

- ★ 100% EAS Guaranteed
- ★ Green Device Available
- ★ Super Low Gate Charge
- ★ Excellent CdV/dt effect decline
- ★ Advanced high cell density Trench technology

Description

AGM30P10S is the high cell density trenched P-ch MOSFETs, which provide excellentRDSON and gate charge for most of the synchronous buck converter applications.

Product Summary

BVDSS	RDSON	ID		
-30V	12mΩ	-14A		

SOP-8 Pin Configuration

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity	
AGM30P10S	AGM30P10S	SOP-8	mm	mm	3000	

• Absolute Maximum Ratings (T_C =25°C)

Parameter	Symbol	Rating	Unit
Drain-Source Voltage	V _{DS}	-30	V
Gate-Source Voltage	V _{GS}	±20	V
Continuous Drain Current(TC=25°C)	I _D	-14	А
Pulsed Drain Current ^①	I _{DM}	-30	А
Total Power Dissipation®	P _D @TC=25°C	3.6	W
Total Power Dissipation	P _D @TA=25°C	0.69	W
Operating Junction Temperature	T _J	-55 to 150	°C
Storage Temperature	T _{STG}	-55 to 150	°C
Single Pulse Avalanche Energy	E _{AS}	100	mJ

Thermal resistance

Parameter	Symbol	Min.	Тур.	Max.	Unit
Thermal resistance, junction - case [®]	RthJC	-	-	34	° C/W
Thermal resistance, junction - ambient	RthJA	-	-	180	° C/W
Soldering temperature, wavesoldering for 10s	Tsold	-	-	265	° C

Electronic Characteristics

Parameter	Symbol	Condition	Min.	Тур	Max.	Unit
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V,I _D =-250uA	-30			V
Gate Threshold Voltage	V _{GS(TH)}	$V_{GS} = V_{DS}$, $I_D = -250uA$	-1.2		-2.5	V
Drain-Source Leakage Current	I _{DSS}	V _{DS} =-30V, V _{GS} =0V			-1.0	uA
Gate- Source Leakage Current	I _{GSS}	$V_{GS}=\pm 12V$, $V_{DS}=0V$			±100	nA
Static Drain-source On	R _{DS(ON)}	V _{GS} =-10V, I _D =-9A		12	16	mΩ
Resistance		V _{GS} =-4.5V, I _D =-8A		18	23	mΩ
Forward Transconductance	g FS	V _{DS} =-10V, I _D =-5A		9		S

Electronic Characteristics

Parameter	Symbol	Condition	Min.	Тур	Max.	Unit
Input capacitance	Ciss		-	1650	-	
Output capacitance	Coss	f = 1MHz	-	330	-	pF
Reverse transfer capacitance	Crss		-	220	-	

• Gate Charge characteristics (Ta = 25°C)

Parameter	Symbol	Condition	Min.	Тур	Max.	Unit
Total gate charge	Qg	VDD =25V	-	15	-	
Gate - Source charge	Qgs	ID = 8A	-	4	-	nC
Gate - Drain charge	Qgd	VGS = 10V	-	6	-	

Note: ① Pulse Test : Pulse width \leq 300 μ s, Duty cycle \leq 2% ;

② Device mounted on FR-4 substrate PC board, 2oz copper, with thermal bias to bottom layer 1inch square copper plate;

Fig.1 Power Dissipation Derating Curve

Fig.2 Typical output Characteristics

Fig.3 Threshold Voltage V.S Junction Temperature Fig.4

Fig.4 Resistance V.S Drain Current

Fig.5 On-Resistance VS Gate Source Voltage

Fig.6 On-Resistance V.S Junction Temperature

Fig.7 Switching Time Measurement Circuit

Fig.8 Gate Charge Waveform

Fig.9 Switching Time Measurement Circuit

Fig.10 Gate Charge Waveform

Fig.11 Avalanche Measurement Circuit

Fig.12 Avalanche Waveform

Dimensions(SOP8)

SYMBOL	min	TYP	max	SYMBOL	min		max
A	4. 80		5. 00	С	1. 30		1. 50
A1	0. 37		0. 47	C1	0. 55		0. 75
A2		1. 27		C2	0. 55		0. 65
А3		0. 41		СЗ	0.05		0. 20
В	5. 80		6. 20	C4	0. 19	0. 20	0. 23
B1	3.80		4. 00	D		1.05	
B2		5. 00		D1	0.40		0. 62

Disclaimers:

Information furnished in this document is believed to be accurate and reliable. However,

Shenzhen Core Control Source Semiconductor Co., Ltd. assumes no responsibility for the consequences of

use without consideration for such information nor use beyond it.

Information mentioned in this document is subject to change without notice, apart from that

when an agreement is signed, Shenzhen core control source complies with the agreement.

Products and information provided in this document have no infringement of patents. Shenzhen Core Control Source Semiconductor Co., Ltd. assumes no responsibility for any infringement of other rights of third parties which may result from the use of such products and information.

This document is the first version which is made in 12-Apr-20. This document supersedes and

replaces all information previously supplied.

is a registered trademark of Shenzhen Core Control Source Semiconductor Co., Ltd.

Copyright ©2017 Shenzhen Core Control Source Semiconductor Co., Ltd. Printed All rights reserved.