Criterios de comparación para el estudio de la convergencia de integrales impropias.

Teorema 1.

Dadas f(x) y g(x) funciones continuas en $[a, +\infty)$ tales que $0 \le f(x) \le g(x)$ en algún intervalo $[c, +\infty)$

Entonces si la integral $\int_{-\pi}^{+\infty} g(x) dx$ es convergente entonces la integral $\int_{-\pi}^{+\infty} f(x) dx$ también lo es.

Teorema 2.

Dadas f(x) y g(x) funciones continuas en $[a, +\infty)$ con $f(x) \ge 0$ y g(x) > 0 en algún intervalo $[c, +\infty)$

$$Sea \lim_{x \to +\infty} \frac{f(x)}{g(x)} = \rho$$

a) En el caso que $0 < \rho < +\infty$ entonces:

$$\int_a^{+\infty} g(x) dx$$
 es convergente si y sólo si $\int_a^{+\infty} f(x) dx$ es convergente

b) En el caso que $\rho = 0$ entonces:

Si
$$\int_a^{+\infty} g(x) dx$$
 es convergente entonces $\int_a^{+\infty} f(x) dx$ es convergente

c) En el caso que $\rho = +\infty$ entonces:

Si
$$\int_a^{+\infty} g(x) dx$$
 es divergente entonces $\int_a^{+\infty} f(x) dx$ es divergente

Observación 3.

Ambos criterios pueden plantearse en forma análoga para integrales de la forma $\int_{0}^{b} f(x) dx$.

Teorema 4.

 $Dadas\ f(x)\ y\ g(x)\ functiones\ continuas\ y\ no\ negativas\ en\ [a,b)\ tales\ que\ f(x)\leq g(x)\ para\ todo\ x\in [a,b).$ Entonces si la integral $\int_a^b g(x) dx$ es convergente entonces la integral $\int_a^b f(x) dx$ también lo es.

Teorema 5.

Dadas f(x) y g(x) funciones continuas y no negativas en [a,b) con $g(x) \neq 0$ para todo $x \in [a,b)$. Sea $\lim_{x \to b^-} \frac{f(x)}{g(x)} = \rho$

$$Sea \lim_{x \to b^{-}} \frac{f(x)}{g(x)} = \rho$$

a) En el caso que $0 < \rho < +\infty$ entonces:

$$\int_a^b\!\! g(x)\,dx\ es\ convergente\ si\ y\ s\'olo\ si\ \int_a^b\!\! f(x)\,dx\ es\ convergente$$

b) En el caso que $\rho = 0$ entonces:

Si
$$\int_a^b g(x) dx$$
 es convergente entonces $\int_a^b f(x) dx$ es convergente

c) En el caso que $\rho = +\infty$ entonces:

Si
$$\int_a^b g(x) dx$$
 es divergente entonces $\int_a^b f(x) dx$ es divergente

Observación 6.

Ambos criterios pueden plantearse en forma análoga para integrales de la forma $\int_{0}^{0} f(x) dx$ donde f(x) es continua en (a,b].

1