The Trade Between Money and Time Model Selection for Intertemporal Choice

Xi Chen

MACSS Project Proposal

April 4, 2018

Introduction

Decisions involving consequences at different time points are referred to as *intertemporal choice* (Frederick, Loewenstein, & O'Donoghue, 2002).

Intertemporal choice is also known as temporal discounting, delay discounting, time preference, or time discounting.

What model has the best prediction for money-earlier-or-later (MEL) decisions / intertemporal choices?

Literature

- Exponential model
- Hyperbolic model
- Quasi-Hyperbolic model / $\beta \delta$ discounting model
- Fixed cost model (Benhabib, Bisin, & Schotter, 2009)
- Exponential time (Roelofsman, 1996)
- Discounting-by-intervals (DBI) (Scholten and Read, 2006)
- Constant sensitivity (Ebert and Prelec, 2007)
- Discounting fractions (Read, 2001)
- Hyperboloid model (Green & Myerson, 1995)
- Generalized Hyperboloid model (Loewenstein & Prelec, 1992)
- Constant absolute decreasing impatience (Bleichrodt et al., 2009)

. . .

Data

Marzilli Ericson, K. M., White, J. M., Laibson, D., & Cohen, J. D. (2015). Money earlier or later? Simple heuristics explain intertemporal choices better than delay discounting does. Psychological science, 26(6), 826-833.

▶ The amount of data: 23500

▶ 940 participants; 25 questions for each participants

► Money range: \$0.01 to \$100,000.00

► Time range: 0 weeks to 6 weeks

Experiment

- Standard money-earlier-or-later (MEL) format (e.g., \$5 today vs. \$10 in 4 weeks)
- Absolute money value, delay framing (e.g., \$5 today vs. \$5 plus an additional \$5 in 4 weeks)
- Relative money value, delay framing
 (e.g., \$5 today vs. \$5 plus an additional 100% in 4 weeks)
- Absolute money value, speedup framing
 (e.g., \$10 in 4 weeks vs. \$10 minus \$5 today)
- Relative money value, speedup framing (e.g., \$10 in 4 weeks vs. \$10 minus 50% an additional 100 % today)

ITCH Model

A simple heuristics model, *intertemporal choice heuristic* (ITCH) model outperformed the traditional utility-discounting models. (Ericson, White, Laibson, & Cohen, 2015)

The outcome is binary variable:

0 represents smaller sooner option, 1 represents larger later option.

L(x) represents the inverse logistic function of x:

$$L(x) = (1 + e^{-x})^{-1}$$

ITCH model:

$$P(LL) = L(\beta_I + \beta_{xA}(x_2 - x_1) + \beta_{xA}\frac{x_2 - x_1}{x^*} + \beta_{tA}(t_2 - t_1) + \beta_{tA}\frac{t_2 - t_1}{t^*})$$

Models

- Exponential model: $P(LL) = L(a(x_2\delta^{t_2} x_1\delta^{t_1}))$
- Hyperbolic model: $P(LL) = L(a(x_2(1 + \alpha t_2)^{-1} x_1(1 + \alpha t_1)^{-1}))$
- Quasi-hyperbolic model:

$$P(LL) = L(a(x_2\beta^{I(t_2>0)}\delta^{t_2} - x_1\beta^{I(t_1>0)}\delta^{t_1}))$$

- Tradeoff model:

$$P(LL) = L(a((log(1 + \gamma_x x_2)/\gamma_x - log(1 + \gamma_x x_1))/\gamma_x - k(log(1 + \gamma_t t_2 - log(1 + \gamma_t t_1)/\gamma_t))))$$

- DRIFT model:

$$P(LL) = L(\beta_0 + \beta_1(x_2 - x_1) + \beta_2 \frac{x_2 - x_1}{x_1} + \beta_3 ((\frac{x_2}{x_1})^{\frac{1}{t_2 - t_1}} - 1) + \beta_4 (t_2 - t_1))$$

ITCH model:

$$P(LL) = L(\beta_I + \beta_{xA}(x_2 - x_1) + \beta_{xR} \frac{x_2 - x_1}{x^*} + \beta_{tA}(t_2 - t_1) + \beta_{tR} \frac{t_2 - t_1}{t^*})$$

Method

- What are the features in each of these models?
- Why heuristic models outperform traditional utility-discounting models?
- Why ITCH model outperforms the other models?
- What are the most important terms?
- Develop a new model which is nested in the traditional utility-discounting models and the heuristics model
- Cross-validation analysis
- Maximum likelihood estimation techniques

..

Results

Future directions

- May design new experiments based on specific conditions to compare the models' performance across conditions
- ► May design new experiments to examine the indifference point between the larger-later option and smaller-sooner option

. . .