Syntax Analysis

Martin Sulzmann

1 / 38

Syntax Analysis

Objective

Recognize individual tokens as sentences of a language (beyond regular languages).

Example 1 (OK)

Program text x := x + 2 yields token stream

(ident "x") assign (ident "x") plus (const 2)

Example 2 (Not OK)

Program text x x := + 2 yields token stream

(ident "x") (ident "x") assign plus (const 2)

We will discuss later if the 'OK' example shall be semantically valid.

Martin Sulzmann Syntax Analysis 2 / 38

Approach: Parsing with CFG

Context-Free Grammar (CFG)

Language described in terms of a context-free grammar:

```
Command \rightarrow ident assign Expression | ...
```

Expression → const | ident | Expression plus Expression

ident, const, plus being tokens where attributes are omitted.

Note: CFG uses uppercase for non-terminal and lowercase for terminal symbols. Our parsing tool OCamlyacc just uses it the other way around!

Parsing yields Abstract Syntax Tree (AST)

Check if stream of tokens is valid and produce AST.

Parsing with CFG Example

Token Stream

(ident "x") assign (ident "x") plus (const 2)

Types of Parsing

Top-Down

- Recursive descent
- From root to leaves
- "ANTRL" style

Bottom-Up

- From leaves to root
- "yacc" style

Others

- Parser combinators
- Derivative-based parser
- ...

Error Handling

Types of Errors | lexical | misspelled keyword | whle cond ... | syntactic | unbalanced parentheses | x:= x+1) | semantic | incompatible types | x:= x + True

while True ...

Provide useful feedback to user. Mostly ignored here.

infinite loop

logical

Context Free Grammar (CFG)

Definition

A CFG G is a 4-tuple (V_t, V_n, S, P) where

- \bigcirc V_t is the set of *terminal* symbols (commonly the set of tokens).
- S is a distinguished non-terminal symbol call the start symbol.
- P is a finite set of productions (aka rewrite rules) of the form: non-terminal → (non-terminal | terminal)*.

Note:

- All sets are finite.
- Left-hand side (lhs) of production consists of a single non-terminal symbol.
- Right-hand side (rhs) consists of arbitrary combinations of terminal and non-terminal symbol described by a regular expression.

CFG Example and Notation

Example

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid ident$$

Notation

- Vocabulary $V = V_t \cup V_n$
- \bullet $a, b, c, ... \in V_t$
- $A, B, C, ... \in V_n$
- \bullet $\alpha, \beta, \gamma, \dots \in V^*$
- $u, v, w, ... \in V_t^*$

CFG as a Rewrite System

Derivations by Rewriting

If $A \to \gamma \in P$ then $\alpha A \beta \Rightarrow \alpha \gamma \beta$ is a *one-step derivation* using $A \to \gamma$.

- We assume that \Rightarrow^* denotes a derivation of ≥ 0 steps.
- In a *leftmost* derivation (denoted \Rightarrow_L^*) we replace the leftmost non-terminal in each step.
- In a *rightmost* derivation (denoted \Rightarrow_R^*) we replace the rightmost non-terminal in each step.
- If $S \to^* \beta$ then β is a sentential form of G.
- If $S \to^* w$ and $w \in V_t^*$ then w is a *sentence* of G.
- $L(G) = \{ w \mid S \Rightarrow^* w, w \in V_t^* \}$ denotes the language described by G.

Example Derivation

CFG

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid ident$$

Derivation $E \Rightarrow^* ident + (ident)$

$$E \Rightarrow E + T \Rightarrow T + T$$

$$\Rightarrow F + T \Rightarrow ident + T$$

$$\Rightarrow ident + F \Rightarrow ident + (E)$$

$$\Rightarrow ident + (ident)$$

Example Derivation (2)

CFG

$$E \rightarrow E + E \mid E * E \mid (E) \mid 0 \mid ... \mid 9$$

Derivation $E \Rightarrow^* 3 + 7 * 2$

$$E \Rightarrow E + E \Rightarrow 3 + E \Rightarrow 3 + E * E \Rightarrow 3 + 7 * E \Rightarrow 3 + 7 * 2$$

Things to think about

- Multiple derivations for the same input word?
- How to represent derivations?

Martin Sulzmann Syntax Analysis 11 / 38

Parse Trees

Purpose

- Compact representation of a derivation $E \Rightarrow^* w$.
- Most often in terms of a tree-like structure (but other formats like bit-encodings are also possible).
- Different from AST!
 - Parse tree represents concrete input word.
 - AST is an abstract representation of input.

12 / 38

Parse Tree Example

CFG + Derivation

$$E \rightarrow E + E \mid E * E \mid (E) \mid 0 \mid ... \mid 9$$

 $E \Rightarrow E + E \Rightarrow 3 + E \Rightarrow 3 + E * E \Rightarrow 3 + F * E \Rightarrow 3 +$

Parse Tree

AST versus Parse Tree

Parse tree: Maintain all source (concrete) syntax info.

AST: Abstract representation.

Martin Sulzmann Syntax Analysis 14 / 38

Ambiguity

Definition

Multiple parse trees for the same grammar and input word.

Example

$$E \rightarrow E + E \mid E * E \mid (E) \mid 0 \mid ... \mid 9$$

$$E \Rightarrow E * E \Rightarrow E + E * E$$

$$\Rightarrow 3 + E * E \Rightarrow 3 + 7 * E$$

$$\Rightarrow 3 + 7 * 2$$

Another parse tree:

Ambiguity Example

Ambiguous Grammar

$$E \rightarrow E + E \mid E * E \mid (E) \mid ident$$

Equivalent Non-Ambiguous Grammar

Fact

Some context-free languages are inherently ambiguous.

Martin Sulzmann Syntax Analysis 16 / 38

Ambiguity Example (2)

Exercise

Consider

```
Stmt \rightarrow \text{if } Expr \text{ then } Stmt
| \text{if } Expr \text{ then } Stmt \text{ else } Stmt
| \text{ other}
```

Ambiguous? Does an equivalent unambiguous grammar exist?

Martin Sulzmann Syntax Analysis 17 / 38

Parsing Approaches: Top-Down versus Bottom-Up

Example

$$E \rightarrow E + E \mid E * E \mid (E) \mid 0 \mid ... \mid 9$$

Top-Down ("ANTLR")

- Build left-most derivation (strictly reduce left-most non-terminal symbols).
- $E \Rightarrow E + E \Rightarrow 3 + E \Rightarrow 3 + E * E \Rightarrow 3 + 7 * E \Rightarrow 3 + 7 * 2$
- "Guess which rule to apply from left to right."

Bottom-Up ("yacc")

- Build right-most derivation.
- $E \Rightarrow E + E \Rightarrow E + E * E \Rightarrow E + E * 2 \Rightarrow E + 7 * 2 \Rightarrow 3 + 7 * 2$
- "Seek for matches of right-hand side, replace by left-hand side."

Top-Down Parsing

Example

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid ident$$

Approach

Build left-most derivation

- starting from start symbol,
- use target string to choose productions.

Challenge: Left Recursion

- $E \Rightarrow E + T \Rightarrow E + T + T \Rightarrow ...$
- Several possible right-hand sides.
- Some lead to dead ends. Backtracking? Too inefficient.

Removal of Left Recursion

Example

Consider

$$\begin{array}{ccc} E & \rightarrow & E+T \mid T \\ T & \rightarrow & T*F \mid F \\ F & \rightarrow & (E) \mid ident \end{array}$$

Remove left recursion, e.g.

$$\begin{array}{ccc} E & \rightarrow & TE' \\ E' & \rightarrow & +TE' \mid \epsilon \end{array}$$

Martin Sulzmann Syntax Analysis 20 / 38

Removal Left Recursion (2)

Direct Left Recursion Removal

Left recursion can be eliminated as follows:

Grammar rules

$$A \rightarrow A\alpha_1 \mid ... \mid A\alpha_n \mid \beta_1 \mid ... \mid \beta_m$$

are replaced by the equivalent rules

$$\begin{array}{ccc} A & \rightarrow & \beta_1 A' \mid \dots \mid \beta_m A' \\ A' & \rightarrow & \alpha_1 A' \mid \dots \mid \alpha_n A' \mid \epsilon \end{array}$$

Indirect Left Recursion Removal

Consider

$$A \rightarrow BC$$

 $B \rightarrow A\beta$

- Left recursion involves several rules.
- Can be eliminated (reduced to direct case) via unfolding.

Left Factoring

Issue

Remove common prefix of right hand sides.

Left Factoring

Left factoring of $A \to \alpha \beta_1 \mid ... \mid \alpha \beta_n \mid \gamma_1 \mid ... \mid \gamma_m$ (where $\alpha \neq \epsilon$ is the longest common prefix) yields

$$\begin{array}{ccc} A & \rightarrow & \alpha A' \mid \gamma_1 \mid \dots \mid \gamma_m \\ A' & \rightarrow & \beta_1 \mid \dots \mid \beta_n \end{array}$$

Example

Top-Down Parsing: Short Summary

Predictive Top-Down Parsing

- Eliminate left recursion.
- Apply left factoring.
- Deterministic. No backtracking.

Lookahead?

- How far to lookahead in the input string to (deterministically) apply a rule?
- Observe right-hand sides!

First (matching symbols)

Intuition

Which terminals can start a string matching the non-terminal?

Definition

$$First(\alpha) = \{ a \in V_t \cup \{\epsilon\} \mid \alpha \Rightarrow^* a\beta \}$$

Inductive Definition

$$\mathit{First}(\alpha) \ = \left\{ \begin{array}{ll} \{x\} & \text{if } \alpha = x\alpha', \ x \in V_t \\ \mathit{First}(x) & \text{if } \alpha = x\alpha', \ \epsilon \not \in \mathit{First}(x), \ x \in V_n \\ \mathit{First}(x) \cup \mathit{First}(\alpha') & \text{if } \alpha = x\alpha', \ \epsilon \in \mathit{First}(x), \ x \in V_n \end{array} \right.$$

Sufficient to consider First(X) where X is a non-terminal.

First Algorithm

Algorithm

Build First(X) as follows:

- **1** If X is a terminal then $First(X) = \{X\}$.
- ② If $X \to \epsilon$ then add ϵ to First(X).
- **3** If $X \to Y_1...Y_k$:
 - Put $First(Y_1) \{\epsilon\}$ in First(X).
 - $\forall i.1 < i <= k$, if $\epsilon \in First(Y_1) \cap ... \cap First(Y_{i-1})$ (i.e. $Y_1...Y_{i-1} \Rightarrow^* \epsilon$) then put $First(Y_i) \{\epsilon\}$ in First(X).
 - **③** If $\epsilon \in First(Y_1) \cap ... \cap First(Y_k)$ then add ϵ to First(X).

Repeat until no more additions can be made.

Martin Sulzmann Syntax Analysis 25 / 38

First Example

Example

$$\begin{array}{lll} E & \rightarrow & TE' & First(E) = \{ident, (\}\\ E' & \rightarrow & +TE' & First(E') = \{+, \epsilon\}\\ E' & \rightarrow & \epsilon\\ T & \rightarrow & FT' & First(T) = \{ident, (\}\\ T' & \rightarrow & *FT' & First(T') = \{*, \epsilon\}\\ T' & \rightarrow & \epsilon\\ F & \rightarrow & ident & First(F) = \{ident, (\}\\ F & \rightarrow & (E) & First(F) = \{ident, (E) & First(F) = \{ident,$$

26 / 38

Martin Sulzmann Syntax Analysis

Follow

Issue

- Which terminals can start a string matching after the nonterminal?
- ullet Consider ϵ right hand sides.

Definition

 $Follow(A) = \{ w \in First(\beta) \mid S \Rightarrow^* wA\beta \}$

Algorithm

Build Follow(A) as follows:

- **1** Add \$ to Follow(S) where S is the start symbol.
- ② If $A \rightarrow \alpha B\beta$:
 - **1** Put $First(\beta) \{\epsilon\}$ in Follow(B)
 - ② If $\beta = \epsilon$ (i.e. $A \to \alpha B$) or $\epsilon \in First(\beta)$ (i.e. $\beta \Rightarrow^* \epsilon$) then put Follow(A) in Follow(B).

Repeat until no more additions can be made ($\$ = \mathsf{EOF}$ token).

First and Follow Example

Example

$$\begin{array}{ccc} S & \rightarrow & BAa \\ A & \rightarrow & \epsilon \mid BcA \\ B & \rightarrow & \epsilon \mid b \end{array}$$

	First	Follow
S	a, b, c	\$
Α	ϵ, b, c	а
В	$\epsilon, extcolor{b}$	a, b, c

28 / 38

Martin Sulzmann Syntax Analysis

LL(1) Grammar

definition

A grammar G is LL(1) iff for each set of productions $A \to \alpha_1 \mid ... \mid \alpha_n$:

- First(α_1), ..., First(α_n) are all pairwise disjoint.
- ② If $\alpha_i \Rightarrow^* \epsilon$ then $First(\alpha_j) \cap Follow(A) = \emptyset$ forall $1 <= j <= n, i \neq j$.

If G is ϵ -free (there are no ϵ productions), first condition is sufficient.

Facts

- **1** No left-recursive grammar is LL(1).
- No ambiguous grammar is LL(1).
- 3 Some languages have no LL(1) grammar.

Martin Sulzmann Syntax Analysis 29 / 38

LL(1) Grammar (cont'd)

Example

 $S \rightarrow aS \mid a$ is not LL(1) because $First(aS) = First(a) = \{a\}$. However, the following equivalent grammar is LL(1).

$$\begin{array}{ccc} \mathcal{S} & \rightarrow & a\mathcal{S}' \\ \mathcal{S}' & \rightarrow & a\mathcal{S}' \mid \epsilon \end{array}$$

Lemma

A grammar is LL(1) iff for each two productions $A \to \alpha$ and $A \to \beta$ we have that $Look(A \to \alpha) \cap Look(A \to \beta) = \emptyset$ where

$$Look(A \to \alpha) = \begin{cases} First(\alpha) \setminus \{\epsilon\} & \text{if } \epsilon \notin Follow(\alpha) \\ (First(\alpha) \setminus \{\epsilon\}) \cup Follow(A) & \text{otherwise} \end{cases}$$

◆ロト ◆部 ト ◆ 恵 ト ◆ 恵 ・ 釣 ९ ○

Martin Sulzmann Syntax Analysis 30 / 38

Recursive Descent Parsing

Example

$$\begin{array}{lll} E & \rightarrow & TE' & First(E) = \{ident, (\}\\ E' & \rightarrow & +TE' & First(E') = \{+, \epsilon\}\\ E' & \rightarrow & \epsilon\\ T & \rightarrow & FT' & First(T) = \{ident, (\}\\ T' & \rightarrow & *FT' & First(T') = \{*, \epsilon\}\\ T' & \rightarrow & \epsilon\\ F & \rightarrow & ident & First(F) = \{ident, (\}\\ F & \rightarrow & (E) & First(F) = \{ident, (E) & First(F) = \{$$

Recursive Descent Parser

Grammar is LL(1). Introduce a function for each non-terminal symbol.

Martin Sulzmann Syntax Analysis 31 / 38

Recursive Descent Parser

Parser

Ignore the parse tree, so strictly speaking we only build a matcher.

```
e() { t(); e'(); if token != EOF then HALT; }
e'() { if token == PLUS
       then get_next_token(); t(); e'(); }
t() { f(); t'(); }
t'() { if token == TIMES
       then get_next_token(); f(); t'(); }
f () { if token == IDENT
        then get_next_token();
        else if token == OPENPAR
              then get_next_token(); e();
                   if token==CLOSEPAR
                    then get_next_token();
                    else HALT; }
```

Table Driven Parsing

Fact

A program making use of recursive function can be simulated by a non-recursive program (by making use of a stack).

Table Driven Approach

Stack elements are elements in our vo Input consists of terminal symbols Table encodes "LL(1) actions"

Martin Sulzmann Syntax Analysis 33 / 38

Parse Table Construction

Algorithm

Input: Grammar G

Output: Parsing table M

Method:

1 For each production $A \rightarrow \alpha$:

- For each $a \in First(\alpha)$ add $A \to \alpha$ to M[A, a].
- **2** If $\epsilon \in First(\alpha)$:
 - For each $b \in Follow(A)$ add $A \rightarrow \alpha$ to M[A, b].
 - ② If $\$ \in Follow(A)$, add $A \rightarrow \alpha$ to M[A, \$].

If there are multiple entries then grammar is not LL(1).

Table Driven Parsing

Algorithm

```
Push $; Push start symbol
while Top of stack is not $ {
 X:= top of stack; a:= input symbol
  if X is a terminal
  then if X == a
         then pop X; advance input
         else error
   else if M[X,a] == X->Y1 ... Yk
         then pop X; push Yk, ..., Y1
         else error
```

35 / 38

Example

First and Follow Sets

$$\begin{array}{lll} E & \rightarrow & TE' & First(E) = \{ident,(\} & Follow(E) = \{\$,\}\} \\ E' & \rightarrow & +TE' & First(E') = \{+,\epsilon\} & Follow(E') = \{\$,\}\} \\ E' & \rightarrow & \epsilon & \\ T & \rightarrow & FT' & First(T) = \{ident,(\} & Follow(T) = \{\$,+,\}\} \\ T' & \rightarrow & *FT' & First(T') = \{*,\epsilon\} & Follow(T') = \{\$,+,\}\} \\ T' & \rightarrow & \epsilon & \\ F & \rightarrow & ident & First(F) = \{ident,(\} & Follow(F) = \{\$,+,*,\}\} \\ F & \rightarrow & (E) & \end{array}$$

Martin Sulzmann Syntax Analysis 36 / 38

Parse Table + Execution

	ident	+	*	()	\$
Е	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow ident$			$F \rightarrow (E)$		

Stack \$E' T' \$E' T' F' \$E' T' id \$E' T' \$E' \$E' T+ \$E' T + \$E' T' F \$E' T' F	Input $id + (id)$ $+ (id)$ $+ (id)$ $+ (id)$ (id) (id) (id)	Rule $E \rightarrow TE'$ $T \rightarrow FT'$ $F \rightarrow id$ $T' \rightarrow \epsilon$ $E' \rightarrow +TE'$ $T \rightarrow FT'$ $F \rightarrow (E)$	Stack \$E'T')E \$E'T')E'T \$E'T')E'T' \$E'T')E'T'id \$E'T')E'T' \$E'T')E' \$E'T') \$E'T' \$E'T' \$E'T'	Input id) id) id) id)))) \$ \$ \$	Rule $E \rightarrow TE'$ $T \rightarrow FT'$ $F \rightarrow id$ $T' \rightarrow \epsilon$ $E' \rightarrow \epsilon$ $T' \rightarrow \epsilon$ $E' \rightarrow \epsilon$
--	---	---	--	--------------------------------------	---

Top-Down Parsing

Summary

- Predictive parsing (removal left recursion, left factoring).
- LL(1) grammars.
- Recursive descent parsing.
- Table driven parsing.
- How to construct parse tree? (later)
- Error recovery important (but no time!), please consult text book.
- ANTRL state-of-the art LL-style parser for Java.