#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

데이터 전처리 (3) - 데이터 재구조화

- 피벗 테이블
- melt
- stack, unstack
- 교차표

#01. 패키지 참조

```
from pandas import DataFrame, read_excel
from pandas import pivot_table, crosstab, melt
```

#02. 피벗 테이블

1. 샘플 데이터 가져오기

```
df = read_excel("https://data.hossam.kr/C02/city_people.xlsx")
df
```

	도시	연도	인구	지역
0	서울	2015	9904312	수도권
1	서울	2010	9631482	수도권

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

	도시	연도	인구	지역
2	서울	2005	9762546	수도권
3	부산	2015	3448737	경상권
4	부산	2010	3393191	경상권
5	부산	2005	3512547	경상권
6	인천	2015	2890451	수도권
7	인천	2010	2632035	수도권

2. 피벗테이블 기본

인덱스, 컬럼, 값으로 사용할 필드를 각각 지정하여 데이터를 재배치

```
pivot_table(df, # 피벗할 데이터프레임 index = '도시', # 행 위치에 들어갈 열 columns = '연도', # 열 위치에 들어갈 열 values = '인구' # 데이터로 사용할 열
```

연도	2005	2010	2015
도시			
부산	3512547.0	3393191.0	3448737.0
서울	9762546.0	9631482.0	9904312.0

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

연도	2005	2010	2015
도시			
인천	NaN	2632035.0	2890451.0

3. 중복 데이터의 집계 방법 지정하기

```
a = pivot_table(df, # 피벗할 데이터프레임
index = '지역', # 행 위치에 들어갈 열
columns = '연도', # 열 위치에 들어갈 열
values = '인구', # 데이터로 사용할 열
aggfunc='mean' # 데이터가 두 개 이상일 경우 집계함수 지정
)
```

연도	2005	2010	2015
지역			
경상권	3512547.0	3393191.0	3448737.0
수도권	9762546.0	6131758.5	6397381.5

4. 복수 집계 함수 지정

```
pivot_table(df,
index = '지역',
```

04 데이터 재구조화.ipynb

```
데이터 전처리 (3) - 데이터 재구조화
```

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

```
columns = '연도',
values = '인구',
aggfunc=['sum', 'mean']
```

	sum			mean		
연도	2005	2010	2015	2005	2010	2015
지역						
경상권	3512547	3393191	3448737	3512547.0	3393191.0	3448737.0
수도권	9762546	12263517	12794763	9762546.0	6131758.5	6397381.5

5. 복수 인덱스 지정

```
pivot_table(df, # 피벗할 데이터프레임
index = ['지역', '연도'], # 행 위치에 들어갈 열
columns = '도시', # 열 위치에 들어갈 열
values = '인구', # 데이터로 사용할 열
aggfunc = ['mean', 'sum'] # 데이터 집계함수
)
```

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

		mean		sum			
	도시	부산	서울	인천	부산	서울	인천
지 역	연도						
경 	2005	3512547.0	NaN	NaN	3512547.0	NaN	NaN
상 권	2010	3393191.0	NaN	NaN	3393191.0	NaN	NaN
_	2015	3448737.0	NaN	NaN	3448737.0	NaN	NaN
수	2005	NaN	9762546.0	NaN	NaN	9762546.0	NaN
_ 도 권	2010	NaN	9631482.0	2632035.0	NaN	9631482.0	2632035.0
	2015	NaN	9904312.0	2890451.0	NaN	9904312.0	2890451.0

#03. melt

데이터 테이블의 컬럼 이름을 변수화 한 형태

피벗테이블을 분리한 것으로 볼 수 있다.

샘플 피벗 테이블

```
pivot_df = pivot_table(df, # 피벗할 데이터프레임
index = '연도', # 행 위치에 들어갈 열
columns = '지역', # 열 위치에 들어갈 열
values = '인구', # 데이터로 사용할 열
aggfunc='mean' # 데이터가 두 개 이상일 경우 집계함수 지정
```

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림 pivot_df

지역	경상권	수도권
연도		
2005	3512547.0	9762546.0
2010	3393191.0	6131758.5
2015	3448737.0	6397381.5

2. 피벗 테이블 분리

• id_vars: 인덱스로 사용할 컬럼이름. 반드시 컬럼만 가능(인덱스 불가)

• value_vars: 분리할 컬럼 이름들

데이터프레임의 인덱스를 일반 컬럼으로 설정 pivot_df2 = pivot_df.reset_index() pivot_df2

지역	연도	경상권	수도권
0	2005	3512547.0	9762546.0
1	2010	3393191.0	6131758.5
2	2015	3448737.0	6397381.5

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림 # 피벗 테이블 분리

mdf = melt(pivot_df2, id_vars=['연도'], value_vars=['경상권', '수도권'])
mdf

	연도	지역	value
0	2005	경상권	3512547.0
1	2010	경상권	3393191.0
2	2015	경상권	3448737.0
3	2005	수도권	9762546.0
4	2010	수도권	6131758.5
5	2015	수도권	6397381.5

```
# 피벗 테이블 분리 및 필드 이름 지정

mdf = melt(pivot_df2, id_vars=['연도'], value_vars=['경상권', '수도권'],

var_name='구분', value_name='인구수')

mdf
```

	연도	구분	인구수
0	2005	경상권	3512547.0
1	2010	경상권	3393191.0
2	2015	경상권	3448737.0

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

	연도	구분	인구수
3	2005	수도권	9762546.0
4	2010	수도권	6131758.5
5	2015	수도권	6397381.5

#04. stack, unstack

데이터 분리 (stack)

모든 변수를 하나의 변수로 쌓아놓는 처리

샘플 데이터 가져오기

df = read_excel("https://data.hossam.kr/C02/body.xlsx", index_col="name"
df

height weight sex name 175 98.0 M Lee F 48.0 Park 167 M 180 NaN Hong F Kim 162 55.0

23. 7. 7. 오후 2:01

04_데이터_재구조화.ipynb

데이터 전처리 (3) - 데이터 재구조화

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

	sex	height	weight
name			
Nam	М	172	85.0

stack 처리

리턴 결과를 Series 객체가 된다.

name		
Lee	sex	M
	height	175
	weight	98.0
Park	sex	F
	height	167
	weight	48.0
Hong	sex	Μ
	height	180
Kim	sex	F
	height	162
	weight	55.0
Nam	sex	Μ
	height	172
	weight	85.0
dtype	: object	

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

stack 결과를 DataFrame으로 만들기

df2 = DataFrame(st)
df2

0 name
Lee sex M height 175 weight 98.0
height 175 weight 98.0
weight 98.0
Park sex F
height 167
weight 48.0
Hong sex M
height 180
Kim sex F
height 162
weight 55.0
Nam sex M
height 172

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

빈 값에 대한 처리

dropna=False 파라미터를 적용하면 빈값(NaN)을 유지한다. (기본값=True, 빈값 삭제)

st2 = df.stack(dropna=False)
st2

name		
Lee	sex	М
	height	175
	weight	98.0
Park	sex	F
	height	167
	weight	48.0
Hong	sex	М
	height	180
	weight	NaN
Kim	sex	F
	height	162
	weight	55.0
Nam	sex	М
	height	172

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림 weight

85.0

dtype: object

stack 결과를 원래대로 되돌림

st.unstack()

	sex	height	weight
name			
Lee	М	175	98.0
Park	F	167	48.0
Hong	М	180	NaN
Kim	F	162	55.0
Nam	М	172	85.0

unstack을 수행하면서 빈값을 다른 값으로 대체

st.unstack(fill_value=100)

	sex	height	weight
name			
Lee	М	175	98.0

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

	sex	height	weight
name			
Park	F	167	48.0
Hong	М	180	100
Kim	F	162	55.0
Nam	М	172	85.0

#04. 교차표(crosstab)

범주형 자료를 갖는 데이터에 대해 각 범주별로 빈도수를 계산하여 표현한 표

1. 샘플 데이터 가져오기

df = read_excel("https://data.hossam.kr/C02/score.xlsx")
df

	gender	score
0	М	А
1	М	С
2	М	В
3	М	В
4	W	А

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림

	gender	score
5	W	С
6	W	С
7	W	В

2. 교차표 만들기

index 파라미터와 columns 파라미터를 지정한다.

crosstab(index=df['gender'], columns=df['score'])

score	Α	В	С
gender			
М	1	2	1
W	1	1	2

3. 파라미터 설정

• rownames : 인덱스의 이름 설정

• colnames : 컬럼의 이름 설정

• margins : 집계 결과 포함 여부(True/False)

crosstab(index=df['gender'], columns=df['score'],

#01. 패키지 참조

#02. 피벗 테이블

- 1. 샘플 데이터 가져오기
- 2. 피벗테이블 기본
- 3. 중복 데이터의 집계 방법 지 정하기
- 4. 복수 집계 함수 지정
- 5. 복수 인덱스 지정

#03. melt

샘플 피벗 테이블

2. 피벗 테이블 분리

#04. stack, unstack

데이터 분리 (stack)

샘플 데이터 가져오기

stack 처리

stack 결과를 DataFrame 으로 만들기

빈 값에 대한 처리

stack 결과를 원래대로 되 돌림 rownames=['성별'], colnames=['점수'], margins=True)

점수	Α	В	С	All
성별				
М	1	2	1	4
W	1	1	2	4
All	2	3	3	8

4. 비율 표시

• normalize=True 파라미터 사용

```
crosstab(index=df['gender'], columns=df['score'], rownames=['성별'], colnames=['점수'], margins=True, normalize=True)
```

점수	Α	В	С	All
성별				
М	0.125	0.250	0.125	0.5
W	0.125	0.125	0.250	0.5
All	0.250	0.375	0.375	1.0