CPSC-6430 Machine Learning: Implementation & Evaluation Homework 1: K-Fold Cross-Validation

Dineshchandar Ravichandran C19657741

Contents

Intr	ntroductionntroduction		
1.	Problem Statement	3	
	Project Screen Shot:		
	Project Input and Output		
	. Input Data:		
3.2	. Output:	4	

Introduction

HW1 to implement the K-fold cross validation to choose the best regression algorithm from Liner, Quadratic and Cubic model.

1. Problem Statement

- To create a Python program to read the Women's Olympic 100m Sprint data from "W100MT.txt" file as per the user input and run this model through Liner, Quadratic and Cubic model.
- Evaluate the above models with K-fold cross validation with 5 folds.
- Generate a table as illustrated in HW prompt.
- Based on the K-fold validation of above models choose the model with least mean J value.
- Use the best model to predict and plot graph.

2. Project Screen Shot:

The above screen shots represents the code in the SPYDER IDE, along with K-Fold Summary
of Linear, Quadratic and Cubic model J Data in console (The data will be visible in CSV
saved) and the graphical representation of J Test and J Train values for all three models.

• Console Screen Shot for the same:

3. Project Input and Output

3.1. Input Data:

TXT file containing Women's Olympic 100m Sprint data from "1928 to 2008".

3.2. Output:

3.3. A Summary table

Fold	Linear J	Quadratic J	Cubic J
2345	[[0.01608517]]	[[1.18593825e-05]]	[[0.01559116]]
1-Test	[[0.37543116]]	[[0.00389656]]	[[0.23300417]]
1345	[[0.0620803]]	[[0.00011694]]	[[0.05359002]]
2-Test	[[0.09661618]]	[[8.37661028e-05]]	[[0.04560255]]
1245	[[0.07276117]]	[[7.06588189e-05]]	[[0.051885]]
3-test	[[0.0363714]]	[[0.00026969]]	[[0.0335505]]
1235	[[0.0784264]]	[[0.0001062]]	[[0.05769926]]
4-Test	[[0.01321215]]	[[0.0001316]]	[[0.01192363]]
1234	[[0.07260715]]	[[0.00012468]]	[[0.05693641]]
5-Test	[[0.04455494]]	[[3.66117388e-05]]	[[0.00566551]]
Mean Train	0.060392039	0.000086069	0.04714037
Mean Test	0.113237167	0.000883646	0.065949273

3.3. A.1. Prediction Graph Representation

- From the above illustrated summary table and graph plot of prediction of Linear, Quadratic and Cubic model. We are able to summarize that the **Quadratic model** has the lowest mean test and train J value [J_test: 0.000086069, J train: 0.000883646] , as highlighted in yellow in Summary table.
- The below segments will cover the Weight Values for all the three models and the plot representation of Mean J training values and J testing values for all the 3 models.
 - 3.3. C. Weight Representation for all the three module
 - $hw(x)\{Linear\}$ = 12.28771135 + (-0.01507181)(x)
 - $hw(x){Quadratic} = 13.1307195 + (-0.0432482706)(x) + 0.00020636904(x^2)$
 - $hw(x){Cubic}$ = 12.5156194 + (-0.0102228099) (x) + (-0.000322218021)(x^2) + (0.00000259521291) (x^3)
 - 3.3. D. Weight Calculation using Best Model for entire data Set:
 - Weight's calculated using "Quadratic Model" for entire women 100m data set are:
 - o W0=13.1307195
 - o W1= 0.0432482706
 - o W2= 0.000206369039

3.3. E. J Test VS J Train Graph Representation

Comparison between all models

Linear Model

Liner Model Jtest vs Jtrain 0.200 Liner Train J vlaue Liner Test J vlaue 0.175 0.150 0.125 0.100 0.075 0.050 0.025 2.0 2.5 3.0 3.5 1.0 1.5 4.0 4.5 5.0 Fold

Cubic Model

Quadratic Model

