Задание 10

Сложность вычислений: классы P, NP и со-NP II

Литература:

1. Кормен Т., Лейзерсон Ч., Ривест Р., Штайн К. Алгоритмы. Построение и анализ. 2-е изд. М.: Вильямс, 2005.

1 Сводимости

На семинаре мы разобрались почему задача о поиске гамильтонового пути в ориентированном графе является NP-полной задачей. Осталось разобраться со следующими задачами:

Задача 1. Доказаать, что язык UHAMPATH каждое слово которого состоит из описания неориентированного графа и двух вершин s, t, таких что из s в t есть гамильтонов путь, является NP-полным языком. Указание: построить сводимость языка HAMPATH к языку UHAMPATH путём замены каждой вершины u на три вершины u_{in}, u_{med}, u_{out} , соединённые последовательно рёбрами, причём, все рёбра ведущие в u направ-

Задача 2. Свести задачу о поиске гамильтонова цикла к задаче о поиске гамильтонова пути. Брать ориентированный или неориентированный граф – на ваш выбор.

ляются в u_{in} , а все рёбра исходящие из u направляются в u_{out} .

В конце семинара мы обсуждали сводимость по Тьюрингу, которая устроена следующим образом. Будем говорить, что язык L сводится к языку L' по Тьюрингу за полиномиальное время и обозначать это как $L \leqslant_T^p L'$, если есть машина Тьюринга $M_{L'}$ с оракулом L', которая распознаёт L. То есть машина $M_{L'}$ может проверять принадлежность любого слово языку L'. Я обнаружил, что дал задачу в неправильной формулировке. Решение задачи в правильной формулировке было практически полностью получено на семинаре.

Задача 3. Рассмотрим класс языков \mathcal{C} , сводимых к языку SAT в следующем смысле: для каждого языка L из \mathcal{C} существует полиномиальная

машина Тьюринга $M_{\rm SAT}$, которая распознаёт язык L, причём машина $M_{\rm SAT}$ делает не более одного запроса к оракулу. Доказать, что класс $\mathcal{C}=\mathsf{NP}\cup\mathsf{co}\text{-}\mathsf{NP}.$

2 Домашнее задание

Задачи из канонического задания №21, 23, задачи 1-3 из данного текста.