Redes TCP/IP e a Internet

- Douglas Baptista de Godoy
 - in /in/douglasbgodoy
 - github.com/douglasbgodoy

Informação

Obs: Esta aula é baseada nos livros textos, e as transparências são baseadas nas transparências providenciadas pelos autores.

KUROSE, J. F.; ROSS, K. W. **Redes de computadores e a internet:** uma abordagem top-down. 8. ed. São Paulo, SP: Grupo A, 2021. *E-book*. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 26 dez. 2023. TANENBAUM, A. S.; FEAMSTER, N.; WETHERALL, D. J. **Redes de computadores**. 6. ed. São Paulo: Grupo A, 2021. *E-book*. Disponível em: https://plataforma.bvirtual.com.br. Acesso em: 26 dez. 2023.

Conteúdo Programático

- 1. Tipos de redes
- 2. Topologias de redes
- 3. Tipos de meios físicos

Tipos de meios físicos

Condutor de Cobre:

- Tipo mais usado para redes locais ;
- Sinalização por corrente elétrica;
- Problemas com interferências.

Condutor de Fibra óptica:

- Mais usado em transmissões ponto-a-ponto a longa distâncias
- Sinalização por luz;
- Problema: conectores/equipamentos muito caros.

Meios sem fio (wireless):

- Maior mobilidade;
- Utilizado em locais onde não é possível passar cabos;
- Problemas: baixas velocidades, segurança;

Meio de transmissão guiado

- Par trançado
- Cabo coaxial
- Fibra óptica

OBS: Meio de transmissão guiado: sinais se propagam em meio sólido

Meios físicos

- bit: propaga entre pares de transmissor/receptor
- enlace físico: o que fica entre transmissor e receptor
- meio guiado:
 - sinais se propagam em meio sólido: cobre, fibra, coaxial
- meio não guiado:
 - sinais se propagam livremente,
 p. e., rádio

Par Trançado (TP)

- dois fios de cobre isolados
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps Ethernet

Kurose-pg 16

Links: physical media

- bit: propagates between transmitter/receiver pairs
- physical link: what lies between transmitter & receiver
- guided media:
 - signals propagate in solid media: copper, fiber, coax
- unguided media:
 - signals propagate freely, e.g., radio

Twisted pair (TP)

- two insulated copper wires
 - Category 5: 100 Mbps, 1 Gbps Ethernet
 - Category 6: 10Gbps Ethernet

Par Trançado Sem Blindagem (UTP)

- Velocidade e throughput: 10 ou 100 ou até 1000 Mbps (dependendo da qualidade/categoria do cabo)
- · Custo médio por nó: O Mais Econômico
- · Meios físicos e tamanho do conector: Pequeno
- Comprimento Máximo do Cabo: 100m

Par trançado

Cat 5 UTP: Cabo com quarto pares trançados.

Tanenbaum

Par Trançado

Conector Defeituoso - Fios são demasiadamente destrançados.

Bom Conector - Os fios são destrançados somente o necessário para fixar o conector.

Par Trançado

EIA/TIA T568B Crossover Diagram

Um cabo cruzado Ethernet (10BASE-T e 100BASE-TX) possui só quatro fios ativos: 1, 2, 3, e 6.

Cabo Cruzado

Número do Pino	Sinal	
1	TD+ (Transmissão, sinal diferencial positivo)	
2	TD- (Transmissão, sinal diferencial negativo)	
3	RD+ (Recepção, sinal diferencial positivo)	
4	Não usado	
5	Não usado	
6	RD- (Recepção, sinal diferencial negativo)	
7	Não usado	
8	Não usado	

Meio físico: cabo coaxial

cabo coaxial:

- Dois condutores de cobre concêntricos
- Bidirecional
- banda larga:
 - múltiplos canais no cabo
 - 100 Mbps por canal

Cabo Coaxial

Cabo coaxial

Um cabo coaxial.

Meio físico: fibra

cabo de fibra ótica:

- fibra de vidro conduzindo pulsos de luz;
 cada pulso um bit
- operação em alta velocidade:
 - transmissão em alta velocidade ponto a ponto (p. e., 10-100 Gps)
- baixa taxa de erro:
 - repetidores bastante espaçados
 - imune a ruído eletromagnético

Cabos de fibra (1)

Visão interna de um cabo de fibra.

Tanenbaum

Monomodo x Multimodo

Monomodo versus Multimodo

Monomodo

Exige um caminho muito reto

Revestimento Polimérico

Núcleo de Vidro = 8,3 to 10 microns

Revestimento Interno de Vidro com 125 mícrons de diâm.

- Núcleo pequeno
- · Menos dispersão
- Própria para aplicações de longa distância (até ~3Km, 9.840 pés)
- Utiliza lasers como fonte de luz, freqüentemente dentro de backbones em cidades universitárias, para distâncias de vários milhares de metros

Multimodo

Vários caminhos-desordenado

Revestimento

Núcleo de Vidro de 50 ou 62,5 mícrons

Revestimento Interno de Vidro com 125 mícrons de diâm.

- Núcleo maior que o do cabo monomodo (50 ou 62,5 microns ou maior)
- Permite maior dispersão e portanto, perda de sinal
- Usada para aplicações de longa distância, mas não tão longa quanto a fibra monomodo (até ~2Km, 6.560 pés)
- Utiliza LEDs como fonte de luz, freqüentemente dentro de redes locais ou a distâncias de algumas centenas de metros dentro de uma rede de cidade universitária

Cabos de fibra (2)

Item	LED	Laser semicondutor
Taxa de dados	Baixa	Alta
Tipo de fibra	Multimodo	Multimodo ou modo único
Distância	Curta	Longa
Vida útil	Longa	Curta
Sensibilidade à temperatura	Insignificante	Substancial
Custo	Baixo	Dispendioso

Comparação entre diodo semicondutor e LEDs emissores de luz.

Tanenbaum

Multimodo MM x Monomodo SM

Multimodo:

- Núcleo maior: 50/125 μ (microns) ou 62,5/125 μ;
- Vários modos de luz se propagam pelo núcleo;
- Emissores de luz infravermelha por LEDs (mais baratos);
- Distância menor;

- Núcleo menor: em geral 9/125μ;
- Somente um modo de luz se propaga pelo núcleo;
- Emissor de Luz por laser infravermelho;
- O raio de luz entra no núcleo em um ângulo de 90 graus;
- Permite distâncias e velocidades maiores.

Fibra – Componentes

- Multimodo (MM Multi Mode): em geral conector ST
- Monomodo (SM Single Mode): em geral conector SC

MONOMODO OU MULTIMODO

https://www.youtube.com/watch?v=A5r6ZJoPK5o

Meio físico: rádio

- Sinal transportado em várias "bandas" do espectro eletromagnético.
- Nenhum "fio" físico
- transmissão, "half-duplex" (remetente para receptor)
- efeitos no ambiente de propagação:
 - reflexão
 - obstrução por objetos
 - Interferência/ruído

Radio link types:

- □ LAN (p. e., Wifi)
 - 10 100 Mbps; 10 metros
- □ área ampla (p. e., celular 4G/5G)
 - celular 46: ~ 10 Mbps
- satélite
 - up to < 100 Mbps (Starlink) downlink</p>
 - atraso fim a fim de 270 msec
 - geoestacionário

Links: physical media

Wireless radio

- signal carried in various "bands" in electromagnetic spectrum
- no physical "wire"
- broadcast, "half-duplex" (sender to receiver)
- propagation environment effects:
 - reflection
 - obstruction by objects
 - Interference/noise

Radio link types:

- Wireless LAN (WiFi)
 - 10-100's Mbps; 10's of meters
- wide-area (e.g., 4G/5G cellular)
 - 10's Mbps (4G) over ~10 Km
- Bluetooth: cable replacement
 - short distances, limited rates
- terrestrial microwave
 - point-to-point; 45 Mbps channels
- satellite
 - up to < 100 Mbps (Starlink) downlink
 - 270 msec end-end delay (geostationary)

Sistema de telefonia móvel

- Primeira geração (1G): voz analógica para telefones móveis
- Segunda geração (2G): voz digital para telefones móveis
- Terceira geração (3G): voz digital + dados para telefones móveis
- Quarta geração (4G): Capitulo 7 Kurose
- Quinta geração (5G) : Capitulo 7 Kurose

Sistema avançado de telefonia móvel

(b)

- (a) As frequências não são reutilizadas em células adjacentes.
- (b) Para mais usuários, células menores podem ser usadas.

Terceira geração da rede de telefonia móvel

Topologia de células para redes móveis.

Satélites de comunicação

- Satélites geoestacionários
- Satélites de baixa órbita

Satélites de comunicação

Satélites de comunicação e algumas propriedades: altitudes, atraso de ida e volta, número de satélites para cobertura global.

Satélites geoestacionários (1)

Banda	Downlink	Uplink	Largura de banda	Problemas
L	1,5 GHz	1,6 GHz	15 MHz	Baixa largura de banda; lotada
S	1,9 GHz	2,2 GHz	70 MHz	Baixa largura de banda; lotada
С	4,0 GHz	6,0 GHz	500 MHz	Interferência terrestre
Ku	11 GHz	14 GHz	500 MHz	Chuva
Ka	20 GHz	30 GHz	3.500 MHz	Chuva; custo do equipamento

As principais bandas de comunicação via satélite.

Satélite geoestacionário (2)

Os satélites geoestacionários ficam de modo permanente sobre o mesmo lugar da Terra. Essa presença estacionária é conseguida colocando-se o satélite em órbita a 36 mil quilômetros acima da superfície terrestre.

VSATs usando um hub.

Satélites de baixa órbita (1)

Os satélites LEO são posicionados muito mais próximos da Terra e não ficam sempre sobre um único lugar. Eles giram ao redor da Terra (exatamente como a Lua) e podem se comunicar uns com os outros e com estações terrestres. Para prover cobertura contínua em determinada área, é preciso colocar muitos satélites em órbita.

Os satélites Iridium formam seis cinturões em torno da Terra.

Satélites de baixa órbita (2)

Retransmitindo no espaço.

Retransmitindo em terra.

Referências Bibliográficas

• KUROSE, J. F. e ROSS, K. W. Redes de computadores e a internet. 8.ed. São Paulo:Person, 2021.

• TANENBAUM, A. S. e Wetherall, D. Redes de computadores. 6ª edição. São Paulo:Person, 2020.

Referências Bibliográficas

- LIEIRA, Julio Fernando. Fundamentos de Redes de Computadores: Pós graduação Adm. De Redes de Computadores com Ênfase em Servidores, 1-30 de abril. de 2009. 34 f. Notas de Aula
- MARCONDES, Cesar Augusto Cavalheiro. Engenharia de Segurança Cybernética: Pós graduação em Ciência da Computação – Nível Mestrado, março-julho. de 2016. 205 f. Notas de Aula
- Netacad.com, skillsforall.com, isc2.org, nist.gov, ieee.org, iso.org e ietf.org

