ฉบับแปลไทย (Thai Translations)
Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132666/

การอธิบายลักษณะของละอองลอยติดเชื้อในสถานพยาบาล: ตัวช่วยสำหรับการควบคุมทาง วิศวกรรม (engineering controls) และกลยุทธ์วิธีการเชิงป้องกัน (preventive strategies) ที่มีประสิทธิภาพ

บทคัดย่อ (Abstract)

การประเมินกลยุทธ์วิธีการสำหรับการควบคุมทางวิศวกรรม (engineering controls) ในการป้องกันการ แพร่กระจายของโรคติดเชื้อทางอากาศไปสู่ผู้ป่วยและบุคลากรทางการแพทย์ตลอดจนเจ้าหน้าที่ที่เกี่ยวข้อง จำเป็น จะต้องมีการพิจารณาเกี่ยวกับบัจจัยต่าง ๆ ที่เกี่ยวข้องกับลักษณะของละอองลอย (aerosol) บัจจัยเหล่านี้ได้แก่ การก่อให้เกิดละอองลอย ขนาดและความเข้มข้นของอนุภาค ความสามารถมีชีวิตอยู่ได้ของจุลชีพ ความสามารถใน การทำให้ติดเชื้อและความรุนแรง การไหลเวียนของอากาศและภูมิอากาศ ตลอดจนการเก็บตัวอย่างและการตรวจ วิเคราะห์ตัวอย่างจากสิ่งแวดล้อม

จุดสนใจหลักในเรื่องความใส่ใจในการควบคุมทางวิศวกรรมมาจากการเพิ่มขึ้นของโรควัณโรคเมื่อไม่นานมานี้ โดยเฉพาะอย่างยิ่งบรรดาเชื้อชนิดต่าง ๆ ที่ดื้อยาหลายขนาน (multidrug-resistant) ในประชากรทั่วไปของ โรงพยาบาล ในผู้ที่มีภาวะภูมิคุ้มกันอ่อนแออย่างรุนแรง (severely immunocompromised) ตลอดจน ในผู้ที่มีความเสี่ยงและอยู่ในสิ่งแวดล้อมที่อับอากาศ เช่น คุก สถานดูแลผู้ป่วยระยะยาว และที่พักสำหรับคนไร้บ้าน บุลลากรจำนวนมากมายมีการสัมผัสติดต่อใกล้ชิดกับผู้ที่ดิดเชื้อวัณโรคที่ยัง active อยู่ ที่ไม่ได้รับการตรวจวินิจฉัย หรือที่ไม่ได้รับการรักษาอย่างเพียงพอ นอกจากนี้แล้วผู้ป่วยและบุคลากรทางการแพทย์ก็ยังอาจจะมีการรับสัมผัสกับ เชื้อไวรัสที่ก่อโรคในมนุษย์ชนิดต่าง ๆ เชื้อราฉวยโอกาส ตลอดจนเชื้อแบคทีเรีย ดังนั้นรายงานชิ้นนี้จึงมุ่งเน้นไปที่ ลักษณะของการแพร่กระจายละอองลอยติดเชื้อ ในความพยายามที่จะค้นหาว่าปัจจัยใดบ้างที่สามารถได้รับการจัดการ แก้ไขอย่างเป็นระบบ เพื่อให้เกิดวิธีการทางวิสวกรรมที่ได้รับการประยุกต์ และได้รับการพิจารณานี้ได้แก่ละอองลอยติดเชื้อที่เป็นอนุภาคที่มีขนาดที่สามารถหายใจเข้าสู่ร่างกายได้ ซึ่งเกิดจากมนุษย์และแหล่งที่มาต่าง ๆ ในสิ่งแวดล้อม และมีความสามารถในการที่ยังคงมีชีวิตอยู่รอดได้ และลอยตัวในอากาสในช่วงระยะเวลาที่ยึดออกไปในสภาพแวดล้อม ภายในอาการ กำจำกัดความนี้ไม่ร่วมถึงการรับสัมผัสกับผิวหนังและเยื่อเมือก ที่เกิดจากการกระเด็นเปรอะเปื้อนเลือด

หรือของเหลวต่าง ๆ จากร่างกายที่มีเชื้อโรคอยู่ (ไม่ใช่ละอองลอยจริง) ไม่มีการศึกษาวิจัยทางด้านระบาดวิทยาหรือใน ห้องปฏิบัติการที่บันทึกว่ามีการแพร่กระจายของเชื้อไวรัสในเลือดในรูปแบบของละอองลอย (AJIC Am J Infect Control 1998;26:453-64)

ในระหว่างปี พ.ศ. 2539 มีการรายงานเกี่ยวกับผู้ป่วยวัณโรคจำนวนทั้งสิ้น 21,337 ราย (8.0 รายต่อประชากร 100,000 คน) ไปยังศูนย์ควบคุมและป้องกันโรคแห่งสหรัฐอเมริกา (CDC) จาก 50 รัฐ รวมทั้งจากเขตปกครอง พิเศษโคลัมเบียและกรุงนิวยอร์ค และยอดรวมนี้เป็นตัวแทนของการลดลง 6.7% จากในปี พ.ศ. 2538 (8.7 รายต่อ ประชากร 100,000 คน) ถึงแม้ว่าจำนวนของผู้ป่วยวัณโรคมีการลดลงถึง 4 ปีรวด แต่อุบัติการณ์ของวัณโรคสำหรับ ปี พ.ศ. 2539 ก็สูงเกินตัวเลขเป้าหมายในการกำจัดวัณโรคทั้งประเทศ ความชุกของการติดเชื้อวัณโรค ยังคงสูงขึ้น สำหรับผู้ที่เกิดในต่างประเทศและในกลุ่มชนกลุ่มน้อย และยังคงเป็นปัญหาสำคัญอย่างหนึ่งทางด้านการสาธารณสุข

นอกจากนี้ผู้ติดเชื้อที่ไม่ได้รับการรักษาวัณโรคจนครบก็มีการพัฒนาสายพันธุ์ดื้อยาหลายขนาน (multidrugresistant strains) ของเชื้อปฐมภูมิที่เป็นสาเหตุ คือเชื้อ Mycobacterium tuberculosis ตาม ข้อมูลของสูนย์ควบคุมและป้องกันโรคแห่งสหรัฐอเมริกา การติดเชื้อรายใหม่แทบจะทั้งหมดในประเทศปัจจุบันนี้ เกิดขึ้นผ่านทางละอองลอยจากผู้ป่วยติดเชื้อที่ไอและกระจายนิวเคลียสของละอองฝอยที่ทำให้ติดเชื้อ (infective droplet nuclei) เข้าสู่อากาศ บุคลากรทางการแพทย์และเจ้าหน้าที่อื่น ๆ ที่มีการสัมผัสติดต่อกับประชากรที่กัก ตัวและประชากรที่แพร่เชื้อวัณโรคล้วนมีความเสี่ยงสูงต่อการติดเชื้อ ก่อนปี พ.ศ. 2533 การระบาดของวัณโรคที่ดื้อยา หลายขนานเป็นสิ่งที่ไม่ปกติธรรมดา แต่นับตั้งแต่นั้นมาก็มีการรายงานเกี่ยวกับการระบาดมากกว่า 10 ครั้ง โดยที่ ทั้งหมดเกิดขึ้นในบรรดาโรงพยาบาลและคุกในฟากตะวันออกของสหรัฐอเมริกา การที่มีผู้ป่วยวัณโรคระยะ active อยู่ใกล้ ๆ กับผู้ป่วยที่มีภูมิคุ้มกันอ่อนแอ (immunocompromised) ในหออภิบาลที่จัดไว้สำหรับผู้ป่วยเอช ไอวีได้นำไปสู่การติดเชื้อของผู้ป่วยเอชไอวีและวัณโรคชนิดดี้อยาหลายขนาน (multidrug-resistant TB) ผู้ ซึ่งบ่อยครั้งที่โรควัณโรคของเขาเป็นไปโดยที่ไม่เป็นที่รับทราบ การระบาดในโรงพยาบาลจากการติดเชื้อ Mtuberculosis ที่ดื้อยาหลายขนานในประเทศสเปนในช่วงระหว่าง 45 เดือนทำให้เกิดการติดเชื้อทั้งในผู้ป่วยและ ในบุคลากรทางการแพทย์

ในหน่วยดูแลผู้ป่วยวิกฤต 31% ของเจ้าหน้าที่โรงพยาบาล (14 คนจากจำนวน 45 คน) ที่รับสัมผัสในช่วงระหว่าง เวลา 5 วันกับผู้ป่วยวัณโรคระยะ active รายหนึ่งที่ไม่ได้รับการตรวจวินิจฉัยเกิดการติดเชื้อขึ้น และพัสดีรายหนึ่งที่ ได้รับยากดภูมิคุ้มกัน (immunosuppressive) มีการติดเชื้อวัณโรคชนิดร้ายแรงอย่างรุนแรงและรวดเร็วจาก ผู้ต้องขังที่ติดเชื้อเอชไอวี วัณโรคได้รับการประกาศให้เป็นการติดเชื้อประจำในศูนย์ดูแลผู้สูงอายุไปแล้ว

วัณโรคเป็นโรคติดเชื้อที่รุนแรงที่ส่วนใหญ่เกิดในปอด มีสาเหตุมาจากเชื้อ M tuberculosis และ เชื้อ Mycobacterium africanum ซึ่งส่วนมากมาจากมนุษย์ และเชื้อ Mycobacterium bovis ซึ่ง ส่วนมากมาจากปศุสัตว์ ผู้ที่ติดเชื้อเอชไอวีก็มีแนวโน้มในการติดเชื้อมัยโคแบคทีเรีย (mycobacteria) ชนิคอื่น ๆ อีกด้วย ซึ่งได้แก่เชื้อ Mycobacterium avium เชื้อ Mycobacterium intracellulare และเชื้อ Mycobacterium scrofulaceum วัณโรคเกิดขึ้นเมื่อนิวเคลียสของละอองฝอย (droplet nuclei) ที่ แขวนลอยอยู่ในอากาศ ซึ่งมีหน่วยของเชื้อโรคติดเชื้อสองสามหน่วยหรือแม้แต่หน่วยเดียวสามารถผ่านกลไกการกำจัด อนุภาคในหลอดลม (bronchial mucociliary apparatus) ไปถึงช่องอากาศส่วนปลาย (terminal air space) และเพิ่มจำนวนมากขึ้นในปริเวณนี้ การติดเชื้อในปอดโดยปกติเริ่มต้นขึ้นในส่วนล่างของ lower lobe, middle lobe, lingula, และส่วนด้านหน้าของ upper lobes และในผู้ติดเชื้อส่วนใหญ่จะมีจุด สนใจเริ่มต้นจุดเดียว แต่ผู้ติดเชื้อหนึ่งในสี่หรือมากกว่านั้นมีการแสดงให้เห็นถึงจุดสนใจหลายจุด (multiple foci) เชื้อแบคทีเรียบาซิลลัสถูกจับกินโดยเซลล์ alveolar macrophages แต่ก็ยังคงมีการเจริญเติบโตเพิ่ม จำนวน และแพร่กระจายไปสู่ต่อมน้ำเหลืองในบริเวณนั้น ที่ซึ่งการลุกลามของโรคอาจจะเกิดขึ้นอย่างรวดเร็วหรือหลาย ปีหลังจากนั้น ในเด็กและผู้สูงอายุจุดสนใจเบื้องต้น (primary focus) อาจจะกลายเป็นบริเวณที่มีการลุกลาม ของโรคปอดบวมก็ได้

นอกจากวัณโรคแล้วผู้ป่วยในโรงพยาบาลและบุคลากรทางการแพทย์ตลอดจนเจ้าหน้าที่ที่เกี่ยวข้องก็ยังคงมีความ เสี่ยงในการติดเชื้อโรคอื่น ๆ ที่แพร่กระจายเชื้อทางอากาศในสิ่งแวดล้อมภายในอาคาร ซึ่งรวมถึงการติดเชื้อไวรัส (ใช้หวัดใหญ่ หัด อีสุกอีใส) การติดเชื้อคลาไมเดีย (โรคซิตาโคซิส) การติดเชื้อแบกทีเรีย (โรคปอดอักเสบถีเจียนแนร์) และการติดเชื้อรา (โรคติดเชื้อราแอสเปอร์จิลโลซิส) การติดเชื้อหัดอย่างรุนแรงที่แพร่กระจายเชื้อทางอากาศมีการแสดง ให้เห็นในการแพร่ระบาดในเวชปฏิบัติกุมารเวชศาสตร์ในคลินิคเอกชนแห่งหนึ่ง เมื่อเด็กผู้ชายอายุ 12 ปี ที่เป็นโรคหัดมี อาการไออย่างรุนแรง ต่อมามีผู้ติดเชื้อทู่ติยุภูมิ (secondary cases) เกิดขึ้นจำนวน 7 รายด้วยกัน 4 รายมีการสัมผัสติดต่อโดยบังเอิญ (transient contact) ก่อนหน้านั้นกับผู้ป่วยรายแรกในขณะที่ผู้ป่วยรายนี้ กำลังเข้าสู่คลินิกหรือกำลังออกจากคลินิก ส่วน 3 รายที่เหลือได้เข้าไปในคลินิกแห่งนั้นหลังจากที่ผู้ป่วยรายแรกได้ ออกไปแล้วนานถึง 1 ชั่วโมง ผลจากการตรวจวิเคราะห์การใหลของอากาศในเวลาต่อมาได้แสดงให้เห็นว่ามีนิวเคลียส ของละอองฝอย (droplet nuclei) เกิดขึ้นตลอดทั่วทั้งห้องนั้น บุคลากรที่เกี่ยวข้องโดยตรงในการดูแลผู้ป่วยโรค ระบบทางเดินหายใจ อย่างเช่น โรคซิตาโลซิสจากเชื้อ Chlamydia psittaci หรือโรคปอดบวมจากเชื้อ Chlamydia pneumoniae มีความเสี่ยงในการติดเชื้อจากละอองลอยเหล่านี้ ในระหว่างการระบาดของโรค ซิตาโลซิสในมลรัฐลุยเซียนาเมื่อปี พ.ส. 2486 มีผู้เสียชีวิตจำนวน 8 รายในบรรดาเจ้าหน้าที่พยาบาลที่ได้รับการวินิจฉัย ว่าติดเชื้อจำนวนทั้งสิ้น 19 คน

ระบาดวิทยาของโรคปอดอักเสบลีเจียนแนร์ (Legionnaires' disease) ที่ติดเชื้อในโรงพยาบาลไม่ได้มีการ ชี้แจงรายละเอียดไว้มากสักเท่าใดนัก มีการประมาณการกันว่ามีผู้ที่ป่วยเป็นโรคนี้จำนวน 10,000 ถึง 15,000 คนในแต่ละปีในสหรัฐอเมริกา นอกจากนี้ก็ยังมีผู้ที่ติดเชื้อและมีอาการเล็กน้อยหรือไม่มีอาการใด ๆ เลยอยู่จำนวนหนึ่ง ซึ่งไม่ทราบตัวเลขชัดเจน ในจำนวนผู้ป่วยที่ได้รับการวินิจลัยว่าป่วยเป็นโรคปอดอักเสบลีเจียนแนร์นี้มีอยู่ประมาณ 5% ถึง 15% ที่มีอาการร้ายแรง ในบรรดาผู้ป่วยโรคปอดอักเสบลีเจียนแนร์ที่ติดเชื้อในโรงพยาบาลที่รายงานในประเทศ อังกฤษและเวลส์ในระหว่างปี พ.ศ. 2523 ถึง พ.ศ. 2535 จำนวน 196 ราย พบว่า 69% เกิดขึ้นในระหว่างการระบาด ในโรงพยาบาลจำนวน 22 ครั้ง และ 9% ของผู้ป่วยเกิดขึ้นในช่วงระยะเวลาอย่างน้อย 6 เดือนก่อนหรือหลังการแพร่ ระบาดในโรงพยาบาล อีก 13% อยู่ในโรงพยาบาลที่มีการระบุตัวผู้ป่วยโรคนี้รายอื่น ๆ ที่เกิดขึ้นประปรายเป็นจุด ๆ (ไม่ใช่การแพร่ระบาด) มีเพียง 9% เท่านั้นที่เกิดขึ้นในสถาบันหรือหน่วยงานที่ไม่มีการแพร่ระบาดหรือที่มีผู้ป่วยโรคนี้ เกิดขึ้นประปรายเป็นจุด ๆ ที่เพิ่มเข้ามา

สัดส่วนโดยรวมของโรคปอดบวมที่เกิดขึ้นในโรงพยาบาลที่มีสาเหตุมาจากเชื้อ Legionella ในอเมริกาเหนือยัง ไม่ได้รับการระบุ ถึงแม้ว่าโรงพยาบาลแต่ละแห่งได้มีการรายงานว่าอยู่ในช่วงระหว่าง 0% ถึง 14% เนื่องจากสำหรับ โรงพยาบาลส่วนใหญ่ในสหรัฐอเมริกาแล้วการตรวจวินิจฉัยการติดเชื้อ Legionella นี้โดยปกติทั่วไปไม่ได้มีการ ดำเนินการกับผู้ป่วยทุกคนที่ได้รับเชื้อวัณโรคจากในโรงพยาบาล ค่าช่วงตัวเลขนี้อาจจะเป็นการประมาณการ อุบัติการณ์ของโรคปอดอักเสบลีเจียนแนร์ที่ต่ำกว่าความเป็นจริง (underestimate)

โรงพยาบาลระดับตติยภูมิขนาด 850 เตียงในสังกัดมหาวิทยาลัยแห่งหนึ่งได้รับการสังเกตการณ์ติดตามสำหรับ ระบาดวิทยาของโรคติดเชื้อราแอสเปอร์จิลลัสที่ปอดชนิดรุกราน (invasive aspergillosis) ในช่วงระหว่าง การก่อสร้างโรงพยาบาล ตัวอย่างจากผู้ป่วยจำนวน 153 คนได้รับการสังเกตการณ์ติดตามโดยวิธีการตรวจหา แอนติเจนและเพาะเลี้ยงเชื้อ Aspergillus และมีการพบผู้ป่วยโรคนี้จำนวน 24 รายในระหว่างช่วงเวลา 1 ปี ซึ่ง ในจำนวนนี้มีอยู่ 7 รายที่เป็นการติดเชื้อจากโรงพยาบาล

การอธิบายลักษณะของละอองลอย (AEROSOL CHARACTERIZATION)

การประเมินลักษณะในการติดเชื้อโดยทางอากาศจำเป็นจะต้องมีการศึกษาเกี่ยวกับการเกิดละอองลอย รวมทั้งขนาด ของอนุภาค คุณสมบัติทางด้านอากาศพลศาสตร์ ความเข้มข้น ความสามารถในการทำให้ติดเชื้อและความรุนแรง ตลอดจนความสามารถมีชีวิตอยู่ได้ซึ่งขึ้นอยู่กับปัจจัยทางด้านภูมิอากาศ (อุณหภูมิ ความชื้นสัมพัทธ์)

การเกิดละอองลอยชีวภาพ (Bioaerosol generation)

แหล่งกำเนิดจากมนุษย์ (Human source)

การติดเชื้อในระบบทางเดินหายใจส่วนใหญ่ (เชื้อมัยโคแบคทีเรีย เชื้อไวรัส) เกิดจากการแพร่กระจายเชื้อทางอากาศจาก แหล่งกำเนิดจากมนุษย์ผ่านทางการหายใจเอานิวเคลียสของละอองฝอย (droplet nuclei) เข้าสู่ร่างกาย นิวเคลียสของละอองฝอยที่ว่านี้เป็นอนุภาคติดเชื้อซึ่งมีขนาดเล็ก (เล็กกว่า 6 ไมครอน) ของสารคัดหลั่งจากระบบ ทางเดินหายใจซึ่งกลายเป็นละอองลอยโดยการไอ การจาม การพูดคุย หรือการร้องเพลง ศูนย์ควบคุมและป้องกันโรค ของสหรัฐอเมริกาได้ประมาณการว่าขนาดของนิวเคลียสละอองฝอยที่นำพาเชื้อวัณโรค bacilli อยู่ระหว่าง 1 ถึง 5 ไมครอน

การไอหนึ่งครั้งสามารถผลิตนิวเคลียสละอองฝอย (droplet nuclei) ได้ประมาณ 3000 นิวเคลียส ซึ่งเป็น ปริมาณที่เท่ากับที่มาจากการพูดคุยกันเป็นเวลา 5 นาที การจามหนึ่งครั้งสามารถผลิตละอองฝอยได้มากถึง 40,000 ละออง ซึ่งสามารถระเหยกลายเป็นละอองที่มีขนาดอนุภาคอยู่ในช่วง 0.5 ถึง 12 ไมครอน ศูนย์ควบกุม และป้องกัน โรกของสหรัฐอเมริการะบุว่าจำนวนของเชื้อมัยโกแบกทีเรีย (mycobacteria) ที่ถูกขับเข้าสู่อากาส จากผู้ที่เป็นวัณ โรกมีสหสัมพันธ์กันกับปัจจัยต่าง ๆ ซึ่งรวมถึงการมีอาการไอ (หรืออาการอื่น ๆ ที่เป็นการที่จะปิดปาก ขณะที่ใอ อนุภาคที่มีขนาดโตกว่านิวเคลียสละอองฝอยที่ตกจากอากาศก็ยังมีศักยภาพในการที่จะแขวนตัวลอยอยู่ใน อากาศภายในอาคารได้ใหม่อีกหลังจากที่มีขนาดเล็กลงจากการระเหยของละอองฝอย ร่วมกับกิจกรรมที่ก่อละออง ลอยเช่นการปูเตียง การศึกษาละลองลอยในห้อง (chamber) ได้แสดงให้เห็นถึงการแพร่กระจายตัวทางอากาศ ของเชื้อ Staphylococcus aureus ที่เกิดจากกิจกรรมการผ่าตัดลำไส้ใหญ่ที่เชื่อมโยงกับการติดเชื้อในแผล ของผู้ป่วยจำนวน 11 ราย

แหล่งกำเนิดจากสิ่งแวดล้อม (Environmental source)

จุลชีพของโรคติดเชื้อฉวยโอกาสที่แพร่กระจายทางอากาศที่เล็ดรอดกระจายออกมาจากแหล่งกำเนิดต่าง ๆ ใน สิ่งแวดล้อมเป็นความวิตกกังวลมานานแล้วเกี่ยวกับการติดเชื้อในโรงพยาบาลและเวชปฏิบัติการจำกัดควบคุมการติด เชื้อในโรงพยาบาล การดูแลสุขภาพสำหรับผู้ที่อ่อนแอง่ายต่อการติดเชื้อและเจ้าหน้าที่ที่เกี่ยวข้องก็มีความเสี่ยงต่อการ ติดเชื้อนั้นเช่นกัน แบคทีเรียที่เกี่ยวข้องกับการแพร่กระจายเชื้อทางอากาศในสถานพยาบาลได้แก่เชื้อ streptococci กลุ่ม A เชื้อ S aureus เชื้อ Neisseria meningitidis และเชื้อ Bordetella pertussis การแพร่ระบาดของ เชื้อ S aureus ที่ดื้อยา methicillin ในหน่วยคูแลผู้ป่วยวิกฤตมีความเชื่อมโยงกันกับท่อระบายอากาศของ ระบบการระบายถ่ายเทอากาศของห้องแยกผู้ป่วยติดเชื้อทางอากาศที่อยู่ติดกัน โรคปอดอักเสบถีเจียนแนร์ (Legionnaires disease) เกิดขึ้นจากการรับสัมผัสกับละอองลอยที่เกิดจากหอระบายความร้อนที่มีการ ปนเปื้อน นอกจากนี้แล้วเชื้อ Legionella pneumophila ที่เป็นสาเหตุก็ได้รับการแยกจากละอองลอยที่เกิด จากก๊อกน้ำและผักบัวอาบน้ำโดยใช้เครื่องเพิ่มความชื้นในอากาศ (humidifiers) และเครื่องพ่นละอองยา (nebulizers) และโดยการบีบอุปกรณ์เครื่องช่วยหายใจชนิดมือบีบ (manual ventilation bags)

เชื้อราได้มีส่วนเกี่ยวข้องกับการติดเชื้อจากสิ่งแวดล้อมในโรงพยาบาลมานานแล้ว แหล่งที่มาของสปอร์ของเชื้อ Aspergillus ในสถานพยาบาลได้รับการระบุว่าได้แก่การก่อสร้างกลางแจ้ง การก่อสร้างภายในตัวอาคารและ กระเบื้องเพดาน เครื่องปรับอากาศ และพรมที่ปนเปื้อน แหล่งที่มาอื่น ๆ ของเชื้อ Aspergillus ชนิดต่าง ๆ ที่เป็นไป ได้ในสิ่งแวดล้อมได้แก่ ส่วนประกอบของระบบเครื่องทำความร้อน ระบบการระบายถ่ายเทอากาศ และระบบ เครื่องปรับอากาศ ซึ่งรวมทั้งไล้กรอง ระบบคอนเดนเสท คอยส์ระบบหล่อเย็นระบายความร้อน ท่ออากาศเข้า ตลอดจน ฉนวนที่เป็นรูพรุนในท่อแอร์ที่มีการปนเปื้อน นอกจากนี้แล้วโรคติดเชื้อราแอสเปอร์จิลโลซิส (aspergillosis) ใน ผู้ป่วยที่มีความเสี่ยงสูงมีภูมิต้านทานต่ำหรือได้รับการกดภูมิคุ้มกัน (immunosuppressed) ก็มีความสัมพันธ์ กันกับแหล่งเก็บเชื้ออื่น ๆ ในสิ่งแวดล้อมของโรงพยาบาล รวมทั้งมูลนกในท่อแอร์ที่เพิ่มความเสี่ยงแก่พื้นที่ของผู้ป่วย ตลอดจนวัสดุกันไฟหรือไม้เปียกขึ้นที่ปนเปื้อน อัตราการเสียชีวิตตามที่รายงานว่ามีสาเหตุมาจากโรคติดเชื้อรา แอสเปอร์จิลลัสที่ปอดชนิดรุกราน (invasive pulmonary aspergillosis) มีการเปลี่ยนแปลงผันแปร ขึ้นอยู่กับประชากรผู้ป่วยที่ศึกษา อัตราสูงถึง 95% ในบรรคาผู้ที่ได้รับการปลูกถ่ายไขกระคูกจากเซลล์ที่มีลักษณะทาง พันธุกรรมแตกต่างกัน (allogeneic bone-marrow transplants) และผู้ป่วยโรคไขกระคูกฝ่อ (aplastic anemia) เปรียบเทียบกับอัตรา 13% ถึง 80% ในผู้ป่วยโรคมะเร็งเม็ดเลือดขาว (leukemia)

นิเวศวิทยาของจุลินทรีย์ (Microbial ecology)

อาคารทุกหลังแต่ละหลังมีนิเวศวิทยาหรือความสัมพันธ์ระหว่างจุลินทรีย์กับสภาพแวดล้อม ซึ่งศักยภาพในการ ก่อให้เกิดผลกระทบทางด้านสุขภาพต่อมนุษย์สามารถจะถูกทำให้ลดน้อยลงที่สุดได้โดยการออกแบบ การก่อสร้าง การใช้งาน การบำรุงรักษา ตลอดจนการทำความสะอาดอย่างถูกต้องเหมาะสม ที่มีความสำคัญมากที่สุดก็คือขอบเขต ปริมาณและการคงอยู่ของความชื้นในวัสดุก่อสร้างและวัสดุตกแต่งต่าง ๆ ถ้าหากว่าความชื้นสัมพัทธ์ไม่ได้รับการ ควบกุม หรือเกิดการรั่วซึม เกิดน้ำท่วมขัง หรือระบบการกำจัดน้ำเสียไม่ได้รับการซ่อมแซมแก้ไขทันทีและอย่างถูกต้อง เหมาะสม ผลที่จะตามมาก็คือการเกิดระบบนิเวศวิทยาของจุลินทรีย์ที่เปลี่ยนแปลงไป ซึ่งจะปล่อยให้มีการเพิ่มจำนวน มากเกินไปและการแพร่กระจายของเชื้อราและแบคทีเรียชนิดต่าง ๆ ที่มีศักยภาพในการทำให้ติดเชื้อฉวยโอกาสใน โรงพยาบาล

จุลินทรีย์ชนิดต่าง ๆ มีการเจริญเติบโตเพิ่มจำนวนบนพื้นผิวที่มีความชื้นและภายในเนื้อวัสดุที่เป็นรูพรุน ปริมาณของ น้ำบริสุทธิ์ (free water) ที่มีอยู่สำหรับการเจริญเติบโตเพิ่มจำนวนของจุลินทรีย์เหล่านี้บนพื้นผิวหรือใน สิ่งแวดล้อมจุลภาค (เช่น แผ่นผนัง กระเบื้องปูเพคาน พรม) ได้รับการอธิบายว่าเป็น water activity (a_w) คือ อัตราส่วนของความคันไอ (vapor pressure) ของพื้นผิวหารด้วยความคันไอของน้ำบริสุทธิ์ (free water) ในสภาวะมาตรฐาน ค่า water activity (a_w) ที่เพิ่มสูงขึ้นจากความชื้นสัมพัทธ์ที่สูง การรั่วซึม หรือน้ำท่วม ถ้า หากว่าปล่อยให้คงอยู่นานเกิน 24 ชั่วโมง ก็จะทำให้นิเวศวิทยาตามปกติของสิ่งแวดล้อมจุลภาค (microenvironment) หรือของอาคารทั้งหลังเกิดการเปลี่ยนแปลงไปโดยมีการแข่งขันกันของจุลินทรีย์ ซึ่งจะ ส่งผลให้เกิดความโดดเด่น (predominance) ของจุลินทรีย์หนึ่งชนิดหรือมากกว่าหนึ่งชนิดที่อาจจะสามารถ สร้างผลกระทบความเสียหายต่อวัสดุต่าง ๆ และต่อสุขภาพอนามัยได้

เชื้อราส่วนมากมีความต้องการ water activity (a_w) ต่ำสุดอย่างน้อย 0.88 อย่างไรก็ตามเชื้อราบางชนิดมี ขีดจำกัดล่าง (lower limit) อยู่ที่ 0.66 ถึง 0.70 ซึ่งหมายถึงว่าพวกมันต้องการน้ำน้อยมากในการเจริญเติบโต เพิ่มจำนวน เชื้อราชนิด Aspergillus และ Penicillium ที่ติดเชื้อแบบฉวยโอกาส ก่อสารพิษ (toxigenic) และก่อภูมิแพ้ (allergenic) เป็นตัวแทนที่ดีที่สุดของบรรดาเชื้อราที่ชอบสภาพแห้ง (xerophilic fungi) เหล่านี้ ในทางตรงกันข้ามสิ่งแวดล้อมจุลภาคที่เปียกชื้นเป็นอย่างมากโดยเฉพาะที่มีวัสดุที่ทำมาจากเซลลูโลส (เช่น แผ่นฝ้าบุผนังหรือผนังเบา วอลเปเปอร์ และหนังสือ) จะสนับสนุนการเจริญเติบโตของเชื้อราที่มีค่า water activity (a_w) สูง ๆ เช่น เชื้อ Stachybotrys เชื้อ Ulocladium และเชื้อ Chaetomium เป็นที่ทราบ กันว่าสปอร์ของเชื้อ Stachybotrys มีสาร tricothecene mycotoxins และการรับสัมผัสกับสารชนิด นี้มีความสัมพันธ์กันกับอาการเลือดออกในปอด (pulmonary hemorrhage) ในเด็กทารกในสิ่งแวดล้อมใน บ้านที่มีการปนเปื้อน และสัมพันธ์กับการทำงานของภูมิคุ้มกันที่ลดลงในคนงานในอาคารสำนักงาน

ขนาดและอากาศพลศาสตร์ของละอองลอยชีวภาพ (Bioaerosol size and aerodynamics)

อนุภาคละอองลอยชีวภาพที่ทำให้เกิดการติดเชื้ออาจจะดำรงอยู่ในรูปแบบของ (1) แบคทีเรียเซลล์เดียวหรือสปอร์ เดี่ยว ๆ ของแบคทีเรีย สปอร์เดี่ยว ๆ ของเชื้อราหรือไวรัส (2) รวมกลุ่มกันเป็นหลาย ๆ เซลล์ หลาย ๆ สปอร์ หรือกลุ่ม ของไวรัส หรือ (3) ชีววัตถุ (biologic material) ที่ถูกนำพาไปโดยอนุภาคอื่น ๆ ที่ไม่ใช่อนุภาคชีววัตถุ เชื้อจุลินทรีย์มีขนาดที่แตกต่างกันอย่างมาก โดยปกติทั่วไปเชื้อจุลินทรีย์ที่ทำให้เกิดการติดเชื้อมีขนาดอยู่ในช่วงตั้งแต่ 0.3 ไมครอน ไปจนถึง 10 ไมครอนสำหรับเซลล์แบคทีเรียและสปอร์ของแบคทีเรีย ตั้งแต่ 2.0 ไมครอนไปจนถึง 5.0 ไมครอนสำหรับสปอร์ของเชื้อรา และตั้งแต่ 0.02 ไมครอนไปจนถึง 0.30 ไมครอนสำหรับเชื้อไวรัส ขนาดของ เชื้อที่เจาะจงได้แก่ 0.3 ถึง 0.6×1 ถึง 4 ไมครอนสำหรับเชื้อ M tuberculosis ขนาดตั้งแต่ 0.3 ถึง 0.90imes 2.0 ถึง 20 ไมครอนสำหรับเชื้อ L pneumophila ขนาดตั้งแต่ 2.5 ถึง 3.0 ไมครอนสำหรับสปอร์ของเชื้อ $Aspergillus\ fumigatus$ และขนาดตั้งแต่ 0.09 ถึง 0.12 ไมครอนสำหรับเชื้อไวรัสไข้หวัดใหญ่ อนุภาค ส่วนใหญ่ที่ทำให้เกิดการติดเชื้อที่เกิดจากแหล่งที่มาในระบบทางเดินหายใจของมนุษย์ในเบื้องต้นเกิดขึ้นในรูปของ นิวเคลียสละอองฝอย (droplet nuclei) ขนาดเส้นผ่าศูนย์กลางอยู่ที่ระหว่าง 0.5 ถึง 5.0 ไมครอน ในขณะที่ ละอองฝอยถูกขับออกมาจากทางเดินหายใจ โดยแรงและเฉียบพลันนั้น มันก็จะเริ่มระเหยและดังนั้นก็จะมีการ เปลี่ยนแปลงของมวล (mass) และขนาดของอนุภาค (aerodynamic diameter) ในขณะที่การระเหย เสร็จสิ้นสมบูรณ์ลงขนาคของอนุภาคอาจจะเล็กเพียงพอในการที่จะคงลอยตัวอยู่ในอากาศภายในอาคาร ตามที่ได้ ชี้ให้เห็นเมื่อเกือบจะ 60 ปีมาแล้วขนาดของนิวเคลียสละอองฝอยจะขึ้นอยู่กับปริมาณของแข็ง (solid matter) ที่มีอยู่ในละอองฝอยที่กำลังระเหย

แต่อย่างไรก็ตามเชื้อจุลินทรีย์มีคุณสมบัติในการคูดความชื้น (hygroscopic) และดังนั้นความชื้นสัมพัทธ์ของ สิ่งแวดล้อมภายในอาคารจึงสามารถมีผลกระทบเป็นอย่างมากต่อขนาด (aerodynamic size) ต่อระยะเวลาที่ ลอยตัวอยู่ในอากาศ ตลอดจนต่อความสามารถมีชีวิตอยู่ได้ของอนุภาค (viability) ประเด็นหลังสุดนี้มี ความสำคัญอย่างยิ่งยวด เพราะว่าเฉพาะเชื้อจุลินทรีย์ที่มีชีวิตรอดเท่านั้นที่สามารถเริ่มกระบวนการติดเชื้อ นอกจากนี้ แรงใน้มถ่วงของโลก ความร้อน ตลอดจนไฟฟ้าสถิตก็มีผลต่อพฤติกรรมทางด้านอากาศพลศาสตร์เช่นกัน

ความสามารถในการทำให้ติดเชื้อและความรุนแรงของละอองลอยชีวภาพ (Bioaerosol infectivity and virulence)

กระบวนการของโรคติดเชื้อในเจ้าบ้าน (host) ที่เป็นสัตว์เป็นฟังก์ชั่นของความเข้มข้นของเชื้อจุลินทรีย์ (ปริมาณหรือ จำนวนของเชื้อจุลินทรีย์ที่ทำให้เกิดการติดเชื้อ) และความรุนแรง (ปัจจัยที่สนับสนุนการเกิดโรค) ที่ทำให้เชื้อสามารถ เอาชนะการป้องกันทางกายภาพตามปกติและการป้องกันของภูมิคุ้มกันของเจ้าบ้าน (host) ได้ สำหรับมนุษย์แล้ว การเริ่มต้นของโรคบางอย่างที่เกิดจากเชื้อจุลินทรีย์จำเป็นจะต้องมีปริมาณหรือจำนวนของเชื้อจุลินทรีย์ (infective doses) แค่เพียงเล็กน้อยเท่านั้น เนื่องจากว่าเชื้อเหล่านั้นมีความสัมพันธ์ (affinity) กับเนื้อเยื่อจำเพาะและมี ปัจจัยสำหรับความรุนแรงที่มีศักยภาพหนึ่งอย่างหรือมากกว่านั้น ซึ่งทำให้เชื้อเหล่านั้นมีความต้านทานต่อการหมด ฤทธิ์ (inactivation) ตัวอย่างเช่น มีการรายงานเกี่ยวกับการติดเชื้อ Francisella tularensis (เชื้อนี้เป็น สาเหตุของโรคทูลารีเมียหรือโรคไข้กระต่าย) ทางอากาศว่าเกิดจากเชื้อจุลินทรีย์ชนิดหนึ่ง ซึ่งความรุนแรงของมันมี ความสัมพันธ์กันกับแคปซูลของเซลล์ (cellular capsule) ในการเอาชนะการกำจัดเชื้อในปอดตามปกติและ กลไกการทำให้หมดฤทธิ์ (inactivation mechanisms) ในเจ้าบ้าน (host) ที่อ่อนแอนั้นจำเป็นต้องใช้ เซลล์ของเชื้อ M tuberculosis ซึ่งมีโครงสร้างผนังเซลล์ที่มีลักษณะเฉพาะตัว (unique) และต้านทาน (resistant) แค่เพียงเล็กน้อยไม่กี่เซลล์เท่านั้น ความอ่อนแอง่ายต่อการเกิดโรค (susceptibility) มีการ เพิ่มขึ้นเมื่อมีการรับสัมผัสเชื้อระยะยาวและการทำงานของภูมิคุ้มกันที่ลดน้อยลง ซึ่งอาจจะเกิดจากปัจจัย เสี่ยงต่าง ๆ ตามธรรมชาติหรือที่ตัวเองกระตุ้น (self-induced) ที่มีมาก่อนหน้า เช่น ความแก่ตัว สภาพที่อยู่อาศัยที่หนาแน่น แออัด สูบบุหรี่จัด ภาวะโภชนาการไม่ดี ตลอดจนเป็นโรคพิษสุราเรื้อรัง การระบาดของวัณโรคสามารถจะเกิดขึ้นได้ในผู้ ที่ชุมนุมรวมตัวกันในพื้นที่ปิด เช่น ที่พักพิงคนไร้บ้าน สถานดูแลผู้ป่วยระยะยาว โรงพยาบาล โรงเรียน คุก ตลอดจน อาคารสำนักงาน ความสามารถในการทำให้ติดเชื้อและความจำเป็นต้องมีการควบคุมทางด้านวิศวกรรมในการทำ ความร้อน การระบายถ่ายเทอากาศ และการปรับอากาศสำหรับผู้ป่วยวัณโรคได้มีการแสดงให้เห็นเมื่อ 30 กว่าปี มาแล้ว มีการทดลองซึ่งให้หนูตะเภารับสัมผัสกับอากาศที่ระบายออกจากหออภิบาลผู้ป่วยซึ่งผู้ป่วยวัณโรคกำลังได้รับ การรักษาด้วยยา ในระหว่างช่วงระยะเวลา 2 ปี หนูตะเภาจำนวน 71 ตัวจากจำนวนเฉลี่ย 156 ตัวที่รับสัมผัสกับอากาศ จากหออภิบาลผู้ป่วยวัณโรคขนาด 6 เตียงอย่างต่อเนื่องเกิดการติดเชื้อ ที่ใหม่กว่านั้นก็คือการติดเชื้อ Mtuberculosis ได้รับการทบทวน

ความสามารถในการทำให้ติดเชื้อของไวรัส (viral infectivity) และความรุนแรง (virulence) ของเชื้อ เป็น สิ่งที่เห็นได้ชัดเจนมากขึ้นต่อสาธารณชนทั่วไปอย่างไม่ต้องสงสัย ในแต่ละปีมีการแพร่ระบาดของไวรัสไข้หวัดใหญ่ เกิดขึ้นทั่วโลกโดยที่บางครั้งก็มีความรุนแรงมากกว่าครั้งอื่น ๆ ในระหว่างการระบาดครั้งใหญ่ ๆ จำนวนการเข้าพัก รักษาตัวในโรงพยาบาลเพราะติดเชื้อไข้หวัดใหญ่สำหรับผู้ที่มีความเสี่ยงสูงอาจจะเพิ่มสูงขึ้นสองถึงห้าเท่า ซึ่งทำให้

บุคลากรทางการแพทย์มีความเสี่ยงในการติดเชื้อเพิ่มสูงขึ้น มีการคิดกันว่าปริมาณหรือจำนวนเล็กน้อยของเชื้อก็ สามารถทำให้เกิดการติดเชื้อได้ เนื่องจากความเร็วที่โรคแพร่กระจายไปทั่วกลุ่มประชากร การแพร่กระจายเชื้อ coxsackie A virus type 21 ทางอากาสตามธรรมชาติได้รับการศึกษาวิจัยในอาสาสมัครผู้ใหญ่ 2 กลุ่ม กลุ่ม หนึ่งถูกทำให้ติดเชื้อไวรัสชนิดนี้ อีกกลุ่มหนึ่งซึ่งไม่มีการติดเชื้อและไม่มีแอนติบอดีถูกแยกจากกลุ่มแรกโดยใช้ตาข่าย มุ้งลวดขนาดกว้าง 4 ฟุต 2 ชั้น มีการแสดงให้เห็นถึงการแพร่กระจายของการติดเชื้อในวันที่ 6 ในขณะที่เกิดระลอกการ ติดเชื้อขึ้นในกลุ่มที่ไม่มีการติดเชื้อมาก่อนหน้านั้น โรคหัดก็เป็นอีกโรคหนึ่งจากไวรัสที่ติดต่อได้ง่ายมาก (highly contagious) ซึ่งแพร่กระจายเชื้อทางอากาศ ปริมาณหรือจำนวนเชื้อเพียงเล็กน้อยก็ทำให้เกิดการติดเชื้อได้แล้ว และการได้รับเชื้อแค่เพียง 4 ครั้ง (4 doses) ต่อนาทีจากผู้ที่ติดเชื้อก็สามารถเริ่มต้นการแพร่ระบาดได้แล้ว นอกจากนี้ แล้วไวรัสรูเบลลา (โรคหัดเยอรมัน) และไวรัสวาริเซลลา (โรคอีสุกอีใส) ก็สามารถแพร่กระจายได้อย่างง่ายดายทาง ละอองลอยในอากาสภายในอาการ

เชื้อราที่แพร่กระจายทางอากาศที่ชัดเจนมากที่สุดคือเชื้อ A fumigatus และเชื้อราชนิดอื่น ๆ ก็ก่อให้เกิดภัยคุกคาม ของโรคติดเชื้อที่ร้ายแรงเป็นอย่างมากต่อผู้ที่มีภาวะภูมิคุ้มกันอ่อนแอ (immunocompromised) ที่เป็นผล มาจากการได้รับยากดภูมิคุ้มกัน (immunosuppressive) หรือยาที่มีผลข้างเคียงโดยมีอันตรายต่อเซลล์ของ ร่างกาย (cytotoxic) การแพร่ระบาดของโรคติดเชื้อราแอสเปอร์จิลลัสที่ปอด (pulmonary aspergillosis) ในโรงพยาบาลส่วนใหญ่เกิดขึ้นในผู้ป่วยที่มีภาวะเม็ดเลือดขาวต่ำ (granulocytopenia) โดยเฉพาะอย่างยิ่งในหน่วยปลูกถ่ายไขกระดูก (bone-marrow transplants) ถึงแม้ว่าจะมีการรายงาน การพบโรคติดเชื้อราแอสเปอร์จิลลัสที่ปอดชนิดรุกราน (invasive aspergillosis) ในผู้ที่ได้รับการปลูกถ่าย อวัยวะที่ไม่มีโพรงเป็นก้อน ๆ (เช่น หัวใจ) แต่อุบัติการณ์ของการติดเชื้อ Aspergillus ในผู้ป่วยเหล่านี้ก็ต่ำกว่าใน ผู้ที่ได้รับการปลูกถ่ายไขกระดูก ซึ่งอาจจะเนื่องมาจากว่าภาวะเม็ดเลือดขาวต่ำ (granulocytopenia) มีความ วุนแรงน้อยกว่าในผู้ที่ได้รับการปลูกถ่ายอวัยวะที่ไม่มีโพรงเป็นก้อน ๆ (solid-organ transplant) และการ ใช้ยาคอร์ติโคสเตียรอยด์ (corticosteroids) ลดลงจากการเข้ามาของยาไซโคลสปอริน (cyclosporine)

โดยธรรมชาติในกระบวนการติดเชื้อ ที่เริ่มต้นด้วยการหายใจเช้ารับเอานิวเคลียสละอองฝอยติดเชื้อเข้าสู่ร่างกาย จะมี การสะสมเชื้อจุลินทรีย์ในบริเวณภายในระบบทางเดินหายใจ การสะสมเชื้อจุลินทรีย์นี้ได้รับอิทธิพลจากการดูด ความชื้น (hygroscopicity) ซึ่งเป็นสาเหตุที่ทำให้เกิดการเพิ่มขึ้นของขนาดละอองลอยที่หายใจเข้าไป โดยผ่าน การเก็บสะสมความชื้นในขณะที่มันเคลื่อนที่อยู่ภายในทางเดินหายใจ Knight ได้ประมาณการว่าอนุภาคดูด ความชื้น (hygroscopic particle) ที่มีขนาด 1.5 ไมครอนซึ่งเป็นขนาดปกติทั่วไปในการไอและจามจะมี ขนาดเส้นผ่าศูนย์กลางเพิ่มขึ้นเป็น 2.0 ไมครอนเมื่อเคลื่อนที่ผ่านจมูก และจะเพิ่มขนาดเป็น 4.0 ไมครอนในอากาศ ที่อิ่มตัว (saturated air) ในบริเวณโพรงจมูกต่อกับคอหอย (nasopharynx) และปอด เขายังได้ตั้งทฤษฎี

ว่าผลกระทบของการดูดความขึ้นและการเปลี่ยนแปลงขนาดของอนุภาคซึ่งเป็นผลตามมานั้นจะทำให้มีการเก็บรักษา (retention) เพิ่มมากขึ้นในหลอดลมฝอยส่วนที่อยู่ในปอด (tertiary bronchioles) และในท่อลม (alveolar ducts) ซึ่งเป็นผลกระทบที่อาจจะมีความสำคัญสำหรับละอองลอยของไวรัสซึ่งสามารถทำให้เกิดการ ติดเชื้อได้อย่างมากสำหรับบริเวณปอดส่วนนั้น

ความสามารถมีชีวิตอยู่ได้ของละอองลอยชีวภาพและปัจจัยทางด้านภูมิอากาศ (Bioaerosol viability and climate factors)

เมื่อจุลินทรีย์ที่ก่อโรคออกจากตัวเจ้าบ้าน (host) และกลายเป็นละอองลอยนั้น พวกมันมีความเป็นไปได้ที่อาจจะ ได้รับการบาดเจ็บเสียหายในระหว่างกระบวนการก่อตัว นอกจากนี้แล้วทันทีที่มันลอยตัวอยู่ในอากาศมันก็ได้อยู่นอก แหล่งที่อยู่อาศัยตามธรรมชาติของมันแล้ว และก็ตกอยู่ในภาวะที่จะมีการสูญเสียเพิ่มมากขึ้นต่อความสามารถในการมี ชีวิตรอดเมื่อเวลาผ่านไป ซึ่งขึ้นอยู่กับปัจจัยสภาพแวดล้อมต่าง ๆ ความสามารถมีชีวิตอยู่ได้ (viability) สามารถ ได้รับการนิยามว่าเป็นความสามารถของจุลินทรีย์ในการแพร่พันธุ์เพิ่มจำนวน ถึงแม้ว่าจุลินทรีย์จะยังคงมีชีวิตอยู่ แต่ ถ้าหากว่ามันไม่สามารถแพร่พันธุ์เพิ่มจำนวนได้ มันก็สามารถได้รับการพิจารณาว่าไม่สามารถมีชีวิตรอดอยู่ได้ (nonviable) เนื่องจากว่ามันได้สูญเสียความสามารถในการสร้างประชากรขึ้นมาใหม่ภายในสิ่งแวดล้อมจุลภาค นั้น ๆ ปัจจัยที่มีอิทธิพลต่อการอยู่รอดของละอองลอยชีวภาพได้แก่ สื่อกลางที่เชื้อจุลินทรีย์แขวนลอยอยู่ อุณหภูมิ ความชื้นสัมพัทธ์ ความไวต่อออกซิเจน และการรับสัมผัสกับแสงอุลตราไวโอเลตหรือรังสีแม่เหล็กไฟฟ้า โดยการใช้ แบคทีเรียชนิคต่าง ๆ กัน Wells และ Stone ได้สร้างข้อมูลที่บ่งชี้ว่าเชื้อจุลินทรีย์ยังคงสามารถมีชีวิตรอดอยู่ใน อากาศนานพอที่จะเกิดการแพร่กระจายออกไปในวงกว้าง ทันทีที่มันอยู่ในรูปของละอองลอยในสิ่งแวดล้อมภายในตัว อาคารแล้ว มันก็จะตกอยู่ภายใต้การ(ทำให้)แห้งน้ำที่อันตรายถึงชีวิต (lethal desiccation) ได้ ซึ่งเกิดจาก ปฏิสัมพันธ์ระหว่างสัณฐานวิทยา (morphology) สรีรวิทยา ความไวต่อออกซิเจน และสื่อกลางที่เชื้อจุลินทรีย์ ้นั้นแขวนลอยอยู่ กับระดับของความชื้นสัมพัทธ์และอุณหภูมิที่มีการผันแปรเปลี่ยนแปลง นอกเหนือจากการเคลื่อนที่ใน อากาศ การขึ้น ๆ ลง ๆ ของความกดอากาศ ใอออนในอากาศ ตลอดจนสารมลพิษอื่น ๆ ที่อยู่ในอากาศอีกด้วย ด้วยเหตุนี้ ้ศักยภาพในการอยู่รอดของจุลินทรีย์ก่อเชื้อนั้น ๆ เมื่ออยู่ในรูปละอองลอยแล้วจึงมีลักษณะเฉพาะตัวต่อจุลินทรีย์ชนิด นั้นภายใต้สภาวะเงื่อนไขเฉพาะ ณ. จุคเวลานั้น ๆ การประเมินปัจจัยต่าง ๆ ทางด้านสิ่งแวดล้อมที่เกี่ยวข้องสัมพันธ์กับ การอยู่รอดของเชื้อแบคทีเรียและไวรัสในละอองลอยได้มีการทบทวนมาแล้ว

อุณหภูมิและความชื้นสัมพัทธ์ (Temperature and relative humidity)

อุณหภูมิและความชื้นสัมพัทธ์เป็นปัจจัยสำคัญในการอยู่รอดของละอองลอย เราจะสามารถศึกษาถึงผลกระทบของ ความชื้นสัมพัทธ์ซึ่งมีการผันแปรเปลี่ยนแปลงก็เฉพาะต่อเมื่อมีการควบคุมอุณหภูมิ โดยเฉพาะอย่างยิ่งมีการศึกษาใน ห้องปฏิบัติการมากมายที่ได้ชี้ให้เห็นว่าผลกระทบของความชื้นสัมพัทธ์ต่อเชื้อจุลินทรีย์ในอากาศเป็นปัจจัยสำคัญ แต่ เป็นปัจจัยที่ไม่สามารถคาดการณ์ได้ (unpredictable) งานวิจัยชิ้นหนึ่งที่ดำเนินการโดย Harper ได้ศึกษา เกี่ยวกับการอยู่รอด (นานถึง 23 ชั่วโมง) ของเชื้อไวรัส 4 ชนิด (ไวรัสวัคซิเนีย ไวรัสไข้หวัดใหญ่ชนิด A ไวรัสโปลิโอ และไวรัสไข้สมองและไขสันหลังอักเสบเวเนซุเอลาในม้า) ที่อยู่ในรูปละอองลอยที่อุณหภูมิและความชื้นสัมพัทธ์ต่าง ๆ กันในความมืด Harper ได้พบว่าโดยปกติทั่วไปแล้วการอยู่รอดของไวรัสที่ความชื้นสัมพัทธ์แต่ละระดับเป็นไปได้ ด้วยดีที่อุณหภูมิต่ำ ๆ มากกว่าที่อุณหภูมิสูง ๆ นอกจากนี้แล้ว ไวรัสวัคซิเนีย ไวรัสไข้หวัดใหญ่และไวรัสไข้สมองและ ไขสันหลังอักเสบเวเนซุเอลาในม้าก็ยังสามารถอยู่รอดได้ดีขึ้นที่ความชื้นสัมพัทธ์ต่ำ ๆ (17% ถึง 25%) ในขณะที่ไวรัส ้ โปลิโอแสดงให้เห็นถึงการอยู่รอดมากที่สุดที่ความชื้นสัมพัทธ์ระดับสูง ๆ (80% ถึง 81%) งานวิจัยอีกชิ้นหนึ่งศึกษา เกี่ยวกับการอยู่รอดของเชื้อไวรัสระบบทางเดินหายใจของมนุษย์ 3 ชนิดที่อยู่ในรูปละอองลอย (ไวรัสอะดีโน ซีโรไทป์ 4และ 7 และไวรัสพาราอินฟลูเอนซา ซีโรไทป์ 3) ในตู้เก็บอากาศสถิต (static chambers) ที่ระดับความชื้น สัมพัทธ์ 3 ระดับ (20%, 50%, 80%) และพบว่าไวรัสอะดีโนอยู่รอดได้ดีขึ้นที่ระดับความชื้นสัมพัทธ์ 80%ในขณะที่ไวรัสพาราอินฟลูเอนซาอยู่รอคได้ดีขึ้นที่ระดับความชื้นสัมพัทธ์ 20% งานวิจัยเหล่านี้ดำเนินการกับละออง ลอยที่มีขนาดเส้นผ่าศูนย์กลางของมวลโดยเฉลี่ย (ค่ากลางมัธยฐาน) อยู่ที่ประมาณ 2.0 ใมครอน Davis และคณะซึ่ง ดำเนินการวิจัยเกี่ยวกับพลวัตของละอองลอยของเชื้อไวรัสอะดีโน ซีโรไทป์ 12 ที่อุณหภูมิ 28° ถึง $30^\circ C$ และ ระดับความชื้นสัมพัทธ์ที่ 89%, 51%, และ 32% ได้พบว่ามีการอยู่รอดเพิ่มมากขึ้นเมื่อความชื้นสัมพัทธ์สูงขึ้น และ มีความสัมพันธ์อย่างเดียวกันนี้ในการกู้คืน (recovery) เชื้อไวรัสจากปอดของหนูแฮมสเตอร์แรกเกิดที่ได้รับสัมผัส เชื้อ Schaffer และคณะได้ศึกษาผลกระทบของวิธีการต่าง ๆ ในการเพิ่มปริมาณหรือจำนวนเชื้อไวรัส (การ เพาะเลี้ยงเซลล์ การเพาะเลี้ยงไข่) ที่มีต่อเสถียรภาพ (stability) ของไวรัสไข้หวัดใหญ่ชนิด ${\bf A}$ ที่ความชื้นสัมพัทธ์ ระดับกลาง ๆ (50% to 80%) และแสดงให้เห็นว่าการอยู่รอดที่ผันแปรเปลี่ยนแปลงมีความสัมพันธ์กันกับวิธีการใน การเพิ่มจำนวน งานวิจัยที่ใหม่กว่านั้นเป็นการวิจัยของ Ijaz และคณะซึ่งศึกษาเกี่ยวกับการอยู่รอดของเชื้อไวรัสโคโร นา 229E ในมนุษย์ที่อยู่ในอากาศที่สภาพเงื่อนไขต่าง ๆ กันของอุณหภูมิ ($20^{\circ}C$ และ $6^{\circ}C$) และความชื้นสัมพันธ์ (30%, 50%, 80%) ได้พบว่าการอยู่รอดที่มากที่สุดของไวรัสในรูปของละอองลอยขึ้นอยู่กับอุณหภูมิอย่างที่สุด (extremely temperature dependent) ที่ระดับความชื้นสัมพันธ์ 80% Theunissen และ คณะได้แสดงให้เห็นถึงการอยู่รอดในอากาศอย่างมีประสิทธิภาพของเชื้อ Chlamydia pneumoniae ที่ อุณหภูมิ 15° ถึง 25°C และระดับความชื้นสัมพัทธ์ที่สูง ๆ

งานวิจัยทั้งหมดเหล่านี้ตลอดจนงานวิจัยชิ้นอื่น ๆ อีกมากมายบ่งชี้ว่าบทบาทของสิ่งแวดล้อมในการอยู่รอดของ จุลินทรีย์ในอากาศมีความสลับซับซ้อนอย่างที่สุด สำหรับการประยุกต์นำไปใช้ในทางปฏิบัติเพื่อการควบคุมเชื้อก่อโรค ทางอากาศนั้นการศึกษาวิจัยจะต้องย้ายจากตู้ทดสอบในห้องปฏิบัติการไปสู่ในสิ่งแวดล้อมจริงภายในอาคาร โดยใช้ เทคนิควิธีการต่าง ๆ ที่เป็นมาตรฐานซึ่งได้พัฒนามาแล้วก่อนหน้านั้น

การเก็บตัวอย่างสิ่งแวดล้อมและการตรวจวิเคราะห์ (ENVIRONMENTAL SAMPLING AND ANALYSIS)

วิธีการทั้งหมดที่มีอยู่ในการเก็บตัวอย่างละอองลอยชีวภาพมีความเป็นไปได้ที่จะใช้ได้กับการกู้คืน (recovery) เชื้อ ที่ก่อโรคติดเชื้อจากอากาศภายในอาคาร รายละเอียดการทบทวนวิธีการต่าง ๆ ในการเก็บตัวอย่างละอองลอยชีวภาพ ้ก็มีอยู่ การเก็บตัวอย่างมีจุดสนใจเบื้องต้นไปที่การกู้คืนจุลินทรีย์ที่สามารถมีชีวิตอยู่รอดโดยใช้วิธีการกด (impingement) การอัดแน่น (impaction) การกรอง (filtration) การปั่นแยก (centrifugal separation) หรือการตกลงมา (precipitation) โดยใช้ไฟฟ้าสถิตและความร้อน อุปกรณ์เก็บตัวอย่าง ละอองลอยชีวภาพทั้งหมดสามารถสร้างความเสียหายอย่างร้ายแรงต่อบางส่วนของจุลินทรีย์ที่เก็บมาทั้งหมด การ บาดเจ็บเสียหายที่ว่านี้อาจจะเกิดขึ้นจากการอัดแน่น (impaction) กับอาหารเลี้ยงเชื้อ (culture media) หรือพื้นผิวอื่น ๆ หรือจากการสูญเสียในบริเวณผนังของอุปกรณ์เก็บตัวอย่าง ความปั่นป่วน (turbulence) ใน ของเหลวที่ใช้ในการกด (impingement fluid) หรือการดูดความชื้น (desiccation) บนสื่อตัวกรอง (filter media) การสูญเสียเชื้อจุลินทรีย์ก็ยังมีความเกี่ยวข้องกับอัตราการ ใหลของอากาศที่เก็บตัวอย่างอีกด้วย วิธี ที่ใช้ตัวกรองอาจจะเก็บตัวอย่างที่อัตราเท่ากับ 4 ลิตรต่อนาที ในขณะที่วิธีที่ใช้หลอคบรรจุของเหลวที่ใช้วัสคุเป็นแก้ว ทั้งหมด (all-glass impinge) จะเก็บตัวอย่างที่อัตราเท่ากับ 12.5 ลิตรต่อนาที วิธีที่ใช้ตัวอัดที่มีตะแกรงร่อน (sieve impactor) จะเก็บตัวอย่างที่อัตราเท่ากับ 28.3 ลิตรต่อนาที วิธีที่ใช้ตัวอัดปริมาตรสูง (highvolume impactor) จะเก็บตัวอย่างที่อัตราเท่ากับ 180 ลิตรต่อนาที และอุปกรณ์เก็บตัวอย่างปริมาตรสูงชนิด อื่น ๆ จะเก็บตัวอย่างที่อัตรานับเป็นร้อย ๆ หรือพัน ๆ ลิตรต่อนาที อุปกรณ์เก็บตัวอย่างจะต้องได้รับการปรับเทียบ (calibrated) สำหรับอัตราการใหลก่อนนำไปใช้ และประสิทธิภาพในการเก็บตัวอย่างของมันจะต้องได้รับการ ชี้ให้เห็นก่อนหน้านั้นในฐานะที่เป็นฟังก์ชั่นของขนาดและรูปร่างของอนุภาค

ประสิทธิภาพในการเก็บตัวอย่างได้รับการกำหนดเป็นแบบฉบับตามปกติในการศึกษาวิจัยกับอนุภาคที่ทราบขนาด และรูปร่างภายใต้สภาพเงื่อนไขที่มีการควบคุมในห้องปฏิบัติการที่มีการควบคุม การศึกษาวิจัยในห้องปฏิบัติการ เกี่ยวกับประสิทธิภาพในการเก็บตัวอย่างของอุปกรณ์เก็บตัวอย่างละอองลอยชีวภาพที่ใช้กันปกติทั่วไปได้รับการ ตีพิมพ์เผยแพร่เมื่อไม่นานมานี้ และปัจจัยทางด้านกายภาพต่าง ๆ ที่มีผลต่อประสิทธิภาพการทำงานของอุปกรณ์เก็บ ตัวอย่างละอองลอยชีวภาพ โดยเฉพาะอย่างยิ่งที่เกี่ยวกับแนวคิดเรื่องระยะหยุด (stopping distance) ก็ได้มี การกล่าวถึงอย่างเข้มข้น การประเมินประสิทธิภาพการทำงานของอุปกรณ์เก็บ ตัวอย่างเชิงเปรียบเทียบก็ได้รับการ ดำเนินการด้วยเช่นเดียวกันภายใต้สภาวะเงื่อนไขในสนามที่มีละอองลอยตามธรรมชาติ การศึกษาวิจัยเกี่ยวกับละออง

ลอยเมื่อไม่นานมานี้ได้อธิบายถึงประสิทธิภาพในการเก็บตัวอย่าง ณ. จุดทางเข้า (inlet) ของอุปกรณ์เก็บตัวอย่าง ละอองลอยชีวภาพเชิงพานิชย์จำนวนหนึ่ง รวมทั้งการออกแบบตัวอัดขั้นตอนเดียว (single-stage impactor) ซึ่งสามารถใช้ในการศึกษาตัวแปรในการเก็บตัวอย่างและการตรวจวิเคราะห์ที่แตกต่างกัน ซึ่งมีผลกระทบต่อ ความสามารถในการมีชีวิตอยู่รอดของละอองลอยชีวภาพ เช่น ความชื้นสัมพัทธ์ อัตราการไหลของอากาศในการเก็บ ตัวอย่าง และระยะเวลาในการดูดความชื้น การศึกษาวิจัยเช่นที่ว่านี้มีความสำคัญเป็นอย่างมากในการกำหนด เครื่องมือและวิธีการในการเก็บตัวอย่าง เพื่อที่จะกู้คืน (recover) เชื้อก่อโรคที่อาจจะมีความอ่อนไหวเป็นพิเศษต่อ การเก็บตัวอย่างและมีอยู่ในจำนวนแค่เพียงเล็กน้อยเท่านั้นในอากาศภายในตัวอาคาร อย่างเช่นเชื้อ $m{M}$ tuberculosis เทคนิควิธีการในการเก็บตัวอย่างละอองลอยที่มีประสิทธิภาพสำหรับการเก็บตัวอย่างเชื้อ Mtuberculosis จากอากาศภายในตัวอาคารยังไม่เคยมีการอธิบายมาก่อน อย่างไรก็ตามเชื้อมัยโคแบคทีเรีย (mycobacteria) ชนิดอื่นๆ ในอากาศก็ได้รับการกู้คืน (recovered) อย่างประสบผลสำเร็จจากอากาศ กลางแจ้ง โดยใช้อุปกรณ์เก็บตัวอย่างชนิดตัวอัด (impactor samplers) ที่มีสื่อ (media) ที่ได้รับการเพิ่ม (enriched) ที่ระบุ เทคนิควิธีการต่าง ๆ ในการเก็บตัวอย่างละอองลอยและขั้นตอนการดำเนินการตรวจวิเคราะห์ ที่ใช้สำหรับการกู้คืนเชื้อไวรัสในมนุษย์ได้รับการทบทวน ขอบเขตของปัญหาเกี่ยวกับการเก็บตัวอย่างเชื้อก่อโรคใน อากาศได้รับการแสดงตัวอย่างโดยผลที่ได้จากการวิจัยกับละอองลอยของเชื้อไวรัสคอกซากี เอ 21 (coxsackie A-21) ในธรรมชาติ มีการพบว่าถ้าหากว่าบุคคลเป็นที่พักพิง (harbor) ให้แก่ปริมาณไวรัส เฉลี่ย (ค่ากลางมัธยฐาน) ที่ 104 tissue culture infectious dose ต่อปริมาณสารคัดหลั่งจากช่องปาก 1 มิลลิลิตร มีการจาม 100 ครั้งในห้องที่ปิดอยู่ (ปริมาตร $70,\!000$ ลิตร) และเกิดสารคัดหลั่งที่ทำให้เป็นละออง (atomized) ในปริมาณ 5.9 × 10⁻⁶ มิลลิลิตรในการจามแต่ละครั้งแล้วละก็ น่าจะต้องมีการเก็บตัวอย่าง อากาศปริมาณถึง 12,000 ลิตร เพื่อที่จะกู้คืน (recover) ปริมาณไวรัสเฉลี่ย (ค่ากลางมัธยฐาน) เท่ากับ 1 tissue culture infectious dose

การตรวจวิเคราะห์ตัวอย่างที่เก็บมาไม่ได้จำกัดอยู่เฉพาะการเก็บตัวอย่างละอองชีวภาพสำหรับการเพาะเลี้ยงเซลล์เพื่อ ดูความสามารถในการมีชีวิตรอด (viability culturing) อีกต่อไป เทคนิควิธีการใหม่ ๆ ที่ใช้กันอยู่เป็นปกติ ทั่วไปในห้องปฏิบัติการจุลชีววิทยาทางคลินิกในปัจจุบันนี้มีการประยุกต์ใช้ในการเฝ้าติดตามสังเกตการณ์ด้าน สิ่งแวดล้อม โดยเฉพาะอย่างยิ่งเมื่อจุดมุ่งหมายเป็นการเพื่อแสดงให้เห็นถึงเชื้อก่อโรคในอากาศ เทคนิควิธีการต่าง ๆ อ ข่าง เช่ น fluorescent antibody, monoclonal antibody, gene probe, และ polymerase chain reaction ในปัจจุบันนี้สามารถเป็นทางเลือกอื่น ๆ ในการแยก (isolation) การ ระบุบ่งชี้ (identification) และการยืนยัน (confirmation) โดยเฉพาะอย่างยิ่งเมื่อการตรวจวิเคราะห์และ การประเมินผลที่รวดเร็วและสะดวกต่อการใช้งานสำหรับอากาศภายในตัวอาคารได้กลายเป็นสิ่งที่มีความสำคัญเพิ่ม มากขึ้น โดยเฉพาะวิธี Polymerase chain reaction ซึ่งมีศักยภาพมหาศาลสำหรับการประเมินเชื้อก่อโรค

ทางอากาศได้อย่างรวดเร็วและเด็ดขาด ซึ่งไม่ง่ายต่อการกู้คืน (recovery) โดยเทคนิควิธีการเพาะเลี้ยงเซลล์อย่าง ง่าย เช่น ไวรัสเชื้อคลามายเดีย (chlamydia) เชื้อ มัยโคแบคทีเรีย (mycobacteria) และเชื้อรา เช่น เชื้อ Histoplasma ถึงแม้ว่าเทคนิควิธีการในการกู้คืนละอองลอยชีวภาพและการตรวจวิเคราะห์อย่างรวดเร็วจะ ได้มีการกล่าวถึงมาแล้ว แต่ก็ยังคงจะต้องมีการศึกษาวิจัยอีกมากเพื่อปรับแต่งและทำให้ขั้นตอนปฏิบัติที่เหมาะสม ที่สุดเหล่านั้นซึ่งจะพิสูจน์ได้ว่ามีประสิทธิภาพเกี่ยวกับการอธิบายลักษณะของละอองลอยของโรคติดเชื้อเป็นมาตรฐาน เดียวกัน

ความจำเป็นในการศึกษาวิจัยและข้อเสนอแนะ (RESEARCH NEEDS AND RECOMMENDATIONS)

การคัดเลือกและการใช้งานจุลินทรีย์สำหรับโมเดล (Model microorganism selection and use)

ไม่ว่าข้อมูลจากห้องปฏิบัติการและข้อมูลจากห้องทดสอบละอองลอยที่ระบุบ่งชี้ถึงประสิทธิภาพของการควบคุม ทางด้านวิศวกรรมที่เฉพาะเจาะจงจะเป็นเช่นไรก็ตาม การประยุกต์ใช้งานที่มีศักยภาพอย่างที่ว่านั้นก็จะต้องได้รับการ ประเมินขั้นสุดท้ายในสภาพสิ่งแวดล้อมจริงในตัวอาคารอยู่ดี การศึกษาวิจัยอย่างที่ว่านั้นในอาคารที่ไม่มีใครอยู่ (unoccupied) จะต้องมีการทำให้เป็นละออง (aerosolization) ของจุลินทรีย์โมเดล (model microorganisms) หรือจุลินทรีย์ชี้วัด (indicator microorganisms) ที่เหมาะสมหนึ่งชนิดหรือ มากกว่าหนึ่งชนิด จุลินทรีย์ที่ว่านี้จะต้องเป็นจุลินทรีย์ที่ไม่ก่อ โรคกับมนุษย์ จะต้องมีความเกี่ยวข้องกับเชื้อเป้าหมายใน มนุษย์ จะต้องมีลักษณะทางจลนศาสตร์ของละอองลอยและลักษณะทางจลนศาสตร์การหมดฤทธิ์ (inactivation kinetics) ที่คล้ายคลึงกัน ตลอดจนจะต้องสามารถกู้คืนได้ (recoverable) จากอากาศภายในตัวอาคาร การ คัดเลือกจุลินทรีย์เช่นที่ว่านั้นจะต้องเป็นไปสอดคล้องกับการกำหนดบ่งชี้จากวรรณกรรม (literature) ของงาน ศึกษาวิจัยที่มีศักยภาพความเป็นไปได้ ซึ่งมีการอธิบายลักษณะของจุลินทรีย์ในห้อง (chamber characterization) ซึ่งตามมาในสภาวะที่เป็นละอองลอย รวมทั้งการประเมินเทคนิควิธีการในการกู้คืนที่มี ศักยภาพความเป็นไปได้ ยกตัวอย่างเช่น เชื้อ Mycobacterium phlei น่าจะเป็นจุลินทรีย์โมเดลที่มี คุณสมบัติครบ (candidate model organism) สำหรับใช้ในการประเมินการควบคุมทางด้านวิศวกรรมใน ตัวอาคารสำหรับการป้องกันการแพร่กระจายเชื้อวัณโรคทางอากาศ เชื้อ M phlei ไม่ก่อโรค (nonpathogenic) ในมนุษย์ เป็นเชื้อ mycobacterium ชนิดหนึ่งในสิ่งแวดล้อมที่เจริญเติบโตเพิ่ม จำนวนได้อย่างรวดเร็วและมีรงควัตถุ (pigmented) และได้รับการค้นพบว่าสามารถต้านทานรังสีอุลตราไวโอเลต ใค้มากกว่าเชื้อ M tuberculosis ชนิคร้ายแรงถึง 10 เท่า การก่อตัวเป็นละอองลอยของเชื้อชนิดนี้ ซึ่งบางที

อาจจะเป็นใน artificial sputum จำเป็นจะต้องได้รับการประเมินในห้องปฏิบัติการเกี่ยวกับลักษณะของมัน เมื่อลอยตัวอยู่ในอากาศ นอกจากนี้แล้วสื่อกลางในการเก็บตัวอย่าง (collection medium) และอุปกรณ์เก็บ ตัวอย่างละอองลอยชีวภาพที่เหมาะสมก็จำเป็นจะต้องได้รับการกำหนดด้วย

ในทำนองเดียวกันไวรัสโมเดล (model viruses) และเทคนิควิธีการในการกู้คืน (recovery) ก็อาจจะถูก เลือกใช้ในการประเมินการควบคุมทางด้านวิศวกรรมที่มีศักยภาพความเป็นไปได้ในสิ่งแวดล้อมภายในตัวอาคาร มีการ ใช้เชื้อไวรัส murine influenza ที่กลายเป็นละอองลอยเป็นโมเดลของโรคติดเชื้อในระบบทางเดินหายใจ และ มีการใช้เชื้อ poliovirus type 1 และ simian rotavirus SA11 ในการประเมินประสิทธิภาพในการ ฆ่าเชื้อของแสงอุลตราไวโอเลต แบคเทอริโอเฟจ (bacteriophages) ได้ทำหน้าที่เป็นโมเดลที่ยอดเยี่ยมมานาน แล้วสำหรับในการศึกษาวิจัยเกี่ยวกับการฆ่าเชื้อ (disinfection) ที่เกี่ยวข้องกับการหมดฤทธิ์ (inactivation) ของเชื้อไวรัสในมนุษย์ในน้ำและในน้ำเสีย จำเป็นจะต้องมีการศึกษาวิจัยเพื่อที่จะค้นหาว่าแบคเทอริโอเฟจชนิดใดที่อาจจะสามารถใช้เป็นโมเดลของเชื้อไวรัสที่ทำให้ติดเชื้อในระบบทางเดินหายใจในมนุษย์ในการ ศึกษาวิจัยอากาศภายในตัวอาคารที่มีเป้าหมายในการที่จะประเมินการควบคุมทางด้านวิศวกรรม

การประเมินการควบคุมทางด้านวิศวกรรมที่มีอยู่ (Evaluation of existing engineering controls)

จุลินทรีย์โมเดล (model microorganisms) และวิธีการเก็บตัวอย่างที่ได้รับการคัดเลือกอาจจะถูกใช้ในการ ประเมินการควบคุมทางด้านวิศวกรรมที่มีอยู่หรือการควบคุมแบบผสมผสาน สำหรับการป้องกันการแพร่กระจายเชื้อ ก่อโรคทางอากาศในสถานพยาบาล 3 วิธีในการควบคุมคุณภาพอากาศที่มีอยู่ได้แก่ การควบคุมแหล่งที่มา (Source control) การควบคุมโดยการกำจัดออกไป (removal control) และการควบคุมโดยการเจือจาง (dilution control) การควบคุมแหล่งที่มาเป็นการทำให้การปนเปื้อนเกิดขึ้นน้อยที่สุดภายในพื้นที่ที่มีคนอยู่ (occupied space) ตัวอย่างเช่น การใช้เตียงผู้ป่วยชนิด laminar-flow ซึ่งทำให้มีการควบคุมเฉพาะจุด (local control) หรือการควบคุมแหล่งที่มา (source control) สำหรับผู้ป่วยที่ได้รับการวินิจฉัยมาใหม่ ๆ ว่าเป็นวัณโรค การควบคุมโดยการกำจัดออกไป (removal control) เป็นการใช้อุปกรณ์เครื่องมือต่าง ๆ ในการ ทำความสะอาดอากาศ เพื่อที่จะควบคุมอนุภาคต่าง ๆ ไม่ว่าโดยกลไกเชิงรุก (active mechanism) หรือกลไก เชิงตั้งรับ (passive mechanism) การกำจัดออกไปที่เป็นเชิงรุก (active removal) เป็นการใช้อุปกรณ์ เครื่องมือต่าง ๆ ที่มีตัวกรองสื่อกลาง (media filters) หรือมีเครื่องทำความสะอาดอากาศอิเล็กทรอนิกส์ เช่น การ ใช้เครื่องกรองอนุภาคในอากาศประสิทธิภาพสูงแบบพกพาในห้องผู้ป่วยวัณโรค ในขณะที่การกำจัดออกไปที่เป็นเชิงตั้ง รับ (passive removal) เป็นกลไกอย่างเช่น การทำให้อนุภาคตกลงมากองรวมกัน (particle settling)

การอัดประจุการแพร่กระจายของอิออน (ion diffusion charging) การใช้ปรากฏการณ์เทอร์โมโฟเรซิส (thermophoresis) และการรวมตัวเกาะกัน (coalescence) การควบคุมโดยการเจือจาง (dilution control) เป็นการลดปริมาณสิ่งปนเปื้อนในอากาศโดยการนำเอาอากาศที่ปนเปื้อนน้อยกว่าเข้าสู่พื้นที่ที่มีคนอยู่ เพื่อทำให้เจือจาง ซึ่งอาจจะเกิดขึ้นโดยผ่านการระบายถ่ายเทอากาศตามธรรมชาติหรือใช้กลไกก็ได้

การควบคุมคุณภาพอากาศอีกวิธีหนึ่งที่อาจจะใช้ร่วมกับวิธีการกำจัดอนุภาคออกไปหรือวิธีการเจือจางได้แก่ การฆ่า เชื้อในอากาศด้วยแสงอุลตราไวโอเลต เป้าหมายของวิธีการนี้คือเพื่อทำให้จุลินทรีย์ที่ก่อโรคในมนุษย์ที่อยู่ในนิวเคลียส ละอองฝ่อยในอากาศที่เข้าสู่พื้นที่ที่มีคนอยู่ซึ่งมีผู้ที่อาจจะมีความอ่อนแอง่ายต่อการติดเชื้อเกิดการหมดฤทธิ์ (inactivate) ถึงแม้ว่าเป็นที่ยอมรับกันว่าเชื้อจุลินทรีย์ต่างชนิดกันมีความแตกต่างกันในด้านความอ่อนแอ อ่อนไหวต่อแสงอุลตราไวโอเลต แต่การใช้เทคโนโลยีนี้ในการควบคุมเชื้อวัณโรคในอากาศในสถานพยาบาลและใน สิ่งแวดล้อมการทำงานอื่น ๆ ก็ได้แสดงให้เห็นแล้วว่ามีคุณค่าและได้รับการอธิบายเป็นอย่างดีจาก Riley และ Nardell มีการแสดงให้เห็นถึงประสิทธิผลของแสงอุลตราไวโอเลตผสมผสานกับระบบการระบายถ่ายเทอากาศ และการกรองอากาศ

การประเมินการควบคุมทางด้านวิศวกรรมเชิงทดลองและอุปกรณ์ (Evaluation of experimental engineering controls and devices)

การวิจัยและพัฒนาเทคโนโลยีในการควบคุมทางด้านวิศวกรรมสำหรับละอองลอยชีวภาพที่เป็นเชิงทดลองอาจจะให้ วิธีการเพิ่มเติมในการควบคุมการแพร่กระจายโรคติดเชื้อในสิ่งแวดล้อมภายในตัวอาคาร ตัวอย่างเช่น การวิจัยขั้น พื้นฐานเกี่ยวกับการใช้สนามไฟฟ้าชนิดพัลส์แรงสูง (pulsed high electric fields) เพื่อทำให้เชื้อจุลินทรีย์ หมดฤทธิ์บ่งชี้ถึงความจำเป็นที่จะต้องมีการศึกษาเกี่ยวกับเทคนิควิธีการนี้ สำหรับการใช้งานที่มีศักยภาพความเป็นไป ได้ในการควบคุมการปนเปื้อนของเชื้อจุลินทรีย์ในอากาศในระบบการจัดการอากาศ

ถึงแม้ว่าเทคนิควิธีการต่าง ๆ ซึ่งเป็นการดำเนินการ ณ. จุดกำเนิด (in situ) จะให้ทรัพยากรที่ทรงพลังสำหรับการวัด การกระจายขนาดของอนุภาค (particle size distributions) ก็ตาม แต่ในขณะนี้ก็ไม่มีเทคนิควิธีการใดที่ สามารถแยกความแตกต่างระหว่างอนุภาคชีวภาพที่สามารถมีชีวิตอยู่รอด (viable) กับอนุภาคชีวภาพที่ไม่ สามารถมีชีวิตอยู่รอด (nonviable) หรือกับอนุภาคที่ไม่ใช่อนุภาคชีวภาพ (nonbiologic) ความพยายาม ในการศึกษาวิจัยอย่างทุ่มเทที่มีเป้าหมายในการพัฒนาเครื่องมือชนิด real-time เพื่อที่จะตรวจหาอนุภาคที่ สามารถมีชีวิตอยู่รอด (viable) ในอนุภาคที่ไม่สามารถมีชีวิตอยู่รอด (nonviable) หรือในอนุภาคที่ไม่ใช่ อนุภาคชีวภาพ (nonbiologic) ในอากาศอาจจะสามารถทำให้การเฝ้าสังเกตติดตามอย่างต่อเนื่องมีความ เป็นไปได้ในอนาคตอันใกล้นี้ ซึ่งจะเป็นการเตือนภัยแต่เนิ่น ๆ ให้มีระบบการตรวจหาหรือระบบการควบคุมใน

สถานพยาบาลและสถานที่อื่น ๆ ที่เกี่ยวข้อง สิ่งประดิษฐ์ที่ว่านี้ในทางทฤษฎีน่าจะได้รับการออกแบบให้ใช้การกระเจิง ของแสง (light scattering) หรือวิธีการอื่น ๆ ทางฟิสิกส์ในการตรวจหาเฉพาะเชื้อจุลินทรีย์ก่อโรคบางกลุ่ม เท่านั้น เช่น เซลล์ของเชื้อ mycobacteria สปอร์ของเชื้อ Aspergillus หรือบางที่แม้แต่หน่วย (units) ของ เชื้อไวรัสระบบทางเดินหายใจ จำเป็นจะต้องมีการศึกษาวิจัยเพิ่มเติมต่อไปเพื่อแสดงให้เห็นถึงความเป็นไปได้ (feasibility) ของแนวคิดในการใช้การกระเจิงของแสง (light scattering) ในการแยกความแตกต่าง ระหว่างอนุภาคชีวภาพที่สามารถมีชีวิตอยู่รอดกับอนุภาคชีวภาพที่ไม่สามารถมีชีวิตอยู่รอด หรือกับอนุภาคที่ไม่ใช่ อนุภาคชีวภาพ การวิจัยขั้นพื้นฐานเกี่ยวกับการกระเจิงของแสงกับสมคุลทางด้านอิเล็กโทร ไดนามิก (electrodynamic balance) ได้เคยมีการตีพิมพ์เผยแพร่มาแล้ว

ข้อเสนอแนะสำหรับการป้องกันการแพร่กระจายละอองลอยติดเชื้อ (RECOMMENDATIONS FOR PREVENTION OF TRANSMISSION OF INFECTIOUS AEROSOLS)

ความเข้าใจเกี่ยวกับปัจจัยต่าง ๆ ที่มีผลต่อการก่อเกิด การอยู่รอด ตลอดจนการแพร่กระจายของละอองลอยติดเชื้อใน โรงพยาบาลและในสถานพยาบาลดูแลสุขภาพอื่น ๆ มีความสำคัญเป็นอย่างมากต่อภารกิจในการป้องกันการติดเชื้อ ในโรงพยาบาลที่สัมพันธ์กับอากาศ หนทางที่ดีที่สุดที่เป็นไปได้ก็คือกลไกต่าง ๆ สำหรับการลดการติดเชื้อที่เกี่ยวข้องกับ สิ่งแวดล้อมให้มีน้อยที่สุดควรได้รับการจัดการล่วงหน้าในทุก ๆ ด้านของการออกแบบอาคาร การก่อสร้าง การ ดำเนินการ ตลอดจนการซ่อมบำรุง

สิ่งแวดล้อมทั้งหมดภายในตัวอาคารของสถานพยาบาลดูแลสุขภาพจะต้องได้รับการมองว่าเป็นระบบนิเวศที่แตกต่าง (distinct ecosystem) ซึ่งภายในระบบนิเวศนี้ผู้ป่วยมีปฏิสัมพันธ์กับเหตุการณ์ที่เกิดขึ้นอย่างมากมายใน สิ่งแวดล้อมรอบตัวอยู่ตลอดเวลา เพื่อให้แน่ใจว่าเหตุการณ์เหล่านี้จะไม่เพิ่มความเสี่ยงของการแพร่กระจายการติดเชื้อ ทางอากาศ ควรจะต้องมีชุดกลยุทธ์วิธีการจัดการสิ่งแวดล้อมขั้นพื้นฐานที่รวบรวมจากชุมชนการศึกษาวิจัยเกี่ยวกับ สิ่งแวดล้อมภายในตัวอาคาร ซึ่งรวมถึงการบริหารจัดการแหล่งที่มา (source management) การบริหารจัดการกิจกรรม (activity management) การแทรกแซงการออกแบบ (design intervention) การแทรกแซงการเจือจาง (dilution intervention) และการทำความสะอาด (cleaning)

การบริหารจัดการแหล่งที่มา (Source management)

้ เชื้อทุกชนิดในอากาศมาจากแหล่งที่มาไม่ว่าจะเป็นจากมนุษย์ สัตว์ วัตถุสิ่งของ หรือพื้นผิวก็ตาม แหล่งที่มาสามารถ จะ ได้รับการจัดการ โดยการกำจัดออก ไป เช่นในกรณีของวัสดุก่อสร้างที่ปนเปื้อนเชื้อรา หรือ โดยการแก้ไขปรับเปลี่ยน เช่นโดยการถ้างด้วยระบบน้ำร้อนเพื่อกำจัดเชื้อสายพันธุ์ Legionella ผู้ป่วยวัณโรคระยะ active สามารถพักอยู่ ในห้องความดันลบ (negative-pressure rooms) ต้องสวมเครื่องช่วยหายใจ (respirators) หรือ นอนบนเตียงชนิด laminar-flow จนกระทั่งมีการแสดงว่าไม่ติดเชื้อแล้ว แหล่งที่มาสามารถจะได้รับการจัดการ โดยโครงการซ่อมบำรงอาคาร ที่ทำให้มั่นใจได้ว่ามีการตรวจสอบแหล่งที่มาที่มีศักยภาพความเป็นไปได้อย่างละเอียด เป็นประจำและเหมาะสม เช่น ช่องอากาศเข้า (air intakes) และธนาคารตัวกรอง (filter banks) ส่วนประกอบของระบบเครื่องทำความร้อน ระบบระบายถ่ายเทอากาศ และระบบปรับอากาศ ท่อนำอากาศ หอหล่อ เย็น (cooling towers) ตลอดจนระบบน้ำร้อน แหล่งที่มาในสิ่งแวคล้อมก็สามารถจะได้รับการจัดการได้ เช่นเคียวกัน โดยการทำความสะอาดอย่างมีประสิทธิภาพและเป็นปกติประจำ ซึ่งเป็นการกำจัดอนุภาคที่มีศักยภาพความ เป็นไปได้ในการทำให้ติดเชื้อออกไป และลดจำนวนแหล่งสะสมที่มาของมลพิษ เช่นพรมปูพื้นและพื้นผิวที่ปนเปื้อนฝุ่น อื่น ๆ การศึกษาวิจัยเมื่อไม่นานมานี้เกี่ยวกับแหล่งที่มาของมลพิษภายในอาคารและอ่างถ้างมือแสดงให้เห็นถึง สหสัมพันธ์กันในเชิงบวกระหว่างมวลของฝุ่นในอากาศกับแบคทีเรียและเชื้อราในอากาศ ระหว่างมวลของฝุ่นในพรมปู พื้นกับเชื้อราในฝุ่นจากพรมปูพื้น และระหว่างเชื้อแบคทีเรียในฝุ่นจากพรมปูพื้นกับเชื้อแบคทีเรียในอากาศ สาเหตุต้น ๆ อย่างหนึ่งของการแพร่กระจายละอองลอยติดเชื้อในโรงพยาบาลคือการปนเปื้อนเชื้อราที่เกิดจากการก่อสร้างและการ ปรับปรุงอาคารในบริเวณใกล้เคียง แนวทางเชิงรุกที่ยอดเยี่ยมในการจัดการกับการจำกัดควบคุมฝุ่นจากการก่อสร้างที่ ชื่อ Infection Control Issues in Construction and Renovation ได้รับการตีพิมพ์เผยแพร่ เมื่อเร็ว ๆ นี้

การจัดการกิจกรรม (Activity management)

การจัดการกิจกรรมเป็นกระบวนการในการทำให้มั่นใจได้ว่ามีการใช้อาคารสำหรับกิจกรรมตามที่อาคารนั้นได้รับการ ออกแบบมา การพบมลพิษอยู่ในอากาศภายในอาคารบางครั้งก็เป็นผลมาจากการใช้งานอาคารหรือส่วนของอาคาร เพื่อเหตุผลอื่น ๆ นอกเหนือจากที่อาคารนั้นได้รับการออกแบบมาตั้งแต่แรก ตัวอย่างได้แก่ห้องปฏิบัติการในอาคารที่ ได้รับการออกแบบให้เป็นสำนักงานหรือห้องพักอาศัย หรือสำนักงานในบริเวณพื้นที่ที่เคยเป็นห้องปฏิบัติการมาก่อน หน้า การใช้ประโยชน์จากอาการในลักษณะที่เป็นไปตามจุดมุ่งหมายแรกเริ่มก็ยังทำให้เป็นการสะดวกและส่งเสริม สนับสนุนโครงการตรวจสอบอย่างละเอียด การซ่อมบำรุง และการทำความสะอาดเป็นปกติประจำ โครงการเช่นที่ว่านี้ สามารถกลายเป็นความคิดหรือการพิจารณาภายหลัง (afterthought) เมื่อโรงพยาบาลมีการปรับปรุง (renovate) อาคารที่มีอยู่อย่างต่อเนื่อง การก่อสร้างต่อเติม หรือดัดแปลงปรับเปลี่ยนสิ่งแวดล้อมใหม่

การแทรกแซงการออกแบบ (Design intervention)

ตัวอาคารพร้อมทั้งเครื่องตกแต่ง (furnishings) จำเป็นจะต้องได้รับการออกแบบ เพื่อที่ว่ามันจะสามารถได้รับการตรวจสอบอย่างละเอียด ได้รับการทำความสะอาด และการซ่อมบำรุงได้อย่างมีประสิทธิภาพ การแทรกแซงการ ออกแบบ (design intervention) เป็นสิ่งที่สำคัญเมื่อมีการออกแบบอาคารใหม่ รวมทั้งเมื่อมีการปรับปรุง ใหม่ (remodeling) อาคารเก่าสำหรับใช้ประโยชน์ใหม่ การแทรกแซง (interventions) ที่ว่านี้อาจจะ รวมถึงการระบายถ่ายเทไอเสียที่ทำขึ้นเป็นพิเศษ หรือความต้องการการใหลเวียนของอากาศ หรือการกำจัดทิ้งวัสดุ ก่อสร้างหรือวัสดุตกแต่งบางอย่างที่ปนเปื้อนเชื้อจุลินทรีย์ได้ง่ายเป็นพิเศษ เช่น กระเบื้องเพดานและพรมปูพื้น

การแทรกแซงการเจือจาง (Dilution intervention)

การเจือจางเป็นกระบวนการที่ใช้เพื่อทำให้มลพิษในอากาศมีความเข้มข้นลดน้อยลง โดยการแทนที่อากาศที่ปนเปื้อน ด้วยอากาศสะอาด อนุภาคในอากาศที่ทำให้ติดเชื้ออาจจะถูกเคลื่อนย้ายโดยอากาศ และถูกจับโดยตัวกรองอากาศ ตัวอย่างเช่น มีการดำเนินการศึกษาวิจัยเพื่อที่จะศึกษาถึงประสิทธิภาพของการกรองอากาศในห้องร่วมกับการระบาย ถ่ายเทอากาศเพื่อเจือจาง (dilution ventilation) ในการจำกัดควบคุมการติดเชื้อวัณโรค ผลที่ได้แสดงให้ เห็นว่าการระบายถ่ายเทอากาศที่ผสมผสานกับการกรองอากาศที่หมุนเวียน (recirculating air filtration) สามารถบรรลุเป้าหมายในการลดความเข้มข้นของนิวเคลียสละอองฝอยโดยที่มีประสิทธิภาพ 30% ถึง 90% วิธีนี้เมื่อรวมกันกับการควบคุมการบริหารจัดการแหล่งที่มา เช่น treatment booths และเครื่องช่วย หายใจ (respirators) สามารถลดศักยภาพในการแพร่กระจายในสถานการณ์ที่มีความเสี่ยงสูงลงได้อย่างมี นัยสำคัญ ในทำนองเดียวกันในการควบคุมโรคติดเชื้อราแอสเปอร์จิลลัส (aspergillosis) ในโรงพยาบาลก็พบว่า อัตราการแลกเปลี่ยนอากาศที่ระดับสูง ๆ เป็นสิ่งที่มีประสิทธิภาพมากที่สุด โดยเฉพาะอย่างยิ่งเมื่อดำเนินการร่วมกับการ กรอง ณ. จุดที่ใช้ (point-of-use filtration) แนวทางในการแลกเปลี่ยนอากาศต่อชั่วโมงและระยะเวลาที่ ต้องการ (เป็นนาที) สำหรับประสิทธิภาพในการกำจัดที่ระดับ 90%, 99%, และ 99.9% ได้รับการตีพิมพ์เผยแพร่ แล้ว ภาพประกอบในหนังสือนี้มีประโยชน์แต่ค่าตัวเลขต่าง ๆ ค่อนข้างจำกัด เนื่องจากว่าพวกเขาทึกทักเอาว่ามีการ ผสมที่สมบูรณ์แบบของอากาศภายในบริเวณพื้นที่ และไม่คิดถึงการแขวนลอยขึ้นมาใหม่ (resuspension) ของ อนุภาคที่ตกลงไปแล้วและต่อมาก็ได้รับการกวน (stirred up) ผ่านทางกิจกรรม ตามที่ได้กล่าวมาแล้วก่อนหน้านี้ ว่าอัตราการแลกเปลี่ยนอากาศที่ระดับสูง ๆ มีประสิทธิภาพมากที่สุดเมื่อรวมกับการกรอง

การทำความสะอาด (Cleaning)

การทำความสะอาดเป็นกระบวนการในการแยกแยะ จำกัดวง และกำจัดทิ้งสิ่งปนเปื้อนจากพื้นผิวหรือสิ่งแวดล้อม อย่างถูกต้องเหมาะสม เป็นแนวปราการป้องกันด่านสุดท้ายในการบริหารจัดการการปนเปื้อนในสิ่งแวดล้อมภายใน อาคาร ถึงแม้ว่าได้มีการใช้วิธีการบริหารจัดการแหล่งที่มา การบริหารจัดการกิจกรรม การแทรกแซงการออกแบบ และ การระบายถ่ายเทอากาศเพื่อเจือจางมาอย่างเหมาะสมทั้งหมดทุกวิธีในการควบคุมละอองลอยติดเชื้อแล้ว แต่การทำ ความสะอาดก็ยังคงเป็นสิ่งจำเป็น แม้ว่าการทำความสะอาดน่าจะง่ายขึ้นเพราะแต่ละกลยุทธ์วิธีการได้รับการปรับปรุง แล้วก็ตาม ความสำคัญของการทำความสะอาดได้รับการแสดงให้เห็นในการศึกษาที่ใช้เวลานานถึง 1 ปี ซึ่งศึกษา เกี่ยวกับประสิทธิภาพของการทำความสะอาดในอาคารเอนกประสงค์ที่ไม่มีปัญหาซัดเจน การใช้เครื่องดูดฝุ่น ประสิทธิภาพของการทำความสะอาดในอาคารเอนกประสงค์ที่ไม่มีปัญหาซัดเจน การใช้เครื่องดูดฝุ่น ประสิทธิภาพของเป็นปกติประจำ การปัดฝุ่นโดยใช้ผ้าเปียกหมาด ๆ และผลิตภัณฑ์ทำความสะอาดที่ได้รับการปรับปรุง ให้ดีขึ้น โดยเฉพาะอย่างยิ่งในบริเวณที่มีผู้คนพลุกพล่าน และโดยที่ให้ความสนใจไปที่เหตุการณ์อย่างเช่นการหกรั่วซึม เป็นต้น ได้ส่งผลให้เกิดการลดลงอย่างมีความหมายของการปนเปื้อนอนุภาคและจุลินทรีย์ หลังจาก 7 เดือนของการทำความสะอาดที่ได้รับการปรับปรุงให้ดีขึ้นและการเฝ้าติดตามสังเกตการณ์สิ่งแวดล้อม ข้อมูลที่ได้แสดงให้เห็นถึงการลดลงอย่างมีนัยสำคัญ (50%) ของมวลฝุ่นในอากาส การลดลง 61% ของเชื้อแบกทีเรียในอากาสและเชื้อราในฝุ่นจากพรมปูพื้น และการลดลง 84% ของเชื้อแบกทีเรียในฝุ่นจากพรมปูพื้น ตลอดจน การลดลง 72% ของสารเอนโดที่อกซิน (endotoxin) ในฝุ่นจากพรมปูพื้น

บทสรุป (SUMMARY)

การควบคุมและการป้องกันการแพร่กระจายของเชื้อโรคในอากาศในสิ่งแวดล้อมสถานพยาบาล เริ่มต้นจากการที่มี ความเข้าใจเกี่ยวกับจุดกำเนิด ลักษณะทางด้านอากาศพลศาสตร์ การอยู่รอด และความสามารถในการติดเชื้อของมัน เพื่อที่ว่าการควบคุมทางด้านวิศวกรรมสามารถได้รับการดำเนินการได้อย่างมีประสิทธิภาพ ภายในกรอบงานการ บริหารจัดการด้านสิ่งแวดล้อมของกลยุทธ์วิธีการเชิงป้องกัน ซึ่งรวมถึงการบริหารจัดการแหล่งที่มา การบริหารจัดการ กิจกรรม การแทรกแซงการออกแบบ การแทรกแซงการเจือจาง และการทำความสะอาด แนวคิด ทางด้านสิ่งแวดล้อม ทั้งหมดที่ว่านี้เป็นสิ่งที่จำเป็นอย่างแน่นอนในการลดความเสี่ยงของการแพร่กระจายการติดเชื้อทางอากาศใน โรงพยาบาลให้มีระดับต่ำสุดเท่าที่จะเป็นไปได้ โดยเฉพาะโรงพยาบาลและสถานพยาบาลอื่น ๆ ที่มีผู้ป่วยในควรทำให้ แน่ใจว่าทั้งบุคลากรควบคุมการติดเชื้อและนักสุขศาสตร์อุตสาหกรรม (industrial hygienist) ที่ได้รับการ รับรองมีส่วนเกี่ยวข้องในงานทั้งก่อนหน้าและในระหว่างการปรับปรุงอาคารและการก่อสร้างอาคาร