Problem Statement

Read the 2 csv files and show head(2)

```
In [1]: # Import Libraries - Modules
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   %matplotlib inline

# Read & Display details from the 1st csv
   df = pd.read_csv("https://raw.githubusercontent.com/jackiekazil/data-wrangling/madf.head(2)
```

Out[1]:

		Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Coi
-	0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	
	1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	
	4												

In [2]: # Read & Display details from the 2nd csv
df1 = pd.read_csv('https://raw.githubusercontent.com/kjam/data-wrangling-pycon/ma
df1.head(2)

Out[2]:

	STATION	STATION_NAME	DATE	PRCP	SNWD	SNOW	TMAX	TMIN	WDFG	F
0	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310101	46	-9999	-9999	-9999	-11	-9999	_
1	GHCND:GME00111445	BERLIN TEMPELHOF GM	19310102	107	-9999	-9999	50	11	-9999	
2 ו	rows × 21 columns									

1. Get the Metadata from the above files.

```
In [3]: #1. Get the Metadata from the 1st files.
        # Use - info() to display the meta data details for the first file
        df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 4656 entries, 0 to 4655
        Data columns (total 12 columns):
        Indicator
                                    4656 non-null object
        PUBLISH STATES
                                    4656 non-null object
        Year
                                    4656 non-null int64
        WHO region
                                    4656 non-null object
        World Bank income group
                                    4656 non-null object
                                    4656 non-null object
        Country
        Sex
                                    4656 non-null object
        Display Value
                                    4656 non-null int64
        Numeric
                                    4656 non-null float64
        Low
                                    0 non-null float64
        High
                                    0 non-null float64
                                    0 non-null float64
        Comments
        dtypes: float64(4), int64(2), object(6)
        memory usage: 436.6+ KB
In [4]: #1. Get the Metadata from the 2nd file.
        # Use - info() to display the meta data details for the 2nd file
        df1.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 117208 entries, 0 to 117207
Data columns (total 21 columns):
STATION
                117208 non-null object
STATION NAME
                117208 non-null object
DATE
                117208 non-null int64
PRCP
                117208 non-null int64
SNWD
                117208 non-null int64
SNOW
                117208 non-null int64
TMAX
                117208 non-null int64
TMIN
                117208 non-null int64
WDFG
                117208 non-null int64
PGTM
                117208 non-null int64
WSFG
                117208 non-null int64
WT09
                117208 non-null int64
WT07
                117208 non-null int64
WT01
                117208 non-null int64
WT06
                117208 non-null int64
                117208 non-null int64
WT05
WT04
                117208 non-null int64
WT16
                117208 non-null int64
WT08
                117208 non-null int64
                117208 non-null int64
WT18
WT03
                117208 non-null int64
dtypes: int64(19), object(2)
```

2. Get the row names from the above files.

memory usage: 18.8+ MB

```
In [5]: # Row names of first file
        df.index.values # getting the indexes / row name of the data
Out[5]: array([
                  0,
                        1,
                              2, ..., 4653, 4654, 4655], dtype=int64)
In [6]: # Row names of Second file
        df1.index.values # getting the indexes / row name of the data
Out[6]: array([
                                    2, ..., 117205, 117206, 117207], dtype=int64)
                    0,
                            1,
```

3. Change the column name from any of the above file.

```
In [7]: df.columns.values
Out[7]: array(['Indicator', 'PUBLISH STATES', 'Year', 'WHO region',
                'World Bank income group', 'Country', 'Sex', 'Display Value',
               'Numeric', 'Low', 'High', 'Comments'], dtype=object)
In [8]: df2 = df.rename(columns={'Indicator':'Indicator_Id'}) # renaming the columns by r
        df2.head(2) # Changes are temporary
```

Out[8]:

	Indicator_Id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	C
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	
4												•

In [9]: df.head(2) # Changes are not reflected here so it's not permanent

Out[9]:

	Indicator	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	Coı
C	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	
4												•

4. Change the column name from any of the above file and store the changes made permanently.

```
In [10]: # Using inplace = True to make it permanent

df.rename(columns={'Indicator':'Indicator_Id'},inplace=True)

df.head(2) # Here changes are permanent
```

Out[10]:

	Indicator_Id	PUBLISH STATES	Year	WHO region	World Bank income group	Country	Sex	Display Value	Numeric	Low	High	C
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN	
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN	
4												•

5. Change the names of multiple columns.

```
In [11]: df.rename(columns={'PUBLISH STATES':'Publication Status','WHO region':'WHO Region df.head(2) # Here changes are permanent

Out[11]:

| World | Publication | Year | WHO | Bank | Bank | Country | Sex | Value | Numeric | Low | High | Numeric | Low | High | Status | S
```

	Indicator_Id	Publication Status	Year	WHO Region	Bank income group	Country	Sex	Display Value	Numeric	Low	High
0	Life expectancy at birth (years)	Published	1990	Europe	High- income	Andorra	Both sexes	77	77.0	NaN	NaN
1	Life expectancy at birth (years)	Published	2000	Europe	High- income	Andorra	Both sexes	80	80.0	NaN	NaN
4											•

6. Arrange values of a particular column in ascending order.

```
In [12]:
           # Using sort_values() for Year to sort it in ascending order
            df.sort_values(['Year'], ascending=[True])
                           Life
                                                                   Lower-
                                                                            Republic of
                    expectancy
                                                                                          Both
            3199
                                  Published 1990
                                                                   middle-
                                                                                                      17
                                                                                                              17
                                                          Europe
                                                                              Moldova
                      at age 60
                                                                                         sexes
                                                                   income
                        (years)
                           Life
                                                         Western
                                                                    High-
                                                                                 Cook
                    expectancy
            1262
                                  Published 1990
                                                                                                     17
                                                                                                              17
                                                                                          Male
                      at age 60
                                                          Pacific
                                                                   income
                                                                               Islands
                        (years)
                           Life
                    expectancy
                                                         Western
                                                                    High-
                                                                                 Cook
            1259
                                  Published 1990
                                                                                                     67
                                                                                          Male
                                                                                                              67
                        at birth
                                                          Pacific
                                                                   income
                                                                               Islands
                        (years)
                           Life
                                                                   Lower-
                                                      South-East
                    expectancy
            3303
                                  Dublished 1000
                                                                   middla
                                                                              Maldivac
                                                                                        Famala
```

7. Arrange multiple column values in ascending order.

Life expectancy at birth (years) Published 2000 Eastern Low-Mediterranean income Afghanistan Male 54 54 Afghanistan Male 45 45 Fublished 2000 Eastern Low-Mediterranean income Afghanistan Male 45 45 Afghanistan Both sexes 45 45 Healthy life expectancy (HALE) at birth (years) Healthy life expectancy (HALE) at birth (years) Published 2000 Eastern Low-Mediterranean income Afghanistan Both sexes 45 45 Afghanistan Female 45 45	df.so	rt_values([at birth (years)	'Country'	, 'Year	n','Numeric' Mediterranean], ascen	nding=[Tru	e,True,F sexes	alse])	# False
2798 expectancy (HALE) at birth (years) Healthy life expectancy (HALE) at birth (years) Published 2000 Eastern Low-Mediterranean income Eastern Low-Mediterranean Low-Mediterranean income Afghanistan Male 45 45 Healthy life expectancy (HALE) at birth (years) Healthy life expectancy (HALE) at birth (HALE) at birth (Mediterranean Mediterranean Mediterranean income Eastern Low-Mediterranean Low-Mediterranean Low-Mediterranean Income Afghanistan Female 45 45	2957	Life expectancy at birth	Published	2000			Afghanistan	Male	54	54
2000 Eastern Low-Mediterranean income Afghanistan Both sexes 45 45 Healthy life expectancy (HALE) at birth (Published 2000 Eastern Low-Mediterranean income Afghanistan Female 45 45	2798	expectancy (HALE) at	Published	2000			Afghanistan	Male	45	45
4456 expectancy Published 2000 Eastern Low- Afghanistan Female 45 45 (HALE) at	3363	expectancy (HALE) at	Published	2000			Afghanistan		45	45
	4456	expectancy (HALE) at	Published	2000			Afghanistan	Female	45	45

8. Make country as the first column of the dataframe.

```
In [14]:
           # df[['Country']]
            # df = df[5] + df[:5] + df[6:]
            # Putting the country column at first place
            df[pd.unique(['Country'] + df.columns.values.tolist())] # if unique is not there
                                        Life
                   United Arab
                                 expectancy
                                                                      Eastern
                                                                                 High-
                                               Published 2012
                                                                                                     78
                                                                                                             78
                                                                                        Female
                      Emirates
                                     at birth
                                                                Mediterranean
                                                                               income
                                     (years)
                                        Life
                   Antigua and
                                 expectancy
                                                                                 High-
                                                                                                     72
                                               Published 2000
                                                                    Americas
                                                                                          Male
                                                                                                             72
                      Barbuda
                                     at birth
                                                                               income
                                     (years)
                                       Life
                   Antigua and
                                 expectancy
                                                                                 High-
                                               Published
                                                        1990
                                                                                          Male
                                                                                                     17
                                                                                                             17
                                                                    Americas
                      Barbuda
                                  at age 60
                                                                               income
                                     (years)
                                       Life
                   Antigua and
                                 expectancy
                                                                                 High-
                                                                                          Both
                                               Published 2012
                                                                                                     22
                                                                                                             22
                                                                    Americas
                      Barbuda
                                  at age 60
                                                                               income
                                                                                         sexes
                                     (years)
                                       Life
                                 expectancy
                                                                     Western
                                                                                 High-
                8
                      Australia
                                               Published 2012
                                                                                                     81
                                                                                          Male
                                                                                                             81
                                     at birth
                                                                       Pacific
                                                                               income
                                     (voore)
```

9. Get the column array using a variable Expected Output:

10. Get the subset rows 11, 24, 37 Expected Output:

```
In [18]: #df.iloc
    #df.loc both for accessing the rows
    df.iloc[[11,23,37]] # here you are creating the list with [] sign
```

Out[18]:

	Indicator_ld	Publication Status	Year	WHO Region	World Bank income group	Country	Sex	Display Value	Numeric	Low
11	Life expectancy at birth (years)	Published	2012	Europe	High- income	Austria	Female	83	83.0	NaN
23	Life expectancy at age 60 (years)	Published	2000	Western Pacific	High- income	Brunei Darussalam	Female	22	22.0	NaN
37	Life expectancy at age 60 (years)	Published	2012	Europe	High- income	Cyprus	Female	26	26.0	NaN
4										•

11. Get the subset rows excluding 5, 12, 23, and 56 Expected Output:

In [19]: df.drop([5,12,23,56], axis=0) # axis=0 for rows, and axis=1 for column, by defaul group Life Western expectancy High-Both 10 Published 2012 Australia 83 83 at birth Pacific income sexes (years) Life expectancy High-11 83 Published 2012 83 Europe Austria Female at birth income (years) Life expectancy High-13 Published 2012 Belgium Female 83 83 Europe at birth income (years) Life

Load datasets from CSV - Users, Sessions, Products, Transactions

```
In [20]:
    users = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/maste
    sessions = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/ma
    products = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling/ma
    transactions = pd.read_csv('https://raw.githubusercontent.com/ben519/DataWrangling
    print('-'*80)
    print(users.head())
    print('-'*80)
    print(products.head())
    print('-'*80)
    print(sessions.head())
    print('-'*80)
    print('-'*80)
    print(transactions.head())
```

```
User Gender
   UserID
                             Registered
                                          Cancelled
0
        1
            Charles
                       male
                             2012-12-21
                                                 NaN
1
        2
              Pedro
                       male
                             2010-08-01
                                         2010-08-08
2
        3 Caroline female 2012-10-23 2016-06-07
3
        4
            Brielle female
                             2013-07-17
                                                 NaN
4
                       male
                             2010-11-25
                                                 NaN
           Benjamin
   ProductID Product Price
0
           1
                   Α
                      14.16
           2
1
                   B 33.04
2
           3
                   C 10.65
3
           4
                   D
                      10.02
                   Ε
                     29.66
   SessionID SessionDate UserID
0
           1 2010-01-05
                               2
1
           2 2010-08-01
                               2
                               2
2
              2010-11-25
                               5
3
           4 2011-09-21
              2011-10-19
   TransactionID TransactionDate UserID ProductID
                                                      Quantity
0
               1
                      2010-08-21
                                      7.0
                                                   2
                                                             1
1
               2
                      2011-05-26
                                      3.0
                                                   4
                                                             1
2
                                                             1
               3
                      2011-06-16
                                      3.0
                                                   3
3
               4
                      2012-08-26
                                     1.0
                                                   2
                                                             3
4
               5
                      2013-06-06
                                      2.0
                                                             1
```

```
In [21]: users.info()
         transactions.info()
         sessions.info()
         products.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5 entries, 0 to 4
         Data columns (total 5 columns):
         UserID
                       5 non-null int64
         User
                       5 non-null object
         Gender
                       5 non-null object
         Registered
                       5 non-null object
                       2 non-null object
         Cancelled
         dtypes: int64(1), object(4)
         memory usage: 280.0+ bytes
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10 entries, 0 to 9
         Data columns (total 5 columns):
         TransactionID
                            10 non-null int64
         TransactionDate
                             10 non-null object
         UserID
                             9 non-null float64
                             10 non-null int64
         ProductID
         Quantity
                             10 non-null int64
         dtypes: float64(1), int64(3), object(1)
         memory usage: 480.0+ bytes
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10 entries, 0 to 9
         Data columns (total 3 columns):
         SessionID
                        10 non-null int64
                        10 non-null object
         SessionDate
         UserID
                        10 non-null int64
         dtypes: int64(2), object(1)
         memory usage: 320.0+ bytes
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5 entries, 0 to 4
         Data columns (total 3 columns):
                      5 non-null int64
         ProductID
         Product
                      5 non-null object
         Price
                      5 non-null float64
         dtypes: float64(1), int64(1), object(1)
         memory usage: 200.0+ bytes
In [22]: # Data Preprocessing
         # Changing the Object to date
         users['Registered'] = pd.to datetime(users.Registered)
         sessions['SessionDate'] = pd.to datetime(sessions.SessionDate)
         transactions['TransactionDate'] = pd.to datetime(transactions.TransactionDate)
```

```
In [23]: users.info()
         transactions.info()
         sessions.info()
         products.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5 entries, 0 to 4
         Data columns (total 5 columns):
         UserID
                       5 non-null int64
         User
                       5 non-null object
         Gender
                       5 non-null object
                       5 non-null datetime64[ns]
         Registered
                       2 non-null object
         Cancelled
         dtypes: datetime64[ns](1), int64(1), object(3)
         memory usage: 280.0+ bytes
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10 entries, 0 to 9
         Data columns (total 5 columns):
         TransactionID
                            10 non-null int64
                             10 non-null datetime64[ns]
         TransactionDate
         UserID
                             9 non-null float64
         ProductID
                             10 non-null int64
         Quantity
                             10 non-null int64
         dtypes: datetime64[ns](1), float64(1), int64(3)
         memory usage: 480.0 bytes
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 10 entries, 0 to 9
         Data columns (total 3 columns):
         SessionID
                        10 non-null int64
                        10 non-null datetime64[ns]
         SessionDate
         UserID
                        10 non-null int64
         dtypes: datetime64[ns](1), int64(2)
         memory usage: 320.0 bytes
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 5 entries, 0 to 4
         Data columns (total 3 columns):
         ProductID
                      5 non-null int64
         Product
                      5 non-null object
         Price
                      5 non-null float64
         dtypes: float64(1), int64(1), object(1)
```

memory usage: 200.0+ bytes

```
In [24]: print(users.head())
         print(transactions.head())
                        User Gender Registered
            UserID
                                                   Cancelled
         0
                     Charles
                                male 2012-12-21
                                                         NaN
                 1
         1
                 2
                                male 2010-08-01 2010-08-08
                       Pedro
         2
                 3 Caroline female 2012-10-23 2016-06-07
         3
                 4
                     Brielle female 2013-07-17
                                                         NaN
                 5 Benjamin
                                male 2010-11-25
                                                         NaN
            TransactionID TransactionDate UserID ProductID
                                                               Quantity
         0
                        1
                               2010-08-21
                                              7.0
                                                            2
                                                                      1
         1
                        2
                               2011-05-26
                                               3.0
                                                            4
                                                                      1
         2
                        3
                               2011-06-16
                                               3.0
                                                            3
                                                                      1
         3
                                                            2
                                                                      3
                        4
                               2012-08-26
                                               1.0
                        5
         4
                                2013-06-06
                                               2.0
                                                                      1
```

12. Join users to transactions, keeping all rows from transactions and only matching rows from users (left join) Expected Output:

In [25]: transactions.merge(users, how='left', on='UserID')

0	uι	:[2	5	1
		-			-

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Canc
0	1	2010-08-21	7	2	1	NaN	NaN	NaT	
1	2	2011-05-26	3	4	1	Caroline	female	2012-10-23	201
2	3	2011-06-16	3	3	1	Caroline	female	2012-10-23	201
3	4	2012-08-26	1	2	3	Charles	male	2012-12-21	
4	5	2013-06-06	2	4	1	Pedro	male	2010-08-01	201
5	6	2013-12-23	2	5	6	Pedro	male	2010-08-01	201
6	7	2013-12-30	3	4	1	Caroline	female	2012-10-23	201
7	8	2014-04-24	NaN	2	3	NaN	NaN	NaT	
8	9	2015-04-24	7	4	3	NaN	NaN	NaT	
9	10	2016-05-08	3	4	4	Caroline	female	2012-10-23	201
4									•

13. Which transactions have a UserID not in users?

```
In [26]: transactions['UserID'].isin(users['UserID']) # Find which all rows doesn't in tr
Out[26]: 0
               False
          1
                True
          2
                True
          3
                True
          4
               True
          5
               True
          6
               True
          7
               False
          8
               False
               True
          Name: UserID, dtype: bool
In [27]: | transactions[~transactions['UserID'].isin(users['UserID'])] # 7 AND NaN
```

Out[27]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
7	8	2014-04-24	NaN	2	3
8	9	2015-04-24	7.0	4	3

14. Join users to transactions, keeping only rows from transactions and users that match via UserID (inner join)

```
In [28]:
         #transactions.merge(users, how='inner', on='UserID')
         # transactions.merge(users, how='inner', left on='UserID', right on='UserID')
         transactions.merge(users, how='inner', left_on =
                             'UserID', right_on = 'UserID')
```

Out[28]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Canc
0	2	2011-05-26	3	4	1	Caroline	female	2012-10-23	201
1	3	2011-06-16	3	3	1	Caroline	female	2012-10-23	201
2	7	2013-12-30	3	4	1	Caroline	female	2012-10-23	201
3	10	2016-05-08	3	4	4	Caroline	female	2012-10-23	201
4	4	2012-08-26	1	2	3	Charles	male	2012-12-21	
5	5	2013-06-06	2	4	1	Pedro	male	2010-08-01	201
6	6	2013-12-23	2	5	6	Pedro	male	2010-08-01	201
4									•

15. Join users to transactions, displaying all matching rows AND all

non-matching rows (full outer join)

In [29]: pd.merge(left=transactions, right=users, how='outer', left_on = 'UserID', right_o

\sim		$\Gamma \sim \Gamma$	Ι.
()	шт	1 /4 1	Г,

	TransactionID	TransactionDate	UserID	ProductID	Quantity	User	Gender	Registered	Ca
0	1.0	2010-08-21	7.0	2.0	1.0	NaN	NaN	NaT	
1	9.0	2015-04-24	7.0	4.0	3.0	NaN	NaN	NaT	
2	2.0	2011-05-26	3.0	4.0	1.0	Caroline	female	2012-10-23	2
3	3.0	2011-06-16	3.0	3.0	1.0	Caroline	female	2012-10-23	2
4	7.0	2013-12-30	3.0	4.0	1.0	Caroline	female	2012-10-23	2
5	10.0	2016-05-08	3.0	4.0	4.0	Caroline	female	2012-10-23	2
6	4.0	2012-08-26	1.0	2.0	3.0	Charles	male	2012-12-21	
7	5.0	2013-06-06	2.0	4.0	1.0	Pedro	male	2010-08-01	2
8	6.0	2013-12-23	2.0	5.0	6.0	Pedro	male	2010-08-01	2
9	8.0	2014-04-24	NaN	2.0	3.0	NaN	NaN	NaT	
10	NaN	NaT	4.0	NaN	NaN	Brielle	female	2013-07-17	
11	NaN	NaT	5.0	NaN	NaN	Benjamin	male	2010-11-25	
4									•

16. Determine which sessions occurred on the same day each user registered

In [30]: pd.merge(left=users,right=sessions, how='inner',left_on=['UserID','Registered'],

Out[30]:

	UserID	User	Gender	Registered	Cancelled	SessionID	SessionDate
0	2	Pedro	male	2010-08-01	2010-08-08	2	2010-08-01
1	4	Brielle	female	2013-07-17	NaN	9	2013-07-17

17. Build a dataset with every possible (UserID, ProductID) pair (cross join)

```
In [31]: import numpy as np
    df2=pd.DataFrame({'key': np.repeat(1,users.shape[0]), 'UserID':users.UserID}) # C
    df2
```

Out[31]:

	UserID	key
0	1	1
1	2	1
2	3	1
3	4	1
4	5	1

In [32]: df3=pd.DataFrame({'key':np.repeat(1,users.shape[0]), 'ProductID':products.Product
df3

Out[32]:

	ProductID	key
0	1	1
1	2	1
2	3	1
3	4	1
4	5	1

In [33]: #products

```
In [34]: # First Method

user_products = pd.merge(df2, df3,on='key')[['UserID', 'ProductID']]
user_products
```

Out[34]:

	UserID	ProductID
0	1	1
1	1	2
2	1	3
3	1	4
4	1	5
5	2	1
6	2	2
7	2	3
8	2	4
9	2	5
10	3	1
11	3	2
12	3	3
13	3	4
14	3	5
15	4	1
16	4	2
17	4	3
18	4	4
19	4	5
20	5	1
21	5	2
22	5	3
23	5	4
24	5	5

```
In [35]: ### Second Method
    users_1 = users
    users_1['key'] = 0
    products_1 = products
    products_1['key'] = 0
    pd.merge(users_1, products_1, on='key', how="outer")[['UserID', 'ProductID']]
```

Out[35]:

	UserID	ProductID
0	1	1
1	1	2
2	1	3
3	1	4
4	1	5
5	2	1
6	2	2
7	2	3
8	2	4
9	2	5
10	3	1
11	3	2
12	3	3
13	3	4
14	3	5
15	4	1
16	4	2
17	4	3
18	4	4
19	4	5
20	5	1
21	5	2
22	5	3
23	5	4
24	5	5

18. Determine how much quantity of each product was purchased by each user

Out[36]:

	UserID	ProductID	Quantity
0	1	1	0.0
1	1	2	3.0
2	1	3	0.0
3	1	4	0.0
4	1	5	0.0
5	2	1	0.0
6	2	2	0.0
7	2	3	0.0
8	2	4	1.0
9	2	5	6.0
10	3	1	0.0
11	3	2	0.0
12	3	3	1.0
13	3	4	6.0
14	3	5	0.0
15	4	1	0.0
16	4	2	0.0
17	4	3	0.0
18	4	4	0.0
19	4	5	0.0
20	5	1	0.0
21	5	2	0.0
22	5	3	0.0
23	5	4	0.0
24	5	5	0.0

19 For each user, get each possible pair of pair transactions (TransactionID1, TransacationID2)

```
In [37]: #pd.merge(df2,df3, on ='key')[['UserID','ProductID']]
#df5= df4.merge(transactions, how='inner', left_on = 'UserID', right_on = 'UserID
#df5['UserID','ProductID_x',sum('Quantity')]
#df5
pd.merge(transactions, transactions, on='UserID')
```

Out[37]:

	TransactionID_x	TransactionDate_x	UserID	ProductID_x	Quantity_x	TransactionID_y	Transact
0	1	2010-08-21	7.0	2	1	1	2
1	1	2010-08-21	7.0	2	1	9	2
2	9	2015-04-24	7.0	4	3	1	2
3	9	2015-04-24	7.0	4	3	9	2
4	2	2011-05-26	3.0	4	1	2	2
5	2	2011-05-26	3.0	4	1	3	2
6	2	2011-05-26	3.0	4	1	7	2
7	2	2011-05-26	3.0	4	1	10	2
8	3	2011-06-16	3.0	3	1	2	2
9	3	2011-06-16	3.0	3	1	3	2
10	3	2011-06-16	3.0	3	1	7	2
11	3	2011-06-16	3.0	3	1	10	2
12	7	2013-12-30	3.0	4	1	2	2
13	7	2013-12-30	3.0	4	1	3	2
14	7	2013-12-30	3.0	4	1	7	2
15	7	2013-12-30	3.0	4	1	10	2
16	10	2016-05-08	3.0	4	4	2	2
17	10	2016-05-08	3.0	4	4	3	2
18	10	2016-05-08	3.0	4	4	7	2
19	10	2016-05-08	3.0	4	4	10	2
20	4	2012-08-26	1.0	2	3	4	2
21	5	2013-06-06	2.0	4	1	5	2
22	5	2013-06-06	2.0	4	1	6	2
23	6	2013-12-23	2.0	5	6	5	2
24	6	2013-12-23	2.0	5	6	6	2
25	8	2014-04-24	NaN	2	3	8	2
4							>

20. Join each user to his/her first occuring transaction in the transactions table Expected

In [38]: users.head(2)

Out[38]:

	UserID	User	Gender	Registered	Cancelled	key
0	1	Charles	male	2012-12-21	NaN	0
1	2	Pedro	male	2010-08-01	2010-08-08	0

In [39]: transactions.head(2)

Out[39]:

	TransactionID	TransactionDate	UserID	ProductID	Quantity
0	1	2010-08-21	7.0	2	1
1	2	2011-05-26	3.0	4	1

Out[40]:

	UserID	User	Gender	Registered	Cancelled	key	TransactionID	TransactionDate	ProductII
0	1	Charles	male	2012-12-21	NaN	0	4.0	2012-08-26	2.
1	2	Pedro	male	2010-08-01	2010-08- 08	0	5.0	2013-06-06	4.
3	3	Caroline	female	2012-10-23	2016-06- 07	0	2.0	2011-05-26	4.
7	4	Brielle	female	2013-07-17	NaN	0	NaN	NaT	Nai
8	5	Benjamin	male	2010-11-25	NaN	0	NaN	NaT	Nal
4									

In [41]: users

Out[41]:

	UserID	User	Gender	Registered	Cancelled	key
0	1	Charles	male	2012-12-21	NaN	0
1	2	Pedro	male	2010-08-01	2010-08-08	0
2	3	Caroline	female	2012-10-23	2016-06-07	0
3	4	Brielle	female	2013-07-17	NaN	0
4	5	Benjamin	male	2010-11-25	NaN	0

```
In [42]: # Second Method
data=pd.merge(users, transactions.groupby('UserID').first().reset_index(), how='ldata
```

Out[42]:

	UserID	User	Gender	Registered	Cancelled	key	TransactionID	TransactionDate	ProductII
0	1	Charles	male	2012-12-21	NaN	0	4.0	2012-08-26	2.
1	2	Pedro	male	2010-08-01	2010-08- 08	0	5.0	2013-06-06	4.
2	3	Caroline	female	2012-10-23	2016-06- 07	0	2.0	2011-05-26	4.
3	4	Brielle	female	2013-07-17	NaN	0	NaN	NaT	Nal
4	5	Benjamin	male	2010-11-25	NaN	0	NaN	NaT	Nal
4									•

21. Test to see if we can drop columns

```
data.drop('key', axis=1, inplace=True)
In [43]:
         my columns = list(data.columns)
         my columns
Out[43]: ['UserID',
           'User',
          'Gender',
          'Registered',
          'Cancelled',
          'TransactionID',
          'TransactionDate',
          'ProductID',
          'Quantity']
In [44]: # Get the list of all columns without NAs & set threshold to drop NAs
         list(data.dropna(thresh=int(data.shape[0] * .9), axis=1).columns)
Out[44]: ['UserID', 'User', 'Gender', 'Registered']
         missing_info = list(data.columns[data.isnull().any()])
In [45]:
         missing_info
Out[45]: ['Cancelled', 'TransactionID', 'TransactionDate', 'ProductID', 'Quantity']
```

```
In [46]: print("Count of missing data:\n")
         for col in missing info:
             num missing = df13[df13[col].isnull() == True].shape[0]
             print('number missing for column {}: {}'.format(col, num missing))
         Count of missing data:
         number missing for column Cancelled: 3
         number missing for column TransactionID: 2
         number missing for column TransactionDate: 2
         number missing for column ProductID: 2
         number missing for column Quantity: 2
In [47]: | print("Percentage of missing data:\n")
         for col in missing info:
             percent missing = df13[df13[col].isnull() == True].shape[0] / df13.shape[0]
             print('percent missing for column {}: {}'.format(col, percent_missing))
         Percentage of missing data:
         percent missing for column Cancelled: 0.6
         percent missing for column TransactionID: 0.4
         percent missing for column TransactionDate: 0.4
         percent missing for column ProductID: 0.4
         percent missing for column Quantity: 0.4
```