Siddhardhan

Measure of Central Tendencies: Mean, Median & Mode

Math for Machine Learning

Central Tendency

Central Tendency:

A measure of **central tendency** is a value that represents the center point or typical value of a dataset. It is a value that summarizes the data.

Central Tendencies

Mean

Mean or arithmetic mean is the sum of values divided by the number of values.

$$M = \frac{\sum X}{N}$$

Heights

Median

The **median** is the **middle** value in the list of numbers. To find the median, the numbers have to be listed in numerical order from smallest to largest.

$$\frac{168+172}{2} = 170$$

Median = 170

Mode

The **mode** is the value that occurs most often. If no number in the list is repeated, then there is no mode for the list.

Heights

160	
172	Mode = 160
160	
168	
174	

Central Tendencies in Data Pre-Processing

Central Tendencies are very useful in **handling the missing values** in a dataset

Mean: Missing values in a dataset can be replaced with **mean**

value, if the data is uniformly distributed.

Median: Missing values in a dataset can be replaced with **median**

value, if the data is skewed.

Mode: Missing values in a dataset can be replaced with **mode**

value, if the data is skewed. Missing categorical values can

also be replaced with **mode** value.

