Formale Grundlagen der Informatik II 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Alexander Kreuzer Carsten Rösnick SS 2011 08.06.11

Minitest Lösung

- a) Seien φ, ψ zwei allgemeingültige Sätze. Welche der folgenden Aussagen ist im Allgemeinen richtig?
 - $\boxtimes \varphi$ ist erfüllbar.
 - $\boxtimes \varphi \wedge \psi$ ist allgemeingültig.
 - $\boxtimes \varphi \lor \psi$ ist allgemeingültig.
 - $\boxtimes \neg \varphi$ ist nicht erfüllbar.

Begründung: φ ist erfüllbar, weil nach Voraussetzung jedes Modell φ erfüllt und damit es insbesondere ein Modell von φ gibt. Da für jedes Modell \Im gilt $\Im \models \varphi, \psi$, gilt auch $\Im \models \varphi \land \psi, \varphi \lor \psi$ und damit sind $\varphi \land \psi, \varphi \lor \psi$ allgemeingültig. Weil für jedes \Im gilt $\Im \models \varphi$, folgt dass es kein \Im gibt, dass $\Im \models \neg \varphi$, also ist $\neg \varphi$ nicht erfüllbar.

- b) Seien φ, ψ nun zwei erfüllbare Sätze. Welche der folgenden Aussagen ist im Allgemeinen richtig?
 - $\square \varphi \wedge \psi$ ist erfüllbar.
 - $\boxtimes \varphi \lor \psi$ ist erfüllbar.
 - $\Box \neg \varphi$ ist nicht erfüllbar.

Begründung: Seien $\varphi \equiv p$ und $\psi \equiv \neg p$, dann ist φ erfüllbar, weil das Modell \Im mit $(p)^\Im = 1$ den Satz erfüllt, und ψ erfüllbar, weil das Modell \Im' mit $(p)^{\Im'} = 0$ den Satz ψ erfüllt. Aber $\varphi \wedge \psi \equiv 0$ und ist damit nicht erfüllbar. Der Satz $\varphi \vee \psi$ ist erfüllbar, weil jedes Modell von φ auch ein Modell von $\varphi \vee \psi$ ist. Der Satz $\neg \varphi$ ist im Allgemeinen nicht nicht erfüllbar, weil z.B. für $\varphi \equiv p$ gilt das φ und $\neg \varphi$ erfüllbar sind.

Gruppenübung

Aufgabe G1

Seien φ und ψ AL-Formeln. Wie kann man das Resolutionsverfahren benutzen, um zu überprüfen, ob

- (a) φ unerfüllbar ist;
- (b) φ erfüllbar ist;
- (c) φ allgemeingültig ist;
- (d) φ nicht allgemeingültig ist;
- (e) $\varphi \models \psi$;
- (f) eine endliche Menge Φ von AL-Formeln unerfüllbar ist;
- (g) eine unendliche Menge Φ von AL-Formeln unerfüllbar ist?

Aufgabe G2

Seien
$$\varphi := (p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r) \wedge (\neg p \vee \neg q)$$

$$\psi := (p \wedge q) \vee (\neg p \wedge \neg q) \vee (\neg p \wedge q \wedge \neg r) \vee (p \wedge \neg q \wedge \neg r).$$

Zeigen Sie mit Hilfe des Resolutionsverfahrens, dass (a) φ erfüllbar ist; (b) $\varphi \models \psi$ gilt.

Aufgabe G3

Ein *Dominosystem* $\mathcal{D}=(D,H,V)$ besteht aus einer endlichen Menge D von quadratischen Dominosteinen und zwei Relationen $H\subseteq D\times D$ und $V\subseteq D\times D$, so dass

- $(d, e) \in H$ gdw. e rechts neben d passt,
- $(d, e) \in V$ gdw. e über d passt.

Wir betrachten ein festes Dominosystem $\mathcal{D} = (D, H, V)$.

- (a) Geben Sie zu $n \in \mathbb{N}$ eine AL-Formelmenge Φ_n an, welche genau dann erfüllbar ist, wenn man ein Quadrat der Größe $n \times n$ so mit Dominosteinen aus \mathcal{D} belegen kann, dass nebeneinander liegende Steine zueinander passen. (Wir nehmen an, dass es von jedem Dominostein beliebig viele Exemplare gibt.)
- (b) Beweisen Sie mit Hilfe des Kompaktheitssatzes, dass man die gesamte Ebene $\mathbb{N} \times \mathbb{N}$ korrekt mit Dominosteinen belegen kann, vorausgesetzt dies geht für alle endlichen Quadrate $n \times n$.
- (c) Beweisen Sie die Aussage aus (b) mit Hilfe des Lemmas von König anstatt des Kompaktheitssatzes.

Hausübung

Aufgabe H1 (6 Punkte)

(a) Überprüfen Sie mit Hilfe der Resolutionsmethode, ob die folgende Formel unerfüllbar ist:

$$(q \lor s) \land (p \lor \neg s) \land (p \lor \neg q \lor r \lor s) \land (q \to (r \to s)) \land (r \lor s) \land ((p \land s) \to r) \land (\neg p \lor \neg r)$$

(b) Weisen Sie mit Hilfe der Resolutionsmethode die folgende Folgerungsbeziehung nach:

$$(p \vee \neg q \vee r) \wedge (\neg p \vee q \vee r) \models (\neg p \wedge q \wedge r) \vee (\neg p \wedge \neg q) \vee (\neg p \rightarrow 0)$$

(c) Bestimmen Sie das minimale Modell der folgenden Horn-Formelmenge:

$$H_0 = \{(p \wedge t) \to s, \quad r, \quad (q \wedge r) \to s, \quad t \to p, \quad t\}$$

Aufgabe H2

(a) Für — möglicherweise unendliche — Formelmengen Φ und Ψ schreiben wir

$$\bigwedge \Phi \models \bigvee \Psi$$
,

wenn jede Interpretation, die alle Formeln $\varphi \in \Phi$ wahr macht, auch mindestens eine Formel $\psi \in \Psi$ wahr macht. Zeigen Sie, dass $\bigwedge \Phi \models \bigvee \Psi$ impliziert, dass es endliche Teilmengen $\Phi_0 \subseteq \Phi$ und $\Psi_0 \subseteq \Psi$ gibt, so dass $\bigwedge \Phi_0 \models \bigvee \Psi_0$.

(b) Sei $\mathcal{V} = \{p_1, p_2, p_3, \ldots\}$. Eine Interpretation $\mathfrak{I} : \mathcal{V} \to \mathbb{B}$ kann aufgefasst werden als die unendliche Bit-Sequenz $\mathfrak{I}(p_1)\mathfrak{I}(p_2)\mathfrak{I}(p_3)\ldots$

P sei irgendeine Teilmenge aller solchen Sequenzen, so dass sowohl P als auch das Komplement \overline{P} durch (unendliche) AL-Formelmengen spezifiziert werden können, in dem Sinne, dass

$$\begin{array}{rcl} P & = & \{\mathfrak{I} : \mathfrak{I} \models \Phi\} \\ \overline{P} & = & \{\mathfrak{I} : \mathfrak{I} \models \Psi\} \end{array}$$

für geeignete $\Phi, \Psi \subseteq AL(\mathcal{V})$.

Zeigen Sie, dass dann sowohl P als auch \overline{P} jeweils schon durch eine einzelne AL-Formel spezifiziert werden können (und also nur von endlichen Abschnitten der Sequenzen abhängen können).