CSC373 Worksheet 5 Solution

August 8, 2020

1. Rough Works:

Assume that a flow network G = (V, E) violates the assumption that the network contains a path $s \leadsto v \leadsto t$ for all vertices $v \in V$. Let u be a vertex for which there is no path $s \leadsto u \leadsto t$.

I must show such that there is no flow at vertex u. That is, there exists a maximum flow f in G such that f(u,v) = f(v,u) = 0 for all vertices $v \in V$.

Assume for the sake of contradiction that there is some vertex u with flow f. That is, there exists some vertices $v \in V$ such that f(u, v) > 0 or f(v, u) > 0.

I see that three cases follows, and I will prove each separately.

1. Cases 1: f(u, v) = 0 and f(v, u) > 0

Here, assume that f(u, v) = 0 for all $v \in V$ and f(v, u) > 0 for some $v \in V$.

• Show that $\sum_{v \in V} f(u, v) = 0$ and $\sum_{v \in V} f(v, u) > 0$

Then, we can write
$$\sum_{v \in V} f(u, v) = 0$$
 and $\sum_{v \in V} f(v, u) > 0$

• Show that this violates flow conservation [contradiction]

But this violates the flow conservation property (i.e
$$\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$$
)

1

• Conclude that f(u, v) = 0 and f(v, u) = 0

Thus, by proof by contradiction, f(u, v) = 0 and f(v, u) = 0 for all $v \in V$ and all $u \in V$ with no path $s \leadsto u \leadsto t$.

Here, assume that f(u, v) = 0 for all $v \in V$ and f(v, u) > 0 for some $v \in V$.

Then, we can write $\sum_{v \in V} f(u, v) = 0$ and $\sum_{v \in V} f(v, u) > 0$

But this violates the flow conservation property (i.e $\sum_{v \in V} f(u, v) = \sum_{v \in V} f(v, u)$)

Thus, by proof by contradiction, f(u, v) = 0 and f(v, u) = 0 for all $v \in V$ and all $u \in V$ with no path $s \leadsto u \leadsto t$.

2. Cases 2: f(u, v) > 0 and f(v, u) = 0

By similar work as case 1, the same result follows.

3. Cases 3: f(u, v) > 0 and f(v, u) > 0

Here, assume that f(u, v) > 0 and f(v, u) > 0 for some $v \in V$.

• Write that the path $s \leadsto u \leadsto t$ exists

Since $s \leadsto v \leadsto t$ and u is connected by some vertices v, we can write $s \leadsto u \leadsto t$.

• Write that this results in contradiction to the header that a vertex u has no path $s \rightsquigarrow u \rightsquigarrow t$.

Then, this violates the fact in header that the vertex u has no path $s \leadsto u \leadsto t$.

• Conclude that f(u, v) = 0 and f(v, u) = 0

Thus, by proof by contradiction, f(u, v) = 0 and f(v, u) = 0 for all $v \in V$ and all $u \in V$ with no path $s \leadsto u \leadsto t$.

Here, assume that f(u, v) > 0 and f(v, u) > 0 for some $v \in V$.

Since $s \leadsto v \leadsto t$ and u is connected by some vertices v, we can write $s \leadsto u \leadsto t$.

Then, this violates the fact in header that the vertex u has no path $s \leadsto u \leadsto t$.

Thus, by proof by contradiction, f(u, v) = 0 and f(v, u) = 0 for all $v \in V$ and all $u \in V$ with no path $s \leadsto u \leadsto t$.

\underline{Notes}

• Maximum Flow:

- Finds a flow of maximum value [1]

Example

Here, the maximum flow is 10 + 5 + 13 = 28

• Flow Network:

- -G = (V, E) is a directed graph in which each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v) \ge 0$.
- Two vertices must exist: **source** s and **sink** t
- path from source s to vertax v to sink t is represented by $s \leadsto v \leadsto t$

• Capacity:

- Is a non-negative function $f: V \times V \to \mathbb{R}_{\geq 0}$
- Has capacity constraint where for all $u, v \in V$ $0 \le f(u, v) \le c(u, v)$
 - * Means flow cannot be above capacity constraint

• Flow:

- Is a real valued function $f: V \times V \to \mathbb{R}$ in G
- Satisfies capacity constraint (i.e for all $u, v \in V$, $0 \le f(u, v) \le c(u, v)$)
- Satisfies flow conservation

For all $u \in V - \{s, t\}$, we require

$$\sum_{v \in V} f(v, u) = \sum_{v \in V} f(u, v) \tag{1}$$

Means flow into vertex u is the same as flow going out of vertex u. [1]

Example:

$\underline{\mathbf{References}}$

1) Princeton University, Network Flow 1, link