«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Дмитрий Павлов Студент факультета инноваций и высоких технологий (группа 790)

Лабораторная работа №2.3.1

«Получение и измерение вакуума»

Долгопрудный 9 мая 2018 г.

- Цель работ: 1)Измерение объемов форвакуумной и высоковакуумной части установки; 2) определение скорости откачки системы в стационарном режиме, а также по улучшению и ухудшению вакуума.
- В работе используются: Вакуумная установка с манометрами: масляным, термопарным и ионизационным.

1 Теоретический материал:

По степени разрежения вакуумные установки делят на три класса:

- 1. Низковакуумные (до $10^{-2} 10^{-3}$ торр)
- 2. Высоковакуумные ($10^{-4} 10^{-7}$ торр)
- 3. Установки сверхвысокого вакуума $(10^{-8} 10^{-11} \text{ торр})$

В данной работе исследуется откачка установки форвакуумным насосом до давления порядка 10^{-3} торр, а также откачка диффузионным масляным насосом до давления порядка 10^{-5} торр, а также методы измерения вакуума в этом диапазоне.

2 Экспериментальная установка:

Рис. 1: Схема установки

Общая схема установки представлена на рис. 2. Установка состоит из форвакуумного баллона (ФБ), высоковакуумного диффузионного насоса (ВН), высоковакуумного баллона (ВБ), масляного (М) и ионизационного (И) манометров, термопарных манометров ($M_1u\,M_2$), форвакуумного насоса (ФН) и соединительных кранов $K_1,...,K_6$.

2.1 Насосы

2.1.1 Форвакуумный насос

Устройство и принцип действия ротационного пластинчатого форвакуумного насоса схематически представлены на рис. ??. В цилиндрической полости массивного корпуса размещен эксцентрично ро-

Рис. 2: Принцип работы форвакуумного насоса

тор, постоянно соприкасающийся своей верхней частью с корпусом. В диаметральный разрез ротора вставлены две пластины, раздвигаемые пружиной и плотно прижимаемые к поверхности полости. Они разделяют объем между ротором и корпусом на две части. При работе насоса происходят циклические изменения объема воздуха, поступаемые из откачиваемого объема. На рис 2.1.1 в положениях а и б пластина А засасывает разреженный воздух из откачанного объема, а пластина Б вытесняет ранее захваченный воздух в атмосферу. В положениях в и г просисходит то же самое, только пластины меняются ролями.

2.1.2 Диффузионный насос

Принцип работы диффузионного насоса основывается на диффузии молекул разреженного газа в пары масла. Попавшие в струю паров молекулы увлекаются ею и уже не возвращаются. Таким образом происходит повышение разреженности воздуха. Устройство диффузионного насоса схематически показано на рис. 2.1.2. Масло, налитое в сосуд A, подогревается электрической печкой. Пары масла поднимаются по трубе Б и вырываются из сопла B, увлекая за собой молекулы воздуха. Далее струя попадает в вертикальную трубу Γ , где масло конденсируется и стекает вниз, а молекулы воздуха откачиваются форвакуумным насосом. Даление насыщенных паров масла много больше $5 \cdot 10^{-2}$ торр, поэтому пары масла создают мощную струю.]

2.2 Манометры

2.2.1 Масляный манометр

Масляный манометр представляют собой U-образную трубку, до половины наполненную вязким маслом, имеющим низкое давление насыщенных паров. Из-за малой плотности масла ($\rho = 0.9 \epsilon/c M^3$)

Рис. 3: Устройство диффузионного насоса

можно измерять только небольшие разности давлений (до нескольких торр).

2.2.2 Термопарный манометр

Чувствительным элементом манометра является платино-платинорадиевая термопара, спаянная с никелевой нитью накала и заключенная в стеклянный баллон. Устройство термопары пояснено на рис. ??. По нити накала НН пропускается ток постоянной величины. Для установки тока служит потенциометр R. Термопара ТТ присоединяется к милливольтметру, показания которого определяются температурой нити накала и зависят от отдачи тепла в окружающее пространство.

При улучшении вакуума средний свободный пробег молекул становится сравнимыми с диметром нити, теплопровод падает и возрастает температура нити. При вакууме $\sim 10^{-3}$ торр температура нити становится практически постоянной.

Для оценки вакуума с помощью термопарного манометра используют градуировочную кривую (см рис.5).

Рис. 4: Устройство термопарного манометра

Рис. 5: Градуировочная кривая

2.2.3 Ионизационный манометр

Схема ионизационного манометра представлена на рис. 2.2.3.

Он представляет собой трехэлектродную лампу. Электроны испускаются нагретым катодом и увлекаются электрическим полем к аноду, имеющему форму спирали. Под влиянием поля коллектора электроны многократно пересекают пространство между катодом и коллектором и ионизируют молекулы газа. Образовавшиеся ионы притягиваются к коллектору и определяют его ток. Лампа перегорает при давлениии свыше 10^{-3} торр, поэтому необходимо производить измерения при давлениях, не превышающих данного значения.

2.3 Откачка воздуха

Производительность насоса определяются $скоростью откачки\ W$ — объемом газа, удаляемым из сосуда при данном давлении за единицу времени. Определим предельное давление, достижимое при откачке воздуха:

$$-VdP = (PW - Q_{\partial} - Q_{u} - Q_{u})dt, \qquad (1)$$

где Q_{∂} – количество газа, десорбирующегося с поверхности откачиваемого объема в единицу времени, Q_n – поток газа, поступающего из насоса обратно в систему, Q_u – количество газа, проникающего в систему извне в единицу времени.

При
$$P = P_{np}$$
 $\frac{dP}{dt} = 0$, поэтому

$$P_{np}W = Q_{\partial} + Q_n + Q_u \tag{2}$$

Рис. 6: Схема ионизационного манометра

Полагая, что все Q постоянны, интегрируя (1) и применяя (2), получаем

$$P = P_0 \exp\left(-\frac{W}{V}t\right) + P_{np}.$$
 (3)

Постоянная меры откачки $\tau = V/W$ является мерой эффективности откачной системы.

3 Выполнение работы:

3.1 Определение объема форвакуумной и высоковакуумной частей установки

- 1. Определим объемы сосудов. Для этого закроем краны K_5 и K_6 (при этом в капиллярах «запирается» объем $V=50~{\rm cm}^3$), затем закроем краны K_1 и K_2 , подключив установку к форвакуумному насосу, и кран K_3 , изолируя таким образом высоковакуумную часть от форвакуумной. Включим форвакуумный насос и откачаем установку. Измерим полученное давление масляным манометром.
- 2. Затем откроем кран K_5 . При этом «запертый» воздух заполнит всю форвакуумную часть установки. Измерим изменение давления манометром:

$$h_1 = 16.5 \text{ cm}$$

 $h_2 = 31.2 \text{ cm}$
 $\Delta h_{\phi s} = h_2 - h_1 = 14.7 \text{ cm}$
 $P = \rho q \Delta h = 1274.9 \text{ \Pia}$

Из закона Бойля-Мариотта получим, что объем форвакуумной части установки $V_{\phi e} = \frac{P_0 V_0}{P}$. Отсюда можно получить значение $V_{\phi e} = 3972,7$ см³.

3. Откроем кран K3, соединяя форвакуумную и высоковакуумную часть. Измерим изменение давления масляным манометром. Рассуждая аналогично, получим значение объема высоковакуумной части V_{66} .

$$h_1 = 18 \text{ cm}$$

 $h_2 = 29.8 \text{ cm}$
 $\Delta h_{noan} = h_2 - h_1 = 11.8 \text{ cm}$
 $P = \rho g \Delta h = 1274.9 \text{ \Pia}$
 $V_{noan} = 4949.1 \text{ cm}^3$
 $V_{66} = V_{noan} - V_{d6} = 976.4 \text{ cm}^3$

4. Погрешность измерений:

$$\sigma_V = \sqrt{(\frac{\sigma_{V_0}}{V_0})^2 + (\frac{\sigma_{\Delta h}}{\Delta h})^2}$$

Отсюда $V_{\phi s}=(3972.7\pm239.9)~{\rm cm}^3,~V_{ss}=(976.4\pm59.1)~{\rm cm}^3$

3.2 Получение высокого вакуума и измерение скорости откачки

- 1. Откачаем установку форвакуумным насосом и, когда даление станет достаточно низким $< 3 \cdot 10^{-2}$ торр, начнем высоковакуумную откачку. Дождемся, пока давление в системе упадет до предельного значения.
- 2. Проведем измерение значения предельного давления с помощью ионизационного манометра: $P_{np} = 6.3 \cdot 10^{-5}$ торр
- 3. Найдем скорость откачки по улучшению вакуума во время откачки. Для этого откроем кран K_3 и измерим изменение давления в зависимости от времени. Запишем результаты в таблицу 1.

t, c	$P, 10^{-4} \text{ Topp}$	$\left \ln(P - P_{np}) \right $
0	6,4	1,76
1	5,6	1,61
2	4,2	1,28
3	3,4	1,03
4	2,8	0,79
5	2,3	0,53
6	1,9	0,26
7	1,6	0,00
8	1,4	-0,22
9	1,2	-0,51
10	$1{,}1$	-0,69
11	0,9	-1,20
12	0,8	-1,61

Таблица 1: Измерения при улучшении вакуума

4. По полученным данным построим график зависимости $\ln(P-P_{np})$ от t:

$$\begin{split} \frac{1}{\tau} &= -\frac{W}{V_{ee}} = -0.275 \\ W &= 0.275 \cdot 0.976 \approx 0.268 \, \text{n/c} \\ \varepsilon_W &= \sqrt{(\varepsilon_\tau)^2 + (\varepsilon_V)^2} \approx 7\% \end{split}$$

Таким образом $W=0.268\pm0.019$ л/с Оценим величину потока Q_n (в ${\rm H\cdot m/c}$):

$$V_{ee}dP = (Q_{\partial} + Q_{n})dt$$
$$Q_{n} = PW \approx 1.1 \cdot 10^{-5}$$

5. Откроем кран K_6 , введя таким образом искусственную течь в установку. Измерим установившееся давление:

$$P_{ycm} = 1.5 \cdot 10^{-4} \text{ Topp}$$

Рис. 7: Улучшение вакуума

Количество газа, протекающего через капилляр: $\frac{d(PV)}{dt} = \frac{4}{3} r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\phi s} - P_{ycm}}{l}$ $P_{ycm}W = P_{np}W + \frac{d}{dt}(PV)_{\kappa anun} \to W = \frac{4}{3l} r^3 \sqrt{\frac{2\pi RT}{\mu}} \frac{P_{\phi s} - P_{ycm}}{P_{ycm} - P_{np}} \approx 6.98 \cdot 10^{-5} \text{ m}^3/\text{c} = 6.98 \cdot 10^{-2}$ π/c $\varepsilon_W = \sqrt{\varepsilon_P^2 + \varepsilon_r^2 + \varepsilon_l^2} \approx 13\%$

Полученное значение $W = (6.98 \pm 0.91) \cdot 10^{-2} \ \mathrm{\pi/c}$

4 Вывод:

При улучшении вакуума при откачке полученное значение скорости откачки равно $W=(0.268\pm0.019)~\pi/c$, а при введении искусственной течи $W=(6.98\pm0.91)\cdot10^{-2}~\pi/c$. Расхождения в значениях вызваны погрешностями и недостаточной точностью измерительных приборов, а также утечкой воздуха из установки.