Nanotechnology

Physicist Richard Feynman, the father of nanotechnology.

 In 1959, described a process in which scientists would be able to manipulate and control individual atoms and molecules. History

Professor **Norio Taniguchi** coined the term nanotechnology in **1974**.

In 1981, with the development of the scanning tunneling microscope that could "see" individual atoms, that modern nanotechnology began.

Nanotechnology in Nature

Nanogold

Increased Surface Area

Nanomanufacturing

https://www.youtube.com/watch?v=WW0IIyrq 8z4

Dimensions of Nanomaterials

- 0-D: All dimensions at the nanoscale
- 1-D: Two dimensions at the nanoscale, one dimension at the macroscale
- 2-D: One dimension at the nanoscale, two dimensions at the macroscale
- No dimensions at the nanoscale, all dimensions at the macroscale

NMs classification based on dimensionality

0D

Nanospheres, clusters

Quantum dots

Fullerenes

Gold nanoparticles

1D

Nanotubes, wires, rods

Metal nanorods, Ceramic crystals

Carbon nanotubes, Metallic nanotubes

Gold nanowires, Polymeric nanofibers, Self assembled structures

2D

Thin films, plates, layered structures

Carbon coated nanoplates

Layered nanomaterials

3D

Bulk NMs, polycrystals

Liposome

Polycrystalline

Dendrimer

timeline of four generations of nano products 1st passive nanostructures a. Dispersed and contact nanostructures such as aerosols, colloids b. Products incorporating nanostructures such as coatings; nanoparticle frame 1 reinforced composites; nanostructured metals, polymers, ceramics 2nd active nanostructures a. bio-active, health effects such as targeted drugs, biodevices b. physico-chemical active such as 30 transistors, amplifiers, actuators, adaptive structures 3rd systems of nanosystems risk governance such as guided assembling; 3D networking & frame 2 new hierarchical architectures, robotics, evolutionary 4th molecular nanosystems such as molecular devices 'by design', atomic design, emerging functions

2015-2020

Carbon Nanotubes

Carbon Nanotubes

Model of the C60 fullerene

Quantum Dots

- Q1. Why are nanomaterials and nanotechnology considered revolutionary for modern scientific and technological development:
- 1. Even though the physical properties of nanomaterials don't change, their chemical reactivity enhances significantly.
- 2. Size of Nanomaterials is directly proportional to its surface area, i.e. with increase in size the surface area increases.
- 3. They are considered environment friendly because of no negative impact on ecosystems.

Select the correct answer using the code given below.

- (a) 1 and 2 only
- (b) 2 only
- (c) 2 and 3 only
- (d) None

- Q2. With reference to the use of nano technology in health sector, which of the following statements is/are correct?
- 1.Targeted drug delivery is made possible by nanotechnology.
- 2.Nanotechnology can largely contribute to gene therapy.

 Select the correct answer using the code given below.
 - (a) 1 only
 - (b) 2 only
 - (c) Both 1 and 2
 - (d) Neither 1 nor 2

- Q3. Consider the following statements:
- 1. Other than those made by humans, nanoparticles do not exist in nature.
- 2. Nanoparticles of some metallic oxides are used in the manufacture of some cosmetics.
- 3. Nanoparticles of some commercial products which enter the environment are unsafe for humans.

Which of the statements given above is/are correct?

- (a)1 only
- (b) 3 only
- (c) 1 and 2
- (d) 2 and 3