Experimentalphysik I

ArthurHenninger

17. Oktober 2024

INHALTSVERZEICHNIS

KAPITEL I	Atome in Bewegung	SEITE2
1.1	Materie besteht aus Atomen	2
1.3	Atomare Prozesse	4
1.4	Chemische Relationen	4
Kapitel 2	Grundlagen der Physik	SEITE6
2.1	Einleitung	6
2.2	Physik vor 1920	6

Kapitel 1

Atome in Bewegung

- Ziel der Physik Gesetze, die die Natur beschreiben
- Gesetze, die wir heute haben, sind sehr kompliziert und bauen auf höherer Mathematik auf
- Wissen der Physik \(\hat{\hat{-}} \) Approximation der Natur
 - \rightarrow Grundsatz: Wissenschaftliche Methode \rightarrow Teste allen Wissens mit Experimenten
- Heute:
 - Experimente hochkompliziert \rightarrow ExperimentalphysikerInnen
 - Theorie hochkompliziert → Theoretische PhysikerInnen (überlegen sich zu testende Gesetze)
- Warum Approximation?
 - Wie & wieso finden wir erstmal "falsche "Gesetze, bevor wir "richtige "Gesetze finden?
 - 1) trivial: Fehler im Experiment gemacht; neuer Effekt; Ungenauigkeit
 - 2) neuer Effekt
 - \rightarrow Gesetz: Masse konstant
 - \rightarrow scheinbar inkorrekt, abhängig von v
 - \rightarrow korrekt:

$$v \ll 300.000 \frac{km}{s} \implies m \approx \text{const}, \Delta m \approx 10^{-6} m \text{ bei } \rightarrow m = m_0 \cdot \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}}.$$

 \rightarrow je höher v,umso falscher ist meine Annahme

1.1 Materie besteht aus Atomen

Zentrale Erkenntnis der Menschheit: Atomare Hypothese

Beispiel 1.1 (Becher Wasser)

- Modelliert als $3cm \times 3cm \times 3cm$ Volumen
- Vergrößerung um Faktor 1000: $3m \times 3m \times 3m \rightarrow$ Zellen gut erkennbar
- \bullet erneute Vergrößerung um Faktor 1000 : $30km \times 30km \times 30km \to {\rm Atommengen}$ sichtbar, keine Einzelatome
- $\bullet\,$ erneute Vergrößerung um Faktor 100 : 3000km × 3000km × 3000km → $H_2O\text{-Moleküle}$ sichtbar

Stark vereinfacht:

 \bullet scharfe Umrisse der Atome, statisch, H_2O in flüssiger Form aneinander gebunden

Korrekt

$$r_H \approx 1 \cdot \underbrace{10^{-8} cm}_{=10^{-10} m = \text{Å}}$$
.

- \bullet Flüssigkeit erhält ihr Volumen $\to H_2O$ "klebenäneinander, Ursache: Moleküle ziehen sich an
- Vibration & Bewegung der H_2O -Teilchen $\hat{=}$ Wärme
- ullet Gas übt schwankende Kraft aus o wird als mittlerer Druck empfunden
- Viele Moleküle treffen den Kolben, müssen ihn nach unten drücken

$$p \cdot A = F \text{ mit } [Nm^{-2} = Pa] \cdot [m^2] = [N = kg \frac{m}{s^2}].$$

- Verdopplung von A, wenn Anzahl Moleküle pro $cm^3 = \text{CONST}$ führt zu Verdopplung von F
- Verdopplung der Moleküle $(\varrho \to 2\varrho)$ führt zu Verdopplung der Kollisionen: $p \sim \varrho$

Vorlesung vom 16.10.2024

Beispiel 1.2

Andere Situation:

Frage 1

Was passiert, wenn wir in den Kolben hineindrücken? Was passiert mit einem Atom, das auf den Kolben zufliegt?

Solution

Geschwindigkeit erhöhz sich $\to T$ nimmt zu

- $V \downarrow \sim T \uparrow$ bzw. $V \uparrow \sim T \downarrow$
- Geschwindigkeit, Lufwiderstand bei Raumtemperatur circa $300\frac{m}{s}$

Wir kehren zum Wassertropfen zurück und reduzieren T

- \hookrightarrow Zittern des H_2O Moleküls nimmt stetig ab
- \hookrightarrow Anziehungskräfte zischen H_2O
 - \hookrightarrow Eis bildet sich
 - * Symmetrie bei Drehung um 60°
 - \hookrightarrow erklärt die Schneeform
 - \hookrightarrow Kristallstruktur hat Zwischenräum
e \rightarrow Eis mehr Volumen als Wasser
 - \hookrightarrow Konträt zu fast allen Elementen, dennbei diesen gilt $\varrho_{\rm fest} > \varrho_{\rm flüssit} > \varrho_{\rm gasf\"{o}rmig}$
- \hookrightarrow T \(\gamma\): Vibration erh\(\text{o}\)ht sich \to Schmelzvorgang
- $\hookrightarrow T \downarrow$: Absoluter Nullpunkt: Vibrationen werden minimal/irreduzibel (aber $\neq 0$), T = -273, 15K = 0°C

Definition 1.1: Normalbedingung

$$T = 273, 15K = 0$$
° C
 $p = 1$ bar = $101325Pa$.

1.3 Atomare Prozesse

Betrachte die Grenzfläche zwischen Flüssig und Gas

- * Wie entkommen H₂O-Moleküle?
 - \hookrightarrow Sie zittern/vibdieren \to ab und zu so stark, dass sie Anziehungskraft ihrer Nachbarn entkommen können
 - → beim Verdampfen kühlt sich die Flüssigkeit ab
 - \hookrightarrow analog bassier auch mit N_2 und $O_2 \to lagern$ sich in den Flüssigkeiten ein

Nächster Prozess: Salt welches wir in Wasser auflösen

NaCl: Bestehet aus Ionen (Atome mit fehlenden oder überschüssigen e⁻)

Wasser vibriert und zittert und hat Ladungsinbalance

- \hookrightarrow Cl⁻ näher an H⁺
- \hookrightarrow Na⁺ näher an O⁻
- \hookrightarrow H₂O drängt sich in Kristall ein und löst ihn auf
- → Wir können mit dem gezeigten Bild aber keine Aussage über zeitlichen Verlauf treffen (Kristall kann sich auflösen oder formieren)
- $T \uparrow$: Prozess der Auflösung beschleunigt sich.

1.4 Chemische Relationen

Bisher physikalische Prozesse, d.h. Atome und Ionen haben ihre Partner nicht getauscht um z.B. neue Moleküle zu formieren.

- Sauerstoff: O₂ liegen O O stark aneinander gebunden
- Kohlenstoff: Hier im Festkörper
 - \hookrightarrow C O Bindung stärker als C C oder O O
 - → man spricht von hoher Affinität d.h. C bevorzugt eine Bindung mit O (über C)
- → O kann sich langsam C nähern (mit wenig kinetischer Energie)
- ← O und C schnappen heftig zusammen, sodass die geseamte Umgebung Energie aufnimmt
- \hookrightarrow kinetische Energie wird frei
- \hookrightarrow natürlicher Vebrennungsprozess
 - * Wärme

 molekulare Bewegung des heißen Gases
 - * Licht kann erzeugt werden \rightarrow Flammen

$$C-O \implies CO_2$$

Mittlere freie Weglänge in Gas/Luft $\approx 68nm$ Es gilt:

$$t = \frac{L^2}{2D}$$

mit

- D: Diffusionskoeffizient $\sum 10^{-5} \frac{m^2}{s}$
- \bullet L: Distanz

$$\hookrightarrow \frac{(1m)^2}{2 \cdot 10^{-5} \frac{m^2}{s}} = 50000s.$$

Kapitel 2

Grundlagen der Physik

2.1 Einleitung

vor ein paar 100 Jahren → Entwicklung der wissenschaftlichen Methode

Beobachtung & Experimente \leftrightarrow Theoriebildung

2.2 Physik vor 1920

- Universum 3D Raum (Euklid)
 - → Vorgänge ändern sich in einem Medium "Zeit" (absolut definiert)
 - \hookrightarrow Atoma als Grundbausteine der Materie
 - \hookrightarrow Eigenschaften: \rightarrow Trägheit
- Wenn sie ein Teilchen bewegen können, müssen sie eine Kraft auf das Teilchen wirken lassen.
 - \hookrightarrow Wenn sich das Teilchen bewegt, behält es seine Bewegung bei, solnage keine Kräfte auf das Teilchen wirken.

Kräfte kamen 1920 in 2 Varianten:

- 1. Schon komplette Kräfte,d ie z.B. chemische Elemente zusammenhalten etc.
- 2. Fernwirkung z.B. universelle Anziehung mit ~ $\frac{1}{r^2} \hat{=}$ Gravitationskraft