Entwicklung einer neue Messungmethode für Schneefeuchtichkeit

Bachelorarbeit Bachelor für Maschinentechnik | Innovation

> Betreuung: Albert Loichinger

Unterstützung Team IPEK: (Christian Locher)

FS 2024 Abgabedatum: 2024.

Autor: Peter Kuhn

Abstract

problem vorstudien ergebniss von Funktionsmuster

Beschreibung der Abkürzungen

Schneefeuchtigkeit Liquid Water Conten, LWC IPEK Institut SLF BA

Inhaltsverzeichnis

1 Einleitung						
	1.1	Lawinen in der Schweiz				
	1.2	Entstehung der Gleitlawine				
	1.3	Endziel des Arbeit				
	1.4	User Story				
	1.5	Anforderungen				
	1.6	Planung der Arbeit				
2	uid Water Content 2					
	2.1	Physicalische Prinzipien				
	2.2	Kommerzielle Produkte				
	2.3	Publizierte Methoden				
3	Vorstudie					
	3.1	3M 5559 Water Indikator Tape				
	3.2	Voltcraft				
		Laser Refraktion, Reflezion				
4	Funktionsmuster 4					
	4.1	Funktionsweise				
	4.2	Testkriterien				
	4.3	Montage des Funktionsmusters				
	4.4	Ergebnisse der Versuche				
	4.5	Vergleich der Ergebnisse mit Denometer				
	4.6	Verbesserungsmöglichkeiten des Funktionsmusters				

5	Ausblick	5	
	5.1 Presönliche Erfahrunng	5	
	5.2 Fazit	5	
	5.3 Ausblick	5	
6	Literaturverzeichnis	6	
7	Erklärung zur Urheberschaft		
8	Digitaler Anhang 1		

1 Einleitung

bachelorarbeit produktentwicklung grundlagenforschung seit 40 jahren forschungsgebiet, da für simulation wichtig. fail ist ein gutes ergebniss

1.1 Lawinen in der Schweiz

jedes jahr 10 Tote. 8 schneebrettlawine. 2 Gleitlawinen.

mit Klimawandel änders sich Gleitlawinien. nicht preventiv mit einer Detonation auslösbar. nicht zeitlich vorhersagbar.

1.2 Entstehung der Gleitlawine

feuchtigkeit sammelt sich zwischen den Eiskristallen an.

feuchtichkeit kommt durch schmelzenden schnee, primär Radiation und sekundär radiation.

Regen auf schnee

feuchtigkeit aus dem Boden. wasserführende schichten.

1.3 Endziel des Arbeit

verringerung des Schadens durch Gleitlawinen

1.4 User Story

Bob sitzt an seimem Computer und shiet eine Warung aufleuchten. Er ruft sofor bei der Ratischen Bahn an und kann den Zug so stoppen vewor er von der Lawine erfasst wird.

1.5 Anforderungen

Die Methode soll einn anzeige haben, die Feststellen kann wann eine Gleitlawine bevorsteht.

Die Methode soll unabhängig von der Dichte des Schness funktionieren.

die methode soll den messbereich des LWC von 1 % bis 7 % abdecken.

die methode soll für einen Hang in der Schweiz einsetzbar sein.

1.6 Planung der Arbeit

Die Arbeit wird in drei Teile aufgegliedert.

in einer Vorstudie werden unterschidilche physikalische Prinzipien zur messung des LWC theoritisch und praktisch mit eineander verglichen.

bau den Funktionsmusters. hier wird ein vielversprechendes physikalisches prinzip ausgewählt und ein Funktionsmuster gebaut.

Validierung und Dokumentation der Ergebnisse. Doku schreiben.

2 Liquid Water Content

- 2.1 Physicalische Prinzipien
- 2.2 Kommerzielle Produkte
- 2.3 Publizierte Methoden
- 3 Vorstudie

3.1 3M 5559 Water Indikator Tape

herkunft: Aus dem Elektronik bereich. zum beispiel in handys, wenn das tape rot geworden ist, ist wasser eingedrungen und der Hersteller kann eine garatieleistung ablehnen.

Funktionsweise: das papier basierte klebeband wird nass, die rote Farbe auf der Unterseite des Klebebands blutet durch das weisse obere Papier, die Roten Teile zeiget dann permanet wasser an.

Auswahl von 5559: der Hersteller 3M hat mehrere Produkte zu Water Indikator. 5559 zeichnet sich durch die dünnere Dicke und somit durch die schneller Anzeigegeschwindigkeit aus.

5559i ist auf einem transparenten substrat, was fraktisch für die optische auswertung wäre. Die Produkte sind in europa nur teilweise erhältlich. 3M verkauft nur Rollen mit 160 m. Zum testen wurde eine kleine rolle von einem Elektronikkomponenten Vertreiber gekauft.

Bei der Recherche zu LWC wurde keine verwendung von Water indicator tapes bemerkt. somit neuartig.

kostengünstig

zeitspanne pro messung weniger als 60 sek.

Dichte des Schnees muss seperat gemessen werden. 5559 zeigt nur das flüssige wasser in einer schicht an.

Testaufbau: 5559 auf etwas rund 200 g schweres kleben. neue Oberfläche von schnee mit Messer abschneiden/freilegen. 5559 auf schnee legen und 10, 30 60, 120 sek warten. foto von klebeband machen. mit python rote vs. weise fläche berechnen. oder nur optisch beurteilen.

3.2 Voltcraft

die gaphit sonden, zwischen denen die spanung aufgebaut und der wiederstand gemessen wird sind im messkopf zu gut geschützt. daher kann keine Messung gemacht werden wenn die Probe in schnee gedrückt wird.

Mögliche lösung: Verlängerung der Graphit proben mit stahlplatten

Verbindung des Graphits mit der Platte: kleben oder konstant drückne oder verschrauben.

in gaphit spahnend zu arbeiten ist anspruchsvoll und dreckig. konstant drücknen ist fehleranfällig Kleben: herstellen von leitfähigem Klebstoff:

test graphit
pluver: 66 % gewichtsprozent Graphit
pulver, 33 % Ergo XXXX Epoxy Klebstoff

test Aluminium
pulver: 66 % gewichtsprozent Aluminium
pulver, 33 % Ergo XXXX Epoxy Klebstoff

Ergebniss: nach 24 h, sodass der ergo XXXX aushärten konnte. Alle Klebestellen sind angeschliffen worden als oberflächenvorbereitung

Wiederstand zwischen Punkt A B

wiederstand ziwschen Punkt A C

Wiederstand zwischen Punkt A D

Mechanische stabilität von Test Aluminiumpluver nicht so gut

Ist es möglich auf die stahlplatte zu verzichten und die Verlängerung mit der Graphit Epoxy mischung zu machen?

3.3 Laser Refraktion, Reflezion

eine dünne probe von schnee 5 mm wird auf ein mikroskopier objekt träger aufgebracht. mit einem laserpointer wird die probe angeleuchtet. Sowohl die Refraktion hinter der Probe als auch die Reflexion an der Probe sind Interesante Eigenschaften.

Eine abgedunkelte, innen schware, Kammer aufstellen, den laser pointer von unten auf die probe schein, die wand partiell abnehmen und durch ein transparentes Papier ersetzten.

Mit Aluminium klebeband Lichtlöcher abdichten.

4 Funktionsmuster

- 4.1 Funktionsweise
- 4.2 Testkriterien
- 4.3 Montage des Funktionsmusters
- 4.4 Ergebnisse der Versuche
- 4.5 Vergleich der Ergebnisse mit Denometer
- 4.6 Verbesserungsmöglichkeiten des Funktionsmusters

5 Ausblick

- 5.1 Presönliche Erfahrunng
- 5.2 Fazit
- 5.3 Ausblick

methode weiter verfolgen, good stuff

6 Literaturverzeichnis

7 Erklärung zur Urheberschaft

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne Hilfe Dritter angefertigt habe. Ich habe nur die Hilfsmittel benutzt, die ich angegeben habe. Gedanken, die ich aus fremden Quellen direkt oder indirekt übernommen habe, sind kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Prü- fungsbehörde vorgelegt und auch noch nicht veröffentlicht.

KI-Einsatz ohne Kennzeichnungspflicht

Ich bin mir bewusst, dass die Nutzung maschinell generierter Texte keine Garantie für die Qualität von Inhalten und Text gewährleistet. Ich versichere daher, dass ich mich textgenerierender KI-Tools lediglich als Hilfsmittel bedient habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Ich verantworte die Übernahme jeglicher von mir verwendeter maschinell generierter Textpassagen vollumfänglich selbst. Ich versichere, dass ich keine KI-Schreibwerkzeuge verwendet habe, deren Nutzung der Prüfer / die Prüferin explizit schriftlich ausgeschlossen hat.

Ort/Datum: Rapperswil, 2024

Unterschrift: Peter Kuhn

Abbildungsverzeichnis

Tabellenverzeichnis

8 Digitaler Anhang

Lebenslauf

Personalien

Peter Kuhn Webergasse 16 8640 Rapperswil 078 707 12 46 (Mobil) 043 268 55 87 (Festnetz) peter.jo.kuhn@gmail.com

Bildung

1998.06.17	geboren
2005 - 2011	Primarschule
2011 - 2013	Langzeit Gymnasium Kantonsschule Zürcher Oberland
2013 - 2017	Kurzzeit Gymnasium Math. Naturwiss. Gym. Rämibühl
2017 - 2018	Zivildienst
2018 - 2020	Mathematik Studium ETH Zürich
2021 - jetzt	Maschienentechnik und Inovation Studium an der OST
Maturarbeit	

Sprachen

- Deutsch (Muttersprache)
- Englisch (sehr gut schriftlich und mündlich)
- Italienisch (gut mündlich)

${\bf Programmier sprachen}$

C++, Java, Python, JavaScript, Bash, Matlab, html/css, Mysql, Exel

Fähigkeiten

Führerausweis Kat. B Aktives Mitglied von Velove, einer von Studenten geleiteten Velo Werkstatt

Sport

Mountainbike Rennvelo Schwimmen