Advanced Dynamics & Automatic Control

Block Diagrams

Dr. Mitch Pryor

THE UNIVERSITY OF TEXAS AT AUSTIN

Block diagrams

We have been using block diagrams informally throughout the course.

- Time to formalize the meaning of the components of the block diagram
 - Allows us to design controllers visually
 - Software packages exist to do this (will discuss later)
 - Allows us to then simplify complex block diagrams mathematically
- Block diagrams provide a simple mechanism to derive the transfer function for a closed loop system.

Components

The **paths** represent variable values which are passed within the system

Blocks represent System components which are represented by transfer functions (*Laplace Functions*) and multiply their input signal to produce an output

Addition and subtraction of signals are represented by a **summer block** with the operation indicated on the arrow. (Often, if there are no signs, the default is addition.)

Branch points occur when a value is placed on two lines: no modification is made to the signal

Summer block algebra

Transfer Block Multiplication

From these simple rules, follows some logically valid algebraic operations.

Closed Loops Systems

A positive feedback system

Simplification of a closed loop system

Typical Control Blocks and Signals

R(s) – Reference signal or desired output

E(s) - Error signal

H(s) – Often C(s) P(s)

C(s) – The control law that produces a u for the model or plant

P(s) – The model of the system to be controlled or plant

Y(s) – The output of the system

G(s) – Sensor signal (if necessary)

B(s) – Loop transfer signal (last signal value prior to feedback)

$$Y(s) = H(s)E(s)$$

$$Y(s) = H(s)(R(s) - B(s))$$

$$Y(s) = H(s)(R(s) - G(s)Y(s))$$

$$Y(s) = H(s)R(s) - H(s)G(s)Y(s)$$

$$Y(s) + H(s)G(s)Y(s) = H(s)R(s)$$

$$Y(s)(1+H(s)G(s)) = H(s)R(s)$$

$$T_{cl}(s) = \frac{Y(s)}{R(s)} = \frac{H(s)}{1 + H(s)G(s)}$$

Note the sign switched from feedback sign!

^{*}not standardized. Nomenclature varies from textbook to textbook

Closed System Nomenclature, cont'd

^{*}not standardized. Nomenclature varies from textbook to textbook

Two common control configurations

*not standardized. Nomenclature varies from textbook to textbook

Solution by inspection

Back to the original diagram...

Rearrange (Y's to the left R's to the right).....

$$s^{3}Y(s) + a_{1}s^{2}Y(s) + a_{2}sY(s) + a_{3}Y(s) = b_{1}s^{2}R(s) + b_{2}sR(s) + b_{3}R(s)$$

$$\frac{Y(s)}{R(s)} = \frac{b_{1}s^{2} + b_{2}s + b_{3}}{s^{3} + a_{1}s^{2} + a_{2}s + a_{3}}$$

Another, solution by inspection

Back to the original diagram...

R(s)

$$Y(s) = \frac{b_3 R(s) - a_3 Y(s)}{s^3} + \frac{b_2 R(s) - a_2 Y(s)}{s^2} + \frac{b_1 R(s) - a_1 Y(s)}{s}$$

$$Y(s) + \frac{a_3Y(s)}{s^3} + \frac{a_2Y(s)}{s^2} + \frac{a_1Y(s)}{s} = \frac{b_3R(s)}{s^3} + \frac{b_2R(s)}{s^2} + \frac{b_1R(s)}{s}$$

$$Y(s)\left(1 + \frac{a_3}{s^3} + \frac{a_2}{s^2} + \frac{a_1}{s}\right)\frac{s^3}{s^3} = R(s)\left(\frac{b_3}{s^3} + \frac{b_2}{s^2} + \frac{b_1}{s}\right)$$

$$\frac{Y(s)}{R(s)} = \frac{b_1s^2 + b_2s + b_3}{s^3 + a_1s^2 + a_2s + a_3}$$

$$\frac{Y(s)}{R(s)} = \frac{b_1 s^2 + b_2 s + b_3}{s^3 + a_1 s^2 + a_2 s + a_3}$$

Let's do one final example....

While this can be done with standard reduction techniques, a good eye reveals it is a good candidate for solution by inspection.

$$Y(s) = 15R(s) + \{(R(s) - Y(s))(2s) - 5Y(s)\} \left(\frac{1}{s(s+2)}\right)$$

$$Y(s) = 15R(s) + \left\{2sR(s) - 2sY(s) - 5Y(s)\right\} \left(\frac{1}{s(s+2)}\right)$$

$$Y(s) = 15R(s) + \left\{2sR(s) - 2sY(s) - 5Y(s)\right\} \left(\frac{1}{s(s+2)}\right)$$

From the last slide...

$$Y(s) = 15R(s) + \left\{ \frac{2s}{s(s+2)}R(s) - \frac{2s+5}{s(s+2)}Y(s) \right\}$$

Just algebra to isolate Y(s) and R(s)

$$Y(s)\left(1 + \frac{2s+5}{s(s+2)}\right) = R(s)\left(15 + \frac{2s}{s(s+2)}\right)$$

$$T(s) = \frac{Y(s)}{R(s)} = \frac{15 + \frac{2s}{s(s+2)}}{1 + \frac{2s+5}{s(s+2)}} = \frac{s(15s+32)}{s^2 + 4s + 5}$$

Summary

- We can use the algebraic tools to simplify block diagrams using reduction technique or inspection.
 - Soon, this will allow us to intuitively and visually discuss controller options AND have the tools to determine (and analyze) the resulting transfer function.

From on representation to another

Summary of system models

- System representations used to design controllers.
 - Know which representation gives access to the needed information.
 - Understand advantages and disadvantages are asserted here.
 - Can convert from one representation to another

ODEs

- Commonly used for developing system models
- Easy to solve for simple systems
- · Lots of trial and error when designing controllers,
- Possible to design PID controllers for simple systems
- Difficult to analytically solve complex systems

State-space representations

- Easy to solve numerically
- Focus studies on canonical forms
- Clear relationships for stability, reachability, and observability
- Possible to design controller response as a state/output feedback controller.
- Physical impact of modelled terms may not be clear
- Difficult to evaluate performance over range of inputs

Transfer functions

- Excellent for examining system frequency response
- Poor relation to physical parameters
- Does not provide information on the transient response of the system.
 - No initial conditions information included.
- Possible to design controller response including filters and PID controllers..
- Clear relationship and design methodologies for PID controllers.

Block diagrams

- Useful to clarify system impacts in both time and frequency domain
- Allows for possibility to design controllers with a GUI (Graphic User Interface)
- Complex procedures for mapping from BDs to SS or TF.
- Other common representations are not covered in this class
 - (i.e. Signal flow graphs, Bond graphs, etc.)

Summary

- Formalized diagrams and their components
- Presented algebraic operations that allow for block diagrams to be modified and/or simplified
- Used this to derive the transfer function for a closed loop system.
- Summarize advantages and disadvantages of system representations