ECE: 523 HW #4 David Akre

Theory

Support Vector Machines and Boosting

	Oavid Akre	ECE: 523	t1w#4	3/28/18	1
	process begins by training target are a vailable. The data from the to	Clear type of sun that by us conce ingerplace train a new sum ving ment to solve for a m thou grablem is given to E = - B w T w=	ine or some dela the happenglane the happenglane we do main adapta	Wy Charget to people then one bata to form the first son Has Event.	ser the
	where we is the so we is the hyperplane are regolarization, instance X; The the above objective	problem becomes the	on the source date of £13 is the late the user and £1, ling a hyperplane the constraints, so	elel instance X, ce is a slack voriable e, wy, that mines also le dence the dem	28 for application of the contraction of the contra
	Given any min - 1 He - 12-norm soft many	WTH2 + CEP E; - BUT W	s,+, γ,(ω+x	;+5) 21-E; where +iE;	£i 20 £1,,n}
	- C user defined por - to oser defined por - Ws training deta	graneter }	constants		
	- y; (w = x; +b) is a				
	Step 1: Form a /g · L = 2/10/11/2 + Step 2: Take partial - The = WT - BWS	rangin function CI Zi - BWTWS - C Derivatives - \$\frac{2}{3} \times \frac{1}{3} \times \times - \frac{1}{3} \times \frac{1}{3} \times \times	$\sum_{i=1}^{n} \mu_i z_i - \sum_{i=1}^{n} \omega_i$ $O(1) \ \omega_7 = B \omega_s$	+ 5 2/2/X' +b) -1+2	5,7
-	-de - c = v	11 - 5 d)			
	= C - C p) - = C (1 - pi) -	- xi = 0=	(2) Li= C((-wi)	vew constaint
-	1 = - 2 d'y	=0) (3) £ aig;	=0	
	$(4) \ \ = \frac{2i}{(1-\mu i)}$		= 191 ×1)= dx; = \(\Sigma_{x} = 0 \)) = dx; = \(\Sigma_{x} = -c \Sigma_{x} \)	-(8)=du=-
5	tep 3: 505 (1),	(2), (3), (4), (5.			
	12 2 2 2 2 3 3 3 3 3	Sixixj + (2 2; - bu	1-Ws 2)= N12		1 + 2 di -
	11.1.7			Zalylx;	

Additionally based on 2+ derivation one can see incorrect class Heatings

can be no more than I or 50%.

Practice

Support Vector Machines

Python Matplotlib Output:

As one can see from the matplotlib output the SVM converges the source and target data are minimized more towards the mean of where the SVM would create its decision boundary. The training data minimization is more effective than the testing minimization with cvxpy.

Ensembles

Python Matplotlib output:

As one can see from the matplotlib output below the testing error does converge close to 0 for Bagging, and it moves more slowly for AdaBoosting.

Console output Below (Mapping between X axis values and the csv file):

```
Terminal

[Fit Nar 30 05:36 PM | dakre@dakre-VirtualBox -/machine_learning/hw4 (master)]

python ensembles.py

X-Auts Identifier

X = 1 coordinates with mealing_test.csv

X = 2 coordinates with broast-cancer-wisc-prog_test.csv

X = 3 coordinates with pinner-bands_test.csv

X = 3 coordinates with the pinner-bands_test.csv

X = 5 coordinates with discharges articles recks_test.csv

X = 5 coordinates with dult_test.csv

X = 7 coordinates with endoratiogran_test.csv

X = 8 coordinates with choordingran_test.csv

X = 9 coordinates with choordingran_test.csv

X = 9 coordinates with dult_test.csv

X = 10 coordinates with dult_test.csv

X = 12 coordinates with adult_test.csv

X = 12 coordinates with breast-cancer-test.csv

X = 13 coordinates with breast-cancer-test.csv

X = 14 coordinates with breast-cancer-wisc_test.csv

X = 15 coordinates with breast-cancer-wisc_test.csv

X = 16 coordinates with breast-cancer-wisc_test.csv

X
```