

(Sheet <u>4</u> Of 58)

FIGURE 1A

Binding Domain Spacer Splice Site Delivered Therapeutic Gene

(B) (1) pPTM+Sp

(C)

the the training the state of the

:3

ļ.

13

į. 4

Figure 1B-C

PPT

DT-A

PTM RNA

Figure 4A-B

F. 4.11 420 1.4

Figure 4C

Figure 5

The state of the same

Figure 6

Figure 7

(A)

(8)

and the time they gave to the tall

Hall this bank the bank to

Exon 1 of BHCG6 \$\frac{\psi}{5\cdot \cdot \cdot

GATTCTTCTTAAATCTTTTGTGATGGAAAACTTTTCTTCGTACCACGGGACTA
AACCTGGTTATGTAGATTCCATTCAAAAA-3

Double Splicing Pre-therapeutic RNA

31304B-A:

(3' ss of PTM to 5' ss target and, 5' ss of PTM to 3' ss of target)

Cis-spliced products

E1 E2 E3 = Normal cis-splicing (277bp)

E1 E3 Exon skipping (110bp)

Trans-splicied products

= 1st event, 196bp. Trans-splicing between 5' ss of target & 3' ss of PTM.

DT-A[E3] = 2nd event, 161bp. Trans-splicing between 3' ss of target & 5' ss of PTM.

Figure 8B 31304B-A (Sheet || Of 58)

FIGURE 9

31304B-A (Sheet |2 Of 58) 31304 B-A (shut 13 of 58) FIG. 10 A

KNOCK Our
LacZ Market Model Constructs

PTMS

Restoration of \beta-Gal activity by SMaRT

(Spliceosome Mediated RNA Trans-splicing)

31304 B-A

Figure 801

FIGURE 11A

FIGURE 11C

FIGURE 12 A

31304-B-A (Shut 18 of.58)

(1). Nucleotide sequences of the cis-spliced product (285 bp):

BioLac-TR1

8

(2) Nucleotide sequences of the trans-spliced product (195 bp)

Biolac-TR1

GGCTTTCGCTACCTGGAGAGACGCCCCGCTGATCCTTTGCGAATACGCCCACGCGATGGGTAACAGTCTTGG

Splice junction

CGGTTTCGCTAAATACTGGCAGGCGTTTCGTCAGTATCCCCGTTTACAG/GGGCTGCTGCTGCTGCTGCTGCT

HCGR2

GAGCATGGGCGGGACATGGGCATCCAAGGAGCCACTTCGGCCACGGTGCCG

Figure 12B

31304-B-A (Shut 19 of 58)

CFTR Pre-therapeutic molecule (PTM or bullet")

CFTR mini-gene target - construction

Figure 13

Figure 14

31304 B-A (Shut 21 of 58)

]. ±

FIGURE 15

DNA sequence 500 b.p. GCTAGCGTTTAA ... TGCCACTCCCAC linear Positions of Restriction Endonucleases ites (unique sites underlined) Sau96 I Hae III Sau96 I Binding domain Ban II I Dra I ADA_I Intron 9 BD Sac II GCTAGCOTTERRACECOCCECCATCATTATTAGGTEATTATECGCGGAACATTATTATAACGTTGCTCGAGTACTAAC CCATCGCAAATTTGCCCGGGTGGGTAGTAATAATCCACTAATAGGCGGCTTGTAATAATATTGCAACGAGCTCATGATTG Ġ8 15 15 RON I PRE I ENON LO CETR + HIS + STOP

TOGTACCTCTTCPPPTPPTPCCTGCACGCTPCACTTCTAATGATGATGATTATOGGAGACTTGGAGCCTTCAGAGGGTAAAAT ACCATGGAGAAGAAAAAAAAGGACGTCTGAAGTGAAGATTACTACTAATACCCTCTTGACCTCGGAAGTCTCCCATTTTA 102 Xmm I Dde I TANGCACACTEGARGRATITCATTCTGTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTRANGRARATATCATCTTTGGATTCGTGTCACCTTCTTTAAAGTAAGACAAGACTCAAAAAGGACCTAATACGGACCUTGGTAATTCTTTTTATAGTAGARAC 240 Sph_I His GTGTTTCCTATGATGAATATAGATACAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGCATCATCATCATCATCATTAG 320 282 Sac Ban II Sau3A I Hae III Pat I Don I Not I BamH Kpn I Dra I GCGGCCGCCACTGTGCTGGATATCTGCAGAATTCCACCACACTGGACTAGTGGATCGGAGCTGGGTGAGTTAAGTT COCCGGCGGTGACACCTATAGACGTCTTAAGGTGGTGTGACCTGATCACCTAGGCTCCACCCATGGTTCGAATTCAA CF28372 321 399 339 349 323 373 373 Present in PTM 378 378 but not Target Sau3A I Don I TANACCOCTGACTOGACTOTGCCTTCTAGTTpccAcccATcTgTTgTTTGCCCCTCCCCGTGCCTTCCTTGACC キュフ 410 CYGGAAGGTGCCACTCCCAC GACCTTCCACGGTGAGGGTG Restriction Endonucleases site usage Acc I EcoR I Nde I Sau96 I Apa I EcoR V Nhe I Sca I ADAL I Hae II Not I Sma I AVT II Hae III PflM I Sph I BamH I HinC II Pet I Spl I Ban II HinD III Pvu I

> 31304-A-B (Ahut 22 of 58)

EXPERIMENT 12

Repair of an exogenously supplied CFTR target molecule carrying an F508 deletion in exon 10.

Figure 16 31304-A-B Shut 23 of 58 09-18-98 12:42PM TO Baker&Botts_ ō5020

EXPERIMENT 3

Repair of endogenous CFTR transcripts by exon 10 invasion using a double splicing PTM

Double Splicing PTM

Figure 17
31304 B-A
Shut 24 of 58

the fact and the fact that the fact that the fact that the fact that fact the fact that f

85 % SE 2774

PTM with 27 bp BD & masks 5' single splice site PTM with 260 bp BD masking both the ss & the entire CFTR Ex10 PTM with 120 bp BD & masks both 5' & 3' **DSPTM-7** DSPTM-6 **DSPTM-5** splice sites **BD from PTM21** 5. 260 by BD 2st BD Souble Trans-splicing PTMs **BD from PTM20** BD from PTM11 124 bp 119 bp BD from PTM24 1st BD Double Splicing

the trait that the time to be the trait

W. 4.4 Ch tal by 4.4

85 % 90 mys

Figure 19

Repaired LacZ mRNA

Figure 20

Se fo to my

Sheet 28 of 58

Important Structural Elements of DSPTM-7: (Double splicing PTM with all the necessary splice elements i.e. has both 3' and 5' functional splice sites and the binding domains)

(1) 3' BD (120 BP): GATTCACTTGCTCCAATTATCATCCTAAGCAGAAGTGTATATTTCTTATTTGTAAAGATTCTATTAACTCATTTGATTC **AAAATATTTAAAATACTTCCTGTTTCATACTCTGCTATGCAC**

(2) Spacer sequences (24 bp): AACATTATTATAACGTTGCTCGAA

3) Branch point, pyrimidine tract and acceptor splice site: TACTAAC T GGTACC TCTTCTTTTTTT GATATC CTGCAG GGG GGG acZ min 3, ss **EcoRV** PPT Xpn -

TEA NOCE GTAAGT GTTATCACCGATATGTGTCTAACCTGATTCGGGCCTTCGATACG 5' 88 acZ mini (4) 5' donor site and 2nd spacer sequence:

(5) 5' BD (260 BP): TCAAAAAGTITTCACATAATITCTTACCTCTTCTTGAATTCATGCTTTGATGACGCTTCTGTATCTATATTCATCGAAA AAAAACCCTCTGAATTCTCCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAAACCCATCATTATTAACTCA **ACACCAATGATTTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACACAATGAAATTCTTCCACTGTGCTTAA** CTAAGATCCACCGG **TTATCAAATCACGC**

sigure 21

٧

Figyre 22

JAME 29 of 58

Double Trans-splicing Produces Full-length Protein

Figure 24

St yo 18 July 58

Restoration of β -Gal Function by Double *Trans*-splicing

Beta-gal Activity (Units/mg protein)

Stut 32 of 58

Restoration of β-gal activity is due to double RNA *trans*splicing events

85 go EE ampp

Figure 27

Str 45 mil

DSHCGT1 (Non-specific Target):

Figure 28

85 p SE 2myp

Figure 29

82 fo 25 tuto

Figure

82 fo #8 July

PTM with a long binding domain masking two splice sites and part of exon 10 in a mini-gene target.

A<u>CGAGCT</u>TGCTCATGATCATGGGCGAGTTAGAACCAAGTGAAGGCAAGAATCAAAACA<u>TTCC</u>G GCCGCATCAGCTTTTGCAGCCAATTCAGTTGGATCATGCCCGGTACCATCAAGGAGAACATAAT <u>CTTC</u>GGCGTCAGTTACGACGAGTACCGCTATCGCTCGGTGATTAAGGCCCTGTCAGTTGGAGGAA

MCU in exon 10 of PTM

88 of 192 (46%) bases in PTM exon 10 are not complementary to its binding domain (bold and underlined)

Figure 31

85 fo 85 myp

Sequence of a double

Figure 32

☐ = MCU in PTM exon 10

85 to 68 my

Figure 33

25 to of 2my

MCU in exon 10 of PTM

88 of 192 (46%) bases in PTM exon 10 are not complementary to its binding domain. A<u>CGAGCT</u>T<u>GC</u>T<u>C</u>ATGATGAT<u>C</u>ATGGG<u>C</u>GA<u>GT</u>T<u>A</u>GA<u>ACCAAGT</u>GA<u>A</u>GG<u>C</u>AAGAGATCAAACT G<u>CCGC</u>AT<u>CAGC</u>TT<u>T</u>TG<u>CAGC</u>CAATT<u>CAGTT</u>GGAT<u>C</u>ATGCC<u>C</u>GG<u>T</u>ACCAT<u>C</u>AA<u>G</u>GA<u>G</u>AA<u>C</u>AT<u>A</u>AT <u>CTTCGGCGTTAGGAGGAGGAGTACCGGTATCGCTCGGTG</u>AT<u>T</u>AAGGC<u>C</u>TG<u>TCAGTTG</u>GAGGAG

Figure 35

↑Cis

CDEFGH

A B

(bp)

Trans-

100-

Target

CTT absent ''U ...

Target Exon 769 C

Target Exon 10820

Target Exon 10820

C C A A C TAG A B G G A C A T C C C A G T TG C

Solve the state of the

Figure 36

82 fo Et Luth

A.

Cis-spliced product

[Primers CF1 + CF1111]

tien das eine eine das in der in deri

Figure 37 A

Figure 37B

ļ.

13

-. (M##

Figure 37C

C

Strut 46 of 58

the first first that the first first first first

um en com part ma ma con con the contract of t

85 for 44 AMP

Figure 38B

 ω

Figure 40 A

The Co. The Conf. The Co. Co. Co.

And the trade that the trade than the trade

The Hall Mill Mall for Mark

Shut 52 of 58

Figu

Shut 53 of 58

Figure 41A

~I

The time of the time

F. F.

1.0 4.0 4.0

Sheet 54 of 58

Figure 4KB

Figure 41C

Shut 56 of 58

Exons 1-10

ATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAG GGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTCTGG AGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTACTGGGAAGAATCA TAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTAT TGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGT $\tt TTGATTTATAAGAAGACTTTAAAGCTGTCAAGCCGTGTTCTAGATAAAATAAGTATTGGACAACTTGTTAGTCTCCTTT$ ${\tt CCAACAACCTGAACAAATTTGATGAAGGACTTGCATTGGCACATTTCGTGTGGATCGCTCCTTTGCAAGTGGCACTCCT}$ CATGGGGCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTTGCCCTTTTTCAG GCTGGGCTAGGGAGAATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTGAAAGACTTGTGATTACCTCAG AAATGATCGAGAACATCCAATCTGTTAAGGCATACTGCTGGGAAGAAGCAATGGAAAAAATGATTGAAAACTTAAGACA AACAGAACTGAAACTGACTCGGAAGGCAGCCTATGTGAGATACTTCAATAGCTCAGCCTTCTTCTTCTCAGGGTTCTTT GTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAGGAATCATCCTCCGGAAAATATTCACCACCATCTCATTCT GCATTGTTCTGCGCATGGCGGTCACTCGGCAATTTCCCTGGGCTGTACAAACATGGTATGACTCTCTTGGAGCAATAAA CAAAATACAGGATTTCTTACAAAAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGGAG AATGTAACAGCCTTCTGGGAGGAGGGATTTGGGGAATTATTTGAGAAAACAAAACAAAACAATAACAATAGAAAAACTT CTAATGGTGATGACAGCCTCTTCTTCAGTAATTTCTCACTTCTTGGTACTCCTGTCCTGAAAGATATTAATTTCAAGAT $AGAAAGAGGACAGTTGTTGGCGGTTGCTGGATCCACTGGAGCAGGCAAGA\underline{CGAGCT} \\ T\underline{GC}T\underline{C}ATGATGAT\underline{C}ATGGG\underline{C}GA\underline{G}$ $\underline{\mathbf{T}} \mathbf{1} \underline{\mathbf{A}} \mathbf{G} \underline{\mathbf{A}} \underline{\mathbf{C}} \mathbf{1} \underline{\mathbf{A}} \underline{\mathbf{G}} \mathbf{G} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{G}} \mathbf{A} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{T}} \mathbf{C} \underline{\mathbf{C}} \underline{\mathbf{G}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \mathbf{T} \underline{\mathbf{T}} \mathbf{T} \underline{\mathbf{G}} \underline{\mathbf{G}} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{A}} \underline{\mathbf{T}} \underline{\mathbf{C}} \underline{\mathbf{G}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{T}} \underline{\mathbf{T}} \underline{\mathbf{G}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{T}} \underline{\mathbf{C}} \underline{\mathbf{G}} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{T}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{G}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{T}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{T}} \underline{\mathbf{T}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{C}} \underline{\mathbf{A}} \underline{\mathbf{T}} \underline{\mathbf{C}} \underline{\mathbf{C}}} \underline{\mathbf{C}} \underline{\mathbf$ CCAT<u>C</u>AA<u>G</u>GA<u>G</u>AA<u>C</u>AT<u>A</u>AT<u>C</u>TT<u>C</u>GG<u>C</u>GT<u>CAGTT</u>A<u>C</u>GA<u>C</u>GA<u>G</u>TA<u>CCGCTCAGTCG</u>GT<u>G</u>AT<u>T</u>AA<u>G</u>GC<u>C</u>TG<u>TCAGTTG</u>GA

Trans-splicing domain

GTAAGATATCACCGATATGTGTCTAACCTGATTCGGGCCTTCGATACGCTAAGATCCACCGG

TCAAAAAGTTTTCACATAATTTCTTACCTCTTCTTGAATTCATGCTTTGATGACGCTTCTGTATCTATATTCATCATTG
GAAACACCAATGATATTTTCTTTAATGGTGCCTGGCATAATCCTGGAAAACTGATAACACAAATGAAATTCTTCCACTGT
GCTTAATTTTACCCCTCTGAATTCTCCCATTTCTCCCATAATCATCATTACAACTGAACTCTGGAAATAAAAACCCATCATT
ATTAACTCATTATCAAATCACGCT

Figure 42

Shut 57 of

153 bp PTM24 Binding Domain:

Nhe I

153 bp BD underlined

GCTAGC - MATANT GACGAAGCCGCCCTCACGCTCAGGATTCACTTGCCTCCAATTATCATCCTAAGCAGAAGTGTATA

TTCTTATTTGTAAAGATTCTATTAACTCATTTGATTCAAAATATTTAAAATACTTCCTGTTTCACCTACTGCTATGC

Sac II <u>AC</u>-**CCGCGG**

Figure 43A

Trans-splicing domain

GTTCTCAGTTTTCCTGGATTATGCCTGGCACCATTAAAGAAAATATCATCTTTGGTGTTTTCCTATGATGAATATAGATA CAGAAGCGTCATCAAAGCATGCCAACTAGAAGAGGACATCTCCAAGTTTGCAGAGAAAGACAATATAGTTCTTGGAGAA GGTGGAATCACACTGAGTGGAGGTCAACGAGCAAGAATTTCTTTAGCAAGAGCAGTATACAAAGATGCTGATTTGTATT TATTAGACTCTCCTTTTGGATACCTAGATGTTTTAACAGAAAAAGAATATTTGAAAGCTGTGTCTGTAAACTGATGGC AGCAGCTATTTTTATGGGACATTTTCAGAACTCCAAAATCTACAGCCAGACTTTAGCTCAAAACTCATGGGATGTGATT CTTTCGACCAATTTAGTGCAGAAAGAAGAAATTCAATCCTAACTGAGACCTTACACCGTTTCTCATTAGAAGGAGATGC TCCTGTCTCCTGGACAGAAACAAAAAAACAATCTTTTAAACAGACTGGAGAGTTTGGGGAAAAAAAGGAAGAATTCTATT GATCAGCACTGGCCCCACGCTTCAGGCACGAAGGAGGCAGTCTGTCCTGAACCTGATGACACACTCAGTTAACCAAGGT CAGAACATTCACCGAAAGACAACAGCATCCACACGAAAAGTGTCACTGGCCCCTCAGGCAAACTTGACTGAACTGGATA TATATTCAAGAAGGTTATCTCAAGAAACTGGCTTGGAAATAAGTGAAGAAATTAACGAAGAAGACTTAAAGGAGTGCTT TTTTGATGATATGGAGAGCATACCAGCAGTGACTACATGGAACACATACCTTCGATATATTACTGTCCACAAGAGCTTA ATTTTTGTGCTAATTTGGTGCTTAGTAATTTTTCTGGCAGAGGTGGCTGCTTCTTTGGTTGTGCTGTGGCTCCTTGGAA ACACTCCTCTTCAAGACAAAGGGAATAGTACTCATAGTAGAAATAACAGCTATGCAGTGATTATCACCAGCACCAGTTC CATACTCTAATCACAGTGTCGAAAATTTTACACCACAAAATGTTACATTCTGTTCTTCAAGCACCTATGTCAACCCTCA ACACGTTGAAAGCAGGTGGGATTCTTAATAGATTCTCCAAAGATATAGCAATTTTGGATGACCTTCTGCCTCTTACCAT GCAACAGTGCCAGTGATAGTGGCTTTTATTATGTTGAGAGCATATTTCCTCCAAACCTCACAGCAACTCAAACAACTGG AATCTGAAGGCAGGAGTCCAATTTTCACTCATCTTGTTACAAGCTTAAAAGGACTATGGACACTTCGTGCCTTCGGACG GCAGCCTTACTTTGAAACTCTGTTCCACAAAGCTCTGAATTTACATACTGCCAACTGGTTCTTGTACCTGTCAACACTG CGCTGGTTCCAAATGAGAATGAATTTTTTGTCATCTTCTTCATTGCTGTTACCTTCATTTCCATTTTAACAACAG GAGAAGGAAGGAAGAGTTGGTATTATCCTGACTTTAGCCATGAATATCATGAGTACATTGCAGTGGGCTGTAAACTC CAGCATAGATGTGGATAGCTTGATGCGATCTGTGAGCCGAGTCTTTAAGTTCATTGACATGCCAACAGAAGGTAAACCT ACATCTGGCCCTCAGGGGGCCAAATGACTGTCAAAGATCTCACAGCAAAATACACAGAAGGTGGAAATGCCATATTAGA GAACATTTCCTTCTCAATAAGTCCTGGCCAGAGGGTGGGCCTCTTGGGAAGAACTGGATCAGGGAAGAGTACTTTGTTA TCAGCTTTTTTGAGACTACTGAACACTGAAGGAGAAATCCAGATCGATGGTGTCTTTGGGATTCAATAACTTTTGCAAC TGAACAGTGGAGTGATCAAGAAATATGGAAAGTTGCAGATGAGGTTGGGCTCAGATCTGTGATAGAACAGTTTCCTGGG AAGCTTGACTTTGTCCTTGTGGATGGGGGCTGTGTCCTAAGCCATGGCCACAAGCAGTTGATGTGCTTGGCTAGATCTG TTCTCAGTAAGGCGAAGATCTTGCTGCTTGATGAACCCAGTGCTCATTTGGATCCAGTAACATACCAAATAATTAGAAG AACTCTAAAACAAGCATTTGCTGATTGCACAGTAATTCTCTGTGAACACAGGATAGAAGCAATGCTGGAATGCCAACAA Histidine tag

TGCTCTGAAAGAGAGAGAAGAAGAGAGGTGCAAGATACAAGGCTTCATCATCATCATCATTAG

Figure 43B