Lingnan Liu (ll656)

Asymptotic complexity problems

1. Prove formally that function g(n) = 2n + 2 is O(n).

Ans: We know that $2n + 2 \le 3n$ if $n \ge 2$. Thus g(n) = 2n + 2 is O(n) for c = 3 and N = 2.

2. Prove formally that function g(n) = 2n + 2 is $O(n^2)$. Yes, this seems to contradict exercise 1. Give an explanation for this.

Ans: We know that $2n + 2 \le n^2$ if $n \ge 3$. Thus g(n) = 2n + 2 is $O(n^2)$ for c = 1 and N = 3.

This conclusion is reasonable. As shown in the formal definition of Big-O, the terms including higher order of n is growing faster than those with lower order of n. Thus, the higher Big-O expression will cover the lower Big-O expression. However, we usually choose the lowest possible order Big-O expression to precisely express the asymptotic complexity of programs.

3. Prove formally that function $h(n) = 7n^2 + 2n + 1000$ is $O(n^2)$.

Ans: We know that $7n^2 + 2n + 1000 \le 8n^2$ if $n \ge 33$. Thus $h(n) = 7n^2 + 2n + 1000$ is $O(n^2)$ for c = 8 and N = 33.

4. Prove formally that function $k(n) = 10^n + n^2$ is $2^{0(n)}$.

Ans: We know that $10^n + n^2 < 10^n + 10^n = 2 \cdot 10^n \le (2 \cdot 10)^n < 32^n = 2^{5n}$, for $n \ge 1$.

Thus, $k(n) = 10^n + n^2$ is $2^{O(n)}$ for c = 5 and N = 1.

5. Ans:

The worst-case order of execution should be $O(|x| \cdot |s|)$. In the worst case, there are no occurrence of x in s, thus the iteration part will be executed by |s| times. In each iteration, the x.equals() function will compare between x and the substring of s which consumes |x| execution times. Therefore, the altogether execution time order is $O(|x| \cdot |s|)$.

In the average case, I think the time consuming of string comparison in the iteration part is a constant. That is, the expected time order should be O(|s|).

Induction problems

1. Ans:

Base case: n = 0, $1 + 2 \cdot 0 - 1 = 0 = 0^2$.

Assume that n = k, P(k) holds, $1 + 3 + 5 + \dots + 2k - 1 = k^2$.

Then $1 + 3 + 5 + \dots + 2k - 1 + 2(k + 1) - 1 = k^2 + 2k + 1 = (k + 1)^2$, therefore P(k + 1) holds.

To sum up, for all $n \ge 0$, P(n) holds.

2. Ans:

Base case:
$$n = 0$$
, $0 = \frac{0(0+1)}{2}$.

Assume that n = k, P(k) holds, $1 + 2 + 3 + \dots + k = \frac{k(k+1)}{2}$.

Then,
$$1 + 2 + 3 + \dots + k + (k + 1) = \frac{k(k+1)}{2} + (k+1) = \frac{(k+1)(k+2)}{2}$$
, therefor $P(k+1)$ holds.

To sum up, for all $n \ge 0$, P(n) holds.

3. Ans:

Base case: $n = 1, 1^3 + 2 \cdot 1 = 3$ is divisible by 3.

Assume that n = k, P(k) holds, $k^3 + 2k$ is divisible by 3.

Then for
$$P(k+1)$$
: $(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2 = k^3 + 2k + 3(k^2 + k + 1)$.

Because $k^3 + 2k$ and $3(k^2 + k + 1)$ are both divisible by 3, $(k + 1)^3 + 2(k + 1)$ is also divisible by 3 as the addition of those two items. P(k + 1) holds.

Thus, for all n > 0, $n^3 + 2n$ is divisible by 3.

4. Ans:

Base case: $n = 1, 3^1 > 1^2$.

Assume that n = k, P(k) holds: $3^k > k^2$.

Then for
$$P(k+1)$$
: $3^{k+1} = 3^k + 3^k + 3^k > k^2 + k^2 + k^2 > k^2 + 2k + 1 = (k+1)^2$.

Thus, P(k + 1) holds and for any $n \ge 1$, P(n) holds: $3^n > n^2$.

5. Ans:

Base case: r.size = 1. In this case, there is only one node in the tree, thus r.left == r.right == null.

From the source code, the function returns 1, which satisfies its specification.

Assume that r. size = k > 1, the function satisfies its specification, a.k.a it returns k.

Now we add one more node to top of the tree, making r. size = k + 1. The original tree becomes the left (or right) subtree of the new node.

From the source code, the return value is size(new.left) + 1 = size(r) + 1 = k + 1. Thus r.size = k + 1, the function still satisfies its specification.

To sum up, the function satisfies its specification for all r. $size \ge 1$.