POLS 904 Final Project Simulation Study on Causal Forest

Jiacheng He

December 6, 2017

Introduction

Wager and Athey (2017) developed causal forest method to predict heterogeneous treatment effect of each individual.

Test the prediction performance and confidence interval coverage rate of causal forest.

Causal Forest

Model setup

 Y_i : The outcome variable

 W_i : $W_i = 1$ if individual i receives treatment, $W_i = 0$ if not treated

 X_i : A vector of covariates

$$Y_i = m(X_i) + \frac{W_i}{2}\tau(X_i) + \frac{1-W_i}{2}\tau(X_i) + \epsilon_i$$

 $m(X_i) = E[Y_i|X_i]$: The conditional mean of outcome

 $\tau(X_i) = E[Y_i|X_i, W_i = 1] - E[Y_i|X_i, W_i = 0]$: The heterogenous treatment effect (conditional on covarites X_i)

 $e(X_i) = E[W_i|X_i]$: The treatment propensity

Causal Forest

Goal is to predict $\tau(X_i)$ (while random forest aims to predict $m(X_i)$)

Difficulty:

- 1. Disentangle $\tau(X_i)$ from $m(X_i)$ and $e(X_i)$
- 2. Cannot perform cross-validation, because we never observe the true τ_i (while in random forest we observe the true Y_i)

Algorithm

Similar to random forest

Place a split at point \tilde{x}_i which maximize the difference of $\hat{E}[Y_i|X_i=x_i,W_i=1]-\hat{E}[Y_i|X_i=x_i,W_i=0]$ between the two sides of \tilde{x}_i

(while random forest maximize the difference of $\hat{E}[Y_i|X_i=x_i]$)

Simulation Setup

DGP1

$$au(X_i)=0$$
 $e(X_i)=(1+dbeta(X1,shape1=2,shape2=4))/4$ $m(X_i)=2X_{1i}-1$

DGP2

$$\tau(X_i) = 1 + \frac{1}{(1 + e^{-20(X_{1i} - 1/3})(1 + e^{-20(X_{2i} - 1/3}))}$$
$$e(X_i) = 0.5$$
$$m(X_i) = 0$$

Simulation Setup

- 1. Draw $X_i \sim U(0,1)^d$, $\epsilon_i \sim N(0,1)$, $W_i \sim binom(1,e(X_i))$
- 2. Run the causal forest on a training set, then evaluate the model on a test set. $(n_{train} = n_{test})$
- 3. For each senario, replicate it for 100 times

Fix
$$d = 10$$
, try $n = 100, 500, 1000, 2000, 5000$;
Fix $n = 1000$, try $d = 2, 4, 10, 20, 40$

I try varying five tuning parameter, one at a time. I use DGP2 and fix $n=1000,\,d=10$

- 1. Sample fraction used in each tree training; (default 0.5)
- 2. Covariates used in each tree training; (default $\frac{2}{3}d$)
- 3. Number of trees; (default 2000)
- Minimun # observations in each terminal node; (defauly NULL)
- 5. Regularization parameter λ ; (default 0)

1. Try sample fraction s = 0.1, 0.2, 0.3, 0.4, 0.5

s	MSE	coverage
0.1	0.2811	0.5075
0.2	0.1412	0.767
0.3	0.1067	0.8425
0.4	0.08107	0.9065
0.5	0.07753	0.914

2. Try # covariates in each tree training t = 4, 5, 6, 7, 8

t	MSE	coverage
4	0.1157	0.833
5	0.09674	0.883
6	0.0898	0.89
7	0.07713	0.92
8	0.07511	0.917

3. Try # trees b = 500, 1000, 2000, 4000, 6000

b	MSE	coverage
500	0.08462	0.96
1000	0.07933	0.9395
2000	0.08467	0.9
4000	0.07554	0.8915
6000	0.07713	0.8835

4. Try minimun node size \$ = 0, 10, 20, 40, 80\$

size	MSE	coverage
0	0.08151	0.902
10	0.0824	0.7995
20	0.0935	0.7225
40	0.08928	0.6915
80	0.1123	0.564

5. Try
$$\lambda = 0.1, 1, 5, 10, 100$$

lambda	MSE	coverage
0.1	0.08055	0.8975
1	0.08013	0.8995
5	0.09256	0.88
10	0.09358	0.883
100	0.1325	0.82