Module 4: Attacking the Foundation

Module Objectives

Module Objective: Explain how TCP/IP vulnerabilities enable network attacks.

Topic Title	Topic Objective
IP PDU Details	Explain the IPv4 and IPv6 header structure.
IP Vulnerabilities	Explain how IP vulnerabilities enable network attacks.
TCP and UDP Vulnerabilities	Explain how TCP and UDP vulnerabilities enable network attacks.
IP Services	Explain IP service vulnerabilities
Enterprise Services	Explain how network application vulnerabilities enable network attacks

IPv4 and IPv6

- IP was designed as a Layer 3 connectionless protocol. It provides the necessary functions to deliver a packet from a source host to a destination host over an interconnected system of networks.
- IP makes no effort to validate whether the source IP address contained in a packet actually came from that source. For this reason, threat actors can send packets using a spoofed source IP address.
- Also, threat actors can tamper with the other fields in the IP header to carry out their attacks.
 So, it is important for security analysts to understand the different fields in both the IPv4 and IPv6 headers.

The IPv4 Packet Header

The fields in the IPv4 packet header are shown in the figure. There are 10 fields in the IPv4 packet header.

The IPv4 Packet Header (Contd.)

The following table describes the IPv4 header fields:

IPv4 Header Field	Description
Version	Contains a 4-bit binary value set to 0100 that identifies this as an IPv4 packet.
Internet Header length	 A 4-bit field containing the length of the IP header. The minimum length of an IP header is 20 bytes.
Differentiated Services or DiffServ (DS)	 Formerly called the Type of Service (ToS) field, the DS field is an 8-bit field used to determine the priority of each packet. The six most significant bits of the DiffServ field are the Differentiated Services Code Point (DSCP). The last two bits are the Explicit Congestion Notification (ECN) bits.
Total length	 Specifies the length of the IP packet including the IP header and the user data. The total length field is 2 bytes, so the maximum size of an IP packet is 65,535 bytes.

The IPv4 Packet Header (Contd.)

IPv4 Header Field	Description
Identification, Flag, and Fragment offset	 As an IP packet moves, it might need to cross a route that cannot handle the size of the packet. The packet will be divided, or fragmented, into smaller packets and reassembled later. These fields are used to fragment and reassemble packets.
Time-to-Live (TTL)	 Contains an 8-bit binary value that is used to limit the lifetime of a packet. The packet sender sets the initial TTL value, and it is decreased by one each time the packet is processed by a router. If the TTL field decrements to zero, the router discards the packet and sends an Internet Control Message Protocol (ICMP) Time Exceeded message to the source IP address.
Protocol	 Field is used to identify the next level protocol. This 8-bit binary value indicates the data payload type that the packet is carrying, which enables the network layer to pass the data to the appropriate upper-layer protocol. Common values include ICMP (1), TCP (6), and UDP (17).

The IPv4 Packet Header (Contd.)

IPv4 Header Field	Description
Header checksum	 A value that is calculated based on the contents of the IP header. Used to determine if any errors have been introduced during transmission.
Source IPv4 Address	 Contains a 32-bit binary value that represents the source IPv4 address of the packet. The source IPv4 address is always a unicast address.
Destination IPv4 Address	 Contains a 32-bit binary value that represents the destination IPv4 address of the packet.
Options and Padding	 This is a field that varies in length from 0 to a multiple of 32 bits. If the option values are not a multiple of 32 bits, 0s are added or padded to ensure that this field contains a multiple of 32 bits.

The IPv6 Packet Header

There are eight fields in the IPv6 packet header, as shown in the figure.

The IPv6 Packet Header (Contd.)

The following table describes the IPv6 header fields:

IPv6 Header Field	Description
Version	 This field contains a 4-bit binary value set to 0110 that identifies this as an IPv6 packet.
Traffic Class	• This 8-bit field is equivalent to the IPv4 Differentiated Services (DS) field.
Flow Label	This 20-bit field suggests that all packets with the same flow label receive the same type of handling by routers.
Payload Length	 This 16-bit field indicates the length of the data portion or payload of the IPv6 packet.
Next Header	 This 8-bit field is equivalent to the IPv4 Protocol field. It indicates the data payload type that the packet is carrying, enabling the network layer to pass the data to the appropriate upper-layer protocol.

The IPv6 Packet Header (Contd.)

IPv6 Header Field	Description	
Hop Limit	 This 8-bit field replaces the IPv4 TTL field. This value is decremented by a value of 1 by each router that forwards the packet. When the counter reaches 0, the packet is discarded, and an ICMPv6 Time Exceeded message is forwarded to the sending host, indicating that the packet did not reach its destination because the hop limit was exceeded. 	
Source IPv6 Address	This 128-bit field identifies the IPv6 address of the sending host.	
Destination IPv6 Address	This 128-bit field identifies the IPv6 address of the receiving host.	

- An IPv6 packet also contain extension headers (EH) that provide optional network layer information.
- Extension headers are optional and are placed between the IPv6 header and the payload. EHs are used for fragmentation, security, to support mobility, and more.

IP Vulnerabilities

The following table lists some of the common IP-related attacks:

IP Attacks	Description
ICMP attacks	Threat actors use Internet Control Message Protocol (ICMP) echo packets (pings) to discover subnets and hosts on a protected network, to generate DoS flood attacks, and to alter host routing tables.
DoS attacks	Threat actors attempt to prevent legitimate users from accessing information or services.
DDoS attacks	Similar to a DoS attack, but features a simultaneous, coordinated attack from multiple source machines.
Address spoofing attacks	Threat actors spoof the source IP address in an attempt to perform blind spoofing or non-blind spoofing.
Man-in-the-middle attack (MiTM)	Threat actors position themselves between a source and destination to transparently monitor, capture, and control the communication. They could simply eavesdrop by inspecting captured packets or alter packets and forward them to their original destination.
Session hijacking	Threat actors gain access to the physical network, and then use an MiTM attack to hijack a session.

ICMP Attacks

 ICMP was developed to carry diagnostic messages and to report error conditions when routes, hosts, and ports are unavailable. ICMP messages are generated by devices when a

network error or outage occurs.

 The ping command is a user-generated ICMP message, called an echo request, that is used to verify connectivity to a destination.

- Threat actors use ICMP for reconnaissance and scanning attacks.
- Threat actors also use ICMP for DoS and DDoS attacks, as shown in the ICMP flood attack in the figure.

Note: ICMP for IPv4 (ICMPv4) and ICMP for IPv6 (ICMPv6) are susceptible to similar types of attacks.

ICMP Attacks (Contd.)

- Networks should have strict ICMP access control list (ACL) filtering on the network edge to avoid ICMP probing from the internet.
- The following table lists the common ICMP messages of interest to threat actors.

ICMP Message	Description
ICMP echo request and echo reply	This is used to perform host verification and DoS attacks.
ICMP unreachable	This is used to perform network reconnaissance and scanning attacks.
ICMP mask reply	This is used to map an internal IP network.
ICMP redirects	This is used to lure a target host into sending all traffic through a compromised device and create a MITM attack.
ICMP router discovery	This is used to inject bogus route entries into the routing table of a target host.

Amplification and Reflection Attacks

- Threat actors often use amplification and reflection techniques to create DoS attacks.
- The figure shows how an amplification and reflection technique called a Smurf attack is used to overwhelm a target host.
 - Amplification The threat actor forwards ICMP echo request messages to many hosts. These messages contain the source IP address of the victim.
 - Reflection These hosts all reply to the spoofed IP address of the victim to overwhelm it.
- Threat actors also use resource exhaustion attacks.

Note: Newer forms of amplification and reflection attacks such as DNS-based reflection and amplification attacks and Network Time Protocol (NTP) amplification attacks are now being used.

Address Spoofing Attacks

- IP address spoofing attacks occur when a threat actor creates packets with false source IP address information to either hide the identity of the sender, or to pose as another legitimate user.
- The threat actor can then gain access to otherwise inaccessible data or circumvent security configurations.
- Spoofing is usually incorporated into another attack such as a Smurf attack.
- Spoofing attacks can be non-blind or blind:
 - Non-blind spoofing The threat actor can see the traffic that is being sent between the
 host and the target. The threat actor uses non-blind spoofing to inspect the reply packet
 from the target victim. Non-blind spoofing determines the state of a firewall and sequencenumber prediction. It can also hijack an authorized session.
 - **Blind spoofing** The threat actor cannot see the traffic that is being sent between the host and the target. Blind spoofing is used in DoS attacks.

Address Spoofing Attacks (Contd.)

- MAC address spoofing attacks are used when threat actors have access to the internal network.
- Threat actors alter the MAC address of their host to match another known MAC address of a target host, as shown in the figure.
- The attacking host then sends a frame throughout the network with the newly-configured MAC address.
- When the switch receives the frame, it examines the source MAC address.

Address Spoofing Attacks (Contd.)

- The switch overwrites the current CAM table entry and assigns the MAC address to the new port, as shown in the figure.
- It then forwards frames destined for the target host to the attacking host.
- Application or service spoofing is another spoofing example. A threat actor can connect a rogue DHCP server to create an MiTM condition.

TCP Segment Header

- TCP segment information appears immediately after the IP header. The fields of the TCP segment and the flags for the Control Bits field are displayed in the figure.
- The following are the six control bits of the TCP segment:
 - URG Urgent pointer field significant
 - ACK Acknowledgment field significant
 - **PSH** Push function
 - RST- Reset the connection
 - SYN Synchronize sequence numbers
 - FIN No more data from sender

TCP Services

TCP provides these services:

- Reliable delivery TCP incorporates acknowledgments to guarantee delivery, instead of relying on upper-layer protocols to detect and resolve errors. If a timely acknowledgment is not received, the sender retransmits the data. Requiring acknowledgments of received data can cause substantial delays. Examples of application layer protocols that make use of TCP reliability include HTTP, SSL/TLS, FTP, DNS zone transfers, and others.
- Flow control TCP implements flow control to address this issue. Rather than acknowledge
 one segment at a time, multiple segments can be acknowledged with a single
 acknowledgment segment.
- Stateful communication TCP stateful communication between two parties occurs during the TCP three-way handshake. Before data can be transferred using TCP, a three-way handshake opens the TCP connection. If both sides agree to the TCP connection, data can be sent and received by both parties using TCP.

TCP Services (Contd.)

TCP Three-Way Handshake

A TCP connection is established in three steps:

- The initiating client requests a client-to-server communication session with the server.
- The server acknowledges the client-to-server communication session and requests a server-to-client communication session.
- The initiating client acknowledges the server-toclient communication session.

TCP Attacks

Network applications use TCP or UDP ports. Threat actors conduct port scans of target devices

to discover which services they offer.

TCP SYN Flood Attack

- The TCP SYN Flood attack exploits the TCP three-way handshake.
- The figure shows a threat actor continually sending TCP SYN session request packets with a randomly spoofed source IP address to a target.
- The target replies with a TCP SYN-ACK packet to the spoofed IP address and waits for a TCP ACK packet. Those responses never arrive.
- The target host has too many halfopen TCP connections, and TCP services are denied to legitimate users.

TCP Attacks (Contd.)

TCP Reset Attack

A TCP reset attack can be used to terminate TCP communications between two hosts.

A threat actor could do a TCP reset attack and send a spoofed packet containing a TCP RST

to one or both endpoints.

 Terminating a TCP session uses the following four-way exchange process:

- When the client has no more data to send in the stream, it sends a segment with the FIN flag set.
- The server sends an ACK to acknowledge the receipt of the FIN to terminate the session from client to server.
- The server sends a FIN to the client to terminate the server-to-client session.
- The client responds with an ACK to acknowledge the FIN from the server.

TCP Attacks (Contd.)

TCP Session Hijacking

- TCP session hijacking is another TCP vulnerability.
- A threat actor takes over an already-authenticated host as it communicates with the target.
- The threat actor must spoof the IP address of one host, predict the next sequence number, and send an ACK to the other host.
- If successful, the threat actor could send, but not receive, data from the target device.

UDP Segment Header and Operation

- UDP is commonly used by DNS, DHCP, TFTP, NFS, and SNMP.
- It is also used with real-time applications such as media streaming or VoIP. UDP is a connectionless transport layer protocol.
- The UDP segment structure, shown in the figure, is much smaller than TCP.
- Although UDP is normally called unreliable, this does not mean that applications that use UDP are always unreliable. It means that these functions are not provided by the transport layer protocol and must be implemented elsewhere if required.

Bit (0)	Bit (15)	Bit (16)	Bit (31)
	Source Port (16)	Destination Port (16)	8 Bytes
	Length (16)	Checksum (16)	V Bylos
Application Layer Data (Size varies)			

 The low overhead of UDP makes it very desirable for protocols that make simple request and reply transactions.

UDP Attacks

- UDP is not protected by any encryption. Encryption can be added to UDP, but it is not available by default.
- The lack of encryption means that anyone can see the traffic, change it, and send it on to its destination.

UDP Flood Attacks

- In a UDP flood attack, all the resources on a network are consumed.
- The threat actor must use a tool like UDP Unicorn or Low Orbit Ion Cannon. These tools send a flood of UDP packets, often from a spoofed host, to a server on the subnet.
- The program will sweep through all the known ports trying to find closed ports. This will cause the server to reply with an ICMP port unreachable message.
- As there are many closed ports on the server, this creates a lot of traffic on the segment, which uses up most of the bandwidth. The result is very similar to a DoS attack.

ARP Vulnerabilities

- Hosts broadcast an ARP Request to other hosts on the network segment to determine the MAC address of a host with a particular IP address.
- The host with the matching IP address in the ARP Request sends an ARP Reply called "gratuitous ARP."
- A threat actor can poison the ARP cache of devices on the local network
- The goal is to associate the threat actor's MAC address with the IP address of the default gateway in the ARP caches of hosts on the LAN segment.

ARP Cache Poisoning

ARP cache poisoning can be used to launch various man-in-the-middle attacks.

ARP cache poisoning process

Note: There are many tools available on the internet to create ARP MITM attacks including dsniff, Cain & Abel, ettercap, Yersinia, and others.

DNS Attacks

DNS attacks include the following:

DNS open resolver attacks:

• A DNS open resolver is a publicly open DNS server such as Google DNS (8.8.8.8) that answers client's queries outside its administrative domain. DNS open resolvers are vulnerable to multiple malicious activities described in the table.

DNS Resolver Vulnerabilities	Description
DNS cache poisoning attacks	Threat actors send spoofed, falsified Record Resource (RR) information to a DNS resolver to redirect users from legitimate sites to malicious sites.
DNS amplification and reflection attacks	Threat actors send DNS messages to the open resolvers using the IP address of a target host.
DNS resource utilization attacks	This DoS attack consumes all the available resources to negatively affect the operations of the DNS open resolver.

DNS Attacks (Contd.)

DNS Stealth Attacks

 To hide their identity, threat actors also use the DNS stealth techniques described in the table to carry out their attacks.

DNS Stealth Techniques	Description
Fast Flux	Threat actors use this technique to hide their phishing and malware delivery sites. The DNS IP addresses are continuously changed within minutes.
Double IP Flux	Threat actors use this technique to rapidly change the hostname to IP address mappings and to also change the authoritative name server. This increases the difficulty of identifying the source of the attack.
Domain Generation Algorithms	Threat actors use this technique in malware to randomly generate domain names that can then be used as rendezvous points to their command and control (C&C) servers.

DNS Attacks (Contd.)

DNS Domain Shadowing Attacks

- In Domain Shadowing, threat actor gather domain account credentials in order to create multiple sub-domains which will be used during the attacks.
- These subdomains typically point to malicious servers without alerting the actual owner of the parent domain.

DNS Tunneling

- Threat actors who use DNS tunneling place non-DNS traffic within DNS traffic. This
 method often circumvents security solutions.
- For the threat actor to use DNS tunneling, the different types of DNS records such as TXT, MX, SRV, NULL, A, or CNAME are altered. For example, a TXT record can store the commands that are sent to the infected host bots as DNS replies.
- It is necessary for the cybersecurity analyst to be able to detect when an attacker is using DNS tunneling to steal data, and prevent and contain the attack.
- To accomplish this, the security analyst must implement a solution that can block the outbound communications from the infected hosts.
- To stop DNS tunneling, a filter that inspects DNS traffic must be used. Pay particular attention to DNS queries that are longer than average, or those that have a suspicious domain name.

Attacking What We Do DHCP

- DHCP servers dynamically provide IP configuration information to clients.
- In the figure, a client broadcasts a DHCP discover message.
- The DHCP server responds with a unicast offer that includes addressing information the client can use.
- The client broadcasts a DHCP request to tell the server that the client accepts the offer.
- The server responds with a unicast acknowledgment accepting the request.

Normal DHCP Operation

Attacking What We Do DHCP Attacks

DHCP Spoofing Attack

 A DHCP spoofing attack occurs when a rogue DHCP server is connected to the network and provides false IP configuration parameters to legitimate clients.

A rogue server can provide a variety of misleading information such as:

- Wrong default gateway Threat actor provides an invalid gateway, or the IP address of its host to create a MITM (Man In The Middle) attack.
- Wrong DNS server Threat actor provides an incorrect DNS server address pointing the user to a malicious website.
- Wrong IP address Threat actor provides an invalid IP address, invalid default gateway IP address, or both. The threat actor then creates a DoS attack on the DHCP client.

HTTP and HTTPS

 To investigate web-based attacks, security analysts must have a good understanding of how a standard web-based attack works.

Common stages of a typical web attack:

- The victim unknowingly visits a web page that has been compromised by malware.
- The compromised web page redirects the user to a site containing malicious code.
- The user visits this site with malicious code and their computer becomes infected.
- After identifying a vulnerable software package running on the victim's computer, the exploit kit contacts the exploit kit server to download the malicious code.
- After the victim's computer has been compromised, it connects to the malware server and downloads a payload.
- The final malware package is run on the victim's computer.

HTTP and HTTPS (Contd.)

- Server connection logs can often reveal information about the type of scan or attack.
- The different types of connection status codes are:
 - Informational 1xx
 - Successful 2xx
 - Redirection 3xx
 - Client Error 4xx
- To defend against web-based attacks:
 - Always update the OS and browsers with current patches and updates.
 - Use a web proxy to block malicious sites.
 - Use the best security practices from the Open Web Application Security Project (OWASP) when developing web applications.
 - Educate end users by showing them how to avoid web-based attacks.

Common HTTP Exploits

Malicious iFrames

- An iFrame is an HTML element that allows the browser to load another web page from another source.
- In iFrame attacks, the threat actors insert advertisements from other sources into the page.
- Threat actors compromise a webserver and modify web pages by adding HTML for the malicious iFrame.
- As the iFrame is running in the page, it can be used to deliver a malicious exploit. such as spam advertising, exploit kits, and other malware.

Steps to prevent or reduce malicious iFrames:

- Use a web proxy to block malicious sites.
- Ensure web developers do not use iFrames.
- Use a service such as Cisco Umbrella to prevent users from navigating to malicious websites.
- Ensure the end user understands what an Iframe is.

Common HTTP Exploits (Contd.)

HTTP 302 Cushioning

- Threat actors use the 302 Found HTTP response status code to direct the user's web browser to a new location.
- When the response from the server is a 302 Found status, it also provides the URL in the
 location field. The browser believes that the new location is the URL provided in the header.
 The browser is invited to request this new URL. This redirect function can be used multiple
 times until the browser finally lands on the page that contains the exploit.

Steps to prevent or reduce HTTP 302 cushioning attacks:

- Use a web proxy to block malicious sites.
- Use a service such as Cisco Umbrella to prevent users from navigating to malicious websites.
- Ensure the end user understands how the browser is redirected through a series of HTTP 302 redirections.

Common HTTP Exploits (Contd.)

Domain Shadowing

- When a threat actor create a domain shadowing attack, first they compromise a domain.
 Then they must create multiple subdomains of that domain to be used for the attacks using Hijacked domain registration logins.
- After these subdomains have been created, attackers can use them even if they are found out to be malicious domains. They can simply make more from the parent domain.

Steps to prevent or reduce Domain shadowing attacks:

- Secure all domain owner accounts.
- Use a web proxy to block malicious sites.
- Use a service such as Cisco Umbrella to prevent users from navigating to web sites that are known to be malicious.
- Make sure that domain owners validate their registration accounts and look for any subdomains that they have not authorized.

Email

- As the level of use of email rises, security becomes a greater priority.
- The way users access email today also increases the opportunity for the threat of malware to be introduced.

Examples of email threats:

- Attachment-based attacks Threat actors embed malicious content in business files such as an email from the IT department.
- **Email spoofing** Threat actors create email messages with a forged sender address that is meant to fool the recipient into providing money or sensitive information.
- Spam email Threat actors send unsolicited email containing advertisements or malicious files.
- Open mail relay server This is an SMTP server that allows anybody on the internet to send mail.

Web-Exposed Databases

- Web applications commonly connect to a relational database to access data.
- As relational databases often contain sensitive data, databases are a frequent target for attacks.

Code Injection

- The attacker's commands are executed through the web application and has the same permissions as the web application.
- This type of attack is used because often there is insufficient validation of input.

SQL Injection

- Threat actors use SQL injections to breach the relational database, create malicious SQL queries, and obtain sensitive data from the relational database.
- A successful SQL injection exploit can read sensitive data from the database, modify database data, execute administration operations on the database, and sometimes, issue commands to the operating system.

Client-side Scripting

Cross-Site Scripting

- Cross-Site Scripting (XSS) is where web pages that are executed on the client-side, within their own web browser, are injected with malicious scripts.
- These scripts can be used by Visual Basic, JavaScript, and others to access a computer, collect sensitive information, or deploy more attacks and spread malware.
- Ways to prevent or reduce XSS attacks:
 - Ensure that web application developers are aware of XSS vulnerabilities and how to avoid them.
 - Use an IPS implementation to detect and prevent malicious scripts.
 - Use a web proxy to block malicious sites.
 - Use a service such as Cisco Umbrella to prevent users from navigating to malicious websites.
 - As with all other security measures, be sure to educate end users. Teach them to identify phishing attacks and notify infosec personnel when they are suspicious of anything security-related.

Attacking the Foundation Summary

What Did I Learn in this Module?

- IP was designed as a Layer 3 connectionless protocol.
- The IPv4 header consists of several fields while the IPv6 header contains fewer fields. It is important for security analysts to understand the different fields in both the IPv4 and IPv6 headers.
- There are different types of attacks that target IP. Common IP-related attacks include:
 - ICMP attacks
 - Denial-of-Service (DoS) attacks
 - Distributed Denial-of-Service (DoS) attacks
 - Address spoofing attacks
 - Man-in-the-middle attack (MiTM)
 - Session hijacking

Attacking the Foundation Summary

What Did I Learn in this Module? (Contd.)

- ICMP was developed to carry diagnostic messages and to report error conditions when routes, hosts, and ports are unavailable.
- TCP segment and UDP datagram information appear immediately after the IP header. It is important to understand Layer 4 headers and their functions in data communication.
- Threat actors can conduct a variety of TCP related attacks:
 - TCP port scans
 - TCP SYN Flood attack
 - TCP Reset Attack
 - TCP Session Hijacking attack
- The UDP segment (i.e., datagram) is much smaller than the TCP segment, which makes it very desirable for use by protocols that make simple request and reply transactions such as DNS, DHCP, SNMP, and others.

Attacking What We Do Summary

What Did I Learn in this Module?

- Any client can send an unsolicited ARP Reply called a "gratuitous ARP."
- A threat actor can poison the ARP cache of devices on the local network, creating an MiTM attack to redirect traffic.
- The Domain Name Service (DNS) protocol uses Resource Records (RR) to identify the type of DNS response.
- DNS open resolvers are vulnerable to multiple malicious activities, including DNS cache
 poisoning, in which falsified records are provided to the open resolver.
- In DNS amplification and reflection attacks, the benign nature of the DNS protocol is exploited to cause DoS/ DDoS attacks.
- In DNS resource utilization attacks, a DoS attack is launched against the DNS server itself.
- Threat actors use Fast Flux, in which malicious servers will rapidly change their IP address.
- To stop DNS tunneling, a filter that inspects DNS traffic must be used.

Attacking What We do Summary

What Did I Learn in this Module?

- A DHCP spoofing attack occurs when a rogue DHCP server is connected to the network and provides false IP configuration parameters to legitimate clients.
- The compromised web page redirects the user to a site that hosts malicious code which is known as a drive-by download.
- Cross-Site Scripting (XSS) attacks occur when browsers execute malicious scripts on the client and provide threat actors with access to sensitive information on the local host.
- The OWASP Top 10 Web Application Security Risks is designed to help organizations create secure web applications.