COVID-19 MORTALITY PREDICTION USING MACHINE LEARNING MODELS

: A COMPARITIVE STUDY

INTRODUCTION

COVID-19, caused by the highly infectious SARS-CoV-2 virus, has been declared a global public health emergency by the WHO. Epidemiological models have been deployed for outbreak prediction, peak estimation and mortality rate prediction.

The goal of this project is to provide assistance to medical units based on critical situations such as the following:

During the beginning of a pandemic wave, medical units generally do not have issues with medical infrastructures such as beds and medical supplies. In this scenario, we propose to use one of the mentioned models that have a better recall score (where a patient is considered critical even if there is a small chance that he might still recover later).

As the pandemic reaches a peak, medical supplies and infrastructure become sparse. In such scenarios, medical units can switch to a model with higher precision (to ensure the most needed patients are attended soon).

DATA PRE-PROCESSING

LOAD DATASET

FINDING RELATIONS

PRE-PROCESSING

FINAL FORMATTING

FEATURE SELECTION AND DATA RE-SAMPLING

Not PCA

Principal component analysis works best when the feature set has continous values. In our case, all features are binary values and therefore PCA is ruled out

Decision Trees

We use Decision trees with a higher max_depth value so as get the feature_importance based on the gini index

Resampling

We use SMOTE and
RandomUnderSampler modules
provided by imblearn package
to under sample the majority
class and oversample the
minority class


```
np.cumsum(list(important_features.values()))
                 array([0.62368734, 0.70295056, 0.76285802, 0.8201737 , 0.85182216,
                         0.87815796, 0.89113641, 0.9033984 , 0.91524446, 0.92629333,
                        0.93638829, 0.94599016, 0.95553693, 0.96485467, 0.9736132 ,
                        0.9815581 , 0.98816025, 0.99380038, 0.99713923, 0.99850495,
                        0.99927187, 0.99981512, 1.
best features = list(important features.keys())[:np.argmax(np.cumsum(list(important features.values())) >= 0.9)+1]
best features
"HOSPITALIZED",
 'AGE 68-88'.
 'PNEUMONIA'.
 "COVID-TEST".
 'AGE 88-188',
 'AGE 48-68',
 'HIPERTENSION',
 'DIABETES'
```


precision

MODELS

Unsampled training set

0.595140 0.935755

0.926319

1 accuracy

Unsampled training set with reduced feature set

Re-sampled training set

Resampled Training set with reduced features

Unsampled training set

0.590108 0.936194

238734.000000 18880.000000 0.938194 255414.000000 255414.000000

0.928396

0.936194

recall

0.697412

0.955089

0.965972

0.8

0.6

0.4

0.2

MODELS

Unsampled training set with reduced features

Resampled Training set with reduced features

0.420452 0.902676

0.704794

0.756471

0.947544

0.902676

0.989136

0.904935

0.945164

MODELS

Unsampled training set with reduced feature set

Re-sampled training set

0.395359 0.889983

0.993298

macro avg

0.694329

0.949136

Resampled Training set with reduced features

MODELS

MODELS

STATISTICS

Anirudh S Bhargav

- Data exploration and Preprocessing
- Modelling
- Hyperparameter tuning for Hybrid and class-specific ensemble
- Literature survey
- GitHub
- IEEE report

OUR TEAM

Irlanki Sandeep

- Data exploration and Preprocessin
- Modelling
- Hyperparameter tuning for Logestic regression
- Literature survey
- Plotting metrics
- IEEE report

Rahul Chauhan

- Data exploration and Preprocessing
- Modelling
- Hyperparameter tuning for Decision tree
- Literature survey
- Presentation
- IEEE report

Rohan Sarnad

- Data exploration and Preprocessing
- Modelling
- Hyperparameter tuning for XG Boost
- Literature survey
- Github
- IEEE report

THANK YOU

