Simulation du mouvement Brownien

Exercice 1 (Temps de sortie d'une bande du mouvement Brownien). Considérons $(W_t, t \ge 0)$ un mouvement Brownien standard et pour $a \in \mathbb{R}^*$

$$\tau_a = \inf\{t > 0; \ W_t = a\}.$$

Vous avez l'an dernier dans le cours d'IPD que $\mathbb{P}(\tau_a < \infty) = 1$ mais que par contre $\mathbb{E}[\tau_a] = +\infty$. Dans cet exercise, on cherche à estimer $\mathbb{E}[\tau_a \wedge T]$ et à la comparer à la valeur théorique

$$\mathbb{E}[\tau_a \wedge T] = T\left(1 - \frac{\Gamma(\frac{1}{2}, \frac{a^2}{2T})}{\sqrt{\pi}}\right) + \frac{a^2}{2\sqrt{\pi}}\Gamma\left(-\frac{1}{2}, \frac{a^2}{2T}\right)$$

où la fonction Γ est définie par

$$\Gamma(\alpha, x) = \int_{x}^{\infty} t^{\alpha - 1} e^{-t} dt$$

On pourra utiliser la fonction pnl_sf_gamma_inc(alpha, x) pour approcher $\Gamma(\alpha, x)$ ou la fonction mpmath.gammainc sous Python.

- 1. Simuler le mouvement Brownien sur la grille $(t_k, k = 0, ..., N)$ avec $t_k = \frac{kT}{N}$.
- 2. Estimer $\mathbb{E}[\tau_a \wedge T]$ par une méthode de Monte Carlo sur la grille précédente.
- 3. On choisit a=1 et T=3. Estimer par une moyenne Monte Carlo la quantité $\mathbb{E}[\tau_a \wedge T]$ pour différentes valeurs de N et comparer à la valeur théorique 1.915006. On prendra M=500000 tirages.
- 4. Que peut-on dire du biais de l'estimateur? Observer que le biais est proportionnel à $N^{-1/2}$. On pourra tracer $\log \mathbb{E}^M[\tau_a \wedge T]$ en fonction de $\log N$ et faire une regression linéaire entre ces 2 quantités où \mathbb{E}^M désigne l'opérateur moyenne empirique.
- 5. Utiliser une méthode de simulation conditionnelle du mouvement brownien pour raffiner la simulation lorsque le mouvement brownien est proche de a. On pourra définit une bande $[a-\varepsilon,a]$ et raffiner la simulation lorsque le mouvement brownien rentre dans cette bande. Régresser de nouveau $\log \mathbb{E}^M[\tau_a \wedge T]$ en fonction de $\log N$ où τ_a est approché par cette nouvelle méthode. Que peut-on dire du coefficient directeur de la régression.