MECH468 Modern Control Engineering MECH509 Controls

Homework 3. Due: March 8 (Monday), 11:59 pm, 2021.

1 Theoretical (hand-calculation) questions

1. Obtain controllable canonical form realization for the following transfer matrices by hand-calculations.

(a)
$$G(s) = \begin{bmatrix} \frac{1}{s^2 + s} & \frac{1}{s^2} \end{bmatrix}$$

(b)
$$G(s) = \begin{bmatrix} \frac{1}{s^2 + s} \\ \frac{1}{s^2} \end{bmatrix}$$

(c)
$$G(s) = \begin{bmatrix} \frac{1}{s+1} & \frac{1}{s(s+1)} \\ \frac{1}{s(s+1)} & \frac{1}{s^2} \end{bmatrix}$$

- 2. Obtain observable canonical form realization for the transfer matrices above by hand calculations.
- 3. Obtain minimal realization for the transfer matrices above by hand calculations.

In finding the minimal realization of (c), after obtaining a non-minimal realization by hand-calculation, you can use Matlab to compute $\text{Im}\mathcal{C}$ or $\ker\mathcal{O}$, a coordinate transformation matrix T^{-1} , and T, TAT^{-1} , TB and CT^{-1} . Do NOT use Matlab command minreal.m.

2 Matlab question

In HW1 and HW2, you got state-space models for the pendulum system and the inverted pendulum system, respectively. For each model, check the minimality of the state-space models.