GEM Parking Wizard: HyperGemini

Keeron Huang, Xinchen Yao, Yixiao Liu, Xiaocheng Zhang qixuan3, yao29, yixiaol2, xz105

March 13th 2025

What problem are we solving?

We aim to create an autonomous driving module capable of detecting and parking in both **diagonal and parallel parking** spots.

Nonholonomic Control Constraints: Limited steering curvature, making accurate path planning and motion control in tight spaces challenging.

Complex Sensing and Perception: Reliably detecting lane boundaries and parking slot orientation requires sensor fusion, especially hard under various environmental conditions.

Plan and preliminary work

Preliminary work:

Simulator with Highbay environment [1]; Lane following from MP1 Segmented Parking Maneuver with Real-time Collision Checking[2] Nonholonomic Controller Tuning (PID, Pure Pursuit, Fuzzy Logic)[3]

Fig. 2. (a) Parallel parking; (b) diagonal parking.

Timeline, Task allocation, and Approach

	Midpoint checkin							
Milestone	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8
Lane Detection	QH							
Lane Following		YL						
Diagonal Parking			YL	QH	XY			YL
Parallel Parking					XZ	XZ	XY	QH

- Implement lane detection and lane following using the provided code and prior mps
- 2. Identify key parking checkpoints and control strategies for both parking situations
- 3. Achieve a comprehensive automated driving and parking solution

Metrics for evaluation

Accuracy Tracking Error: Checks how accurately the car follows the planned path; final pose accuracy is crucial.

Efficiency Parking Time + Steering Smoothness: Evaluates steering smoothness (affecting comfort and control stability).

Security Collision/Safety Distance: Ensures minimum clearance from obstacles at all times.

Reference

[1] https://github.com/hangcui1201/POLARIS_GEM_e2_Simulator

[2] Gómez-Bravo et al. (2001) F. Gómez-Bravo, F. Cuesta, A. Ollero, "Parallel and diagonal parking in nonholonomic autonomous vehicles," *Engineering Applications of Artificial Intelligence*, Vol. 14, Issue 4, 2001, pp. 419–434, ISSN 0952-1976, https://doi.org/10.1016/S0952-1976(01)00004-5.

[3] Paromtchik & Laugier (1996) I. E. Paromtchik and C. Laugier, "Autonomous parallel parking of a nonholonomic vehicle," *Proceedings of Conference on Intelligent Vehicles,* Tokyo, Japan, 1996, pp. 13–18, doi: 10.1109/IVS.1996.566343.

