

Applications

- Repeaters
- Mobile Infrastructure
- Defense/Aerospace
- LTE / WCDMA / CDMA / GSM
- General Purpose Wireless
- · IF Amplifier, RF Driver Amplifier

Product Features

- 50-4000 MHz Operating Range
- Flat gain (14.7 ± 0.3 dB) from 50 to 3500 MHz
- +39.5 dBm Output IP3
- 2 dB Noise Figure at 1900 MHz
- 50 Ω gain block; No RF matching required
- · Unconditionally stable
- +5V Single Supply, 85 mA Current
- 3x3mm 16 pin QFN plastic package

General Description

The TQP3M9038 is a cascadable, high linearity gain block amplifier in a low-cost surface-mount package. At a frequency of 1900 MHz, the amplifier typically provides 15 dB gain, +40 dBm OIP3, and 2 dB Noise Figure while only drawing 85 mA current. The device is housed in a lead-free/green /RoHS-compliant QFN Package.

The TQP3M9038 has the benefit of having excellent gain flatness across a broad range of frequencies. The low noise figure and high linearity performance allows the device to be used in both receiver and transmitter chains for high performance systems. The amplifier is internally matched using a high performance E-pHEMT process and only requires an external RF choke and blocking/bypass capacitors for operation from a single +5V supply. The internal active bias circuit also enables stable operation over bias and temperature variations.

The TQP3M9038 covers the 50-4000 MHz frequency band and is targeted for wireless infrastructure or other applications requiring high linearity and/or low noise figure.

3x3 mm 16 Pin QFN Package

Functional Block Diagram

Pin Configuration

Pin No.	Symbol
2	RF IN
11	RF OUT/BIAS
All other pins	N/C
Backside paddle	RF/DC GND

Ordering Information

Part No.	Description
TQP3M9038	High Linearity LNA Gain Block
TQP3M9038-PCB_IF	50-500 MHz Eval. Board
TQP3M9038-PCB_RF	500-4000 MHz Eval. Board

Standard T/R size = 2500 pieces on a 7" reel.

High-Linearity LNA Gain Block

Absolute Maximum Ratings

Parameter	Rating
Storage Temperature	-65 to +150°C
Supply Voltage (V _{DD})	+7 V
RF Input Power, CW, 50Ω,T = 25°C	+23 dBm
Reverse Device Voltage	-0.3 V

Operation of this device outside the parameter ranges given above may cause permanent damage.

Recommended Operating Conditions

Parameter	Min	Тур	Max	Units
Supply Voltage (VDD)	+4.75	+5	+5.25	V
TCASE	-40		+105	°C
T _J (for >10 ⁶ hours MTTF)			190	°C

Electrical specifications are measured at specified test conditions. Specifications are not guaranteed over all recommended operating conditions.

Electrical Specifications

Test conditions unless otherwise noted: V_{DD} =+5V, Temp=+25°C, 50 Ω system

Parameter	Conditions	Min	Тур	Max	Units
Operational Frequency Range		50		4000	MHz
Test Frequency			1900		MHz
Gain		13	14.9	16	dB
Input Return Loss			21		dB
Output Return Loss			23		dB
Noise Figure			2		dB
Output P1dB			+21.6		dBm
Output IP3	Pout=+4 dBm/tone, Δf=1 MHz	+35.5	+39.5		dBm
Current, I _{DD}			85	100	mA
Thermal Resistance, θ _{jc}	Channel to case			36.6	°C/W

Device Characterization Data

S-Parameters

Test conditions unless otherwise noted: V_{DD}=+5 V, I_{DD}=85 mA (typ.), Temp=+25°C, 50 Ohm system

Freq (MHz)	S11 (dB)	S11 (ang)	S21 (dB)	S21 (ang)	S12 (dB)	S12 (ang)	S22 (dB)	S22 (ang)
10	-12.2	-61.9	17.7	167.0	-20.6	12.1	-17.9	-94.7
20	-13.5	-39.4	17.2	169.7	-20.4	10.0	-17.5	-52.1
50	-15.9	-50.9	16.4	168.8	-19.6	6.6	-20.1	-79.8
100	-20.7	-73.2	15.9	167.6	-19.1	1.7	-22.8	-112.9
200	-25.5	-85.5	15.5	163.8	-18.9	-4.6	-24.8	-144.3
500	-28.6	-91.1	15.4	146.9	-18.8	-18.2	-27.2	-177.2
900	-27.0	-99.7	15.3	122.7	-19.0	-34.2	-29.8	175.9
1000	-26.3	-101.9	15.3	116.5	-19.0	-38.2	-30.7	179.6
1500	-23.4	-117.6	15.2	85.5	-19.3	-58.3	-28.7	-137.4
1900	-21.9	-130.7	15.1	66.6	-19.5	-70.6	-24.6	-131.1
2000	-21.4	-136.1	15.1	60.2	-19.6	-74.8	-23.5	-131.5
2500	-21.0	-141.8	15.1	53.9	-19.7	-79.0	-22.4	-132.7
3000	-20.6	-147.7	15.0	47.5	-19.8	-83.2	-21.4	-134.4
3500	-18.8	-174.7	15.0	21.3	-20.1	-100.5	-18.1	-143.2
4000	-17.9	170.3	15.0	7.9	-20.3	-109.3	-16.6	-149.0

TQP3M9038

High-Linearity LNA Gain Block

TQP3M9038-PCB_(RF / IF) Evaluation Board

Notes:

- 1. See Evaluation Board PCB Information section for material and stack-up.
- 2. Package pins 3 through 9 and 13 through 16 are grounded for PCB mounting integrity and optimal isolation.
- 3. B1 (0 Ω jumper) may be replaced with copper trace in the target application layout.
- 4. The recommended component values are dependent upon the frequency of operation.
- 5. All components are 0603 size unless stated on the schematic.

Bill of Material - TQP3M9038-PCB_(RF / IF)

	TQP3M9038-PCB_IF	TQP3M9038-PCB_RF			
Reference Designation	50-500 MHz	500-4000 MHz			
U1	TQP3M9038				
C2, C6	1000 pF	100 pF			
C1	0.01 uF	0.01 uF			
L2	330 nH	68 nH			
L1, D1, C3, C4	Do Not Place				
B1	0 Ω				

Performance may be further optimized at frequency of interest by using recommended component values given below.

Reference Designation	500 MHz	2000 MHz	2500 MHz	3500 MHz
C2, C6	100 pF	22 pF	22 pF	22 pF
L2	82 nH	22 nH	18 nH	15 nH

High-Linearity LNA Gain Block

TQP3M9038

Typical Performance - TQP3M9038-PCB_RF

Test conditions unless otherwise noted: V_{DD} =+5V, I_{DD}=+85 mA (typ.), Temp=+25°C

Parameter	Typical Performance						
Frequency	500	900	1900	2700	3500	4000	MHz
Gain	15.2	15.1	14.9	14.5	14.5	14.5	dB
Input Return Loss	-19.2	-24.0	-20.9	-13.7	-14.5	-16.1	dB
Output Return Loss	-17.9	-20.0	-22.6	-12.8	-11.3	-12.0	dB
Output P1dB	+21.7	+21.9	+21.6	+20.6	+19.8	+18.5	dBm
OIP3 (1)	+41.1	+41.4	+39.5	+38.0	+35.3	+32.3	dBm
Noise Figure (2)	1.7	1.8	1.9	2.2	2.8	3.0	dB

Notes:

- 1. OIP3 measured with two tones at an output power of +4 dBm / tone separated by 1 MHz.
- 2. Noise figure data shown in the table above includes board losses of 0.1dB @ 2000 MHz.

Performance Plots - TQP3M9038-PCB_RF

TQP3M9038

Typical Performance - TQP3M9038-PCB_IF

Test conditions unless otherwise noted: V_{DD} =+5V, I_{DD}=+85 mA (typ.), Temp=+25°C

Parameter	Typical Performance Units						
Frequency	70	100	200	500	MHz		
Gain	15.9	15.7	15.4	15.2	dB		
Input Return Loss	-12.3	-15.0	-20.4	-26.4	dB		
Output Return Loss	-23.0	-24.5	-22.4	-21.4	dB		
Output P1dB	+20.9	+21.0	+21.0	+21.3	dBm		
OIP3 (1)	+39.5	+39.7	+40.7	+40.0	dBm		
Noise Figure [2]	1.65	1.75	1.75	1.70	dB		

Notes:

- 1. OIP3 measured with two tones at an output power of +6 dBm / tone separated by 1 MHz.
- 2. Noise figure data shown in the table above includes board losses.

Performance Plots - TQP3M9038-PCB_IF

Test conditions unless otherwise noted: V_{DD} =+5V, I_{DD}=+85 mA (typ.),

Pin Configuration and Description

Pin No.	Symbol	Description
2	RF IN	RF input, matched to 50 ohms. External DC Block is required.
11	RF OUT DC BIAS	RF output, matched to 50 ohms. Bias voltage and external DC Block are required.
All other pins	N/C	No electrical connection. Provide grounded land pads for PCB mounting integrity.
Backside paddle	RF/DC GND	RF/DC ground. Use recommended via pattern to minimize inductance and thermal resistance; see PCB Mounting Pattern for suggested footprint.

Evaluation Board PCB Information

TriQuint PCB 1076342 Material and Stack-up

50 ohm line dimensions: width = .031", spacing = .035

Mechanical Information

Package Marking and Dimensions

Marking: Part number - 9038 Date Code - YYWW Assembly Code - aXXXX

NOTES:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Except where noted, this part outline conforms to JEDEC standard MO-220, Issue E (Variation VGGC) for thermally enhanced plastic very thin fine pitch quad flat no lead package (QFN).
- 3. Dimension and tolerance formats conform to ASME Y14.4M-1994.
- 4. The terminal #1 identifier and terminal numbering conform to JESD 95-1 SPP-012.

PCB Mounting Pattern

NOTES:

- 1. All dimensions are in millimeters. Angles are in degrees.
- 2. Use 1 oz. copper minimum for top and bottom layer metal.
- 3. Vias are required under the backside paddle of this device for proper RF/DC grounding and thermal dissipation. We recommend a 0.35mm (#80/.0135") diameter bit for drilling via holes and a final plated thru diameter of 0.25 mm (0.10").
- 4. Ensure good package backside paddle solder attach for reliable operation and best electrical performance.

TQP3M9038

High-Linearity LNA Gain Block

Product Compliance Information

RFMD + TriQuint = Qorvo

ESD Sensitivity Ratings

Caution! ESD-Sensitive Device

ESD Rating: Class 1A

Value: Passes ≥ 250 V to < 500 V
Test: Human Body Model (HBM)
Standard: JEDEC Standard JESD22-A114

ESD Rating: Class C3

Value: Passes ≥ 1000 V min.

Test: Charged Device Model (CDM)
Standard: JEDEC Standard JESD22-C101

MSL Rating

MSL Rating: Level 1

Test: 260°C convection reflow

Standard: JEDEC Standard IPC/JEDEC J-STD-020

Solderability

Compatible with both lead-free (260°C max. reflow temperature) and tin/lead (245°C max. reflow temperature) soldering processes.

Package contact plating: Annealed Matte Tin

RoHs Compliance

This part is compliant with EU 2002/95/EC RoHS directive (Restrictions on the Use of Certain Hazardous Substances in Electrical and Electronic Equipment).

This product also has the following attributes:

- Lead Free
- Halogen Free (Chlorine, Bromine)
- Antimony Free
- TBBP-A (C₁₅H₁₂Br₄O₂) Free
- PFOS Free
- SVHC Free

Contact Information

For the latest specifications, additional product information, worldwide sales and distribution locations:

Web: www.triquint.com Tel: 877-800-8584

Email: customer.support@gorvo.com

For information about the merger of RFMD and TriQuint as Qorvo:

Web: www.qorvo.com

For technical questions and application information:

Email: sjcapplications.engineering@gorvo.com

Important Notice

The information contained herein is believed to be reliable. TriQuint makes no warranties regarding the information contained herein. TriQuint assumes no responsibility or liability whatsoever for any of the information contained herein. TriQuint assumes no responsibility or liability whatsoever for the use of the information contained herein. The information contained herein is provided "AS IS, WHERE IS" and with all faults, and the entire risk associated with such information is entirely with the user. All information contained herein is subject to change without notice. Customers should obtain and verify the latest relevant information before placing orders for TriQuint products. The information contained herein or any use of such information does not grant, explicitly or implicitly, to any party any patent rights, licenses, or any other intellectual property rights, whether with regard to such information itself or anything described by such information.

TriQuint products are not warranted or authorized for use as critical components in medical, life-saving, or life-sustaining applications, or other applications where a failure would reasonably be expected to cause severe personal injury or death.