# **FONCTIONS 1 – INTRODUCTION**

## I) NOTION DE FONCTION

### 1) Définition

Soit D un ensemble de réels.

Définir une fonction f sur l'ensemble D, c'est associer à chaque réel x de D un unique réel noté f(x).

**Ex:** Soit f la fonction définie sur  $\mathbb{R}^+$  par  $x \mapsto \sqrt{x}$   $0 \mapsto 4 \mapsto -2 \mapsto$ 

#### 2) Représentation graphique

Soit f une fonction définie sur D.

Sa représentation graphique notée Cf est l'ensemble des points M(x; y) tels que :  $x \in D$  et y = f(x)

La relation y = f(x) s'appelle « équation de Cf».

Ex: Représenter graphiquement f définie sur  $\mathbb{R} \setminus \{1\}$  par  $x \mapsto \frac{2x}{x-1}$ 

Plus la courbe est pentue, plus il faut « rapprocher » les valeurs de *x* 

#### Tableau de valeurs

| TWO TOWN GO TWICKED T |    |    |    |   |     |     |     |     |   |   |   |   |
|-----------------------|----|----|----|---|-----|-----|-----|-----|---|---|---|---|
| x                     | -3 | -2 | -1 | 0 | 0,5 | 0,7 | 1,3 | 1,5 | 2 | 3 | 4 | 5 |
| f(x)                  |    |    |    |   |     |     |     |     |   |   |   |   |

#### Représentation graphique



Ne pas oublier de :

- nommer, graduer et orienter les axes
- nommer la courbe (soit Cf, soit y = f(x), soit  $y = \frac{2x}{x-1}$ )

p234: 74 p236: 88, 95

p115: 65, 66, 68, 69

#### 3) Images – Antécédents

Soit f une fonction définie sur D, a un réel de D et b le réel tel que b=f(a). Alors, b est appelé « image de a par f » et a est appelé « antécédent de b par f »

**Ex**: Soit f la fonction définie sur  $\mathbb{R}$  par  $x \mapsto x^2$ 

- Quelle est l'image de 2 ? f(2)=
- Quels sont les antécédents de 9 ? Résolvons l'équation

◆ Quels sont les antécédents de −3 ?
Résolvons l'équation

**Graphiquement:** 



#### Remarque:

Tout nombre de D a une image unique par f. En revanche, un nombre peut avoir 0, 1 ou plusieurs antécédents par f.

Oral, p232: 46, 47

Écrit, p232: 52

Algo, p234: 76, 77

#### 4) Ensemble de définition

L'ensemble de définition d'une fonction f, noté Df, est l'ensemble des valeurs de x pour lesquelles l'expression f(x) est définie. En pratique, il s'agit de  $\mathbb{R}$  privé des valeurs interdites de x.

**Ex**: Déterminer l'ensemble de définition de f définie par  $x \mapsto \frac{\sqrt{x}}{x^2 - 2x + 1}$ 

$$Df = \{x \in \mathbb{R} \mid x \ge 0 \text{ et } x^2 - 2x + 1 \ne 0\}$$

Résolvons (E):



**Remarque :** On décide parfois de travailler seulement sur une partie de l'ensemble de définition. On parle alors « d'intervalle d'étude ».

(Ex : Soit f définie sur ]1; 
$$+\infty$$
[ par  $x \mapsto \frac{\sqrt{x}}{x^2 - 2x + 1}$ )

# II) RÉSOLUTIONS GRAPHIQUES

Soient f et g les fonctions définies sur  $\mathbb{R}$  par :

$$f: x \mapsto x^2 - 2$$

$$g: x \mapsto \frac{2}{3}x - \frac{1}{3}$$



### 1) Résoudre graphiquement f(x) = g(x)

Les solutions sont

### 2) Résoudre graphiquement $f(x) \ge g(x)$

Les solutions sont

p251: 1, 2, 3, 4 p262: 49, 50, 51

pb concrets

p233: 65

p235: 80

p236: 93

p237: 103

Algo: TP p241