匹配方法 第一节-第四节

朱思颖

2020.11.19

本章框架

- 6.1 匹配方法的直观理解
- 6.2 匹配方法的假设条件
- 6.3 直接匹配法
- 6.4 倾向得分匹配法原理

- 随机分配下,处置组个体和观测组个体平均观测结果的差异反映了平均处置效应
- 药物效果实验
 - 假设个体潜在健康结果可表示为(可观测特征)年龄 Age_i 、(不可观测特征)情绪 e_i 和(处置效应) γ_i 的线性函数:

$$Y_i(0) = a - bAge_i + e_i, \ \, \exists D_i = 0$$

$$Y_i(1) = a + \gamma_i - bAge_i + e_i, \ \, \exists D_i = 1$$

■ 观测结果为

$$Y_i = D_i \times Y_i(1) + (1 - D_i) \times Y_i(0) = a + \gamma_i D_i - bAge_i + e_i$$

● 年龄和情绪负相关

$$E(e_i \mid Age_i = 30) = 60\% \times 1 + 40\% \times (-1) = 0.2$$

$$E(e_i \mid Age_i = 50) = 40\% \times 1 + 60\% \times (-1) = -0.2$$

● 总体平均处置效应

$$ATE = P(Age_i = 30) \times \gamma(30) + P(Age_i = 50) \times \gamma(50) = 15$$

表: 总体人数按年龄和情绪分布情况

	(1)	(2)	(3)	(4)	(5)
		情	绪		
		1	-1		
左 歩	30	30%	20%	50%	$\gamma(30)=10$
年龄	50	20%	30%	50%	$\gamma(50)=20$
		50%	50%		

- 随机抽取2万人,并随机分配药物,产生1万人服药 (处置组),1万人不服药(控制组)
 - 随机分配使处置组和控制组个体的特征分布与总体分布相同
 - 两组平均年龄一样 $E(Age_i|D_i=1)=E(Age_i|D_i=0)=40$
 - 两组情绪均值一样 $E(e_i|D_i=1)=E(e_i|D_i=0)=0$

表: 随机分配下处置组和控制组人数按年龄和情绪分布情况

						控制组(D=0)			
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)
		情	绪				情	绪	
		1	-1				1	-1	
年龄	30	30%	20%	50%	年龄	30	30%	20%	50%
	50	20%	30%	50%		50	20%	30%	50%
		50%	50%				50%	50%	

由于处置组和控制组平均年龄和平均情绪没有差异, 将二者观测结果平均值相减,得到处置组的平均处置 效应

$$E(Y_i \mid D_i = 1) - E(Y_i \mid D_i = 0)$$

$$= E(Y_i(1) \mid D_i = 1) - E(Y_i(0) \mid D_i = 0)$$

$$= [a + E(\gamma_i \mid D_i = 1) - bE(Age_i \mid D_i = 1) + E(e_i \mid D_i = 1)]$$

$$-[a - bE(Age_i \mid D_i = 0) + E(e_i \mid D_i = 0)]$$

$$= E(\gamma_i \mid D_i = 1)$$

- 随机分配下三个平均处置效用相同
 - ATT = $E(\gamma_i \mid D_i = 1) = P(Age_i = 30 \mid D_i = 1) \times \gamma(30) + P(Age_i = 50 \mid D_i = 1) \times \gamma(50) = 15$
 - \blacksquare ATT = ATU = ATE

- 实际研究中大多是个体自选择是否接受处置后观测到的数据,因此处置组和控制组在特征上的分布不同
 - 例子: 假设服药的选择受可观测变量年龄的影响, 但不受不可观测变量情绪的影响
 - $E(Age_i | D_i = 1) = 46 ; E(Age_i | D_i = 0) = 34$
 - $E(e_i \mid D_i = 1, Age_i = 30) = E(e_i \mid D_i = 0, Age_i = 30) = 0.2$ $E(e_i \mid D_i = 1, Age_i = 50) = E(e_i \mid D_i = 0, Age_i = 50) = -0.2$

处置组(D=1)						控制组(D=0)			
	(1)	(2)	(3)	(4)		(5)	(6)	(7)	(8)
情绪						情	绪		
		1	-1				1	-1	
年龄	30	12%	8%	20%	年龄	30	48%	32%	80%
	50	32%	48%	80%		50	8%	12%	20%
		44%	56%				56%	44%	

- 处置组总体情绪均值低于控制组总体情绪均值 $E(e_i | D_i = 1) = 44\% \times 1 + 56\% \times (-1) = -0.12$ $E(e_i | D_i = 0) = 56\% \times 1 + 44\% \times (-1) = 0.12$
 - 原因: 年龄较大个体容易选择处置, 且其个体情绪均值较低
- 处置组平均观测结果与控制组平均观测结果的差异不 仅包括药物治疗效果,还包括两组平均年龄造成的差 异以及由于年龄差异造成的情绪均值差异
 - $E(Y_i | D_i = 1) E(Y_i | D_i = 0)$ $= [a + E(\gamma_i | D_i = 1) bE(Age_i | D_i = 1) + E(e_i | D_i = 1)] [a bE(Age_i | D_i = 0) + E(e_i | D_i = 0)]$
 - $= E(\gamma_i \mid D_i = 1) b[E(Age_i \mid D_i = 1) E(Age_i \mid D_i = 0)] + E(e_i \mid D_i = 1) E(e_i \mid D_i = 0)$
 - $= E(\gamma_i \mid D_i = 1) b \times 12 0.24$

- 可观测特征Age是混淆变量,不可观测特征e和Age相 关并且会影响结果,但并不直接影响选择变量D
- 基于可观测特征的选择(selection on observables): 只根据可观测特征而选择是否接受处置
- 匹配方法通过"控制"可观测变量,即将处置组和控制组的个体按可观测特征匹配,解决基于可观测变量自选择造成的偏差

- 在之前的例子里
 - 将控制住和处置组个体根据年龄进行匹配,此时两组的其他 特征和处置效应均值无差异
 - 对30岁的匹配块,年龄差异造成的影响以及情绪差异被消除 $E(Y_i | D_i = 1, Age_i = 30) E(Y_i | D_i = 0, Age_i = 30)$ $= E(\gamma_i | D_i = 1, Age_i = 30) = ATT(Age_i = 30)$
 - $ATT(Age_i = 30) = ATU(Age_i = 30) = ATE(Age_i = 30) =$ γ(30) = 10
 - 通过匹配法分别得到30岁和50岁个体的平均处置效应后,进 一步计算两组人的平均处置效应

$$ATT = P(Age_i = 30|D = 1) \times \gamma(30) + P(Age_i = 50|D = 1) \times \gamma(50) = 20\% \times 10 + 80\% \times 20 = 18$$

- $ATU = P(Age_i = 30|D = 0) \times \gamma(30) + P(Age_i = 50|D = 0) \times \gamma(50) = 12;$ $ATE = P(30) \times \gamma(30) + P(50) \times \gamma(50) = 15$
- 自选择与随机分配下平均处置效应异同:
 - 随机分配下,处置组、控制组和总体个体特征(年龄)分布相同

$$ATE = ATT = ATU$$

■ 自选择下,处置组和控制组个体特征分布不同

$$ATE \neq ATT \neq ATU$$

一 田山上口一山 1	nr In th	
匹配方法	回归方法	随机分配
控制组和处置组在可 观测特征上匹配	观测结果方程里加入可观 测变量作为控制变量	
控制可观测特征	控制可观测特征	可观测特征和不可观 测特征分布一样

6.2 匹配方法的假设条件

- 匹配方法估计处置效应依赖于一个假设和一个条件
 - 条件独立假设 (conditional independence assumption): 给定可观测特征后,潜在结果独立于处置状态

$$\{Y_i(1), Y_i(0)\} \perp D_i \mid X_i$$

- 通俗理解: 在可观测变量X给定情况下,接受处置与否是随机分配的,不会因为潜在结果的好坏而决定是否接受处置
- 条件独立假设成立,则潜在结果均值条件独立假设成立

$$E(Y_i(0)|D_i=1, X) = E(Y_i(0)|D_i=0, X) = E(Y_i(0)|X)$$

 $E(Y_i(1)|D_i=1, X) = E(Y_i(1)|D_i=0, X) = E(Y_i(1)|X)$

如果关心平均处置效应,则只需要潜在结果均值条件独立假设

6.2 匹配方法的假设条件

■ 将 $Y_i(1)$, $Y_i(0)$ 表达式分别代入上述潜在结果均值条件独立假设,则可得到

$$E(e_i | D_i = 1, Age_i) = E(e_i | D_i = 0, Age_i) = E(e_i | Age_i)$$

 $E(\gamma_i | D_i = 1, Age_i) = E(\gamma_i | D_i = 0, Age_i) = E(\gamma_i | Age_i)$

- 给定相同可观测特征的处置组和控制组,平均处置效应相同
- 共同支撑域条件(common support condition):

给定可观测特征 $X_i = x$,个体接受处置的概率大于0并小于1 $0 < P(D_i | X_i = x) < 1$

当条件独立假设和共同支撑域条件满足时,观测特征 为x的平均处置效应:

$$E(Y_i | D_i = 1, X_i = x) - E(Y_i | D_i = 0, X_i = x)$$

$$= E(Y_i(1) | D_i = 1, X_i = x) - E(Y_i(0) | D_i = 0, X_i = x) = ATT(x)$$

6.2 匹配方法的假设条件

- 对特征为x的个体ATT(x) = ATU(x) = ATE(x)
- 对所有接受处置个体、未接受处置个体和总体而言
 - $ATT = E_{X|D=1}[ATT(X)] = \sum_{x} ATT(x)P(x|D=1)$
 - $ATU = E_{X|D=0}[ATU(X)] = \sum_{x} ATU(x)P(x|D=0)$
 - $ATE = E_X[ATE(X)] = \sum_x ATE(x)P(x)$

6.3 直接匹配法

- 直接匹配法指根据可观测的特征值直接进行匹配
 - 例子: 估计税收优惠政策是否会影响公司研发投入, 假设数据满足潜在结果均值条件独立假设

i	D	Assets	R&D
1	0	25	6
2	0	35	8
3	0	35	8
4	0	45	9
5	0	45	9
6	0	120	20
7	1	45	10
8	1	35	8
9	1	40	9
10	1	25	7

6.3 直接匹配法

通过匹配法消除在估计税收优惠对研发投入因果关系 中企业规模这一混淆变量影响

i	D	Assets	R&D	Match	E[R&D(1)]	$\mid E[R\&D(0)]$	ATT(Assets)	P(Assets D=1)
1	0	25	6					
2	0	35	8					
3	0	35	8					
4	0	45	9					
5	0	45	9					
6	0	120	20					
7	1	45	10	[4][5]	10	9	1	1/3
8	1	35	8	[2][3]	8	8	0	1/3
9	1	40	9					
10	1	25	7	[1]	7	6	1	1/3

6.3 直接匹配法

- $ATT(45) = E(R \& D_i(1) | D_i = 1, Assets_i = 45) E(R \& D_i(0) | D_i = 0, Assets_i = 45) = 10-9=1$
- 同理,可以求得ATT(35) = 0; ATT(25) = 1
- 用不同规模企业比率计算
- $ATT = \sum_{x} ATT(x) P(x|D_i = 1)$
- $= ATT(45) P(45|D_i = 1) + ATT(35) P(35|D_i = 1) + ATT(25)$

$$P(25|D_i = 1) = 1 \times \frac{1}{3} + 0 \times \frac{1}{3} + 1 \times \frac{1}{3} = 0.667$$

■ 上式中只使用了潜在结果均值条件独立假设第一条,若第二条也成立,则可进一步算得ATU和ATE

6.4 倾向得分匹配法原理

- "维数的诅咒"
 - 可观测特征维数增加时,在多维上进行直接匹配比较困难, 特别的,如果可观测特征还包含连续变量,无法进行直接匹 配
- 倾向得分法(Propensity Score Methods, PSM)
 - Rosenbaum and Rubin: "The central role of the propensity score in observational studies for causal effects"
 - 原理:通过函数关系将多维变量X变换为一维的倾向得分 $ps(X_i)$ 之后,再根据倾向得分进行匹配。倾向得分是可观测特征为 $X_i = x$ 的个体接受处置的概率

$$ps(X_i = x) = P(D_i = 1 | X_i = x)$$

6.4 倾向得分匹配法原理

■ 倾向得分可行原因:

条件独立假设 $\{Y_i(1), Y_i(0)\} \perp D_i \mid X_i$ 等价于 $\{Y_i(1), Y_i(0)\} \perp D_i \mid ps(X_i)$

通俗理解:倾向得分 $ps(X_i)$ 总结了变量 X_i 中包含的所有相关信息

■ 如果处置组和控制组的个体有相同的倾向得分,两组的可观 测特征分布就是均衡的

$$X_i \perp D_i \mid ps(X_i)$$

若只关心均值,则上式可简化为

$$E(X_i|D_i = 1, ps(X_i)) = E(X_i|D_i = 0, ps(X_i))$$

■ 随机分配里,倾向得分是已知的,但在观测数据中,倾向得分未知,需要进行估计

6.4 倾向得分匹配法原理

- 自选择例子中
 - 每个人选择到处置组概率和年龄相关

$$P(D_i = 1 | Age_i) = \theta_0 + \theta_1 Age_i$$

只能根据观测数据估计系数 θ_0 和 θ_1

■ 计算给定多维可观测特征x的处置效应ATT(x)可简化为计算 给定一维倾向得分ps(x)的处置效应

$$ATT(x) = E(Y_i(1)|D_i=1, X_i=x) - E(Y_i(0)|D_i=1, X_i=x)$$

- $= E(Y_i(1)|D_i=1, X_i=x) E(Y_i(0)|D_i=0, X_i=x)$
- = $E(Y_i(1)|D_i=1, ps(X_i=x)) E(Y_i(0)|D_i=0, ps(X_i=x))$
- 对所有ATT(x)加权平均得到ATT

$$ATT = E_{ps(x)|D=1}[ATT(x)] = \sum_{x} ATT(x)P(ps(X_i = x)|D = 1)$$