Lecture 5 (9/17) Outline

- (Finish off) rules of inference (Rosen 1.6)
- Introduction to proofs (Rosen up to 1.7.6)
 - How do we write proofs?
 - Direct
 - Contraposition

Consider the following argument. Is it valid?

- Logical premise 1: If you have a current password, then you can log onto the network. $p \rightarrow q$
 - $p \rightarrow q$
- Logical premise 2: You have the current password.
- **Conclusion:** Therefore (∴), *q*

Rules of inference: modus ponens

Yes, it is valid. The following tautology

$$(p \land (p \rightarrow q)) \rightarrow q$$

leads to the this valid argument.

This rule of inference is called MODUS PONENS.

- **Remark:** If $\sqrt{2} > \frac{3}{2}$ then $(\sqrt{2})^2 > (\frac{3}{2})^2$. We know that $\sqrt{2} > \frac{3}{2}$. Therefore, $(\sqrt{2})^2 > (\frac{3}{2})^2$, i.e., $2 > \frac{9}{4} = 2.25$.
- What is the issue here?

- Some important tautologies give rise to some frequently used valid arguments/rules of inference.
- Addition
- "It is below freezing now, therefore it is below freezing or raining now"

p therefore $p \lor q$.

The tautology $p \to (p \lor q)$.

- Some important tautologies give rise to some frequently used valid arguments/rules of inference.
- Simplification
- "It is below freezing and raining, therefore it raining"

The argument is of the form p therefore $p \vee q$.

The tautology $p \to (p \lor q)$.

TABLE 1 Rules of Inference.		
Rule of Inference	Tautology	Name
$p \atop p \to q \\ \therefore \overline{q}$	$(p \land (p \to q)) \to q$	Modus ponens
$ \begin{array}{c} \neg q \\ p \to q \\ \therefore \neg p \end{array} $	$(\neg q \land (p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$p \to q$ $q \to r$ $\therefore p \to r$	$((p \to q) \land (q \to r)) \to (p \to r)$	Hypothetical syllogism
$p \lor q$ $\neg p$ $\therefore \overline{q}$	$((p \vee q) \wedge \neg p) \to q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow (p \lor q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \land q) \rightarrow p$	Simplification
<i>p q</i> ∴ <i>p</i> ∧ <i>q</i>	$((p) \land (q)) \to (p \land q)$	Conjunction
$p \lor q$ $\neg p \lor r$ $\therefore \overline{q \lor r}$	$((p \lor q) \land (\neg p \lor r)) \to (q \lor r)$	Resolution

Rules of inference – Resolution

Resolution.

• The resolution rule of inference relies on the tautology

$$((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r).$$

- Plays an important role in programming languages based on logic, e.g., PROLOG
- Example: Let's apply the resolution rule on the hypotheses Jasmine is skiing or it is not snowing and It is snowing or Bart is playing hockey

Rules of inference – Resolution

Example:

- Let *p* be the proposition "it is snowing"
- Let q be the propositon "Jasmine is skiing"
- Let *r* be the proposition "Bart is playing hockey".
- Our hypothesis is $((p \lor q) \land (\neg p \lor r))$
- Therefore, by the resolution rule we conclude $(q \lor r)$ which means
 - Jasmine is skiing or Bart is playing hockey

Rules of inference – Fallacy

- If you do every problem in this book, then you will learn discrete mathematics.
- You learned discrete mathematics.
- Therefore, you did every problem in this book.

Is this a valid argument?

Rules of inference - Fallacy

- If you do every problem in this book, then you will learn discrete mathematics.
- You learned discrete mathematics.
- Therefore, you did every problem in this book.

No!

• $((p \rightarrow q) \land \neg p) \rightarrow \neg q$ is not a tautology (set p = F, q = T)

Rules of inference – Quantified statements

TABLE 2 Rules of Inference for Quantified Statements.		
Rule of Inference	Name	
$\therefore \frac{\forall x P(x)}{P(c)}$	Universal instantiation	
$P(c) \text{ for an arbitrary } c$ $\therefore \forall x P(x)$	Universal generalization	
$\therefore \frac{\exists x P(x)}{P(c) \text{ for some element } c}$	Existential instantiation	
$P(c) \text{ for some element } c$ $\therefore \overline{\exists x P(x)}$	Existential generalization	

Proofs

- What is a proof?
- A proof is a valid argument that establishes the truth of a mathematical statement, using the hypotheses of the theorem, if any, axioms assumed tobe true, and previously proven theorems.
- Using these ingredients and rules of inference, the proof establishes thetruth of the statement being proved.

Question: How do we prove the following theorem?

Theorem: Suppose a, b are real numbers. If 0 < a < b then $a^2 < b^2$.

- What is given to us as hypothesis?
- What is the conclusion?

Question: How do we prove the following theorem?

Theorem: Suppose a, b are real numbers. If 0 < a < b then $a^2 < b^2$.

- What is given to us as hypothesis?
 Givens: a, b are real numbers
- What is the conclusion we want to prove?
 Goal: P → Q where P is 0 < a < b and Q is a² < b².

- Direct proof technique for P → Q: Add P to the set of hypotheses. Then prove Q.
- Let's apply it! What is given to us as hypotheses now?
- Givens: a, b are real numbers, 0 < a < b
- Goal: Show that $a^2 < b^2$

Let's write the formal proof now.

• **Proof:** Suppose 0 < a < b. Multiplying the inequality a < b by the positive number a we can conclude $a^2 < ab$, and similarly multiplying by b we get $ab < b^2$. Therefore,

$$a^2 < ab < b^2$$
,

so, $a^2 < b^2$ as required. **QED**¹

CAS CS 131 FALL 2019 Combinatoric Struc

 $^{^{1}}$ "quod erat demonstrandum", literally meaning "what was to be shown".

Direct proofs

Prove the following theorems.

- 1 If n is an odd integer, then n^2 is odd.
- 2 Suppose m, n are natural numbers. If m, n are both perfect squares, then nm is also a perfect square.

Solutions on blackboard

Question: How do we prove the following theorem?

Theorem: Suppose a, b, c are real numbers, and a > b. Prove that if ac < bc then c < 0.

- What is given to us as hypothesis?
- What is the conclusion?

Question: How do we prove the following theorem?

Theorem: Suppose a, b, c are real numbers, and a > b. Prove that if ac < bc then c < 0.

• What is given to us as hypothesis?

Givens: a, b, c are real numbers, a > b

What is the conclusion?

Goal: $P \rightarrow Q$ where P is $ac \leq bc$ and Q is $c \leq 0$.

- **Proof by contraposition** technique for $P \rightarrow Q$: Add $\neg Q$ to the set of hypotheses. Then prove $\neg P$.
- What is given to us as hypothesis?

Givens: a, b, c are real numbers, a > b, c > 0

Goal: ac > bc

So, the proof structure using contraposition would look like this:

Suppose c > 0

[Proof that ac > bc goes here]

Therefore, if $ac \leq bc$ then $c \leq 0$.

This is how the final/formal proof by contrapositive would look like on the paper:

Theorem: Suppose a, b, c are real numbers, and a > b. Prove that if $ac \le bc$ then $c \le 0$.

Proof: We will prove by contrapositive. Suppose c > 0. Then we can multiply both sides of the given inequality a > b by c and conclude that ac > bc. Therefore, if $ac \le bc$, then $c \le 0$.

Important remark!

Even if we have used logic in the scratch work, we have not used them in the final form. While logic is essential to figure out a proof strategy, in the final write-up of the proof, mathematicians avoid using the notation and rules of logic.