Survey of Materials. Lecture 4

Structural motifs

Andriy Zhugayevych

October 2, 2020

Outline

- Metallic lattices
- Ionic lattices
- Covalent crystals
- Molecular crystals
- Surfaces
- Structural transformations and polymorphism
- Exploring structure-property relationships

Why knowledge of structural motifs is useful?

- Provide basic structure-property relationships (close packed structure ↔ metal)
- Predict structure
 (metal one of close packed structures)
 (metal close to melting probably bcc)
- Discard wrong structures (metal with small APF – probably wrong structure)

Structural type notations

- Common name (fcc, bcc, hcp, diamond, simple cubic)
- Prototype (rocksalt NaCl, rutile TiO2, chalcopyrite CuFeS2)
- Strukturbericht (A1=fcc, A2=bcc, B1=NaCl, C4=TiO2)
- Pearson symbol (incomplete specification): lattice type, space group and Z (cF4=fcc, cl2=bcc, cF8=NaCl, tP6=rutile TiO2)

Metals

Crystal structure of a metal is determined by:

- Maximize density of "electron gas + ionic lattice" \Longrightarrow close-packed lattices (CN \gtrsim 12, $\delta \gtrsim 3/4$, see here)
- Details of band structure differentiate close-packed lattices (see e.g. low-T structures of light alkali metals)
- At nonzero temperatures consider phonon dispersion (see e.g. example of iron)

See details on close-packed structures here

Metals: examples

See more examples here

- most of metals fcc, hcp, bcc
- α -Fe (bcc), γ -Fe (fcc), δ -Fe (bcc), melt \implies tempering
- Hg close-packed hR lattice (A10) at P>12 kbar
- In fct (A6), α -Ga A11, α -Pa tcp, α -La A', α -Mn
- β -Sn (A5) not close-packed (best dia-deform.) \implies poor metal
- α -As (A7) not close-packed, secondary bonding \implies semimetal
- B semiconductor

Ionic crystals

Maximize electrostatic energy, e.g. for binary compound $A_{n_A}X_{n_X}$:

$$M\frac{n_A + n_X}{2} \frac{Z_A Z_X e^2}{r_{AX}}$$

Here M is Madelung constant, which depends only on lattice geometry \implies closely copacked lattices, i.e. lattices with high Madelung constant

See two classes here

There are also Pauling's rules

Covalent crystals

Satisfy coordination of atoms \implies locally coordinated lattices

Often disordered if there is a competition between local coordination and long range order (B, SiO_2 , As_2Se_3)

See here

Molecules

Valence shell electron pair repulsion (VSEPR) theory:

- 1. Distribute electrons between atoms according to octet rule
- 2. Pair them and minimize steric repulsion between pairs (including dihedrals as in CH_3-CH_3)

Molecular crystals

- Close packing under steric constraints
- Electrostatics
- Secondary bonding (Br₂), hydrogen bonding (H₂O)

See also here

Surfaces

- Binding energy of surface atoms grows with number of 'bonds'
- Covalent bonds prefer to be passivated
- Depends on environment

Phase diagram: reminder

Iron – electronic & lattice properties are still far from understood [Sci Rep 4, 5585 (2014)]

- $\gamma \to \delta$ transition is due to vibrational entropy
- $\gamma o \alpha$ transition is due to ee-correlations (magnetism)

Steel

Silicon

Polymers

Exploring structure-property relationships

(Functional materials)

- electronic conductors metals
- ionic conductors some ionic crystals
- high-T superconductors layered t-metal pnictides/chalcogenides
- electrical insulators wide-gap ionic-covalent solids
- field effect transistors tetrahedral semiconductors
- flexible/printable electronics conjugated polymers
- ferroelectrics and pyroelectrics polar crystals
- optical rotation chiral crystals
- phase change memory some average valence 5 compounds
- photosensitive materials pnictide/chalcogenide glass-formers
- lubricants layered solids
- nanoporous materials zeolites, clathrates
- anode/cathode materials for batteries this and other courses

Summary and Resources

See summary here

- Wikipedia
- Crystal structures
- Crystallography Open Database
- R W G Wyckoff, Crystal structures (1963, 1964)
- References: structure, bonding, specific materials
- Textbooks