Medical Image Analysis

3. Medical image classification(2)

Taeyang Yang

Oct. 2020

https://www.edwith.org/medical-20200327/joinLectures/30437

Contents

- Deep neural network 구조
- Convolutional neural network 구조
- 주요 네트워크 구조
- 네트워크를 의료영상 분류에 적용하기 위한 방법

• Logistic regression

Neural network

• Deep neural network

Image input

- 각각의 node들은 서로 다른 영역을 맡아 체크한다.
- Layer마다 체크하는 수준이 달라진다.
 - 1st layer: low level

- 각각의 node들은 서로 다른 영역을 맡아 체크한다.
- Layer마다 체크하는 수준이 달라진다.
 - 2nd layer: high level

- 각각의 node들은 서로 다른 영역을 맡아 체크한다.
- Layer마다 체크하는 수준이 달라진다.
 - 3rd layer: higher level

Deep neural network: End-to-end learning (Feature extractor + Classifier)

Important of data size

- Data size에 따라 점차 성능이 좋아지는 Deep neural network
 - Data size가 적은 의료영상 도메인 특성상 Conventional learning algorithm이 나은 경우도 많다.

Limitation of deep neural network

• Too many parameters

Convolution filter

Data					
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

Convolution filter

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Convolution

199	9	9	0	0	0
199	\$	®	0	0	0
199	9	199	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

9

0

Data

$$9 \times \frac{1}{9} + 9 \times \frac{1}{9} = 9$$

Convolution

_			
	<i>^</i>	. +	$\overline{}$
	1	11	_
	J ()	ı.	C.

9	99	®	0	0	0
9	99	99	%	0	0
9	99	99	1 09	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

	_					
9	6					

$$9 \times \frac{1}{9} + 9 \times \frac{1}{9} + 0 \times \frac{1}{9} + 0 \times \frac{1}{9} + 0 \times \frac{1}{9} = 6$$

Convolution

1)	21	2
U	aι	a

9	9	®	%	0	0
9	9	99	%	%	0
9	9	99	%	%	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

9	6	3	

$$9 \times \frac{1}{9} + 9 \times \frac{1}{9} + 9 \times \frac{1}{9} + 0 \times \frac{1}{9} = 6$$

Convolution

Data					
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	100	®	109
9	9	9	109	1/09	109
9	9	9	1(/)9	1 /9	109

$$9 \times \frac{1}{9} + 9 \times \frac{1}{9} + 9 \times \frac{1}{9} + 0 \times \frac{1}{9} = 6$$

Different Convolution filter

1/9	1/9	1/9
1/9	-17/9	1/9
1/9	1/9	1/9

Diverse Convolution filter

- 다양한 필터가 만들어질 수 있다.
- 단, 같은 레이어에서는 같은 크기의 필터가 사용된다.

Convolution examples

• 각 필터는 다양한 역할을 수행한다

Input

$$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$$

$$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

Blurred

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

Sharpen

Pooling layer

l 1	1	+	
IJ	а		$\boldsymbol{\sigma}$

199	199	9	0	0	0
199	9	9	0	0	0
199	1999	1999	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

Convolutional layer

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Output

9	6	M	0			
9	6	W	0			
9	6	M	0			
9	6	3	0			

$$9 \times \frac{1}{9} + 9 \times \frac{1}{9} = 9$$

RGB image convolution

• 입력 이미지의 채널에 맞추어 Convolution filter의 크기도 조정된다

Output						
9	9	9	0			
9	9	9	0			
9	9	9	0			
9	9	9	0			

Strided convolution

Convolutional layer

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Output

9	6	M	0
9	6	M	0
9	6	3	0
9	6	3	0

Convolutional layer

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Output

9	M
9	3

Padding

Padding = 1

Data

0	0	0	0	0	0	0	0
1/9	199	199	9	0	0	0	0
1/9	199	®	9	0	0	0	0
1/9	9	®	9	0	0	0	0
0	9	9	9	0	0	0	0
0	9	9	9	0	0	0	0
0	9	9	9	0	0	0	0
0	0	0	0	0	0	0	0

Convolutional layer

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Output

4	6	4	2	0	0	
6	9	6	M	0	0	
6	9	6	M	0	0	
6	9	6	M	0	0	
6	9	6	M	0	0	
4	6	4	2	0	0	

Max Pooling layer

Data

9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

Max Pooling layer

Output

'							
9	9	9	0				
9	9	9	0				
9	9	9	0				
9	9	9	0				

 $\max(9, 9, 9, 9, 9, 9, 9, 9, 9) = 9$

No parameter

Average Pooling layer

Data

9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0
9	9	9	0	0	0

Average Pooling layer

Output

	Output							
	9	6	M	0				
	9	6	M	0				
	9	6	3	0				
	9	6	3	0				

$$\frac{1}{9}(9+9+9+9+9+9+9+9) = 9$$

No parameter

Fully-connected layer

Overall pipeline

흐름상 여기가 더 어울려서 앞으로 가져옴

• 의료영상은 3D 이미지인 경우가 많음

3D CNN

• 2D CNN과 거의 비슷하다

3D CNN with multiple images

- T1-weighted, T2-weighted 등 여러 이미지를 사용하는 경우
 - 인풋 채널이 증가된다고 보면 됨 (2D 예시: 흑백 이미지 → RGB 이미지)

3D CNN with demographic scores

• 이런 구조가 가능함. 마찬가지로 DS의 모든 분포에 대해 충분한 샘플이 있어야 함.

CNN architectures (1)

- LeNet-5
- AlexNet
- VGGNet
 - VGG-16
 - VGG-19

LeNet-5 (1998)

뒤로 갈 수록, Feature map의 사이즈가 줄어드는 대신, 채널 수 증가

60k parameters

Simple CNN architecture

AlexNet (2012)

초반: 큰 stride로 사이즈를 크게 줄임

Max-pooling layer

ReLU activation function

VGGNet (2015)

3x3 두 번 = 5x5 필터 효과지만, 파라미터 수가 감소함 (5 × 5 × 3 = 75 → 3 × 3 × 3 = 27)

CNN architectures (2)

- ResNet
- Inception
- DenseNet

ResNet (2015)

ResNet (2015)

- 일반적으로 Test 할 때는, 레이어가 많으면 Overfitting 많이 됨.
- 그런데 일반적인 CNN 모델의 경우, 레이어가 너무 많으면 Training data에 대해서도 Error가 떨어 짐.
- Residual block을 쓰면 이런 문제가 없음

Skip connection

$$a_{i+2} = \sigma(z_{i+1} + a_i)$$

Inception (2014)

Inception (2014) - Inception module

(a) Inception module, naïve version

다양한 크기의 필터를 만들어 이를 concatenate해서 사용

후반부 레이어에서는 depth (채널 개수)가 너무 깊어져서 computational cost가 너무 증가

Inception (2014) - Inception module with dimension reductions

(b) Inception module with dimension reductions
1x1 필터의 사용

Inception (2014) – 1x1 Conv filter

- 1x1 Conv filter
 - Depth 감소 (1x1보다 큰 필터를 써도 되긴 하지만, computational cost 최소를 위해 1x1 사용)
- 비선형성 증가
 - More activation functions
- Computational cost 감소
 - 163M → 4.3M

Dense Net (2017)

• Skip connection을 더 dense하게 사용

Gradient descent가 더 잘 일어남

성능 비교

