

Transportbandssystem SUB

EIKA Möbelproduktion Köttbullevägen 39 123 45 Småland

Innehållsförteckning

1	Revisionskontroll	3
2	Systemöversikt	4
3	Funktionsbeskrivning	5
	3.1 Systemöversikt	5
	3.2 Driftlägen	6
	3.3 Utrustning	7
	3.4 Förreglingar	7
	3.5 Flödesschema	8
4	Layout	9
5	IO-lista	10
6	Larmlista	11
Ta	abell 6.1: Larmlista	11
7 /	Appendix	12

1 Revisionskontroll

Revision	Beskrivning	Författare	Datum
1	Första utgåvan	E Gren	2016-11-27
2	Projektbeskrivning skickad till kund	E Gren	2016-12-04
3	Alarm-lista uppdaterad, funktion av ljusstolpe tillagd,	E Gren	2016-12-18
	Funktionsbeskrivning uppdaterad, IO-lista uppdaterad		
4	Layout uppdaterad	E Gren	2017-01-05
5	Alarmlista uppdaterad	E Gren	2017-01-09
6	PLC-program uppdaterat med resetfunktion	E Gren	2017-01-11
7	Slutdokumentation skickad	E Gren	2017-01-12

2 Systemöversikt

I dagsläget produceras tre olika storlekar av produkten Willy i paketeringslinje A1 hos möbelföretaget EIKA. Dessa sorteras sedan manuellt och placeras därefter på pallar för vidare transport till lagret innan de transporteras ut till varuhusen.

Detta projekt består av en leverans av ett automatiserat transportbandssystem (SUB01) för att sortera de tre olika paketstorlekarna ut till tre olika hanteringsrobotar som skall placera paketen på pallar.

Systemet består av fem olika transportband med sensorer för att urskilja de tre olika paketstorlekarna. För att placera paketen på rätt utbana används pneumatiska cylindrar som skjuter ut paketen på rätt transportband.

Systemet som skall levereras kommer att vara helt automatiserat och styras utifrån en operatörspanel.

PLC-program och tillhörande dokumentation levereras på engelska. Övrig dokumentation levereras på svenska.

De tre robotstationerna ingår inte i denna dela av projektet.

Figur 2.1: Systemöversikt

3 Funktionsbeskrivning

3.1 Systemöversikt

Detta transportbandssystem ska hantera tre olika typer av produkter, Typ A (små), Typ B (mellan) och Typ C (stora). Produkterna kommer från paketeringslinje A1.

Produkterna skall sorteras upp i detta transportbandssystem så att Robot SUB_R01 plockar upp produkter av Typ A och lastar på pall, robot SUB_R02 plockar produkter av Typ B och lastar på pall och robot SUB_R03 plockar produkter av Typ C och lastar på pall.

För att skilja produkterna åt finns det tre optiska givare med olika höjdläge (SUB01_B2, SUB01_B3 och SUB01_B4) i slutet av transportbana SUB01.

För att förflytta produkterna in på respektive utbana finns det tre pneumatiska cylindrar (SUB03_C1, SUB04_C1 och SUB04_C1). Dessa cylindrar styrs med ventilerna SUB03_Y1, SUB04_Y1 och SUB05_Y1. För att kontrollera att dessa cylindrar är i hemmaposition (inskjutet läge) används givarna SUB03_B3, SUB04_B3 och SUB05_B3. Cylindrarna kan bara skjutas ut då transportbanden står stilla.

Produkterna kan komma in på transportband SUB01 i vilken ordning som helst. Ny produkt kan lastas på transportbana SUB01 så fort att föregående produkt har lämnat transportbana SUB03, SUB04 eller SUB05.

Om fel uppstår i systemet skall aktiv alarmkod visas i displayen på HMI:n med hjälp av variabeln SUB00_H2.

Figur 3.1: Systemöversikt

3.2 Driftlägen

Systemet har två olika driftlägen:

- 1. Auto läge (Normalt produktionsläge)
- 2. Stopp läge (Inga rörelser tillåtna)

Figur 3.2: Driftläge-diagram

Systemet kommer att vara i helt automatiskt läge när Auto-läget är igång. Inget manuellt läge kommer att levereras.

Systemet körs från en operatörspanel med tre knappar, **start**, **stop** och **reset**.

Figur 3.3: HMI-panel

Startknapp: Om startknappen hålls inne i tre sekunder försätts systemet i Autoläge.

Knappen lyser grönt så länge systemet är i Autoläge

Stoppknapp: System går direkt i stoppläge när stoppknappen trycks in. Alla rörliga delar

stannar och systemet går ur autoläge.

Resetknapp: Knappen blinkar om det finns ett aktivt larm. Genom att trycka på knappen i

fem sekunder så återställs systemet om omständigheterna tillåter det.

Display, felkod: Vid aktivt alarm visas aktuell felkod

För att starta systemet igen efter manuellt stop eller larm måste startknappen hållas inne i tre sekunder igen.

För att visa vilket driftläge system är i används en stolpe med en ljusramp. En lampa ska lysa grönt när systemet är i Autoläge och en lampa skall blinka rött vi alarm. Vid manuellt stop skall en lampa lysa orange.

Figur 3.4: Ljusstolpe

3.3 Utrustning

Systemet som skall levereras består av fem stycken transportbanor. Dessa körs via motorkontaktorer som körs i en konstant hastighet. Varje transportband är utrustad med optiska givare i början och slutet för att kunna känna av produkter. I slutet av transportbana SUB01 finns tre optiska givare för att kunna skilja på produkt av typ A, B eller C.

Förflyttning av produkterna från transportbana SUB02 till SUB03, SUB04 eller SUB05 gör med pneumatiska cylindrar. Dessa cylindrar har en givare som ger signal när cylindern ej är i hemmaläge (inskjutet läge)

Övrig utrustning som kommer att installeras är ett två styrskåp (El och PLC) samt en stolpe med varningsljus.

3.4 Förreglingar

Förreglingar med produktionslinje A1 och robotarna sköts via PLC outputs:

"Avlämning OK"-signal tillåter produktionslinje A1 att placera en ny produkt på SUB01. Om en produkt upptäcks av givaren vid avlämningen utan att denna signal är aktiv, genereras ett larm.

"Avhämtning OK"-signal för respektive transportband tillåter roboten att plocka uppblocket från transportbandet. Larm genereras om blocket inte plockats upp inom en förinställd tid.

3.5 Flödesschema

Figur 3.6: Flödesschema

4 Layout

Layouten nedan visar transportbandsystemet med dess fem ingående transportband och de tre skyttlarna och namnen på dessa. Layouten visar även sensorernas namn och placering.

Figur 4.1: Systemlayout

5 IO-lista

Inputs:

Namn	Adress	Туре	Kommentar
iSUB00_S1	IX0.0	BOOL	Start button
iSUB00_S2	IX0.1	BOOL	Stop button
iSUB00_S3	IX0.2	BOOL	Reset button
iSUB01_B1	IX0.3	BOOL	Part detector Conv 1
iSUB01_B2	IX0.4	BOOL	Part detector Small Conv 1
iSUB01_B3	IX0.5	BOOL	Part detector Medium Conv 1
iSUB01_B4	IX0.6	BOOL	Part detector Large Conv 1
iSUB02_B1	IX0.7	BOOL	Part detector Small Conv 2
iSUB02_B2	IX1.0	BOOL	Part detector Medium Conv 2
iSUB02_B3	IX1.1	BOOL	Part detector Large Conv 2
iSUB03_B1	IX1.2	BOOL	Part detector Start of Conv 3
iSUB03_B2	IX1.3	BOOL	Part detector End of Conv 3
iSUB03_B3	IX1.4	BOOL	Cylinder 3 positon
iSUB04_B1	IX1.5	BOOL	Part detector Start of Conv 4
iSUB04_B2	IX1.6	BOOL	Part detector End of Conv 4
iSUB04_B3	IX1.7	BOOL	Cylinder 4 positon
iSUB05_B1	IX2.0	BOOL	Part detector Start of Conv 5
iSUB05_B2	IX2.1	BOOL	Part detector End of Conv 5
iSUB05_B3	IX2.2	BOOL	Cylinder 5 positon

Outputs:

Namn	Adress		Kommentar
oSUB00_H1	QX0.0	BOOL	Start button light
oSUB00_H2	QX0.1	WORD	Panel text
oSUB00_H3	QX0.2	BOOL	Reset button light
oSUB00_H4	QX0.3	BOOL	Beacon light Green
oSUB00_H5	QX0.4	BOOL	Beacon light Orange
oSUB00_H6	QX0.5	BOOL	Beacon light Red
oSUB01_K1	QX0.6	BOOL	Motor Contactor Conv 1
oSUB02_K1	QX0.7	BOOL	Motor Contactor Conv 2
oSUB03_K1	QX1.0	BOOL	Motor Contactor Conv 3
oSUB04_K1	QX1.1	BOOL	Motor Contactor Conv 4
oSUB05_K1	QX1.2	BOOL	Motor Contactor Conv 5
oSUB03_Y1	QX1.3	BOOL	Valve Cylinder Conv 3
oSUB04_Y1	QX1.4	BOOL	Valve Cylinder Conv 4
oSUB05_Y1	QX1.5	BOOL	Valve Cylinder Conv 5

Tabell 5.1: IOlista

6 Larmlista

Alarm Code	Description	Trouble shouting
2	Timeout alarm Conveyor SUB01	Check if part has stuck or if sensor is broken
4	Timeout alarm Conveyor SUB02	Check if part has stuck or if sensor is broken
8	Timeout alarm Conveyor SUB03	Check if part has stuck or if sensor is broken
16	Timeout alarm Conveyor SUB04	Check if part has stuck or if sensor is broken
32	Timeout alarm Conveyor SUB05	Check if part has stuck or if sensor is broken
64	More than one part on SUB01	Remove parts and check if sensor is broken
128	More than one part on SUB02	Remove parts and check if sensor is broken
256	More than one part on SUB03	Remove parts or check communication with robot
512	More than one part on SUB04	Remove parts or check communication with robot
1024	More than one part on SUB05	Remove parts or check communication with robot
2048	Timeout alarm, end Conv3	Check communication with robot or if sensor is broken
4096	Timeout alarm, end Conv4	Check communication with robot or if sensor is broken
8192	Timeout alarm, end Conv5	Check communication with robot or if sensor is broken
16 384	Cylinder SUB03_C1 is moving when SUB02 or SUB03 are moving	Check sensor SUB03_B3
32 768	Cylinder SUB04_C1 is moving when SUB02 or SUB04 are moving	Check sensor SUB04_B3
65 536	Cylinder SUB05_C1 is moving when SUB02 or SUB05 are moving	Check sensor SUB05_B3
320	More than one product in the system	Remove latest added part

Tabell 6.1: Larmlista

7 Appendix

- A1. Detaljritningar på ingående produkter
- A2. Detaljritningar på ingående utrustning
- A3. 3D-layout på hela systemet OP025
- A4. Lista på alla ingående komponenter
- A4. Reservdelslista
- B1. Elritninar
- B2. Pneumatiska ritningar
- C1. Utbildningsmaterial för operatör
- C2. Manual för underhållsarbete

...