METHOD FOR IMPREGNATING POROUS SUBSTRATE

Publication number: JP2003128833

Publication date:

2003-05-08

Inventor:

SANGUINETI ALDO; PEREGO ANDREA

Applicant:

AUSIMONT SPA

Classification:

- international:

B01D67/00; B01D69/10; B01D69/12; B01D71/32; C08J5/22; H01M8/10; B01D67/00; B01D69/00;

B01D71/00; C08J5/20; H01M8/10; (IPC1-7): C08J9/42;

C08J5/22; H01M8/02; H01M8/10; C08L27/12

- european:

B01D67/00J18; B01D69/10; B01D69/12; B01D71/32;

C08J5/22B2B2B; C08J5/22D2; H01M8/10E2

Application number: JP20020233712 20020809 Priority number(s): IT2001MI01745 20010809

Also published as:

EF US US US EF

EP1285688 (A1) US6939581 (B2) US2005238813 (A1 US2003035898 (A1 EP1285688 (B1)

more >>

Report a data error he

Abstract of JP2003128833

PROBLEM TO BE SOLVED: To provide a transparent film blocked to gas flow that can be used in the process for fuel cell and electrochemistry. SOLUTION: A method for impregnating a porous substrate comprises the steps of: (1) preparing an aqueous colloidal dispersion of a thermoplastic (per) fluoropolymer; (2) (a) concentrating or diluting the dispersion obtained in (1); (b) optionally adding a surfactant for obtaining the dispersion having a surface tension of lower than 40 mN/m; (3) impregnating porous substrate with the latex obtained in (2b); (4) heat-treating at a temperature from 20 deg.C higher than glass transition temperature of the thermoplastic polymer to lower than 200 deg.C; (5) (a) crosslinking an ionomer when the ionomer has a lower equivalent than 650 g/eq; (b) converting a functional group to a corresponding salt; and (6) optionally treating film at room temperature in an acidic aqueous solution of an inorganic strong acid, subsequently cleaning in deionized water.

Data supplied from the esp@cenet database - Worldwide

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出題公開番号 特開2003-128833 (P2003-128833A)

(43)公開日 平成15年5月8日(2003.5.8)

(51) Int.Cl.'	酸別記号	FΙ	テーマコード(参考)
C 0 8 J 9/42	CEW	C 0 8 J 9/42	CEW 4F071
5/22	101	5/ 2 2	101 4F074
H 0 1 M 8/02		H 0 1 M 8/02	P 5H026
8/10		8/10	
// C 0 8 L 27:12		C 0 8 L 27:12	
		審查請求 未請求 請	ママック (全 12 頁)
(21)出願番号	特顧2002-233712(P2002-233712)	(71)出顧人 392001645	
		オーシモント	エス、ピー、エー、
(22)出顧日	平成14年8月9日(2002.8.9)	AUSIMO	NT SOCIETA PE
		R AZIC	N I
(31)優先権主張番号	MI2001A001745	イタリア、ミラノ ピアッツェッタ マウ	
(32)優先日	平成13年8月9日(2001.8.9)	リリオ ボッ	シ 3
(33)優先権主張国	イタリア (IT)	(72)発明者 アルド サン	<i>、</i> グイネティ
		イタリア、20	0142 ミラノ、ヴィア デ
		プレティス	46
		(74)代理人 100065248	
		弁理士 野神	1 信太郎
			•
			最終頁に続く

(54) 【発明の名称】 多孔性基体の含浸方法

(57)【要約】

【課題】 燃料電池および電気化学の工程に使用可能なガスの流れに対して塞がれている透明な膜を提供する。 【解決手段】 次の工程を含む、多孔性基体の含浸方 注:

- 1) 熱可塑性(パー)フッ素化ポリマーの水性コロイド分散体の調製:
- 2) a) 1)で得られた分散体の濃縮または希釈;
- b) 40mN/mより低い表面張力を有する分散体を 得るための界面活性剤の任意の添加;
- 3) 2b)で得られるラテックスでの多孔性基体の含 浸;
- 4) 熱可塑性ポリマーのガラス転移温度より20℃高
- く、200℃より低い温度での熱処理;
- 5) a) イオノマーが650g/eqより低い当量を 有するとき、イオノマーの架橋;
- b) 官能基の対応する塩への変換;
- 6) 無機の強酸の酸性水溶液中における室温での任意の膜処理と、その後の脱イオン水での洗浄。

【請求項1】 次の官能基:

- -SO, Hに変換可能な官能基、好ましくはスルホニ ルフルオライド、または
- -COOHに変換可能な官能基、好ましくはアシル フルオライド、を含む熱可塑性(パー)フッ素化ポリマー の水中コロイド分散体を用いて行われる、使用条件下で 不活性なポリマー化合物により形成される多孔性基体の 含浸方法であって、該水性分散体中の熱可塑性(パー)フ ッ素化ポリマーが、次のモノマー:
- (A) 少なくとも一つのエチレン不飽和を含む1以上の (パー)フッ素化モノマーから導かれるモノマー単位、お よび(B) 上記の酸性基に変換可能な官能基を含む1以 上の(バー)フッ素化コモノマーの乳化重合により得ると とができ、該方法が、次の工程:
- 1) 少なくとも次のモノマー:
- (A) 少なくとも1つのエチレン不飽和を含む1以上の (パー)フッ素化モノマーから導かれるモノマー単位、お よび(B) 上記の酸性基に変換可能な官能基を含む1以 上の(パー)フッ素化コモノマーの乳化重合による、熱可 20 - ビニリデンフルオライド(VDF); 塑性(バー)フッ素化ポリマーの水性コロイド分散体の調 製;
- 2) a) ラテックス中に10%~65重量%、好まし くは20%~50重量%の固形分含量を有する1)で得 られる分散体の濃縮または希釈;
- b) 40mN/mより低い、好ましくは30mN/mよ り低い表面張力の分散体を得るための界面活性剤の任意 の添加:
- 3) 2b)で得られるラテックスによる多孔性基体の 含浸:
- 4) 熱可塑性イオノマー性ポリマーのガラス転移温度 より20℃、好ましくは50℃高くて、200℃以下、 好ましくは80℃~200℃、より好ましくは120℃ ~200℃の範囲の温度で操作する熱処理;
- 5) a) 当量が650g/eqより低いとき、イオノ マー架橋;
- b) 60°Cと水溶液の沸点の間の温度で、膜を塩基性 水溶液と接触させ、引き続き室温で、洗浄水のpHがほ とんど中性になるまで、膜を脱イオン水中に浸漬して洗 浄することによる、イオノマーの官能基の対応する塩へ 40 数) の変換;
- 6) 任意に、室温で、無機の強酸の酸性水溶液、好ま しくは硝酸または塩酸中への浸漬による膜処理、および 洗浄水のpHがほぼ中性になるまで脱イオン水中への浸 漬による洗浄:を含む、多孔性基体の含浸方法。

【請求項2】 ポリマーが650g/eqより高い、好 ましくは750g/eqより高い当量を有するとき、エ 程5a)の架橋が任意である、請求項1に記載の方法。

【請求項3】 ガーレー数>10000(ASTM D 726-58)である完全に塞がれた膜を得るまで、工程 50 載の方法。

3)および4)が繰り返される、請求項1または2に記載 の方法。

【請求項4】 工程3)において基体が、15重量%よ り高い、好ましくは20重量%より高い濃度を有するラ テックス中に浸漬される、請求項1~3のいずれかに記

【請求項5】 本発明の方法において用いられる多孔性 基体が、(a) 小繊維により互いに連結した結節を含む 多孔質構造、および/または(b) 相互に連結した小繊 10 維のみにより形成されている多孔性構造、または(c) 組織を有する膜であり、好ましくは膜が0.2μの多孔 度を有するタイプ(a)である、請求項1~4のいずれか に記載の方法。

【請求項6】 フッ素化イオノマーの熱可塑性(パー)フ ッ素化ポリマー前駆体が、380~1800、好ましく は550~1200g/eqの当量を有する、請求項1 ~5のいずれかに記載の方法。

【請求項7】 熱可塑性ポリマーにおける、タイプ(A) の(パー)フッ素化モノマーが、次の:

- - C₂~C₈パーフルオロオレフィン、好ましくはテト ラフルオロエチレン(TFE);
 - クロロトリフルオロエチレン(CTFE)およびブロモト リフルオロエチレンのような、C2~C。クロローおよび/ またはプロモ-および/またはヨード-フルオロオレフィ ン:
- (パー)フルオロアルキルビニルエーテル (PAVE) CF $_{1}=CFOR_{f}$, (CCT, R_{f} $\& C_{1}\sim C_{5}$ (N-) > 1アルキル、例えばトリフルオロメチル、ブロモジフルオ 30 ロメチル、ペンタフルオロプロビルである);
 - パーフルオロ-オキシアルキルビニルエーテルCF, =CFOX、(ここで、Xは、1以上のエーテル基を有す るC₁~C₁₂パーフルオロ-オキシアルキル、例えばパー フルオロ-2-プロポキシ-プロピルである)から選択さ れ:タイプ(B)のフッ素化モノマーが、次の:
 - F₂C=CF-O-CF,-CF,-SO,F;
 - F₂C=CF-O-[CF₂-CXF-O]_n-CF₂-CF₂-SO,F;

(CCで、X=C1、FまたはCF,; $n=1\sim10$ の整

- F₁C=CF-O-CF₂-CF₂-CF₂-SO₂F;
- F, C=CF-Ar-SO, F (CCT, Artiry-ル環である);
- F₂C=CF-O-CF₂-CF₂-CF₂-COF;
- F, C=CF-O-[CF,-CXF-O],-CF,-CFX-COF

(CCで、X=C1、FまたはCF、; nは上記のとおり

の1以上から選択される、請求項1~6のいずれかに記

【請求項8】 (パー)フッ素化イオノマーが、式:

 $(R_1R_2)C=CH-(CF_2)_{a}-CH=C(R_1R_6)$ (I)

[式中、mは2~10、好ましくは4~8の整数であ り:R₁、R₂、R₃、R₆は同一または異なって、水素ま たはC,~C,アルキル基である]のビス-オレフィンか ら導かれるモノマー単位を0.01~5モル%含む、請 求項7に記載の方法。

【請求項9】 フッ素化イオノマーが、:

- TFEから導かれるモノマー単位:
- CF₁=CF₋O₋CF₁CF₁SO₁Fから導かれるモ ノマー単位;
- 任意に、式(I)のビス-オレフィンから導かれるモ ノマー単位;
- 任意に、末端位におけるヨウ素原子 を含む、請求項7または8に記載の方法。

【請求項10】 工程5a)の架橋が、イオン性および ラジカル経路の両方により、好ましくは過酸化物経路に より起とり得る、請求項1~9のいずれかに記載の方

【請求項11】 ラジカル型の架橋が、式(1)のビス-オレフィンの単位および高分子鎖の末端位のヨウ素を含 むイオノマーを用いる、請求項10に記載の方法。

【請求項12】 架橋組成物が:

- (a) ポリマーに対して0.5~10重量%、好ましく は1~7重量%の範囲の量の架橋助剤;
- (b) 任意に弱酸塩と結合していてもよい二価の金属の 酸化物または水酸化物から選択され、ポリマーに対して 1~15重量%、好ましくは2~10重量%の範囲の量 の金属化合物:
- (c) 増粘剤、色素、抗酸化剤、安定化剤などのよう な、その他の通常の添加剤;
- (d) 無機またはポリマーの強化用充填剤、好ましくは 任意に小繊維化できるPTFE:

を含む請求項10または11に記載の方法。

【請求項13】 ラテックスが、5~400nm、好ま しくは20~100nmの直径を有する粒子を含む、請 求項1~12のいずれかに記載の方法。

【請求項14】 工程1)において、イオノマー性の熱 可塑性ポリマーのコロイド状水性分散体中に、式: $R_{r}-X^{-}M^{+}$

〔式中、R,はC,~C, (パー)フルオロアルキル鎖また は(パー)フルオロポリオキシアルキレン鎖であり、X-は_COO‐または_SO,‐であり、M‐はH・、NH。・、 アルカリ金属イオンから選択される]のフッ素化界面活 性剤が存在する、請求項1~13のいずれかに記載の方

【請求項15】 工程2b)で用いられる界面活性剤 が、非イオン性、イオン性または両性界面活性剤であ り:アニオン性および非イオン性界面活性剤の混合物が が炭化水素、フッ化炭素、フッ化ポリエーテルまたはシ リコンタイプであり得る、請求項1~14のいずれかに 記載の方法。

【請求項16】 界面活性剤が、エトキシル単位の数が 9~10の間であるオクチルフェノキシポリエトキシエ タノール化合物であり、ラテックスに対して1~20重 量%、さらに好ましくは3~10重量%の量である、請 10 求項15に記載の方法。

【請求項17】 工程6)の後に、さらに加熱工程が1 50℃~210℃の温度で行われる、請求項1~16の いずれかに記載の方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、ガスの通過が塞が れ、燃料電池および電気化学的な方法に用いられる、ま たは以下に示されるように、例えば化学的もしくは物理 的タイプの分離のような用途に使用できる、透明な薄膜 20 を得るために、イオノマー性のフッ素化ポリマーを用い る、多孔性のポリマー基体(担持体、基布)を浸漬するた めの方法に関する。

【0002】パーフッ素化イオノマーを基にしたポリマ ーの膜は、電気化学の用途、および一般に電解質の混合 物の分離またはアルカリ金属カチオンの選択的輸送が必 要な用途に用いられている。特に、それらは選択的透過 による燃料電池、塩素-ナトリウム電池、透析装置、電 気透析、透析蒸発および蒸気分離に用いられている。

【0003】上記の膜は、イオン性の基に変換可能な官 30 能基を有する熱可塑性形態のポリマー、例えば-SO,F 基を有し、次いでイオン性の形態に変換されるポリマー の押出し成形により製造され得る。また、膜は、適当な 混合溶媒中のイオノマー性のフッ素化ポリマーの溶液を 用いて製造され得る。

[0004]

【従来の技術】特に、燃料電池に用いるためには、膜は 以下の性質の組合せを有していなければならない:電池 の全体の耐用年数に用いられるための低い電気抵抗と十 分な機械的堅さ、そして電極の被毒を避けるために酸素 40 を通過させてもいけない。電池において、プロトンの伝 導率に対する膜の内部抵抗を減少させ得るように、最も 薄い膜厚を有することは有利である。しかしながら、薄 い膜厚を有し、望ましくは単独のフッ素化イオノマーに より形成された膜を用いることは、該膜が使用のために 十分な機械的性質を有していないので、不可能である。 実際に、薄い膜は燃料電池に用いるために補強されなけ ればならない。

【0005】よい機械的性質を有する膜を得るために、 スルホン酸の形態にある官能基を有するフッ素化イオノ 好ましく用いられ、ここで界面活性剤分子の疎水性部分 50 マー溶液を用いる、多孔性のパーフッ素化基体の浸漬に より、複合膜を製造することが当該技術分野で知られている。

[0006]

【発明が解決しようとする課題】0.025mmより低 い厚さを有し、ガスに対して透過性でなく(ガーレー数 >10000)、イオノマー性のフッ素化ポリマーを用 いたポリテトラフルオロエチレンの多孔性基体の含浸方 法により得られる複合膜が、米国特許第5547551 号に記載されている。ことでは、-SO,Hの形態にある ポリマーの水性アルコール溶液が用いられている。この 方法は、可燃性溶媒を用い、環境を汚染するという欠点 を有する。前記の特許で用いられる水性アルコール溶液 (ナフィオン(Nafion(登録商標) NR50)は、オートクレー ブ中、180℃~300℃の範囲の温度に加熱すること により、-SO, Hの形態のイオノマーを水および水と混 和性の有機溶媒の混液中に可溶化する方法を記載してい る、米国特許第4453991号に従って製造され得 る。スルホン酸形態のフッ素化イオノマーのような超酸 の高温での溶解は、ブラント腐食の顕著な問題を示す。 上記の2つの特許の組み合わせに基づく、前記の膜を製 20 造するための全工程は、工業的に高価であることが明ら かである。

【0007】前記の溶液のさらなる欠点は、-SO,Hの形態のイオノマー量がせいぜい5~10重量%の濃度に達し得ることである。より高い濃度では、粘度が著しく増加し、該溶液はもはや使用できない。その上、多孔性基体が浸漬により含浸されなければならないとき、膜上のイオノマー量を増すために、工程を何度も繰り返すことが必要である。本発明者により行われた試験は、浸漬技術を用いて、基体上に移行され得るイオノマーの量が30%であることを示した。

【0008】最終の膜におけるイオノマーのより多い量は、燃料電池における膜の使用時間を増すのに望ましい。工業的観点から、膜を得るために用いられる方法は、例えば浸漬方法が用いられるとき、基体の含浸に必要な工程数が減れば減るほど有利である。

【0009】米国特許第5993907号は、酸(-SO,H)または塩化された形態にあるパーフッ素化イオノマーの薄い被覆で、小繊維または粉末の形態にあるポリテトラフルオロエチレン基層を覆う方法を記載している。この方法では、低い表面張力を有し、官能性のスルホニルフルオライド基を有するポリマー前駆体を含む、ポリマー分散体を用いる。この方法によれば、試料を-SO,F形態にあるイオノマー性の分散体中に浸漬し、次いで基層上の沈着を得るために、そのようにして膜で覆われた試料を十分なイオン力を有する塩または酸溶液中に浸漬する。次いで、混合物を330℃~355℃に加熱して、被膜を基層へ沈着させる。次いで、ポリマーの官能基を対応するスルホン酸基に変換する。基層への被膜の沈着を有利にするために高温での熱処理を必要とすると

の方法は、多孔性の基層、特に二軸延伸PTFEには適 用できない。比較実施例を参照されたい。前記の特許に は、多孔性基体を用いることにより塞がれた膜を製造す るためのいかなる教唆もない。米国特許第479108 1号は、不均質な酸触媒の製造を記載している。この方 法は、基体の表面を、官能性の-SO₂F基を有するフッ 素化ポリマーを含む水性エマルジョンで被覆することに より行なわれる。該特許に記載の方法によれば、過剰な 水を除去した後、触媒はスルホン性のポリマーの軟化点 より高い温度で加熱される。最終工程において、イオノ マー性のポリマーの官能基は、それらの酸の形態に変換 される。触媒の基体は通常のものであり、その特許で は、アルミナ、シリカ、ゼオライト、シリコンカーバイ ド、アルミナシリカ、ガラス、セラミック、スピネル、 クレイ、炭素が挙げられている。ポリマーと基体の間の 重量比は、0.1~50重量%の範囲にあり、イオノマ ーと触媒の全重量に対するイオノマーの重量パーセント 0.1~33%に相当する。この範囲において、用いら れる基体および触媒が用いられなければならない反応に 依存して、基体上のポリマー量は、触媒の生産性のため に最適な値に到達する。前記の特許の実施例は、官能性 のスルホニルフルオライド基を有するファ素化ポリマー のラテックスから出発し、アルミナまたはシリコンカー バイドを基体として用いる、不均質な触媒の製造を説明 している。基体に沈着したポリマー量は、多くても約1 6%である。本発明者は、多孔性のポリマー基体、例え ば二軸延伸多孔性PTFEを用いると、イオノマーが基 体に付着しないで容易に流出するため、前記の特許の方 法が適用できないことを実証した。この理由により、得 られた膜は例えば電気化学的な電池には使用できない。 【0010】先行技術に示されたような酸の形態にある イオノマーの水性アルコール混合物中の溶液の使用しむ よび200℃より高い高温の使用の両方を避け、多孔性 のポリマー基体から出発し、水中のイオノマー性ポリマ 一分散体を用いて含浸を行って、ガスの透過を塞ぐ薄い 膜を製造することのできる方法の開発が求められてい tc.

[0011]

【課題を解決するための手段】本発明の目的は、使用条 40 件下で不活性なポリマー化合物により形成された多孔性 基体の含浸方法であり、その方法は、次の官能基:

- 例えばスルホニルハライド、特にスルホニルフルオライドのような -SO,Hに変換可能な官能基、または - 例えばアシルハライド、特にアシルフルオライドのような -COOHに変換可能な官能基を含む熱可塑性(バー)フッ素化ポリマーの、水中コロイド分散体を用いることにより行なわれ、該水性分散体中の熱可塑性(バー)フッ素化ポリマーは、次のモノマー:

(A) 少なくとも一つのエチレン不飽和を含む、1以上

沈着を有利にするために高温での熱処理を必要とするこ 50 の(パー)フッ素化モノマーから導かれるモノマー単位、

7

および(B) 上記の酸基に変換可能な官能基を含む1以上の(パー)ファ素化コモノマーの乳化重合により得ることができ、該方法は、次の工程:

- 1) 少なくとも次のモノマー:
- (A) 少なくとも1つのエチレン不飽和を含む、1以上の(バー)フッ素化モノマーから導かれるモノマー単位、および(B) 上記の酸基に変換可能な官能基を含む、1以上の(バー)フッ素化コモノマーの乳化重合による、熱可塑性(バー)フッ素化ポリマーの水性コロイド分散体の調製:
- 2) a) ラテックス中の固形分含量が10%~65重量%、好ましくは20%~50重量%になるように1)で得られる分散体の濃縮または希釈;
- b) $40\,\mathrm{mN/m}$ より低い、好ましくは $30\,\mathrm{mN/m}$ より低い表面張力を有する分散体を得るために界面活性剤の任意の添加;
- 3) 2 b) で得られるラテックスによる多孔性基体の 含浸:
- 4) 熱可塑性形態にあるイオノマー性ポリマーのガラ (c) 組織を有する膜である。これらの多孔性基体は行 ス転移温度より20℃、好ましくは50℃高くて、20 20 場で入手可能である。好ましくは多孔性基体は、0.2 0℃以下、好ましくは80℃~200℃、より好ましく μの多孔度(細孔の平均サイズ)を有する、発泡(二軸延は120℃~200℃の範囲の温度で操作する熱処理: 伸)PTFEにより形成されたタイプ(a)の膜である。
- 5) a) 当量が650g/eqより低いとき、イオノマー性ポリマーの架橋、
- b) 60℃と水溶液の沸点の間の温度で、膜を塩基性水溶液と接触させ、引き続き室温で洗浄水のpHがほとんど中性になるまで膜を脱イオン水中に浸漬して洗浄することによる、対応する酸(カルボン酸またはスルホン酸)との塩の形態への官能基の変換;
- 6) 任意に、室温で、無機の強酸の酸水溶液、好まし 30 くは硝酸または塩酸中、H・イオンと前工程で用いた塩 基のカチオンとの間での実質的に完全な交換を許容する ような濃度での浸漬による膜処理、それに続く、洗浄水 のpHがほぼ中性に上がるまで脱イオン水中での浸漬に よる洗浄を含む。

【0012】工程5a)の架橋は、ボリマーが650g/eqより高い、好ましくは750g/eqより高い当量を有するときは任意である。ガーレー数>10000(ASTM D726-58)である、完全に塞がれた膜を得るまで、工程3)および4)は任意に繰り返される。【0013】本発明の膜は透明であるのが好ましい。とれらは、例えば、15重量%より高い乾燥濃度(ボリマー)を有するラテックス中での基体の浸漬(工程3))により得られる。乾燥ボリマーの20重量%より高い濃度でのラテックスを用いて操作すると、基体をラテックス中にたった1回通過させて浸漬するだけで、透明な膜が得られる;すなわち、工程3)および4)は繰り返されない。このことは、工業的な観点からは顕著な利点である。

【0014】約10重量%のポリマー濃度を有するラテ 50 一は、次の1以上から選択される:

8

ックスが用いられるとき、膜中に約40重量%のイオノマー量を得るためには、より多数の、いずれにしても常 に制限された数の通過が必要である。浸漬による場合、 10より少ない通過数で十分である。

【0015】本発明者は、思いがけなく、驚いたことに、工程2b)に示した表面張力を有していれば、多孔性基体が、酸に変換可能な基を有するフッ素化イオノマーの重合ラテックスを用いることにより含浸され得ることを見出した。しかしながら、この工程は、工程5)の10後の最終的な基体含浸を得るのに十分ではない。事実、工程4)を行なうことが必須であることが見出された。ラテックスの表面張力の決定は、実施例に示す方法に従って行なわれる。

[0016]

【発明の実施の形態】本発明の方法において用いられる多孔性基体は、(a) 小繊維により互いに連結した結節を含む多孔質構造、および/または(b) 相互に連結した小繊維のみにより形成されている多孔性構造、または(c) 組織を有する膜である。これらの多孔性基体は市場で入手可能である。好ましくは多孔性基体は、0.2μの多孔度(細孔の平均サイズ)を有する、発泡(二軸延伸)PTFEにより形成されたタイプ(a)の膜である。この基体は、W.L. Gore & Associates, Inc., Elkton. Md.により、商標ゴアーデックス(GORE-TEX (登録商標))で販売されている。

[0017] 好ましくは、用いられる基体は、 $1\sim10$ 0μ 、より好ましくは 2.5μ より薄い厚さを有する。フッ素化イオノマーの熱可塑性(パー)フッ素化ポリマー前駆体は、 $380\sim1800$ 、好ましくは $550\sim120$ 0g/eqの当量を有する。

【0018】好ましくは、該熱可塑性ポリマーにおいて、タイプ(A)の(パー)フッ素化モノマーは、次のものから選択される:

- ビニリデンフルオライド(VDF);
- C₁~C₀パーフルオロオレフィン、好ましくはテト・ラフルオロエチレン(TFE);
- クロロトリフルオロエチレン(CTFE)およびブロモト リフルオロエチレンのような、C₂~C₃クロローおよび/ またはブロモーおよび/またはヨード-フルオロオレフィ 40 ン:
 - (N-)フルオロアルキルビニルエーテル(PAVE) C $F_z=CFOR_z$ 、 $(CCCC, R_z$ は $C_z\sim C_z$ (N-)フルオロアルキル、例えばトリフルオロメチル、ブロモジフルオロメチル、ベンタフルオロプロビルである);
 - パーフルオロ-オキシアルキルビニルエーテルCF。=CFOX、(ここで、Xは1以上のエーテル基を有する $C_1 \sim C_1$ 、パーフルオロ-オキシアルキル、例えばパーフルオロ-2-プロポキシ-プロビルである)。
 - 【0019】好ましくは、タイプ(B)のフッ素化モノマーは、次の1以上から選択される:

- F, C=CF-O-CF, -CF, -SO, F;
- F, C=CF-O-[CF,-CXF-O],-CF,-CF,-SO, F;

(Cこで、X=C1、FまたはCF,; $n=1\sim10$ の整 数)

- F₂C=CF-O-CF₂-CF₂-CF₂-SO₂F;
- F,C=CF-Ar-SO,F (ここで、Arはアリー * $(R_1R_2)C = CH - (CF_2)_{\bullet} - CH = C(R_1R_{\bullet})$

[式中、mは2~10、好ましくは4~8の整数であ またはC,~C,アルキル基である]のビス-オレフィン から導かれるモノマー単位を0.01~5モル%含む。 【0020】単位より多い不飽和数を有する式(1)のビ ス-オレフィンのコモノマーとしての導入は、コモノマ ーが重合中にイオノマーを前-架橋させる目的を有する ので有利である。ビス-オレフィンの導入は、最終のレ チクル(reticule)を形成する主鎖の長さを増すという利 点をさらに有する。好ましくは、本発明のファ素化イオ ノマーは:

- TFEから導かれるモノマー単位;
- CF₁=CF-O-CF₁CF₁SO₁Fから導かれるモ ノマー単位;
- 任意に、式(1)のビス-オレフィンから導かれるモ ノマー単位;
- 任意に、末端位におけるヨウ素原子 を含む。

【0021】前記のヨウ素および/または臭素原子の鎖 中への導入に関しては、(例えば米国特許第40355 65号および米国特許第4694045号に記載されて またはヨウドオレフィン、あるいは(米国特許第474 5165号、米国特許第4564662号、ヨーロッパ 特許第199138号に記載されているような)ヨウド および/またはブロモフルオロアルキルビニルエーテル のような、ブロム化および/またはヨウ素化されたキュ アサイトコモノマーを、最終生成物中におけるキュアサ イトコモノマーの含量が、一般に他の基本モノマー単位 100モル当たり、0.05~2モルの範囲で含まれる ような量で、反応混合物中に添加することにより成し遂

【0022】あるいは、キュアサイトコモノマーとの組 合わせにおいても、例えば式: $R_{r}(I)_{r}(Br)_{r}$

[式中、R,は1~8炭素原子を有する(パー)フルオロ アルキルまたは(パー)フルオロクロロアルキルであり、 一方xおよびyは1≦x+y≦2という条件で0~2の 整数である] のような、ヨウ素化および/またはブロム 化された連鎖移動剤を反応混合物に添加することによ り、ヨウ素および/または臭素末端原子を導入すること が可能である(例えば米国特許第4243770号およ

*ル環である);

- F,C=CF-O-CF,-CF,-CF,-COF;
- F₂C=CF-O-[CF₂-CXF-O]_n-CF₂-CFX-COF:

10

(CCで、X=C1、FまたはCF,;nは上記のとおり である)。

任意に、本発明の(パー)フッ素化イオノマーは、式: (1)

び米国特許第4943662号を参照)。米国特許第5 り; R_1 、 R_2 、 R_3 、 R_4 は、同一または異なって、水素 10 173553号に従って、アルカリまたはアルカリ土類 金属のヨウ化物および/または臭化物を連鎖移動剤とし て用いることも可能である。

> 【0023】工程5a)の架橋は、イオン性およびラジ カル経路の両方により起こり得る。混合架橋も用いられ 得る。好ましくは、架橋は、過酸化物経路により起と り、そのためには、イオノマーは髙分子の鎖部および/ または末端部にラジカルの攻撃部位、例えば、ヨウ素お よび/または臭素原子を含んでいなければならない。ラ ジカル架橋は、イオノマーがビスーオレフィン単位を含 20 むとき、該ビスーオレフィンの炭素原子上でも起こり得 る。

【0024】イオン型の架橋は、先行技術におけるイオ ノマーの公知方法に従って起こる。例えば、スルホン性 イオノマーの架橋には、2つの-80,F基の間での反応 を許容する架橋剤が加えられる。国際特許出願公開▼○ 99/38897号参照。

【0025】好ましくは、ラジカル型の架橋は、式(1) のビス-オレフィンの単位および髙分子鎖の末端部のヨ ウ素を含むイオノマーを用いる。本発明のスルホン性イ いるような)2~10の炭素原子を有するブロモおよび/ 30 オノマーがラジカル法により架橋されるとき、用いられ る過酸化物のタイプにもよるが、加熱によりラジカルを 生成し得る適当な過酸化物の添加により、先行技術の公 知の温度で操作される。一般に、過酸化物の量は、ポリ マーに対して0.1~10重量%の間である。過酸化物 のうち、: 例えばジ-ターブチルパーオキシドおよび2. 5-ジメチル-2,5-ジ(ターブチルパーオキシ)ヘキサン のようなジアルキルパーオキシド;ジクミルパーオキシ ド;ジベンゾイルパーオキシド;ジターブチルパーベン ゾエート;ジ-1,3-ジメチル-3-(ターブチルパーオキ シ)ブチルカルボネートが挙げられる。その他の過酸化 物システムは、例えば、ヨーロッパ特許第136596 号およびヨーロッパ特許第410351号に記載されて いる。

【0026】架橋組成物は、さらに:

(a) ポリマーに対して0.5~10%、好ましくは1 ~7重量%の範囲の量の架橋助剤;これらのうち:トリ アリル-シアヌレート;トリアリル-イソシアヌレート(T AIC): トリス(ジアリルアミン)-s-トリアジン: トリア リルホスファイト:N,N-ジアリルアクリルアミド; 50 N,N,N',N'-テトラアリルマロンアミド; トリビニル

イソシアヌレート; 2,4,6-トリビニルメチルトリシロキサン; N,N'-ビスアリルビシクロオクト-7-エンジスクシンイミド(BOSA); 式(I)のビスオレフィン; トリアジンが挙げられる;

- (b) 例えば、Mg、Zn、CaまたはPbのような二価の金属の酸化物または水酸化物、任意に弱酸と結合した塩、例えばBa、Na、K、Pb、Caのステアリン酸塩、安息香酸塩、炭酸塩、シュウ酸塩またはリン酸塩から選択され、ボリマーに対して $1\sim15\%$ 、好ましくは $2\sim10$ 重量%の範囲の量の金属化合物;
- (c) 増粘剤、色素、抗酸化剤、安定化剤などのような、その他の通常の添加剤;
- (d) 無機またはボリマーの強化用充填剤、好ましくは任意に小繊維化できるPTFE。好ましくは、PTFE充填剤は $10\sim100$ nm、好ましくは $10\sim60$ nmの大きさを有する。

【0027】工程5 a)の架橋を行なうために、フッ素化溶媒、例えばパーフルオロポリエーテル、鎖末端基に1つまたは2つの水素を任意に含む、例えばガルデン(登録商標)中に架橋組成物を分散させ、次いで工程4)で得られた膜を浸し、100℃~200℃の温度で加熱することにより架橋を行なう。架橋組成物を分散させるのに使用できる溶媒は、他の溶媒、例えばテトラヒドロフランと混合して用いることもできる。

は、 $5\sim400$ nm、好ましくは $20\sim100$ nmの平均直径を有する粒子を含む。平均直径は、実施例に示されているようにして決定される。用いられ得るラテックス粒子の平均直径は、基体の細孔サイズに依存する。 0.2μ の細孔サイズを有する基体には、ラテックスは200 nmより小さい平均粒子径を有していなければならない。

【0028】本発明による方法に使用できるラテックス

【0029】そのようなラテックスは、任意に第一鉄、銅もしくは銀塩、またはその他の容易に酸化され得る金属と組み合わせて、ラジカル開始剤(例えば、アルカリまたはアンモニウムパーサルフェート、パーホスフェート、パーボレートもしくはパーカルボネート)の存在下に、先行技術で周知方法に従って、水性エマルジョン中でのモノマーの重合により得られる。

【0030】イオノマー性の熱可塑性ポリマーのコロイ 40 ド状水性分散体中には、種々のタイプの界面活性剤も通 常存在する。それらの中でも式:

R_r-X⁻M^{*} (式中、R_rはC_s~C_{1s}(パー)フルオロアルキル鎖または(パー)フルオロポリオキシアルキレン鎖であり、X⁻は-COO⁻または-SO_s⁻であり、M^{*}は:H^{*}、NH_s^{*}、アルカリ金属イオンから選択される)のフッ素化界面活性剤が特に好ましい。最も広く用いられるもののうち、我々はアンモニウムパーフルオロオクタノエート、1以上のカルボキシ基で終わっている(パー)フルオロポリオキシアルキレンなどを思い出す。

【0031】重合反応は、一般に、25~120℃の範囲の温度で、3MPa以下の圧力下に行なわれる。重合は、米国特許第4789717号および米国特許第4864006号に従って、バーフルオロボリオキシアルキレンの分散またはマイクロエマルジョンを用いて行なうのが好ましい。

【0032】工程2b)で用いられる界面活性剤は、非イオン性、イオン性または両性界面活性剤であり得る。アニオン性および非イオン性界面活性剤の混合物を用いるのが好ましい。界面活性剤分子の疎水性部分は、炭化水素、フッ化炭素、フルオロボリエーテル、またはシリコンタイプであり得る。

【0033】界面活性剤の例は、エトキシ単位(EO)の数が3~50の間であり、C₄~C₉アルキル鎖を有する、エトキシ化されたモノー、ジーおよびトリアルキルフェノール; E O 単位の数が3~50の間であり、C₅~C₅。アルキル鎖を有するエトキシ化された脂肪族アルコール; C₅~C₁₂アルキル硫酸アンモニウムまたはアルカリ金属塩; 硫酸と、E O 単位の数が4~50の間にあるエトキシ化されたC₁₂~C₁₅アルカノールとのへミエステル; C₁₂~C₁₅アルキルスルホン酸、または芳香環の6炭素原子とC₅~C₁₅アルキル鎖を有するアルキルアリールスルホン酸である。

【0034】非イオン性界面活性剤の例は、商標トリトン(登録商標)X100でローム・アンド・ハースから販売されている、エトキシ単位の数が9~10の間にあるオクチルフェノキシボリエトキシエタノール化合物である。本発明の方法に使用できる界面活性剤のその他の例は、一方または両方の芳香環上にC.~C.、アルキル鎖を含む、ビス(フェニルスルホン)酸ならびにそのアンモニウムおよびアルカリ金属塩である。これらの化合物は公知であり、例えば米国特許第4269749号に記載のようにして得られる。

【0035】用いられるフッ素化界面活性剤は、ラテックスを得るための水性乳化重合に用いられるものであり得る。そのような界面活性剤の具体的な例は:アンモニウムパーフルオロオクタノエート、1つまたは2つのカルボン酸基で終わっている(パー)フルオロポリオキシアルキレンである。

【0036】上記のように、工程3b)における表面張力の調整は、界面活性剤を用いて行なわれる。例えば、トリトン(登録商標)が用いられるとき、ラテックスに対して1重量%~20重量%、さらに好ましくは3重量%~10重量%の量がラテックスに添加される。

【0037】本発明の方法の工程2a)において、用いられるコロイド状分散体は、水の添加または除去により、種々のポリマー濃度で調製され得る。後者の場合、ラテックスの凝集を避けるために、例えば相分離による濃縮方法を用い、出発ラテックスに対してポリマーが豊 50 富な相を得て、上記のタイプの界面活性剤を加えること ができる。

【0038】本発明の方法の工程3)において、基体の 含浸は、任意の機械的撹拌の存在下に、濃縮ラテックス 中への浸漬により行なうことができ、あるいは含浸は例 えば刷毛、スプレーガン、ロールを用いるようなその他 の方法により、またはその他の従来の含浸方法により行 なうことができる。好ましくは浸漬による方法が用いら れ、さらに好ましくは1~10重量%の量の工程2b) のトリトン(登録商標)X100、分散体中のイオノマー により、多孔性基体の含浸は、1回だけの通過(すなわ ち、工程3)および4)を1回行なうだけ)で既にイオノ マーの最大量で得られる。

【0039】工程4)の終わりに、前記のように、膜は ASTM D726-58試験を満足し、透明であるのが 好ましい。このような最後の性質は、基体の細孔が完全 に充満されていることを示すからである。膜が不透明の とき、これは基体の細孔がイオノマーで完全に充満され ていないことの指標である。イオノマー官能基の対応す る塩の形態への変換、工程5b)は、IRスペクトロス コピーにより追跡される。工程5)は、SO,-基のバン ドが、約1060cm⁻¹、またはCOO-基のバンド が、約1680 c m-1 でコンスタントに残るときに終わ る。

【0040】任意的な工程6)は、膜が燃料電池のセバ レーターとして用いられるときに行なわれる。この工程 は、膜がその他の電気化学的用途に用いられるときには 任意である。との場合、例えばリチウムイオン電池の場 合のように、イオノマーの酸基が塩化されている膜が燃 料電池への適用に必要とされる。任意に、本発明による 30 方法の終わり(工程6))において、150℃~210℃ の温度でのさらなる加熱工程(後処理-工程7))は、膜が 電池内で使用される間に抽出され得る物質の量を低減さ せ、電池自体の性能の変動を避けるのに有効である。

【0041】上記のように、本発明の方法は、酸の形態 の(パー)フッ素化イオノマーの溶液の調製を避けた膜の 含浸を可能にし、したがってこの溶液調製工程を含む先 行技術の方法により示される腐食の問題を回避できる。 その上、本発明による方法では、高濃度を有するラテッ クスを用いることが可能である。この方法において、多 40 して完全に塞がれている膜の製造 量のポリマー(イオノマー)を含む膜を得るために必要と される通過を低減することができる。以下の実施例は、 本発明を説明するものであり、その適用範囲を限定する ものではない。

【0042】実施例

特徴づけ

【0043】酸の形態へ変換可能な基を有するイオノマ 一性ポリマーTgの測定

ガラス転移温度はモジュール損失の最大に対応する温度 であり、2℃/分の温度勾配で、1 H z の振動数で強制

的な振れを有する、トーショナル・アレス(登録商標)・ レオメトリック・ペンジュラムを用いて、DIB535 45に従って機械的に測定される。

【0044】ラテックス表面張力の測定

表面張力は、25℃で、フー(Huh)およびメイソン(Maso n)補正因子を用いることにより、ASTM D1131 法に従って、デュノイ(DuNouy)法により測定した。

【0045】通気性(ガーレイ数)の測定

空気に対する透過性のガーレイ試験は、6.45cm 含量20重量%以上で用いられる。この条件下での操作 10 '(1平方インチ)の表面を有する膜を通して、12cm の水柱に相当する圧力の下に、空気100mlの流れを 得るのに必要な時間を秒で測定する。測定はガーレイ・ タイプ・ポロシメーター(ASTM D726-58)中で 行う。装置のシリンダー上に試料を固定し、シーリング 板の間に固定する。次いで、シリンダーをゆっくりと下 ろす。膜を通して100m1容量の空気をシリンダーか ら放出するのに必要な時間(秒)を記録するために、光電 電池に接続した自動クロノメーターを用いる。この時間 はガーレイ数として示される。

> 【0046】膜中のイオノマーの量の測定 試験される試料中に存在するイオノマーの量は、膜の最 初の重量を知った上で秤量することによって計算され

【0047】ラテックス中の固体粒子の平均直径の測定 粒子径の測定は、Brookhaven Instrument Co. により販 売されているゴニオメーターBI200SMおよびコリ レーターBI9000ATにより構成される装置を用い て流体力学的半径を測定する、動的光拡散法により行わ れた。

【0048】含浸された膜の厚さの測定 厚さはミツトヨ・デジマティック・インジケーターID F-130型マイクロメーターにより測定された。

【0049】基体構造の検査

基体構造は、ケンブリッジ(登録商標)S200顕微鏡を 用いる走査型電子顕微鏡により、倍率5200×で検査 された。

【0050】実施例1

842g/eqの当量を有し、-SO, H官能基を有する イオノマー62重量%を含み、本発明の方法でガスに対

0.2 μの平均細孔径を有すると生産者により明示さ れ、40±5µmの厚さを有する、発泡PTFE基体、 ゴア-テックス(登録商標)GMP20223を、内径6 0mmを有するPTFEの円形支持材上に装着する。ガ ーレイ数は9.6 s であり、したがって基体は多孔性で あり、ガスに対して塞がれていない。

【0051】重合ラテックス

2リットルのオートクレーブ中に、以下の反応試剤を導 入する:

50 - 脱塩水1300ml;

- 式 CF,=CF-O-CF,CF,-SO,Fのモノマ-45g;

- ~ 平均分子量600を有する、式:

 $CF_1CIO(CF_1-CF(CF_1)O)_0(CF_1O)_0CF_1C$

[式中、n/m=10]の、酸末端基を有するパーフルオ ロポリオキシアルキレン8.9ml;

- 平均分子量450を有する、式:

 $CF_1O(CF_2-CF(CF_1)O)_n(CF_1O)_nCF_1$

[式中、n/m=20]の、パーフルオロポリエーテル 油、ガルデン(登録商標)D02 4.1m1;

- NH4OHの30容量%水溶液4.1ml;
- 水16.4g

を予め混合して得られたパーフルオロボリオキシアルキ レンのマイクロエマルジョン31.5ml。

【0052】700rpmで撹拌下に維持したオートク レーブを75℃に加熱した。次いで、過硫酸アンモニウ ム0.13gをオートクレーブの中に仕込む。TFEを 導入して、圧力を11相対バール(1.1MPa)に上げ る。 反応は 1 分後に始まる。 重合の間、 式 C F 1 = C F 20 -O-CF₁CF₁-SO₁Fのスルホン性モノマー7.5m 1を、TFEの仕込み21g毎に添加する。反応器に仕 込まれたTFEの全量は400gに等しい。 反応開始か ら1600分後に、撹拌を減らし、反応器を冷却し、T FEを排出することにより、反応を停止する。生成した ラテックスは、26.9重量%の固体含量を有し、粒子 は66mmの平均直径を有する。

【0053】滴定により決定されたポリマー組成は、T FE84.8モル%およびスルホン性モノマー15.1モ ル%であり、当量842という結果になった。ガラス転 30 移温度(Tg)は31℃である。ラテックスは表面張力4 5mN/mを有する。次いで、得られたラテックスに、 トリトン(登録商標)X100(ローム・アンド・ハース (登録商標))を、濃縮後、以下に示す界面活性剤量とな るように加える。次いで、ラテックス中のポリマー濃度 が44.4重量%となり、トリトン(登録商標)X100 中の含量が4.8重量%となるような量の水を、蒸発に より除去する。ラテックスは表面張力23mN/mを有 する。

により含浸される(工程3))。過剰のラテックスを吸い 取り紙を用いる乾燥により除去した後に、膜を換気され ている150℃の乾燥炉中に、60秒間置いた(工程 4))。ガスの流れに対して塞がれた透明な膜が、AST M D726-58試験に従って得られる(ガーレイ>1 0000s)。スルホニルフルオライドの形態にあるイ オノマーの含量は61重量%に等しい。-SO,F基を-SO, Hに変換するために、塞がれた膜をまずNaOH の10重量%水溶液中に、80℃で4時間浸漬する。時 間は、説明中に示したように、「Rスペクトロスコピー 50 [式中、n/m=10]の、酸末端基を有するパーフルオ

により、SO、基のバンドの増加を追跡しながら決定し た。SO, Na O形態にあるイオノマーの含量は67

重量%に等しい。

【0055】蒸留水中で中間物を洗浄した後、膜をHC 1の20重量%溶液中に、室温で24時間浸漬した。最 後に、洗浄水のpHがほぼ中性になるまで、蒸留水中で さらに何回も洗浄した。この方法の最後に、透明な膜の 測定された全体の厚さは30±4μmであり;イオノマ ー含量は膜全体の重さに対して61%であり、ガーレイ 10 数は10000秒より高い。したがって、膜はガスの流 れに対して完全に塞がれている。

【0056】実施例2

官能性の-SO, H基および当量842g/egを有する イオノマーを60重量%含み、ガスに対して塞がれた膜 の製造

実施例1の方法を、ラッテクス濃縮工程まで繰り返す。 分散体の7重量%に等しい量のトリトン(登録商標)X1 00と共にラテックスを加えた。次いで、ラテックスを 約65℃で6時間加熱した。この温度は、系の曇点より 高い。一晩ゆっくりと冷却した後、ラテックスは2相に 分離し:上相を除去し、33重量%のポリマー濃度およ び6重量%のトリトンを有する下相を、多孔性の膜の含

【0057】表面張力は22mN/mである。含浸工程 (工程3))は実施例1のように行なう。工程4)におげる 乾燥温度は160℃であり、時間は90gである。ガス に対して塞がれた透明な膜は、ASTM D726-58 試験(ガーレイ数>10000)に従って得られる。-S O, F基の-SO, Hへの変換は、KOHの10重量%水 溶液を用いて、90°Cで4時間行った。塞がれた透明な 膜の厚さは26±5μmであり、イオノマー含量は膜の 重量に対して60%であり、ガーレイ数は10000秒 より高い。したがって、膜はガスの流れに対して完全に 塞がれている。

【0058】実施例3

官能性の-SO,H基および当量1100g/egを有す るイオノマーを63重量%含み、ガスに対して塞がれた 膜の製造

発泡PTFE膜を実施例1のように用いる。重合ラテッ 【0054】膜は、ラテックス中に5分間浸漬すること 40 クスは、以下の方法に従ってマイクロエマルジョン中で 製造される。

> 【0059】2リットルのオートクレーブ中に、以下の 反応試剤を導入する:

- 脱塩水1200ml;
- 式 CF₂=CF-O-CF₂CF₂-SO₂Fのモノマー 74g;
- 平均分子量600を有する、式:

 $CF_{1}C1O(CF_{1}-CF(CF_{1})O)_{n}(CF_{1}O)_{n}CF_{1}C$ OOH

ロポリオキシアルキレン8.9ml;

平均分子量450を有する、式:

 $CF_1O(CF_2-CF(CF_3)O)_{\alpha}(CF_2O)_{\alpha}CF_3$ [式中、n/m=20]の、パーフルオロポリエーテル 油、ガルデン(登録商標) D02 3.9 m1;

- NH₄OHの30容量%水溶液3.9ml;
- 水15.2g

を混合して得られたパーフルオロポリオキシアルキレン のマイクロエマルジョン29.4ml。

レーブを75℃に加熱した。次いで、過硫酸アンモニウ ムの0.4g/1溶液50m1をオートクレーブ中に仕込 む。TFEを導入して圧力を13相対バール(1.3MP a)に上げる。反応は1分後に始まる。重合の間、式 CF;=CF-O-CF,CF,-SO,Fのスルホン性モノマ -5.3mlを、TFEの仕込み7.5g毎に添加する。 反応器に仕込まれたTFEの全量は150gに等しい。 反応開始から1600分後に、撹拌を減らし、反応器を 冷却し、TFEを排出することにより、反応を停止す び44mN/mの表面張力を有し、粒子は63nmの平 均直径を有する。

【0061】滴定により決定されたポリマー組成は、T FE89.1モル%およびスルホン性モノマー10.9モ ル%であり、1100g/モルまたはg/eqの当量に等 しいという結果になった。ガラス転移温度(Tg)は46 ℃である。トリトン(登録商標)X100を加えた後のラ テックスを、32.2重量%に等しいポリマー濃度およ び7.5重量%に等しいトリトン(登録商標)X100の 含量となるまで、水を蒸発させて濃縮する。表面張力は 30 22 mN/mである。

【0062】膜は実施例1のように含浸される(工程 3))。工程4)において、乾燥温度は160℃で、時間 は90 s であった。工程4)の最後に、ガスの流れに対 して塞がれた透明な膜が、ASTM D726-58試験 (ガーレイ数>10000s)に従って得られる。官能基 の変換は、実施例1に記載された条件下で成し遂げられ た。透明な膜の厚さは $24\pm2\mu$ mであり、イオノマー 含量は膜の重量に対して63%である。膜は10000 秒より高いガーレイ数を有し、したがってそれはガスの 40 流れに対して完全に塞がれている。

【0063】実施例4

 $\langle | |$

燃料電池における実施例1の膜のコンダクタンスの測定 実施例1の膜は、75℃で活性領域10cm'を有する 燃料電池内で、両電極において2.5絶対気圧の水素と 空気で操作し、80℃でガスを加湿して試験する。コン ダクタンスは、0.5 A/c m²の電流密度で測定し、0. 7 A/(c m'X V)という結果になった。この値は、燃料 電池への適用に求められるものに十分である。

【0064】実施例5

本発明の方法の最後に、異なった温度での熱後処理を行 なう、ガスに対して塞がれた膜の製造

実施例1の膜を用いた。膜を4つの部分に分割した。3 つの部分をそれぞれ、150℃、180℃および210 ℃で換気されている乾燥炉中に3分間置いた。次いで、 試料を室温で24時間真空下に乾燥し、次いで沸騰水中 に30分間浸漬した。この期間の最後に、吸着された水 の量を決定するために膜を秤量する。最後に、それらを 室温で24時間真空下に乾燥し、次いで膜の重さを測定 【0060】700 r p m で撹拌下に維持したオートク 10 する。沸騰水中での水和後および最終乾燥後の膜の4つ の部分のそれぞれの重さの変動を表1に示す。そこには ガーレイ数も示されている。表は、熱処理が沸騰水中に 抽出され得るイオノマーの量を減少させることを示して いる。試験の最後に熱処理された膜の部分は、未処理の もののように透明であった。

【0065】実施例6(比較)

界面活性剤を添加しないで重合法により得られたラテッ クスを用いる膜の含浸

ポリマーの濃度26.9重量%で同じラテックスのアリ る。生成したラテックスは、16重量%の固体含量およ 20 コットを用いて実施例1に記載の含浸方法を繰り返す。 浸漬による含浸工程(3)は4時間である。工程(3)+ (4)をさらに2回繰り返した。変換工程は実施例1に記 載されたとおりである。膜中の最終イオノマーの含量は 11重量%であり、膜厚は26±2μmであり、ガーレ イ数12gである。したがって、本発明の工程4を行っ たにもかかわらず、膜はガスの流れに対して塞がれてい ない。

【0066】実施例7

固体濃度10%および界面活性剤濃度3重量%を有する ラテックスを用いる膜の製造

用いた膜とラテックスは実施例1のものである。ポリマ ー濃度が10重量%になるまでラテックスを希釈し、次 いで界面活性剤トリトン(登録商標) X100を、分散体 を基に3重量%に等しい量となるように加えた。表面張 力は24mN/mである。工程3)および4)を実施例1 に記載した条件下に行い、膜の重量増加およびそれぞれ の工程後のガーレイ数を測定した。膜に対する重量百分 率として41%のイオノマー含量を有し、ガスの流れに 対して塞がれた膜を得るために、全8回工程を行なう必 要がある。との実施例において、工程(5)および(6)は 行なわれなかった。

【0067】実施例8

3重量%の界面活性剤濃度を用いて、濃度16%を有す るラテックスから出発する膜の製造

実施例1のラテックスをポリマー濃度が16重量%にな るまで希釈した以外は、実施例7を繰り返す。表面張力 は24mN/mである。全工程(3)+(4)を3回行っ て、塞がれた透明な膜を得る。イオノマーの百分率は、 膜の全重量に対して42重量%である。

50 【0068】実施例9

3重量%の界面活性剤濃度を用いて、濃度28%を有するラテックスから出発する膜の製造

膜に対して28重量%のポリマー濃度になるまで実施例1のラテックスを蒸発により濃縮した以外は、実施例7を繰り返す。表面張力は23mN/mである。工程(3)+(4)を1回だけ行って、塞がれた透明な膜を得る。イオノマーの百分率は、膜の全重量に対して45重量%である。表面張力は22mN/mである。

【0069】実施例10

3 重量%の界面活性剤濃度を用いて、濃度 4 0%を有す 10 るラテックスから出発する膜の製造

40重量%のポリマー濃度になるまで実施例1のラテックスを蒸発により濃縮した以外は、実施例7を繰り返す。表面張力は24mN/mである。工程(3)+(4)を1回だけ行って、塞がれた透明な膜を得る。イオノマーの百分率は、膜の全重量に対して57重量%である。

【0070】実施例11

1重量%の界面活性剤濃度を用いて、濃度28%を有するラテックスから出発する膜の製造

蒸発により28%に濃縮した実施例1のラテックスに、 界面活性剤、トリトン(登録商標)X100を、分散体重量を基に1重量%に等しくなるように加える。表面張力は25mN/mである。工程3)および4)を実施例1に記載の条件下に行った。工程(3)+(4)を1回だけ行って、塞がれた透明な膜を得る。イオノマーの百分率は、膜の全重量に対して44重量%である。

【0071】実施例12(比較)

本発明による方法に使用可能な多孔性基体の300℃に おける熱処理の効果

実施例1で用いた多孔性基体により得られた直系40m 30 mを有する小さなディスクを、300℃で換気されている乾燥炉中に1時間置いた。試験の終わりに冷却した後、試験片の形が、短径26.5 mmおよび長径32 m mを有する楕円に似てきたことに気づいた。処理前後の物品の形態を、電子顕微鏡により評価した。処理後の物品は、基体中に最初に存在していた小繊維の明らかな凝結を伴う細孔径の著しい減少を示す。処理前後の基体に関する図1および2を参照されたい。したがって、示された温度での熱処理は、基体の最初の構造を変えており、それはもはや使用できない。 40

【0072】実施例13(比較)

米国特許第4791081号によるラテックス(実施例 1)自体での多孔性基体の含浸

本発明の実施例1で用いたような、発泡PTFE膜、ゴアーテックス(登録商標)を、本発明の実施例1に記載したのと同じラテックス12gを脱イオン水50m1中に

20

希釈して得られた分散体中に浸漬した。表面張力は46 mN/mである。撹拌下に加熱して水をゆっくり除去した。引き続き膜を乾燥炉中、250℃で20分間加熱した。この工程の後で、膜は不透明であり、イオノマーの集積帯を示す。この集積帯は、本発明の方法によるその後の加水分解および酸性化処理で容易に除去される。ガーレイ数は12秒であり、したがって膜は塞がれていない。それゆえ、このようにして得られた膜は本発明で望まれる用途には用いることができない。

0 【0073】実施例14

0.3 重量%に等しい量の界面活性剤、トリトン(登録商標)X100を加えたこと以外は、実施例11を繰り返した。表面張力は37mN/mである。実施例1に記載の条件下で工程3)および4)を行った。工程(3)+(4)の全部を5回繰り返した後に、塞がれてはいるが不透明な膜を得る。イオノマーの百分率は膜の全重量に対して40重量%である。

【0074】実施例15

0.6重量%に等しい量の界面活性剤トリトン(登録商 20 標)X100を加えたこと以外は、実施例11を繰り返 した。表面張力は30mN/mである。実施例1に記載 の条件下で工程3)および4)を行った。工程(3)+(4) の全部を4回繰り返した後に、塞がれてはいるが不透明 な膜を得る。イオノマーの百分率は膜の全重量に対して 45重量%である。

【0075】実施例16

-COO NH、末端基を有し、分子量が約500のバーフルオロポリエーテル界面活性剤を0.3重量%に等しい量加えたこと以外は、実施例11を繰り返した。表面張力は34mN/mである。実施例1に記載の条件下で工程3)および4)を行った。工程(3)+(4)の全部を5回繰り返した後に、塞がれてはいるが不透明な膜を得る。イオノマーの百分率は膜の全重量に対して45重量%である。

【0076】実施例17

-COO⁻NH、末端基を有し、分子量が約500のパーフルオロポリエーテル界面活性剤を1重量%に等しい量加えたこと以外は、実施例11を繰り返した。表面張力は21mN/mである。実施例1に記載の条件下で工程3)および4)を行った。工程(3)+(4)の全部を3回繰り返した後に、塞がれてはいるが不透明な膜を得る。イオノマーの百分率は膜の全重量に対して45重量%である。

[0077]

【表1】

実施例 5-4 つの部分に分割した膜:それぞれの部分について、処理温度 (T)、水和工程後の増加重量% (Δ_p) 、損失イオノマー百分率 (Δ_1) およびガーレイ数 (NG)を示す

12000					
部分	T (°C)	Δр%	Δ1%	NG	
1	処理せず	1 3	1 6. 1	>104	
2	150	2 1	1 2. 9	>104	
3	180	2 1	9. 7	>104	
4	2 1 0	2 1	4.5	> 1 0 4	

[0078]

【発明の効果】本発明の方法により、十分な強度を有 *

* し、ガスの通過を塞いて電極の被毒を避け得る、特に燃料電池に適した透明な薄膜が得られる。

フロントページの続き

(72)発明者 アンドレア ベレゴ イタリア、20100 ミラノ、ヴィア ジー. ビー. ラサリオ 5

F ターム(参考) 4F071 AA26 AA27 AF36 FB01 FC01 FD02 FD03 4F074 AA38 AA39 CE15 CE50 CE93 DA24 DA49 5H026 AA06 BB10 CX04 EE19 HH00

HH05 HH08