为你的学术科研做更专业的 Presentation

华中师范大学

Banach Spaces

yongxuel487@foxmail.com

数学与统计学学院 Central China Normal University

January 26, 2021

录

- 1 理论基础
 - 支撑项目的基础理论
 - ■应用与实践
- 2 TikZ 绘图与 figure 环境
 - Figure 环境
 - TikZ 绘图
- 3 表格数据

- 4 代码实现
 - Algoritmos
 - Python
 - C 语言代码
 - Java
 - HTML
- 5 参考文献

内容概要

理论基础 000

这部分我们先在这里介绍本部分内容的大致架构:

数学公式

- 行内公式
- 行间公式

绘图与插图

- TikZ/PGFplots 绘图
- 插入多张图
- Tikzpicture 环境与插图

表格环境

- 三线表格
- 2 Diagbox
- 3 tabu 表格
- 4 其他

代码摘录

- Algoritmos 代码
- 2 Python 代码
- 3 C语言代码
- 4 Java 语言代码
- 5 HTML 代码

基础理论

理论基础

定理 1(Tonelli 定理)

设 f(x,y) 是 $\mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q$ 上的非负的广义实值 L-可测函数,则 (A) 对几乎处处的 $x \in \mathbb{R}^p$, f(x,y) 作为 y 的函数是 \mathbb{R}^q 上的非负的 L-可测函数; (B) $F_f(x) = \int_{\mathbb{R}^q} f(x,y) \mathrm{d}y$,则 F_f 是 \mathbb{R}^p 上的非负的 L-可测函数; (C) $\int_{\mathbb{R}^n} f(x,y) \mathrm{d}x \mathrm{d}y = \int_{\mathbb{R}^p} \left(\int_{\mathbb{R}^q} f(x,y) \mathrm{d}y \right) \mathrm{d}x$.

引理Ⅰ

- (1) 若 $f \in \mathcal{F}$, $a \ge 0$, 则 $af \in \mathcal{F}$.
- (2) 若 $f,g \in \mathcal{F}$, 则 $f+g \in \mathcal{F}$.
- (3) 若 $f,g \in \mathcal{F}$, $f \geq g$, 且 g 可积, 则 $f g \in \mathcal{F}$.
- (4) 若 $f_k \in \mathcal{F}$, $f_k \leq f_{k+1}$ (其中 $k = 1, 2, \cdots$), 且 $\lim_{k \to \infty} f_k = f$, 则 $f \in \mathcal{F}$.

5 / 17

例 3 (Gaussian 积分)

$$\int_{-\infty}^{+\infty} e^{-x^2} dx = \sqrt{\pi}$$

证明

理论基础

设
$$f(x,y) = ye^{-\left(1+x^2\right)y^2}$$
. 则 f 在 \mathbb{R}^2 上 非 负.
$$\int_0^{+\infty} \left(\int_0^{+\infty} f(x,y) \mathrm{d}y\right) \mathrm{d}x = \frac{\pi}{4}.$$

续证

由 Tonelli 定理知 $\int_{(0,+\infty)^2} f(x,y) dxdy = \frac{\pi}{4}$, 故可交换积分次序, 从而有 $\left(\int_0^{+\infty} e^{-x^2} dx\right)^2 = \frac{\pi}{4}$.

型论基础 **TikZ 绘图与 figure 环境** 表格数据 代码实现 参考文献

Figure 插图与 TikZ 绘图

Figura: Phagocyte

Banach Spaces CCNU I♪TeX 与科研 January 26, 2021

TikZ 绘图

Figura: Comparison of different data.

Banach Spaces CCNU IATeX 与科研 January 26, 2021 7 / 17

TikZ 绘图

Figura: Comparison of different data.

Banach Spaces CCNU IATeX 与科研 January 26, 2021 8 / 17

数据与 tabular 环境

Category of your contents	Different types of each Category	other type of your data	
	tha∂-1kg		
	0.0056 ± 0.0097, 0.0021 ± 4.0056	3.5×10^5 ; 5.43 (9.30%)	
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5×10^5 ; 5.43 (9.30%)	
	0.0056 ± 0.0097 , 0.0021 ± 4.0056	3.5×10^5 ; 5.43 (9.30%)	
Type of date (numbers)	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ ; 5.43 (9.30%)	
	0.0056 ± 0.0097 , 0.0021 ± 4.0056	3.5×10^5 ; 5.43 (9.30%)	
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ ; 5.43 (9.30%)	
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ : 5.43 (9.30%)	
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ ; 5.43 (9.30%)	
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ : 5.43 (9.30%)	
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ ; 5.43 (9.30%)	
	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	3.5 × 10 ⁵ : 5.43 (9.30%)	
	0.0056 ± 0.0097 , 0.0021 ± 4.0056	3.5 × 10 ⁵ ; 5.43 (9.30%)	
Mathematical formulas	$\frac{\mu^2}{\pi - 2\partial} \times \sqrt[3]{\ v_i - \hat{\phi}\ } + \lim_{s \to \infty} \int_0^{+\infty} f(x)e^{xsi} dx$	$f(x)\in C^1[0,+\infty],\ \ f(x^n)\ _2\leq \beta$	
	$\frac{\mu^2}{\pi^2 2 \partial} \times \sqrt[3]{\ v_i - \hat{\phi}\ } + \lim_{s \to \infty} \int_0^{+\infty} f(x) e^{xsi} dx$	$f(x)\in C^1[0,+\infty], \ \ f(x^n)\ _2 \leq \beta$	
	$\frac{\mu^2}{\pi - 2\partial}$ × $\sqrt[3]{\ v_i - \hat{\phi}\ }$ + $\lim_{s \to \infty} \int_0^{+\infty} f(x)e^{xsi} dx$	$f(x)\in C^1[0,+\infty],\ f(x^n)\ _2\leq \beta$	
Language description Projection data	This is the element described in your language	Mathematical language description	
	This is the element described in your language This is the element described in your language	Mathematical language description Mathematical language description	
	This is the element described in your language This is the element described in your language	Mathematical language description	
	This is the element described in your language This is the element described in your language	Mathematical language description	
	This is the element described in your language	Mathematical language description	
	This is the element described in your language	Mathematical language description	
	3.5×10^5 This is the element described in your language	0.0056 ± 0.0097, 0.0021 ± 4.0056	
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	
	3.5×10^5 This is the element described in your language	$0.0056 \pm 0.0097, 0.0021 \pm 4.0056$	

表格数据 •0

Tabela: Contents of different types of tables.

Banach Spaces CCNU LAT_EX 与科研 January 26, 2021

Tract category (tract#)	Tract name	
0.0056 ± 0.0997, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056	$\begin{array}{c} 0.056 \pm 0.0097, \ 0.0221 \pm 4.0056 \\ 0.0056 \pm 0.0097, \ 0.0021 \pm 4.0056 \end{array}$	0.056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056
0.0056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056 3.5 × 10 ⁵ ; 5.43 (9.30%)	0.0056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056 3.5 × 10 ⁵ This is the element described as 5 × 10 ⁵ This is 5 × 10 ⁵	
$3.5 \times 10^5 : 5.43 (9.30\%)$ $3.5 \times 10^5 : 5.43 (9.30\%)$ $3.5 \times 10^5 : 5.43 (9.30\%)$ $3.5 \times 10^5 : 5.43 (9.30\%)$	3.5×10^{5} This is the element describ 3.5×10^{5} This is the element describ 3.5×10^{5} This is the element describ 3.5×10^{5} This is the element describ	oed in your language oed in your language
3.5×10^5 This is the element describ the describation of the element described the element describe	ed in your language Contents of differe ed in your language ed in your language	nt types of tables nt types of tables
$\begin{array}{c} 0.0056 \pm 0.0097, \ 0.0021 \pm 4.0056 \\ 0.0056 \pm 0.0097, \ 0.0021 \pm 4.0056 \end{array}$	$\begin{array}{c} 0.0056 \pm 0.0097, 0.0021 \pm 4.0056 \\ 0.0056 \pm 0.0097, 0.0021 \pm 4.0056 \end{array}$	$\begin{array}{c} 0.0056 \pm 0.0097, 0.0021 \pm 4.0056 \\ 0.0056 \pm 0.0097, 0.0021 \pm 4.0056 \end{array}$
0.0056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056	0.0056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056	0.0056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056 0.0056 ± 0.0097, 0.0021 ± 4.0056

Figura: WMA method overview.

Tabela: Contents of different types of tables.

 $0.0056 \pm 0.0097, 0.0021 \pm 4.0056$

 $0.0056 \pm 0.0097, 0.0021 \pm 4.0056$

0.0056 ± 0.0097, 0.0021 ± 4.0056

 $0.0056 \pm 0.0097, 0.0021 \pm 4.0056$

 $0.0056 \pm 0.0097, 0.0021 \pm 4.0056$

 $0.0056 \pm 0.0097, 0.0021 \pm 4.0056$

 $0.0056 \pm 0.0097, 0.0021 \pm 4.0056$

 0.0056 ± 0.0097 , 0.0021 ± 4.0056

 0.0056 ± 0.0097 , 0.0021 ± 4.0056

Algoritmos 代码

```
input : x: float, y: float
  output: r: float
1 while True do
     r = x + y:
2
     if r >= 30 then
3
         "O valor de r é maior ou iqual a 10.";
4
         break;
5
     else
6
         "O valor de r =", r;
7
     end
8
9 end
```

Algorithm 1: Algorithm Example

Python 代码

```
1 import numpy as np
2 import matplotlib.pyplot as plt
_{3} N = 10
data = np.random.random((N, 4))
5 labels = ['point{0}'.format(i) for i in range(N)]
6 plt.subplots_adjust(bottom = 0.1)
7 | plt.scatter( data[:, 0], data[:, 1], marker = '0', c = data
      [:, 2], s = data[:, 3]*1500,
      cmap = plt.get_cmap('Spectral'))
g for label, x, y in zip(labels, data[:, 0], data[:, 1]):
      plt.annotate( label, xy = (x, y), xytext = (-20, 20),
          textcoords = 'offset points', ha = 'right', va = '
      bottom'.
          bbox = dict(boxstyle = 'round, pad=0.5', fc = 'yellow
      ^{\prime}, alpha = 0.5),
          arrowprops = dict(arrowstyle = '->', connectionstyle
13
       = 'arc3, rad=0'))
14 plt.show()
```


code/main.py

C语言代码

```
#include <stdio.h>
  int main()
  {
4
      int i,j,k,n;
       for (i=100; i<1000; i++)
5
       {
6
           j=i%10;
7
           k=i/10%10;
8
           n=i/100;
9
           if(j*j*j+k*k*k+n*n*n==i)
10
                printf("%5d\n",i);
11
       return 0;
```

code/source.c

Java 语言代码

```
import java.io.File;
public class Main {
      public static void main(String[] argv) throws Exception
          System.out.println("遍历目录");
4
          File dir = new File("/www/java"); //要遍历的目录
5
          visitAllDirsAndFiles(dir);
6
7
      public static void visitAllDirsAndFiles(File dir) {
8
9
          System.out.println(dir);
          if (dir.isDirectory()) {
10
              String[] children = dir.list();
              for (int i = 0; i < children.length; i++) {</pre>
                   visitAllDirsAndFiles(new File(dir, children[
      i]));
              }
14
15
16
```


code/helloworld.java

代码实现

HTML 代码

```
<!DOCTYPE html>
2 <html lang="en">
 <head>
      <meta charset="UTF-8">
4
      <meta name="viewport" content="width=device-width,</pre>
5
      initial-scale=1.0">
      <title>Document</title>
6
  </head>
      <body>
8
           <h1>My First HTML</h1>
9
      </body>
10
  </html>
```

code/index.html

参考文献I

- [1] Albert Einstein. "Zur Elektrodynamik bewegter Körper. (German) [On the electrodynamics of moving bodies]". Em: Annalen der Physik 322.10 (1905), 891–921. DOI: {http://dx.doi.org/10.1002/andp.19053221004}.
- [2] Universidade Federal do Ceará. *Identidade Visual da UFC*. http://www.ufc.br/. Online; acessado em 26 de Dezembro de 2020. 2020.
- [3] Karl von Meyenn. "Zur Elektrodynamik bewegter Körper". Em: Albert Einsteins Relativitätstheorie: Die grundlegenden Arbeiten. Ed. por Karl von Meyenn. Wiesbaden: Vieweg+Teubner Verlag, 1990, pp. 124–155. ISBN: 978-3-322-83770-7. DOI: 10.1007/978-3-322-83770-7_4. URL: https://doi.org/10.1007/978-3-322-83770-7_4.

致谢!

联系方式:

yongxue1487@foxmail.com

