Week 6

???

6.1 Examples of Group Actions

10/31:

- Today: A number of interesting group actions.
- **Left action** (of G on X): A group action of the form $g \cdot x$ (as opposed to $x \cdot g$).
- Let G be a group, and let X = G. Take $g \cdot x = gx$.
 - Axiom confirmation.
 - 1. $e \cdot x = ex = x$.
 - $2. \ g \cdot (h \cdot x) = ghx = gh \cdot x.$
 - Let $e \in X$. Then Orb(e) = X. In particular, this means that the action is transitive.
 - Stab $(x) = \{g \in G \mid gx = x\} = \{e\}$ for $x \in X$ arbitrary, in general.
 - $\ker = \{e\}$. This also follows from the above. Thus, the action is faithful.
- Corollary: Let G be a finite group. Then G is isomorphic to a subgroup of S_n for some n. We may take n = |G|.
 - Construction: We invoke the proposition from last lecture. In particular, we know that the action $G \subset G$ implies the existence of a homomorphism $\phi: G \to S_G$ defined by $g \mapsto \psi_g$.
 - The map in the above construction has trivial kernel. By the FIT, $G/\ker\cong\operatorname{im}\phi$. Combining these results, we obtain $G\cong G/\ker\cong\operatorname{im}\phi\leq S_n$.
 - Applying this construction to S_3 , we deduce that $S_3 \leq S_6$.
- $SO(2) \cong \mathbb{R}/\mathbb{Z} \cong \mathbb{Q}/\mathbb{Z} \oplus \mathbb{Q}^{\infty}$.
 - In infinite cases, you usually want to consider some other topological things that disappear in the finite case.
- Let G be a group and take X = G again. We can also consider $g \cdot x = gxg^{-1}$.
 - Axioms.
 - 1. $e \cdot x = exe^{-1} = x$.
 - 2. $g \cdot (h \cdot x) = ghxh^{-1}g^{-1} = (gh)x(gh)^{-1} = gh \cdot x$.
 - $Orb(e) = \{e\}$; not transitive if |G| > 1.
 - Let $x \in X$. Then Orb(x) is the conjugacy class of x.
 - Stab $(x) = C_G(x)$.
 - $-\ker = Z(G)$. Thus, the group action is faithful iff the center is trivial. Abelian implies not faithful.

Week 6 (???) MATH 25700

- A nice thing about these constructions is that they cast other constructions we've encountered in the more general language of group actions.
- Right actions are even nastier than left cosets and right cosets, so Calegari will not mention them again.

```
-g \cdot x = x \cdot g^{-1} and g \cdot (h \cdot x) = (x \cdot h^{-1}) \cdot g^{-1}.
```

- Let G = G, X be the subgroups of G. $g \cdot H = gHg^{-1}$.
 - Note that $H \leq G$ does indeed imply that $gHg^{-1} \leq G$. In particular, ...
 - H is nonempty (contains at least e), so $gHg^{-1} \supset \{geg^{-1}\}$ is nonempty;
 - $\blacksquare gh_1g^{-1}, gh_2g^{-1} \in gHg^{-1} \text{ imply that } gh_1g^{-1}gh_2g^{-1} = g(h_1h_2)g^{-1} \in gHg^{-1};$
 - $\blacksquare ghg^{-1} \in gHg^{-1}$ has inverse $gh^{-1}g^{-1} \in gHg^{-1}$.
 - Axioms (entirely analogous to the last example).
 - Orb(H) is the "conjugates" of H.
 - Stab $(H) = N_G(H)$.
 - ker =?. We know that $Z(G) \subset \ker$. The conclusion is that there is not a nice definition for the kernel other than the intersections of the stabilizers/normalizers.
 - **■** ...
 - If any $H \triangleleft G$ is normal, and $x \in G$ had order 2, then $\langle x \rangle \triangleleft G$, meaning that $gxg^{-1} \in \langle x \rangle$, i.e., $x \in Z(G)$, so this rules out D_8 ??
- Fix G and $H \leq G$. Let X = G/H (not assuming $H \triangleleft G$, so we know that G/H is the set of left cosets but it is not a group in general). Define $g \cdot xH = gxH$.
 - We have $g \cdot xhH = gxhH$.
 - Orbit: Orb(eH) = X.
 - Stabilizer: Stab(eH) = H.
 - Stab $(gH) = gHg^{-1}$.
 - This is because $(ghg^{-1})gH = ghH = gH$.
 - Go to the more general case $G \subset X$, $\operatorname{Stab}(x) = H$. Then $gHg^{-1} \subset \operatorname{Stab}(g \cdot x)$??
 - Transitive: Yes (see orbits).
 - Faithful: If H is normal, no. If H contains a normal subgroup, no. Maybe yes.
 - Kernel: If H is normal, then $\ker = H$. In general, $\ker = \bigcap_{g \in G} gHg^{-1}$ (the largest normal subgroup of H).
- Takeaway: General constructions allow us to see things we've already done.
- Next time: The most useful theorem of the course, that provides lots of information on relations between objects.