AI-powered Nutrition Analyzer for Fitness Enthusiasts

[1] Hariharan.M [2] Arvind.A [3] Subramaniam.S [4] Goutham Kumar.R [5]Ukesh.B

Bachelor of Technology, Information Technology

Sri Sai Ram Institute of Technology

CHAPTER 1

INTRODUCTION

ABSTRACT:

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysisis the process of determining the nutritional content of food. It is avital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

PROJECT DESCRIPTION

The main aim of the project is to build a model which is used for classifying the fruit depends on the different characteristics like color, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fiber, Protein, Calories, etc.).

TECHNOLOGIES USED:

Python, CNN, IBM Cloud, IBM Watson, IBM Cloudant DB, Deep Learning, Python- Flask

PROJECT FLOW:

The user interacts with the UI (User Interface) and give theimage as input. Then the input image is then pass to our flask application, And finally with the help of the model which we build we willclassify the result and showcase it on the UI..

LITERATURE SURVEY:

Nutrition is vital to the growth of the human body. Nutritional analysis guarantees that the meal meets the appropriate vitamin and mineral requirements, and the examination of nutrition in food aid in understanding the fat proportion, carbohydrate dilution, proteins, fiber, sugar, and so on. Another thing to keep in mind is not to exceed our daily calorie requirements. If this limit is surpassed, we may become fat.

Neutrino: Artificial Intelligence Nutrition App. As the name implies, the app provides nutrition-based analytics and data to its customers and is quickly becoming a prominent platform for offering AI fitness services. It deploys predictive analysis for personalized data compilation using mathematical and natural language processing (NLP) models.

Furthermore, it shares nutrition-related data with its partners via SDK and API integration improve its services and product offerings. It Is an Israel-basedfirm created in 2011 that allows pregnant women to customize their body's nutritional requirements. This software collaborated with IBM's natural language capability to provide 24-hour assistance and dietary recommendations. MyFitnessPal App creates a daily food diary for you by recognizing the food from photos you shoot. You take a picture, dial in data such as whether you are eating breakfast or lunch and add a quick text label, and the app estimates the calorie content. It does a pretty good job, although its estimate can be a bit unpredictable. It also needs a network connection, which is something to think about when eating out.

RESULT AND DISCUSSION:

This model will be useful for every category peopleirrespective of age and gender. Using this model we'll know the exact amount of nutritional content in the food we have which is very useful asit isvery important to take care of one's health

CHAPTER 3

IDEATION AND PROPOSED SOLTUION

Customer Problem Statement:

Food is essential for human life and has been the concern of many healthcare conventions. Nowadays new dietary assessment and nutrition analysis tools enable more opportunities to help people understand their daily eating habits, exploring nutrition patterns and maintain a healthy diet. Nutritional analysisis the process of determining the nutritional content of food. It is avital part of analytical chemistry that provides information about the chemical composition, processing, quality control and contamination of food.

The main aim of the project is to build a model which is used for classifying the fruit depends on the different characteristics like color, shape, texture etc. Here the user can capture the images of different fruits and then the image will be sent the trained model. The model analyses the image and detect the nutrition based on the fruits like (Sugar, Fiber, Protein, Calories, etc.).

The user interacts with the UI (User Interface) and give theimage as input. Then the input image is then pass to our flask application, And finally with the help of the model which we build we willclassify the result and showcase it on the UI.

I am Mr.X	Mr.X , fruits, food,etc.
-----------	--------------------------

I'm trying to	Have nutritious food	Sugar,Protein,Carbs,Fat.etc.
but	I'm unable to analyze	Lack of analyzing capacity
because	I don't know the nutrition values	Don't know how to analyze with AI, lack of knowledge in AI.
which makes me feel	Lazy about choosing right food	Can't analyze due to unknown facts about the nutrition values.

Problem	I am	I'm trying	But	Because	Which makes
Statement	(Custome	to			me feel
(PS)	r)				
PS-1	X	Have nutritious food	Have nutritio us food	Have nutritious food	Have nutritious food
PS-2	Y	Have nutritious food	Have nutritio us food	Have nutritious food	Have nutritious food

Empathy Map Canvas:

An empathy map is a simple, easy-to-digest visual that captures knowledge about a user's behaviours and attitudes.

It is a useful tool to helps teams better understand their users.

Creating an effective solution requires understanding the true problem and the person who is experiencing it. The exercise of creating the map helps participants consider things from the user's perspective along with his or her goals and challenges.

Brainstorm & Idea Prioritization

The main aim of the project is to build a model which is used for identifying the fruit depends on the different characteristics like colour, shape, texture etc using image processing. Here the user can capture the images of different fruits and then the image will be analysed with the trained model. The model analyses the image and lists out the nutrients present in the fruit like sugar, vitamins, minerals, protein etc

Step-1: Team Gathering, Collaboration and Select the Problem Statement

Step-2: Brainstorm, Idea Listing and Grouping

Step-3: Idea Prioritization

S.No.	Parameter	Description	
1.	Problem Statement	The main aim of the project is	
	(Problem to be solved)	to build a model which is used	
		for identifying the fruit depends	
		on the different characteristics	
		like colour, shape, texture etc	
		using image processing. Here	
		the user can capture the images	
		of different fruits and then the	
		image will be analysed with the	
		trained model. The model	
		analyses the image and lists out	
		the nutrients present in the fruit	
		like sugar, vitamins, minerals,	
		protein etc.	

2.	Idea / Solution description	The idea of this application is that the user can capture the images of different fruits and vegetables, and then the image will be sent to the trained model. The model analyses the image and detects the nutrition based on the fruits like (Sugar, Fibre, Protein, Calorie intake, etc.). The above idea is achieved by using the Convolution Neural Network (CNN). It is used to pick the raw pixels present in the image. Fruit Recognition using Colour and Texture Features.
3.	Novelty / Uniqueness	The application has several unique features. The main feature is that the user need not have to visit or consult a Nutritionist (or) a Dietician to follow a fit and healthy diet. This application has the feature of analysing the entire nutritional content of fruits and vegetables by simply scanning them. It provides for a personalized dietary requirement for individuals who have limited preferences while

		choosing food.
4.	Social Impact / Customer Satisfaction	This will acquire knowledge and provide information about nutrition. Now a days, no one follows the diet plan. Providing this information, they come to know about the nutrition present in each food item. It is used to schedule a diet plan by taking the image of a food item and if we send it, we can get information about each food nutrition like carbohydrates, fat, proteins, vitamins, minerals and sugar. This will help others to improve their health and fitness.

5.	Business Model (Revenue Model)	Social media is the best way to spread the word about our application and with the help of influencers we can attract normal people. Clustering and targeting the fitness people with the help of local gyms. Allowing third-party vendors(Nutritional Products) to sell their products through our app via advertisements is way to generate money. If the products sold through advertisements, then it is even better.
6.	Scalability of the Solution	Artificial intelligence (AI) can be used to predict investment outcomes quickly and effectively, as well as to devise strategies or establish long-term goals. Scalable AI pertains to how data models, infrastructures, and algorithms can increase or decrease their complexity, speed, or size at scale in order to best handle the requirements of the situation at hand. As improvements continue with data storage capacities as well as computing

	resources, AI models can be
	created with billions of
	parameters. Scaling up nutrition
	is a global push for action and
	investment to improve
	maternal, child nutrition and
	various health problems

Solution Architecture:

1. The main aim of the project is to build a model which is used for identifying the fruit depends on the different characteristics like colour, shape, texture etc using image processing. Here the user can capture the images of different fruits and then the image will be analysed with the trained model. The model analyses the image and lists out the nutrients present in the fruit like sugar, vitamins, minerals, protein etc

REQUIREMENT ANALYSIS

Functional Requirements:

Following are the functional requirements of the proposed solution.

FR	Functional	Sub Requirement (Story / Sub-Task)
No.	Requirement (Epic)	
FR-1	User Registration	Registration through Form,IBM CLOUD
FR-2	User Confirmation	Confirmation via Email
		Confirmation via OTP
FR-3	Upload Image of the food	Existing image should be uploaded in the
		web api
FR-4	Get the results declared	View data
	by the analyzer	

Non-functional Requirements:

Following are the non-functional requirements of the proposed solution.

FR No.	Non-Functional	Description	
	Requirement		
NFR-1	Usability	Used many times for several food	
		images	
NFR-2	Security	Only registered users can access	
NFR-3	Reliability	Always reliable since the model sis	
		running in the IBM cloud	
NFR-4	Performance	High performance	
NFR-5	Availability	Always available in Cloud	
NFR-6	Scalability	High	

PROJECT DESIGN

Data Flow Diagrams:

A Data Flow Diagram (DFD) is a traditional visual representation of the information flows within a system. A neat and clear DFD can depict the right amount of the system requirement graphically. It shows how data enters and leaves the system, what changes the information, and where data is stored.

User Stories

User Type	Functional Requirement (Epic)	User Story Number	User Story / Task	Acceptance criteria	Priority	Release
Customer (Mobile user)	Registration	USN-1	As a user, I can register for the application by entering my email, password, and confirming my password.	my account /	High	Sprint-1
		USN-2	As a user, I will receive confirmation email once I have registered for the application	confirmation email &	High	Sprint-1
		USN-3	As a user, I can register for the application through Facebook	1	Low	Sprint-2
		USN-4	As a user, I can register for the application through Gmail		Medium	Sprint-1
	Login	USN-5	As a user, I can log into the application by entering email & password		High	Sprint-1
	Dashboard					
Customer (Web user)	Accessory	USN-6	Able to choose the images for classification	Accepted	high	1.0

Customer	Executive	USN-7	Can uplo	ad Accepted	low	1.0
Care			images			
Executive						
Administrat	Admin	USN-8	Can acce	ss Accepted	high	1.0
or			pictures			

SPRINT PLANNING

SPRINT	FUNCTIONAL	USER	USER	USER	PRIORI	TEAM MEMBERS
· -	REQUIREME	STORY	TASK	TASK	TY	
	NT	NUMB	POINTS			
		ER				
SPRINT 1	Importing	USN-1	As a user, I	I can access	High	HARIHARAN.M, UKESH.B
SFKINI I	libraries, initial	0311-1	can register	my account	Tilgii	HARHARAN.WI, ORESH.B
	code		for the	/ dashboard		
	Code		application	/ dashboard		
			by entering			
			my email,			
			password,			
			and			
			confirming			
			my			
			password.			
SPRINT 1	Dataset	USN-2	As a user, I	I can	High	HARIHARAN.M, UKESH.B
	download		will receive	receive		
			confirmati	confirmati		
			on email	on email &		
			once I have	click		
			registered	confirm		
			for the			
			application			
SPRINT 2	Load the data set	USN-3	As a user, I	I can	Low	ARVIND,GOUTHAM
			can register	register &		KUMAR
			for the	access the		
			application	dashboard		
			through	with		
			Facebook	Facebook		
SPRINT 2	Load the image	USN-4	As a user, I	Login	Medium	SUBRMANIAM
SFRINT 2	samples	0311-4	can register		Medium	SOBRIVIANIANI
	Sumpres		for the			
			application			
			through			
			Gmail			
SPRINT 3	Access the local	USN-5	As a user, I		High	HARIHARAN
	disks		can log into			
			the			
			application			
			by entering			
			email &			
			password			
SPRINT 4	Define and train	USN-6	Able to	Accepted	high	ARVIND,UKESH
	the model		choose the			
			images for			
			classificati			
			on			

SPRINT 4	IBM cloud training	USN-7	Can upload images in cloud and see the model running	Accepted	low	GOUTHAM,SUBRAMANI AM
SPRINT 4	Test	USN-8	Can access pictures	Accepted	high	HARIHARAN. M , ARVIND. V
COMPLETI ON						

Sprint	Functional	User Story	User Story /	Story Points	Priority	Team Members
	Requirement (Epic)	Number	Task			
Sprint-1	Registration	USN-1	As a user, I can register for the application.	2	High	Arvind
Sprint-1		USN-2	As a user, I will receive confirmation email once I have registered for the application	1	Low	Ukesh
Sprint-2		USN-3	As a user, I can register for the application through IBM watson	2	Low	Gowtham Kumar
Sprint-1		USN-4	As a user, I can upload the image and get the result for classification	2	Medium	Hariharan
Sprint-1	Login	USN-5	As a user, I can log into the application by entering email & password	1	High	Subramaniam

Sprint	Total Story	Duration	Sprint Start	Sprint End Date	Story Points	Sprint Release Date
	Points		Date	(Planned)	Completed (as	(Actual)
					on Planned End	
					Date)	
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022

Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Velocity:

Imagine we have a 10-day sprint duration, and the velocity of the team is 20 (points per sprint). Let's calculate the team's average velocity (AV) per iteration unit (story points per day)

Burndown Chart:

Sprint planning Process:

CODING AND SOLUTION

Coding:

!conda install --yes keras

Collecting package metadata (current_repodata.json): ...working... done

Solving environment: ...working... done

All requested packages already installed.

Retrieving notices: ...working... done

In [28]:

!conda install --yes tensorflow

Collecting package metadata (current_repodata.json): ...working... done

Solving environment: ...working... done

All requested packages already installed.

Retrieving notices: ...working... done

In [29]:

from keras.preprocessing.image **import** ImageDataGenerator

In [30]:

train_datagen=ImageDataGenerator(rescale=1./255,shear_range=0.2,zoom_range=0.2,horizont al_flip=**True**)

In [31]:

test_datagen=ImageDataGenerator(rescale=1./255)

In [32]:

 $x_train=train_datagen.flow_from_directory(r'C:\Users\HARIHARAN\PycharmProjects\AI$

Analyzer for fitness enthusiasts\TRAIN_SET',target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')

Found 2626 images belonging to 5 classes.

In [33]:

x_test=test_datagen.flow_from_directory(r'C:\Users\HARIHARAN\PycharmProjects\AI Analyzer for fitness enthusiasts\TEST_SET',target_size=(64, 64),batch_size=5,color_mode='rgb',class_mode='sparse')

Found 1055 images belonging to 5 classes.

In [34]:

print(x_train.class_indices)

{'APPLES': 0, 'BANANA': 1, 'ORANGE': 2, 'PINEAPPLE': 3, 'WATERMELON': 4}

In [35]:

print(x_test.class_indices)

{'APPLES': 0, 'BANANA': 1, 'ORANGE': 2, 'PINEAPPLE': 3, 'WATERMELON': 4}

In [36]:

from collections **import** Counter **as** cc(x_train.labels)

Out[36]:

Counter({0: 606, 1: 445, 2: 479, 3: 621, 4: 475})

In [37]:

import numpy as np

In [38]:

import tensorflow

In [39]:

from tensorflow.keras.models **import** Sequential

In [40]:

from tensorflow.keras **import** layers

In [41]:

from tensorflow.keras.layers **import** Dense,Flatten

In [42]:

from tensorflow.keras.layers **import** Conv2D,MaxPooling2D,Dropout

In [43]:

from keras.preprocessing.image **import** ImageDataGenerator

In [44]:

model=Sequential()

In [45]:

classifier=Sequential()

	In [46]:
classifier.add(Conv2D(32, (3, 3), input_shape=(64, 64, 3), activation='relu'))	
	In [47]:
classifier.add(MaxPooling2D(pool_size=(2, 2)))	
	In [48]:
classifier.add(Conv2D(32, (3, 3), activation='relu'))	
(3011-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	In []:
	[].
	In [49]:
classifier.add(Flatten())	111 [47].
Classifier.add(Flatteri())	I. [E0]
	In [50]:
classifier.add(Dense(units=128, activation='relu'))	
	In [51]:
classifier.add(Dense(units=5, activation='softmax'))	
	In [52]:
classifier.summary()	
Model: "sequential_3"	

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 62, 62, 3	32) 896
max_pooling2d_1 (M 2D)	axPooling (None, 31	, 31, 32) 0
conv2d_3 (Conv2D)	(None, 29, 29, 3	32) 9248
flatten_1 (Flatten)	(None, 26912)	0
dense_2 (Dense)	(None, 128)	3444864
dense_3 (Dense)	(None, 5)	645

Total params: 3,455,653

Trainable params: 3,455,653

Non-trainable params: 0

	In [54]:
classifier.compile(optimizer='adam',	
loss='sparse_categorical_crossentropy',metrics=['accuracy'])	In [55]:
classifier.save('nutrition.h5')	[55].
	In [56]:
from tensorflow.keras.models import load_model	
	In [58]:
from keras.preprocessing import image	
model = load_model("nutrition.h5")	In [1].
from flask import Flask,render_template,request	In [1]:
	In [2]:
import os	
	In [3]:
import numpy as np	
from tensorflow.keras.models import load_model	In [4]:
Tom tensormow.kerus.models import roud_model	In [5]:
from tensorflow.keras.preprocessing import image	
	In [6]:
import requests	
anne Flack , nome , townslote foldows!!townslotes!!)	In [7]:
app= Flask(name,template_folder="templates")	In [8]:
model=load_model('nutrition.h5')	[0].
	In [9]:
print("Loaded model from disk")	
Loaded model from disk	In [11]:
@app.route('/') def home():	111 [± ±].
return render_template('homepage.html')	
	In [12]:

```
@app.route('/image1',methods=['GET','POST'])def image1():
  return render_template("image.html")
                                                                                       In [14]:
@app.route('/predict',methods=['GET','POST'])def launch():
  if request.method=='POST':
    f=request.files['file']
    basepath=os.path.dirname('__file__')
    filepath=os.path.join(basepath,"uploads",f.filename)
    f.save(filepath)
    img=image.load_img(filepath,target_size=(64,64))
    x=image.img_to_array(img)
    x=np.expand dims(x,axis=0)
    pred=np.argmax(model.predict(x), axis=1)
    print("prediction",pred)
    index=['APPLES','BANANA','ORANGE','PINEAPPLE','WATERMELON']
    result=str(index[pred[0]])
    x=result
    print(x)
    result=nutrition(result)
    print(result)
    return render_template("0.html",showcase=(result),showcase1=(x))
                                                                                       In [15]:
def nutrition(index):
  url = "https://calorieninjas.p.rapidapi.com/v1/nutrition"
  querystring = {"query":index}
  headers = {
    'X-RapidAPI-Key': 'daaf576556msh5fcbc747e5cb27cp14bd10jsn07d05ab509ae',
  'X-RapidAPI-Host': 'calorieninjas.p.rapidapi.com'
  }
  response = requests.request("GET",url,headers=headers, params=querystring)
  print(response.text)
  return response.json()['items']
                                                                                        In [ ]:
```

if __name__ == "__main__":
 app.run(debug=False)

CHAPTER 8

TESTING

Test case	ID Feature Type	Component	Test Scenario	Expected Result	Actual Result	Status
CT_001	Code testing	Jupyter notebook	Code test initial run	Run the imported libraries and initialize the code properly	Verified	PASS
CT_002	Code testing	Registering the cloud	Create cloud and new asset creation	New asset created	Verified	PASS
CT_003	Data set loading	Load the data set in the cloud by specifying the directory	Dataset load	Loading the data set	Verified	PASS
MT_001	Model training	Image upload	Image upload and classify	Loading the image and classify	Verified	PASS
MT_002	Model training	Image classification	Checks and classifies the image loaded	Classification	Verified	PASS
MT_003	Model training	Image classification	Checks and classifies the image loaded	Classification	Verified	PASS
MT_004	Model training	Image classification	Checks and classifies the image loaded	Classification	Verified	PASS

ADVANTAGES:

- 1. Providing a food intake analysis
- 2. Setting nutrition goals
- 3. Providing educational reports
- 4. Managing patient or client weight changes
- 5. Creating diet records
- 6. Easy, do-it-yourself nutrition labeling
- 7. Recipe and formula creation
- 8. Quick creation and editing of food labels
- 9. An extensive ingredient database
- 10. Nutrition food label compliance
- 11. Food label imports from many different countries and regions
- 12. Diet analysis and tracking
- 13. Meal planning and menu creation
- 14. Multiple reporting styles

DISADVANTAGES:

1. Need to train many data sets

Sometimes images cannot be classified as expected

- 2. More technical skills required
- 3. AI ,ML concepts working must be understood prior.

FUTURE SCOPE:

By this project we can integrate it with smart devices for the real time data of the nutrition when scanned ,we can either direct the data with cloud service such as AWS kinesis and do all the processing in the cloud.

We can convert the application into a mobile app so that it is easily accessible for android and ios users along with nutrition details we can also add the health benefits for fruits and vegitables which are scanned.

CONCLUSION:

Artificial intelligence (AI) is a rapidly evolving area that offers unparalleled opportunities of progress and applications in many healthcare fields. In this review, we provide an overview of the main and latest applications of AI in nutrition research and identify gaps to address to potentialize this emerging field. AI algorithms may help better understand and predict the complex and non-linear interactions between nutrition-related data and health outcomes, particularly when large amounts of data need to be structured and integrated, such as in metabolomics. AI-based approaches, including image recognition, may also improve dietary assessment by maximizing efficiency and addressing systematic and random errors associated with self-reported measurements of dietary intakes. Finally, AI applications can extract, structure and analyze large amounts of data from social media platforms to better understand dietary behaviours and perceptions among the population. In summary, AI-based approaches will likely improve and advance nutrition research as well as help explore new applications. However, further research is needed to identify areas where AI does deliver added value compared with traditional approaches, and other areas where AI is simply not likely to advance the field. Technology is all about updates and we hope our idea will make some vital changes and receive positive reponse thank you

PROJECT DEMO LINK:

https://youtu.be/nmV3hmFHvHI

PROJECT FILES:

https://github.com/IBM-EPBL/IBM-Project-6758-1658836312