

Faster, Cheaper, Safer

Autonomous Inspections Are The Future

Interns:

Kyle Enos, Eric Bermudez, and Amy Song

Navy Mentor: Kyle Abrahamsen (NAVFAC EXWC)

UCSB Mentor: Bryce Ferguson

Program Name:

Pier Structure from Motion Utilizing Unmanned Aerial Systems

What makes this project important?

- Piers are areas of extreme traffic
 - Commercial and Recreational
- Damage can be hard to locate
- Inspectors are at risk of possible injury
 - 120 Fatal accidents at pier and bridge worksites every year

- What do piers effect?
 - Shipping and receiving
 - Beach safety
 - Commercial businesses
 - Industrial businesses (seafood)
 - Oceanic travel

Why UAS?

Drones vs Humans:

Faster: Aerial mobility allows for faster inspection.

Cheaper: Allows for a team of 6 to be reduced to a team of 2

Safer: Current pier inspections involve sometimes dangerous expeditions via. Kayak

Why hasn't it been done already:

- Drones have trouble navigating over large bodies of water
- Most Drones Rely on GPS navigation
- 3D model needs geolocated photos

What makes it practical:

- Autonomous, less money, faster work, less danger

What we aim to accomplish!

Goal for the project:

 Create 3D models of pier structures using drone imaging for inspections

Goal for us this summer:

- Decide a drone for the data capture
- Experiment with photogrammetry software
- Look into the possibility of computer vision as an aid

How did we benefit the overall project:

- Outlined steps for image processing
- Identified viable algorithms for image classification

Design Requirements & Constraints

Requirements:

- Photogrammetry Software
 - Pix4D
 - Bentley Context-Capture
- Complete coverage without the use of GPS geolocation
- Software that analyzes defects in large data sets
 - Past algorithms
 - Computer Vision

Constraints:

- <u>Increasing quality = Increasing time</u>
- Quality of image reflected in 3D model
- Number of images
- Quality vs Time to process and analyze
- Resolution directly effects inspection ability
- False positives

5 Attempt	Advantages	Disadvantages
Photogrammetry	 Widely adaptable Pre-existing applications (Pix4D, Bentley CC, Drone2Map) Easy to detect thermal differences 	 Meshes are not detailed Takes long to process especially with large data sets Hard to detect defects with 3D mesh
Computer Vision	Detect detailed defectsOnly need to train once	 Training datasets need to expand a large number of items Training takes long "Less" developed for users

Our Proposed Solution

Objective:

- Identify necessary hardware and software for SFM
- Look into fault detection using computer vision

Solution:

- Drone that doesn't need GPS
 - Skydio X2D
 - Skydio 3D (Map Software)
- Photogrammetry Software
 - Pix4D
- Computer Vision Algorithms
 - Using CNN, Tensorflow

Results

What we have accomplished:

- Generated 3D models of NAVFAC facilities
- Identified Skydio UAS as a solution
- Established photogrammetry processing workflow

What We Have Learned:

- Photo location and angles matter
- Geolocation vs Manual Control Points (MCP)
- Computer Vision can act as a filter to screen for defects before we create a model

What is next for this project:

- Testing multiple types of GPS denied environments
- Run tests using Skydio X2D
- See if we could include ROV data to get a complete model of a Pier
- Implement computer vision algorithms to detect defects

Questions?

