Tarea2 Jara Retamal

October 14, 2022

1 Tarea 2

- 1.1 Laboratorio de métodos aplicados avanzados
- 1.2 Integrantes:

•

1.2.1 Francisca Carolina Jara Yévenes

•

- 1.2.2 Luis Fernando Retamal Fuentes
- 1.3 Fecha: 5 de octubre de 2022

2 Bibliotecas requeridas

```
[150]: %pip install linearmodels
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
import statsmodels.formula.api as smf
import sklearn
import scipy
import linearmodels.panel as lmp
from numpy import empty
%matplotlib inline
```

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheels/public/simple/

Requirement already satisfied: linearmodels in /usr/local/lib/python3.7/dist-packages (4.25)

Requirement already satisfied: pandas>=0.24 in /usr/local/lib/python3.7/dist-packages (from linearmodels) (1.3.5)

Requirement already satisfied: patsy in /usr/local/lib/python3.7/dist-packages (from linearmodels) (0.5.2)

Requirement already satisfied: scipy>=1.2 in /usr/local/lib/python3.7/dist-packages (from linearmodels) (1.7.3)

```
Requirement already satisfied: property-cached>=1.6.3 in
/usr/local/lib/python3.7/dist-packages (from linearmodels) (1.6.4)
Requirement already satisfied: mypy-extensions>=0.4 in
/usr/local/lib/python3.7/dist-packages (from linearmodels) (0.4.3)
Requirement already satisfied: formulaic in /usr/local/lib/python3.7/dist-
packages (from linearmodels) (0.5.2)
Requirement already satisfied: statsmodels>=0.11 in
/usr/local/lib/python3.7/dist-packages (from linearmodels) (0.12.2)
Requirement already satisfied: numpy>=1.16 in /usr/local/lib/python3.7/dist-
packages (from linearmodels) (1.21.6)
Requirement already satisfied: Cython>=0.29.21 in /usr/local/lib/python3.7/dist-
packages (from linearmodels) (0.29.32)
Requirement already satisfied: pyhdfe>=0.1 in /usr/local/lib/python3.7/dist-
packages (from linearmodels) (0.1.0)
Requirement already satisfied: python-dateutil>=2.7.3 in
/usr/local/lib/python3.7/dist-packages (from pandas>=0.24->linearmodels) (2.8.2)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-
packages (from pandas>=0.24->linearmodels) (2022.2.1)
Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-
packages (from python-dateutil>=2.7.3->pandas>=0.24->linearmodels) (1.15.0)
Requirement already satisfied: astor>=0.8 in /usr/local/lib/python3.7/dist-
packages (from formulaic->linearmodels) (0.8.1)
Requirement already satisfied: cached-property>=1.3.0 in
/usr/local/lib/python3.7/dist-packages (from formulaic->linearmodels) (1.5.2)
Requirement already satisfied: wrapt>=1.0 in /usr/local/lib/python3.7/dist-
packages (from formulaic->linearmodels) (1.14.1)
Requirement already satisfied: graphlib-backport>=1.0.0 in
/usr/local/lib/python3.7/dist-packages (from formulaic->linearmodels) (1.0.3)
Requirement already satisfied: interface-meta>=1.2.0 in
/usr/local/lib/python3.7/dist-packages (from formulaic->linearmodels) (1.3.0)
Requirement already satisfied: typing-extensions>=4.2.0 in
/usr/local/lib/python3.7/dist-packages (from formulaic->linearmodels) (4.3.0)
```

3 1. Lectura de archivo y eliminación de datos faltantes

```
[151]: charls = pd.read_csv('/charls.csv')
    charls.dropna(inplace=True)
    charls.reset_index(drop=True, inplace=True)
    list=[]
    for j in range(len(charls)):
        list.append(0)
        charls.head(5)
[151]: cesd child drinkly female hrsusu hsize inid intmonth \
```

```
0
     6
            2 O.None
                            1
                                  0.0
                                           4 1.010410e+10
                                                                   7
     7
                                                                   7
1
            2 O.None
                            1
                                 49.0
                                           4 1.010410e+10
     5
            2 O.None
                            1
                                 56.0
                                           7 1.010410e+10
                                                                   8
```

```
3
      0
              2
                   1.Yes
                                0
                                      63.0
                                                 4 1.010410e+10
                                                                            7
                                                                            7
4
      5
              2
                   1.Yes
                                0
                                     49.0
                                                   1.010410e+10
             retired
                       schadj
                                urban
                                                wealth
   married
                                        wave
                                                         age
0
          1
                    0
                             0
                                    0
                                           1
                                               -5800.0
                                                          46
          1
                    0
                                    0
1
                             0
                                           2
                                                 100.0
                                                          46
2
          1
                    0
                             0
                                    0
                                           3 -59970.0
                                                          46
3
          1
                    0
                             4
                                    0
                                           1
                                               -5800.0
                                                          48
                                           2
4
          1
                    0
                             4
                                    0
                                                 100.0
                                                          48
```

[152]: charls.describe()

[152]:		cesd	child	female	hrsusu	hsize	\
	count	34371.000000	34371.000000	34371.000000	34371.000000	34371.000000	
	mean	8.173606	2.708184	0.537837	27.966476	3.441011	
	std	6.183766	1.399999	0.498574	28.270626	1.702308	
	min	0.000000	0.000000	0.000000	0.000000	1.000000	
	25%	3.000000	2.000000	0.000000	0.000000	2.000000	
	50%	7.00000	2.000000	1.000000	21.000000	3.000000	
	75%	12.000000	3.000000	1.000000	54.000000	4.000000	
	max	30.000000	11.000000	1.000000	168.000000	16.000000	
		inid	intmonth	married	retired	schadj	\
	count	3.437100e+04	34371.000000	34371.000000	34371.000000	34371.00000	
	mean	1.768873e+11	7.524745	0.874545	0.283960	4.67749	
	std	1.063153e+11	0.916180	0.331238	0.450924	3.85762	
	min	1.010410e+10	1.000000	0.000000	0.000000	0.00000	
	25%	7.400430e+10	7.000000	1.000000	0.000000	0.00000	
	50%	1.624310e+11	7.000000	1.000000	0.000000	4.00000	
	75%	2.811160e+11	8.000000	1.000000	1.000000	8.00000	
	max	3.477630e+11	12.000000	1.000000	1.000000	18.00000	
		urban	wave	wealth	age		
	count	34371.000000	34371.000000	3.437100e+04	34371.000000		
	mean	0.356289	2.000000	9.892309e+03	58.223531		
	std	0.478909	0.816508	9.738829e+04	9.154338		
	min	0.000000	1.000000	-2.110050e+06	16.000000		
	25%	0.000000	1.000000	0.000000e+00	51.000000		
	50%	0.000000	2.000000	4.000000e+02	58.000000		
	75%	1.000000	3.000000	5.000000e+03	64.000000		
	max	1.000000	3.000000	9.902500e+06	97.000000		

3.1 Variables

- INID: identificador único
- wave: periodo de la encuesta (1-3)
- \mathbf{cesd} : puntaje en la escala de salud mental (0-30)

- child: numero de hijos
- drinkly: bebió alcohol en el último mes (binario)
- hrsusu: horas promedio trabajo semanal
- hsize: tamaño del hogar
- intmonth: mes en que fue encuestado/a (1-12)
- married: si está casado/a (binario)
- retired: si está pensionado/a (binario)
- schadj: años de escolaridad
- urban: zona urbana (binario)
- wealth: riqueza neta (miles RMB)
- age: edad al entrar a la encuesta (no varía entre periodos)

3.2 Datatype

Para detectar el tipo de dato presente en el archivo se utiliza un atributo de pandas.

```
[153]: charls.dtypes
[153]: cesd
                      int64
                      int64
       child
       drinkly
                     object
       female
                      int64
       hrsusu
                    float64
                      int64
       hsize
       inid
                    float64
       \verb"intmonth"
                      int64
                      int64
       married
       retired
                      int64
       schadj
                      int64
       urban
                      int64
       wave
                      int64
       wealth
                    float64
                      int64
       age
       dtype: object
[154]: charls['inid'] = charls['inid'].astype(np.int64) #Para que no se muestre en
         →notación científica el identiificador único
```

Dado que drinkly es una variable binaria para un mejor análisis se procede a convertir sus datos a datos enteros utilizando una lista de python.

```
[155]: for i in range(0,len(charls)):
    if (charls.iloc[i,2]=='0.None'):
        list[i]=int(0)
        else: list[i]=int(1)

    charls=charls.drop(['drinkly'], axis=1)
    charls.insert(2, "drinkly", list, True)
```

charls.head(5) [155]: drinkly cesd child female hrsusu hsize inid intmonth 6 2 0 10104101001 1 0.0 1 7 2 0 1 49.0 10104101001 7 2 2 5 0 1 56.0 7 10104101001 8 3 2 7 0 1 0 63.0 4 10104101002 4 5 2 1 0 49.0 4 10104101002 7 married retired schadj urban wave wealth 0 1 0 0 -5800.0 1 46 1 1 0 0 0 2 100.0 46 2 1 0 0 0 3 -59970.0 46 3 1 0 4 -5800.0 0 1 48 4 1 0 4 0 2 100.0 48

Se analiza el tipo de dato presente en el dataframe

charls.dtypes #muestra el tipo de dato

float64 int64

```
[156]: cesd
                       int64
       child
                       int64
       drinkly
                       int64
       female
                       int64
       hrsusu
                    float64
       hsize
                       int64
       inid
                       int64
       intmonth
                       int64
                       int64
       married
       retired
                       int64
                       int64
       schadj
       urban
                       int64
       wave
                       int64
```

```
[157]: ch= charls ##copia del dataframe
```

En el **anexo 1** se muestran los histogramas de las diversas variables incluidas en el dataframe, para observar las distribuciones de cada una de ellas.

3.3 Outliers

dtype: object

wealth

age

Para analizar los outliers se procede a mostrar un gráfico de cajas con las variables del Dataframe.

[158]:

```
c=charls.drop(['inid'], axis=1) #se omite la variable inid en la representación⊔

⇔gráfica
boxplot = c.boxplot(grid=True,rot=45, fontsize=20,figsize =(15, 5))
plt.title('Análisis outliers dataframe')
```

[158]: Text(0.5, 1.0, 'Análisis outliers dataframe')

Se analizan las variables con más puntos atípicos. En este caso, evidentemente, la variable **wealth**. En el **anexo 2** se presentan gráficos de caja para cada una de las variables. Posteriormente se eliminan aquellos puntos atípicos para producir un mejor modelo.

[161]:		cesd	child	drinkly	female	hrsusu	\
С	count	34298.000000	34298.000000	34298.000000	34298.000000	34298.000000	
m	nean	8.175316	2.708030	0.331973	0.537786	27.856807	
s	std	6.184136	1.400063	0.470928	0.498577	28.020395	
m	nin	0.000000	0.000000	0.000000	0.000000	0.000000	
2	25%	3.000000	2.000000	0.000000	0.000000	0.000000	
5	50%	7.000000	2.000000	0.000000	1.000000	21.000000	
7	'5%	12.000000	3.000000	1.000000	1.000000	54.000000	
m	nax	30.000000	11.000000	1.000000	1.000000	133.000000	

	hsize	inid	intmonth	married	retired	\
count	34298.000000	3.429800e+04	34298.000000	34298.000000	34298.000000	
mean	3.441396	1.768912e+11	7.525133	0.874628	0.284040	
std	1.702677	1.063349e+11	0.916219	0.331145	0.450962	
min	1.000000	1.010410e+10	1.000000	0.000000	0.000000	
25%	2.000000	7.400430e+10	7.000000	1.000000	0.000000	
50%	3.000000	1.624310e+11	7.000000	1.000000	0.000000	
75%	4.000000	2.811160e+11	8.000000	1.000000	1.000000	
max	16.000000	3.477630e+11	12.000000	1.000000	1.000000	
	schadj	urban	wave	wealth	age	
count	34298.000000	34298.000000	34298.000000	3.429800e+04	34298.000000	
mean	4.676949	0.356056	1.999242	9.225632e+03	58.251939	
std	3.857684	0.478839	0.816449	6.025820e+04	9.095483	
min	0.000000	0.000000	1.000000	-1.000000e+06	29.000000	
25%	0.000000	0.000000	1.000000	0.000000e+00	51.000000	
50%	4.000000	0.000000	2.000000	4.000000e+02	58.000000	
75%	8.000000	1.000000	3.000000	5.000000e+03	64.000000	
max	18.000000	1.000000	3.000000	1.112000e+06	89.000000	

Para la columna 'inid', las observaciones se mezclan cuando el número es muy grande, ya que este se lee como notación cientifica desde el archivo original. Es por eso que se procede a eliminar las tuplas que se mezclan entre ellas. Se dejan solo las observaciones que tiene un 'inid' que se repite hasta 3 veces.

```
[162]: #Hay observaciones mezcladas, dado el gran tamaño de 'inid'. Se eliminan lasu
        →tuplas que se repiten más de 3 veces
       t = charls['inid'].value_counts().to_frame(name='contar')
       indexC = t[ (t['contar'] <= 3)].index.astype(np.int64)</pre>
       t.drop(indexC , inplace=True)
       for i in t.index.astype(int):
         charls.drop(charls[charls['inid']==i].index, inplace=True)
       #variable construction
        ⇔charls[['cesd','child','drinkly','hrsusu','hsize','intmonth','married','retired','schadj','
       Xm = (X.groupby(charls['inid']).transform('mean'))
        --charls[['inid','wave','cesd','child','drinkly','hrsusu','hsize','intmonth','married','retir
       Xc=pd.DataFrame(np.c_[Xid, Xm],__
        →columns=['inid','wave','cesd','child','drinkly','hrsusu','hsize','intmonth','married','reti
       Xc['inid'] = Xc['inid'].astype(np.int64)
       #set panel structure
       Xc = Xc.set_index(["inid","wave"])
```

Хс

[162]:			cesd	child	drinkly	hrsusu	hsize i	intmonth	married	\
	inid	wave			v					
	10104101001	1.0	6.0	2.0	0.0	0.0	4.0	7.0	1.0	
		2.0	7.0	2.0	0.0	49.0	4.0	7.0	1.0	
		3.0	5.0	2.0	0.0	56.0	7.0	8.0	1.0	
	10104101002	1.0	0.0	2.0	1.0	63.0	4.0	7.0	1.0	
		2.0	5.0	2.0	1.0	49.0	4.0	7.0	1.0	
	•••			•••	•••					
	94004303002	1.0	0.0	1.0	0.0	0.0	2.0	8.0	1.0	
		2.0	5.0	1.0	0.0	0.0	5.0	7.0	1.0	
	94004308001	1.0	4.0	2.0	0.0	0.0	2.0	8.0	0.0	
		2.0	5.0	2.0	0.0	0.0	2.0	7.0	0.0	
		3.0	5.0	2.0	0.0	0.0	4.0	8.0	0.0	
			retire	d scha	adj urba	an mo	drinkly n	hrsusu	mhsize	\
	inid	wave	100110		aug urb				mileilo	`
	10104101001		0.0) (0.0	.0	0.0	35.0	5.000000	
	10101101001	2.0	0.0			.0	0.0		5.000000	
		3.0	0.0			.0	0.0		5.000000	
	10104101002		0.0			.0	1.0	56.0	5.000000	
	10104101002	2.0	0.0			.0	1.0	56.0	5.000000	
		2.0	0.0	, -				30.0	3.000000	
	94004303002	1 0	1.0	ີ ງ ຄ	 3.0 1	.0	0.0	0.0	3.500000	
	J-100-10000002	2.0	1.0			.0	0.0	0.0	3.500000	
	94004308001		1.0			.0	0.0		2.666667	
	34004300001	2.0	1.0			.0	0.0		2.666667	
		3.0	1.0			.0	0.0	0.0	2.666667	
		3.0	1.1	,	5.0 1	.0	0.0	0.0	2.000007	
			mintmo	nth mr	married	mretire	d mschad	j murba	n \	
	inid	wave								
	10104101001		7.3333		1.0	0.0		0.0)	
		2.0	7.3333	333	1.0	0.0	0.0	0.0)	
		3.0	7.3333	333	1.0	0.0	0.0	0.0)	
	10104101002	1.0	7.3333	333	1.0	0.0	4.0	0.0)	
		2.0	7.3333	333	1.0	0.0		0.0)	
	 94004303002	1.0	 7.5000		 1.0	 1.() 1.0)	
		2.0	7.5000		1.0	1.0				
	94004308001		7.6666		0.0	1.0				
	2 100 1000001	2.0	7.6666		0.0	1.0				
		3.0	7.6666		0.0	1.0				
		5.0	,	J J 1	0.0	1.\	, 0.0	, 1.1	•	
			r	nwealth	n mage					
	inid	wave								
	10104101001	1.0	-21890	.000000	46.0					

```
2.0
                 -21890.000000 46.0
           3.0
                 -21890.000000 46.0
10104101002 1.0
                 -21890.000000
                               48.0
           2.0
                 -21890.000000
                               48.0
94004303002 1.0
                 255015.000000 69.0
           2.0
                 255015.000000 69.0
94004308001 1.0
                  11833.333333 61.0
           2.0
                  11833.333333 61.0
           3.0
                  11833.333333 61.0
```

[10033 rows x 24 columns]

4 2. Pooled OLS

Covariance Type:

```
[163]: y=Xc['cesd']
X=Xc[['child','drinkly','hrsusu','hsize','intmonth','married','retired','schadj','urban','weal
X=sm.add_constant(X)

model = sm.OLS(y, X)
    results = model.fit()
    print(results.summary())
```

OLS Regression Results

==========	===========		
Dep. Variable:	cesd	R-squared:	0.066
Model:	OLS	Adj. R-squared:	0.065
Method:	Least Squares	F-statistic:	64.86
Date:	Wed, 05 Oct 2022	Prob (F-statistic):	9.78e-141
Time:	23:57:07	Log-Likelihood:	-32341.
No. Observations:	10033	AIC:	6.471e+04
Df Residuals:	10021	BIC:	6.479e+04
Df Model:	11		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	12.8629	0.695	18.501	0.000	11.500	14.226
child	0.1122	0.049	2.289	0.022	0.016	0.208
drinkly	-0.6015	0.134	-4.496	0.000	-0.864	-0.339
hrsusu	0.0047	0.003	1.627	0.104	-0.001	0.010
hsize	-0.0959	0.035	-2.709	0.007	-0.165	-0.027
intmonth	0.1224	0.056	2.191	0.028	0.013	0.232
married	-1.5135	0.187	-8.111	0.000	-1.879	-1.148
retired	0.6715	0.183	3.660	0.000	0.312	1.031
schadj	-0.2469	0.018	-13.575	0.000	-0.283	-0.211

urban	-1.7353	0.139	-12.513	0.000	-2.007	-1.463
wealth	-8.115e-06	1.1e-06	-7.355	0.000	-1.03e-05	-5.95e-06
age	-0.0355	0.008	-4.296	0.000	-0.052	-0.019
=======						========
Omnibus:		671	.821 Durb	oin-Watson:		1.337
Prob(Omni	bus):	0	.000 Jar	ue-Bera (JE	3):	815.648
Skew:		0	.698 Prob	(JB):		7.66e-178
Kurtosis:		3	.058 Cond	l. No.		6.51e+05
=======						

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 6.51e+05. This might indicate that there are strong multicollinearity or other numerical problems.

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning:

In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only

```
[164]: model=lmp.PooledOLS(y, X.astype(float))
    OLS=model.fit(cov_type="robust")
    print(OLS)
```

PooledOLS Estimation Summary

=======================================	:==========		=========
Dep. Variable:	cesd	R-squared:	0.0665
Estimator:	PooledOLS	R-squared (Between):	0.1031
No. Observations:	10033	R-squared (Within):	-0.0058
Date:	Wed, Oct 05 2022	R-squared (Overall):	0.0665
Time:	23:57:07	Log-likelihood	-3.234e+04
Cov. Estimator:	Robust		
		F-statistic:	64.855
Entities:	3348	P-value	0.0000
Avg Obs:	2.9967	Distribution:	F(11,10021)
Min Obs:	2.0000		
Max Obs:	3.0000	F-statistic (robust):	66.643
		P-value	0.0000
Time periods:	3	Distribution:	F(11,10021)
Avg Obs:	3344.3		
Min Obs:	3340.0		
Max Obs:	3347.0		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
const	12.863	0.6962	18.475	0.0000	11.498	14.228
child	0.1122	0.0500	2.2445	0.0248	0.0142	0.2101
drinkly	-0.6015	0.1312	-4.5831	0.0000	-0.8588	-0.3443
hrsusu	0.0047	0.0029	1.6519	0.0986	-0.0009	0.0103
hsize	-0.0959	0.0347	-2.7610	0.0058	-0.1640	-0.0278
intmonth	0.1224	0.0546	2.2415	0.0250	0.0154	0.2294
married	-1.5135	0.2004	-7.5513	0.0000	-1.9064	-1.1206
retired	0.6715	0.1853	3.6234	0.0003	0.3082	1.0347
schadj	-0.2469	0.0175	-14.130	0.0000	-0.2811	-0.2126
urban	-1.7353	0.1328	-13.070	0.0000	-1.9956	-1.4751
wealth	-8.115e-06	9.978e-07	-8.1329	0.0000	-1.007e-05	-6.159e-06
age	-0.0355	0.0084	-4.2380	0.0000	-0.0519	-0.0191

Dados los resultados del modelo, y los respectivos valores-p se deberían incluir en el modelo final las variables child, drinkly, hsize, intmonth, married, retired, schadj, urban, wealth y age. La variable hrsusu no se debe agregar al modelo puesto que su valor-p es mayor al 5%.

5 3. Efectos fijos

```
[165]: X=Xc[['child','drinkly','hrsusu','hsize','intmonth','married','retired','schadj','urban','weal
X=sm.add_constant(X)
model=lmp.PanelOLS(y,X, entity_effects=True, drop_absorbed=True)
fe=model.fit(cov_type="robust")
print(fe)
```

PanelOLS Estimation Summary

=======================================			
Dep. Variable:	cesd	R-squared:	0.0041
Estimator:	PanelOLS	R-squared (Between):	0.0146
No. Observations:	10033	R-squared (Within):	0.0041
Date:	Wed, Oct 05 2022	R-squared (Overall):	0.0110
Time:	23:57:08	Log-likelihood	-2.718e+04
Cov. Estimator:	Robust		
		F-statistic:	3.4178
Entities:	3348	P-value	0.0006
Avg Obs:	2.9967	Distribution:	F(8,6677)
Min Obs:	2.0000		
Max Obs:	3.0000	F-statistic (robust):	3.0219
		P-value	0.0022
Time periods:	3	Distribution:	F(8,6677)
Avg Obs:	3344.3		
Min Obs:	3340.0		
Max Obs:	3347.0		

Parameter Estimates

=======	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
const	9.9094	0.6705	14.779	0.0000	8.5951	11.224
child drinkly	0.1548	0.0970	1.5957	0.1106	-0.0354 -0.1673	0.3449
hrsusu hsize	-0.0004 -0.1205	0.0029 0.0444	-0.1327 -2.7142	0.8944 0.0067	-0.0061 -0.2075	0.0054 -0.0335
intmonth married	-0.0189 -1.1916	0.0507 0.5044	-0.3726 -2.3626	0.7094 0.0182	-0.1184 -2.1804	0.0806 -0.2029
retired wealth	0.3584 -1.294e-06	0.2021 9.439e-07	1.7736 -1.3705	0.0762 0.1706	-0.0377 -3.144e-06	0.7544 5.567e-07
========						

F-test for Poolability: 3.8126

P-value: 0.0000

Distribution: F(3347,6677)

Included effects: Entity

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142:

FutureWarning:

In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only

/usr/local/lib/python3.7/dist-packages/linearmodels/panel/model.py:1833: AbsorbingEffectWarning:

Variables have been fully absorbed and have removed from the regression:

schadj, urban, age

Para el de modelo efectos fijos se incluye el parámetro "drop_absorbed", esto dado que por defecto el modelo de efectos fijos presenta problemas para variables que se mantienen fijas en el tiempo como por ejemplo la variable "age". Y este parámetro elimina todas aquellas variables que generan dependencia lineal. En este caso se eliminan las variables edad, años de escolaridad y zona urbana.

En la tabla resumen del modelo se aprecian los valores-p de la prueba de significancia para cada una de las variables, de lo cual se aprecia que las únicas variables significativas al 95% son el tamaño del hogar y la variable binaria que expresa el estado civil de la persona.

6 4. Efectos aleatorios

```
[166]: model=lmp.RandomEffects(y,X)
    re=model.fit(cov_type="robust")
    print(re)
```

RandomEffects Estimation Summary

=======================================			
Dep. Variable:	cesd	R-squared:	0.0354
Estimator:	RandomEffects	R-squared (Between):	0.0962
No. Observations:	10033	R-squared (Within):	0.0018
Date:	Wed, Oct 05 2022	R-squared (Overall):	0.0644
Time:	23:57:08	Log-likelihood	-2.925e+04
Cov. Estimator:	Robust		
		F-statistic:	33.416
Entities:	3348	P-value	0.0000
Avg Obs:	2.9967	Distribution:	F(11,10021)
Min Obs:	2.0000		
Max Obs:	3.0000	F-statistic (robust):	35.906
		P-value	0.0000
Time periods:	3	Distribution:	F(11,10021)
Avg Obs:	3344.3		
Min Obs:	3340.0		
Max Obs:	3347.0		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
const	13.692	0.8001	17.114	0.0000	12.124	15.260
child	0.1401	0.0593	2.3644	0.0181	0.0240	0.2563
drinkly	-0.2781	0.1421	-1.9573	0.0503	-0.5566	0.0004
hrsusu	0.0016	0.0026	0.5997	0.5487	-0.0035	0.0067
hsize	-0.1080	0.0351	-3.0770	0.0021	-0.1769	-0.0392
intmonth	0.0319	0.0465	0.6869	0.4921	-0.0592	0.1230
married	-1.4800	0.2492	-5.9395	0.0000	-1.9684	-0.9916
retired	0.4992	0.1745	2.8605	0.0042	0.1571	0.8413
schadj	-0.2613	0.0238	-10.965	0.0000	-0.3080	-0.2146
urban	-1.6888	0.1816	-9.2996	0.0000	-2.0448	-1.3329
wealth	-4.319e-06	8.526e-07	-5.0654	0.0000	-5.99e-06	-2.648e-06
age	-0.0383	0.0108	-3.5356	0.0004	-0.0596	-0.0171

[167]: re.variance_decomposition

[167]: Effects 16.909895 Residual 19.858395 Percent due to Effects 0.459904

Name: Variance Decomposition, dtype: float64

EL modelo de efectos aleatorios tiene en cuenta la estructura del modelo y, por tanto, es más eficiente que el modelo Pooled OLS. En la tabla resumen del Modelo de Efectos Aleatorios, las variables significativas al 95% son: child, drinkly, hsize, married, retired, schadj, urban, wealth y age.

```
[168]: re.theta.head()
```

[168]: theta inid 10104101001 0.469596 10104101002 0.469596 10104102001 0.469596 10104102002 0.469596 10104103001 0.469596

El coeficiente theta determina el grado de degradación que se produce. Cuando los paneles no están equilibrados, el valor de theta varia entre las entidades, pero en este panel equilibrado todos los valores son iguales.

7 5. Comparación y Análisis

```
[169]: print(lmp.compare({"FE": fe, "RE": re, "Pooled": OLS}))
```

Model Comparison						
	FE	RE	Pooled			
Dep. Variable	cesd	cesd	cesd			
Estimator	Pane10LS	RandomEffects	PooledOLS			
No. Observations	10033	10033	10033			
Cov. Est.	Robust	Robust	Robust			
R-squared	0.0041	0.0354	0.0665			
R-Squared (Within)	0.0041	0.0018	-0.0058			
R-Squared (Between)	0.0146	0.0962	0.1031			
R-Squared (Overall)	0.0110	0.0644	0.0665			
F-statistic	3.4178	33.416	64.855			
P-value (F-stat)	0.0006	0.0000	0.0000			
=======================================	=========					
const	9.9094	13.692	12.863			
	(14.779)	(17.114)	(18.475)			
child	0.1548	0.1401	0.1122			
	(1.5957)	(2.3644)	(2.2445)			
drinkly	0.2015	-0.2781	-0.6015			
-	(1.0711)	(-1.9573)	(-4.5831)			

hrsusu	-0.0004	0.0016	0.0047
	(-0.1327)	(0.5997)	(1.6519)
hsize	-0.1205	-0.1080	-0.0959
	(-2.7142)	(-3.0770)	(-2.7610)
intmonth	-0.0189	0.0319	0.1224
	(-0.3726)	(0.6869)	(2.2415)
married	-1.1916	-1.4800	-1.5135
	(-2.3626)	(-5.9395)	(-7.5513)
retired	0.3584	0.4992	0.6715
	(1.7736)	(2.8605)	(3.6234)
wealth	-1.294e-06	-4.319e-06	-8.115e-06
	(-1.3705)	(-5.0654)	(-8.1329)
schadj		-0.2613	-0.2469
		(-10.965)	(-14.130)
urban		-1.6888	-1.7353
		(-9.2996)	(-13.070)
age		-0.0383	-0.0355
		(-3.5356)	(-4.2380)
Effects	Entity		========

T-stats reported in parentheses

Entre los modelos Pooled OLS y RE, se consideran las mismas variables como significativas, a excepción de la variable intmonth que es significativa solo en el modelo Pooled OLS.

```
[170]: import numpy.linalg as la
from scipy import stats

def hausman(fe, re):
    diff = fe.params-re.params
    psi = fe.cov - re.cov
    dof = diff.size -1
    W = diff.dot(la.inv(psi)).dot(diff)
    pval = stats.chi2.sf(W, dof)
    return W, dof, pval
```

```
[171]: htest = hausman(fe, re)
print("Hausman Test: chi-2 = {0}, df = {1}, p-value = {2}".format(htest[0], u

htest[1], htest[2]))
```

Hausman Test: chi-2 = nan, df = 11, p-value = nan

El test de Hausman es un contraste clásico de robustez frente a la eficiencia en los estimadores.

Si el valor p del test Chi cuadrado es mayor al 5% de significancia, el modelo de efectos aleatorios es consistente y eficiente y el modelo de efectos fijos es consistente e ineficiente.

8 6. Efectos aleatorios correlacionados (CRE)

```
[172]: X=Xc[['child','drinkly','hrsusu','hsize','intmonth','married','retired','schadj','urban','weal
X=sm.add_constant(X)
model=lmp.RandomEffects(y,X)
cre=model.fit(cov_type="robust")
print(cre)
```

/usr/local/lib/python3.7/dist-packages/statsmodels/tsa/tsatools.py:142: FutureWarning:

In a future version of pandas all arguments of concat except for the argument 'objs' will be keyword-only

RandomEffects Estimation Summary

===========	===========		
Dep. Variable:	cesd	R-squared:	0.0354
Estimator:	${\tt RandomEffects}$	R-squared (Between):	0.0962
No. Observations:	10033	R-squared (Within):	0.0018
Date:	Wed, Oct 05 2022	R-squared (Overall):	0.0644
Time:	23:57:08	Log-likelihood	-2.925e+04
Cov. Estimator:	Robust		
		F-statistic:	33.416
Entities:	3348	P-value	0.0000
Avg Obs:	2.9967	Distribution:	F(11,10021)
Min Obs:	2.0000		
Max Obs:	3.0000	F-statistic (robust):	35.906
		P-value	0.0000
Time periods:	3	Distribution:	F(11,10021)
Avg Obs:	3344.3		
Min Obs:	3340.0		
Max Obs:	3347.0		

Parameter Estimates

=======	========	========	========	=======	=======	=======
	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
const	13.692	0.8001	17.114	0.0000	12.124	15.260
child	0.1401	0.0593	2.3644	0.0181	0.0240	0.2563
drinkly	-0.2781	0.1421	-1.9573	0.0503	-0.5566	0.0004
hrsusu	0.0016	0.0026	0.5997	0.5487	-0.0035	0.0067
hsize	-0.1080	0.0351	-3.0770	0.0021	-0.1769	-0.0392
intmonth	0.0319	0.0465	0.6869	0.4921	-0.0592	0.1230
married	-1.4800	0.2492	-5.9395	0.0000	-1.9684	-0.9916
retired	0.4992	0.1745	2.8605	0.0042	0.1571	0.8413
schadj	-0.2613	0.0238	-10.965	0.0000	-0.3080	-0.2146
urban	-1.6888	0.1816	-9.2996	0.0000	-2.0448	-1.3329

${\tt wealth}$	-4.319e-06	8.526e-07	-5.0654	0.0000	-5.99e-06	-2.648e-06
age	-0.0383	0.0108	-3.5356	0.0004	-0.0596	-0.0171

Según el Modelo Aleatorios Correlacionados (CRE), son significativas las variables child, drinkly, hsize married, retired, schadj, urban, wealth y age, ya que presentan un valor p menor al 5%.

En el caso de la varible drinkly, aunque tenga un valor p mayor al 5%, se considera significativa porque es levemente menor a 0,05.

9 7. Predicción del componente no observado

10 8. Comparación y Análisis

[173]: print(lmp.compare({"FE": fe, "RE": re, "CRE": cre}))

Model Comparison					
	FE	RE	CRE		
Dep. Variable	cesd	cesd	cesd		
Estimator	PanelOLS	RandomEffects	${\tt RandomEffects}$		
No. Observations	10033	10033	10033		
Cov. Est.	Robust	Robust	Robust		
R-squared	0.0041	0.0354	0.0354		
R-Squared (Within)	0.0041	0.0018	0.0018		
R-Squared (Between)	0.0146	0.0962	0.0962		
R-Squared (Overall)	0.0110	0.0644	0.0644		
F-statistic	3.4178	33.416	33.416		
P-value (F-stat)	0.0006	0.0000	0.0000		
const	9.9094	13.692	13.692		
	(14.779)	(17.114)	(17.114)		
child	0.1548	0.1401	0.1401		
	(1.5957)	(2.3644)	(2.3644)		
drinkly	0.2015	-0.2781	-0.2781		
	(1.0711)	(-1.9573)	(-1.9573)		
hrsusu	-0.0004	0.0016	0.0016		
	(-0.1327)	(0.5997)	(0.5997)		
hsize	-0.1205	-0.1080	-0.1080		
	(-2.7142)	(-3.0770)	(-3.0770)		
intmonth	-0.0189	0.0319	0.0319		
	(-0.3726)	(0.6869)	(0.6869)		
married	-1.1916	-1.4800	-1.4800		
	(-2.3626)	(-5.9395)	(-5.9395)		
retired	0.3584	0.4992	0.4992		
	(1.7736)	(2.8605)	(2.8605)		
wealth	-1.294e-06	-4.319e-06	-4.319e-06		

	(-1.3705)	(-5.0654)	(-5.0654)
schadj		-0.2613	-0.2613
		(-10.965)	(-10.965)
urban		-1.6888	-1.6888
		(-9.2996)	(-9.2996)
age		-0.0383	-0.0383
		(-3.5356)	(-3.5356)
Effects	Entity		

T-stats reported in parentheses

Los estadísticos F utilizados resultaron ser altamente significativos en los tres modelos. Esto confirma que el set de variables empleadas en cada modelo están correctamente especificadas.

En los tres modelos se puede apreciar un aumento en el puntaje CESD ante un aumento en la cantidad de hijos y la posibilidad de estar pensionado/a. Además el aumento en el tamaño del hogar, en la riqueza neta, años de escolaridad o si vive en una zona urbana traerá una disminución en el puntaje CESD.

11 Anexos

11.1 Anexo 1: Distribuciones de variables

```
[174]: plt.hist(ch.cesd)
       plt.title(ch.columns.values[0])
       plt.xlabel('Puntaje en la escala de salud mental')
       plt.ylabel('Personas')
       plt.show()
       plt.hist(ch.child)
       plt.title(ch.columns.values[1])
       plt.xlabel('Numero de hijos')
       plt.ylabel('Personas')
       plt.show()
       plt.hist(ch.drinkly)
       plt.title(ch.columns.values[2])
       plt.xlabel('Bebió alcohol en el último mes')
       plt.ylabel('Cantidad de personas')
       plt.show()
       plt.hist(ch.female)
       plt.title(ch.columns.values[3])
       plt.xlabel('Persona entrevistada es mujer')
       plt.ylabel('Cantidad de personas')
       plt.show()
```

```
plt.hist(ch.hrsusu)
plt.title(ch.columns.values[4])
plt.xlabel('Horas promedio trabajo semanal')
plt.ylabel('Cantidad de personas')
plt.show()
plt.hist(ch.hsize)
plt.title(ch.columns.values[5])
plt.xlabel('Tamaño del hogar')
plt.ylabel('Cantidad de personas')
plt.show()
plt.hist(ch.intmonth
plt.title(ch.columns.values[7])
plt.xlabel('Mes en que fue encuestado/a')
plt.ylabel('Cantidad de personas')
plt.show()
plt.hist(ch.married)
plt.title(ch.columns.values[8])
plt.xlabel('Si está casado/a')
plt.ylabel('Cantidad de personas')
plt.show()
plt.hist(ch.retired
plt.title(ch.columns.values[9])
plt.xlabel('Si está pensionado/a')
plt.ylabel('Cantidad de personas')
plt.show()
plt.hist(ch.schadj)
plt.title(ch.columns.values[10])
plt.xlabel('Años de escolaridad')
plt.ylabel('Cantidad de personas')
plt.show()
plt.hist(ch.urban)
plt.title(ch.columns.values[11])
plt.xlabel('Zona urbana')
plt.ylabel('Cantidad de personas')
plt.show()
plt.hist(ch.wave)
plt.title(ch.columns.values[12])
plt.xlabel('Periodo de la encuesta')
plt.ylabel('Cantidad de personas')
```

```
plt.show()

plt.hist(ch.wealth)
plt.title(ch.columns.values[13])
plt.xlabel('Riqueza neta (miles RMB)')
plt.ylabel('Cantidad de personas')
plt.show()

plt.hist(ch.age )
plt.title(ch.columns.values[14])
plt.xlabel('Edad al entrar a la encuesta')
plt.ylabel('Cantidad de personas')
plt.show()
```


11.2 Anexo 2: Gráficos para detección de outliers

```
[175]: import plotly.express as px
       fig1 = px.histogram(c, x="age", __
        marginal="box",color_discrete_sequence=['green'],height=500,width=700)
       fig1.show()
       fig1 = px.histogram(c, x="cesd", __
        →marginal="box",color_discrete_sequence=['brown'],height=500,width=700)
       fig1.show()
       fig1 = px.histogram(c, x="hrsusu", __
        marginal="box",color_discrete_sequence=['magenta'],height=500,width=700)
       fig1.show()
       fig1 = px.histogram(c, x="intmonth", __
        →marginal="box",color_discrete_sequence=['blue'],height=500,width=700)
       fig1.show()
       fig1 = px.histogram(c, x="schadj", ...
        marginal="box",color_discrete_sequence=['red'],height=500,width=700)
       fig1.show()
       fig1 = px.histogram(c, x="wealth", __
        marginal="box",color_discrete_sequence=['black'],height=500,width=700)
       fig1.show()
       fig1 = px.histogram(c, x="child", __
        →marginal="box",color_discrete_sequence=['gray'],height=500,width=700)
```