

Rwanda Mathematics Competition 2020/21 Final Stage

Date: May 7th, 2021	Time limit: 3 hours			
Please enter the following information in PRINT .				
NAME:	GENDER: ${\bf F}$ \Box			
SCHOOL:	CLASS:			

INSTRUCTIONS AND REGULATIONS (please read it):

- Write full solutions to ALL questions.
- No calculators, cellphones nor other electronic devices are allowed. Only paper, pen, eraser, straightedge and compass.
- For your own calculations use scratch papers. For the final solution use the page under each problem.
- If you need additional paper or go to the toilet please raise your hand wait until one of the invigilators will approach you.
- Students communicating with each other during the test will be removed from the classroom.
- When the invigilators announce "TIME'S UP" please collect your papers (with this page on top) and hand them over immediately. Do NOT include scratch papers.
- Each answer will be awarded with up to 7 points.

Wishing you Good Luck

Celestin Kurujyibwami, Japhet Niyobuhungiro, Layla Sorkatti and Paul Vaderlind.

DO NOT write in the boxes below please

Pro	blems	ONE	TWO	THREE	FOUR	FIVE	SIX	Total Score
	Score	/7	/7	/7	/7	/7	/7	/42

PROBLEMS.

2. In the figure below is an example of a "chain" consisting of 22 identical squares. In such chain each of the squares has exactly two of its sides common with two other squares. Is it possible to construct a chain consisting of 123 squares?

3	Find all	integer	solutions a	e and a	to the	aquation
٥.	Tillu all	mileger	Solutions 2	i anu y	to me	equation

$$(x+y^2)(x^2+y) = (x+y)^3 - 6xy.$$

4.	Let $ABCDE$ be a convex pentagon with five equal sides and right angles at C and D . Let P denote the intersection point of the diagonals AC and BD . Prove that the lengths of PA and PD are equal. (A convex polygon has all its internal angles smaller than 180 degrees.)							

5.	Suppose	that	A, I	B, C	and	D	are integers.	Show	that the	produc	et

$$(A - B)(A - C)(A - D)(B - C)(B - D)(C - D)$$

is divisible by 12.

- 6. (a) Find which of the following six statements are true and which are false:
 - (1) Exactly one of these six statements is false.
 - (2) Exactly two of these six statements are false.
 - (3) Exactly three of these six statements are false.
 - (4) Exactly four of these six statements are false.
 - (5) Exactly five of these six statements are false.
 - (6) Exactly six of these six statements are false.
 - (b) Remove the word "Exactly" from each of the six statements above and then find out which statements are true and which are false.

****** THE END *******