Machine Learning Analysis on the JET Pedestal Database

or how I learned to worry about high n_e^{ped}

9 June, 2021

Overview

JET Pedestal Database

Machine Learning

Table of Contents

JET Pedestal Database

Machine Learning

JET Pedestal Database

Input Parameters and Filtering

Eng. Param	Domain	
I_P [MA]	[0.81, 4.48]	
B_T [MW]	[0.97, 3.68]	
<i>a</i> [m]	[0.83, 0.97]	
R [m]	[2.8, 2.975]	
δ [-]	[0.16, 0.48]	
M _{eff} [-]	[1.0, 2.18]	
P_{NBI} [MW]	$[10^{-3}, 32.34]$	
P _{ICRH} [MW]	[0, 7.96]	
P_{TOT} [MW]	[3.4, 38.22]	
V_P [m ³]	[58.3, 82.19]	
q ₉₅ [-]	[2.42, 6.04]	
Γ [10 ²² e/s]	[0, 15.5]	
H [-]	[0, 0.18]	
$\Gamma_{SD} [10^{22} \text{ e/s}]$	[0, 1000]	
DC [-]	$[VV\cdots]$	

- ightharpoonup Shafranov Shift \rightarrow remove R
- ightharpoonup Γ_{SD} varies too much.
- Only numerical
- ► Only Deuterium
- ► No RMPs, Kicks, or Pellets
- HRTS Validated

Eng. Param	Domain	
I _P [MA]	[0.81, 4.48]	
B_T [MW]	[0.97, 3.68]	
<i>a</i> [m]	[0.83, 0.97]	
R [m]	[2.8, 2.975]	
δ [-]	[0.16, 0.48]	
M_{eff} [-]	[1.0, 2.18]	
P_{NBI} [MW]	$[10^{-3}, 32.34]$	
P _{ICRH} [MW]	[0, 7.96]	
P_{TOT} [MW]	[3.4, 38.22]	
V_P [m 3]	[58.3, 82.19]	
<i>q</i> ₉₅ [-]	[2.42, 6.04]	
Γ [10 ²² e/s]	[0, 15.5]	
H [-]	[0, 0.18]	
$F_{SD} [10^{22} e/s]$	[0, 1000]	
<i>ÐC</i> [−]	[VV ····]	

Table of Contents

JET Pedestal Database

Machine Learning

Linear Regression

$$n_e^{ped} = (9.9 \pm 0.3) I_p^{1.24 \pm 0.19} P_{TOT}^{-0.34 \pm 0.11} \delta^{0.62 \pm 0.14} \Gamma^{0.08 \pm 0.04} M_{eff}^{0.2 \pm 0.2}$$

Linear Regression

- Achieve better RMSE using all inputs
- ▶ But lose interpretability →
- Prediction uncertainty normally distributed between 1.6 - 1.8

Feature	μ	σ^2
I_p	0.15	0.06
B_T	0.956	0.072
a	2.966	0.479
δ	12.95	0.154
V_P	-0.05	0.007
q 95	-1.064	0.0542
P_{NBI}	-1.911	0.0546
P _{ICRH}	-1.976	0.0561
P _{TOT}	1.926	0.0557
Г	0.125	0.007
Н	-4.016	0.374
M_{eff}	1.369	0.053

Random Forests & Extreme Randomized Trees

Uncert. covers residual

Random Forests & Extreme Randomized Trees

- Uncert. covers residual
- ► Meta-modeling
 - \rightarrow no effect

Sensitivity Analysis

Sensitivity Analysis

Sensitivity Analysis

► UQ

- Sensitivity Analysis
- ▶ UQ
- Impurity seeding

ANNs

Crawling

ANNs

- Crawling
- Ensembling

Table of Contents

JET Pedestal Database

Machine Learning

Conclusion

- Non-linear models outpreform linear models
- RFs and ERTs work well as black box models
- Heteroscedastic GPs can map latent uncertainty
- Shallow ANNs perform best

Future Work

- Fit models on varied subsets of database e.g., compare how linear coefficients vary when trained on $q_{95} \le 3.0$ versus $q_{95} > 3.0$.
- UQ of main engineering parameters
- ► Ideas?