ra e nome:

e-mail:

Segunda Prova de Análise no \mathbb{R}^n , ps2012

- (1) (3 pontos) Enuncie e demonstre o princípio de Cavalieri para conjuntos Jordan-mensuráveis com forma apropriada no \mathbb{R}^3 .
- (2) (3 pontos) Mostre que um aberto $A \subseteq \mathbb{R}^n$ pode ser escrito como

$$A = A_1 \cup A_2 \cup A_3 \cup \dots$$

onde cada A_i é compacto e $A_i \subseteq \text{int} A_{i+1}$.

(3) (2 pontos) Considere \mathbb{R}^3 com a base canônica e_1, e_2, e_3 e a base dual ϕ_1, ϕ_2, ϕ_3 . Seja um vetor $A = A_1e_1 + A_2e_2 + A_3e_3 \in \mathbb{R}^3$. Associamos a este vetor uma 1-forma α , denotada por $\alpha = A \bullet dr$ e uma 2-forma β , denotada por $\beta = A \bullet d\sigma$, dadas por

$$\alpha = A_1 \phi_1 + A_2 \phi_2 + A_3 \phi_3$$
, $\beta = A_1 \phi_2 \wedge \phi_3 + A_2 \phi_3 \wedge \phi_1 + A_3 \phi_1 \wedge \phi_2$.

Mostre que $(A \bullet dr) \wedge (B \bullet dr) = (A \times B) \bullet d\sigma$, que $(A \bullet dr) \wedge (B \bullet d\sigma) = (A \bullet B) d\nu$, onde $d\nu = \phi_1 \wedge \phi_2 \wedge \phi_3$, enquanto $A \bullet B$ e $A \times B$ denotam os produtos escalar e vetorial usuais no \mathbb{R}^3 . Explique então que as invariâncias por permutações do produto escalar triplo $(A \times B) \bullet C$ do \mathbb{R}^3 podem ser vistas como conseqüência da associatividade e da simetria do produto de formas.

(4) (2 pontos) Seja $f: \mathbb{R}^3 \to \mathbb{R}^3$ uma transformação linear com matriz $A = (a_{ij})$ com relação à base canônica. Encontre a matriz que representa $f^*: \Lambda^2(\mathbb{R}^3) \to \Lambda^2(\mathbb{R}^3)$ com relação à base $\{\phi_2 \wedge \phi_3, \phi_3 \wedge \phi_1, \phi_1 \wedge \phi_2\}$. O que acontece quando f é uma rotação?