תרגיל מס' 2 באלגברה לינארית 2

תרגיל 1. הוכיחו או הפריכו על ידי דוגמה נגדית את הטענות הבאות.

- $T: \mathbb{R}^{15} \to \mathbb{R}^9$ קיימת העתקה לינארית לינארית 1.
- $T:\mathbb{R}^9 o \mathbb{R}^{15}$ על קיימת העתקה לינארית.2
- . אזי $\dim\left(\mathrm{Im}T\right)=\mathrm{dim}V$ אזי העתקה לינארית ו $T:V\to W$ אזי זייע.
- על. $\dim V > \dim W$ אזי איי איי $T:V \to W$ אזי איי איי $T:V \to W$ אזי א
- $f\left(x
 ight)=lpha x$ פך ש מכך מינים $lpha\in\mathbb{F}$ כך ש היא העתקה לינארית, אם ורק אם קיים $f:\mathbb{F} o\mathbb{F}$. אזי $f:\mathbb{F} o\mathbb{F}$

תרגיל 2. יהי $\mathbb C$ שדה המרוכבים.

- \mathbb{C} מה הוא המימד? הוא מרחב וקטורי מעל \mathbb{C} מה הוא המימד?
- 2. עבור כל אחת מהפונקציות הבאות מ $\mathbb C$ לעצמה, קבעו האם היא העתקה לינארית. במידה והיא לינארית, מצאו גרעין, תמונה ומימד.
 - (z (א) (החלק הממשי של $f(z) = \operatorname{Re} z$
 - (ב) (נוz כפול המרוכב של (החלק המרוכב). (נו $f(z)=i\cdot \mathrm{Im} z$
 - f(z) = |z| (x)
 - z באשר (ד) מסמל את הצמוד של \overline{z} (ד), כאשר
 - $.c\in\mathbb{C}$ עבור $f\left(z
 ight) =cz$ (ה)
 - $c \in \mathbb{C}$ עבור f(z) = c + z (ו)
- מרחבים לינארית לינארית העתקה לינארית מעל $f:\mathbb{C} \to \mathbb{C}$ מצאו 3. בין העתקה לינארית של מרחבים העתקה לינארית של מרחבים מעל $f:\mathbb{C} \to \mathbb{C}$ וקטוריים מעל $f:\mathbb{C} \to \mathbb{C}$
- (x,y)
 eq tולכל $r = \sqrt{x^2 + y^2}$ כאשר $(x,y) = r (\cos \theta, \sin \theta)$ קיימת הצגה קוטבית ($(x,y) = \mathbf{v} \in \mathbb{R}^2$ כאשר ($(x,y) = \mathbf{v} \in \mathbb{R}^2$ פיימת ($(x,y) = \mathbf{v} \in \mathbb{R}^2$ מתקיים ($(x,y) = \mathbf{v} \in \mathbb{R}^2$ ולכל ($(x,y) = \mathbf{v} \in \mathbb{R}^2$)

$$\cos \theta = \frac{x^2}{x^2 + y^2}, \sin \theta = \frac{y^2}{x^2 + y^2}$$

$$.r_1e^{i heta_1}r_2e^{i heta_2}=r_1r_2e^{i(heta_1+ heta_2)}$$
 שמתקיים (א)

- $f_{ heta}\left(z
 ight)=e^{i heta}z$ ידי איז המשמעות המאומטרית של הפונציה הפונציה של המוגדרת המשמעות הגאומטרית (ב
- $T_{lpha}\left(r\left(\cos\left(lpha+ heta
 ight),\sin\left(lpha+ heta
 ight)
 ight)
 ight)$ על ידי $T_{lpha}:\mathbb{R}^{2} o\mathbb{R}^{2}$ על ידי בזווית α כאשר בזווית $T_{lpha}:T_{lpha}$ לינארית. $T_{lpha}:T_{lpha}$ הראו, ש $T_{lpha}:T_{lpha}$ לינארית.

תרגיל 3. בכל אחד מהמקרים הבאים קבעו האם העתקה T היא העקתה לינארית. במידה וכן, מצאו את המימד, את התמונה ואת הגרעיו.

על ידי T:V o V , $B = \left\{x^2e^x, xe^x, x
ight\}$ ידי על עצמה, הנפרש מ $\mathbb R$ לעצמה, הפונקציות מ .1

$$.T\left(f\left(x\right)\right) = \frac{\mathrm{d}f\left(x\right)}{\mathrm{d}x}$$

ידי על ידי $T:\mathbb{R}_{n}\left[x
ight]
ightarrow\mathbb{R}_{n-1}\left[x
ight]$.2

$$.T\left(p\left(x\right)\right) = \frac{\mathrm{d}p\left(x\right)}{\mathrm{d}x}$$

- . $T\left(p\left(x
 ight)
 ight)=p\left(x
 ight)\cdot p\left(x
 ight)$ די על ידי $T:\mathbb{R}_{n}\left[x
 ight]
 ightarrow\mathbb{R}_{2n}\left[x
 ight]$.3
- $T\left(p\left(x
 ight)
 ight) =q\left(x
 ight) p\left(x
 ight)$ ידי על ידי $T:\mathbb{R}_{n}\left[x
 ight]
 ightarrow\mathbb{R}_{n+m}\left[x
 ight]$, $q\left(x
 ight) \in\mathbb{R}_{m}\left(x
 ight)$.4
 - $T\left(p\left(x
 ight)
 ight)=p\left(x^{2}
 ight)$ ידי המוגדרת על ידי $T:\mathbb{R}_{n}\left[x
 ight]
 ightarrow\mathbb{R}_{2n}\left[x
 ight]$.5
 - ידי על ידי המוגדרת $T:\mathbb{R}_n\left[x
 ight]
 ightarrow\mathbb{R}_n\left[x
 ight]$.6

$$.T\left(p\left(x\right)\right) = \frac{1}{x} \int_{0}^{x} p\left(t\right) dt$$

ידי על ידי המוגדרת $T:\mathbb{R}_n\left[x
ight]
ightarrow \mathbb{R}_n\left[x
ight]$.7

$$.T\left(p\left(x\right)\right) = x\frac{\mathrm{d}p\left(x\right)}{\mathrm{d}x}$$

 $\ker T = \operatorname{Im} T$ כך ש T: V o V הוכיחו/הפריכו: לכל מרחב וקטורי ע קיימת העתקה לינארית לכל מרחב וקטורי

V העתקה לינארית ו הית העתקה T:V o W היהי היU העתקה לינארית ו

- .W הוא ת"מ של דו $T\left(U
 ight)$ הראו, ש
 - 2. הראו, שמתקיים:

$$.\dim (T(U)) = \dim U - \dim (W \cap \ker T)$$

תרגיל 6. עבור $A\in\mathbb{F}^{n imes m}$ תהאו, שלכל $L_A\left(v
ight)=AV$ תהי המוגדרת על ידי $A\in\mathbb{F}^m$ הראו, שלכל A=B אם ורק אם A=B אם ורק אם A=B מתקיים:

תרגיל 7. בכל אחד מהמקים, תארו את T באופן מפורש (כלומר על ידי נוסחא).

- T(3,1)=(1,2), T(-1,0)=(1,1) המקיימת $T:\mathbb{R}^2 \to \mathbb{R}^2$.1
- T(1,1)=(3,1) , T(4,1)=(1,1) המקיימת $T:\mathbb{R}^2 o \mathbb{R}^2$.2
- $T\left(1,1
 ight)=\left(2,1
 ight), T\left(-1,1
 ight)=\left(6,3
 ight)$ המקיימת $T:\mathbb{R}^{2} o\mathbb{R}^{2}$.3

תרגיל $T:\mathbb{R}^3 o \mathbb{R}^3$ המקיימת מצאו העתקה לינארית מצאו העתקה מצאו העתקה

$$.\operatorname{Im} T = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix} \right\}$$

עבורו $d\in\mathbb{R}$ עבורן האם קיים ערך . האם $f:\mathbb{R}^2\to\mathbb{R}_1$ האם הפונקציה $f:\mathbb{R}^2\to\mathbb{R}_1$ המוגדרת על ידי $f:\mathbb{R}^2\to\mathbb{R}_1$ האם קיים ערך כזה ב \mathbb{C} ?

תרגיל 10. תהי U הראו, ש v הוא פתרון של v כך ש v כך ש v כך ש יהי v הוא פתרון של v העתקה לינארית ויהי v העתקה v כך ש v כך ש v כך ש v בערון של v המשוואה v בערון אם קיים v בערון v בערון של v בערון של הוא פתרון של האוא פתרון של העתקה לינארית ויהי v בערון אינ

(אמקיימת: שמקיימת: די שמקיימת: $T:\mathbb{R}^{2 imes2} o \mathbb{R}_2\left[x
ight]$ תרגיל 11. תהי

$$.T\left(\left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right]\right) = 1 + x^2, T\left(\left[\begin{array}{cc} 1 & 1 \\ 1 & 2 \end{array}\right]\right) = 1 + x + x^2, T\left(\left[\begin{array}{cc} 0 & 0 \\ 1 & 1 \end{array}\right]\right) = 2, T\left(\left[\begin{array}{cc} 1 & 0 \\ 1 & 0 \end{array}\right]\right) = 2x^2$$

- $T\left(\left[\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array}\right]\right)$ את .1
- $A \in \mathbb{R}^{2 \times 2}$ לכל $T\left(A
 ight)$ את .2
- $\operatorname{Im} T$, $\ker T$ מצאו בסיס ומימד ל.3

תרגיל 12. יהי \mathcal{S} אוסף המטריצות \mathbb{F} אינו יכול להיות \mathbb{F} אינו יהי \mathcal{S} אוסף המטריצות עבור תת-שדה \mathbb{F} שמקיים $V=\mathbb{F}^{n\times n}$ אינו יכול להיות אוסף המטריצות האנטיסימטריות. נגדיר $T:V\to V$ על ידי

$$.T(A) = \frac{A + A^t}{2}$$

- .1 הראו, שT לינארית.
- T מה הוא הגרעין של 2.
- T מה היא התמונה של 3.
- $\dim \mathcal{S}$ את חשבו חשבו את 4.
- $\dim \mathcal{A}$ את חשבו הקודמים, הסעיפים הסעיפים.