

XIII. Soluțiile ecuațiilor trigonometrice simple

XIII.1. Ecuații fundamentale

 $1.\sin x = a, a \in [-1,1] \Rightarrow x \in \{(-1)^k \arcsin a + k\pi | k \in Z\}$

 $2.\cos x = a, a \in [-1,1] \Longrightarrow x \in \{\pm \arccos a + 2k\pi \big| k \in Z\}$

 $3.tgx = a, a \in R \Rightarrow x \in \{arctga + k\pi | k \in Z\}$

 $4.etgx = a, a \in R \Rightarrow x \in \{accetga + k\pi | k \in Z\}$

XIII.2. Tabele de valori:

X	0	A	27	77	27	R	3.0	2π
funcția		6	4	3	2	0.5850	2	ASSOCI
sin x	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0
cos x	10	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	0	-1	0	31.

x funcția	0	<u>π</u>	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	a.	$\frac{3\pi}{2}$	2π
tg x	0	$\frac{\sqrt{3}}{3}$	T.	√3	10	*0	- (0
ctg x	7	√3	I.	$\frac{\sqrt{3}}{3}$	0	- 15	0	- 35

X	-1	$\sqrt{3}$	$\sqrt{2}$	1	0	1	$\sqrt{2}$	$\sqrt{3}$	1
funcția		2	2	2		2	2	2	593
arcsin x	$-\frac{\pi}{2}$	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	# 4	$\frac{\pi}{3}$	$\frac{\pi}{2}$
arcos x	л	<u>5π</u> 6	$\frac{3\pi}{4}$	2 <i>π</i> 3	# 2	$\frac{\pi}{3}$	$\frac{\pi}{4}$	<u>.π</u>	0

x functia	- √3	-1	$-\frac{\sqrt{3}}{3}$	0	$\frac{\sqrt{3}}{3}$	1	√3
arctg x	$-\frac{\pi}{3}$	$-\frac{\pi}{4}$	$-\frac{\pi}{6}$	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$
arcetg x	5.x 6	3 <i>x</i> 4	$\frac{2\pi}{3}$	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{4}$	$\frac{\pi}{6}$

-NOTIONI INTRODUCTIVE - EXERCITII

Exercetive 1:

$$\overrightarrow{AP} = P - A = (2,3,-1) - (4,4,-2) = (4,-1,4)$$
 $\overrightarrow{PB} = B - P = (4,1,1) - (2,3,-1) = (2,-2,2) = 2(4,-1,1)$
 $\overrightarrow{AP} = P - A = (2,3,-1) - (2,3,-1) = (2,-2,2) = 2(4,-1,1)$
 $\overrightarrow{AP} = P - A = (2,3,-1) - (4,4,-2) = (4,-1,4)$
 $\overrightarrow{AP} = P - A = (2,3,-1) - (4,4,-2) = (4,-1,4)$
 $\overrightarrow{AP} = P - A = (2,3,-1) - (4,4,-2) = (4,-1,4)$
 $\overrightarrow{AP} = P - A = (2,3,-1) - (4,4,-2) = (4,-1,4)$
 $\overrightarrow{AP} = P - A = (2,3,-1) - (4,4,-2) = (4,-1,4)$
 $\overrightarrow{AP} = P - A = (2,3,-1) - (4,4,-2) = (4,-1,4)$
 $\overrightarrow{AP} = P - A = (2,3,-1) - (4,4,-2) = (4,-1,4)$
 $\overrightarrow{AP} = P - A = (4,1,1) - (2,3,-1) = (2,-2,2) = 2(4,-1,1)$
 $\overrightarrow{AP} = P - A = (4,1,1) - (2,3,-1) = (2,-2,2) = 2(4,-1,1)$
 $\overrightarrow{AP} = P - A = (4,1,1) - (2,3,-1) = (2,-2,2) = 2(4,-1,1)$

$$2\overrightarrow{AP} = \overrightarrow{PB} \Leftrightarrow \overrightarrow{PB} = 2\overrightarrow{AP} \implies |\overrightarrow{R(A,P,B)} = \frac{1}{2}$$

de c

$$BP = P - B = (2.3, -1) - (4, 1.1) = (-2, 2, -2) = 2(-1, 1, -1) = 2PR$$

$$PA = A - P = (4.4, 2) - (2.3, -1) = (-1, 1, -1)$$

$$BP = 2PR = 2PR = 2PR = 2PR$$

$$PB = B-P = (2,-2) - (2,B) = (2-2,-2-B)$$

$$(d-6,\beta-2) = 2(2-d)-2-\beta$$

$$|d-6 = 2(2-d) = (2-2-\beta)$$

$$|b-2 = 2(-2-\beta) = (2-2-\beta)$$

$$\begin{cases} 2 - 6 = 4 - 2d \\ 8 - 2 = -4 - 4B \end{cases} = 3d = 4 + 6$$

$$\begin{cases} 3d = 4 + 6 \\ 3d = 4 + 2 \end{cases} = 4 + 2$$

$$\begin{cases} 3d = 4 + 6 \\ 5d = -2 \end{cases} = -2$$

$$\int \frac{24m}{9} = 9 \cos \theta \qquad \text{(3.13, 3)}$$

$$\int \frac{4m}{9} = 9 \sin \theta \qquad \text{(3.13, 3)}$$

$$\int \frac{4m}{9} = 9 \sin \theta \qquad \text{(3.13, 3)}$$

$$\int \frac{4m}{9} = 9 \sin \theta \qquad \text{(3.13, 3)}$$

$$N(-4,4)$$
 $2m = \sqrt{x^2 + y^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2}$
 $y_{M} = \text{arctg} \frac{4}{-4} = \text{arctg}(-1) = -\frac{17}{4}$

N1 (4-12,-14)

atiul 5 w= (-1,-1,0) w=(-2,1,3) $\frac{241}{13}$ $\frac{241}{13}$ $\frac{24}{13}$ $\frac{$ Example: (pentrue nm + (m+1) = 2 Exercitive 6 P= (2,2) Q=(4,4) $R_{1}=(8.8)$ $R_{2}=(6.0)$ $R_{3}=(-2.4)$. vintra muchii si $P_{1}Q_{1}P_{1}$ | 1 | 2 | 4 | 8 | = 32 + 26 + 8 - 8 - 32 - 16 = 0 => $P_{1}Q_{1}P_{2}$ references P,Q,R2 $\begin{vmatrix} 1 & 1 & 1 \\ 2 & 4 & 6 \\ 2 & 4 & 0 \end{vmatrix} = 12+8-8-24=-12 < 0 \Rightarrow P,Q,R2$ R2 este im "drughte"

muchiei PQ MUCHII (n. supe muchiei Pa 2 - TRIUNGH PQ,R3 | 1 1 1 2 = -4-4 +8-8+8+2= 2>0=> R3 este in stanga muchiei PQ. elater

· central de greulde A + mb ma+mb ma+ms convext la juncteton Así B COMBIHATIE C=(0,3,4) 8=(2,1,-1) EXEMPLU : A = (1,2,3) M(A) C,B) = -CB (calcul contenior) = cA - 1 CB = 0 = CC (toti vectorii can conigine a C) - RB = 0 - RC C= 2A-B Concruzit à lice AiP, B sunt colineare distancte putem concelluiza presideale

grant fi contraguear en aquierus diagonocion TEOREMAS Orice trianquelore Roble ma goleriei de arto la contine n-2 Trivignes Exemplu: Amplesonea comerilor - colororea poligonutui 3-colorone Cambroexemple prentre 3- colorore:

muf mou intolnit adought in ref EVENIMENT 571'VA The 2 941 du 0000 (c. 26 014 1/1 (0.26) Wy NB 20 95 (C.26) CNI 2/5 als i triumphine Na (0.1) ieti la fiecti pas es diagoniole au fost riunghieri au fost climinate. + ol. fit. 26 al A (c.1) + thriungh Toliag alg

PL Statutel - Petto multime exotomato logn logn Differe himas de cautore Vor 2 = 12 imperst was imerco 00

Ex! Statutal - multime AVENIMENT

abutratorie ustule atus is airamosque amuisiuribilus ele usque appropria Caleu Obstacoa (tris gabe butconnoca philiabe = 1324) word cookdonate 21, (0,4) ala (4,4) aterior nea (4,0) ne (0,-2,) Motom eij muchia de la ni la ni;

EXERCITIS. PROBLEME. APHICATIS (algorithming) acopulitie comme al Rophitmul James March mu necosto sortiche 111 4,10 Frenchiel 5: Aplicati algoridamil Jarnes March ya womatowale puncte. gum · Surange were night com name este more all recovering commune but man de gos dim P1 (8-2) P4 (1,-2) P4 (-4,-5) P10=(4,2) 90 -(-60) PE-(-117) PE-(-14) (778+(-614) P6-(-8,-5) 92+(51-3) The 1 2 Ps taled + true PEPIPE (Post la disaple lui BPI+?)+>NU > 76 extracerorul qui 85 3=90 tit 96 80=2 L+ PBP6 PGP, P2 - D6 D3 23 - PGP3 FU + P674 P5 - P6 PUPY - P674 P8 - P674 B = PEPLPIO = Preste successful lui PG 5=Px R=8 12 P673 P3

witness statiscopma) בישו אוווים אסט INTERSECTION DE SEGMENTE - EXERCITION EXERCITIVE 4.4 MULTIME NEORDONATA EVENIMENT SEGMENTE STATUT Mys 5123 11.54 { 12, 143 12 NAY? NU 433 113, 12, 14 3 13 NA2 ? DA MS 1 { S1, S2, S3, S4} dal 1 32, 43, 443 ds 1 Da, Du3 dsa 3 1343 day EXERCITIVE 4.2 STATUT EVENIMENT 11,32 (A2) MAS (13, b2) (13,12,14) MALL را درلد (ba, bi, ba, ba) (A3, A2, D1, D4) ふりかっ 13012 (b2, b3, b1, bu) 120181 (12, 12, 13, bu) dsa (11, 13, 14) 146 (13, by DASS DASH