1. Solution

The sample size, *n*, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 56 \rceil$	14	33.23
Q2	$\lceil 0.5 \times 56 \rceil$	28	34.14
Q3	$\lceil 0.75 \times 56 \rceil$	42	34.7

We determine the IQR.

$$IQR = Q3 - Q1$$

= 34.7 - 33.23
= 1.47

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= $33.23 - 1.5 \times 1.47$
= 31.025

upper boundary = Q3 + 1.5
$$\times$$
 IQR
= 34.7 + 1.5 \times 1.47
= 36.905

We determine the outliers.

outliers =
$$\{30.85\}$$

We identify the ends of the whiskers: 31.76 and 35. We plot the boxplot.

2. Solution

The sample size, *n*, is 56. We determine the indeces and values of Q1, Q2, and Q3.

Quartile	Formula for <i>i</i>	i	X
Q1	$\lceil 0.25 \times 56 \rceil$	14	28.05
Q2	$\lceil 0.5 \times 56 \rceil$	28	30.11
Q3	$\lceil 0.75 \times 56 \rceil$	42	31.76

We determine the IQR.

$$IQR = Q3 - Q1$$

= 31.76 - 28.05
= 3.71

We determine the outlier boundaries.

lower boundary = Q1
$$- 1.5 \times IQR$$

= 28.05 $- 1.5 \times 3.71$
= 22.485
upper boundary = Q3 + 1.5 $\times IQR$
= 31.76 + 1.5 \times 3.71
= 37.325

We determine the outliers.

outliers =
$$\{22.19\}$$

We identify the ends of the whiskers: 23.41 and 36.87. We plot the boxplot.

