

Figure 1.3. On-Board Clock and Reset

CCDA 25,768 5/50

§ 7
Figure 1/7. PCA Block Diagram

Figure 1.9. Comparator and DAC Diagram

۱۱ مهلر

Figure 5.2. ADC Track and Conversion Example Timing

12 CCDA 25,768

Figure 5.3. Temperature Sensor Transfer Function

#13

Figure 3.14. ADC Window Interrupt Examples, Right Justified Data

Input Voltage (AD0 - AGNE		ADC Data Word	
REF x (4095/4	096)	0x0FFF	
			ADWINT not affected
		0x0201	
REF x (512/40	96)	0×0200	ADCOLTH.ADCOLTL
		0x01FF	ADWINT=1
		0x0101	<u> </u>
REF x (256/40	196)	0x0100	ADCOGTH:ADCOGTL
		0x00FF	
			ADWINT not affected
0		0x0000	

Input Voltage (AD0 - AGND)	ADC Data Word	
REF x (4095/4096)	0x0FFF	ADWINT=1
	0x0201	
REF x (512/4096)	0x0200	ADCOGTH:ADCOGTL
***************************************	0x01FF	ADWINT not affected
	0x0101	not affected
REF x (256/4096)	0x0100	ADCOLTH:ADCOLTL
	0x00FF	ADWINT=1
0	0x0000])

Given:

AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 0, ADC0LTH:ADC0LTL = 0x0200, ADC0GTH:ADC0GTL = 0x0100.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x0200 and > 0x0100.

Given

AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 0, ADC0LTH:ADC0LTL = 0x0100, ADC0GTH:ADC0GTL = 0x0200.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x0100 or > 0x0200.

Input Voltage (AD0 - AD1)	ADC Data Word	_
REF x (4095/4096)	0x07FF	1
		ADWINT not affected
	0x0101	
REF x (256/4096)	0x0100	ADCOLTH:ADCOLTL
	0x00FF	ADWINT=1
	0x0000	
REF x (-1/4096)	0xFFFF	ADCOGTH:ADCOGTL
	0×FFFE	
		ADWINT not affected
-REF	0xF800	
***************************************		•

Input Voltage (AD0 - AD1)	ADC Data Word	
REF x (4095/4096)	0x07FF	ADWINT=1
	0x0101	
REF x (256/4096)	0x0100	ADC0GTH:ADC0GTL
	0x00FF	ADWINT
	0x0000	not affected
REF x (-1/4096)	0xFFFF	ADCOLTH-ADCOLTL
	0xFFFE	ADWINT=1
-REF	0xF800	IJ

Given:

AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0, ADC0LTH:ADC0LTL = 0x0100, ADC0GTH:ADC0GTL = 0xFFFF.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x0100 and > 0xFFFF. (Two's

Giver

AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 0, ADC0LTH:ADC0LTH = 0xFFFF, ADC0GTH:ADC0GTL = 0x0100.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0xFFFF or > 0x0100. (Two's Complement

Window Interrupt Examples, Left Input Voltage ADC Data (AD0 - AGND) Word REF x (4095/4096) 0xFFF0 **ADWINT** not affected 0x2010 REF x (512/4096) 0x2000 ADCOLTH ADCOLTL 0x1FF0 ADWINT=1 0x1010 REF x (256/4096) 0x1000 ADCOGTH:ADCOGTL 0x0FF0 **ADWINT** not affected

Input Voltage (AD0 - AGND)	ADC Data Word	
REF x (4095/4096)	0xFFF0	ADWINT=1
	0x2010]
REF x (512/4096)	0x2000	ADCOGTH:ADCOGTL
	0x1FF0	ADWINT
	0x1010	not affected
REF x (256/4096)	0×1000	ADCOLTH:ADCOLTL
	0x0FF0	ADWINT=1
O	0x0000	IJ

Given

AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1, ADC0LTH:ADC0LTL = 0x2000, ADC0GTH:ADC0GTL = 0x1000.

0x0000

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x2000 and > 0x1000.

Given:

AMX0SL = 0x00, AMX0CF = 0x00, ADLJST = 1, ADC0LTH:ADC0LTL = 0x1000, ADC0GTH:ADC0GTL = 0x2000.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x1000 or > 0x2000.

Input Voltage (AD0 - AD1)	ADC Data Word	1
REF x (4095/4096)	0x7FF0	İ
		ADWINT not affected
	0x1010	
REF x (256/4096)	0x1000	ADC0LTH'ADC0LTL
	0x0FF0	ADWINT=1
-	0x0000	<u> </u>
REF x (-1/4096)	0xFFF0	ADCOGTH:ADCOGTL
	0×FFE0	
		ADWINT not affected
-REF	0x8000]

input Voltage (AD0 - AD1)	ADC Data Word	
REF x (4095/4096)	0x7FF0	ADWINT=1
	0x1010	IJ
REF x (256/4096)	0×1000	ADCOGTH.ADCOGTL
***************************************	0x0FF0 0x0000	ADWINT not affected
REF x (-1/4096)	0xFFF0	ADCOLTH.ADCOLTL
	0xFFE0	ADWINT=1
-REF	0x8000]]

Given:

AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1, ADC0LTH:ADC0LTL = 0x1000, ADC0GTH:ADC0GTL = 0xFFF0.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0x1000 and > 0xFFF0. (Two's -Complement math.)

Given:

AMX0SL = 0x00, AMX0CF = 0x01, ADLJST = 1, ADC0LTH:ADC0LTH = 0xFFF0, ADC0GTH:ADC0GTL = 0x1000.

An ADC End of Conversion will cause an ADC Window Compare Interrupt (ADWINT=1) if the resulting ADC Data Word is < 0xFFF0 or > 0x1000. (Two's Complement—math.)

le tal tal le artial tal article artic

are given in Table o.i.

Figure 6.1. DAC Functional Block Diagram

Figure 7.T. Comparator Functional Block Diagram

2017

Figure 7.2. Comparator Hysteresis Plot

Figure 8-1. Voltage Reference Functional Block Diagram

, Ž

#19

Figure 9.1. CIP-51 Block Diagram

Figure 2.2. Memory Map

Figure 10.1. Flash Program Memory Security Bytes

FLASH Read Lock Byte

- Bits7-0: Each bit locks a corresponding block of memory. (Bit 7 is MSB.)
 - 0: Read operations are locked (disabled) for corresponding block across the JTAG interface.
 - 1: Read operations are unlocked (enabled) for corresponding block across the JTAG interface.

FLASH Write/Erase Lock Byte

- Bits7-0: Each bit locks a corresponding block of memory.
 - 0: Write/Erase operations are locked (disabled) for corresponding block across the JTAG interface.
 - 1: Write/Erase operations are unlocked (enabled) for corresponding block across the JTAG interface.

FLASH Access Limit Register (FLACL)

The content of this register is used as the high byte of the 16-bit software read limit address. The 16-bit read limit address value is calculated as 0xNN00 where NN is replaced by content of this register on reset. Software running at or above this address is prohibited from using the MOVX and MOVC instructions to read, write, or erase, locations below this address. Any attempts to read locations below this limit will return the value 0x00.

Figure 11.2. VDD Monitor Timing Diagram

Figure 12.1. Oscillator Diagram

3926

Figure 13.2. Port I/O Cell Block Diagram

Figure 141. SMBus Block Diagram

Figure 14.2. Typical SMBus Configuration

CCDA 25,768 27/60

.

. 110 0

78 44 Figure 18.1. SPI Block Diagram

45 € 29

Figure 15.2. Typical SPI Interconnection

CCDA 25,768 30/50

#30

Figure 15.3. Full Duplex Operation

CCDA 25,768 31/50

Figure 15.4. Data/Clock Timing Diagram

. . . .

Figure 16.5. UART Modes 1, 2, and 3 Interconnect Diagram

CCDA 25,768 36/50

3 (

Figure 16.6. UART Modes 2 and 3 Timing Diagram

Figure 16.7. UART Multi-Processor Mode Interconnect Diagram

CLDA 25,768 38/50

Figure 17.1. To Mode 0 Block Diagram

40 45

Figure 17.2. T0 Mode 2 Block Diagram

41 Figure 17.3. To Mode 3 Block Diagram

42 Figure 17.11. T2 Mode 0 Block Diagram

Figure 17.12. T2 Mode 1 Block Diagram

~

Figure 17.13. T2 Mode 2 Block Diagram

45 Figure 17.19. Timer 3 Block Diagram

, sp

.1

,

. ...

FIGURE 46

다기 Figure 과용:3. PCA Capture Mode Diagram

CCDA 25,768 47/50

48

Figure 18.4. PCA Software Timer Mode Diagram

The state of the s

.

**

Figure 18.5. PCA High Speed Output Mode Diagram

Figure 36. PCA PWM Mode Diagram

Figure 1847. PCA Counter/Timer Block Diagram

