tytEx.N	PANDAS
0-2	
AIM:	
To anal	yse and study the best performance point of Reciprocating pumps using Pandas.
PROC1	EDURE:
1. Data	set Creation:
	Create a hypothetical dataset containing information about actual discharge(m3/s), input
	power(W), and output power(W).
2. Corre	elation Analysis:
	Calculate the correlation matrix to examine the relationships between actual Discharge, input
	power, and output power using pandas'corr()' function.
3. Effic	iency calculation :
	Calculate the efficiency for each input value using the given formula: Efficiency(%)
	= Output_power/Input_power *100
4. Head	calculation:
	Calculate the total head for each performance using the given formula : Head (m) =
	output_power/actual discharge *pg
5. Best	Efficiency Point (BEP):
	Identify the Best Efficiency Point of the reciprocating pump from
	the efficiency by selecting the highest index values using the pandas' 'nlargest()'
	function

PROGRAM:

```
import pandas as pd data={
    'Actual Discharge':[40,50,60,70,80,90],
    'Input Power':[1,2,3,4,5,10],
    'Output Power':[70,30,90,100,140,170]
}
density=1000 gravity=9.81
a=pd.DataFrame(data)
a['Efficiency']=(a['Output Power']/a['Input Power'])*100
a['Head']=(a['Output Power']/a['Actual Discharge'])/(density*gravity) corr_matrix=a.corr()
print(corr_matrix)
max_efficiency=corr_matrix['Efficiency'].nlargest(2).iloc[1]
print("\nParameter with the highest correlation with efficiency=",max_efficiency)
```

OUTPUT:

	Actual Discharge	Input Power	Output Power	Efficiency	1
Actual Discharge	1.000000	0.922018	0.901611	-0.614487	
Input Power	0.922018	1.000000	0.881684	-0.533271	
Output Power	0.901611	0.881684	1.000000	-0.227847	
Efficiency	-0.614487	-0.533271	-0.227847	1.000000	
Head	0.466245	0.489913	0.797480	0.391574	
	Head				
Actual Discharge	0.466245				
Input Power	0.489913				
Output Power	0.797480				
Efficiency	0.391574				
Head	1.000000				

Result:

The programs were run successfully