Model and Cost Function

Cost Function - Intuition 1

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\underset{\theta_0,\theta_1}{\text{minimize}} J(\theta_0,\theta_1)$$

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

$$\theta_0, \theta_1$$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize $J(\theta_0, \theta_1)$

Simplified

$$h_{\theta}(x) = \underbrace{\theta_{1}x}_{0}$$

$$\theta_{1}$$

$$J(\theta_{1}) = \underbrace{\frac{1}{2m}}_{i=1}^{m} \underbrace{\sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right)^{2}}_{0}$$

$$\min_{\theta} \sum_{i=1}^{m} \underbrace{J(\theta_{1})}_{0} \underbrace{\otimes_{i} \times^{(i)}}_{0}$$

Windows'u Etkinlestir

 $J(\theta_1)$

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin.

01:36

$$\rightarrow h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$\rightarrow J(\theta_1)$$

(function of the parameter θ_1)

$$\rightarrow h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$- J(\theta_1)$$

(function of the parameter θ_1)

$$\rightarrow h_{\theta}(x)$$

(for fixed θ_1 , this is a function of x)

$$\rightarrow J(\theta_1)$$

(function of the parameter θ_1)

(function of the parameter θ_1)

 $\rightarrow J(\theta_1)$

Andrew Ng

$\rightarrow h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

 $\rightarrow J(\theta_1)$

(function of the parameter $heta_1$)

Andrew Ng

(for fixed θ_1 , this is a function of x)

(function of the parameter $heta_1$)

(for fixed θ_1 , this is a function of x)

(function of the parameter $heta_1$)

 $J(\theta_1)$

(function of the parameter $heta_1$)

(for fixed θ_1 , this is a function of x)

(function of the parameter $heta_1$)

(for fixed θ_1 , this is a function of x)

(function of the parameter θ_1)

(for fixed θ_1 , this is a function of x)

Andrew Ng

Cost Function - Intuition 2

Hypothesis:
$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:
$$\theta_0, \theta_1$$

Cost Function:
$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal:
$$\min_{\theta_0,\theta_1} \text{minimize } J(\theta_0,\theta_1)$$

$h_{\theta}(x)$ (for fixed θ_0 , θ_1 , this is a function of x)

$J(\theta_0,\theta_1)$

(function of the parameters θ_0, θ_1)

Windows'u Etkinleştir

$\underbrace{h_{\theta}(x)}$

(for fixed θ_0 , θ_1 , this is a function of x)

$$J(\theta_0, \theta_1)$$

(function of the parameters θ_0, θ_1)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

(x)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters $heta_0, heta_1$)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

(for fixed θ_0 , θ_1 , this is a function of x)

 $J(\theta_0, \theta_1)$

(function of the parameters θ_0, θ_1)

Windows'u Etkinleştir Windows'u etkinleştirmek için Ayarlar'a gidin