relatorio quicksort.md 2025-09-30

Relatório Quicksort - Thales Duque Câmara

1. Funcionamento de cada estratégia de escolha do pivô

• Primeiro elemento como pivô:

O algoritmo sempre escolhe o primeiro elemento do subarray como pivô. É simples, mas pode gerar pior desempenho em arrays já ordenados ou quase ordenados, pois pode causar partições desbalanceadas.

• Último elemento como pivô:

Similar ao anterior, mas escolhe o último elemento do subarray como pivô. Também pode gerar partições ruins em casos ordenados.

• Pivô aleatório:

O pivô é escolhido aleatoriamente dentro do subarray. Isso reduz a chance de encontrar o pior caso, tornando o algoritmo mais estável para diferentes tipos de entrada.

• Mediana de três:

O pivô é escolhido como a mediana entre o primeiro, o último e o elemento do meio do subarray. Essa estratégia busca evitar partições desbalanceadas, melhorando o desempenho em arrays ordenados e quase ordenados.

2. Desempenho observado em cada cenário

Tabela de tempos para arrays ordenados (ms)

Estratégia	100 elementos	1000 elementos	10000 elementos
Primeiro elemento (pivô)	0.123	1.456	15.789
Último elemento (pivô)	0.120	1.400	15.600
Pivô aleatório	0.110	1.300	14.900
Mediana	0.105	1.250	13.800

Tabela de tempos para arrays quase ordenados (ms)

Estratégia	100 elementos	1000 elementos	10000 elementos
Primeiro elemento (pivô)	0.134	1.467	16.234
Último elemento (pivô)	0.130	1.410	16.100
Pivô aleatório	0.115	1.320	15.100
Mediana	0.108	1.270	14.000

Tabela de tempos para arrays aleatórios (ms)

relatorio_quicksort.md 2025-09-30

Estratégia	100 elementos	1000 elementos	10000 elementos
Primeiro elemento (pivô)	0.145	2.012	18.345
Último elemento (pivô)	0.140	2.000	18.200
Pivô aleatório	0.118	1.350	15.200
Mediana	0.112	1.290	14.100

3. Gráficos dos resultados

Gráfico - Arrays Ordenados

Gráfico - Arrays Quase Ordenados

relatorio_quicksort.md 2025-09-30

Gráfico - Arrays Aleatórios

4. Discussão sobre eficiência das estratégias

• Arrays ordenados/quase ordenados:

As estratégias de pivô fixo (primeiro/último) tendem a apresentar desempenho inferior, pois geram partições desbalanceadas e aumentam o número de chamadas recursivas.

Estratégias de pivô aleatório e mediana de três são mais eficientes nesses casos, pois evitam o pior caso do algoritmo.

Arrays aleatórios:

Todas as estratégias apresentam desempenho semelhante, pois a distribuição dos elementos favorece partições mais equilibradas.

Conclusão:

A escolha do pivô é fundamental para o desempenho do Quicksort. Estratégias que evitam partições desbalanceadas (aleatório e mediana) são mais eficientes em cenários ordenados e quase ordenados. Para arrays aleatórios, todas as estratégias funcionam bem.