Convex Optimization

Madeleine Udell
Operations Research and Information Engineering
Cornell University

Schonfeld Quantitative, September 26 2017

What is an optimization problem?

the optimization contract:

you give me a function, and I'll find you its minimum

What is an optimization problem?

the optimization contract:

you give me a function, and I'll find you its minimum

- why optimize?
 - ▶ fit a model to data (e.g., understand customer preferences)
 - ▶ make predictions (e.g., image recognition)
 - ▶ maximize revenue (e.g., airline pricing)
 - maximize investment returns (e.g., quant finance)
 - design a control system (e.g., autopilot)
 - . . .

how to find the minimum?

▶ set derivative to zero

how to find the minimum?

▶ set derivative to zero ... derivative has an analytical formula

- ▶ set derivative to zero ... derivative has an analytical formula
- gradient descent / backprop

- ▶ set derivative to zero ... derivative has an analytical formula
- ▶ gradient descent / backprop . . . if f is differentiable

- set derivative to zero . . . derivative has an analytical formula
- ▶ gradient descent / backprop ...if f is differentiable
- other fancy optimization methods

- ▶ set derivative to zero ... derivative has an analytical formula
- ▶ gradient descent / backprop ...if f is differentiable
- other fancy optimization methods . . . where they apply

- set derivative to zero . . . derivative has an analytical formula
- ▶ gradient descent / backprop ...if f is differentiable
- other fancy optimization methods . . . where they apply
- point

- set derivative to zero . . . derivative has an analytical formula
- ▶ gradient descent / backprop . . . if f is differentiable
- other fancy optimization methods . . . where they apply
- point . . . if I can plot problem in 2D or 3D

how to find the minimum?

- set derivative to zero . . . derivative has an analytical formula
- ▶ gradient descent / backprop ... if *f* is differentiable
- other fancy optimization methods . . . where they apply
- point . . . if I can plot problem in 2D or 3D

key question: what do I know about the problem?

What is an optimization problem?

minimize
$$f_0(x)$$

subject to $f_i(x) \leq 0$, $i = 1, ..., m_1$
 $h_i(x) = 0$, $i = 1, ..., m_2$

- ▶ problem variable $x \in \mathbf{R}^n$
- objective f_0
- ▶ inequality constraints f_i
- equality constraints h_i

Convex optimization

general optimization problems are hard

- ▶ local minima, saddle points
- can take exponential time to solve

convex optimization problems are easy

- all minima are global
- ► fast, global convergence
- can prove we found a solution
- models a wide variety of real problems

Convexity

f is **convex** if for all $\theta \in [0,1]$

- equivalently,
 - ▶ f has nonnegative (upward) curvature
 - ▶ the graph of f never lies above its chords
 - $f'' \ge 0$ (if f is differentiable)

Convex optimization

convex optimization problem:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$, $i = 1, ..., m_1$
 $h_i(x) = 0$, $i = 1, ..., m_2$

where

- ightharpoonup objective f_0 is convex
- ightharpoonup inequality constraints f_i are convex
- ightharpoonup equality constraints h_i are affine

Convex in action

demo:

https://github.com/madeleineudell/schoenfeld/ Convex-tutorial.ipynb

Portfolio optimization

demo:

https://github.com/madeleineudell/schoenfeld/ Convex-tutorial.ipynb

Disciplined convex programming

Disciplined convex programming (DCP) [Grant, Boyd & Ye, 2006] provides a set of simple inductive rules to verify convexity:

- $f \circ g(x)$ is convex in x if
 - f is convex nondecreasing and g is convex
 - f is convex nonincreasing and g is concave

cf., the chain rule:

$$(f \circ g)''(x) = f''(g(x))(g(x))^2 + f'(g(x))g''(x)$$

Disciplined convex programming

Disciplined convex programming (DCP) [Grant, Boyd & Ye, 2006] provides a set of simple inductive rules to verify convexity:

- $f \circ g(x)$ is convex in x if
 - f is convex nondecreasing and g is convex
 - ▶ f is convex nonincreasing and g is concave

cf., the chain rule:

$$(f \circ g)''(x) = f''(g(x))(g(x))^2 + f'(g(x))g''(x)$$

- $f \circ g(x)$ is concave in x if $-f \circ g(x)$ is convex
- $f \circ g(x)$ is affine if it is both convex and concave

A function is **DCP** if its convexity (or concavity) can be inferred from these composition rules.

Disciplined convex programming

Disciplined convex programming (DCP) [Grant, Boyd & Ye, 2006] provides a set of simple inductive rules to verify convexity:

- $f \circ g(x)$ is convex in x if
 - f is convex nondecreasing and g is convex
 - ▶ *f* is convex nonincreasing and *g* is concave

cf., the chain rule:

$$(f \circ g)''(x) = f''(g(x))(g(x))^2 + f'(g(x))g''(x)$$

- $f \circ g(x)$ is concave in x if $-f \circ g(x)$ is convex
- $f \circ g(x)$ is affine if it is both convex and concave

A function is **DCP** if its convexity (or concavity) can be inferred from these composition rules.

(N.B. a function that is not DCP may still be convex)

DCP: demo

demo:

https://github.com/madeleineudell/schoenfeld/ Convex-tutorial.ipynb

Structure determines solvers

How should we solve this problem?

- ► LP solver?
- conic solver?
- nonlinear derivative based solver?
- operator splitting?

Structure determines solvers

How should we solve this problem?

- ► LP solver?
- conic solver?
- nonlinear derivative based solver?
- operator splitting?

What do we know about this problem's structure?

Structure

useful kinds of structure:

- ▶ is the problem convex?
- ▶ is the problem representable in some standard form?
 - convex: LP, QP, SOCP, SDP, . . .
 - ▶ nonconvex: MILP, MISOCP . . .
- ▶ is the problem smooth?
- **•** . . .

Optimization in Julia

model specifies structure; solvers exploit structure

- model (e.g., JuMP or Convex)
- glue (MathProgBase)
- solvers (e.g., GLKP, Gurobi, Mosek, ECOS, ...)

JuliaOpt curates all these solvers: http://www.juliaopt.org/

Convex optimization modeling tools

many choices for convex optimization modeling!

- Convex.jl (Julia; this talk)
- ► CVX (Matlab)
- CVXPY (Python)
- CVXR (R)

Summary

convex optimization provides

- ▶ flexible modeling
- ▶ fast, efficient, reliable algorithms
- guaranteed solutions