Robinson Drepared by Roam Jeman

RoverBot

INTRODUCTION

WELCOME TO "RoverBot" PRESENTATION

PLAN

I. HARDWARE

- 1. PIECES USED
- 2. TOOLS USED
- 3. HARDWARE ASSEMBLY PROCESS
- 4. FINAL APPEARANCE

II. SOFTWARE

III. ACQUIRED SKILLS

- 1. HARD SKILLS
- 2. SOFT SKILLS
- IV. PRESENTATION VIDEO OF "RoverBot"
- V. ACKNOWLEDGEMENT

Pieces used

Piece(s)	Datasheets Links
Arduino Uno Rev3	Arduino Uno Rev3
L293D motor driver shield	L293D Based Arduino Motor Shield
Robot Car Kit 4WD	Robot Car Kit 4WD Joy-IT
4X gear motors and 4 Wheels	Gear Motor
Servo Motor (Tower Pro SG90)	SG90 Servo Datasheet pdf - Micro Servo. Equivalent. Catalog

Bluetooth Module (HM-10 BLE 4.0)	HM-10 BLE 4.0 Bluetooth Module
Ultrasonic sensor (HC-SR04)	Ultrasonic Ranging Module HC - SR04
2X 18650 Battery (3200mAh) with holder	Panasonic NCR18650BD 3200mAh 3C Battery
ON/OFF Switch	ON-OFF switch black 16A-250V TES-13 ADAJUSA
Jumper wires	PRODUCT DATASHEET

Tools used

Tools	Links
Multimeter	Multimeter - Wikipedia
Soldering Iron	Soldering iron - Wikipedia
Glue Gun	Hot-melt adhesive - Wikipedia
Nut and bolts	Nut (hardware) - Wikipedia Bolt (fastener) - Wikipedia
Screwdriver	Screwdriver - Wikipedia
Pliers	Pliers - Wikipedia
Adhesive tape	Adhesive tape - Wikipedia

Hardware Assembly Process

Mounting of the motors on the chassis

Soldering the wires to the motors

Mounting of the Arduino Uno board (with L293D motor driver shield) on the chassis

Hardware Assembly Process

Soldering the battery holder wires

Soldering the wires to the switcher

Mounting of the Arduino Uno board (with L293D motor driver shield) on the chassis

Hardware Assembly Process

Connecting all wires to the L293D shield

Assembling the ultrasonic sensor and the servo motor

Setting up the HM-10 Bluetooth module

Final Appearance

Hi I'm "RoverBot"

Code Link: Arduino IDE (<u>INO FILE</u>) Or <u>TXT FILE</u>

Code explanation

```
#include <AFMotor.h> // Include the AFMotor library for motor control
#define CUSTOM_SETTINGS
#define INCLUDE_GAMEPAD_MODULE
#include <Dabble.h> /* Include the Dabble library for Bluetooth
Communication */
#include <Servo.h> /* Include the Servo library for servo motor
control */
#include <NewPing.h> /* Include the NewPing library for the ultrasonic
sensor */
```

```
NewPing uls sensor1(A0, A1, 400); /* Create an object of the
NewPing class for ultrasonic sensor with the AnalogPin 0 as Trig
pin and the AnalogPin1 as an EchoPin and a max distance of 400cm*/
Servo servo1; // Create a Servo object for the servo motor
AF DCMotor motor1(1); // Create AF DCMotor objects for motor1
AF DCMotor motor2(2); // Create AF DCMotor objects for motor2
                      // Create AF DCMotor objects for motor3
AF DCMotor motor3(3);
AF DCMotor motor4(4); // Create AF DCMotor objects for motor4
```

```
void forward() {
  motor1.run(FORWARD);
  motor2.run(FORWARD);
  motor3.run(FORWARD);
  motor4.run(FORWARD);
void right() {
  motor1.run(FORWARD);
  motor2.run(FORWARD);
  motor3.run(BACKWARD);
  motor4.run(BACKWARD);
```

```
void backward() {
  motor1.run(BACKWARD);
  motor2.run(BACKWARD);
  motor3.run(BACKWARD);
  motor4.run(BACKWARD);
void left() {
  motor1.run(BACKWARD);
  motor2.run(BACKWARD);
  motor3.run(FORWARD);
  motor4.run(FORWARD);
```

Movement functions

```
void stop() {
  motor1.run(RELEASE);
  motor2.run(RELEASE);
  motor3.run(RELEASE);
  motor4.run(RELEASE);
```

Distance measurement

```
unsigned int mes dist forward() {
  unsigned int distance = uls sensor1.ping cm();
  return distance;
```

```
int mes dist right() {
  servo1.write(10);
  delay(1000);
  unsigned int dist right =
uls sensor1.ping cm();
  delay(300);
  servol.write(90);
  return dist right; }
```

```
/* Function to measure the distance to /* Function to measure the distance to
                                            int mes dist left() {
                                              servol.write(170);
                                              delay(1000);
                                              unsigned int dist left =
                                            uls sensor1.ping cm();
                                              delay(300);
                                              servol.write(90);
                                              return dist left; }
```

Distance measurement functions

```
/* Function to choose between turning to the right or the left
based on the longest distance captured by the ultrasonic
Sensor */
void search() {
  if (mes dist right() >= mes dist left()) {
    right();
    delay (350);
    forward();
  } else {
   left();
    delay(350);
    forward();
```

Setup function

```
void setup() {
   Dabble.begin(9600, 0, 1); // Initialize Dabble for Bluetooth communication
   motor1.setSpeed(255); // Set motor speeds
   motor2.setSpeed(255);
   motor3.setSpeed(255);
   motor4.setSpeed(255);
   servo1.attach(10); // Attach the servo to pin 10
   servo1.write(90); // Set the initial position of the servo (rotation degree)
}
```

Loop function

```
bool obs mode = true; /* Initialize RoverBot to the
void loop() {
    obs mode = false; // deactivate the Autonomous Mode
    obs mode = true; // activate the Autonomous Mode
      stop();
      delay(500);
```

ACQUIRED SKILLS

ACQUIRED SKILLS

Hard Skills

1. Programming:

Writing code for "Roverbot" enhances my coding skills, particularly in C++, which includes several libraries and Object-Oriented Programming.

1. Electronics Knowledge:

Building and assembling "RoverBot" requires an understanding of electronic components, circuits, and wiring. I learned how to use Arduino, L293 motor driver shield, Bluetooth module, sensors, and motors, and how to connect and control them.

1. Soldering:

There is no doubt that soldering is necessary in the electronics field. That's offered me the opportunity to acquire basic soldering skills.

4. Troubleshooting:

While I was working on the Robot Car, I encountered several issues and bugs. Troubleshooting and debugging RoverBot behavior helped me develop my precise observation and fixing skills.

5. Data Analysis:

Since Roverbot uses sensors to collect data (e.g., distance measurements), it is necessary to analyze this data to make decisions. This improved my data analysis skills.

ACQUIRED SKILLS

Soft Skills

1. Stress management:

Managing stress and pressure correctly can bring out the best in individuals, leading to heightened performance and the ability to excel under challenging conditions.

1. Problem Solving:

Building and programming a Robot involves solving various technical problems and challenges, enhancing your problem-solving and persistence abilities. As well as my focusing ability because dealing with electronics components is extremely sensitive in terms of voltage, amperage and more.

1. Creativity:

Designing my Roverbot's functionality and appearance allows me to exercise my creativity in engineering and design choices.

1. Project Management:

Planning and executing a robotics project teaches project management skills such as time management, task prioritization, and goal setting.

1. Presentation Skills:

Sharing my project with others, whether in a presentation, report or video, improves my ability to convey complex technical information to a general audience.

1. Resourcefulness:

Limited resources or unexpected challenges may require being resourceful in finding creative solutions and workarounds.

PRESENTATION VIDEO OF "RoverBot"

Video Purpose:

This video was created to explain how "RoverBot" actually acts in real world.

The capabilities and control of "RoverBot" are thoroughly explained in the video.

Video Link (For PDF Version):

ACKNOWLEDGEMENT

Thank you for your Attention. It's an honor to share this project with you. I hope that you enjoy it.

Special Thanks to

My parents

Dear aunt, Dr. Sana Belguith

Dear brothers, Youcef Barraj and Yacine Barraj