Quadratic Sieve Algorithm

a.k.a. the Second Fastest Algorithm in the West

Nils Olsson May 5th, 2021

The quadratic sieve (QS) algorithm...

- Invented by Carl Pomerance in 1981 (improvement to Schroeppel's linear sieve)
- In practice is the second fastest integer factorization algorithm (after the general number field sieve)
- Still fastest for integers over 100 decimal digits
- · Fundamentally works like (random) square factoring

Fix *n* an integer, and suppose we have integers *x* and *y* such that:

$$x \neq \pm y \pmod{n}$$
, but $x^2 \equiv y^2 \pmod{n}$.

Then *n* divides $(x - y)(x + y) = x^2 - y^2$, but not (x - y) or (x + y) alone.

This means $gcd(x \pm y, n)$ gives "non-trivial" (not ± 1 or $\pm n$) factors of n.

(This is known as Fermat's factorization method.)

3

Fix *n* an integer, and suppose we have integers *x* and *y* such that:

$$x \neq \pm y \pmod{n}$$
, but $x^2 \equiv y^2 \pmod{n}$.

Then *n* divides $(x - y)(x + y) = x^2 - y^2$, but not (x - y) or (x + y) alone.

This means $gcd(x \pm y, n)$ gives "non-trivial" (not ± 1 or $\pm n$) factors of n.

(This is known as Fermat's factorization method.)

The question: how to we find x and y?

3

(Attempt 0) Pick randomly (a.k.a. cross your fingers)

- 1. Pick $x \in \mathbb{Z}$ (randomly).
- 2. If $x^2 \pmod{n}$ is a perfect square, $\stackrel{\checkmark}{=}$

(Attempt 0) Pick randomly (a.k.a. cross your fingers)

- 1. Pick $x \in \mathbb{Z}$ (randomly).
- 2. If $x^2 \pmod{n}$ is a perfect square, \leq

(e.g.) With
$$n = 5959$$
, we randomly \bigcirc picked $x = 80$. We find

- $\cdot 80^2 = 6400 \equiv 441 = 21^2 \pmod{5959}$
- $gcd(80 \pm 21,5959) = 59$ and 101, two non-trivial factors of 5959.

(Attempt 0) Pick randomly (a.k.a. cross your fingers)

- 1. Pick $x \in \mathbb{Z}$ (randomly).
- 2. If $x^2 \pmod{n}$ is a perfect square, \leqslant

- $\cdot 80^2 = 6400 \equiv 441 = 21^2 \pmod{5959}$
- $gcd(80 \pm 21,5959) = 59$ and 101, two non-trivial factors of 5959.

(This might be slower than trial division)

For $x = 2, ..., \sqrt{n}$, check if x divides n (keep dividing, collect powers, etc.)

(Attempt 1) Dixon's method

Select a subset of primes $\mathcal{B} = \{p_1, p_2, \dots, p_t\}$ called your factor base.

Any integer x_i that can be written as $x_i = \prod_j p_j^{e_{ij}}$ for $p_i \in \mathcal{B}$ (or at least with $\max(e_{ij}) \leq \max(p_j)$) is called p_t -smooth.

5

(Attempt 1) Dixon's method

Select a subset of primes $\mathcal{B} = \{p_1, p_2, \dots, p_t\}$ called your *factor base*.

Any integer x_i that can be written as $x_i = \prod_j p_j^{e_{ij}}$ for $p_i \in \mathcal{B}$ (or at least with $\max(e_{ij}) \leq \max(p_j)$) is called p_t -smooth.

We want to find pairs (x_i, y_i) satisfying two conditions:

- 1. $x_i^2 \equiv y_i \pmod{n}$ (quadratic residue), and
- 2. $y_i = \prod_i p_i^{e_{ij}}$ (y_i is p_t -smooth)

(Attempt 1) Dixon's method (continued)

Let
$$\vec{e}_i = (e_{i1}, e_{i2}, ...)$$
 and $\vec{v}_i = (e_{i1} \mod 2, ...)$ be vectors of its exponents.

If a sum of some of these binary vectors is the zero vector, then from their corresponding x_i and y_i 's we can construct an x and a p_t -smooth y such that

$$x \not\equiv y \pmod{n}$$
, but $x^2 \not\equiv y^2 \pmod{n}$.

Review (Quadratic Residue)

Fix $n \in \mathbb{Z}$ and $a \in \mathbb{Z}_n^*$.

If there exists exists an $x \in \mathbb{Z}_n^*$ such that $x^2 \equiv a \pmod{n}$

- a is a quadratic residue/square modulo n; if there is no such x, then
- a is a quadratic non-residue modulo n.

(e.g.) fix
$$a = 2$$

With n = 5

$$2^2 = 4 \qquad \not\equiv 2 \pmod{5}$$

$$3^2 = 9 \equiv 4 \not\equiv 2 \pmod{5}$$

$$4^2 = 16 \equiv 1 \not\equiv 2 \pmod{5}$$

2 is *not* a non-residue modulo 5.

With
$$n = 7$$

$$2^2 = 4 \not\equiv 2 \pmod{7}$$

$$3^2 = 9 \equiv 2 \pmod{7}$$

2 *is* a quadratic residue modulo 7.

(Attempt 1) Dixon's method (continued)

If we construct a matrix V from the v_i 's, we're looking for linearly dependent row-index subsets.

(Note we have a column for each p_j of the factor base \mathcal{B} .)

To guarantee linear dependence, we collect $|\mathcal{B}| + 1$ such (x_i, y_i) pairs. Using linear algebra we find those subsets.

(Attempt 1) Dixon's method (continued)

If we construct a matrix V from the v_i 's, we're looking for linearly dependent row-index subsets.

(Note we have a column for each p_j of the factor base \mathcal{B} .)

To guarantee linear dependence, we collect $|\mathcal{B}| + 1$ such (x_i, y_i) pairs. Using linear algebra we find those subsets.

If for our constructed x and y we have $x \not\equiv \pm y$, then for n we have found non-trivial factors $\gcd(x \pm y, n)$.

(Attempt 1) Dixon's method (continued)

If we construct a matrix V from the v_i 's, we're looking for linearly dependent row-index subsets.

(Note we have a column for each p_i of the factor base \mathcal{B} .)

To guarantee linear dependence, we collect $|\mathcal{B}| + 1$ such (x_i, y_i) pairs. Using linear algebra we find those subsets.

If for our constructed x and y we have $x \not\equiv \pm y$, then for n we have found non-trivial factors $\gcd(x \pm y, n)$.

But we can do better

(Attempt 2) Quadratic sieve

Fix n a composite that is not a perfect-power, $m = \lfloor \sqrt{n} \rfloor$, and consider the polynomial

$$f(x) = x^{2} - n$$

$$\Rightarrow f(x + kp) = x^{2} + 2xkp + (kp)^{2} - n$$

$$= f(x) + 2xkp + (kp)^{2} \equiv f(x) \pmod{p}.$$

9

(Attempt 2) Quadratic sieve

Fix n a composite that is not a perfect-power, $m = \lfloor \sqrt{n} \rfloor$, and consider the polynomial

$$f(x) = x^{2} - n$$

$$\Rightarrow f(x + kp) = x^{2} + 2xkp + (kp)^{2} - n$$

$$= f(x) + 2xkp + (kp)^{2} \equiv f(x) \pmod{p}.$$

We choose $x_i = (x + m)$ and check whether $y_i = f(x_i) = (x + m)^2 - n$ is p_t -smooth.

(Attempt 2) Quadratic sieve (continued)

Things to note:

- $\cdot x_i^2 = (x+m)^2 \equiv b_i \pmod{n},$
- if p divides b_i , then $(x+m)^2 \equiv n \pmod{p}$,
- thus n is a modulo p.

(Attempt 2) Quadratic sieve (continued)

Things to note:

- $\cdot x_i^2 = (x+m)^2 \equiv b_i \pmod{n},$
- if p divides b_i , then $(x + m)^2 \equiv n \pmod{p}$,
- thus n is a modulo p.

So \mathcal{B} only needs to contain p_j 's such that n is quadratic residue modulo p_j .

(Attempt 2) Quadratic sieve (continued)

To check if $y_i = f(x_i)$ is p_t -smooth we could use trial division.

Instead we sieve

(Attempt 2) Quadratic sieve (continued)

To check if $y_i = f(x_i)$ is p_t -smooth we could use trial division.

Instead we sieve, by...

- 1. Constructing $Y = \{y_i = (x_i + m)^2 n\}$ for each x_i in a sieving interval
- 2. Solving for roots (r_1, r_2) of n modulo $p_i \in \mathcal{B}$. If they exist
- 3. For each $y_i \equiv r \pmod{m}$, dividing y_i by p_j (until no-longer divisible).

(Attempt 2) Quadratic sieve (continued)

To check if $y_i = f(x_i)$ is p_t -smooth we could use trial division.

Instead we sieve, by...

- 1. Constructing $Y = \{y_i = (x_i + m)^2 n\}$ for each x_i in a sieving interval
- 2. Solving for roots (r_1, r_2) of n modulo $p_j \in \mathcal{B}$. If they exist
- 3. For each $y_i \equiv r \pmod{m}$, dividing y_i by p_j (until no-longer divisible).

When complete, if $y_i = 1$ then y_i completely factorable over \mathcal{B} .

If we have at least $|\mathcal{B}|$ of these, then we proceed in the same way as Dixon's:

Using linear algebra to find linearly dependent y_i binary exponent vectors.

Notes:

• Since *n* must be a non-perfect-power composite, QS factoring is merely one part of a complete factoring algorithm

Notes:

- Since *n* must be a non-perfect-power composite, QS factoring is merely one part of a complete factoring algorithm
- Haven't even considered how to choose \mathcal{B} , or the sieving interval!

Notes:

- Since *n* must be a non-perfect-power composite, QS factoring is merely one part of a complete factoring algorithm
- Haven't even considered how to choose \mathcal{B} , or the sieving interval!

Notes (continued):

- Many parts that in theory take we for granted:
 - Factoring over the factor base
 - Solving for quadratic roots of n modulo p
 - · Solving for linear dependencies
 - Primality testing
 - Perfect-power testing

Notes (continued):

- Many parts that in theory take we for granted:
 - Factoring over the factor base
 - Solving for quadratic roots of n modulo p
 - · Solving for linear dependencies
 - Primality testing
 - Perfect-power testing
- · I used (i.e. implemented)
 - something very simple
 - the Tonelli-Shanks algorithm
 - augmented matrix \rightarrow elementary row operations \rightarrow echelon form to find left-nullspace
 - · Skipped this!
 - "Detecting Perfect Powers In Essentially Linear Time"

(At least) Two implementations I've written in pure Python:

- qs-sieveless.py (the "instructional" version)
- qs-sieving.py

Also planning on implementing in Rust.