process P P = nonCritP.P + is_wantq_false.P1 P1 = set wantp true.P2 P2 = critical.P3 P3 = set_wantp_false.P

process q

Q = nonCritQ.Q + is_wantp_false.Q1 Q1 = set_wantq_true.Q2

WP = is_wantp_false.WP + set_wantp_true.WP1 WP1 = is wantp true.WP1 + set wantp false.WP

wantP (all actions are coactions)

wantQ (all actions are coactions)

WQ = is_wantq_false.WQ + set_wantq_true.WQ1 WQ1 = is_wantq_true.WQ1 + set_wantq_false.WQ

(Warning: tau symbol is not rendered correctly on the output pdf. All silen actions are surrounded by "(" and ")"

Q2 = critical.Q3Q3 = set_wantq_false.Q system: (P || WP || WQ || Q) \ {is_wantp_false, is_wantp_true, set_wantp_true, set_wantp_false, is_wantq_true, set_wantq_false} tau (set_wantp_false) tau (set_wantp_false) nonCritP√ nonCritQ Y1 tau (is_wantq_false) tau (is_wantp_false) nonCritP nonCritQ Y2 **Y3** tau (is_wantp_false) tau (is_wantq_false) tau (set_wantq_true) tau (set_wantp_true) Y6 tau (set_wantp_true) tau (set_wantq_true) nonCritQ nonCritP **Y**4 Y5 Y7 critical Y8 critical nonCritQ nonCritP Y10 |tau (set_wantq_true)|tau (set_wantp_true) Y9 critical critical Y12 Y13 Y11 critical critical tau (set_wantp_true) tau (set_wantq_true) tau (set_wantq_false) tau (set_wantp_false) Y15 Y14 6 critical tau (set_wantq_false) critical tau (set_wantp_false) Y16 tau (set_wantp_false) tau (set_wantq_false) legend correct states states reachable, wich do not respect all constraints