Week 1-2 Regularization

笔记本: DL 2 - Deep NN Hyperparameter Tunning, Regularization & Optimization

创建时间: 2021/1/9 09:25 **更新时间**: 2021/1/9 09:42

L2 regularization (L2 norm) w will be sparse for L1 regularization

For NN: (Forbenius norm)

Neural network

$$J(\omega^{r0}, b^{c0}, ..., \omega^{c03}, b^{c03}) = \frac{1}{m} \sum_{i=1}^{m} f(y^{i(i)}, y^{i(i)}) + \frac{\lambda}{2m} \sum_{i=1}^{m} ||\omega^{c03}||_{E}^{2}$$

$$||\omega^{c03}||_{E}^{2} = \sum_{i=1}^{m} \sum_{j=1}^{m} (\omega^{c03})^{2} \qquad \omega: (n^{c03} n^{c03}) \cdot \frac{\lambda}{2m} \qquad ($$

(also called weight decay)

Why it works?

How does regularization prevent overfitting?

also, every layer approximately linear

How does regularization prevent overfitting?

Dropout Regularization

Dropout regularization

trained with randomly reduced NN

Implementing dropout ("Inverted dropout")

Illustre with lay
$$l=3$$
. teep-prob= 0.8

$$3 = np. nordon. rord (a3. shape To2, a3. shape To2) < teep-prob$$

$$a3 = np. multiply (a2, d3) # a3 * = d3.$$

$$3 = np. multiply (a2, d3) # a3 * = d3.$$

$$50 units. up 10 units shut off$$

$$2^{T42} = W^{T42} = W^{T42} = U^{T42} = U^{$$

(Inverted dropout makes sure that Exp(a) stays the same)

Making predictions at test time

$$\frac{No \quad dop \quad out.}{\int z^{\tau n} = \bigcup_{z = 0}^{\tau n} a^{\tau n} + \int_{z = 0}^$$

Why dropout works? (usually used in CV)

Why does drop-out work?

Intuition: Can't rely on any one feature, so have to spread out weights. Shrink weights. x_1 x_2 x_3 x_3 Andrew Ng

tune keep-prob for different layers

Downside: cost function is not well-defined

Other methods:

(1) Data augmentation

Data augmentation

(2) Early stopping

Downside: (Orthogonalization, we do one task at a time, but early stopping enquires we do both tasks at the same time)