Econometria I

Exame 1 (Segunda Chamada)

14/12/2023

Instruções:

- Você precisa justificar suas respostas com cuidado e mostrar seu trabalho para obter o crédito total. Crédito parcial pode ser dado para cada pergunta.
- Caso o tempo se esgote ou não consiga completar a argumentação/prova formal, o crédito parcial poderá ser dado para uma resposta intuitiva.
- Salvo indicação em contrário, podem ser utilizados pressupostos padrão do modelo linear. Indique claramente as suposições que você está usando para resolver cada exercício.
- Cada questão vale 20 pontos, distribuídos igualmente entre os ítens de cada uma.
- 1. Considere o seguinte modelo de regressão linear clássico particionado:

$$\mathbf{y} = \mathbf{X}_1 \beta_1 + \mathbf{X}_2 \beta_2 + \varepsilon,$$

onde \mathbf{y} é um vetor $n \times 1$ de observações sobre a variável dependente, e \mathbf{X}_1 e \mathbf{X}_2 são matrizes de observações $n \times K_1$ e $n \times K_2$ nos regressores. Ademais, definimos $\mathbf{X} = [\mathbf{X}_1 \ \mathbf{X}_2]$ como uma matriz $n \times K$, onde $K = K_1 + K_2$.

- a. Mostre que ao omitirmos as variáveis incluídas em \mathbf{X}_2 e estimarmos β_1 executando uma regressão de \mathbf{y} apenas em \mathbf{X}_1 , o estimador de OLS \mathbf{b}_1 geralmente será viesado com o viés dado por $\mathbf{P}_{12}\beta_2$, onde $\mathbf{P}_{12}=(\mathbf{X}_1'\mathbf{X}_1)^{-1}\mathbf{X}_1'\mathbf{X}_2$.
- b. Interprete os elementos da matriz P_{12} . Sob quais condições b_1 será não-viesado?
- c. Um pesquisador está estimando a equação de demanda por móveis usando dados em cross-section. Como regressores ela usa um termo de intercepto, o preço relativo dos móveis, e omite a variável renda, a qual é relevante para o modelo. Encontre uma expressão para o viés da estimativa de OLS da variável preço nesta regressão; discuta seu sinal.
- 2. Suponha duas amostras independentes $(\mathbf{y}_1, \mathbf{X}_1)$ e $(\mathbf{y}_2, \mathbf{X}_2)$ que satisfazem $\mathbf{y}_1 = \mathbf{X}_1\beta_1 + \varepsilon_1$ e $\mathbf{y}_2 = \mathbf{X}_2\beta_2 + \varepsilon_2$ onde $E(\mathbf{X}_{1i}\varepsilon_{1i}) = 0$ e $E(\mathbf{X}_{1i}\varepsilon_{1i}) = 0$ e tanto \mathbf{X}_1 quanto \mathbf{X}_2 têm K colunas. Sejam \mathbf{b}_1 e \mathbf{b}_2 os estimadores de OLS de β_1 e β_2 , respectivamente. Para simplificar, você pode assumir que ambas amostras possuem o mesmo número de observações n.
 - a. Encontre a distribuição assintótica de

$$\sqrt{v}[(\mathbf{b}_1 - \mathbf{b}_2) - (\beta_1 - \beta_2)]$$

quando $n \to \infty$.

b. Encontre a estatística de teste apropriada para $H_0: \beta_1 = \beta_2$

- c. Encontre a distribuição assintótica desta estatística sob H_0 .
- 3. Prove que o estimador de mínimos quadrados no modelo de regressão clássico é o estimador linear não-viesado de variância mínima.
- 4. Considere o modelo de regressão

$$\mathbf{y} = \mathbf{X}\beta + \varepsilon$$

onde \mathbf{y} é um vetor de observações $n \times 1$, \mathbf{X} é uma matrix $n \times K$, β é um vetor $K \times 1$ de coeficientes e ε é um vetor $n \times 1$ de termos de erro.

- a. Mostre que o estimador de MQO \mathbf{b} é um estimador consistente de β . Explicite todas as hipóteses e resultados utilizados em sua prova.
- b. Derive a distribuição assintótica de **b**, detalhando as hipóteses e resultados necessários em sua derivação.
- 5. A estimativa de um modelo misterioso usando um método misterioso produz o resultado fornecido a seguir. Sabe-se que $E[y|x_2;x_3] = g(1+2x_2+3x_3)$ onde a forma funcional g() é desconhecida, mas sabe-se que g() é monotônicamente decrescente.

. sum y x2 x3 Variable y x2 x3	0bs 167 167 167	Mean .3473054 .0443812 .0263457	Std. Dev .6202229 1.020856 .5186052	-		
Mystery regress	sion			chi2(r of obs = 2) = > chi2 =	167 6.87 0.0322
у І	Coef.	Std. Err.	z]	P> z	[95% Conf.	Interval]
x2 x3 _cons	.272362 .4223453 -1.141784	.1331826 .2653977 .1426118	1.59	0.041 0.112 0.000	.0113289 0978247 -1.421298	.5333952 .9425153 8622702

Forneça uma interpretação do resultado com a maior quantidade de detalhes possível.