Aprendizado de Máquina Perceptrons

Profa. Dra. Roseli Aparecida Francelin Romero SCC - ICMC - USP

2020

- Introdução
- 2 Algoritmo de aprendizado
 - Modelos de neurônios
 - Características básicas
 - Regra Delta LMS
- 3 O problema do OU exclusivo (XOR)

Perceptron

Figura 1: Modelo para representação do Perceptron.

Perceptron

- O algoritmo usado para ajustar os parâmetros livres desta rede apareceu num processo de aprendizado desenvolvido por Rosemlbatt (1958, 1962).
- Ele provou que se os padrões usados para treinar são linearmente separáveis, então o algoritmo converge e a superfície de decisão tem a forma de um hiperplano entre duas classes.

Perceptron

- É constituído de apenas 1 neurônio e, como tal, limita-se a classificar padrões envolvendo apenas 2 classes, que devem ser linearmente separáveis.
- A regra de decisão é designar x à classe C_1 , se a saída é y=+1, ou à classe C_2 , se a saída é y=-1.
- Existem duas regiões separadas pelo hiperplano:
 - $\sum w_i x_i \theta = 0$
- Se o espaço for o \mathbb{R}^2 , a região de separação é uma reta.

- 1 Introdução
- 2 Algoritmo de aprendizado
 - Modelos de neurônios
 - Características básicas
 - Regra Delta LMS
- 3 O problema do OU exclusivo (XOR)

- Introdução
- 2 Algoritmo de aprendizado
 - Modelos de neurônios
 - Características básicas
 - Regra Delta LMS
- 3 O problema do OU exclusivo (XOR)

Estrutura básica de um neurônio artificial

- Estado de ativação (saída): si
- Conexões entre processadores: wij
 - a cada conexão existe um peso sináptico que determina o efeito da entrada sobre o processador.
- Soma: cada processador soma os sinais de entrada ponderado pelo peso sináptico das conexões
- Função de ativação: $s_j = F(net_j)$
 - determina o novo valor do estado de ativação do processador.

Funções de transferência

Figura 2: Exemplos de funções de transferência usadas em redes neurais artificiais.

Modelos de neurônios

Figura 3: Modelo de um neurônio com $x_0 = -1$.

Modelos de neurônios

Figura 4: Modelo de um neurônio com $x_0 = +1$.

- Introdução
- 2 Algoritmo de aprendizado
 - Modelos de neurônios
 - Características básicas
 - Regra Delta LMS
- 3 O problema do OU exclusivo (XOR)

Características básicas

- Regra de propagação: $y_j = sgn(\sum_i x_i w_{ij})$
- Função de ativação: função sinal
- Topologia: uma única camada de processadores.
- Algoritmo de aprendizado: $\Delta w_{ij} = \eta x_i (t_j y_j)$
 - (é do tipo supervisionado)
- Valores de entrada/saída: binários $\rightarrow t = 1$ ou t = -1

Finalidade do termo bias

Figura 5: Hiperplano obtido: (a) sem bias; (b) com bias.

- $\sum_i x_i w_{ij} = 0 o ext{define um hiperplano passando pela origem}.$
- $\sum_i x_i w_{ij} + \theta_i = 0 o ext{desloca o hiperplano da origem}.$

- Introdução
- 2 Algoritmo de aprendizado
 - Modelos de neurônios
 - Características básicas
 - Regra Delta LMS
- 3 O problema do OU exclusivo (XOR)

Adaline

 O processo adaptativo do Adaline consiste em utilizar a função de ativação hard limiter (saída +1 ou -1) e minimizar os pesos usando o algoritmo LMS.

Regra Delta - LMS

- Iniciar os pesos sinápticos com valores randômicos pequenos ou iguais a zero.
- ② Aplicar um padrão com seu respectivo valor esperado de saída (t_j) e verificar a saída da rede (y_j) .
- **3** Calcular o erro na saída: $E_j = t_j y_j$
- Se $E_j = 0$, voltar ao passo 2 Se $E_j \neq 0$, atualizar os pesos: $\Delta w_{ij} = \eta x_i E_j$
- Voltar ao passo 2.

Regra Delta - LMS

• Importante:

- Não ocorre variação no peso se a saída estiver correta.
- Caso contrário, cada peso é incrementado de η quando a saída é maior que o valor-alvo.

$$\Delta w_{ij} = \eta x_i e_j \tag{1}$$

Interpretação geométrica

- Introdução
- 2 Algoritmo de aprendizado
 - Modelos de neurônios
 - Características básicas
 - Regra Delta LMS
- 3 O problema do OU exclusivo (XOR)

A rede Perceptron divide o plano $X_1 \times X_2$ em duas regiões (através da reta net)

- Mudando-se os valores de w_1 , w_2 e θ , muda-se a inclinação da reta.
- Entretanto, é impossível achar uma reta que divida o plano de forma a separar os pontos A₁ e A₂ de um lado e A₀ e A₃ de outro.
- Redes de uma única camada só representam funções linearmente separáveis.

 Minsky & Papert provaram que esse problema pode ser solucionado adicionando-se uma outra camada intermediária de processadores

Multi-Layer Perceptron (MLP).

- Exemplo do OU-EXCLUSIVO:
 - -J = 2 (número de entradas originais x_1, x_2)
 - -H=1 (número de entradas adicionais $x_1.x_2$)

Multi-Layer Perceptron

- Redes de apenas uma camada só representam funções linearmente separáveis.
- Redes de múltiplas camadas solucionam essa restrição.
- O desenvolvimento do algoritmo *backpropagation* foi um dos motivos para o ressurgimento da área de redes neurais.