005 006 007 008 009 010

014 015 016 017

018019

020

021

022

023 024 025

028 029 030 031 032 033 034

035 036 037 038 039

043 044 045 046

047

049

041

050 051 052 053

Inducing Domain Specific Languages for Bayesian Program Learning

Anonymous Authors¹

Abstract

This document provides a basic paper template and submission guidelines. Abstracts must be a single paragraph, ideally between 4–6 sentences long. Gross violations will trigger corrections at the camera-ready phase.

1. Introduction

Imagine an agent faced with a suite of new problems totally different from anything it has seen before. It has at its disposal a basic set of primitive actions it can compose to build solutions to these problems, but it is no idea what kinds of primitives are appropriate for which problems nor does it know the higher-level vocabulary in which solutions are best expressed. How can our agent get off the ground?

The AI and machine learning literature contains two broad takes on this problem. The first take is that the agent should come up with a better representation of the space of solutions, for example, by inventing new primitive actions: see options in reinforcement learning (Stolle & Precup, 2002), the EC algorithm in program synthesis (Dechter et al., 2013), or predicate invention in inductive logic programming (Muggleton et al., 2015). The second take is that the agent should learn a discriminative model mapping problems to a distribution over solutions: for example, policy gradient methods in reinforcement learning or neural models of program synthesis (Devlin et al., 2017; Balog et al., 2016). Our contribution is a general algorithm for fusing these two takes on the problem: we propose jointly inducing a representation language, called a *Domain Specific Language* (DSL), alongside a bottom-up discriminative model that regresses from problems to solutions. We evaluate our algorithm on four domains: building Boolean circuits; symbolic regression; FlashFill-style (Gulwani, 2011) string processing problems; and Lisp-style programming problems. We show that EC2.0 can construct a set of basis primitives suitable for discovering solutions in each of these domains

Preliminary work. Under review by the International Conference on Machine Learning (ICML). Do not distribute.

Figure 1: DSL $\mathcal D$ generates programs p by sampling DSL primitives with probabilities θ (Algorithm 1). We observe program outputs x. A neural network $q(\cdot)$ called the $recognition\ model$ regresses from program outputs to a distribution over programs ($\theta_x = q(x)$). Solid arrows correspond to the top-down generative model. Dashed arrows correspond to the bottom-up recognition model.

We cast these problems as Bayesian Program Learning (BPL; see (Lake et al., 2013; Ellis et al., 2016; Liang et al., 2010)), where the goal is to infer from an observation x a posterior distribution over programs, $\mathbb{P}[p|x]$. A DSL \mathcal{D} specifies the vocabulary in which programs p are written. We equip our DSLs with a weight vector θ ; together, (\mathcal{D},θ) define a probabilistic generative model over programs, $\mathbb{P}[p|\mathcal{D},\theta]$. In this BPL setting, $\mathbb{P}[p|x] \propto \mathbb{P}[x|p]\mathbb{P}[p|\mathcal{D},\theta]$, where the likelihood $\mathbb{P}[x|p]$ is domain-dependent. The solid lines in Fig. 1 the diagram this generative model. Alongside this generative model, we infer a bottom-up recognition model, q(x), which is a neural network that regresses from observations to a distribution over programs.

Our key observation is that the generative and recognition models can bootstrap off of each other, greatly increasing the tractability of BPL.

2. Program Representation

We choose to represent programs using λ -calculus (Pierce, 2002). A λ -calculus expression is either:

A *primitive*, like the number 5 or the function sum.

A variable, like x, y, z

A λ -abstraction, which creates a new function. λ -abstractions have a variable and a body. The body is a λ -

¹Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

058 059

069

070

079

> 086

095 096

109

calculus expression. Abstractions are written as λ var.body. An *application* of a function to an argument. Both the function and the argument are λ -calculus expressions. The application of the function f to the argument x is written as f x.

For example, the function which squares the logarithm of a number is $\lambda x. \text{square}(\log x)$, and the identity function f(x) = x is $\lambda x.x$. The λ -calculus serves as a spartan but expressive Turing complete program representation, and distills the essential features of functional languages like Lisp.

However, many λ -calculus expressions correspond to illtyped programs, such as the program that takes the logarithm of the Boolean true (i.e., log true) or which applies the number five to the identity function (i.e., 5 ($\lambda x.x$)). We use a well-established typing system for λ -calculus called Hindley-Milner typing (Pierce, 2002), which is used in programming languages like OCaml. The purpose of the typing system is to ensure that our programs never call a function with a type it is not expecting (like trying to take the logarithm of true). Hindley-Milner has two important features: Feature 1: It supports parametric polymorphism: meaning that types can have variables in them, called type variables. Lowercase Greek letters are conventionally used for type variables. For example, the type of the identity function is $\alpha \to \alpha$, meaning it takes something of type α and return something of type α . A function that returns the first element of a list has the type $list(\alpha) \to \alpha$. Type variables are not the same has variables introduced by λ -abstractions. Feature 2: Remarkably, there is a simple algorithm for automatically inferring the polymorphic Hindley-Milner type of a λ -calculus expression (Damas & Milner, 1982). A detailed exposition of Hindley-Milner is beyond the scope of this work.

3. Experiments

3.1. Boolean circuits

pedagogical example; easy domain

3.2. Symbolic Regression

We show how to use EC2.0 to infer programs containing both discrete structure and continuous parameters. The high-level idea is to synthesize programs with unspecified-real-valued parameters, and to fit those parameters using gradient descent. Concretely, we ask the algorithm to solve a set of 1000 symbolic regression problems, each a polynomial of degree 0, 1, or 2, where our observations x take the form of N input/output examples, which we write as $x = \{(i_n, o_n)\}_{n \le N}$. For example, one task is to infer a program calculating 3x + 2, and the observations are the input-output examples $\{(-1, -1), (0, 2), (1, 5)\}$.

We initially equip our DSL learner with addition and multiplication, along with the possibility of introducing real-valued parameters, which we write as \mathcal{R} . We define the likelihood of an observation x by assuming a Gaussian noise model for the input/output examples and integrate over the real-valued parameters, which we collectively write as \mathcal{R} :

$$\log \mathbb{P}\left[\{(i_n,o_n)\}|p\right] = \log \int \mathrm{d}\vec{\mathcal{R}} \; P_{\vec{\mathcal{R}}}(\vec{\mathcal{R}}) \prod_{n \leq N} \mathcal{N}(p(i_n,\vec{\mathcal{R}})|o_n)$$

where $\mathcal{N}(\cdot|\cdot)$ is the normal density and $P_{\vec{\mathcal{R}}}(\cdot)$ is a prior over $\vec{\mathcal{R}}$. We approximate this marginal using the BIC (Bishop, 2006):

$$\log \mathbb{P}[x|p] \approx \sum_{n < N} \log \mathcal{N}(p(i_n, \vec{\mathcal{R}}^*)|o_n) - \frac{D \log N}{2}$$

where $\vec{\mathcal{R}}^*$ is an assignment to $\vec{\mathcal{R}}$ found by performing gradient ascent on the likelihood of the observations w.r.t. $\vec{\mathcal{R}}$.

Primitives	$+, imes : \mathbb{R} o \mathbb{R} o \mathbb{R}$ $\mathcal{R} : \mathbb{R}$ (real valued parameter)	
Observation x	N input/output examples: $\{(i_n,o_n)\}_{n\leq N}$	
Likelihood $\mathbb{P}[x p]$	$\propto \exp(-D \log N) \prod_{n \leq N} \mathcal{N}(p(i_n) o_n)$	
Subset of Learned DSL	$\lambda x.\mathcal{R} \times x + \mathcal{R}$ $\lambda x.\mathcal{R} + x$ $\lambda x.x \times (\text{linear } x)$ $\lambda x.\text{increment } (\text{quadratic}_0 \ x)$	linear increment quadratic ₀ quadratic

3.3. String editing

3.4. List problems

4. Model

110

111

112

113

114

115

116

117

118

119

120

121

122

124

125

127

128 129 130

131 132

133 134

135

136

137

138

139

140 141

142

143 144

145

147

148 149

150

151

152

153

154

155

156

157 158

159

160 161 162

164

$$\mathcal{L}_{RM} = \mathcal{L}_{AE} + \mathcal{L}_{HM}$$

$$\mathcal{L}_{AE} = \mathbb{E}_{x \sim X} \left[\sum_{p} Q_x(p) \log \mathbb{P}[p|\mathcal{D}, q(x)] \right]$$
(1)

 $\mathcal{L}_{HM} = \mathbb{E}_{p \sim (\mathcal{D}, \theta)} \left[\log \mathbb{P}[p|\mathcal{D}, q(x)] \right], \ p \text{ evaluates to } x$

5. Estimating θ

We write c(e, p) to mean the number of times that primitive e was used in program p; R(p) to mean the sequence of types input to sample in Alg.1. Jensen's inequality gives an intuitive lower bound on the likelihood of a program p:

$$\log \mathbb{P}[p|\theta] \stackrel{+}{=} \sum_{e \in \mathcal{D}} c(e,p) \log \theta_e - \sum_{\tau \in R(p)} \log \sum_{\substack{e:\tau' \in \mathcal{D} \\ \text{unify}(\tau,\tau')}} \theta_e \\ \stackrel{+}{\geq} \sum_{x} c(x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x (\alpha_x - \alpha_x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x c(x) \log \theta_x + \sum_x c(x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x c(x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x c(x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x c(x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x c(x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x c(x) \log \theta_x + \sum_x c(x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x c(x) \log \theta_x - N \log \sum_x a(x)\theta_x + \sum_x c(x) \log \theta_x + \sum_x c(x$$

Algorithm 1 Generative model over programs

function sample($\mathcal{D}, \theta, \mathcal{E}, \tau$):

Input: DSL \mathcal{D} , weight vector θ , environment \mathcal{E} , type τ

Output: a program whose type unifies with τ

if $\tau = \alpha \rightarrow \beta$ then

var ← an unused variable name

body $\sim \text{sample}(\mathcal{D}, \theta, \{\text{var} : \alpha\} \cup \mathcal{E}, \beta)$

return λ var. body

end if

primitives $\leftarrow \{p | p : \alpha \to \cdots \to \beta \in \mathcal{D} \cup \mathcal{E}\}$

if canUnify (τ, β)

 $\begin{array}{l} \text{Sample } e \sim \text{primitives, w.p.} \propto \theta_e \text{ if } e \in \mathcal{D} \\ \text{w.p.} \propto \frac{\theta_{var}}{|\text{variables}|} \text{ if } e \in \mathcal{E} \\ \text{Let } e : \alpha_1 \rightarrow \alpha_2 \rightarrow \cdots \rightarrow \alpha_K \rightarrow \beta. \text{ Unify } \tau \text{ with } \beta. \end{array}$

for k = 1 to K do

 $a_k \sim \text{sample}(\mathcal{D}, \theta, \mathcal{E}, \alpha_k)$

end for

return $e \ a_1 \ a_2 \ \cdots \ a_K$

where
$$c(p) = \sum_{e \in \mathcal{D}} c(e,p)$$
 and $r(e:\tau',p) = \sum_{\tau \in R(p)} \mathbb{1}[\operatorname{canUnify}(\tau,\tau')].$

Differentiate with respect to θ_e and set to zero

$$\frac{c(x)}{\theta_x} = N \frac{a(x)}{\sum_y a(y)\theta_y} \tag{2}$$

This equality holds if $\theta_x = c(x)/a(x)$:

$$\frac{c(x)}{\theta_x} = a(x). (3)$$

$$N\frac{a(x)}{\sum_{y} a(y)\theta_{y}} = N\frac{a(x)}{\sum_{y} c(y)} = N\frac{a(x)}{N} = a(x). \tag{4}$$

If this equality holds then $\theta_x \propto c(x)/a(x)$:

$$\theta_x = \frac{c(x)}{a(x)} \times \underbrace{\frac{\sum_y a(y)\theta_y}{N}}_{\text{Independent of } x}.$$
 (5)

Now what we are actually after is the parameters that maximize the joint log probability of the data+parameters, which I will write J:

$$J = L + \log D(\theta | \alpha)$$

$$\stackrel{+}{\geq} \sum_{x} c(x) \log \theta_{x} - N \log \sum_{x} a(x) \theta_{x} + \sum_{x} (\alpha_{x} - 1) \log \theta_{x}$$

$$= \sum_{x} (c(x) + \alpha_{x} - 1) \log \theta_{x} - N \log \sum_{x} a(x) \theta_{x}$$
(8)

So you add the pseudocounts to the *counts* (c(x)), but not to the possible counts (a(x)).

165 166 167 168 169 170 171 172 173 174 175 176 178 179 180 181 182 183 184 185 186 187 188 189 190 191 193 195 196 197 198 199 200 201 202 204 206

208

209

210

211212

213

214

215216

217

218

219

References

Balog, Matej, Gaunt, Alexander L, Brockschmidt, Marc, Nowozin, Sebastian, and Tarlow, Daniel. Deepcoder: Learning to write programs. *arXiv* preprint *arXiv*:1611.01989, 2016.

Bishop, Christopher M. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006. ISBN 0387310738.

Damas, Luis and Milner, Robin. Principal type-schemes for functional programs. In *Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages*, pp. 207–212. ACM, 1982.

Dechter, Eyal, Malmaud, Jon, Adams, Ryan P., and Tenenbaum, Joshua B. Bootstrap learning via modular concept discovery. In *IJCAI*, pp. 1302–1309. AAAI Press, 2013. ISBN 978-1-57735-633-2. URL http://dl.acm.org/citation.cfm?id=2540128.2540316.

Devlin, Jacob, Uesato, Jonathan, Bhupatiraju, Surya, Singh, Rishabh, Mohamed, Abdel-rahman, and Kohli, Pushmeet. Robustfill: Neural program learning under noisy i/o. *arXiv preprint arXiv:1703.07469*, 2017.

Ellis, Kevin, Solar-Lezama, Armando, and Tenenbaum, Josh. Sampling for bayesian program learning. In *Advances in Neural Information Processing Systems*, 2016.

Gulwani, Sumit. Automating string processing in spreadsheets using input-output examples. In *ACM SIGPLAN Notices*, volume 46, pp. 317–330. ACM, 2011.

${\bf Algorithm~3~Grammar~Induction~Algorithm}$

```
Input: Set of frontiers \{\mathcal{F}_x\}
Hyperparameters: Pseudocounts \alpha, regularization pa-
rameter \lambda, AIC coefficient a
Output: DSL \mathcal{D}, weight vector \theta
Define \log \mathbb{P}[\mathcal{D}] \stackrel{+}{=} -\lambda \sum_{p \in \mathcal{D}} \operatorname{size}(p)
Define L(\mathcal{D}, \theta) = \prod_x \sum_{z \in \mathcal{F}_x} \mathbb{P}[z|\mathcal{D}, \theta]
Define \theta^*(\mathcal{D}) = \arg \max_{\theta} Dir(\theta | \alpha) L(\mathcal{D}, \theta)
Define score(\mathcal{D}) = log \mathbb{P}[\mathcal{D}] + L(\mathcal{D}, \theta^*) - a|\mathcal{D}|
\mathcal{D} \leftarrow \text{every primitive in } \{\mathcal{F}_x\}
while true do
     N \leftarrow \{\mathcal{D} \cup \{s\} | x \in X, z \in \mathcal{F}_x, s \text{ a subtree of } z\}
     \mathcal{D}' \leftarrow \arg\max_{\mathcal{D}' \in \mathcal{N}} \operatorname{score}(\mathcal{D}')
     if score(\mathcal{D}') > score(\mathcal{D}) then
          \mathcal{D} \leftarrow \mathcal{D}'
     else
          return \mathcal{D}, \theta^*(\mathcal{D})
     end if
end while
```

Lake, Brenden M, Salakhutdinov, Ruslan R, and Tenenbaum, Josh. One-shot learning by inverting a compositional causal process. In *Advances in neural information processing systems*, pp. 2526–2534, 2013.

Liang, Percy, Jordan, Michael I., and Klein, Dan. Learning programs: A hierarchical bayesian approach. In Fürnkranz, Johannes and Joachims, Thorsten (eds.), *ICML*, pp. 639–646. Omnipress, 2010. ISBN 978-1-60558-907-7.

Muggleton, Stephen H, Lin, Dianhuan, and Tamaddoni-Nezhad, Alireza. Meta-interpretive learning of higher-order dyadic datalog: Predicate invention revisited. *Machine Learning*, 100(1):49–73, 2015.

Pierce, Benjamin C. *Types and programming languages*. MIT Press, 2002. ISBN 978-0-262-16209-8.

Stolle, Martin and Precup, Doina. Learning options in reinforcement learning. In *International Symposium on abstraction, reformulation, and approximation*, pp. 212–223. Springer, 2002.