Al Response:

Kinematics is a branch of mechanics that deals with the motion of objects without

```
### 1. **Displacement**
```

- Displacement is a vector quantity that refers to the change in position of an objection
- Formula: $(\Delta x = x_f x_i), \text{ where } (x_f) \text{ is the final position and } (x_i)$

2. **Velocity**

- Velocity is the rate of change of displacement with respect to time. It is also a v
- Average velocity (\(v_{avg} \)) can be calculated as:

```
\[
v_{avg} = \frac{\langle \Delta x \rangle}{\langle \Delta x \rangle}
```

- Instantaneous velocity is the velocity of an object at a specific moment in time.

3. **Acceleration**

- Acceleration is the rate of change of velocity with respect to time. It is a vector
- Average acceleration (\(a_{avg} \)) can be calculated as:

```
\[
a_{avg} = \frac{\langle \Delta_{avg} \rangle}{\Delta_{avg}} = \frac{\langle \Delta_{avg} \rangle}{\Delta_{avg}}
```

- Instantaneous acceleration refers to the acceleration at a specific moment.

4. **Equations of Motion**

For uniformly accelerated motion, several key equations relate displacement, init

```
1. \( v = u + at \)
2. \( s = ut + \frac{1}{2}at^2 \)
3. \( v^2 = u^2 + 2as \)
```

Where:

```
- \( s \) = displacement
```

5. **Graphs of Motion**

- **Position-Time Graphs**: The slope indicates velocity.
- **Velocity-Time Graphs**: The slope indicates acceleration, and the area under
- **Acceleration-Time Graphs**: The area under the graph represents the chang

6. **Types of Motion**

- **Linear Motion**: Motion along a straight line.

Projectile Metion: Metion of an object thrown into the air subject to gravitati