Лабораторная номер 1

Авторы: Карибджанов Матвей

February 2023

Содержание

1	Задание	2		
	1.1 Работа с поляризатором и закон Малюса			
	1.2 Работа с пластинками $\frac{\lambda}{4}$, $\frac{\lambda}{2}$	2		
2	2 Формулы Френеля и угол Брюстера			
	2.1 p	4		
	2.2 s	4		

1. Задание

1.1. Работа с поляризатором и закон Малюса

Для определения поляризации, предлагаю импользуяпосмотрев на черное стекло через полризатор можно найти минимум Э. В этом положении поляризатор перпенперпендикурярен полскости отражения.

Такким образом направления первого поляризатора у меня получилось 20°. Используя поляризатор можем найти поляризацию источника.

Теперь я беру 2 поляризатор и снова нахожу минимум относительно 1 поляризатора. Вращая на угол φ от найденного min проверяем закон.

Рис. 1. Результаты измерений, данные отнормированны на \mathfrak{I}_{max}

1.2. Работа с пластинками $\frac{\lambda}{4}$, $\frac{\lambda}{2}$

Для определения направления пластинок $\frac{\lambda}{2}$, $\frac{\lambda}{4}$, предлагаю потавтить два поляризатора в пложение $\Delta \varphi = \frac{\pi}{2}$. Поле вмежду ними ставим неизветные нам пластинки в ращаем до \mathfrak{I}_{min} . Это означает, что оси пластинок совпали с направлением первого поляризатора. Для того чтобы отличить $\frac{\lambda}{2}$, $\frac{\lambda}{4}$ провернем на $\frac{\pi}{4}$ относительно наденного нами минимума. Теперь вращаем второй поляризатор, ели у нас пластика $\frac{\lambda}{2}$ то будет существовать ярко выраженный $min \wedge max$ или другими словами $\vartheta = 1$ ели же попалась пластинка $\frac{\lambda}{4}$ то $\vartheta = \frac{1}{2}$

2 Задание

но наши пластинки не идеальны поэтому давайте найдем рельную видность. Для пластинки $\frac{\lambda}{4}$ получил $\mathfrak{I}_{max}=1.1W,\ \mathfrak{I}_{min}=0.702W\implies \vartheta=0.23$ Оналогично для $\frac{\lambda}{2}\colon\ \mathfrak{I}_{max}=1.1W,\ \mathfrak{I}_{min}=0.702W\implies \vartheta=0.99\to 1.$

Задание

2. Формулы Френеля и угол Брюстера

Из 1 эескремента у меня остались значения углов для поляризатор оностительно стекла, поэтому ставим в положение когда достигется минимум, а это значит, что нправление поляризатора перпендикулярно плоскости поляризатора, и теперь начинаем вращать зеркало.

2.1. p

Рис. 2. Результаты измерений

Аппроксмирум данные формулой Френеля для положения р. Я получил

$$n_1 = 1, n_2 = 1.5$$

2.2. s

Я получил

$$n_1 = 1.01, n_2 = 1.93$$

Рис. 3.

Рис. 4. Результаты измерений, с приближением