5/21 Presentation

Hard to Classify Cases

Benign

- Case 34: (0.17, 0.58, 0.47)
- Case 36: (0.43, 0.57, 0.42)
- Case 46: (0.17, 0.04)
- Case 53: (0.28)
- Case 85: (0.35, 0.17)
- Case 86: (0.33)

High Grade

- Case 44: (0.34, 0.51)
- Case 87: (0.33)

Why did new patches hurt performance on all

H&E cases vs just the good cases?

Old vs New Image Size Distribution

0.4

Image Size (bytes)

1000

1.0

0.8

0.6

1500

1000

0.4

Image Size (bytes)

0.6

0.8

Old vs New Data Splits

OLD

TRAIN SET SUMMARY:
Total cases: 28
Total patches: 4686
Benign patches: 1564
High-grade patches: 3122
INVAL SET SUMMARY:
Total cases: 8
Total patches: 1340
Benign patches: 385
High-grade patches: 955
INVERTIGATION TEST SET SUMMARY:
Total cases: 9
Total cases: 9
Total patches: 1507
Benign patches: 479
High-grade patches: 1028

VAL SET SUMMARY:
Total cases: 11
Total patches: 3292
Benign patches: 736
High-grade patches: 2556
TEST SET SUMMARY:
Total cases: 13
Total patches: 4302
Benign patches: 1602
High-grade patches: 2700

NEW

Middle 60%

Train Set Summary:
Total cases: 38

Total patches: 7457
Benign patches: 1927
High-grade patches: 5530

VAL SET SUMMARY:
Total cases: 10
Total patches: 2309
Benign patches: 1152
High-grade patches: 1157

TEST SET SUMMARY:
Total cases: 13
Total patches: 2137

Benign patches: 939

High-grade patches: 1198

Comparison Total vs Middle 60%

	р	recision	recall	f1-score	support	ţ	orecision	recall	f1-score	support
Res	ø	0.31	0.34	0.32	1602	0	0.53	0.17	0.26	939
	1	0.63	0.60	0.62	3062	1	0.57	0.88	0.70	1198
1 100	200112201			0.51	4664					710000000000000000000000000000000000000
	accuracy					accuracy			0.57	2137
	macro avg	0.47	0.47	0.47	4664	macro avg	0.55	0.52	0.48	2137
	weighted avg	0.52	0.51	0.52	4664	weighted avg	0.55	0.57	0.50	2137
		precision	recall	f1-score	support		precision		f1-score	support
	Benign		0.02		1713	Benign	0.35	0.17	0.23	939
CNN	High-grade CMIL	0.42	0.66	0.52	1849	High-grade CMIL	0.54	0.76	0.63	1198
OTTIV	accuracy			0.35	3562				0. 50	2427
	macro avg	0.24	0.34		3562	accuracy	0.44	0.46	0.50	2137
	weighted avg		0.35		3562	macro avg	0.44	0.46	0.43	2137
	mergineed avg				3302	weighted avg	0.45	0.50	0.45	2137
		precision	recall	f1-score	support		precision	recall	f1-score	support
	Benign	0.36	0.24	0.29	1602	Benign	0.64	0.21	0.32	939
	High-grade CMIL	0.62	0.75	0.68	2700	High-grade CMIL	0.59	0.90		1198
CoAtNet	5 5									
	accuracy			0.56	4302	accuracy			0.60	2137
	macro avg	0.49	0.49	0.48	4302	macro avg	0.62	0.56	0.52	2137
	weighted avg	0.53	0.56	0.54	4302	weighted avg	0.61	0.60	0.54	2137
	·			·	· · · · · · · · · · · · · · · · · · ·					

All H&E patches > 60 pixels (ResNet with CBAM):

Resampling

Method: oversampling

- Duplicating patches from the minority class in H&E (benign) until classes are balanced, because we don't want to lose a ton of high-grade patches
- Slightly lower accuracy than before
- Hypothesis: we are overfitting now
- Next steps: change weights of benign class instead of oversampling

Accuracy: 0.6114 Precision: 0.5842 Recall: 0.7729 F1 Score: 0.6654 $D_{\alpha}:T$

Dei I						Confusion Matrix			
								- 1000	
	precision	recall	f1-score	support				- 900	
0 1	0.69 0.65	0.42 0.85	0.52 0.74	939 1198	Benign	391	548	- 800	
accuracy macro avg	0.67	0.64	0.66 0.63	2137 2137	<u>s</u>			- 700	
weighted avg	0.67	0.66	0.64	2137	e Lab			- 600	
Case 95: Accuracy = 0.9796, True Label = High-grade CMIL Case 86: Accuracy = 0.2299, True Label = Benign Case 57: Accuracy = 0.9858, True Label = High-grade CMIL									
Case 57: Accuracy = 0.9858, True Label = High-grade CMIL Case 4: Accuracy = 0.4384, True Label = Benign Case 67: Accuracy = 1.0000, True Label = High-grade CMIL Case 72: Accuracy = 0.8276, True Label = High-grade CMIL									
Case 72: Accuracy = 0.8276, True Label = High-grade CMIL Case 99: Accuracy = 0.9600, True Label = High-grade CMIL Case 2: Accuracy = 0.5543, True Label = Benign									
Case 7: Accura	cy = 0.8193,	True Label	= High-gra					- 200	
Case 64: Accuracy = 0.9773, True Label = High-grade CMIL Case 87: Accuracy = 0.6087, True Label = High-grade CMIL Case 38: Accuracy = 0.4016, True Label = High-grade CMIL Case 56: Accuracy = 0.1481, True Label = Benign									

Additionally Epochs Needed

Epoch: 1/5.. Training Loss: 0.322.. Validation Loss: 0.710.. Validation Accuracy: 0.773 ☑ Checkpoint saved: /content/drive/MyDrive/checkpoints/20250521 085223 coatnet 0 epoch1.pth

MIL- Visualizing Attention on Patches

why does blurry / non-informative patches have high weight?

Densenet w new patches (65%)

Densenet w curated patches (73%)

Blurry patches got high attention in MIL likely because the patch classifier used didn't learn strong discriminative features. With a better patch classifier (trained on curated, high-quality data), MIL focuses attention on more meaningful regions.

Accuracy for MIL w Densenet using curated patches

Cross-stain patch dataset

- 22 cases, 12 high-grade and 10 benign
- 13242 individual patches matched into 4414 triplets
- 75-25 train/test split
- Both train and test sets are 70% high grade, 30% benign at patch level
- 20-80 percentile pixel size filter as per David's code
- Averaging patches within triplets that are <90% blank pixels

David's Alexnet pipeline with cross-stain patches

Cross stain patches

Test Patch-level Accuracy : 82.97%
Precision : 0.9594
Recall : 0.7912
F1 Score : 0.8672

Regular patches

Test Patch-level Accuracy : 90.40%
Precision : 0.8596
Recall : 0.8596
F1 Score : 0.8596

Cross-stain Alexnet pipeline compiled with focal loss

Test Patch-level Accuracy: 87.95%
Precision: 0.9181
Recall: 0.9098
F1 Score: 0.9139

Weighted loss with tunable parameters gamma and alpha

Gamma: values > 0 place more weight on hard-to-learn examples

Alpha: weights for the positive and negative classes (1 - alpha weight for negative class) to address imbalance

