

Week 5: Regression

Agenda

- Quick Review
 - Classification Techniques
- Regression
 - Regression Models
 - Evaluation Metrics
 - Compare to Classification
- Feature Selection
- Exercises

Agenda

- Quick Review
 - Classification Techniques
- Regression
 - Regression Models
 - Evaluation Metrics
 - Compare to Classification
- Feature Selection
- Exercises

Classification Techniques

Naive Bayes and k-Nearest Neighbors

Given a set of predictor variables, x_1 , x_2 , ..., x_p , try to determine class y (discrete).

For example, suppose a bank is evaluating an an applicant for a house loan: The applicant is 32 years old, has a salary of 2500 euros per month, is unmarried, and has an existing loan for a car in the amount of 8750 euros which is due to be paid in 30 months. Is the applicant a good customer (likely to pay back the home loan?) or a bad customer (unlikely to pay back the home loan)?

Classification Process

- 1. Gather all the data you have on the banks' loan customers.
- 2. Split that data into a training set and a test set.
- 3. Build a model on the training set that shows which of them repay their loans and which of them default.
- 4. Use the test set to test the accuracy of the model.
- 5. Now use the model to classify the new applicant as "good" or "bad".

Evaluation of Classification Models Confusion Matrix

Actual Class

Predicted Class True Positive

False Positive

All Positive

Predictions

False Negative

True Negative

All Negative **Predictions**

All Actual **Positives**

All Actual **Negatives** Precision/Positive Predictive Value:

True Positive

All Positive Predictions

Recall/Sensitivity/True Positive Rate:

True Positive

All Actual Positives

Specificity/True Negative Rate:

True Negative

All Actual Negatives

Agenda

- Quick Review
 - Classification Techniques
- Regression
 - Regression Models
 - Evaluation Metrics
 - Compare to Classification
- Feature Selection
- Exercises

Techniques

Linear Regression

Given a set of predictor variables, x_1 , x_2 , ..., x_p , try to determine value y (continuous).

For example, suppose a bank is evaluating an an applicant for a house loan: The applicant is 32 years old, has a salary of 2500 euros per month, is unmarried, and has an existing loan for a car in the amount of 8750 euros which is due to be paid in 30 months. How many months will the customer continue paying their loan?

Simple Linear Regression

Simple: 1 predictor variable X, try to predict the value of Y

$$Y = \beta 0 + \beta 1 * X + \epsilon$$

ε represents "noise"

Use the training data set to estimate β 0 and β 1.

Estimate the noise or error constant based on the standard deviation estimate in output

Regression

Multiple Linear Regression

Multiple: a set of predictor variable X_1 , X_2 , ..., X_p , try to predict the value of Y

$$Y = \beta 0 + \beta 1 \cdot X1 + ... + \beta p \cdot Xp + \epsilon$$

ε represents "noise"

Use the training data set to estimate $\beta 0$, $\beta 1$, ..., βp .

Estimate the noise or error constant based on the standard deviation estimate in output

Multiple Linear Regression

What predictor variables are important? Which ones influence the target value?

Find the coefficients significantly different from 0:

Be aware, this may be a coincidence!

Calculate the p-value:

Probability that that this value occurred by coincidence

Low p-value = significant

Find the p-value in the Coefficient output

Prediction Process

- 1. Gather all the data you have on the banks' loan customers.
- 2. Split that data into a training set and a test set.
- 3. Build a model on the training set that shows how long each customer continues to repay their loans.
- 4. Use the test set to test the accuracy of the model.
- 5. Now use the model to predict how many months the new applicant will continue paying back their loan.

Evaluation of Regression Models

How good is the model?

This depends on what you're using it for:

Describing the data vs Predicting outcomes

Choosing between Descriptive and Predictive

For data mining, emphasis is usually on predictive power

Regression

Plots of Observed Responses Versus Fitted Responses for Two Regression Models

Observed responses

Observed responses

- Purpose: Description
 - Goodness of fit
 - Calculations on training data
 - Calculate R²
 - measures how close the data is to the regession line

Fitted responses

Available as output

Purpose: Prediction

- Accuracy measures
- Calculations on test or validation data
 - Available as Output

Regression

Evaluation of Regression Models: Residuals

Compare the predicted value with the observed value

$$e_i = y_i - \hat{y}_i$$

e_i: error

y_i: actual value

 \hat{y}_i : predicted value

Evaluation Metrics

Mean Absolute Error:

(add all the errors, divide by the number)

Mean Absolute Percentage Error:

Absolute value of ((actual – predicted) / actual)
Add them all up and multiply by 100/number

Mean Squared Error:

(square all the errors, add them up, divide by the number)

Total Sum of Squared Errors:

(square all the errors, add them up)

$$rac{\sum_{i=1}^{n}|e_i|}{n}$$

$$\frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$$

$$\frac{1}{n}\sum_{i=1}^n (Y_i-\hat{Y_i})^2$$

$$\sum_{i=1}^n (Y_i - \hat{Y_i})^2$$

Agenda

- Quick Review
 - Classification Techniques
- Prediction
 - Regression Models
 - Evaluation Metrics
 - Compare to Classification
- Feature Selection
- Exercises

Feature Selection

Optimal number + choice of predictor variables?

- Too many variables: possibility of overfitting!
 - perhaps low predictive power
- Preferably don't take in variables that don't contribute to the prediction.
 - leads to larger dispersion in the predictions
- Preference for not removing variables that 'effectively' contribute to the prediction.
 - leads to a higher average error in the predictions
- Beware of predictor variables that are strongly correlated!
 - can falsely represent coefficients
 - track down correlations ('matrix plot' or 'correlation matrix')
- Be aware of outliers!
- Rule of thumb: number of observations n in training data equals at least 5(p+2)

Feature Selection

Methods to choose the best subset of predictor variables

- first: reduce number of predictor variables by means of domain knowledge
- then: use algorithms
 - 'Exhaustive search': try all predictor variables subsets
 - 'Forward selection': start with 1 predictor variable, add each time the most significant one
 - 'Backward selection': start with all predictor variables, remove each time the least significant one

Agenda

- Quick Review
 - Classification Techniques
- Prediction
 - Regression Models
 - Evaluation Metrics
 - Compare to Classification
- Feature Selection
- Exercises

- 1. Separate the data into a training and test set (60/40). Make sure the sampling is stratified and replicable.
- 2. Choose the fat percentage as Y -the class to predict- and the breast circumference as X. (select columns)
- 3. Build a linear regression model based on the training data (linear regression with default settings)

a) What is the regression equation? (data table)

Intercept: -50.25 Coefficient: 0.684

Equation: Y = 0.684*X - 50.25

Prob (Omnibus):

Skew:

0.395

Jarque-Bera (JB):

Prob(JB):

1.529

1.34e+03

Exercise 6.1

b) Are the intercept and X variable statistically significant for the model? (python script)

b) Are the intercept and X variable statistically significant for the model? (python script)

COVALIANCE TYPE.		HOHLONGSC										
	coef	std err	t	P> t	[0.025	0.975]	Intercept: (const)					
const x1	-50.2541 0.6843	6.272 0.062	-8.013 11.033	0.000 0.000	-62.648 0.562	-37.860 0.807	p-value 0.000 => significant					
Omnibus: 1.859 Durbi				-Watson:		1.785	Coefficient: (x1)					
Prob(Omnibus): Skew: Kurtosis:		0.	0.395 Jarque-Bera (JB): 0.081 Prob(JB): 2.532 Cond. No.			1.529 0.466 1.34e+03	p-value 0.000 => significant					

c) What is the Root Mean Squared Error?

i. Give the formula.

$$ext{RMSD} = \sqrt{rac{\sum_{i=1}^n (\hat{y}_i - y_i)^2}{n}}.$$

ii. How much is it? 6.086

- d) What is the Mean Squared Error?
 - i. What is the relationship between MSE and RMSE? RMSE is the square root of MSE.
 - ii. Calculate the MSE for yourself.

Export Data using Save Data Use Excel for calculations.

MSE = 37.03

1	1 2	□ [♣ 3 4		١	oodyfatpred	lictions.csv ·	- Exce		面			×
Pas	F	me Inser I N Calibri B I U	- 11 - A A A	三三	M ■ ■ · ≫··		,		Q Te ¹¹ —ne A ditional Formatting nat as Table * Styles *		Sh S	Ý
F1		+ : []	×	fx								
4	А	В	С	D	Е	F		G	Н	1	J	
1		-	Linear Reg									4
2	continuou		continuou			,			_			-
3		class	meta	meta	Error	Error ²	-		Sum of squares:	3666.317	_	4
4	88.2	10.8	10.10066	1	-0.69934	0.489081	1		MSE:	37.03351	L	
5	119.9	26	31.7928	1	5.792797	33.5565	5					
6	113.3	31.6	27.27645	1	-4.32355	18.69306	5					
7	101	17.5	18.85963	1	1.359628	1.848589	9					
8	92.1	17.3	12.76941	1	-4.53059	20.52628	3					
9	90.2	14	11.46925	1	-2.53075	6.404717	7					
10	109.2	20.5	24.47084	1	3.970844	15.76761	1					
11	98.9	17.5	17.42261	1	-0.07739	0.005989	9					
12	101.8	27	19.40706	1	-7.59294	57.65268	3					
13	106	32.9	22.2811	1	-10.6189	112.761	1					
1.4	01.2	71	10 1505/	- 1	5.0525/11	25 52027	7					

- d) What is the Mean Squared Error?
 - i. Do the residuals fulfill the conditions of independency and homoscedasticity? (Are they normally distributed and independent of X values?) Use a Scatterplot.

Load the Excel file (residuals)

Distribution appears normal

Residuals appear with the errors independent of breast circumference

Any questions?