1

(2013 - ME)

2013-ME-14-26

EE24BTECH11001 - ADITYA TRIPATHY

14.	. In simple exponential smoothing forecasting, to give higher weightage to recent demand information the smoothing coefficient must be close to $(2013 - ME)$					
	a) -1	b) zero	c) 0.5	d) 6		
15.	A steel bar $200mm$ in diameter is turned at a feed of $0.25mm/rev$ with a depth of cut of $4mm$. The rotational speed of the workpiece is $160rpm$. The material removal rate in mm^3/s is $(2013 - MR)$					
	a) 160	b) 167.6	c) 1600	d) 1.0		
16.	6. A cube shaped casting solidifies in 5 <i>min</i> . The solidification time in <i>min</i> for a cube of the san material, which is 8 times heavier than the original casting, will be (2013 – <i>Min</i>)					
	a) 10	b) 20	c) 24	d) 40		
17.	(2013 - ME)					
	a) resistance to scratching		b) ability to absorb energy up to fracture			
	c) ability to absorb ener	rgy till elastic limit	d) resistance to indentati	on		
18.	8. In order to have maximum power from Pelton turbine, the bucket speed must be (2013 – M					
	a) equal to jet speed		b) equal to half the jet speed			
	c) equal to twice the jet	speed	d) independent of the jet	t speed		
19.	Consider one-dimensional steady state heat conduction along x-axis $0 \le x \le L$, through a plane wall with the boundary surfaces $x = 0$ and $x = L$ maintained at temperatures of $x = 0$ and $x = L$ maintained at temperatures of $x = 0$ and $x = L$ maintained at temperatures of $x = 0$ and $x = L$ maintained at temperatures of $x = 0$ and $x = L$ maintained at temperatures of $x = 0$ and $x = L$ maintained at temperatures of $x = 0$ and $x = 0$ are the conduction along x-axis $x = 0$ and $x = $					
	generated differently unoughout the wall. Choose the CONNECT statement: $(2013 - ME)$					
20.	 a) The direction of heat transfer will be from the surface at 100°C to the surface at 0°C. b) The maximum temperature inside the wall must be greater than 100°C. c) The temperature distribution is linear within the wall. d) The temperature distribution is symmetric about the mid-plane of the wall. A cylinder contains 5m³ of an ideal gas at a pressure of 1 bar. This gas is compressed in a reversible isothermal process till its pressure increases to 5 bar. The work in kJ required for this process is (2013 - ME) 					
	a) 804.7	b) 953.2	c) 981.7	d) 1012.2		
21.	<u> </u>		•	d to an internal pressures.		

is

d) 4.0

22.	If two nodes are observed at a frequency of $1800rpm$ during whirling of a simply supported los slender rotating shaft, the first critical speed of the shaft in rpm is $(2013 - MR)$					
	a) 200	b) 450	c) 600	d) 900		
23.	-	<u> </u>	QR = 3.0m, $RS = 2.5m$ and ole rocker (rocker - rocker) (2013 – ME)			
	a) PQ	b) QR	c) RS	d) <i>SP</i>		
24.	4. Let X be a normal random variable with mean 1 and variance 4. The probability $Pr(X < 0)$ is $(2013 - ME)$					
	a) 0.5		b) greater than zero and	l less than 0.5		
	c) greater than 0.5 and	less than 1.0	d) 1.0			
25.	25. Choose The CORRECT set of functions, which are linearly dependent. (2013 –					
	a) $\sin x$, $\sin^2 x$ and	$\cos^2 x$	b) $\cos x$, $\sin x$ and	tan x		
	c) $\cos 2x$, $\sin^2 x$ and	$\cos^2 x$	d) $\cos 2x$, $\sin x$ and	$\cos x$		
Q.26 to Q.55 carry two marks each.						
26.		iven steady velocity vector tem having i , j and k as unit				
	$\iint_{S} \frac{1}{4} \left(\mathbf{F} \cdot \mathbf{n} \right) dA$					
	where S is the sphere, $x^2 + y^2 + z^2 = 1$ and n is the outward unit normal vector to the sphere. The value of the surface integral is (2013 – ME)					
	a) π	b) 2π	c) $\frac{3\pi}{4}$	d) 4π		

c) 2.0

a) 0.5

b) 1.0