Origami Numbers A Short Overview of the Lemmata and Theorems

Nora Depenheuer

Joachim Roscher

January 28, 2025

1 First some basic line stuff

1.1 Already proven

- u vec_well_defined: no 0 in a fraction denominator of a vector
- u vec_ne_zero: $l.vec \neq 0 \forall l$ line
- u vec_abs_one: $|l.vec| = 1 \forall l$ line
- u diff_ne_zero: $l.z_2 l.z_1 \neq 0 \forall l$ line
- x diff_ne_zero': $l.z_1 l.z_2 \neq 0 \forall l$ line
- x z_1 -on_l: $l.z_1 \in l.points \forall l$ line
- x z_2 -on_l: $l.z_2 \in l.points \forall l$ line
- u line_eq_symm: $l_1.eql_2 \iff l_2.eql_1 \forall l_1, l_2$ lines
- x line_eq_symm': $\neg l_1.eql_2 \iff \neg l_2.eql_1 \forall l_1, l_2$ lines
- u line_eq_is_equivalence_relation: exactly the title
- x line_eq_self: $l.eql \forall l$ line
- x line_eq_if_switched_points: $l.eq < l.z_2, l.z_1 > for all line$
- u line_eq_iff_both_points_lie_in_the_other: $l_1.eql_2 \iff l_1.z_1 \in l_2.points \land l_1.z_2 \in l_2.points \forall l_1, l_2$ lines
- u line_eq_iff_both_points_lie_in_the_other': $l_1.eql_2 \iff l_2.z_1 \in l_1.points \land l_2.z_2 \in l_1.points \forall l_1, l_2$ lines
- x line_eq_if_add_vec: $l.eq < l.z_1, k \cdot l.vec > \forall k \neq 0, l$ line
- x line_ne_iff: $\exists x \in l_1.points \land x \notin l_2.points \iff \neg l_1.eql_2 \forall l_1, l_2$ lines
- x line_ne_iff': $\exists x \in l_2.points \land x \notin l_1.points \iff \neg l_1.eql_2 \forall l_1, l_2 \text{ lines}$
- x Parallel_symm: $l_1 \parallel l_2 \iff l_2 \parallel l_1 \forall l_1, l_2 \text{ lines}$
- u Not_parallel_if_parallel: $\neg l_1 \parallel l_2 \Rightarrow l_2 \parallel l_3 \Rightarrow \neg l_1 \parallel l_3$

2 Now some orgiami stuff

2.1 Already proven

x conj_in_ \mathbb{O} : $\bar{z} \in \mathbb{O}$

```
u \mathbb{O}_n.points\_inc: \mathbb{O}_n.points \ n \subseteq \mathbb{O}_n.points \ m \ \forall n \leq m
u \mathbb{O}_n.lines\_inc: \mathbb{O}_n.lines \ n \subseteq \mathbb{O}_n.lines \ m \ \forall n \leq m
x O4_not_parallel: l \not\parallel (O4 z l)
x O4_perpendicular: l.vec \cdot \overline{(O4 z l).vec.re} = 0
x \text{ in\_O\_if\_eq: } z \in \mathbb{O} \land z' = z \implies z' \in \mathbb{O}
x in_O_lines_if_eq: l \in O.lines \land l'.eq l \implies l' \in O.lines
x in_O_lines_if_eqq: l \in O.lines \land l' = l \implies l' \in O.lines
u O1_in_\mathbb{O}: O1 z_1 z_2 \in \mathbb{O}.lines
\times O2_in_0: O2 z_1 z_2 \in \mathbb{O}.lines
u O3_in_\mathbb{O}: O3 l_1 l_2 \in \mathbb{O}.lines
u O3'_in_\mathbb{O}: O3' l_1 \ l_2 \in \mathbb{O}.lines
u O4_in_\mathbb{O}: O4 z l \in \mathbb{O}.lines
x O5_in_\mathbb{O}: O5 z_1 z_2 l \in \mathbb{O}.lines
x O6_in_\mathbb{O}: O6 z_1 z_2 l_1 l_2 \in \mathbb{O}.lines
u Isect_in_\mathbb{O}: l_1 \cap l_2 \in \mathbb{O}
u E1_in_\mathbb{O}: E1 z l hz hl \in \mathbb{O}.lines
x E1_in_\mathbb{O}': \exists l' \in \mathbb{O}, l'.z_1 = z \land l'.z_2 = z - l.vec \forall z \in \mathbb{O}, l \in \mathbb{O}.lines
u E1_parallel_l: (E1 z l) || l
u O4_not_parallel_to_E1: \neg (O4 z l) \parallel (E1 z l hz hl)
u O3_on_O4_and_E1: (O3 (O4 z l) (E1 z l hz hl)).z_1 = z \land (O3 (O4 z l) (E1 z l hz hl)).z_2 =
   z + i \cdot l.vec - l.vec \wedge (O3 (O4 z l) (E1 z l hz hl)).vec = (i - 1) \cdot l.vec/|i - 1|
u l_not_parallel_to_O3_on_O4_and_E1: \neg l \parallel (O3 (O4 z l) (E1 z l hz hl))
u O4_not_parallel_to_O4_on_O3_on_O4_and_E1: \neg(O4\ z\ l) \parallel (O4\ (l\cap (O3\ (O4\ z\ l)\ (E1\ z\ l\ hz\ hl))
   (O3 (O4 z l) (E1 z l hz hl)))
u O4_on_z₁_and_l₄: (O4 (l∩ (O3 (O4 z l) (E1 z l hz hl)) (O3 (O4 z l) (E1 z l hz hl))).vec =
   -(i+1) \cdot l.vec/|i-1|
u E2_in_\mathbb{O}: E2 z l hz hl \in \mathbb{O}
x E2_ne_z: E2 z l hz hl \neq z
u zero_in_\mathbb{O}: 0 \in \mathbb{O}
u one_in_\mathbb{O}: 1 \in \mathbb{O}
u reAxis_in_\mathbb{O}: reAxis \in \mathbb{O}.lines
u imAxis_in_\mathbb{O}: imAxis \in \mathbb{O}.lines
x i_in_\mathbb{O}: i \in \mathbb{O}
```

2.2 Still to prove(might be useful)

x O2_on_E2': (O2 z (E2 z l hz hl) (E2_ne_z h)).eq l

3 Now the actual project goal

3.1 Already proven

- u $\mathbb{O}_{-\text{neg:}} -z \in \mathbb{O} \forall z \in \mathbb{O}$
- u \mathbb{O}_{-} double: $2 \cdot z \in \mathbb{O}$
- u \mathbb{O}_{-} add_multiples: $z_1 + z_2 \in \mathbb{O} \forall z_1, z_2 \in \mathbb{O}, z_1 = k \cdot z_2$
- \mathbb{O}_{-} add: $z_1 + z_2 \in \mathbb{O} \forall z_1, z_2 \in \mathbb{O}$
- u \mathbb{O} _re: $z.re \in \mathbb{O} \forall z \in \mathbb{O}$
- $\mathbb{O}_{i_mul}: i \cdot z \in \mathbb{O} \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{real_mul_real}}$: $a \cdot b \in \mathbb{O} \forall a, b \in \mathbb{O} \cap \mathbb{R}$
- $\mathbb{O}_{\text{real_mul_cmpl}}$: $a \cdot z \in \mathbb{O} \forall a \in \mathbb{O} \cap \mathbb{R}, z \in \mathbb{O} \setminus \mathbb{R}$
- \mathbb{O}_{-im} : $z.im \in \mathbb{O} \forall z \in \mathbb{O}$
- u \mathbb{O} _mul: $z_1 \cdot z_2 \in \mathbb{O} \forall z_1, z_2 \in \mathbb{O}$
- u $\mathbb{O}_{\text{real_inv_cmpl:}} z/a \in bO \forall z \in \mathbb{O} \setminus \mathbb{R}, a \in \mathbb{O} \cap \mathbb{R}$
- u \mathbb{O} _real_inv_real: $a/b \in \mathbb{O} \forall a, b \in \mathbb{O} \cap \mathbb{R}$
- u $\mathbb{O}_{\text{-inv}}$: $\exists z' \in \mathbb{O} : z \cdot z' = 1 \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{-isField}}$: $\mathbb{O}Field$ is a field with $+, \cdot$ from \mathbb{C}
- \mathbb{O} _square_roots_nonneg_real: $\exists z' \in \mathbb{O} : z' \cdot z' = z \forall z \in \mathbb{O}, z \in \mathbb{R}_{\geq 0}$
- \mathbb{O}_{\sin} arg: Complex.sin (z.arg) $\in \mathbb{O} \ \forall z \in \mathbb{O}$
- \mathbb{O}_{cos_arg} : Complex.cos (z.arg) $\in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{sin_arg_div_two:}}$ Complex.sin (z.arg / 2) $\in \mathbb{O}$ $\forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{sin_arg_div_three}}$: Complex.sin (z.arg / 3) $\in \mathbb{O} \ \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{square_roots}}: \exists z' \in \mathbb{O}: z' \cdot z' = z \forall z \in \mathbb{O}$
- $\mathbb{O}_{\text{cube_roots}}: \exists z' \in \mathbb{O}: z' \cdot z' \cdot z' \cdot z' = z \forall z \in \mathbb{O}$