E/Ea Thompson(they/them)

Math 641: Algebraic Number Theory

- In Pursuit of Abstract Nonsence -

Wednesday 30th August, 2023

Preface	
This is a collection of notes associated with Math 641 (Algor Calgary.	gebraic Number Theory) taken at the University
University of Calgary,	E/Ea Thompson (They/Them) Wednesday 30 th August, 2023

Contents

Notation

List of common notations used in these notes.

- Natural numbers
- \mathbb{Z} Integers
- Q Rational numbers
- \mathbb{R} Real numbers
- \mathbb{C} Complex numbers

Chapter 1

Number Fields

Abstract Summary of material in chapter (to be completed after chapter)

1.1 Basic Concepts

A **number field** is a subfield of \mathbb{C} having finite degree over \mathbb{Q} . Every such field has the form $\mathbb{Q}(\alpha)$ for some algebraic number $\alpha \in \mathbb{C}$. Note as the extension is finite $\mathbb{Q}(\alpha) = \mathbb{Q}[\alpha]$. If α is a root of an irreducible polynomial over \mathbb{Q} having degree n, then

$$\mathbb{Q}[\alpha] = \{a_0 + a_1\alpha + \dots + a_{n-1}\alpha^{n-1} : a_i \in \mathbb{Q}\}\$$

and $\{1, \alpha, ..., \alpha^{n-1}\}$ is a basis for $\mathbb{Q}[\alpha]$ as a vector space over \mathbb{Q} .

Consider $\omega = e^{2\pi i/m}$. The field $\mathbb{Q}[\omega]$ is called the m^{th} **cyclotomic field**. In general, for odd m, the m^{th} cyclotoic field is equal to the $2m^{th}$. On the other hand, cyclotomic fields for m even, m > 0, are all distinct.

Another infinite class of number fields consists of the **quadratic fields** $\mathbb{Q}[\sqrt{m}]$, $m \in \mathbb{Z}$, m not a perfect square. These fields have degree 2 over \mathbb{Q} , having basis $\{1, \sqrt{m}\}$. We need only consider squarefree m since, for example, $\mathbb{Q}[\sqrt{12}] = \mathbb{Q}[\sqrt{3}]$. The $\mathbb{Q}[\sqrt{m}]$, for m squarefree, are all distinct. The $\mathbb{Q}[\sqrt{m}]$, m > 0, are called the **real quadratic fields**; the $\mathbb{Q}[\sqrt{m}]$, m < 0, the **imaginary quadratic fields**.

Definition 1.1.1 A complex number is an **algebraic integer** if and only if it is a root of some monic (leading coefficient 1) polynomial with coefficients in \mathbb{Z} .

Note we do note require the polynomial to be irreducible over \mathbb{Q} .

Theorem 1.1.2 Let α be an algebraic integer, and let f be a monic polynomial over \mathbb{Z} of least degree having α as a root. Then f is irreducible over \mathbb{Q} .

Lemma 1.1.3 Let f be a monic polynomial with coefficients in \mathbb{Z} , and suppose f = gh where g and g are monic polynomials with coefficients in \mathbb{Q} . Then g and h actually have coefficients in \mathbb{Z} .

Proof Let m (resp. n) be the smallest positive integer such that mg (resp. nh) has coefficients in \mathbb{Z} . Then the coefficients of mg have no common factor. The same is true of the coefficients of nh. Using this, we can show that m = n = 1: If mn > 1, take any prime p dividing mn and consider the equation mnf = (mg)(nh). Reducing coefficients $mod \ p$, we obtain $0 \equiv (mg)(nh) \mod p$. But $\mathbb{Z}_p[x]$ is an integral domain, so either $mg \equiv 0$ or $nh \equiv 0 \mod p$. But then p divides all coefficients of either mg or nh; as we showed above, this is impossible. Thus m = n = 1, and hence $g, h \in \mathbb{Z}[x]$.

We now can prove the preceding theorem.

Proof If f is not irreducible, then f = hg where $g, h \in \mathbb{Q}[x]$ are nonconstant polynomials. Without loss of generality we can assume that g, h are monic. Then $g, h \in \mathbb{Z}[x]$ by the lemma. But α is a root of either g or h, and both have degree less than that of f. This is a contradiction.

Corollary 1.1.4 The only algebraic integers in \mathbb{Q} are the ordinary integers.

Corollary 1.1.5 Let m be a squarefree integer. The set of algebraic integers in the quadratic field $\mathbb{Q}[\sqrt{m}]$ is

$$\{a+b\sqrt{m}: a,b\in\mathbb{Z}\}, \text{ if } m\equiv 2 \text{ or } 3 \mod 4$$

$$\left\{\frac{a+b\sqrt{m}}{2}: a,b\in\mathbb{Z}, a\equiv b \mod 2\right\}, \text{ if } m\equiv 1 \mod 4$$

Proof Let $\alpha = r + s\sqrt{m}$, $r, s \in \mathbb{Q}$. If $s \neq 0$, then the monic irreducible polynomial over \mathbb{Q} having α as a root is

$$x^2 - 2rx + r^2 - ms^2$$

Thus α is an algebraic integer if and only if 2r and $r^2 - ms^2$ are both integer. This can be used to obtain the result.

Theorem 1.1.6 The following are equivalent for $\alpha \in \mathbb{C}$:

- (1) α is an algebraic integer;
- (2) $\mathbb{Z}[\alpha]$ is a finitely generated \mathbb{Z} -module;
- (3) There exists a subring B of \mathbb{C} containing α which is finitely generated as a \mathbb{Z} -module;
- (4) $\alpha A \subseteq A$ for some finitely generated \mathbb{Z} -submodule of \mathbb{C} .

Proof (1) implies (2) follows from the fact that α is a root of a monic polynomial over \mathbb{Z} of some degree n, so $\mathbb{Z}[\alpha]$ is generated by $1, \alpha, ..., \alpha^{n-1}$. (2) implies (3) implies (4) is immediate.

Suppose (4). Let $a_1, ..., a_n$ generate A over \mathbb{Z} . Expressing each αa_i as a linear combination of $a_1, ..., a_n$ with coefficients in \mathbb{Z} we obtain $\alpha a = Ma$, for $a = (a_1, ..., a_n)$, where M is an $n \times n$ matrix over \mathbb{Z} . Equivalently, $(\alpha I - M)a = 0$. Since the a_i are not all zero, it follows that $\alpha I - M$ has determinant zero when we multiply on the left of by the adjugate. Expressing this determinant in terms of the n^2 coordinates of $\alpha I - M$ we obtain a monic polynomial in α with coefficients in \mathbb{Z} . Thus α is a algebraic integer.

Corollary 1.1.7 If α , β are algebraic integers, then so are $\alpha + \beta$, $\alpha\beta$.

Proof We know that $\mathbb{Z}[\alpha]$ and $\mathbb{Z}[\beta]$ are finitely generated \mathbb{Z} -modules. Then so is the ring $\mathbb{Z}[\alpha, \beta]$. Finally, $\mathbb{Z}[\alpha, \beta]$ contains $\alpha + \beta$ and $\alpha\beta$. By the previous theorem this implies that they are algebraic integers. \square

Hence the set of algebraic integers in \mathbb{C} is a ring, which we denote by \mathbb{A} . In particular $\mathbb{A} \cap K$ is the subring of algebraic integers in K for any number field K.

1.2 The Cyclotomic Fields

Let $\omega = e^{2\pi i/m}$.

Theorem 1.2.1 All ω^k , $1 \le k \le m$, $\gcd(k, m) = 1$, are conjugates of ω .

Proof It will be enough to show that for each $\theta = \omega^k$, and for each prime p not dividing m, θ^p is a conjugate of θ . Let f be a monic irreducible polynomial for θ over \mathbb{Q} . Then $x^m - 1 = f(x)g(x)$ for some monic $g \in \mathbb{Q}[x]$, and from before we know $f, g \in \mathbb{Z}[x]$. Note θ^p is a root of $x^m - 1$, so θ^p is a root of f or g. Suppose θ^p is a root of g. Then θ is a root of the polynomial $g(x^p)$. It follows that $g(x^p)$ is divisible by f(x) in $\mathbb{Q}[x]$. Applying the lemma again we obtain that $g(x^p)$ is divisible by f(x) in $\mathbb{Z}[x]$. Reducing coefficients mod p, we obtain $g(x^p) + (p)$ is divisible by f(x) + (p). But $g(x^p) + (p) = (g(x))^p + (p)$, and $\mathbb{Z}_p[x]$ is a UFD; it follows that f + (p) and g + (p) have a common factor f in $\mathbb{Z}_p[x]$. Then f is a unique f in f

Corollary 1.2.2 $\mathbb{Q}[\omega]$ has degree $\varphi(m)$ over \mathbb{Q} .

Proof ω has $\varphi(m)$ conjugates, hence the irreducible polynomial for ω over \mathbb{Q} has degree $\varphi(m)$.

Corollary 1.2.3 The Galois group of $\mathbb{Q}[\omega]$ over \mathbb{Q} is isomorphic to the multiplicative group of integers $\mod m$

$$\mathbb{Z}_m^* = \{k : 1 \le k \le m, \gcd(k, m) = 1\}$$

For each $k \in \mathbb{Z}_m^*$, the corresponding automorphism in the Galois group sends ω to ω^k .

Proof An automorphism of $\mathbb{Q}[\omega]$ is uniquely determined by the image of ω , and by our previous results ω can be sent to any of the ω^k , $\gcd(k,m)=1$. This establishes the one-to-one correspondence between the Galois group and the multiplicative group $\mod m$.

Corollary 1.2.4 Let $\omega = e^{2\pi i/m}$. If m is even, the only roots of 1 in $\mathbb{Q}[\omega]$ are the m^{th} roots of 1. If m is odd, the only ones are the $2m^{th}$ roots of 1.

Proof It is enough to prove the statement for even m. Suppose θ is a primitive kth root of unity in $\mathbb{Q}[\omega]$. Then $\mathbb{Q}[\omega]$ contains a primitive rth root of unity, where r is the least common multiple of k and m. But then $\mathbb{Q}[\omega]$ contains the rth cyclotomic field, implying $\varphi(r) \leq \varphi(m)$. This is a contradiction unless r = m. Hence $k \mid m$ and θ is an mth root of unity.

Corollary 1.2.5 The *m*th cyclotomic fields, for *m* even, are all distinct and in fact pairwise non-isomorphic.

1.3 Embeddings in \mathbb{C}

Let K be a number field of degree n over \mathbb{Q} . Since this is a separable extension there are exactly n embeddings of K into \mathbb{C} .

Example:

The quadratic field $\mathbb{Q}[\sqrt{m}]$, m squarefree, has two embeddings in \mathbb{C} : the identity mapping, and also the one which sends $a + b\sqrt{m} \mapsto a - b\sqrt{m}$.

Example:

The *m*th cyclotomic field has $\varphi(m)$ embeddings in \mathbb{C} , the $\varphi(m)$ automorphisms.

If K, L are two number fields with $K \subset L$, then we know that every embedding of K in \mathbb{C} extends to exactly [L:K] embeddings of L in \mathbb{C} . In particular, L has [L:K] embeddings in \mathbb{C} which leave each point of K fixed. To replace embeddings of a number field K with automorphisms is to extend K to a normal extension L of \mathbb{Q} ; each embedding of K extends to [L:K] embeddings of L, all of which are automorphisms of L since L is normal.

1.4 The Trace and the Norm

Let K be a number field throughout. We define two functions $T := T_{K/\mathbb{Q}}$ and $N := N_{K/\mathbb{Q}}$ (the **trace** and the **norm**) on K, as follows: Let $\sigma_1, ..., \sigma_n$ denote the embeddings of K in \mathbb{C} , where $n = [K : \mathbb{Q}]$. For each $\alpha \in K$, set

$$T(\alpha) = \sum_{i} \sigma_i(\alpha), \ N(\alpha) = \prod_{i} \sigma_i(\alpha)$$

From the definition we obtain $T(\alpha + \beta) = T(\alpha) + T(\beta)$ and $N(\alpha\beta) = N(\alpha)N(\beta)$ for all $\alpha, \beta \in K$. Moreover, for $r \in \mathbb{Q}$ we have T(r) = nr, $N(r) = r^n$. Also for $r \in \mathbb{Q}$ and $\alpha \in K$, $T(r\alpha) = rT(\alpha)$ and $N(r\alpha) = r^nN(\alpha)$.

Let α have degree d over \mathbb{Q} . Let $t(\alpha)$ and $n(\alpha)$ denote the sum and product, respectively, of the d conjugates of α over \mathbb{Q} . Then we have

Theorem 1.4.1
$$T(\alpha) = \frac{n}{d}t(\alpha)$$
 and $N(\alpha) = (n(\alpha))^{n/d}$ where $n = [K : \mathbb{Q}]$. Note $n/d = [K : \mathbb{Q}(\alpha)]$.

Proof $t(\alpha)$ and $n(\alpha)$ are the trace and norm $T_{\mathbb{Q}[\alpha]/\mathbb{Q}}$ and $N_{\mathbb{Q}[\alpha]/\mathbb{Q}}$ of α . Each embedding of $\mathbb{Q}[\alpha]$ in \mathbb{C} extends to exactly n/d embeddings of K in \mathbb{C} . This establishes the formulas.

Corollary 1.4.2 $T(\alpha)$ and $N(\alpha)$ are rational.

If α is an algebraic integer, then its monic irreducible polynomial over $\mathbb Q$ has coefficients in $\mathbb Z$; hence we obtain

Corollary 1.4.3 If α is an algebraic integer, then $T(\alpha)$ and $N(\alpha)$ are integers.

Example:

For the quadratic field $K = \mathbb{Q}[\sqrt{m}]$, we have

$$T(a+b\sqrt{m})=2a$$

and

$$N(a+b\sqrt{m}) = a^2 - mb^2$$

for $a, b \in \mathbb{Q}$.

Problems

1.1 A given problem or Excercise is described here. The problem is described here. The problem is described here.