MATH1061 — Week 4 Tutorial (T5)

19 March 2013

Prove or disprove the following claims:

- 1. There is an integer n such that n > 3 and $2^n 1$ is prime.
- 2. Every integer is either even or odd.
- 3. The sum of any two irrational numbers is irrational.
- 4. $\forall r, s \in \mathbb{Q}$, if r < s, then $\exists t \in \mathbb{Q}$ such that r < t < s.
- 5. $\forall a, b, c \in \mathbb{Z}$, if $a \mid c$ and $b \mid c$, then $(a + b) \mid c$.
- 6. There is an integer n such that $n^2 \equiv 2 \pmod{3}$.
- 7. $\forall x \in \mathbb{R}, \ \lfloor x \rfloor \leq \lceil x \rceil$.

2

Hints:

- 1. The claim is true Give an example.
- 2. The claim is true Substitute d=2 into the Quotient-Remainder Theorem (p. 58 workbook); we want to show that every integer satisfies the definition of 'even' or 'odd' (p. 43 workbook).
- 3. The claim is false Find a counter-example.
- 4. The claim is true The proof will start with something like "Let $r, s \in \mathbb{Q}$ such that r < s, then $r = \frac{a}{b}, s = \frac{c}{d}$ where a, b, c, d are ...". Then use r and s to make a new rational number (call it t), and show that r < t < s and t is rational.
- 5. The claim is false Find a counter-example.
- 6. The claim is false We need to prove that for any integer n, that $n^2 \not\equiv 2 \pmod{3}$. We prove this by division into cases, using the fact that for an integer n, either $n \equiv 0$, or $n \equiv 1$, or $n \equiv 2 \pmod{3}$. For each of these three cases, work out what n^2 is congruent to (mod 3).
- 7. The claim is true Apply the definitions of $\lfloor x \rfloor$ and $\lceil x \rceil$ (p. 64 workbook), i.e. " $\lfloor x \rfloor$ is an integer n such that ..., and $\lceil x \rceil$ is an integer m such that Then, ...". Don't use the same letter for $\lfloor x \rfloor$ and $\lceil x \rceil$!

3

Solutions:

- 1. True Example: For n = 5, $2^5 1 = 31$, which is prime.
- 2. True For any integer n, by the Quotient-Remainder Theorem with d=2, n=2q+r for some integer r with $0 \le r < 2$. The only possibilities are r=0, so n=2q which is even, or r=1, so n=2q+1 which is odd.
- 3. False Counter-example: $\sqrt{2}$ and $-\sqrt{2}$ are irrational, but $\sqrt{2}+(-\sqrt{2})=0$ is rational.
- 4. True Let $r, s \in \mathbb{Q}$ such that r < s, then $r = \frac{a}{b}, s = \frac{c}{d}$ for some $a, b, c, d \in \mathbb{Z}$ where $b, d \neq 0$. Then, let $t = \frac{r+s}{2} = \frac{ad+bc}{2bd}$. Now, since r < s, then $\frac{r+r}{2} < \frac{r+s}{2} < \frac{s+s}{2}$, so r < t < s. Also, $ad + bc, 2bd \in \mathbb{Z}$, and $2bd \neq 0$, so t is rational.
- 5. False Counter-example: a=2, b=3, c=6. Observe that $2 \mid 6$ and $3 \mid 6$, but $(2+3)=5 \nmid 6$.
- 6. False Prove the negation, by division into cases modulo 3: if $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$; if $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$; if $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$. In each of these cases, $n^2 \not\equiv 2 \pmod{3}$.
- 7. True Let $n = \lfloor x \rfloor$ and $m = \lceil x \rceil$, then $n \leq x < n+1$ and $m-1 < x \leq m$. Therefore, $n \leq x \leq m$, so $n \leq m$. Substituting in the definitions of n and m, $\lfloor x \rfloor \leq \lceil x \rceil$.