Universität Augsburg Lehrstuhl für Algebra und Zahlentheorie Prof. Marc Nieper-Wißkirchen Ingo Blechschmidt

Übungsblatt 5 zur Homologischen Algebra I

- Hier könnte dein Motto stehen. -

Aufgabe 1. Homologische Charakterisierung von Zusammenhang

Sei X eine simpliziale Menge. Sei \approx die feinste Äquivalenzrelation auf X_0 mit $X(\partial^1)u \approx X(\partial^0)u$ für alle $u \in X_1$; anschaulich gilt genau dann $x \approx y$, wenn sich die 0-Simplizes x und y durch einen Kantenzug miteinander verbinden lassen.

- a) Seien $x, y \in X_0$. Zeige, dass die entsprechenden Punkte in der geometrischen Realisierung |X| genau dann durch einen stetigen Pfad miteinander verbunden werden können, wenn $x \approx y$.
 - Tipp: Eine Richtung ist leichter als die andere. Konstruiere für die andere eine geeignete simpliziale Abbildung $X \to \underline{\Omega}$ und betrachte deren geometrische Realisierung. Dabei bezeichnet $\Omega \supseteq \{0,1\}$ die Menge der Wahrheitswerte und $\underline{\Omega}$ die diskrete simpliziale Menge mit Eckenmenge Ω . Verwende, dass das Einheitsintervall zusammenhängend ist.
- b) Zeige für beliebige 0-Simplizes $x, y \in X_0$:

$$x \approx y \implies x - y \in \operatorname{im}(d^0 : C_1(X, \mathbb{Z}) \to C_0(X, \mathbb{Z})).$$

c) Zeige: $H_0(X,\mathbb{Z}) \cong \mathbb{Z}$ (Wegzusammenhangskomponenten von |X|) (freier \mathbb{Z} -Modul).

Aufgabe 2. Homologieberechnungen

Berechne die Homologie (mit Koeffizienten in \mathbb{Z}) von folgenden simplizialen Mengen:

- a) dem Standard-n-Simplex $\Delta[n]$,
- b) der (n-1)-dimensionalen Sphäre $\dot{\Delta}[n]$ (siehe Aufgabe 5 von Blatt 4),
- c) dem zweidimensionalen Torus,
- d) der reellen projektiven Ebene.

Verwende dazu als Kettengruppen die freien Z-Moduln über den nichtdegenerierten Simplizes; später werden wir verstehen, wieso diese die volle Homologie berechnen. Inwieweit bestätigt sich das Motto Homologie misst (mehrdimensionale) Löcher?¹

- Bitte wenden. -

¹Mit Homologie kann man auch Löcher des umgebenden logischen Rahmens messen, etwa inwieweit das Auswahlaxiom fehlschlägt: Andreas Blass. *Cohomology detects failures of the axiom of choice*. Trans. Amer. Math. Soc. **279**, S. 257–269.

Aufgabe 3. Affine Schemata I

Sei A ein kommutativer Ring (mit Eins). Sei Spec A die Menge der Primideale von A. Eine Teilmenge $U \subseteq \operatorname{Spec} A$ heißt genau dann offen, wenn sie eine (beliebige) Vereinigung von standardoffenen Mengen ist; solche sind Mengen der Form $D(f) = \{\mathfrak{p} \in \operatorname{Spec} A \mid f \notin \mathfrak{p}\}$ mit $f \in A$. Anschaulich stellt man sich ein Ringelement $f \in A$ als Funktion auf Spec A und die Menge D(f) als Menge der Punkte, wo f nicht verschwindet, vor.

Ist $\mathfrak{a} \subseteq A$ ein Ideal, so ist $\sqrt{\mathfrak{a}} := \{ f \in A \mid \exists n \geq 0 : f^n \in \mathfrak{a} \}$ das zugehörige *Radikalideal*. Sind f_1, \ldots, f_n Ringelemente, so ist $(f_1, \ldots, f_n) := \{ \sum_i a_i f_i \mid a_1, \ldots, a_n \in A \}$ das von diesen Elementen *erzeugte Ideal*.

Zeige folgende Behauptungen und interpretiere sie anschaulich, für alle Ringelemente $f, g, g_1, \ldots, g_n \in A$ und Primideale $\mathfrak{p} \in \operatorname{Spec} A$:

- a) $D(f) \subseteq D(g) \iff \sqrt{(f)} \subseteq \sqrt{(g)}$.
- b) $D(f) \subseteq D(g_1) \cup \cdots \cup D(g_n) \iff \sqrt{(f)} \subseteq \sqrt{(g_1, \ldots, g_n)}$.
- c) $D(f) \cap D(g) = D(fg)$.
- d) Der topologische Abschluss von $\{\mathfrak{p}\}$ ist durch $\{\mathfrak{q} \in \operatorname{Spec} A \mid \mathfrak{p} \subseteq \mathfrak{q}\}$ gegeben. Wann ist also die Menge $\{\mathfrak{p}\}$ selbst schon abgeschlossen?

Tipp: Zeige, dass der Schnitt über alle Primideale \mathfrak{p} , welche ein vorgegebenes Ideal \mathfrak{a} umfassen, gleich $\sqrt{\mathfrak{a}}$ ist. Für eine Richtung musst du eine Katze opfern und für geeignete Elemente $f \in A$ folgendes Mengensystem betrachten:

$$\mathcal{U} := \{ \mathfrak{b} \subseteq A \, | \, \mathfrak{b} \text{ ist ein Ideal mit } \mathfrak{a} \subseteq \mathfrak{b} \text{ und } f^n \notin \mathfrak{b} \text{ für alle } n \geq 0 \}.$$

Diese Aufgabe ist eine Hinführung auf affine Schemata; es fehlt noch die Konstruktion einer geeigneten Ringgarbe $\mathcal{O}_{\operatorname{Spec} A}$ – erst dann kann man Geometrie betreiben. In intuitionistischer Logik ist die Beschreibung über Primideale offensichtlich nicht angebracht. Da man aber den Rahmen der offenen Teilmengen von Spec A explizit beschreiben kann (nämlich wie?), kann man intuitionistisch Spec A immer noch als Örtlichkeit konstruieren. Das hängt eng mit dynamischen Methoden in der Algebra zusammen.

Aufgabe 4. Abgeschnittene simpliziale Mengen

Eine N-abgeschnittene simpliziale Menge ist eine Familie von Daten $(X_n, X(f))$ wie bei simplizialen Mengen, nur dass die Simplexmengen lediglich für $0 \le n \le N$ und die Abbildungen X(f) für $f:[k] \to [\ell]$ mit $0 \le k, \ell \le N$ gegeben sein müssen. In offensichtlicher Weise (wie genau?) legt jede simpliziale Menge X und jede M-abgeschnittene simpliziale Menge X (mit $M \ge N$) eine N-abgeschnittene Menge X fest.

Ist Y eine N-abgeschnittene simpliziale Menge, so möchten wir durch die Setzungen

$$\hat{Y}_m := Y_m,$$
 für $m \le N$,
 $\hat{Y}_{N+1} := \{ (y_0, \dots, y_{N+1}) \mid y_0, \dots, y_{N+1} \in Y_N, \ Y(\partial^i) y_j = Y(\partial^{j-1}) y_i \text{ für } i < j \},$

sowie $\hat{Y}(\partial_{N+1}^i) = ((y_0, \dots, y_{N+1}) \mapsto y_i)$ und gesunden Menschenverstand eine (N+1)-abgeschnittene simpliziale Menge definieren.

- a) Wie kann man sich die Elemente von \widehat{Y}_{n+1} als "virtuelle" (N+1)-Simplizes vorstellen? Was sollen die y_i eines solchen Simplex sein? Wieso soll die Kompatibilitätsbedingung an die y_i und die Randabbildungen erfüllt sein? Inwieweit füllen diese virtuellen Simplizes vorhandene "simpliziale Löcher" in Y_N ?
- b) Leite eine sinnvolle Definition für $\hat{Y}(\sigma_N^i)$ her, $0 \le i \le N$.
- c) Zeige, dass \widehat{Y} die universelle (N+1)-Fortsetzung von Y ist; zeige also: Ist Z eine beliebige (N+1)-abgeschnittene simpliziale Menge und $F:\operatorname{Tr}^N Z \to Y$ eine N-abgeschnittene simpliziale Abbildung, so gibt es genau eine Fortsetzung von F zu einer (N+1)-abgeschnittenen simplizialen Abbildung $Z \to \widehat{Y}$.