0.1 Ejercicio 1

En este ejercicio se implementará un sistema de control para un tanque de agua, el cual cuenta con dos sensores, I y S los cuales indican si el tanque está lleno ,justo en la mitad o vacío. Las condiciones de diseño serán las siguientes:

- Cuando está vacío (I=0, S=0) deben prenderse las dos bombas B_0 y B_1 .
- Cuando esté lleno (I=1, S=1) deben apagarse las bombas.
- Cuando esté por la mitad (I=1, S=0) se activará una sola bomba, pero deberán alternar entre sí cual trabaja.

Estas limitaciones se corresponden con la siguiente tabla de verdad:

Ι	\mathbf{S}	B_1	B_2		
0	0	1	1		
0	1	X	X		
1	0	Alternado			
1	1	0	0		

A partir de aqui se diseño la siguiente FSM.

Figure 1: Finite state machine.

A partir de aquí se puede hacer una tabla de transiciones.

Estado Acutal	Estado Futuro				Salida		
	I-S	I-S	I-S	I-S	Both	Toggle	
	0-0	0-1	1-0	1-1			
A	X	X	В	X	1	0	
В	A	X	X	\mathbf{C}	0	1	
С	X	X	В	X	0		

Table 1: Tabla de transiciones

A partir de la tabla (??) y la figura (??) se puede llegar a la siguiente tabla, donde y_i es la salida de los flip-flops e Y_i es la entrada.

Estado Acutal	Codificación	Estado Futuro				Salida	
	$y_2 - y_1$	$Y_2 - Y_1$ I-S	Ambos	Toggle			
		0-0	0-1	1-0	1-3		
A	00	X	X	01	X	1	0
В	01	00	X	X	11	0	1
С	10	x	X	01	X	0	0
D	11	X	X	X	X	X	X

Donde la variable ambos hace referencia a caundo se deben prender ambas bomba y la variable Toggle a cuando debe prenderse una solo e intercambiar.

De aquí se pasa a resolver los mapas de karnaugh para cada variable:

Figure 2: Tabla de Karnaugh Y1.

Figure 3: Tabla de Karnaugh Y2.

Figure 4: Tabla de Karnaugh Ambos.

Figure 5: Tabla de Karnaugh Toggle.

A partir de las tablas se derivan las siguientes expresiones:

$$Y_1 = I \quad Y_2 = S \tag{1}$$

$$Ambos = \overline{y_2 + y_1} \quad Toggle = y_1 \tag{2}$$

De aquí se obtienen los siguientes circuitos para la FSM:

Figure 6: Circuito FSM.

y agregando el siguiente circuito lógico permite implementar la función de toggle junto a la lógica de salida.

Figure 7: Circuito FSM.