

Advanced Certificate in Powder Diffraction on the Web

Course Material Master Index

School of Crystallography, Birkbeck College, University of London

Contents

Internet Skills

The Internet Part-time Study via the Web Web Authorina

- Creating and Editing HTML (Hypertext Mark-up Language)
- HTML Topics

Starting a Document

Tag Order

Spacing

Layout

Headings and Fonts

Symbols

Special Characters

Subscripts and Superscripts

Lists

Tables

Images and Icons

Colours

Document Links

Miscellaneous

External Links

Introduction to Powder Diffraction

- In the Beginning
- What is Diffraction?
- What is a Powder?
- What is Powder Diffraction?
- Bragg's Law

A little more on Crystal Planes

Laue versus Monochromatic Methods

A little more on Wavelength and Mononochromatic Radiation

- Single Crystal versus Powder Specimens
- Landmarks
- External Links
- Instrumentation

Laboratory Methods

- Introduction
- Generation of X-rays
- Choice of X-ray Target
- <u>Laboratory X-ray Sources</u>
- Filters
- Monochromators
- Mirrors
- X-ray Detectors
- Instrument X-ray Optics

Reflection Geometry
Transmission Geometry

Samples

Preparation

Holders

• Data Acquisition

Preferred Orientation

Texture

Sample Spinning

Transparency

External Links

Synchrotron Sources and Methods

- Background to the Synchrotron
- How do Synchrotrons Work?
- Properties of Synchrotron Radiation
- Insertion Devices
- Beam Conditioners
- Introduction to Synchrotron Powder Diffraction
- Instrument X-ray Optics

Mode (1): Flat Plate with/without Analyser Crystal

Mode (2): Multiple Foil (Hart-Parrish)

Mode (3): Debye-Scherrer

Mode (4): Use of Line/Area Detectors

Mode (5): Energy-dispersive

• Data Acquisition on a Synchrotron Powder Diffractometer

<u>Ultra-High-Resolution Angle-Dispersive Data</u>

Energy-Dispersive Detector Energy Calibration

Energy-Dispersive Detector Angle

Comparison of Laboratory and Energy-Dispersive Diffraction Data

External Links

Neutron Sources and Methods

- Introduction
- Properties of the Neutron
- Neutron Detectors
- Samples & Sample Holders
- Steady-State Sources

Nuclear Reactors

Guide Halls & Guide Tubes

Monochromators

High-Resolution Diffractometers

High-Flux Diffractometers

Data Acquisition

Pulsed Sources

<u>Time-of-Flight Concepts</u>
<u>Spallation Neutrons</u>
<u>TOF Diffractometers</u>
<u>TOF Data Collection</u>

- Future
- External Links

Diffraction Theory

From Electron Scattering to Structure Factors

- Scattering of X-rays by a Single Electron
- Scattering of X-rays by Two Electrons
- Scattering of X-rays by a Collection of Electrons as in an Atom

Anomalous Scattering

- <u>Scattering of X-rays by a 1-Dimensional Chain of Atoms or</u>
 <u>Molecules</u>
- A Geometrical Representation
- <u>Scattering of X-rays by 2- and 3-Dimensional Units</u>
 The Reciprocal Lattice
- Further Interpretations of Diffraction
- Intensity of Diffraction: the Structure Factor Equation
- A Dimensional Summary

From Structure Factors to Diffraction Intensities

- Kinematic versus Dynamic Diffraction
- Powder Diffraction
- <u>Calculating the Intensity of Diffraction Using the Structure</u> <u>Factor Equation</u>
- From the Structure Factor to Measured Intensities
- Multiplicity
- Polarisation Factor
- Lorentz Factor
- Absorption Factor
- Agreement?
- <u>Temperature Effects</u>

Symmetry

3-D Symmetry Elements

- Introduction
- Rotation Symmetry

Rotation Axes

Symmetry Operators

Rotary-Inversion Symmetry

Inversion Symmetry

Mirror Planes

Higher Order Axes

Translational Symmetry

Lattices and Unit Cells

<u>Crystal Systems</u>

Bravais Lattices

Screw Symmetry

Concepts

Two-one Screw Axis

Helical Screw Axes

- Glide Symmetry
- **Symmetry Symbols**

Point Groups

• Symmetry Diagrams

Flat Projection

Sterographic Projection

Symmetry Groups

Concepts

Molecular Point Symmetry

Crystallographic Point Groups

Point-Group Diagrams

Diffraction Symmetry

Reflection Multiplicity

Polar Point Groups

Enantiomorphic Point Groups

Point-Group Determination

Space Groups

- Introduction to Space Groups
- The 230 3-Dimensional Space Groups
- **Space-Group Frequencies**
- **Space-Group Diagrams**
- Special Positions
- Asymmetric Unit
- Crystal Class
- Triclinic Space Groups

Clickable Space Group P-1

• Monoclinic Space Groups

Clickable Space Group P2₁/c

Orthorhombic Space Groups

Clickable Space Group *P*2₁2₁2₁

Centred Space Groups

Clickable Space Group C2/c

Space-Group Determination

- Introduction
- Reflection Conditions & Systematic Absences

Centred Lattices

Screw Axes

Glide Planes

- Single-Crystal versus Powder Diffraction
- Space-Group Determination in Practice
- Case Study
- Links

Qualitative Analysis

- A Taster
- Back to the Beginning
- A Powder Diffraction File
- The Search Begins
- A Simple Question
- A Simple Answer
- And Something More

- So What About Multiple Phases?
- Present and Future Developments
- External Links

Quantitative Analysis

- Introduction
- Single Peak type Methods

<u>Diffracting Power</u> <u>Multi-Component Systems</u>

Absorption

<u>The Absorption Problem</u>
Dealing with the Absorption Problem

- Whole-Pattern Quantitative Analysis
 - Principles
 - A Worked Example
- External Links

Indexing

Unit-Cell Refinement

- Introduction
- Generation of hkl, d, and 2θ Values
- Standards
- Unit-Cell Refinement
- Wavelength Refinement
- Accuracy
- Interactive Programs

Program to Generate hkl, d, and 2θ Values Program to Refine Unit-Cell Parameters

External Links

Indexing Methods & Programs

- Principles
- Simple Methods
- Trial Methods
- Dichotomy Methods
- Zone Indexing Methods
- Monte Carlo Methods
- Pitfalls
- Interactive Program

Zone-Indexing Program

External Links

Peak Shapes

- The Concept of Peak Shape
- Peak Shape Functions

<u>Gaussian</u>

Lorentzian (or Cauchy)

Pearson VII

Others

• Variations Across a Pattern

- Sources of Peak Broadening
- Crystallite Size and Strain
- Determination of Size and Strain

Structure Refinement

Rietveld Method

- Introduction
- From Intensities to Structural Parameters
- Profile Fitting

<u>Theory</u>

Practice

- Least-Squares Fitting
- R-Factors
- **Estimated Standard Deviations**
- Case Study

Tools

Molecular Geometry

Interatomic Distances & Bond Lengths

Bond Angles

Torsion Angles

- Fourier Maps
- Constraints & Restraints

Coordinate

Geometry

Atomic Displacement

Composition

- Multiphase Refinements
- Phase Transitions
- Combined Data Sets

Rietveld in Practice

Using Rietica

Viewing the Data

Preferences

Getting Started

Backgrounds

Crystallographic Model

Refinement

Practical Problems

Damping Parameters

Atomic Displacement Parameters

Structure Solution

- Historical Overview
- Strategy
- Whole Pattern Fitting

Pawley Method

LeBail Method

Structure Solution

Direct Methods

Global Optimisation Methods

External Links

Modern Techniques & Applications

Pushing the Limits

- 3 Terms and a Global Look
- Detectors

Point & Line Detectors

Area Detectors

Neutron Detectors

Temperature

Low

High

High Pressure

Types of Pressure Cells

Energy Dispersive or Angle Dispersive?

DAC Image Plate Combination

The Limit?

In-Situ Applications

1. Hydrothermal Synthesis

Angle Dispersive

Energy Dispersive

2. The Value of Neutrons

Catalyst Reduction

Thermal Decomposition

Rapid Complex Events

3. The Inside Story

Residual Stress/Strain

Compositional Tomography

4. Combined Techniques: Don't Put All Your Eggs Into One Basket

Energy Dispersive & EXAFS

Energy Dispersive, EXAFS & Neutrons

Commercial Uses

- Overview
- Patents

What are they?

The Use of Powder Diffraction in Patents

Examples of the Use of Powder Diffraction in Patents

Polymorphism & Seeding

Discussion

Case Studies

Forensic Analysis (Qualitative)

Archeological Samples

• Impurity Analysis (Quantitative)

Concentrations Limits & Impurities

A Legal Case Study

- Conclusions
- External Links

Publication

Producing and Interpreting Crystallographic Journal

Articles

- Introduction to Producing and Interpreting Crystallographic **Iournal Articles**
- Experimental: Sample and Experimental Details
- Experimental: Structural Model Determination Details
- Experimental: Rietveld Refinement Details
- Results: Rietveld Refinement Results
- Results: Tables of Geometric Parameters
- Discussion: Description of the Structure
- Discussion: Comparison
- Supplementary Material

Use of CIF (Crystallographic Information Format)

- Introduction to Powder Crystallographic Information File (CIF)
- General CIF Terminology
- Example Sections of a CIF

Use of Structural Databases

- Introduction to Structural Databases
- General Strategies for Searching Structural Databases
- The Databases
- Case Study from the Cambridge Structural Database

External Links

Course Index Navigation

© Copyright 1997-2006. Birkbeck College, University of London.