

Congruent Triangles Ex 10.6 Q4

Answer:

As we know that a triangle can only be formed if

The sum of two sides is greater than the third side.

Here we have $2\ \mathrm{cm},\ 3\ \mathrm{cm}$ and $7\ \mathrm{cm}$ as sides.

If we add 2+3=5

5 < 7 (Since 5 is less than 7)

Hence the sum of two sides is less than the third sides So, the triangle will not exist.

Congruent Triangles Ex 10.6 Q5

Answer:

It is given that

 $\angle B = 35^{\circ}$

 $\angle C = 65^{\circ}$

AP is the bisector of $\angle CAB$

We have to arrange AP, BP and CP in descending order.

In $\triangle ACP$ we have

$$\angle ACP = 65^{\circ}$$

 $\angle CAP = 40^{\circ} (As AP \text{ is the bisector of } \angle CAB)$

So AP > CP (Sides in front or greater angle will be greater)(1)

In $\triangle ABP$ we have

$$\angle BAP = 40^{\circ}$$
 (As AP is the bisector of $\angle CAB$)

Since

$$\angle BAP > \angle ABP$$

So
$$BP > AP$$
(2)

Hence

From (1) & (2) we have

Congruent Triangles Ex 10.6 Q6

Answer:

It is given that, O is any point in the interior of $\triangle ABC$

We have to prove that

(1) AB + AC > OB + OC Produced BO to meet AC at D.

In $\triangle ABD$ we have

$$AB + AD > BD$$

$$\Rightarrow AB + AD > OB + OD$$
(1)

And in $\triangle ODC$ we have

$$OD + CD > OC$$
(2)

Adding (1) & (2) we get

$$AB + AD + OD + DC > OB + OD + OC$$

Hence
$$AB + AC > OB + OC$$
 Proved.

(2) We have to prove that AB + BC + CA > OA + OB + OC

From the first result we have

$$BC + BA > OA + OC$$
(3)

And

$$CA + CB > OA + OB$$
(4)

Adding above (4) equation

$$2(AB+BC+AC) > 2(OA+OB+OC)$$

Hence
$$AB + BC + CA > OA + OB + OC$$
 Proved.

(3) We have to prove that $OA + OB + OC > \frac{1}{2}(AB + BC + CA)$

In triangles OAB, OBC and OCA we have

$$OA + OB > AB$$

$$OB + OC > BC$$

$$OC + OA > AC$$

Adding these three results

$$2(OA + OB + OC) > AB + BC + AC$$

Hence
$$OA + OB + OC > \frac{1}{2}(AB + BC + CA)$$
 Proved.

********* FND *******