Introduction to Intelligent Vehicles [Appendix-1118]

Chung-Wei Lin

cwlin@csie.ntu.edu.tw

CSIE Department

National Taiwan University
Fall 2019

Outline

- **□** Oral Presentation
- ☐ Report
- ☐ LaTeX

Project Presentation

- ☐ Timing control
 - > 8-minute presentation
 - ➤ 1-minute Q&A
 - > 1-minute transition
- ☐ Something you can talk about
 - > Project topic
 - Reason to select the topic
 - > Existing work
 - > Current progress or results
 - "Why"?
 - > Following plan
- ☐ Use your creativity to be attractive and informative

Oral Presentation Skills

- Enthusiasm and confidence
 - (I feel that they are not skills)
- Clear and appropriate language
- Appropriate speed and volume
- Smooth transition
- ☐ Timing control
 - How much time do you need for one slide?
 - Timing analysis by simulation
- Posture
- ☐ Eye contact
- Avoiding verbal distraction
- Avoiding "reading slides"

Slides Preparation

- Consistent format
- Appropriate font
- ☐ Appropriate color
- Comfortable layout
- ☐ Less text if possible
 - > Reasonable grammar
 - > Lecture slides may be different
- ☐ Figure instead of text to show the same thing
 - ➤ (If you have time...)

Outline

- ☐ Oral Presentation
- **☐** Report
- ☐ LaTeX

Paper Outline

Introduction Previous work or related work (survey) > Can also be in "Introduction" or before "Conclusions" ☐ (Preliminary) ■ Formulation Proposed approach (research) **□** (Extension) Experimental results (implementation) Conclusions ☐ (Appendix)

Introduction

- ☐ What is the background?
 - > Examples
 - Connectivity brings remote accesses
 - Human may not react due to autonomy
- ☐ Why is the topic important?
 - > Example
 - It is a safety-critical system, and thus a security attack is life-threatening
- ☐ What is the problem?
 - > Example
 - Message authentication
- ☐ What are your contributions?

Previous Work

- ☐ Search good conferences or journals
 - > ACM Digital Library and IEEE Xplore
 - Not all ACM or IEEE papers are good
 - More, depending on domains
 - > arXiv?
- ☐ Read papers in a high-level way
- ☐ Pick relevant papers for detailed survey
 - ➤ Maybe few for your experimental comparison
- ☐ Compare those papers, if needed
 - > Strength, limitation (try to be neutral), reason
- Write them down
 - > Categorize papers and follow some logic, e.g., chronologically

Formulation

- Must be well-defined
 - > Input
 - Given variables
 - > Output
 - Decision variables
 - Objective
 - > Constraint
- ☐ There can be many "definitions" before the formulation
 - > Example
 - Define a task, a signal, an Electronic Control Unit, a message, and their parameters
 - Then define the formulation of the mapping problem
 - > If space allows, there can be a notation table

Proposed Approach

- ☐ Flowchart
- ☐ Step-by-step
 - > Pseudocode?
- ☐ Explain not only "what" but also "why"

Experimental Results

- ☐ Experimental setting
- ☐ Fair comparison
- ☐ Explain not only "what" but also "why"

General Writing Guidelines

- ☐ Logic!!!
- ☐ Figure
- Consistency
 - > Take a note, if needed
 - Complexity: $\theta(n^2)$
 - > Examples
 - Vertex vs. point
 - Figure vs. Fig.
 - Leading vehicle vs. preceding vehicle
- Defensing your claims immediately
- Exaggerating too much is not good

English Writing Tips

- ☐ Singular vs. plural
- ☐ Indefinite article vs. definite article
 - > A student asks me a question
 - > A student asks me the question
 - > The student asks me a question
 - > The student asks me the question
- ☐ The summary of a paragraph should come first
- ☐ English usage
 - > Efficient vs. effective
 - Sophisticated vs. complicated
 - > Because, because of, due to, thus, and, but, however, although, ...

Golden Rule?

- ☐ This is the example in our lecture
 - > Fault tolerance
 - Comfort and happiness?
 - > One assumption here: efficiency is the same

Outline

- Oral Presentation
- ☐ Report
- ☐ <u>LaTeX</u>

Installation

- ☐ Option 1 (offline)
 - ➤ MiKTeX
 - > Texmaker
- ☐ Option 2 (online)
 - > Overleaf
- Software for figures
 - > Any tool which can print and crop pdf
- ☐ From .tex to .pdf
 - "pdflatex filename"
 - Sometimes, it needs twice for cross referencing

Introduction

- ☐ Latex is often used for technical or scientific documents
 - > Suitable for the general layout of a paper
 - > Automatic to number figures, tables and so on
 - Good to present mathematical equations

Section and Lists

\section{Background}

\subsection{Automotive Plug-and-Play Scenarios}

As shown in

\begin{itemize}
\item \textbf{\underline{At Dealership}}. Traditionally ...
\item \textbf{\underline{Before Driving}}. One ...
\end{itemize}

\begin{enumerate}

\item \textbf{Level~1: Basic Contracts}. They ... \item \textbf{Level~2: Behavior Contracts}. They ... \end{enumerate}

II. BACKGROUND

A. Automotive Plug-and-Play Scenarios

As shown in Figure 1, some plug-and-play scenarios which are happening or expected to happen in the future are introduced as follows:

- At Dealership. Traditionally, customers can only purchase available vehicles at dealerships or wait until specific vehicles shipped from other dealerships or factories. With plug-and-play features, vehicles can be customized and delivered to customers much sooner. This can effectively enhance user experience by providing desired settings for customers and reducing waiting time.
- Before Driving. One recent trend is to enable the in-
- Level 1: Basic Contracts. They define the interfaces of components, probably by interface definition languages.
- Level 2: Behavior Contracts. They define the preconditions and post-conditions of components.

Math

This is the equation for the CAN timing analysis:

\begin{equation}

 $Q_i = B_i + \sum_{\text{ceil } f(x) \in \mathbb{C}_i, f(x) \in \mathbb{C$

\end{equation}

where the detailed definitions are provided in Question~\ref{sec:can}. If we replace \$B_i\$ by ...

This is the equation for the CAN timing analysis:

$$Q_i = B_i + \sum_{\forall j, P_j < P_i} \left\lceil \frac{Q_i + \tau}{T_j} \right\rceil C_j, \tag{1}$$

where the detailed definitions are provided in Question 4. If we replace B_i by "the largest transmis-

Figure and Table

```
\begin{figure}
\begin{center}
\includegraphics[width=7.5cm]{figure/architectures}
\caption{(a) ...}
\label{fig:architectures}
\end{center}
\end{figure}
```


Fig. 2. (a) A traditional architecture which statically allocates tasks are difficult to support plug-and-play systems. (b) An architecture supported by an OS hypervisor is more flexible and suitable for plug-and-play systems.

```
begin{tabular}{|c||c||c|c|c|c|c|c|c| hline
              & LHS ($Q 1$) & $B 1$ & $j$ & $Q 1+\tau$ & $T j$ & $\left\lceil\dfrac{Q 1+\tau}{T j}\right\rceil$ & $C j$ & RHS & Stop? \\hline\hline
               & 30
                            & 30
                                          & 30.1
                                                                                                                & 10
                                                                                                                        & 40 & No
                                                                                                                                     \\\hline
   2
               & 40
                            & 30
                                    & O
                                          & 40.1
                                                       & 40
                                                                                                                & 10
                                                                                                                        & 50 & No
                                                                                                                                     \\\hline
   3
               & 50
                            & 30
                                    & O
                                          & 50.1
                                                       & 40
                                                               & 2
                                                                                                                & 10
                                                                                                                        & 50 & Yes
                                                                                                                                     \\\hline
end{tabular}
```

Iteration	LHS (Q_1)	B_1	j	$Q_1 + \tau$	T_{j}	$\left[\frac{Q_1 + \tau}{T_j}\right]$	C_j	RHS	Stop?
1	30	30	0	30.1	40	1	10	40	No
2	40	30	0	40.1	40	2	10	50	No
3	50	30	0	50.1	40	2	10	50	Yes

Where to Draw a Figure?

- ☐ A graph of the "vector type" is necessary
 - Do not use a graph of the "pixel type"
- ☐ Why is a .ppt file recommended?
 - ➤ It is a graph of the "vector type"
 - > It can be used for a presentation directly
- ☐ Take care of the size of fonts and color!

Reference

- ☐ Option 1: list references directly in a .tex file
 - ➤ Naming rule of references
 - Option 1: use the last name of the first author
 - Option 2: use the appearance ordering in the paper
- ☐ Option 2: use a .bbl file
 - "bibtex filename" after "pdflatex filename"
 - Personal feeling
 - It is good for a long publication or a series of publications
 - The format can still be messy
- ☐ Use "\cite" to cite references

Something Detailed

☐ Linking (~) Figure~\ref{fig:mst} Quotation Marks Correct: ``" ➤ Wrong: " " □ Dashes (-, --, ---) ➤ World-famous > Pages 21--50 > You are a student of NTU --- the best university in Taiwan. ☐ Comments (%) ☐ In math mode \min, \max, \left\{ ... \right\} > \cdots vs. \ldots

Something Recommended

- ☐ Labeling style
 - \label{fig:xxx}, \label{tbl:xxx} or \label{tab:xxx}, \label{eqn:xxx}, \label{sec:xxx}, \label{subsec:xxx}
 - \label{ref:xxx}
- Table

- Math notation
 - > Example of categories
 - Set: upper case of Greek alphabet
 - Element: lower case of Greek alphabet
 - Constant: upper case of English alphabet
 - Variable: lower case of English alphabet