Tutorial 1

Chapter 1 Semiconductors and Diodes

- 1. a. Determine the thermal voltage for a diode at a temperature of 20°C.
- **b.** For the same diode of part (a), find the diode current using Eq. 1.2 if I_{S} 40 nA, n 2 (low value of V_{D}), and the applied bias voltage is 0.5 V.
 - **c.** Repeat for T_{\perp} 100°C (boiling point of water). Assume that $I_{\rm S}$ has increased to 5.0 mA.
- **2.** Given a diode current of 6 mA, $V\tau_2$ 26 mV, n_1 , and I_{S_1} 1 nA, find the applied voltage VD.
- **3.** Determine the forward voltage drop across the diode whose characteristics appear below at temperatures of -75°C, 25°C, 125°C and a current of 10 mA. For each temperature, determine the level of saturation current. Compare the extremes of each and comment on the ratio of the two.

- **4. a.** Determine the static or dc resistance of the commercially available diode characteristics shown below at a forward current of 4 mA.
 - **b.** Repeat at a forward current of 15 mA and compare results.
- **c.** Determine the static or dc resistance of the commercially available diode at a reverse voltage of -10 V. How does it compare to the value determined at a reverse voltage of -30 V?

- **5. a.** Determine the dynamic (ac) resistance of the commercially available diode shown above, at a forward current of 10 mA using Eq. (1.5).
- **b.** Determine the dynamic (ac) resistance of the diode shown above, at a forward current of 10 mA using Eq. (1.6).
 - c. Compare solutions of parts (a) and (b).
- **6. a.** Referring to capacitance characteristics shown below, determine the transition capacitance at reverse-bias potentials of -25 V and -10 V. What is the ratio of the change in capacitance to the change in voltage?
- **b.** Repeat part (a) for reverse-bias potentials of -10 V and -1 V. Determine the ratio of the change in capacitance to the change in voltage.
- **c.** How do the ratios determined in parts (a) and (b) compare? What does this tell you about which range may have more areas of practical application?

- **7.** The no-bias transition capacitance of a silicon diode is 8 pF with $V \kappa_{-} 0.7 \text{ V}$ and $n_{-} 1>2$. What is the transition capacitance if the applied reverse bias potential is 5 V?
- **8.** Sketch the waveform for i of the network shown below if tt = 2ts and the total reverse recovery time is 9 ns.

9. Using the characteristics shown below, determine the maximum power dissipation levels for the diode at room temperature (25°C) and 100°C. Assuming that V_F remains fixed at 0.7 V, how has the maximum level of I_F changed between the two temperature levels?

10. Determine the dynamic impedance for the 24-V diode at Iz = 10 mA for the diode characteristics below. Note that it is a log scale.

