

Autoencoders

Encoder

- Neural network / model
 - Reduceer de input naar een kleinere / gecomprimeerde representative
 - Waaraan doet dit je denken?
 - Op zoek gaan naar de belangrijkste informatie van een invoer
 - Kan ook andere lagen dan Dense lagen bevatten
 - Bijvoorbeeld convolutionele lagen

Bottleneck

- De comprimeerde representatie van de input
 - De output van de encoder
 - De input van de decoder
 - Wordt ook de latent space genoemd
- Bottleneck kan ook gebruikt worden in NN om overfitting tegen te gaan
 - Zorgt ervoor dat niet alle gegevens van de input onthouden kunnen worden
 - Hoe kleiner de bottleneck
 - Hoe kleiner de kans op overfitting
 - Hoe minder data bewaard kan worden en belangrijke verbanden niet gezien kunnen worden

Decoder

- Neuraal netwerk dat probeert de gewenste output te bekomen
 - Kan enkel de gecomprimeerde bottleneck gebruiken
 - Twee mogelijkheden voor de output
 - Ofwel terug de input reconstrueren (typisch voor unsupervised learning)
 - Een gewenste ground truth bepalen (supervised learning)
 - Deze ground truth moet niet noodzakelijk hetzelfde zijn als de input
 - Bijvoorbeeld tekst als input en een beeld als output kan ook

Reconstruction loss

- Belangrijk topic bij auto-encoders is de loss functie
 - Hoe bepalen we de fout van het neurale network?
 - Bij image data is dit vaak
 - Mean Square Error
 - Binary Cross Entropy (indien de waarden tussen 0 en 1 liggen)

Types autoencoders

- Autoencoders bestaan reeds sinds 1980
- Populaire types zijn:
 - Undercomplete autoencoders
 - Denoising autoencoders
 - Variational autoencoders

Undercomplete autoencoder

Undercomplete autoencoder

- Input = output
- Unsupervised learning

- Bewaar gecomprimeerde data
- Kan enkel gelezen worden door decoder

(a) Shallow undercomplete

(c) Deep undercomplete

(b) Shallow overcomplete

(d) Deep overcomplete

Verschil met PCA

PCA

Enkel lineair

■ Auto encoder

- Niet-lineaire activatiefunctie
- Niet lineaire verbanden

Sparse autoencoder

- Lijkt sterk op undercomplete
 - Extra kost voor activatie neurons
 - Lijkt wat op dropout toevoegen
- Input ook gelijk aan output

Denoising autoencoder

Denoising autoencoder

Verwijder ruis uit de input

Maar voeg eerst digitaal ruis toe

- Belangrijk is dat de manier waarop je ruis toevoegt realistisch is
 - Het model leert de ruis die je toevoegt te verwijderen
 - Is dit niet gelijkaardig aan de realiteit, dan gaat het niet goed werken

Variational autoencoders

Variational autoencoders

- Om data te genereren / aan te maken
 - Images
 - Gelijkaardige beelden
 - Dall-e (input van de encoder is dan tekst en output is een beeld)
 - Audio
 - Time series data

■ Dimensionality reduction

- Dimensionality reduction
- Denoising

- Dimensionality reduction
- Denoising
- Data generator

- Dimensionality reduction
- Denoising
- Data generator
- Anomaly detector
 - Lijkt de output niet op de input dan is het een outlier

- Dimensionality reduction
- Denoising
- Data generator
- Anomaly detector
 - Lijkt de output niet op de input dan is het een outlier
- Image segmentation
- **-** ...

