Álgebra Linear El

Mestrado Integrado em Engenharia Informática

Universidade do Minho Escola de Ciências

Departamento de Matemática e Aplicações

6. Valores e vetores próprios

Exercício 1. Verifique quais dos seguintes vetores são vetores próprios da matriz

$$\begin{pmatrix} -5 & 2 & 0 \\ -12 & 5 & 0 \\ 0 & 0 & -1 \end{pmatrix}.$$

a)
$$(0,0,2)$$
 b) $(1,3,0)$ c) $(0,0,0)$ d) $(1,1,3)$.

Exercício 2. Verifique quais dos seguintes valores são valores próprios da matriz

$$\begin{pmatrix} 4 & 0 & 2 \\ 1 & 1 & 3 \\ 0 & 0 & -2 \end{pmatrix}.$$

a)
$$2$$
 b) -2 c) 4 d) 1 e) 0

Exercício 3. Escreva a equação característica e calcule os valores próprios das matrizes:

a)
$$A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 b) $B = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ c) $C = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

d)
$$D = \begin{pmatrix} 2 & 0 & 1 \\ 0 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 e) $E = \begin{pmatrix} 3 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 3 \end{pmatrix}$ f) $F = \begin{pmatrix} 3 & 0 & -1 & 0 \\ 0 & 3 & 0 & -1 \\ -1 & 0 & 3 & 0 \\ 0 & -1 & 0 & 3 \end{pmatrix}$.

Exercício 4. Sabendo que $\lambda = 1$ é um valor próprio da seguinte matriz

$$A = \begin{pmatrix} 5 & -7 & 7 \\ 4 & -3 & 4 \\ 4 & -1 & 2 \end{pmatrix},$$

determine os restantes valores próprios de A.

Exercício 5. Considere a matriz

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 2 & 4 \end{pmatrix}.$$

- a) Substitua a terceira linha pela sua soma com a segunda multiplicada por -2 transformando-a numa matriz triangular superior U.
- b) Calcule os valores próprios de A e de U e verifique que as matrizes **não** têm o mesmo conjunto de valores próprios.

Exercício 6. Determine vetores próprios associados a cada um dos valores próprios **reais** das matrizes apresentadas no Exercício 3.

Exercício 7. Considere a matriz

$$A = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 0 \end{pmatrix}.$$

- a) Calcule os valores próprios de A indicando a sua multiplicidade algébrica.
- b) Calcule o subespaço próprio associado a cada um dos valores próprios de A, indicando a multiplicidade geométrica de cada valor próprio.

Exercício 8. Seja λ um valor próprio de uma matriz A e seja \mathbf{x} um vetor próprio associado a λ . Mostre que

- a) $\alpha\lambda$ ($\alpha\neq 0$) é valor próprio de αA associado ao vetor próprio \mathbf{x} ;
- b) λp é valor próprio de A pI associado ao vetor próprio \mathbf{x} ;
- c) λ^k ($k \in \mathbb{N}$) é valor próprio de A^k associado ao vetor próprio \mathbf{x} .

Exercício 9. Seja A uma matriz de ordem 3 com valores próprios -1,1 e 2. Indique os valores próprios de uma matriz B relacionada com A do seguinte modo:

- a) B = 4A.
- b) B = -A.
- c) $B = A + 3I_3$.
- d) $B = A^{-1}$.
- e) $B = A^T$.
- f) $B = A^3$.

Exercício 10. Considere a matriz

$$A = \left(\begin{array}{rrrr} 1 & 0 & 0 & 1 \\ -1 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 \\ 1 & 0 & 0 & 1 \end{array}\right)$$

- a) Determine os valores próprios de A.
- b) Determine o subespaços próprio associado a cada um dos valores próprios de A.
- c) Indique, justificando, se a matriz A é diagonalizável.
- d) Indique uma matriz B, de ordem 4, que tenha os mesmos valores próprios da matriz A.

Exercício 11. Considere novamente as matrizes apresentadas no Exercício 3. Indique, para cada matriz, a multiplicidade algébrica e geométrica de cada valor próprio real. Diga, justificando, se as matrizes são diagonalizáveis.

Valores e vetores póprios - Exercícios suplementares

Relativamente às questões seguintes, indique, para cada alínea, se a afirmação é verdadeira (V) ou falsa (F), assinalando a opção conveniente.

Exercício 12. Seja A uma matriz de ordem 4, com valores próprios $-2,-1,1$ e 2 e seja $B=-2$	2 <i>A</i> . V	F
a) $\det A = 4$. b) As matrizes A e B são semelhantes. c) O sistema $(A - 2I_4)\mathbf{x} = 0$ é possível e determinado. d) Os valores próprios da matriz B são $-4, -2, 2$ e 4 .	0 0 0	
Exercício 13. Considere a matriz $A=\left(\begin{array}{ccc}1&-1&0\\-1&2&-1\\0&-1&1\end{array}\right).$	V	F
a) $(0,0,0)$ é um vetor próprio associado ao valor próprio 0 . b) $(2,2,2)$ é um vetor próprio associado ao valor próprio 1 . c) $(-1,-1,-1)$ é um vetor próprio associado ao valor próprio 0 . d) $(1,0,-1)$ é um vetor próprio associado ao valor próprio 0 .	0 0 0	
Exercício 14. Seja A uma matriz de ordem 3, com valores próprios 0, 1 e 2.	V	F
a) A é uma matriz invertível. b) O sistema $A\mathbf{x}=0$ é possível e determinado. c) Os valores próprios da matriz $2A-I_3$ são $1,3$ e 5 .	0	C

d) Existe uma base de \mathbb{R}^3 formada por vetores próprios de A.

 $mif@math.uminho.pt \\ 2015/2016 \\ jsoares@math.uminho.pt$

Exercício 1. a), b)

Exercício 2. b), c), d)

Exercício 3.

Matriz	A	В	C	D	E	F
$p(\lambda)$	$(-1+\lambda)(1+\lambda)$	$1+\lambda^2$	$-(-2+\lambda)^3$	$-(-3+\lambda)^2(-1+\lambda)$	$-(-4+\lambda)(-3+\lambda)(-1+\lambda)$	$(-4+\lambda)^2(-2+\lambda)^2$
v.p.	-1, 1	i, -i	2	1, 3	1, 3, 4	2, 4

Exercício 4. 5 e -2.

Exercício 5.

Matriz	A	U		
v.p.	2, 3	1, 2, 6		

Exercício 6.

Matriz	A	C	D	E	F
			(1,0,1),	(1,-1,1),	(0,-1,0,1)
$\overrightarrow{v.p}$.	(-1,1)	(1,0,0)	(0, 1, 0)	(-1,0,1)	(-1,0,1,0)
	(1, 1)		(-1,0,1)	(1, 2, 1)	(0,1,0,1)
					(1,0,1,0)

Exercício 7.

- a) v.p.: -3 e 3, com m.a. 1 e 2, respetivamente.
- b) $V_{-3} = \langle (-1,0,1) \rangle$ e $V_3 = \langle (1,0,1), (0,1,0) \rangle$.

Exercício 9. a) -4, 4, 8 b) -2, -1, 1 c) 2, 4, 5 d) -1, 1/2, 1 e) -1, 1, 2 f) -1, 1, 8.

Exercício 10.

- a) v.p.: 0, 1 e 2, com m.a. 1, 2 e 1, respetivamente.
- b) $V_0 = \langle (-1, -2, 3, 1) \rangle$, $V_1 = \langle (0, 0, 1, 0) \rangle$ e $V_2 = \langle (1, 0, -1, 1) \rangle$.
- c) A matriz não é diagonalizável, porque não há 4 vetores próprios linearmente independentes.

d) Por exemplo,
$$B = \begin{pmatrix} 2 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Exercício 11. A matriz D não é diagonalizável.

Exercício 12. VFFV

Exercício 13. FFVF

Exercício 14. FFFV