My cryptography book

JOHN DOE (MARCH 2, 2023)

Contents

1	Basic number theory	3
	1.1 Axioms of \mathbb{Z}	3
	1.2 Divisibility	10
	1.3 Congruences	11
	1.4 Euclidean algorithm – GCD	12
	1.5 Extended Euclidean algorithm: GCD as linear combination	19
2	Classical ciphers	36
	2.1 Shift cipher	37
	2.2 Affine cipher	38
	2.3 Vigenère cipher	39
	2.4 Substitution cipher	40
	2.5 Permutation cipher	41
	2.6 Hill cipher	42
	2.7 One-time pad cipher	43
	2.8 Linear feedback shift register	44
3	Group theory	45
	3.1 Definitions	45
4	Ring theory	46
5	Field theory	47
ln	ndex	48
В	ibliography	49

Chapter 1

Basic number theory

SUGGESTIONS. For this chapter, state the basic axioms and properties/theorems of \mathbb{Z} . Provide proofs. But remember that most of the properties/theorems can be generlized to properties/theorems for rings. It's still a good idea to prove the facts for \mathbb{Z} since \mathbb{Z} is not as abstract as general rings and will prepare you for the general results.

1.1 Axioms of \mathbb{Z}

We will assume that $(\mathbb{Z}, +, \cdot, 0, 1)$ satisfies the following axioms.

- Properties of +:
 - Closure: If $x, y \in \mathbb{Z}$, then $x + y \in \mathbb{Z}$.
 - Associativity: If $x, y, z \in \mathbb{Z}$, then (x + y) + z = x + (y + z).
 - Inverse: If $x \in \mathbb{Z}$, then there is some y such that x + y = 0 = y + x. The y in the above is an additive inverse of x.
 - Neutrality: If $x \in \mathbb{Z}$, then 0 + x = x = x + 0.
 - Commutativity: If $x, y \in \mathbb{Z}$, then x + y = y + x.

(Memory aid for the first four: CAIN.)

- Properties of ·:
 - Closure: If $x, y \in \mathbb{Z}$, then $x \cdot y \in \mathbb{Z}$.
 - Associativity: If $x, y, z \in \mathbb{Z}$, then $(x \cdot y) \cdot z = x \cdot (y \cdot z)$.
 - Neutrality: If $x \in \mathbb{Z}$, then $1 \cdot x = x = x + 1$.
 - Commutativity: If $x, y \in \mathbb{Z}$, then $x \cdot y = y \cdot x$.

It is common to write xy instead of $x \cdot y$.

• DISTRIBUTIVITY: If $x, y, z \in \mathbb{Z}$, then $x \cdot (y + z) = x \cdot y + x \cdot z$ and $(y + z) \cdot x = y \cdot x + z \cdot x$

A set R with operations +, \cdot and elements 0_R , 1_R satisfying the above properties

the above is called a commutative ring. This is an important generalization because there are many very useful commutative rings and we want to prove results about commutative rings so that these results can be applied to all commutative rings, including but not restricted to \mathbb{Z} . And if the commutativity of multiplication is left out, then we have the concept of a ring; for emphasize these are called non-commutative rings. This is also an important concept since $n \times n$ matrices with \mathbb{R} entries, $M_{n \times n}(\mathbb{R})$, form a non-commutative ring. In fact, more generally, the set of $n \times n$ matrices with entries in a commutative ring R, $M_{n \times n}(R)$, is itself a non-commutative ring. We will return to the concept of commutative and non-commutative rings later.

The next property of \mathbb{Z} , integrality, is very special and does not apply to many communitative rings and is therefore left out of the definition of commutative ring:

• INTEGRALITY: If $x, y \in \mathbb{Z}$, then $xy = 0 \implies x = 0$ or y = 0.

Another property of \mathbb{Z} that we will assume is

• Nontriviality: $0 \neq 1$

This axiom of \mathbb{Z} is extremely simple, but cannot be deduced from the previous axioms.

The above forms the algebraic properties of \mathbb{Z} , i.e., properties involving addition and multiplication.

It is actually possible to first define axioms for $\mathbb{N} = \{0, 1, 2, ...\}$ and then define \mathbb{Z} in terms of \mathbb{N} . We will not do that except to mention that the axioms for \mathbb{N} are called the Peano-Dedekind axioms and that one very important Peano-Dedekind axiom of \mathbb{N} is the

• Well-ordering principle (WOP) for \mathbb{N} : If X is a nonempty subset of \mathbb{N} , then X contains a minimum element, i.e., there is some $m \in X$ such that

$$m \leq x$$

for all $x \in X$.

Without going into details, it can be shown that for \mathbb{N} , the WOP is equivalent to each of the following axioms:

• WEAK MATHEMATICAL INDUCTION for \mathbb{N} : Let X be a subset of \mathbb{N} satisfying the following two conditions:

JOHN DOE 4 OF 49 MARCH 2, 2023

- $0 \in X$ and
- Let $n \in \mathbb{N}$. If $n \in X$, then $n + 1 \in X$.

Then $X = \mathbb{N}$.

and

- STRONG MATHEMATICAL INDUCTION for \mathbb{N} : Let X be a subset of \mathbb{N} satisfying the following two conditions:
 - $0 \in X$ and
 - Let $n \in \mathbb{N}$. If $k \in X$ for all $0 \le k \le n$, then $n + 1 \in X$.

Then $X = \mathbb{N}$.

In the above two induction axioms, if we write $X = \{n \mid P(n)\}$ where P(n) is a propositional formula, then the induction axioms can be rewritten in the following way:

- WEAK MATHEMATICAL INDUCTION: Let P(n) be a proposition for $n \in \mathbb{N}$ satisfying the following two conditions:
 - P(0) is true and
 - Let $n \in \mathbb{N}$. If P(n) is true, then P(n+1) is true.

Then P(n) is true for all $n \in \mathbb{N}$.

and

- STRONG MATHEMATICAL INDUCTION: Let P(n) be a proposition for $n \in \mathbb{N}$ satisfying the following two conditions:
 - P(0) is true and
 - Let $n \in \mathbb{N}$. If $k \in X$ for all $0 \le k \le n$, then $n + 1 \in X$.
 - Let $n \in \mathbb{N}$. If P(k) is true for $0 \le k \le n$, then P(n+1) is true.

Then P(n) is true for all $n \in \mathbb{N}$.

The above are the algebraic axioms of \mathbb{Z} . There's also the order relation of \mathbb{Z} which is used in WOP and the two induction principles. I will formalize the axioms of the order relation later. For now one can assume that the order relation is defined as follows: If $x \in \mathbb{Z}$, then

if there is some $z \in \mathbb{N}$ such that

$$x + z = y$$

There is one more axiom of \mathbb{Z} that is related to the "topology" of \mathbb{Z} and uses the order relation:

• TOPOLOGY: Given any $x \in \mathbb{Z}$, there is no $y \in \mathbb{Z}$ such that

$$x < y < x + 1$$

You can think of topology of a set as study of "closeness" of values in that set. For \mathbb{Q} , given any two distinct rational values x < y, there is also some $z \in \mathbb{Q}$ such that x < z < y. This is the same for \mathbb{R} . Therefore the topology of \mathbb{Z} is very different from the topology of \mathbb{Q} and \mathbb{R} because there are "holes" in \mathbb{Z} where there are no \mathbb{Z} values. \mathbb{Z} has what is called a discrete topology.

The above assume the existence of an order relation on \mathbb{Z} , i.e., <. We have to include the following axioms of < on \mathbb{Z} . There is a set \mathbb{Z}^+ such that the following holds:

- TRICHOTOMY: If $x \in \mathbb{Z}$, then exactly one of the following holds: $-x \in \mathbb{Z}^+$, x = 0, $x \in \mathbb{Z}^+$.
- CLOSURE OF +: If $x, y \in \mathbb{Z}^+$, then $x + y \in \mathbb{Z}^+$.
- CLOSURE OF : If $x, y \in \mathbb{Z}^+$, then $x \cdot y \in \mathbb{Z}^+$.

We then define < as follows: If $x, y \in \mathbb{Z}$, then we write x < y if

$$y - x \in \mathbb{Z}^+$$

Since < is defined, we can define $x \le y$ to mean "either x < y or x = y". The above order relation is expressed abstractly without referring to the fact that \mathbb{Z}^+ is $\{1, 2, 3, ...\}$, i.e., the set of positive integers. In fact, you can prove $\mathbb{Z}^+ = \{1, 2, 3, ...\}$ from the above axioms – see exercises below.

Proposition 1.1.1. The additive inverse for x is unique. In other words, if y, y' satisfies

$$x + y = 0 = y + x$$

 $x + y' = 0 = y' + x$

Then y = y'.

Proof. TODO

Since the additive inverse of x is unique, we can choose to write the additive inverse of x in terms of x. This is usually written -x. We define the operator - in terms of the additive inverse:

Definition 1.1.1. Let $x, y \in \mathbb{Z}$. We define the subtraction operator as

$$x - y = x + (-y)$$

Note that every x in \mathbb{Z} as an additive inverse, but we did not require value of \mathbb{Z} to have multiplicative inverse:

Definition 1.1.2. Let $x \in \mathbb{Z}$. Then y is a multiplicative inverse of x if

$$x \cdot y = 1 = y \cdot x$$

We say that x is a **unit** if x has a multiplicative inverse. We can also say that x is **invertible**.

invertible

Intuitively, you know that the only values of \mathbb{Z} with multiplicative inverses are 1 and -1.

Proposition 1.1.2. Let $x \in \mathbb{Z}$. If x is a unit, then the multiplicative inverse of x is unique. In other words if y, y' satisfies

$$xy = 1 = yx$$

$$xy' = 1 = y'x$$

then y = y'.

Definition 1.1.3. The multiplicative inverse of x, it is exists, is is denoted by x^{-1} .

Proposition 1.1.3. Cancellation law for addition. Let $x, y, z \in \mathbb{Z}$.

- (a) If x + z = y + z, then x = y.
- (b) If z + x = z + y, then x = y.

Proposition 1.1.4. Let $x \in \mathbb{Z}$.

(a)
$$0x = 0 = x0$$

(b)
$$-0 = 0$$

(c)
$$x - 0 = x$$
. (NOTE CORRECTION)

Proof. (a) We will first prove 0x = 0:

$$0x = (0+0)x$$
 by Neutrality of +
= $0x + 0x$ by Distributivity (1)

Since $0x \in \mathbb{Z}$ by Closure of \cdot , there is exists some $y \in \mathbb{Z}$ which is an additive inverse of 0x, i.e.,

$$0x + y = 0 = y + 0x (2)$$

From (1),

$$y + 0x = y + (0x + 0x)$$

$$0 = y + (0x + 0x)$$

$$0 = (y + 0x) + 0x$$

$$0 = 0 + 0x$$

$$0 = 0x$$
by (2)
by Associativity of +
by (2)
by Neutrality of +

To prove 0 = x0, from above

$$0 = 0x$$

= $x0$ by Commutativity of \cdot

(b) TODO

$$\Box$$

Proposition 1.1.5. Let $x, y \in \mathbb{Z}$.

(a)
$$-(-1) = 1$$

(b)
$$-(-x) = x$$

(c)
$$x(-1) = -x = (-1)x$$

(d)
$$(-1)(-1) = 1$$

(e)
$$(-x)(-y) = xy$$

Proposition 1.1.6. Cancellation law for multiplication. Let $x, y, z \in \mathbb{Z}$.

(a) If
$$xz = yz$$
 and $z \neq 0$, then $x = y$.

(b) If zx = zy and $z \neq 0$, then x = y.

For convenience, I will write $x^2 = xx$ and in general

$$x^n = \begin{cases} 1 & \text{if } n = 0\\ x^{n-1}x & \text{if } n > 0 \end{cases}$$

If x has a multiplicative inverse, i.e., if x^{-1} exists, then, for $n \geq 0$, I will define

$$x^{-n} = \left(x^{-1}\right)^n$$

Proposition 1.1.7. Let $x \in \mathbb{Z}$. Then $[n]x = n \cdot x$.

Note that nx has two meanings: nx can be the multiplication of n and x and it can also be $x + \cdots + x$ with n number of x. Of course you would expect them to be the same. For now define

$$[n]x = \begin{cases} 0 & \text{if } n = 0\\ [n-1]x + x & \text{if } n > 0 \end{cases}$$

and if n is negative, we define

$$[n]x = -([-n]x)$$

1.2 Divisibility

Definition 1.2.1. Let $m, n \in \mathbb{Z}$. Then we say that m divides n, and we write $m \mid n$, if there is some $x \in \mathbb{Z}$ such that mx = n, i.e.,

$$\exists x \in \mathbb{Z} \cdot [mx = n]$$

Proposition 1.2.1. Let $a \in \mathbb{Z}$.

- (a) Then $1 \mid a$.
- (b) Then $a \mid 0$.
- (c) $(Reflexive) \ a \mid a$.
- (d) If $a \mid b$ and $b \mid a$, then $a = \pm b$.
- (e) (Transitive) If $a \mid b$ and $b \mid c$, then $a \mid c$.
- (f) If $a \mid b$, then $a \mid bc$.
- (g) If $a \mid b$, $a \mid c$, then $a \mid b + c$.
- (h) (Linearity) If $a \mid b$, $a \mid c$, then $a \mid bx + cy$ for $x, y \in \mathbb{Z}$.

Proof. TODO

1.3 Congruences

Definition 1.3.1. Let $a, b \in \mathbb{Z}$ and $N \in \mathbb{Z}$ with N > 0. Then a is congruent to $b \mod N$ and we write

$$a \equiv b \pmod{N}$$

if $N \mid a - b$.

Proposition 1.3.1. Let $a, b, c, a', b' \in \mathbb{Z}$.

- (a) $(Reflexivity) \ a \equiv a \pmod{N}$
- (b) (Symmetry) If $a \equiv b \pmod{N}$, then $b \equiv a \pmod{N}$
- (c) (Transitivity) If $a \equiv b, b \equiv c \pmod{N}$, then $a \equiv c \pmod{N}$
- (d) If $a \equiv b$, $a' \equiv b' \pmod{N}$, then $a + a' \equiv b + b' \pmod{N}$.
- (e) If $a \equiv b$, $a' \equiv b' \pmod{N}$, then $aa' \equiv bb' \pmod{N}$.

Proof. TODO

Proposition 1.3.2. Let $a, N \in \mathbb{Z}$ with N > 0. Let $q, r \in \mathbb{Z}$ such that

$$a = Nq + r$$
, $0 \le r \le N$

Then $a \equiv r \pmod{N}$.

Proof. TODO

Exercise 1.3.1. Show that the cancellation law for \mathbb{Z} does not translate to \mathbb{Z} mod N. In other words, find N, a, b, c such that $c \not\equiv 0 \pmod{N}$ and

$$ac \equiv bc \pmod{N}, \ a \not\equiv b \pmod{N}$$

1.4 Euclidean algorithm – GCD

Now let me use the Euclidean property to compute the gcd of two integers.

Let's use the division algorithm on 20 and 6.

$$20 = 6 \cdot 3 + 2$$
, $0 < 2 < 6$

Suppose I want to compute gcd(20,6). Of course the example is small enough that we know that it is 2. But notice something about this:

$$20 = 6 \cdot 3 + 2$$
, $0 < 2 < 6$

If d is a divisor of 20 and 6, then it must also divide 2. Therefore gcd(20,6) must divide 2. The converse might not be true. In general, we have this crucial bridge between Euclidean property and common divisors:

Lemma 1.4.1. (GCD Lemma) If $a, b, q, r \in \mathbb{Z}$ such that

GCD Lemma

$$a = bq + r$$

then

 $\{d \mid d \text{ is a common divisor of } a, b\} = \{d \mid d \text{ is a common divisor of } b, r\}$

Hence

$$gcd(a, b) = gcd(b, r)$$

Proof. TODO

In particular, given $a, b \in \mathbb{Z}$ where a > b > 0. By the Euclidean property of \mathbb{Z} , there exist $q, r \in \mathbb{Z}$ such that

$$a = bq + r, \ 0 \le r < b$$

Hence

$$gcd(a, b) = gcd(b, r)$$

Note that in the above, I only require a = bq + r. For instance for to gcd(120, 15), I can use $120 = 1 \cdot 15 + (120 - 15)$, i.e., a = 120, b = 15, q = 1, r = 120 - 15. Then gcd(120, 15) = gcd(15, 120 - 15) = gcd(15, 105).

However if I use the division algorithm, then r is "small":

$$0 \le r < b$$

So if you want to compute gcd(a, b), make sure $a \ge b$ (otherwise swap them). Then gcd(a, b) = gcd(b, r) and you would have $a \ge b > r$. So instead of computing gcd(a, b), you are better off computing gcd(b, r).

But like I said, we do not need the q and r to be the quotient and remainder. For instance suppose I want to compute the GCD of 514 and 24.

$$514 = 24 \cdot 1 + (514 - 24)$$

Then

$$\gcd(514, 24) = \gcd(24, 514 - 24)$$

which gives us

$$\gcd(514, 24) = \gcd(24, 490)$$

Note that gcd(0, n) = n for any positive integer n. I'll let you think about that one. (Remember what I said before: 0 is in some sense a big number, like a black hole. Because every positive number divides 0.)

Of course this gives rise to the following algorithm

```
ALGORITHM: GCD
Inputs: a, b
Output: gcd(a, b)

if b > a:
    swap a, b

if b == 0:
    return a
else:
    return GCD(a - b, b)
```

This only subtracts one copy of b from a. Suppose we can compute

$$a = bq + r$$
, $0 \le r < b$

Then

$$gcd(a, b) = gcd(b, r)$$

Of course r is the remainder when a is divided by b. Using this we rewrite the above code to get the **Euclidean Algorithm**:

Euclidean Algorithm

```
ALGORITHM: GCD (Euclidean algorithm)
Inputs: a, b
Output: gcd(a, b)

if b > a:
    # To make sure that for gcd(a,b), a >= b
    swap a, b

if b == 0:
    return a
else:
    return GCD(b, a % b)
```

Note that if a < b, then

$$GCD(a, b) = GCD(b, a \% b) = GCD(b, a)$$

Therefore the swap is not necessary:

```
ALGORITHM: GCD (Euclidean algorithm)
Inputs: a, b
Output: gcd(a, b)

if b == 0:
    return a
else:
    return GCD(b, a % b)
```

In this case, I'm assuming that a % b is available. As an example:

$$\gcd(514, 24) = \gcd(24, 514\%24) = \gcd(24, 10)$$

$$= \gcd(10, 24\%10) = \gcd(10, 4)$$

$$= \gcd(10, 10\%4) = \gcd(10, 2)$$

$$= \gcd(2, 10\%2) = \gcd(2, 0)$$

$$= 2$$

The above can also be done in a loop:

```
ALGORITHM: GCD (Euclidean algorithm)
Inputs: a, b
Output: gcd(a, b)
while 1:
   if b == 0:
```

```
return a
else:
   a, b = b, a % b
```

Exercise 1.4.1. Compute the following using the Euclidean Algorithm explicitly.

- (a) gcd(10, 1)
- (b) gcd(10, 10)
- (c) gcd(107, 5)
- (d) gcd(107, 26)
- (e) gcd(84, 333)

Exercise 1.4.2. Compute the following. You should go as far as you can. In other words, either you can a fixed integer (such as 1) or derive the $gcd(\alpha, \beta)$ where α, β are as simple as possible. For instance, to simplify gcd(3 + 2a, a), since $3 + 2a = 2 \cdot a + 3$, we have

$$\gcd(3+2a,a) = \gcd(a,3)$$

In the following $a, b, x, n \in \mathbb{Z}$ are positive integers.

- (a) gcd(ab, b)
- (b) gcd(a, a + 1)
- (c) gcd(ab + a, b) where 0 < a < b
- (d) gcd(a(a+1) + a, (a+1)) where 0 < a < b
- (e) $gcd(1 + x + \cdots + x^n, x)$
- (f) $gcd(F_{10}, F_{11})$ where F_n is the n-th Fibonacci number. (Recall: $F_0 = 1, F_1 = 1, F_{n+2} = F_{n+1} + F_n$ for $n \ge 0$.)

Despite the fact that the Euclidean algorithm is one of the fastest algorithm to compute the GCD of two numbers and has been discovered by Euclid a long time ago (BC 300), the actual runtime was not known until Lamé proved in 1844 that the number of steps to compute gcd(a, b) using the Euclidean algorithm is ≤ 5 times the number of digits (in base 10 notation) of min(a, b). For instance for the example above of gcd(514, 24), the number of digits of min(514, 24) is 2. Lamé theorem says that the number of steps made by the Euclidean algorithm in the computation of gcd(514, 24) is at most $5 \times 2 = 10$.

The actual number of steps in the earlier computation

$$\gcd(514, 24) = \gcd(24, 514\%24) = \gcd(24, 10)$$

$$= \gcd(10, 24\%10) = \gcd(10, 4)$$

$$= \gcd(10, 10\%4) = \gcd(10, 2)$$

$$= \gcd(2, 10\%2) = \gcd(2, 0)$$

$$= 2$$

is 4 (not counting the base case step), i.e.,

$$\gcd(514, 24) = \gcd(24, 10) = \gcd(10, 4) = \gcd(10, 2) = \gcd(2, 0)$$

Lamé's work is generally considered the beginning of computational complexity theory, which is the study of resources needed (time or space) to execute an algorithm. Another fascinating fact about Lamé's theorem is that historically the above proof is the first ever "use" of the Fibonacci sequence.

Theorem 1.4.1. (Lamé 1844) Let a > b > 0 be integers. If the GCD computation of a, b using Euclidean algorithm results in n steps:

$$\gcd(a_{n+1}, b_{n+1}) = \gcd(a_n, b_n) = \dots = \gcd(a_1, b_1), b_1 = 0$$

where $(a_{n+1}, b_{n+1}) = (a, b)$, and $a_i > b_i$, then

- (a) $a \ge F_{n+2}$ and $b \ge F_{n+1}$, where F_n are the Fibonacci numbers $(F_1 = 1, F_2 = 1, F_3 = 2, F_4 = 3, F_5 = 5, etc.$ Note that the index starts with 1.)
- (b) n is at most 5 times the number of digits in b.

Proof. TODO

Proposition 1.4.1. The number of digits of a positive integer b is

$$\lfloor \log_{10} b + 1 \rfloor$$

Proof. TODO

On analyzing the proof, the above is in fact true for any base > 1. In other words the number of base–B symbols to represent b is

$$\left|\log_B b + 1\right|$$

where B > 1. For instance the number of bits needed to represent b is

$$\lfloor \log_2 b + 1 \rfloor$$

For instance, $b = 9_{10} = 1001_2$ which has 4 bits and

$$\lfloor \log_2 9 + 1 \rfloor = \lfloor 3.1699... + 1 \rfloor = \lfloor 4.1699... \rfloor = 4$$

Proposition 1.4.2. Let positive integer b be written in base B where B > 1 is an integer. Then the number of base-B symbols used to represent b is

$$\lfloor \log_B b + 1 \rfloor$$

Exercise 1.4.3. Leetcode 650.

https://leetcode.com/problems/2-keys-keyboard/

There is only one character 'A' on the screen of a notepad. You can perform one of two operations on this notepad for each step:

- Copy All: You can copy all the characters present on the screen (a partial copy is not allowed).
- Paste: You can paste the characters which are copied last time.

Given an integer n, return the minimum number of operations to get the character 'A' exactly n times on the screen.

Exercise 1.4.4. Leetcode 2447.

https://leetcode.com/problems/number-of-subarrays-with-gcd-equal-to-k

Given an integer array nums and an integer k, return the number of subarrays of nums where the greatest common divisor of the subarray's elements is k. A subarray is a contiguous non-empty sequence of elements within an array. The greatest common divisor of an array is the largest integer that evenly divides all the array elements.

Exercise 1.4.5. Leetcode 1998

https://leetcode.com/problems/gcd-sort-of-an-array/

You are given an integer array nums, and you can perform the following operation any number of times on nums:

• Swap the positions of two elements nums[i] and nums[j] if gcd(nums[i], nums[j]) > 1

JOHN DOE 17 OF 49 MARCH 2, 2023

where gcd(nums[i], nums[j]) is the greatest common divisor of nums[i] and nums[j].

Return true if it is possible to sort nums in non-decreasing order using the above swap method, or false otherwise.

JOHN DOE 18 OF 49 MARCH 2, 2023

1.5 Extended Euclidean algorithm: GCD as linear combination

Here's another super important fact:

Theorem 1.5.1. (Extended Euclidean Algorithm) If a and b be integers which are not both zero, then there are integers x, y such that

Extended Euclidean Algorithm

$$\gcd(a,b) = ax + by$$

The x, y in the above theorem are called **Bézout's coefficients** of a, b. They are not unique.

Bézout's coefficients

Exercise 1.5.1. Prove that $a \neq 0$, then there are many possible x, y such that $ax + by = \gcd(a, b)$.

First let me prove that there are x, y such that

$$ax + by = \gcd(a, b)$$

The theorem does not give you the algorithm. Then I'll do a computational example that compute the gcd of a, b as a linear combination of a and b. The example actually contains the idea behind the algorithm to compute the Bézout's coefficients. The algorithm is called the Extended Euclidean Algorithm.

Proof. For convenience, let me write (a, b) as the set of linear combinations of a and b, i.e.,

$$(a,b) = \{ax + by \mid x, y \in \mathbb{Z}\}\$$

I will also write (q) for the linear combination of q, i.e.,

$$(g) = \{ gx \mid x \in \mathbb{Z} \}$$

(Such linear combinations are called ideals. They are extremely important in of themselves. Historically, they were created to study Fermat's last theorem. Since then they are crucial in the the study of ring theory.)

The proof proceeds in two steps:

JOHN DOE 19 OF 49 MARCH 2, 2023

March 2, 2023

- 1. Given a, b not both zero, there is some g such that (a, b) = (g). If a, b are not both zero, g can be chosen to be > 0.
- 2. The g in the above is in fact gcd(a, b).

Now let's prove step 1, i.e., given a, b, there is some g such that

$$(a,b) = (g)$$

First of all if b = 0, then by definition

$$(a,0) = (a)$$

and we're done. Next, we now assume $b \neq 0$. Then |b| > 0. The set

$$X = \{ax + by \mid x, y \in \mathbb{Z} \text{ and } ax + by > 0\} \subseteq \mathbb{N}$$

is nonempty since it contains $0 \cdot a + 1 \cdot |b|$. By the well-ordering principle of \mathbb{N} , X has a minimum element, say g. I will now show that (a, b) = (g).

Since g is a minimum element of X, g is in X. Therefore g = ax + by. Hence $gz = a(xz) + b(yz) \in (a,b)$ for all $z \in \mathbb{Z}$. This implies that $(g) \subseteq (a,b)$.

Now I will prove that $(a,b) \subseteq (g)$. Let $c \in (a,b)$, i.e., c = ax + by for some $x,y \in \mathbb{Z}$. Therefore by the Euclidean property of \mathbb{Z} , there exists $q,r \in \mathbb{Z}$ such that

$$c = qq + r$$
, $0 < r < q$

(Look at the definition of X again. X is a subset of \mathbb{N} so that $g \geq 1$). If $r \neq 0$, then

$$r = c - gq$$

Note that c = ax + by by our assumption. We have already shown that $(g) \subseteq (a, b)$, i.e., g = ax' + by'. Therefore, altogether we have

$$r = c - gq = ax + by - (ax' + b'y)q = a(x - x'q) + b(y - y'q)$$

Hence $r \in X$. But $0 \le r < d$ implies that

$$r = a(x - x'q) + b(y - b'q)$$

is an element of X which is less than g which contradicts the minimality of g. Hence r=0 and we have

$$c = qq + r = qq \in (q)$$

I have shown that $(a, b) \subseteq (g)$.

Altogether, I've shown (a, b) = (g). Step 1 is now completed.

For step 2, I will show that g is the gcd of a and b. Since (a, b) = (g), we have

$$a \in (a, b) = (g)$$

i.e., a = xg which means g divides a. Likewise g divides b. Hence g is a common divisor of a and b. Since $(g) \subseteq (a,b)$, $g = ax_0 + by_0$. Suppose d is any divisor of a and b. Then $d \mid ax_0 + by_0$ by the linearity of divisibility. Hence $d \mid g$. Therefore g is the largest common divisor of a and b, i.e., $g = \gcd(a,b)$.

The above does not give you an algorithm to compute the x and y. First let me do an example to show you that it's possible to compute gcd(a, b) as a linear combination of a and b. Then I'll give you the algorithm.

Recall that I have computed gcd(514, 24) = 2. Extended Euclidean Algorithm says that it's possible to find x and y such that

$$2 = \gcd(514, 24) = 514x + 24y$$

How do we compute the x and y? Just like the gcd computation (the Euclidean Algorithm), the x, y are computed using the Euclidean property. First we have

$$514 = 21 \cdot 24 + 10$$

This implies that

$$514 \cdot 1 + 24 \cdot (-21) = 10$$

Now it would be nice if the pesky 10 goes away and is replaced by 2. How would we do that? Well look at 24 and 10 now. We have

$$24 = 2 \cdot 10 + 4$$

again by Euclidean algorithm. Multiplying the equation

$$514 \cdot 1 + 24 \cdot (-21) = 10$$

throughout by 2 gives us

$$514 \cdot 2 + 24 \cdot (-42) = 2 \cdot 10$$

The previous equation

$$24 = 2 \cdot 10 + 4$$

say that $2 \cdot 10$ can be replaced by 24 - 4. This means that

$$514 \cdot 2 + 24 \cdot (-42) = 24 - 4$$

Hmmm ... this says that we have now

$$514 \cdot 2 + 24 \cdot (-43) = -4$$

or

$$514 \cdot (-2) + 24 \cdot 43 = 4$$

What about 4? Well, if we look at 10 and 4 just like what we did with 24 and 10 we would get

$$10 = 2 \cdot 4 + 2$$

and the remainder 2 gives us the GCD!!! Rearranging it a bit we have

$$1 \cdot 10 + (-2) \cdot 4 = 2$$

i.e. 2 is a linear combination of 10 and 4. But earlier we say that 4 is a linear combination of 514 and 24 ...

$$514 \cdot (-2) + 24 \cdot 43 = 4$$

and even earlier we saw that 10 is also a linear combination of 514 and 24 ...

$$514 \cdot 1 + 24 \cdot (-21) = 10$$

Surely if we substitute all these values into the equation

$$1 \cdot 10 + (-2) \cdot 4 = 2$$

we would get 2 as a linear combination of 514 and 24. Let's do it ...

$$2 = 1 \cdot 10 + (-2) \cdot 4$$

$$= 1 \cdot (514 \cdot 1 + 24 \cdot (-21)) + (-2)(514 \cdot (-2) + 24 \cdot 43)$$

$$= 514 \cdot 1 + 24 \cdot (-21) + 514 \cdot 4 + 24 \cdot (-86)$$

$$= 514 \cdot 5 + 24 \cdot (-107)$$

Vóila!

Exercise 1.5.2. Using the above idea, compute the gcd and Bézout's coefficients of 210 and 78, i.e., compute x and y such that $210x+78y=\gcd(210,78)$.

JOHN DOE 23 OF 49 MARCH 2, 2023

Exercise 1.5.3. Analyze the above and design an algorithm so that when given a and b, the algorithm computes x and y such that $ax + by = \gcd(a, b)$.

JOHN DOE 24 OF 49 MARCH 2, 2023

To help you analyze the above computation, let me organize our computations a little. If we can make the process systematic, then there is hope that we can make the idea work for all a and b, i.e., then we would have an algorithm and hence can program it and compute it's runtime performance.

We know for sure that we have to continually use Euclidean property on pairs of numbers. So here we go:

$$514 = 21 \cdot 24 + 10$$
$$24 = 2 \cdot 10 + 4$$
$$10 = 2 \cdot 4 + 2$$
$$4 = 2 \cdot 2 + 0$$

Note that this corresponds to the gcd computation

$$\gcd(514, 24) = \gcd(24, 514 - 21 \cdot 24) = \gcd(24, 10)$$

$$= \gcd(10, 24 - 2 \cdot 10) = \gcd(10, 4)$$

$$= \gcd(4, 10 - 2 \cdot 4) = \gcd(4, 2)$$

$$= \gcd(2, 4 - 2 \cdot 2) = \gcd(2, 0)$$

$$= 2$$

So in the computation

$$514 = 21 \cdot 24 + 10$$
$$24 = 2 \cdot 10 + 4$$
$$10 = 2 \cdot 4 + 2$$
$$4 = 2 \cdot 2 + 0$$

if the remainder is 0 (see the last line), then the previous line's remainder must be the gcd.

Let's look at our computation of the gcd of 514 and 24:

$$514 = 21 \cdot 24 + 10$$
$$24 = 2 \cdot 10 + 4$$
$$10 = 2 \cdot 4 + 2$$
$$4 = 2 \cdot 2 + 0$$

Recall that the above computation means that the gcd is 2. Note only that through backward substitution, we can rewrite 2 as a linear combination of 514 and 24.

Let's try to do this in a more organized way. So here's our facts again:

$$514 = 21 \cdot 24 + 10$$
$$24 = 2 \cdot 10 + 4$$
$$10 = 2 \cdot 4 + 2$$

Let me put the remainders on one side:

$$10 = 514 - 21 \cdot 24 \tag{1}$$

$$4 = 24 - 2 \cdot 10 \tag{2}$$

$$2 = 10 - 2 \cdot 4 \tag{3}$$

Note that (1) tells you that 10 is a linear combination of 514, 24. (2) tells you that 4 is a linear combination of 24, 10. If I substitute (1) into (2), 4 will become a linear combination of 514, 24. (3) says that 2 is a linear combination of 10, 4. But 10 is a linear combination of 514, 24 and 4 is a linear combination of 514, 24. Hence 2 is also a linear combination of 514, 24. See it?

OK. Let's do it. From

$$10 = 514 - 21 \cdot 24 \tag{1}$$

$$4 = 24 - 2 \cdot 10 \tag{2}$$

$$2 = 10 - 2 \cdot 4 \tag{3}$$

if I substitute (1) into (2) and (3) (i.e., rewrite 10 as a linear combination of 514, 24):

$$10 = 514 - 21 \cdot 24 \tag{1}$$

$$4 = 24 - 2 \cdot (514 - 21 \cdot 24) \tag{2}$$

$$2 = (514 - 21 \cdot 24) - 2 \cdot 4 \tag{3}$$

Collecting the multiples of 514 and 24:

$$10 = 514 - 21 \cdot 24 \tag{1}$$

$$4 = (-2) \cdot 514 + (1 + (-2)(-21)) \cdot 24 \tag{2'}$$

$$2 = (1) \cdot 514 + (-21) \cdot 24 - 2 \cdot 4 \tag{3'}$$

and simplifying:

$$10 = 514 - 21 \cdot 24 \tag{1}$$

$$4 = (-2) \cdot 514 + (43) \cdot 24 \tag{2'}$$

$$2 = (1) \cdot 514 + (-21) \cdot 24 - 2 \cdot 4 \tag{3'}$$

Substituting (2') into (3'):

$$10 = 514 - 21 \cdot 24 \tag{1}$$

$$4 = (-2) \cdot 514 + (43) \cdot 24 \tag{2'}$$

$$2 = (1) \cdot 514 + (-21) \cdot 24 - 2 \cdot ((-2) \cdot 514 + (43) \cdot 24) \tag{3'}$$

Tidying up:

$$10 = 514 - 21 \cdot 24 \tag{1}$$

$$4 = (-2) \cdot 514 + (43) \cdot 24 \tag{2'}$$

$$2 = (1 - 2(-2)) \cdot 514 + (-21 - 2(43)) \cdot 24 \tag{3"}$$

Simplifying:

$$10 = 514 - 21 \cdot 24 \tag{1}$$

$$4 = (-2) \cdot 514 + (43) \cdot 24 \tag{2'}$$

$$2 = (5) \cdot 514 + (-107) \cdot 24 \tag{3"}$$

(It's a good idea to check after each substitution that the equalities still hold. We all make mistakes, right?)

OK. That's great. It looks more organized now. So much so that you can now easily write a program to compute the above.

Now let's look at the general case. Suppose instead of 514 and 24, I write a and b. The computation will look like this:

$$a = q_1 \cdot b + r_1$$

$$b = q_2 \cdot r_1 + r_2$$

$$r_1 = q_3 \cdot r_2 + r_3$$

$$r_2 = q_4 \cdot r_3 + 0$$

To make things even more regular and uniform, let me rewrite it this way:

$$r_0 = q_1 \cdot r_1 + r_2$$

$$r_1 = q_2 \cdot r_2 + r_3$$

$$r_2 = q_3 \cdot r_3 + r_4$$

$$r_3 = q_4 \cdot r_4 + 0$$

A lot nicer, right? Let me write it this way with the remainder term on the lefts:

$$r_2 = (1) \cdot r_0 + (-q_1) \cdot r_1$$

$$r_3 = (1) \cdot r_1 + (-q_2) \cdot r_2$$

$$r_4 = (1) \cdot r_2 + (-q_3) \cdot r_3$$

(Remember that r_4 is the gcd ... $r_0 = 514, r_1 = 24$... right?) Organized this way, I have the gcd on one side of the equation. Now if I substitute the first equation into the second I get

$$r_2 = (1) \cdot r_0 + (-q_1) \cdot r_1 \dots \text{USED}$$

 $r_3 = (1) \cdot r_1 + (-q_2) \cdot ((1) \cdot r_0 + (-q_1) \cdot r_1)$
 $r_4 = (1) \cdot r_2 + (-q_3) \cdot r_3$

i.e.,

$$r_2 = (1) \cdot r_0 + (-q_1) \cdot r_1 \dots \text{ USED}$$

 $r_3 = (-q_2) \cdot r_0 + (1 + q_1 q_2) \cdot r_1$
 $r_4 = (1) \cdot r_2 + (-q_3) \cdot r_3$

Note that I can't throw away the first equation yet! I need to keep r_2 around since it appears in the third equation! So when can I throw the first equation away? Look at the general case. Suppose we have

$$r_{2} = (1) \cdot r_{0} + (-q_{1}) \cdot r_{1}$$

$$r_{3} = (1) \cdot r_{1} + (-q_{2}) \cdot r_{2}$$

$$r_{4} = (1) \cdot r_{2} + (-q_{3}) \cdot r_{3}$$

$$r_{5} = (1) \cdot r_{3} + (-q_{4}) \cdot r_{4}$$

$$r_{6} = (1) \cdot r_{4} + (-q_{5}) \cdot r_{5}$$

Aha! r_2 is used only in the next two equations.

Suppose we are at equation 3:

$$r_3 = c_1 \cdot r_0 + d_1 \cdot r_1$$
$$r_4 = c_2 \cdot r_0 + d_2 \cdot r_1$$

We have to compute the next equation: This requires r_3, r_4 . Then we have

$$r_5 = (1) \cdot r_3 + (-q_4) \cdot r_4$$

where

$$q_4 = |r_3/r_4|, \quad r_5 = r_3 - q_4 r_4$$

Altogether we have

$$r_3 = c_1 \cdot r_0 + d_1 \cdot r_1$$

$$r_4 = c_2 \cdot r_0 + d_2 \cdot r_1$$

$$r_5 = (1) \cdot r_3 + (-q_4) \cdot r_4$$

The last equation becomes

$$r_5 = c_1 \cdot r_0 + d_1 \cdot r_1 + (-q_4) \cdot (c_2 \cdot r_0 + d_2 \cdot r_1)$$

i.e.

$$r_5 = (c_1 - q_4 c_2) \cdot r_0 + (d_1 - q_4 d_2) \cdot r_1$$

Let me repeat that in a slightly more general context. If we have

$$r_3 = c_1 \cdot r_0 + d_1 \cdot r_1$$
$$r_4 = c_2 \cdot r_0 + d_2 \cdot r_1$$

then we get (throwing away the first equation):

$$r_4 = c_2 \cdot r_0 + d_2 \cdot r_1$$

$$r_5 = (c_1 - q_4 c_2) \cdot r_0 + (d_1 - q_4 d_2) \cdot r_1$$

To put it in terms of numbers instead of equations this is what we get: If we have

$$c_1, d_1, c_2, d_2, r_3, r_4$$

then we get

$$c_2, d_2, c_1 - |r_3/r_4| c_2, d_1 - |r_3/r_4| d_2, r_4, r_3 - |r_3/r_4| r_4$$

In general, if we have

then we get

$$c', d', c - |r/r'| c', d - |r/r'| d', r', r - |r/r'| r'$$

Of course since we start off with r_0, r_1 (i.e. what we call a and b above), we have

$$r_0 = 1 \cdot r_0 + 0 \cdot r_1$$

 $r_1 = 0 \cdot r_0 + 1 \cdot r_1$

i.e., you would start off with

$$c = 1, d = 0, c' = 0, d' = 1, r = r_0, r' = r_1$$

Let's check this algorithm with our $r_0 = 514, r_1 = 24$.

STEP 1: The initial numbers are

$$c = 1, d = 0, c' = 0, d' = 1, r = 514, r' = 24$$

Again this corresponds to

$$r_3 = 1 \cdot 514 + 0 \cdot 24$$
$$r_4 = 0 \cdot 514 + 1 \cdot 24$$

STEP 2: The new numbers (6 of them) are

$$c' = 0$$

$$d' = 1$$

$$c - \lfloor r/r' \rfloor c' = 1 - \lfloor 514/24 \rfloor 0 = 1$$

$$d - \lfloor r/r' \rfloor d' = 0 - \lfloor 514/24 \rfloor 1 = 0 - 21 = -21$$

$$r' = 24$$

$$r - \lfloor r/r' \rfloor r' = 514 - \lfloor 514/24 \rfloor 24 = 514 - 504 = 10$$

So the new numbers (we reset the variables in the algorithm):

$$c = 0, d = 1, c' = 1, d' = -21, r = 24, r' = 10$$

These corresponds to the data on the second and third line of the following:

$$514 = 1 \cdot 514 + 0 \cdot 24$$
$$24 = 0 \cdot 514 + 1 \cdot 24$$
$$10 = 1 \cdot 514 + (-21) \cdot 24$$

STEP 3: From the 6 numbers from STEP 2 we get

$$c' = 1$$

$$d' = -21$$

$$c - \lfloor r/r' \rfloor c' = 0 - \lfloor 24/10 \rfloor 1 = -2$$

$$d - \lfloor r/r' \rfloor d' = 1 - \lfloor 24/10 \rfloor (-21) = 1 + 42 = 43$$

$$r' = 10$$

$$r - \lfloor r/r' \rfloor r' = 24 - \lfloor 24/10 \rfloor 10 = 24 - 20 = 4$$

So the new numbers (we reset the variables in the algorithm):

$$c = 1, d = -21, c' = -2, d' = 43, r = 10, r' = 4$$

These corresponds to the data on the third and fourth line of the following:

$$514 = 1 \cdot 514 + 0 \cdot 24$$
$$24 = 0 \cdot 514 + 1 \cdot 24$$
$$10 = 1 \cdot 514 + (-21) \cdot 24$$
$$4 = (-2) \cdot 514 + 43 \cdot 24$$

STEP 4: From the 6 numbers from STEP 3 we get

$$c' = -2$$

$$d' = 43$$

$$c - \lfloor r/r' \rfloor c' = 1 - \lfloor 10/4 \rfloor (-2) = 1 + 4 = 5$$

$$d - \lfloor r/r' \rfloor d' = -21 - \lfloor 10/4 \rfloor (43) = -21 - 86 = -107$$

$$r' = 4$$

$$r - \lfloor r/r' \rfloor r' = 10 - \lfloor 10/4 \rfloor 4 = 10 - 8 = 2$$

So the new numbers (we reset the variables in the algorithm):

$$c = -2, d = 43, c' = 5, d' = -107, r = 4, r' = 2$$

These corresponds to the data on the fourth and fifth line of the following:

$$514 = 1 \cdot 514 + 0 \cdot 24$$

$$24 = 0 \cdot 514 + 1 \cdot 24$$

$$10 = 1 \cdot 514 + (-21) \cdot 24$$

$$4 = (-2) \cdot 514 + 43 \cdot 24$$

$$2 = 5 \cdot 514 + (-107) \cdot 24$$

STEP 5: From the 6 numbers from STEP 4 we get

$$c' = 5$$

$$d' = -107$$

$$c - \lfloor r/r' \rfloor c' = -2 - \lfloor 4/2 \rfloor 5 = -2 - 10 = -12$$

$$d - \lfloor r/r' \rfloor d' = 43 - \lfloor 4/2 \rfloor (-107) = 43 + 214 = 257$$

$$r' = 2$$

$$r - \lfloor r/r' \rfloor r' = 4 - \lfloor 4/2 \rfloor 2 = 4 - 4 = 0$$

So the new numbers (we reset the variables in the algorithm):

$$c = 5, d = -107, c' = -12, d' = 257, r = 2, r' = 0$$

These corresponds to the data on the fifth and sixth line of the following:

$$514 = 1 \cdot 514 + 0 \cdot 24$$

$$24 = 0 \cdot 514 + 1 \cdot 24$$

$$10 = 1 \cdot 514 + (-21) \cdot 24$$

$$4 = (-2) \cdot 514 + 43 \cdot 24$$

$$2 = 5 \cdot 514 + (-107) \cdot 24$$

$$0 = (-12) \cdot 514 + 257 \cdot 24$$

Of course (as before) at this point, you see that the r'=0. Therefore

$$\gcd(514, 24) = 2$$

and furthermore from c = 5, d = -107, we get

$$5 \cdot 514 + (-107) \cdot 24 = \gcd(514, 24)$$

Here's a Python implementation with some test code:

```
ALGORITHM: EEA
INPUTS: a, b
OUTPUTS: r, c, d where r = gcd(a, b) = c*a + d*b
    a0, b0 = a, b
    d0, d = 0, 1
    c0, c = 1, 0
    q = a0 // b0
    r = a0 - q * b0
    while r > 0:
        d, d0 = d0 - q * d, d
        c, c0 = c0 - q * c, c
        a0, b0 = b0, r
        q = a0 // b0
        r = a0 - q * b0
    r = b0
    return r, c, d
```

You can pound real hard at the Extended Euclidean Algorithm with this:

By the way, this is somewhat similar to what we call *tail recursion* (CISS445) an extremely important technique in functional programming. All LISP hackers and people working in high performance computing and compilers swear by it. You don't see recursion in the above code, but you can replace the while-loop with recursion and if you have a compiler/interpreter that can perform true tail recursion, then it would run exactly like the above algorithm.

Exercise 1.5.4. Leetcode 365: https://leetcode.com/problems/water-and-jug-problem/description/ and the Die Hard 3 problem https://www.math.tamu.edu/~dallen/hollywood/diehard/diehard.htm. You are given two jugs with capacities jug1Capacity and jug2Capacity liters. There is an infinite amount of water supply available. Determine whether it is possible to measure exactly targetCapacity liter using these two jugs.

If targetCapacity liters of water are measurable, you must have targetCapacity liters of water contained within one or both buckets by the end.

Operations allowed:

- 1. Fill any of the jugs with water.
- 2. Empty any of the jugs.
- 3. Pour water from one jug into another till the other jug is completely full, or the first jug itself is empty.

You'll see that there are times when you're only interested in the value of x and not y (or y and not x – the above is symmetric about x and y). Do you notice x comes from c? If you analyze the above algorithm, you see immediately that c is computed from c' and c' is computed from c, c', q, q is computed from r, r', r is computed from r, q, r'. Therefore if you're interested in c, you don't need to compute d or d'. So you can change the EEA to this:

```
ALGORTHM: EEA2 (sort of EEA ... without the d, d0)

INPUTS: a, b

OUTPUTS: r, c where r = gcd(a, b) = c*a + d*b for some d

a0, b0 = a, b
c0, c = 1, 0
q = a0 // b0
r = a0 - q * b0

while r > 0:
    c, c0 = c0 - q * c, c

a0, b0 = b0, r
q = a0 // b0
r = a0 - q * b0

r = b0
return r, c
```

Later you'll see why we compute only c. It's not that I have something against d.

Exercise 1.5.5. Compute the following gcd and the Bézout's coefficients of the given numbers by following the Extended Euclidean Algorithm.

- 1. gcd(0, 10)
- $2. \gcd(10,0)$
- 3. gcd(10, 1)
- 4. gcd(10, 10)
- 5. gcd(107, 5)
- 6. gcd(107, 26)
- 7. $\gcd(84, 333)$
- 8. $gcd(F_{10}, F_{11})$ where F_n is the n-th Fibonacci number. (Recall: $F_0=0, F_1=1, F_{n+2}=F_{n+1}+F_n$.)
- 9. gcd(ab, b)
- 10. gcd(a, a + 1)
- 11. gcd(ab + a, b) where 0 < a < b. Go as far as you can.
- 12. gcd(a(a+1)+a, (a+1)) where 0 < a < b. Go as far as you can.

Exercise 1.5.6. Prove that if $a \mid c$, $b \mid c$, and gcd(a, b) = 1, then $ab \mid c$.

Exercise 1.5.7. Prove that if $a \mid c, b \mid c$, then

$$\frac{ab}{\gcd(a,b)} \mid c$$

Exercise 1.5.8. Leetcode 920. https://leetcode.com/problems/number-of-music-playlists
Your music player contains n different songs. You want to listen to goal songs
(not necessarily different) during your trip. To avoid boredom, you will create
a playlist so that:

Every song is played at least once.

A song can only be played again only if k other songs have been played.

Given n, goal, and k, return the number of possible playlists that you can create. Since the answer can be very large, return it modulo 109 + 7.

Chapter 2

Classical ciphers

2.1 Shift cipher

Definition 2.1.1. The **shift cipher** (E, D) is given by

$$E(k, x) = x + k \pmod{26}$$

and

$$D(k, x) = x - k \pmod{26}$$

Historically the shift cipher with key k=3 was used by Julius Caesar and is called the **Caesar cipher**.

JOHN DOE 37 OF 49 MARCH 2, 2023

2.2 Affine cipher

John Doe 38 of 49 March 2, 2023

2.3 Vigenère cipher

John Doe 39 of 49 March 2, 2023

2.4 Substitution cipher

John Doe 40 of 49 March 2, 2023

2.5 Permutation cipher

JOHN DOE 41 OF 49 MARCH 2, 2023

2.6 Hill cipher

John Doe 42 of 49 March 2, 2023

2.7 One-time pad cipher

John Doe 43 of 49 March 2, 2023

2.8 Linear feedback shift register

John Doe 44 of 49 March 2, 2023

Chapter 3

Group theory

3.1 Definitions

The most basic mathematical object is \mathbb{Z} . \mathbb{Z} has two operations: addition and multiplication. We first abstract the study of \mathbb{Z} by focusing on just one operation, the +.

Definition 3.1.1. (G, *, e) is a **group** if G is a set and * satisfies

group

- (C) If $x, y \in G$, then $x * y \in G$. In other words $* : G \times G \to G$ is a binary operator.
- (A) If $x, y, z \in G$, then (x * y) * z = x * (y * z).
- (I) If $x \in G$, then there is some $y \in G$ such that x * y = e = y * x. y is inverse called an **inverse** of x. Later we will see that the inverse of x is uniquely determined by x.
- (N) If $x \in G$, then x * e = x = e * x.

abelian group **Definition 3.1.2.** (G, *, e) is an abelian group if (G, *, e) is a group such that if $x, y \in G$, then x * y = y * x. In other words, (G, *, e) is an abelian group if (G, *, e) is group and * is a commutative operator.

The reason for now including the commutativity condition in the definition for groups is because there are many important groups which are not abelian.

Chapter 4

Ring theory

Chapter 5

Field theory

Index

```
abelian group, 45
Bézout's coefficients, 19
Caesar cipher, 37
divides, 10
Euclidean Algorithm, 13
Extended Euclidean Algorithm, 19
GCD Lemma, 12
group, 45
inverse, 45
invertible, 7
shift cipher, 37
unit, 7
```

Bibliography

[1] Leslie Lamport, $pmatrix{PT}{EX}$: a document preparation system, Addison Wesley, Massachusetts, 2nd edition, 1994. (EXAMPLE)