//utoChips

AC781x 数据手册

适用于以下产品:

型号	子型号	环境温度
AC7811xxxx	AC7811QBGE, AC7811OBGE, AC7811MBGE, AC7811QBFE, AC7811OBFE, AC7811MBFE, AC7811JBFE, AC7811QJGE, AC7811MJGE, AC7811MJGE, AC7811JJFE, AC7811JJFE	-40~125°C
AC7813xxxx	AC7813QBGE, AC7813OBGE, AC7813MBGE, AC7813OBFE, AC7813MBFE, AC7813JBFE	-40~85°C
AC7815xxxx	AC7815QBGE, AC7815OBGE, AC7815MBGE, AC7815QBFE, AC7815OBFE, AC7815JBFE	-40~85°C

版本: 1.0

日期: 2019-2-19

© 2013 – 2018 AutoChips Inc.

本文档包含杰发科技的专有信息。未经授权,严禁复制或披露本文档包含的任何信息。本文档如有更改,不另行通知。

文档修订记录

版本	日期	作者	描述
1.0	2019-02-19	AutoChips	初版

目录

文档侧	多订记:	录		2
1	主要特	寺性		5
2	器件	示识		6
	2.1	说明		6
	2.2	格式		6
	2.3	字段		6
	2.4	示例		6
3	参数分	类		7
4	额定值	直		8
	4.1	热学操作	额定值	8
	4.2	湿度操作	额定值	8
	4.3	ESD 操作	- 额定值	8
	4.4	电压和电流	流操作额定值	9
5	通用.			10
	5.1	静态电气	规格	10
		5.1.1	电源和地引脚	10
		5.1.2	DC 特性	10
		5.1.3	电源电流特性	13
	5.2	动态规格		14
		5.2.1	控制时序	14
		5.2.2	PWM 模块时序	15
	5.3	热规格		16
		5.3.1	热特性	16
6	外设コ	C作要求和	1行为	17
	6.1	内核模块		17
		6.1.1	SWD 电气规格	17
	6.2	外部振荡	器 (OSC) 和 ICS 特性	17

//utoChips

		6.2.1	外部振荡器(OSC) 特性	17
		6.2.2	内部 RC 特性	18
		6.2.3	PLL 特性	18
	6.3	片内 Flas	sh 规格	19
	6.4	模拟		19
		6.4.1	ADC 特性	19
		6.4.2	模拟比较器(ACMP)电气规格	21
	6.5	通信接口]	21
		6.5.1	SPI 开关规格	21
		6.5.2	CAN 特性	23
7	尺寸			24
	7.1	LQFP64	· 封装信息	24
	7.2	LQFP80	封装信息	26
8	引脚	分配		28
	8.1	信号多路	\$复用和引脚分配	28
	8.2	器件引脚	D分配	31

//utoChips

1 主要特性

- 操作特性
 - ▶ 电压范围: 2.7 到 5.5 V
 - ▶ 温度范围 (环境): -40 到 125°C
- 性能
 - ➤ 高达 100 MHz 的 ARM® Cortex-M3 内核
 - ▶ 单周期 32 位 x 32 位乘法器
 - ▶ 快速 I/O 访问接口
- 存储器和存储器接口
 - ▶ 最高 256 KB 的片内 Flash
 - ▶ 最高 64 KB 的静态随机存储器
- 时钟
 - ➤ 振荡器 (Oscillator) 支持 4 MHz 到 30 MHz 石英晶体振荡器;可选 择低功耗或高增益振荡器
 - 內部时钟源 (ICS) 內部 PLL,集 成內部或外部基准时钟源,8 MHz 预校准内部基准时钟源,可用于 100 MHz 系统时钟
 - ▶ 内部 32 kHz 低功耗振荡器 (LPO)
- 系统外设
 - ▶ 电源管理模块(PMC) 有三个功率模式:运行、待机和停止
 - ▶ 低压检测复位电路 (LVD)
 - ➤ 带独立时钟源的看门狗(WDOG)
 - ▶ 可编程循环冗余校验(CRC)模块
 - ▶ 串行线调试(SWD) & JTAG 接口
 - ➤ Cortex®-M3 嵌入式跟踪宏单元™
 - ➤ SRAM 位处理映射区域 (BIT-BAND)
 - ▶ 1个12通道 DMA

• 人机接口

- ▶ 68 个通用输入输出接口 (GPIO)
- ▶ 外部中断 (IRQ)模块

• 模拟模块

- ▶ 1个多达 16 通道、12 位的 SAR ADC,工作在停止模式,可选硬件 触发器 (ADC)
- ➤ 2个包含6位 DAC 和可编程参考输入的模拟比较器(ACMP)

• 定时器

- ▶ 1个6通道脉宽调制 (PWM) 单元
- ➤ 3个双通道 PWM
- ▶ 1个8通道周期性中断定时器 (TIMER)
- ▶ 1个脉宽定时器 (PWDT)
- ▶ 1个实时时钟 (RTC)

• 通信接口

- ▶ 2个 SPI 模块
- ➤ 6个 UART 模块(其中一路兼容 Software LIN)
- ▶ 2 个 I2C 模块
- ▶ 2 个 CAN 模块
- ▶ 1个硬件 LIN 模块

• 封装选项

- ➤ 80 引脚 LQFP
- ➤ 64 引脚 LQFP

2 器件标识

2.1 说明

芯片器件型号包含可识别具体器件的字段。您可以使用这些字段的值来区分收到的具体器件。

2.2 格式

此设备的器件编号采用如下格式:

AC## GTUFPN

2.3 字段

下表列出器件编号中每个字段的可能值(并非所有组合都有效)

表 1. 器件编号字段说明

字段	说明	值
AC	AutoChips	• AC
78	AutoChips mcu 系列	• 78
G	代	• 1= 第一代
Т	温度范围(°C)	 1= AEC-Q100 Grade 1(-40~125°C) 3= AEC-Q100 Grade 3(-40~85°C) 5= -40~85°C
U	用户片内 Flash 存储器大小	 Q = 256 KB O = 128 KB M = 64 KB J = 32 KB
F	标准	B=常规标准J=BCM标准
Р	封装标识符	• F = 64 (7 mm x 7 mm) • G = 80 (10 mm x 10 mm)
N	封装类型	• E = LQFP

2.4 示例

器件编号示例为: AC7811QBGE。

3 参数分类

下表中显示的电气参数通过不同的方法来保证达到要求。为了便于客户更好地理解,将使用如下的分类,并在表中适当的位置相应标记参数。

表 2. 参数分类

Р	在对每个设备进行生产测试时确保达到这些参数要求。
С	通过不同制程的、具有统计意义的相关样本数量的测量结果来保证这些参数要求。
Т	除非另有说明,否则通过统计典型条件下典型器件的小规模样本测量值来保证这些参数要求。此类别包含典型列中所示的所有值。
D	这些参数主要来自于仿真。

4 额定值

4.1 热学操作额定值

表 3. 热学操作额定值

符号	说明	最小值	最大值	单位	附注
Тѕтс	存储温度	- 55	150	°C	1
TSDR	焊接温度,无铅	_	260	°C	2

- 1. 根据 JEDEC JESD22-A103 标准中"高温存储寿命"来确定;
- 2. 根据 IPC/JEDEC J-STD-020 标准中"非密封固态表面贴装设备湿度/再流焊灵敏度分类"确定。

4.2 湿度操作额定值

表 4. 湿度操作额定值

符号	说明	最小值	最大值	单位	附注
MSL	湿度灵敏度级别	_	3	_	1

1. 根据 IPC/JEDEC J-STD-020 标准中"非密封固态表面贴装设备湿度/再流焊灵敏度分类"确定。

4.3 ESD 操作额定值

表 5. ESD 操作额定值

符号	说明	最小值	最大值	单位	附注
Vнвм	静电放电电压, 人体放电模式	-8000	8000	V	1
Vсрм	静电放电电压, 设备充电模式	-750	750	V	2
ILAT	125℃ 温度环境下的闩锁电流	-200	200	mA	3

- 1. 根据 AEC-Q100-002-D,HUMAN BODY MODEL ELECTROSTATIC DISCHARGE TEST 来确定。
- 2.根据 AEC-Q100-011-C1,CHARGED DEVICE MODEL (CDM) ELECTROSTATIC DISCHARGE TEST 确定。
- 3. 根据 AEC-Q100-004-D,IC LATCH-UP TEST 确定。
- 在 125 °C 环境温度下进行测试 (Ⅱ 类);
- 电源组 1.5 Vccmax

4.4 电压和电流操作额定值

绝对最大额定值仅为应力额定值,并不保证最大值时的功能操作。超过下表中指定的应力可能影响器件的可靠性或对器件造成永久性损坏。有关功能操作条件的更多信息,请参考此文档中的其他表格。该器件包含防止高静态电压或电场造成损坏的电路,但建议采取预防措施,以避免实际应用中高于额定电压的输入造成这部分电路的损坏。未用输入引脚连接到适当的逻辑电压电平(例如,VSS 或 VDD)或使能相关引脚的内部上拉电阻,可增强操作的可靠性。

表 6. 电压和电流操作额定值

符号	说明	最小值	最大值	单位
VDD	数字电源电压	-0.3	6	V
IDD	流入 VDD 的最大电流	_	60	mA
Vin	除开漏引脚之外的输入电压	-0.3	VDD + 0.3 ¹	V
	开漏引脚的输入电压	-0.3	VDD + 0.3 ¹	V
lo	单引脚瞬态最大电流限值(适用于所有端口引脚)	- 20	20	mA
Vdda	模拟电源电压	VDD - 0.3	VDD + 0.3	V

1. 最大额定 VDD 也适用于 VIN。

9/32

5 通用

5.1 静态电气规格

5.1.1 电源和地引脚

图 1.电压引脚去耦

- 1. DVDD 和 AVDD 在板上需连接到同一个供电电源。
- 2. 所有的退耦电容都需要使用 X7R 类型的低 ESR 值陶瓷电容, 电容值建议是 0.1 uF。
- 3. 为了使电源引脚有更好的性能,建议使用 10 uF、0.1 uF 和 1 nF 电容并联形成退耦网络。
- 4. 所有的退耦电容都必须尽可能地靠近相应的电源和地引脚放置。

5.1.2 DC 特性

本节包括有关电源要求和 I/O 引脚特性的信息。

表 7. DC 特性

符号	С	说明		最小值	典型值	最大值	单位	
_	_	I	作电压	_	2.7	_	5.5	V
Vон	Р	输出高电 压	驱动强度	5 V, Iload = -5, -10, -15, -20mA	0.85×VDD	_	_	V
	С			3 V, Iload = -3.6, -7.2,-10.8,-14.4 mA	0.8×VDD	_	_	V
Іонт	D	输出高电 压	所有端口的最大 总输出高电流	5 V	_		30	mA
		,	Іон	3 V	_	_	20	
Vol	Р	输出低电 压	驱动强度	5 V, Iload = 5, 10, 15, 20mA	_	_	0.15×VDD	V
	С			3 V, Iload = 3.6, 7.2,10.8,14.4 mA	_	_	0.2×VDD	V

Іост	D	输出低电 压	所有端口的最大 总输出低电流	5 V	-	_	30	mA
		压	IOL UNITED TO THE TENTON THE TENTON TO THE TENTON THE TENTON TO THE TENTON THE TENTON THE TENTON TO THE TENTON TO THE TENTON TO THE TENTON TH	3 V	_	_	20	
ViH	Р	输入高电 压	全部数字输入	4.5≤VDD<5.5 V	0.65 x V _{DD}		VDD + 0.3	V
				2.7≤VDD<4.5 V	0.70 × V _{DD}	_	VDD + 0.3	
VIL	Р	输入低电 压	全部数字输入	4.5≤VDD<5.5 V	-0.3	_	0.35 × VDD	V
				2.7≤VDD<4.5 V	-0.3	_	0.30 × V _{DD}	
Vhys	С	输入迟滞	全部数字输入	_	0.06 × VDD	_	_	mV
lin	Р	输入漏电流	每个引脚 (高阻抗输入模式下的引脚)	Vin = Vdd 或 Vss	-1	0.1	1	μА
lintot	С	所有端口 引脚的总 漏电流	高阻抗输入模式 下的引脚	Vin = Vdd 或 Vss	0	0.1	2	μА
Rpu	Р	上拉电阻	所有数字输入并 使能内部上拉	_	40	75	90	kΩ
lic	D	DC 注入电 流 4,5,6	单引脚限值	VIN < VSS, VIN > VDD	-2	_	2	mA
			总 MCU 限值, 包括所有应力引 脚的总和		-5	_	25	
Cln	С	输入电容, 月	所有引脚	_	_	5	7	pF
VRAM	С	RAM 保留电	1压	_	2		_	V

表 8. LVD /POR / AVDD 电压告警规格

符号	С	说明	最小值	典型值	最大值	单位
Vpor	D	POR 重置电压 ¹	1.6	1.8	2	V
VLVDL	С	下降沿低压检测阀值—低量程(LVDV= 0)	2.5	2.55	2.6	V
VLVDH	С	下降沿低压检测阀值—高量程 (LVDV=1) ²	4.1	4.2	4.3	V

VHYSLVD	С	低压检测迟滞			50	_	mV
VLVW1H	С	下降沿低压告警阀	1 级下降沿(LVWV = 00)	4.2	4.3	4.4	V
VLVW2H	С	┪ 値— 高量程	2 级下降沿(LVWV = 01)	4.3	4.4	4.5	V
VLVW3H	С		3 级下降沿(LVWV = 10)	4.4	4.5	4.6	V
VLVW4H	С	1	4 级下降沿(LVWV = 11)	4.5	4.6	4.7	V
VLVW1L	С	下降沿低压告警阀	1 级下降沿(LVWV = 00)	2.5	2.6	2.7	V
VLVW2L	С	┪ 値─低量程	2 级下降沿(LVWV = 01)	2.6	2.7	2.8	V
VLVW3L	С	1	3 级下降沿(LVWV = 10)	2.7	2.8	2.9	V
VLVW4L	С		4 级下降沿(LVWV = 11)	2.8	2.9	3	V
VHYSPVD	С	高量程低压检测迟滞		_	50	_	mV
VBG	Р	经过缓冲的带隙输出3		1.19	1.2	1.21	V

- 1. 最大值是 POR 可以保证的最高电压值;
- 2. 上升沿阀值=下降沿阀值+迟滞电压;
- 3. 电压已在 VDD = 5.0 V, Temp = 25 °C 下进行出厂调整。

5.1.3 电源电流特性

表 9. 供电电流特性

参数	符号	内核/总线 频率	V _{DD} (V)	25° ¹	85°	125° ²	单位
LFOSC+PLL,使能所有模块时钟	RIDD	96/48 MHz	5	18.55	TBD	18.91	mA
		48/48 MHz		13.32	TBD	13.612	
		12/12 MHz		7.55	TBD	7.742	
		96/48 MHz	3.3	18.091	TBD	18.313	
		48/48 MHz		12.892	TBD	13.073	
		12/12 MHz		7.182	TBD	7.256	
LFOSC+PLL,,禁用并关闭所有模	RIDD	96/48 MHz	5	15.996	TBD	16.858	mA
块时钟		48/48 MHz		11.147	TBD	12.054	
		12/12 MHz		6.206	TBD	6.918	
		96/48 MHz	3.3	15.711	TBD	16.286	
		48/48 MHz		10.912	TBD	11.543	
		12/12 MHz		6.015	TBD	6.413	
XOSC+PLL,使能所有模块时钟	RIDD	96/48 MHz	5	21.537	TBD	22.214	mA
		48/48 MHz		16.299	TBD	16.947	
		12/12 MHz		10.079	TBD	11.12	
		96/48 MHz	3.3	21.021	TBD	21.568	
		48/48 MHz		15.823	TBD	16.338	
		12/12 MHz		10.101	TBD	10.558	
XOSC+PLL,禁用并关闭所有模块	RIDD	96/48 MHz	5	18.97	TBD	20.794	mA
时钟		48/48 MHz		14.136	TBD	15.345	
		12/12 MHz		9.178	TBD	10.286	
		96/48 MHz	3.3	18.639	TBD	20.097	
		48/48 MHz		13.847	TBD	14.706	
		12/12 MHz		8.934	TBD	9.698	
		96/48 MHz		14.91	TBD	15.695	mA
		48/48 MHz	5	10.638	TBD	11.384	
休眠模式		12/12 MHz		6.088	TBD	6.762	
LFOSC+PLL, 使能所有模块时钟		96/48 MHz	3.3	14.635	TBD	15.105	1
		48/48 MHz		10.404	TBD	10.834	1
		12/12 MHz		5.891	TBD	6.252	1
休眠模式	WIDD	96/48 MHz	5	17.934	TBD	19.07	mA
XOSC+PLL, 使能所有模块时钟		48/48 MHz		13.664	TBD	14.786	1
		12/12 MHz		9.103	TBD	10.185	1
		96/48 MHz	3.3	17.614	TBD	18.404	1

1	ī	i i	i i	1		1	ī
		48/48 MHz		13.379	TBD	14.167	
		12/12 MHz		8.859	TBD	9.603	
停止模式 (PTO/ORIO/ISO/ORI/IART/OAN/	SIDD	_	5	5.2	TBD	132.29	μA
(RTC/GPIO/I2C/SPI/UART/CAN/ LIN 可以唤醒) 3		_	3.3	5	TBD	129.05	
待机模式(RTC 打开, RTC/NMI 可	SIDD	_	5	2.1	TBD	33.47	μA
以唤醒) 3		_	3.3	2	TBD	30.46	
ADC 使能下的停止模式电流	_	_	5	85	TBD	212.09	μΑ
			3.3	78	TBD	202.05	
ACMP 使能下的停止模式电流	_	_	5	6.1	TBD	37.47	μΑ
			3.3	6	TBD	34.46	
LVD 使能下的停止模式电流	_	_	5	50.5	TBD	156.7	μA
			3.3	45.8	TBD	152.5	

- 1. 典型列里的数据在 25 °C VDD=3.3/5V 条件下的统计值或是推荐值;
- 2. 在 125°C VDD=3.3/5V 条件下的统计值或是推荐值;
- 3. 在典型情况下, RTC 会导致 IDD 增加不超过 1 μA, RTC 时钟源为 32 kHz LPO 时钟;

5.2 动态规格

5.2.1 控制时序

表 10. 控制时序

编号	С	额定	值	符号	最小值	典型值1	最大值	单位
1	D	系统和内核时钟(tsys	= 1/fsys)	fsys	DC	_	100	MHz
2	Р	总线频率(tcyc = 1/fBus)		fBus	DC	_	50	MHz
3	Р	内部低功耗振荡器频率		flpo		32		KHz
4	D	外部复位脉冲宽度 ² 1		textrst	1.5 ×t _{32k}	_	_	ns
5	5 D IRQ 脉冲宽度 D	运行模式 ³	tilih/ tihil	1.5 x tsys	_	_	ns	
			停止模式3	tilih/ tihil	1.5 × t _{32k}	_	_	ns
6	С	端口上升和下降时	_	t Rise	_	10.2	_	ns
	С	间 - 标准驱动强度 (负载 = 50 pF) ⁴		tFall	_	9.5	_	ns
	С	端口上升和下降时	_	t Rise	_	5.4	_	ns
	С	间- 高驱动强度(负 载 = 50 pF) ⁴		tFall	_	4.6	Í	ns

- 1. 除非另有说明,否则典型值是指 VDD=5.0 V、25°C 时的特性数据;
- 2. 这里保证可识别为 RESET 引脚请求的最短脉冲;

- 3. 这里保证可通过引脚同步电路的最短脉冲宽度。低于该宽度的脉冲有可能不被识别;
- 4. 时序按 20%的 V_{DD} 电平和 80%的 V_{DD} 电平显示,温度范围-40 至 125 ℃。

5.2.2 PWM 模块时序

同步电路决定可识别的最短输入脉冲或决定定时器计数器可配置的外部时钟源的最快时钟。这些同步电路的工作时钟被称作 PWM 时钟。

С	功能	符号	最小值	最大值	单位
D	定时器时钟频率	fрwм	-	48M	Hz
D	外部时钟频率	f Tclk	0	fpwm/4	Hz
D	外部时钟周期	t Tclk	4	_	tpwm¹
D	外部时钟高电平时间	tclkh	1.5	_	tрwм
D	外部时钟低电平时间	tclkl	1.5	_	tрwм
D	输入捕捉脉冲宽度	ticpw	1.5	_	tрwм

表 11. PWM 输入时序

1. tpwm=1/fpwm;

图 2. 定时器外部时钟

图 3. 定时器输入捕捉脉冲

5.3 热规格

5.3.1 热特性

本节介绍有关工作温度范围、功耗和封装热阻的信息。I/O 引脚上的功耗通常比片上逻辑和电压调节器电路中的功耗少,且它由用户决定而并非由 MCU 设计控制。 要在功率计算中考虑 $P_{I/O}$,请确定实际引脚电压和 V_{SS} 或 V_{DD} 之间的电压差并乘以 每个 I/O 引脚的引脚电流。除异常高引脚电流(高负载)外,引脚电压和 V_{SS} 或 V_{DD} 之间的压差将会很小。

表 **12**. 热学属性

电路板类	符号	说明	64	80	单位	附注
型			LQFP	LQFP		
单层 (1S)	Reja	热阻,结到外部环境(自然对流)	71	57	°C/W	1, 2
四 层 (2s2p)	s2p) 热阻,结到外部环境(自然对流)		53	44	°C/W	1, 3
单层 (1S)	Rөjma	热阻,结到外部环境(空气速率为 200 英尺/分钟)	59	47	°C/W	1, 3
四 层 (2s2p)	RөJMA	热阻,结到外部环境(空气速率为 200 英尺/分钟)	46	38	°C/W	1, 3
_	Rејв	热阻,结到板	35	28	°C/W	4
_	Rejc	热阻,结到管壳	20	15	°C/W	5
_	Ψлт	热特性参数,结到外封装顶部中心(自然对流)	5	3	°C/W	6

可通过以下公式计算平均芯片结温 (T_J)(以°C 为单位):

 $T_J = T_A + (P_D \times \theta_{JA})$

其中:

 $T_A = 环境温度,以°C 为单位;$

 θ_{LA} = 封装热阻,结环境,以°C/W 为单位;

 $P_D = P_{int} + P_{I/O}$

Pint = IDD × VDD,以瓦特为单位 — 芯片内部功率;

PI/O = 输入和输出引脚上的功耗 — 由用户决定;

对于大多数应用, $P_{I/O}$ << P_{int} ,且可以忽略。 P_D 和 T_J (如果忽略 $P_{I/O}$)之间的近似 关系是:

 $P_D = K \div (T_J + 273 \,^{\circ}C)$

求解以上等式中的 K:

 $K = P_D \times (T_A + 273 \text{ °C}) + \theta_{JA} \times (PD)^2$

其中 K 是特定部分的常数。

通过测量已知 T_A 的 P_D (处于均衡状态)来确定 K。使用此 K 值,可通过以上公式迭代求解任何 T_A 值来获得 P_D 和 T_J 值。

6 外设工作要求和行为

6.1 内核模块

6.1.1 SWD 电气规格

表 13. SWD 全电压范围电气规格

符号	说明	最小值	最大值	单位
	工作电压	2.7	5.5	V
J1	SWD_CLK 工作频率 • 串行线调试	0	20	MHz
J2	SWD_CLK 周期	1/J1	_	ns
J3	SWD_CLK 时钟脉宽 • 串行线调试	20		ns
J4	SWD_CLK 上升和下降时间	_	3	ns
J9	到 SWD_CLK 上升的 SWD_DIO 输入数据建立时间	5	_	ns
J10	SWD_CLK 上升之后的 SWD_DIO 输入数据保持时间	5		ns
J11	SWD_CLK 高电平到 SWD_DIO 数据有效	_	41	ns

6.2 外部振荡器 (OSC) 和 ICS 特性

6.2.1 外部振荡器(OSC) 特性

表 14. OSC 规格 (环境温度范围 = -40 至 125 °C)

编号	С	特性	符号	最小值	典型值	最大值	单位
1	С	振荡器频率	fhi	4	_	30	MHz
2	D	反馈电阻	CL1, CL2	参见注释	1		
3	D	串联电阻	Rs		0		kΩ
4	С	晶振启动时间	tcsT		3		ms

注释 1: 对于 CL1 和 CL2,推荐使用为高频率应用设计、满足晶振需求的高质量外部陶瓷电阻。CL1 和 CL2 通常大小相同。 典型地,晶振生产厂商指定 一个反馈电阻,它是 CL1 和 CL2 的线性组合。在确定 CL1 and CL2 的尺寸时,必须包含 PCB 和 MCU 引脚电容(10 pF 可用作组合引脚和电路板电容的粗略估计)。

图 4. 典型晶振或振荡器电路

6.2.2 内部 RC 特性

表 15. OSC 和 ICS 规格 (环境温度范围 = -40 至 125 °C)

编号	С	特性	符号	最小值	典 型值	最大值	单位	
1	Р	LFOSC 输出频率范围	温度范围: -40 ℃ 至 125℃	fifosc	7.90	8	8.10	MHz
2	Р	LPOSC 内部基准时钟 频率,出厂已调整	T = 25 °C, VDD = 5 V	fint_ft		32		kHz
3	Р	LPOSC 出厂已调整的 内部振荡器精度	T = 25 °C, VDD = 5 V	∆fint_ft	-1.5	_	1.5	%
4	С	LPOSC 在 T = 25 °C, VDD = 2.7-5.5 V 的条 件下调整, IRC 随温度 变化产生的偏差	温度范围: -40 ℃ 到 125℃	Δfint_t	-10	_	+10	%

6.2.3 PLL 特性

表 16. PLL 特性

编号	符号	参数	最小值	典型值	最大值	单位			
1	fPLL_IN	PLL 输入时钟频率	4		30	MHz			
2	fPLL_REF	PFD 参考时钟频率			8	MHz			
3	fPLL_OUT	PLL 输出时钟频率	125		1500	MHz			
4	fVCO_OUT	VCO 输出频率	500		1500	MHz			
工作环境温度	工作环境温度: -40~125℃								

编号	符号	参数	最小值	典型值	最大值	单位	
fPLL_OUT = fVCO_OUT /Postdiv, Postdiv 可以为 1,2 4							
fPLL_REF = fPLL_IN_ /Prediv, Prediv 可以为 1,2,4							

6.3 片内 Flash 规格

本节详细介绍了片内 Flash 存储器的编程/擦除时间和编程/擦除次数。

表 17. 片内 Flash 特性

С	特性	符号	最小值	典型值	最大值	单位
D	- 40°C 到 125 °C 温度环境下编程/擦除工作电压	Vprog/erase	2.7	_	5.5	V
D	读取操作的供电电压	VRead	2.7	_	5.5	V
D	片内 Flash 总线频率	fsys	8	96	100	MHz
D	片内 Flash 读取一次时间	trdonce	1	2	2	tcyc
D	批量擦除(所有主块页)	tmer	_	114.6	_	ms
D	页擦除(一页)	tper	_	114.6	_	ms
D	批量擦除校验	tmerv	65600	_	131200	tcyc
D	页擦除校验	tperv	535	_	1070	tcyc
D	编程片内 Flash (1 个字)	tPRG1		66.5		us
D	编程片内 Flash (n 个字, n>1)	tPRGn		66.5+14.6×(n-1)		us
С	片内 FLASH 寿命(擦除-编程循环 次数)T _A = -40 °C 至 125 °C	NEDR	10 k	_	_	次
С	平均结温为 TJavg = 85℃ 下高达 10,000 编程/擦除周期后数据保持时间	tret	10	_	_	年

注: tcyc = 1/fsys。

6.4 模拟

6.4.1 ADC 特性

表 18. 12 位 ADC 工作条件和特性

符号	参数	条件	最小值	典型值	最大值	单位
V _{AVDD}	供电电压	绝对值	2.7	-	5.5	V
VIN	输入电压范围	-	0	-	V _{AVDD}	V
R _{IN}	输入阻抗	-	-	-	5	kΩ

符号	参数	条件	最小值	典型值	最大值	单位
V _{REF}	缓冲输出	-	1.35	-	2.75	V
C _{ADC}	内部采样电容	-	-	2.3	-	pF
R _{ADC}	采样开关电阻	-	-	2.6	-	kΩ
f _{ADC}	ADC 时钟频率	-	-	-	10	MHz
f _{sample}	采样时间	-	350	-	-	ns
f _{trig}	采样频率	f _{ADC} =10MHz	-	-	500	kHz
INL	积分非线性	-	-	1.5	-	LSB
DNL	差分非线性	-	-	1.5	-	LSB
СН	外部通道	-	-	-	16	-

表 19. 12 位 ADC 工作条件和特性 (续)

特性	条件	C	符号	最小值	典型值	最大值	单位
温度传感器斜率	-40 °C–125 °C	D	m	1	1.629	1	mV/°C
温度传感器电压	25 °C	D	VTEMP25	1	0.72 ^[1]	1	V

[1]: 25℃ 偏差需要通过 0x40003050[18:13] 来取得,其中 bit18 为符号位,[17:13] 每个 bit 代表 0.5 度误差相对于 25 度

图 5. ADC 输入等效图

6.4.2 模拟比较器(ACMP)电气规格

表 20. 比较器电气规格

С	特性	符号	最小值	典型值	最大值	单位
D	供电电压	Vavdd	2.5		5.5	V
Т	供电电流 (工作模式)	Idda	_		20	μΑ
D	模拟输入电压	Vain	Vss - 0.3		Vavdd	V
Р	模拟输入偏移电压	Vaio			40	mV
С	模拟比较器迟滞电压(HYST=0)	Vн	_	20	_	mV
С	模拟比较器迟滞电压	Vн	_	30	_	mV
T	供电电流 (关闭模式)	IDDAOFF			100	nA
С	传播延迟	to	_	0.4	1	μs

6.5 通信接口

6.5.1 SPI 开关规格

串行外设接口(SPI)可为主从操作提供同步串行总线。用户可以自由配置多项传输参数。下面各表将介绍经典 SPI 时序模式的时序特性。有关修正传输格式的信息,请参见本芯片"参考手册"中的 SPI 一章。这些格式主要用于和速度较慢的外围设备通信。如无特殊说明,表中所有时序采用的电压阈值均为 20%的 V_{DD} 和 80%的 V_{DD},所有 SPI 引脚挂有 25 pF 的负载。所有时序均假定已针对所有 SPI 输出引脚禁用压摆率控制并启用高驱动强度。

图 6. SPI 时序图 —主机

表 2	1	SPI	特性	- 主杉	I.
-----	---	-----	----	------	----

符号	说明	最小值	最大值	单位	注解
f _{op}	操作频率	f _{bus} /512	f _{bus} /2	Hz	f _{bus} 是总线时钟
t sc	CS 建立时间	1×t _{bus}	256×t _{bus}	ns	从 CS 下降沿到第一个 SCK 边沿的时间
thc	CS 保持时间	1×t _{bus}	256×t _{bus}	ns	从最后一个 SCK 边沿到 CS 上升沿的时间
twsck	时钟(SCK) 高电平或 低电平时间	1×t _{bus}	256×t _{bus}	ns	未考虑 trsck 和 tfsck
t _{si}	数据输入建立时间	8	-	ns	
t _{hi}	数据输入保持时间	8	-	ns	
t _{vo}	数据输出有效时间	-	25	ns	
tho	数据输出保持时间	1	-	ns	
trsck	时钟输出上升时间				
t _{fsck}	时钟输出下降时间				

图 7. SPI 时序图 -从机(cpha=0)

图 8. SPI 时序图 -从机(cpha=1)

表 22. SPI 特性- 从机

符号	说明	最小值	最大值	单位	注解
f _{op}	操作频率	-	18M	Hz	
t _{sc}	CS 建立时间	2×t _{bus}	-	ns	从CS下降沿到第一个SCK 边沿的时间
thc	CS 保持时间	2×t _{bus}	-	ns	从最后一个 SCK 边沿到 CS 上升沿的时间
ta	从机访问时间	-	t _{bus}	ns	从高阻态到数据有效的时间
t _{dis}	从机 MISO 禁用时间	-	t _{bus}	ns	到高阻态状态的保持时间
twsck	时钟(SCK)高电平或 低电平时间	30%	70%		未考虑时钟上升及下降时间
tsi	数据输入建立时间	12	-	ns	
thi	数据输入保持时间	12	-	ns	
t _{vo}	数据输出有效时间	-	35 ^[1] 29 ^[2]	ns	
tho	数据输出保持时间	12	-	ns	
trsck	时钟输入上升时间				
t _{fsck}	时钟输入下降时间				

[1]: GPIO 设置 00 [2]: GPIO 设置 10

6.5.2 CAN 特性

表 23. CAN 唤醒脉冲特性

参数	符号	最小值	典型值	最大值	单位
过滤掉的 CAN "显性" 唤醒脉冲参数	twup	-	-	0.9	μs
有效的 CAN"显性" 唤醒脉冲参数	twup	4.7	-	-	μs

7 尺寸

7.1 LQFP64 封装信息

图 9. LQFP64 - 64 引脚, 7 x 7 毫米低轮廓四方引脚扁平式封装外形

1. 该图绘制比例和实物比例有差别。

表 24. LQFI	264 - 64 引脚。	7 x 7 毫米低轮廓四方引脚扁平式封装机械数据
7/ ET. EUXI I	OT OT 31,000	- 1 A 1 ==2/15 KV1 U AT7 E=1 /3 31 JFF /110 1 ZV1Z3 /XZ /1 U/W ZX JU

数据项		符号	最小值	标准值	最大值			
总高度		А	_	_	1.60			
站立高度		A1	0.05	_	0.15			
模塑厚度		A2	1.35	1.40	1.45			
引脚宽度		b	0.13	0.18	0.23			
外引脚间距	Х	D	9.00 BSC.					
71 JIMPIPI MC	Υ	E	9.00 BSC.					
封装尺寸	Х	D1	7.00 BSC.					
到我代了	Υ	E1	7.00 BSC.	7.00 BSC.				
引脚间距		е	0.40 BSC.					
引脚成型圆弧半径 R2		R2	0.08	_	0.20			
引脚成型圆弧半径 R1		R1	0.08	_	_			
角度		Θ	0°	3.5°	7°			
角度 1		Θ1	0°	_	_			
角度2		Θ2	11°	12°	13°			
角度3		Θ3	11°	12°	13°			
引线框架厚度		С	0.09	_	0.20			
L		L	0.45	0.45 0.60 0.75				
引脚长度	引脚长度		1.00 REF					
S		S	0.20	_				
引脚平整度		ccc	0.08					

^{1.} 尺寸以毫米表示和度量。

LQFP64 产品正印

下图给出了顶部正印方向与引脚 1 标识符位置的示例。

图 10. LQFP64 正印示例图(封装顶视图)

7.2 LQFP80 封装信息

图 11. LQFP80 - 80 引脚, 10 x 10 毫米低轮廓四方引脚扁平式封装外形

1. 该图绘制比例和实物比例有差别。

表 25. LQFP80 - 80 引	切。 10 x	10 毫米低轮廓四方引脚扁平式封装机械数据
10 EU. EU. 100 00 J	~~, i\ /	1 0 75/15 KM U MY ET /J J I MY /III 2021 AZ // U/W XZ JU

数据项		符号	最小值	标准值	最大值		
总高度		А	_	_	1.60		
站立高度		A1	0.05	_	0.15		
模塑厚度		A2	1.35	1.40	1.45		
引脚宽度		b	0.13	0.18	0.23		
外引脚间距	Х	D	12.00 BSC.				
	Υ	E	12.00 BSC.				
封装尺寸	Х	D1	10.00 BSC.				
F176/C 1	Υ	E1	10.00 BSC.				
引脚间距		е	0.40 BSC.				
引脚成型圆弧半径 R2		R2	0.08	_	0.20		
引脚成型圆弧半径 R1		R1	0.08	_	_		
角度		Θ	0°	3.5°	7°		
角度 1		Θ1	0°	_	_		
角度2		Θ2	11°	12°	13°		
角度3		Θ3	11°	12°	13°		
引线框架厚度		С	0.09	_	0.20		
L		L	0.45	0.60	0.75		
引脚长度		L1	1.00 REF				
S		S	0.20	_			
引脚平整度		ccc	0.08				

^{1.} 尺寸以毫米表示和度量。

LQFP80产品正印:

下图给出了顶部正印方向与引脚 1 标识符位置的示例。

图 12. LQFP80 正印示例 (封装顶视图)

8 引脚分配

8.1 信号多路复用和引脚分配

下表显示的是各引脚上的信号以及这些引脚在本文档支持的器件上的位置。"端口控制模块"负责选择每个引脚上的 ALT 功能。

表 26. 信号多路复用和引脚分配表

80 LQFP	64 LQFP	引脚名称	function 0	function 1	function 2	function 3	PINMUX	GPIO (数量)
1	1	PA0	PA0	SPI1_NSS	TRACED3	FLASH_NSS	PMUX0[2:0]	0
2	2	PA1	PA1	SPI1_SCK	TRACECLK	FLASH_SCK	PMUX0[5:3]	1
3	3	PA2	PA2	SPI1_MISO	TRACED0	FLASH_DQ1	PMUX0[8:6]	2
4	4	PA3	PA3	SPI1_MOSI	TRACED1	FLASH_DQ0	PMUX0[11:9]	3
5	5	PA4	PA4	UART4_TX	CAN1_RX	FLASH_DQ3	PMUX0[14:12]	4
6	6	PA5	PA5	UART4_RX	CAN1_TX	FLASH_DQ2	PMUX0[17:15]	5
7		PD3	PD3	PWM1_CH0	HWLIN_TX		PMUX5[5:3]	51
8		PD4	PD4	PWM1_CH1	HWLIN_RX		PMUX5[8:6]	52
9		PD5	PD5	PWM_EXT	CAN1_STDBY		PMUX5[11:9]	53
10	7	OSC_OUT	OSC_OUT ¹					
11	8	OSC_IN	OSC_IN ¹					
12	9	AVSS	AVSS					
13	10	AVDD	AVDD					
14	11	AVDD	AVDD					
15	12	AVSS	AVSS					
16	13	PA6	PA6	ADC_IN10	UART1_CTS	UART4_TX	PMUX0[20:18]	6
17		PD6	PD6	ADC_IN12	UART1_RTS	UART4_RX	PMUX5[14:12]	54
18	14	PA7	PA7	ADC_IN0	UART1_TX	UART5_TX	PMUX0[23:21]	7
19	15	PA8	PA8	ADC_IN1	UART1_RX	UART5_RX	PMUX0[26:24]	8
20	16	PA9	PA9	ADC_IN2	SPI2_NSS	HWLIN_TX	PMUX0[29:27]	9
21	17	PA10	PA10	ADC_IN3	SPI2_SCK	HWLIN_RX	PMUX1[2:0]	10
22	18	PA11	PA11	ADC_IN4	SPI2_MISO	UART3_RX	PMUX1[5:3]	11
23	19	PA12	PA12	ADC_IN5	SPI2_MOSI	UART3_TX	PMUX1[8:6]	12
24	20	PA13	PA13	ADC_IN6	I2C1_SCL	UART6_RX	PMUX1[11:9]	13
25	21	PA14	PA14	ADC_IN7	I2C1_SDA	UART6_TX	PMUX1[14:12]	14
26	22	PA15	PA15	ADC_IN8	UART2_RTS		PMUX1[17:15]	15
27	23	PB0	PB0	ADC_IN9	UART2_TX	CAN2_STDBY	PMUX1[20:18]	16

28	24	PB1	PB1	ADC_IN11	UART2_RX		PMUX1[23:21]	17
29		PD7	PD7	ADC_IN13	PWDT_EXT	PWM3_CH0	PMUX5[17:15]	55
30		PD8	PD8	ADC_IN14	CAN2_TX	PWM3_CH1	PMUX5[20:18]	56
31		PD9	PD9	ADC_IN15	CAN2_RX	PWDT_IN0	PMUX5[23:21]	57
32	25	PB2	PB2	NMI_B	UART3_TX	CAN1_STDBY	PMUX1[26:24]	18
33	26	NRST	NRST ¹					
34	27	PB3	PB3	PWDT_IN1	UART3_RX		PMUX1[29:27]	19
35	28	PB4	PB4	PWDT_IN2	TRACED2		PMUX2[2:0]	20
36	29	PB5	PB5	UART1_TX	PWDT_IN1		PMUX2[5:3]	21
37	30	PB6	PB6	UART1_RX	PWDT_IN2	PWM3_CH0	PMUX2[8:6]	22
38	31	PB7	PB7	UART1_RTS	PWM_FAULT1		PMUX2[11:9]	23
39		PD10	PD10	PWM_FAULT1	I2C2_SCL		PMUX5[26:24]	58
40	32	PB8	PB8	PWDT_IN0	I2C2_SDA		PMUX2[14:12]	24
41	33	PB9	PB9	PWM0_CH0	PWM2_CH0	CAN1_RX	PMUX2[17:15]	25
42	34	DVSS	DVSS					
43	35	DVDD	DVDD					
44	36	VPP	VPP					
45	37	PB10	PB10	PWM0_CH1	PWM2_CH1	CAN1_TX	PMUX2[20:18]	26
46	38	PB11	PB11	SPI2_NSS	PWM2_CH2		PMUX2[23:21]	27
47	39	PB12	PB12	SPI2_SCK	PWM2_CH3		PMUX2[26:24]	28
48	40	PB13	PB13	SPI2_MISO	PWM2_CH4	UART5_TX	PMUX2[29:27]	29
49	41	PB14	PB14	SPI2_MOSI	PWM2_CH5	UART5_RX	PMUX3[2:0]	30
50		PD11	PD11	UART5_TX	UART3_RTS		PMUX5[29:27]	59
51		PD12	PD12	UART5_RX	UART4_RTS		PMUX6[2:0]	60
52		PD13	PD13	PWM2_CH4	UART5_RTS		PMUX6[5:3]	61
53		PD14	PD14	PWM2_CH5	UART6_RTS		PMUX6[8:6]	62
54	42	PB15	PB15	PWM2_CH0	PWM0_EXT		PMUX3[5:3]	31
55	43	PC0	PC0	PWM2_CH1	PWM1_EXT		PMUX3[8:6]	32
56	44	PC1	PC1	PWM2_CH2	UART5_RTS		PMUX3[11:9]	33
57	45	PC2	PC2	PWM2_CH3	UART6_RTS		PMUX3[14:12]	34
58	46	PC3	PC3	UARTTX_ SFLASH ¹	PWM2_CH4	PWM2_CH0	PMUX3[17:15]	35
59	47	PC4	PC4	UARTRX_ SFLASH ¹	PWM2_CH5	PWM2_CH1	PMUX3[20:18]	36
60	48	PC5	PC5	I2C2_SCL	UART1_CTS		PMUX3[23:21]	37
61	49	PC6	PC6	I2C2_SDA	UART1_CTS		PMUX3[26:24]	38
62	50	PC7	PC7	JTCK_SWCLK ¹	UART3_RTS		PMUX3[29:27]	39
63	51	PC8	PC8	JTDO_ TRACESWO¹	UART2_RTS		PMUX4[2:0]	40
64	52	PC9	PC9	JTMS_SWDIO ¹	UART4_RTS	PWM_FAULT1	PMUX4[5:3]	41

65	53	PC10	PC10	CAN2_TX	UART6_TX	PWM_FAULT2	PMUX4[8:6]	42
66	54	PC11	PC11	CAN2_RX	UART6_RX	PWDT_IN0	PMUX4[11:9]	43
67		PD15	PD15	JTDI ¹	CAN1_STDBY	PWDT_IN1	PMUX6[11:9]	63
68	55	воот	PE3	BOOT ¹				
69	56	PC12	PC12	I2C1_SCL	UART5_TX		PMUX4[14:12]	44
70	57	PC13	PC13	I2C1_SDA	UART5_RX		PMUX4[17:15]	45
71	58	DVSS	DVSS					
72	59	DVDD	DVDD					
73		PE0	PE0	NJTRST ¹	CAN2_STDBY	PWDT_IN2	PMUX6[14:12]	64
74	60	PC14	PC14	CAN1_RX	UART4_RX	PWDT_IN3	PMUX4[20:18]	46
75	61	PC15	PC15	CAN1_TX	UART4_TX	TAMPER_RTC	PMUX4[23:21]	47
76		PE1	PE1	HWLIN_TX	PWM1_CH0		PMUX6[17:15]	65
77		PE2	PE2	HWLIN_RX	PWM1_CH1		PMUX6[20:18]	66
78	62	PD0	PD0	UART1_CTS	PWM_FAULT2		PMUX4[26:24]	48
79	63	PD1	PD1	UART2_TX	PWM0_CH0	I2C2_SCL	PMUX4[29:27]	49
80	64	PD2	PD2	UART2_RX	PWM0_CH1	I2C2_SDA	PMUX5[2:0]	50

注释:

- 1、 该功能为默认功能
- 2、 除了一些专用引脚外,所有引脚在第一次上电时默认为 gpio。

例如: 如果想要将 PIN1 配置为 SPI1_NSS,我们应该设置 PMUX0 [2:0] = 1。

8.2 器件引脚分配

图 13.64 引脚 LQFP 封装

图 14.80 引脚 LQFP 封装