MapReduce课程设计选题

- 课程设计1-体育赛事日志分析
- 课程设计2 哈利波特的魔法世界
- 课程设计3 新闻自动分类

MapReduce课程设计选题

- 课程设计1-体育赛事日志分析
- 课程设计2 哈利波特的魔法世界
- 课程设计3 新闻自动分类

• 1. 课程设计目标

本课程设计通过使用 MapReduce 实现比赛日志分析。

通过本课程设计的学习,利用 MapReduce 工具实现大数据下的数据分析方法。

• 2. 学习技能

本次课程设计可以掌握以下 MapReduce 编程技能:

- 1. 海量日志数据的统计分析
- 2. 基于 MapReduce 的预测模型设计

• 3. 题目描述

- 各项体育赛事中、根据运动员在场上的具体表现情况、会产生大量的数据。在职业体育赛事中、对赛事过程中产生的日志进行分析,可以有效分析对手的技战术特点,从而可以帮助教练团队制定相应策略予以应对。
- 本课程设计数据中记录了一系列篮球赛事的比赛日志,要求学生 按照要求进行比赛日志的统计、分析,并根据已有的比赛日志预 测后续赛事的比赛结果。

• 3. 题目描述 —— 以现实数据为例

Date				Home Team	Shooter	ShotType	Shot Outco me	Assister	Blocker	FoulType	Fouler	Rebounder	Rebound Type	Violation Player	Violation Type	Timeout Team	FreeThrow Shooter	FreeThrow Outcome	Turnover Player	Turnover Type	Turnover Causer
December 22 2020	1	498	GSW	BRK	K. Durant	2-pt jump shot	miss														
December 22 2020	1	496	GSW	BRK								Team	offensive								
December 22 2020	1	494	GSW	BRK	S. Dinwiddie	3-pt jump shot	miss														
December 22 2020	1	489	GSW	BRK								J. Harris	offensive								
December 22 2020	1	487	GSW	BRK	K. Irving	3-pt jump shot	make	J. Harris													
December 22 2020	1	477	GSW	BRK						offensive	K. Oubre										
December 22 2020	- 1	477	GSW	BRK															K. Oubre	offensive foul	
December 22 2020	1	467	GSW	BRK	K. Durant	2-pt layup	miss														
December 22 2020	1	464	GSW	BRK								J. Wiseman	defensive								

• 3. 题目描述 —— 日志文件

- 日志文件的结构如下:

- Date: 比赛日期
- AwayTeam 和 HomeTeam:参与比赛的球队,区分主客场
- PlayBy:产生该条日志的球队名称
- Quarter: 事件发生的节次(1~4节,加时赛从5开始递增)
- SecLeft: 事件发生时该节的剩余时间(按秒计算)
- 其它字段:根据不同的日志类型,会有不同的字段被填入。

- 日志中的元素

- 日期:从11月至次年3月不等,格式例如11-1、3-31。
- 球队:从 team001 team030,共 30 支球队。
- 球员姓名:随机生成的球员姓名,保证所有球员姓名不重复。

- 3. 题目描述 —— 日志文件
 - 日志文件中不同类型的事件:
 - 投篮事件
 - Shooter*: 投篮运动员姓名
 - ShotType*: 投篮类型(2分或3分)
 - ShotOutcome*: 投篮结果(命中 make 或未命中 miss)
 - 注意: 投篮事件可能和犯规事件一起被记录
 - 注意: 投篮命中时, 可能和助攻事件一起被记录
 - 注意: 投篮不中时, 可能和封盖事件一起被记录
 - 事件结果: 投篮命中时, 投篮运动员得分 +2 或 +3

- 3. 题目描述 —— 日志文件
 - 日志文件中不同类型的事件:
 - 助攻事件
 - Assister*: 助攻运动员姓名
 - 注意: 只会和投篮事件一起出现, 不会独立出现
 - 事件结果: 助攻运动员助攻数 +1
 - 封盖事件
 - Blocker*: 封盖运动员姓名
 - 注意: 只会和投篮事件一起出现,不会独立出现
 - 事件结果: 封盖运动员封盖数 +1

• 3. 题目描述 —— 日志文件

- 日志文件中不同类型的事件:
 - 篮板事件
 - ReboundPlayer*: 抢得篮板的运动员姓名或 "Team"
 - ReboundType*: 失误类型(防守篮板或进攻篮板)
 - 注意: 若不能确定具体抢到篮板的个人,则标记为 "Team"
 - 罚球事件
 - FreeThrowShooter*: 罚球运动员姓名
 - FreeThrowOutcome*: 罚球结果(命中或不中)
 - 事件结果: 罚球命中时, 罚球运动员得分 +1

- 3. 题目描述 —— 日志文件
 - 日志文件中不同类型的事件:
 - 犯规事件
 - Fouler*: 犯规运动员姓名或 "Team"
 - FoulType*: 犯规类型
 - 违例事件
 - ViolationPlayer*: 违例运动员姓名 "Team"
 - ViolationType*: 违例类型
 - 注意: 若不是某运动员的犯规或违例,则标记为 "Team"

- 3. 题目描述 —— 日志文件
 - 日志文件中不同类型的事件:
 - 失误事件
 - TurnoverPlayer*: 失误运动员姓名或 "Team"
 - TurnoverType*: 失误类型
 - 注意: 失误事件可能和抢断事件一起被记录
 - 抢断事件
 - TurnoverCauser: 抢断运动员
 - 注意: 只会和失误事件一起出现,不会独立出现
 - 事件结果: 抢断运动员抢断 +1

- 3. 题目描述 —— 日志文件
 - 日志文件中不同类型的事件:
 - 换人事件
 - EnterGame*: 被换上场的球员
 - LeaveGame*:被换下场的球员
 - 其它事件:

未结构化的其它场上事件,用空白行表示。

- 3. 题目描述 —— 实验任务
 - 任务1: 计算每条日志对比赛比分的影响
 - FreeThrowMade 为 make 时, PlayBy 球队得 1 分
 - ShotOutcome 为 make 时:
 - 若 ShotType 为 2-pt ***, PlayBy 球队得 2 分
 - 若 ShotType 为 3-pt ***, PlayBy 球队得 3 分
 - 针对每条日志,输出"XXX队得 X 分"或"不得分"

- 3. 题目描述 —— 实验任务
 - 任务2: 统计每场比赛的比赛结果
 - 提示: 各支球队每天只会有一场比赛
 - 输出格式: 日期, 主队, 主队比分, 客队, 客队比分
 - 任务3: 计算数据集中各项技术统计的前五名球员
 - 提示: 根据每条日志产生行为的制造队员进行统计
 - 要求得到得分、篮板、助攻、抢断、盖帽最多的 5 名球员

- 3. 题目描述 —— 实验任务
 - 任务4: 预测给定比赛中, 主队和客队的胜率
 - 根据已有的数据作为训练数据,设计预测算法,预测给定几组 对阵中主队和客队的胜率。
 - 比较各个预测值与数据生成模型本身预测胜率的差值,判断模型的准确度。
 - 注意:本实验对预测算法设计的评估是主要的,对于预测结果 是否准确的评估是次要的。

- 3. 题目描述 —— 实验任务
 - 任务5:设计合理的评价标准,评选出赛季最有价值球员(选做)
 - 可以考虑的因素:
 - 球员场均数据
 - 球员所在球队的战绩
 - 合理设计现成的或新的高阶指标,以评价球员表现
 - 根据评价标准,选出最好的 5 名球员。其中,第 1 名为最有价值球员,第 2 至第 5 名为最有价值球员候选人。

• 4. 提交作业

- 源代码
- 可执行 JAR 包及 JAR 包的执行方式
- 程序设计报告,包括方法设计、执行流程、算法优化、实验结果、 代码运行过程截图等
- 任务4中胜率预测的预测结果
- 任务 5 中得到的五名最有价值球员候选人(选做)

MapReduce课程设计选题

• 课程设计1-体育赛事日志分析

- 课程设计2 哈利波特的魔法世界
- 课程设计3 新闻自动分类

1 课程设计目标

通过一个综合数据分析案例:"哈利波特的魔法世界——哈利波特系列小说中的人物关系挖掘",来学习和掌握 MapReduce 程序设计。通过本课程设计的学习,可以体会如何使用 MapReduce 完成一个综合性的数据挖掘任务,包括全流程的数据预处理、数据分析、数据后处理等。

2 学习技能

通过本课程设计,可以熟悉和掌握以下 MapReduce 编程技能:

- 1. 在 Hadoop 中使用第三方的 Jar 包来辅助分析;
- 2. 掌握简单的 MapReduce 算法设计:
 - a) 单词同现算法;
 - b) 数据整理与归一化算法;
 - c) 数据排序(选做);
- 3. 掌握带有迭代特性的 MapReduce 算法设计:
 - a) PageRank 算法;
 - b) 标签传播(Label Propagation)算法(选做)。

3 任务描述

本课程设计包括如下的若干任务。这些任务组合起来,就构成了一个完整的人物关系分析流程。

任务 1 数据预处理

本任务的主要工作是从原始的哈利波特系列小说的文本中,抽取出与人物互动相关的数据,而屏蔽掉与人物关系无关的文本内容,为后面的基于人物共现的分析做准备。

输入输出

数据输入:1.哈利波特系列小说文集(未分词);2.哈利波特系列小说中的人名列表。

数据输出:分词后保留人名。

示例

输入:哈利波特与魔法石中的某一段内容

"**哈利**!"**纳威**一看见他们两个,就脱口而出,"我一直在找你们,想给你们提个醒儿,我听见**马尔福**说他要来抓**哈利**你,他说你有一条龙——"

输出:哈利纳威马尔福哈利

任务 2 特征抽取:人物同现统计

本任务的重要完成基于单词同现算法的人物同现统计。在人物同现分析中,如果两个人在原文的同一 段落中出现,则认为两个人发生了一次同现关系。我们需要对人物之间的同现关系次数进行统计,同 现关系次数越多,则说明两人的关系越密切。

输入输出

输入:任务 1 的输出;

输出:在哈利波特系列小说中,人物之间的同现次数。

示例

输入:

穆迪 哈利 哈利波特 赫敏 罗恩

哈利 罗恩 罗恩

输出:

<穆迪,哈利> 1	<赫敏,穆迪 > 1
<穆迪,赫敏> 1	<赫敏,哈利 > 1
<穆迪,罗恩> 1	<赫敏,罗恩 > 1
<哈利,穆迪 > 1	<罗恩,穆迪> 1
<哈利,赫敏 > 1	<罗恩,哈利> 2
<哈利,罗恩>2	<罗恩,赫敏> 1

注:小说中全文中对于人物名称的使用并不统一。例如部分章节使用 Given Name, 部分章节使用 Given Name + Family Name, 或者部分章节使用名称,部分章节使用外号等。为了提高分析结果的准确性,请将小说中的**主要人物**的名称进行统一,次要人物可不进行处理。例如 将哈利、哈利·波特、哈利波特的结果进行统一。

任务 3 特征处理:人物关系图构建与特征归一化

当获取了人物之间的共现关系之后,我们就可以根据共现关系,生成人物之间的关系图了。人物关系图使用邻接表的形式表示,方便后面的 PageRank 计算。在人物关系图中,人物是顶点,人物之间的互动关系是边。人物之间的互动关系靠人物之间的共现关系确定。如果两个人之间具有共现关系,则两个人之间就具有一条边。两人之间的共现次数体现出两人关系的密切程度,反映到共现关系图上就是边的权重。边的权重越高则体现了两个人的关系越密切。

为了使后面的方便分析,还需要对共现次数进行归一化处理:将共现次数转换为共现概率,具体的过程见后面的示例。

输入输出

输入:任务 2 的输出

输出:归一化权重后的人物关系图

示例

输入:

<穆迪,哈利>1
<穆迪,赫敏>1
<穆迪,罗恩>1
<哈利,穆迪>1
<哈利,穆迪>1

<哈利,罗恩>2

<赫敏,穆迪>1

<赫敏,哈利>1

<赫敏,罗恩>1

<罗恩,穆迪>1

<罗恩, 哈利>2

<罗恩,赫敏>1

输出:

穆迪[哈利,0.33333|赫敏,0.333333|罗恩 0.333333] 哈利[穆迪,0.25|赫敏,0.25|罗恩 0.5] 赫敏[穆迪,0.333333|哈利,0.333333|罗恩 0.333333] 罗恩[穆迪 0.25|哈利,0.5|赫敏,0.25]

首先是将统计出的人物共现次数结果,转换成邻接表的形式表示:每一行表示一个邻接关系。

"哈利 [穆迪,0.25 |赫敏 , 0.25 |罗恩 0.5] "表示了顶点"哈利",有三个邻接点,分别是"穆迪"、"赫敏"和 "罗恩",对应三条邻接边,每条邻接边上分别具有不同的权重。这个邻接边的权重是依靠某个人与其 他人共现的"概率"得到的,以"哈利"为例,他分别与三个人("穆迪"共现 1 次、"赫敏",共现 1 次、"罗恩"共现 2 次)有共现关系,则哈利与三个人共现的"概率"分别为 1/(1+1+2)=0.25,1/(1+1+2)=0.25

任务 4 数据分析:基于人物关系图的 PageRank 计算4

在给出人物关系图之后,我们就可以对人物关系图进行一个数据分析。其中一个典型的分析任务是:
PageRank 值计算。通过计算 PageRank,我们就可以定量地分析出哈利波特系列小说的"主角"们是哪些。←

输入输出↩

输入:任务3的输出←

输出:人物的 PageRank 值←

 \leftarrow

该任务默认的输出内容是杂乱的,从中无法直接的得到分析结论。可以对人物的 PageRank 值进行全局排序,从而很容易地发现 PageRank 值最高的几个人物。排序工作可以通过一个排序
MapReduce 程序完成,也可以将 PageRank 值导入 Hive 中,然后利用 Hive 完成排序。←

任务 5 数据分析:在人物关系图上的标签传播(选做) 4

标签传播(Label Propagation)是一种<u>半监督</u>的图分析算法,他能为图上的顶点打标签,进行图顶点的聚类分析,从而在一张类似社交网络图中完成社区发现(Community Detection)。图 1 中人物顶点的颜色就是根据标签传播的结果进行的染色。←

参考资料↩

- 英文资料:标签传播算法英文原始文献可参考原始英文论文中的 III. COMMUNITY DETECTION USING LABEL PROPAGATION —节内容。←
- 2. 中文资料: http://www.cnphp6.com/archives/24136

输入输出↩

输入:任务3的输出←

输出:人物的标签信息←

对于该任务的输出,可以通过写一个 MapReduce 程序,将属于同一个标签的人物输出到一起,便于人来查看标签传播的结果。←

原始英文论文: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.76.036106

图 1 标签传播的结果展示

注:人物名字的大小由人物顶点的度数确定,人物标签的颜色根据标签传播算法的分析结果确定。

4 提交材料

请各位同学提交如下材料。

- 1、程序源代码,要求提供包含完整目录结构的 src 代码包,并且提供编译方法说明。
- 2、程序可执行 jar 包以及 jar 包的执行方式。本题目的运行环境在 hadoop-2.7、jdk-1.7 及以上的环境下,必须采用 MapReduce 编程模型。
- 3、程序设计报告。报告内容包括程序设计的主要流程、程序采用的主要算法、进行的优化工作、优化取得的效果、程序的性能分析以及程序运行截图等。

MapReduce课程设计选题

• 课程设计1-体育赛事日志分析

- 课程设计2 哈利波特的魔法世界
- 课程设计3 新闻自动分类

1. 课程设计目标

本课程设计的目标是通过 MapReduce 和基本的机器学习方法来实现对新闻的自动分类。通过本课程设计,可以学习如何使用 MapReduce 完成一个综合的数据挖掘任务,包括数据预处理,机器学习建模、样本预测等。

2. 学习技能

通过本课程设计,可以熟悉或掌握以下 MapReduce 编程技巧:

- 在 Hadoop 中使用第三方的 Jar 包来辅助分析
- MapReduce 算法设计
 - 文本特征选择算法
 - 文本特征表示算法
 - 文本分类算法

3. 任务描述

在日常生活中,我们所看到的新闻通常伴随着相应类别,例如政治、经济、科教等等。不同的新闻包含不同的主题特征。本课程设计的任务是通过 MapReduce 技术实现新闻文本的自动分类。具体包含如下若干任务,这些任务组合起来就构成了一个完整的新闻文本分类流程。

使用语料:某门户网站新闻列表

test	2021/6/15 8:17	文件夹
	2021/6/15 8:17	文件夹

		■ 财经_798977.txt	2021/6/15 8:20	文本文档
▶ 财经	2021/6/15 8:20	财经_798978.txt	2021/6/15 8:20	文本文档
▶ 彩票	2021/6/15 8:28	财经_798979.txt	2021/6/15 8:20	文本文档
▶ 房产	2021/6/15 8:28	■ 财经_798980.txt	2021/6/15 8:20	文本文档
▶ 股票	2021/6/15 8:21	■ 财经_798981.txt	2021/6/15 8:20	文本文档
▶ 家居	2021/6/15 8:29	■ 财经_798982.txt	2021/6/15 8:20	文本文档
▶ 教育	2021/6/15 8:27	■ 财经_798983.txt	2021/6/15 8:20	文本文档
▶ 科技	2021/6/15 8:22	■ 财经_798984.txt	2021/6/15 8:20	文本文档
▶ 社会	2021/6/15 8:23	■ 财经_798985.txt	2021/6/15 8:20	文本文档
▶ 时尚	2021/6/15 8:26	■ 财经_798986.txt	2021/6/15 8:20	文本文档
▶ 时政	2021/6/15 8:25	■ 财经_798987.txt	2021/6/15 8:20	文本文档
▶ 体育	2021/6/15 8:31	■ 财经_798988.txt	2021/6/15 8:20	文本文档
▶ 星座	2021/6/15 8:24	■ 财经_798989.txt	2021/6/15 8:20	文本文档
▶ 游戏	2021/6/15 8:24	■ 财经_798990.txt	2021/6/15 8:20	文本文档
▶ 娱乐	2021/6/15 8:30	财经_798991.txt	2021/6/15 8:20	文本文档

新闻分类目录结构,新闻的类别在文件名中用_隔开;

任务1文本特征选择

本任务的主要工作是对原始新闻中的文本进行特征选择,选择能够表征新闻特性的特征词,为后续的文本分类做准备。

输入输出

输入:

- 1. 新闻文本训练数据和测试数据;
- 2. 停用词表

输出:

新闻文本特征


```
一下来 1
793
     一丘之貉
794
795
796
797
          31
     一个个 1
798
799
     一个又一个 1
800
    一举 2
    一举一动
802
    一举两得
803
    一件 1
804
    一件事 1
805
806
    一会 2
    一会儿 1
808
    一位 11
    一体
         1
810
    一倍
         1
811
     一元
         1
812
    一再
813
    一再强调
814
    一分钟 2
815
    一切照旧
816
     一切都 2
817
```

图 2 特征词

任务2文本特征表示

基于任务1得到的特征词,为每条新闻文本计算特征表示。

输入输出

输入: 1. 任务 1 的输出; 2. 新闻文本数据

输出: 每条新闻文本的特征向量

示例:

1	体育	天气:0.007142857142857143 奥运:0.007142857142857143 稀:0.0035714285714285713 正式:0.024999999999999
2	体育	堂:0.006666666666666666 占据:0.0133333333333333 热身赛:0.00666666666666666 信心:0.03 比赛:0.02 上
3	体育	仍然:0.006493506493506494 刻苦:0.0012987012987012987 正式:0.018181818181818 以前:0.01038961038961
4	体育	言:0.0017921146953405018 20岁:0.0017921146953405018 战略性:0.0035842293906810036 迷茫:0.00179211469

任务3文本分类

得到了每个新闻的特征向量之后,就可以利用机器学习分类算法实现新闻文本的分类。具体采用何种分类算法,请同学们自行选择,也可以验证多种分类算法的优劣。

任务 4 样本预测

在任务3中得到了分类模型,接下来使用该模型对测试数据中的新闻文本进行分类,输出分类结果。

附加题(选做)

考虑另外使用 Apache Spark 实现新闻自动分类算法,并对新闻文本进行分类,输出分类结果。

4. 提交材料

请各位同学提交如下材料:

- 1. 程序源代码,要求提供包含完整目录结构的 src 代码包,并提供编译和执行方法 说明
- 2. 程序可执行 jar 包以及 jar 包的执行方式。本课程设计的运行环境为 hadoop-2.7、jdk-1.7 或以上环境
- 3. 程序设计报告。报告内容包括程序设计的主要流程、程序采用的主要算法、进行的优化工作、优化取得的效果、程序的性能分析以及程序运行截图等。

MapReduce课程设计

• 最终课题完成与提交

严禁抄袭开源项目 或其他同学的课设 代码,违者本课程 一律0分计算!!!

- 课程设计结果提交(以下内容打包提交)
- 课程设计报告,内容包括
- 1. 小组信息(人员,学号,联系信息,导师及研究领域)
- 2. 课题小组分工: 需要明确说明各成员在整个课题中分工负责完成的内容
- 3. 课程设计题目
- 4. 摘要
- 5. 研究问题背景
- 6. 主要技术难点和拟解决的问题,尤其要解释说明哪些地方、为什么需要采用MapReduce
- 7. 主要解决方法和设计思路,尤其要解释说明如何采用MapReduce并行化算法解决问题
- 8. 详细设计说明,包括详细算法设计、程序框架、功能模块、主要类的设计说明,包括主要类、函数的输入输出参数、尤其是map和reduce函数的输入输出键值对详细数据格式和含义,主要功能和算法代码中加清晰的注释说明。对于引用的部分,需要给出参考文献。
- 9. 输入文件数据和详细输入数据格式,输出结果文件数据片段和详细输出数据格式(必须清晰描述)
- 10.程序运行实验结果说明和分析
- 11.总结:特点总结,功能、性能、扩展性等方面存在的不足和可能的改进之处
- 12.参考文献
- 带注释的源程序(必须提交源程序以备检查实现情况,无源程序的以未完成课程设计处理)
- 输入数据文件和运行结果文件(**必须提交输入输出文件数据,数据量太大可取部分数据**)
- 执行程序

谢谢!