ACTE integrating technologies

POXA1328-007

GPS Standalone Module
Data Sheet

The POXA1328-007 is a 4th generation stand-alone GPS module with lightning fast TTFF, ultra high sensitivity (-165dBm), and low power consumption in a small form factor (16*16*6.2mm)

Copyright © 2013 ACTE A/S. All Rights Reserved.

Table of Contents

1.1 Overview		3	
4 Out I Police Territoria			
1.2 Highlights and Features	4	4	
1.3 System Block Diagram	5	5	
1.4 Multi-tone active interference canceller	(6	
1.5 1PPS	(6	
1.6 AGPS Support for Fast TTFF (EPO™)	6	5	
1.7 EASY™	6	ĵ.	
1.8 AlwaysLocate™ (Advance Power Periodic Mode)	7	7	
1.9 Embedded Logger function	8	3	
			•
2. Specifications			8
2.1 Mechanical Dimension			
2.2 Recommended PCB pad Layout			
2.3 Pin Configuration			
2.4 Pin Assignment			
2.5 Description of I/O Pin			
2.6 Specification List	12	2	
2.7 Absolute Maximum Ratings	13	3	
2.8 Operating Conditions	13	3	
3. Protocols			14
3.1 NMEA Output Sentences	14	ļ	
3.2 MTK NMEA Command Protocols	19)	
4. Reference Design			20
4.1 Reference Design Circuit			_0

1. Functional Description

1.1 Overview

The POXA1328-007 is an ultra-compact POT (Patch On Top) GPS Module, The module utilizes the MediaTek new generation GPS Chipset MT3339 that achieves the industry's highest level of sensitivity (-165dBm) and instant Timeto-First Fix (TTFF) with lowest power consumption for precise GPS signal processing to give the ultra-precise positioning under low receptive, high velocity conditions.

Up to 12 multi-tone active interference canceller (ISSCC2011 award), customer can have more flexibility in system design. Supports up to 210 PRN channels with 66 search channels and 22 simultaneous tracking channels, FGPMMOPA6C supports various location and navigation applications, including autonomous GPS, SBAS(note) ranging (WAAS, EGNO, GAGAN, MSAS), AGPS.

POXA1328-007 is excellent low power consumption characteristic (acquisition 82mW, tracking 66mW), power sensitive devices, especially portable applications, need not worry about operating time anymore and user can get more fun.

Note: SBAS can only be enabled when update rate is less than or equal to 5Hz.

Application:

- Handheld Device
- Tablet PC/PLB/MID
- M2M application
- Asset management
- Surveillance

1.2Highlights and Features

- Built-in 15X15X4mm ceramic patch antenna on the top of module
- Ultra-High Sensitivity: -165dBm (w/o patch antenna), up to 45dB C/N of SVs in open sky reception.
- High Update Rate: up to 10Hz (note1)
- 12 multi-tone active interference canceller [ISSCC 2011 Award -Section 26.5] (http://isscc.org/doc/2011/isscc2011.advanceprogrambooklet_abstracts.pdf)
- High accuracy 1-PPS timing support for Timing Applications (10ns jitter)
- AGPS Support for Fast TTFF (EPO[™] Enable 7 days/14 days/30 days)
- EASYTM. Self-Generated Orbit Prediction for instant positioning fix
- AlwaysLocate^{TM,note2)}Intelligent Algorithm (Advance Power Periodic Mode) for power saving
- Logger function Embedded (note2)
- $\sqrt{\text{Consumption current(@3.3V):}}$
 - Acquisition: 25mA Typical
 - Tracking: 20mA Typical
- √ E911, RoHS, REACH compliant
- √ CE, FCC Certification

note 1: SBAS can only be enabled when update rate is less than or equal to 5Hz.

note2: Some features need special firmware or command programmed by customer, please refer to "GPS command List"

1.3 System Block Diagram

1.4 Multi-tone active interference canceller

Because different application (Wi-Fi, GSM/GPRS, 3G/4G, Bluetooth) are integrated into navigation system, the harmonic of RF signal will influence the GPS reception, The multi-tone active interference canceller (abbr: MTAIC) can reject external RF interference which come from other active components on the main board, to improve the capacity of GPS reception without any needed HW change in the design. POXA1328-007 can cancel up to 12 independent channels interference continuous wave (CW)

1.5 1PPS

A pulse per second (1 PPS) is an electrical signal that very precisely indicates the start of a second. Depending on the source, properly operating PPS signals have an accuracy ranging 10ns.

1 PPS signals are used for precise timekeeping and time measurement. One increasingly common use is in computer timekeeping, including the NTP protocol. A common use for the PPS signal is to connect it to a PC using a lowlatency, low-jitter wire connection and allow a program to synchronize to it:

POXA1328-007 supply the high accurate 1PPS timing to synchronize to GPS time after 3D-Fix. A power-on output 1pps is also available for customization firmware settings.

1.6 AGPS Support for Fast TTFF (EPO™)

The AGPS (EPO™) supply the predicated Extended Prediction Orbit data to speed TTFF, users can download the EPO data to GPS engine from the FTP server by internet or wireless network, the GPS engine will use the EPO data to assist position calculation when the navigation information of satellites are not enough or weak signal zone.

1.7 EASY™

The EASY™ is embedded assist system for quick positioning, the GPS engine will calculate and predict automatically the single emperies (Max. up to 3 days) when power on ,and save the predict information into the memory, GPS engine will use these information for positioning if no enough information from satellites, so the function will be helpful for positioning and TTFF improvement under indoor or urban condition.

1.12-1 EASY System operation

Please refer to the Fig 1.12-1, When GPS device great the satellite information from GPS satellites, the GPS engine automatically pre-calculate the predict orbit information for 3 days

The GPS device still can quickly do the positioning with EASY[™] function under weak GPS signal.

1.8 AlwaysLocate™ (Advance Power Periodic Mode)

Embedded need to be executed full y all the time, the algorithm can be set by different necessary to decide the operation level of GPS function, reduce power consumption, it will suffer positing accuracy to get the target of power saving and extend the usage time of product. (The positioning accuracy of reporting location < 50m (CEP)

1.9 Embedded Logger function

The Embedded Logger function don't need host CPU (MCU) and external flash to handle the operation, GPS Engine will use internal flash (embedded in GPS chipset) to log the GPS data (Data format: UTC, Latitude, longitude, Valid, Checksum), the max log days can up to 2 days under AlwaysLocate™ condition.

Note: Data size per log was shrunk from 24 bytes to 15 bytes.

Specifications

2.1 Mechanical Dimension

Dimension: (Unit: mm, Tolerance: +/- 0.2mm)

Unit: mm Assemble Tolerance: 0.2mm

2.2 Recommended PCB pad Layout

(Unit: mm, Tolerance: 0.1mm)

2.3 Pin Configuration

2.4 Pin Assignment

Pin	Name	1/0	Description	
1	vcc	PI	Main DC power input	
2	NC	-	Not connected	
3	GND	Р	Ground	
4	VBACKUP	PI	Backup power input	
5	3D-FIX	0	3D-fix indicator	
6	1PPS	0	1PPS Time Mark Output 2.8V CMOS Level	
7	NC	_	Not connected	
8	GND	Р	Ground	
9	TX	0	Serial data output of NMEA	
10	RX	- I	Serial data input for firmware update	
11	GND	Р	Ground	
12	GND	Р	Ground	
13	GND	Р	Ground	

2.5 Description of I/O Pin

VCC (Pin1)

The main DC power supply of the module, the voltage should be kept between from 3.0V to 4.3V. **The Vcc ripple must be controlled under 50mV (Typical: 3.3V)**

NC (Pin2 and Pin7)

These are NC pins, they are not connected.

GND (Pin3 and Pin8)

Ground

VBACKUP (Pin4)

This connects to the backup power of the GPS module. Power source (such as battery) connected to this pin will help the GPS chipset in keeping its internal RTC running when the main power source is turned off. The voltage should be kept between 2.0V~4.3V, Typical 3.0V.

IF VBACKUP power was not reserved, the GPS module will perform a lengthy cold start every time it is poweredon because previous satellite information is not retained and needs to be re-transmitted.

If not used, keep open.

3D-FIX (Pin5)

The 3D-FIX is assigned as a fix flag output. The timing behavior of this pin can be configured by custom firmware for different applications (Example: waking up host MCU). If not used, keep floating.

Before 2D Fix
 The pin should continuously output one-second high-level with one-second low-level signal.

After 2D or 3D Fix

The pin should continuously output low-level signal.

Low

1PPS (Pin6)

This pin provides one pulse-per-second output from the module and synchronizes to GPS time. Keep floating if not used.

TX (Pin9)

This is the UART transmitter of the module. It outputs the GPS information for application.

RX (Pin10)

This is the UART receiver of the module. It is used to receive software commands and firmware update.

2.6 Specification List

	Description
GPS Solution	MTK MT3339
Frequency	L1, 1575.42MHz
Sensitivity ¹	Acquisition: -148dBm, cold start Reacquisition: -163dBm, Hot start Tracking: -165dBm
Channel	66 channels
TTFF	Hot start: 1 second typical Warm start: 33 seconds typical Cold start: 35 seconds typical (No. of SVs>4, C/N>40dB, PDop<1.5)
Position Accuracy	Without aid:3.0m (50% CEP) DGPS(SBAS(WAAS,EGNOS,MSAS)):2.5m (50% CEP)
Velocity Accuracy	Without aid: 0.1m/s DGPS(SBAS(WAAS,EGNOS,MSAS,GAGAN)):0.05m/s Without aid:0.1 m/s²
Acceleration Accuracy	Without aid:0.1 m/s ² DGPS(SBAS(WAAS,EGNOS,MSAS)):0.05m/s ²
Timing Accuracy (1PPS Output)	10 ns RMS
Altitude	Maximum 18,000m (60,000 feet)
Velocity	Maximum 515m/s (1000 knots)
Acceleration	Maximum 4G
Update Rate	1Hz (default), maximum 10Hz
Baud Rate	9600 bps (default)
DGPS	SBAS(defult) [QZSS,WAAS, EGNOS, MSAS,GAGAN]
AGPS	Support
Power Supply	VCC: 3.0V to 4.3V; VBACKUP: 2.0V to 4.3V
Current Consumption	25mA acquisition, 20mA tracking
Working Temperature	-40 °C to +85 °C
Dimension	16 x 16x 6.2mm, SMD
Weight	6g

2.7 Absolute Maximum Ratings

The voltage applied for VCC should not exceed 6VDC.

	Symbol	Min.	Тур.	Max.	Unit
Power Supply Voltage	VCC	3.0	3.3	4.3	V
Backup battery Voltage	VBACKUP	2.0	3.0	4.3	V

2.8 Operating Conditions

	Condition	Min.	Тур.	Max.	Unit
Operation supply Ripple Voltage	_	_	_	50	mVpp
RX0 TTL H Level	VCC=3.0~4.3V	2.0	_	VCC	V
RX0 TTL L Level	VCC=3.0~4.3V	0	_	0.8	V
TX0 TTL H Level	VCC=3.0~4.3V	2.4	_	2.8	V
TX0 TTL L Level	VCC=3.0~4.3V	0	_	0.4	V
Current Consumption @ 3.3V,	Acquisition	_	25	_	mA
1Hz Update Rate	Tracking	_	20	_	mΑ
Backup Power Consumption@ 3V	25°C	_	7	_	uA

3. Protocols

3.1 NMEA Output Sentences

Table-1 lists each of the NMEA output sentences specifically developed and defined by MTK for use within MTK products

Table-1: NMEA Output Sentence						
Option	Description					
GGA	Time, position and fix type data.					
GSA	GPS receiver operating mode, active satellites used in the position solution and DOP values.					
GSV	The number of GPS satellites in view satellite ID numbers, elevation, azimuth, and SNR values.					
RMC	Time, date, position, course and speed data. Recommended Minimum Navigation Information.					
VTG	Course and speed information relative to the ground.					

GGA—Global Positioning System Fixed Data. Time, Position and fix related data

Table-2 contains the values for the following example:

\$GPGGA,064951.000,2307.1256,N,12016.4438,E,1,8,0.95,39.9,M,17.8,M,,*65

Table-2: GGA Data Format					
Name	Example	Units	Description		
Message ID	\$GPGGA		GGA protocol header		
UTC Time	064951.000		hhmmss.sss		
Latitude	2307.1256		ddmm.mmmm		
N/S Indicator	N		N=north or S=south		
Longitude	12016.4438		dddmm.mmmm		
E/W Indicator	Е		E=east or W=west		
Position Fix	1		See Table-3		
Indicator					
Satellites Used	8		Range 0 to 14		
HDOP	0.95		Horizontal Dilution of Precision		
MSL Altitude	39.9	meters	Antenna Altitude above/below mean-sea-level		
Units	M	meters	Units of antenna altitude		
Geoidal Separation	17.8	meters			
Units	M	meters	Units of geoids separation		
Age of Diff. Corr.		second	Null fields when DGPS is not used		
Checksum	*65				
<cr> <lf></lf></cr>			End of message termination		

Table-3: Position Fix Indicator					
Value Description					
0	Fix not available				
1	GPS fix				
2	Differential GPS fix				

GSA—**GNSS DOP** and Active Satellites

Table-4 contains the values for the following example:

\$GPGSA,A,3,29,21,26,15,18,09,06,10,,,,,2.32,0.95,2.11*00

Table-4: GSA Data Format					
Name	Example	Units	Description		
Message ID	\$GPGSA		GSA protocol header		
Mode 1	Α		See Table-5		
Mode 2	3		See Table-6		
Satellite Used	29		SV on Channel 1		
Satellite Used	21		SV on Channel 2		
Satellite Used			SV on Channel 12		
PDOP	2.32		Position Dilution of Precision		
HDOP	0.95		Horizontal Dilution of Precision		
VDOP	2.11		Vertical Dilution of Precision		
Checksum	*00				
<cr> <lf></lf></cr>			End of message termination		

Table-5: Mode 1					
Value Description					
M	Manual—forced to operate in 2D or 3D mode				
Α	2D Automatic—allowed to automatically switch 2D/3D				

Table-6: Mode 2					
Value Description					
1	Fix not available				
2	2D (<4 SVs used)				
3	3D (≥4 SVs used)				

GSV—GNSS Satellites in View

Table-7 contains the values for the following example:

\$GPGSV,3,1,09,29,36,029,42,21,46,314,43,26,44,020,43,15,21,321,39*7D

\$GPGSV,3,2,09,18,26,314,40,09,57,170,44,06,20,229,37,10,26,084,37*77 \$GPGSV,3,3,09,07,,,26*73

Table-7: GSV Data Format					
Name	Example	Units	Description		
Message ID	\$GPGSV		GSV protocol header		
Number of Messages	3		Range 1 to 3 (Depending on the number of satellites tracked, multiple messages of GSV data may be required.)		
Message Number1	1		Range 1 to 3		
Satellites in View	09				
Satellite ID	29		Channel 1 (Range 1 to 32)		
Elevation	36	degrees	Channel 1 (Maximum 90)		
Azimuth	029	degrees	Channel 1 (True, Range 0 to 359)		
SNR (C/No)	42	dBHz	Range 0 to 99, (null when not tracking)		
Satellite ID	15		Channel 4 (Range 1 to 32)		
Elevation	21	degrees	Channel 4 (Maximum 90)		
Azimuth	321	degrees	Channel 4 (True, Range 0 to 359)		
SNR (C/No)	39	dBHz	Range 0 to 99, (null when not tracking)		
Checksum	*7D				
<cr> <lf></lf></cr>			End of message termination		

RMC—Recommended Minimum Navigation Information

Table-8 contains the values for the following example:

\$GPRMC,064951.000,A,2307.1256,N,12016.4438,E,0.03,165.48,260406,3.05,W,A*2C

Table-10: RMC Data Format				
Name	Example	Units	Description	
Message ID	\$GPRMC		RMC protocol header	
UTC Time	064951.000		hhmmss.sss	
Status	Α		A=data valid or V=data not valid	
Latitude	2307.1256		ddmm.mmmm	
N/S Indicator	N		N=north or S=south	
Longitude	12016.4438		dddmm.mmmm	
E/W Indicator	E		E=east or W=west	
Speed over Ground	0.03	knots		
Course over Ground	165.48	degrees	True	
Date	260406		ddmmyy	
Magnetic Variation	3.05, W	degrees	E=east or W=west	
Mode	А		A= Autonomous mode D= Differential mode E= Estimated mode	
Checksum	*2C			
<cr> <lf></lf></cr>			End of message termination	

VTG—Course and speed information relative to the ground

Table-9 contains the values for the following example:

\$GPVTG,165.48,T,,M,0.03,N,0.06,K,A*37

Table-12: VTG Data Format				
Name	Example	Units	Description	
Message ID	\$GPVTG		VTG protocol header	
Course	165.48	degrees	Measured heading	
Reference	T	55.00	True	
Course		degrees	Measured heading	
Reference	М			
Speed	0.03	knots	Measured horizontal speed	
Units	N		Knots	
Speed	0.06	km/hr	Measured horizontal speed	
Units	K		Kilometers per hour	
Mode	Α		A= Autonomous mode D= Differential mode E= Estimated mode	
Checksum	*06			
<cr> <lf></lf></cr>			End of message termination	

3.2 MTK NMEA Command Protocols

Packet Type:

103 PMTK_CMD_COLD_START

Packet Meaning:

Cold Start : Don't use Time, Position, Almanacs and Ephemeris data at re-start.

Example:

\$PMTK103*30<CR><LF>

4. Reference Design

This chapter introduces the reference schematic design for the best performance. Additional tips and cautions on design are well documented on Application Note, which is available upon request.

Note:

- 1. Ferrite bead L1 is added for power noise reduction.
- 2. C2 and C3 bypass should be put near the module.

 For C1, the value chosen depends on the amount of system noise, the range from 1uF to 100uF is reasonable.
- 3. Damping resistors R2 and R3 could be modified based on system application for EMI.