MF921 Topics in Dynamic Asset Pricing Stochastic Analysis & Stochastic Calculus in Quantitative Finance

Yuanhui Zhao

Boston University Week 2

Part I, Chapter 15

Option Pricing via the Change of Numeraire Argument

Change of Numeraire: Motivation and Key Idea

In option pricing, we usually price under the risk-neutral measure using the money market account $B(t)=e^{rt}$ as the numeraire. But sometimes payoffs become simpler if we change the unit of measurement (the numeraire). Instead of measuring in "dollars," measure in "shares of stock".

The key idea is:

- \bullet Pick any strictly positive traded asset N(t) as the numeraire.
- $\begin{array}{c} \bullet \ \ \text{Then define a new probability measure } \tilde{\mathbb{P}} \ \text{such that} \\ \frac{S(t)}{N(t)} \ \ \text{is a martingale under } \tilde{\mathbb{P}}. \ \text{No-arbitrage is preserved}. \end{array}$

We first look at the details how this work (Radon Nikodym derivative & Girsanov Theorem) and then apply the scheme to price different type of options.

Change of Numeraire

Given $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}^*)$ with d-dim Brownian W:

- Money market account (baseline numeraire): $dB_t = B_t r_t dt$
- Traded asset S(t): $dS_t = S_t(r_t dt + \sigma_t dW_t)$, $\frac{S_t}{B_t}$ is a martingale.
- ullet Derivative pricing rule: for payoff X_T at maturity T, $V_0 = \mathbb{E}^{\mathbb{P}^*}\left[rac{X_T}{B_T}
 ight]$

Our goal is to pick another strictly positive traded asset N(t) and define a new measure $\tilde{\mathbb{P}}$ such that $\frac{S(t)}{N(t)}$ is a martingale for every traded asset S(t).

Change of Numeraire Con.

Oberve $\frac{S(t)}{B(t)}$ is a martingale under \mathbb{P}^* . We want $\frac{S(t)}{N(t)}$ to be a martingale under $\tilde{\mathbb{P}}$.

Define $\tilde{\mathbb{P}}$ via the Radon–Nikodym derivative with respect to \mathbb{P}^* :

$$\left. \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}^*} \right|_{\mathcal{F}_T} = Z_T := \frac{N(T)/B(T)}{N(0)/B(0)}$$

By construction, $\frac{N(T)}{B(T)}$ is a martingale under \mathbb{P}^* , $Z_T>0$ and $\mathbb{E}^{\mathbb{P}^*}[Z_T]=1$ and take any payoff X_T :

$$V(0) = N(0) \mathbb{E}^{\mathbb{P}} \left[\frac{X_T}{N(T)} \right] = N(0) \mathbb{E}^{\mathbb{P}^*} \left[\frac{X_T}{N(T)} Z_T \right] = \mathbb{E}^{\mathbb{P}^*} \left[\frac{X_T}{B(T)} \right]$$

So the choice of Radon—Nikodym derivative guarantees the prices are consistent under both measures and no arbitrage is preserved.

Change of Numeraire Con.

What is the dS(t) looks like under meausre $\tilde{\mathbb{P}}$?

Note: Under
$$Q$$
, we have
$$\begin{cases} dS(t) = r(t)S(t)\,dt + \sigma(t)S(t)\,dW(t) \\ dN(t) = r(t)N(t)\,dt + \gamma(t)N(t)\,dW(t) \end{cases}$$

Denote
$$\widehat{N}_t = \frac{N_t}{B_t}$$
, apply Itô we get $\frac{d\widehat{N}_t}{\widehat{N}_t} = \gamma_t \, dW_t$, $\widehat{N}_t = \widehat{N}_0 e^{\left(\int_0^t \gamma_s \cdot dW_s - \frac{1}{2} \int_0^t \|\gamma_s\|^2 \, ds\right)}$.

Oberve that
$$Z_t = \frac{\widehat{N}_t}{\widehat{N}_0} = e^{\left(\int_0^t \gamma_s \cdot dW_s - \frac{1}{2} \int_0^t \|\gamma_s\|^2 \ ds\right)}$$

Girsanov's theorem says: if we define a new measure $ilde{\mathbb{P}}$ via this Z_t , then the process

$$\tilde{W}(t) = W(t) - \int_0^t \gamma_s dt$$

is a Brownian motion under $\tilde{\mathbb{P}}$. Substitute into dS(t) to get the $\tilde{\mathbb{P}}$ dynamics:

$$dS(t) = S(t) \left\lceil \left(r(t) + \sigma(t) \cdot \gamma(t) \right) dt + \sigma(t) \cdot d\tilde{W}(t) \right\rceil$$

$$S(t) = S_0 \exp \left(\int_0^t \left(r(s) + \sigma(s) \cdot \gamma(s) - \frac{1}{2} \|\sigma(s)\|^2 \right) ds + \int_0^t \sigma(s) \cdot d\tilde{W}(s) \right)$$

Black-Scholes Formula

Given r, σ are constant, we have $S(T) = S(0) \exp\left\{(r - \frac{1}{2}\sigma^2)T + \sigma W(T)\right\}$.

The no-arbitrage price for the call option:

$$\psi_{c}(0) = \mathbb{E}^{\mathbb{P}^{*}}(e^{-rT}(S(T) - K)^{+})$$

$$= \mathbb{E}^{\mathbb{P}^{*}}(e^{-rT}(S(T) - K)I(S(T) \ge K))$$

$$= \mathbb{E}^{\mathbb{P}^{*}}(e^{-rT}S(T)I(S(T) \ge K)) - Ke^{-rT}\mathbb{P}^{*}(S(T) \ge K)$$

$$= I - Ke^{-rT} \cdot II$$

For II:

$$\begin{split} II &= \mathbb{P}^*(S(T) \geq K) = 1 - \Phi\left(\frac{\log(K/S(0)) - (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\right) \\ &= \Phi\left(\frac{\log(S(0)/K) + (r - \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}\right) \end{split}$$

Note: Φ is the CDF of the standard normal distribution.

Black-Scholes Formula Con.

For I, we apply the change of numeraire and use stock itself as numeraire. Then based on the eraly definition we have $\left.\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}^*}\right|_{\mathcal{F}_T}=Z_T:=e^{-rT}\frac{S(T)}{S(0)}$ and $\gamma_t=\sigma$. Therefore, under $\tilde{\mathbb{P}}$ we have the following dynamics of S(t):

$$\frac{dS_t}{S_t} = rdt + \sigma^2 dt + \sigma d\tilde{W}_t, \ S(t) = S(0) \exp\left\{ (r + \sigma^2/2)t + \sigma \tilde{W}_t \right\}$$

Then we can rewrite I:

$$\begin{split} I &= S(0)\mathbb{E}^{\mathbb{P}^*} \left(e^{-rT} \frac{S(T)}{S(0)} I(S(T) \ge K) \right) = S(0)\mathbb{E}^{\tilde{\mathbb{P}}} (I(S(T) \ge K)) \\ &= S(0)\tilde{\mathbb{P}} (S(T) \ge K) \\ &= S(0)\Phi \left(\frac{\log(S(0)/K) + (r + \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}} \right). \end{split}$$

Putting together, we have the price of the call option is given by:

$$I - Ke^{-rT} \cdot II = S(0)\Phi(d_{+}) - Ke^{-rT}\Phi(d_{-})$$

where $d_{\pm} = \frac{\log(S(0)/K) + (r \pm \frac{1}{2}\sigma^2)T}{\sigma\sqrt{T}}.$

One Dimensional Barrier Options

Barrier options are path-dependent derivatives whose payoff is activated (knock-in) or extinguished (knock-out) if the underlying asset crosses a pre-specified barrier. They extend vanilla calls/puts by adding a barrier condition.

We first study continuously monitored barriers and derive Merton's closed-form pricing formulas (1973) for single-barrier options.

Given $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}^*)$ with 1-dim Brownian W. The Market setting following:

$$dB(t) = B(t)rdt$$
, $dS(t) = rS(t)dt + \sigma S(t)dW(t)$

A continuously monitored barrier option has payoff = vanilla option payoff \times indicator of the barrier condition. For example:

• Up-and-out call:

$$V_0 = \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (S(T) - K)^+ I \left\{ \max_{0 \le t \le T} S(t) \le H \right\} \right], \quad H > S(0)$$

Down-and-in put:

$$V_0 = \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (K - S(T))^+ I \left\{ \min_{0 \le t \le T} S(t) \le H \right\} \right], \quad H < S(0)$$

Study the case of the down-and-in call option (DAIC) with strike K, barrier H < S(0):

$$\mathsf{DAIC} = e^{-rT} \mathbb{E}^{\mathbb{P}^*} \left[\left(S(T) - K \right)^+ I \left\{ \min_{0 \le t \le T} S(t) \le H \right\} \right]$$

One Dimensional Barrier Options Con.

For notation simplicity, denote a drifted Brownian motion:

$$W_{\mu,\sigma}(t) = \mu t + \sigma W(t), \quad M_t = \max_{0 \le s \le t} W_{\mu,\sigma}(s).$$

Some useful results from the reflection principle for a Brownian motion with a drift:

- (i) When $x \leq y$, y > 0, $\sigma > 0$:
 - $P(W_{\mu,\sigma}(t) \le x, M_t \ge y) = e^{2\mu y/\sigma^2} \Phi\left(\frac{x-2y-\mu t}{\sigma\sqrt{t}}\right)$
 - $P(W_{\mu,\sigma}(t) \le x, M_t \le y) = \Phi\left(\frac{x \mu t}{\sigma \sqrt{t}}\right) e^{2\mu y/\sigma^2} \Phi\left(\frac{x 2y \mu t}{\sigma \sqrt{t}}\right)$
- (ii) When $x \ge y > 0$, $\sigma > 0$:
 - $P(W_{\mu,\sigma}(t) \le x, M_t \le y) = P(M_t \le y) = \Phi\left(\frac{y \mu t}{\sigma\sqrt{t}}\right) e^{2\mu y/\sigma^2} \Phi\left(\frac{-y \mu t}{\sigma\sqrt{t}}\right)$
 - $P(W_{\mu,\sigma}(t) \le x, M_t \ge y) = P(W_{\mu,\sigma}(t) \le x) P(W_{\mu,\sigma}(t) \le x, M_t \le y) = \Phi\left(\frac{x \mu t}{\sigma \sqrt{t}}\right) \Phi\left(\frac{y \mu t}{\sigma \sqrt{t}}\right) + e^{2\mu y/\sigma^2} \Phi\left(\frac{-y \mu t}{\sigma \sqrt{t}}\right)$
- (iii) When $x \ge y$, y < 0, $\sigma > 0$:
 - $P\left(W_{\mu,\sigma}(t) \ge x, \min_{0 \le s \le t} W_{\mu,\sigma}(s) \le y\right) = e^{2\mu y/\sigma^2} \Phi\left(\frac{-x+2y+\mu t}{\sigma\sqrt{t}}\right)$

One Dimensional Barrier Options Con.

Back to the valuation of DAIC:

$$\begin{split} &\mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (S(T) - K)^+ I \left(\min_{0 \le t \le T} S(t) \le H \right) \right] \\ &= \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (S(T) - K) I \left(S(T) \ge K, \min_{0 \le t \le T} S(t) \le H \right) \right] \\ &= \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} S(T) I \left(S(T) \ge K, \min_{0 \le t \le T} S(t) \le H \right) \right] \\ &- K e^{-rT} P^* \left(S(T) \ge K, \min_{0 \le t \le T} S(t) \le H \right) \\ &= I - K e^{-rT} \cdot II \end{split}$$

For II:

$$\begin{split} II &= P^* \left(S(T) \geq K, \min_{0 \leq t \leq T} S(t) \leq H \right) \\ &= P \left\{ W_{r - \frac{\sigma^2}{2}, \sigma}(T) \geq \log(K/S(0)), \min_{0 \leq t \leq T} W_{r - \frac{\sigma^2}{2}, \sigma}(t) \leq \log(H/S(0)) \right\} \\ &= \exp \left\{ \frac{2(r - \sigma^2/2)}{\sigma^2} \log(H/S(0)) \right\} \cdot \Phi \left(\frac{2 \log(H/S(0)) - \log(K/S(0)) + (r - \sigma^2/2)T}{\sigma \sqrt{T}} \right) \end{split}$$

One Dimensional Barrier Options Con.

For I, by changing of numeraire we can get:

$$\begin{split} I &= S(0)\mathbb{E}^{\mathbb{P}^*} \left(e^{-rT} \frac{S(T)}{S(0)} \cdot I \left\{ S(T) \geq K, \min_{0 \leq t \leq T} S(t) \leq H \right\} \right) \\ &= S(0) \tilde{P} \left(S(T) \geq K, \min_{0 \leq t \leq T} S(t) \leq H \right) \\ &= S(0) P \left\{ W_{r + \frac{\sigma^2}{2}, \sigma}(T) \geq \log(K/S(0)), \min_{0 \leq t \leq T} W_{r + \frac{\sigma^2}{2}, \sigma}(t) \leq \log(H/S(0)) \right\} \\ &= S(0) \cdot (H/S(0))^{\frac{2r}{\sigma^2} + 1} \Phi \left(\frac{\log(\{H^2/S(0)\}/K) + (r + \sigma^2/2)T}{\sigma \sqrt{T}} \right) \\ &= (H/S(0))^{\frac{2r}{\sigma^2} - 1} (H^2/S(0)) \Phi \left(\frac{\log(\{H^2/S(0)\}/K) + (r + \sigma^2/2)T}{\sigma \sqrt{T}} \right) \end{split}$$

Putting the two terms together, we get $I-Ke^{-rT}\cdot II=(H/S(0))^{\frac{2r}{\sigma^2}-1}\mathsf{BSC}(H^2/S(0)).$ Where $\mathsf{BSC}(x)$ is the Black-Scholes formula for a call option with the initial stock price being x:

$$\mathsf{BSC}(x) = x\Phi(d_+) - Ke^{-rT}\Phi(d_-) \text{ with } d_{\pm} = \frac{\log(x/K) + (r \pm \sigma^2/2)T}{\sigma\sqrt{T}}$$

Exchange Options

Given $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t\geq 0}, \mathbb{P}^*)$ with 2-dim independent Brownian, $W_1(t)$ and $W_2(t)$. We have two traded assets $S_1(t)$ and $S_2(t)$ with the following dynamics:

$$\begin{split} \frac{dS_1(t)}{S_1(t)} &= rdt + \sigma_1 dW_1(t) \\ \frac{dS_2(t)}{S_2(t)} &= rdt + \sigma_2 \left\{ \rho dW_1(t) + \sqrt{1 - \rho^2} dW_2(t) \right\} \end{split}$$

The exchange option gives the holder the right, but not the obligation, to exchange asset S_2 for asset S_1 at maturity T. The price of this option as following:

$$u(0) = \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} (S_1(T) - S_2(T))^+ \right]$$

$$= S_2(0) \mathbb{E}^{\mathbb{P}^*} \left[\frac{e^{-rT} S_2(T)}{S_2(0)} \left(\frac{S_1(T)}{S_2(T)} - 1 \right)^+ \right]$$

$$= S_2(0) \mathbb{E}^{\tilde{\mathbb{P}}} \left[\left(\frac{S_1(T)}{S_2(T)} - 1 \right)^+ \right]$$

$$= S_2(0) \mathbb{E}^{\tilde{\mathbb{P}}} \left[(F(T) - 1)^+ \right]$$

Exchange Options Con.

Apply Itô, we have the Radon-Nikodym derivative for numeraire:

$$\begin{split} \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}^*} \bigg|_{\mathcal{F}_T} &= Z_T^2 := \frac{e^{-rT} S_2(T)}{S_2(0)} = \exp\left[\sigma_2 \left\{ \rho W_1(T) + \sqrt{1 - \rho^2} W_2(T) \right\} - \frac{T}{2} \sigma_2^2 \right] \\ \frac{d\hat{\mathbb{P}}}{d\mathbb{P}^*} \bigg|_{\mathcal{F}_T} &= Z_T^1 := \frac{e^{-rT} S_1(T)}{S_1(0)} = \frac{e^{-rT} S_1(T)}{S_1(0)} = \exp\left(\sigma_1 W_1(T) - \frac{1}{2} \sigma_1^2 T\right) \end{split}$$

By Girsanov theorem, under new measure $\tilde{\mathbb{P}}$:

$$\tilde{W}_1(t) = W_1(t) - \rho \sigma_2 t, \quad \tilde{W}_2(t) = W_2(t) - \sigma_2 \sqrt{1 - \rho^2} t$$

Apply Itô, we can get $d \ln S_1$, $d \ln S_2$:

$$d \ln F(t) = d \ln S_1(t) - d \ln S_2(t)$$

= $\left[-\frac{1}{2}\sigma_1^2 - \frac{1}{2}\sigma_2^2 + \rho \sigma_1 \sigma_2 \right] dt + (\sigma_1 - \rho \sigma_2) d\tilde{W}_1 - \sigma_2 \sqrt{1 - \rho^2} d\tilde{W} \acute{c}_2.$

Apply Itô to $g(x) = e^x$ with $x = \ln F(t)$:

$$\frac{dF_t}{F_t} = d(\ln F_t) + \frac{1}{2}d < \ln F >_t = (\sigma_1 - \rho\sigma_2)d\tilde{W}_{1t} - \sigma_2\sqrt{1 - \rho^2}d\tilde{W}_{2t}$$

Exchange Options Con.

Denote
$$\sigma = \sqrt{\sigma_1^2 - 2\rho\sigma_1\sigma_2 + \sigma_2^2}$$
, $\tilde{W}(t) := \frac{1}{\sigma}\left\{(\sigma_1 - \rho\sigma_2)\tilde{W}_1(t) - \sigma_2\sqrt{1 - \rho^2}\tilde{W}_2(t)\right\}$
Observe that \tilde{W} is a standard Brownian motion under $\tilde{\mathbb{P}}$. We have $\frac{dF(t)}{F(t)} = \sigma d\tilde{W}(t)$, observe that $F_T = F_0 \exp\left(-\frac{1}{2}\sigma^2T + \sigma\sqrt{T}Z\right)$, $Z \sim N(0,1)$ under $\tilde{\mathbb{P}}$. Similarly, we have $F_T = F_0 \exp\left(\frac{1}{2}\sigma^2T + \sigma\sqrt{T}Z\right)$, $Z \sim N(0,1)$ under $\hat{\mathbb{P}}$.

Then we can rewrite u(0):

$$\begin{split} u(0) &= S_2(0) \mathbb{E}^{\tilde{\mathbb{P}}} \left[(F(T) - 1)^+ \right] \\ &= S_2(0) \mathbb{E}^{\tilde{\mathbb{P}}} \left[(F(T) - 1)I(F(T) > 1) \right] \\ &= S_2(0) \left[\mathbb{E}^{\tilde{\mathbb{P}}} [F_T I \{ F_T > 1 \}] - \tilde{\mathbb{P}} (F_T > 1) \right] \\ &= S_2(0) \left[\mathbb{E}^{\mathbb{P}^*} \left[\frac{e^{-rT} S_2(T)}{S_2(0)} \frac{S_1(T)}{S_2(T)} I \{ F_T > 1 \} \right] - \tilde{\mathbb{P}} (F_T > 1) \right] \\ &= S_2(0) \left[\frac{1}{S_2(0)} \mathbb{E}^{\mathbb{P}^*} \left[\frac{e^{-rT} S_1(T)}{S_1(0)} S_1(0) I \{ F_T > 1 \} \right] - \tilde{\mathbb{P}} (F_T > 1) \right] \end{split}$$

Exchange Options Con.

$$\begin{split} &= S_2(0) \left[\frac{S_1(0)}{S_2(0)} \mathbb{E}^{\hat{\mathbb{P}}} [I\{F_T > 1\}] - \tilde{\mathbb{P}}(F_T > 1) \right] \\ &= S_1(0) \hat{\mathbb{P}} [I\{F_T > 1\}] - S_2(0) \tilde{\mathbb{P}}(F_T > 1) \\ &= S_1(0) \Phi(d_+) - S_2(0) \Phi(d_-) \end{split}$$

Where:

$$d_{\pm} = \frac{\log(F(0)) \pm \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}} = \frac{\log(S_1(0)/S_2(0)) \pm \frac{1}{2}\sigma^2 T}{\sigma\sqrt{T}}.$$

- (i) If the second asset is cash, or $S_2(t) = Ke^{-r(T-t)}$, then the formula degenerates to the Black-Scholes formula.
- (ii) The hedging strategy is given by long $\Phi(d_+)$ shares of the first asset and short $\Phi(d_-)$ shares of the second asset.

Suppose we have two Wiener processes, X(t) and Y(t), governed by the following dynamics

$$dX(t) = \mu_1 dt + \sigma_1 dW_1(t), \quad X(0) = 0, \quad \sigma_1 > 0,$$

$$dY(t) = \mu_2 dt + \sigma_2 \left\{ \rho dW_1(t) + \sqrt{1 - \rho^2} dW_2(t) \right\}, \quad Y(0) = 0, \quad \sigma_2 > 0,$$

where the W_1 and W_2 are two independent standard Brownian motions.

For b > 0, consider the first passage time of the process Y(t):

$$\tau_b^Y = \inf\{t \ge 0 : Y(t) = b > 0\}.$$

We shall prove that the joint distribution between X(T) and the first passage time of Y(t) is given by:

$$P(X(T) < a, \tau_b^Y > T) = P\left(X(T) < a, \max_{0 \le t \le T} Y(t) < b\right)$$

$$=\Phi_2\left(\frac{a-\mu_1T}{\sigma_1\sqrt{T}},\frac{b-\mu_2T}{\sigma_2\sqrt{T}};\rho\right)-e^{2\mu_2b/\sigma_2^2}\Phi_2\left(\frac{a-\mu_1T-2\rho b\sigma_1/\sigma_2}{\sigma_1\sqrt{T}},\frac{-b-\mu_2T}{\sigma_2\sqrt{T}};\rho\right)$$

where b>0 and $\Phi_2(x,y;\rho)$ denotes the bivariate normal distribution given by

$$\Phi_2(x,y;\rho) = P(Z_1 \le x, Z_2 \le y),$$

with Z_1 and Z_2 being two standard normal random variables with correlation ρ .

Remark:

- Above equation holds for both $a \ge b$ and $a \le b$, as long as b > 0. That's more general than the 1D reflection principle formulas which needed to be split into separate cases depending on $a \le b$ or $a \ge b$.
- when $\rho=1$, $\mu_1=\mu_2=\mu$, $\sigma_1=\sigma_2=\sigma$, the two dimensional case reduces to the one-dimensional case, as it becomes:

$$\begin{split} &P\left(X(T) < a, \max_{0 \leq t \leq T} X(t) < b\right) \\ &= \Phi_2\left(\frac{a - \mu T}{\sigma\sqrt{T}}, \frac{b - \mu T}{\sigma\sqrt{T}}; 1\right) - e^{2\mu b/\sigma^2} \Phi_2\left(\frac{a - \mu T - 2b}{\sigma\sqrt{T}}, \frac{-b - \mu T}{\sigma\sqrt{T}}; 1\right) \\ &= P\left\{Z \leq \frac{a - \mu T}{\sigma\sqrt{T}}, Z \leq \frac{b - \mu T}{\sigma\sqrt{T}}\right\} - e^{2\mu b/\sigma^2} P\left\{Z \leq \frac{a - \mu T - 2b}{\sigma\sqrt{T}}, Z \leq \frac{-b - \mu T}{\sigma\sqrt{T}}\right\} \\ &= P\left\{Z \leq \min\left\{\frac{a - \mu T}{\sigma\sqrt{T}}, \frac{b - \mu T}{\sigma\sqrt{T}}\right\}\right\} - e^{2\mu b/\sigma^2} P\left\{Z \leq \min\left\{\frac{a - \mu T - 2b}{\sigma\sqrt{T}}, \frac{-b - \mu T}{\sigma\sqrt{T}}\right\}\right\} \end{split}$$

Which incorporates two cases in one dimensional case.

Next we proof the formula of the joint distribution between X(T) and the first passage time of Y(t):

[Proof]

Consider the case of $\sigma_1=\sigma_2=1$. Define a new process V(t) to decouple X and Y:

$$V(t) := X(t) - \rho Y(t)$$

First check independence between V and Y:

$$\begin{split} dV(t)dY(t) &= (dX(t) - \rho dY(t))dY(t) \\ &= \left((1 - \rho^2)dW_1 - \rho \sqrt{1 - \rho^2}dW_2 \right) \cdot \left(\rho dW_1 + \sqrt{1 - \rho^2}dW_2 \right) \\ &= (1 - \rho^2)\rho (dW_1)^2 - \rho (1 - \rho^2)(dW_2)^2 \\ &= (1 - \rho^2)\rho dt - (1 - \rho^2)\rho dt = 0 \end{split}$$

Since $V(T) = X(T) - \rho Y(T)$, it is Gaussian. Its mean is:

$$\mathbb{E}[V(T)] = \mu_1 T - \rho \mu_2 T$$

Its variance is:

$$\begin{split} \mathsf{Var}(V(T)) &= \mathsf{Var}(X(T)) + \rho^2 \mathsf{Var}(Y(T)) - 2\rho \mathsf{Cov}(X(T), Y(T)) \\ &= T + \rho^2 T - 2\rho^2 T = (1 - \rho^2) T \end{split}$$

Thus:

$$V(T) \sim N((\mu_1 - \rho \mu_2)T, (1 - \rho^2)T).$$

Incidentally, the same logic applying to two standard normal random variables with correlation ρ also leads to a representation for the bivariate normal distribution:

$$\Phi_2(\alpha, \beta; \rho) = \int_{z_2 = -\infty}^{\beta} \int_{z_1 = -\infty}^{\alpha} \frac{1}{\sqrt{1 - \rho^2}} \varphi\left(\frac{z_1 - \rho z_2}{\sqrt{1 - \rho^2}}\right) \varphi(z_2) \, dz_1 \, dz_2.$$

Where $\varphi(\cdot)$ is the standard normal density function, $\varphi(z)=\frac{1}{\sqrt{2\pi}}\exp\left(-\frac{z^2}{2}\right)$.

Now, in terms of V(T), we can rewrite $P(X(T) < a, \tau_b^Y > T)$ as:

$$\begin{split} &P(X(T) < a, \tau_b^Y > T) \\ &= \int_{x = -\infty}^a \int_{y = -\infty}^b P(X(T) \in dx, Y(T) \in dy, \tau_b^Y > T) \end{split}$$

Note: the transformation is linear with determinant 1 and the independence of V and Y

$$= \int_{x=-\infty}^{a} \int_{y=-\infty}^{b} P(V(T) \in dx - \rho dy) P(Y(T) \in dy, \tau_b^Y > T)$$

There are two terms inside the integrand. For the first term since V(T) has a normal distribution with mean $\mu_1 T - \rho \mu_2 T$ and variance $(1-\rho^2)T$, we have:

$$P(V(T) \in dx - \rho dy) = \frac{1}{\sqrt{(1 - \rho^2)T}} \varphi\left(\frac{x - \rho y - \mu_1 T + \rho \mu_2 T}{\sqrt{(1 - \rho^2)T}}\right),$$

For the second term, recall the eraly result in one-dim, When $x \leq y$, y > 0, $\sigma > 0$:

$$P(W_{\mu,\sigma}(t) \le x, M_t \le y) = \Phi\left(\frac{x - \mu t}{\sigma\sqrt{t}}\right) - e^{2\mu y/\sigma^2} \Phi\left(\frac{x - 2y - \mu t}{\sigma\sqrt{t}}\right)$$

We have for all y < b, b > 0:

$$P(Y(T) \le y, \tau_b^Y > T) = \Phi\left(\frac{y - \mu_2 T}{\sqrt{T}}\right) - e^{2\mu_2 b} \Phi\left(\frac{y - 2b - \mu_2 T}{\sqrt{T}}\right).$$

Differentiating the above equation yields:

$$P(Y(T) \in dy, \tau_b^Y > T) = \frac{1}{\sqrt{T}} \varphi\left(\frac{y - \mu_2 T}{\sqrt{T}}\right) - \frac{1}{\sqrt{T}} e^{2\mu_2 b} \varphi\left(\frac{y - 2b - \mu_2 T}{\sqrt{T}}\right).$$

Plugging the above two terms into:

$$\int_{x=-\infty}^{a} \int_{y=-\infty}^{b} P(V(T) \in dx - \rho dy) P(Y(T) \in dy, \tau_{b}^{Y} > T)$$

$$P(X(T) < a, \tau_b^Y > T) = I - II$$

where:

$$\begin{split} I &= \int_{x=-\infty}^{a} \int_{y=-\infty}^{b} \frac{1}{\sqrt{(1-\rho^2)T}} \varphi\left(\frac{x-\rho y-\mu_1 T+\rho \mu_2 T}{\sqrt{(1-\rho^2)T}}\right) \frac{1}{\sqrt{T}} \varphi\left(\frac{y-\mu_2 T}{\sqrt{T}}\right) dy dx, \\ II &= e^{2\mu_2 b} \int_{x=-\infty}^{a} \int_{y=-\infty}^{b} \frac{1}{\sqrt{(1-\rho^2)T}} \varphi\left(\frac{x-\rho y-\mu_1 T+\rho \mu_2 T}{\sqrt{(1-\rho^2)T}}\right) \frac{1}{\sqrt{T}} \varphi\left(\frac{y-2b-\mu_2 T}{\sqrt{T}}\right) dy dx, \end{split}$$

and $\varphi(x) = e^{-x^2/2}/\sqrt{2\pi}$ is the standard normal density function.

With
$$\tilde{x}=\frac{x-\mu_1T}{\sqrt{T}},\quad \tilde{y}=\frac{y-\mu_2T}{\sqrt{T}}$$
 , Then:

$$dx = \sqrt{T}d\tilde{x}, \quad dy = \sqrt{T}d\tilde{y}$$

$$x \leq a \iff \tilde{x} \leq \frac{a - \mu_1 T}{\sqrt{T}}, \quad y \leq b \iff \tilde{y} \leq \frac{b - \mu_2 T}{\sqrt{T}}$$

we have

$$I = \int_{x=-\infty}^{a} \int_{y=-\infty}^{b} \frac{1}{\sqrt{(1-\rho^2)T}} \varphi\left(\frac{\tilde{x}-\rho\tilde{y}}{\sqrt{(1-\rho^2)}}\right) \frac{1}{\sqrt{T}} \varphi(\tilde{y}) dy dx$$
$$= \int_{-\infty}^{\frac{a-\mu_1 T}{\sqrt{T}}} \int_{-\infty}^{\frac{b-\mu_2 T}{\sqrt{T}}} \frac{1}{\sqrt{(1-\rho^2)}} \varphi\left(\frac{\tilde{x}-\rho\tilde{y}}{\sqrt{(1-\rho^2)}}\right) \varphi(\tilde{y}) d\tilde{y} d\tilde{x}$$

By the conditional-Gaussian factorization, this integrand is exactly the joint pdf of a standard bivariate normal (Z_1,Z_2) with correlation ρ :

$$f_{Z_1,Z_2}(\tilde{x},\tilde{y}) = \frac{1}{\sqrt{1-\rho^2}} \varphi\left(\frac{\tilde{x}-\rho\tilde{y}}{\sqrt{1-\rho^2}}\right) \varphi(\tilde{y})$$

Hence the double integral is, by definition,

$$I = \Phi_2 \left(\frac{a - \mu_1 T}{\sqrt{T}}, \frac{b - \mu_2 T}{\sqrt{T}}; \rho \right)$$

Similarly, with

$$\hat{x} = \frac{x - \mu_1 T - 2\rho b}{\sqrt{T}}, \quad \hat{y} = \frac{y - 2b - \mu_2 T}{\sqrt{T}}$$

simplifying the term II yields

$$\begin{split} II &= \int_{x=-\infty}^{a} \int_{y=-\infty}^{b} \frac{1}{\sqrt{(1-\rho^2)T}} \varphi\left(\frac{\hat{x}-\rho\hat{y}}{\sqrt{(1-\rho^2)}}\right) \frac{1}{\sqrt{T}} e^{2\mu_2 b} \varphi(\hat{y}) dy dx \\ &= \int_{-\infty}^{\frac{a-\mu_1 T-2\rho b}{\sqrt{T}}} \int_{-\infty}^{\frac{-b-\mu_2 T}{\sqrt{T}}} \frac{1}{\sqrt{(1-\rho^2)}} \varphi\left(\frac{\hat{x}-\rho\hat{y}}{\sqrt{(1-\rho^2)}}\right) e^{2\mu_2 b} \varphi(\hat{y}) dy dx \\ &= e^{2\mu_2 b} \Phi_2\left(\frac{a-\mu_1 T-2\rho b}{\sqrt{T}}, \frac{-b-\mu_2 T}{\sqrt{T}}; \rho\right), \end{split}$$

from which the result follows. The general case can be reduced to this particular case by letting:

$$\tilde{X}(t) = X(t)/\sigma_1, \quad \tilde{Y}(t) = Y(t)/\sigma_2,$$

$$\tilde{b} = b/\sigma_2, \quad \tilde{a} = a/\sigma_1, \quad \tilde{\mu}_1 = \mu_1/\sigma_1, \quad \tilde{\mu}_2 = \mu_2/\sigma_2.$$

Given the joint distribution between X(T) and the first passage time of Y(t) by :

$$\begin{split} P(X(T) < a, \tau_b^Y > T) &= P\left(X(T) < a, \max_{0 \le t \le T} Y(t) < b\right) \\ &= \Phi_2\left(\frac{a - \mu_1 T}{\sigma_1 \sqrt{T}}, \frac{b - \mu_2 T}{\sigma_2 \sqrt{T}}; \rho\right) - e^{\frac{2\mu_2 b}{\sigma_2^2}} \Phi_2\left(\frac{a - \mu_1 T - 2\rho b\sigma_1/\sigma_2}{\sigma_1 \sqrt{T}}, \frac{-b - \mu_2 T}{\sigma_2 \sqrt{T}}; \rho\right) \end{split}$$

Remark:

(i) Using the facts that $P(X(T)>a,\tau_b^Y>T)=P(-X(T)<-a,\tau_b^Y>T)$, that the correlation between -X(t) and Y(t) is $-\rho$, we can show that for b>0 (the following equation will use for next example to price of an up-and-out option):

$$\begin{split} &P(X(T)>a,\tau_b^Y>T)=P\left(-X(T)<-a,\max_{0\leq t\leq T}Y(t)< b\right)\\ &=\Phi_2\left(-\frac{a-\mu_1T}{\sigma_1\sqrt{T}},\frac{b-\mu_2T}{\sigma_2\sqrt{T}};-\rho\right)-e^{\frac{2\mu_2b}{\sigma_2^2}}\Phi_2\left(-\frac{a-\mu_1T-2\rho b\sigma_1/\sigma_2}{\sigma_1\sqrt{T}},\frac{-b-\mu_2T}{\sigma_2\sqrt{T}};-\rho\right) \end{split}$$

(ii) Using the fact that $P(X(T) < a, \tau_{-b}^Y > T) = P(X(T) < a, \tau_b^{-Y} > T)$, that the correlation between X(t) and -Y(t) is $-\rho$, we can show that for b>0:

$$\begin{split} P(X(T) < a, \tau_{-b}^Y > T) &= P\left(X(T) < a, \min_{0 \le t \le T} Y(t) > -b\right) = P\left(X(T) < a, \max_{0 \le t \le T} (-Y(t)) < b\right) \\ &= \Phi_2\left(\frac{a - \mu_1 T}{\sigma_1 \sqrt{T}}, \frac{b + \mu_2 T}{\sigma_2 \sqrt{T}}; -\rho\right) - e^{\frac{2\mu_2 b}{\sigma_2^2}} \Phi_2\left(\frac{a - \mu_1 T + 2\rho b\sigma_1/\sigma_2}{\sigma_1 \sqrt{T}}, \frac{-b + \mu_2 T}{\sigma_2 \sqrt{T}}; -\rho\right) \end{split}$$

Let's calculate the price of an up-and-out call option, we have the following set up:

$$U_0 = e^{-rT} \mathbb{E}^{\mathbb{P}^*} \left[(S_1(T) - K)^+ I \left\{ \max_{0 \le t \le T} S_2(t) \le H \right\} \right], \quad S_i(t) = S_i(0) e^{X_i(t)}, X_1 = X, X_2 = Y$$

Under the risk-neutral measure \mathbb{P}^* ,

$$dX(t) = \mu_1 dt + \sigma_1 dW_1(t), \quad \mu_1 = r - \frac{1}{2}\sigma_1^2,$$

$$dY(t) = \mu_2 dt + \sigma_2 \left\{ \rho dW_1(t) + \sqrt{1 - \rho^2} dW_2(t) \right\}, \quad \mu_2 = r - \frac{1}{2}\sigma_2^2,$$

with W_1, W_2 independent.

Write the barrier level in log space

$$b:=\log\frac{H}{S_2(0)},\quad \text{and }a:=\log\frac{K}{S_1(0)}$$

Then we have:

$$\{\max S_2(t) \le H\} = \left\{\max S_2(0)e^{Y(t)} \le H\right\} = \left\{\max_{0 \le t \le T} Y(t) \le b\right\}$$
$$\{S_1(T) > K\} = \{S_1(0)e^{X(t)} > K\} = \{X(T) > a\}$$

$$\begin{split} U_0 &= e^{-rT} \mathbb{E}^{\mathbb{P}^*} \left[(S_1(T) - K)^+ I \left\{ \max_{0 \le t \le T} S_2(t) \le H \right\} \right] \\ &= e^{-rT} \mathbb{E}^{\mathbb{P}^*} \left[(S_1(T) - K) I \left\{ S_1(T) > K \max_{0 \le t \le T} S_2(t) \le H \right\} \right] \\ &= e^{-rT} \mathbb{E}^{\mathbb{P}^*} \left[S_1(T) I \left\{ X(T) > a, \max_{0 \le t \le T} Y(t) \le b \right\} \right] - K e^{-rT} \mathbb{P}^* (X(T) > a, \max_{0 \le t \le T} Y(t) \le b) \\ &= I - K e^{-rT} \cdot II \end{split}$$

Apply Itô, we have the Radon-Nikodym derivative for numeraire:

$$\left. \frac{d\tilde{\mathbb{P}}}{d\mathbb{P}^*} \right|_{\mathcal{F}_T} = Z_T := \frac{e^{-rT} S_1(T)}{S_1(0)} = \exp\left[\sigma_1 W_1(T) - \frac{1}{2}\sigma_1^2 T\right]$$

By Girsanov theorem, under new measure $\tilde{\mathbb{P}}$:

$$\tilde{W}_1(t) = W_1(t) - \sigma_1 t, \ \tilde{W}_2(t) = W_2(t)$$

And the drifts of X and Y under $\tilde{\mathbb{P}}$ become:

$$\mu_1^{(1)} = \mu_1 + \sigma_1^2 = r + \frac{1}{2}\sigma_1^2, \quad \mu_2^{(1)} = \mu_2 + \rho\sigma_1\sigma_2 = r - \frac{1}{2}\sigma_2^2 + \rho\sigma_1\sigma_2$$

For I, using change of numeraire and the formula in remark (i) :

$$\begin{split} I = & \mathbb{E}^{\mathbb{P}^*} \left[e^{-rT} S_1(T) I \left\{ X(T) > a, \max_{0 \le t \le T} Y(t) \le b \right\} \right] \\ = & \mathbb{E}^{\mathbb{P}^*} \left[\frac{e^{-rT} S_1(T)}{S_1(0)} S_1(0) I \left\{ X(T) > a, \max_{0 \le t \le T} Y(t) \le b \right\} \right] \\ = & S_1(0) \tilde{\mathbb{P}} \left\{ X(T) > a, \max_{0 \le t \le T} Y(t) \le b \right\} \\ = & S_1(0) \left[\Phi_2 \left(-\frac{a - \mu_1^{(1)} T}{\sigma_1 \sqrt{T}}, \frac{b - \mu_2^{(2)} T}{\sigma_2 \sqrt{T}}; -\rho \right) - e^{\frac{2\mu_2^{(2)} b}{\sigma_2^2}} \Phi_2 \left(-\frac{a - \mu_1^{(1)} T - 2\rho b \sigma_1/\sigma_2}{\sigma_1 \sqrt{T}}, \frac{-b - \mu_2^{(2)} T}{\sigma_2 \sqrt{T}}; -\rho \right) \right] \end{split}$$

For II, apply the formula in remakr(i) directly:

$$\begin{split} &II = \mathbb{P}^*(X(T) > a, \max_{0 \leq t \leq T} Y(t) \leq b) \\ &= &\Phi_2\left(-\frac{a - \mu_1 T}{\sigma_1 \sqrt{T}}, \frac{b - \mu_2 T}{\sigma_2 \sqrt{T}}; -\rho\right) - e^{\frac{2\mu_2 b}{\sigma_2^2}} \Phi_2\left(-\frac{a - \mu_1 T - 2\rho b\sigma_1/\sigma_2}{\sigma_1 \sqrt{T}}, \frac{-b - \mu_2 T}{\sigma_2 \sqrt{T}}; -\rho\right) \end{split}$$

Part II: Chapter 17

Introduction to Stochastic Calculus for Jump Processes

Counting Processes

A counting process N(t): tracks the number of events up to time t. We have the following Key properties of any counting process:

- $N(t) \ge 0$
- Takes integer values
- Non-decreasing $(N(s) \le N(t) \text{ if } s < t)$
- Increment N(t) N(s) counts events in (s,t]

To make analysis tractable, the following assumptions are typically imposed:

- Independent increments: the number of events occurring in disjoint time intervals is statistically independent
- Stationary increments: distribution of increments depends only on interval length, not location.

These two properties are also underpin the definition of Brownian motion.

Two Equivalent Definitions of Poisson Processes

First definition(I) of a Poisson process:

Counting process $\{N(t), t \ge 0\}$ with rate $\lambda > 0$ such that :

- N(0) = 0
- The process exhibits independent and stationary increments
- **3** For each $t \ge 0$, the random variable N(t) follows a Poisson distribution:

$$\mathbb{P}[N(t) = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!} \quad \text{for } n = 0, 1, 2, \dots, \quad \mathbb{E}[N(t)] = \lambda t$$

Second definition(II) of a Poisson process:

Counting process $\{N(t), t \geq 0\}$ with rate $\lambda > 0$ such that :

- 1 N(0) = 0
- The process exhibits independent and stationary increments
- **3** $\mathbb{P}[N(h) = 1] = \lambda h + o(h)$
- **4** $\mathbb{P}[N(h) \ge 2] = o(h)$

Two Equivalent Definitions of Poisson Processes Con.

We show the equivalence of the two definitions:

Proof:

(i) $I \Rightarrow II$

For small h, use Taylor expansion of the exponential:

$$\mathbb{P}(N(h) = 1) = e^{-\lambda h}(\lambda h) = (1 - \lambda h + \frac{1}{2}(\lambda h)^2 + o(h^2))(\lambda h) = \lambda h + o(h)$$

Similarly:

$$\mathbb{P}(N(h) \ge 2) = 1 - \mathbb{P}(0) - \mathbb{P}(1) = 1 - \left(1 - \lambda h + \frac{1}{2}(\lambda h)^2 + o(h^2)\right) - (\lambda h + o(h)) = o(h)$$

(ii) $II \Rightarrow I(Some\ Intuition)$

Partition (0,t] into m small subintervals of length h=t/m and define increments $X_i=N(ih)-N((i-1)h)$:

$$N(t) = \sum_{i=1}^{m} X_i$$

Let $m \to \infty$, by the small-interval conditions:

$$\mathbb{P}{X_i = 1} = \lambda h + o(h), \quad \mathbb{P}{X_i = 0} = 1 - \lambda h + o(h), \quad \mathbb{P}{X_i \ge 2} = o(h)$$

Two Equivalent Definitions of Poisson Processes Con.

Probability of ≥ 2 events in a subinterval is negligible (o(h)). So each X_i behaves like a Bernoulli (λh) . due to the independent increments property, the X_i are mutually independent. Since the sum of independent and identically distributed Bernoulli random variables follows a binomial distribution, it follows that N(t) is approximately binomial with parameters m and $p=\lambda h$.

As $m \to \infty$ and $p \to 0$, the classical Poisson approximation to the binomial distribution implies that N(t) converges in distribution to a Poisson random variable with rate

$$mp = m\lambda h = m\lambda \frac{t}{m} = \lambda t,$$

which precisely corresponds to the distribution given in equation of the requirement three in the first definition. Hence, this approximation provides intuition for the equivalence of the two definitions.

Remark: Powerful tool for modeling infrequent extreme events. In financial contexts, poisson processes can capture market shocks and discontinuities missed by continuous-path models. Important for pricing derivatives sensitive to jump risk.

34 / 34