Exercises: Diffie Hellman

- 1. Try to calculate these congruences without a calculator:
 - (a) Calculate the lowest positive value of $3^4 \mod 80$.
 - (b) Use your answer to the above to show that $3^{316} \equiv 1 \mod 80$.
- 2. Show $4^{5n+1} \equiv 0 \mod 1024$, for all integers n;

3. Calculate $11^n \mod 101$ for n = 2, 3, 4, 5, 10.

- 4. We will use Diffie Hellman key exchange to create a shared key. Let generator x=11, and modulus q=101.
 - (a) If Alice's secret integer is a = 13, calculate $x^a \mod q$.
 - (b) If Bob's secret integer is b = 20, calculate $x^b \mod q$.
 - (c) Finally, calculate the shared secret $x^{ab} \mod q$.

(d) Why can't we use x = 10 as our generator?