Modeling an Integrated Energy System (IES) in OpenModelica to utilize the output of a nuclear reactor for producing energy and powering a desalination plant

Md Akhlak Bin Aziz, Caleb Brooks
University of Illinois Urbana Champaign

Outline

- Motivation for the work
- Modeling an Integrated Energy System
- Industrial Multi Effect Distillation (MED) Desalination Plant
- Controller System

Motivation (Aktau plant complex in Kazakhstan)

- To model the thermal manifold using OpenModelica
- Main components of thermal Manifold:
 - Fossil Burner Block
 - Desalination Block
 - Reactor Block
 - Heat Exchanger Block

Motivation (Aktau plant complex in Kazakhstan)

Motivation (Aktau plant complex in Kazakhstan)

Integrated Energy System (with the primary desalination plant) flow across turbines 100 Loop 2 50 Loop 2 flow rate (kg/s) -20 0 const. turbines -150 Loop 1 -200 Loop 2 steam... turbine 2000 4000 6000 8000 1e+04 time (s) Desalination plant turbine_2 mass flow (kg/s) evaporator.port_b.m_flow (kg/s) Desalina. flow across evaporator To be replaced with 150 desalination output nuclear reactor Water in 100 evapo... 140 120 rate (kg/s) 100 flow rate (kg/s) -100 -60 Steam out -150 enthalpy_flow -200 offset.. 8000 1e+04 2000 4000 6000 evaporator mass flow in (kg/s) evaporator mass flow out (kg/s) 2000 6000 8000 1e+04 time (s) desal feedback flow desal total potable potable demand

F. P. Zaostrovsky et al., DISTILLATION DESALINATION PLANT IN THE CITY OF SHEVCHENKO. LAYOUT, EQUIPMENT AND OPERATING EXPERIENCE

[.] P_NOVIKOV. Et al., NUCLEAR INDUSTRIAL DESALINATION PLANT WITH FAST NEUTRON REACTOR AT SHEVCHENKO, verdfovsk Chenricut tl%gjncering Science Rescurch Institute. Sverdlovsk (U.S.S.R.) 196

First Effect

Seawater vapor

Heat steam line

Seawater Brine

Last Effect

- 1. Brine from previous effect
- 2. Steam from previous effect
- 3. Distillate formed in last effect
- 4. Concentrated brine of last effect
- 5. Steam formed in last effect
- 6. Bypassed steam to deaerator
- 7. Total distillate for potable processing
- 8. Seawater into condenser
- 9. Seawater rejected
- 10. -Scale added to seawater to catch crytals

Modelica model

effect_1.seawater_conc

effect_5 final_brine_conc -

Conclusions

Effect	Boiling Temperature Atkau plant (°C)	Boiling Temperature in Modelica model (g/I)	Concentration at Atkau plant (g/l)	Concentration in Modelica model (g/I)
1	100-105	100	18-20	18
2	90-92	90		23
3	79-82	79		29
4	66-68	66		37.5
5	44-45	44	50-60	55

With the similar boiling temperatures as in Shevchenko industrial plant:

- Plant operates with restrictions met (controller ensures that)
- Plant gives similar brine concentration outputs
- Distillate output can be matched to the plant by providing required seawater and steam and post processing in the potable water processing plant

Future work:

- Finish the controller design
- Integrate desalination plant to the current IES
- Model the physics and kinetics of the reactor in Modelica
- Develop an automated IES with the reactor

References

- 1. F. Zaostrovsky, Novikov, E., Shatsillo, V., Golub, S., Chernozubov, V., & Tkach, V., "Distillation desalination plant in the city of Shevchenko. Layout, equipment and operating experience," *Desalination*, vol. 1, no. 2, pp. 165-177, 1966, doi: https://doi.org/10.1016/S0011-9164(00)84016-3.
- 2. E. Novikov, Chernozubov, V., & Golub, S., "Nuclear Industrial Desalination Plant with Fast Neutron Reactor at Shevchenko," *Desalination*, vol. 1, no. 6, pp. 349-367, 1969, doi: https://doi.org/10.1016/S0011-9164(00)80225-8.

Thank You