Recap for Midterm

David S. Rosenberg

New York University

February 28, 2018

Contents

- Learning Theory Framework
- Regularization
- Optimization
- 4 Classification
- 5 The Representer Theorem and Kernelization

Learning Theory Framework

Some Formalization

The Spaces

• \mathfrak{X} : input space

• y: outcome space

A: action space

Prediction Function (or "decision function")

A prediction function (or decision function) gets input $x \in \mathcal{X}$ and produces an action $a \in \mathcal{A}$:

$$f: \mathcal{X} \rightarrow \mathcal{A}$$
 $x \mapsto f(x)$

Loss Function

A loss function evaluates an action in the context of the outcome y.

$$\ell: \mathcal{A} \times \mathcal{Y} \rightarrow \mathbf{R}$$
 $(a,y) \mapsto \ell(a,y)$

Risk and the Bayes Prediction Function

Definition

The **risk** of a prediction function $f: \mathcal{X} \to \mathcal{A}$ is

$$R(f) = \mathbb{E}\ell(f(x), y).$$

In words, it's the expected loss of f on a new exampe (x,y) drawn randomly from $P_{X\times y}$.

Definition

A Bayes prediction function $f^*: \mathcal{X} \to \mathcal{A}$ is a function that achieves the *minimal risk* among all possible functions:

$$f^* \in \operatorname*{arg\,min}_f R(f)$$
,

where the minimum is taken over all functions from \mathfrak{X} to \mathcal{A} .

• The risk of a Bayes prediction function is called the Bayes risk.

The Empirical Risk

- Let $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$ be drawn i.i.d. from $\mathfrak{P}_{\mathfrak{X} \times \mathfrak{Y}}$.
- The **empirical risk** of $f: \mathcal{X} \to \mathcal{A}$ with respect to \mathcal{D}_n is

$$\hat{R}_n(f) = \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

• A function \hat{f} is an empirical risk minimizer if

$$\hat{f} \in \operatorname*{arg\,min}_{f} \hat{R}_{n}(f),$$

where the minimum is taken over all functions.

• But unconstrained ERM can overfit.

Constrained Empirical Risk Minimization

- Hypothesis space \mathcal{F} , a set of [prediction] functions mapping $\mathcal{X} \to \mathcal{A}$
- ullet Empirical risk minimizer (ERM) in ${\mathfrak F}$ is

$$\hat{f}_n \in \operatorname*{arg\,min}_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i).$$

 \bullet Risk minimizer in $\mathcal F$ is $f_{\mathcal F}^*\in \mathcal F$, where

$$f_{\mathcal{F}}^* \in \arg\min_{f \in \mathcal{F}} \mathbb{E}\ell(f(x), y).$$

Error Decomposition

$$f^* = \underset{f}{\arg\min} \mathbb{E}\ell(f(X), Y)$$

$$f_{\mathcal{F}} = \underset{f \in \mathcal{F}}{\arg\min} \mathbb{E}\ell(f(X), Y))$$

$$\hat{f}_n = \underset{f \in \mathcal{F}}{\arg\min} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

- Approximation Error (of \mathfrak{F}) = $R(f_{\mathfrak{F}}) R(f^*)$
- Estimation error (of \hat{f}_n in \mathcal{F}) = $R(\hat{f}_n) R(f_{\mathcal{F}})$

Excess Risk Decomposition for ERM

• The excess risk of the ERM \hat{f}_n can be decomposed:

Excess
$$\operatorname{Risk}(\hat{f}_n) = R(\hat{f}_n) - R(f^*)$$

$$= \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}.$$

Optimization Error

- In practice, we don't find the ERM $\hat{f}_n \in \mathcal{F}$.
- ullet Optimization algorithm returns $ilde{f}_n \in \mathcal{F}$, which we hope is good enough.
- Optimization error: If \tilde{f}_n is the function our optimization method returns, and \hat{f}_n is the empirical risk minimizer, then

Optimization Error =
$$R(\tilde{f}_n) - R(\hat{f}_n)$$
.

Extended decomposition:

Excess Risk
$$(\tilde{f}_n) = R(\tilde{f}_n) - R(f^*)$$

$$= \underbrace{R(\tilde{f}_n) - R(\hat{f}_n)}_{\text{optimization error}} + \underbrace{R(\hat{f}_n) - R(f_{\mathcal{F}})}_{\text{estimation error}} + \underbrace{R(f_{\mathcal{F}}) - R(f^*)}_{\text{approximation error}}$$

Regularization

Constrained Empirical Risk Minimization

Constrained ERM (Ivanov regularization)

For complexity measure $\Omega: \mathcal{F} \to [0, \infty)$ and fixed $r \geqslant 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
s.t. $\Omega(f) \leq r$

- Choose r using validation data or cross-validation.
- Each r corresponds to a different hypothesis spaces. Could also write:

$$\min_{f \in \mathcal{F}_r} \frac{1}{n} \sum_{i=1}^n \ell(f(x_i), y_i)$$

Penalized Empirical Risk Minimization

Penalized ERM (Tikhonov regularization)

For complexity measure $\Omega: \mathcal{F} \to [0, \infty)$ and fixed $\lambda \geqslant 0$,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

- Choose λ using validation data or cross-validation.
- (Ridge regression in homework is of this form.)

Ridge Regression: Workhorse of Modern Data Science

Ridge Regression (Tikhonov Form)

The ridge regression solution for regularization parameter $\lambda \geqslant 0$ is

$$\hat{w} = \operatorname*{arg\,min}_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where $||w||_2^2 = w_1^2 + \cdots + w_d^2$ is the square of the ℓ_2 -norm.

Ridge Regression (Ivanov Form)

The ridge regression solution for complexity parameter $r \ge 0$ is

$$\hat{w} = \arg\min_{\|w\|_2^2 \leq r^2} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2.$$

Lasso Regression: Workhorse (2) of Modern Data Science

Lasso Regression (Tikhonov Form)

The lasso regression solution for regularization parameter $\lambda \geqslant 0$ is

$$\hat{w} = \underset{w \in \mathbf{R}^d}{\arg\min} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_1,$$

where $||w||_1 = |w_1| + \cdots + |w_d|$ is the ℓ_1 -norm.

Lasso Regression (Ivanov Form)

The lasso regression solution for complexity parameter $r \ge 0$ is

$$\hat{w} = \underset{\|w\|_{1} \leq r}{\arg\min} \frac{1}{n} \sum_{i=1}^{n} \{w^{T} x_{i} - y_{i}\}^{2}.$$

Ridge vs. Lasso: Regularization Paths

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

David S. Rosenberg (New York University)

DS-GA 1003 / CSCI-GA 2567

February 28, 2018

16 / 45

Linearly Dependent Features: Take Away

- For identical features
 - ℓ_1 regularization spreads weight arbitrarily (all weights same sign)
 - ullet ℓ_2 regularization spreads weight evenly
- Linearly related features
 - ullet ℓ_1 regularization chooses variable with larger scale, 0 weight to others
 - ullet ℓ_2 prefers variables with larger scale spreads weight proportional to scale

Correlated Features, ℓ_1 Regularization

- Intersection could be anywhere on the top right edge.
- Minor perturbations (in data) can drastically change intersection point very unstable solution
- Makes division of weight among highly correlated features (of same scale) seem arbitrary.
 - If $x_1 \approx 2x_2$, ellipse changes orientation and we hit a corner. (Which one?)

Elastic Net

• The elastic net combines lasso and ridge penalties:

$$\hat{w} = \arg\min_{w \in \mathbf{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda_1 \|w\|_1 + \lambda_2 \|w\|_2^2$$

• We expect correlated random variables to have similar coefficients.

Highly Correlated Features, Elastic Net Constraint

• Elastic net solution is closer to $w_2 = w_1$ line, despite high correlation.

Elastic Net Results on Model

- Lasso on left; Elastic net on right.
- Ratio of ℓ_2 to ℓ_1 regularization roughly 2:1.

Elastic Net - "Sparse Regions"

- Suppose design matrix X is orthogonal, so $X^TX = I$, and contours are circles (and features uncorrelated)
- Then OLS solution in green or red regions implies elastic-net constrained solution will be at corner

Fig from Mairal et al.'s Sparse Modeling for Image and Vision Processing Fig 1.9

Elastic Net Summary

- With uncorrelated features, we can get sparsity.
- Among correlated features (same scale), we spread weight more evenly.

Finding Lasso Solution

- Many options.
- Convert to quadratic program using positive/negative parts

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left(\left(w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left(w^+ + w^- \right)$$
subject to $w_i^+ \geqslant 0$ for all i $w_i^- \geqslant 0$ for all i ,

- Coordinate descent
 - Lasso has closed form solution for coordinate minimizers!
- Subgradient descent

Optimization

Gradient Descent for Empirical Risk and Averages

- Suppose we have a hypothesis space of functions $\mathcal{F} = \{f_w : \mathcal{X} \to \mathcal{A} \mid w \in \mathbf{R}^d\}$
 - Parameterized by $w \in \mathbf{R}^d$.
- ERM is to find w minimizing

$$\hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \ell(f_w(x_i), y_i)$$

- Suppose $\ell(f_w(x_i), y_i)$ is differentiable as a function of w.
- Then we can do gradient descent on $\hat{R}_n(w)$...

Gradient Descent: How does it scale with n?

• At every iteration, we compute the gradient at current w:

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- We have to touch all n training points to take a single step. [O(n)]
- What if we just use an estimate of the gradient?

Minibatch Gradient

• The full gradient is

$$\nabla \hat{R}_n(w) = \frac{1}{n} \sum_{i=1}^n \nabla_w \ell(f_w(x_i), y_i)$$

- It's an average over the **full batch** of data $\mathcal{D}_n = \{(x_1, y_1), \dots, (x_n, y_n)\}.$
- Let's take a random subsample of size N (called a minibatch):

$$(x_{m_1}, y_{m_1}), \ldots, (x_{m_N}, y_{m_N})$$

• The minibatch gradient is

$$\nabla \hat{R}_{N}(w) = \frac{1}{N} \sum_{i=1}^{N} \nabla_{w} \ell(f_{w}(x_{m_{i}}), y_{m_{i}})$$

ullet Minibatch gradient is an unbiased estimate of full-batch gradient: $\mathbb{E}\left[\nabla\hat{R}_N(w)\right] = \nabla\hat{R}_n(w)$

How big should minibatch be?

- Tradeoffs of minibatch size:
 - Bigger $N \implies$ Better estimate of gradient, but slower (more data to touch)
 - Smaller $N \Longrightarrow W$ orse estimate of gradient, but can be quite fast
- Even N = 1 works, it's traditionally called **stochastic gradient descent** (SGD).
- Quality of minibatch estimate depends on
 - size of minibatch
 - but is **independent** of full dataset size *n*
- Discussed in Concept Check question.

Descent Directions

- A step direction is a **descent direction** if, for small enough step size, the objective function value always decreases.
- Negative gradient is a descent direction.
- A negative subgradient is not a descent direction. But always takes you closer to a minimizer.
- Negative stochastic or minibatch gradient direction is not a descent direction. But we have convergence theorems.
- Negative stochastic subgradient step direction is **not** a descent direction. But we have convergence theorems (not discussed in class).

Classification

The Score Function

- Action space $A = \mathbb{R}$ Output space $\mathcal{Y} = \{-1, 1\}$
- Real-valued prediction function $f: X \to R$

Definition

The value f(x) is called the **score** for the input x.

- In this context, f may be called a score function.
- Intuitively, magnitude of the score represents the confidence of our prediction.

The Margin

Definition

The margin (or functional margin) for predicted score \hat{y} and true class $y \in \{-1, 1\}$ is $y\hat{y}$.

- The margin often looks like yf(x), where f(x) is our score function.
- The margin is a measure of how correct we are.
 - If y and \hat{y} are the same sign, prediction is **correct** and margin is **positive**.
 - If y and \hat{y} have different sign, prediction is **incorrect** and margin is **negative**.
- We want to maximize the margin.

Classification Losses

Logistic/Log loss: $\ell_{\text{Logistic}} = \log(1 + e^{-m})$

Logistic loss is differentiable. Logistic loss always wants more margin (loss never 0).

Support Vector Machine

- Hypothesis space $\mathcal{F} = \{f(x) = w^T x + b \mid w \in \mathbf{R}^d, b \in \mathbf{R}\}.$
- ℓ_2 regularization (Tikhonov style)
- Loss $\ell(m) = \max\{1 m, 0\}$
- The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

SVM as a Quadratic Program

• The SVM optimization problem is equivalent to

minimize
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to
$$-\xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$
$$\left(1 - y_i \left[w^T x_i + b\right]\right) - \xi_i \leqslant 0 \text{ for } i = 1, \dots, n$$

- Differentiable objective function
- n+d+1 unknowns and 2n affine constraints.
- A quadratic program that can be solved by any off-the-shelf QP solver.

The Representer Theorem and Kernelization

General Objective Function for Linear Hypothesis Space (Details)

Generalized objective:

$$\min_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle),$$

where

- $w, x_1, \dots, x_n \in \mathcal{H}$ for some Hilbert space \mathcal{H} . (We typically have $\mathcal{H} = \mathbf{R}^d$.)
- $\|\cdot\|$ is the norm corresponding to the inner product of \mathcal{H} . (i.e. $\|w\| = \sqrt{\langle w, w \rangle}$)
- $R:[0,\infty)\to \mathbf{R}$ is nondecreasing (**Regularization term**), and
- $L: \mathbb{R}^n \to \mathbb{R}$ is arbitrary (**Loss term**).
- Ridge regression and SVM are of this form.
- What if we use lasso regression? No! ℓ_1 norm does not correspond to an inner product.

The Representer Theorem

Let $J(w) = R(||w||) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$ under conditions described above.

Theorem (Representer Theorem)

If J(w) has a minimizer, then it has a minimizer of the form

$$w^* = \sum_{i=1}^n \alpha_i x_i.$$

If R is strictly increasing, then all minimizers have this form.

Basic idea of proof:

- Let $M = \operatorname{span}(x_1, \dots, x_n)$. [the "span of the data"]
- Let $w = \text{Proj}_M w^*$, for some minimizer w^* of J(w).
- Then $\langle w, x_i \rangle = \langle w^*, x_i \rangle$, so loss part doesn't change.
- $||w|| \le ||w^*||$, since projection reduces norm. So regularization piece never increases.

Reparametrization with Representer Theorem

- Original plan:
 - Find $w^* \in \operatorname{arg\,min}_{w \in \mathcal{H}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$
 - Predict with $\hat{f}(x) = \langle w^*, x \rangle$.
- Plugging in result of representer theorem, it's equivalent to
 - $\bullet \ \mathsf{Find} \ \alpha^* \in \mathsf{arg\,min}_{\alpha \in \mathbf{R}^n} \, R\left(\sqrt{\alpha^T K \alpha}\right) + L\left(K\alpha\right)$
 - Predict with $\hat{f}(x) = k_x^T \alpha^*$, where

$$K = \begin{pmatrix} \langle x_1, x_1 \rangle & \cdots & \langle x_1, x_n \rangle \\ \vdots & \ddots & \ddots \\ \langle x_n, x_1 \rangle & \cdots & \langle x_n, x_n \rangle \end{pmatrix} \quad \text{and} \quad k_x = \begin{pmatrix} \langle x_1, x \rangle \\ \vdots \\ \langle x_n, x \rangle \end{pmatrix}$$

• Every element $x \in \mathcal{H}$ occurs inside an inner products with a training input $x_i \in \mathcal{H}$.

Kernelization

Definition

A method is **kernelized** if every feature vector $\psi(x)$ only appears inside an inner product with another feature vector $\psi(x')$. This applies to both the optimization problem and the prediction function.

• Here we are using $\psi(x) = x$. Thus finding

$$\alpha^* \in \operatorname*{arg\,min}_{\alpha \in \mathbf{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K\alpha)$$

and making predictions with $\hat{f}(x) = k_x^T \alpha^*$ is a **kernelization** of finding

$$w^* \in \underset{w \in \mathcal{H}}{\operatorname{arg \, min}} R(\|w\|) + L(\langle w, x_1 \rangle, \dots, \langle w, x_n \rangle)$$

and making predictions with $\hat{f}(x) = \langle w^*, x \rangle$.

Kernelization

- Once we have kernelized:
 - $\alpha^* \in \operatorname{arg\,min}_{\alpha \in \mathbb{R}^n} R\left(\sqrt{\alpha^T K \alpha}\right) + L(K \alpha)$
 - $\hat{f}(x) = k_x^T \alpha^*$
- We can do the "kernel trick".
- Replace each $\langle x, x' \rangle$ by k(x, x'), for any kernel function k, where $k(x, x') = \langle \psi(x), \psi(x') \rangle$.
- Predictions

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* k(x_i, x)$$

The Kernel Function: Why do we need this?

- Feature map: $\psi: \mathcal{X} \to \mathcal{H}$
- The kernel function corresponding to ψ is

$$k(x,x') = \langle \psi(x), \psi(x') \rangle.$$

- Why introduce this new notation k(x,x')?
- We can often evaluate k(x,x') without explicitly computing $\psi(x)$ and $\psi(x')$.
- For large feature spaces, can be much faster.

Kernelized SVM (From Lagrangian Duality)

• Kernelized SVM from computing the Lagrangian Dual Problem:

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j x_j^T x_i$$
s.t.
$$\sum_{i=1}^n \alpha_i y_i = 0$$

$$\alpha_i \in \left[0, \frac{c}{n}\right] \ i = 1, \dots, n.$$

• If α^* is an optimal value, then

$$w^* = \sum_{i=1}^n \alpha_i^* y_i x_i$$
 and $\hat{f}(x) = \sum_{i=1}^n \alpha_i^* y_i x_i^T x$.

• Note that the prediction function is also kernelized.

Sparsity in the Data from Complementary Slackness

Kernelized predictions given by

$$\hat{f}(x) = \sum_{i=1}^{n} \alpha_i^* y_i x_i^T x.$$

• By a Lagrangian duality analysis (specifically from complementary slackness), we find

$$y_i \hat{f}(x_i) < 1 \implies \alpha_i^* = \frac{c}{n}$$

 $y_i \hat{f}(x_i) = 1 \implies \alpha_i^* \in \left[0, \frac{c}{n}\right]$
 $y_i \hat{f}(x_i) > 1 \implies \alpha_i^* = 0$

- So we can leave out any x_i "on the good side of the margin" $(y_i\hat{f}(x_i) > 1)$.
- x_i 's that we must keep, because $\alpha_i^* \neq 0$, are called support vectors.