METODO DE NEWTON Y JOSEPH RAPHSON

```
clc, clear;
format long g;
syms x;
```

APROXIMACIÓN INICIAL

```
p_0 = 4;
```

INGRESAR LA TOLERACIA:

```
Tol = 0.0001;
```

INGRESAR EL NUMERO DE ITERACIONES:

```
Num_it = 30;
```

INGRESAR LA ECUACÍON x=g(x):

RECORDANDO QUE ΔPSI = P0-Pt

 $Log \ W_{18} = \ Z_R * S_o + 9.36 * Log (SN+1) - 0.20 + Log \left(\frac{\Delta PSI}{4.2-1.5}\right) / \left[0.40 + \left(\frac{1094}{(SN+1)^{5.19}}\right)\right] + 2.30 * Log M_r + 1.00 +$

```
f_x= 0.45*0.9+9.36*log10(x+1)-0.2+ ( (log10(3.5/(4.2-1.5)))/ (0.4+ 1094/(x+1)^5.19) )+2.32*log2
```

```
df_x= diff(f_x)
```

 $\frac{234}{25 \log(10) (x+1)} + \frac{2305551623892734709141}{3602879701896396800 (x+1)^{619/100} \left(\frac{1094}{(x+1)^{519/100}} + \frac{2}{5}\right)^2}$

```
n=[1 2];
x_0=[1 2];
g_x=[1 2];
error_=[0 2];

fplot(f_x);
hold on;
hold off;
grid on;
```

```
grid minor;
ax = gca;
ax.XAxisLocation = 'origin';
ax.YAxisLocation = 'origin';
```



```
f= @(x) eval(f_x);
g= @(x) eval(df_x);
i=1;
while(i <= Num_it)</pre>
    p=p_0-(f(p_0)/g(p_0));
    n(i)=i;
    x_0(i) = p_0;
    g_x(i) = p;
    error_(i)= p-p_0;
     if((f(p_0)==0) || (abs(p-p_0)<Tol))
        disp(p);
        break;
     else
        p_0=p;
    end
     i=i+1;
end
```

3.32089527345312

n;			
"")			