Expectation Maximization

A Method for estimating the parameters of a probabilistic model a.k.a.

An algorithm for Machine Learning

Slides prepared by Pushpendre Rastogi

Preliminaries

- PRML uses chapter 9.1-9.3 to gently introduce EM
 - I will start from Section 9.4 and use 9.3 as example

Recall: The goal in Machine Learning is to minimize true risk of a predictor $E_{p(x,y)}[l(y,f_{\theta}(x))]$

- Probabilistic Approach: Use data to estimate $\hat{p}_{\theta}(x, y)$ that approximates p(x, y), then $f_{\theta}(x) = \arg\min_{\hat{y} \in \mathcal{U}} E_{\hat{p}_{\theta}(y|x)}[l(y, \hat{y})]$
- How to search for optimal $\hat{p}_{\theta}(y;x)$ or $\hat{p}_{\theta}(y,x)$?
 - Graphical Models are a language for specifying a family of distributions,
 D-separation Conditional Independence define the space of distributions.
 - Searching for $\hat{p}_{\theta}(x, y)$ requires Estimation Methods
 - MLE is a general rule for estimation of the parameters of a probabilistic model. MLE requires exact data likelihood
 - Many of the times computing the exact data likelihood is intractable then you need the **EM algorithm.** I.e. EM is an approximation algorithm for MLE.

The Probabilistic Model

- ☐ Denote ALL observed variables by X
- ☐ Denote ALL hidden variables by Z (also called **H**(hidden), or **L**(latent), or **Y**(output))
 - We only observe the values of X
- ☐ According to the model the joint distribution is governed by parameters $p_{\theta}(X, Z \mid \theta)$
 - NOT conditional dist. $p_{\theta}(X|Z)$, $p_{\theta}(Z|X)$
- ☐ Our goal is to implement the MLE rule to learn/estimate $\hat{\theta}^{MLE}$ by maximizing $p(X|\theta)$: $p(X|\theta) = \sum_{Z} p(X, Z \mid \theta)$
- \square EM necessary when computing $p(X|\theta)$ is intractable (Examples)

Unsupervised Naïve Bayes

 $X = \{X_1, ..., X_4\}$ $Z = \{Y\}$

Say we only observe a big corpus of emails but no labels. We want to estimate

$$\theta_{ij} = p(x_i = 1 \mid Y = j)$$
Tractable Summation

EM not necessary in vanilla model, but with parametric priors

The Probabilistic Model

- ☐ Denote ALL observed variables by X
- ☐ Denote ALL hidden variables by Z (also called H(hidden), or L(latent), or Y(output))
 - We only observe the values of X
- ☐ According to the model the joint distribution is governed by parameters $p_{\theta}(X, Z \mid \theta)$
 - NOT conditional dist. $p_{\theta}(X|Z)$, $p_{\theta}(Z|X)$
- ☐ Our goal is to implement the MLE rule to learn/estimate $\hat{\theta}^{MLE}$ by maximizing $p(X|\theta)$: $p(X|\theta) = \sum_{Z} p(X, Z \mid \theta)$
- \square EM Necessary when computing $p(X|\theta)$ is intractable (Examples)

Gaussian Mixture Model

 $Z = \{z_1, \dots, z_N\}$

 $X = \{x_1, ... x_N\}$

We want to estimate $\pi = Mixture Probabilities$

 $\mu = Component Means$

 $\Sigma = Component Variances$

by maximizing $p(X \mid \pi, \mu, \Sigma)$

EM not necessary (in this model),

The EM Algorithm

- Goal is to maximize $p(X|\theta) = \sum_{Z} p(X, Z \mid \theta)$
- The EM algorithm: Create the following sequence (θ^t) $\theta^0 \leftarrow \text{Smart or Random Initialization}$

 $\boldsymbol{\theta}^{t+1} \leftarrow \underset{\boldsymbol{\theta}}{\operatorname{argmax}} \underset{p(\mathbf{Z}|\mathbf{X},\boldsymbol{\theta}^t)}{\operatorname{E}} [\log(p(\mathbf{X},\mathbf{Z}\mid\boldsymbol{\theta}))]$

• EM update rule guarantees that $p(X|\theta^{t+1}) > p(X|\theta^t)$ \Rightarrow Convergence to local optima if $p(X|\theta)$ is bounded.

Glossary

Z is a random variable.

 $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta^t})$ is the posterior distribution over **Z**.

 $p(X, Z \mid \theta)$ is a function of **Z** (**X** and θ are fixed).

 $\mathop{\mathbb{E}}_{p(\pmb{Z}|\pmb{X},\pmb{ heta}^t)}[\log(p(\pmb{X},\pmb{Z}\mid\pmb{ heta}))]$ is a function of $\pmb{ heta}$ alone. (Also called Q function)

Common Special Case: EM with IID data points

• Assume that two distinct data points (x_i, z_i) and (x_j, z_j) are i.i.d. distributed given θ . This is typically the case when observations are independently generated.

Then
$$p(\boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{\theta})$$

$$= \frac{p(\boldsymbol{X}, \boldsymbol{Z} \mid \boldsymbol{\theta})}{\sum_{\boldsymbol{Z}} p(\boldsymbol{X}, \boldsymbol{Z} \mid \boldsymbol{\theta})} = \frac{\prod_{i=1}^{N} p(x_{i}, z_{i} \mid \boldsymbol{\theta})}{\sum_{\boldsymbol{Z}} \prod_{i=1}^{N} p(x_{i}, z_{i} \mid \boldsymbol{\theta})}$$

$$= \frac{\prod_{i=1}^{N} p(x_{i}, z_{i} \mid \boldsymbol{\theta})}{\prod_{i=1}^{N} \sum_{\boldsymbol{Z}} p(x_{i}, z_{i} \mid \boldsymbol{\theta})} = \prod_{i=1}^{N} p(z_{i} \mid \boldsymbol{x}_{i}, \boldsymbol{\theta})$$
And $\underset{p(\boldsymbol{Z} \mid \boldsymbol{X}, \boldsymbol{\theta}^{t})}{\text{E}} [\log(p(\boldsymbol{X}, \boldsymbol{Z} \mid \boldsymbol{\theta}))] \text{ decomposes into}$

$$\sum_{i} \underset{p(\boldsymbol{z} \mid \boldsymbol{X}_{i}, \boldsymbol{\theta}^{t})}{\text{E}} [\log(p(\boldsymbol{x}_{i}, \boldsymbol{z} \mid \boldsymbol{\theta}))]$$

Potential Generalization: Generalized EM

Instead of **maximizing** the lower bound \mathcal{L} any θ that slightly bumps it up

 $\mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^t), \boldsymbol{\theta}^{t+1})$

will also do.

 $\log(p(\mathbf{X}|\boldsymbol{\theta}^t))$ $= \mathcal{L}(p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^t), \boldsymbol{\theta}^t)$

For example, Line Search along the gradient will work.

Incremental EM (Motivation)

When $p(\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{\theta}) = \prod_{i=1}^{N} p(x_i, z_i | \boldsymbol{\theta})$ Then $p(\boldsymbol{Z} | \boldsymbol{X}, \boldsymbol{\theta}) = \prod_{i=1}^{N} p(z_i | x_i, \boldsymbol{\theta})$ (Slide 8) $\Rightarrow \mathcal{L}(q = p(\boldsymbol{Z} | \boldsymbol{X}, \boldsymbol{\theta}), \boldsymbol{\theta}') = \sum_{\boldsymbol{z}} p(\boldsymbol{Z} | \boldsymbol{X}, \boldsymbol{\theta}) \log \frac{p(\boldsymbol{X}, \boldsymbol{Z} | \boldsymbol{\theta}')}{p(\boldsymbol{Z} | \boldsymbol{X}, \boldsymbol{\theta})}$ $= \sum_{i=1}^{N} \sum_{\boldsymbol{z}} p(\boldsymbol{z} | x_i, \boldsymbol{\theta}) \log \frac{p(x_i, \boldsymbol{z} | \boldsymbol{\theta}')}{p(\boldsymbol{z} | x_i, \boldsymbol{\theta})}$

Therefore the objective function decomposes into a sum

Furthermore, any value of θ that globally maximizes $\mathcal{L}(q = p(Z \mid X, \theta), \theta')$ subject to $\theta' = \theta$ is a global optima of $p(X|\theta)$ (Why)?

This suggests possibility for incremental update (Come back to it later)

GMM

N

GMM Example: EM, Latent Variables, and Expected Sufficient Statistics

 $= E_{q(Z)}[\sum_{n \in [N], k \in [K]} z_{nk} \left(\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)\right)] \ (2)$

 $= \sum_{n \in [N], k \in [K]} E_{q(Z)}[z_{nk}] \left(\log \pi_k + \log \mathcal{N}(x_n | \mu_k, \Sigma_k)\right) (3)$

Maximize w.r.t. to π by setting:

$$\pi_k \propto \sum_{n \in [N]} E_{q(Z)}[z_{nk}]$$

Maximize wrt μ_k , Σ_k by solving K weighted Least Squares problems.

$$\begin{aligned} & \operatorname{argmax}_{\{\mu_k, \Sigma_k\}} \sum_{n} - E_{q(Z)}[z_{nk}] (\mu_k - x_n)^T \Sigma_k^{-1} (\mu_k - x_n) \\ & \propto \left(\left[E_{q(Z)}[z_{nk}] \right] x_n, \sum_{n} \left[E_{q(Z)}[z_{nk}] \right] | x_n - \mu_n | x_n^T - \mu_n^T \end{aligned}$$

The values $E_{q(Z)}[z_{nk}]$ (with $q = p(\mathbf{Z} \mid \mathbf{X}, \boldsymbol{\theta^t})$) are called the expected sufficient statistics. Since in exponential family models the loglikelihood will be linear with respect to these values.

Structured Prediction

(With Special Focus on Sequence Prediction)

* Parts of the following presentation were taken from Professor Mark Dredze's slides

What is Structured Prediction?

- Input: x
 - Typically a structured input
 - Maintain structure of input in x
 - Do not flatten into list of features in an instance
- Output: y
 - y is now from a large set of possible outputs, ${oldsymbol y}$
 - Output space y defined based on input
 - · Often exponential in size of input

Approaches for structured prediction and why we need special approaches?

- Natural Multi-class algorithms (e.g. Softmax Logistic regression classifiers) don't work with
 - Exponential number of output
 - Outputs defined based on input
- Graphical models for structured prediction
 - Sequences: HMMs and CRFs
- Score based linear models
 - Perceptron, SVM

Sequential Models

- Simple approach
 - Each event is independent

- $p(x_1, x_2, ..., x_N) = \prod_{n \in [N]} p(x_n)$
- Simple, but not very helpful
- The goldilocks Approach
 - Markov Assumption

- Complex approach
 - Each event is dependent on previous events

- $p(x_1, x_2, ..., x_N) = \prod_{n \in [N]} p(x_n | x_1, ..., x_{n-1})$
- Captures dependencies, but way too complex

Markov Chains and the Markov Assumption

First order Markov chain

· Second order Markov chain

$$p(X_1, X_2 ... X_N) = \prod_{n=1}^{N} p(X_n \mid X_{n-1}, X_{n-2})$$

Markov Assumption

- The current state depends on a fixed number of previous states
 - The weather today depends on the past three days, but NOT two weeks ago
- A tractable model that models limited influence of history

Markov Blankets and Conditional Independence in HMMs

- The Markov blanket for z_n contains $z_{n\text{-}1}$, $z_{n\text{+}1}$ and x_n
- The Markov blanket for x_n contains z_n
- Nodes are dependent on a small number of neighbors

Conditional Probability Tables

Definition: A stationary markov chain is a markov chain where the conditional probability distributions remain the same for each node.

Sequence Models

A HMM is a directed graphical model (BN)

What happens if we have an undirected graphical model?

- Markov Random Field (For modelling $p(\mathbf{Z}, \mathbf{X})$)
- Conditional Random Fields (For modelling $p(\mathbf{Z} \mid \mathbf{X})$) Go over it in detail later