Simulado Prova OB - Tipo I

ID: 17- Ano: 2013- Núm.: 13

- 13) Qual é a área entre os gráficos de $f(x)=e^x$ e de $g(x)=e^{-x}$, -1≤x≤1?
 - (A) $(e^2-2e+1)/e$
 - (B) $(e^2+2e+1)/e$
 - (C) $(e^2-2e-1)/e$
 - (D) $2(e^2-2e+1)/e$
 - (E) $2(e^2+2e+1)/e$

ID: 70- Ano: 2017- Núm.: 2

QUESTÃO 2

Seja $F: \mathbb{R}^2 \to \mathbb{R}$ uma função derivável tal que F(x,y) = F(y,x), para todos os $(x,y) \in \mathbb{R}^2$. Se $\nabla F(1,2) = (3,-1)$, então $\nabla F(2,1)$ é igual a

- (A) (-3,1)
- (B) (-1,3) (C) (3,-1)
- (D) (1,-3)
- (E) (-3,-1)

ID: 29- Ano: 2014- Núm.: 9

9) Observe a tabela a seguir.

x	-2	-1	1	2
f(x)	0	3	λ	0

- O polinômio interpolador da tabela acima tem grau 2, sendo assim, λ é igual a:
- (A) -3
- (B) -1/3
- (C) 0
 - (D) 1/3
 - (E) 3

ID: 70- Ano: 2017- Núm.: 2

ID: 17- Ano: 2013- Núm.: 13

Seja $F: \mathbb{R}^2 \to \mathbb{R}$ uma função derivável tal que F(x,y) = F(y,x), para todos os $(x,y) \in \mathbb{R}^2$. Se $\nabla F(1,2) = (3,-1)$, então $\nabla F(2,1)$ é igual a

- (A) (-3,1)
- (B) (-1,3)
- (C) (3,-1)
- (D) (1,-3)
- (E) (-3,-1)
- 13) Qual é a área entre os gráficos de $f(x)=e^x$ e de $g(x)=e^{-x}$, $-1 \le x \le 1$?
 - (A) $(e^2-2e+1)/e$
 - (B) $(e^2+2e+1)/e$
 - (C) $(e^2-2e-1)/e$
 - (D) $2(e^2-2e+1)/e$
 - (E) $2(e^2+2e+1)/e$

ID: 38- Ano: 2015- Núm.: 2

- 2) Seja x_0 o ponto do intervalo $[0,\pi/2]$ tal que $\cos(x_0)=x_0$. Sendo assim, o valor de $\int\limits_0^{x_0}t\sin(t)dt$ é:
 - (A) $\sqrt{1-x_0^2} + x_0^2$
 - (B) $\sqrt{1-x_0^2} x_0^2$
 - (C) $-\sqrt{1-x_0^2} + x_0^2$
 - (D) $\sqrt{1-x_0^2}$
 - $(E) = x_0^2$

ID: 56- Ano: 2016- Núm.: 4

ID: 138- Ano: 2012- Núm.: 15

- 15) Uma classe de 20 estudantes fez uma prova e a média aritmética das notas obtidas foi 6,5. Escolheu-se um grupo de 5 estudantes e verificou-se que a média aritmética das notas obtidas por esses estudantes nessa prova foi 8,0. Nessas condições, a média aritmética das notas obtidas nessa prova pelos 15 outros estudantes da classe foi:
 - (A) 5,0
 - (B) 6,0
 - (C) 6,125
 - (D) 6,25
 - (E) 6,5

- 4) O sólido obtido pela rotação da região $\{(x,y) \in \mathbb{R}^2: 0 \le x \le 1, 0 \le y \le x^2\}$ em torno do eixo dos x tem volume igual a
 - (A)
 - (B)
 - (C)
 - $2\frac{\pi}{3}$ (D)
 - (E)

ID: 97- Ano: 2018- Núm.: 9

QUESTÃO 9

O núcleo da transformação linear

 $T(x,y,z)=(x+y-z,x-y-z,\alpha x+y+z),(x,y,z)\in\mathbb{R}^3,$ tem dimensão 1. Sendo assim, pode-se afirmar que α é igual a:

- (A) -2
- (B) -1
- (C) 0
- (D) 1
- (E) 2

ID: 78- Ano: 2017- Núm.: 10

QUESTÃO 10

Se as equações diferenciais y'' - 3y' + 2y = 0 e y'' + by =0 têm uma solução não nula em comum, então b é igual a

- (A) 1 ou 2
- (B) -2 ou -1 (C) -4 ou -1
- (D) 4 ou 1
- (E) -3 ou 2

ID: 25- Ano: 2014- Núm.: 5

ID: 46- Ano: 2015- Núm.: 10

- 5) No espaço xyz, no qual o eixo z é vertical e aponta para cima, um homem de 1.80m de altura está caminhando sobre o plano horizontal xy, com velocidade constante (3,0,0)m/s. Uma lâmpada, presa ao ponto (0,0,5)m, está acesa. Sendo assim, a velocidade do ponto da sombra do homem que mais dista da origem é:
 - (A) constante e igual a (5/3.2)(3,0,0) m/s.
 - (B) constante e igual a (5/1.8)(3,0,0) m/s.
 - (C) constante e menor do que a velocidade do homem.
 - (D) de módulo estritamente crescente e varia linearmente com o tempo.
 - (E) de módulo estritamente decrescente e varia linearmente com o tempo.
- Um fio condutor muito longo, cilíndrico, de raio 10) de intensidade i= Α, corrente atravessado por uma seções transversais distribuída nas uniformemente perpendiculares ao eixo do cilindro. A intensidade máxima do campo magnético gerado pela corrente num plano perpendicular ao eixo do cilindro é B= 2.10^{-4} T. Se μ_0 é a permeabilidade magnética no vácuo, r é igual a:
 - (A) $10^4 \,\mu_0/(4\pi)$
 - (B) $10^4 \mu_0/(2\pi)$
 - (C) $10^4 \mu_0/\pi$
 - (D) $2.10^4 \, \mu_0/\pi$
 - (E) $4.10^4 \mu_0/\pi$

ID: 80- Ano: 2017- Núm.: 12

QUESTÃO 12

Assinale a afirmação correta:

- (A) Em um circuito RLC em série, em cada instante, a tensão em cada elemento do circuito é a mesma.
- (B) Em um circuito RLC em paralelo, a corrente não varia com o tempo.
- (C) Em um circuito RLC em paralelo, em cada instante, a tensão em cada elemento do circuito é a mesma.
- (D) Em um circuito RLC em paralelo, em cada instante, a corrente em cada elemento do circuito é a mesma.
- (E) Em um circuito RLC em série, a tensão não varia com o tempo.

ID: 106- Ano: 2018- Núm.: 19

ID: 25- Ano: 2014- Núm.: 5

Em duas colunas cilíndricas verticais C_1 e C_2 , ambas de mesma altura e, respectivamente, de diâmetros d_1 = d e d_2 = 2d, ligadas por um cano de volume desprezível na sua parte inferior, são colocados quatro líquidos não miscíveis L_a , L_b , L_c e L_d . Obtém-se um equilíbrio para o sistema com L_a na parte inferior de ambas as colunas, L_b sobre L_a na coluna C_1 , L_c sobre L_a e L_d sobre L_c na coluna C_2 . Nessa posição de equilíbrio, as superfícies livres de L_b e de L_d encontram-se numa mesma altura, e a superfície de contato do líquido L_a com os outros líquidos é mais baixa na coluna C_1 que na coluna C_2 . O líquido L_a tem densidade maior que os outros três.

Nessas condições, pode-se deduzir que as respectivas densidades μ_a , μ_b , μ_c e μ_d , dos líquidos L_a , L_b , L_c e L_d satisfazem:

```
(A) \mu_b < \mu_c ou \mu_b < \mu_d
```

- (D) $\mu_c = \mu_d$
- (E) $\mu_b = 2(\mu_c + \mu_d)$
- 5) No espaço xyz, no qual o eixo z é vertical e aponta para cima, um homem de 1.80m de altura está caminhando sobre o plano horizontal xy, com velocidade constante (3,0,0)m/s. Uma lâmpada, presa ao ponto (0,0,5)m, está acesa. Sendo assim, a velocidade do ponto da sombra do homem que mais dista da origem é:
 - (A) constante e iqual a (5/3.2)(3,0,0) m/s.
 - (B) constante e igual a (5/1.8)(3,0,0) m/s.
 - (C) constante e menor do que a velocidade do homem.
 - (D) de módulo estritamente crescente e varia linearmente com o tempo.
 - (E) de módulo estritamente decrescente e varia linearmente com o tempo.

ID: 86- Ano: 2017- Núm.: 18

QUESTÃO 18

Um ponto material de massa m move-se num intervalo de tempo I = [0,T], com T>0, no plano vertical xy, apenas sob a ação da força peso, e sua posição (x(t),y(t)) satisfaz y(t) = $4 - [x(t)]^2$, para todo t. Nessas condições, para todo t em I:

```
(A) |x'(t)| = 2|t|
```

(B) $|x'(t)| = t^2$

(C) |x'(t)| = 0 Dado: $g = 10 \text{m/s}^2$

(D) $|x'(t)| = \sqrt{5}t$

(E) |x'(t)| = 5

ID: 106- Ano: 2018- Núm.: 19

⁽B) $\mu_b > \mu_c$ ou $\mu_b > \mu_d$

⁽C) $\mu_b = \mu_c + \mu_d$

Em duas colunas cilíndricas verticais C_1 e C_2 , ambas de mesma altura e, respectivamente, de diâmetros d_1 = d e d_2 = 2d, ligadas por um cano de volume desprezível na sua parte inferior, são colocados quatro líquidos não miscíveis L_a , L_b , L_c e L_d . Obtém-se um equilíbrio para o sistema com L_a na parte inferior de ambas as colunas, L_b sobre L_a na coluna C_1 , L_c sobre L_a e L_d sobre L_c na coluna C_2 . Nessa posição de equilíbrio, as superfícies livres de L_b e de L_d encontram-se numa mesma altura, e a superfície de contato do líquido L_a com os outros líquidos é mais baixa na coluna C_1 que na coluna C_2 . O líquido L_a tem densidade maior que os outros três.

Nessas condições, pode-se deduzir que as respectivas densidades μ_a , μ_b , μ_c e μ_d , dos líquidos L_a , L_b , L_c e L_d satisfazem:

- (A) $\mu_b < \mu_c \text{ ou } \mu_b < \mu_d$
- (B) $\mu_b > \mu_c$ ou $\mu_b > \mu_d$
- (C) $\mu_b = \mu_c + \mu_d$
- (D) μ_c = μ_d
- (E) $\mu_b = 2(\mu_c + \mu_d)$

ID: 25- Ano: 2014- Núm.: 5

- 5) No espaço xyz, no qual o eixo z é vertical e aponta para cima, um homem de 1.80m de altura está caminhando sobre o plano horizontal xy, com velocidade constante (3,0,0)m/s. Uma lâmpada, presa ao ponto (0,0,5)m, está acesa. Sendo assim, a velocidade do ponto da sombra do homem que mais dista da origem é:
 - (A) constante e igual a (5/3.2)(3,0,0) m/s.
 - (B) constante e igual a (5/1.8)(3,0,0) m/s.
 - (C) constante e menor do que a velocidade do homem.
 - (D) de módulo estritamente crescente e varia linearmente com o tempo.
 - (E) de módulo estritamente decrescente e varia linearmente com o tempo.

ID: 106- Ano: 2018- Núm.: 19

ID: 82- Ano: 2017- Núm.: 14

Em duas colunas cilíndricas verticais C_1 e C_2 , ambas de mesma altura e, respectivamente, de diâmetros d_1 = d e d_2 = 2d, ligadas por um cano de volume desprezível na sua parte inferior, são colocados quatro líquidos não miscíveis L_a , L_b , L_c e L_d . Obtém-se um equilíbrio para o sistema com L_a na parte inferior de ambas as colunas, L_b sobre L_a na coluna C_1 , L_c sobre L_a e L_d sobre L_c na coluna C_2 . Nessa posição de equilíbrio, as superfícies livres de L_b e de L_d encontram-se numa mesma altura, e a superfície de contato do líquido L_a com os outros líquidos é mais baixa na coluna C_1 que na coluna C_2 . O líquido L_a tem densidade maior que os outros três.

Nessas condições, pode-se deduzir que as respectivas densidades μ_a , μ_b , μ_c e μ_d , dos líquidos L_a , L_b , L_c e L_d satisfazem:

- (A) $\mu_b < \mu_c$ ou $\mu_b < \mu_d$
- (B) $\mu_b > \mu_c \text{ ou } \mu_b > \mu_d$
- (C) $\mu_b = \mu_c + \mu_d$
- (D) $\mu_c = \mu_d$
- (E) $\mu_b = 2(\mu_c + \mu_d)$

QUESTÃO 14

Um balão de forma esférica, sujeito apenas à força peso e ao empuxo, sobe verticalmente a partir do solo com uma aceleração constante de $2\,\mathrm{m/s^2}$. A massa do balão é de $36\pi\,\mathrm{kg}$, a densidade do ar é de $1.2\,\mathrm{kg/m^3}$ e a aceleração da gravidade é de $10\,\mathrm{m/s^2}$. Nessas condições, qual é o raio do balão?

- (A) 3 m
- (B) 4 m
- (C) 5 m
- (D) 6 m
- (E) 8 m