IE 509: WEEK 10

Submission Exercise: Chain Matrix Multiplication

Given real matrices $A_1,...,A_k$ of dimensions $m_i \times n_i, i=1,...,k-1$, our goal is to compute the product $B=A_1\cdot A_2\cdots A_k$. Computing B involves k-1 matrix multiplications: e.g., we can first obtain $A_{1,2}=A_1\cdot A_2$, and then $A_{1,3}=A_{1,2}\cdot A_3$, and so on until $B=A_{1,k-1}\cdot A_k$. The order of these multiplications will determine the effort in computing B. For example, let k=4, and let the dimensions of the matrices be $50\times 20,\ 20\times 1,\ 1\times 10$ and 10×100 , respectively. Multiplying a $m\times n$ matrix with a $n\times p$ matrix takes mnp operations, and the following table shows three different ways of multiplying these matrices.

Parenthesization	Cost Computation	Cost
$A_1 \cdot ((A_2 \cdot A_3) \cdot A_4)$	$20 \cdot 1 \cdot 10 + 20 \cdot 10 \cdot 100 + 50 \cdot 20 \cdot 100$	120,200
$(A_1 \cdot (A_2 \cdot A_3)) \cdot A_4$	$20 \cdot 1 \cdot 10 + 50 \cdot 20 \cdot 10 + 50 \cdot 10 \cdot 100$	60,200
$(A_1 \cdot A_2) \cdot (A_3 \cdot A_4)$	$50 \cdot 20 \cdot 1 + 1 \cdot 10 \cdot 100 + 50 \cdot 1 \cdot 100$	7,000

Let c(i, j) denote the minimum cost of computing $A_{i,j} = A_i \cdot A_{i+1}...A_j$. Then, our goal is to compute c(1, n). Consider the following algorithm for this problem:

```
\begin{array}{l} \text{for } i = 1 \text{ to } k \text{ do} \\ \mid c(i,i) \leftarrow 0; \\ \text{end} \\ \text{for } s = 1 \text{ to } k - 1 \text{ do} \\ \mid \text{ for } i = 1 \text{ to } k - s \text{ do} \\ \mid j \leftarrow i + s; \\ \mid c(i,j) \leftarrow \min \left\{ c(i,k) + c(k+1,j) + m_{i-1} \cdot m_k \cdot m_j \ : \ i \leq k < j \right\}; \\ \text{end} \\ \text{end} \\ \text{return } c(1,n); \end{array}
```

- 1. Write a python function that will take the dimensions of the matrices $A_1, A_2, ..., A_k$ as inputs and compute c(1, n).
- 2. Modify your implementation so that the output gives the optimal order(parenthesization) in which the matrices are supposed to be multiplied.