8/12/2021

Machine Learning Report PGP -DSBA

Saloni Juwatkar

PGP – DATA SCIENCE AND BUSINESS ANALYTICS

Table of Contents

1	Pro	blem Statement: 15	•
	1.1 check	Read the dataset. Do the descriptive statistics and do the null value condition . Write an inference on it	5
	1.2 Outlie	Perform Univariate and Bivariate Analysis. Do exploratory data analysis. Check for	3
	1.3 not?[Encode the data (having string values) for Modelling. Is Scaling necessary here or Data Split: Split the data into train and test (70:30)13	3
	1.4	Apply Logistic Regression and LDA (linear discriminant analysis)12	1
	1.5	Apply KNN Model and Naïve Bayes Model. Interpret the results12	1
	1.6 Boost	Model Tuning, Bagging (Random Forest should be applied for Bagging), and ing14	1
	_	Performance Metrics: Check the performance of Predictions on Train and Test sets Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Model: Compare the models and write inference which model is best/optimized14	
	1.8	Based on these predictions, what are the insights?28	3
2	Pro	blem Statement: 229)
	2.1 docun	Find the number of characters, words, and sentences for the mentioned nents29)
	2.2	Remove all the stopwords from all three speeches)
	2.3 presid	Which word occurs the most number of times in his inaugural address for each lent? Mention the top three words. (after removing the stopwords)	L
	2.4	Plot the word cloud of each of the speeches of the variable	2

List of Figures

Figure 1: PS:1 Sample Dataset	5
Figure 2: PS:1: Sample Tail Dataset	5
Figure 3: PS:1: Shape of Dataset	5
Figure 4: PS:1: Data Description	6
Figure 5: PS:1: Data Info	6
Figure 6: PS:1: Unique Data	6
Figure 7: PS:1 Data before and after duplicate Data imputation	6
Figure 8: PS:1: Missing Data	7
Figure 9: PS:1: Univariate Analysis	8
Figure 10: PS:1: Boxplot Before Outlier Treatment	9
Figure 11: PS:1: Boxplot after Outlier Treatment	10
Figure 12: PS1-Data after Scaling	10
Figure 13: PS:1: Pair plot	11
Figure 14: PS:1: Heatmap	12
Figure 15: PS:1: Encoding	
Figure 16: PS:1: Data Encoded Dataframe	13
Figure 17: PS:1: Data Info	13
Figure 18: PS:1: X- Frame	
Figure 19: PS:1: Train and Test Dataset	14
Figure 20: LR-Classification Report	14
Figure 21: LR-Test Data Confusion Matrix	15
Figure 22: LR-Train Data Classification Report	15
Figure 23: LR-Train Data Confusion Matrix	15
Figure 24: LDA-Test Data Classification Report	16
Figure 25: LDA - Test Data Confusion Matrix	16
Figure 26: LDA - Train Data Classification Report	
Figure 27: LDA - Train Data Confusion Matrix	17
Figure 28: KNN	17
Figure 29: KNN- Test Data Classification Report	18
Figure 30: KNN - Test Data Confusion Matrix	18
Figure 31: KNN- Test Data AUC Curve	18
Figure 32: KNN - Train Data Classification Report	19
Figure 33: KNN - Train Data Confusion Report	19
Figure 34: KNN Train Data AUC Curve	19
Figure 35: NB Test Data Classification Reports	20
Figure 36: NB Test Data Confusion Matrix	20
Figure 37: NB Test Data AUC Curve	20
Figure 38: NB Train Data Classification Report	21
Figure 39: NB Train Data Confusion Matrix	
Figure 40: NB Train Data AUC Curve	21
Figure 41: Bagging Test Data Classification Report	22

SALONI JUWATKAR

08 December 2021

Figure 42: Bagging Test Data Confusion Matrix	22
Figure 43: Bagging Test Data AUC Curve	22
Figure 44: Bagging Train Data Classification Report	23
Figure 45: Bagging Train Data Confusion Matrix	23
Figure 46: Bagging Train Data AUC Curve	23
Figure 47: Boosting Test Data Classification Report	24
Figure 48: Boosting Test Data Confusion Matrix	24
Figure 49: Boosting Test Data AUC Curve	24
Figure 50: Boosting Train Data Classification Report	25
Figure 51: Boosting Train Data Confusion Matrix	25
Figure 52: Boosting Train Data AUC Curve	25
Figure 53: Gradient Boosting Test Data Classification Report	26
Figure 54: Gradient Boosting Test Data Confusion Matrix	26
Figure 55: Gradient Boosting Test Data AUC Curve	26
Figure 56: Gradient Boosting Train Data Classification Report	27
Figure 57: Gradient Boosting Train Data Confusion Matrix	27
Figure 58: Gradient Boosting Train Data AUC Curve	27
Figure 59: Roosevelt File	30
Figure 60: Kennedy File	30
Figure 61: Nixon File	30
Figure 62: WordCloud for Roosevelt File	32
Figure 63: WordCloud for Kennedy File	32
Figure 64: WordCloud for Nixon File	33
List of Tables	
Table 1: Comparison of Models (1)	28
Table 2: Comparison of Models (2)	28

1 Problem Statement: 1

You are hired by one of the leading news channels CNBE who wants to analyze recent elections. This survey was conducted on 1525 voters with 9 variables. You have to build a model, to predict which party a voter will vote for on the basis of the given information, to create an exit poll that will help in predicting overall win and seats covered by a particular party.

1.1 Read the dataset. Do the descriptive statistics and do the null value condition check. Write an inference on it.

The csv file was read and EDA was done and the following were the inferences drawn from the EDA.

Exploratory Data Analysis

Figure 1: PS:1 Sample Dataset

Figure 2: PS:1: Sample Tail Dataset

Figure 3: PS:1: Shape of Dataset

• Dropping the redundant column 'Unnamed:0':

	age	economic.cond.national	economic.cond.household	Blair	Hague	Europe	political.knowledge
count	1525.000000	1525.000000	1525.000000	1525.000000	1525.000000	1525.000000	1525.000000
mean	54.182295	3.245902	3.140328	3.334426	2.746885	6.728525	1.542295
std	15.711209	0.880969	0.929951	1.174824	1.230703	3.297538	1.083315
min	24.000000	1.000000	1.000000	1.000000	1.000000	1.000000	0.000000
25%	41.000000	3.000000	3.000000	2.000000	2.000000	4.000000	0.000000
50%	53.000000	3.000000	3.000000	4.000000	2.000000	6.000000	2.000000
75%	67.000000	4.000000	4.000000	4.000000	4.000000	10.000000	2.000000
max	93.000000	5.000000	5.000000	5.000000	5.000000	11.000000	3.000000

Figure 4: PS:1: Data Description

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1525 entries, 0 to 1524
Data columns (total 9 columns):
# Column
                             Non-Null Count Dtype
_ _ _
    -----
                             1525 non-null
0
    vote
                                            object
                             1525 non-null int64
1
    age
 2
    economic.cond.national 1525 non-null int64
 3
    economic.cond.household 1525 non-null int64
4
    Blair
                             1525 non-null int64
    Hague
                             1525 non-null
                                            int64
    Europe
                             1525 non-null
                                            int64
    political.knowledge
                             1525 non-null
                                            int64
                             1525 non-null
                                           object
    gender
dtypes: int64(7), object(2)
memory usage: 107.4+ KB
```

Figure 5: PS:1: Data Info

```
VOTE 2
Conservative 460
Labour 1057
Name: vote, dtype: int64
GENDER 2
male 709
female 808
Name: gender, dtype: int64
```

Figure 6: PS:1: Unique Data

Duplicate Data Imputation:

• Number of duplicate rows found in the dataset were 8. These are dropped so as to getter a better prediction and can draw useful insights from the model.

```
Total no of duplicate values = 8

Total no of duplicate values = 0
```

Figure 7: PS:1 Data before and after duplicate Data imputation

Missing/ Null Value Treatment

0 0 age economic.cond.national 0 economic.cond.household 0 Blair 0 0 Hague 0 Europe 0 political.knowledge gender dtype: int64

Figure 8: PS:1: Missing Data

Inference

- On performing the descriptive analysis, we can see that there are a few columns having categorical values but are not having the data type "object"
- The Election dataset have 1525 rows and 9 columns. All the variables except vote and gender are int64 datatypes.
- 'vote' has two unique values Labour and Conservative, which is also a dependent variable.
- 'gender' has two unique values male and female.
- There are no null values in the data set.
- There are 8 duplicate rows. Even though they could represent different person with exact same profile and political outlook, we drop these rows as they are few in number and add no value to the data set.

1.2 Perform Univariate and Bivariate Analysis. Do exploratory data analysis. Check for Outliers.

Univariate Analysis

Univariate analysis refers to the analysis of a single variable. The main purpose of univariate analysis is to summarize and find patterns in the data.

Figure 9: PS:1: Univariate Analysis

Inference:

- Distribution of "age" resembles normal distribution and is slightly right skewed. Most of the respondents in this data is in the age bracket 40-60. Mean of the age variable is greater than the median followed by mode
- 'female' voters large in number than 'male'
- Labour gets the highest voting from both female and male voters. Almost in all the categories Labour is getting the maximum votes.
- Distribution of "economic.cond.national" is not normal and it is slightly left skewed. . Mean is greater than Median. Out of the 1525 participants around 600 participants rated the national economic condition as more than average (i.e scale of 3-3.3).
- Distribution of "economic.cond.household" is not normal and it is slightly left skewed. Mean is greater than Median. Out of the 1525 participants around 650 participants rated the household economic condition as more than average (i.e scale of 3-3.4).
- Distribution of "Blair" is not normal and it is slightly left skewed. Mode is greater than mean. (Around 850 nos.) 55.74% of participants has given above average Assessment of 3.7 to 4.3 for Labour leader.
- Distribution of "Hague" is not normal and it is slightly right skewed. This variable is not normally distributed and skewed. Mean is greater than mode. (Around 625 nos.) 40.98% of participants have only given above average rating of 3-5.
- Distribution of "Europe" is somewhat normal and it is left skewed. Mode is higher than mean followed by Median. Around (950 no's) 62.30% of participants have given rating of more than 6 in the scale, which shows that majority of the participants are much sceptical about European integration.

Boxplot For Outliers Treatment

Figure 10: PS:1: Boxplot Before Outlier Treatment

Figure 11: PS:1: Boxplot after Outlier Treatment

- The outliers are treated with percentile method with which the dataset if ready to be used for building regression model.
- The boxplot distribution of the continuous variables shows that there are marginal outliers in two variables: economic.cond.national and economic.cond.household.

Scaling (Answer of 1.3)

Scaling: Scaling is required as continuous variables are of different scales and need to normalize the data using Standard Scaler.

Figure 12: PS1-Data after Scaling

Bivariate Analysis

Bivariate analysis is the simultaneous analysis of two variables (attributes). It explores the concept of relationship between two variables, whether there exists an association and the strength of this association, or whether there are differences between two variables and the significance of these differences.

Inference

- On performing Bivariate analysis on the column's 'vote' and 'age, we can see that Younger people have less probability of voting Conservative. This pattern is clearly visible, however probability of voting conservative is low even for old age people, as per the above plot
- Majority of the population has a moderate understanding of the political situation. However, the middle-aged (35-50) population seem to have a better understanding than the others.
- The population of both middle-aged male and female is more than the other ages.
- None of variables are highly correlated with each other

SALONI JUWATKAR

- Ratings of 0, 2 & 3 on Knowledge of parties' positions on European integration has not been influenced by different age groups.
- The Eurosceptic sentiments have spread across the complete spectrum of age groups.
- Participants Eurosceptic sentiment has not influenced their assessments on national and household economic conditions
- National and household economic condition have a weak positive correlation
- Voters who rate national economic condition as high has a weak tendency to favour Labour party.
- Voters who are Eurosceptic weakly tend to favour Conservative party.
- Voters who are not Eurosceptic weakly tend to favour Labour party.

1.3 Encode the data (having string values) for Modelling. Is Scaling necessary here or not? Data Split: Split the data into train and test (70:30).

Encoding String Values

- We use get_dummies () function to encode the string values for modelling, i.e., converting the categorical variables to dummy or indicator variables.
- After converting the variables, the data looks as below:

```
data_en= pd.get_dummies(data_df, columns=['vote','gender'],drop_first=True)
```

Figure 15: PS:1: Encoding

	age	economic.cond.national	economic.cond.household	Blair	Hague	Europe	political.knowledge	vote_Labour	gender_male
0	-0.716161	3.0	3.0	4	1	2	2	1	0
1	-1.162118	4.0	4.0	4	4	5	2	1	1
2	-1.225827	4.0	4.0	5	2	3	2	1	1
3	-1.926617	4.0	2.0	2	1	4	0	1	0
4	-0.843577	2.0	2.0	1	1	6	2	1	1

Figure 16: PS:1: Data Encoded Dataframe

After encoding the dataset is as below.

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1517 entries, 0 to 1524
Data columns (total 9 columns):
    Column
                           Non-Null Count Dtype
    -----
                            -----
0
                           1517 non-null
                                          float64
    age
    economic.cond.national 1517 non-null
1
                                          float64
    economic.cond.household 1517 non-null float64
2
                           1517 non-null int64
3
    Blair
4
    Hague
                           1517 non-null int64
5
                           1517 non-null
    Europe
                                          int64
6
    political.knowledge
                          1517 non-null
                                          int64
7
    vote Labour
                          1517 non-null
                                          uint8
    gender male
                           1517 non-null
dtypes: float64(3), int64(4), uint8(2)
memory usage: 130.1 KB
```

Figure 17: PS:1: Data Info

Test and Train Split

• We split the train and test data as 70% and 30%. We copy all the predictor variable i.e., Price in to X data frame and copy the target into y data frame.

• X frame looks like below.

	age	economic.cond.national	economic.cond.household	Blair	Hague	Europe	political.knowledge	IsMale_or_not
0	-0.716161	3.0	3.0	4	1	2	2	0
1	-1.162118	4.0	4.0	4	4	5	2	1
2	-1.225827	4.0	4.0	5	2	3	2	1
3	-1.926617	4.0	2.0	2	1	4	0	0
4	-0.843577	2.0	2.0	1	1	6	2	1

Figure 18: PS:1: X- Frame

```
X_train (1061, 8)
X_test (456, 8)
y_train (1061, 1)
y_test (456, 1)
```

Figure 19: PS:1: Train and Test Dataset

- 1.4 Apply Logistic Regression and LDA (linear discriminant analysis).
- 1.5 Apply KNN Model and Naïve Bayes Model. Interpret the results.
- 1.6 Model Tuning, Bagging (Random Forest should be applied for Bagging), and Boosting.
- 1.7 Performance Metrics: Check the performance of Predictions on Train and Test sets using Accuracy, Confusion Matrix, Plot ROC curve and get ROC_AUC score for each model. Final Model: Compare the models and write inference which model is best/optimized.

Note: The question 1.4 - 1.7 are answered below together.

Logistic Regression

The model score seems to be pretty good in both training and testing

Test Data

1. Classification Report

Accuracy 0.8289473684210527								
		precision	recall	f1-score	support			
	0	0.76	0.73	0.74	153			
	1	0.86	0.88	0.87	303			
accur	acy			0.83	456			
macro	avg	0.81	0.80	0.81	456			
weighted	avg	0.83	0.83	0.83	456			

Figure 20: LR-Classification Report

2. Confusion Matrix

Figure 21: LR-Test Data Confusion Matrix

3. AUC

The AUC of Test Data is 0.883

4. Accuracy

Accuracy is 0.828

Train Data

1. Classification Report

Accuracy 0.8341187558906692 recall f1-score precision support 0 0.75 0.64 0.69 307 1 0.86 0.91 0.89 754 0.83 1061 accuracy 0.78 0.79 1061 0.81 macro avg weighted avg 0.83 0.83 0.83 1061

Figure 22: LR-Train Data Classification Report

2. Confusion Matrix

Figure 23: LR-Train Data Confusion Matrix

3. AUC

the AUC of Train Data 0.890

4. Accuracy

Accuracy 0.83

Linear Discriminant Analysis

Applying LDA, we see that we get a fairly good model with accuracy of about 83% approximately in the Test data

Test Data

1. Classification Report

Test Data								
Accuracy 0.831140350877193								
		precision	recall	f1-score	support			
	0	0.76	0.73	0.74	153			
	1	0.86	0.88	0.87	303			
accur	acy			0.83	456			
macro	avg	0.81	0.80	0.81	456			
weighted	avg	0.83	0.83	0.83	456			

Figure 24: LDA-Test Data Classification Report

2. Confusion Matrix

Figure 25: LDA - Test Data Confusion Matrix

3. AUC

the AUC of Test Data is 0.888

4. Accuracy

Train Data

1. Classification Report

 Accuracy 0.8341187558906692								
, and the second	precision		recall	f1-score	support			
	0	0.74	0.65	0.69	307			
	1	0.86	0.91	0.89	754			
accui	acy			0.83	1061			
macro	avg	0.80	0.78	0.79	1061			
weighted	avg	0.83	0.83	0.83	1061			

Figure 26: LDA - Train Data Classification Report

2. Confusion Matrix

Figure 27: LDA - Train Data Confusion Matrix

3. AUC

the AUC of Train Data 0.890

4. Accuracy

Accuracy 0.83

KNN

```
from sklearn.neighbors import KNeighborsClassifier
KNN_model=KNeighborsClassifier(n_neighbors=5)
KNN_model.fit(X_train,y_train)
KNeighborsClassifier()
```

Figure 28: KNN

Training and Testing results show that the model is excellent with good precision and recall values. This KNN model have good accuracy and recall values

Test Data

1. Classification Report

Test Data								
Accuracy 0.8223684210526315								
		precision	recall	f1-score	support			
	0	0.77	0.67	0.72	153			
	1	0.84	0.90	0.87	303			
accur	acy			0.82	456			
macro	avg	0.81	0.78	0.79	456			
weighted	avg	0.82	0.82	0.82	456			

Figure 29: KNN- Test Data Classification Report

2. Confusion Matrix

Figure 30: KNN - Test Data Confusion Matrix

3. AUC

the AUC of Test Data is 0.881

Figure 31: KNN- Test Data AUC Curve

4. Accuracy

Train Data

1. Classification Report

Train Data									
Accuracy 0.8586239396795476									
	precision	recall	f1-score	support					
6	0.77	0.72	0.75	307					
1	0.89	0.91	0.90	754					
accuracy	/		0.86	1061					
macro avg	g 0.83	0.82	0.82	1061					
weighted ava	g 0.86	0.86	0.86	1061					

Figure 32: KNN - Train Data Classification Report

2. Confusion Matrix

Figure 33: KNN - Train Data Confusion Report

3. AUC

the AUC of Train Data 0.929

Figure 34: KNN Train Data AUC Curve

4. Accuracy

Naïve Bayes Model.

The Naive Bayes model also performs well with better accuracy and recall values. Even though NB and KNN have same Train and Test accuracy. Based on their recall value in test dataset it is evident that KNN performs better than Naive Bayes.

Test Data

1. Classification Report

Test Data									
Accuracy 0.	Accuracy 0.8223684210526315								
	prec	ision	recall	f1-score	support				
	0	0.74	0.73	0.73	153				
	1	0.87	0.87	0.87	303				
accurac	y			0.82	456				
macro av	g	0.80	0.80	0.80	456				
veighted av	g	0.82	0.82	0.82	456				

Figure 35: NB Test Data Classification Reports

2. Confusion Matrix

Figure 36: NB Test Data Confusion Matrix

3. AUC

the AUC of Test Data is 0.876

Figure 37: NB Test Data AUC Curve

4. Accuracy

Train Data

1. Classification Report

	Train Da	ata		
Accuracy 0.8	341187558906	692		
	precision	recall	f1-score	support
0	0.72	0.69	0.71	307
1	0.88	0.89	0.88	754
accuracy			0.83	1061
macro avg	0.80	0.79	0.80	1061
weighted avg	0.83	0.83	0.83	1061

Figure 38: NB Train Data Classification Report

2. Confusion Matrix

Figure 39: NB Train Data Confusion Matrix

3. AUC

the AUC of Train Data 0.889

Figure 40: NB Train Data AUC Curve

4. Accuracy

Bagging

Test Data

1. Classification Report

Test Data Accuracy 0.8201754385964912						
	precision		recall	f1-score	support	
	0	0.74	0.71	0.72	153	
	1	0.86	0.88	0.87	303	
accura	acy			0.82	456	
macro a	avg	0.80	0.79	0.80	456	
weighted a	avg	0.82	0.82	0.82	456	

Figure 41: Bagging Test Data Classification Report

2. Confusion Matrix

Figure 42: Bagging Test Data Confusion Matrix

3. AUC the AUC of Test Data is 0.882

Figure 43: Bagging Test Data AUC Curve

4. Accuracy

Train Data

1. Classification Report

	Train Data					
Accuracy 1.0	precision	recall	f1-score	support		
0	1.00	1.00	1.00 1.00	307 754		
1	1.00	1.00	1.00	734		
accuracy			1.00	1061		
macro avg	1.00	1.00	1.00	1061		
weighted avg	1.00	1.00	1.00	1061		

Figure 44: Bagging Train Data Classification Report

2. Confusion Matrix

Figure 45: Bagging Train Data Confusion Matrix

3. AUC

the AUC of Train Data 1.000

Figure 46: Bagging Train Data AUC Curve

4. Accuracy

Boosting

Test Data

1. Classification Report

		Test Dat	a		
Accuracy	0.81	35964912280	702		
	precision		recall	f1-score	support
	0	0.75	0.67	0.71	153
	1	0.84	0.88	0.86	303
accur	acy			0.81	456
macro	avg	0.79	0.78	0.79	456
weighted	avg	0.81	0.81	0.81	456

Figure 47: Boosting Test Data Classification Report

2. Confusion Matrix

Figure 48: Boosting Test Data Confusion Matrix

3. AUC

the AUC of Test Data is 0.877

Figure 49: Boosting Test Data AUC Curve

4. Accuracy

Train Data

1. Classification Report

pport
307
754
1061
1061
1061

Figure 50: Boosting Train Data Classification Report

2. Confusion Matrix

Figure 51: Boosting Train Data Confusion Matrix

3. AUC

the AUC of Train Data 0.915

Figure 52: Boosting Train Data AUC Curve

4. Accuracy

Gradient Boosting

Test Data

1. Classification Report

		Test Data 552631578947			
,		precision		f1-score	support
	0	0.80	0.69	0.74	153
	1	0.85	0.91	0.88	303
				0.04	45.0
accur	racy			0.84	456
macro	avg	0.82	0.80	0.81	456
weighted	avg	0.83	0.84	0.83	456

Figure 53: Gradient Boosting Test Data Classification Report

2. Confusion Matrix

Figure 54: Gradient Boosting Test Data Confusion Matrix

3. AUC

the AUC of Test Data is 0.899

Figure 55: Gradient Boosting Test Data AUC Curve

4. Accuracy

Train Data

1. Classification Report

Train DataAccuracy 0.8925541941564562						
,				f1-score	support	
	0	0.84	0.78	0.81	307	
	1	0.91	0.94	0.93	754	
accur	racy			0.89	1061	
macro	avg	0.88	0.86	0.87	1061	
weighted	avg	0.89	0.89	0.89	1061	

Figure 56: Gradient Boosting Train Data Classification Report

2. Confusion Matrix

Figure 57: Gradient Boosting Train Data Confusion Matrix

3. AUC

the AUC of Train Data 0.951

Figure 58: Gradient Boosting Train Data AUC Curve

4. Accuracy

Comparison of Models:

Logistic **LDA** Regression **KNN** Train **Train Test Train** Test Test Set Set Set Set Set Set Accuracy 0.83 0.82 0.83 0.83 0.858 0.82 **AUC** 0.89 0.88 0.89 0.888 0.929 0.88 Recall 0.91 0.88 0.91 0.88 0.91 0.9 Precision 0.86 0.86 0.86 0.86 0.89 0.84 F-1 0.89 0.87 0.89 0.87 0.9 0.87 Score

Table 1: Comparison of Models (1)

Table 2: Comparison of Models (2)

	Naives Bayes		Bagging		Boosting		Gradient Boosting	
	Train	Test	Train	Test	Train	Test	Train	Test
	Set	Set	Set	Set	Set	Set	Set	Set
Accuracy	0.83	0.82	1	0.82	0.85	0.81	0.89	0.83
AUC	0.889	0.876	1	0.88	0.91	0.87	0.95	0.89
Recall	0.89	0.87	1	0.88	0.91	0.88	0.94	0.91
Precision	0.88	0.87	1	0.86	0.88	0.84	0.91	0.85
F-1	0.88	0.87	1	0.87	0.9	0.86	0.93	0.88
Score	0.00	0.87	1	0.67	0.9	0.80	0.93	0.88

1.8 Based on these predictions, what are the insights?

- Accuracy is almost similar in between 80 83%
- Recall for train set is same for LDA than logistic Regression, on the test set its performance is good.
- Accuracy & prediction is good. Hence both the model's performance is approx. equal.
- Either of the two models, Logistic Regression or LDA can be used to make predictions on the exit poll as to whether a particular voter would vote the Conservative or the Labour party based on the information provided.
- The accuracy of KNN model is very good compared to other models on train set.
- Naive Bayes model better for both train and test datasets.
- These Models should perform even better
- Even after applying Model Tuning, bagging & boasting did not improve performance
- of models.
- Majority of the population is between the ages 35-60 with considerable political knowledge and would vote mostly for Labour party.
- Bagging model is not very suitable and has overfitting issues

2 Problem Statement: 2

In this particular project, we are going to work on the inaugural corpora from the nltk in Python. We will be looking at the following speeches of the Presidents of the United States of America:

- 1. President Franklin D. Roosevelt in 1941
- 2. President John F. Kennedy in 1961
- 3. President Richard Nixon in 1973

(Hint: use .words(), .raw(), .sent() for extracting counts)

2.1 Find the number of characters, words, and sentences for the mentioned documents

We are importing the necessary libraries for the data set analysis and then the necessary data sets from the cloud.

Number of Characters in each file

Number of characters in Roosevelt file: 7571

Number of characters in Kennedy file: 7618

Number of characters in Nixon file: 9991

No of Words in each text file

• Number of words in Kennedy file: 1390

• Number of words in Nixon file: 1819

• Number of words in Roosevelt file: 1819

Number of Sentences in each text File

Number of Sentences in Kennedy file: 52

Number of Sentences in Nixon file: 68

Number of Sentences in Roosevelt file: 67

2.2 Remove all the stopwords from all three speeches.

Removing stop words is important in language processing as it removes words without any meaning. Refer the python file for the code snippet.

After removing the stopwords from the file, the output looks like

['On', 'each', 'national', 'day', 'of', 'inauguration', 'since', '1789', ',', 'the', 'people', 'have', 'renewed', 'their', 'sense', 'of', 'dedication', 'to', 'the', 'United', 'States', '.', 'In', 'Washington', "'s", 'day', 'the', 'task', 'of', 'the', 'people', 'was', 'to', 'create', 'and', 'weld', 'together', 'a', 'nation', '.', 'In', 'Lincoln', "'s", 'day', 'the e', 'task', 'of', 'the', 'people', 'was', 'to', 'preserve', 'that', 'Nation', 'from', 'disruption', 'from', 'within', '.', 'In', 'this', 'day', 'the', 'task', 'of', 'the', 'people', 'is', 'to', 'save', 'that', 'Nation', 'and', 'its', 'institutions', 'from', 'disruption', 'from', 'without', '.', 'To', 'us', 'there', 'has', 'come', 'a', 'time', ',', 'in', 'the', 'mid st', 'of', 'swift', 'happenings', ',', 'to', 'pause', 'for', 'a', 'moment', 'and', 'take', 'stock', '--', 'to', 'recall', 'what', 'our', 'place', 'in', 'history', 'has', 'been', ',', 'and', 'to', 'rediscover', 'what', 'we', 'are', 'and', 'what', 'we', 'may', 'be', '.', 'If', 'we', 'do', 'not', ',', 'we', 'risk', 'the', 'real', 'peril', 'of', 'inaction', '.', 'live', 'of', 'nations', 'are', 'determined', 'not', 'by', 'the', 'count', 'of', 'years', ',', 'but', 'by', 'the', 'lifetime', 'of', 'a', 'manin', 'is', 'three-score', 'years', 'and', 'ten', ':', 'a', 'little', 'more', ',', 'a', 'little', 'less', '.', 'The', 'life', 'of', 'a', 'nation', 'is', 'the', 'frame', 'of', 'the', 'measure', 'of', 'is', 'will', 'to', 'live', '.', 'There', 'are', 'men', 'who', 'doubt', 'this', '.', 'There', 'are', 'men', 'who', 'doubt', 'this', '.', 'there', 'as', 'a', 'mstical', 'and', 'a', 'frame', 'of', 'a', 'hari', 'of', 'some', 'unexplained', 'reason', ',', 'tyranny', 'and', 'slavery', 'have', 'become', 'the', 'surging', 'wave', 'of', 'that', 'thue', 'that', 'theedom', 'is', 'an', 'ebing', 'thee', 'ise', 'Men', 'the', 'But', 'we', 'Americans', 'know', 'that', 'this', 'is', 'not', 'true', '.', 'Eight', 'years', 'ago', ',', when', 'that', 'this', 'is', 'not', 'true', '.',

Figure 59: Roosevelt File

['Vice', 'President', 'Johnson', ',', 'Mr.', 'Speaker', ',', 'Mr.', 'Chief', 'Justice', ',', 'President', 'Eisenhower', ',', 'Vice', 'President', 'Nixon', ',', 'President', 'Truman', ',', 'reverend', 'clergy', ',' 'fellow', 'citizens', ',', 'we', 'observe', 'today', 'not', 'a', 'victory', 'of', 'party', ',', 'but', 'a', 'celebration', 'of', 'freedom', '--', 'sy mbolizing', 'an', 'end', ',', 'as', 'well', 'as', 'a', 'beginning', '---', 'signifying', 'renewal', ',', 'as', 'well', 'a s', 'change', '.', 'For', 'I', 'have', 'sworn', 'I', 'before', 'you', 'and', 'Almighty', 'God', 'the', 'same', 'solemn', 'oath', 'our', 'forebears', 'I', 'prescribed', 'nearly', 'a', 'centurry', 'and', 'three', 'quarters', 'ago', '.', 'The', 'w orld', 'is', 'very', 'different', 'now', '.', 'For', 'man', 'holds', 'in', 'his', 'mortal', 'hands', 'the', 'power', 'to', 'abolish', 'all', 'forms', 'of', 'human', 'life', '.', 'And', 'yet', 'the', 'same', 'revolutionary', 'beliefs', 'for', 'which', 'our', 'forebears', 'fought', 'are', 'still', 'at', 'issue', 'arou nd', 'the', 'globe', '--', 'the', 'belief', 'that', 'the', 'rights', 'of', 'man', 'come', 'not', 'from', 'the', 'generosity', 'of', 'the', 'state', ',', 'but', 'from', 'the', 'hand', 'of', 'God', '.', 'We', 'dare', 'not', 'forget', 'today', 'the at', 'we', 'are', 'the', 'heirs', 'of', 'that', 'first', 'revolution', '.', 'Let', 'the', 'word', 'go', 'forth', 'from', 'this', 'time', 'and', 'place', ',', 'to', 'friend', 'and', 'foe', 'alike', ',', 'that', 'the', 'torch', 'has', 'been', 'p assed', 'to', 'a', 'new', 'generation', 'of', 'Americans', '---', 'born', 'in', 'this', 'century', ',', 'tenpered', 'by', 'war', ',', 'disciplined', 'by', 'a', 'hard', 'and', 'bitter', 'peace', ',', 'proud', 'of', 'those', 'human', 'rights', 'to', 'which', 'this', 'Nation', 'has', 'always', 'been', 'committed', ',', 'and', 'to', 'which', 'we', 'are', 'committed', ',', 'and', 'to', 'which', 'we', 'are', 'committed', ',', 'and', 'to', 'which', 'we', 'are', 'committed', '', 'and', 'to', 'which', 'and', 'b

Figure 60: Kennedy File

['Mr.', 'Vice', 'President', ',', 'Mr.', 'Speaker', ',', 'Mr.', 'Chief', 'Justice', ',', 'Senator', 'Cook', ',', 'Mrs.', 'Eisenhower', ',', 'and', 'my', 'fellow', 'citizens', 'of', 'this', 'great', 'and', 'good', 'country', 'we', 'share', 'tog ether', ':', 'When', 'we', 'here', 'four', 'years', 'ago', ',', 'America', 'was', 'bleak', 'in', 'spirit', ',', 'de pressed', 'by', 'the', 'prospect', 'of', 'seemingly', 'endless', 'war', 'abroad', 'and', 'of', 'destructive', 'conflict', 'at', 'home', '.', 'As', 'we', 'meet', 'here', 'today', ',', 'we', 'stand', 'on', 'the', 'threshold', 'of', 'a', 'new', 'e ra', 'of', 'peace', 'in', 'the', 'world', '.', 'The', 'central', 'question', 'before', 'us', 'is', ':', 'How', 'shall', 'we', 'seace', 'that', 'peace', '1', 'Let', 'us', 'resolve', 'that', 'this', 'era', 'we', 'are', 'about', 'to', 'entert', 'will', 'not', 'be', 'what', 'other', 'postwar', 'periods', 'have', 'so', 'often', 'been', ':', 'a', 'time', 'of', 'retreat', 'and', 'isolation', 'that', 'that', 'this', 'will', 'be', 'what', 'it', 'can', 'become', ':', 'a', 'time', 'of', 'great', 'res ponsibilities', 'greatly', 'borne', ',', 'in', 'which', 'we', 'renew', 'the', 'spirit', 'and', 'the', 'promise', 'of', 'Am erica', 'as', 'we', 'enter', 'our', 'thid', 'century', 'as', 'a', 'nation', '.', 'This', 'past', 'year', 'saw', 'far-reac hing', 'results', 'from', 'our', 'missions', 'for', 'Peace', '.', 'By', 'continuing', 'to', 'revitalize', 'our', 'tadlicinal', 'friendships', 'had', 'by', 'our', 'missions', 'of', 'Peking', 'and', 'to', 'Moscow', ',', 'we', 'were', 'able', 'to', 'establish', 'the', 'base', 'for', 'a', 'new', 'and', 'more', 'durable', 'pattern', 'of', 'relationships', 'among', 'the', 'nations', 'of', 'the', 'world', '.', 'Because', 'of', 'America', "'s", 'bold', 'initiatives', ',', '197
2', 'will', 'be', 'long', 'remembered', 'as', 'lasting', 'peace', 'which', 'is', 'merely', 'an', 'interlude', 'between', 'wars', 'of', 'the', 'world', 'is', 'not', 'the', 'yeare, 'in', 'the', 'world', '.', 'The', 'peace', 'we',

Figure 61: Nixon File

2.3 Which word occurs the most number of times in his inaugural address for each president? Mention the top three words. (after removing the stopwords)

The words having highest frequency in each file are found out. Refer python file for the snippet.

Roosevelt:

```
[('Nation', 12),
('Know', 10),
('Spirit', 9),
('Life', 9),
('Democracy', 9),
```

Nation is the word occurring 12(highest) number of times.

Kennedy:

```
[('Let', 16),
('Us', 12),
('World', 8),
('Sides', 8),
```

Let is the word occurring 16(highest) number of times.

Nixon:

```
[('Us', 26),
('Let', 22),
('America', 21),
('Peace', 19),
('World', 18),
```

Us is the word occurring 26(highest) number of times.

2.4 Plot the word cloud of each of the speeches of the variable.

Generating the word cloud for all three of them

Roosevelt:

Figure 62: WordCloud for Roosevelt File

Kennedy

Figure 63: WordCloud for Kennedy File

Nixon

Figure 64: WordCloud for Nixon File

The End!