Ojasvi Gupta Total MLAssist - Personalised DPP

Question Paper Analysis:

Weak Topic Analysis:

Practice Questions:

Solid State:

13.	Consider the bcc unit cells of the solids 1 and 2 with the position of atoms as shown below.			as shown below. The		
	radius of atom	B is twice that of at	om A. The unit cell edge len	gth is 50% m	ore in solid 2 then in	
19.	Which is incor	rect for FCC lattice -				
	(A) $a\sqrt{2} = 4R$		(B) Co-ordination n	umber = 12		
	(C) Void fraction	on = 0.32	(D) No of atoms per	unit cell = 4		
17.	What is the nu unit cell?	mber and closest di	stance between octahedral	voids and tet	rahedral voids in fcc	
44.	The no. of aton	ns per unit cell in B.	C.C. & F.C.C. is respectively:		[AIEEE-02]	
	(A) 8, 10	(B) 2, 4	(C) 1, 2	(D) 1, 3		
28.	Which one of t	he following statem	ents about packing in solids	is incorrect ?	?	
	(A) Void space in ccp mode of packing is 26% [Jee-Main (online)-13]					
(B) Coordination number in hcp mode of packing is 12						
	(C) Void space in hcp mode of packing is 32%					
	(D) Coordination number in bcc mode of packing is 8					

Coordination Chemistry:

43.	in the complex $Fe(CO)_x$, the value of x is:				
	(A) 3	(B) 4	(C) 5	(D) 6	

49.	which one of the following complexes shows optical isomerism:- [J-MAIN-2016]				
	(1) [Co(NH ₃) ₄ Cl ₂]Cl	(2) [Co(NH ₃) ₃ Cl ₃]			
	(3) cis[Co(en) ₂ Cl ₂]Cl	(4) trans[Co(en)2Cl2]Cl			
	(en = ethylenediamine)				
13.	Statement-1: ITi(H ₂ O): 1 ³⁺ is coloured while	e [Sc(H ₂ O)/1 ³⁺ is colourless			
13.	Statement-1: [Ti(H ₂ O) ₆] ³⁺ is coloured while [Sc(H ₂ O) ₆] ³⁺ is colourless. Statement-2: d-d transition is not possible in [Sc(H ₂ O)] ³⁺ because no d-electron is present				
	while possible for Ti ³⁺ having d ¹ system.				
	(A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.				
	(B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for				
	statement-1.				
	(C) Statement-1 is true, statement-2 is false.				
	(D) Statement-1 is false, statement-2 is true				
Com	prehension (Q.14 to Q.16)				
	Ligands are neutral or ionic species capable of donating at least one electron pair to central				
	metal. Hence ligands can be of different der	nticities.			
32.	The pair(s) of coordination complex/ion exl	nibiting the same kind of isomeri	sm is(are) –		
			[JEE 2013]		
	(A) $[Cr(NH_3)_5Cl]Cl_2$ and $[Cr(NH_3)_4Cl_2]Cl$	(B) $[Co(NH_3)_4Cl_2]^+$ and $[Pt(NH_3)_4Cl_2]^+$	I ₃) ₂ (H ₂ O)Cl] ⁺		
	(C) [CoBr ₂ Cl ₂] ²⁻ and [PtBr ₂ Cl ₂] ²⁻	(D) [Pt(NH ₃) ₃ (NO ₃)] Cl and [Pt	(NH ₃) ₃ Cl] Br		
45.	The geometries of the ammonia complexes of Ni^{2+} , Pt^{2+} and Zn^{2+} , respectively, are:				
	(A) octahedral, square planar and tetraheder	al	[JEE Ad. 2016]		

(B) square planar, octahederal and tetrahederal
 (C) tetrahederal, square planar and octahederal
 (D) octahederal, tetrahederal and square planar

Functions:

- 21. Let $A = \{x \in R : x \text{ is not a positive integer } \}$. Define a function $f: A \to R$ as $f(x) = \frac{2x}{x-1}$, then f is

 [JEE Main 2019]
 - (A) injective but not surjective
- (B) not injective
- (C) surjective but not injective
- (D) neither injective nor surjective

(5)

- Solve the following problems from (a) to (e) on functional equation.
- (a) The function f(x) defined on the real numbers has the property that f(f(x)) · (1 + f(x)) = −f(x) for all x in the domain of f. If the number 3 is in the domain and range of f, compute the value of f(3).
- (b) Suppose f is a real function satisfying f(x + f(x)) = 4 f(x) and f(1) = 4. Find the value of f(21).
- (c) Let 'f' be a function defined from R⁺ → R⁺. If [f(xy)]² = x(f(y))² for all positive numbers x and y and f(2) = 6, find the value of f(50).
- (d) Let f be a function such that f(3) = 1 and f(3x) = x + f(3x 3) for all x. Then find the value of f(300).
- 9. Let f: R → (0,1) be a continuous function. Then, which of the following function(s) has(have) the value zero at some point in the interval (0,1)?
 [JEE Ad. 2017]
 - (A) $e^x \int_0^x f(t) \sin t dt$

(B) $f(x) + \int_0^{\frac{\pi}{2}} f(t) \sin t dt$

(C) $x - \int_0^{\frac{\pi}{2} - x} f(t) \cos t dt$

- (D) $x^9 f(x)$
- 4. If f(x) = -1 + |x 2|,0 ≤ x ≤ 4 g(x) = 2 |x|, -1 ≤ x ≤ 3
 Then find f ∘ g(x) & gof (x). Draw rough sketch of the graphs of fog(x) & gof(x).
- 17. Let a function $f: (0, \infty) \to (0, \infty)$ be defined by $f(x) = \left|1 \frac{1}{x}\right|$. Then, f is [JEE Main 2019]
 - (A) injective only

- (B) both injective as well as surjective
- (C) not injective but it is surjective
- (D) neither injective nor surjective

Atomic Structure:

 In a H-like sample electrons make transition from 5th excited state to 2nd 			e to 2 nd excited state			
	(A) 10 different spectral lines will be emitted					
	(B) 6 different spectral lines will be emitted					
	(C) Number of lines belonging to Balmer series will be 4					
	(D) Number of lines belonging to Paschen series will be 3					
39.	A light source of wavelength λ illuminates a metal and ejects photo-electrons with (K.E.) _{max} = 1 eV					
	Another light source of wavelength $\frac{\lambda}{3}$, ejects photo-electrons from same metal with					
	$(K.E.)_{max} = 4eV.$ Fin	d the value of work fu	inction ?			
	(A) 1 eV	(B) 2 eV	(C) 0.5 eV	(D) None of these		
17.	In which direct trans	ition, one quantum of	energy is emitted:			
	(A) $n = 4 \rightarrow n = 2$	(B) $n = 3 \rightarrow n = 1$	(C) $n = 4 \rightarrow n = 1$	(D) All of them		
20.	The electrons identified by quantum numbers n and 1: [AIEEE-2012]					
			(c) $n = 3$, $\ell = 2$			
	Can be placed in order of increasing energy as					
	(1) (a) < (c) < (b) < ((d)	(2) (c) < (d) < (b) < (a)			
	$(3) (d) \le (b) \le (c) \le (a)$		(4) (b) < (d) < (a) < (c)			
14.	Choose the correct statement among the following					
	(A) Radial distribution function $(\Psi^2 \cdot 4\pi r^2 dr$) give probability at a particular distance along one					
	chosen direction					
	(B) Ψ^2 (r) give probability density at a particular distance over a spherical surface					
	(C) For 's' orbitals Ψ	(C) For 's' orbitals $\Psi(r)\Psi(\theta)\Psi(\phi) = \Psi(x, y, z)$ is independent of θ and ϕ				

(D) '2p' orbital with quantum numbers. $n=2,\,\ell=1,\,m=0,$ also shows angular dependence