$$Var(X) = \mathbb{E}[(X - \mathbb{E}[X])^{2}]$$

$$= \mathbb{E}[X^{2} - 2X\mathbb{E}[X] + (\mathbb{E}[X])^{2}]$$

$$= \mathbb{E}[X^{2}] - 2\mathbb{E}[X]\mathbb{E}[X] + (\mathbb{E}[X])^{2}$$

$$= \mathbb{E}[X^{2}] - 2(\mathbb{E}[X])^{2} + (\mathbb{E}[X])^{2}$$

$$= \mathbb{E}[X^{2}] - (\mathbb{E}[X])^{2} - \text{very we ful indicators}$$

$$X = \sum_{i=1}^{n} x_i, \quad X_i \sim \text{Bern}(p)$$

$$X_i^2 \sim \text{Bern}(p)$$

$$X_i \sim \text{Bern}(p)$$

$$X_i \times_j \sim \text{Bern}(p)$$

$$X_i \times_j \sim \text{Bern}(p)$$

$$X_i \times_j \sim \text{Bern}(p)$$

$$\mathbb{E}[X_i X_j] = \Pr[X_i X_j = 1] \cdot 1 + \Pr[X_i X_j = 0] \cdot 0$$

$$X \sim Dist \qquad E[X] \qquad Var(X)$$

$$Bern(P) \qquad P \qquad P(1-P)$$

$$Binom(n,P) \qquad np \qquad np(1-P)$$

$$Geom(P) \qquad 1-P \qquad P^{2}$$

$$Prisson(n) \qquad n \qquad np \qquad 1-P \qquad$$

$$E[X^{2}] = \int_{a}^{2} x^{2} \cdot \frac{1}{b-a} dx$$

$$= \frac{1}{2b-a} \left(b^{3} - a^{5}\right)$$

$$Van(X) = \frac{1}{2b-a} \left(b^{3} - a^{5}\right) - \left(\frac{a+b}{2}\right)^{2}$$

$$U \sim Unif(a,b)$$

$$f_{u}(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & of w \end{cases}$$

Un disc. Unif [a,b)

$$Rr[u=x] = \begin{cases} \frac{1}{b-a+1}, x \in \mathbb{Z}, x \in [a,b] \\ 0, p|w \end{cases}$$

Final Sp15 Q2

(d) X and Y are independent random variables modulo n. You don't know the distribution of X, but you know that Y is uniformly distributed. What can you say about the distribution of $Z = (X + Y) \mod n$? Justify your answer. $C_0 \cap C_1 \cap C_2 \cap C_2 \cap C_3 \cap C_4 \cap C_4 \cap C_4 \cap C_5 \cap C_5 \cap C_6 \cap$

What vals can
$$\mathbb{Z}$$
 take on \mathbb{Z} Prob \mathbb{Z}
 $\mathbb{Z} \in \{0, 1, ..., n-1\}$
 $\mathbb{Z} = \{0, 1, ..., n-1\}$

(e) X and Y are independent random variables with normal distribution with mean m_1 and m_2 respectively, and variance σ_1^2 and σ_2^2 respectively. Describe the distribution of Z = X + Y (including mean and variance).

What if we are not told that X and Y are independent?

(1)
$$\times \sim W(m_1, \sigma_1^2) \times HY$$

 $Y \sim W(m_1, \sigma_2^2)$
 $Z \sim W(m_1 + m_2, \sigma_1^2 + \sigma_2^2)$

$$y = 3 - \chi$$

$$\frac{Z - (m_1 + m_2)}{\sqrt{\sigma_1^2 + \sigma_2^2}} \underset{\mathcal{W}}{\text{W}}(0, 1)$$

(2)
$$\times \sim W(m_1, \sigma_1^2)$$

 $Y \sim W(m_2, \sigma_2^2)$
 $Z \sim NA$

$$Z = X+Y$$

$$P_{\tau}[Z \leq 3] = P_{\tau}[X+Y \leq 3] = \iint_{-\infty}^{3-x} f_{XY}(x,y) \, dy \, dx$$

if
$$X \perp Y$$
,
$$\int_{-\infty}^{\infty} \int_{-\infty}^{2\pi} f_{XY}(x,y) \, dy \, dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{2\pi} f_{X}(x) \, f_{Y}(y) \, dy \, dx$$

$$= \int_{-\infty}^{\infty} f_{X}(x) \int_{-\infty}^{2\pi} f_{Y}(y) \, dy \, dx$$

$$= \int_{-\infty}^{\infty} f_{X}(x) F_{Y}(3-x) \, dx$$

Final Fa18 Q1h

True False

- For dependent random variables X, Y and constants a, b, it is possible that $\mathbb{E}[aX + bY] \neq a\mathbb{E}[X] + b\mathbb{E}[Y]$.
- $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ if and only if X and Y are independent.
 - Consider two random variables X and Y with ranges \mathcal{A}_X and \mathcal{A}_Y , respectively. If there exist $a \in \mathcal{A}_X$ and $b \in \mathcal{A}_Y$ such that $\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a]\mathbb{P}[Y = b]$, then X and Y are independent.

$$cov(x,y) = E(xy) - E(x)E(y) = 0$$

$$= > E(xy) - E(x)E(y) = 0$$

$$= > E(xy) = E(x)E(y)$$

$$cov(x,y) = 0 = x$$

$$x \perp y = > cov(x,y) = 0$$

Q2

(m) Let A and B denote two events such that $A \subset B$. Suppose $\mathbb{P}[A] = a$ and $\mathbb{P}[B] = b$, and let I_A and I_B denote the indicator random variables for A and B, respectively. Find $Cov(I_A, I_B)$.