- 1. U SVM (Support Vector Machine) algoritmu, dimenzija rezultujuće hiper-ravni zavisi od:
 - a. broja obeležja
 - b. broja primera u skupu podataka
 - c. broja vrednosti koje uzima ciljna varijabla
 - d. svega navedenog.
- 2. Na slici ispod ilustrujte kako izgleda granica odluke za SVM model. Označite na ovoj slici vektore potpore (support vectors) i marginu hiper-ravni.

- 3. Tačno ili netačno:
 - a. U svojoj osnovnoj formulaciji, SVM je primenljiv na probleme višekategorijske klasifikacije.
 - b. Brisanje (uklanjanje) vektora potpore promeniće poziciju hiper-ravni.
 - c. Uklanjanje korektno klasifikovane instance iz skupa podataka koja se nalazi daleko od granice odluke promeniće poziciju hiper-ravni.
- 4. Šta su linearno separabilni podaci?
- 5. Kako možemo primeniti SVM model u slučaju kada podaci NISU linearno separabilni? Za slike ispod označite koji pristup bi bio bolji za taj tip podataka.

- 6. U SVM algoritmu se funkcija koju optimizujemo u cilju pronalaska optimalne hiper-ravni zove:
 - a. Categorical cross-entropy loss
 - b. Binary cross-entropy loss
 - c. Hinge loss
 - d. Nijedna od navedenih.

Ilustrujte kako izgleda ova funkcija na grafiku.

- 7. Efektivnost SVM klasifikatora zavisi od:
 - a. Selekcije kernela
 - b. Parametara kernela
 - c. Soft margine parametra C
 - d. Svega navedenog.
- 8. Recimo da smo iscrtavali vizuelizaciju za različite vrednosti parametra C (*slack penalty*) u *soft margin SVM*: $\min \frac{1}{2} \theta^T \theta + C \cdot (\text{br. grešaka})$. Ako C1 odgovara prvom grafiku, C2 drugom, a C3 trećem, šta je tačno od sledećeg:
 - a. C1 = C2 = C3; b. C1 > C2 > C3; c. C1 < C2 < C3; d. Ne možemo reći.

- 9. Objasnite uticaj parametra C kod *soft margine* SVM: $\min \frac{1}{2} \theta^T \theta + C \cdot (br. grešaka)$. Šta se dešava sa marginom kada je C = 0 i kada je $C = \infty$? Kako u praksi biramo optimalnu vrednost C?
- 10. Za date primere (kvadrati su jedna klasa, a trouglovi druga), koji od sledećih kernela bismo mogli iskoristiti da razdvojimo dve klase:

- a. Linearni kernel
- b. Gaussian RBF kernel
- c. Polinomijalni kernel
- d. Nijedan od navedenih.
- 11. Možemo li primeniti SVM na problem višekategorijske klasifikacije? Ako da, na koji način?
- 12. Dat vam je binarni klasifikacioni problem gde je broj primera u skupu podataka N manji od broja obeležja D. Ako biste primenjivali SVM nad ovim skupom podataka, koji od sledećih kernela će najverovatnije biti odgovarajući: a) linearni; b) polinomijalni; c) RBF;
- 13. Recimo da imamo skup podataka sa D=10 obeležja i N=5000 primera. Nakon što smo trenirali model logističke regresije, vidimo da su i trening i validaciona greška visoke. Koji od sledećih koraka deluju da će rezultovati boljim performansama:
 - a. Uvećati regularizacioni parametar $\boldsymbol{\lambda}$
 - b. Trenirati SVM model sa RBF kernelom
 - c. Kreirati nova polinomijalna obeležja
 - d. Trenirati SVM model sa linearnim kernelom
 - e. Smanjiti broj primera u skupu podataka
- 14. Šta je "kernel trik"?
- 15. Razmotrite sledeća dva primera (tačke u 2D): A=(1,2), B=(2,4). Iskoristite sledeće mapiranje u 6-dimenzioni prostor: $\Phi(x)=\left(x_1^2,x_2^2,\sqrt{2}x_1x_2,\sqrt{2}x_1,\sqrt{2}x_2,1\right)$:
 - a) $\Phi(A) =$
 - b) $\Phi(B) =$

Sada izračunajte skalarni proizvod ovde dve tačke:

c)
$$\Phi(A)^T \Phi(B) =$$

Kernel funkcija koja odgovara transformaciji datoj iznad je polinomijalni kernel drugog stepena: $K(x,y) = (x^Ty + 1)^2$. Iskoristite ovu funkciju da izračunate:

d)
$$K(A,B) =$$