CS 105: Department Introductory Course on Discrete Structures

Instructor: S. Akshay

Aug 24, 2023 Lecture 08 – Basic Mathematical Structures Countable and Uncountable Sets

Countable and countably infinite sets

Definition

- Set C is called countably infinite, if there is a bijection from set C to \mathbb{N} .
- ▶ A set is **countable** if it is finite or countably infinite.

Examples: even numbers, number of horses,...

By previous corollary (\exists surj from any infinite set to \mathbb{N})

Countably infinite sets are the "smallest" infinite sets.

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- 1. the set of all integers \mathbb{Z}
- $2. \mathbb{N} \times \mathbb{N}$
- 3. $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- 4. the set of rationals \mathbb{Q}
- 5. the set of all (finite and infinite) subsets of \mathbb{N}
- 6. the set of all real numbers \mathbb{R}

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- 1. the set of all integers \mathbb{Z}
- 2. $\mathbb{N} \times \mathbb{N}$
- 3. $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- 4. the set of rationals \mathbb{Q}
- 5. the set of all (finite and infinite) subsets of \mathbb{N}
- 6. the set of all real numbers \mathbb{R}

To show these it suffices to show that

 \triangleright there is an injection from these sets to $\mathbb N$

Some questions...

Are the following sets countable?

That is, is there a bijection from these sets to \mathbb{N} ?

- 1. the set of all integers \mathbb{Z}
- 2. $\mathbb{N} \times \mathbb{N}$
- 3. $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$
- 4. the set of rationals \mathbb{Q}
- 5. the set of all (finite and infinite) subsets of \mathbb{N}
- 6. the set of all real numbers \mathbb{R}

To show these it suffices to show that

- \triangleright there is an injection from these sets to $\mathbb N$
- \triangleright or there is a surjection from \mathbb{N} (or any countable set) to these sets.

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, ...\}$ is a countably infinite set Can we say $\{a_0, ..., b_0, ...\}$ is a countably infinite set?

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?
- ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?
- ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i + 1)^{th}$ position.

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?
- ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i + 1)^{th}$ position.
- ▶ Formally, define a bijection $f: (A \cup B) \to \mathbb{N}$ by $f(a_i) = 2i$ and $f(b_i) = 2i + 1$

Let $A = \{a_0, \ldots, \}$ be a countably infinite set and B be a set. Then, is $A \cup B$ countable, under the following conditions?

- 1. $B = \{b_0\}$ is a singleton
- 2. $B = \{b_0, \ldots, b_n\}$ is a finite set
- 3. $B = \{b_0, \ldots\}$ is a countably infinite set Can we say $\{a_0, \ldots, b_0, \ldots\}$ is a countably infinite set?
- ▶ But then what is the position of b_i (i.e., natural number corresponding to it)?
- ▶ Rather, choose $\{a_0, b_0, a_1, b_1, \ldots\}$, then b_i is at $(2i + 1)^{th}$ position.
- ▶ Formally, define a bijection $f: (A \cup B) \to \mathbb{N}$ by $f(a_i) = 2i$ and $f(b_i) = 2i + 1$
- ▶ Is this correct?

Theorem: The cartesian product of two countably infinite sets is countably infinite

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a,b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

 \triangleright N × N, N × N × N, N × Z × N are countable.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A, B be countably infinite. Find a way to "number" the elements in $A \times B = \{(a, b) \mid a \in A, b \in B\}$.

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

- \triangleright $\mathbb{N} \times \mathbb{N}$, $\mathbb{N} \times \mathbb{N} \times \mathbb{N}$, $\mathbb{N} \times \mathbb{Z} \times \mathbb{N}$ are countable.
- ► The set of (positive) rationals is countable.

Theorem: The cartesian product of two countably infinite sets is countably infinite

Proof: Let A,B be countably infinite. Find a way to "number" the elements in $A\times B=\{(a,b)\mid a\in A,b\in B\}.$

▶ That is, define a bijection from $A \times B$ to \mathbb{N} .

$$f(a_i, b_j) = \left(\sum_{k=1}^{i+j} k\right) + j + 1$$

Corollaries

- \triangleright N × N, N × N × N, N × Z × N are countable.
- ► The set of (positive) rationals is countable.

Hint: Show that $f(a,b) = \begin{cases} a/b \text{ if } b \neq 0 \\ 0 \text{ if } b = 0 \end{cases}$, is a surjection. How does the result follow?

Countable sets and functions

Are the following sets countable?

- \triangleright the set of all integers \mathbb{Z}
- \triangleright $\mathbb{N} \times \mathbb{N}$
- \triangleright N × N × N
- \triangleright the set of rationals \mathbb{Q}
- \triangleright the set of all (finite and infinite) subsets of $\mathbb N$
- \triangleright the set of all real numbers \mathbb{R}

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- ▶ Proving existence just needs one to exhibit a function
- ▶ But how do we prove non-existence?

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

- ▶ Proving existence just needs one to exhibit a function
- ▶ But how do we prove non-existence? Try contradiction.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

			_	3	
f(0)	√	×	×	×	
f(1)	✓	×	\checkmark	\checkmark	
f(2)	×	×	×	×	
$ \begin{array}{c} f(0) \\ f(1) \\ f(2) \\ f(3) \end{array} $	×	\checkmark	×	\checkmark	

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ▶ As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

		1		3	
f(0)	√ ×	× * ✓ × ✓	×	×	
f(1)	✓	* <	\checkmark	\checkmark	
f(2)	×	×	* <	×	
f(3)	×	\checkmark	×	√×	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ▶ As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.
- \triangleright S and f(j) differ at position j, for any j.

Theorem (Cantor, 1891)

There is no bijection between \mathbb{N} and the set of all subsets of \mathbb{N} .

Proof by contradiction: Suppose there is such a bijection, say f. This would imply that each $i \in \mathbb{N}$ maps to some set $f(i) \subseteq \mathbb{N}$.

	0				
f(0)	√×	×	×	×	
f(1)	√ × ✓	* <	\checkmark	\checkmark	
f(2) $f(3)$	×	×	* <	×	
f(3)	×	\checkmark	X	√×	

- ▶ Consider the set $S \subseteq \mathbb{N}$ obtained by switching the diagonal elements, i.e., $S = \{i \in \mathbb{N} \mid i \notin f(i)\}.$
- ightharpoonup As f is bij, $\exists j \in \mathbb{N}, f(j) = S$.
- \triangleright S and f(j) differ at position j, for any j.
- ▶ Thus, $S \neq f(j)$ for all $j \in \mathbb{N}$, which is a contradiction!

Does this proof look familiar??

Does this proof look familiar??

Figure: Cantor and Russell

Does this proof look familiar??

Figure: Cantor and Russell

▶ $S = \{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.

Does this proof look familiar??

Figure: Cantor and Russell

- ▶ $S = \{i \in \mathbb{N} \mid i \notin f(i)\}$ is like the one from Russell's paradox.
- ▶ If $\exists j \in \mathbb{N}$ such that f(j) = S, then we have a contradiction.
 - ▶ If $j \in S$, then $j \notin f(j) = S$.
 - ▶ If $j \notin S$, then $j \notin f(j)$, which implies $j \in S$.

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...

Does this proof look familiar??

Figure: Cantor and Russell

In fact, using diagonalization Cantor showed that...

- ► There cannot be a bijection between any set and its power set (i.e., its set of subsets).(H.W)
- ▶ So there is an infinite hierarchy of "larger" infinities...
- ▶ There is no bijection from \mathbb{R} to \mathbb{N} (H.W). Moreover, there is a bijection from \mathbb{R} to set of subsets of \mathbb{N} .