МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ КИЇВСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені ТАРАСА ШЕВЧЕНКА

3BIT

Моделювання операційних підсилювачів з позитивним зворотнім зв'язком

Звіт

Звіт. Моделювання транзисторних підсилювачів: 8 с.

 $\it Mema\ poбomu\ -$ ознайомитися з властивостями операційних підсилювачів, опанувати способи підсилення електричних сигналів схемами з ОП, охопленим позитивним зворотним зв'язком та способи виконання математичних операцій за допомогою схем з ОП

Об'єкт дослідження – операційні підсилювачі, диференціальне підсилення постійного струму

Предмет дослідження – теоретичні основи, принципи роботи, фізичний зміст і застосування операційних підсилювачів

Методи дослідження:

1) *Метод співставлення*, одночасне спостереження вхідного та вихідного сигналів на екрані двоканального осцилографа із наступним вимірюванням і порівнянням їх параметрів.

Зміст

Теоретичні відомості	5
Виконання роботи	6
Релаксаційний генератор	6
Генератор гармонічних коливань	7
Висновки	8
Джерела	8

Теоретичні відомості

Операційний підсилювач (англ. operational amplifier) — це диференціальний підсилювач постійного струму, який в ідеалі має нескінченний коефіцієнт підсилення за напругою і нульову вихідну напругу за відсутності сигналу на вході, великий вхідний опір і малий вихідний, а також необмежену смугу частот підсилюваних сигналів. Раніше такі високоякісні підсилювачі використовувалися виключно в аналогових обчислювальних пристроях для виконання математичних операцій, наприклад, складання та інтегрування. Звідси і походить їх назва — операційні підсилювачі (ОП).

Створення зворотного зв'язку полягає в тому, що частина вихідного сигналу підсилювача повертається через ланку зворотного зв'язку (33) на його вхід. Якщо сигнал зворотного зв'язку подається на вхід у протифазі до вхідного сигналу (різниця фаз $\Phi = 180$), то зворотний зв'язок називають негативним (H33). Якщо ж він подається на вхід у фазі до вхідного сигналу ($\Phi = 0$), то такий зворотний зв'язок називають позитивним (П33).

Операційним підсилювачем називають багатокаскадний диференціальний підсилювач постійного струму, який має в діапазоні частот до кількох десятків кілогерц коефіцієнт підсилення більший за 10^4 і за своїми властивостями наближається до уявного «ідеального» підсилювача. Під «ідеальним» розуміють такий підсилювач, який має:

- 1) нескінченний коефіцієнт підсилення за напругою диференціального вхідного сигналу $(K \to \infty)$
- 2) нескінченний вхідний імпеданс ($Z_{bx} \to \infty$)
- 3) нульовий вихідний імпеданс ($Z_{bux} = 0$)
- 4) рівну нулеві напругу на виході ($U_{bux} = 0$) при рівності напруг на вході ($U_{bux1} = U_{bux2}$)
- 5) нескінченний діапазон робочих частот

Компаратор — це електронний пристрій порівняння двох аналогових сигналів: U_{in1} та U_{in2} . При цьому на виході схеми формуються тільки два значення вихідного сигналу:

- а) напруга на виході максимальна, якщо різниця напруг між вхідними сигналами ϵ додатньою
- б) напруга на виході мінімальна, якщо різниця напруг між вхідними сигналами ϵ від'ємною

Передавальна характеристика компаратора — залежність вихідної напруги компаратора від напруги на його вході

Рівень включення (виключення) компаратора — значення напруги на вході компаратора $U_{in} = U_{on}$, при якій вихідна напруга U_{out} змінює своє значення від мінімального до максимального (при включенні); при виключенні $U_{in} = U_{off}$ і вихідна напруга змінюється від U_{max} до U_{min}

Гістерезисний компаратор (тригер Шміта) — це електронний пристрій порівняння, у якого передавальна характеристика ϵ неоднозначною, тобто рівні включення і виключення не збігаються (на відміну від звичайного компаратора), а відрізняються на величину, яку називають гістерезисом переключення

Генератори — це електронні пристрої, які формують на виході змінну напругу потрібної форми. На відміну від підсилювачів, у таких пристроїв немає входу. Їх вихідний сигнал з'являється у відповідь на підключення до них джерела живлення. Форма генерованої напруги може бути різноманітною: гармонічною, прямокутною, пилкоподібною або будь-якою іншою

Виконання роботи.

Релаксаційний генератор

Складемо схему простого релаксаційного генератора у програмі для моделювання. За відсутності компонентів в списку використовуємо відповідні аналоги.

Досліджувана схема та параметри її моделювання:

Вихід схеми (зелений – точка 1, синій – точка 2):

Генератор гармонічних коливань

Досліджувана схема:

Вихідний сигнал підсилювача. Оскільки перші 135 мс в схемі нічого особливого не відбувається, вони відрізаній на графіку, як і все шо після 200мс

Висновки

В цій роботі ми дослідили як змінюється сигнал після проходження різних типів операційних підсилювачів з позитивним зворотнім зв'язком. Були розглянуті такі типи генераторів на базі ОП: релаксаційний та гармонічних коливань. Для дослідження обох типів використовувався імпульсний сигнал.

Отримані нами результати, а саме зміна фази та структура сигналу повністю відповідають очікуваним.

Джерела

- Методичні вказівки до практикуму «Основи радіоелектроніки» для студентів фізичного факультету. Слободянюк О.В.
- Вивчення радіоелектронних схем методом комп'ютерного моделювання. Ю. О. Мягченко