Theory of Measure and Integration - $T \varnothing$

WEEK 4 VALDEMAR EMIL OTTE PETERSEN AARHUS UNIVERSITET SEPTEMBER 17, 2024

1 Opgaver

Question 1.18

Opgavebeskrivelse:

 text

Løsning:

 text

Question 1.21

Opgavebeskrivelse:

text

Løsning:

text

Question 1.22

Opgavebeskrivelse:

 text

Løsning:

text

Question 4.1

Opgavebeskrivelse:

 text

Løsning:

(a) (b)

Question 4.3

Opgavebeskrivelse:

text

Løsning:

text

Question 4.4

Opgavebeskrivelse:

Lad (X, \mathcal{E}) være et måleligt rum, lad f og g være funktioner fra $\mathcal{M}(\mathcal{E})$, og lad A være en mængde fra \mathcal{E} . Vis da, at funktionen $h: X \to R$ givet ved

$$h(x) = \begin{cases} f(x), x \in A \\ g(x), x \in A^c \end{cases}$$
 (1)

igen er et element i $\mathcal{M}(\mathcal{E})$

Løsning:

Vi vil gerne bruge Sætning 4.4.3 (Tuborg resultatet).

For at bruge Tuborg resultatet, så skal der gælde for alle j, at f_j er $\mathcal{E}j-\mathcal{F}$ -målelige.

Først bemærker vi, at $A \cup A^C = X$.

Vi bemærker også, at følge bemærkning 4.4.2 (3), at vi kan betragte restriktionen $f|_A:A\to R$ givet ved $f|_A(x)=f(x), (x\in A)$. Idet $f|_A\cdot i_A$, så følger det fra Sætning 4.1.6(v), at $f|_A$ er \mathcal{E}_A - \mathcal{F} -målelig. Tilsvarende kan gøres for $g|_{A^c}$

Dermed vil vi nu kunne bruge Tuborg resultatet, og sige at afbildningen er \mathcal{E} - \mathcal{F} -målelig og dermed igen et element i $\mathcal{M}(\mathcal{E})$

Question 4.6

Opgavebeskrivelse:

 text

Løsning:

 text

Question 4.7

${\bf Opgave beskrivel se:}$

text

Løsning:

text