

#### Universidade Federal da Paraíba



Coordenação do Curso de Ciência de Dados e Inteligência Artificial

## Teoria da Generalização

Prof. Dr. Bruno Pessoa

#### Roteiro

- Erro de generalização
- Dicotomias
- Função de crescimento
- Break point
- Dimensão VC
- Limitante de generalização VC
- Regras de ouro

#### **Treinamento versus Teste**

•  $E_{in}$  é uma medida de performance voltada para os dados de treinamento.

•  $E_{out}$  mede a capacidade de um modelo de ML de generalizar a aprendizagem obtida na fase de treinamento.

Há como relacionar tais métricas a fim de se obter limitantes para  $E_{out}$ ?

## Erro de generalização

 A desigualdade de Hoeffding provê uma forma de caracterizar o erro de generalização:

$$P(|E_{in}(g) - E_{out}(g)| > \epsilon) \le 2Me^{-2\epsilon^2N}$$

Fazendo  $A = |E_{in}(g) - E_{out}(g)| > \epsilon$  e sabendo que  $P(A) = 1 - P(\bar{A})$ , temos que:

$$1 - P(\bar{A}) \le 2Me^{-2\epsilon^2 N}$$

$$P(\overline{A}) \geq 1 - 2Me^{-2\epsilon^2 N}$$

## Erro de generalização

Dado que  $\bar{A} = |E_{in}(g) - E_{out}(g)| \le \epsilon$ ,

$$P(|E_{in}(g) - E_{out}(g)| \le \epsilon) \ge 1 - 2Me^{-2\epsilon^2 N}.$$

Fazendo  $\delta=2Me^{-2\epsilon^2N}$ , podemos afirmar que, com probabilidade de no mínimo  $1-\delta$ ,

$$|E_{in}(g) - E_{out}(g)| \le \epsilon$$
.

Uma vez que  $E_{out}(g) \ge E_{in}(g)$ ,

$$E_{out}(g) - E_{in}(g) \le \epsilon$$
,

$$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}.$$

## A origem de M

#### Probabilidade da união

Seja 
$$A_m = |E_{in}(h_m) - E_{out}(h_m)| > \epsilon$$
,

$$P(A_1 \cup A_2 ... \cup A_M) = \left(\sum_{i=1}^{M} P(A_i)\right) - expr$$



Eventos sem sobreposição



Eventos com muita sobreposição

# Sobreposição dos eventos $A_m$



Há enorme sobreposição nos eventos  $|E_{in}(\mathbf{h_1}) - E_{out}(\mathbf{h_1})| > \epsilon$  e  $|E_{in}(\mathbf{h_2}) - E_{out}(\mathbf{h_2})| > \epsilon$ .

#### Podemos reduzir o valor de *M*?

• Considere um conjunto finito de pontos.



# Podemos substituir *M* por um valor finito?

 De quantas maneiras podemos colorir o conjunto de dados abaixo?



## Dicotomias: mini-hipóteses

- Uma hipótese é uma função  $h: X \to \{-1, +1\}$ .
- Uma dicotomia é uma função  $h: \{x_1, x_2, ..., x_N\} \rightarrow \{-1, +1\}.$
- Número de hipóteses |H| pode ser infinito.
- Número de dicotomias  $|H(x_1, x_2, ..., x_N)|$  é no máximo  $2^N$ .
- Candidato para substituir M!

## Função de crescimento

Seja o conjunto de dicotomias

$$H(x_1,...,x_N) = \{ (h(x_1),...,h(x_n)) \mid h \in H \}.$$

A função de crescimento representa o número máximo de dicotomias em quaisquer N pontos de X:

$$m_H(N) = \max_{x_1, ..., x_n \in X} |H(x_1, ..., x_n)|$$

A função de crescimento satisfaz:

$$m_H(N) \leq 2^N$$

• Considere o conjunto de hipóteses H de um perceptron 2D e conjunto de pontos a seguir:



• Qual seria o valor de  $m_H(3)$ ?

• H = Perceptron 2D



• 
$$m_H(3) = 8$$

- H = Perceptron 2D
- Dados:



•  $m_H(3) = 8$  pois o que importa é o número máximo de dicotomias considerando qualquer amostra de 3 pontos.

- H = Perceptron 2D
- Dados:







- $m_H(4) \le 14$
- Limitante mais forte que  $2^N$

## Pausa para reflexão

A partir de Hoeffding, temos que:

$$P(|E_{in}(g) - E_{out}(g)| > \epsilon) \le 2Me^{-2\epsilon^2N}$$

$$P(|E_{in}(g) - E_{out}(g)| > \epsilon) \le \frac{2M}{e^{2\epsilon^2 N}}$$

O que acontece se substituirmos M por  $m_H(N)$ ?

 $m_H(N)$  precisa ser polinomial

# Break point de um conjunto *H*

#### Definição

Se **nenhum** conjunto de dados (amostra) de tamanho k pode ser separado completamente por H, então k é um break point para H.

De outro modo,

$$m_H(k) < 2^k.$$

#### **Exemplo:**



Para perceptrons 2D, k = 4 é um break point.

# Break point de um conjunto H

#### Resultado

– Caso não exista break point,  $m_H(N) = 2^N$ .

– Caso exista,  $m_H(N)$  é polinomial em N.

# Limitante para a função de crescimento

#### **Teorema**

Se  $m_H(k) < 2^k$ , para algum valor de k, então

$$m_H(N) \leq \sum_{i=0}^{k-1} {N \choose i}.$$

#### **Implicações**

Como  $\sum_{i=0}^{k} {N \choose i}$  é um polinômio em N de grau k-1, temos a garantia de que  $m_H(N)$  é polinomial.

- A dimensão VC de um conjunto de hipóteses H, denotada por  $d_{VC}(H)$ , é o maior valor de N para o qual  $m_H(N) = 2^N$ .
- Em outras palavras, é o **número máximo de pontos** que pode ser separado de todas as formas por um conjunto de hipóteses *H*.
- Se  $d_{vc}$  é a dimensão VC de H, então  $\mathbf{k} = \mathbf{d}_{vc} + \mathbf{1}$  é um break point para H.

Em termos de um break point k:

$$m_H(N) \le \sum_{i=0}^{k-1} \binom{N}{i}$$

• Em termos da dimensão VC  $d_{vc}$ :

$$m_H(N) \le \sum_{i=0}^{d_{vc}} \binom{N}{i} \le N^{d_{vc}} + 1$$

#### Considerações

- 1. Existe um conjunto de *N* pontos que pode ser separado de todas as formas por *H*.
  - Conclusão:  $d_{vc} \ge N$ .
- 2. Qualquer conjunto de N pontos pode ser separado de todas as formas por H.
  - Conclusão:  $d_{vc} \ge N$ .

#### Considerações

- 3. Existe um conjunto de N pontos que **não** pode ser separado de todas as formas por H.
  - Conclusão: Nenhuma.
- 4. Nenhum conjunto de N pontos pode ser separado de todas as formas por H.
  - Conclusão:  $d_{vc} < N$ .

Lembremos que, com probabilidade  $\geq 1 - \delta$ ,

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2M}{\delta}}.$$

Substituindo M por  $m_H(N)$ , obtemos:

$$E_{out}(g) \le E_{in}(g) + \sqrt{\frac{1}{2N} \ln \frac{2m_H(N)}{\delta}}$$

Podemos mesmo substituir M por  $m_H(N)$ ?



#### **Teorema**

Seja  $\delta > 0$  uma métrica de tolerância, com probabilidade  $\geq 1 - \delta$ ,

$$E'_{in}(g) \le E_{in}(g) + \sqrt{\frac{8}{N}} \ln \frac{4m_H(2N)}{\delta}$$

#### **Teorema**

Seja  $\delta > 0$  uma métrica de tolerância, com probabilidade  $\geq 1 - \delta$ ,

$$E_{out}(g) \leq E_{in}(g) + \sqrt{\frac{8}{N}ln\frac{4m_H(2N)}{\delta}}$$

Resultado mais importante da teoria da aprendizagem!

#### Tamanho mínimo da amostra

**Exemplo:** Suponha que temos um modelo de aprendizagem com  $d_{vc}=3$  e desejamos um erro de generalização de no máximo 0.1 com confiança de 90% ( $\epsilon=0.1$  e  $\delta=0.1$ ). Qual deve ser o tamanho mínimo da amostra?

Do limitante de generalização VC, temos que

$$\epsilon = \sqrt{\frac{8}{N} \ln \frac{4m_H(2N)}{0.1}} \le 0.1$$

$$m_H(2N) \le (2N)^{d_{vc}} + 1$$

Assim,

$$N \ge \frac{8}{0.1^2} \ln \left( \frac{4(2N)^3 + 4}{0.1} \right).$$

#### Tamanho mínimo da amostra

#### Continuação

Fazendo N=1000 no lado direito da inequação, obtemos

$$N \ge \frac{8}{0.1^2} \ln \left( \frac{4(2 \times 1000)^3 + 4}{0.1} \right) \cong 21193.$$

Ao atribuir 21193 a N e continuar com o processo iterativo, converge-se para  $N \cong 30000$ .

#### Limitante teórico "frouxo"

• O limitante de generalização é uma estimativa "frouxa" para estimar  $E_{out}$  com base em  $E_{in}$ .

• Para não depender de uma dataset específico, o limitante apoia-se em  $m_H(N)$ , que é calculado a partir da amostra de N exemplos que permite o maior número de dicotomias possível.

## Conjunto de teste e Hoeffding

 Quando se usa um conjunto de dados de teste, a partir de uma hipótese g determinada a priori, o fator M pode ser eliminado.

• Como resultado, são necessários menos exemplos no conjunto de teste para obter-se boas estimativas para  $E_{test}$ .

# $d_{vc}$ de importantes modelos de aprendizagem

#### Perceptron

 $-d_{vc} = d + 1$ , onde d é a quantidade de parâmetros (variáveis).

#### Regressão linear

$$-d_{vc}\cong d$$

#### Redes Neurais

 $-d_{vc} \cong |W|$ , onde W é o conjunto de todos os pesos da rede.

## Regras de ouro

 Dada a dimensão VC de um modelo de aprendizagem de máquina qualquer, para garantir a generalização é necessário que:

$$N \geq 10d_{vc}$$

Para regressão linear múltipla,

$$N \geq 50 + 8d$$
 ou  $N \geq 104 + d$ 

## Referências bibliográficas

Abu-Moustafa, Y.S.; Magdon-Ismail, M.; Lin, H-S.
 "Learning from data". AMLBook, 2012.

 Faceli, K.; Lorena, A.C.; Gama, J.; Carvalho, A.C.P.L.F.
 "Inteligência Artificial Uma Abordagem de Aprendizado de Máquina". LTC, 2011.

Notas de aula do prof. Abu-Moustafa.