Machine Learning Scientist

ML MODEL FOR TRANSPORT RISK MITIGATION

OCEAN PROTOCOL DATA CHALLENGE

CONTENTS

- Context
- The question and its interpretation
- Data exploration
- Prediction model of indoor measurements
- Temporal prediction model
- Conclusions
- Axes of improvement

CONTEXT

- Ocean Data Challenge
 - During transportation of high velue doos
 - Prevent risk of
 - maximum temperature or humidity overshoot
- Data used:
 - Timeseries data of
 - vehicle
 - weather
 - indoor sensors

THE QUESTION AND ITS INTERPRETATION

- Find correlations between geolocation, external weather, timestamp, and internal microclimate data. How are these pillars interconnected?
 - latitude, clouds, hour must impact sunlight => impact external temperature and humidity at first order
 - > and internal condition will be affected also.
- ▶ How does this interconnectedness influence the risk of dangerous temperatures or humidity?
 - Internal conditions can be impact by external condition like: temperature, speed (vehicle and wind) external sunlight effect
- ▶ How do specific weather events (like high winds) or variables such as the proximity of farms to roads contribute to temperature risk?
- How can the risk of temperature or humidity-related issues be minimized for long-distance transportation events?
- What combination of internal and external weather factors conclude an ideal temperature that is less than 25 degree celsius and less than 80% humidity?

Find correlations

- OF COURSE, EXTERNAL TEMPERATURE INCREASES INTERNAL TEMPERATURE
 - DAYLIGHT INCREASES INTERNAL & EXTERNAL TEMPERATURES
- ALTITUDE INCREASES INTERNAL HUMIDITY & WIND SPEED
- WINTER MONTHS DECREASE INTERNAL & EXTERNAL TEMPERATURES BUT INCREASE INTERNAL HUMIDITY MORE WIND AT HIGH LATITUDES
- EXTERNAL HUMIDITY INCREASES INTERNAL HUMIDITY
 - CLOUDS DECREASE TEMPERATURE BUT INCREASE HUMIDITY
- VISIBILITY INCREASE TEMPERATURE BUT DECREASE HUMIDITY
 - MAYBE SPEED SLIGHTLY INCREASE INERNAL TEMPERATURE
- PERHAPS THE RELATIVE HEADWIND (WIND_REL_COS) SLIGHTLY LOWERS THE INTERNAL TEMPERATURE

How does this interconnectedness influence the risk?

- THE RELATIVE HEADWIND SLIGHTLY INCREASES THE INTERNAL TEMPERATURE - BUT LATERAL WIND HAS NO BIG IMPACT

HUMIDITY RISK IS HIGHER FROM DECEMBER TO MARCH. ALTITUDE BETWEEN 200 AND 400 M HAVE HIGHER RISK

Cf notebook 01_Exploration on GitHub:

https://github.com/jeugregg/transport-risk-mitigation/blob/main/01_Exploration.ipynb