Ts the sequent

"Gäller det att" kvf, 7p - 7k = p?

Sekvenfen

	k	f	P	kuf	7 P	74	7p -> 74	touth table
()	F	F	F	F	T	T	T	(sanuinusvá destabell)
2	F	F	T	F	F	T	T	Son was a son on a
3	F	T	II.	Ţ	T	T	T <	- countermodel
5	F	T	T	Т	F	T	T	(motion dell)
(5)	T	F	<u> -</u>	Т	T	F	F	
(3)	T	F	T	T	F	F	T	
(}	T	T	F	T	T	F	F	
8	T	T	T	T	F	F	T	

1 modell 3, 4, 6 och 8 är bägge premisserna sanna.

Av dessa är slutsatsen bara sann i modellerna (1), (6) e 8
men inte i (3).

p år dårmed inte en logisk konsekvens av kuf och 7p -> 7k.

Studenterna gör:

Gäller det att = 7p1 (pvq) - 7q? (Svar: nej)

0	q	6794	ng -> p	(ng-p) -> ng/	ρ	9	1-1pl	pvq	-pn/prq) fry	7	
0		1	0	1	0	0	1	0	0	1	1	
0	1	0	,	0	0	1	1	(1	0	0	5
1	0	1	1		1	0	0	1	0	1	1	
1		O	1	0	/	/	0	1	0		1	
									O	1		1

Skriv som en predikatlogisk formel:

"Alla studenter ar flitiga" "All students are diligent"

Vx (Student (x) -> Flitig (x)) Universe: people

(Vad är skillanden mot Vx (Student (x) a Flitig (x))?)

"No animal is both a dog and a cat."

Universe:

"Inget djur år både hund och katt"

7 3x (Djur(x) A Hund(x) A Katt (x))

eller

Vx (Djur(x) → 7 (Hund(x) 1 Katt(x)))

Om vi antar att Hund (x) och Katt (x) bara kan vara sanna för djur, så kan vi utelämna Djur(x):

73x (Hund(x) n Katt(x)) $\forall x$ (7 (Hund(x) n Katt(x))

Man kan visa att dessa formler är ekvivalenta (sanna för samma värden på:

OBS! at $\forall x (Djur(x) \rightarrow \tau (Hund(x) \wedge Katt(x)))$ och $\tau \exists x (Djur(x) \rightarrow Hund(x) \wedge Katt(x))$ inte är ekvivalenta.

(men gå inte in på detta exempel).

Studenterna gör: Reuse standard prediante symbols from mothemoties: > = 1

"There is a number that is greater than 5"

"Det finns ett tal som är större än 5"

"All numbers between 6 and 8 are odd!"

(2) "Alla tal mellan 6 och 8 är udda"

"The product of two old numbers is odd as well!"

(3) "Produkten av två udda tal är udda"

"The product of an even number with a number is even."

(4) "Produkten av ett jämnt tal och ett annat tal är iän.

1 "Produkten av ett jämnt tal och ett annat tal är jämn "There are in Linitely many numbers"

(5) " Det finns oandligt manga tal"

Anvand u(x) = x ar ett udda tal " Odd(x)

Svar: 1 = 1x (x > 5)

- (2) ∀x (x>61x68 → u(x))
- 3) \text{\formall \text{\formall \formall \forma
- $\begin{array}{ll}
 \Psi \times y \neq & \left(x = y \cdot \xi \wedge \neg u(y) \rightarrow \neg u(x) \right) \wedge \\
 \forall x y \neq & \left(x = y \cdot \xi \wedge \neg u(z) \rightarrow \neg u(x) \right)
 \end{array}$
- ⑤ ∀x∃y (y>x)

Om det finns tid kan ni be studenterna att skriva formlerna ovan utan att använda symbolen u(x), genom att använda att x är udda (=> $\exists y (x = 2 \cdot y + 1)$

t ex

(3) $\forall x y \neq (x = y \cdot z \land \exists y, (y = 2 \cdot y, +1) \land \exists y (z = 2 \cdot y + 1) \rightarrow \exists y (x = 2 \cdot y + 1))$ Variabel-krock

=) Omnomore