The Beauty and Joy of Computing

Lecture #10 Recursion II

Recursive Drawing

Toby Shachman created this amazing spatial programming language called "Recursive Drawing" that allows you to create drawings (even recursive ones) without typing a line of code. It's a great example of a next-generation interface...

recursivedrawing.com

Recursion

- Factorial Demo
- Fibonacci Demo
- Count Change

Recursion: Factorial

Recursion: Demonstrating n!

Factorial(n) = n! Inductive definition:

$$- n! = 1$$
 , $n = 0$

$$n! = n * (n-1)!, n > 0$$

Let's act 4! out...

"contractor" model

n	n!	4!
0	1	GR1 Securi
1	1	001 Tours
2	2	(42) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1
3	6	
4	24	en <u>1</u>

UC Berkeley "The Beauty and Joy of Computing": Recursion II (4)

TRACE

3! 2!

1!

0! 6 returning 1

7 returning 1

length: 10

Order of growth of # of calls of n!

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential

Recursion: Fibonacci

Recursion: Demonstrating fib(n)

Inductive definition:

fib(n) = fib(n-1)+fib(n-2),
$$n \ge 2$$

$$F(n) := egin{cases} 0 & ext{if } n = 0; \ 1 & ext{if } n = 1; \ F(n-1) + F(n-2) & ext{if } n > 1. \end{cases}$$

Let's act it out...

- "contractor" model
- fib(5)

fib(n)

0	0
1	1
2	1
3	2
4	3
5	5
2 5	

Let's now: trace... (giffrom Ybungalobill@wikimedia)

Order of growth of # of calls of fib(n)

Chimney of Turku Energia, Turku, Finland featuring Fibonacci sequence in 2m high neon lights. By Italian artist Mario Merz for an environmental art project. (Wikipedia)

- a) Constant
- b) Logarithmic
- c) Linear
- d) Quadratic
- e) Exponential

Recursion: Count Change

Counting Change (thanks to BH)

- Given coins {50, 25, 10, 5, 1} how many ways are there of making change?
- ₋ 5
 - **2** (N, 5P)
- **10**
 - 4 (D, 2N, N5P, 10P)
- **-** 15
 - 6 (DN, D5P, 3N, 2N5P, 1N10P, 15P)

```
+Count+Change+ amount + Using + coins
     amount < 0 or empty? coins
                                              - 100?
report 0
   amount = 0
report 1
       Count Change amount Using all but first of coins
report
       Count Change
                    amount - item 1 → of coins
                                                    Using coins
```


Call Tree for "Count Change 10 (10 5 1)"

"I understood Count Change"

www.nilkanth.com/my-uploads/200508/dactylfractal107.jpg

- a) Strongly agree
- b) Agree
- c) Neutral
- d) Disagree
- e) Strongly disagree

- It's important to understand the machine model
- It's often the simplest way to solve many problems
 - Esp if recursive in nature!
- Remember, trust it!
- Recursion is a very powerful idea, often separates good from great (you're great!)

Menger Cube by Dan Garcia

