PATENT ABSTRACTS OF JAPAN

(11)Publication number:

03-088193

(43)Date of publication of application: 12.04.1991

(51)Int.Cl.

G11C 11/401

(21)Application number : 01-225426

(71)Applicant: TOSHIBA CORP

(22)Date of filing:

31.08.1989

(72)Inventor: TSUCHIDA KENJI

OWAKI YUKITO

(54) DYNAMIC SEMICONDUCTOR MEMORY DEVICE

(57)Abstract:

PURPOSE: To perform the serial access mode operation of a DRAM at high speed by incorporating a serial address counter in a chip.

CONSTITUTION: When the inverse of RAS is decreased and a reset signal CSET and a signal, the inverse of CSET go to H and L levels, respectively, the transistor for reset of the serial address counter 13 is de-energized, and a row address is fetched. After the lapse of a time τ, a column address is accepted with the latch signal CLTC of a column address 2, and after all the output A0s, A1s... of the serial address counter are set at 0s, count-up is performed sequentially by the toggle of the signals CLTC and the inverse of CLTC. The output is directly inputted to a column decoder 5 via the column address buffer 2, and a fast serial access function can be realized without limiting the number of bits.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

BEST AVAILABLE COPY

[Date of extinction of right]

訂正有り

⑲日本国特許庁(JP)

(1)特許出願公開

平3-88193 ®公開特許公報(A)

®Int. Cl. 5

鐵別記号

庁内整理番号

❷公開 平成3年(1991)4月12日

G 11 C 11/401

8323-5B G 11 C 11/34

362 C

審査請求 未請求 請求項の数 4 (全10頁)

ダイナミツク型半導体メモリ装置 ❷発明の名称

> 顧 平1-225426 23特

❷出 顧 平1(1989)8月31日

土 田

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合

研究所内

人

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝総合

研究所内

株式会社東芝 の出 題 人

神奈川県川崎市幸区堀川町72番地

弁理士 鈴江 武彦

外3名

1. 発明の名称

ダイナミック型半導体メモリ装置

2. 特許請求の範囲

(1) カラム方向のシリアル・アドレスを発生す るシリアル・アドレス・カウンタを内蔵したこと を特徴とするダイナミック型半導体メモリ装置。 (2)シリアル・カウンタは外部カラム・アドレ ス・ストローブ信号のトグルによってカウント・ アップされ、その出力がカラム・アドレスパッフ ァまたはカラム・デコーダに入力されて、シリア ル・アクセスが実行される請求項1記載のダイナ ミック型半導体メモリ袋置。

(3)シリアル・アドレス・カウンタは外部アド レスに対してプリセット機能を育する請求項1ま たは2記載のダイナミック型半導体メモリ袋医。 (4) シリアル・アドレス・カウンタはリフレッ シュ・カウンタと共用される請求項1ないし3の いずれかに記載のダイナミック型半導体メモリ袋

3. 発明の詳細な説明

[発明の目的]

(産業上の利用分野)

本発明は、ダイナミック型半導体メモリ装置 に関する。

(従来の技術)

MOS型半導体メモリのうち、1トランジス タ/ 1.キャパシタからなるダイナミックRAM (DRAM) は最も高泉養化が進んでいる。 最近 のDRAMには適常のアクセスモードのほかに、 ベージ・モード, ニプル・モード, スタティック ・カラム・モードといった高速アクセスモードが 搭載されている。一方で、1行分のデータを高速 かつシリアルにアクセスできるシリアル・アクセ ・スも、画像処理の分野或いはキャッシュメモリを 用いたコンピュータ・システム分野からの要求が 強い。

従来のページモードは、選択された1行文のデ ータに関してランダムにかつ高速にアクセスでき るモードである。このページ・モードのリード・

特開平3-88193 (2)

サイクルのタイミング・チャートを第9個に、ライト・サイクルのタイミング・チャートを第10回にそれでれます。いずれも、ロウ・アドレス・ストローブ信号(CAS)をアクティブにした状態でカラム・アドレス・ストローブ信号(CAS)をトグルさせ、CASの降下の際にカラムに関してカウムにリード或いはライト動作ができる。したがってこのページ・モードを用いれば、外部からシリアルにアドレスを与えることによって、1行文のデータを高速にかつシリアルにアクセスができる。シルアル・アクセスができる。

しかしこのページ・モードを利用したシリアル・アクセスでは、カラム・アドレスをCASのトグルに対応して毎回外部から取り込む必要があるため、速度的には限界がある。その理由を具体的に第9回、第10回を用いて説明すると、CASの降下エッジに、カラム・アドレス・ホールド時間tcasが設定されているために、カラム・アドレ

チ・レジスタに送り、ここから CASのトグルにより 職次出力ポートにデータを転送する事によって高速アグセスを実現している。 したがって、 データラッチ用のレジスタの数がアクセスできる ピット数の限界になっているのである。 レジスタの数と 1 行分のデータ数が同じであれば、 1 行分のデータを高速かつシリアルにアクセスできることになるが、主としてチップ面積の割約から、現在では 4 ピット・ニブルが一般的になっている。

(発明が解決しようとする課題)

以上のように従来のDRAMにおいて、1行分の全てのデータを高速にシリアル・アクセスするには、ページ・モードでは高速性に難点があり、ニブル・モードではチップ面積の点からアクセスできるピット数に限界がある、といった問題があった。

本発明はこの様な問題を解決して、高速のシリアル・アクセスを可能としたDRAMを提供することを目的とする。

スのストローブに要するタイミング上のマージン が必要になるからである。

一方、通常のDRAMに搭載されているモードにコブル・モードがある。 第11回および第12回にそれぞれ、ニブル・モードでのリード・サイクルのタイミング・チャートを示す。このニブル・モードは、 CASのかによってカラム方向の連続したモードののトドは、 CASの類としていいてはカラム・アルルのの取り込みを必要としない。この点でニブル・モードは一般にページ・モードよりも高速であり、これが大きい利点になっている。

しかしニブル・モードは、アクセスできるピット数に限界があるのが最大の難点であり、シリアル・アクセスには応用できない。アクセスできるピット数に限界がある理由は、次のような事情による。ニブル・モードでは、複数個のデータを一括してCASの第1サイクルにおいてデータラッ

[発明の構成]

(課題を解決するための手段)

本発明による D R A M は、カラム方向のシリアル・アドレスを発生するシリアル・アドレス・カウンタ を内蔵したことを特徴とする。 シリアル・アドレス・カウンタは C A S のトグルによってカウント・アップされ、その出力がカラム・アドレスバッファまたはカラム・デコーダに入力されて、シリアル・アクセスが実行される。

(作用)

本発明によれば、ページ・モードにおいて毎回の CAS のトグルに厳してカラム・アドレスを外部から取り込む必要がない。したがって、カラム・アドレス・セットアップ時間 tasc やカラム・アドレス・ホールド時間 tcas などのタイミング・マージンを必要とせず、より高速のページ・モードの動作が実現できる。またシリアル・アドレスを発生さる事により、高速のシリアル・アクセス・モードが実現できる。しかも、シリアル・アドレス

特間平3-88193 (3)

・カウンタを設ける事は、ニブル・モードにおいて1行分のデータを書えるデータラッチ・レジスタを設ける場合と比較すると、チップ面核の増大は小さい。

(実施例)

以下、本発明の実施例を説明する。

第4回は、上記したシリアル・アドレス・カウンタの動作を示すタイミング図である。 これを 用いてシリアル・アドレス・カウンタの動作を 説明すると、まずRASが降下してアクティブに なると、リセット信号CSETが"H"レベル、 ウンタ12を有する。これら主要な構成は従来のDRAMと変わらない。この実施例ではこれらのはか、カラム方向のシリアル・アドレスを発生させるシリアル・アドレス・カウンタ13を内蔵している。このシリアル・アドレス・カウント・アップは、CASのトグルに対応してカウント・アップされるように構成されており、その出力がカラム・アドレス・バッファ2に入力されるようになっている。

第2回は、第1回の構成を僅かに変更した実施 例である。この実施例では、シリアル・アドレス・カウンタ13の出力がカラム・アドレス・バッファ2の入力部ではなく出力部、すなわちカラム・デコーダ5の入力部に直接入力されている。この点を除き、第1回の実施例と同じである。

第3図(a) は、実施例に用いられるシリアル・アドレス・カウンタ13の具体的構成例である。 このシリアル・アドレス・カウンタは、第3図(b) に等価回路を示し、同図(c) に紀号で示したようなクロックドCMOSインパータを構成要素

CSETが ・L ・ レベルとなり、これによりシリ アル・アドレス・カウンタのリセット用トラン ジスタQ1、Q2、…が非導通になる。そして RASの降下により、ロウ・アドレスが取り込 まれ、これから時間で1 狂過後に、カラム・ア ドレスのラッチ信号CLTCが"H"レベル。 CLTCが °L° レベルになることにより、カラ ム・アポレスが受け付けられる。このときシリア ル・アドレス・カウンタは、出力AOs, AIs, A 2s, …のすべてが"O"にセットされる。その 後、CASのトグルによってラッチ信号CLTC が"H° レベル、CLTCが"L° レベルになる と、A 0s = 1 . A 1s = 0 , A 2s = 0 . … 는 또 り、次にラッチ信号CLTCが『H゜レベル, CLTCが °L ° レベルになると、A 0s = 1 . Als-1, A2s-0, …となり、以下順次 CLTC. CLTCのトグルによってカウント・ アップされる。

したがってこのシリアル・アドレス・カウンタ の出力を、第1図に示すようにカラム・アドレス

特閒平3-88193 (4)

・パッファを介し、或いは第2図に示すように直接カラム・デコーダに入力することにより、ベージ・モードを利用したシリアル・アクセス・モードが実現できる。

この実施例によれば、外部からのカラム・アドレスのストロープを要せずシリアル・アクセスができ、従来のページ・モードに比べて高速のシリアス・アクセス機能を実現する事ができる。またニブル・モードにおけるようにシリアル・アクセスのピット数が製限されることはない。

次に本発明をポインタ機能付きのDRAMに適用した実施例につき説明する。ここにポインタ機能とは、カラム・アドレスに対して任意のアドレスからのシリアル・アクセスを可能とする、いむば頭出し機能である。この様な機能は、例えば画像用メモリにおいて、水平方向のドット・スクロール等を容易にする上で有用なものである。

第 5 図はその様な実施例の D R A M に内蔵されるシリアル・アドレス・カウンタである。 D R A M の全体構成は第 1 図或いは第 2 図と同様 である。ここでは、1 段目のみ示している。このシリアル・アドレス・カウンタは所聞プリセット型カウンタであり、シリアル・アドレスを順に発生する主カウンタ5 1 と、この主カウンタを制御するための従カウンタ5 2、およびこれらを外部アドレスに対してプリセットするプリセット・ボート53を有する。

第6図はこのシリアル・アドレス・カウンタの 制御クロックCTiを発生するクロック発生回路 である。プリセット・ポート53に入る制御クロック信号HOLDが"L"レベルの間は最初のクロックCT0が発生せず、制御クロックHOLD が"H"レベルになることにより、CASのトグルに同期して発生するラッチ信号CLTCに同期して発生するラッチ信号CLTCに同期して脱次1/2分間されたクロックCT1、CT1、…が発生するように構成されている。

次に第5回のシリアル・アドレス・カウンタの動作を第7回のタイミング圏を参照して説明する。 外部制御信号RASが終下してロウ・アドレスが

取り込まれた後、RASの降下から時間t1でラ ッチ信号CLTCが"H"レベルになり、カラム ・アドレスの受け付けが開始される。ラッチ信号 CLTCはCASの降下により再び"L"レベル に低下する事により、カラム・アドレスがラッチ される。これと並行して、CASが降下するまで の制御信号HOLDが"R"レベルの間に、プリ セット・ポート53に入力されたデータAle. Aicによってシリアル・アドレス・カウンタは外 部アドレスに対してプリセットされる。第7回で は、2ピット分のシリアル・アドレス・カウンタ の場合について、最下位アドレスA0 が "H" レ ベル、次のアドレスALが"し"レベルにプリセ ットされた状態を示している。この後CASのト グルに対応してラッチ信号でLTCが動作し、こ れによりクロックCTΟ が"日"レベルに、また このクロックCTO とカウンタ出力SOsにより次 のクロックCT1 が "H" レベルに、というよう にクロックが入る。この結果シリアル・アドレス ・カウンタは、プリセットされた状態 (S0 -

1, S1 - 0) から、S0 - 0, S1 - 1、次いでS0 - 1, S1 - 1というようにカウントアップされる。

このブリセット型シリアル・アドレス・カウンタの出力が先の実施例と同様にカラム・アドレス・バッファを介して、或いは直接カラム・デコーダに入力されて、ページ・モードを応用したシリアル・アクセス・モードが実現される。

この実施例によっても先の実施例と同様の効果が得られる。

ところでDRAMは、第1回、第2回に示した ようにオート・リフレッシュ用のリフレッシュたか カウンタを内職するものが一般的である。アル・かって本発明を実施するに当てアドレス・カウンタを共用することがサフレッシュ・から、ロ回のリフレッシュ・アと はないではなく。 ルを連続してではないののいであるため、リフレッシュ・アードを挟んで行うこともあり得るレジスタル・マーのはないではない。

特開平3-88193 (5)

要になる。

この様にリフレッシュ・カウンタとシリアル・ アドレス・カウンタを共用することによって、 DRAMのチップ函数の有効利用が図られる。

第7回は同じく動作を説明するためのタイミン グ図、

第8回はリフレッシュ・カウンタと共用したシ リアル・アドレス・カウンタの構成例を示すプロ

第 9 器 は D R A M のページ・モードのリード・サイクルを示すタイミング図、

第10圈は同じくライト・サイクルを示すタイミング圏、

第 1 1 図はニブル・モードのリード・サイクル を示すタイミング圏、

第12回は間じくライト・サイクルを示すタイミング回である。

1 … ロウ・アドレス・バッファ、 2 … カラム・アドレス・バッファ、 3 . 4 … クロック・ジェネーシータ、 5 … カラム・デコーダ、 6 … ロウ・デコーダ、 7 … メモリセルアレイ、 8 … センスアンブノ1 / Oゲート、 9 … 入力バッファ、 1 0 … 出力パッファ、 1 1 … 基板バイアス発生回路、 1 2 … リフレッシュ・カウンタ、 1 3 … シリアル・アド

[発明の効果]

以上述べたように本発明によれば、チャプ内に シリアル・アドレスカウンタを内蔵することによって、高速のシリアル・アクセス・モード動作を 可能としたDRAMを得ることができる。

4. 図面の簡単な説明

第1回は本発明の一実施例のDRAMの構成を 示すプロック図、

第2回は他の実施例のDRAMの構成を示すブロック図、

第3図(a)(b)(c)は実施例のDRAMに内設するシリアル・アドレス・カウンタの等値回路とその構成要素であるクロックドCMOSインバータを示す図、

第4図はそのシリアル・アドレス・カウンタの 動作を説明するためのタイミング図、

第5 図は他のシリアル・アドレス・カウンタの 様成例を示す等価国路図、

第6図はそのクロック発生回路の構成例を示す 等価回路歴、

レス・カウンタ。

出職人代理人 弁理士 鈴江武彦

特爾平3-88193 (6)

特開平3-88193(7)

-657-

特開平3-88193 (8)

第 6 図

第 7 図

特開平3-88193 (9)

第 9 因

[ページ・モード・ライト・サイクル]

第10 図

特閒平3-88193 (10)

第 11 遼

(ニブルモード・ライト・サイクル)

第 12 図

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.