Fall 2020 Complex Analysis Preliminary Exam

University of Minnesota

This is a verbatim transcription of an exam which received a score of 89/100. Mistakes are intentionally included.

1. Give a conformal mapping from the half-disk $H = \{z : |z| < 1 \text{ and } \operatorname{Im}(z) > 0\}$ to the upper half-plane $\mathfrak{h} = \{z : \operatorname{Im}(z) > 0\}$.

Proof. Define $f: H \to D$ by $z \mapsto z^2$ where D is the unit disk, slit along $\mathbb{R}_{\geq 0}$. Define $g: D \to \mathfrak{h}$ by the Cayley map $\frac{iz+i}{-z+1}$. We clam [sic] $g \circ f$ is the desired mapping. Since $\arg(z) \in (0,\pi)$ for all $z \in H$ and |z| < 1, then $\arg(z) \in (2 \cdot 0, 2\pi)$ and $|z^2| < 1^2$, so f is inded [sic]. Note f'(z) = 2z is only zero at z = 0, but $0 \notin H$, so it is indeed conformal. The derivative [sic] of g is $g' = \frac{2i}{(1-z)^2}$, which is nonzero on its domain, which is $\mathbb{C} \setminus \{1\}$. Moreover $f(H) \not\ni 1$. Thus, $g'(f) \neq 0$, and so the composition $g \circ f$ is conformal.

To see f is onto, let $z \in D$. Then $\arg(z) \in (0, 2\pi)$ and $|z| \le 1$ so $|\sqrt{z}| \le 1$ (choosing the principal branch of $\sqrt{\bullet}$) and $\arg(\sqrt{z})$ is in $(0, \pi)$ so f is onto. To see g is onto, note that its explicit inverse is $\frac{z-i}{z+i}$, which takes points closer to i than to -i (i.e. the upper half plane) to a point in the slit disk.

2. Write three (non-zero) terms of the Laurent expansion of $f(z) = \frac{1}{z(z-1)(z-2)}$ centered at 1 and convergent in 0 < |z-1| < 1.

Proof. First, apply the change of coordinates w = z - 1. Then we can write $f(z) = f(w+1) = \frac{1}{w(w+1)(w-1)}$ and we seek the Laurent expansion of f(w+1) centered at w=0. Using geometric series, this becomes

$$\frac{1}{w(w+1)(w-1)} = \frac{1}{w} \left(-\sum_{n \ge 0} w^n \right) \left(\sum_{n \ge 0} (-w)^n \right).$$

Since $\frac{1}{w-1} = -\sum_{n\geq 0} w^n$ for |w| < 1, and $\frac{1}{w+1} = \frac{1}{1-(-w)} = \sum_{n\geq 0} (-w)^n$ for |w| < 1. Then multiplying, we get

$$f(w+1) = \frac{1}{w}(-1)(1) + \frac{1}{w}(-w + (+w))$$

$$+ \frac{1}{w}(-w^2 + (-w)(-w) + (-w)^2)$$

$$+ \frac{1}{w}(-w^3 + (-w^2)(-w) + (-w)(-w)^2 + (-w)^3)$$

$$+ \frac{1}{w}(-w^4 + (-w^3)(-w) + (-w^2)((-w)^2) + (-w)(-w)^3 + (-w)^4)$$

$$+ \cdots$$

$$= \frac{-1}{w} + 0 + w + 0 + (-1)w^3 + \cdots$$

Undoing our change of coordinates, we get

$$f(z) = \frac{-1}{z-1} + (z-1) - (z-1)^3 + \cdots$$

Since it converged for |w| < 1, it also converges for |z - 1| < 1.

3. Let f be an entire function taking real values on the real line. Show that, for all complex z, $\overline{f(z)} = f(\overline{z})$.

Proof. The Schwarz reflection principle states that if Ω is a region which is symmetric about the real-axis, and f is a function hollomorphic [sic] in $\Omega \cap \{z : \operatorname{Im}(z) > 0\}$ which has a continuation onto $\mathbb{R} \cap \Omega$ and that continuation is real-valued, then there is a holomorphic function F on Ω st F = f on $\Omega \cap \{z : \operatorname{Im}(z) > 0\}$ and moreover, $F(z) = \overline{f(\overline{z})}$. Note that we may take $\Omega = \mathbb{C}$ and the continuation to be just the real values on \mathbb{R} which we know it takes. Then $\overline{F(z)} = \overline{f(\overline{z})} = f(\overline{z})$.

4. Classify entire functions f such that there is a constant (possibly depending on f) such that $|f(z)| \le C \cdot \log(1+|z|)$.

Proof. If f is entire it admits a powder [sic] series representation [sic] centered at 0, so

$$f(z) = \sum_{n>0} \alpha_n z^n$$

Cauchy's inequality tells us that on a circle of radius R about z_0 , call it γ_R , that

$$|f^{(n)}(z_0)| \le \frac{n! \max_{z \in \gamma_R} |f(z)|}{R^n}$$

to extract the coefficients α_n from f note that

$$\alpha_n = f^{(n)}(0)/n!$$

so taking $z_0 = 0$, we get

$$\left|\frac{f^{(n)}(0)}{n!}\right| = \left|\alpha_n\right| = \le \frac{\max_{z \in \gamma_R} |f(z)|}{R^n}$$

The provided bound tells us that $\max_{C_R} |f(z)| \leq C \cdot \log(1+R)$ and so

$$|\alpha_n| \le \frac{C \log(1+R)}{R^n}$$

This is independent of R, so we take the limit

$$\lim_{R \to \infty} \frac{Clog(1+R)}{R^n} = \lim_{R \to \infty} \frac{C\frac{1}{1+R}}{nR^{n-1}} \quad \text{(by L'Hôpitals [sic] rule)}$$

which vanishes for $n \ge 1$. So f is constant, but we can do better. If f is constant, $f(z) \equiv f(0)$. So $|f| \le C \log(1+|0|) = 0$, so f is identically 0 on \mathbb{C} .

5. Evaluate $\int_0^\infty \frac{x^{1/2}}{1+x^2} dx$

Proof. We compute by passing to \mathbb{C} and defing [sic] $f(x) = \frac{z^{(1/4)}}{1+z^2}$. Choose $z^{1/4}$ to be defined using the branch cut from the origin through -i. In particular f is not defined at zero. Define the curve $\gamma_{R,\epsilon}$ for R>1, $0<\epsilon<1$ as the union of the circles of radii R,ϵ with counter clockwise and clockwise orientations respectively, and connect them along $[-R,\epsilon]^1$ and $[\epsilon,R]$, to get

The residue theorem states that

$$\int_{\gamma_{R,\epsilon}} f dz = 2\pi i \sum_{\substack{\text{poles} \\ \text{inside} \\ \gamma_{R,\epsilon} \\ \gamma_{R,\epsilon}}} \operatorname{res}_{z_0}(f)$$

The only pole of f inside $\gamma_{R,\epsilon}$ is the one at z=i which is simple. So we may compute

$$\operatorname{res}_{i}(f) = \lim_{z \to i} (z - i) f(z)$$
$$= \frac{i^{1/4}}{2i}$$

and so $\int_{\gamma_{R,\epsilon}} f dz = \pi i^{1/4}$. Now observe that, if C_R^+ represents the circle of radius R in the upper half plane, then

¹This should be $-\epsilon$.

$$\int_{\gamma_{R,\epsilon}} f dz = \int_{C_P^+} f dz - \int_{C_{\epsilon}^+} f dz + \int_{-R}^{-\epsilon} f dz + \int_{\epsilon}^{R} f dz$$

where we subtract the integral on C_{ϵ}^+ because of the choice of orientation. We will show that the circular parts vanish in the limit, since $\int_{\gamma_{R,\epsilon}} f dz$ was independent of R, ϵ .

The estimation lemma gives the bound

$$\begin{aligned} || &\leq \text{Length}(C_R^+) \max_{|z|=R} |f(z)| \\ &= \pi R \max_{|z|=R} \left| \frac{z^{1/4}}{z^2 + 1} \right| \\ &= \pi R^{5/4} \max_{|z|=R} \left| \frac{1}{z^2 + 1} \right| \end{aligned} \tag{1}$$

Note that $\left|\frac{1}{z^2+1}\right|$ is maximized when $|z^2-(-1)|$ is minimized. Since |z|=R is closes to -1 at R=-z, we can write

$$(1) = \pi R^{5/4} \frac{1}{(-R)^2 + 1}$$

Since 5/4 < 2, (1) vanishes upon taking $R \to \infty$.

The same computation shows that

$$\left| \int_{C_{\epsilon}^{+}} f(z)dz \right| \leq \pi \epsilon^{5/4}/(\epsilon^{2} + 1)$$

as $\epsilon \to 0$, the numerator vanishes and the denominator $\to 1$. So

$$\pi i^{1/4} = \int_{\gamma_{\infty,0}} f(z)dz = \int_{-\infty}^{0} fdz + \int_{0}^{\infty} fdz$$

A change of variables gives us

$$\int_{-\infty}^{0} f(z)dz = \int_{\infty}^{0} f(-z)(-1)dz = \int_{0}^{\infty} f(-z)dz.$$

But $f(-z) = (-1)^{1/4} f(z)$ so we get

$$\pi i^{1/4} = \left((-1)_1^{1/4} \right) \int_0^\infty f(z) dz$$

SO

$$\int_0^\infty f(z)dz = \pi i^{1/4} / ((-1)^1/4 + 1) = \pi \frac{i^{1/4}}{i^{1/2} + 1}$$
$$= \pi / (i^{1/4} + i^{-1/4})$$

But note that

$$i^{1/4} = \cos(\pi/8) + i\sin(\frac{\pi}{8})$$
$$i^{-1/4} = \cos(\pi/8) - i\sin(\pi/8)$$

SO

$$\int_0^\infty f(z)dz = \boxed{\frac{\pi}{2\cos(\pi/8)}}$$

6. Let f, g be holomorphic functions on $\{z : |z| < 2\}$ with f nonvanishing on |z| - 1. Show that for all sufficiently small $\epsilon > 0$ the function $f + \epsilon g$ has the same number of zeros inside |z| = 1 as does f.

Proof. Rouche's theorem tells us that if f,h holomorphic on and inside (eg) the unit disk, and |f| > |h| on all of the boundary |z| = 1, then f, f + h have the same number of zeros inside the unit disk. Since the boundary is compact (closed and bounded), |f|, |g| achieve both a maximum and a minimum on |z| = 1. Let $m := \min_{|z|=1} |f|$ and $M := \max_{|z|=1} |g|$. Then $|\frac{g}{M}| \le 1$ and so

$$\left| \frac{mg}{M} \right| \le |f|$$
 on $|z| = 1$.

then take $\epsilon < m/M$ and $h = \epsilon g$ in the statement of Rouche's theorem.

7. Describe all harmonic functions on the punctured unit disk $\{z: 0 < |z| < 1\}$, continuous on the punctured closed disk $\{z: 0 < |z| \le 1\}$ whose restriction to $\{z: |z| = 1\}$ is the zero function.

WARNING: The following solution is incorrect. See this StackExchange post:

https://math.stackexchange.com/questions/376677/characterization-of-harmonic-functions-on-the-punctured-disk

Proof. The maximum modulus principle tells us that f is holomorphic on |z| < 1, then |f| does not attain a maximum on |z| < 1, and so any maximum must occur on |z| = 1. If a function f is harmonic on $\{z : 0 < |z| < 1\}$, it admits an analytic continuation on $\{z : |z| \le 1\}$ call this continuation F. Then |F| attains its maximum on |z| = 1. Since F = 0 on |z| = 1, $|F| \le 0$ on the whole punctured disk, and so f must be identically f.

8. Show that the curve $z^3 + w^3 = 1$ has genus 1.

Proof. The degree-genus formula tells us that if we have a smooth, irreducible plane curve, then its genus is

$$\frac{(d-1)(d-2)}{2}$$

where d is the degree of the curve. To see that the given curve is smooth, homogenize so we are dealing with $p=z^3+w^3-u^3=0$. The partial derivatives $\frac{\partial}{\partial z}p=3z^2, \frac{\partial}{\partial w}p=3w^2, \frac{\partial}{\partial u}p=-3u^2$ are only simultaneously 0 when (in homogeneous coordinates) we are at the point [0:0:0]. But that point is never on our given curve which looks like [*:*:1]. To see it is irreducible, note that $-w^3+1$ has zeros at the 3 third roots of unity, which are distinct, so it is squarefree. Hence, we apply the formula with d=3 to get $\frac{(3-1)(3-2)}{2}=1$