### **Boolean Logic**



### Outline

- Digital Logic and Logic Gates
- Boolean Algebra
- Truth Tables
- Minterm and Maxterm expansions
- Gate level minimisation
- Karnaugh maps
- NAND and NOR implementations



- The binary numbering system maps well to logical expressions.
- Conventionally we refer to the pair of binary variables as '0' and '1'. We can also label the pair of variables as 'true' and 'false', 'yes' and 'no', etc.
- By combining binary variables with logical operators such as AND, OR and NOT, a logical algebra can be examined.



 Logical operators can be understood in terms of true and false statements.

e.g. X. 'The sky is blue' TRUE 1

Y. '4 is an odd number' FALSE 0

$$X \text{ AND } Y \Rightarrow FALSE$$

$$X \cdot Y = 0$$



X. 'The sky is blue'

TRUE 1

Y. '4 is an odd number'

FALSE 0

$$X OR Y \Rightarrow TRUE$$

$$X + Y = 1$$



X. 'The sky is blue'

TRUE 1

Y. '4 is an odd number'

FALSE 0

NOT 
$$X \Rightarrow FALSE$$

$$\overline{X} = 0$$

$$X' = 0$$



## Logic Functions

Computers take inputs and produce outputs, just like functions in math!

7

Mathematical logic functions can be expressed in two ways:
 Boolean Expression/Function and Truth Table

$$f(x,y) = 2x + y$$
  
=  $x + x + y$   
=  $2(x + y/2)$   
= ...

| X      | У      | f(x,y) |
|--------|--------|--------|
| 0      | 0      | 0      |
| <br>2  | <br>2  | <br>6  |
| <br>23 | <br>41 | <br>87 |
|        |        |        |



- Boolean expression can be easily converted into Truth Table, or vice versa.
- A truth table shows all possible inputs and outputs of a function.
- Remember that each input variable represents either 1 or 0.
  - Because there are only a finite number of values (1 and 0), truth tables themselves are finite.
  - A function with n variables has 2<sup>n</sup> possible combinations of inputs.
- Inputs are listed in binary order—in this example, from 000 to 111.





A. Zhu 8

### **Basic Boolean Operations**

Operation:

AND (product) of two inputs

OR (sum) of two inputs

NOT (complement) on one input

**Expression:** 

xy, or x•y

x + y

 $\mathbf{x}'$  or  $\overline{\mathbf{x}}$ 

Truth table:

| × | У | ху |
|---|---|----|
| 0 | 0 | 0  |
| 0 | 1 | 0  |
| 1 | 0 | 0  |
| 1 | 1 | 1  |

| × | У | х+у |
|---|---|-----|
| 0 | 0 | 0   |
| 0 | 1 | 1   |
| 1 | 0 | 1   |
| 1 | 1 | 1   |



Logic gate:







Each of the basic operations can be implemented in hardware using a logic gate. Symbols for each of the logic gates are shown above.

- Any Boolean expression can be converted into a circuit by combining basic gates in a relatively straightforward way.
- The diagram below shows the inputs and outputs of each gate.





#### Can we make these circuits "better"?

- Cheaper: fewer gates
- Faster: fewer delays from inputs to outputs

UCD DUBLIN

**A. Zhu** 10

### **Expression Simplification**

- Normal mathematical expressions can be simplified using the laws of algebra
- For binary systems, we can use Boolean algebra, which is superficially similar to regular algebra
- But there are many differences, due to
  - having only two values (0 and 1) to work with
  - having a complement operation
  - the OR operation is not the same as addition



### Formal definition of Boolean algebra

- A Boolean algebra requires
  - A set of elements B, which needs at least two elements (0 and 1)
  - Two binary (two-argument) operations OR and AND
  - A unary (one-argument) operation NOT
  - The axioms below must always be true
    - The magenta axioms deal with the complement operation
    - Blue axioms (especially 15) are different from regular algebra

1. 
$$x + 0 = x$$

2. 
$$\times \cdot 1 = \times$$

$$3. \times + 1 = 1$$

4. 
$$x \cdot 0 = 0$$

5. 
$$x + x = x$$

6. 
$$\times \times \times = \times$$

7. 
$$x + x' = 1$$

8. 
$$x \cdot x' = 0$$

9. 
$$(x')' = x$$

11. 
$$xy = yx$$

12. 
$$x + (y + z) = (x + y) + z$$
 13.  $x(yz) = (xy)z$ 

13. 
$$x(yz) = (xy)z$$

14. 
$$x(y + z) = xy + xz$$

15. 
$$x + yz = (x + y)(x + z)$$

16. 
$$(x + y)' = x'y'$$

10. x + y = y + x

17. 
$$(xy)' = x' + y'$$

DeMorgan's

We can do function simplifications using Boolean algebra

```
x'y' + xyz + x'y
    = x'(y' + y) + xyz [Distributive; x'y' + x'y = x'(y' + y)]
    = x' \cdot 1 + xyz [ Axiom 7; y' + y = 1 ]
= x' + xyz [ Axiom 2; x' \cdot 1 = x' ]
    = (x' + x)(x' + yz) [ Distributive ]
    = 1 \cdot (x' + yz) [ Axiom 7; x' + x = 1 ]
                          [ Axiom 2 ]
    = x' + yz
```

1. 
$$x + 0 = x$$

2. 
$$x \cdot 1 = x$$

$$3. x + 1 = 1$$

4. 
$$x \cdot 0 = 0$$

5. 
$$x + x = x$$

6. 
$$\times \bullet \times = \times$$

7. 
$$x + x' = 1$$

8. 
$$x \cdot x' = 0$$

10. 
$$x + y = y + x$$

Commutative

12. 
$$x + (y + z) = (x + y) + z$$
 13.  $x(yz) = (xy)z$ 

13. 
$$x(yz) = (xy)z$$

Associative

14. 
$$x(y + z) = xy + xz$$

15. 
$$x + yz = (x + y)(x + z)$$

16. 
$$(x + y)' = x'y'$$

17. 
$$(xy)' = x' + y'$$

DeMorgan's



- Here are two different but equivalent circuits.
- In general the one with fewer gates is "better":
  - It costs less to build
  - It requires less power
  - But we have to do some work to find the second form







#### Sum of Products

- We can write expressions in many ways, but some ways are more useful than others
- A sum of products (SOP) expression contains:
  - Only OR (sum) operations at the "outermost" level
  - Each term that is summed must be a product of literals

$$f(x,y,z) = y' + x'yz' + xz$$

- The advantage is that any sum of products expression can be implemented using a two-level circuit
  - literals and their complements at the "0th" level
  - AND gates at the first level
  - a single OR gate at the second level





#### **Minterms**

- A minterm is a special product of literals, in which each input variable appears exactly once.
- A function with n variables has 2<sup>n</sup> minterms (since each variable can appear complemented or not)
- A three-variable function, such as f(x,y,z), has  $2^3 = 8$  minterms:

| x'y'z' | x'y'z | x'yz' | x'yz |
|--------|-------|-------|------|
| xy'z'  | xy'z  | xyz'  | xyz  |

• Each minterm is *true* for exactly one combination of inputs:

| Minterm | Is true when  | Shorthand      |
|---------|---------------|----------------|
| x'y'z'  | x=0, y=0, z=0 | $m_{0}$        |
| x'y'z   | x=0, y=0, z=1 | $\mathbf{m_1}$ |
| x'yz'   | x=0, y=1, z=0 | $m_2$          |
| x'yz    | x=0, y=1, z=1 | $m_3$          |
| xy'z'   | x=1, y=0, z=0 | $m_4$          |
| xy'z    | x=1, y=0, z=1 | $m_5$          |
| xyz'    | x=1, y=1, z=0 | $m_6$          |
| xyz     | x=1, y=1, z=1 | $m_7$          |

"0" corresponds to "complement" "1" corresponds to "original"



#### Sum of Minterms form

- Every function can be written as a sum of minterms, which is a special kind of sum of products form
- The sum of minterms form for any function is unique
- If you have a truth table for a function, you can write a sum of minterms
  expression just by picking out the rows of the table where the function
  output is 1.

| × | У | Z | f(x,y,z) | f'(x,y,z) |
|---|---|---|----------|-----------|
| 0 | 0 | 0 | 1        | 0         |
| 0 | 0 | 1 | 1        | 0         |
| 0 | 1 | 0 | 1        | 0         |
| 0 | 1 | 1 | 1        | 0         |
| 1 | 0 | 0 | 0        | 1         |
| 1 | 0 | 1 | 0        | 1         |
| 1 | 1 | 0 | 1        | 0         |
| 1 | 1 | 1 | 0        | 1         |

$$f = x'y'z' + x'y'z + x'yz' + x'yz + xyz'$$

$$= m_0 + m_1 + m_2 + m_3 + m_6$$

$$= \sum m(0,1,2,3,6)$$

$$f' = xy'z' + xy'z + xyz$$

$$= m_4 + m_5 + m_7$$

$$= \sum m(4,5,7)$$

f' contains all the minterms not in f

17



#### Product of Sums

- A product of sums (POS) expression contains:
  - Only AND (product) operations at the "outermost" level
  - Each term must be a sum of literals

$$f(x,y,z) = y'(x' + y + z')(x + z)$$

- Product of sums expressions can also be implemented with two-level circuits
  - literals and their complements at the "0th" level
  - OR gates at the first level
  - a single AND gate at the second level





#### Maxterms

- A maxterm is a sum of literals, in which each input variable appears exactly once.
- A function with n variables has 2<sup>n</sup> maxterms
- The maxterms for a three-variable function f(x,y,z):

Each maxterm is false for exactly one combination of inputs:

| Maxterm      | Is false when | Shorthand      |
|--------------|---------------|----------------|
| x + y + z    | x=0, y=0, z=0 | $M_{o}$        |
| x + y + z'   | x=0, y=0, z=1 | $M_1$          |
| x + y' + z   | x=0, y=1, z=0 | $M_2$          |
| x + y' + z'  | x=0, y=1, z=1 | M <sub>3</sub> |
| x' + y + z   | x=1, y=0, z=0 | $M_4$          |
| x' + y + z'  | x=1, y=0, z=1 | $M_5$          |
| x' + y' + z  | x=1, y=1, z=0 | $M_6$          |
| x' + y' + z' | x=1, y=1, z=1 | $M_7$          |

"1" corresponds to "complement" "0" corresponds to "original"



#### Product of Maxterms form

- Every function can also be written as a *unique* product of maxterms
- If you have a truth table for a function, you can write a product of maxterms expression by picking out the rows of the table where the function output is 0.

| X | У | Z | f(x,y,z) | f'(x,y,z) |
|---|---|---|----------|-----------|
| 0 | 0 | 0 | 1        | 0         |
| 0 | 0 | 1 | 1        | 0         |
| 0 | 1 | 0 | 1        | 0         |
| 0 | 1 | 1 | 1        | 0         |
| 1 | 0 | 0 | 0        | 1         |
| 1 | 0 | 1 | 0        | 1         |
| 1 | 1 | 0 | 1        | 0         |
| 1 | 1 | 1 | 0        | 1         |

$$f = (x' + y + z)(x' + y + z')(x' + y' + z')$$

$$= M_4 M_5 M_7$$

$$= \Pi M(4,5,7)$$

$$f' = (x + y + z)(x + y + z')(x + y' + z)$$

$$(x + y' + z')(x' + y' + z)$$

$$= M_0 M_1 M_2 M_3 M_6$$

$$= \Pi M(0,1,2,3,6)$$

$$f' contains all the maxterms not in f$$

f' contains all the maxterms not in f



#### Minterms and Maxterms are related

Any minterm m<sub>i</sub> is the complement of the corresponding maxterm M<sub>i</sub>

| Minterm | Shorthand | Maxterm      | Shorthand |
|---------|-----------|--------------|-----------|
| x'y'z'  | $m_0$     | x + y + z    | $M_{o}$   |
| x'y'z   | $m_1$     | x + y + z'   | $M_1$     |
| x'yz'   | $m_2$     | x + y' + z   | $M_2$     |
| x'yz    | $m_3$     | x + y' + z'  | $M_3$     |
| xy'z'   | $m_4$     | x' + y + z   | $M_4$     |
| xy'z    | $m_5$     | x' + y + z'  | $M_5$     |
| xyz'    | $m_6$     | x' + y' + z  | $M_6$     |
| xyz     | $m_7$     | x' + y' + z' | $M_7$     |

• For example,  $m_4' = M_4$  because (xy'z')' = x' + y + z



#### Converting between two forms

We can convert a sum of minterms to a product of maxterms

```
From f = \sum m(0,1,2,3,6) to complement: f' = \sum m(4,5,7) = m_4 + m_5 + m_7 Complement again: (f')' = (m_4 + m_5 + m_7)' So final: f = m_4' m_5' m_7' [ DeMorgan's law ] = M_4 M_5 M_7 [ By the previous page ] = TM(4,5,7)
```

 In general, just replace the minterms with maxterms using maxterm numbers that don't appear in the sum of minterms:

```
f = \Sigma m(0,1,2,3,6)
= \Pi M(4,5,7)
```

 The same thing works for converting from a product of maxterms to a sum of minterms.



#### Gate Level Minimization

- Circuits of AND and OR: the cost is related to the number of gates and the number of gate inputs
- Looking for a minimum cost implementation of 2-level circuits of AND and OR gates
  - Minimum number of terms
  - Of those implementations with the same minimum number of terms, choose the one with the minimum number of literals
  - Not necessarily a unique solution
- Sum of Products: group of AND gates, one OR gate
- Product of Sums: group of OR gates, one AND gate



#### **Gate Level Minimization**

In the earlier lecture we had an example of simplification using Boolean Algebra. Now we use Boolean Algebra again to simplify the sum of products expression:

$$F = A'BC + AB'C' + AB'C + ABC' + ABC$$

$$= A'BC + AB'C' + AB'C + ABC' + ABC + ABC$$

$$= BC(A'+A) + AC'(B'+B) + AC(B'+B)$$

$$= BC + AC' + AC$$

$$= BC + A$$

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |



**A. Zhu** 24

#### Gate Level Minimization

- Simplifying expressions using Boolean Algebra requires intuition and experience:
  - Difficult to apply systematically
  - Even when those suggested rules are followed will not necessarily find minimum solution
  - Difficult to recognise minimum solutions
- For complicated circuits this method becomes increasingly difficult.
- In this lecture we shall approach the problem of simplifying logical expressions in a systematic way using the Karnaugh map method.



### Two Variable Karnaugh Map

 Each possible minterm of a sum of products expression is represented in a twodimensional table or 'map'.





### Two Variable Karnaugh Map

For the expression

$$C = \overline{A}.\overline{B} + A.\overline{B} + A.B$$

the Karnaugh map is given on the right. For each minterm present in the sum of products the corresponding square contains a '1'.

By circling the '1' squares, an equivalent expression results

$$C = (\overline{A}.\overline{B} + A.\overline{B}) + (A.\overline{B} + A.B)$$

$$\Rightarrow C = \overline{B} + A$$







### Two Variable Karnaugh Map

- By entering the minterms of the logical expression into the Karnaugh map a simplified but equivalent expression is obtained by summing the variables corresponding to the circled squares.
- The variables corresponding to circled squares are those which remain constant, i.e.







**A. Zhu** 28

### Three Variable Karnaugh Map

- The idea can be extending to logical expressions of three variables.
- The Karnaugh map is constructed such that adjacent squares differ only by one variable.
   This variable is complemented in one square and un-complemented in the other square.
- This arrangement is known as Gray coding.
- For the expression

$$F = \overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.C + A.\overline{B}.\overline{C}$$

the Karnaugh map is on the right





### Three Variable Karnaugh Map

30

 Grouping adjacent '1' squares together into four groups allows the expression to be simplified.

$$F = \overline{A}.\overline{C} + B.C + \overline{B}.\overline{C} + \overline{A}.B$$

- It is not necessary to use every possible grouping of '1' squares - it is sufficient that each '1' be a member of one of the groupings.
- This expression can be further simplified by discarding the first term or the last term – these would be two different applications of the consensus theorem.

$$F = \overline{A}.\overline{C} + B.C + \overline{B}.\overline{C}$$





### Logic Gate Implementation

 The simplified logical expression

$$F = \overline{A}.\overline{C} + B.C + \overline{B}.\overline{C}$$

has an equivalent logic gate implementation:

 This implementation involves one OR gate and three AND gates (two with inverting inputs); 9 gate inputs. The original expression involved one OR gate and five AND gates; 20 gate inputs.





### Three Variable Karnaugh Map

- Another way of using the Karnaugh map is to seek the complementary expression, i.e. construct a map with '0' squares corresponding to min-terms not present in the expression
- The complement in this case is:

$$\overline{F} = A.B.\overline{C} + \overline{B}.C$$

 Taking the complement of both sides and using DeMorgan's Law provides the minimum product of sums expression

$$F = \overline{AB\overline{C} + \overline{B}C}$$

$$= \overline{AB\overline{C}.\overline{B}C}$$

$$= (\overline{A} + \overline{B} + C).(B + \overline{C})$$







### Three Variable Karnaugh Map

- It is also possible to directly find the minimum Product of Sums experession without using DeMorgan's Law:
  - Goup adjacent "0"s
  - Construct Sums term: "0" corresponds to original;
     "1"corresponds to complement. (the same as in the form of Maxterms).
  - Then form Products.

$$F = (A+B+C) \cdot (B+C)$$







### Logic Gate Implementation

 The simplified logical expression

$$F = (\bar{A} + \bar{B} + C).(B + \bar{C})$$
 has the logic gate implementation:

 The implementation involves one AND gate and two OR gates; 7 gate inputs.





### Four Variable Karnaugh Map

- The Karnaugh map becomes useful when the numbers of inputs increase.
- For the four variable logical expression

$$F = \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D + \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.B.\overline{C}.\overline{D} + \overline{A}.B.\overline{C}.D + \overline{A}.B.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D + \overline$$

- Larger groups of four and eight minterms now exist.
- Summing the variables which remain constant within the groups gives the minimum sum of products:

$$F = \overline{C} + \overline{A}.\overline{D}$$

| AB | D<br>00 | 01 | 11 | 10 |
|----|---------|----|----|----|
| 00 | 1       | 1  |    | 1  |
| 01 | 1       | 1  |    | 1  |
| 11 | 1       | 1  |    |    |
| 10 | 1       | 1  |    |    |





### Four Variable Karnaugh Map

- It is also possible to group the zero terms in the Karnaugh map.
- The minimum Product of Sums expression:

$$F = (\overline{A} + \overline{C}) \cdot (\overline{C} + \overline{D})$$







**A. Zhu** 36

# Karnaugh Map Procedure

- 1. The logical function is expressed as a sum of products.
- 2. The Karnaugh Map is constructed with a '1' in each square corresponding to a **minterm** present in the expression.
- 3. Squares containing '1's are grouped together, such that each square is contained within at least one group. In the case of the four variable map, groups may contain **one**, **two**, **four**, **eight or sixteen** members.
- 4. The largest of these groupings are sought while groupings which contain members which occur in other groups are discarded since they are redundant.
- 5. The variables which remain constant within each group represent the new min-terms of a simplified **sum of products** expression.
- 6. The same procedures for constructing simplified **product of sums**, except grouping "0" instead of "1".
- 7. Minimum **sum of products** and **product of sums** implementations should be checked for minimized 2-level gate circuits.



#### Don't Care Terms

- In a logic design it may occur that it does not matter whether or not a particular minterm is '1' or '0'.
- A so called don't care term is used instead and is usually represented by an 'x'.
- These don't care terms act as wild cards in the Karnaugh map. By pretending a don't care term is a '1' larger groupings result.

| 0 | 1           |
|---|-------------|
| 1 | 0           |
| 1 | 1           |
| × | 1           |
| 1 | 0           |
|   | 1<br>1<br>× |





#### Methods of Simplification Summary

- Algebraic Simplification
  - Good for simple expressions of a few variables
  - Cases of large numbers of variables but a small number of terms
- Karnaugh Maps
  - Best method for expressions of 3-4 variables
- Quine-McCuskey Method
  - Underneath the method is identical to the Karnaugh Map, but it is termed in a tabular way making it more efficient for use in computer algorithms. Can be extended to many variables.
- Other methods
  - mostly based on Karnaugh map or Quine-McCluskey
  - Heuristic Procedures if the absolute minimum solution is not required, e.g. Espresso which gives near-min solutions



#### NAND and NOR Gates

| Logic | Graphical | Boolean            | Truth                         |
|-------|-----------|--------------------|-------------------------------|
| Gate  | Symbol    | Function           | Table                         |
| NAND  | A———F     | F= <del>A</del> .B | A B F 0 0 1 0 1 1 1 0 1 1 1 0 |

| Logic<br>Gate | Graphical                              | Boolean            | Truth                         |
|---------------|----------------------------------------|--------------------|-------------------------------|
| Gate          | Symbol                                 | Function           | Table                         |
| NOR           | A————————————————————————————————————— | $F=\overline{A+B}$ | A B F 0 0 1 0 1 0 1 0 0 1 1 0 |



**A. Zhu** 40

#### NAND and NOR Gates

# Frequently used because they are faster and use fewer components

e.g. The number of transistors used in CMOS gates:

– *n*-input CMOS OR gate 2*n*+2

– n-input CMOS AND gate 2n+2

– n-input CMOS NOR gate 2n

– n-input CMOS NAND gate 2n

– CMOS inverter2



# **CMOS** Gate Implementation



UCD DUBLIN

 We can perform all logic operations using just combinations of NAND gates. Consider the following two-input NAND gate and its corresponding Boolean algebra description

$$F(A,B) = \overline{A \bullet B}$$

Use De Morgan's Law, we can re-write F(A,B) as

$$F(A,B) = \overline{A} + \overline{B}$$



This is just an OR gate fed with the original inputs (A and B) inverted

Hence the two circuits are equivalent



This allows us to start with an AND-OR logic description



Adding two inverters in series does not change the output, F:



As we have just seen, the last gate above is equivalent to a NAND gate



Only NAND gates are used – this is known as NAND-NAND logic.



What about a single literal appearing at the 2<sup>nd</sup> stage (OR gate

input)?





#### NAND-NAND

- Find minimum sum of products
- 2. Draw corresponding AND-OR circuit
- 3. Replace all gates with NAND gates leaving interconnections as they were
- 4. If the output gate has any single literal inputs, complement these

$$F = \underline{l_1 + l_2 + \dots + P_1} + P_2 + \dots$$
$$F = \overline{l_1 \cdot l_2 \cdot \dots \cdot P_1 \cdot P_2 \cdot \dots}$$





#### **NOR-NOR**

- 1. Find minimum **product** of sums
- 2. Draw corresponding OR-AND circuit
- 3. Replace all gates with NOR gates leaving interconnections as they were
- 4. If the output gate has any single literal inputs, complement these

$$F = l_1 \cdot l_2 \cdot \dots \cdot S_1 \cdot S_2 \cdot \dots$$
$$F = \overline{l_1} + \overline{l_2} + \dots + \overline{S_1} + \overline{S_2} + \dots$$



