COMP2270/6270 – Theory of Computation Seventh week

School of Electrical Engineering & Computing The University of Newcastle

Note: Some exercises belong to Chapters 11 and 12 of Ref [1]

Exercise 1) Give an example of a language that is not regular but that it can be generated by a context-free grammar. Can you give another three examples? Justify your answers.

Example of three languages which are context free but not regular are: AⁿBⁿ, WW^R, and Balanced Parenthesis.

Exercise 2) Let G be the ambiguous expression grammar given below (Example 11.14 of Ref. [1]). Show at least three different parse trees that can be generated from G for the string id+id*id.

```
G = \{ \{E, id, +, *, (,)\}, \{id, +, *, (,)\}, R, E \}, \text{ where:}
R = \{ E \rightarrow E + E
E \rightarrow E * E
E \rightarrow (E)
E \rightarrow id
\}
```

Exercise 3) Consider the expression grammar G' given below (Example 11.19 of Ref. [1]).

```
G' = \{ \{E, T, F, id, +, *, (,)\}, \{ id, +, *, (,) \}, R, E \}, \text{ where:}
R = \{ E \rightarrow E + T
E \rightarrow T
T \rightarrow T * F
T \rightarrow F
F \rightarrow (E)
F \rightarrow id
```

a) Trace a derivation of the string id+id*id*id in $G\square$.

```
E \Rightarrow E + T \Rightarrow T + T \Rightarrow F + T \Rightarrow \text{id} + T \Rightarrow \text{id} + T * F \Rightarrow \text{id} + T * F * F \Rightarrow \text{id} + F * F * F \Rightarrow \text{id} + \text{id} * F * F \Rightarrow \text{id} + \text{id} * \text{id} *
```

b) Add exponentiation (**) and unary minus (-) to G', assigning the highest precedence to unary minus, followed by exponentiation, multiplication, and addition, in that order.

```
R = \{E \rightarrow E + T \\ E \rightarrow T \\ T \rightarrow T * F \\ T \rightarrow F \\ F \rightarrow F ** X \\ F \rightarrow X \\ X \rightarrow -X \\ X \rightarrow Y \\ Y \rightarrow (E) \\ Y \rightarrow \text{id} \}.
```

Exercise 4) Let G be the grammar given below (Example 11.12 of Ref [1]). Show a third parse tree that G can produce for the string (())().

$$G = \{\{S, \}, (\}, \{\}, \{\}, R, S\}, \text{ where:}$$
 $R = \{S \Rightarrow (S) \\ S \Rightarrow SS \\ S \Rightarrow \epsilon \}$

Exercise 5) Consider the following grammar $G: S \rightarrow 0S1 \mid SS \mid 10$ Show a parse tree produced by G for each of the following strings:

- a) 010110
- b) 00101101

Exercise 6) Convert each of the following grammars to Chomsky Normal Form:

a)
$$S \rightarrow ABC$$

 $A \rightarrow aC \mid D$
 $B \rightarrow bB \mid \epsilon \mid A$
 $C \rightarrow Ac \mid \epsilon \mid Cc$
 $D \rightarrow aa$

$S \rightarrow AS_1$	
$S_I \rightarrow BC$	
$S \rightarrow AC$	
$S \rightarrow AB$	
$S \rightarrow X_a C \mid$ a $\mid X_a X_a \mid$	
$A \rightarrow X_a C$	
$A \rightarrow a$	
$A \rightarrow X_a X_a$	
$B \to X_b B$	
B ightarrow b	
$B o X_a C \mid$ a $\mid X_a X_a$	

$C \rightarrow AX_c$	
$C \rightarrow CX_c$	
$C \rightarrow c$	
$D \rightarrow X_a X_a$	
$X_a \rightarrow a$	
$X_b \rightarrow b$	
$X_c \rightarrow c$	

b)
$$S \rightarrow aTVa$$

 $T \rightarrow aTa \mid bTb \mid \epsilon \mid V$
 $V \rightarrow cVc \mid \epsilon$

$$S \rightarrow aTVa$$

$$T \rightarrow aTa \mid bTb \mid \epsilon \mid V$$

$$V \rightarrow cVc \mid \epsilon$$

removeEps:

New rules in bold, the $T \to \varepsilon$ and $V \to \varepsilon$ rules have been removed.

$$S \rightarrow aTVa \mid \mathbf{aTa} \mid \mathbf{aVa} \mid \mathbf{aa}$$

$$T \rightarrow aTa \mid bTb \mid V \mid \mathbf{aa} \mid \mathbf{bb}$$

$$V \rightarrow cVc \mid cc$$

At this point all epsilon transitions have been removed.

removeUnits:

New rules in bold, the $T \rightarrow V$ rule have been removed.

$$S \rightarrow aTVa \mid aTa \mid aVa \mid aa$$

$$T \rightarrow aTa \mid bTb \mid aa \mid bb \mid cVc \mid cc$$

$$V \rightarrow cVc \mid cc$$

At this point all rules with a RHS of length one are in Chomsky Normal Form (i.e. they are a single terminal symbol).

removeMixed:

New and modified rules in bold. An important note is that rules such as $T \rightarrow$ aa must still be changed even though they are technically not "mixed", any rule with a RHS longer than 1 symbol and which contains a terminal must be modified by replacing the terminal with its new nonterminal equivalent.

$$S \rightarrow ATVA \mid ATA \mid AVA \mid AA$$
 $T \rightarrow ATA \mid BTB \mid AA \mid BB \mid CVC \mid CC$
 $V \rightarrow CVC \mid CC$
 $A \rightarrow a$
 $B \rightarrow b$
 $C \rightarrow c$

At this point all rules who have a RHS of length one or two are in CNF.

removeLong:

Chapter 11 4

```
S \rightarrow AS_{1} | AS_{2} | AS_{3} | AA
S_{1} \rightarrow TS_{3}
S_{2} \rightarrow TA
S_{3} \rightarrow VA
T \rightarrow AS_{2} | BT_{1} | AA | BB | CT_{2} | CC
T_{1} \rightarrow TB
T_{2} \rightarrow VC
V \rightarrow CT_{2} | CC
A \rightarrow a
B \rightarrow b
C \rightarrow c
```

At this point the grammar is now in CNF and still describes the same language, though it will not necessarily generate the same parse tree for each string.

Exercise 7) Build a PDA to accept each of the following languages *L*:

BalDelim = $\{w : \text{where } w \text{ is a string of delimeters: }(,), [,], \{,\}, \text{ that are properly balanced}\}.$

```
M = (\{1\}, \{(,), [,], \{,\}\}, \{(,[,\{\}, \Delta, 1, \{1\}), \text{ where } \Delta = \{((1, (, \epsilon), (1, ()), ((1, [, \epsilon), (1, [)), ((1, \{, \epsilon), (1, \{)), ((1, ), (), (1, \epsilon)), ((1, ], [), (1, \epsilon)), ((1, ], [), (1, \epsilon)), ((1, ], \{), (1, \epsilon))\}
```

a) $\{a^ib^j: 2i = 3j + 1\}.$

Chapter 11 5

```
b) \{w \in \{a, b\}^* : \#_a(w) = 2 \cdot \#_b(w)\}.
```

The idea is that we only need one state. The stack will do all the work. It will count whatever it is ahead on. Since one a matches two b's, each a will push an a (if the machine is counting a's) and each b (if the machine is counting a's) will pop two of them. If, on the other hand, the machine is counting b's, each b will push two b's and each a will pop one. The only tricky case arises with inputs like aba. M will start out counting a's and so it will push one onto the stack. Then comes a b. It wants to pop two a's, but there's only one. So it will pop that one and then switch to counting b's by pushing a single b by using the last transition listed in Δ . The final a will then pop that b. M is highly nondeterministic. But there will be an accepting path iff the input string w is in L.

```
M = (\{1\}, \{a, b\}, \{a, b\}, \Delta, 1, \{1\}), \text{ where } \Delta = \{ ((1, a, \epsilon), (1, a)), ((1, a, b), (1, \epsilon)), ((1, b, \epsilon), (1, bb)), ((1, b, aa), (1, \epsilon)), ((1, b, a), (1, b)) \}
```

c) $\{a^nb^m: m \le n \le 2m\}.$

```
M = (\{1, 2\}, \{a, b\}, \{a\}, \Delta, 1, \{1, 2\}), \text{ where } \Delta = \{ ((1, a, \epsilon), (1, a)), ((1, \epsilon, \epsilon), (2, \epsilon)), ((2, b, a), (2, \epsilon)), ((2, b, aa), (2, \epsilon)) \}.
```

d) $\{w \in \{a, b\}^* : w = w^R\}.$

This language includes all the even-length palindromes of Example 12.5, plus the odd-length palindromes. So a PDA to accept it has a start state we'll call 1. There is a transition, from 1, labelled $\varepsilon/\varepsilon/\varepsilon$, to a copy of the PDA of Example 12.5. There is also a similarly labelled transition from 1 to a machine that is identical to the machine of Example 12.5 except that the transition from state s to state f has the following two labels: $a/\varepsilon/\varepsilon$ and $b/\varepsilon/\varepsilon$. If an input string has a middle character, that character will drive the new machine through that transition. A PDA to accept this language can also be derived from the machine in Ex 12.5 by adding the $a/\varepsilon/\varepsilon$ and $b/\varepsilon/\varepsilon$ transitions in parallel to the $\varepsilon/\varepsilon/\varepsilon$ transition. In both cases the automata is non-deterministic.

REFERENCES

[1] Elaine Rich, Automata Computatibility and Complexity: Theory and Applications, Pearson, Prentice Hall, 2008.

Chapter 11 6