Observer for simplified DP model: Design and proof

Svenn Are Værnø, Roger Skjetne

January 28, 2017

1 Control design model

We consider the typical low speed dynamics of a marine vessel of the form

$$\dot{\eta} = R(\psi)\nu \tag{1a}$$

$$M\dot{\nu} = -D\nu + R(\psi)^{\top}b + \tau \tag{1b}$$

$$\dot{b} = 0, \tag{1c}$$

where $\eta = \operatorname{col}(\eta_N, \eta_E, \psi) \in \mathbb{R}^3$ contains the North/East position and heading angle of the vessel, and $\nu = \operatorname{col}(u, v, r) \in \mathbb{R}^3$ contains the surge/sway velocity and yaw rate in the body frame of the vessel,

2 Observers

Assuming only measurements of η is available, the classical observer for (1) is designed by copying the plant dynamics and adding injection terms, as follows

$$\dot{\hat{\eta}} = R(\psi)\hat{\nu} + L_1\bar{\eta} \tag{2a}$$

$$M\dot{\hat{\nu}} = -D\hat{\nu} + R(\psi)^{\top}\hat{b} + \tau + K_2 R(\psi)^{\top} L_2 \bar{\eta}$$
(2b)

$$\dot{\hat{b}} = L_3 \bar{\eta},\tag{2c}$$

where $(\hat{\eta}, \hat{\nu}, \hat{b})$ are the state estimates, and $\bar{\eta} := \eta - \hat{\eta}$. The objective of the observer problem is to give conditions on the injection gains L_1, L_2, L_3 and K_2 , together with necessary assumptions on the plant, in order to achieve global stability and attractivity of the equilibrium $(\bar{\eta}, \bar{\nu}, \bar{b}) = 0$.

2.1 No bias

First we consider the case where b=0. Let $\bar{\eta}:=\eta-\hat{\eta}$ and $\bar{\nu}:=\nu-\hat{\nu}$ be the estimation error states. The closed-loop error system is

$$\dot{\bar{\eta}} = R(\psi)\bar{\nu} - L_1\bar{\eta} \tag{3a}$$

$$M\dot{\bar{\nu}} = -D\bar{\nu} - K_2 R(\psi)^{\top} L_2 \bar{\eta}, \tag{3b}$$

for which the following result apply.

Proposition 1 The equilibrium $(\bar{\eta}, \bar{\nu}) = 0$ of (3) is UGAS under the following conditions:

- The damping matrix satisfy $D + D^{\top} \ge 0$.
- The gain $K_2 = I$, and L_1 and L_2 are symmetric positive definite and satisfy $L_1L_2 + L_2L_1 > 0$.

If the damping matrix satisfies $D + D^{\top} > 0$, then the equilibrium $(\bar{\eta}, \bar{\nu}) = 0$ of (3) is UGES.

Proof 1 Consider the Lyapunov function

$$p_m|x|^2 \le V(x) = x^{\top} Px \le p_M|x|^2$$

where $\bar{x} = \begin{bmatrix} \bar{\eta}^\top & \bar{\nu}^\top \end{bmatrix}^\top$ and $P = P^\top = diag\{L_2, M\}$. The function V(x) is positive definite if L_2 and M are positive definite. The time derivative of $V(\bar{x})$ along (4a) and (4b) gives

$$\dot{V} = -\bar{\eta}^{\top} [L_1 L_2 + L_2 L_1] \bar{\eta} - \bar{\nu}^{\top} (D + D^{\top}) \bar{\nu}.$$

Clearly, for the conditions $D + D^{\top} > 0$ and $L_1L_2 + L_2L_1 > 0$, \dot{V} is negative definite, and the equilibrium is UGES. However, if we only require $D + D^{\top} \geq 0$, we need to show UGAS also when D = 0. We evoke Matrosov's Thereom in [1] [Theorem 1]. The equilibrium $(\bar{\eta}, \bar{\nu}) = 0$ is UGS since $V(\bar{x})$ is positive definite and $\dot{V} \leq -c_1\bar{\eta}^{\top}\bar{\eta}$ where $c_1 = 2\lambda_{min}(L_1L_2)$. Define the auxillary function as $W = -\bar{\nu}^{\top}R(\psi)^{\top}\bar{\eta}$, $Y_1 := -c_1\bar{\eta}^{\top}\bar{\eta}$, $Y_2 = -\bar{\nu}^{\top}\bar{\nu} - \bar{\nu}^{\top}[\dot{R}(\psi)^{\top} - D^{\top}M^{-1}R(\psi)^{\top}]\bar{\eta} - \bar{\eta}^{\top}L_2R(\psi)M^{-1}R(\psi)^{\top}\bar{\eta}$. Then $\dot{V} \leq Y_1$ and $\dot{W} \leq Y_2$ For bounded states, V and W are bounded, and Y_1 , Y_2 are continuous. For $\bar{\nu} \neq 0$, $Y_1 = 0 \Rightarrow Y_2 = -\bar{\nu}^{\top}\bar{\nu} < 0$, and for $Y_1 = Y_2 = 0 \Rightarrow (\bar{\eta}, \bar{\nu}) = 0$. This proofs that the equilibrium $(\bar{\eta}, \bar{\nu}) = 0$ is UGAS for $D + D^{\top} \geq 0$.

 \Diamond

2.2 Including bias

We now turn our attention to the case where the bias is included. In this case, with reference to (1) and (2), the observer error dynamics becomes

$$\dot{\bar{\eta}} = R(\psi)\bar{\nu} - L_1\bar{\eta} \tag{4a}$$

$$M\dot{\bar{\nu}} = -D\bar{\nu} + R(\psi)^{\top}\bar{b} - K_2 R(\psi)^{\top} L_2 \bar{\eta}$$
(4b)

$$\dot{\bar{b}} = -L_3\bar{\eta},\tag{4c}$$

for which the following result apply.

Proposition 2 The equilibrium $(\bar{\eta}, \bar{\nu}, \bar{b}) = 0$ of (4) is UGAS under the following conditions:

- The damping matrix satisfy $D + D^{\top} \geq 0$.
- The gain $K_2 = I$, and the matrices L_1, L_2, L_3 are symmetric positive definite and satisfy that L_3 and L_1 are commutative, and that the symmetric matrices $L_1L_2 + L_2L_1 2L_3$ and $L_3^{-1}L_1 L_2^{-1}$ are positive definite.

Proof 2 Consider the state vector $\bar{x} = \begin{bmatrix} \bar{\eta}^\top & \bar{\nu}^\top & \bar{b}^\top \end{bmatrix}^\top$, and a quadratic Lyapunov function $p_m |x|^2 < V(\bar{x}) = \bar{x}^\top P \bar{x} < p_M |x|^2.$

where

$$P = \begin{bmatrix} L_2 & 0 & -I \\ 0 & M & 0 \\ -I & 0 & L_3^{-1} L_1 \end{bmatrix}$$

It can be verified that sufficient conditions for for P positive definite are

$$L_2 = L_2^{\top} > 0, \quad M = M^{\top} > 0, \quad L_3^{-1}L_1 - L_2^{-1} > 0,$$

and note that the last matrix is symmetric due to the commuting property of L_3 and L_1 .

Using the Schur complement: Schur complement states that for

$$P = \begin{bmatrix} L_2 & B \\ B^\top & C \end{bmatrix}$$

P is positive definite if $L_2 > 0$ and $C - B^{\top} L_2^{-1} B > 0$. For our case this gives

$$C - B^{\mathsf{T}} L_2^{-1} B = \begin{bmatrix} M & 0 \\ 0 & L_3^{-1} L_1 \end{bmatrix} - \begin{bmatrix} 0 \\ -I \end{bmatrix} L_2^{-1} \begin{bmatrix} 0 & -I \end{bmatrix}$$
$$= \begin{bmatrix} M & 0 \\ 0 & L_3^{-1} L_1 - L_2^{-1} \end{bmatrix} > 0$$

and this is satisfied if M > 0 and $L_3^{-1}L_1 - L_2^{-1} > 0$

The time derivative of V(x) along the trajectories (4) becomes

$$\dot{V} = -\bar{\eta}^{\top} [L_1 L_2 + L_2 L_1 - 2L_3] \bar{\eta} - \bar{\nu}^{\top} (D + D^{\top}) \bar{\nu}.$$
 (5)

For the derivation of the above, we get:

$$PA_{0}(\psi) = \begin{bmatrix} L_{2} & 0 & -I \\ 0 & M & 0 \\ -I & 0 & L_{3}^{-1}L_{1} \end{bmatrix} \begin{bmatrix} -L_{1} & R(\psi) & 0 \\ -M^{-1}R(\psi)^{\top}L_{2} & -M^{-1}D & M^{-1}R(\psi)^{\top} \\ -L_{3} & 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} -L_{2}L_{1} + L_{3} & L_{2}R(\psi) & 0 \\ -R(\psi)^{\top}L_{2} & -D & R(\psi)^{\top} \\ L_{1} - L_{1} & -R(\psi) & 0 \end{bmatrix}, \tag{6}$$

$$A_{0}(\psi)^{\top}P = \begin{bmatrix} -L_{1} & -L_{2}R(\psi)M^{-1} & -L_{3} \\ R(\psi)^{\top} & -D^{\top}M^{-1} & 0 \\ 0 & R(\psi)M^{-1} & 0 \end{bmatrix} \begin{bmatrix} L_{2} & 0 & -I \\ 0 & M & 0 \\ -I & 0 & L_{3}^{-1}L_{1} \end{bmatrix}$$

$$= \begin{bmatrix} -L_{1}L_{2} + L_{3} & -L_{2}R(\psi) & L_{1} - L_{1} \\ R(\psi)^{\top}L_{2} & -D^{\top} & -R(\psi)^{\top} \\ 0 & R(\psi) & 0 \end{bmatrix}$$

$$(7)$$

and putting this together gives

$$PA_{0}(\psi) + A(\psi)^{\top} P$$

$$= \begin{bmatrix} -L_{2}L_{1} - L_{1}L_{2} + 2L_{3} & 0 & 0\\ 0 & -(D + D^{\top}) & 0\\ 0 & 0 & 0 \end{bmatrix}$$
(8)

Define $G := L_1L_2 + L_2L_1 - 2L_3$. The time derivative of V(x) is then upper bounded by

$$\dot{V} \le -\varepsilon g_m |\bar{\eta}|^2 - 2d_m |\bar{\nu}|^2,$$

where d_m is the smallest eigenvalue of D, and g_m is the smallest eigenvalue of G. To show UGAS we only require $D + D^{\top} \geq 0$, so $d_m \geq 0$. To show UGAS two steps of the nested version of Matrosov's Theorem in [1] [Theorem 1] is used. The equilibrium $(\bar{\eta}, \bar{\nu}, \bar{b}) = 0$ is UGS by the fact that $V(\bar{x})$ is positive definite, and $\dot{V} \leq -\varepsilon l_{3m}|\bar{\eta}|^2$. We define the first auxiliary function as $W_1 = -\bar{\nu}^{\top}R(\psi)^{\top}\bar{\eta}$ and the second as $W_2 = -\bar{b}^{\top}R(\psi)M\bar{\nu}$, and define $Y_1 := -\varepsilon l_{3m}\|\bar{\eta}\|^2$, $Y_2 := -\bar{\nu}^{\top}\bar{\nu} - \bar{\nu}^{\top}[\dot{R}^{\top} - D^{\top}M^{-1}R^{\top}]\bar{\eta} - \bar{b}^{\top}RM^{-1}R^{\top}\bar{\eta} - \bar{\eta}^{\top}L_2RM^{-1}R^{\top}\bar{\eta}$, and $Y_3 := -\bar{b}^{\top}b - \bar{b}^{\top}[\dot{R}M - RD]\bar{\nu} - \bar{b}^{\top}L_2\bar{\eta} + \bar{\eta}^{\top}L_3RM\bar{\nu}$. Then $\dot{V} \leq Y_1$, $\dot{W}_1 \leq Y_2$, and $\dot{W}_2 \leq Y_3$. For bounded states V, W_1 , and W_2 are bounded, and Y_1, Y_2 , and Y_3 are continuous. For $\bar{\nu} \neq 0$, $\bar{b} \neq 0$, $Y_1 = 0 \Rightarrow Y_2 = -\bar{\nu}^{\top}\bar{\nu} < 0$. When $\bar{b} \neq 0$, $Y_1 = Y_2 = 0 \Rightarrow Y_3 \leq -\bar{b}^{\top}\bar{b} < 0$. Furthermore, when $Y_1 = Y_2 = Y_3 = 0 \Rightarrow (\bar{\eta}, \bar{\nu}, \bar{b}) = 0$. This proves that the equilibrium $(\bar{\eta}, \bar{\nu}, \bar{b}) = 0$ is UGAS.

References

[1] Antonio Loría, Elena Panteley, Dobrivoje Popović, and Andrew R Teel. A nested matrosov theorem and persistency of excitation for uniform convergence in stable nonautonomous systems.

Automatic Control, IEEE Transactions on, 50(2):183–198, 2005.