Genomic Surveillance Intro

Roman Biek

SPEEDIER kickoff meeting (Glasgow)

November 2018

Genomic surveillance: closing the loop

Informing long-term plans for control, prevention and elimination

Investigations and diagnostics:
Katie Hampson

Effective tools for visualization and interpretation of genomic data

Targeted strategy for collecting samples and high quality metadata

GLUE platform demo:
Rob Gifford
Josh Singer

Timely generation of whole genome data in country

Sequencing demo: Kirstyn Brunker

Outline

 Case study: using rabies virus genomics to understand cross-border incursions

 What do we expect a genomics surveillance platform to deliver?

- Opportunities and challenges
 - Sample collection and sequencing
 - Data processing, sharing and visualisation

Raccoon rabies in North America

Raccoon (Procyon lotor)

Rabies virus

Raccoon rabies – spatial invasion

Spread is not homogeneous in space and time

Mountains

Oral vaccination

Genomic epidemiology at US/Canada border

Genomic epidemiology at US/Canada border

Oral vaccination zones

Transboundary incursions into Canada

Transboundary incursions into Canada

Phylogeny based on >200 virus genomes

Ten independent incursion events over two decades

Example Vermont/Quebec: Repeated, bi-directional movement of virus across vaccine corridor

Are outbreak caused by local US strains circulating near the border?

Out of 8 outbreaks

- 7 caused by local strains
- 1 caused by long distance movement

General lessons

 Fine scale viral movement (e.g. multiple border crossings) only detectable from genomic data

 Identifying sources of incursions requires extensive sequence data with good spatial coverage for comparison

What do we expect a genomics surveillance platform to deliver?

- Rapid identification of viral lineages: incursion or continuous transmission of resident strains?
- Geographic source attribution
- Apparent extinction of lineages: measure of elimination success

=> Statistical frameworks required (integration with epidemiological data)

Opportunities and challenges

1. Sample collection and sequencing

- Building on existing surveillance platform
- Access to archived samples what to sequence?
- RNA extraction of positive samples
- Training in use of portable sequencers
- Data storage and transfer

Opportunities and challenges

- 2. Data processing, sharing and visualisation
- Rapid and accurate tree building
- Integration of genomic and sub-genomic sequence data
- Effective visualisation
- Automated interpretation?

Genomic surveillance: closing the loop

Informing long-term plans for control, prevention and elimination

Investigations and diagnostics:
Katie Hampson

Effective tools for visualization and interpretation of genomic data

Targeted strategy for collecting samples and high quality metadata

GLUE platform demo:
Rob Gifford
Josh Singer

Timely generation of whole genome data in country

Sequencing demo: Kirstyn Brunker