## Straight Line (সরলরেখা)

### সরলরেখা -Part 01 ঃ

কার্তেসীয় স্থানাংক ঃ (x,y); x= ভুজ ,y= কোটি পোলার স্থানাংক ঃ  $(r,\theta)$ ; r= ব্যাসার্থ ভেক্টর;  $\theta=$  ভেক্টরিয়াল কোণ ১ । কার্তেসীয় স্থানাংক হতে পোলার স্থানাংকে পরিবর্তন ঃ  $r=\sqrt{x^2+y^2}$ 



- (i) ১ম চতুর্ভাগে অবস্থিত হলে ভেক্টরিয়াল কোণ ,  $heta= an^{-1}\left|rac{y}{x}
  ight|$
- (ii) ২য় চতুর্ভাগে অবস্থিত হলে ভেক্টরিয়াল কোণ,  $\theta=\pi- an^{-1}\left|rac{y}{x}
  ight|$
- (iii) ৩য় চতুর্ভাগে অবস্থিত হলে ভেক্ট্রিয়াল কোণ,  $\theta=\pi+ an^{-1}\left|rac{y}{x}
  ight|$
- $({
  m iv})$  ৪র্থ চতুর্ভাগে অবস্থিত হলে ভেক্ট্রিয়াল কোণ $,\, heta=2\pi-{
  m tan}^{-1}\left|rac{{
  m y}}{{
  m x}}
  ight|$
- ২। পোলার দ্থানাংক হতে কার্তেসীয় দ্থানাংকে পরিবর্তন ঃ  $x=r\cos heta$ ,  $y=r\sin heta$

৩। দুই বিন্দুর মধ্যবর্তী দূরত্ব ঃ 
$$AB = \sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$$
  $A(x_1,y_1)$ 

- $8 \mid y$  অক্ষ হতে (x, y) বিন্দুর দূরত্ব = |x| যেমন ঃ y অক্ষ হতে (a, 5) বিন্দুর দূরত্ব = |a|
- $e \mid x$  অক্ষ হতে (x, y) বিন্দুর দূরত্ব = |y| যেমন ঃ x অক্ষ হতে (4, K) বিন্দুর দূরত্ব = |K|
- ৬ । বিভক্তিকরণ ঃ
- (i)  $A(x_1,y_1)$  ও  $B(x_2,y_2)$  বিন্দুর সংযোজক রেখাকে P(x,y) বিন্দু  $m_1\colon m_2$  অনুপাতে অন্তর্বিভক্ত করলে

P বিন্দুর স্থানাংক 
$$\left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right)$$
  $\stackrel{A}{\bullet}$   $\stackrel{B}{\bullet}$  AP: PB =  $m_1$ :  $m_2$ 

- $(iii)~{
  m AB}$  রেখার মধ্যবিন্দুর স্থানাংক  $\left(rac{x_1+x_2}{2},rac{y_1+y_2}{2}
  ight)$
- ৭। AB রেখাকে P বিন্দুটি K: 1 অনুপাতে (i) অন্তর্বিভক্ত করলে P বিন্দুর স্থানাংক  $\left(\frac{x_1+Kx_2}{1+K},\frac{y_1+Ky_2}{1+K}\right)$

$$(ii)$$
 বহির্বিভক্ত করলে  $P$  বিন্দুর স্থানাংক  $\left(\frac{x_1-Kx_2}{1-K}, \frac{y_1-Ky_2}{1-K}\right)$ 

- ৮।  $A(x_1,y_1)$  ,  $B(x_2,y_2)$  ,  $C(x_3,y_3)$  ত্রিভুজের তিনটি শীর্ষ বিন্দু হলে
- (i) ভরকেন্দ্রের স্থানাংক  $\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}\right)$

$$(ii)$$
 ত্রিভুজের অন্তঃকেন্দ্রের স্থানাংক  $\left(\frac{ax_1+bx_2+cx_3}{a+b+c}, \frac{ay_1+by_2+cy_3}{a+b+c}\right)$ 

$$(iii)$$
 ত্রিভুজের ক্ষেত্রফল  $\Delta ABC = rac{1}{2} egin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$ 

১  $\mid$  A, B, C বিন্দু তিনটি সমরেখ হওয়ার শর্ত (i) AB + BC = AC (ii)  $\Delta ABC = 0$ 

(i) 
$$AB + BC = AC$$

(ii) 
$$\triangle ABC = 0$$



১০। সঞ্চারপথের বিন্দু / চলমান বিন্দু / সেটের বিন্দুর স্থানাংক (x, v)

#### Note -1:

- (i) ABCD আয়তক্ষেত্রের AB = CD, AD = BC এবং কর্ণ AC = কর্ণ BD
- (ii) ABCD সামান্তরিকের AB = CD. AD = BC কিন্তু কর্ণ AC ≠ কর্ণ BD
- (iii) ABCD বর্গক্ষেত্রের AB = BC = DC = DA এবং কর্ণ AC = কর্ণ BD
- (iv) ABCD রম্বসের AB = BC = DC = DA এবং কর্ণ AC ≠ কর্ণ BD
- (v) ABC সমবাহু ত্রিভুজের ক্ষেত্রে AB = BC = CA

Note — 2: ABCD চতুর্ভুজের ACও BD কর্ণের মধ্যবিন্দু একই।

#### Note -3:

(i) আয়তক্ষেত্রের ক্ষেত্রফল = দৈর্ঘ্য × প্রস্থ

(ii) সামান্তরিকের ক্ষেত্রফল = ভূমি × উচ্চতা

(iii) বর্গক্ষেত্রের ক্ষেত্রফল = (বাহু )²

- $({
  m i} {
  m v})$  রম্বসের ক্ষেত্রফল  $=rac{1}{2} imes$  কর্ণদ্বয়ের গুণফল
- (v) সমবাহু ত্রিভুজের ক্ষেত্রফল  $=\frac{\sqrt{3}}{4}\times($ বাহু $)^2$
- (vi) ABC ত্রিভুজের পরিকেন্দ্র '0' হলে OA = OB = OC = ব্যাসার্ধ (R)

#### সরলরেখা -Part 02ঃ

ঢাল (Slope)  $\alpha$  কোন সরলরেখা  $\alpha$  অক্ষের ধনাত্মক দিকের সাথে যে কোণ উৎপন্ন করে তার ত্রিকোণমিতিক tangent কে ঢাল (Slope) বলে।

১। ঢাল নির্ণয় ঃ (i) AB রেখা x অক্ষের ধনাত্মক দিকের সাথে heta কোণ উৎপন্ন করলে ঢাল , m= an heta



$$AB$$
 রেখার ঢাল,  $m = \tan 50^{\circ}$ 

CD রেখার ঢাল ,  $m= an(180^{\circ}-50^{\circ})= an130^{\circ}$ 

$$(ii)~ax+by+c=0$$
 রেখার ঢাল ,  $m=rac{-x$  এর সহগ  $y$  এর সহগ যেমন ঃ  $2x+3y+5=0$  রেখার ঢাল  $m=rac{-2}{3}$ 

$$(iii)\;(x_1,y_1)$$
 ও  $(x_2,y_2)$  এই দুই বিন্দুগামী রেখার ঢাল ,  $m=rac{y_2-y_1}{x_2-x_1}$ 

- (iv) x অক্ষ রেখার ঢাল শূন্য (0) এবং x অক্ষের সমান্তরাল রেখার ঢাল শূন্য (0) (চিত্র ১)
- (v) y অক্ষ রেখার ঢাল অসীম  $(\infty)$  এবং y অক্ষের সমান্তরাল রেখার ঢাল অসীম  $(\infty)$  ( চিত্র ২ )

$$\frac{\theta = 0^{0} : m = \tan 0^{0} = 0}{\theta = 0^{0} : m = \tan 0^{0} = 0}$$

$$\frac{\theta = 0^{0} : m = \tan 0^{0} = 0}{6 \ln 1 - 3}$$

$$\theta = 90^{\circ} \therefore m = \tan 90^{\circ} = \infty$$

২। (i) x অক্ষের সমীকরণ, y=0

(iii) x অক্ষের সমান্তরাল রেখার সমীকরণ, y = b

(ii) y অক্ষের সমীকরণ, x = 0

- (iv) y অক্ষের সমান্তরাল রেখার সমীকরণ, x = a
- ৩। ঢাল  ${
  m m}$  এবং  ${
  m y}$  অক্ষ হতে  ${
  m c}'$  অংশ কর্তন করে এরূপ রেখার সমীকরণ,  ${
  m y}={
  m m}{
  m x}+{
  m c}$





যে রেখার ঢাল যত বেশি, সেই রেখা তত খাড়া (উল্লম্বদিকে যাবে) ।

চিত্রে (iii) নং রেখার ঢাল সর্বোচ্চ তাই (iii) নং রেখা সবচেয়ে খাড়া।



৪। **মূলবিন্দু গামী** রেখার সমীকরণ, y = mx

lpha। একবিন্দুগামী  $(\mathbf{x_1},\mathbf{y_1})$  রেখার সমীকরণ ঃ  $\mathbf{y}-\mathbf{y_1}=\mathbf{m}(\mathbf{x}-\mathbf{x_1})$ 

যেমনঃ (2,5) বিন্দুগামী রেখার সমীকরণ, y-5=m(x-2)

৬। দুই বিন্দুগামী 
$$(x_1,y_1)$$
 এবং  $(x_2,y_2)$  রেখার সমীকরণ,  $\dfrac{x-x_1}{x_1-x_2}=\dfrac{y-y_1}{y_1-y_2}$ 

৭। মূলবিন্দুগামী এবং 
$$(x_1,y_1)$$
 বিন্দুগামী রেখার সমীকরণ,  $y=rac{y_1}{x_1}x$ 

যেমন ঃ 
$$(0,0)$$
 ও  $(2,5)$  দিয়ে যায় এরূপ রেখার সমীকরণ,  $y=\frac{5}{2}x \ \Rightarrow \ 5x-2y=0$ 

৮। x অক্ষ হতে 'a' অংশ এবং y অক্ষ হতে 'b' অংশ ছেদ করে এরূপ রেখার সমীকরণ,

$$\frac{x}{a} + \frac{y}{b} = 1$$
....(i)



(i) নং রেখা কর্তৃক y অক্ষের ছেদবিন্দু B(0,b)



যেমন ঃ  $2x - 5y = 10 \Rightarrow \frac{x}{5} + \frac{y}{-2} = 1$  কর্তৃক x অক্ষের ছেদবিন্দু (5,0); y অক্ষের ছেদবিন্দু (0,-2)

- (i) নং রেখা কর্তৃক অক্ষদ্বয় হতে কর্তিত অংশের দৈর্ঘ্য ,  $AB = \sqrt{a^2 + b^2}$
- (i) নং রেখা এবং x অক্ষ , y অক্ষ দ্বারা ত্রিভুজের ক্ষেত্রফল ,  $\Delta OAB = \frac{1}{2} \times OA \times OB = \frac{1}{2}ab$  বর্গএকক

৯।  $\longrightarrow$  মূলবিন্দু হতে কোন রেখার উপর অংকিত লম্বের দৈর্ঘ্য p

 $\longrightarrow$  এবং ঐ লম্বটি  $_{X}$  অক্ষের ধনাত্মক দিকের সাথে lpha কোণ উৎপন্ন করলে

ightarrow রেখাটির সমীকরণ  $x\coslpha+y\sinlpha=p$ 



$$a_1x + b_1y + c_1 = 0 \dots (i)$$
  $a_2x + b_2y + c_2 = 0 \dots (ii)$ 

$$(i)$$
 নং ও  $(ii)$  নং একই সরলরেখা নির্দেশ করার শর্ত ঃ  $\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$ 

যেমন , 
$$2x + 3y + k = 0$$
,  $7x + by + 2 = 0$  একই সরলরেখা নির্দেশ করলে ঃ  $\frac{2}{7} = \frac{3}{b} = \frac{k}{2}$ 

১১। (i) নং ও (ii) নং রেখার **ছেদবিন্দু দিয়ে যায়** এরূপ রেখার সমীকরণ,  $a_1x+b_1y+c_1+k(a_2x+b_2y+c_2)=0$  Here, K একটি ইচ্ছামূলক ধ্রুণবক (Arbritrary constant)

১২। উপরের (i) নং রেখার ঢাল  $m_1$ এবং (ii) নং রেখার ঢাল  $m_2$  হলে দুইটি রেখার মধ্যবর্তী কোণ  $\emptyset$  ,

$$\tan \emptyset = \pm \left(\frac{m_1 - m_2}{1 + m_1 m_2}\right) = \pm \left(\frac{a_2 b_1 - a_1 b_2}{a_1 a_2 + b_1 b_2}\right)$$

Remember: (+) निरत्र সুক্ষকোণ এবং (-) निरत्र ञ्रूनकाণ পাওয়া यारव ।

১৩। দুটি সরলরেখা পরক্ষার সমান্তরাল হওয়ার শর্ত 
$$(i)m_1=m_2$$
 [ঢালদ্বয় সমান ]  $(ii)rac{a_1}{a_2}=rac{b_1}{b_2}$ 

$$(iii)$$
  $ax + by + c = 0$  রেখার সমান্তরাল যেকোন রেখার সমীকরণ,  $ax + by + k = 0$ 

Remember ঃ সমান্তরাল যেকোন রেখার সমীকরণের ক্ষেত্রে শুধুমাত্র constant change করতে হবে।

১৪। দুটি সরলরেখা প্রস্পর লম্ব হওয়ার শর্ত 
$$(i) \; m_1 m_2 = -1 \;$$
[ঢালদ্বয়ের গুণফল $= -1 \;$ ]

$$(ii)\ a_1a_2+b_1b_2=0\ (iii)\ ax+by+c=0$$
 রেখার উপর **লম্ব রেখার সমীকরণ**,  $bx-ay+k=0$ 

Remember: লম্ব রেখার সমীকরণ বের করতে

(ii) x ও y এর যেকোন একটির চিহ্ন change

(iii) constant (ধ্রুবক) change

se 
$$a_1x + b_1y + c_1 = 0 \dots (i)$$
  $a_2x + b_2y + c_2 = 0 \dots (ii)$   $a_3x + b_3y + c_3 = 0 \dots (iii)$ 

(i) নং , (ii) নং এবং (iii) নং রেখা সমবিন্দু হওয়ার শর্ত ঃ Determinant, 
$$D=0\Rightarrow\begin{vmatrix} a_1 & b_1 & c_1\\ a_2 & b_2 & c_2\\ a_3 & b_3 & c_3 \end{vmatrix}=0$$
 ১৬ ৷  $(x_1,y_1)$  বিন্দু হতে  $ax+by+c=0$  রেখার উপর লম্ব দূরত্ব,  $d=\left|\frac{ax_1+by_1+c}{\sqrt{a^2+b^2}}\right|$ 

[অর্থাৎ ঐ বিন্দু দিয়ে রেখাকে সিদ্ধ করা মান লবে থাকবে এবং হরে  $\sqrt{\left(x$ এর সহগ $ight)^2+\left(y$ এর সহগ $ight)^2}$  ]

যেমনঃ 
$$(2,1)$$
 হতে  $7x-3y+3=0$  রেখার উপর লম্ব দূরত্ব  $=\left|rac{14-3+3}{\sqrt{7^2+3^2}}
ight|=rac{14}{\sqrt{58}}$ 

১৭। 
$$ax+by+c_1=0$$
 এবং  $ax+by+c_2=0$  সমান্তরাল রেখাদ্বয়ের মধ্যবর্তী দূরত্ব  $=\left|rac{c_1-c_2}{\sqrt{a^2+b^2}}
ight|$ 

Remember: (i) অবশ্যই x ও y এর সহগ দুটি সমীকরণে সমান করে নিতে হবে।

যেমনঃ 
$$2x + 3y + 5 = 0$$
 এবং  $6x + 9y + 7 = 0$  রেখার মধ্যবর্তী দূরত্ব  $=$   $\left|\frac{5-7/3}{\sqrt{2^2+3^2}}\right|$  কারণঃ  $2x + 3y + 5 = 0$   $\therefore$   $c_1 = 5$  এবং  $6x + 9y + 7 = 0 \Rightarrow 2x + 3y + \frac{7}{3} = 0$   $\therefore$   $c_2 = \frac{7}{3}$ 

### ১৮। দুইটি অসমান্তরাল রেখার মধ্যবর্তী কোণের সমদ্বিখন্ডক নির্ণয় ঃ

$$a_1x+b_1y+c_1=0$$
 এবং  $a_2x+b_2y+c_2=0$  রেখার মধ্যবর্তী কোণের সমদ্বিশুক্তকদ্বয় ঃ 
$$\frac{a_1x+b_1y+c_1}{\sqrt{a_1^2+b_1^2}}=\pm\frac{a_2x+b_2y+c_2}{\sqrt{a_2^2+b_2^2}}$$

**Check**: (i)  $a_1a_2 + b_1b_2 > 0$  হলে

- (+) নিয়ে স্থূলকোণের সমদ্বিখন্ডক
- (—) নিয়ে সুক্ষাকোণের সমদ্বিখন্ডক
- (ii)  $a_1a_2 + b_1b_2 < 0$  হলে
  - (+) নিয়ে সুক্ষাকোণের সমদ্বিখন্ডক
  - (-) নিয়ে স্থূলকোণের সমদ্বিখন্ডক
- $(iii) \ a_1 a_2 + b_1 b_2 = 0 \$  হলে রেখা দুইটি পরস্পর লম্ব।
- (iv)  $c_1$  এবং  $c_2$  একই চিহ্নযুক্ত হলে (+) নিয়ে প্রাপ্ত রেখা মূলবিন্দুধারী কোণের সমদ্বিখন্ডক
- $(v) \ c_1$ এবং  $c_2$  বিপরীত চিহ্নযুক্ত হলে (-) নিয়ে প্রাপ্ত রেখা মুলবিন্দুধারী কোণের সমদ্বিখন্ডক।

# ১৯। কোন সরলরেখার সাপেক্ষে দুইটি বিন্দুর অবছান ঃ

 $A\left(x_1\,y_1
ight)$  ও  $B\left(x_2\,y_2
ight)$  বিন্দু দুইটি  $a\,x+by+c=0$  রেখার কোন পার্শ্বে অবস্থিত ?

$$A\left(x_1\,y_1
ight)$$
 দিয়ে সিদ্ধ  $\longrightarrow L_1=ax_1+by_1+c_1\;;\; B\left(x_2\,y_2
ight)\;$  দিয়ে সিদ্ধ  $\longrightarrow L_2=ax_2+by_2+c_2$ 

- $(i) \; L_1$  এবং  $L_2$  একই চিহ্নযুক্ত হলে A, B বিন্দু দুইটি একই পার্শ্বে অবস্থিত।
- $(ii)\ L_1$  এবং  $L_2$  বিপরীত চিহ্নযুক্ত হলে A, B বিন্দু দুইটি বিপরীত পার্শ্বে অবস্থিত।