Problem Set 8 MATH 25800

8 Algebras

3/3: **8.1.** Let M_1, M_2 be A[X]-modules for an arbitrary ring A, and let $T_i \in \text{End}_A(M_i)$ for i = 1, 2 be defined by $T_i(m) = Xm$ for all $m \in M_i$ (i = 1, 2). Let $S: M_1 \to M_2$ be a function.

- (i) Prove that S is an A[X]-module homomorphism iff...
 - (a) S is an A-module homomorphism;
 - (b) $T_2S = ST_1$.

Proof. Suppose first that S is an A[X]-module homomorphism. S is an A-module homomorphism by restriction to A; we already have the group homomorphism condition on the abelian group and the commutativity with scalars as a subset of A[X]. Let $m \in M_1$ be arbitrary. Then

$$T_2S(m) = T(Sm) = XS(m) = S(Xm) = ST_1(m)$$

Now suppose that conditions (a)-(b) hold. To prove that S is an A[X]-module homomorphism, it will suffice to show that S is a group homomorphism and commutes with scalar multiplication. Just check axioms??

- (ii) Prove that S is an A[X]-module isomorphism iff...
 - (a) S is an A-module isomorphism;
 - (b) $T_2 = ST_1S^{-1}$.

Proof. Suppose first that S is an A[X]-module isomorphism. S is an A-module isomorphism by restriction to A as above. Let $m \in M_2$ be arbitrary. Then

$$ST_1S^{-1}m = S(T_1(S^{-1}m)) = S(XS^{-1}(m)) = S(S^{-1}(Xm)) = Xm = T_2m$$

Now suppose that conditions (a)-(b) hold. To prove that S is an A[X]-module isomorphism, it will suffice to show that S is a group homomorphism and commutes with scalar multiplication. Just check axioms??

8.2. Consider (M,T) with $M=A^n$ and $T(a_1,\ldots,a_n)=(0,a_1,\ldots,a_{n-1})$. Prove that the corresponding A[X]-module is isomorphic to $A[X]/(X^n)$.

Proof. Lecture 3.1: $A[X]/(X^n) \cong \{p \in A[X] : \deg(p) < n\} \cong (A^n, +)$ as groups. The group isomorphism is defined like f below. (M,T) is the A[X]-module with action

$$\left(\sum_{n=0}^{\ell} b_n X^n\right) (a_1, \dots, a_n) = \sum_{n=0}^{\ell} b_n T^n (a_1, \dots, a_n)$$

It follows from the definition that $T^i=0$ for $i\geq n$. Define the isomorphism $f:M\to A[X]/(X^n)$ by $(a_0,\ldots,a_{n-1})\mapsto a_0+a_1X+\cdots+a_{n-1}X^{n-1}$. Turn $A[X]/(X^n)$ into an A[X]-module under the action of left multiplication by elements of A[X]. Does f commute with scalar multiplication? Let $b\in A[X]$ be arbitrary. Then

$$f(ba) = f(\sum_{i=0}^{\ell} b_i T^i(a_0, \dots, a_{n-1})) = f(\sum_{p=0}^{0} a_p b_{0-p}, \sum_{p=0}^{1} a_p b_{1-p}, \dots, \sum_{p=0}^{n-1} a_p b_{n-1-p})$$

8.3. Let V be a finite dimensional vector space and $T: V \to V$ be a linear transformation. Consider the pair (V, T). Why is V a finitely generated torsion F[X]-module?

8.4. $T:V\to V$ is diagonalizable if there is a basis e_1,\ldots,e_n of V consisting of eigenvectors of T, i.e., $Te_i=a_ie_i$ for some $a_i\in F$.

Labalme 1

Problem Set 8 MATH 25800

(i) What is the minimal polynomial of T?

Proof. $\ker(\rho)$ is the set of all polynomials in F[X], the corresponding linear transformations of which annihilate V. Consider the F[X]-module (V,T). We know that $V = \bigoplus_{i=1}^n F[X]/(X-a_i)$. Thus, a basis of the F[X]-module V is the e_i 's. We want to construct a linear transformation that is a polynomial in T of minimal degree such that p(T)v = 0 for an arbitrary $v \in V$. Let $f_1e_1+\cdots+f_ne_n$ be arbitrary. The smallest polynomial that sends e_i to 0 is $(X-e_i)$. The smallest polynomial that sends e_i and e_j to zero is $(X-e_i)(X-e_j)$. Suppose one of smaller degree did. Then it's a monomial X-a that's monic up to units. But unless $X-a \in (X-a_i), (X-a_j)$, we have no bueno. Thus, $(X-a_i) \mid X-a$ and $(X-a_j) \mid X-a$, so we have a contradiction. Inducting, we get that the minimal polynomial is $\prod_{i=1}^n (X-a_i)$.

(ii) What condition on a_1, \ldots, a_n is necessary and sufficient for the existence of a cyclic vector for T?

Proof. Some mutual divisibility relation? Distinct would be sufficient, right? The minimal polynomial is of degree n?

Suppose a cyclic vector $v = f_1 e_1 + \cdots + f_n e_n$ exists. Then $Tv = f_1 a_1 e_1 + \cdots + f_n a_n e_n$. A necessary and sufficient condition is that

The
$$a_1, \ldots, a_n$$
 are all distinct.

Suppose first that the above condition holds. Let $v = e_1 + \cdots + e_n$. Then $Tv = a_1e_1 + \cdots + a_ne_n$. Suppose that Tv = bv for some $b \in F$. Then $a_1 = \cdots = a_n = b$, a contradiction.

Suppose that $b_1v + b_2Tv = 0$. Then $b_1 + b_2a_i = 0$ for all i, so $a_i = -b_1/b_2$. I.e., the polynomial has at most one solution. Inducting, such polynomials have at most so many solutions. Done. Now suppose inductively that $T^kv = b_1v + b_2Tv + \cdots + b_{k-1}T^{k-1}v$ for some k < n. Then

$$a_1^k f_1 e_1 + \dots + a_n^k f_n e_n = b_1$$

Now suppose that $v=f_1e_1+\cdots+f_ne_n$ is a cyclic vector for T. Then $Tv\neq bv$ for any $b\in F$. In particular, $a_1f_1e_1+\cdots+a_nf_ne_n\neq bf_1e_1+\cdots+bf_ne_n$, so at least two of the a_i 's are distinct. $b_0v+b_1Tv\neq 0$ for any not-both-zero b_0,b_1 . Then $(b_0+b_1a_1)f_1e_1+\cdots+(b_0+b_1a_n)f_ne_n\neq 0$. Choose b_0,b_1 such that $b_0+b_1a_1=0$. Then there is some i such that $b_0+b_1a_i\neq 0$; this a_i must be distinct. Scaling up, choose b_0,\ldots,b_{n-1} such that a_1,\ldots,a_{n-1} go to zero, i.e., such that $b_0+\cdots+b_{n-1}X^{n-1}=(X-a_1)\cdots(X-a_{n-1})$. Then a_n is distinct. We can build up our sequence WLOG so that each new a_i is a_2 , for instance, then a_3 , then so on.

- **8.5.** Let V be an n-dimensional vector space. Let $T \in \operatorname{End}_F(V)$. Let $A = \{S \in \operatorname{End}_F(V) : ST = TS\}$. Hint: We may regard V as an F[X]-module. Identify A with $\operatorname{End}_{F[X]}(V)$. And then use the rational canonical from.
 - (i) Show that the dimension of A (as an F-vector space) is greater than or equal to n.

Proof. The scalar matrices are certainly a subspace. How about the subspace of diagonal matrices?

- (ii) Show that the equality is attained iff T has a cyclic vector.
- **8.6.** Let $f \in R[X]$ be a monic polynomial of degree n. Let M be a free R-module with basis e_1, \ldots, e_n .
 - (i) Show that there is a unique R-module homomorphism $T: M \to M$ such that $T(e_i) = e_{i+1}$ for all i = 1, ..., n-1 and $f(T)e_1 = 0$.
 - (ii) Show that f(T)v = 0 for all $v \in M$.
 - (iii) Let $b \in R$. Define $S: M \to M$ by S(v) = bv Tv for all $v \in M$. Compute $\Lambda^k(S)e_1 \cdots e_k$. for all $k = 1, \ldots, n$ inductively and deduce that $\det(S) = f(b)$.

Problem Set 8 MATH 25800

- **8.7.** Let V be a vector space over a field F. Let $v_1, \ldots, v_r \in V$.
 - (i) Prove that if v_1, \ldots, v_r are linearly dependent, then $v_1 \cdots v_r \in \Lambda^r(V)$ equals zero.
 - (ii) Prove that if v_1, \ldots, v_r are linearly independent, then $v_1 \cdots v_r \in \Lambda^r(V)$ is nonzero.
 - (iii) Prove that if W is a linear subspace of V and w_1, \ldots, w_r is a basis of W, then the onedimensional subspace $Fw_1 \cdots w_r$ of $\Lambda^r(V)$ depends only on W, i.e., it does not depend on the choice of the basis w_1, \ldots, w_r . It is conventional to refer to this one dimensional subspace as $\det(W) \subset \Lambda^r(V)$.
 - (iv) If W_1, W_2 are both r-dimensional subspaces of V, and if the one-dimensional subspaces $\det(W_1)$ and $\det(W_2)$ of $\Lambda^r(V)$ are equal to each other, show that $W_1 = W_2$.
- **8.8.** Let V be a vector space of dimension 4, and let $\omega \in \Lambda^2(V)$ be nonzero. Prove that $\omega^2 = 0$ iff $F\omega = \det(W)$ for a two-dimensional subspace $W \subset V$.
- **8.9.** Prove that the characteristic polynomial is monic of degree n. Prove that the coefficient of λ^{n-1} in the characteristic polynomial of L is the negative of the trace of L, which is defined to be the sum of the diagonal terms of the matrix that represents L when a basis e_1, \ldots, e_n is specified.
- **8.10.** Deduce the Cayley-Hamilton theorem for fields from Problem 8.6 and the fact that every torsion F[X]-module is the direct sum of cyclic modules.
- **8.11.** (i) Show that the Cayley-Hamilton theorem for fields implies the theorem for integral domains as well.
 - (ii) Show that the Cayley-Hamilton theorem for the polynomial ring $\mathbb{Z}[X_1,\ldots,X_{n^2}]$ implies the theorem for all $L: \mathbb{R}^n \to \mathbb{R}^n$ where R is a commutative ring.