

Course 12 Methods(Test 2 alternative) Year 12

Student name:	Teacher name:
Task type:	Response
Time allowed for this task:45 mins	
Number of questions:	9
Materials required:	Calculator with CAS capability (to be provided by the student)
Standard items:	Pens (blue/black preferred), pencils (including coloured), sharpener, correction fluid/tape, eraser, ruler, highlighters
Special items:	Drawing instruments, templates, notes on one unfolded sheet of A4 paper, and up to three calculators approved for use in the WACE examinations
Marks available:	46 marks
Task weighting:	12%
Formula sheet provided:	Yes
Note: All part questions	worth more than 2 marks require working to obtain full marks.

Mathematics Department

Perth Modern

Q1 (3.2.1-3.2.3) (3 & 3 =6 marks)

Determine y in terms of x for the following.

(a)
$$\frac{dy}{dx} = 5x^3 - 4x^2 + 7x + 1$$
 given that $y = 10, x = 1$.

(b)
$$\frac{dy}{dx} = 5x^2\sqrt{6+2x^3}$$
 given that $y = 1, x = -1$.

Q2 (3.2.21-3.2.22) (4 marks)

An object is moving in a straight line such that its velocity m/s as a function time, t seconds, is given by $v = 5t^2 + pt + 1$ where p is a constant. The acceleration at time t = 3 seconds is $10m/s^2$ and is initially at the origin. Determine the displacement when t = 6 seconds.

Q3 (3.2.10-3.2.11) (3 & 4 = 7 marks)

Consider the function f(x) which is graphed for $0 \le x \le 8$. The arc has a radius of 2 units.

 $\int f(x)dx$ (a) Determine the exact value of 0

(b) Determine α to two decimal places such that $\int_{0}^{\alpha} f(x) dx = \frac{1}{2} \int_{0}^{8} f(x) dx$

$$\int_{0}^{a} f(x) dx = \frac{1}{2} \int_{0}^{8} f(x) dx$$

(3 & 2 = 5 marks)

A water tank has a leak and the volume of water contained, V, can be described by the following

$$\frac{dV}{dt} = -\frac{500t^2}{(2+t^3)^4}$$

differential equation at time, ^t minutes, minutes.

 $\frac{dV}{dt} = -\frac{500t^2}{(2+t^3)^4}$ The tank is initially full but is emptied in 15

- (a) Determine the initial volume of water in the tank.
- (b) Determine the change in volume in the third minute.

$$(3.2.11-3.2.14)$$

(2, 2 & 2 = 6 marks)

Consider a function f(x) that is defined for $0 \le x \le 13$ with the following conditions.

$$f(3)=9$$
, $f(10)=3$

$$f(0) = 0 = f(5) = f(8) = f(13)$$

With
$$f(x) \ge 0$$
 for $0 \le x \le 5$ & $8 \le x \le 13$ and $f(x) \le 0$ for $5 \le x \le 8$.

$$\int_{0}^{13} f(x) dx = 7$$
, $\int_{0}^{\pi} f(x) dx = 12$

- (a) Determine $\int_{a}^{b} f'(x) dx$.
- (b) Determine $\int_{a}^{8} f(x) dx$ given that $\int_{a}^{15} f(x) dx = 6$
- (c) Determine $\frac{d}{dx} \int_{0}^{x} f(t)dt$ when x = 10.

Q6 (3.2.20)

(4 marks)

Determine to two decimal places the area between the curves $y = x^2 + 6x + 2$ and $y = -x^2 - 7x + 5$. (Hint- Sketch the curves first on your classpad)

Q7 (3.2.16)
Consider
$$y = \int_{0}^{x} f(t) dt$$

(1 & 3 = 4 marks)

- a) In terms of f , express $\frac{d^2y}{dx^2}$.
- b) If f''(x) = 3x + 1 and f'(0) = 0 = f(0), determine Y in terms of X only.

Q8 (3.1.4) (4 marks)

dN

A radioactive substance ZZZ initially has a mass of 230 grams and decays according to \overline{dt} where N equals the mass at time t minutes and k is a constant. After 6 minutes the mass is 176 grams. Determine the time taken for half the mass to decay(half-life) and the value of k to three decimal places.

Q9

(2 & 4 = 6 marks)

(a) Determine $\frac{d}{dx}(x\sqrt{5-2x})$

(b) Using your result from part (a) and without using your classpad determine

Working out space

Working out space