Performance of the basic operations (search, insert, delete a node) for a binary search tree with n nodes is proportional to the height of a binary tree h. In the worst case the running time of these operations is linear with respect to the number of nodes of the tree (=O(n)) so it is not better than using a linked list with n nodes. Using special techniques for binary search trees as for instance, AVL rotations or red-black trees, guarantees that all basic operations can be done in logarithmic running time $O(\log_2 n)$. These special techniques maintain the height of a binary tree of order $O(\log_2 n)$.

Red-black tree is a binary search tree with the following properties:

Every node in the tree is either red or black.

Every leaf node (NIL) is black.

If a node is red, then both its children are black (there are no two consecutive red nodes in the tree).

Every simple path from a node to a descendant leaf contains the same number of black nodes.

Definition.

Black-height of a node x is a number of black nodes on any path from x (but not including x) to a leaf (NIL node).

Black-height is well defined, because by the property 4 there is the same number of black nodes on any path form a node to a leaf. We denote a

black-height of a node x by bh(x). The black-height of a red-black tree is the black-height of its root.

Lemma.

A red-black tree with n internal nodes has height $\Theta(\log_2 n)$.

Proof.

Notation: bh(x) = black-height of x, h(x) = height of the red-black tree rooted at x. Note that $bh(x) \leq h(x)$,

n(x) = number of internal nodes in red-black tree rooted at x. It is not difficult to notice that $bh(x) \ge h/2$ because there cannot be more red nodes than black nodes on any path from the root to a leaf by the property 3.

Now we need to show that the subtree with the root at a node x contains at least $2^{bh(x)} - 1$ internal nodes. We can prove it by induction with respect to h(x).

Basic induction step: If x is a leaf (NIL) then h(x) = 0 and such a tree contains at least $2^0 - 1 = 0$ internal nodes.

Assume that for h(y) = k - 1 then $n(y) \ge 2^{bh(y)} - 1$.

We prove that if h(x) = k then $n(x) \ge 2^{bh(x)} - 1$.

There are two cases to consider:

x is black and its children are red.

x is red or black and its children are black.

The first case.

From the definition of the red-black tree

$$bh(c1) = bh(x)$$
 and $bh(c2) = bh(x)$

From the induction assumption

$$n(c1) \ge 2^{bh(x)} - 1$$
 and $n(c2) \ge 2^{bh(x)} - 1$

Hence

$$n(x) = n(c1) + n(c2) + 1 \ge 2 \times 2^{bh(x)} - 2 + 1 \ge 2^{bh(x)} - 1$$
 nodes

The second case.

From the definition of the red-black tree

$$bh(c1) = bh(x) - 1$$
 and $bh(c2) = bh(x) - 1$

From the induction assumption

$$n(c1) \ge 2^{bh(x)-1} - 1$$
 and $n(c2) \ge 2^{bh(x)-1} - 1$

Hence

$$n(x) = n(c1) + n(c2) + 1 \ge 2 \times 2^{bh(x)-1} - 2 + 1 = 2^{bh(x)} - 1$$
 nodes.

This proves that in any case we have at least $2^{bh(x)} - 1$ nodes.

Knowing that we the relation

$$n(x) \ge 2^{bh(x)} - 1,$$

where x is root of the red-black tree. Since we also know that $bh(x) \ge h(x)/2$ the we get

$$n(x) \ge 2^{bh(x)} - 1 \ge 2^{h(x)/2} - 1.$$

After some algebra we finally get

$$h(x) \le 2\log_2(n(x) + 1).$$

Since we know that $h(x) \ge \log_2(n(x) + 1)$ (since $n(x) \le 2^h(x) - 1$) for any binary tree, we get $h(x) = \Theta(\log_2(n(x) + 1)$.

Red-Black Tree Structures in C

```
typedef enum {red, black} Color;
typedef struct RBTNode {
   RBTNode *left, *right, *parent;
   int key;
   Color color;
   /* other fields if any */
} RBTNode;
typedef struct {
   RBTNode *root;
} RBTree;
```

Rotations

The operation **Tree-Insert**, when run on a red-black tree with n nodes, takes $O(\log_2(n))$ time. This operation may violate the red-black properties. We can restore these properties by changing colors (red \rightarrow black and black \rightarrow red) of some nodes, and by using rotations. Here we describe **Right-Rotate** operation. A rotation is a local operation which preserves the inorder key ordering of a red-black tree. The figure below shows left and right rotations.

Right Rotation

```
/* we assume that y->left != NULL */
void RightRotate(RBTree *T, RBTNode *y){
  RBTNode *x;
x = y - > left;
  y->left = x->right;/* turn x's right subtree into y's left subtree */
  if (x->right != NULL) x->right->parent = y;
  x->parent = y->parent; /* link y's parent to x */
  if (y->parent == NULL)
    T \rightarrow root = x;
 else if (y == y->parent->right)
        y->parent->right = x;
      else y->parent->left = x;
 x->right = y;
 y->parent = x;
}
```

The code for LeftRotate is similar (you need to change left \rightarrow right and right \rightarrow left). Both the rotation operations run in O(1) time. They do not copy any structures, only pointers are involved.

Inserting a Node

It is possible to insert a node in a red-black tree in $O(\log_2(n))$ time, where n is the number of nodes of the red-black tree. To establish red-black properties after inserting a new node we need to re-color nodes and perform rotations. The three main cases in the code are discussed below. Note that RBTNode is BSTNode with added color field.

```
void RBInsert(RBTree *T, RBTNode *x)
{
RBTNode *y;
TreeInsert(T, x); /* ordinary BST insertion */
x->color = red;
while (x != T->root && x->parent->color == red) {
  if (x->parent == x->parent->parent->left) {
    y = x->parent->parent->right;
  if (y != NULL && y->color == red) { /* case 1 */
```

C) Teresa Leyk Slide 9 R-B Trees

```
x->parent->color = black;
       y->color = black;
       x->parent->color = red;
       x = x->parent->parent;
} else { /* case 2 & 3 */
  if (x == x-\text{-}right) \{ /* case 2 */
       x = x-parent;
       LeftRotate(T, x);
  } /* case 3 */
       x->parent->color = black;
       x->parent->color = red;
       RightRotate(T, x->parent->parent);
  }
} else { /* see the next slide */
```

```
} else { /* x->parent == x->parent->right */
        y = x->parent->left;
        if (y != NULL && y->color == red) { /* case 1 */
          x->parent->color = black;
          y->color = black;
          x->parent->parent->color = red;
          x = x->parent->parent;
        } else { /* case 2 & 3 */
            if (x == x-\text{parent->left}) \{ /* case 2 */
            x = x->parent;
            x->parent->color = black;
         x->parent->parent->color = red;
        LeftRotate(T, x->parent->parent); }
           } /* end of while */
 T->root->color = black;
```

The inserted node x is always colored red. Note that the root of a red-black tree is always black (see the last line of the code).

TreeInsert may not preserve red-black properties, therefore we need to restore them. It is easy to notice that property 1, 2 and 4 are preserved when we add a red node. Only property 3 may be violated. And this happens only when the parent of the added node x is also red (when the parent is black we do nothing). The goal of the while loop is to move violation of property 3 up while maintaining property 4.

Case 1

At the beginning of each iteration of the while loop, x points to a red node with a red parent. Case 1 is when x's parent x->parent is red and its parent's sibling x->parent->parent->right or x->parent->parent->left (in the code it is y) is also red. The grandparent (x->parent->parent) is black. We re-color x->parent and y black, and the grandparent red. Since the parent of the grandparent may be red, we need to repeat the procedure. Therefore x is set to point to the grandparent and we need to repeat the while loop with the new node.

Case 2 and 3

We consider here only the if statement (the else statement is symmetric). In cases 2 and 3, the color of y is black. In case 2 x is a right child of x->parent, in case 3 it is a left one. In case 2 the left rotation is used to transform it to the case 3. Because x and x->parent are red, this rotation does not change property 4.

In the case 3 y is black. There are color changes for x's parent x->parent and grandparent x->parent->parent, and then right rotation with respect to x's grandparent. This still preserve property 4. Case 3 does not need any repetition since there are no any two red nodes in a row. The while loop is not executed.

Running time in case 1 can be $O(\log_2 n)$ and in cases 2 and 3 it is O(1). The total running time of RBInsert is $O(\log_2 n)$.