Myelodysplastic syndrome-MDS

Myelodysplastic Syndromes (MDS)

```
    Definition: Myelo = marrow
    Dys = irregular
    Plasia = proliferation
```

 Normal bone marrow makes healthy blood cells (red, white and platelet cells)

What happens in MDS?

 In MDS, the bone marrow makes the blood cells badly (dysplasia), causing low blood counts and cells that don't work very well

- > Group of clonal stem cell disease
- > Abnormal proliferation
- > Asynchronous and delayed maturation
- > Early apoptosis
- > Ineffective hematopoiesis
- > Hypercellular BM+ peripheral blood (PB) cytopenia.
- **➤ Quantitative & qualitative abnormalities**
- **≻**Progressive BM failure
- **►**Increased risk of AML

PRIMARY

SECONDARY

- Chemotherapy
- Radiotherapy

Pathogenesis

Poorly understood

Clinical features

- Disease of old age-median 70y
- Asymptomatic
- Related to cytopenias
- anaemia> other cytopenias
- Organomegaly -infrequent

DD

- Excess alcohol
- Megaloblastic anaemia
- Infections-Parvovirus/HIV
- Recovery from Chemotherapy
- GCSF treatment

Investigations

EX:B 12/folate def

Rule out other causes confirm the diagnosis of MDS

BM + iron stain

Cytogenetic

1.Peripheral blood

- 1.Cytopenias
- 2. Dyspalstic features
- 3.Immature cells

MDS-Red cells

Macrocytes

normal red cells macrocytic red cells

MDS –Red cells

Dimorphic
Hypochromic-occasionally
NRBC
Low reticulocyte count

White cells

- Leucopenia
- Granulation-frequently lack of granulation
- Lobes-Hypolobated-Pelger abnormality
- Immature forms-Myeloblasts
- Function-Impaired

Blast cells

Platelets

- Low
- 10%-Thrombocytosis
- Unduly large or small

BM aspiration and trephine biopsy

Hypercellular

10% of the cells in a lineage should be dysplastic

Erythropoiesis

- Hypercellular
- Dyserythropoietic features
- Multinucleate erythroblasts
- Internuclear, Intercytoplasmic bridges
- Nuclear budding
- Megaloblasts
- Iron stain -Ring sideroblasts

Iron stain-Ringed sideroblasts

Granulopoiesis

Myeloid maturation

Granulopoiesis

- Hyper cellular
- Defective granulation in precursors
- Increased blast cells

Thrombopoiesis

- Abnormal megakaryocytes
- Micronuclear, small binuclear, polynuclear forms
- Separation of nuclear lobes

Dysplasia in Myelodysplastic Syndrome

Dysgranulopoiesis

Normal segmented neutrophil

Pseudo-Pelger-Hüet anomaly

clumping of cytoplasm

Macrocytosis Chromatin Hypo-, agranulation Asynchr. maturation nucleus - cytoplasm

Dyserythropoiesis

Normal erythroblast

Nuclear bridging

Nuclear lobulation

Multiple nuclei

Cytoplasmic granules

Macrocytic / megaloblastic changes

Dysmegakaryopoiesis

Normal megakaryocyte

Separated single Nuclei

Mikromegakaryocyte

Small binucleated megakaryocyte

Rund, non-lobulated megakaryocyte

Cantú Rajnoldi et al. Ann Hematol 2005;84:429-33

Cytogenetics

- More in secondary
- Chromasome 5/7-partial or total loss
- Trisomy 8
- Rearrangements
- Complex karyotype

WHO Classification

- FBC-Cytopenias
- BP-Dysplasia+ blast count
- BM-Dysplasia+ Blast count
- Iron stain
- Cytogenetics

WHO Categories of MDS

- MDS with single lineage dysplasia
- MDS with ring sideroblasts (MDS-RS)
 - MDS-RS and single lineage dysplasia
 - MDS-RS and multilineage dysplasia
- MDS with multilineage dysplasia
- MDS with excess blasts
- MDS with isolated del(5q) MDS
- unclassifiable Provisional entity: Refractory cytopenia of childhood
 Myeloid neoplasms with germ line predisposition

5q-Syndrome

- Common in female
- Macrocytosis
- Thrombocytosis
- Good prognosis
- Hypolobated/ monolobated megakaryocytes

CMML

- Monocytosis
- Blasts < 20%
- Dysplasia

Treatment

- Options:
- **≻**Observation

Supportive care

blood and blood products

Antibiotics

Growth factors-Erythropietin, GCSF

Drugs-

Lenolidomide-5q- Xn Hypomethylating agents (Azacitidine, Decitabine) Chemotherapy

Myelodysplasia Bone marrow transplantation

BMT is not for everyone

High mortality rates.

BMT is applicable in 'selected' older adults

MDS

- At the end of this lecture student should be able to:
- Define MDS
- Describe the clinical features of MDS
- List the investigations needed for the diagnosis MDS
- Describe the blood and BM abnormalities in MDS
- Describe the principles of management of MDS

Summary

1. MDS is not one disease, but a group of disorders that cause the bone marrow to fail

2. Diagnosis-FBC+BP,BM+Iron stain, Cytogenetics

3. Treatments range from 'supportive' to the 'intensive'.

Thank you

• 60 year old man presented with tiredness. His Hb is 9g/dl.MCV is 110fl.

What are the differential diagnosis

- B12/folate deficiency
- Liver disease
- Hypothyroidism
- Iron deficiency
- Anaemia of chronic disease.

• 60 year old man presented with tiredness. His Hb is 9g/dl. MCV is 110fl.WBC-1.5X10³/L,Platelet-80,000/cumm

What are the differential diagnoses?

- B12/folate deficiency
- Liver disease
- Hypothyroidism
- Multiple myeloma
- Aplastic anaemia.

This is his blood picture. What is the most likely diagnosis?

• 60 year old woman presented with tiredness. She had a breast cancer which was treated with chemotherapy 7 years back. Her BP is provided. What is the diagnosis?

• 2 year old child presented with petechiae all over the body. His BP is provided. What other tests would you request?

a.Sudan black B

b.PAS

c.Flow cytometry

d.Serum ferritin

e.Cytogenetics