Robotics - Computational Motion Planning (Artificial Potential Field - Sensor based)

Two Main Function

Attractive Potential Field (f_a)

ullet When getting far away from the goal, f_a will get larger quickly

$$f_a(x) = c(\|x - x_g\|^2)$$

- $x=inom{x1}{x2}$, the current position of the robot $x_g=inom{x_1^g}{x_2^g}$, the desired goal location
- c is simply a constant scaling parameter

Repulsive Potential Field (f_r)

 $\bullet\,$ When getting close to the obstacle, f_r will get larger quickly.

$$f_r(x) = \{ egin{aligned} \eta(rac{1}{
ho(x)} - rac{1}{d_0})^2 & ext{if }
ho(x) \leq \ d_0 \ 0 & ext{if }
ho(x) > d_0 \end{aligned}$$

- ullet ho(x), return distance to the closest obstacle from a given point in configuration space, x.
- ullet η and d_0 are a parameters that control the influence of the repulsive potential

Add them up !!

Gradient Based Control Strategy

- While robot position is not close enough to goal
 - o Choose direction of robot velocity based on the gradient of the artificial potential field

$$v arpropto -
abla f(x) = - \left(rac{rac{\partial f(x)}{\partial x_1}}{rac{\partial f(x)}{\partial x_2}}
ight)$$

 \circ choose an appropriate robot speed, $\|v\|$

Quiver Plot

• The arrows denote the direction of the gradient vector at various points in the configuration space

NOTE

• May produce local minima -> cannot find the destination -> use back tracking procedure to detect these situations and switch to different planning strategy.