PCT

ORGANISATION MONDIALE DE LA PROPRIETE INTELLECTUELLE Bureau international

DEMANDE INTERNATIONALE PUBLIEE EN VERTU DU TRAITE DE COOPERATION EN MATIERE DE BREVETS (PCT)

(51) Classification internationale des brevets ⁶:

C07C 211/63, 217/84, A61K 7/13, C07D 295/14

(11) Numéro de publication internationale: WO 99/03819

(43) Date de publication internationale: 28 janvier 1999 (28.01.99)

(21) Numéro de la demande internationale: PCT/FR98/01534

(22) Date de dépôt international: 13 juillet 1998 (13.07.98)

(30) Données relatives à la priorité: 97/09027 16 juillet 1997 (16.07.97) FR

(71) Déposant (pour tous les Etats désignés sauf US): L'OREAL [FR/FR]; 14, rue Royale, F-75008 Paris (FR).

(72) Inventeurs; et

(75) Inventeurs/Déposants (US seulement): GENET, Alain [FR/FR]; 9, rue des Coquelicots, F-93600 Aulnay sous Bois (FR). LAGRANGE, Alain [FR/FR]; 5, rue de Montry, F-77770 Coupvray (FR).

(74) Mandataire: MISZPUTEN, Laurent; L'Oréal – DPI, 90, rue du Général Roguet, F-92583 Clichy Cedex (FR). (81) Etats désignés: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, brevet ARIPO (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), brevet eurasien (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), brevet OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Publiée

Avec rapport de recherche internationale. Avant l'expiration du délai prévu pour la modification des revendications, sera republiée si des modifications sont reçues.

(54) Title: NOVEL CATIONIC OXIDATION BASES, THEIR USE FOR OXIDATION DYEING OF KERATIN FIBRES, DYEING COMPOSITIONS AND DYEING METHODS

(54) Titre: NOUVELLES BASES D'OXYDATION CATIONIQUES, LEUR UTILISATION POUR LA TEINTURE D'OXYDATION DES FIBRES KERATINIQUES, COMPOSITIONS TINCTORIALES ET PROCEDES DE TEINTURE

(57) Abstract

The invention concerns novel monobenzene oxidation bases comprising at least one cationic group Z bearing at least a cyclized or non-cyclized quaternary ammonium unit, their use for oxidation dyeing of keratin fibres, dyeing compositions containing them and oxidation dyeing methods using them.

(57) Abrégé

L'invention a pour objet de nouvelles bases d'oxydation monobenzéniques comportant au moins un groupement cationique Z porteur d'au moins un motif ammonium quaternaire cyclisé ou non, leur utilisation pour la teinture d'oxydation des fibres kératiniques, les compositions tinctoriales les contenant, ainsi que les procédés de teinture d'oxydation les mettant en oeuvre.

UNIQUEMENT A TITRE D'INFORMATION

Codes utilisés pour identifier les Etats parties au PCT, sur les pages de couverture des brochures publiant des demandes internationales en vertu du PCT.

							•
AL	Albanie	ES	Espagne	LS	Lesotho	SI	Slovénie
AM	Arménie	FI	Finlande	LT	Lituanie	SK	Slovaquie
AT	Autriche	FR	France	LU	Luxembourg	SN	Sénégal
ΑÜ	Australie	GA	Gabon	LV	Lettonie	SZ	Swaziland
ΑZ	Azerbaĭdjan	GB	Royaume-Uni	MC	Monaco	TD	Tchad
BA	Bosnie-Herzégovine	GE	Géorgie	MD	République de Moldova	TG	Togo
BB	Barbade	GH	Ghana	MG	Madagascar	TJ	Tadjikistan
BE	Belgique	GN	Guinée	MK	Ex-République yougoslave	TM	Turkménistan
BF	Burkina Faso	GR	Grèce		de Macédoine	TR	Turquie
BG	Bulgarie	HU	Hongrie	ML	Mali	TT	Trinité-et-Tobago
BJ	Bénin .	IE	Irlande	MN	Mongolie	UA	Ukraine
BR	Brésil	IL	Israël	MR	Mauritanie	UG	Ouganda
BY	Bélarus	IS	Islande	MW	Malawi	US	Etats-Unis d'Amérique
CA	Canada	IT	Italie	MX	Mexique	UZ	Ouzbékistan
CF	République centrafricaine	JP	Japon	NE	Niger	VN	Vict Nam
CG	Congo	KE	Kenya	NL	Pays-Bas	YU	Yougoslavie
CH	Suisse	KG	Kirghizistan	NO	Norvège	zw	Zimbabwe
CI	Côte d'Ivoire	KP	République populaire	NZ	Nouvelle-Zélande		
CM	Cameroun		démocratique de Corée	PL	Pologne		
CN	Chine	KR	République de Corée	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Roumanie		
CZ	République tchèque	LC	Sainte-Lucie	RU	Pédération de Russie		
DE	Allemagne	LI	Liechtenstein	SD	Soudan		
DK	Danemark	LK	Sri Lanka	SE	Suède		
EE	Estonie	LR	Libéria	SG	Singapour		

WO 99/03819 PCT/FR98/01534

NOUVELLES BASES D'OXYDATION CATIONIQUES, LEUR UTILISATION POUR LA TEINTURE D'OXYDATION DES FIBRES KERATINIQUES, COMPOSITIONS TINCTORIALES ET PROCEDES DE TEINTURE

1

5 L'invention a pour objet de nouvelles bases d'oxydation monobenzéniques comportant au moins un groupement cationique Z, Z étant choisi parmi des chaînes aliphatiques quaternisées et des chaînes aliphatiques contenant au moins un cycle saturé quaternisé, leur utilisation pour la teinture d'oxydation des fibres kératiniques, les compositions tinctoriales les contenant, ainsi que les procédés de teinture d'oxydation les mettant en œuvre.

Il est connu de teindre les fibres kératiniques et en particulier les cheveux humains avec des compositions tinctoriales contenant des précurseurs de colorant d'oxydation, en particulier des ortho ou paraphénylènediamines, des ortho ou paraaminophénols, des composés hétérocycliques tels que des dérivés de diaminopyrazole, appelés généralement bases d'oxydation. Les précurseurs de colorants d'oxydation, ou bases d'oxydation, sont des composés incolores ou faiblement colorés qui, associés à des produits oxydants, peuvent donner naissance par un processus de condensation oxydative à des composés colorés et colorants.

On sait également que l'on peut faire varier les nuances obtenues avec ces bases d'oxydation en les associant à des coupleurs ou modificateurs de coloration, ces derniers étant choisis notamment parmi les métadiamines aromatiques, les métadminophénols, les métadiphénols et certains composés hétérocycliques.

La variété des molécules mises en jeu au niveau des bases d'oxydation et des coupleurs, permet l'obtention d'une riche palette de couleurs.

15

20

25

WO 99/03819 PCT/FR98/01534

La coloration dite "permanente" obtenue grâce à ces colorants d'oxydation, doit par ailleurs satisfaire un certain nombre d'exigences. Ainsi, elle doit être sans inconvénient sur le plan toxicologique, elle doit permettre d'obtenir des nuances dans l'intensité souhaitée et présenter une bonne tenue face aux agents extérieurs (lumière, intempéries, lavage, ondulation permanente, transpiration, frottements).

Les colorants doivent également permettre de couvrir les cheveux blancs, et être enfin les moins sélectifs possible, c'est à dire permettre d'obtenir des écarts de coloration les plus faibles possible tout au long d'une même fibre kératinique, qui peut être en effet différemment sensibilisée (i.e. abîmée) entre sa pointe et sa racine.

10

15

20

25

30

Il a déjà été proposé, notamment dans le brevet US 5,139,532, d'utiliser certains dérivés cationiques de paraphénylènediamines, à savoir plus précisément des paraphénylènediamines dont un des groupements amino est monosubstitué par une chaîne aliphatique quaternisée, pour la teinture d'oxydation des fibres kératiniques dans des nuances intenses et plus rouges que celles obtenues habituellement en mettant en œuvre des paraphénylènediamines classiques, c'est à dire ne portant pas de groupement cationique. Toutefois, l'utilisation des paraphénylènediamines décrites dans ce brevet antérieur ne permet pas d'obtenir une riche palette de couleurs et, de plus, les colorations obtenues ne donnent pas toujours entière satisfaction du point de vue de leur résistance vis à vis des diverses agressions que peuvent subir les cheveux (action de la lumière, de la transpiration, des shampooings, etc...).

Or, la demanderesse vient maintenant de découvrir, de façon totalement inattendue et surprenante, que certaines nouvelles bases d'oxydation monobenzéniques de formule (I) définie ci-après comportant au moins un groupement cationique Z, Z étant choisi parmi des chaînes aliphatiques quaternisées et des chaînes aliphatiques contenant au moins un cycle saturé

5

quaternisé, non seulement conviennent pour une utilisation comme précurseurs de colorant d'oxydation, mais en outre qu'elles permettent d'obtenir des compositions tinctoriales conduisant à des colorations puissantes couvrant une large palette de couleurs et présentant d'excellentes propriétés de résistances aux différents traitements que peuvent subir les fibres kératiniques. Enfin, ces composés s'avèrent être aisément synthétisables.

Ces découvertes sont à la base de la présente invention.

10 L'invention a donc pour premier objet de nouveaux composés de formule (I) suivante, et leurs sels d'addition avec un acide :

$$R_2$$
 R_3
 R_1
 R_1
 R_3
 R_1

dans laquelle:

• R₁, R₂, R₃, qui peuvent être identiques ou différents, représentent un atome 15 d'hydrogène ; un atome d'halogène ; un groupement Z ; un radical alkyl(C₁-C₆) carbonyle; un radical aminoalkyl(C₁-C₆)carbonyle; un radical N-Z-aminoalkyl(C_1 - C_6)carbonyle; un radical N-alkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonyle; un radical N,N-dialkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonyle; un 20 radical aminoalkyl(C₁-C₆)carbonylalkyle(C₁-C₆); un radical N-Z-aminoalkyl(C₁-N-alkyl(C₁-C₆)aminoalkyl(C₁- C_6)carbonylalkyle(C_1 - C_6); radical un C_6)carbonylalkyle(C_1 - C_6); un radical N,N-dialkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonylalkyle(C_1 - C_6); un radical carboxy; un radical alkyl(C_1 - C_6) carboxy; un radical alkyl(C₁-C₆) sulfonyle; un radical aminosulfonyle; un 25 radical N-Z-aminosulfonyle; un radical N-alkyl(C₁-C₆)aminosulfonyle; un radical N,N-dialkyl(C₁-C₆)aminosulfonyle; un radical aminosulfonylalkyle(C₁- C_6); un radical N-Z-aminosulfonylalkyle(C_1 - C_6); un radical N-alkyl(C_1 - 5

10

15

20

 C_6)aminosulfonyl-alkyle(C_1 - C_6) . N,N-dialkyl(C,un radical C₆)aminosulfonylalkyle(C₁-C₆); un radical carbamyle; un radical N-alkyl(C₁-C₆)carbamyle; un radical N,N-dialkyl-(C₁-C₆)carbamyle; un radical carbamylalkyle(C_1 - C_6); un radical N-alkyl(C_1 - C_6)carbamylalkyle(C_1 - C_6); un radical N,N-dialkyl(C₁-C₆)carbamylalkyle(C₁-C₆); un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C2-C6; un radical alcoxy(C1-C6)alkyle en C1-C6; un radical trifluoroalkyle en C₁-C₆; un radical cyano; un groupement OR₆ ou SR₆; un groupe amino protégé un radical alkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carboxy, par trifluoroalkyl(C_1 - C_6)carbonyle, aminoalkyl(C_1 - C_6)carbonyle, N-Z-aminoalkyl(C_1 -N-alkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonyle, C₆)carbonyle, N,N-dialkyl(C₁- C_6)aminoalkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carboxy, carbamyle, N-alkyl(C_1 -C₆)carbamyle, $N,N-dialkyl(C_1-C_6)$ carbamyle, alkyl(C₁-C₆)sulfonyle, aminosulfonyle, N-Z-aminosulfonyle, N-alkyl(C_1 - C_6)aminosulfonyle, N,N-dialkyl(C_1 - C_6)aminosulfonyle, thiocarbamyle, formyle, ou par groupement Z; ou un radical aminoalkyle en C1-C6 dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle en C₁-C₆, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C_2 - C_6 , alkyl(C_1 - C_6)carbonyle, carbamyle, N-alkyl(C_1 - C_6)carbamyle N,N-dialkyl(C_1 - C_6)carbamyle, alkyl(C_1 - C_6)sulfonyle, formyle, trifluoroalkyl(C_1 -C₆)carbonyle, alkyl(C₁-C₆)carboxy, thiocarbamyle, ou par un groupement Z;

° R₆ désigne un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C₂-C₆; un groupement Z; un radical alcoxy(C₁-C₆)alkyle en C₁-C₆; un radical aryle; un radical benzyle; un radical carboxyalkyle en C₁-C₆; un radical alkyl(C₁-C₆)carboxyalkyle en C₁-C₆; un radical cyanoalkyle en C₁-C₆; un radical carbamylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical trifluoroalkyle en C₁-C₆; un radical aminosulfonylalkyle en C₁-C₆; un radical N-Z-aminosulfonylalkyle en C₁-C₆ un radical N-alkyl(C₁-C₆)aminosulfonylalkyle en C₁-C₆; un radical N,N-dialkyl(C₁-C₆)aminosulfonylalkyle en C₁-C₆; un radical N,N-dialkyl(C₁-C₆)aminosulfo

 C_6)aminosulfonylalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)sulfinylalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)sulfonylalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)carbonylalkyle en C_1 - C_6 ; un radical aminoalkyle en (C_1 - C_6); un radical aminoalkyle en (C_1 - C_6) dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle(C_1 - C_6), monohydroxyalkyle(C_1 - C_6), polyhydroxyalkyle(C_2 - C_6), alkyl(C_1 - C_6)carbonyle, formyle, trifluoroalkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carbamyle, N-alkyl(C_1 - C_6)carbamyle, N,N-dialkyl(C_1 - C_6)carbamyle, thiocarbamyle, alkyl(C_1 - C_6)sulfonyle, et le groupement Z;

10

15

20

25

30

5

° A représente un groupement -NR₄R₅ ou un radical hydroxyle ;

° R_4 et R_5 , identiques ou différents, représentent un atome d'hydrogène ; un groupement Z; un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C₂-C₆; un radical alcoxy(C₁-C₆)alkyle en C₁-C₆; un radical aryle; un radical benzyle; un radical cyanoalkyle en $C_1\text{-}C_6$; un radical carbamylalkyle en $C_1\text{-}C_6$; un radical N-alkyl($C_1\text{-}$ C_6)carbamylalkyle en C_1 - C_6 ; un radical N,N-dialkyl(C_1 - C_6)carbamylalkyle en C_1 - C_6 ; un radical thiocarbamylalkyle en C_1 - C_6 ; un radical trifluoroalkyle en C_1 - C_6 ; un radical sulfoalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)carboxyalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)sulfinylalkyle en C_1 - C_6 ; un radical aminosulfonylalkyle en C₁-C₆; un radical N-Z-aminosulfonylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)aminosulfonylalkyle en C₁-C₆; un radical N,N-dialkyl(C₁-C₆)aminosulfonylalkyle en C₁-C₆; un radical alkyl(C₁- C_6)carbonylalkyle en $C_1\text{-}C_6$; un radical aminoalkyle en $C_1\text{-}C_6$; un radical aminoalkyle en C₁-C₆ dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle en C₁-C₆, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C₂-C₆, alkyl(C₁- C_6)carbonyle, carbamyle, N-alkyl(C_1 - C_6)carbamyle ou N,N-dialkyl(C_1 - C_6)carbamyle, alkyl(C_1 - C_6)sulfonyle, formyle, trifluoroalkyl(C_1 - C_6)carbonyle, alkyl(C₁-C₆)carboxy, thiocarbamyle, ou par un groupement Z;

• Z représente un groupement de formule (II) suivante :

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

dans laquelle:

 B est un bras de liaison qui représente une chaîne alkyle comportant de préférence de 1 à 14 atomes de carbone, linéaire ou ramifiée pouvant être interrompue par un ou plusieurs hétéroatomes tels que des atomes d'oxygène, de soufre ou d'azote, pouvant être substituée par un ou plusieurs radicaux hydroxyle ou alcoxy en C₁-C₆, et pouvant porter une ou plusieurs fonctions cétone;

10

15

20

25

5

• R₇, R₈ et R₉, identiques ou différents, représentent un radical alkyle en C_1 - C_6 , un radical monohydroxyalkyle en $C_{1}-C_{6}$ polyhydroxyalkyle en C2-C6, un radical alcoxy(C1-C6)alkyle en C1-C6, un radical cyanoalkyle en C_1 - C_6 , un radical aryle, un radical benzyle, un radical carbamylalkyle en C_1 - C_6 , un radical trialkyl(C_1 - C_6)silanealkyle en $C_1\text{-}C_6$ ou un radical aminoalkyle en $C_1\text{-}C_6$ dont l'amine est protégée par un radical alkyl(C₁-C₆)carbonyle, carbamyle, ou alkyl(C₁-C₆)sulfonyle; deux des radicaux R₇, R₈ et R₉ peuvent également former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle saturé à 5 ou 6 chaînons carboné ou contenant un ou plusieurs hétéroatomes tel que par exemple un cycle pyrrolidine, un cycle pipéridine, un cycle pipérazine ou un cycle morpholine, ledit cycle pouvant être ou non substitué par un atome d'halogène, un radical hydroxyle, un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical nitro, un radical cyano, un radical cyanoalkyle en C₁-C₆, un radical alcoxy en C_1 - C_6 , un radical trialkyl(C_1 - C_6)silanealkyle en C_1 - C_6 , un radical amido, un radical aldéhydo, un radical carboxyle, un radical

5

10

15

20

alkylcarbonyle en C_1 - C_6 , un radical thio, un radical thioalkyle en C_1 - C_6 , un radical alkyl(C_1 - C_6)thio, un radical amino, un radical amino protégé par un radical alkyl(C_1 - C_6)carbonyle, carbamyle ou alkyl(C_1 - C_6)sulfonyle;

l'un des radicaux R₇, R₈ et R₉ peut également représenter un second groupement Z identique ou différent du premier groupement Z ;

- X représente un anion monovalent ou divalent et est de préférence choisi parmi un atome d'halogène tel que le chlore, le brome, le fluor ou l'iode, un hydroxyde, un hydrogènesulfate, ou un alkyl(C₁-C₆)sulfate tel que par exemple un méthylsulfate ou un éthylsulfate;
- R_{10} représente un radical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polyhydroxyalkyle en C_2 - C_6 ; un radical aryle; un radical benzyle; un radical aminoalkyle en C_1 - C_6 , un radical aminoalkyle en C_1 - C_6 dont l'amine est protégée par un radical alkyl(C_1 - C_6)carbonyle, carbamyle ou alkyl(C_1 - C_6)sulfonyle; un radical carboxyalkyle en C_1 - C_6 ; un radical cyanoalkyle en C_1 - C_6 ; un radical trifluoroalkyle en C_1 - C_6 ; un radical trifluoroalkyle en C_1 - C_6 ; un radical trialkyl(C_1 - C_6)silanealkyle en C_1 - C_6 ; un radical sulfonamidoalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)carboxyalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)sulfonylalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)cetoalkyle en C_1 - C_6 ; un radical C_1 - C_6 -C

25

30

- x est un nombre entier égal à 0 ou 1 ; avec les conditions suivantes :
 - lorsque x = 0, alors le bras de liaison B est rattaché à l'atome d'azote portant les radicaux R_7 à R_9 ;
 - lorsque x = 1, alors deux des radicaux R_7 à R_9 forment conjointement avec l'atome d'azote auquel ils sont rattachés un cycle saturé à 5 ou 6

chaînons tel que défini précédemment, et le bras de liaison B est porté par un atome de carbone dudit cycle saturé ;

étant entendu :

- 5 que le nombre de groupements Z est au moins égal à 1;
 - que lorsque A représente un groupement -NR₄R₅ dans lequel R₄ ou R₅ représente un groupement Z dans lequel le bras de liaison B représente une chaîne alkyle comportant une fonction cétone, alors ladite fonction cétone n'est pas directement rattachée à l'atome d'azote du groupement -NR₄R₅;

10

15

20

25

et à l'exclusion du iodure 4-amino 2-fluoro N-(triméthylammonium-éthyl) aniline, du iodure de 4-amino 2-trifluorométhyl N-(triméthylammonium-éthyl) aniline ; du iodure de 4-amino 2-cyano N-(triméthylammonium-éthyl) aniline ; du iodure de 2-(4-aminophénylamino)éthyl-triméthyl ammonium ; du chlorure de 4-amino 3-méthyl N-éthyl, N-(triméthylammonium-éthyl) aniline et de leurs sels d'addition avec un acide.

Comme indiqué précédemment, les colorations obtenues avec la composition de teinture d'oxydation conforme à l'invention sont puissantes et couvrent une large palette de couleurs. Elles présentent de plus d'excellentes propriétés de résistance vis à vis de l'action des différents agents extérieurs (lumière, intempéries, lavage, ondulation permanente, transpiration, frottements).

Dans la formule (I) ci-dessus les radicaux alkyle et alcoxy peuvent être linéaires ou ramifiés.

Parmi les composés de formule (I) ci-dessus, on peut notamment citer :

- le chlorure de [2-(2,5-diamino-phénoxy)-éthyl]-diéthyl-méthyl-ammonium monohydrate ;
- 30 le dichlorure de N,N-bis-(triméthylammonium-propyl)-4-amino-aniline ;
 - le chlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-méthyl-ammonium ;

10

- le chlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)ammonium ;
- le chlorure de [2-(4-amino-phénylamino)-éthyl]-diéthyl-méthyl-ammonium ;
- le chlorure de {2-[(4-aminophényl)-méthyl-amino]-éthyl}-triméthyl-ammonium ;
- 5 le chlorure de [3-(4-amino-phénylamino)-propyl]-triméthyl-ammonium ;
 - le chlorure de [2-(4-amino-phénylamino)-propyl]-triméthyl-ammonium ;
 - le chlorure de [4-(4-amino-2-méthyl-phénylamino)-pentyl]-diéthyl-méthylammonium;
 - le chlorure de [4-(4-amino-3-méthyl-phénylamino)-pentyl]-diéthyl-méthylammonium;
 - le chlorure de 1-{[5-amino-2-(2-hydroxyéthylamino)-phénylcarbamoyl]-méthyl} 1,4-diméthyl-pipérazin-1-ium;

et leurs sels d'addition avec un acide.

- 15 Parmi ces composés de formule (I), on préfère plus particulièrement :
 - le chlorure de [2-(2,5-diamino-phénoxy)-éthyl]-diéthyl-méthyl-ammonium monohydrate;
 - le chlorure de N,N-bis-(triméthylammonium-propyl)-4-amino-aniline ;
 - le chlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-méthyl-ammonium ;
- 20 le chlorure de [2-(4-amino-phénylamino)-éthyl]-diéthyl-méthyl-ammonium ;
 - le chlorure de {2-[(4-aminophényl)-méthyl-amino]-éthyl}-triméthyl-ammonium;
 - le chlorure de [3-(4-amino-phénylamino)-propyl]-triméthyl-ammonium ;
 - le chlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)-ammonium ;
- 25 et leurs sels d'addition avec un acide.

Les composés de formule (I) conformes à l'invention peuvent être facilement obtenus, selon des méthodes bien connues de l'état de la technique :

 - soit par réduction des composés nitrés cationiques correspondants (paranitranilines cationiques ou para-nitrophénols cationiques), WO 99/03819 PCT/FR98/01534

- soit par réduction des composés nitrosés cationiques correspondants (obtenus par exemple par nitrosation d'une aniline tertiaire ou d'un phénol correspondant),

10

- soit par réduction des composés azoïques cationiques correspondants (coupure réductrice).

5

10

15

20

25

30

Cette étape de réduction (obtention d'une amine aromatique primaire) qui confère au composé synthétisé son caractère de composé oxydable (de base d'oxydation) suivie ou non d'une salification, est en général, par commodité, la dernière étape de la synthèse.

Cette réduction peut intervenir plus tôt dans la suite des réactions conduisant à la préparation des composés de formule (I), et selon des procédés bien connus il faut alors "protéger" l'amine primaire créée (par exemple par une étape d'acétylation, de benzènesulfonation, etc...), faire ensuite la ou les substitutions ou modifications désirées (y compris la quaternisation) et terminer par la "déprotection" (en général en milieu acide) de la fonction amine.

De même la fonction phénolique peut être protégée selon des procédés bien connus par un radical benzyle ("déprotection" par réduction catalytique) ou par un radical acétyle ou mésyle ("déprotection" en milieu acide).

Lorsque la synthèse est terminée, les composés de formule (1) conformes à l'invention peuvent, le cas échéant, être récupérés par des méthodes bien connues de l'état de la technique telles que la cristallisation ou la distillation.

Un autre objet de l'invention est l'utilisation des composés de formules (I) conformes à l'invention à titre de base d'oxydation pour la teinture d'oxydation des fibres kératiniques, et en particulier des fibres kératiniques humaines telles que les cheveux.

WO 99/03819 PCT/FR98/01534

5

10

15

20

25

30

L'invention a également pour objet une composition pour la teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisée par le fait qu'elle comprend à titre de base d'oxydation, dans un milieu approprié pour la teinture, au moins un composé de formule (I) conforme à l'invention.

11

Le ou les composés de formule (I) conformes à l'invention représentent de préférence de 0,0005 à 12 % en poids environ du poids total de la composition tinctoriale, et encore plus préférentiellement de 0,005 à 6 % en poids environ de ce poids.

Le milieu approprié pour la teinture (ou support) est généralement constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique pour solubiliser les composés qui ne seraient pas suffisamment solubles dans l'eau. A titre de solvant organique, on peut par exemple citer les alcanols inférieurs en C_1 - C_4 , tels que l'éthanol et l'isopropanol ; le glycérol ; les glycols et éthers de glycols comme le 2-butoxyéthanol, le propylèneglycol, le monométhyléther de propylèneglycol, le monoéthyléther et le monométhyléther du diéthylèneglycol, ainsi que les alcools aromatiques comme l'alcool benzylique ou le phénoxyéthanol, les produits analogues et leurs mélanges.

Les solvants peuvent être présents dans des proportions de préférence comprises entre 1 et 40 % en poids environ par rapport au poids total de la composition tinctoriale, et encore plus préférentiellement entre 5 et 30 % en poids environ.

Le pH de la composition tinctoriale conforme à l'invention est généralement compris entre 3 et 12 environ, et de préférence entre 5 et 11 environ. Il peut être ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques.

Parmi les agents acidifiants, on peut citer, à titre d'exemple, les acides minéraux ou organiques comme l'acide chlorhydrique, l'acide orthophosphorique, l'acide sulfurique, les acides carboxyliques comme l'acide acétique, l'acide tartrique, l'acide lactique, les acides sulfoniques.

5

Parmi les agents alcalinisants on peut citer, à titre d'exemple, l'ammoniaque, les carbonates alcalins, les alcanolamines telles que les mono-, di- et triéthanolamines ainsi que leurs dérivés, les hydroxydes de sodium ou de potassium et les composés de formule (III) :

$$R_{11}$$
 $N-W-N$ R_{13} (III) R_{12} R_{14}

10

dans laquelle W est un reste propylène éventuellement substitué par un groupement hydroxyle ou un radical alkyle en C_1 - C_6 ; R_{11} , R_{12} , R_{13} et R_{14} , identiques ou différents, représentent un atome d'hydrogène, un radical alkyle en C_1 - C_6 ou hydroxyalkyle en C_1 - C_6 .

15 La composition tinctoriale conforme à l'invention peut encore contenir, en plus des colorants définis ci-dessus, au moins une base d'oxydation additionnelle qui peut être choisie parmi les bases d'oxydation classiquement utilisées en teinture d'oxydation et parmi lesquelles peut on notamment citer paraphénylènediamines différentes des composés de formule (I) conformes à 20 l'invention, les bis-phénylalkylènediamines, les para-aminophénols différents des composés de formule (I) conformes à l'invention, les ortho-aminophénols et les bases hétérocycliques.

25

Parmi les paraphénylènediamines, on peut plus particulièrement citer à titre d'exemple, la paraphénylènediamine, la paratoluylènediamine, la 2,6-diméthyl paraphénylènediamine, la 2-β-hydroxyéthyl paraphénylènediamine, la 2-n-propyl paraphénylènediamine, 2-isopropyl paraphénylènediamine, la N-(β-hydroxypropyl) paraphénylènediamine, la N,N-bis-(\(\beta\)-hydroxy\(\delta\)thyl) paraphénylènediamine, 4-amino N-(β-méthoxyéthyl) la aniline,

WO 99/03819 PCT/FR98/01534

paraphénylènediamines décrites dans la demande de brevet français FR 2 630 438, et leurs sels d'addition avec un acide.

Parmi les bis-phénylalkylènediamines, on peut plus particulièrement citer à titre d'exemple, le N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) 1,3-diamino propanol, la N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4'-aminophényl) éthylènediamine, la N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(β-hydroxyéthyl) N,N'-bis-(4-aminophényl) tétraméthylènediamine, la N,N'-bis-(4-méthylaminophényl) tétraméthylènediamine, la N,N'-bis-(4'-amino, 3'-méthylphényl) éthylènediamine, et leurs sels d'addition avec un acide.

10

15

20

25

30

Parmi les para-aminophénols, on peut plus particulièrement citer à titre d'exemple, le para-aminophénol, le 4-amino 3-méthyl phénol, le 4-amino 3-fluoro phénol, le 4-amino 3-hydroxyméthyl phénol, le 4-amino 2-méthyl phénol, le 4-amino 2-méthyl phénol, le 4-amino 2-méthoxyméthyl phénol, le 4-amino 2-méthoxyméthyl phénol, le 4-amino 2-(β-hydroxyéthyl aminométhyl) phénol, et leurs sels d'addition avec un acide.

Parmi les ortho-aminophénols, on peut plus particulièrement citer à titre d'exemple, le 2-amino phénol, le 2-amino 5-méthyl phénol, le 2-amino 6-méthyl phénol, le 5-acétamido 2-amino phénol, et leurs sels d'addition avec un acide.

Parmi les bases hétérocycliques, on peut plus particulièrement citer à titre d'exemple, les dérivés pyridiniques, les dérivés pyrimidiniques et les dérivés pyrazoliques.

Lorsqu'elles sont utilisées, ces bases d'oxydation additionnelles représentent de préférence de 0,0005 à 12 % en poids environ du poids total de la composition tinctoriale, et encore plus préférentiellement de 0,005 à 6 % en poids environ de ce poids.

:

5

10

15

20

30

Les compositions de teinture d'oxydation conformes à l'invention peuvent également renfermer au moins un coupleur et/ou au moins un colorant direct, notamment pour modifier les nuances ou les enrichir en reflets.

Les coupleurs utilisables dans les compositions de teinture d'oxydation conformes à l'invention peuvent être choisis parmi les coupleurs utilisés de façon classique en teinture d'oxydation et parmi lesquels on peut notamment citer les métaphénylènediamines, les méta-aminophénols, les métadiphénols et les coupleurs hétérocycliques tels que par exemple les dérivés indoliques, les dérivés indoliniques, les dérivés pyridiniques et les pyrazolones, et leurs sels d'addition avec un acide.

Ces coupleurs sont plus particulièrement choisis parmi le 2-méthyl 5-amino phénol, le 5-N-(β-hydroxyéthyl)amino 2-méthyl phénol, le 3-amino phénol, le 1,3-dihydroxy benzène, le 1,3-dihydroxy 2-méthyl benzène, le 4-chloro 1,3-dihydroxy benzène, le 2,4-diamino 1-(β-hydroxyéthyloxy) benzène, le 2-amino 4-(β-hydroxyéthylamino) 1-méthoxy benzène, le 1,3-diamino benzène, le 1,3-bis-(2,4-diaminophénoxy) propane, le sésamol, l'α-naphtol, le 6-hydroxy indole, le 4-hydroxy indole, le 4-hydroxy N-méthyl indole, la 6-hydroxy indoline, la 6-hydroxy benzomorpholine, la 2,6-dihydroxy 4-méthyl pyridine, le 1-H 3-méthyl pyrazole 5-one, le 1-phényl 3-méthyl pyrazole 5-one, et leurs sels d'addition avec un acide.

Lorsqu'ils sont présents ces coupleurs représentent de préférence de 0,0001 à 10 % en poids environ du poids total de la composition tinctoriale et encore plus préférentiellement de 0,005 à 5 % en poids environ de ce poids.

D'une manière générale, les sels d'addition avec un acide utilisables dans le cadre des compositions tinctoriales de l'invention (composés de formule (I), bases d'oxydation additionnelles et coupleurs) sont notamment choisis parmi les

WO 99/03819

chlorhydrates, les bromhydrates, les sulfates, les citrates, les succinates, les tartrates, les lactates et les acétates.

La composition tinctoriale conforme à l'invention peut également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux, tels que des agents tensio-actifs anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des polymères anioniques, cationiques, non-ioniques, amphotères, zwittérioniques ou leurs mélanges, des agents épaississants minéraux ou organiques, des agents antioxydants, des agents de pénétration, des agents séquestrants, des parfums, des tampons, des agents dispersants, des agents de conditionnement tels que par exemple des silicones, des agents filmogènes, des agents conservateurs, des agents opacifiants.

Bien entendu, l'homme de l'art veillera à choisir ce ou ces éventuels composés complémentaires de manière telle que les propriétés avantageuses attachées intrinsèquement à la composition de teinture d'oxydation conforme à l'invention ne soient pas, ou substantiellement pas, altérées par la ou les adjonctions envisagées.

20

15

5

10

La composition tinctoriale selon l'invention peut se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels, ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.

25

L'invention a également pour objet un procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux mettant en œuvre la composition tinctoriale telle que définie précédemment.

WO 99/03819

Selon ce procédé, on applique sur les fibres au moins une composition tinctoriale telle que définie précédemment, la couleur étant révélée à pH acide, neutre ou alcalin à l'aide d'un agent oxydant qui est ajouté juste au moment de l'emploi à la composition tinctoriale ou qui est présent dans une composition oxydante appliquée simultanément ou séquentiellement de façon séparée.

Selon une forme de mise en œuvre préférée du procédé de teinture de l'invention, on mélange de préférence, au moment de l'emploi, la composition tinctoriale décrite ci-dessus avec une composition oxydante contenant, dans un milieu approprié pour la teinture, au moins un agent oxydant présent en une quantité suffisante pour développer une coloration. Le mélange obtenu est ensuite appliqué sur les fibres kératiniques et on laisse poser pendant 3 à 50 minutes environ, de préférence 5 à 30 minutes environ, après quoi on rince, on lave au shampooing, on rince à nouveau et on sèche.

15

20

25

10

5

L'agent oxydant peut être choisi parmi les agents oxydants classiquement utilisés pour la teinture d'oxydation des fibres kératiniques, et parmi lesquels on peut citer le peroxyde d'hydrogène, le peroxyde d'urée, les bromates de métaux alcalins, les persels tels que les perborates et persulfates. Le peroxyde d'hydrogène est particulièrement préféré.

Le pH de la composition oxydante renfermant l'agent oxydant tel que défini ci-dessus est tel qu'après mélange avec la composition tinctoriale, le pH de la composition résultante appliquée sur les fibres kératiniques varie de préférence entre 3 et 12 environ, et encore plus préférentiellement entre 5 et 11. Il est ajusté à la valeur désirée au moyen d'agents acidifiants ou alcalinisants habituellement utilisés en teinture des fibres kératiniques et tels que définis précédemment.

WO 99/03819 PCT/FR98/01534

La composition oxydante telle que définie ci-dessus peut également renfermer divers adjuvants utilisés classiquement dans les compositions pour la teinture des cheveux et tels que définis précédemment.

17

- La composition qui est finalement appliquée sur les fibres kératiniques peut se présenter sous des formes diverses, telles que sous forme de liquides, de crèmes, de gels, ou sous toute autre forme appropriée pour réaliser une teinture des fibres kératiniques, et notamment des cheveux humains.
- Un autre objet de l'invention est un dispositif à plusieurs compartiments ou "kit" de teinture ou tout autre système de conditionnement à plusieurs compartiments dont un premier compartiment renferme la composition tinctoriale telle que définie ci-dessus et un second compartiment renferme la composition oxydante telle que définie ci-dessus. Ces dispositifs peuvent être équipés d'un moyen permettant de délivrer sur les cheveux le mélange souhaité, tel que les dispositifs décrits dans le brevet FR-2 586 913 au nom de la demanderesse.

Les exemples qui suivent sont destinés à illustrer l'invention sans pour autant en limiter la portée.

5

15

EXEMPLES DE PREPARATION

EXEMPLE DE PREPARATION 1 : Synthèse du monochlorure, dichlorhydrate, monohydrate de [2-(2,5-diamino-phénoxy)-éthyl]-diéthyl-méthyl-ammonium

a) Préparation du méthylsulfate de [2-(2-acétylamino-5-nitro-phénoxy)-éthyl]-

10 diéthyl-méthyl-ammonium

La quaternisation de 59,1g (0,2 mole) de N-[2-(2-diéthylamino-éthoxy)-4-nitro-phényl]-acétamide dissous dans 700 ml d'acétate d'éthyle a été faite en ajoutant 20,9 ml (0,22 mole) de diméthylsulfate sous agitation, pendant une heure, à température ambiante.

Le composé quaternisé a précipité.

On a ensuite chauffé le mélange réactionnel pendant une heure à 50°C.

On a essoré les cristaux, réempaté dans le minimum d'éthanol absolu et séché à 50°C sous vide et sur anhydride phosphorique.

On a obtenu 71,3g de cristaux jaune pâle qui fondaient à 141-145°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₆H₂₇N₃O₈S était :

	%	С	Н	N	Ó	S
Calculé		45,60	6,46	9,97	30,37	7,61
Trouvé		45,18	6,44	9,84	30,93	7,49

b) Réduction du méthylsulfate de [2-(2-acétylamino-5-nitro-phénoxy)-éthyl]-diéthyl-méthyl-ammonium

On a chauffé au reflux de l'alcool un mélange de 100 ml d'éthanol à 96°, de 10 ml d'eau, de 50 g de zinc en poudre fine et de 1 g de chlorure d'ammonium. On a ajouté par portions de façon à maintenir le reflux sans chauffage 42,1g (0,1 mole) de méthylsulfate de [2-(2-acétylamino-5-nitro-phénoxy)-éthyl]-diéthylméthyl-ammonium préparé à l'étape précédente. La réaction a été exothermique.

10 A la fin de l'addition on a maintenu le reflux pendant 10 minutes supplémentaires.

On a filtré bouillant et évaporé à sec sous pression réduite.

On a obtenu 44,4 g d'une huile jaune pâle de méthylsulfate de [2-(2-acétylamino-5-amino-phénoxy)-éthyl]-diéthyl-méthyl-ammonium.

15

20

30

c) Désacétylation du méthylsulfate de [2-(2-acétylamino-5-amino-phénoxy)éthyl]-diéthyl-méthyl-ammonium

Le méthylsulfate de [2-(2-acétylamino-5-amino-phénoxy)-éthyl]-diéthyl-méthyl-ammonium, obtenu à l'étape précédente (43,9 g), a été mis en solution, à température ambiante et sous agitation, dans 100 ml d'éthanol absolu chlorhydrique environ 5N.

Au bout d'une demi-heure un précipité cristallisé blanc est apparu.

La suspension a été chauffée une heure au reflux de l'alcool pour compléter l'échange d'anions.

On a refroidi, essoré, lavé à l'éthanol absolu et séché à 50°C sous vide et sur potasse.

On a obtenu 28,9g de cristaux blancs qui ont fondu avec décomposition à 110-120°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{13}H_{26}N_3OCl_3 + H_2O$ était :

20

	%	С	Н	Ν	Ο.	CI
Calculé		42,81	7,74	11,52	8,77	29,16
Trouvé		43,18	7,59	11,30	8,43	29,80

EXEMPLE DE PREPARATION 2 : Synthèse du dichlorhydrate, dichlorure de N,N-bis-(triméthylammonium-propyl)-4-amino-aniline

5

a) Préparation de la N-(3-diméthylamino-propyl)-N',N'-diméthyl-N-(4-nitro-phényl)-propane-1,3-diamine

Sous agitation on a chauffé pendant 2 heures au bain-marie bouillant un mélange de 28,2 g (0,2 mole) de 1-Fluoro-4-nitro-benzène, de 39,4 g (0,21 mole) de N-(3-diméthylamino-propyl)-N',N'-diméthyl-propane-1,3-diamine et de 27,6 g (0,2 mole) de carbonate de potassium dans 200 ml de diméthylsulfoxyde.

On a refroidi, dilué avec 400 ml d'eau et extrait à l'acétate d'éthyle.

On a lavé plusieurs fois à l'eau, séché sur sulfate de sodium, filtré et évaporé à sec sous pression réduite.

On a obtenu 61,6 g d'huile jaune de N-(3-diméthylamino-propyl)-N',N'-diméthyl-N-(4-nitro-phényl)-propane-1,3-diamine attendu.

PCT/FR98/01534

b) Préparation du di-méthylsulfate de N,N-bis-(triméthylammonium-propyl)-4nitro-aniline

On a utilisé le mode opératoire décrit pour l'exemple 1, étape a) ci-dessus.

A partir de 61,6 g (0,2 mole) de N-(3-diméthylamino-propyl)-N',N'-diméthyl-N-(4-nitro-phényl)-propane-1,3-diamine obtenu à l'étape précédente et de 42,1 ml (0,44 mole) de sulfate de méthyle, on a obtenu 88,5 g de cristaux jaunes de di-méthylsulfate de N,N-bis-(triméthylammonium-propyl)-4-nitro-aniline qui ont fondu à 196°C (Kofler) et dont l'analyse élémentaire calculée pour C₂₀H₄₀N₄O₁₀S₂ était :

%	С	Н	N	0	S
Calculé :	42,84	7,19	9,99	28,54	11,44
Trouvé :	42,68	7,20	9,87	28,60	11,44

c) Réduction du di-méthylsulfate de N,N-bis-(triméthylammonium-propyl)-4-nitroaniline

15

20

Dans un hydrogénateur on a placé 78,5 g (0,14 mole) de di-méthylsulfate de N,N-bis-(triméthylammonium-propyl)-4-nitro-aniline, 15 g de palladium à 5% sur charbon (contenant 50% d'eau), 250 ml d'isopropanol et 250 ml d'eau.

La réduction s'est faite en une demi-heure sous une pression d'hydrogène d'environ 8 bars et à une température qui a été portée progressivement à 70°C. Après filtration du catalyseur sous azote on a coulé sur de l'acide chlorhydrique aqueux.

On a évaporé le filtrat à sec sous pression réduite et chauffé dans l'éthanol absolu chlorhydrique environ 5N pour compléter l'échange d'anions.

Après séchage à 40°C sous vide et sur potasse on a obtenu 51,4g de cristaux blancs qui ont fondu à 253-260°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₈H₃₈N₄Cl₄ + ½ H₂O était :

%	С	Н	N	Ο.	Cl
Calculé	46,86	8,52	12,14	1,73	30,74
Trouvé	46,70	8,42	11,78	2,30	30,83

EXEMPLE DE PREPARATION 3 : Synthèse du dichlorhydrate, monochlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-méthyl-

5 ammonium

a) Préparation de la N1,N1-diéthyl-N4-(4-nitro-phényl)-pentane-1,4-diamine

Sous agitation on a chauffé pendant 5 heures au reflux un mélange de 56,4 g (0,4 mole) de 1-fluoro-4-nitro-benzène, de 79,1 g (0,5 mole) de N1,N1-diéthyl-pentane-1,4-diamine et de 33,0 g (0,24 mole) de carbonate de potassium dans 200 ml d'eau.

On a refroidi la suspension huileuse et extrait à l'acétate d'éthyle.

On a lavé plusieurs fois à l'eau, séché sur sulfate de sodium, filtré et évaporé à sec sous pression réduite.

On obtient 93,4 g d'huile jaune de N1,N1-diéthyl-N4-(4-nitro-phényl)-pentane-1,4-diamine dont l'analyse élémentaire calculée pour $C_{15}H_{25}N_3O_2 + \frac{1}{4}H_2O$ était :

%	С	Н	N	0
Calculé	63,46	9,05	14,80	12,68
Trouvé	63,61	8,92	14,68	12,66

b) Préparation du méthylsulfate de diéthyl-méthyl-[4-(4-nitro-phénylamino)-pentyl]-ammonium

5 On a utilisé le mode opératoire décrit pour l'exemple 1, étape a).

A partir de 92,7 g (0,331 mole) de N1,N1-diéthyl-N4-(4-nitro-phényl)-pentane-1,4-diamine obtenu à l'étape précédente et de 38,0 ml (0,4 mole) de sulfate de méthyle on a obtenu 127,2 g d'une huile orangée de méthylsulfate de diéthyl-méthyl-[4-(4-nitro-phénylamino)-pentyl]-ammonium dont l'analyse élémentaire calculée pour $C_{17}H_{31}N_3O_6S+\frac{1}{2}H_2O$ était :

%	С	Н	Ν	0	S
Calculé	49,26	7,78	10,14	25,09	7,74
Trouvé	49,40	7,83	9,79	25,18	7,99

c) Réduction du méthylsulfate de diéthyl-méthyl-[4-(4-nitro-phénylamino)-pentyl]ammonium

15

20

10

On a utilisé le mode opératoire décrit pour l'exemple 2, étape c).

A partir de 126,5 g (0,312 mole) de méthylsulfate de diéthyl-méthyl-[4-(4-nitro-phénylamino)-pentyl]-ammonium obtenu à l'étape précédente on a obtenu 62,5 g de cristaux blancs qui ont fondu à 200-208°C (Kofler) et dont l'analyse élémentaire était conforme à celle calculée pour C₁₆H₃₂N₃Cl₃.

EXEMPLE DE PREPARATION 4 : Synthèse du dichlorhydrate, monochlorure de {2-[(4-amino-phényl)-méthyl-amino]-éthyl}-triméthyl-ammonium

5

a) Préparation du méthylsulfate de triméthyl-{2-[méthyl-(4-nitro-phényl)-amino]éthyl}-ammonium

10

15

20

On a utilisé le mode opératoire décrit pour l'exemple 1, étape a).

A partir de 57,0 g (0,255 mole) de N,N,N'-triméthyl-N'-(4-nitro-phényl)-éthane-1,2-diamine et de 35,4 g (0,288 mole) de sulfate de méthyle on a obtenu 84,0 g de cristaux jaunes de méthylsulfate de triméthyl- $\{2-[méthyl-(4-nitro-phényl)-amino]-éthyl\}$ -ammonium qui ont fondu à 182°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{13}H_{23}N_3O_6S$ était :

%	С	Н	N	0	S
Calculé	44,69	6,64	12,03	27,47	9,18
Trouvé	44,51	6,64	11,92	27,28	9,12

b) Réduction du méthylsulfate de triméthyl-{2-[méthyl-(4-nitro-phényl)-amino]éthyl}-ammonium

Dans un hydrogénateur on a placé 69,9 g (0,2 mole) de méthylsulfate de triméthyl-{2-[méthyl-(4-nitro-phényl)-amino]-éthyl}-ammonium obtenu à l'étape

PCT/FR98/01534

précédente, 20 g de palladium à 5% sur charbon (contenant 50% d'eau), 250 ml d'isopropanol et 250 ml d'eau.

25

La réduction s'est faite en une ½ heure sous une pression d'hydrogène d'environ 8 bars et à une température qui a été portée progressivement à 70°C.

Après filtration du catalyseur sous azote on a coulé sur de l'acide chlorhydrique 5 aqueux.

On a évaporé le filtrat à sec sous pression réduite et chauffé dans l'éthanol absolu chlorhydrique environ 5N pour compléter l'échange d'anions.

Après séchage à 40°C sous vide et sur potasse on a obtenu 42,6 g de cristaux 10 beige clair qui ont fondu à une température supérieure à 260°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₂H₂₄N₃Cl₃ + 1/3 H₂O était :

%	С	Н	N	Ο	CI
Calculé	44,66	7,70	13,02	1,65	32,96
Trouvé	45,04	7,69	12,87	1,52	33,12

PREPARATION 5: 15 EXEMPLE Synthèse du dichlorhydrate, monochlorure de [3-(4-amino-phénylamino)-propyl]-triméthyl-ammonium

20

a) Préparation du méthylsulfate de triméthyl-[3-(4-nitro-phénylamino)-propyl]ammonium)

On a utilisé le mode opératoire décrit pour l'exemple 1, étape a).

A partir de 33,5 g (0,15 mole) de N,N-diméthyl-N'-(4-nitro-phényl)-propane-1,3-diamine et de 15,7 ml (0,165 mole) de sulfate de méthyle on a obtenu 49,2 g de cristaux jaune pâle de méthylsulfate de triméthyl-[3-(4-nitro-phénylamino)-propyl]-ammonium qui ont fondu à 168°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₂₃N₃O₆S était :

10

%	6 C	С	N	0	S
Calculé	44,69	6,64	12,03	27,47	9,18
Trouvé	44,65	6,72	12,05	27,48	9,22

b) Réduction du méthylsulfate de triméthyl-[3-(4-nitro-phénylamino)-propyl]ammonium

On a utilisé le mode opératoire décrit pour l'exemple 4, étape b).

A partir de 38,6 g (0,1105 mole) de méthylsulfate de triméthyl-[3-(4-nitro-phénylamino)-propyl]-ammonium obtenu à l'étape précédente on obtenu 25,6 g de cristaux blancs qui ont fondu avec décomposition à 248°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{12}H_{24}N_3Cl_3 + \frac{1}{2}H_2O + \frac{1}{2}CH_3CH_2OH$ était :

20

%	С	Н	N	0	Cl
Calculé	44,77	8,09	12,05	4,59	30,50
Trouvé	45,22	8,03	12,05	4,44	30,80

EXEMPLE DE PREPARATION 6: Synthèse du dichlorhydrate, monochlorure de [2-(4-amino-phénylamino)-éthyl]-diéthyl-méthyl-ammonium

5

a) Préparation du méthylsulfate de diéthyl-méthyl-[2-(4-nitro-phénylamino)éthyl]-ammonium

On a utilisé le mode opératoire décrit pour l'exemple 1, étape a).

A partir de 21,5 g (0,091 mole) de N,N-diéthyl-N'-(4-nitro-phényl)-éthane-1,2-diamine on a obtenu 21,0 g de cristaux jaune pâle qui ont fondu à 118°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₃H₂₂N₃O₂S était :

%	С	Н	N	0	S
Calculé	46,27	6,73	11,56	26,41	8,82
Trouvé	45,99	7,01	11,46	26,63	8,91

b) Réduction du méthylsulfate de diéthyl-méthyl-[2-(4-nitro-phénylamino)-éthyl]ammonium

La réduction a été effectuée selon le mode opératoire décrit ci-dessus à l'exemple 1, étape b).

20 A partir de 20,0 g (0,055 mole) de méthylsulfate de diéthyl-méthyl-[2-(4-nitro-phénylamino)-éthyl]-ammonium on a obtenu, après chauffage dans l'éthanol absolu chlorhydrique environ 5N pour compléter l'échange d'anions, 14,0 g de

cristaux blancs qui ont fondu avec décomposition à 231°C. (Kofler) et dont l'analyse élémentaire calculée pour $C_{13}H_{26}N_3Cl_2 + \frac{1}{2}H_2O$ était :

: %	· C	Н	. N	0	CI
Calculé	45,96	8,01	12,37	2,35	31,31
Trouvé	46,58	7,81	12,37	1,30	31,94

5

EXEMPLE DE PREPARATION 7: Synthèse du monochlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)-ammonium, dichlorhydrate, monohydrate

10

- a) Préparation du [4-(4-nitro-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)ammonium
- On a chauffé pendant 7 heures au reflux une solution de 111,7 g (0,40 mole) de N1,N1-diéthyl-N4-(4-nitro-phényl)-pentane-1,4-diamine obtenu à l'étape a) de l'exemple de préparation 3 décrit ci-dessus dans 222 ml de 1-chloro-éthanol.

 On a évaporé le 1-chloro-éthanol sous pression réduite et repris l'huile orangée dans 200 ml d'éthanol absolu.
- Le composé cristallisé a été essoré et purifié par recristallisation de l'éthanol à 96° au reflux.

On a obtenu 69,5 g de cristaux jaune pâle de chlorure de [4-(4-nitro-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)-ammonium qui ont fondu à 176°C (Kofler) et dont l'analyse élémentaire calculée pour $C_{17}H_{30}N_3O_3CI$ était :

		•	• *		
%	С	Н	N	0	CI
Calculé	56,74	8,40	11,68	13,34	9,85
Trouvé	56,95	8,40	11,76	13,37	9,82

5

b) Réduction du chlorure de [4-(4-nitro-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)-ammonium

On a utilisé le mode opératoire décrit ci-dessus à l'exemple 2, étape c).

A partir de 66,6 g (0,185 mole) de chlorure de [4-(4-nitro-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)-ammonium obtenu ci-dessus à l'étape précédente, on a obtenu 54,0 g de cristaux blancs de chlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)-ammonium, dichlorhydrate, monohydrate qui ont fondu à 181°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₇H₃₄N₃OCl₃, H₂O était :

%	С	Н	N	0	Cl
Calculé	48,52	8,62	9,98	7,60	25,27
Trouvé	48,11	8,63	9,87	8,25	25,51

EXEMPLE DE PREPARATION 8: Synthèse du chlorure de 1-{[5-amino-2-(2-hydroxyéthylamino)-phénylcarbamoyl]-méthyl}-1,4-diméthyl-pipérazin-1-ium, trichlorhydrate

5

a) Préparation du 2-chloro-N-[2-(2-hydroxyéthylamino)-5-nitro-phényl]-acétamide

On a mis en solution 82,5g (0,418 mole) de 2-(2-amino-4-nitro-phénylamino)éthanol dans 400 ml de diméthylformamide et ajouté 34,6g (0,25 mole) de carbonate de potassium.

On a refroidi à 5°C et coulé goutte à goutte 34,7 ml (0,46 mole) de chlorure de chloracétyle en maintenant la température entre 5 et 12°C.

On a agité pendant une heure supplémentaire et versé le milieu réactionnel dans un mélange de 2 litres d'eau glacée et de 100 ml d'acide chlorhydrique à 36%.

Le précipité cristallisé a été essoré et purifié par recristallisation de l'acétonitrile au reflux.

On a obtenu 77,7 g de cristaux jaunes de 2-chloro-N-[2-(2-hydroxyéthylamino)-5-nitro-phényl]-acétamide qui ont fondu à 206°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₀H₁₂N₃O₄Cl était :

%	С	Н	N	0	CI
Calculé	43,89	4,42	15,35	23,38	12,95
Trouvé	43,83	4,63	15,23	22,87	13,00

b) Préparation du chlorure de 1-{[2-(2-hydroxyéthylamino)-5-nitro-phényl-carbamoyl]-méthyl}-1,4-diméthyl-pipérazin-1-ium

On a chauffé pendant 3 heures au reflux un mélange de 33,0 g (0,12 mole) de 2-chloro-N-[2-(2-hydroxyéthylamino)-5-nitro-phényl]-acétamide obtenu ci-dessus à l'étape précédente et de 27,4 g (0,24 mole) de 1,4-diméthyl-pipérazine dans 300 ml d'isobutanol.

On a laissé revenir le mélange à température ambiante, essoré le composé cristallisé et recristallise de l'éthanol à 96° au reflux.

On a obtenu 33,8 g de cristaux jaune clair de chlorure de 1-{[2-(2-hydroxyéthyl-amino)-5-nitro-phénylcarbamoyl]-méthyl}-1,4-diméthyl-pipérazin-1-ium qui ont fondu à plus de 260°C (Kofler) et dont l'analyse élémentaire était conforme à celle calculée pour C₁₆H₂₆N₅O₄CI.

c) Réduction du chlorure de 1-{[2-(2-hydroxyéthylamino)-5-nitro-phényl-carbamoyl]-méthyl}-1,4-diméthyl-pipérazin-1-ium

On a utilisé le mode opératoire décrit ci-dessus à l'exemple 2, étape c).

A partir de 33,0 g (0,085 mole) de chlorure de 1-{[2-(2-hydroxy-éthylamino)-5-nitro-phénylcarbamoyl]-méthyl}-1,4-diméthyl-piperazin-1-ium obtenu ci-dessus à l'étape précédente on a obtenu 29,3 g de cristaux blancs de chlorure de 1-{[5-amino-2-(2-hydroxyéthylamino)-phénylcarbamoyl]-méthyl}-1,4-diméthyl-pipérazin-1-ium, trichlorhydrate qui ont fondu avec décomposition à 250-260°C (Kofler) et dont la RMN 1H était conforme à celle du produit attendu.

20

EXEMPLE DE PREPARATION 9 : Synthèse du chlorure de [2-(4-amino-phénylamino)-propyl]-triméthyl-ammonium, dichlorhydrate, éthanol

$$CH_3$$
 CH_3 CH_3 CH_3 CH_4 CH_3 CH_2 CH_2 CH_2 CH_2 CH_3 CH_4 CH_5 CH_5

5

10

15

a) Préparation du triméthyl-[2-(4-nitro-phénylamino)-propyl]-ammonium

On a chauffé pendant 10 heures au reflux un mélange de 141,1 g (1 mole) de 1-fluoro-4-nitro-benzène, de 122,6 g (1,2 mole) de N1,N1-diméthyl-propane-1,2-diamine et de 82,8 g (0,6 mole) de carbonate de potassium dans 400 ml d'eau.

On a refroidi le mélange à température ambiante, éliminé la phase aqueuse et repris l'huile orangée dans l'acétate d'éthyle.

Après lavage à l'eau, séchage sur sulfate de sodium anhydre, filtration et évaporation à sec sous pression réduite, on a obtenu 209,0 g de cristaux orangés qui ont fondu à moins de 50°C (Kofler).

b) Préparation du méthosulfate de triméthyl-[2-(4-nitro-phénylamino)-propyl]ammonium

20

On a dissous 111,6 g (0,5 mole) de triméthyl-[2-(4-nitro-phénylamino)-propyl]ammonium obtenu à l'étape précédente dans un litre d'acétate d'éthyle à température ambiante et ajouté goutte à goutte 57,1 ml (0,6 mole) de sulfate de méthyle.

25 On a chauffé le mélange pendant une ½-heure à 60-65°C sous agitation.

Le précipité cristallisé a été essoré, lavé à l'acétate d'éthyle et séché sous vide à 45°C.

On a obtenu 160,9 q de cristaux jaune pâle de méthosulfate de triméthyl-[2-(4nitro-phénylamino)-propyl]-ammonium qui ont fondu à 235°C et dont l'analyse élémentaire calculée pour $C_{13}H_{23}N_30_6S$ était :

%	С	Н	Ν	0	S
Calculé	44,69	6,64	12,03	27,47	9,18
Trouvé	44,62	6,67	11,92	27,42	9,21

c) Réduction du méthosulfate de triméthyl-[2-(4-nitro-phénylamino)-propyl]ammonium

10

15

20

5

On a utilisé le mode opératoire décrit ci-dessus à l'exemple 2, étape c).

A partir de 104,8 g (0,3 mole) de méthosulfate de triméthyl-[2-(4-nitrophénylamino)-propyl]-ammonium obtenu ci-dessus à l'étape précédente, on a obtenu 72.0 g de cristaux blancs de chlorure de [2-(4-amino-phénylamino)propyl]-triméthyl-ammonium, dichlorhydrate, éthanol qui ont fondu avec décomposition à plus de 260°C (Kofler) et dont l'analyse élémentaire calculée pour C₁₂H₂₄N₃Cl₃, C₂H₅OH était :

%	С	Н	N	0
Calculé	46,35	8,34	11,58	4,41
Trouvé	46,06	8,36	11,33	5,09

EXEMPLES D'APPLICATION

EXEMPLES 1 à 5 DE TEINTURE EN MILIEU BASIQUE

5 On a préparé les compositions tinctoriales suivantes (teneurs en grammes) :

EXEMPLE	1	2	3	4	5
Monochlorure, dichlorhydrate, monohydrate de [2-(2,5-Diamino- phénoxy)-éthyl]-diéthyl-méthyl- ammonium (composé de formule (I))	1,08	1,08	1,08	1,08	1,08
Résorcine (Coupleur)	-	0,33	-	-	-
Méta-aminophénol (Coupleur)	-	-	0,327	-	-
2-méthyl 5-N-(β-hydroxyéthyl)amino phénol (Coupleur)	-	_	-	0,543	-
Dichlorhydrate de 2,4-diamino- phénoxyéthanol (Coupleur)	-	-	-	-	0,675
Support de teinture commun	(*)	(*)	(*)	(*)	(*)
Eau déminéralisée q.s.p.	100 g				

(*) Support de teinture commun :

10

- Ethanol à 96° 20 g

Sel pentasodique de l'acide diéthylène triamine pentacétique vendu
 sous la dénomination MASQUOL DTPA par la société PROTEX
 1,08

1,00 g

- Métabisulfite de sodium en solution aqueuse à 35 % de M.A.

0,58 g M.A.

- Ammoniaque à 20 %

10 g

Au moment de l'emploi, on a mélangé poids pour poids chacune des compositions tinctoriales ci-dessus avec une solution de peroxyde d'hydrogène à 20 volumes (6 % en poids) de pH 3.

20

15

Le mélange obtenu a été appliqué sur des mèches de cheveux gris, naturels ou permanentés, à 90 % de blancs pendant 30 minutes. Les mèches ont ensuite

été rincés, lavés avec un shampooing standard, rincées à nouveau puis séchées.

Les nuances obtenues figurent dans le tableau ci-après :

EXEMPLE	pH de TEINTURE	Nuance sur cheveux naturels	Nuance sur cheveux permanentés
1	10 ± 0,2	Blond beige cendré irisé	Blond foncé cendré irisé
2	10± 0,2	Blond foncé nacré	Châtain irisé violine
3	10 ± 0,2	Violine cendré	Violine cendré
4	10 ± 0,2	Violine irisé	Violine irisé
5	10 ± 0,2	Bleu	Bleu

5

EXEMPLES 6 à 8 DE TEINTURE EN MILIEU BASIQUE

On a préparé les compositions tinctoriales suivantes (teneurs en grammes) :

EXEMPLE	6	7	8
Chlorure de [2-(4-amino-phénylamino)-propyl]-triméthyl- ammonium, dichlorhydrate, éthanol (composé de formule (I))	1,09	-	-
Monochlorure de [4-(4-amino-phénylamino)-pentyl]- diéthyl-(2-hydroxyéthyl)-ammonium, dichlorhydrate, monohydrate (composé de formule (I))	-	1,26	-
Chlorure de 1-{[5-amino-2-(2-hydroxyéthylamino)-phénylcarbamoyl]-méthyl}-1,4-diméthyl-pipérazin-1-ium, trichlorhydrate (composé de formule (I))	-	-	1,40
6-hydroxybenzomorpholine (Coupleur)	0,453	-	-
1,3-dihydroxy 2-méthyl benzène (Coupleur)	-	0,372	
3-amino phénol (Coupleur)	-	-	0,327
Support de teinture commun	(*)	(*)	(*)
Eau déminéralisée q.s.p.	100 g	100 g	100 g

(*) Support de teinture commun :

il est identique à celui utilisé pour les exemples de teinture 1 à 5 ci-dessus.

Au moment de l'emploi, on a mélangé poids pour poids chacune des compositions tinctoriales ci-dessus avec une solution de peroxyde d'hydrogène à 20 volumes (6 % en poids) de pH 3.

Le mélange obtenu a été appliqué sur des mèches de cheveux gris naturels à 90 % de blancs pendant 30 minutes. Les mèches ont ensuite été rincés, lavés avec un shampooing standard, rincées à nouveau puis séchées.

Les nuances obtenues figurent dans le tableau ci-après :

EXEMPLE	pH de teinture	Nuance obtenue
6	10 ± 0,2	Acajou doré
7	10 ± 0,2	Blond foncé gris irisé
8	10 ± 0,2	Blond très clair beige doré

REVENDICATIONS

1. Composés de formule (I) suivante, et leurs sels d'addition avec un acide :

$$R_2$$
 R_3
 R_1
 R_1
 R_3
 R_1

5

dans laquelle:

• R₁, R₂, R₃, qui peuvent être identiques ou différents, représentent un atome d'hydrogène ; un atome d'halogène ; un groupement Z ; un radical alkyl(C,-10 C₆) carbonyle; un radical aminoalkyl(C₁-C₆)carbonyle; un radical N-Z-aminoalkyl(C_1 - C_6)carbonyle; un radical N-alkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonyle; un radical N,N-dialkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonyle; un radical aminoalkyl(C_1 - C_6)carbonylalkyle(C_1 - C_6); un radical N-Z-aminoalkyl(C_1 - C_6)carbonylalkyle(C_1 - C_6); un radical $N-alkyl(C_1-C_6)aminoalkyl(C_1 C_6$)carbonylalkyle(C_1 - C_6); un radical N,N-dialkyl(C_1 - C_6)aminoalkyl(C_1 -15 C_6)carbonylalkyle(C_1 - C_6); un radical carboxy; un radical alkyl(C_1 - C_6) carboxy; un radical alkyl(C1-C6) sulfonyle; un radical aminosulfonyle; un radical N-Z-aminosulfonyle; un radical N-alkyl(C1-C6)aminosulfonyle; un radical N,N-dialkyl(C₁-C₆)aminosulfonyle; un radical aminosulfonylalkyle(C₁-20 C_6); un radical N-Z-aminosulfonylalkyle(C_1 - C_6); un radical N-alkyl(C_1 - C_6)aminosulfonyl-alkyle(C_1 - C_6) un radical N,N-dialkyl(C₁-C₆)aminosulfonylalkyle(C₁-C₆); un radical carbamyle; un radical N-alkyl(C₁-C₆)carbamyle; un radical N,N-dialkyl-(C₁-C₆)carbamyle; un radical carbamylalkyle(C_1 - C_6); un radical N-alkyl(C_1 - C_6)carbamylalkyle(C_1 - C_6); un 25 radical N,N-dialkyl(C_1 - C_6)carbamylalkyle(C_1 - C_6); un radical alkyle en C_1 - C_6 ; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C2-C6; un radical alcoxy(C1-C6)alkyle en C1-C6; un radical trifluoroalkyle en

C₁-C₆; un radical cyano; un groupement OR₆ ou SR₆; un groupe amino par alkyl(C₁-C₆)carbonyle, protégé un radical alkyl(C_1 - C_6)carboxy, trifluoroalkyl(C₁-C₆)carbonyle, aminoalkyl(C₁-C₆)carbonyle, N-Z-aminoalkyl(C₁- C_6)carbonyle, N-alkyl(C_1 - C_6)aminoalkyl(C_1 - C_6)carbonyle, N.N-dialkyl(C,- C_6)aminoalkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carboxy, carbamyle, N-alkyl(C_1 -C₆)carbamyle, N,N-dialkyl(C₁-C₆)carbamyle, alkyl(C₁-C₆)sulfonyle, aminosulfonyle, N-Z-aminosulfonyle, N-alkyl(C_1 - C_6)aminosulfonyle, N,N-dialkyl(C_1 - C_6)aminosulfonyle, thiocarbamyle, formyle, ou par groupement Z; ou un radical aminoalkyle en C₁-C₆ dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle en C₁-C₆, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C_2 - C_6 , alkyl(C_1 - C_6)carbonyle, carbamyle, N-alkyl(C_1 - C_6)carbamyle N,N-dialkyl(C_1 - C_6)carbamyle, alkyl(C_1 - C_6)sulfonyle, formyle, trifluoroalkyl(C_1 -C₆)carbonyle, alkyl(C₁-C₆)carboxy, thiocarbamyle, ou par un groupement Z;

15

20

25

30

10

5

° R₆ désigne un radical alkyle en C₁-C₆ ; un radical monohydroxyalkyle en C_1 - C_6 ; un radical polyhydroxyalkyle en C_2 - C_6 ; un groupement Z; un radical alcoxy(C₁-C₆)alkyle en C₁-C₆; un radical aryle; un radical benzyle; un radical carboxyalkyle en $\text{C}_{\text{1}}\text{-}\text{C}_{\text{6}}$; un radical alkyl($\text{C}_{\text{1}}\text{-}\text{C}_{\text{6}}\text{)}\text{carboxyalkyle}$ en $\text{C}_{\text{1}}\text{-}\text{C}_{\text{6}}$; un radical cyanoalkyle en C₁-C₆; un radical carbamylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical N,N-dialkyl(C₁- C_6)carbamylalkyle en $C_1\text{-}C_6$; un radical trifluoroalkyle en $C_1\text{-}C_6$; un radical aminosulfonylalkyle en C₁-C₆; un radical N-Z-aminosulfonylalkyle en C₁-C₆ un radical N-alkyl(C₁-C₆)aminosulfonylalkyle en C₁-C₆; un radical N,N-dialkyl(C₁- C_6)aminosulfonylalkyle en C_1 - C_6 ; un radical alkyl $(C_1$ - C_6)sulfinylalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)sulfonylalkyle en C_1 - C_6 ; un radical alkyl(C_1 - C_6)carbonylalkyle en C_1 - C_6 ; un radical aminoalkyle en $(C_1$ - $C_6)$; un radical aminoalkyle en (C₁-C₆) dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle(C₁-C₆), monohydroxyalkyle(C_1 - C_6), polyhydroxyalkyle(C_2 - C_6), alkyl(C_1 - C_6)carbonyle, formyle, trifluoroalkyl(C_1 - C_6)carbonyle, alkyl(C_1 - C_6)carboxy, carbamyle, N-alkyl(C_1 - C_6)carbamyle, N,N-dialkyl(C_1 - C_6)carbamyle, thiocarbamyle, alkyl(C_1 - C_6)sulfonyle, et le groupement Z;

A représente un groupement -NR₄R₅ ou un radical hydroxyle ;

5

10

15

20

 R₄ et R₅, identiques ou différents, représentent un atome d'hydrogène ; un groupement Z; un radical alkyle en C₁-C₆; un radical monohydroxyalkyle en C₁-C₆; un radical polyhydroxyalkyle en C₂-C₆; un radical alcoxy(C₁-C₆)alkyle en C₁-C₆; un radical aryle; un radical benzyle; un radical cyanoalkyle en C₁-C₆; un radical carbamylalkyle en C₁-C₆; un radical N-alkyl(C₁-C₆)carbamylalkyle en C₁-C₆; un radical N,N-dialkyl(C₁-C₆)carbamylalkyle en C_1 - C_6 ; un radical thiocarbamylalkyle en C_1 - C_6 ; un radical trifluoroalkyle en C₁-C₆; un radical sulfoalkyle en C₁-C₆; un radical alkyl(C₁-C₆)carboxyalkyle en C₁-C₆; un radical alkyl(C₁-C₆)sulfinylalkyle en C₁-C₆; un radical aminosulfonylalkyle en C₁-C₆; un radical N-Z-aminosulfonylalkyle en C₁-C₆; un radical N-alkyl(C_1 - C_6)aminosulfonylalkyle en C_1 - C_6 ; un radical N,Ndialkyl(C₁-C₆)aminosulfonylalkyle en C_1 - C_6 ; un radical C₆)carbonylalkyle en C₁-C₆; un radical aminoalkyle en C₁-C₆; un radical aminoalkyle en C₁-C₆ dont l'amine est substituée par un ou deux radicaux identiques ou différents choisis parmi les radicaux alkyle en C1-C6, monohydroxyalkyle en C₁-C₆, polyhydroxyalkyle en C₂-C₆, alkyl(C₁-C₆)carbonyle, carbamyle, N-alkyl(C₁-C₆)carbamyle ou N,N-dialkyl(C₁- C_6)carbamyle, alkyl(C_1 - C_6)sulfonyle, formyle, trifluoroalkyl(C_1 - C_6)carbonyle, alkyl(C₁-C₆)carboxy, thiocarbamyle, ou par un groupement Z;

25

• Z représente un groupement de formule (II) suivante :

$$\begin{array}{c|c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$$

dans laquelle:

- B est un bras de liaison qui représente une chaîne alkyle comportant de préférence de 1 à 14 atomes de carbone, linéaire ou ramifiée pouvant être interrompue par un ou plusieurs hétéroatomes tels que des atomes d'oxygène, de soufre ou d'azote, pouvant être substituée par un ou plusieurs radicaux hydroxyle ou alcoxy en C₁-C₆, et pouvant porter une ou plusieurs fonctions cétone;
- \circ R₇, R₈ et R₉, identiques ou différents, représentent un radical alkyle en 10 C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical alcoxy(C₁-C₆)alkyle en C₁-C₆, un radical cyanoalkyle en C1-C6, un radical aryle, un radical benzyle, un radical carbamylalkyle en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆ ou un radical aminoalkyle en C₁-C₆ dont l'amine est protégée par un 15 radical alkyl(C₁-C₆)carbonyle, carbamyle, ou alkyl(C₁-C₆)sulfonyle; deux des radicaux R7, R8 et R9 peuvent également former ensemble, avec l'atome d'azote auquel ils sont rattachés, un cycle saturé à 5 ou 6 chaînons carboné ou contenant un ou plusieurs hétéroatomes, ledit cycle 20 pouvant être ou non substitué par un atome d'halogène, un radical hydroxyle, un radical alkyle en C₁-C₆, un radical monohydroxyalkyle en C₁-C₆, un radical polyhydroxyalkyle en C₂-C₆, un radical nitro, un radical cyano, un radical cyanoalkyle en C₁-C₆, un radical alcoxy en C₁-C₆, un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆, un radical amido, un radical aldéhydo, un radical carboxyle, un radical alkylcarbonyle en C1-C6, un 25 radical thio, un radical thioalkyle en C1-C6, un radical alkyl(C1-C6)thio, un

radical amino, un radical amino protégé par un radical alkyl(C_1 - C_6)carbonyle, carbamyle ou alkyl(C_1 - C_6)sulfonyle;

l'un des radicaux R₇, R₈ et R₉ peut également représenter un second groupement Z identique ou différent du premier groupement Z;

- X représente un anion monovalent ou divalent ;
- R₁₀ représente un radical alkyle en C₁-C₆ ; un radical monohydroxyalkyle en C₁-C₆ ; un radical aryle ; un radical benzyle ; un radical aminoalkyle en C₁-C₆ ; un radical aminoalkyle en C₁-C₆, un radical aminoalkyle en C₁-C₆ dont l'amine est protégée par un radical alkyl(C₁-C₆)carbonyle, carbamyle ou alkyl(C₁-C₆)sulfonyle ; un radical carboxyalkyle en C₁-C₆ ; un radical cyanoalkyle en C₁-C₆ ; un radical carbamylalkyle en C₁-C₆ ; un radical trialkyl(C₁-C₆)silanealkyle en C₁-C₆ ; un radical sulfonamidoalkyle en C₁-C₆ ; un radical alkyl(C₁-C₆)carboxyalkyle en C₁-C₆ ; un radical alkyl(C₁-C₆)sulfinylalkyle en C₁-C₆ ; un radical alkyl(C₁-C₆)ceftoalkyle en C₁-C₆ ; un radical N-alkyl(C₁-C₆)carbamylalkyle en C₁-C₆ ; un radical N-alkyl(C₁-C₆)sulfonamidoalkyle en C₁-C₆
 - x est un nombre entier égal à 0 ou 1 ; avec les conditions suivantes :
 - lorsque x = 0, alors le bras de liaison B est rattaché à l'atome d'azote portant les radicaux R_7 à R_9 ;
- 25 lorsque x = 1, alors deux des radicaux R₇ à R₉ forment conjointement avec l'atome d'azote auquel ils sont rattachés un cycle saturé à 5 ou 6 chaînons tel que défini précédemment, et le bras de liaison B est porté par un atome de carbone dudit cycle saturé;

10

étant entendu :

- que le nombre de groupements Z est au moins égal à 1 ;
- que lorsque A représente un groupement -NR₄R₅ dans lequel R₄ ou R₅ représente un groupement Z dans lequel le bras de liaison B représente une chaîne alkyle comportant une fonction cétone, alors ladite fonction cétone n'est pas directement rattachée à l'atome d'azote du groupement -NR₄R₅;

et à l'exclusion du iodure 4-amino 2-fluoro N-(triméthylammonium-éthyl) aniline, du iodure de 4-amino 2-trifluorométhyl N-(triméthylammonium-éthyl) aniline ; du iodure de 4-amino 2-cyano N-(triméthylammonium-éthyl) aniline ; du iodure de 2-(4-aminophénylamino)éthyl-triméthyl ammonium ; du chlorure de 4-amino 3-méthyl N-éthyl, N-(triméthylammonium-éthyl) aniline et de leurs sels d'addition avec un acide.

- 2. Composés selon la revendication 1, caractérisés par le fait que X représente un atome d'halogène tel que le chlore, le brome, le fluor ou l'iode, un hydroxyde, un hydrogènesulfate, ou un alkyl(C₁-C₆)sulfate.
- 3. Composés selon la revendication 1 ou 2, caractérisés par le fait qu'ils sont20 choisis parmi :
 - le chlorure de [2-(2,5-diamino-phénoxy)-éthyl]-diéthyl-méthyl-ammonium monohydrate;
 - le dichlorure de N,N-bis-(triméthylammonium-propyl)-4-amino-aniline ;
 - le chlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-méthyl-ammonium ;
- le chlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)ammonium;
 - le chlorure de [2-(4-amino-phénylamino)-éthyl]-diéthyl-méthyl-ammonium ;
 - le chlorure de {2-[(4-aminophényl)-méthyl-amino]-éthyl}-triméthyl-ammonium;
 - le chlorure de [3-(4-amino-phénylamino)-propyl]-triméthyl-ammonium ;
- 30 le chlorure de [2-(4-amino-phénylamino)-propyl]-triméthyl-ammonium ;
 - le chlorure de [4-(4-amino-2-méthyl-phénylamino)-pentyl]-diéthyl-méthyl-

WO 99/03819 PCT/FR98/01534

ammonium;

- le chlorure de [4-(4-amino-3-méthyl-phénylamino)-pentyl]-diéthyl-méthyl-ammonium ;

- le chlorure de 1-{[5-amino-2-(2-hydroxyéthylamino)-phénylcarbamoyl]-méthyl}-
- 5 1,4-diméthyl-pipérazin-1-ium;

et leurs sels d'addition avec un acide.

- 4. Composés selon la revendication 3, caractérisés par le fait qu'ils sont choisis parmi :
- le chlorure de [2-(2,5-Diamino-phénoxy)-éthyl]-diéthyl-méthyl-ammonium monohydrate;
 - le chlorure de N,N-bis-(triméthylammonium-propyl)-4-amino-aniline ;
 - le chlorure de [4-(4-Amino-phénylamino)-pentyl]-diéthyl-méthyl-ammonium ;
 - le chlorure de [2-(4-amino-phénylamino)-éthyl]-diéthyl-méthyl-ammonium ;
- le chlorure de {2-[(4-aminophényl)-méthyl-amino]-éthyl}-triméthyl-ammonium ;
 - le chlorure de [3-(4-amino-phénylamino)-propyl]-triméthyl-ammonium ;
 - le chlorure de [4-(4-amino-phénylamino)-pentyl]-diéthyl-(2-hydroxyéthyl)ammonium;

et leurs sels d'addition avec un acide.

20

5. Utilisation des composés de formule (I) tels que définis à l'une quelconque des revendications 1 à 4, à titre de base d'oxydation pour la teinture d'oxydation des fibres kératiniques, et en particulier des fibres kératiniques humaines telles que les cheveux.

- 6. Composition pour la teinture d'oxydation des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux, caractérisée par le fait qu'elle comprend, dans un milieu approprié pour la teinture, au moins un composé de formule (I) tel que défini à l'une quelconque des revendications
- 30 1 à 4, à titre de base d'oxydation

- 7. Composition selon la revendication 6, caractérisée par le fait que le ou les composés de formule (I) représentent de 0,0005 à 12 % en poids du poids total de la composition tinctoriale.
- 8. Composition selon la revendication 7, caractérisée par le fait que le ou les composés de formule (I) représentent de 0,005 à 6 % en poids du poids total de la composition tinctoriale.
- 9. Composition selon l'une quelconque des revendications 6 à 8, caractérisée par le fait que le milieu approprié pour la teinture (ou support) est constitué par de l'eau ou par un mélange d'eau et d'au moins un solvant organique choisi parmi les alcanols inférieurs en C₁-C₄, le glycérol, les glycols et éthers de glycols, les alcools aromatiques, les produits analogues et leurs mélanges.
- 15 10. Composition selon l'une quelconque des revendications 6 à 9, caractérisée par le fait qu'elle présente un pH compris entre 3 et 12.
 - 11. Composition selon l'une quelconque des revendications 6 à 10, caractérisée par le fait qu'elle renferme au moins une base d'oxydation additionnelle choisie parmi les paraphénylènediamines différentes des composés de formule (I), les bis-phénylalkylènediamines, les para-aminophénols différents des composés de formule (I), les ortho-aminophénols et les bases hétérocycliques.

- 12. Composition selon la revendication 11, caractérisée par le fait que la ou les bases d'oxydation additionnelles représentent de 0,0005 à 12 % en poids du poids total de la composition tinctoriale.
 - 13. Composition selon l'une quelconque des revendications 6 à 12, caractérisée par le fait qu'elle renferme au moins un coupleur et/ou au moins un colorant direct.

14. Composition selon la revendication 13, caractérisée par le fait que le ou les coupleurs sont choisis parmi les métaphénylènediamines, les méta-aminophénols, les métadiphénols et les coupleurs hétérocycliques, et leurs sels d'addition avec un acide.

5

25

- 15. Composition selon la revendication 13 ou 14, caractérisée par le fait que le ou les coupleurs représentent de 0,0001 à 10 % en poids du poids total de la composition tinctoriale.
- 16. Composition selon l'une quelconque des revendications 6 à 15, caractérisée par le fait que les sels d'addition avec un acide sont choisis parmi les chlorhydrates, les bromhydrates, les sulfates, les citrates, les succinates, les tartrates, les lactates et les acétates.
- 17. Procédé de teinture des fibres kératiniques et en particulier des fibres kératiniques humaines telles que les cheveux caractérisé par le fait que l'on applique sur ces fibres au moins une composition tinctoriale telle que définie à l'une quelconque des revendications 6 à 16, et que l'on révèle la couleur à pH acide, neutre ou alcalin à l'aide d'un agent oxydant qui est ajouté juste au moment de l'emploi à la composition tinctoriale ou qui est présent dans une composition oxydante appliquée simultanément ou séquentiellement de façon séparée.
 - 18. Procédé selon la revendication 17, caractérisé par le fait que l'agent oxydant est choisi parmi le peroxyde d'hydrogène, le peroxyde d'urée, les bromates de métaux alcalins, les persels tels que les perborates et persulfates.
 - 19. Dispositif à plusieurs compartiments, ou "kit" de teinture à plusieurs compartiments, dont un premier compartiment renferme une composition tinctoriale telle que définie à l'une quelconque des revendications 6 à 16 et un second compartiment renferme une composition oxydante.

INTERNATIONAL SEARCH REPORT

I. national Application No PCT/FR 98/01534

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER C07C211/63 C07C217/84 A61K7/13	3 C07D295/14	
According to	o International Patent Classification (IPC) or to both national classifica	ation and IPC	
	SEARCHED		
Minimum do IPC 6	currentation searched (classification system followed by classification CO7C A61K CO7D	on symbols)	
Documentat	tion searched other than minimum documentation to the extent that s	uch documents are included in the fields seal	rched .
Electronic d	ata base consulted during the international search (name of data ba	se and, where practical, search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT	· · · · · · · · · · · · · · · · · · ·	
Category *	Citation of document, with indication, where appropriate, of the rek	evant passages	Relevant to claim No.
X	US 5 139 532 A (CHAN A C ET AL) 18 August 1992 cited in the application see claims; examples		1-19
A	EP 0 673 926 A (OREAL) 27 Septembers see examples 24,27	per 1995	1-19
Α	DE 12 92 784 B (HENKEL UND CIE. (17 April 1969 see example 1	G.M.B.H.)	1-19
Furth	er documents are listed in the continuation of box C.	X Patent family members are listed in	annex.
° Special cat	egories of cited documents :	"T" later document published after the interr	
conside "E" earlier d filling da	nt defining the general state of the art which is not ered to be of particular relevance ocument but published on or after the international ate nt which may throw doubts on priority claim(s) or	or priority date and not in conflict with to cited to understand the principle or the invention "X" document of particular relevance; the clarant be considered novel or cannot involve an inventive step when the document	he application but ory underlying the aimed invention be considered to
which in citation "O" docume	s cited to establish the publication date of another or other special reason (as specified) nt referring to an oral disclosure, use, exhibition or	"Y" document of particular relevance; the cl cannot be considered to involve an inv document is combined with one or more	aimed invention entive step when the re other such docu-
	neans Int published prior to the international filling date but an the priority date claimed	ments, such combination being obvious in the art. "8" document member of the same patent for	
	actual completion of theinternational search	Date of mailing of the international sean	
10	November 1998	20/11/1998	
Name and m	nailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Authorized officer Pauwels, G	

INTERNATIONAL SEARCH REPORT

Information on patent family members

I. tational Application No
PCT/FR 98/01534

Patent document cited in search report		Publication date	Patent family member(s)		Publication date
US 5139532 :	A	18-08-1992	CA DE DE EP ES US	2080412 A 69209011 D 69209011 T 0544400 A 2085574 T 5198584 A	28-05-1993 18-04-1996 07-11-1996 02-06-1993 01-06-1996 30-03-1993
EP 0673926	A	27-09-1995	FR CA DE DE ES JP JP US	2717801 A 2145343 A 69500217 D 69500217 T 2103144 T 2672277 B 7291920 A 5735910 A	29-09-1995 25-09-1995 15-05-1997 17-07-1997 16-08-1997 05-11-1997 07-11-1995 07-04-1998
DE 1292784	В		GB LU NL NL US	909700 A 36853 A 122875 C 236431 A 3100739 A	13-08-1963

RAPPORT DE RECHERCHE INTERNATIONALE

L ande Internationale No PCT/FR QR/01534

		PC1/FR 98	/01534
A. CLASSE CIB 6	C07C211/63 C07C217/84 A61K7/13	C07D295/14	
	ssification internationale des brevets (CIB) ou à la fois selon la classific	ation nationale et la CIB	
	NES SUR LESQUELS LA RECHERCHE A PORTE	4	
CIB 6	tion minimale consultée (système de classification survi des symboles d CO7C A61K CO7D	e classement) -	
Documentat	tion consultée autre que la documentationminimale dans la mesure où	ces documents relevent des domaines su	ir lesquels a porté la recherche
Base de dor utilisés)	nnées électronique consultée au cours de la recherche internationale (r	nom de la base de données, et si cela est	realisable, termes de recherche
C. DOCUME	ENTS CONSIDERES COMME PERTINENTS		
Catégone :	Identification des documents cités, avec, le cas echéant, l'indication d	les passages pertinents	no. des revendications visées
X	US 5 139 532 A (CHAN A C ET AL) 18 août 1992 cité dans la demande voir revendications; exemples		1-19
А	EP 0 673 926 A (OREAL) 27 septembr voir exemples 24,27	re 1995	1-19
Α	DE 12 92 784 B (HENKEL UND CIE. G. 17 avril 1969 voir exemple 1	M.B.H.)	1-19
			
			<u> </u>
		Les documents de familles de bre	vets sont indiqués en annexe
"A" docume conside	nt définissant l'état général de latechnique, non éré comme particulièrement pertinent	document ultérieur publié après la date date de priorité et n'appartenenam pa technique pertinent, mais cité pour co ou la théorie constituant la base de l'ir	s à l'état de la mprendre le principe
ou apré	nt antérieur, mais publié à la date dedépôt international ès cette date nt pouvant leter un doute sur une revendcation de	(° document particulièrement pertinent; f être considérée comme nouvelle ou c inventive par rapport au document co	comme impliquant une activité
priorité autre c	ou oité pour déterminer le date des mineties d'une	document particulièrement pertinent; f ne peut être considérée comme impli- loreque le document est associé à un	invention revendiquée quant uneactivité inventive ou plusieurs autres
"P" docume	position ou tous autres moyens nt publié avant la date de dépôtinternational, mais eurement à la date de priorité revendiquée "8	documents de même nature, cette cor pour une personne du métier k" document qui fait partie de la même fa	
Date à laque	alle la recherche internationale a étéeffectivement achevée	Date d'expédition du présent rapport d	e recherche internationale
10	O novembre 1998	20/11/1998	
Nom et adres	sse postale de l'administrationchargée de la recherche internationale Office Européen des Brevets, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk	Fonctionnaire autorisé	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo nl. Fax: (+31-70) 340-3016	Pauwels, G	

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatirs aux membres de familles de brevets

. .ando Internationale No PCT/FR 98/01534

Document brevet cité au rapport de recherche		Date de publication	Membre(s) de la famille de brevet(s)		Date de publication	
US	5139532	Α	18-08-1992	CA	2080412 A	28-05-1993
				DE	69209011 D	18-04-1996
				ÐΕ	69209011 T	07-11-1996
				EP	0544400 A	02-06-1993
				ES	2085574 T	01-06-1996
	:			US	5198584 A	30-03-1993
EP.	0673926	A	27-09-1995	FR	2717801 A	29-09-1995
				CA	2145343 A	25-09-1995
				DE	69500217 D	15-05-1997
				DE	69500217 T	17-07-1997
				ES	2103144 T	16-08-1997
				JP	2672277 B	05-11-1997
				JP	7291920 A	07-11-1995
				US	5735910 A	07-04-1998
DE	1292784	В		GB	909700 A	
				LU	36853 A	
				NL	122875 C	
				NL	236431 A	
				US	3100739 A	13-08-1963