

	Alinity i Total T4-24		
Prepared by: _	Yusra Othman /Director/Supervisor-Chem	Date: May/26/2024	_
Reviewed by: _	signature/title Jordan Dillard /Instructor	Date: June 26 2024	_
Approved by: _	Sanfard N. Bank, m.o / Chairman	Date: June 28 2024	_
BIENNIAL RE	8		
REVIEWED_			
REVIEWED_	signature/title	Date	
REVIEWED	signature/title	Date	
	signature/title	Date	
REVISED			
REVISED	signature/title	Date/Page/Paragraph	
KL VIOLD	signature/title	Date/Page/Paragraph	

INTENDED USE

The Alinity i Total T_4 (TT_4) assay is a chemiluminescent microparticle immunoassay (CMIA) used for the quantitative determination of thyroxine (Total T_4) in human serum and plasma on the Alinity i analyzer.

The Alinity i Total T₄ assay is to be used as an aid in the assessment of thyroid status.

SUMMARY AND EXPLANATION OF THE TEST

Thyroxine (T₄) is an iodine-containing hormone which has a molecular weight of approximately 777 daltons and is secreted by the thyroid gland. T₄ and its associate thyroid hormone T₃ are responsible for regulating diverse biochemical processes throughout the body

Version Number: 1.0 Page 1 of 15

CONTROLLED DOCUMENT

which are essential for normal metabolic and neural activity.

Although T₃ has greater biologic potency2, T₄ is normally present in human serum in approximately 50-fold excess of circulating T₃ and accounts for more than 90% of the circulating protein-bound iodine. T₄ is 99.9% bound to serum thyroxine binding proteins (TBP). The hormone is transported bound primarily to thyroxine binding globulin (TBG) and secondarily by thyroxine binding prealbumin (TBPA) and albumin. 3 Less than 0.05% of the total circulating T₄ is unbound and therefore biologically active. 4, 5 Clinically, T₄ measurements have long been recognized as an aid in the assessment and diagnosis of thyroid status. Elevated T₄ values are characteristically seen in patients with overt hyperthyroidism, while T₄ levels are generally depressed in patients with overt hypothyroidism. Normal T₄ levels accompanied by high T₃ values are seen in patients with T₃- thyrotoxicosis.6 T₄ levels are altered by physiological or pathological changes in TBP capacity. 3, 4 Thyroxine binding globulin (TBG) capacity has a pronounced effect on the concentration of thyroid hormones. Consequently, T₄ levels may be elevated with increased concentrations of TBG, such as in pregnancy, administration of oral contraceptives or estrogen, infectious and chronic active hepatitis, biliary cirrhosis or congenital increase in TBG levels. 7, 8, 9 Conversely, when TBG levels are decreased, such as in nephrotic syndrome, androgen therapy, glucocorticoid therapy, major systemic illness or congenital decrease of TBG, T₄ may be reduced.

Drugs which compete for protein binding sites, such as phenylbutazone, diphenylhydantoin or salicylates, can result in a depressed T₄ measurement. 7, 8, 9 Serum T₄ levels in neonates and infants are higher than values in the normal adult, due to the increased concentration of TBG in neonate serum. 10

While in many cases T₄ values give good indications of thyroid status, T₄ values should be normalized for individual variations in thyroxine binding protein (TBP) capacity. The Free Thyroxine Index (FTI) is conventionally used to achieve this measurement. 11, 12

To ensure maximum diagnostic accuracy, the final definition of thyroid status should be determined in conjunction with other thyroid function tests such as TSH, Free T₄, Total T₃, FTI and clinical evaluation by the physician.

BIOLOGICAL PRINCIPLES OF THE PROCEDURE

This assay is a two-step immunoassay for the quantitative determination of thyroxine (Total T₄) in human serum and plasma using **chemiluminescent microparticle immunoassay** (CMIA) technology.

Sample and anti- T_4 coated paramagnetic microparticles are combined and incubated. Bound T_4 is removed from the binding sites on thyroxine binding globulin, prealbumin and albumin. The T_4 present in the sample binds to the anti- T_4 coated microparticles. The mixture is washed. T_3 acridinium-labeled conjugate is added to create a reaction mixture and incubated. Following a wash cycle, Pre-Trigger and Trigger Solutions are added.

The resulting chemiluminescent reaction is measured as relative light units (RLUs). There is an inverse relationship between the amount of Total T₄ in the sample and the RLUs detected by the system optics.

For additional information on system and assay technology, **refer to the Alinity ci-series Operations Manual, Section 3.**

REAGENTS

Kit Contents

Alinity i Total T₄ Reagent Kit 07P95

Volumes (mL) listed in the table below indicate the volume per cartridge.

REF	07P9520	07P9530
Tests per cartridge	100	600
Number of cartridges per kit	2	2
Tests per kit	200	1200
MICROPARTICLES	6.6 mL	32.1 mL
CONJUGATE	6.1 mL	31.6 mL

MICROPARTICLES Anti-T₄ (sheep) coated microparticles in TRIS buffer with sheep IgG stabilizers. Minimum concentration: 0.05% solids. Preservative: sodium azide.

CONJUGATE T₃ acridinium-labeled conjugate in MES buffer with NaCl and Triton X-100 stabilizers. Minimum concentration: 0.2 ng/mL. Preservative: ProClin 300.

Warnings and Precautions

- . IVD
- · For In Vitro Diagnostic Use
- . Rx ONLY

Safety Precautions

CAUTION: This product requires the handling of human specimens. It is recommended that all human-sourced materials be considered potentially infectious and handled in accordance with the OSHA Standard on Bloodborne Pathogens. Biosafety Level 2 or other appropriate biosafety practices should be used for materials that contain or are suspected of containing infectious agents. 13, 14, 15, 16

The following warnings and precautions apply to: CONJUGATE

WARNING

Contains methylisothiazolones.

Version Number: 1.0 Page 3 of 15

CONTROLLED DOCUMENT

H317	May cause an allergic skin reaction.	
Prevention		
P261	Avoid breathing mist / vapors / spray.	
P272	Contaminated work clothing should not be allowed out of the workplace.	
P280	Wear protective gloves / protective clothing / eye protection.	
Response		
P302+P352	IF ON SKIN: Wash with plenty of water.	
P333+P313	If skin irritation or rash occurs: Get medical advice / attention.	
P362+P364	Take off contaminated clothing and wash it before reuse.	
Disposal		
P501	Dispose of contents / container in accordance with local regulations.	

The following warnings and precautions apply to: MICROPARTICLES			
Contains sodium azide.			
EUH032 Contact with acids liberates very toxic gas.			
P501	Dispose of contents / container in accordance with local regulations.		

Safety Data Sheets are available at www.abbottdiagnostics.com or/and SDS folder.

For a detailed discussion of safety precautions during system operation, **refer to the Alinity** ci-series Operations Manual, Section 8.

Reagent Handling

- Upon receipt, gently invert the unopened reagent kit by rotating it over and back for a full 180 degrees, 5 times with green label stripe facing up and then 5 times with green label stripe facing down. This ensures that liquid covers all sides of the bottles within the cartridges. During reagent shipment, microparticles can settle on the reagent septum.
 - · Place a check in the square on the reagent kit to indicate to others that the inversions have been completed.
- · After mixing, place reagent cartridges in an upright position for 1 hour before use to allow bubbles that may have formed to dissipate.

- · If a reagent cartridge is dropped, place in an upright position for 1 hour before use to allow bubbles that may have formed to dissipate.
- Reagents are susceptible to the formation of foam and bubbles. Bubbles may interfere
 with the detection of the reagent level in the cartridge and cause insufficient reagent
 aspiration that may adversely affect results.

For a detailed discussion of reagent handling precautions during system operation, **refer to the Alinity ci-series Operations Manual, Section 7.**

Reagent Storage

	Storage Temperature	Maximum Storage Time	Additional Storage Instructions
Unopened	2 to 8°C	Until expiration	Store in upright position.
		date	If cartridge does not remain upright, gently invert the cartridge 10 times and place in an upright position for 1 hour before use.
Onboard	System Temperature	30 days	
Opened	2 to 8°C	Until expiration	Store in upright position.
		date	If cartridge does not remain upright during storage, discard the cartridge.
			Do not reuse original reagent caps or replacement caps due to the risk of contamination and potential to compromise reagent performance.

Reagents may be stored on or off the system. If removed from the system, store reagents with new replacement caps in an upright position at 2 to 8°C. For reagents stored off the system, it is recommended that they be stored in their original trays or boxes to ensure they remain upright.

For information on unloading reagents, refer to the Alinity ci-series Operations Manual, Section 5.

Indications of Reagent Deterioration

Deterioration of the reagents may be indicated when:

Version Number: 1.0 Page 5 of 15

- a calibration error occurs
- · a control value is out of the specified range

Associated test results are invalid, and samples must be retested. Assay recalibration may be necessary.

For troubleshooting information, refer to the Alinity ci-series Operations Manual, Section 10.

INSTRUMENT PROCEDURE

The Alinity i Total T₄ assay file must be installed on the Alinity i analyzer prior to performing the assay.

For detailed information on assay file installation and viewing and editing assay parameters, refer to the Alinity ci-series Operations Manual, Section 2.

For information on printing assay parameters, **refer to the Alinity ci-series Operations Manual, Section 5.**

For a detailed description of system procedures, refer to the Alinity ci-series Operations Manual.

Alternate Result Units

Edit assay parameter "Result Units" to select an alternate unit.

Conversion formula:

(Concentration in Default result unit) x (Conversion factor) = (Concentration in Alternate result unit)

Default Result Unit	Conversion Factor	Alternate Result Unit	
μg/dL	12.87	nmol/L	

SPECIMEN COLLECTION AND PREPARATION FOR ANALYSIS

Specimen Types

The specimen types listed below were verified for use with this assay.

Specimen Types	Collection Tubes	
Serum	Serum	
	Serum separator	
Plasma	Sodium heparin	
	Lithium heparin	
	Lithium heparin plasma separator	
	Potassium EDTA	

Version Number: 1.0 Page 6 of 15

Specimen Conditions

- · Do not use:
 - · heat-inactivated specimens
- For accurate results, serum and plasma specimens should be free of fibrin, red blood cells, and other particulate matter. Serum specimens from patients receiving anticoagulant or thrombolytic therapy may contain fibrin due to incomplete clot formation.
- To prevent cross contamination, use of disposable pipettes or pipette tips is recommended.

Preparation for Analysis

- Follow the tube manufacturer's processing instructions for collection tubes. Gravity separation is not sufficient for specimen preparation.
- Specimens should be free of bubbles. Remove bubbles with an applicator stick before analysis. Use a new applicator stick for each specimen to prevent cross-contamination.

To ensure consistency in results, recentrifuge specimens prior to testing if

• they contain fibrin, red blood cells, or other particulate matter.

NOTE: If fibrin, red blood cells, or other particulate matter are observed, mix by low speed vortex or by inverting 10 times prior to recentrifugation.

Prepare frozen specimens as follows:

- · Frozen specimens must be completely thawed before mixing.
- · Mix thawed specimens thoroughly by low speed vortex or by inverting 10 times.
- · Visually inspect the specimens. If layering or stratification is observed, mix until specimens are visibly homogeneous.
- · If specimens are not mixed thoroughly, inconsistent results may be obtained.
- · Recentrifuge specimens.

Recentrifugation of Specimens

- · Transfer specimens to a centrifuge tube and centrifuge.
- Transfer clarified specimen to a sample cup or secondary tube for testing. For centrifuged specimens with a lipid layer, transfer only the clarified specimen and not the lipemic material.

inity i Total T4-24 CONTROLLED DOCUMENT

Page 7 of 15

Specimen Storage

Specimen Type	Temperature	Maximum Storage Time	Special Instructions
Serum/Plasma	2 to 8°C	6 days	If testing will be delayed more than 6 days, specimens should be frozen at -10°C or colder.

If testing will be delayed more than 24 hours, remove serum or plasma from the clot, serum separator or red blood cells.

Specimens stored frozen at -10°C or colder for 6 days showed no performance difference.

Avoid multiple freeze/thaw cycles.

Specimen Shipping

Package and label specimens in compliance with applicable state, federal, and international regulations covering the transport of clinical specimens and infectious substances.

PROCEDURE

Materials Provided

07P95 Alinity i Total T4 Reagent Kit

Materials Required but not Provided

- · Alinity i Total T₄ assay file
- · 07P9501 Alinity i Total T₄ Calibrators
- · 07P9510 Alinity i Total T₄ Controls or other control material
- · Alinity Trigger Solution
- · Alinity Pre-Trigger Solution
- · Alinity i-series Concentrated Wash Buffer

For information on materials required for operation of the instrument, **refer to the Alinity ciseries Operations Manual, Section 1.**

For information on materials required for maintenance procedures, **refer to the Alinity ciseries Operations Manual, Section 9.**

Assay Procedure

For a detailed description of how to run an assay, **refer to the Alinity ci-series Operations Manual, Section 5.**

Version Number: 1.0 Page 8 of 15

- If using primary or aliquot tubes, refer to the Alinity ci-series Operations Manual, Section 4 to ensure sufficient specimen is present.
- To minimize the effects of evaporation, verify adequate sample cup volume is present prior to running the test.

Maximum number of replicates sampled from the same sample cup: 10

- · Priority:
 - · Sample volume for first test: 74 μL
 - · Sample volume for each additional test from same sample cup: 24 µL
- \cdot \leq 3 hours on the reagent and sample manager:
 - · Sample volume for first test: 150 μL
 - · Sample volume for each additional test from same sample cup: 24 µL
- \cdot > 3 hours on the reagent and sample manager:
 - · Replace with a fresh aliquot of sample.
- Refer to the Alinity i Total T₄ calibrator package insert and/or Alinity i Total T₄ control package insert for preparation and usage.
- For general operating procedures, refer to the Alinity ci-series Operations Manual, Section 5.
- · For optimal performance, it is important to perform routine maintenance as described in the Alinity ci-series Operations Manual, **Section 9. Perform maintenance more frequently when required by laboratory procedures.**

Sample Dilution Procedures

Samples with a Total T_4 value exceeding **24.00 µg/dL** (308.88 nmol/L) are flagged with the code "> 24.00 µg/dL" (">308.88 nmol/L") and may be diluted with the Manual Dilution Procedure.

Manual Dilution Procedure

Suggested dilution: 1:2

It is recommended that dilutions not exceed 1:2.

Add 75 μ L of the sample to 75 μ L of Alinity i Total T₄ Calibrator A.

The operator must enter the dilution factor in the Specimen or Control tab of the Create Order screen. The system will use this dilution factor to automatically calculate the concentration of the sample and report the result.

If the operator does not enter the dilution factor, the result must be manually multiplied by the appropriate dilution factor before reporting the result. If a diluted sample result is less than the lower value of the measuring interval of 3.00 $\mu g/dL$ (38.61 nmol/L), rerun using an appropriate dilution.

For detailed information on ordering dilutions, refer to the Alinity ci-series Operations Manual, Section 5.

Calibration

For instructions on performing a calibration, **refer to the Alinity ci-series Operations Manual, Section 5.**

Each assay control must be tested to evaluate the assay calibration.

Once a calibration is accepted and stored, all subsequent samples may be tested without further calibration unless:

· A reagent kit with a new lot number is used.

Daily quality control results are outside of statistically-based quality control limits used to monitor and control system performance, as described in the Quality Control Procedures section of this package insert.

• If statistically-based quality control limits are not available, then the calibration should not exceed a 30-day limit for recalibration frequency.

This assay may require recalibration after maintenance to critical parts or subsystems or after service procedures have been performed.

Quality Control Procedures

The recommended control requirement for the Alinity i Total T₄ assay is that a single sample of each control level be tested once every day testing performed.

To establish statistically-based control limits, each laboratory should establish its own concentration target and ranges for new control lots at each clinically relevant control level. This can be accomplished by assaying a minimum of 20 replicates over several (3-5) days and using the reported results to establish the expected average (target) and variability about this average (range) for the laboratory. Sources of variation that should be included in this study in order to be representative of future system performance include:

- · Multiple stored calibrations
- · Multiple reagent lots

Alinity i Total T₄-24

- · Multiple calibrator lots
- · Multiple processing modules (if applicable)
- · Data points collected at different times of the day

Refer to published guidelines for information or general control recommendation, for example Clinical and Laboratory Standards Institute (CLSI) Document C24-A3 or other published guidelines, for general quality control recommendations. <u>17</u>

· If quality control results do not meet the acceptance criteria defined by laboratory QC procedure, sample results may be suspect. Follow the established quality control

procedures to troubleshoot. Recalibration may be necessary. For troubleshooting information, refer to the Alinity ci-series Operations Manual, Section 10.

· Review quality control results and acceptance criteria following a change of reagent or calibrator lot.

Quality Control Guidance

Refer to "Basic QC Practices" by James O Westgard, Ph.D. for guidance on laboratory quality control practices. <u>18</u>

Verification of Assav Claims

For protocols to verify package insert claims, refer to Verification of Assay Claims in the Alinity ci-series Operations Manual.

RESULTS

Calculation

The Alinity i Total T₄ assay utilizes a 4 Parameter Logistic Curve fit data reduction method (4PLC, Y-weighted) to generate a calibration and results.

For information on alternate result units, refer to the INSTRUMENT PROCEDURE, Alternate Result Units section of this package insert.

Flags

Some results may contain information in the Flags field. For a description of the flags that may appear in this field, refer to the Alinity ci-series Operations Manual, Section 5.

Measuring Interval

Measuring interval is defined as the range of values in $\mu g/dL$ (nmol/L) which meets the limits of acceptable performance for linearity, imprecision, and bias.

The measuring interval of the Alinity i Total T_4 assay is **3.00 to 24.00 \mug/dL** (38.61 to 308.88 nmol/L).

LIMITATIONS OF THE PROCEDURE

- · For diagnostic purposes, results should be used in conjunction with other data; e.g., symptoms, results of other thyroid tests, clinical impressions, etc.
- If the Total T₄ results are inconsistent with clinical evidence, additional testing is suggested to confirm the result.
- · Performance of this test has not been established with neonatal specimens.

EXPECTED VALUES

This study was performed on the ARCHITECT i System.

Representative performance data are provided in this section. Results obtained in individual laboratories may vary.

Manufacturers provided reference range adopted, effort made to verify.

A normal range of **4.87 to 11.72 \mug/dL** (central 95% interval) was obtained by testing serum specimens from 437 individuals determined as normal by AxSYM Ultrasensitive hTSH II and AxSYM Free T₄ assays.

SPECIFIC PERFORMANCE CHARACTERISTICS

Representative performance data are provided in this section. Results obtained in individual laboratories may vary.

The Alinity i analyzer and the ARCHITECT i System utilized the same reagents and sample/reagent ratios.

Unless otherwise specified, all studies were performed on the Alinity i analyzer.

Precision

Within-Laboratory Precision

A study was performed based on guidance from CLSI EP05-A2. Testing was conducted using 1 lot of the Alinity i Total T₄ Reagent Kit, 1 lot of the Alinity i Total T₄ Calibrators, and 1 lot of the Alinity i Total T₄ Controls and 1 instrument. Three human serum panels were assayed in a minimum of 2 replicates at 2 separate times per day on 20 different days. *19*

		Mean	Within-Run (Repeatability)			aboratory tal) ^a
Panel	n	(µg/dL)	SD	%CV	SD	%CV
1	120	4.79	0.099	2.1	0.200	4.2
2	120	8.50	0.161	1.9	0.378	4.4
3	120	16.87	0.483	2.9	0.604	3.6

^a Includes within-run, between-run, and between-day variability.

		Mean	Within-Run (Repeatability)			aboratory tal) ^a
Panel	n	(nmol/L)	SD	%CV	SD	%CV
1	120	61.71	1.275	2.1	2.573	4.2
2	120	109.37	2.070	1.9	4.866	4.4

Alinity i Total T₄-24

Version Number: 1.0 Page 12 of 15

		Mean .	Within-Run (Repeatability)			Laboratory tal) ^a
Panel	n	(nmol/L)	SD	%CV	SD	%CV
3	120	217.17	6.218	2.9	7.771	3.6

^a Includes within-run, between-run, and between-day variability.

Lower Limits of Measurement

A study was performed based on guidance from CLSI EP17-A2. Testing was conducted using 3 lots of the Alinity i Total T₄ Reagent Kit on each of 2 instruments over a minimum of 3 days. The maximum observed Limit of Blank (LoB), Limit of Detection (LoD), and Limit of Quantitation (LoQ) values are summarized below.20

	μg/dL	nmol/L
LoB ^a	0.28	3.60
LoD^b	0.55	7.08
LoQ ^c	2.17	27.93

^aThe LoB represents the 95th percentile from $n \ge 60$ replicates of zero-analyte samples.

Linearity

A study was performed based on guidance from CLSI EP06-A.21

This assay is linear across the measuring interval of **3.00 to 24.00 \mug/dL** (38.61 to 308.88 nmol/L).

Analytical Specificity

This study was performed on the ARCHITECT i System.

Analytical specificity was evaluated with the ARCHITECT Total T_4 assay and determined to have a mean analytical specificity of $\leq 3.2\%$ cross reactivity with triiodothyronine (T_3) at a concentration of 100 µg/dL in a sample containing approximately 3 µg/dL of Total T_4 as confirmed by a study based on guidance from CLSI document EP7-A. $\underline{22}$

Interference

This study was performed on the ARCHITECT i System.

A study was performed based on guidance from CLSI document EP7-A. Potential interference was assessed with the ARCHITECT Total T₄ assay and the mean interference was determined to be < 10% for hemoglobin, bilirubin, triglycerides, and protein at the levels

CONTROLLED DOCUMENT

^bThe LoD represents the lowest concentration at which the analyte can be detected with 95% probability based on n ≥ 60 replicates of low-analyte level samples.

^c The LoQ was determined from $n \ge 60$ replicates of low-analyte level samples and is defined as the lowest concentration at which a maximum allowable precision of 10 %CV was met.

indicated below.22

Potentially Interfering Substance	Interferent Level		
Hemoglobin	$\leq 500 \text{ mg/dL}$		
Bilirubin	\leq 20 mg/dL		
Triglycerides	\leq 3000 mg/dL		
Protein	\geq 4.5 and \leq 12 g/dL		

Method Comparison

A study was performed based on guidance from CLSI EP09-A3 using the Passing-Bablok regression method. 23

		Units	n	Correlation Coefficient	Intercept	Slope	Concentration Range
Alinity i Total T ₄ vs ARCHITECT Total T ₄	Serum	μg/dL (nmol/L)	112	1.00	-0.01 (- 0.10)	0.98	3.16-21.24 (40.61-273.30)

BIBLIOGRAPHY

- 1. Felig P, Baxter JD, Broadus AE, Frohman LA, editors. *Endocrinology and Metabolism* (2nd Ed.). New York: McGaw-Hill Book Co., 1987;389-409.
- 2. Lerman J. The Physiologic Activity of L-Triiodothyronine. *J Clin Endocrinol Metab* 1953;13:1341-1346.
- 3. Oppenheimer JH. Role of Plasma Proteins in the Binding, Distribution and Metabolism of the Thyroid Hormones. *N Engl J Med* 1968; 278:1153-1162.
- 4. Robbins J, Rall JE. Thyroxine-Binding Proteins. In: Gray CH, Bacharach AL, editors. *Hormones in Blood* (2nd Ed.). London: Academic Press, 1967;1:427-440.
- 5. Ekins RP, editor. *Methods for the Measurement of Free Thyroid Hormones*. Amsterdam: Excerpta Medica Foundation. 1979;72-92.
- 6. Sterling K, Refetoff S, Selenkow HA. T₃ Thyrotoxicosis: Thyrotoxicosis Due to Elevated Serum Triiodothyronine Levels. *JAMA* 1970;213: 571-575.
- 7. Witherspoon LR, Shuler SE. Estimation of Free Thyroxine Concentration: Clinical Methods and Pitfalls. *J Clin Immunoassay*. 1984;7:192-205.
- 8. Bermudez F, Surks MI, Oppenheimer JH. High incidence of decreased serum triiodothyronine concentration in patients with nonthyroidal disease. *J Clin Endocrinol Metab* 1975;41:27-40.

Version Number: 1.0 Page 14 of 15

- 9. Larsen PR. Triiodothyronine: review of recent studies in its physiology and pathophysiology in man. *Metabolism*. 1972;21:1073-1092.
- 10. Abuid J, Klein AH, Foley Jr TP, Larsen TP. Total and Free Triiodothyronine and Thyroxine in Early Infancy. *J Clin Endocrinol Metab* 1974;39: 263-268.
- 11. Szpunar WE, Stoffer SS, Bednarz MN. Clinical Evaluation of a Thyroxine-Binding Globulin Assay in Calculating a Free-Thyroxine Index. *J Nucl Med* 1981;22:793-795.
- 12. Nusynowitz L. Free Thyroxine Index. JAMA 1975;232:1050.
- 13. US Department of Labor, Occupational Safety and Health Administration, 29 CFR Part 1910.1030, Bloodborne pathogens.
- 14. US Department of Health and Human Services. *Biosafety in Microbiological and Biomedical Laboratories*. 5th ed. Washington, DC: US Government Printing Office; December 2009.
- 15. World Health Organization. *Laboratory Biosafety Manual*. 3rd ed. Geneva: World Health Organization; 2004.
- 16. Clinical and Laboratory Standards Institute (CLSI). *Protection of Laboratory Workers From Occupationally Acquired Infections; Approved Guideline—Fourth Edition*. CLSI Document M29-A4. Wayne, PA: CLSI; 2014.
- 17. Clinical and Laboratory Standards Institute (CLSI). Statistical Quality Control for Quantitative Measurement Procedures: Principles and Definitions; Approved Guideline—Third Edition. CLSI Document C24-A3. Wayne, PA: CLSI; 2006.
- 18. Westgard JO. *Basic QC Practices*. 3rd ed. Madison, WI: Westgard Quality Corporation; 2010.
- 19. Clinical and Laboratory Standards Institute (CLSI). Evaluation of Precision Performance of Quantitative Measurement Methods; Approved Guideline—Second Edition. CLSI Document EP05-A2. Wayne, PA: CLSI; 2004.
- 20. Clinical and Laboratory Standards Institute (CLSI). Evaluation of Detection Capability for Clinical Laboratory Measurement Procedures; Approved Guideline—Second Edition. CLSI Document EP17-A2. Wayne, PA: CLSI; 2012.
- 21. Clinical and Laboratory Standards Institute (CLSI). Evaluation of the Linearity of Quantitative Measurement Procedures: A Statistical Approach; Approved Guideline. CLSI Document EP06-A. Wayne, PA: CLSI; 2003.
- 22. National Committee for Clinical Laboratory Standards (NCCLS). *Interference Testing in Clinical Chemistry; Approved Guideline*. NCCLS Document EP7-A. Wayne, PA: NCCLS; 2002.
- 23. Clinical and Laboratory Standards Institute (CLSI). *Measurement Procedure Comparison and Bias Estimation Using Patient Samples; Approved Guideline—Third Edition*. CLSI Document EP09-A3. Wayne, PA: CLSI; 2013.