Statistique Descriptive Chapitre III : Résumés numériques des variables quantitatives

Anas KNEFATI

Université Rennes 2

Plan

- Introduction
- Mesures de tendance centrale ou de position
 - Moyenne
 - Médiane
 - Mode
 - Quartiles et déciles
- Mesures de dispersion
 - Étendue Écart moyen absolu Écart médian absolu
 - Ecart inter-quartiles Box-plot (Boite à moustaches)
 - Variance et écart-type

Plan

- Introduction
- 2 Mesures de tendance centrale ou de position
 - Moyenne
 - Médiane
 - Mode
 - Quartiles et déciles
- Mesures de dispersion
 - Étendue Écart moyen absolu Écart médian absolu
 - Ecart inter-quartiles Box-plot (Boite à moustaches)
 - Variance et écart-type

Mesures

- Les informations contenues dans les variables quantitatives peuvent être résumées au moyen d'indicateurs numériques.
- Type d'indicateurs

Mesures de tendance centrale ou de position fournissent un ordre de grandeur des valeurs de la série statistique et la position où se situent ces valeurs

- Moyenne
- Médiane
- Mode
- Quartiles et déciles

Mesures

- Les informations contenues dans les variables quantitatives peuvent être résumées au moyen d'indicateurs numériques.
- Type d'indicateurs

Mesures de tendance centrale ou de position fournissent un ordre de grandeur des valeurs de la série statistique et la position où se situent ces valeurs

- Moyenne
- Médiane
- Mode
- Quartiles et déciles

Mesures de dispersion rendent en compte de l'éparpillement des données autour des valeurs centrales

- Écart moyen absolu et écart médian absolu
- Écart inter-quartile
- Variance et écart-type

Plan

- Introduction
- 2 Mesures de tendance centrale ou de position
 - Moyenne
 - Médiane
 - Mode
 - Quartiles et déciles
- Mesures de dispersion
 - Étendue Écart moyen absolu Écart médian absolu
 - Ecart inter-quartiles Box-plot (Boite à moustaches)
 - Variance et écart-type

Définition

- x: Variable statistique, x_1, \dots, x_n observations.
- Moyenne = La somme des valeurs divisées par leur nombre.

Définition

- x: Variable statistique, x_1, \dots, x_n observations.
- Moyenne = La somme des valeurs divisées par leur nombre.

Calcul

• Données brutes : $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

Définition

- x: Variable statistique, x_1, \dots, x_n observations.
- Moyenne = La somme des valeurs divisées par leur nombre.

Calcul

- Données brutes : $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Données agrégées d'une variable discrète à K modalités :

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^K n_i \mathbf{x}_i = \sum_{i=1}^K f_i \mathbf{x}_i \qquad \text{où} \quad \left\{ \begin{array}{rl} n_i & \text{est l'effectif de la $i^{\text{ème}}$ classe}, \\ f_i & \text{est la fréquence de la même classe}. \\ n & \text{effectif total} \end{array} \right.$$

Définition

- x: Variable statistique, x_1, \dots, x_n observations.
- Moyenne = La somme des valeurs divisées par leur nombre.

Calcul

- Données brutes : $\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
- Données agrégées d'une variable discrète à K modalités :

$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^K n_i \mathbf{x}_i = \sum_{i=1}^K f_i \mathbf{x}_i \qquad \text{où} \quad \left\{ \begin{array}{rl} n_i & \text{est l'effectif de la $i^{\text{ème}}$ classe}, \\ f_i & \text{est la fréquence de la même classe}. \\ n & \text{effectif total} \end{array} \right.$$

Données agrégées d'une variable continue de K classes :

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{K} n_i c_i = \sum_{i=1}^{K} f_i c_i$$
 où c_i est le centre de la $i^{\text{ème}}$ classe.

Moyenne - Exemples

Variable discrète : Nb de pièces des appatements d'un immeuble

Modalités xi	Effectifs n _i	$n_i x_i$	-
1	10	10	
2	7	14 36	Alors 7 - 124 ~ 2.76
3	12	36	Alors $\bar{x} = \frac{124}{45} \approx 2.76$
4	16	64	
Total	45	124	•

Moyenne - Exemples

Variable discrète : Nb de pièces des appatements d'un immeuble

Modalités x _i	Effectifs n _i	$n_i x_i$	
1	10	10	
2	7	14	Alors 7 - 124 ~ 2.76
3	12	36	Alors $\bar{x} = \frac{124}{45} \approx 2.76$
4	16	64	
Total	45	124	

Variable continue : Notes des étudiants

Classe	Effectifs n _i	Centres c _i	n _i c _i	Fréquences fi	f _i c _i	
[0; 5[6	2.5	15	0.1	0.25	•
[5; 8[21	6.5	136.5	0.36	2.34	
[8; 12[8	10	80	0.14	1.4	$\bar{x} = \frac{611.5}{59} \approx 10.4$
[12; 15[10	13.5	135	0.17	2.3	o s
[15; 20[14	17.5	245	0.24	4.2	
 Total	59		611.5	1	10.5	•

Médiane

Définition

- C'est la valeur possible de la variable (observée ou non) qui sépare la série d'observations en deux ensembles d'effectifs égaux.
- 50% des observations sont inférieures à la médiane et 50% sont supérieures à elle.
- C'est le point au milieu de la série ordonnée.

Médiane

Définition

- C'est la valeur possible de la variable (observée ou non) qui sépare la série d'observations en deux ensembles d'effectifs égaux.
- 50% des observations sont inférieures à la médiane et 50% sont supérieures à elle.
- C'est le point au milieu de la série ordonnée.

Calcul - Variable discrète

On ordonne les observations en liste croissante

$$x_{(1)} \leq x_{(2)} \leq \cdots \leq x_{(n)}$$

- Si le nombre d'observations n est impair, il y a une seule valeur au milieu de la série ordonnée qui sera la médiane : $M = x_{(\frac{n+1}{2})}$
- Sinon, il y a deux valeurs au milieu de la série et donc la médiane sera leur moyenne : $M = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2}$

Répartition des hôtels à Paris en 2010 en fonction de nombre d'étoiles

0

Classement d'hôtel	0	1	2	3	4	5
Effectifs	30	100	500	590	148	62
Effectifs cumulées	30	130	630	1220	1368	1430

Répartition des hôtels à Paris en 2010 en fonction de nombre d'étoiles

•

Classement d'hôtel	0	1	2	3	4	5
Effectifs	30	100	500	590	148	62
Effectifs cumulées	30	130	630	1220	1368	1430

•
$$n = 1430$$
 pair, alors $M = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} = \frac{x_{(715)} + x_{(716)}}{2} = \frac{3+3}{2} = 3$

Répartition des hôtels à Paris en 2010 en fonction de nombre d'étoiles

•

Classement d'hôtel	0	1	2	3	4	5
Effectifs	30	100	500	590	148	62
Effectifs cumulées	30	130	630	1220	1368	1430

• n = 1430 pair, alors $M = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} = \frac{x_{(715)} + x_{(716)}}{2} = \frac{3+3}{2} = 3$

Nb d'enfants en millier de 0 à 18 ans par famille en France (2012).

•

Nombre d'enfants	1	2	3	4 et plus	Total
Effectifs	3 479,9	2 978	987,2	277,9	7 723
Effectifs cumulés	3 479,9	6 457.9	7 445.1	7 723	

Répartition des hôtels à Paris en 2010 en fonction de nombre d'étoiles

•

Classement d'hôtel	0	1	2	3	4	5
Effectifs	30	100	500	590	148	62
Effectifs cumulées	30	130	630	1220	1368	1430

• n = 1430 pair, alors $M = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} = \frac{x_{(715)} + x_{(716)}}{2} = \frac{3+3}{2} = 3$

Nb d'enfants en millier de 0 à 18 ans par famille en France (2012).

•

Nombre d'enfants	1	2	3	4 et plus	Total
Effectifs	3 479,9	2 978	987,2	277,9	7 723
Effectifs cumulés	3 479,9	6 457.9	7 445.1	7 723	

• n = 7 723 impair, alors $M = x_{(\frac{n+1}{2})} = x_{(3862)} = 2$.

Médiane - Variable continue (interpolation linéaire)

- Classe médiane : $M \in [x_1; x_2[$
- $A(x_1; F_1)$, $B(x_2; F_2)$ et N(M; 0, 5)
- Hypothèse : La répartition à l'intérieur de chaque classe est uniforme.
- A, N et P sont alignés;
- pente (AN)= pente (AB)

$$\frac{0,5-F_1}{M-x_1} = \frac{F_2-F_1}{x_2-x_1}$$

- Donc $M = x_1 + (x_2 x_1) \left(\frac{0.5 F_1}{F_2 F_1} \right)$
- M est une valeur approchée de la médiane

Médiane - Variable continue (exemple)

	Notes	Fi
	[0; 5[0.1
	[5; 8[0.46
		0.5
$M \in$	[8; 12[0.6
	[12; 15[0.77
	[15; 20[1

- Classe médiane : [8; 12]
- A(8; 0, 46), B(12; 0, 6) et N(M; 0, 5)

$$\frac{0,5-0,46}{M-8} = \frac{0,6-0,46}{12-8}$$

• Donc $M \approx 9,14$

Médiane - Variable continue (exemple)

	Notes	Fi
	[0; 5[0.1
	[5; 8[0.46
		0.5
$M \in$	[8; 12[0.6
	[12; 15[0.77
	[15; 20[1

- Classe médiane : [8; 12]
- A(8; 0, 46), B(12; 0, 6) et N(M; 0, 5)

$$\frac{0,5-0,46}{M-8} = \frac{0,6-0,46}{12-8}$$

• Donc $M \approx 9,14$

Comparaison entre la moyenne et la médiane

- Soit $x_1, ..., x_n$ une série statistique, alors
 - La moyenne réalise le minimum de la fonction suivante en x

$$f: \mathbb{R} \to \mathbb{R}, \quad f(x) = \sum_{i=1}^{n} (x_i - x)^2$$

La médiane réalise le minimum de la fonction suivante en x

$$g: \mathbb{R} \to \mathbb{R}, \quad g(x) = \sum_{i=1}^{n} |x_i - x|$$

 La moyenne est très affectée par les valeurs extrêmes, et ce n'est pas le cas pour la médiane qui est plus robuste que la moyenne.

Mode

- Le mode rend compte de l'endroit où les données sont les plus concentrées
- Le mode d'une variable discrète est la(les) valeur(s) la(les) plus fréquente(s).
- Pour une variable continue, on parle d'une classe modale qui est celle de plus grande densité.
- Lorsque la médiane égale à la moyenne et au mode, la distribution des fréquences est dit symétrique. Sinon, elle est dit asymétrique.

Quartiles et déciles

Quartiles

- Quartiles: Ce sont les trois valeurs qui divisent la série statistique en quatre groupes d'effectifs égaux.
- o variable discrète : d'abord, on ordonne la série statistique puis
 - ordre de Q_1 est le premier entier $\geq \frac{n}{4}$.
 - $ightharpoonup Q_2 = M$
 - ordre de Q_3 est le premier entier $\geq \frac{3n}{4}$
- Variable continue : Méthode d'interpolation linéaire avec $F(Q_1) = 0.25$ et $F(Q_3) = 0.75$.

Quartiles et déciles

Quartiles

- Quartiles: Ce sont les trois valeurs qui divisent la série statistique en quatre groupes d'effectifs égaux.
- variable discrète : d'abord, on ordonne la série statistique puis
 - ordre de Q_1 est le premier entier $\geq \frac{n}{4}$.
 - $ightharpoonup Q_2 = M$
 - ordre de Q_3 est le premier entier $\geq \frac{3n}{4}$
- Variable continue : Méthode d'interpolation linéaire avec $F(Q_1) = 0.25$ et $F(Q_3) = 0.75$.

Déciles

- Déciles : ce sont les neuf valeurs qui divisent la série statistique en dix groupes d'effectifs égaux.
- Le calcul des déciles est similaire au calcul des quartiles.

Quartiles et déciles

Quartiles

- Quartiles: Ce sont les trois valeurs qui divisent la série statistique en quatre groupes d'effectifs égaux.
- variable discrète : d'abord, on ordonne la série statistique puis
 - ordre de Q_1 est le premier entier $\geq \frac{n}{4}$.
 - $ightharpoonup Q_2 = M$
 - ▶ ordre de Q_3 est le premier entier $\geq \frac{3n}{4}$
- Variable continue : Méthode d'interpolation linéaire avec $F(Q_1) = 0.25$ et $F(Q_3) = 0.75$.

Déciles

- Déciles : ce sont les neuf valeurs qui divisent la série statistique en dix groupes d'effectifs égaux.
- Le calcul des déciles est similaire au calcul des quartiles.

Quantiles

Le quantile d'ordre au de la variable Y est la valeur q dont la fréquence cumulée égale à au

ClasseNotes	Fi
[0; 5[0.1
[5; 8[0.46
[8; 12[0.6
[12; 15[0.77
[15; 20[1

ClasseNotes	Fi
[0; 5[0.1
[5; 8[0.46
[8; 12[0.6
[12; 15[0.77
[15; 20[1

- $Q_1 \in [5; 8[$
- $\frac{0.25-0.1}{Q_1-5} = \frac{0.46-0.1}{8-5}$ Donc $Q_1 \approx 6.25$

ClasseNotes	Fi
[0; 5[0.1
[5; 8[0.46
[8; 12[0.6
[12; 15[0.77
[15; 20[1

- $Q_1 \in [5; 8[$
- $\frac{0.25-0.1}{Q_1-5}=\frac{0.46-0.1}{8-5}$ Donc $Q_1\approx 6.25$
- $Q_3 \in [12; 15[$
- $\frac{0.75-0.6}{Q_3-12} = \frac{0.77-0.6}{15-12}$ Donc $Q_3 = 14.65$

ClasseNotes	Fi
[0; 5[0.1
[5; 8[0.46
[8; 12[0.6
[12; 15[0.77
[15; 20[1

- $Q_1 \in [5; 8[$
- $\frac{0.25-0.1}{Q_1-5} = \frac{0.46-0.1}{8-5}$ Donc $Q_1 \approx 6.25$
- $Q_3 \in [12; 15[$
- $\frac{0.75-0.6}{Q_3-12} = \frac{0.77-0.6}{15-12}$ Donc $Q_3 = 14.65$

ClasseNotes	Fi
[0; 5[0.1
[5; 8[0.46
[8; 12[0.6
[12; 15[0.77
[15; 20[1

ClasseNotes	Fi
[0; 5[0.1
[5; 8[0.46
[8; 12[0.6
[12; 15[0.77
[15; 20[1

•
$$D_1 = 5$$

ClasseNotes	Fi
[0; 5[0.1
[5; 8[0.46
[8; 12[0.6
[12; 15[0.77
[15; 20[1

- $D_1 = 5$
- $D_9 \in [15; 20[$
- $\frac{0.9-0.77}{D_9-15} = \frac{1-0.77}{20-15}$, donc $D_9 \approx 17.83$

ClasseNotes	Fi
[0; 5[0.1
[5; 8[0.46
[8; 12[0.6
[12; 15[0.77
[15; 20[1

- $D_1 = 5$
- D₉ ∈ [15; 20[
- $\frac{0.9-0.77}{D_9-15} = \frac{1-0.77}{20-15}$, donc $D_9 \approx 17.83$

Plan

- Introduction
- 2 Mesures de tendance centrale ou de position
 - Moyenne
 - Médiane
 - Mode
 - Quartiles et déciles
- Mesures de dispersion
 - Étendue Écart moyen absolu Écart médian absolu
 - Ecart inter-quartiles Box-plot (Boite à moustaches)
 - Variance et écart-type

Étendue - Écart moyen absolu - Écart médian absolu

Étendue

- C'est la différence entre la plus grande et la plus petite valeur observée
- Elle n'est fonction que des deux valeurs extrêmes

Étendue - Écart moyen absolu - Écart médian absolu

Étendue

- C'est la différence entre la plus grande et la plus petite valeur observée
- Elle n'est fonction que des deux valeurs extrêmes

Écart moyen absolu

- C'est la moyenne de la valeur absolue des écarts à la moyenne
- c-à-d : $E_m = \frac{1}{n} \sum_{i=1}^n |x_i \bar{x}|$

Étendue - Écart moyen absolu - Écart médian absolu

Étendue

- C'est la différence entre la plus grande et la plus petite valeur observée
- Elle n'est fonction que des deux valeurs extrêmes

Écart moyen absolu

- C'est la moyenne de la valeur absolue des écarts à la moyenne
- c-à-d : $E_m = \frac{1}{n} \sum_{i=1}^{n} |x_i \bar{x}|$

Écart médian absolu

- C'est la moyenne de la valeur absolue des écarts à la médiane
- c-à-d : $E_M = \frac{1}{n} \sum_{i=1}^{n} |x_i M|$

Étendue - Écart moyen absolu - Écart médian absolu

Étendue

- C'est la différence entre la plus grande et la plus petite valeur observée
- Elle n'est fonction que des deux valeurs extrêmes

Écart moyen absolu

- C'est la moyenne de la valeur absolue des écarts à la moyenne
- c-à-d : $E_m = \frac{1}{n} \sum_{i=1}^{n} |x_i \bar{x}|$

Écart médian absolu

- C'est la moyenne de la valeur absolue des écarts à la médiane
- c-à-d : $E_M = \frac{1}{n} \sum_{i=1}^{n} |x_i M|$

NB : Si les données sont agrégées, on multiple la valeur absolue de chaque modalité par l'effectif associé

Exemple

Étendue, E_m et E_M

Classe	Effectifs	Centres	$ c_i - \bar{x} $	$n_i c_i-\bar{x} $	$ c_i - M $	$n_i c_i-M $
[0; 5[6.00	2.50	7.99	47.94	6.64	39.84
[5; 8[21.00	6.50	3.99	83.79	2.64	55.44
[8; 12[8.00	10.00	0.49	3.92	0.86	6.88
[12; 15[10.00	13.50	3.01	30.10	4.36	43.60
[15; 20[14.00	17.50	7.01	98.14	8.36	117.04
Total	59			263.89		262.8

Exemple

Étendue, E_m et E_{M_1}

	E.C	<u> </u>	1 -1	1 -1	1 441	1 0.41
Classe	Effectifs	Centres	$ c_i - \bar{x} $	$n_i c_i-\bar{x} $	$ c_i - M $	$n_i c_i-M $
[0; 5[6.00	2.50	7.99	47.94	6.64	39.84
[5; 8[21.00	6.50	3.99	83.79	2.64	55.44
[8; 12[8.00	10.00	0.49	3.92	0.86	6.88
[12; 15[10.00	13.50	3.01	30.10	4.36	43.60
[15; 20[14.00	17.50	7.01	98.14	8.36	117.04
Total	59			263.89		262.8

- $\bar{x} \approx 10.49$ et $M \approx 9.14$
- Étendue =20-0=20
- $E_m = 263.89/59 \approx 4.47$
- $E_M = \frac{262.8}{59} \approx 4.45$

Ecart inter-quartiles - Box-plot (Boite à moustaches)

Ecart inter-quartiles

- Au moins, 50% des observations $\in [Q_1; Q_3]$.
- Ecart inter-quartiles = la longueur de l'intervalle $[Q_1; Q_3]$ $IQ = Q_3 - Q_1$

Ecart inter-quartiles - Box-plot (Boite à moustaches)

Ecart inter-quartiles

- Au moins, 50% des observations $\in [Q_1; Q_3]$.
- Ecart inter-quartiles = la longueur de l'intervalle $[Q_1; Q_3]$ $IQ = Q_3 - Q_1$

Box-plot (Boite à moustaches)

On peut aussi se limiter par D_1 et D_9 au lieu de max et min

Exemple : Notes des étudiants

- Au moins, 50% des notes ∈ [6.25; 14.65]
- $IQ = Q_3 Q_1 \approx 8.4$

Exemple : Notes des étudiants

- Au moins, 50% des notes $\in [6.25; 14.65]$
- $IQ = Q_3 Q_1 \approx 8.4$

Variance et écart-type

• Variance = la moyenne des carrés des écarts à la moyenne $V = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^2$

Variance et écart-type

- Variance = la moyenne des carrés des écarts à la moyenne $V = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$
- **Propriété**: $V = \left(\frac{1}{n}\sum_{i=1}^{n}x_i^2\right) \bar{x}^2$ (La moyenne des carrés le carré de la moyenne)

Variance et écart-type

- Variance = la moyenne des carrés des écarts à la moyenne $V = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$
- **Propriété**: $V = \left(\frac{1}{n}\sum_{i=1}^{n}x_{i}^{2}\right) \bar{x}^{2}$ (La moyenne des carrés le carré de la moyenne)
- Onnées agrégées d'une variable discrète de K modalités :

$$V = \frac{1}{n} \sum_{i=1}^{K} n_i (x_i - \bar{x})^2 = \sum_{i=1}^{K} f_i (x_i - \bar{x})^2$$

= $\left(\frac{1}{n} \sum_{i=1}^{K} n_i x_i^2\right) - \bar{x}^2 = \left(\sum_{i=1}^{K} f_i x_i^2\right) - \bar{x}^2$

Variance et écart-type

- Variance = la moyenne des carrés des écarts à la moyenne $V = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$
- **Propriété**: $V = \left(\frac{1}{n}\sum_{i=1}^{n}x_i^2\right) \bar{x}^2$ (La moyenne des carrés le carré de la moyenne)
- Onnées agrégées d'une variable discrète de K modalités :

$$V = \frac{1}{n} \sum_{i=1}^{K} n_i (x_i - \bar{x})^2 = \sum_{i=1}^{K} f_i (x_i - \bar{x})^2$$

= $\left(\frac{1}{n} \sum_{i=1}^{K} n_i x_i^2\right) - \bar{x}^2 = \left(\sum_{i=1}^{K} f_i x_i^2\right) - \bar{x}^2$

Onnées agrégées d'une variable continue de K classes :

$$V = \frac{1}{n} \sum_{i=1}^{K} n_i (c_i - \bar{x})^2 = \sum_{i=1}^{K} f_i (c_i - \bar{x})^2.$$

= $\left(\frac{1}{n} \sum_{i=1}^{K} n_i c_i^2\right) - \bar{x}^2 = \left(\sum_{i=1}^{K} f_i c_i^2\right) - \bar{x}^2$

Variance et écart-type

- Variance = la moyenne des carrés des écarts à la moyenne $V = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{x})^2$
- **Propriété**: $V = \left(\frac{1}{n}\sum_{i=1}^{n}x_i^2\right) \bar{x}^2$ (La moyenne des carrés le carré de la moyenne)
- Onnées agrégées d'une variable discrète de K modalités :

$$V = \frac{1}{n} \sum_{i=1}^{K} n_i (x_i - \bar{x})^2 = \sum_{i=1}^{K} f_i (x_i - \bar{x})^2$$

= $\left(\frac{1}{n} \sum_{i=1}^{K} n_i x_i^2\right) - \bar{x}^2 = \left(\sum_{i=1}^{K} f_i x_i^2\right) - \bar{x}^2$

Données agrégées d'une variable continue de K classes :

$$V = \frac{1}{n} \sum_{i=1}^{K} n_i (c_i - \bar{x})^2 = \sum_{i=1}^{K} f_i (c_i - \bar{x})^2.$$

= $\left(\frac{1}{n} \sum_{i=1}^{K} n_i c_i^2\right) - \bar{x}^2 = \left(\sum_{i=1}^{K} f_i c_i^2\right) - \bar{x}^2$

• Écart-type : C'est la racine carrée de la variance : $\sigma_X = \sqrt{v}$

- La variance indique de quelle manière la série statistique se disperse autour de sa moyenne.
- La variance est toujours positive ou nulle
- Une variance de zéro signale que toutes les valeurs sont identiques
- Une petite variance est signe que les valeurs sont proches les unes des autres
- Une variance élevée est signe que celles-ci sont très écartées
- La variance n'a pas la même unité que les observations
- l'écart-type est la racine carrée de la variance, cet indicateur s'exprimant dans la même unité que les observations.

Variance et écart-type - Exemple

Notes							
Classe	Effectifs	Centres	$c_i - \bar{x}$	$(ci - \bar{x})^2$	$n_i(ci-\bar{x})^2$	fi	$f_i(ci-\bar{x})^2$
[0; 5[6.00	2.50	-7.99	63.84	383.04	0.10	6.38
[5; 8[21.00	6.50	-3.99	15.92	334.32	0.36	5.73
[8; 12[8.00	10.00	-0.49	0.24	1.92	0.14	0.03
[12; 15[10.00	13.50	3.01	9.06	90.60	0.17	1.54
[15; 20[14.00	17.50	7.01	49.14	687.96	0.24	11.79
Total	59		0		1497.85	1	25.5
					'	"	

Variance et écart-type - Exemple

Notes

Classe	Effectifs	Centres	$c_i - \bar{x}$	$(ci - \bar{x})^2$	$n_i(ci-\bar{x})^2$	fi	$f_i(ci-\bar{x})^2$
[0; 5[6.00	2.50	-7.99	63.84	383.04	0.10	6.38
[5; 8[21.00	6.50	-3.99	15.92	334.32	0.36	5.73
[8; 12[8.00	10.00	-0.49	0.24	1.92	0.14	0.03
[12; 15[10.00	13.50	3.01	9.06	90.60	0.17	1.54
[15; 20[14.00	17.50	7.01	49.14	687.96	0.24	11.79
Total	59		0		1497.85	1	25.5

Calcul

- $\bar{x} \approx 10.49$
- $V = \frac{1497.85}{59} \approx 25.4$
- $\sigma = \sqrt{25.5} \approx 5$

