TRAFFIC MANAGEMENT

time	x	у	direction	congestion	
row_id					
0	1991-04-01	0	0	ЕВ	70
1	1991-04-01	0	0	NB	49
2	1991-04-01	0	0	SB	24
3	1991-04-01	0	1	ЕВ	18
4	1991-04-01	0	1	NB	60

Unique Directions

Direction can be one of 8 values:

NB ↑

- NE ↗
- EB →
- SE ↘
- SB ↓
- SW ∠
- WB ←
- NW [►]

Calculating average congestion for each road_weekday_hour_minute road_and_time

00EB_Friday_0_0 39

00EB_Friday_0_20 39

00EB_Friday_0_40 39

00EB_Friday_10_0 52

00EB_Friday_10_20 52

looping through missing times for all roads

time	х	у	direction	congestion	
0	1991-08-23 15:40:00	0	0	ЕВ	54
1	1991-08-23 15:40:00	0	0	NB	43
2	1991-08-23 15:40:00	0	0	SB	50
3	1991-08-23 15:40:00	0	1	ЕВ	35
4	1991-08-23 15:40:00	0	1	NB	81

Congestion per Day

I would like to see the mean congestion of each day between April and September. I will group the dataset by day, take mean and plot. Also, i will include moving average in the plot to see the trend.

defining 1st order DeterministicProcess to fit linear regression line

forecasting next 15 days

I also included Annual seasonality. But for now, I am not sure to use it in model since we don't have the data of complete year.

Holidays

Using Python's holidays module, we can import holiday dates for different countries. I imported the holidays in 1991 in US and used as a feature with only a first order trend to see if it affect the traffic congestion. Looking at the plot, being a holiday that day pulls the linear regression line down. As a conclusion, there are less traffic in holiday days.

1991-01-01	New Year's Day
1991-01-21	Martin Luther King Jr. Day
1991-02-18	Washington's Birthday
1991-05-27	Memorial Day

1991-07-04	Independence Day
1991-09-02	Labor Day
1991-10-14	Columbus Day
1991-11-11	Veterans Day
1991-11-28	Thanksgiving
1991-12-25	Christmas Day

Hourly Congestion

In this s

s

Looking at the previous graph, it is seen that there are more traffic in the afternoon comparing to morning. I will try to fit a regression line using a daily fourier components with high order.ection, I will investigate the effect of time on traffic congestion.

row_id	congestion			
	х	у	direction	

1991-09-30 12:00	0	0	ЕВ	848835	51.543325
			NB	848836	35.403819
			SB	848837	48.533418
		1	EB	848838	24.342408
			NB	848839	68.999709

CONCLUSIONS

Traffic management measures, especially in cities, are thought to play a significant role in reducing not only noise emission levels but noise exposure levels at specific locations where sensitive receivers exist, i.e., residential areas. Only recently has evidence