OPEN AI LAB

EAI610-P0 用户手册

2018-11-04

OPEN AI LAB

变更记录 (Reversion Record)

日期 (Date)	版本 (Rev)	说明 (Change Description)	作者 (Author)
2018.10.12	0.2.0	初稿	路明
2018.10.31	0.5.0	根据Review意见修改	路明
2018.11.1	0.6.0	根据二次review意见修改	路明
2018.11.4	0.6.1	增补系统登陆和软件下载	路明

目录(catalog)

1 前言	
- 1.1 目的	
1.1 日的 1.2 术语	
2 EAI610-P0 概述	
2.1 硬件规格	6
2.2 软件规格	
2.3 扩展配件	3
3 硬件介绍	
3.1 硬件总览	
3.2 调试接口	10
3.3 电源模块	11
3.4 存储模块	11
3.4.1 内存	
3.4.2 EMMC	
3.4.3 TF 卡	
3.5 显示模块	
3.5.1 MIPI 显示	
3.5.2 eDP 显示	
3.5.3 HDMI 显示	
3.6 MIPI 相机接口	
3.7 音频模块	
3.8 USB 模块	
3.8.2 Type-C	
3.9 网络通讯	18
3.9.1 以太网	
3.9.2 WIFI/BT	
3.10 低速 IO 接口	
3.11 工作灯	
3.11.1 系统工作灯	
3.11.2 WIFI 工作灯	
3.11.3 蓝牙工作灯	
3.12 UART 接口	
3.12.1 RS232	

OPEN AI LAB EAI610-P0 使用手册

3.13 其他接口	21
3.13.1 RTC	21
4 人工智能开发平台 AID	22
4.1 嵌入式深度学习框架 TENGINE	22
4.2 嵌入式计算机视觉库 BLADECV	22
4.3 异构计算库 HCL	23
5 软件及开发	24
5.1 系统登陆	24
5.2 软件下载	24
5.3 环境设置	24
5.3.1 添加源(默认已经配置)	24
5.3.2 安装 RPM 包(默认已经安装)	25
5.4 源码编译	25
5.4.1 Uboot 编译	25
5.4.2 Kernel 编译	25
5.5 串口调试	26
5.5.1 Windows 平台(以 SecureCRT 为例)	26
5.5.2 Linux 平台(以 Minicom 为例)	27
6 配件	28
6.1 嵌入式可编程接口板	28
6.2 5.5 寸 MIPI 触摸屏	29
6.3 7.85 寸 EDP 触摸屏	29
6.4 高清相机模组	30
6.5 4K 超高清相机模组	31
附录 固件烧写	
1. Windows 主机烧写	32
2. LINUX 主机烧写	33

1前言

1.1 目的

本文档主要介绍 EAIDK 产品中 EAI610-P0 开发板的基本功能,硬件特性,软件特点及软件调试操作方法,旨在帮助开发人员更快、更好的使用 EAI610-P0 开发板,熟悉 EAIDK 产品特点。

1.2 术语

- ➤ EAIDK: Embedded AI Development Kit。嵌入式人工智能开发套件。
- ▶ **AID**: AID 是 OPEN AI LAB 开发的一个面向嵌入式平台前端智能,跨 SoC 的 AI 核心软件平台。
- ▶ BladeCV: BladeCV 是 OPEN AI LAB 开发的,在嵌入式平台上替代 OpenCV 的计算机 视觉开发包,包含计算机视觉算法、图像获取和图形界面三部分。
- ▶ MIPI: Mobile Industry Processor Interface, 移动产业处理器接口。
- ▶ eDP: Embedded DisplayPort, 嵌入式数码音视讯传输接口
- ➤ CTIA: Cellular Telecommunications and Internet Association. 美国无线通信和互联网协会。该协会制定的 AHJ (American Headset Jack) 定义了二合一音频插孔的标准。

2 EAI610-P0 概述

EAIDK,即嵌入式人工智能开发套件,是专为AI开发者精心打造,面向边缘计算的人工智能开发套件。硬件平台具备语音、视觉等传感器数据采集能力,及适用于多场景的运动控制接口;智能软件平台支持视觉处理与分析、语音识别、语义分析、SLAM等应用和主流开源算法,满足AI教育、算法应用开发、产品原型开发验证等需求。

EAI610-P0 是 EAIDK 中第一款硬件平台,主芯片采用具备高性能 Arm SoC 的 RK3399,同时搭载 OPEN AI LAB 嵌入式 AI 开发平台 AID(包含支持异构计算库 HCL、嵌入式深度学习框架 Tengine、以及轻量级嵌入式计算机视觉加速库 BladeCV)。为 AI 应用提供简洁、高效、统一的 API 接口,加速终端 AI 产品的场景化应用落地。

2.1 硬件规格

表 2-1 EAI610-P0 硬件规格表

	次2 1 27 110 10 1 0 段 1 7 7 90 1 日			
SoC	RK3399			
CPU	ARM 6 核 64 位处理器, 基于 big.little 大小核架构			
	双核 Cortex-A72,最高 1.8GHz			
	四核 Cortex-A53,最高 1.4GHz			
GPU	ARM Mali-T860 MP4 4核 GPU			
	支持 OpenGL ES 1.1/2.0/3.0、OpenCL 1.2、DirectX11.1			
	支持 AFBC(帧缓冲压缩)			
运行内存	双通道 LPDDR3 (64-bit) 4GB			
内置存储	16GB 高速 emmc			
扩展存储	MicroSD,最大支持 128GB			
有线网络	RJ45,10/100/1000M 自适应			
WIFI	802.11 ac/a/b/g/n, 2.4G/5GHz			
蓝牙	Bluetooth 4.1			
USB	2xUSB3, 2xUSB2, 1xType-C			
HDMI	2.0, 1xType-A, 最高 4Kx2K@60Hz			
板载接口	MIPI DSI: 4L, 最高 1080p@60Hz			
	eDP: 1.3, 4 lanes, 10.8Gbps			
相机接口	MIPI CSI 2 x 4 lanes			
调试接口	Micro-USB (转 UART)			
UART	2xRS232, 2xRS485			
I2S	8 通道,支持麦克风阵列			
低速接口	3xI2C 1xSPI 12xGPIO 2xADC			
电源	12V, 2A			

2.2 软件规格

表 2-2 EAI610-P0 软件规格表

	Linux	Fedora 28		
操作系统	Android	Rockchip 官方 Android8.1		
		针对 ARM CPU 及 ARM Mali GPU 优化		
	嵌入式深度	支持 Caffe/TensorFlow/MXnet/ONNX 模型文件		
	学习框架	兼容 Caffe/TensorFlow API		
	Tengine	以插件方式支持底层算子扩展		
		支持 INT8 量化		
		具备常用的图像处理、计算机视觉、模式识别		
嵌入式 Al	嵌入式 计算机视觉 加速库 BladeCV	的算子/算法		
开发平台 AID		支持常见格式的图像和视频文件读写,常见编		
AID		码视频码流的解码		
		支持图形化界面的图像/视频显示和信息叠加		
		针对 ARM neon 指令及 GPU 优化		
		支持基于 RK3399 的硬件视频解码及简单图像		
		操作的硬件加速		
	异构计算库 HCL	支持异构计算的嵌入式 NN 计算库		
视频	H264 硬解码	4路 1080p@30fps		
编解码	H265 硬解码	4路 1080p@60fps		
API	H264 硬编码	2路 1080p@30fps		

2.3 扩展配件

表 2-3 EAI610 配件清单表

嵌入式可编程 接口板	IO接口 扩展	含 6 麦克风阵列, I2C, SPI, GPIO, ADC 等接 口扩展
高清相机模组	视觉输入	OV9750,可组双目相机,计算深度信息
4K 超高清相机模组	视觉输入	Sony IMX258, 可用于高清晰度高画质应用
5.5 寸 MIPI 屏	显示/触摸	分辨率 720x1280
7.85 寸 eDP 屏	显示/触摸	分辨率 1536x2048
12V 电源	电源	输入 100-240 V~50/60Hz,输出 12V-2000mA

3 硬件介绍

3.1 硬件总览

EAI610-P0 采用 8 层板设计,沉金工艺。正面如图 3-1 所示,背面如图 3-2 所示。

图3-1 Top Layer 接口图

图 3-2 Bottom Layer 接口图

3.2 调试接口

开发板提供调试串口供开发调试使用。调试串口连接主控的 UART2 接口,通过板上集成 FT232RL UART 转 USB 接口转换芯片,外接 Micro USB 座子。用户只需要一个普通 Micro USB 线即可。

说明: RK3399 的调试串口的波特率为 1500000。

图 3-3 USB Uart Debug 接口示意图

3.3 电源模块

RK3399 EAI610-P0 开发板的电源模块采用 PMIC RK808 为核心芯片,配合外围的 Buck、LDO 组成。

图 3-4 DC 输入接口示意图

3.4 存储模块

3.4.1 内存

RK3399 EAI610-P0 开发板采用两颗 32bit 2GB LPDDR3 颗粒,构成 64bit 4GB DDR。

图 3-5 LPDDR3 位置示意图

3.4.2 EMMC

RK3399 EAI610-P0 开发板采用 EMMC 作为系统盘,默认容量 16GB。

图 3-6 EMMC 位置示意图

3.4.3 TF 卡

RK3399 EAI610-P0 开发板带有 TF Card 卡座,连接 RK3399 SDMMC0。数据总线宽带为4bit,支持热插拔。

图 3-7 TFcard 位置示意图

3.5 显示模块

3.5.1 MIPI 显示

RK3399 EAI610-P0 开发板标配显示屏为 5.5 寸 720P Mipi 显示屏,支持 5 点触摸。

图 3-8 MIPI-TX 连接座位置示意图

Mipi 管脚定义如下表所示:

表 3-1 MIPI_TX 管脚定义表

Pin	Name	Pin	Name
1	GND	16	GND
2	MIPI_TXO_DON	17	LCD_BL_PWM
3	MIPI_TXO_DOP	18	NC
4	GND	19	NC
5	MIPI_TXO_D1N	20	LCD_RST_H
6	MIPI_TXO_D1P	21	GND
7	GND	22	LCD_EN_H
8	MIPI_TXO_CLKN	23	I2C_SCL_TP
9	MIPI_TXO_CLKP	24	I2C_SDA_TP
10	GND	25	TOUCH_INT_L
11	MIPI_TXO_D2P	26	TOUCH_RST_L
12	MIPI_TXO_D2N	27	GND
13	GND	28	VCC5VO_SYS
14	MIPI_TXO_D3N	29	VCC5VO_SYS
15	MIPI_TXO_D3P	30	VCC5VO_SYS

3.5.2 eDP 显示

RK3399 EAI610-P0 开发板可选配件为 7.85 寸 2K eDP 显示屏, 支持 5 点触摸。

图 3-9 EDP 连接示意图

eDP 管脚定义如下表所示:

表 3-2 EDP 管脚定义表

Pin	Name	Pin	Name
1	GND	16	GND
2	EDP_TXON	17	LCD_BL_PWM
3	EDP_TXOP	18	GND
4	GND	19	VCC3V3_S0
5	EDP_TX1N	20	LCD_RST_H
6	EDP_TX1P	21	NC
7	GND	22	LCD_EN_H
8	EDP_AUXN	23	I2C_SCL_TP
9	EDP_AUXP	24	I2C_SDA_TP
10	GND	25	TOUCH_INT_L
11	EDP_TX2N	26	TOUCH_RST_L
12	EDP_TX2P	27	GND
13	GND	28	VCC5V0_SYS
14	EDP_TX3N	29	VCC5V0_SYS
15	EDP_TX3P	30	VCC5V0_SYS

3.5.3 HDMI 显示

RK3399 EAI610-P0 开发板支持 HDMI 显示,采用 A 型接口,可以同其他显示接口组成双屏 显示:双屏同显和双屏异显。

图 3-10 HDMI 位置示意图

3.6 MIPI 相机接口

RK3399 EAI610-P0 开发板拥有 2 路 Mipi Camera 接口,可外接 2 个 OV9750 摄像头组成双 MIPI Camera 同步显示和前后摄像模式;也可外接 1 路 IMX258 实现 4K 高清摄像。

开发板上 2 路 Mipi 接口采用兼容设计。用户只需要设计简单的电源转换电路即可匹配其他 Camera 模组。

图 3-11 Camera 位置示意图

表 3-3	MIPI	Rx0	管脚定义表
7C O O		1 (// (

Pin	Name	Pin	Name
1	GND	16	GND
2	MIPI_RXO_DOP	17	VCC_AVDD
3	MIPI_RXO_DON	18	VCC_AVDD
4	GND	19	GND
5	MIPI_RXO_D2P	20	I2C_SCL_1V8_CAM1
6	MIPI_RXO_D2N	21	I2C_SDA_1V8_CAM1
7	GND	22	VCC_DVDD_CAM11
8	MIPI_RXO_D3P	23	GND
9	MIPI_RXO_D3N	24	VCC1V8_DVP
10	GND	25	GND
11	MIPI_MCLK_CAM1	26	MIPI_RXO_D1N
12	MIPI_RST_CAM1J	27	MIPI_RXO_D1P
13	GND	28	GND
14	MIPI_PDN_CAM1J	29	MIPI_RXO_CLKP
15	FSIN/VSYNC1	30	MIPI_RXO_CLKN

3.7 音频模块

RK3399 EAI610-P0 开发板集成 Realtek ALC5651 Codec 芯片,内置 Charge Pump,板载 MIC。 支持立体声耳机无电容耦合输出和耳麦输入;支持麦克风差分输入,Speaker 输出。

图 3-12 音频接口位置示意图

3.8 USB 模块

3.8.1 USB Host

RK3399 EAI610-P0 开发板集成 2 路 USB2.0 Host 和 2 路 USB3.0 Host。外接 USB 鼠标、键盘 和 U 盘等多种的人机交互方式。

图 3-13 USB 位置示意图

3.8.2 Type-C

RK3399-EAI610-P0 集成 Type-C 接口,支持 USB OTG 功能。可作为 android 的 adb device; 当外接 USB 鼠标、键盘和 U 盘等多种的人机交互方式时,自动切换到 Host 模式。

图 3-14 Type-C 位置示意图

3.9 网络通讯

3.9.1 以太网

EAI610-P0 开发板支持 RJ45 接口,可提供千兆以太网连接功能,选用 PHY 为 RTL8211E-VB-CG, 其特性如下:

- ●兼容 IEEE802.3 标准,支持全双工和半双工操作,支持交叉检测和自适应
- 支持 10/100/1000M 数据速率。
- ●接口采用具有指示灯和隔离变压器的 RJ45 接口。

图 3-15 RJ45 位置示意图

3.9.2 WIFI/BT

开发板上 WIFI+BT 模组采用台湾正基的 AP6255, 其特性如下:

- 支持 WIFI 2.4G 和 5G, 802.11 ac, 采用 4bits SDIO 通讯。
- 支持 BT4.1 功能, 采用 UART 通讯。

图 3-16 WIFI/BT 模组示意图

3.10 低速 IO 接口

EAI610-P0 集成 40 Pins IO 扩展接口和 1 路 8 通道 I2S 接口。其配套低速 IO 配件,支持 I2C/SPI/ADC/GPIO 教学实验和 6 路麦克风阵列+ADC 回采。

图 3-17 低速 IO 板示意图

低速接口 GPIO_EXT 的管脚定义如表 3-4, I2S 接口 I2S 的管脚定义如表 3-5

表 3-4 GPIO_EXT 管脚定义表

Pin	Name	Pin	Name
1	VCC3V3_SYS	21	SPI1_RXD
2	VCC5V0_SYS	22	
3	GPI02_A7/I2C7_SDA	23	SPI1_CLK
4	VCC5V0_SYS	24	SPI1_CSn0
5	GPI02_B0/I2C7_SCL	25	GND
6	GND	26	ADC_IN3
7	GPI04_D0	27	VCC_DC12V
8	GPI02_A0/I2C2_SDA	28	VCC_DC12V
9	GND	29	GPIO2_A2
10	GPI02_A1/I2C2_SCL	30	GND
11	GPIO1_C6	31	GPIO2_A4
12		32	ADC_INO
13	GPIO1_DO	33	GPIO2_A3
14	GND	34	GND
15	GPI04_D2	35	GPI02_B4
16	GPI02_B1/I2C6_SDA	36	GPI02_A6
17	VCC3V3_SYS	37	GPI04_D5
18	GPI02_B2/I2C6_SCL	38	GPI02_A5
19	SPI1_TXD	39	GND
20	GND	40	GPI01_C7

表 3-5 I2S_EXT 管脚定义表

Pin	Name	Pin	Name
1	VCC5VO_SYS	11	I2S0_SDI1
2	VCC5VO_SYS	12	GND
3	GND	13	I2S0_SDI2
4	GND	14	I2SO_LRCK_RX
5	I2C_SCL_AUDIO	15	I2S0_SDI3
6	I2C_SDA_AUDIO	16	I2SO_LRCK_TX
7	SPKER_P	17	I2S0_SD00
8	SPKER_N	18	I2SO_SCLK
9	GND	19	I2S0_SDI0
10	I2S_MUTE	20	I2S_CLK

3.11 工作灯

3.11.1 系统工作灯

当系统工作时,系统工作三色灯(红、蓝、绿)交替显示。

3.11.2 WIFI 工作灯

当 Wifi 工作时, WIFI 工作灯亮; 当 WIFI 关闭时, WIFI 工作灯灭。

3.11.3 蓝牙工作灯

当蓝牙工作时,蓝牙工作灯亮;当蓝牙关闭时,蓝牙工作灯灭。

3.12 UART 接口

3.12.1 RS232

EAI610-P0 集成 2 路 RS232 接口,支持双工通讯,支持软件标准 UART 编程。

3.12.2 RS485

EAI610-P0 集成 2 路 RS485 接口,支持半双工通讯,支持软件标准 UART 编程。

3.13 其他接口

3.13.1 RTC

EAI610-P0 自带一路 RTC 接口,可外接 RTC 电池实现断电同步系统时钟。

4 人工智能开发平台 AID

4.1 嵌入式深度学习框架 Tengine

Tengine 是由 OPEN AI LAB 开发的一款轻量级模块化的高性能神经网络推理引擎,针对 Arm 嵌入式设备进行优化。

Tengine 支持各类常见卷积神经网络,包括 SqueezeNet,MobileNet,AlexNet,ResNet等,支持层融合、8 位量化等优化策略。并且通过调用针对不同 CPU 微构架优化的 HCL 库,将 Arm CPU 的性能充分挖掘出来。除了对单核性能的挖掘,Tengine 在多线程加速上也针对 Arm SoC 系统构架做了专门的优化,并且通过优化调度,双线程加速比达到 170%,四线程加速比达到 270%。为了满足嵌入式应用场景对低功耗、小内存的需求,Tengine 在内存也做了深度优化,轻松运行极度消耗内存的 VGG16 网络,并且通过增加缓存利用率减少不必要的内存访问,从而降低功耗。

Tengine 以 wrapper 的形式支持 Caffe API,原本基于 caffe 开发的应用只需要简单的重新编译就能在 Tengine 上二次部署,后续 Tengine 还将支持 Tensorflow API。

作为一款开放计算平台,Tengine 具备强大的扩展能力,除了支持自带的 HCL 库以外,还支持业界常见的 Openblas, Arm Compute Library 库。同时,开发者可以很容易拓展自己的算子库,提升 Tengine 适应力。Tengine 的扩展性还表现在适配芯片上 GPU 等各类硬件资源甚至是DLA 硬件加速器。只需要简单的在 Tengine 上注册设备并挂载上驱动,就能充分利用芯片上的硬件资源提升计算能力。

4.2 嵌入式计算机视觉库 BladeCV

BladeCV 是由 OPEN AI LAB 开发的面向嵌入式平台的一款轻量级计算机视觉库,针对 Arm 的 CPU 和 GPU 进行深度优化。BladeCV 在嵌入式平台可用于完成 OpenCV 在 Intel 平台相应的功能,用于算法的开发、调试等任务。其有如下特点:

- 1. 具备常用的图像处理、计算机视觉、模式识别的算子/算法/接口。
- 2. 支持常见格式的图像和视频文件读写,能对常见编码格式的视频码流进行解码,也能对未压缩的图像序列进行编码。
- 3. 支持图形化界面的图像/视频显示和信息叠加。

- 4. 针对 ARM neon 指令及 GPU 优化。
- 5. 在一些芯片平台上支持硬件视频编解码及图像操作的硬件加速。EAI610-P0 的版本能够 充分使用 RK3399 的硬件编解码能力,也能利用 RGA 功能进行图像的缩放,旋转,截取,格式转换等硬件加速。

4.3 异构计算库 HCL

HCL 是由 OPEN AI LAB 研发的异构计算库,专用于加速嵌入式平台神经网络计算,HCL 量化计算库也是 Tengine 的高性能计算插件。其重要特点有:

- (1) 加速最耗时算子, 手工调优汇编函数, 针对 CPU 微构架做极致优化
- (2) 支持多线程加速,采用 Dataflow 计算构架,双线程加速比 175%,四线程加速比达 300%
- (3) 支持多精度数据格式计算

HCL 量化计算库基于 Arm CPU 实现,使用 8 位整型 (INT8) 量化数据大幅提高计算速度,同时显著降低内存占用和系统内存带宽消耗。相比于标准 32 位浮点型 (FP32) 数据计算性能提升 50~90%。HCL 采用智能动态量化技术,在不需要 retraining 的前提下,实现推理计算精度基本不变。

HCL 已经适配主流 Arm CPU Cortex-A7/A17/A53/A72/A73。

5 软件及开发

5.1 系统登陆

EAI610-P0 预装 Fedora 28 及轻量级桌面系统 LXDE。缺省登录账号为 openailab,密码为 openailab

5.2 软件下载

EAI610-P0 的固件和源码都可以从 EAIDK 的官方 FTP 获取,其地址为 ftp://ftp.eaidk.net

5.3 环境设置

5.3.1 添加源 (默认已经配置)

1. 安装 RK3399 硬件相关的系统库 RPM 包的源:

sudo yum -y localinstall --nogpgcheck
http://www.eaidk.net/rockchip/rockchip-repo-1.0-1.fc28.aarch64.rpm

2. 安装 Openailab 的系统和应用 RPM 包的源:

```
sudo yum -y localinstall --nogpgcheck
http://www.eaidk.net/openailab/openailab-repo-1.0-1.fc28.aarch64.rpm
```

3. 安装第三方非开源的 RPM 包的源(可选):

```
sudo yum localinstall --nogpgcheck
http://download1.rpmfusion.org/free/fedora/rpmfusion-free-release-
28.noarch.rpm
sudo yum localinstall --nogpgcheck
http://download1.rpmfusion.org/nonfree/fedora/rpmfusion-nonfree-
release-28.noarch.rpm
```

5.3.2 安装 RPM 包 (默认已经安装)

1. 安装编译工具:

sudo dnf -y install gcc gcc-c++ cmake automake

2. 安装 openssl(开发板上编译内核需要):

sudo dnf -y install openssl-devel

5.4 源码编译

编译 Uboot, 会生成: trust.img, Miniloader.img, uboot.img

编译 Kernel, 会生成: resource.img, kernel.img

5.4.1 Uboot 编译

1. 讲入 uboot 源码目录:

cd Source/u-boot

- 2. 编译 Android 的 uboot 的固件:
- ./make.sh android
- 3. 编译 Linux 的 uboot 的固件:
- ./make.sh linux

5.4.2 Kernel 编译

1. 讲入 kernel 源码目录:

cd Source/kernel

- 2. 编译 Android 的 kernel 的固件:
- ./make.sh android
- 3. 编译 Linux 的 kernel 的固件:
- ./make.sh linux

5.5 串口调试

- 5.5.1 Windows 平台 (以 SecureCRT 为例)
- 1. 将 EAI610-P0 开发板的 Debug 口 (microUSB 口) 连接到主机端的 USB 口, 打开设备管理器 获取 USB Serial Port 的端口号, 如下图所示:

图 6-1 获取当前端口 COM 号

注意: 如果设备管理器里面显示驱动异常信息, 请选择更新驱动信息即可。

2. 打开串口工具 "SecureCRT" , 点击 "快速连接" 按钮

图 6-2 串口工具 SecureCRT 界面

3. 配置串口信息,端口选择连接开发板的端口号,设置波特率为 1500000,不勾选流控 RTS/CTS, 如下图所示:

图 6-3 配置串口信息

4. 点击连接,就可以正常查看系统调试信息和输入用户命令。

5.5.2 Linux 平台(以 Minicom 为例)

- 1. 将 EAI610-P0 开发板的 Debug 口连接到主机端的 USB 口。
- 2. 以 root 权限打开 minicom:

sudo minicom -s

- 3. 打开 Minicom 菜单: 输入 CTRL-A + z。
- 4. 进入 Minicom 配置界面: 输入 "O" 选择 "cOnfigure Minicom"。
- 5. 进入串口设置:选择 "Serial port setup"。
- 6. 设置串口设备:输入"A",写入"/dev/ttyUSB0",按回车确定。
- 7. 禁止流控:输入 "F",按回车确定。
- 8.设置波特率: 输入 "E" , 再输入 "A" 直到显示 "Current 1500000 8N1" , 然后回车确定。
 - 9.保存设置:选择 "Save setup as dfl"。

10. 退出设置:选择 "Exit"。

6 配件

6.1 嵌入式可编程接口板

嵌入式可编程接口板是 EAI610-P0 专用的扩展板,通过 GPIO_EXT 和 I2S_EXT 两个连接器相连接。板卡上有如下扩展功能:

表 7-1 麦克风器件规格表

类型	MEMS	
封装	metal cap LGA	
方向	全向	
灵敏度	-26±1 dB @ 1kHz 1Pa	
信噪比	57 dB @ 20 kHz bandwidth, A-weighted	
失真度	1% (100dB SPL @1kHz)	
	10% (120dB SPL @ 1kHz)	
电流	正常模式 750µA,低功耗模式 400µA	

- 2. 通过 SPI 外接 32Mbit 的 Flash 存储器
- 3. 通过 I2C 外接三个 IN219 电压/电流监控器,用于测量 12V,5V 和 3.3V 的实际电压值
- 4. 通过8个GPIO控制数码管
- 5. 通过 2 个 GPIO 接两个按键,可用于触发中断
- 6. 有两个 ADC 外接按键,可用于输入实验。按下 ADC 按键对应点亮一个 LED 灯。

6.2 5.5 寸 MIPI 触摸屏

5.5 寸为标配屏幕, 其规格可见表 7-2

表 7-2 5.5 寸触摸屏核心规格表

LCD 类型	IPS TFT
显示模式	全透, 常黑
背光	白光 LEDx12
接口	MIPI
外观尺寸	76x143x3.3mm
显示尺寸	68x120.96mm
分辨率	720x1280
像素间距	0.945x0.945mm
可视角度	全视角
操作温度	-10~+50 °C
储存温度	-20~+60 °C

6.3 7.85 寸 eDP 触摸屏

7.85 寸为选配屏幕,其规格可见表 7-3

表 7-3 7.85 寸触摸屏核心规格表

显示模式	全透, 常黑
亮度	420cd/m ²
接口	eDP
色彩深度	8-bit, 16.7M 色
外观尺寸	129.00x171.05x2.06mm
分辨率	1536x2048

像素间距	0.078x0.078mm
可视角度	H/V: ±80°
操作温度	0~+50 °C
储存温度	-20~+60 °C

6.4 高清相机模组

高清相机模组传感器采用 OV9750,最大分辨率 1280x960。有两个子型号分别对应可用于 EAI610-P0 的主 MIPI 接口和副 MIPI 接口。这两种子型号可以分别独立使用于单目视觉应用,也可以同时使用于双目视觉应用,如深度信息的获取。其规格可见下表

表 7-4 高清相机模组核心规格表

传感器型号	OV9750
最大分辨率	1280x960
图像区域	4860μm x3660μm
像素尺寸	3.75x3.75µm
镜头尺寸	1/3"
最大图像传输速率	1280x960@60fps
视场角	D=90°, H=80°, V=65°
最大光圈	2.0
畸变	<-0.1%
焦距	2.4mm
景深范围	0.2m ~ ∞
接口	MIPI

6.5 4K 超高清相机模组

4K 超高清相机模组的传感器采用的是 Sony 的 IMX258,具备高信噪比、高动态范围以及相位对焦技术,可用于高清晰度或高画质要求的应用场景。其核心规格可见表 7-3

表 7-3 4K 超高清相机模组核心规格表

传感器型号	Sony IMX258
最大分辨率	4208x3120
图像区域	5.990mm x3.908mm
像素尺寸	1.12x1.12µm
镜头尺寸	1/3.06"
视场角	D=82.4°, H=79.5°
最大光圈	2.0±5%
光学畸变	<1.5%
焦距	3.54mm
对焦距离	10cm ~ ∞
接口	MIPI

说明:限于 RK3399的 ISP 处理能力,本模组在 EAI610-P0 下最高图像传输速率为 3840x2160@20fps

附录 固件烧写

1. Windows 主机烧写

首次烧写前需要安装 Windows PC 端 USB 驱动:

双击 Tools\Windows\DriverAssitant_v4.5\ DriverInstall.exe 打开安装程序,点击"驱动安装"按提示安装驱动即可,安装界面如下所示:

图 4-1 安装界面图

驱动安装完成后,固件烧写步骤如下:

- 1. Type-C 线连接主机端的 USB 接口和 EAI610-P0 开发板的 Type-C 接口。
- 2. 双击 Tools\Windows\EAIDK_FlashTool\ EAIDK_FlashTool.exe 打开程序。
- 3. 长按 EAI610-P0 开发板上 update 按键后重启机器,直到系统进入 Loader 模式,FlashTool显示如下所示:

图 4-2 FlashTool 显示界面图

注意:如果 uboot 启动异常而无法进入 Loader 模式,需要长按 Maskrom 按键让系统进入 Maskrom 模式;FlashTool 提示: Found one Maskrom Device!

- 4. 将 Android 固件拷贝到 Tools\Windows\EAIDK_FlashTool\Images\Android 目录,或将 Linux 固件拷贝到 Tools\Windows\EAIDK_FlashTool\Images\Linux 目录。
- 5. 点击 TAB "Android Image" 或 "Linux Image", 选择要烧写的系统固件。
- 6. 在选择好的系统固件页面,点击按钮 "Flash",开始烧写固件。

2. Linux 主机烧写

- 1. Type-C 线连接主机端的 USB 接口和 EAI610-P0 开发板的 Type-C 接口。 说明: EAI610-P0 的 fedora28 系统也可以作为开发主机给其他开发板烧写固件。
- 2. 长按 EAI610-P0 开发板上 update 按键后重启机器,进入 Loader 模式。
- 3. 进入 Tools/Linux 目录:
 cd Tools/Linux
- 4. 将 Android 固件拷贝到 Tools/Linux/Images/Android 目录。
- 5. 将 Linux 固件拷贝到 Tools/Linux/Images/Linux 目录。
- 6. 执行命令烧写固件:
 - ./flash.sh
 - 1) 烧写 Android 固件:
 - ./flash.sh -a: 烧写所有 Android 固件。
 - ./flash.sh -a boot: 烧写 Android 的 Miniloader.img、trust.img 和 uboot.img。
 - ./flash.sh -a kernel: 烧写 Android 的 kernel.img 和 resource.img。
 - ./flash.sh -a system: 烧写 Android 的 system.img。
- ./flash.sh -a android: 烧写 Android 的 boot.img、system.img、misc.img、recovery.img、vendor.img和 oem.img。
 - 2) 烧写 Linux 固件:
 - ./flash.sh -1: 烧写所有 Linux 固件
 - ./flash.sh -1 boot: 烧写 Linux 的 Miniloader.img、trust.img 和 uboot.img。
 - ./flash.sh -l kernel: 烧写 Linux 的 kernel.img 和 resource.img。
 - ./flash.sh -l rootfs: 烧写 fedora 根文件系统。