

Aula 04: Fluxogramas e condicionais Introdução a Programação

Túlio Toffolo & Puca Huachi http://www.toffolo.com.br

BCC201 – 2019/1 Departamento de Computação – UFOP

Aula Anterior

- Introdução ao C/C++
 - Variáveis
 - Operadores aritméticos
 - Comandos de entrada/saída

Aula de Hoje

- Fluxogramas
- 2 Biblioteca <math.h>
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- 6 Exercícios
- Próxima Aula

Aula de Hoje

- Fluxogramas
- Biblioteca <math.h>
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- 6 Exercícios
- Próxima Aula

Estrutura básica de um programa em C/C++

```
<inclusão_de_bibliotecas>
1
    int main(<declaração_dos_parâmetros>)
3
    {
         instrução_1;
5
         instrução_2;
6
          instrução_3;
         instrução_n;
9
10
         return 0;
11
12
```

Fluxogramas

- Os fluxogramas são representações gráficas dos programas.
- São utilizados para nos ajudar a compreender um programa.
- Não estão associados a um linguagem específica.
- Apresentam a lógica do algoritmo e não as instruções da linguagem.
- Utilizam diferentes tipos de blocos para indicar os comandos (entradas, saídas, processamentos, decisões, etc) e setas para indicar a sequência de execução.

Fluxograma de um programa em C/C++

Estrutura básica de um programa em C/C++

Exemplo: fluxuograma de um "Hello World"

```
// Meu Primeiro Programa

#include <stdio.h>

int main()
{
    // comentário explicativo
    printf("Hello world!\n");
    return 0;
}
```


Exemplo 1:

Faça um programa em C/C++, para calcular a área de um círculo. A área de um círculo é dada pela seguinte fórmula $a=\pi r^2$. O valor do raio r será digitado pelo usuário.

Fluxograma da solução

Solução do Exemplo 1:

```
/* Programa que calcula a área de um círculo
1
3
    #include <stdio.h>
4
5
    int main()
6
    {
8
        // declaração da constante Pi
        const double PI = 3.141592;
9
10
        double raio:
11
12
        printf("Digite o raio do círculo: ");
        scanf("%lf", &raio);
13
14
        // calculando e imprimindo a área
15
16
        double area = PI * raio * raio:
        printf("\nArea do círculo: %lf\n", area);
17
18
19
        return 0;
20
```


O Qualificador const.

- A palavra-chave const assegura que a variável associada não será alterada em todo o programa.
- Esse qualificador é indicado para declarar valores constantes.
- Obrigatoriamente, as variáveis associadas ao qualificador const devem ser inicializadas.

Dúvida?

- Não existe área negativa.
- Portanto, o programa n\u00e3o pode calcular a \u00e1rea se o valor do raio for negativo.
- Como saber se o valor do raio digitado é positivo?
 - Responderemos no final da aula...

Mais exemplos...

Exercício 3 da última aula prática

Crie um programa que converte um valor em graus Celsius para graus Fahrenheit e Kevin.

• Lembre-se que c graus Celsius equivale a $f=\frac{9}{5}c+32$ graus Fahrenheit e k=c+273.15 Kelvin.

Exercício 4 da última aula prática

Crie um programa que converte um valor de graus para radianos.

- Use $\pi = 3.1415926535$
- Lembre-se que g graus equivale a $r=\frac{\pi}{180}g$ radianos.

Aula de Hoje

- Fluxogramas
- Biblioteca <math.h>
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- Exercícios
- Próxima Aula

• Como calcular πr^2 ?

```
double area = PI * raio * raio;
```

- As linguagens C/C++ não possuem um operador para potência, mas possui uma biblioteca com diversas funções matemáticas, para usá-la devemos incluir a biblioteca math.h
- A função para potência é a pow(), sintaxe:

```
double pow(double base, double expoente);
```

Exemplo:

```
#include <math.h>
...
double area = PI * pow(raio, 2);
...
```

Biblioteca Matemática – Parte I

Algumas funções matemáticas disponíveis na biblioteca math.h. Para usá-las é necessário: #include <math.h>

Função	Descrição	Exemplo
double ceil(x)	arredonda x para cima	$\texttt{ceil(9.1)} \rightarrow \texttt{10.0}$
double floor(x)	arredonda x para baixo	${ t floor(9.8)} ightarrow 9.0$
double round(x)	arredonda x	$\begin{array}{c} \mathtt{round(9.5)} \rightarrow \mathtt{10.0} \\ \mathtt{round(9.4)} \rightarrow \mathtt{9.0} \end{array}$
double trunc(x)	retorna a parte inteira de x	$ exttt{trunc(9.8)} ightarrow 9.0$

Biblioteca Matemática – Parte I

Exemplo: Dada a tabela abaixo com os os valores de x, escreva os valores retornados pelas funções.

x	round(x)	floor(x)	ceil(x)	trunc(x)
2.3	2.0	2.0	3.0	2.0
3.8	4.0	3.0	4.0	3.0
5.5	6.0	5.0	6.0	5.0
-2.3	-2.0	-3.0	-2.0	-2.0
-3.8	-4.0	-4.0	-3.0	-3.0
-5.5	-6.0	-6.0	-5.0	-5.0

Biblioteca Matemática - Parte II

Funções para potências:

Função	Descrição	Exemplo
double pow(x, y)	${\bf x}$ elevado a y: x^y	pow(3, 2) $ ightarrow$ 9.0
double sqrt(x)	raiz quadrada de x: \sqrt{x}	$\mathtt{sqrt}(25) o 5.0$
double cbrt(x)	raiz cúbica de x: $\sqrt[3]{x}$	$\mathtt{cbrt}(27) \to 3.0$

Biblioteca Matemática - Parte III

Funções trigonométricas:

Função	Descrição	Exemplo
double cos(x)*	retorna o cosseno x	$\cos(\text{1.047}) \rightarrow \text{0.5}$
double sin(x)*	retorna o seno x	$ exttt{sin(1.571)} ightarrow exttt{1.0}$
double tan(x)*	retorna a tangente x	an(0.785) ightarrow 1.0
double acos(x)**	retorna o arco cosseno	$acos(0.5) \rightarrow 1.047$
double asin(x)**	retorna o arco seno	$\texttt{asin(1.0)} \rightarrow \texttt{1.571}$
double atan(x)**	retorna o arco tangente	$\mathtt{atan(1.0)} \rightarrow 0.785$

^{*:} valores em radianos

 $^{^{**}}$: valores de x entre [-1,1]

Biblioteca Matemática - Parte IV

Funções Exponencias e Logarítmicas:

Função	Descrição	Exemplo
double exp(x)	retorna exponencial de \mathbf{x} : e^x	$\texttt{exp(5)} \rightarrow \texttt{148.4}$
double log(x)	logaritmo natural de x: $\ln(x)$	$\log(5.5) \rightarrow 1.7$
double log10(x)	logaritmo de x: $\log(x)$	$\texttt{log10(1000)} \rightarrow \texttt{3.0}$

Aula de Hoje

- fluxogramas
- Biblioteca <math.h>
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- 6 Exercícios
- Próxima Aula

Tomada de decisões

- Permite a um programa realizar uma ação alternativa, a partir de um resultado verdadeiro ou falso produzido por uma condição.
- As condições são formadas utilizando-se os operadores de igualdade e os operadores relacionais.
- Ambos operadores de igualdade têm o mesmo nível de precedência, o qual é inferior ao dos operadores relacionais, e associam-se da esquerda para a direita.

Operadores de igualdade e relacionais

Operador algébrico de igualdade ou relacional padrão	Operador de igualdade ou relacional em C++	Exemplo de condição em C++	Significado da condição em C++
Operadores relacionais			
>	>	x > y	x é maior que y
<	<	x < y	x é menor que y
2	>=	x >= y	x é maior que ou igual a y
≤	<=	x <= y	x é menor que ou igual a y
Operadores de igualdade			
=		x == y	x é igual a y
≠	!=	x != y	x não é igual a y

Erro Comum em Programação

- Confundir o operador de igualdade ==
- Com o operador de atribuição =

avalia a expressão (direita) e atribui o resultado

à variável (esquerda)

verifica se a expressão da direita é IGUAL a expressão da esquerda (vice-versa).

Aula de Hoje

- Fluxogramas
- Biblioteca <math.h>
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- 6 Exercícios
- Próxima Aula

Expressões booleanas

- No século 18, George Boole, matemático e filósofo britânico, desenvolveu um sistema algébrico lógico, que passou a ser conhecido como Álgebra de Boole.
 - Base para a lógica dos computadores digitais modernos.
 - Expressões lógicas (expressões booleanas) possuem o valor true ou false.
- Em C os inteiros também são usados como valores booleanos:
 qualquer valor não nulo (1) representa true e 0 representa false.

Expressões booleanas compostas

- na matemática, podemos restringir uma temperatura a um intervalo fechado, $0 \le temp \le 100$
- em C não podemos representar essa expressão por: 0 <= temp <= 100
- embora ela seja uma expressão C válida!
- por exemplo, suponha que temp = 150; (não está no intervalo definido, logo esperamos que o resultado da expressão seja falso).

Expressões booleanas compostas

 os operadores relacionais são associativos a esquerda. A expressão será processada da seguinte forma:

$$\underbrace{0 <= 150}_{\text{(a)}} <= 100$$

- a expressão (a) resulta em true, que é representado em C pelo inteiro 1 (ou outro inteiro diferente de 0).
- Assim, na segunda etapa da avaliação, a expressão resulta em:

$$1 <= 100$$

- que também é verdadeira e resulta em true.
- Entretanto, a expressão original deveria resultar falso, como na matemática.

Expressões booleanas compostas

Para solucionar esse problema, reescrevemos a desigualdade como:

$$(temp >= 0) \&\& (temp <= 100)$$

- onde && é um operador lógico.
- Utilizamos os operadores lógicos para combinar expressões booleanas formando, assim, expressões booleanas compostas.

Operadores lógicos

Operador	Expressão	Nome	Descrição
!	!p	NÃO	!p é falso, se p é verd.;
		(negação)	${f !}$ p é verd., se p é falso.
&&	р && q	Е	p && q é verdadeiro,
		(conjunção)	se ambos, p e q são verd.;
			e falso, caso contrário.
11	p II q	OU	p q é verdadeiro,
		(disjunção)	se p, q ou ambos é verd.;
			e falso, caso contrário.

Operadores lógicos – Tabela verdade

p	! p
true	false
false	true
	CIUC

p	q	p && q	p q
true	true	true	true
true	false	false	true
false	true	false	true
false	false	false	false

Operadores lógicos - Precedência

Operator	Priority	Associativity
!, ~	highest	Right
/, *, %		Left
+, -		Left
<, >, <=, >=		Left
==, !=		Left
&		Left
^		Left
		Left
&&		Left
		Left
=, +=, *=,	lowest	Right

Aula de Hoje

- Comandos de decisão

Tomada de decisão

- Permite a um programa realizar uma ação alternativa, a partir de um resultado verdadeiro ou falso produzido por uma condição.
- As condições são formadas utilizando-se os operadores de igualdade e os operadores relacionais.
- Ambos operadores de igualdade têm o mesmo nível de precedência, o qual é inferior ao dos operadores relacionais, e associam-se da esquerda para a direita.

Tomada de decisão

Comando if

- consiste de uma palavra-chave if seguida de uma expressão de teste entre parênteses. A instrução será executada apenas se a expressão de teste for verdadeira.
- O corpo de um comando if pode conter uma única instrução terminada por ponto-e-vírgula ou várias instruções entre chaves.

Tomada de decisão

Sintaxe do comando if

```
if ( <expressão_de_teste> )
instrução_única;
```

ou

```
if ( <expressão_de_teste> )
{
    instrução1;
    instrução2;
    instrução3;
    ...
}
```

Exemplo usando o comando if

Exemplo 1 (resolvido anteriormente):

Faça um programa em C/C++, para calcular a área de um círculo. A área de um círculo é dada pela seguinte fórmula $a=\pi r^2$. O valor do raio r será digitado pelo usuário.

 Altere o programa anterior para calcular a área somente se o valor do raio for positivo.

```
/* Programa que calcula a área de um círculo
2
3
    #include <stdio.h>
4
5
    int main()
6
8
        // declaração da constante Pi
        const double PI = 3.141592;
9
10
        double raio:
11
        printf("Digite o raio do círculo: ");
12
        scanf("%lf", &raio);
13
14
        // calculando e imprimindo a área do círculo
15
        if (raio >= 0) {
16
            double area = PI * raio * raio;
17
18
            printf("\nArea do círculo: %lf\n", area);
19
20
        return 0:
21
22
```

Exemplo 2

Codifique um programa que lê um número inteiro. A seguir o programa deve imprimir uma mensagem para o usuário dizendo se o número digitado é par. Se o número não for par, o programa não deve fazer nada.

```
/* Programa que verifica se um número é par
1
    #include <stdio.h>
3
4
5
    int main()
    {
6
        int numero; // variável para armazenar o número
        printf("Digite um numero inteiro: ");
9
        scanf("%d", &numero);
10
11
12
        // Testa se o número é par
        if (numero % 2 == 0) {
13
           printf("O número %d é par!\n", numero);
14
15
16
        return 0:
17
```

Exemplo 3

Faça um programa em C/C++, para calcular a área de um círculo. A área de um círculo é dada pela seguinte fórmula $a=\pi r^2$. O valor do raio rserá digitado pelo usuário.

Verifique se o raio é positivo antes de efetuar cálculo, caso contrário imprima uma mensagem de erro ao usuário.

```
/* Programa que calcula a área de um círculo
1
     */
3
    #include <stdio.h>
4
5
    int main()
6
    {
7
        // declaração da constante Pi
8
        const double PI = 3.141592:
9
        double raio:
10
11
        printf("Digite o raio do círculo: ");
12
        scanf("%lf", &raio);
13
14
15
        // calculando e imprimindo a área do círculo
        if (raio >= 0) {
16
            double area = PI * raio * raio:
17
            printf("\nArea do círculo: %lf\n", area);
18
19
20
        // caso o raio seja negativo, imprime mensagem de erro
        if (raio < 0)
21
            printf("Erro: valor do raio é negativo...\n");
22
23
        return 0;
24
    }
25
```

Exemplo 4

Codifique um programa que lê um número inteiro positivo. A seguir o programa deve imprimir uma mensagem para o usuário dizendo se o número digitado é **par ou impar**.

```
// Programa que verifica se um no. é par ou impar
    #include <stdio.h>
    int main()
4
5
        int numero; //variável para armazenar o número
6
        printf("Digite um numero inteiro: ");
        scanf("%d", &numero);
8
9
        // testa se o número é par
10
        if (numero % 2 == 0) {
11
             printf("\nO número %d é par.\n", numero);
12
13
14
        // testa se o número é impar
15
        if (numero % 2 != 0) {
16
             printf("\nO número %d é impar\n.", numero);
17
18
19
        return 0:
20
21
```

Exemplo de execução

```
Execução 1:Digite um numero inteiro: 5O número 5 é ímpar
```

Execução 2:
 Digite um numero inteiro: 8
 O número 8 é par

Aula de Hoje

- Fluxogramas
- Biblioteca <math.h>
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- 6 Exercícios
- Próxima Aula

Atenção: entregar o Exercício 1 hoje e os demais na próxima aula.

Exercício 1: Maior número

Faça um programa que leia dois números inteiros e verifique qual deles é maior.

- Imprima uma mensagem informando qual deles é o maior.
- Exemplo de saída caso o usuário digite 10 e 20:
- 20 é o maior número

Exercício 2: Bônus para clientes

Uma loja deseja mandar uma correspondência a um dos seus clientes anunciando um bônus especial. Escreva um algoritmo que leia o valor das compras desse cliente no ano passado e calcule um bônus de 10%, se o valor das compras for menor que R\$ 50.000,00, e de 15%, caso contrário.

- O algoritmo deve imprimir o valor do bônus cedido ao cliente.
- Exemplo de saída se o usuário digitar o valor 10000:

```
Bonus do cliente: R$ 1000.00
```

Exercício 3: Tarifa de Energia

A conta de energia elétrica de consumidores residenciais de uma cidade é calculada do seguinte modo:

- se o consumo é de até 500 kw, a tarifa é de R\$ 0,02 por unidade;
- se o consumo é maior que 500 kw, mas não excede 1000 kw, a tarifa é de R\$10,00 para os 500 primeiros kw e de R\$ 0,05 para cada kw excedente a 500;
- se o consumo é maior que 1000kw, a tarifa é de R\$35,00 para os 1000 primeiros kw e de R\$0,10 para cada kw excedente a 1000;
- em toda conta, é cobrada uma taxa básica de serviço de R\$5,00, independentemente da quantidade de energia consumida.

Escreva um programa que leia o consumo de energia de uma residência e imprima a sua conta de energia, no formato indicado no exemplo a seguir.

Exercício 3: Tarifa de Energia

Exemplo de execução do programa:

```
CÁLCULO DA CONTA DE ENERGIA ELÉTRICA
   DIGITE O CONSUMO DE ENERGIA ELÉTRICA (KW): 1251.0
5
   TAXA BÁSTCA: 5.00
   CONSUMO (KW): 1251.0
   VALOR DA CONTA (R$): 65.10
```

Aula de Hoje

- Fluxogramas
- Biblioteca <math.h>
- Operadores relacionais
- Operadores lógicos
- Comandos de decisão
- 6 Exercícios
- Próxima Aula

Próxima Aula

- Resolução (e discussão) de exercícios pelos alunos (sorteio!!!)
- Comando de decisão
 - if else

Perguntas?