Module EA4 – Éléments d'Algorithmique II Outils pour l'analyse des algorithmes

Dominique Poulalhon dominique.poulalhon@irif.fr

Université de Paris L2 Informatique & DL Bio-Info, Jap-Info, Math-Info Année universitaire 2023-2024

Borne inférieure de complexité

tout algorithme de tri par comparaisons nécessite $\Omega(n \log n)$ comparaisons dans le pire cas (et en moyenne)

Borne inférieure de complexité

tout algorithme de tri par comparaisons nécessite $\Omega(n \log n)$ comparaisons dans le pire cas (et en moyenne)

Tri par fusion

- $\Theta(n \log n)$ comparaisons au pire (mais dans tous les cas),
- la constante cachée dans le Θ est importante,
- ne trie *pas en place* : complexité en espace $\in \Theta(n)$

Borne inférieure de complexité

tout algorithme de tri par comparaisons nécessite $\Omega(n \log n)$ comparaisons dans le pire cas (et en moyenne)

Tri par fusion

- $\Theta(n \log n)$ comparaisons au pire (mais dans tous les cas),
- la constante cachée dans le Θ est importante,
- ne trie pas en place: complexité en espace $\Theta(n)$

Tri par insertion

- $\Theta(n^2)$ comparaisons *au pire*, $\Theta(n)$ *au mieux*,
- trie en place

Borne inférieure de complexité

tout algorithme de tri par comparaisons nécessite $\Omega(n \log n)$ comparaisons dans le pire cas (et en moyenne)

Tri par fusion

- $\Theta(n \log n)$ comparaisons au pire (mais dans tous les cas),
- la constante cachée dans le Θ est importante,
- ne trie pas en place: complexité en espace $\Theta(n)$

Tri par insertion

- $\Theta(n^2)$ comparaisons *au pire*, $\Theta(n)$ *au mieux*,
- trie en place
- quid de la complexité en moyenne du tri par insertion?
- dans quels cas trie-t-il en Θ(n)?
- existe-t-il un algorithme plus efficace en moyenne que le tri fusion?
- ... et qui trie en place?

```
\begin{array}{l} \text{point fixe} = \text{\'el\'ement } i \in \llbracket 1, n \rrbracket \text{ t.q. } \sigma(i) = i \\ \text{point mobile} = \text{\'el\'ement } i \in \llbracket 1, n \rrbracket \text{ t.q. } \sigma(i) \neq i \\ \text{support} = \text{ensemble des points mobiles de } \sigma \text{ (not\'e Supp}(\sigma)) \end{array}
```

```
point fixe = élément i \in [1, n] t.q. \sigma(i) = i
point mobile = élément i \in [1, n] t.q. \sigma(i) \neq i
support = ensemble des points mobiles de \sigma (noté Supp(\sigma))
```

```
transposition = permutation ayant exactement 2 points mobiles (et donc exactement n-2 points fixes) si Supp(\tau) = \{i, j\}, on note \tau = (i j)
```

```
point fixe = élément i \in [1, n] t.q. \sigma(i) = i
point mobile = élément i \in [1, n] t.q. \sigma(i) \neq i
support = ensemble des points mobiles de \sigma (noté Supp(\sigma))
```

```
transposition = permutation ayant exactement 2 points mobiles (et donc exactement n-2 points fixes) si Supp(\tau) = \{i, j\}, on note \tau = (i \ j)
```

action par produit à *gauche* : si
$$\sigma \in \mathfrak{S}_n$$
, alors
$$(i \ j) \ \sigma = (i \ j) \circ \sigma : \ k \longmapsto \begin{cases} i & \text{si } k = \sigma^{-1}(j) \\ j & \text{si } k = \sigma^{-1}(i) \\ \sigma(k) & \text{sinon} \end{cases}$$


```
point fixe = élément i \in [1, n] t.q. \sigma(i) = i
point mobile = élément i \in [1, n] t.q. \sigma(i) \neq i
support = ensemble des points mobiles de \sigma (noté Supp(\sigma))
```

```
 \begin{array}{c} transposition = permutation \ ayant \ exactement \ 2 \ points \ mobiles \\ & (et \ donc \ exactement \ n-2 \ points \ fixes) \\ si \ Supp(\tau) = \{i,j\}, \ on \ note \ \tau = (i\ j) \end{array}
```

```
point fixe = élément i \in [1, n] t.q. \sigma(i) = i
point mobile = élément i \in [1, n] t.q. \sigma(i) \neq i
support = ensemble des points mobiles de \sigma (noté Supp(\sigma))
```

```
transposition = permutation ayant exactement 2 points mobiles (et donc exactement n-2 points fixes) si Supp(\tau) = \{i, j\}, on note \tau = (i j)
```

action par produit à
$$droite$$
 : $si \ \sigma \in \mathfrak{S}_n$, alors
$$\sigma \ (i \ j) = \sigma \circ (i \ j) \ : \ k \longmapsto \begin{cases} \sigma(j) & \text{si } k = i \\ \sigma(i) & \text{si } k = j \\ \sigma(k) & \text{sinon} \end{cases}$$

```
point fixe = élément i \in [1, n] t.q. \sigma(i) = i
point mobile = élément i \in [1, n] t.q. \sigma(i) \neq i
support = ensemble des points mobiles de \sigma (noté Supp(\sigma))
```

```
 \begin{array}{c} transposition = permutation \ ayant \ exactement \ 2 \ points \ mobiles \\ & (et \ donc \ exactement \ n-2 \ points \ fixes) \\ si \ Supp(\tau) = \{i,j\}, \ on \ note \ \tau = (i\ j) \end{array}
```

```
action par produit à droite : si \ \sigma \in \mathfrak{S}_n, alors \sigma \ (i \ j) = \sigma \circ (i \ j) \ : \ k \longmapsto \begin{cases} \sigma(j) & \text{si } k = i \\ \sigma(i) & \text{si } k = j \\ \sigma(k) & \text{sinon} \end{cases} = \acute{e}change des éléments en positions i et j
```

Action des transpositions sur les permutations

- produit \grave{a} gauche par $(i\ j)\Leftrightarrow \acute{e}$ change des valeurs i et j
- \bullet produit à droite par (i j) \Leftrightarrow échange des (éléments en) positions i et j

Action des transpositions sur les permutations

- produit \grave{a} gauche par $(i\ j)\Leftrightarrow \acute{e}$ change des $valeurs\ i$ et j
- produit à droite par $(i j) \Leftrightarrow$ échange des (éléments en) positions i et j

Lemme

toute permutation peut être décomposée en produit de transpositions

Action des transpositions sur les permutations

- produit \grave{a} gauche par $(i\ j)\Leftrightarrow \acute{e}$ change des valeurs i et j
- produit à droite par $(i j) \Leftrightarrow$ échange des (éléments en) positions i et j

Lemme

toute permutation peut être décomposée en produit de transpositions

c'est ce que calcule tout algorithme de tri par comparaisons/échanges

Action des transpositions sur les permutations

- produit \grave{a} gauche par $(i j) \Leftrightarrow \acute{e}$ change des valeurs i et j
- produit à droite par $(i j) \Leftrightarrow$ échange des (éléments en) positions i et j

Lemme

toute permutation peut être décomposée en produit de transpositions

c'est ce que calcule tout algorithme de tri par comparaisons/échanges

Par exemple, en exécutant le tri par sélection on obtient :

Lemme

toute permutation σ possède une unique décomposition en produit de transpositions $(a_1\ b_1)(a_2\ b_2)\dots(a_\ell\ b_\ell)$ avec la contrainte :

$$\forall i \leq \ell, \ a_i < b_i \ et \ a_1 < a_2 < \cdots < a_\ell$$

Lemme

toute permutation σ possède une unique décomposition en produit de transpositions $(a_1\ b_1)(a_2\ b_2)\dots(a_\ell\ b_\ell)$ avec la contrainte :

$$\forall i \leq \ell, \ a_i < b_i \ et \ a_1 < a_2 < \cdots < a_\ell$$

Lemme

toute permutation σ possède une unique décomposition en produit de transpositions $(a_1 \ b_1)(a_2 \ b_2)\dots(a_\ell \ b_\ell)$ avec la contrainte : $\forall i \leq \ell, \ a_i < b_i \ et \ a_1 < a_2 < \dots < a_\ell$

```
De manière équivalente, \sigma = \tau_1 \dots \tau_n avec pour chaque i: \tau_i = id ou \tau_i = (i\ b_i) avec b_i > i \implies le nombre de tels produits est donc exactement n!
```

Lemme

toute permutation σ possède une unique décomposition en produit de transpositions $(a_1\ b_1)(a_2\ b_2)\dots(a_\ell\ b_\ell)$ avec la contrainte :

$$\forall i \leq \ell, \ a_i < b_i \ et \ a_1 < a_2 < \cdots < a_\ell$$

De manière équivalente, $\sigma = \tau_1 \dots \tau_n$ avec pour chaque $i : \tau_i = id$ ou $\tau_i = (i \ b_i)$ avec $b_i > i \implies$ le nombre de tels produits est donc exactement n!

Dit autrement : tout tableau peut être trié en échangeant

- les éléments en position 1 et b_1 , pour un $b_1 \ge 1$ bien choisi,
- puis les éléments en position 2 et b_2 , pour un $b_2 \ge 2$ bien choisi,
- ...

Lemme

toute permutation σ possède une unique décomposition en produit de transpositions $(a_1 \ b_1)(a_2 \ b_2)\dots(a_\ell \ b_\ell)$ avec la contrainte :

$$\forall i \leq \ell, \ a_i < b_i \ et \ a_1 < a_2 < \cdots < a_\ell$$

De manière équivalente, $\sigma = \tau_1 \dots \tau_n$ avec pour chaque i :

$$\tau_i = id$$
 ou $\tau_i = (i b_i)$ avec $b_i > i$

⇒ le nombre de tels produits est donc exactement n!

Dit autrement : tout tableau peut être trié en échangeant

- les éléments en position 1 et b_1 , pour un $b_1 \ge 1$ bien choisi,
- puis les éléments en position 2 et b_2 , pour un $b_2 \ge 2$ bien choisi,
- ...

Démonstration.

C'est très exactement ce que fait le tri par sélection (version en place)!

Aparté : génération aléatoire de permutations

RandomPermutation(n)

construire une des $\mathfrak{n}!$ permutations de taille \mathfrak{n} selon la loi de probabilité uniforme

APARTÉ : GÉNÉRATION ALÉATOIRE DE PERMUTATIONS

RandomPermutation(n)

construire une des n! permutations de taille n selon la loi de probabilité uniforme

(i.e. : si on exécute tous les comportements (aléatoires) possibles, chaque permutation doit être obtenue le même nombre de fois)

APARTÉ : GÉNÉRATION ALÉATOIRE DE PERMUTATIONS

RandomPermutation(n)

construire une des n! permutations de taille n selon la loi de probabilité uniforme

(i.e.: si on exécute tous les comportements (aléatoires) possibles, chaque permutation doit être obtenue le même nombre de fois)

Principe : mimer un tri par sélection, en remplaçant la recherche de l'indice du minimum par le tirage aléatoire d'un indice dans le bon intervalle.

APARTÉ : GÉNÉRATION ALÉATOIRE DE PERMUTATIONS

RandomPermutation(n)

construire une des n! permutations de taille n selon la loi de probabilité uniforme

(i.e. : si on exécute tous les comportements (aléatoires) possibles, chaque permutation doit être obtenue le même nombre de fois)

```
from random import randint # générateur uniforme d'entiers
def randomPerm(n) :
   T = [ i+1 for i in range(n) ] # T = [ 1, 2, ..., n ]
   for i in range(n-1) :
      r = randint(i, n-1) # entier aléatoire dans [i, n-1]
      if i != r : T[i], T[r] = T[r], T[i]
   return T
```

Complexité : $\Theta(n)$ tirages aléatoires d'entiers

 $\boxed{3}\boxed{5}\boxed{1}\boxed{7}\boxed{4}\boxed{6}\boxed{2}$

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
    if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
    else : break
  return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
  return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
  return T
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
    if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
    else : break
  return T
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
    if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
    else : break
  return T
```

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
  return T
```

1 3 2 4 5 6 7

```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
    if T[j-1] > T[j] :
        T[j-1], T[j] = T[j], T[j-1]
    else : break
  return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
  return T
```



```
def tri_insertion(T) : # version "par échanges successifs"
  for i in range(1, len(T)) :
    for j in range(i, 0, -1) : #parcours de droite à gauche
        if T[j-1] > T[j] :
            T[j-1], T[j] = T[j], T[j-1]
        else : break
    return T
```

Remarque : il est important d'effectuer le parcours de droite à gauche – sinon la complexité serait $\Theta(n^2)$ dans tous les cas

inversion de σ : couple (i, j) d'éléments de [1, n] tel que

$$\mathfrak{i} < \mathfrak{j} \quad \text{et} \quad \sigma^{-1}(\mathfrak{j}) < \sigma^{-1}(\mathfrak{i})$$

(autrement dit : les positions ne respectent pas l'ordre des valeurs) notations : $\mathcal{I}(\sigma) = \{(i,j) \text{ inversion de } \sigma\}$, $\operatorname{Inv}(\sigma)$ son cardinal

inversion de σ : couple (\mathfrak{i},j) d'éléments de $[\![1,n]\!]$ tel que

$$i < j$$
 et $\sigma^{-1}(j) < \sigma^{-1}(i)$

(autrement dit : les positions ne respectent pas l'ordre des valeurs) notations : $\mathcal{I}(\sigma) = \{(i, j) \text{ inversion de } \sigma\}$, $\operatorname{Inv}(\sigma)$ son cardinal

Exemple $\sigma = 246153 \text{ a 7 inversions}$:

2 4 6 1 5 3

2 4 6 1 5 3

- 2 4 6 1 5 3 2 4 6 1 5 3
- 2461 5 3
- 24 6 1 5 3
- 24 6 15 3

inversion de σ : couple $(\mathfrak{i},\mathfrak{j})$ d'éléments de $[\![1,n]\!]$ tel que

$$i < j$$
 et $\sigma^{-1}(j) < \sigma^{-1}(i)$

(autrement dit : les positions ne respectent pas l'ordre des valeurs) notations : $\mathcal{I}(\sigma) = \{(i, j) \text{ inversion de } \sigma\}$, $\operatorname{Inv}(\sigma)$ son cardinal

Proposition

pour tout
$$\sigma \in \mathfrak{S}_n$$
, $0 \leqslant Inv(\sigma) \leqslant \frac{n(n-1)}{2}$

inversion de σ : couple (i, j) d'éléments de [[1, n]] tel que

$$i < j$$
 et $\sigma^{-1}(j) < \sigma^{-1}(i)$

(autrement dit : les positions ne respectent pas l'ordre des valeurs) notations : $\mathcal{I}(\sigma) = \{(i, j) \text{ inversion de } \sigma\}$, $\operatorname{Inv}(\sigma)$ son cardinal

Proposition

pour tout
$$\sigma \in \mathfrak{S}_n$$
, $0 \leqslant Inv(\sigma) \leqslant \frac{n(n-1)}{2}$

Proposition

la valeur moyenne de $Inv(\sigma)$ pour $\sigma \in \mathfrak{S}_n$ est $\frac{n(n-1)}{4}$

Proposition

le tri par insertion supprime exactement une inversion à chaque échange

(c'est aussi le cas du tri à bulles, mais le tri par insertion fait beaucoup moins de comparaisons)

échange de deux valeurs à des positions contiguës

 \iff

multiplication (à droite) par une transposition de type (i i + 1)

 $\quad \Longleftrightarrow \quad$

ajout ou suppression d'exactement une inversion

Proposition

le tri par insertion supprime exactement une inversion à chaque échange

(c'est aussi le cas du tri à bulles, mais le tri par insertion fait beaucoup moins de comparaisons)

Théorème

la complexité moyenne du tri par insertion est en $\Theta(n^2)$

Théorème

la complexité moyenne du tri par insertion est en $\Theta(n^2)$

Théorème

la complexité moyenne du tri par insertion est en $\Theta(n^2)$

plus généralement, la complexité du tri par insertion d'une permutation de taille n ayant ℓ inversions est en $\Theta(\ell+n)$: ℓ comparaisons-échanges et $\Theta(n)$ comparaisons supplémentaires

Théorème

la complexité moyenne du tri par insertion est en $\Theta(n^2)$

plus généralement, la complexité du tri par insertion d'une permutation de taille n ayant ℓ inversions est en $\Theta(\ell+n)$: ℓ comparaisons-échanges et $\Theta(n)$ comparaisons supplémentaires

le tri par insertion est donc un tri de complexité *linéaire* lorsqu'il est appliqué sur des (familles de) permutations ayant un *nombre* sous-linéaire d'inversions

Théorème

la complexité moyenne du tri par insertion est en $\Theta(n^2)$

plus généralement, la complexité du tri par insertion d'une permutation de taille n ayant ℓ inversions est en $\Theta(\ell+n)$: ℓ comparaisons-échanges et $\Theta(n)$ comparaisons supplémentaires

le tri par insertion est donc un tri de complexité *linéaire* lorsqu'il est appliqué sur des (familles de) permutations ayant un *nombre* sous-linéaire d'inversions

l'hypothèse d'un nombre d'inversions au plus linéaire est en fait « assez probable » en pratique : c'est le cas par exemple des tableaux qui ont un jour été triés et n'ont depuis subi qu'un nombre limité de modifications

Conclusion

Tri par fusion

- $\Theta(n \log n)$ comparaisons au pire (mais dans tous les cas),
- la constante cachée dans le Θ est importante,
- ne trie pas en place: complexité en espace $\in \Theta(n)$

Tri par insertion

- $\Theta(n^2)$ comparaisons *au pire* et *en moyenne*,
- $\Theta(n)$ comparaisons au mieux (CNS : O(n) inversions),
- trie en place

Observation:

- les qualités du tri fusion proviennent de la stratégie « diviser-pour-régner »
- ses défauts proviennent en partie du fait qu'il s'agit de récursivité non terminale : la fusion est réalisée après les appels récursifs

Observation:

- les qualités du tri fusion proviennent de la stratégie « diviser-pour-régner »
- ses défauts proviennent en partie du fait qu'il s'agit de récursivité non terminale: la fusion est réalisée après les appels récursifs

Idée : faire un prétraitement *avant* les appels récursifs pour éviter d'en avoir besoin *après*

Idée : faire un prétraitement *avant* les appels récursifs pour éviter d'en avoir besoin *après*

Idée : faire un prétraitement *avant* les appels récursifs pour éviter d'en avoir besoin *après*

Idée : faire un prétraitement *avant* les appels récursifs pour éviter d'en avoir besoin *après*

Idée : faire un prétraitement *avant* les appels récursifs pour éviter d'en avoir besoin *après*

Idée : faire un prétraitement *avant* les appels récursifs pour éviter d'en avoir besoin *après*

Tri rapide (Quicksort), version 1

```
def partition(T) : # les éléments sont supposés distincts
  pivot = T[0]
  gauche = [ elt for elt in T if elt < pivot ]
  droite = [ elt for elt in T if elt > pivot ]
  return pivot, gauche, droite
```

Tri rapide (Quicksort), version 1

```
def partition(T) : # les éléments sont supposés distincts
  pivot = T[0]
  gauche = [ elt for elt in T if elt < pivot ]
  droite = [ elt for elt in T if elt > pivot ]
  return pivot, gauche, droite

def tri_rapide(T) :
  if len(T) < 2 : return T
  pivot, gauche, droite = partition(T)
  return tri_rapide(gauche) + [pivot] + tri_rapide(droite)</pre>
```

Exemple:

3 5 1 6 4 7 2

Exemple:

3 5 1 6 4 7 2

Exemple:

3 1 6 4 7 2

Exemple:

5 6 4 7 2

Exemple:

5 6 4 7 2

Exemple:

5 6 4 7 2

Exemple:

 $\begin{array}{|c|c|c|c|c|} \hline 1 & 2 & 5 & 6 & 4 & 7 \\ \hline \end{array}$

4 🗇 ▶

Exemple:

 1
 2
 3
 5
 6
 4
 7

Exemple:

Exemple:

 3
 5
 6
 4
 7

Exemple:

Exemple:

Exemple:

Exemple:

 1
 2
 3
 5
 6
 4
 7

Exemple:

Exemple:

Exemple:

Exemple:

Exemple:

1 2 3 4 5 6

Exemple:

Exemple:

```
def partition(T) : # les éléments sont supposés distincts
  pivot = T[0]
  gauche = [ elt for elt in T if elt < pivot ]
  droite = [ elt for elt in T if elt > pivot ]
  return pivot, gauche, droite
```

```
def partition(T) : # les éléments sont supposés distincts
  pivot = T[0]
  gauche = [ elt for elt in T if elt < pivot ]
  droite = [ elt for elt in T if elt > pivot ]
  return pivot, gauche, droite
```

Complexité de partition : $\Theta(n)$ comparaisons

```
def partition(T) : # les éléments sont supposés distincts
  pivot = T[0]
  gauche = [ elt for elt in T if elt < pivot ]
  droite = [ elt for elt in T if elt > pivot ]
  return pivot, gauche, droite
```

Complexité de partition : $\Theta(n)$ comparaisons

```
def tri_rapide(T) :
   if len(T) < 2 : return T
   pivot, gauche, droite = partition(T)
   return tri_rapide(gauche) + [pivot] + tri_rapide(droite)</pre>
```

```
def partition(T) : # les éléments sont supposés distincts
  pivot = T[0]
  gauche = [ elt for elt in T if elt < pivot ]
  droite = [ elt for elt in T if elt > pivot ]
  return pivot, gauche, droite
```

Complexité de partition : $\Theta(n)$ comparaisons

```
def tri_rapide(T) :
   if len(T) < 2 : return T
   pivot, gauche, droite = partition(T)
   return tri_rapide(gauche) + [pivot] + tri_rapide(droite)</pre>
```

Complexité de tri_rapide (au pire) : $\Theta(n^2)$ comparaisons

Exemple:

Exemple en choisissant miraculeusement toujours le pivot optimal :

3 5 1 6 4 7 2

Exemple en choisissant miraculeusement toujours le pivot optimal :

3 5 1 6 4 7 2

Exemple en choisissant miraculeusement toujours le pivot optimal :

Exemple en choisissant miraculeusement toujours le pivot optimal :

3 1 2 4 5 6 7

Exemple en choisissant miraculeusement toujours le pivot optimal :

Exemple en choisissant miraculeusement toujours le pivot optimal :

Exemple en choisissant miraculeusement toujours le pivot optimal :

Exemple en choisissant miraculeusement toujours le pivot optimal :

 1
 2
 3
 4
 5
 6
 7

Exemple en choisissant miraculeusement toujours le pivot optimal :

1234567

Exemple en choisissant miraculeusement toujours le pivot optimal :

Complexité de tri_rapide au pire : $\Theta(n^2)$ comparaisons

Complexité de tri_rapide dans le meilleur des cas :

 $\Theta(n \log n)$ comparaisons

Complexité de tri_rapide en moyenne :

(admis pour le moment)

 $\Theta(n \log n)$ comparaisons

Inconvénients

- partition fait deux parcours, là où un seul suffit manifestement (ce point est très facile à corriger)
- ne trie pas en place multiples recopies de (portions de) tableaux, même les éléments « bien placés » sont déplacés
- les *mauvais cas* sont des cas « *assez probables* » : tableaux triés ou presque, à l'endroit ou à l'envers