Solubilidad

Solubilidad. Efecto del ion común

- 1. La 25 °C el producto de solubilidad del Ba(IO₃)₂ es 6,5·10⁻¹⁰. Calcula:
 - a) Las concentraciones molares de los iones yodato y bario.
 - b) La masa de yodato de bario que si puede disolver en 200 cm³ de agua.
 - c) La solubilidad de la citada sal, en g/dm³, en una disolución de concentración 0,1 mol/dm³ de KIO₃ a 25 °C considerando que esta sal si encuentra totalmente disociado.

Problema tipo basado en A.B.A.U. jun. 19

Rta.: a) $s = [Ba^{2+}] = 5.5 \cdot 10^{-4} \text{ mol/dm}^3$; $[(IO_3)^-] = 1.1 \cdot 10^{-3} \text{ mol/dm}^3$; b) m = 0.053 g; c) $s' = 3.2 \cdot 10^{-5} \text{ g/dm}^3$.

Datos Cifras significativas: 2

Producto de solubilidad del Ba $(IO_3)_2$ $K_s = 6.5 \cdot 10^{-10}$

Concentración de la disolución del KIO_3 [KIO_3] = 0,10 mol/dm³

Masa molar del yodato de bario $M(Ba(IO_3)_2) = 487 \text{ g/mol}$

Incógnitas

Solubilidad (mol/dm³) del Ba(IO₃)₂ en agua sa

Concentraciones (mol/dm³) de los iones [IO₃], [Ba²+]

Solubilidad (g/dm³) del Ba(IO₃)₂ en KIO₃ 0,1 mol/dm³ s'

Ecuaciones

Produto de solubilidad del equilibrio: $B_bA_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) El equilibrio de solubilidad es:

$$Ba(IO_3)_2(s) \rightleftharpoons Ba^{2+}(aq) + 2 IO_3^{-}(aq)$$

		Ba(IO ₃) ₂	1	Ba ²⁺	2 IO ₃	
Concentración en el equilibrio	[X] _e			s	2 s	mol/dm³

La constante de equilibrio K_s es:

$$K_s = [Ba^{2+}]_e \cdot [IO_3^-]_e^2 = s (2 s)^2 = 4 s^3 = 6.5 \cdot 10^{-10}$$

La solubilidad del yodato de bario en agua vale:

$$s_a = \sqrt[3]{\frac{K_s}{4}} = \sqrt[3]{\frac{6.5 \cdot 10^{-10}}{4}} = 5.5 \cdot 10^{-4} \text{ mol Ba} (IO_3)_2 / \text{dm}^3 D$$

Las concentraciones de los iones valen:

$$[Ba^{2+}]_e = s = 5,5 \cdot 10^{-4} \text{ mol/dm}^3$$

 $[(IO_3)^-] = 2 \ s = 1,1 \cdot 10^{-3} \text{ mol/dm}^3$

b) En 200 cm³ de agua se disolverán:

$$n=200 \text{ cm}^{3} \text{ D} \frac{1 \text{ dm}^{3}}{10^{3} \text{ cm}^{3}} \frac{5.5 \cdot 10^{-4} \text{ mol Ba} (\text{IO}_{3})_{2}}{1 \text{ dm}^{3} \text{ D}} \frac{487 \text{ g mol Ba} (\text{IO}_{3})_{2}}{1 \text{ mol Ba} (\text{IO}_{3})_{2}} = 0,053 \text{ g Ba} (\text{IO}_{3})_{2}$$

c) El vodato de potasio está totalmente disociado.

$$KIO_3(s) \rightarrow K^+(aq) + IO_3^-(aq)$$

$$[IO_3^-] = [KIO_3] = 0.10 \text{ mol } IO_3^-/dm^3 D$$

Cuando se disuelve el yodato de bario en la disolución de yodato de potasio, que ya contiene iones yodato, las concentraciones son:

		Ba(IO ₃) ₂	=	Ba ²⁺	2 IO ₃	
Concentración inicial	[X] ₀			0	0,10	mol/dm³
Concentración que reacciona o si forma	[X] _r	S _b	\rightarrow	S_{b}	2 s _b	mol/dm³
Concentración en el equilibrio	[X] _e			S_{b}	$0,10 + 2 s_b$	mol/dm³

La constante de equilibrio K_s es:

$$K_s = [Ba^{2+}]_e \cdot [IO_3^-]_e^2 = s_b \cdot (0.10 + 2 s_b)^2 = 6.5 \cdot 10^{-10}$$

En primera aproximación, podemos considerar despreciable s_b frente a 0,1, ($s_b \ll 0,1$). Entonces:

$$s_b \cdot 0.10^2 \approx 6.5 \cdot 10^{-10}$$

 $s_b = \frac{6.5 \cdot 10^{-10}}{0.10^2} = 6.5 \cdot 10^{-8} \text{ mol/dm}^3$

Se ve que ese valor es despreciable frente a 0,10.

La concentración en g/dm³ es:

$$s' = \frac{6.5 \cdot 10^{-8} \text{ mol}}{1 \text{ dm}^3} \cdot \frac{487 \text{ g Ba} (IO_3)_2}{1 \text{ mol Ba} (IO_3)_2} = 3.2 \cdot 10^{-5} \text{ g/dm}^3$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u>
Las instrucciones para lo manejo de esta hoja de cálculo pueden verse en el enlace <u>instrucciones</u>.
Para ir a la hoja donde resolver un problema de equilibrio de solubilidad, puede elegir una de estas opciones:

- Busque la pestaña Solub en la zona inferior. Si no está a la vista, pulse varias veces en el icono
 de la pestaña situada en la zona inferior izquierda, hasta que aparezca por la derecha la pestaña
 Solub. Luego Pulse sobre esa pestaña.
- Vaya al índice, buscando el enlace Indice en la zona superior derecha y pulsando la tecla [Ctrl] mientras presiona sobre Indice. En el índice, pulse la tecla [Ctrl] mientras presiona sobre a celda Equilibrio de solubilidad de Equilibrio químico.

Escriba las fórmulas químicas en las celdas de color blanco con borde verde y los datos en las celdas de color blanco con borde azul. Pulse en las celdas de color naranja para elegir entre las opciones que se presentan.

DATOS:

		Volumen		Concentración	
Ion/compuesto soluble:	KIO3	200	cm³	0,1	mol/dm³

Elija ahora «g» a la derecha de «Solubilidad», «200 cm³» a la derecha de «En agua», y «1 dm³» a la derecha de «En D(KIO₃)». El resultado que aparece es:

Solubilidad	mol	g	en
En agua	$1,09 \cdot 10^{-4}$	0,0532	200 cm ³
En D(KIO ₃)	$6,50 \cdot 10^{-8}$	$3,17 \cdot 10^{-5}$	1 dm³

Precipitación

- 1. El producto de solubilidad del yoduro de plata es 8,3·10⁻¹⁷. Calcula:
 - a) La solubilidad del yoduro de plata expresada en g·dm⁻³
 - b) La masa de yoduro de sodio que si debe añadir la 100 cm³ de disolución de concentración 0,005 mol/dm³ de nitrato de plata para iniciar la precipitación del yoduro de plata.

(P.A.U. set. 10)

Rta.: a) $s = 2.1 \cdot 10^{-6} \text{ g/dm}^3$; b) $m = 2.5 \cdot 10^{-13} \text{ g NaI}$.

Datos Cifras significativas: 2

Producto de solubilidad del AgI $K_s = 8.3 \cdot 10^{-17}$

Volumen disolución de AgNO₃ $V_1 = 100 \text{ cm}^3 = 0,100 \text{ dm}^3$

Concentración de la disolución de AgNO₃ [AgNO₃] = 0,0050 mol/dm³

Masas molares: yoduro de plata M(AgI) = 235 g/mol

yoduro de sodio M(NaI) = 150 g/mol

Incógnitas

Solubilidad del yoduro de plata

Masa de yoduro de sodio para iniciar la precipitación m(NaI)

Ecuaciones

Cantidad (número de moles) n = m / M

Concentración molar (mol/dm³) s = n / V = s' / M

Producto de solubilidad del equilibrio: $B_b A_a(s) \rightleftharpoons b B^{\beta+}(aq) + a A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) El equilibrio de solubilidad es:

$$AgI(s) \rightleftharpoons Ag^{+}(aq) + I^{-}(aq)$$

Se llama s a la solubilidad, que es la concentración de sólido que se disuelve y, de acuerdo con la estequiometría, se deduce la concentración de los iones formados.

		AgI	\rightleftharpoons	Ag+	I-	
Concentración en el equilibrio	[X] _e			s	s	mol/dm³

La constante de equilibrio K_s es:

$$K_s = [Ag^+]_e \cdot [I^-]_e = s \cdot s = s^2 = 8.3 \cdot 10^{-17}$$

Se calcula la solubilidad:

$$s = \sqrt{K_s} = \sqrt{8.3 \cdot 10^{-17}} = 9.1 \cdot 10^{-9} \text{ mol AgI/dm}^3 \text{ D}$$

$$s'=9,1\cdot 10^{-9} \text{ mol AgI/dm}^3 \text{ D} \frac{235 \text{ g AgI}}{1 \text{ mol AgI}} = 2,1\cdot 10^{-6} \text{ g/dm}^3 \text{ D}$$

b) El AgNO₃ está totalmente disociado en la disolución:

$$AgNO_3(s) \rightarrow Ag^+(aq) + NO_3^-(aq)$$

La concentración del ion plata es:

$$[Ag^{+}] = [AgNO_{3}] = 0,0050 = 5,0\cdot10^{-3} \text{ mol/dm}^{3}$$

Se formará precipitado cuando $Q = [Ag^+] \cdot [I^-] \ge K_s$

$$[I^{-}] \ge \frac{K_s}{[Ag^{+}]} = \frac{8.3 \cdot 10^{-17}}{5.0 \cdot 10^{-3}} = 1.7 \cdot 10^{-14} \text{ mol/dm}^3$$

Cuando se disuelva el yoduro de sodio, se disociará totalmente:

$$NaI(s) \rightarrow I^{-}(aq) + Na^{+}(aq)$$

La concentración de yoduro de sodio será:

$$[NaI] = [I^{-}] = 1,7 \cdot 10^{-14} \text{ mol/dm}^{3}$$

Se calcula la masa de yoduro de sodio necesaria para preparar 100 cm³ de disolución de esa concentración:

$$m(\text{NaI}) = 0,100 \text{ dm}^3 \text{ D} \frac{1,7 \cdot 10^{-14} \text{ mol NaI}}{1 \text{ dm}^3 \text{ D}} \frac{150 \text{ g NaI}}{1 \text{ mol NaI}} = 2,5 \cdot 10^{-13} \text{ g NaI}$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u> DATOS:

Compuesto poco soluble: A	AgI	Producto de solubilidad		ilidad	8,30E-17 K _s		
RESULTADOS:	,						
	AgI(s)	=	⇒ Ag ⁺ (aq)	+	I-(aq)	
K_s	$= 8,30 \cdot 10^{-17}$		=	S	•	S	$= s^2$
Solubilida	d mo	ol/dm³			g/dm³		
En agua	a 9,1	1.10-9	2	,14·10-6	5		
En 1 L D(AgNO ₃	3) 1,60	6.10-14	3,	90.10-12	2		
Para el apartado b), en DATOS escr	iba:	_				<u>,</u>	
		Vo	olumen			Concentración	
Ion/compuesto solu	ıble: AgNO3		1	.00 cm³		0,005	mol/dm³
2º ion/compuesto solu							

En RESULTADOS, elija «Masa». Verá los resultados siguientes:

Precipitación Para que precipite AgI

Masa $m = 2,49 \cdot 10^{-13} \text{ g NaI}$

- 2. El producto de solubilidad del cloruro de plomo(II) es $1,6\cdot10^{-5}$ a 298 K.
 - a) Determina la solubilidad del cloruro de plomo(II) expresada en mol/dm³.
 - b) Se mezclan 200 cm³ de una disolución de concentración $1,0\cdot10^{-3}$ mol/dm³ de Pb(NO₃)₂ y 200 cm³ de una disolución de HCl de pH = 3,00. Suponiendo que los volúmenes son aditivos indica si precipitará cloruro de plomo(II).

(P.A.U. set. 12

Rta.: a) $s = 0.016 \text{ mol/dm}^3$; b) No.

DatosCifras significativas: 2Producto de solubilidad del PbCl2 $K_s = 1,6\cdot10^{-5}$ Volumen disolución de Pb(NO3)2 $V_1 = 200 \text{ cm}^3 = 0,20 \text{ dm}^3$ Concentración de la disolución del Pb(NO3)2 $[Pb(NO3)2]0 = 1,0\cdot10^{-3} \text{ mol/dm}^3$ Volumen disolución de HCl $V_2 = 200 \text{ cm}^3 = 0,20 \text{ dm}^3$

Datos	Cifras significativas: 2
pH de la disolución de HCl	pH = 3.0
Incógnitas	
Solubilidad del PbCl ₂	S
Si se formará precipitado	Q
Ecuaciones	
Canaantragión malar (mal/dm3)	a - m / V - a' / M

Concentración molar (mol/dm³) s = n / V = s' / M pH = $-\log[H^+]$ Producto de calabilidad del cavilibrio. P. A. (a) $\Rightarrow h R^{\beta+}(s,s) + s A^{\alpha-}(s,s)$ $V = [A^{\alpha-1}a, R^{\beta+}]$

Producto de solubilidad del equilibrio: $B_bA_a(s) \rightleftharpoons b \ B^{\beta+}(aq) + a \ A^{\alpha-}(aq)$ $K_s = [A^{\alpha-}]^a \cdot [B^{\beta+}]^b$

Solución:

a) El equilibrio de solubilidad es:

$$PbCl_2(s) \rightleftharpoons Pb^{2+}(aq) + 2 Cl^{-}(aq)$$

Se llama s a la solubilidad, que es la concentración de sólido que se disuelve y, de acuerdo con la estequiometría, se deduce la concentración de los iones formados.

		PbCl ₂	\rightleftharpoons	Pb ²⁺	2 Cl-	
Concentración en el equilibrio	[X] _e			s	2 s	mol/dm³

La constante de equilibrio es:

$$K_s = [Pb^{2+}]_e \cdot [Cl^{-}]_e^2 = s \cdot (2 \ s)^2 = 4 \ s^3 = 1,6 \cdot 10^{-5}$$

Se calcula la solubilidad:

$$s = \sqrt[3]{\frac{1.6 \cdot 10^{-5}}{4}} = 0.016 \text{ mol/dm}^3$$

b) El nitrato de plomo(II) disuelto está totalmente disociado.

$$Pb(NO_3)_2(s) \to Pb^{2+}(aq) + 2 (NO_3)^{-}(aq)$$

La concentración inicial del ion Pb2+ es:

$$[Pb^{2+}]_0 = [Pb(NO_3)_2]_0 = 1.0 \cdot 10^{-3} \text{ mol/dm}^3$$

La ionización del HCl disuelto es:

$$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$$

La concentración inicial de iones Cl⁻ es la misma que la de iones H⁺, que se calcula a partir del pH:

$$[H^{+}] = 10^{-pH} = 10^{-3,0} = 1,0 \cdot 10^{-3} \text{ mol/dm}^{3}$$

$$[Cl^{-}]_{0} = [H^{+}]_{0} = 1.0 \cdot 10^{-3} \text{ mol/dm}^{3}$$

Al mezclar ambas disoluciones, se diluyen. Como los volúmenes se consideran aditivos, el volumen de la mezcla es la suma de los volúmenes de cada disolución y las nuevas concentraciones son:

$$[Pb^{2+}] = \frac{n(Pb^{2+})}{V_{T}} = \frac{0.20[dm^{3}] \cdot 1.0 \cdot 10^{-3}[mol Pb^{2+}/dm^{3}]}{0.40[dm^{3}]} = 5.0 \cdot 10^{-4} mol Pb^{2+}/dm^{3}$$

$$[Cl^{-}] = \frac{n(Cl^{-})}{V_{T}} = \frac{0,20 \,dm^{3} \cdot 1,0 \,time \,10^{-3} \,mol \,Cl^{-}/dm^{3}}{0,40 \,dm^{3}} = 5,0 \cdot 10^{-4} \,mol \,Cl^{-}/dm^{3}$$

Se formará precipitado si $Q = [Pb^{2+}] \cdot [Cl^{-}]^{2} > K_{s}$

$$Q = [Pb^{2+}] \cdot [Cl^{-}]^2 = 5.0 \cdot 10^{-4} \cdot (5.0 \cdot 10^{-4})^2 = 1.3 \cdot 10^{-10} < 1.6 \cdot 10^{-5}$$

Por tanto, no se forma precipitado.

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u> DATOS:

Compuesto poco soluble	: PbCl2		Proc	lucto de	solubi	lidad	1,60E-05	Ks
RESULTADOS:								
	PbCl ₂ (s)		\rightleftharpoons	Pb2+(ac	1)	+	2 Cl ⁻ (aq)	
$K_s =$	$1,60\cdot 10^{-5}$		=	S	3		$(2 s)^2$	$=4 s^3$
Solubilidad	me	ol/dn	n³			g/dm	³ pH	I
En agua		0,015	59		4,41			
Para el apartado b), en DATOS escriba								
			Volum	en			Concentración	
Ión/compuesto soluble	: Pb(NO3)2		200		cm³		1,00E-03	mol/dm³
2º ión∕ compuesto soluble	: HCl		200		cm³		3	рН

Verá los resultados siguientes:

Precipitación No
$$[Pb^{2+}]^2 \cdot [Cl^-]^2 = 5,00 \cdot 10^{-4} \cdot (5,00 \cdot 10^{-4})^2$$

 $< K_s = 1,60 \cdot 10^{-5}$

- 3. Se disponen de una disolución que contiene una concentración de Cd²+ de 1,1 mg/dm³. Se quiere eliminar parte del Cd²+ precipitándolo con un hidróxido, en forma de Cd(OH)₂. Calcula:
 - a) El pH necesario para iniciar la precipitación.
 - b) La concentración de Cd^{2+} , en mg/dm^3 , cuando el pH es igual a 12. $K_s(Cd(OH)_2) = 1,2\cdot 10^{-14}$.

(P.A.U. jun. 16)

Rta.: la) pH = 9,5; b) $[Cd^{2+}]_b = 1,3\cdot10^{-5} \text{ mg/dm}^3$.

Datos	Cifras significativas: 2
Producto de solubilidad del Cd(OH) ₂	$K_{\rm s} = 1.2 \cdot 10^{-14}$
Concentración de ion cadmio	$[Cd^{2+}] = 1.1 \text{ mg/dm}^3$
Masa atómica: Cd	M(Cd) = 112 g/mol
pH para calcular la [Cd²+] en el apartado b	$pH_b = 12$
Incógnitas	
pH necesario para iniciar la precipitación	рН
Concentración de ion cadmio a pH = 12	$[\mathrm{Cd}^{2^+}]_{\mathfrak{b}}$
Ecuaciones	
Concentración molar (mol/dm³)	s = n / V = s' / M
pH	$pH = -log[H^+]$
рОН	$pOH = -log[OH^{-}]$
Producto iónico del agua	$K_{\rm w} = [{\rm H^+}]_{\rm e} \cdot [{\rm OH^-}]_{\rm e} = 1,00 \cdot 10^{-14}$ ${\rm p}K_{\rm w} = {\rm pH} + {\rm pOH} = 14,00$
Producto de solubilidad del equilibrio: $B_bA_a(s) \rightleftharpoons bB^{\beta +}(aq) + aA^{\alpha -}(aq)$	$K_{\rm s} = [{\rm A}^{\alpha-}]^{\rm a} \cdot [{\rm B}^{\beta+}]^{\rm b}$

Solución:

a) El equilibrio de solubilidad del Cd(OH)₂ es:

$$Cd(OH)_2(s) \rightleftharpoons Cd(OH)_2(aq) \rightarrow Cd^{2+}(aq) + 2OH^{-}(aq)$$

La constante de equilibrio K_s de solubilidad en función de las concentraciones es:

$$K_{\rm s} = [{\rm Cd}^{2+}]_{\rm e} \cdot [{\rm OH}^{-}]_{\rm e}^{2}$$

El Cd(OH)₂ precipitará cuando el producto de las concentraciones sea mayor o igual a su producto de solubilidad.

$$Q = \lceil Cd^{2+} \rceil \cdot \lceil OH^{-} \rceil^{2} > K_{s}$$

Se calcula la concentración de ion cadmio:

$$[Cd^{2+}] = \frac{1.1 \text{ mg}}{1 \text{ dm}^3} \frac{1 \text{ g}}{10^3 \text{ mg}} \frac{1 \text{ mol } Cd^{2+}}{112 \text{ g } Cd^{2+}} = 9.8 \cdot 10^{-6} \text{ mol/dm}^3$$

Suponiendo que esta concentración no varía al añadirle una disolución que contenga iones hidróxido, la concentración de iones hidróxido necesaria para que comience a precipitar hidróxido de cadmio es:

$$[OH^{-}] = \sqrt{\frac{K_s}{[Cd^{2+}]}} = \sqrt{\frac{1,20 \cdot 10^{-14}}{9,8 \cdot 10^{-6}}} = 3,5 \cdot 10^{-5} \text{ mol/dm}^{3}$$

Se calculan el pOH y el pH:

$$pOH = -log[OH^{-}] = -log(3,5 \cdot 10^{-5}) = 4,5$$

$$pH = 14.0 - pOH = 14.0 - 4.5 = 9.5$$

b) Cuando el pH = 12, el pOH = 14 – 12 = 2, y la concentración de iones hidróxido vale:

$$[OH^{-}]_{b} = 10^{-pOH} = 10^{-2} = 0.010 \text{ mol/dm}^{3}$$

La concentración de iones cadmio se calcula a partir del producto de solubilidad:

$$[Cd^{2+}]_b = \frac{K_s}{[OH^{-1}]^2} = \frac{1,20 \cdot 10^{-14}}{0.010^2} = 1,20 \cdot 10^{-10} \text{ mol/dm}^3$$

$$[Cd^{2+}]_b = \frac{1,20 \cdot 10^{-10} \text{ mol}}{1 \text{ dm}^3} \frac{112 \text{ g } Cd^{2+}}{1 \text{ mol } Cd^{2+}} \frac{10^3 \text{ mg}}{1 \text{ g}} = 1,3 \cdot 10^{-5} \text{ mg/dm}^3$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>Quimica (es)</u> DATOS:

Compuesto poco soluble:	Cd(OH)2	Producto de solubilidad			1,20E-14	Ks
2º compuesto poco soluble:				solubilidad		
			Volumen		Concentración	
Ion/compuesto soluble:	Cd ²⁺				1,10E-03	g/dm³
2° ion/compuesto soluble:	OH-					
Soluto en la disolución que se añade:						
DECLUTADOS 1: II II / 1	1, 1					

En RESULTADOS elija pH. Verá los resultados siguientes:

Eli RESOLTADOS enja pri. vera los resultados siguientes.											
Cd(OH) ₂ (s)	Cd ²⁺ (aq)	+	2 (OH) ⁻ (aq)							
$K_s = 1,20 \cdot 10^{-14}$	=	S	•	$(2 s)^2$	$=4 s^3$						
ilidad 1	mol/dm³		g/dm³	pН							
agua	$1,44\cdot 10^{-5}$	0,00211		9,46							
(Cd^{2+})	$1,18 \cdot 10^{-5}$	0,00173									
	$Cd(OH)_2(s)$ $K_s = 1,20 \cdot 10^{-14}$ ilidad 1	$Cd(OH)_{2}(s) \iff$ $K_{s} = 1,20 \cdot 10^{-14} =$ $ilidad mol/dm^{3}$ $agua 1,44 \cdot 10^{-5}$	$Cd(OH)_{2}(s) \iff Cd^{2+}(aq)$ $K_{s} = 1,20 \cdot 10^{-14} = s$ ilidad mol/dm³ agua 1,44 \cdot 10^{-5} 0,00211	$Cd(OH)_2(s)$ \rightleftharpoons $Cd^{2+}(aq)$ + $K_s = 1,20 \cdot 10^{-14}$ = s · illidad mol/dm³ g/dm³ agua 1,44·10 ⁻⁵ 0,00211	$Cd(OH)_{2}(s) \iff Cd^{2+}(aq) + 2 (OH)^{-}(aq)$ $K_{s} = 1,20 \cdot 10^{-14} = s \cdot (2 \text{ s})^{2}$ ilidad mol/dm³ g/dm³ pH agua 1,44·10 ⁻⁵ 0,00211 9,46						

Precipitación						
Para que precipite (Cd(OH) ₂					
pH		pH =	9,54			
Para el apartado b), en DATOS escriba:						
2º ion/compuesto soluble:	OH-			12 pH		
En RESULTADOS elija «Concentración final de Cd²+»						
Precipitación	Sí					
$[Cd^{2+}] \cdot [(OH)^{-}]^2 = 9.79 \cdot 10^{-6} \cdot (0.0100)^2$ $> K_s = 1.20 \cdot 10^{-14}$				$1,20\cdot10^{-14}$		
Concentración final de Cd²+	[Cd	²⁺] _e =	1,20·10 ⁻¹⁰ mol/L	$= 1,35 \cdot 10^{-8} \text{ g/dm}^3$		

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una hoja de cálculo de LibreOffice del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión <u>CLC09</u> de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de <u>traducindote</u>, y del <u>traductor de la CIXUG</u>.

Se procuró seguir las recomendaciones del Centro Español de Metrología (CEM).

Se consultó al Copilot de Microsoft Edge y se tuvieron en cuenta algunas de sus respuestas en las cuestiones.

Actualizado:30/09/24

Sumario

SOI	IJВ	ш	DAD

Solul	bilidad. Efecto del ion comúnbilidad. Efecto del ion común	1
	La 25 °C el producto de solubilidad del Ba(IO ₃) ₂ es 6,5·10 ⁻¹⁰ . Calcula:	
	a) Las concentraciones molares de los iones yodato y bario	
	b) La masa de yodato de bario que si puede disolver en 200 cm³ de agua	
	c) La solubilidad de la citada sal, en g/dm³, en una disolución de concentración 0,1 mol/dm³ de	
	KIO₃ a 25 °C considerando que esta sal si encuentra totalmente disociado	
Preci	pitación	3
	El producto de solubilidad del yoduro de plata es 8,3·10 ⁻¹⁷ . Calcula:	
	a) La solubilidad del yoduro de plata expresada en g·dm ⁻³	
	b) La masa de yoduro de sodio que si debe añadir la 100 cm³ de disolución de concentración	
	0,005 mol/dm³ de nitrato de plata para iniciar la precipitación del yoduro de plata	
2.	El producto de solubilidad del cloruro de plomo(II) es 1,6·10 ⁻⁵ a 298 K	4
	a) Determina la solubilidad del cloruro de plomo(II) expresada en mol/dm³	
	b) Se mezclan 200 cm³ de una disolución de concentración 1,0·10 ⁻³ mol/dm³ de Pb(NO ₃) ₂ y 200 cm²	m^3
	de una disolución de HCl de pH = 3,00. Suponiendo que los volúmenes son aditivos indica si	
	precipitará cloruro de plomo(II)	
3.	Se disponen de una disolución que contiene una concentración de Cd²+ de 1,1 mg/dm³. Se quiere	
	eliminar parte del Cd ²⁺ precipitándolo con un hidróxido, en forma de Cd(OH) ₂ . Calcula:	6
	a) El pH necesario para iniciar la precipitación	
	b) La concentración de Cd²+, en mg/dm³, cuando el pH es igual a 12	