



#### ИНСТИТУТ ОТРАСЛЕВЫХ РЫНКОВ И ИНФРАСТРУКТУРЫ

# Моделирование спотовых цен на электроэнергию на оптовом рынке в России

Касьянова Ксения

# Цели и задачи

### Цель:

- разработка модели ценообразования на оптовом рынке электроэнергии (РСВ), учитывающей особенности российского рынка;
- оценка влияния принятия различных решений и изменений факторов на цену на электричество и финансовые риски участников рынка электрической энергии.

#### Гипотеза:

построив математическую модель, описывающую цену на электроэнергию как диффузионно-скачкообразный процесс, учитывающую также экономические (фундаментальные) факторы, влияющие на спрос и предложение на рынке электроэнергии, можно проследить, как отразится их изменение на финансовые риски этого актива.

## Цели и задачи

#### Задачи:

- выявление факторов влияющих на цены на электричество, особенностей российского рынка;
- выбор подходящей модели, способной учесть неодинаковое влияние факторов на различные компоненты процесса (тренд, сезонность и стохастические компоненты);
- оценивание моделей, сравнение с бенчмарк-моделями (не байесовскими/не стохастическими);
- выбор событий/решений/политик повлиявших на факторы, включенные в модель, сравнение рисков до/после.

#### Актуальность:

- около 72% производимой электроэнергии продается на рынке на сутки вперед (РСВ);
- прямая связь с задачей ценообразования производных финансовых инструментов, необходимых для хеджирования финансовых рисков.

## Российский оптовый рынок электричества



Рис.: Ценовые зоны

# Российский оптовый рынок электричества



Рис.: Спотовые цены (усредненные за день) для 1 и 2 ценовой зон, руб./МВт.ч

# Российский оптовый рынок электричества



Рис.: Спотовые цены (усредненные за месяц) для 1 и 2 ценовой зон, руб./МВт.ч.  $corr(p_1,p_2)=0.07$ 

# Анализ предметной отрасли

| Авторы, год                                                                         | Название работы                                                                                 | Результат                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Judio Lucia,<br>Eduardo Schwartz<br>(Review of<br>Derivatives<br>Research, 2002)    | Electricity Prices and<br>Power Derivatives:<br>Evidence from the<br>Nordic Power Exchange      | Эмпирическая оценка детерминистической сезонной компоненты в одно- и двухфакторной модели цен на электричество.                                                                                                  |
| Álvaro Cartea,<br>Marcelo G.<br>Figueroa (Applied<br>Mathematical<br>Finance, 2005) | Pricing in Electricity<br>Markets: a mean<br>reverting jump diffusion<br>model with seasonality | Применение модели цен на электричество, учитывающую тенденцию возвращения к среднему, скачкообразность и сезонность процесса.                                                                                    |
| Maciej<br>Kostrzewski,<br>Jadwiga<br>Kostrzewska<br>(Energy<br>Economics, 2019)     | Probabilistic Electricity<br>Price Forecasting with<br>Bayesian Stochastic<br>Volatility Models | Прогнозирование спот-цен на электричество с помощью байесовского подхода позволяет учесть неопределенность в распределении коэффициентов параметров, что улучшает прогнозы в сравнении с классическими моделями. |

# Модель Мертона (Merton's Jump-Diffusion Model)

Базовая модель описывающая цену на электричество [Kostrzewski and Kostrzewska (2019)]:

- эмпирическое распределение имеет тяжелые хвосты, что не согласуется со стандартной моделью Блэка-Шоулза
- в модель добавляется отдельная компонента, отвечающая за скачкообразность процесса.

Пусть  $S_t$  - цена в момент t.

Риск-нейтральный диффузионно-скачкообразный процесс (jump-diffusion process), описывающий изменение цены на электричество:

$$dS_t/S_t = (r - \lambda \bar{k})dt + \sigma dW_t + kdq_t.$$

где  $\sigma$  - волатильность диффузионной компоненты, при  $\lambda=0$  получаем модель Блэка-Шоулза.

Скачки порожденны составным процессом Пуассона  $q_t$  с параметром  $\lambda$ , где k - размах случайного скачка (логнормально распределенный):

$$ln(1+k) \sim N(\gamma, \delta^2)$$

где среднее -  $\bar{k} = E(k) = e^{\gamma + \delta^2/2} - 1$ .

## Модели с детерминистической сезонностью

Применение модели цен на электричество, учитывающую тенденцию возвращения к среднему, скачкообразность и сезонность процесса.

$$\ln S_t = g(t) + Y_t$$

Детерминистческая компонента - сезонность g(t), стохастическая компонента  $Y_t$ .

#### Lucia and Schwartz (2002):

 $Y_t$  - процесс, возвращающий среднее (OU process)

$$dY_t = -\alpha Y_t dt + \sigma(t) dW_t$$

### Cartea and Figueroa (2005):

 $Y_t$  - диффузионно-скачкообразный процесс:

$$dY_t = -\alpha Y_t dt + \sigma(t) dW_t + J dq_t$$

J - величина скачка, q - пуассоновский процесс.

# Основные экономические модели ценообразования на рынке электричества

- моделирование с учетом фундаментальных факторов (физических/экономических)
- модели типа Курно (в результате цены выше чем в действительности)
- моделирование совокупной функции предложения (необходимо решить систему дифференциальных уравнений, вычислительно затратно, не уделяется внимание резким всплескам)
- моделирование поведения групп агентов (необходимо для выявления сложных зависимостей, применяется совместно с другими моделями, высокие риски моделирования, так как согласование с теоретической моделью и эмпирическими наблюдениями сильно зависит от предпосылок и понимания настоящей структуры рынка)

## Особенности рынка электричества

- невозможность хранения => проблема обязательства энергоустановки (unit commitment), учитывается при моделировании цены фьючерсного контракта (так как невозможно открыть короткую позицию).
- проблема с ограничениями ЛЭП (проблема решается единым оператором), возможность перенапряжения сети (в таком случае локальные цены отличаются от общеустановленных по системе)
- цены на электричество определяются на РСВ, т.е. отсутствует непрерывность торговли, решения на все сутки принимаются на основании одного и того же информационного множества
- невозможность перераспределить волатильность цен по производственной цепочке
- цены имеют три уровня циклических колебаний: ежедневная, недельная, годовая (с резкими всплесками в январе)
- причины энергетических кризисов: изменения налогообложения, рыночные манипуляции, устаревшая инфраструктура, провалы рынка, национализация, излишняя зарегулированность, перебои с поставками топлива, резкое изменение климата, доставка электричества дешевле стоимости производства

## Факторы спроса и предложения

#### На равновесие на рынке электричества влияет

- погодные условия (причем при более точном прогнозировании погодных условий можно уменьшить ошибку прогноза цены на электричество)
- уровень деловой активности (ежедневной и общего тренда)
- доля ВИЭ (зависимых от погодных условий)
- решения принимаемые экономическими агентами (при оптимизации)
- цены на ресурсы
- государственная политика, новости
- другие фундаментальные факторы влияющие на баланс спроса и предложения

# Kostrzewski and Kostrzewska (2019)

- Цены на электричество зависят от большого числа различных компонент.
- Для прогнозирования используется SV модель с экзогенными переменными и дамми-переменными, например, температура, объемы торгов по выходным и понедельникам.
- В модели скачки вверх/вниз распределены экспоненциально, с разными параметрами.
- С помощью байесовского подхода можно оценить ненаблюдаемые компоненты модели.

#### SVDEJX модель:

$$\begin{array}{lll} y_{t_{i+1}} = & y_{t_i} + \mu + \psi X_{t_{i+1}} + d_{Sat} D_{Sat,i+1} + d_{Sun} D_{Sun,i+1} + d_{Mon} D_{Mon,i+1} \\ & + \sqrt{\exp\left(h_{t_i}\right)} \varepsilon_{t_{i+1}}^{(1)} + J_{t_{i+1}}, \\ h_{t_{i+1}} = & h_{t_i} + \kappa_h \left(\theta_h - h_{t_i}\right) + \sigma_h \left(\rho \varepsilon_{t_{i+1}}^{(1)} + \sqrt{1 - \rho^2} \varepsilon_{t_{i+1}}^{(2)}\right), \\ J_{t_{i+1}} = & -\xi_{t_{i+1}}^D \cdot \mathbb{I} \left(q_{t_{i+1}} = -1\right) + 0 \cdot \mathbb{I} \left(q_{t_{i+1}} = 0\right) + \xi_{t_{i+1}}^U \cdot \mathbb{I} \left(q_{t_{i+1}} = 1\right), \end{array}$$

ho>0, если большим значениям математического ожидания соответствуют большие значения дисперсии

## Kostrzewski and Kostrzewska (2019)

Данные: Спотовые цены JCPL (Jersey Central Power and Light Company), находящейся в первой ценовой зоне, определяемой сетевым оператором PJM Interconnection. 08/22, 2010 - 01/14, 2012

1:40 120 100 -80 -40 -



Рис.: Спотовые цены на 4 часа (не-пиковый час) и 16 часов (пиковый час), USD/MWh

# Kostrzewski and Kostrzewska (2019)

| PI(%)                                     | ARX     | SNARX       | SIMPLE        | LAD         | QRA       | B_Q     | B_HPD   |  |
|-------------------------------------------|---------|-------------|---------------|-------------|-----------|---------|---------|--|
| Unconditional coverage                    |         |             |               |             |           |         |         |  |
| 50                                        | 69.74   | 56.51       | 58.63         | 56.36       | 53.55     | 53.33   | 53.22   |  |
| 90                                        | 96.13   | 94.23       | 94.44         | 93.64       | 92.07     | 90.28   | 90.72   |  |
| Mean (standard deviation) of the PI width |         |             |               |             |           |         |         |  |
| 50                                        | 8.63    | 6.09        | 6.32          | 6.73        | 6.4       | 5.6     | 5.52    |  |
|                                           | (3.33)  | (2.64)      | (2.89)        | (3.66)      | (3.78)    | (4.02)  | (3.91)  |  |
| 90                                        | 21.28   | 20.73       | 25.73         | 26.2        | 21.1      | 16.08   | 15.79   |  |
|                                           | (8.29)  | (8.78)      | (15.74)       | (17.21)     | (12.09)   | (11.15) | (10.71) |  |
|                                           | Λ       | Median (int | er-quartile i | range) of t | he PI wic | lth     |         |  |
| 50                                        | 8.66    | 5.94        | 5.89          | 5.79        | 5.62      | 4.37    | 4.29    |  |
|                                           | (5.25)  | (4.21)      | (5.77)        | (6.93)      | (5.19)    | (3.86)  | (3.79)  |  |
| 90                                        | 21.34   | 20.64       | 23.22         | 21.87       | 19.51     | 12.88   | 12.70   |  |
|                                           | (13.02) | (15.28)     | (25.86)       | (26.33)     | (18.51)   | (10.63) | (10.43) |  |

Рис.: Сравнение ширины доверительных интервалов прогноза, полученных по байесовским (B\_Q, B\_HPD) и не байесовским моделям

# Специфика российского рынка

#### Классификация рынков электроэнергии и мощности России

|          |                     | Тип рынка                                        |                                                |                          |  |  |
|----------|---------------------|--------------------------------------------------|------------------------------------------------|--------------------------|--|--|
|          |                     | Оптовы                                           | й рынок                                        | Розничный рынок          |  |  |
|          | энергия             | Рынок на сутки<br>вперед                         | Балансирующий<br>рынок                         | Рынок нерегулируемых цен |  |  |
| pa       | Электроэнергия      | Рынок регулируемых<br>договоров                  | Рынок свободных<br>договоров                   | Рынок регулируемых цен   |  |  |
| Тип това | Тип товара Мощность | Рынок регулируемых<br>договоров                  | Договоры<br>о предоставлении<br>мощности (ДПМ) | Рынок нерегулируемых цен |  |  |
|          |                     | Рынок свободных<br>договоров                     | Конкурентный отбор<br>мощности                 |                          |  |  |
|          |                     | Реализация в статусе<br>вынужденного гене ратора |                                                | Рынок регулируемых цен   |  |  |

# Специфика ценообразования на российском рынке

Тариф для конечного потребителя на электроэнергию и мощность форми-руется на основе пяти составляющих:

- цена электроэнергии (цена покупки электроэнергии на оптовом рынке или у розничного генератора);
- цена мощности (цена покупки мощности энергосбытовой компанией на оптовом рынке или у розничного генератора);
- цена передачи по сети с дифференциацией по уровню напряжения: тарифы ФСК на передачу по магистральным сетям, тарифы МРСК на передачу по сетям среднего напряжения и тариф ТСО на передачу по сетям низкого напряжения;
- ▶ инфраструктурные платежи: плата за услуги СО ЕЭС, АТС, ЦФР. Размер платы регулируется ФАС Россиии Ассоциацией «НП Совет рынка»;
- сбытовая надбавка.

# Несовершенства российского рынка

- Высокая степень изношенности основных фондов.
- ▶ Перекрестное субсидирование (частичный перенос платежного бремени с населения на промышленность).
- Проблема неплатежей (на конец октября 2017 года на оптовом рынке задолженность составила 65,2 млрд руб., а на розничном — 243 млрд руб).
- Вынужденная генерация (ТЭЦ неэффективны на рынке электроэнергии, мощности, работающие в режиме вынужденной генерации, оплачиваются по существенно более высокой цене, чем рыночная).
- Высокие потери тепла.
- Завершение ДПМ и продление ДПМ ВИЭ.

Данные по ценам на электричество за каждый час, начиная с 1.08.2013 по двум ценовым зонам:

- ▶ Объем полного планового потребления, МВт.ч
- ▶ Индекс равновесных цен на покупку электроэнергии, руб./МВт.ч.
- Объем покупки по регулируемым договорам, МВт.ч
- Объем покупки на РСВ, МВт.ч
- ▶ Объем продажи в обеспечение РД, МВт.ч

Источник: АТС



Рис.: Спотовые цены (усредненные за день) для 1 и 2 ценовой зон, руб./МВт.ч



Рис.: Спотовые цены (усредненные за месяц) для 1 и 2 ценовой зон, руб./МВт.ч.  $corr(p_1,p_2)=0.07$ 



Рис.: Разница дневных объемов планового предложения и потребления электроэнергии для 1 и 2 ценовой зон, МВт.ч.