# Sistema de Sinalização para Ciclistas

Karine Valença
Engenharia de Software
Universidade de Brasília, FGA
Gama, Brasil
valenca.karine@gmail.com

Wilton Rodrigues

Engenharia de Software

Universidade de Brasília, FGA

Gama, Brasil

wiltonsr94@gmail.com

Abstract—This document is a model and instructions for  $\text{ET}_{E}X$ . This and the IEEEtran.cls file define the components of your paper [title, text, heads, etc.]. \*CRITICAL: Do Not Use Symbols, Special Characters, Footnotes, or Math in Paper Title or Abstract.

Index Terms—component, formatting, style, styling, insert

# I. INTRODUÇÃO

#### A. Revisão Bibliográfica

Notícias sobre acidentes envolvendo bicicletas são comuns no Brasil. Recentemente, em São Paulo, um ciclista morreu logo após ser atropelado e arrastado [1]. Dados de 2014, mostram que 1.357 ciclistas morreram vítimas de acidentes de trânsito no Brasil, além disso, em 2016, ocorreram 11.741 internações de ciclistas vítimas de acidentes [2]. De acordo com Departamente Nacional de Infraestrutura de Transportes (DNIT) [3] só no ano de 2011 foram 1.698 casos de acidentes envolvendo ciclistas. Sendo que 246, equivalente a 14.5%, acabaram na morte.

O site hg.org apresenta uma lista de dicas para evitar acidentes ao utilizar bicicleta. O site sugere aos ciclistas que eles se façam visíveis aos demais usuários das vias, e que utilizem sinais de mão para mostrar intenção de parar ou de mudar de faixa [4].

Existe uma série de sinais que podem ser utilizados pelos ciclistas para indicar suas intenções. O site mapmyrun [5], apresenta um lista com 10 sinais que podem ser utilizados a fim de evitar acidentes. Pode-se notar que, de fato, os sinais auxiliam a diminuir os acidentes de trânsito envolvendo ciclistas. Porém, alguns desses sinais não são tão intuitivos e podem não fazer sentido para os motoristas. Além disso, a grande quantidade de sinais pode gerar confusão até mesmo aos ciclistas.

## B. Justificativa

Pode-se notar que a visibilidade e sinalização por parte dos ciclistas é crucial para sua segurança no trânsito. Diante disso, este projeto tem como objetivo a criação de um sistema de sinalização eletrônico visando aumentar a segurança dos ciclistas. Espera-se que os usuários do sistema de sinalização eletrônico sofram menos acidentes causados por falta de visibilidade.

## C. Objetivos

O objetivo do projeto é de desenvolver um sistema de sinalização, utilizando o MSP430, a fim de aumentar a visibilidade dos ciclistas durante seu trajeto para aumentar a segurança e confiança dos utilizadores deste meio de transporte.

### D. Requisitos

O sistema deve atender aos requisitos:

- Indicar sinal luminoso intermitente que fica ativo sempre que n\u00e3o houver outro sinal
- Indicar seta para a direita ou para a esquerda após clique do botão correspondente
- Indicar sobre parada quando o ciclista iniciar a freagem
- Indicar sobre perigos na pista quando o ciclista apertar o botão adequado

O sistema não atende aos requisitos:

• Funcionar em dias chuvosos

# E. Benefícios

O sistema proporciona um equipamento de sinalização que ajuda os demais condutores a ter uma melhor visão dos ciclistas. Baseado nisto o principal benefício do sistema é a diminuição de ocorrências de acidentes envolvendo ciclistas.

## II. DESCRIÇÃO DO HARDWARE

# A. Lista de Materiais

Os materiais utilizados para a construção do Sistema de Sinalização para Ciclistas, foram:

1 MSP430 LaunchPad



Fig. 1. MSP430 LaunchPad. Fonte: http://e2e.ti.com/

# • 1 Matriz de LED 8x8



Fig. 2. Matriz de LED 8x8. Fonte: http://www.huinfinito.com.br

# • 2 Protoboards



Fig. 3. Protoboard. Fonte: www.filipeflop.com/

• Jumpers Macho-Macho e Macho-Fêmea



Fig. 4. Jumpers. Fonte: http://www.msseletronica.com

#### • 1 chave on-off-on



Fig. 5. Chave on-off-on. Fonte: http://www.12voltplanet.co.uk/

#### • 2 chaves push-botton sem trava



Fig. 6. Chave push-botton. Fonte: http://www.huinfinito.com.br/

# B. Verificação dos componentes

Com o intuito de verificar se os componentes estavam funcionando conforme o esperado, forem feitos alguns teste simples de funcionamento.

1) Verificação da Matriz de Led: Para verificar se a matriz de led estava funcionando corretamente, foi ligada uma tensão de aproximadamente 3.3 volts no VCC e no DIN, e no GND, uma tensão de 0 volts.

**Esquemático:** A figura abaixo mostra o esquemático montado para o teste da matriz de led:

# 8\*8 LED MATRIX MODULE with MAX7219

Fig. 7. Teste realizado com a matriz de led. Fonte: Autores

**Demonstração:** A figura abaixo mostra o teste realizado com a matriz de led:



Fig. 8. Teste realizado com a matriz de led. Fonte: Autores

2) Verificação da Chave on-off-on: Para verificar se a chave on-off-on estava funcionando corretamente, foi ligada uma tensão de aproximadamente 3.3 volts nos pinos 1 e 3 do botão. O pino 2 funcionou como saída e foi ligado em um resistor de 1000 ohm, que estava ligado em série a um Led.

**Demonstração:** A figura abaixo mostra o teste realizado com a chave on-off-on:



Fig. 9. Teste realizado com a chave on-off-on. Fonte: Autores

3) Verificação da Chave Push-Botton: Para verificar se a chave push-botton estava funcionando corretamente, foi ligada uma tensão de aproximadamente 3.3 volts em um resistor de 1000 ohm, que estava ligado em série ao botão. O botão, por sua vez, estava ligado em série a um led. Dessa forma, era esperado que ao pressionar o botão, o led acendesse, e ao soltar o botão, o led apagasse.

**Esquemático:** A figura abaixo mostra o esquemático montado para o teste da chave push-button:



Fig. 10. Teste realizado com o Push Button. Fonte: Autores

**Demonstração:** A figura abaixo mostra o teste realizado com a chave push-botton:



Fig. 11. Teste realizado com a chave push-botton. Fonte: Autores

#### REFERENCES

- G1, "Ciclista morre após ser atropelado e arrastado em SP". Disponível em: http://g1.globo.com/sao-paulo/noticia/ciclista-morre-apos-seratropelado-e-arrastado-em-sp.ghtml.
- [2] G1, "Brasil tem, em média, 32 ciclistas internados por dia devido a acidentes". Disponível em: http://g1.globo.com/bom-diabrasil/noticia/2017/03/brasil-tem-em-media-32-ciclistas-internados-pordia-devido-acidentes.html.
- [3] DNIT, "NÚMERO DE VITIMADOS ENVOLVIDOS POR TIPO DE USUÁRIO", 2011.
- [4] Mesriani Law Group, "Safety Tips to Avoid Bicycle Accidents". Disponível em: https://www.hg.org/article.asp?id=7752.
- [5] Marc Lindsay, "10 Cycling Hand Signals You Need to Know". Disponível em: http://blog.mapmyrun.com/10-cycling-hand-signals-need-know/.