TIGHTER PROOFS OF CCA SECURITY IN THE QUANTUM RANDOM ORACLE MODEL

Ottawa, ON, Canada 26/06/2020

Nina Bindel

Mike Hamburg Kathrin Hövelmanns Andreas Hülsing Edoardo Persichetti

NIST PQ Standardization Effort - Timeline

TODAY'S TALK

INDISTINGUISHABILITY UNDER CHOSEN-PLAINTEXT ATTACKS (IND-CPA)

INDISTINGUISHABILITY UNDER CHOSEN-CIPHERTEXT ATTACKS (IND-CCA)

TODAY'S TALK

Fujisaki-Okamoto transform [F099,HHK17]

IND-CPA rPKE rP

IND-CCA KEM K

Fujisaki-Okamoto transform [F099,HHK17]

IND-CCA KEM K

Fujisaki-Okamoto transform [F099,HHK17]

SECURITY REDUCTION

If there exists a quantum adversary A that breaks the IND-CCA security of the PKE E= FO[E'] then there exists an algorithm B that breaks the IND-CPA security of the PKE E'.

TODAY'S TALK

Related work in the QROM

d = the max number of sequential invocations of the oracle, $d \leq q_{RO}$

Contribution — IND-CCA security of $U^\$$ in the QROM

OW-CPA PKE

```
← KeyGen
      рk
sk
             ← Message space
      m
            \leftarrow \text{Encrypt}(|p_k|, |m|)
        return [[m = m']]
```

δ-correct PKE

A PKE

P = (Keygen, Encr, Decr) is δ -correct if

$$E\left[\max_{m\in\mathcal{M}} \Pr[\operatorname{Decr}(\operatorname{sk},\operatorname{Encr}(\operatorname{pk},m))\neq m]]:(\operatorname{pk},\operatorname{sk})\leftarrow\operatorname{Keygen}()\right]\leq\delta.$$

We call δ the decryption failure probability of P. We say P is correct if $\delta = 0$.

€-injective PKE

A dPKE P = (Keygen, Encr, Decr) is

 ϵ -injective if

$$\Pr\left[\operatorname{Encr}(\operatorname{pk}, m) \text{ is not injective} : (\operatorname{pk}, \operatorname{sk}) \leftarrow \operatorname{Keygen}(), H \xleftarrow{\$} \mathcal{H}\right] \leq \epsilon.$$

We say P is injective if $\epsilon = 0$. We say that an rPKE is injective if for all public keys pk, all $m \neq m'$ and all coins r, r', we have $\operatorname{Encr}(\operatorname{pk}, m, r) \neq \operatorname{Encr}(\operatorname{pk}, m', r')$.

Contribution — IND-CCA security of $U^\$$ in the QROM

Random oracle vs. quantum random oracle

- Classical queries
- Queries and responses can be easily recorded
- Random oracle can be reprogrammed

- Queries in superposition
- Queries and responses are much harder to record [Zha19]
- Much harder to respond adaptevely/reprogramm oracle

Possible but leads to less tight bounds

Unruh's one-way to hiding (02H) lemma

 $S = G^{-1}(\square)$, A^H quantum oracle algorithm, q queries of depth $d \leq q$

If $|\Pr[Ev: A^H(z)] - \Pr[Ev: A^G(z)]| = \delta > 0$, A asked some $x \in S$

Behavior can be observed by B

 $B \rightarrow x$ with probability ϵ

O2H variant	Restriction	Bound
Original [Unr15]	×	$\delta \le 2d\sqrt{\epsilon}$
Semi-classical [AHU19]	\checkmark	$\delta \le 2\sqrt{d\epsilon}$
Double-sided [BHHHP19]	\checkmark	$\delta \le 2\sqrt{\epsilon}$
[KSSSS20]	\checkmark	$\delta \leq 4q\epsilon$

2015

IMPOSSIBILITY RESULT [JZM19]

- Adversary $A^{|O>}$ modeled as $A_N \circ U_0 \circ A_{N-1} \circ U_1 \circ \cdots \circ U_0 \circ A_1$ (*i*-th random oracle query \triangleq output of A_i)
- Square-root loss unavoidable in O2H with query-based secret extraction Extract preimage from oracle queries \triangleq output register of A_i only considers input/output behavior of A
- No square-root loss in O2H with measurement-based secret extraction
 A has to measure to recognize the difference between oracles
 consider A's internal workings

Kathrin Hövelmanns' talk: https://simons.berkeley.edu/talks/cca-encryption-qrom-i Ron Steinfeld's talk: https://simons.berkeley.edu/talks/cca-encryption-qrom-ii

OW-CPA dPKE to IND-CCA KEM

Theorem

such that

 $H: M \times C \to K$ Hash function, $F: K_F \times C \to K$ PRF, $P \in -injective$ dPKE

If $\exists A$ IND-CCA adversary against KEM $U^{\$}(P,F)$, q_{dec} decryption queries, then \exists

- OW-CPA adversary B_1 against P
- PRF adversary B_2 against F
- FFC adversary B_2 against P

"Finding failing ciphertext"

 $B_2 \to L$, B_2 wins if $\exists c \in L$: $Enc(pk, m) = c \land Dec(sk, c) \neq m$

 $\Pr[Encr(pk, m) \text{ is not injective: } (pk, sk) \leftarrow KeyGen()] \leq \epsilon$

$$\operatorname{Adv}_{U^{\$}(P,F)}^{\widehat{\mathsf{I}ND}-\mathsf{CCA}}(A) \leq 2\sqrt{\operatorname{Adv}_{P}^{\mathit{OW}-\mathit{CPA}}(B_{1})} + 2\operatorname{Adv}_{F}^{\mathit{PRF}}(B_{3}) + \operatorname{Adv}_{P}^{\mathit{FFC}}(B_{2}) + \epsilon.$$

$$\operatorname{small} \quad \operatorname{small} \quad \operatorname{small}$$

if P' δ -correct pPKE and P = T[P', G] ϵ -injective dPKE

```
Exp_{KEM}^{IND-CCA}(A)
  H \leftarrow \mathcal{H}
 (sk, pk) \leftarrow KeyGen()
  m^* \leftarrow_{\$} M
  c^* \leftarrow \text{Encrypt}(pk, m^*)
  k_0^* \leftarrow H(m^*, c^*)
  k_1^* \leftarrow_{\$} K
   b \leftarrow_{\$} \{0,1\}
   b' \leftarrow A^{H,Dec}(pk, c^*, k_b^*)
   return [[b = b']]
```

```
Oracle Dec((sk, pk, prfk), c):

if c = c^*: return \bot

m' \leftarrow Decrypt(sk, c)

if Encrypt(pk, m') = c: return k' \leftarrow H(m, c)

return k' \leftarrow PRF(prfk, c)
```

```
Exp_{KEM}^{IND-CCA}(A)
  H \leftarrow \mathcal{H}
 (sk, pk) \leftarrow KeyGen()
  m^* \leftarrow_{\$} M
  c^* \leftarrow Encrypt(pk, m^*)
  k_0^* \leftarrow H(m^*, c^*)
  k_1^* \leftarrow_{\$} K
   b \leftarrow_{\$} \{0,1\}
   b' \leftarrow A^{H,Dec}(pk, c^*, k_b^*)
   return [[b = b']]
```

```
Oracle Dec((sk, pk, prfk), c):

if c = c^*: return \bot

m' \leftarrow Decrypt(sk, c)

if Encrypt(pk, m') = c: return k' \leftarrow H(m, c)

return k' \leftarrow R(c)
```

 $Adv_F^{PRF}(B_3)$ PRF is random

```
Exp_{KEM}^{IND-CCA}(A)
  H \leftarrow \mathcal{H}
 (sk, pk) \leftarrow KeyGen()
  m^* \leftarrow_{\$} M
  c^* \leftarrow Encrypt(pk, m^*)
  k_0^* \leftarrow R(c)
  k_1^* \leftarrow_{\$} K
   b \leftarrow_{\$} \{0,1\}
  b' \leftarrow A^{H,Dec}(pk, c^*, k_b^*)
   return [[b = b']]
```

```
Oracle Dec((sk, pk, prfk), c):

if c = c^*: return \bot

m' \leftarrow Decrypt(sk, c)

if Encrypt(pk, m') = c: return k' \leftarrow R(c)

return k' \leftarrow R(c)
```

```
\begin{array}{ccc} \operatorname{Adv}_F^{PRF}(B_3) & \operatorname{PRF} \text{ is random} \\ \operatorname{Re-programm\ random\ oracle} \\ \operatorname{Adv}_{dP}^{FFC}(B_2) + \epsilon & \bullet & \operatorname{Injectivity\ needed} \\ & \bullet & \operatorname{Independent\ of\ PRF\ change} \end{array}
```

 $Adv_{dP}^{OW-CPA}(B_1)$

```
\operatorname{Exp}_{\operatorname{KEM}}^{\operatorname{IND-CCA}}(A)
  H \leftarrow \mathcal{H}
 (sk, pk) \leftarrow KeyGen()
   m^* \leftarrow_{\$} M
   c^* \leftarrow Encrypt(pk, m^*)
   k_0^* \leftarrow R(c)
  k_1^* \leftarrow_{\$} K
   b \leftarrow_{\$} \{0,1\}
   b' \leftarrow A^{H,Dec}(pk, c^*, k_b^*)
   return [[b = b']]
```

```
Oracle Dec((sk, pk, prfk), c):

if c = c^*: return \bot

m' \leftarrow Decrypt(sk, c)

if Encrypt(pk, m') = c: return k' \leftarrow R(c)

return k' \leftarrow R(c)
```

```
Adv_F^{PRF}(B_3) PRF is random
```

Re-programm random oracle

- $Adv_{dP}^{FFC}(B_2) + \epsilon$ Injectivity needed
 - Independent of PRF change

Same as distinguishing $(c^*, k^*, H[m^* \rightarrow r])$ and (c^*, k^*, H)

• Apply double-sided O2H to recover m^*

Contribution — Relation of U constructions

Conclusion

Acknowledgments

- This results were achieved during the Oxford 2019 PQC workshop.
- Thanks to Dan Bernstein, Edward Eaton, and Mark Zhandry for helpful discussions and feedback.
- My slides are inspired by Mike Hamburg's talk given at the 2nd NIST post-quantum workshop and Kathrin Hövelmanns' and Ron Steinfeld's talks at "Lattices: From Theory to Practice" — Simons Institute Workshop.

Full paper:

IACR eprint 2019/590

References

[FO99] E. Fujisaki and T. Okamoto. Secure integration of asymmetric and symmetric encryption schemes. Crypto 1999.

[HHK17] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A Modular Analysis of the Fujisaki-Okamoto Transformation. TCC 2017.

[SXY18] T. Saito, K. Xagawa and T. Yamakawa. Tightly-secure key-encapsulation mechanism in the quantum random oracle model. Eurocrypt2018.

[JZCWM18] H. Jiang and Z. Zhang and L. Chen and H. Wang and Z. Ma. IND-CCA-secure Key Encapsulation Mechanism in the Quantum Random Oracle Model, Revisited. Crypto 2018.

[JZM19] H. Jiang and Z. Zhang and Z. Ma. Tighter security proofs for generic key encapsulation mechanism in the quantum random oracle model.

[HKSU18] K. Hövelmanns, E. Kiltz, S. Schäge, and D. Unruh. Generic Authenticated Key Exchange in the Quantum Random Oracle Model.

[Zha19] M. Zhandry. How to Record Quantum Queries, and Applications to Quantum Indifferentiability. Crypto 2019.

[AHU19] A. Ambainis, M. Hamburg, and D. Unruh. Quantum security proofs using semi-classical oracles. Crypto 2019.

[Unr15] D. Unruh. Revocable quantum timed-release encryption. JACM 2015.