TBJ – Transistor Bipolar de Junção

Símbolo do transístor em calçada na Universidade de Aveiro – Fonte: Wikipédia

Conteúdo

- Relações entre as correntes do TBJ
- Configuração Emissor Comum
- Configuração Coletor Comum
- Resumo de TBJ
- Exercícios de fixação

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E$$

 $\alpha \approx 1$

$$I_E = I_c + I_B$$

$$I_C = \alpha I_E$$

$$I_C = \beta I_B$$

$$\alpha \approx 1$$
 $\beta \approx 100 \ a \ 1000$

$$I_E = I_C + I_B$$

$$I_C = \alpha I_E$$

$$\alpha = \beta/(\beta + 1)$$

$$\beta = \alpha/(1 - \alpha)$$

$$I_C = \beta I_B$$

$$I_C = \alpha I_E$$

$$I_C = \beta I_B$$

- Configuração mais utilizada
- Chave digital
- Fonte de corrente
- Amplificação de:
 - Tensão
 - Corrente
 - Potência

A junção B-C do TBJ é reversamente polarizada, enquanto a junção B-E é diretamente polarizada

A junção B-C do TBJ é reversamente polarizada, enquanto a junção B-E é diretamente polarizada

= Configuração Base Comum

A junção B-C do TBJ é reversamente polarizada, enquanto a junção B-E é diretamente polarizada

Portanto...

Para 1) a junção B-C do TBJ ser reversamente polarizada e 2) a junção B-E ser diretamente polarizada:

1)
$$V_{BC} = V_{BE} - V_{CE} < 0$$

$$\Rightarrow V_{BE} < V_{CE}$$

2)
$$V_{BE} \cong 0.7 V$$

Caracterização

DOIS conjuntos:

- Parâmetros de SAÍDA
- Parâmetros de ENTRADA

Caracterização

Regiões de Operação do TBJ

Operação:

TBJ – Fonte de corrente controlada por Corrente

Região de Corte

Aproximações

Aproximações

Configuração Coletor Comum

Configuração Coletor Comum

- Ganho de tensão unitário
- Utilizada como "casador de impedâncias"
 - Para amplificadores de tensão
- Impedância de entrada:
 - ALTA
- Impedância de saída:
 - BAIXA

Máxima transferência de potência

Máxima transferência de tensão

Divisor de tensão:
$$V_L = V_F \frac{R_L}{R_L + R_i}$$

Casador de Impedâncias

Casador de Impedâncias

Ex.: Configuração Coletor Comum

...como "casador de impedâncias"

Qual a configuração do circuito?

Resp. Configuração Coletor Comum

Considerações Práticas

Limites de Operação:

Potência de saída Máxima

Folha de dados

MAXIMUM RATINGS

Rating	Symbol	2N4123	Unit
Collector-Emitter Voltage	VCEO	30	Vdc
Collector-Base Voltage	V _{CBO}	40	Vdc
Emitter-Base Voltage	VEBO	5.0	Vdc
Collector Current - Continuous	Ic	200	mAde
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	625 5.0	mW mW°C
Operating and Storage Junction Temperature Range	T _j ,T _{stg}	-55 to +150	°C

THERMAL CHARACTERISTICS

OFF CHARACTERISTICS

Characteristic	Symbol	Max	Unit	
Thermal Resistance, Junction to Case	R _{ioc}	83.3	'C W	
Thermal Resistance, Junction to Ambient	ReitA	200	CW	

Min

Max

Unit

Symbol

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic

Collector-Emitter Breakdown Voltage (1) (I _C = 1.0 mAdc, I _E = 0)	V _{(BR)CEO}	30		Vdc
Collector-Base Breakdown Voltage (I _C = 10 μAdc, I _E = 0)	V _{(BR)CBO}	40		Vde
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	V _{(BR)EBO}	5.0	-	Vde
Collector Cutoff Current $(V_{CB} = 20 \text{ Vdc}, I_E = 0)$	I _{CBO}	-	50	nAde
Emitter Cutoff Current ($V_{BE} = 3.0 \text{ Vdc}, I_C = 0$)	I _{EBO}	-	50	nAde
ON CHARACTERISTICS	10 Xt		,	
DC Current Gain(1) $(I_C = 2.0 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$ $(I_C = 50 \text{ mAdc}, V_{CE} = 1.0 \text{ Vdc})$	h _{eys.}	50 25	150	- 20
Collector-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCD(sat)		0.3	Vdc
Base-Emitter Saturation Voltage(1) (I _C = 50 mAdc, I _B = 5.0 mAdc)	V _{RE(sac)}	-	0.95	Vdc
SMALL-SIGNAL CHARACTERISTICS	3.0			
Current-Gain – Bandwidth Product (I _C = 10 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fr	250		MHz
Output Capacitance $(V_{CB} = 5.0 \text{ Vdc}, I_E = 0, f = 100 \text{ MHz})$	Cobo		4.0	pF
Input Capacitance $(V_{BE} = 0.5 \text{ Vdc}, I_C = 0, f = 100 \text{ kHz})$	Cino	-	8.0	pF
Collector-Base Capacitance ($I_E = 0$, $V_{CB} = 5.0$ V, $f = 100$ kHz)	Ccb	-	4.0	pF
Small-Signal Current Gain (I _C = 2.0 mAdc, V _{CE} = 10 Vdc, f = 1.0 kHz)	h _{fe}	50	200	5
Current Gain – High Frequency $(I_C = 10 \text{ mAdc}, V_{CE} = 20 \text{ Vdc}, f = 100 \text{ MHz})$ $(I_C = 2.0 \text{ mAdc}, V_{CE} = 10 \text{ V}, f = 1.0 \text{ kHz})$	hse	2.5 50	200	-
Noise Figure $(I_C = 100 \mu Adc, V_{CE} = 5.0 \text{ Vdc}, R_S = 1.0 \text{ k ohm}, f = 1.0 \text{ kHz})$	NF		6.0	dB

NPN General Purpose Amplifier

6.0

dB

(continued)

Symbol	Parameter	Test Conditions	Min	Max	Units
OFF CHA	RACTERISTICS				
V _{(BR)CEO}	Collector-Emitter Breakdown Voltage*	$I_C = 1.0 \text{ mA}, I_B = 0$	30		V
V _{(BR)CBO}	Collector-Base Breakdown Voltage	$I_{C} = 10 \mu A, I_{E} = 0$	40		V
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	$I_E = 10 \mu A, I_C = 0$	5.0		V
Сво	Collector Cutoff Current	V _{CB} = 20 V, I _E = 0		50	nA
I _{EBO}	Emitter Cutoff Current	$V_{EB} = 3.0 \text{ V}, I_{C} = 0$		50	nA
V _{CE(sat)}	Collector-Emitter Saturation Voltage	$I_C = 50 \text{ mA}, I_B = 5.0 \text{ mA}$	20	0.3	V
h _{FE}	DC Current Gain	$V_{CE} = 1.0 \text{ V}, I_{C} = 2.0 \text{ mA}$ $V_{CE} = 1.0 \text{ V}, I_{C} = 50 \text{ mA}$	50 25	150	
V _{BE(sat)}	Base-Emitter Saturation Voltage	I _C = 50 mA, I _B = 5.0 mA		0.95	V
SMALL S	IGNAL CHARACTERISTICS Output Capacitance	V _{CB} = 5.0 V, f = 100 kHz		4.0	pF
C _{ib}	Input Capacitance	V _{EB} = 0.5 V, f = 0.1 MHz		8.0	pF
h _{fe}	Small-Signal Current Gain	I_C = 2.0 mA, V_{CE} = 10 V, f = 1.0 kHz I_C = 10 mA, V_{CE} = 20 V, f = 100 MHz	50 2.5	200	
			0		

 V_{CE} = 5.0 V, I_{C} = 100 μ A,

NF

Noise Figure

Teste rápido

Teste rápido

Teste rápido

Formas

Formas

Encapsulamento

Encapsulamento

Encapsulamento

(Top View)

NC - No internal connection

(b)

Caracterização Experimental

Caracterização Experimental

TBJ - Resumo

JEB	JCB	MODO
Reversa	Reversa	
Direta	Reversa	
Direta	Direta	

TBJ - Resumo

JEB	JCB	MODO
Reversa	Reversa	CORTE
Direta	Reversa	ATIVO
Direta	Direta	<i>SATURAÇÃO</i>

TBJ - Resumo

- A curva característica I_C (I_B) x V_{BE} é uma exponencial e quase idêntica à característica I x V do diodo de junção.
- Para V_{BE} menor que ~ 0,5 a 0,7V, a corrente I_C é desprezível (modo de corte).
- Em operação normal V_{BE} situa-se na faixa de 0,6 a 0,8V.
- Para transistores de silício, a tensão V_{BE} diminui cerca de 2mV para cada 1º C de aumento de temperatura.
- Para valores baixos de V_{CE}, a tensão de coletor é menor que a tensão de base e a junção coletor-base fica diretamente polarizada (modo de saturação).
- Na região ativa, as curvas características (de saída) são retas com uma inclinação finita (baixa).
- A inclinação diferente de zero das retas na característica I_C x V_{CE} na região ativa é modelada por uma resistência de saída r_o finita e definida por:

$$r_{\rm O} \equiv \left[\frac{\partial i_{\rm C}}{\partial v_{\rm CE}} \right]^{-1}.$$

Considere um transistor NPN com $V_{BE} = 0.7 \text{ V e com } I_{C} = 1 \text{ mA}.$ Calcule V_{BE} para i) $I_{C} = 0.1 \text{ mA}$ e ii) 10 mA.

Considere um transistor NPN com $V_{BE} = 0.7 \text{ V e com } I_{C} = 1 \text{ mA}.$ Calcule V_{BE} para i) $I_{C} = 0.1 \text{ mA}$ e ii) 10 mA.

i) Solução: Usando a equação exponencial

$$I_C = I_S.exp[V_{BE}/(K_BT)] => V_{BE} = K_BT ln(I_C/I_S)$$

Considere um transistor NPN com $V_{BE} = 0.7 \text{ V e com } I_{C} = 1 \text{ mA}.$ Calcule V_{BE} para i) $I_{C} = 0.1 \text{ mA}$ e ii) 10 mA.

i) Solução: Usando a equação exponencial

$$I_C = I_S.exp[V_{BE}/(K_BT)] => V_{BE} = K_BT ln(I_C/I_S)$$

 $V_{BE2} - V_{BE1} = K_BT \ln(I_{C2} / I_{C1})$. Dessa forma, pode-se escrever (com $K_BT = 26 \text{ mV}$)

 $V_{BE2} - 0.7 = 0.026 \ln(0.1 / 1)$, que resulta em $V_{BE2} = 0.64 \text{ V}$.

Considere um transistor NPN com $V_{BE} = 0.7 \text{ V e com } I_{C} = 1 \text{ mA}.$ Calcule V_{BE} para i) $I_{C} = 0.1 \text{ mA}$ e ii) 10 mA.

i) Solução: Usando a equação exponencial

$$I_C = I_S.exp[V_{BE}/(K_BT)] => V_{BE} = K_BT ln(I_C/I_S)$$

 $V_{BE2} - V_{BE1} = K_BT \ln(I_{C2} / I_{C1})$. Dessa forma, pode-se escrever (com $K_BT = 26 \text{ mV}$)

 $V_{BE2} - 0.7 = 0.026 \ln(0.1 / 1)$, que resulta em $V_{BE2} = 0.64 \text{ V}$.

ii) De modo similar:

$$V_{BF2} - 0.7 = 0.025 \ln(10 / 1) => V_{BF2} = 0.76 \text{ V}$$

Considere que o ganho de corrente β para cada transistor a seguir é muito elevado (β >>1) e que os transistores se encontram operando na região ativa. Calcule os parâmetros indicados.

Considere que o ganho de corrente β = 30 e que $|V_{BE}|$ = 0,7 V. Calcule I_{C} .

