Homework Assignment #4

1. For the beam shown in Figure P4-7, determine the nodal displacements and rotations, the forces and moments in each element and the reactions at the supports:

2. For the beam shown in Figure P4-23, determine the nodal displacements and rotations, the forces and moments in each element and the reactions at the supports:

3. For the beam shown in Figure P4-24, determine the nodal displacements and rotations, the forces and moments in each element and the reactions at the supports:

4a) For the beam shown in Figure P4-23, show that the function

$$v(x) = -\frac{w_0 \ell^4}{EI} \left\{ \frac{1}{16} \left(\frac{x}{l} \right)^2 - \frac{5}{48} \left(\frac{x}{l} \right)^3 + \frac{1}{24} \left(\frac{x}{l} \right)^4 \right\}$$

exactly satisfies the governing differential equation for the case

$$w(x) = -EI \frac{d^4v}{dx^4}$$

where $w(x)=w_0=$ constant and boundary conditions given by $v(0)=v(\ell)=0$, $\phi(0)=0$. For Problem 4-23, $w_0=1000\frac{\text{lb}}{\text{ft}}$, $\ell=30$ ft, $E=29\times 10^6$ psi and I=200 in⁴.

b) Using Matlab (or another computer plotting tool), plot the exact solution given in part (a) to the finite element solution derived in Problem 2 (similar to Fig 4-31a). In plotting the finite element solution, use the interpolation functions to show the variation of displacement within each element.