

Content of Part 2

Chapter 1. Fundamental concepts

Chapter 2. Graph representation

Chapter 3. Graph Traversal

Chapter 4. Tree and Spanning tree

Chapter 5. Shortest path problem

Chapter 6. Maximum flow problem

PART 1 COMBINATORIAL THEORY

(Lý thuyết tổ hợp)

PART 2
GRAPH THEORY

(Lý thuyết đồ thị)

Graph traversal (Graph searching)

Searching a graph means systematically following the edges of the graph so as to visit the vertices.

2 algorithms:

- Breadth First Search BFS
- Depth First Search DFS

Breadth-first Search (BFS)

Breadth First Search

- Giver
 - a graph G=(V,E) set of vertices and edges
 - · a distinguished source vertex s
- Breadth first search systematically explores the edges of G to discover every vertex that is reachable from s.
- It also produces a 'breadth first tree' with root s that contains all the vertices reachable from s.
- For any vertex ν reachable from s, the path in the breadth first tree corresponds to the shortest path in graph G from s to ν .
- · It works on both directed and undirected graphs.

Depth-first Search (DFS)

С

Lemma of nested intervals Given directed graph G = (V, E), and arbitrary DFS tree, 2 arbitrary vertices u, v of G. Then • u is a descendant of v iff $[d[u], f[u]] \subseteq [d[v], f[v]]$ • u is ancestor of v iff $[d[u], f[u]] \supseteq [d[v], f[v]]$ • u and v are not related iff [d[u], f[u]] and [d[v], f[v]] are not intersecting.

Lemma of nested intervals Given directed graph G = (V, E), and arbitrary DFS tree, 2 arbitrary vertices u, v of G. Then • u is a descendant of v iff $[d[u], f[u]] \subseteq [d[v], f[v]]$ • u is ancestor of v iff $[d[u], f[u]] \supseteq [d[v], f[v]]$ • u and v are not related iff [d[u], f[u]] and [d[v], f[v]] are not intersecting.

DFS: Edges classification

- DFS creates a classification of the edges of given graph:
 - Tree edge (cạnh cây): the edge whereby from a vertex visits a new vertex (cạnh theo đó từ một đinh đến thăm đinh mới)
 - Back edge (canh ngược): going from descendants to ancestors (đi từ con cháu đến tổ tiên)
 - * Forward edge (canh tới): going from ancestor to descendant (đi từ tổ tiên đến con cháu)
 - Cross edge (canh vòng): edge connecting 2 non-related vertices (giữa hai đinh không có họ hàng)
- Note: there are many applications using tree edges and back edges

Some applications

1. Connectedness of graph

- 2. Find the path from s to t
- 3. Cycle detection
- 4. Check strongly connectedness
- 5. Graph orientation

TÊN CÔNG NGUỆ THÔNG TIN VÀ TRIVỀN THÔNG ..

Some applications

- 1. Connectedness of graph
- 2. Find the path from s to t
- 3. Cycle detection
- 4. Check strongly connectedness
- 5. Graph orientation

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG .

The problem of connectivity

- **Problem:** Given undirected graph G = (V,E). How many connected components are there in this graph, and each connected component consists of which vertices?
- Answer: Use DFS (BFS):
 - Each time the function DFS (BFS) is called in the main program, there is one more connected component found in the graph

The problem of finding the path

The problem of finding the path

- **Input:** Graph G = (V,E) represents by adjacency list, and 2 vertices s, t.
- **Output:** Path from vertex *s* to vertex *t*, or confirm there is no path from *s* to *t*.

Algorithm: Perform DFS(s) (or BFS(s)).

• If pred[t] == NULL then there does not exist the path, otherwise there is the path from s to t and the path is:

 $t \leftarrow \mathsf{pred}[t] \leftarrow \mathsf{pred}[\mathsf{pred}[\ t]] \leftarrow \ldots \leftarrow s$

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Some applications

- 1. Connectedness of graph
- 2. Find the path from *s* to *t*

3. Cycle detection

- 4. Check strongly connectedness
- 5. Graph orientation

WÊN CÔNG NGUẾ THÔNG TIN VÀ TRIVỀN THÔNG .

3. Cycle detection: using DFS

Problem: Given graph G=(V,E). G contains cycle or not?

- Theorem: Graph G does not contain cycle if and only if during the DFS execution, we don't not detect the back edge.
 - The way to detect the existence of back edge:
 - 1st method: use lemma of nested intervals
 - 2nd method: mark the state for vertices

3. Cycle detection: using DFS

Problem: Given graph G=(V,E). G contains cycle or not?

 Theorem: Graph G does not contain cycle if and only if during the DFS execution, we don't not detect the back edge.

Proof:

- ⇒) If G does not contain the cycle then there does not exist back edge. Obviously: the
 existence of back edge (going from descendants to ancestors) entails the existence of
 cycle.
- (⇒) We need to prove: if there does not exist back edge, then G does not contain the cycle. We prove by contrapositive: G has cycle ⇒ ∃ back edge. Let v be the vertex on the cycle that is the first visited in the DFS execution, and u is the preceding vertex of v on the cycle. When v is visited, the remaining vertices on cycle are all not visited yet. We need to visit all the vertices that are reachable from v before going back v when finishing DFS(v). Thus, the edge u→v is traversed from u to its ancestor v, so (u, v) is back edge.

Therefore, DFS can be used to solve the cycle detection problem.

SOICT VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG .

Some applications

- 1. Connectedness of graph
- 2. Find the path from *s* to *t*
- 3. Cycle detection

4. Check strongly connectedness

5. Graph orientation

Check strongly connectedness of directed graph

Problem: Given directed graph G=(V,E). Check if the graph G is strongly connected or not?

Proposition: A directed graph G = (V, E) is strongly connected if and only if there always exists a path from a vertex v to all other vertices and always exists a path from all vertices of $V \setminus \{v\}$ to v.

IỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG .

Algorithm to check strongly connectedness of directed graph

- Pick an arbitrary vertex $v \in V$.
- Perform DFS(ν) on G. If there exists vertex u not visited yet, then G is not strongly connected and the algorithm finishes. Otherwise, the algorithm continues the following step:
 - Perform DFS(v) on G^T = (V, E^T), where E^T is obtained from E by reversing the direction of edges. If exist vertex u not visited, then G is not strongly connected, otherwise G is strongly connected.
- Computation time: O(|V|+|E|)

Some applications

- 1. Connectedness of graph
- 2. Find the path from *s* to *t*
- 3. Cycle detection
- 4. Check strongly connectedness
- 5. Graph orientation

VIỆN CÔNG NGHỆ THÔNG TIN VÀ TRUYỀN THÔNG

Graph orientation

- **Problem:** Given undirected connected graph G = (V, E). Find the way to orient its edges such that the obtained directed graph is strongly connected or answer that G is non-directional (G là không định hướng được).
- Orientation algorithm δ : During the execution of DFS(G), we orient: (1) tree edges of DFS direct from the ancestor to the descendant, (2) back edges of DFS direct from descendant to ancestor. Denote the obtained graph by $G(\delta)$
- Lemma. G is directional if and only if $G(\delta)$ is strongly connected.

