

Tutorial Capella Add-On

Design Space Exploration for Customer Workflows

Jozef Hooman, Koen Kanters, Alexandr Vasenev, Jacques Verriet

2022-12-01

1 Introduction

This tutorial describes the use of an open-source prototype tool [1] to support design decisions early in the process of system development by quantitative information about important system qualities. The current version concentrates on the duration of customer workflows. Our approach is based on Arcadia [2] and the prototype tool extends the corresponding open-source tool Eclipse tool Capella [3]. Assumptions about resources and durations of functions have to be added to Capella's functional chains. This is done using the PVMT add-on [4]. Next, the annotated functional chains are automatically translated to models of the POOSL tool [5] for performance simulation. This tool stores the simulation in a format that can be used by TRACE4CPS [6] to visualize the execution in different ways and perform analysis such as critical path analysis. Since POOSL and TRACE4CPS are available as Eclipse plugin, all steps above are integrated in our prototype tool. Finally, the tool also contains the possibility to perform design space exploration by a dedicated application.

This tutorial is structured as follows. The tool installation and creation of a workspace is explained in Section 2. Section 3 described how to create a functional chain using logical components with functions. The annotation of functional chains with value can be found in Section 4. Section 5 describes how to simulate the functional chains. Visualization of the results of a simulation and critical path analysis is explained in Section 6. Nested functional chains and reuse of chains are described in Sections 7 and 8, respectively. Section 8 also describes an alternative approach to define functional chains using function decomposition. Design space exploration can be found in Section 9. A few details about PVMT are provided in Section 10. Notes on opening existing projects, adding pictures, simulation and known issues can be found in Section 11.

2 Installation and creation of a workspace

- Download capella-workflow-dse-win32-x64-0.1.0.zip from https://github.com/TNO/capella-workflow-dse/releases, unzip to a folder, double-click capella.exe.
- Remove the Welcome screen
- Select a folder as location for the workspace which contain the Capella project:
 Tab File > Switch Workspace > browse to folder

3 Create functional chains

First create a new project:

• Choose File > New > Project > Capella project; give a name; Finish

Next create a new architectural diagram:

• Choose Logical Architecture > Define Logical Components and Actors > [LAB] Create a new logical Architecture diagram; choose a name, e.g., default [LAB] Structure

In the logical architecture diagram:

- Add Logical Component(s) and Logical Actor(s)
- Add Functions to components and actors
- Connect Functions with Functional Exchanges

An example is shown in Figure 1.

Figure 1 Example Logical Architecture Diagram

Create and fill a Functional Chain view:

- Select all Functional Exchanges as shown in Figure 2, using Ctrl + Left Mouse Button.
- Next click Right Mouse Button > Functional chain > Create Functional chain

Figure 2 Functional Chain

 Press [Right Mouse Button] on the name of the Functional chain (e.g., Functional Chain 1), choose New > Functional Chain Description; choose a name, e.g., default [LFCD] Functional Chain 1.
 See Figure 3. Note that warning and errors might appear; they can be resolved later.

Figure 3 Functional Chain Description

Add control nodes and sequence links between the involved functions:

• First hide the functional exchanges by clicking on drop-down menu of Filters and selecting Hide Functional Chain Involvement Links, see Figure 4.

Figure 4 Hide Functional Chains

• To insert control nodes, first click on the small triangle before AND under Sequencing to show AND, OR and IT nodes as shown in Figure 5.

Figure 5 Control Nodes Palette

• Add control nodes and sequence links. An example is shown in Figure 6.

Figure 6 Functional Chain Description with Control Nodes

There are several requirements on functional chain descriptions:

- There should be exactly one start functional node, i.e., a function without incoming links
- There should be exactly one end function node, i.e., a function without outgoing links
- AND, OR, IT nodes occur in pairs, an opening node and a closing node, with the following constraints:
 - An IT opening node has two incoming links (one from the IT closing node) and one outgoing link
 - An IT closing node has one incoming link and two outgoing links (one to IT opening node)
 - The number of outgoing links of an AND opening node equals the number of incoming links of the corresponding AND closing node, similar for OR nodes

Note that the first two requirements forbid that a functional chain starts or ends with a control node. To construct such chains, dummy start or end functions have to be added.

As an example, suppose a functional chain should consist of the sequence < A1, F2 > in parallel with the sequence < F5, A2 >. Then create dummy functions, e.g., Start and End, add a functional exchange of Start with A1, and create a functional chain with this new exchange, see Figure 7.

Figure 7 Adding a Dummy Start and End Function

Next create a new Functional Chain Description and Hide Functional Chain Involvement Links, as described above. Next add functions by Function under Involvements and control nodes, leading to Figure 8.

Figure 8 Functional Chain Description with Dummy Start and End Functions

4 ADD PARAMETERS TO NODES AND LINKS

First load a PVMT profile as follows.

Use Property Values view:

Tab Window > Show View > Other > Choose Property values, select Property values – Open; see
 Figure 9

 Select a function, select Property Values tab and click on the small blue rectangle on the right (Open PV Definition Editor) as shown in Figure 10.

•

Figure 10 Open PV Definition Editor

- In Configuration PV tab, select on the right Import Property values Definition; Browse File System to locate a ".vapid" file (e.g., WF params.vpd) and select it. Save the definition.
- Close the Configuration PV tab and observe the parameters in the Property Values tab when clicking in a function (see Figure 11), a control node, or a link in the functional chain description.

Figure 11 Property Values

Next values can be given to the elements:

- Click on an element (node or link) and provide values in the Property Values tab.
 - Duration of a function requires a Float, do not provide the "s"
 - o ResourceID and Description require a string; it is not needed to type quotes
 - For the outgoing links of an OR nodes, the value determines the probability of taken the link, based on de sum of the values of all outgoing links. For other links the value is not used.
 - For IT nodes only the number of repetitions of the start IT node is used. Also, for OR and AND nodes the number of repetitions is not used.
- When a node has at least one value for a parameter, the values can be visualized:
 - o In the Palette, under Common, select Applied Property Value Groups
 - Next select an element of the diagram, select >> in the pop-up window, and click OK.
 - Note that for links and control nodes there is no dashed line between the parameters block and the element.

An example is shown in Figure 12.

Figure 12 Functional Chain Description with parameter values

The Problems tab shows errors and warnings. If it is not present, select

Window > Show View > General > Problems

To avoid a large list with all errors and warnings in the workspace, select three vertical dots on the right in Problems tab, select Show > Errors/Warnings on Selection. Note that the warnings also indicate the default values for parameters — double clicking on the warning selects the element in the diagram. As an example, see Figure 13.

Figure 13 Warnings

5 SIMULATION OF WORKFLOW

The functional chain can be simulated using a POOSL model:

- Right click in the diagram of a functional chain description or on the name of a file under the aird file > Representations per category > Common > Functional Chain Description; select Workflow DSE Export
 - An alternative is to right click in the diagram.
- In case no error is detected, this leads to a pop-up message "Export finished".
- The generated POOSL model *net.poosl* can be found in folder gen > poosl
- Execute the simulation by right-clicking on net.poosl and select Run As > POOSL Simulation

A pop-up will appear concerning the character setting, see Figure 14.

Figure 14 Pop-up about Character Setting

Click OK; the Console tab will show information about the simulation.

6 Visualization and analysis of simulation results

Running a simulation as described in the previous section will generate file trace.etf in the gen > poosl folder. This generated file can be opened in the TRACE4CPS Gantt chart viewer by double clicking on the view. The default view of simulating the functional chain in Figure 12 is shown in Figure 15. This Gantt show the execution of the functions (vertical axis) in the functional chain over time (horizontal axis).

Figure 15 TRACE4CPS Gantt chart activity view

To deal with nested functional chains, as discussed in Section 7, there are a few attributed on the vertical axis. They can be removed by the claim grouping button and selecting "name". Note that in TRACE4CPS function execution is represented as a *claim* on a resource.

Using TRACE4CPS one can toggle between two views, an activity view (see Figure 15) and a resource view (see Figure 16). One can toggle between these views by pressing the button. In the resource view, the grouping is done according to the resource of a function. I.e., all functions that use the same resource are in the same swim lane. In the activity view, the grouping of the functions is done according to the grouping attributes that will be explained later when dealing with nested functional chains.

Figure 16 TRACE4CPS Gantt chart resource view

TRACE4CPS offers a large variety of analysis tools. One relevant analysis is critical path analysis, which can be used to identify the bottlenecks of a workflow. Critical path analysis can be started by pressing the button. This will open the dialog shown in Figure 17; the *NONE* option must be selected as well as the option *Use default epsilon*.

Figure 17 TRACE critical path analysis dialog

After selecting *OK*, a new Gantt chart view will be shown (see Figure 18). In the new view, functions are colored red if they lie on the critical path. If the length of the execution is to be shortened, one needs to address the functions on the critical path.

Figure 18 TRACE4CPS Gantt chart with critical path view

The critical path view cannot be stored. If the Gantt chart is closed and opened again, the default (or persisted) view with be shown.

To inspect large workflows, TRACE4CPS offers zooming, panning and scrolling functionality. Zooming can be done in various ways:

- Right-click the chart: the context menu has items to zoom one or both of the axes.
- Ctrl-down and mouse wheel zooms the horizontal axis in or out.
- Shift-Ctrl-down and mouse wheel zooms the vertical axis in or out.

- Area selection in the chart using the mouse zooms to that selection.
- A mouse dragging gesture to the left zooms out fully on both axes.

Panning is done by Alt-down and dragging the chart. The mouse wheel scrolls on the vertical axis if a vertical scrollbar is present; otherwise, it scrolls on the horizontal axis (time). The arrows on the scroll bars can be used for scrolling in smaller steps.

• By using TRACE4CPS's filtering () function, one can hide functions from the Gantt chart. This can be done based on the attributes of the functions or the resources. After selecting *Filter claim* and selecting the *name* attribute and *Next*, one can select the functions to keep. After ticking the checkboxes of *F1*, *F2*, *F3*, *F4*, *F5*, selecting *Finish* and choosing the resource view, the Gantt chart in Figure 19 is shown. Resource filtering can be done in a similar manner. Filters can be removed using the function.

After filtering, one can persist the resulting view using the 🖫 function. When opening the Gantt chart a next time, the persisted view will be shown.

Figure 19 TRACE4CPS Gantt chart view after filtering

The distance between points in the Gantt chart can be measured by clicking *Alt* and then selecting two points in the chart, see the figure on the right. To remove the timing annotation, re-open the chart.

Information on other analyses that TRACE4CPS offers can be found in the documentation, which can be accessed via the *Help > Help Contents* menu and selecting the *TRACE4CPS user manual* section in the contents window.

7 Nested functional chains

Create a new Logical Architecture diagram; if needed, first open the Activity Explorer (right click on .aird file), select Logical Architecture, Define Logical Components and Actors.

Create a number of new basic functions and add functional exchanges, see component Basic Functions in Figure 20. Also insert the Dummy component (which was created in Section 3), using Components (

Components) under Components in the Palette and using ">". Next insert the End function, using

Allocated Functions (Allocated Functions) under Functions in the Palette and using ">". Add a functional exchange to obtain the diagram of Figure 20.

Figure 20 Basic Functions

Create functional chain 3 as shown in the next figure:

Note that the diagrams in this section often do not show warnings because values for the required PVMT attributes have been given

Create the following functional chain 4:

Next functional chain 3 is included in chain 4 by selecting Functional Chain under Involvements in the Palette, click in the diagram, in the pop-up select FunctionalChain2 and click OK. See the Next picture

Enlarge the box of FunctionalChain 3 to see its contents and connect BF2 to the OR node, as shown below:

When selection FunctionalChain 3 there is a small icon in the upper left corner of the main box (see the picture below); clicking on it gives a collapsed view. It can be undone by an icon at the same place.

Note that this chain can be simulated and in the activity view of the trace it is possible to group functions based on the level. This will be explained in more detail below.

Next, we create a functional chain based on other chains. Create function chain description 5, based on the exchange between BF4 and End:

Hide the functional chain involvement links, move the End function to the lower part of the diagram, and insert FunctionalChain1 as explained above. Enlarge the box of FunctionalChain1.

Open the original diagram of FunctionalChain 1 (see Figure 12), select all elements (e.g., by Ctrl-A) and choose "Copy the format of the selected diagram elements" on menu bar:

To paste the current recorded layout, return to FunctionalChain 5, and select Paste format from menu bar:

Move the End function further down and insert FunctionalChain 4. Also here copy the format of the original diagram. Finally add sequence links and an iteration as shown in Figure 21.

Figure 21 Nested Functional Chains

Next the model can be simulated and the resulting trace can be viewed at different levels. A few possibilities:

- By filtering \Im claims (i.e., function executions) on name, everything except the End function can be selected to hide the artificial End.
- In the activity view, claim grouping = can be used to show the activities at different levels, e.g.
 - o Level1name shows BF4, chain 1 and chain 4
 - o Level2name shows level 1, all functions of level 2 (A1, .. BF2, .., F5) and chain 3.
 - Level3name shows level 1, level 2, and all functions of level 3 (BF1 and BF2)
- Claim coloring sprovides possibilities to give the same color to functions of the same level

8 REUSE OF FUNCTIONAL CHAINS

In this section we demonstrate how to reuse functional chains, since this is slightly more complicated than the reuse of functions which was shown in FunctionalChain4 (see Figure 21). In addition, we also present and alternative way to define functional chains, namely, the use of function decompositions to model hierarchical flows.

Next create a new architectural diagram:

- Choose Logical Architecture > Refine Logical Functions, describe Functional Exchanges > [LFBD] Create a new Functional Breakdown diagram; choose a name, e.g., default [LFBD] Root Logical Function
- This shows all existing functions, hide them by selecting all and use right-click > Show/Hide > Hide element
- Add functions and Contained In relations to obtain Figure 22

Figure 22 Hierarchy of functions

Suppose we want to create a functional chain which contains two version of Fun1.2 with different parameters, say Fun1.2small and Fun1.2large with small and large parameters respectively. This can be achieved as follows:

- Choose Logical Architecture > Refine Logical Functions, describe Functional Exchanges > [LDFB] Create a new Functional Dataflow Blank diagram; choose a name, e.g. [LFBD] Fun1.2
- Add existing function Fun1.2 and its sub functions. Also add a functional exchange from Fun1.2.1 to Fun1.2.2.

- Select the functional exchange, right-click and select Functional Chain > Create a Functional Chain. Change the name to Fun1.2small.
- Repeat the step and create another functional chain (with the same functional exchange) and call it Fun1.2large.

• For each chain, right-click on it, select New > Functional Chain Description; use the default names and add a sequence link from Fun1.2.1 to Fun1.2.2. Also, PVMT values can be added.

To define the intended workflow, proceed as follows:

- Create a new Functional Dataflow Blank diagram; choose a name, e.g. [LFBD] Fun1
- Add Fun1, all its sub functions, as shown below.

• Select the functional exchange and create a functional chain. Change the name of the chain to Fun1.

- Based on this chain, create a new Functional Chain Description Fun1.
- In the functional chain description, hide the two functions, add Fun1.3, two instances of Fun1.1, and insert the two functional chains Fun1.2small and Fun1.2large. Add sequence links to obtain Figure 23.

Figure 23 Workflow with reuse of functional chains

9 Design space exploration

To illustrate design space exploration, consider FunctionalChain1 as shown in see Figure 12. Use of the menu bar to hide the property values, see the next figure:

To start a separate design space exploration window, right-click in the diagram or on the file name in the project explorer and select Workflow DSE Run, see the next figure.

The result is shown in Figure 24 (note that the lay-out of the chain has been adapted).

- By clicking on a function, the value specification on the left will be selected where ranges to be explored can be specified:
 - By clicking on the circle with the dot after the Duration a minimum and maximum value and a steps size can be given.
 - By means of the + after ResourceID, alternative resources can be specified.
- Similarly, values for IT start nodes and outgoing arcs of OR start nodes can be defined.
- Note that it is also possible to click on the PVMT value specifications on the left to highlight the corresponding node in the diagram.
- The relation between resources and the duration of functions on these resources can be specified explicitly by means of button . This leads to a pop-up window where these relations can be expressed. An example is shown in Figure 25. Lines can be added using + and the setting can be saved by button to file DSE-definitions.json.

Figure 24 Design space exploration

CLOSE

Figure 25 Definition editor

- All possible combinations of the PVMT values are simulated by the play button
- When the diagram contains OR nodes, it might be useful to run multiple simulations for each combination of values ("combo" for short); this can be specified using the "Runs per combo" button. Them the average duration of all these runs will be taken.
- Note that this button is disabled when there are no OR nodes in the diagram.
- Details of all runs can be found in folder gen > dse. Previous can be deleted by button \times .

• Button shows a visualization of the runs; a small example is shown in Figure 26. On a vertical axis a region can be selected to highlight the runs related to that region. For instance, in Figure 26 the region with the lowest duration is selected. Note that each vertical axis can be moved manually left or right.

Figure 26 Visualization of simulation results

10 PVMT

10.1 IMPORT AND EXPORT OF PVMT VALUES

Export PVMT values:

- Open project by double-clicking on .aird file
- Right-click on the .aird file and select Export PVMT values

Similarly, PVMT values can be imported.

10.2 CHANGE PVMT PROFILE

To change a PVMT profile:

• Open PV Definition Editor, see figure below

- To update an existing profile, first make sure the existing PVMT values have been exported such
 that they can be changed and imported later. Next delete it (right-click and select Delete) and
 save.
- Select Import Property values Definition, see next figure

• Browse file system to select .vpd file, Open and select OK; Save

10.3 DELETING PVMT VALUES

Note that trying to delete a parameter value in the Property Values tab will give a null pointer exception. A solution is to delete the complete PVMT object connected to a node as follows:

- In the diagram click fn-F8, this shows the details of the diagram in the Project Explorer
- Locate the PVMT params of the function and right-click Delete, OK

11 OTHER TOPICS

11.1.1 Open existing project

- In an existing project, double click on the .aird file
- To open the Capella Workflow, right-click on .aird file and select Open Activity Explorer

11.1.2 Adding pictures

To add a picture to a diagram:

- Add the picture to the project, e.g., in folder *figures*:
- Add a Constraint to the diagram (see Common of the Palette)

Tutorial

→ B figures

• Connect the constraint to an element of the diagram, e.g., a function, using ConstraintElement of Common, as shown below.

• Select the constraint and in the menu above the diagram select "Set style to workspace image", as shown in the next figure:

Select the image and click OK; then the constraint is replaced by the figure. Similarly, also function blocks can be replaced by pictures.

11.1.3 Simulation with POOSL

A few details about the simulation based on POOSL:

- It is possible to determine the way in which POOSL resolves non-determinism, e.g., when selecting which function to execute after an AND or an OR construct:
 - Select Run Configurations in the drop-down menu right of the Run button
 - Under POOSL Simulation, select a model and then the "Seed for resolving nondeterminism" can be changed; either choose a fixed seed or select Random
 - See also Help > Help Contents > Poosl > Simulate > Running Models, see Advances features > Setting a seed for resolving non-determinism
- Details of a simulation, with the possibility to perform steps and inspect details of the POOSL, can see when running the simulation in Debug mode:
 - o Right-click on the POOSL file and select Debug As > POOSL Simulation
 - For more details about debug mode, see Help > Help Contents > Poosl > Simulate >
 Debugging Models

11.1.4 Known issues

- After resolving a warning, the diagram might still show the yellow triangle on an element without warnings; slight move the element to remove the yellow triangle.
- TRACE4CPS: if the Gantt chart is not completely visible, e.g., the timeline is not visible, resize the window.
- When certain Papillon menu items are not available, make sure the Capella perspective is used,

12 REFERENCES

- [1] Design space exploration of customer workflows in Capella, https://github.com/TNO/capella-workflow-dse
- [2] Arcadia https://www.eclipse.org/capella/arcadia.html
- [3] Capella https://www.eclipse.org/capella/
- [4] Property Values Management Tools (PVMT); https://www.eclipse.org/capella/addons.html
- [5] POOSL https://www.poosl.org/
- [6] TRACE4CPS https://projects.eclipse.org/projects/technology.trace4cps