Mathematical Statistics2 Tutoring4

Seung Bong Jung

Seoul National University

October 7, 2021

Exercises

2019 Final Problem5

Consider the following model

$$Y_{ij} = \mu + \alpha_i + \beta x_{ij} + \epsilon_{ij}$$

where $\epsilon_{ij} \stackrel{\text{i.id.}}{\sim} N(0, \sigma^2)$, $(i = 1, \dots, I, j = 1, \dots, n_i)$. Here $\mu, \alpha_i, \beta, \sigma^2$ are unknown parameters $(\mu, \alpha_i, \beta \in \mathbb{R}, \sigma^2 \in \mathbb{R}_+)$ and x_{ij} are known covariates. We further assume that

$$\sum_{i=1}^{I} n_i \alpha_i = 0 \text{ and } \sum_{i=1}^{I} \sum_{j=1}^{n_i} (x_{ij} - \bar{x})^2 \neq 0 \text{ where } \bar{x}_{i.} = \frac{1}{n_i} \sum_{j=1}^{n_i} x_{ij}.$$

- (a) Find the MLE of $(\mu, \alpha_i, \beta, \sigma^2)$ under the full model.
- (b) For the following hypothesis $H_0: \beta = 0$ versus $H_1: \beta \neq 0$, find the LRT with significance level $0 < \alpha < 1$.

Exercises

2019 Final Problem4

Let $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$ be i.i.d. samples where

$$(X_i, Y_i) \sim N\left(\left(\begin{array}{c} \mu_1 \\ \mu_2 \end{array} \right), \left(\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right) \right).$$

Here $(\mu_1, \mu_2, \sigma_1^2, \sigma_2^2, \rho)^t \in \mathbb{R}^2 \times \mathbb{R}^2 \times (-1, 1)$. Assume $n \geq 5$ and denote the sample correlation by $\hat{\rho}$.

- (a) Find the distribution of $\hat{\rho}/\sqrt{1-\hat{\rho}^2}$.
- (b) Find the LRT with significance level $0 < \alpha < 1$ for testing hypothesis $H_0: \rho=0$ versus $H_1: \rho\neq 0$.

Exercises

2018 Final Problem1

Let $(X_1,Y_1),(X_2,Y_2),\ldots,(X_n,Y_n)$ be i.i.d. samples where

$$(X_i,Y_i) \sim N\left(\left(\begin{array}{c}\theta_1\\\theta_2\end{array}\right),\left(\begin{array}{cc}1&\rho\\\rho&1\end{array}\right)\right) \text{ for known } \rho \in (-1,1).$$

We wish to test

$$H_0: \theta_1 = \theta_2 = 0$$
 versus $H_1:$ not H_0 .

- (a) Suppose that the parameter space is given by
- $\Theta = \{(\theta_1, \theta_2) : \theta_2 \le c\theta_1, \theta_1 \ge 0\}$ for $c \in \mathbb{R}$ and $\rho = 0$. Derive LRT of significance level $0 < \alpha < 1$.
- (b)Suppose that the parameter space is given by
- $\Theta = \{(\theta_1, \theta_2) : \theta_1, \theta_2 \ge 0\}$. Derive LRT of significance level $0 < \alpha < 1$.

Approximation of LRT: Simple Null

Let X_1,\ldots,X_n be a random sample from a distribution with pdf $f(\cdot;\theta)$, $\theta\in\Theta\subset\mathbb{R}^d$. Assume that the regularity conditions (R0)-(R7) hold. Consider the problem of testing $H_0:\theta=\theta_0$. Let $\hat{\theta}$ denote the MLE over Θ . For the LRT statistic $2(l(\hat{\theta})-l(\hat{\theta_0}))$, it holds that, under H_0 ,

- $2(l(\hat{\theta}) l(\theta_0)) \stackrel{\mathsf{d}}{\to} \chi^2(d)$
- $2(l(\hat{\theta}) l(\theta_0)) = W_n + o_p(1)$
- $2(l(\hat{\theta}) l(\theta_0)) = R_n + o_p(1)$

where $W_n=(\hat{\theta}-\theta_0)^t(nI(\theta_0))(\hat{\theta}-\theta_0)$ (Wald test statistic) and $R_n=\dot{l}(\theta_0)^t(nI(\theta_0))^{-1}\dot{l}(\theta_0)$ (Rao/score test statistic). Note that (1) is called Wilk's phenomenon. Which test is better?

Approximation of LRT: Exponential Model

Suppose we observe a random sample X_1, \ldots, X_n from $\mathsf{Exp}(\theta)$ for $\theta > 0$.

- Hypothesis: $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$.
- ullet Asymptotic LRT: Reject H_0 if

$$2n(\bar{x}/\theta_0 - \log(\bar{x}/\theta_0) - 1) \ge \chi_\alpha^2(1).$$

ullet Wald and Rao tests: Reject H_0 if

$$n(\bar{x} - \theta_0)^2 / \theta_0^2 \ge \chi_\alpha^2(1).$$

Approximation of LRT: Beta Model

Suppose we observe a random sample X_1, \ldots, X_n from $\mathsf{Beta}(\theta, 1)$ for $\theta > 0$.

- Hypothesis: $H_0: \theta = \theta_0$ versus $H_0: \theta \neq \theta_0$.
- MLE: $\hat{\theta} = -n/(\sum_{i=1}^n \log X_i)$.
- LRT statistic: $2(l(\hat{\theta}) l(\theta_0)) = 2n(\log \hat{\theta} 1 + 1/\hat{\theta} \log \theta_0)$.
- Wald test statistic: $W_n(\theta_0) = n/\theta_0(\hat{\theta} \theta_0)^2$.
- Rao test statistic: $R_n(\theta_0) = n\theta_0^2 (1/\theta_0 + n^{-1} \sum_{i=1}^n \log X_i)^2$.

Approximation of LRT: Double Exponential Model

Suppose we observe a random sample X_1,\ldots,X_n from $\mathsf{DE}(\theta,1)$ for $-\infty < \theta < \infty$.

- Hypothesis: $H_0: \theta = \theta_0$ versus $H_0: \theta \neq \theta_0$.
- MLE: $\hat{\theta} = \operatorname{med}(X_i)$.
- LRT statistic: $2(l(\hat{\theta}) l\theta_0)) = 2(\sum_{i=1}^n |x_i \theta_0| \sum_{i=1}^n |x_i \hat{\theta}|).$
- Wald test statistic: $W_n(\theta_0) = n(\hat{\theta} \theta_0)^2$.
- Rao test statistic: $R_n(\theta_0) = (\sum_{i=1}^n \operatorname{sgn}(X_i \theta_0))^2 / n$.

Approximation of LRT: Composite Null

Here, we discuss the approximation of LRT when the null hypothesis is composite. For this, let X_1,\ldots,X_n be a random sample from a distribution with pdf $f(\cdot;\theta),\,\theta\in\Theta\in\mathbb{R}^d$ that satisfies the regularity conditions (R0)-(R7). Let $\theta=(\xi^t,\eta^t)^t$ with $\eta\in\mathbb{R}^{d_0}$, and suppose we wish to test

$$H_0: \xi = \xi_0 \text{ versus } H_1: \xi \neq \xi_0.$$

The null parameter space is of dimension $\dim(\Theta_0)=d_0$ given by

$$\Theta_0 = \left\{ (\xi_0^t, \eta^t)^t : \eta \in \mathbb{R}^{d_0} \text{ and } (\xi^t, \eta^t)^t \in \Theta \right\}.$$

Let $\hat{\theta}^{\Theta}$ and $\hat{\theta}^{\Theta_0}$ denote the MLEs in Θ and Θ_0 , respectively.

Approximation of LRT: Composite Null

Under the compositive null hypothesis $H_0: \xi = \xi_0 \Leftrightarrow H_0: \theta \in \Theta_0$, it holds that

- $2(l(\hat{\theta}^{\Theta}) l(\hat{\theta}^{\Theta_0})) \xrightarrow{\mathsf{d}} \chi^2(d)$
- $2(l(\hat{\theta}^{\Theta}) l(\hat{\theta}^{\Theta_0})) = W_n + o_p(1)$
- $2(l(\hat{\theta}^{\Theta}) l(\hat{\theta}^{\Theta_0})) = R_n + o_p(1)$

where $W_n = (\hat{\theta}^{\Theta} - \hat{\theta}^{\Theta_0})^t (nI(\hat{\theta}^{\Theta_0}))(\hat{\theta}^{\Theta} - \hat{\theta}^{\Theta_0})$ (Wald test statistic) and $R_n = \dot{l}(\hat{\theta}^{\Theta_0})^t (nI(\hat{\theta}^{\Theta_0}))^{-1}\dot{l}(\hat{\theta}^{\Theta_0})$ (Rao/score test statistic).