

Boolean & If Statements

Chapter 4

Introduction to Decision Structures

Chapter 4.1

Introduction to Decision Structures

- A decision structure allows a program to perform actions only under certain conditions
- Found in virtually every programming language

Different Types of Decisions

- If Statement
 - gives a single, optional alternative
 - very common in programming
- If-Then-Else
 - gives dual (two) alternatives
 - a form of the If Statement
- Case structure
 - gives multiple alternative decisions
 - not supported in Visual Logic

Boolean Logic

- Decision structures rely on having the computer compare data and make a decision based on the result
- For this, computers use Boolean Logic
 - basis of all computer (and human) logic
 - Boolean values can be either True or False
 - understanding Boolean logic is essential to knowing how to program

Relational Operators

- A Relational Operator
 determines whether a specific
 relationship exists between
 two values
- The most basic way to test two pieces of data
- Returns either True or False

Relational Operators

Operator	Name			
==	Equal To			
!=	Not Equal To			
>	Greater Than			
>=	Greater Than or Equal			
<	Less Than			
<=	Less Than or Equal			

Relational Examples

False

True

False

True

If Statements

- An action only occurs if the Boolean expression is True
- Otherwise, nothing will occur
- A diamond symbol is used in flowcharts

Book Pseudocode

Either True or False

If Condition Then

Statements

End If

Multiple statements

Example in Pseudocode

```
Declare Integer age
```

```
Input age
If age >= 21 Then
   Display "Kegger!"
End If
```

Example in a Flowchart

Example Output

22

Kegger!

Example 2 Output

20 Nothing. The Display Statement is not executed

Example

Declare Integer age

Input age

If age >= 21 Then

Display "Kegger!"

End If

Only executed if true

Example 2

```
Display "Year CSUS founded? "
Input guess
If guess == 1947 Then
   Display "Correct!"
End If
```

Declare Integer guess

Increment Example Output

Year CSUS founded? 1992

Increment Example Output

Year CSUS founded: 1947

Correct!

Chapter 4.2

Dual Alternative Structures

- Dual Alternative Decision
 Structures selects between
 two different groups of
 statements
- If the Boolean expression is True it executes one group and, if False, the other

The Else Clause

- The If Statement has an optional "else" clause
- This denotes the group that executes in the expression is False
- It goes before the "End If" since it is part of the same If-Statement

Book Pseudocode

If Condition Then Statements else **Processed if the** Statements **Condition** is false End If

Pseudocode

```
If condition Then
statement
statement
Else
statement
statement
statement
```

```
If temp < 40 Then
  Display "It's cold"
  Display "Get a coat!"
Else
  Display "It's warm"
  Display "Get water!"
End if</pre>
```

Dual Example in Pseudocode

```
Declare Integer age
Input age
If age >= 21 Then
   Display "Kegger! :)"
Else
   Display "Milk! : ("
End If
```

Dual Example in a Flowchart

Else Example Output

22

Kegger! :)

Else Example Output

```
18
Milk! : (
```


Comparing Strings

- Most languages allow you to compare strings
- Textual data is often used to make decisions
- The same rules that apply to comparing numbers, applies to strings

String Equality

- You can test two string variables (or literals) for equality
- You can also test if one string is greater or less than another string (allows for sorting strings)

```
name1 == name2
month != "February"
```

Case Sensitivity

- String comparisons are generally case sensitive
- This means that uppercase and lower case letters are <u>not the same</u>
- Why? Let's look back at ASCII...

ASCII Chart Review

NUL	SOL	STX	ETX	ЕОТ	ENQ	ACK	BEL	BS	НТ	LF	VT	FF	CR	so	SI
DLE	CD1	DC2	DC3	DC4	NAK	SYN	ЕТВ	CAN	EM	SUB	ESC	FS	GS	RS	us
sp	!	**	#	\$	olo Olo	&	1	()	*	+	,	_	•	/
0	1	2	3	4	5	6	7	8	9	•	;	<	=	>	?
9	A	В	С	D	E	F	G	Н	I	J	K	L	М	N	0
P	Q	R	S	Т	Ū	V	W	X	Y	Z	[\]	^	_
,	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0
р	q	r	s	t	u	v	w	x	У	z	{	ı	}	~	DEL

ASCII Codes

- Each character has a unique value
- The following is how "Moe" is stored in ASCII

Character	Binary	Decimal
M	01001101	77
0	01101111	111
е	01100101	101

Comparing Letters

ASCII Value

A	01000001	65
В	01000010	66
С	01000011	67
D	01000100	68
E	01000101	69
F	01000110	70

a	01100001	97
b	01100010	98
С	01100011	99
d	01100100	100
е	01100101	101
f	01100110	102

"A" < "a"

Letter Examples

False

True

True

True

Example

```
Declare String answer
```

```
Display "Do you love programming?" Input answer
```

```
If answer = "y" Then
    Display "Most excellent!"
End If
```

Example Output

Do you love programming?

Y

Most excellent!

Example Output

Do you love programming?

Nothing!
"y" is not equal to "Y"

Chapter 4.4

Nested Decision Structures

- In programming, control structures can be put inside other structures
- This is called nesting and allows complex control

Nested Decision Structures

- By nesting...
 - you can put almost anything in anything
 - this allows you to create complex programs

Nested If Statements

- Often If Statements are embedded in other If Statements
- This can give multiple branches in the program
- and have a conditional statement dependent on another

Nested Decision Structures

Harry Potter Example

If-Else Chain

- Sometimes an If Statement is nested on the else clause of another If Statement
- It allows what is called an "If-Else Chain"

If-Else Chain

- It can make nested logic simpler to write
- Basically, the chain checks multiple expressions and selects the first one that is true

If-Else Chain

```
If score < 60 Then
    Display "Grade is F."
Else If score < 70 Then
    Display "Grade is D."
Else If score < 80 Then
    Display "Grade is C."
Else If score < 90 Then
    Display "Grade is B."
Else
    Display "Grade is A."
End If
```

Indenting is Vital

- You must indent each nested block of statements
- Otherwise your program quickly becomes unreadable

Logical Operators

Chapter 4.6

Logical Operators

- Logical Operators are used between comparisons to create complex Boolean expressions
- In Boolean logic, there are just 3 operators – which are easy to learn and master

Logical Operators

Name	Rules
And	True only if <u>both</u> operands are True If either is False, the result is False
Or	True if <u>either</u> operand is True False if both operands are False
Not	True if the operand is False False if the operand is True

Boolean Table

P	q	not p	p or q	p and q
True	True	False	True	True
True	False	False	True	False
False	True	True	True	False
False	False	True	False	False

AND Example

Result: True

AND Example 2

Result: False

OR Example

Result: True

OR Example 2

Result: True

OR Example 3

Result: False

NOT Example

Result: False

NOT Example 2

Result: True

Examples

$$1 < 3$$
 and $10 < 40$

True

$$1 == 3 \text{ and } 10 < 40$$

False

True

$$1 > 3$$
 or $30 < 20$

False

Typical Precedence Levels

7	- (unary) not
6	* /
5	+ -
4	== != > >= < <=
3	
2	and
1	or

Calculate The Result

Calculate The Result 2

```
not 1 < 4 and 5 > 4 or not 1 > 4
     True
          and True
                        not
                             False
                     or
   False and True
                           True
                     or
         False
                          True
                     or
                    True
```

And Example

```
If temp < 20 AND minutes > 12 Then
    Display "Danger!"
    Display "Temperature danger zone."
End If
```

Example

```
Declare String answer
Display "Do you love programming?"
Input answer
If answer = "y" or answer = "Y"
                                Then
   Display "Most excellent!"
End If
```

Example Output

Do you love programming?
Y

Most excellent!

Chapter 4.6

Range Checking

- Range Checking is often used to test is between two values
- Often used to prevent invalid calculations

Inside a Range

- When checking for a number inside a range, use AND
- The following is only true if x is between 0 and 100

```
If x >= 0 AND x <= 100 Then
    Display "Inside Range"
End If</pre>
```

Outside a Range

- When checking for a number outside a range, use OR
- The following is true if x is outside the range

```
If x < 20 OR x > 40 Then
    Display "Outside range"
End If
```

Range Checking Example

```
Declare Integer years, days
Input years
If years >= 1 and years <= 110 Then
   Set days = years * 365;
   Display "Days lived: ", days
Else
   Display "Invalid Age!"
End If
```

Range Checking Example Output

20

Days old: 7300

Range Checking Example Output

300

Invalid Age!

Boolean Variables

Chapter 4.7

Boolean Variables

- A variable of the Boolean data type can hold one or two values: true or false
- It often holds the result of a Boolean expression – which will be used later in another expression

Boolean Variable Example

Declare Boolean isLunchTime

```
If time >= 12 and time <= 13 then
    Set isLunchTime = True
Else
    Set isLunchTime = False
End If</pre>
```


Factoring

Cleaning up code

Factoring

- Often, when creating complex if statements, code is repeated in both the true branch and the false branch
- This redundant code can, sometimes, moved outside the loop

Factoring

- This only works if the duplicate is at the beginning of both the True branch and the False branch
- When it is done, the code is "factored" out of the If Statement

Example – What's Redundant?

```
Input age
If age >= 18 then
   Input name
   Display name, " can vote"
Else
   Input name
   Display name, " cannot vote yet"
End If
```

Example – What's Redundant?

Example – Redundant Code

```
Input age
If age >= 18 then
   Input name
   Display name, " can vote"
Else
   Input name
   Display name, " cannot vote yet"
End If
```

Example – Factored Out

```
Input age
Input name
If age >= 18 then
    Display name, " can vote"
Else
    Display name, " cannot vote yet"
End If
```

Example – Factored Out

