Learning Continuous Control Policies by Stochastic Value Gradients (SVG) (1510.)

- Background
 - o discrete-time MDP with continuous states and actions
 - time-varying reward function
 - either finite-horizon (time-dependent value functions) or infinite-horizon (stationary value functions) sum of rewards
- Stochastic value gradients
 - Backpropagation in stochastic Bellman equation.
 - Compute gradients along real trajectories -> $SVG(\infty)$.
 - Integrate value function critics -> SVG(1), extending to infinite-horizon control.
 - In the special case of additive noise, derivatives of modelare noise independent. Otherwise, use re-parameterized generative model to infer the missing noise variables.
- $SVG(\infty)$
 - Algorithm:
 - repeat
 - sample one length-T trajectory under π , append to $\mathcal D$
 - train \hat{f} with \mathcal{D}
 - on the latest trajectory:
 - infer $\xi | (s, a, s')$ and $\eta | (s, a)$
 - do backward recursions from *T* downto 0:

$$egin{aligned} v_{ heta} &= \left[r_{ ext{a}} \pi_{ heta} + \gamma \left(v_{ ext{s}'}^{\prime} \, \hat{ ext{f}}_{\, ext{a}} \pi_{ heta} + v_{ heta}^{\prime}
ight)
ight]
ight|_{\eta, \xi} \ v_{ ext{s}} &= \left[r_{ ext{s}} + r_{ ext{a}} \pi_{ ext{s}} + \gamma v_{ ext{s}'}^{\prime} \left(\hat{ ext{f}}_{\, ext{s}} + \hat{ ext{f}}_{\, ext{a}} \pi_{ ext{s}}
ight)
ight]
ight|_{\eta, \xi} \end{aligned}$$

- update policy with gradient v_{θ}^{0}
- o On-policy.
- SVG(1)-ER
 - Algorithm:
 - repeat
 - generate transitions under π_{θ} , append to \mathcal{D}
 - train \hat{f} on \mathcal{D}
 - train \hat{V} on \mathcal{D}
 - sample transitions from \mathcal{D} generated in previous loops
 - compute empirically estimated importance-weighting gradient (which involves value function)

- update policy with the gradient
- Critic reduces the variance of the gradient estimates.
- Extends to infinite-horizon.
- o Off-policy.

Neural Network Dynamics for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning (1708.)

- Model-based RL
 - Dynamics function predicts state change over Δt .
 - Training the learned dynamics function:
 - collecting training data with random exploration, off-policy
 - data preprocessing: normalization and Gaussian corruption
 - train the model with H-step validation errors (multi-step open-loop predictions)
 - random-sampling shooting with MPC, use model to estimate optimal action sequence and execute the first action
 - Algorithm:
 - Gather random trajectories (\mathcal{D}_{RAND})
 - repeat
 - lacksquare update $\hat{f}_{\, heta}$ with gradient descent on MSE ($\mathcal{D}_{\mathrm{RAND}}$ and $\mathcal{D}_{\mathrm{RL}}$)
 - lacktriangle model-based MPC controller gathers T new on-policy (real) transitions ($\mathcal{D}_{\mathrm{RL}}$)
- MB-MF:
 - MF learner initialization
 - gather example trajectories with MPC controller with pre-learned \hat{f}
 - train a neural network Gaussian policy with leanned mean and fixed covariance to match expert trajectories via SGD on MSE
 - apply DAGGER
 - MFRL
 - TRPO

Model-Based Reinforcement Learning via Meta-Policy Optimization (MB-MPO) (1809.)

• Meta-RL learns an initialization θ^* such that for any task $\mathcal{M}_k \sim \rho(\mathcal{M})$ the policy attains maximum performance in the respective task after one policy gradient step.

$$\max_{oldsymbol{ heta}} \mathbb{E}_{\mathcal{M}_k \sim
ho(\mathcal{M}), f_k, \pi_{oldsymbol{ heta}'}} \left[\sum_{t=0}^{H-1} r_k \left(oldsymbol{s}_t, oldsymbol{a}_t
ight)
ight] \quad ext{s.t.: } oldsymbol{ heta}' = oldsymbol{ heta} + lpha
abla_{oldsymbol{ heta}} \mathbb{E}_{f_k, \pi_{oldsymbol{ heta}}} \quad \left[\sum_{t=0}^{H-1} r_k \left(oldsymbol{s}_t, oldsymbol{a}_t
ight)
ight]$$

- MB-MPO
 - Model learning: models are decorrelated with random initialization and different subsets of random samples; dynamic models retrained via MPC controller with warm starts

- Meta-RL on learned models
 - meta-objective:

$$\begin{aligned} & \max_{\pmb{\theta}} \, \frac{1}{K} \sum_{k=0}^{K} J_k \left(\pmb{\theta}_k' \right) \quad \text{s.t.:} \quad \pmb{\theta}_k' = \pmb{\theta} + \alpha \nabla_{\pmb{\theta}} J_k(\pmb{\theta}) \\ & \text{where} \, J_k(\pmb{\theta}) := \mathbb{E}_{\pmb{a}_t \sim \pi_{\pmb{\theta}}(\pmb{a}_t | \pmb{s}_t)} \left[\sum_{t=0}^{H-1} r\left(\pmb{s}_t, \pmb{a}_t \right) | \pmb{s}_{t+1} = \hat{f}_{|\pmb{\phi}_k|}(\pmb{s}_t, \pmb{a}_t) \right] \end{aligned}$$

- use imaginary trajectories, off-policy
- lacktriangledown TPRO for maximizing meta-objective, VPG for adaptation objectives $J_k(oldsymbol{ heta})$
- Algorithm:
 - lacksquare initialize policy $\pi_{ heta}$, models $\hat{f}_{\phi_1},\hat{f}_{\phi_2},\ldots,\hat{f}_{\phi_K}$
 - repeat
 - lacktriangledown eample real trajectories with adapted policies $\pi_{m{ heta}_1'},\ldots,\pi_{m{ heta}_K'}$, append to $\mathcal D$
 - train all models with \mathcal{D}
 - for all models do
 - sample imaginary trajectories \mathcal{T}_k from \hat{f}_{ϕ_k} using π_{θ}
 - lacksquare update adapted policy with \mathcal{T}_k
 - sample imaginary trajectories \mathcal{T}_k' from \hat{f}_{ϕ_k} using π'_{θ_k}
 - lacksquare update heta with $m{ heta} o m{ heta} eta rac{1}{K} \sum_k
 abla_{m{ heta}} J_k \left(m{ heta}_k'
 ight)$ using \mathcal{T}_k'

Proximal Policy Optimization Algorithms (PPO) (1707.)

- Proposed objective function enables multiple epochs of minibatch updates.
- Background
 - Policy Gradient
 - lacksquare estimator $\hat{g} = \hat{\mathbb{E}}_t \left[
 abla_{ heta} \log \pi_{ heta} \left(a_t | s_t
 ight) \hat{A}_t
 ight]$
 - Trust Region
 - $\begin{array}{ll} \text{maximize} & \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta \text{ old }}(a_t|s_t)} \hat{A}_t \right] \\ \text{subject to} & \hat{\mathbb{E}}_t \left[\text{KL}[\pi_{\theta \text{ old }}(\cdot|s_t), \pi_{\theta}(\cdot|s_t)] \right] \leq \delta \end{array}$
 - approximately solved using conjugate gradient algorithm after linear approximation to objective and quadratic approximation to constraint
- Surrogate objective
 - $\circ \ \ \text{clipped surrogate objective} \ L^{CLIP}(\theta) = \hat{\mathbb{E}}_t \left[\min \left(r_t(\theta) \hat{A}_t, \operatorname{clip}(r_t(\theta), 1 \epsilon, 1 + \epsilon) \hat{A}_t \right) \right]$
 - o adaptive KL penalty coefficient
 - $\blacksquare \ L^{KLPEN}(\theta) = \hat{\mathbb{E}}_t \left[\frac{\pi_{\theta}(a_t|s_t)}{\pi_{\theta \text{ old }}(a_t|s_t)} \hat{A}_t \beta \operatorname{KL}[\pi_{\theta \text{ old }}(\cdot|s_t), \pi_{\theta}(\cdot|s_t)] \right]$

optimized via several epochs of minibatch SGD

•
$$d = \hat{\mathbb{E}}_t \left[\text{KL} \left[\pi_{\theta_{\text{old}}} \left(\cdot | s_t \right), \pi_{\theta} \left(\cdot | s_t \right) \right] \right]$$

if
$$d < d_{\mathrm{\;targ\;}}/1.5$$
, $eta \leftarrow eta/2$; if $d > d_{\mathrm{\;targ\;}}/1.5$, $eta \leftarrow eta imes 2$

- If policy and value function share parameters, maximize CLIP + VF + S where CLIP = clipped surrogate objective, VF = squared-error loss for value function, S = entropy term to encourage exploration.
- Proximal Policy Optimization (PPO), AC Style
 - Algorithm:
 - repeat
 - for all N actors do
 - lacktriangledown collect on-policy real transitions for T timesteps
 - compute advantatge estimate $\hat{A}_1, \ldots, \hat{A}_T$ (to compute loss)
 - \blacksquare update policy via gradients from surrogate loss L , with K epochs and minibatch size $M \leq NT$

Model-Ensemble Trust-Region Policy Optimization (ME-TRPO) (1802.)

- Vanilla Modle-Based Deep RL
 - Algorithm:
 - repeat
 - lacktriangleright collect real samples, add to ${\cal D}$
 - train \hat{f} with \mathcal{D}
 - repeat
 - collect fictitious samples with \hat{f}
 - BPTT
 - estimate expected sum of rewards
- Model Ensemble Trust Region Policy Optimization (ME-TRPO)
 - Algorithm:
 - repeat
 - collect real samples, add to D
 - train all K models with D
 - for each model in the ensemble (in parallel) # optimize policy using all models
 - collect fictitious samples with model
 - update policy using TRPO
 - estimate expected sum of rewards

Model-Based Value Expansion for Efficient Model-Free Reinforcement Learning (MVE) (1803)

ullet MVE is a value estimate for a policy π by assuming the model is accurate in depth H

- One sufficient condition under which MVE MSE <= underlying critic MSE: given an arbitrary off-policy distribution of state-action pairs β , set $\nu=\mathbb{E}\left[\left(f^{\pi}\right)^{T}\beta\right]$ where $T\sim \text{ Uniform }\{0,\cdots,H-1\}.$
- $\mathrm{MSE}_{\nu}(\hat{V})$ -> Bellman error w.r.t. v -> using target \hat{V}_k (\hat{s}_T) which is equivalent to train \hat{V} with imaginary TD-k error. The target is used to train \hat{V} on the entire support of ν instead of just β . Sampling transitions from ν is equivalent to sampling from any point up to H imagined steps into the future, when starting from a state sampled from β .
- Algorithm: MVE
 - initialize targets $\theta' = \theta$ for π , $\varphi' = \varphi$ for Q
 - \circ initialize replay buffer $\beta \leftarrow \emptyset$
 - repeat
 - collect transitions, add to β (empirical distribution of transitions observed in real world)
 - fit dynamics \hat{f} with LSE
 - repeat
 - sample $\tau_0 \sim \beta$
 - update θ with $\nabla_{\theta} \ell_{
 m actor} \; (\pi_{\theta}, Q_{\varphi}, au_0)$
 - imagine future transitions au_t up to H
 - update φ with $\nabla_{\varphi} \sum_{t} \ell_{\mathrm{critic}}^{\pi_{\theta'},\hat{Q}_{H-t}} \left(\varphi,\tau_{t}\right)/H \ \# \ \nu$ -based Bellman error of Q_{φ} proxied by k-step MVE of $Q_{\varphi'}$
 - update targets θ', φ' with some decay

Algorithmic Framework For Model-based Deep RL with Theoretical Guarantees (1807.)

- ullet Meta-Algorithm for MB RL with some designed discrpancy bound D and distance function d
 - \circ For $k=0\dots T$

$$egin{aligned} \pi_{k+1}, M_{k+1} = & rgmax_{\pi \in \Pi, M \in \mathcal{M}} V^{\pi, M} - D_{\pi_k, \delta}(M, \pi) \ & ext{s.t. } d\left(\pi, \pi_k
ight) \leq \delta \end{aligned}$$

- \circ It iteratively optimizes the lower bound over the policy π_{k+1} and the model M_{k+1} , subject to the constraint that the policy is not very far from the reference policy π_k obtained in the previous iteration.
- \circ The policy performance in the real environment is non-decreasing under the assumption that the real dynamics belongs to the parameterized family ${\cal M}$
- The meta-algorithm is instantiated by Stochastic Lower Bound Optimization (SLBO)
 - Algorithm:
 - repeat

- repeat
 - lacktriangleright collect real samples, add to ${\cal D}$
 - repeat
 - repeat
 - update \hat{f} with SGD on H-step loss
 - repeat
 - collect fictitious samples under \hat{f} as \mathcal{D}'
 - optimize π_{θ} on \mathcal{D}' by TRPO with entropy regularization

Model-Predictive Policy Learning with Uncertainty Regularization for Driving in Dense Traffic (1901.)

- Model-predictive policy learning with uncertainty regularization (MPUR)
 - action-conditional forward model
 - per-sample loss:

$$\mathcal{L}\left(heta,\phi;s_{1:t},s_{t+1},a_{t}
ight)=\left\|s_{t+1}-f_{ heta}\left(s_{1:t},a_{t},z_{t}
ight)
ight\|_{2}^{2}+eta D_{KL}\left(q_{\phi}\left(z|s_{1:t},s_{t+1}
ight)\left\|p(z)
ight)$$

- lacktriangleright apply z-dropout to decouple latent variables and variation in prediction model outputs due to actions
- o training policy network with uncertainty minimization (MPUR) / expert retularization (MPER)
 - use forward model to train policy network π_{ψ}
 - sample initial state sequence $s_{1:t}$ from the training set
 - unroll forward model over T time steps
 - backpropagation w.r.t. ψ
 - objective: minimize policy cost + uncertainty cost

$$rgmin_{\psi}\left[\sum_{i=1}^{T}C\left(\hat{s}_{t+i}
ight)+\lambda U\left(\hat{s}_{t+i}
ight)
ight], ext{ such that: } egin{dcases} z_{t+i}\sim p(z)\ \hat{a}_{t+i}\sim \pi_{\psi}\left(\hat{s}_{t+i-1}
ight)\ \hat{s}_{t+i}=f\left(\hat{s}_{t+i-1},\hat{a}_{t+i},z_{t+i}
ight) \end{cases}$$