- 1. A végtelen sorokra vonatkozó Cauchy-féle konvergenciakritérium.
- 6. Tétel (Cauchy-féle konvergencia kritérium sorokra). $A \sum a_n$ sor akkor és csak akkor konvergens, ha

$$\forall \varepsilon > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall m > n > n_0 \colon |a_{n+1} + a_{n+2} + \dots + a_m| < \varepsilon.$$

Bizonyítás. Tudjuk, hogy

$$\sum a_n$$
 konvergens \iff (s_n) konvergens \iff (s_n) Cauchy-sorozat,

azaz

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n, m > n_0 \colon |s_m - s_n| < \varepsilon$

teljesül. Állításunk abból következik, hogy ha m > n, akkor

$$s_m - s_n = a_{n+1} + a_{n+2} + \dots + a_m$$
.

- 2. Végtelen sorokra vonatkozó összehasonlító kritériumok.
- 11. Tétel (Összehasonlító kritériumok). Legyenek $\sum a_n$ és $\sum b_n$ nemnegatív tagú sorok. Tegyük fel, hogy

$$\exists N \in \mathbb{N}, \ \forall n > N : 0 < a_n < b_n.$$

Ekkor

- 1. Majoráns kritérium: ha a $\sum b_n$ sor konvergens, akkor $\sum a_n$ sor is konvergens.
- 2. Minoráns kritérium: ha a $\sum a_n$ sor divergens, akkor a $\sum b_n$ sor is divergens.

Bizonyítás. Az általánosság megszorítása nélkül feltehetjük, hogy $a_n \leq b_n$ minden $n \in \mathbb{N}$ esetén, hiszen véges sok tag megváltozásával egy sor konvergenciája nem változik. Jelölje (s_n) , illetve (t_n) a $\sum a_n$, illetve a $\sum b_n$ sorok részletösszegeiből álló sorozatokat. A feltevésünk miatt $s_n \leq t_n$ $(n \in \mathbb{N})$. Ekkor a nemnegatív tagú sorok konvergenciáról szóló tétel szerint

- 1. ha a $\sum b_n$ sor konvergens, akkor (t_n) korlátos, így (s_n) is az. Ezért a $\sum a_n$ sor is konvergens.
- 2. ha $\sum a_n$ sor divergens, akkor (s_n) nem korlátos, így (t_n) sem az. Ezért a $\sum b_n$ sor is divergens.

1. Tétel (A Cauchy-féle gyökkritérium). Tekintsük a $\sum a_n$ végtelen sort, és tegyük fel, hogy létezik az

$$A := \lim_{n \to +\infty} \sqrt[n]{|a_n|} \in \overline{\mathbb{R}}$$

határérték. Ekkor

- 1. $0 \le A < 1$ esetén a $\sum a_n$ sor abszolút konvergens (tehát konvergens is),
- 2. A > 1 esetén $a \sum a_n$ sor divergens,
- 3. A = 1 esetén a $\sum a_n$ sor lehet konvergens is, divergens is.

Bizonyítás. Mivel $\sqrt[n]{|a_n|} \ge 0 \ (n \in \mathbb{N})$, ezért $A \ge 0$.

1. Tegyük fel, hogy $0 \le A < 1$.

$$\left\{ \sqrt[n]{|a_n|} \mid n > n_0 \right\} \subset K(A)$$

$$0 \quad A \quad q \quad 1 \qquad \mathbb{R}$$

Vegyünk egy A és 1 közötti q számot!

$$\lim \left(\sqrt[n]{|a_n|}\right) < q \quad \Longrightarrow \quad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \sqrt[n]{|a_n|} < q, \ \text{azaz} \ |a_n| < q^n.$$

Mivel 0 < q < 1, ezért a $\sum q^n$ mértani sor konvergens. Így a majoráns kritérium szerint a $\sum |a_n|$ sor is konvergens, és ez azt jelenti, hogy a $\sum a_n$ végtelen sor abszolút konvergens.

2. Tegyük fel, hogy A > 1.

$$\left\{ \sqrt[n]{|a_n|} \mid n > n_0 \right\} \subset K(A)$$

$$1 \quad q \quad A \qquad \mathbb{R}$$

Vegyünk most egy 1 és A közötti q számot!

$$\lim \left(\sqrt[n]{|a_n|}\right) > q \quad \Longrightarrow \quad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \sqrt[n]{|a_n|} > q, \ \text{azaz} \ |a_n| > q^n.$$

Tehát, véges sok n indextől eltekintve $|a_n| > q^n > 1$.

Ebből következik, hogy $\lim(a_n) \neq 0$, és így a $\sum a_n$ sor divergens.

- 3. Tegyük fel, hogy $\boxed{A=1}$. Ekkor
 - a $\sum \frac{1}{n}$ divergens sor esetében $|a_n| = \frac{1}{n}$, azaz $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n}} = 1$;
 - a $\sum \frac{1}{n^2}$ konvergens sor esetében $|a_n| = \frac{1}{n^2}$, azaz $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \lim_{n \to +\infty} \frac{1}{\sqrt[n]{n^2}} = 1$.

2. Tétel (A d'Alembert-féle hányadoskritérium). Tegyük fel, hogy a $\sum a_n$ végtelen sor tagjai közül egyik sem 0 és létezik az

$$A := \lim_{n \to +\infty} \left| \frac{a_{n+1}}{a_n} \right| \in \overline{\mathbb{R}}$$

határérték. Ekkor

- 0 ≤ A < 1 esetén a ∑a_n sor abszolút konvergens (tehát konvergens is),
 A > 1 esetén a ∑a_n sor divergens,
- 3. A = 1 esetén $a \sum a_n$ sor lehet konvergens is, divergens is.

Bizonyítás. Világos, hogy $A \ge 0$.

1. Legyen $0 \le A < 1$ és vegyünk egy olyan q számot, amire A < q < 1 teljesül. Ekkor

$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} < q \quad \Longrightarrow \quad \exists n_0 \in \mathbb{N}, \ \forall n \ge n_0 \colon \frac{|a_{n+1}|}{|a_n|} < q, \quad \text{azaz} \quad |a_{n+1}| < q|a_n|.$$

Ez azt jelenti, hogy

$$|a_{n_0+1}| < q|a_{n_0}|, \quad |a_{n_0+2}| < q|a_{n_0+1}|, \quad \dots, |a_{n-1}| < q|a_{n-2}|, \quad |a_n| < q|a_{n-1}|$$

minden $n \ge n_0$ esetén. Így

$$|a_n| < q|a_{n-1}| < q^2|a_{n-2}| < q^3|a_{n-3}| < \dots < q^{n-n_0}|a_{n_0}| = q^{-n_0}|a_{n_0}|q^n = aq^n,$$

ahol $a:=q^{-n_0}|a_{n_0}|$ egy n-től független konstans. A $\sum aq^n$ mértani sor konvergens, mert 0 < q < 1. Ezért a majoráns kritérium szerint a $\sum |a_n|$ sor is konvergens, vagyis a $\sum a_n$ végtelen sor abszolút konvergens.

2. Legyen A > 1 és vegyünk most egy olyan q számot, amire 1 < q < A teljesül. Ekkor

$$\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} > q \quad \Longrightarrow \quad \exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon \frac{|a_{n+1}|}{|a_n|} > q, \ \text{ azaz } \ |a_{n+1}| > q|a_n| > |a_n|.$$

Ebből következik, hogy $\lim(a_n) \neq 0$, így a $\sum a_n$ sor divergens.

- 3. Tegyük fel, hogy A = 1. Ekkor
 - $\sum \frac{1}{n}$ divergens sor esetében $|a_n| = \frac{1}{n}$, azaz $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{n}{n+1} = 1$,
 - $\sum \frac{1}{n^2}$ konvergens sor esetében $|a_n| = \frac{1}{n^2}$, azaz $\lim_{n \to +\infty} \frac{|a_{n+1}|}{|a_n|} = \lim_{n \to +\infty} \frac{n^2}{(n+1)^2} = 1$.

3. Tétel (Leibniz-kritérium). Konvergencia:

 $A \sum_{n=1}^{\infty} (-1)^{n+1} a_n$ Leibniz-típusú sor akkor és csak akkor konvergens, ha $\lim(a_n) = 0$.

Bizonyítás.

 \implies A sorok konvergenciájának szükséges feltétele értelmében, ha a $\sum (-1)^{n+1}a_n$ sor konvergens, akkor $\lim ((-1)^{n+1}a_n) = 0$, ami csak akkor lehetséges, ha $\lim (a_n) = 0$.

E Tegyük fel, hogy $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ egy Leibniz-típusú sor, és $\lim(a_n) = 0$. Igazoljuk, hogy a sor konvergens. Legyen

$$s_n := \sum_{k=1}^n (-1)^{k+1} a_k = a_1 - a_2 + a_3 - a_4 + a_5 - \dots + (-1)^{n+1} a_n \qquad (n \in \mathbb{N}^+).$$

Szemléltessük az (s_n) részletösszeg-sorozat első néhány tagját!

Most megmutatjuk, hogy az ábra alapján sejthető tendencia valóban igaz, azaz, hogy az (s_{2n}) sorozat monoton növekvő, és az (s_{2n+1}) sorozat monoton csökkenő.

• A páros indexű részsorozatnál a következő csoportosításból látható, hogy

$$s_{2n} = \underbrace{(a_1 - a_2) + (a_3 - a_4) + \dots + (a_{2n-3} - a_{2n-2})}_{\geq 0} + \underbrace{(a_{2n-1} - a_{2n})}_{> 0}$$

minden $n \in \mathbb{N}^+$ esetén, tehát (s_{2n}) valóban monoton növekvő.

• Hasonlóan, a páratlan indexű részsorozatnál

$$s_{2n+1} = \overbrace{a_1 + (\underbrace{-a_2 + a_3}) + (\underbrace{-a_4 + a_5}) + \dots + (\underbrace{-a_{2n-2} + a_{2n-1}})}_{\leq 0} + (\underbrace{-a_{2n} + a_{2n+1}})$$

minden $n \in \mathbb{N}^+$ esetén, tehát (s_{2n+1}) monoton csökkenő sorozat.

Másrészt, az $s_0 := 0$ értelmezés mellett

$$s_{2n+1} - s_{2n} = a_{2n+1} \ge 0 \qquad (n \in \mathbb{N})$$

teljesül, amiből következik, hogy $s_{2n} \leq s_{2n+1}$ minden $n \in \mathbb{N}$ esetén. Ekkor

$$(1) s_2 \le s_4 \le s_6 \le \dots \le s_{2n} \le s_{2n+1} \le \dots \le s_5 \le s_3 \le s_1.$$

Tehát (s_{2n}) és (s_{2n+1}) korlátos sorozatok. Mivel mindkettő monoton és korlátos, ezért konvergens is. Jelölje $A = \lim(s_{2n+1})$ és $B = \lim(s_{2n})$ a határértéküket. Ekkor

$$A - B = \lim_{n \to +\infty} s_{2n+1} - \lim_{n \to +\infty} s_{2n} = \lim_{n \to +\infty} (s_{2n+1} - s_{2n}) = \lim_{n \to +\infty} a_{2n+1} = \lim_{n \to +\infty} a_n = 0,$$

hiszen (a_{2n+1}) részsorozata az (a_n) sorozatnak. Ezért A = B, tehát az (s_{2n}) és az (s_{2n+1}) részsorozatok határértéke megegyezik. Ebből következik, hogy az (s_n) sorozat konvergens. Ez pedig azt jelenti, hogy a Leibniz-típusú sor valóban konvergens.

- 6. Minden [0, 1]-beli szám felírható tizedes tört alakban.
- **5. Tétel.** Minden $\alpha \in [0,1]$ számhoz létezik olyan $(a_n) : \mathbb{N}^+ \to \{0,1,2,\ldots,9\}$ sorozat, amire az teljesül, hogy

$$\alpha = \sum_{n=1}^{+\infty} \frac{a_n}{10^n}.$$

Bizonyítás. Rögzítsünk egy $\alpha \in [0, 1]$ számot!

Az első lépésben osszuk fel a [0, 1] intervallumot 10 egyenlő hosszúságú részre. Ekkor

$$\exists a_1 \in \{0, 1, 2, \dots, 9\} \colon \alpha \in \left[\frac{a_1}{10}, \frac{a_1}{10} + \frac{1}{10}\right] =: I_1 \quad \text{azaz} \quad \frac{a_1}{10} \le \alpha \le \frac{a_1}{10} + \frac{1}{10}.$$

A második lépésben osszuk fel az I_1 intervallumot 10 egyenlő hosszúságú részre. Ekkor

$$\exists a_2 \in \{0, 1, 2, \dots, 9\} : \alpha \in \left[\frac{a_1}{10} + \frac{a_2}{10^2}, \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{1}{10^2}\right] =: I_2, \quad \text{azaz}$$

$$\frac{a_1}{10} + \frac{a_2}{10^2} \le \alpha \le \frac{a_1}{10} + \frac{a_2}{10^2} + \frac{1}{10^2}.$$

Ha az eljárást folytatjuk, akkor az n-edik lépésben találunk olyan $a_n \in \{0, 1, 2, \dots, 9\}$ számot, hogy

$$s_n := \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} \le \alpha \le \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n} = s_n + \frac{1}{10^n},$$

ahol s_n a sor n-edik részletösszege. Ekkor

$$|\alpha - s_n| = \left|\alpha - \left(\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n}\right)\right| \le \frac{1}{10^n} \xrightarrow[n \to +\infty]{} 0,$$

és így

$$\alpha = \lim_{n \to +\infty} s_n = \sum_{n=1}^{+\infty} \frac{a_n}{10^n}.$$

- 7. Konvergens sorok zárójelezése.
- 8. Tétel. Egy konvergens sor minden zárójelezése is konvergens sor, és összege az eredeti sor összegével egyenlő.

Bizonyítás. Legyen $\sum_{n=1}^{\infty} \alpha_n$ a $\sum_{n=1}^{\infty} a_n$ sor (m_n) által meghatározott zárójelezése, és jelölje (σ_n) és (s_n) rendre a két sor részletösszegeiből álló sorozatokat. Ha $\sum_{n=1}^{\infty} a_n$ konvergens, akkor (s_n) konvergens sorozat, de ekkor minden részsorozata is konvergens, és határértéke megegyezik az (s_n) sorozat határértékével.

Mivel $\forall n \in \mathbb{N}^+$ indexre $\sigma_n = s_{m_n}$ teljesül, így (σ_n) részsorozata az (s_n) sorozatnak. Tehát a (σ_n) sorozat konvergens és $\lim(\sigma_n) = \lim(s_n)$. Ez azt jelenti, hogy a $\sum \alpha_n$ sor konvergens, és

$$\sum_{n=1}^{+\infty} \alpha_n = \lim_{n \to +\infty} \sigma_n = \lim_{n \to +\infty} s_n = \sum_{n=1}^{+\infty} a_n.$$

10. Tétel. Ha a $\sum a_n$ végtelen sor abszolút konvergens, akkor tetszőleges $(p_n): \mathbb{N} \to \mathbb{N}$ permutációval képzett $\sum a_{p_n}$ átrendezése is abszolút konvergens, és

$$\sum_{n=0}^{+\infty} a_{p_n} = \sum_{n=0}^{+\infty} a_n.$$

Tehát egy abszolút konvergens sor bármely átrendezése is abszolút konvergens sor, és összege ugyanaz, mint az eredeti soré.

Bizonyítás. Legyen

$$s_n := \sum_{k=0}^n a_k$$
 és $\sigma_n := \sum_{k=0}^n a_{p_k}$ $(n \in \mathbb{N}).$

1. lépés. Igazoljuk, hogy a $\sum a_{p_n}$ sor abszolút konvergens. Valóban, mivel $\sum a_n$ abszolút konvergens, ezért minden $n \in \mathbb{N}$ -re

$$\sum_{k=0}^{n} |a_{p_k}| = |a_{p_0}| + |a_{p_1}| + \dots + |a_{p_n}| \le \sum_{k=0}^{+\infty} |a_k| = K < +\infty,$$

azaz a $\sum_{k=0}^{n} |a_{p_k}|$ $(n \in \mathbb{N})$ sorozat felülről korlátos, de nyilván monoton növekvő is, következésképpen a $\sum |a_{p_n}|$ sor konvergens. Így a $\sum a_{p_n}$ sor valóban abszolút konvergens.

2. lépés. Azt igazoljuk, hogy

$$\sum_{n=0}^{+\infty} a_{p_n} = \sum_{n=0}^{+\infty} a_n.$$

Legyen

$$A := \sum_{n=0}^{+\infty} a_n = \lim_{n \to +\infty} s_n$$
 és $B := \sum_{n=0}^{+\infty} a_{p_n} = \lim_{n \to +\infty} \sigma_n$.

Tudjuk, hogy a $\sum |a_n|$ sor konvergens, így a Cauchy-kritérium szerint

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall m > n \ge n_0 \colon |a_{n+1}| + |a_{n+2}| + \dots + |a_m| < \varepsilon.$

Ezért $n = n_0$ mellett, ha $m > n_0$, akkor $\sum_{k=n_0+1}^{m} |a_k| < \varepsilon$.

Adott $\varepsilon > 0$ -ra tekintsük az $a_0, a_1, a_2, \ldots, a_{n_0}$ tagokat, és legyen N_0 olyan index, amire az $a_{p_0} + a_{p_1} + \cdots + a_{p_{N_0}}$ összeg már tartalmazza ezeket a tagokat. Ilyen N_0 nyilván létezik, és $N_0 \ge n_0$. Legyen $n > N_0$. Ekkor

$$\sigma_n - s_n = \underbrace{\left(a_{p_0} + a_{p_1} + \dots + a_{p_{N_0}}\right)}_{} + a_{p_{N_0+1}} + \dots + a_{p_n} - \underbrace{\left(a_0 + a_1 + \dots + a_{n_0}\right)}_{} + a_{n_0+1} + \dots + a_n$$

nem tartalmazza az $a_0, a_1, a_2, \ldots, a_{n_0}$ tagokat. Így

$$|\sigma_n - s_n| \le \sum_{k=n_0+1}^m |a_k| < \varepsilon,$$

ahol $m:=\max\{p_0,p_1,\ldots,p_n\}$, hiszen $m\geq n>N_0\geq n_0$. Ez azt jelenti, hogy (σ_n-s_n) nullsorozat. Ezért

$$\sigma_n = (\sigma_n - s_n) + s_n \xrightarrow[n \to +\infty]{} 0 + A = A,$$

azaz

$$B = \sum_{n=0}^{\infty} a_{p_n} = \lim_{n \to +\infty} \sigma_n = \lim_{n \to +\infty} s_n = \sum_{n=0}^{\infty} a_n = A.$$

1. Tétel. Tegyük fel, hogy a $\sum_{n=0}^{\infty} a_n$ és a $\sum_{n=0}^{\infty} b_n$ végtelen sorok konvergensek. Ekkor a $\sum_{n=0}^{\infty} t_n$ téglányszorzatuk is konvergens és

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n,$$

azaz konvergens sorok téglányszorzata is konvergens, és a téglányszorzat összege a két sor összegének szorzatával egyezik meg.

Bizonyítás. A bizonyítás alapja a sorozatoknál tanult műveletek és határátmenet felcserélhetőségére vonatkozó tétel. Jelölje A_n , B_n és T_n rendre a $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ és $\sum_{n=0}^{\infty} t_n$ sorok n-edik részletösszegeit. Ekkor

$$T_n = \sum_{k=0}^n t_k = \sum_{k=0}^n \left(\sum_{\max\{i,j\}=k} a_i b_j \right) = \sum_{\max\{i,j\} \le n} a_i b_j = \left(\sum_{i=0}^n a_i \right) \cdot \left(\sum_{j=0}^n b_j \right) =$$
$$= A_n B_n \to \left(\sum_{n=0}^{+\infty} a_n \right) \cdot \left(\sum_{n=0}^{+\infty} b_n \right), \quad \text{ha } n \to +\infty.$$

Ez azt jelenti, hogy a (T_n) sorozat konvergens, és így a $\sum t_n$ végtelen sor is konvergens, és

$$\sum_{n=0}^{+\infty} t_n = \lim(T_n) = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right).$$

- 2. Tétel (Abszolút konvergens sorok szorzatai). Tegyük fel, hogy a $\sum_{n=0}^{\infty} a_n$ és $\sum_{n=0}^{\infty} b_n$ végtelen sorok mindegyike abszolút konvergens. Ekkor
 - 1. $a \sum_{n=0}^{\infty} t_n$ téglányszorzat is abszolút konvergens,
 - 2. $a \sum_{n=0}^{\infty} c_n$ Cauchy-szorzat is abszolút konvergens,
 - 3. az összes $a_i b_j$ $(i, j \in \mathbb{N})$ szorzatból tetszés szerinti sorrendben és csoportosításban képzett $\sum_{n=0}^{\infty} d_n$ végtelen sor is abszolút konvergens, és

(*)
$$\sum_{n=0}^{+\infty} d_n = \sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \cdot \left(\sum_{n=0}^{+\infty} b_n\right)$$

Bizonyítás. Elég a 3. állítást igazolni. Mivel $\sum a_n$ és $\sum b_n$ abszolút konvergensek, ezért

$$A_N := \sum_{n=0}^N |a_n| \xrightarrow[n \to +\infty]{} A \in \mathbb{R}, \qquad B_N := \sum_{n=0}^N |b_n| \xrightarrow[n \to +\infty]{} B \in \mathbb{R}.$$

Tekintsünk egy tetszőleges $\sum d_n$ sort, ahol $d_n = \sum a_i b_j$. Legyen $N \in \mathbb{N}$ tetszőleges. Jelölje I, illetve J a maximális i, illetve j indexet a $d_0, \ddot{d}_1, \ldots, d_N$ összegekben. Ekkor

$$\sum_{n=0}^{N} |d_n| \le \sum_{\substack{0 \le i \le I \\ 0 \le j \le J}} |a_i b_j| = \left(\sum_{n=0}^{I} |a_n|\right) \cdot \left(\sum_{n=0}^{J} |b_n|\right) \le A \cdot B,$$

és ez azt jelenti, hogy a $\sum |d_n|$ nemnegatív tagú sor konvergens, mert részletösszegei korlátosak. Tehát $\sum d_n$ abszolút konvergens.

A fentiek érvényesek $d_n = t_n$ esetén, így a $\sum t_n$ téglányszorzat is abszolút konvergens, tehát konvergens is. Ekkor az előző tétel szerint (*) teljesül a $\sum t_n$ sorra, azaz

$$\sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n.$$

Legyen $\sum t_n^*$ az a sor, amelyet a $\sum t_n$ téglányszorzatban szereplő zárójelek elhagyásával kapunk. Mivel $\sum t_n^*$ is egy lehetséges $\sum d_n$ típusú sor, ezért $\sum t_n^*$ is abszolút konvergens, és így bármely zárójelezésével az összege nem változik, azaz (*) teljesül a $\sum t_n^*$ sorra:

$$\sum_{n=0}^{+\infty} t_n^* = \sum_{n=0}^{+\infty} t_n = \sum_{n=0}^{+\infty} a_n \cdot \sum_{n=0}^{+\infty} b_n.$$

Azonban bármely $\sum d_n$ típusú sor megkapható a $\sum t_n^*$ sorból megfelelő átrendezéssel és csoportosítással. Ekkor a sor összege nem változik, tehát (*) teljesül tetszőleges $\sum d_n$ sorra.

- 3. Tétel (Hatványsor konvergenciasugara). Tetszőleges $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsor konvergenciahalmazára a következő három eset egyike áll fenn:
 - 1. $\exists \ 0 < R < +\infty$, hogy a hatványsor $\forall x \in \mathbb{R} \colon |x-a| < R$ pontban abszolút konvergens és $\forall x \in \mathbb{R} \colon |x-a| > R$ pontban divergens.
 - 2. A hatványsor csak az x = a pontban konvergens. Ekkor legyen R := 0.
 - 3. A hatványsor abszolút konvergens $\forall x \in \mathbb{R}$ esetén. Ekkor legyen $R := +\infty$.

R-et a hatványsor konvergenciasugarának nevezzük.

Bizonyítás. Az állítást elég a=0 esetén igazolni.

Segédtétel. Tegyük fel, hogy a $\sum \alpha_n x^n$ hatványsor konvergens egy $x_0 \neq 0$ pontban. Ekkor $\forall x \in \mathbb{R} : |x| < |x_0|$ esetén a hatványsor abszolút konvergens az x pontban.

<u>A segédtétel bizonyítása.</u> Mivel a $\sum \alpha_n x_0^n$ végtelen sor konvergens, ezért $\lim(\alpha_n x_0^n) = 0$, így az $(\alpha_n x_0^n)$ sorozat korlátos, azaz

$$\exists M > 0 \colon |\alpha_n x_0^n| \le M < +\infty \qquad (n \in \mathbb{N}).$$

Legyen $x \in \mathbb{R}$ olyan, amire $|x| < |x_0|$ teljesül. Ekkor

$$|\alpha_n x^n| = |\alpha_n x_0^n| \cdot \left| \frac{x}{x_0} \right|^n \le M \cdot \left| \frac{x}{x_0} \right|^n =: Mq^n \qquad (n \in \mathbb{N}).$$

A $\sum |\alpha_n x^n|$ végtelen sor tehát majorálható a $\sum Mq^n$ mértani sorral, ami konvergens, mert $|q| = \left|\frac{x}{x_0}\right| < 1$. Így a majoráns kritérium szerint a $\sum |\alpha_n x^n|$ sor is konvergens, tehát a $\sum \alpha_n x^n$ végtelen sor abszolút konvergens.

<u>A tétel bizonyítása.</u> Tekintsük a $\sum \alpha_n x^n$ hatványsort. Ez x=0-ban nyilván konvergens, ezért $\mathrm{KH}(\sum \alpha_n x^n) \neq \emptyset$, és így

(1)
$$\exists \sup KH \left(\sum_{n=0} \alpha_n x^n \right) =: R \in \overline{\mathbb{R}} \quad \text{és} \quad R \ge 0.$$

A következő három eset lehetséges.

- 1. $0 < R < +\infty$. Legyen |x| < R tetszőleges. Ekkor a szuprémum definíciója szerint $\exists x_0 > 0 \colon |x| < x_0 < R$ és x_0 a konvergenciahalmaz eleme, azaz $\sum \alpha_n x_0^n$ konvergens. Ekkor a segédtétel szerint $\sum \alpha_n x^n$ abszolút konvergens. Ha |x| > R tetszőleges, akkor az R szám definíciója és a segédtétel szerint a $\sum \alpha_n x^n$ sor divergens.
- 2. $\underline{R} = \underline{0}$. A $\sum \alpha_n x^n$ hatványsor az x = 0 pontban nyilván konvergens. Tegyük fel, hogy $x \neq 0$ olyan pont ahol $\sum \alpha_n x^n$ konvergens. Ekkor a segédtétel szerint a hatványsor konvergens az $\frac{|x|}{2} > 0$ pontban, ami nem lehetséges, mert R = 0. A hatványsor tehát csak az x = 0 pontban konvergens.
- 3. $\underline{R=+\infty}$. Legyen $x\in\mathbb{R}$ tetszőleges. Ekkor a szuprémum definíciója értelmében $\exists x_0>0\colon |x|< x_0$ és x_0 a konvergenciahalmaz eleme, azaz $\sum \alpha_n x_0^n$ konvergens. Ekkor a segédtétel szerint $\sum \alpha_n x^n$ abszolút konvergens.

4. Tétel (A Cauchy–Hadamard-tétel.). Tekintsük a $\sum_{n=0}^{\infty} \alpha_n (x-a)^n$ hatványsort, és tegyük fel, hogy

$$\exists \lim \left(\sqrt[n]{|\alpha_n|}\right) =: A \in \overline{\mathbb{R}}.$$

Ekkor a hatványsor konvergenciasugara

$$R = \frac{1}{A}$$
 $\left(\frac{1}{+\infty} := 0, \frac{1}{0} := +\infty\right).$

Bizonyítás. Nyilvánvaló, hogy $A \ge 0$. Rögzítsük tetszőlegesen az $x \in \mathbb{R}$ számot, és alkalmazzuk a Cauchy-féle gyökkritériumot a $\sum \alpha_n (x-a)^n$ végtelen számsorra:

$$\lim_{n \to +\infty} \sqrt[n]{\left|\alpha_n(x-a)^n\right|} = \left(\lim_{n \to +\infty} \sqrt[n]{|\alpha_n|}\right) \cdot |x-a| = A|x-a|, \quad \text{és fgy}$$

 $A|x-a| < 1 \implies \text{a sor konvergens},$

$$A|x-a| > 1 \implies$$
 a sor divergens.

1. Ha $0 < A < +\infty$, akkor A-val lehet osztani, és ekkor

$$x \in \left(a - \frac{1}{A}, a + \frac{1}{A}\right) \implies \text{a sor konv.}, \qquad x \notin \left[a - \frac{1}{A}, a + \frac{1}{A}\right] \implies \text{a sor div.},$$
amiből következik, hogy $R = 1/A$.

- 2. Ha $\underline{A=+\infty}$, akkor $\forall x \in \mathbb{R}, \ x \neq a \colon A|x-a|=(+\infty)\cdot |x-a|=+\infty>1$. Ezért a hatványsor az x=a pont kivételével divergens, azaz R=0.
- 3. Ha $\underline{A=0}$, akkor $\forall x \in \mathbb{R} : A|x-a|=0 \cdot |x-a|=0 < 1$. Ezért a hatványsor minden $x \in \mathbb{R}$ pontban konvergens, azaz $R=+\infty$.
 - 13. Függvények határértékének egyértelműsége.
- 3. Tétel (A határérték egyértelműsége). Ha az $f \in \mathbb{R} \to \mathbb{R}$ függvénynek az $a \in \mathcal{D}'_f$ pontban van határértéke, akkor a definícióban szereplő $A \in \overline{\mathbb{R}}$ egyértelműen létezik.

Bizonyítás. Tegyük fel, hogy két különböző $A_1,A_2\in\overline{\mathbb{R}}$ elem eleget tesz a definíció feltételeinek. Mivel két különböző $\overline{\mathbb{R}}$ -beli elem diszjunkt környezetekkel szétválasztható, ezért

$$\exists \varepsilon > 0 \colon K_{\varepsilon}(A_1) \cap K_{\varepsilon}(A_2) = \emptyset.$$

A határérték definíciója szerint egy ilyen ε -hoz

$$\exists \delta_1 > 0, \ \forall x \in \dot{K}_{\delta_1}(a) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A_1),$$

$$\exists \delta_2 > 0, \ \forall x \in \dot{K}_{\delta_2}(a) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A_2).$$

Legyen $\delta := \min\{\delta_1, \delta_2\}$. Ekkor

$$\forall x \in \dot{K}_{\delta}(a) \cap \mathcal{D}_f \colon f(x) \in K_{\varepsilon}(A_1) \cap K_{\varepsilon}(A_2) = \emptyset, \quad \text{de } \dot{K}_{\delta}(a) \cap \mathcal{D}_f \neq \emptyset, \text{ mert } a \in \mathcal{D}_f'.$$

Ellentmondásra jutottunk, és ezzel a határérték egyértelműségét igazoltuk.

4. Tétel (Függvényhatárértékre vonatkozó átviteli elv). Legyen $f \in \mathbb{R} \to \mathbb{R}$, $a \in \mathcal{D}_f'$ és $A \in \overline{\mathbb{R}}$. Ekkor

$$\lim_{a} f = A \quad \iff \quad \forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \ \lim_{n \to +\infty} x_n = a \ \text{eset\'en} \ \lim_{n \to +\infty} f(x_n) = A.$$

Bizonyítás. $\implies \lim_{a} f = A \implies \forall \varepsilon > 0$ -hoz $\exists \delta > 0, \ \forall x \in \dot{K}_{\delta}(a) \cap \mathcal{D}_{f} \colon f(x) \in K_{\varepsilon}(A)$.

Legyen (x_n) egy, a tételben szereplő sorozat, és $\varepsilon > 0$ egy tetszőleges rögzített érték.

$$\lim(x_n) = a \implies \delta$$
-hoz $\exists n_0 \in \mathbb{N}, \ \forall n > n_0 \colon x_n \in K_{\delta}(a)$.

Mivel $x_n \in \mathcal{D}_f \setminus \{a\}$, így $x_n \in \dot{K}_{\delta}(a) \cap \mathcal{D}_f$, amiből $f(x_n) \in K_{\varepsilon}(A)$ teljesül minden $n > n_0$ indexre. Ez azt jelenti, hogy az $(f(x_n))$ sorozatnak van határértéke, és $\lim_{n \to +\infty} f(x_n) = A$.

⇐ Tegyük fel, hogy

$$\forall (x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}, \lim_{n \to +\infty} x_n = a \text{ eset\'en } \lim_{n \to +\infty} f(x_n) = A.$$

Megmutatjuk, hogy $\lim_{a} f = A$.

Indirekt módon tegyük fel, hogy a $\lim_a f = A$ egyenlőség nem igaz. Ez pontosan azt jelenti, hogy

$$\exists \varepsilon > 0, \ \forall \delta > 0$$
-hoz $\exists x_{\delta} \in \dot{K}_{\delta}(a) \cap \mathcal{D}_{f} \colon f(x_{\delta}) \notin K_{\varepsilon}(A)$.

A $\delta = \frac{1}{n}$ $(n \in \mathbb{N}^+)$ választással ez azt jelenti, hogy

$$\exists \varepsilon > 0, \ \forall n \in \mathbb{N}^+\text{-hoz} \ \exists x_n \in \dot{K}_{1/n}(a) \cap \mathcal{D}_f \colon f(x_n) \notin K_{\varepsilon}(A).$$

Legyen $x_0 \in \mathcal{D}_f \setminus \{a\}$ tetszőleges. Az $(x_n) : \mathbb{N} \to \mathcal{D}_f \setminus \{a\}$ sorozat nyilván a-hoz tart (hiszen $x_n \in K_{1/n}(a)$), de a függvényértékek $(f(x_n))$ sorozata nem tart A-hoz (hiszen $f(x_n) \notin K_{\varepsilon}(A)$), ami ellentmond a feltételünknek.

- 16. Az összetett függvény folytonossága.
- 9. Tétel (Az összetett függvény folytonossága). Tegyük fel, hogy $f, g \in \mathbb{R} \to \mathbb{R}$, $g \in C\{a\}$ és $f \in C\{g(a)\}$. Ekkor $f \circ g \in C\{a\}$, azaz az összetett függvény "örökli" a belső- és a külső fügqvény folytonosságát.

Bizonyítás. A feltételek szerint $g(a) \in \mathcal{D}_f$, ezért $g(a) \in \mathcal{R}_g \cap \mathcal{D}_f$, azaz $\mathcal{R}_g \cap \mathcal{D}_f \neq \emptyset$. Így valóban beszélhetünk az $f \circ g$ összetett függvényről, és $a \in \mathcal{D}_{f \circ g}$ is igaz.

Legyen $(x_n): \mathbb{N} \to \mathcal{D}_{f \circ g} \subset \mathcal{D}_g$ egy olyan sorozat, amelyre $\lim(x_n) = a$. Mivel $g \in C\{a\}$, így a folytonosságra vonatkozó átviteli elv szerint $\lim(g(x_n)) = g(a)$. Jelölje

$$b := g(a)$$
 és $y_n := g(x_n)$ $(n \in \mathbb{N}).$

Ekkor $(y_n): \mathbb{N} \to \mathcal{D}_f$ és $\lim(y_n) = b$. Mivel $f \in C\{b\}$, így a folytonosságra vonatkozó átviteli elv szerint $\lim(f(y_n)) = f(b)$. Ugyanakkor

$$f(b) = f(g(a)) = (f \circ g)(a)$$
 és $f(y_n) = f(g(x_n)) = (f \circ g)(x_n)$ $(n \in \mathbb{N}).$

Azt igazoltuk tehát, hogy $\forall (x_n) : \mathbb{N} \to \mathcal{D}_{f \circ g}$, $\lim(x_n) = a$ sorozat esetén igaz, hogy

$$\lim_{n \to +\infty} (f \circ g)(x_n) = \lim_{n \to +\infty} (f(y_n)) = f(b) = (f \circ g)(a).$$

Ezért a folytonosságra vonatkozó átviteli elv szerint $f \circ g \in C\{a\}$.

- **3. Tétel.** Legyen $(\alpha, \beta) \subset \mathbb{R}$ tetszőleges (korlátos vagy nem korlátos) nyílt intervallum. Ha az f függvény monoton (α, β) -n, akkor f-nek $\forall a \in (\alpha, \beta)$ pontban létezik a jobb oldali, illetve a bal oldali határértéke, és ezek végesek.
- a) Ha $f \nearrow (\alpha, \beta)$ -n, akkor

$$\lim_{a \to 0} f = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x > a \},\$$

$$\lim_{a \to 0} f = \sup \{ f(x) \mid x \in (\alpha, \beta), \ x < a \}.$$

b) Ha $f \searrow (\alpha, \beta)$ -n, akkor

$$\lim_{a \to 0} f = \sup \{ f(x) \mid x \in (\alpha, \beta), \ x > a \},\$$

$$\lim_{a \to 0} f = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x < a \}.$$

Bizonyítás. Tegyük fel, hogy $f\nearrow(\alpha,\beta)$ -n. A jobb oldali határértékre vonatkozó állítást igazoljuk.

Legyen

$$m := \inf \{ f(x) \mid x \in (\alpha, \beta), \ x > a \}.$$

Világos, hogy $m \in \mathbb{R}$. Az infimum definíciójából következik, hogy

- i) $\forall x \in (\alpha, \beta), \ x > a \colon m \le f(x),$
- ii) $\forall \varepsilon > 0$ -hoz $\exists x_1 \in (\alpha, \beta), \ x_1 > a \colon f(x_1) < m + \varepsilon.$

Így $m \le f(x_1) \le m + \varepsilon$. Mivel $f \nearrow (\alpha, \beta)$ -n, ezért

$$m \le f(x) \le f(x_1) < m + \varepsilon$$
 $(x \in (a, x_1)).$

A $\delta := x_1 - a > 0$ választással tehát azt mutattuk meg, hogy

$$\forall \varepsilon > 0$$
-hoz $\exists \delta > 0$, $\forall x \in (\alpha, \beta)$, $a < x < a + \delta$: $\underbrace{0 \le f(x) - m < \varepsilon}_{f(x) \in K_{\varepsilon}(m)}$.

Ez pedig azt jelenti, hogy f-nek a-ban van jobb oldali határértéke, és az m-mel egyenlő, azaz

$$\lim_{a \to 0} f = m = \inf \{ f(x) \mid x \in (\alpha, \beta), \ x > a \}.$$

A tétel többi állítása hasonlóan bizonyítható.