Нелинейна оптимизация "Множител на Лагранж"

Описание на метода и стъпките, с които се реализира:

- ➤ Този метод ни позволява да намираме максимум или минимум на функция на много променливи f(x₁,...,x_n) при някакво ограничение на входните стойности.
- ightharpoonup Ограничението е от тип равенство $\mathbf{g}(\mathbf{x}_1,...,\mathbf{x}_n) = \mathbf{c}$, където " \mathbf{g} " е друга функция със същите аргументи като " \mathbf{f} ", а " \mathbf{c} " е константа.

Основната идея е да намерим точките, където контурните линии на "f" и "g" се допират една до друга.

В тези точки векторите на ∇f и ∇g са перпендикулярни на двете контурни линии. Насочени са в едно направление и реално съвпадат като са пропорционални един на друг. Следователно тяхното приравняване налага и въвеждането на нова константа λ .

λ – Множител на Лагранж

$$\nabla f = \lambda \nabla g$$

Градиентите са частни производни на функциите по всеки от аргументите им, от където ще получим система с "n" уравнения. Към нея ще добавим самото ограничение, за да допълним до система с равен брой уравнения и неизвестни, тоест "n + 1".

След като решим системата ще получим различни стойности за търсените променливи на функцията $f(x_1,...,x_n)$.

Замествайки с различните комбинации от променливи във функцията ще получим различни решения, което от тях даде найвисока (най-ниска) стойност, ще бъде търсеният от нас максимум (минимум).

Всички уравнения от системата в предната точка могат да бъдат капсулирани в едно единствено, което изглежда така:

$$\nabla L(\mathbf{x}_1, \dots, \mathbf{x}_n, \lambda) = \mathbf{0}$$

Функцията **L** се нарича "Лагранжиан" и има следният вид:

$$L(x_1, ..., x_n, \lambda) = = f(x_1, ..., x_n) - \lambda(g(x_1, ..., x_n) - c)$$

▶ <u>Забележка</u>: В някои източници може да срещнете **λ** с противоположен знак:

$$L(x_1, ..., x_n, \lambda) = = f(x_1, ..., x_n) + \lambda(g(x_1, ..., x_n) - c)$$

Това не води до никаква разлика по отношение решаването на проблема, но го имайте в предвид.

Възможно е да са зададени и повече от едно ограничения, "m" на брой. В този случай се въвеждат и толкова на брой константи λ.
 Тогава функцията L ще придобие следният вид:

$$\begin{split} L(\mathbf{x}_1, \dots, \mathbf{x}_n, \lambda_1, \dots, \lambda_m) &= \\ &= f(\mathbf{x}_1, \dots, \mathbf{x}_n) - \sum_{k=1}^m \lambda_k \left(\mathbf{g}_k(\mathbf{x}_1, \dots, \mathbf{x}_n) - c_k \right) \end{split}$$

"Условия на Каруш – Кун – Такър (ККТ) за оптималност"

Тези условия позволят използването на ограничения от тип неравенство:

$$l_i(x) \le c_i, (i = 1, ..., m)$$

$$l_i(x) - c_i \equiv h_i(x)$$

$$=> h_i(x) \le 0$$

Те обобщават метода на Лагранж, който е само за ограничения от тип равенство.

ightharpoonup Проблем за нелинейна оптимизация:
Намерете $min \ / \ max \ f(x)$ при ограничения $h_i(x) \leq 0, (i=1,...,m)$

Необходими условия

Допускаме, че целевата функция $f: R^n \rightarrow R$ и ограниченията $g_i: R^n \rightarrow R$ са непрекъснато диференцируеми в точка x^* . Нека точка x^* е локален оптимум на поставения проблем. Тогава съществуват константи μ_i (i=1,...,m), наричани ККТ множители, такива че:

1) 3a min f(x):

$$\nabla f(x^*) + \sum_{i=1}^m \mu_i \nabla h_i(x^*) = 0$$

3a max f(x):

$$\nabla f(x^*) - \sum_{i=1}^m \mu_i \nabla h_i(x^*) = 0$$

- 2) $\mu_i h_i(x^*) = 0, \forall i$
- 3) $h_i(x^*) \leq 0, \forall i$
- 4) $\mu_i \geq 0, \forall i$

> Достатъчни условия

Нека $(x^*, \mu_1, ..., \mu_m)$ удовлетворяват условията (1) - (4). Нека f и $g_i(\forall i)$ са диференцируеми изпъкнали функции. Тогава точката x^* е глобален оптимум на поставения проблем.