Cognitive Robotics

03. Kalman Filter Extensions

AbdElMoniem Bayoumi, PhD

Acknowledgment

 These slides have been created by Wolfram Burgard, Dieter Fox, Cyrill Stachniss and Maren Bennewitz

Previous Lecture

Markov assumption

Bayes filter

$$Bel(x_t) = \eta \ P(z_t \mid x_t) \int P(x_t \mid u_t, x_{t-1}) \ Bel(x_{t-1}) \ dx_{t-1}$$

- Kalman filter
 - Linear systems
 - Gaussian noise
 - Recursive belief update

$$\overline{bel}(x_t) = \begin{cases} \overline{\mu}_t = A_t \mu_{t-1} + B_t \mu_t \\ \overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t \end{cases}$$

$$bel(x_t) = \begin{cases} \mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t) \\ \Sigma_t = (I - K_t C_t) \overline{\Sigma}_t \end{cases}$$
$$K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$$

Nonlinear Dynamic Systems

- Problem: Kalman filter restricted to linear systems
- Most realistic robotic problems involve nonlinear functions
 - Robot motion:

$$x_t = g(u_t, x_{t-1})$$

Measurements:

$$z_t = h(x_t)$$

Linearity Assumption Revisited

Gaussian in=>Gaussian out

Non-linear Function

Gaussian in=>Non-Gaussian out

Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Non-Gaussian Distributions

- The non-linear functions lead to non-Gaussian distributions
- Kalman filter is not applicable anymore!

What can be done to resolve this?

Local linearization!

EKF Linearization: First Order Taylor Expansion

• Prediction:

$$\begin{split} g(u_t, x_{t-1}) &\approx g(u_t, \mu_{t-1}) + \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1}) \\ g(u_t, x_{t-1}) &\approx g(u_t, \mu_{t-1}) + G_t (x_{t-1} - \mu_{t-1}) \end{split}$$

Correction:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t(x_t - \overline{\mu}_t)$$

Jacobian matrices

Reminder: Jacobian Matrix

- It is a **non-square matrix** $n \times m$ in general
- Given a vector-valued function

$$f(\mathbf{x}) = \begin{bmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_m(\mathbf{x}) \end{bmatrix}$$

The Jacobian matrix is defined as

$$\mathbf{F}_{\mathbf{X}} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \cdots & \frac{\partial f_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \frac{\partial f_m}{\partial x_2} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}$$

Reminder: Jacobian Matrix

 It is the orientation of the tangent plane to the vector-valued function at a given point

Generalizes the gradient of a scalar valued function

EKF Linearization: First Order Taylor Expansion

• Prediction:

$$\begin{split} g(u_{t}, x_{t-1}) &\approx g(u_{t}, \mu_{t-1}) + \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}} (x_{t-1} - \mu_{t-1}) \\ g(u_{t}, x_{t-1}) &\approx g(u_{t}, \mu_{t-1}) + G_{t} (x_{t-1} - \mu_{t-1}) \end{split}$$

Correction:

$$h(x_t) \approx h(\overline{\mu}_t) + \frac{\partial h(\overline{\mu}_t)}{\partial x_t} (x_t - \overline{\mu}_t)$$
$$h(x_t) \approx h(\overline{\mu}_t) + H_t (x_t - \overline{\mu}_t)$$

Linear function!

EKF Linearization (1)

 Locally approximate non-linear fkt. with linear one

EKF Linearization (2)

 Approximation quality depends depends on deviation from g() in the used range

EKF Linearization (3)

Sharp belief=> good quality

EKF Algorithm

Extended_Kalman_filter(μ_{t-1} , Σ_{t-1} , u_t , z_t):

Prediction:

$$\overline{\mu}_t = g(u_t, \mu_{t-1})$$

$$\frac{\mathbf{4}}{\Sigma_t} = G_t \Sigma_{t-1} G_t^T + R_t$$

Kalman filter

$$\overline{\mu}_{t} = A_{t}\mu_{t-1} + B_{t}\mu_{t}$$

$$\overline{\Sigma}_t = A_t \Sigma_{t-1} A_t^T + R_t$$

$$G_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial x_{t-1}}$$

Correction:

$$6. K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1}$$

7.
$$\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t))$$

$$\mathbf{8.} \qquad \Sigma_t = (I - K_t H_t) \overline{\Sigma}_t$$

9. Return
$$\mu_t$$
, Σ_t

6.
$$K_t = \overline{\Sigma}_t H_t^T (H_t \overline{\Sigma}_t H_t^T + Q_t)^{-1}$$
 \longleftarrow $K_t = \overline{\Sigma}_t C_t^T (C_t \overline{\Sigma}_t C_t^T + Q_t)^{-1}$

7.
$$\mu_t = \overline{\mu}_t + K_t(z_t - h(\overline{\mu}_t)) \qquad \qquad \mu_t = \overline{\mu}_t + K_t(z_t - C_t \overline{\mu}_t)$$

$$\Sigma_t = (I - K_t C_t) \overline{\Sigma}_t$$

$$H_{t} = \frac{\partial h(\overline{\mu}_{t})}{\partial x_{t}}$$

EKF Example: Localization

"Using sensory information to locate the robot in its environment is the most fundamental problem to providing a **mobile** robot with autonomous capabilities." [Cox '91]

Given

- Map of the environment
- Sequence of sensor measurements

Wanted

Estimate of the robot's position

Problem classes

- Position tracking (initial pose known)
- Global localization (initial pose unknown)
- Kidnapped robot problem (recovery)

Landmark-based Localization

- Goal: Estimate robot pose $\mu_t = (x, y, \theta)$ and its covariance Σ_t
- Given: Map m with landmark positions
- Control u_t: Forward speed v, rotational speed ω
- Observations z_t: Angle and distance of landmarks

EKF_localization (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Prediction:

2.
$$G_t = \frac{\partial g(u_t, \mu_{t-1})}{\partial x_{t-1}} = \begin{bmatrix} \frac{\partial x'}{\partial \mu_{t-1,x}} & \frac{\partial x'}{\partial \mu_{t-1,y}} & \frac{\partial x'}{\partial \mu_{t-1,\theta}} \\ \frac{\partial y'}{\partial \mu_{t-1,x}} & \frac{\partial y'}{\partial \mu_{t-1,y}} & \frac{\partial y'}{\partial \mu_{t-1,\theta}} \\ \frac{\partial \theta'}{\partial \mu_{t-1,x}} & \frac{\partial \theta'}{\partial \mu_{t-1,y}} & \frac{\partial \theta'}{\partial \mu_{t-1,\theta}} \end{bmatrix}$$
 Jacobian of g w.r.t location

$$\mathbf{3.} \quad V_{t} = \frac{\partial g(u_{t}, \mu_{t-1})}{\partial u_{t}} = \begin{pmatrix} \frac{\partial x'}{\partial v_{t}} & \frac{\partial x'}{\partial \omega_{t}} \\ \frac{\partial y'}{\partial v_{t}} & \frac{\partial y'}{\partial \omega_{t}} \\ \frac{\partial \theta'}{\partial v_{t}} & \frac{\partial \theta'}{\partial \omega_{t}} \end{pmatrix}$$

Jacobian of g w.r.t control

4.
$$M_{t} = \begin{pmatrix} (\alpha_{1} | v_{t} | + \alpha_{2} | \omega_{t} |)^{2} & 0 \\ 0 & (\alpha_{3} | v_{t} | + \alpha_{4} | \omega_{t} |)^{2} \end{pmatrix}$$
 Motion noise

$$5. \quad \overline{\mu}_t = g(u_t, \mu_{t-1})$$

5.
$$\overline{\mu}_{t} = g(u_{t}, \mu_{t-1})$$
6. $\overline{\Sigma}_{t} = G_{t} \Sigma_{t-1} G_{t}^{T} + V_{t} M_{t} V_{t}^{T}$

Predicted mean Predicted covariance

EKF Prediction Step

EKF_localization (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Correction:

(distance, angle to landmark)

2.
$$\hat{z}_t = \begin{pmatrix} \sqrt{(m_x - \overline{\mu}_{t,x})^2 + (m_y - \overline{\mu}_{t,y})^2} \\ \tan 2(m_y - \overline{\mu}_{t,y}, m_x - \overline{\mu}_{t,x}) - \overline{\mu}_{t,\theta} \end{pmatrix}$$
 Predicted measurement mean

4.
$$H_t = \frac{\partial h(\overline{\mu}_t, m)}{\partial x_t} = \begin{pmatrix} \frac{\partial r_t}{\partial \overline{\mu}_{t,x}} & \frac{\partial r_t}{\partial \overline{\mu}_{t,y}} & \frac{\partial r_t}{\partial \overline{\mu}_{t,y}} \\ \frac{\partial \varphi_t}{\partial \overline{\mu}_{t,x}} & \frac{\partial \varphi_t}{\partial \overline{\mu}_{t,y}} & \frac{\partial \varphi_t}{\partial \overline{\mu}_{t,\theta}} \end{pmatrix}$$
 Jacobian of h w.r.t location

$$\mathbf{5.} \quad Q_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_\phi^2 \end{pmatrix}$$

Measurement noise

$$S_t = H_t \overline{\Sigma}_t H_t^T + Q_t$$

Pred. measurement covariance

$$7. K_t = \overline{\Sigma}_t H_t^T S_t^{-1}$$

Kalman gain

$$8. \quad \mu_t = \overline{\mu}_t + K_t(z_t - \hat{z}_t)$$

Updated mean

$$\mathbf{9.} \quad \boldsymbol{\Sigma}_{t} = (\boldsymbol{I} - \boldsymbol{K}_{t} \boldsymbol{H}_{t}) \boldsymbol{\Sigma}_{t}$$

Updated covariance

EKF Observation Prediction Step

EKF Correction Step

Estimation Sequence (1)

Estimation Sequence (2)

EKF Summary

• Highly efficient: Polynomial in measurement dimensionality k and state dimensionality n: $O(k^{2.376} + n^2)$

- Not optimal!
- Can diverge if nonlinearities are large!
- Works surprisingly well even when all assumptions are violated!

Linearization via Unscented Transform

Represent belief by Sigma-points

UKF Sigma-Point Estimate (2)

UKF Sigma-Point Estimate (3)

Unscented Transform

Sigma points

Weights

$$\chi^0 = \mu$$

$$\chi^i = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)$$

$$w_m^0 = \frac{\lambda}{n+\lambda}$$

$$w_m^0 = \frac{\lambda}{n+\lambda}$$
 $w_c^0 = \frac{\lambda}{n+\lambda} + (1-\alpha^2 + \beta)$

$$\chi^{i} = \mu \pm \left(\sqrt{(n+\lambda)\Sigma}\right)_{i} \qquad w_{m}^{i} = w_{c}^{i} = \frac{1}{2(n+\lambda)} \qquad \text{for } i = 1,...,2n$$

$$\lambda = \alpha^{2}(n+\kappa) - n$$

for
$$i = 1,...,2n$$

Pass sigma points through nonlinear function

$$\psi^i = g(\chi^i)$$

Recover mean and covariance

$$\mu' = \sum_{i=0}^{2n} w_m^i \psi^i$$

$$\Sigma' = \sum_{i=0}^{2n} w_c^i (\psi^i - \mu') (\psi^i - \mu')^T$$

UKF_localization (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Prediction:

$$\chi_{t-1}^{a} = \begin{pmatrix} \chi_{t-1}^{x} \\ \chi_{t}^{u} \\ \chi_{t}^{z} \end{pmatrix}$$

$$M_{t} = \begin{pmatrix} (\alpha_{1} | v_{t} | + \alpha_{2} | \omega_{t} |)^{2} & 0 \\ 0 & (\alpha_{3} | v_{t} | + \alpha_{4} | \omega_{t} |)^{2} \end{pmatrix}$$

Motion noise
$$\chi_t$$
Depends on forward speed and rotational speed

$$Q_t = \begin{pmatrix} \sigma_r^2 & 0 \\ 0 & \sigma_\phi^2 \end{pmatrix}$$

$$\mu_{t-1}^a = (\mu_{t-1}^T \quad (0\ 0)^T \quad (0\ 0)^T)$$

$$\Sigma_{t-1}^{a} = \begin{pmatrix} \Sigma_{t-1} & 0 & 0 \\ 0 & M_{t} & 0 \\ 0 & 0 & Q_{t} \end{pmatrix}$$

$$\chi_{t-1}^{a} = \begin{pmatrix} \mu_{t-1}^{a} & \mu_{t-1}^{a} + \gamma \sqrt{\Sigma_{t-1}^{a}} & \mu_{t-1}^{a} - \gamma \sqrt{\Sigma_{t-1}^{a}} \end{pmatrix}$$

$$\overline{\chi}_t^x = g(u_t + \chi_t^u, \chi_{t-1}^x)$$

$$\overline{\mu}_t = \sum_{i=0}^{2L} w_m^i \ \overline{\chi}_{i,t}^x$$

$$\overline{\Sigma}_{t} = \sum_{i=0}^{2L} w_{c}^{i} \left(\overline{\chi}_{i,t}^{x} - \overline{\mu}_{t} \right) \left(\overline{\chi}_{i,t}^{x} - \overline{\mu}_{t} \right)^{T}$$

Sigma Points of Augmented States

• χ_{t-1}^a is a sigma point representation of the augmented state estimate

$$\chi_{t-1}^{a} = \begin{pmatrix} \chi_{t-1}^{x} & T \\ \chi_{t-1}^{u} & T \\ \chi_{t}^{u} & T \\ \chi_{t}^{z} & T \end{pmatrix}$$

• χ_{t-1}^a contains 2L+1=15 sigma points, each having components in state, control and measurement space

Unscented Prediction

 Construct a N+M dimensional Gaussian from the previous state distribution and the controls

For each of the 2(N+M)+1 samples $\langle x,u \rangle^i$ compute its mapping via g(x,u)

Recover a Gaussian approximation from the samples

UKF_localization (μ_{t-1} , Σ_{t-1} , u_t , z_t , m):

Correction:

$$\overline{Z}_t = h(\overline{\chi}_t^x) + \chi_t^z$$

$$\hat{z}_t = \sum_{i=0}^{2L} w_m^i \ \overline{Z}_{i,t}$$

$$S_{t} = \sum_{i=0}^{2L} w_{c}^{i} \left(\overline{Z}_{i,t} - \hat{z}_{t} \right) \left(\overline{Z}_{i,t} - \hat{z}_{t} \right)^{T}$$

$$\Sigma_t^{x,z} = \sum_{i=0}^{2L} w_c^i \left(\overline{\chi}_{i,t}^x - \overline{\mu}_t \right) \left(\overline{Z}_{i,t} - \hat{z}_t \right)^T$$

$$K_t = \sum_{t=0}^{x,z} S_t^{-1}$$

$$\mu_{t} = \overline{\mu}_{t} + K_{t}(z_{t} - \hat{z}_{t})$$

$$\Sigma_t = \overline{\Sigma}_t - K_t S_t K_t^T$$

Prediction of Measurement sigma points

Predicted measurement mean

Pred. measurement covariance

Cross-covariance

Between state and observation

Kalman gain

Updated mean

Updated covariance

Unscented Correction

 Sample from the predicted state and the observation noise, to obtain the expected measurement

 Compute the cross correlation matrix of measurements and states, and perform a Kalman update

Estimation Sequence

Prediction Quality

Two motion steps without observations

UKF Summary

- Highly efficient: Same complexity as EKF, with a constant factor slower in typical practical applications
- Better linearization than EKF: Accurate in first two terms of Taylor expansion (EKF only first term)
- Derivative-free: No Jacobians needed
- Still not optimal!

Acknowledgment

 These slides have been created by Wolfram Burgard, Dieter Fox, Cyrill Stachniss and Maren Bennewitz