NLP 201: Finite State Automata

Jeffrey Flanigan

University of California Santa Cruz jmflanig@ucsc.edu

Fall 2023

Learning Objectives of NLP 201-203

- Ability to take a description of a model or system and implement it
- Ability to read current papers, understand them, and implement them
- Knowledge of lots of methods for solving problems (including older or alternative methods)
- Intuition into why the methods work and why they were developed
- Theoretical knowledge of why the methods work
- Debugging skills (difficult skill, very important)
- Ability to develop new solutions to problems

The plan for the next few lectures

For the next few lectures, we'll start with the simplest models of language.

- Finite state automata (FSAs, today)
- Regular languages
- Finite state transducers (FSTs)
- Later: Weighted FSAs and FSTs (WFSAs and WFSTs)

Why learn FSAs?

- Many models (HMMs, n-gram LMs, etc) are special cases of WFSAs
- FSAs and FSTs are used to model morphology
- First step in the formal language hierarchy
- Useful for understanding the modeling capacity of deep NN (for example, A Formal Hierarchy of RNN Architectures https://arxiv.org/pdf/2004.08500.pdf)
- Another tool for your toolbox
 - FSAs are incredibly fast

Goals of Today's Lecture

- Understand concepts of formal languages
- Understand **operations** on formal languages
- Refresher on proof techniques of set containment and induction
- Understand two FSAs: **deterministic finite automata** (DFAs), **nondeterministic finite automata** (NFAs) and their equivalence using the **powerset construction**.

Natural languages

- **Natural languages** are languages learned without explicit instruction by children from speakers in their environments
 - e.g., English, Mandarin, Hindi, Cantonese, German
- Natural languages link sounds or visual information (**linguistic forms**) with conceptual/intentional representations (**linguistic functions**)

Linguistic Concept: Grammar

Native speakers have a **grammar**, a (infinite) set of sentences that they accept as being "well-formed" a **sentence can either be in the speaker's grammar**, or not in the **speaker's grammar**Example:

- They says "hello."
- They say "hello."

Linguistic Concept: Grammar

Native speakers have a **grammar**, a (infinite) set of sentences that they accept as being "well-formed" a **sentence can either be in the speaker's grammar**, or not in the **speaker's grammar**

Example:

- * They says "hello." Linguists use * to indicate ungrammatical.
- They say "hello."

Linguistic Concept: Grammar

Native speakers have a **grammar**, a (infinite) set of sentences that they accept as being "well-formed" a **sentence can either be in the speaker's grammar**, or not in the **speaker's grammar**

Example:

- * They says "hello." Linguists use * to indicate ungrammatical.
- They say "hello."

What about:

 Colorless green ideas sleep furiously. Another example: "Colorless green idea sleep furiously." doesn't work, but "A colorless green idea sleeps furiously" does.

Formal languages

- Formal languages are (usually) infinite sets of strings described mathematically
- Formal languages may be used to describe things that are not natural languages, e.g. computer languages

Formal languages

- In this lecture, I will use the terms
 - alphabet, the symbols in the language
 - word, a string of symbols

Formal languages

- In this lecture, I will use the terms
 - alphabet, the symbols in the language
 - word, a string of symbols
- Could also have used the terms
 - vocabulary, the symbols in the language
 - sentence, a string of symbols

Fundamental definitions

 Σ is a finite, nonempty **alphabet** Each symbol is σ in the set is a "letter"

Usually denoted by lowercase letters a, b, c, ...A **word** (sentence, string) $\mathbf{w} = w_1 w_2 ... w_n$

Usually denoted by bold, italic lowercase x, y, z, \dots

|x| is the **length** of word x

 ε is the **empty word**, and $|\varepsilon| = 0$

A **language** L is a set (finite or infinite) of words from a given alphabet Σ

Fundamental definitions

 Σ is a finite, nonempty **alphabet** Each symbol is σ in the set is a "letter" Usually denoted by lowercase letters a,b,c,\ldots

```
A wo Us Careful! |x| is L_1=\{arepsilon\} is not the same as L_2=\emptyset arepsilon is the empty word, and |arepsilon|=0
```

A **language** L is a *set* (finite or infinite) of words from a given alphabet Σ

Formal language operations

Set theoretic **operations** apply to languages

$$\begin{array}{l} L_1 \cup L_2 = \{ \boldsymbol{w} \in \Sigma^* \mid \boldsymbol{w} \in L_1 \vee \boldsymbol{w} \in L_2 \} \quad \text{union} \\ L_1 \cap L_2 = \{ \boldsymbol{w} \in \Sigma^* \mid \boldsymbol{w} \in L_1 \wedge \boldsymbol{w} \in L_2 \} \quad \text{intersection} \\ \overline{L} \; (=L^C) = \{ \boldsymbol{w} \in \Sigma^* \mid \boldsymbol{w} \notin L \} \qquad \qquad \text{complementation} \\ \overline{(L_1 \cup L_2)} = \overline{L_1} \cap \overline{L_2} \\ \overline{(L_1 \cap L_2)} = \overline{L_1} \cup \overline{L_2} \end{array} \right\} \quad \text{de Morgan's laws} \end{array}$$

Concatenation: denoted by a decimal point (but often omitted when meaning is clear from context)

String concatenation

$$x = aa$$
 $y = bb$ $x.y = xy = aabb$

Concatenation: denoted by a decimal point (but often omitted when meaning is clear from context)

String concatenation

$$x = aa$$
 $y = bb$ $x.y = xy = aabb$

Language concatenation

$$L_1.L_2 = L_1L_2 = \{ x.y \mid x \in L_1 \land y \in L_2 \}$$

Concatenation: denoted by a decimal point (but often omitted when meaning is clear from context)

String concatenation

$$x = aa$$
 $y = bb$ $x.y = xy = aabb$

Language concatenation

$$L_1.L_2 = L_1L_2 = \{ x.y \mid x \in L_1 \land y \in L_2 \}$$

$$L_1 = \{a, b\}$$
 $L_2 = \{c, d\}$ $L_1L_2 =$

Concatenation: denoted by a decimal point (but often omitted when meaning is clear from context)

String concatenation

$$x = aa$$
 $y = bb$ $x.y = xy = aabb$

Language concatenation

$$L_1.L_2 = L_1L_2 = \{ x.y \mid x \in L_1 \land y \in L_2 \}$$

$$L_1 = \{a, b\}$$
 $L_2 = \{c, d\}$ $L_1L_2 = \{ac, ad, bc, bd\}$

Concatenation: denoted by a decimal point (but often omitted when meaning is clear from context)

String concatenation

$$x = aa$$
 $y = bb$ $x.y = xy = aabb$

Language concatenation

$$L_1.L_2 = L_1L_2 = \{x.y \mid x \in L_1 \land y \in L_2\}$$

$$L_1 = \{a, b\}$$
 $L_2 = \{c, d\}$ $L_1L_2 = \{ac, ad, bc, bd\}$
 $L.\emptyset =$
 $L.\{\varepsilon\} =$

Concatenation: denoted by a decimal point (but often omitted when meaning is clear from context)

String concatenation

$$x = aa$$
 $y = bb$ $x.y = xy = aabb$

Language concatenation

$$L_1.L_2 = L_1L_2 = \{x.y \mid x \in L_1 \land y \in L_2\}$$

$$L_1 = \{a, b\}$$
 $L_2 = \{c, d\}$ $L_1L_2 = \{ac, ad, bc, bd\}$
 $L.\emptyset = \emptyset$

$$L.\{\varepsilon\} =$$

Concatenation: denoted by a decimal point (but often omitted when meaning is clear from context)

String concatenation

$$x = aa$$
 $y = bb$ $x.y = xy = aabb$

Language concatenation

$$L_1.L_2 = L_1L_2 = \{x.y \mid x \in L_1 \land y \in L_2\}$$

$$L_1 = \{a, b\}$$
 $L_2 = \{c, d\}$ $L_1L_2 = \{ac, ad, bc, bd\}$
 $L.\emptyset = \emptyset$
 $L.\{\varepsilon\} = L$

Power operation

Power on letters/strings

$$egin{aligned} oldsymbol{w}^n &= oldsymbol{w}. oldsymbol{w}^{n-1} & oldsymbol{w}^0 &= arepsilon \ oldsymbol{w} &= ab \ oldsymbol{w}^2 &= abab \end{aligned}$$

Power on languages

$$L^n = L.L^{n-1} \quad L^0 = \{\varepsilon\}$$

Power operation

Power on letters/strings

$$egin{aligned} oldsymbol{w}^n &= oldsymbol{w}. oldsymbol{w}^{n-1} & oldsymbol{w}^0 &= arepsilon \ oldsymbol{w} &= ab \ oldsymbol{w}^2 &= abab \end{aligned}$$

Power on languages

$$L^n = L.L^{n-1} \quad L^0 = \{\varepsilon\}$$

Kleene * on letters

$$a^* = \bigcup_{i=0}^{\infty} a^i = \{\varepsilon, a, aa, aaa, \ldots\}$$

Kleene * on letters

$$a^* = \bigcup_{i=0}^{\infty} a^i = \{\varepsilon, a, aa, aaa, \ldots\}$$

Kleene * on languages

$$L^* = \bigcup_{i=0}^{\infty} L^i = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \dots$$
$$= \{\boldsymbol{w} \mid \exists i \text{ s.t. } \boldsymbol{w} \in L^i\}$$

Kleene * on letters

$$a^* = \bigcup_{i=0}^{\infty} a^i = \{\varepsilon, a, aa, aaa, \ldots\}$$

Kleene * on languages

$$L^* = \bigcup_{i=0}^{\infty} L^i = \{\varepsilon\} \cup L \cup L^2 \cup L^3 \dots$$
$$= \{\boldsymbol{w} \mid \exists i \text{ s.t. } \boldsymbol{w} \in L^i\}$$

Important notation

$$\Sigma^* = \text{ set of all finite words over } \Sigma$$

 $\Sigma^i = \text{ set of all words of length } i \text{ over } \Sigma$

Kleene * on letters

Notational variant, the **Kleene** +
$$L^+ = \bigcup_{i=1}^\infty L^i = L \cup L^2 \cup L^3 \cup \dots$$
 Does not add the empty string ε

Important notation

$$\Sigma^* = \text{ set of all finite words over } \Sigma$$

 $\Sigma^i = \text{ set of all words of length } i \text{ over } \Sigma$

Finite-State Automata

Definition: DFA

A deterministic finite automaton is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

Q is a finite set of states

 Σ is a finite **alphabet**

 $\delta: Q \times \Sigma \to Q$ is the transition function

 $q_0 \in Q$ is the start (initial) state

 $F \subseteq Q$ is the set of final (accept) states

 $L(M) \subseteq \Sigma^*$ is **the language of** M, i.e. the set of strings M accepts

Transition function ("edges"), δ

Acceptance

- M is a DFA with alphabet Σ
- An input sentence (word / string) \mathbf{w} is a sequence $w_1w_2w_3 \dots w_n$ where each $w_i \in \Sigma$
- M accepts \boldsymbol{w} if after starting in q_0 and reading \boldsymbol{w} it ends in an accept state, i.e., if there is a sequence of states s_0, s_1, \ldots, s_n such that

$$s_0 = q_0$$

$$s_i = \delta(s_{i-1}, w_i)$$

$$s_n \in F$$

Acceptance and Analysis

- In many problems in natural language processing, we want to analyze a strings in terms of underlying operations.
- With finite state models, this usually corresponds to the question: what was the sequence of states s₀, s₁,..., s_n taken to produce some w?

Example

The following DFA accepts the language

$$L = \{a^{2n} \mid n \ge 1\}$$

Definition: DFA

A deterministic finite automaton is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

Q is a finite set of states

 Σ is a finite **alphabet**

 $\delta: Q \times Q \to \Sigma$ is the transition function

 $q_0 \in Q$ is the start (initial) state

 $F \subseteq Q$ is the set of final (accept) states

Definition: NFA

A **nondeterministic finite automaton** is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

Q is a finite set of states

 Σ is a finite **alphabet**

 $\delta: Q \times Q \to \Sigma$ is a transition function

 $\delta: Q \times \Sigma \to 2^Q$ is the **transition relation**

 $q_0 \in Q$ is the start (initial) state

 $F \subseteq Q$ is the set of final (accept) states

Definition: NFA

A nondeterministic finite automaton is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

() is a finite set of states

An NFA accepts a word \boldsymbol{w} if there exists a computation path that ends in a final state.

 $\delta: Q \times \Sigma \to 2^Q$ is the transition relation

 $q_0 \in Q$ is the start (initial) state

 $F \subseteq Q$ is the set of final (accept) states

Remarks

- A DFA is required to have a complete transition function, whereas an NFA can have an incomplete transition function
- This is useful for specifying simple language generating automata, e.g. "linear chain" automata

$$Q_0 \xrightarrow{a} Q_1 \xrightarrow{b} Q_2 \xrightarrow{a} Q_3$$

$$L(M) = \{aba\}$$

Board Work: NFA Example

(5 Min) For the following NFA, does it accept the string $\mathbf{w} = abaa$? What sequence of states does it go through?

Can you describe in English the strings that it accepts?

(3 Min) Discuss with a partner.

Example: NFA

Definition: NFA

A **nondeterministic finite automaton** is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

Q is a finite set of states

 Σ is a finite **alphabet**

 $\delta: Q \times Q \to \Sigma$ is a transition function

 $\delta: Q \times \Sigma \to 2^Q$ is the **transition relation**

 $q_0 \in Q$ is the start (initial) state

 $F \subseteq Q$ is the set of final (accept) states

Definition: NFA

A nondeterministic finite automaton is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

() is a finite set of states

An NFA accepts a word \boldsymbol{w} if there exists a computation path that ends in a final state.

 $\delta: Q \times \Sigma \to 2^Q$ is the transition relation

 $q_0 \in Q$ is the start (initial) state

 $F \subseteq Q$ is the set of final (accept) states

Remarks

- A DFA is required to have a complete transition function, whereas an NFA can have an incomplete transition function
- This is useful for specifying simple language generating automata, e.g. "linear chain" automata

$$Q_0 \xrightarrow{a} Q_1 \xrightarrow{b} Q_2 \xrightarrow{a} Q_3$$

$$L(M) = \{aba\}$$

DFAs vs NFAs

- For each state, a DFA has exactly one outgoing edge for each symbol in Σ .
- Otherwise, it's a NFA

Theorem. For every NFA A there exists a DFA A' s.t. L(A) = L(A').

Regular Languages

A language $L\subseteq \Sigma^*$ is **regular** if there exists an FSA M such that L(M)=L

Regular Languages

A language $L\subseteq \Sigma^*$ is **regular** if there exists an FSA M such that L(M)=L

Example regular languages:

```
L = \Sigma^*
L = \emptyset
```

$$L=\{\varepsilon\}$$

Regular Languages

A language $L\subseteq \Sigma^*$ is **regular** if there exists an FSA M such that L(M)=L

Example regular languages:

$$L = \Sigma^*$$

$$L = \emptyset$$

$$L = \{\varepsilon\}$$

Example non-regular languages (more later):

$$\begin{split} L &= \{a^n b^n \mid n \geq 0\} \\ L &= \{ \boldsymbol{w} \mid \boldsymbol{w} \text{ is a grammatical sentence of English} \} \end{split}$$

It is helpful to generalize the transition function of DFAs in terms of **words** (instead of single symbols).

$$\begin{split} \delta(q, a) &= q' \\ \hat{\delta} : Q \times \Sigma^* \to Q \\ \hat{\delta}(q, \varepsilon) &= q \\ \hat{\delta}(q, \boldsymbol{x}\sigma) &= \delta(\hat{\delta}(q, \boldsymbol{x}), \sigma) \end{split}$$

It is helpful to generalize the transition function of DFAs in terms of **words** (instead of single symbols).

$$\begin{split} \delta(q,a) &= q' \\ \hat{\delta} : Q \times \Sigma^* \to Q \\ \hat{\delta}(q,\varepsilon) &= q \\ \hat{\delta}(q,\boldsymbol{x}\sigma) &= \delta(\hat{\delta}(q,\boldsymbol{x}),\sigma) \end{split}$$

Since $\hat{\delta}(q, \sigma) = \delta(q, \sigma)$, we will not distinguish between these functions.

It is helpful to generalize the transition function of DFAs in terms of **words** (instead of single symbols).

$$\delta(q,a)=q'$$
 Formal definition of $L(M)$
$$L(M)=\left\{oldsymbol{w}\in\Sigma^*\mid\hat{\delta}(q_0,oldsymbol{w})\in F
ight\}$$
 $\hat{\delta}(q,oldsymbol{x}\sigma)=\delta(\hat{\delta}(q,oldsymbol{x}),\sigma)$

Since $\hat{\delta}(q, \sigma) = \delta(q, \sigma)$, we will not distinguish between these functions.

As with DFAs, it is helpful to generalize the transition function of NFAs in terms of **words** (instead of single symbols).

$$\hat{\delta}(q, \varepsilon) = \{q\}$$

$$\hat{\delta}(q, x\sigma) = \bigcup_{q' \in \hat{\delta}(q, x)} \delta(q', \sigma)$$

As with DFAs, it is helpful to generalize the transition function of NFAs in terms of **words** (instead of single symbols).

$$\hat{\delta}(q, \varepsilon) = \{q\}$$

$$\hat{\delta}(q, x\sigma) = \bigcup_{q' \in \hat{\delta}(q, x)} \delta(q', \sigma)$$

We also generalize in terms of **sets of states**: $P \in 2^Q$

$$\delta(P, \boldsymbol{x}) = \bigcup_{p \in P} \delta(p, \boldsymbol{x})$$

As with DFAs, it is helpful to generalize the transition function of NFAs in terms of **words** (instead of single symbols).

$$\hat{\delta}(q, \varepsilon) = \{q\}$$

$$\hat{\delta}(q, x\sigma) = \bigcup_{q' \in \hat{\delta}(q, x)} \delta(q', \sigma)$$

We also generalize in terms of **sets of states**: $P \in 2^Q$

$$\delta(P, \boldsymbol{x}) = \bigcup_{p \in P} \delta(p, \boldsymbol{x})$$

Again, we will not distinguish between the generalized form of the function and the basic form.

As with DFAs, it is helpful to generalize the transition function of NFAs in terms of **words** (instead of single symbols). $\hat{\delta}(q,\varepsilon) = \{q\}$

Formal definition of
$$L(M)$$

$$L(M) = \{ w \in \Sigma^* \mid \delta(q_0, w) \cap F \neq \emptyset \}$$

$$\delta(P, x) = \bigcup_{P} \delta(p, x)$$

Again, we will not distinguish between the generalized form of the function and the basic form.

Theorem. For every NFA A there exists a DFA A' s.t. L(A) = L(A').

• Proofs in formal language theory often use **set containment** and **induction**

• Proofs in formal language theory often use set containment and induction

Set containment

To prove that
$$(L_1 \cup L_2).L_3 = L_1.L_3 \cup L_2.L_3$$

$$\mathbf{w} \in (L_1 \cup L_2).L_3 \implies \mathbf{w} \in L_1.L_3 \cup L_2.L_3$$

$$\mathbf{w} \in L_1.L_3 \cup L_2.L_3 \implies \mathbf{w} \in (L_1 \cup L_2).L_3$$

Proofs in formal language theory often use set containment and induction

Induction

Induction is usually on the length of the word, i.e. to prove P is true for all $\mathbf{w} \in \mathbf{L}$, we:

- 1. show P is true for words length 0 or 1
- 2. hypothesize that P is true for all words \leq length n-1
- 3. prove that if P is true for all words \leq length n-1, then P is true for for all words of length n

Board work: Proof by induction

On your whiteboards, take 5 min to do 1. and 3.

Then discuss with a partner for 3 min

• Induction example

Prove that $\forall n \geq 0$

$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$

- 1. base: verify for n=0
- 2. hypothesis: assume true for $n \leq k-1$
- 3. inductive step: prove for n = k

$$\sum_{i=0}^{k} 2^i = 2^{k+1} - 1$$

Induction example

Prove that $\forall n \geq 0$

$$\sum_{i=0}^{n} 2^i = 2^{n+1} - 1$$

- 1. base: n = 0: $2^0 = 1 = 2^{0+1} 1$
- 2. hypothesis: assume true for $n \le k-1$
- 3. inductive step: prove for n = k

$$\begin{split} \sum_{i=0}^k 2^i &= 2^k + \sum_{i=0}^{k-1} 2^i \\ &= 2^k + 2^k - 1 \quad \text{(by inductive hypothesis)} \\ &= 2(2^k) - 1 \\ &= 2^{k+1} - 1 \quad \Box \end{split}$$

Theorem. For every NFA A there exists a DFA A' s.t. L(A) = L(A').

Theorem. For every NFA A there exists a DFA A' s.t. L(A) = L(A').

Proof. This is a constructive proof. That is, given an NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ we construct a DFA $A' = \langle Q', \Sigma', \delta', q'_0, F' \rangle$ s.t. L(A) = L(A')

Theorem. For every NFA A there exists a DFA A' s.t. L(A) = L(A').

Proof. This is a constructive proof. That is, given an NFA $A = \langle Q, \Sigma, \delta, q_0, F \rangle$ we construct a DFA $A' = \langle Q', \Sigma', \delta', q'_0, F' \rangle$ s.t. L(A) = L(A')

Powerset construction.

$$\Sigma'=\Sigma$$

$$Q'=2^Q \mbox{ Constructed DFA states are \it{sets} of NFA states} \ q'_0=\{q_0\} \ F'=\{A\in Q'\mid A\cap F\neq\emptyset\}$$

Powerset construction.

Powerset construction.

$$\Sigma'=\Sigma$$

$$Q'=2^Q \mbox{ Constructed DFA states are \it{sets} of NFA states} \ q'_0=\{q_0\} \ F'=\{A\in Q'\mid A\cap F\neq\emptyset\}$$

Transition function.

Powerset construction.

$$\begin{split} \Sigma' &= \Sigma \\ Q' &= 2^Q \text{ Constructed DFA states are } \textbf{sets} \text{ of NFA states} \\ q'_0 &= \{q_0\} \\ F' &= \{A \in Q' \mid A \cap F \neq \emptyset\} \end{split}$$

Transition function.

```
\delta'(\emptyset, \sigma) = \emptyset \ \forall \sigma \in \Sigma' "Failure state"
```

Powerset construction.

Transition function.

$$\delta'(\emptyset,\sigma) = \emptyset \ \forall \sigma \in \Sigma' \quad \text{``Failure state''}$$

$$\delta'(\{q_1,q_2,\ldots,q_i\},\sigma) = \bigcup_{q \in \{q_1,q_2,\ldots,q_i\}} \delta(q,\sigma)$$

Example

Example

It remains to show:

A' is DFA L(A) = L(A')

It remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Lemma. For every $w \in \Sigma^*$,

$$\delta'(q_0', \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$

$$\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$$

It remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Lemma. For every $\boldsymbol{w} \in \Sigma^*$,

$$\delta'(q_0', \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$

$$\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$$

Proof of lemma. By induction on |w|

It remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Lemma. For every $\boldsymbol{w} \in \Sigma^*$.

$$\delta'(q_0', \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$

$$\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$$

Proof of lemma. By induction on |w|

(i) base:
$$|\boldsymbol{w}| = 0$$
 $\boldsymbol{w} = \varepsilon$: $\delta'(q_0', \varepsilon) = \{q_0\}$
 $\delta(q_0, \varepsilon) = \{q_0\}$

It remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Lemma. For every $\boldsymbol{w} \in \Sigma^*$.

$$\delta'(q'_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$
$$\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$$

Proof of lemma. By induction on
$$|w|$$

(i) base:
$$|{m w}|=0$$
 ${m w}=\varepsilon$: $\delta'(q_0',\varepsilon)=\{q_0\}$
$$\delta(q_0,\varepsilon)=\{q_0\}$$

(ii) hypothesis: assume true for all w s.t. $|w| \le n$.

Lemma. For every $w \in \Sigma^*$,

$$\delta'(q'_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$

 $\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$

(ii) hypothesis: assume true for all w s.t. $|w| \le n$.

Lemma. For every $w \in \Sigma^*$,

$$\delta'(q'_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$

 $\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$

(ii) hypothesis: assume true for all w s.t. $|w| \le n$.

(iii) inductive step: let ${\boldsymbol w} = {\boldsymbol x} \sigma$ s.t. $|{\boldsymbol w}| = n+1$

Lemma. For every $w \in \Sigma^*$,

$$\delta'(q_0', \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff \delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$$

(ii) hypothesis: assume true for all w s.t. $|w| \le n$.

(iii) inductive step: let
$${m w}={m x}\sigma$$
 s.t. $|{m w}|=n+1$

$$\delta'(q_0', \boldsymbol{w}) = \delta'(\{q_0\}, \boldsymbol{x}\sigma) = \delta'(\delta'(\{q_0\}, \boldsymbol{x}), \sigma)$$

Lemma. For every $w \in \Sigma^*$,

$$\delta'(q'_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$

 $\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$

(ii) hypothesis: assume true for all w s.t. |w| < n.

(iii) inductive step: let
$$\boldsymbol{w} = \boldsymbol{x}\sigma$$
 s.t. $|\boldsymbol{w}| = n+1$

$$\delta'(q_0', \boldsymbol{w}) = \delta'(\{q_0\}, \boldsymbol{x}\sigma) = \delta'(\delta'(\{q_0\}, \boldsymbol{x}), \sigma)$$

use inductive hypothesis:

$$\delta'(\{q_0\}, \mathbf{x}) = \{p_1, p_2, \dots, p_k\} \iff \delta(q_0, \mathbf{x}) = \{p_1, p_2, \dots, p_k\}$$

Lemma. For every $w \in \Sigma^*$,

$$\delta'(q_0', \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$
$$\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$$

(ii) hypothesis: assume true for all w s.t. |w| < n.

(iii) inductive step: let
$$w = x\sigma$$
 s.t. $|w| = n + 1$

$$\delta'(q_0', \boldsymbol{w}) = \delta'(\{q_0\}, \boldsymbol{x}\sigma) = \delta'(\delta'(\{q_0\}, \boldsymbol{x}), \sigma)$$

use inductive hypothesis:

$$\delta'(\{q_0\}, \boldsymbol{x}) = \{p_1, p_2, \dots, p_k\} \iff \delta(q_0, \boldsymbol{x}) = \{p_1, p_2, \dots, p_k\}$$
$$\delta'(\{p_1, p_2, \dots, p_k\}, \sigma) = \{r_1, r_2, \dots, r_i\} \iff \delta(\{p_1, p_2, \dots, p_k\}, \sigma) = \{r_1, r_2, \dots, r_i\}$$

Lemma. For every $\boldsymbol{w} \in \Sigma^*$,

$$\delta'(q'_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\} \iff$$

 $\delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_k\}$

(ii) hypothesis: assume true for all w s.t. |w| < n.

(iii) inductive step: let $w = x\sigma$ s.t. |w| = n + 1

(iii) inductive step, let
$$m{w} = m{x} \delta$$
 s.t. $|m{w}| = n+1$ $\delta'(q_0', m{w}) = \delta'(\{q_0\}, m{x}\sigma) = \delta'(\delta'(\{q_0\}, m{x}), \sigma)$

use inductive hypothesis:

$$\delta'(\{q_0\}, \boldsymbol{x}) = \{p_1, p_2, \dots, p_k\} \iff \delta(q_0, \boldsymbol{x}) = \{p_1, p_2, \dots, p_k\}$$

$$\delta'(\{p_1, p_2, \dots, p_k\}, \sigma) = \{r_1, r_2, \dots, r_j\} \iff \delta(\{p_1, p_2, \dots, p_k\}, \sigma) = \{r_1, r_2, \dots, r_j\}$$

$$\delta'(q_0', \boldsymbol{w}) = \{r_1, r_2, \dots, r_j\} = \delta(q_0, \boldsymbol{w}) \blacksquare$$

It still remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

It still remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Proof of theorem.

By definition, A' is a complete function, so it is a DFA

It still remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Proof of theorem.

By definition, A' is a complete function, so it is a DFA

From the lemma,

$$\delta'(q'_0, \mathbf{w}) = \{p_1, p_2, \dots, p_j\} \iff \delta(q_0, \mathbf{w}) = \{p_1, p_2, \dots, p_j\}$$

It still remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Proof of theorem.

By definition, A' is a complete function, so it is a DFA

From the lemma,

$$\delta'(q_0', \boldsymbol{w}) = \{p_1, p_2, \dots, p_j\} \iff \delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_j\}$$

$$\{p_1, p_2, \dots, p_j\} \in F' \iff \{p_1, p_2, \dots, p_j\} \cap F \neq \emptyset$$

It still remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Proof of theorem.

By definition, A' is a complete function, so it is a DFA

From the lemma.

$$\delta'(q'_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_j\} \iff \delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_j\}$$
$$\{p_1, p_2, \dots, p_j\} \in F' \iff \{p_1, p_2, \dots, p_j\} \cap F \neq \emptyset$$

thus, $\boldsymbol{w} \in L(A') \iff \boldsymbol{w} \in L(A)$

It still remains to show:

$$A'$$
 is DFA $L(A) = L(A')$

Proof of theorem.

By definition, A' is a complete function, so it is a DFA

From the lemma.

$$\delta'(q'_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_j\} \iff \delta(q_0, \boldsymbol{w}) = \{p_1, p_2, \dots, p_j\}$$
$$\{p_1, p_2, \dots, p_j\} \in F' \iff \{p_1, p_2, \dots, p_j\} \cap F \neq \emptyset$$
thus, $\boldsymbol{w} \in L(A') \iff \boldsymbol{w} \in L(A)$

so,
$$L(A') = L(A) \blacksquare$$

Remarks

- NFAs therefore only accept regular languages
- NFAs and DFAs can be used interchangeably

NFA with Epsilons

A **NFA with** ε -transitions is an NFA that may change states without reading an input symbol.

NFA with Epsilons

A **nondeterministic finite automaton** is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, F \rangle$ where

Q is a finite set of states

 Σ is a finite **alphabet**

 $\delta: Q \times \Sigma \to 2^Q$ is the transition relation

 $\delta: Q \times \Sigma \cup \{\varepsilon\} \to 2^Q$ is the transition relation

 $q_0 \in Q$ is the start (initial) state

 $F \subseteq Q$ is the set of final (accept) states

 $L(M)\subseteq \Sigma^*$ is **the language of** M, i.e. the set of strings M accepts

NFA& ε -NFA Equivalence

Theorem. For every NFA A with epsilon moves there is an equivalent NFA A' without, s.t. L(A) = L(A')

Conversion of ϵ -NFA to NFA

First do ϵ closure (add all implicit ϵ moves)

Then, for every epsilon move:

- 1. For all moves to any state that start from V2, duplicate the moves but with the start state V1.
- 2. If V1 is a start state, make V2 a start state as well
- 3. If V2 is a final state, make V1 a final state as well
- 4. Remove the ϵ -move

Regular Expression

A regular expression is a way of describing the languages accepted by FSAs.

Defined recursively:

- 1. ∅ is an RE denoting the empty set
- 2. ε is an RE denoting the set $\{\varepsilon\}$
- 3. for each $a \in \Sigma$, a is a RE denoting $\{a\}$
- 4. If r and s are REs denoting the languages R and S

(rls) denotes $R \cup S$

(rs) denotes R.S

r* denotes R^*

Precedence means parentheses can sometimes be omitted: * I

Examples

- (0|1)* denotes all finite words over $\Sigma = \{0, 1\}$
- 0*|1* denotes all finite words containing only 0's and 1's

Board Work: Regex Examples

- (5 Min) For the following languages, write it's regular expression
 - Strings over $\{a, b\}^*$ that start with an a
 - Strings over $\{a,b\}^*$ that contain ab or ba
- (3 Min) Discuss with a partner.

Regex in practice

Most programming languages, grep, etc use a slightly different syntax. By default, the regex only needs to match a substring.

Character	Meaning	Example
*	Match zero, one or more of the previous	հh∗ matches "Ahhhhhh" or "A"
?	Match zero or one of the previous	Ah? matches "A1" or "Ah"
+	Match one or more of the previous	Ah+ matches "Ah" or "Ahhhh" but not "A"
\	Used to escape a special character	Hungry\? matches "Hungry?"
	Wildcard character, matches any character	do.* matches "dog", "door", "dot", etc.
()	Group characters	See example for
[]	Matches a range of characters	[cbf]ar matches "car", "bar", or "far" [0-9]: matches any positive integer a-a-k-z matches asci (laters a-z (uppercase and lower case) ^0-9 matches any character not 0-9.
I	Matche previous OR next character/group	(Mon Tues) day matches "Monday" or "Tuesday"
{ }	Matches a specified number of occurrences of the previous	[0-9] (3) matches "315" but not "31" [0-9] (2, 4) matches "12", "123", and "1234" [0-9] (2,) matches "1234567"
^	Beginning of a string. Or within a character range () negation.	^http matches strings that begin with http, such as a url. [^0-9] matches any character not 0-9.
\$	End of a string.	ings matches "exciting" but not "ingenious"

Theorem. For every RE ${\bf r}$ there is an ${\varepsilon}$ -NFA s.t. $L({\bf r})=L(A)$

Theorem. For every RE \mathbf{r} there is an ε -NFA s.t. $L(\mathbf{r}) = L(A)$

Proof. We will construct *A* compositionally using induction on the number of operators in **r**.

Theorem. For every RE ${\bf r}$ there is an ε -NFA s.t. $L({\bf r}) = L(A)$

Proof. We will construct *A* compositionally using induction on the number of operators in **r**.

Theorem. For every RE \mathbf{r} there is an ε -NFA s.t. $L(\mathbf{r}) = L(A)$

Proof. We will construct *A* compositionally using induction on the number of operators in **r**.

$$\mathtt{r}=\emptyset$$
 q_0 q_f

Theorem. For every RE ${\bf r}$ there is an ε -NFA s.t. $L({\bf r}) = L(A)$

Proof. We will construct *A* compositionally using induction on the number of operators in **r**.

$$\mathbf{r} = \emptyset$$
 q_0 q_f $\mathbf{r} = \varepsilon$ q_0 ε q_f

Theorem. For every RE \mathbf{r} there is an ε -NFA s.t.

$$L(\mathbf{r}) = L(A)$$

Proof. We will construct *A* compositionally using induction on the number of operators in **r**.

$$\mathbf{r} = \emptyset \qquad \boxed{q_0} \qquad \boxed{q_f}$$

$$\mathbf{r} = \varepsilon \qquad \boxed{q_0} \qquad \boldsymbol{\varepsilon} \qquad \boxed{q_f}$$

$$\mathbf{r} = \mathbf{a} \qquad \boxed{q_0} \qquad \boldsymbol{a} \qquad \boxed{q_f}_{10}$$

Theorem. For every RE \mathbf{r} there is an ε -NFA s.t.

$$L(\mathbf{r}) = L(A)$$

Proof. We will construct *A* compositionally using induction on the number of operators in **r**.

Inductive step. We assume hypothesis is true for all REs with $\leq n$ operations, and then prove is true for n+1 operations.

Inductive step. We assume hypothesis is true for all REs with $\leq n$ operations, and then prove is true for n+1 operations.

There are three cases to be dealt with:

- (1) $r = r_1 | r_2$
- (2) $r = r_1 r_2$
- (3) $r = r_1 *$

By the inductive hypothesis, there are two epsilon NFAs A_1 and A_2 .

By the inductive hypothesis, there are two epsilon NFAs A_1 and A_2 .

By the inductive hypothesis, there are two epsilon NFAs A_1 and A_2 . Construct the following A.

Formally, if
$$A_1 = \langle Q_1, \Sigma, \delta_1, q_{01}, \{q_{f1}\} \rangle$$

$$A_2 = \langle Q_2, \Sigma, \delta_2, q_{02}, \{q_{f2}\} \rangle$$
 then,
$$A = \langle Q_1 \cup Q_2 \cup \{q_0\} \cup \{q_f\}, \Sigma, \delta, q_0, \{q_f\} \rangle$$

$$\delta(q_0, \varepsilon) = \{q_{01}, q_{02}\}$$

$$\delta(q_{f1}, \varepsilon) = \{q_f\}$$

$$\delta(q_{f2}, \varepsilon) = \{q_f\}$$

$$\delta(q, \sigma) = \delta_1 q, \sigma \quad \forall q \in Q_1 - \{q_{f1}\}, \sigma \in \Sigma \cup \{\varepsilon\}$$

$$\delta(q, \sigma) = \delta_2 q, \sigma \quad \forall q \in Q_2 - \{q_{f2}\}, \sigma \in \Sigma \cup \{\varepsilon\}$$

It remains to show that $L(A) = L(A_1) \cup L(A_2)$ How to do this? Set containment.

Cases 2 & 3

- Strategy for showing this proceeds as with Case 1
- Refer to textbook for details.