24.5.3 Physics Paper 3 (232/3)

(1 mark) 1.70 cm 1. (a) Diameter of the marble (1 mark) 0.85cm Radius of the marble r

(1 mark) (b) (i) M

5.7g 0.4 Mr² 0.4 × 5.7 × 0.85² (ii)

(1 mark) 1.65 gcm^2

(c)

Height h (cm)	8	9	10	11	12	13	14	15
Average time (s)	1.75	1.74	1.61	1.49	1.52	1.43	1.38	1.25
t² (s²)	3.06	3.03	2.59	2.22	2.31	2.04	1.90	1.56
1/h (cm-1)	0.125	0.111	0.100	0.090	0.083	0.077	0.071	0.067

(6 marks)

(d) (i)

(5 marks)

(ii) Slope S =
$$\frac{3.6-0}{(12.6-1.0)\times 10^{-2}}$$

$$= 31.03 \pm 0.10$$

(3 marks)

(iii)
$$G = Mr^2 \left[\frac{s}{20} - 1 \right] = 5.7 \times 0.85^2 \left[\frac{31.01}{20} - 1 \right]$$

- = 2.27 (2 marks) 2. (a) (i)
- 2. (a) (i) $L_0 = 80 \text{ cm}$ $d_1 = 0.35 \text{ mm}$ $d_2 = 0.37 \text{ mm}$ (1 mark) d = 0.36 mm (1 mark)

Radius, r = 0.18 mm $r = 1.8 \times 10^{-4} \text{ m}$ (1 mark)

- (b) (i) $V_R = 0.7 \text{ Volts}$ (1 mark) $V_G = 1.8 \text{ Volts}$ (1 mark)
 - (ii) $V_R = IR$ Therefore, $I = \frac{V_R}{R} = \frac{0.7}{4}A$ = 0.175A (1 mark)
 - (iii) $H = \frac{100 \times 1.8}{0.175 \times 80}$ = 12.86 Ω m⁻¹ (1 mark)

(c) and (d)

distance / (cm)	0	5	10	20	30	40	50	60	70
pd across R (V)	1.80	1.70	1.55	1.35	1:10	1.00	0.90	0.80	0.75

(3 marks)

(e) (i)

(5 marks)

(ii)
$$V_1 = \frac{V_0}{2} = \frac{1.8}{2}$$

= 0.9 Volts

= 0.9 Volts Therefore, l_1 = 50 cm (correct reading from graph)

$$\frac{4}{100} \times \frac{300}{100}$$

(f)
$$D = \frac{R}{l_1} \times \frac{300}{1.8} = \frac{4}{50} \times \frac{300}{1.8}$$
$$= 1333.3 \ \Omega \ m^{-1}$$
 (1 mark)

(g)
$$\rho = \frac{\pi r^2}{2} (D + H)$$

$$\rho = \frac{\pi (1.8 \times 10^{-4})^2}{2}$$

$$= (1333.3 + 1285.7)$$

$$= 13322 \times 10^{-8} \Omega m$$

$$= 1.33 \times 10^{-4} \Omega m$$
(1 mark)