$ , abbiamo due casi:

- $a_{i_k} < a_{i_{k+1}} \Longrightarrow S_{A_{a_{i_k}}} = \{S_{A_{a_{i_k}}} < a_{i_{k+1}}\} \Longrightarrow k < (k+1) \Longrightarrow \text{ impossibile}$
- $a_{i_k} > a_{i_{k+1}}$

Ne consegue che

$$\forall k \in [1, n+1) \Longrightarrow a_{i_k} > a_{i_{k+1}} \Longrightarrow \exists S^* = \{x_{i_1} > \dots > x_{i_{n+1}}\} \Longrightarrow \#S^* = n+1 \Longrightarrow \text{ contraddizione}$$

Ergo l'ipotesi è falsa

## 0.5 Induzione

L'idea base del principio di induzione è dimostrare che

$$P(n) \forall n \in X \subseteq \mathbf{N}$$

E' composta da due parti fondamentali:

- Caso base: dimostrare che  $\exists n_0 \in N$  t.c. P(n) Solitamente  $n_0 = 0$  o 1
- Passo induttivo: dimostrare che  $\forall n \in N, n \geq n_0, P(n) \Longrightarrow P(n+1)$ . L'ipotesi P(n) è detta ipotesi induttiva

## 0.5.1 Principio di Induzione: versione insiemistica

$$\begin{array}{l} X\subseteq \mathbf{N} \\ n_0\in X \\ \forall n\in \mathbf{N}, n\geq n_0, n\in X \Longrightarrow n+1\in X \\ \Longrightarrow \mathbf{N}-\{0,...,n_0-1\}\subset X \Longrightarrow X=\mathbf{N}-\{0,...,n_0-1\} \end{array}$$

## 0.5.2 Dimostrazione col Principio del Minimo Numero

Il principio del minimo numero ci dice che

$$\forall X \subseteq \mathbf{N}. X \neq \emptyset \Longrightarrow \exists m \in X$$

Prendiamo le condizioni della versione insiemistica, ed ipotizziamo per assurdo che l'induzione insiemistica non sia valida, ovvero che

$$A = \mathbf{N} - \{0, ..., n_0 - 1\} - X, A \neq \emptyset$$

Per il principio del minimo numero  $\exists m \in A > n_0$  in quanto  $n_0 \in X$ , ovvero  $m-1 \geq n_0$ , e poichè è  $m \in A \Longrightarrow m-1 \in X$ , ma poichè  $\forall n \geq n_0, n \in X \Longrightarrow n+1 \in X$  allora  $m-1 \in X \Longrightarrow m \in X$ , in contraddizione col fatto che  $m \notin X$ . Ne segue che l'induzione insiemistica è vera.

La maggior parte delle dimostrazioni per PMN sono dimostrazioni per assurdo.

#### 0.5.3 Mettere in evidenza il caso base

Il passaggio fondamentale nel processo di dimostrazione per induzione è mettere in evidenza il caso n, ovvero mostrare il caso n sia incluso nel caso n + 1.

#### 0.5.4 Principio di induzione forte

Il principio di induzione è una versione del principio di induzione dove nel passo induttivo, oltre a considerare  $P\left(n\right)$  vero, sfruttiamo il fatto che  $\forall x \in [n_0, n] \, P\left(n\right)$  vera

## 0.6 Logica proposizionale

Un linguaggio proposizionale è un insieme L di simboli contenente:

- Connettiviti logici:  $\Longrightarrow$ ,  $\Longleftrightarrow$ ,  $\neg$ ,  $\lor$ ,  $\land$
- Parentesi: ()
- Variabili proposizionali: Insieme  $VAR_L$  di simboli diversi da connettivi e parentesi. Data una proposizione F, sono anche dette parti atomiche di F

L'insieme delle **proposizioni** (PROP<sub>L</sub>) di L è il minimo insieme X di stringhe finite di simboli in L t.c.:

- $VAR_L \subset X$
- $\bullet \ A \in X \implies \neg A \in X$
- $A, B \in X \implies A \lor / \land / \implies / \iff B \in X$

## 0.6.1 Connettivi logici nell'algebra booleana

- $\neg A = \overline{A}$
- $A \wedge B = A \cdot B$
- $A \lor B = A \lor B$
- $A \implies B = \overline{A \cdot \overline{B}}$
- $A \iff B = AB + \overline{AB}$

Valgono di conseguenza le leggi e i metodi di rappresentazione dell'algebra booleana.

#### 0.6.2 Sottoformule

 $A, B \in PROP_L$ , Bsottostringa di  $A \implies B$  sottoformula A

#### 0.6.3 Semantica della Logica proposizionale

#### Assegnamento

$$\alpha: VAR \rightarrow \{0,1\}$$

0,1 sono detti **valori di verità**. Il concetto è estensibilie alle proposizioni, dove  $\alpha(F)$ , detta anche F sotto  $\alpha$ , è l'insieme degli assegnamenti alle atomiche

#### Soddisfacibile, Insoddisfacibile e Tautologica

$$\exists \alpha \in A \text{ t.c. } \alpha(F) = 1 \iff F \in \text{ SAT}$$
  
 $\forall \alpha \in A, \alpha(F) = 1 \iff F \in \text{ TAUT}$   
 $\neg A \in \text{ TAUT} \iff A \in \text{ UNSAT}$ 

#### Conseguenza logica

$$\forall \alpha \in A, [1 = \alpha(F_1) = \dots = \alpha(F_n) \implies \alpha(F) = 1] \implies F_1, \dots, F_n \models F$$

Fè detta conseguenza logica di  $F_1,...,F_n$ 

Il contrario è

$$\exists \alpha \in A, [1 = \alpha(F_1) = \dots = \alpha(F_n) \land \alpha(F) = 0] \implies F_1, \dots, F_n \not\models F$$

#### Conseguenza logica come espressione booleana

$$\forall \alpha \in A, [F_1 \cdot ... \cdot F_n \cdot F] = 1 \implies F_1, ..., F_n \models F_1$$
  
 $\exists \alpha \in A, [F_1 \cdot ... \cdot F_n \cdot \neg F] = 1 \implies F_1, ..., F_n \not\models F_1$ 

#### Conseguenza logica come UNSAT e TAUT

$$F_1, ..., F_n \models F \iff [F_1 \land ... \land F_n \implies F] \in TAUT \iff [F_1 \land ... \land F_n \land F] \in UNSAT$$

#### Forma Normale Congiunta

La  $\mathbf{CNF},$  sempre possibile, sarebbe un modo di scrivere la formula Fnella forma

$$F = \bigwedge_{i=1}^{n} C_i = \bigwedge_{i=1}^{n} \bigvee_{j=1}^{m_i} l_{j_i}$$

Facile notare come sia la POS

La CNF è reinscrivibile in forma insiemistica come

$$\{\{l_{1_1},...,l_{1_m}\},...,\{l_{n_1},l_{n_m}\}\}$$

#### Metodo di risoluzione

Il metodo di risoluzione è un modo per scoprire se F è Insoddisfacibile o meno. Il metodo si basa sul fatto che, in una F in CNF:

$$\exists C_1, C_2 \in F \text{ t.c. } \exists l_1 \in C_1, l_2 \in C_2 \text{ t.c. } l_1 = \neg l_2$$

L'algoritmo è il seguente:

$$l_1 \in C_1, \neg l_1 \in C_2 \Longrightarrow C_1, C_2 \models \text{RIS}(C_1, C_2) = C_1 \cup C_2 - \{l_1, \neg l_1\}$$

E' possibile quindi sostituire  $C_1 \wedge C_2$  con la loro risoluzione.

Il processo finisce quando  $RIS(C_1, C_2) = \{\} = \square$ .

Dimostriamo ora che  $\square \in F \iff F \in UNSAT$ 

#### Dimostrazione "da sinistra"

Facile notare come  $RIS(C_1, C_2)$  si ottiene solamente quando  $C_1 = \{p\} \land C_2 = \{\neg p\}$ , ovvero  $p \times \neg p$ , che sappiamo essere un'espressione UNSAT

#### Dimostrazione "da destra"

Dimostriamolo per induzione:

- Caso base:  $n = 0 \implies F = \{\Box\} \lor F = \emptyset, F \in \text{UNSAT} \implies F = \{\Box\}$
- Passo Induttivo: Abbiamo due casi anche qui: Consideriamo i tre insiemi:

$$F_p = \{C \in F \mid p \in C\}, F_{\neg p} = \{C \in F \mid \neg p \in C\}, F^- = F - F_p - F_{\neg p}\}$$
$$RIS(F_p, F_{\neg p}) = (D = F_p - \{p\}) \cup (E = F_{\neg p} - \{\neg p\})$$

 $R = D \cup E \cup F^-$  (questo processo è equivalente al metodo di risoluzione)  $= F^- \times D \times E$ 

Dimostriamo per assurdo che R è UNSAT:

$$\exists \alpha \text{ t.c. } \alpha(R) = 1 \implies \alpha(D \times E) = 1. \text{ Definiamo } \alpha_1 = \alpha, \alpha(p) = 1 \text{ e}$$
  
 $\alpha_0 = \alpha, \alpha(p) = 0$ 

$$\begin{array}{lll} -\alpha_{1}\left(F\right)=0 & \Longrightarrow & \forall C_{p} \in F_{p}: \alpha_{1}\left(C_{p}\right)=1 & \Longrightarrow & \exists C_{\neg p} \in F_{\neg p}: \\ \alpha_{1}\left(C_{\neg p}\right)=0 & & \end{array}$$

In quanto possiamo ignorare  $\neg p$  in quanto = 0, ne consegue che  $\alpha_1\left(C_{\neg p}-\{\neg p\}\right)=0 \implies \alpha\left(C_{\neg p}-\{\neg p\}\right)=0$ 

Quest'ultima osservazione implica per costruzione  $\alpha\left(E\right)=0$ 

– Analogamente per  $\alpha_0$  e  $C_p - \{p\}$ . Concludiamo che  $\alpha(D) = 0$ 

 $\alpha\left(D\times E\right)=1\implies\alpha\left(D\right)=1,$  contraddizione e di conseguenza cade l'argomento.

Abbiamo quindi dimostrato che R è UNSAT, e quindi che  $\square \in RIS(R)$ , ottenuta applicando il metodo di risoluzione. Q.E.D