

Disciplina: Fundamentos de Redes de Computadores

Prof. Me. Ânderson Pinto Alves – Professor Regente

Professor Ânderson Pinto Alves

- Mestre em Ciência da Computação PUCRS;
- Tecnólogo em Analise e Desenvolvimento de Sistemas;
- Duas especialização (Agile e banco de dados);
- 3 MBAs (Machine Learning, Cloud Computing e Arquitetura de sistemas);
- 16 anos de Carreira em TI;
- https://www.linkedin.com/in/andersonpal ves/

SEU EMOCIONAL, COMO ESTÁ?

UNIDADE 2 – NORMAS, PROTOCOLOS E EQUIPAMENTOS

Conceito

- Redes de comunicação são a base para troca de informações entre dispositivos;
- Permitem comunicação entre computadores e outros equipamentos;
- Funcionam em curtas ou longas distâncias, de metros a milhares de quilômetros;
- O processo de comunicação segue um modelo padrão;
- Pequenas variações ocorrem conforme a tecnologia empregada;
- Essencial para integração de sistemas e serviços digitais.

Padrões de Redes

- Padronização = comunicação eficiente;
- Evita incompatibilidades;
- Garante interoperabilidade;
- Define regras técnicas globais;
- Exemplos: Ethernet, Wi-Fi, TCP/IP;
- Base para inovação tecnológica.

Orgãos Normatizadores

- ISO International Organization for Standardization;
- IEEE Institute of Electrical and Electronics Engineers;
- IETF Internet Engineering Task Force;
- ITU International Telecommunication Union;
- ANSI American National Standards Institute;
- Cooperação internacional.

Normas Revelantes

- IEEE 802.3 (Ethernet);
- IEEE 802.11 (Wi-Fi);
- ITU-T V.92 (modens);
- ISO/IEC 11801 (cabeamento estruturado);
- RFCs (padrões da Internet);
- Padronização de protocolos e equipamentos.

Modelo OSI - Conceito

- Criado pela ISO;
- Estrutura de 7 camadas;
- Define papéis específicos para cada nível;
- Abstração para estudo de redes;
- Base conceitual, pouco usada na prática;
- Importância acadêmica e de padronização.

Modelo TCP/IP - Conceito

- É um modelo prático, usado na internet e em redes reais.
- Foi desenvolvido antes do OSI e é baseado em protocolos reais, como TCP, IP, HTTP, etc.
- Tem 4 camadas, que agrupam funções do modelo OSI.

Comparação OSI x TCP/IP Modelo OSI Modelo TCP/IP Aplicação Aplicação Apresentação Sessão Transporte Transporte Internet Rede Enlace Acesso a Rede Física

Camada OSI vs TCP/IP

- O modelo OSI é conceitual e mais detalhado, com 7 camadas.
- O modelo TCP/IP é prático e usado na internet, com 4 camadas.
- As camadas Apresentação e Sessão do OSI são incorporadas na camada de Aplicação do TCP/IP.
- Ambos modelos ajudam a entender como os dados trafegam de uma aplicação até o meio físico e vice-versa.

Resumo

- A importância da padronização dos conceitos utilizados nas redes de computadores, a qual permite uma comunicação entre hosts de forma eficiente e confiável;
- O surgimento de organizações como entidades padronizadoras de comunicação, que obrigaram os desenvolvedores de hardware e software a trabalharem na mesma linha de pensamento;
- Comparação entre Modelo OSI e TCP/IP.

FATO OU FAKE?

A camada 3 do modelo OSI é de Aplicação?

Aplicação é camada 7. Camada 3 é Rede.

Conceito

- Protocolos regulam a comunicação entre dispositivos;
- Facilitam o envio e recebimento de dados sem perdas;
- Tornam a comunicação simples para o usuário final;
- Asseguram que os dados cheguem íntegros ao destino;
- Criados para padronizar a comunicação entre hardwares;
- Definem regras claras para troca de dados entre hosts;
- Permitem o estabelecimento de enlaces e fluxo de dados;
- Cada protocolo tem função específica na rede.

Protocolos

- Conjunto de regras de comunicação;
- Definem formato, ordem e tratamento dos dados;
- Garantem segurança e integridade;
- Diferenciam-se de serviços;
- Base para funcionamento das redes;
- Organizados em pilhas de camadas.

Protocolos X Serviços

- Serviço: o que é oferecido à camada superior;
- Protocolo: como o serviço é implementado;
- Protocolos atuam entre camadas iguais em hosts distintos;
- Serviços atuam entre camadas vizinhas;
- Exemplo: TCP oferece serviço confiável usando protocolo.

Camada 1 - Física

- Transmissão de bits crus;
- Sinais elétricos, ópticos ou de rádio;
- Definição de conectores e cabos;
- Topologia física da rede;
- Taxas de transmissão;
- Exemplos: Ethernet físico, Wi-Fi.

Camada 2 - Enlace

- Organização em quadros (frames);
- Controle de acesso ao meio (MAC);
- Detecção de erros (CRC);
- Correção simples de erros;
- Controle de fluxo básico;
- Exemplos: Ethernet (802.3), PPP.

Camada 3 - Rede

- Endereçamento lógico;
- Roteamento de pacotes;
- Definição de caminhos;
- Encapsulamento em pacotes;
- Protocolos: IP, ICMP;
- Garantia de entrega entre redes diferentes.

Camada 4 - Transporte

- Comunicação fim a fim;
- Controle de erros e fluxo;
- Segmentação e remontagem;
- Protocolos confiáveis e não confiáveis;
- TCP (confiável), UDP (rápido);
- Base para aplicações.

Camada 5 - Sessão

- Estabelece e mantém conexões;
- Controle de diálogo entre processos;
- Sincronização de comunicação;
- Tratamento de falhas;
- Exemplo: RPC (Remote Procedure Call);
- Pouco usada na prática.

Camada 6 - Apresentação

- Tradução de dados entre formatos;
- Criptografia e compressão;
- Garantia de legibilidade de dados;
- Conversão de caracteres (ASCII/Unicode);
- Exemplo: SSL/TLS;
- Intermediária entre app e transporte.

Camada 7 - Aplicação

- Interface direta com o usuário;
- Protocolos de alto nível;
- Serviços como e-mail e web;
- Exemplo: HTTP, FTP, SMTP, DNS;
- Comunicação entre processos de aplicação;
- Base da interação digital.

Modelo TCP/IP – Visão Geral

- Criado pelo Departamento de Defesa dos EUA;
- Estrutura prática em 4 camadas;
- Usado como padrão na Internet;
- Camadas: Acesso, Internet, Transporte, Aplicação
- Mais simples que o OSI;
- Base de todas as redes modernas.

Modelo TCP/IP – Camada de Acesso

- Interface com o meio físico;
- Tecnologias: Ethernet, Wi-Fi, PPP;
- Controle de hardware e drivers;
- Transmissão de quadros;
- Conexão entre rede lógica e física.

Modelo TCP/IP - Camada de Internet

- Responsável pelo endereçamento;
- IP: protocolo principal;
- Encaminhamento de pacotes;
- Protocolos auxiliares: ARP, ICMP;
- Independência do meio físico;
- Comunicação entre redes distintas.

Modelo TCP/IP – Camada de Transporte

- Comunicação confiável ou rápida;
- TCP: orientado a conexão;
- UDP: sem conexão, baixo overhead;
- Multiplexação de aplicações (portas);
- Garante comunicação entre processos;
- Base para aplicativos.

Modelo TCP/IP – Camada de Aplicação

- Protocolos de uso direto do usuário;
- Serviços de rede: web, e-mail, FTP;
- Conversão de dados em mensagens;
- Baseada em TCP ou UDP;
- Exemplos: HTTP, DNS, SMTP, DHCP.

Protocolo TCP

- Transmission Control Protocol;
- Confiável, orientado a conexão;
- Confirmação de recebimento;
- Controle de congestionamento;
- Reenvio de pacotes perdidos;
- Aplicações: web, e-mail, transferência de arquivos.

Protocolo UDP

- User Datagram Protocol;
- Sem conexão, rápido;
- Sem controle de entrega;
- Baixo overhead;
- Usado em streaming, VoIP, jogos online;
- Menor confiabilidade, maior velocidade.

TCP x UDP

Protocolos de Aplicação

- DNS: tradução de nomes para IP;
- SMTP: envio de e-mails;
- POP3/IMAP: recebimento de e-mails;
- HTTP/HTTPS: navegação na web;
- FTP: transferência de arquivos;
- DHCP: atribuição de endereços IP.

Protocolo IP

- Internet Protocol;
- Endereçamento lógico de hosts;
- Roteamento de pacotes entre redes;
- Melhor esforço (sem garantia);
- Trabalha com IPv4 e IPv6;
- Base da Internet.

Protocolo IPV4

- Endereços de 32 bits;
- Aproximadamente 4,3 bilhões de endereços;
- Divisão em classes (A, B, C, D, E);
- Uso de máscaras de sub-rede;
- Problemas de esgotamento de endereços;
- Soluções: NAT, CIDR.

Protocolo IPV6

- Endereços de 128 bits
- Suporte quase ilimitado
- Melhoria na segurança (IPSec)
- Autoconfiguração automática
- Mobilidade aprimorada
- Necessário para crescimento da Internet

Protocolo IPV4 vs IPV6

Item	IPv4	IPv6
Criado em	1983	1995
Tamanho	32 bits	128 bits
Endereços	~4 bilhões	Quase ilimitados
Segurança	Opcional	Integrada (IPSec)
NAT	Necessário	Desnecessário
Eficiência	Menor	Maior (roteamento melhor)
Suporte a Mobilidade	Limitado	Melhor suporte à mobilidade
Compatibilidade	Amplamente utilizado	Em crescimento, mas ainda em transição

Comparação entre TCP vs UDP

Característica	TCP (Protocolo de Controle de Transmissão)	UDP (Protocolo de Datagrama de Usuário)
Tipo de Conexão	Orientado à conexão	Sem conexão
Confiabilidade	Alta – garante entrega e ordem dos pacotes	Baixa – não garante entrega nem ordem
Tamanho do Cabeçalho	20 bytes	8 bytes
Verificação de Erros	Sim – com retransmissão de pacotes com erro	Simples – descarta pacotes com erro
Velocidade	Mais lento devido à confiabilidade	Mais rápido por ser leve e direto
Suporte a Multicast/Broadcast	Não	Sim
Segurança	SSL/TLS	DTLS
Exemplos de Aplicações	HTTP, HTTPS, FTP, SMTP, Telnet	DNS, DHCP, TFTP, VoIP, Streaming

Fonte da imagem: Dantas (2002, p. 8)

Sub Redes

- Divisão lógica de redes maiores;
- Máscara de sub-rede define limites;
- Melhora a organização e segurança;
- Reduz desperdício de endereços;
- Exemplo: 192.168.1.0/24;
- Essencial para escalabilidade.

HTTP, DHCP, FTP, SMTP e DNS

- HTTP é o protocolo que você usa toda vez que acessa um site;
- **DHCP** é invisível para o usuário, mas essencial para conectar seu dispositivo à rede sem precisar configurar manualmente;
- FTP é usado para enviar ou baixar arquivos, muito comum em servidores web;
- **SMTP** é utilizado para enviar mensagens de e-mail entre servidores, sendo parte fundamental do funcionamento do correio eletrônico.
- **DNS** é como uma "agenda telefônica" da internet, convertendo nomes como google.com em IPs como 142.250.190.78.

HTTP, DHCP, FTP, SMTP e DNS

Protocolo	Nome Completo	Função Principal	Porta Padrão
НТТР	HyperText Transfer Protocol	Transmissão de páginas web e dados entre cliente e servidor	80
DHCP	Dynamic Host Configuration Protocol	Atribuição automática de IPs e configurações de rede aos dispositivos	67 (server), 68 (client)
FTP	File Transfer Protocol	Transferência de arquivos entre computadores na rede	21
DNS	Domain Name System	Tradução de nomes de domínio em endereços IP	53
SMTP	Simple Mail Transfer Protocol	Envio de e-mails entre servidores	25

Resumo

- A importância dos protocolos de rede para um ambiente computacional;
- Os modelos de referência OSI e TCP/IP, suas características e diferenças;
- A estrutura em camadas utilizada pelos modelos de referência e como acontece o tratamento da informação nestas camadas;
- Os principais protocolos utilizados em cada uma das camadas dos modelos de referência OSI e TCP/IP;
- Detalhamento do protocolo IPv4 e IPv6, suas características, funcionalidades e aplicabilidade.

FATO OU FAKE?

A porta padrão do protocolo HTTP é 8080?

FAKE

A porta padrão é 80.

Conceito

- Interconectam computadores;
- Distribuem e controlam pacotes;
- Definem caminhos de comunicação;
- Diferem em inteligência e funções;
- Hub, Switch e Roteador são os principais;
- Essenciais para a infraestrutura de redes.

Hub

- Equipamento mais simples;
- Repetidor de sinal elétrico;
- Transmite dados para todas as portas;
- Sem filtragem ou controle;
- Cria muito tráfego desnecessário;
- Obsoleto na maioria das redes modernas.

Switch

- Mais inteligente que o Hub;
- Identifica endereços MAC;
- Envia dados apenas para o destino correto;
- Diminui colisões e tráfego;
- Suporta VLANs em modelos avançados;
- Base da maioria das LANs.

Roteador

- Conecta redes diferentes;
- Define melhores rotas para pacotes;
- Trabalha na camada de rede (IP);
- Permite conexão com a Internet;
- Pode aplicar NAT e firewall;
- Essencial em redes corporativas e domésticas.

Switch vs Roteador

- Switch: conecta hosts em uma mesma rede;
- Roteador: conecta redes diferentes;
- Switch trabalha no nível MAC;
- Roteador trabalha no nível IP;
- Ambos podem coexistir em uma rede;
- Diferentes responsabilidades.

Hub vs Switch vs Roteador

- Hub é simples e ultrapassado: envia tudo para todos, gerando colisões.
- Switch é mais inteligente: aprende os endereços MAC e envia só para o destino.
- Roteador é o mais avançado: conecta redes diferentes (ex: sua rede local à internet) e toma decisões com base em IP.

Outros equipamentos

- Access Point (AP): redes sem fio;
- Firewall: segurança e filtragem;
- Gateway: tradução entre protocolos;
- Modem: conversão digital/analógico;
- Servidor Proxy: controle de acesso e cache;
- Complementam a infraestrutura.

Resumo do tópico

- A importância dos equipamentos de rede e o dimensionamento correto dos mesmos, de formar a suprir a necessidade do ambiente;
- Os principais comutadores utilizados nas redes de computadores, suas diferenças e características;
- Os diversos tipos de switches e suas aplicações;
- A aplicabilidade dos roteadores dentro das redes e suas diferenças para os demais comutadores de rede.

FATO OU FAKE?

Switch trabalha no nível MAC e Roteador trabalha no nível IP?

FATO

Sim ©.

E AGORA, COMO VOCÊ ESTÁ?

BONS ESTUDOS

