Подготовка за контролно 2 по СЕМ

Задача 1. Правилен зар се хвърля 6 милиона пъти. Каква е вероятността да се паднат повече от 1 млн. шестици?

Решение: (Със сив цвят са маркирани подробните разсъждения)

Нека $X_i = \{$ пада се 6-ца на i-тото хвърляне на зара $\}$, $i=1,2,\ldots,n$.

$$X_i \in \operatorname{Ber}\left(p = \frac{1}{6}\right)$$
 и $\underbrace{\perp \!\!\! \perp_{i=1}^n X_i}_{\text{независими}}$.

$$\mathbb{E}X_1 = 1 \times p + 0 \times (1 - p) = p;$$
 $\mathbb{E}X_1^2 = 1^2 \times p + 0^2 \times (1 - p) = p;$

$$DX = \mathbb{E}X_1^2 - (\mathbb{E}X_1^2) = p - p^2 = p(1 - p).$$

Нека
$$S_n = X_1 + X_2 + \ldots + X_n \Rightarrow S_n \in \text{Bin}\left(n, p = \frac{1}{6}\right).$$

$$\mathbb{E}S_n=\mathbb{E}\sum_{i=1}^n X_i^{\text{функционал}}=\sum_{i=1}^n \mathbb{E}X_i=\sum_{i=1}^n \mathbb{E}X_1=n \times \mathbb{E}X_1=np=\mu;$$

$$DS_n = D\sum_{i=1}^n \mathop{\mathrm{Hesabucumoct}}_{=} \sum_{i=1}^n DX_1 = n \times DX_1 = np(1-p) = \sigma^2.$$

 S_n е случайна величина, която е сума от еднакво разпределени случайни величини (тук не се интересуваме от това какви точно са разпределенията, които се сумират за да образуват S_n , а само от това, че са еднакви и имат добре дефинирано средно)

ЗГЧ
$$\underset{n\to\infty}{\stackrel{S_n}{\to}} = \mu$$
. От друга страна, ЦГТ ни дава информацията относно това

как точно схожда тази редица $R_n = \frac{S_n}{n}$ към средното (с какъв порядък/ колко бързо/ каква е грешката (теорема на Берн-Есеен)).

ЦГТ
$$\frac{S_n-n\mu}{\sqrt{n\sigma^2}}\xrightarrow[n\to\infty]{d}\mathcal{N}(0,1)$$
. Тоест за достатъчно големи n е напълно резонно да

направим приближението $S_n \sim \sqrt{n\sigma^2} \times \mathcal{N}(0,1) + n\mu = \mathcal{N}(n\mu,\,n\sigma^2).$

Следователно за
$$n \gg 30$$
 : $\mathbb{P}(l \leq S_n \leq r) \approx \Phi\left(\frac{l - n\mu}{\sqrt{n\sigma^2}}\right) - \Phi\left(\frac{r - n\mu}{\sqrt{n\sigma^2}}\right)$.

Тук използвахме лиинеините свойства на нормалното разпределение.

За биномно разпределената случайна величина $S_n=X_1+X_2+\ldots+X_n$ с $X_i\sim \mathrm{Ber}(n,p)$ знаем, че за n=6 млн. $\gg 30$ и $p=\frac{1}{6}$ имаме $\mu=np=1$ млн. и $\sigma^2=np(1-p)=1$ млн. $\times\frac{5}{6}$.

Следователно,

$$\mathbb{P}\left(S_{\text{6 млн.}} > 1 \text{ млн.}\right) \approx \mathbb{P}\left(\mathcal{N}(\mu, \sigma^2) > 1 \text{ млн.}\right) = \mathbb{P}\left(\mathcal{N}(0, 1) > \frac{1 \text{ млн.} - n\mu}{\sigma}\right) =$$

$$= \mathbb{P}\left(\mathcal{N}(0, 1) > 0\right) = 1 - \mathbb{P}(\mathcal{N}(0, 1) \leq 0) = 1 - \Phi(0) = \frac{1}{2}.$$

Или директно от горната изведена формула:

$$\mathbb{P}\left(S_n > 1 \text{ млн.}\right) = 1 - \mathbb{P}\left(S_n \leq 1 \text{ млн.}\right) \approx 1 - \Phi\left(\frac{1 \text{ млн.} - 6 \text{ млн.} \times \frac{1}{6}}{\sqrt{6 \text{ млн.} \times 1 \text{ млн.} \times \frac{5}{6}}}\right) = 1 - \Phi(0) = \frac{1}{2}$$