

Tema Nº 10

Química General

Equilibrio químico

Departamento de Biotecnología y Tecnología Alimentaria Facultad de Ingeniería y Ciencias Exactas Universidad Argentina de la Empresa

Química General

Equilibrio Químico

Definición

La mayoría de las reacciones no llegan a completarse...

 $2NO_2(g) \leftrightarrows N_2O_4(g)$

¿Hasta donde se lleva a cabo una reacción?

Estas reacciones se dan en ambos sentidos y se llaman reacciones reversibles.

Equilibrio dinámico: dos procesos opuestos que tienen lugar a velocidades iguales.

Es un proceso dinámico que se alcanza cuando las velocidades de las reacciones directa e inversa se igualan y las concentraciones de los reactivos y productos permanecen constantes.

Química General

Equilibrio Químico

Definición

 $CO(g) + 2H_2(g) \leftrightarrows CH_3OH(g)$

V=10L; T=438K

TABLA 16.1 Tres aproximaciones al equilibrio en la reacción^a $CO(g) + 2 H_2(g) \rightleftharpoons CH_3OH(g)$

	CO(g)	$H_2(g)$	CH ₃ OH(g)
Experimento 1	200.00		
Cantidades iniciales, mol	1,000	1,000	0,000
Cantidades de equilibrio, mol	0,911	0,822	0,0892
Concentraciones de equilibrio, mol/L	0,0911	0,0822	0,00892
Experimento 2			
Cantidades iniciales, mol	0,000	0,000	1,000
Cantidades de equilibrio, mol	0,753	1,506	0,247
Concentraciones de equilibrio, mol/L	0,0753	0,151	0,0247
Experimento 3			
Cantidades iniciales, mol	1,000	1,000	1,000
Cantidades de equilibrio, mol	1,380	1,760	0,620
Concentraciones de equilibrio, mol/L.	0.138	0,176	0.0620

Las concentraciones impresas en azul se utilizan en los cálculos de la Tabla 16.2.

En ninguno de los casos se consume por completo los reactivos.

• Las cantidades en el equilibrio de reactivos y productos, en los tres experimentos, parece no tener nada en común.

^aReacción llevada a cabo en un matraz de 10,0 L a 483 K.

Química General

Equilibrio Químico

Definición

$$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$$

Química General

Equilibrio Químico

Constante de equilibrio

$$aA + bB \leftrightarrows cC + dD$$

Constante de equilibrio

$$K_c = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

Siempre se debe escribir la reacción química para especificar a qué corresponde esa constante de equilibrio y en qué sentido se la expresa.

Se deben multiplicar las concentraciones molar en el equilibrio de los productos (elevada a la potencia correspondiente a su coeficiente estequiométrico), dividido por el producto de las concentraciones en equilibrio de los reactivos (elevada a la potencia correspondiente a su coeficiente estequiométrico).

$$CO(g) + 2H_2(g) \leftrightarrows CH_3OH(g)$$

$$K_c = \frac{[CH_3OH]}{|CO|.[H_2]^2} = 14,5$$

$$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$$

$$K_c = \frac{[NH_3]^2}{[N_2] \cdot [H_2]^3}$$

Química General

Equilibrio Químico

Constante de equilibrio

LEY DE ACCIÓN DE MASAS: Para una reacción reversible y a una temperatura constante, una relación determinada de concentraciones de reactivos y productos tiene un valor constante K, cuyo valor permanece constante, siempre y cuando la reacción esté en equilibrio y la temperatura no cambie.

TABLA 16.3 Constantes de equilibrio de algunas reacciones

Reacción	Constante de equilibrio, K_p		
$2 H_2(g) + O_2(g) \rightleftharpoons 2 H_2O(1)$	1.4×10^{83} a 298 K		
$CaCO_3(s) \rightleftharpoons CaO(s) + CO_2(g)$	$1.9 \times 10^{-23} \text{ a } 298 \text{ K}$		
	1,0 a aproximadamente 1200 K		
$2 SO_2(g) + O_2(g) \rightleftharpoons 2 SO_3(g)$	3,4 a 1000 K		
$C(s) + H_2O(g) \rightleftharpoons CO(g) + H_2(g)$	$1.6 \times 10^{-21} \text{ a } 298 \text{ K}$		
C(b) 1120(B) 1 - Cb/ 200/	10,0 a aproximadamente 1100 K		

Química General

Equilibrio Químico

Constante de equilibrio

Significado del valor de la constante de equilibrio

La constante de equilibrio de una reacción química, Kc o Kp, indica en que grado los reactivos se transforman en productos, una vez alcanzado el equilibrio.

- Si K es muy grande \Rightarrow la reacción directa progresa hasta que prácticamente se agota uno de sus reactivos (\rightarrow) .
- Si $K = 1 \Rightarrow$ en el equilibrio, las concentraciones de reactivos y productos, son similares (\leftrightarrow) .
- Si K es muy pequeña \Rightarrow la reacción está desplazada hacia los reactivos, apenas se forman productos (\leftarrow) .

Química General

Equilibrio Químico

Definición

Concentraciones iniciales (M)		en el equilibrio (M)		Relación de concentraciones en el equilibrio	
[NO ₂] [N ₂ O ₄]	IN O I	[NO ₂]	[N ₂ O ₄]	[NO ₂] [N ₂ O ₄]	$\frac{[NO_2]^2}{[N_2O_4]}$
	[14204]				
0.000	0.670	0.0547	0.643	0.0851	4.65 × 10
0.0500	0.446	0.0457	0.448	0.102	4.66 × 10
0.0300	0.500	0.0475	0.491	0.0967	4.60 × 10
0.0400	0.600	0.0523	0.594	0.0880	4.60 × 10
0.200	0.000	0.0204	0.0898	0.227	4.63 × 10

Química General

Equilibrio Químico

Constante de equilibrio

Significado del valor de la constante de equilibrio

La magnitud de Kc es una medida de la extensión en la que tiene lugar la reacción. Para cualquier reacción, Kc:

- 1) Solo varía con la temperatura.
- 2) Es constante a una temperatura dada.
- 3) Es independiente de las concentraciones iniciales.

$$aA(g) + bB(g) \stackrel{l}{\rightarrow} pP(g) + qQ(g)$$

$$K_c = \frac{[P]^P . [Q]^q}{[A]^a . [B]^b}$$

$$K_P = \frac{[P_P]^p \cdot [P_Q]^q}{[P_A]^a \cdot [P_B]^b}$$

$$K_P = K_c \cdot (R \cdot T)^{\Delta n}$$

Química General

Equilibrio Químico

Constante de equilibrios Heterogéneos

- Si todos los reactivos y productos están en una sola fase, el equilibrio es homogéneo.
- Si uno o más reactivos o productos están en una fase diferente, el equilibrio es heterogéneo.

$$CaCO_3(s) \leftrightarrows CaO(s) + CO_2(g)$$

$$K_c = \frac{[CaO]_{(s)}}{[CaCO_3]_{(s)}} \cdot [CO_2]_{(g)} = constante \cdot [CO_2]_{(g)}$$

$$[CO_2]_{(g)} : K'_c = \frac{K_c}{constante} = [CO_2]_{(g)}$$

La concentración de un sólido, al igual que su densidad, es una propiedad intensiva y no depende de la masa. Por lo tanto, sus concentraciones se consideran constantes y se combinan con K_c'

La concentración de los líquidos y de los sólidos no se incluye en la constante de equilibrio

Química General

Equilibrio Químico

Constante de equilibrios Mixtos

 Si una reacción se puede expresar como la suma de dos o más reacciones, la constante de equilibrio para la reacción global está dada por el producto de las constantes de equilibrio de las reacciones individuales.

aA + bB
$$\leftrightarrows$$
 cC + dD K1 = [C]^c [D]^d / [A]^a [B]^b cC + dD \leftrightarrows eE + fF K2 = [E]^e[F]^f / [C]^c [D]^d

Reacción global:

$$aA + bB \stackrel{l}{\rightarrow} eE + fF$$
 $Kc = [E]^e[F]^f / [A]^a [B]^b$

K1 K2 =
$$[C]^c [D]^d / [A]^a [B]^b x [E]^e [F]^f / [C]^c [D]^d = [E]^e [F]^f / [A]^a [B]^b = Kc$$

Química General

Equilibrio Químico

El coeficiente de reacción Q

Para un análisis cualitativo, se puede calcular Q que tiene la misma forma que la Kc, pero implica valores específicos que no son necesariamente concentraciones de equilibrio.

$$aA + bB \leftrightarrows cC + dD$$

$$Q = \frac{[C]^c \cdot [D]^d}{[A]^a \cdot [B]^b}$$

- Q=K ⇒ El sistema está en el equilibrio.
- $Q < K \Rightarrow$ Reacción directa, predomina hasta que se alcanza el equilibrio (la reacción ocurre de izquierda a derecha).
- Q>K ⇒ Reacción inversa, predomina hasta que se alcanza el equilibrio (la reacción ocurre de derecha a izquierda).

Química General

Equilibrio Químico

Factores que afectan el equilibrio

Una vez que el sistema ha alcanzado el equilibrio, permanece hasta que es perturbado por algún cambio en las concentraciones.

Principio de LeChatelier: si se aplica un cambio de condiciones (stress) a un sistema de equilibrio, el sistema responde de la forma en que mejor reduzca esos cambios para alcanzar de nuevo el equilibrio.

Hay cuatro tipos de cambios considerados:

- 1) Cambios en la concentración
- 2) Cambios en la presión
- 3) Cambios en el volumen
- 4) Cambios en la temperatura

Los cambios en la concentración, presión y volumen pueden cambiar las concentraciones de equilibrio en la reacción, pero no modifican la constante de equilibrio. En cambio, un cambio en la temperatura SÍ afecta el valor de la constante de equilibrio

Química General

Equilibrio Químico

Factores que afectan el equilibrio

2) Efecto de las concentraciones

$$N_2(g) + 3H_2(g) \leftrightarrows 2NH_3(g)$$

3) Efecto de la temperatura

Endotérmica → reactantes + calor = productos Exotérmica → reactantes = productos + calor

Química General

Equilibrio Químico

Factores que afectan el equilibrio

Variaciones en el equilibrio

- ∧ T > 0 (exotérmicas) ← —
- ∆ T > 0 (endotérmicas)
 → →
- ∧ T < 0 (exotérmicas)
 →</p>
- AT < 0 (endotérmicas) ←
 </p>
- A p > 0 Hacia donde menos nº moles de gases
- Ap < 0 Hacia donde más nº moles de gases</p>