Vectors Difficulty: Easy

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Vectors
Paper	Paper 2
Difficulty	Easy
Booklet	Question Paper 1

Time allowed: 41 minutes

Score: /32

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	E	
>88%	76%	63%	51%	40%	30%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

ASSEMBLED BY AS

(a)
$$D$$
 is the point $(2, -5)$ and $\overrightarrow{DE} = \begin{pmatrix} 7 \\ 1 \end{pmatrix}$.
Find the co-ordinates of the point E .

[1]

(b)
$$\mathbf{v} = \begin{pmatrix} t \\ 12 \end{pmatrix}$$
 and $|\mathbf{v}| = 13$.

Work out the value of t , where t is negative. [2]

Head to <u>savemyexams.co.uk</u> for more awesome resources

The diagram shows a parallelogram OCEG.

O is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

BHF and AHD are straight lines parallel to the sides of the parallelogram.

 $\overrightarrow{OG} = 3\overrightarrow{OA}$ and $\overrightarrow{OC} = 2\overrightarrow{OB}$.

(a) Write the vector \overrightarrow{HE} in terms of a and b.

[1]

(b) Complete this statement.

a + 2**b** is the position vector of point.....

[1]

(c) Write down two vectors that can be written as $3\mathbf{a} - \mathbf{b}$.

[2]

(a)
$$\overrightarrow{GH} = \begin{pmatrix} 6 \\ -4 \end{pmatrix}$$

Find

(i)
$$5\overrightarrow{GH}$$
, [1]

(ii)
$$\overrightarrow{HG}$$
.

(b)
$$\binom{6}{7} + \binom{2}{y} = \binom{8}{3}$$

Find the value of y. [1]

Question 4

$$\overrightarrow{BC} = \begin{pmatrix} 2\\3 \end{pmatrix} \qquad \overrightarrow{BA} = \begin{pmatrix} -5\\6 \end{pmatrix}$$

(a) Find \overrightarrow{CA} .

(b) Work out $|\overrightarrow{BA}|$.

 \overrightarrow{GHJK} is a quadrilateral. $\overrightarrow{GH} = \mathbf{a}, \overrightarrow{JH} = \mathbf{b}$ and $\overrightarrow{KJ} = \mathbf{c}$. L lies on GK so that LK = 3GL.

Find an expression, in terms of **a**, **b** and **c**, for \overrightarrow{GL} .

[2]

A is the point (-1, 1) and B is the point (8, 7).

(a) Write \overrightarrow{AB} as a column vector. [1]

(b) Find $|\overrightarrow{AB}|$. [2]

(c)
$$\overrightarrow{AC} = 2\overrightarrow{AB}$$
. [1]

Write down the co-ordinates of C.

OPQR is a parallelogram, with O the origin.

M is the midpoint of PQ.

OM and RQ are extended to meet at S. $\overrightarrow{OP} = \mathbf{p} \text{ and } \overrightarrow{OR} = \mathbf{r}.$

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OR} = \mathbf{r}$.

(a) Find, in terms of p and r, in its simplest form,

(i)
$$\overrightarrow{OM}$$
, [1]

(ii) the position vector of
$$S$$
. [1]

(b) When
$$\overrightarrow{PT} = -\frac{1}{2}\mathbf{p} + \mathbf{r}$$
, what can you write down about the position of T ?

OABCDE is a regular polygon.

(a) Write down the geometrical name for this polygon.

[1]

(b) O is the origin. $\overrightarrow{OB} = \mathbf{b}$ and $\overrightarrow{OC} = \mathbf{c}$.

Find, in terms of **b** and **c**, in their simplest form,

(i)
$$\overrightarrow{BC}$$
,

[1]

(ii) \overrightarrow{OA} ,

[2]

(iii) the position vector of E.

[1]

NOT TO SCALE

In the diagram, O is the origin. $\overrightarrow{OC} = c$ and $\overrightarrow{OD} = d$. E is on CD so that CE = 2ED.

$$\overrightarrow{OC} = c$$
 and $\overrightarrow{OD} = d$.

Find, in terms of c and d, in their simplest forms,

(a)
$$\overrightarrow{DE}$$
, [2]

(b) the position vector of
$$E$$
. [2]

Vectors Difficulty: Easy

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Vectors
Paper	Paper 2
Difficulty	Easy
Booklet	Question Paper 2

Time allowed: 37 minutes

Score: /29

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	Е
>88%	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

Head to <u>savemyexams.co.uk</u> for more awesome resources

O is the origin and OPQRST is a regular hexagon.

$$\overrightarrow{OP} = \mathbf{p}$$
 and $\overrightarrow{OT} = \mathbf{t}$.

Find, in terms of \mathbf{p} and \mathbf{t} , in their simplest forms,

(a)
$$\overrightarrow{PT}$$
, [1]

(b)
$$\overrightarrow{PR}$$
, [2]

(c) the position vector of
$$R$$
. [2]

O is the origin and OPRQ is a parallelogram. The position vectors of P and Q are p and q. X is on PR so that PX = 2XR.

Find, in terms of p and q, in their simplest forms

(a)
$$,\overrightarrow{QX}$$

(b) the position vector of M, the midpoint of QX. [2]

The points A(1, 2) and B(5, 5) are shown on the diagram.

(a) Work out the co-ordinates of the midpoint of AB. [1]

(b) Write down the column vector \overrightarrow{AB} . [1]

In the diagram, PQS, PMR, MXS and QXR are straight lines.

PQ = 2 QS.

M is the midpoint of PR.

QX:XR=1: 3.

$$\overrightarrow{PQ} = \mathbf{q}$$
 and $\overrightarrow{PR} = \mathbf{r}$.

(a) Find, in terms of q and r,

(i)
$$\overrightarrow{RQ}$$
,

(ii)
$$\overrightarrow{MS}$$
.

(b) By finding \overrightarrow{MX} , show that X is the midpoint of MS. [3]

Head to <u>savemyexams.co.uk</u> for more awesome resources

The position vector r is given by $\mathbf{r} = 2\mathbf{p} + t(\mathbf{p} + \mathbf{q})$.

(a) Complete the table below for the given values of *t*.Write each vector in its simplest form.One result has been done for you.

t	0	1	2	3
r			4 p + 2 q	

- (b) O is the origin and \mathbf{p} and \mathbf{q} are shown on the diagram.
 - (i) Plot the 4 points given by the position vectors in the table.

(ii) What can you say about these four points?

[3]

[2]

In triangle OGH, the ratio GN: NH = 3:1.

$$\overrightarrow{OG} = \mathbf{g} \text{ and } \overrightarrow{OH} = \mathbf{h}.$$

Find the following in terms of g and h, giving your answers in their simplest form.

(a)
$$\overrightarrow{HG}$$

(b)
$$\overrightarrow{ON}$$

O is the origin and OPQR is a parallelogram whose diagonals intersect at M.

The vector \overrightarrow{OP} is represented by p and the vector \overrightarrow{OR} is represented by r.

(a) Write down a single vector which is represented by

(i)
$$p + r$$
, [1]

(ii)
$$\frac{1}{2}$$
p $-\frac{1}{2}$ **r**. [1]

(b) On the diagram, mark with a cross (x) and label with the letter S the point with position vector

[2]

$$\frac{1}{2}\mathbf{p} + \frac{3}{4}\mathbf{r}.$$

Vectors Difficulty: Easy

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Vectors
Paper	Paper 2
Difficulty	Easy
Booklet	Question Paper 3

Time allowed: 37 minutes

Score: /29

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	Е
>88%	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

Question 1

The diagram is made from three identical parallelograms.

O is the origin.
$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OG} = \mathbf{g}$.

Write down in terms of \mathbf{a} and \mathbf{g}

(a)
$$\overrightarrow{GB}$$
,

O is the origin. Vectors p and q are shown in the diagram.

- (a) Write down, in terms of p and q, in their simplest form
 - (i) the position vector of the point A,

[1]

(ii)
$$\overrightarrow{BC}$$
,

[1]

(iii)
$$\overrightarrow{BC} - \overrightarrow{AC}$$
.

[2]

(b) If
$$|p| = 2$$
, write down the value of $|AB|$.

[1]

O is the origin, $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$.

(a) C has position vector $\frac{1}{3} \mathbf{a} + \frac{2}{3} \mathbf{b}$.

Mark the point C on the diagram.

(b) Write down, in terms of \mathbf{a} and \mathbf{b} , the position vector of the point E.

[1]

(c) Find, in terms of **a** and **b**, the vector \overrightarrow{EB} .

(a) Using a scale of 1cm to represent 1 unit, draw the vectors

$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$$
 and $\overrightarrow{BC} = \begin{pmatrix} 4 \\ 0 \end{pmatrix}$ on the grid above. [2]

(c) Calculate
$$|\overrightarrow{AB}|$$
. [2]

 \overrightarrow{OABC} is a parallelogram. $\overrightarrow{OA} = a$, $\overrightarrow{OC} = c$ and M is the mid-point of CA. Find in terms of a and c

(a) \overrightarrow{OB} , [1]

(b) \overrightarrow{CA} , [1]

(c) \overrightarrow{BM} . [2]

NOT TO SCALE

In the diagram $OA = \frac{2}{3}OP$ and $OB = \frac{3}{4}OQ$. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.

[2]

- (a) Find in terms of p and q
 - (i) \overrightarrow{AQ} ,

(ii)
$$\overrightarrow{BP}$$
. [2]

(b) AQ and BP intersect at T. $BT = \frac{1}{3}BP$. Find \overrightarrow{QT} in terms of **p** and **q**, in its simplest form.

[2]

$$\mathbf{a} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ Find $3\mathbf{a} - 2\mathbf{b}$. [2]

Vectors Difficulty: Hard

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Vectors
Paper	Paper 2
Difficulty	Hard
Booklet	Question Paper 1

Time allowed: 28 minutes

Score: /22

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	Е
>88%	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

 \overrightarrow{O} is the origin and K is the point on AB so that AK : KB = 2 : 1. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

Find the position vector of *K*. Give your answer in terms of **a** and **b** in its simplest form.

[3]

Question 2

P NOT TO SCALE

O is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$. Z is a point on PQ such that PZ: ZQ = 5:2.

Work out, in terms of \mathbf{p} and \mathbf{q} , the position vector of Z. Give your answer in its simplest form.

[3]

Head to <u>savemyexams.co.uk</u> for more awesome resources

Points A and B are marked on the grid.

$$\overrightarrow{BC} = \begin{pmatrix} -4\\0 \end{pmatrix}$$

(a) On the grid, plot the point C.

[1]

(b) Write \overrightarrow{AC} as a column vector.

[1]

(c) \overrightarrow{DE} is a vector that is perpendicular to \overrightarrow{BC} . The magnitude of \overrightarrow{DE} is equal to the magnitude of \overrightarrow{BC} .

[2]

Write down a possible column vector for \overrightarrow{DE} .

Work out

$$2\binom{3}{5} - \binom{1}{2}$$

In the diagram, O is the origin, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{AB} = \mathbf{b}$. P is on the line AB so that AP : PB = 2 : 1. Q is the midpoint of BC.

Find, in terms of a, b and c, in its simplest form

(a)
$$\overrightarrow{CB}$$
, [1]

(b) the position vector of
$$Q$$
, [2]

(c)
$$\overrightarrow{PQ}$$
.

Question 6

$$\overrightarrow{AB} = \begin{pmatrix} -3\\5 \end{pmatrix}$$
 Find $|\overrightarrow{AB}|$. [2]

In the diagram, O is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. C is on the line AB so that AC : CB = 1 : 2.

Find, in terms of **a** and **b**, in its simplest form,

(a)
$$\overrightarrow{AC}$$
, [2]

(b) the position vector of
$$C$$
. [2]

Vectors Difficulty: Hard

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Vectors
Paper	Paper 2
Difficulty	Hard
Booklet	Question Paper 2

Time allowed: 34 minutes

Score: /26

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	E
>88%	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

Head to savemyexams.co.uk for more awesome resources

PQRS is a quadrilateral and M is the midpoint of PS.

$$\overrightarrow{PQ} = \mathbf{a}$$
, $\overrightarrow{QR} = \mathbf{b}$ and $\overrightarrow{SQ} = \mathbf{a} - 2\mathbf{b}$.

(a) Show that
$$\overrightarrow{PS} = 2\mathbf{b}$$
.

[1]

Head to savemyexams.co.uk for more awesome resources

OAPB is a parallelogram.

O is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

M is the midpoint of BP.

(a) Find, in terms of a and b, giving your answer in its simplest form,

(i)
$$\overrightarrow{BA}$$
, [1]

(ii) the position vector of
$$M$$
. [1]

(b)
$$X$$
 is on BA so that $BX:XA = 1:2$.
Show that X lies on OM .

Question 3

Head to savemyexams.co.uk for more awesome resources

(a)

PQRS is a trapezium with PQ = 2SR.

$$\overrightarrow{PQ} = 2\mathbf{a}$$
 and $\overrightarrow{PS} = \mathbf{b}$.

Find \overrightarrow{QR} in terms of **a** and **b** in its simplest form.

[2]

(b)

 $\overrightarrow{OX} = \mathbf{x}$ and $\overrightarrow{OY} = \mathbf{y}$. *M* is a point on *XY* such that *XM*: *MY* = 3:5.

Find \overrightarrow{OM} in terms of x and y in its simplest form.

The diagram shows a quadrilateral OABC.

$$\overrightarrow{OA} = \mathbf{a}$$
, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{CB} = 2\mathbf{a}$.

 $\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OC} = \mathbf{c} \text{ and } \overrightarrow{CB} = 2\mathbf{a}.$ X is a point on OB such that OX:XB = 1:2.

(a) Find, in terms of a and c, in its simplest form

(i)
$$\overrightarrow{AC}$$
, [1]

(ii)
$$\overrightarrow{AX}$$
. [3]

(b) Explain why the vectors
$$\overrightarrow{AC}$$
 and \overrightarrow{AX} show that C, X and A lie on a straight line. [2]

The diagram shows two points, P and Q, on a straight line AB. P is the midpoint of AB and Q is the midpoint of PB. Q is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

Write down, in terms of \mathbf{a} and \mathbf{b} , in its simplest form

(a)
$$\overrightarrow{AP}$$
, [2]

(b) the position vector of
$$Q$$
. [2]

OPQR is a trapezium with RQ parallel to OP and RQ = 2OP. O is the origin, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OR} = \mathbf{r}$. M is the midpoint of PQ.

Find, in terms of \mathbf{p} and \mathbf{r} , in its simplest form

(a)
$$\overrightarrow{PQ}$$
, [1]

(b)
$$\overrightarrow{OM}$$
, the position vector of M . [2]

Vectors Difficulty: Hard

Question Paper 3

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Vectors
Paper	Paper 2
Difficulty	Hard
Booklet	Question Paper 3

Time allowed: 39 minutes

Score: /30

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	E	
>88%	76%	63%	51%	40%	30%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

O is the origin.

ABCDEF is a regular hexagon and O is the midpoint of AD.

$$\overrightarrow{OA} = \mathbf{a}$$
 and $\overrightarrow{OC} = \mathbf{c}$.

Find, in terms of a and c, in their simplest form

(a)
$$\overrightarrow{BE}$$
, [2]

(b)
$$\overrightarrow{DB}$$
, [2]

(c) the position vector of
$$E$$
. [2]

A and B have position vectors \mathbf{a} and \mathbf{b} relative to the origin O. C is the midpoint of AB and B is the midpoint of AD.

Find, in terms of **a** and **b**, in their simplest form

(a) the position vector of C, [2]

(b) the vector \overrightarrow{CD} . [2]

O is the origin, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{CB} = 4\mathbf{a}$. M is the midpoint of AB.

- (a) Find, in terms of a and c, in their simplest form
 - (i) the vector \overrightarrow{AB} , [2]

(ii) the position vector of M. [2]

(b) Mark the point D on the diagram where $\overrightarrow{OD} = 3\mathbf{a} + \mathbf{c}$. [2]

O is the origin and OABC is a parallelogram. CP = PB and AQ = QB.

$$\overrightarrow{OA}$$
 = a and \overrightarrow{OC} = c.
Find in terms of a and c, in their simplest form,

(a)
$$\overrightarrow{PQ}$$
,

(b) the position vector of
$$M$$
, where M is the midpoint of PQ . [2]

Question 5

 $\overrightarrow{AB} = \mathbf{a} + t\mathbf{b}$ and $\overrightarrow{CD} = \mathbf{a} + (3t - 5)\mathbf{b}$ where t is a number.

Find the value of t when $\overrightarrow{AB} = \overrightarrow{CD}$.

Head to <u>savemyexams.co.uk</u> for more awesome resources

The origin O is the centre of the octagon PQRSTUVW. $\overrightarrow{UV} = \mathbf{a}$ and $\overrightarrow{WP} = \mathbf{b}$.

(a) Write down in terms of a and b

(i)
$$V\overline{W}$$
, [1]

(ii)
$$\overrightarrow{TU}$$
, [1]

(iii)
$$\overrightarrow{TP}$$
, [2]

(iv) the position vector of the point
$$P$$
. [1]

(b) In the diagram, 1 centimetre represents 1 unit. Write down the value of
$$|\mathbf{a} - \mathbf{b}|$$
.

Question 7

OABC is a parallelogram. $\overrightarrow{OA} = a$ and $\overrightarrow{OC} = c$. M is the mid-point of OB. Find \overrightarrow{MA} in terms of a and c.

Transformations Difficulty: Easy

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Transformations
Paper	Paper 2
Difficulty	Easy
Booklet	Question Paper 1

Time allowed: 30 minutes

Score: /23

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	Е
>88%	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

Describe fully the **single** transformation that maps triangle A onto triangle B.

[3]

T(X) is the image of the shape X after translation by the vector $\begin{pmatrix} -1\\3 \end{pmatrix}$.

M(Y) is the image of the shape Y after reflection in the line x = 2.

On the grid, draw MT(A), the image of shape A after the transformation MT.

[3]

(a) Describe fully the **single** transformation that maps triangle A onto triangle B.

Draw the image of shape A after a translation by the vector $\begin{pmatrix} 2 \\ -3 \end{pmatrix}$. [2]

(a) Describe fully the **single** transformation that maps triangle *S* onto triangle *T*.

[3]

(b) Find the matrix which represents the transformation that maps triangle S onto triangle T. [2]

Find the 2×2 matrix that represents a rotation through 90° clockwise about (0, 0). [2]

(p, q) is the image of the point (x, y) under this combined transformation.

$$\begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$

(a) Draw the image of the triangle under the combined transformation.

[3]

(b) Describe fully the **single** transformation represented by
$$\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$
. [2]

Transformations Difficulty: Easy

Question Paper 2

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Transformations
Paper	Paper 2
Difficulty	Easy
Booklet	Question Paper 2

Time allowed: 39 minutes

Score: /30

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	E	
>88%	76%	63%	51%	40%	30%	

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

Head to <u>savemyexams.co.uk</u> for more awesome resources

The triangle PQR has co-ordinates P(-1, 1), Q(1, 1) and R(1, 2).

(a) Rotate triangle PQR by 90° clockwise about (0, 0). Label your image P'Q'R'.

[2]

(b) Reflect your triangle P'Q'R' in the line y = -x. Label your image P''Q''R''.

[2]

(c) Describe fully the single transformation which maps triangle *PQR* onto triangle *P"Q"R"*.

(a) Describe the single transformation which maps ABCD onto A' B' C' D'.

[3]

(b) A single transformation maps A'B'C'D' onto A''B''C''D''. Find the matrix which represents this transformation.

Head to <u>savemyexams.co.uk</u> for more awesome resources

$$\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \mathbf{B} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$$

On the grid on the next page, draw the image of PQRS after the transformation represented by BA.

Question 4

(a) Describe fully the single transformation that maps triangle A onto triangle B.

[3]

(b) Find the 2 \times 2 matrix which represents this transformation.

(a) Describe fully the **single** transformation which maps triangle A onto triangle B.

[2]

(b) On the grid, draw the image of triangle A after rotation by 90° clockwise about the point (4, 4). [2]

Draw the shear of the shaded square with the x-axis invariant and the point (0, 2) mapping onto the point (3, 2).

(i) Draw the one-way stretch of the shaded square with the *x*-axis invariant and the point (0, 2) mapping onto the point (0, 6). [2]

4

(ii) Write down the matrix of this stretch.

[1]

Transformations Difficulty: Hard

Question Paper 1

Level	IGCSE
Subject	Maths (0580/0980)
Exam Board	CIE
Topic	Vectors and transformations
Sub-Topic	Transformations
Paper	Paper 2
Difficulty	Hard
Booklet	Question Paper 1

Time allowed: 31 minutes

Score: /24

Percentage: /100

Grade Boundaries:

CIE IGCSE Maths (0580)

A*	Α	В	С	D	Е
>88%	76%	63%	51%	40%	30%

CIE IGCSE Maths (0980)

9	8	7	6	5	4	3	
>94%	85%	77%	67%	57%	47%	35%	

$$\mathbf{N} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

Describe fully the single transformation represented by N.

[3]

(b) Find the matrix which represents the **single** transformation that maps triangle A onto triangle B.

[2]

(c) On the grid, draw the image of triangle A under a stretch, factor 3, with the y-axis invariant.

Head to savemyexams.co.uk for more awesome resource

(a) Draw the image of triangle A after a translation by the vector $\begin{pmatrix} 3 \\ -4 \end{pmatrix}$. [2]

(b) Describe fully the single transformation which maps triangle A onto triangle B. [3]

(c) Draw the image of triangle A after the transformation represented by the matrix $\begin{pmatrix} -2 & 0 \\ 0 & 1 \end{pmatrix}$. [3]

Question 3

Find the matrix which represents the combined transformation of a reflection in the x axis **followed** by a reflection in the line y = x.

[3]

- (a) A transformation is represented by the matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$.
 - (i) On the grid above, draw the image of triangle A after this transformation. [2]

(ii) Describe fully this transformation. [2]

(b) Find the 2 by 2 matrix representing the transformation which maps triangle A onto triangle B.