Practical Text Analytics: Text Classification

Fan Dai

Iowa State University

December 2, 2019

Recall: Text analytics process

Text Analytics Process

- Planning the text analytics projects
- Preparing and preprocessing text
- Analyzing text data
 - Latent Semantic Analysis (LSA)
 - 2 Topic Models
 - Probabilistic Latent Semantic Analysis
 - Sentiment Analysis

Recall: Text analytics process

Text Analytics Process

- Planning the text analytics projects
- Preparing and preprocessing text
- Analyzing text data
 - Latent Semantic Analysis (LSA)
 - 2 Topic Models
 - Probabilistic Latent Semantic Analysis
 - Sentiment Analysis
 - Classification Analysis(Chapter 9, Anandarajan et al.(2019))

Text Classification Example

• Email software: spam filtering

Source: https://developers.google.com/machine-learning/guides/text-classification

 Classification model: identify the message as spam and redirecting the message to your spam folder

Text Classification: Intro

- Text classification/categorization
 - Usage: Email classification, news filtering, document organization and retrieval, opinion mining, . . .

Text Classification: Intro

- Text classification/categorization
 - Usage: Email classification, news filtering, document organization and retrieval, opinion mining, . . .
 - Supervised learning model
 - Automatically categorize or classify text documents when the true classification of the document is known
 - * Infer the naturally occurring groupings in the data, without knowing the actual groupings or categories
 - * Make predictions

Text Classification: Intro

- Text classification/categorization
 - Usage: Email classification, news filtering, document organization and retrieval, opinion mining, . . .
 - Supervised learning model
 - Automatically categorize or classify text documents when the true classification of the document is known
 - * Infer the naturally occurring groupings in the data, without knowing the actual groupings or categories
 - Make predictions
 - Differences from LSA and topic models
 - * There is certainty in the natural groupings or underlying factors of the text data
 - The analysis process
 - * The assessment of the model fit

Text Classification: General Process

The General Text Classification Process

		Actual		
		Yes	No	Total Predicted
Predicted	Yes	3	6	9
	No	7	4	11
	Total Actual	10	10	20

Goodness of fit

- Accuracy =

 # of correct predictions
 # of total predictions
- Recall_i = $\frac{\text{# of correct predicted}_i}{total\text{# of actual}_i}$

Figure: Text classification process

Text Classification: Models)

- Classification Models
 - Naive Bayes
 - k-nearest neighbors
 - Support vector machines
 - Decision trees
 - Random forests

Naive Bayes (NB) models

• The most likely classification \hat{C} , of document D, is equal to

$$\hat{C} = \operatorname{argmax} P(D|C)P(C)$$

- P(D|C): Conditional probability of a document given its class
- \bullet P(C): Probability of the classification

Naive Bayes (NB) models

• The most likely classification \hat{C} , of document D, is equal to

$$\hat{C} = \operatorname{argmax} P(D|C)P(C)$$

- P(D|C): Conditional probability of a document given its class
- P(C): Probability of the classification

What is naive in naive Bayes?

Naive Bayes (NB) models

• The most likely classification \hat{C} , of document D, is equal to

$$\hat{C} = \operatorname{argmax} P(D|C)P(C)$$

- P(D|C): Conditional probability of a document given its class
- P(C): Probability of the classification

What is naive in naive Bayes?

Assumption: Terms are conditionally independent given the class

Naive Bayes (NB) models

• The most likely classification \hat{C} , of document D, is equal to

$$\hat{C} = \operatorname{argmax} P(D|C)P(C)$$

- P(D|C): Conditional probability of a document given its class
- P(C): Probability of the classification

What is naive in naive Bayes?

Assumption: Terms are conditionally independent given the class

- $P(D|C) = P(W_{D,1}|C)P(W_{D,2}|C)\cdots P(W_{D,D_m}|C)$
 - $W_{D,1},...,W_{D,D_m}$ are the terms in Document D.

Naive Bayes (NB) models

• The most likely classification \hat{C} , of document D, is equal to

$$\hat{C} = \operatorname{argmax} P(D|C)P(C)$$

- P(D|C): Conditional probability of a document given its class
- P(C): Probability of the classification

What is naive in naive Bayes?

Assumption: Terms are conditionally independent given the class

- $P(D|C) = P(W_{D,1}|C)P(W_{D,2}|C)\cdots P(W_{D,D_m}|C)$
 - $W_{D,1},...,W_{D,D_m}$ are the terms in Document D.
- Simple and efficient, but not necessarily true in real-world data

Text Classification: k-Nearest Neighbors

k-Nearest Neighbors (kNN)

- Find the k nearest matches in training data and then using the label of closest matches to predict.
- Distances such as euclidean or cosine similarity are used to find the closest match.

Text Classification: k-Nearest Neighbors

k-Nearest Neighbors (kNN)

- Find the k nearest matches in training data and then using the label of closest matches to predict.
- Distances such as euclidean or cosine similarity are used to find the closest match.
- Simple algorithm steps
 - Start with the training data $\{(D_1, C_1), (D_2, C_2), \dots, (D_m, C_m)\}$ and a new document D^* to be classified
 - ② Calculate distance $dist(D^*, D_i)$ for each label document in the training set
 - Select the k nearest documents to D^* based on $dist(D^*, D_i)$
 - lacktriangledown Assign to D^* the most frequent class in the k nearest documents

Text Classification: k-Nearest Neighbors

k-Nearest Neighbors (kNN)

- Find the k nearest matches in training data and then using the label of closest matches to predict.
- Distances such as euclidean or cosine similarity are used to find the closest match.
- Simple algorithm steps
 - Start with the training data $\{(D_1, C_1), (D_2, C_2), \dots, (D_m, C_m)\}$ and a new document D^* to be classified
 - ② Calculate distance $dist(D^*, D_i)$ for each label document in the training set
 - Select the k nearest documents to D^* based on $dist(D^*, D_i)$
 - lacktriangledown Assign to D^* the most frequent class in the k nearest documents
- Non-parametric, sensitive to the chosen value of k

Text Classification: Support Vector Machines

Support Vector Machines (SVM)

• Search for the optimal hyperplane, among all possible separating hyperplanes, which has the largest margin of separation between classes.

Text Classification: Support Vector Machines

Support Vector Machines (SVM)

• Search for the optimal hyperplane, among all possible separating hyperplanes, which has the largest margin of separation between classes.

Figure: Text classification process

Source: Practical text analytics: maximizing the value of text data

- Class "blue": documents 1–5
- Class "green": documents 6–10
- Red line: the optimal hyperplane that creates the largest margin

Text Classification: Support Vector Machines

Support Vector Machines (SVM)

• Search for the optimal hyperplane, among all possible separating hyperplanes, which has the largest margin of separation between classes.

- Class "blue": documents 1–5
- Class "green": documents 6–10
- Red line: the optimal hyperplane that creates the largest margin

Figure: Text classification process

Source: Practical text analytics: maximizing the value of text data

 SVM can handle the high dimensionality and sparsity of the DTM used as the input quite efficiently

Decision Trees

• Use recursive partitioning to separate classes within a dataset

Decision Trees

• Use recursive partitioning to separate classes within a dataset

Figure: Decision tree

Source: Decision Tree Classification in Python (article) - DataCamp

Decision Trees

• Use recursive partitioning to separate classes within a dataset

Figure: Decision tree

Source: Decision Tree Classification in Python (article) - DataCamp

- Splitting criteria:
 - Gini Index: measures divergence between probability distributions
 - Entropy/Deviance: measures homogeneity
 - Information Gain: measures the reduction in Entropy
 - Chi-Square Test: measures the likelihood of a split

Decision Trees

• Use recursive partitioning to separate classes within a dataset

Figure: Decision tree

Source: Decision Tree Classification in Python (article) - DataCamp

• See more details in reference link

- Splitting criteria:
 - Gini Index: measures divergence between probability distributions
 - 2 Entropy/Deviance: measures homogeneity
 - Information Gain: measures the reduction in Entropy
 - Chi-Square Test: measures the likelihood of a split

Text Classification: Random Forests

Random Forests

• A "combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest" (Breiman 2001, 1).

Text Classification: Random Forests

Random Forests

- A "combination of tree predictors such that each tree depends on the values of a random vector sampled independently and with the same distribution for all trees in the forest" (Breiman 2001, 1).
 - creates a forest of decision trees that on average are more accurate

Figure: Random forest

Source: https://towardsdatascience.com/