КАРБОНОВЫЕ КИСЛОТЫ СТРОЕНИЕ

ОБЩАЯ ФОРМУЛА - С Н 0,

Функциональная группа: карбоксильная группа - СОО -

Гомологический ряд метановой кислоты:

 $H-c^{(\prime)}$ - метановая (муравьиная) кислота

н₃с—с - этановая (уксусная) кислота

 H_3 С— CH_2 — C_2 — - пропановая (пропионовая) кислота

КЛАССИФИКАЦИЯ КАРБОНОВЫХ КИСЛОТ по числу карбокси-групп

КЛАССИФИКАЦИЯ КАРБОНОВЫХ КИСЛОТ по насышенности

бензойная кислота

ароматические карбоновые кислоты [обладают свойствами соответствующих ароматических соединений]

НОМЕНКЛАТУРА

пропеновая (акриловая) кислота

4,4-диметилпентановая кислота

2-гидроксипропановая кислота

- 1) Выбираем самую длинную цепь (в ней <u>обязательно</u> должна быть функциональная группа!)
- 2) Нумеруем атомы углерода, начиная с того конца, где ближе карбоксильная группа
- 3) Составляем название вещества по схеме: "местоположение заместителя + название заместителя + число атомов углерода в главной цепи + АН/ЕН/и др.+ ОВАЯ КИСЛОТА". Пример:

2,2-диметилпропановая кислота

ИЗОМЕРИЯ

углеродного скелета	н ₃ с—сн ₂ —сн ₂ —сн ₂ —сн—сли н ₃ с—сн—сли он		
положения кратной связи (при её наличии)	н ₂ с==сн—сн ₂ —с ⁰ н ₃ с—сн==сн—с ⁰ он бутен-3-овая к-та и бутен-2-овая к-та		
межклассовая (со сложными эфирами)	н ₃ с—с н—с о н—с о о о о о о о о о о о о о о о о о о о		
оптическая изомерия (4 разных заместителей)	H ₃ C — С — С — С — С — С — С — С — С — С —		

ФИЗИЧЕСКИЕ СВОЙСТВА

Низшие предельные монокарбоновые кислоты - жидкости с резким запахом (вспоминаем уксусную кислоту), хорошо растворимые в воде. Первые

представители смешиваются с водой в любых соотношениях. Чем длиннее углеводородный радикал, тем хуже растворимость карбоновой кислоты в воде! Высшие кислоты, начиная с нонановой, - твёрдые вещества, без запаха, НЕрастворимые в воде.

НЕнасыщенные карбоновые кислоты зачастую - жидкие по агрегатному состоянию вещества, а дикарбоновые и ароматические кислоты - твёрдые кристаллические вещества.

			- C ₁	
ОБЩИЕ СВ-ВА	ЗАМЕЩЕНИЕ ОН-	РЕАКЦИИ	ОСОБЫЕ	ЭН
кислот	ГРУППЫ	ЗАМЕЩЕНИЯ	РЕАКЦИИ	
			и горение	
-> + акт Ме	-> этерификация	-> галогенирование		
-> + осн/амф оксид	-> межмолекулярная		***	
-> + основание/амф	дегидратация			
гидроксид	-> + PCl _s			
-> РИО с солями	-> + NH ₃			

ОБЩИЕ СВОЙСТВА КИСЛОТ

-> взаимодействие с активными металлами до водорода в ряду активности

-> взаимодействие с основными и амфотерными оксидами

$$2CH_3COOH + MgO = (CH_3COO)_2Mg + H_2O$$

-> взаимодействие с основаниями и амфотерными гидроксидами

$$2CH3COOH + Ca(OH)2 = (CH3COO)2Ca + 2H2O$$

-> взаимодействие с солями (реакции ионного обмена)

$$2CH_3COOH + CaCO_3 = (CH_3COO)_2Ca + H_2O + CO_2$$

РЕАКЦИИ ОТЩЕПЛЕНИЯ ОН-ГРУППЫ

-> реакция этерификации [условия - H_2SO_4 (конц), t]

-> взаимодействие с PCl₅ [катализаторов и условий HET]

-> взаимодействие с NH, [условие - t]

$$H_3C - C_{OH}^{O} + NH_3 \xrightarrow{t^{\circ}} H_3C - C_{NH_2}^{O} + H_2O$$

-> межмолекулярная дегидратация [условия - P_0 , t]

$$H_3C-C'$$
OH
 P_2O_5 , t^0
 H_3C-C'
 H_3C-C'
OH
 H_3C-C'

РЕАКЦИИ ЗАМЕЩЕНИЯ ВОДОРОДА В АЛЬФА-ПОЛОЖЕНИИ

-> галогенирование в альфа-положении [условие - свет/t/P_{красный}]

ОСОБЫЕ ХИМИЧЕСКИЕ СВОЙСТВА МУРАВЬИНОЙ КИСЛОТЫ

ПОЛУЧЕНИЕ

РИО солей карбоновых кислот с др. кислотами	CH ₃ COONa + HCl = CH ₃ COOH + NaCl
жёсткое ок-е различ- ных орг. соединений	5CH ₃ CHO + 2KMnO ₄ + 3H ₂ SO ₄ = 5CH ₃ COOH + 2MnSO ₄ + K ₂ SO ₄ + 3H ₂ O

гидролиз тригалоген- произоводных	CH ₃ - CCl ₃ + 2H ₂ O = CH ₃ - COOH + 3HCl	
гидролиз сложных эфиров, ангидридов к-т, галогенангидридов, амидов, нитрилов к-т	CH ₃ COOC ₂ H ₅ + H ₂ O = CH ₃ COOH + C ₂ H ₅ OH	
kat oк-e CH ₄ и C ₄ H ₁₀	2CH ₃ - CH ₂ - CH ₂ - CH ₃ + 5O ₂ = 4CH ₃ - COOH + 2H ₂ O	
получение НСООН	2CH ₄ + 3O ₂ = 2HCOOH + 2H ₂ O	

ПРИМЕНЕНИЕ

Уксусная кислота: в пищевой промышленности, при производстве красителей, лекарств, сложных эфиров, полимеров.

Щавелевая кислота: в кожевенной и текстильной промышленности.

Ненасыщенные кислоты: могут входить в состав жиров, служат часто для синтеза полимеров.

Ароматические кислоты: в качестве консерванта (бензойная кислота) и для получения полимеров (терефталевая кислота).

ДЛЯ ЗАМЕТОК

