PRINTABLE VERSION

Quiz 6

Ouestion 1

Given $f(x) = \frac{7}{\sqrt{x+2}}$ which of the following expressions will represent $f'(x)? = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{7}{1x+h+2}$ $\frac{7}{1x+2}$ $\frac{7}{1x+2}$

- a) $\lim_{h \to 0} \frac{\sqrt{x+h+2}}{h}$
- $\begin{array}{c}
 \left(\frac{7}{\sqrt{x+h+2}}\right) \left(\frac{7}{\sqrt{x+2}}\right) \\
 b
 \end{array}$
- $\frac{\left(\frac{7}{\sqrt{x+h+2}}\right) \left(\frac{7}{\sqrt{x+2}}\right)}{1}$
- d) $\lim_{h \to 0} \frac{\left(\frac{7}{\sqrt{x+h+2}}\right) \left(\frac{7}{\sqrt{x+2}}\right)}{h}$
- e) $\lim_{h \to \infty} \left(\frac{7}{\sqrt{x+2}} + h \right) \left(\frac{7}{\sqrt{x+2}} \right)$

Question 2

- a) does not exist
- = $\frac{-1}{6(6th)} = \frac{-1}{36}$ b) $\sqrt{\frac{1}{e}}$
- c) $0 \frac{1}{26}$
- d) 00
- e) $0 \frac{1}{c}$

Question 3

The limit $\lim_{h\to 0} \frac{(2+h)^2-4}{h}$ represents the derivative of a function f at a number c. Determine f and c.

compare this with

a) $\int f(x) = (2+x)^2, c = -2$ $\lim_{h \to 0} \frac{f(c+h) - f(c)}{h}$ b) $\int f(x) = x^2, c = 2$

c) $f(x) = (2+x)^2, c=2$ We have $f(c+h) = (2+h)^2$

d) $f(x) = (2-x)^2, c = 4$ and f(c) = 4.

e) $f(x) = x^2, c = 4$ $\Rightarrow f(x) = x^2 \text{ and } c = x$

Question 4

$$\cos \frac{\pi}{6} \sin h - \sin \frac{\pi}{6} \cosh = \frac{3}{2} \sinh h - \frac{1}{2} \cosh h$$

Print Test

https://assessment.casa.uh.edu/Assessment/Print...

 $\cos\left(\frac{\pi}{6}+h\right)-\frac{\sqrt{3}}{2}$ represents the derivative of a function f

The limit $\lim_{h\to 0} h$ at a number c. Determine f and c.

ficth) = cos(=th)

a) $f(x) = \cos(1/6\pi x), c = \frac{\sqrt{3}}{2}$

b) $f(x) = \cos(x), c = \frac{\pi}{6}$

$$\Rightarrow$$
 f(x)= cosx

$$C = \frac{T}{6}$$

d) $\int f(x) = \cos(1/6\pi x), c = \frac{\pi}{6}$

e)
$$\int f(x) = \cos(x), c = \frac{\sqrt{3}}{2}$$

Question 5

Given that $f(x) = 6x^2 - 2x$ and c = 4, find f'(c) by forming the difference quotient, $\frac{f(c+h)-f(c)}{h}$, and taking the limit as $h \to 0$

b) 12

b)
$$= 12$$

c) $= 6(16 + 8h + 16) - 8 - 2h - 98 + 8$

d) -2

3 of 6

 $= \frac{48h + 6h^2 - 2h}{h}$ e) 0

$$= \frac{46h + 6h^2}{h} = 46 + 6h \xrightarrow{02/10/2015} 46$$

Print Test

https://assessment.casa.uh.edu/Assessment/Print.

Ouestion 6

Given that $f(x) = -2x^2 - 3x$, find f'(x) by forming the difference quotient, $\frac{f(x+h)-f(x)}{h}$, and taking the limit as $h \to 0$

c) $-4x-3 = -2x^2 - 4xh - 2h^2 - 3x - 3ht = x^2 + 3x$

Ouestion 7

4 of 6

The graph of a function f is shown in the figure.

02/10/2015 07:16 PM

Print Test

https://assessment.casa.uh.edu/Assessment/Print...

9. First, Cheek continuity

Print Test https://assessment.casa.uh.edu/Assessment/Print..

Then, check differentiability (a) lim f(1+h)-f(1)

a)
$$\{B = -18, C = 27\}$$

b) $\{B = 18, C = -9\}$ $= \lim_{h \to 0^+} \frac{B(1+h) + C - 9}{h} = \lim_{h \to 0^+} \frac{Bh + B + C}{h}$

c)
$$\mathbb{P}\left\{B = -36, C = \frac{1}{2}9\right\} = \frac{1}{2} \lim_{h \to h} \frac{h}{h} = B$$

d)
$$\{B = 18, C = 36\}$$
 (b) $\lim_{h \to 0} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0} \frac{g(1+h) - g(1+h)}{h}$

a)
$$y = -6x - 22$$
 $f(-4) = 7$ Means

this line goes cross point
$$(-4,2)$$

c) $y = 2x - 6$
d) $y = 2x + 2$
this line goes cross point $(-4,2)$

a)
$$y = 2x + 2$$
 of tangent line at $x = 4$

$$\Rightarrow y=-6(x+2)$$

$$\Rightarrow y=-6x+2+2$$

At which numbers c is f continuous but not differentiable?

$$X=1 \Rightarrow Removable disconti.$$

b) At
$$c = -4$$
, $c = -2$, $c = 1$ and $c = 7$

c) At
$$c = 4$$

d) At
$$c = 1$$

e) At
$$c = -4$$

Question 8

Given that

$$f(x)=\left\{egin{array}{ll} 2x & x<-1\ -x^2-1 & x\geq -1 \end{array}
ight.$$

and c = -1, find f'(c), if it exists

$$=\lim_{h \to 0^{-}} \frac{2(++h)+2}{h}$$

c)
$$= \lim_{h \to 0} \frac{-(+h-1)^2 - [-(+)^2 -]}{h}$$

d)
$$\sqrt{1}$$
 $\sqrt{1}$ $\sqrt{1}$

$$f'(-1)$$
 does not exist

$$Q = P(b) \sqrt{exists}$$

Question 9
$$=$$
 $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ Determine the values of the constants R and C $\frac{1}{1}$

below is differentiable.

02/10/2015 07:16 PM

6 of 6

5 of 6