Math 1530: Abstract Algebra

Milan Capoor

Fall 2023

Groups

Lecture 1: Sept 7

Richard Schwartz

• richard.evan.schwartz@gmail.com

The Cube

Let G be the set of symmetries of the cube. Given $a, b \in G$, $a \star b$ is the concatenation of a and b

Notice:

- $(a \star b) \star c = a \star (b \star c)$ (associative)
- $\exists e \text{ such that } e \star a = a \star e = a \ \forall a \in G \text{ (identity)}$
- $\forall a \in G \; \exists \, b \; \text{such that} \; a \star b = e \; \text{(inverse)}$

A group is anything that satisfies these axioms

Examples of groups:

- Permutations of the Rubik's Cube
- the integers
- $\mathbb{Z}//n := \{0, ..., n-1\}$ ("Z mod n" where $\mathbb{Z}//12$ would work like a clock)

Structures heuristically:

- A group is a set with addition/concatenation
- A ring is a group plus multiplication

• A field is a ring plus division and commutativity

Lecture 2: Sept 12

Groups

Group: a group is a set G with an operation $\star : G \times G \to G$ such that

- 1. \star is always defined
- 2. $a \star (b \star c) = (a \star b) \star c \quad \forall a, b, c \in G \text{ (Associativity)}$
- 3. $\exists e \in G$, such that $e \star a = a \star e = a \quad \forall a \in G$ (Identity)
- 4. $\forall a \in G, \exists b \in G, \text{ such that } a \star b = b \star a = e \text{ (Inverses)}$

Lemma 1: In a group, e is unique.

Proof:

- 1. Suppose e and e' are both identity elements of the group G.
- 2. Consider $e \star e'$
- 3. Since e is an identity, $e \star e' = e'$
- 4. But since e' is an identity, $e \star e' = e$
- 5. Therefore, e' = e

Lemma 2: Suppose $a \star c_1 = a \star c_2$. Then, $c_1 = c_2$.

Proof:

- 1. Let b be an inverse of a
- 2. Since $a \star c_1 = a \star c_2$,

$$b \star (a \star c_1) = b \star (a \star c_2)$$

3. Then by associativity,

$$(b \star a) \star c_1 = (b \star a) \star c_2$$

4. By the definition of inverses, $(b \star a) = e$ so

$$e \star c_1 = e \star c_2$$

5. And by identity,

$$c_1 = c_2 \quad \blacksquare$$

Lemma 3: Inverses are unique $(\forall a \in G \quad \exists! b \in G \text{ such that } a \star b = b \star a = e)$

Proof:

- 1. Suppose b_1 and b_2 are both inverses of a
- 2. Then,

$$a \star b_1 = e = a \star b_2$$

3. By lemma 2, $b_1 = b_2$

Examples of Groups

Permutation groups: The set of all bijective maps from $S \to S$ (the maps that hit every element in the codomain exactly once)

Surjective: onto; each element of the codomain is mapped to by at least one element of the domain.

Injective: one-to-one; each element of the codomain is mapped to by at most one element of the domain

Permutation groups can be represented by arrow diagrams, tables, pairs, and cycles. For example,

S	g(S)
1	5 8
2	8
3	3
4	6
5	1
6	9
7	7
7 8 9	$\begin{pmatrix} 4 \\ 2 \end{pmatrix}$
9	2

is the same as

$$\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 5 & 8 & 3 & 6 & 1 & 9 & 7 & 4 & 2 \end{pmatrix}$$

which is also equivalent to

which can be notated

(3)(7)(15)(28469)

Homomorphisms

Homomorphism: a map between groups G_1 and G_2 , $\phi:G_1\to G_2$ such that $\phi(a\star_1 b)=\phi(a)\star_2\phi(b)$

Example: G_1 is rotations of a pentagon and $G_2 = \mathbb{Z}/5$

Isomorphism: a bijective homomorphism

Lecture 3: Sept 14

Recall: a homomorphism is a map $\phi: G_1 \to G_2$:

$$\phi(a \star_1 b) = \phi(a) \star_2 \phi(b)$$

Lemma: Let ϕ be a homomorphism from $G_1 \to G_2$. Then $\phi(g^{-1}) = (\phi(g))^{-1} \quad \forall g \in G_1$

Proof:

$$\phi(e) = e$$

$$g \cdot g^{-1} = e$$

$$e = \phi(g \cdot g^{-1}) = \phi(g) \cdot \phi(g^{-1}) \quad \text{by homomorphism}$$

$$e = \phi(g) \cdot (\phi(g))^{-1} \quad \text{by definition of inverse}$$

$$\phi(g^{-1}) = (\phi(g))^{-1} \quad \text{by cancellation} \quad \blacksquare$$

Subgroups

Kernel: Let $\phi: G_1 \to G_2$ be a homomorphism. Then

$$\ker(\phi) := \phi^{-1}(e) = \{ a \in G_1 | \phi(a) = e \}$$

Lemma: $\ker(\phi)$ is a subgroup of G_1

Proof:

1. Suppose $a, b \in \ker(\phi)$

$$\phi(ab) = \phi(a)\phi(b) = ee = e$$
 \checkmark

2. Suppose $a^{-1} \in \ker(\phi)$

$$\phi(a^{-1}) = [\phi(a)]^{-1} = e^{-1} = e \quad \checkmark$$

Therefore $\ker(\phi)$ is closed under multiplication and inverses, so it is a subgroup.

Theorem: ϕ is one-to-one (injective) if and only if $\ker(\phi) = \{e\}$

Proof:

$$\phi(e) = e \text{ so } \phi(g) \neq e \text{ if } g \neq e.$$
 Therefore, $\ker(\phi)$ must be $\{e\}$

Now for the other direction, suppose $\phi(x) = z$ and $\phi(y) = z$. We then know $\phi(y^{-1}) = z^{-1}$, so

$$\phi(y^{-1})\phi(x) = z^{-1}\phi(x) = z^{-1}z = e$$

Because ϕ is a homomorphism,

$$\phi(y^{-1})\phi(x) = \phi(y^{-1}x)$$

SO

$$y^{-1}x \in \ker(\phi) \implies y^{-1}x = e \implies x = y$$

More generally

Let $\phi: G_1 \to G_2$ be a homomorphism and H_2 a subgroup of G_2 ,

$$\phi^{-1}(H_2) = \{ a \in G_1 | \phi(a) \in H_2 \}$$

Lemma: $\phi^{-1}(H_2)$ is a subgroup of G_1

Proof:

- 1. Identity: $\phi(e) = e \quad e \in \phi^{-1}(H_2)$
- 2. Multiplication closure: $a, b \in \phi^{-1}(H_2)$,

$$\phi(ab) = \phi(a)\phi(b) \in H_2$$
 H_2 is closed under products

so
$$ab \in \phi^{-1}(H_2)$$

3. Inverse closure: $a \in \phi^{-1}(H_2)$

$$\phi(a^{-1}) = [\phi(a)]^{-1} \in H_2$$
 H_2 is closed under inverses

so
$$a^{-1} \in \phi^{-1}(H_2)$$

Interlude: Cube notation

Let

$$a =$$

This means that we turn the left face down.

Notice that after four turns, we have returned to the beginning, so

$$aaaa = a^4 = e$$

which creates a (cyclic) subgroup of the cube,

$$H = \{e, a, a^2, a^3\}$$

Notation: Given G and $a \in G$,

$$\langle a \rangle = \{ a^k, \ k \in \mathbb{Z} \}$$

,

Why are the symmetries of the cube not a cyclic group?

There is no generator of order 24.

OR cyclic groups are abelian.

$$a^m a^n = a^{m+n} = a^{n+m} = a^n a^m$$

Lecture 4: Sept 19

Review

Recall: A homomorphism is a map $\phi: G_1 \to G_2$ such that

$$\phi(ab) = \phi(a)\phi(b)$$
$$\phi(e_1) = e_2$$
$$\phi(g^{-1}) = (\phi(g))^{-1}$$

To confirm H is a subgroup: check that it is closed under multiplication and inverses. You do not need to show associativity because that is always true.

Generators: Let $G = \{a, a^2, a^3, \dots\}$ If $a^m = a^n \quad m < n$ then

$$a^{n-m} = e$$

$$a^{k} = e$$

$$(k = n - m)$$

$$(a^{k-1})a = e$$

$$a^{k-1} = a^{-1}$$

Are Abelian Groups always cyclic? Answer: No. Counterexample:

$$\mathbb{Z}/2 \times \mathbb{Z}/2 = \{(a,b)|\ a,b \in \mathbb{Z}/2\} = \{(0,0),(0,1),(1,0),(1,1)\}$$

has no generator.

(Left) Cosets

Definition: Given a group G and a subgroup $H \subset G$, a *left coset* is a set of the form

$$aH = \{ah \mid h \in H\}$$

where $a \in G$

If $a \in H$, then aH = H. (Notice that for all $s \in H$, $a(a^{-1}s) = s$ and $a^{-1}s \in H$)

This all leads to the observation that every set of cosets contains the subgroup.

Lemma: H and aH are the same size (there is a bijection from H to aH)

Proof: Define $\psi(h) = ah$. By definition, $aH = \psi(H)$ so ψ is onto. Now suppose $\psi(h_1) = \psi(h_2)$. Then $ah_1 = ah_2$ which by cancellation shows $h_1 = h_2$. Thus, ψ is one-to-one. Therefore, $\psi: H \to aH$ is a bijection.

Lemma: If $aH \cap bH \neq \emptyset$, then aH = bH.

Proof: Pick an element in common: $ah_1 = bh_2$. Then

$$a = bh_2h_1^{-1}$$

so for any $h \in H$,

$$ah = b(h_2h_1^{-1}h) \in bH$$

Since this is true for all $h \in H$, we know that $aH \subset bH$.

Interchanging a and b shows that aH = bH.

Lagrange's Theorem

Theorem: If G is a finite group and $H \subset G$ is a subgroup, then o(H)|o(G) (The order of H divides the order of H.)

Proof: Look at all the cosets and denote the number of cosets n. We know

- 1. For any $g \in G$, $g = ge \in gH$ (every element is in a coset)
- 2. All cosets have o(H) elements (from the bijection)
- 3. The cosets are mutually exclusive

So $o(G) = n \cdot o(H)$

Corollary: If $g \in G$ and G is a finite group, then o(g)|o(G)

Proof: Let $H = \langle g \rangle$. Then o(H) = o(g). Since o(H)| o(G) (by Lagrange's), o(g)| o(G).

Lecture 5: Sept 21

Recall

Lagrange's Theorem: $H \subset G \implies o(H) | o(G)$

Corollary of Lagrange's Theorem: if $g \in G$, o(g)|o(G)

Equivalence Relations

Relation: a relation on a set S is a subset $R \in S \times S$

$$x R y \implies (x, y) \in R$$

Equivalence Relation: a relation $x \sim y$ such that $(x, y) \in R$ and

1. $x \sim x \quad \forall x \in S$

2. $x \sim y \implies y \sim x \quad \forall x, y \in S$

3. $x \sim y, \ y \sim z \implies x \sim z \quad \forall x, y, z \in S$

Example: $H \subset G$ with $a \sim b$ if $a^{-1}b \in H$

$$a \sim a \implies a^{-1}a \in H \implies e \in H\checkmark$$
 (1)

$$a \sim b \implies a^{-1}b \in H \implies (a^{-1}b)^{-1} = (b^{-1}a)^{-1} \implies b \sim a\checkmark$$
 (2)

$$a \sim b, \ b \sim c \implies a^{-1}b, b^{-1}c \in H \implies a^{-1}x \in H \implies a \sim c \checkmark$$
 (3)

Remark: if two equivalence classes overlap, they are the same *Proof*: an equivalence class is a coset

Example:

$$a^{-1}b \in H$$
$$a^{-1}b = h \in H$$
$$b = ab \in aH$$

The group $(\mathbb{Z}/n)^*$

Relatively Prime: $a, b \in \mathbb{Z}$ are relatively prime if gcd(a, b) = 1

Lemma: if a, b are relatively prime then $\exists s, t$ such that

$$as + bt = 1$$

Proof:

 \iff suppose as + bt = 1 and d divides a, b. Clearly, d|as and d|bt for $s, t \in \mathbb{Z}$. By distribution,

$$d|as + bt = 1 \implies d|1 \implies d = 1$$

 \implies Let a, b be the smallest pair with a < b. Consider a, b - a. If a and b - a are relatively prime, then

$$s'a + t'(b - a) = 1 = (\underbrace{s' - t'}_{s})a + \underbrace{t'}_{t}b = 1$$

To show that a and b-a are relatively prime, we suppose d|a and d|b-a so d|a+(b-a) so d|b. Using the first part of the proof, we know have as + bt = 1 for the smallest pair we did not know we could write that way. Thus it is true for all numbers.

Definition: $(\mathbb{Z}/n)^*$ is the subset of $\{1,\ldots,N\}$ which is relatively prime to N together with group law multiplication and reduction.

$$(\mathbb{Z}/15)^* = \{1, 2, 4, 7, 8, 11, 13, 13, 14\}$$

Example: $7 \cdot 8 = 56 - (15 * 3) = 11 \in (\mathbb{Z}/15)^*$

We now consider $a, b \in (\mathbb{Z}/15)^*$

$$\begin{cases} 1 = s_1 a + t_1 N \\ 1 = s_1 b + t_2 N \\ 1 = s_1 s_a v + \dots N \end{cases} \implies ab \in (\mathbb{Z}/15)^*$$

(so identity)

Inverses in $(\mathbb{Z}/N)^*$:

$$a \in (\mathbb{Z}/15)^*$$

$$as + tN = 1$$

$$s = a^{-1}$$

$$aa^{-1} + tN = 1$$

(so inverses mod multiples are in the group)

Order of $(\mathbb{Z}/15)^*$:

$$\phi(n) := o(\mathbb{Z}/15)^*$$

We have $\phi(15) = 8$, $\phi(17) = 16$, etc.

In general, if p is prime then $\phi(p) = p-1$ and if p,q are prime then $\phi(pq) = (p-1)(q-1)$

$$\boxed{\frac{\phi(N)}{N} = \prod_{p|n} 1 - \frac{1}{p}}$$

Example: N = 12, $(\mathbb{Z}/12)^* = \{1, 5, 7, 11\}$

$$\frac{\phi(12)}{12} = (1 - \frac{1}{2})(1 - \frac{1}{3}) = \frac{1}{3} \implies \phi(12) = 4$$

RSA Cryptography

Corollary of Lagrange's Theorem: If a is relatively prime to N then

$$a^{\phi(N)} \equiv 1 \mod n$$

The Algorithm:

- 1. Pick two very large primes p, q (choose very big numbers and check if they are prime)
- 2. publish the value of N = pq
- 3. Keep secret the number $\phi(N) = (p-1)(q-1)$
- 4. Choose a public E relatively prime to $\phi(N)$ $(DE + k\phi(N) = 1)$ where D is your private "decoder"

Rings

Lecture 6: Sept 26

Ring: a set R with two operations (usually +, \cdot) such that:

- 1. (R, +) is an abelian group
- 2. (R, \cdot) is a "group" which may or may not have inverses (the operation is always defined, it is associative, and there is an identity)

3.

$$\forall a, b, c \in R: \begin{cases} a \cdot (b+c) = a \cdot b + a \cdot c \\ (b+c) \cdot a = b \cdot a + c \cdot a \end{cases}$$

We usually call 1 the multiplicative identity (the identity for the operation \cdot) and 0 the additive identity (the identity for +)

Lemma: $0 \cdot a = a \cdot 0 = 0 \quad \forall a \in R$

Proof:

$$0 + 0 = 0 \implies (0 + 0) \cdot a = 0a + 0a = 0 \cdot a$$

By the additive inverse,

$$-0a + 0a + 0a = -0a + -0a \implies 0a = 0$$

Lemma: $(-a) \cdot b = -(a \cdot b)$

Proof:

$$0 \cdot b = 0$$

$$(-a+a) \cdot b = 0$$

$$-a \cdot b + a \cdot b = 0$$

$$-a \cdot b + a \cdot b - (a \cdot b) = -(a \cdot b)$$

$$-a \cdot b = -(a \cdot b) \blacksquare$$

Examples of Rings

- The integers $(\mathbb{Z}, +, \cdot)$
- $\bullet \ \mathbb{Z}/n$
- Z[x] (the set of integer polynomials $a_0 + a_x + \cdots + a_n x^n$)
- $\mathbb{Z}/6[x]$ (polynomials with coefficients in $\mathbb{Z}/6$)
- (R[x])[y] (the ring of polynomials in y whose coefficients are elements in R[x])
- $R[x,y] = \{\sum a_{ij}x^iy^k | a_{ij} \in R\}$ (this is isomorphic to the example above)
- $M_n(R)$ is the $n \times n$ matrix ring with coefficients in R
- $\mathbb{Z}[i] = \{a + bi | a, b \in \mathbb{Z}, i^2 = -1\}$ (the Gaussian integers)
- $\mathbb{Z}[\omega] = \{a + b\omega \mid \omega = e^{2\pi i/3}\}$ (Eisenstein integers)

Ring Homomorphisms

Definition: $\phi: R_1 \to R_2$ is a ring homomorphism iff

- 1. $\phi(a+b) = \phi(a) + \phi(b)$
- $2. \ \phi(ab) = \phi(a)\phi(b)$
- 3. $\phi(1) = 1$

Examples of homomorphisms:

- $\phi: \mathbb{Z} \to \mathbb{Z}/n \longrightarrow \phi(k) = k \mod n$
- $\phi: \mathbb{Z}/mn \to \mathbb{Z}/n$

$\mathbb{Z}/6$	$\mathbb{Z}/3$	
0	0	
1	1	
2	2	
3	0	
4	1	
5	2	