How often do you hear about incidents in your city?

Do you know type of the incidents and how quick they are taken care?

Do you consider it as safety in your city and neighborhood?

- So I am trying to show you level of safety in our city(New York City) based on the number and type of incident in each zip code.
- It requires a dataset that includes different type of incident, response time, number of incident and also population.
- Two datasets are taken from <u>www.cityofnewyork.us</u>
- The features are shown in the next slide

```
'STARFIRE_INCIDENT_ID', 'INCIDENT_DATETIME', 'ALARM_BOX_BOROUGH',
'ALARM_BOX_NUMBER', 'ALARM_BOX_LOCATION', 'INCIDENT_BOROUGH', 'ZIPCODE',
'POLICEPRECINCT', 'CITYCOUNCILDISTRICT', 'COMMUNITYDISTRICT',
'COMMUNITYSCHOOLDISTRICT', 'CONGRESSIONALDISTRICT',
'ALARM_SOURCE_DESCRIPTION_TX', 'ALARM_LEVEL_INDEX_DESCRIPTION',
'HIGHEST_ALARM_LEVEL', 'INCIDENT_CLASSIFICATION',
'INCIDENT_CLASSIFICATION_GROUP', 'DISPATCH_RESPONSE_SECONDS_QY',
'FIRST_ASSIGNMENT_DATETIME', 'FIRST_ACTIVATION_DATETIME',
'FIRST_ON_SCENE_DATETIME', 'INCIDENT_CLOSE_DATETIME',
'VALID_DISPATCH_RSPNS_TIME_INDC', 'VALID_INCIDENT_RSPNS_TIME_INDC',
'INCIDENT_RESPONSE_SECONDS_QY', 'INCIDENT_TRAVEL_TM_SECONDS_QY',
'ENGINES_ASSIGNED_QUANTITY', 'LADDERS_ASSIGNED_QUANTITY',
'OTHER_UNITS_ASSIGNED_QUANTITY'
'Population'
```


Let's do exploratory

- Not all of incident should be taken care by fire departments
- Not all of incident are real
- It makes some null values in the dataset
- Real incidents be determined based on dispatch response time

Let's see 10 top zip code area based on number of incident

Let's see 10 bottom zip code area based on number of incident

- Incident_Datetime; The date and time of the incident.
- First_Onscene_Datetime; The date and time of the first unit at the scene of the incident.
- First_Assignment_Datetime; The date and time of the first unit assignment.
- Incident_Response_Second; The elapsed time in seconds between the incident_datetime and the first_onscene_datetime.
- Incident_Response_Travel; The elapsed time in seconds between the first_assignment_datetime and the first_onscene_datetime.
- Dispatch_Response_Second; The elapsed time in seconds between the incident_datetime and the first_assignment_datetime.

I am going to use:

- 1. Incident_Response_Second, Incident_Response_Travel and Dispatch_Response_Second features in terms of how quick a fire department response to an incident.(they should be plotted)
- 2. STARFIRE_INCIDENT_ID
- 3. INCIDENT_CLASSIFICATION

Dispatch_Response_Second

Incident_Response_Second

Incident_Response_Travel

How the plots look like after moving outliers

Dispatch_Response_Second

Incident_Response_Second

Incident_Response_Travel

Feature engineering, making new features

- Average of Dispatch_Response_Second
- Average of Incident_Response_Second
- Average of Incident_Response_Travel
- Number of incident
- Classified incident

Merging data frames and series with new features to 'Population' data set;

					AVE_DISPATCH_RESPONSE_SEC		Alarm System -	Alarm Syste	Alarm System -	Assist Civilian - Non-	Undefined	Untenante d Building		Utility Emergenc	=mergenc	Utility Emergenc	Utility Emergenc	Vehicle Acciden	Vehicle Accident - With	2010 Census
	E	T_ID	COND	COND	ONDS	Vehicle Fire	Defectiv e	m - Testing	Unnecessa ry	Medica I))	Fire		y - Gas	y - Steam	y - Undefined	y - Water		Extricatio n	Populatio n
0	10001	78	334.291667	364.457143	23.918919	0	5	1	5	23	0	0	2	1	0	0	4	1	0	21102
1	10002	110	277.580000	303.951923	20.783019	0	4	0	2	31	0	0	2	7	3	0	7	3	0	81410
2	10003	61	235.000000	266.789474	24.728814	0	7	0	5	6	0	0	2	2	2	0	5	3	0	56024
3	10004	15	256.857143	284.692308	26.500000	0	4	0	0	1	0	0	0	0	0	0	0	1	0	3089
4	10005	11	229.545455	249.545455	14.100000	0	2	0	0	2	0	0	0	0	0	0	0	1	0	7135

Making target column (safe, unsafe) based on number of incident by following function and code

```
def binning(col, cut_points, labels=None):
                                 #Define min and max values:
                                      minval = col.min()
                                      maxval = col.max()
                       #create list by adding min and max to cut_points
                       break_points = [minval] + cut_points + [maxval]
                      #if no labels provided, use default labels 0 ... (n-1)
                                         if not labels:
                               labels = range(len(cut_points)+1)
                            #Binning using cut function of pandas
          colBin = pd.cut(col,bins=break_points,labels=labels,include_lowest=True)
                                         return colBin
                                      cut_points = [40]
                                  labels = ['safe', 'unsafe']
df4['LEVEL_OF_SAFETY'] = binning(df4["STARFIRE_INCIDENT_ID"], cut_points, labels=labels)
```

And of course scaling the data set