통계분석 Statistical Analysis

Testing Hypotheses: Continuous Random Variables

Testing Hypothesis: Normal Distribution

Example: IQs of People

IQ is normally distributed with standard deviation 15.

Hypotheses

 H_0 = The average IQ of People is 120. $\mu = 120$ H_a = The average IQ of People is greater than 120. $\mu > 120$

Experiments and Test statistics

IQ test for 9 people

A test statistic = Sample mean = \bar{x} $\bar{x} \sim N(\mu, \sigma^2/n = 15^2/9)$

Hypothesis Testing with Normal Distribution

$$\bar{x} \sim N(\mu, \sigma^2/n = 15^2/9)$$

 \bar{x} can have any value in principle, but each of \bar{x} has a different probability.

Setting up Rejection Region

$$\bar{x} \sim N(\mu, \sigma^2/n = 15^2/9)$$

Rejection region: $\bar{x} \geq 130$

- It means that if the sample mean of IQ of 9 people is greater 130, then we conclude that the null hypothesis is false.
- Since the alternative hypothesis is that the population average is larger than 120, the rejection region is upper-sided, not two-sided.

Setting up Rejection Region

 H_a = The average IQ of People is greater than 120. $\mu > 120$

Rejection Region is upper-sided

$$\mu < 120$$
 Rejection Region is lower-sided

$$\mu
eq 120$$
 Rejection Region is Two-sided (both-sided)

Even if the null hypothesis is true, it is possible that the sample mean is greater than 130.

$$\alpha = P(\bar{x} \ge 130 | \mu = 120) \approx 0.0228$$

$$\beta(128) = P(\bar{x} \le 130 | \mu = 128) \approx 0.6554$$

Type II Error = $P(\text{Not reject } H_0|H_0 \text{ is false})$

Acceptance Region : $\bar{x} \le 130$

Rejection region: $\bar{x} \geq 130$

$$\beta(133) = P(\bar{x} \le 130 | \mu = 133) \approx 0.2743$$

Changing Rejection Region

Acceptance Region : $\bar{x} < 125$

Rejection region: $\bar{x} \geq 125$

Type I Error = $P(\text{Reject } H_0|H_0 \text{ is true})$

$$\alpha = P(\bar{x} \ge 125 | \mu = 120) \approx 0.1587$$

Type II Error = $P(\text{Not reject } H_0|H_0 \text{ is false})$

$$\beta(128) = P(\bar{x} \le 125 | \mu = 128) \approx 0.2743$$

Type II Error = $P(\text{Not reject } H_0|H_0 \text{ is false})$

$$\beta(133) = P(\bar{x} \le 125 | \mu = 133) \approx 0.05480$$

Errors

Rejection region: $\bar{x} \ge 125$

Errors

Trade-off:

If we adjust the rejection region in order to decrease (increase) the type I error, the type II errors increase (decrease).

Rejection region: $\bar{x} \ge 125$

Significance Level: 유의 수준

- Previously, we specify the rejection region, and then calculate the type I error α .
- We can do this reversely.
 First we specify the type I error of the test.
 Then we decide the rejection region that gives the type I error that we previously set up.
- The type I error that we set up is called the significance level (유의 수준).

significance level
$$\alpha$$
 = type I error
= $P(\text{Reject } H_0 | H_0 \text{ is true})$

 $(1 - \alpha)$ = Probability that the null hypothesis is correct

One-Sided and Two-Sided Tests: 단측검정과 양측검정

- Null Hypothesis: $\theta = \theta_0$
- Alternative Hypothesis: $\begin{cases} \theta \neq \theta_0 \\ \theta > \theta_0 \\ \theta < \theta_0 \end{cases}$

- Depending on the alternative hypothesis, the rejection region is different.
- 대립가설을 어떤 것을 선택하느냐에 따라 기각영역(rejection region)이 달라진다.

Two-Sided Rejection Regions

- Null Hypothesis: $\theta = \theta_0$
- Alternative Hypothesis: $\theta \neq \theta_0$

The rejection region is two-sided (or two-tailed).

One-Sided Rejection Region : Upper-tailed

- Null Hypothesis: $\theta = \theta_0$
- Alternative Hypothesis: $\theta > \theta_0$

The rejection region is upper-tailed (우측검정).

One-Sided Rejection Region : Lower-tailed

- Null Hypothesis: $\theta = \theta_0$
- Alternative Hypothesis: $\theta < \theta_0$

The rejection region is lower-tailed (좌측검정).