Rappel de cours

Definition 1. Une suite de réels est dite Suite de Cauchy si

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall m, n \in \mathbb{N}, (n \ge N \text{ et } m \ge N) \implies |u_n - u_m| \le \epsilon$$

Exercice 1.1

Exercice 1.1.1

On a m > 0 et n > 0 donc $\frac{m \cdot n}{(n+m)^2} > 0$, donc 0 est un minorant.

$$\frac{m.n}{(n+m)^2} = \frac{1}{\frac{m}{n} + 2 + \frac{n}{m}}$$

Il faut montrer que

$$\frac{\frac{m}{n} + \frac{n}{m} \ge 2}{\frac{m^2 + n^2}{m \cdot n}} \ge 2$$
$$\frac{m^2 + n^2}{m^2 + n^2} - 2m \cdot n \ge 0$$
$$(m - n)^2 > 0$$

Donc 1/4 est un majorant.

On a 1/4 est la borne supérieure de A si il n'existe aucun majorant inférieur à 1/4. On a $1/4 \in A$ pour m = n = 1. Donc il n'existe pas de plus petit majorant.

On a 0 est la borne inférieure de A si il n'existe aucun minorant supérieur à 0. Quand n=1, on a

$$\lim_{m \to \infty} \frac{m}{(m+1)^2} = \lim_{m \to \infty} \frac{1}{m} = 0$$

Donc il n'exise pas de minorant supérieur à 0.

Exercice 1.1.2

Montrons que 2 est un majorant et 0 un minorant.

On a $\frac{1}{n} + \frac{1}{m} > 0$ car $n, m \in \mathbb{N}^*$. DOnc 0 est un minorant. On a $\frac{1}{n} + \frac{1}{m} = \frac{m+n}{n.m}$, montrons que

$$\begin{array}{l} \frac{1}{m} + \frac{1}{n} \leq 2 \\ \frac{m+n}{n.m} \leq 2 \\ m+n \leq 2m.n \\ m+n-2m.n \leq 0 \\ m(1-n) + n(1-m) \leq 0 \end{array}$$

Vrai car $(1-n) \leq 0$, $(1-m) \leq 0$ et $n, m \in \mathbb{N}^*$. Donc 2 est un majorant.

On a 2 est la borne supérieure de A si il n'existe aucun majorant inférieur à 2. On a $2 \in A$ pour m = n = 1. Donc il n'existe pas de plus petit majorant.

On a 0 est la borne inférieure de A si il n'existe aucun minorant supérieur à 0. On a

$$\lim_{m \to \infty, n \to \infty, \frac{1}{m}} \frac{1}{m} + \frac{1}{n} = \lim_{m \to \infty, n \to \infty, \frac{1}{m}} \frac{1}{m} + \lim_{m \to \infty, n \to \infty, \frac{1}{n}} \frac{1}{n} = 0$$

Donc il n'exise pas de minorant supérieur à 0.

Exercice 1.1.3

La fonction $f(x) = \frac{x+1}{x+2}$ est strictement croissante pour $x \le -3$ $(f'(x) = \frac{(x+2)-(x+1)}{(x+2)^2} = \frac{1}{(x+2)^2} > 0)$. Donc f(-3) = 2 est la borne supérieure de A. On a

$$\lim_{x \to -\infty} \frac{x+1}{x+2} = \lim_{x \to -\infty} \frac{1+1/x}{1+2/x} = 1$$

Donc 1 est la borne inférieure. Oui la borne supérieure est atteinte pour x = -3 mais pas la borne inférieure car c'est une limite.

Maintenant si on prend $x \leq 3$ c'est autre chose car $\sup(A) = \infty$ et $\inf(A) = -\infty$ quand $x \to -2$.

Exercice 1.1.4

Comme l'ensemble A est borné alors il existe $\sup(A)$ et $\inf(A)$. Divisons en 3 cas; x < y, x = y, et x > y.

Pour le cas x = y on a $0 \in A$. Pas très intéressant car $|x - y| \ge 0$. Donc, 0 n'est pas un majorant.

Pour le cas x > y on a |x - y| = x - y. La plus grande valeur possible est quand $x = \sup(A)$ et $y = \inf(A)$ (ie. plus grand écart possible) donc $|\sup(A) - \inf(A)|$.

Pour le cas x < y on a |x - y| = y - x. La plus grande valeur possible est quand $x = \inf(A)$ et $y = \sup(A)$ (ie. plus grand écart possible) donc $|\sup(A) - \inf(A)|$.

Exercice 1.1.5

 $\sup(|f(x)|) = 2 \operatorname{car}$

$$\begin{array}{ll}]-\infty,-1[& |f(x)|=0 \\ [-1,0[& |f(x)|=1 \\ [0,1] & |f(x)|=1 \\]1,2] & |f(x)|=2 \\]2,\infty[& |f(x)|=0 \end{array}$$

Exercice 1.2

Exercice 1.2.1

On voit bien que cela diverge, car 1/n diverge. Donc il faut trouver un contre-exemple pour n et m. Prenons pour commencer m=n+1 on a $|u_m-u_n|=\frac{1}{n+1}$, pour un ϵ donné on peut uoujors trouver un n tel que $1/n < \epsilon$. donc pas bon contre-exemple. Il faut éliminer les n pour trouver une constante.

Prenons m=2n, $|u_m-u_n|=\frac{1}{n+1}+\frac{1}{n+2}+\ldots+\frac{1}{2n}>\frac{1}{2n}+\frac{1}{2n}\ldots+\frac{1}{2n}=\frac{n}{2n}=\frac{1}{2}$. Là, c'est mieux. On a, pour m=2n, $|u_m-u_n|>\frac{1}{2}$ donc la suite n'est pas de Cauchy (car si on prend $\epsilon=1/3$, la propriété n'est pas vérifée pour m=2n).

La suite n'est pas de Cauchy et elle est croissante donc elle diverge. Par conséquent, $\lim_{n\to\infty}u_n=+\infty$.

Exercice 1.2.2

$$\begin{array}{ll} u_2 & \frac{u_0+u_1}{2} \\ u_3 & \frac{u_1+u_2}{2} = \frac{u0+3u_1}{4} \\ u_4 & \frac{u_2+u_3}{2} = \frac{3u0+5u_1}{8} \\ u_5 & \frac{u_3+u_4}{2} = \frac{5u0+7u_1}{16} \end{array}$$

Calculons $|u_{n+1} - u_n|$

$$\left|\frac{u_{n-1}+u_n}{2}-\frac{u_{n-2}+u_{n-1}}{2}\right|=\left|\frac{u_n-u_{n-2}}{2}\right|=\left|\frac{\frac{u_{n-2}+u_{n-1}}{2}-u_{n-2}}{2}\right|=\left|\frac{u_{n-1}-u_{n-2}}{2^2}\right|$$

Si n est pair alors

$$|u_{n+1} - u_n| = \left| \frac{u_1 - u_0}{2^n} \right| = \frac{|u_1 - u_0|}{2^n}$$

si n est impair alors

$$|u_{n+1} - u_n| = \left| \frac{u_2 - u_1}{2(n-1)} \right| = \left| \frac{\frac{u_0 + u_1}{2} - u_1}{2(n-1)} \right| = \left| \frac{u_0 - u_1}{2^n} \right| = \frac{|u_0 - u_1|}{2^n}$$

Exercice 1.2.3

Preuve par récurrence. Quand p=n+2 on a $u_p=\frac{u_n+u_{n+1}}{2}$ donc u_p est la moyenne entre u_n et u_{n+1} donc c'est compris entre u_n et u_{n+1} . Si p>n+2 alors u_p compris entre u_n et u_{n+1} alors u_{p+1} est compris entre u_n et u_{n+1} . $u_{p+1}=\frac{u_{p-1}+u_p}{2}$, c'est la moyenne entre $u_p=1$ et $u_p=1$ mais $u_p=1$ compris entre $u_n=1$ donc leur moyenne est aussi comptris entre $u_n=1$ et $u_n=1$.

Exercice 1.2.4

Prenons N tel que $\frac{|u_0-u_1|}{2^N}<\epsilon$, montrons que $\forall m,n>N, |u_n-u_m|\leq\epsilon$. On sait que $|u_{N+1}-u_N|\leq\epsilon$ et que u_m et u_n sont compris entre u_N et u_{N+1} donc $|u_n-u_m|\leq\epsilon$. Donc la suite est de Cauchy, donc elle converge.