Лекция №1

Теория вероятностей. Основные понятия

Теория вероятностей описывает опыты, которые могут иметь более одного исхода, например:

- 1. бросание монеты;
- 2. бросание игральной кости;
- 3. вынимание разноцветных шаров из урны;
- 4. бросание пары игральных костей;
- 5. измерение температуры в данной точке пространства;
- 6. измерение координат точки, случайно брошенной на плоскость (часть плоскости).

Первое с чего начинается формализация любой вероятностной задачи, это указание множества Ω — всевозможных элементарных исходов ω . Это множество произвольной природы, хотя в наиболее простых и важных случаях его можно считать вложенным в n- мерное числовое пространство \mathbb{R}^n .

Так в приведённых выше примерах опытов пространствами элементарных исходов являются множества

- 1. $\Omega = \{P, \Gamma\};$
- 2. $\Omega = \{1, 2, 3, 4, 5, 6\};$
- 3. $\Omega = \{ B, Y, K \};$
- 4. $\Omega = \{(i, j) : i, j = 1, \dots, 6\};$

5.
$$\Omega = \{T : 0 \le T < \infty\};$$

6.
$$\Omega = \{(x,y) : (x,y) \in \mathbb{R}^2\} \ (\Omega = \{(x,y) : x^2 + y^2 < 1\}).$$

Кроме элементарных событий ω в результате опыта реализуются и не элементарные, составные события, состоящие из элементарных. Например, при бросании игральной кости может осуществиться событие A, состоящее в выпадении четного числа очков $A=\{2,4,6\}$. В общем случае будем называть событиями любые подмножества множества Ω . Если в результате опыта реализовался элементарный исход $\omega \in A$, то говорят, что произошло событие $A\subseteq \Omega$. Удобно также считать событиями пустое множество \varnothing — невозможное событие и все пространство элементарных исходов Ω — достоверное событие.

Операции над событиями

Иногда приходится совершать над событиями обычные операции теории множеств.

- 1. $\overline{A} = \{ \omega \in \Omega : \omega \notin A \}$ противоположное событие, т.е. событие, состоящее в том, что событие A не произошло;
- 2. $A+B=\{\omega\in\Omega:\ \omega\in A\vee\omega\in B\}$ сумма событий, т.е. событие, состоящее в том, что произошло хотя бы одно из событий A и B;
- 3. $A \cdot B = \{ \omega \in \Omega : \omega \in A \land \omega \in B \}$ произведение событий, т.е. событие, состоящее в том, что произошли оба события A и B;
- 4. $A \setminus B = \{ \omega \in \Omega : \omega \in A \land \omega \notin B \} = A \cdot \overline{B}$ разность событий, т. е. событие, состоящее в том, что произошло A и не произошло B;

5. $A\triangle B=(A\backslash B)+(B\backslash A)$ — симметрическая разность.

Определение. Если $A \cdot B = \emptyset$, то события A и B называются несовместными.

Определение. Говорят, что события $\{A_i\}_{i=1}^{\infty}$ образуют полную группу, если

1)
$$\sum_{i=1}^{\infty} A_i = \Omega$$
, 2) $A_i \cdot A_j = \emptyset$, $i \neq j$.

Следующая таблица показывает связь между понятиями теории множеств и теории вероятностей.

Теория множеств	Теория вероятностей			
Ω — множество	Ω — пространство элемен-			
	тарных исходов (достовер-			
	ное событие)			
$\omega \in \Omega$ — элемент множества	$\omega\in\Omega$ — элементарный исход			
Ø — пустое множество	Ø — невозможное событие			
$A \supseteq \Omega$ — подмножество Ω	$A \supseteq \Omega - \mathrm{co}$ бытие			
\overline{A} — дополнение множества	\overline{A} — противоположное собы-			
A	тие			
$A \cup B$ — объединение мно-	A+B — сумма событий			
жеств				
$A \cap B$ — пересечение мно-	$A \cdot B$ — произведение собы-			
жеств	тий			
$\bigcup_{i=1}^{\infty} A_i = \Omega, \ A_i \cap A_j = \emptyset, \ i \neq j$	$\sum_{i=1}^{\infty} A_i = \Omega, \ A_i A_j = \emptyset, \ i \neq j$			
$-$ разбиение Ω	$\frac{1}{1}$ полная группа событий			

Свойства

1. Ассоциативность сложения и умножения

$$A + (B + C) = (A + B) + C$$
$$A(BC) = (AB)C$$

2. Коммутативность сложения и умножения

$$A + B = B + A$$
$$AB = BA$$

3. Закон снятия двойного отрицания

$$\overline{\overline{A}} = A$$

4. Свойство иденпотентности

$$A + A = A$$
$$A \cdot A = A$$

5. Дистрибутивность умножения относительно сложения и сложения относительно умножения

$$A(B+C) = AB + AC$$
$$A + (BC) = (A+B)(A+C)$$

6. Законы Де-Моргана

$$\overline{A+B} = \overline{A} \cdot \overline{B}$$
$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

7. Формула склеивания

$$A = AB + A\overline{B} = (A+B)(A+\overline{B})$$

8. Формула поглощения

$$A = A + AB = A(A + B)$$

9. Формула свертки

$$AB = A(\overline{A} + B)$$
$$A + B = A + \overline{A}B$$

Доказательства

Докажем, что $\overline{A+B}=\overline{A}\cdot\overline{B}$. Для этого покажем сперва, что $\omega\in\overline{A+B}\,\Rightarrow\,\omega\in\overline{A}\cdot\overline{B}$.

$$\omega \in \overline{A+B} \ \Rightarrow \ \omega \not \in A+B \ \Rightarrow \ \omega \not \in A \ \text{if} \ \omega \not \in B \ \Rightarrow \ \omega \in \overline{A} \cdot \overline{B}.$$

Теперь докажем в другую сторону.

$$\omega \in \overline{A} \cdot \overline{B} \ \Rightarrow \ \omega \notin A \ \text{if} \ \omega \notin B \ \Rightarrow \ \omega \notin A + B \ \Rightarrow \ \omega \in \overline{A + B}.$$

Задача. Пусть $A_i - i$ -й стрелок попал в мишень, i = 1, 2, 3. Выразить через A_i следующие события:

- 1. никто не попал в мишень;
- 2. попал хотя бы один;
- 3. попали по крайней мере двое;
- 4. попал ровно один;
- 5. попало ровно двое.

Лекция №2

Теория вероятностей. Основные понятия (продолжение)

Алгебры множеств

Будем рассматривать множества \mathcal{A} , состоящие из событий (подмножеств Ω), замкнутые относительно операций сложения и дополнения.

Определение. Совокупность событий \mathscr{A} называется алгеброй событий, если выполняются условия:

- 1. $\Omega \in \mathscr{A}$;
- 2. $A \in \mathscr{A} \Rightarrow \overline{A} \in \mathscr{A}$;
- 3. $A \in \mathcal{A}$, $B \in \mathcal{A} \Rightarrow A + B \in \mathcal{A}$.

Определение. Совокупность событий \mathscr{A}^{σ} называется σ —алгеброй событий, если она является алгеброй событий и выполняется условие

$$3^{\sigma}$$
. $A_i \in \mathscr{A}^{\sigma}$, $i = \overline{1, \infty} \Rightarrow \sum_{i=1}^{\infty} A_i \in \mathscr{A}^{\sigma}$.

Свойства алгебр и сигма-алгебр

- 1. $\varnothing \in \mathscr{A}$;
- 2. $A, B \in \mathcal{A} \Rightarrow AB \in \mathcal{A}$;

$$2^{\sigma}$$
. $A_i \in \mathscr{A}^{\sigma}$, $i = \overline{1, \infty}$, $\Rightarrow \prod_{i=1}^{\infty} A_i \in \mathscr{A}^{\sigma}$.

Доказательство.

1.
$$\Omega \in \mathscr{A} \Rightarrow \varnothing = \overline{\Omega} \in \mathscr{A}$$
.

2.
$$A, B \in \mathscr{A} \Rightarrow \overline{A}, \overline{B} \in \mathscr{A} \Rightarrow \overline{A} + \overline{B} \in \mathscr{A} \Rightarrow \overline{\overline{A} + \overline{B}} \in \mathscr{A}$$
. Так как $\overline{\overline{A} + \overline{B}} = AB$, то $AB \in \mathscr{A}$.

$$2^{\sigma}$$
. $\{A_i\}_{i=1}^{\infty} \in \mathscr{A}^{\sigma} \Rightarrow \{\overline{A}_i\}_{i=1}^{\infty} \in \mathscr{A}^{\sigma} \Rightarrow \sum_{i=1}^{\infty} \overline{A}_i \in \mathscr{A}^{\sigma} \Rightarrow \sum_{i=1}^{\infty} \overline{A}_i \in \mathscr{A}^{\sigma}$. Так как $\sum_{i=1}^{\infty} \overline{A}_i = \prod_{i=1}^{\infty} A_i$, то $\prod_{i=1}^{\infty} A_i \in \mathscr{A}^{\sigma}$.

Аксиоматическое определение вероятности

Определение. Пространство элементарных событий с заданной на нем σ – алгеброй событий $(\Omega, \mathscr{A}^{\sigma})$ будем называть измеримым пространством.

Определение. Отображение $\mathsf{P}:\mathscr{A}^\sigma\to\mathbb{R}_+,$ удовлетворяющее условиям:

1.
$$\forall A \in \mathscr{A}^{\sigma} \ 0 \leq \mathsf{P}(A) \leq 1, \ \mathsf{P}(\Omega) = 1;$$

2.
$$\forall \{A_i\} \in \mathscr{A}^{\sigma}, A_i A_j = \varnothing, i \neq j, P(\sum A_i) = \sum P(A_i)$$

называется вероятностью события A.

Определение. Тройка $(\Omega, \mathscr{A}^{\sigma}, \mathsf{P})$ называется вероятностным пространством.

Свойства вероятности

$$1. \ \mathsf{P}(\overline{A}) = 1 - \mathsf{P}(A)$$

2.
$$P(\emptyset) = 0$$

3. Если
$$A \subseteq B$$
, то $P(A) \le P(B)$.

4.
$$P(A + B) = P(A) + P(B) - P(AB);$$

5.
$$P(A + B + C) = P(A) + P(B) + P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$
 и т. д.

Замечание. Сумму двух несовместных событий $(AB = \varnothing)$, будем обозначать $A \oplus B$.

Доказательство.

1.
$$\Omega=A\oplus\overline{A},\ 1=\mathsf{P}(\Omega)=\mathsf{P}(A\oplus\overline{A})=\mathsf{P}(A)+\mathsf{P}(\overline{A}),$$
 отсюда $\mathsf{P}(\overline{A})=1-\mathsf{P}(A).$

2.
$$\varnothing=\overline{\Omega},$$
 отсюда $\mathsf{P}(\varnothing)=\mathsf{P}(\overline{\Omega})=1-\mathsf{P}(\Omega)=1-1=0.$

3.
$$B = A \oplus (B \setminus A), P(B) = P(A) + \underbrace{P(B \setminus A)}_{\geq 0}$$

4.
$$A = A_1 \oplus AB$$
, $B = B_1 \oplus AB$, где $A_1 = A \setminus AB$, $B_1 = B \setminus AB$. Отсюда $A + B = A_1 \oplus B_1 \oplus AB$, $P(A + B) = P(A_1) + P(B_1) + P(AB)$, $P(A) + P(B) = P(A_1) + P(B_1) + 2P(AB)$ или $P(A + B) = P(A) + P(B) - P(AB)$.

Пункт 5 доказывается аналогично.

Классическое определение вероятности

Классическая схема применима к опытам с конечным числом равновероятных исходов.

Будем называть число элементов множества B мощностью множества B и обозначать |B|. Пусть Ω состоит из элементарных исходов $\omega_1, \ldots, \omega_n$. Обозначим через p вероятность любого из них, $p = \mathsf{P}(\omega_i), \forall i$. Тогда

$$1 = \mathsf{P}(\Omega) = \mathsf{P}(\omega_1 \oplus \ldots \oplus \omega_n) = np$$

откуда p = 1/n.

Предположим, что событие $A = \{\omega_{i_1}, \ \dots, \ \omega_{i_k}\}$, тогда

$$P(A) = P(\omega_{i_1} \oplus \ldots \oplus \omega_{i_n}) = kp = \frac{k}{n}.$$

Таким образом

$$\mathsf{P}(A) = \frac{|A|}{|\Omega|},$$

где |A|— число благоприятствующих событию A элементарных исходов, $|\Omega|$ — общее число элементарных исходов.

Лекция №3

Основные формулы комбинаторики. Геометрическое определение вероятности

Основное правило комбинаторики (правило умножения)

Если нужно выполнить последовательно k действий, причем первое действие можно выполнить n_1 способами, а второе — n_2 способами и т. д., то эти k действий можно выполнить

$$\prod_{i=1}^{k} n_i$$

способами.

Основные формулы комбинаторики

1. Выбор с возвращением из n элементов последовательности (т. е. множества элементов с учетом порядка) длины k (размещения с повторениями). При выборе первого есть n способов, при выборе второго — тоже n способов и т. д.; т. о. получается всего

$$\overline{A}_n^k = n^k$$

способов.

2. Выбор без возвращения из n элементов последовательности длины k (размещения без повторений). При выборе первого есть n способов, при выборе второго -n-1 способов, . . . при выборе k-го элемента -n-k+1 способов; суммарное количество

способов, т. о., равно

$$A_n^k = n(n-1)(n-2)\dots(n-k+1) = \frac{n!}{(n-k)!}$$

3. Выбор без возвращения из n элементов k элементов (сочетания без повторений). Поскольку порядок не учитывается, то количество способов делится на количество перестановок из k элементов:

$$C_n^k = \frac{n!}{k! (n-k)!}.$$

 C_n^k называется биномиальным коэффициентом. Свойства биномиальных коэффициентов:

(a)
$$C_n^0 = C_n^n = 1$$
. $C_n^1 = n$.

(b)
$$\sum_{k=0}^{n} C_n^k = 2^n$$
.

(c)
$$C_n^k = C_n^{n-k}$$
.

(d)
$$C_{n+1}^k = C_n^{k-1} + C_n^k$$
.

(e)
$$(X+Y)^n = \sum_{k=0}^n C_n^k X^k Y^{n-k}$$
.

Следствием из этих свойств является треугольник Паскаля:

Каждое число в треугольнике Паскаля равно биномиальному коэффициенту C_n^k , где n — номер строки $(n=0,\ldots),\ k$ — номер числа в строке $(k=0,\ldots,\ n).$

4. Выбор с возвращением из n элементов k элементов (сочетания с повторениями). Каждую такую выборку закодируем последовательностью из нулей и единиц: сначала напишем столько нулей сколько элементов первого типа войдет в выборку, потом напишем единицу, это будет означать, что далее пойдут элементы второго типа и т.д. Если элементы какогото типа в выборку не попали, то нули для них не пишем. Последним символом в выборке всегда должна быть единица, означающая окончания выбора элементов n -го типа. Так как вариативности в выборе последнего символа нет, то договоримся не писать эту последнюю единицу. Таким образом получится последовательность

$$\underbrace{0\dots01\dots0}_{k \text{ нулей},n-1 \text{ единица}},$$

число таких последовательностей равно числу способов выбрать из n+k-1 места те k мест, где будут написаны нули. Таким образом число сочетаний с повторениями равно

$$\overline{C}_n^k = C_{n+k-1}^k$$

5. Задача о выборе. Пусть имеется N предметов, из них M предметов отмечено. Какова вероятность того, что при произвольном выборе n предметов из них m предметов будет отмечено?

$$\mathsf{P}(A) = rac{|A|}{|\Omega|}; \ |A| = C_M^m C_{N-M}^{n-m}; \ |\Omega| = C_N^n,$$
 при этом $m \le n.$ Тогда

$$\mathsf{P}(A) = \frac{C_M^m C_{N-M}^{n-m}}{C_N^n}$$

- гипергеометрическая вероятность.
- 6. Разбиение на группы (перестановки с повторениями). Пусть имеется множество Ω . Количество способов разбить его на подмножества A_1, A_2, \ldots, A_k , содержащие n_1, n_2, \ldots, n_k элементов соответственно, так что $n_1 + n_2 + \ldots + n_k = n$, равно

$$C_n(n_1, n_2, \ldots, n_k) = \frac{n!}{n_1! n_2! \ldots n_k!}$$

Множество A_1 можно выбрать $C_n^{n_1}$ способами, множество $A_2-C_{n-n_1}^{n_2}$ способами и т. д.

$$C_n^{n_1} = \frac{n!}{(n-n_1)n_1!}$$

$$C_{n-n_1}^{n_2} = \frac{(n-n_1)!}{(n-n_1-n_2)! n_2!}$$

$$C_{n-n_1-n_2}^{n_3} = \frac{(n-n_1-n_2)!}{(n-n_1-n_2-n_3)! n_3!}$$

$$\vdots$$

$$C_n(n_1, n_2, \dots, n_k) = C_n^{n_1} C_{n-n_1}^{n_2} C_{n-n_1-n_2}^{n_3} \dots =$$

$$= \frac{n!}{n_1! n_2! \dots n_k!} \underbrace{(n-n_1-n_2-\dots-n_k)!}_{0} = \frac{n!}{n_1! n_2! \dots n_k!}.$$

Числа $C_n(n_1, n_2, \ldots, n_k)$ называются полиномиальными коэффициентами, так как они участвуют в разложении

$$(x_1 + \ldots + x_k)^n = \sum_{n_1 + \ldots + n_k = n} C_n(n_1, \ldots, n_k) x_1^{n_1} \ldots x_k^{n_k}.$$

Пример. Сколькими способами можно разместить 8 студентов по трем комнатам, в которых имеется 1, 3 и 4 места?

$$C_8(1, 3, 4) = \frac{8!}{1! \ 3! \ 4!} = 280.$$

Пример. Статистическая физика изучает, как распределяются по своим свойствам физические частицы. При этом множество всех возможных состояний распределяют на большое число k маленьких ячеек (фазовых состояний), так что каждая из n частиц попадет в одну из ячеек.

В классической статистической физике частицы считаются различимыми друг от друга (например, молекулы газа). Известно, что п различных частиц можно распределить по k ячейкам k^n способами. Если все эти k^n способов при заданной энергии имеют равную вероятность, то говорят о статистике Максвелла-Больцмана. При этом число способов разместить п частиц по k ячейкам так, чтобы в первой ячейке была n_1 частица ... в k-ой ячейке – n_k частиц $n_1 + \ldots + n_k = n$ равно $C_n(n_1, n_2, \ldots, n_k)$.

Фотоны, атомные ядра и атомы, содержащие четное число элементарных частиц, подчиняются иной статистике. В статистике Бозе-Эйнштейна частицы считаются неразличимыми друг от друга. Поэтому имеет значение лишь то, сколько частиц попало в ту или

иную ячейку, а не то, какие именно частицы туда попали. При этом разместить n частиц по k ячейкам так, чтобы в первой ячейке была n_1 частица . . . в k -ой ячейке $-n_k$ частиц $n_1+\ldots+n_k=n$ можно только одним способом. Общее количество способов разместить n частиц по k ячейкам равно C_{n+k-1}^{k-1} (n- ноликов k-1 единичка).

Однако для многих частиц (например электронов, протонов и нейтронов) в каждой ячейке может находится не более одной частицы (в этом случае очевидно $n \leq k$), причем различные распределения, удовлетворяющие указанному условию, имеют равную вероятность. В этом случае может быть C_k^n различных распределений. Эта статистика называется статистикой Дирака-Ферми.

Геометрическое определение вероятности

Чтобы преодолеть недостаток классического определения вероятностей, состоящий в том, что оно неприменимо к испытаниям с бесконечным числом исходов, вводят геометрические вероятности, которые можно интерпретировать как вероятности попадания точки в область (отрезок, часть плоскости и т.д.).

Геометрическая схема определяется следующими условиями Ω — область евклидова n-мерного пространства с конечным n-мерным объемом.

Событиями назовем подмножества Ω , для которых можно определить n-мерный объем (например σ -алгебра Борелевских множеств). За вероятность события A примем

$$\mathsf{P}(A) = \frac{|A|}{|\Omega|},$$

где |V| означает их n-мерный объем множества V (например мера Лебега).

Так построенное вероятностное пространство служит моделью задач, в которых частица случайно бросается в область Ω . Предполагается, что ее положение равномерно распределено в области Ω , то есть вероятность попасть частице в подмножество A пропорциональна n-мерному объему этого подмножества и не зависит от положения подмножества A внутри области Ω .

Пример. Какова вероятность того, что в промежуток между 0 и L часами два человека встретятся, при условии, что первый пришедший ждет второго не больше l часов?

Eсли x — момент прихода первого, а y — момент прихода второго, то |x-y| < l.

$$P(A) = \frac{|A|}{|\Omega|} = \frac{L^2 - (L - l)^2}{L^2}.$$

Задача Бюфона

Плоскость расчерчена бесконечным количеством параллельных прямых, расстояние между которыми равно a. На эту плоскость бросается иголка длиной l. Какова вероятность, что эта иголка пересечет какую-нибудь прямую, если l < a?

В качестве параметров положения иголки возьмем y — расстояние от центра иглы до ближайшей прямой и x — угол между иголкой и перпендикуляром к прямой. Тогда $y \in [0, \ a/2], \ x \in [0, \ \pi/2].$ Условия, при которых иголка

пересекает прямую: $y \leq \frac{l}{2} \cos x$.

$$P(A) = \frac{\int_{0}^{\pi/2} \frac{l}{2} \cos x}{\frac{a\pi}{22}} = \frac{2l}{a\pi}.$$

Лекция №4

Схема гипотез. Условная вероятность. Независимость Независимость в совокупности. Формулы сложения и умножения. Полная группа событий. Формула полной вероятности. Формула Байеса

Условная вероятность и независимость событий.

Рассмотрим опыт, состоящий в бросании игральной кости. Пространством элементарных исходов в этом опыте является множество $\Omega=\{1,\,2,\,3,\,4,\,5,\,6\},\,|\Omega|=6$. Пусть событие A состоит в том, что выпало число очков, большее $3,\,A=\{4,\,5,\,6\},\,|A|=3$. Тогда $\mathsf{P}(A)=3/6=1/2$. Рассмотрим событие $B=\{$ Выпало четное число очков $\},\,B=\{2,\,4,\,6\}$. Предположим, что мы знаем, что событие B произошло. Тогда вероятность того, что выпало число очков большее 3-х будет равна 2/3.

Эта вероятность называется условной вероятностью и обозначается $\mathsf{P}(A|B)$ — вероятность события A при условии события B.

$$\mathsf{P}(A|B) = \frac{|AB|}{|B|} = \frac{|AB|/|\Omega|}{|B|/|\Omega|} = \frac{\mathsf{P}(AB)}{\mathsf{P}(B)}.$$

Итак пусть $(\Omega, \mathscr{A}, \mathsf{P})$ — вероятностное пространство. Пусть далее нас интересуют не все исходы опыта, а лишь принадлежащие некоторому выделенному событию B, т.е. мы хотим наряду с $(\Omega, \mathscr{A}, \mathsf{P})$ рассмотреть новое вероятностное пространство $(\Omega_1, \mathscr{A}_1, \mathsf{P}_1)$, такое, что $\Omega_1 = B$. Любое событие $A_1 \in \mathscr{A}_1$ имеет вид $\mathscr{A}_1 = AB$, где $A \in \mathscr{A}$. Это новое вероятностное пространство называется условным вероятностным пространством при условии B, а ве-

роятность

$$P_1(A_1) = \frac{P(A_1)}{P(B)} = \frac{P(AB)}{P(B)} = P(A|B)$$

называется условной вероятностью при условии B ($\mathsf{P}(B) > 0$).

Определение. Условной вероятностью события A при условии B ($\mathsf{P}(B) > 0$) называется

$$P(A|B) = \frac{P(AB)}{P(B)}.$$

Замечание. Для событий A и C целиком входящих в B $(m.e.\ AB = A,\ CB = C)$ соотношение условных и безусловных вероятностей не изменилось:

$$\frac{\mathsf{P}_1(A_1)}{\mathsf{P}_1(C_1)} = \frac{\mathsf{P}(A|B)}{\mathsf{P}(C|B)} = \frac{\mathsf{P}(AB)}{\mathsf{P}(B)} \frac{\mathsf{P}(B)}{\mathsf{P}(CB)} = \frac{\mathsf{P}(AB)}{\mathsf{P}(CB)} = \frac{\mathsf{P}(A)}{\mathsf{P}(C)}.$$

Таким образом переход от безузсловных вероятностей к условным, соответствует переходу от старого опыта к новому, отличающегося от старого только ограничением пространства элементарных событий и не меняющего соотношения между событиями внутри этого ограничения. Это замечание оправдывает применение понятия условной вероятности.

Часто именно условные вероятности бывают известны и тогда с их помощью вычисляют вероятность произведения событий:

$$P(AB) = P(A|B) P(B), P(B) > 0,$$

 $P(AB) = P(B|A) P(A), P(A) > 0.$

Эти формулы называются формулами умножения.

Свойства условных вероятностей

Определение. События A и B называются независимыми, если

$$P(AB) = P(A) P(B).$$

Теорема. Следующие условия эквивалентни (P(A) > 0, P(B) > 0):

- 1. А, В независимы.
- 2. P(A|B) = P(A).
- 3. P(B|A) = P(B).
- 4. A, \overline{B} независимы.
- $5. \overline{A}, B$ незваисимы.
- 6. \overline{A} , \overline{B} независимы.

Доказательство удобно проводить в виде цепочки импликаций

$$1. \Rightarrow 2. \Rightarrow 3. \Rightarrow 4. \Rightarrow 5. \Rightarrow 6. \Rightarrow 1.$$

Доказательство каждой импликации элементарно, проделайте его самостоятельно.

Определение. События $A_1, A_2, ..., A_n$ называются попарно независимыми, если $\forall i \neq j \ \mathsf{P}(A_i A_J) = \mathsf{P}(A_i) \, \mathsf{P}(A_j)$.

Определение. События A_1, A_2, \ldots, A_n называются независимыми в совокупности, если для $\forall i_1, \ldots, i_k, k \leq n$ таких, что $i_l \neq i_m$ при $l \neq m$

$$P(A_{i_1}A_{i_2}...A_{i_k}) = P(A_{i_1}) P(A_{i_2})...P(A_{i_k}).$$

Замечание. Как видно из определений из независимости событий в совокупности следует их попарная независимость. Обратное не верно. Если события независимы попарно, то из этого не следует их независимость в совокупности. В этом смысле требование независимости событий в совокупности сильнее требования их попарной независимости. Следующий пример иллюстрирует этот факт.

Пример Берштейна

Пусть имеется тетраэдр, у которого три грани раскрашены полностью в синий, зеленый и красный цвета соответственно, а четвертая грань содержит все три цвета. Рассмотрим следующие события, которые могут произойти в результате подбрасывания тетраэдра:

 $A_1 = \{$ тетраэдр упал на грань, содержащую синий цвет $\}$, $A_2 = \{$ тетраэдр упал на грань, содержащую зеленый цвет $\}$, $A_3 = \{$ тетраэдр упал на грань, содержащую красный цвет $\}$.

Вероятность каждого из событий A_i очевидно равна

$$\mathsf{P}(A_i) = \frac{1}{2}.$$

Из соотношений

$$P(A_i A_j) = \frac{1}{4} = \frac{1}{2} \frac{1}{2} = P(A_i) P(A_j), \quad \forall i \neq j,$$

$$P(A_1 A_2 A_3) = \frac{1}{4} \neq \frac{1}{2} \frac{1}{2} \frac{1}{2} = P(A_1) P(A_2) P(A_3)$$

следует, что события A_1, A_2, A_3 являются попарно независимыми, но не являются независимыми в совокупности.

Теорема (Формула умножения для n событий).

$$P(A_1 A_2 ... A_n) =$$
= $P(A_1) P(A_2 | A_1) P(A_3 | A_1 A_2) ... P(A_n | A_1 ... A_{n-1}).$ (1)

Доказательство. Докажем (1) методом математической индукции. Пусть n=2. Тогда

$$P(A_1A_2) = P(A_1) P(A_2|A_1).$$

Предположим, что (1) верно для n-1. Докажем для n:

$$P(\underbrace{A_{1} \dots A_{n-1}}_{B_{n-1}} A_{n}) = P(B_{n-1}A_{n}) = P(A_{n}|B_{n-1}) P(B_{n-1}) =$$

$$= \underbrace{P(A_{1}) P(A_{2}|A_{1}) \dots P(A_{n-1}|A_{1} \dots A_{n-2})}_{P(B_{n-1})} P(A_{n}|B_{n-1}) =$$

$$= P(A_{1}) P(A_{2}|A_{1}) P(A_{3}|A_{1}A_{2}) \dots P(A_{n}|A_{1} \dots A_{n-1}).$$

Формулы сложения для независимых в совокупности событий

1.
$$P(A_1 + A_2) = P(A_1) + P(A_2) - P(A_1) P(A_2),$$

2. $P(A_1 + A_2 + A_3) = P(A_1) + P(A_2) + P(A_3) - P(A_1) P(A_2) - P(A_2) P(A_3) - P(A_1) P(A_3) + P(A_1) P(A_2) P(A_3) = 1 - P(\overline{A}_1) P(\overline{A}_2) P(\overline{A}_3),$
3. $P(A_1 + A_2 + \ldots + A_n) = 1 - P(\overline{A}_1) P(\overline{A}_2) \ldots P(\overline{A}_n).$

Надежность электрических схем

Определение. Надежность электрической схемы это вероятность того, что схема будет работать в течение контрольного промежутка времени.

Пример. Найдем надежность электрической схемы, изображенной на рисунке,

считая, что элементы работают независимо друг от друга.

Пусть A_1 — событие состоящее в том, что круглый элемент будет работать в течение контрольного промежутка времени, A_2 — событие состоящее в том, что прямоугольный элемент будет работать в течение контрольного промежутка времени, тогда надежность круглого элементы $P(A_1) = p_1$, надежность прямоугольного элемента $P(A_2) = p_2$. Обозначим через q_1 , q_2 вероятности отказов соответсвующих элементов

$$q_1 = P(\overline{A}_1) = 1 - p_1, \quad q_2 = P(\overline{A}_2) = 1 - p_2.$$

Обозначая, аналогично, через р и q надежности и вероятности отказа соответсвенно, будем иметь для последовательного соединения

$$p = p_1 p_2, \quad q = 1 - p_1 p_2,$$

для параллельного соединения

$$p = 1 - q_1 q_2, \quad q = q_1 q_2.$$

Обозначая верхним римским индексом номер соответсвующей подсхемы на рисунке получим

$$q^{IV} = q_1 q_2, \ p^{IV} = 1 - q_1 q_2.$$

$$p^{III} = p_1 p^{IV} = p_1 (1 - q_1 q_2), \ q^{III} = 1 - p^{III} = 1 - p_1 (1 - q_1 q_2).$$

$$q^{II} = q^{III} (1 - p_1 p_2) = (1 - p_1 (1 - q_1 q_2))(1 - p_1 p_2),$$

$$p^{II} = 1 - q^{II} = 1 - (1 - p_1 (1 - q_1 q_2))(1 - p_1 p_2).$$

$$p^{I} = p_1 p^{II} = p_1 (1 - (1 - p_1 (1 - q_1 q_2))(1 - p_1 p_2)).$$

Формула полной вероятности. Формула Байесса

Вспомним определение подной группы событий (ПГС).

Определение. События $\{H_k\}_{k=1}^n, H_k \in \mathscr{A}$ образуют полную группу событий если выполняются условия

$$1. \ \Omega = \sum_{k=1}^{n} H_k,$$

2.
$$\forall i \neq j, H_i H_j = \emptyset$$
.

Теорема (Формула полной вероятности). *Пусть* $\{H_k\}_{k=1}^n$ образуют полную группу событий, $\forall k, \ \mathsf{P}(H_k) > 0, \ mor\partial a \ \forall A \in \mathscr{A}$

$$P(A) = \sum_{k=1}^{n} P(A|H_k) P(H_k).$$

Доказательство. Действительно

$$A = A\Omega = A\left(\sum_{k=1}^{n} H_k\right) = \sum_{k=1}^{n} AH_k.$$

При этом $\forall i \neq j, \ (AH_i)(AH_j) = \emptyset,$ так как это верно для H_i и H_j . Следовательно

$$P(A) = P\left(\sum_{k=1}^{n} AH_k\right) = \sum_{k=1}^{n} P(AH_k) = \sum_{k=1}^{n} P(A|H_k) P(H_k).$$

События H_k называются гипотезами, а их вероятности $\mathsf{P}(H_k)$ — априорными вероятностями. Если переоценить вероятности гипотез после опыта, то получим вероятности гипотез после опыта $\mathsf{P}(H_k|A)$ — апостериорные вероятности.

Теорема (формула Байесса). Пусть $\{H_k\}_{k=1}^n$ – полная группа событий, $\forall k, \ \mathsf{P}(H_k) > 0$. Событие $A \in \mathscr{A}$ таково, что $\mathsf{P}(A) > 0$. Тогда

$$P(H_i|A) = \frac{P(A|H_i) P(H_i)}{\sum_{k=1}^{n} P(A|H_k) P(H_k)}.$$

Доказательство.

$$P(H_i|A) = \frac{P(H_iA)}{P(A)} = \frac{P(A|H_i) P(H_i)}{\sum_{k=1}^{n} P(A|H_k) P(H_k)}.$$

Пример. В классе имеется 12 троечников, 10 хорошистов и 2 отличника. Вероятность получить зачет для троечника равна 0,1, для хорошиста -0,4, для отличника -0,8. Какова вероятность того, что наудачу выбранный студент сдаст зачет?

Решение: Пусть событие A заключается в том, что наудаучу выбранный студент сдаст зачет, H_1 — наудачу выбранный студент является троечником, H_2 — хорошистом, H_3 — отличником.

$$\begin{split} \mathsf{P}(H_1) &= \frac{12}{24} = \frac{1}{2}, \ \mathsf{P}(H_2) = \frac{10}{24} = \frac{5}{12}, \ \mathsf{P}(H_3) = \frac{2}{24} = \frac{1}{12}. \\ \mathsf{P}(A|H_1) &= 0, 1, \ \mathsf{P}(A|H_2) = 0, 4, \ \mathsf{P}(A|H_3) = 0, 8. \end{split}$$

$$P(A) = P(A|H_1) P(H_1) + P(A|H_2) P(H_2) + P(A|H_3) P(H_3) = 0, 1 \cdot 1/2 + 0, 4 \cdot 5/12 + 0, 8 \cdot 1/12 = 17/60.$$

Пример. Если студент сдал зачет, оценить вероятность того, что этот студент является троечником, хорошистом или отличником.

Решение:

$$P(H_2|A) = \frac{1 \cdot 60}{20 \cdot 17} = \frac{3}{17}, \ P(H_2|A) = \frac{1 \cdot 60}{6 \cdot 17} = \frac{10}{17},$$
$$P(H_3|A) = \frac{2 \cdot 60}{30 \cdot 17} = \frac{4}{17}.$$

Лекция №5

Схема Бернулли. Теорема Пуассона.

Пусть опыт ξ повторяется n раз. Обозначим через ξ_i – результат i-го опыта. Предположим, что в каждом опыте возможны два исхода, один из которых мы будем интерпретировать как «успех», а второй как «неудачу».

Будем условно обозначать «успех» единицей, а «неудачу» нолем. То есть

$$\xi_i = \begin{cases} 1, & \text{«успех»}, \\ 0, & \text{«неудача»}. \end{cases}$$

Предположим, что опыты происходят независимо друг от друга, то есть результат одного из опытов никак не влияет на результат другого опыта. Пусть вероятность «успеха» в каждом опыте одинакова, обозначим ее через p, а вероятность «неудачи» через q

$$P(\xi_i = 1) = p, \ P(\xi_i = 0) = 1 - p = q.$$

Последовательность таких испытаний называется схемой Бернулли, а каждое испытание в отдельности – испытанием Бернулли.

Обозначим через

$$S_n = \sum_{i=1}^n \xi_i,$$

тогда событие

$$S_n = k$$

означает, что в серии из n испытаний Бернулли произошло ровно k «успехов».

Докажем, что

$$\mathsf{P}(S_n = k) = C_n^k \cdot p^k q^{n-k}.$$

Доказательство. Обозначим через

$$B_i = \{ \xi_1 = \varepsilon_{i_1}, \ \xi_2 = \varepsilon_{i_2}, \ \dots, \ \xi_n = \varepsilon_{i_n} \},\$$

где

$$\varepsilon_{i_j} = \begin{cases} 1 \\ 0 \end{cases} .$$

Последовательность

$$(\varepsilon_{i_1}, \varepsilon_{i_2}, \dots, \varepsilon_{i_n})$$

такова, что в ней ровно k единиц и n-k нулей. Число всевозможных таких различных последовательностей равно

$$m = C_n^k$$

числу способов выбрать из n позиций, те k позиций, на которых будут стоять единицы.

Таким образом событие

$${S_n = k} = \sum_{i=1}^m B_i.$$

Так как события $\{\xi_j = \varepsilon_{i_j}\}_{j=1}^n$ — независимы в совокупности, то

$$\mathsf{P}(B_i) = p^k q^{n-k}.$$

Окончательно получим

$$\begin{split} \mathsf{P}(S_n = k) &= \mathsf{P}\left(\sum_{i=1}^m B_i\right) = \sum_{i=1}^m \mathsf{P}(B_i) = \\ &= \sum_{i=1}^m p^k q^{n-k} = m p^k q^{n-k} = C_n^k p^k q^{n-k}. \end{split}$$

Пример. Игральная кость бросается 3 раза. Какова вероятность того, что «6» очков выпадет хотя бы один раз?

Решение: n = 3, p = 1/6, q = 5/6.

$$P(S_3 \ge 1) = 1 - P(S_3 = 0) = 1 - \left(\frac{5}{6}\right)^3.$$

Формула Пуассона

Если n велико, то вычисления по формуле

$$\mathsf{P}(S_n = k) = C_n^k \cdot p^k q^{n-k}$$

становятся очень громоздкими. В этом случае при малых значениях p можно воспользоваться формулой Пуассона.

Теорема (Теорема Пуассона). *Если существует конечный предел*

$$\lim_{\substack{n \to \infty \\ n_n \to 0}} p_n n = \lambda \neq 0,$$

mo

$$\lim_{\substack{n \to \infty \\ np_n \to \lambda}} C_n^k \cdot p_n^k q_n^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Доказательство. Обозначим

$$p_n n = \lambda_n$$
, тогда $p_n = \frac{\lambda_n}{n}$,

тогда получим

$$C_n^k p_n^k q_n^{n-k} = \frac{n!}{k!(n-k)!} \frac{\lambda_n^k}{n^k} \left(1 - \frac{\lambda_n}{n}\right)^{n-k}.$$

Преобразуем это выражение следующим образом

$$C_n^k p_n^k q_n^{n-k} =$$

$$= \frac{\lambda_n^k}{k!} \frac{n(n-1)\dots(n-k+1)}{n^k} \left(1 - \frac{\lambda_n}{n}\right)^{-k} \left(1 - \frac{\lambda_n}{n}\right)^n =$$

$$= \frac{\lambda_n^k}{k!} \cdot \frac{n}{n} \cdot \frac{n-1}{n} \cdot \dots \cdot \frac{n-k+1}{n} \left(1 - \frac{\lambda_n}{n}\right)^{-k} \left(1 - \frac{\lambda_n}{n}\right)^n.$$

Так как все сомножители кроме первого и последнего в этой формуле стремятся к единице при $n \to \infty$, а

$$\lim_{n \to \infty} \lambda_n = \lambda, \quad \lim_{n \to \infty} \left(1 - \frac{\lambda_n}{n} \right)^n = e^{-\lambda}$$

получим, что

$$\lim_{\substack{n \to \infty \\ np_n \to \lambda}} C_n^k \cdot p_n^k q_n^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}.$$

Пример. Проводится 1000 испытаний (независимых) с вероятностью успеха p = 0,01. Какова вероятность того, что будет три успеха?

Решение:

$$P(S_{1000} = 3) = C_{1000}^3 (0, 01)^3 (0, 99)^{997} \simeq 0,0074. \ \lambda = n \cdot p = 10.$$

$$P(S_{1000} = 3) \simeq \frac{10^3 e^{-10}}{3!} \simeq 0,0075.$$

Из рассмотренного примера видно, что при даныых значениях n и p погрешнсть вычисления по формуле Пуассона составила 10^{-4} .

Локальная и интегральная теоремы Муавра-Лапласа

Рассмотрим Функции

$$\varphi(t) = \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}},$$

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt = \int_0^x \varphi(t) dt,$$

$$\Phi_1(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt = \int_{-\infty}^x \varphi(t) dt.$$

Функции $\Phi_0(x)$, $\Phi_1(x)$ называются функциями Лапласа. Рассмотрим свойства функций $\varphi(t)$, $\Phi_0(x)$, $\Phi_1(x)$. Свойства функции $\varphi(t)$:

- 1) $\varphi(t) > 0 \ \forall t$,
- $2) \varphi(-t) = \varphi(t),$

$$3) \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt.$$

Свойства 1) и 2) очевидны. Докажем свойство 3).

Доказательство. Обозначим через

$$I = \int_{-\infty}^{+\infty} e^{\frac{t^2}{2}} dt.$$

Докажем, что $I^2 = 2\pi$. Действительно

$$I^{2} = \int_{-\infty}^{+\infty} e^{-\frac{x^{2}}{2}} dx \cdot \int_{-\infty}^{+\infty} e^{-\frac{y^{2}}{2}} dy = \int_{-\infty}^{+\infty} e^{-\frac{x^{2}+y^{2}}{2}} dx dy =$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{+\infty} re^{-\frac{r^{2}}{2}} dr =$$

$$= \int_{0}^{2\pi} d\varphi \int_{0}^{+\infty} e^{-\frac{r^{2}}{2}} d\frac{r^{2}}{2} = -2\pi e^{-\frac{r^{2}}{2}} \Big|_{0}^{+\infty} = 2\pi.$$

Свойства функций $\Phi_0(x)$, $\Phi_1(x)$:

1)
$$\Phi_1(x) = \frac{1}{2} + \Phi_0(x)$$
,

2)
$$\Phi_0(-x) = -\Phi_0(x)$$
,

3)
$$\Phi_1(-x) = 1 - \Phi_1(x)$$
.

Докажите свойства 1) - 3).

Теорема (Локальная теорема Маувра-Лапласа). Пусть вероятность появления события A равна p, $0 , <math>S_n$ — число появлений события A в серии из n независимых испытаний, тогда вероятность того, что $\{S_n = k\}$ приближенно равна

$$\mathsf{P}(S_n = k) \underset{n \to \infty}{\sim} \frac{1}{\sqrt{npq}} \varphi\left(\frac{k - np}{\sqrt{npq}}\right).$$

Теорема (Интегральная теорема Маувра-Лапласа). Пусть вероятность появления события A равна p, 0 — число появлений события <math>A в серии из n независимых испытаний, тогда

$$P\left(x_1 \leqslant \frac{S_n - np}{\sqrt{npq}} \leqslant x_n\right) \underset{n \to \infty}{\simeq} \frac{1}{\sqrt{2\pi}} \int_{x_1}^{x_2} e^{-\frac{t^2}{2}} dt.$$

Следствие (1). В условиях интегральной теоремы Маувра-Лапласа будем иметь

$$P(x_1 \leqslant S_n \leqslant x_2) = \frac{1}{\sqrt{2\pi}} \int_{\frac{x_1 - np}{\sqrt{npq}}}^{\frac{x_2 - np}{\sqrt{npq}}} e^{-\frac{t^2}{2}} dt =$$

$$= \Phi_{0(1)} \left(\frac{x_2 - np}{\sqrt{npq}} \right) - \Phi_{0(1)} \left(\frac{x_1 - np}{\sqrt{npq}} \right).$$

Следствие (2). В условиях интегральной теоремы Маувра-Лапласа обозначим через

$$\nu_n = \frac{S_n}{n}$$

частоту появления события А, тогда

$$P(|\nu_n - p| \leqslant \varepsilon) = 2\Phi_0 \left(\frac{\varepsilon n}{\sqrt{npq}}\right) = 2\Phi_1 \left(\frac{\varepsilon n}{\sqrt{npq}}\right) - 1 =$$

$$= 1 - 2\Phi_1 \left(\frac{\varepsilon n}{\sqrt{npq}}\right).$$

Доказательство Теорем Муавра-Лапласа мы получим в конце курса как следствие «Центральной предельной теоремы». Следствия (1), (2) докажите самостоятельно.

Лекция №6

Случайная величина. Ряд и функция распределения случайной величины.

Пусть задано вероятное пространство (Ω, \mathcal{A}, P) .

Определение. Действительно-значная функция $\xi(\omega)$ называется случайной величиной, если множество

$$\{\omega: \ \xi(\omega) \leqslant x\} \in \mathscr{A}, \quad \forall x \in \mathbb{R}.$$

Дискретные случайные величины

Определение. Случайная величина называется дискретной, если множество ее значений не более чем счетно (конечно или счетно).

Пусть $\xi(\omega)$ — дискретная случайная величина, тогда она принимает дискретные значения $\xi_1,\ldots,\xi_n,\ldots$ с вероятностью

$$P(\xi = \xi_k) = P(\{\omega : \xi(\omega) = \xi_k\}) = p_k > 0.$$

Определение. Рядом распределения дискретной случайной величины называется таблица, в верхней строке которой записаны всевозможные значения случайной величины в порядке возрастания, а во второй строке — вероятности соответствующих значений.

ξ	ξ_1	ξ_2	 ξ_k	
p	p_1	p_2	 p_k	

Отметим следующие очевидные свойства ряда распределения.

1)
$$0 < p_k \leq 1$$
,

2)
$$\sum_{k=1}^{\infty} p_k = 1$$
.

Основные дискретные распределения

1. Распределение Бернулли.

Случайная величина $\xi = S_n$ – числу успехов в серии из n независимых испытаний Бернулли называется распределенной по закону Бернулли. Так как по формуле Бернулли

$$\mathsf{P}(\xi = k) = C_n^k p^k q^{n-k},$$

ряд распределения этой случайной величины имеет вид

ξ	0	1	 k	 n
p	q^n	npq^{n-1}	 $C_n^k p^k q^{n-k}$	 p^n

Проверим выполнение свойств ряда распределения дискретной случайной величины. Вероятности

$$p_k = P(\xi = k) = C_n^k p^k q^{n-k} > 0, k = \overline{0, n}.$$

По формуле бинома Ньютона сумма вероятностей p_k равна

$$\sum_{k=0}^{n} p_k = \sum_{k=0}^{n} C_n^k p^k q^{n-k} = (p+q)^n = 1.$$

2. Распределение Пуассона с параметром $\lambda > 0$.

Случайная величина $\xi(\omega)$ называется распределенной по закону Пуассона, если она принимает целые неотрицательное значение, и вероятность каждого такого значения вычисляется по формуле

$$P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda}, k = 0, 1, \dots$$

Таким образом ряд распределения такой случайной величины имеет вид

ξ	0	1	 k	
p	$e^{-\lambda}$	$\lambda e^{-\lambda}$	 $\frac{\lambda^k}{k!}e^{-\lambda}$	

Проверим выполнение свойств ряда распределения дискретной случайной величины. Вероятности

$$p_k = P(\xi = k) = \frac{\lambda^k}{k!} e^{-\lambda} > 0, \ k = 0, 1, \dots$$

По формуле Тейлора сумма вероятностей p_k равна

$$\sum_{k=0}^{\infty} p_k = \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} e^{-\lambda} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda} = 1.$$

3. Геометрическое распределение.

Проводится последовательность назависимых испытаний с вероятностью «успеха» p и вероятностью «неудачи» q в каждом испытании. Серия испытаний продолжается до первого «успеха». Случайная величина ξ равна числу испытаний до первого «успеха». Очевидно, что значения случайной величины ξ состоят из всех натуральных чисел и вероятность каждого такого значения равна

$$p_k = \mathsf{P}(\xi = k) = pq^{k-1}.$$

Распределение такой случайной величины называется геометрическим так как вероятности p_k образуют геометрическую прогрессию. Таким образом ряд распределения случайной величины ξ имеет вид

ξ	1	2	 k	
p	$\mid p \mid$	qp	 $q^{k-1}p$	

Проверим выполнение свойств ряда распределения дискретной случайной величины. Вероятности

$$p_k = \mathsf{P}(\xi = k) = pq^{k-1} > 0, \ k = 1, 2, \dots$$

По формуле для суммы бесконечной геометрической прогрессии сумма вероятностей p_k равна

$$\sum_{k=1}^{\infty} p_k = \sum_{k=1}^{\infty} pq^{k-1} = p \sum_{k=1}^{\infty} q^{k-1} = p \frac{1}{1-q} = p \cdot \frac{1}{p} = 1.$$

В ряде случаев испытания могут прекратиться до наступления «успеха», по какой-либо иной причине. Рассмотрим следующий пример.

Пример. Стрелок, имея четыре патрона, стреляет в мишень до первого попадания. Найти ряд распределения величины ξ — числа истраченных патронов, если вероятность попадания в мишень равна p.

Очевидно, что случайная величина ξ не может принимать значения большие четырех. А вероятность значения «4» складывается из суммы вероятностей двух несовместных событий. Первое из которых состоит в том, что стрелок промахнулся при первых трех выстрелах и попал при четвертом. А второе в том, что он промахнулся все четыре раза и закончил стрельбу по причине того, что у него закончились патроны.

Из всего выше сказанного следует, что ряд распределения случайной величины ξ имеет вид

ξ	1	2	3	4
Р	p	qp	q^2p	$q^3p + q^4 = q^3$

Замечание. Распределение случайной величины ξ из рассмотренного выше примера и подобных ей носит название усеченного геометрического распределения.

Функция распределения дискретной случайной величины.

Определение. Функцией распределения дискретной случайной величины ξ называется функция

$$F_{\xi}(x) = \mathsf{P}(\xi \leqslant x).$$

Отметим следующие характеристические свойства функции распределения $F_{\xi}(x)$

- 1. $0 \leqslant F_{\xi}(x) \leqslant 1$;
- 2. $F_{\xi}(x)$ неубывающая функция;
- 3. $F_{\xi}(-\infty) = 0$, $F_{\xi}(+\infty) = 1$;
- 4. $F_{\xi}(x)$ полунепрерывная справа.

Свойство 1 очевидно, так как значения функции распределения являются вероятностями некоторых событий.

Для доказательства свойства 2 рассмотрим числа a и b такие, что a < b. Обозначим через $A,\ B$ и C следующие события

$$A = \{\omega : \xi(\omega) \leqslant a\}, B = \{\omega : \xi(\omega) \leqslant b\},$$
$$C = \{\omega : a < \xi(\omega) \leqslant b\}$$

Тогда событие

$$C = B \backslash A$$
.

Так как

$$A \subset B$$
 вероятность $P(C) = P(B) - P(A)$.

Таким образом получим

$$0 \le P(C) = P(B) - P(A) = F_{\xi}(b) - F_{\xi}(a).$$

Из последнего соотношения следует, что

$$F_{\xi}(a) \leqslant F_{\xi}(b)$$
, если $a < b$.

Замечание. Равенство

$$P(C) = P(B) - P(A)$$

представляет самостоятельный интерес и часто применяется в виде

$$P(a < \xi \leqslant b) = F_{\xi}(b) - F_{\xi}(a).$$

Для доказательства свойств 3 и 4 нам понадобится следующая аксиома непрерывности.

Аксиома (непрерывности). Пусть события A_i таковы, что $A_1 \supset A_2 \supset A_3 \supset \dots$ и пусть $A = \prod_{k=1}^{\infty} A_k$. Тогда

$$\lim_{n\to\infty} \mathsf{P}(A_n) = \mathsf{P}(A).$$

Итак докажем, что

$$F_{\xi}(-\infty)=0$$
, то есть, что $\lim_{x\to -\infty}F_{\xi}(x)=0$.

В силу монотонности функции $F_{\xi}(x)$ для этого достаточно показать, что

$$\lim_{\substack{n\in\mathbb{N}\\n\to\infty}} F_{\xi}(-n) = 0.$$

Обозначим через A_n события

$$A_n = \{\omega : \ \xi(\omega) \leqslant -n\},\$$

тогда

$$A_1 \supset A_2 \supset A_3 \supset \dots, \quad \prod_{k=1}^{\infty} A_n = \varnothing.$$

По аксиоме непрерывности имеем

$$\lim_{n\to\infty}\mathsf{P}(A_n)=\mathsf{P}(\varnothing)=0.$$

Отсюда

$$\lim_{x \to -\infty} F_{\xi}(x) = \lim_{\substack{n \in \mathbb{N} \\ n \to \infty}} F_{\xi}(-n) = \lim_{\substack{n \in \mathbb{N} \\ n \to \infty}} \mathsf{P}(A_n) = 0.$$

Задание.

- 1. Аналогичным образом докажите самостоятельно полунепрерывность справа функции $F_{\xi}(x)$.
- 2. Доказать, что $F_{\xi}(+\infty) = 1$.

Построим функцию распределения дискретной случайной величины $F_{\xi}(x)$, заданной своим рядом распределения:

ξ	ξ_1	ξ_2	 ξ_n
Р	p_1	p_2	 p_n

Учитывая тот факт, что для $\xi_i \leqslant x < \xi_{i+1}$ событие

$$\{\xi \leqslant x\} = \{\xi = \xi_1\} \oplus \ldots \oplus \{\xi = \xi_i\},$$

для функции распределения получим следующую формулу

$$F_{\xi}(x) = \begin{cases} 0, & -\infty < x < \xi_1, \\ p_1, & \xi_1 \leqslant x < \xi_2, \\ p_1 + p_2, & \xi_2 \leqslant x < \xi_3, \\ \dots & \dots \\ p_1 + \dots + p_{n-1}, & \xi_{n-1} \leqslant x < \xi_n, \\ 1, & x \geqslant \xi_n. \end{cases}$$

Нарисуем график функции распределения.

Таким образом функция распределения дискретной случайной величины это ступенчатая полунепрерывная справа функция, испытывающая скачки в точках соответствующих значениям случайной величины. Величины скачков равны вероятностям соответствующих значений.

Замечание. Если дискретная случайная величина имеет бесконечное число значений, то число ступенек у ее функции распределения будет бесконечным и они будут неограниченно приближаться по вертикали к единичному значению.

Лекция №7. Многомерные случайные величины. Двумерный ряд

Многомерные случайные величины. Двумерный ряд распределения. Числовые характеристики случайной величины

Определение

Двумерный вектор (ξ,η) называется двумерной случайной величиной, если ξ и η – случайные величины, заданные на Ω .

Если $\xi,\,\eta$ — дискретные случайные величины, то можно построить двумерный ряд распределения:

ηξ	ξ_1	ξ_2	 ξ_n	
η_1	p_{11}	p_{21}	 p_{n1}	
η_2	p_{12}	p_{22}	 p_{n2}	
η_k	p_{1k}	p_{2k}	 p_{nk}	

Где $\xi_1 < \xi_2 < \ldots < \xi_n \ldots; \ \eta_1 < \eta_2 < \ldots < \eta_k, \ldots$ — все возможные значения ξ и $\eta,\ p_{ij} = \mathsf{P}(\xi = \xi_i, \eta = \eta_j).$

Зная двумерный ряд распределения, можно построить одномерные ряды распределения ξ и $\eta,$ а именно

ζ $\zeta 1$ $\zeta 2$ \cdots ζk	
$egin{array}{ c c c c c c c c c c c c c c c c c c c$	

''	1/1	1/2	 η_k	
p	$\sum_{i=1}^{\sum} p_{i1}$	$\sum_{i=1}^{\sum} p_{i2}$	 $\sum_{i=1}^{\sum} p_{ik}$	

Это следует из того, что

$$P(\xi = \xi_i) = P(\xi = \xi_i, \Omega) = P(\xi = \xi_i, \sum_j (\eta = \eta_j)) =$$

$$= \sum_j P(\xi = \xi_i, \eta = \eta_j) = \sum_j p_{ij}.$$

Аналогично доказывается, что

$$P(\eta = \eta_j) = \sum_{i=1}^{n} p_{ij}.$$

Из того, что

$$\sum_{i} \mathsf{P}(\xi = \xi_i) = 1$$

следует, что

$$\sum_{i,j} p_{ij} = 1.$$

Отсюда следуют два характеристических свойства двумерного ряда распределения:

1.
$$p_{ij} \geqslant 0$$
,

$$2. \sum_{i,j} p_{ij} = 1.$$

Зная одномерные распределения случайных величин ξ и η , в общем случае невозможно восстановить двумерное распределение (ξ,η) . Исключение составляет лишь случай когда ξ и η – независимые случайные величины.

Определение

Случайные величины ξ и η называются независимыми, если

$$P(\xi = \xi_i, \eta = \eta_j) = P(\xi = \xi_i) P(\eta = \eta_j).$$

Функции случайной величины

Пусть (ξ,η) – случайный вектор, если $\theta=f(\xi,\eta)$ – является случайной величиной, то можно построить ее ряд распределения. Для этого найдем все возможные значения

$$\theta_{ij} = f(\xi_i, \eta_j), \quad \forall i, j,$$

расположим их в порядке возрастания без повторов и занумеруем. В результате получим набор всевозможных, различных значений случайной величины θ

$$\theta_1 < \theta_2 < \dots \theta_n < \dots$$

Вероятность значения θ_k вычисляется по формуле

$$P(\theta = \theta_k) = \sum_{i, j: f(\xi_i, \eta_j) = \theta_k} p_{ij}.$$

Пример

Задан двумерный ряд распределения случайного вектора $(\xi,\eta).$

η ξ	-1	0	1
-1	3/24	4/24	5/24
1	2/24	7/24	3/24

Найти двумерный ряд распределения $(\xi + \eta, \eta)$ и выяснить, являются ли независимыми его компоненты.

Решение: Составим таблицу для нахождения значений $\theta=\xi+\eta$.

ξ	η	p	$\xi + \eta$
-1	-1	3/24	-2
-1	1	2/24	0
0	-1	4/24	-1
0	1	7/24	1
1	-1	5/24	0
1	1	3/24	2

Таблица (*)

Получим ряд распределения для θ :

$\xi + \eta$	-2	-1	0	1	2
p	3/24	4/24	2/24 + 5/24 = 7/24	7/24	3/24

Pяд распределения для η имеет вид

η	-1	1
p	12/24	12/24

Двумерный ряд распределения для случайног вектора $(\xi+\eta,\eta)$:

η $\xi + \eta$	-2	-1	0	1	2
-1	3/24	4/24	5/24	0	0
1	0	0	2/24	7/24	3/24

Все распределения получены на основе таблицы (*). Чтобы решить вопрос о линейной независимости $\xi + \eta$ и η рассмотрим вероятность

$$\begin{split} 0 &= \mathsf{P}(\xi + \eta = -2, \eta = 1) \neq \mathsf{P}(\xi + \eta = -2) \cdot \mathsf{P}(\eta = 1) = \\ &= \frac{3}{24} \cdot \frac{1}{2} = \frac{3}{48}. \end{split}$$

Tем самым $\xi + \eta \ u \ \eta \ являются зависимыми случайными величинами.$

Числовые характеристики случайной величины

Пусть случайный вектор (ξ, η) задан своим двумерным рядом распределения, то есть заданы вероятности

$$p_{ij} = \mathsf{P}(\xi = \xi_i, \eta = \eta_j),$$

следовательно известны одномерные распределения

$$P(\xi = \xi_i) = p_i, \ P(\eta = \eta_j) = \tilde{p_j}.$$

Математическое ожидание случайной величины

Определение

Математическим ожиданием $M\xi$ случайной величины ξ называется ряд $\sum\limits_{i=1}^\infty \xi_i p_i$, если этот ряд сходится абсолютно.

Далее нам понадобится следующая очевидная лемма.

Лемма

Пусть $\theta = f(\xi, \eta)$ – случайная величина. Если существует $M\theta$, то

$$M\theta = \sum_{k} \theta_k \, \mathsf{P}(\theta = \theta_k) = \sum_{i,j} f(\xi_i, \eta_j) \, \mathsf{P}(\xi = \xi_i, \eta = \eta_j).$$

Свойства математического ожидания

- 1. MC = C.
- $2. \ M(C\xi) = C M\xi.$
- 3. $M(\xi + \eta) = M\xi + M\eta$.

Доказательство.

$$M(\xi + \eta) = \sum_{i,j} (\xi_i + \eta_j) p_{ij} = \sum_i \sum_j (\xi_i p_{ij} + \eta_j p_{ij}) =$$

$$= \sum_i \sum_j \xi_i p_{ij} + \sum_i \sum_j \eta_j p_{ij} =$$

$$= \sum_i \xi_i \sum_j p_j + \sum_j \eta_j \sum_i p_i =$$

$$= \sum_i \xi_i \sum_j p_{ij} + \sum_j \eta_j \sum_i p_{ij} = M\xi + M\eta.$$

4. $M(\xi\eta)=M\xi\,M\eta,$ если ξ,η независимые.

Доказательство.

$$\begin{split} M\xi\eta &= \sum_{i,j} \xi_i \eta_j p_{ij} = \sum_i \sum_j \xi_i \eta_j p_i \tilde{p_j} = \\ &= \sum_i p_i \xi_i \sum_j \eta_j \tilde{p_j} = M\xi \, M\eta. \end{split}$$

-

Лекция №8

Многомерные случайные величины. Двумерный ряд распределения. Числовые характеристики случайной величины (продолжение)

Дисперсия

Частным случаем рассмотренной на прошлой лекции леммы является следующая формула для вычисления математического ожидания функции случайной величины. Если $\theta = f(\xi)$ – случайная величина и если существует $M\theta$, то

$$M\theta = \sum_{i} f(\xi_i) p_i.$$

Определение. Дисперсией случайной величины ξ называется величина

$$D\xi = M(\xi - M\xi)^2.$$

Свойства дисперсии

- 1. DC = 0.
- $2. D(C\xi) = C^2 D\xi.$
- 3. $D\xi \ge 0$.
- 4. $D(\xi \pm \eta) = D\xi + D\eta$, если ξ , η независимые.

Доказательство.

$$D(\xi \pm \eta) = M(\xi \pm \eta - (M(\xi \pm \eta)))^2 =$$

= $M(\xi \pm \eta - (M\xi \pm M\eta))^2 =$

$$= M((\xi - M\xi)^2 \pm 2(\xi - M\xi)(\eta - M\eta) + (\eta - M\eta)^2) =$$

$$= M(\xi - M\xi)^2 \pm 2M((\xi - M\xi)(\eta - M\eta)) +$$

$$+ M(\eta - M\eta)^2 = D\xi + D\eta.$$

Последнее равенство справедливо в силу соотношения

$$M((\xi - M\xi)(\eta - M\eta)) = M(\xi - M\xi)M(\eta - M\eta);$$

$$M(\xi - M\xi) = M\xi - M(M\xi) = M\xi - M\xi = 0.$$

На практике для вычисления дисперсии пользуются формулой

$$D\xi = M\xi^2 - (M\xi)^2.$$

Доказательство.

$$D\xi = M(\xi - M\xi)^2 = M(\xi^2 - 2\xi M\xi + (M\xi)^2) =$$

= $M\xi^2 - 2(M\xi)^2 + (M\xi)^2 = M\xi^2 - (M\xi)^2$.

Производящая функция дискретной случайной величины

Определение. Пусть ξ принимает целые неотрицательные значения. Тогда производящей функцией случайной величины ξ называется функция

$$\psi_{\xi}(t) = Mt^{\xi} = \sum_{k=0}^{\infty} t^k \, \mathsf{P}(\xi = k) = \sum_{k=0}^{\infty} t^k p_k.$$

Отметим следующие свойства производящей функции

1. $\psi_{\xi}(t)$ определена при $\forall t: |t| \leqslant 1$.

Действительно ряд

$$\sum_{k=0}^{\infty} |t|^k p_k$$

мажорируется сходящимся рядом

$$\sum_{k=0}^{\infty} p_k = 1$$

и следовательно сходится.

2. Существует взаимнооднозначное соответствие между распределением ξ и $\psi_{\xi}(t)$, а именно

$$p_k = \mathsf{P}(\xi = k) = \frac{\psi_{\xi}^{(k)}(t)}{k!}.$$

Это следует из формулы для коэффициентов ряда Тей-лора.

3. Если ξ , η – независимые величины, тог

$$\psi_{\xi+\eta}(t) = \psi_{\xi}(t)\psi_{\eta}(t).$$

Доказательство.

$$\psi_{\xi+\eta}(t) = Mt^{\xi+\eta} = Mt^{\xi+\eta} = M(t^{\xi}t^{\eta}) =$$
$$= Mt^{\xi} \cdot Mt^{\eta} = \psi_{\xi}(t)\psi_{\eta}(t).$$

4. $\psi_{\xi}(1) = 1$, $M\xi = \psi'_{\xi}(1)$, $D\xi = \psi''_{\xi}(1) + \psi'_{\xi}(1) - (\psi'_{\xi}(1))^2$

Действительно

$$\psi'_{\xi}(1) = \sum_{k=0}^{\infty} k t^{k-1} P(\xi = k) \Big|_{t=1} = \sum_{k=0}^{\infty} k P(\xi = k) = M\xi.$$

Найдем вторую производную производящей функции

$$\psi_{\xi}''(t) = \sum_{k=0}^{\infty} k(k-1)t^{k-2}p_k =$$

$$= \sum_{k=0}^{\infty} k^2 t^{k-2} p_k - \sum_{k=0}^{\infty} k t^{k-2} p_k.$$

$$\psi_{\xi}''(1) = \sum_{k=0}^{\infty} k^2 p_k - \sum_{k=0}^{\infty} k p_k$$

$$= M\xi^2 - M\xi = M\xi^2 - \psi_{\xi}'(1).$$

Таким образом

$$D\xi = M\xi^2 - (M\xi)^2 = \psi_{\xi}''(1) + \psi_{\xi}'(1) - (\psi_{\xi}'(1))^2$$

Найдем производящие функции, математические ожидания и дисперсии для основных дискретных распределений.

1. Распределение Бернулли.

$$P(S_n = k) = C_n^k p^k q^{n-k}$$

$$\psi_{S_n}(t) = Mt^{S_n} = \sum_{k=p}^n t^k C_n^k p^k q^{n-k} =$$

$$= \sum_{k=0}^n C_n^k (pt)^k q^{n-k} = (pt+q)^n.$$

Найдем математическое ожидание и дисперсию случайной величины S_n .

$$MS_n = \psi'_{S_n}(1) = np(pt+q)^{n-1}\big|_{t=1} = np.$$

$$\psi''_{S_n}(1) = n(n-1)p^2(pt+q)^{n-2}\big|_{t=1} = n(n-1)p^2,$$

$$DS_n = n(n-1)p^2 - n^2p^2 + np = np - np^2 = np(1-p) = npq.$$

2. Распределение Пуассона.

$$P(\xi = k) = e^{-\lambda} \frac{\lambda^k}{k!}, \ k = 0, 1, \dots$$

$$\psi_{\xi}(t) = Mt^{\xi} = \sum_{k=0}^{\infty} t^k e^{-\lambda} \frac{\lambda^k}{k!} = e^{-\lambda} \sum_{k=0}^{\infty} \frac{(\lambda t)^k}{k!} = e^{-\lambda} e^{\lambda t}.$$

$$M\xi = \psi'_{\xi}(1) = e^{-\lambda} \lambda e^{\lambda t} \Big|_{t=1} = \lambda$$

$$\psi''_{\xi}(1) = e^{-\lambda} \lambda^2 e^{\lambda t} \Big|_{t=1} = \lambda^2.$$

$$D\xi = \lambda^2 - \lambda^2 + \lambda = \lambda.$$

3. ξ – случайная величина, распределенная по закону геометрического распределения.

$$P(\xi = k) = q^{k-1}p, \ k = 1, 2, \dots$$

$$\psi_{\xi}(t) = Mt^{\xi} = \sum_{k=1}^{\infty} t^k q^{k-1}p = pt \sum_{k=1}^{\infty} (tq)^{k-1} = \frac{pt}{1 - tq}.$$

$$M\xi = \psi'_{\xi}(1) = \frac{p(1 - tq) + ptq}{(1 - tq)^2} \bigg|_{t=1} = \frac{p}{(1 - tq)^2} \bigg|_{t=1} = \frac{1}{p}.$$

$$\psi''_{\xi}(1) = \frac{2qp}{(1 - tq)^3} \bigg|_{t=1} = \frac{2q}{p^2}.$$

$$D\xi = \frac{2q}{p^2} - \frac{1}{p^2} + \frac{1}{p} = \frac{2q - 1 + p}{p^2} = \frac{q}{p^2}.$$

Иногда рассматривается случайная величина $\hat{\xi}$, которая равна числу неудач до первого успеха.

$$\tilde{\xi} = \xi - 1.$$

$$M\tilde{\xi} = M(\xi - 1) = M\xi - 1 = \frac{1}{p} - 1 = \frac{1 - p}{p} = \frac{q}{p}.$$

$$D\tilde{\xi} = D\xi = \frac{q}{p^2}.$$

Лекция №9

Абсолютно непрерывная случайная величина, плотность распределения, основные «непрерывные» распределения.

Пусть ξ — случаная величина, $F_{\xi}(x)$ — ее функция распределения. Для $F_{\xi}(x)$ выполнены характеристические свойства 1-3.

- 1. $F_{\xi}(x)$ неубывающая функция,
- 2. $F_{\xi}(x)$ плунепрерывная справа функция,
- 3. $F_{\xi}(-\infty) = 0$, $F_{\xi}(+\infty) = 1$.

Кроме того, доказано, что

$$P(a < \xi \leqslant b) = F_{\varepsilon}(b) - F_{\varepsilon}(a).$$

Определение. Случайная величина ξ называется абсолютно непрерывной случайной величиной, если ее функция распределения $F_{\xi}(x)$ допускает интегральное представление. То есть, если существует такая функция $f_{\xi}(x)$, что

$$F_{\xi}(x) = \int_{-\infty}^{x} f_{\xi}(\tau) d\tau \tag{1}$$

Определение. Функция $f_{\xi}(x)$, дающая интегральное представление функции распределения $F_{\xi}(x)$, называется плотностью распределения случайной величины ξ .

Замечание. В точках непрерывности функции $f_{\xi}(x)$

$$F_{\varepsilon}'(x) = f_{\varepsilon}(x). \tag{2}$$

Отметим следующие свойства плотности распределения $f_{\xi}(x)$:

1.
$$f_{\xi}(x) \geqslant 0$$
,

$$2. \int_{-\infty}^{+\infty} f_{\xi}(x) dx = 1.$$

Свойство 1 следует из (2) и из того, что $F_{\xi}(x)$ – неубывающая функция. Для доказательства свойства 2, рассмотрим равенство

$$P(a < \xi \le b) = F_{\xi}(b) - F_{\xi}(a) = \int_{a}^{b} f_{\xi}(x) dx.$$
 (3)

Устремив в равенстве (3)

$$a \to -\infty$$
, $b \to +\infty$,

получим

$$\int_{-\infty}^{+\infty} f_{\xi}(x)dx = F_{\xi}(+\infty) - F_{\xi}(-\infty) = 1.$$

Свойства 1 и 2 являются характеристическими для плотности распределения, то есть для $\forall f(x)$, удовлетворяющей этим свойствам найдется случайная величина ξ , для которой f(x) будет являться плотностью распределения.

Замечание. Геометрический смысл определенного интеграла от плотности распределения $f_{\xi}(x) \geqslant 0$. Так как интеграл

$$\int_{a}^{b} f_{\xi}(x) dx$$

равен площади S криволинейной трапеции под графиком функции $F_{\xi}(x)$ и представляет из себя вероятность попадания случайной величины ξ в интервал (a, b), то

$$S = \mathsf{P}(a < \xi \leqslant b).$$

Замечание. Если случайная величина ξ абсолютно непрерывна, то вероятность $P(\xi = \xi_0) = 0$. Действительно

$$\mathsf{P}(\xi = \xi_0) = \lim_{n \to \infty} \mathsf{P}\left(\xi_0 - \frac{1}{n} < \xi \leqslant \xi_0\right) =$$

$$= \lim_{n \to \infty} \int_{\xi_0 - \frac{1}{n}}^{\xi_0} f_{\xi}(x) dx = 0.$$

Таким образом равны между собой все вероятности

$$\mathsf{P}(a < \xi < b) = \mathsf{P}(a < \xi \leqslant b) = \mathsf{P}(a \leqslant \xi < b) = \mathsf{P}(a \leqslant \xi \leqslant b).$$

Основные «непрерывные» распределения

1. Равномерное на интервале (a, b) распределение (обозначение R(a, b)). **Определение.** Случайная величина ξ распределена равномерно на интервале (a, b) ($\xi \in R(a, b)$), если ее плотность распределения имеет вид

$$f_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & x \in (a, b), \\ 0, & x \notin (a, b). \end{cases}$$

Проверим выполнение свойств плотности распределения. Свойство 1 выполнено очевидным образом. Для доказательства свойства 2 рассмотрим равенство

$$\int_{-\infty}^{+\infty} f_{\xi}(x)dx = \int_{-\infty}^{a} f_{\xi}(x)dx + \int_{a}^{b} f_{\xi}(x)dx + \int_{b}^{+\infty} f_{\xi}(x)dx =$$

$$= \int_{-\infty}^{a} 0 dx + \int_{a}^{b} \frac{1}{b-a} dx + \int_{b}^{+\infty} 0 dx =$$

$$= (b-a) \cdot \frac{1}{b-a} = 1.$$

Задача. Пусть $\xi \in R(-1, 3)$. Найти следующие веро-ятности:

1.
$$P(|\xi| < 2)$$
,

2.
$$P(|\xi| < \frac{3}{2}),$$

3.
$$P(\xi < -2)$$
,

4.
$$P(-2 < \xi < 4)$$
.

2. Показательное распределение с параметром $\lambda > 0$.

Определение. Случайная величина ξ распределена по показательному закону с параметром $\lambda > 0$, если ее плотность распределения имеет вид

$$f_{\xi}(x) = \begin{cases} \lambda e^{-\lambda x}, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

Проверим выполнение свойств плотности распределения. Свойство 1 выполнено очевидным образом. Для доказательства свойства 2 рассмотрим равенство

$$\int_{-\infty}^{+\infty} f_{\xi}(x)dx = \int_{-\infty}^{0} f_{\xi}(x)dx + \int_{0}^{+\infty} f_{\xi}(x)dx =$$

$$= \int_{-\infty}^{0} 0 dx + \lambda \int_{0}^{+\infty} e^{-\lambda x} dx = \lambda \frac{-1}{\lambda} e^{-\lambda x} \Big|_{0}^{+\infty} =$$

$$= 0 + \frac{\lambda}{\lambda} = 1.$$

Пример. Пусть ξ распределена по показательному закону u

$$\mathsf{P}(|\xi| < 1) = \frac{1}{2}.$$

 $Haŭmu P(|\xi| < 2).$

Решение:

$$P(|\xi| < 1) = \int_{-1}^{1} f_{\xi}(x) dx = \int_{0}^{1} \lambda e^{-\lambda x} dx = -e^{-\lambda x} \Big|_{0}^{1} = 1 - e^{-\lambda} = \frac{1}{2}.$$

Отсюда следует, что

$$\lambda = \ln 2$$
.

$$\begin{split} \mathsf{P}(|\xi|<2) &= \int\limits_{-2}^2 f_\xi(x) dx = \int\limits_{0}^2 \lambda e^{-\lambda x} dx = \\ &= \left. e^{-\lambda x} \right|_{0}^2 = 1 - e^{-2\lambda} = 1 - e^{-2\ln 2} = 1 - \frac{1}{4} = \frac{3}{4}. \end{split}$$

3. Нормальное (экспоненциальное) распределение с параметрами $m, \sigma > 0$ (обозначение $N(m, \sigma)$).

Определение. Случайная величина ξ распределена нормально с параметрами $m, \sigma > 0 \ (\xi \in N(m, \sigma))$, если ее плотность распределения имеет вид

$$f_{\xi}(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-m)^2}{2\sigma^2}}.$$

Проверим выполнение свойств плотности распределения. Свойство 1 выполнено очевидным образом. Ранее было доказано, что интеграл Пуассона

$$\int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \sqrt{2\pi},$$

отсюда следует выполнение свойства 2. Действительно после замены

$$t = \frac{x - m}{\sigma}$$

будем иметь

$$\frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{(x-m)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = 1.$$

Вероятность попадания в интервал для нормальной случайной величины.

Рассмотрим вероятность

$$P(a < \xi \le b) = \int_{a}^{b} f_{\xi}(x) dx = \frac{1}{\sigma \sqrt{2\pi}} \int_{a}^{b} e^{-\frac{(x-m)^{2}}{2\sigma^{2}}} dx =$$

$$= \left[\frac{x-m}{\sigma} = t \right] = \frac{1}{\sqrt{2\pi}} \int_{\frac{a-m}{\sigma}}^{\frac{b-m}{\sigma}} e^{-\frac{t^{2}}{2}} dt =$$

$$= \Phi_{0(1)} \left(\frac{b-m}{\sigma} \right) - \Phi_{0(1)} \left(\frac{a-m}{\sigma} \right),$$

где функции Лапласа $\Phi_0(x)$, $\Phi_1(x)$ задаются формулами

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt,$$

$$\Phi_1(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt.$$

Эти функции затабулированы, так как интеграл

$$\int e^{-\frac{x^2}{2}} dx$$

не вычисляется в элементарных функциях.

Правило трех σ .

$$\begin{split} \mathsf{P}(|\xi-m| \leqslant 3\sigma) &= \mathsf{P}(m-3\sigma \leqslant \xi \leqslant m+3\sigma) = \\ &= \Phi_{0(1)}\left(\frac{m+3\sigma-m}{\sigma}\right) - \Phi_{0(1)}\left(\frac{m-3\sigma-m}{\sigma}\right) = \\ &= \Phi_{0(1)}(3) - \Phi_{0(1)}(-3) = 2\Phi_{0}(3) = 2\Phi_{1}(3) - 1 = 1. \end{split}$$

Таблица значений интегральной функции Лапласа

х	Ф(х)										
0,00	0,0000	0,50	0,1915	1,00	0,3413	1,50	0,4332	2,00	0,4772	3,00	0,49865
0,01	0,0040	0,51	0,1950	1,01	0,3438	1,51	0,4345	2,02	0,4783	3,20	0,49931
0,02	0,0080	0,52	0,1985	1,02	0,3461	1,52	0,4357	2,04	0,4793	3,40	0,49966
0,03	0,0120	0,53	0,2019	1,03	0,3485	1,53	0,4370	2,06	0,4803	3,60	0,499841
0,04	0,0160	0,54	0,2054	1,04	0,3508	1,54	0,4382	2,08	0,4812	3,80	0,499928
0,05	0,0199	0,55	0,2088	1,05	0,3531	1,55	0,4394	2,10	0,4821	4,00	0,499968
0,06	0,0239	0,56	0,2123	1,06	0,3554	1,56	0,4406	2,12	0,4830	4,50	0,499997
0,07	0,0279	0,57	0,2157	1,07	0,3577	1,57	0,4418	2,14	0,4838	5,00	0,499997
0,08	0,0319	0,58	0,2190	1,08	0,3599	1,58	0,4429	2,16	0,4846	-	
0,09	0,0359	0,59	0,2224	1,09	0,3621	1,59	0,4441	2,18	0,4854		
0,10	0,0398	0,60	0,2257	1,10	0,3643	1,60	0,4452	2,20	0,4861		
0,11	0,0438	0,61	0,2291	1,11	0,3665	1,61	0,4463	2,22	0,4868		
0,12	0,0478	0,62	0,2324	1,12	0,3686	1,62	0,4474	2,24	0,4875		
0,13	0,0517	0,63	0,2357	1,13	0,3708	1,63	0,4484	2,26	0,4881		
0,14	0,0557	0,64	0,2389	1,14	0,3729	1,64	0,4495	2,28	0,4887		
0,15	0,0596	0,65	0,2422	1,15	0,3749	1,65	0,4505	2,30	0,4893		
0,16	0,0636	0,66	0,2454	1,16	0,3770	1,66	0,4515	2,32	0,4898		
0,17	0,0675	0,67	0,2486	1,17	0,3790	1,67	0,4525	2,34	0,4904		
0,18	0,0714	0,68	0,2517	1,18	0,3810	1,68	0,4535	2,36	0,4909		
0,19	0,0753	0,69	0,2549	1,19	0,3830	1,69	0,4545	2,38	0,4913		
0,20	0,0793	0,70	0,2580	1,20	0,3849	1,70	0,4554	2,40	0,4918		
0,21	0,0832	0,71	0,2611	1,21	0,3869	1,71	0,4564	2,42	0,4922		
0,22	0,0871	0,72	0,2642	1,22	0,3883	1,72	0,4573	2,44	0,4927		
0,23	0,0910	0,73	0,2673	1,23	0,3907	1,73	0,4582	2,46	0,4931		
0,24	0,0948	0,74	0,2703	1,24	0,3925	1,74	0,4591	2,48	0,4934		
0,25	0,0987	0,75	0,2734	1,25	0,3944	1,75	0,4599	2,50	0,4938		
0,26	0,1026	0,76	0,2764	1,26	0,3962	1,76	0,4608	2,52	0,4941		
0,27	0,1064	0,77	0,2794	1,27	0,3980	1,77	0,4616	2,54	0,4945		
0,28	0,1103	0,78	0,2823	1,28	0,3997	1,78	0,4625	2,56	0,4948		
0,29	0,1141	0,79	0,2852	1,29	0,4015	1,79	0,4633	2,58	0,4951		
0,30	0,1179	0,80	0,2881	1,30	0,4032	1,80	0,4641	2,60	0,4953		
0,31	0,1217	0,81	0,2910	1,31	0,4049	1,81	0,4649	2,62	0,4956		
0,32	0,1255	0,82	0,2939	1,32	0,4066	1,82	0,4656	2,64	0,4959		
0,33	0,1293	0,83	0,2967	1,33	0,4082	1,83	0,4664	2,66	0,4961		
0,34	0,1331	0,84	0,2995	1,34	0,4099	1,84	0,4671	2,68	0,4963		
0,35	0,1368	0,85	0,3023	1,35	0,4115	1,85	0,4678	2,70	0,4965		
0,36	0,1406	0,86	0,3051	1,36	0,4131	1,86	0,4686	2,72	0,4967		
0,37	0,1443	0,87	0,3078	1,37	0,4147	1,87	0,4693	2,74	0,4969		
0,38	0,1480	0,88	0,3106	1,38	0,4162	1,88	0,4699	2,76	0,4971		
0,39	0,1517	0,89	0,3133	1,39	0,4177	1,89	0,4706	2,78	0,4973		
0,40	0,1554	0,90	0,3159	1,40	0,4192	1,90	0,4713	2,80	0,4974		
0,41	0,1591	0,91	0,3186	1,41	0,4207	1,91	0,4719	2,82	0,4976		
0,42	0,1628	0,92	0,3212	1,42	0,4222	1,92	0,4726	2,84	0,4977		
0,43	0,1664	0,93	0,3238	1,43	0,4236	1,93	0,4732	2,86	0,4979		
0,44	0,1700	0,94	0,3264	1,44	0,4251	1,94	0,4738	2,88	0,4980		
0,45	0,1736	0,95	0,3289	1,45	0,4265	1,95	0,4744	2,90	0,4981		
0,46	0,1772	0,96	0,3315	1,46	0,4279	1,96	0,4750	2,92	0,4982		
0,47	0,1808	0,97	0,3340	1,47	0,4292	1,97	0,4756	2,94	0,4984		
0,48	0,1844	0,98	0,3365	1,48	0,4306	1,98	0,4761	2,96	0,4985		
0,49	0,1879	0,99	0,3389	1,49	0,4319	1,99	0,4767	2,98	0,4986		

Лекция №10

Многомерные непрерывные случайные величины, двумерная функция и двумерная плотность распределения.

Определение. Пусть (ξ, η) — двумерный случайный вектор. Двумерной функцией распределения называется функция

$$F_{\xi\eta}(x, y) = \mathsf{P}(\xi \leqslant x, \, \eta \leqslant y).$$

Отметим следующие очевидные свойства двумерной функции распределения

- 1. $F_{\xi\eta}(x,y)$ неубывающая функция по обоим аргументам,
- 2. $F_{\xi\eta}(-\infty, y) = F_{\xi\eta}(x, -\infty) = F_{\xi\eta}(-\infty, -\infty) = 0$,
- 3. $F_{\xi\eta}(x,+\infty) = F_{\xi}(x), \ F_{\xi\eta}(+\infty,y) = F_{\eta}(y),$ где $F_{\xi}(x),$ $F_{\eta}(y)$ одномерные функции распределения компонент случайного вектора,
- 4. $F_{\xi\eta}(+\infty, +\infty) = 1$.

Свойства 1, 2, 4 являются характеристическими для двумерной функции распределения.

Определение. Двумерный случайный вектор (ξ, η) называется абсолютно непрерывным случайным вектором, если существует такая функция $f_{\xi\eta}(x, y)$, что для

$$\forall a < b, c < d \in \overline{\mathbb{R}}$$

выполняется соотношение:

$$\mathsf{P}(a < \xi \leqslant b, \ c < \eta \leqslant d) = \int\limits_a^b \int\limits_c^d f_{\xi\eta}(x, y) dx \, dy,$$

где $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$, $f_{\xi\eta}(x, y)$ называется при этом двумерной плотностью распределения.

Из соотношения

$$F_{\xi\eta}(x, y) = \mathsf{P}(-\infty < \xi \leqslant x, -\infty < \eta \leqslant y) =$$

$$= \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi\eta}(u, v) \, du dv$$

следует, что случайный вектор (ξ, η) абсолютно непрерывен, если существует $f_{\xi\eta}(x, y)$ дающая интегральное представление двумерной функции распределения

$$F_{\xi\eta}(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{\xi\eta}(u, v) \, du dv.$$

Замечание. Если существует

$$\frac{\partial^2 F_{\xi\eta}(x, y)}{\partial x \partial y},$$

mo

$$\frac{\partial^2 F_{\xi\eta}(x, y)}{\partial x \partial y} = f_{\xi\eta}(x, y).$$

Свойства двумерной плотности распределения

1.
$$f(\xi, \eta) \ge 0$$
,

$$2. \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dx dy = 1.$$

Доказательство. Для доказательства свойства 1 воспользуемся теоремой о среднем. Рассмотрим при $\Delta x>0,$ $\Delta y>0$

$$P(x < \xi \leqslant x + \Delta x, \ y < \eta \leqslant y + \Delta y) =$$

$$= \int_{x}^{x + \Delta x} \int_{y}^{y + \Delta y} f_{\xi\eta}(u, v) \, du dv = f_{\xi\eta}(\tilde{x}, \, \tilde{y}) \Delta x \Delta y,$$

где $\tilde{x}\in(x,\,x+\Delta x),\,\tilde{y}\in(y,\,y+\Delta y).$ Отсюда следует, что $f_{\xi\eta}(x,\,y)\geqslant0.$

Свойство 2 следует из того факта, что

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dx dy = F_{\xi\eta}(+\infty, +\infty) = 1.$$

Свойства 1 и 2 являются характеристическими своствами для двумерной плотности распределения.

Используя полученное выше равенство

$$P(x < \xi \leqslant x + \Delta x, \ y < \eta \leqslant y + \Delta y) = f_{\xi\eta}(\tilde{x}, \ \tilde{y}) \Delta x \Delta y,$$

можно показать, что вероятность попадания случайного вектора (ξ, η) в область D равна

$$\mathsf{P}((\xi,\,\eta)\in D)=\iint\limits_{D}f_{\xi\eta}(x,\,y)dx\,dy.$$

Для этого разобьем область D на прямоугольники Π_{ij} со сторонами $\Delta x_i, \, \Delta y_j$ без самопересечений. Тогда

$$P((\xi, \eta) \in \Pi_{ij}) = f_{\xi\eta}(\tilde{x}_i, \tilde{y}_j) \Delta x_i \Delta y_j.$$

$$\mathsf{P}((\xi,\,\eta)\in D)\simeq \sum_{ij}\mathsf{P}((\xi,\,\eta)\in\Pi_{ij})=\sum_{ij}f_{\xi\eta}(\tilde{x}_i,\,\tilde{y}_j)\Delta x_i\Delta y_j.$$

$$P((\xi, \eta) \in D) = \lim_{\substack{\Delta x \to 0 \\ \Delta y \to 0}} \sum_{ij} f_{\xi\eta}(\tilde{x}_i, \tilde{y}_j) \Delta x_i \Delta y_j =$$

$$= \iint_D f_{\xi\eta}(x, y) dx dy.$$

Найдем одномерные плотности компонент случайного вектора (ξ, η) . Покажем, что

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dy.$$

Действительно

$$f_{\xi}(x) = F'_{\xi}(x) = (F_{\xi\eta}(x, +\infty))' = \left(\int_{-\infty}^{x} \int_{-\infty}^{+\infty} f_{\xi\eta}(u, y) dy du\right)' =$$
$$= \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dy.$$

Аналогично

$$f_{\eta}(y) = \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dx.$$

Определение. Случайные величины ξ и η называются независимыми, если

$$f_{\xi\eta}(x, y) = f_{\xi}(x)f_{\eta}(y).$$

Определение. Будем говорить, что случайный вектор (ξ, η) распределен равномерно в области D, если его двумерная плотность распределения имеет вид

$$f_{\xi\eta}(x, y) = \begin{cases} \frac{1}{\text{mes } D}, & (x, y) \in D, \\ 0, & (x, y) \notin D. \end{cases}$$

Пример. Пусть случайный вектор (ξ, η) распределен равномерно в области D (см. рис.). Найти одномерные плотности распределения компонент случайного вектора и выяснить, являются ли они независимыми.

$$f_{\xi\eta}(x, y) = \begin{cases} \frac{1}{2}, & (x, y) \in D, \\ 0, & (x, y) \notin D. \end{cases}$$

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dy =$$

$$= \begin{cases} 0, & |x| > 1, \\ \int_{-x-1}^{x+1} \frac{1}{2} dy = x+1, & -1 \leqslant x < 0, \\ \int_{x-1}^{-x+1} \frac{1}{2} dy = -x+1, & 0 \leqslant x \le 1 \end{cases}$$

$$= \begin{cases} 0, & |x| > 1, \\ 1 - |x|, & |x| \leqslant 1. \end{cases}$$

B силу симметрии области D относительно замены x на y, аналогично получим одномерную плотность распределения для η

$$f_{\eta}(y) = \begin{cases} 0, & |y| > 1, \\ 1 - |y|, & |y| \le 1. \end{cases}$$

Проверим, что для полученных функций выполняются свойства плотности распределения.

$$\int_{-\infty}^{+\infty} f_{\xi}(x)dx = \int_{-1}^{1} (1 - |x|)dx = \int_{-1}^{0} (1 + x)dx + \int_{0}^{1} (1 - x)dx =$$

$$= 1 + \frac{x^{2}}{2} \Big|_{-1}^{0} + 1 - \left(\frac{x^{2}}{2}\right) \Big|_{0}^{1} = 1 - \frac{1}{2} + 1 - \frac{1}{2} = 1.$$

Покажем, что ξ и η – зависимые случайные величины

$$\frac{1}{2} = f_{\xi\eta}(0, 0) \neq f_{\xi}(0)f_{\eta}(0) = 1 \cdot 1.$$

Следовательно, ξ и η являются зависимыми.

Функции случайных величин.

Рассмотрим вероятностное пространство (Ω, \mathscr{A}, P) . Пусть ξ случайная величина заданная на этом вероятностном пространстве. Будем предполагать, что $\eta = \varphi(\xi)$ также является случайной величиной то есть

$$\{\omega: \varphi(\xi(\omega)) \leqslant x\} \in \mathscr{A}, \ \forall x \in \mathbb{R}.$$

Пусть $f_{\xi}(x)$ — плотность распределения случайной величины ξ найдем $f_{\eta}(y)$ — плотность распределения случайной величины η . Для этого рассмотрим два случая. Пусть φ — возрастающая функция.

$$F_{\eta}(y) = \mathsf{P}(\eta \leqslant y) = \mathsf{P}(\varphi(\xi) \leqslant y) = \mathsf{P}(\xi \leqslant \varphi^{-1}(y)) = \int_{-\infty}^{\varphi^{-1}(y)} f_{\xi}(x) dx.$$

$$f_{\eta}(y) = F'_{\eta}(y) = \left(\int_{-\infty}^{\varphi^{-1}(y)} f_{\xi}(x) dx\right)'_{y} = f(\varphi^{-1}(y))(\varphi^{-1}(y))'.$$

Если φ – убывающая функция, то

$$F_{\eta}(y) = \mathsf{P}(\eta \leqslant y) = \mathsf{P}(\varphi(\xi) \leqslant y) = \mathsf{P}(\xi \geqslant \varphi^{-1}(y)) =$$

$$= \int_{\varphi^{-1}(y)}^{+\infty} f_{\xi}(x) dx.$$

$$f_{\eta}(y) = -f_{\xi}(\varphi^{-1}(y))(\varphi^{-1}(y))'.$$

Оба этих случая можно объединить в одну формулу

$$f_{\eta}(y) = f_{\xi}(\varphi^{-1}(y))|(\varphi^{-1}(y))'|.$$

В общем случае нужно применить полученную формулу на промежутках монотонности функции φ или заново производить приведенные выше рассуждения.

Пример. Пусть $\xi \in R\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, $\eta = \cos \xi$. Найти $f_{\eta}(y)$.

$$f_{\xi}(x) = \begin{cases} \frac{1}{\pi}, & x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right), \\ 0, & x \in \left(-\infty, -\frac{\pi}{2}\right] \cup \left[\frac{\pi}{2}, +\infty\right). \end{cases}$$

$$F_{\eta}(y) = \mathsf{P}(\eta \leqslant y) = \mathsf{P}(\cos \xi \leqslant y) = \begin{cases} 1, & y > 1, \\ 0, & y < 0, \\ -\frac{\arccos y}{\pi} \frac{dx}{\pi} + \int\limits_{\arccos y}^{\frac{\pi}{2}} \frac{dx}{\pi}, & 0 \leqslant y \leqslant 1. \end{cases}$$

$$f_{\eta}(y) = F'_{\eta}(y) = \begin{cases} 0, & y < 0, \ y > 1, \\ \frac{2}{\pi} \frac{1}{\sqrt{1 - y^2}}, & 0 \le y \le 1. \end{cases}$$

Пример. Пусть $\xi \in N(0, 1)$, $\eta = \xi^2$. Найти $f_{\eta}(y)$.

$$\begin{split} F_{\eta}(y) &= \mathsf{P}(\eta \leqslant y) = \mathsf{P}(\xi^2 \leqslant y) = \mathsf{P}(-\sqrt{y} \leqslant \xi \leqslant \sqrt{y}) = \\ &= \frac{1}{\sqrt{2\pi}} \int\limits_{-\sqrt{y}}^{\sqrt{y}} e^{-\frac{t^2}{2}} dt. \end{split}$$

$$f_{\eta}(y) = F'_{\eta}(y) = \frac{1}{\sqrt{2\pi}} \left(\frac{e^{-\frac{y}{2}}}{2\sqrt{y}} + \frac{e^{-\frac{y}{2}}}{2\sqrt{y}} \right) = \frac{1}{\sqrt{2\pi}} \cdot \frac{e^{-\frac{y}{2}}}{\sqrt{y}}, \ y > 0.$$

$$f_{\eta}(y) = \begin{cases} \frac{e^{-\frac{y}{2}}}{\sqrt{y}}, & y > 0, \\ 0, & y \leq 0. \end{cases}$$

Пример. Пусть $\xi \in N(m, \sigma)$, $\eta = a\xi + b$. Найти $f_{\eta}(y)$. Предположим, что a < 0, тогда

$$\begin{split} F_{\eta}(y) &= \mathsf{P}(\eta \leqslant y) = \mathsf{P}(a\xi + b \leqslant y) = \mathsf{P}\left(\xi \geqslant \frac{y - b}{a}\right) = \\ &= \frac{1}{\sigma\sqrt{2\pi}} \int\limits_{\frac{y - b}{a}}^{\infty} e^{-\frac{(x - m)^2}{2\sigma^2}} dx. \end{split}$$

Продифференцируем функцию $F_n(y)$:

$$f_{\eta}(y) = F'_{\eta}(y) = -\frac{1}{a\sigma\sqrt{2\pi}}e^{-\frac{(\frac{y-b}{a}-m)^2}{2\sigma^2}} = \frac{1}{|a|\sigma\sqrt{2\pi}}e^{-\frac{(y-(b+am))^2}{2a^2\sigma^2}}.$$

Аналогично рассматривается случай a>0. Таким образом линейное преобразование нормальной случайной величины — нормальная случайная величина

$$\eta \in N(b+am, |a|\sigma).$$

Лекция №11

Функции случайных величин. Математическое ожидание, дисперсия, корреляционный момент непрерывных случайных величин.

Пусть (ξ, η) двумерный случайный вектор и пусть $f_{\xi\eta}(xy)$ его двумерная плотность распределения. Предположим, что $\theta = \varphi(\xi, \eta)$ — случайная величина, найдем ее плотность распределения $f_{\theta}(z)$. Для этого найдем сначала ее функцию распределения

$$F_{\theta}(z) = \mathsf{P}(\theta \leqslant z) = \mathsf{P}((\xi, \eta) \in D_z),$$

где через D_z обозначена область

$$D_z = \{(x, y) : \varphi(x, y) \leq z\},$$
 (см. рис. 1).

рис. 1

Тогда

$$F_{\theta}(z) = \iint_{D_z} f_{\xi \eta}(x, y) dx dy.$$

Переходя к повторным интегралам в последнем равенстве и дифференцирую по z получим плотность распределения $f_{\theta}(z)$ случайной величины θ .

Рассмотрим важный частный случай функции двух случайных, а именно их сумму $\theta = \xi + \eta$. Область D_z в этом случае имеет вид

$$D_z = \{(x, y): x + y \leq z\}$$
 (рис. 2).

рис. 2

$$F_{\theta}(z) = \iint_{D_z} f_{\xi \eta}(x, y) dx dy. \tag{1}$$

Перейдем в двойном интеграле к повторным

$$F_{\theta}(z) = \int_{-\infty}^{+\infty} dx \int_{-\infty}^{+\infty} f_{\xi \eta}(x, y) dy,$$

после дифференцирования по z будем иметь

$$f_{\theta}(z) = F_{\theta}'(z) = \int_{-\infty}^{+\infty} f_{\xi\eta}(x, z - x) dx. \tag{2}$$

Изменив порядок интегрирования в двойном интеграле (1) получим

$$F_{\theta}(z) = \iint_{D_z} f_{\xi \eta}(x, y) dx dy = \int_{-\infty}^{+\infty} dy \int_{-\infty}^{+\infty} f_{\xi \eta}(x, y) dx.$$

$$f_{\theta}(z) = F_{\theta}'(z) = \int_{-\infty}^{+\infty} f_{\xi \eta}(z - y, y) dy. \tag{3}$$

Если ξ и η независимые случайные величины, то $f_{\xi\,\eta}(x,\,y)=f_{\xi}(x)f_{\eta}(y)$ и равенства (2) и (3) можно записать в виде

$$f_{\theta}(z) = \int_{-\infty}^{+\infty} f_{\xi}(x) f_{\eta}(z - x) dx = \int_{-\infty}^{+\infty} f_{\xi}(z - y) f_{\eta}(y) dy.$$

Последние формулы называются сверткой законов распределения ξ и η . Таким образом имеем

$$f_{\theta}(z) = f_{\xi} * f_{\eta}(z).$$

Пример (1). Пусть ξ , η независимы, $\xi \in R(a, b)$, $\eta \in N(0, 1)$, $\theta = \xi + \eta$. Найти $f_{\theta}(z)$.

Решение: Применяя формулу свертки к плотностям

$$f_{\xi}(x) = \begin{cases} \frac{1}{b-a}, & x \in (a, b), \\ 0, & x \notin (a, b), \end{cases} f_{\eta}(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}},$$

получим

$$f_{\theta}(z) = \frac{1}{(b-a)} \cdot \frac{1}{\sqrt{2\pi}} \int_{a}^{b} e^{-\frac{(x-z)^{2}}{2}} dx =$$

$$= \frac{1}{b-a} \left(\Phi_{0}(b-z) - \Phi_{0}(a-z) \right),$$

где

$$\Phi_0(x) = \frac{1}{\sqrt{2\pi}} \int_0^x e^{-\frac{t^2}{2}} dt.$$

Заметим, что для функции $f_{\theta}(z)$ выполнены характеристические свойства плотности. Свойство 1) выполняется очевидным образом так как интегрируется положительная функция. Проверим выполнение свойства 2).

$$\int_{-\infty}^{+\infty} f_{\theta}(z)dz = \frac{1}{b-a} \int_{-\infty}^{+\infty} (\Phi_{0}(b-z) - \Phi_{0}(a-z)) dz =$$

$$= \frac{1}{(b-a)\sqrt{2\pi}} \int_{-\infty}^{+\infty} dz \int_{a-z}^{b-z} e^{-\frac{t^{2}}{2}} dt =$$

$$= \frac{1}{(b-a)\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^{2}}{2}} dt \int_{a-t}^{b-t} dz =$$

$$= \frac{1}{(b-a)\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^{2}}{2}} dt (b-a) = 1.$$

Пример (2). Пусть вектор (ξ, η) распределен равномерно в области D (см. рис. 3).

рис. 3

 $To \ ecmb$

$$f_{\xi\eta}(x, y) = \begin{cases} \frac{1}{3}, & (x, y) \in D, \\ 0, & (x, y) \notin D. \end{cases}$$

Haŭmu $f_{\theta}(z)$, εδε $\theta = \xi + \eta$.

Решение: Для нахождения функции $f_{\theta}(z)$ найдем сначала функцию $F_{\theta}(z)$.

$$F_{\theta}(z) = \mathsf{P}(\theta \leqslant z) = \mathsf{P}(\xi + \eta \leqslant z) = \iint_{D_z} f_{\xi \eta}(x, y) \, dx dy =$$

$$= \iint_{D_z \cap D} \frac{1}{3} \, dx dy + \iint_{\mathbb{R}^2 \setminus (D_z \cap D)} 0 \, dx dy =$$

$$= \frac{1}{3} S(D_z \cap D) = \frac{1}{3} S(\widetilde{D}_z) = \frac{1}{3} S_z.$$

Таким образом задача сводится к нахождению площадей S_z областей $\widetilde{D}_z = D_z \cap D$. Эти области для различных значений z изображены на рисунках ниже.

Если $-1 \le z < 0$, то

$$S_z = \frac{\sqrt{2} + \sqrt{2} + \frac{\sqrt{2}}{2}(1+z)}{2} \frac{\sqrt{2}}{2}(1+z) =$$
$$= (1+z) + \frac{(1+z)^2}{4} = \frac{z^2 + 6z + 5}{4}.$$

Если $0 \le z < 1$, то

$$S_z = \frac{5}{2} - \frac{z^2 - 6z + 5}{4} = \frac{10 - z^2 + 6z - 5}{4} = \frac{-z^2 + 6z + 5}{4}.$$

Если $1 \leqslant z < 2$, то

$$S_z = 3 - \frac{(2-z)^2}{2} = \frac{6-4+4z-z^2}{2}.$$

$$F_{\theta}(z) = \begin{cases} 0, & z < -1, \\ \frac{1}{12}(z^2 + 6z + 5), & -1 \leq z < 0, \\ \frac{1}{12}(-z^2 + 6z + 5), & 0 \leq z < 1, \\ \frac{1}{6}(-z^2 + 4z + 2), & 1 \leq z < 2, \\ 1, & 2 \leq z. \end{cases}$$

$$f_{\theta}(z) = F'_{\theta}(z) = \begin{cases} 0, & z < -1, \ z \geqslant 2, \\ \frac{1}{6}(z+3), & -1 \leqslant z < 0, \\ \frac{1}{6}(-z+3), & 0 \leqslant z < 1, \\ \frac{1}{3}(-z+2), & 1 \leqslant z < 2. \end{cases}$$

Лекция №12

Функции случайных величин. Математическое ожидание, дисперсия, корреляционный момент непрерывных случайных величин. (продолжение)

Определение. Пусть ξ — непрерывная случайная величина и $f_{\xi}(x)$ — ее плотность распределения. Тогда, если $\int\limits_{-\infty}^{+\infty} x f_{\xi}(x) dx$ сходится абсолютно, то он называется математическим ожиданием ξ .

$$M\xi = \int_{-\infty}^{+\infty} x f_{\xi}(x) dx.$$

Если (ξ, η) — двумерная случайная величина с совместной плотностью распределения $f_{\xi\eta}(x, y)$, то $M\xi$ можно вычислить по формуле

$$M\xi = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f_{\xi\eta}(x, y) dx dy.$$

Действительно

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x f_{\xi\eta}(x, y) dx dy = \int_{-\infty}^{+\infty} x dx \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dy =$$

$$= \int_{-\infty}^{+\infty} x f_{\xi}(x) dx = M\xi.$$

Аналогично

$$M\eta = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} y f_{\xi\eta}(x, y) dx dy.$$

Свойства математического ожидания

Для доказательства свойств математического ожидания нам понадобятся следующие вспомогательные утверждения.

Лемма. Пусть ξ и η – случайные величины, $\eta = \varphi(\xi)$, $f_{\xi}(x)$, $f_{\eta}(y)$ – соответствующие плотности распределения ξ и η . Тогда

$$M\eta = \int_{-\infty}^{+\infty} y f_{\eta}(y) dy = \int_{-\infty}^{+\infty} \varphi(x) f_{\xi}(x) dx,$$

то есть при вычислении $M\eta$ можно обойтись без промежуточного вычисления плотности $f_{\eta}(y)$.

Доказательство. Предположим, что $\varphi(x)$ — неубывающая функция. По доказанному ранее в этом случае

$$f_{\eta}(y) = f_{\xi}(\varphi^{-1}(y))(\varphi^{-1}(y))'.$$

Используя это и производя замену переменной интегрирования по формуле $y = \varphi(x)$, получим

$$M\eta = \int_{-\infty}^{+\infty} y f_{\eta}(y) dy = \int_{-\infty}^{+\infty} y f_{\xi}(\varphi^{-1}(y)) (\varphi^{-1}(y))' dy =$$
$$= \int_{-\infty}^{+\infty} \varphi(x) f_{\xi}(x) dx.$$

Аналогично, если $\varphi(x)$ не возрастает

$$f_{\eta}(y) = -f_{\xi}(\varphi^{-1}(y))(\varphi^{-1}(y))',$$

$$M\eta = \int_{-\infty}^{+\infty} y f_{\eta}(y) dy = -\int_{-\infty}^{+\infty} y f_{\xi}(\varphi^{-1}(y)) (\varphi^{-1}(y))' dy =$$
$$= -\int_{+\infty}^{-\infty} \varphi(x) f_{\xi}(x) dx = \int_{-\infty}^{+\infty} \varphi(x) f_{\xi}(x) dx.$$

Так же нетрудно доказать следующее утверждение

Лемма. Пусть (ξ, η) – случайный вектор с совместной плотностью распределения $f_{\xi\eta}(x, y)$, $\theta = \varphi(\xi, \eta)$ – случайная величина, тогда

$$M\theta = \iint_{-\infty}^{+\infty} \varphi(x, y) f_{\xi\eta}(x, y) dx dy.$$

Перейдем к свойствам математического ожидания.

- 1. MC = C.
- 2. $M(C\xi) = C M\xi$.
- 3. $M(\xi + \eta) = M\xi + M\eta$.
- 4. Пусть ξ , η независимые случайные величины, тогда $M(\xi\eta)=M\xi\,M(\eta)$.

Свойства 1, 2 очевидны.

Доказательство свойства 3.

$$M(\xi + \eta) = \int_{-\infty}^{+\infty} (x + y) f_{\xi\eta}(x, y) dx dy =$$

$$= \int_{-\infty}^{+\infty} x f_{\xi\eta}(x, y) dx dy + \int_{-\infty}^{+\infty} y f_{\xi\eta}(x, y) dx dy =$$

$$= \int_{-\infty}^{+\infty} x dx \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dy + \int_{-\infty}^{+\infty} y dy \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dx =$$

$$= \int_{-\infty}^{+\infty} x f_{\xi}(x) dx + \int_{-\infty}^{+\infty} y f_{\eta}(y) dy = M_{\xi} + M_{\eta}.$$

Доказательство свойства 4. Если ξ , η независимы, то, из определения независимых случайных величин будем иметь

$$M\xi\eta = \int_{-\infty}^{+\infty} xy f_{\xi\eta}(x, y) dx dy = \int_{-\infty}^{+\infty} xy f_{\xi}(x) f_{\eta}(y) dx dy =$$
$$= \int_{-\infty}^{+\infty} x f_{\xi}(x) dx \int_{-\infty}^{+\infty} y f_{\eta}(y) dy = M\xi M\eta.$$

Дисперсия

Дисперсией случайной величины ξ называется величина

$$D\xi = M((\xi - M\xi)^2).$$

Свойства дисперсии

- 1. $D\xi \ge 0$.
- 2. DC = 0.
- 3. $D(C\xi) = C^2 D\xi$.
- 4. Если ξ , η независимы, то $D(\xi \pm \eta) = D\xi + D\eta$.

Доказательство свойства 2.

$$DC = \int_{-\infty}^{+\infty} (C - MC)^2 f_{\xi}(x) dx = \int_{-\infty}^{+\infty} (C - C)^2 f_{\xi}(x) dx = 0.$$

Доказательство свойства 3.

$$\int_{-\infty}^{+\infty} (Cx - MC\xi)^2 f_{\xi}(x) dx =$$

$$= C^2 \int_{-\infty}^{+\infty} (x - M\xi)^2 f_{\xi}(x) dx = C^2 D\xi.$$

Лекция №13

Функции случайных величин. Математическое ожидание, дисперсия, корреляционный момент непрерывных случайных величин. (продолжение)

Доказательство свойства 4.

$$D(\xi \pm \eta) = \iint_{-\infty}^{+\infty} ((x \pm y) - M(\xi \pm \eta))^2 f_{\xi\eta}(x, y) dx dy =$$

$$= \iint_{-\infty}^{+\infty} ((x \pm y) - (M\xi \pm M\eta))^2 f_{\xi\eta}(x, y) dx dy =$$

$$= \iint_{-\infty}^{+\infty} ((x - M\xi) \pm (y - M\eta))^2 f_{\xi\eta}(x, y) dx dy =$$

$$= \iint_{-\infty}^{+\infty} ((x - M\xi)^2 \pm 2(x - M\xi)(y - M\eta) +$$

$$+ (y - M\eta)^2) f_{\xi}(x) f_{\eta}(y) dx dy =$$

$$= \iint_{-\infty}^{+\infty} (x - M\xi)^2 f_{\xi}(x) f_{\eta}(y) dx dy \pm$$

$$\pm 2 \iint_{-\infty}^{+\infty} (x - M\xi)(y - M\eta) f_{\xi}(x) f_{\eta}(y) dx dy +$$

$$+ \iint_{-\infty}^{+\infty} (y - M\eta)^2 f_{\xi}(x) f_{\eta}(y) dx dy.$$

$$\int_{-\infty}^{+\infty} (x - M\xi)^2 f_{\xi}(x) dx \int_{-\infty}^{+\infty} f_{\eta}(y) dy \pm 2 \int_{-\infty}^{+\infty} (x - M\xi) f(x) dx \int_{-\infty}^{+\infty} (y - M\eta) f_{\eta}(y) dy + \int_{-\infty}^{+\infty} (y - M\eta)^2 f_{\eta}(y) dy \int_{-\infty}^{+\infty} f_{\xi}(x) dx = D\xi + D\eta.$$

Докажем, что

$$\int_{-\infty}^{+\infty} (x - M\xi) f(x) dx \int_{-\infty}^{+\infty} (y - M\eta) f_{\eta}(y) dy = 0.$$

$$\left(\int_{-\infty}^{+\infty} x f_{\xi}(x) dx - M\xi \int_{-\infty}^{+\infty} f_{\xi}(x) dx\right) \int_{-\infty}^{+\infty} (y - M\eta) f_{\eta}(y) dy = 0.$$

Корреляционный момент

Определение. Величина

$$K_{\xi\eta} = M((\xi - M\xi)(\eta - M\eta))$$

называется корреляционным моментом.

Определение. Будем говорить, что случайные величины ξ , η некоррелированы если $K_{\xi\eta}=0$.

Свойства корреляционного момента

- 1. $K_{\xi\eta} = K_{\eta\xi}$.
- 2. $|K_{\xi\eta}| \leqslant \sqrt{D\xi} \sqrt{D\eta}$ (неравенство Коши-Буняковского-Шварца).
- 3. Если ξ , η независимы, то они некоррелированы.

Определение. Величина

$$r_{\xi\eta} = \frac{K_{\xi\eta}}{\sigma_{\xi}\sigma_{\eta}},$$

где $\sigma_{\xi} = \sqrt{D\xi}, \, \sigma_{\eta} = \sqrt{D\eta}$ – среднеквадратические отклонения случайных величин ξ и η соответственно, называется коэффициентом корреляции.

При помощи коэффициента корреляции неравенство Коши-Буняковского-Шварца можно записать в виде

$$|r_{\xi\eta}| \leqslant 1.$$

Доказательство свойства 2.

Пусть $\mathring{\xi} = \xi - M\xi$, а $\mathring{\eta} = \eta - M\eta$. Тогда $K_{\xi\eta} = M\mathring{\xi}\mathring{\eta}$, $D\xi = M\mathring{\xi}^2$, $D\eta = M\mathring{\eta}^2$. Рассмотрим следующие соотношения

$$0 \leqslant M(\alpha \mathring{\xi} + \mathring{\eta})^2 = M(\alpha^2 \mathring{\xi}^2 + 2\alpha \mathring{\xi} \mathring{\eta} + \mathring{\eta}^2) =$$

$$= \alpha^2 M \mathring{\xi}^2 + 2\alpha M \mathring{\xi} \mathring{\eta} + M \mathring{\eta}^2 = \alpha^2 D \xi + 2\alpha K_{\xi \eta} + D \eta$$

$$\alpha^2 D \xi + 2\alpha K_{\xi \eta} + D \eta \geqslant 0 \quad \forall \alpha.$$

Следовательно дискриминант этого квадратного трехчлена не превосходит нуля

$$K_{\xi\eta}^2 - D\xi D\eta \leqslant 0, \quad |K_{\xi\eta}| \leqslant \sqrt{D\xi} \sqrt{D\eta}.$$

Заметим, что если η линейно зависит от ξ

$$\eta = a\xi + b,$$

то неравенство превращается в равенство.

$$K_{\xi\eta} = M[(\xi - M\xi)(a\xi + b - aM\xi - b)] =$$

= $aM[(\xi - M\xi)(\xi - M\xi)] = aD\xi$,
 $D\eta = D(a\xi + b) = a^2D\xi + Db = a^2D\xi$.

Доказательство свойства 3.

$$K_{\xi\eta} = M((\xi - M\xi)(\eta - M\eta)) = M(\xi - M\xi)M(\eta - M\eta) =$$

= $(M\xi - M\xi)(M\eta - M\eta) = 0.$

Замечание. Обратное неверно, из некоррелированности не следует независимость.

Пример. Вернемся κ рассмотренному ранее примеру. Пусть случайный вектор (ξ, η) распределен равномерно в области D (см. рис.).

$$f_{\xi\eta} = \begin{cases} \frac{1}{2}, & (x, y) \in D, \\ 0, & (x, y) \notin D. \end{cases}$$

П

Ранее были получены одномерные плотности распределения ξ и η

$$f_{\eta}(x) = \begin{cases} 1 - |x|, & |x| \le 1, \\ 0, & |x| > 1, \end{cases}$$
$$f_{\eta}(y) = \begin{cases} 1 - |y|, & |y| \le 1, \\ 0, & |y| > 1, \end{cases}$$

u доказана зависимость этих случайных величин. Покажем, что ξ u η некоррелированы.

$$M\xi = M\eta = \int_{-1}^{1} x(1 - |x|)dx = 0.$$

 $K_{\xi\eta} = M_{\xi\eta} = \frac{1}{2} \iint_{D} xy \, dxdy = 0$

Определение. Корреляционной матрицей для случайных величин $\xi_1 \dots \xi_n$ называется матрица вида

$$\hat{K} = \begin{pmatrix} D_1 & K_{12} & \dots & K_{1n} \\ K_{21} & D_2 & \dots & \dots \\ \dots & \dots & \dots & \dots \\ K_{n1} & K_{n2} & \dots & D_n \end{pmatrix},$$

где $D_i = D_{\xi_i}, \ K_{ij} = K_{\xi_i \xi_j}.$

Лекция №14

Характеристические функции. Числовые характеристики основных «непрерывных» распределений.

Определение. Пусть $f_{\xi}(x)$ — плотность распределения непрерывной случайной величины ξ . Функция

$$\varphi_{\xi}(z) = Me^{i\xi z} = \int_{-\infty}^{+\infty} e^{ixz} f_{\xi}(x) dx$$

называется характеристической функцией случайной величины ξ .

Свойства характеристической функции

- 1. $\varphi_{\xi}(z)$ определена $\forall z \in \mathbb{R}$.
- 2. Существует взаимно однозначное соответствие между характеристическими функциями и плотностями распределения

$$f_{\xi}(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-izx} \varphi_{\xi}(z) dz, \quad \varphi_{\xi}(z) = \int_{-\infty}^{+\infty} e^{ixz} f_{\xi}(x) dx.$$

- 3. $\varphi_{a\xi+b}(z) = e^{izb}\varphi_{\xi}(az)$.
- 4. Пусть ξ_1, \ldots, ξ_n независимые в совокупности случайные величины. Тогда

$$\varphi_{\sum\limits_{j=1}^{n}\xi_{j}}(z) = \prod\limits_{j=1}^{n}\varphi_{\xi_{j}}(z)$$

5. $\varphi_{\xi}(0) = 1$. Если существуют $M\xi$ и $D\xi$, то их можно вычислить по формулам

$$M\xi = -i\varphi'_{\xi}(0), \ D\xi = -\varphi''_{\xi}(0) + (\varphi'_{\xi}(0))^{2}.$$

Доказательство свойства 1.

Свойство 1 следует из того, что несобственный интеграл в определении характеристической функции сходится абсолютно. Действительно

$$\int_{-\infty}^{+\infty} |e^{ixz} f_{\xi}(x)| dx = \int_{-\infty}^{+\infty} |e^{ixz}| f_{\xi}(x) dx = \int_{-\infty}^{+\infty} f_{\xi}(x) dx = 1.$$

Доказательство свойства 2.

Свойство 2 следует из справедливости для достаточно гладких функций формул для прямого и обратного преобразования Φ vpье.

Доказательство свойства 3.

$$\varphi_{a\xi+b}(z) = \int_{-\infty}^{+\infty} e^{i(ax+b)z} f_{\xi}(x) dx = \int_{-\infty}^{+\infty} e^{iazx} e^{izb} f_{\xi}(x) dx =$$

$$= e^{izb} \int_{-\infty}^{+\infty} e^{iazx} f_{\xi}(x) dx = e^{izb} \varphi_{\xi}(az).$$

Доказательство свойства 4.

$$\varphi_{\sum_{j=1}^{n} \xi_{j}}(z) = M e^{iz \sum_{j=1}^{n} \xi_{j}} = M e^{\sum_{j=1}^{n} iz\xi_{j}} = M \left(\prod_{j=1}^{n} e^{iz\xi_{j}} \right) =$$

$$= \prod_{j=1}^{n} M e^{iz\xi_{j}} = \prod_{j=1}^{n} \varphi_{\xi_{j}}(z).$$

Доказательство свойства 5.

$$\varphi_{\xi}(0) = \int_{-\infty}^{+\infty} e^{izx} f_{\xi}(x) dx \bigg|_{z=0} = 1,$$

$$\varphi'_{\xi}(0) = \int_{-\infty}^{+\infty} ix e^{izx} f_{\xi}(x) dx \bigg|_{z=0} = \int_{-\infty}^{+\infty} ix f_{\xi}(x) dx = iM\xi,$$

$$\varphi''_{\xi}(0) = -\int_{-\infty}^{+\infty} x^{2} e^{izx} f_{\xi}(x) dx \bigg|_{z=0} = M\xi^{2},$$

$$M\xi = -i\varphi'_{\xi}(0), \quad D\xi = -\varphi''_{\xi}(0) + (\varphi'_{\xi}(0))^{2}.$$

Пример. Пусть $\xi \in N(0, 1), \, \eta \in N(m, \, \sigma), \, mor \partial a$

$$\varphi_{\xi}(z) = e^{-\frac{z^2}{2}}, \quad \varphi_{\eta}(z) = e^{-izm}e^{-\frac{\sigma^2 z^2}{2}}.$$

$$\varphi_{\xi}(z) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{izx} e^{-\frac{x^2}{2}} dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(x^2 - 2izx - z^2) - \frac{z^2}{2}} dx =$$

14.3

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(x-iz)^2 - \frac{z^2}{2}} dx = \frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2}(x-iz)^2} dx.$$

Введем переменную t = x - iz. Тогда dx = dt, u

$$\varphi_{\xi}(z) = \frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi}} \int_{-\infty - iz}^{+\infty - iz} e^{-\frac{t^2}{2}} dt.$$

Покажем, что

$$\int_{-\infty - iz}^{+\infty - iz} e^{-\frac{t^2}{2}} dt = \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \sqrt{2\pi}.$$

$$0 = \int_{\partial D_M} e^{-\frac{t^2}{2}} dt = \int_{-M-iz}^{M-iz} e^{-\frac{t^2}{2}} dt + \int_{\gamma_M} e^{-\frac{t^2}{2}} dt - \int_{-M}^{M} e^{-\frac{t^2}{2}} dt + \int_{\gamma_M} e^{-\frac{t^2}{2}} dt + \int_{\gamma_M} e^{-\frac{t^2}{2}} dt.$$

Покажем, что

$$\int_{\gamma_M} e^{-\frac{t^2}{2}} dt \xrightarrow[M \to +\infty]{} 0, \quad \int_{\gamma_{-M}} e^{-\frac{t^2}{2}} dt \xrightarrow[M \to +\infty]{} 0.$$

Действительно

$$\left| \int_{\gamma_M(\gamma_{-M})} e^{-\frac{t^2}{2}} dt \right| \leqslant \int_{\gamma_M(\gamma_{-M})} \left| e^{-\frac{t^2}{2}} dt \right| \leqslant \int_{\gamma_M(\gamma_{-M})} e^{-\frac{M^2 + z^2}{2}} dt \xrightarrow[M \to +\infty]{} 0.$$

Следовательно,

$$\int_{-\infty - iz}^{+\infty - iz} e^{-\frac{t^2}{2}} dt = \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \sqrt{2\pi}.$$

Из этого следует, что

$$\varphi_{\xi}(z) = \frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi}} \int_{-\infty - iz}^{+\infty - iz} e^{-\frac{t^2}{2}} dt = e^{-\frac{z^2}{2}}.$$

$$\eta = \sigma \xi + m, \ \varphi_{\eta}(z) = \varphi_{\sigma \xi + m} = e^{-izm} \varphi_{\xi}(\sigma z) = e^{-izm} e^{-\frac{\sigma^2 z^2}{2}}.$$
$$\varphi_{\eta}(z) = \varphi_{\sigma \xi + m}(z) = e^{-izm} e^{-\frac{\sigma^2 z^2}{2}}.$$

Пример. Пусть $\xi \in N(m, \sigma)$, тогда $M\xi = m$, $D\xi = \sigma^2$.

$$\varphi_{\xi}(z) = e^{izm} e^{-\frac{\sigma^2 z^2}{2}}.$$

$$\varphi'_{\xi}(0) = \left(ime^{izm} e^{-\frac{\sigma^2 z^2}{2}} - z\sigma^2 e^{izm} e^{-\frac{\sigma^2 z^2}{2}}\right)\Big|_{z=0} = im.$$

$$M\xi = -i\varphi'_{\xi}(0) = i(-im) = m.$$

$$\varphi_{\xi}''(0) = \left(-m^2 e^{izm} e^{-\frac{\sigma^2 z^2}{2}} - 2imz\sigma^2 e^{izm} e^{-\frac{\sigma^2 z^2}{2}} - \sigma^2 e^{izm} e^{-\frac{\sigma^2 z^2}{2}} + z^2 \sigma^4 e^{izm} e^{-\frac{\sigma^2 z^2}{2}}\right)\Big|_{z=o} = -m^2 - \sigma^2.$$

$$D\xi = -\varphi_{\xi}''(0) + (\varphi_{\xi}'(0))^2 = m^2 + \sigma^2 - m^2 = \sigma^2.$$

Пример. Пусть ξ распределена по показательному закону с параметром $\lambda > 0$. Напомним, что это означает, что

$$f_{\xi}(x) = \begin{cases} 0, & x < 0, \\ \lambda e^{-\lambda x}, & x \geqslant 0. \end{cases}$$

 $Haйdem \varphi_{\xi}(z), M\xi u D\xi.$

$$\varphi_{\xi}(z) = \lambda \int_{0}^{+\infty} e^{izx} e^{-\lambda x} dx = \lambda \int_{0}^{+\infty} e^{(iz-\lambda)x} dx =$$

$$= \frac{\lambda}{iz - \lambda} e^{(iz-\lambda)x} \Big|_{0}^{+\infty} = \frac{\lambda}{\lambda - iz}.$$

$$\varphi'_{\xi}(0) = \frac{\lambda i}{(\lambda - iz)^2} \bigg|_{z=0} = \frac{i}{\lambda}, \quad M\xi = -i\varphi'_{\xi}(0) = -i\frac{i}{\lambda} = \frac{1}{\lambda}.$$

$$\varphi_{\xi}''(0) = \frac{2iz}{(\lambda - iz)^3} \bigg|_{z=0} = -\frac{2}{\lambda^2},$$

$$D\xi = -\varphi_{\xi}''(0) + (\varphi_{\xi}'(0))^2 = \frac{2}{\lambda^2} - \frac{1}{\lambda^2} = \frac{1}{\lambda^2}.$$

Пример. Пусть $\xi \in R(a, b)$, найдем $M\xi$ и $D\xi$.

$$f_{\xi}(x) = \begin{cases} 0, & x \notin (a, b), \\ \frac{1}{b-a}, & x \in (a, b). \end{cases}$$

$$M\xi = \int_{-\infty}^{+\infty} x f_{\xi}(x) dx = \frac{1}{1-a} \int_{a}^{b} x dx =$$
$$= \frac{1}{b-a} \frac{1}{2} (b^2 - a^2) = \frac{(a+b)}{2},$$

$$D\xi = \int_{-\infty}^{+\infty} \left(x - \frac{a+b}{2} \right)^2 f_{\xi}(x) dx = \frac{1}{b-a} \int_{a}^{b} \left(x - \frac{a+b}{2} \right)^2 dx =$$

$$= \frac{1}{b-a} \frac{1}{3} \left(x - \frac{a+b}{2} \right)^3 \bigg|_a^b = \frac{(b-a)^2}{24} + \frac{(b-a)^2}{24} = \frac{(b-a)^2}{12}.$$

Задание на дом (необязательное): найти характеристическую функцию гамма-распределения

$$f_{\xi}(x) = \begin{cases} 0, & x < 0, \\ \frac{\lambda^{\alpha} x^{\alpha - 1} e^{-\alpha x}}{\Gamma(\alpha)}, & x \geqslant 0. \end{cases}$$

Примечание:

$$\Gamma(\alpha) = \int_{0}^{+\infty} t^{\alpha - 1} e^{-t} dt.$$

Лекция №15

Предельные теоремы: неравенство Чебышева, сходимость по вероятности, теорема Чебышева, закон больших чисел (теорема Бернулли)

Неравенство Чебышева

Теорема (неравенство Чебышева). Пусть ξ — случайные величина, с плотностью распределения $f_{\xi}(x)$, математическим ожиданием $M\xi=m$, дисперсией $D\xi=D$. Тогда имеет место неравенство

$$P(|\xi - m| > \alpha) \leqslant \frac{D}{\alpha^2}, \quad \alpha > 0.$$

Доказательство.

$$D\xi = \int_{-\infty}^{+\infty} (x - m)^2 f_{\xi}(x) dx = \int_{-\infty}^{+\infty} |x - m|^2 f_{\xi}(x) dx \geqslant$$

$$\geqslant \int_{|x - m| > \alpha} |x - m|^2 f_{\xi}(x) dx >$$

$$> \int_{|x - m| > \alpha} \alpha^2 f_{\xi}(x) dx = \alpha^2 \operatorname{P}(|\xi - m| > \alpha).$$

$$D \geqslant \alpha^2 \operatorname{P}(|\xi - m| > \alpha), \quad \operatorname{P}(|\xi - m| > \alpha) \leqslant \frac{D}{\alpha^2}.$$

Сходимость по вероятности

Определение. Последовательность случайных величин ξ_n сходится по вероятности к случайной величине ξ

$$\xi_n \stackrel{\mathsf{P}}{\underset{n\to\infty}{\longrightarrow}} \xi,$$

если

$$\forall \varepsilon > 0, \quad \lim_{n \to \infty} \mathsf{P}(|\xi_n - \xi| < \varepsilon) = 1,$$

или

$$\forall \varepsilon > 0 \ \forall \varepsilon_1 > 0 \ \exists N, \ \text{t. q.} \ \forall n > N \ | \ \mathsf{P}(|\xi_n - \xi| < \varepsilon) - 1 | \leqslant \varepsilon_1.$$

или

$$\forall \varepsilon > 0 \ \forall \varepsilon_1 > 0 \ \exists N$$
, т. ч. $\forall n > N \ 1 - \varepsilon_1 \leqslant \mathsf{P}(|\xi_n - \xi| < \varepsilon) \le 1 + \varepsilon_1$,

или

$$\forall \varepsilon > 0 \ \forall \varepsilon_1 > 0 \ \exists N, \ \text{t. q.} \ \forall n > N \quad \mathsf{P}(|\xi_n - \xi| < \varepsilon) \geqslant 1 - \varepsilon_1.$$

Теоремы Чебышева

Теорема (Чебышева 1). Пусть $\xi_1, \xi_2, \ldots, \xi_n$ – последовательность независимых случайных величин, с математическими ожиданиями $M\xi_i = m$ и дисперсиями $D\xi_i = D \ \forall i$. Тогда среднее арифметическое этих случайных величин

$$\eta_n = \frac{1}{n} \sum_{i=1}^n \xi_i$$

стремится по вероятности к т

$$\eta_n \stackrel{\mathsf{P}}{\underset{n \to \infty}{\longrightarrow}} m.$$

Доказательство. Из неравенства Чебышева будем иметь

$$P(|\xi - m_{\xi}| \leq \alpha) = 1 - P(|\xi - m_{\xi}| > \alpha) \geqslant 1 - \frac{D_{\xi}}{\alpha^{2}},$$

или

$$\mathsf{P}(|\xi - m_{\xi}| \leqslant \alpha) \geqslant 1 - \frac{D_{\xi}}{\alpha^2}.$$

Применим последнее соотношение к случайной величине η_n . Так как

$$M_{\eta_n} = M\left(\frac{1}{n}\sum_{i=1}^n \xi_i\right) = \frac{1}{n}\sum_{i=1}^n M\xi_i = m,$$

$$D_{\eta_n} = D\left(\frac{1}{n}\sum_{i=1}^n \xi_i\right) = \frac{1}{n^2}\sum_{i=1}^n D\xi_i = \frac{\eta D}{n} = \frac{D}{n},$$

то для $\forall \varepsilon > 0, \varepsilon_1 > 0$

$$P(|\eta_n - m| \le \varepsilon) \ge 1 - \frac{D}{n\varepsilon^2} > 1 - \varepsilon_1,$$

если

$$n > \frac{D}{\varepsilon^2 \varepsilon_1}.$$

Теорема (Чебышева 2). Пусть ξ_1, \ldots, ξ_n — последовательность независимых случайных величин с математическими ожиданиями $m\xi_i = m_i$ и дисперсиями $D\xi_i = D_i$, причем $D_i < L \ \forall i$. Тогда

$$\left(\frac{1}{n}\sum_{i=1}^{n}\xi_{i}-\frac{1}{n}\sum_{i=1}^{n}m_{i}\right)\underset{n\to\infty}{\overset{\mathsf{P}}{\to}}0.$$

Доказательство. Обозначим через

$$\eta_n = \frac{1}{n} \sum_{i=1}^n \xi_i.$$

Применим к этой случайной величине неравенство Чебышева

$$P(|\eta_n - M\eta_n| \le \varepsilon) \ge 1 - \frac{D\eta_n}{\varepsilon^2}.$$

Так как

$$M\eta_n = M\left(\frac{1}{n}\sum_{i=1}^n \xi_i\right) = \frac{1}{n}\sum_{i=1}^n M\xi_i = \frac{1}{n}\sum_{i=1}^n m_i,$$

$$D\eta_n = D\left(\frac{1}{n}\sum_{i=1}^n \xi_i\right) = \frac{1}{n^2}\sum_{i=1}^n D\xi_i = \frac{1}{n^2}\sum_{i=1}^n D_i \leqslant \frac{1}{n^2}\sum_{i=1}^n L = \frac{L}{n},$$

то для $\forall \varepsilon > 0, \, \varepsilon_1 > 0$

$$\mathsf{P}\left(\left|\eta_n - \frac{1}{n}\sum_{i=1}^n m_i\right| \leqslant \varepsilon\right) \geqslant 1 - \frac{D\eta_n}{\varepsilon^2} > 1 - \frac{L}{n\varepsilon^2} > 1 - \varepsilon_1,$$

если

$$n > \frac{L}{\varepsilon_1 \varepsilon^2}.$$

Теорема (Бернулли (закон больших чисел Бернулли)). Пусть

$$\nu_n = \frac{S_n}{n}$$

15.4

П

частота успеха в серии из п независимых испытаний Бернулли с вероятностью «успеха» р. Тогда

$$\nu_n \stackrel{\mathsf{P}}{\underset{n \to \infty}{\longrightarrow}} p.$$

Доказательство. Рассмотрим биномиально распределенные случайные величины

$$\xi_i = \begin{cases} 1, & \text{если «успех» в } i\text{-м испытании,} \\ 0, & \text{если «неудача»,} \end{cases}$$

тогда

$$\nu_n = \frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n \xi_i,$$

при этом

$$M\xi_i = p, \quad D\xi_i = p - p^2 = pq,$$

и следовательно по 1-й теореме Чебышева

$$\nu_n \stackrel{\mathsf{P}}{\underset{n \to \infty}{\longrightarrow}} p.$$

Определение. Последовательность случайных величин η_n называется асимптотически нормальной, если

$$\mathsf{P}\left(\frac{\eta_n - M\eta_n}{\sigma_{\eta_n}} \leqslant x\right) \underset{n \to \infty}{\to} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$$

Теорема (центральная предельная теорема (без доказательства)). Пусть имеется последовательность независимых, одинаково распределенных случайных величин $\xi_1, \ldots, \xi_n, \ldots, c$ $f_{\xi_i}(x) = f(x), M\xi_i = m, D\xi_i = D$. Тогда $\eta_n = \sum_{i=1}^n \xi_i$ – асимптотически нормальна.

Лекция №16

Многомерное нормальное распределение

Определение. Пусть ξ_1, \ldots, ξ_n — последовательность случайных величин с математическими ожиданиями $M\xi_i=m_i$ и корреляционной матрицей \widehat{K} . Тогда система ξ_1,\ldots,ξ_n называется распределенной нормально, если ее многомерная плотность распределения имеет вид

$$f_{\xi_1, \dots, \xi_n}(x_1 \dots, x_n) = \frac{e^{-\frac{1}{2} \sum_{ij} A_{ij} \hat{x}_i \hat{x}_j}}{\sqrt{|\hat{K}| (2\pi)^n}},$$

где $|\widehat{K}| = \det \widehat{K}, \ \mathring{x_i} = x_i - m_i, \ A_{ij}$ – элементы матрицы \widehat{K}^{-1} .

Замечание. Из определения плотности многомерного распределения следует, что

$$f_{\xi_1, \dots, \xi_n}(x_1 \dots, x_n) = \frac{\partial^n F_{\xi_1, \dots, \xi_n}(x_1 \dots, x_n)}{\partial x_1 \partial x_2 \dots \partial x_n},$$

где $F_{\xi_1,\ldots,\xi_n}(x_1\ldots,\,x_n)$ – многомерная плотность распределения

$$F_{\xi_1, \dots, \xi_n}(x_1 \dots, x_n) = \mathsf{P}(\xi_1 \leqslant x_1, \dots, \xi_n \leqslant x_n).$$

Рассмотрим более подробно двумерное нормальное распределение, обозначим $\xi_1=\xi,\,\xi_2=\eta,$

$$\widehat{K} = \begin{pmatrix} D_{\xi} & K_{\xi\eta} \\ K_{\xi\eta} & D_{\eta} \end{pmatrix}, \quad M\xi = m_1, \, M\eta = m_2, \, D_{\xi} = \sigma_1^2, \, D_{\eta} = \sigma_2^2,$$

$$\mathring{x} = x_1 - m_1, \, \mathring{y} = x_2 - m_2.$$

Найдем матрицу \widehat{K}^{-1}

$$|\hat{K}| = D_{\xi}D_{\eta} - K_{\xi\eta} = \sigma_1^2 \sigma_2^2 (1 - r^2),$$

где r – коэффициент корреляции

$$r = r_{\xi\eta} = \frac{K_{\xi\eta}}{\sigma_1 \sigma_2}.$$

Из неравенства Коши-Буняковского-Шварца следует что

$$\left| \widehat{K} \right| \geqslant 0.$$

Предположим, что $|\hat{K}| \neq 0$. Таким образом

$$\hat{K}^{-1} = \begin{pmatrix} \frac{1}{\sigma_1^2 (1 - r^2)} & \frac{-r}{\sigma_1 \sigma_2 (1 - r^2)} \\ -r & 1 \\ \hline \sigma_1 \sigma_2 (1 - r^2) & \overline{\sigma_1^2 (1 - r^2)} \end{pmatrix}.$$

Таким образом плотность распределения нормального случайного вектора (ξ, η) будет иметь вид

$$f_{\xi\eta}(x_1, x_2) = \frac{e^{-\frac{1}{2(1-r^2)} \left(\frac{\hat{x}^2}{\sigma_1^2} - \frac{2r\hat{x}\hat{y}}{\sigma_1\sigma_2} + \frac{\hat{y}^2}{\sigma_2^2}\right)}}{2\pi\sigma_1\sigma_2\sqrt{1-r^2}}.$$

Найдем одномерные плотности $f_{\xi}(x)$ и $f_{\eta}(y)$

$$f_{\xi}(x) = \int_{-\infty}^{+\infty} f_{\xi\eta}(x, y) dy =$$

$$= \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1 - r^2}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2(1 - r^2)} \left(\frac{\circ^2}{\sigma_1^2} - \frac{2r\circ\circ}{\sigma_1\sigma_2} + \frac{\circ^2}{\sigma_2^2}\right)} dy.$$

Выделяя полный квадрат в показателе у экспоненты, получим

$$f_{\xi}(x) = \frac{1}{2\pi\sigma_{1}\sigma_{2}\sqrt{1-r^{2}}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2(1-r^{2})} \left(\frac{\mathring{y}}{\sigma_{2}} - \frac{r\mathring{x}}{\sigma_{1}}\right)^{2}} e^{-\frac{\mathring{x}^{2}}{2\sigma_{1}^{2}}} dy =$$

$$= \frac{1}{\sigma_{1}\sqrt{2\pi}} e^{-\frac{(x-m_{1})^{2}}{2\sigma_{1}^{2}}} \cdot \frac{1}{\sigma_{2}\sqrt{1-r^{2}}\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{1}{2(1-r^{2})} \left(\frac{\mathring{y}}{\sigma_{2}} - \frac{r\mathring{x}}{\sigma_{1}}\right)^{2}} dy.$$

После замены переменной

$$t = \left(\frac{\overset{\circ}{y}}{\sigma_2} - \frac{r\overset{\circ}{x}}{\sigma_1}\right) \frac{1}{\sqrt{1 - r^2}}$$

в интеграле, будем иметь

$$f_{\xi}(x) = \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}} \cdot \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} e^{-\frac{t^2}{2}} dt = \frac{1}{\sigma_1 \sqrt{2\pi}} e^{-\frac{(x-m_1)^2}{2\sigma_1^2}}.$$

Аналогично

$$f_{\eta}(y) = \frac{1}{\sigma_2 \sqrt{2\pi}} e^{-\frac{(y-m_2)^2}{2\sigma_2^2}}.$$

Таким образом, одномерные компоненты случайного вектора (ξ,η) распределены нормально. Из полученных соотношений следует, что при r=0

$$f_{\xi\eta}(x,y) = f_{\xi}(x)f_{\eta}(y)$$

и значит из некоррелированности ξ и η следует их независимость. Из доказанного на этой и прошлых лекциях фактов следует ряд простых и важных свойств нормального распределения, которые присущи только ему.

Свойства нормального распределения

- 1. Линейное преобразование нормального распределения нормально.
- 2. Одномерные распределения нормально распределенного случайного вектора также нормальны.
- 3. Из некоррелированности компонент случайного вектора следует их независимость.
- 4. Сумма независимых нормальных случайных величин также нормальна.

Доказательство свойства 4. Пусть

$$\xi \in N(m_1, \, \sigma_1), \, \eta \in N(m_2, \, \sigma_2),$$

 ξ , η — независимы, тогда

$$\psi_{\xi}(z) = e^{izm_1} e^{-\frac{\sigma_1^2 z^2}{2}}, \ \psi_{\eta}(z) = e^{izm_2} e^{-\frac{\sigma_2^2 z^2}{2}}.$$
$$\psi_{\xi+\eta}(z) = \psi_{\xi}(z) \psi_{\eta}(z).$$
$$\psi_{\xi+\eta}(z) = e^{iz(m_1+m_2)} e^{-\frac{(\sigma_1^2 + \sigma_2^2)z^2}{2}},$$

и следовательно

$$\xi + \eta \in N(m_1 + m_2, \sqrt{\sigma_1^2 + \sigma_2^2}).$$