MATEMÁTICA DISCRETA

Ano Letivo 2023/24 (Versão: 15 de Março de 2024)

Departamento de Matemática, Universidade de Aveiro https://elearning.ua.pt/

CAPÍTULO 3

Combinatórias

AGRUPAMENTOS E IDENTIDADES

Questões

Quantas maneiras existem de escolher *k* elementos numa coleção de *n* elementos?

Resposta: Depende ... (do que consideramos diferente) ...

- · Podemos repetir elementos?
- · A ordem das escolhas interessa?

Nomenclatura

Falamos de

- · arranjos quando a ordem das escolhas interessa,
- e de combinações quando a ordem das escolhas não interessa.
- Utilizamos o adjetivo simples para indicar que não permitimos repetições.

ÍNDICE (5)

1. Arranjos

2. Combinações

3. Permutações com repetição

4. Identidades Combinatórias

Um arranjo com repetição de n elementos k a k é uma «maneira» de escolher k elementos entre n com repetição e dependente da ordem; ou seja, é uma função do tipo

$$f: \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

O número de arranjos com repetição de n elementos k a k denota-se por $A^r(n,k)$.

Como calcular?

 $A^{r}(n,k) = n^{k}$ (pelo princípio da multiplicação).

Nota (o caso de k = 0)

Para cada $n \in \mathbb{N}$: $A^r(n, 0) = n^0 = 1$. Em particular, $A^r(0, 0) = 0^0 = 1$.

Supondo que temos 6 pessoas, e fazemos a cada uma a pergunta «Qual é o dia da semana do seu aniversário?». Qual é o número de possíveis respostas?

Resposta: $A^r(7,6) = 7^6 = 117649$.

Exemplo

Supondo que se encontra disponível um número não limitado de bolas vermelhas, azuis e verdes e sabendo que as bolas da mesma cor são indistinguíveis, determine o número de sequências de 5 bolas que é possível formar?

Ou seja, fazer uma sequência de k = 5 escolhas em $\{\bullet, \bullet, \bullet\}$.

Resposta: $A^{r}(3,5) = 3^{5} = 243$.

Um **arranjo sem repetição** (ou **arranjo simples**) de *n* **elementos** *k* **a** *k* é uma «maneira» de escolher *k* elementos entre *n* sem repetição e dependente da ordem; ou seja, é uma função injetiva do tipo

$$f\colon \{1,\ldots,k\} \longrightarrow \{1,\ldots,n\}.$$

O número de arranjos sem repetição de n elementos k a k denota-se por $A^s(n,k)$.

Como calcular?

$$A^s(n,k) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-k+1)}_{k \text{ fatores}} = \frac{n!}{(n-k)!}.$$

(pelo princípio da multiplicação generalizada).

Nota (o caso de n = k)

 $A^{s}(n, n) = o$ número de permutações de n elementos = n!.

Determinamos o número de formas distintas^a de sentar k pessoas retiradas de um grupo de n pessoas

- · num banco corrido.
 - Resposta: $A^{s}(n, k)$.
- numa mesa redonda.

Aqui identificamos as maneiras que se obtém (uma a partir da outra) por *rotação*. Portanto, a resposta é

$$\frac{A^{s}(n,k)}{k}$$

 $[^]a$ duas «formas» são iguais se envolve as mesmas pessoas e cada pessoa tem os memos vizinhos nos mesmos lados.

Qual o número de alinhamentos possíveis de 12 escuteiros de tal modo que dois deles (fixos) sejam sempre vizinhos um do outro?

Sejam A e B estes dois escuteiros, e tiramos A do grupo. O número de todos os alinhamentos dos restantes 11 é

$$11! = 39916800.$$

Em cada destes alinhamentos, podemos inserir A ou à esquerda ou à direita de B; portanto, o número de alinhamentos onde A e B são vizinhos é

$$2 \cdot 11! = 79833600.$$

Uma combinação sem repetição (ou combinação simples) de *n* elementos *k* a *k* é um subconjunto de *k* elementos de um conjunto de *n* elementos.

 $\binom{n}{k}$ denota o número de combinações simples de n elementos k a k.

Como calcular?

$$\binom{n}{k} = \frac{A^{s}(n,k)}{k!} = \underbrace{\overbrace{n \cdot (n-1) \cdot \cdots \cdot (n-k+1)}^{k \text{ fatores}}}_{k!} = \frac{n!}{(n-k)! \ k!}.$$

Ideia

$$\binom{4}{3} = \frac{4 \cdot 3 \cdot 2}{3!} = 4$$

$$213 \quad 321 \quad 214 \quad 421 \quad 324 \quad 423 \quad 314 \quad 413$$

$$132 \quad 312 \quad 142 \quad 412 \quad 243 \quad 432 \quad 143 \quad 431$$

$$123 \quad 231 \quad 124 \quad 241 \quad 234 \quad 342 \quad 134 \quad 341$$

Há 6 tipos de bilhetes da lotaria. Quantas maneiras existem de comprar 3 bilhetes de tipos diferentes?

Resposta: $\binom{6}{3} = \frac{6 \cdot 5 \cdot 4}{3 \cdot 2 \cdot 1} = 20$.

Exemplo

Num grupo de 16 raparigas e 15 rapazes, quantos grupos de 5 pessoas com pelo menos 3 rapazes se pode formar?

Resposta:

$$\binom{15}{3} \cdot \binom{16}{2} + \binom{15}{4} \cdot \binom{16}{1} + \binom{15}{5} \cdot \binom{16}{0} = 54600 + 21840 + 3003$$
$$= 79443.$$

Teorema

Sejam $n, k \in \mathbb{N}$ com $k \le n$. Então:

- 1. $\binom{n}{b} = \binom{n}{n-b}$.
- 2. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ (suponhamos n > 0 e k > 0).
- $3. \sum_{i=1}^{n} \binom{n}{i} = 2^{n}.$

Ideia

Sejam $X = \{1, 2, ..., n\}$ e $Y = \{1, 2, ..., n - 1\}$.

Sobre 1: A função

$$f \colon \{A \subseteq X \mid |A| = k\} \longrightarrow \{B \subseteq X \mid |B| = n - k\}$$

$$\Delta \longmapsto \Delta^{\complement}$$

é invertível e por isso bijetiva.

Teorema

Sejam $n, k \in \mathbb{N}$ com $k \le n$. Então:

- 1. $\binom{n}{k} = \binom{n}{n-k}$.
- 2. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ (suponhamos n > 0 e k > 0).
- $3. \sum_{i=1}^{n} \binom{n}{i} = 2^{n}.$

Ideia

Sejam $X = \{1, 2, ..., n\}$ e $Y = \{1, 2, ..., n - 1\}$.

Sobre 2: Temos:

$$\{A \subseteq X \mid |A| = k\} = \{A \subseteq X \mid |A| = k, n \notin A\} \cup \{A \subseteq X \mid |A| = k, n \in A\}$$
$$= \{A \subseteq Y \mid |A| = k\} \cup \{B \cup \{n\} \mid B \subseteq Y, |B| = k - 1\}$$

Caiam

Teorema

Sejam $n, k \in \mathbb{N}$ com $k \leq n$. Então:

- 1. $\binom{n}{b} = \binom{n}{n-b}$.
- 2. $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ (suponhamos n > 0 e k > 0).
- $3. \sum_{i=1}^{n} \binom{n}{i} = 2^{n}.$

Ideia

Sejam $X = \{1, 2, ..., n\}$ e $Y = \{1, 2, ..., n - 1\}$.

Sobre 3: Temos:

$$P(X) = \bigcup_{i=0}^{n} \{A \subseteq X \mid |A| = i\}$$
$$= \{\varnothing\} \cup \{\{1\}, \dots, \{n\}\} \cup \dots \cup \{X\}$$

(dois a dois disjunta).

O TRIÂNGULO DE PASCAL Recordamos:

$$\binom{n}{0} = \binom{n}{n} = 1$$
 e $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$

 $\binom{0}{0}$

A recorrência

A FÓRMULA BINOMIAL DE NEWTON

Teorema

1. Sejam $x \in \mathbb{R}$ e $n \in \mathbb{N}$. Então,

$$(1+x)^n = \sum_{k=0}^n \binom{n}{k} x^k.$$

- 2. Em particular, com x = 1: $\sum_{k=1}^{n} {n \choose k} = 2^{n}$.
- 3. Em geral, para todos os $a,b \in \mathbb{R}$ e $n \in \mathbb{N}$:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

(a fórmula binomial de Newton).

O número $\binom{n}{k}$ diz-se também **coeficiente binomial**.

Exemplo (Recordamos de «Enumeração Combinatória»)

O número de sequências binárias com k uns e m zeros coincide com o número de subconjuntos de k elementos de um conjunto de k+m elementos.

Logo, há $\binom{k+m}{k}$ tais sequências binárias.

Ideia. De facto, com $X = \{1, \dots, k+m\}$, a função

$${A \subseteq X \mid |A| = k} \longrightarrow {\text{sequências binárias com } k \text{ uns e } m \text{ zero}}$$

$$A \longmapsto a_1 a_2 \dots a_{k+m}$$
 onde $a_i = \begin{cases} 1 & i \in A, \\ 0 & i \notin A \end{cases}$

tem a função inversa

{sequências binárias com
$$k$$
 uns e m zero} \longrightarrow { $A \subseteq X \mid |A| = k$ } $a_1 a_2 \dots a_{k+m} \longmapsto \{i \in X \mid a_i = 1\}.$

Exemplo (Recordamos de «Enumeração Combinatória»)

O número das soluções da equação $x_1 + \cdots + x_n = k$ (com $x_i \in \mathbb{N}$, n > 0) coincide com o número de sequências binárias com k uns e n-1 zeros. Portanto, o número de soluções é $\binom{n+k-1}{b}$.

Ideia

A uma tal solução (s_1,\ldots,s_n) corresponde à sequência

$$\underbrace{1\ldots 1}_{S_1 \text{ vezes}} \circ \underbrace{1\ldots 1}_{S_2 \text{ vezes}} \circ \ldots \circ \underbrace{1\ldots 1}_{S_n \text{ vezes}}.$$

Exemplo: Consideremos a equação $x_1 + x_2 + x_3 = 5$.

$$(2,3,0) \longmapsto 1101110, \quad (2,2,1) \longmapsto 1101101.$$

Seja X um conjunto finito. Um **multiconjunto** M em X é um par (X, ν) onde $\nu \colon X \longrightarrow \mathbb{N}$. Aqui $\nu(x)$ representa «o número de repetições» de x ou «a multiplicidade» de x.

O número $\sum_{x \in X} \nu(x)$ designa-se por **tamanho de** M ou **número de elementos de** M ou **cardinalidade de** M.

Nota

Seja $M=(X,\nu)$ um multiconjunto com $X=\{x_1,\ldots,x_n\}$. Com $a_i=\nu(x_i)$, representamos o multiconjunto M da forma mais intuitiva por

$$M = \{x_1^{a_1}, \dots, x_n^{a_n}\}$$
 ou $M = \{\underbrace{x_1, \dots x_1}_{a_1 \text{ yezes}}, \dots, \underbrace{x_n, \dots x_n}_{a_n \text{ yezes}}\}.$

Uma **combinação com repetição de** *n* **elementos** *k* **a** *k* é um multiconjunto de *k* elementos num conjunto de *n* elementos.

O número de combinações com repetição de n elementos k a k denota-se por $\binom{n}{k}$.

Exemplo

Escolher 3 elementos em $\{1,2,3,4\}$: Intuição: «114» = «141» \neq «143».

Teorema

O número de combinações com repetição de n elementos k a k é igual ao número de soluções de $x_1+\cdots+x_n=k$ com $x_i\in\mathbb{N}$. Portanto, se n>0,

$$\binom{n}{k} = \binom{n+k-1}{k} = \binom{n+k-1}{n-1}.$$

Vamos determinar o número de possibilidades de colocação de 20 bolas indistinguíveis em 5 caixas numeradas, com pelo menos duas bolas em cada caixa.

Começamos por pôr duas bolas em cada caixa. Depois, para cada uma das restantes bolas, escolhemos uma das 5 caixa; ou seja, fazemos uma sequência de 10 escolhas entre 5 elementos

mas o resultado final é independente da ordem das escolhas (no fim, apenas podemos observar quantas bolas estão em cada caixa).

Portanto, temos uma combinação com repetição de 5 elementos 10 a 10:

$$\binom{5}{10} = \binom{10+5-1}{4} = \binom{14}{4} = \frac{14 \cdot 13 \cdot 12 \cdot 11}{4 \cdot 3 \cdot 2 \cdot 1} = 7 \cdot 13 \cdot 11 = 1001.$$

Teorema

Sejam n, $k \in \mathbb{N}$. Então:

- 1. $\binom{n}{0} = 1$.
- 2. Para k > 0, $\binom{0}{k} = 0$.
- 3. Para n > 0 e k > 0, $\binom{n}{k} = \binom{n}{k-1} + \binom{n-1}{k}$.

Ideia.

Consideremos $X = \{x_1, \dots, x_n\}$. Então,

 $\{k$ -multiconjuntos em $X\} = \{k$ -multiconjuntos em X com $\nu(x_n) > 0\}$

 $\cup \{k$ -multiconjuntos em $X \text{ com } \nu(x_n) = 0\}.$

Escolher *k* elementos entre *n* elementos:

	com repetição	sem repetição (simples)
dependente da or- dem (arranjos)	$A^r(n,k)=n^k$	$A^{s}(n,k) = \underbrace{n \cdot (n-1) \cdot \cdot \cdot (n-k+1)}_{k \text{ fatores}}$
independente da or- dem (combinações)	$\binom{n}{k} = \binom{n+k-1}{n-1}$ se $(n > 0)$	$\binom{n}{k} = \underbrace{\frac{n \cdot (n-1) \cdot \dots \cdot (n-k+1)}{k!}}_{k!} = \frac{n!}{(n-k)! \ k!}$ (coeficiente binomial)

Algumas igualdades:

•
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}, \qquad \binom{n}{m} = \binom{n}{n-m},$$

•
$$\binom{n}{0} = \binom{n}{n} = 1$$
, $\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$ $(n, k > 0)$.

3. PERMUTAÇÕES COM REPETIÇÃO

Quantos números de telefones da rede fixa podem ser atribuídos com dois 2 (incluindo já o 2 inicial), quatro 3, dois 6 e um 9?

Os números tem a forma 2 — — — — —; ou seja, temos 8 lugares onde podemos «permutar 2, 3, 6 e 9 com repetição». Para obter o número de tais «permutações», aplicamos o seguinte:

- Entre os 8 lugares, escolhemos o lugar do 2; depois,
- entre os restantes 8 1 = 7 lugares, escolhemos 4 lugares onde deve estar o 3; depois,
- entre os restantes 7 4 = 3 lugares, escolhemos 2 lugares onde deve estar o 6; depois
- resta 3 2 = 1 lugar para o 9.

Portanto, o número de tais números é:

$$\binom{8}{1} \cdot \binom{7}{4} \cdot \binom{3}{2} \cdot \binom{1}{1} = \frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{1! \cdot 4! \cdot 2! \cdot 1!} = \frac{8!}{1! \cdot 4! \cdot 2! \cdot 1!} = 840.$$

Seja $M = (X, \nu)$ um multiconjunto de tamanho n. Uma **permutação de** M (ou **permutação com repetição**) é uma sequência $s = (x_1, \ldots, x_n)$ de elementos de X tal que cada $x \in X$ ocorre $\nu(x)$ vezes em s.

Teorema

O número de permutações do multiconjunto $\{x_1^{n_1},\dots,x_k^{n_k}\}$ de tamanho n é

$$\frac{n!}{n_1!\cdots n_k!}.$$

Exemplo

Pelo exemplo anterior, o número de permutações do multiconjunto {2,3,3,3,3,6,6,9} de 8 elementos é

$$\frac{8!}{1! \cdot 4! \cdot 2! \cdot 1!} = 840.$$

Seja X um conjunto de n elementos e sejam n_1, n_2, \ldots, n_k números naturais com $n_1 + n_2 + \cdots + n_k = n$. O número de sequências (A_1, A_2, \ldots, A_k) de k subconjuntos de X dois a dois disjuntos e com $|A_i| = n_i$, $i = 1, \ldots, k$, designa-se por **coeficiente multinomial** e denota-se por

$$\binom{n}{n_1 n_2 \ldots n_k}$$
.

Teorema

$$\binom{n}{n_1 \ n_2 \ \dots \ n_k} = \frac{n!}{n_1! \cdot \dots \cdot n_k!}.$$

Ideia

$$\underbrace{\binom{n}{n_1}}_{\text{(escolher }A_1)} \cdot \underbrace{\binom{n-n_1}{n_2}}_{\text{(escolher }A_2)} \cdot \cdots \cdot \underbrace{\binom{n-n_1-n_2-\cdots-n_{k-1}=n_k}{n_k}}_{\text{(escolher }A_k)} = \frac{n(n-1)\cdots(n-n_1+1)\cdots 1}{n_1!\ldots n_k!}.$$

Seja X um conjunto de n elementos e sejam n_1, n_2, \ldots, n_k números naturais com $n_1 + n_2 + \cdots + n_k = n$. O número de sequências (A_1, A_2, \ldots, A_k) de k subconjuntos de X dois a dois disjuntos e com $|A_i| = n_i, i = 1, \ldots, k$, designa-se por **coeficiente multinomial** e denota-se por

$$\binom{n}{n_1 n_2 \dots n_k}$$
.

Teorema

$$\binom{n}{n_1 n_2 \dots n_k} = \frac{n!}{n_1! \cdots n_k!}.$$

Nota

- Se k=2, obtemos o coeficiente binomial: $\binom{n}{m \ (n-m)} = \binom{n}{m}$.
- Se $n_1 = \cdots = n_k = 1$ (e por isso k = n): $\binom{n}{n_1 n_2 \dots n_k} = n!$.

Teorema

Sejam $a_1, a_2, \ldots, a_k \in \mathbb{R}$ e $n \in \mathbb{N}$, então

$$(a_1 + a_2 + \ldots + a_k)^n = \sum_{\substack{n_1 + n_2 + \ldots + n_k = n \\ n_1 \ n_2 \ \ldots \ n_k}} \binom{n}{n_1 \ n_2 \ \ldots \ n_k} a_1^{n_1} \ldots a_k^{n_k}.$$

Ideia

• Desenvolvendo o produto de *n* fatores

$$(a_1 + a_2 + \cdots + a_k)(a_1 + a_2 + \cdots + a_k) \cdots (a_1 + a_2 + \cdots + a_k)$$

obtêm-se os termos da forma

$$a_1^{n_1}\cdots a_h^{n_k}$$

com $n_1 + \cdots + n_k = n$, que correspondem à escolha de a_1 em n_1 dos fatores, a_2 em a_2 dos restantes fatores,

• Logo, existem $\binom{n_1 \, n_2 \, \dots \, n_k}{n_1 \, n_2 \, \dots \, n_k}$ termos da forma $a_1^{n_1} \cdots a_k^{n_k}$.

4. IDENTIDADES COMBINATÓRIAS

Já aprendemos:

•
$$\binom{n}{0} = \binom{n}{n} = 1$$
.

•
$$\binom{n}{k} = \binom{n}{n-k}$$
.

•
$$\binom{n}{k} = \binom{n-1}{k} + \binom{n-1}{k-1}$$
.

•
$$\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \cdots + \binom{n}{n} = 2^n$$
.

No caso das últimas duas identidades, na prova conta-se os elementos do mesmo conjunto de duas maneiras diferentes.

Para todos os $n, m, l \in \mathbb{N}$,

$$\sum_{k=0}^{l} \binom{n}{k} \binom{m}{l-k} = \binom{n+m}{l}.$$

Justificação: Consideremos X e Y com |X| = n, |Y| = m e $X \cap Y = \emptyset$.

- Assim, há $\binom{n+m}{l}$ subconjuntos de $X \cup Y$ com l elementos.
- Por outro lado, podemos obter estes subconjuntos escolhendo k
 elementos em X e l k elementos em Y, para cada número k entre o
 e l.

Exemplo

Em particular, para m = n = k,

$$\binom{2n}{n} = \sum_{k=2}^{n} \binom{n}{k} \binom{n}{n-k} = \sum_{k=2}^{n} \binom{n}{k} \binom{n}{k} = \sum_{k=2}^{n} \binom{n}{k}^{2}.$$

Para cada $n \ge 1$ e $n_1, \ldots, n_k \ge 1$ com $n_1 + \cdots + n_k = n$,

$$\binom{n}{n_1 \ldots n_k} = \sum_{i=1}^k \binom{n-1}{n_1 \ldots (n_i-1) \ldots n_k}.$$

Justificação: No que se segue, uma sequência (A_1, \ldots, A_k) de subconjuntos de um conjunto finito $X = \{1, 2, \ldots, n\}$ dois a dois disjuntos, com $|A_i| = n_i$ ($i \in \{1, \ldots, k\}$), é designada por partição de X do tipo (n_1, \ldots, n_k) .

Por definição, $\binom{n_1 \dots n_k}{n_k}$ é o número de elementos do conjunto

{as partições
$$(A_1, \ldots, A_k)$$
 de X do tipo (n_1, \ldots, n_k) }.

Podemos representar este conjunto como a união dos seguintes conjuntos (dois a dois disjuntos).

Exemplo (continuação)

- o conjunto das sequências $(B_1 \cup \{n\}, B_2 \dots, B_k)$ onde $(B_1, B_2 \dots, B_k)$ é uma partição de $\{1, \dots, n-1\}$ do tipo $(n_1 1, n_2, \dots, n_k)$;
- o conjunto das sequências $(B_1, B_2 \cup \{n\}, \dots, B_k)$ onde (B_1, B_2, \dots, B_k) é uma partição de $\{1, \dots, n-1\}$ do tipo $(n_1, n_2 1, \dots, n_k)$;
- ...
- o conjunto das sequências $(B_1,B_2\ldots,B_k\cup\{n\})$ onde $(B_1,B_2\ldots,B_k)$ é uma partição de $\{1,\ldots,n-1\}$ do tipo (n_1,n_2,\ldots,n_k-1) .

Logo:

$$\binom{n-1}{(n_1-1) \ n_2 \ \dots \ n_k} + \binom{n-1}{n_1 \ (n_2-1) \ \dots \ n_k} + \dots + \binom{n-1}{n_1 \ n_2 \ \dots \ (n_k-1)} = \binom{n}{n_1 \ \dots \ n_k}.$$

Para todos os $n, m \in \mathbb{N}$ ($n \leq m$),

$$\binom{m+1}{n+1} = \sum_{k=n}^{m} \binom{k}{n}.$$

O número binomial $\binom{m+1}{n+1}$ é igual ao tamanho do conjunto

$$Y = \{A \subseteq \{1, ..., m+1\} \mid |A| = n+1\}.$$

Para cada $k \in \{n, ..., m\}$, consideremos

$$\mathbf{Y}_k = \{\mathbf{A} \subseteq \{\mathbf{1}, \dots, m+1\} \mid \max \mathbf{A} = k+1, |\mathbf{A}| = n+1\};$$

assim, $Y = Y_n \cup Y_{n+1} \cup \cdots \cup Y_m$ (dois a dois disjuntos). Portanto,

$$|Y| = \binom{n}{n} + \binom{n+1}{n} + \cdots + \binom{m}{n}.$$