FERIENKURS ANALYSIS 2 FÜR PHYSIKER

JOHANNES R. KAGER UND JULIAN SIEBER

Aufgabenblatt 1

Aufgabe 1 (*). Sei $d: X \times X \to \mathbb{R}$ eine Funktion, welche

- (i) d(x,y) = 0 genau dann, wenn x = y,
- (ii) d(x,y) = d(y,x) für alle $x, y \in X$,
- (iii) $d(x,y) \le d(x,z) + d(z,y)$ für alle $x,y,z \in X$

erfüllt. Zeigen Sie, dass d eine Metrik auf X definiert.

Aufgabe 2 $(\star\star)$. Welche der nachfolgenden metrischen Räume X sind vollständig? Bitte geben Sie eine kurze Begründung.

- (i) X = [0, 1] mit der Standardmetrik in \mathbb{R} .
- (ii) $X = \mathbb{Q}$ mit der Standardmetrik in \mathbb{R} .
- (iii) Die Teilmenge

$$\{(0,0)\} \cup \{(x,\sin(1/x))|x>0\} \subset \mathbb{R}^2$$

mit der Standardmetrik in \mathbb{R}^2 .

(iv) $X = \mathbb{R}$ mit der Metrik $d(x, y) = |\arctan x - \arctan y|$ (zeigen Sie, dass in der Tat eine solche vorliegt).

Aufgabe 3 (\star) . Sei (M,d) ein metrischer Raum und $X,Y\subset M$ nicht-leer. Zeigen Sie, dass

$$X, Y$$
 offen \iff $X \times Y$ offen

Aufgabe 4 (**). Zeigen Sie, dass eine Cauchy Folge $(a_n)_{n\in\mathbb{N}}$ im metrischen Raum (X,d) genau dann konvergiert, wenn sie eine konvergente Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ besitzt.

Aufgabe 5 (***). Untersuchen Sie, ob die folgenden Funktionen $f_{1,2}: \mathbb{R}^2 \to \mathbb{R}$ stetig im Nullpunkt fortgesetzt werden können und geben sie gegebenenfalls diese Fortsetzung an:

(a)
$$f_1(x,y) = \frac{x^2 - y^2}{x^2 + y^2}$$
, (b) $f_2(x,y) = \frac{2x^2y^2}{x^2 + y^2}$.

Aufgabe 6 (*). Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \exp\left(-\frac{y^3}{x^2}\right) & \text{für } x \neq 0, \\ 1 & \text{für } x = 0 \end{cases}$$

eingeschränkt auf eine beliebige Gerade durch den Nullpunkt stetig ist, jedoch die Funktion selbst unstetig ist.

Aufgabe 7 (*). Berechnen Sie die Ableitungen der folgenden Funktionen:

- (i) $f: \mathbb{R}^2 \to \mathbb{R}$, f(x,y) = y + 2x
- (ii) $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}, f(x,y) = (x^2 + y^2)^{-1/2}$

(iii)
$$f: \mathbb{R}^2 \to \mathbb{R}, f(x,y) = xy$$

(iii)
$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = xy$
(iv) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + 4y^2$

Aufgabe 8 (*). Sei $f: \mathbb{R}^n \to \mathbb{R}$ differenzierbar und $f(tx) = t^k f(x)$ für alle t > 0und $x \in \mathbb{R}^n$.

Zeigen Sie, dass $\langle \nabla f(x), x \rangle = k f(x)$ für alle $x \in \mathbb{R}^n$.

Aufgabe 9 $(\star\star)$.

(i) Seien $g_j: \mathbb{R} \to \mathbb{R}^m$, $1 \leq j \leq n$, Funktionen und definiere $f: \mathbb{R}^n \to \mathbb{R}^m$

$$f(x_1, \dots, x_n) = \sum_{j=1}^n g_j(x_j).$$

Zeigen Sie, dass f bei $x \in \mathbb{R}^n$ genau dann differenzierbar ist, wenn jedes g_i in x_i differenzierbar ist.

(ii) Bestimmen Sie die Punkte $(x,y) \in \mathbb{R}^2$, in denen die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = |x|^{3/2} + |y|^{1/2}$$

differenzierbar ist.

Aufgabe 10 (*). Es sei die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

vorgelegt.

- (i) Zeigen Sie, dass f partiell differenzierbar ist. Berechnen Sie die partiellen Ableitungen.
- (ii) Zeigen Sie, dass f in (0,0) nicht total differenzierbar ist.

Aufgabe 11 (**). Zeigen Sie, dass die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{x^3}{\sqrt{x^2 + y^2}} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

auf ganz \mathbb{R}^2 differenzierbar ist und berechnen Sie die Ableitung.

Aufgabe 12 $(\star\star)$. Sei $f:\mathbb{R}^2\to\mathbb{R}$ differenzierbar und definiere $g:\mathbb{R}\to\mathbb{R}$, g(x) = f(x, c - x), für $c \in \mathbb{R}$. Bestimmen Sie die Ableitung von g in Termen der partiellen Ableitungen von f.

Zeigen Sie, dass im Falle $\partial_x f(x,y) = \partial_y f(x,y)$ für alle $(x,y) \in \mathbb{R}^2$ eine Funktion $h: \mathbb{R} \to \mathbb{R}$ gibt, sodass

$$f(x,y) = h(x,y).$$

Aufgabe 13 (\star) . Eine Funktion $f \in \mathcal{C}^2(U,\mathbb{R}), U \subset \mathbb{R}^n$ offen, heißt harmonisch,

$$\Delta f(x_1,\ldots,x_n) = \sum_{i=1}^n \partial_i^2 f(x_1,\ldots,x_n) = 0$$

für alle $(x_1, \ldots, x_n) \in U$.

Zeigen Sie, dass die nachfolgenden Funktionen harmonisch sind:

(i)
$$f: \mathbb{R}^2 \setminus \{0\}, f(x,y) = \frac{1}{2} \ln(x^2 + y^2)$$

(ii) $g:(0,\infty)\times\mathbb{R}, g(x,y)=\arctan(y/x).$

Bestimmen Sie die Jacobi Matrix von $h:(0,\infty)\times\mathbb{R}\to\mathbb{R}^2$,

$$h(x,y) = \begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}.$$

Aufgabe 14 (**). Bestimmen Sie mit Beweis die Stellen, an denen $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \begin{cases} \frac{x^3 + 2y^4}{x^2 + y^2} & \text{für } (x,y) \neq (0,0) \\ 0 & \text{für } (x,y) = (0,0) \end{cases}$$

total differenzierbar ist.

Aufgabe 15 (**). Für $n \in \mathbb{N}$ sei die Funktion $f : \mathbb{R}^n \to \mathbb{R}^n$,

$$f(x) = \exp(|x|)x$$

gegeben. Begründen Sie kurz, dass f auf $\mathbb{R}^n \setminus \{0\}$ differenzierbar ist und bestimmen Sie die Jacobi–Matrix $J_f(x)$.

Aufgabe 16 $(\star\star)$. Sei $f:\mathbb{R}^6\to\mathbb{R}^3$ definiert durch $f(x,y)=x\times y$ mit dem gewöhnlichen Kreuzprodukt.

Zeigen Sie, dass f differenzierbar ist und bestimmen Sie die Ableitung.

Aufgabe 17 (*). Gegeben seien die folgenden Funktionen $f : \mathbb{R}^2 \to \mathbb{R}$. Bestimmen Sie die Punkte an denen diese differenzierbar sind. Begründen Sie Ihre Antwort.

(i)
$$f(x,y) = xy|x-y|$$

(ii)

$$f(x,y) = \begin{cases} xy\sin\left(\frac{1}{x}\right) & \text{für } x \neq 0\\ 0 & \text{für } x = 0 \end{cases}$$

Aufgabe 18 (*). Wir betrachten die Funktion $f: A \to \mathbb{R}, A = \{(x,y) \in \mathbb{R}^2 \mid y \neq 0\},$

$$f(x,y) = \frac{e^x}{y}.$$

Bestimmen Sie für $k, \ell \in \mathbb{N}$ die partiellen Ableitungen $\partial_x^k \partial_y^\ell f(x,y)$ und geben Sie das Taylorpolynom zweiter Ordnung im Punkt $(a_1,a_2) \in A$ an. Hinweis: Multiplizieren Sie nicht aus.

Aufgabe 19 (*). Bestimmen Sie das Taylorpolynom zweiter Ordnung der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \cos(x+y)\cos(x-y)$$

im Entwicklungspunkt (0,0).