CLD Circuitos Lógicos Digitais Lista 2

Professor: Vinicius Pereira

- 1. Faça um circuito para cada expressão booleana.
 - 1. $\sim (a+b)$
 - $2. \ (\sim a \cdot b) + (b \cdot \sim c)$
 - 3. $\sim a \cdot \sim b$
 - 4. $(a+b) \cdot c$
 - $5. \ a + (b \cdot c)$

- 2. Faça uma expressão booleana equivalente a cada um dos circuitos abaixo.
 - 1. Resposta: $(a+b) \cdot c$

2. Resposta: $a + (b \cdot c)$

3. Resposta: $\sim (a+b)$

4. Resposta: $\sim a \cdot \sim b$

5. Resposta: $(\sim a \cdot b) + (b \cdot \sim c)$

	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas l
Considere o	o seguinte n	úmero hexa	adecimal (2	$(4F12)_{16}$ for	neça o mes	mo númer	o nas

(1 ponto) verdade.	Prove segu	inte equival	lência $a \oplus b$	$\equiv (a+b)$	$\cdot \sim (a \cdot b)$. Dica:	use a t	abel