Springer Texts in Statistics

Advisors:
Stephen Fienberg Ingram Olkin

Springer Texts in Statistics

Alfred Elements of Statistics

for the Life and Social Sciences

Blom Probability and Statistics:

Theory and Applications

Chow and Teicher Probability Theory: Independence,

Interchangeability, Martingales.

Second Edition

Christensen Plane Answers to Complex Questions:

The Theory of Linear Models

du Toit, Steyn and

Strumpf

Graphical Exploratory Data Analysis

Kalbfleisch Probability and Statistical Inference:

Volume 1: Probability.

Second Edition

Kalbfleisch Probability and Statistical Inference:

Volume 2: Statistical Inference.

Second Edition

Keyfitz Applied Mathematical Demography.

Second Edition

Kiefer Introduction to Statistical Inference

Kokoska Statistical Tables and Formulae

Madansky Prescriptions for Working Statisticians

Peters Counting for Something:

Statistical Principles and Personalities

Stephen Kokoska Christopher Nevison

Statistical Tables and Formulae

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Stephen Kokoska Department of Mathematics Colgate University Hamilton, NY 13346-1398 USA

00/1

Editorial Board

Stephen Fienberg Department of Statistics Carnegie-Mellon University Pittsburgh, PA 15213

USA

Christopher Nevison Department of Computer Science Colgate University Hamilton, NY 13346-1398 USA

Ingram Olkin Department of Statistics Stanford University Stanford, CA 94305 USA

Mathematics Subject Classification (1980): 62Q05

Library of Congress Cataloging-in-Publication Data Kokoska, Stephen.

(Springer texts in statistics)

1. Mathematical statistics--Tables. 2. Probabilities

-- Tables. I. Title. II. Series.

QA276.25.K65 1988 519.5'0212 88-24955

Printed on acid-free paper

© 1989 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of th publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, USA), except for brief excerpts in connection wit reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especial identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Ac may accordingly be used freely by anyone.

Camera-ready copy provided by the authors.

987654321

ISBN-13: 978-0-387-96873-5 e-ISBN-13: 978-1-4613-9629-1

DOI: 10.1007/978-1-4613-9629-1

Contents

Tab	Pag	e
1.	Discrete Distributions	1
2.	Continuous Distributions	3
3.	Relationships Among Distributions	8
4.	Probability and Statistics Formulas	9
	Combinatorial Methods	9
	Numerical Descriptive Statistics	9
	Probability	.1
	Probability Distributions	.2
	Mathematical Expectation	.3
	Multivariate Distributions	.5
	Functions of Random Variables	
	Sampling Distributions	
	Estimation	
	Confidence Intervals	
	Hypothesis Tests (One-Sample)	
	Hypothesis Tests (Two-Sample)	
	Hypothesis Tests	
	Simple Linear Regression	
	Multiple Linear Regression	
	The Analysis of Variance	
	Nonparametric Statistics	
5.	The Binomial Cumulative Distribution Function	
	The Poisson Cumulative Distribution Function	
	The Cumulative Distribution Function for the Standard Normal Random Variable	
	Critical Values for the t Distribution	
	Critical Values for the Chi-Square Distribution	
	Critical Values for the F Distribution	
	The Incomplete Gamma Function	
12.	Critical Values for the Studentized Range Distribution	34
13.	Least Significant Studentized Ranges for Duncan's Test	37
14.	Critical Values for Dunnett's Procedure	70
15.	Critical Values for Bartlett's Test	72
16.	Critical Values for Cochran's Test	74
17.	Critical Values for the Wilcoxon Signed-Rank Statistic	75
	Critical Values for the Wilcoxon Rank-Sum Statistic	
19.	Critical Values for the Runs Test	81
	Tolerance Factors for Normal Distributions	
	Nonparametric Tolerance Limits	
	Critical Values for Spearman's Rank Correlation Coefficient	
	Acknowledgements	

Table 1. Discrete Distributions

Probability Mass Function, p(x); Mean, μ ; Variance, σ^2 ; Coefficient of Skewness, β_1 ; Coefficient of Kurtosis, β_2 ; Moment-generating Function, M(t); Characteristic Function, $\phi(t)$; Probability-generating Function, P(t).

Bernoulli Distribution

$$p(x) = p^{x}q^{x-1}$$
 $x = 0, 1$ $0 \le p \le 1$ $q = 1 - p$

$$\mu=p \qquad \sigma^2=pq \qquad eta_1=rac{1-2p}{\sqrt{pq}} \qquad eta_2=3+rac{1-6pq}{pq}$$

$$M(t) = q + pe^t$$
 $\phi(t) = q + pe^{it}$ $P(t) = q + pt$

Beta Binomial Distribution

$$p(x) = \frac{1}{n+1} \frac{B(a+x,b+n-x)}{B(x+1,n-x+1)B(a,b)} \qquad x = 0, 1, 2, \dots, n \qquad a > 0 \qquad b > 0$$

$$\mu = \frac{na}{a+b}$$
 $\sigma^2 = \frac{nab(a+b+n)}{(a+b)^2(a+b+1)}$ $B(a,b)$ is the Beta function.

Beta Pascal Distribution

$$p(x) = \frac{\Gamma(x)\Gamma(\nu)\Gamma(\rho + \nu)\Gamma(\nu + x - (\rho + r))}{\Gamma(r)\Gamma(x - r + 1)\Gamma(\rho)\Gamma(\nu - \rho)\Gamma(\nu + x)} \qquad x = r, r + 1, \dots \qquad \nu > \rho > 0$$

$$\mu = r \frac{\nu - 1}{\rho - 1}, \ \rho > 1$$
 $\sigma^2 = r(r + \rho - 1) \frac{(\nu - 1)(\nu - \rho)}{(\rho - 1)^2(\rho - 2)}, \ \rho > 2$

Binomial Distribution

$$p(x) = \binom{n}{x} p^x q^{n-x}$$
 $x = 0, 1, 2, ..., n$ $0 \le p \le 1$ $q = 1 - p$

$$\mu = np$$
 $\sigma^2 = npq$ $\beta_1 = \frac{1-2p}{\sqrt{npq}}$ $\beta_2 = 3 + \frac{1-6pq}{npq}$

$$M(t) = (q + pe^t)^n$$
 $\phi(t) = (q + pe^{it})^n$ $P(t) = (q + pt)^n$

Discrete Weibull Distribution

$$p(x) = (1-p)^{x^{\beta}} - (1-p)^{(x+1)^{\beta}}$$
 $x = 0, 1, ...$ $0 \le p \le 1$ $\beta > 0$

Geometric Distribution

$$p(x) = pq^{1-x}$$
 $x = 0, 1, 2...$ $0 \le p \le 1$ $q = 1-p$

$$\mu = \frac{1}{p}$$
 $\sigma^2 = \frac{q}{p^2}$ $\beta_1 = \frac{2-p}{\sqrt{q}}$ $\beta_2 = \frac{p^2 + 6q}{q}$

$$M(t) = \frac{p}{1 - ae^t} \qquad \phi(t) = \frac{p}{1 - ae^{it}} \qquad P(t) = \frac{p}{1 - at}$$

Hypergeometric Distribution

$$p(x) = \frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}} \qquad x = 0, 1, 2, \dots, n \qquad x \le M \qquad n-x \le N-M$$

$$n, M, N \in \mathbb{N} \qquad 1 \le n \le N \qquad 1 \le M \le N \qquad N = 1, 2, \dots$$

$$\mu = n\frac{M}{N} \qquad \sigma^2 = \left(\frac{N-n}{N-1}\right)n\frac{M}{N}\left(1-\frac{M}{N}\right) \qquad \beta_1 = \frac{(N-2M)(N-2n)\sqrt{N-1}}{(N-2)\sqrt{nM(N-M)(N-n)}}$$

$$\beta_2 = \frac{N^2(N-1)}{(N-2)(N-3)nM(N-M)(N-n)}$$

$$\left\{N(N+1) - 6n(N-n) + 3\frac{M}{N^2}(N-M)[N^2(n-2) - Nn^2 + 6n(N-n)]\right\}$$

$$M(t) = \frac{(N-M)!(N-n)!}{N!}F(\cdot, e^t) \qquad \phi(t) = \frac{(N-M)!(N-n)!}{N!}F(\cdot, e^{it}) \qquad P(t) = \left(\frac{N-M}{N}\right)^n F(\cdot, t)$$

$$F(\alpha, \beta, \gamma, x) \text{ is the hypergeometric function.} \qquad \alpha = -n; \quad \beta = -M; \quad \gamma = N-M-n+1$$

Negative Binomial Distribution

$$p(x) = {x+r-1 \choose r-1} p^r q^x \qquad x = 0, 1, 2, \dots \qquad r = 1, 2, \dots \qquad 0 \le p \le 1 \qquad q = 1-p$$

$$\mu = \frac{rq}{p} \qquad \sigma^2 = \frac{rq}{p^2} \qquad \beta_1 = \frac{2-p}{\sqrt{rq}} \qquad \beta_2 = 3 + \frac{p^2 + 6q}{rq}$$

$$M(t) = \left(\frac{p}{1-qe^t}\right)^r \qquad \phi(t) = \left(\frac{p}{1-qe^{it}}\right)^r \qquad P(t) = \left(\frac{p}{1-qt}\right)^r$$

Poisson Distribution

$$\begin{split} p(x) &= \frac{e^{-\mu}\mu^x}{x!} & x = 0, 1, 2, \dots \quad \mu > 0 \\ \\ \mu &= \mu \quad \sigma^2 = \mu \quad \beta_1 = \frac{1}{\sqrt{\mu}} \quad \beta_2 = 3 + \frac{1}{\mu} \\ \\ M(t) &= \exp[\mu(e^t - 1)] \quad \phi(t) = \exp[\mu(e^{it} - 1)] \quad P(t) = \exp[\mu(t - 1)] \end{split}$$

Rectangular (Discrete Uniform) Distribution

$$p(x) = 1/n$$
 $x = 1, 2, ..., n$ $n \in \mathbb{N}$
 $\mu = \frac{n+1}{2}$ $\sigma^2 = \frac{n^2-1}{12}$ $\beta_1 = 0$ $\beta_2 = \frac{3}{5}\left(3 - \frac{4}{n^2 - 1}\right)$
 $M(t) = \frac{e^t(1-e^{nt})}{n(1-e^t)}$ $\phi(t) = \frac{e^{it}(1-e^{nit})}{n(1-e^{it})}$ $P(t) = \frac{t(1-t^n)}{n(1-t)}$

Table 2. Continuous Distributions

Probability Density Function, f(x); Mean, μ ; Variance, σ^2 ; Coefficient of Skewness, β_1 ; Coefficient of Kurtosis, β_2 ; Moment-generating Function, M(t); Characteristic Function, $\phi(t)$.

Arcsin Distribution

$$f(x) = \frac{1}{\pi\sqrt{x(1-x)}} \qquad 0 < x < 1$$

$$\mu=\frac{1}{2} \qquad \sigma^2=\frac{1}{8} \qquad \beta_1=0 \qquad \beta_2=\frac{3}{2}$$

Beta Distribution

$$f(x) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1} \qquad 0 < x < 1 \qquad \alpha, \ \beta > 0$$

$$\mu = \frac{\alpha}{\alpha + \beta} \qquad \sigma^2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)} \qquad \beta_1 = \frac{2(\beta - \alpha)\sqrt{\alpha + \beta + 1}}{\sqrt{\alpha\beta}(\alpha + \beta + 2)}$$

$$\beta_2 = \frac{3(\alpha+\beta+1)[2(\alpha+\beta)^2 + \alpha\beta(\alpha+\beta-6)]}{\alpha\beta(\alpha+\beta+2)(\alpha+\beta+3)}$$

Cauchy Distribution

$$f(x) = \frac{1}{b\pi \left(1 + \left(\frac{x-a}{b}\right)^2\right)} - \infty < x < \infty - \infty < a < \infty \quad b > 0$$

$$\mu$$
, σ^2 , β_1 , β_2 , $M(t)$ do not exist. $\phi(t) = \exp[ait - b \mid t \mid]$

Chi Distribution

$$f(x) = \frac{x^{n-1}e^{-x^2/2}}{2^{(n/2)-1}\Gamma(n/2)}$$
 $x \ge 0$ $n \in \mathbb{N}$

$$\mu = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} \qquad \sigma^2 = \frac{\Gamma\left(\frac{n+2}{2}\right)}{\Gamma\left(\frac{n}{2}\right)} - \left[\frac{\Gamma\left(\frac{n+1}{2}\right)}{\Gamma\left(\frac{n}{2}\right)}\right]^2$$

Chi-Square Distribution

$$f(x) = \frac{e^{-x/2}x^{(\nu/2)-1}}{2^{\nu/2}\Gamma(\nu/2)}$$
 $x \ge 0$ $\nu \in \mathbf{N}$

$$\mu =
u$$
 $\sigma^2 = 2
u$ $eta_1 = 2\sqrt{2/
u}$ $eta_2 = 3 + rac{12}{
u}$ $M(t) = (1 - 2t)^{-
u/2}, \ t < rac{1}{2}$ $\phi(t) = (1 - 2it)^{-
u/2}$

Erlang Distribution

$$f(x) = \frac{1}{\beta^n (n-1)!} x^{n-1} e^{-x/\beta} \qquad x \ge 0 \qquad \beta > 0 \qquad n \in \mathbb{N}$$

$$\mu = n\beta$$
 $\sigma^2 = n\beta^2$ $\beta_1 = \frac{2}{\sqrt{n}}$ $\beta_2 = 3 + \frac{6}{n}$ $M(t) = (1 - \beta t)^{-n}$ $\phi(t) = (1 - \beta it)^{-n}$

Exponential Distribution

$$f(x) = \lambda e^{-\lambda x}$$
 $x \ge 0$ $\lambda > 0$

$$\mu = rac{1}{\lambda}$$
 $\sigma^2 = rac{1}{\lambda^2}$ $eta_1 = 2$ $eta_2 = 9$ $M(t) = rac{\lambda}{\lambda - t}$ $\phi(t) = rac{\lambda}{\lambda - it}$

Extreme-Value Distribution

$$f(x) = \exp\left[-e^{-(x-\alpha)/\beta}\right]$$
 $-\infty < x < \infty$ $-\infty < \alpha < \infty$ $\beta > 0$

$$\mu = \alpha + \gamma \beta$$
, $\gamma \doteq .5772...$ is Euler's constant $\sigma^2 = \frac{\pi^2 \beta^2}{6}$ $\beta_1 = 1.29857$ $\beta_2 = 5.4$

$$M(t) = e^{lpha t} \Gamma(1-eta t), \; t < rac{1}{eta} \qquad \phi(t) = e^{lpha i t} \Gamma(1-eta i t)$$

F Distribution

$$f(x) = \frac{\Gamma[(\nu_1 + \nu_2)/2]\nu_1^{\nu_1/2}\nu_2^{\nu_2/2}}{\Gamma(\nu_1/2)\Gamma(\nu_2/2)}x^{(\nu_1/2)-1}(\nu_2 + \nu_1 x)^{-(\nu_1 + \nu_2)/2} \qquad x > 0 \qquad \nu_1, \ \nu_2 \in \mathbb{N}$$

$$\mu = \frac{\nu_2}{\nu_2 - 2}, \ \nu_2 \ge 3 \qquad \sigma^2 = \frac{2\nu_2^2(\nu_1 + \nu_2 - 2)}{\nu_1(\nu_2 - 2)^2(\nu_2 - 4)}, \ \nu_2 \ge 5$$

$$\beta_1 = \frac{(2\nu_1 + \nu_2 - 2)\sqrt{8(\nu_2 - 4)}}{\sqrt{\nu_1}(\nu_2 - 6)\sqrt{\nu_1 + \nu_2 - 2}}, \ \nu_2 \ge 7$$

$$\beta_2 = 3 + \frac{12[(\nu_2 - 2)^2(\nu_2 - 4) + \nu_1(\nu_1 + \nu_2 - 2)(5\nu_2 - 22)]}{\nu_1(\nu_2 - 6)(\nu_2 - 8)(\nu_1 + \nu_2 - 2)}, \ \nu_2 \ge 9$$

$$M(t)$$
 does not exist. $\phi(\frac{\nu_1}{\nu_2}t) = \frac{G(\nu_1, \nu_2, t)}{B(\nu_1/2, \nu_2/2)}$

B(a, b) is the Beta function. G is defined by

$$(m+n-2)G(m,n,t)=(m-2)G(m-2,n,t)+2itG(m,n-2,t), m,n>2$$

$$mG(m, n, t) = (n-2)G(m+2, n-2, t) - 2itG(m+2, n-4, t), n > 4$$

$$nG(2, n, t) = 2 + 2itG(2, n - 2, t), n > 2$$

Gamma Distribution

$$f(x) = \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta}$$
 $x \ge 0$ $\alpha, \beta > 0$

$$\mu=lphaeta \qquad \sigma^2=lphaeta^2 \qquad eta_1=rac{2}{\sqrt{lpha}} \qquad eta_2=3\left(1+rac{2}{lpha}
ight) \qquad M(t)=(1-eta t)^{-lpha} \qquad \phi(t)=(1-eta it)^{-lpha}$$

Half-Normal Distribution

$$f(x) = \frac{2\theta}{\pi} \exp[-(\theta^2 x^2/\pi)]$$
 $x \ge 0$ $\theta > 0$
$$\mu = \frac{1}{\theta}$$
 $\sigma^2 = \left(\frac{\pi - 2}{2}\right) \frac{1}{\theta^2}$ $\beta_1 = \frac{4 - \pi}{\theta^3}$ $\beta_2 = \frac{3\pi^2 - 4\pi - 12}{4\theta^4}$

LaPlace (Double Exponential) Distribution

$$f(x) = rac{1}{2eta} \exp\left[-rac{\mid x-lpha\mid}{eta}
ight] \qquad -\infty < x < \infty \qquad -\infty < lpha < \infty \qquad eta > 0$$
 $\mu = lpha \qquad \sigma^2 = 2eta^2 \qquad eta_1 = 0 \qquad eta_2 = 6 \qquad M(t) = rac{e^{lpha t}}{1 - eta^2 t^2} \qquad \phi(t) = rac{e^{lpha i t}}{1 + eta^2 t^2}$

Logistic Distribution

$$f(x) = \frac{\exp[(x-\alpha)/\beta]}{\beta(1+\exp[(x-\alpha)/\beta])^2} \qquad -\infty < x < \infty \qquad -\infty < \alpha < \infty \qquad -\infty < \beta < \infty$$

$$\mu = \alpha \qquad \sigma^2 = \frac{\beta^2 \pi^2}{3} \qquad \beta_1 = 0 \qquad \beta_2 = 4.2 \qquad M(t) = e^{\alpha t} \pi \beta t \csc(\pi \beta t) \qquad \phi(t) = e^{\alpha i t} \pi \beta i t \csc(\pi \beta i t)$$

Lognormal Distribution

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma x} \exp\left[-\frac{1}{2\sigma^2} (\ln x - \mu)^2\right] \qquad x > 0 \qquad -\infty < \mu < \infty \qquad \sigma > 0$$

$$\mu = e^{\mu + \sigma^2/2} \qquad \sigma^2 = e^{2\mu + \sigma^2} (e^{\sigma^2} - 1) \qquad \beta_1 = (e^{\sigma^2} + 2)(e^{\sigma^2} - 1)^{1/2} \qquad \beta_2 = (e^{\sigma^2})^4 + 2(e^{\sigma^2})^3 + 3(e^{\sigma^2})^2 - 3(e^{\sigma^2})^4 + 2(e^{\sigma^2})^4 + 2$$

Noncentral Chi-Square Distribution

$$f(x) = \frac{\exp\left[-\frac{1}{2}(x+\lambda)\right]}{2^{\nu/2}} \sum_{j=0}^{\infty} \frac{x^{(\nu/2)+j-1}\lambda^j}{\Gamma\left(\frac{\nu}{2}+j\right) 2^{2j}j!} \qquad x > 0 \qquad \lambda > 0 \qquad \nu \in \mathbf{N}$$

$$\mu = \nu + \lambda \qquad \sigma^2 = 2(\nu + 2\lambda) \qquad \beta_1 = \frac{\sqrt{8}(\nu + 3\lambda)}{(\nu + 2\lambda)^{3/2}} \qquad \beta_2 = 3 + \frac{12(\nu + 4\lambda)}{(\nu + 2\lambda)^2}$$

$$M(t) = (1-2t)^{-\nu/2} \exp\left[\frac{\lambda t}{1-2t}\right] \qquad \phi(t) = (1-2it)^{-\nu/2} \exp\left[\frac{\lambda it}{1-2it}\right]$$

Noncentral F Distribution

$$f(x) = \sum_{i=0}^{\infty} \frac{\Gamma\left(\frac{2i+\nu_1+\nu_2}{2}\right) \left(\frac{\nu_1}{\nu_2}\right)^{(2i+\nu_1)/2} x^{(2i+\nu_1-2)/2} e^{-\lambda/2} \left(\frac{\lambda}{2}\right)}{\Gamma\left(\frac{\nu_2}{2}\right) \Gamma\left(\frac{2i+\nu_1}{2}\right) \nu_1! \left(1 + \frac{\nu_1}{\nu_2}x\right)^{(2i+\nu_1+\nu_2)/2}} \qquad x > 0 \qquad \nu_1, \ \nu_2 \in \mathbb{N} \qquad \lambda > 0$$

$$\mu = \frac{(\nu_1 + \lambda)\nu_2}{(\nu_2 - 2)\nu_1}, \ \nu_2 > 2 \qquad \sigma^2 = \frac{(\nu_1 + \lambda)^2 + 2(\nu_1 + \lambda)\nu_2^2}{(\nu_2 - 2)(\nu_2 - 4)\nu_1^2} - \frac{(\nu_1 + \lambda)^2\nu_2^2}{(\nu_2 - 2)^2\nu_1^2}, \ \nu_2 > 4$$

Noncentral t Distribution

$$f(x) = \frac{\nu^{\nu/2}}{\Gamma\left(\frac{\nu}{2}\right)} \frac{e^{-\delta^2/2}}{\sqrt{\pi}(\nu + x^2)^{(\nu+1)/2}} \sum_{i=0}^{\infty} \Gamma\left(\frac{\nu + i + 1}{2}\right) \left(\frac{\delta^i}{i!}\right) \left(\frac{2x^2}{\nu + x^2}\right)^{i/2}$$

$$-\infty < x < \infty$$
 $-\infty < \delta < \infty$ $\nu \in \mathbf{N}$

$$\mu_r' = c_r \frac{\Gamma\left(\frac{\nu-r}{2}\right)\nu^{r/2}}{2^{r/2}\Gamma\left(\frac{\nu}{2}\right)}, \ \nu > r, \ c_{2r-1} = \sum_{i=1}^r \frac{(2r-1)!\delta^{2r-1}}{(2i-1)!(r-i)!2^{r-i}}, \ c_{2r} = \sum_{i=0}^r \frac{(2r)!\delta^{2i}}{(2i)!(r-i)!2^{r-i}}, \ r=1,2,3,\ldots$$

Normal Distribution

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \qquad -\infty < x < \infty \qquad -\infty < \mu < \infty \qquad \sigma > 0$$

$$\mu=\mu \qquad \sigma^2=\sigma^2 \qquad eta_1=0 \qquad eta_2=3 \qquad M(t)=\exp\left[\mu t+rac{t^2\sigma^2}{2}
ight] \qquad \phi(t)=\exp\left[\mu i t-rac{t^2\sigma^2}{2}
ight]$$

Pareto Distribution

$$f(x) = \theta a^{\theta} / x^{\theta+1}$$
 $x \ge a$ $\theta > 0$ $a > 0$

$$\mu = \frac{\theta a}{\theta - 1}, \ \theta > 1$$
 $\sigma^2 = \frac{\theta a^2}{(\theta - 1)^2(\theta - 2)}, \ \theta > 2$

$$\beta_1 = \frac{2(\theta+1)}{(\theta-3)(\theta-1)\sqrt{\theta(\theta-2)}}, \ \theta > 3 \qquad \beta_2 = \frac{3(\theta-2)(3\theta^2+\theta+2)}{\theta(\theta-3)(\theta-4)}, \ \theta > 4$$

M(t) does not exist.

Rayleigh Distribution

$$f(x) = \frac{x}{\sigma^2} \exp\left[-\frac{x^2}{2\sigma^2}\right]$$
 $x \ge 0$ $\sigma > 0$

$$\mu = \sigma \sqrt{\pi/2} \qquad \sigma^2 = 2\sigma^2 \left(1 - \frac{\pi}{4}\right) \qquad \beta_1 = \frac{\sqrt{\pi}}{4} \frac{\left(\pi - 3\right)}{\left(1 - \frac{\pi}{4}\right)^{3/2}} \qquad \beta_2 = \frac{2 - \frac{3}{16}\pi^2}{\left(1 - \frac{\pi}{4}\right)^2}$$

t Distribution

$$f(x) = \frac{1}{\sqrt{\pi\nu}} \frac{\Gamma(\frac{\nu+1}{2})}{\Gamma(\frac{\nu}{2})} \left(1 + \frac{x^2}{\nu}\right)^{-(\nu+1)/2} \qquad -\infty < x < \infty \qquad \nu \in \mathbb{N}$$

$$\mu = 0, \ \nu \ge 2$$
 $\sigma^2 = \frac{\nu}{\nu - 2}, \ \nu \ge 3$ $\beta_1 = 0, \ \nu \ge 4$ $\beta_2 = 3 + \frac{6}{\nu - 4}, \ \nu \ge 5$

$$M(t)$$
 does not exist. $\phi(t) = \frac{\sqrt{\pi}\Gamma(\frac{\nu}{2})}{\Gamma(\frac{\nu+1}{2})} \int\limits_{-\infty}^{\infty} \frac{e^{itz\sqrt{\nu}}}{(1+z^2)^{(\nu+1)/2}} dz$

Triangular Distribution

$$f(x) = \begin{cases} 0 & x \le a \\ 4(x-a)/(b-a)^2 & a < x \le (a+b)/2 \\ 4(b-x)/(b-a)^2 & (a+b)/2 < x < b \end{cases} - \infty < a < b < \infty$$

$$\mu = \frac{a+b}{2} \qquad \sigma^2 = \frac{(b-a)^2}{24} \qquad \beta_1 = 0 \qquad \beta_2 = \frac{12}{5}$$

$$M(t) = -\frac{4(e^{at/2} - e^{bt/2})^2}{t^2(b-a)^2} \qquad \phi(t) = \frac{4(e^{ait/2} - e^{bit/2})^2}{t^2(b-a)^2}$$

Uniform Distribution

$$f(x) = \frac{1}{b-a} \qquad a \le x \le b \qquad -\infty < a < b < \infty$$

$$\mu = \frac{a+b}{2} \qquad \sigma^2 = \frac{(b-a)^2}{12} \qquad \beta_1 = 0 \qquad \beta_2 = \frac{9}{5}$$

$$M(t) = \frac{e^{bt} - e^{at}}{(b-a)t} \qquad \phi(t) = \frac{e^{bit} - e^{ait}}{(b-a)it}$$

Weibull Distribution

$$\begin{split} f(x) &= \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}} \qquad x \geq 0 \qquad \alpha, \ \beta > 0 \\ \mu &= \beta \Gamma \left(1 + \frac{1}{\alpha} \right) \qquad \sigma^2 = \beta^2 \left[\Gamma \left(1 + \frac{2}{\alpha} \right) - \Gamma^2 \left(1 + \frac{1}{\alpha} \right) \right] \\ \beta_1 &= \frac{\Gamma(1 + \frac{3}{\alpha}) - 3\Gamma(1 + \frac{1}{\alpha})\Gamma(1 + \frac{2}{\alpha}) + 2\Gamma^3(1 + \frac{1}{\alpha})}{[\Gamma(1 + \frac{2}{\alpha}) - \Gamma^2(1 + \frac{1}{\alpha})]^{3/2}} \\ \beta_2 &= \frac{\Gamma(1 + \frac{4}{\alpha}) - 4\Gamma(1 + \frac{1}{\alpha})\Gamma(1 + \frac{3}{\alpha}) + 6\Gamma^2(1 + \frac{1}{\alpha})\Gamma(1 + \frac{2}{\alpha}) - 3\Gamma^4(1 + \frac{1}{\alpha})}{[\Gamma(1 + \frac{2}{\alpha}) - \Gamma^2(1 + \frac{1}{\alpha})]^2} \end{split}$$

Key To Table 3.

Table 3 presents some of the relationships among common univariate distributions. The first line in each box is the name of the distribution and the second line lists the distribution's parameters. Parameter restrictions and the values each random variable takes on with positive probability are given in Tables 1 and 2. The random variable X is used to represent each distribution. The three types of relationships represented in the diagram are transformations (independent random variables are assumed) and special cases (both indicated with a solid arrow), and limiting distributions (indicated with a dashed arrow).

Geometric Rectangular $\min(X_1,...,X_n)$ Hypergeom. $X_1 + \cdots + X_n$ n, M, NNeg. Bin. Beta-Bin. $\beta = 1$ a, b, nn, pDis. Weibull $\mu = n(1-p)$ p=a/bp=M/N $N \rightarrow \infty$ $n \rightarrow \infty$ $n \rightarrow \infty$ p, β $\mu = np$ Poisson Binomial $n \rightarrow \infty$ $X_1 + \cdots + X_n$ n, p $\sigma^2 = \mu$ $\mu = np$ $X_1 \cdots X_n$ $\sigma^2 = np(1-p)$ $X_1 + \cdots + X_n$ $n \rightarrow \infty$ Normal Lognormal Bernoulli μ , σ μ , σ p $\ln X$ Beta $X_1+\cdots+X_n$ $\mu = \alpha \beta$ α , β $\frac{X-\mu}{\sigma}$ $\mu + \sigma X$ $\sigma^2 = \alpha \beta^2$ $X_1+\cdots+X_n$ $\frac{x_1}{x_1+x_2}$ $\alpha = \beta = 1/2$ Cauchy Std. Normal Gamma Arcsin a, b $\mu = 0, \ \sigma = 1$ α , β $X_1^2 + \cdots + X_n^2$ a=0 $X_1 + \cdots + X_n$ $\beta = \nu/2$ X_1/X_2 $\alpha=2$ $\alpha = \beta = 1$ Std. Cauchy Chi-Square Erlang $\alpha = 1$ β , n ν $\beta = 1/\lambda$ $X_1+\cdots+X_n$ $\nu_1 X$ $\lambda=1/2$ 1/X $\nu_2 = \infty$ F Exponential Std. Uniform $\min(X_1,...,X_n)$ $\nu_1, \ \nu_2$ X^2 Rayleigh LaPlace $X^{1/\alpha}$ a=0a+(b-a) α , β b=1 $X_1 - X_2$ Weibull Triangular Uniform t α , β a = -1, b = 1a, bν

Table 3. Relationships Among Distributions

Combinatorial Methods

The Product Rule for Ordered Pairs: If the first element of an ordered pair can be selected in n_1 ways, an for each of these n_1 ways the second element of the pair can be selected in n_2 ways, then the number of possible pairs is n_1n_2 .

The Generalized Product Rule for k-tuples: If a set consists of ordered collections of k-tuples and there as n_1 choices for the first element; and for each choice of the first element there are n_2 choices for the second element; ...; and for each choice of the first k-1 elements there are n_k choices for the kt element, then there are $n_1 n_2 \cdots n_k$ possible k-tuples.

Permutations: The number of permutations of n distinct objects taken k at a time is $P_{n,k} = \frac{n!}{(n-k)!}$

Circular Permutations: The number of permutations of n distinct objects arranged in a circle is (n-1)!.

Permutations (all objects not distinct): The number of permutations of n objects of which n_1 are of or kind, n_2 are of a second kind, ..., n_k are of a kth kind, and $n_1 + n_2 + \cdots + n_k = n$, is

$$\frac{n!}{n_1!n_2!\cdots n_k!}$$

Combinations: The number of combinations of n distinct objects taken k at a time is

$$C_{n,k} = \binom{n}{k} = \frac{P_{n,k}}{k!} = \frac{n!}{k!(n-k)!}$$

1. For any positive integer n and k = 0, 1, 2, ..., n, $\binom{n}{k} = \binom{n}{n-k}$

2. For any positive integer n and $k=1,2,\ldots,n-1,$ $\binom{n}{k}=\binom{n-1}{k}+\binom{n-1}{k-1}$

Partitions: The number of ways of partitioning a set of n distinct objects into k subsets with n_1 objects the first subset, n_2 objects in the second subset, ..., and n_k objects in the kth subset, is

$$\binom{n}{n_1, n_2, \dots, n_k} = \frac{n!}{n_1! n_2! \cdots n_k!}$$

Numerical Descriptive Statistics

The formulas in this section apply to a set of n observations x_1, x_2, \ldots, x_n .

Mean (Arithmetic Mean): $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{1}{n} (x_1 + x_2 + \cdots + x_n)$

Weighted Mean (Weighted Arithmetic Mean): Let $w_i > 0$ be the weight associated with x_i .

$$\overline{x} = \frac{\sum_{i=1}^{n} w_i x_i}{\sum_{i=1}^{n} w_i} = \frac{w_1 x_1 + w_2 x_2 + \dots + w_n x_n}{w_1 + w_2 + \dots + w_n}$$

Geometric Mean: $GM = \sqrt[n]{x_1 \cdot x_2 \cdot \cdot \cdot x_n}, \quad x_i > 0$

Harmonic Mean:
$$HM = \frac{n}{\sum_{i=1}^{n} \frac{1}{x_i}} = \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}}, \quad x_i > 0$$

Relation Between Arithmetic, Geometric, and Harmonic Mean:

 $HM \leq GM \leq \overline{x}$, Equality holds if all the observations are equal.

p% Trimmed Mean: Eliminate the smallest p% and the largest p% of the sample. $\overline{x}_{tr(p)}$ is the arithmetic mean of the remaining data.

Mode: A mode of a set of n observations is a value which occurs most often, or with the greatest frequency. A mode may not exist and, if it exists, may not be unique.

Median: Rearrange the observations in increasing order,

 $\tilde{x} = \begin{cases} \text{the single middle value in the ordered list if } n \text{ is odd} \\ \text{the mean of the two middle values in the ordered list if } n \text{ is even} \end{cases}$

Quartiles:

- 1. $Q_2 = \tilde{x}$
- 2. If n is even $\begin{cases} Q_1 \text{ is the median of the smallest } n/2 \text{ observations} \\ Q_3 \text{ is the median of the largest } n/2 \text{ observations} \end{cases}$
- 3. If n is odd $\begin{cases} Q_1 \text{ is the median of the smallest } (n+1)/2 \text{ observations} \\ Q_3 \text{ is the median of the largest } (n+1)/2 \text{ observations} \end{cases}$

$$\textit{Mean Deviation: } \text{MD} = \frac{1}{n} \sum_{i=1}^{n} \mid x_i - \overline{x} \mid \quad \text{or} \quad \text{MD} = \frac{1}{n} \sum_{i=1}^{n} \mid x_i - \tilde{x} \mid$$

Variance:
$$s^2 = \frac{1}{n-1} \left[\sum_{i=1}^n (x_i - \overline{x})^2 \right] = \frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - \frac{1}{n} \left(\sum_{i=1}^n x_i \right)^2 \right]$$

Standard Deviation: $s = \sqrt{s^2}$

Standard Error of the Mean: $SEM = s/\sqrt{n}$

Root Mean Square: RMS = $\frac{1}{n} \sum_{i=1}^{n} x_i^2$

Range:
$$R = \max\{x_1, x_2, \dots, x_n\} - \min\{x_1, x_2, \dots, x_n\} = x_{(n)} - x_{(1)}$$

Lower Fourth: Q_1 Upper Fourth: Q_3 Fourth Spread (Interquartile Range): $f_s = IQR = Q_3 - Q_1$

Quartile Deviation (Semi-Interquartile Range): $(Q_3 - Q_1)/2$

Inner Fences: $Q_1 - 1.5f_s$, $Q_3 + 1.5f_s$ Outer Fences: $Q_1 - 3f_s$, $Q_3 + 3f_s$

Coefficient of Variation: s/\overline{x}

Coefficient of Quartile Variation: $(Q_3 - Q_1)/(Q_3 + Q_1)$

Moments:

The rth moment about the origin: $m_r' = \frac{1}{n} \sum_{i=1}^n x_i^r$

The rth moment about the mean \overline{x} : $m_r = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^r$

Coefficient of Skewness: $g_1 = m_3/m_2^{3/2}$ Coefficient of Kurtosis: $g_2 = m_4/m_2^2$ Coefficient of Excess: $g_2 - 3$ where

$$m_2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2$$
 $m_3 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^3$ $m_4 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^4$

Data Transformations: Let $y_i = ax_i + b$, then $\overline{y} = a\overline{x} + b$ $s_y^2 = a^2s_x^2$ $s_y = |a| s_x$

Probability

The sample space of an experiment, denoted S, is the set of all possible outcomes. Each element of a sample space is called an element of the sample space or a sample point. An event is any collection of outcomes contained in the sample space. A simple event consists of exactly one element and a compound event consists of more than one element.

Relative Frequency Concept of Probability: If an experiment is conducted n times in an identical and independent manner and n(A) is the number of times the event A occurs, then n(A)/n is the relative frequency of occurrence of the event A. As n increases, the relative frequency converges to a value called the limiting relative frequency of the event A. The probability of the event A occurring, P(A), is this limiting relative frequency.

Axioms of Probability:

- 1. For any event $A, P(A) \geq 0$.
- 2. P(S) = 1.
- 3. If A_1, A_2, \ldots , is a finite or infinite collection of pairwise mutually exclusive events of S, then

$$P(A_1 \cup A_2 \cup A_3 \cup \ldots) = P(A_1) + P(A_2) + P(A_3) + \ldots$$

The Probability Of An Event: The probability of an event A is the sum of $P(a_i)$ for all sample points a_i in the event A

$$P(A) = \sum_{a_i \in A} P(a_i)$$

Properties of Probability:

- 1. If A and A' are complementary events, P(A) = 1 P(A').
- 2. $P(\emptyset) = 0$ for any sample space S.
- 3. For any events A and B, if $A \subset B$ then $P(A) \leq P(B)$.
- 4. For any events A and B, $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- 5. If A and B are mutually exclusive events, then $P(A \cap B) = 0$.
- 6. For any events A and B, $P(A) = P(A \cap B) + P(A \cap B')$
- 7. For any events A, B, C,

$$P(A \cup B \cup C) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

8. For any events A_1, A_2, \ldots, A_n ,

$$P\left(\bigcup_{i=1}^{n} A_i\right) \leq \sum_{i=1}^{n} P(A_i)$$
 Equality holds if the events are pairwise mutually exclusive.

De Morgan's Laws: Let A, A_1, A_2, \ldots, A_n and B be sets (events). Then

1. $(A \cup B)' = A' \cap B'$

$$\binom{n}{\bigcup_{i=1}^{n} A_i}' = (A_1 \cup A_2 \cup \cdots \cup A_n)' = A_1' \cap A_2' \cap \cdots \cap A_n' = \bigcap_{i=1}^{n} A_i'$$

2. $(A \cap B)' = A' \cup B'$

$$\left(\bigcap_{i=1}^n A_i\right)' = (A_1 \cap A_2 \cap \cdots \cap A_n)' = A_1' \cup A_2' \cup \cdots \cup A_n' = \bigcup_{i=1}^n A_i'$$

Conditional Probability: The conditional probability of A given that B has occurred is

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}, \qquad P(B) > 0$$

- 1. If $P(A_1 \cap A_2 \cap \cdots \cap A_{n-1}) > 0$ then $P(A_1 \cap A_2 \cap \cdots \cap A_n) = P(A_1) \cdot P(A_2 \mid A_1) \cdot P(A_3 \mid A_1 \cap A_2) \cdots P(A_n \mid A_1 \cap A_2 \cap \cdots \cap A_{n-1})$
- 2. If $A \subset B$, then $P(A \mid B) = P(A)/P(B)$ and $P(B \mid A) = 1$
- 3. $P(A' \mid B) = 1 P(A \mid B)$

The Multiplication Rule: $P(A \cap B) = P(A \mid B) \cdot P(B)$, $P(B) \neq 0$

The Law of Total Probability: Let A_1, A_2, \ldots, A_n be a collection of mutually exclusive, exhaustive events with $P(A_i) \neq 0$. Then for any event B,

$$P(B) = \sum_{i=1}^{n} P(B \mid A_i) P(A_i)$$

Bayes' Theorem: Let A_1, A_2, \ldots, A_n be a collection of mutually exclusive exhaustive events, $P(A_i) \neq 0$. Then for any event $B, P(B) \neq 0$

$$P(A_k \mid B) = \frac{P(A_k \cap B)}{P(B)} = \frac{P(B \mid A_k)P(A_k)}{\sum_{i=1}^n P(B \mid A_i)P(A_i)}, \qquad k = 1, \ldots, n$$

Independence:

- 1. A and B are independent events if $P(A \mid B) = P(A)$, or equivalently if $P(B \mid A) = P(B)$.
- 2. A and B are independent events if and only if $P(A \cap B) = P(A) \cdot P(B)$.
- 3. A_1, A_2, \ldots, A_n are pairwise independent events if $P(A_i \cap A_j) = P(A_i) \cdot P(A_j)$ for every pair $i, j, i \neq j$
- 4. A_1, A_2, \ldots, A_n are mutually independent events if for every $k, k = 2, 3, \ldots, n$, and every subset of indices $i_1, i_2, \ldots, i_k, P(A_{i_1} \cap A_{i_2} \cap \cdots \cap A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdots P(A_{i_k})$.

Probability Distributions

Random Variable: Given a sample space S, a random variable is a function with domain S and range some subset of the real numbers. A random variable is discrete if it can assume only a finite or countably infinite number of values. A random variable is continuous if its set of possible values is an entire interva of numbers. Random variables will be denoted by upper-case letters, for example X.

Discrete Random Variables

Probability Mass Function: The probability distribution or probability mass function (pmf) of a discrete random variable is defined for every number x by p(x) = P(X = x).

- 1. $p(x) \geq 0$
- $2. \sum p(x) = 1$

Cumulative Distribution Function: The cumulative distribution function (cdf) F(x) of a discrete random variable X with pmf p(x) is defined for every number x by

$$F(x) = P(X \le x) = \sum_{y:y \le x} p(y)$$

$$1. \lim_{x \to -\infty} F(x) = 0$$

$$2. \lim_{x\to\infty} F(x) = 1$$

3. For any real numbers a and b, if a < b, then $F(a) \le F(b)$.

Continuous Random Variables

Probability Density Function: The probability distribution or probability density function (pdf) of a continuous random variable X is a function f(x) such that

$$P(a \le X \le b) = \int_a^b f(x) dx$$
, $a, b \in \Re$ the set of reals, $a \le b$

1.
$$f(x) \ge 0$$
 for $-\infty < x < \infty$

$$2. \int_{-\infty}^{\infty} f(x) dx = 1$$

3.
$$P(X=c)=0$$
 for $c\in\Re$

4.
$$P(a \le X \le b) = P(a < X \le b) = P(a \le X < b) = P(a < X < b)$$
 for $a, b \in \Re$ and $a < b$.

Cumulative Distribution Function: The cumulative distribution function (cdf) F(x) for a continuous random variable X is defined by

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(y) \, dy, \qquad -\infty < x < \infty$$

1.
$$P(a \le X \le b) = P(X \le b) - P(X \le a) = F(b) - F(a)$$
, $a, b \in \Re$ and $a < b$.

2. The pdf f(x) can be found from the cdf:

$$f(x) = \frac{dF(x)}{dx}$$
 whenever the derivative exists

Mathematical Expectation

Expected Value:

1. If X is a discrete random variable with pmf p(x),

a. the expected value of X is
$$E(X) = \mu = \sum_{x} xp(x)$$
.

b. the expected value of a function
$$g(X)$$
 is $E[g(X)] = \mu_{g(X)} = \sum_x g(x)p(x)$.

2. If X is a continuous random variable with pdf f(x),

a. the expected value of X is
$$E(X) = \mu = \int_{-\infty}^{\infty} x f(x) dx$$
.

b. the expected value of a function
$$g(X)$$
 is $E[g(X)] = \mu_{g(X)} = \int_{-\infty}^{\infty} g(x)f(x) dx$.

Theorems:

1.
$$E(aX + bY) = aE(X) + bE(Y)$$

2.
$$E(X \cdot Y) = E(X) \cdot E(Y)$$
 if X and Y are independent.

Variance: The variance of a random variable X is

$$\sigma^2 = \operatorname{Var}(X) = E[(X - \mu)^2] = \left\{ egin{array}{ll} \sum\limits_x (x - \mu)^2 p(x) & ext{if } X ext{ is discrete} \\ \int\limits_{-\infty}^{\infty} (x - \mu)^2 f(x) \, dx & ext{if } X ext{ is continuous} \end{array}
ight.$$

The standard deviation of X is $\sigma = \sqrt{\sigma^2}$

Theorems:

1.
$$\sigma^2 = E(X^2) - [E(X)]^2$$

2.
$$\sigma_{aX}^2 = a^2 \cdot \sigma_X^2$$
 $\sigma_{aX} = |a| \cdot \sigma_X$

3.
$$\sigma_{X+h}^2 = \sigma_X^2$$

4.
$$\sigma_{aX+b}^2 = a^2 \cdot \sigma_X^2$$
 $\sigma_{aX+b} = |a| \cdot \sigma_X$

Chebyshev's Theorem: Let X be a random variable with mean μ and variance σ^2 . For any constant k>0

$$P(\mid X - \mu \mid < k\sigma) = P(\mu - k\sigma < X < \mu + k\sigma) \ge 1 - \frac{1}{k^2}$$

Jensen's Inequality: Let h(x) be a function such that $\frac{d^2}{dx^2}h(x) \geq 0$ then $E[h(X)] \geq h(E[X])$.

Moments About The Origin: The rth moment about the origin, $r = 0, 1, 2, \ldots$, of a random variable X is

$$\mu_r' = E(X^r) = \left\{ egin{array}{ll} \sum\limits_x x^r p(x) & ext{if } X ext{ is discrete} \\ \int\limits_{-\infty}^{\infty} x^r f(x) \, dx & ext{if } X ext{ is continuous} \end{array}
ight.$$

In particular $\mu'_1 = E(X) = \mu$

Moments About The Mean: The rth moment about the mean, $r = 0, 1, 2, \ldots$, of a random variable X is

$$\mu_r = E[(X - \mu)^r] = \left\{ egin{array}{ll} \sum\limits_x (x - \mu)^r p(x) & ext{if } X ext{ is discrete} \ \int\limits_{-\infty}^{\infty} (x - \mu)^r f(x) \, dx & ext{if } X ext{ is continuous} \end{array}
ight.$$

In particular $\mu_2 = E[(X - \mu)^2] = \sigma^2$

Factorial Moments: The rth factorial moment, r = 1, 2, 3, ..., of a random variable X is

$$\mu_{[r]} = E[X(X-1)(X-2)\cdots(X-r+1)]$$

$$= \begin{cases} \sum_{x} x(x-1)(x-2)\cdots(x-r+1)p(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} x(x-1)(x-2)\cdots(x-r+1)f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

Moment-generating Functions: The moment-generating function (mgf) of a random variable X, where it exists, is

$$M(t) = E\left(e^{tX}\right) = \left\{egin{array}{ll} \sum\limits_{x} e^{tx} p(x) & ext{if } X ext{ is discrete} \\ \int_{-\infty}^{\infty} e^{tx} f(x) \, dx & ext{if } X ext{ is continuous} \end{array}
ight.$$

Theorems:

1. If
$$M(t)$$
 exists, then for $r = 1, 2, ...$ $\mu'_r = M^{(r)}(0) = \frac{d^r M(t)}{dt^r} \Big|_{t=0}$

2.
$$M_{aX}(t) = M_X(at)$$

3.
$$M_{X+b}(t) = e^{bt} \cdot M_X(t)$$

4.
$$M_{(X+b)/a}(t) = e^{(b/a)t} \cdot M_X(t/a)$$

Probability-generating Function: The probability-generating function for a discrete random variable X is

$$P(t) = E(t^X) = \sum_x t^x p(x)$$

Theorem:
$$\mu_{[r]} = P^{(r)}(1) = \frac{d^r P(t)}{dt^r} \bigg|_{t=1}$$

Characteristic Function: The characteristic function of a random variable X is

$$\phi(t) = E\left(e^{itX}\right) = \begin{cases} \sum_{x} e^{itx} p(x) & \text{if } X \text{ is discrete} \\ \int_{-\infty}^{\infty} e^{itx} f(x) dx & \text{if } X \text{ is continuous} \end{cases}$$

where t is a real number and $i^2 = -1$.

Theorem:
$$i^r \mu'_r = \phi^{(r)}(0) = \frac{d^r \phi(t)}{dt^r}\Big|_{t=0}$$

Multivariate Distributions

Discrete Case: Let X and Y be discrete random variables. The joint (bivariate) probability distribution or joint probability mass function for X and Y is

$$p(x,y) = P(X = x, Y = y) \quad \forall (x,y)$$

- 1. For any set A consisting of pairs (x,y), $P[(X,Y) \in A] = \sum_{(x,y)\in A} p(x,y)$
- $2. \ p(x,y) \geq 0 \quad \forall \ (x,y)$
- $3. \sum_{x} \sum_{y} p(x,y) = 1$

Continuous Case: Let X and Y be continuous random variables. Then f(x, y) is the joint probability density function for X and Y if for any two-dimensional set A

$$P[(X,Y) \in A] = \int \int_A f(x,y) \, dx \, dy$$

1. If A is a rectangle $\{(x,y) \mid a \le x \le b, c \le y \le d\}$, then

$$P[(X,Y) \in A] = P(a \le X \le b, c \le Y \le d) = \int_a^b \int_c^d f(x,y) \, dy \, dx$$

2. $f(x,y) \geq 0 \quad \forall (x,y)$

$$3. \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) dx dy = 1$$

Joint Distribution Function: For any two random variables X and Y the joint distribution function is $F(x,y) = P(X \le x, Y \le y)$.

$$F(a,b) = \begin{cases} \sum_{x=-\infty}^{a} \sum_{y=-\infty}^{b} p(x,y) & \text{if } X \text{ and } Y \text{ are discrete} \\ \int_{-\infty}^{a} \int_{-\infty}^{b} f(x,y) \, dy \, dx & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$$

Properties

1.
$$\lim_{(x,y)\to(-\infty,-\infty)}F(x,y)=\lim_{x\to-\infty}F(x,y)=\lim_{y\to-\infty}F(x,y)=0$$

$$2. \lim_{(x,y)\to(\infty,\infty)} F(x,y) = 1$$

3. If $a \leq b$ and $c \leq d$, then

$$P(a < X \le b, c < Y \le d) = F(b, d) - F(b, c) - F(a, d) + F(a, c) \ge 0$$

4. The joint probability density function can be found from the joint distribution function:

$$f(x,y) = \frac{\partial^2}{\partial x \partial y} F(x,y)$$
 whenever the partials exist.

n Random Variables

Discrete Case: Let X_1, X_2, \ldots, X_n be discrete random variables. The joint distribution for X_1, X_2, \ldots, X_n is

$$p(x_1, x_2, \ldots, x_n) = P(X_1 = x_1, X_2 = x_2, \ldots, X_n = x_n) \quad \forall \ (x_1, x_2, \ldots, x_n)$$

For any set A consisting of n-tuples (x_1, x_2, \ldots, x_n)

$$P[(X_1, X_2, ..., X_n) \in A] = \sum_{(x_1, x_2, ..., x_n) \in A} \sum_{x_1, x_2, ..., x_n \in A} p(x_1, x_2, ..., x_n)$$

Continuous Case: Let X_1, X_2, \ldots, X_n be continuous random variables. Then $f(x_1, x_2, \ldots, x_n)$ is the joint probability density function for X_1, X_2, \ldots, X_n if for any set A

$$P[(X_1,X_2,\ldots,X_n)\in A]=\int\int\cdots\int_A f(x_1,x_2,\ldots,x_n)\,dx_1\,dx_2\cdots dx_n$$

Joint Distribution Function: The joint distribution function for the n random variables X_1, X_2, \ldots, X_n is

$$F(x_1, x_2, \ldots, x_n) = P(X_1 \leq x_1, X_2 \leq x_2, \ldots, X_n \leq x_n)$$

$$F(y_1, y_2, \dots, y_n) = \begin{cases} \sum_{x_1 = -\infty}^{y_1} \sum_{x_2 = -\infty}^{y_2} \cdots \sum_{x_n = -\infty}^{y_n} p(x_1, x_2, \dots, x_n) & \text{if } X_1, X_2, \dots, X_n \text{ are discrete} \\ \int_{-\infty}^{y_1} \int_{-\infty}^{y_2} \cdots \int_{-\infty}^{y_n} f(x_1, x_2, \dots, x_n) dx_n \cdots dx_1 & \text{if } X_1, X_2, \dots, X_n \text{ are continuous} \end{cases}$$

$$f(x_1, x_2, ..., x_n) = \frac{\partial^n}{\partial x_1 \partial x_2 \cdots \partial x_n} F(x_1, x_2, ..., x_n)$$
 whenever the partials exist.

Marginal Distributions

1. Let X and Y be discrete random variables. The marginal probability mass functions for X and Y are

$$p_X(x) = \sum_y p(x,y)$$
 $p_Y(y) = \sum_x p(x,y)$

2. Let X and Y be continuous random variables. The marginal probability density functions for X and Y

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) dy$$
 for $-\infty < x < \infty$ $f_Y(y) = \int_{-\infty}^{\infty} f(x, y) dx$ for $-\infty < y < \infty$

3. Let X_1, X_2, \ldots, X_n be a collection of random variables. The marginal distribution of a subset of the random variables, X_1, X_2, \ldots, X_r (r < n) is

$$g(x_1, x_2, \dots x_r) = \begin{cases} \sum_{x_{r+1}} \dots \sum_{x_n} p(x_1, x_2, \dots, x_n) & \text{if } X_1, X_2, \dots, X_n \text{ are discrete} \\ \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f(x_1, x_2, \dots, x_n) dx_{r+1} dx_{r+2} \dots dx_n & \text{if } X_1, X_2, \dots, X_n \text{ are continuous} \end{cases}$$

Conditional Distributions

1. Let X and Y be discrete random variables with joint probability mass function p(x, y) and let $p_Y(y)$ be the marginal probability mass function for Y. The conditional probability mass function for X gives Y = y is

$$p(x \mid y) = \frac{p(x, y)}{p_Y(y)}, \quad p_Y(y) \neq 0$$

Let $p_X(x)$ be the marginal probability mass function for X. The conditional probability mass function for Y given X = x is

$$p(y \mid x) = \frac{p(x,y)}{p_X(x)}, \quad p_X(x) \neq 0$$

2. Let X and Y be continuous random variables with joint probability density function f(x, y) and let $f_Y(y)$ be the marginal probability density function for Y. The conditional probability density function for X given Y = y is

$$f(x \mid y) = \frac{f(x,y)}{f_Y(y)}, \quad f_Y(y) \neq 0$$

Let $f_X(x)$ be the marginal probability density function for X. The conditional probability density function for Y given X = x is

$$f(y \mid x) = \frac{f(x,y)}{f_X(x)}, \quad f_X(x) \neq 0$$

3. Let X_1, X_2, \ldots, X_n be a collection of random variables. The conditional distribution of any subset X_1, X_2, \ldots, X_k given $X_{k+1} = x_{k+1}, X_{k+2} = x_{k+2}, \ldots, X_n = x_n$ is

$$p(x_1, x_2, \ldots, x_k \mid x_{k+1}, x_{k+2}, \ldots, x_k) = \frac{p(x_1, x_2, \ldots, x_n)}{q(x_{k+1}, x_{k+2}, \ldots, x_n)}, \quad q(x_{k+1}, x_{k+2}, \ldots, x_n) \neq 0$$

if X_1, X_2, \ldots, X_n are discrete with joint probability mass function $p(x_1, x_2, \ldots, x_n)$ and the random variables $X_{k+1}, X_{k+2}, \ldots, X_n$ have marginal probability mass function $g(x_{k+1}, x_{k+2}, \ldots, x_n)$,

$$f(x_1, x_2, \ldots, x_k \mid x_{k+1}, x_{k+2}, \ldots, x_k) = \frac{f(x_1, x_2, \ldots, x_n)}{g(x_{k+1}, x_{k+2}, \ldots, x_n)}, \quad g(x_{k+1}, x_{k+2}, \ldots, x_n) \neq 0$$

if X_1, X_2, \ldots, X_n are continuous with joint probability density function $f(x_1, x_2, \ldots, x_n)$ and the random variables $X_{k+1}, X_{k+2}, \ldots, X_n$ have marginal probability density function $g(x_{k+1}, x_{k+2}, \ldots, x_n)$.

Independent Random Variables: Let X_1, X_2, \ldots, X_n be a collection of discrete (continuous) random variables with joint probability mass (density) function $p(x_1, x_2, \ldots, x_n)$ ($f(x_1, x_2, \ldots, x_n)$). Let $p_{X_i}(x_i)$ ($f_{X_i}(x_i)$) be the marginal probability mass (density) function for X_i for $i = 1, 2, \ldots, n$. The random variables are independent if and only if

$$p(x_1, x_2, \dots, x_n) = p_{X_1}(x_1) \cdot p_{X_2}(x_2) \cdots p_{X_n}(x_n)$$

$$(f(x_1, x_2, \dots, x_n) = f_{X_1}(x_1) \cdot f_{X_2}(x_2) \cdots f_{X_n}(x_n))$$

for all x_1, x_2, \ldots, x_n .

The Expected Value of a Function of Random Variables: Let $g(X_1, X_2, \ldots, X_n)$ be a function of the random variables X_1, X_2, \ldots, X_n . If X_1, X_2, \ldots, X_n are discrete random variables with joint probability mass function $p(x_1, x_2, \ldots, x_n)$ then the expected value of $g(X_1, X_2, \ldots, X_n)$ is

$$E[g(X_1, X_2, \ldots, X_n)] = \sum_{x_1} \sum_{x_2} \cdots \sum_{x_n} g(x_1, x_2, \ldots, x_n) p(x_1, x_2, \ldots, x_n)$$

If X_1, X_2, \ldots, X_n are continuous random variables with joint density function $f(x_1, x_2, \ldots, x_n)$ then

$$E[g(X_1,X_2,\ldots,X_n)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} g(x_1,x_2,\ldots,x_n) f(x_1,x_2,\ldots,x_n) dx_1 dx_2 \cdots dx_n$$

Theorem: Let c_1, c_2, \ldots, c_n be constants, then

$$E\left[\sum_{i=1}^{n} c_{i} g_{i}(X_{1}, X_{2}, \dots, X_{n})\right] = \sum_{i=1}^{n} c_{i} E[g_{i}(X_{1}, X_{2}, \dots, X_{n})]$$

The Product Moment About The Origin: The rth and sth product moment about the origin of the random

variables X and Y is defined for r = 0, 1, 2, ..., and s = 0, 1, 2, ..., by

$$\mu'_{r,s} = E(X^rY^s) = \begin{cases} \sum_{x} \sum_{y} x^r y^s p(x,y) & \text{if } X \text{ and } Y \text{ are discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^r y^s f(x,y) \, dx \, dy & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$$

The Product Moment About The Means: The rth and sth product moment about the respective means of the random variables X and Y is defined for $r = 0, 1, 2, \ldots$, and $s = 0, 1, 2, \ldots$, by

$$\mu_{r,s} = E[(X - \mu_X)^r (Y - \mu_Y)^s] = \begin{cases} \sum\limits_x \sum\limits_y (x - \mu_X)^r (y - \mu_Y)^s p(x,y) & \text{if } X \text{ and } Y \text{ are discrete} \\ \int\limits_{-\infty}^\infty \int\limits_{-\infty}^\infty (x - \mu_X)^r (y - \mu_Y)^s f(x,y) \, dx \, dy & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$$

Covariance: The covariance of the random variables X and Y is defined to be

$$\sigma_{XY} = \text{Cov}(X, Y) = \mu_{1,1} = E[(X - \mu_x)(Y - \mu_Y)]$$

Theorems:

1. If X_1, X_2, \ldots, X_n are independent, then

$$E(X_1X_2\cdots X_n)=E(X_1)E(X_2)\cdots E(X_n)$$

2.
$$Cov(X,Y) = \mu'_{1,1} - \mu_x \mu_y = E(XY) - E(X)E(Y)$$

3. If X and Y are independent random variables, then Cov(X,Y) = 0.

Linear Combinations Of Random Variables

Let X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be random variables and a_1, a_2, \ldots, a_m and b_1, b_2, \ldots, b_n be constants. Define

$$U = \sum_{i=1}^{m} a_i X_i \qquad V = \sum_{j=1}^{n} b_j Y_j$$

Theorems:

$$1. E(U) = \sum_{i=1}^{m} a_i E(X_i)$$

2.
$$\operatorname{Var}(U) = \sum_{i=1}^{m} a_i^2 \operatorname{Var}(X_i) + 2 \sum_{i < j} \sum_{i < j} a_i a_j \operatorname{Cov}(X_i, X_j),$$

where the double sum extends over all pairs (i, j) with i < j.

3. If the random variables X_1, X_2, \ldots, X_m are independent, $Var(U) = \sum_{i=1}^m a_i^2 Var(X_i)$.

4.
$$\operatorname{Cov}(U, V) = \sum_{i=1}^{m} \sum_{i=1}^{n} a_i b_i \operatorname{Cov}(X_i, Y_j)$$

Conditional Expectation: Let X and Y be random variables and let g(X) be a function of X. The conditional expectation of g(X) given Y = y is defined by

$$E[g(X) \mid y] = \begin{cases} \sum_{x} g(x)p(x \mid y) & \text{if } X \text{ and } Y \text{ are discrete} \\ \int_{-\infty}^{\infty} g(x)f(x \mid y) dx & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$$

1. The conditional mean, or conditional expectation, of X given Y = y is

$$\mu_{X|y} = E(X \mid y) = \begin{cases} \sum_{x} xp(x \mid y) & \text{if } X \text{ and } Y \text{ are discrete} \\ \int_{-\infty}^{\infty} xf(x \mid y) \, dx & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$$

2. The conditional variance of X given Y = y is

$$\sigma_{X|y}^2 = E[(X - \mu_{X|y})^2 \mid y] = E(X^2 \mid y) - \mu_{X|y}^2$$

3.
$$E(X) = E[E(X | Y)]$$

Special Distributions

The Multinomial Distribution: The random variables X_1, X_2, \ldots, X_n have a multinomial distribution if their joint probability distribution is given by

$$p(x_1, x_2, \ldots, x_n) = \binom{n}{x_1, x_2, \ldots, x_n} p_1^{x_1} p_2^{x_2} \cdots p_n^{x_n}$$

for $x_i = 0, 1, ..., n$ for each i and $\sum_{i=1}^n x_i = n$, $\sum_{i=1}^n p_i = 1$.

- 1. $E(X_i) = np_i$
- 2. $Var(X_i) = np_i(1-p_i)$
- 3. $Cov(X_i, X_j) = -np_i p_j, \quad i \neq j$

The Bivariate Normal Distribution: The random variables X and Y have a bivariate normal distribution if their joint probability density function is given by

$$f(x,y) = \frac{e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x-\mu_X}{\sigma_X}\right)^2 - 2\rho\left(\frac{x-\mu_X}{\sigma_X}\right)\left(\frac{y-\mu_Y}{\sigma_Y}\right) + \left(\frac{y-\mu_Y}{\sigma_Y}\right)^2\right]}}{2\pi\sigma_X\sigma_Y\sqrt{1-\rho^2}}, \quad -\infty < x < \infty, \quad -\infty < y < \infty$$

where $\sigma_X > 0$, $\sigma_Y > 0$, and $-1 < \rho < 1$

Theorems:

- 1. $E(X) = \mu_X$, $E(Y) = \mu_Y$, $Var(X) = \sigma_X^2$, $Var(Y) = \sigma_Y^2$, $Cov(X, Y) = \rho \sigma_X \sigma_Y$
- 2. The conditional density of X given Y = y is a normal distribution with

$$\mu_{X|y} = \mu_X +
ho rac{\sigma_X}{\sigma_Y} (y - \mu_Y) \ ext{ and } \ \sigma_{X|y}^2 = \sigma_X^2 (1 -
ho^2)$$

The conditional density of Y given X = x is a normal distribution with

$$\mu_{Y|x} = \mu_Y + \rho \frac{\sigma_Y}{\sigma_X} (x - \mu_X)$$
 and $\sigma_{Y|x}^2 = \sigma_Y^2 (1 - \rho^2)$

3. X and Y are independent if and only if $\rho = 0$.

Functions of Random Variables

Given a collection of random variables X_1, X_2, \ldots, X_n and their joint probability mass function or joint probability density function, let the random variable $Y = Y(X_1, X_2, \ldots, X_n)$ be a function of X_1, X_2, \ldots, X_n . The following are techniques for determining the probability distribution of Y.

Method of Distribution Functions:

- 1. Determine the region Y = y in the $(x_1, x_2, ..., x_n)$ space.
- 2. Determine the region $Y \leq y$.
- 3. Compute $F(y) = P(Y \le y)$ by integrating the joint probability density function $f(x_1, x_2, ..., x_n)$ ove the region $Y \le y$.
- 4. Compute the probability density function for Y, f(y), by differentiating F(y), that is

$$f(y) = \frac{dF(y)}{dy}$$

Method of Transformations (One Variable): Let X be a random variable with probability density function $f_X(x)$. If u(x) is differentiable and either increasing or decreasing, then Y = u(X) has probability

density function

$$f_Y(y) = f_X(w(y)) \cdot |w'(y)|, \quad u'(x) \neq 0$$

where $x = w(y) = u^{-1}(y)$

Method of Transformations (Two Variables): Let X_1 and X_2 be random variables with joint probability density function $f(x_1, x_2)$. Let the functions $y_1 = u_1(x_1, x_2)$ and $y_2 = u_2(x_1, x_2)$ represent a one-to-one transformation from the x's to the y's and let the partial derivatives with respect to both x_1 and x_2 exist. Then the joint probability density function for $Y_1 = u_1(X_1, X_2)$ and $Y_2 = u_2(X_1, X_2)$ is

$$g(y_1, y_2) = f(w_1(y_1, y_2), w_2(y_1, y_2)) \cdot |J|$$

where $y_1 = u_1(x_1, x_2)$ and $y_2 = u_2(x_1, x_2)$ are uniquely solved for $x_1 = w_1(y_1, y_2)$ and $x_2 = w_2(y_1, y_2)$, and J is the determinant of the Jacobian

$$J = \begin{vmatrix} \frac{\partial x_1}{\partial y_1} & \frac{\partial x_1}{\partial y_2} \\ \frac{\partial x_2}{\partial y_1} & \frac{\partial x_2}{\partial y_2} \end{vmatrix}$$

Method of Moment-generating Functions: Let Y be a function of the random variables X_1, X_2, \ldots, X_n .

- 1. Determine the moment-generating function for Y, $M_Y(t)$.
- 2. If $M_Y(t) = M_U(t)$ for all t, then Y and U have identical distributions.

Theorems:

- 1. Let X be a random variable with moment-generating function $M_X(t)$ and let Y be a random variable with moment-generating function $M_Y(t)$. If $M_X(t) = M_Y(t)$ for all t, then X and Y have the same probability distribution.
- 2. Let X_1, X_2, \ldots, X_n be independent random variables and let $Y = X_1 + X_2 + \cdots + X_n$, then

$$M_Y(t) = \prod_{i=1}^n M_{X_i}(t)$$

Sampling Distributions

Definitions:

- 1. The random variables X_1, X_2, \ldots, X_n are said to be a random sample of size n from an infinite population if X_1, X_2, \ldots, X_n are independent and identically distributed (iid).
- 2. Let X_1, X_2, \ldots, X_n be a random sample, the sample mean is

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

The sample variance is

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Theorem: Let X_1, X_2, \ldots, X_n be a random sample from an infinite population with mean μ and variance σ^2 , then

$$E(\overline{X}) = \mu$$
 and $Var(\overline{X}) = \frac{\sigma^2}{n}$

The Standard Error of the Mean: $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$

The Law of Large Numbers: For any positive constant c, $P(\mu - c < \overline{X} < \mu + c) \ge 1 - \frac{\sigma^2}{nc^2}$.

The Central Limit Theorem: Let X_1, X_2, \ldots, X_n be a random sample from an infinite population with mean

 μ and variance σ^2 . The limiting distribution of

$$Z = \frac{\overline{X} - \mu}{\sigma / \sqrt{n}}$$

as $n \to \infty$ is the standard normal distribution.

Theorem: Let X_1, X_2, \ldots, X_n be a random sample from a normal population with mean μ and variance σ^2 . Then \overline{X} is normally distributed with mean μ and variance σ^2/n .

The Distribution of The Mean: Finite Populations

Let $\{c_1, c_2, \ldots, c_N\}$ be a collection of numbers representing a finite population of size N and assume the sampling from this population is done without replacement. Let the random variable X_i be the *i*th observation from the population. Then X_1, X_2, \ldots, X_n is a random sample from a finite population if the joint probability mass function of X_1, X_2, \ldots, X_n is

$$p(x_1,x_2,\ldots,x_n)=\frac{1}{N(N-1)\cdots(N-n+1)}$$

1. The marginal distribution of the random variable X_i , $i=1,2,\ldots,n$, is

$$p_{X_i}(x_i) = \frac{1}{N} \text{ for } x_i = c_1, c_2, \dots, c_n$$

2. The mean and variance of the finite population c_1, c_2, \ldots, c_n are

$$\mu = \sum_{i=1}^{N} c_i \frac{1}{N}$$
 and $\sigma^2 = \sum_{i=1}^{N} (c_i - \mu)^2 \frac{1}{N}$

3. The joint marginal probability mass function of any two of the random variables X_1, X_2, \ldots, X_n is

$$p(x_i,x_j) = \frac{1}{N(N-1)}$$

4. The covariance between any two of the random variables X_1, X_2, \ldots, X_n is

$$Cov(X_i, X_j) = -\frac{\sigma^2}{N-1}$$

5. Let \overline{X} be the sample mean of the random sample of size n. Then

$$E(\overline{X}) = \mu$$
 and $Var(\overline{X}) = \frac{\sigma^2}{n} \cdot \frac{N-n}{N-1}$

The quantity (N-n)/(N-1) is the finite population correction factor.

The Chi-Square Distribution, Theorems:

- Let Z be a standard normal random variable, then Z² has a chi-square distribution with 1 degree of freedom.
- 2. Let Z_1, Z_2, \ldots, Z_n be independent standard normal random variables, then

$$Y = \sum_{i=1}^{n} Z_i^2$$

has a chi-square distribution with n degrees of freedom.

3. Let X_1, X_2, \ldots, X_n be independent random variables such that X_i has a chi-square distribution with i degrees of freedom. Then

$$Y = \sum_{i=1}^{n} X_i$$

has a chi-square distribution with $\nu = \nu_1 + \nu_2 + \cdots + \nu_n$ degrees of freedom.

- 4. Let U have a chi-square distribution with ν_1 degrees of freedom, U and V be independent, and U+V have a chi-square distribution with $\nu > \nu_1$ degrees of freedom. Then V has a chi-square distribution with $\nu \nu_1$ degrees of freedom.
- 5. Let X_1, X_2, \ldots, X_n be a random sample from a normal population with mean μ and variance σ^2 . Then
 - a. \overline{X} and S^2 are independent, and
 - b. the random variable $\frac{(n-1)S^2}{\sigma^2}$ has a chi-square distribution with n-1 degrees of freedom.

The t Distribution, Theorems:

1. Let Z have a standard normal distribution, X have a chi-square distribution with ν degrees of freedom, and X and Z be independent. Then

$$T = \frac{Z}{\sqrt{X/
u}}$$

has a t distribution with ν degrees of freedom.

2. Let X_1, X_2, \ldots, X_n be a random sample from a normal population with mean μ and variance σ^2 . Then

$$T = rac{\overline{X} - \mu}{S/\sqrt{n}}$$

has a t distribution with n-1 degrees of freedom.

The F Distribution, Theorems:

1. Let U have a chi-square distribution with ν_1 degrees of freedom, V have a chi-square distribution with ν_2 degrees of freedom, and U and V be independent. Then

$$F = \frac{U/\nu_1}{V/\nu_2}$$

has and F distribution with ν_1 and ν_2 degrees of freedom.

2. Let X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n be random samples from normal populations with variances σ_X^2 and σ_Y^2 , respectively. Then

$$F = rac{S_X^2/\sigma_X^2}{S_Y^2/\sigma_Y^2}$$

has a F distribution with m-1 and n-1 degrees of freedom.

3. Let F_{α,ν_1,ν_2} be critical value for the F distribution defined by $P(F \ge F_{\alpha,\nu_1,\nu_2}) = \alpha$. Then $F_{1-\alpha,\nu_1,\nu_2} = 1/F_{\alpha,\nu_2,\nu_1}$

Order Statistics

Definition: Let X_1, X_2, \ldots, X_n be independent continuous random variables with probability density function f(x) and cumulative distribution function F(x). The order statistic, $X_{(i)}$, $i = 1, 2, \ldots, n$, is a random variable defined to be the *i*th largest of the set $\{X_1, X_2, \ldots, X_n\}$. Thus

$$X_{(1)} \leq X_{(2)} \leq \cdots \leq X_{(n)}$$

and in particular

$$X_{(1)} = \min\{X_1, X_2, \dots, X_n\}$$
 and $X_{(n)} = \max\{X_1, X_2, \dots, X_n\}$

The joint density of X_1, X_2, \ldots, X_n is

$$g(x_1,x_2,\ldots,x_n)=n!f(x_1)\cdot f(x_2)\cdots f(x_n)$$

The First Order Statistic: The probability density function, $g_1(x)$, and the cumulative distribution function, $G_1(x)$, for $X_{(1)}$ are

$$g_1(x) = n[1 - F(x)]^{n-1}f(x)$$
 $G_1(x) = 1 - [1 - F(x)]^n$

The nth Order Statistic: The probability density function, $g_n(x)$, and the cumulative distribution function, $G_n(x)$, for $X_{(n)}$ are

$$g_n(x) = n[F(x)]^{n-1}f(x)$$
 $G_n(x) = [F(x)]^n$

The ith Order Statistic: The probability density function, $g_i(x)$, for the ith order statistic is

$$g_i(x) = \frac{n!}{(i-1)!(n-i)!} [F(x)]^{i-1} f(x) [1-F(x)]^{n-i}$$

Estimation

Let $\hat{\theta}$ be a point estimator of the parameter θ .

Unbiased Estimator: $\hat{\theta}$ is an unbiased estimator of θ if $E(\hat{\theta}) = \theta$.

Bias: The bias of $\hat{\theta}$ is $B(\hat{\theta}) = E(\hat{\theta}) - \theta$.

Mean Square Error: The mean square error of $\hat{\theta}$ is $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = Var(\hat{\theta}) + B(\hat{\theta})^2$.

Error of Estimation: The error of estimation is $\epsilon = \mid \hat{\theta} - \theta \mid$.

Cramér-Rao Inequality: Let X_1, X_2, \ldots, X_n be a random sample from a population with probability density function f(x). Let $\hat{\theta}$ be an unbiased estimator of θ . Under very general conditions it can be shown that

$$\operatorname{Var}(\hat{ heta}) \geq rac{1}{n \cdot E\left[\left(rac{\partial \ln f(X)}{\partial heta}
ight)^2
ight]}$$

If equality holds then $\hat{\theta}$ is a minimum variance unbiased estimator of θ .

Efficiency: Let $\hat{\theta}_1$ and $\hat{\theta}_2$ be unbiased estimators of θ .

- 1. If $Var(\hat{\theta}_1) < Var(\hat{\theta}_2)$ then $\hat{\theta}_1$ is relatively more efficient than $\hat{\theta}_2$.
- 2. The efficiency of $\hat{\theta}_1$ relative to $\hat{\theta}_2$ is

Efficiency =
$$\frac{\operatorname{Var}(\hat{\theta}_2)}{\operatorname{Var}(\hat{\theta}_1)}$$

Consistency: $\hat{\theta}$ is a consistent estimator of θ if for every $\epsilon > 0$,

$$\lim_{n\to\infty} P(\mid \hat{\theta}-\theta\mid \leq \epsilon) = 1 \quad \text{ or equivalently } \quad \lim_{n\to\infty} P(\mid \hat{\theta}-\theta\mid > \epsilon) = 0$$

Theorem: $\hat{\theta}$ is a consistent estimator of θ if

- 1. $\hat{\theta}$ is unbiased, and
- $2. \lim_{n\to\infty} \operatorname{Var}(\hat{\theta}) = 0.$

Sufficiency: $\hat{\theta}$ is a sufficient estimator of θ if for each value of $\hat{\theta}$ the conditional distribution of X_1, X_2, \ldots, X_n , given $\hat{\theta}$ equals a specific value is independent of θ .

Theorem: $\hat{\theta}$ is a sufficient estimator of θ if the joint distribution of X_1, X_2, \ldots, X_n can be factored into

$$f(x_1, x_2, \ldots, x_n; \theta) = g(\hat{\theta}, \theta) \cdot h(x_1, x_2, \ldots, x_n)$$

where $g(\hat{\theta}, \theta)$ depends only on the estimate $\hat{\theta}$ and the parameter θ , and $h(x_1, x_2, \dots, x_n)$ does not depend on the parameter θ .

The Method Of Moments: The moment estimators are the solutions to the system of equations

$$\mu'_{k} = E(X^{k}) = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{k} = m'_{k}, \quad k = 1, 2, \dots, r$$

where r is the number of parameters.

- The Likelihood Function: Let x_1, x_2, \ldots, x_n be the values of a random sample from a population characterized by the parameters $\theta_1, \theta_2, \ldots, \theta_r$. The likelihood function of the sample is
 - 1. the joint probability mass function evaluated at x_1, x_2, \ldots, x_n if X_1, X_2, \ldots, X_n are discrete,

$$L(\theta_1, \theta_2, \ldots, \theta_r) = p(x_1, x_2, \ldots, x_n; \theta_1, \theta_2, \ldots, \theta_r)$$

2. the joint probability density function evaluated at x_1, x_2, \ldots, x_n if X_1, X_2, \ldots, X_n are continuous.

$$L(\theta_1, \theta_2, \ldots, \theta_r) = f(x_1, x_2, \ldots, x_n; \theta_1, \theta_2, \ldots, \theta_r)$$

- The Method Of Maximum Likelihood: The maximum likelihood estimators are those values of the parameters that maximize the likelihood function of the sample $L(\theta_1, \theta_2, \dots, \theta_r)$.
 - In practice it is often easier to maximize $\ln L(\theta_1, \theta_2, \dots, \theta_r)$. This is equivalent to maximizing the likelihood function, $L(\theta_1, \theta_2, \dots, \theta_r)$, since $\ln L(\theta_1, \theta_2, \dots, \theta_r)$ is a monotonic function of $L(\theta_1, \theta_2, \dots, \theta_r)$.
- The Invariance Property of Maximum Likelihood Estimators: Let $\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_r$ be the maximum likelihood estimators for $\theta_1, \theta_2, \dots, \theta_r$ and let $h(\theta_1, \theta_2, \dots, \theta_r)$ be a function of $\theta_1, \theta_2, \dots, \theta_r$. The maximum likelihood estimator of the parameter $h(\theta_1, \theta_2, \dots, \theta_r)$ is $h(\theta_1, \widehat{\theta_2}, \dots, \theta_r) = h(\hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_r)$.

Table 4. Probability and Statistics Formulas (Continued)

Confidence Intervals

Parameter	Assumptions	100(1-lpha)% Confidence Interval
μ	n large, σ^2 known, or normality, σ^2 known	$\overline{x}\pm z_{lpha/2}\cdotrac{\sigma}{\sqrt{n}}$
μ	n large, σ^2 unknown	$\overline{x}\pm z_{lpha/2}\cdotrac{s}{\sqrt{n}}$
μ	normality, n small, σ^2 unknown	$\overline{x} \pm t_{lpha/2,n-1} \cdot rac{s}{\sqrt{n}}$
p	binomial experiment, n large	$\hat{p}\pm z_{lpha/2}\cdot\sqrt{rac{\hat{p}\hat{q}}{n}}$
σ^2	normality	$\left(\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}}, \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}\right)$
$\mu_1-\mu_2$	n_1, n_2 large, independence, σ_1^2, σ_2^2 known, or normality, independence, σ_1^2, σ_2^2 known	$\left(\overline{x}_1-\overline{x}_2 ight)\pm z_{lpha/2}\cdot\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}$
$\mu_1-\mu_2$	n_1, n_2 large, independence, σ_1^2, σ_2^2 unknown	$(\overline{x}_1-\overline{x}_2)\pm z_{lpha/2}\cdot\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$
$\mu_1-\mu_2$	normality, independence, σ_1^2 , σ_2^2 unknown but equal, n_1 , n_2 small	$\left(\overline{x}_1-\overline{x}_2 ight)\pm t_{lpha/2,n_1+n_2-2}\cdot s_p\sqrt{rac{1}{n_1}+rac{1}{n_2}}$
	11, 102 SHEAT	$s_p = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$
$\mu_1-\mu_2$	normality, independence, σ_1^2 , σ_2^2 unknown, unequal,	$(\overline{x}_1-\overline{x}_2)\pm t_{lpha/2, u}\cdot\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}$
	n_1, n_2 small	$\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$
$\mu_D = \mu_1 - \mu_2$	normality, n pairs, n small, dependence	$\overline{d}\pm t_{lpha/2,n-1}\cdot rac{s_D}{\sqrt{n}}$
p_1-p_2	binomial experiments, n_1 , n_2 large, independence	$(\hat{p}_1 - \hat{p}_2) \pm z_{lpha/2} \cdot \sqrt{rac{\hat{p}_1\hat{q}_1}{n_1} + rac{\hat{p}_2\hat{q}_2}{n_2}}$
$\frac{\sigma_1^2}{\sigma_2^2}$	normality, independence	$\left(\frac{s_1^2}{s_2^2} \cdot \frac{1}{F_{\frac{\alpha}{2},n_1-1,n_2-1}}, \frac{s_1^2}{s_2^2} \cdot \frac{1}{F_{1-\frac{\alpha}{2},n_1-1,n_2-1}}\right)$

Table 4. Probability and Statistics Formulas (Continued)

Hypothesis Tests (One-Sample)

Null Hypothesis	Assumptions	Alternative Hypothesis	Test Statistic	Rejection Region
$\mu=\mu_0$	n large, σ^2 known, or normality, σ^2 known	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$Z = rac{\overline{X} - \mu_0}{\sigma/\sqrt{n}}$	$egin{aligned} Z \geq z_{lpha} \ Z \leq -z_{lpha} \ \mid Z \mid \geq z_{lpha/2} \end{aligned}$
$\mu=\mu_0$	n large, σ^2 unknown	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$Z=rac{\overline{X}-\mu_0}{s/\sqrt{n}}$	$egin{aligned} Z \geq z_{lpha} \ Z \leq -z_{lpha} \ \mid Z \mid \geq z_{lpha/2} \end{aligned}$
$\mu=\mu_0$	normality, n small, σ^2 unknown	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$T=rac{\overline{X}-\mu_0}{S/\sqrt{n}}$	$T \geq t_{lpha,n-1} \ T \leq -t_{lpha,n-1} \ \mid T \mid \geq t_{lpha/2,n-1}$
$p=p_0$	binomial experiment, n large	$p > p_0$ $p < p_0$ $p \neq p_0$	$Z=rac{\hat{p}-p_0}{\sqrt{p_0(1-p_0)/n}}$	$egin{aligned} Z \geq z_lpha \ Z \leq -z_lpha \ \mid Z \mid \geq z_{lpha/2} \end{aligned}$
$\sigma^2 = \sigma_0^2$	normality	$\sigma^{2} > \sigma_{0}^{2}$ $\sigma^{2} < \sigma_{0}^{2}$ $\sigma^{2} \neq \sigma_{0}^{2}$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\chi^{2} \ge \chi^{2}_{\alpha,n-1}$ $\chi^{2} \le \chi^{2}_{1-\alpha,n-1}$ $\chi^{2} \le \chi^{2}_{1-\alpha/2,n-1} \text{ or }$ $\chi^{2} \ge \chi^{2}_{\alpha/2,n-1}$

Table 4. Probability and Statistics Formulas (Continued)

Hypothesis Tests (Two-Samples)

Null Hypothesis	Assumptions	Alternative Hypothesis	Test Statistic	Rejection Region
$\mu_1 - \mu_2 = \Delta_0$	n_1 , n_2 large, independence, σ_1^2 , σ_2^2 known, or normality, independence, σ_1^2 , σ_2^2 known	$\mu_1 - \mu_2 > \Delta_0$ $\mu_1 - \mu_2 < \Delta_0$ $\mu_1 - \mu_2 \neq \Delta_0$	$Z=rac{\left(\overline{X}_{1}-\overline{X}_{2} ight)-\Delta_{0}}{\sqrt{rac{\sigma_{1}^{2}}{n_{1}}+rac{\sigma_{2}^{2}}{n_{2}}}}$	$Z \geq z_lpha \ Z \leq -z_lpha \ Z \geq z_{lpha/2}$
$\mu_1 - \mu_2 = \Delta_0$	n_1 , n_2 large, independence, σ_1^2 , σ_2^2 unknown	$\mu_1 - \mu_2 > \Delta_0$ $\mu_1 - \mu_2 < \Delta_0$ $\mu_1 - \mu_2 \neq \Delta_0$	$Z=rac{(\overline{X}_1-\overline{X}_2)-\Delta_0}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$	$egin{aligned} Z &\geq z_{lpha} \ Z &\leq -z_{lpha} \ \mid Z \mid \geq z_{lpha/2} \end{aligned}$
$\mu_1-\mu_2=\Delta_0$	normality, independence, σ_1^2 , σ_2^2 unknown, $\sigma_1^2 = \sigma_2^2$ n_1 , n_2 small	$\mu_1 - \mu_2 \neq \Delta_0$	$S_p = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$T \ge t_{\alpha,n_1+n_2-2}$ $T \le -t_{\alpha,n_1+n_2-2}$ $\mid T \mid \ge t_{\alpha/2,n_1+n_2-2}$
$\mu_1 - \mu_2 = \Delta_0$	normality, independence, σ_1^2 , σ_2^2 unknown, $\sigma_1^2 \neq \sigma_2^2$ n_1 , n_2 small	$\mu_1 - \mu_2 > \Delta_0$ $\mu_1 - \mu_2 < \Delta_0$ $\mu_1 - \mu_2 \neq \Delta_0$	$T' = \frac{(\overline{X}_1 - \overline{X}_2) - \Delta_0}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$ $\nu = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{(s_1^2/n_1)^2}{n_1 - 1} + \frac{(s_2^2/n_2)^2}{n_2 - 1}}$	$T' \geq t_{lpha/2, u} \ T' \leq -t_{lpha/2, u} \ \mid T' \mid \geq t_{lpha/2, u}$
$\mu_D = \Delta_0$	normality, n pairs, n small, dependence	$\mu_D > \Delta_0$ $\mu_D < \Delta_0$ $\mu_D \neq \Delta_0$	$T=rac{\overline{D}-\Delta_0}{S_D/\sqrt{n}}$	$T \geq t_{lpha,n-1}$ $T \leq -t_{lpha,n-1}$ $\mid T \mid \geq t_{lpha/2,n-1}$
$p_1 - p_2 = 0$	binomial exps., n_1, n_2 large, independence	$p_1 - p_2 > 0$ $p_1 - p_2 < 0$ $p_1 - p_2 \neq 0$	$Z = rac{\hat{p}_1 - \hat{p}_2}{\sqrt{\hat{p}\hat{q}(1/n_1 + 1/n_2)}} \ \hat{p} = rac{X_1 + X_2}{n_1 + n_2}$	$egin{aligned} Z &\geq z_{lpha} \ Z &\leq -z_{lpha} \ \mid Z \mid \geq z_{lpha/2} \end{aligned}$
$p_1 - p_2 = \Delta_0$	binomial exps., n_1 , n_2 large, independence	$p_1 - p_2 > \Delta_0$ $p_1 - p_2 < \Delta_0$ $p_1 - p_2 \neq \Delta_0$	$/\hat{p}_1\hat{q}_1 + \hat{p}_2\hat{q}_2$	$egin{aligned} Z &\geq z_{lpha} \ Z &\leq -z_{lpha} \ \mid Z \mid \geq z_{lpha/2} \end{aligned}$
$\sigma_1^2=\sigma_2^2$	normality, independence	$\sigma_1^2 > \sigma_2^2$ $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 \neq \sigma_2^2$	$F=S_1^2/S_2^2$	$F \geq F_{lpha,n_1-1,n_2-1}$ $F \leq F_{1-lpha,n_1-1,n_2-1}$ $F \leq F_{1-rac{lpha}{2},n_1-1,n_2-1}$ or $F \geq F_{rac{lpha}{2},n_1-1,n_2-1}$

Hypothesis Tests

Type I Error: Rejecting the null hypothesis when it is true is a type I error.

$$\alpha = P(\text{type I error}) = \text{Significance level} = P(\text{rejecting}H_0 \mid H_0 \text{ is true})$$

Type II Error: Accepting the null hypothesis when it is false is a type II error.

$$\beta = P(\text{type II error}) = P(\text{accepting}H_0 \mid H_0 \text{ is false})$$

The Power Function: The power function of a statistical test of H_0 versus the alternative H_a is

$$\pi(\theta) = \begin{cases} \alpha(\theta) & \text{for values of } \theta \text{ assumed under } H_0 \\ 1 - \beta(\theta) & \text{for values of } \theta \text{ assumed under } H_a \end{cases}$$

The p-Value: The p-value of a statistical test is the smallest α level for which H_0 can be rejected.

The Neyman-Pearson Lemma: Given the null hypothesis $H_0: \theta = \theta_0$ versus the alternative hypothesis $H_a: \theta = \theta_a$, let $L(\theta)$ be the likelihood function evaluated at θ . For a given α , the test that maximizes the power at θ_a has a rejection region determined by

$$\frac{L(\theta_0)}{L(\theta_a)} < k$$

This statistical test is the most powerful test of H_0 versus H_a .

Likelihood Ratio Tests: Given the null hypothesis $H_0: \underline{\theta} \in \Omega_0$ versus the alternative hypothesis $H_a: \underline{\theta} \in \Omega_a$ $\Omega_0 \cap \Omega_a = \emptyset$, $\Omega = \Omega_0 \cup \Omega_a$. Let $L(\hat{\Omega}_0)$ be the likelihood function with all unknown parameters replaced by their maximum likelihood estimators subject to the constraint $\underline{\theta} \in \Omega_0$, and let $L(\hat{\Omega})$ be defined similarly subject to the constraint $\underline{\theta} \in \Omega$. Define

$$\lambda = \frac{L(\hat{\Omega}_0)}{L(\hat{\Omega})}$$

A likelihood ratio test of H_0 versus H_a uses λ as a test statistic and has a rejection region given by $\lambda \leq k$, 0 < k < 1.

Under very general conditions, for large n, $-2 \ln \lambda$ has approximately a chi-square distribution with degrees of freedom equal to the number of parameters or functions of parameters with specific value under H_0 .

Goodness of Fit Test: Let n_i be the number of observations falling into the *i*th category, i = 1, 2, ..., k, an let $n = n_1 + n_2 + \cdots + n_k$.

$$H_0: p_1 = p_{10}, p_2 = p_{20}, \ldots, p_k = p_{k0}$$

 $H_a: p_i \neq p_{i0}$ for at least one i

Test Statistic:
$$\chi^2 = \sum_{i=1}^k \frac{(\text{observed} - \text{estimated expected})^2}{\text{estimated expected}} = \sum_{i=1}^k \frac{(n_i - np_{i0})^2}{np_{i0}}$$

Under the null hypothesis χ^2 has approximately a chi-square distribution with k-1 degrees of freedom. The approximation is satisfactory if $np_{i0} \geq 5$ for all i.

Rejection Region: $\chi^2 \ge \chi^2_{\alpha,k-1}$

Contingency Tables: Let the contingency table contain I rows and J columns, let n_{ij} be the count in the (i,j)th cell, and let $\hat{\epsilon}_{ij}$ be the estimated expected count in that cell. The test statistic is

$$\chi^2 = \sum_{\text{all cells}} \frac{(\text{observed} - \text{estimated expected})^2}{\text{estimated expected}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{(n_{ij} - \hat{\epsilon}_{ij})^2}{\hat{\epsilon}_{ij}}$$

where
$$\hat{\epsilon}_{ij} = \frac{(i ext{th row total})(j ext{th column total})}{ ext{grand total}} = \frac{n_i.n_{.j}}{n}$$

Under the null hypothesis χ^2 has approximately a chi-square distribution with (I-1)(J-1) degrees of freedom. The approximation is satisfactory if $\hat{\epsilon}_{ij} \geq 5$ for all i and j.

Bartlett's Test: Let there be k independent samples with n_i , i = 1, 2, ..., k observations in each sample, $N = n_1 + n_2 + \cdots + n_k$, and let S_i^2 be the ith sample variance.

$$H_0: \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$$

 H_a : the variances are not all equal

Test Statistic:
$$B = \frac{[(S_1^2)^{n_1-1}(S_2^2)^{n_2-1}\cdots(S_k^2)^{n_k-1}]^{1/(N-k)}}{S_p^2}$$
 where $S_p^2 = \frac{\sum\limits_{i=1}^k (n_i-1)S_i^2}{N-k}$

Rejection Region $(n_1 = n_2 = \cdots = n_k = n)$: $B \leq b_{\alpha,k,n}$

Rejection Region (sample sizes unequal): $B \leq b_{\alpha,k,n_1,n_2,...,n_k}$

where
$$b_{\alpha,k,n_1,n_2,...,n_k} \approx \frac{n_1 b_{\alpha,k,n_1} + n_2 b_{\alpha,k,n_2} + \cdots + n_k b_{\alpha,k,n_k}}{N}$$

Approximate Test Procedure: Let $\nu_i = n_i - 1$

Test Statistic: $\chi^2 = M/C$ where

$$M = \left(\sum_{i=1}^k \nu_i\right) \ln \overline{S}^2 - \sum_{i=1}^k \ln S_i^2 \quad \text{and} \quad \overline{S}^2 = \sum_{i=1}^k \nu_i S_i^2 / \sum_{i=1}^k \nu_i$$

$$C = 1 + \frac{1}{3(k-1)} \left(\sum_{i=1}^{k} 1/\nu_i - 1/\sum_{i=1}^{k} \nu_i \right)$$

Under the null hypothesis χ^2 has approximately a chi-square distribution with k-1 degrees of freedom.

Rejection Region: $\chi^2 \ge \chi^2_{\alpha,k-1}$

Cochran's Test: Let there be k independent samples with n observations in each sample, and let S_i^2 be the ith sample variance, i = 1, 2, ..., k.

$$H_0: \sigma_1^2 = \sigma_2^2 = \cdots = \sigma_k^2$$

 H_a : the variances are not all equal

Test Statistic:
$$G = \frac{\text{largest } S_i^2}{\sum_{i=1}^k S_i^2}$$

Rejection Region: $G \geq g_{\alpha,k,n}$

Simple Linear Regression

The Model: Let $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$ be n pairs of observations such that y_i is an observed value of the random variable Y_i . We assume there exist constants β_0 and β_1 such that

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

where $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are independent, normal random variables having mean 0 and variance σ^2 . That is

- 1. The ϵ_i 's are normally distributed (the Y_i 's are normally distributed),
- $2. E(\epsilon_i) = 0 \quad (E(Y_i) = \beta_0 + \beta_1 x_i),$

3.
$$\operatorname{Var}(\epsilon_i) = \sigma^2$$
 $(\operatorname{Var}(Y_i) = \sigma^2)$, and
4. $\operatorname{Cov}(\epsilon_i, \epsilon_j) = 0$, $i \neq j$ $(\operatorname{Cov}(Y_i, Y_j) = 0$, $i \neq j$).

Principle Of Least Squares: The sum of squared deviations about the true regression line is

$$S(eta_0,eta_1) = \sum_{i=1}^n [y_i - (eta_0 + eta_1 x_i)]^2$$

The point estimates of β_0 and β_1 , denoted by $\hat{\beta}_0$ and $\hat{\beta}_1$, are those values that minimize $S(\beta_0, \beta_1)$. $\hat{\beta}_0$ and $\hat{\beta}_1$ are called the least squares estimates. The estimated regression line or least squares line is $y = \hat{\beta}_0 + \hat{\beta}_1 x$.

Normal Equations:

$$\sum_{i=1}^{n} y_i = n\hat{\beta}_0 + \hat{\beta}_1 \sum_{i=1}^{n} x_i$$
$$\sum_{i=1}^{n} x_i y_i = \hat{\beta}_0 \sum_{i=1}^{n} x_i + \hat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

Notation:

$$S_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{\left(\sum_{i=1}^{n} x_i\right)^2}{n}$$

$$S_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - \frac{\left(\sum_{i=1}^{n} y_i\right)^2}{n}$$

$$S_{xy} = \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} x_i y_i - \frac{\left(\sum_{i=1}^{n} x_i\right)\left(\sum_{i=1}^{n} y_i\right)}{n}$$

Least Squares Estimates:

$$\hat{\beta}_{1} = \frac{S_{xy}}{S_{xx}} = \frac{n \sum_{i=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \qquad \hat{\beta}_{0} = \frac{\sum_{i=1}^{n} y_{i} - \hat{\beta}_{1} \sum_{i=1}^{n} x_{i}}{n} = \overline{y} - \hat{\beta}_{1} \overline{x}$$

The ith predicted (fitted) value: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, \ i = 1, 2, \ldots, n$

The ith residual: $e_i = y_i - \hat{y}_i$, i = 1, 2, ..., n

Properties:

1.
$$E(\hat{\beta}_1) = \beta_1$$
, $Var(\hat{\beta}_1) = \frac{\sigma^2}{\sum\limits_{i=1}^{n} (x_i - \overline{x})^2} = \frac{\sigma^2}{S_{xx}}$

2.
$$E(\hat{\beta}_0) = \beta_0$$
, $Var(\hat{\beta}_0) = \frac{\sigma^2 \sum_{i=1}^n x_i}{n \sum_{i=1}^n (x_i - \overline{x})^2} = \frac{\sigma^2 \sum_{i=1}^n x_i}{n S_{xx}}$

3. $\hat{\beta}_0$ and $\hat{\beta}_1$ are normally distributed.

Table 4. Probability and Statistics Formulas (Continued)

The Sum Of Squares:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2}_{SSR} + \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{SSE}$$

 $SST = \text{total sum of squares} = S_{yy}$

 $SSR = \text{sum of squares due to regression} = \hat{\beta}_1 S_{xy}$

SSE = sum of squares due to error

$$=\sum_{i=1}^{n}[y_{i}-(\hat{\beta}_{0}+\hat{\beta}_{1}x_{i})]^{2}=\sum_{i=1}^{n}y_{i}^{2}-\hat{\beta}_{0}\sum_{i=1}^{n}y_{i}-\hat{\beta}_{1}\sum_{i=1}^{n}x_{i}y_{i}$$

$$= S_{yy} - 2\hat{\beta}_1 S_{xy} + \hat{\beta}_1^2 S_{xx} = S_{yy} - \hat{\beta}_1^2 S_{xx} = S_{yy} - \hat{\beta}_1 S_{xy}$$

1.
$$\hat{\sigma}^2 = s^2 = \frac{SSE}{n-2}$$
, $E(S^2) = \sigma^2$

2. Sample Coefficient of Determination:
$$r^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

Inferences Concerning The Regression Coefficients:

The Parameter β_1 :

1.
$$T = \frac{\hat{\beta}_1 - \beta_1}{S/\sqrt{S_{xx}}} = \frac{\hat{\beta}_1 - \beta_1}{S_{\hat{\beta}_1}}$$
 has a t distribution with $n-2$ degrees of freedom.

- 2. A $100(1-\alpha)\%$ confidence interval for β_1 has as endpoints $\hat{\beta}_1 \pm t_{\alpha/2,n-2} \cdot s_{\hat{\beta}_1}$
- 3. Hypothesis test

Null	Alternative	Test	Rejection
Hypothesis	Hypothesis	Statistic	Region
$\overline{eta_1=eta_{10}}$	$eta_1 > eta_{10} \ eta_1 < eta_{10} \ eta_1 eq eta_{10} \ eta_1 eq eta_{10}$	$T=rac{\hat{eta}_1-eta_{10}}{S_{\hat{eta}_1}}$	$T \geq t_{lpha,n-2} \ T \leq -t_{lpha,n-2} \ \mid T \mid \geq t_{lpha/2,n-2}$

The Parameter β_0 :

1.
$$T = \frac{\hat{\beta}_0 - \beta_0}{S\sqrt{\sum\limits_{i=1}^n x_i^2/nS_{xx}}} = \frac{\hat{\beta}_0 - \beta_0}{S_{\hat{\beta}_0}} \text{ has a } t \text{ distribution with } n-2 \text{ degrees of freedom.}$$

- 2. A 100(1 α)% confidence interval for β_0 has as endpoints $\hat{\beta}_0 \pm t_{\alpha/2,n-2} \cdot s_{\hat{\beta}_0}$
- 3. Hypothesis test

Null	Alternative	Test	Rejection
Hypothesis	Hypothesis	Statistic	Region
$\overline{eta_0=eta_{00}}$	$\beta_0 > \beta_{00}$ $\beta_0 < \beta_{00}$ $\beta_0 \neq \beta_{00}$	$T=rac{\hat{eta}_0-eta_{00}}{S_{\hat{oldsymbol{eta}}_0}}$	$T \geq t_{lpha,n-2} \ T \leq -t_{lpha,n-2} \ \mid T \mid \geq t_{lpha/2,n-2}$

The Mean Response: The mean response of Y given $x = x_0$ is $\mu_{Y|x_0} = \beta_0 + \beta_1 x_0$. The random variable $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$ is used to estimate $\mu_{Y|x_0}$.

1.
$$E(\hat{Y}_0) = \beta_0 + \beta_1 x_0$$

2.
$$\operatorname{Var}(\hat{Y}_0) = \sigma^2 \left[\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]$$

3. \hat{Y}_0 has a normal distribution.

4.
$$T = \frac{\hat{Y}_0 - \mu_{Y|x_0}}{S\sqrt{(1/n) + [(x_0 - \overline{x})^2/S_{xx}]}} = \frac{\hat{Y}_0 - \mu_{Y|x_0}}{S_{\hat{Y}_0}}$$
 has a t distribution with $n - 2$ degrees of freedom.

5. A 100(1 - α)% confidence interval for $\mu_{Y|x_0}$ has as endpoints $\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot s_{\hat{Y}_0}$

6. Hypothesis test

Null	Alternative	Test	Rejection
Hypothesis	Hypothesis	Statistic	Region
$\beta_0 + \beta_1 x_0 = y_0 = \mu_0$	$y_0 > \mu_0$ $y_0 < \mu_0$ $y_0 \neq \mu_0$	$T=rac{\hat{Y}_0-\mu_0}{S_{\hat{Y}_0}}$	$T \geq t_{lpha,n-2} \ T \leq -t_{lpha,n-2} \ \mid T \mid \geq t_{lpha/2,n-2}$

Prediction Interval: A prediction interval for a value y_0 of the random variable $Y_0 = \beta_0 + \beta_1 x_0 + \epsilon_0$ is obtained by considering the random variable $\hat{Y}_0 - Y_0$.

1.
$$E(\hat{Y}_0 - Y_0) = 0$$

2.
$$Var(\hat{Y}_0 - Y_0) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{S_{xx}} \right]$$

3. $\hat{Y}_0 - Y_0$ has a normal distribution.

4.
$$T = \frac{\hat{Y}_0 - Y_0}{S\sqrt{1 + (1/n) + [(x_0 - \overline{x})^2/S_{xx}]}} = \frac{\hat{Y}_0 - Y_0}{S_{\hat{Y}_0 - Y_0}}$$
 has a t distribution with $n - 2$ degrees of freedom.

5. A 100(1 - α)% prediction interval for y_0 has as endpoints $\hat{y}_0 \pm t_{\alpha/2,n-2} \cdot s_{\hat{Y}_0 - Y_0}$

Analysis Of Variance Table:

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed F
Regression	SSR	1	$MSR = \frac{SSR}{1}$	MSR/MSE
Error	SSE	n-2	$MSE = \frac{SSE}{n-2}$	
Total	SST	n-1		

Hypothesis Test of Significant Regression:

Null	Alternative	Test	Rejection
Hypothesis	Hypothesis	Statistic	Region
$\beta_1 = 0$	$\beta_1 \neq 0$	F = MSR/MSE	$F \geq F_{\alpha,1,n-2}$

Test For Linearity Of Regression: Let there be k distinct values of x, $\{x_1, x_2, \ldots, x_k\}$, n_i observations for x_i , and $n = n_1 + n_2 + \cdots + n_k$. Define

$$y_{ij}$$
 = the jth observation on the random variable Y_i , $T_i = \sum_{j=1}^{n_i} y_{ij}$, $\overline{y}_{i,j} = T_i/n_i$

$$SSPE = \text{sum of squares due to pure error} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{i.})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2 - \sum_{i=1}^{k} \frac{T_i^2}{n_i}$$

SSLF = sum of squares due to lack of fit = SSE - SSPE

Test Statistic:
$$F = \frac{SSLF/(k-2)}{SSPE/(n-k)}$$

Rejection Region: $F \geq F_{\alpha,k-2,n-k}$

Sample Correlation Coefficient:
$$r = \hat{\beta}_1 \sqrt{\frac{S_{xx}}{S_{yy}}} = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}}$$

Hypothesis tests

Null	Alternative	Test	Rejection
Hypothesis	Hypothesis	Statistic	Region
$\rho = 0$	$ \rho > 0 \rho < 0 \rho \neq 0 $	$T=rac{R\sqrt{n-2}}{\sqrt{1-R^2}}=\hat{eta}_1/S_{\hat{eta}_1}$	$T \geq t_{lpha,n-2} \ T \leq -t_{lpha,n-2} \ \mid T \mid \geq t_{lpha/2,n-2}$

If X and Y have a bivariate normal distribution:

$$\rho = \rho_0 \qquad \begin{array}{c} \rho > \rho_0 \\ \rho < \rho_0 \\ \rho \neq \rho_0 \end{array} \qquad Z = \frac{\sqrt{n-3}}{2} \ln \left[\frac{(1+R)(1-\rho_0)}{(1-R)(1+\rho_0)} \right] \qquad \begin{array}{c} Z \geq z_\alpha \\ Z \leq -z_\alpha \\ |Z| \geq z_{\alpha/2} \end{array}$$

Multiple Linear Regression

The Model: Let there be n observations of the form $(x_{1i}, x_{2i}, \ldots, x_{ki}, y_i)$ such that y_i is an observed value of the random variable Y_i . Assume there exist constants $\beta_0, \beta_1, \ldots, \beta_k$ such that

$$Y_i = \beta_0 + \beta_1 x_{1i} + \cdots + \beta_k x_{ki} + \epsilon_i$$

where $\epsilon_1, \epsilon_2, \ldots, \epsilon_n$ are independent, normal random variables having mean 0 and variance σ^2 . That is

- 1. The ϵ_i 's are normally distributed (the Y_i 's are normally distributed),
- 2. $E(\epsilon_i) = 0$ $(E(Y_i) = \beta_0 + \beta_1 x_{1i} + \cdots + \beta_k x_{ki}),$ 3. $Var(\epsilon_i) = \sigma^2,$ $(Var(Y_i) = \sigma^2),$ and
- 4. $Cov(\epsilon_i, \epsilon_j) = 0, i \neq j, (Cov(Y_i, Y_j) = 0, i \neq j).$

Notation: Let Y be the random vector of responses, y be the vector of observed responses, $\boldsymbol{\beta}$ be the vector of regression coefficients, ϵ be the vector of random errors, and let X be the design matrix:

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \quad \mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} \quad \boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} \quad \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_n \end{pmatrix} \quad \mathbf{X} = \begin{pmatrix} 1 & x_{11} & x_{21} & \cdots & x_{k1} \\ 1 & x_{12} & x_{22} & \cdots & x_{k2} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_{1n} & x_{2n} & \cdots & x_{kn} \end{pmatrix}$$

The model can now be written as: $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$

where $\epsilon \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$ equivalently, $\mathbf{Y} \sim N_n(\mathbf{X}\boldsymbol{\beta}, \sigma^2 \mathbf{I}_n)$

Principle Of Least Squares: The sum of squared deviations about the true regression line is

$$S(\beta) = \sum_{i=1}^{n} [y_i - (\beta_0 + \beta_1 x_{1i} + \dots + \beta_k x_{ki})]^2 = ||\mathbf{y} - \mathbf{X}\beta||^2$$

The vector $\hat{\boldsymbol{\beta}}' = (\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_k)$ that minimizes $S(\boldsymbol{\beta})$ is the vector of least squares estimates. The estimated regression line or least squares line is $y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \cdots + \hat{\beta}_k x_k$.

Normal Equations: $(\mathbf{X}'\mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}'\mathbf{y}$

Least Squares Estimates: If the matrix X'X is non-singular, then $\hat{\beta} = (X'X)^{-1}X'y$

The ith predicted (fitted) value: $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{1i} + \dots + \hat{\beta}_k x_{ki}, i = 1, 2, \dots, n, \hat{y} = X \hat{\beta}$

The ith residual: $e_i = y_i - \hat{y}_i$, i = 1, 2, ..., n, $\epsilon = \mathbf{y} - \hat{\mathbf{y}}$

Properties: For i = 0, 1, 2, ..., k, j = 0, 1, 2, ..., k

- 1. $E(\hat{\beta}_i) = \beta_i$
- 2. $Var(\hat{\beta}_i) = c_{ii}\sigma^2$, where c_{ij} is the value in the *i*th row and *j*th column of the matrix $(X'X)^{-1}$.
- 3. $\hat{\beta}_i$ is normally distributed.
- 4. $\operatorname{Cov}(\hat{\beta}_i, \hat{\beta}_j) = c_{ij}\sigma^2, \quad i \neq j$

The Sum Of Squares:

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \underbrace{\sum_{i=1}^{n} (\hat{y}_i - \overline{y})^2}_{SSR} + \underbrace{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}_{SSE}$$

 $SST = \text{total sum of squares} = \|\mathbf{y} - \overline{\mathbf{y}}\mathbf{1}\|^2 = \mathbf{y}'\mathbf{y} - n\overline{\mathbf{y}}^2$

 $SSR = \text{sum of squares due to regression} = \|\mathbf{X}\hat{\boldsymbol{\beta}} - \overline{y}\mathbf{1}\|^2 = \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y} - n\overline{y}^2$

 $SSE = \text{sum of squares due to error} = \|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2 = \mathbf{y}'\mathbf{y} - \hat{\boldsymbol{\beta}}'\mathbf{X}'\mathbf{y}$

where
$$\mathbf{1'} = \underbrace{(1, 1, ..., 1)}_{n1's}$$

1.
$$\hat{\sigma}^2 = s^2 = \frac{SSE}{n-k-1}$$
, $E(S^2) = \sigma^2$

- 2. $\frac{(n-k-1)S^2}{\sigma^2}$ has a chi-square distribution with n-k-1 degrees of freedom, and S^2 and $\hat{\beta}_i$ are independent.
- 3. The Coefficient of Multiple Determination: $R^2 = \frac{SSR}{SST} = 1 \frac{SSE}{SST}$
- $\text{4. Adjusted Coefficient of Multiple Determination: } R_a^2 = 1 \left(\frac{n-1}{n-k-1}\right) \frac{SSE}{SST} = 1 (1-R^2) \left(\frac{n-1}{n-k-1}\right) \frac{SSE}{SST} = 1 (1-R$

Inferences Concerning The Regression Coefficients:

- 1. $T = \frac{\hat{\beta}_i \beta_i}{S\sqrt{c_{ii}}}$ has a t distribution with n k 1 degrees of freedom.
- 2. A $100(1-\alpha)\%$ confidence for β_i has as endpoints $\hat{\beta}_i \pm t_{\alpha/2,n-k-1} \cdot s\sqrt{c_{ii}}$
- 3. Hypothesis test for β_i

Null	Alternative	Test	Rejection
Hypothesis	Hypothesis	Statistic	Region
$eta_i = eta_{i0}$	$eta_i > eta_{i0} \ eta_i < eta_{i0} \ eta_i eq eta_{i0}$	$T = rac{\hat{eta}_i - eta_i}{S\sqrt{c_{ii}}}$	$T \ge t_{lpha,n-k-1} \ T \le -t_{lpha,n-k-1} \ \mid T \mid \ge t_{lpha/2,n-k-1}$

The Mean Response: The mean response of Y given $\mathbf{x}' = \mathbf{x}'_0 = (1, x_{10}, x_{20}, \dots, x_{k0})$ is $\mu_{Y|x_{10}, x_{20}, \dots, x_{k0}} = \beta_0 + \beta_1 x_{10} + \dots + \beta_k x_{k0}$. The random variable $\hat{Y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_{10} + \dots + \hat{\beta}_k x_{k0}$ is used to estimate

 $\mu_{Y|x_{10},x_{20},...,x_{k0}}$.

1.
$$E(\hat{Y}_0) = \beta_0 + \beta_1 x_{10} + \cdots + \beta_k x_{k0}$$

2.
$$\operatorname{Var}(\hat{Y}_0) = \sigma^2 \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0$$

3. \hat{Y}_0 has a normal distribution.

4.
$$T = \frac{\hat{Y}_0 - \mu_{Y|x_{10}, x_{20}, \dots, x_{k0}}}{S\sqrt{\mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0}} \text{ has a } t \text{ distribution with } n-k-1 \text{ degrees of freedom.}$$

- 5. A $100(1-\alpha)\%$ confidence interval for $\mu_{Y|x_{10},x_{20},\ldots,x_{k0}}$ has as endpoints $\hat{y}_0 \pm t_{\alpha/2,n-k-1} \cdot s\sqrt{\mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0}$.
- 6. Hypothesis test

Null	Alternative	Test	Rejection
Hypothesis	Hypothesis	Statistic	Region
$ \frac{\beta_0 + \beta_1 x_{10} + \dots + \beta_k x_{k0}}{\beta_0 = y_0 = \mu_0} $	$egin{aligned} y_0 &> \mu_0 \ y_0 &< \mu_0 \ y_0 & eq \mu_0 \end{aligned}$	$T = rac{\hat{Y}_0 - \mu_0}{S\sqrt{\mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0}}$	$T \geq t_{lpha,n-k-1} \ T \leq -t_{lpha,n-k-1} \ \mid T \mid \geq t_{lpha/2,n-k-1}$

Prediction Interval: A prediction interval for a value y_0 of the random variable $Y_0 = \beta_0 + \beta_1 x_{10} + \cdots + \beta_k x_{k0} + \epsilon_0$ is obtained by considering the random variable $\hat{Y}_0 - Y_0$.

1.
$$E(\hat{Y}_0 - Y_0) = 0$$

2.
$$\operatorname{Var}(\hat{Y}_0 - Y_0) = \sigma^2 \left[1 + \mathbf{x}_0' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{x}_0 \right]$$

3. $\hat{Y}_0 - Y_0$ has a normal distribution.

4.
$$T = \frac{\hat{Y}_0 - Y_0}{S\sqrt{1 + \mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0}}$$
 has a t distribution with $n - k - 1$ degrees of freedom.

5. A
$$100(1-\alpha)\%$$
 prediction interval for y_0 has as endpoints $\hat{y}_0 \pm t_{\alpha/2,n-k-1} \cdot s\sqrt{1+\mathbf{x}_0'(\mathbf{X}'\mathbf{X})^{-1}\mathbf{x}_0}$

Analysis Of Variance Table:

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed F
Regression	SSR	k	$MSR = \frac{SSR}{k}$	MSR/MSE
Error	SSE	n-k-1	$MSE = \frac{SSE}{n-k-1}$	
Total	SST	n-1		

Hypothesis Test of Significant Regression:

Null	Alternative	Test	Rejection
Hypothesis	Hypothesis	Statistic	Region
$\beta_1 = \beta_2 = \cdots = \beta_k = 0$	$\beta_i \neq 0$ for some i	F = MSR/MSE	$F \geq F_{\alpha,k,n-k-1}$

Sequential Sum Of Squares: Define

$$\mathbf{g} = \mathbf{X'y} = \begin{pmatrix} g_0 = \sum_{i=1}^n y_i \\ g_1 = \sum_{i=1}^n x_{1i} y_i \\ \vdots \\ g_k = \sum_{i=1}^n x_{ki} y_i \end{pmatrix}$$

$$SSR = \sum_{j=0}^{k} \hat{\beta}_{j} g_{j} - n \overline{y}^{2}$$

 $SS(\beta_1, \beta_2, \dots, \beta_r) =$ the sum of squares due to $\beta_1, \beta_2, \dots, \beta_r$

$$=\sum_{j=1}^r \hat{\beta}_j g_j - n \overline{y}^2$$

 $SS(\beta_1)$ = the regression sum of squares due to x_1

$$=\sum_{j=0}^1\hat{\beta}_jg_j-n\overline{y}^2$$

 $SS(\beta_2 \mid \beta_1) =$ the regression sum of squares due to x_2 given x_1 is in the model

$$=SS(\beta_1,\beta_2)-SS(\beta_1)=\hat{\beta}_2g_2$$

 $SS(\beta_3 \mid \beta_1, \beta_2) =$ the regression sum of squares due to x_3 given x_1, x_2 are in the model

 $=SS(\beta_1,\beta_2,\beta_3)-SS(\beta_1,\beta_2)=\hat{\beta}_3g_3$

:

 $SS(\beta_r \mid \beta_1, \dots, \beta_{r-1}) =$ the regression sum of squares due to x_r given x_1, \dots, x_{r-1} are in the model $= SS(\beta_1, \dots, \beta_r) - SS(\beta_1, \dots, \beta_{r-1}) = \hat{\beta}_r g_r$

Partial F Test:

 $Y_i = \beta_0 + \beta_1 x_{1i} + \dots + \beta_r x_{ri} + \beta_{r+1} x_{(r+1)i} + \dots + \beta_k x_{ki} + \epsilon_i$: Full Model

SSE(F) = sum of squares due to error in the full model

$$Y_i = \beta_0 + \beta_1 x_{1i} + \cdots + \beta_r x_{ri} + \epsilon_i$$
: Reduced Model

SSE(R) = sum of squares due to error in the reduced model

$$SS(eta_{r+1},\ldots,eta_k\mideta_1,\ldots,eta_r)=$$
 the regression sum of squares due to x_{r+1},\ldots,x_k given x_1,\ldots,x_r are in the model
$$=SS(eta_1,\ldots,eta_r,eta_{r+1},\ldots,eta_k)-SS(eta_1,\ldots,eta_r)$$

$$=\sum_{j=r+1}^k\hat{eta}_jg_j$$

Null Hypothesis: $\beta_{r+1} = \beta_{r+2} = \cdots = \beta_k = 0$

Alternative Hypothesis: $\beta_m \neq 0$ for some $m = r + 1, r + 2, \ldots, k$

Test Statistic:
$$F = \frac{(SSE(R) - SSE(F))/(k-r)}{SSE(F)/(n-k-1)} = \frac{SS(\beta_{r+1}, \dots, \beta_k \mid \beta_1, \dots, \beta_r)/(k-r)}{SSE(F)/(n-k-1)}$$

Rejection Region: $F \geq F_{\alpha,k-r,n-k-1}$

Residual Analysis: Let h_{ii} be the diagonal entries of the HAT matrix given by $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$.

Standardized Residuals:
$$\frac{e_i}{\sqrt{MSE}} = \frac{e_i}{s}, i = 1, 2, ..., n$$

Studentized Residual:
$$e_i^* = \frac{e_i}{s\sqrt{1-h_{ii}}}, i = 1, 2, \dots, n$$

Deleted Studentized Residual:
$$d_i^* = e_i \left[\frac{n-k-2}{s^2(1-h_{ii})-e_i^2} \right]^{1/2}$$
, $i = 1, 2, \ldots, n$

Cook's Distance:
$$D_i = \frac{e_i^2}{(k+1)s^2} \left[\frac{h_{ii}}{(1-h_{ii})^2} \right], \quad i=1,2,\ldots,n$$

Press Residuals:
$$\delta_i = y_i - \hat{y}_{i,-i} = \frac{e_i}{1 - h_{ii}}, \ i = 1, 2, \dots, n$$

where $\hat{y}_{i,-i}$ is the *i*th predicted value by the model without using the *i*th observation in calculating the regression coefficients.

Prediction Sum of Squares =
$$PRESS = \sum_{i=1}^{n} \delta_{i}^{2}$$

 $\sum_{i=1}^{n} |\delta_i|$ may also be used for cross validation. It is less sensitive to large press residuals.

The Analysis Of Variance

One-Way Anova

The Model: Let there be k independent random samples of size n_i , i = 1, 2, ..., k, $N = n_1 + n_2 + \cdots + n_k$, such that each population is normally distributed with mean μ_i and common variance σ^2 . Let y_{ij} be the jth observation in the ith group, or treatment. Then

$$y_{ij} = \mu_i + e_{ij}$$

where e_{ij} is an observed value of the random error, ϵ_i . (Alternative model assumptions: the ϵ_i 's are independent, normally distributed, with mean 0 and variance σ^2 .)

Let α_i be the ith treatment effect and let μ be the grand mean. Then

$$y_{ij} = \mu + \alpha_i + e_{ij}$$
 $\mu = \frac{\sum\limits_{i=1}^k \mu_i}{k}$ $\sum\limits_{i=1}^k \alpha_i = 0$

The Sum-Of-Squares Identity:

 \overline{y}_i is the mean of the observations in the ith sample, \overline{y}_i is the mean of all the observations.

 $T_{i.}$ is the sum of all observations in the ith sample, $T_{..}$ is the sum of all N observations.

$$\sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{y}_{..})^{2} = \sum_{i=1}^{k} n_{i} (\overline{y}_{i.} - \overline{y}_{..})^{2} + \sum_{i=1}^{k} \sum_{j=1}^{n_{i}} (y_{ij} - \overline{y}_{i.})^{2}$$

$$SST$$

$$SSA$$

$$SSE$$

$$SST = \text{the total sum of squares} = \sum_{i=1}^{k} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{..})^2 = \sum_{i=1}^{k} \sum_{j=1}^{n_i} y_{ij}^2 - \frac{T_{..}^2}{N}$$

$$SSA = \text{the sum of squares due to treatment} = \sum_{i=1}^k n_i (\overline{y}_{i.} - \overline{y}_{..})^2 = \sum_{i=1}^k \frac{T_{i.}^2}{n_i} - \frac{T_{..}^2}{N}$$

$$SSE = ext{the sum of squares due to error} = \sum_{i=1}^k \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{i.})^2 = SST - SSA$$

Properties:

1.
$$E[MSA] = E[S_A^2] = E\left[\frac{SSA}{k-1}\right] = \sigma^2 + \frac{\sum_{i=1}^{k} n_i \alpha_i^2}{k-1}$$

2.
$$E[MSE] = E[S^2] = E\left[\frac{SSE}{N-k}\right] = \sigma^2$$

3. $F = S_A^2/S^2$ has a F distribution with k-1 and N-k degrees of freedom.

Analysis Of Variance Table:

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed F
Treatments	SSA	k-1	$s_A^2 = \frac{SSA}{k-1}$	s_A^2/s^2
Error	SSE	N-k	$s^2 = \frac{SSE}{N-k}$	
Total	\overline{SST}	N-1		

Hypothesis Test:

Null Hypothesis: $\mu_1 = \mu_2 = \cdots = \mu_k \quad (\alpha_1 = \alpha_2 = \cdots = \alpha_k = 0)$

Alternative Hypothesis: at least two of the means are not equal $(\alpha_i \neq 0 \text{ for some } i)$

Test Statistic: $F = S_A^2/S^2$

Rejection Region: $F \geq F_{\alpha,k-1,N-k}$

Multiple Comparison Procedures:

Tukey's Procedure:

Equal Sample Sizes:

Let $n = n_i$, i = 1, 2, ..., k and let Q_{α, ν_1, ν_2} be a critical value of the Studentized Range distribution.

The set of confidence intervals with endpoints

$$(\overline{y}_{i}, -\overline{y}_{i}) \pm Q_{\alpha,k,k(n-1)} \cdot \sqrt{s/n}$$
 for all i and $j, i \neq j$

is a collection of simultaneous $100(1-\alpha)\%$ confidence intervals for the differences between the trutreatment means, $\mu_i - \mu_j$. Each confidence interval that does not include zero suggests $\mu_i \neq \mu_j$ at leve α .

Unequal Sample Sizes:

The set of confidence intervals with endpoints

$$(\overline{y}_{i.} - \overline{y}_{j.}^{'}) \pm \frac{1}{\sqrt{2}} Q_{\alpha,k,N-k} \cdot s \sqrt{\frac{1}{n_i} + \frac{1}{n_j}} \quad \text{for all i and j, $i \neq j$}$$

is a collection of simultaneous $100(1-\alpha)\%$ confidence intervals for the differences between the tru treatment means, $\mu_i - \mu_j$.

Duncan's Multiple Range Test:

Let $n = n_i$, i = 1, 2, ..., k and let r_{α, ν_1, ν_2} be a critical value for Duncan's multiple range test. Duncan's procedure for determining significant differences between each treatment group at the joint significance level α is:

Define
$$R_p = r_{\alpha,p,k(n-1)} \cdot \sqrt{\frac{s^2}{n}}$$
 for $p = 2, 3, ..., k$

List the sample means in increasing order. Compare the range of every subset of p, $p=2,3,\ldots,k$, sample means in the ordered list with R_p . If the range of a p-subset is less than R_p then that subset of ordered means is not significantly different.

Dunnett's Procedure:

Let $n = n_i$, i = 0, 1, 2, ..., k, d_{α,ν_1,ν_2} be a critical value for Dunnett's procedure, and let treatment 0 be the control group. Dunnett's procedure for determining significant differences between each treatment and the control at the joint significance level α is given by

Null Hypotheses: $\mu_0 = \mu_i$ i = 1, 2, ..., k

Alternative Hypotheses: $\mu_0 > \mu_i$

$$\mu_0 > \mu_i$$
 $\mu_0 < \mu_i$
 $\mu_0 \neq \mu_i$
 $i = 1, 2, ..., k$

Test Statistics: $D_i = rac{\overline{Y}_{i.} - \overline{Y}_{0.}}{\sqrt{2S^2/n}}$ $i = 1, 2, \dots, k$

$$\begin{array}{ll} \text{Rejection Region:} \ D_i \geq d_{\alpha,k,k(n-1)} \\ D_i \leq -d_{\alpha,k,k(n-1)} \\ \mid D_i \mid \geq d_{\alpha/2,k,k(n-1)} \end{array} \qquad i=1,2,\ldots,k$$

Contrast: A contrast L is a linear combination of the means μ_i such that the coefficients c_i sum to zero:

$$L = \sum_{i=1}^{k} c_i \mu_i \quad \text{where} \quad \sum_{i=1}^{k} c_i = 0$$

Let
$$\hat{L} = \sum_{i=1}^k c_i \overline{Y}_{i.}$$
, then

- 1. \hat{L} has a normal distribution, $E(\hat{L}) = \sum_{i=1}^k c_i \mu_i$, $Var(\hat{L}) = \sigma^2 \sum_{i=1}^k \frac{c_i^2}{n_i}$
- 2. A $100(1-\alpha)\%$ confidence interval for L has as endpoints

$$\hat{l} \pm t_{\alpha/2,N-k} \cdot s \sqrt{\sum_{i=1}^k c_i^2/n_i}$$

3. Single degree of freedom test:

Null Hypothesis:
$$\sum_{i=1}^{k} c_i \mu_i = c$$

Alternative Hypothesis:
$$\sum_{i=1}^k c_i \mu_i > c$$
, $\sum_{i=1}^k c_i \mu_i < c$, $\sum_{i=1}^k c_i \mu_i \neq c$

Test Statistic:
$$T = \frac{L-c}{s\sqrt{\sum\limits_{i=1}^k c_i^2/n_i}} \quad \left(F = T^2 = \frac{(L-c)^2}{s^2\sum\limits_{i=1}^k c_i^2/n_i}\right)$$

Rejection Region: $T \ge t_{\alpha,N-k}, \quad T \le -t_{\alpha,N-k}, \quad \mid T \mid \ge t_{\alpha/2,N-k}, \quad (F \ge F_{\alpha,1,N-k})$

4. The set of confidence intervals with endpoints

$$\hat{l}\pm\sqrt{(k-1)F_{lpha,k-1,N-k}}\cdot s\sqrt{\sum_{i=1}^kc_i^2/n_i}$$

is the collection of simultaneous $100(1-\alpha)\%$ confidence intervals for all possible contrasts.

5. Let $n_i = n$, i = 1, 2, ..., k, then the contrast sum of squares, SSL, is given by

$$SSL = \frac{\left(\sum_{i=1}^{k} c_i T_{i.}\right)^2}{n \sum_{i=1}^{k} c_i^2}$$

6. Two contrasts $L_1 = \sum_{i=1}^k b_i \mu_i$ and $L_2 = \sum_{i=1}^k c_i \mu_i$ are orthogonal if $\sum_{i=1}^k b_i c_i / n_i = 0$

Two-Way Anova (Completely Randomized Design or Randomized Complete Block Design)

The Model: Let there be a levels of factor A, b levels of factor B, and n treatment replications (ab cells, n observations in each cell, abn total observations). The observations in the (ij)th cell are assumed to be a random sample of size n from a normal population with mean μ_{ij} and variance σ^2 . Let y_{ijk} be the kth observation at the ith level of factor A and the jth level of factor B. Then

$$y_{ijk} = \mu_{ij} + e_{ijk}$$

where e_{ijk} is an observed value of the random error, ϵ_{ijk} . (Alternative model assumptions: the ϵ_{ijk} 's are independent, normally distributed, with mean 0 and variance σ^2 .)

Let α_i be the effect of the *i*th level of factor A, β_j be the effect of the *j*th level of factor B, $(\alpha\beta)_{ij}$ be the interaction effect of the *i*th level of factor A and the *j*th level of factor B, and μ be the grand mean. Then

$$y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + e_{ijk}$$

where

$$\mu = \frac{\sum_{i=1}^{a} \sum_{j=1}^{b} \mu_{ij}}{ab}, \quad \sum_{i=1}^{a} \alpha_{i} = 0, \quad \sum_{j=1}^{b} \beta_{j} = 0, \quad \sum_{i=1}^{a} (\alpha \beta)_{ij} = \sum_{j=1}^{b} (\alpha \beta)_{ij} = 0$$

The Sum-Of-Squares Identity:

Dots in the subscript of \overline{y} and T indicate the average and sum of y_{ijk} , respectively, over the appropriate subscript(s).

$$SST = SSA + SSB + SS(AB) + SSE$$

$$SST = \text{the total sum of squares} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{...})^2 = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} y_{ijk}^2 - \frac{T_{...}^2}{abn}$$

Table 4. Probability and Statistics Formulas (Continued)

$$SSA = \text{the sum of squares due to factor } A = bn \sum_{i=1}^{a} (\overline{y}_{i..} - \overline{y}_{...})^2 = \frac{\sum_{i=1}^{a} T_{i...}^2}{bn} - \frac{T_{...}^2}{abn}$$

$$SSB = \text{the sum of squares due to factor } B = an \sum_{j=1}^{b} (\overline{y}_{.j.} - \overline{y}_{...})^2 = \frac{\sum_{j=1}^{b} T_{.j.}^2}{an} - \frac{T_{...}^2}{abn}$$

SS(AB) = the sum of squares due to interaction

$$=n\sum_{i=1}^{a}\sum_{j=1}^{b}(\overline{y}_{ij.}-\overline{y}_{i..}-\overline{y}_{.j.}+\overline{y}_{...})^{2}=\frac{\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}T_{ij.}^{2}}{n}-\frac{\sum\limits_{i=1}^{a}T_{i...}^{2}}{bn}-\frac{\sum\limits_{j=1}^{b}T_{.j.}^{2}}{an}+\frac{T_{...}^{2}}{abn}$$

SSE = the sum of squares due to error

$$= \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij.})^{2} = SST - SSA - SSB - SS(AB)$$

Properties:

1.
$$E[MSA] = E[S_A^2] = E\left[\frac{SSA}{a-1}\right] = \sigma^2 + \frac{nb\sum_{i=1}^{a} \alpha_i^2}{a-1}$$

2.
$$E[MSB] = E[S_B^2] = E\left[\frac{SSB}{b-1}\right] = \sigma^2 + \frac{na\sum_{j=1}^b \beta_j^2}{b-1}$$

3.
$$E[MS(AB)] = E[S_{AB}^2] = E\left[\frac{SS(AB)}{(a-1)(b-1)}\right] = \sigma^2 + \frac{n\sum_{i=1}^a\sum_{j=1}^b(\alpha\beta)_{ij}^2}{(a-1)(b-1)}$$

4.
$$E[MSE] = E[S^2] = E\left[\frac{SSE}{ab(n-1)}\right] = \sigma^2$$

5. $F = S_A^2/S^2$ has an F distribution with a-1 and ab(n-1) degrees of freedom.

 $F=S_B^2/S^2$ has an F distribution with b-1 and ab(n-1) degrees of freedom.

 $F=S_{AB}^2/S^2$ has an F distribution with (a-1)(b-1) and ab(n-1) degrees of freedom.

Analysis Of Variance Table:

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed F
Factor A	SSA	a-1	$s_A^2 = \frac{SSA}{a-1}$	s_A^2/s^2
Factor B	SSB	b-1	$s_B^2 = \frac{SSB}{b-1}$	s_B^2/s^2
Interaction AB	SS(AB)	(a-1)(b-1)	$s_{AB}^2 = \frac{SS(AB)}{(a-1)(b-1)}$	s_{AB}^2/s^2
Error	SSE	ab(n-1)	$s^2 = \frac{SSE}{ab(n-1)}$	
Total	SST	abn-1		

Table 4. Probability and Statistics Formulas (Continued)

Hypothesis Tests:

Null Hypothesis	Alternative Hypothesis	Test Statistic	Rejection Region
$\alpha_1 = \cdots = \alpha_a = 0$	$\alpha_i \neq 0$ for some i	$F = S_A^2/S^2$	$F \geq F_{\alpha,a-1,ab(n-1)}$
$\beta_1 = \cdots = \beta_b = 0$	$\beta_j \neq 0$ for some j	$F=S_B^2/S^2$	$F \geq F_{lpha,b-1,ab(n-1)}$
$(\alpha\beta)_{11}=\cdots=(\alpha\beta)_{ab}=0$	$(\alpha\beta)_{ij} \neq 0$ for some (ij)	$F = S_{AB}^2/S^2$	$F \geq F_{\alpha,(a-1)(b-1),ab(n-1)}$

Three-Way Anova (Completely Randomized Design or Randomized Complete Block Design)

The Model: Let there be three factors A, B, and C, with levels a, b, and c, respectively, and n treatment replications. The observations in the (ijk)th cell are assumed to be from a random sample of size n from a normal population with mean μ_{ijk} and variance σ^2 . Let y_{ijkl} be the lth observation at the ith level of factor A, the jth level of factor B, and the kth level of factor C, and let e_{ijkl} be an observed value of the random error, e_{ijkl} . (Alternative model assumptions: the e_{ijkl} 's are independent, normally distributed, with mean 0 and variance σ^2 .) Then

$$y_{ijkl} = \mu_{ijk} + e_{ijkl}$$

$$= \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + (\alpha\beta\gamma)_{ijk} + e_{ijkl}$$

$$\sum_{k=0}^{a} \sum_{j=0}^{b} \sum_{i=0}^{c} y_{ijk}$$

$$\mu = \text{the grand mean} = \frac{\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}\sum\limits_{k=1}^{c}\mu_{ijk}}{abc}$$

 $\alpha_i, \ \beta_j, \ \gamma_k = \text{main effects}$

$$\sum_{i=1}^{a} \alpha_i = 0, \quad \sum_{j=1}^{b} \beta_j = 0, \quad \sum_{k=1}^{c} \gamma_k = 0$$

 $(\alpha\beta)_{ij}$, $(\alpha\gamma)_{ik}$, $(\beta\gamma)_{ik}$ = two-factor interaction effects

$$\sum_{i=1}^{a} (\alpha \beta)_{ij} = \sum_{j=1}^{b} (\alpha \beta)_{ij} = \sum_{i=1}^{a} (\alpha \gamma)_{ik} = \sum_{k=1}^{c} (\alpha \gamma)_{ik} = \sum_{j=1}^{b} (\beta \gamma)_{jk} = \sum_{k=1}^{c} (\beta \gamma)_{jk} = 0$$

 $(\alpha\beta\gamma)_{ijk}$ = three-factor interaction effect

$$\sum_{i=1}^{a} (\alpha \beta \gamma)_{ijk} = \sum_{j=1}^{b} (\alpha \beta \gamma)_{ijk} = \sum_{k=1}^{c} (\alpha \beta \gamma)_{ijk} = 0$$

The Sum-Of-Squares Identity:

Dots in the subscript of \overline{y} and T indicate the average and sum of y_{ijkl} , respectively, over the appropriate subscript(s).

$$SST = SSA + SSB + SSC + SS(AB) + SS(AC) + SS(BC) + SS(ABC) + SSE$$

$$SST = \text{the total sum of squares} = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{n} (y_{ijkl} - \overline{y}_{...})^2 = \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{n} y_{ijkl}^2 - \frac{T_{...}^2}{abcn}$$

$$SSA = \text{the sum of squares due to factor } A = bcn \sum_{i=1}^{a} (\overline{y}_{i...} - \overline{y}_{...})^2 = \frac{\sum_{i=1}^{a} T_{i...}^2}{bcn} - \frac{T_{...}^2}{abcn}$$

$$SSB = \text{the sum of squares due to factor } B = acn \sum_{j=1}^{b} (\overline{y}_{.j..} - \overline{y}_{....})^2 = \frac{\sum_{j=1}^{b} T_{.j..}^2}{acn} - \frac{T_{....}^2}{abcn}$$

$$SSC = \text{the sum of squares due to factor } C = abn \sum_{k=1}^{c} (\overline{y}_{..k.} - \overline{y}_{...})^2 = \frac{\sum_{k=1}^{c} T_{..k.}^2}{abn} - \frac{T_{...}^2}{abcn}$$

SS(AB) = the sum of squares due to interaction between factor A and factor B

$$=cn\sum_{i=1}^{a}\sum_{j=1}^{b}(\overline{y}_{ij..}-\overline{y}_{i...}-\overline{y}_{j...}+\overline{y}_{....})^{2}=\frac{\sum\limits_{i=1}^{a}\sum\limits_{j=1}^{b}T_{ij..}^{2}}{cn}-\frac{\sum\limits_{i=1}^{a}T_{i...}^{2}}{bcn}-\frac{\sum\limits_{j=1}^{b}T_{.j..}^{2}}{acn}+\frac{T_{....}^{2}}{abcn}$$

SS(AC) = the sum of squares due to interaction between factor A and factor C

$$=bn\sum_{i=1}^{a}\sum_{k=1}^{c}(\overline{y}_{i.k.}-\overline{y}_{i...}-\overline{y}_{i.k.}+\overline{y}_{...})^{2}=\frac{\sum\limits_{i=1}^{a}\sum\limits_{k=1}^{c}T_{i.k.}^{2}}{bn}-\frac{\sum\limits_{i=1}^{a}T_{i...}^{2}}{bcn}-\frac{\sum\limits_{k=1}^{c}T_{i.k.}^{2}}{abn}+\frac{T_{....}^{2}}{abcn}$$

SS(BC) = the sum of squares due to interaction between factor B and factor C

$$=an\sum_{i=1}^{b}\sum_{k=1}^{c}(\overline{y}_{.jk.}-\overline{y}_{.j..}-\overline{y}_{..k.}+\overline{y}_{...})^{2}=\frac{\sum_{j=1}^{b}\sum_{k=1}^{c}T_{.jk.}^{2}}{an}-\frac{\sum_{j=1}^{b}T_{.j..}^{2}}{acn}-\frac{\sum_{k=1}^{c}T_{..k.}^{2}}{abn}+\frac{T_{....}^{2}}{abcn}$$

SS(ABC) = the sum of squares due to interaction between factors A, B, and C

$$= \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} (\overline{y}_{ijk.} - \overline{y}_{ij..} - \overline{y}_{i.k.} - \overline{y}_{.jk.} + \overline{y}_{i...} + \overline{y}_{.j..} + \overline{y}_{..k.} - \overline{y}_{...})^{2}$$

$$=\frac{\sum_{i=1}^{a}\sum_{j=1}^{b}\sum_{k=1}^{c}T_{ijk.}^{2}}{n}-\frac{\sum_{i=1}^{a}\sum_{j=1}^{b}T_{ij..}^{2}}{cn}-\frac{\sum_{i=1}^{a}\sum_{k=1}^{c}T_{i.k.}^{2}}{bn}-\frac{\sum_{j=1}^{b}\sum_{k=1}^{c}T_{.jk.}^{2}}{an}+\frac{\sum_{i=1}^{a}T_{i...}^{2}}{bcn}+\frac{\sum_{j=1}^{b}T_{.j..}^{2}}{acn}+\frac{\sum_{k=1}^{c}T_{..k.}^{2}}{abn}-\frac{T_{....}^{2}}{abc}$$

SSE = the sum of squares due to error

$$= \sum_{i=1}^{a} \sum_{j=1}^{b} \sum_{k=1}^{c} \sum_{l=1}^{n} (y_{ijkl} - \overline{y}_{ijk.})^{2}$$

$$= SST - SSA - SSB - SSC - SS(AB) - SS(AC) - SS(BC) - SS(ABC)$$

Properties:

1.
$$E[MSA] = E[S_A^2] = E\left[\frac{SSA}{a-1}\right] = \sigma^2 + \frac{bcn\sum_{i=1}^a \alpha_i^2}{a-1}$$

2.
$$E[MSB] = E[S_B^2] = E\left[\frac{SSB}{b-1}\right] = \sigma^2 + \frac{acn \sum_{j=1}^b \beta_j^2}{b-1}$$

3.
$$E[MSC] = E[S_C^2] = E\left[\frac{SSC}{c-1}\right] = \sigma^2 + \frac{abn\sum\limits_{k=1}^c \gamma_k^2}{c-1}$$

Table 4. Probability and Statistics Formulas (Continued)

4.
$$E[MS(AB)] = E[S_{AB}^2] = E\left[\frac{SS(AB)}{(a-1)(b-1)}\right] = \sigma^2 + \frac{cn\sum_{i=1}^a\sum_{j=1}^b(\alpha\beta)_{ij}^2}{(a-1)(b-1)}$$

5.
$$E[MS(AC)] = E[S_{AC}^2] = E\left[\frac{SS(AC)}{(a-1)(c-1)}\right] = \sigma^2 + \frac{bn\sum_{i=1}^a\sum_{k=1}^c(\alpha\gamma)_{ik}^2}{(a-1)(c-1)}$$

6.
$$E[MS(BC)] = E[S_{BC}^2] = E\left[\frac{SS(BC)}{(b-1)(c-1)}\right] = \sigma^2 + \frac{an\sum_{j=1}^b\sum_{k=1}^c(\beta\gamma)_{jk}^2}{(b-1)(c-1)}$$

7.
$$E[MS(ABC)] = E[S_{ABC}^2] = E\left[\frac{SS(ABC)}{(a-1)(b-1)(c-1)}\right] = \sigma^2 + \frac{n\sum_{i=1}^a\sum_{j=1}^b\sum_{k=1}^c(\alpha\beta\gamma)_{ijk}^2}{(a-1)(b-1)(c-1)}$$

8.
$$E[MSE] = E[S^2] = E\left[\frac{SSE}{abc(n-1)}\right] = \sigma^2$$

Analysis Of Variance Table:

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed F
Factor A	SSA	a-1	$s_A^2 = \frac{SSA}{a-1}$	s_A^2/s^2
Factor B	SSB	b-1	$s_B^2 = \frac{SSB}{b-1}$	s_B^2/s^2
Factor C	SSC	c-1	$s_C^2 = \frac{SSC}{c-1}$	s_C^2/s^2
Interaction AB	SS(AB)	(a-1)(b-1)	$s_{AB}^2 = \frac{SS(AB)}{(a-1)(b-1)}$	s_{AB}^2/s^2
Interaction AC	SS(AC)	(a-1)(c-1)	$s_{AC}^2 = \frac{SS(AC)}{(a-1)(c-1)}$	s_{AC}^2/s^2
Interaction BC	SS(BC)	(b-1)(c-1)	$s_{BC}^2 = \frac{SS(BC)}{(b-1)(c-1)}$	s_{BC}^2/s^2
Interaction ABC	SS(ABC)	(a-1)(b-1)(c-1)	$s_{ABC}^2 = \frac{SS(ABC)}{(a-1)(b-1)(c-1)}$	s_{ABC}^2/s^2
Error	SSE	abc(n-1)	$s^2 = \frac{SSE}{abc(n-1)}$	
Total	SST	abcn-1		

Hypothesis Tests:

Null Hypothesis	Alternative Hypothesis	Test Statistic	Rejection Region
$\alpha_1 = \cdots = \alpha_a = 0$	$\alpha_i \neq 0$, some i	$F=S_A^2/S^2$	$F \geq F_{\alpha,a-1,abc(n-1)}$
$\beta_1 = \cdots = \beta_b = 0$	$\beta_j \neq 0$, some j	$F = S_B^2/S^2$	$F \geq F_{\alpha,b-1,abc(n-1)}$
$\gamma_1=\cdots=\gamma_c=0$	$\gamma_k \neq 0$, some k	$F=S_C^2/S^2$	$F \geq F_{\alpha,c-1,abc(n-1)}$
$(\alpha\beta)_{11}=\cdots=(\alpha\beta)_{ab}=0$	$(\alpha\beta)_{ij} \neq 0$, some (ij)	$F = S_{AB}^2/S^2$	$F \geq F_{\alpha,(a-1)(b-1),abc(n-1)}$
$(\alpha\gamma)_{11}=\cdots=(\alpha\gamma)_{ac}=0$	$(\alpha\gamma)_{ik} \neq 0$, some (ik)	$F = S_{AC}^2/S^2$	$F \geq F_{\alpha,(a-1)(c-1),abc(n-1)}$
$(\beta\gamma)_{11}=\cdots=(\beta\gamma)_{bc}=0$	$(\beta\gamma)_{jk} \neq 0$, some (jk)	$F = S_{BC}^2/S^2$	$F \geq F_{\alpha,(b-1)(c-1),abc(n-1)}$
$(\alpha\beta\gamma)_{111}=\cdots=(\alpha\beta\gamma)_{abc}=0$	$(\alpha\beta\gamma)_{ijk}\neq 0$, some (ijk)	$F = S_{ABC}^2/S^2$	$F \geq F_{\alpha,(a-1)(b-1)(c-1),abc(n-1)}$

Latin Squares

The Model: In an $r \times r$ Latin Square, let $y_{ij(k)}$ be an observation from a normal population with mean $\mu_{ij(k)}$ and variance σ^2 corresponding to the *i*th row, *j*th column, and *k*th treatment. (The parentheses in the subscripts are used to denote the one value k assumes for each (i,j) combination, $i,j,k=1,2,\ldots,r$). Then

$$y_{ij(k)} = \mu + \alpha_i + \beta_j + \tau_k + e_{ij(k)}$$

$$\mu = rac{\sum\limits_{i=1}^{r}\sum\limits_{j=1}^{r}\mu_{ij(k)}}{r^2} = ext{the grand mean}$$

 $e_{ij(k)}$ is an observed value of the random error $\epsilon_{ij(k)}$. (Alternative model assumptions: the $\epsilon_{ij(k)}$'s are independent, normally distributed with mean 0 and variance σ^2 .)

 $\alpha_i, \beta_j, \tau_k$, are the row, column, and treatment effects, respectively, and

$$\sum_{i=1}^{r} \alpha_i = \sum_{j=1}^{r} \beta_j = \sum_{k=1}^{r} \tau_k = 0$$

Sum-Of-Squares Identity:

Dots in the subscript of \overline{y} and T indicate the average and sum of $y_{ij(k)}$, respectively, over the appropriate subscript(s).

$$SST = SSR + SSC + SSTr + SSE$$

$$SST = \text{the total sum of squares} = \sum_{i=1}^{r} \sum_{j=1}^{r} (y_{ij(k)} - \overline{y}_{...})^2 = \sum_{i=1}^{r} \sum_{j=1}^{r} y_{ij(k)}^2 - \frac{T_{...}^2}{r^2}$$

$$SSR = \text{the sum of squares due to rows} = r \sum_{i=1}^{r} (\overline{y}_{i..} - \overline{y}_{...})^2 = \frac{\sum_{i=1}^{r} T_{i..}^2}{r} - \frac{T_{...}^2}{r^2}$$

$$SSC = \text{the sum of squares due to columns} = r \sum_{j=1}^r (\overline{y}_{.j.} - \overline{y}_{...})^2 = \frac{\sum\limits_{j=1}^r T_{.j.}^2}{r} - \frac{T_{...}^2}{r^2}$$

$$SSTr = \text{the sum of squares due to treatment} = r \sum_{k=1}^{r} (\overline{y}_{..k} - \overline{y}_{...})^2 = \frac{\sum\limits_{k=1}^{r} T_{..k}^2}{r} - \frac{T_{...}^2}{r^2}$$

$$SSE = \text{the sum of squares due to error} = \sum_{i=1}^{r} \sum_{j=1}^{r} (y_{ij(k)} - \overline{y}_{i..} - \overline{y}_{.j.} - \overline{y}_{..k} + 2\overline{y}_{...})^2$$

$$= SST - SSR - SSC - SSTr$$

Properties:

1.
$$E[MSR] = E[S_R^2] = E\left[\frac{SSR}{r-1}\right] = \sigma^2 + \frac{r\sum_{i=1}^{r} \alpha_i^2}{r-1}$$

2.
$$E[MSC] = E[S_C^2] = E\left[\frac{SSC}{r-1}\right] = \sigma^2 + \frac{r\sum_{j=1}^r \beta_j^2}{r-1}$$

3.
$$E[MSTr] = E[S_{Tr}^2] = E\left[\frac{SSTr}{r-1}\right] = \sigma^2 + \frac{r\sum_{k=1}^r \tau_k^2}{r-1}$$
4. $E[SSE] = E[S^2] = E\left[\frac{SSE}{(r-1)(r-2)}\right] = \sigma^2$

Analysis Of Variance Table:

Source of Variation	Sum of Squares	Degrees of Freedom	Mean Square	Computed F
Rows	SSR	r-1	$s_R^2 = \frac{SSR}{r-1}$	s_R^2/s^2
Columns	SSC	r-1	$s_C^2 = \frac{SSC}{r-1}$	s_C^2/s^2
Treatments	SSTr	r-1	$s_{Tr}^2 = \frac{SSTr}{r-1}$	s_{Tr}^2/s^2
Error	SSE	(r-1)(r-2)	$s^2 = \frac{SSE}{(r-1)(r-2)}$	
Total	SST	$r^2 - 1$		

Hypothesis Tests:

Null Hypothesis	Alternative Hypothesis	Test Statistic	Rejection Region
$\alpha_1 = \cdots = \alpha_r = 0$	$\alpha_i \neq 0$ for some i	$F = S_R^2/S^2$	$F \geq F_{\alpha,r-1,(r-1)(r-2)}$
$\beta_1=\cdots=\beta_r=0$	$\beta_j \neq 0$ for some j	$F=S_C^2/S^2$	$F \geq F_{\alpha,r-1,(r-1)(r-2)}$
$ \tau_1 = \cdots = \tau_r = 0 $	$\tau_k \neq 0$ for some k	$F = S_{Tr}^2 / S^2$	$F \geq F_{\alpha,r-1,(r-1)(r-2)}$

Nonparametric Statistics

The Sign Test

Assumptions: Let X_1, X_2, \ldots, X_n be a random sample from a continuous distribution.

Hypothesis Test:

Null Hypothesis: $\tilde{\mu} = \tilde{\mu}_0$

Alternative Hypothesis: $\tilde{\mu} > \tilde{\mu}_0$, $\tilde{\mu} < \tilde{\mu}_0$, $\tilde{\mu} \neq \tilde{\mu}_0$

Test Statistic: Y =the number of X_i 's greater than $\tilde{\mu}_0$.

Under the null hypothesis, Y has a binomial distribution with parameters n and p = .5.

Rejection Region: $Y \ge c_1$, $Y \le c_2$, $Y \ge c$ or $Y \le n-c$

The critical values c_1 , c_2 , and c are obtained from the binomial distribution with parameters n and p = .5 to yield the desired significance level α .

Sample values equal to $ilde{\mu}_0$ are excluded from the analysis and the sample size is reduced accordingly

The Normal Approximation: When $n \ge 10$ and p = .5 the binomial distribution can be approximated by a normal distribution with

$$\mu_Y = np = .5n$$
 and $\sigma_Y^2 = np(1-p) = .25n$

 $Z=rac{Y-.5n}{.5\sqrt{n}}$ has approximately a standard normal distribution when H_0 is true and $n\geq 10$.

The Wilcoxon Signed-Rank Test

Assumptions: Let X_1, X_2, \ldots, X_n be a random sample from a continuous distribution.

Hypothesis Test:

Null Hypothesis: $\tilde{\mu} = \tilde{\mu}_0$

Alternative Hypothesis: $\tilde{\mu} > \tilde{\mu}_0$, $\tilde{\mu} < \tilde{\mu}_0$, $\tilde{\mu} \neq \tilde{\mu}_0$

Rank the absolute differences $|X_1 - \tilde{\mu}_0|, |X_2 - \tilde{\mu}_0|, \ldots, |X_n - \tilde{\mu}_0|$.

Test Statistic: $T_+ = ext{the sum of the ranks corresponding to the positive differences } (X_i - \tilde{\mu}_0).$

Rejection Region: $T_+ \ge c_1$, $T_+ \le c_2$, $T_+ \ge c$ or $T_+ \le n(n+1) - c$

 c_1 , c_2 , and c are critical values for the Wilcoxon Signed-Rank Statistic such that $P(T_+ \ge c_1) \approx \alpha$, $P(T_+ \le c_2) \approx \alpha$, and $P(T_+ \ge c) \approx \alpha/2$.

Any observed difference $(x_i - \tilde{\mu}_0) = 0$ is excluded from the test and the sample size is reduced accordingly.

The Normal Approximation: When $n \geq 20$, T_+ has approximately a normal distribution with

$$\mu_{T_+} = \frac{n(n+1)}{4}$$
 and $\sigma_{T_+}^2 = \frac{n(n+1)(2n+1)}{24}$

 $Z=rac{T_+-\mu_{T_+}}{\sigma_{T_+}}$ has approximately a standard normal distribution when H_0 is true.

The Wilcoxon Rank-Sum (Mann-Whitney) Test

Assumptions: Let X_1, X_2, \ldots, X_m and $Y_1, Y_2, \ldots, Y_n, m \leq n$, be independent random samples from continuous distributions.

Hypothesis Test:

Null Hypothesis: $\tilde{\mu}_1 - \tilde{\mu}_2 = \Delta_0$

Alternative Hypothesis: $\tilde{\mu}_1 - \tilde{\mu}_2 > \Delta_0$, $\tilde{\mu}_1 - \tilde{\mu}_2 < \Delta_0$, $\tilde{\mu}_1 - \tilde{\mu}_2 \neq \Delta_0$

Subtract Δ_0 from each X_i . Combine the $(X_i - \Delta_0)$'s and the Y_j 's into one sample and rank all of the observations.

Test Statistic: $W = \sum_{i=1}^{m} R_i$, where R_i is the rank of $(X_i - \Delta_0)$ in the combined sample.

Rejection Region: $W \ge c_1$, $W \le c_2$, $W \ge c$ or $W \le m(m+n+1)-c$

 c_1 , c_2 , and c are critical values for the Wilcoxon rank-sum statistic such that $P(W \ge c_1) \approx \alpha$, $P(W \le c_2) \approx \alpha$, and $P(W \ge c) \approx \alpha/2$.

The Normal Approximation: When both m and n are greater than 8, W has approximately a normal distribution with

$$\mu_W = rac{m(m+n+1)}{2}$$
 and $\sigma_W^2 = rac{mn(m+n+1)}{12}$

 $Z = \frac{W - \mu_W}{\sigma_W}$ has approximately a standard normal distribution.

The Mann-Whitney U Statistic: The rank-sum test can also be based on the statistic

$$U=W-\frac{m(n+1)}{2}$$

When both m and n are greater than 8, U has approximately a normal distribution with

$$\mu_U = \frac{mn}{2}$$
 and $\sigma_U^2 = \frac{mn(m+n+1)}{12}$

$$Z = \frac{U - \mu_U}{\sigma_U}$$
 has approximately a standard normal distribution.

The Kruskal-Wallis Test

Assumptions: Let there be k > 2 independent random samples from continuous distributions, n_i , i = 1, 2, ..., k, be the number of observations in each sample, and $n = n_1 + n_2 + \cdots n_k$.

Hypothesis Test:

Null Hypothesis: the k samples are from identical populations.

Alternative Hypothesis: at least two of the populations differ in location.

Rank all n observations from 1 (smallest) to n (largest). Let R_i be the total of the ranks in the *i*th sample.

Test Statistic:
$$H = \frac{12}{n(n+1)} \sum_{i=1}^{k} \frac{R_i^2}{n_i} - 3(n+1)$$

If H_0 is true and either

1.
$$k = 3$$
, $n_i \ge 6$, $i = 1, 2, 3$ or

2.
$$k > 3$$
, $n_i \ge 5$, $i = 1, 2, \ldots, k$

then H has a chi-square distribution with k-1 degrees of freedom,

Rejection Region: $H \geq \chi^2_{\alpha,k-1}$

The Friedman Fr Test For A Randomized Block Design

Assumptions: Let there be k independent random samples (treatments) from continuous distributions and b blocks.

Hypothesis Test:

Null Hypothesis: the k samples are from identical populations.

Alternative Hypothesis: at least two of the populations differ in location.

Rank each observation from 1 (smallest) to k (largest) within each block. Let R_i be the rank sum of the *i*th sample (treatment).

Test Statistic:
$$F_r = \frac{12}{bk(k+1)} \sum_{i=1}^k R_i^2 - 3b(k+1)$$

Rejection Region: $F_r \ge \chi^2_{\alpha,k-1}$

The Runs Test

Run: a run is a maximal subsequence of elements with a common property.

Hypothesis Test:

Null Hypothesis: the sequence is random

Alternative Hypothesis: the sequence is not random

Test Statistic: V = the total number of runs

Rejection Region: $V \ge v_1$ or $V \le v_2$

 v_1 and v_2 are critical values for the runs test such that $P(V \ge v_1) \approx \alpha/2$ and $P(V \le v_2) \approx \alpha/2$.

The Normal Approximation: Let m be the number of elements with the property that occurs least and n be the number of elements with the other property. As m and n increase, V has approximately a normal distribution with

$$\mu_V = rac{2mn}{m+n} + 1$$
 and $\sigma_V^2 = rac{2mn(2mn - m - n)}{(m+n)^2(m+n-1)}$

 $Z=rac{V-\mu_V}{\sigma_V}$ has approximately a standard normal distribution when H_0 is true.

Spearman's Rank Correlation Coefficient:

Let there be n pairs of observations from the continuous distributions X and Y. Rank the observations in the two samples separately from smallest to largest. Let u_i be the rank of the *i*th observation in the first sample and let v_i be the rank of the *i*th observation in the second sample. Spearman's rank correlation coefficient, r_S , is a measure of the correlation between ranks, calculated by using the ranks in place of the actual observations in the formula for the correlation coefficient r.

$$r_{S} = \frac{SS_{uv}}{\sqrt{SS_{uu}SS_{vv}}} = \frac{n\sum_{i=1}^{n} u_{i}v_{i} - \left(\sum_{i=1}^{n} u_{i}\right)\left(\sum_{i=1}^{n} v_{i}\right)}{\sqrt{\left[n\sum_{i=1}^{n} u_{i}^{2} - \left(\sum_{i=1}^{n} u_{i}\right)^{2}\right]\left[n\sum_{i=1}^{n} v_{i}^{2} - \left(\sum_{i=1}^{n} v_{i}\right)^{2}\right]}}$$

$$=1-rac{6\sum\limits_{i=1}^{n}d_{i}^{2}}{n(n^{2}-1)}$$
 where $d_{i}=u_{i}-v_{i}.$

The shortcut formula for r_S that uses the differences d_i , i = 1, 2, ..., n, is not exact when there are tied measurements. The approximation is good when the number of ties is small in comparison to n.

Hypothesis Test:

Null Hypothesis: $\rho_S = 0$ (no population correlation between ranks)

Alternative Hypothesis: $\rho_S > 0$, $\rho_S < 0$, $\rho_S \neq 0$

Test Statistic: rs

Rejection Region: $r_S \ge r_{S,\alpha}$, $r_S \le -r_{S,\alpha}$, $|r_S| \ge r_{S,\alpha/2}$

The Normal Approximation: When H_0 is true r_S has approximately a normal distribution with

$$\mu_{rs} = 0$$
 and $\sigma_{rs}^2 = \frac{1}{n-1}$

 $Z = \frac{r_S - 0}{1/\sqrt{n-1}} = r_S \sqrt{n-1}$ has approximately a standard normal distribution as n increases.

Table 5. The Binomial Cumulative Distribution Function

Let X be a binomial random variable characterized by the parameters n and p. This table contains values of the binomial cumulative distribution function $B(x;n,p) = P(X \le x) = \sum_{y=0}^{x} b(y;n,p) = \sum_{y=0}^{x} \binom{n}{y} p^y (1-p)^{n-y}$.

										•		•			
n = 5							ŗ)							
\boldsymbol{x}	.01	.05	.10	.20	.25	.30	.40	.50	.60	.70	.75	.80	.90	.95	.99
0	.9510	.7738	.5905	.3277	.2373	.1681	.0778	.0313	.0102	.0024	.0010	.0003	.0000		
1	.9990	.9774	.9185	.7373	.6328	.5282	.3370	.1875	.0870	.0308	.0156	.0067	.0005	.0000	
2	1.0000	.9988	.9914	.9421	.8965	.8369	.6826	.5000	.3174	.1631	.1035	.0579	.0086	.0012	.0000
3		1.0000	.9995	.9933	.9844	.9692	.9130	.8125	.6630	.4718	.3672	.2627	.0815	.0226	.0010
4			1.0000	.9997	.9990	.9976	.9898	.9688	.9222	.8319	.7627	.6723	.4095	.2262	.0490
n = 1	.0						1	9							
\boldsymbol{x}	.01	.05	.10	.20	.25	.30	.40	.50	.60	.70	.75	.80	.90	.95	.99
0	.9044	.5987	.3487	.1074	.0563	.0282	.0060	.0010	.0001	.0000					
1	.9957	.9139	.7361	.3758	.2440	.1493	.0464	.0107	.0017	.0001	.0000	.0000			
2	.9999	.9885	.9298	.6778	.5256	.3828	.1673	.0547	.0123	.0016	.0004	.0001	.0000		
3	1.0000	.9990	.9872	.8791	.7759	.6496	.3823			.0106					
4		.9999	.9984	.9672	.9219	.8497	.6331	.3770	.1662	.0473	.0197	.0064	.0001	.0000	
5		1.0000	.9999	.9936	.9803	.9527	.8338	.6230	.3669	.1503	.0781	.0328	.0016	.0001	
6			1.0000	.9991	.9965	.9894	.9452	.8281	.6177	.3504	.2241	.1209	.0128	.0010	.0000
7				.9999	.9996	.9984	.9877	.9453	.8327	.6172	.4744	.3222	.0702	.0115	.0001
8				1.0000	1.0000	.9999	.9983	.9893	.9536	.8507	.7560	.6242	.2639	.0861	.0043
9						1.0000	.9999	.9990	.9940	.9718	.9437	.8926	.6513	.4013	.0956
n = 1	15						:	р							
x	.01	.05	.10	.20	.25	.30	.40	.50	.60	.70	.75	.80	.90	.95	.99
0	.8601	.4633	.2059	.0352	.0134	.0047	.0005	.0000							
1	.9904	.8290	.5490	.1671	.0802	.0353	.0052	.0005	.0000						
2	.9996	.9638	.8159	.3980	.2361	.1268	.0271	.0037	.0003	.0000					
3	1.0000	.9945	.9444	.6482	.4613	.2969	.0905	.0176	.0019	.0001	.0000				
4		.9994	.9873	.8358	.6865	.5155	.2173	.0592	.0093	.0007	.0001	.0000			
5		.9999	.9978	.9389	.8516	.7216	.4032	.1509	.0338	.0037	.0008	.0001			
6		1.0000	.9997	.9819	.9434	.8689	.6098	.3036	.0950	.0152	.0042	.0008			
7			1.0000	.9958	.9827	.9500	.7869			.0500					
8				.9992	.9958	.9848	.9050						.0003		
9				.9999	.9992	.9963	.9662	.8491	.5968	.2784	.1484	.0611	.0022	.0001	
10				1.0000	.9999	.9993	.9907	.9408	.7827	.4845	.3135	.1642	.0127	.0006	
11	1				1.0000	.9999	.9981	.9824	.9095	.7031	.5387	.3518	.0556	.0055	.0000
12						1.0000	.9997						.1841		
13							1.0000						.4510		
14								1.0000	.9995	.9953	.9866	.9648	.7941	.5367	.1399

Table 5. The Binomial Cumulative Distribution Function (Continued)

n = 2	20							p			•				
\boldsymbol{x}	.01	.05	.10	.20	.25	.30	.40	.50	.60	.70	.75	.80	.90	.95	.99
0	.8179	.3585	.1216	.0115	.0032	.0008	.0000								
1	.9831	.7358	.3917	.0692	.0243	.0076	.0005	.0000							
2	.9990	.9245	.6769	.2061	.0913	.0355	.0036	.0002	0000						
3 4	1.0000	.9841 .9974	.8670 .9568	.4114 .6296	.2252 .4148	.1071	.0160	.0013	.0000						
5		.9997	.9887	.8042	.6172	.4164				0000					
6		1.0000	.9976	.9133	.7858	.6080	.1256 .2500	.0207 .0577	.0016	.0003	nnnn				
7			.9996	.9679	.8982	.7723	.4159	.1316		.0013		.0000			
8			.9999	.9900	.9591	.8867	.5956	.2517		.0051					
9			1.0000	.9974	.9861	.9520	.7553	.4119	.1275	.0171	.0039	.0006			
10				.9994	.9961	.9829	.8725	.5881	.2447	.0480	.0139	.0026	.0000		
11				.9999	.9991	.9949	.9435	.7483		.1133					
12				1.0000	.9998	.9987	.9790	.8684		.2277					
13 14					1.0000	.9997 1.0000	.9935 .9984	.9423 .9793		.3920					
15						1.0000				.5836					
16							.9997 1.0000	.9941 .9987		.7625 .8929					0000
17							1.0000	.9998		.9645					
18								1.0000		.9924					
19									1.0000						
n = 2	25			***************************************				p							
\boldsymbol{x}	.01	.05	.10	.20	.25	.30	.40	.50	.60	.70	.75	.80	.90	.95	.99
0	.7778	.2774	.0718	.0038	.0008	.0001	.0000								
1	.9742	.6424	.2712	.0274	.0070	.0016	.0001								
2	.9980	.8729	.5371	.0982	.0321	.0090	.0004	.0000							
3	.9999	.9659	.7636	.2340	.0962	.0332	.0024	.0001							
4	1.0000	.9928	.9020	.4207	.2137	.0905	.0095	.0005	.0000						
5		.9988	.9666	.6167	.3783	.1935	.0294	.0020	.0001						
6 7		.9998 1.0000	.9905 .9977	.7800 .8909	.5611 .7265	.3407 .5118	.0736 .1536	.0073 .0216	.0003	.0000					
8		1.0000	.9995	.9532	.8506	.6769	.2735	.0539		.0001					
9			.9999	.9827	.9287	.8106	.4246	.1148		.0005	.0000				
10			1.0000	.9944	.9703	.9022	.5858	.2122		.0018		.0000			
11				.9985	.9893	.9558	.7323	.3450		.0060					
12				.9996	.9966	.9825	.8462	.5000	.1538	.0175	.0034	.0004			
13				.9999	.9991	.9940		.6550		.0442					
14				1.0000	.9998	.9982	.9656	.7878		.0978					
15					1.0000					.1894					
16 17						.9999		.9461		.3231				0000	
18						1.0000	.9988 .9997	.9784 .9927		.4882 .6593					
19							.9999	.9980		.8065					
20							1.0000	.9995		.9095					0000
21							1.0000	.9999		.9668					
22								1.0000		.9910					
23										.9984					
24	<u></u>								1.0000	.9999	.9992	.9962	.9282	.7226	.2222
	L														

Table 6. The Poisson Cumulative Distribution Function

Let X be a Poisson random variable characterized by the parameter μ . This table contains values of the Poisson cumulative distribution function $F(x;\mu) = P(X \le x) = \sum_{y=0}^{x} \frac{e^{-\mu} \mu^{y}}{y!}$.

						μ				
\boldsymbol{x}	.05	.10	.15	.20	.25	.30	.35	.40	.45	.50
0	.9512	.9048	.8607	.8187	.7788	.7408	.7047	.6703	.6376	.6065
1	.9988	.9953	.9898	.9825	.9735	.9631	.9513	.9384	.9246	.9098
2	1.0000	.9998	.9995	.9989	.9978	.9964	.9945	.9921	.9891	.9856
3		1.0000	1.0000	.9999	.9999	.9997	.9995	.9992	.9988	.9982
4				1.0000	1.0000	1.0000	1.0000	.9999	.9999	.9998
5								1.0000	1.0000	1.0000
1		00	0.5	70	75	μ	٥٣	00	0.5	1.00
x	.55	.60	.65	.70	.75	.80	.85	.90	.95	1.00
0	.5769	.5488	.5220	.4966	.4724	.4493	.4274	.4066	.3867	.3679
1	.8943	.8781	.8614	.8442	.8266	.8088	.7907	.7725	.7541	.7358
2	.9815	.9769	.9717	.9659	.9595	.9526	.9451	.9371	.9287	.9197
3	.9975	.9966	.9956	.9942	.9927	.9909	.9889	.9865	.9839	.9810
4	.9997	.9996	.9994	.9992	.9989	.9986	.9982	.9977	.9971	.9963
5	1.0000	1.0000	.9999	.9999	.9999	.9998	.9997	.9997	.9995	.9994
6		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	.9999	.9999
7			·····	**********************	····	·····			1.0000	1.0000
		1.0	1.0			μ		1.0	1.0	0.0
x	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0
0	.3329	.3012	.2725	.2466	.2231	.2019	.1827	.1653	.1496	.1353
1	.6990	.6626	.6268	.5918	.5578	.5249	.4932	.4628	.4337	.4060
2	.9004	.8795	.8571	.8335	.8088	.7834	.7572	.7306	.7037	.6767
3	.9743	.9662	.9569	.9463	.9344	.9212	.9068	.8913	.8747	.8571
4	.9946	.9923	.9893	.9857	.9814	.9763	.9704	.9636	.9559	.9473
5	.9990	.9985	.9978	.9968	.9955	.9940	.9920	.9896	.9868	.9834
6	.9999	.9997	.9996	.9994	.9991	.9987	.9981	.9974	.9966	.9955
7	1.0000	1.0000	.9999	.9999	.9998	.9997	.9996	.9994	.9992	.9989
8			1.0000	1.0000	1.0000	1.0000	.9999	.9999	.9998	.9998
9						1.0000	1.0000	1.0000	1.0000	1.0000

Table 6. The Poisson Cumulative Distribution Function (Continued)

						μ				
\boldsymbol{x}	2.1	2.2	2.3	2.4	2.5	2.6	2.7	2.8	2.9	3.0
0	.1225	.1108	.1003	.0907	.0821	.0743	.0672	.0608	.0550	.0498
1	.3796	.3546	.3309	.3084	.2873	.2674	.2487	.2311	.2146	.1991
2	.6496	.6227	.5960	.5697	.5438	.5184	.4936	.4695	.4460	.4232
3	.8386	.8194	.7993	.7787	.7576	.7360	.7141	.6919	.6696	.6472
4	.9379	.9275	.9162	.9041	.8912	.8774	.8629	.8477	.8318	.8153
5	.9796	.9751	.9700	.9643	.9580	.9510	.9433	.9349	.9258	.9161
6	.9941	.9925	.9906	.9884	.9858	.9828	.9794	.9756	.9713	.9665
7	.9985	.9980	.9974	.9967	.9958	.9947	.9934	.9919	.9901	.9881
8	.9997	.9995	.9994	.9991	.9989	.9985	.9981	.9976	.9969	.9962
9	.9999	.9999	.9999	.9998	.9997	.9996	.9995	.9993	.9991	.9989
10	1.0000	1.0000	1.0000	1.0000	.9999	.9999	.9999	.9998	.9998	.9997
11				1.0000	1.0000	1.0000	1.0000	1.0000	.9999	.9999
12									1.0000	1.0000
						μ				
x	3.1	3.2	3.3	3.4	3.5	3.6	3.7	3.8	3.9	4.0
0	.0450	.0408	.0369	.0334	.0302	.0273	.0247	.0224	.0202	.0183
1	.1847	.1712	.1586	.1468	.1359	.1257	.1162	.1074	.0992	.0916
2	.4012	.3799	.3594	.3397	.3208	.3027	.2854	.2689	.2531	.2381
3	.6248	.6025	.5803	.5584	.5366	.5152	.4942	.4735	.4532	.4335
4	.7982	.7806	.7626	.7442	.7254	.7064	.6872	.6678	.6484	.6288
5	.9057	.8946	.8829	.8705	.8576	.8441	.8301	.8156	.8006	.7851
6	.9612	.9554	.9490	.9421	.9347	.9267	.9182	.9091	.8995	.8893
7	.9858	.9832	.9802	.9769	.9733	.9692	.9648	.9599	.9546	.9489
8	.9953	.9943	.9931	.9917	.9901	.9883	.9863	.9840	.9815	.9786
9	.9986	.9982	.9978	.9973	.9967	.9960	.9952	.9942	.9931	.9919
10	.9996	.9995	.9994	.9992	.9990	.9987	.9984	.9981	.9977	.9972
11	.9999	.9999	.9998	.9998	.9997	.9996	.9995	.9994	.9993	.9991
12	1.0000	1.0000	1.0000	.9999	.9999	.9999	.9999	.9998	.9998	.9997
13				1.0000	1.0000	1.0000	1.0000	1.0000	.9999	.9999
14									1.0000	1.0000

Table 6. The Poisson Cumulative Distribution Function (Continued)

						μ				
x	5	6	7	8	9	10	15	20	25	30
0	.0067	.0025	.0009	.0003	.0001	.0000				
1	.0404	.0174	.0073	.0030	.0012	.0005				
2	.1247	.0620	.0296	.0138	.0062	.0028	.0000			
3	.2650	.1512	.0818	.0424	.0212	.0103	.0002			
4	.4405	.2851	.1730	.0996	.0550	.0293	.0009	.0000		
5	.6160	.4457	.3007	.1912	.1157	.0671	.0028	.0001		
6	.7622	.6063	.4497	.3134	.2068	.1301	.0076	.0003		
7	.8666	.7440	.5987	.4530	.3239	.2202	.0180	.0008	.0000	
8	.9319	.8472	.7291	.5925	.4557	.3328	.0374	.0021	.0001	
9	.9682	.9161	.8305	.7166	.5874	.4579	.0699	.0050	.0002	
10	.9863	.9574	.9015	.8159	.7060	.5830	.1185	.0108	.0006	.0000
11	.9945	.9799	.9467	.8881	.8030	.6968	.1848	.0214	.0014	.0001
12	.9980	.9912	.9730	.9362	.8758	.7916	.2676	.0390	.0031	.0002
13	.9993	.9964	.9872	.9658	.9261	.8645	.3632	.0661	.0065	.0004
14	.9998	.9986	.9943	.9827	.9585	.9165	.4657	.1049	.0124	.0009
15	.9999	.9995	.9976	.9918	.9780	.9513	.5681	.1565	.0223	.0019
16	1.0000	.9998	.9990	.9963	.9889	.9730	.6641	.2211	.0377	.0039
17		.9999	.9996	.9984	.9947	.9857	.7489	.2970	.0605	.0073
18		1.0000	.9999	.9993	.9976	.9928	.8195	.3814	.0920	.0129
19			1.0000	.9997	.9989	.9965	.8752	.4703	.1336	.0219
20				.9999	.9996	.9984	.9170	.5591	.1855	.0353
21				1.0000	.9998	.9993	.9469	.6437	.2473	.0544
22					.9999	.9997	.9673	.7206	.3175	.0806
23					1.0000	.9999	.9805	.7875	.3939	.1146
24						1.0000	.9888	.8432	.4734	.1572
25							.9938	.8878	.5529	.2084
26			•				.9967	.9221	.6294	.2673
27							.9983	.9475	.7002	.3329
28							.9991	.9657	.7634	.4031
29							.9996	.9782	.8179	.4757
30							.9998	.9865	.8633	.5484
31							.9999	.9919	.8999	.6186
32							1.0000	.9953	.9285	.6845
33								.9973	.9502	.7444
34								.9985	.9662	.7973
35								.9992	.9775	.8426
36								.9996	.9854	.8804
37								.9998	.9908	.9110
38								.9999	.9943	.9352
39								.9999	.9966	.9537
40								1.0000	.9980	.9677
41									.9988	.9779
42									.9993	.9852
43									.9996	.9903
44	<u></u>								.9998	.9937

Table 7. Cumulative Distribution Function for the Standard Normal Random Variable

This table contains values of the cumulative distribution function for the standard normal random variable $\Phi(z) = \frac{z}{z}$

									U	~
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
-3.4	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0003	.0002
-3.3	.0005	.0005	.0005	.0004	.0004	.0004	.0004	.0004	.0004	.0003
-3.2	.0007	.0007	.0006	.0006	.0006	.0006	.0006	.0005	.0005	.0005
-3.1	.0010	.0009	.0009	.0009	.0008	.0008	.0008	.0008	.0007	.0007
-3.0	.0013	.0013	.0013	.0012	.0012	.0011	.0011	.0011	.0010	.0010
-2.9	.0019	.0018	.0018	.0017	.0016	.0016	.0015	.0015	.0014	.0014
-2.8	.0026	.0025	.0024	.0023	.0023	.0022	.0021	.0021	.0020	.0019
-2.7	.0035	.0034	.0033	.0032	.0031	.0030	.0029	.0028	.0027	.0026
-2.6	.0047	.0045	.0044	.0043	.0041	.0040	.0039	.0038	.0037	.0036
-2.5	.0062	.0060	.0059	.0057	.0055	.0054	.0052	.0051	.0049	.0048
-2.4	.0082	.0080	.0078	.0075	.0073	.0071	.0069	.0068	.0066	.0064
-2.3	.0107	.0104	.0102	.0099	.0096	.0094	.0091	.0089	.0087	.0084
-2.2	.0139	.0136	.0132	.0129	.0125	.0122	.0119	.0116	.0113	.0110
-2.1	.0179	.0174	.0170	.0166	.0162	.0158	.0154	.0150	.0146	.0143
-2.0	.0228	.0222	.0217	.0212	.0207	.0202	.0197	.0192	.0188	.0183
-1.9	.0287	.0281	.0274	.0268	.0262	.0256	.0250	.0244	.0239	.0233
-1.8	.0359	.0351	.0344	.0336	.0329	.0322	.0314	.0307	.0301	.0294
-1.7	.0446	.0436	.0427	.0418	.0409	.0401	.0392	.0384	.0375	.0367
-1.6	.0548	.0537	.0526	.0516	.0505	.0495	.0485	.0475	.0465	.0455
-1.5	.0668	.0655	.0643	.0630	.0618	.0606	.0594	.0582	.0571	.0559
-1.4	.0808	.0793	.0778	.0764	.0749	.0735	.0721	.0708	.0694	.0681
-1.3	.0968	.0951	.0934	.0918	.0901	.0885	.0869	.0853	.0838	.0823
-1.2	.1151	.1131	.1112	.1093	.1075	.1056	.1038	.1020	.1003	.0985
-1.1	.1357	.1335	.1314	.1292	.1271	.1251	.1230	.1210	.1190	.1170
-1.0	.1587	.1562	.1539	.1515	.1492	.1469	.1446	.1423	.1401	.1379
-0.9	.1841	.1814	.1788	.1762	.1736	.1711	.1685	.1660	.1635	.1611
-0.8	.2119	.2090	.2061	.2033	.2005	.1977	.1949	.1922	.1894	.1867
-0.7	.2420	.2389	.2358	.2327	.2296	.2266	.2236	.2206	.2177	.2148
-0.6	.2743	.2709	.2676	.2643	.2611	.2578	.2546	.2514	.2483	.2451
-0.5	.3085	.3050	.3015	.2981	.2946	.2912	.2877	.2843	.2810	.2776
-0.4	.3446	.3409	.3372	.3336	.3300	.3264	.3228	.3192	.3156	.3121
-0.3	.3821	.3783	.3745	.3707	.3669	.3632	.3594	.3557	.3520	.3483
-0.2	.4207	.4168	.4129	.4090	.4052	.4013	.3974	.3936	.3897	.3859
-0.1	.4602	.4562	.4522	.4483	.4443	.4404	.4364	.4325	.4286	.4247
-0.0	.5000	.4960	.4920	.4880	.4840	.4801	.4761	.4721	.4681	.4641

Table 7. Cumulative Distribution Function for the Standard Normal Random Variable (Continued)

.09	.08	.07	.06	.05	.04	.03	.02	.01	.00	Z
.5359	.5319	.5279	.5239	.5199	.5160	.5120	.5080	.5040	.5000	0.0
.5753	.5714	.5675	.5636	.5596	.5557	.5517	.5478	.5438	.5398	0.1
.6141	.6103	.6064	.6026	.5987	.5948	.5910	.5871	.5832	.5793	0.2
.6517	.6480	.6443	.6406	.6368	.6331	.6293	.6255	.6217	.6179	0.3
.6879	.6844	.6808	.6772	.6736	.6700	.6664	.6628	.6591	.6554	0.4
.7224	.7190	.7157	.7123	.7088	.7054	.7019	.6985	.6950	.6915	0.5
.7549	.7517	.7486	.7454	.7422	.7389	.7357	.7324	.7291	.7257	0.6
.7852	.7823	.7794	.7764	.7734	.7704	.7673	.7642	.7611	.7580	0.7
.8133	.8106	.8078	.8051	.8023	.7995	.7967	.7939	.7910	.7881	0.8
.8389	.8365	.8340	.8315	.8289	.8264	.8238	.8212	.8186	.8159	0.9
.8621	.8599	.8577	.8554	.8531	.8508	.8485	.8461	.8438	.8413	1.0
.8830	.8810	.8790	.8770	.8749	.8729	.8708	.8686	.8665	.8643	1.1
.9015	.8997	.8980	.8962	.8944	.8925	.8907	.8888	.8869	.8849	1.2
.9177	.9162	.9147	.9131	.9115	.9099	.9082	.9066	.9049	.9032	1.3
.9319	.9306	.9292	.9279	.9265	.9251	.9236	.9222	.9207	.9192	1.4
.9441	.9429	.9418	.9406	.9394	.9382	.9370	.9357	.9345	.9332	1.5
.9545	.9535	.9525	.9515	.9505	.9495	.9484	.9474	.9463	.9452	1.6
.9633	.9625	.9616	.9608	.9599	.9591	.9582	.9573	.9564	.9554	1.7
.9706	.9699	.9693	.9686	.9678	.9671	.9664	.9656	.9649	.9641	1.8
.9767	.9761	.9756	.9750	.9744	.9738	.9732	.9726	.9719	.9713	1.9
.9817	.9812	.9808	.9803	.9798	.9793	.9788	.9783	.9778	.9772	2.0
.9857	.9854	.9850	.9846	.9842	.9838	.9834	.9830	.9826	.9821	2.1
.9890	.9887	.9884	.9881	.9878	.9875	.9871	.9868	.9864	.9861	2.2
.9916	.9913	.9911	.9909	.9906	.9904	.9901	.9898	.9896	.9893	2.3
.9936	.9934	.9932	.9931	.9929	.9927	.9925	.9922	.9920	.9918	2.4
.9952	.9951	.9949	.9948	.9946	.9945	.9943	.9941	.9940	.9938	2.5
.9964	.9963	.9962	.9961	.9960	.9959	.9957	.9956	.9955	.9953	2.6
.997	.9973	.9972	.9971	.9970	.9969	.9968	.9967	.9966	.9965	2.7
.998	.9980	.9979	.9979	.9978	.9977	.9977	.9976	.9975	.9974	2.8
.9986	.9986	.9985	.9985	.9984	.9984	.9983	.9982	.9982	.9981	2.9
.9990	.9990	.9989	.9989	.9989	.9988	.9988	.9987	.9987	.9987	3.0
.999	.9993	.9992	.9992	.9992	.9992	.9991	.9991	.9991	.9990	3.1
.999	.9995	.9995	.9994	.9994	.9994	.9994	.9994	.9993	.9993	3.2
.999	.9996	.9996	.9996	.9996	.9996	.9996	.9995	.9995	.9995	3.3
.999	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	.9997	3.4

Critical Values, $P(Z \geq z_{\alpha}) = \alpha$

α	.10	.05	.025	.01	.005	.001	.0005	.0001	
z_{α}	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905	3.7190	
α	.00009	.00008	.00007	.00006	.00005	.00004	.00003	.00002	.00001
z_{α}	3.7455	3.7750	3.8082	3.8461	3.8906	3.9444	4.0128	4.1075	4.2649

Table 8. Critical Values For The t Distribution

This table contains critical values $t_{\alpha,\nu}$ for the t distribution defined by $P(T \ge t_{\alpha,\nu}) = \alpha$.

νΙ	.20	.10	.05	.025	.01	α .005	.001	.0005	.0001
1	1.3764	3.0777	6.3138	12.7062	31.8205	63.6567	318.3088	636.6192	3183.0988
2	1.0607	1.8856	2.9200	4.3027	6.9646	9.9248	22.3271	31.5991	70.7001
3	.9785	1.6377	2.3534	3.1824	4.5407	5.8409	10.2145	12.9240	22.2037
4	.9410	1.5332	2.1318	2.7764	3.7469	4.6041	7.1732	8.6103	13.0337
5	.9195	1.4759	2.0150	2.5706	3.3649	4.0321	5.8934	6.8688	9.6776
6	.9057	1.4398	1.9432	2.4469	3.1427	3.7074	5.2076	5.9588	8.0248
7	.8960	1.4149	1.8946	2.3646	2.9980	3.4995	4.7853	5.4079	7.0634
8 9	.8889	1.3968	1.8595	2.3060	2.8965	3.3554	4.5008	5.0413	6.4420
	.8834	1.3830	1.8331	2.2622	2.8214	3.2498	4.2968	4.7809	6.0101
10	.8791	1.3722	1.8125	2.2281	2.7638	3.1693	4.1437	4.5869	5.6938
11	.8755	1.3634	1.7959	2.2010	2.7181	3.1058	4.0247	4.4370	5.4528
12	.8726	1.3562	1.7823	2.1788	2.6810	3.0545	3.9296	4.3178	5.2633
13	.8702	1.3502	1.7709	2.1604	2.6503	3.0123	3.8520	4.2208	5.1106
14	.8681	1.3450	1.7613	2.1448	2.6245	2.9768	3.7874	4.1405	4.9850
15	.8662	1.3406	1.7531	2.1314	2.6025	2.9467	3.7328	4.0728	4.8800
16	.8647	1.3368	1.7459	2.1199	2.5835	2.9208	3.6862	4.0150	4.7909
17	.8633	1.3334	1.7396	2.1098	2.5669	2.8982	3.6458	3.9651	4.7144
18	.8620	1.3304	1.7341	2.1009	2.5524	2.8784	3.6105	3.9216	4.6480
19	.8610	1.3277	1.7291	2.0930	2.5395	2.8609	3.5794	3.8834	4.5899
20	.8600	1.3253	1.7247	2.0860	2.5280	2.8453	3.5518	3.8495	4.5385
21	.8591	1.3232	1.7207	2.0796	2.5176	2.8314	3.5271	3.8192	4.4929
22	.8583	1.3212	1.7171	2.0739	2.5083	2.8187	3.5050	3.7921	4.4520
23	.8575	1.3195	1.7139	2.0687	2.4999	2.8073	3.4850	3.7676	4.4152
24	.8569	1.3178	1.7109	2.0639	2.4922	2.7969	3.4668	3.7454	4.3819
25	.8562	1.3163	1.7081	2.0595	2.4851	2.7874	3.4502	3.7251	4.3517
26	.8557	1.3150	1.7056	2.0555	2.4786	2.7787	3.4350	3.7066	4.3240
27	.8551	1.3137	1.7033	2.0518	2.4727	2.7707	3.4210	3.6896	4.2987
28	.8546	1.3125	1.7011	2.0484	2.4671	2.7633	3.4081	3.6739	4.2754
29	.8542	1.3114	1.6991	2.0452	2.4620	2.7564	3.3962	3.6594	4.2539
30	.8538	1.3104	1.6973	2.0423	2.4573	2.7500	3.3852	3.6460	4.2340
40	.8507	1.3031	1.6839	2.0211	2.4233	2.7045	3.3069	3.5510	4.0942
50	.8489	1.2987	1.6759	2.0086	2.4033	2.6778	3.2614	3.4960	4.0140
60	.8477	1.2958	1.6706	2.0003	2.3901	2.6603	3.2317	3.4602	3.9621
120	.8446	1.2886	1.6577	1.9799	2.3578	2.6174	3.1595	3.3735	3.8372
∞	.8416	1.2816	1.6449	1.9600	2.3263	2.5758	3.0902	3.2905	3.7190
	.5410	1.2010	1.0110	1.5500					

Table 9. Critical Values For The Chi-Square Distribution This table contains critical values $\chi^2_{\alpha,\nu}$ for the Chi-Square distribution defined by $P(\chi^2 \geq \chi^2_{\alpha,\nu}) = \alpha$.

		-,-		c	y.		•	,-
ν	.9999	.9995	.999	.995	.99	.975	.95	.90
1	.0 ⁷ 157	.0 ⁶ 393	$.0^{5}157$.0 ⁴ 393	.0002	.0010	.0039	.0158
2	.0002	.0010	.0020	.0100	.0201	.0506	.1026	.2107
3	.0052	.0153	.0243	.0717	.1148	.2158	.3518	.5844
4	.0284	.0639	.0908	.2070	.2971	.4844	.7107	1.0636
5	.0822	.1581	.2102	.4117	.5543	.8312	1.1455	1.6103
6	.1724	.2994	.3811	.6757	.8721	1.2373	1.6354	2.2041
7	.3000	.4849	.5985	.9893	1.2390	1.6899	2.1673	2.8331
8	.4636	.7104	.8571	1.3444	1.6465	2.1797	2.7326	3.4895
9	.6608	.9717	1.1519	1.7349	2.0879	2.7004	3.3251	4.1682
10	.8889	1.2650	1.4787	2.1559	2.5582	3.2470	3.9403	4.8652
11	1.1453	1.5868	1.8339	2.6032	3.0535	3.8157	4.5748	5.5778
12	1.4275	1.9344	2.2142	3.0738	3.5706	4.4038	5.2260	6.3038
13	1.7333	2.3051	2.6172	3.5650	4.1069	5.0088	5.8919	7.0415
14	2.0608	2.6967	3.0407	4.0747	4.6604	5.6287	6.5706	7.7895
15	2.4082	3.1075	3.4827	4.6009	5.2293	6.2621	7.2609	8.5468
16	2.7739	3.5358	3.9416	5.1422	5.8122	6.9077	7.9616	9.3122
17	3.1567	3.9802	4.4161	5.6972	6.4078	7.5642	8.6718	10.0852
18	3.5552	4.4394	4.9048	6.2648	7.0149	8.2307	9.3905	10.8649
19	3.9683	4.9123	5.4068	6.8440	7.6327	8.9065	10.1170	11.6509
20	4.3952	5.3981	5.9210	7.4338	8.2604	9.5908	10.8508	12.4426
21	4.8348	5.8957	6.4467	8.0337	8.8972	10.2829	11.5913	13.2396
22	5.2865	6.4045	6.9830	8.6427	9.5425	10.9823	12.3380	14.0415
23	5.7494	6.9237	7.5292	9.2604	10.1957	11.6886	13.0905	14.8480
24	6.2230	7.4527	8.0849	9.8862	10.8564	12.4012	13.8484	15.6587
25	6.7066	7.9910	8.6493	10.5197	11.5240	13.1197	14.6114	16.4734
26	7.1998	8.5379	9.2221	11.1602	12.1981	13.8439	15.3792	17.2919
27	7.7019	9.0932	9.8028	11.8076	12.8785	14.5734	16.1514	18.1139
28	8.2126	9.6563	10.3909	12.4613	13.5647	15.3079	16.9279	18.9392
29	8.7315	10.2268	10.9861	13.1211	14.2565	16.0471	17.7084	19.7677
30	9.2581	10.8044	11.5880	13.7867	14.9535	16.7908	18.4927	20.5992
31	9.7921	11.3887	12.1963	14.4578	15.6555	17.5387	19.2806	21.4336
32	10.3331	11.9794	12.8107	15.1340	16.3622	18.2908	20.0719	22.2706
33	10.8810	12.5763	13.4309	15.8153	17.0735	19.0467	20.8665	23.1102
34	11.4352	13.1791	14.0567	16.5013	17.7891	19.8063	21.6643	23.9523
35	11.9957	13.7875	14.6878	17.1918	18.5089	20.5694	22.4650	24.7967
36	12.5622	14.4012	15.3241	17.8867	19.2327	21.3359	23.2686	25.6433
37	13.1343	15.0202	15.9653	18.5858	19.9602	22.1056	24.0749	26.4921
38	13.7120	15.6441	16.6112	19.2889	20.6914	22.8785	24.8839	27.3430
39	14.2950	16.2729	17.2616	19.9959	21.4262	23.6543	25.6954	28.1958
40	14.8831	16.9062	17.9164	20.7065	22.1643	24.4330	26.5093	29.0505
50	21.0093	23.4610	24.6739	27.9907	29.7067	32.3574	34.7643	37.6886
60	27.4969	30.3405	31.7383	35.5345	37.4849	40.4817	43.1880	46.4589
70	34.2607	37.4674	39.0364	43.2752	45.4417	48.7576	51.7393	55.3289
80	41.2445	44.7910	46.5199	51.1719	53.5401	57.1532	60.3915	64.2778
90	48.4087	52.2758	54.1552	59.1963	61.7541	65.6466	69.1260	73.2911
100	55.7246	59.8957	61.9179	67.3276	70.0649	74.2219	77.9295	82.3581

Table 9. Critical Values For The Chi-Square Distribution (Continued)

α

				α				
ν	.10	.05	.025	.01	.005	.001	.0005	.0001
1	2.7055	3.8415	5.0239	6.6349	7.8794	10.8276	12.1157	15.1367
2	4.6052	5.9915	7.3778	9.2103	10.5966	13.8155	15.2018	18.4207
3	6.2514	7.8147	9.3484	11.3449	12.8382	16.2662	17.7300	21.1075
4	7.7794	9.4877	11.1433	13.2767	14.8603	18.4668	19.9974	23.5127
5	9.2364	11.0705	12.8325	15.0863	16.7496	20.5150	22.1053	25.7448
6	10.6446	12.5916	14.4494	16.8119	18.5476	22.4577	24.1028	27.8563
7	12.0170	14.0671	16.0128	18.4753	20.2777	24.3219	26.0178	29.8775
8	13.3616	15.5073	17.5345	20.0902	21.9550	26.1245	27.8680	31.8276
9	14.6837	16.9190	19.0228	21.6660	23.5894	27.8772	29.6658	33.7199
10	15.9872	18.3070	20.4832	23.2093	25.1882	29.5883	31.4198	35.5640
11	17.2750	19.6751	21.9200	24.7250	26.7568	31.2641	33.1366	37.3670
12	18.5493	21.0261	23.3367	26.2170	28.2995	32.9095	34.8213	39.1344
13	19.8119	22.3620	24.7356	27.6882	29.8195	34.5282	36.4778	40.8707
14	21.0641	23.6848	26.1189	29.1412	31.3193	36.1233	38.1094	42.5793
15	22.3071	24.9958	27.4884	30.5779	32.8013	37.6973	39.7188	44.2632
16	23.5418	26.2962	28.8454	31.9999	34.2672	39.2524	41.3081	45.9249
17	24.7690	27.5871	30.1910	33.4087	35.7185	40.7902	42.8792	47.5664
18	25.9894	28.8693	31.5264	34.8053	37.1565	42.3124	44.4338	49.1894
19	27.2036	30.1435	32.8523	36.1909	38.5823	43.8202	45.9731	50.7955
20	28.4120	31.4104	34.1696	37.5662	39.9968	45.3147	47.4985	52.3860
21	29.6151	32.6706	35.4789	38.9322	41.4011	46.7970	49.0108	53.9620
22	30.8133	33.9244	36.7807	40.2894	42.7957	48.2679	50.5111	55.5246
23	32.0069	35.1725	38.0756	41.6384	44.1813	49.7282	52.0002	57.0746
24	33.1962	36.4150	39.3641	42.9798	45.5585	51.1786	53.4788	58.6130
25	34.3816	37.6525	40.6465	44.3141	46.9279	52.6197	54.9475	60.1403
26	35.5632	38.8851	41.9232	45.6417	48.2899	54.0520	56.4069	61.6573
27	36.7412	40.1133	43.1945	46.9629	49.6449	55.4760	57.8576	63.1645
28	37.9159	41.3371	44.4608	48.2782	50.9934	56.8923	59.3000	64.6624
29	39.0875	42.5570	45.7223	49.5879	52.3356	58.3012	60.7346	66.1517
30	40.2560	43.7730	46.9792	50.8922	53.6720	59.7031	62.1619	67.6326
31	41.4217	44.9853	48.2319	52.1914	55.0027	61.0983	63.5820	69.1057
32	42.5847	46.1943	49.4804	53.4858	56.3281	62.4872	64.9955	70.5712
33	43.7452	47.3999	50.7251	54.7755	57.6484	63.8701	66.4025	72.0296
34	44.9032	48.6024	51.9660	56.0609	58.9639	65.2472	67.8035	73.4812
35	46.0588	49.8018	53.2033	57.3421	60.2748	66.6188	69.1986	74.9262
36	47.2122	50.9985	54.4373	58.6192	61.5812	67.9852	70.5881	76.3650
37	48.3634	52.1923	55.6680	59.8925	62.8833 64.1814	69.3465 70.7029	71.9722 73.3512	77.7977 79.2247
38	49.5126	53.3835	56.8955 58.1201	61.1621 62.4281	65.4756	72.0547	74.7253	80.6462
39	50.6598	54.5722						
40	51.8051	55.7585	59.3417	63.6907	66.7660	73.4020	76.0946	82.0623
50	63.1671	67.5048	71.4202	76.1539 88.3794	79.4900 91.9517	86.6608 99.6072	89.5605 102.6948	95.9687 109.5029
60 70	74.3970	79.0819 90.5312	83.2977	100.4252	104.2149	112.3169	115.5776	122.7547
70 80	85.5270 96.5782	101.8795	95.0232 106.6286	112.3288	116.3211	124.8392	128.2613	135.7825
		113.1453	118.1359	124.1163	128.2989	137.2084	140.7823	148.6273
90 100	107.5650	113.1453	118.1359	135.8067	140.1695	149.4493	153.1670	161.3187
100	110.4900	124.0421	129.0012	100.0001	140.1030	140.4400	100.1010	

Table 10. Critical Values For The F Distribution

This table contains critical values F_{α,ν_1,ν_2} for the F distribution defined by $P(F \ge F_{\alpha,\nu_1,\nu_2}) = \alpha$.

	8	254.25	8.53	5.63	4.37	3.67	3.23	2.93	2.71	2.54	2.41	2.30	2.21	2.13	2.07	2.01	1.96	1.92	1.88	1.85	1.82	1.79	1.76	1.74	1.71	1.63	1.51	1.44	1.39	1.26	1.00
	120	253.25	8.55	5.66	4.40	3.70	3.27	2.97	2.75	2.58	2.45	2.34	2.25	2.18	2.11	2.06	2.01	1.97	1.93	1.90	1.87	1.84	1.81	1.79	1.77	1.68	1.58	1.51	1.47	1.35	1.23
	09	252.20	8.57	5.69	4.43	3.74	3.30	3.01	2.79	2.62	2.49	2.38	2.30	2.22	2.16	2.11	2.06	2.02	1.98	1.95	1.92	1.89	1.86	1.84	1.82	1.74	1.64	1.58	1.53	1.43	1.32
	40	251.14	8.50	5.72	4.46	3.77	3.34	3.04	2.83	2.66	2.53	2.43	2.34	2.27	2.20	2.15	2.10	2.06	2.03	1.99	1.96	1.94	1.91	1.89	1.87	1.79	1.69	1.63	1.59	1.50	1.40
	30	250.10	19.40 8.69	5.75	4.50	3.81	3.38	3.08	2.86	2.70	2.57	2.47	2.38	2.31	2.25	2.19	2.15	2.11	2.07	2.04	2.01	1.98	1.96	1.94	1.92	1.84	1.74	1.69	1.65	1.55	1.46
	20	248.01	19.40	5.80	4.56	3.87	3.44	3.15	2.94	2.77	2.65	2.54	2.46	2.39	2.33	2.28	2.23	2.19	2.16	2.12	2.10	2.07	2.05	2.03	2.01	1.93	1.84	1.78	1.75	1.66	1.58
	15	245.95	19.45	2.70	4.62	3.94	3.51	3.22	3.01	2.85	2.72	2.62	2.53	2.46	2.40	2.35	2.31	2.27	2.23	2.20	2.18	2.15	2.13	2.11	2.09	2.01	1.92	1.87	1.84	1.75	1.67
	10	241.88	19.40	5.06	4.74	4.06	3.64	3.35	3.14	2.98	2.85	2.75	2.67	2.60	2.54	2.49	2.45	2.41	2.38	2.35	2.32	2.30	2.27	2.25	2.24	2.16	2.08	2.03	1.99	1.91	1.84
7,	6	240.54	19.30	9.91	4.77	4.10	3.68	3.39	3.18	3.02	2.90	2.80	2.71	2.65	2.59	2.54	2.49	2.46	2.42	2.39	2.37	2.34	2.32	2.30	2.28	2.21	2.12	2.07	2.04	1.96	1.88
	80	238.88	19.57	6.03	4.82	4.15	3.73	3.44	3.23	3.07	2.95	2.85	2.77	2.70	2.64	2.59	2.55	2.51	2.48	2.45	2.42	2.40	2.37	2.36	2.34	2.27	2.18	2.13	2.10	2.02	1.94
	7	236.77	19.35	60.0	4.88	4.21	3.79	3.50	3.29	3.14	3.01	2.91	2.83	2.76	2.71	2.66	2.61	2.58	2.54	2.51	2.49	2.46	2.44	2.42	2.40	2.33	2.25	2.20	2.17	2.09	2.01
	9	233.99	19.33	6.16	4.95	4.28	3.87	3.58	3.37	3.22	3.09	3.00	2.92	2.85	2.79	2.74	2.70	2.66	2.63	2.60	2.57	2.55	2.53	2.51	2.49	2.42	2.34	2.29	2.25	2.18	2.10
	ro	230.16	19.30	9.01	5.05	4.39	3.97	3.69	3.48	3.33	3.20	3.11	3.03	2.96	2.90	2.85	2.81	2.77	2.74	2.71	2.68	2.66	2.64	2.62	2.60	2.53	2.45	2.40	2.37	2.29	2.22
	4	224.58	19.25	9.12	5.19	4.53	4.12	3.84	3.63	3.48	3.36	3.26	3.18	3.11	3.06	3.01	2.96	2.93	2.90	2.87	2.84	2.82	2.80	2.78	2.76	2.69	2.61	2.56	2.53	2.45	2.38
	က	215.71	19.16	9.20	5.41	4.76	4.35	4.07	3.86	3.71	3.59	3.49	3.41	3.34	3.29	3.24	3.20	3.16	3.13	3.10	3.07	3.05	3.03	3.01	2.99	2.93	2.84	2.79	2.76	2.68	2.61
	2	199.50	19.00	6.93	5 79	5.15	4.74	4.46	4.26	4.10	3.98	3.89	3.81	3.74	3.68	3.63	3.59	3.55	3.52	3.49	3.47	3.44	3.42	3.40	3.39	3.32	3.23	3.18	3.15	3.07	3.00
rc	-	161.45	18.51	7 71	6.61	20.5	5.59	5.32	5.12	4.96	4.84	4.75	4.67	4.60	4.54	4.49	4.45	4.41	4.38	4.35	4.32	4.30	4.28	4.26	4.24	4.17	4.08	4.03	4.00	3.92	3.85
$\alpha = .05$	7,			? T	H 145	· · ·	7	∞	6	10	11	12	13	14	15	16	17	18	19	70	21	22	23	24	25	30	40	20	09	120	8

Table 10. Critical Values For The ${\cal F}$ Distribution (Continued)

14.07
00.02
60.07 10.
14.55 14.20
14.66
.98 14.80
15.21 14.98
15.52
15.98 11.39
18.00 16.69 15 13.27 12.06 11 10.92 9.78 9

Table 10. Critical Values For The F Distribution (Continued)

2 3 4 5 999.00 999.17 999.25 999.30 99 148.50 141.11 137.10 134.58 1 61.25 56.18 53.44 51.71 9 37.12 33.20 31.09 29.75 2 27.00 23.70 21.92 20.80 2 21.69 18.77 17.20 16.21 1 18.49 15.83 14.39 13.48 1 16.39 13.90 12.56 11.71 1 14.91 12.55 11.28 10.48 1 12.97 10.80 9.63 8.89 1 12.31 10.21 9.63 8.89 1 11.78 9.73 8.62 7.92 11.78 9.73 8.25 7.57 10.97 9.73 8.25 7.57 10.97 9.73 8.25 7.57 10.98 8.49 7.46	6 7 999,33 999,36 132.85 131.58 50.53 49.66 28.83 28.16 20.03 19.46 15.52 15.02 12.86 12.40 11.13 10.70 9.93 9.52	8 999.37 130.62 49.00 27.65 19.03	6 000 30	10	15	20	30	40	9	120	8
999.25 999.30 137.10 134.58 53.44 51.71 31.09 29.75 21.92 20.80 17.20 16.21 14.39 13.48 12.56 11.71 11.28 10.48 10.35 9.58 9.63 8.89 9.07 8.35 8.62 7.92 8.62 7.92 7.94 7.27 7.68 7.02 7.46 6.81 7.27 6.62 7.46 6.81 7.27 6.62 7.46 6.81 6.70 6.08 6.70 6.08	6 1	999.37 130.62 49.00 27.65 19.03 14.63								:	;
141.11 137.10 134.58 56.18 53.44 51.71 33.20 31.09 29.75 23.70 21.92 20.80 18.77 17.29 10.21 15.83 14.39 13.48 13.90 12.56 11.71 12.55 11.28 10.48 11.56 10.35 9.58 10.21 9.07 8.35 9.73 8.62 7.92 8.73 7.64 6.81 8.28 7.27 6.62 8.49 7.46 6.81 8.28 7.27 6.62 8.10 7.10 6.46 7.54 6.95 6.32 7.67 6.70 6.08 7.45 6.49 5.89 7.75 6.59 5.89 7.75 6.59 5.89 7.75 6.12 5.53 6.59 5.70 5.13 6.59 5.70 5.13 6.70 6.12 5.53 6.81 6.90 5.13 6.70 6.12 5.53 6.84 5.76 4.90 6.77 6.70 6.12 <t< td=""><td>H • • • • • • • • • • • • • • • • • • •</td><td>130.62 49.00 27.65 19.03 14.63</td><td></td><td></td><td>999.43</td><td>999.45</td><td>999.47</td><td>999.47</td><td>999.48</td><td>999.49</td><td>999.50</td></t<>	H • • • • • • • • • • • • • • • • • • •	130.62 49.00 27.65 19.03 14.63			999.43	999.45	999.47	999.47	999.48	999.49	999.50
56.18 53.44 51.71 33.20 31.09 29.75 23.70 21.92 20.80 18.77 17.20 16.21 15.83 14.39 13.48 13.90 12.56 11.71 12.55 11.28 10.48 11.56 10.35 9.58 10.80 9.63 8.89 10.21 9.07 8.35 9.73 8.62 7.92 9.73 8.25 7.57 8.73 7.68 7.02 8.49 7.46 6.81 8.79 7.46 6.81 7.70 6.95 6.32 7.76 6.70 6.08 7.75 6.59 5.98 7.45 6.49 5.89 7.75 6.59 5.98 7.75 6.59 5.98 7.75 6.70 6.08 7.75 6.12 5.53 6.59 5.70 5.13 6.59 5.70 5.13 6.50		49.00 27.65 19.03 14.63	129.86	129.25	127.37	126.42	125.45	124.96	124.47	123.97	123.50
33.20 31.09 29.75 23.70 21.92 20.80 18.77 17.20 16.21 15.83 14.39 13.48 13.90 12.56 11.71 12.55 11.28 10.35 9.58 10.80 9.73 8.62 7.92 9.34 8.25 7.57 9.01 7.94 7.27 8.49 7.27 8.49 7.27 8.49 7.27 8.49 7.27 8.49 7.27 8.49 7.27 8.49 7.27 8.49 7.46 6.95 6.32 7.46 6.95 6.32 7.45 6.49 5.89 7.45 6.49 5.89 7.45 6.49 5.89 7.45 6.49 5.89 7.45 6.49 5.89 7.45 6.49 5.89 7.45 6.49 5.89 7.45 6.49 7.46 6.49 7.46 6.49 7.46 6.49 7.46 6.49 7.46 6.49 7.46 6.49 7.46 6.49 7.46 6.49 7.46 6.49 7.46 6.49 7.46 7.46 7.46 7.46 7.46 7.46 7.46 7.46		27.65 19.03 14.63	48.47	48.05	46.76	46.10	45.43	45.09	44.75	44.40	44.07
23.70 21.92 20.80 18.77 17.20 16.21 15.83 14.39 13.48 13.90 12.56 11.71 12.55 11.28 10.48 11.56 10.35 9.58 10.80 9.63 8.89 10.21 9.07 8.35 9.34 8.25 7.57 9.01 7.94 7.27 8.49 7.46 6.81 8.10 7.10 6.46 7.94 6.95 6.32 7.67 6.70 6.08 7.67 6.70 6.08 7.45 6.49 5.89 7.45 6.49 5.89 7.65 6.59 5.98 7.67 6.70 6.08 7.55 6.59 5.98 7.65 6.70 6.08 7.65 6.59 5.98 7.65 6.59 5.98 7.65 6.70 6.90 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.69 5.98 7.76		19.03 14.63	27.24	26.92	25.91	25.39	24.87	24.60	24.33	24.06	23.80
18.77 17.20 16.21 15.83 14.39 13.48 13.90 12.56 11.71 12.55 11.28 10.48 11.56 10.35 9.58 10.80 9.63 8.89 10.21 9.07 8.35 9.34 8.25 7.57 9.01 7.94 7.27 8.49 7.46 6.81 8.10 7.10 6.46 7.94 6.95 6.32 7.67 6.70 6.08 7.67 6.70 6.08 7.45 6.49 5.98 7.45 6.49 5.89 7.75 6.53 5.98 7.67 6.70 6.08 7.75 6.59 5.98 7.75 6.12 5.53 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.70 6.70 6.90 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.50 5.70 5.13 6.70		14.63	18.69	18.41	17.56	17.12	16.67	16.44	16.21	15.98	15.76
15.83 14.39 13.48 13.90 12.56 11.71 12.55 11.28 10.48 11.56 10.35 9.58 10.80 9.63 8.89 10.21 9.07 8.35 9.34 8.25 7.57 9.01 7.94 7.27 8.28 7.27 6.62 8.10 7.46 6.81 7.94 6.95 6.32 7.67 6.70 6.08 7.75 6.59 5.98 7.45 6.49 5.89 7.75 6.49 5.89 7.75 6.59 5.98 7.75 6.49 5.31 6.59 5.70 5.31 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.50 <			14.33	14.08	13.32	12.93	12.53	12.33	12.12	11.91	11.71
13.90 12.56 11.71 12.55 11.28 10.48 11.56 10.35 9.58 10.80 9.63 8.89 10.21 9.07 8.35 9.34 8.25 7.57 9.01 7.94 7.27 8.28 7.27 6.62 8.10 7.10 6.46 7.94 6.95 6.32 7.67 6.70 6.08 7.45 6.49 5.89 7.45 6.49 5.89 7.55 6.59 5.98 7.67 6.70 6.08 7.55 6.59 5.98 7.65 6.70 5.89 7.65 6.59 5.98 7.65 6.70 6.08 7.65 6.59 5.98 7.65 6.70 6.12 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.70 5.13 6.59 5.60 5.00 7.76 6.12 5.53 6.59 5.70 5.13 6.50		12.05	11.77	11.54	10.84	10.48	10.11	9.92	9.73	9.53	9.35
12.55 11.28 11.56 10.35 10.80 9.63 10.21 9.07 9.34 8.25 9.01 7.94 8.28 7.27 8.10 7.04 6.95 7.67 6.70 7.55 6.59 7.45 6.49 7.67 6.70 7.55 6.59 7.45 6.49 7.67 6.70 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.45 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.65 6.49 7.55 6.59 7.55		10.37	10.11	68.6	9.24	8.90	8.55	8.37	8.19	8.00	7.82
11.56 10.35 10.80 9.63 10.21 9.07 9.73 8.62 9.34 8.25 9.01 7.94 8.73 7.68 8.49 7.46 8.28 7.27 8.10 7.10 7.94 6.95 7.80 6.81 7.67 6.70 7.67 6.70 7.67 6.49 7.67 6.49 7.65 6.59 7.67 6.49 7.67 6.49 7.68 6.49 7.67 6.49 7.67 6.49 7.68 6.49 7.67 6.49 7.67 6.49 7.68 6.49 7.67 6.49 7.68 6.49 7.68 6.49 7.67 6.49 7.67 6.49 7.68 6.49 7.68 6.49 7.68 6.49 7.65 6.59 7.65 6.59			8.96	8.75	8.13	7.80	7.47	7.30	7.12	6.94	6.77
10.80 9.63 10.21 9.07 9.73 8.62 9.34 8.25 9.01 7.94 8.73 7.68 8.49 7.46 8.28 7.27 8.10 7.10 7.94 6.95 7.80 6.81 7.67 6.70 7.67 6.49 7.65 6.59 7.45 6.49 7.05 6.49 7.05 6.49 7.05 6.49			8.12	7.92	7.32	7.01	6.68	6.52	6.35	6.18	6.01
10.21 9.07 9.73 8.62 9.34 8.25 9.01 7.94 8.73 7.68 8.49 7.46 8.28 7.27 8.10 7.10 7.94 6.95 7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.50 5.70 6.50		7.71	7.48	7.29	6.71	6.40	60.9	5.93	5.76	5.59	5.43
9.73 8.62 9.34 8.25 9.01 7.94 8.73 7.68 8.49 7.46 8.28 7.27 8.10 7.10 7.94 6.95 7.80 6.81 7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46			86.98	6.80	6.23	5.93	5.63	5.47	5.30	5.14	4.98
9.34 8.25 9.01 7.94 8.73 7.68 8.49 7.46 8.28 7.27 8.10 7.10 7.94 6.95 7.80 6.81 7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46	7.44 7.08		6.58	6.40	5.85	5.56	5.25	5.10	4.94	4.77	4.61
9.01 7.94 8.73 7.68 8.49 7.46 8.28 7.27 8.10 7.10 7.94 6.95 7.80 6.81 7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46	7.09 6.74	6.47	6.26	80.9	5.54	5.25	4.95	4.80	4.64	4.47	4.32
8.73 7.68 8.49 7.46 8.28 7.27 8.10 7.10 7.94 6.95 7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46			5.98	5.81	5.27	4.99	4.70	4.54	4.39	4.23	4.07
8.49 7.46 8.28 7.27 8.10 7.10 7.94 6.95 7.80 6.81 7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46		5.96	5.75	5.58	5.05	4.78	4.48	4.33	4.18	4.02	3.86
8.28 7.27 8.10 7.10 7.94 6.95 7.80 6.81 7.67 6.70 7.55 6.59 7.05 6.12 6.59 5.70 6.34 5.46			5.56	5.39	4.87	4.59	4.30	4.15	4.00	3.84	3.68
8.10 7.10 7.94 6.95 7.80 6.81 7.67 6.70 7.55 6.59 7.05 6.12 6.59 5.70 6.34 5.46	6.18 5.85		5.39	5.22	4.70	4.43	4.14	3.99	3.84	3.68	3.52
7.94 6.95 7.80 6.81 7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.59 5.70 6.49 5.46		5.44	5.24	5.08	4.56	4.29	4.00	3.86	3.70	3.54	3.39
7.80 6.81 7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46	5.88 5.56		5.11	4.95	4.44	4.17	3.88	3.74	3.58	3.42	3.27
7.67 6.70 7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46 6.17 5.31		5.19	4.99	4.83	4.33	4.06	3.78	3.63	3.48	3.32	3.16
7.55 6.59 7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46 6.17 5.31			4.89	4.73	4.23	3.96	3.68	3.53	3.38	3.22	3.07
7.45 6.49 7.05 6.12 6.59 5.70 6.34 5.46 6.17 5.31	5.55 5.23	4.99	4.80	4.64	4.14	3.87	3.59	3.45	3.29	3.14	2.98
7.05 6.12 6.59 5.70 6.34 5.46 6.17 5.31	5.46 5.15		4.71	4.56	4.06	3.79	3.52	3.37	3.22	3.06	2.90
6.59 5.70 6.34 5.46 6.17 5.31	5.12 4.82		4.39	4.24	3.75	3.49	3.22	3.07	2.92	2.76	2.60
6.34 5.46	4.73 4.44	4.21	4.02	3.87	3.40	3.14	2.87	2.73	2.57	2.41	2.24
617 531	4.51 4.22	4.00	3.82	3.67	3.20	2.95	2.68	2.53	2.38	2.21	2.04
10:0		_	3.69	3.54	3.08	2.83	2.55	2.41	2.25	2.08	1.90
5.78 4.95	4.04 3.77	3.55	3.38	3.24	2.78	2.53	2.26	2.11	1.95	1.77	1.56
6.93 5.44 4.64 4.12			3.11	2.97	2.53	2.28	2.01	1.85	1.68	1.47	1.00

Table 11. The Incomplete Gamma Function This table contains values of $F(x;\alpha)=\int_0^x \frac{1}{\Gamma(\alpha)}y^{\alpha-1}e^{-y}\,dy$.

				` .	o	Ł				
x	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0
1	.8427	.6321	.4276	.2642	.1509	.0803	.0402	.0190	.0085	.0037
2	.9545	.8647	.7385	.5940	.4506	.3233	.2202	.1429	.0886	.0527
3	.9857	.9502	.8884	.8009	.6938	.5768	.4603	.3528	.2601	.1847
4	.9953	.9817	.9540	.9084	.8438	.7619	.6674	.5665	.4659	.3712
5	.9984	.9933	.9814	.9596	.9248	.8753	.8114	.7350	.6495	.5595
6	.9995	.9975	.9926	.9826	.9652	.9380	.8994	.8488	.7867	.7149
7	.9998	.9991	.9971	.9927	.9844	.9704	.9488	.9182	.8777	.8270
8	.9999	.9997	.9989	.9970	.9932	.9862	.9749	.9576	.9331	.9004
9	1.0000	.9999	.9996	.9988	.9971	.9938	.9880	.9788	.9648	.9450
10		1.0000	.9998	.9995	.9988	.9972	.9944	.9897	.9821	.9707
11			.9999	.9998	.9995	.9988	.9975	.9951	.9911	.9849
12			1.0000	.9999	.9998	.9995	.9989	.9977	.9957	.9924
13				1.0000	.9999	.9998	.9995	.9989	.9980	.9963
14					1.0000	.9999	.9998	.9995	.9990	.9982
15						1.0000	.9999	.9998	.9996	.9991
16							1.0000	.9999	.9998	.9996
17								1.0000	.9999	.9998
18									1.0000	.9999
19										1.0000
	<u> </u>					 α				
\boldsymbol{x}	5.5	6.0	6.5	7.0	7.5	8.0	8.5	9.0	9.5	10.0
1	.0015	.0006	.0002	.0001	.0000	.0000	.0000	.0000	.0000	
2	.0301	.0166	.0088	.0045	.0023	.0011	.0005	.0002	.0001	.0000
3	.1266	.0839	.0538	.0335	.0203	.0119	.0068	.0038	.0021	.0011
4	.2867	.2149	.1564	.1107	.0762	.0511	.0335	.0214	.0133	.0081
5	.4696	.3840	.3061	.2378	.1803	.1334	.0964	.0681	.0471	.0318
6	.6364	.5543	.4724	.3937	.3210	.2560	.1999	.1528	.1144	.0839
7	.7670	.6993	.6262	.5503	.4745	.4013	.3329	.2709	.2163	.1695
8	.8589	.8088	.7509	.6866	.6179	.5470	.4762	.4075	.3427	.2834
9	.9184	.8843	.8425	.7932	.7373	.6761	.6112	.5443	.4776	.4126
10	.9547	.9329	.9048	.8699	.8281	.7798	.7258	.6672	.6054	.5421
11	.9756	.9625	.9446	.9214	.8922	.8568	.8153	.7680	.7157	.6595
12	.9873	.9797	.9689	.9542	.9349	.9105	.8806	.8450	.8038	.7576
13	.9935	.9893	.9830	.9741	.9620	.9460	.9255	.9002	.8698	.8342
14	.9968	.9945	.9910	.9858	.9784	.9684	.9551	.9379	.9166	.8906
15	.9984	.9972	.9953	.9924	.9881	.9820	.9737	.9626	.9482	.9301
16	.9992	.9986	.9976	.9960	.9936	.9900	.9850	.9780	.9687	.9567
17	.9996	.9993	.9988	.9979	.9966	.9946	.9916	.9874	.9816	.9739
18	.9998	.9997	.9994	.9990	.9982	.9971	.9954	.9929	.9894	.9846
19	.9999	.9998	.9997	.9995	.9991	.9985	.9975	.9961	.9941	.9911
20	1.0000	.9999	.9999	.9997	.9995	.9992	.9987	.9979	.9967	.9950
21		1.0000	.9999	.9999	.9998	.9996	.9993	.9989	.9982	.9972
22			1.0000	.9999	.9999	.9998	.9997	.9994	.9991	.9985
23				1.0000	.9999	.9999	.9998	.9997	.9995	.9992
24					1.0000	1.0000	.9999	.9998	.9997	.9996

Table 12. Critical Values For The Studentized Range Distribution

This table contains critical values $Q_{\alpha,k,\nu}$ for the Studentized Range distribution defined by $P(Q \ge Q_{\alpha,k,\nu}) = \alpha$, k is the number of degrees of freedom in the number of treatment groups) and ν is the number of degrees of freedom in the denominator (s^2) .

17 18 19 20	57.22 58.04	16.14	10.84 10.98 11.11 1	8.914 9.028 9.134 9.233	7.932 8.030 8.122 8.208		7.338 7.426 7.508 7.587	7.338 7.426 7.508 7 6.939 7.020 7.097 7	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802	7.338 7.426 7.508 7 6.939 7.020 7.097 7 6.653 6.729 6.802 6 6.437 6.510 6.579 6	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.134 6.202 6.265	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151 5.931 5.995 6.055	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.785 5.846 5.904	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.727 5.786 5.843	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.785 5.846 5.904 5.727 5.736 5.843 5.675 5.734 5.790	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.785 5.846 5.904 5.727 5.786 5.843 5.675 5.734 5.790 5.630 5.688 5.743	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.727 5.786 5.843 5.675 5.734 5.790 5.630 5.647 5.743 5.589 5.647 5.701	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.785 5.846 5.904 5.727 5.786 5.843 5.675 5.734 5.790 5.630 5.688 5.743 5.589 5.647 5.701 5.589 5.647 5.701 5.553 5.610 5.663	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.269 6.339 6.405 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.785 5.846 5.904 5.727 5.786 5.843 5.675 5.734 5.790 5.630 5.688 5.743 5.589 5.647 5.701 5.589 5.647 5.701 5.589 5.647 5.701 5.589 5.647 5.701 5.589 5.647 5.701 5.589 5.647 5.701 5.589 5.647 5.745	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.269 6.339 6.405 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.785 5.846 5.904 5.727 5.786 5.843 5.630 5.638 5.743 5.630 5.647 5.701 5.589 5.647 5.701 5.533 5.494 5.545 5.327 5.379 5.429	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.727 5.786 5.843 5.675 5.734 5.701 5.630 5.647 5.701 5.589 5.647 5.701 5.531 5.439 5.455 5.439 5.441 5.701 5.531 5.439 5.455 5.327 5.379 5.429 5.313 5.216 5.265	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.437 6.510 6.579 6.269 6.339 6.405 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.727 5.786 5.843 5.675 5.734 5.790 5.630 5.647 5.701 5.589 5.647 5.701 5.537 5.439 5.455 5.377 5.379 5.429 5.377 5.379 5.429 5.316 5.663 5.313 5.216 5.266 5.313 5.107 5.154 5.199	7.338 7.426 7.508 6.939 7.020 7.097 6.653 6.729 6.802 6.269 6.339 6.405 6.134 6.202 6.265 6.023 6.089 6.151 5.931 5.995 6.055 5.852 5.915 5.974 5.727 5.786 5.843 5.675 5.734 5.790 5.630 5.688 5.743 5.589 5.647 5.701 5.553 5.610 5.663 5.439 5.494 5.545 5.327 5.349 5.454 5.327 5.366 5.313 5.107 5.154 5.199 4.998 5.044 5.086
15 16	",	• •	53 10.69	34 8.794	17 7.828	13 7.244		59 6.852	စ စ	တ တ တ																
14 1	<u>"</u> "		10.35 10.53	8.525 8.664	7.596 7.717	7.034 7.143	8 6 F 8 6 7 F 9	_																		
13	-	•	10.15	8.373 8	7.466 7	6.917 7	6.550 6		6.287 6																	
12			9.946	8.208	7.324	6.789	6.431		0.1.0																	
k) 11		-	9.717	8.027	7.168	6.649	_	_																		
10	"	13.99	9.462	7.826	6.995	6.493	9																			
6	1 4	13.54	9.177	7.602	6.802		ro	rc		5.595																
••	14	13.03	8.853	1-	6.582	_	щ	ro		5.432																
7	43.12	12.44	8.478	7.053	6.330	5.895	5.606	5.399		5.244	5.244	5.244 5.124 5.028	5.244 5.124 5.028 4.950	5.244 5.124 5.028 4.950 4.885	5.244 5.124 5.028 4.950 4.885 4.829	5.244 5.124 5.028 4.950 4.885 4.829 4.782	5.244 5.124 5.028 4.950 4.885 4.782 4.741	5.244 5.124 5.028 4.950 4.885 4.782 4.741 4.705	5.244 5.124 5.028 4.950 4.885 4.782 4.741 4.705 4.705	5.244 5.124 5.028 4.950 4.885 4.829 4.782 4.741 4.705 4.705 4.673	5.244 5.124 5.028 4.950 4.885 4.829 4.741 4.741 4.673 4.645	5.244 5.124 6.028 6.950 6.950 6.885 6.885 6.885 6.782 6.782 6.783	5.244 5.124 6.028 6.950	5.244 5.124 6.028 6.950 6.950 6.885	5.244 5.128 5.028 4.950 4.885 4.885 4.782 4.782 4.761 4.645 4.645 4.389 4.314	5.244 5.128 6.028 4.859 6.829 6.782 6.741 6.741 6.645 6.645 6.782
9	40.41	11.74	8.037	6.707	6.033	5.628	5.359	5.167		5.024	5.024	5.024 4.912 4.823	5.024 4.912 4.823 4.751	5.024 4.912 4.823 4.751 4.690	5.024 4.912 4.823 4.751 4.690 4.639	5.024 4.912 4.823 4.751 4.690 4.639 4.595	5.024 4.912 4.823 4.751 4.690 4.639 4.595	5.024 4.912 4.823 4.751 4.690 4.595 4.557 4.524	5.024 4.912 4.823 4.751 4.690 4.690 4.557 4.557 4.554 4.554	5.024 4.912 4.823 4.751 4.690 4.639 4.595 4.557 4.495	5.024 4.912 4.823 4.751 4.690 4.639 4.557 4.557 4.495 4.469	5.024 4.912 4.823 4.751 4.630 4.639 4.557 4.557 4.495 4.445 4.445	5.024 4.912 4.913 4.751 4.690 4.557 4.557 4.495 4.445 4.373 4.302	5.024 4.912 4.913 4.751 4.630 4.639 4.557 4.495 4.495 4.445 4.302 4.332	5.024 4.912 4.823 4.751 4.690 4.690 4.557 4.495 4.445 4.332 4.332 4.163	5.024 4.912 4.823 4.751 4.690 4.595 4.495 4.495 4.469 4.373 4.469
ro	37.08	10.88	7.502	6.287	5.673	5.305	5.060	4.886		4.756	4.756	4.756	4.756 4.654 4.574 4.508	4.756 4.654 4.574 4.508 4.453	4.756 4.654 4.574 4.453 4.463	4.756 4.654 4.574 4.508 4.453 4.407	4.756 4.654 4.574 4.508 4.453 4.407 4.367	4.756 4.654 4.574 4.508 4.453 4.407 4.367 4.303	4.756 4.654 4.574 4.453 4.407 4.367 4.333 4.303 4.277	4.756 4.654 4.574 4.508 4.453 4.367 4.367 4.333 4.253	4.756 4.654 4.574 4.508 4.453 4.407 4.367 4.333 4.233 4.233	4.756 4.654 4.574 4.508 4.445 4.4407 4.367 4.303 4.253 4.268	4.756 4.654 4.574 4.508 4.445 4.4407 4.367 4.303 4.277 4.253 4.102	4.756 4.654 4.574 4.508 4.4453 4.367 4.367 4.277 4.253 4.102 4.102 4.039	4.756 4.654 4.554 4.508 4.453 4.407 4.333 4.277 4.232 4.102 4.039	4.756 4.654 4.574 4.508 4.407 4.303 4.277 4.253 4.232 4.039 3.977 3.917
4	32.82	9.798	6.825	5.757	5.218	4.896	4.681	4.529		4.415	4.415	4.415 4.327 4.256	4.415 4.327 4.256 4.199	4.415 4.327 4.256 4.199 4.151	4.415 4.327 4.256 4.199 4.151 4.111	4.415 4.327 4.256 4.199 4.151 4.111	4.415 4.327 4.256 4.199 4.151 4.111 4.076	4.415 4.327 4.256 4.199 4.151 4.011 4.076	4.415 4.327 4.256 4.199 4.151 4.011 4.076 4.020 3.997	4,415 4,327 4,256 4,199 4,151 4,076 4,076 4,046 4,020 3,997 3,997	4.415 4.327 4.327 4.199 4.151 4.016 4.046 4.020 3.997 3.997	4.415 4.327 4.256 4.199 4.111 4.076 4.046 4.020 3.997 3.997 3.958	4.415 4.327 4.199 4.191 4.011 4.046 4.046 4.020 3.997 3.997 3.958 3.961 3.845	4.415 4.327 4.199 4.199 4.111 4.076 4.046 4.020 3.997 3.997 3.958 3.961 3.845 3.845	4.415 4.327 4.199 4.199 4.111 4.111 4.046 4.046 4.020 3.997 3.997 3.958 3.901 3.845 3.737 3.737	4.415 4.327 4.256 4.199 4.151 4.046 4.046 4.020 3.997 3.997 3.958 3.958 3.358 3.358 3.368 3.368 3.685
က	26.98	8.331	5.910	5.040	4.602	4.339	4.165	4.041		3.949	3.949	3.949 3.877 3.820	3.949 3.877 3.820 3.773	3.949 3.877 3.820 3.773	3.949 3.877 3.820 3.773 3.735	3.949 3.877 3.820 3.773 3.735 3.702	3.949 3.877 3.820 3.773 3.773 3.702 3.674	3.949 3.877 3.820 3.773 3.735 3.702 3.674 3.649	3.949 3.877 3.820 3.773 3.735 3.702 3.674 3.649 3.628	3.949 3.877 3.820 3.773 3.735 3.702 3.674 3.649 3.609 3.593	3.949 3.877 3.773 3.773 3.773 3.702 3.649 3.628 3.628 3.639 3.538	3.949 3.877 3.820 3.773 3.773 3.649 3.649 3.628 3.609 3.538	3.949 3.877 3.820 3.773 3.773 3.702 3.649 3.649 3.628 3.528 3.532 3.532 3.532	3.949 3.877 3.820 3.773 3.773 3.702 3.649 3.649 3.528 3.593 3.593 3.532 3.548	3.949 3.877 3.820 3.773 3.773 3.702 3.649 3.528 3.532 3.543 3.532 3.542 3.543 3.542 3.543 3.543	3.847 3.877 3.820 3.773 3.773 3.649 3.649 3.649 3.593 3.593 3.593 3.356 3.356
.05 2	17.97	6.085	4.501	3.927	3.635	3.461	3.344	3.261		3.199	3.199	3.199 3.151 3.113	3.199 3.151 3.113 3.082	3.199 3.151 3.113 3.082 3.055	3.199 3.151 3.113 3.082 3.055 3.033	3.199 3.151 3.113 3.082 3.055 3.033	3.199 3.151 3.113 3.082 3.085 3.055 3.033 3.014	3.199 3.151 3.113 3.082 3.055 3.055 3.033 3.014 2.998	3.199 3.151 3.113 3.082 3.055 3.055 3.014 2.998 2.984 2.984	3.199 3.151 3.183 3.082 3.055 3.033 3.014 2.988 2.984 2.971	3.199 3.151 3.113 3.082 3.082 3.033 3.014 2.998 2.984 2.984 2.971 2.960	3.199 3.151 3.113 3.082 3.082 3.033 3.014 2.998 2.984 2.971 2.960 2.960	3.199 3.151 3.113 3.082 3.082 3.033 3.014 2.998 2.984 2.971 2.960 2.960 2.960 2.960	3.199 3.151 3.113 3.082 3.082 3.033 3.014 2.984 2.984 2.971 2.960 2.960 2.960 2.960 2.988	3.199 3.151 3.113 3.082 3.082 3.033 3.014 2.984 2.984 2.984 2.971 2.960	3.199 3.151 3.113 3.082 3.055 3.014 2.998 2.984 2.971 2.960 2.970 2.960 2.960 2.970 2.960 2.970 2.960 2.970 2.970 2.970 2.970 2.960 2.970 2.070 2.070 2.070 2.000 2.000 2.000 2.000
α = .0	1	7	က	4	ro		7	- 00		6	01	01	01 11 12	9 11 12 13	0 11 13 14	10 11 12 13 14 15	11 12 13 14 15 16 16 16 16 16 16 16 16 16 16 16 16 16	01 12 13 15 16 17 19 18 19 19 19 19 19 19 19 19 19 19 19 19 19	9 11 12 11 12 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	10 10 11 11 11 11 11 11 11 11 11 11 11 1	20 11 12 13 15 16 16 16 16 16 16 16 16 16 16 16 16 16	0 0112114 11911 0 0 2 2	0 0 11 21 21 4 4 4 5 5 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6	0 0112114 111111 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1	0 0 11 21 21 41 41 41 41 41 41 41 41 41 41 41 41 41	9 11 11 12 13 14 15 16 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19

Table 12. Critical Values For The Studentized Range Distribution (Continued)

	20	298.0 37.95 19.77 14.40	11.93 10.54 9.646 9.027 8.573	8.226 7.952 7.731 7.548 7.395	7.264 7.152 7.053 6.968 6.891	6.823 6.612 6.407 6.209 6.015 5.827 5.645
	19	294.3 37.50 19.55 14.24	11.81 10.43 9.554 8.943 8.495	8.153 7.883 7.665 7.485	7.204 7.093 6.997 6.912 6.837	6.771 6.563 6.361 6.165 5.974 5.790 5.611
	18	290.4 37.03 19.32 14.08	11.68 10.32 9.456 8.854 8.412	8.076 7.809 7.594 7.417	7.142 7.032 6.937 6.854 6.780	6.714 6.510 6.311 6.119 5.931 5.750 5.574
	17	286.3 36.53 19.07 13.91	11.55 10.21 9.353 8.760 8.325	7.993 7.732 7.520 7.345	7.074 6.967 6.873 6.792 6.719	6.654 6.453 6.259 6.069 5.886 5.708 5.535
	16	281.8 36.00 18.81 13.73	11.40 10.08 9.242 8.659 8.232	7.906 7.649 7.441 7.269	7.003 6.898 6.806 6.725 6.654	6.591 6.394 6.203 6.017 5.837 5.662 5.493
	15	277.0 35.43 18.52 13.53	11.24 9.951 9.124 8.552 8.132	7.812 7.560 7.356 7.188	6.927 6.823 6.734 6.655 6.585	6.523 6.330 6.143 5.961 5.785 5.785 5.448
	14	271.8 34.81 18.22 13.32	11.08 9.808 8.997 8.436 8.025	7.712 7.465 7.265 7.101 6.962		6.450 6.261 6.078 5.900 5.728 5.562 5.400
	13	266.2 34.13 17.89 13.09	10.89 9.653 8.860 8.312 7.910	7.603 7.362 7.167 7.006		6.371 6.186 6.008 5.835 5.667 5.505 5.348
	12	260.0 33.40 17.53	10.70 9.485 8.711 8.176 7.784	7.485 7.250 7.060 6.903	6.660 6.564 6.480 6.407 6.342	6.285 6.106 5.932 5.764 5.601 5.443 5.290
¥	11	253.2 32.59 17.13	10.48 9.301 8.548 8.027 7.647	7.356 7.128 6.943 6.791	6.555 6.462 6.381 6.310 6.247	6.191 6.017 5.849 5.686 5.528 5.375 5.227
	10	245.6 31.69 16.69	10.24 9.097 8.368 7.863 7.495	7.213 6.992 6.814 6.667	6.439 6.349 6.270 6.201 6.141	6.087 5.919 5.756 5.599 5.447 5.299
	6	237.0 30.68 16.20	9.972 8.869 8.166 7.681	7.055 6.842 6.670 6.528	6.309 6.222 6.147 6.081 6.022	5.970 5.809 5.653 5.502 5.356 5.214 5.078
	∞	227.2 29.53 15.64	9.669 8.613 7.939 7.474	6.875 6.672 6.507 6.372	6.162 6.079 6.007 5.944 5.889	5.839 5.685 5.536 5.392 5.253 5.118
	7	215.8 28.20 15.00	9.321 8.318 7.679 7.237 6.915	6.669 6.476 6.321 6.192	5.994 5.915 5.847 5.788	5.688 5.542 5.401 5.265 5.133 5.005
	9	202.2 26.63 14.24	8.913 7.973 7.373 6.960 6.658	6.428 6.247 6.101 5.981	5.796 5.722 5.659 5.659 5.603	5.510 5.374 5.242 5.114 4.991 4.872 4.757
	ю	185.6 24.72 13.33 9 958	8.421 7.556 7.005 6.625 6.348	6.136 5.970 5.836 5.727	5.556 5.489 5.430 5.334	5.294 5.168 5.048 4.931 4.818 4.709 4.603
	4	164.3 22.29 12.17 9.173	7.804 7.033 6.543 6.204 5.957			5.018 4.907 4.799 4.696 4.595 4.497
	က	135.0 19.02 10.62 8 120				4.639 4.546 4.455 4.367 4.282 4.200 4.120
_	7	90.03 14.04 8.261 6.512	5.702 5.243 4.949 4.746	4.482 4.392 4.260	4.168 4.168 4.131 4.099 4.071	4.024 3.956 3.889 3.825 3.762 3.702 3.643
$\alpha = .01$	7	1 2 8 4	1 70 0 7 8 0	11 12 13	14 15 16 17 18	20 24 30 40 80 80 80 80 80

Table 12. Critical Values For The Studentized Range Distribution (Continued)

	50	2980.	120.3	43.05	26.14	19.51	16.09	14.04	12.70	11.75	11.03	10.49	10.06	9.704	9.414	9.170	8.963	8.784	8.628	8.491	8.370	7.999	7.647	7.312	6.995	6.695	6.411
	19	2943.	118.9	42.58	25.87	19.31	15.94	13.92	12.59	11.64	10.95	10.41	9.975	9.629	9.343			8.720	8.567	8.432	8.312	7.946	7.599	7.269	6.956	0.660	6.380
	18	2904.	117.4	42.07	25.58	19.10	15.78	13.78	12.47	11.54	10.85	10.31	9.891	9.550	9.267	9.030	8.828	8.654	8.502	8.369	8.251	7.890	7.548	7.223	6.914	6.623	6.347
	17	2863.	115.9	41.54	25.27	18.89	15.60	13.64	12.34	11.42	10.75	10.22	9.802	9.466	9.188	8.954	8.755	8.583	8.434	8.303	8.186	7.831	7.494	7.174	6.871	6.583	6.312
	16	2818.	114.2	40.97	24.94	18.66	15.42	13.48	12.21	11.30	10.64	10.12	9.707		9.103	8.872		8.508	8.361	8.232	8.118	7.768	7.437	7.122	6.824	6.542	6.274
	15	2770.	112.3	40.35	24.59	18.41	15.22	13.32	12.06	11.18	10.52	10.01	9.606	9.281	9.012	8.786	8.593	8.427	8.283	8.156	8.044	7.701	7.375	7.067	6.774	6.496	6.234
	14	2718.	110.4	39.69	24.21	18.13	15.01	13.14	11.91	11.03	10.39	9.892	9.498	9.178	8.914	8.693	8.504	8.342	8.199	8.075	7.966		_	7.007	6.720	6.448	6.191
	13	2662.	108.2	38.98	23.81	17.85	14.79	12.95	11.74	10.89	10.25	9.766	9.381	9.068	8.809	8.592	8.407	8.248	8.110	7.988	7.880	7.551	7.239	6.942	6.661	6.396	6.144
	12	2600.	105.9	38.20	23.36	17.53	14.54	12.74	11.56	10.73	10.11	9.630	9.254	8.948	8.696	8.483	8.303	8.148	8.012	7.893	7.788	7.467	7.162	6.872	6.598	6.339	6.092
ઋ	11	2532.	103.3	37.34	22.87	17.18	14.27	12.52	11.36	10.55	9.946	9.482	9.115	8.817	8.571	8.365		8.037	7.906	7.790	7.688	7.374	7.077	6.796	6.528	6.276	6.036
	10	2455.	100.5	36.39	22.33	16.81	13.97	12.27	11.15	10.36	9.769	9.319	8.962	8.673	8.434	8.234	8.063	7.916	7.788	7.676	7.577	7.272	6.984	6.711	6.451	6.206	5.973
	6	2370.	97.30	35.33	21.73	16.38	13.63	11.99	10.91	10.14	9.573	9.138	8.793	8.513	8.282	8.088	7.923	7.781	7.657	7.549	7.453	7.159	6.880	6.616	6.366	6.128	5.903
	80	2272.	93.67	34.12	21.04	15.90	13.26	11.68	10.64	9.897	9.352	8.933	8.601	8.333	8.110	7.925	7.766	7.629	7.510	7.405	7.313	7.031	6.763	6.509	6.268	6.039	5.823
	7	2158.	89.46	32.74	20.26	15.35	12.83	11.32	10.32	9.619	660.6	8.699	8.383	8.126	7.915	7.736	7.585	7.454	7.341	7.242	7.154	6.884	6.628	6.386	6.155	5.937	5.730
	9	2022.	84.49	31.11	19.34	14.71	12.32	10.90	9.958	9.295	8.804	8.426	8.127	7.885	7.685	7.517	7.374	7.250	7.143	7.049	996.9	6.712	6.470	6.240	6.022	5.815	5.619
	າວ	1856.	78.43	29.13	18.23	13.93	11.72	10.40	9.522	8.906	8.450	8.098	7.821	7.595	7.409	7.252	7.119	7.005	6.905	6.817	6.740	6.503	6.278	6.063	5.860	5.667	5.484
	4	1643.	70.77	26.65	16.84	12.96	10.97	9.768	8.978	8.419	8.006	7.687	7.436	7.231	7.062	6.920	6.799	6.695	6.604	6.525	6.454	6.238	6.033	5.838	5.653	5.476	5.309
	က	1351.	60.42	23.32	14.99	11.67	9.960	8.930	8.250	7.768	7.411	7.136	6.917	6.740	6.594	6.470	6.365	6.275	6.196	6.127	6.065	5.877	5.698	5.528	5.365	5.211	5.063
01	7	900.3	44.69	18.28	12.18	9.714	8.427	7.648	7.130	6.762	6.487	6.275	6.106	5.970	5.856	5.760	5.678	5.608	5.546	5.492	5.444	5.297	5.156	5.022	4.894	4.771	4.654
$\alpha = .001$	7	1	7	က	4	ıcı	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	24	30	40	99	120	8

Table 13. Least Signficant Studentized Ranges For Duncan's Test

This table contains critical values or least signficant studentized ranges, $r_{\alpha,p,\nu}$, for Duncan's Multiple Range Test where α is the significance level, p is the number of successive values from an ordered list of k means of equal sample sizes $(p=2,3,\ldots,k)$, and ν is the degrees of freedom for the independent estimate s^2 .

	8	17.97	.085	.516	.033	3.814	3.697	3.626	.579	3.547	3.526	3.510	3.499	3.490	3.485	3.481	3.478	3.476	3.474	3.474	3.473	3.471	3.470	3.469	3.467	3.466	3.466
	19		9	4	4																						
			9	4.516	4.033		3.697	3.626		3.547	3.526	3.510	3.499	3.490	3.485	3.481	3.478		3.474	3.473		3.469	3.466	3.463	3.460	3.457	3.454
	18	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.526	3.510	3.499	3.490	3.485	3.481	3.478	3.476	3.474	3.472	3.470	3.465	3.460	3.456	3.451	3.446	3.442
	17	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.526	3.510	3.499	3.490	3.485	3.481	3.478	3.475	3.472	3.470	3.467	3.461	3.454	3.448	3.442	3.435	3.428
	16	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.526	3.510	3.499	3.490	3.484	3.480	3.477	3.473	3.470	3.467	3.464	3.456	3.447	3.439	3.431	3.423	3.414
	15	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.526	3.510	3.499	3.490	3.484	3.478	3.473	3.469	3.465	3.462	3.459	3.449	3.439	3.429	3.419	3.409	3.399
	14	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.526	3.510	3.499	3.490	3.482	3.476	3.470	3.465	3.460	3.456	3.453	3.441	3.430	3.418	3.406	3.394	3.382
	13	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.526	3.510	3.498	3.488	3.479	3.471	3.465	3.459	3.454	3.449	3.445	3.432	3.418	3.405	3.391	3.377	3.363
	12	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.526	3.509	3.496	3.484	3.474	3.465	3.458	3.451	3.445	3.440	3.436	3.420	3.405	3.390	3.374	3.359	
d	11	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.525	3.506	3.491	3.478	3.467	3.457	3.449	3.441	3.435	3.429	3.424	3.406	3.389	3.373	3.355	3.337	3.320
	10	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.547	3.522	3.501	3.484	3.470	3.457	3.446	3.437	3.429	3.421	3.415	3.409	3.390	3.371	3.352	3,333	3.314	3.294
	6	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.579	3.544	3.516	3.493	3.474	3.458	3.444	3.432	3.422	3.412	3.405	3.397	3.391	3.370	3.349	3.328	3.307	3.287	3.265
	∞	17.97	6.085	4.516	4.033	3.814	3.697	3.626	3.575	3.536	3.505	3.480	3.459	3.442	3.426	3.413	3.402	3.392	3.383	3.375	3.368		3.322	3.300	3.277	3.254	3.232
	7	17.97	6.085	4.516	4.033	3.814	3.697	3.622	3.566	3.523	3.489	3.462	3.439	3.419	3.403	3.389	3.376	3.366	3.356	3.347	3.339	3.315	3.290	3.266	3.241	3.217	3.193
	9	17.97	6.085	4.516	4.033	3.814	3.694	3.611	3.549	3.502	3.465	3.435	3.410	3.389	3.372	3.356	3.343	3.331	3.321	3,311	3.303	3.276	3.250	3.224	3.198	3.172	3.146
	ro	17.97	6.085	4.516	4.033	3.814	3.680	3.588	3.521	3.470	3.430					3.312			3.274	3.264	3.255		3.199	3.171	3.143	3.116	
	4	17.97	6.085	4.516	4.033	3.797	3.649	3.548	3.475	3.420	3.376	3.342	3.313	3.289		3.250				3.199	3.190		3.131	3.102	3.073	3.045	
	က	17.97	6.085	4.516	4.013	3.749	3.587	3.477	3.399	3.339	3.293	3.256	3.225	3.200	3.178	3.160	3.144	3.130	3.118	3.107	3.097	3.066	3.035	3.006	2.976	2.947	2.918
10	7	1	-		3.927																						2.772
$\alpha = .05$	7	1	7	က	4	ro	9	7	∞	6	10	11	12	13	14	15	16	17	18	19	20	24	30	40	99	120	8

Table 13. Least Signficant Studentized Ranges For Duncan's Test (Continued)

	50	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.317	5.206	5.124	5.059	5.006	4.960	4.921	4.887	4.858	4.832	4.808	4.788	4.769	4.710	4.650	4.591	4.530	4.469	4.408
	19	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.317	5.206	5.124	5.057	5.002	4.956	4.916	4.881	4.851	4.824	4.801	4.780	4.761	4.700	4.640	4.579	4.518	4.456	4.394
	138	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.317	5.206	5.122	5.054	4.998	4.950	4.910	4.874	4.844	4.816	4.792	4.771	4.751	4.690	4.628	4.566	4.504	4.442	4.379
	17	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.317	5.206	5.120	5.050	4.993	4.944	4.902	4.866	4.835	4.807	4.783	4.761	4.741	4.678	4.615	4.553	4.490	4.426	4.363
	16	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.317	5.205	5.117	5.045	4.986	4.937	4.894	4.857	4.825	4.797	4.772	4.749	4.729	4.665	4.601	4.537	4.474	4.410	4.345
	15	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.317	5.203	5.112	5.039	4.978	4.928	4.884	4.846	4.813	4.785	4.759	4.736	4.716	4.651	4.586	4.521	4.456	4.392	4.327
	14	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.316	5.199	5.106	5.031		4.917	4.872	4.834	4.800	4.771	4.745	4.722	4.701	4.634	4.569	4.503	4.438	4.372	4.307
	13	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.314	5.193	5.098	5.021	4.958	4.904	4.859	4.820	4.786	4.756	4.729	4.705	4.684	4.616	4.550	4.483	4.417	4.351	4.285
	12	90.03	14.04	8.321	6.756	6.074	5.703	5.472	5.309	5.185	5.088	5.009	4.944	4.889	4.843	4.803	4.768	4.738	4.711	4.686	4.664	4.596	4.528	4.461	4.394	4.327	4.261
d	11	90.03	14.04	8.321	6.756	6.074	5.703	5.470	5.302	5.174	5.074	4.994	4.927	4.872	4.824	4.783	4.748	4.717	4.689	4.665	4.642	4.573	4.504	4.436	4.368	4.301	4.235
	10	90.03	14.04	8.321	6.756	6.074	5.703	5.464	5.291	5.160	5.058	4.975	4.907	4.850	4.802	4.760	4.724	4.693	4.664	4.639	4.617	4.546	4.477	4.408	4.340	4.272	4.205
	6	90.03	14.04	8.321	6.756	6.074	5.701	5.454	5.276	5.142	5.037	4.952	4.883	4.824	4.775	4.733	4.696	4.664	4.635	4.610	4.587	4.516	4.445	4.376	4.307	4.239	4.172
	œ	90.03	14.04	8.321	6.756	6.074	5.694	5.439	5.256	5.118	5.010	4.924	4.852	4.793	4.743	4.700	4.663	4.630	4.601	4.575	4.552	4.480	4.409	4.339	4.270	4.202	4.135
	7	90.03	14.04	8.321	6.756	6.074	5.680	5.416	5.227	5.086	4.975	4.887	4.815	4.755	4.704	4.660	4.622	4.589	4.560	4.534	4.510	4.437	4.366	4.296	4.226	4.158	4.091
	9	90.03	14.04	8.321	6.756	6.065	5.655	5.383	5.189	5.043	4.931	4.841	4.767	4.706	4.654	4.610	4.572	4.539	4.509	4.483	4.459	4.386	4.314	4.244	4.174	4.107	4.040
	2	90.03	14.04	8.321	6.756	6.040	5.614	5.334	5.135	4.986	4.871	4.780	4.706	4.644	4.591	4.547	4.509	4.475	4.445	4.419	4.395	4.322	4.250	4.180	4.111	4.044	3.978
	4	90.03	14.04	8.321	6.740	5.989	5.549	5.260	5.057	4.906	4.790	4.697	4.622	4.560	4.508	4.463	4.425	4.391	4.362	4.335	4.312	4.239	4.168	4.098	4.031	3.965	3.900
	က	90.03	14.04	8.321	6.677	5.893	5.439			4.787	4.671	4.579	4.504	4.442	4.391	4.347	4.309	4 275	4.246	4.220	4.197	4.126	4.056	3.988	3.922	3.858	3.796
	2	90.03	14.04	8.261	6.512	5.702	5.243	4.949	4.746	4.596	4.482	4.392	4.320	4.260	4.210	4.168	4.131	4 099	4.071	4.046	4.024	3.956	3.889	3.825	3.762	3.702	3.643
$\alpha = .01$	7	-	- 2	. 00	4	rc.	0		• ••	6	10	=	15	: ::	14	ř.	19	12	. ~	19	20	24	30	40		120	8

Table 13. Least Signficant Studentized Ranges For Duncan's Test (Continued)

	30	900.3	44.69	18.45	12.75	10.49	9.329	8.627	8.149	7.794	7.522	7.304	7.128	6.982	6.858	6.753	6.661	6.582	6.512	6.450	6.394	6.221	6.051	5.885	5.723	5.565	5.409
	19	900.3	44.69	18.45	12.75	10.49	9.329	8.626	8.143	7.786	7.511	7.293	7.116	6.968	6.844	6.739	6.647	6.567	6.497	6.434	6.379	6.205	6.036	5.869	5.707	5.549	5.394
	18	900.3	44.69	18.45	12.75	10.49	9.329	8.624	8.137	7.777	7.500	7.280	7.102	6.954	6.829	6.723	6.631	6.551	6.480	6.418	6.362	6.188	6.018	5.852	5.690	5.532	5.378
	17	900.3	44.69	18.45	12.75	10.49	9.329	8.621	8.129	7.766	7.487	7.266	7.086	6.937	6.812	6.706	6.614	6.533	6.462	6.400	6.344	6.170	000.9	5.834	5.672	5.515	5.361
	16	900.3	44.69	18.45	12.75	10.49	9.329	8.616	8.119	7.753	7.472	7.250	7.069	6.920	6.794	6.687	6.595	6.514	6.443	6.380	6.324	6.150	5.980	5.814	5.653	5.496	5.343
	15	900.3	44.69	18.45	12.75	10.49	9.329	8.609	8.108	7.739	7.456	7.231	7.050	0.60	6.774	6.666	6.574	6.493	6.422	6.359	6.303	6.129	5.958	5.793	5.632	5.476	5.324
	14	900.3	44.69	18.45	12.75	10.49	9.328	8.600	8.094	7.722	7.437	7.211	7.029	6.878	6.752	6.644	6.551	6.470	6.399	6.336	6.279	6.105	5.935	5.770	5.610	5.454	5.303
	13	900.3	44.69	18.45	12.75	10.49	9.325	8.589	8.078	7.702	7.415	7.188	7.005	6.854	6.727	6.619	6.525	6.444	6.373	6.310	6.254	6.079	5.910	5.745	5.586	5.431	5.280
	12	900.3	44.69	18.45	12.75	10.49	9.319	8.574	8.057	7.679	7.390	7.162	6.978	6.826	6.699	6.590	6.497	6.416	6.345	6.281	6.225	6.051	5.882	5.718	5.559	5.405	5.256
d	11	900.3	44.69	18.45	12.75	10.49	9.309	8.555	8.033	7.652	7.361	7.132	6.947	6.795	6.667	6.558	6.465	6.384	6.313	6.250	6.193	6.020	5.851	5.688	5.530	5.377	5.229
	10	900.3	44.69	18.45	12.75	10.49	9.294	8.530	8.004	7.619	7.327	7.097	6.911	6.759	6.631	6.522	6.429	6.348	6.277	6.214	6.158	5.984	5.817	5.654	5.498	5.346	5.199
	6	900.3	44.69	18.45	12.75	10.49	9.272	8.500	7.968	7.582	7.287	7.056	6.870	6.718	6.590	6.481	6.388	6.307	6.236	6.174	6.117	5.945	5.778	5.617	5.461	5.311	5.166
	œ	900.3	44.69	18.45	12.75	10.48	9.241	8.460	7.924	7.535	7.240	7.008	6.822	6.670	6.542	6.433	6.340	6.260	6.189	6.127	6.071	5.899	5.734	5.574	5.420	5.271	5.128
	7	900.3	44.69	18.45	12.75	10.46	9.198	8.409	7.869	7.478	7.182	6.950	6.765	6.612	6.485	6.377	6.284	6.204	6.134	6.072	6.017	5.846	5.682	5.524	5.372	5.226	5.085
	9	900.3	44.69	18.45	12.75	10.42	9.139	8.342	7.799	7.407	7.111	6.880	6.695	6.543	6.416	6.309	6.217	6.138	6.068	6.007	5.952	5.784	5.622	5.466	5.317	5.173	5.034
	ro	900.3	44.69	18.45	12.73	10.35	9.055	8.252	7.708	7.316	7.021	6.791	6.607	6.457	6.332	6.225	6.135	6.056	5.988	5.927	5.873	5.708	5.549	5.396	5.249	5.109	4.974
	4	900.3	44.69	18.45	12.67	10.24	8.932	8.127	7.584	7.195	6.902	6.676	6.494	6.346	6.223	6.119	6.030	5.953	5.886	5.826	5.774	5.612	5.457	5.308	5.166	5.029	4.898
	က	900.3	44.69	18.45	12.52	10.05	8.743	7.943	7.407	7.024	6.738	6.516	6.340	6.195	6.075	5.974	5.888	5.813	5.748	5.691	5.640	5.484	5.335	5.191	5.055	4.924	4.798
.001	2	900.3	44.69	18.28	12.18	9.714	8.427	7.648	7.130	6.762	6.487	6.275	6.106	5.970	5.856	5.760	5.678	5.608	5.546	5.492	5.444	5.297	5.156	5.022	4.894	4.771	4.654
α = .0	7	1	7	က	4	ro	9	7	∞	6	10	1	12	13	14	75	16	17	18	19	20	24	30	40	09	120	8

Table 14. Critical Values For Dunnett's Procedure

This table contains critical values $d_{\alpha/2,k,\nu}$ and $d_{\alpha,k,\nu}$ for simultaneous comparisons of each treamtment group with a control group; α is the significance level, k is the number of treatment groups, and ν is the degrees of freedom of the independent estimate s^2 .

Values of $d_{\alpha/2,k,\nu}$ for two-sided comparisons

4 1 2 3 4 5 6 7 4.49 5 4.49 6 4.03 4.63 5.09 5.44 5.73 5.97 6.18 6.11 5.07 6.18 6.11 6.37 6.40 4.88 5.11 5.97 6.18 6.37 6.37 6.40 4.88 5.11 5.90 6.47 4.87 6.11 5.17 5.64 5.75 5.97 6.18 6.37 6.40 6.47 6.47 4.87 6.10 6.47 4.88 4.10 4.18 4.15 6.47 6.48 6.11 6.47 6.47 4.87 4.08 4.15 6.47 6.48 6.11 6.49	¥	.92	K	K	ચ						$\alpha = .01$	ᇁ.				k	•	1	Ć	•
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	_	1	2	က	4	ស	9	7	œ	6	7	1	2		4	2	9	-	∞	
2.86 3.18 3.41 3.60 3.75 3.88 4.00 4.11 6 3.71 4.22 4.60 4.88 5.11 5.30 5.47 2.76 3.04 3.24 3.41 3.66 3.76 3.86 3.6 3.76 3.88 4.00 4.11 4.87 5.01<	14	2.57	3.03	3.39	3.66	3.88	4.06	4.22	4.36	4.49	5	4.03	4.63	5.09	5.44	5.73	5.97	6.18	6.36	
2.67 3.64 3.74 3.64 3.74 3.64 3.75 3.66 3.77 4.66 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.76 4.77 4.78 4.70 4.78 4.70 4.78 4.78 4.70 4.78 4.76 4.77 4.78 4.78 4.70 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 <t< td=""><td></td><td>2 45</td><td>2.86</td><td>3 18</td><td>3.41</td><td>3.60</td><td>3.75</td><td>3.88</td><td>4.00</td><td>4.11</td><td>9</td><td>3.71</td><td>4.22</td><td>4.60</td><td>4.88</td><td>5.11</td><td>5.30</td><td>5.47</td><td>5.61</td><td></td></t<>		2 45	2.86	3 18	3.41	3.60	3.75	3.88	4.00	4.11	9	3.71	4.22	4.60	4.88	5.11	5.30	5.47	5.61	
2.57 2.84 3.12 3.28 3.40 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.68 3.77 4.06 4.27 4.44 4.58 4.70 2.61 2.86 3.04 3.18 3.29 3.48 3.55 9 3.25 3.63 3.90 4.09 4.24 4.78 4.78 2.51 2.86 3.04 3.11 3.24 3.31 3.38 3.46 1.0 4.17 4.37 4.48 4.78 4.98 4.79 4.18 4.24 4.37 4.48 4.56 3.09 3.49 3.48 3.56 3.26 3.90 4.09 4.24 4.37 4.48 4.79 4.78 4.79 4.78 4.79 4.78 4.79 3.79 3.68 3.90 4.09 4.18 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.78 4.79 4.78 4.79 4.78		986	9.75	3.04	3.24	3.41	3.54	3.66	3.76	3.86	7	3.50	3.95	4.28	4.52	4.71	4.87	5.01	5.13	
2.61 2.86 3.04 3.18 3.59 3.48 3.55 9 3.29 3.99 4.98 4.57 4.48 4.37 4.48 4.49 4.48 4.48 4.49 4.48 4.49 4.48 4.49 4.49 4.48 4.49 4.48 4.49 4.48 4.49 4.48 4.49 4.48 4.49 4.48 4.48 4.48 4.48 4.48 4.49 4.48 4.48 4.		9.31	2.67	2 04	3.13	3.28	3.40	3.51	3.60	3.68	∞	3.36	3.77	4.06	4.27	4.44	4.58	4.70	4.81	
2.57 2.81 2.97 3.11 3.21 3.24 3.46 3.6 3.7 3.58 3.78 3.78 3.78 3.78 3.89 3.99 4.09 4.18 4.99 </td <td></td> <td>2.26</td> <td>2.61</td> <td>2.86</td> <td>3.04</td> <td>3.18</td> <td>3.29</td> <td>3.39</td> <td>3.48</td> <td>3.55</td> <td>6</td> <td>3.25</td> <td>3.63</td> <td>3.90</td> <td>4.09</td> <td>4.24</td> <td>4.37</td> <td>4.48</td> <td>4.57</td> <td></td>		2.26	2.61	2.86	3.04	3.18	3.29	3.39	3.48	3.55	6	3.25	3.63	3.90	4.09	4.24	4.37	4.48	4.57	
2.5 2.76 2.92 3.05 3.15 3.24 3.31 3.38 11 3.11 3.45 3.68 3.85 3.89 4.09 4.18 4.18 2.50 2.70 2.98 3.00 3.10 3.18 3.25 3.32 1.2 3.89 3.89 3.89 4.08 4.18 4.18 4.18 2.20 2.89 3.80 3.81 3.91 3.89 4.08 4.0		2.23	2.57	2.81	2.97	3.11	3.21	3.31	3.39	3.46	10	3.17	3.53	3.78	3.95	4.10	4.21	4.31	4.40	
2.50 2.72 2.88 3.00 3.10 3.18 3.25 3.32 12 3.05 3.39 3.61 3.76 3.89 3.99 4.08 4.08 2.48 2.69 2.84 2.96 3.06 3.14 3.21 3.27 13 3.27 14 2.98 3.29 3.64 3.69 3.81 3.99 4.08 2.46 2.67 2.81 2.99 3.07 3.13 3.19 3.64 3.75 3.84 3.99 4.08 2.44 2.64 2.79 2.90 3.07 3.13 3.19 3.64 3.76 3.79 3.99 4.08 2.44 2.64 2.79 3.09 3.07 3.13 3.10 16 2.92 3.29 3.76 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79 3.79		2.20	2.53	2.76	2.92	3.05	3.15	3.24	3.31	3.38	11	3.11	3.45	3.68	3.85	3.98	4.09	4.18	4.26	
2.48 2.69 2.84 2.96 3.06 3.14 3.21 3.27 13 3.01 3.33 3.54 3.69 3.81 3.99 4 2.46 2.67 2.81 2.93 3.02 3.10 3.17 3.23 14 2.98 3.29 3.49 3.64 3.75 3.84 3.99 4 2.44 2.64 2.79 2.90 2.90 3.07 3.13 3.19 15 2.92 3.25 3.46 3.76 3.79 3.86 3.92 2.42 2.64 2.77 2.88 2.96 3.04 3.10 17 2.90 3.70 3.74 3.82 3.64 3.70 3.74 3.82 2.42 2.64 2.77 2.88 2.96 3.04 3.09 3.11 17 2.90 3.70 3.74 3.82 3.64 3.70 3.74 3.82 2.40 2.56 2.77 2.86 3.07 3.09 3.14 <td></td> <td>2.18</td> <td>2.50</td> <td>2.72</td> <td>2.88</td> <td>3.00</td> <td>3.10</td> <td>3.18</td> <td>3.25</td> <td>3.32</td> <td>12</td> <td>3.05</td> <td>3.39</td> <td>3.61</td> <td>3.76</td> <td>3.89</td> <td>3.99</td> <td>4.08</td> <td>4.15</td> <td></td>		2.18	2.50	2.72	2.88	3.00	3.10	3.18	3.25	3.32	12	3.05	3.39	3.61	3.76	3.89	3.99	4.08	4.15	
2.44 2.64 2.75 3.84 3.75 3.84 3.92 2.44 2.64 2.79 2.90 2.90 3.07 3.13 3.19 15 2.95 3.25 3.45 3.64 3.75 3.79 3.84 3.92 2.44 2.64 2.79 2.90 3.09 3.07 3.19 15 2.95 3.25 3.45 3.55 3.64 3.70 3.79 3.86 2.42 2.63 2.77 2.86 2.94 3.01 3.06 3.13 17 2.90 3.91 3.82 3.61 3.70 3.74 3.82 2.40 2.56 2.77 2.86 2.94 3.01 3.04 3.09 19 2.86 3.15 3.70 3.74 3.82 2.40 2.56 2.72 2.82 2.90 2.97 3.04 3.09 19 2.86 3.15 3.64 3.70 3.74 3.92 2.35 2.56 2.70<		2.16	2.48	2.69	2.84	2.96	3.06	3.14	3.21	3.27	13	3.01	3.33	3.54	3.69	3.81	3.91	3.99	4.06	
2.44 2.64 2.79 2.90 2.90 3.07 3.13 3.19 15 2.95 3.25 3.45 3.55 3.69 3.70 3.79 3.86 3.82 2.42 2.63 2.77 2.88 2.96 3.04 3.10 3.16 16 2.92 3.25 3.41 3.55 3.65 3.74 3.82 2.41 2.61 2.75 2.84 2.96 3.04 3.13 17 2.90 3.19 3.88 3.71 3.55 3.61 3.74 3.82 2.40 2.59 3.04 3.03 3.13 17 2.90 3.19 3.88 3.71 3.55 3.61 3.74 3.82 3.77 3.74 3.82 3.77 3.74 3.82 3.77 3.74 3.82 3.76 3.74 3.84 3.70 3.74 3.82 3.75 3.74 3.70 3.74 3.82 3.70 3.74 3.82 3.70 3.74 3.70		2.14	2.46	2.67	2.81	2.93	3.02	3.10	3.17	3.23	14	2.98	3.29	3.49	3.64	3.75	3.84	3.92	3.99	
2.42 2.63 2.77 2.88 2.96 3.04 3.10 3.16 16 2.92 3.22 3.41 3.55 3.65 3.74 3.82 2.41 2.61 2.75 2.86 2.94 3.01 3.08 3.13 17 2.90 3.19 3.38 3.51 3.62 3.70 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.74 3.82 3.74 3.82 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.77 3.74 3.79 3.77 3.74 3.79 3.77 3.74 3.70 3.77 3.24 3.70 3.77 3.74 3.70 3.77 3.24 3.70 3.77 3.24 3.70 3.77 3.24 3.70 3.71 3.72 3.72 3.72 3.72 3.72 3.72 3.72 3.72 </td <td></td> <td>2.13</td> <td>2.44</td> <td>2.64</td> <td>2.79</td> <td>2.90</td> <td>2.99</td> <td>3.07</td> <td>3.13</td> <td>3.19</td> <td>15</td> <td>2.95</td> <td>3.25</td> <td>3.45</td> <td>3.59</td> <td>3.70</td> <td>3.79</td> <td>3.86</td> <td>3.93</td> <td></td>		2.13	2.44	2.64	2.79	2.90	2.99	3.07	3.13	3.19	15	2.95	3.25	3.45	3.59	3.70	3.79	3.86	3.93	
241 2.61 2.75 2.86 2.94 3.01 3.08 3.13 17 2.90 3.19 3.38 3.51 3.62 3.70 3.77 2.40 2.59 2.73 2.99 3.05 3.11 18 2.88 3.17 3.35 3.48 3.53 3.70 3.77 2.39 2.58 2.72 2.82 2.90 3.05 3.07 2.86 3.15 3.33 3.46 3.58 3.70 3.74 2.38 2.56 2.72 2.84 2.91 2.96 3.01 2.86 3.13 3.41 3.53 3.64 3.70 3.74 3.70 3.74 3.76 3.74 3.70 3.74 3.76 3.76 3.74 3.64 3.70 3.75 3.72 3.74 3.70 3.74 3.70 3.84 3.50 3.50 3.70 3.74 3.86 3.50 3.70 3.74 3.89 3.46 3.50 3.64 3.70 3.84		2.12	2.42	2.63	2.77	2.88	2.96	3.04	3.10	3.16	16	2.92	3.22	3.41	3.55	3.65	3.74	3.82	3.88	
2.40 2.59 2.73 3.05 3.11 18 2.88 3.17 3.35 3.48 3.58 3.74 3.74 2.39 2.58 2.72 2.82 2.90 2.97 3.04 3.09 19 2.86 3.15 3.33 3.46 3.58 3.74 3.70 2.38 2.56 2.72 2.81 2.96 3.07 3.07 2.86 3.13 3.43 3.53 3.64 3.70 2.38 2.57 2.70 2.81 2.86 2.91 2.96 3.01 2.4 2.80 3.07 3.2 3.52 3.53 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.64 3.70 3.67 3.52 3.58 3.52 3.58 3.59 3.64 3.70		2.11	2.41	2.61	2.75	2.85	2.94	3.01	3.08	3.13	17	2.90	3.19	3.38	3.51	3.62	3.70	3.77	3.83	
2.39 2.54 2.72 2.82 2.90 2.97 3.04 3.09 19 2.86 3.15 3.33 3.46 3.55 3.64 3.70 3.70 2.38 2.57 2.70 2.81 2.86 3.07 3.07 2.85 3.13 3.31 3.46 3.55 3.64 3.70 3.67 3.28 3.31 3.45 3.53 3.61 3.67 3.67 3.28 3.27 3.28 3.37 3.48 3.53 3.61 3.67 3.58 3.52 3.58 3.52 3.58 3.50 3.70 3.77 3.24 3.36 3.45 3.52 3.58 3.50 3.59 3.64 3.70 3.58 3.52 3.58 3.52 3.58 3.50 3.64 3.70 3.59 3.67 3.74 3.50 3.58 3.59 3.58 3.59 3.59 3.59 3.50 3.50 3.74 3.50 3.64 3.70 3.59 3.71 3.71 3.72		2.10	2.40	2.59	2.73	2.84	2.92	2.99	3.05	3.11	18	2.88	3.17	3.35	3.48	3.58	3.67	3.74	3.80	
2.38 2.57 2.70 2.81 2.71 3.73 3.43 3.53 3.61 3.67 3.67 3.67 3.67 3.67 3.67 3.67 3.61 3.67 3.61 3.67 3.61 3.67 3.61 3.67 3.61 3.67 3.61 3.67 3.61 3.67 3.61 3.67 3.61 3.67 3.61 3.67 3.61 3.61 3.67 3.52 3.58 3.52 3.58 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.50 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 3.74 3.75 <th< td=""><td></td><td>2.03</td><td>2.39</td><td>2.58</td><td>2.72</td><td>2.82</td><td>2.90</td><td>2.97</td><td>3.04</td><td>3.09</td><td>19</td><td>2.86</td><td>3.15</td><td>3.33</td><td>3.46</td><td>3.55</td><td>3.64</td><td>3.70</td><td>3.76</td><td></td></th<>		2.03	2.39	2.58	2.72	2.82	2.90	2.97	3.04	3.09	19	2.86	3.15	3.33	3.46	3.55	3.64	3.70	3.76	
2.35 2.66 2.76 2.84 2.91 2.96 3.01 2.4 2.80 3.07 3.24 3.36 3.45 3.52 3.58 3.58 3.58 3.58 3.58 3.58 3.58 3.59 3.59 3.50 3.07 3.24 3.36 3.44 3.50 3.57 3.44 3.50 3.57 3.44 3.50 3.57 3.44 3.50 3.57 3.44 3.50 3.57 3.29 3.37 3.44 3.50 3.50 3.21 3.29 3.37 3.44 3.50 3.50 3.21 3.29 3.36 3.41 3.50 3.21 3.29 3.36 3.41 3.22 3.28 3.33 3.41 3.22 3.28 3.33 3.28 3.33 3.21 3.25 3.20 3.20 3.20 3.25 3.26 3.27 3.24 2.94 2.95 3.01 3.08 3.14 3.18 3.38 3.14 3.18 3.38 3.14 3.18 3.38 3.14 3.18 3.38 3.14 3.18 3.38 3.14 3.18		2.09	2.38	2.57	2.70	2.81	2.89	2.96	3.02	3.07	20	2.85	3.13	3.31	3.43	3.53	3.61	3.67	3.73	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.06	2.35	2.53	2.66	2.76	2.84	2.91	2.96	3.01	24	2.80	3.07	3.24	3.36	3.45	3.52	3.58	3.64	
2.292.472.582.672.752.812.862.90402.702.953.103.213.293.4132.272.442.552.652.602.712.752.812.85602.662.903.043.143.223.283.332.242.402.512.592.662.712.752.801202.622.842.983.083.153.213.252.212.372.472.552.672.712.75 ∞ 2.582.792.923.013.083.143.18		2.04	2.32	2.50	2.62	2.72	2.79	2.86	2.91	2.96	30	2.75	3.01	3.17	3.28	3.37	3.44	3.50	3.55	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		202	2 29	2.47	2.58	2.67	2.75	2.81	2.86	2.90	40	2.70	2.95	3.10	3.21	3.29	3.36	3.41	3.46	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.00	2.27	2.43	2.55	2.63	2.70	2.76	2.81	2.85	09	2.66	2.90	3.04	3.14	3.22	3.28	3.33	3.38	
2.21 2.37 2.47 2.55 2.62 2.67 2.71 2.75 ∞ 0.58 0.79 0.92 0.01 0.08 0.14 0.18		1 0%	2.24	2.40	2.51	2.59	2.66	2.71	2.76	2.80	120	2.62	2.84	2.98	3.08	3.15	3.21	3.25	3.30	
		1.96	2.21	2.37	2.47	2.55	2.62	2.67	2.71	2.75	8	2.58	2.79	2.92	3.01	3.08	3.14	3.18	3.22	

Table 14. Critical Values For Dunnett's Procedure (Continued)

Values of $d_{\alpha,k,\nu}$ for one-sided comparisons

5.03 4.59 4.30 4.09 3.94 3.83 3.67 3.67 3.61 3.56 3.52 3.48 3.45 3.42 3.40 3.78 3.69 3.62 3.56 3.56 3.47 3.34 3.27 3.21 00 4.23 4.03 3.89 3.44 3.41 3.38 3.14 3.08 $3.03 \\ 2.97$ 3.42 3.39 7 3.96 3.63 3.56 3.46 3.36 3.33 3.29 3.223.16 3.10 1.15 3.71 3.513.31 3.04 2.93 3.56 3.50 3.44 3.36 3.33 3.30 3.27 3.25 3.05 2.94 2.89 9 4.07 3.40 3.00 3.64 4.60 4.21 3.96 3.79 3.663.48 3.42 3.37 3.32 3.29 3.26 3.23 3.23 3.05 2.99 2.89 3.56 3.18 3.17 3.11 2.94 -22 3.12 4 4.43 4.07 3.83 3.45 3.38 3.32 3.17 3.14 3.10 3.08 3.03 2.92 3.67 3.55 3.27 3.23 3.20 2.97 2.87 2.77 3.193.152.99 2.92 2.82 2.78 3.66 3.51 3.31 3.25 3.11 3.08 3.05 3.03 3.01 2.97 2.87 2.73 2.84 2 2.68 3.42 3.29 3.11 3.06 3.01 2.97 2.94 $\frac{2.91}{2.88}$ 2.86 2.602.81 2.77 2.72 2.642.90 2.76 2.72 2.68 2.65 2.622.60 2.582.57 2.5522.53 2.492.46 2.425 II 7 15 16 17 18 19 24 28 40 40 120 8 ಶ 2.65 $2.64 \\ 2.62$ 3.01 2.92 2.86 2.81 2.74 2.71 2.69 2.672.612.60 2.57 2.54 2.51 2.48 2.76 2.69 2.66 2.64 2.62 2.612.59 2.582.47 2.44 3.24 3.07 2.95 2.87 2.57 2.562.53 2.50 3.16 3.00 2.89 2.81 2.592.48 2.75 2.61 2.57 2.56 2.542.53 2.522.45~ 2.70 2.64 2.512.64 2.60 2.58 2.58 2.55 2.55 2.50 2.49 2.48 2.47 2.469 3.08 2.92 2.82 2.74 2.32 2.68 2.51 2.43 2.40 2.37 2.35 2.98 2.83 2.73 2.4810 2.662.60 2.56 2.50 2.462.44 2.43 2.422.40 2.39 2.36 2.33 2.28 2.41 2.31 2.36 2.342.332.62 2.55 2.50 2.47 2.41 2.392.37 2.32 2.30 2.28 2.25 2.23 2.31 2.21 2.25က 2.48 2.42 2.37 2.29 2.272.24 2.23 2.22 2.22 2.202.172.152.08 2.06 2.34 1.97 8 2.27 2.22 2.18 $2.15 \\ 2.13$ 2.11 2.08 2.07 2.062.05 2.03 2.03 1.99 1.95 2.01 2.02 1.94 1.89 1.86 1.83 1.81 1.80 1.78 1.77 1.76 1.75 1.75 1.74 1.73 1.73 1.72 1.71 1.70 1.68 1.67 99.1 1.64 11 7 12 13 14 15 16 17 18 19 8 4 8 4 8 8 8

3.38 3.31 3.24 3.18 3.12

Table 15. Critical Values For Bartlett's Test

This table contains critical values, $b_{\alpha,k,n}$, for Bartlett's test where α is the significance level, k is the number of populations, and n is the sample size from each population.

$\alpha = .0$)5				\boldsymbol{k}				
n	2	3	4	5	6	7	8	9	10
3	.3123	.3058	.3173	.3299	*	*	*	*	*
4	.4780	.4699	.4803	.4921	.5028	.5122	.5204	.5277	.5341
5	.5845	.5762	.5850	.5952	.6045	.6126	.6197	.6260	.6315
6	.6563	.6483	.6559	.6646	.6727	.6798	.6860	.6914	.6961
7	.7075	.7000	.7065	.7142	.7213	.7275	.7329	.7376	.7418
8	.7456	.7387	.7444	.7512	.7574	.7629	.7677	.7719	.7757
9	.7751	.7686	.7737	.7798	.7854	.7903	.7946	.7984	.8017
10	.7984	.7924	.7970	.8025	.8076	.8121	.8160	.8194	.8224
11	.8175	.8118	.8160	.8210	.8257	.8298	.8333	.8365	.8392
12	.8332	.8280	.8317	.8364	.8407	.8444	.8477	.8506	.8531
13	.8465	.8415	.8450	.8493	.8533	.8568	.8598	.8625	.8648
14	.8578	.8532	.8564	.8604	.8641	.8673	.8701	.8726	.8748
15	.8676	.8632	.8662	.8699	.8734	.8764	.8790	.8814	.8834
16	.8761	.8719	.8747	.8782	.8815	.8843	.8868	.8890	.8909
17	.8836	.8796	.8823	.8856	.8886	.8913	.8936	.8957	.8975
18	.8902	.8865	.8890	.8921	.8949	.8975	.8997	.9016	.9033
19	.8961	.8926	.8949	.8979	.9006	.9030	.9051	.9069	.9086
20	.9015	.8980	.9003	.9031	.9057	.9080	.9100	.9117	.9132
21	.9063	.9030	.9051	.9078	.9103	.9124	.9143	.9160	.9175
22	.9106	.9075	.9095	.9120	.9144	.9165	.9183	.9199	.9213
23	.9146	.9116	.9135	.9159	.9182	.9202	.9219	.9235	.9248
24	.9182	.9153	.9172	.9195	.9217	.9236	.9253	.9267	.9280
25	.9216	.9187	.9205	.9228	.9249	.9267	.9283	.9297	.9309
26	.9246	.9219	.9236	.9258	.9278	.9296	.9311	.9325	.9336
27	.9275	.9249	.9265	.9286	.9305	.9322	.9337	.9350	.9361
28	.9301	.9276	.9292	.9312	.9330	.9347	.9361	.9374	.9385
29	.9326	.9301	.9316	.9336	.9354	.9370	.9383	.9396	.9406
30	.9348	.9325	.9340	.9358	.9376	.9391	.9404	.9416	.9426
40	.9513	.9495	.9506	.9520	.9533	.9545	.9555	.9564	.9572
50	.9612	.9597	.9606	.9617	.9628	.9637	.9645	.9652	.9658
60	.9677	.9665	.9672	.9681	.9690	.9698	.9705	.9710	.9716
80	.9758	.9749	.9754	.9761	.9768	.9774	.9779	.9783	.9787
100	.9807	.9799	.9804	.9809	.9815	.9819	.9823	.9827	.9830

Table 15. Critical Values For Bartlett's Test (Continued)

$\alpha =$.01	<u>-</u>				k				
n	1	2	3	4	5	6	7	8	9	10
3	T	.1411	.1672	*	*	*	*	*	*	*
4		.2843	.3165	.3475	.3729	.3937	.4110	*	*	*
5		.3984	.4304	.4607	.4850	.5046	.5207	.5343	.5458	.5558
6	.	.4850	.5149	.5430	.5653	.5832	.5978	.6100	.6204	.6293
7		.5512	.5787	.6045	.6248	.6410	.6542	.6652	.6744	.6824
8		.6031	.6282	.6518	.6704	.6851	.6970	.7069	.7153	.7225
9		.6445	.6676	.6892	.7062	.7197	.7305	.7395	.7471	.7536
10	1	.6783	.6996	.7195	.7352	.7475	.7575	.7657	.7726	.7786
11	.	.7063	.7260	.7445	.7590	.7703	.7795	.7871	.7935	.7990
12	:	.7299	.7483	.7654	.7789	.7894	.7980	.8050	.8109	.8160
13	1	.7501	.7672	.7832	.7958	.8056	.8135	.8201	.8256	.8303
14	- 1	.7674	.7835	.7985	.8103	.8195	.8269	.8330	.8382	.8426
15	;	.7825	.7977	.8118	.8229	.8315	.8385	.8443	.8491	.8532
16	3	.7958	.8101	.8235	.8339	.8421	.8486	.8541	.8586	.8625
17	<i>'</i>	.8076	.8211	.8338	.8436	.8514	.8576	.8627	.8670	.8707
18	3	.8181	.8309	.8429	.8523	.8596	.8655	.8704	.8745	.8780
19)	.8275	.8397	.8512	.8601	.8670	.8727	.8773	.8811	.8845
20)	.8360	.8476	.8586	.8671	.8737	.8791	.8835	.8871	.8903
21	L	.8437	.8548	.8653	.8734	.8797	.8848	.8890	.8926	.8956
22	2	.8507	.8614	.8714	.8791	.8852	.8901	.8941	.8975	.9004
23	3	.8571	.8673	.8769	.8844	.8902	.8949	.8988	.9020	.9047
24	1	.8630	.8728	.8820	.8892	.8948	.8993	.9030	.9061	.9087
25	5	.8684	.8779	.8867	.8936	.8990	.9034	.9069	.9099	.9124
26	8	.8734	.8825	.8911	.8977	.9029	.9071	.9105	.9134	.9158
27	7	.8781	.8869	.8951	.9015	.9065	.9105	.9138	.9166	.9190
28	8	.8824	.8909	.8988	.9050	.9099	.9138	.9169	.9196	.9219
29	9	.8864	.8946	.9023	.9083	.9130	.9167	.9198	.9224	.9246
30	0	.8902	.8981	.9056	.9114	.9159	.9195	.9225	.9250	.9271
40	0	.9175	.9235	.9291	.9335	.9370	.9397	.9420	.9439	.9455
50	0	.9339	.9387	.9433	.9468	.9496	.9518	.9536	.9551	.9564
60	0	.9449	.9489	.9527	.9557	.9580	.9599	.9614	.9626	.9637
80	0	.9586	.9617	.9646	.9668	.9685	.9699	.9711	.9720	.9728
100	0	.9669	.9693	.9716	.9734	.9748	.9759	.9769	.9776	.9783

Table 16. Critical Values For Cochran's Test

This table contains critical values, $g_{\alpha,k,n}$, for Cochran's test where α is the significance level, k is the number of independent estimates of variance, each of which is based on ν degrees of freedom.

$\alpha = .$	05							ν						
k	1	2	3	4	5	6	7	8	9	10	16	36	144	∞
2	.9985	.9750	.9392	.9057	.8772	.8534	.8332	.8159	.8010	.7880	.7341	.6602	.5813	.5000
3	.9669	.8709	.7977	.7457	.7071	.6771	.6530	.6333	.6167	.6025	.5466	.4748	.4031	.3333
4	.9065	.7679	.6841	.6287	.5895	.5598	.5365	.5175	.5017	.4884	.4366	.3720	.3093	.2500
5	.8412	.6838	.5981	.5441	.5065	.4783	.4564	.4387	.4241	.4118	.3645	.3066	.2513	.2000
6	.7808	.6161	.5321	.4803	.4447	.4184	.3980	.3817	.3682	.3568	.3135	.2612	.2119	.1667
7	.7271	.5612	.4800	.4307	.3974	.3726	.3535	.3384	.3259	.3154	.2756	.2278	.1833	.1429
8	.6798	.5157	.4377	.3910	.3595	.3362	.3185	.3043	.2926	.2829	.2462	.2022	.1616	.1250
9	.6385	.4775	.4027	.3584	.3286	.3067	.2901	.2768	.2659	.2568	.2226	.1820	.1446	.1111
10	.6020	.4450	.3733	.3311	.3029	.2823	.2666	.2541	.2439	.2353	.2032	.1655	.1308	.1000
12	.5410	.3924	.3264	.2880	.2624	.2439	.2299	.2187	.2098	.2020	.1737	.1403	.1100	.0833
15	.4709	.3346	.2758	.2419	.2195	.2034	.1911	.1815	.1736	.1671	.1429	.1144	.0889	.0667
20	.3894	.2705	.2205	.1921	.1735	.1602	.1501	.1422	.1357	.1303	.1108	.0879	.0675	.0500
24	.3434	.2354	.1907	.1656	.1493	.1374	.1286	.1216	.1160	.1113	.0942	.0743	.0567	.0417
30	.2929	.1980	.1593	.1377	.1237	.1137	.1061	.1002	.0958	.0921	.0771	.0604	.0457	.0333
40	.2370	.1576	.1259	.1082	.0968	.0887	.0827	.0780	.0745	.0713	.0595	.0462	.0347	.0250
60	.1737	.1131	.0895	.0765	.0682	.0623	.0583	.0552	.0520	.0497	.0411	.0316	.0234	.0167
120	.0998	.0632	.0495	.0419	.0371	.0337	.0312	.0292	.0279	.0266	.0218	.0165	.0120	.0083
∞	0	0	0	0	0	0	0	0	0	0	0	0	0	0

$\alpha = .$	01							ν						
k	1	2	3	4	5	6	7	8	9	10	16	36	144	∞
2	.9999	.9950	.9794	.9586	.9373	.9172	.8988	.8823	.8674	.8539	.7949	.7067	.6062	.5000
3	.9933	.9423	.8831	.8335	.7933	.7606	.7335	.7107	.6912	.6743	.6059	.5153	.4230	.3333
4	.9676	.8643	.7814	.7212	.6761	.6410	.6129	.5897	.5702	.5536	.4884	.4057	.3251	.2500
5	.9279	.7885	.6957	.6329	.5875	.5531	.5259	.5037	.4854	.4697	.4094	.3351	.2644	.2000
6	.8828	.7218	.6258	.5635	.5195	.4866	.4608	.4401	.4229	.4084	.3529	.2858	.2229	.1667
7	.8376	.6644	.5685	.5080	.4659	.4347	.4105	.3911	.3751	.3616	.3105	.2494	.1929	.1429
8	.7945	.6152	.5209	.4627	.4226	.3932	.3704	.3522	.3373	.3248	.2779	.2214	.1700	.1250
9	.7544	.5727	.4810	.4251	.3870	.3592	.3378	.3207	.3067	.2950	.2514	.1992	.1521	.1111
10	.7175	.5358	.4469	.3934	.3572	.3308	.3106	.2945	.2813	.2704	.2297	.1811	.1376	.1000
12	.6528	.4751	.3919	.3428	.3099	.2861	.2680	.2535	.2419	.2320	.1961	.1535	.1157	.0833
15	.5747	.4069	.3317	.2882	.2593	.2386	.2228	.2104	.2002	.1918	.1612	.1251	.0934	.0667
20	.4799	.3297	.2654	.2288	.2048	.1877	.1748	.1646	.1567	.1501	.1248	.0960	.0709	.0500
24	.4247	.2871	.2295	.1970	.1759	.1608	.1495	.1406	.1338	.1283	.1060	.0810	.0595	.0417
30	.3632	.2412	.1913	.1635	.1454	.1327	.1232	.1157	.1100	.1054	.0867	.0658	.0480	.0333
40	.2940	.1915	.1508	.1281	.1135	.1033	.0957	.0898	.0853	.0816	.0668	.0503	.0363	.0250
60	.2151	.1371	.1069	.0902	.0796	.0722	.0668	.0625	.0594	.0567	.0461	.0344	.0245	.0167
120	.1225	.0759	.0585	.0489	.0429	.0387	.0357	.0334	.0316	.0302	.0242	.0178	.0125	.0083
∞	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	·													

Table 17. Critical Values For The Wilcoxon Signed-Rank Statistic

This table contains critical values and probabilities for the Wilcoxon Signed-Rank Statistic T_+ ; n is the sample size, c_1 and c_2 are defined by $P(T_+ \le c_1) = \alpha$ and $P(T_+ \ge c_2) = \alpha$.

samp	ie size	, c ₁	and c2	are	пеппес	TDAT	(1-	F > C1	<i>j</i> – α	anu 1	(4+	∠ c ₂	, – α.				
n	c ₁	c ₂	α		n	c ₁	c ₂	α		n	c ₁	c ₂	α	n	c ₁	c ₂	α
1	0	1	.500		10	3	52	.005		13	9	82	.004	15	15	105	.004
2	0	3	.250			4	51	.007			10	81	.005		16	104	.005
3	0	6	.125			5	50	.010			11	80	.007		17	103	.006
		10	.062			6	49	.014			12	79	.009		18	102	.008
4	0	9	.125			7	48	.019			13	78	.011		19	101	.009
5		15	.031			8	47	.024			14	77	.013		20	100	.011
э	0	14	.062			9	46	.032			15	76	.016		21	99	.013
	2	13	.002			10	45	.042			16	75	.020		22	98	.015 .018
	3	12	.156			11	44	.053			17	74	.024		23	97 96	.018
6	0	21	.016			12	43	.065			18	73	.029		1		
U	1	20	.031			13	42	.080			19	72	.034		25	95 94	.024 .028
	2	19	.047			14	41	.097			20	71	.040		26 27	94	.032
	3	18	.078			15	40	.116			21	70	.047		28	92	.036
	4	17	.109		11	5	61	.005			22	69	.055		29	91	.042
7	0	28	.008			6	60	.007			23 24	68 67	.064 .073		30	90	.047
	1	27	.016			7	59	.009			1				31	89	.053
	2	26	.023			8	58	.012 .016			25	66 65	.084		32	88	.060
	3	25	.039			9	57				26	64	.095 .108		33	87	.068
	4	24	.055			10	56	.021		4.4	1				34	86	.076
	5	23	.078			11	55 54	.027 .034		14	12	93 92	.004 .005		35	85	.084
	6	22	.109			12	53	.042			14	91	.003		36	84	
8	0	36	.004			14	52	.051			1		.008		37	83	
	1	35	.008			15	51	.062			15 16	90 89	.010	16	19	117	.005
	2	34				16	50	.074			17	88	.012		20		
	3	33				17	49	.087			18	87	.015		21		.007
	4	32				18	48	.103			19	86	.018		22		.008
	5	31			12	7		.005			20	85	.021		23		
	6	30				8	70				21				24	112	.011
	7	29				9	69	.008			22				25	111	.012
	8	28				10		.010			23	82			26	110	.014
	9	27				11					24	81	.039		27		
9	1					12					25	80	.045		28		
	2					13					26				29		
	3 4					14					27				30		
	1					15	63	.032			28				31		
	5					16					29	76			32		.033
	6 7					17					30				33		
	1 ~					18					31				1		.042
	9					19	59	.065			32	73	.108		35		.047
						20									36		
	10 11					21									37		
	11	. 04	.102			22	56	.102							38		
															1		
															40		
															41		
										75					43		
										. •					1 =0		

Table 17. Critical Values For The Wilcoxon Signed-Rank Statistic (Continued)

n	c_1	c_2	α		$n \mid c$	1	c_2	α		n	c ₁	c ₂	α	n	c ₁	c_2	α
17	23	130	.005	1	8 2	7	144	.004		19	32	158	.005	20	37	173	.005
	24	129	.005		2	8	143	.005			33	157	.005		38	172	.005
	25	128	.006		2	9	142	.006			34	156	.006		39	171	.006
	26	127	.007		3	0	141	.007			35	155	.007		40	170	.007
	27	126	.009		3	1	140	.008			36	154	.008		41	169	.008
	28	125	.010		3	2	139	.009			37	153	.009		42	168	.009
	29	124	.012		3	3	138	.010			38	152	.010		43	167	.010
	30	123	.013		3	4	137	.012			39	151	.011		44	166	.011
	31	122	.015		3	5	136	.013			40	150	.013		45	165	.012
	32	121	.017		3	6	135	.015			41	149	.014		46	164	.013
	33	120	.020		8	7	134	.017			42	148	.016		47	163	.015
	34	119	.022			8	133	.019			43	147	.018		48	162	.016
	35	118	.025		3	9	132	.022			44	146	.020		49	161	.018
	36	117	.028		4	ŀO	131	.024			45	145	.022		50	160	.020
	37	116				l1	130				46	144	.025		51	159	.022
	38	115				12	129				47	143	.027		52	158	.024
	39	114	.040			13	128				48	142	.030		53	157	.027
	40	113	.044		'	14	127				49	141	.033		54	156	.029
	41	112			1	15	126				50		.036		55	155	.032
	42	111				16	125				51		.040		56	154	
	43	110				17	124				52		.044		57	153	
	44	109			- 1	48 40	123				53		.048		58	152	
	45	108				19	122				54		.052		59	151	
	46					50					55		.057		60		
	47					51					56				61	149	
	48	105			1	52					57				62	148	
	49	104	.103	i		53					58				63		
						54					59				64		
					1	55					60				65		
						56	115	.10	j		61				66		
											62				67		
											63	127	.105		68		
															69		
															70	140	.101

Table 18. Critical Values For The Wilcoxon Rank-Sum Statistic

This table contains critical values and probabilities for the Wilcoxon Rank-Sum Statistic W= the sum of the ranks of the m observations in the smaller sample; m and n are the sample sizes, c_1 and c_2 are defined by $P(W \le c_1) = \alpha$ and $P(W \ge c_2) = \alpha$.

m	n	c_1	c_2	α	m	n	c ₁	c_2	α	_	m	n	c ₁	c ₂	α
2	4	3	11	.067	 3	8	6	30	.006		4	7	10	38	.003
2	5	3	13	.047			7	29	.012				11	37	.006
_		4	12	.095			8	28	.024				12	36	.012
2	6	3	15	.036			9	27	.042				13	35	.021
-		4	14	.071			10	26	.067				14	34	.036
		5	13	.143			11	25	.097				15	33	.055
2	7	3	17	.028			12	26	.139				16	32	.082
2	•	4	16	.056	3	9	6	33	.005				17	31	.115
		5	15	.111			7	32	.009		4	8	10	42	.002
2	8	3	19	.022			8 9	31 30	.018 .032				11 12	41 40	.004 .008
2	0	4	18	.044									13	39	.014
		1		.089			10	29 28	.050 .073				14	38	.024
		5 6	17 16	.133			11 12	20 27	.105				15	37	.036
•	9	1		.018	3	10	6	36	.003				16	36	.055
2	9	3 4	21 20	.036	3	10	7	35	.003				17	35	.077
							8	34	.014				18	34	.107
		5	19 18	.073 .109			9	33	.024		4	9	10	46	.001
0	10	1					10	32	.038				11	45	.003
2	10	3 4	23 22	.015 .030			11	31	.056				12	44	.006
		1					12	30	.080				13	43	.010
		5 6	21 20	.061 .091			13	29	.108				14	42	.017
		7	19	.136	4	4	10	26	.014				15	41	.025
3	3	6	15	.050			11	25	.029				16	40	.038
3	J	7	14	.100			12	24	.057				17	39	.053
3	4	6	18	.028			13	23	.100				18 19	38 37	.074 .099
3	*	7	17	.057	4	5	10	30	.008				20	36	.130
		8	16	.114			11	29	.016			10	1		
3	5	6	21	.018			12	28	.032		4	10	10	50 49	.001 .002
•	Ū	7	20	.036			13 14	27 26	.056 .095				12	48	.002
		8	19	.071			1						13	47	.007
		9	18	.125			15	25	.143				14	46	.012
3	6	6	24	.012	4	6	10	34	.005				15	45	.018
		7	23	.024			11 12	33 32	.010 .019				16	44	.026
		8	22	.048			13	31	.033				17	43	.038
		9	21	.083			14	30	.057				18	42	.053
		10	20	.131			15	29	.086				19	41	.071
3	7	6	27	.008			16	28	.129				20	40	.094
		7	26	.017			1 -0	_,	•				21	39	.120
		8	25	.033											
		9	24	.058											
		10	23	.092											
		11	22	.133											

Table 18. Critical Values For The Wilcoxon Rank-Sum Statistic (Continued)

m	n	c ₁	c_2	α	m	\boldsymbol{n}	c_1	c_2	α		m	n	c ₁	c_2	α
5	5	15	40	.004	 5	9	16	59	.001	_	6	7	21	63	.001
		16	39	.008			17	58	.002				22	62	.001
		17	38	.016			18	57	.003				23	61	.002
		18	37	.028			19	56	.006				24	60	.004
		19	36	.048			20	55	.009				25	59	.007
		20	35	.075			21	54	.014				26	58	.011
		21	34	.111			22	53	.021				27	57	.017
5	6	15	45	.002			23	52	.030				28	56	.026
		16	44	.004			24	51	.041				29	55	.037
		17	43	.009			25	50	.056				30	54	.051
		18	42	.015			26	49	.073				31	5 3	.069
		19	41	.026			27	48	.095				32	52	.090
		20	40	.041			28	47	.120				33	51	.117
		21	39	.063	5	10	16	64	.001		6	8	22	68	.001
		22	38	.089			17	63	.001				23	67	.001
		23	37	.123			18	62	.002				24	66	.002
5	7	15	50	.001			19	61	.004				25	65	.004
		16	49	.003			20	60	.006				26	64	.006
		17	48	.005			21	59	.010				27	63	.010
		18	47	.009			22	58	.014				28	62	.015
		19	46	.015			23	57	.020				29	61	.021
		20	45	.024			24	56	.028				30	60	.030
		21	44	.037			25	55	.038				31	59	.041
		22	43	.053			26	54	.050				32	58	.054
		23	42	.074			27	53	.065				33	57	.071
		24	41	.101			28	52 51	.082 .103				34	56	.091
5	8	15	55	.001			1						35	55	.114
		16	54	.002	6	6	21	57	.001		6	9	23	73	.001
		17	53 52	.003			22 23	56 55	.002 .004				24	72	.001
		19	51	.009			24	54	.004				25	71	.002
							1		.013				26	70	.004
		20	50 49	.015 .023			25 26	53 52	.013				27	69	.006
		21 22	49	.023			27	51	.032				28	68	.009
		23	47	.047			28	50	.047				29	67	.013
		24	46	.064			29	49	.066				30	66	.018
		25	45	.085			30	48	.090				31	65	.025
		26	43	.111			31	47	.120				32	64	.033
		1 20	44	.111			1 01	-21	.120				33	63 62	.044 .057
													34		
													35	61	.072
													36	60	.091 .112
													3/	59	.112

Table 18. Critical Values For The Wilcoxon Rank-Sum Statistic (Continued)

m	n	c ₁	c ₂	α	_	m	n	c ₁	c ₂	α	_	m	n	c ₁	c_2	α
6	10	24	78	.001		7	8	30	82	.001		7	10	32	94	.001
		25	77	.001				31	81	.001				33	93	.001
		26	76	.002				32	80	.002				34	92	.001
		27	75	.004				33	79	.003				35	91	.002
		28	74	.005				34	78	.005				36	90	.003
		29	73	.008				35	77	.007				37	89	.005
		30	72	.011				36	76	.010				38	88	.007
		31	71	.016				37	75	.014				39	87	.009
		32	70	.021				38	74	.020				40	86	.012
		33	69	.028				39	73	.027				41	85	.017
		34	68	.036				40	72	.036				42	84	.022
		35	67	.047				41	71	.047				43	83	.028
		36	66	.059				42	70	.060				44	82	.035
		37	65	.074				43	69	.076				45	81	.044
		38	64	.090				44	68	.095				46	80	.054
		39	63	.110				45	67	.116				47	79	.067
7	7	29	76	.001		7	9	31	88	.001				48	78	.081
		30	75	.001			_	32	87	.001				49	77	.097
		31	74	.002				33	86	.002				50	76	.115
		32	73	.003				34	85	.003		8	8	39	97	.001
		33	72	.006				35	84	.004		Ŭ		40	96	.001
		34	71	.009				36	83	.006				41	95	.001
		35	70	.013				37	82	.008				42	94	.001
		36	69	.019				38	81	.011				43	93	.002
		37	68	.027				39	80	.016				44	92	.005
		38	67	.036				40	79	.021				45	91	.007
		39	66	.049				41	78	.027				46	90	.010
		40	65	.064				42	77	.036				47	89	.014
		41	64	.082				43	76	.045				48	88	.014
		42	63	.104				44	75	.057				49	87	.025
		1	00	.101				45	74	.071				1		
								46	73	.087				50	86 85	.032 .041
								47	72	.105				51	85 84	.052
								1		•				53	83	.065
														54	82	.080
														55 56	81	.097
														1 20	80	.117

Table 18. Critical Values For The Wilcoxon Rank-Sum Statistic (Continued)

m	n	c_1	c_2	α		m	n	c ₁	c_2	α	m	n	c ₁	c_2	α
8	9	41	103	.001	-	9	9	51	120	.001	10	10	64	146	.001
		42	102	.001				52	119	.001			65	145	.001
	•	43	101	.002				53	118	.001			66	144	.001
		44	100	.003				54	117	.002			67	143	.001
		45	99	.004				55	116	.003			68	142	.002
		46	98	.006				56	115	.004			69	141	.003
		47	97	.008				57	114	.005			70	140	.003
		48	96	.010				58	113	.007			71	139	.004
		49	95	.014				59	112	.009			72	138	.006
		50	94	.018				60	111	.012			73	137	.007
		51	93	.023				61	110	.016			74	136	.009
		52	92	.030				62	109	.020			75	135	.012
		53	91	.037				63	108	.025			76	134	.014
		54	90	.046				64	107	.031			77	133	.018
		55	89	.057				65	106	.039			78	132	.022
		56	88	.069				66	105	.047			79	131	.026
		57	87	.084				67	104	.057 .068			80	130	.032
		58	86	.100				68 69	103 102	.081			81	129	.038
8	10	42	110	.001									82	128	.045
		43	109	.001				70	101	.095			83	127	.053 .062
		44	108	.002				71	100	.111			84	126	
		45	107	.002		9	10	53	127	.001			85	125	.072
		46	106	.003				54	126	.001			86	124 123	.083 .095
		47	105	.004 .006				55	125	.001			88	123	.109
		48 49	104 103	.008				56	124	.002			00	122	.105
		1						57	123	.003					
		50	102	.010 .013				58 59	122 121	.004 .005					
		51 52	101 100	.013				1							
		53	99	.022				60	120	.007 .009					
		54	98	.027				61 62	119 118	.009					
		55	97	.034				63	117	.014					
		56	96					64	116	.017					
		57	95					65	115	.022					
		58	94					66	114						
		59	93					67	113						
		60	92					68	112						
		61	91					69	111						
		1 **		-				70							
								71							
								72							
								73							
								74							
								•							

Table 19. Critical Values For The Runs Test

This table contains critical values and probabilities for the Runs Test for randomness. Let m be the number of objects of the first kind, n be the number of objects of the second kind $(m \le n)$, and V be the number of runs. The values given are $P(V \le v)$ in a random arrangement.

					•	a			
ä	u	2	3	4	2	9	7	∞	6
2	3	.2000	.5000	0006	1.0000				
7	4	.1333	.4000	.8000	1.0000				
7	ъ	.0952	.3333	.7143	1.0000				
7	9	.0714	.2857	.6429	1.0000				
7	7	.0556	.2500	.5833	1.0000				
7	∞	.0444	.2222	.5333	1.0000				
7	6	.0364	.2000	.4909	1.0000				
7	10	.0303	.1818	.4545	1.0000				
က	က	.1000	3000	.7000	0006.	1.0000			
က	4	.0571	.2000	.5429	.8000	.9714	1.0000		
က	ນ	.0357	.1429	.4286	.7143	.9286	1.0000		
က	9	.0238	.1071	.3452	.6429	.8810	1.0000		
က	7	.0167	.0833	.2833	.5833	.8333	1.0000		
က	∞	.0121	.0667	.2364	.5333	.7879	1.0000		
က	6	.0091	.0545	.2000	.4909	.7454	1.0000		
က	10	.0070	.0454	.1713	.4545	.7063	1.0000		
4	4	.0286	.1143	.3714	.6286	.8857	.9714	1.0000	
4	ro.	.0159	.0714	.2619	.5000	.7857	.9286	.9921	1.0000
4	9	.0095	.0476	.1905	.4048	.6905	.8810	.9762	1.0000
4	7	.0061	.0333	.1424	.3333	.6061	.8333	.9545	1.0000
4	∞	.0040	.0242	.1091	.2788	.5333	.7879	.9293	1.0000
4	6	.0028	.0182	.0853	.2364	.4713	.7454	.9021	1.0000
4	10	.0020	.0140	6290.	.2028	.4186	.7063	.8741	1.0000
	1								

Table 19. Critical Values For The Runs Test (Continued)

										a									1
2	2	က	4	ro	9	7	8	6	10	=	12	13	14	15	16	17	18	19	50
10	9200.	.0397	.1667	.3571	.6429	.8333	.9603	.9921	1.0000										
	.0043	.0238	.1104	.2619	.5216	.7381	.9112	.9762	8266.	1.0000									
	.0025	.0152		.1970	.4242	.6515	.8535	.9545	.9924	1.0000									
	.0016	.0101		.1515	.3473	.5758	.7933	.9293	.9837	1.0000									
	.0010	.0070		.1189	.2867	.5105	.7343	.9021	.9720	1.0000									
	.0007	.0050		.0949	.2388	.4545	.6783	.8741	.9580	1.0000									
9	0022	.0130		.1753	3918	.6082	.8247	.9329	.9870	8266.	1.0000								
	.0012	9200.		.1212	.2960	.5000	.7331	.8788	.9662	.9924	.9994	1.0000							
	.0007	.0047		.0862	.2261	.4126	.6457	.8205	.9371	.9837	.9977	1.0000							
	.0004	.0030		.0629	.1748	.3427	.5664	.7622	.9021	.9720	.9944	1.0000							
	.0003	.0020		.0470	.1369	.2867	.4965	.7063	.8636	.9580	.9895	1.0000							
7	9000.	.0041		.0775	.2086	.3834	.6166	.7914	.9225	.9749	.9959	.9994	1.0000						
	.0003	.0023		.0513	.1492	.2960	.5136	.7040	.8671	.9487	.9879	.9977	8666:	1.0000					
	.000	.0014		.0350	.1084	.2308	.4266	.6224	.8059	.9161	.9748	.9944	.9993	1.0000					
10	.000	6000		.0245	.0800	.1818	.3546	.5490	.7433	.8794	.9571	.9895	.9981	1.0000					
œ	.0002	.0012	6800	.0317	.1002	.2144	.4048	.5952	.7855	8668.	.9683	.9911	8866.	8666.	1.0000				
6	.000	.0007	.0053	.0203	.0687	.1573	.3186	.5000	.7016	.8427	.9394	.9797	.9958	.9993	96666.	1.0000			
10	0000	.0004	.0033	.0134	.0479	.1170	.2514	.4194	.6209	.7822	.9031	.9636	.9905	.9981	.99979	1.0000			
6	0000	.0004	.0030	.0122	.0445	.1090	.2380	.3992	.6008	.7620	.8910	.9555	.9878	.9970	2666.	96666	1.0000		
10	0000	.0002	.0018	9200.	.0294	.0767	.1786	.3186	.5095	.6814	.8342	.9233	.9742	.9924	9886	8666.	.99999	1.0000	
10	0000	.0001	.0010	.0045	.0185	.0513	.1276	.2422	.4141	.5859	.7578	.8724	.9487	.9815	.9955	0666.	6666.	66666.	1.0000
•																			

Table 20. Tolerance Factors For Normal Distributions

This table contains values of k used to compute tolerance intervals of the form $\overline{x} \pm ks$ for a normal distribution with unknown mean μ and unknown standard deviation σ . The tolerance interval contains at least the proportion $1-\alpha$ of the population with probability γ .

1		$\gamma =$.90	1		$\gamma =$.95	1		$\gamma =$.99	
		1 -	- α			1 -	- α			1 -	- α	
n	.90	.95	.99	.999	.90	.95	.99	.999	.90	.95	.99	.999
2	15.978	18.800	24.167	30.227	32.019	37.674	48.430	60.573	160.193	188.491	242.300	303.054
3	5.847	6.919	8.974	11.309	8.380	9.916	12.861	16.208	18.930	22.401	29.055	36.616
4	4.166	4.943	6.440	8.149	5.369	6.370	8.299	10.502	9.398	11.150	14.527	18.383
5	3.494	4.152	5.423	6.879	4.275	5.079	6.634	8.415	6.612	7.855	10.260	13.015
6	3.131	3.723	4.870	6.188	3.712	4.414	5.775	7.337	5.337	6.345	8.301	10.548
7	2.902	3.452	4.521	5.750	3.369	4.007	5.248	6.676	4.613	5.488	7.187	9.142
8	2.743	3.264	4.278	5.446	3.136	3.732	4.891	6.226	4.147	4.936	6.468	8.234
9	2.626	3.125	4.098	5.220	2.967	3.532	4.631	5.899	3.822	4.550	5.966	7.600
10	2.535	3.018	3.959	5.046	2.839	3.379	4.433	5.649	3.582	4.265	5.594	7.129
11	2.463	2.933	3.849	4.906	2.737	3.259	4.277	5.452	3.397	4.045	5.308	6.766
12	2.404	2.863	3.758	4.792	2.655	3.162	4.150	5.291	3.250	3.870	5.079	6.477
13	2.355	2.805	3.682	4.697	2.587	3.081	4.044	5.158	3.130	3. 727	4.893	6.240
14	2.314	2.756	3.618	4.615	2.529	3.012	3.955	5.045	3.029	3.608	4.737	6.043
15	2.278	2.713	3.562	4.545	2.480	2.954	3.878	4.949	2.945	3.507	4.605	5.87 6
16	2.246	2.676	3.514	4.484	2.437	2.903	3.812	4.865	2.872	3.421	4.492	5.732
17	2.219	2.643	3.471	4.430	2.400	2.858	3.754	4.791	2.808	3.345	4.393	
18	2.194	2.614	3.433	4.382	2.366	2.819	3.702	4.725	2.753	3.279	4.307	5.497
19	2.172	2.588	3.399	4.339	2.337	2.784	3.656	4.667	2.703	3.221	4.230	5.399
20	2.152	2.564	3.368	4.300	2.310	2.752	3.615	4.614	2.659	3.168	4.161	5.312
21	2.135	2.543	3.340	4.264	2.286	2.723	3.577	4.567	2.620	3.121	4.100	5.234
22	2.118	2.524	3.315	4.232	2.264	2.697	3.543	4.523	2.584	3.078	4.044	5.163
23	2.103	2.506	3.292	4.203	2.244	2.673	3.512	4.484	2.551	3.040	3.993	5.098
24	2.089		3.270	4.176	2.225	2.651	3.483	4.447	2.522	3.004	3.947	5.039
25	2.077	2.474	3.251	4.151	2.208				2.494			
2 6	2.065	2.460	3.232	4.127	2.193				2.469			
27	2.054	2.447	3.215	4.106	2.178				2.446			
30	2.025	2.413	3.170	4.049	2.140	2.549			2.385			
35	1.988	2.368	3.112	3.974	2.090	2.490	3.272	4.179	2.306	2.748	3.611	4.611

Table 20. Tolerance Factors For Normal Distributions (Continued)

		$\gamma =$.90			$\gamma =$.95			$\gamma =$.99	
ì		1 -	- α			1 -	α			1 -	α	
n	.90	.95	.99	.999	.90	.95	.99	.999	.90	.95	.99	.999
40	1.959	2.334	3.066	3.917	2.052	2.445	3.213	4.104	2.247	2.677	3.518	4.493
45	1.935	2.306	3.030	3.871	2.021	2.408	3.165	4.042	2.200	2.621	3.444	4.399
50	1.916	2.284	3.001	3.833	1.996	2.379	3.126	3.993	2.162	2.576	3.385	4.323
55	1.901	2.265	2.976	3.801	1.976	2.354	3.094	3.951	2.130	2.538	3.335	4.260
60	1.887	2.248	2.955	3.774	1.958	2.333	3.066	3.916	2.103	2.506	3.293	4.206
65	1.875	2.235	2.937	3.751	1.943	2.315	3.042	3.886	2.080	2.478	3.257	4.160
70	1.865	2.222	2.920	3.730	1.929	2.299	3.021	3.859	2.060	2.454	3.225	4.120
75	1.856	2.211	2.906	3.712	1.917	2.285	3.002	3.835	2.042	2.433	3.197	4.084
80	1.848	2.202	2.894	3.696	1.907	2.272	2.986	3.814	2.026	2.414	3.173	4.053
85	1.841	2.193	2.882	3.682	1.897	2.261	2.971	3.795	2.012	2.397	3.150	4.024
90	1.834	2.185	2.872	3.669	1.889	2.251	2.958	3.778	1.999	2.382	3.130	3.999
95	1.828	2.178	2.863	3.657	1.881	2.241	2.945	3.763	1.987	2.368	3.112	3.976
100	1.822	2.172	2.854	3.646	1.874	2.233	2.934	3.748	1.977	2.355	3.096	3.954
110	1.813	2.160	2.839	3.626	1.861	2.218	2.915	3.723	1.958	2.333	3.066	3.917
120	1.804	2.150	2.826	3.610	1.850	2.205	2.898	3.702	1.942	2.314	3.041	3.885
130	1.797	2.141	2.814	3.595	1.841	2.194	2.883	3.683	1.928	2.298	3.019	3.857
140	1.791	2.134	2.804	3.582	1.833	2.184	2.870	3.666	1.916	2.283	3.000	3.833
150	1.785	2.127	2.795	3.571	1.825	2.175	2.859	3.652	1.905	2.270	2.983	3.811
160	1.780	2.121	2.787	3.561	1.819	2.167	2.848	3.638	1.896	2.259	2.968	3.792
170	1.775	2.116	2.780	3.552	1.813	2.160	2.839	3.627	1.887	2.248	2.955	3.774
180	1.771	2.111	2.774	3.543	1.808	2.154	2.831	3.616	1.879	2.239	2.942	3.759
190	1.767	2.106	2.768	3.536	1.803	2.148	2.823	3.606	1.872	2.230	2.931	3.744
200	1.764	2.102	2.762	3.529	1.798	2.143	2.816	3.597	1.865	2.222	2.921	3.731
250	1.750	2.085	2.740	3.501	1.780	2.121	2.788	3.561	1.839	2.191	2.880	3.678
300	1.740	2.073	2.725	3.481	1.767	2.106	2.767	3.535	1.820	2.169	2.850	3.641
400	1.726	2.057	2.703	3.453	1.749	2.084	2.739	3.499	1.794	2.138	2.809	3.589
500	1.717	2.046	2.689	3.434	1.737	2.070	2.721	3.475	1.777	2.117	2.783	3.555
600	1.710	2.038	2.678	3.421	1.729	2.060	2.707	3.458	1.764	2.102	2.763	3.530
700	1.705	2.032	2.670	3.411	1.722	2.052	2.697	3.445	1.755	2.091	2.748	3.511
800	1.701	2.027	2.663	3.402	1.717	2.046	2.688	3.434	1.747	2.082	2.736	3.495
900	1.697	2.023	2.658	3.396	1.712	2.040	2.682	3.426	1.741	2.075	2.726	3.483
1000	1.695	2.019	2.654	3.390	1.709	2.036	2.676	3.418	1.736	2.068	2.718	3.472
∞	1.645	1.960	2.576	3.291	1.645	1.960	2.576	3.291	1.645	1.960	2.576	3.291

Table 21. Nonparametric Tolerance Limits

For any distribution of measurements, two-sided tolerance limits are given by the smallest and largest observations in a sample of size n, and a one-sided tolerance limit is given by the smallest (largest) observation in a sample of size n. γ is the probability that the interval will cover a proportion $1-\alpha$ of the population with a random sample of size n.

 $1-\alpha$ For The Interval Between Sample Extremes

ı u	101	THE III	CIVALL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Lounip	IC LIAUI	CILICS
					γ		
	n	.5	.7	.9	.95	.99	.995
	2	.293	.164	.052	.026	.006	.003
	4	.615	.492	.321	.249	.141	.111
	6	.736	.640	.490	.419	.295	.254
1	.0	.838	.774	.664	.606	.496	.456
2	0	.918	.883	.820	.784	.712	.683
4	.0	.959	.941	.907	.887	.846	.829
6	0	.973	.960	.937	.924	.895	.883
8	80	.980	.970	.953	.943	.920	.911
10	00	.984	.976	.962	.954	.936	.929
15	0	.990	.984	.975	.969	.957	.952
20	00	.992	.988	.981	.977	.968	.964
30	00	.995	.992	.988	.985	.979	.976
50	00	.997	.996	.993	.991	.987	.986
70	00	.998	.997	.995	.994	.991	.990
90	00	.999	.998	.996	.995	.993	.992
100	00	.999	.998	.997	.996	.994	.993

γ For The Interval Between Sample Extrem

•				-	
			$1-\alpha$		
n	.5	.7	.9	.95	.!
2	.250	.090	.010	.003	.0
4	.688	.348	.052	.014	.00
6	.891	.580	.114	.033	.0
10	.989	.851	.264	.086	.0
20	1.000	.992	.608	.264	.0
40		1.000	.920	.601	.0
60			.986	.808	.1
80			.998	.914	.1
100			1.000	.963	.2
150				.996	.4
200				1.000	.5
300					.8
500					.9
700	[.9
900					.9
1000					1.0

n For The Interval Between Sample Extremes

				γ		
$1-\alpha$.5	.7	.9	.95	.99	.995
.995	336	488	777	947	1325	1483
.99	168	244	388	473	662	740
.95	34	49	77	93	130	146
.90	17	24	38	46	64	72
.85	11	16	25	30	42	47
.80	9	12	18	22	31	34
.75	7	10	15	18	24	27
.70	6	8	12	14	20	22
.60	4	6	9	10	14	16
.50	3	5	7	8	11	12

n For The Interval Below (Above) The Largest (Smallest) Sample Value

			γ		
$1-\alpha$.5	.7	.9	.95	
.995	139	241	598	919	13
.99	69	120	299	459	6
.95	14	24	59	90	1
.90	7	12	29	44	
.85	5	8	19	29	
.80	4	6	14	21	
.75	3	5	11	17	
.65	2	4	9	13	
.60	2	3	6	10	
.50	1	2	5	7	

Table 22. Critical Values For Spearman's Rank Correlation Coefficient

This table contains critical values, $r_{\alpha,n}$, for Spearman's Rank Correlation Coefficient, r_S , where n is the number of pairs of observations and $P(r_S \ge r_{\alpha,n}) = \alpha$.

		d	χ	
n	.05	.01	.005	.001
5	.9000			
6	.8286	.9429		
7	.7143	.8929	.9286	
8	.6429	.8333	.8810	.9524
9	.6000	.7833	.8333	.9167
10	.5636	.7455	.7939	.8788
11	.5364	.7091	.7545	.8455
12	.5035	.6783	.7273	.8182
13	.4835	.6484	.7033	.8022
14	.4637	.6220	.6747	.7758
15	.4429	.6036	.6536	.7536
16	.4294	.5824	.6353	.7324
17	.4142	.5662	.6152	.7108
18	.4014	.5501	.5996	.6945
19	.3912	.5351	.5842	.6772
20	.3805	.5203	.5699	.6617
21	.3701	.5078	.5558	.6481
22	.3608	.4963	.5438	.6341
23	.3528	.4862	.5316	.6215
24	.3443	.4757	.5209	.6087
25	.3369	.4662	.5108	.5977
26	.3306	.4564	.5009	.5870
27	.3236	.4481	.4915	.5763
28	.3175	.4401	.4828	.5670
29	.3118	.4325	.4744	.5576
30	.3063	.4251	.4670	.5488
31	.3012	.4181	.4593	.5403
32	.2962	.4117	.4520	.5323
33	.2914	.4054	.4452	.5247
34	.2871	.3992	.4390	.5172
35	.2826	.3936	.4325	.5101
36	.2788	.3879	.4268	.5035
37	.2748	.3826	.4208	.4969
38	.2710	.3776	.4155	.4905
39	.2674	.3729	.4101	.4846
40	.2640	.3681	.4051	.4788

Acknowledgements

- The following tables have been used with permission:
- Table 3: Leemis, L. M.(1986), "Relationships Among Common Univariate Distributions," The American Statistician, 40, Number 2, 143-146.
- Table 12: Harter, H. Leon(1960), "Tables Of Range And Studentized Range," Annals of Mathematical Statistics, 31, 1122-1147.
- Table 13: Harter, H. Leon (1960), "Critical Values For Duncan's New Multiple Range Test," Biometrics, 16, 671-685.
- Table 14: Dunnett, Charles W.(1955), "A Multiple Comparison Procedure For Comparing Several Treatments With A Control," Journal of the American Statistical Association, 50, 1096-1121.
- Table 15: Dyer, Danny D. and Keating, Jerome P.(1980), "On The Determination Of Critical Values For Bartlett's Test," Journal of the American Statistical Association, 75, 313-319.
- Table 16: Eisenhart, C., Hastay, M. W., and Wallis, W. A. (1947), Techniques of Statistical Analysis, pages 390-391, New York: McGraw-Hill Book Company.
- Table 17: Dixon, Wilfred J. and Massey, Frank J. (1969), Introduction to Statistical Analysis, 3rd ed., pages 543-544, New York: McGraw-Hill Book Company.
- Table 18: Dixon, Wilfred J. and Massey, Frank J. (1969), Introduction to Statistical Analysis, 3rd ed., pages 545-549, New York: McGraw-Hill Book Company.
- Table 19: Swed, Frieda S. and Eisenhart, C.(1963), "Tables For Testing Randomness Of Grouping In A Sequence Of Alternatives," Annals of Mathematical Statistics, 14, 66-87.
- Table 20: Eisenhart, C., Hastay, M. W., and Wallis, W. A. (1947), Techniques of Statistical Analysis, Chapter 2, New York: McGraw-Hill Book Company.

References

- Bickel, Peter J. and Doksum, Kjell A.(1977), Mathematical Statistics: Basic Ideas and Selected Topics, Oakland, California: Holden-Day, Inc.
- Canavos, George C.(1984), Applied Probability and Statistical Methods, Boston: Little, Brown and Company.
- DeGroot, Morris H.(1986), Probability and Statistics, Second Edition, Reading, Massachusetts: Addison-Wesley Publishing Company.
- Devore, Jay L.(1987), Probability and Statistics for Engineering and the Sciences, Second Edition, Monterey, California: Brooks/Cole Publishing Company.
- Draper, N. R. and Smith, H.(1981), Applied Regression Analysis, Second Edition, New York: John Wiley & Sons, Inc.
- Freund, John E. and Walpole, Ronald E. (1987), Mathematical Statistics, Fourth Edition, Englewood Cliffs, NJ: Prentice-Hall, Inc.
- Hastings, N. A. J. and Peacock, J. B. (1975), Statistical Distributions, London: Butterworth & Company.
- Hogg, Robert V. and Craig, Allen T. (1978), Introduction to Mathematical Statistics, Fourth Edition, New York: Macmillan Publishing Company, Inc.
- Johnson, N. L. and Kotz, S. (1970), Distributions in Statistics, Volumes I-IV, New York: John Wiley & Sons, Inc.
- Kendall, Maurice, and Stuart, Alan (1977), The Advanced Theory of Statistics, Fourth Edition, Volumes I and II, New York: Macmillan Publishing Company, Inc.
- LaValle, Irving H.(1970), An Introduction to Probability, Decision, and Inference, New York: Holt, Rinehart and Winston, Inc.
- Ledermann, Walter (Chief Editor) (1980), Handbook of Applicable Mathematics, Volume II, New York: John Wiley & Sons, Inc.
- Manoukian, E. B. (1986), Modern Concepts and Theorems of Mathematical Statistics, New York: Springer-Verlag.
- Mendenhall, William, Scheaffer, Richard L., and Wackerly, Dennis D.(1986), Mathematical Statistics with Applications, Third Edition, Boston: Duxbury Press.
- Neter, John, Wasserman, William, and Kutner, Michael H. (1985), Applied Linear Statistical Models, Second Edition, Homewood, Illinois: Richard D. Irwin, Inc.
- Olkin, Ingram, Gleser, Leon J., and Derman, Cyrus (1980), Probability Models and Applications, New York: Macmillan Publishing Company.
- Patel, J. K., Kapadia, C. H., and Owen, D. B.(1976), Handbook of Statistical Distributions, New York: Marcel Dekker.
- Snedecor, George W. and Cochran, William G. (1980), Statistical Methods, Seventh Edition, Ames, Iowa: The Iowa State University Press.
- Walpole, Ronald E. and Myers, Raymond H.(1985), Probability and Statistics for Engineers and Scientists, Third Edition, New York: Macmillan Publishing Company.