Pagina 1 Inga. Claudia Contreras

C

MATERIAL DE ESTUDIO 4 - CAPACITANCIA

1. En el circuito que se muestra en la figura, los capacitores tienen una capacitancia de $5\mu F$ y están conectados a una batería de 12V. El valor de la capacitancia equivalente del circuito es de (en μF):

es de (en μF)):				2 <u>C</u>	
a) 15.3	b) 7	c) 25	d) 1.75	<u>e) 4</u>		
					12V =	

Solución. Empezaremos por numerar los capacitores.

Observe que los capacitores C_1 , C_3 y C_4 se encuentran conectados en paralelo por lo que pueden remplazarse con un capacitor equivalente:

$$C_{134} = C_1 + C_3 + C_4 = 2C + C + C = 4C = 20\mu F$$

El capacitor C_{134} se encuentra conectado en serie con el capacitor C_2 de tal forma que la capacitancia equivalente en los extremos de la batería es:

$$C_{eq} = \left(\frac{1}{C_{134}} + \frac{1}{C_2}\right)^{-1} = \left(\frac{1}{20 \times 10^{-6}} + \frac{1}{5 \times 10^{-6}}\right)^{-1} = 4\mu F$$

2. Refiriéndonos al problema anterior, ¿Cuánta energía en μJ almacena el capacitor de 2C?

a) 14.4	b) 44.9	c) 360	<u>d) 28.8</u>	e) 230.4

<u>Solución</u>. Para encontrar la energía del capacitor C_1 requerimos conocer ya sea su carga o la diferencia de potencial entre sus terminales. Para ello encontraremos la carga del capacitor equivalente de la combinación C_{eq}

$$Q_{eq} = C_{eq}V_{eq} = (4 \times 10^{-6})(12) = 48 \mu C$$

La carga del capacitor equivalente es la misma que la carga en el capacitor dos y el capacitor C_{134} , es decir:

$$Q_{eq}=Q_{134}=Q_2 \\$$

Debido a que el capacitor C_{134} es el que remplaza a la combinación en paralelo de la cual es parte C_1 , el voltaje en el capacitor C_{134} es el mismo que en C_1 y encontrando éste voltaje se podrá encontrar la energía que almacena C_1 . Entonces:

$$V_{134} = \frac{Q_{134}}{C_{134}} = \frac{48 \times 10^{-6}}{20 \times 10^{-6}} = 2.4V$$

Asimismo,

$$V_{134} = V_1 = 2.4V$$

Pagina 2 Inga. Claudia Contreras

Por lo que la energía almacenada en el capacitor que hemos denominado \mathcal{C}_1 es:

$$U_1 = \frac{1}{2}C_1V_1^2 = \frac{1}{2}(10 \times 10^{-6})(2.4)^2 = 28.8\mu J$$

3. La capacitancia de un conductor esférico simple de radio r es Co. Si el radio se duplica la nueva capacitancia será:

a) $4C_o$ b) $2C_o$ c) $C_o/2$ d) $C_o/4$ e) C_o no está definida para solo un objeto

Solución. La capacitancia de un capacitor es: $C = \frac{Q}{\Delta V}$

Para este caso tomaremos la diferencia de potencial entre un punto en la superficie del conductor esférico y un punto de referencia para el cual el potencial es cero. Por lo que la diferencia de potencial será:

$$\Delta V = \frac{kq}{r}$$

Por lo tanto la capacitancia a la que se hace referencia es:

$$C_o = \frac{Q}{\underline{kq}}$$

Observe que si se duplica r, el valor de C_o también se duplica.

4. En el circuito que se muestra C_1 =5.0 μ F, C_2 =15 μ F, C_3 =30 μ F y V_0 =24V, ¿Cuál es la diferencia de potencial en el capacitor C_2 (en V)?

diferencia	i de potencial en e	el capacitor C_2 (en	V)?	
a) 21	b) 19	<u>c) 16</u>	d) 24	e) 8

Solución: En el circuito podemos observar que C_2 se encuentra conectado en serie con C_3 , por lo que los podemos remplazar por un capacitor equivalente C_{23} cuya magnitud será:

$$C_{23} = \left(\frac{1}{C_2} + \frac{1}{C_3}\right)^{-1} = \left(\frac{1}{15 \times 10^{-6}} + \frac{1}{30 \times 10^{-6}}\right)^{-1} = 10 \mu F$$

$$Q_{23} = \Delta V_{23} C_{23} = (24)(10 \times 10^{-6}) = 2.4 \times 10^{-4} C$$

Pero tomemos en cuenta que C_{23} , reemplaza a la combinación en serie de C_2 y C_3 por lo que la carga de éstos dos últimos es la misma a la de C_{23}

$$Q_{23} = Q_2 = Q_3$$

Por lo cual la carga en el capacitor C_2 es de $2.4 \times 10^{-4} C$ y la diferencia de potencial en sus terminales será:

 C_1

C₃

 C_2

5.	¿Cuánta energía	(en µJ) alı	macena el	sistema	de ca	pacitores	mostr	ado?

		a) 4320	b) 1296	c) 2400	d) 360	e) 576	

Solución: Para encontrar la energía potencial eléctrica del sistema, encontraremos la capacitancia equivalente del sistema y su energía potencial eléctrica:

Observemos que C23 se encuentra conectado en paralelo con C1 por lo cual la capacitancia equivalente del sistema será:

$$C_{eq} = C_{23} + C_1 = 10\mu F + 5\mu F = 15\mu F$$

Y la energía potencial eléctrica del sistema es:

$$U_{sistema} = \frac{1}{2}C_{eq}(\Delta V_{eq})^2 = \frac{1}{2}(15 \times 10^{-6})(24)^2 = 4.32 \times 10^{-3}J$$

6. En el sistema de capacitores que se muestra en la figura $C_1=C_2=C_3=3\mu F$.

	a) 6.0	b) 4.0	c) 3.0	d) 1.0	e) 2.0

Pagina 3 Inga. Claudia Contreras

<u>Solución</u>: en este caso primero simplificaremos el circuito a su capacitancia equivalente y después procederemos a analizar la cantidad de carga en el capacitor tres. Observemos que C_1 y C_2 se encuentran conectados en paralelo por lo que los podemos remplazar por un solo capacitor C_{12}

$$C_{12} = C_1 + C_2 = 6\mu F$$

También se observa que C_{12} está en serie con C_3 por lo que la capacitancia equivalente de todo el circuito será:

$$C_{eq} = \left(\frac{1}{C_{12}} + \frac{1}{C_3}\right)^{-1} = \left(\frac{1}{6 \times 10^{-6}} + \frac{1}{3 \times 10^{-6}}\right)^{-1} = 2\mu F$$

La carga de este capacitor equivalente es:

$$Q_{eq} = \Delta V_{eq} C_{eq} = (2)(2 \times 10^{-6}) = 4 \times 10^{-6} C$$

Debido a que el capacitor equivalente está remplazando la combinación en serie de C₁₂ y C₃ se puede concluir que:

$$Q_{eq} = Q_3 = Q_{12}$$

Por lo que la carga del capacitor tres es de 4μ C.

7. ¿Cuánta energía (en μJ) se almacena en el sistema mostrado?

a) 6.0	b) 4.0	c) 3.0	d) 1.0	e) 2.0
		•		·

Solución: La energía del sistema de capacitores será igual a la energía del capacitor equivalente del circuito, es decir:

$$U_{sistema} = \frac{1}{2}C_{eq}(\Delta V_{eq})^2 = \frac{1}{2}(2\times10^{-6})(2)^2 = 4\times10^{-6}J$$

8. Dos capacitores iguales que inicialmente estaban descargados, se conectan en serie a las terminales de una batería de 20V. Si cuando sólo uno de esos capacitores (inicialmente descargado) se conecta entre esa batería de 20V, la energía almacenada en él es U₁, entonces, ¿cuál será la energía total almacenada cuando se conecta a la batería la combinación en serie?

Solución:

20V

Primero encontramos la energía almacenada por un solo capacitor:

$$U = \frac{1}{2}CV^2 = U_1$$

Ahora cuando se conectan en serie, se puede encontrar la energía del circuito:

$$\frac{1}{C_{eq}} = \frac{1}{C} + \frac{1}{C} = \frac{2}{C} \implies C_{eq} = \frac{C}{2}$$

$$C_{eq} = \frac{C}{2} \implies C_{eq} = \frac{C}{2}$$

$$U_f = \frac{1}{2}C_{eq}V^2 = \frac{1}{2}\left(\frac{C}{2}\right)V^2 = \frac{1}{4}CV^2 = \frac{U_1}{2}$$

9. Un capacitor de placas paralelas está conectado a una batería que tiene un voltaje constante entre sus terminales, entonces se separan las placas del capacitor:

a) El campo eléctrico	b) El campo eléctrico	c) El campo eléctrico	d) <u>Disminuye tanto el</u>	e)NEC
aumenta, pero la carga en	permanece constante, pero	permanece constante, pero la	campo eléctrico como	
las placas disminuye.	la carga en las placas no.	carga en las placas disminuye.	la carga en las placas.	

Pagina 4 Inga. Claudia Contreras

Solución: Qué sucede con el campo eléctrico?

 $V = Ed \implies E = V/d$ de tal forma que si el voltaje permanece constante,

$$E = \frac{V}{d \to aumenta} \Rightarrow E$$
 disminuye

¿Qué sucede con la carga? Para un capacitor de placas paralelas, $C = \frac{\mathcal{E}_o A}{d}$ por lo que $Q = CV = \frac{\mathcal{E}_o AV}{d}$, en la última expresión se puede observar que para V constante, si d aumenta Q disminuye.

De la misma manera en un capacitor de placas paralelas $E = \frac{\sigma}{\varepsilon_o} = \frac{Q}{\varepsilon_o} = \frac{Q}{A\varepsilon_o} \Rightarrow Q = EA\varepsilon_o$

Por lo que en la última expresión se puede observar que si \vec{E} disminuye, la carga también disminuye.

10. ¿Cuál de los siguientes cambios en un capacitor de placas paralelas conectado a una batería, incrementará la carga de un capacitor?

a) Reducción de la diferencia de	b) Reducción de la	c) Reducción de la	d) Reducción de la	e)NEC
potencial entre las placas	superficie de las placas.	separación entre las	capacitancia.	
		<u>placas.</u>		

Solución. La carga de un capacitor de placas paralelas que se encuentra conectado a una diferencia de potencial está dada

por:
$$Q = C\Delta V = \frac{\varepsilon_o A}{d} \Delta V$$

De la ecuación anterior puede observarse que para que la carga aumente la capacitancia debe aumentar y esto se logrará disminuyendo la separación entre sus placas.

11. La capacitancia de un capacitor puede incrementarse cuando:

a)Disminuye	b)Disminuye la	c) Incrementa la	d) Disminuye	e) Incrementa
la carga	separación de	separación en	el área de las	la carga.
	las placas	las placas	placas	

12. Para el circuito que se muestra en la figura, tome cada capacitor de C= $2.0\mu F$ y calcule: ¿Cuál es la capacitancia equivalente del circuito (en μF)?

Solución.

Para resolver este problema se irá reduciendo el circuito mostrado en la figura, hasta encontrar la capacitancia equivalente total del circuito.

Primeramente, observemos que C1 y C2 se encuentran conectados en serie, por lo que pueden ser reemplazados por un capacitor equivalente C12. Asimismo, C4 y C5 están conectados en paralelo por lo que también los reemplazaremos por un solo capacitor C45.

$$C_{12} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1} = \left(\frac{1}{2 \times 10^{-6}} + \frac{1}{2 \times 10^{-6}}\right)^{-1} = 1 \times 10^{-6} F$$

$$C_{45} = C_4 + C_5 = 2 \times 10^{-6} + 2 \times 10^{-6} = 4 \times 10^{-6} F$$

Pagina 5 Inga. Claudia Contreras

Del circuito resultante se observa que C12 y C3 están paralelo. Adicionalmente C45 y C6 están en serie por lo que podemos reducir el circuito

$$C_{123} = C_{12} + C_3 = 1 \times 10^{-6} + 2 \times 10^{-6} = 3 \times 10^{-6} F$$

$$C_{456} = \left(\frac{1}{4 \times 10^{-6}} + \frac{1}{2 \times 10^{-6}}\right)^{-1} = 1.33 \times 10^{-6} F$$

Y finalmente C123 y C456 están en paralelo por lo que la capacitancia equivalente del circuito es:

$$C_{equivalente} = C_{123} + C_{456} = 3 \times 10^{-6} + 1.33 \times 10^{-6} = 4.33 \times 10^{-6} F$$

13. Refiriéndonos al problema anterior ¿Cuál es la carga que se almacena en el capacitor C6 (en μC)?

			<i>O</i> 1		(- / -
a) 1	8.0	b) 36.0	c) 52.0	d) 8.00	e)16.0

Solución. Del circuito resultante podemos observar que los 12V se aplican al capacitor C_{456} el cual está sustituyendo a la combinación en serie del capacitor C₆ y C₄₅, por lo tanto la carga del capacitor C₄₅₆ será la misma que la del capacitor C₆:

$$Q_6 = Q_{456} = V_{456}C_{456} = (12)(1.33 \times 10^{-6}) = 15.96 \times 10^{-6}C_{456}$$

14. ¿Cuál de los siguientes cambios en un capacitor de placas paralelas conectado a una batería, incrementará la carga de un capacitor?

a) Reducción de la diferencia de	b) Reducción de la	c) Reducción de la	d) Reducción de la	e)NEC
potencial en las placas.	superfície de las placas. separación de las plac		capacitância.	

15. ¿Cuál es la capacitancia equivalente (μF) en el circuito mostrado, cuando $C_1 = 50\mu F$, $C_2 = 30\mu F$, $C_3 = 36\mu F$, $C_4 =$ $12\mu F \nu V_0 = 30V$?

1-p01)	- poz				
a) 6.1	b) 9	c) 30	d) 28.0	e)80.0	

Solución. Observe que C_1 y C_2 se encuentran en paralelo por lo que se pueden sustituir por un capacitor C₁₂ con una capacitancia:

$$C_{12} = C_1 + C_2 = 80\mu F$$

Asimismo, C₃ y C₄ se encuentran en paralelo por lo que se pueden sustituir por un capacitor C₃₄ con una capacitancia:

$$C_{34} = C_3 + C_4 = 48\mu F$$

 $C_{34}=C_3+C_4=48\mu F$ El capacitor C_{12} está en serie con el capacitor C_{34} por lo que la capacitancia equivalente del circuito es:

$$C_{eq} = \left(\frac{1}{80 \times 10^{-6}} + \frac{1}{48 \times 10^{-6}}\right)^{-1} = 30\mu F$$

16. Cuánta carga (en μ C) se almacena en C_1 ? b) 225.0 a) 337.5 c) 675.0 d) 562.5

Solución: Encontraremos la carga del capacitor equivalente este remplaza a la combinación en serie C_{12} y C_{34} por lo que tiene la misma carga que éstos. A partir de esta información podemos encontrar el voltaje que tiene entre sus terminales el Capacitor C₁₂, que tiene la misma diferencia de potencial que C1 y derivado de esto encontraremos la carga de este último.

Universidad de San Carlos de Guatemala

Facultad de Ingeniería

Departamento de Física – Física 2

Pagina 6 Inga. Claudia Contreras

e)16.0

$$V_{eq} = \frac{Q_{eq}}{C_{eq}} \rightarrow Q_{eq} = C_{eq}V_{eq} = 30 \times 10^{-6}(30) = 900 \mu C$$

Se tiene que $Q_{eq} = Q_{12}$; por lo que el voltaje que tiene entre sus terminales el capacitor C_{12} es:

$$V_{12} = \frac{Q_{12}}{C_{12}} = \frac{900 \times 10^{-6}}{80 \times 10^{-6}} = 11.25V$$

Asimismo, como $V_{12} = V_1$

$$Q_1 = C_1 V_1 = 50 \times 10^{-6} (11.25) = 562.5 \mu C$$

CAPACITORES Y DIELÉCTRICOS

17. Un capacitor $C_1 = 3\mu F$ está conectado en serie con un capacitor C_2 de placas paralelas, el cual tiene un dieléctrico de constante K=2.5, la distancia de separación de las placas es de 2×10^{-4} m y de área $54.23m^2$, ambos descargados inicialmente y posteriormente conectados a una batería de 8V. ¿Cuánta energía se almacena en el conjunto de los capacitores (en µJ)?

a) 288 b)64 Solución. Encontremos la capacitancia del segundo capacitor

$$C_2 = \frac{k\varepsilon_o A}{d} = \frac{(2.5)(8.85 \times 10^{-12})(54.23)}{2 \times 10^{-4}} = 6\mu F$$

Como está conectado en serie con C1, la capacitancia equivalente del circuito es

$$C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1} = \left(\frac{1}{3 \times 10^{-6}} + \frac{1}{6 \times 10^{-6}}\right)^{-1} = 2\mu F$$
 Y la energía del conjunto de capcitores será la energía del capacitor equivalente:

$$U_{sistema} = \frac{1}{2}C_{eq}V_{eq}^2 = \frac{1}{2}(2 \times 10^{-6})(8)^2 = 64\mu J$$

18. De acuerdo a los datos del problema anterior, ¿Cuál es la densidad de energía en $\mu I/m^3$ en el capacitor C_2 ? b) 126.2 c) 786.6 d) 1573.7 e) 1966.7

Solución: Para resolver este problema primero calcularemos la carga del capacitor equivalente, que es la misma carga del capacitor 2, debido a que el capacitor equivalente está remplazando una combinación en serie:

$$Q_{eq} = C_{eq}V_{eq} = 2 \times 10^{-6}(8) = 16\mu C$$

Por lo que la energía del capacitor dos es

$$U_2 = \frac{Q_2^2}{2C_2} = \frac{(16 \times 10^{-6})^2}{2(6 \times 10^{-6})} = 2.13 \times 10^{-5}J$$

Y su densidad de energía:

$$u_2 = \frac{U_2}{Ad} = \frac{2.13 \times 10^{-5}}{(54.23)(2 \times 10^{-4})} = 1966.9 \mu J/m^3$$

19. De acuerdo a los datos del problema anterior, ¿Cuál será el espacio entre las placas de C_1 (en mm), suponiendo que también es de placas paralelas, de tal forma que C_1 tenga una densidad de energía de $71\mu\text{J/}m^3$?

a) 1.77 b)16.62

Solución: La densidad de energía del capacitor 1 será:

$$u = 71 \times 10^{-6} = \frac{U_1}{A_1 d_1}$$

Donde
$$C_1 = \frac{\varepsilon_0 A_1}{d_1} = 3\mu F \rightarrow A_1 = \frac{3 \times 10^{-6} d_1}{8.85 \times 10^{-12}}$$
 Ec.1

Encontrando ahora la energía almacenada por el primer capacitor:

$$Q_{eq} = C_{eq} V_{eq} = 2 \times 10^{-6} (8) = 16 \times 10^{-6} C$$

Entonces la energía del capacitor uno:

$$U_1 = \frac{1}{2} \frac{Q_1^2}{C_1} = 4.27 \times 10^{-5} Joules$$
 (Ec.2)

Pagina 7 Inga. Claudia Contreras

Sustituyendo las ecuaciones 1 y 2 en la expresión de densidad de energía:

$$71 \times 10^{-6} = \frac{4.27 \times 10^{-5} (8.85 \times 10^{-12})}{3 \times 10^{-6} d_1^2}$$

Despejando la distancia de separación entre placas:

$$d_1 = 0.00133m$$

20. Un material específico tiene una constante dieléctrica de 2.8 y una intensidad dieléctrica de 18 x10⁶ V/m. Si este material se usa como dieléctrico en un capacitor de placas paralelas, ¿Cuál debe ser el área mínima de las placas del capacitor (en m²) para tener una capacitancia de 7.0x10⁻² μF y para que el capacitor pueda soportar una diferencia de potencial de 4,000V.

1	,				
a)7.1	b)4.0	c)0.71	d)0.63	e)0.01	

Solución: En un capacitor de placas paralelas se tiene que:

$$\Lambda V = Fd$$

Por lo que para un $E_{\rm max}=18\times10^6 V$ / m y una diferencia de potencial $\Delta V=4000V$, la distancia de separación entre las placas del capacitor es:

$$d = \frac{\Delta V}{E} = \frac{4000}{18 \times 10^6} = 2.22 \times 10^{-4} m$$

Asimismo, para un capacitor de placas paralelas con dieléctrico su capacitancia es: $C = \frac{K\varepsilon_0 A}{d}$

Por lo que el área de nuestro capacitor debe ser de:

$$A = \frac{dC}{K\varepsilon_0} = \frac{(2.22 \times 10^{-4})(0.07 \times 10^{-6})}{(2.8)(8.85 \times 10^{-12})} = 0.63m^2$$

21. Refiriéndose al problema anterior, la magnitud de la carga inducida (en C) en las superficies del dieléctrico es:
a) 2.8 x10⁻⁴
b) 1.8 x10⁻⁴
c) 2.8 x10⁻⁸
d) 1.8 x10⁻⁸
e) 3.7 x10⁻⁸

Solución: La densidad de carga inducida en el dieléctrico está dado por $\sigma_{ind} = \frac{Q_{ind}}{A}$ por lo cual si encontramos la

densidad de carga inducida podremos conocer la carga inducida en el material dieléctrico. También se tiene:

$$\sigma_{ind} = \sigma \left(1 - \frac{1}{K} \right)$$
 en donde $\sigma = \frac{Q}{A}$

La carga del capacitor de acuerdo a los datos del problema:

$$Q = C\Delta V = (0.07 \times 10^{-6})(4000) = 2.8 \times 10^{-4} C$$

Entonces $\sigma = \frac{Q}{A} = \frac{2.8 \times 10^{-4}}{0.63} = 4.44 \times 10^{-4} C/m^2$, por lo tanto la densidad de carga inducida en el dieléctrico es:

$$\sigma_{ind} = (4.44 \times 10^{-4}) \left(1 - \frac{1}{2.8} \right) = 2.85 \times 10^{-4} C / m^2$$

Y la carga inducida $Q_{ind} = \sigma_{ind} A = (2.85 \times 10^{-4})(0.63) = 1.80 \times 10^{-4} C$

22. Dos placas paralelas de 100cm^2 se cargan con una misma magnitud de carga pero de signo opuesto, $8.9 \times 10^{-7} \, C$. El campo eléctrico en el material dieléctrico es de $1.4 \times 10^6 \, V$ / m, la constante dieléctrica del material tiene un valor de:

a) 9.52 b) 0.139 c) **7.18** d)0.105 e) NAC

Solución. El campo eléctrico en un capacitor que posee un dieléctrico está dado por:

$$E = \frac{E_o}{K} = \frac{\sigma}{K\varepsilon_o}$$

En la ecuación anterior E_0 representa el valor del campo del capacitor si éste no tuviera dieléctrico, el cual está dado por la relación entre la densidad de carga de la placa del capacitor y la constante \mathcal{E}_a .

Pagina 8 Inga. Claudia Contreras

Despejando entonces la constante K de la ecuación anterior:

$$K = \frac{\sigma}{E\varepsilon_o} = \frac{Q}{EA\varepsilon_o} = \frac{8.9 \times 10^{-7}}{(1.4 \times 10^6)(0.01)(8.85 \times 10^{-12})} = 7.18$$

23. Un capacitor de placas paralelas de 120pF de capacitancia tiene 120cm²de área y mica (K=6.2) como dieléctrico. Calcular cuando la diferencia de potencial es de 90V, el valor del campo eléctrico en la mica(en kV/m):

a) cero b)16.40 c) 101.69 d)2.64 e) 630.48

<u>Solución</u>. El valor del campo eléctrico en la mica depende de la diferencia de potencial aplicado al capacitor y la distancia de separación entre sus placas. $\Delta V = Ed$

De la ecuación anterior, desconocemos la distancia de separación del capacitor, la cual podemos determinarla ya que conocemos la capacitancia de éste, él área de sus placas y la constante dieléctrica del material:

$$C = \frac{k\varepsilon_o A}{d}$$
 $\rightarrow d = \frac{k\varepsilon_o A}{C} = \frac{(6.2)(8.85 \times 10^{-12})(0.012)}{120 \times 10^{-12}} = 5.487 \times 10^{-3} m$

Por lo que:

$$E = \frac{\Delta V}{d} = \frac{90}{5.487 \times 10^{-3}} = 16,402 V / m$$

24. Refiriéndonos al problema anterior, la magnitud de carga superficial inducida(en nC) es de

a) cero b)5.4 <u>c) 9.08</u> d)10.8 e) 66.96

Solución: La carga inducida en el capacitor la podemos encontrar utilizando la siguiente expresión:

$$Q_{ind} = Q \left(1 - \frac{1}{K} \right)$$

La constante dieléctrica del material es 6.2 y la carga la podemos encontrar, ya que

$$Q = CV = (120 \times 10^{-12})(90) = 1.08 \times 10^{-8} C$$

$$Q_{ind} = (1.08 \times 10^{-8}) \left(1 - \frac{1}{6.2} \right) = 9.06 \times 10^{-9} C$$

25. Un capacitor C_1 de placas planas paralelas y aire en las placas se coloca en serie con un capacitor C_2 que tiene un área de 0.1m^2 , una distancia de separación entre placas de 1mm y contiene un dieléctrico de constante 5.4. Si se desea una capacitancia equivalente de 2.754nF ¿Qué tamaño de capacitor C_1 (en nF) deberá colocarse para obtener la capacitancia equivalente deseada?

a) 0.1539 b)2.025 c) **6.5** d)0.209 e) 4.779

a) 0.1539 b)2.025 c) 6.5 d)0.209

Solución: La capacitancia equivalente de dos capacitores en serie se obtiene mediante:

$$C_{eq} = \left(\frac{1}{C_1} + \frac{1}{C_2}\right)^{-1}$$

Para encontrar C₁ en la ecuación anterior, encontraremos primero el valor de C₂ a partir de la información del problema:

$$C_2 = \frac{K\varepsilon_o A}{d} = \frac{(5.4)(8.85 \times 10^{-12})(0.1)}{(1 \times 10^{-3})} = 4.779 \times 10^{-9} F$$

Entonces el valor de C₁es:

$$2.754 \times 10^{-9} = \frac{1}{\frac{1}{C_1} + \frac{1}{(4.779 \times 10^{-9})}} \longrightarrow \frac{2.754 \times 10^{-9}}{C_1} + \frac{2.754 \times 10^{-9}}{4.779 \times 10^{-9}} = 1$$

Finalmente despejando el tamaño del capacitor uno:

$$\frac{2.754 \times 10^{-9}}{C_1} = 0.4237 \qquad \to C_1 = 6.49 \times 10^{-9} F$$

Pagina 9 Inga. Claudia Contreras

26. Refiriéndonos al problema anterior, si el voltaje en el capacitor C₁ es de 8750V y la distancia de separación entre sus placas es de 2.5mm ¿Cuál sería su densidad de energía (en J/m3?

b)108.4

a) 3.5 x10⁶ b)108.4 c)21.87 **Solución**: La densidad de energía del capacitor está dada por:

$$u = \frac{1}{2} \varepsilon_o E^2 \qquad pero \quad V = Ed \quad \rightarrow u = \frac{\varepsilon_o V^2}{2d^2} = \frac{\left(8.85 \times 10^{-12}\right) \left(8750\right)^2}{2(2.5 \times 10^{-3})^2} = 54.2 J / m^3$$

27. Tres capacitores con capacitancias de 8.4µF, 8.4µF y 4.2µF están conectados en serie a través de una diferencia de potencial de 36 V. ¿Cuál es la energía almacenada en los tres capacitores en J?

a) 1.36×10^{-2} b) 2.72×10^{-3} c) 5.44×10^{-3} d) 1.36×10^{-3} e) NEC

Solución: Calcularemos la capacitancia equivalente del circuito y posteriormente a partir de ésta la energía almacenada en el sistema de capacitores:

$$C_{eq} = \left(\frac{1}{8.4 \times 10^{-6}} + \frac{1}{8.4 \times 10^{-6}} + \frac{1}{4.2 \times 10^{-6}}\right)^{-1} = 2.1 \times 10^{-6} \, F$$

Entonces la energía almacenada por los tres capacitores es de:

$$U = \frac{1}{2}C_{eq}V^2 = \frac{1}{2}(2.1 \times 10^{-6})(36)^2 = 1.36 \times 10^{-3}J$$

28. Refiriéndonos al problema anterior, si se desconectan los capacitores sin permitir que se descarguen y luego se conectan en paralelo, con las placas con carga positiva conectadas unas con otras ¿Cuál es el voltaje en V en los bornes del capacitor de 8.4µF?

<u>a) 10.8</u>	b) 12	c)14.4	d) 3.6	e)NEC

Solución: La carga total del sistema de capacitores debe permanecer igual en el sistema, es decir se conserva la carga total de los capacitores conectados en serie cuando éstos se conectan en paralelo.

Encontremos primero la carga total del sistema de tres capacitores conectados en serie, la misma será igual a tres veces el valor de la carga del capacitor equivalente:

$$Q_o = 3Q_{eq}$$

Donde la carga del capacitor equivalente la podemos obtener:

$$Q_{eq} = C_{eq} \Delta V = (2.1 \times 10^{-6})(36) = 7.56 \times 10^{-5} C$$

 $Q_{o} = 3(7.56 \times 10^{-5}) = 2.268 \times 10^{-4} C$

Al conectarse en paralelo la carga del sistema debe conservarse:

$$Q_o = Q_f$$

$$Q_f = Q_{1f} + Q_{2f} + Q_{3f} = C_1 V_f + C_2 V_f + C_3 V_f = V_f (C_1 + C_2 + C_3)$$

$$V_f = \frac{Q_f}{(C_1 + C_2 + C_3)} = \frac{2.268 \times 10^{-4}}{8.4 \times 10^{-6} + 8.4 \times 10^{-6} + 4.2 \times 10^{-6}} = 10.8V$$