

y Comunicaciones Fundamentos de Redes

1

2

Comprender las funcionalidades y servicios de la capa de red:

Concepto de conmutación de paquetes y datagramas

Concepto de conmutación de paquetes y datagramas

Direccionamiento en Internet

Encaminamiento salto a salto

Asociación con la capa de enlace a través del protocolo ARP

Señalización de errores mediante el protocolo ICMP

3

3

4

5

Esquema

1. Funcionalidades

2. Conmutación

3. El protocolo IP

4. Asociación con la capa de enlace: el protocolo ARP

5. El protocolo ICMP

6. Autoconfiguración de la capa de red (DHCP)

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jonge Navarro Ortiz

Tema 2. Capa de red

Esquema

Funcionalidades

2. Conmutación

3. El protocolo IP

Asociación con la capa de enlace: el protocolo ARP

5. El protocolo ICMP

6. Autoconfiguración de la capa de red (DHCP)

7

7

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v.1.0 - Juan M. López Soler y Jorge Navarro Ortiz

Tema 2. Capa de red

2. Conmutación

Conmutación = acción de establecer o determinar un camino que permita transmitir información extremo a extremo

- Esquemas de conmutación
 - Circuitos
 - Paquetes: datagramas o circuitos virtuales
- Conmutación de circuitos
 - Ej. Teléfono
 - Es un servicio orientado a conexión → exige un establecimiento de conexión previo a la transmisión

- Pasos: (i) Conexión, (ii) Transmisión, (iii) Desconexión
- Recursos dedicados. Facilita comunicaciones tiempo-real. No hay contención (contienda por acceder al medio).
- Retraso para establecimiento de la llamada. Poca flexibilidad para adaptarse a cambios. Poco tolerante a fallos.

8

8

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. Lápez Soler y Jorge Navarro Ortiz 2. Conmutación

> Conmutación de circuitos

Ventajas

- · La transmisión se realiza en tiempo real, adecuado para voz
- Uso permanente de recursos, el circuito se mantiene durante toda la sesión
- · No hay contención, no hay contienda para acceder al medio
- El circuito es fijo, no hay decisiones de encaminamiento una vez establecido
- · Simplicidad en la gestión de los nodos intermedios.

- · Retraso en el inicio de la comunicación.
- · En ocasiones uso no eficiente de recursos.
- · El circuito es fijo. No se reajusta la ruta de comunicación.

9

9

10

Tema 2. Capa de red

2. Conmutación

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jonge Navarro Ortiz

4. Estime el tiempo involucrado en la transmisión de un mensaje de datos para la técnica de conmutación de paquetes mediante datagramas (CDP) considerando los siguientes parámetros:

- M: longitud en bits del mensaje a enviar.
- V: velocidad de transmisión de las líneas en bps.
- P: longitud en bits de los paquetes.
- H: bits de cabecera de los paquetes.
- N: número de nodos intermedios entre las estaciones finales.
- D: tiempo de procesamiento en segundos en cada nodo.
- R: retardo de propagación, en segundos, asociado a cada enlace.

11

11

TSTC

Tema 2. Capa de red Esquema

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v.1.0 - Juan M. López Soler y Jonge Navarro Ortiz

1. Funcionalidades

- 2. Conmutación
- 3. El protocolo IP
- 4. Asociación con la capa de enlace: el protocolo ARP
- 5. El protocolo ICMP
- 6. Autoconfiguración de la capa de red (DHCP)

-

12

12

Tema 2. Capa de red

TSTC Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. Lápez Soler y Jorge Navarro Ortiz

3. El protocolo IP

IPv4 está especificado en el RFC 791:

- > Es un protocolo para la interconexión de redes (también llamadas subredes).
- > Resuelve el direccionamiento en Internet.
- Realiza la retransmisión salto a salto entre hosts y routers. Ofrece un servicio no orientado a conexión y no fiable:
 - > No hay negociación o "handshake", no hay una conexión lógica entre las entidades.
 - > No existe control de errores ni control de flujo.
- > La unidad de datos (paquete) de IP se denomina datagrama.
- > IP es un protocolo de máximo esfuerzo ("best-effort"), es decir los datagramas se pueden perder, duplicar, retrasar, llegar desordenados.
- IP gestiona la "fragmentación": adaptar el tamaño del datagrama a la diferentes Maximum Transfer Units (MTUs) de las subredes hasta llegar al destino.

13

13

14

Tema 2. Capa de red

3. El protocolo IP

Internet adopta un direccionamiento jerárquico para simplificar el routing.

- Las direcciones IP (32 bits) tienen dos partes bien diferencias: un identificador de la subred y un identificador del dispositivo dentro de esa subred.
- > Cada subred tiene un identificador único en la intranet.
- Cada dispositivo tiene un identificador único en la subred.
- La máscara de red es un patrón que determina qué bits pertenecen al identificador de subred
 - a) Dirección IP \rightarrow 200.27.4.112 = 11001000.00011011.00000100.01110000 Máscara → 255.255.255.0 = 111111111.11111111.11111111.000000000
 - b) La máscara se puede representar de forma compacta, por ejemplo 200.27.4.112/24
- > Para obtener la dirección o identificador de la subred:

```
= 11001000.00011011.00000100.01110000
200.27.4.112
255.255.255.0
                 = 11111111.11111111.11111111.00000000
```

Subred → 200.27.4.0 = 11001000.00011011.00000100.00000000

15

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz

15

Tema 2. Capa de red

3. El protocolo IP

> Podemos considerar Internet como un conjunto de subredes interconectadas

> ¿Qué es una subred? ¿Qué es un switch? ¿Qué es un router?

Computer Networking. A Top-down Approach. de James F. Kurose y Keith W. Ross: "Para determinar las subredes, separe cada interfaz de los hosts y routers, creando redes aisladas. Dichas redes aisladas se corresponden con las subredes."

1

16

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v.1.0 - Juan M. López Soler y Jorge Navarro Ortiz

16

17

18

3. El protocolo IP

Direcciones públicas

- Cada dirección se asigna a sólo 1 dispositivo en Internet.
Se asignan centralizadamente

Direcciones privadas

- Sólo en intranets. Se pueden repetir en distintas intranets.
Las asigna el usuario según su criterio.

Internet

- Direcciones privadas

- Sólo en intranets. Las asigna el usuario según su criterio.

19

20

21

22

23

24

25

26

Tema 2. Capa de red 3. El protocolo IP Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jonge Navarro Ortiz Ejercicio: Asignar direcciones Subredes corporativas: 30 dispositivos, direcciones privadas 192.168.0.0 \rightarrow 5 Subred de acceso: dirección pública (ISP) → 2 ceros, /30, 150.214.190.0 (UGR) 192.168.0.2 Subred = 192,168,0,0 192.168.0.1 Host A 192.168.0.35 192,168,0,3 Subred = 192,168,0,32 192.168.0.34 Host B 150.214.190.1 Internet Subred = 150.214.190.0 192.168.0.66 192.168.0.6 Subred = 192.168.0.64 Host C 27

27

28

Host C

Tema 2. Capa de red 3. El protocolo IP Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jonge Navarro Ortiz Retransmisión salto-a-salto: Resolución local del camino > En el dispositivo origen y todos los intermedios Host A Host B Internet 29

29

30

Tema 2. Capa de red

3. El protocolo IP

 Si no hay fragmentación y no hay "traducción de direcciones" (NAT) el datagrama (salvo el TTL, las opciones y el campo de comprobación) no se modifica en el camino.

- Proceso de encaminamiento en los nodos IP (salto a salto) por cada datagrama:
 - · Se extrae la dirección destino: IP_DESTINO del datagram
 - · Por cada entrada i con i =1,...,N, de la tabla de encaminamiento se calcula

IPi = IP_DESTINO AND(&) MASCARA_i

- Si IPi = Di y
 si es routing directo (*) → reenviar el datagrama al destino final por la interfaz i
 o si no es routing directo → reenviar el datagrama al salto siguiente por la interfaz i
- · Si hay varias coincidencias se elige el destino con la máscara más larga
- Si se ha barrido toda la tabla y no hay coincidencia con ninguna fila → error (posible mensaje ICMP)
- Para encapsular el datagrama en la trama física correspondiente, se debe consultar la tabla ARP (ver más adelante) y en caso de no conocer la dirección física se envía un broadcast con protocolo ARP para obtener la dir. física.

31

31

Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 vi.O - Juan M. López Soler y Jorge Navarro Ortiz

32

33

34

Tema 2. Capa de red 3. El protocolo IP Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz > Tabla de encaminamiento: > Problemas: La tabla del ejemplo NO direcciona Internet(ej. www.google.com = 172.194.34.209) > La topología implica sólo un camino de salida desde → ¿necesitamos 4 entradas? Máscara 192.168.0.0 /27 Host C 192.168.0.1 0.0.0.0 0.0.0.0 192.168.0.1 192.168.0.66 Microsoft Servidor Webmail
Hotmail 130.206.192.39 You Tube www.youtube.com 172,194,34,206 Google Servidor Spotify 78.31.8.101 dns3.ugr.es = 150.214.191.10 pop.ugr.es = 150.214.20.3 www.google.com 172.194.34.209 35

35

36

Tema 2. Capa de red TSTC 3. El protocolo IP Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. Lápez Soler y Jorge Navarro Ortiz 7. Imagine una situación donde hay cinco routers RA-RE. RA, RB y RC se conectan cada uno a una red local A, B y C, siendo cada router única puerta de enlace de cada red. RA, RB y RD están conectados entre sí a través de un switch. RC, RD y RE están conectados entre sí a través de un switch. RE conecta a Internet a través de la puerta de acceso especificada por el ISP. Especifique tablas de encaminamiento en los routers. Asigne a voluntad las direcciones IP e interfaces necesarias. 192.168.0.0/24 RD SW 2 RC 192.168 4.0/24 RA SW 1 RB 192.168 2.0/24 192.168.3.0/2 LAN A LAN B 37

Tema 2. Capa de red TSTC 3. El protocolo IP Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v.1.0 - Juan M. López Soler y Jorge Navarro Ortiz Para facilitar la administración y aumentar la escalabilidad Internet se jerarquiza en Sistemas Autónomos (SA). ☐ Un SA es un conjunto de redes y routers administrados por una autoridad. □ Cada SA informa a los otros SA de las redes accesibles. Existe un router responsable, denominado router exterior (R1, R2, Rn). □ Cada SA se identifica por un entero de 16 bits (DESDE 2007 ES 32-BITS). Rediris = AS766 AS₁ AS₂ S AS3 AS4 AS7 Shared-cost \$ Customer-provider 38 1

38

37

39

40

Tema 2. Capa de red 3. El protocolo IP Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz OSPF (RFC 2328) \blacksquare Basado en estado del enlace (coste α 1 / velocidad del enlace) Permite rutas alternativas y balanceo de carga Gestión en base a áreas independientes Minimiza difusión mediante routers designados Mensajes: hello, database description, link status request/update/ack Ejemplo para RIP y OSPF 10 ms 3 Mbps 10 Mbps R1 25 Mbos R5 R6 4 Mbps 20 ms 41

41

42

9180

Tema 2. Capa de red

22

Tema 2. Capa de red 3. El protocolo IP Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz Formato de datagrama longitud total I desplazamiento cabecera dirección IP origen dirección IP destino opciones datos Fragmentación IPv4: MTU (bytes) Tamaño máximo del datagrama: 216-1 = 65.535 bytes. 1500 296 Es necesario adaptarse a la MTU (Maximum Transfer Unit) de cada subred X.25 1600 (RFC 1356) El ensamblado sólo se puede hacer en el destino final 1600 ---Imente) Frame Relay desplazamiento: offset respecto del comienzo del paquete. indicadores (I): "Don't Fragment", "More Fragments". Ethern DIX 1500 Ethernet LLC-SNAP 1492 Token Ring 4 Mb/s 4440 (THT 8ms) 43

43

45

46

47

48

49

50

Tema 2. Capa de red TSTC 5. El protocolo ICMP Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz > ICMP (Internet Control Message Protocol) > Informa sobre situaciones de error > señalización > Hacia el origen del datagrama IP. > Se encapsula en IP > Cabecera de 32 bits. Incluye la cabecera del datagrama que ha disparado el mensaje <u>File Edit View Go Capture Analyze Statistics Telephony Tools Help</u> ▼ Expression... Clear Apply Protocol Info

ICMP Destination unreachable (Por Time Source 2 0.000719 150.214.20.130 150.214.191.5 Define 2: 320 bytes on wire (960 bits), 120 bytes captured (960 bits)

Ethernet II, Src: Cisco_b7:64:00 (00:07:0d:b7:64:00), 0st: Hicro-st_a8:f7:63 (00:24:21:a8:f7:63)

Internet Protocol, Src: 150.214.20.130 (150.214.20.130), 0st: 150.214.191.5 (150.214.191.5)

Internet Control Message Protocol
Type: 3 (Destination unreachable)
Code: 3 (Port unreachable)
Code: 3 (Port unreachable)
Checksum: Oxfe7c [Correct]

Internet Protocol, Src: 150.214.191.5 (150.214.191.5), 0st: 150.214.20.130 (150.214.20.130)

User Datagram Protocol, Src Port: netbios-ns (137), 0st Port: netbios-ns (137)

Internet Protocol State Port: Netbios-ns (137), 0st Port: netbios-ns (137) 51

51

52

53

54

Static IP address assignment host haagen {
hardware ethernet 08:00:2b:4c:59:23; fixed-address 192.168.1.222;

Tema 2. Capa de red TSTC 6. Autoconfiguración de la capa de red (DHCP) Fundamentos de Redes - Grado en Ingeniería Informática y dobles grados © 2022 v1.0 - Juan M. López Soler y Jorge Navarro Ortiz Configuración de un cliente Linux (Fedora Core distribution): # Sample /etc/sysconfig/network-scripts/ifcfg-eth0 : DEVICE=eth0 BOOTPROTO=dhcp HWADDR=00:0C:29:CE:63:E3 ONBOOT=yes TYPE=Ethernet Configuración de un servidor de Linux (dhcpd): # Sample /etc/dhcpd.conf default-lease-time 600:max-lease-time 7200; option subnet-mask 255.255.255.0; option broadcast-address 192.168.1.255; option routers 192.168.1.254; option domain-name-servers 192.168.1.1, 192.168.1.2; option domain-name "mydomain.org"; subnet 192.168.1.0 netmask 255.255.255.0 { range 192.168.1.0 netmask 255.255.255.0 } range 192.168.1.10 192.168.1.100; range 192.168.1.150 192.168.1.200;

55