参数估计

大数律和中心极限定理

强大数律

记号: 若P(A)=1, 则记A a.s., 即A几乎一定 (almost surely) 会发生。

如果 X_i 是独立同分布的随机变量,且 $\mu = EX_1$,则

$$\lim_{n o\infty}\overline{X_n}=\mu ext{ a.s.}$$

因为概率等于1的事件在实际中必然发生,所以在强大数律中,如果用 x_n 表示 X_n 的观测值,则有

$$\lim_{n o \infty} rac{x_1 + x_2 + \dots + x_n}{n} = \mu.$$

因为强大数律的数学证明并不需要概率的频率定义,所以它从理论上保证了概率的频率定义是正确的。

利用强大数律的关键是构造独立同分布的一组随机变量。

弱大数律

依概率收敛

设 U,U_1,U_2,\cdots 是随机变量。如果对任何 $\varepsilon>0$, $\lim_{n\to\infty}P\left(|U_n-U|\geqslant \varepsilon\right)=0$,则称 U_n 依概率收敛到 U,记做 $U_n\stackrel{p}{\to}U$ 。

切比雪夫不等式

随机变量X的数学期望是 μ ,方差是 σ^2 ,则对常数 $\varepsilon>0$,有

$$P(|X - \mu| \ge \varepsilon) \le \frac{\sigma^2}{\varepsilon^2}$$

弱大数律

设随机变量 X_1, X_2, \cdots 独立同分布, $\mu = \mathbf{E} X_1$,则对任何 $\varepsilon > 0$,有

$$\lim_{n o\infty}P\left(\left|ar{X}_{n}-\mu
ight|\geqslantarepsilon
ight)=0$$

对于强大数律和弱大数律的理解

设甲某是一位新的专职司机,用 U_n 表示他在第 n 个工作日的交通事故造成的损失。因为他的开车经验在不断提高,所以随着时间的推移,他的 U_n 会向老司机的 U=0 收敛。如果 $U_n\stackrel{P}{\to} U$,则 $n\to\infty$ 时,我们只能得到

$$P(U_n \geqslant \varepsilon) = P(|U_n - U| \geqslant \varepsilon) \rightarrow 0$$

所以对任意大的 n,都不能保证 $P(U_n \geqslant \varepsilon) = 0$ 。也就是说,无论有多长的开车经验,这位新司机因交通事故造成较大损失的概率都是正数,从而都有可能造成较大的损失。用 u_n 表示 U_n 的观测值。如果 $U_n \to U$ a.s.,则实际中有 $u_n \to 0$ 。说明存在 n_0 ,使得 $n \geqslant n_0$ 时, $u_n < \varepsilon$ 。也就是说,从某天开始,这位新司机就再也不会发生有较大损失的交通事故了。

中心极限定理

中心极限定理研究的是当n较大时,随机变量的部分和 $S_n = \sum X_j$ 的概率分布问题。实验表明,独立同分布随机变量和的分布近似于正态分布,这就是将要介绍的中心极限定理。

设随机变量 X_1,X_2,\cdots 独立同分布,E $X_1=\mu,{
m Var}\,(X_1)=\sigma^2>0$ 。用 $S_n=\sum_{j=1}^n X_j$ 表示部分和,用 $Z_n=rac{S_n-n\mu}{\sqrt{n\sigma^2}}$ 表示 S_n 的标准化,用 $\Phi(x)$ 表示服从 N(0,1) 的分布函数。

在上述条件下,当加趋于正无穷时,有

$$P(Z_n \leq x) \to \Phi(x), x \in (-\infty, \infty)$$

即 Z_n 依分布收敛到N(0,1),记作 $Z_n \stackrel{d}{ o} N(0,1)$ 。

推论:在上述条件下,对较大的n,有

$$P\left(rac{S_n-n\mu}{\sqrt{n\sigma^2}}\leqslant x
ight)pprox \Phi(x), \hspace{0.5cm} P\left(rac{ar{X}_n-\mu}{\sigma/\sqrt{n}}\leqslant x
ight)pprox \Phi(x).$$

在一些实际问题中,随机变量的方差 σ^2 是未知的,这时可以用下面两个统计量来估计 σ^2 。

$$\hat{\sigma}^2 = rac{1}{n-1} \sum_{j=1}^n \left(X_j - ar{X}_n
ight)^2 ext{[or]} \ \hat{\sigma}^2 = rac{1}{n} \sum_{j=1}^n \left(X_j - ar{X}_n
ight)^2$$

参数估计 (上)

一些术语

【总体假设】设总体含有 N 个个体,第 i 个个体是 y_i 。

总体均值: $\mu=rac{y_1+y_2+\cdots+y_N}{N}$

总体方差/方差: $\sigma^2 = \frac{(y_1 - \mu)^2 + (y_2 - \mu)^2 + \dots + (y_N - \mu)^2}{N}$ 。

总体标准差/标准差: $\sigma = \sqrt{\sigma^2}$ 。

总体参数/参数:描述总体特性的指标,包括但不限于上面提到的三者,讲到参数的时候要明确它是哪个总体的参数。

【样本假设】设总体的一个抽样有n个样本,第i个样本是 x_i 。

样本均值: \bar{x} 。

样本方差: $s^2=rac{1}{n-1}\Big[(x_1-ar{x})^2+(x_2-ar{x})^2+\cdots+(x_n-ar{x})^2\Big]$ 。

样本标准差: $s = \sqrt{s^2}$ 。

估计

估计是利用样本计算出对参数的估计值。估计不是唯一的,对相同的观测数据,不同的方法可以给出不同的估计结果。

在总体中任取一个个体X,X是随机变量, $EX=\mu$ 是总体均值,这说明随机抽样是无偏的。

如果用 X_1, X_2, \cdots, X_n 表示依次随机抽取的样本,则样本均值 \bar{X} 是总体均值 μ 的估计,且 $E\bar{X}=\mu$.

设 $\hat{\theta}$ 是 θ 的估计。

- (1) 如果 $\mathbf{E}\hat{\theta} = \theta$, 则称 $\hat{\theta}$ 是 θ 的无偏估计;
- (2) 如果当样本量 $n \to \infty$, $\hat{\theta}$ 依概率收敛到 θ , 则称 $\hat{\theta}$ 是 θ 的相合估计;
- (3) 如果当样本量 $n \to \infty$, $\hat{\theta}$ 以概率 1 收敛到 θ , 则称 $\hat{\theta}$ 是 θ 的强相合估计。

样本均值

设总体均值 $\mu=EX$ 存在, X_1,X_2,\cdots,X_n 是总体 X 的样本。均值 μ 的估计定义为

$$\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

样本均值 \bar{X}_n 有如下的性质:

- (1) \bar{X}_n 是 μ 的无偏估计,这是因为 $E\bar{X}_n=\mu$;
- (2) \bar{X}_n 是 μ 的强相合估计,从而是相合估计。这是因为从强大数律得到

$$\lim_{n o\infty}ar{x}_n=\mu ext{ a.s.}$$

样本方差

给定总体 X 的样本 X_1, X_2, \cdots, X_n ,用 $\hat{\mu}$ 表示样本均值。总体方差 $\sigma^2 = \mathrm{Var}(X)$ 的估计由下式定义。

$$S^2 = rac{1}{n-1} \sum_{j=1}^n \left(X_j - \hat{\mu}
ight)^2$$

样本方差的性质:

(1) 样本方差 S^2 是总体方差的无偏估计, $\mathbf{E}S^2 = \frac{1}{n-1} \sum_{j=1}^n \mathbf{E} \big(X_j - \hat{\mu} \big)^2 = \frac{n}{n-1} \cdot \frac{n-1}{n} \sigma^2 = \sigma^2$.

具体证明: 取定j。因为 $\mathrm{E}\left(X_j-\hat{\mu}\right)=\mu-\mu=0$,所以从 X_1,X_2,\cdots,X_n 的独立性得到

$$E(X_{j} - \hat{\mu})^{2} = Var\left(X_{j} - \frac{1}{n}\sum_{i=1}^{n}X_{i}\right)$$

$$= Var\left[\left(1 - \frac{1}{n}\right)X_{j} - \frac{1}{n}\sum_{i\neq j}X_{i}\right]$$

$$= \left(\frac{n-1}{n}\right)^{2}\sigma^{2} + \frac{1}{n^{2}}\sum_{i\neq j}\sigma^{2}$$

$$= \frac{\left[\left(\frac{n-1}{n}\right)^{2} + \frac{n-1}{n^{2}}\right]\sigma^{2}}{n}\sigma^{2}$$

$$= \frac{n-1}{n}\sigma^{2}$$

(2) 样本方差 S^2 是总体方差 σ^2 的强相合估计。

具体证明:利用强大数律 $\hat{\mu} o \mu$ a.s. 和 $rac{1}{n-1} \sum_{j=1}^n X_j^2 o \mathrm{E} X^2$ a.s. ,得到

$$\frac{1}{n-1} \sum_{j=1}^{n} (X_j - \hat{\mu})^2 = \frac{1}{n-1} \sum_{j=1}^{n} (X_j^2 - 2X_j \hat{\mu} + \hat{\mu}^2)$$

$$= \frac{1}{n-1} \left(\sum_{j=1}^{n} X_j^2 - 2n \frac{1}{n} \sum_{j=1}^{n} X_j \hat{\mu} + n \hat{\mu}^2 \right)$$

$$= \frac{1}{n-1} \sum_{j=1}^{n} X_j^2 - \frac{n}{n-1} \hat{\mu}^2$$

$$\rightarrow EX^2 - \mu^2 = \sigma^2 \text{ a.s.}$$

样本标准差

由于 S^2 是 σ^2 的估计,所以定义标准差 σ 的估计为

$$S=\sqrt{S^2}=\sqrt{rac{1}{n-1}\sum_{j=1}^n\left(X_j-\hat{\mu}
ight)^2}$$

称 S 为样本标准差。

- (1) 由于 $S^2 o \sigma^2$ a.s., 所以 $S o \sigma$ a.s. 成立, 说明 $S \not = \sigma$ 的强相合估计。
- (2) 当 $\sigma>0, S$ 不是 σ 的无偏估计,也就是说 $ES=\sigma$ 不成立。这是因为**没有不全为零的常数**a,b**使得** P(aS+b=0)=1,所以由内积不等式得到

$$\mathrm{E}S = \mathrm{E}(S \cdot 1) < \sqrt{\mathrm{E}S^2 \cdot \mathrm{E}1^2} = \sqrt{\sigma^2} = \sigma.$$

这时称 S 低估了 σ 。

因为上面三个的强相合性,如果 x_1, x_2, \cdots, x_n 是总体 X 的样本,则如下事实得到保证:

$$\lim_{n o \infty} ar{x}_n = \mu, \lim_{n o \infty} s^2 = \sigma^2, \lim_{n o \infty} s = \sigma.$$

样本矩

因为 $X_1^k, X_2^k, \cdots, X_n^k$ 独立同分布,且和 X^k 同分布,所以是总体 X^k 的样本。并且

$$\hat{\mu}_k = rac{1}{n} \sum_{i=1}^n X_i^k$$

是 μ_k 的估计。所以 $\hat{\mu}_k$ 是 μ_k 的**强相合无偏估计**。称 $\mu_k=\mathrm{E}X^k$ 为 X 的 k 阶原点矩, 称 $\hat{\mu}_k$ 为 k 阶样本 原点矩。

估计的技巧

- (1) 如果总体 X 的分布函数 $F(x;\theta)$ 只有一个未知参数 θ ,则 $\mu_1=\mathrm{E}X$ 常和 θ 有关。如果 g(s) 是已知函数,并且能 从 $\mu_1=\mathrm{E}X$ 得到 $\theta=g\left(\mu_1\right)$,则 $\hat{\theta}=g\left(\hat{\mu}_1\right)$ 是 θ 的矩估计,其中 $\hat{\mu}_1$ 是样本均值。
- (2) 如果总体 X 的分布函数 $F\left(x;\theta_1,\theta_2\right)$ 有 2 个未知参数 θ_1,θ_2 ,则 $\mu_1=\mathrm{E}X$ 和 $\mu_2=\mathrm{E}X^2$ 常和 θ_1,θ_2 有关。如果 $g_1(s,t),g_2(s,t)$ 是 已知函数,并且能从

$$\begin{cases} \mu_1 = \mathbf{E}X, \\ \mu_2 = \mathbf{E}X^2 \end{cases} \quad [\mathbf{get}] \quad \begin{cases} \theta_1 = g_1\left(\mu_1, \mu_2\right), \\ \theta_2 = g_2\left(\mu_1, \mu_2\right), \end{cases}$$

则 $\hat{ heta}_1=g_1\left(\hat{\mu}_1,\hat{\mu}_2
ight),\hat{ heta}_2=g_2\left(\hat{\mu}_1,\hat{\mu}_2
ight)$ 分别是 $\, heta_1, heta_2\,$ 的矩估计。

最大似然估计

离散情况

设离散随机变量 X_1, X_2, \cdots, X_n 有联合分布

$$p(x_1, x_2, \dots, x_n; \theta) = P(X_1 = x_1, X_2 = x_2, \dots, X_n = x_n),$$

其中 θ 是未知参数,给定观测数据 x_1, x_2, \cdots, x_n 后,称 θ 的函数

$$L(\theta) = p(x_1, x_2, \cdots, x_n; \theta)$$

为似然函数,称 $L(\theta)$ 的最大值点 $\hat{\theta}$ 为 θ 的最大似然估计.

许多情况下,为了方便计算,一般取 $l(\theta) = \ln L(\theta)$ 进行最值点的求解。

连续情况

类似离散的情况,此时 $P(X = x) = f(x; \theta)dx$ 。

设随机向量 $X=(X_1,X_2,\cdots,X_n)$ 有联合密度 $f(\boldsymbol{x};\boldsymbol{\theta})$,其中 $\boldsymbol{\theta}=(\theta_1,\theta_2,\cdots,\theta_m)$ 是未知参数。得到 \boldsymbol{X} 的观测值 $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ 后,称

$$L(\boldsymbol{\theta}) = f(\boldsymbol{x}; \boldsymbol{\theta})$$

为 θ 的似然函数, 称 $L(\theta)$ 的最大值点 $\hat{\theta}$ 为 θ 的最大似然估计 (MLE) 。

设总体 X 有概率密度 $f(x; \boldsymbol{\theta})$,则 X 的样本 X_1, X_2, \cdots, X_n 有联合密度

$$f\left(x_{1}, x_{2}, \cdots, x_{n}; oldsymbol{ heta}
ight) = \prod_{j=1}^{n} f\left(x_{j}; oldsymbol{ heta}
ight)$$

基于观测值 $\boldsymbol{x}=(x_1,x_2,\cdots,x_n)$ 的似然函数是

$$L(oldsymbol{ heta}) = \prod_{j=1}^n f(x_j;oldsymbol{ heta})$$

同样取 $l(ec{ heta})=\ln L(ec{ heta})$,求最大值点可以通过解方程组 $rac{\partial l(ec{ heta})}{\partial heta_i}=0, j=1,2,\ldots,m$ 来获得。

这里要深刻理解,还需要做一些题,也可以看一下书上的例子。比如估计 $N(\mu,\sigma^2)$,这里 σ^2 是参数而不是 σ ,要对 σ^2 求偏微分。