(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-141298

(43)公開日 平成6年(1994)5月20日

(51)Int.CL ⁵	40.00	識別記号	庁内整理番号	FΙ	技術表示簡
	/13	Z			
	/10	E	7923-5D		
•	/40		8522-5 J		
H04N 1/	/417		9070-5C		
. 5/	/92	Н	4227-5C		
				:	審査請求 未請求 請求項の数3(全 8 頁
(21)出願番号	1	特顯平4-312757		(71)出願人	. 000004329
					日本ピクター株式会社
(22)出顧日	3	平成 4年(1992)10月28日			神奈川県横浜市神奈川区守屋町3丁目12番
					地
				(72)発明者	杉山 賢二
					神奈川県横浜市神奈川区守屋町3丁目12番
					地 日本ピクター株式会社内
				Ì	•

(54) 【発明の名称】 可変転送レート符号化装置及び記録媒体

(57)【要約】

【目的】動画像信号の符号化に於いて単位時間ごとに転送レートを制御し、動画像信号の全符号量が所定値になるように符号化して再生画像の画質を向上させる。

【構成】動画像の符号化装置に於いて、動画像信号の単位時間毎の仮符号量を求める仮符号化手段30と、動画像信号の符号量の総和が所定値になるように各単位時間毎に前記仮符号量から目標転送レートを設定する目標転送レート設定手段40とを備えて、各単位時間毎の目標転送レートに合うように発生符号量を制御しながら符号化する可変転送レート符号化装置である。

2

【特許請求の範囲】

【請求項1】動画像信号の符号化をする可変転送レート符号化装置であって、動画像信号の単位時間毎の仮転送レートを求める仮符号化手段と、動画像信号の符号量の総和が所定値になるように各単位時間毎に前記仮転送レートから目標転送レートを設定する目標転送レートを設定する目標転送レートに合うように発生符号量を制御しながら符号化することを特徴とする可変転送レート符号化装置。

【請求項2】前記目標転送レート設定手段に於いて、単位時間毎の仮転送レートを変換して単位時間毎の目標転送レートを得る際、前記仮転送レートの増加に対して前記目標転送レートの増加の度合いを圧縮するようにし且つ目標転送レートの最大値を一定値に制限して変換するようにした転送レート変換器を備えたことを特徴とする請求項1記載の可変転送レート符号化装置。

【請求項3】記録されている動画像情報の単位時間毎の 転送レートが一定でなく、記録されている動画像全体の 符号量と、記録媒体の使用可能な記録容量とが略一致す ることを特徴とする記録媒体。

【発明の詳細な説明】

[0001]

【産業上の利用分野】ディジタル信号の処理を伴う記録、伝送、表示装置に於いて信号をより少ない符号量で効率的に符号化する高能率符号化に関し、特に、動画像信号の符号化に際し転送レートを制御しながら符号化を行うようにした符号化装置及び前記符号化装置で記録した記録媒体に関する。

[0002]

【従来の技術】画像信号の高能率符号化に於いて可変長 30 符号を用いると、画像情報の少ない部分は少ない符号量で符号化され合理的である。特に動画像のフレーム又はフィールド単位の画像間予測符号化では、動きのない部分で符号量は極めて少なくなる。そこで動画像の視覚上の画質を略一定にし、動画像の態様等に応じて転送レートを変えて伝送や記録をすれば伝送や記録の効率が高くなる。前記したような方式はATM(Asynchronous Transmission Mode)と呼ばれ、通信ではパケット通信として盛んに検討されている。この場合、基本的には所定転送レートの符号化で符号が発生され、回線で必要に応じ 40 てパケット(セル)の廃棄等が行われ情報量即ち符号量が制御される。

【0003】一方、現在使われているVTRやビデオディスク等のパッケージメディアと呼ばれる記録媒体では、所定のテープ速度或いは所定の回転速度で記録されるので、単位時間当たりに記録される情報量は一定となり、媒体の容量は時間で示される。例えば最大120分記録可能な媒体に100分の動画像が記録される場合は、20分相当の容量は空きになる。記録媒体の容量を最大限に生かすためには、転送レートを画像の内容に応

じて変え、全体の符号量が記録媒体に合ったものとする 必要があるが、従来の記録媒体用の符号化装置は次に示 すような固定転送レートのものとなっている。

【0004】以下、従来の画像符号化装置の一例について図3を基に説明する。図3は、従来の画像符号化装置の構成の一例を示すブロック図である。図3に示す画像符号化装置は、CCITT等の標準方式となっているものである。図3に於いて、画像入力端子31に入力された画像信号は、予測減算器2とアクティビティ検出器4に入力される。ここにアクティビティとは、画像信号のブロック毎の変化の程度を示すものである。予測減算器2では、画像間予測器13から入力されるフレーム間予測信号(以下、予測信号とも記す)が前記画像信号から減算され、この減算結果は予測残差信号としてDCT3に出力される。

【0005】前記予測残差信号はDCT3で離散コサイン変換(以下、DCTと記す)が行われ、量子化器6に 導かれる。量子化器6では、量子化制御器5から入力される情報で示されるステップ幅に応じて量子化が行われる。前記量子化された信号は可変長符号器7と局部復号器15とに入力され、可変長符号器7で圧縮された符号とされてパッファ32に入力される。前記パッファ32に入力されたデータは可変長符号化されているため符号発生量が常に変動しているが、パッファ32で変動が吸収され、一定の転送レートになって符号出力端子11から別に示す復号装置に向けて出力される。

【0006】一方、局部復号器15では、逆量子化および逆DCTが行われ、符号は復号されて再生予測残差信号となり、加算器14に入力される。加算器14では、画像間予測器13から入力されるフレーム間予測信号と前記局部復号器15から入力される再生予測残差信号とが加算され、再生画像信号となって画像間予測器13に供給される。画像間予測器13では、前記再生画像信号が1フレーム遅延され動き補償が行われ、フレーム間予測信号が生成されて予測減算器2と加算器14に供給される。

【0007】量子化の制御はパッファ充足度と原画像のアクティビティに応じて行われる。量子化制御器5には、パッファ32の充足度の情報と、アクティビティ検 出器4で求められたアクティビティ(画像信号のブロック毎の変化の程度)が入力される。量子化制御器5では入力された情報に応じて量子化ステップ幅が設定され、量子化器6に入力される。量子化ステップ幅は、パッファ32に符号が多く溜まっている場合に粗く、パッファ32が空に近い場合に細かくされる。この特性の例を図8に示す。

り、媒体の容量は時間で示される。例えば最大120分 【0008】図8は、量子化制御の様子を示す図であ 記録可能な媒体に100分の動画像が記録される場合 り、パッファ充足度と量子化ステップ幅の関係の一例を は、20分相当の容量は空きになる。記録媒体の容量を 示している。アクティビティによる量子化制御では、量 最大限に生かすためには、転送レートを画像の内容に応 50 子化ステップ幅はアクティビティが大きな場合に粗く、 アクティビティが小さな場合に細かくされる。これはアクティビティが大きなブロックでは変化が大きく誤差が目立ち難く、アクティビティが小さなブロックでは僅かな誤差でも目立ち易いためである。具体的には、バッファ充足度に応じて設定される量子化ステップ値に、アクティビティに応じて設定される乗数1/2~2がブロック毎に乗じられる。

【0009】この時アクティビティの平均値が1となるようにすれば、量子化ステップの平均値は変わらずに済む。ここで、アクティビティとしてはブロック内の画素値の分散などが使用されるが、DCT等ではエッジ部分のブロックで量子化誤差が目立ち易いので、エッジ検出をしてそこではアクティビティが大きくならないようにしても良い。このように量子化制御に入力画像のアクティビティを用いると、視覚上の主観画質を均一にすることが出来る。

【0010】次に従来の復号装置について図4を基に説明する。図4は、従来の復号装置の構成の一例を示すブロック図である。図4に於いて、符号入力端子20から一定の転送レートでバッファ41に入力された符号は、可変長復号器22に向けて出力される。可変長復号器22に向けて出力される。可変長復号器22では、可変長符号が固定長符号に戻され、逆量子化器23で符号が量子化代表値に変換される。前記量子化代表値は、逆DCT24に入力されDCTの逆変換が行われて再生予測残差信号になり加算器14に印加される。加算器14では、画像間予測器13から入力される予測信号が前記再生予測残差信号に加算されて再生画像となり、この再生画像が画像出力端子25から出力される。前記再生画像は画像間予測器13にも入力される。

[0011]

【発明が解決しようとする課題】従来の符号化装置は、転送レートが一定になるように制御していたので、画像の或る部分では符号量が十分で不必要に量子化が細かくなっていても、他の部分で符号量が不足して量子化が担くなり、画質が劣化している場合があり不合理であれる。また、動画像の時間長に関係なく一定の転送レートで問より短時間の動画像の場合は、記録媒体の記録可能領域の一部されたもので、その目的は、動画像信号の符号化に於いて、単位時間ごとに転送レートを制御し、動画像信号の変転送レート符号化装置と前記可変転送レート符号化装置と記録された記録媒体とを提供する。【0012】

【課題を解決するための手段】本発明は、仮符号化によって単位時間ごとに発生する符号量を求め、この単位時間ごとの仮符号母(以下、仮転送レートとも記す)を記

憶させ、前記仮転送レートの総和と記録媒体の記録可能 容量とから、単位時間ごとに送出する符号量(以下、転 送レートとも記す)の目標値、即ち目標転送レートを設 定し、この目標転送レートに合わせて実際の符号化(以 下、実符号化とも記す)を行うことで、動画像の内容と 記録媒体に対して最適な符号量配分をすることが出来る 可変転送レート符号化装置及び前記符号化装置で記録し た記録媒体である。即ち、本発明は、動画像信号の符号 化をする可変転送レート符号化装置であって、動画像信 号の単位時間毎の仮転送レートを求める仮符号化手段 10 と、動画像信号の符号量の総和が所定値になるように各 単位時間毎に前記仮転送レートから目標転送レートを設 定する目標転送レート設定手段とを備えて、各単位時間 毎の前記目標転送レートに合うように発生符号量を制御 しながら符号化するようにした可変転送レート符号化装 置である。

【0013】また、前記目標転送レート設定手段に於いて、単位時間毎の仮転送レートを変換して単位時間毎の目標転送レートを得る際、前記仮転送レートの増加に対して前記目標転送レートの増加の度合いを圧縮するようにし且つ目標転送レートの最大値を一定値に制限して変換するようにした転送レート変換器を備えるようにした可変転送レート符号化装置である。さらに、記録されている動画像情報の単位時間毎の転送レートが一定でなく、記録されている動画像全体の符号量と、記録媒体の使用可能な記録容量とを略一致させた記録媒体である。

[0014]

【作用】本発明では、仮符号化によって単位時間ごとに発生する符号量が求められ、その総量と記録媒体の容量 20 とから単位時間ごとの目標転送レートが設定され、その目標転送レートに合わせて実際の符号化(実符号化)が行われるので、従来の装置で不必要に細かな量子化となった部分では符号量が少なくなり、従来の装置で粗い量子化となって画質が劣化してしまった部分では符号量が多くなる。このように情報の内容に応じて適切な符号量配分が行われ、画質が改善される。また、単位時間ごとの目標転送レートは、符号の総量が一定になるよう設定されるので、それに合わせて符号化を制御すれば、動画像の時間長が変わっても全ての符号が記録媒体に無駄な40 く収まるようになる。

[0015]

【実施例】図1は、本発明の可変転送レート符号化装置の実施例を示すプロック図である。 図1に於いて、図3に示す従来例と同一構成要素には同一符号が付してある。 図1に示す符号化装置と図3に示す符号化装置との主な相違点は、図1では、VTR1、セレクタ8、9、仮符号量カウンタ16、符号量制御器17、目標転送レート設定器18、仮転送レートメモリ19が設けられている点である。以下、図1を用いて本発明の可変転50 送レート符号化装置に於ける符号化処理の概要を説明す

る。

【0016】符号化処理は同一の動画像信号に対して2回行われる。一度目は単位時間毎の目標転送レートを設定するための仮符号化に於いて行われ、二度目は実際の符号化(実符号化)に於いて行われる。従って、例えば動画像と同速度で符号化する符号化装置なら動画像の時間長の略2倍の処理時間を要することになる。このようなフィードフォワード処理で、総符号量の固定化と同一発明者、両の基本のは、本発明と同一発明者、両の基本的な考量に、例えば特開昭63-151225号公報(適応型高能率符号化方式)、特開平2-194734号公報(符号化データ量の制御方式)、特開平3-263927号公報(符号化データ量の制御方式及びその復号装置)等に示されている。

【0017】本発明では動画像が対象とされ、符号量の見積もりとしてアクティビティが使用されるのではなく、前記実符号化と同じ符号化処理が行われ、可変長符号化出力が用いられる。また、先願では目標転送レートの設定単位と制御単位は同一であったが、本発明では、日標は単位時間ごとの転送レートとし、制御単位はそれより細かなものとする。目標転送レートの設定は、れよりに仮転送レートから圧縮特性で変換され、後さいては、パッファ充足度に応じた量子化制御は行われず、転送レートを所定の固定値にして単位時間毎の仮符号量、即ち仮転送レートが求められる。その処理が終了した時点で、全体の符号量と記録媒体の容量とから、単位時間毎の仮転送レートと目標転送レートとの変換特性が決められる。

【0018】実際の符号化(実符号化)では、単位時間毎に仮転送レートと変換特性から目標転送レートが設定され、それに合わせてバッファ充足度による制御が行われる。目標転送レートは、記録媒体の記録可能領域に記録されるべき動画像信号が丁度収まるように設定されているので、バッファがオーバーフローしない限り、結果的に得られる符号の総量は記録媒体に適合するもので変える。少なくとも前記単位時間内では、転送レートが変えられることなく一定に保たれる。また通常、バッファ10は0.2~0.3秒の発生符号量に相当する容量を持っており、瞬間的な符号量の変動はバッファ10で吸でされので、前記単位時間はそれよりやや大きくとって、長い周期の変動に合わせるのが適当であり、0.5~1秒程度とされる。

【0019】なお先願では、符号量の見積もりをする場合、簡易的なアクティビティが用いられていたが、本実施例では略同じ符号化が2度行われるので、処理を節約する意味はなくなり、仮符号化に於いても実符号化と同様な可変長符号化が行われ、その出力から正確な発生符号量が求められる。逆に、量子化器と可変長符号器を複

数持ち、異なった量子化によって符号量の見積もりをする方法も考えられるが、符号化処理は巡回予測が用いられているので量子化の違いは予測に影響し、画像間予測等まで全て複数個用意しないと正確な符号量は求まらない。

6

【0020】次に、本発明の実施例に於ける仮符号化手段30について説明する。この仮符号化手段30は、前記の通り動画像信号の仮転送レートを求めるためのものである。図1に於いて、ビデオテーブレコーダ(以下、VTRとも記す)1から出力される画像信号は、予測減算器2とアクティビティ検出器4に入力される。本実施例では同一画像信号が2度符号化部に供給されるので、符号化前の画像信号全てが、VTR等の大容量の画像記録媒体に記録されている。この画像記録媒体としては、例えばメモリ素子、光ディスクやHDDなどで十分な容量が得られるものであればそれらを用いても良い。

【0021】図1に於いて、基本的な符号化処理は従来例の場合と同じである。VTR1から出力された画像信号から、予測減算器2によって、画像間予測器13から20供給される予測信号が減算され、この減算結果が予測残差となりDCT3に入力される。DCT3、量子化器6でDCT及び量子化が行われる。この量子化された信号は可変長符号器7と局部復号器15に入力され、可変長符号器7では圧縮された符号となり、セレクタ9に入力される。

【0022】ここで、セレクタ8はA側に切り替えられ、パッファ充足度として所定の固定値が量子化制御器5に入力される。従って量子化は、アクティビティ検出器4から量子化制御器5に入力されるブロック毎のアク30 ディビティのみによって変化される。前記固定値は、その固定値によって符号化された画像が必要十分な画質となる様なものとされる。一方、局部復号器15では符号が復号されて再生予測残差信号となり、加算器14に入力される。加算器14では画像間予測器13から入力される予測信号が加算され、この加算結果の再生画像信号が画像間予測器13に入力される。画像間予測器13では、再生画像信号からフレーム間予測信号が生成され予測減算器2と加算器14に供給される。

【0023】図1に於いて、一度目の符号処理では、可 を長符号器7の出力はセレクタ9を介して仮符号量力ウンタ16に入力される。仮符号量カウンタ16では単位 時間毎に発生する符号量がカウントされ仮転送レートと して出力される。次に、目標転送レート設定手段40は、 動画像信号の符号量の総和が所定値になるように各単位 時間毎に前記仮符号量から目標転送レートを設定するも のである。前記仮符号量カウンタ16から出力される仮 転送レートは、符号量制御器17、仮転送レートメモリ 19に入力される。仮転送レートメモリ19では、実際 50 の符号化(実符号化)に於いて再度使用される単位時間 毎の仮転送レートが全て記憶される。

【0024】前記記憶されるデータ量は、例えば1時間の動画像についての1秒毎の値なら3600データとなる。符号量制御器17は、例えば図5に示すような構成のものであって、仮転送レートから目標転送レートの変換特性を決めるためのものである。図5は、本発明の実施例に於ける符号量制御器17の構成を示す図である。図5に於いて、仮転送レート入力端子51から入力された仮転送レートは、n個の異なった変換特性の転送レート変換器(以下、変換器とも記す)52、53、……、54でそれぞれ変換され、各特性毎の転送レートが累積加算器55、56、……、57で動画像の全期間加算され、画像全体の総符号量が求められる。

【0025】仮符号化が終了した時点で、前記各転送レート変換器(変換器)による変換の夫々の総符号量は、比較器58、59、……、60にそれぞれ入力され、記録媒体の記録可能容量から設定される目標総符号量と比較され、前記複数の比較器の出力の大小を判定する判定器61に入力される。判定器61では、前記累積加算器から出力される各総符号量の内、前記目標総符号量より小さく、かつ最も多い総符号量となる変換特性が判断され、この情報は変換特性情報出力端子62から図1に示す目標転送レート設定器18に入力される。前記変換器1乃至変換器nに於ける変換特性は例えば図6に示すようなものある。

【0026】図6は、仮転送レート(単位時間毎の仮符号量)と目標転送レートとの変換特性を示す図である。図6に示すように、まず前記転送レート変換器の出力の上限(Rmax)が決められる。これは記録媒体や復号装置の処理能力には上限があり、それに合わせて最高とレートが規定されるためである。従って、可変転送レートながら最大目標転送レートは固定値とされる。図6に示すように前記転送レート変換器による変換特性は、全体に目標転送レートの変動を圧縮する傾向にするため例えば対数的な特性とされる。即ち緩やかな制御がかかる形になるが、単位時間当たりの仮符号量が少ない部分では、視覚上画質劣化が目立ち易くなるので、やや符号量が多くなるようにされる。

【0027】前記仮転送レートXと目標転送レートRと の変換特性は、例えば

R = K * LOG (Y * X)

或いは R=K*X^Z

で表される。ここに、Kは正の定数、Yは正の数、Zは る。なお、出力が単位時間ごとに固定転送レート化され 1より小さい正の数である。前記した式のYまたはZを 変えることにより変換特性は変化する。即ち、単位時間 て扱い、可変長符号器 7の出力がそのまま出力される。 ほの仮転送レートを変換して単位時間毎の目標転送レートを得る際、前記仮転送レートの増加に対して前記目標 に対して前記目標 ないる必要がない場合は、バッファは仮想的なものとし て扱い、可変長符号器 7の出力がそのまま出力される。 (0032) 次に、符号化装置で符号化された符号列 (Data stream) が記録媒体に記録された状態につい て、図7を基に本発明に於ける場合と、従来例に於ける 場合とについて説明する。図7は、記録媒体に記録され お変換特性の種類数 n は、多ければそれだけ正確な特性 50 た符号列の形態を示す図である。図中に示す数字は、そ

が選択出来、媒体容量の無駄が少なくなる。

【0028】尚、図5に示す符号量制御器17は、転送レート変換器、累積加算器、比較器が並列的に配置され、仮符号化と並行して作動しているが、このような並列処理とは異なる直列処理の方法もある。前配直列処理では、符号量制御器は図5に示すような転送レート変換器、累積加算器、比較器別が各1だけ有れば良く、この場合、仮符号化が終了した後、実符号化が行われる前に、前記仮転送レートメモリ19のデータを基に種々の変換特性について総符号量の演算が成され、この結果目標転送レートを算出するのに最適な変換特性が選択され出力される。前配直列処理については、特願平2-417572号公報にも記載されている。

R

【0029】次に実際の符号化(実符号化)を行う符号 化手段について述べる。この符号化手段は、各単位時間 ごとの目標転送レートに合うように発生符号量を制御し ながら符号化を行うものである。図1に於いて、VTR 1から仮符号化時と同じ画像が再度出力され、仮符号化 と同様な符号化が行われる。予測減算器2、DCT3、 20 アクティビティ検出器4、量子化制御器5、量子化器 6、可変長符号器7、画像間予測器13、加算器14、 局部復号器15の動作は仮符号化の場合と基本的に同じ で、動作内容のみが異なる。

【0030】実符号化時には、可変長符号器7の出力はセレクタ9を介してバッファ10に印加される。バッファ10によって、符号は単周期の変動が吸収され、符号出力端子11から復号器に向けて出力される。バッファ10から符号を読み出す読み出しレートは、単位時間毎に目標転送レート設定器18から供給される値によって制御される。従って、バッファ10から出力される符号量は単位時間毎に変化する。目標転送レート設定器18では、仮転送レートメモリ19から単位時間毎に入力される仮転送レートが、符号量制御器17から入力される変換特性に応じて変換され、目標転送レートが設定され

【0031】一方、パッファ10の充足度の情報はセレクタ8を介して量子化制御器5に入力される。量子化制御器5では、アクティビティとパッファ充足度により量子化ステップ幅が制御される。この制御では従来例の場40 合と異なり、長い周期での変動は単位時間毎の可変転送レート化により吸収されているので、局部的な変動を吸収するだけになり、オーパーフローする可能性も低くなる。なお、出力が単位時間ごとに固定転送レート化ないる必要がない場合は、パッファは仮想的なもれている必要がない場合は、パッファは仮想的なもして扱い、可変長符号器7の出力がそのまま出力される。【0032】次に、符号化装置で符号化された符号列(Data stream)が記録媒体に記録された状態について、図7を基に本発明に於ける場合と、従来例に於ける場合とについて説明する。図7は、記録媒体に記録され

の単位時間の番号であるが、実際には図の状態より過かに多い。符号列を記録媒体に記録すると、従来例では図7の(A)に示す如く符号列の単位時間当たりのデータ量は一定であり、結果として記録媒体に余白を生じるが、実施例では同図の(B)に示す如く符号列の単位時間毎の符号量が変化され、また総符号量も制御されてい

【0033】次に復号装置について図2を基に説明する。図2は、本発明の可変転送レート符号化装置で符号化された符号を復号する可変転送レート復号装置の一例を示すブロック図である。以下、本発明の可変転送レート符号化装置によって符号化された符号の復号装置について、図2を基に実施例の説明する。図2に於いて、図4に示す従来例と同一機能を呈する要素には同一符号を付してある。図4に示す復号装置では、パッファ21に対して転送レートが入力される点が従来例の復号装置とは異なる。

【0034】符号入力端子20より入力された符号は、パッファ21で可変長復号器22の処理のタイミングに合わせたタイミングにされて出力される。パッファ21への書き込み速度は、前記入力された符号の転送レートに合うように、転送レート入力端子27から入力される単位時間毎のレート情報によって制御される。可変長復号器22以降の処理動作は基本的に従来例と同じである。

[0035]

るので余白は生じない。

【発明の効果】本発明の可変転送レート符号化装置で は、仮符号化を行って単位時間ごとに発生する符号量を 求め、その総量と記録媒体の容量とから単位時間ごとの 目標転送レートを設定し、この目標転送レートに合わせ て実際の符号化を行うことにより、符号化される動画像 の内容に応じて適切なデータ量配分が行われ、画質が改 **暮される。また、動画像の時間長が変わっても、データ** の総量を一定に出来、全てのデータが記録媒体に無駄な く収まるようになる。また、量子化値の変動が少なくな るので、制御による画質の変動も少なくなる。特に、画 像間予測符号化に於いては、動きのない部分では発生す るデータ量が少ないので、全体の画質は大幅に改善され る。また、単位時間内では固定転送レートとなっている ので、固定転送レートの符号化装置や復号装置との互換 40 性も良く、それらに符号総量の制御系を追加するだけで 実現できる。また、本発明の可変転送レート符号化装置 によれば、従来の符号化装置による画質と同程度の画質 にした場合には、同一記録容量の記録媒体に対して従来 より長時間の記録をすることが出来る。

【0036】本発明の記録媒体は、本発明の可変転送レ

一ト符号化装置によって画像情報が記録された記録媒体であって、記録される情報の単位時間毎の内容と情報の総符号量と記録媒体の記録容量とから、単位時間ごとに転送レートが制御され、記録媒体の記録可能容量一杯に情報が記録された記録媒体であって、その記録媒体から再生される動画像の画質は、固定転送レートで符号化されたそれに比して優れたものとなる。以上説明した如く、本発明の可変転送レート符号化装置及び記録媒体は、実用上極めて優れた効果を有するものである。

10

10 【図面の簡単な説明】

【図1】本発明の可変転送レート符号化装置の実施例を 示すブロック図である。

【図2】本発明の可変転送レート符号化装置で符号化された符号を復号する可変転送レート復号装置の一例を示すプロック図である。

【図3】従来の画像符号化装置の構成の一例を示すプロック図である。

【図4】従来の復号装置の構成の一例を示すプロック図である。

0 【図5】実施例の符号量制御器構成を示す図である。

【図6】単位時間毎の仮転送レートと目標転送レートとの変換特性を示す図である。

【図7】記録媒体に記録された符号列の形態を示す図である。

【図8】 量子化制御の様子を示す図である。

【符号の説明】

2…予測減算器

3 ... D C T

4…アクティビティ検出器

30 5 … 量子化器制御器

6…量子化器

7…可変長符号器

10…パッファ

13…画像間予測器

14…加算器

15…局部復号器

16…仮符号量カウンタ

17…符号量制御器

18…目標転送レート設定器

ク 19…仮転送レートメモリ

30…仮符号化手段

40…目標転送レート設定手段

52、53、54…転送レート変換器

55、56、57…累積加算器

58、59、60…比較器

6 1 …判定器

【図1】

【図5】

