

Phystech@DataScience

Блок 2: линейные модели

Линейная регрессия

МОЁ ХОББИ: ЭКСТРАПОЛИРОВАТЬ

Модель линейной регрессии Метод наименьших квадратов Метрики качества в задаче регрессии

Пример

Пусть x — рост песика, а y — его вес.

Что мы знаем?

- чем крупнее песик, тем больший вес он имеет;
- песики одинакового роста могут иметь разный вес.

Выводы:

- ightharpoonup для фиксированного роста песика x его вес y=f(x) является случайной величиной;
- ightharpoonup в среднем вес f(x) возрастает при увеличении роста песика x.

ê

Простая зависимость:

$$y = \theta_0 + \theta_1 x + \varepsilon,$$

x — рост песика,

у — вес песика,

 θ_0, θ_1 — неизвестные параметры,

 ε — случайная составляющая с *нулевым* средним.

Зависимость линейна по параметрам, линейна по аргументу.

Ô

Более сложная зависимость:

$$y = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_2^2 + \varepsilon,$$

 x_1 — рост песика,

 x_2 — обхват туловища песика,

у — вес песика,

 $\theta_0, \theta_1, \theta_2, \theta_3$ — неизвестные параметры,

arepsilon — случайная составляющая с *нулевым* средним.

Зависимость линейна по параметрам,

Модель линейной регрессии

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + \dots + \theta_d x_d$$

$$x_1, ..., x_d$$
 — признаки,

$$\theta = (\theta_1, ..., \theta_d)^T$$
 — вектор параметров.

Для оценки θ производится n испытаний вида

$$Y_i = \theta_1 x_{i1} + ... + \theta_d x_{id} + \varepsilon_i, \quad i = 1, ..., n,$$

$$x_i = (x_{i1},...,x_{id})$$
 — признаковые описания объекта i (обычно неслучайные), $arepsilon_i \sim \mathcal{N}(0,\sigma^2)$ — случайная ошибка измерений.

Модель линейной регрессии

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи проведенных испытаний:

$$Y = X\theta + \varepsilon$$
.

 $X \in \mathbb{R}^{n imes d}$ — регрессоры (или матрица плана эксперимента), $Y \in \mathbb{R}^n$ — отклик.

Матричный вид зависимости: $y(x) = x^T \theta$.

Замечание

Зависимость y = y(x) должна быть линейна по параметрам, но **не** обязана быть линейной по признакам.

Пусть $z_1,...,z_k$ — набор "независимых" переменных. Можно рассматривать модель

$$y(x) = \theta_1 x_1(z_1, ..., z_k) + ... + \theta_d x_d(z_1, ..., z_k),$$

где $x_j(z_1,...,z_k)$ — некоторые функции (м.б. нелинейные).

Примеры:

$$x(z_1,...,z_k) = 1;$$
 $x(z_1,...,z_k) = z_1;$

$$x(z_1,...,z_k) = \ln z_1;$$
 $x(z_1,...,z_k) = z_1^2 z_2.$

Ô

Пример: Потребление мороженого

Предполагается линейная зависимость потребления мороженого в литрах на человека от среднесуточной температуры воздуха: $ic=\theta_0+\theta_1 t$.

Проведена серия наблюдений

$$IC_i = \theta_0 + \theta_1 t_i + \varepsilon_i,$$

 t_i — среднесуточная температура воздуха, IC_i — потребление мороженого в литрах на чел., $arepsilon_i \sim \mathcal{N}(0,\sigma^2)$ — случайное отклонение.

Пример: Потребление мороженого

Наблюдения: $IC_i = \theta_0 + \theta_1 t_i + \varepsilon_i$.

В данном примере $x_1(t) = 1, x_2(t) = t$,

$$X = \begin{pmatrix} 1 & t_1 \\ \dots \\ 1 & t_n \end{pmatrix}, Y = \begin{pmatrix} IC_1 \\ \dots \\ IC_n \end{pmatrix}, \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix}.$$

Пусть $w=I\{$ выходной день $\}$, зависимость $ic= heta_0+ heta_1t+ heta_2t^2w$.

Наблюдения: $IC_i = \theta_0 + \theta_1 t_i + \theta_2 t_i^2 w_i + \varepsilon_i$.

В данном примере $x_1(t, w) = 1, x_2(t, w) = t, x_3(t, w) = t^2w$,

$$X = \begin{pmatrix} 1 & t_1 & t_1^2 w_1 \\ \dots & & \\ 1 & t_n & t_n^2 w_n \end{pmatrix}, Y = \begin{pmatrix} IC_1 \\ \dots \\ IC_n \end{pmatrix}, \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{pmatrix}.$$

Модель линейной регрессии
Метод наименьших квадратов
Метрики качества в задаче регрессии

Ô

Метод наименьших квадратов

Зависимость: $y(x) = x^T \theta$, $\theta \in \mathbb{R}^d$.

Испытания: $Y = X\theta + \varepsilon$, $X \in \mathbb{R}^{n \times d}$, $Y \in \mathbb{R}^n$.

Хотим как-то оценить параметр θ на основании полученных данных.

Пусть $\widehat{\theta} = \widehat{\theta}(X, Y)$ — наша оценка θ .

Как понять, что она хорошая?

Метрика mean squared error (MSE):

$$MSE(\widehat{\theta}) = \left| \left| Y - X\widehat{\theta} \right| \right|^2$$

Оценка $\widehat{\theta}=\mathop{\arg\min}_{\theta} MSE(\widehat{\theta})$ называется оценкой по методу наименьших квадратов параметра $\theta.$

Метод наименьших квадратов

Теорема. Если матрица X^TX невырождена, то $\widehat{\theta} = (X^TX)^{-1}X^TY$.

$$MSE(\theta) = ||Y - X\theta||^2 = (Y - X\theta)^T (Y - X\theta) = Y^T Y - 2Y^T X\theta + \theta^T X^T X\theta$$

Берем производную по θ и приравниваем ее к нулю:

$$\frac{\partial MSE(\theta)}{\partial \theta} = -2Y^TX + 2\theta^TX^TX = 0$$

Отсюда получается утверждение теоремы.

Предсказанием oтклика на новом объекте x будет величина $\widehat{y(x)} = x^T \widehat{\theta}$.

Некоторые свойства (для справки)

Если выполнено:

- 1. rkX = d (признаки линейно-независимы)
- 2. для $\varepsilon = y \widehat{y}$
 - $ightharpoonup arepsilon_i$ одинаково распределены
 - ightharpoonup $E\varepsilon_i=0$
 - $\triangleright D\varepsilon_i = \sigma^2$
 - ightharpoonup $\mathsf{E}\varepsilon_i\varepsilon_j=0,\,\forall i\neq j$

Тогда оценка МНК — хорошая:

- 1. Несмещённая: $\mathbf{E}\widehat{\theta}=\theta$
- 2. $D\widehat{\theta} = \sigma^2(X^TX)^{-1}$
- 3. Эффективная

Пример: Потребление мороженого

Ê

E

Категориальные переменные

x — id астрономического объекта (натуральное число), y — его масса.

Предположим, что типы занумерованы следующим образом:

- ▶ x = 1 черная дыра;
- x = 2 нейтронная звезда;
- ▶ x = 3 обычная звезда.

	id	тип	масса	
0	2546	2	1.1	
1	3642	1	30.0	
2	1211	3	5.5	
3	4333	3	0.7	

Если $x \in \{1, ..., k\}$, то рассматриваются **dummy-переменные**:

$$x_j = I\{x=j\}, \quad j=1,...,k-1,$$
 модель $y=\theta_0+\theta_1x_1+...+\theta_{k-1}x_{k-1}.$

		id	ч. дыра	нейт. зв.	масса
	0	2546	0	1	1.1
	1	3642	1	0	30.0
	2	1211	0	0	5.5
	3	4333	0	0	0.7

Модель линейной регрессии Метод наименьших квадратов Метрики качества в задаче регрессии

Метрики качества в задаче регрессии

- Y реальные наблюдения, \widehat{Y} предсказания.
 - ► Mean Squared Error:

$$MSE(Y,\widehat{Y}) = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 -$$
легко оптимизируется

▶ Mean Absolute Error:

$$\mathit{MAE}(Y,\widehat{Y}) = rac{1}{n} \sum_{i=1}^n |Y_i - \widehat{Y}_i| \; - \;$$
 устойчивее к выбросам

► Mean Absolute Percentage Error:

$$MAPE(Y, \widehat{Y}) = rac{1}{n} \sum_{i=1}^n \left| rac{Y_i - \widehat{Y}_i}{Y_i}
ight| * 100\% -$$
информативна

Недообучение vs Переобучение

Недообучение vs Переобучение

Переобучение

Недообучение vs Переобучение

Нормально!

Тренировочная и тестовая выборки

Если все время работать *с одной и той же* выборкой (это жаргон, корректно понимать "реализацией выборки") и все больше улучшать модель, "подгонять" ее под выборку, может возникнуть *переобучение*.

Предсказание на новом объекте может быть неадекватным.

Поэтому перед началом работы имеющиеся данные делят на две части:

тренировочную (обучающую) и тестовую выборки.

train	test
70%	30%

На тренировочной выборке происходит обучение моделей (например, оценка коэффициентов в линейной регрессии).

На тестовой выборке происходит оценка качества итоговой модели с использванием метрик качества.

