CAMBRIDGE A LEVELS

Answers for AS Trial Exam Papers

Aug/Sept 2012 (P1)

- 1. 7y = x + 41
- 2. $\left(\frac{16}{3}, 8\right)$
- 3. $243 810x + 1080x^2 720x^3 + \dots; 157\frac{1}{2}$
- 4. 96078.26; 165080.34; 10.24
- $5. \quad 2 \times 6 \times 12$
- 6. 41.2; 0.873; 3.42
- 7. $\frac{32}{2}$; $72\frac{8}{15}\pi$
- 8

- 1.11, -2.03, -1.25, 1.89
- 9. $f(x) \le 2$;

not one – to – one function $4\frac{1}{2}, 3\frac{1}{2}; \frac{1}{x} + 4;$

 $x \in \mathcal{R}, x \neq 0; g^{-1}(x) \in \mathcal{R}, g^{-1}(x) \neq 4$ 10. $-\mathbf{i} - \mathbf{j} + h\mathbf{k}; -\mathbf{i} - 3\mathbf{j} - h\mathbf{k}; h = 1; 58.5$

Aug/Sept 2012 (P6)

- 1. 30.5; 5.385
- 2. 1.671 < x < 2.329
- 3. x = 0 1 2 3 $p = \frac{1}{14} = \frac{3}{7} = \frac{3}{7} = \frac{1}{14} = \frac{3}{2} = \frac{15}{28} = \frac{3}{14} = \frac{3}{14} = \frac{1}{14} = \frac{3}{14} = \frac$
- 4. 17.5; 10; 27
- 5. 180; 240; 31
- 6. $(a)\frac{1}{40}, \frac{21}{200}; \frac{7}{25}; \frac{5}{21}, not independent$
- 7. 0.0654; 0.999; 4; 0.536

March/April 2012 (P1)

- 1. (1,3); (-4,8)
- 2. $14\frac{2}{3}$
- 3. $(i)\frac{70}{24};\frac{70}{243}$ $(ii)\frac{1960}{243}$
- 4. 0, 180, 221.8, 318.2, 360
- 5. (i) $\frac{2\pi}{3}$; $\frac{2\sqrt{3}}{3}$: 1 (ii) $\frac{2\sqrt{3}}{3} \frac{2}{9}\pi$
- 6. $\frac{1}{\sqrt{194}} \begin{pmatrix} 11\\5\\-7 \end{pmatrix}$; 45.3; 3.54
- 7. $(i)124 \quad (ii)\frac{1}{3}$
- 8. (i)8 (ii)512 π (iii) max
- 9. (i) $(2x-3)^2-5$
 - (ii) least value = -5 when $x = \frac{3}{2}$
 - (iii) $x \le -1$ or $x \ge 4$
 - (iv) 3/2 (v) $\frac{3-\sqrt{x+5}}{2}$

March/April 2012 (P6)

- 1. 15; 1215.39
- 2. 720; 2520; 36
- 3.

d	0	1	2	3	4	5
P(D=d)	$\frac{8}{36} = \frac{2}{9}$	$\frac{8}{36} = \frac{2}{9}$	$\frac{6}{36} = \frac{1}{6}$	$\frac{4}{36} = \frac{1}{9}$	$\frac{6}{36} = \frac{1}{6}$	$\frac{4}{36} = \frac{1}{9}$

- 2.11; 2.88
- 4. 0.590; 0.349
- 5. 18.5; 19; 120
- 6. (i) 0.332 (ii) 52.8 (iii) 0.5426
- 7. 0.8904; 0.0548; 43.972; 439.72

Aug/Sept 2011 (P1)

2.
$$b^2 - 4ac < 0$$

4.
$$A(12,2)$$
; $B(-4,-6)$; $2x + y = 6$

5.
$$(-2,3)$$
; $\frac{dy}{dx} < 0$ decreasing; $2y = x - 4$

5.
$$(-2,3)$$
; $\frac{dy}{dx} < 0$ decreasing; $2y = x - 4$
6. $\frac{1}{2}\sqrt{15 - \lambda^2}$; $-\frac{1}{2}\mathbf{i} + \frac{\lambda}{2}\mathbf{j} + \frac{1}{2}\sqrt{15 - \lambda^2}\mathbf{k}$; $\mathbf{i} + \lambda\mathbf{j}$; 70.4

7. 4, -2; 36;
$$81\frac{1}{15}\pi$$

8.
$$\frac{4}{7}$$
; 11250

10.
$$f(x) \le 2$$
; f is not one to one; $k = 2$

$$g^{-1}(x) = \begin{cases} x+1, & x < 0 \\ 2 - \sqrt{\frac{2-x}{2}}, & 0 \le x \le 2 \end{cases}$$

Aug/Sept 2011 (P6)

$$9.5 \times 10^{-5} 5.95 \times 10^{-4} ; 0.160$$

	_ W -	-2		0	1	2
6.	P(W=w)	4	13	<u>5</u> 18	4	. <u>1</u> 36

$$-\frac{2}{3};\frac{10}{9};\frac{11}{18}$$

March/April 2011 (P1)

1.
$$243 + 810x + 1080x^2$$

2.
$$x = 4, y = -2; x = -2, y = 4$$

3. (i)
$$\frac{7}{2}$$
 (ii) 86.7

4. (i)
$$-3, -1, 1$$
 (ii) 2 (iii) $n(n-4)$

5. (i)
$$5\sin^2 x + 3\sin x - 2 = 0$$

7. (i)
$$(x-3)^2 + 9$$
 (iii) $3 + 4\sqrt{2}$

8. (i)
$$x = -5, y = 5; x = 2, y = 26$$
 (ii) $\frac{343}{6}$

10. (i)
$$80 - \left[2 + \frac{\pi}{2}\right] x^2$$
 (ii) $\frac{80}{4+\pi}$

(iii)
$$y'' = -2\left[2 + \frac{\pi}{2}\right] < 0 \text{ (max)}$$

(iv)
$$A = 448$$

March/April 2011 (P6)

3.(i) boxes are independent

Probability is same for each box.

$$4(i)$$
 2 (ii) 60 (iii) std dev = 7.63; mean = 12.92

6(i)
$$P(A) = \frac{1}{2}$$
; $P(A|C) = \frac{1}{2}$

A & C are independent.

(ii)
$$P(B|C) = \frac{1}{6}, P(B) = \frac{5}{72}$$

B & C are not independent.

7 (i)
$$a = \frac{4}{5}, b = \frac{1}{5}, c = \frac{1}{4}, d = \frac{3}{4}, e = \frac{3}{4}, f = \frac{1}{4}$$

(ii) 9/20 (iii) $\frac{1}{4}$ (iv) $1\frac{3}{4}, \frac{63}{80}$

(iv)
$$1\frac{3}{4}, \frac{63}{80}$$

Aug/Sept 2010 (P1)

1.
$$2 + \sqrt{3}$$

2. (i)
$$\frac{\pi}{6}$$
 (ii) 1.08

3. (i)
$$1 - 24x + 264x^2$$
 (ii) 192

5. (i)
$$\begin{pmatrix} \frac{2}{3} \\ 2 \\ 3 \end{pmatrix}$$
; $\underset{AB}{\longrightarrow} = \begin{pmatrix} -2 \\ 3 \\ 0 \end{pmatrix}$ (ii) 69.3

6. (i) 36 (ii)
$$40\frac{1}{2}\pi$$

7. (i) $2(x+3)^2 - 5$

7. (i)
$$2(x+3)^2 - 5$$

(ii)
$$-3$$
 (iii) $-3 - \sqrt{\frac{x+5}{2}}$

9. (ii)
$$x = 5$$
, $y = 6$ minimum (iii) 300

10. (i) 6 (ii)
$$4\sqrt{5}$$

(iii) 10 (iv)
$$y + 2x = 6$$

March/April 2010 (P1)

1.
$$-2 \le x \le 10$$

2.
$$n = 9$$
; -34642080

5. (i)
$$s = 6$$
 (ii) 101.0

6.
$$\frac{\pi}{6}, \frac{1}{2}; \frac{\pi}{2}, 2$$

7. (a)
$$x = \pm 1; 2\frac{2}{3}$$
 (b) π

9. (i)
$$y = \frac{1}{3}x + \frac{5}{3}$$
 (ii) $(\frac{5}{2}, \frac{5}{2})$

(iii)
$$3\sqrt{\frac{5}{2}}$$
 (iv) 15

10. (i)
$$(x-3)^2 - 9$$
 (ii) $k = 3$

(iii)
$$g^{-1} = 3 + \sqrt{x+9}; x \ge -9, y \ge 3$$

11. (i)
$$\frac{341}{8}$$
, $a = 64$, $r = -\frac{1}{2}$, $\frac{128}{3}$ (ii) 4, $\frac{11}{2}$, 7

$$(ii)$$
 4, $\frac{11}{2}$, 7

Aug/Sept 2010 (P6)

- 1. (i) 90720 (ii) 20160
- 2. (i) 0.244 (ii) 0.102
- 3. (i) 0.9332 (ii) 0.5199; 0.4852
- 4. (i) $\frac{11}{13}$; $\frac{1}{13}$; $\frac{1}{13}$ (ii) $\frac{36}{13}$; $\frac{56}{169}$
- 5. (ii) generally, marks for country E are evenly distributed and marks for country C are positively skewed.
 - (iii) advantage: illustrate the dispersion or spread of the distribution.

disadvantage: the frequencies of data are unknown.

7.
$$(i)^{\frac{2}{5}}$$
 (ii) 0.224 (iii) 0.944 (iv) 0.35

(v)
$$P(A \cap B) = P(A) \cdot P(B) = 0.224$$

Independent

(vi)
$$P(B \cap C) = 0$$
 M. E.

March/April 2010 (P6)

- 1. (*i*)40320 (*ii*) 141120
- 2. (i) 124.5, 4.8 (ii) 123.5
- 3. (i) 0.495 (ii) 0.604
- 4. (a)(i) 0.250 (ii) 0.758 (b) 0.0433
- 5. (ii)7 9, $IQR = 9.13 \pm 0.1$ (iii) 32 (iv) 10
- 6. (i) $\frac{1}{30}$ (ii) 5.5; 4.92 (iii) 1/2
- 7. (a)51.3 , 834 (b) 0.8185, 82

Aug/Sept 2009 (P1)

- 1. 90720
- 2. 2460
- 3. 35.1
- (i) $-\sqrt{x-1} + 2, x \ge 1$ (ii) x 2
 - (iii) $x \ge 1$; $y \le 2$
 - (iv) reflection in the line y = x.
- (ii) 63.6, 116.4 5.
- 6. (i) D(10, 0) (ii) 1:3
- (i) $(x+1)^2 + 2$ (iii) $x \ge 2; x \le -4$ 7.
- (i) $\frac{1}{\sqrt{21}} \begin{pmatrix} -1\\4\\2 \end{pmatrix}$ (ii) k = -3, p = 2
 - (iii) (a) $\begin{pmatrix} 1 \\ -13 \\ -3 \end{pmatrix}$ (b) not a rectangle
- (a) $1 \frac{16}{x^2}$; 3y = x + 52(b) (i) $\frac{1}{4}(x^3 7x^2 + 8x + 16)$
 - (ii) $\frac{2}{3}$; $\frac{4}{125}$
- (a) (i) $\frac{x^5}{5} \frac{3x^4}{4} + x^3 \frac{x^2}{2} + c$ 10. (ii) $\frac{2}{9}(3x-1)^{\frac{3}{2}}+c$ (b) $\frac{1}{3}$

March/April 2009 (P1)

- 1. $2(x+2)^2 + 5 > 0$ 2. 2160
- 45, 135, 225, 315 3.
- $\frac{1}{2}$; D(-5/2, 0); $\sqrt{45}$
- 5. 2.22; 0.928; 19.2
- $\sqrt{\frac{10}{11}};12\sqrt{10}$ 7. $\frac{14}{3};\frac{188}{15}\pi$
- 8. d = 2a; d = 2, a = 1; $r = \frac{1}{2}$
- 9. $\left(\frac{1}{\sqrt{3}}, -\frac{2}{3\sqrt{3}}\right), \left(-\frac{1}{\sqrt{3}}, \frac{2}{3\sqrt{3}}\right);$ $-\frac{2}{3\sqrt{3}} < k < \frac{2}{3\sqrt{3}}$

March/April 2009 (P6)

- 1. $\overline{y} = 0.34, s_y^2 = 0.94815$; $\bar{x} = 25.34, s_x = 0.974$
- 2. 120; 120
- median = 4.60; IQR = 1.13.
- $0.65; 0.35; \frac{2}{7}$
- 0.410; 0.672; $\mu = 20, \sigma^2 = 16; 0.130$ 5.
- 0.159; 0.625; a = 11; a = 14.8; 6.
- 0.337
- 2/9; 1/18; [2,1/36; 3,8/36; 4,8/36; 7. 5,8/36; 6,2/9; 7,1/18; 8,1/36]; 14/3

Aug/Sept 2009 (P6)

- (i) 8 (ii) 9.17
- (i) (a) 2 (b) 3 (c) 2; 4
 - (ii) L = 1, H = 7
- 3. (ii) 0.115 (iii) 0.391
- 362880 (i) 100800 (ii) 302400 4.
- 5. (i) 0.571 (ii) 0.360 (iii) 0.734
- (i) 14.25 (ii) 736 6. (iii) 462
- 7. 0,1/8; 1,3/8; 2,3/8; 3,1/8
 - (i) (18 + 3x)/8 (ii) 4 (iii) 18.75

Aug/Sept 2008 (P1)

3.
$$\frac{7}{1100}$$
; 5

4.
$$2y - x + 4 = 0$$
; $D(8/5, -6/5)$;

E(4,0)

5. k>6, k<-6;
$$a = -2\sqrt{3}, b = -3; \sqrt{3}, 3\sqrt{3}$$

6.
$$\frac{2}{3}\pi; \frac{\pi}{3} - \frac{\sqrt{3}}{4}; 39\%$$

7.
$$d = \frac{15}{2}$$
; $a = 12$; $r = 3/2$,

$$a = 8$$
; $r = -3/2$, $a = -8$

8.
$$b^2 - 4ac = -8 < 0$$
 (no real roots);
 $x \ge -4$: $f^{-1}(x) = -2 + \sqrt{x+4}$

9.
$$\left(\frac{1}{4}, \frac{1}{4}\right), \frac{d^2y}{dx^2} < 0 \text{ (max); 1/6; } \frac{1}{30}\pi$$

10.

$$\begin{pmatrix} 1-\mu-\lambda \\ 1 \end{pmatrix}, \begin{pmatrix} -1 \\ 1-\mu-\lambda \end{pmatrix}; \overrightarrow{PR} \bullet \overrightarrow{QS} = 0;$$

$$\overrightarrow{OT} = \begin{pmatrix} 2 - \mu \\ \lambda + \mu \end{pmatrix}; \begin{pmatrix} 1 \\ a - 1 \end{pmatrix}; \begin{pmatrix} 2 - a \\ a \end{pmatrix}; 45^{\circ}$$

March/April 2008 (P1)

- 1. $b^2 4ac \ge 0 \Rightarrow$ the roots are real.
- 2. $\alpha = 18.43;80.79,170.79$
- 3. $1-10x+40x^2+...;1+27x+324x^2+...;$

$$1+17x+94x^2+...$$

- 4. $\theta = 2.1617 rad; \alpha = 0.9799 rad; 59.41$
- 5. $-2;10;\frac{5}{8}$
- 6. $2y = x + 3; y = x^2 4x + 5$

7.
$$\begin{pmatrix} 2 \\ -2 \\ -2h \end{pmatrix}; \sqrt{2}; \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix}$$

$$x \le 1 \text{ or } x \ge 1; \quad \sqrt{x-1} + 1; x \ge 1$$

8.
$$\frac{1}{(x-1)^2 + 1}; 0 < gf(x) \le 1$$

9. 90;
$$y = 2x - 15$$
; (5, -5); $3\sqrt{5}$

10.
$$\frac{5}{6}$$
; $\frac{8}{15}\pi$

Aug/Sept 2008 (P6)

- 1. 30240;23520
- 2. median is most appropriate; mean is not suitable, too many small sizes/distribution is (positively) skewed,etc; mod is not suitable, the 1st class is the modal class; mean = 60.1 or median = 21.5 (accept answer 20 to 22)
- 3. 0.00053; 0.943
- 4. 1/10; [0, 3/10; 1, 6/10; 2, 1/10]; 4/5, 9/25
- 5. 0.159; 3.04; 0.774
- 6. 0.180; 0.998; 0.0658
- 7. Experienced rats: median = 128.5, 1st
 Quartile = 125, 3rd quartile = 131
 Inexperienced rats: median = 145, 1st
 Quartile = 137, 3rd quartile = 150.5;
 Experienced rats are faster, etc; experienced rats move with more constant times/ move with less variable times.

March/April 2008 (P6)

- 1. 5040; 10080
- 2. 2.5; 2, 4, 4-2 = 2
- 3. 0.1754; 25.2
- 4. c = 0.5, b = 1/3, a = 1/6
- 5. 11/36; 1/6; 1/162
- 6. 4.6; 2;

$$\sum y^2 = 1210; \overline{x} = 4.56, s = 2.04$$

7. 0.111; $0.3\sqrt{n}$;65

Aug/Sept 2007 (P1)

1.
$$a^4 + 8a^3b + 24a^2b^2 + 32ab^3 + 16b^4$$
;240

2.
$$3\theta = 2(\pi - \sin \theta)$$

4.
$$-4$$
; $\frac{5}{4}\pi$, $\frac{7}{4}\pi$; max = 6, min = 2

5.
$$y = \sqrt{20 - x^2}$$
;4

6.
$$y + 2x - 4 = 0;(3,-2);4\sqrt{5}$$

7. 4m; 90;
$$\sqrt{\frac{1}{20}t^2 - \frac{2}{5}t + 40}$$

8.
$$x \ge 1$$
; $(x-1)^2$, $1 + x$; 3

9.
$$\frac{32}{3}$$
; $\frac{32}{3}$; $x = 1$; $y = 6x + 1$

March/April 2007 (P1)

1.
$$4455 x^4$$

2. 2;
$$y = 2x^3 + 2x^2 + 1$$

3.
$$y = \frac{1}{4}(3x+1)^{\frac{4}{3}} + x + c$$
; 2.34

4.
$$x = 8, r = \frac{2}{3}; x = 1, r = -\frac{1}{2}$$

5.
$$\frac{6}{5}\pi$$

5.
$$\frac{6}{5}\pi$$
 6. $4\mathbf{j} + 3\mathbf{k};93.0^{\circ}$

7
$$1 - \frac{1}{x^2}, \frac{2}{x^3}$$
; $x = \pm 1$, (1,2) minimum, (-1,-2) maximum

8
$$(p,-p^2+p),0$$

11 -6;
$$x^2 - 6$$
; $x \ge 0$; $f^{-1}(x) \ge -6$; $-\frac{1}{5}$; (3,3)

Aug/Sept 2007 (P6)

(ii)
$$25$$
; $L = 11$, $H = 46$

6.
$$1/3$$
; $E(x) = 0(1/2)+1(1/3)+2(1/6)=2/3$; $Var(x) = 5/9$

March/April 2007 (P6)

distribution is positively skewed.

$$E(x) = 1(1/4) + 1(1/3) + 2(10/36) + 3(1/9)$$

3.
$$+4(1/36) = 4/3$$
;

$$var(x) = 10/9$$

Aug/Sept 2006 (P1)

- 1. $-\frac{1}{6}$
- 2. (a) $\frac{2\pi}{5}$ rad (b) 8.58 units²
- 3. (i) $\left(\frac{3+a}{2}, \frac{10+b}{2}\right)$
- 4. (a) -720 (b) $193 + 132\sqrt{2}$
- 5. (i) 3.5 (ii) 86.7
- 6. (a) Domain x < 1
 - (b)(i) $(2-3x)^3$ (ii) $\frac{1}{3}(2-x^{1/3})$
- 7. (a) 31.7, 121.7, 211.7, 301.7
 - (b) 71.6, 251.6
- 8. (a) 36 (b) $\frac{81}{2}\pi$
- 10. (a) 0.646 (b) -20
- 11. (b)(i) 8
 - (ii) $60\frac{3}{4}$

March/April 2006 (P1)

- 1. $k < -\frac{1}{3}$
- 2. (a) $2\sqrt{14}$ (b) $\frac{13\sqrt{7}}{35}$
- 3. $\frac{5\pi}{6}$
- 4. (a) $\frac{1}{4}$ (b) 0.1298
- 5. (a) $\frac{23}{4}$;60° (b)7.5, 37.5, 97.5, 127.5
- 6. (b) $2\frac{1}{2}$
- 7. (a) $2x + \frac{8}{(1-x)^2}$; $2 + \frac{16}{(1-x)^3}$
 - (b) minimum
- 8. (a) 2y = x + 11 (b) (13,12) (c) 35.78
- 9. (a) $\frac{15}{2}$ (c) $\frac{x-2}{3}$; $\frac{6-3x}{2x}$; $-\frac{9}{2}$, 2
- 10. (a) 1;2 (b) 69

Aug/Sept 2006 (P6)

- 1. (i) 134 (ii) 13.4 (iii) Skewed to the right
- 2. $\frac{108}{155}$
- 3. (i) A and B are not mutually exclusive
 - (ii) A and B are not independent
- 4. 2454
- 5. (i) 0.0111 (ii) 0.8413
 - (iii) Ashley. There are 1.11% of adult mullet longer than Ashley's catch but 15.87% adult bream longer than Kim's catch. Therefore, Ashley has performed better.
- 6. (i) 0.669
 - (ii) 0.027
- 7. P(r=0) = 7/15 P(r=1) = 7/15
- P(r=2) = 1/15

Number of point = 0

March/April 2006 (P6)

- 1. $\frac{1}{5}$
- 2. (ii) 1,2/5; 2,3/10; 3,1/5; 4,1/10
- 3. (ii) $\frac{9}{26}$
- 4. (i) 3.74×10^{-7} (ii) 0.9949
- 5. (i) Weight gained (ii) 3.05
 - (iii) 3 ± 0.2
- 6. (i) 0.0264
 - (ii) 0.870
- 7. (i) 38.6
 - (ii) 0.115
 - (iii) 17
- 8. (i) 30240
 - (ii) 15120
 - (iii) 151200

Aug/Sept 2005 (P1)

$$2. y = x^3 + 3x^2 - 5x + 6$$

3. (i)
$$r = \frac{4\theta}{2+\theta}, A = \frac{8000}{(2+\theta)^2}$$

(ii)
$$A = \frac{3200\pi}{(8+\pi)^2}$$

5. (i)
$$(4, 6)$$
 (ii) $y = 3x - 6$ (iii) 28

6. (i)
$$(4, 6)$$
 (ii) $y = 3x - 6$
 $(4x - 4)^{-2} + (x - 1)^{-2}$; $(4x - 4)^{-3} - 2(x - 1)^{-3}$

(ii)
$$(2, -3)$$
 Max ; $(-2, -1/3)$ Min

7. (i)
$$f(x) \le 4$$
 (ii) $\pm \sqrt{6}; \pm \sqrt{2}$

9. (i)
$$\begin{pmatrix} 1/3 \\ -2/3 \\ -2/3 \end{pmatrix}$$
 (ii) ± 2

- (ii) 72
- 162π (iii)
- $2(x-2)^2-3$ 11.

Aug/Sept 2005 (P6)

- 1. 0.994
- 3.
- 0.004 4. (i)
 - 0.604 (ii)
 - (iii) 0.00662
- 5. 0.322;0.0845
- (ii) 116 ± 5 6.
 - 35.5 ± 2 (iii)
- 7. (i)(a) 45
 - (b) 240
 - (c) 210
 - (ii)(a)126
 - (b) $\frac{4}{9}$

March/April 2005 (P1)

- y = 5x 161.
- (a) (-3, -6) (b) $-3 \sqrt{6} < x < -3 + \sqrt{6}$ 2.

3. (a)
$$-\frac{1}{x} - 2\sqrt{x} + c$$
 (b) $y = -\frac{1}{x} - 2\sqrt{x} + 3$

- $f(x) \ge -1$
 - (b) The inverse function exists because in the restricted domain of $x \ge 0$, f is one-to-one Function

(c)
$$-6$$
 (d) $4x + 23$

5. (b)
$$\frac{25}{3}\pi$$
 (c) 17

6. (a)
$$\frac{3}{2}$$
;63;189 (b) 126

7.
$$3;7;\frac{\sqrt{41}}{2}$$

- (a) 26, 66, 146
- (a) $a_6 = a + 5d$ (d) 9. 660
- (a) y = -6x + 8 (c) $5\frac{1}{3}$ 10.

March/April 2005 (P6)

- (i) 27;4 (ii) m-unchanged s-reduced
- 2. 34560 (i)
- (ii) 56;30
- 3. 0.234 (a)
- 7.02 (b)
- 0.678 (ii) 14 (i)
- 5. (iii)
- 6. (i) 33;22
 - (iv) Male doctor-positively skewed Female doctor-approximately symmetrical Median male doctor > median female doctor

Range male doctor > range female doctor

(i) 0.571 (ii) $\frac{1}{15}$ (iii) 0.734 7.

Aug/Sept 2004 (P1)

- 1.
- (i) $2r + r\theta$ (ii)
 - 2 rad

- 2.
- x = -3.303, 0.3028 y = 4.303, 0.6972

- 3.

- 5. (i) $\frac{5}{3}\mathbf{i} + \frac{5}{3}\mathbf{j} + \mathbf{k}$ (ii) 42 6. (i) $\sqrt{\frac{x+4}{3}}$ (ii) $3x^2 + 24x + 44$
- 7. 4 m/min
- (b) p < -4 or p > 1
- 9. (a) $\frac{3\pi}{10}$ (c) $\pm 2.3, 1.0 \text{ rad}$
- 10.
- (a) 0.854 (b) 1.7;0.1;1.6+0.2n
- 11.
- (a) $\left(\frac{4}{3}, 0\right)$ (b) $\left(\frac{4}{5}, -\frac{2}{5}\right)$

March/April 2004 (P1)

- 2. (a)(i) 13 (ii)9 (b)
- 3. (a) 15, 75,195,255 (b) $\frac{\pi}{4}, \frac{11}{12}\pi$

- 4. (i) $y = 4x^{\frac{3}{2}} + 2$ (ii) (0, 2) 5. $\frac{2}{3}$ 6. (i) 20 (ii) 9.43; 14 7. (i) $\begin{pmatrix} -3 \\ 4 \end{pmatrix}$ or any multiple; $\frac{1}{5} \begin{pmatrix} -3 \\ 4 \end{pmatrix}$
 - 5, 55 (ii)
 - 8. y = x - t (iii) (0,-t); (4t,3t)(i)
 - (a) 0.179 (b) 10, 20 9.
 - $y \ge 0 \quad \text{(ii)} \qquad x^2 1$ 10. (i)
 - (iv) -1 (v) -3.1

Aug/Sept 2004 (P6)

- 1. 0.7734
- 2. (a)
- (b) 71
- 83160 3. 50 or 51
- 4. 0.363 (b)
- (b) 47;27 5.
- (a) $\frac{1}{10}$; $\frac{2}{5}$ (c) 6. 0.8791
- (a)(ii) 0.00457.
 - (iii) 0.9756
 - (iv) 0.1844
 - (b) 0.9105

March/April 2004 (P6)

- 5,6 1.
- 2. 198,1.22
- (i)not independent, $P(A|B) \neq P(A)$ 3.
 - (ii)not mutually exclusive, $P(A|B) \neq 0$
 - (iii) $\frac{1}{6}$ (iv) $\frac{1}{3}$
- 31 (ii)
- (iii)
- 0.76 (ii) 0.554 6. (i)
- (i)(a) 4.78% 97.7% 7. (b) (ii)(a) 0.733

Aug/Sept 2003 (P1)

2.
$$4y = 15x - 12$$
, $30y + 8x = 151$

5.
$$3 \le x \le 4$$

$$6.-15^{\circ}, -75^{\circ}, 45^{\circ}$$

9. (a)
$$\pi\sqrt{2}$$
 cm (b) $4\pi - 8$ cm²

10. (a)
$$3x^2 - \frac{2}{x^2} + c$$
 (b) $\frac{128\sqrt{2}}{3}$

11. (a)
$$3(x+1)^2 - 12$$
 (b) -12 ; -1 (c) -1

(d)
$$-\frac{\sqrt{x+12}}{3}-1$$

Aug/Sept 2003 (P6)

5.
$$\frac{8}{25}$$
, $\frac{1}{45}$; $loss = \frac{2}{9}p$

March/April 2003 (P1)

$$1.1 - 12x + 60x^2 - 160x^3 +; 0.8858$$

5. (a)
$$\begin{pmatrix} -2 \\ 5 \\ 2 \end{pmatrix}$$
; B divides AC in the ratio 1:2

6. (a)
$$-28,500$$
 (b) $a = 5, r = 2$

7. (b)
$$0 < m < \frac{1}{4}$$

8. (a)
$$f(x) \ge -1$$
 (b) $f(x)$ is one-one,

$$f^1(x) = \frac{1}{2}\sqrt{x+1}$$

(c)
$$0 \le x \le 3$$

9. (a)
$$\frac{2}{3}$$
 units² (b) $\frac{8}{15}\pi$ units³

10. (b) 0,
$$\pi$$
, $\frac{1}{3}\pi$, $\frac{2}{3}\pi$

11. (a)
$$a = 6$$
, $b = 15$ (b) $r = 4$ cm, $h = 8$ cm

March/April 2003 (P6)

- 1. (i) 1/4 (ii) 1/12
- 2. (i) (a) 495 (b) 252 (ii) 4²/₅₅
- 3. (i) 0.210, 105 (ii) 47.2, 15.9
- 4. (i) ²³/₅₀ (ii) ⁷/₁₀ (iii) ⁸/₂₃
- 5. (i) 57.5 (iii) 8
- 6. (i) 1/3, 0.745

Aug/Sept 2002 (P1)

1.
$$1 - 20x + 180x^2 - 960x^3 + \dots$$
;

$$2 - 35x + 260x^2$$

2. (b)
$$\left(\frac{18}{5},0\right)$$

5. (a)
$$\left(\frac{15}{2},0\right)$$
 (b) $29\frac{1}{4}$ units²

6. (a)
$$\pm 4$$
 (b) $2k - 7$; $\frac{7}{2}$

7. (a)
$$\frac{1}{3}\pi$$
 (b) $\frac{2\sqrt{3}}{3}\pi$ cm (c) 0.645 units²

8. (a)
$$x < 0$$
, $x > 4$ (b) $12y = -x + 194$

9. (a)
$$\frac{9}{4}$$
, 3, $\frac{15}{4}$

10. (a)
$$f(x) \le 4$$
 (b) $f^{1}(x) = \sqrt{4-x}$, $x \le 4$ (c) 1.56

11. (b) V =
$$\frac{xc}{2b} - \frac{\pi x^3 a}{2b}$$

Aug/Sept 2002 (P6)

- 1.25,538
- 2. (i) 0.973 (ii) 0.857
- 3. (ii) 0.0395
- 4. (a) (i) 2,520 (ii) 151,200 (b) 76
- 5. (b) 744, 15.2 (c) 745, 737, 753
- 6. (i) 0.01 (ii) 0.72 (iii) 0.008 (iv) 0.02
- (v) 0.01 (vi) 0.81 0.27k, 8.1 2.7k (vii) 3

March/April 2002 (P1)

1.
$$\frac{4}{3}(26\sqrt{2}-22)$$

2. (a)
$$-\frac{1}{2}$$
 (b) $2\sqrt{5}$ (c) (1,5)

- 3. 161.8°, 341.8°
- 4. (i) 8π cm (ii) 40π cm²
- 5. $5\pi \text{ cm}^2/\text{s}$
- $6. 1 \le p \le 3$
- 7.2y = 6 x
- 8. (a) $\frac{14}{3}$ units²

9. (i)
$$\begin{pmatrix} 7 \\ -3 \\ 10 \end{pmatrix}$$
 (ii) $\sqrt{21}$ (iii) 45 (iv) 83.1°

10. (i)
$$-\frac{7\sqrt{5}}{15}$$
, $-\frac{2\sqrt{5}}{15}$ (ii) 60°

11. (i) (i)
$$\frac{11}{4}$$
 (ii) $\frac{3}{2}$

12. (a)
$$3y = x + 3$$
 (b) $y = -tx + at^3 + 2at$

13. (a) 12, 13.5, 15, 16.5 (b) (i)
$$\frac{1}{3}$$
, $-\frac{1}{4}$ (ii) $\frac{27}{2}$

14. (i)
$$f(x) \ge -6$$
 (ii) $f(x)$ is one-one for $x \ge 1$;

$$1 + \sqrt{x+6}$$
, $x \ge 1$, $f^{1}(x) \ge 1$ (iii) $\frac{3+\sqrt{29}}{2}$

March/April 2002 (P6)

- 1.0.27
- 2. (a) 0.3, 0.51; (b) 8
- 3. (i)

X	1	2	3	4
P(X=x)	1/6	⁵ / ₃₆	²⁵ / ₂₁₆	125/ ₂₁₆

- (ii) 1.17
- 4. (i) 0.0428 (ii) 0.142 (iii) 0.189; 0.642
- 5. (a) 6,720 (i) 720 (ii) 2,400 (b) 540,000
- (a) 20.1 (b) Grouped data exact values not known, rounding of errors. (c) 21 hrs.
- (d) slightly negative or normal skewness
- 7. (a) (i) 0.0881 (ii) 0.624 (b) 0.881;

accurate as large n, p= ½ (c) H