CS & IT ENGINEERING

COMPUTER ORGANIZATION
AND ARCHITECTURE

Cache Organization

Lecture No.- 08

Recap of Previous Lecture

Topic

Fully Associative Mapping

Topic

Set Associative Mapping

Topics to be Covered

Topic Block Replacement

Topic Cache Miss Penalty

Topic Types of Cache Miss

Consider a 4-way set associative cache (initially empty) with total 16 cache #Q. blocks. The main memory consists of 256 block and the request for memory blocks is in the following order:

0, 255, 1, 4, 3, 8, 133, 159, 216, 129, 63, 8, 48, 32, 73, 92, 155

Which one of the following memory block will not be in cache if LRU replacement policy is used?

Δ	2
	3

ì	Ī	1
ı		
1		
1		

7 10	1 32	0	92
1	133	129	73

129

255	3	159	63

[MCQ]

#Q. Consider a fully associative cache with 8 cache blocks (numbered 0−7) and the following sequence of memory block requests:

If LRU replacement policy is used, which cache block will have memory block 7?

A

B // 5

C

6

D

Topic: Cache Miss Penalty

Time required to bring a missed block from main memory to cache

Topic: Cache Miss Penalty

Assume:

Cycles required to send address to memory : 1 cycle

Cycles required to access 1 main memory cell : 10 cycles

Cycles required to transfer 1 cell data to cache : 1 cycle

Cache Block Size	Main memory cell size	Miss Penalty
4 bytes	1 byte	1+(4*10)+(4*1)=45
4 bytes	2 bytes	1+(2*10)+(2*1)=23
4 bytes	4 bytes	1+(1*10)+(1*1)=12

if cov cycle time given then miss penalty time = miss penalty * 1 cycle time cycles

[NAT]

#Q. A certain processor deploys a single-level cache. The cache block size is 8 words, and the word size is 4 bytes. The memory system uses a 60 MHz clock. To service a cache-miss, the memory controller first takes 1 cycle to accept the starting address of the block, it then takes 3 cycles to fetch all the eight words of the block, and finally transmits the words of the requested block at the rate of 1 word per cycle. The maximum bandwidth for the memory system when the program running on the processor issues a series of read operations is ________ ×10⁶ bytes/sec?

block size = 8 words =
$$8 * 4 = 12 \text{ bytes}$$

Cache miss penalty = $1 + 3 + 8 = 12 \text{ cycles} = 12 * 1 = 1 \text{ Usec}$

in
$$\frac{1}{5}$$
 Usec time, data = 32 bytes
in 1 Usec — 11 — = $\frac{32}{1/5}$ Us
= $\frac{160}{10^{-6}}$ B/US
in 1 Sec — $\frac{1}{10^{-6}}$ = $\frac{160}{10^{-6}}$ B/Sec

- 1. Cold or Compulsory Miss
- 2. Capacity Miss
- 3. Conflict Miss

1. Cold or Compulsory Miss

First time access of a block will always cause a miss

To reduce Cold misses: Increase block size

2. Capacity Miss

If cache is full and hence miss occurs. (should not be the first time access of block)
To reduce Capacity misses: in crease cm capacity

3. Conflict Miss

If cache set is full and heuse miss occurs due to tag mismatch

To reduce Conflict misses: increase associality

miss should not be cold or capacity miss)

x 24 36 48

no any conflict miss in fully associative cache ever

Topic: Example

- No. of blocks in cache = 4 $\frac{1}{2}$ no. of sets in cm = $\frac{4}{2}$ = 2 2-way set associative cache_
- LRU replacement policy

cm set no_ (mm block no.) % 2

CPU requests for main memory blocks

cold cold	4, 0, 8,	hit Gold 0, 4, 1	3,	hit 1, 5,	hit 1, 3
00	0	484		C6 10	Capacity
01	1	35			

$$0\%2 = 0$$
 $4\%2 = 0$
 $8\%2 = 0$
 $1\%2 = 1$
 $3\%2 = 1$
 $5\%2 = 1$

MUX:

Topic: Checking Hit/Miss in Direct Mapping

Topic: Hardware Implementation in Direct Mapping

Blocks in cache ≠4

Block size = 16 bytes

Main memory address = 8-bits

Topic: Hardware Implementation in Direct Mapping

Topic: Hardware Implementation in Direct Mapping

H/W Requirements for direct mapping:

- 1. Size of MUX heeded for tag selection = No. of blocks in cache: 1
- 2. No. of MUX-IL-IL = No. of tag bits
- 3. No. of comparators needed = 1
- 4. size of -11 --- = No. of bits in tag

Topic: Hit Latency in Direct Mapping

time to check hit/miss in cache

Topic: Checking Hit/Miss in Set Associative Mapping

Topic: Hardware Implementation in Set Associative Mapping

H/w Requirements for k-way set associative cache: 1. No. of MUX needed for teg selection = k * no. of teg bits = no. of sets in cache: 1 3. No. of comparators needed = K 4. size of each comparator = No. of bits in tag 5. No. of OR-gates needed = 1 6. No. of inputs in or-gate = k

Topic: Hit Latency in Set Associative Mapping

Topic: Checking Hit/Miss in Fully Associative Mapping

How Requirements of fully ass. Cache:-

1. No. of comparators needed = no. of blocks in Cache

= no of bits tog 2. Size of -11

3. No. of OR-gate = 1 4. No. of inputs in OR-gate =

no of blocks in cache

Topic: Hit Latency in Fully Associative Mapping

2 mins Summary

Topic Block Replacement

Topic Cache Miss Penalty

Topic Types of Cache Miss

Happy Learning THANK - YOU