STAT 636, Fall 2015 - Assignment 3

Due Monday, October 5, 11:55pm Central

Online Students: Submit your assignment through WebAssign.

On-Campus Students: Email your assignment to the TA.

- 1. Consider a bivariate normal population with $\mu_1 = 0$, $\mu_2 = 2$, $\sigma_{11} = 2$, $\sigma_{22} = 1$, and $\rho_{12} = 0.5$.
 - (a) Write out the bivariate normal density.
 - (b) Write out the squared generalized distance expression $(\mathbf{x} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})$ as a function of x_1 and x_2 .
 - (c) Draw / plot the constant-density contour that contains 50% of the probability.
- 2. Let **X** be $N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ with $\boldsymbol{\mu}' = [-3, 1, 4]$ and

$$\mathbf{\Sigma} = \left[\begin{array}{rrr} 1 & -2 & 0 \\ -2 & 5 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

Which of the following random variables are independent? Explain.

- (a) X_1 and X_2 .
- (b) X_2 and X_3 .
- (c) (X_1, X_2) and X_3 .
- (d) $\frac{X_1 + X_2}{2}$ and X_3 .
- (e) X_2 and $X_2 \frac{5}{2}X_1 X_3$.
- 3. Let **X** be distributed as $N_3(\mu, \Sigma)$, where $\mu' = [1, -1, 2]$ and

$$\Sigma = \left[\begin{array}{rrr} 4 & 0 & -1 \\ 0 & 5 & 0 \\ -1 & 0 & 2 \end{array} \right]$$

Specify each of the following.

- (a) The conditional distribution of X_1 , given that $X_3 = x_3$.
- (b) The conditional distribution of X_1 , given that $X_2 = x_2$ and $X_3 = x_3$.
- 4. Find the maximum likelihood estimates of the 2×1 mean vector $\boldsymbol{\mu}$ and the 2×2 covariance matrix $\boldsymbol{\Sigma}$ based on the random sample

$$\mathbf{X} = \begin{bmatrix} 3 & 6 \\ 4 & 4 \\ 5 & 7 \\ 4 & 7 \end{bmatrix}$$

5. Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{20}$ be a random sample of size n = 20 from an $N_6(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ population. Specify each of the following.

1

- (a) The distribution of $(\mathbf{X}_1 \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\mathbf{X}_1 \boldsymbol{\mu})$.
- (b) The distributions of $\bar{\mathbf{X}}$ and $\sqrt{n}(\bar{\mathbf{X}} \boldsymbol{\mu})$.
- (c) The distribution of $(n-1)\mathbf{S}$.
- 6. Let $\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_{60}$ be a random sample of size n = 60 from an $N_4(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ population. Specify each of the following.
 - (a) The distribution of $n(\bar{\mathbf{X}} \boldsymbol{\mu})' \boldsymbol{\Sigma}^{-1} (\bar{\mathbf{X}} \boldsymbol{\mu})$.
 - (b) The approximate distribution of $n(\bar{\mathbf{X}} \boldsymbol{\mu})\mathbf{S}^{-1}(\bar{\mathbf{X}} \boldsymbol{\mu})$.
- 7. Given the air pollution data in Table 1.5 of the textbook ("T1-5.DAT"), examine the pairs $X_5 = \text{NO}_2$ and $X_6 = \text{O}_3$ for bivariate normality.
 - (a) Calculate statistical distances $(\mathbf{x}_j \bar{\mathbf{x}})'\mathbf{S}^{-1}(\mathbf{x}_j \bar{\mathbf{x}}), j = 1, 2, \dots, 42$, where $\mathbf{x}'_j = [x_{j5}, x_{j6}]$.
 - (b) Determine the proportion of observations $\mathbf{x}'_j = [x_{j5}, x_{j6}], j = 1, 2, \dots, 42$, falling within the approximate 50% probability contour of a bivariate normal distribution.
 - (c) Construct a chi-square plot of the ordered distances in part (a).
- 8. Consider the used-car data from Exercise 4.26 in the textbook.
 - (a) Determine the power transformation $\hat{\lambda}_1$ that makes the x_1 values approximately normal. Construct a Q-Q plot for the transformed data.
 - (b) Determine the power transformation $\hat{\lambda}_2$ that makes the x_2 values approximately normal. Construct a Q-Q plot for the transformed data.
 - (c) Determine the power transformations $\hat{\lambda}' = [\hat{\lambda}_1, \hat{\lambda}_2]$ that make the $[x_1, x_2]$ values jointly normal. Compare the results with those from above.