BIOF1001 - Cancer epidemiology

true

2022-11-15

1. Scenario

You are a grants officer working for the Hong Kong Health Bureau. The HK government has recently announced new special funding in cancer research to be administered by the Bureau. You are tasked with coming up with a proposal for distribution of funding to specific cancer types that are in most need of research.

Discussion points:

- What is important to consider when selecting a cancer type in need of research?
- What type of data is required?

2. Hong Kong population

You are aware that generally cancer is disease that affects the elderly more than the young. You decide to first take a closer look at the structure of the population of Hong Kong.

Historic population of Hong Kong can be obtained from the Census and Statistics Department.

An abridged version of the full historic population of Hong Kong is provided here containing the population of Hong Kong from 1965, 1975, 1985, 1995, 2005, 2015 and 2022 categorised by sex and age (0-19, 20-44, 45-64, 65+).

Discussion points:

- What is the trend in Hong Kong's population over the past ~60 years?
- What is the best way to visualise this data?

Download population data

```
HKPop<- read.table("https://github.com/StatBiomed/BMDS-book/raw/main/notebooks/module5-epidemi/HK_popul
    sep = "\t", header = TRUE, stringsAsFactor=FALSE, check.names = FALSE)
HKPop</pre>
```

```
Age 1965 1975
##
                              1985
                                     1995
                                            2005
                                                   2015
## 1
      male 0-19 901.9 989.7
                             909.0
                                    835.6
                                           719.0
                                                  613.8
      male 20-44 607.4 795.6 1210.2 1363.7 1263.7 1146.9 1039.2
      male 45-64 266.5 414.3 525.9
                                    615.7
                                           896.6 1084.9 1046.2
## 4
             65+ 42.2 84.6 170.5 269.3 384.7 520.0 713.6
      male
```

```
## 5 female 0-19 865.6 938.8 840.3 780.7 684.1 575.0 502.1 ## 6 female 20-44 539.3 685.6 1093.7 1423.6 1530.4 1531.8 1338.7 ## 7 female 45-64 286.3 400.7 470.7 535.0 884.7 1224.3 1314.7 ## 8 female 65+ 88.7 152.3 235.9 332.5 450.0 594.6 806.5
```

Format data for plotting

3 1985 0-19

4 1995 0-19

5 2005 0-19

6 2015 0-19

7 2022 0-19

Here we convert the original dataframe into simplified format for ggplot2.

```
male<-data.frame(year = as.numeric(colnames(HKPop[1,3:9])),</pre>
                 0-19 = as.numeric(HKPop[1,3:9]),
                ^{20-44} = as.numeric(HKPop[2,3:9]),
                ^{45-64} = as.numeric(HKPop[3,3:9]),
                ^{65+} = as.numeric(HKPop[4,3:9]),
                check.names = FALSE)
female<-data.frame(year = as.numeric(colnames(HKPop[1,3:9])),</pre>
                0-19 = as.numeric(HKPop[5,3:9]),
                ^220-44^2 = as.numeric(HKPop[6,3:9]),
                 ^{45-64} = as.numeric(HKPop[7,3:9]),
                ^{65+} = as.numeric(HKPop[8,3:9]),
                check.names = FALSE)
if (!require("tidyverse")) install.packages("tidyverse")
## Loading required package: tidyverse
## -- Attaching packages ------ tidyverse 1.3.2 --
## v ggplot2 3.4.0 v purrr 0.3.5
## v tibble 3.1.8
                     v dplyr 1.0.10
## v tidyr 1.2.1 v stringr 1.4.1
## v readr 2.1.3 v forcats 0.5.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
male<-as_tibble(male) %>% select(year, `0-19`, `20-44`, `45-64`, `65+`) %>% gather (key="age", value="popula
female<-as_tibble(female) %>% select(year, `0-19`, `20-44`, `45-64`, `65+`) %>% gather (key="age", value="po
male
## # A tibble: 28 x 3
##
      year age
                  'population ('000s)'
##
      <dbl> <chr>
                                <dbl>
## 1 1965 0-19
                                 902.
## 2 1975 0-19
                                 990.
```

909

836.

719

614.

531.

```
## 8 1965 20-44 607.

## 9 1975 20-44 796.

## 10 1985 20-44 1210.

## # ... with 18 more rows
```

female

```
## # A tibble: 28 x 3
                'population ('000s)'
##
      year age
##
      <dbl> <chr>
                                <dbl>
##
   1 1965 0-19
                                 866.
## 2 1975 0-19
                                 939.
## 3 1985 0-19
                                 840.
## 4 1995 0-19
                                 781.
## 5 2005 0-19
                                 684.
## 6 2015 0-19
                                 575
## 7 2022 0-19
                                 502.
## 8 1965 20-44
                                 539.
## 9 1975 20-44
                                 686.
## 10 1985 20-44
                                1094.
## # ... with 18 more rows
```

Plotting population data

geom_point(aes(color=age))+

theme(legend.position="none")+

theme_classic()+
ylim(0,1600)+

ggtitle("male")

scale_color_brewer(palette="Spectral")+

scale_x_continuous(breaks = seq(1965, 2022, by = 10))+

pfemale<-ggplot(female,aes(x=year,y=`population ('000s)`,group=age))+</pre>

Uses ggplot2 and gridExtra to make line plot of male and female population data side-by-side.

```
if (!require("ggplot2")) install.packages("gglot2")
if (!require("gridExtra")) install.packages("gridExtra")

## Loading required package: gridExtra

##
## Attaching package: 'gridExtra'

## The following object is masked from 'package:dplyr':
##
## combine

library(ggplot2)
library(gridExtra)

#Import the necessary packages and libraries
pmale<-ggplot(male,aes(x=year,y=`population ('000s)`,group=age))+
    geom_line(aes(color=age))+</pre>
```

```
geom_line(aes(color=age))+
geom_point(aes(color=age))+
scale_color_brewer(palette="Spectral")+
theme_classic()+
ylim(0,1600)+
theme(legend.position="right",axis.title.y = element_blank())+
scale_x_continuous(breaks = seq(1965, 2022, by = 10))+
ggtitle("female")
grid.arrange(pmale,pfemale,ncol=2,widths=c(3,3.75))
```


3. Cancer registry data

It is clear that Hong Kong has an aging population, thus cancer incidence would also likely increase. To examine cancer incidence and mortality in Hong Kong you obtain data from the Hong Kong Cancer Registry, which is maintained by the Hospital Authority.

Cancer incidence data was summarised for the last three decades (1990-1999, 2000-2009 and 2010-2019).

Discussion points:

- Has incidence been increasing for most cancers? How about mortality?
- How has cancer risk and mortality rate changed in the past 3 decades?
- Has the incidence-to-mortality ratio been decreasing generally? Is it statistically significant?

• Which cancer type has the highest incidence in children (0-19) when compared with the elderly (65+). Is this statistically significantly different to incidence of children versus elderly cancers in general?

Download cancer registry data

```
HKCancer<- read.table("https://github.com/StatBiomed/BMDS-book/raw/main/notebooks/module5-epidemi/HK_car
sep = "\t", header = TRUE, stringsAsFactor=FALSE)
HKCancer</pre>
```

##		Туре	Sex	Age	Year	Biliary	Bladder	Brain	Breast	Cervix
##	1	incidence	male	0-19	1990-1999	0	6	212	0	0
##		incidence			1990-1999	36	165	368	6	0
##	3	incidence	male	45-64	1990-1999	322	1266	393	28	0
##	4	incidence	male	65+	1990-1999	830	2920	318	35	0
##	5	incidence	male	0-19	2000-2009	0	2	206	0	0
	6	incidence			2000-2009	31	103	267	9	0
	7	incidence	male	45-64	2000-2009	297	900	372	52	0
	8	incidence	male		2000-2009	1134	3103	299	96	0
##	9	incidence	male	0-19	2010-2019	0	2	155	0	0
##	10	incidence	male	20-44	2010-2019	28	18	276	14	0
##	11	incidence	male	45-64	2010-2019	530	648	511	72	0
##	12	incidence	male	65+	2010-2019	1568	2399	380	107	0
##	13	incidence	female	0-19	1990-1999	0	2	149	6	0
##	14	incidence	female	20-44	1990-1999	52	62	283	4228	1263
##		incidence				246	246	238	5311	1839
##		incidence		65+	1990-1999	909	1199	284	4122	1574
##	17	incidence	female	0-19	2000-2009	0	0	132	4	4
##		incidence				34	39	223	5887	1204
##	19	incidence	female	45-64	2000-2009	287	179	265	11833	1676
##	20	incidence	female	65+	2000-2009	1190	1090	237	5774	1329
##	21	incidence	female	0-19	2010-2019	0	2	119	1	0
##	22	incidence	female	20-44	2010-2019	36	17	223	6658	1294
##	23	incidence	female	45-64	2010-2019	452	188	394	22096	2288
##	24	incidence	female	65+	2010-2019	1500	872	283	10337	1269
##	25	${\tt mortality}$	male	0-19	1990-1999	0	0	76	0	0
##	26	${\tt mortality}$	male	20-44	1990-1999	14	6	156	0	0
##	27	${\tt mortality}$	male	45-64	1990-1999	169	240	268	5	0
##	28	${\tt mortality}$	male	65+	1990-1999	548	1036	240	13	0
##	29	${\tt mortality}$	male	0-19	2000-2009	0	0	63	0	0
##	30	${\tt mortality}$	male	20-44	2000-2009	10	9	99	1	0
##	31	${\tt mortality}$	male	45-64	2000-2009	111	175	205	3	0
##	32	mortality	male	65+	2000-2009	592	1209	209	26	0
##	33	mortality	male		2010-2019	1	0	28	0	0
##	34	mortality	male	20-44	2010-2019	5	4	107	2	0
##	35	mortality	male		2010-2019	181	166	288	8	0
##	36	mortality	male	65+	2010-2019	595	1272	206	25	0
##		${\tt mortality}$			1990-1999	0	0	59	0	0
##	38	${\tt mortality}$	female	20-44	1990-1999	20	6	104	644	193
##	39	${\tt mortality}$	female	45-64	1990-1999	141	40	113	1284	494
##	40	${\tt mortality}$	female		1990-1999	663	486	197	1504	748
		${\tt mortality}$			2000-2009	0	0	42	0	0
##	42	${\tt mortality}$	female	20-44	2000-2009	12	3	77	691	162

		mortality						31 14		415	
		mortality			2000-2009			158		670	
		mortality			2010-2019			0 29		0	
		mortality						2 6		167	
		mortality						51 196 534 174		622 709	
	40	mortality Coloractum			2010-2019						Lung
## ##	1	Colorectum 15	-	odkin	. тушриоша 35	Naposi r	raney 24	Larynx 1	356	58	Lung 6
	2	1087			64	0	141	86	509	1741	1036
	3	4644			47	0	530	824	453	5702	8420
	4	8058			41	0	721	1265	623		15152
	5	5			32	0	20	0	329	33	3
	6	957			119	9	221	37	437	1116	772
	7	6418			77	4	1071	658	642	6015	7909
	8	13352			77	8	1275	1125	864		18870
	9	6			53	0	31	0	338	24	2
	10	1005			163	25	293	29	401	659	541
	11	10034			87	18	1978	684	1033	6500	9523
##	12	18003	3 15		114	12	1977	1043	1381		20588
##	13	2			10	0	25	0	296	37	7
##	14	932	2 11		61	0	98	13	393	353	597
##	15	3166	9		19	0	256	59	312	1093	2629
##	16	7728	3 16		33	0	503	130	534	2244	8428
##	17	5	5 14		30	0	15	0	219	13	5
##	18	938	3 12		122	2	120	5	405	212	625
##	19	4430	10		33	0	482	37	469	1041	3397
##	20	10810	8		35	0	830	85	723	2637	9517
##	21	5	5 14		32	0	19	0	237	21	0
##		1057			174	0	135	7	443	168	647
##		7200			58	4	887	47	786	1168	6312
##		13119			58	5	1203	84	913		10872
##		10			0	0	2	0	120	36	1
##		347			11	0	47	16	297	1059	605
##		1708			12	0	208	248	296	4118	5828
##		3969			16	0	385	575	471		12819
## ##	29	289 289			0 9	0 1	2 34	0 7	81 209	19 777	0 514
##		2116			11	0	312	160	378	4432	
##		6541			23	1	628	501	766		17272
	33	1			0	0	3	0	62	11	
	34	221			2	4	36	6	152	405	
##		2950			11	2	447	151	491	4291	
##		8484			35	0	895	426	1138		18695
##	37	1			0	0	4	0	93	15	2
##	38	302			3	0	22	0	215	187	379
##	39	1100) 1		1	0	81	14	212	737	
##	40	3633	3		11	0	265	49	452	1915	7182
##	41	1	. 2		1	0	1	0	46	4	2
##	42	266	6		5	0	23	1	165	143	383
##	43	1341	. 5		4	0	127	9	288	717	2163
##		5204	1		14	0	467	46	655	2712	8732
##		4			1	0	2	0	42	6	2
##		218			5	0	14	0	145	92	304
##	47	1955	5 0		7	1	166	2	311	759	3460

##	48	664	40 0	15 0	564	Ļ	32	78	31 3	3315	9399
##		Melanoma	Mesothelioma	Multiple.myeloma	Nasal	Nasop	pharyna				
##	1	3	0	1	4		33	3			
##	2	50	0	43	53		3049	9			
##	3	82	0	210	109		3724	1			
##	4	107	0	421	120		1212				
##		1	0	1	7		16				
##		41	5	38	38		2114				
##		98	34	326	161		3750				
##		137	77	674	137		1177				
##		0	0	0	3		21				
##		47	4	26	41		1339				
##		186	51	525	174		3653				
##		195	154	910	154		1207				
##		2	0	1	1		1300				
##		44	0	19	31		1380				
##		58 102	0	150	57		1157				
## ##		102 2	0	417 0	93 5		536 6				
##		41	8	21	36		942				
##		102	12	185	74		1187				
##		118	14	559	92		465				
##		3	0	0	6		6				
##		70	10	24	37		583				
##		128	34	399	105		1145				
##		179	24	636	102		389				
##		2	0	0	0		6				
##		17	0	18	11		771				
##	27	46	0	122	42		1673	3			
##	28	72	0	297	55		735	5			
##	29	0	0	0	1		2	2			
##	30	16	5	17	9		452	2			
##	31	55	24	137	32		1551				
##		85	54	493	62		867				
##		0	0	0	0		2				
##		12	0	5	2		239				
##		79	38	190	50		1413				
##		128	140	571	60		812				
##		0	0	0	0		246				
##		14	0	7	7		242				
##		25	0	74	12		421				
## ##		50	0	273 0	49 0		302				
##		1 11	3	6	5		159				
##		49	9	88	14		385				
##		89	16	388	40		305				
##		1	0	0	0		1				
##		23	7	4	1		77				
##		73	13	101	17		345				
##		120	23	456	36		268				
##	-			Non.melanoma.skin		agus			Pan	creas	Penis
##	1	8	137	8	1	0	18	0		4	2
##			596	211		158	324	0		106	19
##	3		997	613		1873	1165	0		514	78

##	1		10	210	968	2203	1055	0	887	184
##				.11	4			0	1	0
##				154	220			0	71	18
##	_			216	917		1354	0	780	71
##				756	1835		1416	0	1440	199
##	-			.06	1			0	1	0
##				.87	291			0	109	21
##				910	1782		1941	0	1402	154
##				333	2975		1813	0	2302	279
##				75	2			77	2	0
##				44	156			854	60	0
##	15		5	594	374			970	290	0
##	16			.20	1249	761	485	776	875	0
##	17			43	4	1		108	0	0
##	18			61	182	13	254	1299	62	0
##	19			888	580	190	454	1846	461	0
##	20			109	2476	725	768	891	1329	0
##	21			57	4	0	9	84	3	0
##	22		4	75	303	16	259	1466	92	0
##	23		15	61	1168	174	920	3166	923	0
##			18	883	3268	624	1091	1128	2101	0
##	25			25	0	0	1	0	3	0
##	26		1	.79	4	86	79	0	78	3
##	27			880	18	1341	501	0	476	10
##			6	551	47	1652	545	0	918	31
##				17	0	0		0	0	1
##				.45	5			0	49	3
##				61	21			0	680	9
##				.19	72			0	1339	43
##				15	0	0		0	0	0
##				83	2			0	60	1
##				42	25	914		0	1100	18
##				173	93		824	0	2191	39
##				16	1			1	1	0
##				.18	2	12		139	33	0
## ##				.94 305	6 42	118 505	75 193	431 520	266 875	0
##			C	8	2	0	193	320	0	0
##			1	.04	3	9	40	155	42	0
##				256	4	103	100	601	382	0
##				895	72	585	297	649	1317	0
##				5	0	0	2	1	0	0
##				81	1	5	32	167	50	0
##				312	16	93	170	1056	713	0
##	48			.33	72	518	400	879	2075	0
##		Placenta			Small.intest					i
##	1	0	0	137		0 5		•	12 22	
##	2	0	10	320		31 429	27		71 250	
##	3	0	481	281		102 1990	8		70 288	
##	4	0	3073	261		131 3634	12		59 194	
##	5	0	0	118		0 6			16 21	
##	6	0	6	307		34 331	39		96 333	
##	7	0	1588	367		113 1954			37 447	
##	8	0	8676	316		163 4256	4	4 9	94 278	3

##	9	0	1	110	1	2	53	23	17
##	10	0	18	299	46	192	587	68	496
##	11	0	4128	527	293	2158	100	137	834
##	12	0	14703	507	336	4720	15	85	424
##	13	1	0	128	1	1	0	3	80
	14	13	0	283	22	492	0	38	1294
	15	0	0	232	53	826	0	38	788
	16	0	0	232	116	2319	0	38	479
	17	0	0	105	0	2	0	1	81
	18	8	0	322	24	379	0	64	1659
	19	3	0	300	80	971	0	116	1570
	20 21	0	0	247 86	153 1	2512 0	0	65 5	595 103
	22	12	0	330	38	318	0	30	2291
	23	3	0	509	221	1653	0	81	3200
	24	0	0	351	251	2809	0	67	940
	25	Ö	0	41	1	0	2	7	1
	26	0	3	98	8	220	23	28	4
	27	0	131	99	40	1074	5	38	34
##	28	0	1158	153	53	2452	15	49	70
##	29	0	0	30	0	1	1	2	0
##	30	0	2	94	6	140	9	21	10
##	31	0	160	116	34	1046	5	42	35
	32	0	2299	161	89	2814	8	58	101
	33	0	0	27	0	0	1	2	1
	34	0	3	89	4	97	11	20	6
	35	0	279	209	57	996	4	81	45
	36	0	3638	336	151	2955	2	74	151
	37	0	0	39	0	1	0	2	0
	38 39	7 0	0	68 97	6 15	269 451	0	9 11	10 47
	40	0	0	97 149	52	1544	0	38	175
	41	0	0	29	0	0	0	0	0
	42	4	0	65	6	210	0	13	8
	43	1	0	106	26	561	0	32	40
	44	0	0	152	95	1712	0	44	215
##	45	0	0	20	0	0	0	0	1
##	46	4	0	82	1	158	0	12	6
##	47	3	0	219	35	731	0	43	44
##	48	0	0	236	109	1818	0	50	211
##		Uterus Vul	va						
##		0	0						
##		0	0						
##		0	0						
## ##		0	0						
##		0	0						
##		0	0						
##		0	0						
##		0	0						
##		0	0						
##		0	0						
##	12	0	0						
##	13	2	1						

```
478
## 14
                 49
## 15
         1362
                 96
## 16
         729
                235
## 17
            2
                  2
## 18
         821
                 44
## 19
        3071
                147
## 20
         1130
                336
## 21
            3
                  1
## 22
         1165
                 57
## 23
        6582
                235
## 24
         1864
                486
## 25
            0
                  0
## 26
            0
                  0
## 27
            0
                  0
## 28
            0
                  0
## 29
            0
                  0
## 30
            0
                  0
## 31
            0
                  0
## 32
            0
                  0
## 33
            0
                  0
## 34
            0
                  0
## 35
            0
## 36
            0
                  0
## 37
            0
                  0
## 38
           18
                  4
## 39
         119
                 22
## 40
          149
                 71
## 41
            0
                  0
## 42
           23
                 16
## 43
          198
                 53
## 44
          205
                133
## 45
           0
                  0
## 46
           43
                 18
## 47
          517
                107
## 48
          432
                197
```

3a. Visualise changes in incidence and mortality

```
# first plot incidence for each cancer type

#Import the necessary packages and libraries
if (!require("ggplot2")) install.packages("gglot2")
if (!require("gridExtra")) install.packages("gridExtra")
if (!require("ggpubr")) install.packages("ggpubr")

## Loading required package: ggpubr

library(ggplot2)
library(gridExtra)
library(ggpubr)

HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]</pre>
```

```
p<-list()</pre>
for (i in 1:(ncol(HKCancer_inc)-4)){
  p[[i]] <-ggplot(HKCancer_inc,aes_string(fill=names(HKCancer_inc)[3],x=names(HKCancer_inc)[4],
                                         y=names(HKCancer_inc)[i+4],group=names(HKCancer_inc)[3]))+
       geom_bar(position="dodge",stat="identity")+
       facet_wrap(~Sex) +
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
       theme(text = element_text(size = 10))+
       ggtitle(names(HKCancer_inc)[i+4])+
       ylab("Incidence")
}
## Warning: 'aes_string()' was deprecated in ggplot2 3.0.0.
## i Please use tidy evaluation ideoms with 'aes()'
do.call('grid.arrange',c(p,ncol=3,nrow=12))
```



```
# now plot mortality for each cancer type
#Import the necessary packages and libraries
if (!require("ggplot2")) install.packages("gglot2")
if (!require("gridExtra")) install.packages("gridExtra")
if (!require("ggpubr")) install.packages("ggpubr")
library(ggplot2)
library(gridExtra)
library(ggpubr)
HKCancer_mort <- HKCancer[HKCancer$Type=='mortality',]</pre>
p<-list()
#(ncol(HKCancer_inc)-4)
for (i in 1:(ncol(HKCancer_mort)-4)){
 p[[i]] <-ggplot(HKCancer_mort,aes_string(fill=names(HKCancer_mort)[3],x=names(HKCancer_mort)[4],
                                          y=names(HKCancer_mort)[i+4],group=names(HKCancer_mort)[3]))+
       geom_bar(position="dodge",stat="identity")+
       facet_wrap(~Sex) +
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
       theme(text = element_text(size = 10))+
       ggtitle(names(HKCancer_mort)[i+4])+
       ylab("Mortality")
do.call('grid.arrange',c(p,ncol=3,nrow=12))
```


3b. Calculate cancer risk and mortality rate

To calculate disease risk we need to calculated the number of new cases over the number of persons at risk over a specific time period. We have the incidence for each decade and can estimate the number of persons at risk based on the population in 1995, 2005 and 2015.

```
# cancer risk calculation
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]</pre>
HKCancer_inc_risk <- HKCancer_inc[,1:5]</pre>
risk <- function(x,age,sex,year){</pre>
  if (is.integer(x)){
    pop_n <- HKPop %>% filter(Sex==sex & Age==age)
    if (year == "1990-1999"){ return (as.double(x)/as.double(pop_n$`1995`)) }
    else if (year == "2000-2009") {return (as.double(x)/as.double(pop_n^22005))}
    else { return (as.double(x)/as.double(pop_n$^2015^)) }
  }
  return (x)
for (i in 5:ncol(HKCancer_inc)){
  HKCancer_inc_risk[names(HKCancer_inc)[i]] <- mapply(risk,HKCancer_inc[,i],HKCancer_inc[,3],HKCancer_inc</pre>
#visualise cancer risk
p<-list()
for (i in 1:(ncol(HKCancer_inc_risk)-4)){
  p[[i]] <-ggplot(HKCancer_inc_risk,aes_string(fill=names(HKCancer_inc_risk)[3],x=names(HKCancer_inc_risk)
                                                y=names(HKCancer_inc_risk)[i+4],group=names(HKCancer_inc_risk)
       geom_bar(position="dodge",stat="identity")+
       facet_wrap(~Sex) +
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
       theme(text = element_text(size = 10))+
       ggtitle(names(HKCancer_inc)[i+4])+
       ylab("incidence per 1000")
}
do.call('grid.arrange',c(p,ncol=3,nrow=12))
```



```
# mortality rate calculation
HKCancer mort <- HKCancer[HKCancer$Type=='mortality',]</pre>
HKCancer_mort_risk <- HKCancer_mort[,1:5]</pre>
risk <- function(x,age,sex,year){</pre>
  if (is.integer(x)){
    pop_n <- HKPop %>% filter(Sex==sex & Age==age)
    if (year == "1990-1999"){ return (as.double(x)/as.double(pop_n$`1995`)) }
    else if (year == "2000-2009") {return (as.double(x)/as.double(pop_n^22005))}
    else { return (as.double(x)/as.double(pop_n$^2015^)) }
  }
  return (x)
for (i in 5:ncol(HKCancer_mort)){
  HKCancer_mort_risk[names(HKCancer_mort)[i]] <- mapply(risk, HKCancer_mort[,i], HKCancer_mort[,3], HKCancer_mort</pre>
#visualise mortality rate
p<-list()
for (i in 1:(ncol(HKCancer_mort_risk)-4)){
  p[[i]] <-ggplot(HKCancer_mort_risk,aes_string(fill=names(HKCancer_mort_risk)[3],x=names(HKCancer_mort_
                                                 y=names(HKCancer_mort_risk)[i+4],group=names(HKCancer_mort_risk)
       geom_bar(position="dodge",stat="identity")+
       facet_wrap(~Sex) +
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
       theme(text = element_text(size = 10))+
       ggtitle(names(HKCancer_inc)[i+4])+
       ylab("mortality per 1000")
}
do.call('grid.arrange',c(p,ncol=3,nrow=12))
```


3c. Mortality-incidence ratio

Cancer research can be focused on improving cancer outcomes in a number of ways. For example cancer prevention research that seeks to reduce cancer incidence which would also ultimately reduce cancer mortality. Another area is cancer therapy which would not affect incidence but seeks to reduce mortality, or at least prolong survival. We don't go into survival analysis in this tutorial, but a way to get an idea whether treatment is improving by looking at the mortality-incidence ratio.

```
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]
HKCancer_mort <- HKCancer[HKCancer$Type=='mortality',]
HKCancer_mort_inc <- HKCancer_mort[,1:5]

risk <- function(mort,inc){
   if (inc == 0){ return (0) }
    return (as.double(mort)/as.double(inc))
}

for (i in 5:ncol(HKCancer_mort)){
   HKCancer_mort_inc[names(HKCancer_mort)[i]] <- mapply(risk,HKCancer_mort[,i],HKCancer_inc[,i])
}</pre>
```


3d. Paired t-test on mortality-incidence ratio change

In general, across the different cancer types is cancer treatment improving? We can use a paired t-test comparing the mortality-incidence ratio of cancers from the 1990-1999 period with the 2010-2019 period.

```
#First sum up all incidence and mortality data for each cancer type across age and sex
HKCancer_inc_sum <- aggregate(HKCancer_inc[,-(1:4)],list(HKCancer_inc$Year),FUN=sum)</pre>
HKCancer mort sum <- aggregate(HKCancer mort[,-(1:4)],list(HKCancer mort$Year),FUN=sum)
HKCancer_mort_inc_year <- data.frame(Year=HKCancer_mort_sum[,1])</pre>
risk <- function(mort,inc){</pre>
  return (as.double(mort)/as.double(inc))
}
for (i in 2:ncol(HKCancer_mort_sum)){
  HKCancer_mort_inc_year[names(HKCancer_mort_sum)[i]] <- mapply(risk, HKCancer_mort_sum[,i], HKCancer_inc
}
HKCancer_mort_inc_year_m <-data.frame(\frame(\frame1990-1999) = as.numeric(HKCancer_mort_inc_year[1,2:37]),
                                     `2000-2009` = as.numeric(HKCancer_mort_inc_year[2,2:37]),
                                     `2010-2019` = as.numeric(HKCancer_mort_inc_year[3,2:37]),
                                     check.names = FALSE)
HKCancer mort inc year m$Cancer <- names(HKCancer mort inc year)[-1]
HKCancer_mort_inc_year_t<-as_tibble(HKCancer_mort_inc_year_m) %>% select(`Cancer`,`1990-1999`,`2000-200
plot<-ggplot(HKCancer_mort_inc_year_t,aes(x=Year,y=MIR, color=Year))+</pre>
       geom boxplot(na.rm=T) +
       theme classic()+
       scale_color_brewer(palette="Dark2")+
       geom_jitter(shape=16, position=position_jitter(0.2),na.rm=T)+
       ylab("mortality-incidence ratio")+
       ylim(0,1.2) + geom_signif(comparisons = list(c("1990-1999", "2010-2019")),
                                  map_signif_level=F, test= "t.test",test.args = list(paired = TRUE), na
       geom_signif(comparisons = list(c("1990-1999", "2000-2009")), map_signif_level=F, test= "t.test",
       geom_signif(comparisons = list(c("2000-2009", "2010-2019")), map_signif_level=F, test= "t.test",
plot
```



```
p<-list()
p[[1]]<-t.test(HKCancer_mort_inc_year_m$`1990-1999`,HKCancer_mort_inc_year_m$`2000-2009`,paired=TRUE,al
p[[2]]<-t.test(HKCancer_mort_inc_year_m$`1990-1999`,HKCancer_mort_inc_year_m$`2010-2019`,paired=TRUE,al
p[[3]]<-t.test(HKCancer_mort_inc_year_m$`2000-2009`,HKCancer_mort_inc_year_m$`2010-2019`,paired=TRUE,al
p
   [[1]]
##
##
##
    Paired t-test
##
## data: HKCancer_mort_inc_year_m$'1990-1999' and HKCancer_mort_inc_year_m$'2000-2009'
## t = 0.79695, df = 33, p-value = 0.4312
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
   -0.01415536 0.03238636
## sample estimates:
  mean difference
##
       0.009115498
##
##
##
##
  [[2]]
##
##
    Paired t-test
##
## data: HKCancer_mort_inc_year_m$'1990-1999' and HKCancer_mort_inc_year_m$'2010-2019'
```

```
## t = 2.1861, df = 33, p-value = 0.036
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## 0.002055217 0.057209924
## sample estimates:
## mean difference
       0.02963257
##
##
##
## [[3]]
##
## Paired t-test
## data: HKCancer_mort_inc_year_m$'2000-2009' and HKCancer_mort_inc_year_m$'2010-2019'
## t = 1.5413, df = 35, p-value = 0.1322
## alternative hypothesis: true mean difference is not equal to 0
## 95 percent confidence interval:
## -0.005438019 0.039734021
## sample estimates:
## mean difference
##
          0.017148
```

3e. Childhood versus elderly cancers

Although it is clear that the incidence of cancer is typically higher in the elderly, some cancers affect children as well. What cancer types disproportionate affect children? For each cancer type, compare the proportion of 0-19 versus 65+ incidence against the 0-19 versus 65+ incidence for all other cancer types.

```
# Examine the proportion of childhood
HKCancer_inc <- HKCancer[HKCancer$Type=='incidence',]</pre>
HKCancer_inc_age_sum <- aggregate(HKCancer_inc[,-(1:4)],list(HKCancer_inc$Age),FUN=sum)</pre>
HKCancer_inc_age_sum$Total<- rowSums(HKCancer_inc_age_sum[,-1])</pre>
HKCancer_inc_age_sum_csq <- data.frame(cancer=names(HKCancer_inc_age_sum[,2:ncol(HKCancer_inc_age_sum),
pval <- list()</pre>
ratio <- list()
for (i in 2:(ncol(HKCancer_inc_age_sum))){
  val = Map('-', HKCancer inc age sum$Total, HKCancer inc age sum[,i])
  dat <- data.frame(cancer=HKCancer_inc_age_sum[c(1,4),i], other =c(val[[1]],val[[2]]))</pre>
  pval <- append(pval,fisher.test(dat)$p.val)</pre>
  ratio<- append(ratio,log(as.double(dat[1,1]+0.1)/as.double(dat[2,1]+0.1)))</pre>
HKCancer_inc_age_sum_csq$pval <- pval</pre>
HKCancer_inc_age_sum_csq$ratio <- ratio</pre>
plot_child<-ggplot(HKCancer_inc_age_sum_csq[-37,],aes(x=reorder(cancer,-as.numeric(ratio)),y=as.numeric
       geom_bar(stat="identity",fill="red")+
       geom_hline(yintercept=-4.12132318942113, linetype="dashed",
                 color = "black", linewidth=0.5)+
       theme_classic()+
       scale_fill_brewer(palette="Spectral")+
       theme(legend.position="none")+
```

```
#theme(text = element_text(size = 10))+
    theme(axis.title.x=element_blank())+
    theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) +
    ylab("log((child+0.1)/(elderly+0.1)")
plot_child
```


HKCancer_inc_age_sum_csq

```
##
                     cancer
                                      pval
                                                  ratio
## 1
                             1.21618e-216
                                              -11.17481
                    Biliary
## 2
                    Bladder 9.601084e-314
                                              -6.711128
## 3
                      Brain
                                              -0.615666
## 4
                     Breast
                                         0
                                              -7.519824
                                              -6.925188
## 5
                     Cervix 1.635299e-126
                                              -7.531208
##
  6
                 Colorectum
                        Eye 2.085337e-112
                                              0.5039276
##
## 8
          Hodgkin.lymphoma
                              3.658856e-81
                                             -0.6227962
## 9
                     Kaposi
                                   0.41662
                                              -5.525453
## 10
                     Kidney
                                              -3.882371
                             1.560619e-71
## 11
                     Larynx 1.963055e-113
                                              -8.129416
## 12
                  Leukaemia
                                              -1.043172
                                         0
## 13
                      Liver
                                         0
                                              -4.909033
                                              -8.191896
##
  14
                       Lung
                                         0
##
  15
                   Melanoma
                             6.246412e-15
                                              -4.324192
                             5.396388e-09
                                              -7.897668
## 16
              Mesothelioma
```

```
## 17
          Multiple.myeloma 6.126613e-106
                                            -7.062026
## 18
                     Nasal 0.0001285609
                                            -3.286427
## 19
               Nasopharynx 4.628193e-74
                                             -3.95948
## 20 Non.Hodgkin.lymphoma 4.513518e-11
                                            -2.940272
## 21
         Non.melanoma.skin
                                            -6.315107
## 22
                Oesophagus 1.377432e-251
                                            -8.943186
## 23
                      Oral 5.100139e-108
                                            -4.379029
## 24
                     Ovary 0.0002847234
                                             -2.34054
## 25
                  Pancreas 3.11451e-246
                                            -6.690686
## 26
                     Penis 3.023792e-18
                                            -5.753479
## 27
                  Placenta
                              0.07013259
                                             2.397895
## 28
                  Prostate
                                            -10.08778
## 29
                   Sarcoma 9.774701e-213
                                            -1.028899
## 30
           Small.intestine 1.479593e-31
                                            -5.916202
## 31
                   Stomach
                                            -7.137096
## 32
                    Testis 1.871184e-97 -0.09472556
## 33
                    Thymus 6.748934e-06
                                            -1.915502
## 34
                   Thyroid 7.821825e-09
                                            -2.194891
## 35
                    Uterus 1.457974e-105
                                            -6.262217
## 36
                     Vulva 1.521831e-27
                                            -5.552298
## 37
                     Total
                                            -4.121323
```