

Algorithm Efficiency

Big O

To design and implement algorithms, programmers must have a basic understanding of what constitutes good, efficient algorithms.

Linear Loops
Logarithmic Loops
Nested Loops
Big-O Notation
Standard Measurement of Efficiency

Algorithm efficiency is generally defined as a function of the numbers to be processed.

$$f(n) = \frac{n(n+1)}{2}$$

The simplification of efficiency is known as big-O notation.

$$O(n^2)$$

$$f(n) = \frac{n(n+1)}{2}$$

- As n grows large, the n^2 term will come to dominate, so that all other terms can be neglected.
- The constants will depend on the precise details of the implementation and the hardware it runs on, so they should also be neglected.

Big O notation

Captures what remains: $O(n^2)$ says that the algorithm has *order of* n^2 time complexity.

Efficiency	Big-O	Iterations	Estimated Time
Logarithmic	O(logn)	14	microseconds
Linear	O(n)	10,000	seconds
Linear logarithmic	$O(n(\log n))$	140,000	seconds
Quadratic	O(n²)	10,0002	minutes
Polynomial	$O(n^k)$	10,000 ^k	hours
Exponential	O(c ⁿ)	210,000	intractable
Factorial	O(n!)	10,000!	intractable

Measures of Efficiency for n = 10,000

$$2^0 = 1$$

$$2^1 = 2$$

$$2^2 = 4$$

$$2^3 = 8$$

$$2^4 = 16$$

$$2^n = x$$

$$2^0 = 1$$

$$\log_2 1 = 0$$

$$2^1 = 2$$

$$\log_2 2 = 1$$

$$2^2 = 4$$

$$\log_2 4 = 2$$

$$2^3 = 8$$

$$\log_2 8 = 3$$

$$2^4 = 16$$

$$\log_2 16 = 4$$

$$log_2 x = n$$

$$2^n = x$$

$$2^0 = 1$$

$$\log_2 1 = 0$$

$$2^1 = 2$$

$$log_2 2 = 1$$

$$2^2 = 4$$

$$log_2 4 = 2$$

$$2^3 = 8$$

$$\log_2 8 = 3$$

$$2^4 = 16$$

$$log_2 16 = 4$$

$$2^{n} = x$$

$$log_2 x = n$$

$$\log_2 40 = ?$$

$$2^{0} = 1$$

$$\log_2 1 = 0$$

$$2^1 = 2$$

$$log_2 2 = 1$$

$$2^2 = 4$$

$$log_2 4 = 2$$

$$2^3 = 8$$

$$log_{2} 8 = 3$$

$$2^4 = 16$$

$$log_2 16 = 4$$

$$2^n = x$$

$$log_2 x = n$$

$$5 = \log_2 32 < \log_2 40 < \log_2 64 = 6$$

Efficiency	Big-O	Iterations	Estimated Time
Logarithmic	O(logn)	14	microseconds
Linear	O(n)	10,000	seconds
Linear logarithmic	$O(n(\log n))$	140,000	seconds
Quadratic	$O(n^2)$	10,000 ²	minutes
Polynomial	O(n ^k)	10,000 ^k	hours
Exponential	O(c")	210,000	intractable
Factorial	O(n!)	10,000!	intractable

Measures of Efficiency for n = 10,000

Constant Function

$$f(n) = c$$

where c is a fixed constant such as

$$c = 5$$

$$c = 1$$

c = 1 c = 510The variable n is the size of the data that needs to be evaluated.

Logarithmic Function

$$f(n) = log [base]n$$

where [base] is the base of the logarithm. In computer science, log2n is used that the 2 is often left off and log2n is written as log n.

Linear Function

$$f(n) = n$$

The output of this linear function example is the value of n itself. A function that includes a constant, such as f(n) = 2n or f(n) = n + 2, also is a linear function.

N-Log-N Function

$$f(n) = n \log(n)$$

In an **n-log-n** function, the log(n) calculation is repeated n times.

Quadratic Function

$$f(n) = n^2$$

Example: Algorithms with two **for** loops, where one for loop nested in the other **for** loop

Cubic Function

$$f(n)=n^3$$

Example: Algorithm with 3 nested for loops

Exponential Function

$$f(n) = b^n$$

where b is a positive constant called the base. In computer science, the most common base is 2, which means that an algorithm can be described on the order of $f(n) = 2^n$

Example: Given a binary string of 8 bits, there will be 28 combinations (256) of those bits.

Polynomial Example

$$T(n) = 5n^3 + 3n^2 + n + 5.$$

The term $5n^3$ has the largest growth rate and will dominate the other terms as n grows sufficiently large.

The $3n^2$ and **n** terms can be discarded.

 $5n^3$ has a constant of 5 that can be omitted, leaving n^3 .

$$T(n) = 5n^3 + 3n^2 + n + 5 = O(n^3).$$

$$(A) \quad a = n$$

$$b = n + 1$$

```
(C) i = 1
    loop( i <= n )
        print( i )
        i = i + 1
    end loop</pre>
```

```
(D) i = n
    loop(i > 0)
       print( i )
       i = i - 1
    end loop
    j = 1
    loop( j <= n )
       print( j )
       j = j + 2
    end loop
```

Calculate the run-time complexity of the following algorithm segment:

```
i = 1
 loop( i <= n )
   j = 1
   loop( j <= n )
     k = 1
      loop(k \le n)
        print( i, j, k )
        k = k + 1
      end loop
      j = j + 1
   end loop
   i = i + 1
end loop
```

```
(E) i = 1
    loop( i <= n )
        print( i )
        i = i * 2
    end loop</pre>
```

```
(F) i = n
    loop(i > 0)
      print( i )
       i = i / 2
    end loop
    j = 1
    loop( j <= n )
       print( j )
        j = j + 2
    end loop
```

```
func bubblesort(array )
     for i from 2 to N
          swaps = 0
          for j from 0 to N - 2
               if a[j] > a[j + 1]
                     swap( a[j], a[j + 1] )
                     swaps = swaps + 1
               if swaps = 0
                    break
end func
```

31