Лекция 07.02.22

Note 1

b84aca6df42d4d74ad1fea51970c01d9

Пусть $\{(e^2)^2:W$ — линейное пространство, $V\subset W$. $\{(e^2)^2:V\}$ называется $\{(e^2)^2:V\}$ подпространством $\{(e^2)^2:V\}$ называется $\{(e^2)^2:V\}$

- 1. $\forall v \in V, k \in \mathbb{R} \implies kv \in V$,
- 2. $\forall v_1, v_2 \in V \implies v_1 + v_2 \in V$.

Note 2

a2e780e4b5ff4b4199b594e34bf762c6

Выражение «V есть линейное подпространство в W» обозначают (са:

$$V \triangleleft W$$

}}

Note 3

99948993d13c4978866982630he13e73

Пусть W — линейное пространство, $V \triangleleft W$. Тогда $V - \{\{c\}\}\}$ тоже линейное пространство $\{c\}$.

Note 4

3c2988d9ae174eb4aa377f43ebd61f74

Является ли прямая проходящая через начало координат подпространством в \mathbb{R}^n ?

Да, поскольку любая линейная комбинация векторов на прямой тоже лежит на этой прямой.

Note 5

18h402a364da457aaaf95095h9113dcd

Пусть $W=\mathbb{R}^n, A\sim m\times n.$ Является ли множество

$$V = \{x \in W \mid Ax = 0\}$$

линейным подпространством?

Да, поскольку $\forall u, v \in V$, $\alpha, \beta \in \mathbb{R}$ $A(\alpha u + \beta v) = 0$.

Note 6

a5081684e6014eeb8d4cd352f7dfd46b

Пусть $V \triangleleft \mathbb{R}^n$. Тогда всегда существует $A \in \mathbb{R}^{\lceil (c2\cdot m \times n) \rceil}$ такая, что $\lceil (c1) \rceil$

$$V = \{ x \in \mathbb{R}^n \mid Ax = 0 \}$$

}}

Note 7

dcb727a8588c412db845188bf547fd9e

Пусть $W=\mathbb{R}^n, \quad a_1,a_2,\dots a_n\in W$. Является ли

$$\mathscr{L}(a_1, a_2, \dots a_n)$$

подпространством в W?

Да, является, поскольку любая линейная комбинация линейных комбинаций $a_1, a_2, \dots a_n$ тоже является их линейной комбинацией.

Note 8

d633780bbade46968c2bcb66d05be478

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 \cap V_2 \triangleleft W$$
?

Да, всегда.

Note 9

9c714ab9fa4b457f993438ef25421061

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 \cup V_2 \triangleleft W$$
?

Нет, не всегда.

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Тогда

$$\max\{ v_1 + V_2 \} \stackrel{\mathrm{def}}{=} \{ v_1 + v_2 \mid v_1 \in V_1, \quad v_2 \in V_2 \}. \}$$

Note 11

cd25e86c13c141be80e3673edfece8d2

Пусть W- линейное пространство, $V_1,V_2 \triangleleft W.$ Тогда $\dim(V_1+V_2) = \dim V_1 + \dim V_2 - \dim(V_1\cap V_2).$

Note 12

ecf370041c6b4016a92ca63a4b3675eb

Пусть W — линейное пространство, $V_1, V_2 \triangleleft W$. Всегда ли

$$V_1 + V_2 \triangleleft W$$
?

Да, всегда.

Note 13

fe58542dc0ee4e48ab330cd68be1fd77

Пусть W — линейное пространство, $V \triangleleft W$ и e_1, e_2, \ldots, e_k — ((c2) базис в V.); Тогда в W существует базис вида ((c1))

$$e_1, e_2, \ldots, e_k, e_{k+1}, \ldots, e_n$$
.

Note 14

7e41e14368b94d50be88c6e5b025c706

В чем основная идея доказательства теоремы о размерности суммы подпространств?

Дополнить базис в $V_1 \cap V_2$ до базисов в V_1 и V_2 соответственно и построить на их основе базис в $V_1 + V_2$.

Пусть

•
$$e_1, e_2, \dots e_k$$
 — базис в $V_1 \cap V_2$,

•
$$e_1, e_2, \dots e_k, f_1, \dots f_p$$
 — базис в V_1 ,

•
$$e_1, e_2, \dots, e_k, g_1, \dots g_q$$
 — базис в V_2 .

Как можно построить базис в $V_1 + V_2$?

$$lacksquare e_1, \ldots e_k, f_1, \ldots f_p, g_1, \ldots, g_q$$
 — базис в $V_1 + V_2.$

Семинар 09.02.22

Note 1

3fd21160928849f8acbc526a60229e49

Пусть e_1,e_2,\ldots,e_n и e'_1,e'_2,\ldots,e'_n — два базиса в линейном пространстве V. Тогда патрицей перехода от базиса e к базису e' называют патрицу C такую, что для любого $v\in V$, если

$$v = \lambda_1 e_1 + \lambda_2 e_2 + \dots + \lambda_n e_n,$$

 $v = \mu_1 e'_1 + \mu_2 e'_2 + \dots + \mu_n e'_n,$

то

$$C \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \\ \lambda_2 \\ \vdots \\ \lambda_n \end{bmatrix}.$$

}}

Note 2

8fab27df46a451190278cbc1d38698f

 $\{\{e^{2z}\}\}$ Матрицу перехода от базиса e к базису e' $\}$ обычно обозначают $\{\{e^{1z}\}\}$

Note 3

c9e84965d5ea4157b50f6576e2cbddad

Пусть e_1, e_2, \ldots, e_n и e'_1, e'_2, \ldots, e'_n — два базиса в линейном пространстве. Как в явном виде задать матрицу $C_{e \to e'}$?

Столбцы $C_{e\to e'}$ — это координаты векторов e'_1, e'_2, \dots, e'_n в базисе e_1, e_2, \dots, e_n .

Лекция 14.02.22

Note 1

825he05che9f4850806682f4dh48f5e1

Пусть W- линейное пространство, $V_1,V_2 \triangleleft W$. (с2: Сумму V_1+V_2) называют (с1: прямой суммой,) если (с2: $V_1\cap V_2=\{0\}$.)

Note 2

90c98477312541878454fb9689685fc8

 $\{\{c20\}$ Прямая сумма подпространств V_1 и $V_2\}\}$ обозначается $\{\{c10\}\}$

$$V_1 \oplus V_2$$
.

111

Note 3

951dc5cc9d7d4722ac40423e92273c7a

Пусть V_1 и V_2 — два линейных подпространства. Тогда эквивалентны следующие утверждения:

- 1. $\{\{c_1::V_1+V_2-прямая сумма;\}\}$
- 2. $\{(c2): \dim(V_1 + V_2) = \dim V_1 + \dim V_2;\}\}$
- 3. $\{(c3): Для \ любого \ a \in V_1 + V_2 \ разложение разложение <math>a$ в сумму $v_1 + v_2$, где $v_1 \in V_1, v_2 \in V_2$, единственно. $\{(c3): Q_1 \in V_1 \}$

Note 4

fc93fb548c854d70af3f9cf3017866cb

В чем основная идея доказательства того, что если для любого $a\in V_1+V_2$ разложение разложение a в сумму v_1+v_2 , где $v_1\in V_1, v_2\in V_2$, единственно, то V_1+V_2 — прямая сумма?

 \blacksquare Показать, что если $a=v_1+v_2\in V_1\cap V_2$, то $v_1=v_2=0$.

Note 5

78239c298e504fa9841235fdd06ac419

«([с3::Монотонность размерности подпространств])»

Пусть W — линейное пространство, $V \triangleleft W$. Тогда

- 1. $\{ \dim V \leqslant \dim W, \}$
- 2. $\{c^2: \dim V = \dim W \iff V = W.\}$

 $\{\{c\}\}\}$ Отображение $f:V\to W_{\}\}$ называется $\{\{c\}\}\}$ линейным отображением, $\{\}\}$ если $\{\{c\}\}\}$

1.
$$f(x+y) = f(x) + f(y)$$
, $\forall x, y \in V$,

2.
$$f(\lambda x) = \lambda f(x), \quad \forall \lambda \in \mathbb{R}, x \in V.$$

Note 7

4008d3f9d2224ec38cb2e9b8a78aab64

Линейное отображение так же ещё называют ((с.): линейным оператором.)

Note 8

df5862f6f1d4456cb943a7f07c8d8b68

Линейный оператор $f:V\to W$ называется (кана изоморфизмом линейных пространств); тогда и только тогда, когда (кана f — биекция.))

Note 9

d8bd78dfda034119ae049b476da9644

Линейные пространства V и W называются (сл.: изоморфными) тогда и только тогда, когда (сл.: существует изоморфизм

$$f: V \to W$$
.

Note 10

2d4f456313e24261b688216f4b7f199e

Отношение $\{ (c2) :$ изоморфности $\}$ обозначается символом $\{ (c1) :$

 \simeq

Note 11

7112c4ddaf614005b6a37c3f4fbd3edc

Если $f:V \to W$ — изоморфизм, то $f^{-1}:W \to V$ ((c.:. — тоже изоморфизм.))

Отношение изоморфности удовлетворяет аксиомам отношения (как эквивалентности.))

Note 13

9fa02b16e5e74fcea192355d84b99109

Пусть V,W — конечномерные линейные пространства. Тогда

$$\{c2:V\simeq W\}\}\{c3::\iff\}\{c1::\dim V=\dim W.\}\}$$

Note 14

13b90eb2ff704cc69e067a3f047966cc

Пусть $f:V\to W$ — линейный оператор. Тогда (кез матрицей линейного оператора f в паре базисов в V и W соответственно) называют (кез матрицу A, переводящую координаты любого вектора $v\in V$ в координаты вектора $f(v)\in W$ в соответствующих базисах.)

Note 15

d8ecf4d0e7a546668528944588ba6060

«({c2:: Теорема о матрице линейного оператора);»

Пусть $f:V \to W$ — линейный оператор,

- $\{(c3::e_1,e_2,\ldots,e_n)\}$ базис в V,
- $\{ e^{2\pi i} \tilde{e}_1, \tilde{e}_2, \dots, \tilde{e}_m \}$ базис в W.

Как в явном виде задать матрицу оператора f в этих базиcax?

j-ый столбец — это координаты вектора $f(e_j)$ в базисе $\tilde{e}_1, \tilde{e}_2, \ldots, \tilde{e}_m.$

Note 16

1235d9dc6038426387ee1c7475309a4f

Как можно компактно перефразировать утверждение теоремы о матрице линейного оператора?

$$f(e) = \tilde{e}A.$$

Note 17

8e1ba2b68d414caeb7d229ba34833e8d

В чем ключевая идея доказательства теоремы о матрице линейного оператора?

$$f(e\lambda) = f(e)\lambda = \tilde{e}A\lambda$$

 $f(e\lambda) = f(e)\lambda = \tilde{e}A\lambda,$ где λ — координаты вектора из V в базисе e.

Note 18

b595ad9b198f46299eb5af10d49e413d

Композиция линейных операторов — тоже (сая линейный оператор.

Note 19

Матрица композиции линейных операторов есть (сля произведение матриц этих операторов.

Note 1

13db7f12a2a14ffca2f5a00107cd3a07

Пусть $f:V\to W$ — линейный оператор, A — матрица оператора f в базисах e и \tilde{e} соответственно. Как преобразуется матрица A при замене базисов $e\to e', \tilde{e}\to \tilde{e}'$?

$$A' = C_{\tilde{e} \to \tilde{e}'}^{-1} A C_{e \to e'}.$$

Note 2

015e02c15f134a53b50a24729fb6ac3d

Пусть $f:V\to V$ — линейный оператор, A — матрица оператора f в базисе e. Как преобразуется матрица A при замене базиса $e\to e'$?

$$A' = C_{e \to e'}^{-1} A C_{e \to e'}.$$

Note 3

e3c3292adefb4657a177843c8840476d

Пусть $f:V\to V$ — линейный оператор, A и A' — матрицы оператора f в двух базисах e и e' соответственно. Тогда $\det A'=\det \det A$ п.

Note 4

79b8fed369c447dfb53f352258ed6940

Педан Определителем оператора $f:V\to V$ н называется (казывается катрицы оператора f в произвольном базисе.)

Note 5

79b8fed369c447dfb53f352258ed6940

Рангом оператора $f:V \to V$)) называется (сперанг матрицы оператора f в произвольном базисе.)

Note 6

d36be29fb7a342599a7f73709043bb1f

 $\{\{c2:: C$ лед матрицы $A\}\}$ обозначается $\{\{c1:: \operatorname{tr} A.\}\}$

Пусть
$$A\in\{\{eta\}\mathbb{R}^{n imes n}\}$$
. Тогда $\{\{eta\}\}\stackrel{\mathsf{def}}{=} \{\{eta\}\} \sum_{i=1}^n a_{ii}\}$.

Note 8

55e76656e4fc4920969acdfb57634355

Note 9

1da0c4fffac341f89821707b4a1b38a

Пусть f:V o W — линейный оператор. Тогда

$$\{\{c2:: \ker f\}\} \stackrel{\text{def}}{=} \{\{c1:: f^{-1}(\{0\}).\}\}$$

Note 10

f8fe0ceb74f84386932c4100743fb775

Пусть f:V o W — линейный оператор. Тогда

$$\{\{c2:: \text{im } f\}\} \stackrel{\text{def}}{=} \{\{c1:: f(V).\}\}$$

Note 11

56a80e8376154f29b490e470ceac8bc3

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда $\ker f \triangleleft V$?

Да, поскольку линейная комбинация нулей f — тоже нуль f.

Note 12

28f55b0f2daa4b35b1859196e2d41ede

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда $\ker f \triangleleft W$?

Hет, ker $f \triangleleft V$.

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда $\operatorname{im} f \triangleleft W$?

Да, поскольку $\forall f(u), f(v) \in \operatorname{im} f$

$$\alpha f(u) + \beta f(v) = f(\alpha u + \beta v) \in \text{im } f.$$

Note 14

7b17eb03a5e640f8bddefa0aaa6656c3

Пусть $f:V \to W$ — линейный оператор. Можно ли утверждать, что всегда іт $f \triangleleft V$?

Hет, im $f \triangleleft W$.

Note 15

ic7bf3d386eb4fa181cdb696fc0f9ab5

Пусть $f:V \to W$ — линейный оператор. Как связаны размерности $V, \ker f$ и im f?

 $\dim \ker f + \dim \operatorname{im} f = \dim V.$

Note 16

8a962591377f49c1a6b297a1efe008e9

 $\dim\operatorname{im} f=\{\{\operatorname{cl:rk} f.\}\}$

Note 17

a85a7d7b1e3d47939cc717cb8da889ac

Пусть $f:W\to W$ — линейный оператор. ((c1::Пространство $V\lhd W$)) называется ((c2::инвариантным относительно оператора f, () если ((c1::

$$f(V) \in V$$
. im

}}

Примеры инвариантных подпространств в контексте произвольного оператора $f:W \to W$:

 $\ker f, \operatorname{im} f.$