Bits and Pieces of Ch 8

Wednesday, November 1, 2023 10:35 AM

§ 8.3 Cryptographic Assumptions in Cyclic Groups

Story:

In this section

we introduce a class of cryptographic hardness assumptions in cyclic groups.

- We begin with a general discussion of cyclic groups followed by abstract definitinos of the relevant assumptions.
- We then look at two concrete and widel used examples of cyclic groups in which these assumptions are believed to hold.

§ 8.3.1 Cyclic Groups and Generators

Let G be a finite group of order m.

For arbitrary $g \in G$, consider the set

$$\langle g \rangle \coloneqq \{g^0, g^1 \dots\}.$$

(Warning: If G is an infinite group, $\langle g \rangle$ is defined differently)

(NB for me: $\langle g \rangle \neq G$ in general; it is just a subgroup)

By Theorem 8.14 we have $g^m = 1$.

Let $i \leq m$ be the smallest positive integer for which $g^i = 1$.

Then, the above sequence repeats after i terms (i.e. $g^i = g^0$, $g^{i+1} = g^1$ etc.)

and so

$$\langle g \rangle = \{ g^0, \dots g^{i-1} \}.$$

Observe that $\langle g \rangle$ contains at most i elements.

In fact, it contains exactly *i* elements (otherwise i is not the smallest integer for which $g^i = 1$).

It is not hard to verify that $\langle g \rangle$ is a subgroup of G for any g(see Exercise 8.3).

We call $\langle g \rangle$ the subgroup generated by g.

If the order of the subgroup $\langle g \rangle$ is ithen i is called the *order of* g; i.e.

DEFINITION 8.51 Let \mathbb{G} be a finite group and $g \in \mathbb{G}$. The order of g is the smallest positive integer i with $g^i = 1$.

The following is a useful analogue of Corollary 8.15

PROPOSITION 8.52 Let \mathbb{G} be a finite group, and $g \in \mathbb{G}$ an element of order i. Then for any integer x, we have $g^x = g^{[x \mod i]}$.

PROPOSITION 8.52 Let \mathbb{G} be a finite group, and $g \in \mathbb{G}$ an element of order i. Then for any integer x, we have $g^x = g^{[x \bmod i]}$.

Basically,
$$g^x = g^{r+ki} = g^r g^{ki} = g^r$$
 where $x = r + ki$ where r is the remainder ($x \setminus mod i$)

We can prove something stronger:

Proposition 8.53

Let G be a finite group and $g \in G$ an element of order i.

Then $g^x = g^y$ iff $x = y \mod i$.

PROOF If $x = y \mod i$ then $[x \mod i] = [y \mod i]$ and the previous proposition says that

$$g^x = g^{[x \bmod i]} = g^{[y \bmod i]} = g^y.$$

For the more interesting direction, say $g^x = g^y$. Then $1 = g^{x-y} = g^{[x-y \bmod i]}$ (using the previous proposition). Since $[x-y \bmod i] < i$, but i is the smallest positive integer with $g^i = 1$, we must have $[x - y \mod i] = 0$.