Wide-Area Congestion Control

Lecture 19, Computer Networks (198:552) Fall 2019

Review: TCP congestion control

- Keep some in-flight (un-ACK'ed) packets: congestion window
- Adjust window based on several algorithms:
 - Startup: slow start
 - Steady state: AIMD
 - Loss: fast retransmission, fast recovery

Window versus rate-based protocols

Queue Dynamics with TCP

Steady-state behavior

Network model

Sender behavior at steady state

- Congestion avoidance: Additive increase, multiplicative decrease (AIMD)
- Steady state isn't static: lose pkts, grow cwnd, lose pkts, ...

Sender behavior at steady state

- How does the queue size at the bottleneck look, over time?
 - Case 1: $B = C * RT_{prop}$
 - Case 2: B > C * RT_{prop}
 - Case 3: B < C * RT_prop

Network model

A few flows (say 3-4)

Packet-switched core network

Q: how does queue size look now?

Network model

Many flows (say hundreds)

Packet-switched core network

Q: how does queue size look now?

How big should router buffers be?

- Classic buffer-sizing rule: B = C * RT_{prop}
 - BDP buffer
 - Single TCP flow halving its window still gets a throughput of 100% link rate

Q: should buffers be BDP-sized?

- Significant implications:
 - Massive pkt buffers (e.g., 40 Gbit/s with 200ms RT_{prop}): high cost
 - Massive pkt delays: bufferbloat

TCP BBR

Key ideas

- 1. Estimate the bottleneck link rate C
- 2. Estimate the propagation delay RT_{prop}
- 3. Send at rate C with at most k * C * RT_{prop} packets in flight

Pros and Cons?

(1) Estimating the bottleneck link rate

- Data can't be delivered to a receiver faster than the bottleneck link rate
- Measure the data delivery rate
 - And use the maximum value over the recent past
 - Important: measurements time out after a certain period
 - Occasionally send higher (PROBE_BW cycling) to see if changed
- Q: how would you measure delivery rate at the receiver?
- Q: how would you measure delivery rate at the sender?

Measuring delivery rate at the sender

Data that is unACKed at the Packets time of transmitting packet Normal case: All that data (and only that data) is ACKed by this point unACKed data at pkt transmit time Round trip time between pkt-ACK

Quirk: Often, ACKs are "aggregated"

More data appears to be in flight than there actually is

Idea: use minimum of sent rate and

Q: how would you measure the rate at which data was sent?

received rate

(Note: packets of received data and sent data must be the same)

(2) Estimating RT_{prop}

- Use the minimum of the RTT values experienced so far
- \bullet If you're sending at high rate, it is difficult to see the true $\mathsf{RT}_{\mathsf{prop}}$ of the path
 - Q: why?
- Occasionally send just a few packets in an RTT to measure RT_{prop} (PROBE_RTT cycling)
- Also allows achieving fairness among BBR flows

Issues specific to wide-area

The Internet: Many things to consider...

- Bufferbloat
- Token-bucket policers
- Cellular base station scheduling
- Sometimes compete with few streams, sometimes many
- Delayed and aggregated ACKs (WiFi)
- Coexisting with legacy protocols (e.g., Cubic)