SEMAINE DU 18/09 AU 22/09

1 Cours

Raisonnements et ensembles

Logique Conjonction, disjonction, négation de propositions logiques. Implication et équivalence. Quantificateurs.

Raisonnements Double implication. Raisonnement par l'absurde. Contraposition. Récurrence (simple, double, forte). Analyse/synthèse.

Ensembles Appartenance, inclusion. Union, intersection, complémentaire. Produit cartésien.

Sommes et produits

 $\textbf{Techniques de calcul} \ \ \text{Symbole} \ \underline{\sum} \ \ \text{et règles de calcul, sommes t\'elescopiques, changement d'indice, sommation par paquets.}$

Sommes classiques Suites arithmétiques et géométriques, factorisation de $\mathfrak{a}^n - \mathfrak{b}^n$, coefficients binomiaux et formule du binôme de Newton.

Sommes doubles Définition, règles de calcul, interversion des signes \sum (cas de sommes triangulaires), sommation par paquets.

Produits Symbole \prod et règles de calcul, produits télescopiques, passage au logarithme.

Systèmes linéaires

Notion de système linéaire Définition et exemples.

Résolution de systèmes linéaires Méthode du pivot de Gauss.

Structure de l'ensemble des solutions Système homogène associé à un système linéaire. L'ensemble des solutions d'un système linéaire est la somme d'une solution particulière et de la solution du système homogène associé.

2 Méthodes à maîtriser

- ► Rédiger proprement une récurrence.
- ► Montrer une inégalité en raisonnant par équivalence.
- ▶ Résolution d'équations et d'inéquations avec valeurs absolues et racines carrées.
- Changement d'indice.
- ► Calcul de sommes : il n'y a guère que deux techniques a priori :
 - faire apparaître une somme télescopique ;
 - faire apparaître des sommes connues (somme des termes d'une suite arithmétique ou géométrique ou somme provenant d'un développement via la formule du binôme de Newton).
- ▶ Interversion des symboles \sum pour les sommes doubles.
- Résolution d'un système par pivot de Gauss avec paramètre éventuel.

3 Questions de cours

▶ Déterminer les applications $f : \mathbb{N} \to \mathbb{N}$ telles que

$$\forall (m,n) \in \mathbb{N}^2, \ f(m+n) = f(m) + f(n)$$

▶ Soit $n \in \mathbb{N}^*$. Calculer $\sum_{k=0}^{n} k \binom{n}{k}$.

- ▶ Énoncer et démontrer la formule du binôme de Newton par récurrence.
- $\blacktriangleright \ \, \text{Soit} \,\, n \in \mathbb{N}^*. \, \text{Calculer} \, \sum_{k=0}^n \binom{2n}{2k} \, \text{et} \, \sum_{k=0}^{n-1} \binom{2n}{2k+1}.$
- $\blacktriangleright \ \, \text{Soit} \, \, n \in \mathbb{N}^*. \, \text{Calculer} \, \sum_{k=1}^n \, k^2 \, \, \text{sous forme} \, \, \text{factoris\'ee}.$
- ▶ Résolution d'un système de trois équations à trois inconnues au choix de l'examinateur.