CSC 2204 Finite Automata Theory and Formal Languages

Department of Computer Science SZABIST (Islamabad Campus)

Week 6 (Lecture 1)

Part 1:

 If a language can be accepted by an FA then it can be accepted by a TG as well.

Part 2:

 If a language can be accepted by a TG then it can be expressed by an RE as well.

Part 3:

 If a language can be expressed by a RE then it can be accepted by an FA as well.

4

Old States	New States after reading	
	a	b
$z_1 = (x_1, y_1)$	$(\mathbf{x}_1,\mathbf{y}_2) \equiv \mathbf{z}_2$	$(\mathbf{x}_2,\mathbf{y}_1)\equiv\mathbf{z}_3$
$z_2 \equiv (x_1, y_2)$	$(x_1,y_3) \equiv z_4$	$(\mathbf{x}_2,\mathbf{y}_1)\equiv\mathbf{z}_3$
$z_3 + \equiv (x_2, y_1)$	$(x_1,y_2) \equiv z_2$	$(\mathbf{x}_2,\mathbf{y}_1)\equiv\mathbf{z}_3$
$z_4 + \equiv (x_1, y_3)$	$(x_1,y_3) \equiv z_4$	$(\mathbf{x}_2,\mathbf{y}_3)\equiv\mathbf{z}_5$
$z_5 + \equiv (x_2, y_3)$	$(x_1,y_3) \equiv z_4$	$(\mathbf{x}_2,\mathbf{y}_3)\equiv\mathbf{z}_5$

Old States	New States after reading	
	a	ь
$z_1=(x_1,y_1)$	$(\mathbf{x}_2,\mathbf{y}_2) \equiv \mathbf{z}_2$	$(x_1,y_2) \equiv z_3$
$z_2 + \equiv (x_2, y_2)$	$(\mathbf{x}_2,\mathbf{y}_1) \equiv \mathbf{z}_4$	$(x_1,y_1) \equiv z_1$
$z_3 + \equiv (x_1, y_2)$	$(x_2,y_1) \equiv z_4$	$(x_1,y_1) \equiv z_1$
$z_4 + \equiv (x_2, y_1)$	$(\mathbf{x}_2, \mathbf{y}_2) \equiv \mathbf{z}_2$	$(x_1,y_2) \equiv z_3$


```
r1 = (a+b)*a

r2 = (a+b)((a+b)(a+b))* or

r2 = ((a+b)(a+b))*(a+b)

r1+r2 = (a+b)*a + (a+b)((a+b)(a+b))*

r1+r2 = (a+b)*a + ((a+b)(a+b))*(a+b)
```


Old States	New States after reading	
	a	b
$z_1 \pm \equiv (x_1, y_1)$	$(\mathbf{x}_2,\mathbf{y}_2) \equiv \mathbf{z}_2$	$(\mathbf{x}_2, \mathbf{y}_2) \equiv \mathbf{z}_2$
$z_2+\equiv(x_2,y_2)$	$(x_1,y_1) \equiv z_1$	$(\mathbf{x}_1,\mathbf{y}_1) \equiv \mathbf{z}_1$


```
r1 = ((a+b)(a+b))^*

r2 = (a+b)((a+b)(a+b))^*

r2 = ((a+b)(a+b))^*(a+b)

r1+r2 = ((a+b)(a+b))^* + (a+b)((a+b)(a+b))^*

r1+r2 = ((a+b)(a+b))^* + ((a+b)(a+b))^*(a+b)
```