CB n°4 - Séries entières - Sujet 1

EXERCICE 1

Déterminer les rayons de convergence des séries entières suivantes :

1.
$$\sum \frac{n^3}{n!} z^n$$

On a : $\left| \frac{(n+1)^3 n!}{n^3 (n+1)!} \right| \sim \frac{1}{n} \underset{n \to +\infty}{\longrightarrow} 0$. La règle de d'Alembert donne le rayon de convergence égal à $+\infty$.

2.
$$\sum e^{-3n}z^{2n}$$

On a :
$$\forall z \in \mathbb{C}^*$$
, $\left| \frac{e^{-3(n+1)}z^{2(n+1)}}{e^{-3n}z^{2n}} \right| = e^{-3}|z|^2$.

D'après le critère de d'Alembert, si $|z^2|e^{-3} < 1$ (c'est-à-dire $|z| < e^{\frac{3}{2}}$), alors la série est absolument convergente et si $|z^2|e^{-3}>1$ (c'est-à-dire $|z|>e^{\frac{3}{2}}$) la série est divergente.

On en déduit que le rayon de convergence est $e^{\frac{3}{2}}$

3.
$$\sum \left(1 + \frac{1}{\sqrt{n}}\right)^n z^n$$

Soit
$$r > 0$$
; on a: $\left(\left(1 + \frac{1}{\sqrt{n}}\right)r\right)^n = e^{n\left(\ln(r) + \ln\left(1 + \frac{1}{\sqrt{n}}\right)\right)} = e^{n\left(\ln(r) + \frac{1}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right)}$.

Ainsi, la suite $\left(\left(1+\frac{1}{\sqrt{n}}\right)^n r^n\right)$ est bornée si et seulement si r<1 (sinon elle a pour limite $+\infty$). On en déduit que le rayon de convergence de la série est 1.

4.
$$\sum \frac{1}{2^n} z^{n^2}$$

Soit
$$r > 0$$
; on a: $\frac{1}{2^n} r^{n^2} = e^{n^2 \left((\ln(r) - \frac{\ln(2)}{n}) \right)}$.

Ainsi, la suite $\left(\frac{1}{2^n}r^{n^2}\right)$ est bornée si et seulement si $r \leq 1$ (sinon elle a pour limite $+\infty$).

On en déduit que le rayon de convergence de la série est 1.

EXERCICE 2

Déterminer les rayons de convergence et les sommes des séries entières suivantes :

1.
$$\sum_{n>1} \frac{2^n}{n} x^n$$

La règle de d'Alembert donne immédiatement un rayon de convergence égal à $\frac{1}{2}$, et d'après le cours,

$$\sum_{n=1}^{+\infty} \frac{(2x)^n}{n} = -\ln(1-2x).$$

2.
$$\sum_{n\geq 0} \frac{2n^2-1}{n!} x^n$$

La règle de d'Alembert donne immédiatement un rayon de convergence égal à
$$+\infty$$
.
Pour tout entier n , on a : $\frac{2n^2-1}{n!} = \frac{2n(n-1)+2n-1}{n!}$.

Le rayon de convergence de la série $\sum \frac{x^n}{n!}$ est $+\infty$, ainsi, pour tout réel x, on a :

$$\sum_{n=0}^{+\infty} \frac{2n^2 - 1}{n!} x^n = \sum_{n=2}^{+\infty} \frac{2x^n}{(n-2)!} + \sum_{n=1}^{+\infty} \frac{2x^n}{(n-1)!} - \sum_{n=0}^{+\infty} \frac{x^n}{n!} = (2x^2 + 2x - 1)e^x.$$

EXERCICE 3

Donner les développements en série entière au voisinage de 0 des fonctions suivantes, et préciser les rayons de convergence :

1.
$$x \mapsto \frac{1}{2+x^2}$$

Pour tout réel x tel que $\frac{x^2}{2} < 1$, c'est-à-dire $|x| < \sqrt{2}$, on a d'après le cours :

$$\frac{1}{2+x^2} = \frac{1}{2} \sum_{n=0}^{+\infty} \frac{(-x^2)^n}{2^n} = \sum_{n=0}^{+\infty} \frac{(-1)^n}{2^{n+1}} x^{2n}.$$

Le critère de d'Alembert pour les séries numériques donne la convergence de la série pour $|x| < \sqrt{2}$ et la divergence pour $|x| > \sqrt{2}$, ce qui donne une rayon de convergence égal à $\sqrt{2}$.

2.
$$x \mapsto \ln(2x^2 - 7x + 3)$$

Pour tout réel x, on a : $2x^2 - 7x + 3 = (3 - x)(1 - 2x) = 3\left(1 - \frac{x}{3}\right)(1 - 2x)$.

Ainsi, pour tout $x \in \left] -\frac{1}{2}, \frac{1}{2} \right[$, on a d'après le cours :

$$\ln(2x^2 - 7x + 3) = \ln(3) + \ln\left(1 - \frac{x}{3}\right) + \ln(1 - 2x) = \ln 3 - \sum_{n=1}^{+\infty} \left(\frac{1}{3^n} + 2^n\right) \frac{x^n}{n}.$$

De plus, $\left(\frac{1}{3^n} + 2^n\right) \sim 2^n$, donc la série a le même rayon de convergence que la série $\sum \frac{2^n x^n}{n}$;

la règle de d'Alembert donne immédiatement ce rayon égal à $\frac{1}{2}$

CB N°4 - SÉRIES ENTIÈRES - SUJET 2

EXERCICE 1

Déterminer les rayons de convergence des séries entières suivantes :

1.
$$\sum \frac{e^n}{n!} z^n$$

On a : $\left| \frac{e^{n+1}n!}{e^n(n+1)!} \right| \sim \frac{e}{n} \underset{n \to +\infty}{\longrightarrow} 0$. La règle de d'Alembert donne le rayon de convergence égal à $+\infty$.

2.
$$\sum e^{2n}z^{3n}$$

On a:
$$\forall z \in \mathbb{C}^*$$
, $\left| \frac{e^{2(n+1)}z^{3(n+1)}}{e^{2n}z^{3n}} \right| = e^2|z|^3$.

D'après le critère de d'Alembert, si $|z^3|e^2 < 1$ (c'est-à-dire $|z| < e^{-\frac{2}{3}}$), alors la série est absolument convergente et si $|z^3|e^2 > 1$ (c'est-à-dire $|z| > e^{-\frac{2}{3}}$) la série est divergente.

On en déduit que le rayon de convergence est
$$e^{-\frac{2}{3}}$$

3.
$$\sum \left(1 - \frac{2}{\sqrt{n}}\right)^n z^n$$
Soit $r > 0$; on a:
$$\left(\left(1 - \frac{2}{\sqrt{n}}\right)r\right)^n = e^{n\left(\ln(r) + \ln\left(1 - \frac{2}{\sqrt{n}}\right)\right)} = e^{n\left(\ln(r) - \frac{2}{\sqrt{n}} + o\left(\frac{1}{\sqrt{n}}\right)\right)}.$$

Ainsi, la suite $\left(\left(1-\frac{2}{\sqrt{n}}\right)^n r^n\right)$ est bornée si et seulement si $r \leq 1$ (sinon elle a pour limite $+\infty$).

On en déduit que le rayon de convergence de la série est 1.

4.
$$\sum \frac{1}{3^n} z^{n^3}$$

Soit
$$r > 0$$
; On a : $\frac{1}{3n}r^{n^3} = e^{n^3\left((\ln(r) - \frac{\ln(3)}{n^2}\right)}$.

Ainsi, la suite $\left(\frac{1}{3^n}r^{n^3}\right)$ est bornée si et seulement si $r \leq 1$ (sinon elle a pour limite $+\infty$).

On en déduit que le rayon de convergence de la série est 1.

EXERCICE 2

Déterminer les rayons de convergence et les sommes des séries entières suivantes :

1.
$$\sum_{n>1} \frac{3^n}{n} x^n$$

La règle de d'Alembert donne immédiatement un rayon de convergence égal à $\frac{1}{3}$, et d'après le cours,

$$\sum_{n=1}^{+\infty} \frac{(3x)^n}{n} = -\ln(1-3x).$$

2.
$$\sum_{n\geq 0} \frac{2-n^2}{n!} x^n$$

La règle de d'Alembert donne immédiatement un rayon de convergence égal à
$$+\infty$$
.
Pour tout entier n , on a : $\frac{2-n^2}{n!} = \frac{-n(n-1)-n+2}{n!}$.

Le rayon de convergence de la série $\sum \frac{x^n}{n!}$ est $+\infty$, ainsi, pour tout réel x, on a :

$$\sum_{n=0}^{+\infty} \frac{2-n^2}{n!} x^n = -\sum_{n=2}^{+\infty} \frac{x^n}{(n-2)!} - \sum_{n=1}^{+\infty} \frac{x^n}{(n-1)!} + \sum_{n=0}^{+\infty} \frac{x^n}{n!} = (-x^2 - x + 2)e^x.$$

EXERCICE 3

Donner les développements en série entière au voisinage de 0 des fonctions suivantes, et préciser les rayons de convergence :

1.
$$x \mapsto \frac{1}{2-x^3}$$

Pour tout réel x tel que $\left|\frac{x^3}{2}\right| < 1$, c'est-à-dire $|x| < \sqrt[3]{2}$, on a d'après le cours :

$$\frac{1}{2-x^3} = \frac{1}{2} \sum_{n=0}^{+\infty} \left(\frac{x^3}{2}\right)^n = \sum_{n=0}^{+\infty} \frac{x^{3n}}{2^{n+1}}.$$

Le critère de d'Alembert pour les séries numériques donne la convergence de la série pour $|x| < \sqrt[3]{2}$ et la divergence pour $|x| > \sqrt[3]{2}$, ce qui donne une rayon de convergence égal à $\sqrt[3]{2}$.

2.
$$x \mapsto \ln(3x^2 - 5x + 2)$$

Pour tout réel x, on a : $3x^2 - 5x + 2 = (1 - x)(2 - 3x) = 2(1 - x)\left(1 - \frac{3x}{2}\right)$.

Ainsi, pour tout $x \in \left[-\frac{2}{3}, \frac{2}{3} \right[$, on a :

$$\ln(3x^2 - 5x + 2) = \ln(2) + \ln(1 - x) + \ln\left(1 - \frac{3}{2}x\right) = \ln 2 - \sum_{n=0}^{+\infty} \left(\left(\frac{3}{2}\right)^n + 1\right) \frac{x^n}{n}.$$

De plus, $\left(\left(\frac{3}{2}\right)^n + 1\right) \sim \left(\frac{3}{2}\right)^n$, donc la série a le même rayon de convergence que la série $\sum \frac{\left(\frac{3}{2}\right)^n x^n}{n}$;

la règle de d'Alembert donne immédiatement ce rayon égal à $\frac{2}{3}$.

Spé PT B