Indian Institute of Technology Kharagpur

Date:...... FN/AN, Time: 2 Hrs, Full Marks: 30, Deptt: Mathematics No. of Students: 77, Mid Autumn Semester Examination: 2012–2013, Sub. No. MA31005, Sub. Name: Real Analysis, 2nd and 3rd year B.Tech/M.Sc.

Instructions:

- (i) Answer all questions.
- (ii) All the parts of the same question should be done at one place.

Question 1.
$$[4+1]$$

a) Let (X, d) be a metric space. Define

$$\rho(x,y) = \frac{d(x,y)}{1 + d(x,y)}.$$

Prove that ρ is a metric on X. Are ρ and d equivalent metrics on X? Justify your answer.

b) Is the set of complex numbers C countable? Justify your answer.

Question 2.
$$[2+2+1]$$

- a) Let $S_n = \sum_{k=1}^n \frac{1}{k}$ be a sequence of real numbers. Test the convergence of the sequence $\{S_{10^n-1}\}$.
- b) Prove or disprove that "countable union of countable sets is countable."
- c) Prove or disprove that "in any metric space, arbitrary union of closed sets is closed."

Question 3.
$$[3+2]$$

- a) Let X be a metric space and $A \subseteq X$. The show that $\overline{A} = A \cup D(A)$.
- b) Let X be a metric space and $A, B \subseteq X$. Prove or disprove that $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.

Question 4.
$$[3+2]$$

- a) Prove that "any compact subset of a metric space is closed". Does the converse of this statement true? Justify your answer.
- b) In [0,1] with usual metric find $B(\frac{1}{2},1)$ and $B(\frac{1}{4},\frac{1}{4})$.

a) The Fibonacci numbers x_1, x_2, \ldots , are defined recursively by

$$x_1 = 1$$
, $x_2 = 2$, and $x_{n+1} = x_n + x_{n-1}$ for $n \ge 2$

Show that $\lim_{n\to\infty} \frac{x_{n+1}}{x_n}$ exists, and evaluate the limit.

b) Evaluate $\lim_{n\to\infty}\cos\frac{\pi}{2^2}\cos\frac{\pi}{2^3}\cdots\cos\frac{\pi}{2^n}$.

Question 6.

[2+2+1]

a) Evaluate

$$\lim_{n\to\infty} \left(\frac{(n+1)(n+2)\cdots(n+n)}{n^n}\right)^{\frac{1}{n}}.$$

b) Prove that the sequence

$$a_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$$

is convergent.

c) Test the convergence of the sequence

$$b_n = \frac{n!}{n^n}.$$