SCOR MATLAB Code Instructions

1. DATA Analysis

- 'DATA_GENERATE.m' generates both 2 and 3 category data which are 'DATA_num_categories_2.csv' and 'DATA_num_categories_3.csv'.
- In the generated data, each row represents data from a subject. The categorical variable Y is given in the first column. For a K-many possible types of outcome scenario, Y can take values from $\{0,1,\ldots,K-1\}$. If X is d-dimensional, then the column numbers 2:(d+1) denotes the X variable values. Hence a sample of size n would be given by a $n \times (d+1)$ matrix.
- The code 'SCOR.m' computes ULBA, EHUM and SHUM based on the data.
- In 'SCOR.m', user is provided options to set parallel preference, maximum execution time and which dataset to use.
- 'SCOR.m' displays the solution obtained approximately every 5 seconds. User can exit the code at anytime and restore the current solution by displaying 'theta' (the value of the coefficient vector) and '-fun(theta)' (the value of the objective function ULBA/EHUM/SHUM).
- Using parallel computation would be beneficial if the evaluation of the objective function is expensive.

2. General SCOR Algorithm to optimize over spherically constrained space

- A general code of SCOR is given in 'SCOR_GENERAL_OPTIMIZATION.m' which can be used to minimize (or maximize) any desired objective function whose parameter space belongs to a spherically constrained space.
- In 'SCOR_GENERAL_OPTIMIZATION.m', user is provided options to set own objective function, parallel preference, maximum execution time.
- It displays the solution obtained approximately every 5 seconds. User can exit the code at anytime and restore the current solution by displaying 'theta'.

 \blacksquare Using parallel computation would be beneficial if the evaluation of the objective fun-

ction is expensive.