Using Fermat Number Transform to Accelerate Convolutional Neural Network

Weihong Xu^{1,2}, Xiaohu You², Chuan Zhang^{1,2}

 1 Lab of Efficient Architectures for Digital-communication and Signal-processing (LEADS) 2 National Mobile Communications Research Laboratory, Southeast University, Nanjing, China

Outline

- 1. Introduction on CNNs
- 2. Motivation and Related Work
- 3. Proposed FNT Acceleration
- 4. Analysis and Implementation Results
- 5. Conclusion

Outline

- 1. Introduction on CNNs
- 2. Motivation and Related Work
- 3. Proposed FNT Acceleration
- 4. Analysis and Implementation Results
- 5. Conclusion

- Deep neural networks with convolution
- Processing 1D data (time series), 2D data (music) and 3D data (image)
- Strong capacities to extract features

• Convolution, Pooling, Non-linear and Fully-connected layers stacked in stages

¹https://bigsnarf.wordpress.com

- **Convolution**: feature extraction by convolving various filters over input image
- Fully-connected: linear transform over input features
- Pooling and Non-linear: perform down sampling and non-linear function

Major Challenges

- **Computation-intensive**: convolution takes up over 95% of ovarall complexity
- **Memory-intensive**: FC layers contribute 90% parameters

Convolution in Single Channel

Convolution in Single Channel

Outline

- 1. Introduction on CNNs
- 2. Motivation and Related Work
- 3. Proposed FNT Acceleration
- 4. Analysis and Implementation Results
- 5. Conclusion

Prohibitive Complexity

- ullet Computation Complexity: $\mathcal{O}(N^2K^2)$
- Multiplier is expensive!

Related Work

- 1. N. Vasilache et al., "Fast Convolutional Nets With fbfft: A GPU Performance Evaluation," in *ICLR*, 2015
- C. Zhang and V. Prasanna, "Frequency domain acceleration of convolutional neural networks on CPU-FPGA shared memory system," in ACM/SIGDA ISFPGA, 2017
- 3. T. Abtahi et al., "Accelerating convolutional neural network with fft on tiny cores," in *IEEE ISCAS*, 2017

Convolution based on FFT

Convolution property:

$$y(n) = x * h = \mathcal{F}^{-1} \left\{ \mathcal{F}(x(n)) \cdot * \mathcal{F}(h(n)) \right\}$$

- Computation Complexity: $\mathcal{O}(N^2 \log N)$
- Effective only when $\log N \ge K^2$
- Intensive intermediate memory requirement

Convolution based on Overlap-and-Add FFT

$$y(n) = \sum_{k} \mathcal{F}^{-1} \left\{ \mathcal{F}(x(n - kL)) \cdot * \mathcal{F}(h(n)) \right\}$$

- Computation Complexity: $\mathcal{O}(N^2 \log K)$
- Effective for small filters
- Negligible intermediate memory build up
- Additional modules for overlap and add

OaA-FFT is the best?

Problems to Solve

- Complex number operation of FFT
- Additional registers for twiddle factors
- Introducing roundoff noise during FFT/IFFT under low-bit fixed point
- Frequency information is not what we need

Outline

- 1. Introduction on CNNs
- 2. Motivation and Related Work
- 3. Proposed FNT Acceleration
- 4. Analysis and Implementation Results
- 5. Conclusion

Number Theoretic Transform

• Number Theoretic Transform:

$$X(k) = \mathcal{F}(x(n)) = \sum_{n=0}^{N-1} \left\langle x(n)\alpha^{nk} \right\rangle_m$$

 $\langle a \rangle_b$: modular arithmetic

• To Dicrete Fourier Transform:

$$X(k) = \mathcal{F}(x(n)) = \sum_{n=0}^{N-1} x(n)W_N^{nk}$$

Replace α with twiddle factor W_N to obtain DFT

Fermat Number Transform

• Replace α with 2:

$$X(k) = \mathcal{F}(x(n)) = \sum_{n=0}^{N-1} \left\langle x(n) 2^{nk} \right\rangle_{F_t}$$

 F_t : the t-th Fermat number

• Constraints:

$$\left\{ \begin{array}{c} F_t = 2^b + 1 \\ b = 2^t, \text{input bits} \\ N = 2^{t+1}, \text{sequence length.} \end{array} \right.$$

• Easy to satisfy with $F_4 = 2^{16} + 1, N = 32, b = 16.$

Overlap-and-Add FNT

• Similar to OaA FFT:

$$y(n) = \sum_{k} \mathcal{F}^{-1} \left\{ \mathcal{F}(x(n-kL)) \cdot * \mathcal{F}(h(n)) \right\},\,$$

where L is an arbitrary segment length and $L \leq N - K + 1$.

• For maximum efficiency, select L = N - K + 1

ullet Run-time configurable for various input sizes by adjusting L and k

Factor Graph

• t = 2, $N = 2^{t+1} = 8$, $b = 2^t = 4$, $F_t = 2^b + 1 = 17$ $\rightarrow X(1)$ **→** X(2) **→** X(3) **→** X(4) → X(5) **→** X(6) **→** X(7) → X(8)

Hardware Architecture

- No need for extra registers
- Area and power efficiency

Butterfly modules of FFT and FNT

Complex multiplier \longrightarrow Shift register Complex adder \longrightarrow Real adder and modular

Pipelined Architecture

- Increased efficiency of basic units
- Reduced area and IO bandwidth

Efficiency:
$$\frac{1}{\log_2 N} \longrightarrow 50\%$$
 Butterfly :
$$\frac{N}{2} \log_2 N \longrightarrow \log_2 N$$

2D FNT based on 1D FNT

- First, perform 1D FNT on each row of the input image
- Then, perform 1D FNT on each column to the intermediate results

2D FNT Kernel

Data Processing for CNNs

- ullet Range of FNT filtering data: $[0,2^b]$
- Image and weights of CNNs are basically real numbers
- \bullet Transform input data with range $[-2^{b-1},2^{b-1}]$ into $[0,2^b]$:

$$x^{'} = \begin{cases} x, & \text{if } 0 \le x \le 2^{b-1}, \\ x + F_t, & \text{if } -2^{b-1} \le x < 0. \end{cases}$$

• Example: $F_2 = 2^4 + 1 = 17$ and $2^{b-1} = 8$

$$x = [1, -2, 3, -4] \longrightarrow x^{'} = [1, 15, 3, 13]$$

Data Processing for CNNs

• Transform output data back to real domain:

$$y = \begin{cases} y^{'}, & \text{if } 0 \leq y^{'} \leq 2^{b-1}, \\ y^{'} - F_{t}, & \text{if } 2^{b-1} \leq y^{'} \leq 2^{b}. \end{cases}$$

• Example: $h = [1, 1, 1, 1], F_2 = 2^4 + 1 = 17 \text{ and } 2^{b-1} = 8$

$$\begin{aligned} y^{'} &= x*h = [1,16,2,15,14,16,13,0] \\ \longrightarrow y &= [1,-1,2,-2,-3,-1,-4,0] \end{aligned}$$

Overall Architecture

Advantages

- High data parallelism
- Further reduction on arithmetic complexity
- Suitable for various filter and image sizes
- Round-off noise is zero

Outline

- 1. Introduction on CNNs
- 2. Motivation and Related Work
- 3. Proposed FNT Acceleration
- 4. Analysis and Implementation Results
- 5. Conclusion

Complexity Analysis on AlexNet

¹[Zhang and Prasanna, ISFPGA, 2017]

Complexity Analysis on VGGNet

¹[Zhang and Prasanna, ISFPGA, 2017]

Experimental Setup

- Xilinx Virtex-7 XC7VX485t FPGA Platform
- Intel i7-7700k CPU
- Quantize pre-trained VGGNet16 from Pytorch into 16 fixed point
- Pre-calculate FNT of weights and load to FPGA
- FNT parameters: $F_4 = 2^{16} + 1, N = 32, b = 16$
- We implement the accelerator for convolutional layer

Implementation Results

Design	Zhang et al. 2015	Qiu et al. 2016	This work
Platform	Virtex-7	Zynq	Virtex-7
	VX485t	XC7Z045	VX485t
Clock(MHz)	100	150	150
CNN Model	AlexNet	VGG16-SVD	VGG16
Quantization	32-bit float	16-bit fixed	16-bit fixed
LUT	186251	182616	188928
FF	205704	127653	142592
DSP	2240	780	256
BRAM	1024	486	512
CONV	61.62	187.80	264.60
Throughput (GOP/s)			
Resource Efficiency (GOP/s/DSP)	0.028	0.241	1.033

Outline

- 1. Introduction on CNNs
- 2. Motivation and Related Work
- 3. Proposed FNT Acceleration
- 4. Analysis and Implementation Results
- 5. Conclusion

Conclusion

- Efficient OaA-FNT-based 2D convolver to accelerate CNNs
- Data processing of CNNs to fit into FNT
- 1.41 \times convolution throughput with 3.05 \times less DSPs compared to state-of-the-art design on VGGNet.
- Future Work
 - Use data with lower-bit quantization
 - Build reconfigurable design for variable length

