Applications

Definition of Critical Points

- ullet The critical points of a function f(x) to be all points x in the domain of f(x) such that
 - $\circ f'(x) = 0$, or
 - $\circ f'(x)$ does not exist

The First Derivative Test

Finding Local Maxima and Minima

• Suppose the function f(x) is continuous a x=a and has a critical point at x=a.

f has a local minimum at x=a if $f'\left(x
ight)<0$ just to the left of a and $f'\left(x
ight)>0$ just to the right of a.

f has a local maximum at x=a if f'(x)>0 just to the left of a and f'(x)<0 just to the right of a.

The point x=a is neither a local minimum nor a local maximum of f if $f'\left(x\right)$ has the same sign just to the left of a and just to the right of a.

The Second Derivative Test

• Suppose that x = a is a critical point of f, with f'(a) = 0.

If f''(a) > 0, then f has a local minimum at x = a.

If f''(a) < 0, then f has a local maximum at x = a.

If f''(a) = 0, or does not exist, then the test is inconclusive — there might be a local maximum, or a local minimum, or neither.

Definition of Inflection Point

• An inflection point is a point where the concavity of the function changes. That is the second derivative f''(x) changes sign -f''(x) > 0 just to the left of x and f''(x) < 0 just to the right of x (or vice versa).

General strategy for sketching functions

- 1. Plot
 - Discontinuities (especially infinite ones)
 - \circ End points (or $x o \pm \infty$)
 - \circ Easy points (x=0, or y=0)(This is optional.)
- 2. Plot critical points and values. (Solve $f^\prime(x)=0$ or undefined)
- 3. Decide whether f'<0 or f'>0 on each interval between endpoints, critical points, and discontinuities, (Valuable double check)
- 4. Identify where f'' < 0 and f'' > 0 (concave down and concave up).
 - o Identify inflection points. (Makes graph look nice. Can be used to double check)
- 5. Combine into graph

Indeterminate Forms

• We call $\frac{0}{0}$ and $\frac{\infty}{\infty}$ indeterminate forms, because when we run into them in a limit, they require further analysis to determine whether the numerator or denominator wins the race to 0 or ∞ respectively, or whether they balance out and reach some other finite limit.

L'Hospital's Rule Version 1: Indeterminate from 0/0

If

$$egin{aligned} f(x) &
ightarrow 0 \ g(x) &
ightarrow 0 \end{aligned} \quad ext{ as } x
ightarrow a,$$

and the functions f and g are differentiable near the point x=a, then limit

$$\lim_{x o a} rac{f(x)}{g(x)} = \lim_{x o a} rac{f'(x)}{g'(x)}$$

provided that and the right hand limit exists or is $\pm \infty$.

lf

$$f(x) o \pm \infty \ g(x) o \pm \infty \quad ext{ as } x o a,$$

and the functions f and g are differentiable near the point x=a, then limit

$$\lim_{x o a}rac{f(x)}{g(x)}=\lim_{x o a}rac{f'(x)}{g'(x)}$$

provided that and the right hand limit exists or is $\pm\infty$

Note that:

- \bullet We can replace a with a^+ or a^- and the results (versions 1 and 2) still hold.
- ullet We can replace a with $\pm\infty$, and the results (versions 1 and 2) still hold.

Other Indeterminate Forms

• Other indeterminate forms $0 \cdot \infty$, $\infty - \infty$, 0^0 , 1^∞ , and ∞^0 should be rearranged to be the form

The Extreme Value Theorem

• If f is continuous on a closed interval [a,b], then there are points at which f attains its maximum and its minimum on [a,b].

Maxima and Minima

• The maxima and minima will be attained at either a critical point or an end point

Related Rates strategy

- To solve related rates problems, it is useful to follow this strategy:
 - i. Start with a good picture!
 - ii. Identify the relevant variables and rates
 - iii. Find an equation relating the relevant variables that always holds.
 - iv. Differentiate implicitly.
 - v. Plug in and solve!