Graph Algorithms and Complexity Theory - Coursework $\boldsymbol{1}$

Oskar Mampe

Semester 1 Session 2019–2020

The following minimal cut and maximum flow can be calculated by doing the following. Residual capacities and an augmenting path indicated by bold edges.

First Pass

Second Pass

Third Pass

Fourth Pass

Fifth Pass

Sixth Pass

Seventh Pass

1. The maximum flow has value 11. Formally

$$|f| = f(\{s\}, \ V \setminus \{s\}) = \sum_{\substack{(a,b) \in \\ <\{s\}, \ V \setminus \{s\}>}} f(a,b) - \sum_{\substack{(b,a) \in \\ <\{s\}, \ V \setminus \{s\}>}} f(b,a) = 2 + 2 + 7 = 11$$

2. A minimal cut is indicated by the dashed lines on the original network. However, more formally, $\langle \{s, v_1, v_3, v_5, v_9\}, \{t, v_2, v_4, v_6, v_7, v_8\} \rangle$ is the minimal cut, the edges being $(s, v_2), (v_1, v_4), (v_3, v_6), (v_9, t), (v_5, v_8)$. Finally the cut's capacity is 11, as

$$c(A, B) = \sum_{(a,b) \in \langle A,B \rangle} c(a,b) = 2 + 2 + 2 + 2 + 3 = 11$$