SACCDMM - Curs 11 Standardele de compresie H.26x

SI.Dr.Ing. Camelia FLOREA

Topicul cursului

- Formate de imagine rezoluţia
- H.261
- H.262
- H.263
- H.264

http://iphome.hhi.de/wiegand/assets/pdfs/2012_12_IE
 EE-HEVC-Overview.pdf

Formate de imagine

Resolution	Dimensions	Pixel/s at 30 frames/s	Applications
Sub-QCIF QCIF	$\begin{array}{c} 128 \times 96 \\ 176 \times 144 \end{array}$	0.37 M 0.76 M	Handheld mobile video and videoconferencing via public phone networks
CIF CCIR 601	$\begin{array}{c} 352 \times 288 \\ 720 \times 480 \end{array}$	3.04 M 10.40 M	Videotape recorder quality TV
4CIF HDTV 1440	704×576 1440×960	12.17 M 47.00 M	NTSC – for PAL – 720x576 Consumer HDTV
16CIF HDTV	1408×1152 1920×1080	48.66 M 62.70 M	Video surveillance - DVR Studio HDTV

Video surveillance - DVD applications

H.261 [Solomon07, p.703]

- 1984 CCITT (actualmente ITU-T)
 - a organizat un grup de experţi pentru dezvoltarea unui standard de videotelefonie pe ISDN:
 - transmitere de imagini, şi
 - sunet pe terminale speciale
 - => utilizatorii pot să se și vadă în timpul unei conversații telefonice
- Au fost propuse o serie de standarde de compresie:
 - H.xxx pentru componenta video \
 - G.xxx pentru componenta audio)
 - toate operează la viteza de p×64 Kbit/sec, 1≤p≤30 (64-1920Kbps)
 => numite Standardele p×64

Standard	Purpose
H.261	Video Codecul video – poate fi folosit la H.320, H.323
H.221	Communications Structura transmisiei
H.230	Initial handshake Semnalizare – inclus în H.320
H.320	Terminal systems Aplicaţii audio-video-data peste ISDN
\bigcirc H.242	Control protocol
G.711	Companded audio (64 Kbits/s)
G.722	High quality audio (64 Kbits/s)
G.728	Speech (LD-CELP @16kbits/s)

Table 6.37: The $p \times 64$ Standards.

H.323 – aplicaţii audio-video-data pe reţele comutare de pachete

- Membrii a grupului de experţi px64 au participat şi la dezvoltarea MPEG
 - => multe elemente comune ale algoritmului de codare
- Diferențe
 - MPEG
 - codorul poate fi complex, lent
 - decodorul trebuie să fie rapid, pentru operarea în timp real
 - => compresie asimetrică
 - •H.261
 - codorul si decodorul sunt rapide operare în timp real
 - Standardul defineşte:
 - structura stream-ului de date şi
 - arhitectura decodorului
 - Pentru codor orice metodă care obţine stream-ul de date...

H.261 structure

Video composed of frames

Each CIF frame composed of 12 Groups of Blocks (GOBs)

11x8 MacroBlocks

Each MB is 16x16 pixels

QCIF

CIF and QCIF Frame Formats

Each CIF frame (352x288 pixels) is composed of 12 Groups of Blocks (GOBs)

Each QCIF frame (176x144 pixels) is composed of 3 Groups of Blocks (GOBs)

GOB and MacroBlock format is identical in both frame formats.

- Fiecare macrobloc 16x16 pixeli (YUV, 4:2:0)
 - 16x16 Luma, 8x8 planurile Cr, Cb subeşantinate

H.261- codarea macroblocurilor

- Trei moduri de compresie
 - Nu se codează dacă cadrul este identic cu precedentul nu se transmite
 - Compresie intra-cadru
 - DCT, cuantizare, zigzag, RLC, Huffman JPEG
 - Compresie inter-cadru
 - Diferenţa dintre cadre
 - Se poate folosi estimarea mişcării codarea vectorilor de mişcare
 - Compresie intra-cadru DAR pe diferenţă

H.261 – codarea intra-cadru

- Codarea intra-cadru similar JPEG
 - DCT
 - Cuantizarea coeficienţilor DCT
 - Se foloseşte o singură valoare pentru cuantizare în loc de matrice de 8x8 la JPEG
 - Buclă pentru modificarea dinamică a nivelului de cuantizare pentru a menţine rata de bit
 - Ordonarea zigzag
 - RLC
 - Huffman

H.261 – codarea inter-cadre

- Proces similar cu codarea intra-cadru
- Nu avem cadre I, P, B... ca la MPEG
- Datele sunt diferenţa dintre cadre succesive

Frame 1

Frame 2

Difference: Frame 2 - 1

H.261 – mişcarea

- Mişcarea în scenă duce la creşterea diferenţei intercadru
- Se configurează un algoritm de estimare al mişcării
 - Transmite vectorul de mişcare doi întreg x, y care dau mărimea deplasării pe orizotnală şi verticală
 - Se codează diferenţa faţă de blocul deplasat (DCT, cuantizare, ... etc.)

H.261 – căutarea vectorilor de mişcare

Coding from moved part of previous image can reduce the differences

Frame 1

Frame 2

Frame 2 - 1 (lots of motion)

H.261 – căutarea vectorilor de mişcare

De unde "vine" macroblocul din cadrul anterior

H.261 – căutarea vectorilor de mişcare

- Se caută ±15 pixeli pe cele două direcţii
- Procesul cel mai complex standardul nu specifică algoritmul

H.261 – codorul intra-cadru

H.261 – codorul inter-cadru

- Asemănător cu H.261
- Performanţe în compresie ridicate 30kbps
- Flexibilitate în utilizare înlocuit în multe aplicaţii

	Lumin.	Lumin.	H.261	H.263	Uncompressed Bitrate (Mbit/s)			
Picture					10 Frame/s		30 Frame/s	
Format	Cols.	Lines	Support	Support	Gray	Color	Gray	Color
SQCIF	128	96	No	Yes	1.0	1.5	3.0	4.4
QCIF	176	144	Yes	Yes	2.0	3.0	6.1	9.1
CIF	352	288	Optional	Optional	8.1	12.2	24.3	36.5
4CIF	704	576	No	Optional	32.4	48.7	97.3	146.0
16CIF	1408	1152	No	Optional	129.8	194.6	389.3	583.9

- Prima versiune H.263 1995 4 modele de codare opţionale
- Vectorii de mişcare se calculează pentru precizie ½ pixel faţă de 1 pixel la H.261
- Versiunea v2 1998 / H.263+ sau H.263.++
 - Se adaugă alte modele de codare la cele 4
 - + suportă anumite codecuri
 - ++ suportă toate codecurile

- Un macrobloc format din 4 blocuri de Y şi 2 de croma 8x8 pixeli
- GOB
 - tot rândul de macroblocuri pentru SQCIF, QCIF, CIF
 - 2 rânduri de macroblocuri pentru 4CIF – 32 pixeli
 - 4 rânduri de macroblocuri pentru 16CIF – 64 pixeli
- Structura asemănătoare H.261
 - Imagine
 - GOB
 - Macrobloc
 - Bloc 4 luminanţă, 2 croma

- Dezvoltat de ISO/IEC MPEG + ITU-VCEG
- Scop
 - Îmbunătățirea eficienței codării
 - Suport pentru aplicaţii speciale: videoconferinţă, stocare DVD, video broadcasting, video streaming
 - Fiabilitate

- 2001 ITU demarează 2 proiecte
 - Noul H.263 (versiunea a 2-a a H.263)
 - Un nou standard H.26L
 - Aprobat în 2003 cu modificări în 2004
 - Mai multe nume
 - H.264 ITU (numele oficial este AVC Advanced Video Coding)
 - MPEG-4 part 10 ISO
 - H.264 are o rată de 1.5 Mbps faţă de 3.5 Mbps la MPEG2