

Adaptive Distributional Extensions to DFR Ranking

Casper Petersen 1 , Jakob Grue Simonsen 1 , Kalervo Järvelin 2 , Christina Lioma 1

1. Introduction

Key Assumption in DFR

Non-informative terms are distributed differently than informative terms [1].

- DFR assumes e.g. Poisson or Geometric distributions of non-informative terms.
- Unsubstantiated distributional assumption may lead to sub-optimal ranking models.

2. Research Question

Will using the best-fitting distribution to non-informative terms improve ranking effectiveness?

3. Methodology

Step 1: Identify Non-informative Terms

Figure 1: Weights of informative and non-informative terms.

Step 2: Fit and Select Candidate Statistical Models

- 1. Model Estimation: Estimate the parameters of the statistical models using maximum likelihood estimation.
- 2. Model Comparison: Compare each pair of models using Vuong's likelihood ratio (LR) test [6].
- **3. Model Selection:** Choose the model that wins most pairwise comparisons accordint to the LR test.

Figure 2: Distribution of non-informative terms (grey circles) in TREC Disks 4&5 and ClueWeb09 cat. B. Superimposed are log-logistic, Poisson, power law and Yule-Simon distributions. The Yule-Simon distribution provides the best separation between informative and non-informative words.

Step 3: Adaptive Distributional Ranking

$$R(q,d) = \sum_{t \in q \cap d} (-\log_2 P_1) \cdot (1 - P_2) = \sum_{t \in q \cap d} \left(-\log_2 \hat{M} \right) \cdot (1 - P_2)$$
 (2)

• Captures the assumption that non-informative terms are distributed in a certain way.

4. Findings

	Best-fitting	Best-fitting
Dataset	discrete distribution	continuous distribution
ClueWeb09 cat. B.	Yule-Simon Generalized Extreme	
	(p=1.627)	$(k=1.322, \sigma=30.28, \mu=36.18)$
TREC Disks 4&5	Yule-Simon	Generalized Extreme Value
	(p=1.804)	$(k=4.198, \sigma=0.7295, \mu=1.174)$

Table 1: Best-fitting discrete and continuous statistical models for each dataset.

4.1 Yule-Simon (YS) Model

• Used for e.g. text generation [5] and citation analysis [4].

$$\hat{M} = \mathsf{YS}(x|p) = \left\{ p \cdot \frac{\Gamma(x) \cdot \Gamma(p+1)}{\Gamma(x+p+1)} : x \in \mathbb{Z}^+, p > 0 \right\}$$
 (3)

5. Experimental Setup

- Queries 301-450, 601-700 for TREC Disks 4 & 5. Queries 1-200 for ClueWeb09 cat. B.
- Language model w. Dirichlet smoothing (LMDir).
- Poisson (P) and tf-idf (I_n) DFR models [1] and information-based models (LL, SPL) [2, 3].
- All models use Laplace's Law of Succession and logarithmic term-normalisation.
- Model parameter set to $T_{dc} = \frac{n_t}{|C|}$ or $T_{tc} = \frac{f_{t,C}}{|C|}$ [1, 2, 3].
- E.g. YSL2- T_{dc} is the YS model with Laplace's law of Succession and logarithmic term-normalisation (L2) with $T_{dc}=p=\frac{n_t}{|C|}$.
- All models tuned using 3-fold cross validation.

6. Results

	TREC disks 4& 5							
Model	nDCG	P@10	Bpref	ERR@20	nDCG@10			
LMDir	.4643	.3845	.2239	.1043	.3968			
PL2- T_{tc} [1]	.2524*	.1273*	.1009*	.0359*	.1332*			
PL2- T_{dc} [1]	.2487*	.1217*	.0960*	.0347*	.1273*			
I_n L2- T_{tc} [1]	.2917*	.1627*	.1114*	.0478*	.1742*			
\mathbf{I}_{n} L2- T_{dc} [1]	.2818*	.1626*	.1088*	.0481*	.1745*			
LLL2- T_{tc} [2]	.4812	.4049	.2341	.1072	.4142			
LLL2- T_{dc} [2]	.4810	.3982	.2329	.1069	.4097			
SPLL2- T_{tc} [3]	.4863	.4144	.2375	.1103	.4276			
SPLL2- T_{dc} [3]	.4876	.4176	.2387	.1107	.4299			
$\overline{YSL2-T_{tc}}$ (ADR)	.4644	.3982	.2280	.1048	.4069			
YSL2- T_{dc} (ADR)	.4860	.4182	.2381	.1113	.4312			

	ClueWeb09 cat. B.						
Model	nDCG	P@10	Bpref	ERR@20	nDCG@10		
LMDir	.2973	.2586	.2209	.0973	.1769		
PL2- T_{tc} [1]	.1448*	.0712*	.1258*	.0211*	.0472*		
PL2- T_{dc} [1]	.1444*	.0709*	.1252*	.0314*	.0471*		
I_n L2- T_{tc} [1]	.1596*	.0782*	.1405*	$.0352^{*}$.0511*		
\mathbf{I}_{n} L2- T_{dc} [1]	.1596*	.0783*	.1407*	.0352*	.0512*		
LLL2- T_{tc} [2]	.3184	.2542	.2349	.0926	.1706		
LLL2- T_{dc} [2]	.3180	.2542	.2349	.0928	.1707		
SPLL2- T_{tc} [3]	.3207	.2529	.2357	.0945	.1720		
SPLL2- T_{dc} [3]	.3224	.2586	.2370	.0958	.1752		
$\overline{YSL2-T_{tc}}$ (ADR)	.3197	.2601	.2359	.0951	.1752		
YSL2- T_{do} (ADR)	.3240	.2666	.2376	.0985	.1810		

Table 2: Gray cells denote results better than LMDir. Results in bold are best overall for each performance measure. * denotes statistically significant difference from the LMDir.

References

- [1] Gianni Amati and Cornelis J.V. Rijsbergen. Probabilistic models of information retrieval based on measuring the divergence from randomness. *ACM TOIS*, 20(4):357–389, 2002.
- [2] Stéphane Clinchant and Éric Gaussier. Bridging language modeling and divergence from randomness models: A log-logistic model for IR. In *ICTIR*, pages 54–65, 2009.
- [3] Stéphane Clinchant and Eric Gaussier. Information-based models for Ad Hoc IR. In *SIGIR*, pages 234–241. ACM, 2010.
- [4] Derek d.S. Price. A general theory of bibliometric and other cumulative advantage processes. *Journal of the*
- American society for Information science, 27(5):292–306, 1976. [5] Herbert A. Simon. On a class of skew distribution functions. *Biometrika*, pages 425–440, 1955.
- [6] Quang H. Vuong. Likelihood ratio tests for model selection & non-nested hypotheses. *Econometrica*, 57:307–333, 1989.