A rollercoaster ride on the formal analysis of attested TLS

Muhammad Usama Sardar¹, Arto Niemi², Hannes Tschofenig³, Thomas Fossati⁴

¹TU Dresden, Germany

²Huawei Technologies, Helsinki, Finland

³Siemens, Absam, Austria

⁴Linaro, Lausanne, Switzerland

January 30, 2024

Agenda

- 1 TLS
- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Key Schedule
- Protocol
- 6 Properties
- Summary

• TLS¹: widely used protocol

¹https://datatracker.ietf.org/doc/html/rfc8446

- TLS¹: widely used protocol
- Conceptually 2 main protocols:

¹https://datatracker.ietf.org/doc/html/rfc8446

- TLS¹: widely used protocol
- Conceptually 2 main protocols:
 - Handshake

¹https://datatracker.ietf.org/doc/html/rfc8446

- TLS¹: widely used protocol
- Conceptually 2 main protocols:
 - Handshake
 - Record

¹https://datatracker.ietf.org/doc/html/rfc8446

TLS Handshake Protocol

- Most complex part of TLS
 - 1. Unauthenticated key exchange (and parameter negotiation)
 - 2. Authentication (inc. key confirmation)

Problem in TLS

No validation of security state of endpoint software and platform

Problem in TLS

- No validation of security state of endpoint software and platform
- Very complex: exploited at least 15 times

Outline

- 1 TLS
- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Key Schedule
- 5 Protocol
- 6 Properties
- Summary

Architecturally-defined Attestation

Architecturally-defined Attestation

Architecturally-defined Attestation

Data in use: Architecturally-defined attestation²

Intel TDX

	Integrity	Freshness	Confidentiality	Authentication
Intel's claimed TCB	×	×	×	×
Our proposed TCB	✓	✓	✓	×

Arm CCA

Attester	Integrity	Freshness	Confidentiality	Authentication
Platform	✓	×	✓	×
Realm	✓	✓	✓	×

Problem1: No server authentication

Problem2: No standard way of implementation

²Sardar et al., Formal Specification and Verification of Architecturally-defined Attestation Mechanisms in Arm CCA and Intel TDX, 2023.

Outline

- TLS
- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Key Schedule
- Protocol
- 6 Properties
- Summary

Transport	TLS/SPDM

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	Intel		Arm
Remote	SGX	SGX TDX	
Attestation	DCAP		
(arch-def)	DCAP		PA—RA
	EPID		

• Idea: compose transport protocol and attestation protocol

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	Intel		Arm
Remote	SGX	SGX TDX	
Attestation	DCAP		
(arch-def)	DCAP		PA—RA
	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	Intel		Arm
Remote	SGX	SGX TDX	
Attestation	DCAP		
(arch-def)	DCAP		PA—RA
	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)
 - Evidence is generated before TLS handshake

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	Intel		Arm
Remote	SGX	TDX	CCA
Attestation	DCAP		
(arch-def)	DCAP		PA—RA
	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)
 - Evidence is generated before TLS handshake
 - Potentially replay and relay attacks

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	Intel		Arm
Remote	SGX	TDX	CCA
Attestation	DCAP		
(arch-def)		DCAP	PA—RA
,	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)
 - Evidence is generated before TLS handshake
 - Potentially replay and relay attacks
- Post-handshake attestation (e.g., SCONE)

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	Intel		Arm
Remote	SGX	TDX	CCA
Attestation	DCAP		
(arch-def)		DCAP	PA—RA
,	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)
 - Evidence is generated before TLS handshake
 - Potentially replay and relay attacks
- Post-handshake attestation (e.g., SCONE)
 - Evidence is generated *after* TLS handshake

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	In ⁻	Arm	
Remote	SGX TDX		CCA
Attestation	DCAP		
(arch-def)	DCAP		PA—RA
	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)
 - Evidence is generated before TLS handshake
 - Potentially replay and relay attacks
- Post-handshake attestation (e.g., SCONE)
 - Evidence is generated after TLS handshake
 - High latency

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	Intel		Arm
Remote	SGX	TDX	CCA
Attestation	DCAP		
(arch-def)	DCAP		PA—RA
	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)
 - Evidence is generated before TLS handshake
 - Potentially replay and relay attacks
- Post-handshake attestation (e.g., SCONE)
 - Evidence is generated after TLS handshake
 - High latency
- Intra-handshake attestation³

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	In ⁻	Arm	
Remote	SGX TDX		CCA
Attestation	DCAP		
(arch-def)	DCAP		PA—RA
	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)
 - Evidence is generated before TLS handshake
 - Potentially replay and relay attacks
- Post-handshake attestation (e.g., SCONE)
 - Evidence is generated after TLS handshake
 - High latency
- Intra-handshake attestation³
 - Evidence is generated during TLS handshake

³https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Transport	TLS/SPDM		
	Intel		Arm
Remote	SGX	TDX	CCA
Attestation	DCAP		
(arch-def)		DCAP	PA—RA
	EPID		

- Idea: compose transport protocol and attestation protocol
- Pre-handshake attestation (e.g., Intel's RA-TLS)
 - Evidence is generated before TLS handshake
 - Potentially replay and relay attacks
- Post-handshake attestation (e.g., SCONE)
 - Evidence is generated after TLS handshake
 - High latency
- Intra-handshake attestation³
 - Evidence is generated during TLS handshake
 - Potentially sweet spot

https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/

Intel's RA-TLS (simplified) (see Intel-RA-TLSv2.pdf)

 Widely used protocol, e.g., in Gramine, RATS-TLS, Open Enclave Attested TLS, and SGX SDK Attested TLS

Intel's RA-TLS cert⁴

⁴https://gramine.readthedocs.io/en/latest/attestation.html

Outline

- TLS
- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Key Schedule
- 5 Protocol
- Operation
- Summary

Key Schedule⁵

```
PSK -> HKDF-Extract = Early Secret
          +----> Derive-Secret(., "ext binder" | "res binder", "")
                               = binder_key
          +----> Derive-Secret(., "c e traffic", ClientHello)
                               = client early traffic secret
         +----> Derive-Secret(,, "e exp master", ClientHello)
                               = early exporter master secret
   Derive-Secret(., "derived", "")
(EC)DHE -> HKDF-Extract = Handshake Secret
         +----> Derive-Secret(., "c hs traffic",
                               ClientHello...ServerHello)
                               = client handshake traffic secret
          +----> Derive-Secret(., "s hs traffic",
                               ClientHello...ServerHello)
                               = server_handshake_traffic_secret
   Derive-Secret(., "derived", "")
0 -> HKDF-Extract = Master Secret
          +----> Derive-Secret(., "c ap traffic",
                               ClientHello...server Finished)
                               = client_application_traffic_secret_0
          +----> Derive-Secret(., "s ap traffic",
                               ClientHello...server Finished)
                               = server application traffic secret 0
          +----> Derive-Secret(., "exp master",
                               ClientHello...server Finished)
                               = exporter_master_secret
         +----> Derive-Secret(., "res master",
                               ClientHello...client Finished)
                               = resumption master secret
```

⁵https://datatracker.ietf.org/doc/html/rfc8446#section-7.1

Key Schedule with 2nd stage (see TLS-KeyDerv2.pdf)

Issue 16

Incorrect implementation of salts for Handshake Secret and Master Secret (draft 20 implementation) #7

⁶https://github.com/Inria-Prosecco/reftls/issues/7

Issue 2^7

Incorrect derivation of Master Secret (draft 20 implementation) #6

⁷https://github.com/Inria-Prosecco/reftls/issues/6

TLS WG⁸

Now about the Inria paper that you have mentioned, I am not much knowledgeable about computational analysis. I understand that it helped them remove the assumption (that DH group elements do not match the corresponding labels) in their proof in CryptoVerif but the corresponding formal analysis in ProVerif in the same paper does not support this view, i.e., all properties remain the same regardless of the additional Derive-Secret.

Moreover, the implementation of key hierarchy in draft 20 in ProVerif by the authors is incorrect [5-6]. For instance, due to a strange reason and beyond our understanding, the draft 20 implementation does not use the Derive-Secret for Master Secret [5]. Do you have any thoughts/opinion on this? The same implementation is being used by other extensions as a baseline, including Lurk [7].

⁸https://mailarchive.ietf.org/arch/msg/tls/ZGmyHwTYh2iPwPrirj_rkSTYhDo/

Outline

- 1 TLS
- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Key Schedule
- Protocol
- 6 Properties
- Summary

RA-TLS in background check model (Intel-RA-TLSv3.pdf)

Outline

- TLS
- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Key Schedule
- 5 Protocol
- 6 Properties
- Summary

Replay protection of Evidence

query ev : bitstring;

$$inj - event(Accepted(ev)) ==> inj - event(Sent(ev))$$
 (1)

Outline

- TLS
- 2 Attestation (RA)
- 3 Attested TLS (RA+TLS)
- 4 Key Schedule
- 5 Protocol
- 6 Properties
- Summary

• Intel's RA-TLS is potentially vulnerable to replay attacks

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of formal tools

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of formal tools
- Plan

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of formal tools
- Plan
 - Formalize the proposed protocol⁹; discuss remaining issues; call for adoption

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of formal tools
- Plan
 - Formalize the proposed protocol⁹; discuss remaining issues; call for adoption
 - Compile all issues and discuss at IRTF UFMRG ML/meeting

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - 3. Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of formal tools
- Plan
 - Formalize the proposed protocol⁹; discuss remaining issues; call for adoption
 - Compile all issues and discuss at IRTF UFMRG ML/meeting
- Call to action

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of formal tools
- Plan
 - Formalize the proposed protocol⁹; discuss remaining issues; call for adoption
 - Compile all issues and discuss at IRTF UFMRG ML/meeting
- Call to action
 - anyone interested?

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

- Intel's RA-TLS is potentially vulnerable to replay attacks
- Need for standardized and formally verified attested TLS
- Lessons learnt
 - 1. Comments in formal models (best practices)
 - 2. Validation of formal models
 - Keep formal verification artifacts up to date (IRTF UFMRG)
 - 4. Usability of formal tools
- Plan
 - Formalize the proposed protocol⁹; discuss remaining issues; call for adoption
 - Compile all issues and discuss at IRTF UFMRG ML/meeting
- Call to action
 - anyone interested?
 - got someone at your org with expertise?

⁹Tschofenig et al., Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS), 2023.

Key References

Sardar, Muhammad Usama et al. Formal Specification and Verification of Architecturally-defined Attestation Mechanisms in Arm CCA and Intel TDX. Nov. 2023. URL: https://www.researchgate.net/publication/375592777_Formal_Specification_and_Verification_of_Architecturally-defined_Attestation_Mechanisms_in_Arm_CCA_and_Intel_TDX.

Tschofenig, Hannes et al. *Using Attestation in Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)*. Internet-Draft draft-fossati-tls-attestation-04. Work in Progress. Internet Engineering Task Force, Oct. 2023. 33 pp. URL: https://datatracker.ietf.org/doc/draft-fossati-tls-attestation/04/.