No country for young kids?

The effects of school starting age throughout childhood and beyond

Gonçalo Lima

Nova School of Business and Economics

goncalo.lima@novasbe.pt

Co-authors:

Miguel Madeira Ruivo Ana Balcão Reis Luís Catela Nunes Maria do Carmo Seabra Nova SBE Nova SBE Nova SBE Nova SBE

Oxford Education Research Symposium - July 30, 2019

Motivation

Every year many children enter kindergarten or school for the first time:

Motivation

Every year many children enter kindergarten or school for the first time:

Enter at different stages of development

Motivation

Every year many children enter kindergarten or school for the first time:

- Enter at different stages of development
- Differences in age tend to have strong impacts in early childhood

Motivation

Every year many children enter kindergarten or school for the first time:

- Enter at different stages of development
- Differences in age tend to have strong impacts in early childhood
- Early childhood differences → long-term impacts

```
→ e.g. Chetty et al. (2011); Heckman (2011)
```

Motivation

Relevance for policy and parents:

- Changing age cutoffs
 - → Bedard and Dhuey (2006); Deming and Dynarski (2008); Elder and Lubotsky (2009)

Motivation

Relevance for policy and parents:

- Changing age cutoffs
 - → Bedard and Dhuey (2006); Deming and Dynarski (2008); Elder and Lubotsky (2009)
- School entrance postponement
 - → Deming and Dynarski (2008); Cook and Kang (2018)

Motivation

Relevance for policy and parents:

- Changing age cutoffs
 - → Bedard and Dhuey (2006); Deming and Dynarski (2008); Elder and Lubotsky (2009)
- School entrance postponement
 - → Deming and Dynarski (2008); Cook and Kang (2018)

Figure reproduced from Deming and Dynarski (2008)

Contributions

• Provide evidence with high-stakes policy outcomes

- Provide evidence with high-stakes policy outcomes
- Use quasi-experiment to identify causal effects

- Provide evidence with high-stakes policy outcomes
- Use quasi-experiment to identify causal effects
- Add evidence to literature from previously unstudied context > Literature

- Provide evidence with high-stakes policy outcomes
- Use quasi-experiment to identify causal effects
- Add evidence to literature from previously unstudied context > Literature
- Leverage exact birth date variations close to cutoff
 - → McEwan and Shapiro (2008); Evans et al. (2010); Dobkin and Ferreira (2010); Peña (2017); Attar and Cohen-Zada (2018)

- Provide evidence with high-stakes policy outcomes
- Use quasi-experiment to identify causal effects
- Add evidence to literature from previously unstudied context > Literature
- Leverage exact birth date variations close to cutoff
 - → McEwan and Shapiro (2008); Evans et al. (2010); Dobkin and Ferreira (2010); Peña (2017); Attar and Cohen-Zada (2018)
- Analyze long-term education outcomes

- Provide evidence with high-stakes policy outcomes
- Use quasi-experiment to identify causal effects
- Add evidence to literature from previously unstudied context
- Leverage exact birth date variations close to cutoff
 - → McEwan and Shapiro (2008); Evans et al. (2010); Dobkin and Ferreira (2010); Peña (2017); Attar and Cohen-Zada (2018)
- Analyze long-term education outcomes
- Go beyond intent-to-treat (ITT) causal effects

- Provide evidence with high-stakes policy outcomes
- Use quasi-experiment to identify causal effects
- Add evidence to literature from previously unstudied context
- Leverage exact birth date variations close to cutoff
 - → McEwan and Shapiro (2008); Evans et al. (2010); Dobkin and Ferreira (2010); Peña (2017); Attar and Cohen-Zada (2018)
- Analyze long-term education outcomes
- Go beyond intent-to-treat (ITT) causal effects

Main findings

Being 1-year older when starting school leads to:

Main findings

Being 1-year older when starting school leads to:

• ↑ cognitive capacity (Math and Language)

Main findings

Being 1-year older when starting school leads to:

- ↑ cognitive capacity (Math and Language)
- \downarrow probability of repeating

Main findings

Being 1-year older when starting school leads to:

- ↑ cognitive capacity (Math and Language)
- ↓ probability of repeating

Persistence of cognitive gains is limited:

Cognitive effects fade quickly

Main findings

Being 1-year older when starting school leads to:

- ↑ cognitive capacity (Math and Language)
- ↓ probability of repeating

Persistence of cognitive gains is limited:

- Cognitive effects fade quickly
- Limited heterogeneity

Main findings

Being 1-year older when starting school leads to:

- ↑ cognitive capacity (Math and Language)
- ↓ probability of repeating

Persistence of cognitive gains is limited:

- Cognitive effects fade quickly
- Limited heterogeneity
- Driven by differences in cognitive maturity

Preliminary findings

Effects persist through institutional features:

■ ↓ probability of dropping out

Preliminary findings

- ↓ probability of dropping out
- ↑ probability of graduating

Preliminary findings

- ↓ probability of dropping out
- ↑ probability of graduating
- ↑ probability of enrolling in academic track

Preliminary findings

- ↓ probability of dropping out
- ↑ probability of graduating
- ↑ probability of enrolling in academic track
- † probability of enrolling in scientific curricula

Preliminary findings

- ↓ probability of dropping out
- ↑ probability of graduating
- ↑ probability of enrolling in academic track
- ↑ probability of enrolling in scientific curricula
- ↑ application scores to public HE

Preliminary findings

- ↓ probability of dropping out
- ↑ probability of graduating
- † probability of enrolling in academic track
- ↑ probability of enrolling in scientific curricula
- ↑ application scores to public HE
- ↑ probability of enrolling in more selective public HE courses

Relevant institutional features:

National exams at the end of each cycle

- National exams at the end of each cycle
- Multi-pronged tracking at end of Grade 9

- National exams at the end of each cycle
- Multi-pronged tracking at end of Grade 9
 - $\rightarrow \ \, \text{Multiple VET courses} \, + \, 4 \, \, \text{academic streams} \,$

- National exams at the end of each cycle
- Multi-pronged tracking at end of Grade 9
 - $\rightarrow \ \, \text{Multiple VET courses} \, + \, 4 \, \, \text{academic streams} \,$
- Compulsory schooling until 18-years of age

- National exams at the end of each cycle
 - Multi-pronged tracking at end of Grade 9
 - $\rightarrow \ \, \text{Multiple VET courses} \, + \, 4 \, \, \text{academic streams} \, \,$
- Compulsory schooling until 18-years of age
- High grade retention rates

- National exams at the end of each cycle
 - Multi-pronged tracking at end of Grade 9
 - $\rightarrow \ \, \text{Multiple VET courses} \, + \, 4 \, \, \text{academic streams} \, \,$
- Compulsory schooling until 18-years of age
- High grade retention rates
- HE access based on exit exams and GPA

- National exams at the end of each cycle
 - Multi-pronged tracking at end of Grade 9
 - $\rightarrow \ \, \text{Multiple VET courses} \, + \, 4 \, \, \text{academic streams} \,$
- Compulsory schooling until 18-years of age
- High grade retention rates
- HE access based on exit exams and GPA
- HE divided in academic and polytechnic offer

School entry laws:

School entry laws:

• 6-years old by 15 September

Institutional background

School entry laws:

- 6-years old by 15 September
- Born 16Sept 31Dec: can still enroll

Institutional background

School entry laws:

- 6-years old by 15 September
- Born 16Sept 31Dec: can still enroll
- Binding cutoff at 1 January

Quasi-experiment:

- Random variation induced by birth dates
- Distance in days to cutoff predicts SSA
- Plausibly causal effects
- Local polynomial estimates ➤ Show me the math

Administrative data from Portugal:

Data on every student and teacher (Grades 1-12)

- Data on every student and teacher (Grades 1-12)
- Data on national exam scores + internal scores

- Data on every student and teacher (Grades 1-12)
- Data on national exam scores + internal scores
- Analytical datasets:

- Data on every student and teacher (Grades 1-12)
- Data on national exam scores + internal scores
- Analytical datasets:
 - \rightarrow Dataset 1, Grades 1-9: born 1998-2008; sat exams 2012-2017; **660k obs.**
 - → Dataset 2, Grades 9-12: born 1988-2000; sat exams 2007-2014; **635k obs.**
 - ▶ What about attrition?

Main variables

Outcomes:

- Achievement (Grades 4, 6, 9, 11, 12)
- Grade retention (until Grades 4, 6, 9-12)
- Dropout and graduation (Grade 9)
- Track choice (Grade 10)
- Academic course choice in HS (Grade 10)
- HE application outcomes

Main variables

Outcomes

SSA

Main variables

Outcomes

SSA

Birth date

Main variables

Outcomes

SSA

Birth date

Student char.: Descriptive statistics

- Female
- First generation immigrant
- Computer at home
- School social support
- If dad unemployed
- Household level of education

Compliance rates

No evidence of birth date manipulation

Continuity of covariates at the cutoff → Show me

Discontinuity in school starting age

Estimates by grade

Discontinuities in student achievement

Basic education outcomes \rightarrow LATE Math \rightarrow Power

Basic education outcomes \rightarrow LATE Language

Basic education outcomes → LATE Grade retention

Grade 9 attainment outcomes → ITT

High-school outcomes \rightarrow ITT Grade 11 Achievement

High-school outcomes → ITT Grade 12 Achievement

 $\mathsf{High}\;\mathsf{school}\;\mathsf{outcomes}\to\mathsf{ITT}\;\mathsf{Grade}\;\mathsf{retention}\;\mathsf{in}\;\mathsf{high}\;\mathsf{school}$

Post-secondary outcomes \rightarrow ITT application to HE outcomes

Post-secondary outcomes → ITT application to HE outcomes

Robustness checks

Point estimates are stable across:

■ Regressions only with non-repeaters → Show me

Robustness checks

Point estimates are stable across:

- Regressions only with non-repeaters Show me
- Regressions with birth day of the week FEs → Show me

Results

Robustness checks

Point estimates are stable across:

- Regressions only with non-repeaters Show me
- Regressions with birth day of the week FEs

 Show me
- Regressions with alternative bandwidths → Show me

Results

Robustness checks

Point estimates are stable across:

- Regressions only with non-repeaters → Show me
- Regressions with birth day of the week FEs → Show me
- Regressions with alternative bandwidths → Show me
- Placebo specifications and permutation-based p-values → Show me
- Discussion of mechanisms

- \uparrow achievement: LATE always above .15 σ until Grade 9
 - → Similar to Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Attar and Cohen-Zada (2018)

- \uparrow achievement: LATE always above .15 σ until Grade 9
- → Similar to Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Attar and Cohen-Zada (2018)
- ↓ likelihood of grade retention: about 6pp until Grade 9, 3pp until Grade 12

- ↑ achievement: LATE always above .15σ until Grade 9
 → Similar to Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Attar and Cohen-Zada (2018)
- ↓ likelihood of grade retention: about 6pp until Grade 9, 3pp until Grade 12
- ↑ likelihood of choosing academic track and science-related curricula

- ↑ achievement: LATE always above .15σ until Grade 9
 → Similar to Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Attar and Cohen-Zada (2018)
- ↓ likelihood of grade retention: about 6pp until Grade 9, 3pp until Grade 12
- † likelihood of choosing academic track and science-related curricula
- ↑ HE application score

- ↑ achievement: LATE always above .15σ until Grade 9
 → Similar to Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Attar and Cohen-Zada (2018)
- ↓ likelihood of grade retention: about 6pp until Grade 9, 3pp until Grade 12
- † likelihood of choosing academic track and science-related curricula
- ↑ HE application score
- ↑ likelihood of enrolling in more selective HE courses

- ↑ achievement: LATE always above .15σ until Grade 9
 → Similar to Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Attar and Cohen-Zada (2018)
- ↓ likelihood of grade retention: about 6pp until Grade 9, 3pp until Grade 12
- † likelihood of choosing academic track and science-related curricula
- \uparrow HE application score
- ↑ likelihood of enrolling in more selective HE courses
- No evidence of differences in rejection rates and enrollment in STEM

- ↑ achievement: LATE always above .15σ until Grade 9
 → Similar to Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Attar and Cohen-Zada (2018)
- \downarrow likelihood of grade retention: about 6pp until Grade 9, 3pp until Grade 12
- † likelihood of choosing academic track and science-related curricula
- \uparrow HE application score
- ↑ likelihood of enrolling in more selective HE courses
- No evidence of differences in rejection rates and enrollment in STEM
- Cognitive effects fade quickly, institutional features ensure persistence

- Delayed enrollment brings individual benefits
- Unfair to parents constrained in their choice

- Delayed enrollment brings individual benefits
- Unfair to parents constrained in their choice
- Individual costs: additional pre-school costs shorter work careers

- Delayed enrollment brings individual benefits
- Unfair to parents constrained in their choice
- Individual costs: additional pre-school costs shorter work careers
- Social costs: distributional effects and no gain in earlier cutoffs

Thank you for your attention!

References I

- Attar, I. and D. Cohen-Zada (2018). The effect of school entrance age on educational outcomes: Evidence using multiple cutoff dates and exact date of birth. *Journal of Economic Behavior and Organization* 153(10568), 38–57.
- Bedard, K. and E. Dhuey (2006, nov). The persistence of early childhood maturity: International evidence of long-run age effects. *Quarterly Journal of Economics* 121(4), 1437–1472.
- Black, S. E., P. J. Devereux, and K. G. Salvanes (2011, may). Too Young to Leave the Nest? The Effects of School Starting Age. *Review of Economics and Statistics* 93(2), 455–467.
- Cascio, E. U. and D. W. Schanzenbach (2016, jul). First in the Class? Age and the Education Production Function. *Education Finance and Policy* 11(3), 225–250.
- Chetty, R., J. N. Friedman, N. Hilger, E. Saez, D. W. Schanzenbach, and D. Yagan (2011). How Does Your Kindergarten Classroom Affect Your Earnings? Evidence from Project Star. The Quarterly Journal of Economics 126(4), 1593–1660.
- Cook, P. and S. Kang (2018). The School-Entry-Age Rule Affects Redshirting Patterns and Resulting Disparities in Achievement.

References II

- Cook, P. J. and S. Kang (2016). Birthdays, schooling, and crime: Regression-discontinuity analysis of school performance, delinquency, dropout, and crime initiation. *American Economic Journal: Applied Economics* 8(1), 33–57.
- Crawford, C., L. Dearden, and C. Meghir (2007). When You Are Born Matters: The Impact of Date of Birth on Child Cognitive Outcomes in England.
- Deming, D. and S. Dynarski (2008). The Lengthening of Childhood. *Journal of Economic Perspectives 22*(3), 71–92.
- Dhuey, E., D. Figlio, K. Karbownik, and J. Roth (2017). Age and Cognitive Development.
- Dhuey, E. and S. Lipscomb (2008, apr). What makes a leader? Relative age and high school leadership. *Economics of Education Review 27*(2), 173–183.
- Dhuey, E. and S. Lipscomb (2010, oct). Disabled or young? Relative age and special education diagnoses in schools. *Economics of Education Review 29*(5), 857–872.
- Dobkin, C. and F. Ferreira (2010, feb). Do school entry laws affect educational attainment and labor market outcomes? *Economics of Education Review 29*(1), 40–54.
- Du, Q., H. Gao, and M. D. Levi (2012, dec). The relative-age effect and career success: Evidence from corporate CEOs. *Economics Letters* 117(3), 660–662.

References III

- Elder, T. E. and D. H. Lubotsky (2009). Kindergarten Entrance Age and Children's Achievement: Impacts of State Policies, Family Background, and Peers. *The Journal of Human Resources* 44(3), 641–683.
- Evans, W. N., M. S. Morrill, and S. T. Parente (2010). Measuring inappropriate medical diagnosis and treatment in survey data: The case of ADHD among school-age children. *Journal of Health Economics* 29(5), 657–673.
- Fredriksson, P. and B. Öckert (2014, sep). Life-cycle effects of age at school start. *Economic Journal 124*(579), 977–1004.
- Heckman, J. J. (2011). The Economics of Inequality. The Value of Early Childhood Education. *American Educator 35*(1), 31–36.
- Landersø, R., H. S. Nielsen, and M. Simonsen (2017, jun). School Starting Age and the Crime-age Profile. *Economic Journal 127*(602), 1096–1118.
- McEwan, P. J. and J. S. Shapiro (2008). The Benefits of Delayed Primary School Enrollment: Discontinuity Estimates Using Exact Birth Dates The Benefits of Delayed Primary School Enrollment Discontinuity Estimates Using Exact Birth Dates. *The Journal of Human Resources* 43(1), 1–29.
- Mühlenweg, A., D. Blomeyer, H. Stichnoth, and M. Laucht (2012, jun). Effects of age at school entry (ASE) on the development of non-cognitive skills: Evidence from psychometric data. *Economics of Education Review 31*(3), 68–76.

References IV

- Mühlenweg, A. M. and P. A. Puhani (2010). The Evolution of the School-Entry Age Effect in a School Tracking System. *Journal of Human Resources* 45(2), 407–438.
- Peña, P. A. (2017, feb). Creating winners and losers: Date of birth, relative age in school, and outcomes in childhood and adulthood. *Economics of Education Review 56*, 152–176.
- Puhani, P. A. and A. M. Weber (2007, may). Does the early bird catch the worm? *Empirical Economics 32*(2-3), 359–386.
- Schneeweis, N. and M. Zweimüller (2014, apr). Early Tracking and the Misfortune of Being Young. *The Scandinavian Journal of Economics* 116(2), 394–428.

Related literature

Appendix Related literature

- Score higher, repeat less, stay longer in school
 - e.g. Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Cascio and Schanzenbach (2016); Attar and Cohen-Zada (2018)

Appendix Related literature

- Score higher, repeat less, stay longer in school
 - → e.g. Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Cascio and Schanzenbach (2016); Attar and Cohen-Zada (2018)
- More likely tracked into academic curricula
 - → Puhani and Weber (2007); Schneeweis and Zweimüller (2014); Attar and Cohen-Zada (2018)

Appendix Related literature

- Score higher, repeat less, stay longer in school
 - e.g. Bedard and Dhuey (2006); Puhani and Weber (2007); McEwan and Shapiro (2008); Cascio and Schanzenbach (2016); Attar and Cohen-Zada (2018)
- More likely tracked into academic curricula
 - → Puhani and Weber (2007); Schneeweis and Zweimüller (2014); Attar and Cohen-Zada (2018)
- Improve outcomes of their younger peers
 - → Cascio and Schanzenbach (2016)

Related literature

Related literature

But also non-cognitive benefits:

Less likely to be classified with ADHD

→ Dhuey and Lipscomb (2010); Elder and Lubotsky (2009); Evans et al. (2010); Mühlenweg et al. (2012)

Related literature

But also non-cognitive benefits:

Less likely to be classified with ADHD

→ Dhuey and Lipscomb (2010); Elder and Lubotsky (2009); Evans et al. (2010); Mühlenweg et al. (2012)

More persistent and less irritable

 \rightarrow Mühlenweg et al. (2012)

Related literature

- Less likely to be classified with ADHD
 - → Dhuey and Lipscomb (2010); Elder and Lubotsky (2009); Evans et al. (2010); Mühlenweg et al. (2012)
- More persistent and less irritable
 - → Mühlenweg et al. (2012)
- Less likely to suffer from bullying
 - → Mühlenweg and Puhani (2010)

Related literature

- Less likely to be classified with ADHD
 - → Dhuey and Lipscomb (2010); Elder and Lubotsky (2009); Evans et al. (2010); Mühlenweg et al. (2012)
- More persistent and less irritable
 - → Mühlenweg et al. (2012)
- Less likely to suffer from bullying
 - → Mühlenweg and Puhani (2010)
- More likely to to hold leadership positions as teenagers
 - → Dhuey and Lipscomb (2008)

Related literature

- Less likely to be classified with ADHD
 - → Dhuey and Lipscomb (2010); Elder and Lubotsky (2009); Evans et al. (2010); Mühlenweg et al. (2012)
- More persistent and less irritable
 - → Mühlenweg et al. (2012)
- Less likely to suffer from bullying
 - → Mühlenweg and Puhani (2010)
- More likely to to hold leadership positions as teenagers
 - → Dhuev and Lipscomb (2008)
- Less likely to commit crimes or be incarcerated
 - → Landersø et al. (2017); Cook and Kang (2016); Dhuey et al. (2017)

Related literature Back

Impacts on adult outcomes are more ambiguous:

Related literature Back

Impacts on adult outcomes are more ambiguous:

• Link to higher wages later in working career

 \rightarrow Fredriksson and Öckert (2014)

Related literature Back

Impacts on adult outcomes are more ambiguous:

- Link to higher wages later in working career
 - ightarrow Fredriksson and Öckert (2014)
- More likely to become a corporate CEO
 - ightarrow Du et al. (2012)

Related literature Back

Impacts on adult outcomes are more ambiguous:

- Link to higher wages later in working career
 - ightarrow Fredriksson and Öckert (2014)
- More likely to become a corporate CEO
 - \rightarrow Du et al. (2012)
- No significant effects on prime-age earnings
 - $\,\longrightarrow\,$ Black et al. (2011); Dobkin and Ferreira (2010); Fredriksson and Öckert (2014)

Local polynomial specifications

Intent to treat effects (ITT)

$$\min \sum_{i=1}^{N(h)} \left(Y_{ig} - \alpha_0 - \alpha \tau_i - \underbrace{\mathbf{f}(B_i)}_{\text{Trend}} - \mathbf{X}_i \delta - \underbrace{\varphi_c}_{\text{Cohort FE}} \right)^2 \underbrace{\mathbf{K}_h(\tau_i, B_i)}_{\triangle \text{ kernel}}$$

Local polynomial specifications

Intent to treat effects (ITT)

$$\min \sum_{i=1}^{N(h)} \left(Y_{ig} - \alpha_0 - \alpha \tau_i - \underbrace{\mathbf{f}(B_i)}_{\mathsf{Trend}} - \mathbf{X}_i \delta - \underbrace{\varphi_{\mathcal{C}}}_{\mathsf{Cohort}} \, \underbrace{\mathbf{K}_h(\tau_i, B_i)}_{\triangle \; \mathsf{kernel}} \right)^2 \underbrace{\mathbf{K}_h(\tau_i, B_i)}_{\triangle \; \mathsf{kernel}}$$

$$\mathbf{f}(B_i) = \phi_1 B_i + \phi_2 \tau_i B_i$$

Local polynomial specifications

Intent to treat effects (ITT)

$$\min \sum_{i=1}^{N(h)} \left(Y_{ig} - \alpha_0 - \alpha \tau_i - \underbrace{\mathbf{f}(B_i)}_{\mathsf{Trend}} - \mathbf{X}_i \delta - \underbrace{\varphi_{\mathcal{C}}}_{\mathsf{Cohort}} \, \underbrace{\mathbf{K}_h(\tau_i, B_i)}_{\triangle \; \mathsf{kernel}} \right)^2 \underbrace{\mathbf{K}_h(\tau_i, B_i)}_{\triangle \; \mathsf{kernel}}$$

$$\mathbf{f}(B_i) = \phi_1 B_i + \phi_2 \tau_i B_i \quad \text{or} \quad \mathbf{f}(B_i) = \sum_{p=1}^2 \phi_p B_i^p + \sum_{p=1}^2 \phi_{pp} \tau_i B_i^p$$

Local polynomial specifications

Intent to treat effects (ITT)

$$\min \sum_{i=1}^{N(h)} \left(Y_{ig} - \alpha_0 - \alpha \tau_i - \underbrace{\mathbf{f}(B_i)}_{\text{Trend}} - \mathbf{X}_i \delta - \underbrace{\varphi_c}_{\text{Cohort FE}} \right)^2 \underbrace{\mathbf{K}_h(\tau_i, B_i)}_{\triangle \text{ kernel}}$$

$$\mathbf{f}(B_i) = \phi_1 B_i + \phi_2 \tau_i B_i \quad \text{or} \quad \mathbf{f}(B_i) = \sum_{p=1}^2 \phi_p B_i^p + \sum_{p=1}^2 \phi_{pp} \tau_i B_i^p$$

$$\mathbf{K}_h(\tau_i, \boldsymbol{B}_i) = \max\left(0, 1 - \left|\frac{\boldsymbol{B}_i}{h}\right|\right)$$

Local polynomial specifications

Local average treatment effects (LATE)

$$\min \sum_{i=1}^{N(h)} (A_i - \theta_0 - \theta \tau_i - \mathbf{f}(B_i) - \mathbf{X}_i \delta - \boldsymbol{\varphi}_c)^2 \, \mathbf{K}_h(\boldsymbol{\tau}_i, \boldsymbol{B}_i)$$

Local polynomial specifications

Local average treatment effects (LATE)

$$\begin{split} & \min \sum_{i=1}^{N(h)} \left(A_i - \theta_0 - \theta \tau_i - \mathbf{f}(B_i) - \mathbf{X}_i \delta - \varphi_c \right)^2 \mathbf{K}_h(\tau_i, B_i) \\ & \min \sum_{i=1}^{N(h)} \left(Y_{ig} - \beta_0 - \beta \hat{A}_i - \mathbf{f}(B_i) - \mathbf{X}_i \delta - \varphi_c \right)^2 \mathbf{K}_h(\tau_i, B_i) \end{split}$$

Attrition Grade 4 sample Back

Attrition Grade 6 sample → Back

Attrition Grade 9 sample → Back

Descriptive statistics Back

Sample:	Full sa	mple	60-days before cutoff		60-days after cutoff		Difference	
	Obs.	%	Obs.	%	Obs.	%	p-value	
Student characteristics								
Grade 4 sample	000 661	40.61	26.000	10.56	07.145	10.10	0.67	
Female	229,661	48.61	36,220	48.56	37,145	48.40	0.67	
First generation immigrant	229,661	2.31	36,220	2.26	37,145	2.27	0.92	
Access to computer at home	229,661	55.39	36,220	55.10	37,145	55.15	0.89	
School social support (ASE)	229,661	38.76	36,220	39.18	37,145	39.70 7.05	0.15 0.61	
Dad unemployed	229,661 229,661	6.93 21.67	36,220 36,220	7.16 21.10	37,145 37,145	21.57	0.01	
Household with higher education	229,001	21.07	36,220	21.10	37,145	21.57	0.15	
Grade 6 sample								
Female	300.182	49.37	46.198	49.96	49,066	49.17	0.01	
First generation immigrant	300,182	2.49	46,198	2.33	49,066	2.58	0.01	
Access to computer at home	300,182	46.09	46,198	45.63	49,066	46.40	0.02	
School social support (ASE)	300,182	23.77	46,198	23.73	49,066	24.10	0.19	
Dad unemployed ` `	300,182	4.66	46,198	4.87	49,066	4.63	0.12	
Household with higher education	300,182	17.85	46,198	17.69	49,066	17.85	0.56	
Grade 9 sample								
Female	188.648	51.51	28,676	52.21	31.125	51.38	0.04	
First generation immigrant	188,648	2.27	28,676	2.07	31,125	2.53	0.00	
Access to computer at home	188,648	47.91	28,676	47.41	31,125	48.32	0.03	
School social support (ASE)	188,648	16.24	28,676	16.28	31,125	16.33	0.87	
Dad unemployed	188,648	3.67	28,676	3.64	31,125	3.72	0.63	
Household with higher education	188,648	20.04	28,676	20.08	31,125	19.73	0.32	

Continuity in covariates ▶ Back

Grade sample:	Grade 4	Grade 6	Grade 9	Controls
Outcome:	Coef. (SE)	Coef. (SE)	Coef. (SE)	
Female	-0.016 (0.022) -0.016 (0.022)	0.004 (0.017) 0.005 (0.017)	0.019 (0.022) 0.020 (0.022)	No Yes
Immigrant	0.015 (0.008) 0.015 (0.008)	0.007 (0.006) 0.007 (0.006)	0.008 (0.008) 0.008 (0.008)	No Yes
School social support	0.059 (0.020) 0.057 (0.018)	-0.012 (0.011) -0.014 (0.011)	-0.024 (0.012) -0.027 (0.011)	No Yes
Unemployed dad	-0.008 (0.013) -0.012 (0.013)	0.002 (0.005) 0.003 (0.005)	0.009 (0.010) 0.010 (0.010)	No Yes
Computer at home	-0.014 (0.016) -0.006 (0.015)	0.004 (0.021) 0.005 (0.020)	0.018 (0.019) 0.019 (0.019)	No Yes
Higher education in HH	-0.007 (0.018) 0.007 (0.017)	-0.008 (0.014) -0.010 (0.013)	-0.009 (0.012) -0.015 (0.011)	No Yes
Observations	72807	94573	59345	

First-stage estimates → Back

Outcome: school starting age	30-days b	andwidth	60-days b	andwidth	MSE-optimal bandwidth		
	(1)	(2)	(3)	(4)	(5)	(6)	
Grade 4							
$ au_4$	0.674 (0.038)	0.670 (0.038)	0.709 (0.026)	0.706 (0.026)	0.686 (0.013)	0.685 (0.014)	
Observations	36124	36124	72807	72807	113709	108656	
Bandwidth (in days)	30	30	60	60	93	89	
Grade 6							
$ au_6$	0.730 (0.014)	0.729 (0.014)	0.740 (0.010)	0.739 (0.011)	0.733 (0.008)	0.731 (0.008)	
Observations	47125	47125	94573	94573	105815	104133	
Bandwidth (in days)	30	30	60	60	66	65	
Grade 9							
$ au_9$	0.737	0.736	0.748	0.746	0.742	0.741	
	(0.023)	(0.023)	(0.015)	(0.016)	(0.010)	(0.010)	
Observations	29428	29428	59345	59345	84777	82809	
Bandwidth (in days)	30	30	60	60	84	83	
Polynomial order	Quadratic	Quadratic	Quadratic	Quadratic	Quadratic	Quadrati	
Student controls	NO	YES	NO	YES	NO	YES	
Cohort FEs	NO	YES	NO	YES	NO	YES	

Statistical power → Back

Only non-repeaters Back

Outcome:	(4)		Math	(4)	Language				
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	
Grade 4									
School starting age	0.251 (0.029)	0.280 (0.025)	0.245 (0.034)	0.275 (0.029)	0.342 (0.029)	0.370 (0.022)	0.325 (0.051)	0.356 (0.045)	
Observations	31138	30064	45349	44192	63021	78135	57492	60766	
Bandwidth (in days)	29	28	41	41	57	72	53	56	
Grade 6									
School starting age	0.195	0.218	0.179	0.206	0.235	0.255	0.242	0.261	
	(0.031)	(0.024)	(0.035)	(0.026)	(0.029)	(0.025)	(0.031)	(0.027)	
Observations	58094	56681	67816	73176	59572	60964	86475	86475	
Bandwidth (in days)	43	42	49	54	43	45	64	64	
Grade 9									
School starting age	0.073	0.105	0.150	0.152	0.170	0.182	0.180	0.187	
	(0.035)	(0.032)	(0.045)	(0.039)	(0.032)	(0.030)	(0.034)	(0.031)	
Observations	38128	32081	32991	36401	34910	40944	51910	71246	
Bandwidth (in days)	44	38	38	43	41	47	61	83	
Polynomial order	Linear	Linear	Quadratic	Quadratic	Linear	Linear	Quadratic	Quadratic	
Student controls	NO	YES	NO	YES	NO	YES	NO	YES	
Cohort Fes	NO	YES	YES	YES	NO	YES	YES	YES	

With birth day of the week FEs → Back

Outcome:	Math po	erformance (2)	Language (3)	performance (4)	Grade (5)	retention (6)
(Until) Grade 4	0.289	0.274	0.364	0.360	-0.060	-0.054
School starting age	(0.022)	(0.024)	(0.034)	(0.040)	(0.009)	(0.011)
Observations	34866	53287	41015	65624	57032	66960
Bandwidth (in days)	29	44	34	53	47	54
(Until) Grade 6	0.262	0.255	0.294	0.291	-0.081	-0.079
School starting age	(0.025)	(0.028)	(0.023)	(0.024)	(0.010)	(0.011)
Observations	64417	100530	61354	115385	61467	93673
Bandwidth (in days)	41	64	38	72	39	58
(Until) Grade 9	0.095	0.150	0.192	0.179	-0.047	-0.048
School starting age	(0.024)	(0.038)	(0.024)	(0.032)	(0.009)	(0.010)
Observations	56529	39324	66312	69474	43488	76707
Bandwidth (in days)	57	39	66	70	43	76
Polynomial order	Linear	Quadratic	Linear	Quadratic	Linear	Quadratic

With birth day of the week FEs → Back

Outcome:	Math performance			Lang	uage perforn	nance	Grade retention		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
(Until) Grade 4 School starting age	0.288	0.272	0.274	0.393	0.356	0.373	-0.041	-0.052	-0.05
Observations Left bandwidth (in days) Right bandwidth (in days)	(0.028) 35742 30 30	(0.024) 72001 60 60	(0.024) 61461 53 47	(0.075) 35767 30 30	(0.048) 72040 60 60	(0.035) 71283 66 50	(0.017) 35826 30 30	(0.013) 72155 60 60	(0.011 68302 54 64
(Until) Grade 6 School starting age	0.194 (0.042)	0.239 (0.030)	0.247 (0.028)	0.326 (0.031)	0.302 (0.031)	0.291 (0.024)	-0.071 (0.014)	-0.079 (0.013)	-0.07 (0.01
Observations Left bandwidth (in days) Right bandwidth (in days)	46958 30 30	94251 60 60	87299 63 48	47043 30 30	94393 60 60	123601 73 82	47125 30 30	94573 60 60	10143 57 69
(Until) Grade 9 School starting age	0.168	0.155	0.153	0.152	0.184	0.175	-0.032	-0.036	-0.03
Observations Left bandwidth (in days) Right bandwidth (in days)	(0.060) 29245 30 30	(0.038) 58995 60 60	(0.037) 49042 42 56	(0.049) 29407 30 30	(0.036) 59290 60 60	(0.031) 65373 70 61	(0.013) 29428 30 30	(0.011) 59345 60 60	(0.01) 5460 49 61

Robustness checks \rightarrow Randomization-based p-values $\stackrel{\blacktriangleright}{\text{Back}}$

Robustness checks \rightarrow Placebo coefficients \rightarrow Back

 $\mathsf{Mechanisms} \to \mathsf{Age}\text{-at-test vs. school starting age effects} \quad {}^{\blacktriangleright} \, \mathsf{Back}$

Why is there a decline in SSA effects?

Mechanisms → Age-at-test vs. school starting age effects → Back

Why is there a decline in SSA effects?

• SSA effect orthogonal to age-at-test effects may be negative

 \longrightarrow Peña (2017); Black et al. (2011); Crawford et al. (2007)

 $\mathsf{Mechanisms} \to \mathsf{Age}\text{-at-test vs. school starting age effects} \quad {}^{\blacktriangleright} \mathsf{Back}$

Why is there a decline in SSA effects?

SSA effect orthogonal to age-at-test effects may be negative

 \longrightarrow Peña (2017); Black et al. (2011); Crawford et al. (2007)

 $\frac{\partial h_t}{\partial \underline{A}}$

Absolute age effect

Mechanisms \rightarrow Age-at-test vs. school starting age effects \rightarrow Back

Why is there a decline in SSA effects?

SSA effect orthogonal to age-at-test effects may be negative

 \longrightarrow Peña (2017); Black et al. (2011); Crawford et al. (2007)

$$\frac{\partial h_t}{\partial A} = \underbrace{\frac{\partial h_t}{\partial t}}_{\text{Absolute age effect}} = \underbrace{\frac{\partial h_t}{\partial t}}_{\text{Age-at-test effect}}$$

Mechanisms \rightarrow Age-at-test vs. school starting age effects \rightarrow Back

Why is there a decline in SSA effects?

• SSA effect orthogonal to age-at-test effects may be negative

 \longrightarrow Peña (2017); Black et al. (2011); Crawford et al. (2007)

$$\frac{\partial h_t}{\partial A} = \frac{\partial h_t}{\partial t} + \underbrace{\frac{\partial h_t}{\partial SSA_{\perp}}}_{\text{Assolute age effect}} + \underbrace{\frac{\partial h_t}{\partial SSA_{\perp}}}_{\text{L SSA effect}}$$

 $Mechanisms \to Minimal \ assumptions \ model \ {}^{\blacktriangleright} \, {}^{\mathsf{Back}}$

$$\frac{\partial h_t}{\partial t} \ge 0 \quad \land \quad$$

 $Mechanisms \to Minimal \ assumptions \ model \ {}^{\blacktriangleright} \, {}^{\mathsf{Back}}$

$$\frac{\partial h_t}{\partial t} \ge 0 \quad \land \quad \frac{\partial^2 h_t}{\partial t^2} \le 0$$

Mechanisms → Minimal assumptions model ► Back

$$\begin{split} \frac{\partial h_t}{\partial t} &\geq 0 \quad \wedge \quad \frac{\partial^2 h_t}{\partial t^2} \leq 0 \\ \frac{\partial h_t}{\partial t} &\propto \underbrace{g\left(A_t\right) = \frac{A_t - A_{t-1}}{A_{t-1}} - 1}_{\text{Growth in age}} \end{split}$$

$\mathsf{Mechanisms} \to \mathsf{Rates} \ \mathsf{of} \ \mathsf{decline} \ {}^{\blacktriangleright} \, {}^{\mathsf{Back}}$

 $\mathsf{Mechanisms} \to \mathsf{Rates} \ \mathsf{of} \ \mathsf{decline} \ {}^{\blacktriangleright} \, {}^{\mathsf{Back}}$

Given our empirical results:

$$\underbrace{\frac{\partial^2 h_t}{\partial A^2} < \frac{\partial g\left(A_t\right)}{\partial t}}_{}$$

Estimated LATE fall quicker

Mechanisms → Rates of decline → Back

Given our empirical results:

$$\underbrace{\frac{\partial^2 h_t}{\partial A^2} < \frac{\partial g\left(A_t\right)}{\partial t}}_{\text{Estimated LATE fall quicker}} \implies \frac{\partial^2 h_t}{\partial A^2} < \frac{\partial^2 h_t}{\partial t^2}$$

Mechanisms → Rates of decline → Back

Given our empirical results:

$$\underbrace{\frac{\partial^2 h_t}{\partial A^2} < \frac{\partial g\left(A_t\right)}{\partial t}}_{\text{stimated LATE fall quicker}} \implies \frac{\partial^2 h_t}{\partial A^2} < \frac{\partial^2 h_t}{\partial t^2} \implies \frac{\partial h_t}{\partial SSA_\perp} < 0$$

Estimated LATE fall quicker