Confusion Matrix for NOAA, CCI, and Coral Core predictability of Coral Bleaching

Vanessa Hui Fen Neo 2021-11-06

ĸ	
F.	

		Table 1: 0	Confusi	ion Matrix	for predi	ctability	of bleachi	ng using	Degree E	Heating W	/eek value	s from C	CI data		
Reef	Balanced	Accuracy	F1	Sensitivit	S pecificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	nDetectio	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.90	0.81	0.22	1.00	0.80	0.12	1.00	0.90	0.85	0.95	0.18	0.32	0.03	0.22	0.03
Island															
Cocos	0.84	0.92	0.67	0.75	0.94	0.60	0.97	0.84	0.68	1.00	0.62	0.62	0.08	0.14	0.11
(Keel-															
ing)															
Is-															
lands															
Houtman	0.93	0.86	0.29	1.00	0.86	0.17	1.00	0.93	0.89	0.97	0.25	0.38	0.03	0.17	0.03
Abrol-															
hos															
Ningaloo	0.58	0.87	0.17	0.25	0.90	0.13	0.95	0.58	0.41	0.74	0.11	0.12	0.01	0.10	0.06
Reef															
Scott	0.55	0.78	0.20	0.25	0.84	0.17	0.90	0.55	0.47	0.62	0.08	0.08	0.03	0.17	0.11
Reef															

•	ď	•
_	٠	J

	,	Table 2: Co	onfusio	n Matrix fo	or predict	ability o	f bleachin	g using I	Degree He	ating We	ek values	from NO	AA data		
Reef	Balanced	Accuracy	F1	Sensitivit	Specificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetection	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.82	0.66	0.15	1.00	0.65	0.08	1.00	0.82	0.76	0.88	0.10	0.23	0.03	0.38	0.03
_Island															
Cocos	0.62	0.91	0.40	0.25	1.00	1.00	0.90	0.62	0.46	0.79	0.37	0.48	0.03	0.03	0.12
(Keel-															
ing)															
Is-															
lands															
Houtmai	0.93	0.86	0.31	1.00	0.85	0.18	1.00	0.93	0.88	0.97	0.27	0.39	0.03	0.17	0.03
Abrol-															
hos															
Ningaloo	0.58	0.86	0.18	0.25	0.90	0.14	0.95	0.58	0.41	0.74	0.11	0.12	0.02	0.11	0.06
Reef			0.10												
Scott	0.73	0.72	0.40	0.75	0.71	0.27	0.95	0.73	0.65	0.81	0.26	0.32	0.09	0.35	0.12
$_{ m Reef}$															

	N
١	_

		Table 3: C	onfusio	n Matrix f	or predicta	ability o	f bleachin	g using I	Degree He	eating Mo	onths value	es from (CCI data		
Reef	Balanced	lAccuracy	F1	Sensitivit	Specificity	Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	nDetectio	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.83	0.67	0.14	1.00	0.66	0.08	1.00	0.83	0.77	0.88	0.10	0.22	0.03	0.36	0.03
Island															
Cocos	0.73	0.72	0.38	0.75	0.72	0.25	0.96	0.73	0.56	0.90	0.25	0.31	0.08	0.33	0.11
(Keel-															
ing)															
Is-															
lands															
Houtman	n 0.87	0.75	0.18	1.00	0.74	0.10	1.00	0.87	0.82	0.92	0.14	0.27	0.03	0.28	0.03
Abrol-															
$_{ m hos}$															
Ningaloo	0.72	0.82	0.27	0.60	0.84	0.18	0.97	0.72	0.56	0.88	0.20	0.25	0.03	0.19	0.06
Reef															
Scott	0.62	0.72	0.29	0.50	0.75	0.20	0.92	0.62	0.54	0.71	0.15	0.18	0.06	0.28	0.11
Reef															

-		
C		₹
•	•	•

	Τ	able 4: Co	nfusion	Matrix fo	r predicta	ability of	bleaching	using D	egree Hea	ting Mor	ths values	s from NO	OAA data	ı	
Reef	Balanced	Accuracy	F1	Sensitivit	Specificit	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	onDetection	nPrevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Browse	0.76	0.53	0.12	1.00	0.52	0.06	1.00	0.76	0.70	0.82	0.06	0.18	0.03	0.50	0.03
Island															
Cocos	0.71	0.88	0.50	0.50	0.93	0.50	0.93	0.71	0.53	0.90	0.43	0.43	0.06	0.12	0.12
(Keel-															
ing)															
Is-															
lands															
Houtman	n 0.90	0.81	0.25	1.00	0.81	0.14	1.00	0.90	0.85	0.95	0.21	0.34	0.03	0.22	0.03
Abrol-															
hos															
Ningaloo	0.69	0.86	0.31	0.50	0.89	0.23	0.96	0.69	0.53	0.86	0.25	0.27	0.03	0.14	0.06
Reef															
Scott	0.69	0.64	0.34	0.75	0.63	0.22	0.95	0.69	0.61	0.77	0.19	0.25	0.09	0.42	0.12
Reef															

	Table 5:	Confusion	Matrix	for pr	redictabi	lity of	bleaching	using	Degree	Heating	Months v	alues from	Coral (Core C	CI c	lata
_			T 4 0						1 770	-			3.500	-		_

Reef	Balanced	Accuracy	F1	Sensitivit	Specificity	y Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	nDetection	Prevalence
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Cocos	0.53	0.56	0.15	0.5	0.57	0.09	0.93	0.53	0.03	1	0.02	0.04	0.04	0.44	0.08
(Keel-															
ing)															
Is-															
lands															

10001	Darancedricedracy	1 1	Schsiorviogpecinerty	1 05	1108	1100	LOWCI	- 0 1
	Accu-			Pred	Pred		$_{\rm CI}$	

Reef	Balanced	Accuracy	F1	Sensitivit	Specifici	ty Pos	Neg	AUC	Lower	Upper	Kappa	MCC	Detection	nDetection	nPrevalen
	Accu-					Pred	Pred		CI	CI			Rate	Preva-	
	racy					Value	Value							lence	
Cocos	0.53	0.56	0.15	0.5	0.57	0.09	0.93	0.53	0.03	1	0.02	0.04	0.04	0.44	0.08
(Keel-															
ing)															
Is-															
lands															

,		•	
		•	

		Γ	Cable 7: Degree Hea	ting Week Cor	nfusion Matrix			
	CCI DHW				CCI DHW NOAA DHW			
Reef	Balanced	Sensitivity	Specificity	AUC	Balanced	Sensitivity	Specificity	AUC
	Accuracy				Accuracy			
Browse	0.90	1.00	0.80	0.90	0.82	1.00	0.65	0.82
_Island								
Cocos	0.84	0.75	0.94	0.84	0.62	0.25	1.00	0.62
(Keeling)								
Islands								
Houtman	0.93	1.00	0.86	0.93	0.93	1.00	0.85	0.93
Abrolhos								
Ningaloo	0.58	0.25	0.90	0.58	0.58	0.25	0.90	0.58
Reef								
Scott Reef	0.55	0.25	0.84	0.55	0.73	0.75	0.71	0.73

c	

		T_{i}	able 8: Degree Hea	ating Month Co	onfusion Matrix			
		CCI D	HM	NOAA DHM				
Reef	Balanced	Sensitivity	Specificity	AUC	Balanced	Sensitivity	Specificity	AUC
	Accuracy				Accuracy			
Browse	0.83	1.00	0.66	0.83	0.76	1.00	0.52	0.76
_Island								
Cocos	0.73	0.75	0.72	0.73	0.71	0.50	0.93	0.71
(Keeling)								
$_{ m Islands}$								
Houtman	0.87	1.00	0.74	0.87	0.90	1.00	0.81	0.90
_Abrolhos								
Ningaloo	0.72	0.60	0.84	0.72	0.69	0.50	0.89	0.69
Reef								
Scott Reef	0.62	0.50	0.75	0.62	0.69	0.75	0.63	0.69

L		i
-		

_Islands

Table 9: Degree Heating Month Confusion Matrix for Coral Core									
	CCore CCI DHM			CCore NOAA DHM					
Reef	Balanced	Sensitivity	Specificity	AUC	Balanced	Sensitivity	Specificity	AUC	
	Accuracy				Accuracy				
Cocos	0.53	0.5	0.57	0.53	0.53	0.5	0.57	0.53	
(Keeling)									