- 1) The regular language equivalent to (a+b+c)*a(a+b+c)*
 - 1. (c+b+a)*(c+b+a)*
 - 2. (a+b+c)*(ab+bc+a)(a+b+c)*
 - 3. (c+b+a)*a(c+b+a)*
 - 4. (a+b+c)*(a+b+c)(a+b+c)*

The regular language represented by this FA is:

- 1. (a+b)*
- 2. (a*+ab)(a+b)*ab
- 3. a*+(ab)*+(aab)*+(aaa*b)*
- 4. (a+b)*ab
- 3) Let S_i be the string consisting of i 0's followed by i 1's. Define the language $L_n = \{S_i \mid 1 \le i \le n\}$. For example, $L_3 = \{01,0011,000111\}$. Can you

represent L_n as a FA? If so, what is the smallest number of states needed for a DFA that recognizes L_n ?

4) Given the following lexical specification

```
a(ba)*
b*(ab)*
abd
d+
```

- i) dddabbabab is tokenized as ddd / a / bbabab
- a) i and ii correctb) only i correctc) only iicorrectd) neither i nor ii correct
- 5)a) Draw an NFA for the regular expression ((x+y)* a) + (x* a*)
 - b) Give the equivalent DFA for the NFA: draw state transition table
 - c) Reduce the DFA from step2 if possible.

- 6) Consider the Grammar:
 - 1.S-> A\$
 - 2.A-> xBC
 - 3.A > CB
 - 4.B > yB
 - $5.B->\lambda$
 - a) What are the terminals and non-terminals of this language?
 - b) Describe the strings generated by this language with the help of a regular expression
 - c) What sequence of productions are applied to derive the string xyyx\$? Draw the parse tree.
 - d) Compute the first and follow sets for all nonterminals.
 - e) Compute the predict set for each productions
 - f) Is this grammar LL(1)? If not, why not?
- 7)a) Draw an AST for the assignment statement w := x + y * (z + 3)
 - b) Give one advantage to generating ASTs before producing code, rather than producing code directly.
 - c) Give one possible three address code that would be generated for the above tree. Use the following

instructions: LD A, T loads from variable A into temporary T. OP T1, T2, T3 performs T3 = T1 OP T2. ST T, A stores from variable A into temporary T. OP are ADD, MUL.