TEMA 5: Estimación de máxima verosimilitud y otros métodos

- 5.1. Estimación de máxima verosimilitud.
- 5.2. Otros métodos de estimación puntual: método de los momentos y de mínimos cuadrados.

5.1. ESTIMACIÓN DE MÁXIMA VEROSIMILITUD

 (X_1,\ldots,X_n) muestra aleatoria simple de $X\to\{P_\theta;\ \theta\in\Theta\}$

 $f_{\theta} \rightarrow \text{ función de densidad o función masa de probabilidad de } X$ bajo P_{θ}

 $f_{\theta}^n \to \text{ función de densidad o función masa de probabilidad de } (X_1, \dots, X_n)$ bajo P_{θ}

Función de verosimilitud: Para cada realización muestral, $(x_1, ..., x_n) \in \chi^n$, se define la función de verosimilitud asociada a dicha realización como:

$$L_{x_1,\dots,x_n}:\Theta\longrightarrow \mathbb{R}^+\cup\{0\}$$

 $\theta\longmapsto L_{x_1,\dots,x_n}(\theta)=f_\theta^n(x_1,\dots,x_n).$

Estimador de máxima verosimilitud: $\widehat{\theta}(X_1, \dots, X_n)$ es estimador de máxima verosimilitud de θ si la estimación correspondiente a cada realización muestral, $\widehat{\theta}(x_1, \dots, x_n)$, maximiza la función de verosimilitud asociada a dicha realización:

$$\forall (x_1, \dots, x_n) \in \chi^n, \quad L_{x_1, \dots, x_n} \left(\widehat{\theta}(x_1, \dots, x_n) \right) = \max_{\theta \in \Theta} L_{x_1, \dots, x_n}(\theta).$$

- Relación con los estadísticos suficientes: $Si \{P_{\theta}; \theta \in \Theta\}$ admite un estadístico suficiente, $T(X_1, ..., X_n)$, $y \widehat{\theta}(X_1, ..., X_n)$ es un estimador máximo verosímil de θ , $\widehat{\theta}(X_1, ..., X_n)$ es función de $T(X_1, ..., X_n)$.
- Relación con los estimadores eficientes: $Si\ T(X_1, ..., X_n)$ es estimador eficiente de θ , $T(X_1, ..., X_n)$ es el único estimador máximo verosímil de θ .

Estimador de máxima verosimilitud de una función paramétrica $g:\Theta \to \Lambda$:

■ Para cada realización muestral, $(x_1, ..., x_n) \in \chi^n$, se define la función de verosimilitud de $\lambda = g(\theta)$ asociada a dicha realización como:

$$M_{x_1,\dots,x_n}: \Lambda \longrightarrow \mathbb{R}^+ \cup \{0\}$$

 $\lambda \longmapsto M_{x_1,\dots,x_n}(\lambda) = \sup_{\theta \in q^{-1}(\lambda)} L_{x_1,\dots,x_n}(\theta).$

• $\widehat{\lambda}(X_1,\ldots,X_n)$ es estimador máximo verosímil de λ si, $\forall (x_1,\ldots,x_n) \in \chi^n$, la estimación $\widehat{\lambda}(x_1,\ldots,x_n)$ maximiza la función de verosimilitud asociada a dicha realización:

$$\forall (x_1, \dots, x_n) \in \chi^n, \quad M_{x_1, \dots, x_n} \left(\widehat{\lambda}(x_1, \dots, x_n) \right) = \max_{\lambda \in \Lambda} M_{x_1, \dots, x_n}(\lambda).$$

Teorema de invarianza de Zehna: $Si \ \widehat{\theta}(X_1, \dots, X_n)$ es estimador máximo verosímil de θ , $y \ g$ es una función medible, $g(\widehat{\theta}(X_1, \dots, X_n))$ es estimador máximo verosímil de $g(\theta)$.

5.2. OTROS MÉTODOS DE ESTIMACIÓN

MÉTODO DE LOS MOMENTOS (K. Pearson, 1894)

- (X_1, \ldots, X_n) muestra aleatoria simple de $X \to \{P_\theta; \ \theta \in \Theta\}$.
- Momentos poblacionales: $m_{\theta,j} = E_{\theta}[X^j], \quad j \in \mathbb{N}.$
- $\blacksquare \ \, \text{Momentos muestrales:} \ \, A_j = \frac{\sum\limits_{i=1}^n X_i^j}{n}, \quad j \in \mathbb{N}.$

El método consiste en estimar la función $h(m_{\theta,1},\ldots,m_{\theta,k})$ (h medible) por $h(A_1,\ldots,A_k)$.

MÉTODO DE MÍNIMOS CUADRADOS (Gauss, 1809)

Sean X_1, \ldots, X_n observaciones aleatorias de cierta magnitud, $\varphi(t, \theta)$, bajo distintas condiciones experimentales, t_1, \ldots, t_n :

$$X_{1} = \varphi(t_{1}, \theta) + \varepsilon_{1}$$

$$\vdots$$

$$X_{n} = \varphi(t_{n}, \theta) + \varepsilon_{n},$$

donde $\varepsilon_1, \ldots, \varepsilon_n$ son variables aleatorias *no observables*, que especifican los errores cometidos en cada observación.

El estimador de mínimos cuadrados de θ basado en X_1, \ldots, X_n es aquel que minimiza la suma de los cuadrados de los errores:

$$\sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (X_i - \varphi(t_i, \theta))^2.$$