

Date of Deposit July 24, 1998

Case No. 8285/181

J
JC504 U.S.
07/24/98
P

PATENT APPLICATION TRANSMITTAL LETTER

The Assistant Commissioner for Patents:

Transmitted herewith for filing is the patent application of: TERESA F. LATTER, NANCY A. BOOK, MARY L. HARDZINSKI,

JAMES T. MACIEJEWSKI, THOMAS J. McBLAIN and JOHN W. MOSS for: METHOD AND SYSTEM FOR PROVIDING ENHANCED

CALLER IDENTIFICATION. Enclosed are:

- 7 sheets of drawings and 18 pages of application (including title page).
 Declaration.
 Power of Attorney.
 Verified statement to establish small entity status under 37 CFR §§ 1.9 and 1.27.
 Assignment transmittal letter and Assignment of the invention to: _____.
 _____.

J
JC523 U.S. PRO
09/122484
07/24/98

Claims as Filed	Col. 1	Col. 2
For	No. Filed	No. Extra
Basic Fee		
Total Claims	-20	
Indep. Claims	-3	
Multiple Dependent Claims Present		

*If the difference in col. 1 is less than zero, enter "0" in col. 2.

Small Entity	
Rate	Fee
x\$11=	\$ 395
x\$41=	\$
+\$135=	\$
Total	\$

Other Than Small Entity	
Rate	Fee
	\$ 790
x\$22=	\$
x\$82=	\$
+\$270=	\$
Total	\$

- Please charge my Deposit Account No. 23-1925 in the amount of \$: _____. A duplicate copy of this sheet is enclosed.
 A check in the amount of \$: _____ to cover the filing fee is enclosed.
 The Assistant Commissioner is hereby authorized to charge payment of the following fees associated with this communication or credit any overpayment to Deposit Account No. 23-1925. A duplicate copy of this sheet is enclosed.
 Any additional filing fees required under 37 CFR § 1.16.
 Any patent application processing fees under 37 CFR § 1.17.
 The Assistant Commissioner is hereby authorized to charge payment of the following fees during the pendency of this application or credit any overpayment to Deposit Account No. 23-1925. A duplicate copy of this sheet is enclosed.
 Any filing fees under 37 CFR § 1.16 for presentation of extra claims.
 Any patent application processing fees under 37 CFR § 1.17.
 The issue fee set in 37 CFR § 1.18 at or before mailing of the Notice of Allowance, pursuant to 37 CFR § 1.311(b).

July 24, 1998

Date

Joseph F. Hertz
BRINKS HOFER GILSON & LIONE
Registration No. 41,070

"Express Mail" label mailing number EF085946755US

Date of Deposit July 24, 1998

PATENT

Case No. 8285/181

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE
APPLICATION FOR UNITED STATES LETTERS PATENT

INVENTORS:

Teresa F. Latter
Nancy A. Book
Mary L. Hardzinski
James T. Maciejewski
Thomas J. McBlain
John W. Moss

TITLE:

METHOD AND SYSTEM FOR
PROVIDING ENHANCED CALLER
IDENTIFICATION

ATTORNEYS:

William A. Webb
Jason C. White
BRINKS HOFER GILSON & LIONE
P.O. Box 10395
Chicago, Illinois 60610
(312) 321-4200

METHOD AND SYSTEM FOR PROVIDING ENHANCED CALLER IDENTIFICATION

BACKGROUND

5 The present invention relates generally to telecommunications services and more particularly to caller identification.

Telecommunications service providers typically offer services that attempt to provide customers with information that enables them to determine whether or not to accept a call before answering the call. One service that provides such information is caller identification (“Caller ID”).

10 Standard Caller ID services generally provide a customer with an indication of who is calling without requiring the customer to answer the call. These systems typically retrieve information about the calling party from a database and provide that information to the called party. Customer premise equipment (CPE) in the form of a display device is generally used to provide the called party with a visual readout of the name and/or telephone number associated with the calling party.

15 However, the effectiveness of Caller ID systems can be reduced due to a number of different occurrences. One common occurrence that decreases the effectiveness of Caller ID systems is the inability of a service provider to provide the standard Caller ID information for a particular incoming call. A service provider may not be able to provide the standard Caller ID information if the Caller ID information is blocked by the calling party, or if the Caller ID information is unavailable or incomplete. When the standard Caller ID information cannot be provided, the called party is not adequately informed about who is calling and cannot determine whether or not to accept the incoming call before answering the call. Because the effectiveness of Caller ID systems is greatly reduced when information cannot be provided, an improved system and method for providing caller identification information that overcome these deficiencies are needed.

25

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a telecommunications system of a preferred embodiment.

FIG. 2 is a flow chart of a method of a preferred embodiment for providing enhanced caller identification.

30 FIG. 3 is a block diagram of a first preferred embodiment of the telecommunications system of FIG. 1.

FIG. 4. is a block diagram of a second preferred embodiment of the telecommunications system of FIG. 1.

FIG. 5 is a flow chart of a method of a preferred embodiment for providing enhanced caller identification using the system of FIGS. 3 or 4.

FIG. 6 is a more detailed flow chart of a portion the method of FIG. 5.

FIG. 7 is a more detailed flow chart of a portion the method of FIG. 5.

5

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EMBODIMENTS

By way of introduction, the preferred embodiments described below include a method and system for providing a called party with audible caller identification information when standard caller identification information cannot be provided. In one embodiment, calls for which standard caller identification information is blocked, unavailable or incomplete are prevented from being connected to the called party. Instead of connecting the calls, a request for audible caller identification information is transmitted to the calling party. If the calling party provides the requested audible caller identification information, the audible information is transmitted to the called party. Caller identification information can thus be provided to the called party when standard caller identification information cannot be provided.

By way of example, FIG. 1 depicts a system 10 of a preferred embodiment. The system 10 comprises a network 20, a called communication station 30 coupled with the network 20 and a calling communication station 40 coupled with the network 20. The term “coupled with,” as used herein, means directly coupled with or indirectly coupled with through one or more components. The network 20 preferably comprises computer usable medium having first, second and third computer readable program codes 22, 24, 26 embodied therein. It is important to note that while the program codes 22, 24, 26 have been shown as three separate elements, their functionality can be combined and/or distributed. It is also important to note that “medium” is intended to broadly include any suitable medium including analog or digital, hardware or software, now in use or developed in the future.

The system 10 is preferably implemented in a telecommunications network as known to those skilled in the art. Alternatively, the system 10 can be implemented in a computer network or any other network that is adapted to transmit, store and retrieve information. The calling communication station 40 and the called communication station 30 preferably comprise analog telephone stations as known to those skilled in the art. According to an alternative embodiment, the communication stations 30, 40 can comprise any suitable communication station adapted for use in the present embodiments as known to those skilled in the art.

The system 10 of FIG. 1 can be used to implement the method 100 depicted in FIG. 2. When the calling party at the calling communication station 40 places a call to a called party at the called communication station 30, the first computer readable program code 22 determines whether standard caller identification information associated with the calling communication station 40 can be provided to the called communication station 30 (step 110, FIG. 2). As used herein, the term standard caller identification (Caller ID) information means the information associated with a calling communication station that is typically stored in a database and automatically retrieved and provided to a called party as known to those skilled in the art. If it is determined that standard caller identification information cannot be provided, the second computer readable program code 24 transmits a request for audible caller identification information to the calling communication station 40 (step 120). As used herein, the term audible caller identification information means audible information provided by the calling party in response to a request for such information. If the calling party provides the requested audible caller identification information, the third computer readable program code 26 transmits the audible caller identification information to the called communication station 30 (step 130). After receiving the audible caller identification information, the called party can decide whether to proceed with the call or cancel the call (step 140).

By way of further example, FIG. 3 depicts a preferred embodiment of the system 10 described above. The system 200 comprises a service switching point (SSP) 220, a signal transfer point (STP) 230, a service control point (SCP) 240, a first SCP database 242, a second SCP database 244, a service node (SN) 250, a central office 260, called telephone station 222 and calling telephone station 262. Intelligent network system components, commonly referred to as advanced intelligent network (AIN) components, suitable for implementing the present embodiment are commercially available from several vendors and are known to those skilled in the art. AIN components can implement computer readable program code as known to those skilled in the art. Vendors of AIN components typically have a preferred programming language and operating platform as known to those skilled in the art.

SSP 220 preferably comprises an AIN switch that routes calls, recognizes and responds to triggers, generates queries to obtain call information and responds to returned call information. SSP 220 connects called telephone station 222 with central office 260 to enable a calls to be placed between called telephone station 222 and calling telephone station 262. SSP 220 preferably communicates with SCP 240, central office 260 and SN 250 by utilizing a signaling protocol such as Signaling System 7 (SS7) or other such signaling protocols as presently known to those skilled

in the art or developed in the future. SSP 220 preferably generates queries to SCP 240 and receives and responds to responses to the queries returned from SCP 240.

STP 230 preferably comprises a network element that transfers signaling communications in response to signaling protocols such as SS7 or other such signaling protocols as presently known to those skilled in the art or developed in the future. STP 230 preferably transfers queries from SSP 220 to SCP 240 and transfers responses to the queries from SCP 240 to SSP 220.

SCP 240 preferably comprises an AIN element that stores call information and receives and responds to queries. SCP 240 preferably stores call control information in the first SCP database 242 and can access the stored call control information. SCP 240 also stores standard caller identification information in the second SCP database 244 and can access the stored caller identification information. SCP 240 receives queries generated by SSP 220 and preferably responds to the queries by performing database searches to locate the requested call control information or caller identification information as known to those skilled in the art. SCP 240 can forward the call control information or caller identification information to SSP 220.

SN 250 preferably comprises a network element that enables communications between telephone stations 222, 262 and the network. SN 250 can preferably transmit messages to and receive responses from telephone stations 222, 262. SN 250 can generate announcements that can be transmitted to telephone stations 222, 262. SN 250 can transmit responses such as audible caller identification information from telephone station 262 to telephone station 222 by connecting telephone stations 222, 262 or by recording and playing back the responses as known to those skilled in the art. The announcements transmitted to telephone station 222 preferably comprise accept and reject options along with requests for input from the telephone station 222. The requests for input preferably comprise requests for input that can be used by SN 250 to cancel calls to telephone station 222, connect calls to telephone station 222, forward calls to a voice mail system or another location such as another telephone line, and transmit messages to telephone station 262. As used herein, the term voice mail system means all types of message recording systems as known to those skilled in the art. SN 250 can preferably receive and respond to the input transmitted from telephone station 222. The term input means any suitable signal such as DTMF tones, voice input, dial pulse input or modem/fax input as known to those skilled in the art.

Database 242 preferably comprises a data storage element for use with SCP 240 as known to those skilled in the art. Database 242 preferably stores call control information that can be implemented by SSP 220 to control calls. Such call control information is known to those skilled in the art.

Database 244 preferably comprises a standard caller identification with name database as known to those skilled in the art. Database 244 preferably includes the name of the person associated with calling telephone station 262 along with the telephone number that is associated with calling telephone station 262. Database 244 can alternatively comprise a caller assistance 5 database as known to those skilled in the art. While databases 242, 244 are depicted within a telecommunications system, databases 242, 244 can comprise any suitable databases containing information adapted for use in the present embodiment and are not limited to databases located within a telecommunications network. It is also important to note that while databases 242, 244 are shown as separate components, they can be implemented as a single database.

10 Central office 260 preferably comprises an AIN network switch as known to those skilled in the art. Central office 260 enables calls to be placed between calling telephone station 262 and called telephone station 222. Alternatively, central office 260 can comprise a non-AIN network switch as known to those skilled in the art.

15 Telephone stations 222, 262 preferably comprise analog telephone sets as known to those skilled in the art. Alternatively, telephone stations 222, 262 can comprise wireless, PCS, ISDN or any other form of communication station known to those skilled in the art. Called telephone station 222 preferably includes CPE equipment for use with caller identification services as known to those skilled in the art.

20 Referring now to FIG. 4, an alternate embodiment of the system of FIG. 3 is shown. The system 280 comprises an SSP 220; a called telephone station 222; an STP 230, an SCP 240; a first SCP database 242, a second SCP database 244, a central office 260 and a calling telephone station 262, all as described above in reference to FIG. 3. The system 280 also includes an intelligent peripheral (IP) 290 that communicates with SSP 220 and performs the same functions as the SN 250 as described herein.

25 The systems depicted in FIGS. 3 and 4 can be utilized to implement the method 300 depicted in FIG. 5. For purposes of illustration, assume that a calling party at calling telephone station 262 places a call to a called party at called telephone station 222. In an attempt to connect the call, central office 260 routes the call to SSP 220.

30 In this embodiment, when the call is routed to SSP 220, a terminating attempt trigger is activated (step 310) when SSP 220 attempts to connect the call to called telephone station 222. The trigger generates a query that is sent to SCP 240 (step 320). The query preferably includes a calling party identification parameter which can include a calling party presentation restriction indicator as known to those skilled in the art and requests the return of standard Caller ID

information. The telephone number associated with the calling telephone station 262 is preferably included in the calling party identification parameter of the query as known to those skilled in the art. SCP 240 receives the query and determines whether or not the called party at called telephone station 222 subscribes to the present service. In response to a determination that the called party 5 subscribes to the present service, SCP 240 analyzes the information included with the query to determine whether standard Caller ID information can be provided to called telephone station 222 (step 330).

If the standard Caller ID information cannot be provided, SCP 240 accesses database 242 to retrieve call control information (step 340) and returns the call control information to SSP 220 10 (step 350). The call control information can be sent to SSP 220 in response to a lead directory number that uniquely identifies each SSP as known to those skilled in the art. In response to the call control information, SSP 220 routes the call to SN 250 or IP 290 (step 360). When SN 250 or IP 290 receives the call, SN 250 or IP 290 generates a request for audible caller identification 15 information that is transmitted to the calling telephone station 262 (step 370). The request preferably comprises a statement indicating that the called party doesn't accept calls from unidentified callers and a request for the calling party to speak his/her name and/or the name of the company that they represent. The request preferably comprises an audible message. Alternatively, the request can be displayed on CPE equipment as known to those skilled in the art. If the calling party provides an audible response, SN 250 or IP 290 enables the audible response to be 20 transmitted to called telephone station 222 (step 380). Alternatively, if the calling party does not provide the requested information, the call is canceled (step 390).

The step of determining whether standard Caller ID information can be provided (step 330, FIG. 5) preferably comprises the steps shown in FIG. 6. The SCP 240 preferably first determines whether standard Caller ID information is unavailable (step 410). The SCP 240 preferably 25 determines whether the standard Caller ID information is unavailable by determining whether or not the calling party identification parameter is present in the query as known to those skilled in the art. In addition, the SCP 240 preferably determines whether the standard Caller ID information is incomplete (step 420). The SCP 240 preferably determines whether the standard Caller ID information is incomplete by determining whether or not the calling party identification parameter is 30 a valid telephone number as known to those skilled in the art. In addition, the SCP 240 preferably determines whether the standard Caller ID information has been blocked (step 430). The SCP 240 preferably determines whether the standard Caller ID information has been blocked by determining

whether or not the calling party identification presentation restriction indicator is set to “presentation restricted” as known to those skilled in the art.

The step of providing the audible caller identification information to the called party (step 380, FIG. 5) preferably comprises the steps shown in FIG. 7. Preferably, called telephone station 222 rings (step 510) to signify that a call has been placed to called telephone station 222. While called telephone station 222 is ringing, a text message can be transmitted to called telephone station 222 and the text message can be displayed on the CPE equipment at called telephone station 222 (step 520) as known to those skilled in the art. The text message preferably indicates that the call is being handled by the present service and identifies the name of the present service. If the called party answers the telephone (i.e. the telephone is off hook), the audible caller identification information that was provided by the calling party is transmitted to called telephone station 222 (step 530). The audible caller identification information is preferably recorded and played back to the called telephone station 222 as known to those skilled in the art. Alternatively, the calling telephone station 262 and the called telephone station 222 can be connected such that the audible caller identification information can be transmitted between the telephone stations 262, 222.

After the audible caller identification information has been transmitted, a message is transmitted to called telephone station 222 (step 540). The message preferably includes instructions that allow the called party to accept or reject the call by providing the appropriate input. The message preferably comprises audible instructions that are transmitted by SN 250 or IP 290 to called telephone station 222. The accept and reject options preferably comprise, accepting the call by enabling the connection of the call to the called telephone station 222, canceling the call by disabling the connection of the call to the called telephone station 222, forwarding the call to a voice mail system or another location and sending a message to calling party. The message sent to the calling party can comprise a request that the called party be taken off a telemarketer’s call list. Each of these options is preferably invoked when the called party provides the appropriate input.

In response to input provided by the called party, the SN 250 or IP 290 can process the call (step 550). Accordingly, the SN 250 or IP 290 can connect the call, cancel the call, transmit a message to the calling telephone station 262 or forward the call to a voice mail system or another location in response to the input provided by the calling party.

In a further alternative embodiment, the present systems and methods can be configured to work in conjunction with answering machines and voice mail systems. After the called party

answers the telephone (step 530, FIG. 7) a message can be transmitted to the called telephone station 222 requesting the called party to provide appropriate input to signify that the call is being answered by a human. The message preferably comprises an audible message and is preferably transmitted to the called telephone station 222 by the SN 250 or IP 290. The input can comprise
5 any suitable signal such as DTMF tones, dial pulse input, modem/fax input or voice input as known to those skilled in the art. If the called party provides the requisite input, the audible caller identification information provided by the calling party can be transmitted to the called party. However, if input is not provided within a predetermined amount of time, the audible caller identification information is not transmitted to the called party. Instead, the calling party can be
10 connected with the answering machine or the voice mail system and the calling party can leave a conventional message. The preferred time period within which the input must be received to prevent the calling party from being connected with the answering machine or voice mail system is three seconds.

Alternatively, if an answering machine or a voice mail system answers the call, the
15 answering machine or voice mail system can immediately transmit a tone input to the SN 250 or IP 290 to signify that the call is not being answered by a human. In response to the input, the SN 250 or IP 290 can connect the calling party to the answering machine or the voice mail system and the calling party can leave a conventional message.

In order to connect the calling party with the answering machine or voice mail system as
20 described herein, the SN 250 or IP 290 can disconnect from the called telephone station 222 and can place a second call to the called telephone station 222 by dialing the telephone number associated with the called telephone station 222. This second call can then be answered by the answering machine or voice mail system so that the calling telephone station 262 is connected to the answering machine, voice mail system, or called telephone station 222 and the calling party can
25 leave a conventional message.

In a further alternative embodiment, the present system and method can be configured to work in conjunction with standard caller identification services. After the trigger is sent from the SSP 220 (step 320, FIG. 5), the SCP 240 can determine whether the called party at the called telephone station 222 has subscribed to the present service. If the called party has not subscribed to
30 the present service, the call can be handled in accordance with standard Caller ID procedures as known to those skilled in the art. In addition, if the SCP 240 determines that the standard caller identification information can be provided (step 330, FIG. 5), the call can be handled in accordance with standard Caller ID procedures as known to those skilled in the art.

In a further alternative embodiment, a party can be connected with the called telephone station 222 without having to speak his/her name through the use of a password override system as known to those skilled in the art. This can enable the party to, among other things, speak with a party at the called telephone station 222 or remotely access any messages left for them and stored

5 on the answering machine or voicemail system without the party having to speak his/her name as required by the present system. The party can place a call to called telephone station 222 from a remote telephone station. If the party calls from a telephone station for which standard caller identification information cannot be provided, the party will be instructed to speak his/her name as described herein. Rather than speaking his/her name, the party can transmit input, of the form

10 described herein, to the SN 250 or IP 290, to override the present system and enable a connection with the called telephone station without having to speak his/her name. The input can comprise a password or other suitable identification as known to those skilled in the art. The SN 250 or IP 290 can receive this input and compare the input received to data stored within SN 250 or IP 290. The stored data can comprise passwords or other identification data as known to those skilled in

15 the art and can be stored in a reference table as known to those skilled in the art. If the input received matches the data stored, the SN 250 or IP 290 can enable the party to be connected to called telephone station 222, without requiring the party to speak his/her name.

The present embodiments provide an efficient and effective method and system for providing caller identification information to a customer when standard caller identification information is unavailable, incomplete, or blocked.

It is to be understood that a wide range of changes and modifications to the embodiments described above will be apparent to those skilled in the art and are contemplated. It is therefore intended that the foregoing detailed description be regarded as illustrative rather than limiting, and that it be understood that it is the following claims, including all equivalents,

20 that are intended to define the spirit and scope of the invention.

We claim:

1. A method for processing a call from a calling party at a calling communication station to a called communication station, the method comprising the steps of:
 - (a) determining whether standard caller identification information for the calling communication station can be provided to the called communication station;
 - (b) transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station;
 - (c) transmitting the audible caller identification information to the called communication station; and
 - (d) canceling the call in response to input from the called communication station.
2. A method for processing a call from a calling party at a calling communication station to a called communication station, the method comprising the steps of:
 - (a) determining whether standard caller identification information for the calling communication station can be provided to the called communication station;
 - (b) transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station;
 - (c) transmitting the audible caller identification information to the called communication station; and
 - (d) transferring the call to a voice mail system in response to input from the called communication station.
3. A method for processing a call from a calling party at a calling communication station to a called communication station, the method comprising the steps of:
 - (a) determining whether standard caller identification information for the calling communication station can be provided to the called communication station;
 - (b) transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station;
 - (c) transmitting the audible caller identification information to the called communication station; and
 - (d) transferring the call to another location in response to input from the called communication station.

4. A method for processing a call from a calling party at a calling communication station to a called communication station, the method comprising the steps of:

(a) determining whether standard caller identification information for the calling communication station can be provided to the called communication station;

5 (b) transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station;

(c) transmitting the audible caller identification information to the called communication station; and

10 (d) transmitting a message to the calling communication station in response to input from the called communication station.

5. The method of claims 1, 2, 3, or 4, wherein the input from the called communication station comprises dual tone multi-frequency tones.

6. A method for processing a call from a calling party at a calling communication 15 station to a called communication station, the method comprising the steps of:

(a) determining whether standard caller identification information for the calling communication station can be provided to the called communication station;

(b) transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification 20 information cannot be provided to the called communication station;

(c) transmitting the audible caller identification information to the called communication station; and

(d) transmitting a text message to the called communication station.

7. The method of claim 6, wherein the text message identifies the name of present 25 service.

8. The method of claims 1, 2, 3, 4, or 6, wherein step (c) comprises the steps of recording the audible caller identification information and transmitting the recorded audible caller identification information to the called telephone station.

9. A method for processing a call from a calling party at a calling communication 30 station to a called communication station, the method comprising the steps of:

(a) determining whether standard caller identification information for the calling communication station can be provided to the called communication station;

(b) transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station;

(c) determining whether a human is available to answer the call; and

5 (d) connecting the calling communication station to the called communication station in response to a determination that a human is not available to answer the call.

10 10. The method of claim 9, wherein step (c) comprises the steps of:

connecting a service node with the called communication station;

transmitting a request for input to the called communication station; and

determining whether input was transmitted from the called communication station.

11. 11. The method of claim 10, wherein step (d) comprises the steps of disconnecting the service node and the called communication station; and

placing a second call to the called communication station.

12. 12. A method for processing a call from a calling party at a calling communication station to a called communication station, the method comprising the steps of:

(a) determining whether standard caller identification information for the calling communication station can be provided to the called communication station;

(b) transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station;

(c) determining whether a human is available to answer the call; and

(d) connecting the calling communication station with a voice mail system in response to a determination that a human is not available to answer the call.

13. 13. The method of claim 12, wherein step (c) comprises the steps of:

connecting a service node with the called communication station;

transmitting a request for input to the called communication station; and

determining whether input was transmitted from the called communication station.

14. 14. The method of claim 12, wherein step (d) comprises the steps of disconnecting the service node and the called communication station; and

30 placing a second call to the called communication station.

15. 15. A method for processing a call from a calling party at a calling communication station to a called communication station, the method comprising the steps of:

(a) using an advanced intelligent network to determine whether standard caller identification information for the calling communication station can be provided to the called communication station;

5 (b) transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station;

(c) transmitting the audible caller identification information to the called communication station.

16. The method of claim 15, wherein step (a) comprises the step of determining 10 whether caller identification information for the calling communication station is unavailable.

17. The method of claim 15, wherein step (a) comprises the step of determining whether the caller identification information for the calling communication station is incomplete.

18. The method of claim 15, wherein step (a) comprises the step of determining 15 whether caller identification information for the calling communication station has been blocked.

19. The method of claim 15, wherein step (b) comprises the step of transmitting a request for the calling party to speak his/her name.

20. The method of claim 15, wherein step (b) comprises the step of transmitting a 20 request for the calling party to speak the name of the party upon whose behalf he/she is calling.

21. The method of claim 15, further comprising the step of transmitting a message to the called communication station, the message comprising accept and reject options and a request for input from the called communication station.

25. 22. The method of claim 15, further comprising the step determining whether a human is available to answer the call.

23. The method of claim 15, further comprising the step of connecting the call in response to input from the called communication station.

30. 24. The method of claim 15, further comprising the step of canceling the call in response to input from the called communication station.

25. The method of claim 15, further comprising the step of transferring the call to a voice mail system in response to input from the called communication station.

26. The method of claim 15, further comprising the step of transferring the call to another location in response to input from the called communication station.

27. The method of claim 15, further comprising the step of transmitting a message to the calling communication station in response to input from the called communication
5 station.

28. The method of claim 15, further comprising the step of transmitting a text message to the called communication station.

29. The method of claim 27, wherein the text message identifies the name of the present service.

10 30. A system for processing a call from a calling party at a calling communication station to a called communication station comprising:

means for determining whether standard caller identification information for the calling communication station can be provided to the called communication station;

means for transmitting a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station; and

means for transmitting the audible caller identification information to the called communication station.

31. A system for processing a call from a calling party at a calling communication
20 station to a called communication station comprising:

a service control point operative to determine whether standard caller identification information for the calling communication station can be provided to the called communication station;

25 a service node coupled with the service control point, the service node being operative to transmit a request for audible caller identification information to the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station and being operative to transmit the audible caller identification information to the called communication station.

32. The system of claim 31, wherein the service control point is operative to
30 determine whether the standard caller identification information for the calling communication station is unavailable.

33. The system of claim 31, wherein the service control point is operative to determine whether the standard caller identification information for the calling communication station is incomplete.

34. The system of claim 31, wherein the service control point is operative to 5 determine whether the standard caller identification information for the calling communication station has been blocked.

35. The system of claim 31, wherein the service node is operative to transmit audible messages to the calling communication station.

36. The system of claim 31, wherein the service node is operative to transmit 10 audible messages to the called communication station.

37. The system of claim 31, wherein the service node is operative to receive and respond to input from the called communication station.

38. A system for processing a call from a calling party at a calling communication station to a called communication station comprising:

15 a service control point operative to determine whether standard caller identification information for the calling communication station can be provided to the called communication station;

an intelligent peripheral coupled with the service control point, the intelligent peripheral being operative to transmit a request for audible caller identification information to 20 the calling communication station in response to a determination that the standard caller identification information cannot be provided to the called communication station and being operative to transmit the audible caller identification information to the called communication station.

39. The system of claim 38, wherein the service control point is operative to 25 determine whether the standard caller identification information for the calling communication station is unavailable.

40. The system of claim 38, wherein the service control point is operative to determine whether the standard caller identification information for the calling communication station is incomplete.

30 41. The system of claim 38, wherein the service control point is operative to determine whether the standard caller identification information for the calling communication station has been blocked.

42. The system of claim 38, wherein the intelligent peripheral is operative to transmit audible messages to the calling communication station.

43. The system of claim 38, wherein the intelligent peripheral is operative to transmit audible messages to the called communication station.

5 44. The system of claim 38, wherein the intelligent peripheral is operative to receive and respond to input from the called communication station.

45. A computer usable medium having computer readable program code embodied therein for processing a call from a calling party at a calling communication station to a called communication station, the computer readable program code comprising:

10 a first computer readable program code for causing a computer to determine whether standard caller identification information for the calling communication station can be provided to the called communication station;

a second computer readable program code for causing a computer to transmit a request for audible caller identification information to the calling communication station in

15 response to a determination that the standard caller identification information cannot be provided to the called communication station; and

a third computer readable program code for causing a computer to transmit the audible caller identification information to the called communication station.

ABSTRACT OF THE DISCLOSURE

A method and system provide enhanced caller identification information to a called party. The system determines whether or not standard caller identification information associated with a calling party can be provided to the called party. The system preferably 5 determines whether the standard caller identification information is unavailable, incomplete or has been blocked. When the system determines that the standard caller identification information cannot be provided, the system transmits a request for audible caller identification information to the calling party. If the calling party provides the requested audible caller identification information, the audible caller identification 10 information is transmitted to the called party. The called party is thus provided with information about the calling party that can assist the called party in deciding whether or not to answer the call.

fig 2

Fig 3

fig 4

fig 5

fig 6

fig 7

United States Patent & Trademark Office

Office of Initial Patent Examination -- Scanning Division

Application deficiencies found during scanning:

1. Application papers are not suitable for scanning and are not in compliance with 37 CFR 1.52 because:
 - All sheets must be the same size and either A4 (21 cm x 29.7 cm) or 8-1/2" x 11".
Pages _____ do not meet these requirements.
 - Papers are not flexible, strong, smooth, non-shiny, durable, and white.
 - Papers are not typewritten or mechanically printed in permanent ink on one side.
 - Papers contain improper margins. Each sheet must have a left margin of at least 2.5 cm (1") and top, bottom and right margins of at least 2.0 cm (3/4").
 - Papers contain hand lettering.
2. Drawings are not in compliance and were not scanned because:
 - The drawings or copy of drawings are not suitable for electronic reproduction.
 - All drawings sheets are not the same size. Pages must be either A4 (21 cm x 29.7 cm) or 8-1/2" x 11".
 - Each sheet must include a top and left margin of at least 2.5 cm (1"), a right margin of at least 1.5 cm (9/16") and a bottom margin of at least 1.0 cm (3/8").
3. Page(s) _____ are not of sufficient clarity, contrast and quality for electronic reproduction.
4. Page(s) _____ are missing.
5. OTHER: NO Declaration