Exercise 7

```
In [1]:
         str(PlantGrowth)
         summary(PlantGrowth)
         ?PlantGrowth
        'data.frame': 30 obs. of 2 variables:
         $ weight: num 4.17 5.58 5.18 6.11 4.5 4.61 5.17 4.53 5.33 5.14 ...
         $ group : Factor w/ 3 levels "ctrl", "trt1",..: 1 1 1 1 1 1 1 1 1 1 ...
             weight
                        group
         Min. :3.590 ctrl:10
         1st Qu.:4.550 trt1:10
         Median :5.155 trt2:10
         Mean :5.073
         3rd Qu.:5.530
         Max. :6.310
                             PlantGrowth {datasets}
                                                                         R Documentation
```

Results from an Experiment on Plant Growth

Description

Results from an experiment to compare yields (as measured by dried weight of plants) obtained under a control and two different treatment conditions.

Usage

PlantGrowth

Format

A data frame of 30 cases on 2 variables.

```
[, 1] weight numeric
[, 2] group factor
```

The levels of group are 'ctrl', 'trt1', and 'trt2'.

Source

Dobson, A. J. (1983) An Introduction to Statistical Modelling. London: Chapman and Hall.

Examples

4/17/2021 HW04_RamosMonzalvo

```
notch = TRUE, varwidth = TRUE)
anova(lm(weight ~ group, data = PlantGrowth))
```

[Package datasets version 4.0.3]

The summary command returns high level statistics of the two columns weight and group in the PlantGrowth dataframe. We can see how the weight column is a numeric column that ranges from 3.59 to 6.31. The group column is a non-numeric column that contains three groups: ctrl=control group, trt1=test1, and trt2=test2 where each group has ten entries.

```
library(ggplot2)
ggplot(PlantGrowth, aes(x = weight)) +
    geom_histogram(aes(color = group, fill = group), bins = 5)
```



```
hist(PlantGrowth$weight[PlantGrowth$group=='ctrl'])
hist(PlantGrowth$weight[PlantGrowth$group=='trt1'])
hist(PlantGrowth$weight[PlantGrowth$group=='trt2'])
```

Histogram of PlantGrowth\$weight[PlantGrowth\$group == "ctrl"]

Histogram of PlantGrowth\$weight[PlantGrowth\$group == "trt1"]

Histogram of PlantGrowth\$weight[PlantGrowth\$group == "trt2"]

It's hard to make any conclusions from the three histograms as they all have different x axis'.

The main difference is that the center of each histogram is different for trt1 compared to the rest. Group trt1 shows a majority of its weight below 5 while other groups are closer to 5.5.

Exercise 8

In [20]:

boxplot(weight ~ group, data=PlantGrowth) # Boxplot of mpg, group by am

The trt1 has a higher variation than the rest of the groups. It's lower half is the lowest of the 3 groups. Group trt2 has the distribution with the highest center. It all of its data lies past 75% of the weights in group trt1 while at least 50% of its data lies past 75% of the weights in the ctrl group.

Exercise 9

The confidence interval of the t-test above means that out of 100 replications of the study, 95% of the confidence intervals would contain the mean difference. I.e., the mean difference of the weight between crtl and trt1 will be within ~-.29 and ~1 95 out of 100 replications of the study.

The results of the T-Test also means that in a 95% significance level, we cannot reject the null hypothesis (H0 = both distributions have a different mean).

Exercise 10

The mean difference of the weight between crtl and trt12 will be within \sim .5 and \sim 5.5 95 out of 100 replications of the study. The T-Test result also tells us that with a 95% significance level, we reject the null hypothesis. I.e., 95% of the studies will find that the means of the two groups are different from each other.