Galois Theory Notes

Leon Lee January 13, 2025

Contents

1	Introduction to Galois Theory		
	1.1	Complex Numbers over \mathbb{R}	3
	1.2	Complex Numbers over \mathbb{Q}	3

1 Introduction to Galois Theory

1.1 Complex Numbers over \mathbb{R}

Think of \mathbb{C} as $\mathbb{C} = \{a + bi \mid a, b \in \mathbb{R}\}$ where the only thing you know about i is that

$$i^2 + 1 = 0$$

However, this equation has two roots (no way to distinguish i and -i). ezample z = i

Definition 1.1.1: Conjugate

 $z,z'\in\mathbb{Z}$ are **conjugate** over \mathbb{R} if $\forall p(t)\in\mathbb{R}[t]$ (polynomials with coefficients in \mathbb{R})

$$p(z) = 0 \iff p(z') = 0$$

Lemma 1.1.2: Characterising Conjugates

 $z, z' \in \mathbb{C}$ are conjugate over \mathbb{R} iff either z = z' or $\overline{z} = z'$

Proof. Assume z, z' are conjugate.

$$z = x + iy \quad x, y \in \mathbb{R}$$

Take the equation

$$(z - x)^{2} + y^{2} = 0$$
$$p(t) = (t - x)^{2} + y^{2} \in \mathbb{R}[t]$$

1.2 Complex Numbers over \mathbb{Q}

Definition 1.2.1: Conjugacy in \mathbb{Q}

 $z, z' \in \mathbb{C}$ are **conjugate over** \mathbb{Q} if $\forall p(t) \in \mathbb{Q}[t]$

$$p(z) = 0 \iff p(z') = 0$$

Example: $\sqrt{2}$ is not conjugate to $-\sqrt{2}$ over \mathbb{R} . e.g.

$$p(t) = t - \sqrt{2} \in \mathbb{R}[t]$$

Example: $\sqrt{2}$ is conjugate to $-\sqrt{2}$ over $\mathbb Q$

Treat $\sqrt{2}$ like i

$$\mathbb{Q}(\sqrt{2}) = \{ a + b\sqrt{2} \mid a, b \in \mathbb{Q} \}$$

This is also a field.

We want the analogue of complex conjugates. Show it is well-defined:

$$a + b\sqrt{2} = a' + b'\sqrt{2}, \quad a, b, a', b' \in \mathbb{Q}, \quad a - a' = (b' - b)\sqrt{2}$$

..some more stuff

Example: $\sqrt{2}$ is not conjugate to $\sqrt{3}$ over \mathbb{R}

$$p(t) = t^2 - 2$$

Example: p prime, $\omega = \exp\left(\frac{z\pi i}{p}\right)$ (primitive p-th root of unity)

$$\omega^p = 1$$

 ω^k is conjugate over $\mathbb Q$ to ω , $\forall k=1,\ldots,p-1$

ω^k is conjugate over $\mathbb R$ to ω iff $k \equiv 1, p-1 \mod p$

Definition 1.2.2: Conjugacy for sets

 $(z_1,\ldots,z_n),z_i,z_i'\in\mathbb{C}$ is conjugate over \mathbb{Q} to (z_1',\ldots,z_n') if $\forall p(t_1,\ldots,t_n)\in\mathbb{Q}[t_1,\ldots,t_n]$

Additionally, if (z_1, \ldots, z_n) conjugate to (z'_1, \ldots, z'_n) , then z_i is conjugate to z'_i for all i

Definition 1.2.3: Galois Group

If we have a $f \in \mathbb{Q}[t]$ where $\alpha_1, \ldots, \alpha_n$ are roots, then the Galois group of f, $\mathrm{Gal}(f)$ is

$$\operatorname{Gal}(g) = \{\sigma \in S_n \mid (\alpha_1, \dots, \alpha_n) \text{ conjugate to } \{\alpha_{S(1)}, \dots, \alpha_{\sigma(n)}\}\}$$