- 1) Let  $X = \{1, 2, ..., 13, 14\}$ 
  - **a.** Find the number of 2-combinations of X. Simplify your answer as much as possible.
  - b. Find the number of 5-combinations of X that do not contain a pair of consecutive integers. White your answer as a binomial coefficient. (1 point)

$$\Delta X = \{1,2,3,...,14\}$$
, subset of 2 combinations  $\cap = 14 \} So_{1}(\frac{14}{2}) = \frac{1!}{r!(n-r)!} = \frac{14!}{2!(14-2)!} = \frac{14!}{2(12)!} = 91$ 

Recall: Section 1.5

General Case

Let  $x=\{1,2,3,4,...,n\}$  and Let  $1\le n\le n$ Given a subset  $\{S_0,S_1,...,S_n\}$ of x with no consecutive elements define,  $f(\{S_0,S_1,...,S_n\})=\{S_0,S_1-1,S_2-2,...,\frac{S_n-(r-1)}{2}\}$ This output is a subset of size  $r^n$  since  $\{S_0,S_1,...,S_n\}$ has no consecutive elements

$$\begin{pmatrix} \Gamma - \Gamma + 1 \end{pmatrix}$$

2) Find the number of 13-digit binary sequences with nine 0's and four 1's such that no two 1's are adjacent. (2 points)

• 13-digits - binary 9:0's, 
$$\frac{4:1's}{s}$$
, remove 2:1's  $so(1) - right(1) - right(1) = (10) + (10) = 210$ 

- 3) Let  $X = \{\{1\}, y\}.$ 
  - **a.** Find all elements of P(X) (the power set of X). (1 point)
  - b. If Y is a set with 6 elements, how many elements are in P(Y)? (1 point)



 $\overline{4}$ ) Find the number of shortest routes from O to P that passes though the street AB.



- **5)** Suppose that k and n are positive integers with  $3 \le k \le n$  and that  $a_1, \ldots, a_n, b_1, \ldots, b_n$  are 2n distinct elements. Form the n pairs  $\{a_1, b_1\}, \{a_2, b_2\}, \ldots, \{a_n, b_n\}$ .
- (a) Find the number of subsets of  $\{a_1,\ldots a_n,b_1,\ldots,b_n\}$  of size k that do not contain two elements from the same pair. (1 point)
- (b) Find the number of subsets of  $\{a_1, \ldots a_n, b_1, \ldots, b_n\}$  of size k that contain exactly one of the pairs. (1 point)



