

Digital System Design

Hajar Falahati

hfalahati@ipm.ir
hfalahati@ce.sharif.edu

Outline

Logic Design Recall

Combinational Logic

Sequential Logic

Logic Design Recall

Binary Logic

- Binary variables
 - 1/0
- Logical operators
 - AND: (a.b)
 - OR : (a+b)
 - NOT : (\bar{a}) , (a'), $(^a)$
- Logical gates
 - Implement logic functions
- Boolean Algebra
 - Specify and transform logic functions

Switches

- A switch has two states
 - Closed / On
 - Open / OFF

$$x = 1$$

$$x = 0$$

Symbol

Transistor

Logic Gates

Logic Gates (cont'd)

Some Definition

Literal

- A variable, complemented or uncomplemented
- \circ A , \overline{A}

Product term

- A literal or literals ANDed together
- $\circ (A \cdot B \cdot \overline{C}), (\overline{A} \cdot C), (B \cdot \overline{C})$

Sum term

- A literal or literals ORed together.
- $\circ (A + B + \overline{C}), (\overline{A} + C), (B + \overline{C})$

Minterm

- A product that includes all the variables
- $(A \cdot B \cdot \overline{C})$, $(\overline{A} \cdot \overline{B} \cdot C)$, $(\overline{A} \cdot B \cdot \overline{C})$

Maxterm

- A sum that includes all the variables
- $(A + B + \overline{C})$, $(\overline{A} + \overline{B} + C)$, $(\overline{A} + B + \overline{C})$

Canonical Form: SOP

- Sum of products (SOP)
 - ORed minterms

$$Y = \bar{A}B\bar{C} + \bar{A}BC + AB\bar{C} + ABC$$

A	В	C	Y	
0	0	0	0	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	0	
1	0	1	0	
1	1	0	1	
1	1	1	1	

Canonical Form: POS

- Product of sum (POS)
 - ANDed maxterms

$$Y = (A + B + C) \cdot (A + B + \bar{C}) \cdot (\bar{A} + B + C) \cdot (\bar{A} + B + \bar{C})$$

	A	В	С	Y	
L	0	0	0	0	
	0	0	1	0	
	0	1	0	1	
	0	1	1	1	
	1	0	0	0	
	1	0	1	0	
	1	1	0	1	
	1	1	1	1	

Two-level Logics

SOP and POS lead to two-level logic

F = A B C + A' B' C'

$$F = (A + C')(B' + C)(A' + B)$$

Karnaugh Map (K-map)

- An alternative method of representing the truth table
- Visualizes adjacencies in up to 6 dimensions
 - Physical adjacency ← Logical adjacency

K-Map: Terms

- Implicant
 - A product term that can cover minterms of a function.
- Prime implicant
 - A product term that is not covered by another implicant of the function.
 - Combining the maximum possible number of adjacent squares
- Essential prime implicant
 - A prime implicant that covers at least one minterm that is not covered by any other prime implicant.

 $F(W,X,Y,Z) = \sum m(1, 2, 3, 9, 10, 11, 13, 14, 15)$

 $F(W,X,Y,Z) = \sum m(1, 2, 3, 9, 10, 11, 13, 14, 15)$

F(A,B,C,D,E) = WZ

 $F(W,X,Y,Z) = \sum m(1, 2, 3, 9, 10, 11, 13, 14, 15)$

F(A,B,C,D,E) = WZ + WY

 $F(W,X,Y,Z) = \sum m(1, 2, 3, 9, 10, 11, 13, 14, 15)$

F(A,B,C,D,E) = WZ + WY + X'YW 00 01 00 01 13 11

X

 $F(W,X,Y,Z) = \sum m(1, 2, 3, 9, 10, 11, 13, 14, 15)$

 $F(a,b,c,d,e) = \prod M(0,2,4,11,14,15,16,20,24,30,31)$

 $F(a,b,c,d,e) = \prod M(0,2,4,11,14,15,16,20,24,30,31)$ a b b abc de 6 e

$$F(a,b,c,d,e) = (b'+c'+d')(b+d+e)(a+b+c+e)(a'+c+d+e)(a+b'+d'+e')$$

Combinational Logics

Combinational Logics

- Always Current inputs produce the output
- Output is independent of
 - Sequence of inputs
 - Time of applying inputs
- => Combinational logics are memory less
 - Memory-less circuits do not contain any feedback lines

Decoder

- n inputs and 2ⁿ outputs
- Exactly one of the outputs is 1 and all the rest are 0s
- The one output that is logically 1 is the output corresponding to the input pattern that the logic circuit is expected to detect

Encoder

- 2ⁿ inputs and n outputs
- At each time only one input can be active
- Generates the binary code corresponding to the input values

Multiplexer (MUX)

- Selects one of the N inputs to connect it to the output
- Needs log₂N-bit control input
- 2:1 MUX

• How is it useful?

DeMultiplexer (DeMUX)

- Selects one of the N outputs and send the data
- Needs log₂N-bit control input
- 1 input and 2ⁿ output lines

Design a 4-bit Adder

- Design a 1-bit half adder
- Design a 1-bit full adder
- Design a 4-bit full adder

Step1: 1-bit Half Adder: Truth Table

а	b	C _{out}	sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Step1: 1-bit Half Adder: minterm for sum

	а	b	C _{out}	sum
	0	0	0	0
<	0	1	0	1
<	1	0	0	1
	1	1	1	0

Step1: 1-bit Half Adder: minterm for C_{out}

	а	b	C _{out}	sum	
	0	0	0	0	
	0	1	0	1	a
	1	0	0	1	b —
(1	1	1	0	

Step1: Design a 1-bit Half Adder

а	b	C _{out}	sum
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Step2: 1-bit Full Adder: Truth Table

а	b	cin	C _{out}	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Step2: 1-bit Full Adder: minterms of sum

Step2: 1-bit Full Adder: minterm for C_{out}

а	b	C _{in}	C _{out}	sum	
0	0	0	0	0	
0	0	1	0	1	
0	1	0	0	1	
0	1	1	1	0	>
1	0	0	0	1	
1	0	1	1	0	>
1	1	0	1	0	>
1	1	1	1	1	>

$$C_{out} = abC_{in} + ab\overline{C_{in}} + a\overline{b} C_{in} + \overline{a} b C_{in}$$

$$C_{out} = ab + a\overline{b} C_{in} + \overline{a} b C_{in}$$

$$C_{out} = ab + C_{in}(a \wedge b)$$

$$C_{out} = ab + C_{in}(a + b)$$

Step2: Design a 1-bit Full Adder

а	b	cin	C _{out}	sum
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	1
1	1	1	1	1

Step3: Design a 4-bit Full Adder

A 4-bit Full Adder

Sequential Logics

Combinational Logics + Memory

- Output of some logics changes by
 - Sequence of inputs
 - Time of applying inputs
- => They have memory
- They contain feedback lines
- State
 - Produced by previous inputs
 - Information stored in a memory

Flip Flops

Design a Counter

- Design a 3-bit synchronous bidirectional counter
 - Input Up / \overline{Down} (Up)
 - \circ *Up* =1 => Counting upward
 - \circ *Up* =0 => Counting downward

Present State			Next State $Up / \overline{Down} = 1$			Next State $Up / \overline{Down} = 0$			Flip Flops $Up / \overline{Down} = 1$		
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	T_2	T_1	T_0
0	0	0	0	0	1	1	1	1			1
0	0	1	0	1	0	0	0	0			1
0	1	0	0	1	1	0	0	1			1
0	1	1	1	0	0	0	1	0			1
1	0	0	1	0	1	0	1	1			1
1	0	1	1	1	0	1	0	0			1
1	1	0	1	1	1	1	0	1			1
1	1	1	0	0	0	1	1	0			1

Fli	p Flo	ps
	\sqrt{Down}	
T_2	T_1	T_0
		1
		1
		1
		1
		1
		1
		1
		1

Present State		No Up	ext Sta	_	Next State $Up / \overline{Down} = 0$			Flip Flops $Up / \overline{Down} = 1$			
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	T_2	T_1	T_0
0	0	0	0	0	1	1	1	1		0	1
0	0	1	0	1	0	0	0	0		1	1
0	1	0	0	1	1	0	0	1		0	1
0	1	1	1	0	0	0	1	0		1	1
1	0	0	1	0	1	0	1	1		0	1
1	0	1	1	1	0	1	0	0		1	1
1	1	0	1	1	1	1	0	1		0	1
1	1	1	0	0	0	1	1	0		1	1

Flip Flops $Up / \overline{Down} = 0$								
T_2	T_1	T_0						
	1	1						
	0	1						
	1	1						
	0	1						
	1	1						
	0	1						
	1	1						
	0	1						

Present State			Next State $Up / \overline{Down} = 1$			Next State $Up / \overline{Down} = 0$			Flip Flops $Up / \overline{Down} = 1$		
Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	Q_2	Q_1	Q_0	T_2	T_1	T_0
0	0	0	0	0	1	1	1	1	0	0	1
0	0	1	0	1	0	0	0	0	0	1	1
0	1	0	0	1	1	0	0	1	0	0	1
0	1	1	1	0	0	0	1	0	1	1	1
1	0	0	1	0	1	0	1	1	0	0	1
1	0	1	1	1	0	1	0	0	0	1	1
1	1	0	1	1	1	1	0	1	0	0	1
1	1	1	0	0	0	1	1	0	1	1	1

	Flip Flops $Up / \overline{Down} = 0$								
T_2	T_1	T_0							
1	1	1							
0	0	1							
0	1	1							
0	0	1							
1	1	1							
0	0	1							
0	1	1							
0	0	1							

$$T_0 = 1$$

$$T_1 = (Q_0 U p) + \overline{Q_0} . \overline{UP}$$

$$T_2 = (Q_0 Q_1 U p) + \overline{Q_0} . \overline{Q_1} . \overline{UP}$$

$$T_0 = 1$$
 $T_1 = (Q_0 U p) + \overline{Q_0} \cdot \overline{UP}$ $T_2 = (Q_0 Q_1 U p) + \overline{Q_0} \cdot \overline{Q_1} \cdot \overline{UP}$

Design an Asynchronous Counter

- Design a 4-bit asynchronous counter
 - Counting upward

Asynchronous 4-bit Counter

\mathbf{Q}_3	\mathbf{Q}_2	$\mathbf{Q_1}$	$\mathbf{Q_0}$	
0	0	0	0	←
0	0	0	1	←
0	0	1	0	← ←
0	0	1	1	←
0	1	0	0	← ← ←
0	1	0	1	←
0	1	1	0	← ←
0	1	1	1	←
1	0	0	0	← ← ←
1	0	0	1	←
1	0	1	0	← ←
1	0	1	1	←
1	1	0	0	← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ← ←
1	1	0	1	←
1	1	1	0	← ←
1	1	1	1	_

Asynchronous 4-bit Counter

Design an Asynchronous Counter

Design a 4-bit asynchronous counter with mode 10

Asynchronous 4-bit Counter: Timing Diagram

Asynchronous 4-bit Counter: Realization

Simplification

- Design a simplified sequential circuit
 - Reduce the number of states
 - Without changing the functionality
- Advantages of reducing the states
 - Less memory elements
 - => decreases cost
 - => decreases complexity
 - => Aids failure analysis

How to Simplify?

- Find equivalent states
 - E.g., S0, S1, S2
- Keep one of these equivalent states
 - E.g., S0
- Remove other equivalent states in each group ones
 - E.g., S1, S2

Equivalent States

- S_1 , S_2 , ..., S_i are **equivalent** <u>If and ony if</u>
 - For every possible input sequence
 - Same output sequence is produced
 - Same output
 - Same next state
- • S_1 , S_2 , ..., S_j are conditional equivalent <u>If and ony if</u>
 - For every possible input sequence
 - Same output
 - Different next state
 - Next states should be equivalent

Implication Table

A procedure for finding all the equivalent states

Present State	Next State			
	а	b		
Α	A/0	C/2		
В	A/0	C/2		
С	F/0	D/2		
D	E/0	C/2		
Е	G/1	D/3		
F	G/1	C/3		
G	B/0	C/2		

Implication Table: Big Picture

									Present State	Next	State
										а	b
Α									Α	A/0	C/2
A									В	A/0	C/2
В									С	F/0	D/2
6									D	E/0	C/2
С								a/0	E	G/1	D/3
D								A b/2	F	G/1	C/3
_								\$	G	B/0	C/2
E								b/2	b/2 b/2		
F								B C	D D	\	
G								b/2	a/0		
			_				_	G	E	/	
	Α	В	С	D	E	F	G	a/1 a/1	\bigcirc		

Do We Need All the Cubes?

Implication Table: Step 1

Draw a chart that has a square for each pair of states

В						
С						
D						
Е						
F						
G						
	Α	В	С	D	Е	F

	С	F/0	D/2
	D	E/0	C/2
a/0	Е	G/1	D/3
***************************************	F	G/1	C/3
A b/2	G	B/0	C/2
	b/2		
b/2	b/2		
b/2 b/2 e	0/e	0/e	E/a
G a/1	a/1		E

Present

State

Α

В

Next State

а

A/0

A/0

b

C/2

Implication Table: Step 2

Put X in the corresponding square

В						
С						
D						
Е						
F						
G						
	Α	В	С	D	Е	F

		a	, D
	Α	A/0	C/2
	В	A/0	C/2
	С	F/0	D/2
	D	E/0	C/2
a/0 _	Е	G/1	D/3
\triangle	F	G/1	C/3
A b/2	G	B/0	C/2
b/2 B b/2 C b/2 m/d F a/1	b/2 b/2 0/e	0/e	p/3

Present

State

Next State

Put X in the corresponding square

В						
С						
D						
Е	Х					
F	Х					
G						
	А	В	С	D	Е	F

	В	A/0	C/2
	С	F/0	D/2
	D	E/0	C/2
a/0	Е	G/1	D/3
b/2	F	G/1	C/3
	G	B/0	C/2
B b/2 C C C S S S S S S S S S S S S S S S S	b/2 O _r	D 0/e	b/3

Present

State

Α

Next State

а

A/0

b

Put X in the corresponding square

В						
С						
D						
Е	Χ	Χ				
F	Χ	X				
G						
	Α	В	С	D	Е	F

В	A/0	C/2
С	F/0	D/2
D	E/0	C/2
Е	G/1	D/3
F	G/1	C/3
G	B/0	C/2
b/2		
b/2	a/0 d	
	<u> </u>	
	C D E F G b/2	C F/0 D E/0 E G/1 F G/1 G B/0 b/2 b/2 c C C C C C C C C C C C C C C C C C C C

Present

State

Α

Next State

а

A/0

b

Put X in the corresponding square

В						
С						
D						
Е	Χ	Χ	Χ			
F	Χ	X	Χ			
G						
	Α	В	С	D	Е	F

Present

State

Next State

a

b

Put X in the corresponding square

В						
С						
D						
Е	Х	Χ	Χ	Χ		
F	Х	X	X	Χ		
G						
	А	В	С	D	Е	F

Present

State

Next State

а

b

Put X in the corresponding square

В						
С						
D						
Е	X	X	X	X		
F	Х	X	X	X		
G					Χ	Χ
	А	В	С	D	Е	F

Present

State

Α

Next State

а

A/0

b

Implication Table: Step 3

- Enter implied pair in non square
 - Put

 ✓ for equivalent states
 - Write conditional states for conditional equivalent states

В						
С						
D						
Е	Χ	Χ	Χ	Χ		
F	Χ	X	Χ	Χ		
G					X	X
	Α	В	С	D	Е	F

	C	F/0	D/2
	D	E/0	C/2
a/0 _	E	G/1	D/3
\triangle	F	G/1	C/3
A b/2	G	B/0	C/2
b/2 B b/2 C S G a/1 F	b/2 b/2 a/1		E P S P S P S P S P S P S P S P S P S P

Present

State

Α

Next State

а

A/0

A/0

b

C/2

- Enter implied pair in non square
 - Put \(\nabla \) for equivalent states
 - Write conditional states for conditional equivalent states

В	V					
С						
D						
Е	Χ	Χ	Χ	Χ		
F	Х	Χ	Χ	Χ		
G					X	X
	Α	В	С	D	Е	F

Present

State

Α

Next State

а

A/0

A/0

b

C/2

- Enter implied pair in non square
 - Put \(\nabla \) for equivalent states
 - Write conditional states for conditional equivalent states

В	V					
С	A=F C=D					
D	A=E					
Е	Х	Χ	Χ	Χ		
F	X	X	Χ	X	C=D	
G	A=B				Χ	Χ
	А	В	С	D	Е	F

Present

State

Α

Next State

а

A/0

A/0

F/0

b

C/2

C/2

- Enter implied pair in non square
 - Put \(\mathcal{V} \) for equivalent states
 - Write conditional states for conditional equivalent states

В	V					
С	A=F C=D	A=F C=D				
D	A=E	A=E				
Е	X	Χ	Χ	Χ		
F	Х	Χ	Χ	Χ		
G	A=B	A=B			Χ	Χ
	А	В	С	D	Е	F

Present

State

Α

Next State

а

A/0

A/0

b

C/2

- Enter implied pair in non square
 - Put \(\nabla \) for equivalent states
 - Write conditional states for conditional equivalent states

В	V					
С	A=F C=D	A=F C=D				
D	A=E	A=E	C=D E=F			
Е	X	Χ	X	X		
F	Х	Χ	Χ	Χ		
G	A=B	A=B	C=D B=F		X	X
	А	В	С	D	Е	F

	D	E/0	C/2
a/0 _	E	G/1	D/3
\triangleright	F	G/1	C/3
A b/2	G	B/0	C/2
	b/2		
b/2	b/2		
b/2 E/q	0/e	0/e	p/3
a/1	a/1		

Present

State

Α

C

Next State

а

A/0

A/0

F/0

b

C/2

C/2

- Enter implied pair in non square
 - Put \(\nabla \) for equivalent states
 - Write conditional states for conditional equivalent states

В	V					
С	A=F C=D	, · · ·				
D	A=E	A=E	C=D E=F			
Е	X	Χ	Χ	Χ		
F	Х	Χ	Χ	Χ		
G	A=B	A=B	C=D B=F	B=E	X	X
	Α	В	С	D	Е	F

	D	E/0	C/2
a/0 _	E	G/1	D/3
\triangleright	F	G/1	C/3
A b/2	G	B/0	C/2
	b/2		
b/2	b/2		
b/2 E/q	0/e	a/0	p/3
G a/1	a/1		E

Present

State

Α

Next State

а

A/0

A/0

F/0

b

C/2

C/2

- Enter implied pair in non square
 - Put \(\nabla \) for equivalent states
 - Write conditional states for conditional equivalent states

В	V					
С	A=F C=D	A=F C=D				
D	A=E	A=E	C=D E=F			
Е	Χ	Χ	Χ	Χ		
F	Χ	Χ	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=E	X	X
	А	В	С	D	Е	F

	D	E/0	C/2
a/0 _	Е	G/1	D/3
\triangleright	F	G/1	C/3
A b/2	G	B/0	C/2
	b/2		
b/2	b/2		
b/2	a/0	a/o	p/3
G a/1	a/1		•

Present

State

Α

C

Next State

а

A/0

A/0

F/0

b

C/2

C/2

Implication Table: Step 4

- Remove self redundant pairs
 - C-D

В	V					
С	A=F C=D	A=F C=D				
D	A=E	A=E	C=D E=F			
Е	Χ	Χ	Χ	Χ		
F	Χ	Χ	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=E	X	X
	А	В	С	D	Е	F

	State	a	b
	Α	A/0	C/2
	В	A/0	C/2
	С	F/0	D/2
	D	E/0	C/2
a/0	E	G/1	D/3
\triangleright	F	G/1	C/3
A b/2	G	B/0	C/2
B b/2 C S S A S A S A S A S A S A S A S A S A	b/2 b/2 0/e	0/e	p/3

Present

Next State

Implication Table: Step 5

- Find squares with implied pairs that are not equivalent
- Put x
 - A-E are not compatible
 - => Each square that has A-E is incompatible too

В	V					
С	A=F C=D	, , ,				
D	A=E	A=E	C=D E=F			
Е	Χ	Χ	Χ	Χ		
F	Χ	Χ	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=E	X	X
	Α	В	С	D	Е	F

Present

State

Α

В

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are not equivalent
- Put x
 - A-E are not compatible
 - => Each square that has A-E is incompatible too

В	V					
С	A=F C=D	A=F C=D				
D	A=E	A=E	C=D E=F			
Е	Х	Χ	Χ	Χ		
F	Χ	Χ	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=E	X	X
	А	В	С	D	Е	F

Present

State

Α

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are not equivalent
- Put x
 - A-E are not compatible
 - => Each square that has A-E is incompatible too

В	V					
С	A=F C=D	A=F C=D				
D	N=F	N=E	C=D E=F			
Е	Х	Χ	Χ	Χ		
F	Χ	X	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=E	X	X
	Α	В	С	D	Е	F

Present

State

Α

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are not equivalent
- Put x
 - A-F are not compatible
 - => Each square that has A-F is incompatible too

В	V					
С	A=F C=D	A=F C=D				
D	N=F	N=E	C=D E=F			
Е	Х	Х	Χ	Χ		
F	Х	Χ	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=E	X	X
	А	В	С	D	Е	F

Present

State

Α

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are not equivalent
- Put x
 - A-F are not compatible
 - => Each square that has A-F is incompatible too

В	V					
С	A=F C=B	A=F C=D				
D	N=F	N=E	C=D E=F			
Е	Х	Χ	Χ	Χ		
F	Χ	X	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=E	X	X
	А	В	С	D	Е	F

Present

State

Α

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are not equivalent
- Put x
 - B-E are not compatible
 - => Each square that has B-E is incompatible too

В	V					
С	A=F C=B	A=F C=Q				
D	N=F	N=E	C=D E=F			
Е	Х	Χ	Χ	Χ		
F	Χ	Χ	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=E	X	X
	Α	В	С	D	Е	F

Present

State

Α

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are not equivalent
- Put x
 - B-E are not compatible
 - => Each square that has B-E is incompatible too

В	V					
С	A=F C=B	A=F A=F				
D	N=F	N=E	C=D E=F			
Ε	Х	Χ	Χ	Χ		
F	Χ	Χ	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=F	Χ	X
	Α	В	С	D	Е	F

Present

State

Α

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are not equivalent
- Put x
 - B-F are not compatible
 - => Each square that has B-F is incompatible too

В	V					
С	A=F C=B	A=F A=F				
D	N=F	N=E	C=D E=F			
Ε	Х	Χ	Χ	Χ		
F	Χ	Χ	Χ	Χ	C=D	
G	A=B	A=B	C=D B=F	B=F	Χ	X
	Α	В	С	D	Е	F

Present

State

Α

Next State

a

A/0

A/0

F/0

b

C/2

C/2

Implication Table: Step 6

- Find squares with implied pairs that are equivalent
- Put
 - A-B are not compatible
 - => Each square that has A-B is incompatible too

В	V					
С	A=F C=B	A=F C=Q				
D	N=F	N=E	C=D E=F			
Е	Х	Χ	Х	Χ		
F	Χ	Χ	X	X	C=D	
G	A=B	A=B	G=B B=T	B=F	X	X
	Α	В	С	D	Е	F

Present

State

Α

В

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are equivalent
- Put
 - A-B are not compatible
 - => Each square that has A-B is incompatible too

В	V					
С	A=F C=D	A=F C=Q				
D		A=E	C=D E=F			
Е	Х	Χ	Χ	Χ		
F	Χ	Χ	Χ	X	C=D	
G	A=B ✓	A=B ✓	G=B B=T	R=F	X	X
	Α	В	С	D	Е	F

Present

State

Α

Next State

a

A/0

A/0

F/0

b

C/2

C/2

- Find squares with implied pairs that are equivalent
- Put V
 - C-D is equivalent if E=F be equivalent
 - E-F is equivalent if C-D be equivalent
 - => They are equal

В	V					
С	A=F C=B	A=F C=Q				
D	N=F	N=E	C=D E=F			
Ε	Х	Χ	Χ	Χ		
F	X	Χ	Χ	X	C=D	
G	A=B ✓	A=B ✓	G=B B=T	B=E	X	X
	Α	В	С	D	Е	F

	Present	Next	State
ent	State	a	b
	Α	A/0	C/2
	В	A/0	C/2
	С	F/0	D/2
	D	E/0	C/2
a/0	Е	G/1	D/3
\triangle	F	G/1	C/3
A b/2	G	B/0	C/2
B b/2 C C C C C C C C C C C C C C C C C C C	a/o	0/e	p/3

- Find squares with implied pairs that are equivalent
- Put
 - C-D is equivalent if E=F be equivalent
 - E-F is equivalent if C-D be equivalent
 - => They are equal

В	V					
С	A=F C=D	A=F C=Q				
D	A=F	A=E	C=D E=F V			
Е	X	Χ	Χ	Χ		
F	X	X	X	Χ	C=D V	
G	A=B ✓	A=B ✓	B=F	B _E	X	X
	А	В	С	D	Е	F

Implication Table: Step 7

- Reduce transition table
 - Remove equivalent states

- Reduce transition table
 - Remove equivalent states

- Reduce transition table
 - Remove equivalent states

	Present	Next State	
	State	а	b
	A,B,G	A/0	C/2
	С	F/0	D/2
	D	E/0	C/2
a/0	E	G/1	D/3
A b/2	F	G/1	C/3
	\ _	b/2	
B b/2 B b/2 G a/1	C 0/e F a/1	b/2	D Q

- Reduce transition table
 - Remove equivalent states

- Reduce transition table
 - Remove equivalent states

- Reduce transition table
 - Remove equivalent states

Simplifies State Diagram

Thank You

