ECON 567 Assignment 2

Yuanxing Long ID: 87017166 MA in Economics

Problem 1 I reproduce the table 1 for variables excepting Domestic, Japan, and European. Here the variable space in my table is actually the variable size in the BLP table 1.

Table 1:

	year	No.model	Price	MPG	Air	Spce	HP/Wt
	ycar	100.IIIodel	11100	WILC	7 111	Брсс	111 / ٧٧ 0
1	1,971	92	8.856	1.720	0	1.442	0.510
2	1,972	89	9.042	1.633	0.045	1.458	0.407
3	1,973	86	9.045	1.625	0.070	1.466	0.385
4	1,974	72	9.254	1.633	0.125	1.426	0.368
5	1,975	93	9.641	1.627	0.108	1.416	0.354
6	1,976	99	9.490	1.856	0.101	1.379	0.354
7	1,977	95	9.864	1.978	0.084	1.358	0.356
8	1,978	95	10.602	1.993	0.095	1.344	0.363
9	1,979	102	10.451	2.011	0.088	1.307	0.366
10	1,980	103	10.726	2.167	0.175	1.296	0.363
11	1,981	116	13.035	2.250	0.241	1.301	0.362
12	1,982	110	11.591	2.377	0.236	1.283	0.358
13	1,983	115	11.140	2.515	0.200	1.273	0.358
14	1,984	113	11.647	2.415	0.283	1.264	0.387
15	1,985	136	12.476	2.239	0.331	1.246	0.390
16	1,986	130	11.782	2.355	0.323	1.233	0.398
17	1,987	143	13.436	2.265	0.392	1.231	0.414
18	1,988	150	14.885	2.188	0.447	1.246	0.432
19	1,989	147	16.690	2.179	0.503	1.247	0.453
20	1,990	131	14.038	2.182	0.458	1.255	0.449

I don't know how to calculate the percentiles of variable so I calculate the mean, standard error, minimum and maximum of the variables of interest.

Table 2:

Statistic	N	Mean	St. Dev.	Min	Max
model.id	2,217	276.210	160.183	1	557
firm.id	2,217	13.744	6.259	1	26
cdid	2,217	11.540	5.741	1	20
id	2,217	2,559.081	1,517.647	129	5,592
price	2,217	11.761	8.644	3.393	68.596
mpd	2,217	2.085	0.698	0.846	6.437
air	2,217	0.242	0.428	0	1
mpg	2,217	2.100	0.581	0.913	5.300
space	2,217	1.310	0.238	0.756	1.888
hpwt	2,217	0.394	0.097	0.170	0.948
trend	2,217	1,981.540	5.741	1,971	1,990
share	2,217	0.001	0.001	0.00000	0.009
outshr	2,217	0.893	0.014	0.871	0.919
у	2,217	-0.000	1.382	-6.498	3.029

Problem 2

The regression results are summarized in table 3. The regression results acquired by my codes are similar to what are reported in table 3 of BLP 1995. Calculating the elasticities of demand implied by the OLS logit model, I find that 1502 own price elasticities have absolute value less than 1. Calculating the elasticities of demand implied by the IV logit model, I find that 430 own price elasticities have absolute value less than 1. It's more plausible to use the price elasticities implied by IV logit. The inelastic demand estimates are undesirable because the automobile in the 1980s is a luxury good, whose demand should be elastic.

Table 3:

	$Dependent\ variable:$						
		У	$\log(\text{price})$				
	OLS	$instrumental\\variable$	OLS				
	(1)	(2)	(3)				
price	-0.089^{***} (0.004)	-0.158^{***} (0.009)					
hpwt	-0.124 (0.277)	1.866*** (0.363)	1.443*** (0.077)				
air	-0.034 (0.073)	0.733*** (0.112)	0.673*** (0.018)				
mpd	0.265*** (0.043)	0.127*** (0.048)					
mpg			-0.193^{***} (0.020)				
trend			0.012*** (0.001)				
space	2.342*** (0.125)	2.268*** (0.134)	0.127*** (0.042)				
Constant	-2.521^{***} (0.253)	-2.291*** (0.270)	1.667*** (0.101)				
Observations R^2 Adjusted R^2 Residual Std. Error (df = 2211) F Statistic (df = 5; 2211)	2,217 0.387 0.386 1.083 279.243***	2,217 0.305 0.303 1.153	2,217 0.669 0.669 0.307 895.193***				

Note:

^{*}p<0.1; **p<0.05; ***p<0.01

Problem 3
The testing result for delta.fn is summarized in the following table. Since the distribution is very close to zero, the delta function is valid.

Summary of abs(delta-d.check)	
Minimum	2.804e-06
1st Quantile	3.971e-06
Median	4.338e-06
Mean	4.377e-06
3rd Quantile	5.012e-06
Maximum	5.235 e-06

Next, I check whether the derivative function is right. The results as followed is distribution of difference between numerical derivative and analytical derivative. Since the distribution is very close to zero, the function should be correct.

```
> print(summary(diag(dshare-dshare.num)))
              1st Qu.
                          Median
      Min.
                                        Mean
                                                3rd Qu.
                                                              Max.
-7.388e-13 -1.126e-14
                       2.789e-15
                                  4.299e-14
                                              2.617e-14
                                                         1.487e-12
> print(summary(as.vector(dshare-dshare.num)))
     Min.
              1st Qu.
                          Median
                                       Mean
                                                3rd Qu.
                                                              Max.
-2.584e-04 -2.569e-08 0.000e+00
                                  0.000e+00
                                              2.569e-08
```

Problem 4 The testing results are summarized in the following table. The moment function, delta.fn function and Share.fn function take most of the time.

summaryRprof("blp.prof", lines="both") # show the results
\$by.self

	self.time	self.pct t	otal.time	total.pct
#15	0.32	23.53	0.70	51.47
"exp"	0.26	19.12	0.26	19.12
"%*%"	0.24	17.65	0.24	17.65
#16	0.16	11.76	0.28	20.59
"/"	0.08	5.88	0.08	5.88
"*"	0.06	4.41	0.06	4.41
"+"	0.06	4.41	0.06	4.41
"as.vector"	0.04	2.94	0.18	13.24
"solve.default"	0.04	2.94	0.04	2.94
#13	0.02	1.47	0.24	17.65
"sum"	0.02	1.47	0.02	1.47
"t"	0.02	1.47	0.02	1.47
#14	0.02	1.47	0.02	1.47
#25	0.02	1.47	0.02	1.47
<pre>\$by.total</pre>				
	total.time	total.pct	self.time	self.pct
"moments"	1.34	98.53	0.00	0.00
"delta.fn"	1.04	76.47	0.00	0.00
#11	1.04	76.47	0.00	0.00
"share.fn"	1.00	73.53	0.00	0.00
#24	1.00	73.53	0.00	0.00
#15	0.70	51.47	0.32	23.53
#16	0.28	20.59	0.16	11.76
"exp"	0.26	19.12	0.26	19.12
"dshare.dp"	0.26	19.12	0.00	0.00
#17	0.26	19.12	0.00	0.00
"%*%"	0.24	17.65	0.24	17.65
#13	0.24	17.65	0.02	1.47
"as.vector"	0.18	13.24	0.04	2.94
"/"	0.08	5.88	0.08	5.88

"*"	0.06	4.41	0.06	4.41
"+"	0.06	4.41	0.06	4.41
"solve"	0.06	4.41	0.00	0.00
"solve.default"	0.04	2.94	0.04	2.94
#21	0.04	2.94	0.00	0.00
"sum"	0.02	1.47	0.02	1.47
"t"	0.02	1.47	0.02	1.47
#14	0.02	1.47	0.02	1.47
#25	0.02	1.47	0.02	1.47
"matrix"	0.02	1.47	0.00	0.00
#10	0.02	1.47	0.00	0.00
#18	0.02	1.47	0.00	0.00

\$sample.interval

[1] 0.02

\$sampling.time

[1] 1.36

Share.fn function records all the y values and then takes average. To improve efficiency, I first take the sum and then divide it by S. Similar improvement are also applied into dshare.dp function. The time is much shorter.

summaryRprof("blp.prof", lines="both") # show the results
\$by.self

	self.time	self.pct	${\tt total.time}$	total.pct
#15	0.28	18.67	0.88	58.67
"%*%"	0.28	18.67	0.28	18.67
"exp"	0.22	14.67	0.22	14.67
"+"	0.18	12.00	0.18	12.00
"matrix"	0.16	10.67	0.16	10.67
"*"	0.08	5.33	0.08	5.33
"/"	0.08	5.33	0.08	5.33
"sum"	0.08	5.33	0.08	5.33
#16	0.04	2.67	0.24	16.00
#13	0.02	1.33	0.18	12.00
"as.vector"	0.02	1.33	0.10	6.67
"doTryCatch"	0.02	1.33	0.02	1.33
"t"	0.02	1.33	0.02	1.33

#10 0.02 1.33 0.02 1.33

\$by.total

	total.time	total.pct	self.time	self.pct
"delta.fn"	1.28	85.33	0.00	0.00
#3	1.28	85.33	0.00	0.00
"share.fn"	1.12	74.67	0.00	0.00
#24	1.12	74.67	0.00	0.00
#15	0.88	58.67	0.28	18.67
"%*%"	0.28	18.67	0.28	18.67
#16	0.24	16.00	0.04	2.67
"exp"	0.22	14.67	0.22	14.67
"dshare.dp"	0.20	13.33	0.00	0.00
#9	0.20	13.33	0.00	0.00
"+"	0.18	12.00	0.18	12.00
#13	0.18	12.00	0.02	1.33
"matrix"	0.16	10.67	0.16	10.67
#12	0.16	10.67	0.00	0.00
"as.vector"	0.10	6.67	0.02	1.33
"*"	0.08	5.33	0.08	5.33
"/"	0.08	5.33	0.08	5.33
"sum"	0.08	5.33	0.08	5.33
"doTryCatch"	0.02	1.33	0.02	1.33
"t"	0.02	1.33	0.02	1.33
#10	0.02	1.33	0.02	1.33
".rs.callAs"	0.02	1.33	0.00	0.00
"Rprof"	0.02	1.33	0.00	0.00
"tryCatch"	0.02	1.33	0.00	0.00
"tryCatchList"	0.02	1.33	0.00	0.00
"tryCatchOne"	0.02	1.33	0.00	0.00
"withCallingHandlers"	0.02	1.33	0.00	0.00

\$sample.interval
[1] 0.02

\$sampling.time

[1] 1.5

Problem 5

The estimates are not very similar to the Table 4 of BLP 1995. Most of betas have the same sign as in the paper but most of gammas don't have the same sign as in the paper. It implies that I correctly estimated the demand side parameters but not the cost side parameters.

Table 4:

alpha	20.440						
sigma.constant	0.361						
sigma.hpwt	4.816						
sigma.air	0.200						
$\operatorname{sigma.mpd}$	0.659						
sigma.space	0.330						
beta.constant	-11.216						
beta.hpwt	-1.088						
beta.air	4.891						
beta.mpd	0.293						
beta.space	5.536						
gamma.constant	1.951						
gamma.hpwt	-0.064						
gamma.air	1.353						
$\operatorname{gamma.mpd}$	0.535						
gamma.space	0.376						
gamma.trend	-0.021						

The estimated own and cross-price semi-elasticities are summarized in the following table. It's slightly different from the elasticities in the paper.

	MZ323	NISENT	FDESCO	CVCAVA	HDACCO	BKCENT	NIMAXI	ACLEGE	LNTOWN	CDSEVI	LXL540	BW735i
NISENT FDESCO CVCAVA	-6.610 0.024 0.024 0.027 0.010	-7.275 0.058 0.066	0.340		0.390 0.382 0.444	0.052 0.046 0.059	0.014 0.017 0.015 0.018 0.083	0.005 0.007 0.006 0.008 0.064	0.008 0.011 0.011 0.011 0.070	0.004 0.005 0.005 0.006 0.051	0.006 0.010 0.009 0.011 0.107	0.001 0.002 0.002 0.002 0.013
BKCENT	0.004	0.011	0.057	0.077	0.193	-8.222 0.099	0.127	0.085	0.423	0.075	0.076 0.187	0.063
ACLEGE	0.0004	0.002	0.008	0.011	0.214	0.085	0.165	-11.411	0.597	0.159	0.239	0.099
	0.0002		0.005	0.005	0.072 0.199	0.132	0.135	0.185 0.185	-11.012 0.718	0.190 -15.184	0.152 0.244	0.186 0.119
	0.0005		0.009		0.282	0.061 0.128	0.185	0.189 0.197	0.393 1.210	0.166 0.203	-18.684 0.183	0.074 -25.925

Problem 6 The standard errors for our estimates are summarized in the following table.

Table 5:

	estimate	sd
alpha	20.440	0.057
sigma.constant	0.361	0.0004
sigma.hpwt	4.816	0.0001
sigma.air	0.200	0.00001
sigma.mpd	0.659	0.0001
sigma.space	0.330	0.001
beta.constant	-11.216	0.962
beta.hpwt	-1.088	3.348
beta.air	4.891	0.460
beta.mpd	0.293	0.184
beta.space	5.536	0.505
gamma.constant	1.951	0.154
gamma.hpwt	-0.064	0.116
gamma.air	1.353	0.136
gamma.mpd	0.535	0.169
gamma.space	0.376	0.179
gamma.trend	-0.021	0.005