PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (51) International Patent Classification 6: WO 97/48782 (11) International Publication Number: A1 C09K 19/38, C08G 67/04, A61L 25/00, (43) International Publication Date: 24 December 1997 (24.12.97) PCT/GB97/01586 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, (21) International Application Number: BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, 12 June 1997 (12.06.97) (22) International Filing Date: LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (GH, KE, LS, MW, SD, SZ, (30) Priority Data: UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, GB 15 June 1996 (15.06.96) 9612581.0 RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NB, SN, TD, (71) Applicant (for all designated States except US): SMITH & NEPHEW PLC [GB/GB]; 2 Temple Place, Victoria TG). Embankment, London WC2R 3BP (GB). Published (72) Inventors; and With international search report. (75) Inventors/Applicants (for US only): ALI, Saad, Aboul, Majeed [GB/GB]; 71 Yarburgh Way, York YO1 5HQ (GB). ROSE, Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of John [GB/GB]; 3 St. Oswolds Close, Wilberfoss, York YO4 amendments. 5LT (GB). SEARLE, Richard, John [GB/GB]; 12 Fairway Drive, Upper Poppleton, York YO2 6HE (GB). (74) Agent: SMITH & NEPHEW GROUP RESEARCH CENTRE; Group Patents & Trade Marks Dept., York Science Park, Heslington, York YO1 5DF (GB). (54) Title: BIODEGRADABLE LIQUID CRYSTALLINE POLYMERS (57) Abstract Novel thermotropic polymers, typically aromatic poly(ester-anhydride)s, having high modulus and biodegradability, have use as bone fixative materials and may be used in the construction of prosthetic devices and for filling other bone defects.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL.	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fl	Finland	LT	Lithuania	SK	Slovakia '
AT	Austria	FR	Prance	· LU	Luxembourg	8N	Senegal
ΔU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbeijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BB	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Paso	GR	Greece		Republic of Macedonia	TR	Turkey
ÐG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
Ŋ	Benin	IR	Ireland	MN	Mongolia	N.	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG.	Uganda
BY	Belarus	LS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	П	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP.	Japan	NE	Niger	VN	Viet Nam
CG	Congo	· KE	Kenya	NL.	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SB	Sweden		
RE	Estonia	LR	Liberia	SG	Singapore		

WO 97/48782 PCT/GB97/01586

BIODEGRADABLE LIQUID CRYSTALLINE POLYMERS

This invention relates to novel polymers and particularly high performance bioresorbable polymers which have liquid crystalline properties.

5

10

15

30

Thermotropic polyesters are known and such materials generally possess advantageous properties such as, inter alia, high thermostability, low sensitivity to oxidation. However, such polyesters are generally not biodegradable.

Although many biodegradable polymers are known, such as those comprising lactic acid or β -hydroxybutyric, they are generally aliphatic in nature. Whilst they find utility in, for example, drug delivery systems or medical sutures, they do not possess the high strength and high modulus required for use in, eg. load bearing implants.

Polyester anhydrides are known from European Patent
application No.0055527. However, the polyester anhydrides
disclosed therein are not sufficiently bioresorbable or do not possess
sufficient strength and/or modulus to be suitable as load bearing
bioresorbable implants.

We have now surprisingly found a novel polymeric material which overcomes or mitigates these disadvantages.

Thus according to the invention we provide a polymeric material comprising repeating units of an aromatic mesogenic moiety, a hydrolysable moiety and a spacer moiety.

5

10

15

The polymeric material is preferably a condensation product containing aromatic ester moieties as the mesogenic component, mixed aromatic and aliphatic anhydride moieties as the hydrolysable component and aliphatic chains as the spacer moiety. Suitably these components may be provided by a condensation product comprising both aromatic and aliphatic diacid residues or functional derivatives thereof and residues of polyfunctional nucleophilic species such as a diol or thiol. Thus the preferred polymeric materials of the present invention are poly(ester-anhydride)s. Alternatively the mesogenic component may be derived from aromatic amide moieties.

The aromatic mesogenic moiety may be a polyester moiety and is preferably a condensation product of, for example, a terephthaloyl or isophthaloyl moiety and a quinoid such as hydroquinone, methylhydroquinone, phenylhydroquinone, biphenol or dihydroxynaphthalene or derivatives thereof.

Thus the aromatic mesogenic moiety aptly comprises a moiety 20 of formula I.

$$OC - R_2 - CO - O - R_1 - O - OC - R_2 - CO$$
 I

where R₁ is:

$$25 \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{and } R_2 \text{ is :} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \hline \\ \text{or} \end{array} \qquad \begin{array}{c} CH_3 \\ \\ \end{array}$$

10

15

20

3

A preferred mesogenic moiety comprises a moiety of the general formula II

The hydrolysable moiety may comprise any conventionally known hydrolysable group. However, a preferred hydrolysable moiety is an anhydride linkage. Such anhydrides may be the condensation product of an aliphatic diacid derivative and an aromatic diacid derivative, such as a terephthaloyl acid derivative, eg. terephthaloyl chloride or an isophthaloyl derivative such as isophthaloyl chloride.

The spacer moiety is any inert group and may preferably comprise an aliphatic chain, for example comprising methylene groups from C₂ to C₂₀, suitably from C₂ to C₁₀, and preferably from C₄ to C₁₀. Alternatively, the spacer moiety may comprise alkylene oxide units ethylene oxide, propylene oxide or tetramethylene oxide units.

Thus according to the invention we provide a polymeric material comprising repeating units of formula III,

in which:

n is an integer from 2 to 20, preferably from 2 to 18, more preferably 4 to 10,

30 R₁ and R₂ are as defined above and the ratio of x:y is from 1:99 to 99:1

WO 97/48782

In a preferred embodiment R_1 and R_2 is methyl-substitued phenyl.

According to a further feature of the invention we provide a method of manufacturing a polymeric material as hereinbefore described which comprises condensing a terephthaloyl or isophthaloyl compound and a quinoid such as hydroquinone, methylhydroquinone, phenylhydroquinone, biphenol or dihydroxynaphthalene or derivatives thereof and an aliphatic diacid or derivative thereof.

The terephthaloyl or isophthaloyl derivative is preferably an acid halide, eg. acid chloride such as terephthaloyl or isophthaloyl chloride. Such materials are generally commercially available.

The quinoid derivative is preferably an activated hydroquinone such as the silylated derivative, eg. bis-trimethylsilyl hydroquinone. Bis-trialkylsilyl hydroquinones may be manufactured by, inter alia, reacting the respective quinoid with hexalkyldisilazane.

Similarly, the aliphatic diacid derivative is preferably an activated diacid such as a silylated diacid, eg. comprising silyl groups as hereinbefore described.

25

30

15

20

The polymeric material of the invention is advantageous in that it may be degradable to fragments of low molecular weight, which may in itself facilitate bioresorbability. Such polymeric materials may be processed to produce high strength and high modulus materials which are useful in the manufacture of, inter alia, implantable devices, eg. implantable fixation devices such as bone fixation or

prosthetic devices. The desired strength and modulus of the polymeric materials of the invention is evidenced by the presence of liquid crystal properties.

Thus according to a further feature of the invention we provide a medical fixation device comprising a polymeric material as hereinbefore described.

We further provide the use of a polymeric material as

hereinbefore described in the manufacture of a medical fixation device.

We also provide a method of bone fixation which comprises attaching a fixation device as hereinbefore described to portions of existing bone.

Aptly such fixation devices are preformed to the shape of implantable prosthetic devices, such as femoral head or condylar prostheses or as a filling material, which may be suitably shaped, to replace missing or excised bone portions.

The invention will now be described but in no way limited with reference to the following Examples.

25 Example 1

15

20

30

Preparation of Bis-trimethylsilvl Methyl Hydroquinone

Methyl hydroquinone (27.53g) and hexamethyldisilazane (48.42g) were refluxed together in toluene (400ml) for 2 hours. The resultant bis-trimethylsilyl hydroquinone (75g) was isolated by vacuum distillation.

WO 97/48782 PCT/GB97/01586

Preparation of Bis-trimethylsilvl Adipic Acid

5

10

15

20

25

Adipic acid (36.54g) and hexamethyldisilazane (48.42g) were refluxed in toluene (400ml) for 4 hours. The resultant bistrimethylsilyl adipate (84g) was isolated by vacuum distillation.

Terephthaloyl chloride (4.06g), bis-trimethylsilyl methyl-hydroquinone (4.3g), bis-trimethylsilyl dodecanedioate (1.5g) and benzyltriethylammonium chloride (0.01g) were weighed under nitrogen into a glass reaction vessel. The reaction mixture was heated, with stirring under nitrogen, from 90°C to 260°C over a period of 3 hours after which a vacuum was applied for a further half-hour. The product was washed with dry tetrahydrofuran, dried under vacuum at 60°C and characterised by FTIR spectral analysis, 13C-NMR spectral analysis and optical scanning under polarised light.

Figures 1 and 2, respectively, illustrate the FTIR and NMR spectra of the polymer. Figure 3 is a monochromatic reproduction of a coloured microphotograph of the polymer demonstrating the liquid crystalline properties of the polymer. The micrograph was taken between cross polars whilst the polymer was molten. The coloured region (textured region X shown in Figure 3) is evidence of a birefringent fluid which can only arise if there is molecular order in the liquid, i.e. a liquid crystalline polymer. Also illustrated in Figure 3 are thread-like structures (Y) which are typically associated with nematic type liquid crystals.

Examples 2 to 5

30 Poly(ester-anhydride)s having the compositions shown in the following table were prepared in accordance with the method

PCT/GB97/01586

;

7
described in Example 1. Each polymer exhibited thermotropic behaviour (viz. a liquid crystalline phase in the polymer melt).

Example	Monomer Ratio				
	50 mole%	40 mole%	10 mole%		
2	Т	М	Α		
3	Т	M	Su		
4	т	M	Se		
5	Т	P	D		

T: Terephthaloyl Chloride

M: Bis-trimethylsilyl methylhydroquinone

P: Bis-trimethylsilyl phenylhydroquinone

A: Bis-trimethylsiyl adipate

Su: Bis-trimethylsilyl suberate

Se: Bis-trimethylsilyl sebacate

D: Bis-trimethylsilyl dodecanedioate

5

10

15

Example 6

The method of Example 1 was used to prepare a poly(esteranhydride) comprised of residues derived from 50 mole% terephthaloyl chloride, 37.5 mole% bis-trimethylsilyl hydroquinone and 12.5 mole% bis-trimethylsilyl dodecanedioate.

A disc of the polymer material was immersed in deionized water, maintained at room temperature, for one month. The structure was analysed by infared spectroscopy to investigate hydrolysis of the anhydride linkage. The FTIR spectra of the original polymer (Curve A) and the degraded polymer (Curve B) is shown in Figure 4 where it will be seen that the strong absorption band near

8
1790 cm⁻¹ for Curve A has almost disappeared at that point in Curve

В.

5

ę,

9 CLAIMS

- A biodegradable polymer comprising repeating units of an aromatic mesogenic moiety, a hydrolysable moiety and a spacer moiety.
- 2. A polymer as claimed in claim 1 in which the mesogenic moiety comprises aromatic ester residues.
- 10 3. A polymer as claimed in claim 1 or claim 2 in which the mesogenic moiety comprises residues of the general formula:
 OC R₂ CO O R₁ O R₂ CO
 in which R₁ is:

15
$$CH_3$$
 O or O and R_2 is

which the hydrolysable moiety comprises anhydride linkages.

- 4. A polymer as claimed in any one of the preceding claims in
- 25 5. A polymer as claimed in any one of the preceeding claims in which the hydrolysable moiety comprises residues of mixed aromatic-aliphatic anhydride.
- 6. A polymer as claimed in any one of the preceding claims
 30 formed by the condensation of aromatic and aliphatic diacids or functional derivatives thereof with a nucleophilic compound.

- A polymer as claimed in claim 6 in which the nucleophilic compound is an aromatic diol or thiol.
- 5 8. A polymer as claimed in any one of the preceding claims having repeating units if the general formula:
- 9. [(-OC-R₂-CO-O-R₁-O)_X (OC-R₂-CO-O-OC-(CH₂)_n-COO)_y] in which n is an integer from 2 to 20; R₁ and R₂ are as defined
 10 in claim 3 and the ratio of x:y is from 1:99 to 99:1,
 - A medical fixation device comprising a biodegradable polymer as defined in any one of the preceding claims.
- 15 11. A device as claimed in claim 10 comprising a prosthesis or a bone filling material.

3/4 FIG.3.

SUBSTITUTE SHEET (RULE 26)

INTERNATIONAL SEARCH REPORT

Inter: sal Application No PCT/GB 97/01586

A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C09K19/38 C08G67/04 A61L25/00 A61L27/00 According to International Patent Classification (IPC) or to both national classification and IPC **B. FIELDS SEARCHED** Minimum documentation searched (classification system followed by classification symbols) IPC 6 C086 C09K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category * Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. X 1,2,10 MACROMOLECULES, vol. 28, no. 14, 3 July 1995, pages 4785-4794, XP000517421 XIAOMING JIN ET AL: "SYNTHESIS, CHARACTERIZATION, AND IN VITRO DEGRADATION OF A NOVEL THERMOTROPIC TERNARY COPOLYESTER BASED ON P-HYDROXYBENZOIC ACID, GLYCOLIC ACID, AND P-HYDROXYCINNAMIC ACID' 11 see the whole document EP 0 636 639 A (ETHICON INC) 1 February 11 see claims 1-10 see page 7, line 3 - line 48 -/--Patent family members are listed in annex. Further documents are listed in the continuation of box C. Special categories of cited documents: "I" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention "E" earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled "O" document referring to an oral disclosure, use, exhibition or other means in the art. document published prior to the international filing date but later than the priority date claimed '&' document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 2 4. M. 97 22 September 1997 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Ripswijk Tel. (+31-70) 340-2040, Tz. 31 651 epo ni, Fax: (+31-70) 340-3016 Krische. D

INTERNATIONAL SEARCH REPORT

Interr us Application No PCT/GB 97/01586

	1300		
C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the relevant passages	F	lelevant to claim No.
A	EP 0 246 341 A (MASSACHUSETTS INST TECHNOLOGY) 25 November 1987 see abstract; claims 1,2; example 3 see page 9, line 10 - line 18		1,4,5, 10,11
A	EP 0 350 127 A (STAMICARBON) 10 January 1990 see claims 1-6		11
A	CHEMICAL ABSTRACTS, vol. 124, no. 26, 24 June 1996 Columbus, Ohio, US; abstract no. 344423, XP002041119 see abstract & JP 08 059 586 A (AIBAITSU KK.) 5 March 1996		1
A	CHEMICAL ABSTRACTS, vol. 113, no. 6, 6 August 1990 Columbus, Ohio, US; abstract no. 41568, XP002041120 see abstract & JP 02 034 631 A (AJINOMOTO CO., INC.) 5 February 1990		
A	CHEMICAL ABSTRACTS, vol. 119, no. 26, 27 December 1993 Columbus, Ohio, US; abstract no. 278656, XP002041160 see abstract & MACROMOLECULES, vol. 26, no. 25, 1993, pages 6756-65, E. MATHIOWITZ ET AL.:		1
A	CHEMICAL ABSTRACTS, vol. 116, no. 16, 20 April 1992 Columbus, Ohio, US; abstract no. 152538, XP002041161 see abstract & MACROMOLECULES, vol. 25, no. 5, 1992, pages 1377-81, H.R. KRICHELDORF ET AL.:		2,3,6,7

INTERNATIONAL SEARCH REPORT

Information on patent family members

Intern usl Application No PCT/GB 97/01586

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
EP 0636639 A	01-02-95	US 5321113 A JP 7070295 A	14-06-94 14-03-95
EP 0246341 A	25-11-87	JP 2057614 C JP 7096025 B JP 63031667 A	23-05-96 18-10-95 10-02-88
EP 0350127 A	10-01-90	NL 8801730 A NL 8901181 A JP 2142569 A	01-02-90 03-12-90 31-05-90