Devoir surveillé n°02

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1

1 1.a Puisque $\sin t \sim_{t\to 0} t$, $\frac{\sin t}{t^{\alpha}} \sim_{t\to 0} \frac{1}{t^{\alpha-1}}$.

1.b La fonction $t \mapsto \frac{\sin t}{t^{\alpha}}$ est continue sur $]0,\pi]$. De plus, $t \mapsto \frac{1}{t^{\alpha-1}}$ est intégrable sur $]0,\pi]$ si et seulement si $\alpha-1<1$ i.e. $\alpha<2$. Ainsi $I(\alpha)$ converge si et seulement si $\alpha<2$.

2 2.a Tout d'abord, $t\mapsto \frac{\sin t}{t^{\alpha}}$ est continue sur $[\pi, +\infty[$. De plus, $\frac{\sin t}{t^{\alpha}} = \mathcal{O}\left(\frac{1}{t^{\alpha}}\right)$ et $t\mapsto \frac{1}{t^{\alpha}}$ est intégrable sur $[\pi, +\infty[$ lorsque $\alpha>1$. On en déduit que $t\mapsto \frac{\sin t}{t^{\alpha}}$ est intégrable sur $[\pi, +\infty[$ lorsque $\alpha>1$. Autrement dit, $J(\alpha)$ est absolument convergente lorsque $\alpha>1$.

2.b Pour tout $t \in \mathbb{R}$,

$$|\sin(t+\pi)| = |-\sin t| = |\sin t|$$

donc $|\sin|$ est π -périodique. Via le changement de variable affine $u=t-k\pi$

$$\int_{k\pi}^{(k+1)\pi} |\sin t| \, dt = \int_0^{\pi} |\sin(u+k\pi)| \, du = \int_0^{\pi} |\sin u| \, du = \int_0^{\pi} \sin(u) \, du = [-\cos(u)]_{u=0}^{u=\pi} = 2$$

2.c Pour tout $t \in [k\pi, (k+1)\pi]$,

$$\frac{|\sin t|}{(k+1)^{\alpha}\pi^{\alpha}} \le \frac{|\sin t|}{t^{\alpha}} \le \frac{|\sin t|}{k^{\alpha}\pi^{\alpha}}$$

puis, par croissance de l'intégrale,

$$\frac{1}{(k+1)^{\alpha}\pi^{\alpha}}\int_{k\pi}^{(k+1)\pi}|\sin t| \ \mathrm{d}t \leq \int_{k\pi}^{(k+1)\pi}\frac{|\sin t|}{t^{\alpha}} \ \mathrm{d}t \leq \frac{1}{k^{\alpha}\pi^{\alpha}}\int_{k\pi}^{(k+1)\pi}|\sin t| \ \mathrm{d}t$$

donc, d'après la question précédente,

$$\frac{2}{(k+1)^{\alpha}\pi^{\alpha}} \le \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t^{\alpha}} dt \le \frac{2}{k^{\alpha}\pi^{\alpha}}$$

Ensuite,

$$\sum_{k=1}^{n-1} \frac{2}{(k+1)^{\alpha} \pi^{\alpha}} \le \sum_{k=1}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin t|}{t^{\alpha}} dt \le \sum_{k=1}^{n-1} \frac{2}{k^{\alpha} \pi^{\alpha}}$$

puis, par relation de Chasles et changement d'indice

$$\frac{2}{\pi^{\alpha}} \sum_{k=2}^{n} \frac{1}{k^{\alpha}} \le \int_{\pi}^{n\pi} \frac{|\sin t|}{t^{\alpha}} dt \le \frac{2}{\pi^{\alpha}} \sum_{k=1}^{n-1} \frac{1}{k^{\alpha}}$$

2.d On sait que pour $\alpha \le 1$, la série de Riemann $\sum \frac{1}{n^{\alpha}}$ diverge vers $+\infty$. Autrement dit, $\lim_{n \to +\infty} \sum_{k=2}^{n} \frac{1}{k^{\alpha}} = +\infty$. Par minoration, on obtient avec la question précédente :

$$\lim_{n \to +\infty} \int_{\pi}^{n\pi} \frac{|\sin t|}{t^{\alpha}} dt = +\infty$$

Notamment l'intégrale $\int_{\tau}^{+\infty} \frac{|\sin t|}{t^{\alpha}} dt$ diverge i.e. $J(\alpha)$ n'est pas absolument convergente.

On conclut finalement que $J(\alpha)$ converge absolument si et seulement si $\alpha > 1$.

3 3.a Pour tout $x \in \mathbb{R}$,

$$\int_{\pi}^{x} \sin(t) dt = \left[-\cos t \right]_{t=0}^{t=x} = 1 - \cos(x)$$

Or cos n'admet pas de limite en $+\infty$ (par exemple, $\cos(2n\pi) = 1$ et $\cos(\pi/2 + n\pi) = 0$ pour tout $n \in \mathbb{N}$) donc $J(0) = \int_{0}^{+\infty} \sin(t) dt$ diverge.

3.b Soient $\alpha > 0$ et $x \ge \pi$. Les fonctions $-\cos$ et $t \mapsto \frac{1}{t^{\alpha}}$ sont de classe \mathcal{C}^1 sur $[\pi, x]$ de dérivées respectives sin et $t \mapsto -\frac{\alpha}{t^{\alpha+1}}$ donc, par intégration par parties :

$$\int_{\pi}^{x} \frac{\sin t}{t^{\alpha}} dt = \left[-\frac{\cos t}{t^{\alpha}} \right]_{t=\pi}^{t=x} - \alpha \int_{\pi}^{x} \frac{\cos t}{t^{\alpha+1}} dt = -\frac{1}{\pi^{\alpha}} - \frac{\cos x}{x^{\alpha}} - \alpha \int_{\pi}^{x} \frac{\cos t}{t^{\alpha+1}} dt$$

3.c Comme $\alpha + 1 > 1$, l'intégrale de Riemann $\int_{\pi}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha}}$ converge. Bien que ce ne soit pas utile, on peut rajouter que

$$\int_{\pi}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha+1}} = -\frac{1}{\alpha} \left[\frac{1}{t^{\alpha}} \right]_{t=\pi}^{t \to +\infty} = \frac{1}{\alpha \pi^{\alpha}}$$

Puisque $t\mapsto \frac{1}{t^{\alpha}+1}$ est intégrable sur $[\pi,+\infty[$ et $\frac{\cos t}{t^{\alpha+1}} = \mathcal{O}\left(\frac{1}{t^{\alpha+1}}\right), t\mapsto \frac{\cos t}{t^{\alpha+1}}$ est également intégrable sur $[\pi,+\infty[$ i.e. $\int_{\pi}^{+\infty} \frac{\cos t}{t^{\alpha+1}} \, \mathrm{d}t$ converge absolument.

3.d Soit $\alpha > 0$. D'après la question précédente, $x \mapsto \int_{\pi}^{x} \frac{\cos t}{t^{\alpha+1}} dt$ admet une limite en $+\infty$. Comme cos est bornée et $\alpha > 0$, $\lim_{x \to +\infty} \frac{\cos x}{x^{\alpha}} = 0$. On en déduit via la question **3.b** que $x \mapsto \int_{\pi}^{x} \frac{\sin t}{t^{\alpha}} dt$ admet une limite en $+\infty$ i.e. $J(\alpha)$ converge.

D'après la question **1.b**, $I(\alpha)$ converge si et seulement si $\alpha < 2$. D'après la question **3**, $J(\alpha)$ converge si et seulement si $\alpha > 0$. On en déduit que $f(\alpha)$ converge si et seulement si $0 < \alpha < 2$. Notamment, le domaine de définition de f est [0,2[.

Puisque l'intégrande est positive sur $[0, \pi]$, $I(\alpha)$ converge également absolument si et seulement si $\alpha < 2$. D'après la question **2.d**, $J(\alpha)$ converge absolument si et seulement si $\alpha > 1$. L'intégrale $f(\alpha)$ converge absolument si et seulement si $1 < \alpha < 2$.

5 5.a Tout d'abord, sin est positive sur $\left[0, \frac{\pi}{2}\right]$. De plus, $\sin'' = -\cos$ est négative sur $\left[0, \frac{\pi}{2}\right]$ donc sin est concave sur $\left[0, \frac{\pi}{2}\right]$. Le graphe de sin est donc au-dessous de sa tangente au point d'abscisse 0 sur $\left[0, \frac{\pi}{2}\right]$. Ainsi $\sin t \le t$ pour $t \in \left[0, \frac{\pi}{2}\right]$.

5.b Pour tout $\alpha \in]0,1]$, $t \mapsto \frac{\sin t}{t^{\alpha}}$ est continue sur $\left[0,\frac{\pi}{2}\right]$. De plus, pour tout $t \in \left[0,\frac{\pi}{2}\right]$, $\lim_{\alpha \to 0} \frac{\sin t}{t^{\alpha}} = \sin t$. Enfin, pour tout $t \in \left[0,\frac{\pi}{2}\right]$ et tout $\alpha \in]0,1]$,

$$\left| \frac{\sin t}{t^{\alpha}} \right| = \frac{\sin t}{t^{\alpha}} \le \frac{t}{t^{\alpha}} = t^{1-\alpha} \le 1$$

et $t\mapsto 1$ est évidemment intégrale sur $\left[0,\frac{\pi}{2}\right]$. D'après le théorème de convergence dominée,

$$\lim_{\alpha \to 0} \int_0^{\pi/2} \frac{\sin t}{t^{\alpha}} dt = \int_0^{\pi/2} \sin t dt = [-\cos t]_{t=0}^{t=\pi/2} = 1$$

6 6.a Les fonctions – cos et $t \mapsto \frac{1}{t^{\alpha}}$ sont de classe \mathcal{C}^1 sur $[\pi/2, +\infty[$ de dérivées respectives sin et $t \mapsto -\frac{\alpha}{t^{\alpha+1}}$ donc, sous réserve de convergence,

$$\int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha}} dt = -\left[\frac{\cos t}{t^{\alpha}}\right]_{t=\pi/2}^{t\to+\infty} - \alpha \int_{\pi/2}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt$$

Cette intégration par partie est légitime puisqu'on a vu que la première intégrale connvergeait et $\lim_{t\to +\infty}\frac{\cos t}{t^{\alpha}}=0$ car cos est bornée et $\alpha>0$. On en déduit que

$$\int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha}} dt = -\alpha \int_{\pi/2}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt$$

Les fonctions sin et $t\mapsto \frac{\cos t}{t^{\alpha+1}}$ sont de classe \mathcal{C}^1 sur $[\pi/2, +\infty[$ de dérivées respectives cos et $t\mapsto -\frac{\alpha+1}{t^{\alpha+2}}$ donc, par une nouvelle intégration par parties,

$$\int_{\pi/2}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt = \left[\frac{\sin t}{t^{\alpha+1}} \right]_{t=\pi/2}^{t\to+\infty} + (\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} dt$$

Cette intégration par parties est à nouveau légitime car la première intégrale converge d'après la première intégration par parties et $\lim_{t\to +\infty} \frac{\sin t}{t^{\alpha+1}} = 0$. Ainsi

$$\int_{\pi/2}^{+\infty} \frac{\cos t}{t^{\alpha+1}} dt = -\frac{1}{(\pi/2)^{\alpha+1}} + (\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} dt$$

Finalement,

$$\int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha}} dt = \frac{\alpha}{(\pi/2)^{\alpha+1}} - \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} dt$$

6.b Tout d'abord,

$$\int_{\pi/2}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha+2}} = -\frac{1}{\alpha+1} \left[\frac{1}{t^{\alpha+1}} \right]_{t=\pi/2}^{t\to+\infty} = \frac{1}{(\alpha+1)(\pi/2)^{\alpha+1}}$$

Ainsi

$$\alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\mathrm{d}t}{t^{\alpha+2}} = \frac{\alpha}{(\pi/2)^{\alpha+1}} \xrightarrow[\alpha \to 0]{} 0$$

Par inégalité triangulaire,

$$\left| \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha+2}} \, dt \right| \le \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \left| \frac{\sin t}{t^{\alpha+2}} \right| \, dt \le \alpha(\alpha+1) \int_{\pi/2}^{+\infty} \frac{dt}{t^{\alpha+2}}$$

Par encadrement,

$$\lim_{\alpha \to 0} \alpha(\alpha + 1) \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha + 2}} dt = 0$$

De plus, $\lim_{\alpha \to 0} \frac{\alpha}{(\pi/2)^{\alpha+1}} = 0$ donc, d'après la question précédente,

$$\lim_{\alpha \to 0} \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha}} \, \mathrm{d}t = 0$$

6.c On en déduit que

$$\lim_{\alpha \to 0} f(\alpha) = \lim_{\alpha \to 0} \int_0^{\pi/2} \frac{\sin t}{t^{\alpha}} dt + \lim_{\alpha \to 0} \int_{\pi/2}^{+\infty} \frac{\sin t}{t^{\alpha}} dt = 1$$

On ne pouvait directement appliquer le théorème de convergence dominée, sinon on aurait obtenu

$$\lim_{\alpha \to 0} f(\alpha) = \int_0^{+\infty} \sin t \, dt$$

mais cette dernière intégrale diverge d'après la question 3.a.

7.3 La fonction $t\mapsto \frac{1-\cos t}{t^{\alpha+1}}$ est continue sur $]0,+\infty[$. De plus, $\frac{1-\cos t}{t^{\alpha+1}}=\mathcal{O}\left(\frac{1}{t^{\alpha-1}}\right)$ avec $\alpha-1<1$ et $\frac{1-\cos t}{t^{\alpha+1}}=\mathcal{O}\left(\frac{1}{t^{\alpha+1}}\right)$ avec $\alpha+1>1$. Ainsi $t\mapsto \frac{1-\cos t}{t^{\alpha+1}}$ est intégrable sur $]0,+\infty[$. A fortiori, $\int_0^{+\infty}\frac{1-\cos t}{t^{\alpha+1}}\,\mathrm{d}t$ converge.

7.b Les fonctions $t \mapsto 1 - \cos t$ et $t \mapsto \frac{1}{t^{\alpha}}$ sont de classe \mathcal{C}^1 sur \mathbb{R}_+^* de dérivées respectives sin et $t \mapsto -\frac{\alpha}{t^{\alpha+1}}$. Par intégration par parties,

$$f(\alpha) = \int_0^{+\infty} \frac{\sin t}{t^{\alpha}} dt = \left[\frac{1 - \cos t}{t^{\alpha}} \right]_{t \to 0}^{t \to +\infty} + \alpha \int_0^{+\infty} \frac{1 - \cos t}{t^{al+1}} dt$$

Cette intégration par parties est légitime car chacune des deux intégrales convergent. De plus,

$$\frac{1-\cos t}{t^{\alpha}} \underset{t\to 0}{\sim} t^{2-\alpha}$$

Or $2 - \alpha > 0$ donc

$$\lim_{t\to 0} \frac{1-\cos t}{t^{\alpha}} = \lim_{t\to 0} t^{2-\alpha} = 0$$

Par ailleurs, $1 - \cos$ est bornée et $\alpha > 0$ donc

$$\lim_{t \to +\infty} \frac{1 - \cos t}{t^{\alpha}} = 0$$

Ainsi

$$f(\alpha) = \alpha \int_0^{+\infty} \frac{1 - \cos t}{t^{al+1}} dt$$

8.a Puisque $1 - \cos t \sim t^2 / \lim_{t \to 0} \varphi = \frac{1}{2} = L$.

8.b Pour $t \in]0,\pi]$, $1-\cos t > 0$ donc φ est strictement positive sur $]0,\pi]$. De plus, $\varphi(0) = L > 0$ donc φ est strictement positive sur $[0,\pi]$.

 φ est continue sur le segment $[0,\pi]$ donc elle y admet un minimum μ . Il existe donc $a \in [0,\pi]$ tel que $\mu = \varphi(a) > 0$.

8.c Comme $t \mapsto \frac{1 - \cos t}{t^{\alpha + 1}}$ est positive sur $[\pi, +\infty[$,

$$f(\alpha) = \alpha \int_0^{+\infty} \frac{1 - \cos t}{t^{al+1}} dt \ge \alpha \int_0^{\pi} \frac{1 - \cos t}{t^{al+1}} dt$$

De plus, pour tout $t \in]0, \pi]$,

$$\frac{1-\cos t}{t^{\alpha+1}} = \varphi(t)t^{1-\alpha} \ge \mu t^{1-\alpha}$$

donc

$$\int_{0}^{\pi} \frac{1 - \cos t}{t^{al+1}} dt \ge \mu \int_{0}^{\pi} t^{1-\alpha} dt = \mu \frac{\pi^{2-\alpha}}{2-\alpha}$$

On en déduit les inégalités voulues.

8.d Puisque $\mu > 0$ et $\lim_{\alpha \to 2^-} \pi^{2-\alpha} = 1$, $\lim_{\alpha \to 2^-} \alpha \mu \frac{\pi^{2-\alpha}}{2-\alpha} = +\infty$. Par minoration, $\lim_{\alpha \to 2^-} f(\alpha) = +\infty$.

9. La fonction $t\mapsto \frac{\sin((2n+1)t)}{\sin(t)}$ est continue sur $\left]0,\frac{\pi}{2}\right]$. De plus, en utilisant l'équivalent $\sin(u) \underset{u\to 0}{\sim} u$, on obtient $\lim_{t\to 0}\frac{\sin((2n+1)t)}{\sin(t)}=2n+1$. Ainsi $t\mapsto \frac{\sin((2n+1)t)}{\sin(t)}$ est prolongeable en une fonction continue sur le segment $\left[0,\frac{\pi}{2}\right]$ de sorte que l'intégrale I_n existe.

9.b On a clairement $I_0 = \frac{\pi}{2}$. De plus, pour tout $n \in \mathbb{N}^*$,

$$I_n - I_{n-1} = \int_0^{\pi/2} \frac{\sin((2n+1)t) - \sin((2n-1)t)}{\sin t}$$

et pour tout $t \in \mathbb{R}$,

 $\sin((2n+1)t) - \sin((2n-1)t) = \left[\sin(2nt)\cos(t) + \sin(t)\cos(2nt)\right] - \left[\sin(2nt)\cos(t) - \sin(t)\cos(2nt)\right] = 2\sin(t)\cos(2nt)$

donc

$$I_n - I_{n-1} = 2 \int_0^{\pi/2} \cos(2nt) dt = \frac{1}{n} \left[\sin(2nt) \right]_{t=0}^{t=\pi/2} = \frac{1}{n} \left(\sin(n\pi) - \sin(0) \right) = 0$$

La suite (I_n) est donc constante de sorte que

$$\forall n \in \mathbb{N}, \ \mathrm{I}_n = \frac{\pi}{2}$$

9.c Pour tout $t \in \left[0, \frac{\pi}{2}\right]$,

$$\psi(t) = \frac{t - \sin t}{t \sin t}$$

Or $t - \sin t \sim \frac{t^3}{6}$ et $t \sin t \sim t^2$ donc $\psi(t) \sim \frac{t}{6}$. Notamment, $L = \lim_{0} \psi = 0$.

9.d Par définition de ψ ,

$$\int_0^{\pi/2} \psi(t) \sin((2n+1)t) dt = I_n - \int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt$$

Or on a vu que $I_n = \frac{\pi}{2}$ et via le changement de variable linéaire u = (2n + 1)t,

$$\int_0^{\pi/2} \frac{\sin((2n+1)t)}{t} dt = \int_0^{(2n+1)\pi/2} \frac{\sin u}{u} du$$

Ainsi pour tout $n \in \mathbb{N}$,

$$\int_0^{\pi/2} \psi(t) \sin((2n+1)t) dt = \frac{\pi}{2} - \int_0^{(2n+1)\pi/2} \frac{\sin u}{u} du$$

10 10.a Les applications g et $t\mapsto -\frac{1}{2n+1}\cos((2n+1)t)$ sont de classe \mathcal{C}^1 sur $\left[0,\frac{\pi}{2}\right]$ de dérivées respectives g' et $t\mapsto \sin((2n+1)t)$ donc, par intégration par parties :

$$u_n = -\frac{1}{2n+1} \left[g(t) \cos((2n+1)t) \right]_{t=0}^{t=\pi/2} + \frac{1}{2n+1} \int_0^{\pi/2} g'(t) \cos((2n+1)t) dt = \frac{g(0)}{2n+1} + \frac{1}{2n+1} \int_0^{\pi/2} g'(t) \cos((2n+1)t) dt$$

10.b Par inégalité triangulaire,

$$\left| \int_0^{\pi/2} \mathbf{g}'(t) \cos((2n+1)t) \, dt \right| \le \int_0^{\pi/2} |\mathbf{g}'(t)| |\cos((2n+1)t)| \, dt \le \int_0^{\pi/2} |\mathbf{g}'(t)| \, dt$$

Ce majorant étant indépendant de n, on en déduit que

$$\lim_{n \to +\infty} \frac{1}{2n+1} \int_0^{\pi/2} g'(t) \cos((2n+1)t) dt = 0$$

De plus, $\lim_{n \to +\infty} \frac{g(0)}{2n+1} = 0$ donc (u_n) converge vers 0.

10.c ψ est bien continue sur $\left[0, \frac{\pi}{2}\right]$. Par ailleurs, ψ est de classe \mathcal{C}^1 sur $\left]0, \frac{\pi}{2}\right]$ et

$$\psi'(t) = -\frac{1}{t^2} + \frac{\cos t}{\sin^2 t} = \frac{t^2 \cos t - \sin^2(t)}{t^2 \sin^2(t)}$$

Or $t^2 \sin^2(t) \underset{t\to 0}{\sim} t^4$,

$$\sin^2(t) \underset{t \to 0}{=} t^2 \left(1 - \frac{t^2}{6} + o(t^2) \right)^2 = t^2 - \frac{t^4}{3} + o(t^4)$$

et

$$t^2 \cos^2(t) = t^2 - \frac{t^4}{2} + o(t^4)$$

donc $t^2 \cos t - \sin^2(t) \underset{t \to 0}{\sim} -\frac{1}{6} t^4$. Par conséquent, $\lim_{\psi \to 0} h'(t) = -\frac{1}{6}$

D'après le théorème de prolongement \mathcal{C}^1 , h est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$

10.d Comme ψ est de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$, on peut appliquer le lemme de Riemann-Lebesgue pour affirmer que

$$\lim_{n \to +\infty} \int_0^{\pi/2} \psi(t) \sin((2n+1)t) dt = 0$$

D'après la question 9.d, ceci signifie que

$$\lim_{n \to +\infty} \int_0^{(2n+1)\pi/2} \frac{\sin u}{u} \, du = \frac{\pi}{2}$$

Or on a vu que l'intégrale f(1) converge donc

$$f(1) = \lim_{n \to +\infty} \int_0^{(2n+1)\pi/2} \frac{\sin u}{u} \, du = \frac{\pi}{2}$$