Class 10: Halloween Mini-Project

Audrey Nguyen

Importing candy data

```
candy_file <- "candy-data.csv"
candy = read.csv(candy_file, row.names = 1)
head(candy)</pre>
```

	choco	olate	fruity	caramel	peanut	tyalmondy	nougat	crispedr	cicewafer
100 Grand		1	0	1		0	0		1
3 Musketeers		1	0	0		0	1		0
One dime		0	0	0		0	0		0
One quarter		0	0	0		0	0		0
Air Heads		0	1	0		0	0		0
Almond Joy		1	0	0		1	0		0
	hard	bar p	pluribus	sugarpe	ercent	priceper	cent wi	npercent	
100 Grand	0	1	()	0.732	0	.860	66.97173	
3 Musketeers	0	1	()	0.604	0	.511	67.60294	
One dime	0	0	()	0.011	0	.116	32.26109	
One quarter	0	0	()	0.011	0	.511	46.11650	
Air Heads	0	0	()	0.906	0	.511	52.34146	
Almond Joy	0	1	()	0.465	0	.767	50.34755	

Q1. How many different candy types are in this dataset?

```
nrow(candy)
```

[1] 85

There are 85 candy types in this dataset.

Q2. How many fruity candy types are in the dataset?

```
sum(candy[, 2])
```

[1] 38

There are 38 fruity candy types in the dataset.

What is your favorite candy?

The variable winpercent() shows the percentage of people who prefer this candy over another randomly chosen candy from the dataset. Higher values indicate a more popular candy.

```
candy["Twix", ]$winpercent
[1] 81.64291
     Q3. What is your favorite candy in the dataset and what is its winpercent value?
  candy["Hershey's Special Dark", ]$winpercent
[1] 59.23612
     Q4. What is the winpercent value for "Kit Kat"?
  candy["Kit Kat", ]$winpercent
```

[1] 76.7686

Q5. What is the winpercent value for "Tootsie Roll Snack Bars"?

```
candy["Tootsie Roll Snack Bars", ]$winpercent
```

[1] 49.6535

The skim() function in the skimr package that can help give a quick overview of a given dataset.

library("skimr")
skim(candy)

Table 1: Data summary

<u></u>	
Name	candy
Number of rows	85
Number of columns	12
Column type frequency:	
numeric	12
Group variables	None

Variable type: numeric

skim_variable n_	_missingcomp	olete_ra	ntanean	sd	p0	p25	p50	p75	p100	hist
chocolate	0	1	0.44	0.50	0.00	0.00	0.00	1.00	1.00	
fruity	0	1	0.45	0.50	0.00	0.00	0.00	1.00	1.00	
caramel	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
peanutyalmondy	0	1	0.16	0.37	0.00	0.00	0.00	0.00	1.00	
nougat	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
crispedricewafer	0	1	0.08	0.28	0.00	0.00	0.00	0.00	1.00	
hard	0	1	0.18	0.38	0.00	0.00	0.00	0.00	1.00	
bar	0	1	0.25	0.43	0.00	0.00	0.00	0.00	1.00	
pluribus	0	1	0.52	0.50	0.00	0.00	1.00	1.00	1.00	
sugarpercent	0	1	0.48	0.28	0.01	0.22	0.47	0.73	0.99	
pricepercent	0	1	0.47	0.29	0.01	0.26	0.47	0.65	0.98	
winpercent	0	1	50.32	14.71	22.45	39.14	47.83	59.86	84.18	

Q6. Is there any variable/column that looks to be on a different scale to the majority of the other columns in the dataset?

The winpercent column has percent values instead of proportion values.

Q7. What do you think a zero and one represent for the candy\$chocolate column?

I think that a zero means FALSE and a one means TRUE.

Q8. Plot a histogram of winpercent values.

Histogram of winpercent

Q9. Is the distribution of winpercent values symmetrical?

No, it's not symmetrical. There are more values (higher frequency) on the lower side.

Q10. Is the center of the distribution above or below 50%?

The center is below 50%.

Q11. On average, is chocolate candy higher or lower ranked than fruit candy?

chocwpmean <- mean(candy\$winpercent[as.logical(candy\$chocolate)])
chocwpmean</pre>

[1] 60.92153

fruitywpmean <- mean(candy\$winpercent[as.logical(candy\$fruity)])
fruitywpmean</pre>

[1] 44.11974

Chocolate candy is higher ranked than fruit candy.

Q12. Is this difference statistically significant?

```
choc_t <- candy$winpercent[as.logical(candy$chocolate)]
fruity_t <- candy$winpercent[as.logical(candy$fruity)]
t.test(choc_t, fruity_t)</pre>
```

```
Welch Two Sample t-test
```

```
data: choc_t and fruity_t
t = 6.2582, df = 68.882, p-value = 2.871e-08
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
    11.44563 22.15795
sample estimates:
mean of x mean of y
    60.92153 44.11974
```

This difference is statistically different because the p-value is < 0.01.

Overall Candy Rankings

Q13. What are the five least liked candy types in this set?

head(candy[order(candy\$winpercent),], n=5)

	chocolate	fruity	cara	nel	${\tt peanutyaln}$	nondy	nougat	
Nik L Nip	0	1		0		0	0	
Boston Baked Beans	0	0		0		1	0	
Chiclets	0	1		0		0	0	
Super Bubble	0	1		0		0	0	
Jawbusters	0	1		0		0	0	
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	suga	rpercent	pricepercent
Nik L Nip		0	0	0	1		0.197	0.976
Boston Baked Beans		0	0	0	1		0.313	0.511
Chiclets		0	0	0	1		0.046	0.325
Super Bubble		0	0	0	0		0.162	0.116
Jawbusters		0	1	0	1		0.093	0.511
	winpercent	t						

```
      Nik L Nip
      22.44534

      Boston Baked Beans
      23.41782

      Chiclets
      24.52499

      Super Bubble
      27.30386

      Jawbusters
      28.12744
```

Q14. What are the top 5 all time favorite candy types out of this set?

```
library(dplyr)
```

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':

filter, lag

The following objects are masked from 'package:base':

intersect, setdiff, setequal, union

candy %>% arrange(desc(winpercent)) %>% head(5)

	chocolate	fruity	caran	nel 1	peanutyalm	nondy	nougat
Reese's Peanut Butter cup	1	0		0		1	0
Reese's Miniatures	1	0		0		1	0
Twix	1	0		1		0	0
Kit Kat	1	0		0		0	0
Snickers	1	0		1		1	1
	crispedrio	cewafer	${\tt hard}$	bar	pluribus	sugai	percent
Reese's Peanut Butter cup		0	0	0	0		0.720
Reese's Miniatures		0	0	0	0		0.034
Twix		1	0	1	0		0.546
Kit Kat		1	0	1	0		0.313
Snickers		0	0	1	0		0.546
	priceperce	ent wing	percer	nt			
Reese's Peanut Butter cup	0.6	551 84	1.1802	29			
Reese's Miniatures	0.2	279 81	1.8662	26			
Twix	0.9	906 81	1.6429	91			
Kit Kat	0.5	511 76	3.7686	60			
Snickers	0.6	351 76	6.6737	78			

I like using the order() function in R better, because you don't have to download the dplyr package. I also don't like typing the %>% every time.

Q15. Make a first barplot of candy ranking based on winpercent values.

```
library(ggplot2)
ggplot(candy) + aes(winpercent, rownames(candy)) + geom_bar(stat = "identity")
```


Q16. Use the reorder() function to get the bars sorted by winpercent.

```
ggplot(candy) + aes(winpercent, reorder(rownames(candy), winpercent)) + geom_bar(stat = "i
```


Time to add some useful color

Let's set up a color vector that signifies candy type.

```
my_cols=rep("black", nrow(candy))
my_cols[as.logical(candy$chocolate)] = "chocolate"
my_cols[as.logical(candy$bar)] = "brown"
my_cols[as.logical(candy$fruity)] = "pink"
```

Let's try our barplot with these colors.

```
ggplot(candy) +
  aes(winpercent, reorder(rownames(candy), winpercent)) +
  geom_col(fill=my_cols)
```


Q17. What is the worst ranked chocolate candy?

Sixlets is the worst ranked chocolate candy.

Q18. What is the best ranked fruity candy?

Starbursts are the best ranked fruity candy.

Taking a look at pricepercent

The pricepercent variable records the percentile rank of the candy's price against all the other candies in the dataset. Lower values are less expensive and higher values are more expensive.

```
library(ggrepel)

# How about a plot of price vs win
ggplot(candy) +
   aes(winpercent, pricepercent, label=rownames(candy)) +
   geom_point(col=my_cols) +
   geom_text_repel(col=my_cols, size=3.3, max.overlaps = 5)
```

Warning: ggrepel: 65 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Q19. Which candy type is the highest ranked in terms of winpercent for the least money?

Reese Miniatures has a winpercent value > 80 and is relative cheap with a pricepercent of slightly above 0.25.

Q20. What are the top 5 most expensive candy types in the dataset and of these which is the least popular?

```
ord <- order(candy$pricepercent, decreasing = TRUE)
head(candy[ord,c(11,12)], n=5)</pre>
```

	pricepercent	winpercent
Nik L Nip	0.976	22.44534
Nestle Smarties	0.976	37.88719
Ring pop	0.965	35.29076
Hershey's Krackel	0.918	62.28448
Hershey's Milk Chocolate	0.918	56.49050

Nik L Nip is the most expensive and the least popular.

Q21. Make a barplot again with geom_col() this time using pricepercent.

```
ggplot(candy) + aes(pricepercent, reorder(rownames(candy), pricepercent)) + geom_bar(stat
```


Exploring the correlation structure

```
library(corrplot)
corrplot 0.92 loaded
```

cij <- cor(candy)
corrplot(cij)</pre>

Q22. Examining this plot what two variables are anti-correlated (have minus values)?

Fruity and pluribus

Q23. Similarly, what 2 variables are most positively correlated?

Chocolate and winpercent

Principal Component Analysis

```
pca <- prcomp(candy, scale = TRUE)
summary(pca)</pre>
```

Importance of components:

```
PC1
                                  PC2
                                         PC3
                                                 PC4
                                                        PC5
                                                                PC6
                                                                         PC7
                       2.0788 1.1378 1.1092 1.07533 0.9518 0.81923 0.81530
Standard deviation
Proportion of Variance 0.3601 0.1079 0.1025 0.09636 0.0755 0.05593 0.05539
Cumulative Proportion
                       0.3601 0.4680 0.5705 0.66688 0.7424 0.79830 0.85369
                           PC8
                                    PC9
                                           PC10
                                                   PC11
                                                           PC12
Standard deviation
                       0.74530 0.67824 0.62349 0.43974 0.39760
```

Proportion of Variance 0.04629 0.03833 0.03239 0.01611 0.01317 Cumulative Proportion 0.89998 0.93832 0.97071 0.98683 1.00000

plot(pca\$x[, 1:2])

plot(pca\$x[,1:2], col=my_cols, pch = 16)

Use ggplot2 pacakge to make a nicer plot.

Make a new data-frame with our PCA results and candy data
my_data <- cbind(candy, pca\$x[,1:3])</pre>

Use the **ggrepel** package and the function **ggrepel**::geom_text_repel() to label the plot with nonoverlapping candy names. We can also add a title and subtitle.

```
library(ggrepel)

p + geom_text_repel(size=3.3, col=my_cols, max.overlaps = 7) +
    theme(legend.position = "none") +
    labs(title="Halloween Candy PCA Space",
        subtitle="Colored by type: chocolate bar (dark brown), chocolate other (light brown caption="Data from 538")
```

Warning: ggrepel: 59 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Halloween Candy PCA Space

Colored by type: chocolate bar (dark brown), chocolate other (light brown),

If you want to see mroe candy labels, you can change the max.overlaps value to allow more overlapping labels or pass the ggplot object p to plotly.

```
library(plotly)

Attaching package: 'plotly'

The following object is masked from 'package:ggplot2':
    last_plot

The following object is masked from 'package:stats':
    filter

The following object is masked from 'package:graphics':
    layout

ggplotly(p)
```

PhantomJS not found. You can install it with webshot::install_phantomjs(). If it is installed

```
par(mar=c(8,4,2,2))
barplot(pca$rotation[,1], las=2, ylab="PC1 Contribution")
```


Q24. What original variables are picked up strongly by PC1 in the positive direction? Do these make sense to you?

Fruity and pluribus are picked up the strongest in the positive direction. This makes sense, because there's a lot of variation in fruits and pluribus (multiple candies).