Soit $m_0 \in \mathbb{N}$, tel que $m_0 r \geq n_0$

Posons $k = m_0 r$

Alors $J_{k+n} = J_{m_0r+n} = J_{m_0r}I_n = J_kI_n \text{ car } k \ge n_0.$

La reiproque est vidente.

- ii) Supposons que f est une rduction de g et g une rduction de h.
- * $f \le g \le h \Rightarrow f \le h$
- * Comme g est une rduction de h alors, il existe $k' \geq 1$, $H_{k'+n} = H_{k'}J_n$, pour tout $n \geq k'$.

Posons k'' = k'(k' + 1) comme dans (i)

Ainsi en utilisant (i) car f est une rduction de g, il vient $H_{k''+n}=H_{k''}I_n$, pour tout $n\geq k''$.

Par suite f est une rduction de h

iii) Supposons que f rduction de g et que $f \leq h \leq g$.

Soit k comme dans (i).

Comme $h \leq g$ alors pour tout $n \geq k$, $J_k H_n \subseteq J_k J_n = J_{k+n} \subseteq J_k H_n$ car $f \leq h$.

Donc $J_{k+n} = J_k H_n$, pour tout $n \ge k$.

Par suite h est rduction de g.