SC223 - Linear Algebra

Aditya Tatu

Lecture 7

August 25, 2022

Solving Linear Equations

$$\begin{bmatrix} 0 & 2 & 5 & 4 & 2 & 2 \\ 1 & -1 & 2 & 3 & -1 & 1 \\ 2 & 1 & 0 & 4 & 2 & -1 \\ 3 & 1 & 3 & 2 & -2 & 3 \end{bmatrix} \xrightarrow{R_1 \leftrightarrow R_2} \begin{bmatrix} 1 & -1 & 2 & 3 & -1 & 1 \\ 0 & 2 & 5 & 4 & 2 & 2 \\ 2 & 1 & 0 & 4 & 2 & -1 \\ 3 & 1 & 3 & 2 & -2 & 3 \end{bmatrix} \xrightarrow{R_4 \leftarrow R_4 - 3R_1} \xrightarrow{R_3 \leftarrow R_3 - 2R_1} \begin{bmatrix} 1 & -1 & 2 & 3 & -1 & 1 \\ 0 & 2 & 5 & 4 & 2 & 2 \\ 0 & 3 & -4 & -2 & 4 & -3 \\ 0 & 4 & -3 & -7 & 1 & 0 \end{bmatrix} \xrightarrow{R_4 \leftarrow R_4 - 2R_2 \atop R_3 \leftarrow 2R_3 - 3R_2} \begin{bmatrix} 1 & -1 & 2 & 3 & -1 & 1 \\ 0 & 2 & 5 & 4 & 2 & 2 \\ 0 & 0 & -23 & -16 & 2 & -12 \\ 0 & 0 & -13 & -15 & -3 & -4 \end{bmatrix}$$

$$\xrightarrow{R_4 \leftarrow 23R_4 - 13R_3} \underbrace{\begin{bmatrix} 1 & -1 & 2 & 3 & -1 & 1 \\ 0 & 2 & 5 & 4 & 2 & 2 \\ 0 & 0 & -23 & -16 & 2 & -12 \\ 0 & 0 & 0 & -137 & -95 & 64 \end{bmatrix}}_{U \text{ (except the last column)}}$$

- ► Any Elementary row operation can be represented as a matrix.
- ▶ These matrices will be called *Elementary Row Transformations*.

$$(R_1 \leftrightarrow R_2) \rightarrow P_{12} = \left[egin{array}{cccc} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight]$$

$$(R_3 \leftarrow 2R_3 - 3R_2) \rightarrow$$

- ▶ Any Elementary row operation can be represented as a matrix.
- ▶ These matrices will be called *Elementary Row Transformations*.

$$(R_1 \leftrightarrow R_2)
ightarrow P_{12} = egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \ (R_3 \leftarrow 2R_3 - 3R_2)
ightarrow L_{32} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & -3 & 2 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

- ► Any Elementary row operation can be represented as a matrix.
- ▶ These matrices will be called *Elementary Row Transformations*.

$$(R_1 \leftrightarrow R_2)
ightarrow P_{12} = egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \ (R_3 \leftarrow 2R_3 - 3R_2)
ightarrow L_{32} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & -3 & 2 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Notice that each elementary row operation except permutation can be written using a *lower triangular matrix*.

- ▶ Any Elementary row operation can be represented as a matrix.
- ▶ These matrices will be called *Elementary Row Transformations*.

$$(R_1 \leftrightarrow R_2)
ightarrow P_{12} = egin{bmatrix} 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix} \ (R_3 \leftarrow 2R_3 - 3R_2)
ightarrow L_{32} = egin{bmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & -3 & 2 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Notice that each elementary row operation except permutation can be written using a *lower triangular matrix*.
- $\bullet \ \ U = L_{43}L_{32}L_{42}L_{31}L_{41}P_{12}A.$

• $L_{32} \rightarrow (R_3 \leftarrow 2R_3 - 3R_2)$. Is this invertible?

- $L_{32} \to (R_3 \leftarrow 2R_3 3R_2)$. Is this invertible? Can I get back R_3 from $2R_3 3R_2$?
- $\bullet L_{32}^{-1}$

$$\bullet \ L_{32}^{-1} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

ullet $L_{32}
ightarrow (R_3 \leftarrow 2R_3 - 3R_2)$. Is this invertible? Can I get back R_3 from $2R_3 - 3R_2$?

$$\bullet \ L_{32}^{-1} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

• Are all elementary row transformations invertible?

$$\bullet \ L_{32}^{-1} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

- Are all elementary row transformations invertible?
- Moreover, the inverse is also lower triangular! (except for permutation RT)

$$\bullet \ L_{32}^{-1} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

- Are all elementary row transformations invertible?
- Moreover, the inverse is also lower triangular! (except for permutation RT)
- What matrix will you get if you multiply two lower triangular matrices?

$$\bullet \ L_{32}^{-1} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

- Are all elementary row transformations invertible?
- Moreover, the inverse is also lower triangular! (except for permutation RT)
- What matrix will you get if you multiply two lower triangular matrices? → Lower Triangular!

$$\bullet \ L_{32}^{-1} = \left[\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 3/2 & 1/2 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right].$$

- Are all elementary row transformations invertible?
- Moreover, the inverse is also lower triangular! (except for permutation RT)
- What matrix will you get if you multiply two lower triangular matrices? → Lower Triangular!
- Thus, $P_{12}A = L_{43}^{-1}L_{32}^{-1}L_{42}^{-1}L_{31}^{-1}L_{41}^{-1}U = LU$.

LU Decomposition

ullet Any matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed into a product of lower and upper triangular matrices, with appropriate permutations:

$$PA = LU$$
,

where $P \in \mathbb{R}^{m \times m}$, $L \in \mathbb{R}^{m \times m}$, $U \in \mathbb{R}^{m \times n}$.

LU Decomposition

ullet Any matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed into a product of lower and upper triangular matrices, with appropriate permutations:

$$PA = LU$$
,

where $P \in \mathbb{R}^{m \times m}$, $L \in \mathbb{R}^{m \times m}$, $U \in \mathbb{R}^{m \times n}$.

ullet Solving linear equations with LU decomposition:

$$Ax = b \rightarrow LUx = b$$
.

LU Decomposition

ullet Any matrix $A \in \mathbb{R}^{m \times n}$ can be decomposed into a product of lower and upper triangular matrices, with appropriate permutations:

$$PA = LU$$
,

where $P \in \mathbb{R}^{m \times m}$, $L \in \mathbb{R}^{m \times m}$, $U \in \mathbb{R}^{m \times n}$.

• Solving linear equations with *LU* decomposition:

 $Ax = b \rightarrow LUx = b$.

• First let Ux = y and solve Ly = b, and next solve for x in Ux = y.

Example

$$\bullet \ U = \begin{bmatrix} \mathbf{1} & -1 & 2 & 3 & -1 \\ 0 & \mathbf{2} & 5 & 4 & 2 \\ 0 & 0 & -\mathbf{23} & -16 & 2 \\ 0 & 0 & 0 & -\mathbf{137} & -95 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 2 \\ -12 \\ 64 \end{bmatrix}.$$

Example

$$\bullet \ \ U = \begin{bmatrix} \mathbf{1} & -1 & 2 & 3 & -1 \\ 0 & \mathbf{2} & 5 & 4 & 2 \\ 0 & 0 & -\mathbf{23} & -16 & 2 \\ 0 & 0 & 0 & -\mathbf{137} & -95 \end{bmatrix}, y = \begin{bmatrix} 1 \\ 2 \\ -12 \\ 64 \end{bmatrix}.$$

Solve for x in

$$\begin{bmatrix} \mathbf{1} & -1 & 2 & 3 & -1 \\ 0 & \mathbf{2} & 5 & 4 & 2 \\ 0 & 0 & -\mathbf{23} & -16 & 2 \\ 0 & 0 & 0 & -\mathbf{137} & -95 \end{bmatrix} x = \begin{bmatrix} 1 \\ 2 \\ -12 \\ 64 \end{bmatrix}$$

• A^{-1} is the unique matrix such that $A^{-1}A = AA^{-1} = I$.

- A^{-1} is the unique matrix such that $A^{-1}A = AA^{-1} = I$.
- Simultaneously solve *n* linear equations:

$$\begin{bmatrix} a_{*1} & \dots & a_{*n} \end{bmatrix} \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = I, x_i \in \mathbb{R}^n, i = 1, \dots, n$$

$$\underbrace{\begin{bmatrix} a_{*1} & \dots & a_{*n} \mid I \end{bmatrix}}_{AM}$$

$$\begin{bmatrix} LU \mid I \end{bmatrix} \Rightarrow LUx_1 = I_{*1}, \dots, LUx_n = I_{*n}.$$

- A^{-1} is the unique matrix such that $A^{-1}A = AA^{-1} = I$.
- Simultaneously solve *n* linear equations:

$$\begin{bmatrix} a_{*1} & \dots & a_{*n} \end{bmatrix} \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = I, x_i \in \mathbb{R}^n, i = 1, \dots, n$$

$$\underbrace{\begin{bmatrix} a_{*1} & \dots & a_{*n} \mid I \end{bmatrix}}_{AM}$$

$$\begin{bmatrix} LU \mid I \end{bmatrix} \Rightarrow LUx_1 = I_{*1}, \dots, LUx_n = I_{*n}.$$

ullet Gauss-Jordan Method: Let R_1,\ldots,R_k represent row transformation matrices, not necessarily lower triangular, such that $R_k\cdot R_{k-1}\cdot\ldots R_1A=I$, then $A^{-1}=I$

- A^{-1} is the unique matrix such that $A^{-1}A = AA^{-1} = I$.
- Simultaneously solve *n* linear equations:

$$\begin{bmatrix} a_{*1} & \dots & a_{*n} \end{bmatrix} \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = I, x_i \in \mathbb{R}^n, i = 1, \dots, n$$

$$\underbrace{\begin{bmatrix} a_{*1} & \dots & a_{*n} \mid I \end{bmatrix}}_{AM}$$

$$\begin{bmatrix} LU \mid I \end{bmatrix} \Rightarrow LUx_1 = I_{*1}, \dots, LUx_n = I_{*n}.$$

• Gauss-Jordan Method: Let R_1, \ldots, R_k represent row transformation matrices, not necessarily lower triangular, such that $R_k \cdot R_{k-1} \cdot \ldots \cdot R_1 A = I$, then $A^{-1} = R_k \cdot R_{k-1} \cdot \ldots \cdot R_1$.

- A^{-1} is the unique matrix such that $A^{-1}A = AA^{-1} = I$.
- Simultaneously solve *n* linear equations:

$$\begin{bmatrix} a_{*1} & \dots & a_{*n} \end{bmatrix} \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = I, x_i \in \mathbb{R}^n, i = 1, \dots, n$$

$$\underbrace{\begin{bmatrix} a_{*1} & \dots & a_{*n} \mid I \end{bmatrix}}_{AM}$$

$$\begin{bmatrix} LU \mid I \end{bmatrix} \Rightarrow LUx_1 = I_{*1}, \dots, LUx_n = I_{*n}.$$

• Gauss-Jordan Method: Let R_1, \ldots, R_k represent row transformation matrices, not necessarily lower triangular, such that $R_k \cdot R_{k-1} \cdot \ldots \cdot R_1 A = I$, then $A^{-1} = R_k \cdot R_{k-1} \cdot \ldots \cdot R_1$.

Thus,

$$R_k \cdot R_{k-1} \cdot \dots R_1 \left[A \mid I \right] =$$

- A^{-1} is the unique matrix such that $A^{-1}A = AA^{-1} = I$.
- Simultaneously solve *n* linear equations:

$$\begin{bmatrix} a_{*1} & \dots & a_{*n} \end{bmatrix} \begin{bmatrix} x_1 & \dots & x_n \end{bmatrix} = I, x_i \in \mathbb{R}^n, i = 1, \dots, n$$

$$\underbrace{\begin{bmatrix} a_{*1} & \dots & a_{*n} \mid I \end{bmatrix}}_{AM}$$

$$\begin{bmatrix} LU \mid I \end{bmatrix} \Rightarrow LUx_1 = I_{*1}, \dots, LUx_n = I_{*n}.$$

• Gauss-Jordan Method: Let R_1, \ldots, R_k represent row transformation matrices, not necessarily lower triangular, such that $R_k \cdot R_{k-1} \cdot \ldots \cdot R_1 A = I$, then $A^{-1} = R_k \cdot R_{k-1} \cdot \ldots \cdot R_1$.

Thus,

$$R_k \cdot R_{k-1} \cdot \dots R_1 \begin{bmatrix} A \mid I \end{bmatrix} = \begin{bmatrix} I \mid A^{-1} \end{bmatrix}$$

ullet Additions and multiplications in worst case in computing the LU decomposition?

- ullet Additions and multiplications in worst case in computing the LU decomposition?
- \bullet $\mathcal{O}(n^3)$

- Additions and multiplications in worst case in computing the LU decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?

- ullet Additions and multiplications in worst case in computing the LU decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?
- \bullet $\mathcal{O}(n^2)$

- Additions and multiplications in worst case in computing the *LU* decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?
- \bullet $\mathcal{O}(n^2)$
- ullet Cost for computing A^{-1} using Gauss-Jordan method?

- Additions and multiplications in worst case in computing the *LU* decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?
- \bullet $\mathcal{O}(n^2)$
- Cost for computing A^{-1} using Gauss-Jordan method?
- \bullet $\mathcal{O}(n^3)$

- Additions and multiplications in worst case in computing the LU decomposition?
- \bullet $\mathcal{O}(n^3)$
- Cost involved in Back-substitution?
- \bullet $\mathcal{O}(n^2)$
- Cost for computing A^{-1} using Gauss-Jordan method?
- \bullet $\mathcal{O}(n^3)$
- Why should one use *LU* decomposition?