Dual Interpretations and Duality Applications

Yinyu Ye

Department of Management Science and Engineering
Stanford University
Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye (LY, Chapters 4.1-4.2, 4.5)

Production Problem I

$$\max \mathbf{p}^T \mathbf{x}$$
 s.t. $A\mathbf{x} \leq \mathbf{r}, \mathbf{x} \geq \mathbf{0}$

where

- p: profit margin vector
- ullet A: resource consumption rate matrix
- r: available resource vector
- x: production level decision vector

Production Problem II: Liquidation Pricing

- y: the fair price vector
- $A^T \mathbf{y} \geq \mathbf{p}$: competitiveness
- $y \ge 0$: positivity
- \bullet min $\mathbf{r}^T\mathbf{y}$: minimize the total liquidation cost

maximize
$$x_1 + 2x_2$$
 subject to $x_1 \leq 1$ Primal: $x_2 \leq 1$ $x_1 + x_2 \leq 1.5$ $x_1, x_2 \geq 0.$

minimize
$$y_1$$
 $+y_2$ $+1.5y_3$
$$\text{Subject to} \quad y_1 \qquad +y_3 \qquad \geq 1$$

$$y_2 \qquad +y_3 \qquad \geq 2$$

$$y_1, \quad y_2, \quad y_3 \qquad \geq 0.$$

Optimal Value Function

For a fixed matrix A and an objective coefficient vector \mathbf{c} , the optimal value is a function of right-hand-side vector \mathbf{b} :

$$z(\mathbf{b}) =$$
 minimize $\mathbf{c}^T \mathbf{x}$ subject to $A\mathbf{x} = \mathbf{b},$ $\mathbf{x} \geq \mathbf{0}.$

Theorem: $z(\mathbf{b})$ is a convex function in \mathbf{b} , that is, for any $0 \le \alpha \le 1$ we have

$$z(\alpha \mathbf{b}^1 + (1 - \alpha)\mathbf{b}^2) \le \alpha z(\mathbf{b}^1) + (1 - \alpha)z(\mathbf{b}^2).$$

Shadow Prices of the Optimal Value

Define a new right-hand-vector \mathbf{b}^+ as

$$b_k^+ := b_k + \delta$$
 and $b_i^+ := b_i, \forall i \neq k.$

Then the optimal dual solution \mathbf{y}^* satisfies

$$y_k^* = \frac{z(\mathbf{b}^+) - z(\mathbf{b})}{\delta}$$

as long as y^* is the dual optimal solution for b^+ , since

$$z(\mathbf{b}^+) = (\mathbf{b}^+)^T \mathbf{y}^* = z(\mathbf{b}) + \delta y_k^*.$$

Thus, the optimal dual solution is the shadow price vector of the right-hand-vector, or the rate of the net change of the optimal objective value over the net change of an entry of the right-hand-vector.

Transportation Problem

min
$$\sum_{i=1}^{m} \sum_{j=1}^{n} c_{ij} x_{ij}$$

s.t. $\sum_{j=1}^{n} x_{ij} = s_i, \forall i = 1, ..., m$
 $\sum_{i=1}^{m} x_{ij} = d_j, \forall j = 1, ..., n$
 $x_{ij} \geq 0, \forall i, j.$

Demand

Supply

Transportation Dual

$$\max \sum_{i=1}^{m} s_i u_i + \sum_{j=1}^{n} d_j v_j$$

s.t.
$$u_i + v_j \leq c_{ij}, \ \forall i, j.$$

 u_i : supply site unit price

 v_i : demand site unit price

 $u_i + v_j \leq c_{ij}$: competitiveness

Max-Flow and Min-Cut

Given a directed graph with nodes 1, ..., m and edges \mathcal{A} , where node 1 is called the source and node m is called the sink, and each edge (i, j) has a flow rate capacity k_{ij} . The Max-Flow problem is to find the largest possible flow rate from source to sink.

Let x_{ij} be the flow rate from node i to node j. Then the problem can be formulated as

maximize x_{m1} subject to $\sum_{j:(j,1)\in\mathcal{A}} x_{j1} - \sum_{j:(1,j)\in\mathcal{A}} x_{1j} + x_{m1} = 0,$ $\sum_{j:(j,i)\in\mathcal{A}} x_{ji} - \sum_{j:(i,j)\in\mathcal{A}} x_{ij} = 0, \forall i=2,...,m-1,$ $\sum_{j:(j,m)\in\mathcal{A}} x_{jm} - \sum_{j:(m,j)\in\mathcal{A}} x_{mj} - x_{m1} = 0,$ $0 \leq x_{ij} \leq k_{ij}, \ \forall (i,j) \in \mathcal{A}.$

The Dual of the Max-Flow Problem

minimize
$$\sum_{(i,j)\in\mathcal{A}}k_{ij}z_{ij}$$
 subject to
$$-y_i+y_j+z_{ij}\geq 0,\ \forall (i,j)\in\mathcal{A},$$

$$y_1-y_m=1,$$

$$z_{ij}\geq 0,\ \forall (i,j)\in A.$$

 y_i : node potential value. At an optimal solution, it has the following property. $y_1 = 1, \ y_m = 0$ and for all other i:

$$y_i = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{if } i \notin S \end{cases}$$

This problem is called the Min-Cut problem.

Application: Combinatorial Auction Pricing I

Given the m different states that are mutually exclusive and exactly one of them will be true at the maturity. A contract on a state is a paper agreement so that on maturity it is worth a notional \$1 if it is on the winning state and worth \$0 if is not on the winning state. There are n orders betting on one or a combination of states, with a price limit and a quantity limit.

Combinatorial Auction Pricing II: Order

The j-th order is given as $(\mathbf{a}_j \in R_+^m, \ \pi_j \in R_+, \ q_j \in R_+)$: \mathbf{a}_j is the combination betting vector where each component is either 1 or 0

$$\mathbf{a}_{j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \dots \\ a_{mj} \end{pmatrix},$$

where 1 is winning and 0 is non-winning; π_j is the price limit for one such a contract, and q_j is the maximum number of contracts the better like to buy.

World Cup Information Market

Order	#1	#2	#3	#4	#5
Argentina	1	0	1	1	0
Brazil	1	0	0	1	1
Italy	1	0	1	1	0
Germany	0	1	0	1	1
France	0	0	1	0	0
Bidding Prize: π	0.75	0.35	0.4	0.95	0.75
Quantity Limit:q	10	5	10	10	5
Order Fill:x	x_1	x_2	x_3	x_4	x_5

Combinatorial Auction Pricing III: Pricing Each State

Let x_j be the number of contracts awarded to the jth order. Then, the jth better will pay the amount

$$\pi_j \cdot x_j$$

and the total collected amount is

$$\sum_{j=1}^{n} \pi_j \cdot x_j = \pi^T \mathbf{x}$$

If the ith state is the winning state, then the auction organizer need to pay back

$$\left(\sum_{j=1}^{n} a_{ij} x_j\right)$$

The question is, how to decide $\mathbf{x} \in \mathbb{R}^n$.

Combinatorial Auction Pricing IV: LP model

$$\begin{aligned} & \max & & \pi^T \mathbf{x} - z \\ & \text{s.t.} & & A\mathbf{x} - \mathbf{e} \cdot z & \leq \mathbf{0}, \\ & & \mathbf{x} & \leq \mathbf{q}, \\ & & \mathbf{x} & \geq 0. \end{aligned}$$

 $\pi^T \mathbf{x}$: the optimistic amount can be collected.

z: the worst-case amount need to pay back.

Combinatorial Auction V: The Dual

min
$$\mathbf{q}^T \mathbf{y}$$

s.t. $A^T \mathbf{p} + \mathbf{y} \geq \pi$,
 $\mathbf{e}^T \mathbf{p} = 1$,
 $(\mathbf{p}, \mathbf{y}) \geq 0$.

 ${\bf p}$ represents the state price. What is ${\bf y}$?

Combinatorial Auction V: Strict Complementarity

$$\begin{aligned} x_j > 0 & \mathbf{a}_j^T \mathbf{p} + y_j = \pi_j \text{ and } y_j \ge 0 \text{ so that } \mathbf{a}_j^T \mathbf{p} \le \pi_j \\ 0 < x_j < q_j & y_j = 0 \text{ so that } \mathbf{a}_j^T \mathbf{p} = \pi_j \\ x_j = q_j & y_j > 0 \text{ so that } \mathbf{a}_j^T \mathbf{p} < \pi_j \\ x_j = 0 & \mathbf{a}_j^T \mathbf{p} + y_j > \pi_j \text{ and } y_j = 0 \text{ so that } \mathbf{a}_j^T \mathbf{p} > \pi_j \end{aligned}$$

The price is Fair:

$$\mathbf{p}^T(A\mathbf{x} - \mathbf{e} \cdot z) = 0$$
 implies $\mathbf{p}^T A\mathbf{x} = \mathbf{p}^T \mathbf{e} \cdot z = z;$

that is, the worst case cost equals the worth of total shares. Moreover, if a lower bid wins the auction, so does the higher bid on any same type of bids.

World Cup Information Market Result

Order	#1	#2	#3	#4	#5	State Price
Argentina	1	0	1	1	0	0.2
Brazil	1	0	0	1	1	0.35
Italy	1	0	1	1	0	0.2
Germany	0	1	0	1	1	0.25
France	0	0	1	0	0	0
Bidding Price: π	0.75	0.35	0.4	0.95	0.75	
Quantity Limit:q	10	5	10	10	5	
Order Fill:x*	5	5	5	0	5	

Combinatorial Auction Pricing VI: Convex Programming Model

$$\max \quad \pi^T \mathbf{x} - z + u(\mathbf{s})$$
s.t.
$$A\mathbf{x} - \mathbf{e} \cdot z + \mathbf{s} = \mathbf{0},$$

$$\mathbf{x} \leq \mathbf{q},$$

$$\mathbf{x}, \mathbf{s} \geq 0.$$

 $u(\mathbf{s})$: a value function for the market organizer on slack shares.

If $u(\cdot)$ is a strictly concave function, then the state price vector is unique.

Constructing the Dual

Obj Coef Vector	RHS		
RHS	Obj Coef Vector		
A	A^T		
Max Model	Min Model		
$x_j \ge 0$	j -th constraint \geq		
$x_j \le 0$	j -th constraint \leq		
x_j : free	j-th constraint $=$		
i -th constraint \leq	$y_i \ge 0$		
i -th constraint \geq	$y_i \le 0$		
$\it i$ -th constraint $=$	y_i : free		

 $\geq 0.$

 y_3

 y_1 ,

 $y_2,$