Raymond BISDORFF

Algorithmic Decision Making with Python Resources

From Multicriteria Performance Records to Decision Algorithms via Bipolar-Valued Outranking Digraphs

October 7, 2021

Springer Nature

Preface

The reader will find in this monograph a series of tutorials and advanced topics originally written over the last decade as documentation parts for the DI-GRAPH3 collection of Python modules. These programming resources —like the outrankingDigraphs module— were essentially used both for the computational verification of decision algorithms and for the preparation and illustration of a Master Course on Algorithmic Decision Theory taught at the University of Luxembourg from 2010 to 2020. Some resources, like the randomNumbers module, served for preparing and illustrating the Lectures of a Computational Statistics Course. Curious readers will also discover some resources —the arithmetics module— used for preparing and illustrating a first Semester Course on Discrete Mathematics.

The DIGRAPH3 Python programming resources are useful in the field of Algorithmic Decision Theory and more specifically for the outranking approach of Multiple-Criteria Decision Aiding (MCDA). In this latter scientific field, we address essentially three kinds of usage.

First, we present algorithms and illustrate computing tools for solving either, a multiple-criteria first choice selection or, a dual last choice rejection problem. We also tackle the problem of how to list a set of items with multiple incommensurable performance criteria either, from the best to the worst (ranking problem), or from the worst to the best (ordering problem). Finally, we present order-statistical algorithms for relative or absolute quantiles-rating of multiple-criteria performance records.

It is necessary to mention that the DIGRAPH3 resources do not provide a professional Python software library. The collection of Python modules, I describe in this book, was not built following any professional software development methodology. The design of classes and methods was kept as simple and elementary as was opportune for the author. Sophisticated and cryptic overloading of classes, methods and variables is more or less avoided all over. A simple copy, paste and ad hoc customisation development strategy was generally preferred. As a consequence, the DIGRAPH3 modules keep a large part of independence. Furthermore, the development of the DIGRAPH3 modules being spread over two decades, the programming style did evolve with growing experience and the changes and enhancement coming

viii Preface

up with the ongoing new releases of the standard Python3 libraries. The required backward compatibility necessarily introduced so with time some notation and programming technique changes.

The purpose of this book is to present in a single monograph the scientific enhancements the author has contributed over the past two decades to the outranking approach-based multiple-criteria decision aiding field and that are either left unpublished or published in very specialised media only and difficult to access.

This monograph should provide the reader with a self-contained series of tutorials which explain how to solve multiple-criteria selection, as well as ranking or rating decision problems. If successful in this aim, the curious reader will effectively install the DIGRAPH3 programming resources on their laptop and try out and redo for themselves the proposed computations.

The material in this book is valuable for master students and doctoral candidates in Computer Science, Mathematics, Engineering Sciences or Computational Management Sciences taking a course on Algorithmic Decision Theory, Multiple-Criteria Decision Aiding or Decision Analysis. Some experience in computer programming, in particular with Python, will assist the reader, but it is not a prerequisite. The many coding examples shown throughout the text are purposely kept elementary from a programming point of view.

Chapters presenting algorithms for ranking multiple-criteria performance records from best to worst —especially when facing big performance tableaux— will be of computational interest for designers of web recommender systems.

Similarly, the relative and absolute quantiles-rating algorithms, discussed and illustrated in several chapters, will be of practical interest for public or private performance auditors.

Finally, the monograph does not provide any mathematical developments or proofs. Those readers interested in the mathematical background of our decision algorithms are invited to consult the references provided at chapter level. Full texts of most of these references may be downloaded from the open access https://orbilu.uni.lu/ repository of the University of Luxembourg.

Preface

Acknowledgments

This monograph contains many ideas, methods and tools that are not only the author's. They have been shared and enhanced with friends, colleagues and many students. To name the most relevant: Pascal Bouvry, Denis Bouyssou, Luis C Dias, Claude Lamboray, Patrick Meyer, Vincent Mousseau, Alex Olteanu, Marc Pirlot, the late Bernard Roy, Ulrich Sorger, Alexis Tsoukiàs, Thomas Veneziano and especially, the late Marc Roubens. The UL HPC team, and more specifically Valentin Plugaru and Sébastien Varette, helped with mastering the multiprocessing experiments on the HPC platforms. The Springer publishing team very kindly assisted me eventually with the manuscript preparation.

The help of everybody is gratefully acknowledged.

Luxembourg, Autumn 2021

Raymond Bisdorff

Contents

	List	of listings	ΧV
	List	of figures	xxi
	List	of tables	XXV
n	trodu	ction	xxix
	The	editing strategy	xxix
		nisation of the book	
		lights	
Pa	art I	Introduction to the DIGRAPH3 Python resources	1
L	Wor	king with the DIGRAPH3 Python resources	3
	1.1	Installing the DIGRAPH3 resources	
	1.2	Organisation of the DIGRAPH3 Python modules	
	1.3	Starting a DIGRAPH3 terminal session	
	1.4	Inspecting a digraph object	8
	Refe	rences	12
2	Wor	king with bipolar-valued digraphs	13
	2.1	Random bipolar-valued digraphs	13
	2.2	Graphviz drawings	15
	2.3	Asymmetric and symmetric parts	16
	2.4	Border and inner parts	17
	2.5	Fusion by epistemic disjunction	18
	2.6	Dual, converse and codual digraphs	19
	2.7	Symmetric and transitive closures	21
	2.8	Strong components	
	2.9	CSV storage	23
	2.10	Complete, empty and indeterminate digraphs	24
		S	25

2	xii		Content

	References	26
3	Working with outranking digraphs 3.1 The hybrid outranking digraph model 3.2 The bipolar-valued outranking digraph 3.3 Pairwise comparisons 3.4 Recoding the characteristic valuation domain 3.5 The strict outranking digraph Notes References	29 29 32 33 34 35 35 37
Pa	art II Evaluation models and decision algorithms	39
5	Building a best choice recommendation 4.1 What office-location to choose? 4.2 The given performance tableau 4.3 Computing the outranking digraph 4.4 Designing a best choice recommender system 4.5 Computing the RUBIS best choice recommendation 4.6 Weakly ordering the outranking digraph Notes References How to create a new multiple-criteria performance tableau	41 41 43 45 47 48 51 52 54
3	5.1 Editing a template file	57 57 59 60 61 63 65 68
6	Generating random performance tableaux 6.1 Introduction	69 70 72 76 80 84
7	Who wins the election? 7.1 Linear voting profiles	85 85 86 88 90

Contents	xiii

	References	
8	Ranking with multiple incommensurable criteria	. 97
•	8.1 The ranking problem	
	8.2 The COPELAND ranking	
	8.3 The NETFLOWS ranking	
	8.4 KEMENY rankings	
	8.5 SLATER rankings	
	8.6 The KOHLER ranking-by-choosing rule	
	8.7 The RANKEDPAIRS ranking rule	
	References	
9	Rating by sorting into relative performance quantiles	117
	9.1 Quantile sorting on a single performance criterion	. 117
	9.2 Sorting into quantiles with multiple performance criteria	. 118
	9.3 The sparse pre-ranked outranking digraph model	. 122
	9.4 Ranking pre-ranked sparse outranking digraphs	. 125
	References	. 126
10	Rating by ranking with learned performance quantile norms	127
	10.1 The absolute rating problem	
	10.2 Incremental learning of historical performance quantiles	. 128
	10.3 Rating-by-ranking new performances with quantile norms	. 130
	References	. 137
11	HPC ranking of big performance tableaux	139
	11.1 C-compiled Python modules	
	11.2 Big Data performance tableaux	
	11.3 C-implemented integer-valued outranking digraphs	
	11.4 The sparse implementation of big outranking digraphs	
	11.5 Quantiles ranking of big performance tableaux	
	11.6 HPC quantiles ranking records	
	References	. 149
Pa	art III Evaluation and decision case studies	151
12	Alice's best choice: A selection case study	153
	12.1 The decision problem	
	12.2 The performance tableau	
	12.3 Building a best choice recommendation	
	12.4 Robustness analysis	
	References	
13	The best academic Computer Science Depts: A ranking case study	167

xiv	Contents

13.1 The THE performance tableau 13.2 Ranking with multiple criteria of ordinal significance 13.3 How to judge the quality of a ranking result?	17
14 The best students, where do they study? A rating case study	18
14.1 The rating problem	
14.2 The 2004 performance quintiles	
14.3 Rating-by-ranking with lower-closed quintile limits	
14.4 Rating by quintiles sorting	
References	19
15 Exercises	19
15.1 Who will receive the best student award? (§)	19
15.2 How to fairly rank movies? (§)	
15.3 What is your best choice recommendation? (§§)	
15.4 Planning the next holiday activity (§§)	20
15.5 What is the best public policy? (§§)	20
15.6 A fair diploma validation decision (§§§)	20
References	20
Part IV Advanced topics	20
16 On measuring the fitness of a multiple-criteria ranking	20
16 On measuring the fitness of a multiple-criteria ranking 16.1 Listing movies from best star-rated to worst	
	20
16.1 Listing movies from best star-rated to worst	20
16.1 Listing movies from best star-rated to worst	20 21 21
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences	20 21 21 21
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics	20 21 21 21
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences	20 21 21 21 21
 16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions 	20 21 21 21 21
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels	20 21 21 21 22 22
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References.	20 21 21 21 22 22
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernel? 17.2 Initial and terminal kernels	20 21 21 21 22 22 22 22
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernel? 17.2 Initial and terminal kernels 17.3 Kernels in lateralized digraphs	20 21 21 21 22 22 22 22 22 23
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernel? 17.2 Initial and terminal kernels	20 21 21 21 22 22 22 22 23 23
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernel? 17.2 Initial and terminal kernels 17.3 Kernels in lateralized digraphs 17.4 Computing first and last choice recommendations	20 21 21 21 22 22 22 23 23 23
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernel? 17.2 Initial and terminal kernels 17.3 Kernels in lateralized digraphs 17.4 Computing first and last choice recommendations 17.5 Tractability of kernel computation	20 21 21 21 22 22 22 23 23 23
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernel? 17.2 Initial and terminal kernels 17.3 Kernels in lateralized digraphs 17.4 Computing first and last choice recommendations 17.5 Tractability of kernel computation 17.6 Solving kernel equation systems	20 21 21 21 22 22 22 22 23 23 23 24
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernel? 17.2 Initial and terminal kernels 17.3 Kernels in lateralized digraphs 17.4 Computing first and last choice recommendations 17.5 Tractability of kernel computation 17.6 Solving kernel equation systems Notes	20 21 21 21 22 22 22 22 23 23 23 24 24
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernels 17.2 Initial and terminal kernels 17.3 Kernels in lateralized digraphs 17.4 Computing first and last choice recommendations 17.5 Tractability of kernel computation 17.6 Solving kernel equation systems Notes References 18 On confident outrankings with uncertain criteria significance weight	20 21 21 21 22 22 22 23 23 23 24 24 24
16.1 Listing movies from best star-rated to worst 16.2 KENDALL's ordinal correlation tau index 16.3 Bipolar-valued relational equivalence 16.4 Fitness of ranking heuristics 16.5 Illustrating preference divergences 16.6 Exploring the "better rated" and the "as well as rated" opinions References 17 On computing digraph kernels 17.1 What is a graph kernels 17.2 Initial and terminal kernels 17.3 Kernels in lateralized digraphs 17.4 Computing first and last choice recommendations 17.5 Tractability of kernel computation 17.6 Solving kernel equation systems Notes References 18 On confident outrankings with uncertain criteria significance weight	20 21 21 21 22 22 22 23 23 23 24 24 24

Contents	XV

	18.3 Confidence level of outranking digraphs	253
	References	
19	Robustness analysis of outranking digraphs	259
	19.1 Cardinal or ordinal criteria significance weights?	259
	19.2 Qualifying the stability of outranking situations	
	19.3 Computing the stability denotation of outranking situations	
	19.4 Robust bipolar-valued outranking digraphs	
	19.5 Characterising unopposed multiobjective outranking situations	
	19.6 Computing Pareto efficient multiobjective choices	
	References	
	References	214
20	Tempering plurality tyranny effects in social choice	275
	20.1 Two-stage elections with multipartisan primary selection	
	20.2 Bipolar approval-disapproval voting systems	
	20.3 Pairwise comparison of approval-disapproval votes	
	20.4 Three-valued evaluative voting systems	
	20.5 Favouring multipartisan candidates	
	References	290
Pa	art V Working with undirected graphs	297
21	Bipolar-valued undirected graphs	299
21	Bipolar-valued undirected graphs 21.1 Implementing simple graphs	
21		299
21	21.1 Implementing simple graphs	299 302
21	21.1 Implementing simple graphs	299 302 303
21	21.1 Implementing simple graphs	299 302 303 304
21	21.1 Implementing simple graphs	299 302 303 304 307
21	21.1 Implementing simple graphs	299 302 303 304 307 307
21	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph.	299 302 303 304 307 307 309
21	21.1 Implementing simple graphs	299 302 303 304 307 307 309
	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph.	299 302 303 304 307 307 309
	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References	299 302 303 304 307 307 309 313
	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs	299 302 303 304 307 307 309 313 315 315
	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs	299 302 303 304 307 307 309 313 315 315 317
	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs 22.3 Spanning trees and forests	299 302 303 304 307 307 309 313 315 315 317 320
	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs 22.3 Spanning trees and forests 22.4 Maximum determined spanning forests	299 302 303 304 307 307 309 313 315 315 317 320 321
	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs 22.3 Spanning trees and forests	299 302 303 304 307 307 309 313 315 315 317 320 321
22	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs 22.3 Spanning trees and forests 22.4 Maximum determined spanning forests References About split, comparability, interval and permutation graphs	299 302 303 304 307 307 309 313 315 315 317 320 321 324
22	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs 22.3 Spanning trees and forests 22.4 Maximum determined spanning forests References About split, comparability, interval and permutation graphs 23.1 A 'multiply' perfect graph	299 302 303 304 307 307 309 313 315 315 317 320 321 324 325 325
22	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs 22.3 Spanning trees and forests 22.4 Maximum determined spanning forests References About split, comparability, interval and permutation graphs 23.1 A 'multiply' perfect graph 23.2 Who is the liar?	299 302 303 304 307 307 309 313 315 315 317 320 321 324 325 326
22	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs 22.3 Spanning trees and forests 22.4 Maximum determined spanning forests References About split, comparability, interval and permutation graphs 23.1 A 'multiply' perfect graph 23.2 Who is the liar?	299 302 303 304 307 307 309 313 315 315 317 320 321 324 325 326
22	21.1 Implementing simple graphs 21.2 Q-coloring of a graph 21.3 MIS and clique enumeration 21.4 Line graphs and maximal matchings 21.5 Grids and the ISING model 21.6 Simulating METROPOLIS random walks 21.7 Computing the non isomorphic MISs of the n-cycle graph References On tree graphs and graph forests 22.1 Generating random tree graphs 22.2 Recognising tree graphs 22.3 Spanning trees and forests 22.4 Maximum determined spanning forests References About split, comparability, interval and permutation graphs 23.1 A 'multiply' perfect graph	299 302 303 304 307 307 309 313 315 315 317 320 321 324 325 326 330

xvi	Contents
-----	----------

Index 339

Listings

1.1	Generating a digraph instance	6
1.2	A stored digraph instance	
1.3	Random crisp digraph object	8
1.4	Inspecting a Digraph object	10
1.5	Various compute() methods	10
1.6	Circulant digraphs and $n \times m$ grid digraphs	12
2.1	Random bipolar-valued digraph instance	13
2.2	Example of random valuation digraph	14
2.3	Computing asymmetric and symmetric Parts	16
2.4	Computing the asymmetric part of a bipolar-valued relation	16
2.5	Border and inner part of a linear order	17
2.6	Epistemic fusion of partial diagraphs	18
2.7	Computing associated dual, converse and codual digraphs	19
2.8	Computing the dual, the converse and the codual of a digraph	20
2.9	Symmetric and transitive closures	21
2.10	Computing the strong components in a digraph	22
2.11	Complete, empty and indeterminate digraphs	
3.1	Generating a random performance tableau	30
3.2	Inspecting the performance criteria	31
3.3	Inspecting the performance evaluations	31
3.4	Example of random bipolar-valued outranking digraph	32
3.5	Inspecting the valued adjacency table	
3.6	Inspecting a pairwise multiple-criteria comparison	33
3.7	Pairwise comparison with considerable performance difference	33
3.8	Recoding the digraph valuation	34
4.1	Inspecting the officeChoice performance tableau	43
4.2	Inspecting the performance criteria	44
4.3	Computing a bipolar-valued outranking digraph	46
4.4	Computing the best choice recommendation	
4.5	Inspecting pairwise comparison between alternatives G and D	49
4.6	Inspecting pairwise comparison between alternatives C and G	50

xviii		Listings

4.7	Ranking-by-choosing the outranking digraph	51
5.1	PerformanceTableau object template	57
5.2	Example of decision alternative description	
5.3	Example of decision objectives' description	60
5.4	Example of performance criteria description	61
5.5	Example of cardinal <i>Costs</i> criterion	
5.6	Editing performance evaluations	63
5.7	The template outranking relation	65
6.1	Generating a random performance tableau	71
6.2	Generating a random Cost-Benefit performance tableau	73
6.3	Generating a random 3 Objectives performance tableau	76
6.4	Inspecting the three objectives	77
6.5	What is the public policy to recommend as best choice?	78
6.6	Generating a random academic performance tableau	81
6.7	Student performance summary statistics per course	82
6.8	Consensus quality of the students's ranking	82
7.1	Example of random linear voting profile	85
7.2	Showing linear voting profiles	
7.3	Example Instant Run Off Winner	87
7.4	Example of BORDA rank scores	
7.5	Rank analysis example with BORDA scores	87
7.6	Example of <i>Majority Margins</i> digraph	88
7.7	Example of cyclic social preferences	90
7.8	NETFLOWS ranked heatmap view on a voting profile	92
7.9	Rank analysis table with BORDA scores	93
7.10	Generating a linear voting profile with random polls	93
7.11	The uninominal and BORDA election winner	
7.12	A majority margins digraph constructed from a linear voting profile	95
7.13	Ranking by iterating choosing the <i>first</i> and <i>last</i> remaining candidates	
8.1	Random bipolar-valued strict outranking relation characteristics	99
8.2	Median cut polarised strict outranking relation characteristics	
8.3	Computing a COPELAND Ranking	103
8.4	Checking the ordinal quality of the COPELAND ranking	
8.5	Computing a weak COPELAND ranking	
8.6	Computing a NETFLOWS ranking	
8.7	Checking the quality of the NETFLOWS Ranking	
8.8	Computing a Kemeny ranking	
8.9	Optimal Kemeny rankings	
8.10	Computing the epistemic disjunction of all optimal KEMENY rankings	
8.11	Computing the consensus quality of the first KEMENY ranking	
8.12	Computing the consensus quality of the second KEMENY ranking	
8.13	Computing a SLATER ranking	
8.14	Computing the epistemic disjunction of optimal SLATER rankings	
8.15	Computing a KOHLER ranking	
8.16	Ranking-by-choosing with iterated maximal NETFLOWS scores	113

Listings	xix

8.17	Computing a RANKEDPAIRS ranking	. 115
9.1	Computing a quintiles sorting result	
9.2	Inspecting the quantile limits	. 119
9.3	Computing a quintiles sorting result	
9.4	Bipolar-valued sorting characteristics (extract)	. 120
9.5	Weakly ranking the quintiles sorting result	. 121
9.6	Computing a <i>pre-ranked</i> sparse outranking digraph	. 122
9.7	The quantiles decomposition of a pre-ranked outranking digraph	. 122
9.8	Functional binary relation characteristics	. 123
10.1	Computing performance quantiles from a given performance tableau .	
10.2	Printing out the estimated quartile limits	
10.3	Generating 100 new random decision alternatives of the same model .	
10.4	Computing the absolute rating of 10 new decision alternatives	. 131
10.5	Performance tableau of the new incoming decision alternatives	
10.6	Showing the limiting profiles of the rating quantiles	. 132
10.7	COPELAND ranking of new alternatives and historical quartile limits .	
10.8	Absolute quartiles rating result	
10.9	Absolute deciles rating result	. 135
10.10	From deciles interpolated quartiles rating result	
11.1	Big data performance tableau format	. 140
11.2	Constructing big bipolar-valued outranking digraphs	
11.3	Constructing the sparse integer outranking digraph	
11.4	The 6 components of a sparse outranking digraph	
11.5	The relation() function of a sparse outranking digraph	
11.6	Ranking the sparse integer outranking digraph	
11.7	The ordered components of the sparse outranking digraph	. 147
11.8	Measuring the loss of quality with respect to the standard outranking	
	digraph	
12.1	Alice's performance tableau	
12.2	Computing Alice's outranking digraph	
12.3	Inspecting polarised outranking situations	
12.4	Alice's best choice recommendation	
12.5	Alice's strict best choice recommendation	
12.6	Weakly ranking by bipolar best-choosing and last-rejecting	
12.7	Computing the 90% confident outranking digraph	
12.8	Computing the 90%-confident best choice recommendation	
12.9	Computing the unopposed outranking situations	
13.1	Performance tableau of the	
13.2	Printing the CS Departments	
13.3	The THE ranking objectives	
13.4	Computing the THE overall scores	
13.5	Printing the ranked performance table	
13.6	Inspecting the performance discrimination thresholds	
13.7	Computing the robust outranking digraph	
13.8	Inspecting outranking circuits	. 175

xx Listings

13.9	Showing the relation table with stability denotation	176
13.10	Computing a robust NETFLOWS ranking	177
13.11	Comparing the robust NETFLOWS ranking with the THE ranking	177
13.12	Comparing pairwise criteria performances	179
13.13	Measuring the quality of the NETFLOWS ranking result	181
13.14	Measuring the consensus quality of the NETFLOWS ranking result	182
13.15	Showing the ordinal correlation between the marginal criterion relations	182
13.16	Computing the ordinal quality of the THE ranking	184
14.1	Inspecting stored historical performance quantiles	189
14.2	Estimated quintile limits of the 2004 survey	190
14.3	Showing the quintiling of the enrolment quality of the 5 Universities	192
14.4	Computing the epistemic fusion of three rating-by-rankig results	194
14.5	Checking the consensus quality of the KEMENY ranking	194
14.6	Checking the consensus quality of the COPELAND ranking	
14.7	Showing quantiles sorting characteristics	196
14.8	Showing a quintiles rating-by-sorting result	197
16.1	Computing the average weighted number of stars per movie	211
16.2	Showing the movie from best to worst rated in a heatmap view	
16.3	Computing a relational equivalence digraph	213
16.4	Two random bipolar-valued digraphs	214
16.5	Bipolar-valued Equivalence Digraph	214
16.6	Computing the ordinal correlation index from the equivalence digraph.	216
16.7	Computing the valued ordinal correlation index	216
16.8	The bipolar-valued outranking digraph of the star-rated movies	217
16.9	Computing marginal criterion correlations with global NETFLOWS	
	ranking	217
16.10	Computing the ordinal correlation between NETFLOWS and global	
	outranking digraph	218
16.11	Bipolar ranking-by-choosing the movies	222
17.1	Generating a random 3-regular graph of order 12	
17.2	Printing out all maximal independent sets of the random 3-regular graph	
17.3	The prekernels of a complete digraph	226
17.4	The prekernels of the empty or indeterminate digraph	227
17.5	The prekernels of the 5-circuit digraph	228
17.6	The prekernels of the 6-circuit digraph	228
17.7	The prekernels of the dual of the 6-circuit digraph	228
17.8	The weak 6-circuit digraph	
17.9	Generating a random digraph rd of order 7 and arc probability 0.3	231
17.10	Inspecting the properties of random digraph rd	
17.11	Inspecting the prekernels of random digraph rd	232
17.12	Generating a random bipolar-valued outranking digraph	
17.13	Computing the prekernels of the strict outranking digraph gcd	234
17.14	Computing a first and last choice recommendation from digraph gcd .	235
17.15	Enumerating MISs by visiting only maximal independent choices (A.	
	<i>Hertz</i>)	238

r * .*	•
Listings	XX1
Distings	AAI

17.16	Generating all independent choices in a digraph	. 238
17.17	Computing dominant and absorbent preKernels	
17.18	Verifying the kernel equation system on a tiny random digraph	
17.19	Computing a dominant prekernel restricted adjancecy table	
17.20	Fixpoint iterations for initial prekernel {a1, a2, a4}	
18.1	Computing a 90% confident outranking dugraph	
18.2	90%-confident outranking relation with triangular distributed	
	significance weights	. 255
18.3	99%-confident outranking relation	
18.4	90%-confident outranking digraph with uniform variates	. 257
19.1	Generate a Random 3 Objectives Performance Tableau	
19.2	The significance weights preorder	
19.3	Example Bipolar Outranking Digraph	
19.4	Bipolar-valued outranking relation table with stability denotation	
19.5	Comparison of alternatives p2 and p1	. 263
19.6	Comparison of alternatives p7 and p3	
19.7	Computing a robust outranking digraph	. 266
19.8	Inspecting polarised outranking situations	. 267
19.9	Computing a robust performance heatmap view	. 268
19.10	Computing unopposed outranking situations	. 270
19.11	Computing unopposed outranking digraphs	. 271
19.12	Example of unopposed multiobjective outranking situation	
19.13	Pareto efficient multiobjective choice	
20.1	Example of a 3 parties voting profile	
20.2	Converting a voting profile into a performance tableau	. 277
20.3	Computing unopposed multiobjective outranking situations	
20.4	Computing unopposed multiobjective outranking situations	
20.5	Recommending the secondary election winner	
20.6	A divisive two-party example of a random linear voting profile	
20.7	Example of ineffective primary multipartisan selection	
20.8	Example of non obvious secondary selection	
20.9	Bipolar approval voting profiles	
20.10	Inspecting an approval-disapproval ballot	
20.11	Comparing the net approval and the NETFLOWS rankings	
20.12	Computing the outranking digraph	
20.13	Comparing the NETFLOWS and the Net Approval rankings	
20.14	Computing a best social choice recommendation	
20.15	A random approval-disapproval voting profile in a divisive political	
	context	
21.1	Generating a randm graph instance	
21.2	Stored instance of a random graph	
21.3	Inspecting a graph instance	
21.4	Conversion between graphs and digraphs	
21.5	Computing a 3-coloring of the random graph g	
21.6	Computing and printing the maximal independent sets of graph g	. 303

xxii	Listings

21.7	Computing and printing the maximal independent sets of graph g	304
21.8	Computing the line graph of the 5-cycle graph	
21.9	Computing the MISs of the line graph of the 8-cycle graph	306
21.10	Computing maximum matchings in the 8-cycle graph	
21.11	Simulating an Ising model on a the 15×15 rectangular grid	307
21.12	Simulating random walks on a graph	
21.13	Checking the quality of the MCMC sampler	309
21.14	Printing the transition probability distribution	309
21.15	Computing the MISs of the 12-cycle graph	310
21.16	Computing the MISs with the perrinMIS shell command	311
21.17	Computing the automorphism group generators	312
21.18	Computing the MISs orbits of the 12-cycle graph	312
22.1	Generating a random tree graph	315
22.2	Generating a tree graph with a random PRÜFER code	316
22.3	Recognizing a tree graph	318
22.4	Computing the PRÜFER code of a tree graph instance	318
22.5	Computing the centres of a tree and drawing a rooted and oriented tree.	318
22.6	Generating uniform random spanning trees	320
22.7	Computing spanning forests over disconnected graphs	320
22.8	Generating randomly bipolar-valued graphs	321
22.9	Symmetric relation table	322
22.10	Computing best determined spanning forests	322
23.1	Testing perfect graph categories	326

List of Figures

1.1	The tutorial crisp digraph	9
1.2	Browsing the relation map of the tutorial digraph	11
1.3	The circulant [1,3] digraph and the 3x3 grid digraph	11
2.1	The tutorial random valuation digraph	15
2.2	Asymmetric and symmetric part of the tutorial random valuation digraph	16
2.3	Border and inner part of a linear order oriented by terminal and initial	
	kernels	17
2.4	Border and inner part of the tutorial random valuation digraph rdg	18
2.5	Symmetric and transitive closure of the tutorial random valuation di-	
	graph rdg	21
2.6	The valued relation table shown in a browser window	24
3.1	The strict (codual) outranking digraph	36
4.1	Unranked heatmap of the office choice performance tableau	45
4.2	Bipolar-valued adjacency matrix	46
4.3	Best office choice recommendation from strict outranking digraph	50
4.4	Ranking-by-choosing the potential office locations	52
4.5	The internal stability of a best choice recommendation in question	53
5.1	The template outranking digraph	66
5.2	COPELAND ranked heatmap of the template performance tableau	67
5.3	NETFLOWS ranked heatmap of the template performance tableau	67
6.1	Browser view on random performance tableau instance	72
6.2	Unordered heatmap of a random Cost-Benefit performance tableau	75
6.3	Browser view on the given random three-objectives performance tableau	78
6.4	The strict outranking digraph oriented by first and last choices	80
6.5	Browser view on the COPELAND ranked performance tableau	80
6.6	Ranking the students in a performance heatmap view	83

xxiv	List of Figures
	2

7.1	Visualising an election result	90
7.2	Cyclic social preferences	91
7.3	Visualising a linear voting profile in a NETFLOWS ranked heatmap	
7.4	Browsing the majority margins	95
8.1	The strict outranking relation \succsim	
8.2	Drawing of the weak COPELAND ranking	
8.3	Epistemic disjunction of optimal KEMENY rankings	
8.4	Epistemic disjunction of optimal SLATER rankings	111
9.1	The relation map of a sparse outranking digraph	124
10.1	Showing updated quartiles limits per criterion	131
10.2	Heatmap of absolute quartiles ranking	
10.3	Absolute quartiles rating digraph	
10.4	Heatmap of absolute deciles rating	137
11.1	Sparse quartiles-sorting decomposed outranking relation	145
11.2	HPC-UL Ranking Performance Records (Spring 2018)	149
12.1	Alice D	153
12.2	Alice's performance criteria	156
12.3	Heatmap of Alice's performance tableau	157
12.4	COPELAND ranked outranking relation map	
12.5	Alice's best choice recommendation	161
12.6	Comparing the first and second best-ranked study programs	162
12.7	Unopposed partial ranking of the potential study programs	165
13.1	The THE ranking criteria	173
13.2	Relation map of the robust outranking relation	
13.3	3D PCA plot of the pairwise criteria correlation table	
13.4	Extract of a heatmap browser view on the NETFLOWS ranking result .	185
14.1	Student enrolment quality scores per subject	
14.2	Fifteen popular academic subjects	
14.3	Heatmap view of the quintiles rating-by-ranking result	
14.4	Drawing of the quintiles rating-by-ranking result	193
14.5	Disjunctive fusion of the KEMENY, COPELAND and NETFLOWS	
	rankings	195
15.1	Star-rating of movies from February 2003	201
16.1	Star-ratings of movies from September 2007	
16.2	Star-ratings of movies ranked with the NETFLOWS rule	
16.3	Pairwise valued correlation of the movie critics	
16.4	3D PCA plot of the criteria ordinal correlation matrix	220

List of Figures	XXV
-----------------	-----

16.5	Asymmetric part of the "at least as well star-rated as" statements	221
16.6	Symmetric part of the "at least as well star-rated as" statements	
10.0	Symmetric part of the at least as well star-rated as statements	221
17.1	Coloured MIS in a 3-regular graph	224
17.1	The dual of the chordless 6-circuit	
17.2	Dual and converse transforms of the weak 6-circuit	
17.4	A random digraph of order 7 and arc probability 0.3	
17.5	Oriented drawing of a digraph	
17.6	The performance tableau of a random outranking digraph instance	
17.7	A random strict outranking digraph instance	235
17.8	The strict outranking digraph oriented by its first and last choice rec-	
	ommendations	237
17.9	Heat map with Copeland ranking of the performance tableau	
17.10	Initial kernel {a1,a2,a4} restricted adjacency table	
17.11	Terminal prekernel {a3, a7} restricted adjacency table	243
17.12	The strict outranking digraph oriented by its initial and terminal prek-	
	ernels	244
18.1	Four models of uncertain criteria significance weights	
18.2	Bipolar-valued outranking characteristic function	
18.3	Distribution of 10000 random outranking characteristic values	253
18.4	90%-confident strict outranking digraph oriented by its initial and ter-	
	minal prekernels	256
10.1		
19.1	Standard versus robust strict outranking digraphs oriented by their	2.00
	initial and terminal prekernels	268
19.2	Robust heatmap of the random 3 objectives performance tableau or-	
	dered by the NETFLOWS ranking rule	269
19.3	Standard versus <i>unopposed</i> strict outranking digraphs oriented by first	
	and last choice recommendations	273
20.1	Deletion table of multiportion automatics dismals	270
20.1	Relation table of multipartisan outranking digraph	
20.2	The linear ranking modelled by the majority margins digraph	
20.3	The bipolar-valued pairwise majority margins	
20.4	The pairwise <i>better approved than</i> majority margins	294
21.1	Example simple graph instance	301
21.2	3-Coloring and 2-Coloring of the tutorial graph	
21.2	A perfect maximum matching of the 8-cycle graph	
21.3		
	Ising model of the 15x15 grid graph	
21.5	Symmetry axes of the four non isomorphic MISs of the 12-cycle graph	313
22.1	Random tree graph instance of order 9	316
22.2	Tree graph generated with a random PRÜFER code	
22.3	Recognising a tree graph	
22.4	Drawing an oriented tree rooted at its centre	
44.4	Drawing an oriented nee rooted at its cellife	219

xxvi	List of Figures
22.5	Random spanning tree
22.6	Random spanning forest
22.7	Best determined spanning tree
23.1	A conjointly triangulated, comparability, interval, permutation and split graph
23.2	Graph representation of the testimonies of the professors 328
23.3	The triangulated testimonies graph
23.4	The [4,3,6,1,5,2] permutation graph
23.5	Minimal vertex colouring of the permutation graph
23.6	Coloured matching diagram of the permutation [4,3,6,1,5,2] 332
23.7	The transitive orientation of the permutation graph
23.8	Random graph of order 8 generated with edge probability 0.4 334
23.9	Transitive neighbourhoods of a graph
23.10	Transitive neighbourhoods of the dual graph
23.11	Isomorphic permutation graphs

List of Tables

4.1	The potential new office locations
4.2	The family of performance criteria
4.3	Performance evaluations of the potential office locations 43
10.1	Multi-criteria performances of two potential decision alternatives 127
12.1	The potential study programs
12.2	Alice's family of performance criteria
14.1	Enrolment quality scores per academic scores
15.1	Grades obtained by the students
15.2	Performance evaluations of the potential TV sets
15.3	The set of potential holiday activities
15.4	The set of performance criteria
15.5	The performance tableau 204

Introduction

The editing strategy

In the five parts of this monograph, the reader will find several series of tutorials and advanced topics that present and illustrate computational methods and tools mainly useful in the field of Multiple-Criteria Decision Aiding and Decision Analysis. These methods and tools were designed and implemented first in Python2 and then in Python3 by the author over the last two decades for supporting both the computational verification and validation of decision algorithms as well as the preparation and illustration of a Master Course on Algorithmic Decision Theory.

Each chapter illustrates a specific preference modelling aspect, like building a best choice recommendation, ranking or rating a set of potential decision alternatives, or computing the winner of an election. In order to keep parts and chapters more or less self-contained, definitions and explanations of major concepts, like bipolar-valued digraphs, multiple-criteria performance tableaux and outranking situations, may appear several times in the monograph.

Explicit Python programming examples, purposely kept elementary, are shown in numerous terminal session style listings. A complete list of the numbered listings, shown over all the chapters, is printed in the Appendix. These programming examples were all checked against errors with the doctest module of the standard Python3 library and should work effectively as such either, in a Python3 interactive terminal console, or for sure in an ipython console. Note that the layout of console print(...) outcomes has been edited in some listings for easing their reading. Some chapters will rely on a given data file that is made available in the examples directory of the DIGRAPH3 resources.

For similarly easing their reading, most chapters do not provide mathematical developments and proofs. Readers interested in such details are invited to consult the references listed separately at the end of each chapter. The author's references provide full text access to preprints on the open access https://orbilu.uni.lu/ repository of the University of Luxembourg.

¹ IP[i]: IPython interactive computing, https://ipython.org

xxx Introduction

Readers interested in the technical aspects of the organisation and implementation of the collection of DIGRAPH3 Python modules are invited to consult the extensive reference manual: https://digraph3.readthedocs.io/en/latest/techDoc.html, assisted by a search page https://digraph3.readthedocs.io/en/latest/search.html covering the whole DIGRAPH3 documentation.

Organisation of the book

The content of the monograph is divided into five parts.

Part I presents three chapters introducing the DIGRAPH3 programming resources and the main formal objects discussed in this book, namely *bipolar-valued digraphs* and, in particular, *outranking digraphs*.

In Chapter 1, the reader will gain contact with the DIGRAPH3 Python resources. First are given the installation instructions and the list of the main DIGRAPH3 Python modules with their purpose. A Python terminal session using the root digraphs module eventually illustrates how to generate, save and inspect a random crisp digraph.

Chapter 2 introduces the bipolar-valued digraph model—the root type of all our digraph models. A randomly bipolar-valued digraph instance is generated. Drawing the digraph, separating its asymmetric and symmetric parts, or its border and inner parts, is illustrated. The initial digraph instance may be reconstructed by epistemic disjunctive fusion from these respective parts. Dual, converse and codual transforms, as well as symmetric and transitive closures are presented. Complete, empty and indeterminate digraphs are eventually presented.

Chapter 3 presents the bipolar-valued outranking digraph—the main formal object used and discussed in this monograph. After illustrating its hybrid type—it is conjointly a multiple-criteria performance tableau and a bipolar-valued relation modelling outranking situations between the given performance records, pairwise comparisons and the recoding of the digraph characteristic valuation are illustrated. The codual transform of the outranking digraph renders the corresponding strict outranking digraph, i.e. its asymmetric part.

Part II illustrates in eight methodological chapters multiple-criteria performance evaluation models and decision algorithms. These chapters are mostly problem oriented.

Chapter 4 presents the RUBIS best choice recommender system. The approach is illustrated with building a best office-location recommendation. We show how to explore a given performance tableau and compute the corresponding outranking digraph. After presenting the pragmatic principles that govern our best choice recommendation algorithm we solve the best office-location choice problem.

Chapter 5 illustrates a way of creating a new multiple-criteria performance tableau by editing a given template file containing 5 decision alternatives, 3 decision objectives and 6 performance criteria. We discuss in detail how to edit the decision

Introduction xxxi

alternatives, the decision objectives, the family of performance criteria, and finally, the evaluations of the decision alternatives on the performance criteria.

Chapter 6 describes the DIGRAPH3 resources for generating random multiple-criteria performance tableaux. These random performance tableaux instances, mainly meant for illustration and training purposes, were serving the preparation and illustration of the Algorithmic Decision Theory Course lectures. The random generators propose several useful models like a Cost-Benefit tableau, a three Objectives—economic, societal and environmental—tableau, and an academic performance tableau.

Chapter 7 is more specifically devoted to handling linear voting profiles and computing the winner of such election results like the simple majority or the instant runoff winner. By following CONDORCET's recipe, we consider pairwise comparisons of election candidates and balance the number of times the first beats the second against the number of times the second beats the first in order to obtain a majority margins digraph, in fact a bipolar-valued digraph. When the voters express contradictory linear voting profiles one may naturally observe cyclic social preferences without seeing any paradox in this situation. Finally, the chapter presents a more politically realistic generator for random linear voting profiles by taking into account pre-election polls.

Chapter 8 introduces several algorithms for solving multiple-criteria ranking problems via bipolar-valued outranking digraphs. The COPELAND, NETFLOWS, KEMENY, SLATER, KOHLER and the RANKEDPAIRS ranking rules are illustrated with the help of a random outranking digraph. The fitness of their respective ranking result is measured with a bipolar-valued version of KENDALL's ordinal correlation index.

Chapter 9 applies order statistics for sorting a set X of n potential decision alternatives, evaluated on m incommensurable performance criteria, into q quantile equivalence classes. The sorting algorithm is based on pairwise outranking characteristics involving the quantile class limits observed on each criterion. Thus we may implement a weak ordering algorithm of complexity O(nmq).

Chapter 10 addresses the problem of rating multiple-criteria performance records of a set of potential decision alternatives with respect to performance quantiles learned from similar decision alternatives observed in the past. We show how to incrementally compute performance quantiles from incoming performance tableaux. New performance records may now be rated with respect to such historical quantile

Chapter 11 tackles the ranking of big multiple-criteria performance tableaux with thousands or millions of records. To effectively compute rankings from performance tableaux of these sizes, the chapter proposes a collection of C-compiled and optimised modules that may be run on Linux Debian HPC clusters as available, for instance, at the University of Luxembourg.

Part III delivers three realistic algorithmic decision making case studies.

Chapter 12 presents a case study concerning the building of a best choice recommendation for Alice, a German student who wants some advice concerning the choice of her future University studies. We present Alice's performance tableau —

xxxii Introduction

potential foreign language study programs, her decision objectives, performance criteria and performance evaluations— and build a best choice recommendation for her. A thorough robustness analysis confirms a very best choice.

In Chap. 13 we are resolving with our DIGRAPH3 resources a ranking decision problem based on published data from the Times Higher Education (THE) World University Rankings 2016 by Computer Science (CS) subject. We first have a look into the THE multiple-criteria ranking data with short Python scripts. In a second section, we relax the commensurability hypothesis of the ranking criteria and show how to similarly rank with multiple incommensurable performance criteria of solely ordinal significance. A third section is finally devoted to introduce quality measures for qualifying ranking results.

Chapter 14 presents and discusses how to rate with the help of our DIGRAPH3 resources the apparent student enrolment quality of higher education institutions. The multiple-criteria performance tableau, we use, is inspired by a 2004 student survey published by DER SPIEGEL magazine and concerning nearly 50,000 students, enrolled in one of fifteen popular academic subjects, like German Studies, Life Sciences, Psychology, Law or Computer Science.

In Chapter 15, we propose a series of decision problems of various difficulties which may serve as exercises and exam questions for an Algorithmic Decision Theory or Multiple-Criteria Decision Analysis course. They cover selection, ranking and rating problems.

Part IV presents in five chapters more advanced topics showing some pearls of bipolar-valued epistemic logic.

Starting from a motivating decision problem about how to list, from the best to the worst, a set of movies that are star-rated by journalists and movie critics, Chapter 16 shows that KENDALL 's ordinal correlation index tau can be extended to a relational bipolar-valued equivalence measure of bipolar-valued digraphs. This finding gives way, on the one hand, to measure the fitness and fairness of multiple-criteria ranking rules. On the other hand, it provides a tool for illustrating preference divergences between decision objectives and/or performance criteria.

We illustrate in Chapter 17, first, the concept of graph kernel, i.e. maximal independent set of vertices. In non-symmetric digraphs the kernel concept becomes richer and separates into initial and terminal kernels. In, furthermore, lateralized outranking digraphs, initial and terminal kernels become separate and may deliver suitable first resp. last choice recommendations. After commenting the tractability of kernel computations, we close the chapter with the solving of bipolar-valued kernel equation systems.

In Chapter 18 we propose to link a qualifying significance majority for outranking situations with a required $\alpha\%$ -confidence level. We model therefore the significance weights as random variables following more or less widespread distributions around a mean value that corresponds to the given deterministic significance weights. As the bipolar-valued random credibility of an outranking situation hence results from the simple sum of positive or negative independent random variables, we can apply the Central Limit Theorem (CLT) for computing the bipolar-valued

Introduction xxxiii

likelihood that the expected significance majority margin will indeed be positive, respectively negative.

In Chapter 19 we study the robustness of the outranking digraph when the criteria significance weights faithfully indicate solely an order of importance. The required cardinal significance weights of the performance criteria represent actually the 'Achilles' heel of the outranking approach. Rarely will indeed a decision maker be cognitively competent for suggesting precise decimal-valued criteria significance weights. This approach leads furthermore to the concept of unopposed or Pareto efficient multiobjective choices.

In a social choice context, where decision objectives would match different political parties, such Pareto efficient choices represent in fact multipartisan social choices. Chapter 20 shows that they may judiciously deliver the primary selection in a two stage election system. The outranking model is based on bipolar approvals-disapprovals of "at least as well evaluated as" statements. A similar approach is put into practice with bipolar approval-disapproval voting systems. When converting such approval-disapproval voting ballots into corresponding performance records, one obtains a (-1,0,1)-valued evaluative voting system. We eventually show in this chapter that in such bipolar voting systems, the election winner tends to be among the more or less multipartisan candidates.

Part V illustrates in three chapters computational resources for working with simple undirected graphs.

Chapter 21 introduces bipolar-valued undirected graphs and illustrates several special graph models and algorithms like Q-coloring, maximal independent set (MIS) and clique enumeration, line graphs and maximal matchings, grid graphs, and n-cycle graphs with their non-isomorphic MISs.

Chapter 22 specifically addresses working with tree graphs and graph forests. We illustrate how to generate and recognise random tree graphs and how to compute the centres of a tree and draw a rooted and oriented tree. Finally, algorithms for computing spanning trees and forests are presented.

Chapter 23 eventually presents some famous classes of BERGE graphs, namely comparability, interval, permutation and split graphs. We first present an example of an interval graph which is at the same time a triangulated, a comparability, a split and a permutation graph. The importance of being an interval graph is illustrated with *Claude Berge*'s mystery story. We discuss furthermore the generation of permutation graphs and close with how to recognise that a given graph is in fact a permutation graph.

Highlights

Contrary to what is generally thought, it is the preparation of the multiple-criteria performance tableau that takes most of the decision analysis time, not running any decision algorithms. Designing adequate performance evaluating criteria functions for each decision objective and collecting meaningful and precise evaluations is

xxxiv Introduction

crucial for the success of the decision making. This is a very critical and essential step. Chapters 4, 5 and 12 illustrate and discuss in detail coherent multiple-criteria performance tableaux. In order to discover more examples of potential performance tableaux, we provide in Chap. 6 random generators for several common kinds of performance tableaux.

Once the multiple-criteria performance tableau is ready, starts the thrilling step of discovering the resulting outranking relation. Are there many chordless outranking circuits? What is its degree of symmetry? What is its degree of transitivity? If the number of potential decision alternatives is small—less than 30, one can try, in the case of a selection problem, to compute prekernels in order to find potential first or last choice decision alternatives? Chapters 4, 12 and 17 are illustrating and discussing this challenging computational problem.

Comparing various ranking rules working on bipolar-valued outranking relations constructed from performance tableaux of various kinds: Cost-Benefit, 3-Objectives, academic a.-o., has made us confident about the fact that convincing criteria for judging the quality of a ranking result may not to be found alone by mathematical properties, like KEMENY optimality or CONDORCET consistency. More useful seams to be the fair balancing of decision objectives and performance criteria. In this respect it is the NETFLOWS ranking rule which appears to be most effective and often gives fairly balanced multiple-criteria rankings. Chapter 8 on ranking rules, the ranking and rating case studies of Chaps. 13 and 14, and Chap. 16 on bipolar-valued relational equivalence of digraphs illustrate and discuss this important topic.

The bipolar-valued epistemic logic, in which our decision algorithms are computing and expressing their decision solutions, provides effective assistance for coping with missing data and imprecise performance evaluations. Chapters 14 and 16 illustrate this advantage. An efficient robustness analysis becomes furthermore available for handling, on the one side, uncertain criteria significance weights leading in Chapter 18 to $\alpha\%$ -confident outranking digraphs. On the other side, Chapter 19 illustrates how to compute robust outranking digraphs and decision solutions when solely ordinal criteria significance weights are given. In Chapter 20, the same kind of robustness analysis proposes strategies for tempering plurality tyranny effects in social choice problems by favouring multipartisan candidates, like two-stage elections with multipartisan primary selection of candidates or bipolar approval-disapproval voting systems.

Noticing the efficiency of the bipolar-valued epistemic logical framework for handling outranking digraphs, we could not resist making in Chaps. 21 and 22 an excursion into the domain of simple undirected graphs and tree graphs. The beautiful book on Algorithmic Graph Theory and Perfect Graphs by *M. Ch. Golumbic* gave eventually the opportunity to tackle in the last Chapter 23 some famous classes of BERGE graphs.

It is my hope that the reader, by going on, will find the same astonishment and enchantment as I experienced when discovering the simplicity, efficiency and elegance of handling bipolar-valued outranking digraphs and graphs with Python proIntroduction xxxv

gramming resources. Extending the bipolar-valued epistemic logical framework to other computational science domains will prove valuable, I am sure, for many future scientific works.