MATH 370 (Sp. 2025): ULA Small Group Session #2 with Luc Ta

As requested, let's do a review of normal subgroups. Then, we'll do a couple problems to practice using normal subgroups in a Galois theory context:) But first, remember to sign in, using either the QR code or this link.

Definition. Let $H \leq G$. There are many equivalent definitions of what it means for H to be a normal subgroup of G, in which case we write $H \subseteq G$. Here's what I think the most useful ones are:

- 1. There exists a group K and a group homomorphism $\varphi: G \to K$ such that $\ker \varphi = H$.
- 2. For all $g \in G$ and $h \in H$, we have $ghg^{-1} \in H$.
- 3. For all $q \in G$, we have $qHq^{-1} \subseteq H$.
- 4. For all $g \in G$, we have gH = Hg.
- 5. Multiplication of left cosets $g_1H \cdot g_2H = (g_1g_2)H$ is well-defined and induces a quotient group structure on the set $G/H = \{gH \mid g \in G, \text{ and } g_1H = g_2H \text{ iff } g_2 = g_1h \text{ for some } h \in H\}$.
- 6. H is a union of conjugacy classes in G.

We also have some sufficient (but not necessary) conditions for a subgroup $H \leq G$ to be normal.

Proposition. *If* any of the following are true, then $H \subseteq G$.

- 1. *G* is abelian.
- 2. G is finite, and [G:H] is the smallest prime number dividing |G|. (Recall that [G:H] = |G|/|H| is called the index of H in G.) In particular, any subgroup of index 2 is normal.
- 3. G is the (internal) direct product of H and some other subgroup of G.

Let's get a little practice with normal subgroups.

Problem 1. Let $D_n = \langle r, s \mid r^n = s^2 = 1, srs = r^{-1} \rangle$ be the dihedral group of order 2n. Consider the subgroups $\langle r \rangle$ and $\langle s \rangle$. Are either of them normal in D_n ?

Problem 2. Consider the *quaternion group* $Q_8 = \{\pm 1, \pm i, \pm j, \pm k\}$, where multiplication is defined as follows:

$$ij = k$$
, $jk = i$, $ki = j$, $i^2 = j^2 = k^2 = -1$, $(-1)^2 = 1$, and $(-1)g = -g = g(-1)$ $\forall g \in Q_8$.

(Note that Q_8 is nonabelian.) Describe the subgroups of Q_8 . Which ones are normal?

Problem 3. Given a subgroup $H \leq G$, define the *centralizer* of H in G, denoted by $C_G(H)$, to be the set of all elements of G that commute with every element of H. That is,

$$C_G(H) = \{ g \in G \mid ghg^{-1} = h \}.$$

Show that if $H \leq G$, then $C_G(H) \leq G$. (In particular, the *center* of G, defined as $Z(G) := C_G(G)$, is normal in G.)

Problem 4. (This one's just for fun.) Let $n \in \mathbb{Z}^+$ be a positive integer, and let \mathbb{F} be a field. Consider the *general linear group* $GL_n(\mathbb{F})$, which is the group of invertible $n \times n$ matrices with entries in \mathbb{F} . Also, consider the *special linear group*

$$\operatorname{SL}_n(\mathbb{F}) = \{ M \in \operatorname{GL}_n(\mathbb{F}) \mid \det M = 1 \}.$$

Show that $\mathrm{SL}_n(\mathbb{F})$ is a normal subgroup of $\mathrm{GL}_n(\mathbb{F})$. What group is $\mathrm{GL}_n(\mathbb{F})/\mathrm{SL}_n(\mathbb{F})$ isomorphic to? (Hint: Show that $\mathrm{SL}_n(\mathbb{F})$ is the kernel of a certain homomorphism from $\mathrm{GL}_n(\mathbb{F})$ to \mathbb{F}^{\times} .)

Normal subgroups are crucial for computing semidirect products of groups.

Theorem ("Internal semidirect product theorem" or "identification theorem," DF p. 180). Let G be any group, and let H and K be subgroups of G such that

- 1. $H \subseteq G$
- 2. $H \cap K = 1$, and
- 3. |G| = |H||K|.

Let $\varphi: K \to \operatorname{Aut}(H)$ be the conjugation map $k \mapsto [h \mapsto khk^{-1}]$. Then G is isomorphic to the (internal) semidirect product $H \rtimes_{\varphi} K$.

Proposition (DF p. 177). Let G be the semidirect product $H \rtimes K$. Then $H \subseteq G$. Moreover, the following are equivalent:

- 1. *G* is isomorphic to the direct product $H \times K$.
- 2. $\varphi: K \to \operatorname{Aut}(H)$ is the trivial homomorphism.
- 3. K acts trivially on H. That is, $k \cdot h = h$ for all $k \in K$ and $h \in H$.
- 4. $K \leq G$.

Problem 5. Deduce from Problem 2 that Q_8 can't be written as an (internal) semidirect product $H \rtimes K$ with 1 < |H|, |K| < 8.

Finally, let's see what implications normal subgroups have for Galois theory.

Problem 6. Use the internal semidirect product theorem to classify the Galois groups of the following polynomials $f \in \mathbb{Q}[x]$ over \mathbb{Q} .

- (a) $f = x^3 2$.
- (b) $f = x^4 2$.
- (c) $f = x^7 13$.

Problem 7. Let's apply what the fundamental theorem of Galois theory tells us about normal subgroups and quotient groups. Let $\alpha := \sqrt{(2+\sqrt{2})(3+\sqrt{3})}$, and let $K = \mathbb{Q}(\alpha)$. You can take for granted that $\mathrm{Gal}(K/\mathbb{Q}) \cong Q_8$.

- (a) Let $H \leq \operatorname{Gal}(K/\mathbb{Q})$. Is K^H/\mathbb{Q} necessarily Galois? (Use Problem 2.)
- (b) You can take for granted that $\beta := \sqrt{2} + \sqrt{3} \in K$, and $[K : \mathbb{Q}(\beta)] = 2$. Use the previous part to give a new proof that $\operatorname{Gal}(\mathbb{Q}(\sqrt{2} + \sqrt{3})/\mathbb{Q})$ is isomorphic to $Z_2 \times Z_2$. This new proof should not refer at all to polynomials or roots, and it should not use the fact that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$.

You're doing great! :)

¹In particular, see the discussion under "Properties of The Galois Correspondence" in Din's notes.