ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ		
ПРЕПОДАВАТЕЛЬ		
канд. техн. наук		Т.Н.Соловьёва
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕ	ЕТ О ЛАБОРАТОРНОЙ	РАБОТЕ
СИНТЕЗ МІ	ИКРОПРОГРАММНЫХ	(ABTOMATOB
770	WAS STANDING A DTOM	I A TOD
по	курсу: ТЕОРИЯ АВТОМ	АТОВ
РАБОТУ ВЫПОЛНИЛ		
СТУДЕНТ ГР. №4143	3	Е.Д.Тегай
	подпись, дата	а инициалы, фамилия

Цель работы

Изучение основ проектирования микропрограммных автоматов (МПА), приобретение навыков построения структурных схем МПА.

Задание по работе

Дана графическая схема алгоритма. Необходимо построить функциональную схему МПА (для четных вариантов — модели Мили, для нечетных — модели Мура), работающего в соответствии с этим алгоритмом.

Проверку корректности работы спроектированной функциональной схемы автомата необходимо провести в пакете Quartus.

Индивидуальный вариант

Формулировка индивидуального варианта показана на рисунках 1 - 2.

|--|

Рисунок 1 – Формулировка индивидуального варианта

Рисунок 2 – Формулировка индивидуального варианта

Следует отметить, что в данном варианте ход работы будет построен на основе автомата модели Мили

Порядок выполнения работы

Выполнение работы состоит из двух частей: синтеза автомата и проверки корректности спроектированной функциональной схемы путем моделирования в пакете *Quartus*.

Для выполнения синтеза автомата необходимо:

- 1) выполнить разметку заданной ГСА (для четных вариантов для модели Мили, для нечетных для модели Мура);
 - 2) построить граф переходов микропрограммного автомата;
 - 3) заполнить структурную таблицу (прямую или обратную по заданию);

- 4) выписать из полученной структурной таблицы логические выражения для функций возбуждения триггеров;
 - 5) по логическим выражениям, полученным в п. 4, построить схему КС1;
- 6) выписать из структурной таблицы логические выражения для выходных сигналов МПА;
 - 7) по логическим выражениям, полученным в п. 6, построить схему КС2;
 - 8) добавить к схемам КС1 и КС2 необходимое количество триггеров;
- 9) для проверки корректности полученной схемы по исходной ГСА составить автоматную ленту, учитывающую все возможные переходы автомата.

Для проверки корректности полученной функциональной схемы МПА в пакете *Quartus* необходимо выполнить следующие действия:

- 1) создать проект и построить схему на заданных логических элементах и триггерах; при наборе схемы рекомендуется использовать дешифраторы dec38 или 16dmux из каталога others (следует обратить внимание, что эти дешифраторы имеют инверсные выходы);
 - 2) провести компиляцию проекта;
- 3) создать файл временных диаграмм, задать последовательность входных сигналов в соответствии с автоматной лентой;
- 4) провести функциональное моделирование и проверить правильность работы МПА.

Абстрактный синтез микропрограммного автомата модели Мили

ГСА с отметкой состояний автомата продемонстрирован на рисунке 3.

Рисунок 3 – ГСА с отметкой состояний автомата

Отметки состояний автомата проставлены в соответствии со следующими правилами:

- 1) символом a_0 отмечается вход вершины, следующей за начальной, и вход конечной вершины;
- 2) вход каждой вершины, следующей за операторной, отмечается символом a_i;
- 3) если вход вершины соединен с выходами нескольких операторных вершин, то он отмечается лишь один раз.

Для граф-схемы алгоритма, изображённого на рисунке 3 введём отметки a_0, a_1, a_2, a_3 и получим полное множество путей перехода:

$$\{a_0y_1a_1, a_1y_2a_2, a_2\overline{x_1}y_3a_3, a_2x_1\overline{x_2}y_4a_3, a_2x_1x_2y_3a_3, a_3\overline{x_3}a_1, a_3x_3y_6a_0\}$$
 (1)

После определения множества путей перехода микропрограммный автомат может быть представлен в стандартной графической или табличной форме.

Состояниям автомата ставим в соответствие отметки на граф-схеме алгоритма. За начальное состояние принимаем отметку a_0 . Примем, что между состояниями автомата имеются переходы, если соответствующие отметки на граф-схеме связаны путем перехода. Входной сигнал, определяющий переход, полагаем равным $x(a_m,a_l)$ — конъюнкции содержимого условных вершин на пути перехода, а выходной сигнал равным $y(a_m,a_l)$ — содержимому операторной вершины на пути перехода. Для путей перехода вида $a_m y(a_m,a_l)a_l$ роль входного сигнала будет исполнять синхросигнал.

Для путей перехода вида $a_m x(a_m,a_l)a_l$ все выходные сигналы полагаем равными нулю.

В дальнейшем будем рассматривать только те пути перехода, которые содержат операторную вершину.

По этой причине во множестве путей перехода (1) в дальнейшем не будет использоваться 6 путь перехода.

В результате отождествления элементов ГСА с элементами автомата получаем автомат Мили, имеющий столько же состояний, сколько символов потребовалось для отметки вершин на граф-схеме алгоритма.

Конечный автомат, эквивалентный ГСА, изображённый на рисунке 3, можно представить в виде графа переходов, изображённом на рисунке 4.

При построении графа переходов МПА модели Мили использовались эти примечания:

1) если между двумя состояниями имеется несколько путей перехода, допускается замена соответствующих дуг между этими состояниями одной дугой, причем отметка на этой дуге формируется как дизъюнкция отметок на заменяемых дугах;

2) в каждой вершине графа вместе с абстрактным символом состояния помещен его структурный эквивалент, в дальнейшем символ состояния можно не указывать.

Рисунок 4 – Граф переходов МПА модели Мили

Структурный синтез микропрограммного автомата

Обратная структурная таблица автомата показана в таблице 1. При ее построении воспользуемся вспомогательной таблицей, изображённой на рисунке 5.

O(4)	Q(t+1)	<i>JК</i> -триггер		
Q(t)		J(t)	K(t)	
0	0	0	-	
0	1	1	-	
1	0	-	1	
1	1	-	0	

Рисунок 5 — Вспомогательная таблица

Исходное	Код исходного	Состояние	Код состояния	Входной	Выходной	Обязательная функция
состояние	состояния Q_2Q_1	перехода	перехода Q_2Q_1	сигнал	сигнал	возбуждения
a_3	11	a_0	00	x_3	y_6	K_2, K_1
a_0	00	a_1	01	1	y_1	J_1
a_3	11		01	$\overline{x_3}$	y_1	K_2
a_1	01	a_2	10	1	y_2	J_2, K_1
a_2	10		11	$\overline{x_1}$	y_3	J_1
a_2	10	a_3	11	$x_1\overline{x_2}$	y_4	J_1
a_2	10		11	x_1x_2	y_3	J_1

По обратной структурной таблице 1 записываются ЛВ сигналов возбуждения при построении КС1 и ЛВ выходных сигналов автомата при построении КС2.

Построение КС1

Для построения КС1 из структурной таблицы выписываются логические выражения для функций возбуждения. С этой целью в таблице выбираются строки, содержащие одинаковые отметки в последнем столбце. Для каждой строки записывается конъюнкция исходного состояния и входного сигнала. Если строк несколько, полученные конъюнкции объединяются знаком дизъюнкции. Таким образом, образуются ДНФ функций возбуждения, по которым затем строится схема в обычном базисе (И, ИЛИ, НЕ).

В результате получаем следующие функции возбуждения ЈК-триггеров:

$$J_{2} = \overline{Q_{2}}Q_{1},$$

$$K_{2} = Q_{2}Q_{1}x_{3} \lor Q_{2}Q_{1}\overline{x_{3}},$$

$$J_{1} = \overline{Q_{2}Q_{1}} \lor Q_{2}\overline{Q_{1}}\overline{x_{1}} \lor Q_{2}\overline{Q_{1}}x_{1}\overline{x_{2}} \lor Q_{2}\overline{Q_{1}}x_{1}x_{2}.$$

$$K_{1} = Q_{2}Q_{1}x_{3} \lor \overline{Q_{2}}Q_{1}$$

$$(2)$$

Здесь Q_2 и Q_1 - выходные сигналы второго и первого ЈК-триггеров памяти.

Рассмотрим возможность уменьшения ранга конъюнкций в ЛВ для функций возбуждения и, как следствие, сокращения числа входов на конъюнкторы в схеме. Она связана с вводом в состав схемы дешифратора с двумя входами и четырьмя выходами. Это показано на рисунке 6.

Рисунок 6 – Схема дешифратора 2х4

Условное графическое обозначение дешифратора изображено на рисунке 7.

Рисунок 7 – Условное графическое обозначение дешифратора 2х4

Если к входам дешифратора подключить выходные сигналы триггеров, на его выходах будут формироваться сигналы, соответствующие состояниям автомата:

$$A_0 = \overline{Q_2Q_1}, A_1 = \overline{Q_2}Q_1, A_2 = Q_2\overline{Q_1}, A_3 = Q_2Q_1.$$

Учитывая конкретный вид уравнений, систему (2) для функций возбуждения триггеров можно переписать в более простом виде:

$$J_2=A_1$$
, $K_2=A_3x_3{ imes}A_3\overline{x_3}=A_3$, $J_1=A_0{ imes}A_2\overline{x_1}{ imes}A_2x_1\overline{x_2}{ imes}A_2x_1x_2=A_0{ imes}A_2$, $K_1=A_3x_3{ imes}A_1$ Построение $KC2$

ЛВ для выходных сигналов записываются аналогично тому, как это делалось для функций возбуждения, при этом рассматриваются отметки выходных сигналов в столбце 6 обратной структурной таблицы. Запишем эти выражения, предполагая наличие в схеме дешифратора:

$$y_1 = A_0 V A_3 \overline{x_3},$$

 $y_2 = A_1,$
 $y_3 = A_2 \overline{x_1} V A_2 x_1 x_2,$
 $y_4 = A_2 x_1 \overline{x_2},$
 $y_6 = A_3 x_3.$

По логическим выражениям, полученным для функций возбуждения и выходных сигналов, составляется функциональная схема автомата.

Моделирование работы структурного автомата

Схема структурного автомата, построенная в QUARTUS, продемонстрирована на рисунке 8.

Рисунок 8 - Схема структурного автомата Автоматные ленты для проверки корректности работы МПА продемонстрированы в таблицах 2-5.

Таблица 2

1	1	$\overline{x_1}$	$\overline{x_3}$
a_0	a_1	a_2	a_3
y_1	y_2	y_3	y_1

Таблица 3

1	1	$\overline{x_1}$	x_3
a_0	a_1	a_2	a_3
y_1	y_2	y_3	y_6

Таблица 4

1	1	$x_1\overline{x_2}$	x_3
a_0	a_1	a_2	a_3
<i>y</i> ₁	y_2	y_4	y_6

Таблица 5

1	1	x_1x_2	<i>x</i> ₃
a_0	a_1	a_2	a_3
y_1	y_2	y_3	y_6

Скриншоты временных диаграмм с результатами моделирования автоматной ленты продемонстрированы на рисунках 9 – 12.

Рисунок 9 – Результаты моделирования автоматной ленты

Рисунок 10 – Результаты моделирования автоматной ленты

Рисунок 11 – Результаты моделирования автоматной ленты

Рисунок 12 – Результаты моделирования автоматной ленты

Вывод

В результате выполнения работы произведен структурный синтез микропрограммного автомата модели Мили. Автомат имеет 3 структурных входа и 5 структурных выходов. Для реализации автомата потребовалось 2 триггера типа ЈК, 6 элемента И, 4 элементов ИЛИ, 3 элемента НЕ, 6 элементов ИЛИ-НЕ и дешифратор 3×8. Автомат имеет 4 состояния. Моделирование работы микропрограммного автомата произведено в пакете QUARTUS. Изучены основы проектирования микропрограммных автоматов, приобретены навыки построения структурных схем МПА.