Тема 6. Алгоритмы на графах

Множество разнообразных задач теоретического и прикладного характера естественно формулируется в терминах неориентированных или ориентированных графов. Обычно решение задачи включает анализ графа или проверку его на наличие определенных свойств. Графы, соответствующие реальным задачам, часто громоздки и сложны. Поэтому большое практическое значение имеет разработка эффективных алгоритмов на графах и знание основных способов машинного представления графов.

Граф будем обозначать G = (V, E), где V — множество вершин графа, E — множество ребер графа. Будем использовать символы |V| и |E| для обозначения соответственно числа вершин и числа ребер в графе.

6.1. Представления графов

Выбор соответствующей структуры данных для представления графов оказывает существенное влияние на эффективность алгоритмов. Рассмотрим наиболее распространенные способы представления графов и их основные достоинства и недостатки.

Матрица смежности. Матрица смежности графа G = (V, E) есть матрица $A = [a_{ij}]$ размера $|V| \times |V|$, в которой $a_{ij} = 1$, если $(v_i, v_j) \in E$, т. е. в G существует ребро, соединяющее вершины v_i и v_j , и $a_{ij} = 0$ в противном случае. Матрица смежности для ориентированного графа (рис. 6.1, a) представлена на рис. 6.1, a0.

Необходимо отметить, что в неориентированном графе ребро (v_i, v_j) идет как от v_i к v_j , так и от v_j к v_i . Поэтому матрица смежности такого графа всегда является симметричной.

Основным достоинством матрицы смежности является то, что время, необходимое для определения наличия некоторого ребра, фиксировано и не зависит от |V| и |E|. Поэтому такое представление удобно для тех алгоритмов, в которых часто нужно знать, есть ли в графе данное ребро или нет.

Недостаток заключается в том, что независимо от числа ребер матрица занимает память объема $|V|^2$. На практике это неудобство можно иногда уменьшить, храня целую строку (столбец) матрицы в одном машинном слове. Если машинное слово имеет длину l двоичных разрядов, то каждая строка матрицы требует $\lceil |V|/l \rceil$ слов. Если каждая строка начинается с нового слова, то для хранения матрицы требуется $|V|\cdot\lceil |V|/l \rceil$ слов. Поскольку у неориентированного графа матрица смежности симметрична, то для ее представления достаточно хранить только верхний или нижний треугольник. В результате экономится почти 50 % памяти, однако время вычислений может при этом увеличиться, так как каждое обращение к a_{ij} должно быть заменено (для верхнего треугольника) следующим: «**if** i > j **then** a_{ji} **else** a_{ij} ».

Большинство алгоритмов, использующих представление графа его матрицей смежности, требуют времени $O(|V|^2)$. Даже начальное заполнение матрицы требует времени $O(|V|^2)$.

Матрица инциденций. Матрица инциденций графа G = (V, E) есть матрица $B = [b_{ij}]$ размера $|V| \times |E|$ (строки соответствуют вершинам графа, а столбцы – ребрам). Для ориентированного графа $b_{ij} = 1$, если дуга e_j инцидентна вершине v_i и исходит из нее; $b_{ij} = -1$, если дуга e_j инцидентна вершине v_i и заходит в нее; $b_{ij} = 0$, если дуга e_j не инцидентна вершине v_i . Если имеется петля, т. е. дуга e_j вида (v_i, v_i) , то для обозначения b_{ij} используется какой-нибудь дополнительный символ (например, 2). В случае неориентированного графа $b_{ij} = 1$, если ребро e_j инцидентно вершине v_i ; $b_{ij} = 0$ в противном случае. Матрица инциденций ориентированного графа (рис. 6.1, a) представлена на рис. 6.1, a. Очевидно, что всякий столбец матрицы содержит точно два ненулевых элемента.

С алгоритмической точки зрения матрица инциденций является одним из худших способов представления графа. Это связано с тем, что требуется $|V| \cdot |E|$ ячеек памяти, причем большинство этих ячеек занято нулями. Неудобен также доступ к информации, например, для определения, существует ли дуга (v_i, v_j) , требуется в худшем случае перебор всех столбцов матрицы, т. е. |E| шагов.

Матрица весов. Матрица весов используется для представления взвешенного графа, т. е. графа, в котором ребру (i,j) сопоставлено число w_{ij} , называемое весом ребра. Матрица весов есть матрица $W = [w_{ij}]$, где w_{ij} – вес ребра, соединяющего вершины i и j. Веса несуществующих ребер обычно полагают равными ∞ или 0 в зависимости от приложений. Когда вес несуществующего ребра равен 0, матрица весов является простым обобщением матрицы смежности.

Список ребер. Для разреженных графов (когда |E| меньше $|V|^2$) более экономичным в отношении памяти может оказаться метод представления графа списком ребер, где каждое ребро представляется парой вершин. Список ребер можно реализовать двумя массивами: $g = (g_1, g_2, ..., g_{|E|})$ и $h = (h_1, h_2, ..., h_{|E|})$. Каждый элемент в массивах есть метка вершины, а i-е ребро графа выходит из вершины g_i и входит в вершину h_i . Список ребер ориентированного графа (рис. 6.1, a) представлен на рис. 6.1, c. Ясно, что объем памяти в этом случае составляет порядка 2|E|.

Неудобством такого представления является большое число шагов (порядка |E| в худшем случае), необходимое для получения множества вершин, к которым ведут ребра из данной вершины. Ситуацию можно значительно улучшить, упорядочив множество пар лексикографически и применяя бинарный поиск.

Структура смежности. При представлении графа структурой смежности каждой вершине $v \in V$ сопоставляется $\mathrm{Adj}(v)$ — список всех вершин, смежных с вершиной v (список смежности). В большинстве алгоритмов относительный порядок вершин в $\mathrm{Adj}(v)$ не важен, поэтому $\mathrm{Adj}(v)$ удобно считать мультимножеством (множеством, если граф простой) вершин, смежных с v. Структура смежности ориентированного графа на рис. 6.1, a изображена на рис. 6.1, b.

Если для хранения метки вершины использовать одно машинное слово, то структура смежности ориентированного графа требует порядка |V| + |E| слов. Если граф неориентированный, нужно порядка |V| + 2|E| слов, так как каждое ребро встречается дважды. Многие алгоритмы, использующие представление графа структурой смежности, требуют время вычислений O(|V| + |E|).

В простейшем случае структура смежности может быть удобно реализована массивом из |V| односвязных списков, где каждый список содержит смежные вершины. Поле данных содержит метку одной из смежных вершин, а поле указателя указывает следующую смежную вершину.

Во многих задачах на графах выбор представления является решающим для эффективности алгоритмов. Переход от одного представления к другому относительно прост и может быть выполнен за $O(|V|^2)$ операций. Поэтому, если решение задачи на графе обязательно требует числа операций, по крайней мере пропорционального $|V|^2$, то время ее решения не зависит от представления графа, так как оно может быть изменено за $O(|V|^2)$ операций.

	a	b	c	d	e	f	g
\overline{a}	0	1	0	0	1	1	0
\overline{b}	0	0	1	0	0	0	0
\overline{c}	0	0	0	0	0	0	0
\overline{d}	0	0	1	0	0	0	1
\overline{e}	0	0	0	1	0	1	0
\overline{f}	0	0	0	1	0	0	1
\overline{g}	0	0	1	0	0	0	0
				б			

	(a,b)	(a,e)	(a,f)	(b,c)	(d,c)	(d,g)	(e,d)	(e,f)	(f,d)	(f,g)	(g,c)
\overline{a}	1	1	1	0	0	0	0	0	0	0	0
\overline{b}	-1	0	0	1	0	0	0	0	0	0	0
\overline{c}	0	0	0	-1	-1	0	0	0	0	0	-1
\overline{d}	0	0	0	0	1	1	-1	0	-1	0	0
\overline{e}	0	-1	0	0	0	0	1	1	0	0	0
\overline{f}	0	0	-1	0	0	0	0	-1	1	1	0
\overline{g}	0	0	0	0	0	-1	0	0	0	-1	1

в

$$g = (a, a, a, b, d, d, e, e, f, f, g)$$

$$h = (b, e, f, c, c, g, d, f, d, g, c)$$

$$z$$

$$v \mid Adj(v)$$

$$a \mid b, e, f$$

$$b \mid c$$

$$c \mid -$$

$$d \mid c, g$$

$$e \mid d, f$$

$$f \mid d, g$$

$$g \mid c$$

$$\partial$$

Рис. 6.1. Ориентированный граф и его представления: a — орграф; δ — матрица смежности; ϵ — матрица инциденций; ϵ — список ребер; δ — структура смежности