Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

Listing of Claims:

This listing of claims replaces all prior versions and listings of claims in the application.

Claim 1 (Withdrawn): A method of fabricating a semiconductor device, comprising the

steps of:

forming a gate electrode on a substrate; forming a diffusion region in said substrate

adjacent to said gate electrode;

forming a side wall oxide film on a side wall of said gate electrode;

forming an interlayer insulation film on said substrate such that said interlayer insulation

film covers said gate electrode and further said side wall oxide film; and

forming a self-aligned opening in said interlayer insulation film such that said self-aligned

opening exposes said diffusion region;

said step of forming said self-aligned opening comprising the steps of: forming a first

insulation film of an oxide such that said first insulation film covers said side wall oxide film and

said diffusion region;

depositing a second insulation film having a composition different from a composition of

said first insulation film, on said first insulation film;

forming said interlayer insulation film on said second insulation film;

forming a contact hole in said interlayer insulation film in correspondence to said diffusion

region by an etching process while using said second insulation film as an etching stopper;

Page 2 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

removing said second insulation film exposed at a bottom of said contact hole by an etching

process while using said first insulation film as an etching stopper; and

removing said first insulation film exposed at a bottom of said contact hole selectively with

respect to said diffusion region;

wherein said step of forming said first insulation film is conducted by a plasma CVD

process, with a high-frequency power set smaller than a high-frequency power in which said first

insulation film contains H₂O with an amount of about 2.4 wt %.

Claim 2 (Withdrawn): A method as claimed in claim 1, wherein said high-frequency

power is set smaller than a high-frequency power in which said first insulation film contains H₂O

with an about of about 1.1 wt % or less.

Claim 3 (Withdrawn): A method as claimed in claim 1, wherein said high-frequency

power is set smaller than about 100 W.

Claim 4 (Withdrawn): A method as claimed in claim 1, wherein said high-frequency

power is set between about 50 W and about 100 W.

Claim 5 (Withdrawn): A method as claimed in claim 1, wherein said first insulation film

has a refractive index of about 1.5.

Page 3 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

Claim 6 (Withdrawn): A method as claimed in claim 1, wherein said plasma CVD process

is conducted while using SiH₄ and N₂O as source materials, with a proportion of N₂O with respect

to SiH₄ set to be about 10 or less.

Claim 7 (Withdrawn): A method as claimed in claim 1, further including a step, after said

step of forming said first insulation film and before said step of forming said second insulation film,

of annealing said first insulation film.

Claim 8 (Withdrawn): A method as claimed in claim 7, wherein said annealing step is

conducted by a rapid heating process.

Claim 9 (Withdrawn): A method as claimed in claim 1, wherein said step of forming said

first insulation film and said step of forming said second insulation film are conducted in a

common reaction vessel, without a step of taking out said substrate outside said reaction vessel.

Claim 10 (Withdrawn): A method as claimed in claim 1, wherein said step of forming said

diffusion region includes a step of forming a silicide on a surface of said diffusion region, and

wherein said step of forming said silicide is conducted before said step of forming said first

insulation film.

Page 4 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

Claim 11 (Withdrawn): A method as claimed in claim 1, further comprising a step, before said step of forming said first insulation layer, of forming a conductor pattern in contact with said diffusion region.

Claim 12 (Withdrawn): A method of fabricating a semiconductor device, comprising the steps of:

forming a gate electrode on a substrate;

forming a diffusion region in said substrate adjacent to said gate electrode;

forming a side wall oxide film on a side wall of said gate electrode;

forming an interlayer insulation film on said substrate such that said interlayer insulation film covers said gate electrode and further said side wall oxide film; and

forming a self-aligned opening in said interlayer insulation film such that said self-aligned opening exposes said diffusion region; said step of forming said self-aligned opening comprising the steps of:

forming a first insulation film of an oxide such that said first insulation film covers said side wall oxide film and said diffusion region;

depositing a second insulation film having a composition different from a composition of said first insulation film, on said first insulation film;

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

forming said interlayer insulation film on said second insulation film; forming a contact

hole in said interlayer insulation film in correspondence to said diffusion region by an etching

process while using said second insulation film as an etching stopper;

removing said second insulation film exposed at a bottom of said contact hole by an etching

process while using said first insulation film as an etching stopper; and

removing said first insulation film exposed at a bottom of said contact hole selectively with

respect to said diffusion region;

wherein said step of forming said first insulation film is conducted by a CVD process that

uses SiH₄ and N₂O as source gases.

Claim 13 (Withdrawn): A method as claimed in claim 12, wherein said CVD process is

conducted while setting a ratio of N₂O with respect to SiH₄ to about 5 or less.

Claim 14 (Withdrawn): A method as claimed in claim 12, wherein said CVD process is

conducted at a substrate temperature of about 825°C or less.

Claim 15 (Withdrawn): A method as claimed in claim 12, further including a step, after

said step of forming said first insulation film and before said step of forming said second insulation

film, of annealing said first insulation film.

Page 6 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

Claim 16 (Withdrawn): A method as claimed in claim 12, wherein said annealing step is

conducted by a rapid heating process.

Claim 17 (Withdrawn): A method as claimed in claim 12, wherein said step of forming

said first insulation film and said step of forming said second insulation film are conducted in a

common reaction vessel, without a step of taking out said substrate outside said reaction vessel.

Claim 18 (Withdrawn): A method as claimed in claim 12, wherein said step of forming said

diffusion region includes a step of forming a silicide on a surface of said diffusion region, and

wherein said step of forming said silicide is conducted before said step of forming said first

insulation film.

Claim 19 (Withdrawn): A method of fabricating a semiconductor device, comprising the

steps of:

forming a gate electrode on a substrate;

forming a diffusion region in said substrate adjacent to said gate electrode;

forming a side wall oxide film on a side wall of said gate electrode;

forming an interlayer insulation film on said substrate such that said interlayer insulation

film covers said gate electrode and further said side wall oxide film; and

Page 7 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

forming a self-aligned opening in said interlayer insulation film such that said self-aligned opening exposes said diffusion region;

said step of forming said self-aligned opening comprising the steps of:

forming a first insulation film of an oxide such that said first insulation film covers said side wall oxide film and said diffusion region;

depositing a second insulation film having a composition different from a composition of said first insulation film, on said first insulation film;

forming said interlayer insulation film on said second insulation film;

forming a contact hole in said interlayer insulation film in correspondence to said diffusion region by an etching process while using said second insulation film as an etching stopper;

removing said second insulation film exposed at a bottom of said contact hole by an etching process while using said first insulation film as an etching stopper; and

removing said first insulation film exposed at a bottom of said contact hole selectively with respect to said diffusion region;

wherein said step of forming said first insulation film is conducted by depositing a silicate glass containing P.

Claim 20 (Withdrawn): A method as claimed in claim 19, wherein said silicate glass contains P therein with an amount of about 6 wt % or less.

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

Claim 21 (Withdrawn): A method as claimed in claim 19, wherein said silicate glass further

contains B.

Claim 22 (Withdrawn): A method as claimed in claim 21, wherein said silicate glass

contains B with an amount of about 4 wt % or less.

Claim 23 (Withdrawn): A method as claimed in claim 19, further including a step, after

said step of forming said first insulation film and before said step of forming said second insulation

film, of annealing said first insulation film.

Claim 24 (Withdrawn): A method as claimed in claim 23, wherein said annealing step is

conducted by a rapid heating process.

Claim 25 (Withdrawn): A method as claimed in claim 19, wherein said step of forming said

first insulation film and said step of forming said second insulation film are conducted in a

common reaction vessel, without a step of taking out said substrate outside said reaction vessel.

Claim 26 (Withdrawn): A method as claimed in claim 19, wherein said step of forming said

diffusion region includes a step of forming a silicide on a surface of said diffusion region, and

Page 9 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

wherein said step of forming said silicide is conducted before said step of forming said first insulation film.

Claim 27 (Withdrawn): A method as claimed in claim 19, further comprising a step, before said step of forming said first insulation layer, of forming a conductor pattern in contact with said diffusion region.

Claim 28 (Previously Presented): A semiconductor device, comprising:

a substrate;

a gate electrode provided on said substrate;

a diffusion region formed in said substrate adjacent to said gate electrode;

a side-wall insulation film formed on a side wall of said gate electrode;

a self-aligned contact hole defined by said side-wall oxide film and exposing said diffusion region; and

a silicide region formed selectively on a surface of said diffusion region;

wherein said semiconductor device further includes;

a first insulation film provided on said gate electrode so as to cover said side wall oxide film partially;

a second insulation film having a composition different from a composition of said first insulation film and provided on said first insulation film;

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

an interlayer insulation film deposited on said second insulation film;

a contact hole formed in said interlayer insulation film, said contact hole extending

through said first and second insulation films and exposing said self-aligned contact hole;

said first insulation film contains H₂O with an amount smaller than about 2.4 wt%.

Claim 29 (Original): A semiconductor device as claimed in claim 28, wherein said first

insulation film contains H₂O with an amount of about 1.1 wt % or less

Claim 30 (Canceled)

Claim 31 (Previously Presented): A semiconductor device as claimed in claim 28, further

comprising a conductor pattern contacting with said diffusion region and said gate electrode such

that said conductor pattern extends along a surface of said side wall oxide film.

Claim 32 (Canceled)

Claim 33 (Previously Presented): A semiconductor device as claimed in claim 28, further

comprising another silicide region formed selectively on a surface of said gate electrode.

Page 11 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

Claim 34 (Previously Presented): A semiconductor device, comprising:

a substrate;

a gate electrode provided on said substrate;

a diffusion region formed in said substrate adjacent to said gate electrode;

a side-wall insulation film formed on side wall of said gate electrode;

a self-aligned contact hole defined by said side-wall oxide film and exposing said diffusion region; and

a silicide region formed selectively on a surface of said diffusion region,

wherein said semiconductor device further includes:

a first insulation film provided on said gate electrode so as to cover said side wall oxide film partially;

a second insulation film having a composition different from a composition of said first insulation film and provided on said first insulation film;

an interlayer insulation film deposited on said second insulation film;

a contact hole formed in said interlayer insulation film, said contact hole extending through said first and second insulation films and exposing said self-aligned contact hole;

said first insulation film is formed of PSG containing P with an amount of about 6 wt% or less.

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

Claim 35 (Previously Presented): A semiconductor device as claimed in claim 34, further comprising a conductor pattern contacting with said diffusion region and said gate electrode such that said conductor pattern extends along a surface of said side wall oxide film.

Claim 36 (Canceled)

Claim 37 (Previously Presented): A semiconductor device as claimed in claim 34, further comprising another silicide region formed selectively on a surface of said gate electrode.

Claim 38 (Previously Presented): A semiconductor device, comprising:

a substrate;

a gate electrode provided on said substrate;

a diffusion region formed in said substrate adjacent to said gate electrode;

a side-wall insulation film formed on a side wall of said gate electrode;

a self-aligned contact hole defined by said side-wall oxide film and exposing said diffusion

region; and

a silicide region formed selectively on a surface of said diffusion region,

wherein said semiconductor device further includes:

a first insulation film provided on said gate electrode so as to cover said side wall oxide

film partially;

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

a second insulation film having a composition different from a composition of said first

insulation film and provided on said first insulation film;

an interlayer insulation film deposited on said second insulation film;

a contact hole formed in said interlayer insulation film, said contact hole extending through

said first and second insulation films and exposing said self-aligned contact hole;

said first insulation film is formed of BPSG containing B with an amount of about 4 wt%

or less.

Claim 39 (Previously Presented): A semiconductor device as claimed in claim 38, further

comprising a conductor pattern contacting with said diffusion region and said gate electrode such

that said conductor pattern extends along a surface of said side wall oxide film.

Claim 40 (Canceled)

Claim 41 (Previously Presented): A semiconductor device as claimed in claim 38, further

comprising another silicide region formed selectively on a surface of said electrode

Claim 42 (Withdrawn): A method of fabricating a semiconductor device, comprising the

steps of:

forming a refractory metal layer on a diffusion region in a semiconductor substrate; (A)

Page 14 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

(B) forming a self-aligned silicide layer on said refractory metal layer by applying a

heat-treatment process;

forming an insulation film on a surface of said silicide layer by conducting a plasma (C)

CVD process while using a source gas containing SiH4 and N₂O with a ratio of N₂O with respect

to SiH4 equal to or less than 5;

(D) forming a nitride film, after said step (C), on said insulation film in contact with

said insulation film, without exposing a surface of said insulation film to the air;

(E) forming an interlayer insulation film so as to cover said nitride film; and

forming a window exposing said silicide layer, by applying a dry etching process (F)

consecutively to said interlayer insulation film, said nitride film, and said insulation film.

Claim 43 (New): A semiconductor device, comprising:

a substrate;

a gate electrode provided on said substrate;

a diffusion region formed in said substrate adjacent to said gate electrode;

a side-wall insulation film formed on a side wall of said gate electrode;

a self-aligned contact hole defined by said sidewall oxide film and exposing said diffusion

region;

a silicide region formed selectively on a surface of said diffusion region;

Page 15 of 23

Submission Under 37 C.F.R. §1.114 dated March 8, 2004

Reply to the Office Action dated April 7, 2003

a first insulation film provided on said gate electrode so as to cover said side wall oxide

film partially;

a second insulation film having a composition different from a composition of said first

insulation film and provided on said first insulation film;

an interlayer insulation film deposited on said second insulation film; and

a contact hole formed in said interlayer insulation film, said contact hole extending through

said first and second insulation films and exposing said self-aligned contact hole,

wherein said first insulation film is formed by a plasma CVD process with a plasma power

of 100W or less and contains H₂O with an amount smaller than about 1.1 wt%, and said first

insulation film has a refractive index of 1.5 or less.

Page 16 of 23