GEOESTADÍSTICA APLICADA

Tema: Funciones Aleatorias

Dr. Martín A. Díaz Viera, Dr. Ricardo Casar González

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO mdiazv@imp.mx

Contenido

- ¶ Función aleatoria
 - Definición de función aleatoria
 - Definición de variable regionalizada
 - Función de distribución de una función aleatoria
 - Momentos de una función aleatoria
- Estacionaridad de una función aleatoria
 - Clasificación según su grado de estacionaridad.
 - Funciones aleatorias estacionarias de segundo orden
 - Funciones aleatorias intrínsecas
 - Funciones aleatorias no estacionarias
- 3 Ejemplos
 - Diagrama de clasificación de las FAs por su grado de estacionaridad
 - Indicador de no estacionaridad
 - Ejemplo de datos en presencia de tendencia

Definición de función aleatoria Definición de variable regionalizada Función de distribución de una función aleatoria Momentos de una función aleatoria

Definición de función aleatoria

- Si a cada punto \underline{x} que pertenece a un dominio Ω en el espacio le hacemos corresponder una variable aleatoria Z, entonces el conjunto de variables aleatorias espacialmente distribuidas será una **función aleatoria** $Z(\underline{x})$.
- Ejemplo: La distribución espacial de las facies o la porosidad en un yacimiento.

Definición de función aleatoria Definición de variable regionalizada Función de distribución de una función aleatoria Momentos de una función aleatoria

Definición de variable regionalizada

- Al tomar una muestra de una función aleatoria, a la que llamaremos realización, se obtendrá una función espacial discreta la cual constituye una variable regionalizada.
- Es decir una realización de una función aleatoria es una variable regionalizada.

Función de distribución de una función aleatoria

• Sea una función aleatoria $Z(\underline{x})$ definida en una región Ω , entonces el vector aleatorio.

$$\{Z(\underline{x}_1), Z(\underline{x}_2), \ldots, Z(\underline{x}_n)\}$$

• se caracteriza por su función de distribución de probabilidad n-variada:

$$F_{Z(\underline{x}_1),Z(\underline{x}_2),\ldots,Z(\underline{x}_n)}(z_1,z_2,\ldots,z_n) = Pr\left[(\underline{x}_1) \leq z_1,Z(\underline{x}_2) \leq z_2,\ldots,Z(\underline{x}_n) \leq z_n\right]$$

Función de distribución de una función aleatoria

- El conjunto de todas las distribuciones para todo valor de n y para cualquier selección de puntos en Ω constituye la **ley espacial de probabilidad** de la función aleatoria.
- Esta función en la práctica es imposible de determinar y sólo se puede esperar inferir los primeros momentos de la distribución de la FA $Z(\underline{x})$.

Momentos de una función aleatoria

- Momento de primer orden
- El valor **medio** o **media** de una función aleatoria $Z(\underline{x})$ está definido como:

$$m(\underline{x}) = E[m(\underline{x})] \tag{1}$$

Momentos de una función aleatoria

- Momentos de segundo orden.
- La **varianza** de una función aleatoria $Z(\underline{x})$ está definida como:

$$\sigma^{2}(\underline{x}) = Var[Z(\underline{x})] = E\left[\left\{Z(\underline{x}) - m(\underline{x})\right\}^{2}\right]$$

• La **covarianza** de una función aleatoria $Z(\underline{x})$ está definida como:

$$C\left(\underline{x}_{i},\underline{x}_{j}\right)=E\left[\left\{Z(\underline{x}_{i})-m(\underline{x}_{i})\right\}\left\{Z(\underline{x}_{j})-m(\underline{x}_{j})\right\}\right]$$

Momentos de una función aleatoria

• El **semivariograma** de una función aleatoria $Z(\underline{x})$ está definido como:

$$2\gamma\left(\underline{x}_{i},\underline{x}_{j}\right) = Var\left[Z(\underline{x}_{i}) - Z(\underline{x}_{j})\right]$$

$$\gamma\left(\underline{x}_{i},\underline{x}_{j}\right)=\frac{1}{2}E\left[\left\{Z(\underline{x}_{i})-Z(\underline{x}_{j})\right\}^{2}\right]$$

• También conocido como función de semivarianzas o variograma.

Estacionaridad de una función aleatoria

- Se dice que una función aleatoria es **estrictamente estacionaria** si su función de distribución de probabilidad es invariante a cualquier traslación respecto a un vector \underline{h} .
- Pero resulta práctico limitar la hipótesis de estacionaridad a los primeros momentos.

Clasificación según su grado de estacionaridad.

-unciones aleatorias estacionarias de segundo orden ----unciones aleatorias no estacionarias

Clasificación de las funciones aleatorias según su grado de estacionaridad.

- Funciones aleatorias estacionarias de segundo orden.
- Funciones aleatorias intrínsecas.
- Funciones aleatorias no estacionarias.

Funciones aleatorias estacionarias de segundo orden

• Se dice que una función aleatoria $Z(\underline{x})$ es **estacionaria de segundo orden** si sus momentos de primer y segundo orden no dependen de la posición, es decir, son invariantes bajo traslación:

$$E[Z(\underline{x})] = m$$
 y $Var[Z(\underline{x})] = \sigma^2 \quad \forall \underline{x}$

$$C(\underline{h}) \equiv C(\underline{x} + \underline{h}, \underline{x}) = E[Z(\underline{x} + \underline{h})Z(\underline{x})] - m^2$$

$$\gamma(\underline{h}) \equiv \gamma(\underline{x} + \underline{h}, \underline{x}) = \frac{1}{2} E \left[\left\{ Z(\underline{x} + \underline{h}) - Z(\underline{x}) \right\}^2 \right]$$

Funciones aleatorias intrínsecas

- Cuando una función aleatoria $Z(\underline{x})$ no es estacionaria de segundo orden pero sus diferencias $Z(\underline{x} + \underline{h}) Z(\underline{x})$ son estacionarias de segundo orden, ésto es conocido como **Hipótesis Intrínseca**.
- El valor esperado de la diferencia es

$$E[Z(\underline{x} + \underline{h}) - Z(\underline{x})] = constante \quad \forall \underline{x}$$

• La varianza de la diferencia es

$$Var\left[Z(\underline{x}+\underline{h})-Z(\underline{x})\right]=2\gamma(\underline{h}) \qquad \forall \underline{x}$$

Clasificación según su grado de estacionaridad. Funciones aleatorias estacionarias de segundo orden Funciones aleatorias intrínsecas Funciones aleatorias no estacionarias

Funciones Aleatorias no estacionarias

- Cuando no cumplen la **Hipótesis Intrínseca**.
- El valor esperado de la diferencia depende de la posición.
- La varianza de la diferencia no es estacionaria.

Diagrama de clasificación de las FAs por su grado de estacionaridad

Figura 1: Clasificación de las FAs por su grado de estacionaridad.

Indicador de no estacionaridad

- Un indicador de la no estacionaridad de valor medio, también conocida como **tendencia**, es cuando el variograma presenta un crecimiento igual o superior a \underline{h}^2 .
- Si consideramos a la FA como $Z(\underline{x}) = m(\underline{x}) + R(\underline{x})$, vemos que el variograma depende de \underline{x} .

$$\gamma(\underline{x}+\underline{h},\underline{x})=\gamma_R(\underline{h})+\frac{1}{2}\left\{m(\underline{x}+\underline{h}-m(\underline{x}))\right\}^2$$

• Si suponemos que la tendencia es lineal $m(\underline{x}) = m_0 + \underline{m}_1 \cdot \underline{x}$, entonces

$$\gamma(\underline{h}) = \gamma_R(\underline{h}) + \frac{1}{2} (\underline{m}_1 \cdot \underline{h})^2$$

Datos en presencia de tendencia con un variograma que crece \underline{h}^2 .

Estadígrafo	Valor
Muestras	130
Mínimo	1967.78
1° cuartil	2018.14
Mediana	2030.15
Media	2046.81
3° cuartil	2060.89
Máximo	2232.12
Rango	264.34
Rango intercuartil	42.75
Varianza	2382.28
Desviación estándar	48.81
Simetría	1.53
Curtosis	5.05

Tabla 1: Estadística básica.

Figura 2: Variograma con tendencia.

Datos en presencia de tendencia con un variograma que crece h^2 .

Estadígrafo	Valor
Muestras	130
Mínimo	1967.78
1° cuartil	2018.14
Mediana	2030.15
Media	2046.81
3° cuartil	2060.89
Máximo	2232.12
Rango	264.34
Rango intercuartil	42.75
Varianza	2382.28
Desviación estándar	48.81
Simetría	1.53
Curtosis	5.05

Figura 3: Proyecciones por X y por Y

Tabla 2: Estadística básica.

Ejemplos de estacionaridad en 1D

Figura 4: (a) Media y varianza constantes; (b) media variable y varianza constante; (c) media constante y varianza no constante; (d) media y varianza no constantes.

Ejemplos de estacionaridad en 2D

Figura 5: (a) Media estacionaria.(b) Media no estacionaria.

Diagrama de clasificación de las FAs por su grado de estacionaridad Indicador de no estacionaridad Ejemplo de datos en presencia de tendencia Fiemplos de estacionaridad

Agradecimiento especial

Al estudiante de doctorado M. en C. Daniel Vázquez Ramírez, por su desinteresado apoyo en la conversión de esta presentación del curso de Powerpoint a Latex con Beamer.

Diagrama de clasificación de las FAs por su grado de estacionaridad Indicador de no estacionaridad Ejemplo de datos en presencia de tendencia Ejemplos de estacionaridad

Siguiente tema: Análisis Variográfico