STAT201A: Introduction to Probability at an Advanced Level (Fall 2024) UC Berkeley

Practice Problems for the Midterm Exam

Note: You are not expected to solve all these problems in just 80 minutes.

- 1. Determine whether each of the following claims is true or false. Provide reasons in each case.
 - (a) It is often said that Bin(n, p) is well-approximated by the N(np, np(1-p)) distribution. When n = 3710 and p = 0.2, this would mean that Bin(3710, 0.2) is well-approximated by N(742, 593.6). Therefore

$$\frac{\mathbb{P}(\text{Bin}(3710, 0.2) \ge 941)}{\mathbb{P}\{N(742, 593.6) \ge 941\}}$$

should be close to 1 (you might note here that $941/3710 \approx 0.254$).

- (b) Suppose X has the Negative Binomial distribution with parameters k and p (for example, X can be thought of as the distribution of the number of independent tosses of a coin with probability of heads p required to get the kth head). Let $F_X(\cdot)$ denote the cdf of X. Then $F_X(X)$ has the uniform distribution on (0,1).
- (c) Suppose X has the geometric distribution with parameter $p(X \text{ can be thought of as the number of independent tosses of a coin with probability of heads <math>p$ to get the first head). Then

$$\mathbb{P}\{X > 3.5 + 1.5 \mid X > 1.5\} = \mathbb{P}\{X > 3.5\}$$

(d) We can generate a random variable having any specified distribution by first generating a uniformly distributed random variable on (0,1) and then by applying an appropriate transformation to the uniform random variable.

2. Short questions.

- (a) There are 8 parents, 24 students and 3 teachers in a room. If a person is selected at random, what is the probability that it is a teacher or a student?
- (b) Find the probability to see 3 or less tails in 4 flips of a coin.
- (c) Suppose that A and B are independent, $\mathbb{P}(A) = 1/3$ and $\mathbb{P}(B) = 1/7$. Calculate $\mathbb{P}(A \cap B^c)$.
- (d) Suppose a box has 4 red marbles and 3 black ones. We select 2 marbles. What is the probability that second marble is red given that the first one is red?
- (e) Suppose the random variable X has possible values $\{1, 2, 3\}$ and probability mass function of the form $\mathbb{P}(X = k) = ck$. Find c. Find $\mathbb{E}[X]$. Find $\operatorname{Var}(X)$.
- (f) Let X be a random variable with exponential distribution with parameter 2. Find $\mathbb{P}(X > 14 \mid X > 4)$.
- (g) Russel has a biased coin for the which the probability of getting tails is an unknown p. He decide to flip the coin n and writes the total number of times X he gets tails. How large should n be in order to know with at least 0.95 certainty that the true p is within 0.1 of the estimate X/n? What if he wants 0.99 certainty?
- (h) Let X and Y be independent random variables with exponential distribution with parameter λ , find $\mathbb{P}(X > Y)$.
- (i) Let X be a random variable with m.g.f. $M_X(t) = e^{5t} e^{3t}$. Find a formula for the moments of X.
- (j) Let X be a non-negative random variable with $\mathbb{E}[X] = 2$ and $\mathbb{E}[X^2] = 5$. Use Markov's inequality to find an upper bound for $\mathbb{P}(X > 10)$. Use Chebyshev's inequality to find an upper for $\mathbb{P}(X > 10)$.

- 3. Consider the urn setting that we discussed in lecture. We have an urn with R red balls and N-R white balls. We draw balls in sequence from the urn without replacement.
 - (a) Calculate $\mathbb{P}(F)$ where F denotes the proposition that the first red ball is drawn before the third white ball.
 - (b) Calculate $\mathbb{P}(E)$ where E denotes the proposition that, when we draw n balls, our sample contains at least one red ball and at least two white balls.

- 4. Take random variables X_1, X_2, X_3, \ldots such that each of them has mean μ and variance 1.
 - (a) Suppose that X_i are negatively correlated, i.e. $Cov(X_i, X_j) < 0$ for all i, j. Set $S_n = X_1 + \cdots + X_n$. Show that (IMPORTANT: X_i are not independent!)

$$\operatorname{Var}\left(\frac{S_n}{n}\right) \le \frac{1}{n}.\tag{1}$$

(b) Assume instead that X_i are positively correlated, i.e. $Cov(X_i, X_j) > 0$ for all i and j. Is (1) still true? Either give a proof or provide a counterexample.

- 5. (a) In Bernoulli (p) trials let V_n be the number of trials required to produce either n successes or n failures, whichever comes first. Find the distribution of V_n .
 - (b) Suppose n balls are thrown independently at random into b boxes. Let X be the number of boxes left empty. Find expressions for $\mathrm{E}[X]$ and $\mathrm{Var}(X)$.

6. Suppose X and Y are independent random variables with X having the Exponential distribution with rate parameter λ and Y having the Standard Cauchy distribution. Let

$$U := \frac{Y\sqrt{X}}{\sqrt{1+Y^2}}$$
 and $V := \frac{\sqrt{X}}{\sqrt{1+Y^2}}$

- (a) Find the joint density of U and V.
- (b) Find the marginal densities of U and V.
- (c) Are U and V independent? Why or why not?