Applied Statistics Computational Project 2

For the dataset, We have taken the Video game sales Data.

Conclusions from Gamma Distribution Fitting of Global_Sales Data

```
import pandas as pd
   import numpy as np
  from scipy.stats import gamma
  # Load the Excel file
  df = pd.read_excel("newgame.xlsx")
  # Extract Global_Sales and filter positive values
  global_sales = df['Global_Sales']
  global_sales = global_sales[global_sales > 0].dropna()
  # Method of Moments Estimation
  sample_mean = global_sales.mean()
  sample_var = global_sales.var()
14
16
   # MoM formulas for Gamma(a, b)
  b_mom = sample_var / sample_mean
  a_mom = sample_mean / b_mom
print("Method of Moments Estimates:")
  print(f"a (shape) = {a_mom:.4f}")
21
   print(f"b (scale) = {b_mom:.4f}")
  # Maximum Likelihood Estimation (fit Gamma with loc=0)
  a_mle, loc_mle, b_mle = gamma.fit(global_sales, floc=0)
  print("\nMaximum Likelihood Estimates:")
print(f"a (shape) = {a_mle:.4f}")
29 | print(f"b (scale) = {b_mle:.4f}")
```

The objective of the analysis is to model the distribution of Global_Sales using the Gamma distribution. Two estimation methods were used:

- Method of Moments (MoM)
- Maximum Likelihood Estimation (MLE)

Estimated Parameters

Method	Shape (a)	Scale (b)
Method of Moments	2.1766	6.7504
Maximum Likelihood Estimation	3.9330	3.7359

Interpretations and Conclusions

- 1. Both estimation methods suggest that the Gamma distribution is a reasonable model for the Global_Sales data. This is justified since the sales data is non-negative and skewed, which aligns with the properties of the Gamma distribution.
- 2. The two methods yield different parameter values:
 - The MoM estimates indicate a lower shape parameter and a higher scale parameter, suggesting a more right-skewed distribution.
 - The MLE estimates yield a higher shape parameter and a lower scale parameter, suggesting less skewness and more concentration near the mean.
- 3. MLE is generally more accurate and statistically efficient than MoM, especially with larger datasets. While MoM provides a quick and intuitive estimation based on sample moments, MLE makes use of the full likelihood function.
- 4. For robust statistical inference or simulation purposes, the MLE-based Gamma model is preferable.

Confidence Interval for the Variance of Global Sales

```
import pandas as pd
   from scipy.stats import chi2
   # Sample statistics
   n = len(global_sales)
   sample_var = global_sales.var(ddof=1) # unbiased estimator
   # Confidence level
   alpha = 0.05
   # Chi-squared critical values (corrected)
11
   chi2_lower = chi2.ppf(alpha / 2, df=n - 1)
   chi2_upper = chi2.ppf(1 - alpha / 2, df=n - 1)
13
   # Confidence interval for the variance
15
   lower_bound = (n - 1) * sample_var / chi2_upper
upper_bound = (n - 1) * sample_var / chi2_lower
   print(f"95% Confidence Interval for the Variance: ({lower_bound:.4f
        }, {upper_bound:.4f})")
```

Using the sample of $Global_Sales$ (filtered to include only positive values), we compute a 95% confidence interval for the population variance based on the Chi-squared distribution.

Method

Let s^2 denote the sample variance computed from n independent observations. The confidence interval for the true variance σ^2 of a normal population is given by:

$$\left(\frac{(n-1)s^2}{\chi^2_{n-1,1-\alpha/2}}, \frac{(n-1)s^2}{\chi^2_{n-1,\alpha/2}}\right)$$

where:

- *n* is the sample size,
- s^2 is the unbiased sample variance,
- $\chi^2_{n-1,\alpha/2}$ and $\chi^2_{n-1,1-\alpha/2}$ are the critical values from the Chi-squared distribution with n-1 degrees of freedom,
- $\alpha = 0.05$ corresponds to a 95% confidence level.

Results

For the given data:

95% Confidence Interval for the Variance: (76.3680, 134.0711)

Interpretation

We are 95% confident that the true variance of global sales lies between approximately 76.37 and 134.07. This interval quantifies the uncertainty around the sample variance estimate due to sampling variability.

Confidence Interval for Difference in Mean Global Sales: Sports vs Platform

```
import pandas as pd
   import numpy as np
   from scipy import stats
   # Load Excel file
   df = pd.read_excel('newgame.xlsx')
   # Confidence Interval for Difference in Means
10
11
  # Choose two non-overlapping genres
12
   genre1 = 'Sports'
13
   genre2 = 'Platform'
  # Filter data for each genre
  sales1 = df[df['Genre'] == genre1]['Global_Sales'].dropna()
sales2 = df[df['Genre'] == genre2]['Global_Sales'].dropna()
  # Calculate means, standard deviations, and sample sizes
  n1, n2 = len(sales1), len(sales2)
  mean1, std1 = sales1.mean(), sales1.std(ddof=1)
   mean2, std2 = sales2.mean(), sales2.std(ddof=1)
  # Compute standard error and margin of error
  se_diff = np.sqrt(std1**2 / n1 + std2**2 / n2)
   z_critical = stats.norm.ppf(0.975) # 95% CI
   margin_of_error = z_critical * se_diff
  # Confidence Interval
30
  ci_lower = (mean1 - mean2) - margin_of_error
  ci_upper = (mean1 - mean2) + margin_of_error
  # Output for Part 1
  print("=== 95% Confidence Interval for Difference in Means ===")
  print(f"Genre 1: {genre1} | Mean: {mean1:.3f}")
  print(f"Genre 2: {genre2} | Mean: {mean2:.3f}")
   print(f"95% CI for (Mean of {genre1} - Mean of {genre2}): ({
       ci_lower:.3f}, {ci_upper:.3f})\n")
```

Objective

To determine whether there is a statistically significant difference in the average global sales between the Sports and Platform (Non - Overlapping populations) genres, we compute a 95% confidence interval for the difference in their means.

Method

Let:

- \bar{x}_1 , s_1 , and n_1 be the sample mean, standard deviation, and size for Sports,
- \bar{x}_2 , s_2 , and n_2 be the same for Platform.

The confidence interval for the difference in means $(\mu_1 - \mu_2)$ is given by:

$$(\bar{x}_1 - \bar{x}_2) \pm z_{\alpha/2} \cdot \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

with $z_{\alpha/2} = 1.96$ for a 95% confidence level.

Results

- Mean Global Sales for Sports: $\bar{x}_1 = 29.502$
- Mean Global Sales for Platform: $\bar{x}_2 = 15.745$
- 95% Confidence Interval for $(\mu_{\text{Sports}} \mu_{\text{Platform}})$:

$$(-8.942, 36.456)$$

Interpretation

The confidence interval includes 0, indicating that the difference in mean global sales between Sports and Platform genres is not statistically significant at the 95% confidence level. That is, we do not have sufficient evidence to conclude that one genre significantly outsells the other on average.

Hypothesis Test for Proportion of High-Selling Games

```
# Hypothesis Test for Binary Response (Bernoulli)
3
4
   # Define binary response variable: success if Global_Sales > 10
   df['Success'] = (df['Global_Sales'] > 10).astype(int)
   # Sample proportion and size
   p_hat = df['Success'].mean()
  n = len(df['Success'])
10
  p0 = 0.5 # Null hypothesis value
11
12
  # Z-test statistic and p-value
  | z_stat = (p_hat - p0) / np.sqrt(p0 * (1 - p0) / n)
14
  p_value = 1 - stats.norm.cdf(z_stat)
  # Output for Part 2
17
  print("=== Hypothesis Test for Proportion (Bernoulli) ===")
  print("H0: p <= 0.5 vs H1: p > 0.5")
  print(f"Sample proportion (p ): {p_hat:.3f}")
  print(f"Z-statistic: {z_stat:.3f}")
22
  print(f"P-value: {p_value:.4f}")
   if p_value < 0.05:
23
       print("Conclusion: Reject HO at 5% significance level. Evidence
            suggests p > 0.5.")
   else:
25
       print("Conclusion: Fail to reject HO. No strong evidence that p
            > 0.5.")
```

Objective

To test whether the proportion of games with global sales greater than 10 million units exceeds 0.5.

Definitions

• Define a binary variable Success such that:

$$Success = \begin{cases} 1, & \text{if Global_Sales} > 10 \\ 0, & \text{otherwise} \end{cases}$$

- Let \hat{p} denote the sample proportion of successful games.
- \bullet Let n be the total number of observations.

Hypotheses

 $H_0: p \le 0.5$ (Proportion of successful games is 50% or less)

 $H_1: p > 0.5$ (Proportion of successful games exceeds 50%)

Test Statistic

The test statistic is computed using the formula for a one-sample proportion Z-test:

$$Z = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

where:

• $\hat{p} = 0.626$ (sample proportion),

• $p_0 = 0.5$ (null hypothesis proportion),

 \bullet *n* is the total sample size.

Results

• Z-statistic: Z = 2.513

• P-value: 0.0060

Conclusion

Since the p-value is less than the significance level $\alpha = 0.05$, we reject the null hypothesis H_0 .

Conclusion: There is statistically significant evidence at the 5% level to suggest that the proportion of high-selling games (over 10 million units) exceeds 50%.

Done By:

- Puli Dinesh AI23BTECH11019
- Rathod sai dhanush AI23BTECH11021
- Jatavath ajay- AI23BTECH11011