Let us consider à sample dataset have one input (x; 4) and one output (y; 4) and number of samples 4. Aevelop a simple linear regression model using BGD.

Sample(i)	XiA	Y198.12
1	0.2	3.4
2	0.4	3 • 8
3 4	0.6	4.2

· Do manual calculations for two iterations with first two samples.

· Write the python code to build simple linear

reggréfion model using BGD optimizer (Consider all

4 samples).

Step-2: itr=1 (1000(100)(100)

Step-3:
$$\frac{\partial E}{\partial m} = -\frac{1}{ns} \sum_{i=1}^{ns} (y_i - mx_i - c) x_i$$

= $-\frac{1}{2} [(3.4 - (1)(0.2) + 1)0.2 + (3.8 - (1)) - (0.4) + 1)0.4]$

$$\frac{\partial E}{\partial c} = -\frac{1}{\lambda} \left[(3.4 - 0.2 + 1) + (3.8 + 0.4 + 1) \right]$$

$$= -4.3$$

Step-4:
$$\Delta m = -\eta \frac{\partial E_0}{\partial m} = 1382.01 + 2.00 = 6$$

= -0.1×-1.34
= 0.134

$$\Delta C = -\eta \frac{\partial E}{\partial C}$$
= -0.1x-4.3 = 0.43

Step-5: m+ = Δm
1+0.134
= 1.134

C+ ΔC
= -0.1 x4.3
= 0.43

Step-6: itr+=1
1+1=2

Step-3: $\frac{\partial E}{\partial C} = -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57)(0.2) + (3.8 - (1.134)(0.4) + 0.57)(0.4) \right]$
= -1.157
$$\frac{\partial E}{\partial C} = -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57)(0.4) + (3.8 - (1.134)(0.4) + 0.57)(0.4) \right]$$
= -1.157
$$\frac{\partial E}{\partial C} = -\frac{1}{2} \left[(3.4 - (1.134)(0.2) + 0.57) + (3.8 - (1.134)(0.4) + 0.57) \right]$$
= -3.829

Step-4: $\Delta m = -0.1 \times -1.157 = 0.1157$

$$\Delta C = -0.1 \times 3.829 = -0.3829$$
Step-5: m+2 Δm
= 1.2497

C+= ΔC
=) -0.57+0.3829 = -0.187

Step-6: itr+=1
2+1=3

Step-7: if (itr>epochs)
3>2 goto step-8
else goto step-3

Step-8: m=1.2497, c=-0.1871