A számítástudomány alapjai

Halmazelmélet

Halmazelmélet

Relációk

Definíció

Legyen A egy halmaz.

Az $R \subseteq A \times A$ halmazt az A halmaz elemei közötti (bináris) relációnak nevezzük.

Általánosítás:

Legyen A, B két halmaz.

Az $R \subseteq A \times B$ halmazt az A és B halmazok elemei közötti relációnak nevezzük.

Legyenek A_1, \dots, A_n halmazok.

Az $R \subseteq A_1 \times \cdots \times A_n$ halmazt az A_1, \dots, A_n halmazok elemei közötti relációnak nevezzük.

Jelölés

$$(x,y) \in R \Leftrightarrow xRy$$

Relációk

Definíció (tulajdonságok)

Legyen $x, y, z \in A, R \subseteq A \times A$.

Azt mondjuk, hogy az R reláció

- reflexív: ha xRx minden $x \in A$ esetén,
- irreflexív: ha xRy-ból következik, hogy $x \neq y$,
- szimmetrikus: ha xRy-ból következik, hogy yRx minden $x, y \in A$ esetén,
- aszimmetrikus : ha xRy-ból következik, hogy yRx (azaz $(y,x) \notin R$) minden $x,y \in A$ esetén,
- antiszimmetrikus : ha xRy és yRx-ből következik, hogy x=y,
- tranzitív: ha xRy és yRz-ből következik, hogy xRz minden $x, y, z \in A$ esetén,
- teljes: ha xRy és yRx közül legalább az egyik fennáll minden $x, y \in A$ esetén.

Relációk

Definíció (kategóriák)

Legyen $R \subseteq A \times A$.

Azt mondjuk, hogy az R reláció

- félig(parciális)rendezés: ha reflexív, antiszimmetrikus és tranzitív;
- szigorú féligrendezésa: ha irreflexív, aszimmetrikus és tranzitív;
- (teljes) rendezés: ha féligrendezés és teljes;
- ekvivalencia: ha reflexív, szimmetrikus és tranzitív;

Tétel

Az $R \subseteq A \times A$ ekvivalencia-reláció osztályozást indukál az A halmazon.

Osztályozás: A diszjunkt (ekvivalencia-)osztályokra bomlik.

Függvények

Definíció

Legyen $f \subseteq A \times B$ egy reláció.

Azt mondjuk, hogy f egy (totális) függvény, ha

- 1. minden $x \in A$ esetén létezik $y \in B$, amelyikre xfy;
- 2. minden $x \in A$ és $y_1, y_2 \in B$ esetén, ha xfy_1 és xfy_2 , akkor $y_1 = y_2$.

Jelölés

$$xfy \Leftrightarrow f(x) = y.$$

 $f \subseteq A \times B \Leftrightarrow f: A \to B$

Definíció

Legyen $f \subseteq A \times B$.

Azt mondjuk, hogy f egy parciális függvény, ha

1. minden $x \in A$ és $y_1, y_2 \in B$ esetén, ha xfy_1 és xfy_2 , akkor $y_1 = y_2$.

Függvények

Definíció (tulajdonságok)

Legyen $f: A \to B$.

Azt mondjuk, hogy f injektív, ha

a) minden $x_1, x_2 \in A$ esetén, ha $f(x_1) = f(x_2)$, akkor $x_1 = x_2$.

Azt mondjuk, hogy f szürjektív, ha

b) minden $y \in B$ esetén létezik a $x \in A$, amelyikre f(x) = y.

Azt mondjuk, hogy f bijektív, ha injektív és szürjektív.

Függvények

Definíció

Legyen $f: A \to B \text{ és } g: B \to C$.

A $(g \circ f)$: $A \to C$ függvényt a $(g \circ f)(x) = g(f(x))$ összefüggéssel definiáljuk, és az f és g függvények **kompozíciójának** nevezzük.

Példa

$$f(x) = 2x, \ g(x) = x^{2}$$

$$(g \circ f)(x) = 4x^{2}$$

$$(f \circ g)(x) = 2x^{2}$$

$$f^{(2)}(x) = (f \circ f)(x) = 4x$$

$$g^{(2)}(x) = (g \circ g)(x) = x^{4}$$

Boole-függvények

Definíció

Egy $f: \{0,1\}^n \to \{0,1\}$ függvényt n-változós Boole-függvénynek nevezünk.

Boole-függvények megadásának számtalan módja lehetséges.

- 1. Értéktáblával (Look-Up-Table)
- 2. Logika formula segítségével
- 3. Aritmetikai kifejezésként
- 4. Egyéb.

Példa

- 1-változós BF.
- 2-változós BF.
- 3-változós BF.

Aritmetikai kifejezés:

A $\{0,1\}$ halmazon értelmezhető egy redukált összeadás és szorzás művelet:

 $a \cdot b \mod 2$ és $a + b \mod 2$ módon: a művelet szokásos eredményének maradékát vesszük 2-vel osztva.

Példa

Kompozícióval.

Formális nyelvek

Definíció

Legyen A egy véges, nem üres halmaz (ábécé), elemei betűk (jelek, szimbólumok, karakterek,...).

(Véges) szó: az A elemeiből képzett (véges hosszúságú) sorozat.

Üres szó: λ az a szó, amelyik egyetlen betűt sem tartalmaz.

Összefűzés (konkatenáció): ha
$$w=w_1\dots w_n$$
 , $u=u_1\dots u_m$ akkor $w\cdot u=wu=w_1\dots w_nu_1\dots u_m$.

 A^* : az A ábécé fölötti véges szavak halmaza (a konkatenáció lezárása).

$$A^+ = A^* \setminus \{\lambda\}$$

(Formális) nyelv: $L \subseteq A^*$.

Ítéletlogika (nulladrendű logikai nyelv)

Egy olyan formális nyelv, melynek szavai bizonyos szabályos állítások.

A nyelvhez (mint általában) értelmezést fogunk rendelni (igazságértékelés).

Elemei (szavai): ítéletek (állítások);

Hétköznapi megfogalmazás: olyan értelmes, zárt kijelentő mondatok, amelyek egyértelműen igazak vagy hamisak.

- Egy ítélet nem lehet egyszerre igaz és hamis. (ellentmondástalanság elve)
- Nincs olyan ítélet, amely se nem igaz, se nem hamis. (kizárt harmadik elve)
- Ha egy ítélet nem hamis (nem igaz, hogy nem igaz), akkor az az ítélet igaz.
 (kettős tagadás elve)

Definíció (nulladrendű logikai nyelv, predikátumkalkulus)

Legyen V szimbólumok egy (véges vagy megszámlálhatóan végtelen) halmaza

 $Op = \{\neg, \land, \lor, \supset\}$ (műveleti jelek, logikai összekötőjelek; negáció, konjunkció, diszjunkció, implikáció)

feltétel: $V \cap (Op \cup \{(,)\}) = \emptyset$.

 $\mathcal{L}_0(Op,V)\subseteq (V\cup Op\cup\{(,)\})^*$, amire a következő teljesül:

 $\mathcal{L}_0(Op,V)$ a legszűkebb olyan halmaz, amelyre

- 1. $V \subseteq \mathcal{L}_0(Op, V)$
- 2. Ha $P, Q \in \mathcal{L}_0(Op, V)$, akkor
 - a) $(\neg P) \in \mathcal{L}_0(Op, V)$
 - b) $(P \land Q) \in \mathcal{L}_0(Op, V)$
 - c) $(P \lor Q) \in \mathcal{L}_0(Op, V)$
 - d) $(P \supset Q) \in \mathcal{L}_0(Op, V)$

 $\mathcal{L}_0(Op, V)$ elemeit (szavait) (ítéletlogikai) formuláknak, V elemeit atomi formuláknak (prímformuláknak) nevezzük.

 $\mathcal{L}_0(Op, V) \backslash V$: összetett formulák.

Jelölés

A könnyebb megkülönböztethetőség kedvéért V elemeit az ábécé elején,

 $\mathcal{L}_0(Op,V)$ elemeit általánosan az ábécé végén levő nagybetűkkel jelöljük.

$$V = \{A, B, C, ...\}$$

 $\mathcal{L}_0(Op, V) = \{P, Q, R, ...\}$

Az ítéletlogika nyelvét induktív definícióval adtuk meg.

Tétel (Szerkezeti indukció elve)

Legyen T egy tulajdonság, amely egy $P \in \mathcal{L}_0(Op,V)$ -re vagy teljesül, vagy nem.

Ha

- 1. T teljesül minden $P \in V$ -re és
- 2. amennyiben $P,Q \in \mathcal{L}_0(Op,V)$ és T teljesül P,Q-ra abból következik, hogy teljesül $(\neg P), (P \land Q), (P \lor Q)$ és $(P \supset Q)$ -re is,

akkor T teljesül minden $P \in \mathcal{L}_0(Op, V)$ -re.

Bizonyítás

$$\Gamma = \{P | P \in \mathcal{L}_0(Op, V), T \text{ teljesül } P - \text{re}\}$$

i.
$$\Gamma \subseteq \mathcal{L}_0(Op, V)$$

(1) miatt
$$V \subseteq \Gamma$$
 (2) miatt, ha $P,Q \in \Gamma$, akkor $(\neg P), (P \land Q), (P \lor Q), (P \supset Q) \in \Gamma$

Mivel $\mathcal{L}_0(Op, V)$ a legszűkebb ilyen halmaz, ezért

ii.
$$\Gamma \supseteq \mathcal{L}_0(Op, V)$$
.

i. + ii. együtt azt jelenti, hogy $\Gamma = \mathcal{L}_0(Op, V)$.

Következmény

 $\mathcal{L}_0(Op,V)$ minden eleme előállítható V elemeiből az a., b., c. és d. "szabályok" véges sokszori alkalmazásával.

Bizonyítás

Legyen T az a tulajdonság, hogy amely egy formulára fennáll, ha az előállítható V elemeiből az a., b., c. és d. "szabályok" véges sokszori alkalmazásával.

- 1. T teljesül minden $P \in V$ -re és
- 2. amennyiben $P, Q \in \mathcal{L}_0(Op, V)$ és T teljesül P, Q-ra abból következik, hogy teljesül $(\neg P), (P \land Q), (P \lor Q)$ és $(P \supset Q)$ -re is.

Az előző tétel alapján ekkor T teljesül minden $P \in \mathcal{L}_0(Op, V)$ -re.

Definíció (közvetlen részformula)

- 1. Ha $A \in V$, akkor nincs közvetlen részformulája;
- 2. $(\neg P)$ egyetlen közvetlen részformulája P;
- 3. az $(P \land Q)$, $(P \lor Q)$ és $(P \supset Q)$ formulák közvetlen részformulái az P és Q formulák.

Egy formula elsődleges (fő-) logikai összekötő jele a közvetlen részformulái közötti jel. (Ha létezik.)

Ha Q közvetlen részformulája P-nek, akkor P-t a Q szülőformulájának nevezzük.

Egy P formula részformuláinak halmaza az a legszűkebb halmaz [jelölés: RF(P)], amelyre teljesül, hogy

- 1. $P \in RF(P)$,
- 2. ha $Q \in RF(P)$ és R közvetlen részformulája Q-nak, akkor $R \in RF(A)$

Jelölés (Zárójelelhagyási konvenció)

A formulák egyszerűbb áttekinthetősége érdekében bevezetünk egy zárójelelhagyási szabályt.

Ennek érdekében a logikai összekötő jelek között megállapítunk egy sorrendet (precedencia, prioritás):

$$\neg > \land, \lor > \supset$$

- 1. Egy összetett formula külső zárójele elhagyható.
- 2. Egy részformula zárójele elhagyható, ha elsődleges művelete jele előrébb szerepel a precedencia-sorban, mint a szülőformulájának logikai összekötő jele.
- 3. Az Λ (V, ¬) logikai összekötő jelek által meghatározott részformula zárójele elhagyható, ha az őt közvetlenül magában foglaló formula műveleti jele ugyanaz. (Csoportosítás.)

Definíció (szerkezetfa)

A P formula szerkezeti fáján egy olyan véges rendezett fát értünk, amelynek csúcsai RF(P) formulái:

- 1. gyökere a *P* formula;
- 2. $(\neg Q)$ alakú csúcsának egyetlen gyermeke a Q formula;
- 3. a $(Q \land R)$, $(Q \lor R)$ és $(Q \supset R)$ alakú csúcsainak két gyermekét (balés jobboldali) a Q és R formulák alkotják;
- 4. levelei atomi formulák.

Egy formula mélysége: $\delta(P)$

- 1. ha $P \in V$, akkor $\delta(P) = 0$
- 2. $\delta(\neg P) = \delta(P) + 1$
- 3. $\delta(P \land Q) = \delta(P \lor Q) = \delta(P \supset Q) = \max\{\delta(P), \delta(Q)\} + 1$

Egy formula mélysége a hozzá tartozó szerkezeti fa mélysége (leghosszabb út).

Egy formula (funkcionális) összetettsége: $\varphi(P)$

1.ha
$$P \in V$$
, akkor $\varphi(P) = 0$

$$2.\varphi(\neg P) = \varphi(P) + 1$$

$$3.\varphi(P \land Q) = \varphi(P \lor Q) = \varphi(P \supset Q) = \varphi(P) + \varphi(Q) + 1$$

Egy formula összetettsége a hozzá tartozó szerkezeti fa azon csúcsainak száma, amelyek nem levélelemek.

Az $\mathcal{L}_0(Op, V)$ nyelv egy interpretációja (~ értelmezése):

$$\mathcal{I}: V \to \{0,1\}$$

Definíció (igazságérték, szemantika)

Az $P \in \mathcal{L}_0(Op, V)$ formula igazságértéke az \mathcal{I} interpretációban: $|P|_{\mathcal{I}} \in \{0,1\}$.

1.Ha
$$P \in V$$
, akkor $|P|_{\mathcal{I}} = \mathcal{I}(P)$.

2.Ha
$$P,Q \in \mathcal{L}_0(Op,V)$$
, akkor

a.
$$|(\neg P)|_{\mathcal{I}} = 1 - |P|_{\mathcal{I}}$$

b.
$$|(P \land Q)|_{\mathcal{I}} = \min\{|P|_{\mathcal{I}}, |Q|_{\mathcal{I}}\}$$

c.
$$|(P \vee Q)|_{\mathcal{I}} = \max\{|P|_{\mathcal{I}}, |Q|_{\mathcal{I}}\}$$

d.
$$|(P \supset Q)|_{\mathcal{I}} = \begin{cases} 0 \text{ , } & \text{ha } |P|_{\mathcal{I}} = 1 \text{ \'es } |Q|_{\mathcal{I}} = 0 \\ 1 \text{ , } & \text{egy\'ebk\'ent} \end{cases}$$

Legyen $\Gamma \subseteq \mathcal{L}_0(Op, V)$ egy formulahalmaz, $\mathcal{I}: V \to \{0,1\}$ egy interpretációja $\mathcal{L}_0(Op, V)$ -nek.

Azt mondjuk, hogy $\mathcal I$ modellje a Γ formulahalmaznak, ha minden $P \in \Gamma$ esetén $|P|_{\mathcal I} = 1$.

Megjegyzés

 \mathcal{I} modellje $P \in \mathcal{L}_0(Op, V)$ -nek, ha modellje $\{P\}$ -nak.

Példák:

Legyen $\Gamma \subseteq \mathcal{L}_0(Op, V)$ egy formulahalmaz. Azt mondjuk, hogy Γ

- 1. kielégíthető: ha létezik modellje. (Van olyan interpretációja $\mathcal{L}_0(Op,V)$ nek, amelyben Γ minden formulája igaz.)
- 2. kielégíthetetlen: ha nem létezik modellje (≈ ellentmondásos).

Példák:

 $P \in \mathcal{L}_0(Op, V)$ kielégíthető (kielégíthetetlen), ha $\Gamma = \{P\}$ kielégíthető (kielégíthetetlen).

Definíció

 $P\in\mathcal{L}_0(Op,V)$ logikai törvény, ha $\mathcal{L}_0(Op,V)$ minden interpretációjában igaz.

Példák:

Tétel

Egy $P \in \mathcal{L}_0(Op, V)$ formula pontosan akkor logikai törvény, ha $\neg P$ kielégíthetetlen.

Tétel

Egy kielégíthető formulahalmaz minden részhalmaza kielégíthető.

Bizonyítás

Legyen Γ kielégíthető, és \mathcal{I} modellje Γ -nak, azaz minden $P \in \Gamma$ esetén $|P|_{\mathcal{I}} = 1$. Ha $\Gamma' \subseteq \Gamma$, akkor \mathcal{I} modellje Γ' -nek is, mivel minden $P \in \Gamma'$ esetén $P \in \Gamma$ és így $|P|_{\mathcal{I}} = 1$.

Tétel

Egy kielégíthetetlen formulahalmaz minden bővítése kielégíthetetlen.

Bizonyítás

Legyen Γ kielégíthetetlen. Ekkor minden \mathcal{I} interpretácóban van olyan $P_{\mathcal{I}} \in \Gamma$, amelyre $|P_{\mathcal{I}}|_{\mathcal{I}} = 0$. Ha $\Gamma \subseteq \Gamma'$, akkor minden \mathcal{I} interpretácóban van olyan $P_{\mathcal{I}} \in \Gamma$, azaz $P_{\mathcal{I}} \in \Gamma'$, amelyre $|P_{\mathcal{I}}|_{\mathcal{I}} = 0$.

Legyen $\Gamma \subseteq \mathcal{L}_0(Op, V)$ egy formulahalmaz és $P \in \mathcal{L}_0(Op, V)$. Azt mondjuk, hogy P logikai következménye Γ -nak, ha $\Gamma \cup \{\neg P\}$ kielégíthetetlen.

Jelölés: $\Gamma \vDash P$

Megjegyzés

Indirekt bizonyítás elve.

Tétel

 $\Gamma \vDash P$ pontosan akkor, ha Γ minden modellje modellje P-nek is.

 $P \in \mathcal{L}_0(Op, V)$ pontosan akkor logikai törvény, ha $\emptyset \models P$ (azaz $\{\neg P\}$ kielégíthetetlen). (Gyakran: $\models P$)

Példák:

Legyen $P,Q\in\mathcal{L}_0(Op,V)$. Azt mondjuk, hogy P és Q logikailag ekvivalensek, ha $P\vDash Q$ és $Q\vDash P$. Jelölés: $P\Leftrightarrow Q$

Tétel

 $P \Leftrightarrow Q$ pontosan akkor, ha $\mathcal{L}_0(Op,V)$ minden interpretációjában ugyanazokat az értékeket veszik fel.

<u>Igazságtábla</u>

Néhány fontosabb ekvivalencia

Kettős tagadás:

$$\neg \neg P \Leftrightarrow P$$

Implikáció és diszjunkció:

$$P \supset Q \Leftrightarrow \neg P \lor Q$$

de Morgan-azonosságok:

$$P \lor Q \Leftrightarrow \neg(\neg P \land \neg Q)$$

$$P \wedge Q \Leftrightarrow \neg(\neg P \vee \neg Q)$$

(Következménye):

$$P \supset Q \Leftrightarrow \neg (P \land \neg Q)$$

$$P \supset Q \Leftrightarrow \neg Q \supset \neg P$$

Disztributivitás:

$$P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$$

$$P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$$

Tétel

Ha egy P formulában az egyik részformulát egy vele ekvivalens formulával helyettesítjük, a P-vel ekvivalens formulát kapunk.

pl.
$$P \lor (Q \supset R) \Leftrightarrow P \lor (\neg Q \lor R)$$

Megjegyzés

Egy formula megfelelő értelmezéssel tekinthető Boole-függvénynek.

Pl. A $A \lor B$ formulának megfelel egy 2-változós Boole-függvény $(A, B \in V)$.

Jelölés

Legyen $V=\{A_1,A_2,\dots\}$ és $P\in\mathcal{L}_0(Op,V)$, egy formula, amely az A_1,\dots,A_n atomi formulákból (változókból) épül fel logikai összekötőjelek (műveletek) segítségével. $f_P\colon\{0,1\}^n\to\{0,1\}$ azt a Boole-függvényt jelenti, amelyre

$$|P|_{\mathcal{I}} = f_P(\mathcal{I}(A_1), \dots, \mathcal{I}(A_n))$$

minden $\mathcal I$ interpretáció esetén.

Tétel

Legyen $P, Q \in \mathcal{L}_0(Op, V)$. $f_P = f_Q$ pontosan akkor, ha $P \Leftrightarrow Q$.

Tétel

Bármely f Boole-függvényhez létezik P formula, amelyre $f=f_P$.

A $\{0,1\}$ halmazon értelmezhető egy redukált összeadás és szorzás művelet: $a \cdot b \mod 2$ és $a + b \mod 2$ módon: a művelet szokásos eredményének maradékát vesszük 2-vel osztva.

•	0	1
0	0	0
1	0	1

+	0	1
0	0	1
1	1	0

Ezzel a jelöléssel:

$$f_{A \wedge B}(x, y) = x \cdot y$$

$$f_{A \times B}(x, y) = x + y$$

$$f_{\neg A}(x) = 1 + x$$

Mivel $A \lor B \Leftrightarrow \neg(\neg A \land \neg B)$:

$$f_{A \lor B}(x, y) = (1 + x) \cdot (1 + y) + 1 =$$

= 1 + x + y + x \cdot y + 1 = x + y + x \cdot y

Az Op halmaz változtatása, más formulákat enged meg. A logika ugyanaz.

PI.
$$Op = \{\neg, V\}, Op = \{\neg, xor\}, Op = \{nand\}$$

Egyszerűsítő jelölés: $nand : \overline{\Lambda}$

$$A \overline{\wedge} B \Leftrightarrow \neg (A \wedge B)$$

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

$$A \wedge B \Leftrightarrow \neg (A \overline{\wedge} A) \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$$

Minden Boole-függvény kifejezhető $\overline{\Lambda}$ -del.

Legyen $Op = \{\neg, \lor, \land, \supset, \overline{\land}\}$. Ekkor minden formulához létezik vele ekvivalens formula, ami csak $\overline{\land}$ műveleteket tartalmaz.

TTL Nand kapu:

CMOS not kapu:

CMOS Nand kapu:

Legyen $\mathcal{L}_0(Op,V)$ -ben $A \in V$. Ekkor az A és $\neg A$ formulákat <u>literálnak</u> nevezzük.

Legyenek $A_1, A_2, ..., A_n \in \mathcal{L}_0(Op, V)$ formulák literálok. Az $A_1 \wedge A_2 \wedge \cdots \wedge A_n$ formulát <u>elemi konjunkciónak</u>, az $A_1 \vee A_2 \vee \cdots \vee A_n$ formulát pedig <u>elemi diszjunkciónak</u> nevezzük.

Egy formula konjunktív normálalakban van (KNF), ha $D_1 \wedge D_2 \wedge \cdots \wedge D_k$ alakú, ahol D_i egy elemi diszjunkció minden $i=1,\ldots,k$ esetén.

Egy formula diszjunktív normálalakban van (DNF), ha $K_1 \vee K_2 \vee \cdots \vee K_k$ alakú, ahol K_i egy elemi konjunkció minden $i=1,\ldots,k$ esetén.

Megjegyzés

Speciális esetben, ha n=1 az A_1 formula tekinthető elemi konjunkciónak és elemi diszjunkciónak is.

pl. $A \lor \neg B \lor C$: elemi diszjunkció, illetve DNF.

Tétel

Legyen $A \in \mathcal{L}_0(Op, V)$. Ekkor léteznek olyan $B, C \in \mathcal{L}_0(Op, V)$ formulák, amelyekre $A \Leftrightarrow B$ és $A \Leftrightarrow C$, valamint B egy KNF, C pedig egy DNF.

Megjegyzés

Egy formula kielégíthetőségének eldöntése általában nem egyszerű feladat. (A neki megfelelő Boole-függvény felvehet-e 1 értéket.) Általános megoldás: az összes interpretációt végigpróbálni. Ha egy formulában n változó (atomi formula) van, ez rossz esetben 2^n próbát jelent.

Egy DNF-ről eldönteni, hogy kielégíthető-e: könnyű

Egy KNF-ről eldönteni, hogy kielégíthető-e: nehéz – jelenleg nincs ismert algoritmus, amelyik 2^n -től lényegesen kevesebb lépésben megoldaná a feladatot.

SAT: a kielégíthető KNF-k halmaza – nagyon fontos szerepe van a bonyolultságelméletben (az egyes feladatok nehézségének meghatározása)

Döntési diagramok

Boole-függvények (0. rendű formulák) reprezentációja Legyen f(x, y) a következő:

f	x	у
1	0	0
1	0	1
0	1	0
0	1	1

PI: f(x, y, z)

f	χ	y	\boldsymbol{Z}
1	0	0	0
1	0	0	1
0	0	1	0
0	0	1	1
1	1	0	0
0	1	0	1
0	1	1	0
1	1	1	1

<u>Döntési fa</u>: olyan rendezett bináris fa, amely csúcspontjaiban feltételvizsgálatok szerepelnek, az egyes élei a vizsgálatok igaz-hamis értékeinek felelnek meg. A levélelemek értéke a döntés értéke.

Rendezett döntési fa: olyan döntési fa, amelyben az egyes szinteken ugyanazok a feltételek találhatók.

<u>Bináris döntési diagram</u>: olyan irányított körmentes gráf (DAG), melyben minden csúcsból legfeljebb két él vezet ki, és van benne pontosan egy olyan csúcs, amelyből az összes többi csúcs elérhető irányított úton. A csúcsokban feltételvizsgálatok szerepelnek, a kivezető élek a vizsgálat eredményének felelnek meg. A gráf szintekre bontható, egy szinteken azonos feltételvizsgálatok szerepelnek (és az összes ilyen egy szinten van).

Levélelem: 0 a kifoka.

Redukált rendezett bináris döntési diagram (RRBDD): olyan bináris döntési diagram, amelyben

- 1. csak két levélelem szerepel: 0, 1
- 2. nincs benne párhuzamos él
- 3. bármely két azonos szinten levő csúcs esetén vagy a 0, vagy az 1 élek különböző csúcsra mutatnak. ($P_a(0) \neq P_b(0)$ vagy $P_a(1) \neq P_b(1)$

Két rendezett bináris döntési diagram ekvivalens, ha ugyanazt a Boolefüggvényt határozzák meg.

Tétel

Ha két azonosan rendezett RRBDD ekvivalens, akkor megegyezik.

Megjegyzés

Két rendezés akkor azonos, ha a diagramban az egymásnak megfelelő döntési szintek ugyanazt a feltételvizsgálatot tartalmazzák.

Algoritmus

A tétel alapján minden rendezett döntési fa átalakítható egy egyértelműen meghatározott RRBDD alakúra, a következő lépések tetszőleges sorrendben való alkalmazásával:

- 1. vonjuk össze az azonos értékű levélelemeket;
- azon csúcsokat, melyekből párhuzamos él vezet ki, szüntessük meg.
 A megszüntetett csúcsba érkező éleket közvetlenül a gyerek-csúcsba kössük be.
- 3. az azonos szinten levő, megegyező részdiagrammal rendelkező csúcsokat vonjuk össze.