Exercise 1 (Monte Carlo for Gaussians)

1. Let's prove that $E[\phi(X)] = E[\phi(X + \theta)exp(\frac{-1}{2}\theta^T\theta - \theta^TX)].$

$$E[\phi(X+\theta)exp(\frac{-1}{2}\theta^T\theta - \theta^TX)] = \int_{\mathbb{R}^d} \phi(x+\theta)exp(\frac{-1}{2}\theta^T\theta - \theta^TX)\pi(x)dx_1...dx_d =$$

$$= \int_{\mathbb{R}^d} \phi(x+\theta)exp\left(\frac{-1}{2}\theta^T\theta - \theta^TX\right)exp(-x^Tx/2)\frac{1}{(\sqrt{2\pi})^d}dx_1...dx_d =$$

$$\int_{\mathbb{R}^d} \phi(x+\theta)exp\left(\frac{-1}{2}(x-\theta)^T(x-\theta)\right)\frac{1}{(\sqrt{2\pi})^d}dx_1...dx_d$$

Finally, making $x - \theta = y$,

$$\int_{\mathbb{R}^d} \phi(y) exp\left(\frac{-1}{2}(y)^T(y)\right) \frac{1}{(\sqrt{2\pi})^d} dx_1...dx_d = E[\phi(Y)]$$

2. Let's show that

$$\sigma^{2}(\theta) = E\left[\phi^{2}(X)exp\left(\frac{-1}{2}X^{T}X + \frac{1}{2}(X - \theta)^{T}(X - \theta)\right)\right] - (E[\phi(X)]^{2}$$

Note that, using the result in the previous item we have:

$$\sigma^{2}(\theta) = V \left[\phi(X + \theta) exp\left(\frac{-1}{2}\theta^{T}\theta - \theta^{T}X\right) \right] =$$

$$\begin{split} &= E\left[\left(\phi(X+\theta)exp\left(\frac{-1}{2}\theta^T\theta - \theta^TX\right)\right)^2\right] - E\left[\phi(X+\theta)exp\left(\frac{-1}{2}\theta^T\theta - \theta^TX\right)\right]^2 = \\ &= E\left[\left(\phi(X+\theta)exp\left(\frac{-1}{2}\theta^T\theta - \theta^TX\right)\right)^2\right] - E\left[\phi(X)\right]^2 \end{split}$$

Now, let's rearrange the first term in the variance.

$$\sigma^{2}(\theta) = \int_{\mathbb{R}^{d}} \phi(x+\theta)^{2} exp\left(-\theta^{T}\theta - 2\theta^{T}X\right) exp(-x^{T}x/2) \frac{1}{(\sqrt{2\pi})^{d}} dx_{1}...dx_{d} =$$

Make $X + \theta = Y$, then:

$$\int_{\mathbb{R}^d} \phi(y)^2 exp\left(-\theta^T \theta - 2\theta^T (y - \theta)\right) exp(-(y - \theta)^T (y - \theta)/2) \frac{1}{(\sqrt{2\pi})^d} dx_1 ... dx_d =$$

$$= \int_{\mathbb{R}^d} \phi(y)^2 exp\left(\frac{1}{2} (y - \theta)^T (y - \theta) - \frac{y^T y}{2}\right) exp\left(\frac{-y^T y}{2}\right) \frac{1}{(\sqrt{2\pi})^d} dx_1 ... dx_d =$$

$$= E\left[\phi^2(X) exp\left(\frac{-1}{2} X^T X + \frac{1}{2} (X - \theta)^T (X - \theta)\right)\right]$$

Therefore,

$$\sigma^{2}(\theta) = E\left[\phi^{2}(X)exp\left(\frac{-1}{2}X^{T}X + \frac{1}{2}(X - \theta)^{T}(X - \theta)\right)\right] - (E[\phi(X)]^{2}$$

3. Let's calculate $\nabla^2 \sigma^2(\theta) = H(\theta)$.

$$\frac{\partial \sigma^2(\theta)}{\partial \theta_i} = \frac{E[\phi(X)^2 exp(\frac{-X^T X + (X - \theta)^T (X - \theta)}{2})]}{\partial \theta_i} =$$

$$= \int_{\chi} \phi(x)^2 exp(-x^T x) \frac{\partial}{\partial \theta_i} exp\left(\frac{(x - \theta)^T (x - \theta)}{2}\right) \frac{1}{(\sqrt{2\pi})^d} dx =$$

$$= \int_{\chi} \phi(x)^2 exp(-x^T x) (\theta_i - x_i) exp\left(\frac{(x - \theta)^T (x - \theta)}{2}\right) \frac{1}{(\sqrt{2\pi})^d} dx$$

We calculated the gradient, let's now calculate the second derivative. First the diagonal.

$$\frac{\partial}{\partial \theta_i} \int_{\chi} \phi(x)^2 exp(-x^T x) (\theta_i - x_i) exp\left(\frac{(x - \theta)^T (x - \theta)}{2}\right) \frac{1}{(\sqrt{2\pi})^d} dx =$$

$$= E[\phi(X)^2] + \int_{\chi} \phi(x)^2 exp(-x^T x) exp\left(\frac{(x - \theta)^T (x - \theta)}{2}\right) (x_i - \theta_i) (x_i - \theta_i) \frac{1}{(\sqrt{2\pi})^d} dx$$

Now the rest:

$$\frac{\partial}{\partial \theta_j} \int_{\chi} \phi(x)^2 exp(-x^T x) (\theta_i - x_i) exp\left(\frac{(x - \theta)^T (x - \theta)}{2}\right) \frac{1}{(\sqrt{2\pi})^d} dx =$$

$$= \int_{\chi} \phi(x)^2 exp(-x^T x) exp\left(\frac{(x - \theta)^T (x - \theta)}{2}\right) (x_i - \theta_i) (x_j - \theta_j) \frac{1}{(\sqrt{2\pi})^d} dx$$

4. We already know that the Hessian is positive definite. Hence, we only need to show that the derivative is equal to zero at θ^* .

$$\nabla \sigma^{2}(\theta) = \int_{\chi} \phi(x)^{2} exp(-x^{T}x)(\theta - x) exp\left(\frac{-(x - \theta)^{T}(x - \theta)}{2}\right) \frac{1}{(\sqrt{2\pi})^{d}} dx =$$

$$= \int_{\chi} \phi(x)^{2} exp(-x^{T}x)(\theta - x) exp\left(\frac{-(x - \theta)^{T}(x - \theta)}{2}\right) \frac{1}{(\sqrt{2\pi})^{d}} dx =$$

$$= \int_{\chi} \phi(x)^{2}(\theta - x) exp\left(\frac{-x^{T}x}{2} - \theta^{T}x + \frac{-\theta^{T}\theta}{2}\right) \frac{1}{(\sqrt{2\pi})^{d}} dx =$$

$$= \int_{\chi} \phi(x)^{2}(\theta - x) exp(-\theta^{T}x) exp(-x^{T}x/2) \frac{exp(\theta^{T}\theta/2)}{(\sqrt{2\pi})^{d}} dx = 0$$

Finally, since the last term doens't depend on X, we can eliminate it, obtaining:

$$E[\phi(X)^{2}(\theta - X)exp(-\theta^{T}X)] = 0$$

5. Couldn't solve.

Exercise 2 (Metropolis-Hastings)

- 1. First, generate $Y \sim q(X_t, \cdot)$. With probability equal to $\alpha(x, y)$, make $X_{t+1} = Y$, and with probability $1 \sum_{z \in \mathbb{Z}} \alpha(x, z) q(x, z)$ make $X_{t+1} = X_t$. Then, repeat the process.
- 2. We want to show that $\pi(x)T(x,y)=\pi(y)T(y,x)$. For y=x, this is trivial. Now, assume $y\neq x$. Therefore:

$$\pi(x)T(x,y) = \pi(x)\alpha(x,y)q(x,y) = \pi(x)\frac{\gamma(x,y)}{\pi(x)q(x,y)} = \gamma(y,x) =$$
$$= \pi(y)\frac{\gamma(y,x)q(y,x)}{\pi(y)q(y,x)} = \pi(y)T(y,x)$$

3. Using Metropolis-Hastings, one has:

$$\alpha = \min \left\{ 1, \frac{\pi(x^*)q(x_{t-1}) \mid x^*}{\pi(x_{t-1})q(x^* \mid x_{t-1})} \right\}$$

So, $\alpha(x,y) = \frac{\gamma(x,y)}{\pi(x)q(x,y)}$, for $x = x_{t-1}, x^* = y, q(x,y) = q(x^* \mid x_{t-1})$.

Make:

$$\gamma(x,y) = \max\left\{\pi(y)q(y,x), \pi(x)q(x,y)\right\}$$

 $\alpha(x,y) = \frac{\max\{\pi(y)q(y,x),\pi(x)q(x,y)\}}{\pi(x)q(x,y)} = \min\left\{1,\frac{\pi(y)q(y,x)}{\pi(x)q(x,y)}\right\}$

4. First, let's rewrite the estimate as a function of Y. Note that $Y^{(k)} = X^{(\tau_k)}$, hence:

$$\frac{1}{\tau_k - 1} \sum_{t=1}^{\tau_k - 1} \phi(X^{(t)}) = \frac{1}{k - 1} \sum_{t=1}^{k - 1} \phi(Y^{(t)})$$

Now, let's prove it has the transition desired transition kernel.

$$K(x,y) = P(Y^{(k)} = y \mid Y^{(k-1)} = x) = P(X^{(\tau_k)} = y \mid X^{(\tau_k - 1)} = x)$$

The event $X^{(\tau_k)} = y \mid X^{(\tau_k-1)} = x$ is equivalent to selecting y starting from x and then accepting y, hence $q(x,y) \cdot \alpha(x,y) = P(X^{(\tau_k)} = y \mid X^{(\tau_k-1)} = x)$.

Therefore,
$$P(Y^{(k)} = y \mid Y^{(k-1)} = x) = \frac{q(x,y)\alpha(x,y)}{\sum_{z \in \mathbb{Z}} \alpha(x,z)q(x,y)}$$
.

5. Let's show that $\tilde{\pi}(x)K(x,y) = \tilde{\pi}(y)K(y,x)$.

$$\frac{\pi(x)m(x)}{\sum_{z\in\mathbb{Z}}\pi(z)m(z)}\cdot\frac{q(x,y)\alpha(x,y)}{\sum_{z\in\mathbb{Z}}\alpha(x,z)q(x,z)}=\frac{\pi(x)q(x,y)\alpha(x,y)}{\sum_{z\in\mathbb{Z}}\pi(z)m(z)}$$

Note that $\alpha(x,y) = \frac{\gamma(x,y)}{\pi(x)q(x,y)} = \frac{\gamma(y,x)}{\pi(x)q(x,y)}$. Therefore:

$$\frac{\pi(x)q(x,y)\gamma(x,y)}{\alpha(x,z)q(x,z)\sum_{z\in\mathbb{Z}}\pi(z)m(z)} = \frac{\gamma(y,x)}{\sum_{z\in\mathbb{Z}}\pi(z)m(z)} = \frac{\alpha(y,x)\pi(y)q(y,x)}{\sum_{z\in\mathbb{Z}}\pi(z)m(z)} = \tilde{\pi}(y)K(y,x)$$

6. Couldn't solve.

Exercise 3 (Metropolis-Hastings)

1. Let's show that $\int_{\chi} \pi(x)(\alpha(x)q(y)(1-\alpha(x)))\delta_x(y)dx = \pi(y)$. Note that, $\pi(x) = \frac{q(x)}{\alpha(x)Z_{\pi}}$, hence:

$$\int_{\chi} \pi(x)(\alpha(x)q(y)(1-\alpha(x)))\delta_{x}(y)dx = \int_{\chi} \frac{q(x)}{\alpha(x)Z_{\pi}}(\alpha(x)q(y)(1-\alpha(x)))\delta_{x}(y)dx =$$

$$= \int_{\chi} \frac{q(x)}{\alpha(x)Z_{\pi}}\alpha(x)q(y)dx + \pi(y)(1-\alpha(y)) = \frac{q(y)}{Z_{\pi}}\int_{\chi} q(x)dx + \pi(y)(1-\alpha(y)) =$$

$$= \pi(y)\alpha(y) + \pi(y)(1-\alpha(y)) = \pi(y)$$

2. Couldn't solve.

Exercise 4 (Gibbs Sampler)

1.

$$\pi(x \mid y) = \frac{\pi(x,y)}{\pi(y)} \propto \frac{exp((x-1)^2(y-2)^2)/2}{(y-2)^{-1}} \sim N(1,(y-2)^{-2})$$

Now, follow the same procedure to for $\pi(y \mid x)$, hence:

$$\pi(y \mid x) \sim N(2, (x-1)^{-2})$$

2. The sampler doesn't make sense, because:

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \pi(x, y) dx dy \propto \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp((x - 1)^{2} (y - 2)^{2}) / 2 dx dy =$$

$$= \int_{-\infty}^{\infty} \sqrt{2\pi} ((y - 2)^{-2})^{\frac{1}{2}} dy = \infty$$

Exercise 5 (Gibbs Sampler)

1.

$$p(Z_{i} = z \mid \theta_{1}, \theta_{2}) = p(X_{i} + Y_{i} = z \mid \theta_{1}, \theta_{2}) = \sum_{y=0}^{z} p(X_{i} + Y_{i} = z \mid Y_{i} = y, \theta_{1}, \theta_{2}) p(Y_{i} = y \mid \theta_{2}) = \sum_{y=0}^{z} p(X_{i} = z - y \mid \theta_{1}) p(Y_{i} = y \mid \theta_{2}) = \sum_{y=0}^{z} {m_{i} \choose z - y} \theta_{1}^{z-y} (1 - \theta_{1})^{m_{i} - (z - y)} {n_{i} \choose y} \theta_{2}^{y} (1 - \theta_{2})^{n_{i} - y} :$$

$$p(Z_{1}, ..., Z_{T} \mid \theta_{1}, \theta_{2}) = \prod_{i=1}^{T} \left(\sum_{y=0}^{z_{i}} {m_{i} \choose z_{i} - y_{i}} \theta_{1}^{z_{i} - y_{i}} (1 - \theta_{1})^{m_{i} - (z_{i} - y_{i})} {n_{i} \choose y_{i}} \theta_{2}^{y_{i}} (1 - \theta_{2})^{n_{i} - y_{i}} \right)$$

2. To sample from $p(\theta_1, \theta_2 \mid Z_1, ..., Z_T)$ we will use auxiliary varibles $X_{1:T}, Y_{1:T}$.

$$p(\theta_1 \mid \theta_2, X_{1:T}, Y_{1:T}, Z_{1:T}) \propto \pi(\theta_1 \mid \theta_2, Y_{1:T}) p(X_{1:T} \mid \theta_1, \theta_2, Y_{1:T}) \propto$$

 $\propto \pi(\theta_1) p(X_{1:T} \mid \theta_1) \propto \theta_1^{\sum x_i} (1 - \theta_1)^{\sum m_i - x_i} ...$

$$\theta_1 \mid X_{1:T} \sim Beta\left(1 + \sum_{i=1}^{T} x_i, 1 + \sum_{i=1}^{T} m_i - x_i\right)$$

Similarly to θ_2 :

$$\theta_2 \mid Y_{1:T} \sim Beta\left(1 + \sum_{i=1}^{T} y_i, 1 + \sum_{i=1}^{T} n_i - y_i\right)$$

Finally,

$$p(X_{1:T}, Y_{1:T} \mid \theta_1, \theta_2, Z_{1:T}) \propto \prod_{i=1}^{T} {m_i \choose x_i} \theta_1^{x_i} (1 - \theta_1)^{m_i - x_i} {n_i \choose y_i} \theta_2^{y_i} (1 - \theta_2)^{n_i - y_i} \mathbb{I}_{\{x_i + y_i = z_i\}}$$

Note that we can now use a Gibbs sampler by first sampling $\theta_1^{(0)}$ and $\theta_2^{(0)}$ from independent $U_{[0,1]}$. Secondly, we can sample $X^{(0)}$ and $Y^{(0)}$ from $p(X_{1:T}, Y_{1:T} \mid \theta_1^{(0)}, \theta_2^{(0)}, Z_{1:T})$, since the distribution found is discrete with finite support, hence, we can calculate the probabilty for each possible value of $X^{(0)}$ and $Y^{(0)}$. With the values for the auxiliary variables, we sample $\theta_1^{(1)}$ and $\theta_2^{(1)}$ from their posteriors, which is possible since they are Beta distributions. Again we sample X, Y using the updated θ_1, θ_2 and repeat the process.

Simulation question (Normal mixture model - Gibbs sampling)

1.

$$P(X_i = x_i \mid p, \mu, \sigma^2) = \sum_{z_i=1}^k P(X_i = x_i \mid Z_i = z_i, p, \mu, \sigma^2) P(Z_i = z_i \mid p, \mu, \sigma^2) =$$

$$= \sum_{z_i=1}^k \varphi(x_i; \mu_{z_i}, \sigma_{z_i}^2) p_{z_i}$$

2.

$$P(Z_i = z_i \mid X_i, p, \mu, \sigma^2) \propto P(X_i \mid Z_i, p, \mu, \sigma^2) P(Z_i \mid p, \mu, \sigma^2) \propto$$
$$\varphi(x_i; \mu_{z_i}, \sigma_{z_i}^2) p_{z_i} \propto exp\left(\frac{-(x - \mu_{z_i})^2}{2\sigma_{z_i}^2}\right) p_{z_i}$$

The above distribution is discrete with finite support, hence, one can calculate the value for each z_i and then normalize by the sum, obtaining a probability mass function from which values can be sampled.

3.

$$P(p \mid X, Z, \mu, \sigma^2) \propto P(X, Z \mid \mu, \sigma^2, p) P(p \mid \mu, \sigma^2) \propto P(X \mid Z, \mu, \sigma^2, p) P(Z \mid \mu, \sigma^2, p) \pi(p)$$

Note that $P(X \mid Z, \mu, \sigma^2, p) \propto \prod_{i=1}^N \phi(x_i; \mu_i, \sigma_i^2)$ is not a function p, so it can be thrown as a constant. Also, $P(Z \mid \mu, \sigma^2, p) = P(Z \mid p)$ therefore:

$$P(p \mid X, Z, \mu, \sigma^2) \propto \pi(p) \prod_{i=1}^{N} p_{z_i} \propto \prod_{j=1}^{K} p_j^{\gamma_j - 1} \prod_{i=1}^{N} p_{z_i}$$

Let $n_j = \sum_{i=1}^N z_i \mathbb{I}_{z_i=j}$, so n_j is the number of times the j-th Gaussian has being picked. Finally:

$$P(p \mid X, Z, \mu, \sigma^2) \propto \prod_{j=1}^{K} p_j^{\gamma_j - 1 + n_j}$$
$$p \mid X, Z, \mu, \sigma^2 \sim Dirichlet$$

Since the distribution is a Dirichlet, it is known how to sample from it.

4.

$$P(\mu \mid X, Z, p, \sigma^2) \propto P(X, Z \mid \mu, p, \sigma^2) P(\mu \mid p, \sigma^2) \propto$$

$$P(X \mid Z, \mu, p, \sigma^2) P(Z \mid \mu, p, \sigma^2) \pi(\mu) \propto$$

$$\left(\prod_{j=1}^{N} exp\left(\frac{-(x_j - \mu_{z_j})^2 p_{z_j}}{2\sigma_{z_j}^2}\right)\right) \prod_{k=1}^{K} exp\left(\frac{-(\mu_k - m)^2}{2\tau^2}\right) \propto$$

$$\prod_{k=1}^{K} p_k^{n_k} exp\left(\frac{-\sum_{i=1}^{n_k} (x_i^{(k)} - \mu_k)^2}{2\sigma_j^2} - \frac{(\mu_k - m)^2}{2\tau^2}\right)$$

$$\cdot$$

$$P(\mu_k \mid X, Z, p, \sigma^2) \propto exp\left(\frac{-\sum_{i=1}^{n_k} (x_i^{(k)} - \mu_k)^2}{2\sigma_k^2} - \frac{(\mu_k - m)^2}{2\tau^2}\right)$$

First, note that $x_i^{(k)}$ is the *i*-th value from X such that z = k, in other words, it is the *i*-th sampled value that came from the k-th Gaussian distribution.

Now, that the above equation is the same as updating each Normal prior distribution $\mu_k \sim N(m, \tau^2)$ and $X^{(k)} \mid \mu_k \sim N(\mu_k, \sigma_k^2)$ with σ_k^2 known. Therefore, let $\bar{x_k}$ be the sample average, then:

$$\mu_j \mid X, Z, p, \sigma^2 \sim N\left(\frac{n_k \sigma_k^{-2} \bar{x_k} + \tau^{-2} \mu_k}{n_k \sigma_k^2}, [n_k \sigma_k^{-2} + \tau^{-2}]^{-1}\right)$$