Niveau: Première année de PCSI

COLLE 17 = CALCUL INTÉGRAL

Connaître son cours:

- 1. Soit $f:[a,b] \to \mathbb{R}$ continue, monter qu'il existe $c \in [a,b]$ tel que $f(c) = \frac{1}{b-a} \int_a^b f(t) dt$.
- 2. Soit f une fonction continue sur [a,b], positive et non nulle en au moins un point de [a,b].
- 3. Soit f une fonction de classe C^{n+1} sur I un intervalle réel et $a \in I$. Donner la formule de Taylor avec reste intégral en a.

Exercices:

Exercice 1. (**)

Soit

$$I_n = \int_0^1 \frac{x^n}{1+x} dx$$

- 1. Montrer que $\lim_{n\to+\infty} I_n = 0$.
- 2. Calculer $I_n + I_{n+1}$.
- 3. Déterminer $\lim_{n \to +\infty} \left(\sum_{k=1}^{n} \frac{(-1)^{k+1}}{k} \right)$

Exercice 2. (***)

Soit $n \in \mathbb{N}$, déterminer la borne inférieure de la partie de \mathbb{R} définie par

$$E = \left\{ c \in \mathbb{R}, \ \forall f \in \mathscr{C}^0([0,1], \mathbb{R}^+), \ \int_0^1 f(\sqrt[n]{t}) dt \le c \int_0^1 f(t) dt \right\}.$$

Exercice 3. (**)

Considérons les intégrales

$$I = \int_0^{\pi} \frac{\sin(x)}{\sqrt{1 + 2\cos(x)\sin(x)}} dx \qquad J = \int_0^{\pi} \frac{\cos(x)}{\sqrt{1 + 2\cos(x)\sin(x)}} dx$$

- 1. Calculer I + J
- 2. Montrer que I = J par un judicieux changement de variables.
- 3. En déduire la valeur de I.

Exercice 4. (***)

Soit x_n l'argument du premier maximum local de $f_n: x \mapsto \sum_{k=1}^n \frac{\sin(kx)}{k}$ sur \mathbb{R}^+ . Montrer que

$$f_n(x_n) \to \int_0^\pi \frac{\sin(t)}{t} dt$$