Automata and Grammars (BIE-AAG) 6. Properties of regular languages

Jan Holub

Department of Theoretical Computer Science Faculty of Information Technology Czech Technical University in Prague

© Jan Holub, 2020

Pumping lemma – problem statement

Suppose that language $L = \{0^n 1^n : n \ge 1\}$ were regular.

In such case language L is accepted by a finite automaton $\mathcal A$ with m states.

Pumping lemma – problem statement

Let an automaton \mathcal{A} read a sequence 0^m . On the way it will travel as follows:

Pumping lemma – problem resolution

Suppose then that after reading a sequence 1^i the automaton goes from state q to state r.

It holds that:

- If state r is a final state, then the automaton accepts string $0^{j}1^{i}$, which is unwanted.
- If state r is not a final state, then the automaton does not accept string 0^i1^i , which is unwanted as well.

By contradiction, language $L = \{0^n 1^n : n \ge 1\}$ cannot be regular.

Pumping lemma formally

Pumping lemma

Let L be a regular language. Then for language L there exists a constant $p \geq 1$ such that for every sentence $w \in L$ it holds that: If $|w| \geq p$, then w has form w = xyz such that:

- $\blacksquare \quad y \neq \varepsilon \text{ (i.e., } |y| \geq 1),$
- $\blacksquare |xy| \leq p$
- \blacksquare $\forall k \geq 0$ it holds that $xy^kz \in L$.

Pumping lemma informally

Proof that language $L = \{0^n 1^n : n \ge 1\}$ is not regular

Let us assume that L is regular. Then by Pumping lemma it must hold that there exists a constant $p \ge 1$ such that for every sentence $w \in L$ it holds that:

If $|w| \ge p$, then w has form w = xyz such that:

- $\blacksquare \quad y \neq \varepsilon \text{ (i.e., } |y| \geq 1),$
- $\blacksquare |xy| \le p$,
- \blacksquare $\forall k \geq 0$ it holds that $xy^kz \in L$.

Sentence $w = 0^p 1^p \in L$ is obviously longer than p and therefore it must meet the PL's requirements. To prove L is not regular, we try all possible partitionings of w into xyz. We must prove that PL conditions hold for none of them.

Proof that language $L = \{0^n 1^n : n \ge 1\}$ is not regular (cont.)

The partitioning either does not fullfils one the first two conditions, or

- \blacksquare xy is a non-empty sequence of zeroes
- \blacksquare y is non-empty sequence of zeroes
- z contains all the ones.

But then xy^0z (that is, we remove y from w=xyz) does not belong to L (because the number of zeroes in xy^0z is surely less than the number of ones)!

Therefore L is not regular.

Proof that language $L = \{1^m : m \text{ is prime}\}$ is not regular

Let us assume that L is regular. Then by the Pumping lemma it must hold that there exists a constant $p \ge 1$ such that . . . (see Pumping lemma).

Let us assume sentence $w = 1^m$ for prime $m \ge p + 2$.

Let w=xyz be any partitioning satisfying $|xy| \le p$ and $1 \le |y|$. Let us consider a "pumped" sentence $w_1 = xy^{m-|y|}z$. We show that w_1 is not in L, which contradicts Pumping lemma.

Proof that language $L = \{1^m : m \text{ is prime}\}$ is not regular (cont.)

Let us consider the length of the sentence $w_1 = xy^{m-|y|}z$. It holds that $|xy^{m-|y|}z| = |xz| + (m-|y|) * |y| = (m-|y|) * (m-|y|) * (1+|y|)$.

 $|w_1|$ would be a prime only if either (m-|y|)=1 or (1+|y|)=1.

- \blacksquare $(1+|y|) \neq 1$, because $|y| \geq 1$.
- $lacksquare m \ge p+2, \ |y| \le |xy| \le p, \ \text{therefore} \ m-|y| \ge p+2-p=2.$

For an arbitrary partitioning of $w = xyz \in L$ by the first two conditions of PL it holds that $xy^{m-|y|}z \notin L$.

Therefore, L is not regular.

Example of a language that satisfies PL but it is not regular.

 $L = \{ u : u = a^+b^ic^i \lor u = b^ic^j, 0 \le i, 0 \le j \}$

A comprehension question

How big is the constant p in Pumping lemma for a *finite* language?

(Note: Every finite regular language is regular, therefore Pumping lemma conditions must hold for it.)

Myhill-Nerode theorem: motivation

- It characterizes fundamental relationships between finite automata over alphabet Σ and certain equivalence relations over strings in Σ^* ,
- it describes some of the necessary and sufficient conditions for a language to be regular (used often for proving that a language is not regular),
- it provides a formal basis for an elegant proof of existence of a unique (with respect to isomorphism) minimal DFA for a given regular language.

Equivalences

Definition (Equivalence – recall from BIE-ZDM)

Equivalence \sim is a binary relation that is reflexive, symmetric, and transitive.

Definition (Equivalence class – recall from BIE-ZDM)

Equivalence class of an element a (denoted as [a]) in set X is the subset of all elements in X that are equivalent to a.

Definition (Quotient set)

The set of all equivalence classes in X is called the *quotient set* of X by \sim and is denoted by X/\sim .

Definition (Index of equivalence)

Index of equivalence \sim is the number of equivalence classes in the quotient set Σ/\sim . If there are infinitely many equivalence classes, the index is defined to be ∞ .

Right congruence and prefix equivalence

Definition (Right congruence)

Let Σ be an alphabet and \sim is an equivalence on Σ^* . Equivalence \sim is a *right* congruence, if for every $u, v, w \in \Sigma^*$ it holds that:

$$u \sim v \Rightarrow uw \sim vw$$

Definition (Prefix equivalence)

Let L be an arbitrary (not necessarily regular) language over alphabet Σ . We define *prefix equivalence* for L, a relation \sim_L on set Σ^* like this:

$$u \sim_L v \Leftrightarrow \forall w \in \Sigma^* : uw \in L \Leftrightarrow vw \in L$$

Observation

For each language L its prefix equivalence is its right congruence.

Myhill-Nerode theorem

Myhill-Nerode theorem

Let L be a language over Σ . Then the following statements are equivalent:

- 1. L is a language accepted by a finite automaton.
- 2. L is a union of certain equivalence classes of the quotient set of Σ^* by the right congruence on Σ^* with a finite index.
- 3. Relation \sim_L has a finite index.

Proof

We prove the following implications:

- \blacksquare 1 \Rightarrow 2.
- \blacksquare 2 \Rightarrow 3.
- \blacksquare 3 \Rightarrow 1.

Myhill-Nerode theorem: $1 \Rightarrow 2$

If L is accepted by a DFA, then L is a union of some classes of the quotient set by the right congruence on Σ^* with a finite index.

Let us introduce a general transition function $\hat{\delta}$ for DFA $M=(Q,\Sigma,\delta,q_0,F)$. $\hat{\delta}:Q\times\Sigma^*\to Q$ such that $\forall q_1,q_2\in Q,w\in\Sigma^*:\hat{\delta}(q_1,w)=q_2\Leftrightarrow (q_1,w)\vdash_M^*(q_2,\varepsilon)$.

Myhill-Nerode theorem: $1 \Rightarrow 2$

Proof

For a given L accepted by DFA M we construct \sim with the necessary properties:

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be total DFA.
- We set \sim as a binary relation on Σ^* such that $u \sim v \Leftrightarrow \hat{\delta}(q_0, u) = \hat{\delta}(q_0, v)$.
- lacktriangle We show that \sim has the necessary properties:
 - ullet \sim is an equivalence: it is reflexive, transitive, and symmetric.
 - $\ensuremath{\blacklozenge}$ \sim has a finite index: the equivalence classes correspond to the automaton states.
 - \sim is a right congruence: Let $u \sim v$ and $a \in \Sigma$. Then $\hat{\delta}(q_0,ua) = \delta(\hat{\delta}(q_0,u),a) = \delta(\hat{\delta}(q_0,v),a) = \hat{\delta}(q_0,va)$ and therefore $ua \sim va$.
 - L is a union of some equivalence classes of Σ^*/\sim those that correspond to F.

Myhill-Nerode theorem: $2 \Rightarrow 3$

If there is a relation \sim satisfying condition 2, then \sim_L has a finite index.

- For all $u, v \in \Sigma^*$ such that $u \sim v$, it holds that $u \sim_L v$:
 - Let $u \sim v$. We will show that also $u \sim_L v$, that is $\forall w \in \Sigma^* : uw \in L \Leftrightarrow vw \in L$.
 - We know $uw \sim vw$ and since L is a union of some classes of the quotient set Σ^*/\sim , it also holds $uw \in L \Leftrightarrow vw \in L$.
- We therefore know that $\sim \subseteq \sim_L$ (that is, \sim_L is the largest right congruence with the given properties).
- Every class of \sim is contained in some class of \sim_L .
- Index of \sim_L cannot be greater than index of \sim .
- lacktriangle \sim has a finite index and therefore even \sim_L has a finite index.

Myhill-Nerode theorem: $3 \Rightarrow 1$

If \sim_L has a finite index, then L is accepted by some finite automaton.

- We create $M = (Q, \Sigma, \delta, q_0, F)$ accepting L:
 - $lacktriangleq Q = \Sigma^*/\sim_L$ (states are the classes of the quotient set),

 - $lack q_0 = [\varepsilon],$
- The shown construction is correct, that is L = L(M):
 - We show by induction over the length of word v that $\forall v \in \Sigma^* : \hat{\delta}([\varepsilon], v) = [v].$
 - $v \in L \Leftrightarrow [v] \in F \Leftrightarrow \hat{\delta}([\varepsilon], v) \in F$.

Proof of irregularity using M-N

Prove that language $L = \{0^n 1^n : n \ge 1\}$ is not regular.

- No strings $\varepsilon, 0, 0^2, 0^3, \ldots$ are \sim_L -equivalent, because $0^i 1^i \in L$, but $0^j 1^i \notin L$ for $i \neq j$.
- $ightharpoonup \sim_L$ therefore has infinitely many classes (or infinite index).
- According to Myhill-Nerode theorem L cannot be accepted by a finite automaton.

M-N theorem and DFA minimality

Theorem (second version of M-N theorem)

Number of states of any minimal DFA accepting L is equal to index of \sim_L . (Such a DFA exists if and only if the index is finite.)

- Every DFA (without unreachable states) defines a certain right congruence with a finite index and vice versa.
- If L is regular, \sim_L is the greatest right congruence with a finite index such that L is the union of certain classes of the appropriate quotient set.
- Finite automaton that corresponds to \sim_L (see proof of $3 \Rightarrow 1$ of M-N), is therefore a minimal DFA accepting L.