

Chemical phase and valence studies of plasma sprayed coatings: EDXRD and X-ray Absorption Spectroscopy (XAS) Results

**M. Croft^{5,3}, A. Ignatov¹, E. K. Akdogan¹, N. Jisrawi^{1,2}, Z. Zhong³,
R. Rigney⁴, and T. Tsakalakos³**

¹Materials Science and Engineering Dept., Rutgers University, Piscataway, NJ; 08854

²Dept. of Applied Phys., Univ. of Sharjah, POB 27272, Sharjah, United Arab Emirates

³National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY; 11973

⁴A & A Thermal Spray Co., 2700 South Clinton Ave, South Plainfield , NJ 07080

⁵Dept. of Physics and Astr., Rutgers Univ., 136 Frelinghuysen Rd Piscataway, NJ 08854

EDXRD (Energy Dispersive X-ray Diffraction) Facility/Program Capabilities: 3D- Phase & strain mapping

Hardware: X17B1 National Synchrotron Light Source (ongoing)

Software: developed by Rutgers (freeware) (ongoing)

Mechanism for use: Rutgers contributing user NSLS X17B1

Acknowledgements: ONR Contract: N00014-02-1-0772
L. Kabacoff Office of Naval Research

Report Documentation Page			Form Approved OMB No. 0704-0188	
<p>Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.</p>				
1. REPORT DATE JUN 2010	2. REPORT TYPE N/A	3. DATES COVERED -		
4. TITLE AND SUBTITLE Chemical phase and valence studies of plasma sprayed coatings: EDXRD and X-ray Absorption Spectroscopy (XAS) Results			5a. CONTRACT NUMBER	
			5b. GRANT NUMBER	
			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
			5e. TASK NUMBER	
			5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Materials Science and Engineering Dept., Rutgers University, Piscataway, NJ; 08854			8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)			10. SPONSOR/MONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited				
13. SUPPLEMENTARY NOTES See also ADM002307. ECI International Conference on Sub-Micron and Nanostructured Ceramics Held in Colorado Springs, Colorado on 7-12 June 2009, The original document contains color images.				
14. ABSTRACT				
15. SUBJECT TERMS				
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT UU	18. NUMBER OF PAGES 36
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified		

Materials Plasma Spray ceramic coatings on metals

- μ -alumina-titania (87:13) coating [μ -AT]
- nano-alumina-titania (87:13)+ additives (ZrO_2 & CeO_2) coating [nATCZ]
- new TiO_2 coating

Characterization results

- EDXRD –structure
- X-ray Absorption Spectroscopy (XAS)
 - valence state-chemical effects
 - local ligand coordination
 - structure

EDXRD: plasma sprayed alumina-titania coatings (on Ti-6-4)

- nATCZ → nano composite alumina-titania coating (87:13)

+ additives ~ 8-10% ZrO_2 & 6-8 % CeO_2)

** %-ratios by weight

- μAT → micro-size alumina-titania (87:13) μAT coating

EDXRD –structure

Coatings: delaminated & powdered

Energy (keV)

nano-coating

stronger $\alpha\text{-Al}_2\text{O}_3$: corundum lines / content

amorphous content larger

EDXRD –structure

Coatings: delaminated & powdered

Energy (keV)

nano-coating

stronger α -Al₂O₃ : corundum lines / content
amorphous content larger

** U.-Conn. Group electron microscopy: Ti in γ -Al₂O₃
Goberman, Sohn, Shaw, Jordan, Gell. Acta Mat. 2002;50:1141.
Bansal et. al. Acta Mat. 51 (2003) 2959–2970:

EDXRD –structure

μ -alumina/titania feed powder

EDXRD –structure

nano-alumina/titania feed powder

All data collapse to universal curves in ε_e or ε_p vs. ε !!

calculate $\varepsilon = \varepsilon_e + \varepsilon_p$

measure

X-Ray Absorption Spectroscopy (XAS)

Fermi Golden Rule
dipole/quadrupole operator

$$\mu(E) = \sum_{\text{final states}} \rho(E_f) \left| \langle \Psi_f | \hat{H} | \Psi_i \rangle \right|^2$$

$f = \text{empty states}$

$i = \text{core level}$

XAS : hole state spectroscopy

Atom (element) specific centered probe (inside out view !!!)
- electronic & “crystal” structure

Powerful

**powders, single crystals, very-very low concentration impurities,
very thin films (sub-monolayer), liquids, colloidal suspensions,
amorphous materials ...**

Versatile

**XAS micro-(NSLS)/nano(NSLS-II)- probe:
local mapping of structure chemistry**

Ce Problem and Ce-L₃ valence (special case)

Rare Earth (RE) **4f -localized atomic, core states****

Ce – first RE

Energy of Ce⁴⁺:[4f⁰ (5d6s)⁴] \approx Ce³⁺:[4f¹ (5d6s)³] $4f^1 \cdots n_f \rightarrow \cdots \cdots \cdots 4f^{14}$

{** Ce borderline 4f- localized 4f – itinerant}

Often mixed-valent ($v=4-n_f$) Ce solid state ground state

{** $n_f < \sim 3.3$ }

$$\Psi_{GS} = a\Psi(4f^1) + b\Psi(4f^0) \quad Ce^{[4-\frac{n}{f}]^+} : 4f_{\frac{n}{f}} \quad 0 \leq n_f = |a|^2 < 4$$

	6s	5d
132.90543	55	137.327
B3 bcc 28.64 671 1.879 0.79 [Xe]6s ¹ Cesium	1	B3 hex 29.72 3455 6.146 3.31 [Xe]6s ¹ Barium
140.115	58	144.9127
B2 fcc 30.99 0.424 0.770 [Xe]4f15d6s ¹ Ce	3.4 1.773 7.00 [Xe]4f16s ¹ Praseodymium	60
140.90765	59	144.24
B2 hex 31.01 0.424 0.770 [Xe]4f16s ¹ Neodymium	3.4 1.773 7.00 [Xe]4f16s ¹ Promethium	61
144.9127	57	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	62
144.9127	57	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	63
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	64
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	65
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	66
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	67
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	68
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	69
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	70
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	71
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	72
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	73
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	74
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	75
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	76
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	77
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	78
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	79
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	80
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	81
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	82
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	83
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	84
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	85
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	86
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	87
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	88
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	89
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	90
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	91
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	92
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	93
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	94
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	95
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	96
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	97
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	98
150.36	62	150.36
B2 hex 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	99
150.36	62	150.36
B2 dcp 30.68 0.370 0.770 [Xe]4f16s ¹ Lanthanum	3.3 1.790 7.536 [Xe]4f16s ¹ Samarium	100

L₃ XAS Ce-valence determination {Ce^{3+/4+},Sm^{3+/4+},Eu^{3+/4+},Tm^{3+/4+},Yb^{3+/4+}}

mixed-valent Ce ground state

$$\Psi_{GS} = a\Psi(4f^1) + b\Psi(4f^0)$$

Ce³⁺ Ce⁴⁺

$$\text{Valence } (L_3) = 4 - n_f = 4 - |a|^2$$

Ce- L₃ valence

- **exquisitely** sensitive probe of local chemistry !!

Ce in nano-alumnia-titania PS coatings

Ce in nano-alumnia-titania PS coatings

Plasma Spray
Chemical reduction of Ce

Average Ce-O distance estimate

$\langle R_{Ce-O} \rangle = 2.55 \text{ \AA}^{\circ}$
consistent with Ce³⁺

Rare Earth continuum resonance
“C” feature energy
or Natoli’s rule: $kr = \text{const}$

Regular shift with
R-O distance

Aside

Ce-Al... cold spray (George Kim & coworkers)

Ce³⁺ typical of Ce-Al inter-metallics

CeAl, CeAl₂, CeAl₃, Ce₃Al₃

Very stable against oxidation, very hard

Plasma spray deposition

Plasma spray deposition

Zr L_{2,3}-edge probe of local electronic structure: ligand coordination

Zr L_{2,3}-edge probe of local electronic structure: ligand coordination

Zr-L₃ XAS – on nanoscale structures

example
electronic structure to map crystal structure in processing space

- to smallest film thickness
- QUICKLY (few long nights at synch)

Safak Sayan et. al.
Appl. Phys. Lett. 86, 152902 (05)

Zr in nano-alumnia-titania PS coatings

- Zr in nano-alumnia-titania feed powder
local cubic symmetry = ZrO_2 ...

- Zr in nano-alumnia-titania PS coating
local octahedral symmetry = ZrO_2

• cubic $\xrightarrow{\text{PS}}$ octahedral

T(3d)-K pre-edge: local electronic-structure/ ligand-coordination

- Final state s-core-hole/d attraction energy W
- transitions
 - quadrupole $s \rightarrow d$ (much weaker)
 - + dipole $s \rightarrow d/p$ -hybridized (variable)

T(3d)-K pre-edge: local electronic-structure- life more complex

W (3d⁻/1s⁺) coulomb attraction energy

- replicate local- band features

T(3d)-K pre-edge: local electronic-structure- life more complex

W (3d-1s⁺) coulomb attraction energy

- replicate local- band features

- dipole transitions to Ti 3d(e_g)/O(2p) hybrid states

WORSE YET

Ti in feed powder

micro-aluminia-titania (μ AT)

nano-aluminia-titania-ceria-zirconia (nATCZ)

- feed powder μ AT = nATCZ = anatase phase TiO₂

Spectral fingerprint

PS coatings

- coatings grossly different structure from ana-TiO₂

- PS coating quite similar for μ AT & nATCZ
- nATCZ PS coating spectrum broadened \Rightarrow atomic disorder

XAS chemical shift of main edge to higher energy with higher valence

$\text{La}^{3+}_{1-x}\text{Ca}^{2+}_x\text{Mn}^{3+/4+}\text{O}_3$
Mn-K-XAS → key Mn^{3+}/Mn⁴⁺}

Mn^{N+} : e⁻ states more tightly bound as N↑

Ti-valence state in alumina-titania PS coatings

- Ti^{(4- δ)+} valence reduction in both μ AT & nATCZ PS coatings similar to (but less in magnitude than) Ce

Ti- local structure in PS coatings

- not ana-TiO₂

- conjecture** Ti in isolated octahedral sites in spinel $\gamma\text{-Al}_2\text{O}_3$

** U.-Conn. Group electron microscopy: Ti in $\gamma\text{-Al}_2\text{O}_3$

Goberman, Sohn, Shaw, Jordan, Gell. Acta Mat. 2002;50:1141.

Bansal et. al. Acta Mat. 51 (2003) 2959–2970:

Plasma Spray TiO_2 coating (structure) on Ti-6-4

Ti-K edges:
anatase & rutile TiO_2

Ti-K edges: TiO_2 feed powder &
plasma sprayed TiO_x coating

- Feed powder
dominantly anatase
(broadened/disordered)

- PS coating
dominant component rutile
(broadened/disordered)

anatase- TiO_2 feed powder \Rightarrow rutile TiO_x coating

Ti-valence state in TiO_2 PS coatings

- large $\text{Ti}^{(4-\delta)+}$ valence reduction in PS TiO_x coating
(δ larger than in aluminia-titania PS coating)

Ti-valence state in TiO_2 PS coatings (pre-edge)

- excess (broad) spectral intensity over Ti^{3+} range
- new spectral feature onset at intensity over Ti^{3+} onset range
- large $\text{Ti}^{(4-\delta)+}$ valence reduction in PS TiO_x coating

Summary XAS results on plasma spray coatings

feed powder $\xrightarrow{\text{PS}}$ **real life coating** local structure
local electronic states/chem

Plasma Spray (PS) Coatings

Al₂O₃-TiO₂: additives; CeO₂, ZrO₂

TiO₂

Rutgers Faraday Christmas Children's Lecture

Dec. 2009 (12th Anniversary)

(for Children between the ages of 5 and 110 yrs)

croft@physics.rutgers.edu

web page <http://www.physics.rutgers.edu/~croft/FARADAY.HTML>

Tetrahedral/Cubic

e_g

t_{2g}

Δ_{tet}

d-states

Octahedral

e_g

Δ_0

t_{2g}

energy splittings reverse !

pre-edge: 3d electronic states

Cubic Ca-environment

Octahedral Sc-environment

