Mathematical Logic Homework 1

Ding Yaoyao

September 17, 2018

Solution 2.1. (a) \Rightarrow (b): If M is a limited set, then there exists a bijection between M and [|M|]. If M is a countable set, then there is a bijection between M and \mathbb{N} . Because M is at most countable, there exists a bijection g from a subset of \mathbb{N} to M. Then we define f from \mathbb{N} to M such that

$$f(n) = \begin{cases} g(n) & n \in Dom(f) \\ \text{an arbitrary element of } M & n \notin Dom(f) \end{cases}$$
 (1)

Then Range(f) = M, which means f is a surjection from \mathbb{N} to M.

 $(b) \Rightarrow (c)$: For each $x \in M$, let $S_x = \{n \mid f(n) = x\}$. Then we define g from M to \mathbb{N} such that

$$g(x) =$$
an arbitrary element of S_x (2)

Because f is a function from \mathbb{N} to M, $S_x \cap S_y = \emptyset$ for different x and y. Then g is a injection from M to \mathbb{N} .

 $(c) \Rightarrow (a)$: There is a bijection between M and Range(f). When the number of elements of M is limited, M is at most countable. When it's infinite, we only need to show that there is a bijection between Range(f) and \mathbb{N} . Because Range(f) is a subset of \mathbb{N} , we can list the elements of Range(f) in a line in ascending order. Then let g(i) be the i-th element in the line. Then g is a bijection between \mathbb{N} and Range(f). At the same time, there is a bijection between Range(f) and M. So there is a bijection between \mathbb{N} and M, which means M is countable. Above all, M is at most countable.

Solution 2.2. Firstly, it's obvious that for any $n \in \mathbb{N}$, A^n is at most countable. Let f_n be the bijection from \mathbb{N} to A^n . We can place the elements in A^* in such an order:

$$f_0(0), f_0(1), f_1(0), f_0(2), f_1(1), f_2(0), \dots$$

(Similar method are used to prove \mathbb{Q} is countable).

Solution 2.3. Prove by contradiction.

Assume f is a surjective function from M to Pow(M).

We construct a set S such that $x \in S$ if and only if $x \notin f(x)$.

There does not exist an element x in M such that f(x) = S. So f is not surjective.

Thus, there is not a surjective function from M to Pow(M).