Aim

• To Analyse the Airline Passenger Satisfaction dataset using Python and to obtain an insight into the factors lead to customer satisfaction for an Airline.

Import required python libraries

```
In [105...
          import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
```

Read the dataset using pandas

```
# Read the file
In [4]:
         df=pd.read_csv('D:/project/csv_files/test.csv')
```

Show top 10 records

```
In [5]:
         df.head(10)
```

Out[5]:		Unnamed: 0	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure/Arriv
	0	0	19556	Female	Loyal Customer	52	Business travel	Eco	160	5	
	1	1	90035	Female	Loyal Customer	36	Business travel	Business	2863	1	
	2	2	12360	Male	disloyal Customer	20	Business travel	Eco	192	2	
	3	3	77959	Male	Loyal Customer	44	Business travel	Business	3377	0	
	4	4	36875	Female	Loyal Customer	49	Business travel	Eco	1182	2	
	5	5	39177	Male	Loyal Customer	16	Business travel	Eco	311	3	
	6	6	79433	Female	Loyal Customer	77	Business travel	Business	3987	5	
	7	7	97286	Female	Loyal Customer	43	Business travel	Business	2556	2	
	8	8	27508	Male	Loyal Customer	47	Business travel	Eco	556	5	
	9	9	62482	Female	Loyal Customer	46	Business travel	Business	1744	2	
	10	rows × 25 o	columns	5							

Last 5 records

In [7]: | df.tail()

Out[7]:		Unnamed: 0	id	Gender	Customer Type	Age	Type of Travel	Class	Flight Distance	Inflight wifi service	Departure, time con
	25971	25971	78463	Male	disloyal Customer	34	Business travel	Business	526	3	
	25972	25972	71167	Male	Loyal	23	Business	Rusiness	646	4	

Customer travel Loyal Personal 25973 25973 37675 828 2 Female Eco Customer Travel Loyal **Business** 25974 25974 90086 Male **Business** 1127 Customer travel Loyal Personal 25975 42 2 25975 34799 Female Eco 264 Customer Travel

5 rows × 25 columns

•

Number of Rows and Columns of data

In [9]: df.shape

Out[9]: (25976, 25)

Check for the null data

df.isna().sum() In [11]: Out[11]: Unnamed: 0 0 id 0 Gender 0 Customer Type 0 0 Age Type of Travel 0 Class 0 Flight Distance 0 Inflight wifi service Departure/Arrival time convenient 0 Ease of Online booking 0 Gate location 0 Food and drink 0 Online boarding 0 Seat comfort 0 Inflight entertainment 0 On-board service 0 Leg room service 0 Baggage handling 0 Checkin service 0 Inflight service 0 Cleanliness 0 Departure Delay in Minutes 0 Arrival Delay in Minutes 83 satisfaction dtype: int64

Basic Information about columns

In [12]: | df.info()

<class 'pandas.core.frame.DataFrame'>

```
RangeIndex: 25976 entries, 0 to 25975
          Data columns (total 25 columns):
          #
               Column
                                                   Non-Null Count Dtype
          ---
          0
               Unnamed: 0
                                                   25976 non-null int64
          1
                                                   25976 non-null int64
               id
           2
               Gender
                                                   25976 non-null object
           3
               Customer Type
                                                   25976 non-null object
           4
               Age
                                                   25976 non-null int64
           5
              Type of Travel
                                                   25976 non-null object
           6
                                                   25976 non-null object
               Class
           7
               Flight Distance
                                                   25976 non-null int64
           8
               Inflight wifi service
                                                   25976 non-null int64
           9
               Departure/Arrival time convenient 25976 non-null int64
           10 Ease of Online booking
                                                  25976 non-null int64
           11 Gate location
                                                   25976 non-null int64
                                                   25976 non-null int64
           12 Food and drink
           13 Online boarding
                                                   25976 non-null int64
           14 Seat comfort
                                                   25976 non-null int64
          15 Inflight entertainment
                                                 25976 non-null int64
          16 On-board service
                                                  25976 non-null int64
          17 Leg room service
                                                 25976 non-null int64
          18 Baggage handling
                                                 25976 non-null int64
           19 Checkin service
                                                 25976 non-null int64
           20 Inflight service
                                                  25976 non-null int64
           21 Cleanliness
                                                   25976 non-null int64
          22 Departure Delay in Minutes 25976 non-null int64
23 Arrival Delay in Minutes 25893 non-null floate
                                                   25893 non-null float64
           24 satisfaction
                                                   25976 non-null object
          dtypes: float64(1), int64(19), object(5)
          memory usage: 5.0+ MB
          # Show the column names
In [13]:
          df.columns
Out[13]: Index(['Unnamed: 0', 'id', 'Gender', 'Customer Type', 'Age', 'Type of Travel', 'Class', 'Flight Distance', 'Inflight wifi service',
                 'Departure/Arrival time convenient', 'Ease of Online booking', 'Gate location', 'Food and drink', 'Online boarding', 'Seat comfort',
                 'Inflight entertainment', 'On-board service', 'Leg room service',
                 'Baggage handling', 'Checkin service', 'Inflight service',
                 'Cleanliness', 'Departure Delay in Minutes', 'Arrival Delay in Minutes',
                 'satisfaction'],
                dtype='object')
In [19]:
         # Drop the Customer Id Column
          df.drop('id',axis=1,inplace=True)
In [21]: # Query - What are the different classes of customers
          df['Class'].unique()
Out[21]: array(['Eco', 'Business', 'Eco Plus'], dtype=object)
          # Query - What are the different Types of Travel
In [22]:
          df['Type of Travel'].unique()
Out[22]: array(['Business travel', 'Personal Travel'], dtype=object)
          # Query - What are the different Types of customers
In [23]:
          df['Customer Type'].unique()
```

```
Out[23]: array(['Loyal Customer', 'disloyal Customer'], dtype=object)
```

What is the Average Customer Rating for Inflight Services?

```
In [24]: df['Inflight service'].mean()
```

Out[24]: 3.649253156760086

What is the Average Customer Rating for Ease of Online Booking?

```
In [103... df['Ease of Online booking'].mean()
```

Out[103... 2.756775485063135

Average Customer Flight Distance

```
In [28]: print('Average Flight Distance by Customers: ',df['Flight Distance'].mean())
```

Average Flight Distance by Customers: 1193.788458577148

Basic Statistical Information about the dataset

```
In [104... df.describe()
```

Out[104...

	Age	Flight Distance	Inflight wifi service	Departure/Arrival time convenient	Online booking	Gate location	
count	25976.000000	25976.000000	25976.000000	25976.000000	25976.000000	25976.000000	259
mean	39.620958	1193.788459	2.724746	3.046812	2.756775	2.977094	
std	15.135685	998.683999	1.335384	1.533371	1.412951	1.282133	
min	7.000000	31.000000	0.000000	0.000000	0.000000	1.000000	
25%	27.000000	414.000000	2.000000	2.000000	2.000000	2.000000	
50%	40.000000	849.000000	3.000000	3.000000	3.000000	3.000000	
75%	51.000000	1744.000000	4.000000	4.000000	4.000000	4.000000	
max	85.000000	4983.000000	5.000000	5.000000	5.000000	5.000000	
4			_				

Face of

```
In [33]: sns.countplot(x=df.satisfaction)
   plt.title('Customer Satisfaction')
   plt.show()
```



```
In [35]: print(df.Age.max(),df.Age.min())
```

85 7


```
In [43]: print(df['Flight Distance'].min(),df['Flight Distance'].max())
```

```
31 4983
```

```
f1_500 = df['Flight Distance'][(df['Flight Distance'] >=1) & (df['Flight Distance']
In [54]:
          f501_1000 = df['Flight Distance'][(df['Flight Distance'] >=501) & (df['Flight Distan
          f1001_1500 = df['Flight Distance'][(df['Flight Distance'] >=1001) & (df['Flight Dist
          f1501_2000 = df['Flight Distance'][(df['Flight Distance'] >=1501) & (df['Flight Dist
          f2001_2500 = df['Flight Distance'][(df['Flight Distance'] >=2001) & (df['Flight Dist
          f2501_3000 = df['Flight Distance'][(df['Flight Distance'] >=2501) & (df['Flight Dist
          f3001_3500 = df['Flight Distance'][(df['Flight Distance'] >=3001) & (df['Flight Dist
          f3501_4000 = df['Flight Distance'][(df['Flight Distance'] >=3501) & (df['Flight Dist
          f4001_4500 = df['Flight Distance'][(df['Flight Distance'] >=4001) & (df['Flight Dist
          f4501_5000 = df['Flight Distance'][(df['Flight Distance'] >=4501) & (df['Flight Dist
          fl_x= ['0-500','501-1000','1001-1500','1501-2000','2001-2500','2501-3000','3001-3500
          fl y= [len(f1_500.values),len(f501_1000.values),len(f1001_1500.values),len(f1501_200
          plt.figure(figsize=(20,9))
          sns.barplot(x=fl_x,y=fl_y,palette='viridis')
          plt.title('Customer Flight Distance', size=20)
          plt.xlabel('Flight Distance (Km)', size=15)
          plt.ylabel('Number of Customers', size=15)
          plt.show()
```



```
In [60]: sns.countplot(x=df['Ease of Online booking'],palette='rocket_r')
plt.title('Customer Rating on Ease of Online Booking')
plt.ylabel('Number of Customers')
plt.xlabel("Customer Rating")
plt.show()
```



```
In [65]: sns.countplot(x=df['Cleanliness'],palette='magma')
   plt.title('Customer Rating on Cleanliness',size=17)
   plt.ylabel('Number of Customers',size=10)
   plt.xlabel("Customer Rating",size=13)
   plt.show()
```



```
In [69]: sns.countplot(x=df['Gate location'])
   plt.title('Customer Rating on Gate location',size=17)
   plt.ylabel('Number of Customers',size=10)
   plt.xlabel("Customer Rating",size=13)
   plt.show()
```



```
In [71]: sns.countplot(x=df['Inflight entertainment'],palette='viridis')
  plt.title('Customer Rating on Inflight entertainment',size=17)
  plt.ylabel('Number of Customers',size=10)
  plt.xlabel("Customer Rating",size=13)
  plt.show()
```

Customer Rating on Inflight entertainment Tool - Good - G

```
In [72]: sns.countplot(x=df['Baggage handling'],palette='Paired')
   plt.title('Customer Rating on Baggage handling',size=17)
   plt.ylabel('Number of Customers',size=10)
   plt.xlabel("Customer Rating",size=13)
   plt.show()
```



```
In [73]: sns.countplot(x=df['Checkin service'],palette='crest')
    plt.title('Customer Rating on Checkin service',size=17)
    plt.ylabel('Number of Customers',size=10)
    plt.xlabel("Customer Rating",size=13)
    plt.show()
```

Customer Rating on Checkin service 7000 6000 4000 1000 1000 Customer Rating

```
In [74]: sns.countplot(x=df['Food and drink'],palette='mako')
    plt.title('Customer Rating on Food and drink',size=17)
    plt.ylabel('Number of Customers',size=10)
    plt.xlabel("Customer Rating",size=13)
    plt.show()
```


Different Classes of Customers

Conclusion

• This is the Analysis of Airline Passenger Satisfaction dataset using Python. I have used Seaborn Library to visualize the data. Different figures were plotted to obtain the customer satisfaction based on the different ratings given by customers. This analysis was done as a part of Mini Project for Data Analytics Course offered by EduBridge.

In []:	
In []:	