Marine Biology, Oceanography, Computer Science and Computational Science working together.

Claudio Iturra, 2024.

T1:

Here we simulate phytoplankton cells as individuals in a well mixed reactor, like a lab experiment.

1. Import packages

```
begin
using PlanktonIndividuals, Plots, JLD2
using Plots.PlotMeasures
using PlutoUI
end
```

2. Grid Setup

First we generate grid information (one grid box, 256m thick, and 128x128 in width) and the computational architecture (CPU).

```
arch = CPU()

1 arch=CPU()

grid =
RegularRectilinearGrid{Float32, PlanktonIndividuals.Grids.Periodic, PlanktonIndividuals.Gomain: x ∈ [0.0, 128.0], y ∈ [0.0, 128.0], z ∈ [0.0, -128.0]
topology (Tx, Ty, Tz): (Periodic, Periodic, Bounded)
resolution (Nx, Ny, Nz): (1, 1, 1)
halo size (Hx, Hy, Hz): (2, 2, 2)
grid spacing (Δx, Δy, Δz): 128.0, 128.0, [min=128.0, max=128.0])

1 grid = RectilinearGrid(size=(1,1,1), x = (0, 128meters), y = (0,128meters), z = (0,-128meters))
```

3. Model Setup

Next we setup the individual-based model by specifying the computational architecture, grid, and plankton community.

And we setup diagnostics.

Then we setup the duration of the model simulation, a run directory location, and the kind of output we want.

Finally we setup the output writer.

4. Model Run

```
1 update!(<u>sim</u>)
```

5. Access Results

Results have been stored in a jld2 file. Let's open the file, look inside, and retrieve results.

```
file = JLDFile /home/cl/Downloads/results/diags.jld2 (read-only)
    timeseries
    t
    1
    2
    3
    4
    3
    6
    ... (282 more entries)

1 file = jldopen(sim.output_writer.diags_file, "r")

["t", "PAR", "NH4", "NO3", "DOC", "T", "sp1"]

1 keys(file["timeseries"])
```

Extract a vector of iterations

```
iterations =
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, more ,279, 280, 281

1 iterations = parse.(Int, keys(file["timeseries/t"]))
```

Read results into arrays and close file.

```
begin

(PAR, NH4, NO3, DOC) = (zeros(288),zeros(288),zeros(288),zeros(288))

fil2 = sim.output_writer.diags_file

get_time_series!(fil2,"PAR",PAR)

get_time_series!(fil2,"NH4",NH4)

get_time_series!(fil2,"NO3",NO3)

get_time_series!(fil2,"DOC",DOC)
end
```

```
begin
(num,dvid,mort,PS,Chl) =
(zeros(288),zeros(288),zeros(288),zeros(288))

fil = sim.output_writer.diags_file
get_time_series!(fil,"sp1/num",num)
get_time_series!(fil,"sp1/dvid",dvid)
get_time_series!(fil,"sp1/mort",mort)
get_time_series!(fil,"sp1/PS",PS)
get_time_series!(fil,"sp1/Chl",Chl)
end
```

6. Vizualize Results

Now we plot the plankton population as function of time.

And then the environmental variables.

Table of Contents

Marine Biology, Oceanography, Computer Science and Computational Science working together.

Т1.

- 1. Import packages
- 2. Grid Setup
- 3. Model Setup
- 4. Model Run
- 5. Access Results
- 6. Vizualize Results

Appendix: Helper Functions

Appendix: Helper Functions

get_time_series! (generic function with 1 method)