Computing Minimal Unsatisfiable Subsets of Constraints

Author: Shahriar Robbani Supervision: Erika Ábrahám

Theory of Hybrid Systems - Informatik 2 - RWTH-Aachen

Satisfiability Checking Seminar, Winter-16/17

Outline

- Propositional Logic Formula
- Minimal Unsatisfiable Subsets and Minimal Correction Subset
- 3 Duality of Minimal Unsatisfiable and Correction Subset
- Algorithms for compution all MUSs

FlowChart

$$\varphi := (x \lor \neg x) \land (\neg x \lor y)$$
$$:= (T \lor F) \land (F \lor T)$$
$$:= T \longrightarrow \mathsf{SAT}$$

$$\varphi := (x \lor \neg x) \land (\neg x \lor y)$$

$$:= (T \lor F) \land (F \lor T)$$

$$:= T \longrightarrow \mathsf{SAT}$$

$$\varphi := (x) \land (\neg x) \land (\neg x \lor y) \land (\neg x \lor \neg y)$$

$$:= (T) \land (F) \land (F \lor T) \land (F \lor F)$$

$$:= F \longrightarrow \mathsf{UNSAT}$$

 $\varphi := (\mathbf{x} \vee \neg \mathbf{x}) \wedge (\neg \mathbf{x} \vee \mathbf{y})$

$$\varphi := (x \vee \neg x) \wedge (\neg x \vee y)$$

$$:= (T \vee F) \wedge (F \vee T)$$

$$:= T \longrightarrow SAT$$

$$\varphi := (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$:= (T) \wedge (F) \wedge (F \vee T) \wedge (F \vee F)$$

$$:= F \longrightarrow UNSAT$$

$$unsatisfiable subset = \{(x, \neg x, (\neg x \vee \neg y)), (x, (\neg x \vee y), (\neg x \vee \neg y)), (x, (\neg x \vee y), (\neg x \vee \neg y)), (x, (\neg x \vee y), (\neg x \vee \neg y)), (x, (\neg x \vee y), (\neg x \vee \neg y))\}$$

$$\varphi := (x \vee \neg x) \wedge (\neg x \vee y)$$

$$:= (T \vee F) \wedge (F \vee T)$$

$$:= T \longrightarrow SAT$$

$$\varphi := (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$:= (T) \wedge (F) \wedge (F \vee T) \wedge (F \vee F)$$

$$:= F \longrightarrow UNSAT$$

$$unsatisfiable subset = \{(x, \neg x, (\neg x \vee \neg y)), (x, (\neg x \vee y), (\neg x \vee \neg y)), (x, (\neg x \vee y), (\neg x \vee \neg y)), (x, (\neg x \vee y), (\neg x \vee \neg y)), (x, (\neg x \vee y), (\neg x \vee \neg y))\}$$

Minimal Unsatisfiable Subsets and Minimal Correction Subset

Minimal Unsatisfiable Subset (MUnsat):

(x)	(¬ <i>x</i>)	$(\neg x \lor y)$	$(\neg x \lor \neg y)$	MUnsat	MinimumUnsat
4	4			4	4
4	4		4		
4		4	4	4	

$$\varphi = \underbrace{(x)}_{C_1} \wedge \underbrace{(\neg x)}_{C_2} \wedge \underbrace{(\neg x \vee y)}_{C_3} \wedge \underbrace{(\neg x \vee \neg y)}_{C_4}$$

Minimal Unsatisfiable Subsets and Minimal Correction Subset

Minimal Unsatisfiable Subset (MUnsat):

(x)	(¬ <i>x</i>)	$(\neg x \lor y)$	$(\neg x \lor \neg y)$	MUnsat	MinimumUnsat
4	4			4	4
4	4		4		
4		4	4	4	

Minimal Correction Subset (MCorr):

(x)	(¬ <i>x</i>)	$(\neg x \lor y)$	$(\neg x \lor \neg y)$
\checkmark			
	✓	✓	
	√		✓

$$\varphi = \underbrace{(x)}_{C_1} \wedge \underbrace{(\neg x)}_{C_2} \wedge \underbrace{(\neg x \vee y)}_{C_3} \wedge \underbrace{(\neg x \vee \neg y)}_{C_4}$$

• Hitting Sets:

• Hitting Sets:

• Hitting Sets:

• Hitting Sets:

• Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$ Collection Set: $\Omega = \{(w,x),(x,c,z)\}$ Hitting Set: $H = \{(w,x), (x,y), x, ...\}$ Minimal Hitting Set: MinH = $\{(w,y), (w,z), x\}$

Hitting Sets:

```
Variable Set: D = \{w, x, y, z\}
Collection Set: \Omega = \{(w,x),(x,c,z)\}
Hitting Set: H = \{(w,x), (x,y), x, ...\}
Minimal Hitting Set: MinH = \{(w,y), (w,z), x\}
```

Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$ Collection Set: $\Omega = \{(w,x),(x,c,z)\}$ Hitting Set: $H = \{(w,x), (x,y), x, ...\}$ Minimal Hitting Set: MinH = $\{(w,y), (w,z), x\}$

Hitting Sets:

```
Variable Set: D = \{w, x, y, z\}
Collection Set: \Omega = \{(w,x),(x,c,z)\}
Hitting Set: H = \{(w,x), (x,y), x, ...\}
Minimal Hitting Set: MinH = \{(w,y), (w,z), x\}
```

• Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$ Collection Set: $\Omega = \{(w,x),(x,c,z)\}$ Hitting Set: $H = \{(w,x), (x,y), x, ...\}$ Minimal Hitting Set: MinH = $\{(w,y), (w,z), x\}$

• Minimal hitting sets of the set of MCorr:

• Hitting Sets:

Variable Set: $D = \{w, x, y, z\}$ Collection Set: $\Omega = \{(w,x),(x,c,z)\}$ Hitting Set: $H = \{(w,x), (x,y), x, ...\}$ Minimal Hitting Set: MinH = $\{(w,y), (w,z), x\}$

• Minimal hitting sets of the set of MCorr:

FlowChart

Augment CNF with clause selector variables

Augment CNF with clause selector variables

$$\varphi = (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$\varphi' = (\neg w_1 \vee x) \wedge (\neg w_2 \vee \neg x) \wedge (\neg w_3 \vee \neg x \vee y) \wedge (\neg w_4 \vee \neg x \vee \neg y)$$

2 All MCorrs are found incrementally false

$$\varphi' = (\neg \mathsf{false} \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

Augment CNF with clause selector variables

$$\varphi = (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$\varphi' = (\neg w_1 \vee x) \wedge (\neg w_2 \vee \neg x) \wedge (\neg w_3 \vee \neg x \vee y) \wedge (\neg w_4 \vee \neg x \vee \neg y)$$

All MCorrs are found incrementally false

$$\varphi' = (\neg \mathsf{false} \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

Add blocking clauses to block old solutions

$$\varphi' = \varphi' \wedge \mathbf{w}_1$$

Augment CNF with clause selector variables

$$\varphi = (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$\varphi' = (\neg w_1 \vee x) \wedge (\neg w_2 \vee \neg x) \wedge (\neg w_3 \vee \neg x \vee y) \wedge (\neg w_4 \vee \neg x \vee \neg y)$$

All MCorrs are found incrementally false

$$\varphi' = (\neg \mathsf{false} \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

3 Add blocking clauses to block old solutions

$$\varphi' = \varphi' \wedge \mathbf{w}_1$$

Find MCorrs incrementally until all are found.

$$\varphi = (x) \wedge (\neg x) \wedge (\neg x \vee y) \wedge (\neg x \vee \neg y)$$

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

Add clause-selector variables.

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$

- Add clause-selector variables.
- Add AtMost constraint.

$$AtMost(\{w_1, w_2, w_3, w_4\}, 1)$$

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution: w₁ is false. Add blocking clause and a MCS.

MCSs

(x)

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution: w₁ is false. Add blocking clause and a MCS.
- No further solutions, increment AtMost.

MCSs (x)

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1) \land (w_2 \lor w_3)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution: w₁ is false. Add blocking clause and a MCS.
- No further solutions, increment AtMost.
- Second solution: w2 and w3 are false. Add blocking clause and another MCSs.

MCSs

- $\mathbf{0} \ \{x$

Example: Computing all MCorrs

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y)$$
$$\land (w_1) \land (w_2 \lor w_3) \land (w_2 \lor w_4)$$

- Add clause-selector variables.
- Add AtMost constraint.
- **3** First solution : w_1 is **false**. Add blocking clause and a MCS.
- No further solutions, increment AtMost.
- Second solution: w2 and w3 are false. Add blocking clause and another MCSs.
- Third solution: w2 and w4 are false. Add blocking clause and another MCSs.

MCSs

Example: Computing all MCorrs

$$\varphi = (\neg w_1 \lor x) \land (\neg w_2 \lor \neg x) \land (\neg w_3 \lor \neg x \lor y) \land (\neg w_4 \lor \neg x \lor \neg y) \land (w_1) \land (w_2 \lor w_3) \land (w_2 \lor w_4)$$

- Add clause-selector variables.
- Add AtMost constraint.
- First solution: w₁ is false. Add blocking clause and a MCS.
- No further solutions, increment AtMost.
- Second solution: w2 and w3 are false. Add blocking clause and another MCSs.
- Third solution: w2 and w4 are false. Add blocking clause and another MCSs.
- No further solutions, even without AtMost constraint.

MCSs

FlowChart

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$MUnsat = \{\neg x\}$$

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$SelMCorr = \{\neg x, \neg x \lor y\}$$

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$SelMCorr = \{\neg x, \neg x \lor y\}$$

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$SelMCorr = \{\neg x, \neg x \lor y\}$$

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$NewMCorrs = \{x\}$$

$$MCorrs = \{x, (\neg x, \neg x \lor y), (\neg x, \neg x \lor \neg y)\}$$

$$NewMCorrs = \{x\}$$

$NewMCorrs = \{x\}$

NewMCorrs =
$$\{x\}$$

MUnsat = $\{\neg x, x\}$

$$NewMCorrs = \{x\}$$

 $SelMCorr = \{x\}$

$$NewMCorrs = \{x\}$$

 $SelMCorr = \{x\}$

 $NewMCorrs = \{\emptyset\}$

NewMCorrs =
$$\{\emptyset\}$$

MUnsat = $\{\neg x, x\}$

Example: Computing All Hitting Sets of MUnsats

$$\begin{array}{c|c} & & \\ &$$

Example: Computing All Hitting Sets of MUnsats