第五周习题课 曲面, 曲线, Taylor 公式, 无条件极值

- 求曲面 $S: 2x^2 2y^2 + 2z = 1$ 上切平面与直线 $L: \begin{cases} 3x 2y z = 5 \\ x + y + z = 0 \end{cases}$ 平行的切点 的轨迹。
- 证明球面 $S_1: x^2 + y^2 + z^2 = R^2$ 与锥面 $S_2: x^2 + y^2 = a^2 z^2$ 正交. 例 2.
- **例 3.** 通过曲面 $S: e^{xyz} + x y + z = 3$ 上点 (1, 0, 1) 的切平面 ()
- (A)通过 y 轴; (B) 平行于 y 轴;
- (C)垂直于y轴; (D) A, B, C都不对.
- **例 4.** S 由方程 $ax + by + cz = G(x^2 + y^2 + z^2)$ 确定, 试证明: 曲面 S 上任一点的法线 与某定直线相交。
- 在椭球面 $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{c^2} = 1$ 上求一点,使椭球面在此点的法线与三个坐标轴的正向 成等角。

6.

求螺线
$$\begin{cases} x = a \cos t \\ y = a \sin t; \quad (a > 0, c > 0), 在点 M(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}, \frac{\pi c}{4}) & \text{处的切线与法平面.} \\ z = ct \end{cases}$$

二. Taylor 公式

例1函数 x^y 在 x=1, y=0 点的二阶 Taylor 多项式为 ______

例 2 函数 $f(x,y) = \frac{\cos x}{v+1}$ 在点 (0,0) 的带 Lagrange 余项的 Taylor 展开式为

例 3 二元函数 $\sin(xy)$ 在点 (1,1) 处的二阶 Taylor 多项式为_____

例 4 $x + y + z + xyz^3 = 0$ 在点 (0,0,0) 邻域内确定隐函数 z = z(x,y). 求 z(x,y) 在原点的带 Peano 余项的二阶 Taylor 公式.

三. 极值

例 5 设可微函数 f(x, y) 在 (x_0, y_0) 取得极小值,则下列结论正确的是?

- (A) $f(x_0, y)$ 在 $y = y_0$ 处导数大于零; (B) $f(x_0, y)$ 在 $y = y_0$ 处导数等于零;
- (C) $f(x_0, y)$ 在 $y = y_0$ 处导数小于零; (D) $f(x_0, y)$ 在 $y = y_0$ 处导数不存在.

例 6 已知函数 f(x, y)在 (0, 0) 某个邻域内连续,且 $\lim_{(x,y)\to(0,0)} \frac{f(x,y)-xy}{(x^2+y^2)^2}=1$,则

- (A) 点 (0, 0) 不是 f(x, y) 的极值点; (B) 点 (0, 0) 是 f(x, y) 的极大值点;
- (C) 点 (0, 0) 是 f (x, y) 的极小值点; (D) 根据所给条件无法判断 (0, 0) 是否 f (x, y) 的极值点;

例 7 函数 z(x,y) 在有界闭区域 D 上连续,在 D 内部偏导数存在,z(x,y) 在 D 的边界上的值

为零, 在
$$D$$
 内部满足 $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = f(z)$, 其中 f 是严格单调函数, 且 $f(0) = 0$,

证明 $z(x, y) \equiv 0$, $((x, y) \in D)$.

例 8 求函数
$$z = (x^2 + y^2)e^{-(x^2 + y^2)}$$
的极值.

例 9 (隐函数的极值)设 z = z(x,y) 由 $2x^2 + 2y^2 + z^2 + 8xz - z + 8 = 0$ 确定,求该函数的极值.