In Class Assignment #4 (9/25)

Design a BCD to decimal decoder using dataflow modeling

- Module: BCDtoDecimal, Input: BCDIn (4 bits), Output: DECOut (10 bits)
- If the input is greater than 9 (4'b1001), the output will be 10'b11_1111_1111
- Stimulus: Top, Please use named mapping to instantiate BCDtoDecimal
- Apply the input from 0 to 15 and 0 again with a delay of 10
- Submit DD04_StudentID.zip that includes source and screen capture to LMS
- Hint: Conditional operator (?:)

	В	CD			Decimal									
A	В	С	D	D_9	D_8	D_7	D_6	D_5	D_4	D_3	D_2	D_{l}	D_0	
0	0	0	0	0	0	0	0	0	0	0	0	0	1	
0	0	0	1	0	0	0	0	0	0	0	0	1	0	
0	0	1	0	0	0	0	0	0	0	0	1	0	0	
0	0	1	1	0	0	0	0	0	0	1	0	0	0	
0	1	0	0	0	0	0	0	0	1	0	0	0	0	
0	1	0	1	0	0	0	0	1	0	0	0	0	0	
0	1	1	0	0	0	0	1	0	0	0	0	0	0	
0	1	1	1	0	0	1	0	0	0	0	0	0	0	
1	0	0	0	0	1	0	0	0	0	0	0	0	0	
1	0	0	1	1	0	0	0	0	0	0	0	0	0	

0 BCDIn = 0 --> DECOUT = 0000000001
10 BCDIn = 1 --> DECOUT = 0000000010
20 BCDIn = 2 --> DECOUT = 0000000100
30 BCDIn = 3 --> DECOUT = 0000000100
40 BCDIn = 4 --> DECOUT = 0000010000
50 BCDIn = 5 --> DECOUT = 0000100000
60 BCDIn = 6 --> DECOUT = 0001000000
70 BCDIn = 7 --> DECOUT = 0010000000
80 BCDIn = 8 --> DECOUT = 0100000000
90 BCDIn = 9 --> DECOUT = 111111111
110 BCDIn = 11 --> DECOUT = 111111111
120 BCDIn = 12 --> DECOUT = 111111111
130 BCDIn = 13 --> DECOUT = 111111111
140 BCDIn = 14 --> DECOUT = 111111111
150 BCDIn = 15 --> DECOUT = 1111111111
160 BCDIn = 0 --> DECOUT = 1111111111

Truth Table

Schematic

Expected Outputs