Final Paper

AUTHOR Giovanni Rivera PUBLISHED
August 23, 2023

Obtaining the data

```
if (!require(data.table)) {
  install.packages("data.table")
  library(data.table)
}
df <- fread("vehicles.csv")</pre>
```

Data Dictionary

Columns in the vehicles data set

position	name	description							
1	id	entry ID							
2	url	listing URL							
3	region	craigslist region							
4	region_url	region URL							
5	price	entry price							
6	year	entry year							
7	manufacturer	manufacturer of vehicle							
8	model	model of vehicle							
9	condition	condition of vehicle							
10	cylinders	number of cylinders							
11	fuel	fuel type							
12	odometer	miles traveled by vehicle							
13	title_status	title status of vehicle							
14	transmission	transmission of vehicle							

position	name	description
15	vin	vehicle identification number
16	drive	type of drive
17	size	size of vehicle
18	type	generic type of vehicle
19	paint_color	color of vehicle
20	image_url	image URL
21	description	listed description of vehicle
22	county	useless column left in by mistake
23	state	state of listing
24	lat	latitude of listing
25	long	longitude of listing
26	posting_date	date of craigslist listing

Data Description

Part 1: Numerical Description

```
names(df)
 [1] "id"
                    "url"
                                   "region"
                                                  "region_url"
                                                                  "price"
                                                                  "cylinders"
 [6] "year"
                    "manufacturer" "model"
                                                  "condition"
[11] "fuel"
                    "odometer"
                                   "title_status" "transmission" "VIN"
[16] "drive"
                    "size"
                                   "type"
                                                   "paint_color"
                                                                  "image_url"
[21] "description"
                    "county"
                                   "state"
                                                   "lat"
                                                                  "long"
[26] "posting_date"
library(tidyverse)
df <- df |> select(-lat,-long,-id,-url,-region_url,-VIN)
names(df)
                                                   "manufacturer" "model"
 [1] "region"
                    "price"
                                   "year"
 [6] "condition"
                    "cylinders"
                                   "fuel"
                                                   "odometer"
                                                                  "title_status"
```

"size"

[11] "transmission" "drive"

```
[16] "image_url"
                     "description" "county"
                                                     "state"
                                                                      "posting_date"
str(df)
Classes 'data.table' and 'data.frame': 426880 obs. of 20 variables:
                : chr "prescott" "fayetteville" "florida keys" "worcester / central MA"
 $ region
 $ price
                :integer64 6000 11900 21000 1500 4900 1600 1000 15995 ...
                       NA NA NA NA NA NA NA NA NA ...
                : int
 $ year
                       ... ... ... ...
 $ manufacturer: chr
                       ... ... ... ...
 $ model
                : chr
 $ condition
                : chr
                       ... ... ... ...
 $ cylinders
                : chr
                       ... ... ... ...
 $ fuel
                : chr
                : int
                       NA NA NA NA NA NA NA NA NA ...
 $ odometer
 $ title_status: chr
                       ... ... ... ...
                       ... ... ... ...
 $ transmission: chr
                       ... ... ... ...
 $ drive
               : chr
                       ... ... ... ...
 $ size
                : chr
                       ... ... ... ...
                : chr
 $ type
                       ... ... ... ...
 $ paint_color : chr
 $ image_url : chr
                       ... ... ... ...
 $ description : chr
 $ county
               : logi NA NA NA NA NA ...
                : chr "az" "ar" "fl" "ma" ...
 $ state
 $ posting date: POSIXct, format: NA NA ...
 - attr(*, ".internal.selfref")=<externalptr>
df$state <-as.factor(df$state)</pre>
str(df)
Classes 'data.table' and 'data.frame': 426880 obs. of 20 variables:
                : chr "prescott" "fayetteville" "florida keys" "worcester / central MA"
 $ region
                :integer64 6000 11900 21000 1500 4900 1600 1000 15995 ...
 $ price
                : int NA NA NA NA NA NA NA NA NA ...
                       ... ... ... ...
 $ manufacturer: chr
                       ... ... ... ...
 $ model
               : chr
                       ... ... ... ...
 $ condition
                : chr
                       ... ... ... ...
 $ cylinders
                : chr
 $ fuel
                       ... ... ... ...
                : chr
 $ odometer
                : int
                       NA NA NA NA NA NA NA NA NA ...
                       ... ... ... ...
 $ title_status: chr
 $ transmission: chr
                       ... ... ... ...
                       ... ... ... ...
 $ drive
                : chr
                       .... .... .... ....
 $ size
                : chr
                       ... ... ... ...
 $ type
                : chr
```

"type"

"paint_color"

Manufactures & Paint Color

```
$ paint_color : chr "" "" "" "" ...
$ image_url : chr "" "" "" ...
$ description : chr "" "" "" ...
$ county : logi NA NA NA NA NA ...
$ state : Factor w/ 51 levels "ak","al","ar",..: 4 3 10 20 28 35 35 35 38 39 ...
$ posting_date: POSIXct, format: NA NA ...
- attr(*, ".internal.selfref")=<externalptr>
```

This contingency table demonstrates the frequencies of colors for each vehicle, by manufacturer.

Additionally, it further highlights the most popular colors being white and black across all manufacturers.

with(df,addmargins(table(paint_color,manufacturer)))

Ī	nanufact	urer									
paint_color		acura	alfa-	-romeo	aston-ma	artin	aud	i	bmw	buick	cadillac
	6051	1689		203		9	206	7 3	3789	1799	2059
black	1616	1004		217		5	193	4 3	3806	675	1659
blue	1160	307		164		3	71	9 1	L439	292	288
brown	182	73		9		0	6	5	157	235	110
custom	282	74		17		0	4	4	137	128	143
green	597	26		4		2	5	1	97	57	39
grey	687	367		11		1	56	3	892	218	224
orange	155	1		1		0		4	36	2	5
purple	67	2		0		0		2	13	18	10
red	1642	239		94		0	18	5	376	508	435
silver	1086	915		28		2	95	5 1	L501	550	686
white	3785	1279		149		2	97	4 2	2436	1013	1275
yellow	336	2		0		0	1	0	20	6	20
Sum	17646	5978		897		24	757	3 14	1699	5501	6953
ı	manufact	urer									
<pre>paint_color</pre>	chevrol	et chry	/sler	datsur	n dodge	ferra	ari	fiat	for	rd (gmc
	169	89	2160	25	4468		40	314	2154	ا9 5ء	468
black	72	25	813	2	2 2253		9	89	857	3 3	005
blue	36	60	512	ç			0	31	471		370
brown	10	16	94		83		0	19	91	.7	441
custom		39	130	2	2 186		2	33	117		240
green	7	44	58	2	352		0	32	129)5	144
grey	24	37	380		916		2	36	328		570
orange		51	4		1 215		0	4	33		12
purple		95	9	(70		0	0		77	13
red	52	81	336	7	7 1098		30	71	516	57	979
silver		27	800	3	3 1087		3	24	492		078
white	110		713		1980		8	133	1860		304
yellow		25	22	(1	6	37		61
Sum	550		6031	63	3 13707		95	792	7098	35 16°	785
ı	nanufact	urer									

paint_color harley-davidson honda hyundai infiniti jaguar jeep kia

				40	6421	2982	1345	448	6107	2643
	black			86	2753	1242	1070	518	3266	1246
	blue			5	2106	1170	639	207	1008	494
	brown			0	414	155	178	16	249	221
	custom			4	440	167	74	19	313	146
	green			0	374	67	30	88	688	225
	grey			3	2111	733	280	49	975	490
	orange			2	82	63	2	0	195	38
	purple			0	75	11	3	1	24	42
	red			4	1134	805	97	85	1612	660
	silver			7	2990	1403	477	191	1904	1082
	white			0	2328	1530	591	322	2459	1154
	yellow			2	41	10	16	2	214	16
	Sum		1	L53	21269	10338	4802	1946	19014	8457
	n	nanufact	urer							
pain	t_color	land ro	ver 1	lexus	lincol	n mazda	mercede	s-benz	mercury	mini
			12	2439	132	3 1726		2933	409	603
	black		1	1251	912	2 827		3049	91	289
	blue		1	354	34!	5 567		645	128	373
	brown		0	139	53	3 42		154	36	53
	custom		0	136	6	1 48		126	40	36
	green		1	81	39	9 67		48	57	119
	grey		3	472	94	4 441		632	53	85
	orange		0	4	;	2 6		4	1	30
	purple		0	1	:	1 10		8	2	3
	red		1	409	25	4 604		393	97	287
	silver		1	1377	390	6 461		1561	134	145
	white		1	1523	732	2 622		2235	130	322
	yellow		0	14	;	8 6		29	6	31
	Sum		21	8200	4220	0 5427		11817	1184	2376
	n	nanufact	urer							
pair	t_color	mitsubi	shi mo	rgan	nissan	pontiac	porsche	ram	rover	saturn
			828	1	5618	820	483	6500	623	395
	black		414	0	2805	208	250	2350	594	108
	blue		220	0	1183	183	99	924	70	115
	brown		128	1	295	32	26	175	18	18
	custom		30	0	289	47	12	240	32	21
	green		97	0	142	59	8	152	63	48
	grey		154	0	1656	125	75	832	117	47
	orange		190	0	45	22	3	65	3	13
	purple		3	0	43	7	2	18	0	2
	red		332	0	1354	290	58	1135	74	135
	silver		318	0	2438	228	133	1153	108	96
	white		570	1	3164	234	220	4771	. 405	83
	yellow		8	0	35	33	15	27	6	9
	Sum	3	292	3	19067	2288	1384	18342	2113	1090
	n	nanufact	urer							
pain	t_color	subaru	tesla	a toy	ota vol	kswagen	volvo	Sum		
		2858	215	10	066	2494	1192 1	30203		
	black	807	72	2 3	584	1671	512	62861		
	blue	1508	81	L 2	312	1053	324	31223		

, 5:21	PM					Fir	nal Paper
	brown	102	2	556	77	49	6593
	custom	137	1	698	95	58	6700
	green	422	3	820	102	43	7343
	grey	693	28	2748	646	186	24416
	orange	71	0	53	63	3	1984
	purple	9	0	37	8	1	687
	red	553	30	2853	610	159	30473
	silver	1217	41	5120	1031	384	42970
	white	1107	394	5267	1424	457	79285
	yellow	11	1	88	71	6	2142
	Sum	9495	868	34202	9345	3374	426880

Title Status and Contion

8/31/23,

This contingency table demonstrates the frequencies of title status's of each vehicle based on their condition.

A vehicle's title status could directly correlate and be impacted by its condition. The most common title status is a clean status followed by a rebuilt status.

```
with(df,addmargins(table(condition,title_status)))
```

ti	tle_st	tatus							
condition		clean	lien	missing	parts	only	rebuilt	salvage	Sum
	2759	167445	107	299		70	2048	1376	174104
excellent	5369	91734	586	57		18	2823	880	101467
fair	0	6156	47	188		27	142	209	6769
good	114	118461	389	208		29	1362	893	121456
like new	0	19870	265	8		9	791	235	21178
new	0	1226	25	5		4	30	15	1305
salvage	0	225	3	49		41	23	260	601
Sum	8242	405117	1422	814		198	7219	3868	426880

Title Status and State

This contingency table demonstrates the frequency of title status's by State.

Across all states the most common title status's are clean and rebuilt.

```
with(df,addmargins(table(state,title_status)))
```

t	itle_st	atus							
state		clean	lien	missing	parts	only	rebuilt	salvage	Sum
ak	0	3313	30	6		2	112	11	3474
al	153	4668	20	7		1	101	5	4955
ar	13	3911	8	11		0	83	12	4038
az	145	8285	43	17		4	108	77	8679
ca	1620	47512	97	112		32	181	1060	50614
СО	131	10694	53	17		3	127	63	11088
ct	10	5097	5	25		2	44	5	5188

,						1 11141 1 4	Per	
dc	26	2899	4	7	2	18	14	2970
de	0	932	3	2	0	10	2	949
fl	493	27331	67	51	13	500	56	28511
ga	21	6887	26	17	2	33	17	7003
hi	91	2823	6	4	1	29	10	2964
ia	292	7380	25	5	3	764	163	8632
id	59	8603	35	10	5	188	61	8961
il	187	10009	26	12	0	129	24	10387
in	0	5509	19	5	1	157	13	5704
ks	78	5908	20	8	7	145	43	6209
ky	10	3880	16	6	2	217	18	4149
la	20	3070	12	4	0	62	28	3196
ma	138	7835	11	16	6	149	19	8174
md	26	4666	12	7	5	33	29	4778
me	1	2900	16	21	3	20	5	2966
mi	1036	15404	91	22	4	251	92	16900
mn	71	7212	32	18	6	228	149	7716
mo	1	4167	23	16	2	62	22	4293
ms	26	960	9	3	0	13	5	1016
mt	78	6069	47	20	3	44	33	6294
nc	606	13953	60	29	14	338	277	15277
nd	0	403	3	0	2	0	2	410
ne	1	973	4	3	0	23	32	1036
nh	2	2922	17	20	4	13	3	2981
nj	26	9511	8	13	3	130	51	9742
nm	23	4193	21	16	2	20	150	4425
nv	16	3073	9	9	0	65	22	3194
ny	79	18986	87	38	7	114	75	19386
oh	449	16735	36	8	7	363	98	17696
ok	1	6647	36	9	1	76	22	6792
or	192	16513	29	30	3	217	120	17104
pa	290	12902	20	12	9	294	226	13753
ri	0	2279	3	15	5	11	7	2320
SC	66	5975	25	4	2	60	195	6327
sd	0	1216	13	4	0	15	54	1302
tn	265	10301	34	24	8	380	54	11066
tx	112	21796	66	70	15	638	248	22945
ut	20	995	6	1	0	99	29	1150
va	181	10357	59	7	2	106	20	10732
vt	18	2417	9	28	1	35	5	2513
wa	1026	12584	22	12	1	174	42	13861
wi	143	10869	93	10	2	208	73	11398
WV	0	1015	2	2	1	11	21	1052
wy	0	578	4	1	0	21	6	610
Sum	8242	405117	1422	814	198	7219	3868	426880

```
library(tidyverse)
df <- df[df$price<100000&df$price>0,]
dfd<-df |> select("price", "cylinders", "odometer", "size", "manufacturer")
dfd$size<-as.factor(dfd$size)</pre>
```

```
dfd$price<-as.factor(dfd$price)
dfd$odometer<-as.factor(dfd$odometer)
dfd$cylinders<-as.factor(dfd$cylinders)</pre>
```

Summary of price ranging from 1 to 99999.

```
df$price <- as.integer(df$price)
summary(df$price)</pre>
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max.
1 7000 15000 18709 27590 99999
```

Before sorting the price range to be between 0 and 100000 the outrageously high prices dragged the mean above the median, however on setting a price range, the mean is now closer to the median and they provide a certain amount of accuracy. The mean here is 18709 and the median is 15000.

Stem plot of odometer.

```
dfd$odometer<- as.numeric(dfd$odometer)
stem(dfd$odometer[1:100])</pre>
```

The decimal point is 4 digit(s) to the right of the |

- 0 | 011133334444455556667778888899
- 1 | 02333444555578888999
- 2 | 0111222888
- 3 | 025669
- 4 | 15699
- 5 | 002
- 6 | 7
- 7 | 5
- 8 | 6
- 9 | 0

Count of cylinders

```
dfd |> count(cylinders,sort=TRUE)
```

```
cylinders
                     n
1:
                160154
2:
   6 cylinders 88781
   4 cylinders
                 72995
4:
   8 cylinders 66484
5:
    5 cylinders
                  1668
6: 10 cylinders
                  1344
7:
          other
                  1081
   3 cylinders
                   611
8:
                   170
9: 12 cylinders
```

This representation shows that majority of the users did not fill in an answer for cylinders, however of those that did, "6 cylinders" are the most popular.

Contingency table between manufacturer and cylinders.

```
dfA<- subset (df, manufacturer %in% c("ford", "honda", "toyota", "chevrolet", "nissan"))
dfB<- subset (dfA, cylinders %in% c("10 cylinders", "12 cylinders", "3 cylinders", "4 cyl
tbl<- table(dfA$manufacturer, dfA$cylinders)
addmargins(tbl)</pre>
```

		10 0	lindors	12 /	cv1 -	indorc	2	cylinde	cc 1	cv1	indore
		то су		12 (Су С.		J	•		Сус	
chevrolet	18602		28			2		3	39		6414
ford	26028		929			3		13	L9		7514
honda	7386		7			0		4	17		8686
nissan	6600		26			0			5		5571
toyota	11585		8			0		1	L0		9067
Sum	70201		998			5		22	20		37252
	5 cylir	nders	6 cylind	ders	8 (cylind	ers	other	9	Sum	
chevrolet		144	-	7215		180	001	91	50	536	
ford		29	12	2922		173	144	125	648	813	
honda		14	3	3685			12	29	198	866	
nissan		3	3	3998		10	0 98	90	173	391	
toyota		9	8	3092		2	788	37	31	596	
Sum		199	35	5912		390	ð43	372	1842	202	

On observing the cylinders of the most popular manufacturers, we can see that chevrolet and ford have 8 cylinders as their most produced whereas honda, nissan, and toyota have 4 cylinders as their most produced.

Contingency table between size and manufacturer.

```
dfX<- subset (df, size %in% c("compact", "full-size", "mid-size", "sub-compact"))
dfY<- subset (dfX, manufacturer %in% c("ford", "honda", "toyota", "chevrolet", "nissan"))
tbl<- table(dfY$size, dfY$manufacturer)
addmargins(tbl)</pre>
```

	chevrolet	ford	honda	nissan	toyota	Sum
compact	1685	1579	1650	1063	1631	7608
full-size	10351	13748	2284	1969	3785	32137
mid-size	3032	3835	2614	2097	3615	15193
sub-compact	237	496	302	101	183	1319
Sum	15305	19658	6850	5230	9214	56257

The entire data set has too many manufacturers to clearly analyze the data so I've chosen 5 of the most popular manufacturers. On short-listing the most popular manufacturers and comparing their respective

sizes, it is clear to see that the most popular size in Chevrolet, Ford, and Toyota is "full-size" whereas in Honda and Nissan it is "mid-size".

Number of vehicles from each year

```
df |> count(year,sort=TRUE)
```

```
year
  1: 2018 32563
  2: 2017 32463
  3: 2013 28188
  4: 2015 27945
  5: 2016 27376
109: 1905
               1
110: 1909
               1
111: 1915
               1
112: 1918
               1
113: 1943
               1
```

Number of Vehicles from each manufacturer

```
df |> count(manufacturer,sort=TRUE)
```

```
manufacturer
               ford 64813
 1:
          chevrolet 50536
 2:
 3:
             toyota 31596
 4:
              honda 19866
 5:
               jeep 17449
 6:
             nissan 17391
 7:
                ram 16443
 8:
                     15988
 9:
                gmc 15420
10:
                bmw 13738
              dodge 12325
11:
      mercedes-benz 10391
12:
13:
            hyundai 9374
14:
             subaru 8984
15:
         volkswagen 8896
                     7739
16:
              lexus
17:
                kia 7547
               audi
18:
                     7150
19:
           cadillac 6570
20:
              acura 5702
21:
           chrysler 5653
22:
              buick 5181
23:
              mazda 5048
24:
           infiniti 4471
```

```
25:
            lincoln 4033
26:
               volvo
                     3276
27:
         mitsubishi
                     3109
28:
               mini 2260
29:
            pontiac 2229
30:
                     1976
               rover
                      1898
31:
             jaguar
32:
                      1269
            porsche
33:
                      1137
            mercury
34:
             saturn
                      1071
35:
         alfa-romeo
                       870
36:
              tesla
                       845
37:
               fiat
                       772
38: harley-davidson
                       138
39:
             datsun
                        63
40:
            ferrari
                        39
41:
       aston-martin
                        18
42:
         land rover
                        11
43:
                         3
             morgan
       manufacturer
                         n
```

Number of Vehicles from each model

```
df |> count(model,sort=TRUE)
```

```
model
                                       n
    1:
                              f-150 7115
    2:
                                    4600
    3:
                     silverado 1500 4546
    4:
                               1500 3800
    5:
                              camry 2827
28133:
                                X5M
                                       1
28134:
                                       1
                         sorento lx
28135:
28136:
              Mercedes benz ml 350
                                         1
28137: • GMC Sierra 1500 SLE 4X4 •
                                           1
```

Number of Vehicles from each type of drive

```
df |> count(drive, sort=TRUE)
```

```
drive n
1: 4wd 120500
2: 119969
3: fwd 97602
4: rwd 55217
```

contingency table comparing manufacturers and drive of vehicles

with(df,table(manufacturer,drive))

·	drive			
manufacturer	a1 1 V C	4wd	fwd	rwd
marraractarer	6240	2141	3149	4458
acura	2569	840	2255	38
alfa-romeo	585	61	4	220
aston-martin	2	0	0	16
audi	4154	2218	750	28
bmw	5719	2957	272	4790
buick	1822	558	2610	191
cadillac	2587	1514	1409	1060
chevrolet	14563	16394	9819	9760
chrysler	1699	264	2775	915
datsun	24	0	0	39
dodge	3603	1575	3525	3622
ferrari	5	0	17	17
fiat	164	13	440	155
ford	18071	25123	10317	11302
gmc	4519	8136	1126	1639
harley-davidson	84	12	3	39
honda	5869	3206	10633	158
hyundai	2842	840	5269	423
infiniti	1697	1103	576	1095
jaguar	1113	116	28	641
jeep	2728	13261	1002	458
kia	2089	678	4627	153
land rover	2	9	0	0
lexus	2116	1758	2378	1487
lincoln	1268	842	1467	456
mazda	1202	481	2222	1143
mercedes-benz	4246	2144	483	3518
mercury	364	142	282	349
mini	680	180	1381	19
mitsubishi	892	1129	873	215
morgan	2	0	0	1
nissan	4396	4072	7558	1365
pontiac	799	58	861	511
porsche	573	336	9	351
ram	3726	10606	677	1434
rover	590	1369	10	7
saturn	409	86	486	90
subaru	3690	5058	113	123
tesla	190	119	14	522
toyota	8137	9657	11806	1996
volkswagen	2500	554	5538	304
volvo	1439	890	838	109

contingency table comparing year and drive of vehicles

with(df,table(year,drive))

dr	ive			
year		4wd	fwd	rwd
1900	9	1	2	0
1901	2	0	0	1
1905	0	0	0	1
1909	1	0	0	0
1910	2	0	0	0
1913	0	0	0	2
1915	0	0	0	1
1915	1	0	0	1
1918				1
	0	0	0	
1920	1	0	0	1
1921	1	0	0	1
1922	1	0	0	2
1923	10	0	0	26
1924	2	0	0	7
1925	3	0	0	5
1926	7	0	0	9
1927	10	0	3	23
1928	10	1	1	24
1929	24	0	0	32
1930	38	0	0	29
1931	35	0	0	22
1932	20	0	3	31
1933	8	0	1	14
1934	19	0	1	23
1935	10	0	0	13
1936	23	0	0	20
1937	31	0	1	38
1938	15	1	1	20
1939	13	0	4	30
1940	39	1	3	36
1941	22	1	1	41
1942	6	0	0	8
1943	1	0	0	0
1944	0	3	0	0
1945	0	2	0	0
1946	23	5	4	25
1947	27	0	1	35
1948	43	6	3	47
1949	35	3	2	44
1950	38	2	3	59
1951	36	4	2	54
1952	42	7	2	57
1953	44	6	4	48
1954	44	3	5	46
1955	77	6	2	125
		•	_	

3:21 PWI				
1956	69	9	3	78
1957	70	8	0	80
1958	40	3	1	28
1959	33	4	3	44
1960	45	4	6	61
1961	39	3	3	37
1962	55	4	5	67
1963	87	17	5	120
1964	116	8	2	141
1965	149	5	5	194
1966	175	11	13	207
1967	145	8	9	186
1968	160	24	16	220
1969	159	27	9	203
1970	156	13	6	154
1971	100	18	11	170
1972	174	35	7	191
1973	99	33	11	179
1974	93	30	7	143
1975	70	27	5	91
1976	85	45	7	100
1977	81	48	4	128
1978	89	65	11	176
1979	133	61	13	175
1980	102	32	11	121
1981	68	31	17	95
1982	67	27	15	105
1983	84	41	9	122
1984	149	70	25	139
1985	149	80	40	195
1986	186	102	27	206
1987	177	92	32	221
1988	169	125	38	189
1989	157	155	53	195
1990	169	141	74	207
1991	164	152	77	210
1992	213	122	71	201
1993	185	178	117	206
1994	244	262	107	337
1995	366	365	147	355
1996	334	398	187	367
1997	480	497	233	473
1998	628	448	348	530
1999	822	1023	466	713
2000	969	1037	684	780
2001	1279	1280	879	890
2002	1625	1617	1111	1062
2003	1846	2250	1553	1258
2004	2467	2886	1926	1371
2005	3160	3129	2327	1579
2006	3542	3728	3050	1750

```
2007
      4306
            4153
                   3716
                         1998
2008
      5033
            5057
                   4224
                         1961
2009
      3527
             3219
                   3544
                         1284
2010
      4706
            4234
                   4384
                         1655
2011
      5818
            6247
                   4566
                         2387
2012
      6836
            6783
                   6181
                         2526
2013
      8619
            7821
                   8039
                         3709
2014
      8377
            8641
                   6791
                         3158
2015
      8150
            9101
                   7558
                         3136
2016 7196
            9093
                   7760
                         3327
2017
      9463 11364
                   8287
                         3349
2018 10325 10779
                   8188
                         3271
2019
      7115
            7339
                   5428
                         2951
2020
      6613
            4570
                   4311
                         2236
2021
       554
              849
                    405
                           83
2022
                      6
                            2
        53
               42
```

statistical summary of year

```
with(df,summary(year))
```

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's 1900 2008 2013 2011 2017 2022 1171

library(tidyverse)
library(MASS)
library(pander)

pander(addmargins(with(df,table(type,fuel))))

		diesel	electric	gas	hybrid	other	Sum
	791	8252	161	73953	815	1765	85737
bus	0	207	1	260	0	30	498
convertible	5	17	14	7008	37	292	7373
coupe	38	37	18	16355	39	1576	18063
hatchback	35	170	502	11302	1282	2626	15917
mini-van	41	18	0	4363	5	125	4552
offroad	0	31	0	561	0	1	593
other	47	888	52	14286	364	4139	19776
pickup	391	5851	3	28153	13	6944	41355
sedan	507	843	694	71005	1353	5877	80279
SUV	588	698	133	65163	494	3453	70529

		diesel	electric	gas	hybrid	other	Sum
truck	21	8739	2	21646	66	118	30592
van	116	297	1	6992	18	542	7966
wagon	10	193	42	8877	399	537	10058
Sum	2590	26241	1623	329924	4885	28025	393288

pander(addmargins(with(df,table(type,transmission))))

		automatic	manual	other	Sum
	328	76979	7238	1192	85737
bus	0	377	58	63	498
convertible	23	4915	1573	862	7373
coupe	50	9389	3028	5596	18063
hatchback	58	7941	1639	6279	15917
mini-van	15	4478	44	15	4552
offroad	0	356	231	6	593
other	376	8400	801	10199	19776
pickup	240	26619	1336	13160	41355
sedan	304	62065	3426	14484	80279
SUV	286	61868	1885	6490	70529
truck	20	28184	1802	586	30592
van	15	7261	98	592	7966
wagon	101	7445	593	1919	10058
Sum	1816	306277	23752	61443	393288

pander(addmargins(with(df,table(transmission,fuel))))

		diesel	electric	gas	hybrid	other	Sum
	334	115	19	1237	17	94	1816
automatic	2071	22964	781	266633	3800	10028	306277
manual	80	2293	12	20888	124	355	23752
other	105	869	811	41166	944	17548	61443

		diesel	electric	gas	hybrid	other	Sum
Sum	2590	26241	1623	329924	4885	28025	393288

Part 2: Visual Description

Title Status and Condition Bar Chart

This bar chart demonstrates the count of title status's for all vehicles which is disproportionately a clean title status, additionally it also demonstrates the condition of the vehicle.

```
df_bar <- ggplot(data = df, aes(title_status, fill = condition))
df_bar +
  geom_bar(stat = "count") +
  scale_fill_brewer() +
  scale_y_continuous(labels = scales::number_format(scale = 1e6, accuracy = 0.1, suffix =</pre>
```


Manufacturer and Paint Color

Demonstrates the relationship between a vehicle's manufacturer and the vehicle's paint color. The most common types of relationships are a vehicle being manufactured by Ford and being the color white, a

vehicle being manufactured by Chevrolet and being the color white, and a vehicle being manufactured by Ford and being the color black.

```
dfX_manufacturer<- subset(df, manufacturer %in% c("chevrolet", "ford", "honda", "nissan")
dfY_manufacturer<- subset(dfX_manufacturer, paint_color %in% c("white", "black", "silver"</pre>
```

```
g_manufacturer <- ggplot(data = dfY_manufacturer, aes(manufacturer, paint_color))
g_manufacturer + geom_count()</pre>
```


Title Status and State

Demonstrates the title status of the top three states with the highest number of vehicles. The vehicles title statuses are overwhelmingly a clean title status.

```
dfX_state<- subset (df, state %in% c("tx", "ca", "fl"))
dfY_state<- subset (dfX_state, title_status %in% c("clean", "lien", "missing", "rebuilt",

df_state <- ggplot(data = dfY_state, aes(state,fill=title_status))
df_state + geom_bar(stat = "count") + scale_fill_brewer()</pre>
```


Number of Vehicles from each year

This is a visualization in the form of a stem plot of the number of vehicles from each year. Evidently, year the most cars are from is 2017 with 36420 cars.

```
stem(df$year)
```

The decimal point is 1 digit(s) to the right of the |

Type of Model Visualization

This is a visualization in the form of a stem plot of the type of model of each vehicle. The model with the most cars is F-150 with 8009 cars.

```
df$model<-as.numeric(df$model)</pre>
```

Warning: NAs introduced by coercion

```
stem(df$model)
```

```
The decimal point is 4 digit(s) to the right of the |
-0 | 0
1 |
2 | 15
3 | 9
4 |
5 |
6 |
7 |
8 |
9 | 3558
10 | 08
11 |
12 | 3
13 | 35
14 | 2
15 | 8
16 | 4
17 | 0
18 |
19 |
20 | 00
21 |
22 |
23 |
24 | 8
```

Vehicle manufacturer and drive of the cars

This is a visualization in the form of a stacked bar chart comparing vehicle manufacturer and drive of the cars in the data set for the top manufacturers .

```
dfmanufacturerx <- subset(df, manufacturer %in% c("ford", "honda", "chevrolet", "nissan",</pre>
```

```
ggplot(data = dfmanufacturerx, aes(x = manufacturer, fill = drive)) +
   geom_bar(stat = "count")
```


Comparing vehicle manufacturer and model

This is a visualization in the form of a stacked bar chart comparing vehicle manufacturer and model of the cars in the data set.

```
df$model<-as.factor(df$model)
ggplot(data = df, aes(manufacturer, fill = model)) +
    geom_bar(stat = "count")</pre>
```


Comparing vehicle year and drive

This is a visualization in the form of a stacked bar chart comparing vehicle year and drive of the cars in the data set.

```
ggplot(data = df, aes(x = year, fill = drive)) +
  geom_bar(stat = "count")
```

Warning: Removed 1171 rows containing non-finite values (`stat_count()`).

Manufacturer and Price

These are bar graphs showing the relationship between manufacturer and total price, and manufacturer and average price.

```
df <- df[df$price<500000&df$price>500,]
df<- subset (df, manufacturer %in% c("ford", "honda", "toyota", "chevrolet", "nissan"))
df$price<-as.numeric(df$price)
options(scipen=999)
f <- ggplot(df,aes(manufacturer,price))
f + geom_col() + scale_fill_manual(values=c(("lightblue"),("darkblue"),("pink"),("yellow")</pre>
```



```
dfa <- df |> group_by(manufacturer) |>
   summarize(avprice = mean(price))
ggplot(dfa,aes(manufacturer,avprice))+geom_col() + scale_fill_manual(values=c(("lightblue")))
```


From this we can clearly see that a car manufactured by ford is on average more expensive than the others in comparisions, and one manufactured by honda is cheaper.

Manufacturer and Cylinders A bar graph showing the relationship between manufacturers and cylinders.

```
df<- subset (df, manufacturer %in% c("ford", "honda", "toyota", "chevrolet", "nissan"))
ggplot(df, aes(x = manufacturer, fill=cylinders)) +
    geom_bar(stat = "count")</pre>
```


Chevrolet and Ford have produced a majority of cars their cars with 8 cylinders whereas cars with 3 cylinders are prevalent in honda, nissan, and toyota. We can also see that cylinders are often not mentioned from the glaring red patches in each column.

Odometer and Size A box plot showing the rlationship between type of car and odometer, with outliers removed for accuracy.

```
dfC<- subset (df, size %in% c("compact", "full-size", "mid-size", "sub-compact"))
dfC |> ggplot(aes(size,odometer))+geom_boxplot(outlier.shape=NA)+ scale_y_continuous(lim
```

Warning: Removed 17285 rows containing non-finite values (`stat_boxplot()`).

We can see how the median of the odometer values for all types of cars is very similar.

Type and Price

```
df <- df[df$price<500000&df$price>500,]
df<- subset (df, type %in% c("pickup", "sedan", "SUV", "truck", "hatchback"))
ggplot(df,aes(type,price)) + geom_violin(scale = "area")</pre>
```


The above violin plot demonstrates a visual representation of the distribution of the price of vehicle based on the type of vehicle, from the violin plot we can infer the median, interquartile range, and the shape of the distribution of prices of vehicles based on vehicle type. For example a pickup vehicle will have a higher mean and median price compared to a sedan.

Vehicle type and Fuel Type

```
df<- subset (df, type %in% c("pickup", "sedan", "SUV", "truck", "hatchback"))
ggplot(df, aes(type, fuel)) + geom_count()</pre>
```


Regression Analysis

```
plot(df$year,df$price,col = "black",main = "Price and Year",
abline(lm(df$year~df$price)),cex = 1.3,pch = 1,xlab = "Year",ylab = "Price")
```

Price and Year

This linear model demonstrates the distribution of price and year. Furthermore, this linear model demonstrates that the distribution for price and odometer is significantly not normally distributed as there is a significant amount of outliers found throughout the model, giving the model a non linear appearance.

```
plot(df$price,df$odometer,col = "black",main = "Price and Odometer",
abline(lm(df$price~df$odometer)),cex = 1.3,pch = 1,xlab = "Price",ylab = "Odometer")
```

Price and Odometer

This linear model demonstrates the distribution of price and odometer. Furthermore, this linear model demonstrates that the distribution for price and odometer is significally normally distributed, however, there is a significant amount of outliers found mostly within the price range of 0 to 20000.

```
library(caret)
library(leaps)

library(ggplot2)

model <- lm(price ~ type + cylinders + drive, data = df)</pre>
```

```
Call:
```

```
lm(formula = price ~ type + cylinders + drive, data = df)
```

Residuals:

summary(model)

```
Min 10 Median 30 Max -32312 -6834 -1159 5719 94014
```

Coefficients:

Estimate Std. Error t value Pr(>|t|)

```
178.0 84.632 < 0.0000000000000000 ***
(Intercept)
                       15067.4
                                    184.2 71.833 < 0.0000000000000000 ***
typepickup
                       13234.1
typesedan
                        -581.3
                                    161.4 -3.602
                                                              0.000316 ***
typeSUV
                        1373.5
                                    178.1
                                           7.713
                                                    0.000000000000124 ***
typetruck
                       12677.9
                                    198.7 63.820 < 0.0000000000000000 ***
cylinders10 cylinders
                       -3563.8
                                    489.7
                                          -7.277
                                                    0.000000000003433 ***
cylinders12 cylinders -14747.6
                                   5803.2 -2.541
                                                              0.011046 *
cylinders3 cylinders
                                    963.3 -3.124
                       -3009.2
                                                              0.001786 **
cylinders4 cylinders
                                    104.2 - 50.821 < 0.00000000000000000 ***
                       -5294.1
cylinders5 cylinders
                     -17038.9
                                    947.9 -17.975 < 0.0000000000000000 ***
cylinders6 cylinders
                       -4552.9
                                    102.4 -44.481 < 0.0000000000000000 ***
cylinders8 cylinders
                       -3780.7
                                    109.7 - 34.456 < 0.0000000000000000 ***
cylindersother
                       -3378.3
                                    764.1 -4.421
                                                    0.0000098238119481 ***
drive4wd
                        4522.6
                                    112.9 40.057 < 0.0000000000000000 ***
drivefwd
                                    123.6 -2.635
                        -325.8
                                                              0.008410 **
driverwd
                       -4831.3
                                    154.0 -31.368 < 0.0000000000000000 ***
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 11600 on 111679 degrees of freedom Multiple R-squared: 0.3368, Adjusted R-squared: 0.3367

F-statistic: 3781 on 15 and 111679 DF, p-value: < 0.00000000000000022

Regression Diagnostics

Residuals and Fitted Values

```
model <- lm(price ~ year + odometer + cylinders + condition + fuel + transmission + drive
plot(model$fitted.values, model$residuals,
    xlab = "Fitted Values", ylab = "Residuals",
    main = "Residuals and Fitted Values")
```

Residuals and Fitted Values

The Residuals and Fitted Values plot demonstrates the residuals in comparison to the the fitted values from the linear regression model. Some kind of a linear relationship is demonstrated by the plot as the points do not go below a certain defined line.

We expect to see no clear patterns in the plot, which indicates that the linear regression model is appropriate for the data. If there is a clear pattern, it suggests that the linear regression model may not be appropriate.

Normal Q Q Plot

qqnorm(model\$residuals)
qqline(model\$residuals)

Normal Q-Q Plot

The Normal Q Q Plot demonstrates whether the residuals are normally distributed in the data. The relatively straight line between all the points indicates that the residuals are normally distributed. We only see significant deviation from the straight line at starting near the theoretical quantity of 2.

Scale Location Plot

```
plot(sqrt(abs(model$residuals)), model$fitted.values,
    xlab = "Absolute Residuals", ylab = "Fitted Values",
    main = "Scale Location Plot")

abline(lm(sqrt(abs(model$residuals)) ~ model$fitted.values), col = "blue")
```

Scale Location Plot

The Scale Location Plot demonstrates the square root of the absolute residuals against the fitted values. There is no clear pattern between fitted values and the absolute residuals demonstrating significant variance, however, the points seem to not go below a linear line that is concaving down.

Residuals and Leverage Plot

```
plot(model, which = 5)
```


The Residuals and Leverage plot shows the leverage of each point compared to its standardized residuals. Most points are found in between 0.0 and 0.002 on the x-axis demonstrating the leverage. Additionally, most points do not fall near the line. Ultimately, demonstrating that the points significantly impact the regression line.