

## FEATURES

- 12-bit resolution
- No missing codes
- 1MHz minimum sampling rate
- Functionally complete
- Small 24-pin DDIP
- Low-power, 1.3 Watts
- Three-state output buffers
- Samples to Nyquist frequencies



## GENERAL DESCRIPTION

DATTEL's ADS-112 is a 12-bit, functionally complete, sampling A/D converter that is packaged in a space-saving 24-pin DDIP. Requiring  $\pm 15V$  and  $+5V$  supplies, a minimum sampling rate of 1MHz is achieved while only dissipating 1.3 Watts. The ADS-112 digitizes signals up to Nyquist frequencies. Models are available for use in either commercial (0 to  $+70^{\circ}\text{C}$ ) or military ( $-55$  to  $+125^{\circ}\text{C}$ ) operating temperature ranges.

Typical applications include spectrum, transient, vibration and waveform analysis. This device is also ideally suited for radar, sonar, video digitization, medical instrumentation and high-speed data acquisition systems.

## INPUT/OUTPUT CONNECTIONS

| PIN | FUNCTION     | PIN | FUNCTION         |
|-----|--------------|-----|------------------|
| 1   | BIT 12 (LSB) | 24  | $-15V$ SUPPLY    |
| 2   | BIT 11       | 23  | ANALOG GROUND    |
| 3   | BIT 10       | 22  | $+15V$ SUPPLY    |
| 4   | BIT 9        | 21  | $+10V$ REFERENCE |
| 5   | BIT 8        | 20  | BIPOLAR          |
| 6   | BIT 7        | 19  | ANALOG INPUT     |
| 7   | BIT 6        | 18  | COMP BIN         |
| 8   | BIT 5        | 17  | ENABLE (1-12)    |
| 9   | BIT 4        | 16  | START CONVERT    |
| 10  | BIT 3        | 15  | EOC              |
| 11  | BIT 2        | 14  | DIGITAL GROUND   |
| 12  | BIT 1 (MSB)  | 13  | $+5V$ SUPPLY     |



Figure 1. ADS-112 Functional Block Diagram

**ABSOLUTE MAXIMUM RATINGS**

| PARAMETERS                      | LIMITS            | UNITS |
|---------------------------------|-------------------|-------|
| +15V Supply (Pin 22)            | 0 to +18          | Volts |
| -15V Supply (Pin 24)            | 0 to -18          | Volts |
| +5V Supply (Pin 13)             | 0 to +6           | Volts |
| Digital Inputs (Pin 16, 17, 18) | -0.3 to +VDD +0.3 | Volts |
| Analog Input (Pin 19)           | -9 to +15         | Volts |
| Lead Temp. (10 seconds)         | +300              | °C    |

**FUNCTIONAL SPECIFICATIONS**

(TA =  $\pm 25^\circ\text{C}$ ,  $\pm VCC = \pm 15\text{V}$ ,  $+VDD = +5\text{V}$ , 1MHz sampling rate, and a minimum 1 minute warmup unless otherwise specified.)

| ANALOG INPUTS                            | MIN.                                 | TYP.        | MAX.        | UNITS  |
|------------------------------------------|--------------------------------------|-------------|-------------|--------|
| <b>Input Voltage Range ①</b>             |                                      |             |             |        |
| Bipolar                                  | —                                    | $\pm 5$     | —           | Volts  |
| Unipolar                                 | —                                    | 0 to +10    | —           | Volts  |
| <b>Input Impedance</b>                   | 4.5                                  | 5           | —           | kΩ     |
| <b>Input Capacitance</b>                 | —                                    | 6           | 15          | pF     |
| DIGITAL INPUTS                           |                                      |             |             |        |
| <b>Logic Levels</b>                      |                                      |             |             |        |
| Logic "1"                                | +2.0                                 | —           | —           | Volts  |
| Logic "0"                                | —                                    | —           | +0.8        | Volts  |
| Logic Loading "1"                        | —                                    | —           | +10         | μA     |
| Logic Loading "0"                        | —                                    | —           | -600        | μA     |
| PERFORMANCE                              |                                      |             |             |        |
| <b>Resolution</b>                        | 12 Bits                              |             |             |        |
| <b>No Missing Codes</b>                  | Over the operating temperature range |             |             |        |
| (12 Bits; fin = 1MHz)                    |                                      |             |             |        |
| <b>Integral Non-Linearity</b>            |                                      |             |             |        |
| +25°C                                    | —                                    | $\pm 1/4$   | $\pm 3/4$   | LSB    |
| 0°C to +70°C                             | —                                    | $\pm 1/4$   | $\pm 3/4$   | LSB    |
| -55°C to +125°C                          | —                                    | $\pm 1/2$   | $\pm 1.5$   | LSB    |
| <b>Differential Non-Linearity</b>        |                                      |             |             |        |
| +25°C                                    | —                                    | $\pm 1/4$   | $\pm 3/4$   | LSB    |
| 0°C to +70°C                             | —                                    | $\pm 1/4$   | $\pm 3/4$   | LSB    |
| -55°C to +125°C                          | —                                    | $\pm 1/2$   | $\pm 1$     | LSB    |
| <b>Full Scale Absolute Accuracy</b>      |                                      |             |             |        |
| +25°C                                    | —                                    | $\pm 0.13$  | $\pm 0.25$  | %FSR   |
| 0°C to +70°C                             | —                                    | $\pm 0.15$  | $\pm 0.44$  | %FSR   |
| -55°C to +125°C                          | —                                    | $\pm 0.25$  | $\pm 0.78$  | %FSR   |
| <b>Unipolar Zero Error †</b>             |                                      |             |             |        |
| 0°C to +70°C                             | —                                    | $\pm 0.074$ | $\pm 0.265$ | %FSR   |
| -55°C to +125°C                          | —                                    | $\pm 0.224$ | $\pm 0.43$  | %FSR   |
| <b>Bipolar Zero Error †</b>              |                                      |             |             |        |
| 0°C to +70°C                             | —                                    | $\pm 0.074$ | $\pm 0.166$ | %FSR   |
| -55°C to +125°C                          | —                                    | $\pm 0.124$ | $\pm 0.210$ | %FSR   |
| <b>Bipolar Offset Error †</b>            |                                      |             |             |        |
| 0°C to +70°C                             | —                                    | $\pm 0.1$   | $\pm 0.38$  | %FSR   |
| -55°C to +125°C                          | —                                    | $\pm 0.3$   | $\pm 0.60$  | %FSR   |
| <b>Gain Error †</b>                      |                                      |             |             |        |
| 0°C to +70°C                             | —                                    | $\pm 0.1$   | $\pm 0.38$  | %      |
| -55°C to +125°C                          | —                                    | $\pm 0.3$   | $\pm 0.60$  | %      |
| <b>Internal Reference Voltage, +25°C</b> | +9.98                                | +10.0       | +10.02      | Volts  |
| Drift                                    | —                                    | $\pm 5$     | $\pm 30$    | ppm/°C |
| External Current                         | —                                    | —           | 1.5         | mA     |
| DYNAMIC PERFORMANCE                      |                                      |             |             |        |
| <b>In-Band Harmonics (-0.5dB)</b>        |                                      |             |             |        |
| dc to 100kHz                             | —                                    | -81         | -75         | dB     |
| 100kHz to 500kHz                         | —                                    | -75         | -70         | dB     |
| <b>Total Harm. Distort. (-0.5dB)</b>     |                                      |             |             |        |
| dc to 100kHz                             | —                                    | -78         | -75         | dB     |
| 100kHz to 500kHz                         | —                                    | -73         | -68         | dB     |

† See Tech Note 1

| DYNAMIC PERF. (cont)                                                                       | MIN.                                                                                 | TYP.      | MAX.       | UNITS    |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------|------------|----------|
| <b>Signal-to-Noise Ratio</b><br>(wo/distort., -0.5dB)<br>dc to 100kHz<br>100kHz to 500kHz  | 68<br>67                                                                             | 72<br>71  | —<br>—     | dB<br>dB |
| <b>Signal-to-Noise Ratio ②</b><br>(& distort., -0.5dB)<br>dc to 100kHz<br>100kHz to 500kHz | 66<br>66                                                                             | 70<br>70  | —<br>—     | dB<br>dB |
| <b>Two-tone Intermodulation</b>                                                            |                                                                                      |           |            |          |
| <b>Distortion</b> (fin = 75kHz,<br>105kHz, fs = 1MHz, -0.7dB)                              | —                                                                                    | -88       | -80        | dB       |
| <b>Two-tone Intermodulation</b>                                                            |                                                                                      |           |            |          |
| <b>Distortion</b> (fin = 480kHz,<br>490kHz, fs = 1MHz, -0.7dB)                             | —                                                                                    | -68       | -65        | dB       |
| <b>Input Bandwidth (-3dB)</b>                                                              |                                                                                      |           |            |          |
| Small Signal (-20dB input)                                                                 | 8                                                                                    | 10        | —          | MHz      |
| Large Signal (-0.5dB input)                                                                | 6                                                                                    | 8         | —          | MHz      |
| <b>Slew Rate</b>                                                                           | —                                                                                    | $\pm 150$ | —          | V/μs     |
| <b>Aperture Delay Time</b>                                                                 | —                                                                                    | —         | 20         | ns       |
| <b>Effect. Aperture Delay Time</b>                                                         | —                                                                                    | —         | 16         | ns       |
| <b>Aperture Uncertainty (Jitter)</b>                                                       |                                                                                      |           |            |          |
| RMS                                                                                        | —                                                                                    | —         | 15         | ps       |
| Peak                                                                                       | —                                                                                    | —         | $\pm 50$   | ps       |
| <b>Overshoot Recovery Time</b>                                                             | —                                                                                    | —         | 1000       | ns       |
| <b>S/H Acquisition Time</b>                                                                | 160                                                                                  | 250       | 280        | ns       |
| <b>Conversion Rate</b><br>(Changing Inputs)                                                |                                                                                      |           |            |          |
| +25°C                                                                                      | 1                                                                                    | —         | —          | MHz      |
| 0°C to +70°C                                                                               | 1                                                                                    | —         | —          | MHz      |
| -55°C to +125°C                                                                            | 1                                                                                    | —         | —          | MHz      |
| DIGITAL OUTPUTS                                                                            |                                                                                      |           |            |          |
| <b>Output Coding</b>                                                                       | Straight binary/Offset binary<br>Complementary binary<br>Complementary offset binary |           |            |          |
| Pin 18 High                                                                                |                                                                                      |           |            |          |
| Pin 18 Low                                                                                 |                                                                                      |           |            |          |
| <b>Logic Level</b>                                                                         |                                                                                      |           |            |          |
| Logic "1"                                                                                  | +2.4                                                                                 | —         | —          | Volts    |
| Logic "0"                                                                                  | —                                                                                    | —         | +0.4       | Volts    |
| Logic Loading "1"                                                                          | —                                                                                    | —         | -160       | μA       |
| Logic Loading "0"                                                                          | —                                                                                    | —         | +6.4       | mA       |
| POWER REQUIREMENTS                                                                         |                                                                                      |           |            |          |
| <b>Power Supply Ranges ③</b>                                                               |                                                                                      |           |            |          |
| +15V Supply                                                                                | +14.25                                                                               | +15.0     | +15.75     | Volts    |
| -15V Supply                                                                                | -14.25                                                                               | -15.0     | -15.75     | Volts    |
| +5V Supply                                                                                 | +4.75                                                                                | +5.0      | +5.25      | Volts    |
| <b>Power Supply Current</b>                                                                |                                                                                      |           |            |          |
| +15V Supply                                                                                | —                                                                                    | +24       | +35        | mA       |
| -15V Supply                                                                                | —                                                                                    | -40       | -48        | mA       |
| +5V Supply                                                                                 | —                                                                                    | +80       | +95        | mA       |
| <b>Power Dissipation</b>                                                                   | —                                                                                    | 1.3       | 1.7        | Watts    |
| <b>Power Supply Rejection</b>                                                              | —                                                                                    | —         | $\pm 0.07$ | %FSR/V   |
| PHYSICAL/ENVIRONMENTAL                                                                     |                                                                                      |           |            |          |
| <b>Operating Temp. Range, Case</b>                                                         |                                                                                      |           |            |          |
| ADS-112MC                                                                                  | 0                                                                                    | —         | +70        | °C       |
| ADS-112MM, 883                                                                             | -55                                                                                  | —         | +125       | °C       |
| <b>Storage Temperature Range</b>                                                           |                                                                                      |           |            |          |
| —65                                                                                        | —                                                                                    | +150      | °C         |          |
| <b>Package Type</b>                                                                        | 24-pin, metal-sealed, ceramic DDIP                                                   |           |            |          |
| <b>Weight</b>                                                                              | 0.42 ounces (12 grams)                                                               |           |            |          |

① See Table 3 also

② Effective bits is equal to:

$$(SNR + \text{Distortion}) - 1.76 + \left[ 20 \log \frac{\text{Full Scale Amplitude}}{\text{Actual Input Amplitude}} \right]$$

6.02

③ For  $\pm 12V$ , +5V operation, contact DATEL

## TECHNICAL NOTES

1. Applications which are unaffected by endpoint errors or remove them through software will use the typical connections shown in Figure 3. Remove system errors or adjust the small initial errors of the ADS-112 to zero using the optional external circuitry shown in Figure 4. The external adjustment circuit has no effect on the throughput rate.
2. For best performance, always connect the analog and digital ground pins to a ground plane beneath the converter. The analog and digital grounds are not connected to each other internally.
3. Bypass the analog and digital supplies and the +10V reference (pin 21) to ground with  $4.7\mu F$ , 25V tantalum electrolytic capacitors in parallel with  $0.1\mu F$  ceramic capacitors. Bypass the +10V reference (pin 21) to analog ground (pin 23).
4. Obtain straight binary/offset binary output coding by tying COMP BIN (pin 18) to +5V or leaving it open. The device

has an internal pull-up resistor on this pin. To obtain complementary binary or complementary offset binary output coding, tie pin 18 to ground. The pin 18 signal is compatible with CMOS/TTL logic levels for those users desiring dynamic control of this function.

5. To enable the three-state outputs, connect ENABLE (pin 17) to a logic "0" (low). To disable, connect pin 17 to a logic "1" (high).
6. Do not change the status of pin 18 when EOC is high.
7. Re-initiating the START CONVERT (pin 16) while EOC is a logic "1" (high) will result in a new conversion sequence.

## TIMING

Figure 2 shows the relationship between the various input signals. The timing shown applies over the operating temperature range and over the operating power supply range. These times are guaranteed by design.



Note: Scale is approximately 50ns per division.

Figure 2. ADS-112 Timing Diagram

## CALIBRATION PROCEDURE

1. Connect the converter per Figures 3 and 4 and Tables 1 and 3 for the appropriate input range. Apply a pulse of 150 nanoseconds to the START CONVERT input (pin 16) at a rate of 250kHz. This rate is chosen to reduce the flicker if LED's are used on the outputs for calibration purposes.

### 2. Zero Adjustments

Apply a precision voltage reference source between the amplifier's analog input and ground. Adjust the output of the reference source per Table 2. For unipolar, adjust the zero trimming potentiometer so that the output code flickers equally between 0000 0000 0000 and 0000 0000 0001 with COMP BIN (pin 18) tied high (straight binary) or between 1111 1111 1111 and 1111 1111 1110 with pin 18 tied low (complementary binary).

For bipolar operation, adjust the potentiometer such that the code flickers equally between 1000 0000 0000 and 1000 0000 0001 with pin 18 tied high (offset binary) or between 0111 1111 1111 and 0111 1111 1110 with pin 18 tied low (complementary offset binary).

### 3. Full-Scale Adjustment

Set the output of the voltage reference used in step 2 to the value shown in Table 2. Adjust the gain trimming potentiometer so that the output code flickers equally between 1111 1111 1110 and 1111 1111 1111 for pin 18 tied high or between 0000 0000 0001 and 0000 0000 0000 for pin 18 tied low.

To confirm proper operation of the device, vary the precision reference voltage source to obtain the output coding listed in Table 4.

Table 1. Input Range Selection

| INPUT RANGE | INPUT PIN | TIE TOGETHER     |
|-------------|-----------|------------------|
| $\pm 5V$    | Pin 19    | Pin 20 to Pin 21 |
| 0 to +10V   | Pin 19    | Pin 20 to Ground |



① For values of R1 and R2 refer to Table 3.

Figure 4. Optional Calibration Circuit

Table 2. Zero and Gain Adjust

| INPUT RANGE      | ZERO ADJUST<br>+1/2 LSB | GAIN ADJUST<br>+FS – 1 1/2 LSB |
|------------------|-------------------------|--------------------------------|
| 0 to +10V<br>±5V | +1.22mV<br>+1.22mV      | +9.9963V<br>+4.9963V           |

Table 3. Input Range (using external calibration)

| INPUT RANGE        | R1 | R2 | UNIT |
|--------------------|----|----|------|
| 0 to 10V, ±5       | 2  | 2  | kΩ   |
| 0 to 5V, ±2.5V     | 2  | 6  | kΩ   |
| 0 to +2.5V, ±1.25V | 2  | 14 | kΩ   |



Figure 3. Typical ADS-112 Connection Diagram

Table 4. Output Coding

| UNIPOLAR<br>SCALE | INPUT RANGE<br>0 to +10V | STRAIGHT BIN. |      |      |     | COMP. BINARY |      | INPUT RANGE<br>$\pm 5V$ | BIPOLAR<br>SCALE |
|-------------------|--------------------------|---------------|------|------|-----|--------------|------|-------------------------|------------------|
|                   |                          | OUTPUT CODING |      | MSB  | LSB | MSB          | LSB  |                         |                  |
| +FS – 1 LSB       | +9.9976                  | 1111          | 1111 | 1111 |     | 0000         | 0000 | 0000                    | +4.9976          |
| +7/8 FS           | +8.7500                  | 1110          | 0000 | 0000 |     | 0001         | 1111 | 1111                    | +3.7500          |
| +3/4 FS           | +7.5000                  | 1100          | 0000 | 0000 |     | 0011         | 1111 | 1111                    | +2.5000          |
| +1/2 FS           | +5.0000                  | 1000          | 0000 | 0000 |     | 0111         | 1111 | 1111                    | 0.0000           |
| +1/4 FS           | +2.5000                  | 0100          | 0000 | 0000 |     | 1011         | 1111 | 1111                    | -2.5000          |
| +1/8 FS           | +1.2500                  | 0010          | 0000 | 0000 |     | 1101         | 1111 | 1111                    | -3.7500          |
| +1 LSB            | +0.0024                  | 0000          | 0000 | 0001 |     | 1111         | 1111 | 1110                    | -4.9976          |
| 0                 | 0.0000                   | 0000          | 0000 | 0000 |     | 1111         | 1111 | 1111                    | -5.0000          |

OFF. BINARY                            COMP. OFF. BIN.



Figure 5. FFT Analysis of ADS-112

## MECHANICAL DIMENSIONS INCHES (mm)



## ORDERING INFORMATION

| MODEL NUMBER | OPERATING TEMP. RANGE | ACCESSORIES                                                                            |
|--------------|-----------------------|----------------------------------------------------------------------------------------|
| ADS-112MC    | 0 to +70°C            |                                                                                        |
| ADS-112MM    | -55 to +125°C         |                                                                                        |
| ADS-112/883  | -55 to +125°C         | ADS-EVAL4 Evaluation Board (without ADS-112)<br>HS-32 Heat Sink for all ADS-112 models |

For MIL-STD-883 product specification or availability of surface-mount packaging, contact DATEL. Receptacles for PC mounting can be ordered through AMP Inc., Part # 3-331272-8 (Component Lead Socket), 24 required.