Assembly Guide: Gesture-Controlled Robot Using ESP32 and MPU6050

Overview

This assembly guide covers the steps to build the gesture-controlled robot that you can control using hand gestures via the MPU6050 sensor mounted on a glove. The system relies on the **ESP32** microcontroller for both the glove and robot and communicates wirelessly using the **MQTT protocol**. The robot's movement (forward, backward, left, right, and stop) is based on tilt gestures detected by the MPU6050 sensor.

Required Tools:

- Soldering iron (if needed for motor connections)
- Hot glue gun or double-sided tape for attaching components
- Screwdriver for assembling robot chassis
- Scissors or pliers (if required for cutting wires)

1. Glove Setup with MPU6050

Components Needed for Glove:

- 1. ESP32 Development Board
- 2. MPU6050 Accelerometer/Gyroscope
- 3. Jumper Wires
- 4. Glove (for mounting the MPU6050 sensor)
- 5. Battery Pack (optional, for powering ESP32)

Glove Assembly Steps:

Step 1: Preparing the Glove

- Take the glove and decide on the hand where you want to mount the **MPU6050** sensor. Typically, it's best to attach it to the back of the glove near the wrist area for accurate gesture detection.
- Use **double-sided tape** or **Velcro** to secure the sensor on the glove. Ensure the sensor's orientation is such that it can detect tilts in the X, Y, and Z axes properly.

Step 2: Wiring the MPU6050 to the ESP32

The **MPU6050** sensor communicates with the **ESP32** via I2C (Inter-Integrated Circuit). The wiring is simple as it only requires 4 connections:

MPU6050 Pin	ESP32 Pin	Connection Description
vcc	3.3V	Power supply to MPU6050
GND	GND	Ground connection
SCL	GPIO 22	I2C Clock pin (default ESP32)

MPU6050 Pin	ESP32 Pin	Connection Description
SDA	GPIO 21	I2C Data pin (default ESP32)

Step 3: Connecting the Battery (Optional)

- If you're not using a USB cable for power, you can use a battery pack (e.g., 3.7V Li-ion battery).
- Connect the **positive terminal (+)** of the battery to the **3.3V** pin on the ESP32 and the **negative terminal** (-) to the **GND** pin.

2. Robot Setup with ESP32 and Motor Driver

Components Needed for Robot:

- 1. ESP32 Development Board
- 2. L298N Motor Driver (or any similar motor driver)
- 3. DC Motors (x2)
- 4. Robot Chassis
- 5. Motor Wheels (x2)
- 6. Jumper Wires
- 7. Power Supply (Battery Pack)

Robot Assembly Steps:

Step 1: Preparing the Robot Chassis

- Assemble the robot chassis according to the manufacturer's instructions (if using a pre-designed kit).
- Attach the **DC motors** to the chassis, ensuring they are placed symmetrically for balanced movement. Attach **motor wheels** to the motors.

Step 2: Wiring the Motors to the Motor Driver

The **L298N Motor Driver** is typically used to drive two DC motors. The motor driver has 4 input pins for controlling the motors (IN1, IN2, IN3, IN4). You'll need to connect these pins to the **ESP32** to send control signals for moving the motors.

L298N Pin	ESP32 Pin	Connection Description
IN1	GPIO 32	Motor 1 Forward
IN2	GPIO 33	Motor 1 Backward
IN3	GPIO 25	Motor 2 Forward
IN4	GPIO 26	Motor 2 Backward

L298N Pin	ESP32 Pin	Connection Description
ENA	3.3V	Enable Motor 1 and 2
ENB	3.3V	Enable Motor 2
vcc	Battery 5V+	Power supply for motors
GND	GND	Ground

Step 3: Powering the Robot

- Use a **battery pack** (e.g., 7.4V Li-ion battery or 5V pack) to power both the **motor driver** and **ESP32**.
- Connect the positive terminal of the battery to the **VCC** pin of the L298N and the **5V** pin of the ESP32 (if applicable). Connect the negative terminal of the battery to the **GND** pins of both the motor driver and ESP32.

Step 4: Final Wiring

- Double-check all wiring connections to ensure everything is correct.
- If needed, use zip ties or mounting brackets to secure the motor driver and ESP32 to the robot chassis.

3. Testing and Calibration

Step 1: Flash the Code to ESP32

- Open the Arduino IDE and load the appropriate code onto both the **ESP32 (Glove)** and **ESP32 (Robot)**. Make sure to replace the MQTT broker IP and Wi-Fi credentials with your own details.
- For the glove, the code should publish commands to the MQTT broker based on hand gestures detected by the MPU6050.
- For the robot, the code should subscribe to the MQTT topic and execute movement commands based on received messages.

Step 2: Verify the Robot's Response

- Once the code is uploaded to both ESP32 boards, power on the system.
- Open the **Serial Monitor** to verify the Wi-Fi connection and MQTT connection status.
- Test the glove by performing gestures (left, right, forward, backward, stop) and check if the robot responds accordingly.

4. Troubleshooting

If you encounter issues with the robot, refer to the **Troubleshooting Guide** in the repository to resolve common problems related to sensor calibration, Wi-Fi, or MQTT connection issues.

Assembly Diagrams and Images

1. Pin Connection Diagram for Glove (ESP32 + MPU6050)

A diagram showing the correct wiring between ESP32 and MPU6050

2. Pin Connection Diagram for Robot (ESP32 + L298N + Motors)

A diagram showing how to wire **ESP32** to the **2 L298N motor driver** and connect the motors to the chassis. We will only use one for this example we are building

Conclusion

By following this guide, you can successfully assemble the **gesture-controlled robot** using **ESP32** and **MPU6050**. Ensure all components are securely connected and calibrated for accurate gesture detection and robot movement. Once assembled, test the system thoroughly and make adjustments as needed.