Practical 8

Aim: Apply EM algorithm to cluster a set of data stored in a .CSV file. Use the same data set for clustering using k-Means algorithm. Compare the results of these two algorithms and comment on the quality of clustering. You can add Java/Python ML library classes/API in the program.

Data Set:

4	Α	В	С	D	E	F		
1	Id	SepalLeng	SepalWid	PetalLeng	PetalWidt	Species		
2	1	5.1	3.5	1.4	0.2	Iris-setosa		
3	2	4.9	3	1.4	0.2	Iris-setosa		
4	3	4.7	3.2	1.3	0.2	Iris-setosa		
5	4	4.6	3.1	1.5	0.2	Iris-setosa		
6	5	5	3.6	1.4	0.2	Iris-setosa		
7	6	5.4	3.9	1.7	0.4	Iris-setosa		
8	7	4.6	3.4	1.4	0.3	Iris-setosa		
9	8	5	3.4	1.5	0.2	Iris-setosa		
10	9	4.4	2.9	1.4	0.2	Iris-setosa		
11	10	4.9	3.1	1.5	0.1	Iris-setosa		
12	11	5.4	3.7	1.5	0.2	Iris-setosa		
13	12	4.8	3.4	1.6	0.2	Iris-setosa		
14	13	4.8	3	1.4	0.1	Iris-setosa		
15	14	4.3	3	1.1	0.1	Iris-setosa		
16	15	5.8	4	1.2	0.2	Iris-setosa		
17	16	5.7	4.4	1.5	0.4	Iris-setosa		
18	17	5.4	3.9	1.3	0.4	Iris-setosa		
19	18	5.1	3.5	1.4	0.3	Iris-setosa		
20	19	5.7	3.8	1.7	0.3	Iris-setosa		
21	20	5.1	3.8	1.5	0.3	Iris-setosa		
22	21	5.4	3.4	1.7	0.2	Iris-setosa		
23	22	5.1	3.7	1.5	0.4	Iris-setosa		
24	23	4.6	3.6	1	0.2	Iris-setosa		
25	24	5.1	3.3	1.7	0.5	Iris-setosa		
26	25	4.8	3.4	1.9	0.2	Iris-setosa		
27	26	5	3	1.6	0.2	Iris-setosa		
28	27	5	3.4	1.6	0.4	Iris-setosa		
29	28	5.2	3.5	1.5	0.2	Iris-setosa		
30	29	5,2	3.4	1.4	0.2	Iris-setosa		
	← →	iris	(+)					
Dt-								

```
: import matplotlib.pyplot as plt
  from sklearn import datasets
  from sklearn.cluster import KMeans
  from sklearn.mixture import GaussianMixture
  from sklearn import preprocessing
  import pandas as pd
 import numpy as np
  # Load the Iris dataset
 iris = datasets.load_iris()
  X = pd.DataFrame(iris.data, columns=['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width'])
 y = pd.DataFrame(iris.target, columns=['Targets'])
  # KMeans clustering
 kmeans_model = KMeans(n_clusters=3, random_state=42)
 kmeans model.fit(X)
  # Standardize the data
  scaler = preprocessing.StandardScaler()
  X_scaled = scaler.fit_transform(X)
 X_scaled_df = pd.DataFrame(X_scaled, columns=X.columns)
  # Gaussian Mixture Model (GMM) clustering
  gmm = GaussianMixture(n components=3, random state=42) # Set n components to match the number of true clusters
 gmm.fit(X_scaled_df)
  # Visualization
 plt.figure(figsize=(18, 6))
 colormap = np.array(['red', 'lime', 'black'])
```

```
# Real clusters
plt.subplot(1, 3, 1)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y.Targets], s=40)
plt.title('Real Clusters')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# K-Means clustering
plt.subplot(1, 3, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[kmeans_model.labels_], s=40)
plt.title('K-Means Clustering')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# GMM clustering
plt.subplot(1, 3, 3)
gmm_labels = gmm.predict(X_scaled_df)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[gmm_labels], s=40)
plt.title('GMM Clustering')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
plt.tight_layout()
plt.show()
# Observation
print('Observation: The GMM using EM algorithm-based clustering matched the true labels more closely than KMeans.')
```


Observation: The GMM using EM algorithm-based clustering matched the true labels more closely than KM eans.

Practical: 9

Aim: Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions. Java/Python ML library classes can be used for this problem.

Dataset:

4	Α	В	С	D	E	F
1	Id	SepalLeng	SepalWidt	PetalLeng	PetalWidt	Species
2	1	5.1	3.5	1.4	0.2	Iris-setosa
3	2	4.9	3	1.4	0.2	Iris-setosa
4	3	4.7	3.2	1.3	0.2	Iris-setosa
5	4	4.6	3.1	1.5	0.2	Iris-setosa
6	5	5	3.6	1.4	0.2	Iris-setosa
7	6	5.4	3.9	1.7	0.4	Iris-setosa
8	7	4.6	3.4	1.4	0.3	Iris-setosa
9	8	5	3.4	1.5	0.2	Iris-setosa
10	9	4.4	2.9	1.4	0.2	Iris-setosa
11	10	4.9	3.1	1.5	0.1	Iris-setosa
12	11	5.4	3.7	1.5	0.2	Iris-setosa
13	12	4.8	3.4	1.6	0.2	Iris-setosa
14	13	4.8	3	1.4	0.1	Iris-setosa
15	14	4.3	3	1.1	0.1	Iris-setosa
16	15	5.8	4	1.2	0.2	Iris-setosa
17	16	5.7	4.4	1.5	0.4	Iris-setosa
18	17	5.4	3.9	1.3	0.4	Iris-setosa
19	18	5.1	3.5	1.4	0.3	Iris-setosa
20	19	5.7	3.8	1.7	0.3	Iris-setosa
21	20	5.1	3.8	1.5	0.3	Iris-setosa
22	21	5.4	3.4	1.7	0.2	Iris-setosa
23	22	5.1	3.7	1.5	0.4	Iris-setosa
24	23	4.6	3.6	1	0.2	Iris-setosa
25	24	5.1	3.3	1.7	0.5	Iris-setosa
26	25	4.8	3.4	1.9	0.2	Iris-setosa
27	26	5	3	1.6	0.2	Iris-setosa
28	27	5	3.4	1.6	0.4	Iris-setosa
29	28	5.2	3.5	1.5	0.2	Iris-setosa
30	29	5.2	3.4	1.4	0.2	Iris-setosa
iris +						

```
from sklearn.model selection import train test split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
# Load the Iris dataset
iris = datasets.load iris()
X = iris.data
y = iris.target
# Display the features and target classes
print('Features (sepal-length, sepal-width, petal-length, petal-width):')
print('Class: 0 - Iris-Setosa, 1 - Iris-Versicolor, 2 - Iris-Virginica')
print(y)
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Create and fit the K-Nearest Neighbors classifier
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(X_train, y_train)
# Predict the labels for the test set
y_pred = classifier.predict(X_test)
# Display the confusion matrix and classification report
print('Confusion Matrix:')
print(confusion_matrix(y_test, y_pred))
print('Accuracy Metrics:')
print(classification_report(y_test, y_pred))
     Features (sepal-length, sepal-width, petal-length, petal-width):
     [[5.1 3.5 1.4 0.2]
      [4.9 3. 1.4 0.2]
      [4.7 3.2 1.3 0.2]
      [4.6 3.1 1.5 0.2]
      [5. 3.6 1.4 0.2]
      [5.4 3.9 1.7 0.4]
      [4.6 3.4 1.4 0.3]
      [5. 3.4 1.5 0.2]
      [4.4 2.9 1.4 0.2]
      [4.9 3.1 1.5 0.1]
      [5.4 3.7 1.5 0.2]
      [4.8 3.4 1.6 0.2]
      [4.8 3. 1.4 0.1]
      [4.3 3. 1.1 0.1]
[5.8 4. 1.2 0.2]
      [5.7 4.4 1.5 0.4]
      [5.4 3.9 1.3 0.4]
      [5.1 3.5 1.4 0.3]
      [6.4 3.1 5.5 1.8]
      [6. 3. 4.8 1.8]
      [6.9 3.1 5.4 2.1]
      [6.7 3.1 5.6 2.4]
      [6.9 3.1 5.1 2.3]
      [5.8 2.7 5.1 1.9]
      [6.8 3.2 5.9 2.3]
      [6.7 3.3 5.7 2.5]
      [6.7 3. 5.2 2.3]
      [6.3 2.5 5. 1.9]
      [6.5 3. 5.2 2. ]
      [6.2 3.4 5.4 2.3]
      [5.9 3. 5.1 1.8]]
     Class: 0 - Iris-Setosa, 1 - Iris-Versicolor, 2 - Iris-Virginica
     2 2]
```

Practical: 10

Aim: Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.

```
[1]: import numpy as np
     from bokeh.plotting import figure, show
     from bokeh.layouts import gridplot
     # Local Weighted Regression (LWR) function
     def local_regression(x0, X, Y, tau):
        # Add a bias term to x0
         x0 = np.r_[1, x0]
        # Add bias term to X
        X = np.c_[np.ones(len(X)), X]
        # Calculate the kernelized weight for each point
        xw = X.T * radial_kernel(x0, X, tau) # XTranspose * Weight (W)
        # Compute beta (the weight vector)
        beta = np.linalg.pinv(xw @ X) @ xw @ Y # Using pseudo-inverse for stability
        # Predict the value
         return x0 @ beta # Predict the value using dot product
     # Radial kernel function (Gaussian)
     def radial_kernel(x0, X, tau):
         # Calculate radial kernel (Gaussian weights)
         return np.exp(np.sum((X - \times 0) ** 2, axis=1) / (-2 * tau * tau))
     # Generate dataset
     n = 1000
     X = np.linspace(-3, 3, num=n)
     Y = np.log(np.abs(X ** 2 - 1) + 0.5)
     # Add jitter to X to simulate noise
     X += np.random.normal(scale=0.1, size=n)
     # Define the domain for prediction
     domain = np.linspace(-3, 3, num=300)
     # Function to plot the locally weighted regression
     def plot_lwr(tau):
         # Make predictions using the local regression model
         prediction = [local_regression(x0, X, Y, tau) for x0 in domain]
         # Create plot
         plot = figure(width=400, height=400)
         plot.title.text = 'tau = %g' % tau # Display tau value in the title
         # Scatter plot of the original data
         plot.scatter(X, Y, alpha=0.3)
         # Line plot of the predicted regression
         plot.line(domain, prediction, line_width=2, color='red')
         return plot
     # Display the plots with different tau values in a grid layout
     show(gridplot([[plot_lwr(10.0), plot_lwr(1.0)], [plot_lwr(0.1), plot_lwr(0.01)]]))\\
```


\rightarrow tips.csv

4	Α	В	С	D	Е	F	G
1	total_bill	tip	sex	smoker	day	time	size
2	16.99	1.01	Female	No	Sun	Dinner	2
3	10.34	1.66	Male	No	Sun	Dinner	3
4	21.01	3.5	Male	No	Sun	Dinner	3
5	23.68	3.31	Male	No	Sun	Dinner	2
6	24.59	3.61	Female	No	Sun	Dinner	4
7	25.29	4.71	Male	No	Sun	Dinner	4
8	8.77	2	Male	No	Sun	Dinner	2
9	26.88	3.12	Male	No	Sun	Dinner	4
10	15.04	1.96	Male	No	Sun	Dinner	2
11	14.78	3.23	Male	No	Sun	Dinner	2
12	10.27	1.71	Male	No	Sun	Dinner	2
13	35.26	5	Female	No	Sun	Dinner	4
14	15.42	1.57	Male	No	Sun	Dinner	2
15	18.43	3	Male	No	Sun	Dinner	4
16	14.83	3.02	Female	No	Sun	Dinner	2
17	21.58	3.92	Male	No	Sun	Dinner	2
18	10.33	1.67	Female	No	Sun	Dinner	3
19	16.29	3.71	Male	No	Sun	Dinner	3

\rightarrow Output:

```
The Data Set (10 Samples) X:

[-2.99399399 -2.98798799 -2.98198198 -2.97597598 -2.96996997 -2.96396396 -2.95795796 -2.95195195 -2.94594595]

The Fitting Curve Data Set (10 Samples) Y:

[2.13582188 2.13156806 2.12730467 2.12303166 2.11874898 2.11445659 2.11015444 2.10584249 2.10152068]

Normalized (10 Samples) X:

[-2.94973156 -2.85391642 -2.91528377 -2.72415615 -3.02368489 -2.86973494 -2.93495497 -3.10473025 -2.84580848]

Xo Domain Space (10 Samples):

[-2.97993311 -2.95986622 -2.93979933 -2.91973244 -2.89966555 -2.87959866 -2.85953177 -2.83946488 -2.81939799]
```