1

NCERT 11.9.5

ee23btech11223 - Soham Prabhakar More

Question:

Which term of the following sequences:

(a)
$$2, 2\sqrt{2}, 4...$$
 is 128 (b) $\sqrt{3}, 3, 3\sqrt{3}...$ is 729 (c) $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}...$ is $\frac{1}{19683}$

Answer: (a) Let $x_1(0) = 2$, $r_1 = \sqrt{2}$, then the general term is:

$$x_1(n) = x_1(0) r_1^n u[n]$$
 (1)

where u[0] = 1. Assume $n^{th} (n > 0)$ term is 128:

$$x_1(n) = x_1(0) r^n = 128$$
 (2)

$$\implies n = \log_{r_1} \frac{128}{x_1(0)} \tag{3}$$

Using values from Table 1,

$$\implies n = \log_{\sqrt{2}} \frac{128}{2} \tag{4}$$

$$\therefore n = 12 \tag{5}$$

Thus the 13^{th} term of the G.P $x_1(n)$ is 128.

Fig. 1: Plot of $x_1(n)$ vs n. See Table 1

Let $x(n) = x(0) r^n u[n]$ then:

$$X(z) = \sum_{n = -\infty}^{\infty} x(n) \cdot z^{-n}$$
 (6)

$$\implies X(z) = \sum_{n=0}^{\infty} x(0) r^n z^{-n} \tag{7}$$

$$\implies X(z) = x(0) \sum_{n=0}^{\infty} r^n z^{-n}$$
 (8)

$$\implies X(z) = x(0)\left(\frac{1}{1 - \frac{r}{z}}\right) \tag{9}$$

$$\therefore X(z) = \frac{x(0)}{1 - rz^{-1}} \quad \forall \quad |z| > |r| \quad (10)$$

$$\therefore X_1(z) = \frac{2}{1 - \sqrt{2}z^{-1}} \quad \forall \quad |z| > \sqrt{2}$$
 (11)

(b) Let $x_2(0) = \sqrt{3}$, $r_2 = \sqrt{3}$, then the general term is:

$$x_2(n) = x_2(0) r_2^n u[n]$$
 (12)

Assume n^{th} (n > 0) term is 729, which gives:

$$x_2(n) = x_2(0) r_2^n = 729$$
 (13)

$$\implies r_2^n = \frac{729}{x_2(0)} \tag{14}$$

$$\implies n = \log_{r_2} \frac{729}{x_2(0)} \tag{15}$$

Using values from Table 1,

$$\implies n = \log_{\sqrt{3}} \frac{729}{\sqrt{3}} \tag{16}$$

$$\therefore n = 11 \tag{17}$$

Thus the 12^{th} term of the G.P $x_2(n)$ is 729.

By eqn 10, the Z-transform of $x_2(n)$:

$$X_2(z) = \frac{\sqrt{3}}{1 - \sqrt{3}z^{-1}} \quad \forall \quad |z| > \sqrt{3}$$
 (18)

(c) Let $x_3(0) = \frac{1}{3}$, $r_3 = \frac{1}{3}$, then the general term is:

$$x_3(n) = x_3(0) r_3^n u[n]$$
 (19)

Fig. 2: Plot of $x_2(n)$ vs n. See Table 1

Assume n^{th} (n > 0) term is $\frac{1}{19683}$, which gives:

$$x_3(n) = x_3(0) r_3^n = \frac{1}{19683}$$
 (20)

$$\implies n = \log_{r_3} \frac{1}{19683x_3(0)} \tag{21}$$

Using values from Table 1,

$$\implies n = \log_{\frac{1}{3}} \frac{1}{19683\frac{1}{3}} \tag{22}$$

$$\therefore n = 8 \tag{23}$$

Thus the 9^{th} term of the G.P $x_3(n)$ is $\frac{1}{19683}$. By eqn 10, the Z-transform of $x_3(n)$:

$$\therefore X_3(z) = \frac{1}{3 - z^{-1}} \quad \forall \quad |z| > \frac{1}{3}$$
 (24)

Parameter	Description	Value
r_i	Common ratio of G.P (a),(b),(c)	$\sqrt{2}, \sqrt{3}, \frac{1}{3}$
$x_i(n)$	Sequence	$x_i(0) r_i^n u[n]$
$X_{i}(z)$	Transform of $x_i(n)$	$\frac{x(0)}{1-rz^{-1}}$

TABLE 1: Table of parameters

Fig. 3: Plot of $x_3(n)$ vs n. See Table 1