Electromagnetism

William Luciani July 2021

Contents

1 Costanti

$$\varepsilon_0 = 8.85 \cdot 10^{-12} \,\mathrm{C}^2/\mathrm{Nm}^2$$
 (1.1)

$$e = 1.6 \cdot 10^{-19} \,\,\mathrm{C} \tag{1.2}$$

(1.3)

2 Strumenti matematici

2.1 Vettori

Prodotto misto:

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) \tag{2.1}$$

è possibile ciclare i tre vettori

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$
 (2.2)

e anche scambiare prodotto scalare e vettoriale

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C} \tag{2.3}$$

Doppio prodotto vettore. Vale la regola del BAC-CAB:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B}) \tag{2.4}$$

Non è associativo ma vale l'identità di Jacobi:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) + \mathbf{B} \times (\mathbf{C} \times \mathbf{A}) + \mathbf{C} \times (\mathbf{A} \times \mathbf{B}) = 0$$
(2.5)

2.2 Analisi Vettoriale

Derivazione in coordinate cartesiane. Operatore nabla:

$$\nabla = \partial_x \hat{\mathbf{x}} + \partial_y \hat{\mathbf{y}} + \partial_z \hat{\mathbf{z}} \tag{2.6}$$

Gradiente:

$$\nabla f = \partial_x f \hat{\mathbf{x}} + \partial_y f \hat{\mathbf{y}} + \partial_z f \hat{\mathbf{z}}$$
 (2.7)

Rotore:

$$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ \partial_x & \partial_y & \partial_z \\ A_x & A_y & A_z \end{vmatrix}$$
 (2.8)

Divergenza:

$$\nabla \cdot \mathbf{A} = \partial_x A_x + \partial_y A_y + \partial_z A_z \tag{2.9}$$

2.2.1 Gradiente

Il gradiente può anche essere definito nel seguente modo, indipendente dalle coordinate usate.

$$(\nabla f) \cdot \hat{\mathbf{t}} = \lim_{dl \to 0} \frac{df}{dl} \tag{2.10}$$

Dove la variazione di f è presa lungo un tratto infinitesimo di lunghezza dl e direzione $\hat{\mathbf{t}}$. Passando ad un percorso finito γ si ha

$$\int_{\gamma} (\nabla f) \cdot \hat{\mathbf{t}} dl = \Delta f$$

Questo è il teorema del gradiente (o teorema fondamentale del calcolo), che può esser scritto anche nel seguente modo.

$$\int_{A}^{B} \nabla f \cdot d\mathbf{l} = f(B) - f(A) \tag{2.11}$$

Per il gradiente c'è un modo più immediato di trovare la relazione sopra, ma il modo sopra è utile poichè è del tutto analogo al procedimento per il rotore e la divergenza.

Il modo più diretto è il seguente. Il differenziale di un campo vettoriale scalare può esser scritto nel seguente modo:

$$df = \nabla f \cdot d\mathbf{l} \tag{2.12}$$

Integrando segue direttamente il teorema del gradiente.

2.2.2 Rotore

Per il rotore vale la seguente definizione:

$$(\nabla \times \mathbf{A}) \cdot \hat{\mathbf{n}} = \lim_{dS \to 0} \frac{1}{dS} \int_{\gamma} \mathbf{A} \cdot d\mathbf{l} = \lim_{dS \to 0} \frac{dC}{dS}$$
 (2.13)

Dove dS è un'area infinitesima e $\hat{\mathbf{n}}$ è la sua normale. γ è il bordo di S, ovvero un circuito infinitesimo. dC è la circuitazione attraverso questo circuito infinitesimo.

Passando ad una superficie S finita si ha quindi:

$$\int_{S} (\nabla \times \mathbf{A}) \cdot \hat{\mathbf{n}} dS = C$$

Questo è il teorema di Stokes (o del rotore), che può esser scritto anche nel seguente modo. (∂S è il bordo di S)

$$\int_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{S} = \int_{\partial S} \mathbf{A} \cdot d\mathbf{l}$$
 (2.14)

2.2.3 Divergenza

Per la divergenza vale la seguente definizione:

$$\nabla \cdot \mathbf{A} = \lim_{dV \to 0} \frac{1}{dV} \int_{S} \mathbf{A} \cdot d\mathbf{S} = \lim_{dV \to 0} \frac{d\Phi}{dV}$$
 (2.15)

Dove dV è un volume infinitesimo, S è la sua superficie. $d\Phi$ è il flusso attraverso S.

Passando ad un volume finito si ha:

$$\int_{V} \nabla \cdot \mathbf{A} dV = \Phi$$

Questo è il teorema della divergenza (o di Gauss), che può esser scritto anche nel seguente modo. (∂V è il bordo di V)

$$\int_{V} \nabla \cdot \mathbf{A} dV = \int_{\partial V} \mathbf{A} \cdot d\mathbf{S} \tag{2.16}$$

2.3 Derivate seconde

Si possono fare le seguenti derivate seconde con l'operatore nabla:

- 1. $\nabla \times \nabla f = 0$
- 2. $\nabla \cdot \nabla f =: \nabla^2 f = \Delta f$ Definizione del Laplaciano
- 3. $\nabla \times \nabla \times A$
- 4. $\nabla \cdot \nabla \times A = 0$
- 5. $\nabla(\nabla \cdot A)$

La 5. non è di particolare interesse e per la 3 vale la seguente uguaglianza:

$$\nabla \times \nabla \times A = \nabla(\nabla \cdot A) - \nabla^2 A \tag{2.17}$$

Per chiarezza esplicitiamo il laplaciano di un campo scalare e di un campo vettoriale:

$$\nabla^2 f = \partial_x^2 f + \partial_y^2 f + \partial_z^2 f \tag{2.18}$$

$$\nabla^2 A = \nabla^2 A_x \hat{\mathbf{x}} + \nabla^2 A_u \hat{\mathbf{y}} + \nabla^2 A_z \hat{\mathbf{z}}$$
 (2.19)

2.4 Derivate utili

$$\nabla \cdot \frac{\hat{\mathbf{r}}}{r^2} = 4\pi \delta(\mathbf{r}) \tag{2.20}$$

$$\nabla \cdot (r^n \hat{\mathbf{r}}) = (n+2)r^{n-1}, \qquad n \neq -2$$
(2.21)

$$\nabla r^n = nr^{n-1}\hat{\mathbf{r}} \tag{2.22}$$

$$\nabla \times (r^n \hat{\mathbf{r}}) = 0 \tag{2.23}$$

3 Elettrostatica nel vuoto

3.1 Formule Sperimentali

$$\mathbf{\lambda} = \mathbf{r} - \mathbf{r}' \tag{3.1}$$

Dove r è il punto in cui vogliamo calcolare il campo e r' è la posizione della carica. (Se pensiamo alla forza, r è la posizione della carica su cui calcoliamo la forza, r' è l'altra).

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{2^2} \hat{\boldsymbol{\lambda}} \tag{3.2}$$

$$\mathbf{E} = \lim_{q \to 0} \frac{\mathbf{F}}{q} \tag{3.3}$$

Limite non matematico ma fisico, pensiamo di avere una carica di prova molto piccola in modo che non alteri le cariche che generano il campo.

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{\mathbf{z}^2} \hat{\mathbf{z}} \tag{3.4}$$

Principio di sovrapposizione:

$$\mathbf{E}_{tot} = \mathbf{E}_1 + \mathbf{E}_2 + \dots \tag{3.5}$$

Distribuzioni di carica:

$$dq = \lambda dl = \sigma dS = \rho d\tau \tag{3.6}$$

Dal principio di sovrapposizione:

$$\mathbf{E} = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{\mathbf{z}^2} \hat{\boldsymbol{\lambda}} = \frac{1}{4\pi\varepsilon_0} \int_{\gamma} \frac{\lambda dl}{\mathbf{z}^2} \hat{\boldsymbol{\lambda}} = \frac{1}{4\pi\varepsilon_0} \int_{S} \frac{\sigma dS}{\mathbf{z}^2} \hat{\boldsymbol{\lambda}} = \frac{1}{4\pi\varepsilon_0} \int_{V} \frac{\rho d\tau}{\mathbf{z}^2} \hat{\boldsymbol{\lambda}}$$
(3.7)

3.2 Teorema di Gauss e prima equazione di Maxwell nel vuoto

Teorema di Gauss:

$$\Phi(\mathbf{E}) = \int_{S} \mathbf{E} \cdot \hat{\mathbf{n}} \, dS = \frac{Q_{int}}{\varepsilon_0} \tag{3.8}$$

Proof. Pensiamo ad una singola carica q posta nell'origine. Questo non lede alla generalità poiché se non è nell'origine possiamo traslarla e se abbiamo più cariche vale il principio di sovrapposizione e quindi il flusso totale è la somma dei singoli flussi. Abbiamo quindi:

$$\Phi(\mathbf{E}) = \frac{q}{4\pi\varepsilon_0} \int_S \frac{\hat{\mathbf{r}} \cdot \hat{\mathbf{n}} dS}{r^2} = \frac{q}{4\pi\varepsilon_0} \int_S \frac{dS_r}{r^2} = \frac{q}{4\pi\varepsilon_0} \int d\Omega = \frac{q}{\varepsilon_0}$$

Per scrivere il teorema di Gauss in forma differenziale vogliamo mostrare che vale l'equazione ??

Proof. Pensiamo ad un cubetto infinitesimo con assi paralleli agli assi cartesiani. Esso ha un vertice in (x, y, z) e il vertice opposto in (x + dx, y + dy, z + dz). Pensiamo al flusso attraverso le due facce ortogonali all'asse x:

$$d\Phi_x = E_x(x+dx,y,z)dydz - E_x(x,y,z)dydz = \partial_x E_x dxdydz = \partial_x E_x dV$$

E varranno formule analoghe per le altre facce. Il flusso totale è quindi:

$$d\Phi = (\partial_x E_x + \partial_y E_y + \partial_z E_z)dV = (\nabla \cdot \mathbf{E})dV$$

quindi si ha:

$$\nabla \cdot \mathbf{E} = \lim_{dV \to 0} \frac{d\Phi}{dV}$$

che è la tesi.

Applicando questo teorema alla ?? si ha:

$$\int_{\partial V} \mathbf{E} \cdot d\mathbf{S} = \int_{V} \nabla \cdot \mathbf{E} dV = \int_{V} \frac{\rho}{\varepsilon_{0}}$$
(3.9)

Ma il volume di integrazione è del tutto arbitrario, per cui si ha:

$$\nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0} \tag{3.10}$$

Che è il teorema di Gauss in forma differenziale ovvero la prima equazione di Maxwell nel vuoto.

3.3 Seconda equazione di Maxwell nel vuoto

Pensando al campo generato da una carica puntiforme si può vedere che il campo elettrico è conservativo, in quanto si trova:

$$\int_A^B \mathbf{E} \cdot d\mathbf{l} = \frac{1}{4\pi\varepsilon_0} \int_A^B \frac{Q}{r^2} \hat{\mathbf{r}} \cdot d\mathbf{l} = \frac{Q}{4\pi\varepsilon_0} \int_A^B \frac{1}{r^2} dr = \frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{r_A} - \frac{1}{r_B} \right) = V(A) - V(B)$$
 (3.11)

Ovvero l'integrale di linea dipende solo dagli estremi e si può scrivere:

$$\mathbf{E} = -\nabla V \tag{3.12}$$

Ma ricordando che il rotore del gradiente è nullo si ha:

$$\nabla \times \mathbf{E} = 0 \tag{3.13}$$

Un modo per mostrare che il rotore del gradiente è nullo è di applicare il teorema di Stokes ad una superficie qualsiasi:

$$\int_{S} (\nabla \times \nabla f) \cdot d\mathbf{S} = \int_{\partial S} \nabla f \cdot d\mathbf{l} = f(A) - f(A) = 0$$
(3.14)

Per l'arbitrarietà di S si ha quindi che

$$\nabla \times \nabla f = 0 \tag{3.15}$$

DIM STOKES BALZATA

3.4 Dipolo

Carica +q e carica -q a distanza δ . Vettore $\boldsymbol{\delta}$ dalla carica negativa a quella positiva. \mathbf{p} momento di dipolo.

$$\mathbf{p} = q\mathbf{\delta} \tag{3.16}$$

Calcoliamo il potenziale ad $r >> \delta$. r_+ distanza dalla carica positiva, r_- distanza dalla carica negativa.

$$V(\mathbf{r}) = \frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r_+} - \frac{1}{r_-} \right) \tag{3.17}$$

Usando il teorema del coseno ed espandendo in serie di Taylor: (α è l'angolo tra il vettore posizione \mathbf{r} e \mathbf{p} , dove \mathbf{r} è preso dal centro del dipolo)

$$\frac{1}{r_{\pm}} = \frac{1}{r\sqrt{1 + (\delta/2r)^2 \mp \frac{\delta}{r}\cos\alpha}} \sim \frac{1}{r\sqrt{1 \mp \frac{\delta}{r}\cos\alpha}} \sim \frac{1 \pm \frac{\delta}{2r}\cos\alpha}{r}$$
(3.18)

Quindi si ha:

$$V(\mathbf{r}) = \frac{q}{4\pi\varepsilon_0} \frac{\delta \cos \alpha}{r^2} = \frac{q\delta \cos \alpha}{4\pi\varepsilon_0} \frac{1}{r^2} = \frac{\mathbf{p} \cdot \hat{\mathbf{r}}}{4\pi\varepsilon_0} \frac{1}{r^2}$$
(3.19)

Applicando il gradiente a questa espressione si può poi trovare il campo elettrico. Si ha

$$\nabla \left(\frac{\mathbf{p} \cdot \mathbf{r}}{r^3} \right) = \frac{\nabla (\mathbf{p} \cdot \mathbf{r})}{r^3} + \mathbf{p} \cdot \mathbf{r} \nabla \left(\frac{1}{r^3} \right)$$

$$\nabla (\mathbf{p} \cdot \mathbf{r}) = \mathbf{p}$$

$$\nabla \left(\frac{1}{r^3} \right) = -3 \frac{\hat{\mathbf{r}}}{r^4}$$

$$\nabla \left(\frac{\mathbf{p} \cdot \mathbf{r}}{r^3} \right) = \frac{\mathbf{p}}{r^3} - \frac{3(\mathbf{p} \cdot \hat{\mathbf{r}})\hat{\mathbf{r}}}{r^3}$$

Da cui si ha

$$E(\mathbf{r}) = -\nabla V = \frac{1}{4\pi\varepsilon_0} \frac{1}{r^3} (3(\mathbf{p} \cdot \hat{\mathbf{r}})\hat{\mathbf{r}} - \mathbf{p})$$
(3.20)

Si può poi mostrare che un dipolo in un campo elettrico ${\bf E}$ è sottoposto alla seguente forza:

$$\mathbf{F} = (\mathbf{p} \cdot \nabla)\mathbf{E} = \nabla(\mathbf{p} \cdot \mathbf{E}) \tag{3.21}$$

Ha la seguente energia potenziale:

$$U = -\mathbf{p} \cdot \mathbf{E} \tag{3.22}$$

Subisce il seguente momento torcente:

$$\mathbf{M} = \mathbf{p} \times \mathbf{E} \tag{3.23}$$

DIM BALZATE

- 3.5 Espansione multipoli
- 3.6 Conduttori
- 3.7 condensatori(?)
- 3.8 Energia e pressione
- 3.9 Equazione di Poisson
- 4 Elettrostatica nei materiali
- 5 Correnti