Musterlösung zu Übungsblatt 1

Aufgabe 1. Sei \mathbb{F} ein Körper, der \mathbb{R} als einen Unterkörper enthält. Das heisst \mathbb{R} ist eine Teilmenge von \mathbb{F} , die abgeschlossen unter Addition und Multiplikation ist und so dass die Einschränkung dieser Operationen auf \mathbb{R} gerade die übliche Addition und Multiplikation von \mathbb{R} ist. Zeige:

- $\bullet~\mathbb{F}$ ist in natürlicher Weise ein \mathbb{R} -Vektorraum.
- Ist $\dim_{\mathbb{R}} \mathbb{F} = 2$, dann existiert ein \mathbb{R} -Vektorraumisomorphismus $\varphi : \mathbb{F} \longrightarrow \mathbb{C}$ so dass $\varphi(1) = 1$ und $\varphi(ab) = \varphi(a)\varphi(b)$ für $a, b \in \mathbb{F}$.

Lösung. Per Definition ist $(\mathbb{F}, +, 0)$ eine abelsche Gruppe. Als Skalarmultiplikation des \mathbb{R} -Vektorraums \mathbb{F} nehmen wir die Einschränkung der Multiplikation von \mathbb{F} auf $\mathbb{R} \times \mathbb{F} \longrightarrow \mathbb{F}$. Die Kompatibilität der Skalarmultiplikation mit dem Produkt in \mathbb{R} folgt aus dem Assoziativgesetz von \mathbb{F} . Analog folgen Distributivität und die Neutralität der 1 bezüglich der Skalarmultiplikation aus den entsprechenden Axiomen des Körpers \mathbb{F} . Sei nun dim $\mathbb{R}\mathbb{F}=2$, dann bilden für $x\in \mathbb{F}\setminus \mathbb{R}$ die Elemente 1,x eine \mathbb{R} -Basis von \mathbb{F} . Aus der Distributivität in \mathbb{F} folgt, dass die Multiplikation in \mathbb{F} eindeutig bestimmt ist durch das Produkt $x\cdot x=r+sx$ für $r,s\in \mathbb{R}$. Tatsächlich gilt für zwei Elemente $v=a+bx, w=c+dx\in \mathbb{F}$ mit $a,b,c,d\in \mathbb{R}$:

$$v \cdot w = (a + bx) \cdot (c + dx) = ac + (ad + bc)x + bdx^{2},$$

und die Produkte zwischen den Elementen a, b, c, d können in \mathbb{R} berechnet werden. Es reicht zu zeigen, dass wir ein anderes Element $\tilde{x} = a + bx \in \mathbb{F} \setminus \mathbb{R}$ finden können, so dass $\tilde{x}^2 = -1$. Dann hat die Abbildung

$$\varphi : \mathbb{F} \longrightarrow \mathbb{C}, \varphi(\lambda + \mu \tilde{x}) = \lambda + \mu i$$

die gesuchten Eigenschaften.

Unter Verwendung von $x \cdot x = r + sx$ und dem Ansatz $\tilde{x} = a + bx$ berechnen wir

$$\tilde{x}^2 = a^2 + 2abx + b^2(r + sx) = (a^2 + b^2r) + (2ab + b^2s)x \stackrel{!}{=} -1 + 0 \cdot x.$$

Wir erhalten die Gleichungen $a^2 + b^2r = -1$ und $2ab + b^2s = 0$. Da $\tilde{x} = a + bx \notin \mathbb{R}$ muss $b \neq 0$ gelten, also folgt 2a = -bs. Setzen wir a = -bs/2 in die erste Gleichung ein, erhalten wir

$$\frac{b^2s^2}{4} + b^2r = b^2\left(\frac{s^2}{4} + r\right) = -1.$$

Diese Gleichung hat genau dann eine reelle Lösung b falls $\frac{s^2}{4} + r < 0$. Doch $\frac{s^2}{4} + r$ ist gerade die Diskriminante der quadratischen Gleichung $X^2 - sX - r = 0$. Wäre diese nichtnegativ, hätte diese Gleichung neben den (voneinander verschiedenen) Lösungen x und s - x auch eine Lösung in \mathbb{R} . Dies ist ein Widerspruch, da ein Polynom zweiten Grades über \mathbb{F} nur maximal zwei verschiedene Nullstellen in \mathbb{F} haben kann.

Aufgabe 2.

Bestimme sowohl mit den Cauchy-Riemann-Gleichungen als auch direkt mit der Definition, an welchen Stellen folgende Funktionen komplex differenzierbar sind und berechne gegebenenfalls die Ableitung:

- (i) $f(z) = z \operatorname{Re}(z)$
- (ii) f(x+iy) = ax + iby (für $a, b \in \mathbb{C}$)

Lösung. Für die Prüfung der Differenzierbarkeit in $z_0 = x + yi$ über die Definition lassen wir $z - z_0 = h$ gegen 0 konvergieren.

(i) Für $z_0 \in \mathbb{C}$ gilt:

$$\frac{z\operatorname{Re}(z) - z_0\operatorname{Re}(z_0)}{z - z_0} = \frac{(z_0 + h)\operatorname{Re}(z_0 + h) - z_0\operatorname{Re}(z_0)}{h}
= \frac{z_0\operatorname{Re}(z_0) + z_0\operatorname{Re}(h) - z_0\operatorname{Re}(z_0)}{h} + \operatorname{Re}(z_0 + h)
= z_0\frac{\operatorname{Re}(h)}{h} + \operatorname{Re}(z_0 + h).$$

Der Term $\operatorname{Re}(z_0 + h)$ hat als Grenzwert für $h \longrightarrow 0$ gerade $\operatorname{Re}(z_0)$. Der Ausdruck $\operatorname{Re}(h)/h$ hat keinen Grenzwert für $h \longrightarrow 0$ in \mathbb{C} . Tatsächlich ist für $h \in \mathbb{R}$ der Ausdruck konstant 1 und für $h \in \mathbb{R}i$ konstant 0. Also gibt es insgesamt keinen Grenzwert, falls $z_0 \neq 0$. Für $z_0 = 0$ existiert die Ableitung und ist gerade gleich $0 + \operatorname{Re}(z_0) = 0$.

Für die Cauchy-Riemann Gleichungen stellen wir fest, dass $u(x,y) = \text{Re}(f(x+yi)) = x^2$ und v(x,y) = Im(f(x+yi)) = xy. Damit ist f bei $z_0 = x + yi$ differenzierbar, falls gilt:

$$\frac{\partial u}{\partial x} = 2x = x = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = 0 = -y = -\frac{\partial v}{\partial x}.$$

Dies ist genau für x = 0, y = 0 erfüllt und die Ableitung ist 2x + yi = 0.

(ii) Beachte, dass f eine \mathbb{R} -lineare Funktion ist. Für $z_0 \in \mathbb{C}$ gilt:

$$\frac{f(z) - f(z_0)}{z - z_0} = \frac{f(z_0 + h) - f(z_0)}{h} = \frac{f(z_0) + f(h) - f(z_0)}{h} = \frac{f(h)}{h}.$$

Setzt man nun h = x + yi ein und verwendet $h^{-1} = (x - iy)/(x^2 + y^2)$ ergibt sich

$$\frac{f(h)}{h} = \frac{(ax+byi)(x-yi)}{x^2+y^2} = \frac{(ax^2+by^2)+(b-a)xyi}{x^2+y^2}.$$

Diese Funktion ist konstant gleich a für y=0 und konstant b für x=0. Damit ist eine notwendige Bedingung für die Differenzierbarkeit, dass a=b. Ist dies erfüllt, ist der Grenzwert genau gleich a und damit die Funktion überall differenzierbar. Für die Cauchy-Riemann Gleichungen berechnen wir $u(x,y)=\operatorname{Re}(f(x+yi))=\operatorname{Re}(a)x-\operatorname{Im}(b)y$ und $v(x,y)=\operatorname{Im}(f(x+yi))=\operatorname{Im}(a)x+\operatorname{Re}(b)y$. Damit ist f bei $z_0=x+yi$ differenzierbar, falls gilt:

$$\frac{\partial u}{\partial x} = \operatorname{Re}(a) = \operatorname{Re}(b) = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\operatorname{Im}(b) = -\operatorname{Im}(a) = -\frac{\partial v}{\partial x}.$$

Wir erhalten das gleiche Ergebnis wie oben, die Ableitung ist Re(a) + Im(a)i = a.

Aufgabe 3. Sei $D \subset \mathbb{C}$ offen und $f: D \longrightarrow \mathbb{C}$ eine stetig differenzierbare Funktion, die in $z_0 \in D$ komplex differenzierbar ist. Sei $D^- = \{\overline{z} : z \in D\}$. Zeige, dass dann auch $g: D^- \longrightarrow \mathbb{C}$ mit $g(z) = \overline{f(\overline{z})}$ in $\overline{z_0}$ komplex differenzierbar ist. Was ist die Ableitung?

Lösung. Beachte, dass g gerade die Komposition

$$D^{-} \xrightarrow{z \longmapsto \overline{z}} D \xrightarrow{f} \mathbb{C} \xrightarrow{z \longmapsto \overline{z}} \mathbb{C}$$

ist. Da sowohl die komplexe Konjugation als auch f stetig differenzierbar sind, ist auch g stetig differenzierbar auf der offenen Menge D^- . Wenn wir f(x+iy)=u(x,y)+iv(x,y) schreiben, dann gilt für g, dass

$$g(x+iy) = \overline{u(x,-y) + iv(x,-y)} = u(x,-y) - iv(x,-y).$$

Mit $\tilde{u}(x,y) = u(x,-y)$ und $\tilde{v}(x,y) = -v(x,-y)$ können wir also die Cauchy-Riemann Gleichungen an der Stelle $\overline{z_0}$ überprüfen:

$$\frac{\partial \tilde{u}}{\partial x}(x,y) = \frac{\partial u}{\partial x}(x,-y) = \frac{\partial v}{\partial y}(x,-y) = \frac{\partial \tilde{v}}{\partial y}(x,y),$$
$$\frac{\partial \tilde{u}}{\partial y}(x,y) = -\frac{\partial u}{\partial y}(x,-y) = \frac{\partial v}{\partial x}(x,-y) = -\frac{\partial \tilde{v}}{\partial x}(x,y).$$

Hier haben wir verwendet, dass u, v die Cauchy-Riemann Gleichungen erfüllen. Also ist g an der Stelle $\overline{z_0}$ komplex differenzierbar und

$$g'(x+iy) = \frac{\partial \tilde{u}}{\partial x}(x,y) + i\frac{\partial \tilde{v}}{\partial x}(x,y) = \frac{\partial u}{\partial x}(x,-y) - i\frac{\partial v}{\partial x}(x,-y) = \overline{f'(x-iy)},$$

also $g'(\overline{z_0}) = \overline{f'(z_0)}$.

Aufgabe 4. (i) Wir betrachten die folgenden Matrizen:

$$I = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} \qquad \qquad J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \qquad K = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$

Zeige, dass $\mathbb{H} = \{a \operatorname{Id} + bI + cJ + dK \mid a, b, c, d \in \mathbb{R}\}$ ein Unterring von $M_2(\mathbb{C})$ mit den Relationen $I^2 = J^2 = K^2 = -1$ und IJ = K ist.

(ii) Für q = a + bI + cJ + dK nennen wir $\overline{q} = a - bI - cJ - dK$ die Konjugierte und $N(q) = q\overline{q}$ die Norm von q. Zeige:

$$N(q) = (a^2 + b^2 + c^2 + d^2)Id$$
 $\overline{q_1} \cdot \overline{q_2} = \overline{q_2q_1}$ $N(q_1q_2) = N(q_1)N(q_2)$

- (iii) Zeige, dass \mathbb{H} ein Schiefkörper ist (das heisst jedes Element $\neq 0$ ist invertierbar), aber nicht kommutativ ist.
- (iv) Zeige, dass die Gleichung $x^2 = -1$ unendlich viele Lösungen $x \in \mathbb{H}$ hat.

- \star (v) Die quaternionische Norm wird benutzt, um zu zeigen, dass jede natürliche Zahl als Summe von 4 Quadraten geschrieben werden kann (der berühmte 4 Quadrate-Satz von Lagrange), zum Beispiel $42 = 5^2 + 3^2 + 2^2 + 2^2$. Suche und studiere einen Beweis, der Quaternionen benutzt!
 - **Lösung.** (i) Um zu zeigen, dass \mathbb{H} einen Unterring darstellt, muss man zeigen, dass \mathbb{H} abgeschlossen unter Multiplikation ist. Da das Distributivgesetz in $M_2(\mathbb{C})$ gilt, reicht es, dies für Produkte zwischen den Erzeugern Id, I, J, K von \mathbb{H} zu prüfen. Alle Produkte, die Id enthalten sind offensichtlich wieder in \mathbb{H} . Für die anderen Paarungen ergibt sich:

$$I^2 = J^2 = K^2 = -\operatorname{Id}, IJ = -JI = K, IK = -KI = -J, JK = -KJ = I.$$

(ii) Schreibt man das Produkt

$$N(q) = (a + bI + cJ + dK)(a - bI - cJ - dK)$$

vollständig aus, ergeben sich 16 Terme. Die entscheidenden vier Terme sind gerade

$$a \cdot a + (bI) \cdot (-bI) + (cJ) \cdot (-cJ) + (dK) \cdot (-dK).$$

Da $I^2 = J^2 = K^2 = -\text{Id}$, ergeben diese genau die finale Formel. Wir müssen nur zeigen, dass alle anderen, gemischten Terme sich gegenseitig aufheben. Dies folgt leicht aus IJ = -JI, IK = -KI, JK = -KJ.

Für $\overline{q_1} \cdot \overline{q_2} = \overline{q_2} \overline{q_1}$ beobachten wir, dass $q \longmapsto \overline{q}$ eine \mathbb{R} -lineare Abbildung ist. Deshalb genügt es die Formel für $q_1, q_2 \in \{ \mathrm{Id}, I, J, K \}$ zu zeigen. Ist eines der $q_i = \mathrm{Id}$ ist die Formel klar, für alle Paarungen zwischen I, J, K folgt sie leicht aus den Produkten, die oben berechnet wurden.

Schliesslich gilt

$$N(q_1q_2) = q_1q_2\overline{q_1q_2} = q_1 \underbrace{q_2\overline{q_2}}_{=N(q_2)\in\mathbb{R}\mathrm{Id}} \overline{q_1} = N(q_2) \underbrace{q_1\overline{q_1}}_{=N(q_1)},$$

da Elemente von RId mit anderen Matrizen kommutieren.

- (iii) Mit $N(q) = (a^2 + b^2 + c^2 + d^2)$ Id sieht man q = 0 genau dann wenn N(q) = 0. Ist also $q \neq 0$ dann folgt durch Multiplizieren der Gleichung $N(q) = q\overline{q}$ von rechts mit $N(q)^{-1}$, dass $\mathrm{Id} = q(\overline{q}N(q)^{-1})$, also ist q invertierbar in \mathbb{H} (da $\overline{q} \in \mathbb{H}$ und N(q) eine skalare Matrix). Für die Nichtkommutativität haben wir oben gesehen: $IJ = -JI = K \neq 0$.
- (iv) Für x = bI + cJ + dK sieht man leicht $\overline{x} = -x$ und damit

$$x^{2} = -x\overline{x} = -N(x) = (-b^{2} - c^{2} - d^{2})\text{Id.}$$

Also ist $x^2 = -1$ falls b, c, d so gewählt werden, dass $b^2 + c^2 + d^2 = 1$. Hierfür gibt es unendlich viele Wahlmöglichkeiten. Beachte, dass ein Polynom f über einem Körper nur maximal $\deg(f)$ viele Nullstellen haben kann. Dieser Satz ist über Schiefkörpern offenbar nicht mehr erfüllt!

(v) See for example

https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem#Proof_using_the Hurwitz integers.

★ Aufgabe 5. Mit den komplexen Zahlen und den Quaternionen haben wir Schiefkörper auf 2- und auf 4-dimensionalen Vektorräumen über \mathbb{R} konstruiert. Können wir ein solches Produkt auch auf \mathbb{R}^3 konstruieren? Präziser: Gibt es ein \mathbb{R} -bilineares Produkt $\star \colon \mathbb{R}^3 \times \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, sodass die Verknüpfung assoziativ ist, es ein neutrales Element $1 \in \mathbb{R}^3$ gibt und jedes Element $\neq 0$ bezüglich \star invertierbar ist?

Lösung. Sei $a \in \mathbb{R}^3 \setminus \mathbb{R} \cdot 1$ und betrachte die Abbildung

$$m_a: \mathbb{R}^3 \longrightarrow \mathbb{R}^3, x \longmapsto a \star x.$$

Da \star bilinear ist, ist dies ein linearer Endomorphismus von \mathbb{R}^3 . Sein charakteristisches Polynom hat Grad 3 und muss nach dem Zwischenwertsatz eine Nullstelle haben. Also existiert ein reeller Eigenwert λ mit Eigenvektor $x_{\lambda} \neq 0$. Jetzt multipliziere die Gleichung $a \star x_{\lambda} = \lambda x_{\lambda}$ mit x_{λ}^{-1} von rechts. Dann folgt

$$a = a \star x_{\lambda} \star x_{\lambda}^{-1} = \lambda x_{\lambda} \star x_{\lambda}^{-1} = \lambda 1.$$

Dies ist ein Widerspruch zu $a \in \mathbb{R}^3 \setminus \mathbb{R} \cdot 1$.