Here's your Cancer Cell Invasion Analysis Project Documentation rewritten in a clean, structured, and professional format, keeping all your details intact but with improved organization, readability, and scientific clarity:

Cancer Cell Invasion Analysis Project Documentation

Project Overview

- **Objective:** Analyze time-lapse cancer cell invasion behavior using quantitative imaging metrics and machine learning approaches.
- **Duration:** October 19–25, 2025
- Analysis Type: Time-series imaging data analysis with Principal Component Analysis (PCA) and clustering methods.

1. Data Preparation and Feature Selection

1.1 Dataset Summary

• Samples: 4 experimental conditions

```
test_S1, test_S2, train_S1, train_S2
```

- **Timepoints:** 12 per sample (t0-t11)
- Total Observations: 48 data points

1.2 Feature Engineering

Selected **16 quantitative invasion metrics** from cellular imaging data:

Category Features

Spatial Metrics mean_radius, max_radius, std_radius

Leader Cell Behavior n_leader_cells, mean_leader_radius

Dispersion radius_skewness, radius_kurtosis,

Measures dispersion_index

Morphology mean volume, mean compactness, mean extent

Population cell_count, cell_density

Measures

Distance Metrics mean m dist, median m dist

2. Principal Component Analysis (PCA)

2.1 PCA Results

Component Variance Explained

PC1 35.99%

PC2 22.91%

PC1 + PC2 (Combined) 58.90%

Interpretation:

The first two principal components capture the dominant invasion behavior patterns across samples.

2.2 Statistical Validation

One-way ANOVA Results:

• PC1 by condition: $p = 1.10 \times 10^{-10}$

• PC2 by condition: $p = 6.14 \times 10^{-25}$

• **Conclusion:** Strong, statistically significant separation between experimental conditions.

3. Clustering Analysis

3.1 K-Means Clustering (k = 4)

Each cluster aligned perfectly with one experimental condition:

Cluster	Sample	Observation s	Mean Invasion (µm)
0	test_S2	12	163.1
1	train_S2	12	180.8
2	test_S1	12	203.5
3	train_S1	12	185.4

Key Finding:

Perfect sample separation — no overlap between conditions in the PCA feature space.

Invasion Ranking:

test_S1 > train_S1 > train_S2 > test_S2

4. Sample-Specific Temporal Dynamics

4.1 PCA Trajectories

test_S1 (Most Invasive)

- **PC1:** Fluctuates around 0–1, dips at *t8*, recovers later
- PC2: Starts high (≈3.5), gradually declines to 1.2
- Pattern: Active, early invasion with later consolidation.

train_S1 (Moderately Invasive)

- PC1: Negative (-6 to -1), sharp increase at t4
- PC2: Stable near 0

• Pattern: Low initial invasion, activation mid-experiment.

train_S2 (Dynamic Invasion)

• **PC1:** Rising trend $(0.8 \rightarrow 4.0)$, peaks at t7

• **PC2:** Fluctuates (2.0 → 0.2 → 1.8)

• Pattern: Progressive invasion with dynamic behavioral changes.

test_S2 (Late-Activated)

• PC1: Negative start, sharp rise to 3.6 at t8

• **PC2**: Consistently negative (-2 to -4)

• Pattern: Delayed activation, distinct behavioral profile.

5. Leader Cell Analysis

5.1 Cluster Characteristics: Leader Cell Distribution

Sample	Approx. Leader Cells	Invasion Behavior
train_S2	~8 (highest)	Most aggressive, leader-driven invasion
test_S1	~5.5	High invasion with moderate leader activity
train_S1	~5.0	Moderate leader cell presence
test_S2	~2 (lowest)	Least leader-driven, delayed invasion

5.2 Biological Significance

- Leader Cells: Pioneer cells that initiate and guide collective invasion fronts.
- Implications from Analysis:

- train_S2's high leader cell count explains its dynamic, progressive invasion pattern.
- test_S2's low leader cell count aligns with its delayed activation profile.
- Leader cells are likely major contributors to PC1, representing invasion spread and dispersion.

5.3 Leader Cell-PCA Correlation

Observation

Correlation

High leader cell count (train_S2) Rising PC1 values, dynamic

invasion

Low leader cell count (test_S2) Negative PC2, delayed activation

Conclusion:

Leader cell activity is a **key mechanistic driver** of sample differentiation in PCA space, validating the biological relevance of the extracted features.

6. Feature Loading Insights

- High positive loadings on PC1:
 - n_leader_cells, mean_leader_radius, mean_radius, dispersion_index
 - → Represent overall invasion spread and leader-driven activity.
- High loadings on PC2:

mean_compactness, mean_extent, radius_skewness

→ Represent morphological and structural invasion traits.

7. Temporal and Biological Interpretation

7.1 Temporal Phases

Phase Timepoints

Description

Early Invasion t0–t3 Initial spreading activity

Mid-phase Transition t4–t7 Critical shift in invasion dynamics

Late Consolidation t8–t11 Stabilization and structure formation

7.2 Biological Insights

• **test_S1**: Early peak and strong invasive phenotype.

• **train_S1:** Moderate invasion, activation mid-experiment.

• **train_S2:** Leader-driven, dynamically progressive invasion.

• **test_S2**: Unique, leader-independent delayed activation.

8. Technical Implementation

8.1 Data Processing Pipeline

- 1. Feature standardization (mean = 0, variance = 1)
- 2. PCA transformation using **scikit-learn**
- 3. K-means clustering (k=4)
- 4. Hierarchical clustering validation
- 5. Time-series trajectory analysis

8.2 Visualization Methods

- PCA scatter plots (by condition & cluster)
- Individual sample trajectories (PC1/PC2 vs. time)
- Feature loading heatmaps

- Scree plots (component selection)
- 2×2 comparative trajectory grids

8.3 Generated Output Files

pca_clustering_analysi Main PCA & clustering visualization s.png

pca_clustering_results Numerical PCA and clustering results .csv

all_samples_pca_4grids Comparative PCA trajectory plots .png

9. Key Biological Conclusions

- Leader cells are central to invasion mode differentiation.
- Distinct invasion phenotypes correspond to specific PCA–cluster profiles.
- Dynamic and morphological metrics capture meaningful biological behavior.
- PCA and clustering confirm clear separation of experimental conditions.

10. Next Steps

- 1. **Feature-level analysis:** Plot raw invasion metrics for all samples.
- 2. **Biological correlation:** Link PCA patterns with experimental treatments.
- 3. Validation: Cross-check raw imaging data at key timepoints.
- 4. **Predictive modeling:** Build classifiers for invasion phenotypes.

5. **Temporal testing:** Perform within-sample statistical comparisons.

11. Technical Notes

- **Software:** Python (pandas, matplotlib, scikit-learn)
- **Approach**: Unsupervised learning with temporal component
- Reproducibility: All code and parameters logged
- Validation: Multiple clustering methods confirmed consistency

Summary

This project identified **distinct invasion phenotypes and temporal dynamics** across cancer cell samples.

Leader cell behavior emerged as a **major mechanistic factor** driving invasion variability, validated through PCA and clustering.

The analysis framework provides a **quantitative and biologically meaningful foundation** for deeper mechanistic exploration and therapeutic hypothesis generation.

Would you like me to format this into a **professional PDF report** (with sections, tables, and figure placeholders) or a **Word document** next?