UNIVERSITE CHEIKH ANTA DIOP DE DAKAR FACULTE DES SCIENCES ET TECHNOLOGIES DE L'EDUCATION ET DE LA FORMATION

Département de Physique-Chimie

Concours d'entrée à la FASTEF

Epreuve de Physique-Chimie **Niveau Baccalauréat -- Année 2017/2018**

Durée: 04 heures

EXERCICE 1: (4 points).

Données: Masses molaires (en g.mol⁻¹): H = 1.0 C: 12.0 O: 16.0 Na: 23.0

Masse volumique du déboucheur : Q = 1,208 kg.L-1

On trouve dans le commerce des produits liquides servant à déboucher les canalisations.

Pour un de ces produits, on lit sur l'étiquette : DANGER. Produit corrosif. Contient de l'hydroxyde de sodium (soude caustique) solution 20 %.

On se propose de vérifier cette teneur en soude en réalisant un titrage par l'acide chlorhydrique.

1-1) Le produit commercial est trop concentré pour pouvoir être titré directement. On prépare alors un volume V = 500,0 mL d'une solution diluée 50 fois (solution notée S)

1-1-1) Calculer le volume V₀ de la solution commerciale à prélever pour préparer la solution S.

1-1-2). Etablir la liste du matériel à utiliser pour préparer la solution S.

1-1-3). Indiquer les précautions à prendre pour opérer en sécurité.

1-2). On souhaite titrer un volume $V_1 = 20.0 \text{ mL}$ de la solution diluée S par une solution d'acide chlorhydrique de concentration $C_a = 0.1 \text{ mol}$. L-1 en utilisant un pH-mètre.

Les résultats expérimentaux sont reportés sur le document ci contre :

1-2-1). Faire un schéma annoté du montage expérimental.

1-2-2). Avant de commencer le titrage, on ajoute un peu d'eau distillée dans le récipient contenant la solution S. Donner la raison de cette opération et indiquer si cet ajout a une influence sur le résultat du desage.

1-2-3). Ecrire l'équation de la réaction qui se produit lors du titrage et en déterminer le volume d'acide correspondant à l'équivalence.

1-2-4). En déduire la concentration molaire C_S de la solution S puis la concentration molaire C₀ du produit commercial.

1-2-5). Déduire du résultat précédent le pourcentage en masse d'hydroxyde de sodium contenu dans le produit commercial et évaluer l'écart relatif par rapport à la valeur indiquée par le fabricant.

1-3). Pour réaliser un titrage plus rapide, on aurait pu effectuer un dosage colorimétrique. Préciser l'indicateur coloré le plus adapté parmi les indicateurs suivants :

Indicateur coloré	Zone de virage (pH)			
Hélianthine	3,1-4.4			
Bleu de bromothymol	6.0,- 7.6			
Rouge de crésol	7.2 - 8.8			
Phénolphtaléine	8.2 - 10			

EXERCICE 2: (4 points).

Données: masses molaires, en g.mol-1: M(acide carboxyllque) = 60;

M(acétate de linalyle) = 196; M(linalol) = 154; masse volumique de linalol: $\varrho = 0.90$ g. m L^{-1} .

L'acétate de linalyle est un ester présent dans des plantes comme la lavande. C'est un liquide incolore d'odeur douce, utilisé en particulier en parfumerie et en cosmétique. Sa masse molaire vaut 196 g.mol-1. On se propose de déterminer sa formule brute, CxHyOz.

2-1) La combustion complète d'une masse m = 24,5 g d'acétate de linalyle donne 66 g de dioxyde de carbone et 22,5 g d'eau.

2-1-1) Ecrire l'équation bilan de la réaction de combustion complète de l'acétate de linalyle

2-1-2) Déterminer sa formule brute.

2-2) La formule semi-développée de l'acétate de linalyle est :

Ecrire les formules semi-développées de l'acide carboxylique et de

l'alcool qu'on peut utiliser pour sa synthèse.

N.B: Le nom usuel de cet alcool est «linalol».

A la fin de la réaction il recueille 24,5 g d'acétate de linalyle.

2-3-1) Ecrire l'équation bilan de la réaction de synthèse de l'acétate de linalyle.

Préciser les caractéristiques de cette réaction et le rôle de l'acide sulfurique.

2-3-2) Déterminer le réactif limitant et puis le taux d'estérification.

EXERCICE 3 : (4 points).

Un solide de masse m = 650 g est lâché sans vitesse initiale, d'un point O d'un plan incliné d'un angle $\alpha = 20^\circ$ sur l'horizontale. On prendra g = 9.8 SI:

3-1) On néglige les frottements.

3 1-1) Etablir l'expression de l'accélération du solide : calculer sa valeur.

3-1-2) Préciser la nature du mouvement du solide ; établir l'équation horaire de ce mouvement.

3-2-1) Représenter les forces qui s'exercent sur le solide dans ces conditions du mouvement.

En justifiant, préciser la nature du mouvement du solide.

$x(10^{-2} m)$	0	2,5	4,45	6,95	10	13,6
t(s)	0	0,18	0,24	0,3	0.36	0.42
$t^2(10^{-2} s^2)$	0				,==	,

- 3-3-1) Recopier le tableau puis compléter la dernière ligne.
- 3-2) Représenter la courbe $x = f(t^2)$.
- 3-3-3) Vous servant de cette courbe, déterminer l'accélération du mouvement du solide.
- 3-3-4) Votre résultat met-il en évidence l'existence de forces de frottement ? (Réponse à justifier).
- 3-3-5) Dans l'affirmative, déterminer l'intensité f de leur résultante supposé constante.

EXERCICE 4: (4 points).

Jonnées : Les distances D ≈ 40 cm, l = 1 m, d = 10 cm. m = 9,1 10^{-31} kg, q=1,6. 10^{-19} C, l'intensité du champ électrique \[
\hat{S} = 5.10\end{a} \text{ V.m}^{-1}. On n\hat{e}\text{glige le poids de l'\hat{e}lectron devant les autres forces.
 \]

1) Des électrons, de masse m et de charge q sont émis avec une vitesse nulle par la cathode C (voir figure). Ils subissent l'action d'un champ électrique uniforme sur une distance d.

1-1) Etablir la nature du mouvement d'un électron dans le domaine I (entre la cathode C et l'anode A).

1-1-2) Calculer la vitesse V1 de chaque électron en O1, entrée du domaine II).

4-2) A partir du point O1, les électrons subissent l'action d'un champ magnétique uniforme de vecteur perpendiculaire au plan de la figure.

§ 2-1) Indiquer le sens du vecteur champ magnétique pour que les électrons soient déviés dans le sens indiqué.

4-2-2) Etablir, l'expression du rayon R de l'arc de cercle décrit par les électrons. Calculer la longueur de ce rayon sachant B = 2.0 mT.

4-3) A partir du point O2 les électrons pénètrent dans le domaine III où ne règne ni champ électrique ni champ

4-3-1) En justifiant, préciser la nature du mouvement des électrons dans le domaine III.

3-2) Les électrons rencontrent un écran disposé à la distance D (voir figure). Exprimer, en fonction des grandeurs

Un GBF délivre une tension sinusoïdale de fréquence f aux bornes d'un dipôle constitué d'un conducteur ohmique de résistance $R=100\Omega$, d'une bobine d'inductance L=1.0~H et de résistance négligeable et d'un condensateur de

On associe à ce circuit un oscillographe qui visualise sur la voie Y1 la tension aux bornes du GBF et sur la voie Y2 la tension aux bornes du conducteur ohmique. L'oscillographe est réglé comme suit :

- sensibilités verticales sur les deux voies : 5,0 V / division ;
- balayage horizontal: 2,5 ms / division.
- 4-1) Représenter le circuit décrit ci-dessus, en indiquant clairement le branchement de l'oscillographe.
- 4-2) On observe sur l'écran de l'oscillographe les courbes représentées ci-dessous :
- Déterminer la période T, la fréquence f et la pulsation to de la tension sinusoïdale, u(t), délivrée par le G.B.F
- 2-3) A la date t = 0, le spot de la voie Y1 est en O. Etablir l'expression numérique de la tension sinusoïdale, u(t).
- 44) Déterminer la tension efficace U de cette tension u(t) délivrée par le G.B.F ainsi l'intensité efficace I du courant
- 4-5) Déterminer le déphasage P entre la tension u(t) et l'intensité i(t). En déduire l'expression numérique de
- 4-6) A l'aide de la construction de Fresnel, déterminer la relation donnant tanΦ, en fonction des paramètres du circuit. En déduire la valeur de la capacité C du condensateur.

FIN DU SUJET.