SPEKTRUM ÇİZİMLERİ: Örnek 1: $x(t) = \max\{\sin t, 0\}$ 0.5 0 -3π -2π π 0 π 2π 3π $x(t) = \frac{a_0}{2} + \sum_{k=1}^{+\infty} (a_k \cos(k\omega_0 t) + b_k \sin(k\omega_0 t))$

sinyalinin gerçel Fourier seri katsayıları spektrumunu çizelim (Temel bileşen yukarıda gösterilmiştir):

Burada 1. harmonik sadece $b_1 \sin t$ teriminden ibarettir ve bunun dışında tek harmonik bulunmamaktadır. Bunun da nedeni, eğer bu 1. harmonik sinyalden çıkarılırsa elde kalan kısmın $(y(t) = x(t) - b_1 \sin t)$ çift harmonik simetrisine $(y(t + \frac{T_0}{2}) = y(t) \ \forall t)$ sahip olmasıdır ki bu da aşağıda gösterildiği gibi o kısmın periyodunun $T_0/2$ olduğu anlamına gelir. Ayrıca 1. harmonik teriminden başka sinüslü terim yoktur. Çünkü yine aşağıdaki şekilden görüldüğü gibi 1. harmonik çıkartılınca kalan kısım y(t) çifttir.

Çift harmonik simetrisi, periyodun ana periyodun 2 katı alınmasıyla aynı anlama gelmektedir. Böylece ana frekansın hep çift katlarında harmonikler varmış gibi düşünülür. Çift harmonik simetrisi bu yüzden karışıklığa yol açar ve bundan pek bahsedilmez; ancak bu örnekteki gibi bir sinyalin bileşeni olarak anlamı vardır.

İstenirse her bir harmoniğin genliği olan $\sqrt{a_k^2+b_k^2}$ değerlerini de k 'ya karşı çizebiliriz.

Ya da $|c_k|$ ve \angle açısı (derece) çizilirse:

 c_k 'nın gerçel ve sanal kısımları da çizilebilir:

Sanal kısım sıfır ise tek bir çizimle c_k çizilebilir. Bunu gelecek örnek üzerinde gösterelim:

FOURIER SERİSİYLE FOURIER DÖNÜŞÜMÜ ARASINDAKİ İLİŞKİ:

Örnek 2:

Bu sinyalin karmaşık Fourier serisi:

$$\sum_{k=-\infty}^{+\infty} c_k e^{jk\omega_0 t} \qquad ; \qquad c_k = \frac{2T_1}{T_0} \operatorname{sinc}(2k\pi T_1/T_0)$$

Gerçel olduğu için c_k katsayılarının spektrumu tek bir çizimle gösterilebilir.

Ancak biz şimdi aynı T_1 , farklı T_0 değerleri için bu spektrumun nasıl değiştiğine bakalım. Sırasıyla $T_{01} = 4T_1$, $T_{02} = 8T_1$ ve $T_{03} = 16T_1$ için c_k spektrumun k değerlerine karşı çizersek:

Görüldüğü gibi T_0 artarken genlik azalmakta ve spektrum yüksek harmonik numaralarına doğru genişleyerek yayılmaktadır.

Şimdi de bu üç spektrumu yatay ve düşey eksenleri farklı ölçeklerle çizelim. Düşey eksen $c_k T_0$, yatay eksen ise $\omega = k\omega_0$ diye adlandıracağımız yeni bir büyüklük olsun. Çizimler arasında T_0 değişirken ω_0 da değişecek fakat T_1 değişmeyecektir. Bu yüzden T_1 değerine göre büyüklükleri karşılaştırmak yerinde olacaktır. Önceki üç ve sonraki üç grafikteki eksenlerdeki sayısal değerler $T_1 = 1$ içindir.

$$c_k T_0 = 2T_1 \text{sinc}(2k\pi T_1/T_0) = 2T_1 \text{sinc}(k\omega_0 T_1) = 2T_1 \text{sinc}(\omega T_1)$$
 olacaktır. Çizimler şöyle olur:

Görüldüğü gibi T_0 artarken $c_k T_0$, genliği ve genişliği aynı olan bir zarf fonksiyonuna yakınsamaktadır. $T_0 \to \infty$ 'a giderken bu kesikli çizim, sürekli bir fonksiyona yakınsar. İşte bu fonksiyon, $T_0 \to \infty$ durumunda artık periyodik olmayan x(t) 'nin Fourier dönüşümü olarak tanımlanır.

Yani şu x(t) sinyalinin:

Fourier dönüşümü:

2

1.5

1

0.5

0

-0.5

$$\int \{x(t)\} = X(\omega) = 2T_1 \operatorname{sinc}(\omega T_1)$$

$$-\frac{\pi}{T}$$

$$\frac{\pi}{T}$$

0

2

 ω

6

olur.

Not: Bu anlatımda

-6

$$\operatorname{sinc}(p) = \frac{\sin p}{p}$$

-4

tanımı kullanılmıştır ve bu tanımda p = 0 için, limit değeri olan 1 alınmaktadır (sinc(0) = 1).

-2

Haberleşme derslerinde yaygın olarak kullanılan tanım biraz farklıdır:

$$\operatorname{sinc}(p) = \frac{\sin p\pi}{p\pi}$$