

METODOS NUMERICOS 3006907 - TALLER CON MATLAB - Capítulo 3

INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

- 1. Considere la función $f(x) = 10 \operatorname{sen}(5x) \frac{\ln(x^2 + 3)}{x^2}$ para $x \in [1, 8]$.
 - (a) Aproximar la función por medio de polinomios interpolantes P_2 , P_3 , P_4 y P_5 empleando nodos equidistantes.
 - (b) Graficar f vs P_i para $i = 2, \dots, 5$.
 - (c) Graficar errores, es decir, $E(x) = |f(x) P_i(x)|$ para $i = 2, \dots, 5, x \in [1, 8]$. ¿Cuál produce menor error? ¿Qué puede concluir?
 - *Sugerencia*: Para graficar errores genere un vector xx=linspace(1,8,1000) y grafique con plot el valor absoluto de $f(xx) P_i(xx)$. Para evaluar polinomios se utiliza la instrucción polyval.
 - (d) Ahora, aproxime la función f en [1,8] por medio del spline cúbico natural S que interpola a f en los nodos

$${x_k}_{k=0}^5 = \left\{1, \frac{12}{5}, \frac{19}{5}, \frac{26}{5}, \frac{33}{5}, 8\right\}$$

y grafique el error.

- (e) Finalmente, aproxime la función f en [1,8] por medio del mejor polinomio interpolante de grado menor igual a 5 y grafique el error.
- (f) ¿Cuál de los polinomios interpolantes obtenidos aproxima mejor (error relativo) el valor de f(4.7)?
- 2. Realizar un proceso similar al propuesto en el ejercicio anterior para $f(x) = 8e^{-x^2} + \sin(3x)$ para $x \in [-10, 10]$.
- 3. Un automóvil va por una carretera recta y su velocidad se cronometra en varios puntos. Los datos tomados de las observaciones aparecen en la tabla adjunta, donde el tiempo se anota en segundos, la distancia en pies y la velocidad en pies por segundo.

Tempo	0	3	5	8	13
Distancia	0	225	383	623	993
Velocidad	75	77	80	74	72

- (a) Use el polinomio interpolante para aproximar la posición del automóvil y su velocidad cuando t = 10 sg.
- (b) Use la derivada del polinomio para determinar si el automóvil rebasa el límite 55millas/hora; de ser así, ¿en qué momento el automóvil lo excede?
- (c) ¿Cuál es la velocidad máxima predecible del automóvil? Ayuda: recuerde que 1pie = 0.000189393939millas.
- 4. Considere los siguientes datos

					1			
y_k	8.25	7.21	6.62	3.94	2.17	1.35	0.89	0.99

- (a) Hallar la recta de regresión para el conjunto de datos.
- (b) Hallar los polinomios óptimos de mínimos cuadrados de grado 2 y grado 5 para el conjunto de datos.
- (c) Hallar la curva $y = \frac{1}{Ax + B}$ que mejor se ajusta en el sentido de los mínimos cuadrados para el conjunto de datos.
- 5. Encuentre el ajuste de curva para los siguientes conjuntos de datos y calcule el error en el sentido de los mínimos cuadrados.
 - (a) Se espera que la curva sea de la forma $y = \frac{B}{A + x}$

	0.2						
y_k	2.057	1.725	1.598	1.589	1.358	1.412	1.258

(b) Se espera que la curva sea de la forma $y = Be^{Ax}$

x_k	-5	-3	0.2	4.5	7.3
y_k	50.082	33.223	18.1051	1.987	1.450

(c) Se espera que la curva sea de la forma $y = \frac{1}{(Ax+B)^2}$

x_k	-3	-1	0	2
y_k	8.25	6.62	3.94	1.35

- 6. Considere la función $h(x) = \frac{1}{10}\cos(3x)\ln(x^2+13) e^{x/4}$ y el conjunto de nodos dados por x=1:10.
 - (a) Hallar el polinomio P que interpola a h en los nodos dados.
 - (b) Hallar el valor aproximado de h en x = 3.8 (que se obtiene de P).
 - (c) Hallar el error relativo que se comete al aproximar h en x = 3.8 por medio del polinomio P.
 - (d) Si S es el spline cúbico natural para h en los nodos dados, entonces
 - i. Hallar el coeficiente del término (x-3) del trozo correspondiente a S.
 - ii. Hallar S(8.5) (valor aproximado de h en x = 8.5 por medio de S).
 - iii. Hallar el error absoluto que se comete al aproximar h en x = 8.5 por medio de S.
 - (e) Si *Q* es el polinomio de grado tres que mejor se ajusta en el sentido de los mínimos cuadrados para el conjunto de datos, hallar el error en el sentido de los mínimos cuadrados.
- 7. Considere la nube de puntos dada en la siguiente tabla:

							13	
y_k	7.5	6.8	-2.3	7.8	5.33	2.01	-2.56	-6.58

- (a) Hallar y graficar el spline cúbico natural S que pasa por los puntos de la tabla. Hallar el valor S en x = -0.5.
- (b) Hallar y graficar el spline cúbico sujeto S que pasa por los puntos de la tabla donde S'(-8) = 2 y S'(20) = -3. Hallar el valor S en x = 4.1.
- (c) Hallar y graficar el spline cúbico extrapolado S que pasa por los puntos de la tabla. Hallar el valor S en x = 11.4.
- (d) Hallar y graficar el spline cúbico con terminación parabólica S que pasa por los puntos de la tabla. Hallar el valor S en x = 1.3.
- (e) Hallar y graficar el spline cúbico S que pasa por los puntos de la tabla que satisface S''(-8) = 12 y S''(20) = -1. Hallar el valor S en x = 8.7.
- 8. Ejercicios 32 y 33 de la sección 3.5 del texto guía.