676. Matching Digit Sums

Let d(i,b) be the digit sum of the number i in base b. For example d(9,2)=2, since $9=1001_2$. When using different bases, the respective digit sums most of the time deviate from each other, for example $d(9,4)=3\neq d(9,2)$.

However, for some numbers i there will be a match, like d(17,4)=d(17,2)=2. Let $M(n,b_1,b_2)$ be the sum of all natural numbers $i\leq n$ for which $d(i,b_1)=d(i,b_2)$. For example, M(10,8,2)=18, M(100,8,2)=292 and $M(10^6,8,2)=19173952$.

Find
$$\sum_{k=3}^6 \sum_{l=1}^{k-2} M(10^{16},2^k,2^l)$$
, giving the last 16 digits as the answer.

676. 匹配数位和

令 d(i,b) 为 i 在 b 进制下的**数位和**。比如说,因为 $9=1001_2$,故 d(9,2)=2,当使用不同的进制时,大多数情况下,这些进制下的数位和不相等。例如 $d(9,4)=3\neq d(9,2)$ 。

但是,对于某些数字 i ,在某些进制下,它们的数位和是相等的,就像 d(17,4)=d(17,2)=2。令 $M(n,b_1,b_2)$ 为所有满足 $d(i,b_1)=d(i,b_2)$,且 $i\leq n$ 的自然数之和。例如 M(10,8,2)=18, M(100,8,2)=292 且 $M(10^6,8,2)=19173952$.

求出
$$\sum_{k=3}^{6} \sum_{l=1}^{k-2} M(10^{16}, 2^k, 2^l)$$
 , 你只需给出答案的最后 16 位。