

NATIONAL OPEN UNIVERSITY OF NIGERIA 14-16 AHMADU BELLO WAY, VICTORIA ISLAND LAGOS SCHOOL OF SCIENCE AND TECHNOLOGY MAY/JUNE 2012 EXAMINATION

MTH 307 NUMERICAL ANALYSIS II

TIME ALLOWED: 3 HOURS

TOTAL: 70 MARKS

INSTRUCTION: ANSWER ANY 5 QUESTIONS

1. (a) What is the degree of the polynomial involved in the equation: $(2x+1)(x^2-4)=0$

hence obtain its solution. -6 marks

(b) Use Hermite cubic interpolation to estimate the value of $\sqrt{55}$ taking $f\left(x\right)\!\!=\!\!\sqrt{x}$,

$$x_1 = 49, x_2 = 64$$
 -8 marks

- 2. By using the Least Squares Approximation, fit
 - (a) a straight line
 - (ii) a parabola

to the given the data below

to the given the data below								
	Χ	1	2	3	4	5	6	
Ī	У	120	90	60	70	35	11	

- 3. (a) Distinguish between discrete data and continuous function 4marks
- (b) Find the least squares quadratic $ax^2+bx+c=0$, which best fits the curve over the interval

$$0 \le x \le 1$$
 -10 marks

4. (a) Use the recurrence formula to generate the Legendre Polynomial $P_3(x)$ -5marks

- (b) Evaluate $\int_{1}^{3} \frac{1}{x+1} dx$ using the Simpson's one-third rule with $h=\frac{1}{4}$, working with four floating point arithmetic -9 marks
- 5. (a) Find the fourth degree least squares polynomial to |x| over [-1, 1] by means of Legendre polynomials 7 marks
- (b) Given a continuous function e^{-x} for $x \in [-1,1]$ fit a linear polynomial $C_0 + C_1 x$ to e^{-x} and determine its roo t mean square error -7 marks
- 6. (a) Use a cosine function to establish recurrence formula for generating Chebyshev

Polynomials $T_3(x)$ -6 marks

(b) Find the cubic Spline given the table

Х	0	2	4	6	
У	1	9	41	41	-8 marks

- 7. (a) Convert the first 5 terms of the Taylor series expansions for ex into Chebyshev polynomials -6 marks
- (b) By using the Trapezoidal rule integrate $\sqrt{\chi}$ between argument 1.00 and 1.30 for the data below χ -8 marks

		1.0	1.05	s1.10	1.15	1.20	1.25	1.30
	X							
Γ	\sqrt{x}	1.00	1.024	1.048	1.012	1.0954	1.1180	1.140
	V A		7	81	38	4	3	7

Obtain the actual error