#### Presentation for the E3B Graduate Seminar

#### **Ecological Foundations of Payment for Ecosystem Service Schemes**

Department of Ecology, Evolution & Environmental Biology (E3B)

Columbia University • New York, NY USA

#### Instructors:

Prof. Shahid Naeem, E3B
Dr. Carter Ingram, Wildlife Conservation Society (WCS)
Paige Olmsted, Earth Institute, Center for Environmental
Research and Conservation (CERC)

Fall 2010



This seminar was generously supported by the American people through the United States Agency for International Development (USAID), under the terms of the TransLinks Cooperative Agreement No.EPP-A-00-06-00014-00 to the Wildlife Conservation Society (WCS). TransLinks is a partnership of WCS, The Earth Institute, Enterprise Works/VITA, Forest Trends and the Land Tenure Center. The contents are the responsibility of the authors and do not necessarily reflect the views of USAID or the United States government.



# Defining the importance of context and purpose

- Definitions and Classifications of Ecosystem Services influence their utility for decision making
- What should the purpose of our classification be?
  - Education, Cost-Benefit Analysis, Landscape Management/Conservation, Poverty Reduction/Human Welfare, Multiple Objectives, Others?



#### Definitions of Ecosystem Services

- Conditions and processes through which natural ecosystems and the species that make them up, sustain and fulfill human life (Daily 1997)
- ▶ The benefits people obtain from ecosystems (MA, 2005)
- The benefits that people derive directly or indirectly from ecosystem functions (Costanza et al., 1997)
- The aspects of ecosystems utilized (actively or passively) to produce human well being (Fisher et al. 2009)
- The ecological components directly consumed or enjoyed to produce human well-being (Boyd and Banzhaf, 2007)





Fig. 3 – Conceptual relationship between intermediate and final services, also showing how joint products (benefits) can stem from individual services. Intermediate services can stem from complex interactions between ecosystem structure and processes and lead to final services, which in combination with other forms of capital provide human welfare benefits.

## Classification Guidelines Recommended by Fisher et al. 2009

- Classification should be informed by:
  - Clear and robust definition of ecosystem services
  - Characteristics of the ecosystem or ES under investigation
  - "decision context" for which ES are being considered



# Characteristics of ES (drawing from Fisher et al. 2009 and Costanza 2008)

- Public-Private Good aspect (Excludability and Rivalness)
- Spatial and temporal aspects
- Joint production
- Complexity
- Benefit Dependence(All of these may interact in complex ways)
  - \*\*Note Costanza refers to two of these as classification schemes



#### Classification by Excludability and Rivalness



Fig. 4–Goods and services can be characterized along a continuum from rival to non-rival and from excludable to non-excludable. Some goods that are non-rival at low use levels (fisheries and CO<sub>2</sub> storage) can move towards becoming rival goods with high use.

### Spatial Aspects of Ecosystem Services

#### Table 1 - EcoServices classified according to their spatial characteristics

- 1. Global non-proximal (does not depend on proximity)
- 1&2. Climate regulation

Carbon sequestration (NEP)

Carbon storage

- 17. Cultural/existence value
- Local proximal (depends on proximity)
- 3. Disturbance regulation/ storm protection
- Waste treatment
- Pollination
- 11. Biological control
- 12. Habitat/refugia
- 3. Directional flow related: flow from point of production to point of use
- 4. Water regulation/flood protection
- 5. Water supply
- 6. Sediment regulation/erosion control
- 8. Nutrient regulation
- 4. In situ (point of use)
- 7. Soil formation
- 13. Food production/non-timber forest products
- 14. Raw materials
- User movement related: flow of people to unique natural features
- 15. Genetic resources
- 16. Recreation potential
- 17. Cultural/aesthetic

### Typology Guidelines (Wallace, 2007)

- I.A minimum set of sharply defined terms that effectively encompass the topic.
- 2. Clarity concerning the terms used to characterize services.

3. Specification of the point at which linked processes deliver a service.



#### Classification Proposed by Wallace (2007)

| Category of human values                                                             | Ecosystem services – experienced at the<br>individual human level                                                                                                                                                                                                                                                            | Examples of processes and<br>assets that need to be managed<br>to deliver ecosystem services                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Adequate resources                                                                   | Food (for organism energy, structure, key chemical reactions) Oxygen Water (potable) Energy (eg, for cooking – warming component under physical and chemical environment) Dispersal aids (transport)                                                                                                                         | Ecosystem processes     Biological regulation     Climate regulation     Disturbance regimes, including wildfires, cyclones, flooding     Gas regulation                                                                                                                                                                                                                                                                     |
| Protection from predators/disease/parasites Benign physical and chemical environment | <ul> <li>Protection from predation</li> <li>Protection from disease and parasites Benign environmental regimes of:</li> <li>Temperature (energy, includes use of fire for warming)</li> <li>Moisture</li> <li>Light (eg, to establish circadian rhythms)</li> <li>Chemical</li> </ul>                                        | Management of "beauty" at landscape and local scales.  Management of land for recreation  Nutrient regulation  Pollination  Production of raw materials for clothing, food, construction, etc.  Production of raw materials for energy, such as firewood  Production of medicines  Socio-cultural interactions  Soil formation  Soil retention  Waste regulation and supply  Economic processes  Biotic and abiotic elements |
| Socio-cultural fulfilment                                                            | Access to resources for:  • Spiritual/philosophical contentment  • A benign social group, including access to mates and being loved  • Recreation/leisure  • Meaningful occupation  • Aesthetics  • Opportunity values, capacity for cultural and biological evolution  - Knowledge/education resources  - Genetic resources | Processes are managed to provide a particular composition and structure of ecosystem elements. Elements may be described as natura resource assets, eg:  • Biodiversity assets  • Land (soil/geomorphology) assets  • Water assets  • Air assets  • Energy assets                                                                                                                                                            |



## SPUs proposed by Luck et al (2009)

| Service             | Ecosystem [level of organization]    | Service provider<br>[level of organization]    | Service-provider characteristics                                                         | Supporting<br>element                                | Response<br>measure                                                                                                           | Relationship                                                                 | Reference                                                                     |
|---------------------|--------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| Biological control  | Agroecosystem [apple orchards]       | Great tit [population]                         | Density of breeding pairs                                                                | Density of nest boxes <sup>b</sup>                   | Caterpillar damage to apples                                                                                                  | Control vs. treatment                                                        | Mols and Visser 2007                                                          |
| Biological control  | Agroecosystem [coffee plantation]    | Azteca ant                                     | Green scale [population]                                                                 | Activity level <sup>c</sup>                          | Shade treesd<br>Number of scale                                                                                               | Time to removal <sup>f</sup><br>Linear <sup>g</sup>                          | Perfecto and Vender-<br>meer 2006                                             |
| Biological control  | Agroecosystem<br>[rice fields]       | Egg parasitoids<br>(functional group)          | Abundance of predators<br>and parasitoids <sup>h</sup>                                   | Presence of parasitoid<br>and absence of<br>predator | Leaf and plant-hopper<br>abundance                                                                                            | Control under negative<br>impact of predators on<br>parasitoids <sup>i</sup> | Drechsler and Settele<br>2001                                                 |
| Pollination         | Agroecosystem<br>[watermelon crops]  | Native bees <sup>j</sup><br>[functional group] | Functional group, species-<br>specific visitation rates<br>and efficiencies <sup>k</sup> | Upland habitat <sup>l</sup>                          | Pollen deposition <sup>m</sup>                                                                                                | Saturating, exponential increasing <sup>®</sup>                              | Kremen et al. 2002<br>(also see Kremen et al.<br>2004), Larsen et al.<br>2005 |
| Pollination         | Agroecosystem<br>[coffee plantation] | Native and exotic bees<br>[functional group]   | Functional group<br>dynamics <sup>o</sup>                                                | Tropical forest <sup>o</sup>                         | Seed mass, fruit set,<br>peaberry frequency,<br>pollen deposition (num-<br>ber of visits per flower),<br>bee species richness | Comparative <sup>q</sup>                                                     | Ricketts et al. 2004                                                          |
| Pollination         | Agroecosystem<br>[atemoya crops]     | Nitidulid beetles'<br>[functional group]       | Functional group<br>dynamics <sup>s</sup>                                                | Rainforest                                           | Beetle species<br>richness <sup>t</sup>                                                                                       | Exponential decay <sup>o</sup>                                               | Blanche and Cunning-<br>ham 2005                                              |
| Pollination         | Agroecosystem<br>[canola fields]     | Wild bees<br>[functional group]                | Functional group<br>dynamics <sup>v</sup>                                                | Uncultivated land*                                   | Bee abundance, seed<br>set                                                                                                    | Linear <sup>x</sup><br>Saturating <sup>y</sup>                               | Morandin and Winston<br>2006                                                  |
| Waste decomposition | Agroecosystem<br>(rice fields)       | Mallard [population]                           | Population density <sup>2</sup>                                                          |                                                      | Residual surface straw <sup>sa</sup> ,<br>structure of surface<br>straw <sup>ab</sup> , chemical<br>composition <sup>ac</sup> | Control vs. treatment<br>Control vs. treatment<br>Control vs. treatment      | Bird et al. 2000                                                              |
| Water regulation    | Forest/terrestrial                   | Terrestrial vegetation<br>[community]          | Soil-slope-vegetation<br>complex                                                         | Water regulation,<br>hydroelectricity<br>generation  |                                                                                                                               | Comparative <sup>ad</sup>                                                    | Guo et al. 2000                                                               |
| Water filtration    | Freshwater                           | Forest<br>[community]                          | Forest covered                                                                           |                                                      | Water and sediment<br>nutrients                                                                                               | Various                                                                      | Houlahan and Findlay<br>2004                                                  |
| Seed dispersal      | Oak forest                           | Eurasian jay<br>[population]                   | Population abundance <sup>sf</sup>                                                       | Oak and coniferous<br>forest <sup>eg</sup>           | Oak saplings                                                                                                                  | n/a                                                                          | Hougner et al. 2006                                                           |
| Seed dispersal      | Tropical forest                      | Insular flying fox<br>[population]             | Flying fox abundance index <sup>ah</sup> = 0.77 to 0.81                                  |                                                      | Chewed diaspores <sup>ai</sup>                                                                                                | Threshold                                                                    | McConkey and Drake<br>2006                                                    |





Figure 2. A conceptual model showing the links and positive or negative interactions among the socioeconomic and ecological factors of service provision. Cultural, social, and economic factors frame the needs of service beneficiaries and influence the demand for services. This demand is met through service provision, which is a result of service-provider characteristics, species interactions, and supporting systems. Environmental change, which is driven by but can also alter

### Type of Market and Spatial location

|                          | Individual | Regulatory | Government run |
|--------------------------|------------|------------|----------------|
| Global non-<br>proximal  |            |            |                |
| Local proximal           |            |            |                |
| Directional Flow related |            |            |                |
| In situ                  |            |            |                |
| User movement related    |            |            |                |



#### Discussion Questions

- How well integrated is ecology in these typologies/classification schemes?
- Which, if any, typologies/classification frameworks might be a useful starting point for analyzing the role of ecology in PES effectiveness?

How should we break into groups to address overall questions of the class? (Regionally? Type of service group?)

