Contents

1	Sem	n Outline	2		
2	Lect	Lecture 1			
	2.1	Network Structure	3		
	2.2	Access Network	3		
		2.2.1 Digital Subscriber Line (DSL)	3		
		2.2.2 Cable Network	3		
	2.3	Sending	3		
	2.4	Physical Media	3		
		2.4.1 Coax	3		
		2.4.2 Fiber Optic Cable	4		
		2.4.3 Radio	4		
	2.5	Packet-switching	4		
		2.5.1 Store-and-forward	4		
		2.5.2 Packet switching versus circuit switching	4		
	2.6	Packet Loss	4		
		2.6.1 Nodal Processing	4		
		2.6.2 Queuing Delay	4		
		2.6.3 Transmission Delay	4		
		2.6.4 Propagation Delay	4		
	2.7	Throughput	4		
	2.8	Layering	5		
		2.8.1 Why Layering?	5		
		2.8.2 Internet Protocol Stack	5		
		2.8.3 ISO/OSI Reference Model	5		
	2.9	Security	5		
		2.9.1 DoS: Denial of Service	5		
		2.9.2 Sniffing	5		
		2.9.3 IP Spoofing	5		
		2.0.0 II Opening	Ü		
3	Lect	ture 2	5		
	3.1	Application Architectures	5		
		3.1.1 Client-Server	5		
		3.1.2 Peer-to-Peer (P2P)	5		
	3.2	Transport Service is needed	6		
	3.3	Transport Protocol Services	6		
		3.3.1 TCP	6		
		3.3.2 UDP	6		
		3.3.3 Securing TCP	6		
	3.4	HTTP: Hypertext Transfer Protocol	6		
4	Acro	onyms	7		

Contributors:

• Daniel Fitz (Sanchez)

1 Sem Outline

A Constant Not and a solution later and	
1 Computer Networks and the Internet	
2 Principles of Nw Apps: HTTP, SMTP, DNS	,
3 Application Layer: P2P, CDN, Sockets	
4 Networking at UQ	
5 Transport Layer: UDP	
6 Transport Layer: TCP	
7 Network Layer: Data Plane	
8 Network Layer: Control Place	
9 Link Layer	
11 Wireless and Mobile	
12 Security	
13 Multimedia	

2 Lecture 1

• billions of connected computing devices

• transmission rate: bandwidth

• Packet Switches: Forward packets

- routers and switches

Internet: "network of networks" (Interconnected ISPs)

 Protocols control sending, receiving (e.g. TCP, IP, HTTP, Skype, 802.11)

Internet standards

RFC: Request for comments

IETF: Internet Engineering Task Force

2.1 Network Structure

Network Edge

- hosts: clients and servers
- servers often in data centers
- Access networks, physical media: wired, wireless communication links
- network core:
 - interconnected routers
 - network of networks

2.2 Access Network

2.2.1 Digital Subscriber Line (DSL)

- use existing telephone line to central office DSLAM
 - data over DSL phone line goes to Internet
 - voice over DSL phone line goes to telephone net
- < 2.5 Mbps upstream transmission rate (typically < 1 Mbps)
- < 24 Mbps downstream transmission rate (typically < 10 Mbps)

2.2.2 Cable Network

frequency division multiplexing: different channels transmitted in different frequency bands

HFC: hybrid fiber coax

- asymmetric: up to 30Mbps downstream transmission rate, 2 Mbps upstream transmission rate
- network of cable, fiber attaches homes to ISP router
 - homes share access network to cable head-end

 unlike DSL, which has dedicated access to central office

wireless LANS:

- within building (30 meters)
- 802.11b/g/n (WiFi): 11,54,450 Mbps transmission rate

wide-area wireless access:

- provided by telco (cellular) operator, 10's km
- between 1 and 10 Mbps
- 3G, 4G, LTE

2.3 Sending

- takes application message
- breaks into smaller chunks, known as packets, of length L bits
- ullet transmites packet into access network at transmission rate R
 - link transmission rate, aka link capacity, aka link bandwidth

Note 1: Packet Transmission Delay

$$\begin{array}{ccc} & & \text{time} \\ \text{packet} & & \text{needed} \\ \text{trans-} & & = \frac{\text{to} & \text{trans-}}{\text{mit} & L\text{-bit}} = \frac{L \text{ (bits)}}{R \text{ (bits/sec)}} \\ \text{delay} & & \text{packet into} \\ & & & \text{link} \end{array}$$

2.4 Physical Media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter and receiver
- guided media: signals propagate in solid media (copper, fiber, coax)
- unguided media: signals propagate freely, e.g. radio
- twisted pair (TP): two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10 Gbps

2.4.1 Coax

- two concentric copper conductors
- bidirectional
- broadband: multiple channels on cable, HFC

2.4.2 Fiber Optic Cable

- glass fiber carrying light pulses, each pulse a bit
- high-speed operation: high-speed point-topoint transmission (e.g. 10's - 100's Gbps transmission rate)
- low error rate
 - repeaters spaced far apart
 - immune to electromagnetic noise

2.4.3 Radio

- signal carried in electromagnetic spectrum
- no physical "wire"
- bidirectional
- propagation environment effects:
 - reflection
 - obstruction by objects
 - interference

Radio Link Types:

- terrestrial microwave: up to 45 Mbps channels
- LAN (e.g. WiFi) 54 Mbps
- wide-area (e.g. cellular) 4G cellular: 10 Mbps
- satellite
 - Kbps to 45 Mbps channel (or multiple smaller channels)
 - 270 msec end-end delay
 - geosynchronous versus low altitude

2.5 Packet-switching

2.5.1 Store-and-forward

L bits per packet

Source to destination: R bps

- takes $\frac{L}{R}$ seconds to transmit (push out) L-bit packet into link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link

Note 2: End-End delay

$$\mathrm{delay} = 2\frac{L}{R}$$

(assuming zero propagation delay)

2.5.2 Packet switching versus circuit switching

Is packet switching a "slam dunk winner?"

- great for bursty data (resource sharing, simpler, no call setup)
- excessive congestion possible: packet delay and loss (protocols needed for reliable data transfer, congestion control)

2.6 Packet Loss

Figure 1: Packet Delay Algorithm Explanation

Note 3: Packet Delay Algorithm

$$d_{\text{nodal}} = d_{\text{proc}} + d_{\text{queue}} + d_{\text{trans}} + d_{\text{prop}}$$

2.6.1 Nodal Processing

 d_{proc}

- check bit errors
- · determine output link
- typically < msec

2.6.2 Queuing Delay

 d_{queue}

- time waiting at output link for transmission
- depends on congestion level of router

2.6.3 Transmission Delay

 d_{trans}

- L: packet length (bits)
- R: link bandwidth(bps)
- $d_{\text{trans}} = \frac{L}{R}$

2.6.4 Propagation Delay

 d_{prop}

- d: length of physical link
- s: propagation speed ($\approx 2 \times 10^8$ m/sec)
- $d_{prop} = \frac{d}{s}$

2.7 Throughput

Rate (bits/time unit) at which bits transferred between sender/receiver

Instantaneous: rate at given point in time **Average:** rate over longer period of time

Note 4: Bottleneck Link

Link on end-end path that constrains end-end throughput

2.8 Layering

2.8.1 Why Layering?

Dealing with complex systems:

- Explicit structure allows identification, relationship of complex system's pieces (layered reference model for discussion)
- Modularization eases maintenance, updating system
 - change of implementation of layer's service transparent to rest of system
 - e.g. change in gate procedure doesn't affect rest of system
- layering considered harmful?

2.8.2 Internet Protocol Stack

Application: supporting network applications (FTP, SMTP, HTTP)

Transport: process-process data transfer (TCP, UDP)

Network: routing of datagrams from source to destination (IP, routing protocols)

Link: data transfer between neighboring network elements (Ethernet, 802.111 (WiFi), PPP)

Physical: bits "on the wire"

2.8.3 ISO/OSI Reference Model

Internet stack "missing" these layers. These services, if needed, must be implemented in application.

Application:

Presentation: allow applications to interpret meaning of data, e.g. encryption, compression, machine-specific conventions

Session: synchronization, check-pointing, recovery of data exchange

Transport:

Network:

Link:

Physical:

2.9 Security

• Malware can get in host from:

Virus: self-replicating infection by receiving/executing object (e.g. e-mail attachment)

Worm: self-replicating infection by passively receiving object that gets itself executed

- Spyware malware can record keystrokes, web sites visited, upload info to collection site
- Infected host can be enrolled in **botnet**, used for spam. DDoS attacks

2.9.1 DoS: Denial of Service

Denial of Service (DoS): attackers make resources (server, bandwidth) unavailable to legitimate traffic by overwhelming resource with bogus traffic

- 1. select target
- 2. break into hosts around the network (botnet)
- send packets to target from compromised hosts

2.9.2 Sniffing

- broadcast media (shared Ethernet, wireless)
- promiscuous network interface reads/records all packets (e.g. including passwords) passing by

2.9.3 IP Spoofing

Send packet with false source address

3 Lecture 2

3.1 Application Architectures

3.1.1 Client-Server

Server: Always-on host, Permanent IP address **Clients:** Do not communicate directly with each other, May have dynamic IP addresses

3.1.2 Peer-to-Peer (P2P)

- No always-on server
- Peers request service from other peers, provide service in return to other peers
- Self Scalability new peers bring new service capacity, as well as new service demands

 Pers are intermittently connected and change 3.3.3 Securing TCP IP addresses

Note 5: App-layer protocol defines

- type of messages exchanged e.g. request, response
- message syntax what fields in messages and how fields are delineated
- message semantics meaning of information in fields
- rules for when and how processes send and respond to messages
- open protocols defined in RFCs, allows for interoperability (e.g. HTTP, SMTP)
- proprietary protocols e.g. Skype

3.2 Transport Service is needed

Data Integrity: Some programs need 100% reliable data transfer (e.g. file transfer, web transactions), others can tolerate loss (e.g. audio)

Timing: Some programs require low delay to be "effective" (e.g. online games)

Throughput: Some programs require minimum amount of throughput to be "effective" (e.g. multimedia), some use whatever they have available ("elastic apps")

Security: Encryption, Data Integrity

3.3 **Transport Protocol Services**

3.3.1 TCP

Reliable Transport between sending and receiving process

Flow Control: sender won't overwhelm receiver Congestion Control: throttle sender when network overloaded

Connection-Oriented: setup required between client and server processes

Does Not Provide: timing, minimum throughput guarantee, security

3.3.2 UDP

Unreliable Data Transfer between sending and receiving process

Does Not Provide: reliability, flow control, congestion control, timing, throughput guarantee, security, or connection setup

TCP and UDP

- no encryption
- cleartext passwords sent into socket traverse Internet in cleartext

SSL

- provides encrypted TCP connection
- data integrity
- end-point authentication

SSL is at app layer

app use SSL libraries, that "talk" to TCP

SSL socket API

 cleartext passwords sent into socket traverse Internet encrypted

3.4 **HTTP: Hypertext Transfer Protocol**

- Web's application layer protocol
- client/server model. Client request website and server serves HTTP object in response
- Uses TCP
- HTTP is stateless. Server maintains no information about past client requests

4 Acronyms

IP: Internet Protocol

TCP: Whatever TCP stands for UDP: Whatever UDP stands for HTTP: Hypertext Transfer Protocol SMTP: Simple Mail Transfer Protocol RDP: Remote Desktop Protocol

VOIP: Voice over IP