Week 8: MDP and Value Iteration

COMP90054 – Al Planning for Autonomy

Key concepts

- Markov Decision Processes (MDPs)
- Solving MDPs:
 - Value Iteration

Classical	Planning vs.	MD the	PS cost
	•		

ainto maximise the reward.

Classical Planning	Markov Decision Processes (MDPs)
Set of states S	Set of states S ✓
Initial state s_0	Initial state s_0
Action A(s)	Action A(s)
Transition function $s' = f(a, s)$	Transition probabilities $P_a(s' s)$
Goals $S_G \subseteq S$	Reward function r(s, a, s') (positive or
Action costs c(a, s)	negative)
	Discount factor $0 \le \gamma \le 1$ (prefer

 (S_0) (S_1)

shorter plans over longer plans)

non-deterministic

Task 1: Model the Grid MDP example with a formal discounted-reward

MDP model

Task 1: Model the Grid MDP example with a formal discounted-reward MDP model $s, s_0, A(s), P_a(s'|s), r(s, a, s'), \gamma$

except:

$$A((3,27) = \{exit\}$$

 $A((3,17) = \{exit\}$

Task 1: Model the Grid MDP example with a formal discounted-reward MDP model

Task 1: Model the Grid MDP example with a formal discounted-reward

MDP model

Solving MDPs?

Bellman equations

For discounted-reward MDPs the Bellman equation is defined recursively as:

C
$$Q(s,a) = \sum_{s' \in S} P_a(s'|s) [r(s,a,s') + \gamma) V(s')]$$

the probability reward guture reward of action α

maximise the Q-value.

$$V(s) = \max_{a \in A(s)} Q(s, a)$$

expected value of being in states and acting optimally

Solving MDPs? Value Iteration

- Set V_0 to arbitrary value function; e.g., $V_0(s) = 0$ for all s.
- Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Consider two football-playing robots: Messi and Suarez.

They play a simple two-player cooperate game of football, and you need to write a controller for them. Each player can pass the ball or can shoot at goal.

The football game can be modelled as a discounted-reward MDP with three states: Messi, Suarez (denoting who has the ball), and Scored (denoting that a goal has been scored); and the following action descriptions:

- If Messi shoots, he has 0.2 chance of scoring a goal and a 0.8 chance of the ball going to Suarez. Shooting towards the goal incurs a cost of 2 (or a reward of -2).
- If Suarez shoots, he has 0.6 chance of scoring a goal and a 0.4 chance of the ball going to Messi. Shooting towards the goal incurs a cost of 2 (or a reward of -2).
- If either player passes, the ball will reach its intended target with a probability of 1.0. Passing the ball incurs a cost 1 (or a reward of -1).
- If a goal is scored, the only action is to return the ball to Messi, which has a probability of 1.0 and has a reward of 2. Thus the reward for scoring is modelled by giving a reward of 2 when **leaving** the goal state.

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	teration 3
V(Messi)	0			
V(Suarez)	0			
V(Scored)	0			

The following diagram shows the transition probabilities and rewards:

$$\gamma = 1$$

Iteration 0: Set $V_0(s) = 0$ for all s

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	(-1)		
V(Suarez)	0			
V(Scored)	0			

Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) \left[r(s, a, s') + \gamma \ V_i(s') \right]$$

$$Q \left(\varsigma, \alpha \right).$$

Iteration 1: $V_1(Messi)$

pass

:
$$V_1(Messi)$$

$$Q(Messi, shoot) = P_{shoot}(Suarez | Messi) [r(Messi, shoot, Suarez) + 8) (Suarez)$$

s = Messi

s' = Suarez/Scored

a = shoot/pass

$$\gamma = 1$$

+ P_{Shoot} (Scored Messi) [r (Messi, shoot, Shoot) + V (Shored)] 0.8 [-2+1×0] + 0.2[-2+1×0]=(-2)

Q (Messi, pass) = Ppass (Swaret Messi) [r (Messi, pass, Swaret) + VV (Swaret)]

= 1 x [That Let 1 x 0] = (-1.) 7 max 12

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1		
V(Suarez)	0	-1		
V(Scored)	0			

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 1: $V_1(Suarez)$

shoot

pass

The following diagram shows the transition probabilities and rewards:

s = Suarez

s' = Messi/Scored

a = shoot/pass

$$\gamma = 1$$

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1		
V(Suarez)	0	-1		
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

Iteration 1: $V_1(Scored)$

return

The following diagram shows the transition probabilities and rewards:

s = Scored

s' = Messi

a = return

$$\gamma = 1$$

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1		
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 2: $V_2(Messi)$

shoot

pass

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2		

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 2: $V_2(Suarez)$

shoot

pass

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2	1	

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 2: $V_2(Scored)$

return

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	
V(Scored)	0	2	1	

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma V_i(s')]$$

Iteration 3: $V_3(Messi)$

t Pshoot (Sured IM) [r(M, shoot, S) + $\forall V$ (Suarez)] + Pshoot (Sured IM) [r(M, shoot, Swored) + $\forall V$ (Swored)] = 0.8 [-2+1x(-1.2)]+0.2[-2+1x(1)]

Ppass (Suarez/M)[r(M, pass, S)+&V (Swarez) = 1x[-1+1x]

Shoot P(0.6)

r = -2

Scored

Shoot P(0.8)

Shoot P(0.4

Return P(1.0)

Shoot P(0.2

Workshop Problem

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	(-2)	-2.2
V(Suarez)	0	-1	-1.2	-2.2!
V(Scored)	0	2	1)	

Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	-2.2
V(Scored)	0	2	1	Q

■ Set V_{i+1} to result of Bellman's **right hand side** using V_i in place of V:

$$V_{i+1}(s) := \max_{a \in A(s)} \sum_{s' \in S} P_a(s'|s) [r(s, a, s') + \gamma \ V_i(s')]$$

The following diagram shows the transition probabilities and rewards:

Iteration 3:
$$V_3(Scored)$$

• return Preturn (Messi | Scored) $\left[r\left(Scored, return, Messi\right) + 8V\left(Messi\right)\right]$
 $= 1 \times \left[2 + 1 \times (-2)\right] = 0$

The following diagram shows the transition probabilities and rewards:

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0	-1	-2	-2.2
V(Suarez)	0	-1	-1.2	-2.2
V(Scored)	0	2	1	0

If we only have 3 iterations, what actions did we take to maximise the reward?

Messi Pass Suarez Shoot Scored Return actions have the man Q-value

	Iteration 0	Iteration 1	Iteration 2	Iteration 3
V(Messi)	0 <		-2	-2.2
V(Suarez)	(0)_	→ (-1)	-1.2	-2.2
V(Scored)	0	ے (2	1	0

When to stop the iteration?

The iteration is stopped when Δ reaches some pre-defined threshold θ

(when the largest change in the values

between iterations is "small enough") . Iter 1: $\Delta = \max(|-1-0|, |-1-0|, |2-0|) = 2$.

o Iter 2; $\Delta = \max(|-2+1|, |-1.2+1|, |1-2|) = 1$.

A= 0,001

$$(|2-0|) = 2$$

$$|-1.2+1|, |1-2|) = \frac{1}{2}$$

