

Exercícios de Espaço Vetorial

Geometria Analítica e Álgebra Linear

Universidade de São Paulo (USP)
21 pag.

2.14 Exercícios

♦ Definição

Exercício 1. Considere o conjunto \mathbb{R}^2 . Defina a adição e a multiplicação por escalar, respectivamente, como

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, 0), \quad \forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2 \quad e$$

 $\alpha(x, y) = (\alpha x, \alpha y), \quad \forall (x, y) \in \mathbb{R}^2 \quad e \quad \forall \alpha \in \mathbb{R}$

Nessas condições, \mathbb{R}^2 é um \mathbb{R} -espaço vetorial? Justifique.

Exercício 2. Seja $V = \mathbb{R}^2$. V não é um \mathbb{R} -espaço vetorial em relação a cada um dos dois seguintes pares de operações sobre V:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \forall (x_1, y_1), (x_2, y_2) \in V \quad e$$

 $\alpha(x, y) = (x, \alpha y), \quad \forall (x, y) \in V \quad e \quad \forall \alpha \in \mathbb{R}$

e

$$(x_1, y_1) + (x_2, y_2) = (x_1, y_1), \quad \forall (x_1, y_1), (x_2, y_2) \in \mathbb{R}^2 \quad e$$

 $\alpha(x, y) = (\alpha x, \alpha y), \quad \forall (x, y) \in \mathbb{R}^2 \quad e \forall \alpha \in \mathbb{R}$

Em cada caso, quais dos oito axiomas não se verificam?

Exercício 3. Seja $V = \mathbb{R}^2$. Defina a adição e a multiplicação por escalar, respectivamente, como:

$$(x_1, y_1) + (x_2, y_2) = (x_1 x_2, y_1 y_2), \quad \forall (x_1, y_1), (x_2, y_2) \in V \quad e$$

 $\alpha(x, y) = (\alpha x, \alpha y), \quad \forall (x, y) \in V \quad e \quad \forall \alpha \in \mathbb{R}$

Com essas operações, V é um \mathbb{R} -espaço vetorial?

Exercício 4. Seja $V = \mathbb{R}^2$. Defina a adição e a multiplicação por escalar, respectivamente, como:

$$(x_1, y_1) + (x_2, y_2) = (2x_1 - 2y_1, -x_1 + y_1), \quad \forall (x_1, y_1), (x_2, y_2) \in V \quad e$$

 $\alpha(x, y) = (3\alpha y, -\alpha x), \quad \forall (x, y) \in V \quad e \quad \forall \alpha \in \mathbb{R}$

Com essas operações, V é um \mathbb{R} -espaço vetorial?

Exercício 5. Seja $V = \mathbb{R}^2$. Defina a adição e a multiplicação por escalar, respectivamente, como:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2 - 1, y_1 + y_2), \quad \forall (x_1, y_1), (x_2, y_2) \in V \quad e$$

 $\alpha(x, y) = (\alpha x - \alpha + 1, \alpha y), \quad \forall (x, y) \in V \quad e \quad \forall \alpha \in \mathbb{R}$

Com essas operações, V é um \mathbb{R} -espaço vetorial?

Exercício 6. Seja $V = \mathbb{R}^3$. Defina a adição e a multiplicação por escalar, respectivamente, como:

$$(x_1, y_1, z_1) + (x_2, y_2, z_2) = (x_1 + x_2, y_1 + y_2, z_1 + z_2), \quad \forall (x_1, y_1, z_1), (x_2, y_2, z_2) \in V \quad e$$

 $\alpha(x, y, z) = (\alpha x, y, z), \quad \forall (x, y, z) \in V \quad e \quad \forall \alpha \in \mathbb{R}$

Com essas operações, V é um \mathbb{R} -espaço vetorial?

Exercício 7. Verifique se os seguintes conjuntos são espaços vetoriais reais, com as operações usuais.

- a) Matrizes diagonais $n \times n$.
- b) Matrizes escalares $n \times n$, ou seja, matrizes diagonais cujos elementos da diagonal principal são iguais.

$$c) \left\{ \begin{bmatrix} a & a+b \\ a & b \end{bmatrix} \mid a,b \in \mathbb{R} \right\}$$

- d) $\{(a, a, \dots, a) \in \mathbb{R}^n | a \in \mathbb{R}\}$
- *e*) $\{(1, a, b) | a, b \in \mathbb{R}\}$
- $f) \ \{(x, x+3) \in \mathbb{R}^2 | \ x \in \mathbb{R} \}$
- $g) \{(a, 2a, 3a) | a \in \mathbb{R} \}$

Exercício 8. Seja $V = \mathbb{C}^2$. Mostre que V é um \mathbb{R} -espaço vetorial com a adição e a multiplicação por escalar, respectivamente, assim definidas:

$$(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \forall (x_1, y_1), (x_2, y_2) \in V \quad e$$

 $\alpha(x, y) = (\alpha x, \alpha y), \quad \forall (x, y) \in V \quad e \quad \forall \alpha \in \mathbb{R}$

Exercício 9. Seja $\mathbb{R}^{\infty} = \{(x_1, x_2, \ldots) | x_i \in \mathbb{R}\}$. Considerando sobre \mathbb{R}^{∞} as operações de adição e a multiplicação por escalar, respectivamente, dadas por:

$$(x_1, x_2, \ldots) + (y_1, y_2, \ldots) = (x_1 + y_1, x_2 + y_2, \ldots), \quad \forall \ (x_1, x_2, \ldots), (y_1, y_2, \ldots) \in \mathbb{R}^{\infty} \quad e$$

$$\alpha(x_1, x_2, \ldots) = (\alpha x_1, \alpha x_2, \ldots), \quad \forall \ (x_1, x_2, \ldots) \in V \quad e \ \forall \ \alpha \in \mathbb{R}$$

mostre que \mathbb{R}^{∞} é um \mathbb{R} -espaço vetorial.

Exercício 10. Mostre que o conjunto $V = \{(x,y) | x,y \in \mathbb{R} \ e \ x,y > 0\}$ é um \mathbb{R} -espaço vetorial com as operações de adição e mutiplicação por escalar definidas por:

$$(x_1, y_1) \oplus (x_2, y_2) = (x_1 x_2, y_1 y_2), \quad \forall (x_1, y_1), (x_2, y_2) \in V \quad e$$

 $\alpha \odot (x, y) = (x^{\alpha}, y^{\alpha}), \quad \forall (x, y) \in V \quad e \quad \forall \alpha \in \mathbb{R}$

Exercício 11. Sejam U e V dois \mathbb{K} -espaços vetoriais. Considere o produto cartesiano $U \times V = \{(u,v) | u \in U \ e \ v \in V\}$ desses dois conjuntos. Defina as seguintes operações em $U \times V$:

$$(u_1, v_1) + (u_2, v_2) = (u_1 + u_2, v_1 + v_2), \quad \forall (u_1, v_1), (u_2, v_2) \in U \times V \quad e$$

 $\alpha(u, v) = (\alpha u, \alpha v), \quad \forall (u, v) \in U \times V \quad e \quad \forall \alpha \in \mathbb{K}$

Mostre que $U \times V$ com as operações de adição e multiplicação por escalar, acima definidas, é um \mathbb{K} -espaço vetorial. Este espaço vetorial é chamado de **Espaço Produto de** U **por** V.

Exercício 12. Mostre que todo C-espaço vetorial também é R-espaço vetorial.

♦ Propriedades

Exercício 13. No espaço vetorial $M_{3\times 2}(\mathbb{R})$, considere os vetores:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 0 & 1 \\ 2 & 1 \\ 1 & 1 \end{bmatrix} \quad e \quad C = \begin{bmatrix} 1 & 2 \\ 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- a) Calcular 2A + B 3C.
- b) Determinar $X \in M_{3\times 2}(\mathbb{R})$ tal que $\frac{A+X}{2} \frac{X-B}{3} = C$.
- c) Existem $\alpha, \beta \in \mathbb{R}$ tais que $A = \alpha B + \beta C$?

Exercício 14. Sejam $p_1(x) = x^3 - 1$, $p_2(x) = x^2 + x - 1$ e $p_3(x) = x + 2$ vetores de $P_3(\mathbb{R})$.

- a) Calcular $2p_1 + 3p_2 4p_3$.
- b) Existe $\alpha \in \mathbb{R}$ tal que $p_1 + \alpha p_2 = p_3$?
- c) Existem $\alpha, \beta \in \mathbb{R}$ tais que $p_1 = \alpha p_2 + \beta p_3$?

Exercício 15. Seja \mathbb{C}^2 um \mathbb{C} -espaço vetorial. Considere os vetores $u, v, w \in \mathbb{C}$, onde u = (1 + i, i), v = (1 - i, 2i) e w = (2, 3 + i).

- a) Calcular (3+i)u iv (2-i)w.
- b) Existe $z \in \mathbb{C}$ tal que v = zu?

Exercício 16. Considere u=(1,1) e v=w=(3,-2), vetores de \mathbb{R}^2 . Resolva o seguinte sistema

$$\begin{cases} x + y + z = u \\ 2x - y + z = v \\ x + y - 2z = w \end{cases}$$

 $nas\ inc\'ognitas\ x,y,z\in\mathbb{R}^2.$

♦ Subespaço Vetorial

Exercício 17. Verifique se os seguintes subconjuntos de \mathbb{R}^3 são subespaços. Nos casos em que o subconjunto não é subespaço, quais propriedades não se verificam?

a)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x = 0\}$$

f)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x = 1\}$$

$$b)\ W = \left\{ (x, y, z) \in \mathbb{R}^3 |\ x \in \mathbb{Z} \right\}$$

g)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x^2 + y + z = 0\}$$

$$c)\ W=\left\{(x,y,z)\in\mathbb{R}^3|\ y\in\mathbb{R}-\mathbb{Q}\right\}$$

h)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x \le y \le z\}$$

d)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x - 3z = 0\}$$

i)
$$W = \{(x, y, z) \in \mathbb{R}^3 | x + y \in \mathbb{Q} \}$$

e)
$$W = \{(x, y, z) \in \mathbb{R}^3 | ax + by + cz = 0\}$$

Exercício 18. Mostre que os sequintes subconjuntos de \mathbb{R}^4 são subespaços:

a)
$$W_1 = \{(x, y, z, w) \in \mathbb{R}^4 | x + y = 0 \ e \ z - w = 0\}$$

b)
$$W_2 = \{(x, y, z, w) \in \mathbb{R}^4 | 2x + y - w = 0 \ e \ z = 0\}$$

Exercício 19. Verifique quais dos seguintes subconjuntos de $M_2(\mathbb{R})$ são subespaços:

a)
$$W = \{A = [a_{ij}] \in M_2(\mathbb{R}) | a_{ij} \in \mathbb{Z} \}$$

b)
$$W = \left\{ A = [a_{ij}] \in M_2(\mathbb{R}) | \sum_{i,j=1}^2 a_{ij} = 0 \right\}$$

c)
$$W = \{A = [a_{ij}] \in M_2(\mathbb{R}) | \det A = 0\}$$

d)
$$W = \{A = [a_{ij}] \in M_2(\mathbb{R}) | a_{21} = 0\}$$

Exercício 20. Verifique quais dos seguintes subconjuntos de $M_n(\mathbb{R})$ são subespaços:

a)
$$W = \{A = [a_{ij}] \in M_n(\mathbb{R}) | \operatorname{tr} A = 0\}$$

b) Todas as matrizes $A \in M_n(\mathbb{R})$ tais que o sistema linear AX = 0 tenha apenas a solução trivial.

c)
$$W = \{A = [a_{ij}] \in M_n(\mathbb{R}) | AB = BA, B \in M_n(\mathbb{R}) \text{ fixada} \}$$

Exercício 21. Verifique quais dos sequintes conjuntos a sequir são subespaços de $P(\mathbb{R})$.

a)
$$W = \{ p \in P(\mathbb{R}) | gr(p) \ge 2 \}$$

b)
$$W = \{ p \in P(\mathbb{R}) | p(0) = 2p(1) \}$$

c)
$$W = \{ p \in P(\mathbb{R}) | p(x) > 0, \ \forall \ x \in \mathbb{R} \}$$

d)
$$W = \{ p \in P(\mathbb{R}) | p(x) + p'(x) = 0 \}$$

Exercício 22. Verifique, em cada caso, se o conjunto W é subespaços de $C([0,1],\mathbb{R})$.

a)
$$W = \{ f \in C([0,1], \mathbb{R}) | f(0) = 0 \}$$

b)
$$W = \left\{ f \in C([0,1], \mathbb{R}) | \int_0^1 f(x) \, dx = 0 \right\}$$

$$c)\ W = \{f \in C([0,1],\mathbb{R})|\ f(0) = f(1)\}$$

$$d) \ \ W = \{ f \in C([0,1],\mathbb{R}) | \ f(x) = 0 \ \ em \ \ todos \ \ os \ \ pontos \ \ de \ [0,1] \ \ menos \ num \ \ n\'umero \ finito \ \ deles \}$$

Exercício 23. Mostre que:

a)
$$W = \{ f \in F(\mathbb{R}) | f \text{ \'e diferenci\'avel } e f'(x) + 2f(x) = 0 \} \text{ \'e um subespaços } de F(\mathbb{R});$$

b)
$$W = \left\{ f \in C([a,b],\mathbb{R}) | \int_a^b f(x) dx = 0 \right\}$$
 é um subespaços de $C([a,b],\mathbb{R})$.

Exercício 24. Determine, em cada caso, se o espaço-solução do sistema linear homogêneo AX=0 é um plano pela origem, uma reta pela origem ou apenas a origem. Se for um plano, obtenha uma equação para este plano; se for uma reta, obtenha as equações paramétricas dessa reta.

a)
$$A = \begin{bmatrix} 1 & -1 & 1 \\ 2 & -1 & 4 \\ 3 & 1 & 11 \end{bmatrix}$$
 b) $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{bmatrix}$ c) $A = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 2 \\ 3 & -9 & 3 \end{bmatrix}$

$$b) \ A = \left[\begin{array}{ccc} 1 & 2 & 3 \\ 2 & 5 & 3 \\ 1 & 0 & 8 \end{array} \right]$$

$$c) A = \begin{bmatrix} 1 & -3 & 1 \\ 2 & -6 & 2 \\ 3 & -9 & 3 \end{bmatrix}$$

Exercício 25. Uma reta L pela origem em \mathbb{R}^3 pode ser representada por equações paramétricas da forma: $\begin{cases} x = at \\ y = bt , t \in \mathbb{R}. \text{ Use estas equações para mostrar que L \'e um subespaço de } \mathbb{R}^3. \end{cases}$

♦ Operações com Subespaços

Exercício 26. Sejam W_1 , W_2 e W_3 subespaços de \mathbb{R}^3 dados por:

$$W_1 = \{(x, y, z) \in \mathbb{R}^3 | x = z \}$$

$$W_2 = \{(x, y, z) \in \mathbb{R}^3 | x = y = 0 \}$$

$$W_3 = \{(x, y, z) \in \mathbb{R}^3 | x + y + z = 0 \}$$

Verifique que $W_1 + W_2 = \mathbb{R}^3$, $W_1 + W_3 = \mathbb{R}^3$ e $W_2 + W_3 = \mathbb{R}^3$. Em algum dos casos a soma é direta?

Exercício 27. Sejam $V = M_n(\mathbb{R})$, $W_s = \{A = [a_{1j}] \in M_n(\mathbb{R}) | A^t = A\}$ o subconjunto das matrizes simétricas e $W_a = \{A = [a_{1i}] \in M_n(\mathbb{R}) | A^t = -A\}$ o subconjunto das matrizes antissimétricas.

- a) Mostre que W_s e W_a são subespaços de V.
- b) Mostre que $V = W_s \oplus W_a$.

Exercício 28. Seja $V = F(\mathbb{R})$ o espaço vetorial das funções de \mathbb{R} em \mathbb{R} . Sejam ainda $W_p = \{f \in \mathbb{R} \mid f \in \mathbb{R} \mid f \in \mathbb{R} \}$ $F(\mathbb{R})| f(-x) = f(x), \ \forall \ x \in \mathbb{R} \}$ o subconjunto das funções pares e $W_i = \{f \in F(\mathbb{R})| \ f(-x) = f(x)\}$ $-f(x), \forall x \in \mathbb{R}$ o subconjunto das funções impares.

- a) Mostre que W_p e W_i são subespaços de V.
- b) Mostre que $W_n + W_i = V$.
- c) Mostre que $W_n \cap W_i = \{0\}.$
- d) Conclua que $V = W_n \oplus W_i$.

Exercício 29. Sejam W_1 e W_2 subespaços do \mathbb{K} -espaço vetorial V. Mostre que:

$$a) \ W_1 \subset W_2 \quad \Rightarrow \quad W_1 + W_2 = W_2$$

$$c) W_1 + W_2 = W_1 \quad \Rightarrow \quad W_2 \subset W_1$$

$$b) W_1 \subset W_2 \quad \Rightarrow \quad W_1 \cap W_2 = W_1$$

$$d) W_1 \cap W_2 = W_1 \quad \Rightarrow \quad W_1 \subset W_2$$

Exercício 30. Seja V um \mathbb{K} -espaço vetorial. Dado um subconjunto $S \neq \emptyset$ de V, mostre que a intersecção de todos os subespaços vetoriais de V que contêm S também é um subespaço vetorial de V, sendo este o menor subespaço de V que contém S.

Exercício 31. Sejam V um \mathbb{K} -espaço vetorial e W_1,W_2 e W_3 subespaços de V. Mostre que

$$(W_1 \cap W_2) + (W_1 \cap W_3) \subset W_1 \cap (W_2 + W_3)$$

Dê um exemplo para o qual o primeiro dessa relação é diferente do segundo e um exemplo onde ocorre a igualdade.

Exercício 32. Sejam V um \mathbb{K} -espaço vetorial e W_1,W_2 e W_3 subespaços de V. Verifique com um exemplo que se

$$W_1 \cap W_2 = W_1 \cap W_3$$
 e $W_1 + W_2 = W_1 + W_3$

 $n\tilde{a}o$ se tem necessariamente $W_2 = W_3$.

Exercício 33. Sejam W_1 e W_2 subespaços de um \mathbb{K} -espaço vetorial V. Mostre que:

- a) $W_1 \cup W_2$ é subespaço se, e somente se, $W_1 \subseteq W_2$ ou $W_2 \subseteq W_1$;
- b) $W_1 + W_2 = W_1 \cup W_2$ se, e somente se, $W_1 = W_2$.

Exercício 34. Sejam W_1 , W_1' , W_2 e W_2' subespaços de um \mathbb{K} -espaço vetorial V tais que $V = W_1 \oplus W_2 = W_1' \oplus W_2'$. Se $W_1 \subset W_1'$ e $W_2 \subset W_2'$, mostre que $W_1 = W_1'$ e $W_2 \subset W_2'$.

♦ Combinação Linear

Exercício 35. Expresse os vetores de \mathbb{R}^3 a seguir como combinação linear dos vetores $v_1 = (2, 1, 4)$, $v_2 = (1, -1, 3)$ e $v_3 = (3, 2, 5)$.

$$c)$$
 $(7, 8, 9)$

Exercício 36. Sejam $v_1 = (2, -3, 2), v_2 = (-1, 2, 4) \in \mathbb{R}^3$.

- a) Escrever o vetor v = (7, -11, 2) como combinação linear de v_1 e v_2 ;
- b) Para que valor de $\alpha \in \mathbb{R}$ o vetor $(-8,14,\alpha)$ é combinação linear de v_1 e v_2 ;
- c) Determinar uma condição entre x, y e z para que o vetor (x, y, z) seja uma combinação linear de v_1 e v_2 .

Exercício 37. Considere no espaço $P_2(\mathbb{R})$ os vetores $p_1(x) = x^2 - 2x + 1$, $p_2(x) = x + 2$ e $p_3(x) = 2x^2 - x$.

- a) Escrever o vetor $p(x) = 5x^2 5x + 7$ como combinação linear de p_1 , p_2 e p_3 ;
- b) Escrever o vetor $p(x) = 5x^2 5x + 7$ como combinação linear de p_1 e p_2 ;
- c) Determinar uma condição entre a, b e c de modo que o vetor $ax^2 + bx + c$ seja uma combinação linear de p_2 e p_3 ;
- d) É possível escrever p_1 combinação linear de p_2 e p_3 ?

Exercício 38. Quais dos sequintes vetores de $M_2(\mathbb{R})$ são combinações lineares de

$$A = \begin{bmatrix} 4 & 0 \\ -2 & -2 \end{bmatrix} \quad , \quad B = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \quad e \quad C = \begin{bmatrix} 0 & 2 \\ 1 & 4 \end{bmatrix}?$$

$$a) \left[\begin{array}{cc} 6 & -8 \\ -1 & -8 \end{array} \right]$$

$$b) \left[\begin{array}{cc} 6 & 0 \\ 3 & 8 \end{array} \right]$$

$$c) \left[\begin{array}{cc} -1 & 5 \\ 7 & 1 \end{array} \right]$$

♦ Subespaço Gerado

Exercício 39. Considere o subespaco do \mathbb{R}^4

$$W = [(1, 1, -2, 4), (1, 1, -1, 2), (1, 4, -4, 8)]$$

- a) O vetor $\left(\frac{2}{3}, 1, -1, 2\right)$ pertence a W?
- b) O vetor (0,0,1,1) pertence a W?

Exercício 40. Em cada caso, determine se os seguintes vetores geram o \mathbb{R}^3 .

- a) $v_1 = (2, 2, 2), v_2 = (0, 0, 3), e, v_3 = (0, 1, 1)$
- b) $v_1 = (2, -1, 3), v_2 = (4, 1, 2) e v_3 = (8, -1, 8)$
- c) $v_1 = (3,1,4), v_2 = (2,-3,5), v_3 = (5,-2,9) e v_4 = (1,4,-1)$
- d) $v_1 = (1, 2, 6), v_2 = (3, 4, 1), v_3 = (4, 3, 1) e v_4 = (3, 3, 1)$

Exercício 41. Verifique se as matrizes

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \quad , \quad \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \quad , \quad \begin{bmatrix} 0 & 0 \\ 1 & 1 \end{bmatrix} \quad e \quad \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$

geram o espaço vetorial $M_2(\mathbb{R})$.

Exercício 42. Seja W o subespaço do $M_2(\mathbb{R})$ definido por $W = \left\{ \left| \begin{array}{cc} 2a & a+2b \\ 0 & a-b \end{array} \right| \mid a,b \in \mathbb{R} \right\}.$

$$a) \left[\begin{array}{cc} 0 & -2 \\ 0 & 1 \end{array} \right] \in W?$$

$$b) \left[\begin{array}{cc} 0 & 2 \\ 3 & 1 \end{array} \right] \in W?$$

Exercício 43. Mostre que os polinômios $1-x^3$, $(1-x)^2$, 1-x e 1 geram o espaço $P_3(\mathbb{R})$.

Exercício 44. Determinar um conjunto gerador para cada um dos seguintes subespaços de \mathbb{R}^3 .

a)
$$W_1 = \{(x, y, z) \in \mathbb{R}^3 | x - 2y = 0\}$$

$$d) W_1 \cap W_2$$

b)
$$W_2 = \{(x, y, z) \in \mathbb{R}^3 | x + z = 0 \ e \ x - 2y = 0\}$$
 e) $W_2 + W_3$

e)
$$W_2 + W_3$$

c)
$$W_3 = \{(x, y, z) \in \mathbb{R}^3 | x + 2y - 3z = 0\}$$

Exercício 45. Determine uma equação para o plano gerado pelos vetores u = (-1, 1, 1) e v = (3, 4, 4).

Exercício 46. Determine as equações paramétricas para a reta gerada pelo vetor v = (3, -2, 5).

Exercício 47. Mostre que os dois conjuntos geram o mesmo subespaço de \mathbb{R}^3 .

a)
$$\{(1,-1,2),(3,0,1)\}\ e\ \{(-1,-2,3),(3,3,-4)\}$$

b)
$$\{(1,6,4),(2,4,-1),(-1,2,5)\}\ e\ \{(1,-2,-5),(0,8,9)\}$$

Exercício 48. Sejam u e v dois vetores não nulos do \mathbb{R}^2 . Se não existe $\alpha \in \mathbb{R}$ tal que $u = \alpha v$, mostre que $\mathbb{R}^2 = [u] \oplus [v]$.

Exercício 49. Mostre que se V um \mathbb{K} -espaço vetorial e S_1 e S_2 subconjuntos de V tais que $S_1 \subset S_2$, então $[S_1] \subset [S_2]$.

Exercício 50. Mostre que se V um \mathbb{K} -espaço vetorial e S_1 e S_2 subconjuntos de V, então $[S_1 \cup S_2] = [S_1] + [S_2]$.

Exercício 51. Sejam V um \mathbb{K} -espaço vetorial e $S_1 = \{v_1, v_2, \ldots, v_r\}$ e $S_2 = \{w_1, w_2, \ldots, w_s\}$ subconjuntos de V. Sejam $W_1 = [S_1]$ e $W_2 = [S_2]$, mostre que $W_1 = W_2$ se, e somente se, cada vetor em S_1 é uma combinação linear dos vetores de S_2 e cada vetor em S_2 é uma combinação linear dos vetores de S_1 .

Exercício 52. Mostre que os conjuntos $\{\operatorname{sen}^2 x, \operatorname{cos}^2 x, \operatorname{sen} x \cdot \operatorname{cos} x\}$ e $\{1, \operatorname{sen} 2x, \operatorname{cos} 2x\}$ geram o mesmo subespaço do $C(\mathbb{R})$.

Exercício 53. Determine, em cada caso, um sistema de equações lineares homogêneas para o qual a solução seja exatamente o subespaço gerado pelos vetores $u, v \in V$.

a)
$$V = \mathbb{R}^3$$
, $u = (-1, 0, 1)$ $e \ v = (3, 4, -2)$;

b)
$$V = \mathbb{R}^4$$
, $u = (1, 0, 1, 2)$ $e \ v = (0, 0, 1, 0)$.

Exercício 54. Mostre que o \mathbb{R} -espaço vetorial $\mathbb{R}^{\infty} = \{(x_1, x_2, \ldots) | x_i \in \mathbb{R}\}$ não é finitamente gerado.

♦ (In)dependência Linear

Exercício 55. Verifique se os subconjuntos do \mathbb{R}^3 são linearmente independentes.

a)
$$\{(4,-1,2),(-4,10,2)\}$$

b)
$$\{(1,0,0),(0,1,0),(0,0,1),(2,3,5)\}$$

c)
$$\{(3,2,-1),(1,5,-3),(5,-1,1)\}$$

b)
$$\{(1,1,1),(1,2,1),(3,2,-1)\}$$

Exercício 56. Verifique se os subconjuntos do \mathbb{R}^4 são linearmente independentes.

a)
$$\{(3,8,7,-3),(1,5,3,-1),(2,-1,2,6),(1,4,0,3)\}$$

b)
$$\{(3,0,-3,6),(0,2,3,1),(0,-2,-2,0),(-2,1,2,1)\}$$

Exercício 57. Verifique se os subconjuntos do $P_2(\mathbb{R})$ são linearmente dependentes.

a)
$$\{2-x+4x^2, 3+6x+2x^2, 2+10x-4x^2\}$$

b)
$$\{6-x^2, 1+x+4x^2\}$$

c)
$$\{1+3x+3x^2, x+4x^2, 5+6x+3x^2, 7+2x-x^2\}$$

Exercício 58. Sejam $v_1, v_2, v_3 \in \mathbb{R}^3$. Determine, em cada caso, se os vetores então num plano.

a)
$$v_1 = (2, -2, 0), v_2 = (6, 1, 4) e v_3 = (2, 0, -4)$$

b)
$$v_1 = (-6,7,2), v_2 = (3,2,4) e v_3 = (4,-1,2)$$

Exercício 59. Determine, em cada caso, se os vetores $v_1, v_2, v_3 \in \mathbb{R}^3$ então numa mesma reta.

a)
$$v_1 = (-1, 2, 3), v_2 = (2, -4, -6) e v_3 = (-3, 6, 0)$$

b)
$$v_1 = (2, -1, 4), v_2 = (4, 2, 3) e v_3 = (2, 7, -6)$$

c)
$$v_1 = (4, 6, 8), v_2 = (2, 3, 4) e v_3 = (-2, -3, -4)$$

Exercício 60. Sejam $v_1, v_2, v_3 \in \mathbb{R}^3$, conforme as figuras a seguir.

 v_1 v_2 v_3 v_4 v_4 v_5 v_7 v_8 v_9

Figura 2.15

Figura 2.16

Na Figura 2.15, os vetores são linearmente independentes? E na Figura 2.16? Justifique.

Exercício 61. Verifique se os subconjuntos do \mathbb{C}^3 são linearmente independentes sobre \mathbb{C} .

a)
$$\{(i,1,0),(1+i,2,0),(3,1,0)\}$$

b)
$$\{(i,1,0),(0,1,i),(0,i,i)\}$$

Exercício 62. Determine o valor de k para que os vetores

$$v_1 = \left(k, -\frac{1}{2}, -\frac{1}{2}\right)$$
 , $v_2 = \left(-\frac{1}{2}, k, -\frac{1}{2}\right)$ e $v_3 = \left(-\frac{1}{2}, -\frac{1}{2}, k\right)$

forme um conjunto linearmente dependentes em \mathbb{R}^3 .

Exercício 63. Mostre que o conjunto $\{1, e^x, xe^x\}$ de vetores do $C([0,1], \mathbb{R})$ é linearmente independentes.

Exercício 64. Sejam $u = (a, b), v = (c, d) \in \mathbb{R}^2$. Mostre que:

- a) Se ad bc = 0, então u e v são linearmente dependentes.
- b) Se $ad bc \neq 0$, então u e v são linearmente independentes.

Exercício 65. Mostre que o conjunto

$$\left\{1, (x-\alpha), (x-\alpha)^2, \dots, (x-\alpha)^{n-1}\right\}$$

de vetores do $P_{n-1}(\mathbb{R})$ é linearmente independentes, onde α é um número real arbitrário.

Exercício 66. Seja $\{u, v, w\}$ um conjunto linearmente independente de um espaço vetorial V. Mostre que o conjunto

$$\{u+v-3w,u+3v-w,v+w\}$$

é linearmente dependente.

Exercício 67. Sejam u, v e w vetores de um espaço vetorial V, mostre que o conjunto $\{u-v,v-v\}$ w, w - u é linearmente dependente.

Exercício 68. Utilize identidades apropriadas, onde necessário, para determinar quais dos seguintes conjuntos de vetores em $F(\mathbb{R})$ são linearmente dependentes.

- a) $\{6, 3 \sin^2 x, 2 \cos^2 x\}$
- c) $\{1, \sin x, \sin 2x\}$
- e) $\{(3-x)^2, x^2-6x, 5\}$

b) $\{x,\cos x\}$

- d) $\{\cos 2x, \sin^2 x, \cos^2 x\}$ f) $\{0, \cos^3 \pi x, \sin^5 3\pi x\}$

Exercício 69. Mostre que $\{1, e^x, e^{2x}, e^{3x}, e^{4x}\}$ é linearmente independente no espaço $C^{\infty}(\mathbb{R})$.

Exercício 70. Sejam $\alpha_1, \alpha_2, \dots, \alpha_n$ números reais 2 a 2 distintos. Mostre que o conjunto de funções $\{e^{\alpha_1 x}, e^{\alpha_2 x}, \dots, e^{\alpha_n x}\}\$ é linearmente independente.

Exercício 71. Mostre que o conjunto de funções $\{e^{ax}\cos bx, e^{ax}\sin bx\}$ é linearmente independente, onde $a, b \in \mathbb{R}$ e $b \neq 0$.

Exercício 72. Mostre que os sequintes conjuntos de vetores em $F(\mathbb{R})$ são linearmente independentes.

a) $\{1, x, e^x\}$

c) $\{e^x, xe^x, x^2e^x\}$

b) $\{\operatorname{sen} x, \cos x, x \operatorname{sen} x\}$

d) $\{1, x, x^2\}$

Exercício 73. Seja V um \mathbb{K} -espaço vetorial. Mostre que se $\{u_1,\ldots,u_r,v_1,\ldots,v_s\}\subset V$ é linearmente independente, então $[u_1, \ldots, u_r] \cap [v_1, \ldots, v_s] = \{0\}.$

Exercício 74. Seja V um \mathbb{K} -espaço vetorial. Mostre que se $\{u_1,\ldots,u_i,\ldots,u_j,\ldots,u_n\}\subset V$ é linearmente independente, então $\{u_1,\ldots,u_i,\ldots,u_i+\alpha u_i,\ldots,u_n\}$ também é linearmente independente, para todo escalar α .

♦ Base

Exercício 75. Verifique quais dos conjuntos a sequir são bases de \mathbb{R}^2 .

a) $\{(2,1),(3,0)\}$

 $c) \{(0,0),(1,3)\}$

b) $\{(4,1),(-7,-8)\}$

 $d) \{(3,9), (-4,-12)\}$

Exercício 76. Verifique quais dos conjuntos a seguir são bases de \mathbb{R}^3 .

a)
$$\{(1,0,0),(2,2,0),(3,3,3)\}$$

c)
$$\{(2,-3,1),(4,1,4),(0,-7,1)\}$$

b)
$$\{(1,6,4),(2,4,-1),(-1,2,5)\}$$

$$d) \{(3,1,-4),(2,5,6),(1,4,8)\}$$

Exercício 77. Mostre que os matrizes formam uma base de $M_2(\mathbb{R})$.

$$a) \left[\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 2 & 1 \\ 0 & 0 \end{array} \right], \left[\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right] e \left[\begin{array}{cc} 0 & 0 \\ 0 & 2 \end{array} \right]$$

$$b) \begin{bmatrix} 3 & 6 \\ 3 & -6 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & -8 \\ -12 & -4 \end{bmatrix} e \begin{bmatrix} 1 & 0 \\ -1 & 2 \end{bmatrix}$$

Exercício 78. Verifique quais dos conjuntos a seguir são bases de $P_2(\mathbb{R})$.

a)
$$\{(1-3x+2x^2,1+x+4x^2,1-7x)\}$$

b)
$$\{-4+x+3x^2, 6+5x+2x^2, 8+4x+x^2\}$$

c)
$$\{1+x+x^2, x+x^2, x^2\}$$

d)
$$\{4+6x+x^2, -1+4x+2x^2, 5+2x-x^2\}$$

Exercício 79. Mostre que os polinômios 1, 1 + x, $1 - x^2$ e $1 - x - x^2 - x^3$ formam uma base de $P_3(\mathbb{R})$.

Exercício 80. Justifique por que os seguintes conjuntos não são bases dos espaços vetoriais indicados.

a)
$$\{(1,2),(0,3),(2,7)\}\ de\ \mathbb{R}^2;$$

$$b) \ \{(-1,3,2),(6,1,1)\} \ de \ \mathbb{R}^3;$$

$$c) \left\{ \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}, \begin{bmatrix} 6 & 0 \\ -1 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 1 & 7 \end{bmatrix}, \begin{bmatrix} 5 & 1 \\ 4 & 2 \end{bmatrix}, \begin{bmatrix} 7 & 1 \\ 2 & 9 \end{bmatrix} \right\} de M_2(\mathbb{R});$$

d)
$$\{1+x+x^2, x-1\}\ de\ P_2(\mathbb{R}).$$

Exercício 81. Para que valores de $k \in \mathbb{R}$ o conjunto $B = \{(k, 1, 0), (1, k, 1), (0, 1, k)\}$ é uma base de \mathbb{R}^3 ?

Exercício 82. Exiba uma base para cada um dos espaços vetoriais reais.

a)
$$V = \{(a, 2a, 3a) | a \in \mathbb{R} \}$$

b)
$$V = \{(a, a, \dots, a) \in \mathbb{R}^n | a \in \mathbb{R}\}$$

$$c) \ V = \left\{ \begin{bmatrix} a & a+b \\ a & b \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$

d)
$$V = \{A = [a_{ij}] \in M_n(\mathbb{R}) | a_{ij} = 0, \text{ se } i \neq j\}$$

e)
$$V = \left\{ A = [a_{ij}] \in M_n(\mathbb{R}) | a_{ij} = \left\{ \begin{array}{ll} k, & se & i = j \\ 0, & se & i \neq j \end{array} \right\} \right.$$

Exercício 83. Determine uma base dos seguintes subespaços do \mathbb{R}^3 .

a) O plano
$$W = \{(x, y, z) \in \mathbb{R}^3 | 3x - 2y + 5z = 0\};$$

b) O plano
$$W = \{(x, y, z) \in \mathbb{R}^3 | x - y = 0\}.$$

Exercício 84. Determine uma base dos seguintes subespaços do \mathbb{R}^4 .

a)
$$W = \{(x, y, z, w) \in \mathbb{R}^4 | x + 2y + 2z = 0 \ e \ 2z - w = 0\}$$

b)
$$W = \{(x, y, z, w) \in \mathbb{R}^4 | x - y = y \ e \ x - 3y + w = 0\}$$

Exercício 85. Determine uma base para o subespaço W de $P_2(\mathbb{R})$ gerado pelos vetores:

a)
$$-1 + x - 2x^2$$
, $3 + 3x + 6x^2$ e $2x$;

b)
$$1+x$$
, $x^2 e^{-2}+2x$;

c)
$$1+x-3x^2$$
, $2+2x-6x^2 e 3+3x-9x^2$.

Exercício 86. Considere o subespaço W = [(1,0,i),(1,1+i,1-i),(1,-1-i,-1+3i)] de \mathbb{C}^3 . Determine uma base de W.

Exercício 87. Seja $V = [\cos^2 x, \sin^2 x, \cos 2x]$. Mostre que $\{\cos^2 x, \sin^2 x, \cos 2x\}$ não é uma base e encontre uma base de V.

Exercício 88. Considere o K-espaço vetorial $U \times V = \{(u,v) | u \in U \ e \ v \in V\}$, onde as dimensões de U e V são m e n, respectivamente. Admitindo que $\{u_1, \ldots, u_m\}$ e $\{v_1, \ldots, v_n\}$ são bases de U e V, respectivamente, mostre que

$$\{(u_i, 0); 1 \le i \le m\} \cup \{(0, v_j); 1 \le j \le n\}$$

 \acute{e} uma base de $U \times V$.

Exercício 89. Suponha que $\{u_1, \ldots, u_n\}$ é uma base de um espaço vetorial. Mostre que $\{u_1, u_1 + u_2, \ldots, u_1 + u_2 + \cdots + u_n\}$ é também uma base desse espaço.

Exercício 90. Sejam V um \mathbb{K} -espaço vetorial de dimensão finita $n \geq 1$ e B uma base de V. Mostre que:

- a) $\{v_1, v_2, \dots, v_r\}$ é linearmente independente em V se, e somente se, $\{[v_1]_B, [v_2]_B, \dots, [v_r]_B\}$ é linearmente independente em \mathbb{R}^n .
- b) $[v_1, v_2, \dots, v_r] = V$ se, e somente se, $[[v_1]_B, [v_2]_B, \dots, [v_r]_B] = \mathbb{R}^n$.

Exercício 91. Mostre que os polinômios

1,
$$x$$
, $x(x-1)$, $x(x-1)(x-2)$, ..., $x(x-1)(x-2)\cdots(x-n+1)$

formam uma base de $P_{n+1}(\mathbb{R})$.

♦ Dimensão de Um Espaço Vetorial

Exercício 92. Determine a dimensão de $W = \{(x, y, z, w) \in \mathbb{R}^4 | w = x + y \ e \ z = x - y\}$, subespaço de \mathbb{R}^4 .

Exercício 93. Sejam $V = \mathbb{R}^4$ e o subespaço $W = [v_1, v_2, v_3, v_4]$, onde

$$v_1 = (1, -1, 0, 0), v_2 = (0, 0, 1, 1), v_3 = (-2, 2, 1, 1), v_4 = (1, 0, 0, 0)$$

- a) $v = (2, -3, 2, 2) \in W$?
- b) Exiba uma base para W? Qual a sua dimensão?
- c) $W = \mathbb{R}^4$? Justifique.

Exercício 94. Considere W = [(1, 1, 0), (0, -1, 1), (1, 1, 1)], subespaço de \mathbb{R}^3 . $W = \mathbb{R}^3$? Justifique.

Exercício 95. Determine a dimensão do subespaço $W_{ts} = \{A = [a_{ij}] \in M_3(\mathbb{R}) | a_{ij} = 0, \text{ se } i > j\}$ das matrizes triangulares superiores do $M_3(\mathbb{R})$.

Exercício 96. Determine uma base e a dimensão do subespaço $W_a = \{A = [a_{ij}] \in M_3(\mathbb{R}) | A^t = -A\}$ das matrizes antissimétricas do $M_3(\mathbb{R})$.

Exercício 97. Sejam $V = M_2(\mathbb{R})$ e W o subespaço gerado por

$$\begin{bmatrix} 1 & -5 \\ -4 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ -1 & 5 \end{bmatrix}, \begin{bmatrix} 2 & -4 \\ -5 & 7 \end{bmatrix}, \begin{bmatrix} 1 & -7 \\ -5 & 1 \end{bmatrix}$$

Determine a dimensão de W.

Exercício 98. Seja W o subespaço de $M_2(\mathbb{R})$ dado por $W=\left\{\left[\begin{array}{cc}a&b\\c&d\end{array}\right]\in M_2(\mathbb{R})|\ a=d\ e\ c=a+b\right\}.$

- a) Qual a dimensão de W?
- b) O conjunto $\left\{ \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \right\}$ é uma base de W? Justifique.

Exercício 99. Determine a dimensão do subespaço

$$W = \left\{ p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 \in P_3(\mathbb{R}) | \ a_0 = 0 \right\}$$

 $de P_3(\mathbb{R}).$

Exercício 100. Determine a dimensão do espaço vetorial

$$W = \left\{ p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 \in P_4(\mathbb{R}) | \ p(1) = 0 \right\}$$

Exercício 101. Determine as dimensões dos seguintes subespaços de $M_n(\mathbb{R})$:

- a) $W_s = \{ A = [a_{ij}] \in M_n(\mathbb{R}) | A^t = A \};$
- b) $W_a = \{ A = [a_{ij}] \in M_n(\mathbb{R}) | A^t = -A \};$
- c) $W = \{A = [a_{ij}] \in M_n(\mathbb{R}) | A = 2A^t\};$

d)
$$W = \left\{ A = [a_{ij}] \in M_n(\mathbb{R}) | \sum_{i=1}^n a_{ii} = 0 \right\}.$$

Exercício 102. Determinar uma base e a dimensão do espaço-solução de cada um dos seguintes sistemas lineares homogêneos:

a)
$$\begin{cases} x - y = 0 \\ 2x - 3y = 0 \\ 3x - \frac{y}{2} = 0 \end{cases}$$
c)
$$\begin{cases} x + y + z = 0 \\ 3x + 2y - 2z = 0 \\ 4x + 3y - z = 0 \\ 6x + 5y + z = 0 \end{cases}$$
b)
$$\begin{cases} x - 3y + z = 0 \\ 2x - 6y + 2z = 0 \\ 3x - 9y + 3z = 0 \end{cases}$$
d)
$$\begin{cases} x + 2y - z + 3w = 0 \\ 2x - y + z - w = 0 \\ 4x + 3y - z + 5w = 0 \end{cases}$$

♦ Coordenadas

Exercício 103. Determine as coordenadas do vetor $v \in \mathbb{R}^2$ em relação à base B do \mathbb{R}^2 .

- a) v = (3, -7) e B a base canônica;
- b) $v = (1,1) \ e \ B = \{(2,-4),(3,8)\};$
- c) v = (x, y) $e B = \{(1, 1), (0, 2)\}.$

Exercício 104. Determine o vetor-coordenada do vetor v = (4, -5, 3) em relação às seguintes bases:

- a) Canônica;
- b) $B = \{(1,1,1), (1,2,0), (3,1,0)\};$
- c) $C = \{(1, 2, 1), (0, 3, 2), (1, 1, 4)\}.$

Exercício 105. Determine as coordenadas de $A = \begin{bmatrix} 2 & 0 \\ -1 & 3 \end{bmatrix}$ em relação à base

$$B = \left\{ \begin{bmatrix} -1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

do $M_2(\mathbb{R})$.

Exercício 106. Determine a matriz-coluna do vetor $p \in P_2(\mathbb{R})$ em relação à base B do $P_2(\mathbb{R})$.

- a) $p(x) = 4 3x + x^2$ e B a base canônica:
- b) $p(x) = 2 x + x^2$ $e B = \{1, 1 + x, x + x^2\}.$

Exercício 107. Determine as coordenadas do vetor $x^3 \in P_3(\mathbb{R})$ em relação à base $B = \{1, 2 - x, x^2 + 1, 1 + x + x^3\}.$

Exercício 108. Considere o \mathbb{R} -espaço vetorial \mathbb{C} e a base $B = \{1-i, 1+i\}$. Determine as coordenadas do vetor $v = 1 - 2i \in \mathbb{C}$ em relação à base B.

Exercício 109. Seja \mathbb{C}^3 um \mathbb{C} -espaço vetorial. Determine as coordenadas do vetor $v=(1,1,i)\in\mathbb{C}^3$ em relação à base $B=\{(1,0,0),(0,i,0),(1,i,1+i)\}.$

Exercício 110. Seja V um K-espaço vetorial de dimensão finita e seja B uma base de V. Mostre que:

- a) $[u+v]_B = [u]_B + [v]_B, \forall u, v \in V;$
- b) $[\alpha v]_B = \alpha [v]_B$, $\forall \alpha \in \mathbb{K} \ e \ \forall v \in V$.

Exercício 111. Seja $B = \{(1,1,0), (0,1,-1), (2,0,2)\} \subset \mathbb{R}^3$.

- a) B é linearmente independente ou dependente? Justifique.
- b) Obtenha $B' \subset B$ tal que B' é linearmente independente e que [B'] = [B].
- c) Qual a dimensão de [B']? Justifique.

Exercício 112.

- a) Determine uma base de \mathbb{R}^3 contendo os vetores $v_1 = (-1, 2, -3)$ e $v_2 = (3, 1, -1)$;
- b) Determine uma base de \mathbb{R}^4 contendo os vetores $v_1 = (1, -3, 1, 5)$ e $v_2 = (4, -12, -3, 2)$.

♦ Dimensão da Soma de Dois Subespaços

Exercício 113. Sejam W_1 e W_2 os seguintes subespaços do \mathbb{R}^4 :

$$W_1 = \{(x, y, z, w) \in \mathbb{R}^4 | y + z + w = 0\} \quad e$$

$$W_2 = \{(x, y, z, w) \in \mathbb{R}^4 | x + y = 0 \ e \ z = 2w\}$$

Determine uma base e a dimensão de cada um dos seguintes subespaços: $W_1, W_2, W_1 \cap W_2$ e $W_1 + W_2$.

Exercício 114. Consideremos os sequintes subespaços do \mathbb{R}^3 :

$$W_1 = \{(x, y, z) \in \mathbb{R}^3 | x = 0\} ,$$

$$W_2 = \{(x, y, z) \in \mathbb{R}^3 | y - 2z = 0\} e$$

$$W_3 = [(1, 1, 0), (0, 0, 2)]$$

Determine uma base e a dimensão de cada um dos seguintes subespaços: W_1 , W_2 , W_3 , $W_1 \cap W_2$, $W_2 + W_3$ e $W_1 + W_2 + W_3$.

Exercício 115. Sejam

$$W_1 = \{(x, y, z, w) \in \mathbb{R}^4 | x + y = 0 \ e \ z - w = 0\} \quad e$$

$$W_2 = \{(x, y, z, w) \in \mathbb{R}^4 | x - y - z + w = 0\}$$

subespacos de \mathbb{R}^4 .

- a) Determine $W_1 \cap W_2$.
- b) Exiba uma base para $W_1 \cap W_2$.
- c) Determine $W_1 + W_2$.
- d) $W_1 + W_2$ é soma direta? Justifique.

Exercício 116. Sejam

$$W_1 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}) | a = d \ e \ b = c \right\} \quad e$$

$$W_2 = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_2(\mathbb{R}) | a = c \ e \ b = d \right\}$$

subespaços de $M_2(\mathbb{R})$.

- a) Determine $W_1 \cap W_2$ e exiba uma base.
- b) Determine $W_1 + W_2$. É soma direta? $W_1 + W_2 = M_2(\mathbb{R})$?

Exercício 117. Sejam W_1 e W_2 subespaços de um \mathbb{K} -espaço vetorial V de dimensão finita tais que $W_1 \cap W_2 = \{0\}$. Mostre que

$$dim_{\mathbb{K}} (W_1 + W_2) = dim_{\mathbb{K}} W_1 + dim_{\mathbb{K}} W_2$$

Exercício 118. Sejam V um \mathbb{K} -espaço vetorial de dimensão finita $n \geq 1$ e W_1 e W_2 subespaços de V. Supondo que $\dim_{\mathbb{K}} W_1 > \frac{n}{2}$ e que $\dim_{\mathbb{K}} W_2 > \frac{n}{2}$, mostre que $W_1 \cap W_2 \neq \{0\}$.

Soluções dos Exercícios

Soluções do Capítulo 2

- 1 Não.
- **2** No primeiro não se verifica o axioma 3a. No segundo não se verificam os axiomas 1a, 1c, 1d e 3a.
- 3 Não.
- 4 Não.
- **5** Sim.
- 6 Não.
- **7** a) Sim
 - b) Sim
 - c) Sim
 - d) Sim
 - e) Não
 - f) Não
 - g) Sim

13 a)
$$\begin{bmatrix} -1 & -3 \\ -1 & 1 \\ 1 & 4 \end{bmatrix}$$

b)
$$X = \begin{bmatrix} 3 & 7 \\ 2 & -2 \\ -2 & -8 \end{bmatrix}$$

- c) Não
- 14 a) $2x^3 + 3x^2 x 13$
 - b) Não.
 - c) Não.
- **15** a) (-3+5i, -6+4i)
 - b) Não.

16
$$x = \left(\frac{16}{9}, -1\right), y = \left(-\frac{1}{9}, 1\right) e z = \left(-\frac{2}{3}, 1\right)$$

- 17 a) Sim.
 - b) Não, 2
 - c) Não, 2
 - d) Sim.
 - e) Sim
 - f) Não, 1 e 2.
 - g) Não, 1 e 2.
 - h) Não, 2
 - i) Não, 2
- 19 a) Não.
 - h) Sim
 - c) Não
 - d) Sim.
- **20** a) Sim.

- b) Não.
- c) Sim.
- 21 a) Não.
 - b) Sim.
 - c) Não.
 - d) Sim.
- a) Sim. **22**
 - b) Sim.
 - c) Sim.
 - d) Sim.
- 24a) Reta pela origem.

$$L: \left\{ \begin{array}{lll} x & = & - & 3t \\ y & = & - & 2t \\ z & = & t \end{array} \right. , \quad t \in \mathbb{R} \qquad \left. \begin{array}{ll} \text{b) Não.} \\ \textbf{40} & \text{a) Sim.} \\ \text{b) Não.} \end{array} \right.$$

- b) Origem.
- c) Plano pela origem.

$$\alpha: x - 3y + z = 0$$

26
$$\mathbb{R}^3 = W_1 \oplus W_2 \in \mathbb{R}^3 = W_2 \oplus W_3$$
.

c)
$$(7, 8, 9) = 0v_1 - 2v_2 + 3v_3$$
.

36 a)
$$v = 3v_1 - v_2$$
.

36 a)
$$v = 3v_1 - v_2$$
.
b) $\alpha = 12$.
c) $16x + 10y - z = 0$.
37 a) $p = 3p_1 + 2p_2 + p_3$.

- **38** a) Sim.
 - b) Sim.
- a) Sim.

46
$$L: \left\{ \begin{array}{lll} x & = & 3t \\ y & = & -2t & , & t \in \mathbb{R}. \\ z & = & 5t \end{array} \right.$$

53 a)
$$\left\{ -4x + y - 4z = 0 \right\}$$

- 54 Sugestão: Ver exemplo apresentado na Seção 2.9.
- a) Sim. **55**
 - b) Não.
 - c) Não.
 - d) Sim.
- **56** a) Sim.
 - b) Sim.
- 57 a) Não.
 - b) Não.
 - c) Sim.
- a) Não.
 - b) Sim.
- a) Não.
 - b) Não.
 - c) Sim.
- 60 Sim, pois não são coplanares quando dispostos com seus pontos iniciais na origem. Não, pois são coplanares quando dispostos com seus pontos iniciais na origem.
- 61 a) Não.
 - b) Sim.

62
$$k = -\frac{1}{2}$$
 ou $k = 1$.

- 65 Sugestão: Considere o desenvolvimento em série de Taylor de um polinômio em uma vizinhança do ponto $x = \alpha$.
- 68 a) LD.
 - b) LI.
 - c) LI.

- d) LD.
- e) LD.
- f) LD.
- 69 Sugestão: Dada uma combinação linear nula, derive-a, depois divida por e^x . Repita o processo.
- 70 Sugestão: Empregue a indução matemática.
- a) Sim.
 - b) Sim.

 - d) Não.
- a) Sim.
 - b) Não.

 - d) Sim.
- a) Não.
 - b) Sim.
 - c) Sim.
 - d) Não.
- a) É LD.
 - b) Não gera.

 - d) Não gera.
- **81** $k \neq -\sqrt{2}, k \neq 0 \text{ e } k \neq \sqrt{2}.$
- - b) $\{1,1,\ldots,1\}$. c) $\left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$

$$d) \ \left\{ \left[\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right], \left[\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{array} \right],$$

$$\dots, \left[\begin{array}{cccc} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{array} \right] \right\}.$$

$$e) \left\{ \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix} \right\}.$$

83 a)
$$\{(5,0,-3),(0,5,2)\}.$$

b)
$$\{(1,1,0),(0,0,1)\}.$$

84 a)
$$\{(-2,1,0,0),(-2,0,1,2)\}.$$

b)
$$\{(2,1,0,1),(0,0,1,0)\}.$$

85 a)
$$\{-1+x-2x^2, 1+x+2x^2\}.$$

b)
$$\{1, x, x^2\}$$
.

c)
$$\{1+x-3x^2\}.$$

86
$$\{(1,0,i),(1,1+i,1-i)\}.$$

87 Quaisquer dois dos vetores.

91 Sugestão: Empregue a indução matemática.

92 dim
$$W = 2$$
.

a) Sim. 93

b)
$$\{(1,0,0,0),(0,1,0,0),(0,0,1,1)\}$$
 e dim $W=3$.

c) Não, pois dim $W < \dim \mathbb{R}^4$.

94 Sim, pois dim $W = \dim \mathbb{R}^3$.

95 dim $W_{ts} = 6$.

$$d) \left\{ \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}, \begin{bmatrix} 96 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ -1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \right\} e \dim W_a = 3.$$

97 dim W = 2.

98 a) dim
$$W = 2$$
.

b) Não, pois
$$\begin{bmatrix} 2 & 1 \\ 3 & 4 \end{bmatrix} \notin W.$$

99 dim W = 3.

100 dim
$$W = 4$$
.

101 a) dim
$$W_s = \frac{n^2 + n}{2}$$
.

b) dim
$$W_a = \frac{n^2 - n}{2}$$

d) dim
$$W = n - 1$$

102 a)
$$\emptyset$$
, dim $W = 0$.

b)
$$\{(1\ 0\ -1)\ (0\ 1\ 3)\}\ \dim W = 2$$

c)
$$\{(4, -5, 1)\}, \dim W = 1$$

$$\begin{array}{ll} \textbf{02} & \text{a)} \;\; \emptyset, \; \dim W = 0. \\ \\ \text{b)} \;\; \{(1,0,-1),(0,1,3)\}, \; \dim W = 2. \\ \\ \text{c)} \;\; \{(4,-5,1)\}, \; \dim W = 1. \\ \\ \text{d)} \;\; \{(-1,3,5,0),(-1,-7,0,5)\}, \; \dim W = 2. \end{array}$$

103 a)
$$3 e -7$$
.

b)
$$\frac{5}{28} e \frac{3}{14}$$
.

c)
$$x e^{-x+y}$$

104 a)
$$[v]_{Can} = (4, -5, 3)$$

b)
$$[v]_B = (3, -5, 2)$$
.

b)
$$\frac{1}{28}$$
 e $\frac{1}{14}$.
c) x e $\frac{-x+y}{2}$.
104 a) $[v]_{Can} = (4,-5,3)$.
b) $[v]_B = (3,-5,2)$.
c) $[v]_C = (\frac{21}{11}, -\frac{40}{11}, \frac{23}{11})$.

106 a)
$$[p]_B = \begin{bmatrix} 4 \\ -3 \\ 1 \end{bmatrix}$$
.

b)
$$[p]_B = \begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$$
.

108
$$\frac{3}{2}$$
 e $-\frac{1}{2}$.

109
$$\frac{1}{2} - \frac{1}{2}i, -\frac{1}{2} - \frac{3}{2}i \in \frac{1}{2} + \frac{1}{2}i.$$

111 a) LD, pois
$$(2,0,2) = 2 \cdot (1,1,0) - 2 \cdot (0,1,-1)$$
.

b)
$$B' = \{(1, 1, 0), (0, 1 - 1)\}.$$

c) $\dim[B'] = 2$, pois B' é uma base.

112 a)
$$\{(-1,2,-3),(3,1,-1),(0,0,1)\}.$$

b)
$$\{(1, -3, 1, 5), (4, -12, -3, 2), (0, 1, 0, 0), (0, 0, 0, 1)\}.$$

113
$$B_1 = \{(1,0,0,0), (0,1,0,-1), (0,0,1,-1)\}$$
 e dim $W_1 = 3$,

$$B_2 = \{(1, -1, 0, 0), (0, 0, 2, 1)\} \text{ e dim } W_2 = 2,$$

$$C = \{(3, -3, 2, 1)\} \text{ e dim } W_1 \cap W_2 = 1,$$
Base canônica do \mathbb{R}^4 e dim $W_1 + W_2 = 4$.

114
$$B_1 = \{(0,1,0), (0,0,1)\}$$
 e dim $W_1 = 2$,
 $B_2 = \{(1,0,0), (0,2,1)\}$ e dim $W_2 = 2$,
 $B_3 = \{(1,1,0), (0,0,2)\}$ e dim $W_3 = 2$,
 $C = \{(0,2,1)\}$ e dim $W_1 \cap W_2 = 1$,
Base canônica do \mathbb{R}^3 e dim $W_2 + W_3 = 3$,
Base canônica do \mathbb{R}^3 e dim $W_1 + W_2 + W_3 = 3$.

115 a)
$$W_1 \cap W_2 = \{(x, y, z, w) \in \mathbb{R}^4 | z = w\}.$$

b)
$$B = \{(1,0,0,0), (0,1,0,0), (0,0,1,1)\}.$$

c)
$$W_1 + W_2 = \mathbb{R}^4$$
.

d) Não, pois dim $W_1 \cap W_2 \neq 0$.

b)
$$W_1+W_2=$$

$$\left\{\begin{bmatrix} a & b \\ c & d \end{bmatrix}\in M_2(\mathbb{R})|\ a+b-c-d=0\right\}.$$
 Não, pois $W_1\cap W_2\neq\{0\}.$

Não, pois dim $W_1 + W_2 < \dim M_2(\mathbb{R})$.

Soluções do Capítulo 3

a) Sim.

- b) Não.
- c) Sim.
- d) Não.
- e) Não.
- f) Sim.
- **3** a) Sim.
 - b) Não.
 - c) Sim.
 - d) Não.
 - e)
 - f)

4 a)
$$T(x, y, z) = (3x - y - z, 4x - y - z).$$

- b) u = (1, 6 z, z).
- c) u = (0, -z, z)

5
$$T(a+bx+cx^2) = b + (a+c)x + (-b+2c)x^2$$
.

6 a) Núcleo:
$$Nuc(T) = \{(0,0)\}, B = \emptyset, \dim Nuc(T) = 0,$$
 injetora.

Imagem:

$$Im(T) = \{(x, y, z) \in \mathbb{R}^3 | 2x - 2y - z = 0\},$$

 $B = \{(1, 0, 2), (0, 1, -2)\}.$ dim $Im(T) = 2$,
não é sobrejetora.