(V)

$$P_{\infty} = (1,0,0)$$
, $h = 1$
 $P_{01} = (1,1,0)$, $h = 1/52$
 $P_{02} = (0,1,0)$, $h = 1$
 $P_{10} = (1,0,4)$, $h = 1$
 $P_{11} = (1,1,4)$, $h = 1/52$
 $P_{12} = (0,1,4)$, $h = 1$

COSO = 1/JE

Cyso.

 $= \frac{1}{2} \sum_{i=0}^{2} h_{ij} P_{ij} N_{i,2}(u) N_{j,3}(v)$ $= \sum_{i=0}^{2} \sum_{j=0}^{2} h_{ij} N_{i,2}(u) N_{j,3}(v)$ $N_{i,k}(u) = \frac{(u-u_i) N_{i,k-1}(u)}{u_{i+k-1}-u_i} + \frac{(u_{i+k-u}) N_{i+k-1}(u)}{u_{i+k}-u_{i+1}}$ $N_{i,i}(u) = \begin{cases} 0 & \text{otherwise} \end{cases}$ No,2(u) No,2(u) = (u-u) No,1(u)/u,-u, + (u2-u) N1,1(u)/u2-u, $N_{1,1}(u) = \begin{cases} 1 & u_1 \leq u \leq u_2 \\ 0 & u_1 \leq u \leq u_2 \end{cases} = \begin{cases} 1 & 0 \leq u \leq 1 \\ 0 & u_1 \leq u \leq u_2 \end{cases}$ $N_{1,2}(u)$ $N_{1,2}(u) = (u-u_1)N_{1,1}(u)/u_2-u_1 + (u_3-u)N_{2,1}(u)/u_3-u_2$ = $\int u \quad 0 \le u \le 1$ $N_{2,1}(u) = \begin{cases} 1 & u_2 \le u \le u_3 \\ 0 & u = 1 \end{cases}$ $N_{0,3}(v)$ $N_{0,3}(v) = (v-v_0) N_{0,2}(v) / v_2 - v_0 + (v_3 - v) N_{1,2}(v) / v_3 - v_1$ = $\int_{0}^{\infty} (1-v)^2 0 \le v \le 1$ $N_{1,2}(v) = (v-v_1)^{N_{1,1}(v)}/v_2-v_1 + (v_3-v_1)^{N_{2,1}(v)}/v_3-v_2$ $N_{2,1}(v) = \begin{cases} 1 & v_2 \leq v \leq v_3 = \begin{cases} 1 & 0 \leq v \leq 1 \\ 0 & 0 \end{cases}$

N,,3(v)	$N_{1,3}(v) = (v-v_1)^{N_{1,2}(v)}/v_3 - v_1 + (v_4 - v_1)^{N_{2,2}(v)}/v_4 - v_2$ $= \int v(1-v) 0 \le v \le 1 + \int v(1-v) 0 \le v \le 1 = \int [v(1-v)]^2 0$ $N_{2,2}(v) = (v-v_2)^{N_{2,1}(v)}/v_3 - v_2 + (v_4 - v_1)^{N_{3,1}(v)}/v_4 - v_3$	
	= 1 v (1-v) 0 < v < 1 + 1 v (1-v) 0 < v < 1 = {[v (1-v)] 0	35051
	N21(V)/	
	$N_{2/2}(v) = (v - v_2)$ $N_3 - v_2 + (v_4 - v_3)$	
	$= \begin{cases} \sqrt{3} \leq \sqrt{2} \end{cases}$	
V2 3(V)	$N_{2,3}(v) = (v-v_2)^{N_{2,2}(v)}/v_5-v_2 + (v_5-v)^{N_{5,2}(v)}/v_5-v_3$ $= \int v^2 0 \le v \le 1$	
2,3 (0)	$= \int_{V^2} 0 \le V \le 1$	
	,	
-	P(.5,.5) = (0.6306,.6306,2)	
0	P(.5,.5) = (0.6306,.6306,2)	
	P(.5,.5) = (0.6306,.6306,2) Sess = 10.82%?	
		,
		·
		·