Análisis II - Análisis Matemático II - Matemática 3

Segundo cuatrimestre de 2020

Práctica 1: Curvas, longitud de arco e integrales curvilíneas

1. Curvas

Ejercicio 1. (a) Probar que

$$\begin{cases} x_1(t) = r \cos(2\pi t), \\ y_1(t) = r \sin(2\pi t), \end{cases}$$

$$\begin{cases} x_2(t) = r \cos(4\pi t), \\ y_2(t) = r \sin(4\pi t), \end{cases}$$

con $t \in [0,1]$ son dos parametrizaciones C^1 de la circunferencia de centro (0,0) y radio r.

- (b) Probar que la circunferencia es una curva cerrada, simple, suave.
- (c) Probar que $\sigma_2(t) = (x_2(t), y_2(t))$ no es una parametrización regular.

Ejercicio 2. Considerar la curva C formada por los segmentos que unen el (0,1) con el (0,0) y el (0,0) con el (1,0).

Probar que

$$\sigma(t) := \begin{cases} (0, (1-t)^2), & \text{si } 0 \le t \le 1, \\ ((t-1)^2, 0), & \text{si } 1 \le t \le 2 \end{cases}$$

es una parametrización C^1 de la curva \mathcal{C} .

Observar que \mathcal{C} no tiene recta tangente en el (0,0). ¿Por qué no hay contradicción?

Ejercicio 3. Sea $\sigma(t) = (t^3, t^3)$ con $-1 \le t \le 1$.

Probar que σ es una parametrización C^1 del segmento $y=x, -1 \le x \le 1$ que es una curva suave. Observar que $\sigma'(0)=(0,0)$.

Ejercicio 4. Sea \mathcal{C} el arco de parábola $y = x^2$ con $0 \le x \le 1$.

- (a) Probar que \mathcal{C} es una curva abierta, simple, suave
- (b) Probar que $\bar{\sigma}(s) := (\bar{x}(s), \bar{y}(s)), s \in [0, \ln(2)]$ dada por

$$\begin{cases} \bar{x}(s) = e^s - 1\\ \bar{y}(s) = (e^s - 1)^2 \end{cases}$$

es una parametrización regular de C.

- (c) Observar que $\sigma(t) := (t, t^2)$ con $t \in [0, 1]$ es otra parametrización regular.
- (d) Hallar una función $g:[0,1] \to [0,\ln 2]$ tal que $\bar{\sigma}(g(t)) = \sigma(t)$ para todo $t \in [0,1]$. Observar que g es biyectiva y C^1 .

Definición. Sea $\sigma(t)$ la posición en el instante t de una partícula que se mueve en el espacio en forma continua. Esta partícula recorre una curva C y σ es una parametrización de C.

En este contexto $\sigma'(t)$ es un vector cuya magnitud da la rapidez con la que se mueve la partícula al pasar por el punto $\sigma(t)$. Además, este vector da la dirección y sentido del movimiento. Por eso se lo denomina vector velocidad.

Por un razonamiento análogo, al vector $\sigma''(t)$ se lo denomina vector aceleración.

Conservaremos esta nomenclatura para estos vectores aún cuando la curva \mathcal{C} y/o la parametrización σ no correspondan a la trayectoria de una partícula.

Ejercicio 5. Determinar los vectores velocidad y aceleración, y la ecuación de la recta tangente para cada una de las curvas cuyas parametrizaciones se dan a continuación, en el valor especificado de t:

- $\begin{array}{ll} \text{(a)} \ \ \sigma(t) = (6t, 3t^2, t^3), \quad t = 0. \\ \text{(b)} \ \ \sigma(t) = (\cos^2 t, 3t t^3, t), \quad t = 0. \end{array}$
- (c) $\sigma(t) = (\text{sen } 3t, \cos 3t, 2t^{3/2}), \quad t = 1.$
- (d) $\sigma(t) = (0, 0, t), \quad t = 1.$

Ejercicio 6. ¿Qué fuerza actúa sobre una partícula de masa m en el instante t=0 si sigue la trayectoria dada por la función σ del Ejercicio 5 (b)?

Ejercicio 7. Suponer que una partícula sigue la trayectoria $\sigma(t) = (e^t, e^{-t}, \cos t)$ hasta que sale por una tangente en t=1. Hallar la ubicación de la partícula en t=2, suponiendo que ninguna fuerza actúa sobre ella después del tiempo t=1.

2. Integral de longitud de arco

Ejercicio 8. Considerar una partícula que se mueve siguiendo la trayectoria $\sigma(t) = (t - \sin t, 1 - \cos t)$. Hallar la velocidad, rapidez, y la longitud del arco descripto por la partícula entre los puntos $\sigma(0)$ y $\sigma(2\pi)$. Observar que σ describe la función de posición de un punto en un círculo de radio 1, que va rodando. La curva que describe se conoce como *cicloide*.

Ejercicio 9. En los siguientes casos, calcular la longitud de la curva, donde σ es una parametrización de la misma sobre el intervalo [a, b], siendo:

- (a) $\sigma(t) = (t, t^2), a = 0, b = 1.$
- (b) $\sigma(t) = (\sqrt{t}, t+1, t), a = 10, b = 20.$

Ejercicio 10. Sea \mathcal{C} una curva suave, y sea $\sigma:[a,b]\to\mathbb{R}^3$ una parametrización regular de \mathcal{C} . Sea $g:[\bar{a},\bar{b}]\to[a,b]$ una biyección C^1 con $g'(s)\neq 0$ para todo $s\in(a,b)$. Sea $\bar{\sigma}:[\bar{a},\bar{b}]\to\mathbb{R}^3$ dada por $\bar{\sigma}(s) = \sigma(g(s))$. Llamamos a $\bar{\sigma}$ una **reparametrización** de σ .

- (a) Probar que $\bar{\sigma}$ es una parametrización regular de \mathcal{C} .
- (b) Sea $f: \mathbb{R}^3 \to \mathbb{R}$ continua. Ver que el cálculo de $\int_{\mathcal{C}} f \, ds$ da el mismo resultado cuando la integral se evalúa utilizando la parametrización σ o la parametrización $\bar{\sigma}$.

Ejercicio 11. Sea \mathcal{C} una curva simple, y sea $\sigma:[a,b]\to\mathbb{R}^3$ una parametrización regular de \mathcal{C} . Para cada $t \in [a, b]$ sea h(t) la longitud del arco de curva entre los puntos $\sigma(a)$ y $\sigma(t)$. Sabemos que

$$h(t) = \int_{a}^{t} \|\sigma'(\tau)\| d\tau.$$

La función h(t) resulta ser continuamente diferenciable con derivada no nula para todo t, por lo que admite una inversa continuamente diferenciable. A la reparametrización de σ dada por $\bar{\sigma}(s)$ $\sigma(h^{-1}(s))$ la llamamos reparametrización por longitud de arco. Probar que $\bar{\sigma}$ es tal que la longitud del arco que va de $\bar{\sigma}(0)$ a $\bar{\sigma}(s)$ es igual a s.

Ejercicio 12. Reparametrizar las siguientes curvas por longitud de arco.

- (a) $\sigma(t) = (\cos t, \sin t, t), \quad a = 0, b = 1.$
- (b) $\sigma(t) = (2e^t, 3e^t + 1, -6e^t), \quad a = 0, b = \ln 3.$

Ejercicio 13. Evaluar las integrales de longitud de arco $\int_{\mathcal{C}} f(x,y,z) ds$, donde σ es una parametrización de \mathcal{C} , en los casos siguientes:

- (a) f(x, y, z) = x + y + z, $\sigma(t) = (\text{sen } t, \cos t, t)$, $t \in [0, 2\pi]$.
- (b) $f(x, y, z) = \cos z$, σ como en (a).
- (c) $f(x, y, z) = x \cos z$, $\sigma(t) = (t, t^2, 0)$, $t \in [0, 1]$.

Ejercicio 14. (a) Mostrar que la integral de longitud de arco de f(x,y) a lo largo de una curva dada en coordenadas polares por $r = r(\theta), \ \theta_1 \le \theta \le \theta_2$ es

$$\int_{\theta_1}^{\theta_2} f(r\cos\theta, r\sin\theta) \sqrt{r^2 + \left(\frac{dr}{d\theta}\right)^2} d\theta.$$

(b) Calcular la longitud de la curva $r = 1 + \cos \theta$, $0 \le \theta \le 2\pi$.

Ejercicio 15. Suponer que la semicircunferencia parametrizada por:

$$\sigma(\theta) = (0, a \sin \theta, a \cos \theta), \quad \theta \in [0, \pi],$$

con a > 0, está hecha de alambre con densidad uniforme de 2 gramos por unidad de longitud.

- (a) ¿Cuál es la masa total del alambre?
- (b) ¿Dónde está el centro de masa de esta configuración de alambre?
- (c) Si la temperatura ambiente es igual a x + y z en el punto (x, y, z), calcular la temperatura promedio sobre el alambre.

Ejercicio 16. Si $f:[a,b]\to\mathbb{R}$ es continuamente diferenciable a trozos, el gráfico de f en [a,b] es una curva que se puede parametrizar como $\sigma(t) = (t, f(t))$ para $t \in [a, b]$.

(a) Mostrar que la longitud del gráfico de f en [a, b] es

$$\int_{a}^{b} \sqrt{1 + [f'(x)]^2} \, dx.$$

(b) Hallar la longitud del gráfico de $y = \ln x$ de x = 1 a x = 2.

3. Integrales curvilíneas

Ejercicio 17. Sea $\mathbf{F}(x,y,z)=(x,y,z)$. Evaluar la integral curvilínea de \mathbf{F} a lo largo de las curvas orientadas \mathcal{C} dadas por las siguientes parametrizaciones:

- (a) $\sigma(t) = (t, t, t), \quad 0 \le t \le 1.$
- (b) $\sigma(t) = (\text{sen } t, 0, \cos t), \quad 0 \le t \le 2\pi.$

Ejercicio 18. Para las curvas orientadas \mathcal{C} parametrizadas por las correspondientes funciones σ , evaluar las integrales siguientes:

- (a) $\int_{\mathcal{C}} x \, dy y \, dx$, $\sigma(t) = (\cos t, \sin t)$, $0 \le t \le 2\pi$. (b) $\int_{\mathcal{C}} x \, dx + y \, dy$, $\sigma(t) = (\cos(\pi t), \sin(\pi t))$, $0 \le t \le 2$.

Ejercicio 19. Considerar la fuerza $\mathbf{F}(x,y,z)=(x,y,z)$. Calcular el trabajo realizado al mover una partícula a lo largo de la parábola $y=x^2, z=0$, de x=-1 a x=2.

Ejercicio 20. Sea \mathcal{C} una curva orientada suave parametrizada por σ .

(a) Suponer que **F** es perpendicular a $\sigma'(t)$ en $\sigma(t)$ para todo t. Mostrar que

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = 0.$$

(b) Si ${\bf F}$ tiene el mismo sentido que $\sigma'(t)$ en $\sigma(t)$ para todo t (es decir, si ${\bf F}\big(\sigma(t)\big)=\lambda(t)\sigma'(t),$ donde $\lambda(t) > 0$), mostrar que

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}} ||\mathbf{F}|| \, ds.$$

Ejercicio 21. ¿Cuál es el valor de la integral curvilínea de un campo gradiente sobre una curva cerrada C?

Ejercicio 22. Suponer que $\nabla f(x,y,z) = (2xyze^{x^2}, ze^{x^2}, ye^{x^2})$. Si f(0,0,0) = 5, hallar f(1,1,2).

Ejercicio 23. Considerar el campo de fuerza gravitacional (con G = m = M = 1) definido (para $(x, y, z) \neq (0, 0, 0)$) por:

$$\mathbf{F}(x,y,z) = -\frac{1}{(x^2 + y^2 + z^2)^{\frac{3}{2}}}(x,y,z).$$

Mostrar que el trabajo realizado por la fuerza gravitacional conforme una partícula se mueve de (x_1, y_1, z_1) a (x_2, y_2, z_2) , a lo largo de cualquier trayectoria, depende solamente de los radios $R_1 = \sqrt{x_1^2 + y_1^2 + z_1^2}$ y $R_2 = \sqrt{x_2^2 + y_2^2 + z_2^2}$.

Ejercicio 24. Sean $f: \mathbb{R}^3 \to \mathbb{R}$ una función C^1 , $\mathbf{G}: \mathbb{R}^3 \to \mathbb{R}^3$ un campo C^1 y $\mathbf{F} = \nabla f + \mathbf{G}$. Sea \mathcal{C} una curva cerrada, simple, suave, orientada. Verificar que

$$\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = \int_{\mathcal{C}} \mathbf{G} \cdot d\mathbf{s}.$$

Ejercicio 25. Sea \mathcal{C} una curva suave, y sea $\sigma:[a,b]\to\mathbb{R}^3$ una parametrización regular de \mathcal{C} . Damos a \mathcal{C} la orientación dada por σ . Sea $\bar{\sigma}$ una reparametrización de σ , y sea $\mathbf{F}:\mathbb{R}^3\to\mathbb{R}^3$ continua.

Probar que el cálculo de $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s}$ utilizando la parametrización $\bar{\sigma}$ da el mismo resultado que cuando se utiliza σ , si $\bar{\sigma}$ preserva la orientación de \mathcal{C} . Probar que si no es así, los resultados difieren sólo en el signo.