10. LATEX-gyakorlat

Tómács Tibor

Eszterházy Károly Katolikus Egyetem Matematikai és Informatikai Intézet

Eger, 2025. szeptember 16.

Feladat

Készítsen L^ATEX-kódot, melynek ez a prezentáció az eredménye!

Feladat

Készítsen LATEX-kódot, melynek ez a prezentáció az eredménye!

A megoldás letölthető innen:

https://tibortomacs.github.io/latex-tutorial-hu/latex-gyak10.zip

Csebisev 1866

Csebisev 1866

Legyen G_n egy adott A esemény gyakorisága n kísérlet után.

Csebisev 1866

Legyen G_n egy adott A esemény gyakorisága n kísérlet után. Ekkor minden $\varepsilon>0$ esetén

$$P\left(\left|\frac{G_n}{n}-P(A)\right|\geq \varepsilon\right)\leq \frac{P(A)\,P(\overline{A})}{n\varepsilon^2}.$$

Legyenek $X_1, X_2, \dots, X_n, \dots$ olyan valószínűségi változók, melyek

Legyenek $X_1, X_2, \dots, X_n, \dots$ olyan valószínűségi változók, melyek

• páronként függetlenek,

Legyenek $X_1, X_2, \ldots, X_n, \ldots$ olyan valószínűségi változók, melyek

- páronként függetlenek,
- azonos eloszlásúak,

Legyenek $X_1, X_2, \dots, X_n, \dots$ olyan valószínűségi változók, melyek

- páronként függetlenek,
- azonos eloszlásúak,
- véges szórásúak.

Legyenek $X_1, X_2, \dots, X_n, \dots$ olyan valószínűségi változók, melyek

- páronként függetlenek,
- azonos eloszlásúak,
- véges szórásúak.

Ekkor minden $\varepsilon > 0$ esetén

$$P\left(\left|\frac{X_1+\cdots+X_n}{n}-\mathsf{E}(X_1)\right|\geq \varepsilon\right)\leq \frac{\mathsf{D}^2(X_1)}{n\varepsilon^2}.$$

Kolmogorov 1933

Kolmogorov 1933

Legyenek $X_1, X_2, \ldots, X_n, \ldots$ olyan valószínűségi változók, melyek

Kolmogorov 1933

Legyenek $X_1, X_2, \ldots, X_n, \ldots$ olyan valószínűségi változók, melyek

függetlenek,

Kolmogorov 1933

Legyenek $X_1, X_2, \ldots, X_n, \ldots$ olyan valószínűségi változók, melyek

- függetlenek,
- azonos eloszlásúak,

Kolmogorov 1933

Legyenek $X_1, X_2, \dots, X_n, \dots$ olyan valószínűségi változók, melyek

- függetlenek,
- azonos eloszlásúak,
- véges várható értékűek.

Kolmogorov 1933

Legyenek $X_1, X_2, \ldots, X_n, \ldots$ olyan valószínűségi változók, melyek

- függetlenek,
- azonos eloszlásúak,
- véges várható értékűek.

Ekkor

$$P\left(\lim_{n\to\infty}\frac{X_1+\cdots+X_n}{n}=\mathsf{E}(X_1)\right)=1.$$

Kolmogorov 1933

Legyenek $X_1, X_2, \ldots, X_n, \ldots$ olyan valószínűségi változók, melyek

- függetlenek,
- azonos eloszlásúak,
- véges várható értékűek.

Ekkor

$$P\left(\lim_{n\to\infty}\frac{X_1+\cdots+X_n}{n}=\mathsf{E}(X_1)\right)=1.$$

Másképpen fogalmazva, ekkor $\frac{X_1+\cdots+X_n}{n}$ majdnem biztosan konvergál $\mathrm{E}(X_1)$ -hez.

Megjegyzések

Megjegyzések

Ha a nagy számok gyenge törvényében X_i egy esemény indikátorváltozója, akkor a Bernoulli-féle nagy számok törvényét kapjuk.

Megjegyzések

Ha a nagy számok gyenge törvényében X_i egy esemény indikátorváltozója, akkor a Bernoulli-féle nagy számok törvényét kapjuk. A nagy számok Kolmogorov-féle erős törvényének állítása páronkénti függetlenség esetén is igaz marad.

Határeloszlási tételek

Határeloszlási tételek

Centrális határeloszlási tétel

Legyenek $X_1, X_2, \ldots, X_n, \ldots$ független, azonos eloszlású, pozitív szórású valószínűségi változók. Ekkor $X_1 + \cdots + X_n$ standardizáltjának határeloszlása standard normális.

Határeloszlási tételek

Centrális határeloszlási tétel

Legyenek $X_1, X_2, \ldots, X_n, \ldots$ független, azonos eloszlású, pozitív szórású valószínűségi változók. Ekkor $X_1 + \cdots + X_n$ standardizáltjának határeloszlása standard normális.

Moivre - Laplace-tétel

Ha az X_i valószínűségi változók azonos karakterisztikus eloszlásúak, akkor a centrális határeloszlási tételből speciálisan az úgynevezett Moivre – Laplace-tételt kapjuk.

KÖSZÖNÖM A FIGYELMET!