Jacopo Fritz, IRyA - UNAM

DataCubes in Astrophysics

Lesson 8

M51 ISM properties

- * See paper from M. Hitschfeld et al. (A&A, 495, 795, 2009): "A complete 12CO 2-1 map of M 51 with HERA. II. Total gas surface densities and gravitational stability";
- the analysis of this paper is very careful;
- * see also Nakai & Kuno (PASJ, 47, 761 1995) for the X-factor.

The radially averaged gas-to-dust mass ratio of the surface densities of the exponential disk is shown in the lower box of Figure 7. The gas-to-dust mass ratio is nearly constant with galacto-centric radius, reflecting the similar scale lengths. Values vary only between 23 and 26, which is about a quarter of the canonical Galactic gas-to-dust mass ratio of 100. This constancy is in contrast for example to the strong radial variation of the $\rm H_2/H\,\textsc{i}$ surface density ratio by more than a factor of 100.

Star Formation Rate

- * In general: quantifies the mass of newly formed stars within a given period;
- * More specifically: it refers to recently formed stars;
- ♦ Measured in M_☉/yr;
- ♦ Traced by massive stars. ⇒ Extrapolated to lower masses;
- * Typical values range from fractions of M₀ to several hundreds (or even thousands);

M31: $\sim 0.2 \, \text{M}_{\odot}/\text{yr}$

Nearby examples: MW: ~2 M_☉/yr

 $M82: \sim 10 \ M_{\odot}/yr$

How to calculate it

- * We focus on the "recent" (about 10⁷ years) SFR;
- * what are the main characteristics of a young stellar population with respect to older stars?
- * how can we use these characteristics?
- * what are the models, prescriptions and assumptions that we have to make and use?

How to calculate it

- * Stellar emission is, in a rough approximation, very similar to a black body;
- * the youngest and most massive stars are the most luminous (at all frequencies);
- despite being the less numerous, they can dominate the emitted spectrum;
- * they (basically) are the only UV photons emitters.

SFR indicators

- * X-ray
- * UV
- * forbidden lines
- * recombination lines
- * Mid-Infrared
- * Far-Infrared
- * Radio

SFR estimators

- * UV
- * forbidden lines
- * recombination lines
- Mid-Infrared
- Far-Infrared
- * Radio

$$SFR(UV) = 1.4 \times 10^{-28} L_{\nu} \ [erg/s/Hz]$$

$$SFR([OII]) = 1.4 \times 10^{-41} L([OII]) [erg/s]$$

$$SFR(H\alpha) = 7.9 \times 10^{-42} L(H\alpha) [erg/s]$$

$$SFR(MIR) = 2.04 \times 10^{-43} L(MIR) [erg/s]$$

$$SFR(FIR) = 4.5 \times 10^{-44} L(FIR) [erg/s]$$

$$SFR(1.4GHz) = 1.2 \times 10^{-28} L_{1.4 {
m GHz}} \ [erg/s/Hz]$$

A must-read: The review by R. Kennicutt, 1998

Assume an IMF;

- Assume an IMF;
- assume stellar synthesis models;

- * Assume an IMF;
- assume stellar synthesis models;
- * count the ionizing photons of all stars within a given age range (< 10⁷ yr; but for IR up to 10⁸ yr is used);

- Assume an IMF;
- assume stellar synthesis models;
- * count the ionizing photons of all stars within a given age range (< 10⁷ yr; but for IR up to 10⁸ yr is used);
- * assume a constant SFR over the same period;

- * Assume an IMF;
- assume stellar synthesis models;
- * count the ionizing photons of all stars within a given age range (< 10⁷ yr; but for IR up to 10⁸ yr is used);
- * assume a constant SFR over the same period;
- * calculate the relative luminosities.

Spectra of Galaxies

Spectra of Galaxies: some weird ones

Spectra of Galaxies: some weird ones

Photometry (broad-band SED) of galaxies

Photometry (broad-band SED) of galaxies

Photometry (broad-band SED) of galaxies

OBSERVATIONAL FACTS:

- We observe galaxies with different morphologies;
- * we observe galaxies with different spectra (or, more in general, SED);
- * galaxies living in different environments are in general different;
- * the galaxy population is different at different cosmic epochs.

WHAT WE WANT TO UNDERSTAND:

What determines a galaxy morphology?

- * What determines a galaxy morphology?
- * why is the content of galaxy different from galaxy to galaxy, and what does it depend on?

- * What determines a galaxy morphology?
- * why is the content of galaxy different from galaxy to galaxy, and what does it depend on?
- * what is the role of environment on the physical properties of galaxies?

- * What determines a galaxy morphology?
- * why is the content of galaxy different from galaxy to galaxy, and what does it depend on?
- * what is the role of environment on the physical properties of galaxies?
- * how were galaxies born, how do they evolve, and what are the main mechanisms driving their evolution?

Stellar Population Synthesis

Interpretation of galaxies' spectra by means of a superposition of Simple Stellar Population (SSP) spectra.

We must take into account some facts:

- Stellar properties are a function of:
 - * mass
 - * time (stellar age);
 - * metallicity;
- * A galaxy's SED depends on its SFH (SFR[t]);
- * Dust dramatically changes galaxies' SED.

How to get a model spectrum

The Ingredients (or: assumptions!)

- Theoretical set of isochrones (various ages and metallicities);
- Model or observed stellar atmospheres;
- Initial Mass Function (IMF);
- * Star Formation Rate as a function of time: $\psi(t) (\Rightarrow SFH)$;
- * a dust model.

Isochrones

What do we learn from this? Or:

What are the characteristics of stars in the various points of the diagram?

PARSEC libraries (Bressan et al. 2012)

Stellar Atmospheres

Initial Mass Function

$$\int_{m_L}^{m^U} \phi(m) \ m \ dm \quad (= 1 \ M_{\odot})$$

$$\phi(m) \propto m^{-2.35}$$
 Salpeter (1956)

Initial Mass Function

$$\int_{m_L}^{m^U} \phi(m) \ m \ dm \quad (= 1 \ M_{\odot})$$

$$\phi(m) \propto m^{-2.35}$$
 Salpeter (1956)

Many uncertainties:

- * What are the lower and upper limits?
- * What is the shape?
- * Does it change as a function of the galaxy properties?
- * <u>Is it "universal"</u>?

The Star Formation Rate

Is the mass of gas converted into stars:

$$\psi(t) = -\frac{dM_{gas}}{dt}$$

- * how many stars are formed in a given epoch?
- * is there any relation between the SFR at different epochs?
- are all galaxies similar in this respect (bursting and quenching);

Metallicity

It is the \underline{mass} fraction of a star/gas which is NOT hydrogen (X) or helium (Y): Z

Metallicity

It is the \underline{mass} fraction of a star/gas which is NOT hydrogen (X) or helium (Y): Z

E.g.: $Z_{\odot} = 0.02$

Metallicity

It is the <u>mass</u> fraction of a star/gas which is NOT hydrogen (X) or helium (Y): Z

E.g.: Z_●=0.02

Metallicity is NOT constant, but is instead a function of time and depends on various factors (e.g.: SFH, stellar mass,...)

A galaxy's spectrum

$$F_{\lambda}(\lambda, t) = \int_0^t \psi(t - t') S_{\lambda, Z(t - t')}(\lambda, t') dt'$$

- * $S_{\lambda,Z}(t')$: energy emitted per unit λ per time interval of 1 M_{\odot} of stars with metallicity Z and age t';
- * $S_{\lambda,Z(t-t')}(t')$ is the emission at each cosmic epoch t, and accounts for the initial metallicity of the stars;
- * this changes with time and is related to the chemical evolution of the ISM.

...and Dust!

$$F_{\lambda}(\lambda,t) = \int_0^t \psi(t-t') S_{\lambda,Z(t-t')}(\lambda,t') \times 10^{-0.4A_{\lambda}(t')} dt'$$

...and Dust!

$$F_{\lambda}(\lambda, t) = \int_{0}^{t} \psi(t - t') S_{\lambda, Z(t - t')}(\lambda, t') \times 10^{-0.4A_{\lambda}(t')} dt'$$

- * emission lines: $H\alpha$, $H\beta$, [OIII], [OII]...
- absorption lines;
- * D4000;
- continuum shape;
- * molecular bands;

- * emission lines: $H\alpha$, $H\beta$, [OIII], [OII]...
- absorption lines;
- * D4000;
- continuum shape;
- molecular bands;

- * emission lines: $H\alpha$, $H\beta$, [OIII], [OIII]...
- absorption lines;
- * D4000;
- continuum shape;
- molecular bands;

- * emission lines: $H\alpha$, $H\beta$, [OIII], [OIII]...
- absorption lines;
- * D4000;
- continuum shape;
- molecular bands;

- * emission lines: $H\alpha$, $H\beta$, [OIII], [OIII]...
- absorption lines;
- * D4000;
- continuum shape;
- molecular bands;

- * The luminosity (per unit mass) decreases with increasing age;
- * the spectra become redder with increasing age;
- * absorption lines (Balmer) increase their intensity up to ~ 500 Myr, then they decrease again;
- the D4000 increases with increasing age;
- * the differences between spectra at contiguous ages decrease with increasing age.

- * The luminosity (per unit mass) decreases with increasing age;
- * the spectra become redder with increasing age;
- * absorption lines (Balmer) increase their intensity up to ~ 500 Myr, then they decrease again;
- * the D4000 increases with increasing age;
- * the differences between spectra at contiguous ages decrease with increasing age.
 - +
- Metallicity makes a spectra at similar age redder;
- * dust has a similar effect.

Stellar Population Synthesis

- * To analyze and understand the spectrum of a galaxy, we will work in the hypothesis that it is well represented by a combination of SSP spectra of different age;
- * we will use the distinctive, characteristic spectral features to try and recognize which are the SP that dominate un a galaxy;
- * plus, we will include dust extinction as a function of age.

Summary

- * SFR definition and calculation;
- galaxies' spectra: main features, broad-band SED;
- Stellar Population Synthesis: isochrones, IMF, SFH, metallicity;
- theoretically building a galaxy spectrum;
- * Simple Stellar Population spectra: characteristics as a function of age.