Chapitre 30

Déterminant

30	Déterminant	1
	30.4 Exemple	2
	30.11 Détermination d'une application n-linéaire sur une base	2
	30.18 Caractérisation par les transpositions	2
	30.19Une forme alternée change de signe par transposition	3
	30.21 Image d'une famille liée par une forme alternée	3

30.4 Exemple

Exemple 30.4

On considrée l'application :

$$\delta: \mathbb{K}^2 \times \mathbb{K}^2 \to \mathbb{K}; ((a,b),(c,d)) \mapsto ad - bc$$

Montrer que cette application est bien 2-linéaire.

$$\begin{split} \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix} + \lambda \begin{pmatrix} c' \\ d' \end{pmatrix}\right) &= \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c + \lambda c' \\ d + \lambda d' \end{pmatrix}\right) \\ &= a(d + \lambda d') - b(c + \lambda c') \\ &= ad - bc + \lambda (ad' - bc') \\ &= \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c \\ d \end{pmatrix}\right) + \lambda \delta\left(\begin{pmatrix} a \\ b \end{pmatrix}, \begin{pmatrix} c' \\ d' \end{pmatrix}\right) \end{split}$$

30.11 Détermination d'une application n-linéaire sur une base

Propostion 30.11

Soit pour tout $i \in [1, n]$, $(e_{i,j})_{1 \le j \le d}$ une base de E_i et pour tout $(j_1, \ldots, j_n) \in [1, d_1] \times \cdots \times [1, d_n]$, $f_i, \ldots, f_n \in F$.

Alors il existe une unique application n-linéaire $f: E_1 \times \cdots \times E_n \to F$ telle que :

$$\forall (j_1, \dots, j_n) \in [1, d_1] \times \dots \times [1, d_n], \varphi(e_{1,j_1}, \dots, e_{n,j_n}) = f_{j_1, \dots, j_n}$$

Si $(e_{i,j})_{1 \leq j \leq d}$ est une base de E_i alors $((e_{1,2},0,\ldots,0,\ldots,e_{1,d},0,\ldots,0),\ldots,(0,\ldots,0,e_{n,1},\ldots,(0,\ldots,0,e_{n,d})))$ est une base de $E_1 \times \cdots \times E_n$. (22.16), théorème de rigidité.

30.18 Caractérisation par les transpositions

Lemme 30 18

Pour qu'une forme f soit antisymétrique, il faut et il suffit que l'échange de deux variables quelconques provoque un changement de signe.

Par hypothèse, si τ est une transposition alors $\varphi(x_{\tau_1}, \dots, x_{\tau_n}) = -\varepsilon(\tau)(x_1, \dots, x_n)$. Soit $\sigma \in S_n$. On écrit $\sigma = \tau_1 \circ \dots \circ \tau_k$ avec τ_i des transpositions. Alors:

$$\varphi(x_{\sigma_1}, \dots, x_{\sigma_n}) = \varphi(x_{\tau_1 \circ \dots \circ \tau_k(1)}, \dots, x_{\tau_1 \circ \dots \circ \tau_k(n)})$$

$$= \varepsilon(\tau_1) \varphi(x_{\tau_2 \circ \dots \circ \tau_k(1)}, \dots, x_{\tau_2 \circ \dots \circ \tau_k(n)})$$

$$= \varepsilon(\tau_1 \circ \dots \circ \tau_k) \varphi(x_1, \dots, x_n)$$

$$= \varepsilon(\sigma) \varphi(x_1, \dots, x_n)$$

30.19 Une forme alternée change de signe par transposition

Lemme 30.19

Soit φ une forme alternée. Alors pour tout $(x_1,\ldots,x_n)\in E^n$ et tout $(i,j)\in [1,n]^2$ avec $i\neq j$:

$$\varphi(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n) = -\varphi(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)$$

Cela revient à dire que pour toute transposition $\tau \in S_n$, on a :

$$\varphi(x_1,\ldots,x_n) = -\varepsilon(\tau)\varphi(x_{\tau_1},\ldots,x_{\tau_n})$$

Réciproquement, si cette condition est satisfaite et si \mathbb{K} n'est pas de caractéristique 2, alors φ est alternée.

Soit φ alternée.

Soit $(x_1,\ldots,x_n)\in E^n$.

$$0 = \varphi(x_1, \dots, x_i + x_j, \dots, x_j + x_i, \dots, x_n)$$

$$= \varphi(x_1, \dots, x_i, \dots, x_i, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_j, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

$$+ \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

$$= \varphi(x_1, \dots, x_j, \dots, x_n) + \varphi(x_1, \dots, x_j, \dots, x_i, \dots, x_n)$$

On suppose que $\operatorname{carac}(\mathbb{K}) \neq 2$.

On a:

$$\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n) = \varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)$$
 (antisymétrie)

Donc:

$$2\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0$$

Donc:

$$\varphi(x_1,\ldots,x_i,\ldots,x_i,\ldots,x_n)=0$$

30.21 Image d'une famille liée par une forme alternée

Propostion 30.21

Soit (x_1,\ldots,x_n) une famille liée et φ une forme alternée. Alors :

$$\varphi(x_1,\ldots,x_n)=0$$

Si (x_1, \ldots, x_n) est liée, alors on peut écrire par exemple :

$$x_1 = \sum_{i=2}^{n} \lambda_i x_i$$

Donc:

$$\varphi(x_1, \dots, x_n) = \varphi\left(\sum_{i=2}^n \lambda_i x_i, x_2, \dots x_n\right)$$
$$= \sum_{i=2}^n \lambda_i \varphi(x_i, x_2, \dots, x_n)$$