8085 INSTRUCTION SETS

- a) Data Transfer Instructions
- b) Arithmetic Instructions
- c) Logical Instructions
- d) Rotate Instructions
- e) Branching Instructions
- f) Control Instructions

a) Data Transfer instructions

Mnemonics	Description	Example
MOV Rd, Rs	 Copies the content of source register Rs into destination register Rd Rs and Rd can be A, B, C, D, E, H, L 	MOV A, B
MOV Rd, M	 Copies the content of memory location M into the destination register Rd Rd can be A, B, C, D, E, H, L The memory location M is specified by HL pair 	MOV A, M
MOV M, Rs	 Copies the content of register Rs into memory location M Rs can be A, B, C, D, E, H, L The memory location M is specified by HL pair 	MOV M, A
MVI Rd, 8-bit	 The 8-bit data is stored in the destination register Rd Rd can be A, B, C, D, E, H, L 	MVI A, 32H
MVI M, 8-bit	 The 8-it data is stored in memory location M M is specified by HL pair 	MVI M, 32H
LDA 16-bit	Copies the content of memory	LDA 2015H

(Load Accumulator	location specified by 16-bit	A ← [2015]
Direct)	address into A	
STA 16-bit	 Copies the content of A into 	STA 2015H
(Store Accumulator Direct)	16-bit memory address	A→[2015]
LDAVD	• Copies the content of memory	LDAX B
LDAX Rp (Load Accumulator	location specified by register	
`	pair Rp into A	
Inirect)	 Rp can be B or D i.e. BC pair or DE pair 	
CTAY D	• Copies the content of A into	STAX B
STAX Rp	16-bit memory address	
(Store Accumulator	specified by register pair Rp	
Indirect)	• Rp can be B or D i.e. BC pair	
***** 1611	or DE pair	
LXI Rp, 16-bit	• Loads 16-bit data into register	LXI H, 2015H
(Load Register Pair)	pair	L ← 15
	• Rp can be B, D or H i.e. BC	H 20
IN 8-bit	pair, DE pair or HL pair	IN 40H
IIN 8-UIL	• The data from i/p port specified by 8-bit address is	IN 40H ← A [40]
	transferred into A	40H is address
	transferred into A	
OUT 8-bit	The data of A is transferred	of input port OUT 10H
001 8-011		OOT 10H → A [10]
	into output port specified by 8-bit address	A [10] 10H is address
	o-on address	
XCHG	• Evaluate the content of III	of output port XCHG
ACHU	• Exchange the content of HL	
	pair with DE pair i.e. the	H ←→ D ←→ L E
	content of H and D are	L E
	exchanged whereas content of	
	L and E are exchanged	

b) **Arithmetic Instructions**

Mnemonics	Description	Example
	 The content of register 	ADD B
ADD R/M	/memory (R/M) is added to	A A+B
(add	the A and result is stored in A	
register/memory)	 The memory M is specified 	ADD M
	by HL pair	A A+M
	 The content of register 	ADC B
ADC R/M	/memory (R/M) is added to	A A+B+CF
(add with carry)	the A along with carry flag	
	CF and result is stored in A	ADC M
	 The memory M is specified 	A A+M+CF
	by HL pair	
ADI 8-bit	• The 8-bit data is added to A	ADI 32H
(add immediate)	and result is stored in A	A +32
ACI 8-bit	• The 8-bit data is added to A	ACI 32H

(add immediate with carry)	along with carry flag CF and result is stored in A	A ← A+32+CF
SUB R/M (subtract register/memory)	The content of register /memory (R/M) is subtracted from A and result is stored in A	SUB B A A-B SUB M
	 The memory M is specified by HL pair 	A A-M
SBB R/M (subtract with	• The content of register /memory (R/M) is subtracted from A along with borrow	SBB B A A-B-BF
borrow)	flag BF and result is stored in AThe memory M is specified by HL pair	SBB M A A-M-CF
SUI 8-bit (subtract immediate)	The 8-bit data is subtracted from A and result is stored in A	SUI 32H A A-32
INR R/M (Increment Register/Memory)	 Increment the content of register/memory by 1 Memory is specified by HL pair 	INR B B B+1 INR M M M+1
DCR R/M (Decrement Register/Memory)	 Decrement the content of register/memory by 1 Memory is specified by HL pair 	DCR B B B-1 DCR M M M-1
INX Rp (Increment Register Pair)	• Increment the content of register pair Rp by 1	INX H HL HL+1
DCX Rp (Decrement Register Pair)	• Decrement the content of register pair Rp by 1	DCX H HL HL-1

c) Logical Instructions

Mnemonics	Description	Example
CMP R/M	 Compares the content of 	CMP B
(Compare	register/memory with A	
Register/Memory)	• The result of comparison is:	CMP M
	If A< R/M: Carry Flag CY=1	
	If A= R/M : Zero Flag Z=1	
	If A> R/M : Carry Flag CY=0	
CPI 8-bit	 Compares 8-bit data with A 	
(Compare	 The result of comparison is: 	
Immediate)		
	If A < 8-bit : Carry Flag CY=1	CPI 32H
	If A= 8-bit : Zero Flag Z=1	
	If A> 8-bit : Carry Flag CY=0	

ANA R/M	• The content of A are logically	ANA B
(logical AND	ANDed with the content of	A A.B
register/memory)	register/memory and result is	
	stored in A	AŅA M
	 Memory M must be specified 	$\begin{bmatrix} \leftarrow \\ A & A.M \end{bmatrix}$
	by HL pair	
ANI 8-bit	• The content of A are logically	ANI 32H
(AND immediate)	ANDed with the 8-bit data	← A A.32H
	and result is stored in A	
ORA R/M	• The content of A are logically	ORA B
(logical OR	ORed with the content of	A A or B
register/memory)	register/memory and result is	
	stored in A	ORA M
	 Memory M must be specified 	A A or M
	by HL pair	
ORI 8-bit	• The content of A are logically	ORI 32H
(OR immediate)	ORed with the 8-bit data and	A A or 32H
	result is stored in A	
XRA R/M	• The content of A are logically	XRA B
(logical XOR	XORed with the content of	A A xor B
register/memory)	register/memory and result is	
	stored in A	XRA M
	 Memory M must be specified 	A A xor M
	by HL pair	
XRI 8-bit	• The content of A are logically	XRI 32H
(XOR immediate)	XORed with the 8-bit data	A A xor 32H
	and result is stored in A	

d) Rotate Instructions

Mnemonics	Description	Example
RLC	• Each bit of A is rotated left by	RLC
(Rotate	one bit position.	
Accumulator Left)	 Bit D7 is placed in the 	
	position of D0.	
RRC	• Each bit of A is rotated right	RRC
(Rotate	by one bit position.	
Accumulator Right)	• Bit D0 is placed in the	
	position of D7.	
RAL	• Each bit of A is rotated left by	RAL
(Rotate	one bit position along with	
Accumulator Left	carry flag CY	
with Carry)	 Bit D7 is placed in CY and 	
	CY in the position of D0.	
RAR	 Each bit of A is rotated right 	RLC
(Rotate	by one bit position along with	
Accumulator Right	carry flag CY.	
with Carry)	 Bit D7 is placed in CY and 	
	CY in the position of D0.	

e) Branching Instructions

Mnemonics	Description	Example
JMP 16-bit	The program sequence is transferred	JMP C000H
(Unconditional	to the memory location specified by	
Jump)	16-bit address	
JC	Jump on Carry (CY=1)	
JNC	Jump No Carry (CY=0)	
JP	Jump on Positive (S=0)	
JM	Jump on Negative (S=1)	
JZ	Jump on Zero (Z=1)	
JNZ	Jump No Zero (Z=0)	
JPE	Jump on Parity Even (P=1)	
JPO	Jump on Parity Odd (P=0)	
CALL 16-bit	The program sequence is transferred	CALL C000H
	to the subroutine at memory location	
	specified by the 16-bit address	
RET	The program sequence is transferred	RET
	from the subroutine program to	
	calling program	

f) Control Instructions

Mnemonics	Description	Example
NOP	No operation is performed	NOP
HLT	The CPU finishes executing the	HLT
	current instruction and stops any	
	further execution	

8085 ADDRESSING MODES

The ways by which operands are specified in an instruction are called addressing modes. The different addressing modes of 8085 are:

1. Immediate Addressing Mode

If the data is present within the instruction itself, then it is called immediate addressing mode.

Examples: MVI A, 05H

ADI 55H

LXI H, C000H

2. Register Addressing Mode

If the data is present in the register and the register are specified in an instruction, than it is called register addressing mode.

Example: MOV A, B

ADD B ANA C

3. Direct Addressing Mode

If the address of the data is specified in the instruction itself, than it is called direct addressing mode.

Example: LDA 2000H

STA 2000H IN 10H OUT 01H

4. Register Indirect Addressing Mode

If the register pair which contains the address of the data is specified in the instruction, than it is called register indirect addressing mode.

Example: LDAX B

STAX D MOV M, A MOV B, M

5. Implied Addressing Mode

If the opcode in an instruction tells about the operand, than it is called implied addressing mode.

Example: RAL

RRC