Relación de problemas 3

Sean las relaciones R y S con los siguientes parámetros:

R (a,b,c)	S (d,e,b)	
N(R) = 1000	N(S)=5000	
Size(a)=20		
Size(b)=30	Size(b)=30	
Size(c)=100		
	Size(d)=20	
	Size(e)=40	

R (a,b,c)	S (d,e,b)	
•••		
V(R,a)=1000		
V(R,b)=200	V(S,b)=500	
V(R,c)=20		
	V(S,d)=5000	
	V(S,e)=40	

donde a es llave primaria de R y d es llave primaria de S, y donde **no** existe una relación de llave externa entre las relaciones R y S, aunque ambas tengan un atributo común en nombre y dominio (con valores comunes) b.

Teniendo en cuenta que el **tamaño de bloque** es de **4KB**, que la **cabecera** es de **40B**, que se usa **bloqueo fijo**, que los **bloques** son **homogéneos**, que en memoria únicamente cabe un bloque de cada relación o resultado de operación intermedia, y considerando que las operaciones de **proyección y selección "no respetan" los índices** (es decir, si las relaciones sobre las que se aplica la operación tienen un índice, el resultado de la misma no está indexado),

Ejercicio 1

Construye el plan lógico que se generaría para la consulta:

$$\sigma_{e=e_k}(\Pi_{a,e}(RJOINS))$$

Ejercicio 2

Determina el número de operaciones de E/S (plan físico) para el plan lógico del *Ejercicio 1*.

Ejercicio 3

Propón un plan lógico cuyo plan físico mejore el del *Ejercicio 2*, justificando numéricamente la mejora.

Se dispone de un archivo secuencial indexado con un factor de bloqueo de 4 registros para almacenar registros de longitud fija, con la siguiente estructura en el fichero maestro (de datos):

Ejercicio 4

Rellena sobre el bloque del enunciado el resultado de insertar los registros con valores de clave 7, 2, 5 y 3.

Ejercicio 5

Indica qué ocurre cuando se añaden los registros con valores de clave 6, 4, 8, 9 y 1, tanto en el fichero maestro como en el fichero de índice.

Sean las relaciones R y S con los siguientes parámetros:

S (a,d,e)		
N(S)=10000		
Size(a)=20		
Size(d)=20		
Size(e)=40		

R (a,b,c)	S (a,d,e)
V(R,a)=1000	V(S,a)=1000
V(R,b)=200	
V(R,c)=20	
	V(S,d)=???
	V(S,e)=40

donde a es llave primaria de R y (a,d) es llave primaria de S, y donde el atributo S.a es llave externa a R.a

y donde el **tamaño de bloque** es de **4KB**, la **cabecera** es de **40B**, se usa **bloqueo fijo**, los **bloques** son **homogéneos**, en memoria sólo cabe un bloque de cada relación o resultado de operación intermedia, y suponiendo que las operaciones de **proyección y selección "respetan" los índices** (es decir, si la relación sobre la que se aplica la operación tiene un índice, el resultado también lo tendrá),

Ejercicio 6

Considerando la estructura de llaves (primarias y externa) de R y S, deduce la variabilidad V(S,d).

Ejercicio 7

Construye el plan lógico que se generaría para la consulta:

$$\sigma_{a < a_n}(\Pi_{a,b,e}(RJOINS))$$

Ejercicio 8

Determina el número de operaciones de E/S (plan físico) para el plan lógico del *Ejercicio* 7.

Ejercicio 9

Determina el número de operaciones E/S (planes físicos) que supondría la ejecución de los siguientes planes lógicos como alternativas al planteado por la consulta

Ejercicio 10

Indica cuál de los planes físicos (de los *Ejercicios 8* y 9) será seleccionado para ejecutar y por qué.

Sean las relaciones S y T con los siguientes parámetros:

S(<u>a</u> ,b,c)	T(<u>a</u> ,d,e)	U(<u>a</u> ,f,g)
N(S) = 1000	N(T)=500	N(U)=300
Size(a)=20	Size(a)=20	Size(a)=20
Size(b)=50		
Size(c)=15		
	Size(d)=4	
	Size(e)=20	
		Size(f)=14
		Size(g)=10
V(S,a) = ?	V(T,a) = ?	V(U,a) = ?
V(S,c)=20		

donde S.a, T.a y U.a son claves, y donde el atributo T.a es llave externa a S.a y U.a es llave externa a T.a

Ejercicio 11

Determina las variabilidades del campo a, es decir, V(S,a), V(T,a) y V(U,a).

Ejercicio 12

Teniendo en cuenta que, que el tamaño de bloque es de 4KB, que la cabecera es de 20B, que se usa bloqueo fijo, que los bloques son homogéneos y que en memoria sólo cabe un bloque de cada relación o resultado de operación intermedia, determina el número de operaciones de E/S que supondría la ejecución de la consulta si el plan lógico fuera tal y como plantea la consulta:

$$\Pi_{a,e}(\sigma_{(d=d_3)}(SJOINT))$$

Ejercicio 13

Propón un plan lógico para la consulta del ejercicio anterior cuyo plan físico sea más eficiente que el calculado para dicho ejercicio y justifica numéricamente tu respuesta. Ten en cuenta que hay varios planes posibles por lo que la calificación de esta pregunta dependerá de cuánto se acerque tu propuesta al óptimo.

$$\Pi_{a,e}(\sigma_{(d=d_2)}(SJOINT))$$

Ejercicio 14

Considerando la propiedad asociativa de la reunión natural (*JOIN*), indica de forma numérica y razonada en qué orden se realizarán las operaciones de esta consulta: