Modelado matemático del tráfico de *cannabis* entre unidades de planeamiento zonal en Bogotá Resultados parciales

Carlos Andrés Trujillo-Salazar <u>caatrujillosa@unal.edu.co</u> Hernán Darío Toro-Zapata <u>hdtoroz@unal.edu.co</u> Gerard Olivar-Tost <u>golivart@unal.edu.co</u>

Universidad Nacional de Colombia - Sede Manizales
Trabajo de investigación parcialmente financiado por Colciencias a través
del proyecto 'Modelado y simulación del metabolismo urbano de la
ciudad de Bogotá D.C. código: 111974558276, contrato 022-2017'

Noviembre de 2019

Algunas características del cannabis

El Cannabis es un género con tres especies de plantas de flores perteneciente a la familia Cannabaceae. Tales especies son Sativa, Indica y Ruderalis.

La Cannabis sativa además de ser la especie más famosa, es la que presenta mayores contenidos psicoactivos. Se conoce popularmente como marihuana y con ella se produce el hachis. Las otras dos especies, con menor contenido de psicotrópicos, se cultivan para la producción de cáñamo, utilizado en la industria textil.

Salud pública (1)

El cannabis es considerada una droga blanda [1].

De acuerdo con la ONU, el cannabis es la sustancia "ilícita" más utilizada en el mundo, debido en parte a la facilidad de consumo [2].

Salud pública (2)

Según Bobes (2003), el cannabis es una importante problemática debido a:

- Se observa una tendencia a que el inicio al consumo se realice en edades cada vez más tempranas.
- Es una droga de "acceso" o "puerta de entrada" al consumo de otras drogas. El riesgo de consumir otras drogas ilegales si se consume cannabis es elevado [3].

Existen nuevas sustancias psicoactivas denominadas cannabinoides sintéticos, cuyo mercado es cambiante y todavía es limitado el conocimiento científico sobre sus datos epidemiológicos y sus efectos clínicos [4].

Leonardo Raffo (2011) [5]

- Los procesos de relocalización geográfica de los cultivos son importantes en el análisis de la producción y el tráfico de estupefacientes.
- Los mercados de droga satisfacen la **propiedad de Hidra**, es decir, que se reproducen a si mismo bajo ataque.

La cadena de producción de estupefacientes opera a través de dos tipos de redes que se traslapan y se complementan entre sí: las redes de producción y tráfico de drogas, por una parte, y las redes de defensa y corrupción, por otra.

- Cada vez están más interconectadas entre sí, configurándose estructuras semejantes a las de las redes de mundo pequeño.
- Algunos nodos tienden a estar muy agrupados entre sí formando clusters.

Bogotá distribuida en localidades (19) y UPZ (112)

UPZ: Unidades de Planeamiento Zonal

La información

Α	В	С	D	E	F
Nodo	UPZ	Número	Coordenada	Población	Localidad
0	La Candelaria	94	(16,15)	22241	La Candelaria
1	Paseo los Libertadores	1	(21,35)	4780	Usaquen
2	Verbenal	9	(21,33)	109895	Usaquen
3	La Uribe	10	(21,32)	18698	Usaquen
4	San Cristobal Norte	11	(22,31)	67978	Usaquen
5	Toberín	12	(20,31)	49966	Usaquen
6	Los Cedros	13	(20,29)	103010	Usaquen
7	Usaquén	14	(21,26)	41278	Usaquen
8	Country Club	15	(19,28)	23261	Usaquen
9	Santa Bárbara	16	(19,26)	50291	Usaquen
10	La academia	2	(19,36)	1128	Suba
11	Guaymaral	3	(20,39)	1935	Suba
12	San José de Bavaria	17	(18,33)	65044	Suba
13	Britalia	18	(18,32)	71735	Suba
14	El prado	19	(18,30)	124228	Suba
15	La alhambra	20	(18,27)	55432	Suba
16	Casablanca Suba	23	(17,31)	44659	Suba

Secretaría Distrital de Planeación: http://www.sdp.gov.co

Primer paso

Se ha ubicado cada nodo (UPZ) en un dominio rectangular usando

Geographical Threshold Graph

En este grafo los nodos se distribuyen en el espacio y las aristas se asignan de acuerdo con una función de umbral que involucra la distancia entre los nodos.

- Threshold graphs and related topics. Mahadev (1995) [6].
- Geographical threshold graphs with small-world and scale-free properties. Masuda (2005) [7].
- Giant component and connectivity in geographical threshold graphs. Bradonjić (2007) [8].
- The structure of geographical Threshold graphs. Bradonjić (2009) [9].

Comparando los resultados

Nodos y variables de estado

- D: UPZ Distribuidora (coloquialmente "olla")
- \bullet C: UPZ Consumidora
- \bullet L: UPZ **L**impia
- P : Cantidad promedio de producto
- \bullet S : Núm. promedio de personas susceptibles de consumir cannabis
- \bullet I : Número promedio de personas que consumen cannabis

$$\frac{dP_i}{dt} = -c_i I_i P_i
\frac{dS_i}{dt} = \Delta_i - \beta_i S_i I_i - \mu_i S_i + \gamma_i I_i
\frac{dI_i}{dt} = \beta_i S_i I_i - \mu_i I_i - \gamma_i I_i$$
(1)

Donde i = 1, ..., 112, 112 es el número total de UPZ.

Análisis de estabilidad

El modelo (1) tiene dos puntos de equilibrio

$$E_T = \left(\frac{\Delta}{\mu}, 0\right)$$

$$E_C = \left(\frac{\gamma + \mu}{\beta}, \frac{\gamma + \mu}{\beta} \left(R_0 - 1\right)\right)$$

donde
$$R_0 = \frac{\Delta}{\mu} \frac{\beta}{\gamma + \mu}$$
.

Proposición

- Si $R_0 < 1$, el equilibrio E_T es local y asintóticamente estable y el equilibrio E_C carece de sentido biológico.
- Si $R_0 > 1$, el equilibrio E_T es inestable y el equilibrio E_C es local y asintóticamente estable.

Dinámica de poblaciones en las UPZ 110 y 65

Dinámica de poblaciones en las UPZ 76 y 103

Dinámica de poblaciones en las UPZ 69 y 112

Dinámica de poblaciones en las UPZ 46 y 111

Larger hub

Hub: 21: Los Andes - Barrios Unidos

Agenda pendiente

- Aumentar el número de nodos.
 - La Candelaria, es localidad 17 y UPZ 94, tiene 8 barrios
 - Bosa occidental, UPZ 84, tiene 121 barrios
- Incorporar la toma de decisión de compra en función de la cantidad de producto y/o del número de consumidores
- Estudiar la percolación a partir de la centralidad (Degree centrality) vs la centralidad de intermediación (Betweenness centrality).

Internet Mathematics Vol. 5, No. 1-2: 111-137

The Structure of Geographical Threshold Graphs

Milan Bradonjić, Aric Hagberg, and Allon G. Percus

Referencias bibliográficas (1)

- Nutt, D., King, L. A., Saulsbury, W., & Blakemore, C. (2007). Development of a rational scale to assess the harm of drugs of potential misuse. The Lancet, 369(9566), 1047-1053.
- Oliveró, M. B. (2000). Toxicología del cannabis. Adicciones, 12(5), 169-174.
- Bobes, J., Bascarán, M. T., González, M. P., & Sáiz, P. A. (2000). Epidemiología del uso/abuso de cannabis. Adicciones, 12(5), 31-40.
- Torrens, M., Farré, A., Galindo, L., Pérez de Heredia, J. L., & Farré, M. (2016). Cannabinoides sintéticos. Inf. psiquiátr, (226), 51-62.
- Raffo, L. (2011). La teoría económica de los bienes ilegales: una revisión de la literatura. Revista Sociedad y Economía, (20).
- Mahadev, N., & Peled, U. (1995). Threshold graphs and related topics. Vol. 56. Elsevier.

Referencias bibliográficas (2)

- Masuda, N., Miwa, H., & Konno, N. (2005). Geographical threshold graphs with small-world and scale-free properties. *Physical Review E*, 71(3), 036108.
- Bradonjić, M., Hagberg, A., & Percus, A. (2007). Giant component and connectivity in geographical threshold graphs. *International Workshop on Algorithms and Models for the Web-Graph*. Springer, Berlin, Heidelberg. 209-216
- Bradonjić, M., Hagberg, A., &. Percus, A. (2009). The structure of geographical Threshold graphs. *Internet Mathematics*, 5(1-2), 111-137.

geographical_threshold_graph

geographical_threshold_graph (n, theta, alpha=2, dim=2, pos=None, weight=None)

[source]

Returns a geographical threshold graph.

The geographical threshold graph model places [n] nodes uniformly at random in a rectangular domain. Each node u is assigned a weight w_u . Two nodes u and v are joined by an edge if

$$w_u + w_v \ge \theta r^{\alpha}$$

where r is the Euclidean distance between u and v, and θ , α are parameters.

Parameters:

- n (int) Number of nodes
- · theta (float) Threshold value
- · alpha (float, optional) Exponent of distance function
- dim (int, optional) Dimension of graph
- pos (dict) Node positions as a dictionary of tuples keyed by node.
- weight (dict) Node weights as a dictionary of numbers keyed by node

$$\theta = 0.01 \text{ y } \alpha = -1.$$

