UFMG/ICEx/DCC

DCC216 - MATEMÁTICA DISCRETA

Trabalho Prático

CIÊNCIAS EXATAS & ENGENHARIAS

2º Semestre 2023

Observações:

- 1. Comece a fazer este trabalho imediatamente. Você nunca terá tanto tempo para resolvê-lo quanto agora!
- 2. Data de entrega: 29 de outubro de 2023, até às 23:59 horas, ou antes.
- 3. **Submissão**: Faça a submissão deste trabalho no Moodle, conforme instruções postadas lá.
- 4. **Plataforma computacional**: O seu trabalho deve ser executado em alguma máquina do ambiente computacional do Departamento de Ciência da Computação da UFMG, onde os monitores irão avaliá-lo.
- 5. **Linguagem**: Você deve escrever o seu programa obrigatoriamente na linguagem de programação C.
- 6. Documentação:
 - Uma documentação que explique cada uma das soluções para cada espiral descrita neste documento. Em particular, descreva as fases de especificação, projeto (solução adotada) e implementação dos algoritmos deste TP.
 - Um arquivo leiame.txt, a ser incluído no arquivo zip, como informações sobre o ambiente computacional para executar o seu TP bem como todas as instruções necessárias.
- 7. Testes: O seu programa será avaliado conforme descrito no Moodle da disciplina.

Espiral Quadrada e Espiral Triangular

Para cada espiral, gere um programa separado com o nome espquadrada.c e esptriangular.c para a espiral quadrada e a espiral triangular, respectivamente.

Espiral Quadrada

A espiral quadrada é uma sequência de pontos com coordenadas inteiras, como mostrado na figura abaixo, que pode ser representada pela tabela ao lado.

	Coordenadas
Ponto	(x,y)
0	(0, 0)
1	(0, 1)
2	(-1, 1)
3	(-1, 0)
4	(-1, -1)
5	(0,-1)
6	(1,-1)
7	(1,0)
8	(1, 1)
9	(1, 2)
10	(0, 2)
11	(-1, 2)
12	(-2, 2)
13	(-2, 1)
14	(-2, 0)
15	(-2, -1)
16	(-2, -2)
17	(-1, -2)
18	(0,-2)
19	(1,-2)
20	(2,-2)
:	:

Espiral Triangular

A espiral triangular é uma sequência de pontos com coordenadas inteiras, como mostrado na figura abaixo, que pode ser representada pela tabela ao lado.

	Coordenadas
Ponto	(x,y)
0	(0, 0)
1	(1, 0)
2	(0, 1)
3	(-1, 0)
4	(-2, -1)
5	(-1, -1)
6	(0,-1)
7	(1,-1)
8	(2,-1)
9	(3,-1)
10	(2, 0)
11	(1, 1)
12	(0, 2)
13	(-1, 1)
14	(-2, 0)
15	(-3, -1)
16	(-4, -2)
17	(-3, -2)
18	(-2, -2)
19	(-1, -2)
20	(0,-2)
:	:

Entrada. Um número inteiro $n \ge 0$ a ser fornecido através da entrada padrão, que representa um ponto da espiral quadrada ou da espiral triangular. Assuma que esse número inteiro é válido, ou seja, $n \ge 0$.

Saída. As coordenadas (x, y) desse ponto a serem fornecidas através da saída padrão.

Exemplo. Suponha que seja fornecido o número inteiro

10

tanto para a espiral quadrada quanto para a espiral triangular. A saída da espiral quadrada será

(0, 2)

e da espiral triangular será

(2, 0)

Documentação. Para cada espiral, você deve apresentar o algoritmo usado e a sua complexidade usando a notação O ou Θ , conforme o seu algoritmo. No pior caso, a sua solução para cada espiral deve ser O(n). No entanto, tente gerar soluções que tenham custo:

- (a) $\Theta(1)$, ou,
- (b) $O(n^{\frac{1}{2}})$, ou,
- (c) outra solução com custo inferior a O(n)

Qualquer solução com custo **superior** a O(n) não será considerada.