

Version: 1.0

Release date: 2022-07-15

© 2008 - 2023 Sophgo Inc.

This document contains information that is proprietary to Sophgo Inc.

Unauthorized reproduction or disclosure of this information in whole or in part is strictly prohibited.

Version history

版本	日期	作者	更新描述
1.0	2022-07-15	Xinwen Xu	First Release
1.1	2023-4-13	Xinwen Xu	Add GMAC

Legal notice

This guide contains information that is confidential to Sophgo Inc. Unauthorized use or disclosure of the information contained herein is prohibited. You may be held responsible for any loss or damages suffered by Sophgo Inc. for your unauthorized disclosure hereof, in whole or in part.

Information herein is subject to change without noticed. Sophgo Inc. does not assume any responsibility for any use of, or reliance on, the information contained herein.

THIS DESIGN GUIDE AND ALL INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE. SOPHGO INC. SPECIFICALLY DISCLAIMS ALL IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE. NEITHER DOES SOPHGO INC. PROVIDE ANY WARRANTY WHATSOEVER WITH RESPECT TO THE SOFTWARE OF ANY THIRD PARTY WHICH MAY BE USED BY, INCORPORATED IN, OR SUPPLIED WITH THIS DATA SHEET, AND USER AGREES TO LOOK ONLY TO SUCH THIRD PARTY FOR ANY WARRANTY CLAIM RELATING THERETO. SOPHGO INC. SHALL ALSO NOT BE RESPONSIBLE FOR ANY SOPHGO DELIBERABLES MADE TO USER'S SPECIFICATION OR TO CONFORM TO A PARTICULAR STANDARD OR OPEN FORUM.

Schematic design considerations

This document provides a summary of all schematic design consideration for hardware designers to ensure that all requirements are met. The proceeding sections provide additional detail to clarify each requirement.

Additionally we provided the SG2300X Critical Schematic Review Checklist Application Note, contains a table that provides a high-level checklist of each requirement in this document. Using this Application Note Checklist is recommended when creating or reviewing a design.

Users that have reviewed the reference schematics and the respective BOM will note that a number of devices in those documents are not mandatory for device operation. To help users understand the minimum set of devices, each row in the Schematic Review Checklist Application Note is tagged as mandatory (M), recommended (R) or as-needed for your specific design (D).

Catalogue

Vers	sion hi	istory	2
Lega	al noti	ice	3
Sche	ematic	design considerations	4
Cata	alogue .		5
1	Ball	Map	7
	1. 1	Signal Map	7
2	Powe	r	8
	2. 1	Power domain & requirement	8
	2. 2	Power consumption.	8
	2.3	Power sequence	9
3	Rese	t	11
	3. 1	SYS Reset	11
	3. 2	PCIE Reset	11
4	Cloc	k	12
	4. 1	Board level clock	12
	4. 2	RGMII Ethernet Clock	12
	4.3	PCIE Clock	12
5	Conf	ig	13
	5. 1	Boot mode	13
	5. 2	Chip mode	13
	5.3	Debug & GPIO	14
6	DDR		16
7	PCIE		18
	7. 1	PCIE mode.	18
	7. 2	PCIE interface	18

8	Ethernet	20
9	SDIO	22
	9. 1 EMMC	22
	9. 2 SD	22
10	MISC	23
	10.1 SPI flash	23
	10. 2 I2C	23
	10.3 FAN & PWM	23
	10. 4 UART	23
	10. 5 JTAG	23
11	V/T/P Monitor	24
	11.1 Voltage monitor	24
	11.2 Temperature monitor	24
	11.3 Process monitor	24
12	Reference design document	25
	12.1 SG2300X design	错误!未定义书签。
	12.2 MCU design	错误!未定义书签。
	12.3 SC5-EVB design.	错误!未定义书签。

1 Ball Map

Using the latest release of the ball map document for the respective SG2300X device:

• Check that all SG2300X nets in the schematic match their respective ball map definitions.

This critical check will help ensure that all SG2300X device pins are properly connected in your design.

1.1 Signal Map

2 Power

2.1 Power domain & requirement

- Check that all SG2300X device power supply pins are connected to their required voltages.
- Check that all VSSC pins are properly connected to ground.

Table 2-1:

Power domain	Supply Voltage	operating Voltage (V)	operating voltage varation	Power Ball
VDDC	0.8Vcore supply	0.94	<u>+</u> 3%	VDDC
VDD_TPU	0.65Vtpu supply	0.78	<u>+</u> 2.5%	VDD_TPU
				VDDIO_RGM_33
				VDDIO_RGM_18
				VDDIO
				DDR0_DDR_VAA
				DDR1_DDR_VAA
VDDIO18	1.8V IO supply	1.8	<u>+5%</u>	DDR2_DDR_VAA
VDDIO16	1.6 v 10 supply	1.0	1.570	DDR3_DDR_VAA
				VDDIO_SENSOR
				VDDIO_OSC_DDR0
				VDDIO_OSC_DDR1
				VPH0
				VPH1
VQPS18	1.8V VQPS supply	1.8	<u>+</u> 5%	VQPS
VDDIO33	3.3V IO supply	3.3	<u>+</u> 5%	VDDIO_EMMC_33
VDDIO33	3.3 v 10 suppry	3.3	1.570	VDDIO_PCIE_PAD_33
				VDD_EFUSE
				VDD_DDR
VDD PHY	0.8V phy supply	0.8	<u>+2.5%</u>	PLL_VDD
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	0.8 v pily supply	0.8	12.370	PLL_VSS
				PLL_VDD_DDR
				PLL_VSS_DDR
VDD PCIE	0.8V PCIE supply	0.8	+2.5%	VP0
VDD_I CIE	0.6 v 1 CIE supply	0.0	12.370	VP1
DDR_VDDQ	1.1V DDR supply	1.1	<u>+</u> 2.5%	DDR_VDDQ
DDR_VDDQLP	0.6V DDR suppluy	0.6	<u>+</u> 2.5%	DDR_VDDQLP
GND	0	0		VSSC

2.2 Power consumption

> Ensure that selected power regulators meet operating voltage range requirements and

meet operating current requirements.

➤ The worst Power: CVS10 model, Junction Temperature 85°C, TPU frequency 1GHz Table 2-1:

Power domain	Power Ball	Power(W) worst	Description
VDDC	VDDC	9	
VDD_TPU	VDD_TPU	12.5	
	VDDIO_RGM_33	0.466	
	VDDIO_RGM_18	0.022	
	VDDIO	0.02	
	DDR0_DDR_VAA		
	DDR1_DDR_VAA	0.0201	
	DDR2_DDR_VAA	0.0301	
VDDIO18	DDR3_DDR_VAA		Reference to EVB Schematic
	VDDIO_EMMC_18	0.014	
	VDDIO_SENSOR	0.045	
	VDDIO_OSC_DDR0	0.045	
	VDDIO_OSC_DDR1	0.045	
	VPH0	0.702	
	VPH1	0.702	
VQPS18	VQPS	0.148	default power off
VDDIO22	VDDIO_EMMC_33	0.466	
VDDIO33	VDDIO_PCIE_PAD_33	0.1	
	VDD_EFUSE	0.028	
	VDD_DDR	1.6	
VDD PHY	PLL_VDD		Recommended LDO for PLL
ר אטט_רח ז	PLL_VSS	0.022	Recommended LDO for PLL
	PLL_VDD_DDR	0.022	
	PLL_VSS_DDR		
VDD DCIE	VP0	0.292	
VDD_PCIE	VP1	0.292	
DDR_VDDQ	DDR_VDDQ	1.86	
DDR_VDDQLP	DDR_VDDQLP	0.49	
GND	VSSC		

2.3 Power sequence

- Check all power on sequence meet the list of figure 2-1.
- ➤ SG2300X have 4 PG input pin, net name: P08_PWR_GOOD, PCIE_PG2, TPU_PG3,DDR_PG, check PG input pin meet the power on sequence.

Figure 2-1:

- The power off sequence is reversed of power on sequence.
- ➤ If the feature of PCIE used, the power up of VDD_PHY and VDD_PCIE can be synchronize.
- For normal mode ,VQPS18 could be power off, when programme effuse, it must be power on.
- We suggest the power on and power off sequence controlled by MCU.

3 Reset

3.1 SYS Reset

- ➤ The SG2300X has an active-low asynchronous device rst pin. The SG2300X rst timing requires the rst signal must be asserted for a minimum of 30ms.
- At initial device power-on, the rst signal must be held low for 30ms after all power supplies, and next be held high for 30ms, and then rst again, the signal be held low for 30ms again, after rst twice, release the rst signal, as shown in figure 2-1.
- > Sys rst pin is 1.8V tolerant.

3.2 PCIE Reset

- ➤ When SG2300X in SOC mode, PCIE rst signal must be pull up.
- ➤ When SG2300X in PCIE mode, PCIE rst connected to the host p_rst, when host P_rst asserted, the SG2300X sys rst must be asserted.
- PCIE rst pin is 3.3V tolerant.
- For timing control, we suggest tie the P_rst pin to MCU, when P_rst low, MCU asserted SG2300X sys_rst.

Figure 3-1:

4 Clock

4.1 Board level clock

- Three 25MHz crystal oscillators are required to provide clock source for SG2300X internal PLLs. They should be connected to PLL_CLK_IN, PLL_CLK_IN_DPLL0 and PLL_CLK_IN_DPLL1.Recommend clock specification is in Table 4-1.
- > PLL_SRC_SEL must be pull down to use crystal oscillators.
- To cost down and save the area, suggest use the clk generator. Table4-1:

Parameter	Symbol	Min	Type	Max	Units
Frequency	f	ı	25	-	MHz
Logic Levels	VIH	ı	1.8	-	V
	VIL	ı	0	0.36	V
Rise Time/Fall Time	t _R /t _F		1.2	2	ns
Duty Cycle	SYM	45	50	55	%
Period Jitter,RMS	J_{PER}	-	20	-	ps
Period Jitter, Peak-to-Peak	J_{PER}	-	170	-	ps
Cycle-to-Cycle Jitter, Peak	J _{CY-CY}	-	150	-	ps

4.2 RGMII Ethernet Clock

For Ethernet, gigabit Ethernet PHY provides RX clock to the gigabit Ethernet MAC inside SG2300X chip.

4. 3 PCIE Clock

- For PCIE, PCIE PHY needs 2 100MHz reference clock inputs. One is for phy0, the other is for phy1.GPIO 14 (PCIE_REFCLK_SEL) is to control phy1 used repeat clk or ref clk. 0:disable repeat clk,phy1 used refclk 1:enable repeat clk,phy1 used repeat clk,phy1 refclk tie 0.
- Advise to use refclk.

5 Config

5. 1 Boot mode

SG2300X boot sequence have two stages.

First stage, A53 fetch the 1st instruction from off-chip SPI NOR Flash or ONFI NAND Flash or on-chip ROM. After Flash boot, corresponding device will be ready for Linux kernel loading.

Second stage, A53 loading Linux kernel

- Utilize 4.7k ohm resistors for all bootstrapping pins
- Pull up resistors must go up to 1.8V. Boot-strapping pins are only 1.8V tolerant.
- We advise both of two stages boot from SPI NOR FLASH.
- Use toggle switch for better control or pull up and pull down resistors.

Table5-1:

BOOT_SEL	b'	boot mode
3	0	BL1 boot from internal ROM
3	1	BL1 boot from internal SPI NOR FLASH
2	0	try SD boot first. the software will check whether there is SD card inserted and whether there is firmware image in the SD card first. if true, it will use this firmware in SD card to boot up
	1	it will check BOOT_SEL[1:0] for firmware source, without trying SD boot first
	00	loading next bootloader from SPI NOR Flash
10	01	loading next bootloader from EMMC's boot0 partition
10	10	loading next bootloader from AXI SRAM
	11	A53 will enter WFI directly
note: BOOT_	SEL[2:0] = 3	'b011: this is not used.

5.2 Chip mode

- > Utilize 4.7k ohm resistors for all chip select pins
- Pull up resistors must go up to 1.8V. Chip select pins are only 1.8V tolerant.
- ➤ We advise MODE SEL=b'0001.
- > Use toggle switch for better control or pull up and pull down resistors.

Table 5-2:

CHIP_SEL	b'	chip mode
3	0	top power (VDDC) at 0.8V

Page 13 of 25

	1	top power (VDDC) at 0.7V	
2	0	disable fast reset mode	
2	1	enable fast reset mode	
	00	normal speed function mode	
10	01	fast speed function mode	
10	10	safe speed function mode	
	11	bypass speed function mode	
note: TSET_E	= 0		

5.3 **Debug & GPIO**

- These pins should be set 0 in most case. Pull-down to gnd with 4.7k ohm resister.
- > These pins are only 1.8V tolerant. Pull-up to 1.8V with 4.7k ohm resister.
- Check GPIO pin default status as table 5-3.

Table 5-3:

GPIO	pin name	I/O	Description	default
GPIO0	GPIO0/UART_CLI	input	high enter command line mode	0
GPIO1	GPIO1	input	GPIO	0
GPIO2	GPIO2/PCIE_PG	input	detect VDD_PCIE power good	0
GPIO3	GPIO3/TPU_PG	input	detect VDD_TPU power good	0
GPIO4	GPIO4/PLL_LOCKO	output	high mean PLL is OK	0
GPIO5	GPIO5/IIC_ADDR0	input		0
GPIO6	GPIO6/IIC_ADDR1	input	distinguish different	0
GPIO7	GPIO7/IIC_ADDR2	input	SG2300X locations	0
GPIO8	GPIO8/IIC_ADDR3	input		0
GPIO9	GPIO9/PCIE_EP_RC[0]	input	distinguish EP mode or EP+RC mode	0
GPIO10	GPIO10/PCIE_EP_RC[1]	input	detail description in chapter 7(PCIE)	0
GPIO11	GPIO11/PCIE_EP_RC[2]	input		1
GPIO12	GPIO12/DISABLE_MMU	input	0:enable MMU 1: disable MMU	0
GPIO13	GPIO13/UART0_RST /EFUSE_PATCH	input	0:skip patch table 1:always check EFUSE patch table	0
GPIO14	GPIO14/UART0_CTS /PCIE_REFCLK_SEL	input	0:disale PCIE repeat CLK 1:enable repeat CLK,phy1 use repeat CLK	0
GPIO15	GPIO15/JTAG_1_2_SEL	input	0: JTAG1 1: JTAG2	0
GPIO16	GPIO16/PCIE_RC_RST	output	used for multi-chip card scenarios to drive next chip EP RST	0
GPIO17	GPIO17/JTAG0_TDO	output		0
GPIO18	GPIO18/JTAG0_TCK	I/O		0

Page 14 of 25

GPIO	pin name	I/O	Description	default						
GPIO19	GPIO19/JTAG0_TDI	input		0						
GPIO20	GPIO20/JTAG0_TMS	I/O		0						
GPIO21	GPIO21/JTAG0_TRST	I/O		0						
GPIO22	GPIO22/JTAG0_SRST	I/O	ITACO for A52	0						
GPIO23	GPIO23/JTAG_1_2_TDO	TDO output JTAG0 for AMBO	JTAG0 for AMR9	0						
GPIO24	GPIO24/JTAG_1_2_TCK	I/O	JTAG2 for RISC	0						
GPIO25	GPIO25/JTAG_1_2_TDI	input	1 TAGE ISI TAGO	0						
GPIO26	GPIO26/JTAG_1_2_TMS	I/O		0						
GPIO27	GPIO27/JTAG_1_2_TRST	I/O		0						
GPIO28	GPIO28/JTAG_1_2_SRST	I/O		0						
GPIO29	GPIO29/DBG_IIC_SCL	I/O	Boot from I2C	1						
GPIO30	GPIO30/DBG_IIC_SDA	I/O	- BOOK HOITI IZO	1						
note: I/0 ar	nd description is GPIO pin in the	case of re	euse	note: I/0 and description is GPIO pin in the case of reuse						

6 DDR

- Ensure DDR SDRAM support LPDDR4X.
- We recommend Micron SDRAM: MT53D512M32D4 or MT53D1024M32D4.
- Ensure SG2300X DDR0A_ZN (DDR0B_ZN/ DDR1_ZN/ DDR2_ZN) connect 120 ohm 1% resister to gnd.
- Ensure DDR SDRAM ZQ0 and ZQ1 are connect 240 ohm 1% resister to DDR_VDDQLP.CH[0:3]_ODT_CA_A and CH[0:3]_ODT_CA_B are connect 4.7k ohm resister to DDR_VDDQ.

Page 16 of 25

SOPHGO CONFIDENTIAL, NO DISCLOSURE

		110044				
DDR0B DQB2	В0	U901A			DDR0A DQB3	
DDR0B_DQB2	B2	DQ0 A	DQ0_B	AA2	DDRUA DQB6	
DDR0B DQB7	C2	DQ1 A	DQ1 B	Y2	DDR0A DQB7	
DDR0B DQB6	<u>E2</u>	DQ2 A	DQ2 B	V2	DDR0A DQB0	
DDR0B_DQB4	F2 F4	DQ3 A	DQ3 B	U2 U4	DDRUA DQB4	
DDR0B DQB5		DQ4 A	DQ4 B		DDR0A DQB5	
DDR0B_DQB3	<u>E4</u> C4	DQ5 A	DQ5 ^B	V4 Y4	DDRUA DQB2	
DDR0B DQB0	B4	DQ6 A	DQ6 B	AA4	DDR0A DQB1	
DDR0B DQB11	B11	DQ7_A	DQ7_B	AA4 AA11	DDR0A DQB8	
DDR0B DQB9	C11	DQ8_A	DQ8_B	Y11	DDR0A DQB11	
DDR0B DQB10	E11	DQ9_A	DQ9_B	V11	DDR0A DQB9	
DDR0B_DQB8	F11	DQ10_A	DQ10_B	U11	DDRUA DQB10	
DDR0B DQB12	F9	DQ11_A	DQ11_B	U9	DDR0A DQB12	
DDR0B DQB14	F9	DQ12_A	DQ12_B	V9	DDR0A DQB13	
DDR0B DQB13	C9	DQ13_A	DQ13_B	Y9	DDR0A DQB14	
DDR0B DQB15	B9	DQ14_A	DQ14_B	AA9	DDR0A DQB15	
	Da	DQ15_A	DQ15_B	7/13		
DDR0B DQSB T0	D3			W3	DDR0A DQSB T0	
DDR0B_DQSB_C0	F3	DQS0_T_A	DQS0_T_B	V3	DDR0A DQSB C0	
DDR0B_DQSB_I1	D10	DQS0_C_A	DQS0_C_B	W10	DDR0A_DQSB_T1	
DDR0B_DQSB_C1	E10	DQS1_T_A	DQS1_T_B	V10	DDR0A_DQSB_C1	
		DQS1_C_A	DQS1_C_B	7 10		
DDR0B_DMB0	C3	D1410 4	D. 110 D	Y3	DDR0A_DMB0	
DDK0R_DMR1	C10	DMI0_A	DMI0_B	Y10	DDR0A_DMB1	
		DMI1_A	DMI1_B			
DDR0B_CAA2	H2	040.4	040 D	R2	DDR0A_CAA3	
DDR0B_CAA1	J2	CA0_A	CA0_B	P2	DDR0A_CAA1	
DDR0B_CAA4	H9	CA1_A	CA1_B	R9	DDR0A_CAA4	
DDR0B_CAA3	H10	CA2_A	CA2_B	R10	DDR0A_CAA2	
DDR0B_CAA0	H11	CA3_A CA4_A	CA3_B CA4_B	R11	DDR0A_CAA0	
DDR0B_CAA5	J11	CA4_A CA5_A	CA4_B CA5_B	P11	DDR0A_CAA5	
DDR0B_CKEA1	J5	CKE1 A	CKE1 B		DDR0A_CKEA1	
DDR0B_CKEA0	J4	CKE0 A	CKE0 B	P4	DDR0A_CKEA0	
DDR0B_CLKA_1	J8	CKLU_A CK T A	CK T B	P8	DDRUA_CLKA_T	
DDR0B_CLKA_C	J9	CK C A	CK C B	P9	DDR0A_CLKA_C	
DDDOB CCAO		CIX_C_X	CIV_C_D		DDD04 CC40	
DDR0B_CSA0	H4	CS0 A	CS0 B	R4	DDR0A_CSA0	
DDR0B_CSA1	H3	CS1 A	CS1 B	R3	DDR0A_CSA1	_
CH3_OD1_CA_A	G2		ODT CA B	T2	CH3_ODT_CA_B	_
DDR0A B RESET N	T	021_0/1_1	ZQ0	A5	R900 240 1%	1
DDRUA_B_RESET_N	T11	RESET_N	ZQ1	A8	R901 240 1%	
		_			0705.由源山5	DDQ改为VDDQLP
		MT53D1024M	SODADT	Г	DDR_VDDQ	PDQLSX /S VPDQDF
		W1133D 1024W	J2D4D I	Ö	, S. I	DDR VØDQLP
	CH3	ODT_CA_A	R903 🛕 🛕	4.7K		
•	CH3	ODT_CA_B		4.7K		
•						

7 PCIE

7.1 PCIE mode

SG2300X has two PCIE phy,phy0 and phy1. SG2300X support three different PCIE mode, such as:x16 EP only, x8 RC+EP, and RC only.SG2300X select different PCIE mode by pull up or pull down GPIO11,GPO10 and GPIO9.

- > The number from left to right means GPIO11, GPIO10 and GPIO9.
- ➤ BOOT_SEL[11:9] = 3'b011 not just configurate RC only ,but also EP+RC, the different is RC only mode must floating EP reference CLK, and PERST tie high.
- ➤ GPIO[11:9]=3'b100 configurate x16 EP only.

7.2 PCIE interface

- Ensure PCIE_REFCLK_ P/N is connected to a low jitter free-running 100MHz clock.
- Ensure any required host or drive side clocks are connected as needed for common clock use cases.
- Ensure all used PCIE transmitter (Tx) lanes have 0.22μF inline AC coupling caps

Page 18 of 25

SG**2300X** Hardware Design Guide

- > AC coupling caps for PCIE are part of the PCIE SIG Base Spec
- ➤ Inverted polarity of the PCIE transmitter or receiver (Tx_P/N or Rx_P/N) lanes are supported and handled automatically by the device.
- Used ports must utilize lanes in sequential order. Lane reversal within a port is allowed.
- Unused PCIE transmitters/receivers should be left unconnected

8 Ethernet

- SG2300X has two integrated GMAC, both supporting the RGMII.
- RGMII interface pins are 1.8V tolerant
- Advise use the Ethernet transceiver RTL8211FDI covert RGMII interface to MDI interface.
- RTL8211FDI must follow schematic design as below, the configuration pins must not be changed, the strapping pins according to the table

Pin Name	Strapping	
PHY1_CFG_EXT	Pull down	
PHY1_CFG_LDO0	Pull down	
PHY1_CFG_LDO1	Pull up	
RGMII1_RXD3	Pull up	
RGMII1_RXC	Pull up	•
RGMII1_RXCTRL	Pull up	•
RGMII1_RXD0	Pull down	•
RGMII1_RXD1	Pull up	
RGMII1_RXD2	Pull up	

RGMII interface needs equal length constraints.

Page 20 of 25

SOPHGO CONFIDENTIAL, NO DISCLOSURE

9 SDIO

SG2300X has two SDIO IP, one for EMMC, the other for SD card.

9. 1 **EMMC**

- Ensure a 4.7kohm resister to pull up EMMC_CMD to VDDIO18.
- > EMMC Support HS200 4bit mode.

9. 2 SD

- Ensure a 4.7kohm resister to pull up SDIO_CMD to VDDIO18.
- Ensure add a series resister 220hm in SDIO data and clk trace.

10 MISC

10.1 SPI flash

- ➤ SPI clock support HCLK frequency 10M and CLK frequency 0.5M by set SPIF_CLK_SEL1 1 or 0.
- Advise SPIF CLK SEL1 pull up to 1.8V with 4.7k ohm resister.
- ➤ We suggest to add a series resister 22ohm in clk and data trace, the resister should be placed near SG2300X or SPI slave device(GD25LQ128DSIG).
- Ensure 1.8V flash part is used as all SPI pins are only 1.8V tolerant.

10. 2 **I2C**

- > These pins are only 1.8V tolerant.
- Ensure all I2C pins pull-up to 1.8V with 4.7k ohm resister.

10.3 FAN & PWM

- > These pins are only 1.8V tolerant.
- Advise pull-up these pins to 1.8V with 4.7k ohm resister.

10. 4 UART

UART is utilized by the firmware command server providing a command line user interface. The CLI is used for debugging and diagnosing.

- These pins are only 1.8V tolerant.
- Advise pull-up RX to 1.8V with 4.7k ohm resister.

10. 5 JTAG

These pins are only 1.8V tolerant.

11 V/T/P Monitor

11.1 Voltage monitor

- TPU_SENSE_P and TPU_SENSE_N are use as remote sense pin for VDD_TPU in multiphase power supply;
- VDD_SENSE_P and VDDC_SENSE_N are use as remote sense pin for VDDC in multiphase power supply;
- VMON_P and VMON_N are used as voltage monitor pins.
- ➤ By setting different register value of 0x5001_0014 bit[12:8], there are total 19 points in SG2300X chip can be monitored.

11.2 Temperature monitor

- > TEMP_P and TEMP_N are used as temperature monitor pins.
- ➤ By setting different register value of 0x5001_0014 bit[4:0], there are total 12 points in SG2300X chip can be monitored
- > Requires a remote temperature monitor device.

11.3 Process monitor

- ➤ There are process monitors in SG2300X .
- Configure reg_pm_select (0x5001_0018 bit[2:1]) to select VT 2'd0 for lvt; 2'd1 for svt; 2'd2 for ulvt

12 Reference design document

SG2300X design reference document, include:

- 1、 SG2300X_EVB_Schematic.DSN
- 2、 SG2300X EVB MCU 使用说明文档 V1.0.xlsx

 $SG2300X_Refrence_Design.7z$