COMP9020 Week 5 Term 3, 2019 Logic

What is logic?

Logic is about formalizing reasoning and defining truth

- Adding rigour
- Removing ambiguity
- Mechanizing the process of reasoning

Summary of topics

Part 1:

- Historical background
- Applications to Computer Science
- Propositional logic, informally
- Propositional logic, formally

Part 2:

- CNF and DNF
- Karnaugh maps
- Boolean algebra
- Other logics

Summary of topics

- Historical background
- Applications to Computer Science
- Propositional logic, informally
- Propositional logic, formally

Loose history of logic

- (Ancient times): Logic exlusive to philosophy
- Mid-19th Century: Logical foundations of Mathematics
- 1910: Russell and Whitehead's Principia Mathematica
- 1928: Hilbert proposes Entscheidungsproblem
- 1931: Gödel's Incompleteness Theorem
- 1935: Church's Lambda calculus
- 1936: Turing's Machine-based approach
- 1930s: Circuit logic 电路逻辑
- 1960s: Formal verification; Relational databases

Summary of topics

- Historical background
- Applications to Computer Science
- Propositional logic, informally
- Propositional logic, formally

Applications to Computer Science

 ${\sf Computation} \quad = \quad {\sf Calculation} \, + \, {\sf Symbolic \ manipulation}$

Applications to Computer Science

Computation = Calculation + Symbolic manipulation

Computers as logical structures:

- Formal verification
- Proof assistance
- Knowledge Representation and Reasoning
- Automated reasoning
- Databases

Applications to Computer Science

 ${\sf Computation} \quad = \quad {\sf Calculation} \quad + \quad {\sf Symbolic \ manipulation}$

Logic as 2-valued computation

- Circuit design
- Code optimization
- Boolean algebra

Summary of topics

- Historical background
- Applications to Computer Science
- Propositional logic, informally
- Propositional logic, formally

命题逻辑

Propositions

A **proposition** (or sentence) is a declarative statement; something that is either true or false.

Examples

- Richard Nixon was president of Ecuador.
- A square root of 16 is 4.
- Euclid's program gets stuck in an infinite loop if you input 0.
- Whatever list of numbers you give as input to this program, it outputs the same list but in increasing order.
- $x^n + y^n = z^n$ has no nontrivial integer solutions for n > 2.
- 3 divides 24.
- K₅ is planar.

Propositions

Examples

The following are *not* declarative sentences:

- Gubble gimble goo
- For Pete's sake, take out the garbage!
- Did you watch MediaWatch last week?
- Please waive the prerequisites for this subject for me.
- x divides y.
- x = 3 and x divides 24.

Propositions

Examples

The following are *not* declarative sentences:

- Gubble gimble goo
- For Pete's sake, take out the garbage!
- Did you watch MediaWatch last week?
- Please waive the prerequisites for this subject for me.
- x divides y. R(x, y)
- x = 3 and x divides 24. P(x)

Logical connectives

逻辑连接符

Logical connectives join together propositions to build larger, **compound** propositions.

Examples

- Chef is a bit of a Romeo and Kenny is always getting killed.
- Either Bill is a liar or Hillary is innocent of Whitewater.
- It is not the case that this program always halts.
- If it is raining then I have an umbrella.

Logical connectives

Common logical connectives:

Symbol	Default	Also known as
\wedge	and	but, ";"
V	or	"either or"
	not	not the case
\rightarrow	"if then"	implies
		whenever
		is sufficient for
\leftrightarrow	" if and only if"	bi-implies
		necessary and sufficient
		exactly when
		just in case

Compound propositions

The **truth** of a compound proposition depends on the truth of its components (**atomic propositions**):

Example

P: Chef is a bit of a Romeo and Kenny is always getting killed.

Chef is a bit of a Romeo	Kenny is always getting killed	P
True	True	True
False	True	False
True	False	False
False	False	False

Compound propositions

Α	В	$A \wedge B$	$A \vee B$	$\neg A$	$A \rightarrow B$	$A \leftrightarrow B$
True	True	True	True	False	True	True
False	True	False	True	True	True	False
True	False	False	True	False	False	False
False	False	False	False	True	True	True

Vacuous truth

How to interpret $A \rightarrow B$ when A is false?

$$A \rightarrow B$$
 If A (premise) then B (conclusion)

Material implication is false *only when* the premise holds and the conclusion does not.

If the premise is false, the implication is true no matter how absurd the conclusion is.

Both the following statements are true:

- If February has 30 days then March has 31 days.
- If February has 30 days then March has 42 days.

Exercises

LLM: Problem 3.2

p = "you get an HD on your final exam"

q = "you do every exercise in the book"

r = "you get an HD in the course"

Translate into logical notation:

(a) You get an HD in the course although you do not do every exercise in the book.

(c) To get an HD in the course, you must get an HD on the exam.

(d) You get an HD on your exam, but you don't do every exercise in this book; nevertheless, you get an HD in this course.

Exercises

LLM: Problem 3.2

p = "you get an HD on your final exam"

q = "you do every exercise in the book"

r = "you get an HD in the course"

Translate into logical notation:

(a) You get an HD in the course although you do not do every exercise in the book.

Exercises

LLM: Problem 3.2

p = "you get an HD on your final exam"

q = "you do every exercise in the book"

r = "you get an HD in the course"

Translate into logical notation:

(a) You get an HD in the course although you do not do every exercise in the book. $r \land \neg q$

(c) To get an HD in the course, you must get an HD on the exam.

Exercises

LLM: Problem 3.2

p = "you get an HD on your final exam"

q = "you do every exercise in the book"

r = "you get an HD in the course"

Translate into logical notation:

(a) You get an HD in the course although you do not do every exercise in the book. $r \land \neg q$

(c) To get an HD in the course, you must get an HD on the exam. $r \rightarrow p$

(d) You get an HD on your exam, but you don't do every exercise in this book; nevertheless, you get an HD in this course.

Exercises

LLM: Problem 3.2

p = "you get an HD on your final exam"

q = "you do every exercise in the book"

r = "you get an HD in the course"

Translate into logical notation:

(a) You get an HD in the course although you do not do every exercise in the book. $r \land \neg q$

(c) To get an HD in the course, you must get an HD on the exam. $r \rightarrow p$

(d) You get an HD on your exam, but you don't do every exercise in this book; nevertheless, you get an HD in this course. $p \land \neg q \land r$

Tautologies, Contradictions and Contingencies

Definition

A proposition is:

- a tautology if it is always true,
- a contradiction if it is always false,
- a contingency if it is neither a tautology or a contradiction,
- satsfiable if it is not a contradiction.

Example

- Contingency: It is raining
- Tautology: It is raining or it is not raining
- Contradiction: It is raining and it is not raining

Applications I: Constraint Satisfaction Problems

These are problems such as timetabling, activity planning, etc. Many can be understood as showing that a formula is satisfiable.

Example

You are planning a party, but your friends are a bit touchy about who will be there.

- If John comes, he will get very hostile if Sarah is there.
- Sarah will only come if Kim will be there also.
- 3 Kim says she will not come unless John does.

Who can you invite without making someone unhappy?

Translation to logic: let J, S, K represent "John (Sarah, Kim) comes to the party". Then the constraints are:

- $\mathbf{2} \ S \to K$
- \bullet $K \rightarrow J$

Thus, for a successful party to be possible, we want the formula $\phi = (J \to \neg S) \land (S \to K) \land (K \to J)$ to be satisfiable. Truth values for J, S, K making this true are called *satisfying assignments*, or *models*.

We figure out where the conjuncts are false, below. (so blank = T)

J	K	5	J o eg S	$S \rightarrow K$	$K \rightarrow J$	ϕ
F	F	F				
F	F	T		F		F
F	Т	F			F	F
F	Т	T			F	F
Т	F	F				
Т	F	T	F	F		F
Т	Т	F				
Т	Т	Т	F			F

Conclusion: a party satisfying the constraints can be held. Invite nobody, or invite John only, or invite Kim and John.

Logical equivalence

Definition

Two propositions are **logically equivalent** if they are true for the same truth values of their atomic propositions.

Example

A: "It is raining"

is logically equivalent to '

 $\neg(\neg A)$: "It is not the case that it is not raining"

A	$\neg A$	$\neg(\neg A)$
True	False	True
False	True	False

Applications II: Program Logic

Example

if
$$x > 0$$
 or $(x \le 0 \text{ and } y > 100)$:

Let
$$p \stackrel{\text{def}}{=} (x > 0)$$
 and $q \stackrel{\text{def}}{=} (y > 100)$

$$p \lor (\neg p \land q)$$

p	q	$\neg p$	$\neg p \land q$	$p \lor (\neg p \land q)$
F	F	Т	F	F
F	T	Т	T	T
Т	F	F	F	T
Т	T	F	F	T

This is equivalent to $p \lor q$. Hence the code can be simplified to

if
$$x > 0$$
 or $y > 100$:

Entailment and Validity

An *argument* consists of a set of propositionss called *premises* and a declarative sentence called the *conclusion*.

Example		Ì
Premises: 前提	Frank took the Ford or the Toyota. If Frank took the Ford he will be late. Frank is not late.	
Conclusion:	Frank took the Toyota	

Entailment and Validity

An argument is *valid* if the conclusions are true *whenever* all the premises are true. Thus: if we believe the premises, we should also believe the conclusion.

(Note: we don't care what happens when one of the premises is false.)

Other ways of saying the same thing:

- The conclusion logically follows from the premises.
- The conclusion is a logical consequence of the premises.
- The premises entail the conclusion.

Entailment and Validity

The argument above is valid. The following is invalid:

Example

Premises: Frank took the Ford or the Toyota.

If Frank took the Ford he will be late.

Frank is late.

Conclusion: Frank took the Ford.

Applications III: Reasoning About Requirements/Specifications

Suppose a set of English language requirements R for a software/hardware system can be formalised by a set of formulae $\{\phi_1, \dots \phi_n\}$.

Suppose C is a statement formalised by a formula ψ . Then

- **1** The requirements cannot be implemented if $\phi_1 \wedge \ldots \wedge \phi_n$ is not satisfiable.
- ② If $\phi_1, \dots \phi_n \models \psi$ then every correct implementation of the requirements R will be such that C is always true in the resulting system.
- 3 If $\phi_1, \dots \phi_{n-1} \models \phi_n$, then the condition ϕ_n of the specification is redundant and need not be stated in the specification.

Example

Requirements R: A burglar alarm system for a house is to operate as follows. The alarm should not sound unless the system has been armed or there is a fire. If the system has been armed and a door is disturbed, the alarm should ring. Irrespective of whether the system has been armed, the alarm should go off when there is a fire.

Conclusion C: If the alarm is ringing and there is no fire, then the system must have been armed.

Questions

- Will every system correctly implementing requirements R satisfy C?
- 2 Is the final sentence of the requirements redundant?

Example

Expressing the requirements as formulas of propositional logic, with

- S =the alarm sounds =the alarm rings
- A = the system is armed
- D = a door is disturbed
- F =there is a fire

we get

Requirements:

- $(A \wedge D) \to S$

Conclusion: $(S \land \neg F) \rightarrow A$

Example

Our two questions then correspond to

- ② Does $S \to (A \lor F)$, $(A \land D) \to S$ entail $F \to S$?

Summary of topics

- Historical background
- Applications to Computer Science
- Propositional logic, informally
- Propositional logic, formally

Syntax vs Semantics

The first step in the formal definition of logic is the separation of **syntax** and **semantics**

- Syntax is how things are written: what defines a formula
- Semantics is what things mean: what does it mean for a formula to be "true"?

Example

"Rabbit" and "Bunny" are syntactically different, but semantically the same.

Syntax: Well-formed formulas

Let $PROP = \{p, q, r, ...\}$ be a set of propositional letters. Consider the alphabet

$$\Sigma = \text{Prop} \cup \{\top, \bot, \neg, \land, \lor, \rightarrow, \leftrightarrow, (,)\}.$$

The **well-formed formulas** (wffs) over PROP is the smallest set of words over Σ such that:

- \bullet T, \perp and all elements of Prop are wffs
- If φ is a wff then $\neg \varphi$ is a wff
- If φ and ψ are wffs then $(\varphi \wedge \psi)$, $(\varphi \vee \psi)$, $(\varphi \to \psi)$, and $(\varphi \leftrightarrow \psi)$ are wffs.

The following are well-formed formulas:

- $(p \land \neg \top)$
- $\neg(p \land \neg\top)$
- $\neg\neg(p \land \neg\top)$

The following are **not** well-formed formulas:

- p ∧ ∧
- p ∧ ¬T
- $(p \land q \land r)$
- $\bullet \neg (\neg p)$

Syntax: Conventions

To aid readability some conventions and binding rules can and will be used.

- Parentheses omitted if there is no ambiguity (e.g. $p \land q$)
- \neg binds more tightly than \land and \lor , which bind more tightly than \rightarrow and \leftrightarrow (e.g. $p \land q \rightarrow r$ instead of $((p \land q) \rightarrow r)$

Syntax: Conventions

To aid readability some conventions and binding rules can and will be used.

- Parentheses omitted if there is no ambiguity (e.g. $p \wedge q$)
- \neg binds more tightly than \land and \lor , which bind more tightly than \rightarrow and \leftrightarrow (e.g. $p \land q \rightarrow r$ instead of $((p \land q) \rightarrow r)$

Other conventions (rarely used/assumed in this course):

- ' or $\overline{\cdot}$ for \neg
- \bullet + for \lor
- or juxtaposition for ∧
- ∧ binds more tightly than ∨
- \land and \lor associate to the left: $p \lor q \lor r$ instead of $((p \lor q) \lor r)$
- ullet o and o associate to the right: p o q o r instead of (p o(q o r))

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

Example

$$((P \land \neg Q) \lor \neg (Q \to P))$$

 \vee

there is always one way to interpret a Syntax

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

Example $((P \land \neg Q) \lor \neg (Q \rightarrow P))$

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

The structure of well-formed formulas (and other grammar-defined syntaxes) can be shown with a **parse tree**.

Syntax: Parse trees formally

Formally, we can define a parse tree as follows:

A parse tree is either:

- (B) A node containing ⊤;
- (B) A node containing ⊥;
- (B) A node containing a propositional variable;
- (R) A node containing ¬ with a single parse tree child;
- (R) A node containing ∧ with two parse tree children;
- (R) A node containing ∨ with two parse tree children;
- \bullet (R) A node containing \rightarrow with two parse tree children; or
- (R) A node containing ↔ with two parse tree children.

Semantics: Boolean Algebra I

```
Let \mathbb{B} = \{\texttt{true}, \texttt{false}\} = \{T, F\} = \{1, 0\} bang Define !, \&\&, \parallel, \leadsto, \leadsto as operations on \mathbb{B} (as per slide 17)
```

- !true = false; !false = true,
- true && true = true; ...
- true | true = true; ...
- true → true = true; ...
- true \leftrightarrow true = true; ...

Semantics: Truth valuations

A truth assignment is a function $v : Prop \rightarrow \mathbb{B}$.

We can extend a truth valuation, v, to all wffs of propositional logic as follows:

- $v(\top) = \text{true}$,
- $v(\perp) = false$,
- $v(\neg \phi) = !v(\phi)$,
- $v(\phi \wedge \psi) = v(\phi) \&\& v(\psi)$
- $v(\phi \lor \psi) = v(\psi) \parallel v(\psi)$
- $v(\phi \rightarrow \psi) = v(\phi) \rightsquigarrow v(\psi)$
- $v(\phi \leftrightarrow \psi) = v(\phi) \leftrightsquigarrow v(\psi)$

Semantics: Exercises

Exercises

Evaluate the following formulae with the truth assignment v(p) = v(q) = false

- $p \rightarrow q$
- $\bullet \ (p \to q) \to (p \to q)$
- ¬¬p
- \bullet $\top \land \neg \bot \rightarrow p$

Semantics: Truth tables

- Row for every truth assignment assignment of T/F to elements of *Prop*
- Columns for subformulae

p	q	$\neg p$	$\neg p \land q$	$p \lor (\neg p \land q)$
F	F	T	F	F
F	T	T	Т	T
Т	F	F	F	T
Т	T	F	F	T

Satisfiability, Validity and Equivalence

A formula φ is

真值指派

- <u>satisfiable</u> if $v(\varphi) = \text{true}$ for some <u>truth assignment</u> v (v satisfies φ)
- a **tautology** if $v(\varphi) = \text{true}$ for all truth assignments v
- <u>unsatisfiable</u> or a <u>contradiction</u> if $v(\varphi) = false$ for all truth assignments v

Exercise

2.7.14 (supp)

Which of the following formulae are always true?

(a)
$$(p \land (p \rightarrow q)) \rightarrow q$$

$$\mathsf{(b)}\; ((p \vee q) \wedge \neg p) \, \to \, \neg q$$

(e)
$$((p \rightarrow q) \lor (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

(f)
$$(p \wedge q) \rightarrow q$$

Exercise

2.7.14 (supp)

Which of the following formulae are always true?

(a)
$$(p \land (p \rightarrow q)) \rightarrow q$$
 — always true

(b)
$$((p \lor q) \land \neg p) \to \neg q$$
 — not always true

(e)
$$((p o q) \lor (q o r)) o (p o r)$$
 — not always true

(f)
$$(p \wedge q) \rightarrow q$$
 — always true

Logical equivalence

Definition

Two formulas, φ and ψ , are **logically equivalent**, $\varphi \equiv \psi$, if $v(\varphi) = v(\psi)$ for all truth assignments v.

Fact

 \equiv is an equivalence relation.

Logical equivalence

Definition

Two formulas, φ and ψ , are **logically equivalent**, $\varphi \equiv \psi$, if $v(\varphi) = v(\psi)$ for all truth assignments v.

Fact

≡ is an equivalence relation.

Example

- Commutativity: $(p \lor q) \equiv (q \lor p)$
- Double negation: $\neg \neg p \equiv p$
- Contrapositive: $(p \rightarrow q) \equiv (\neg q \rightarrow \neg p)$
- De Morgan's: $(p \lor q)' \equiv p' \land q'$

Logical equivalence

Fact

 $\varphi \equiv \psi$ if, and only if, $(\varphi \leftrightarrow \psi)$ is a tautology.

2.2.18 Prove or disprove: (a) $p \rightarrow (q \rightarrow r)$

(a)
$$p \rightarrow (q \rightarrow r)$$

2.2.18 Prove or disprove: (a) $p \rightarrow (q \rightarrow r) \equiv$

$$\overline{(a) p \rightarrow (q \rightarrow r)} \equiv$$

(a)
$$p o (q o r) \equiv (p o q) o (p o r)$$

(c)
$$(p \rightarrow q) \rightarrow r$$

(a)
$$p \rightarrow (q \rightarrow r) \equiv (p \rightarrow q) \rightarrow (p \rightarrow r)$$

(c)
$$(p \rightarrow q) \rightarrow r \equiv$$

(a)
$$p \rightarrow (q \rightarrow r) \equiv (p \rightarrow q) \rightarrow (p \rightarrow r)$$

(c)
$$(p \rightarrow q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$$

$$2.2.18$$
 Prove or disprove: (a) $(p \rightarrow q) \rightarrow (p \rightarrow r)$

$$\begin{array}{c}
(a) \ (p \to q) \to (p \to r) \\
\equiv \neg (p \to q) \lor (\neg p \lor r) \\
\equiv
\end{array}$$

$$\begin{array}{c}
(a) \ (p \to q) \to (p \to r) \\
\equiv \neg (p \to q) \lor (\neg p \lor r) \\
\equiv (p \land \neg q) \lor \neg p \lor r \\
\equiv
\end{array}$$

$$(a) (p \rightarrow q) \rightarrow (p \rightarrow r)$$

$$\equiv \neg (p \rightarrow q) \lor (\neg p \lor r)$$

$$\equiv (p \land \neg q) \lor \neg p \lor r$$

$$\equiv (p \lor \neg p \lor r) \land (\neg q \lor \neg p \lor r)$$

$$\equiv$$

$$(a) (p \rightarrow q) \rightarrow (p \rightarrow r)$$

$$\equiv \neg (p \rightarrow q) \lor (\neg p \lor r)$$

$$\equiv (p \land \neg q) \lor \neg p \lor r$$

$$\equiv (p \lor \neg p \lor r) \land (\neg q \lor \neg p \lor r)$$

$$\equiv \top \land (\neg p \lor \neg q \lor r)$$

$$\equiv$$

$$(a) (p \rightarrow q) \rightarrow (p \rightarrow r)$$

$$\equiv \neg (p \rightarrow q) \lor (\neg p \lor r)$$

$$\equiv (p \land \neg q) \lor \neg p \lor r$$

$$\equiv (p \lor \neg p \lor r) \land (\neg q \lor \neg p \lor r)$$

$$\equiv \top \land (\neg p \lor \neg q \lor r)$$

$$\equiv p \rightarrow (\neg q \lor r)$$

$$\equiv$$

(a)
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$

 $\equiv \neg (p \rightarrow q) \lor (\neg p \lor r)$
 $\equiv (p \land \neg q) \lor \neg p \lor r$
 $\equiv (p \lor \neg p \lor r) \land (\neg q \lor \neg p \lor r)$
 $\equiv \top \land (\neg p \lor \neg q \lor r)$
 $\equiv p \rightarrow (q \rightarrow r)$
(c) $(p \rightarrow q) \rightarrow r$

2.2.18 Prove or disprove:

(a)
$$(p \rightarrow q) \rightarrow (p \rightarrow r)$$

 $\equiv \neg (p \rightarrow q) \lor (\neg p \lor r)$
 $\equiv (p \land \neg q) \lor \neg p \lor r$
 $\equiv (p \lor \neg p \lor r) \land (\neg q \lor \neg p \lor r)$
 $\equiv \top \land (\neg p \lor \neg q \lor r)$
 $\equiv p \rightarrow (q \rightarrow r)$
(c) $(p \rightarrow q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$

Counterexample:

p	q	r	(p o q) o r	p o (q o r)
F	Т	F	F	Т

Theories and entailment

A set of formulas is a theory

A truth assignment v satisfies a theory T if $v(\varphi) = \mathtt{true}$ for all $\varphi \in T$

A theory T entails a formula φ , $T \models \varphi$, if $v(\varphi) = \text{true}$ for all truth assignments v which satisfy T

Entailment example

For arguments in propositional logic, we can capture validity as follows:

Let ϕ_1, \ldots, ϕ_n and ϕ be formulae of propositional logic. Draw a truth table with columns for each of ϕ_1, \ldots, ϕ_n and ϕ .

The argument with premises ϕ_1, \ldots, ϕ_n and conclusion ϕ is valid, denoted

$$\phi_1,\ldots,\phi_n\models\phi$$

if in every row of the truth table where ϕ_1, \ldots, ϕ_n are all true, ϕ is true also.

Entailment example

Example

Premises: Frank took the Ford or the Toyota.

If Frank took the Ford he will be late.

Frank is not late.

Conclusion: Frank took the Toyota

Entailment example

We mark only true locations (blank = F)

Frd	Tyta	Late	Frd \/ Tyta	Frd ightarrow Late	¬I ate	Tyta
114	Tyta	Late	TTU V TYLA	Tiu / Late	Late	Tyta
-	-	-		 	l	
F	F	Т		Т		
F	T	F	T	Т	T	T
F	T	Т	Т	Т		T
Т	F	F	Т		Т	
Т	F	Т	T	Т		
T	T	F	T		Т	T
Т	T	Т	Т	Т		T

This shows $Frd \lor Tyta$, $Frd \to Late$, $\neg Late \models Tyta$

The following row shows $\mathit{Frd} \lor \mathit{Tyta}, \mathit{Frd} \to \mathit{Late}, \mathit{Late} \not\models \mathit{Frd}$

Frd	Tyta	Late	Frd ∨ Tyta	Frd ightarrow Late	Late	Frd
F	Т	Т	Т	Т	Т	F

Relating Entailment, Tautology and Logical equivalence

Theorem

The following are equivalent:

- $\varphi_1, \varphi_2, \ldots, \varphi_n \models \psi$
- $\emptyset \models ((\varphi_1 \land \varphi_2) \land \dots \varphi_n) \rightarrow \psi$
- $((\varphi_1 \land \varphi_2) \land \dots \varphi_n) \rightarrow \psi$ is a tautology
- $\emptyset \models \varphi_1 \to (\varphi_2 \to (\ldots \to \varphi_n) \to \psi))\ldots)$