EE5110: Probability Foundations for Electrical Engineers

July - Nov 2024

1 Math Review I

1.1 Set Theory

- 1. A set is a collection of distinct objects.
 - e.g., {Head, Tail}, \mathcal{R} , $(0,1) = \{x \in \mathcal{R} : 0 < x \le < \}$
- 2. If Ω is any set, we write $\omega \in \Omega$ to indicate that ω is a member of the set Ω . If ω is not a member of Ω , we write $\omega \notin \Omega$.
 - e.g., Head $\in \{\text{Head}, \text{Tail}\}, 2 \notin (0, 1)$
- 3. The set which contains no element will be called the empty set, denoted as ϕ .
- 4. If A and B are sets, and if every element of A is an element of B, we say that A is a subset of B, and write $A \subset B$ or $B \supset A$.
 - e.g., $[0,1] \subset \mathcal{R}$
 - $\omega \in \Omega$ and $\{\omega\} \subset \Omega$
 - If $A \subset B$ and $B \subset A$, we write A = B. Otherwise $A \neq B$.
- 5. The complement of a set A with respect to a set Ω is defined as

$$A^c = \{\omega : \omega \in \Omega \text{ and } \omega \notin A\}$$

- e.g., $\{\text{Head}\}^c = \{\text{Tail}\}$
- 6. The union of sets A and B is defined as

$$A \cup B = \{\omega : \omega \in A \text{ or } \omega \in B\}$$

7. The intersection of sets A and B is defined as

$$A \cap B = \{\omega : \omega \in A \text{ and } \omega \in B\}$$

- A and B are said to be mutually exclusive (or disjoint) if $A \cap B = \phi$. For example, $(0,1) \cap (2,3) = \phi$.
- 8. Let A, B, and C be subsets of Ω . Then,
 - Inverse: $(A^c)^c = A, \Omega^c = \emptyset$
 - Commutativity: $A \cup B = B \cup A, A \cap B = B \cap A$

- Associativity: $A \cup (B \cup C) = (A \cup B) \cup C, A \cap (B \cap C) = (A \cap B) \cap C$
- Distribution: $A \cup (B \cap C) = (A \cup B) \cap (A \cup C), A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- De Morgan's laws: $(A \cup B)^c = A^c \cap B^c, (A \cap B)^c = A^c \cup B^c$
- $A \cup B = A \iff B \subseteq A \text{ and } A \cap B = A \iff A \subseteq B$
- 9. Let $\{A_i\}$ for $i \in \mathcal{I}$ be any collection of sets (even infinite).

$$\bigcup_{i\in\mathcal{I}} A_i = \{\omega : \omega \in A_i \text{ for some } i\in\mathcal{I}\}$$

$$\bigcap_{i\in\mathcal{I}} A_i = \{\omega : \omega \in A_i \text{ for all } i\in\mathcal{I}\}$$

- $\bigcup_{n=1}^{\infty} (-n, n) = \mathcal{R}, \bigcap_{n=1}^{\infty} (-\frac{1}{n}, \frac{1}{n}) = \{0\}$
- $\{A_i\}$ are said to be disjoint if $A_i \cap A_j = \phi$ for all $i, j \in \mathcal{I}, i \neq j$.
- 10. A_1, A_2, \cdots are said to be increasing if

$$A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$$

and decreasing if

$$A_1 \supset A_2 \supset A_3 \supset \cdots$$

1.2 Cardinality of Sets

- 1. Let A and B be two sets. f is said to be a function from A to B, denoted by $f: A \to B$, if for each element x in A, there is associated an element of B which we denote by f(x). The set A is called the domain of f and the set of all values of f, denoted by f(A), is called the range of f.
- 2. Let $f: A \to B$. We say that f maps A onto B if f(A) = B. For example, $f: \mathcal{R} \to \mathcal{R}$ defined as f(x) = 2x + 1 is onto.
- 3. Let $f: A \to B$. We say that f is one-to-one if $f(x_i) \neq f(x_j)$ whenever $x_i \neq x_j$ (where $x_i, x_j \in A$). For example, $f: \mathcal{R} \to \mathcal{R}$ defined as f(x) = 2x + 1 is one-to-one.
- 4. Let $f: A \to B$ be one-to-one and onto. Then, we say that A and B have the same cardinal number or that A and B are equivalent, and we write $A \sim B$ (A is equivalent to B). For example, f(x) = 2x + 1 is one-to-one and onto while $f(x) = x^2$ is neither one-to-one nor onto.
- 5. For any positive integer n, let J_n denote the set whose elements are the integers $1, 2, \dots, n$ and let J denote the set consisting of all positive integers. For any set A, we say,
 - (a) A is finite if $A \sim J_n$ for some n (the empty set is also considered to be finite).

- (b) A is infinite if A is not finite.
- (c) A is countable if $A \sim J$.
- (d) A is uncountable if A is neither finite nor countable.
- 6. \mathcal{Z} and \mathcal{Q} are countable, and \mathcal{R} is uncountable.
- 7. Two finite sets A and B are equivalent if and only if A and B contain the same number of elements.
- 8. An infinite set can be equivalent to one of its proper subsets. For example, the set of all integers \mathcal{Z} is equivalent to the set of all positive integers \mathcal{Z}^+ .
- 9. Let $\{A_n, n=1, 2, \cdots\}$ be a sequence of countable sets and let

$$A = \bigcup_{n=1}^{\infty} A_n$$

Then, A is countable.

10. Let Ω denote the set of all sequences whose elements are the digits 0 and 1. Then, Ω is uncountable.

1.3 Sequences and Series

• A sequence $\{x_n\}$ in \mathcal{R}^k is said to converge to a $x \in \mathcal{R}^k$ if, for every $\epsilon > 0$, there is an integer N_{ϵ} such that for all $n \geq N_{\epsilon}$, $||x_n - x|| < \epsilon$. In this case, we write

$$\lim_{n \to \infty} x_n = x$$

$$-\frac{(-1)^n}{n} \to 0 \text{ as } n \to \infty$$

- $-(-1)^n$ does not converge
- Let $\{x_n\}$ and $\{y_n\}$ be convergent sequences in \mathbb{R}^k . Let $c \in \mathbb{R}^k$. Then,

$$\lim_{n \to \infty} (x_n + y_n) = \lim_{n \to \infty} x_n + \lim_{n \to \infty} y_n$$

$$\lim_{n \to \infty} (c + x_n) = c + \lim_{n \to \infty} x_n$$

$$\lim_{n \to \infty} (x_n y_n) = (\lim_{n \to \infty} x_n) (\lim_{n \to \infty} y_n)$$

$$\lim_{n \to \infty} (cx_n) = c \lim_{n \to \infty} x_n$$

$$\lim_{n\to\infty}\left(\frac{1}{x_n}\right)=\frac{1}{\lim_{n\to\infty}x_n}, \text{ if } \lim_{n\to\infty}x_n\neq 0$$

• Limits of some useful sequences:

$$\lim_{n \to \infty} \frac{1}{n^p} = 0, \quad \text{if } p > 0$$

$$\lim_{n \to \infty} p^{\frac{1}{n}} = 1, \quad \text{if } p > 0$$

$$\lim_{n \to \infty} p^n = 0, \quad \text{if } |p| < 1$$

• Given a sequence $\{x_n\}$ in \mathcal{R} , define another sequence $\{s_n\}$ as

$$s_n = \sum_{t=1}^n x_t = x_1 + x_2 + \dots + x_n$$

The limit of the sequence $\{s_n\}$, denoted as

$$\lim_{n \to \infty} s_n = \sum_{t=1}^{\infty} x_t = x_1 + x_2 + \cdots$$

is called an infinite series, or simply a series. The numbers s_n are called the partial sums of the series.

• If $s_n \to s$, we say that the series converges and write

$$\sum_{n=1}^{\infty} x_n = s$$

$$-1 + \frac{1}{2} + \frac{1}{4} + \dots = 2$$
 and $1 + 1 + 1 + \dots = \infty$

- If $\sum_{n=1}^{\infty} |x_n|$ converges, then $\sum_{n=1}^{\infty} x_n$ converges. For example, $1 \frac{1}{2} + \frac{1}{4} \frac{1}{8} + \cdots$ converges. If $\sum_{n=1}^{\infty} |x_n| = \infty$, then the series does not converge. For example, $1 1 + 1 1 + \cdots$ does not converge!
- Some useful series:

$$\sum_{n=1}^{\infty} \frac{1}{n} = \infty, \quad \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty$$

$$\sum_{n=1}^{\infty} p^{n-1} = \frac{1}{1-p}, \quad \text{if } 0 \le p < 1$$

$$e^x = \lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$