

A DATA-ANALYTIC APPROACH TO EARLY DETECTION OF AT-RISK STUDENTS IN HIGHER **EDUCATION**

19 April 2025 CSTE Wuhan

Dr. Man Ho LING

Department of Mathematics and Information Technology The Education University of Hong Kong

ACKNOWLEDGEMENT

- This work was supported by the Central Reserve Allocation Committee and the University-level Teaching Development Grant, The Education University of Hong Kong (Project No. 03ABL and T0282).
- This presentation is based on the work published in:

Yip, J. C., Dong, C., Ling, A. M. H., Kwan, J. L. Y., Yu, P. L. H., Cheng, M. M. H., ... & Li, W. K. (2025, April). A Data-Analytic Approach to Early Detection of At-Risk Students in Higher Education. In 2025 7th International Conference on Computer Science and Technologies in Education (CSTE) (pp. 228-232). IEEE. doi: 10.1109/CSTE64638.2025.11092031

OBJECTIVES

• **Identification:** To help leaders of academic programs identify at-risk students relatively early in those programs.

• **Enhancement:** To identify impactful courses within each program.

TYPES OF RECORDS

Program-Level Data	Student Particulars	Enrollment Info	Academic Records	Entrance Exams	Extracurricular Data	
	Student ID (masked as Pseudo ID)	Program Code	Course Grades (all course taken)	Exam Type e.g. DSE, etc.	Hostel Status per Term	
	Gender: F, M	Academic Term e.g. 201401	Program GPAs (end of each term)	Exam Subject e.g. CHN, EGB, MAB	On-Campus Job Hours per Year	
	Residency: Local, Non-local	Program Year e.g. Year 2	Number of low grades	Exam Score 1, 4, 5*, etc.	Team/Org. Membership per Year	
	Admission Route: JUPAS, Non- JUPAS, Mainland				Scholarships per Year	

Testing at Year 2 is early enough that program leaders can be notified to make necessary interventions for potentially at-risk students.

CROSS-VALIDATION USING PREVIOUS YEARS' DATA

 LASSO models were trained on data from three consecutive cohorts and then tested on data from the next (fourth) cohort:

LASSO REGRESSION MODEL

Training data were analysed using LASSO regression models, which provide our analysis with the following advantages

- Efficiency: LASSO models can be fit without stepwise fitting and testing
- Parsimony and Interpretability: LASSO model select the smallest set of predictors that explain the greatest amount of variation, and the relative strength of effects is explicitly indicated.
- Validity: LASSO modeling avoids overfitting of the data arising from a large number of predictors and multicollinearity issues due to predictors that are highly correlated.

DATA PRE-PROCESSING

• **Imputation and Standardisation:** Missing data values were filled in using *k*-NN imputation and then scaled using a standard scaling function.

Tune Risk Criteria (2.5-2.85) by Youden index 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80 2.50 2.55 2.60 2.65 2.70 2.75 2.80 2.85

TUNING THE AT-RISK CUTOFF

At-risk classifications depended a cutoff that was tuned according to the accuracy of the model:

- The outcome variable was students' cumulative GPA at graduation, and the at-risk cutoff was based on a result of 2.50 or below (Third-Class Honours).
- However, the actual cutoff point was adjusted by testing a range of possible cutoff points in the training data (predicted vs. actual outcome) and calculating their corresponding Youden's J scores.
- The **optimal cutoff** point was the outcome value with the highest Youden's index. This value was normally between 2.50 and 2.80.

OVERALL WORKFLOW

DEMONSTRATION OF METHODOLOGY WITH PROGRAM X

2017-22 COHORT OF PROGRAM X: [TRAINING & TESTING DATASETS]

Category	Variables	N	Mean	Std. Dev.	% Missing Data
Academics	Year 1 GPA (cumulative)	166	2.98	0.36	0.0%
	Year 2 GPA (cumulative)	166	2.99	0.37	0.0%
	Graduating GPA (cumulative)	166	3.05	0.3	0.0%
Entrance Exams	Sum of Best 5	113	20.21	1.06	31.9%
	Chinese Language subject	142	2.93	1.6	14.5%
	English Language subject	143	2.69	1.46	13.9%
	Liberal Studies subject	143	3.29	1.86	13.9%
	Mathematics subject	141	3.61	2.05	15.1%
	Mathematics optional module	63	3.21	1.36	62.0%
Scholarships	Scholarships (by Year 1)	166	0.12	0.39	0.0%
	Scholarships (by Year 2)	166	0.24	0.64	0.0%
Extracurriculars	Student Residence (in Year 1)	166	1.39	0.87	0.0%
	Student Residence (in Year 2)	166	1.28	0.93	0.0%
	On-Campus Job (hours in Year 1)	166	4.93	11.1	0.0%
	On-Campus Job (hours in Year 2)	166	43.36	99.67	0.0%
	Team/Organization in Year 1	166	0.17	0.38	0.0%
	Team/Organization in Year 2	166	0.35	0.58	0.0%

2017-22 COHORT OF PROGRAM X: PREDICTED VS. ACTUAL RESULTS

A comparison of predicted and actual graduating GPAs show a strong correlation between the two values.

- Correlation value = 0.9823
- r2 = 0.966
- MSE value = 0.00987

2017-22 COHORT OF PROGRAM X: SIGNIFICANT PREDICTORS

Feature importances for the 2017-22 model

RESULTS FROM YEAR 2 ANALYSIS OF PROGRAM X, 7 COHORTS

• The results over 7 years of testing indicates low rates of missed detections and slightly higher rates of false alarms.

Test Cohort	N	Correct Normal	Missed Detection	Correct At-Risk	False Alarm	Hit Rate	r²-value
2015-20	56	48	1	6	1	0.964	0.942
2016-21	21	18	1	2	0	0.952	0.969
2017-22	20	16	0	0	4	0.800	0.966
2018-23	17	16	0	1	0	1.000	0.938
2019-24	77	75	0	2	0	1.000	0.921
2020-25	64	62	1	1	0	0.984	0.940
2021-26	71	66	0	3	2	0.972	0.950
Total	326	301	3	12	7	n/a	n/a
Mean	46.6	43.0	0.4	1.7	1.0	0.953	0.947

COMPARISON OF LASSO WITH OTHER MODELS OVER 3 COHORTS

The LASSO model outperforms other types of regression models over **3 cycles** of training and testing:

- Missed detections are minimized in the LASSO approach.
- Excess false alarms are tolerated to a reasonable degree.

Predictive Model	Ν	Correct Normal	Missed Detection	Correct At-Risk	False Alarm
Lasso regression	963	862	11	40	50
(variable selection)		89.5%	1.1%	4.2%	5.2%
Simple linear regression	963	872	14	37	40
(Year 2 GPA only)		90.6%	1.5%	3.8%	4.2%
Multiple linear regression	963	868	13	38	44
(all variables included)		90.1%	1.3%	3.9%	4.6%

REMARKS

- Given our approach, numbers of at-risk detections (true positives) are high, and numbers of missed detections (false negatives) are low.
- Year 2 analysis yields better results than Year 1 analysis.
- Impactful predictors (such as grades in required coursework) can be clearly identified from the LASSO model result.
- Overall, LASSO regression performs better than simple linear regression and multiple linear regression (no variable selection), with LASSO predictions being closer to actual outcome values than those of the other models.