Time Series 101: Learning from History

Lisa Ong, NUS-ISS June 11, 2020

Speaker Introduction

<u>iss.nus.edu.sg/about-</u> us/staff/detail/203/Lisa%20ONG

linkedin.com/in/lisaong

github.com/lisaong

What I Teach

SOFTWARE SYSTEMS

NICF- Designing Intelligent Edge Computing (SF)

SOFTWARE SYSTEMS

NICF- Humanizing Smart Systems (SF)

STACKUP - STARTUP TECH TALENT DEVELOPMENT

NICF- Sequence Modeling with Deep Learning (SF)

STACKUP - STARTUP TECH TALENT
DEVELOPMENT

NICF- Data and Feature Engineering for Machine Learning (SF)

STACKUP - STARTUP TECH TALENT
DEVELOPMENT

NICF- Supervised and Unsupervised Modeling with Machine Learning (SF) STACKUP - STARTUP TECH TALENT
DEVELOPMENT

NICF- Feature Extraction and Supervised Modeling with Deep Learning (SF)

Topics

Definition of Time Series

Applications of Time Series data

Preparing Time Series data

Training Time Series data with Tensorflow-Keras

Next Steps

Time Series Definition

Wikipedia:

A time series is a **series** of data points listed **in time order**.

Most commonly, a **sequence** taken at **successive equally spaced points** in time.

Thus it is a sequence of discrete-time data.

You can plot the data with **time** as the "x-axis".

Time Sequential Equally-spaced Signal

<u>data.gov.sg/dataset/gross-domestic-product-in-chained-2015-dollars-year-on-year-growth-rate-quarterly</u>

Other examples: Stock prices, Weather, Sales Revenues, Sensor Measurements

Can be Periodic, Cyclical, Seasonal, ...

data.gov.sg/dataset/relative-humidity-annual-mean

What if I have dates in my dataset?

Customer invoices

Q: Is there is a sequence of the <u>same</u> data point? (E.g. are they purchases of the same item?)

Copyright 2020. National University of Singapore

What if I have multiple series?

Monthly COE Premiums by Category A, B, C, D, E

Month	Bidding No (No. of Bids)	Vehicle Class	Quota (No. of Quota)	Bids Success (No. of Successful Bids)	Bids Received (No. of Bids Recieved)	Premium (S\$)
2020-03	1	Category A	978	973	1,436	32,699
2020-03	1	Category B	987	987	1,347	32,801
2020-03	1	Category C	315	315	504	24,202
2020-03	1	Category D	593	587	785	4,310
2020-03	1	Category E	333	331	512	32,500
2020-03	2	Category A	982	962	1,421	31,210
2020-03	2	Category B	992	943	1,366	30,012
2020-03	2	Category C	448	448	708	22,002
2020-03	2	Category D	581	576	757	4,489
2020-03	2	Category E	331	324	503	32,500
2020-03	1	Category A	978	973	1,436	32,699
2020-03	1	Category B	987	987	1,347	32,801
2020-03	1	Category C	315	315	504	24,202
2020-03	1	Category D	593	587	785	4,310
2020-03	1	Category E	333	331	512	32,500

Q: Are they <u>independent</u> or <u>dependent</u>? (E.g. can Cat A be used to predict Cat E?)

data.gov.sg/dataset/coe-bidding-results

How about video, audio, motion?

www.chasearmitage.com/motion-captur/

www.phon.ox.ac.uk

nofilmschool.com

Specialised techniques: e.g. Signal Processing, Recurrent + Convolutional Neural Networks, ...

2 Common Applications

Predict the next value

Recognise a pattern

Forecasting: Predict the next value(s)

Pattern Recognition: Identify a Pattern

Applying Machine Learning or Deep Learning

A Machine Learning (ML) System is one where **input** data is passed into a trained **algorithm** to generate a **prediction**. **Deep learning** is a subset of Machine Learning.

To apply ML, we must first formulate our problem in terms of inputs and targets.

During "Training": Prediction is Compared with Actual (Target) value to calculate the error and update the Algorithm

How to formulate the ML problem?

- What are the inputs?
- What are the targets?

t	X
1	10
2	20
3	35
4	88
	•••

t	x [t]	x [t+1]	У
1	10	20	?
2	20	35	?
3	35	88	?

Each row is a **history (X) sample** and **its target (y)** at **time step t**. Target <u>depends on the application</u>.

Forecasting: History and Targets

Pattern Recognition: History and Targets

Why use a Window?

- 1. More than 1 value is needed to **determine direction**
- 2. Preserve the **chronological (sequence)-ordering** of the data, i.e. **"timeseries-ness"**

Given only 1 value, will the next one go up or down???

Quarter	Level 1 \$\\$	Value (Per Cent)
2020-Q1	GDP In Chained (2015) Dollars	-0.7

If sequence order is not chronological, no longer a time series!

2020-Q1	GDP In Chained (2015) Dollars	-0.7
2019-Q4	GDP In Chained (2015) Dollars	1
2019-Q4	GDP In Chained (2015) Dollars	1
2019-Q3	GDP In Chained (2015) Dollars	0.7
2019-Q2	GDP In Chained (2015) Dollars	0.2
2019-Q1	GDP In Chained (2015) Dollars	1

Python Walkthrough

URL:

<u>bit.ly/iss-</u> history101

Loading a Time Series dataset from data.gov.sg

Finding the "right" window size

Creating a Rolling Window dataset

Training a Neural Network for Forecasting

Google Colab Notebook: bit.ly/iss-history101

Finding the "Right" Window size

- Problem-specific
 - Forecasting: Auto-correlation or Partial Auto-correlation
 - Pattern Recognition: Observed length of the pattern
 - Both involve domain knowledge
- Auto-correlation is simplest, but only applies to Forecasting

Auto-correlation

- How dependent is the current value from historical values
 - Large (positive or negative) values: good
 - Near zero: random noise
- This is computed using a similar "sliding window" technique and measured at different window sizes.
- How to use: look for auto-correlation exceeding the confidence band (95%)

Applying a Neural Network

- Simple Neural Network using **Tensorflow-Keras**
 - Multi-layer Perceptron (next slide)
- Check for Overfitting
 - When an algorithm only gets good predictions for the training data
- Get predictions

Multi-layer Perceptron (2 layers)

Copyright 2020. National University of Singapore

Common Issues

- Overfitting: Neural Network doesn't do well with unseen data
- Predicted values are too smooth
- Bad data, incorrect labels

Reusing the same Time Series dataset

Python Walkthrough (continued)

Generating labels for **Recession = True**

Creating a Rolling Window dataset

Training a Neural Network to detect **Recession = True**

Summary

	Forecasting	Pattern Recognition
Target	Next GDP % value	True / False
History Window Size	Determined by the help of Auto-correlation	Determined by the pattern length
Output	Decimal values	Probabilities (using sigmoid activation)
Metrics	Mean Squared Error, Mean Absolute Error	Classification Accuracy
Training Loss Function	Mean Squared Error	Binary Cross Entropy Loss
Task	Regression	Classification

We've only scratched the surface

Other algorithms that can use "Windowing":

- Non-Neural Nets (e.g. Random Forest, Linear Regression)
- Recurrent Neural Nets, Convolutional Neural Nets

Statistical Methods that implicitly do "Windowing":

- AR, MA, ARIMA, SARIMA family: via the "p" and/or "q" parameter(s)
- www.statsmodels.org/stable/tsa.html

Articles by **Jason Brownlee:**machinelearningmastery.com/catego
ry/time-series/

More Applications of Time Series

- Clustering
 - Separating signal "patterns" into groups
 - Unsupervised or Semi-supervised learning
 - No target label or value
- Data generation
 - Test data, audio waveforms, etc
 - A sequence of target values

www.hanselsolutions.com

Upcoming Webinars and Courses

Thank you!!

Feedback Survey

- Help us improve your experience
 - Scan the QR code or go to <u>https://nus.edu/37jllHn</u>
 - Presentation slides and recording will be shared after completion & successful submission of feedback
 - Allow 3-4 working days to receive the slides, upon successful submission.
 - Alternatively, write to us at issmarketing@nus.edu.sg

