Двовимірна випадкова величина

Основні поняття, означення та відношення

1. Якщо на тому самому просторі елементарних подій $\Omega = \{\omega_i\}$ задано дві одновимірні випадкові величини ξ і η , то їхню упорядковану сукупність (ξ, η) називають **двовимірною випадковою величиною** або **системою двох випадкових величин**.

Аналогічно вводять поняття n - вимірної випадкової величини, яка ϵ упорядкованою сукупністю ($\xi_1, \xi_2, ... \xi_n$) n одновимірних випадкових величин.

2. Двовимірну випадкову величину (ξ , η) називають **дискретною**, якщо її складові ξ і η ϵ дискретними, і **неперервною**, якщо її складові ξ і η ϵ неперервними одновимірними випадковими величинами.

Складові ξ і η двовимірної випадкової величини (ξ,η) називають ще її **компонентами**.

3. Законом розподілу ймовірностей (законом розподілу) двовимірної дискретної випадкової величини (ξ,η) називають перелік її можливих значень (x_i,y_j) , $i=\overline{1,n}$, $j=\overline{1,m}$ та відповідних їм ймовірностей $p(x_i,y_j)=P(\xi=x_i\cap\eta=y_j)$.

Закон розподілу дискретної випадкової величини (ξ, η) записують у вигляді таблиці:

$\xi = x_i$ $\eta = y_j$	x_1	X_2		\mathcal{X}_n	$p(y_j)$
\mathcal{Y}_1	$p(x_1, y_1)$	$p(x_2, y_1)$	•••	$p(x_n, y_1)$	$p(y_1)$
<i>y</i> ₂	$p(x_1, y_2)$	$p(x_2, y_2)$	•••	$p(x_n, y_2)$	p(y ₂)
•	•	•	•	•	•
•	•	•	•	•	•
•	•	•	•	•	•
\mathcal{Y}_m	$p(x_1, y_m)$	$p(x_2, y_m)$	•••	$p(x_n, y_m)$	$p(y_m)$
$p(x_i)$	$p(x_1)$	$p(x_2)$		$p(x_n)$	1

де

$$p(x_i) = \sum_{i=1}^{m} p(x_i, y_j), \quad i = 1, 2, ...n;$$

$$p(y_j) = \sum_{i=1}^{n} p(x_i, y_j), \quad j = 1, 2, \dots m;$$
 (2.47)

$$\sum_{i=1}^{n} \sum_{j=1}^{m} p(x_i, y_j) = \sum_{i=1}^{n} p(x_i) = \sum_{j=1}^{m} p(y_j) = 1.$$

Зазначимо, що закон розподілу дискретної випадкової величини (ξ,η) має вигляд частини таблиці, яка виділена жирними лініями.

Перелік значень x_i та відповідних їм імовірностей $p(x_i)$ становить закон розподілу одновимірної випадкової величини ξ , а перелік значень y_j та відповідних їм імовірностей $p(y_j)$ — закон розподілу одновимірної випадкової величини η .

4. Функцією розподілу ймовірностей двовимірної випадкової величини (ξ, η) називають функцію F(x, y), яка для будь-яких чисел x і y визначає ймовірність сумісної появи подій $\xi < x$ і $\eta < y$, тобто

$$F(x, y) = P(\xi < x \cap \eta < y). \tag{2.48}$$

Отже, функція розподілу F(x, y) двовимірної випадкової величини (ξ, η) є ймовірністю того, що її складова ξ набуде значення, меншого за число x і складова η набуде одночасно значення меншого за число y.

Геометрично рівність (2.48) тлумачимо так: функція розподілу F(x, y) є ймовірністю того, що значення двовимірної випадкової величини (ξ, η) потрапляють у безмежний прямокутник з вершиною (x, y), який розміщений нижче і лівіше від цієї вершини (рис. 2.14)

Рис. 2.14 Геометричне тлумачення функції розподілу F(x, y)

Функція розподілу F(x, y) має такі властивості:

- значення функції розподілу задовольняють подвійну нерівність $0 \le F(x,y) \le 1;$ (2.49)
- F(x, y) ϵ неспадною функцією за кожним аргументом, тобто:

$$F(x_2, y) \ge F(x_1, y) \ npu \ x_2 \ge x_1;$$

$$F(x, y_2) \ge F(x, y_1) \text{ npu } y_2 \ge y_1;$$
 (2.50)

• ∂ ля функції F(x, y) виконуються граничні співвідношення:

$$F(-\infty, y) = 0, \quad F(x, -\infty) = 0,$$

$$F(-\infty, -\infty) = 0, \quad F(+\infty, +\infty) = 1 ; \tag{2.51}$$

• при $y \to \infty$ функція розподілу F(x,y) двовимірної випадкової величини (ξ,η) наближається до функції розподілу $F_1(x)$ складової ξ , а при $x \to \infty$ — до функції розподілу $F_2(y)$ складової η , тобто:

$$\lim_{y\to\infty} F(x,y) = F(x,\infty) = F_1(x)$$

$$\lim_{x\to\infty} F(x, y) = F(\infty, y) = F_2(y)$$

• ймовірність потрапляння значень двовимірної випадкової величини (ξ , η) у прямокутник $Q = \{(x,y): a < \xi < b, c < \eta < d\}$ обчислюють за формулою:

$$P(a < \xi < b, c < \eta < d) = [F(b,d) - F(a,d)] - [F(b,c) - F(a,c)]$$
(2.53)

Зрозуміло, що у лівій частині формули (2.53) знак " < " може бути замінений знаком " \leq ", а права її частина при цьому не зміниться.

5. Щільністю (густотою) розподілу ймовірностей f(x, y) двовимірної неперервної випадкової величини (ξ, η) називають другу мішану похідну від її функції розподілу, тобто:

$$f(x,y) = \frac{\partial^2 F}{\partial x \partial y}.$$
 (2.54)

Щільність розподілу ймовірностей двовимірної випадкової величини ще називають *двовимірною щільністю розподілу*.

Щільність розподілу ймовірностей f(x, y) має властивості:

■ щільність розподілу ймовірностей невід 'ємна: $f(x,y) \ge 0$;

• подвійний невласний інтеграл з безмежними межами інтегрування від двовимірної щільності розподілу дорівнює одиниці:

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1;$$
 (2.55)

• якщо всі значення (x, y) двовимірної випадкової величини (ξ, η) містяться у прямокутнику $\Omega = \{a < x < b, c < y < d\}$ і f(x, y) — щільність її розподілу, то

$$\int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy = 1;$$
(2.55)

• функцію розподілу F(x,y) двовимірної неперервної випадкової величини (ξ,η) визначають за двовимірною щільністю f(x,y) цієї величини за допомогою рівності:

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(z,t)dzdt = \int_{-\infty}^{x} dz \int_{-\infty}^{y} f(z,t)dt;$$
(2.56)

Якщо можливі значення двовимірної неперервної випадкової величини (ξ,η) розміщені у прямокутнику $Q = \{(\xi,\eta): a < \xi < b, c < \eta < d\}$, то формула (2.56) набуває вигляду:

$$F(x,y) = \int_{a}^{x} \int_{c}^{y} f(z,t)dzdt = \int_{a}^{x} dz \int_{c}^{y} f(z,t)dt;$$
 (2.56')

• ймовірність потрапляння значень двовимірної неперервної випадкової величини (ξ,η) у прямокутник $Q = \{(\xi,\eta): a < \xi < b, c < \eta < d\}$ виражають формулою:

$$P(a < \xi < b, c < \eta < d) = \int_{a}^{b} \int_{c}^{d} f(x, y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x, y) dy.$$
 (2.57)

Зауважимо, що знак " < " у лівій частині рівності можна на кожному окремому місці замінити знаком " \leq ".

• Якщо f(x,y) — щільність розподілу двовимірної випадкової величини (ξ,η), то щільності розподілів $f_1(x)$ і $f_2(y)$ одновимірних випадкових величин, відповідно, ξ і η визначають за формулами

$$f_1(x) = \int_{-\infty}^{+\infty} f(x, y) dy \qquad f_2(y) = \int_{-\infty}^{+\infty} f(x, y) dx.$$
 (2.58)

6. Дві випадкові величини називаються **незалежними**, якщо закон розподілу кожної з них не залежить від того, якого значення набула інша.

Незалежність дискретних випадкових величин ξ і η рівносильна тому, що

$$P(\xi = x_i \cap \eta = y_i) = P(\xi = x_i) \cdot P(\eta = y_i)$$

або

$$p(x_i, y_i) = p(x_i) \cdot p(y_i).$$
 (2.59)

Незалежність дискретних або неперервних випадкових величин ξ і η рівносильна тому, що

$$F(x,y) = F_1(x) \cdot F_2(y), \tag{2.60}$$

де F(x, y) — функція розподілу двовимірної випадкової величини (ξ, η), $F_1(x)$ — функція розподілу складової ξ , $F_2(y)$ — функція розподілу складової η .

Незалежність неперервних випадкових ξ і η рівносильна тому, що

$$f(x,y) = f_1(x) \cdot f_2(y), \tag{2.61}$$

де f(x,y) — щільність розподілу двовимірної випадкової величини (ξ,η), $f_1(x)$ — щільність розподілу складової ξ , $f_2(y)$ — щільність розподілу складової η .

7. Для з'ясування залежності випадкових величин ξ і η та взаємозв'язку між ними використовують *коваріацію і коефіцієнт кореляції*.

Коваріацією (кореляційним моментом) K_{xy} випадкових величин ξ і η називають математичне сподівання добутку відхилень цих величин від їхніх сподівань, тобто

$$K_{xy} = E\left\{ \left[\xi - E(\xi) \right] \cdot \left[\eta - E(\eta) \right] \right\}. \tag{2.62}$$

Формулу для обчислення K_{xy} дискретної випадкової величини можна записати ще у вигляді

$$K_{xy} = \sum_{i=1}^{n} \sum_{i=1}^{m} x_i y_j p(x_i, y_j) - E(\xi) E(\eta), \qquad (2.62')$$

а для неперервної випадкової величини – у вигляді

$$K_{xy} = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} xy \, f(x, y) \, dx \, dy - E(\xi) E(\eta). \tag{2.63}$$

Недоліком коваріації ϵ те, що її величина ма ϵ різні значення залежно від того, в яких одиницях вимірюють випадкові величини. Це створю ϵ труднощі під час порівняння випадкових величин.

Коефіцієнтом кореляції r_{xy} випадкової величини ξ і η називають відношення коваріації K_{xy} до добутку середніх квадратичних відношень σ_x і σ_y цих величин, тобто

$$r_{xy} = \frac{K_{xy}}{\sigma_x \cdot \sigma_y} \,. \tag{2.64}$$

Коефіцієнт кореляції задовольняє нерівність: $r_{xy} \le 1 \Leftrightarrow -1 \le r_{xy} \le 1$.

Коефіцієнт кореляції ϵ безрозмірною випадковою величиною і він ϵ зручніший під час порівняння випадкових величин.

Правильне таке **твердження**: якщо випадкові величини ξ і η незалежні, то коваріація $K_{xy} = 0$ (коефіцієнт кореляції $r_{xy} = 0$); якщо коваріація $K_{xy} \neq 0$ (коефіцієнт кореляції $r_{xy} \neq 0$), то випадкові величини ξ і η залежні.

Наголосимо, що коли $K_{xy} = 0$ ($r_{xy} = 0$), то випадкові величини можуть бути як незалежними, так і залежними.

Дві випадкові величини ξ і η називають **корельованими**, якщо їхня коваріація $K_{xy} \neq 0$ (коефіцієнт кореляції $r_{xy} \neq 0$). Дві корельовані величини завжди є залежні. Однак залежні випадкові величини можуть бути як корельованими, так і некорельованими.

8. Якщо відомий сумісний закон розподілу випадкових величин ξ і η , тобто закон розподілу двовимірної випадкової величини (ξ,η) , то за формулами (2.47), (2.52), (2.58) завжди можна знайти закони розподілу, функції розподілу і щільності розподілу складових ξ і η . Якщо ж відомі закони розподілу складових ξ і η , які ϵ незалежними випадковими величинами, то закон розподілу, функцію розподілу і щільність розподілу випадкової величини (ξ,η) можна знайти за формулами (2.59), (2.60), (2.61).

Щоб знайти закон розподілу, функцію розподілу, щільність розподілу двовимірної випадкової величини (ξ,η) , знаючи закони розподілу, функцію розподілу чи щільності розподілу залежних складових ξ і η , потрібно ще знати *умовні закони розподілу* або *умовні щільності розподілу цих складових*.

9. Позначимо через $p(x_i/y_j)$ — імовірність того, що випадкова величина ξ набуде значення x_i за умови, що випадкова величина η набула значення y_j , і через $p(y_j/x_i)$ імовірність того, що випадкова величина η набуде значення y_j за умови, що випадкова величина ξ набула значення x_i . Імовірності $p(x_i/y_i)$ і $p(y_j/x_i)$ назвемо **умовними**.

Умовним законом розподілу дискретної випадкової величини ξ при фіксованому значенні $\eta = y_j$ називають перелік усіх можливих значень x_i величини ξ та їх умовних ймовірностей $p(x_i/y_j)$, і його записують у вигляді таблиці:

$\xi = x_i$	\mathcal{X}_1	x_2	•••	\mathcal{X}_n
$p(x_i/y_j)$	$p(x_1/y_j)$	$p(x_2/y_j)$	•••	$p(x_n/y_j)$

Умовні ймовірності $p(x_i/y_j)$ обчислюють за формулами

$$p(x_i / y_j) = \frac{p(x_i, y_j)}{p(y_i)}$$
 (2.65)

$$i \sum_{i=1}^{n} p(x_i / y_j) = 1.$$

Умовним законом розподілу дискретної випадкової величини η при фіксованому значенні $\xi = x_i$ називають перелік всіх можливих значень y_j величин η та їхніх умовних ймовірностей $p(y_j/x_i)$, і його записують у вигляді таблиці:

$\eta = y_j$	y_1	<i>y</i> ₂	•••	\mathcal{Y}_n
$p(y_j / x_i)$	$p(y_1/x_i)$	$p(y_2/x_i)$	•••	$p(y_n/x_i)$

Умовні ймовірності $p(y_j/x_i)$ обчислюють за формулами

$$p(y_j / x_i) = \frac{p(x_i, y_j)}{p(x_i)}$$
 (2.65')

$$i \sum_{i=1}^{m} p(y_{i}/x_{i}) = 1.$$

3 формул (2.65) і (2.65′) отримаємо:

$$p(x_i, y_i) = p(y_i) \cdot p(x_i | y_i)$$
 i $p(x_i, y_i) = p(x_i) \cdot p(y_i | x_i)$.

Звідси випливає, що, знаючи закони розподілу складових ξ і η двовимірної випадкової величини (ξ,η) та їхні умовні закони розподілу, можна знайти закон розподілу системи випадкових величин (ξ,η).

Умовні закони розподілу складових ξ і η двовимірної випадкової величини (ξ,η) зумовлюють *умовні числові характеристики*

• умовні математичні сподівання:

$$E(\xi/\eta = y_{j}) = \sum_{i=1}^{n} x_{i} p(x_{i}/y_{j}) = \sum_{i=1}^{n} x_{i} \frac{p(x_{i}, y_{j})}{p(y_{j})} = \frac{1}{p(y_{j})} \sum_{i=1}^{n} x_{i} \cdot p(x_{i}, y_{j});$$

$$E(\eta/\xi = x_{i}) = \sum_{j=1}^{m} y_{j} p(y_{j}/x_{i}) = \sum_{j=1}^{m} y_{j} \frac{p(x_{i}, y_{j})}{p(x_{i})} = \frac{1}{p(x_{i})} \sum_{j=1}^{m} y_{j} \cdot p(x_{i}, y_{j});$$
(2.66)

■ умовні дисперсії:

$$D(\xi/\eta = y_{j}) = \sum_{i=1}^{n} x_{i}^{2} p(x_{i}/y_{j}) - E^{2}(\xi/\eta = y_{j}) = \sum_{i=1}^{n} x_{i}^{2} \frac{p(x_{i}, y_{j})}{p(y_{j})} - E^{2}(\xi/\eta = y_{j}) = \frac{1}{p(y_{j})} \sum_{i=1}^{n} x_{i}^{2} p(x_{i}, y_{j}) - E^{2}(\xi/\eta = y_{j});$$

$$(2.67)$$

$$D(\eta/\xi = x_i) = \sum_{j=1}^{m} y_j^2 p(y_j/x_i) - E^2(\eta/\xi = x_i) = \sum_{j=1}^{m} y_j^2 \frac{p(x_i, y_j)}{p(x_i)} - E^2(\eta/\xi = x_i) = \frac{1}{p(x_i)} \sum_{i=1}^{m} y_j^2 p(y_j, x_i) - E^2(\eta/\xi = x_i);$$

• умовні середні квадратичні відхилення:

$$\sigma(\xi/\eta = y_j) = \sqrt{D(\xi/\eta = y_j)};$$

$$\sigma(\eta/\xi = x_i) = \sqrt{D(\eta/\xi = x_i)}$$
(2.68)

10. Нехай (ξ, η) — двовимірна випадкова величина, f(x, y) — щільність її сумісного розподілу, $f_1(x)$ — щільність розподілу складової ξ , $f_2(y)$ — щільність розподілу складової η .

Умовною щільністю $\varphi(x/y)$ розподілу складової ξ двовимірної випадкової величини (ξ,η) при фіксованому значенні $\eta=y$ називають відношення щільності її сумісного розподілу f(x,y) до щільності розподілу $f_2(y)$ складової η , тобто

$$\varphi(x/y) = \frac{f(x,y)}{f_2(y)}.$$
 (2.69)

Умовною щільністю $\psi(y/x)$ розподілу складової η двовимірної випадкової величини (ξ,η) при фіксованому значенні $\xi=x_i$ називають відношення щільності її сумісного розподілу f(x,y) до щільності розподілу $f_1(x)$ складової ξ , тобто

$$\psi(y/x) = \frac{f(x,y)}{f_1(x)}.$$
 (2.70)

3 формул (2.69) і (2.70) отримуємо:

$$f(x,y) = f_2(y) \cdot \varphi(x/y) \, \mathbf{i} \, f(x,y) = f_1(x) \cdot \psi(y/x). \tag{2.71}$$

Звідси випливає, що, знаючи щільність розподілу складових ξ і η двовимірної випадкової величини (ξ,η) та їхні умовні щільності розподілу, можна знайти щільність сумісного розподілу системи випадкових величин (ξ,η).

Аналогічно, як у випадку дискретної випадкової величини, для неперервних випадкових величин ϵ :

• умовні математичні сподівання:

$$E(\xi/\eta = y) = \int_{-\infty}^{+\infty} x\varphi(x/y)dx,$$

$$E(\eta/\xi = x) = \int_{-\infty}^{+\infty} y\psi(y/x)dy;$$

умовні дисперсії:

$$D(\xi/\eta = y) = \int_{-\infty}^{+\infty} x^2 \varphi(x/y) dx - E^2(\xi/\eta = y)$$

$$D(\eta/\xi = x) = \int_{-\infty}^{+\infty} y^2 \psi(y/x) dy - E^2(\eta/\xi = x),$$
(2.73)

• умовні середні квадратичні відхилення

$$\sigma(\xi/\eta = y) = \sqrt{D(\xi/\eta = y)} \qquad \sigma(\eta/\xi = x) = \sqrt{D(\eta/\xi = x)}.$$
(2.74)

Умовне математичне сподівання $E(\eta/\xi = x)$ є функцією від x:

$$E(\eta/\xi = x) = f(x), \tag{2.75}$$

яку називають функцією регресії η відносно ξ , а умовне математичне сподівання $E(\xi/\eta = y)$ ϵ функцією від y:

$$E(\xi/\eta = y) = g(y), \tag{2.76}$$

яку називають *функцією регресі*ї ξ відносно η .

Приклад 1. Одночасно кидають на підлогу дві монети. Написати закон розподілу випадкової величини (ξ , η), де ξ – кількість випадань герба на першій монеті, η – кількість випадань герба на другій монеті. Обчислити $E(\xi)$, $E(\eta)$, $D(\xi)$, $D(\eta)$, $\sigma(\xi)$, $\sigma(\eta)$, $K_{\xi\eta}$, $r_{\xi\eta}$.

Приклад 2. Закон розподілу двовимірної дискретної випадкової величини заданий таблицею:

	$\xi = x_i$ $\eta = y_j$	2	4	6	8
	-6	0,1 a	0,5 a	0,4 a	а
Ī	-4	0,9 a	0,4 a	0,5 a	0,2 a
Ī	-2	а	2,1 a	1,1 a	1,8 a

Виконати такі дії:

- а) визначити параметр a;
- б) записати закони розподілу складових ξ і η ;
- в) обчислити $E(\xi)$, $\sigma(\xi)$, $E(\eta)$, $\sigma(\eta)$;
- г) знайти $P(4 \le \xi < 8 \cap -6 \le \eta < -2)$;
- д) з'ясувати чи величини ξ і η ϵ залежні або незалежні.

Приклад 3. Закон розподілу двовимірної випадкової величини заданий таблицею:

$\xi = x_i$ $\eta = y_j$	2	5
10	0,25	0,10
12	0,15	0,05
14	0,32	0,13

Знайти:

- а) безумовні закони розподілу складових ξ і η ;
- б) умовний закон розподілу випадкової величини ξ за умови, що випадкова величина η набула значення $\eta=10$;
- в) умовний закон розподілу складової η за умови, що випадкова величина ξ набула значення $\xi=5$;
- г) умовні числові характеристики $E(\xi/\eta=10)$, $E(\eta/\xi=5)$, $D(\xi/\eta=10)$, $D(\eta/\xi=5)$, $\sigma(\xi/\eta=10)$, $\sigma(\eta/\xi=5)$.

Завдання для самостійної роботи

1. Дано дві дискретні випадкові величини ξ та η

$\xi = x_i$	-1	0
$p(x_i)$	0,1	0,9

$\eta = y_i$	0	2	4
$p(y_i)$	0,2	0,4	0,4

Побудувати закон розподілу двовимірної випадкової величини (ξ,η), якщо випадкові величини ξ та η незалежні.

2. У першій партії 75%, а в другій — 50% виробів високої якості. З першої партії навмання виймають три вироби, а з другої — один. ξ — кількість високоякісних виробів, узятих із першої партії, η — з другої. Написати закон розподілу двовимірної випадкової величини (ξ , η). Обчислити числові характеристики складових ξ та η .

3. Задано дискретну двовимірну випадкову величину (ξ , η):

$\xi = x_i$ $\eta = y_j$	2	5	8
0,4	0,15	0,30	0,35
0,8	0,05	0,12	0,03

Знайти:

- а) безумовні закони розподілу випадкових величин ξ і η ;
- б) умовний закон розподілу випадкової величини ξ за умови, що випадкова величина η набула значення y_I =0,4;
- в) умовний закон розподілу випадкової величини η за умови, що випадкова величина ξ набула значення $x_2=5$;
 - r) $E(\xi)$, $E(\eta)$, $D(\xi)$, $D(\eta)$, $\sigma(\xi)$, $\sigma(\eta)$;
 - д) $P(5 \le \xi < 8 \cap 0, 4 \le \eta \le 0, 6)$;
 - е) з'ясувати чи величини ξ та η залежні чи незалежні.
- 4. Закон розподілу системи двох дискретних випадкових величин (ξ , η) задано таблицею:

$\xi = x_i$ $\eta = y_j$	5,2	10,2	15,2
2,4	0,1 <i>a</i>	2 <i>a</i>	0,9a
4,4	2a	0,2 <i>a</i>	1,8 <i>a</i>
6,4	1,9a	0.8a	0,3a

Виконати такі дії:

- a) знайти *a*;
- б) обчислити $E(\xi)$, $E(\eta)$, $D(\xi)$, $D(\eta)$, $\sigma(\xi)$, $\sigma(\eta)$, $K_{\xi\eta}$, $r_{\xi\eta}$;
- в) обчислити умовні числові характеристики $E(\,\xi\,\big|\,\eta=4,4\,),\; E(\,\eta\,\big|\,\xi=5,2\,),\; \sigma(\,\xi\,\big|\,\eta=4,4\,)$ $\sigma(\,\eta\,\big|\,\xi=5,2\,);$
 - Γ) $P(5,2 \le \xi < 15,2 \cap 2,4 < \eta \le 6,4)$.