Итоги

∧ЕКЦИЯ 13

Группировка структур данных

Структуры данных общего назначения: массивы, связанные списки, деревья, хеш-таблицы.

Специализированные структуры данных: стеки, очереди, приоритетные очереди, графы.

Сортировка: метод вставки, сортировка Шелла, быстрая сортировка, сортировка слиянием, пирамидальная сортировка.

Графы: матрица смежности, список смежности.

Внешнее хранение данных: последовательное хранение, индексированные файлы, В-деревья, хеширование.

Группировка структур данных

Скорость и алгоритмы

Структуры данных общего назначения можно приблизительно классифицировать по скорости: массивы и связанные списки считаются медленными, деревья — относительно быстрыми, а хеш-таблицы — очень быстрыми.

Структуры данных общего назначения можно приблизительно классифицировать по скорости: массивы и связанные списки считаются медленными, деревья — относительно быстрыми, а хеш-таблицы — очень быстрыми.

Быстродействие структур данных общего назначения

Структура данных	Поиск	Вставка	У даление	Перебор
Массив	O(N)	O(1)	O(N)	-
Упорядоченный массив	O(logN)	O(N)	O(N)	O(N)
Связанный список	O(N)	O(1)	O(N)	-
Упорядоченный связанный список	O(N)	O(N)	O(N)	O(N)
Двоичное дерево (в среднем)	$O(\log N)$	O(logN)	$O(\log N)$	O(N)
Двоичное дерево (худший случай)	O(N)	O(N)	O(N)	O(N)
Сбалансированное дерево (средний и худший случай)	O(logN)	O(logN)	O(logN)	O(N)
Хеш-таблица	O(1)	O(1)	O(1)	

Специализированные структуры данных

Стеки, очереди и приоритетные очереди являются абстрактными типами данных (ADS), которые реализуются на базе более традиционных структур: массивов, связанных списков или (в случае приоритетных очередей) пирамид. Абстрактные типы данных предоставляют простой интерфейс для пользователя, как правило, с возможностью обращения или удаления только одного элемента данных: 1). Стек: последний вставленный элемент; 2). Очередь: первый вставленный элемент; 3). Приоритетная очередь: элемент с наивысшим приоритетом

Структура данных	Вставка	Удаление	Комментарий
Стек (массив или связанный список)	O(1)	O(1)	Извлекается элемент, вставленный последним
Очередь (массив или связанный список)	O(1)	O(1)	Извлекается элемент, вставленный первым
Приоритетная очередь (упорядоченный массив)	O(N)	O(1)	Извлекается элемент с наивысшим приоритетом
Приоритетная очередь (пирамида)	O(logN)	O(logN)	Извлекается элемент с наивысшим приоритетом

Методы сортировки

Алгоритм	Средняя сложность	Сложность в худшем случае	Оценка	Дополнительные затраты памяти
Пузырьковая сортировка	$O(N^2)$	$O(N^2)$	Плохо	Нет
Сортировка методом выбора	$O(N^2)$	O(N ²)	Удовлетво- рительно	Нет
Сортировка методом вставки	$O(N^2)$	$O(N^2)$	Хорошо	Нет
Сортировка Шелла	$O(N^{3/2})$	$O(N^{3/2})$	-	Нет
Быстрая сортировка	$O(N^* \log N)$	$O(N^2)$	Хорошо	Нет
Сортировка слиянием	O(N*logN)	$O(N^* \log N)$	Удовлетво- рительно	Да
Пирамидальная сортировка	O(N*logN)	O(N*logN)	Удовлетво- рительно	Нет