

**INFLUENCE OF TEMPERATURE
ON
NITRIFYING BACTERIA :
A STUDY ON NITRIFICATION PROCESS**

A Thesis Submitted
 In Partial Fulfilment of the Requirements
 for the Degree of

MASTER OF TECHNOLOGY

Acc No 355

by
D. N. Bhattacharya

CE-1970-M-BHA-MF

POST GRADUATE OFFICE
 This thesis has been approved
 for the award of the Degree of
 Master of Technology (M.Tech.)
 in accordance with the
 regulations of the Indian
 Institute of Technology Kanpur
 Dated. 16.4.70

to the
DEPARTMENT OF CIVIL ENGINEERING
INDIAN INSTITUTE OF TECHNOLOGY KANPUR

MARCH 1970

CERTIFICATE

This is to certify that the present work has been
done under my supervision and the work has not been submitted
elsewhere for a degree.

Dr. R. H. Siddiqi
Assistant Professor
Department of Civil Engineering
Indian Institute of Technology Kanpur

ACKNOWLEDGEMENTS

My most sincere regards go to Dr. Rashid Hayat Siddiqi whose guidance throughout this study helped me to bring out the thesis in this form.

Thanks to Dr. G.D. Agrawal for making important suggestions, and also to Dr. A.V.S. Prabhakara Rao for his constant encouragements.

Thanks to all those who helped directly or indirectly to make the thesis complete.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENT	
LIST OF TABLES	
LIST OF FIGURES	
1. INTRODUCTION	1
1.1 General	1
1.2 Scope of Study	6
2. LITERATURE REVIEW	8
2.1 Fertiliser Waste & its Treatment	8
2.2 Effect of Temperature on Bacterial Growth	11
2.2.1 Low Temperature & Psychrophiles	14
2.2.2 Moderate Temperature & Mesophiles	16
2.2.3 High Temperature & Thermophiles	16
2.3 Kinetics of Growth	18
3. MATERIALS AND METHODS	21
3.1 Preparation of Inoculum	21
3.2 Substrate for Growth	21
3.3 Measurement of Growth	22
3.4 Analytical Techniques	23
4. RESULTS AND DISCUSSIONS	25
4.1 Preliminary Observations	25
4.1.1 Approach to the Problem	25
4.1.2 Effect of Substrate Concentration	25
4.1.3 Effect of Active Granules	27
4.2 Effect of Temperature	29
5. CONCLUSIONS	47
REFERENCES	48

LIST OF TABLES

Table No.		Page
1	Analysis of Wastewater from Sindri Plant	2
2	Analysis of Wastewater from Panki Plant	3
3	Nitrogen Removal Methods	4
4	Informations on Nitrosomonas	8
5	Informations on Nitrobacter	9
6	Inorganic Media	22
7	Flask Constants	App. A
8	Solubility of Oxygen in Water	App. A
9 to 18	Respiration Data	App. B

LIST OF FIGURES

Fig. No.		Page
1	Generation Time of <i>E.coli</i> with Temperature	12
2	Growth Rates of a psychrophile & a mesophile with Temperature	12
3	Standard Curve for Ammonia	24
4	Standard Curve for Nitrite	24
5	Standard Curve for Nitrate	24
6	Effect of Initial Ammonia Concentration	26
7	Oxygen Uptakes at 20°C	29
8	Oxygen Uptakes at 22°C	30
9	Oxygen Uptakes at 25°C	31
10	Oxygen Uptakes at 28°C	32
11	Oxygen Uptakes at 32°C	33
12	Oxygen Uptakes at 34°C	34
13	Oxygen Uptakes at 36°C	35
14	Oxygen Uptakes at 38°C	36
15	Oxygen Uptakes at 40°C	37
16	Oxygen Uptakes at 41.5°C	38
17	Sample Plot for Determining Growth Constant	App. 'C'
18	Growth Constants of Nitrifying Bacteria with Temperature	40
19	Log growth constant with Temperature °C for Nitrosomonas	41
20	Log growth constant with Temperature °C for Nitrobacter	41
21	Arrhenius Plot of Growth Constants	44
22	Generation Times of Nitrifying Bacteria	46

1. INTRODUCTION

1.1 General

With the coming up of new nitrogenous fertilizer plants and the ones already existing in India, the country is faced with the problem of treating its waste. And definitely the problem will be more and more in future. The unique characteristics of fertilizer waste is its high content of ammonia nitrogen. As high as 939 mg/l of ammonia-nitrogen with a flow of 9.8 mgd. at Sindri Fertilizer Unit, Table I, and 1160 mg/l. with a flow 0.565 mgd at Urea Plant Kanpur, Table II have been reported (1)(2).

The harmful effects of taking these wastes untreated to lakes or streams are well-known. Nitrogen even in small concentrations acts as a fertilizer and encourages heavy growth of algae and other planktons. Some of the ill-effects of excessive algal growth have been summarized by Lackey (3) as

- (a) Growth of toxic algae. He quoted an example of Oysters being adversely affected by the growth of an undesirable species of algae.
- (b) Aesthetic effect. Due to growth and decay of algae natural waters get a soapy appearance, and acquire unpleasant tastes and odors.
- (c) Deoxygenation of waters. The photosynthetic plants produce supersaturation in the daytime and oxygen depletion at night. Such extremity of environment is not suitable for many aquatic lives. More serious problem is created when, after reaching a high level of growth, they start dying possibly due to their own excreted metabolites. Oxygen depletion due to such decomposition is fast and there is no replacement from photosynthesis.

TABLE 1

CHARACTERISTICS OF WASTEWATER AT SINDRI FERTILIZER UNIT, SINDRI

Description	Period	No. of Readings	Constituents	Analysis in ppm		
				Max.	Min.	Ave.
Stream I	May to June, 1965	15	Total Phenol	8.0	0.2	1.6
			Cyanide as CN	5.0	0.05	1.5
			Amn. Nitrogen	238	7.0	88
			Suspended Solids	7190	960	3369
			Oil	24	1.0	8.2
			Flow in mgd	3.2	1.2	2.1
Stream II	May to June, 1965	15	Phenol	14.0	0.1	0.7
			Cyanide	3.2	0.4	1.2
			Amn. Nitrogen	939	242	313
			Suspended Solids	790	97	398
			Oil	29	2.0	11.5
			Flow in mgd	9.8	6.2	7.8

Still another problem in streams only has been encountered by Sawyer (4). In shallow soft-bottom streams aquatic forms get rooted and so dense as to choke the flow of water and cause flooding the upstream reaches. In some cases they themselves take up oxygen in the night time and the oxygen-depleted water travels some distance. Unless reaeration in the downstream is sufficient, many fishes may be killed.

Apart from this, it has been found that drinking waters with high nitrate content often cause methemoglobinemia in infants. In some places of United States, a maximum of 20 mg/l. NO₃-N is permitted in public water supply (5) And, since biological oxidation of ammonia leads ultimately to nitrate, high concentration of the

TABLE 2

ESTIMATED CHARACTERISTICS OF UREA PLANT, KANPUR

Item	I	kg/hr	I	DOS
Volume	107	M ³ /hr		
Temperature	45°C			
Urea		114.7		1065
NH ₃		149.3		1410
CO ₂		200.5		1960
Other dissolved solids		136.4		1280
Total dissolved solids		251.1		2345
Suspended solids		-		-
Total Solids		251.1		2345
Ammonical Nitrogen				1160

former also is not desirable.

Lastly it is expected that ammonia at high concentration will be toxic to fish life. Even after dilution of fertilizer waste in a stream, ammonia content may be high enough to cause hazard.

Possibility of satisfactory treatment of fertilizer waste by our conventional biological processes like activated sludge seems to be remote because of high ammonia content of this waste. Various other methods for the removal of nitrogen are being considered and investigated these days. A classification has been given by Eliassen et al (6). Table III shows a list of these methods together with their removal efficiency, estimated running cost and the form of the ultimate waste to be disposed of. Out of all these methods a few need elaboration here.

TABLE 3

COMPARISON OF NITROGEN REMOVAL METHODS

Process	Classification	Removal efficiency per cent	Estimated removal cost \$/mil gal	Type of waste disposed	Remarks
Ammonia stripping	C*	80-98	9-25		Removal efficiency is based on ammonia nitrogen only.
Conventional Biological Treatment	B*	30-50	30-100	sludge	
Anaerobic Denitrification	B*	60-95	25-30	none	
Algae Harvesting	B*	50-90	20-35	liquid & sludge	Large land area required
Ion Exchange	C*	80-92	170-300	Liquid	Efficiency & cost depend on degree of pretreatment, co-filt., etc.
Electrochemical Treatment	C*	80-95	4-8	liquid & sludge	
Electrodialysis	C*	30-50	100-250	liquid	Costs based 1-10 mgd. capacity solid concentration 1000 mg/l.
Reverse Osmosis	P*	65-95	250-400	liquid	
Distillation	P*	90-98	400-1000	liquid	
Land Application	P*			none	

* B = Biological, C = Chemical, P = Physical

Biological treatment - In any biological treatment process organisms need nutrients like nitrogen and phosphorous besides the main organic food. All these organic matter, nitrogen and phosphorous are synthesized into cell material which can be clarified later. The feasibility of this method will depend largely on the amount of organic substance available. If the gross composition of biological growth is assumed to be $C_6H_{12}NO_2$, organic matter needed to balance the nitrogen of fertilizer waste will be too high to be of any practical value.

Algae harvesting - This is accomplished using specially designed shallow ponds. Soluble and colloidal nitrogen are bound to algal cell tissue. Cell growth may be represented by the following equation

Disadvantages with this process are large land requirement and disposal of algae.

Ammonia stripping - In wastewater ammonium ions exist in equilibrium with ammonia and hydrogen ions as shown by the equation

As the pH is raised about seven, the equilibrium is shifted to the right, and by agitating the water with the help of air, ammonia can be liberated. Needless to say this method will be economically feasible only when ammonia concentration in the waste is quite high. As for the fertilizer waste, ammonia stripping can be used as a primary treatment process.

Electrochemical treatment - In this method sewage is mixed with sea-water and passed into a single cell with carbon electrodes. Because of the higher density of sea water it accumulates at the bottom around anode and the mixture at the top around cathode. Current raises the pH at cathode, thus precipitating phosphorous and ammonia as $\text{Ca}_3(\text{PO}_4)_2$ and $\text{Mg}^{2+}\text{NH}_4\text{PO}_4$ along with $\text{Mg}^{2+}(\text{OH})_2$. Hydrogen bubbles, generated at cathode, lift the sludge to the surface where it can be skimmed and chlorine at the anode provides for disinfection.

Land application - Removal of nitrogen by this method is mainly due to physical adsorption of ammonium ions by soil particles. Nitrate however passes unchanged through the soil system.

Nitrification - denitrification process - By this time this system has drawn considerable attention. Nitrification unit utilizes some aerobic autotrophs which derive their energy from the oxidation of ammonia and nitrite. The denitrification unit employs some anaerobes which are capable of reducing nitrate and nitrite to nitrogen and nitrous oxide which ultimately escape into atmosphere.

1.2 Scope of study

The present work relates to one aspect of nitrification and that is "influence of temperature on Nitrification process". It is generally believed that in any biological system velocity of reaction can be improved with increasing temperature. Bacteria can withstand a limited range of temperature with an intermediate temperature of maximum growth. And also is noted the fact that fertilizer

industry often throws hot wastes. Some waste streams from Urea Plant, Kanpur is as hot as to reach 45°C, Table 2. It is therefore possible to segregate or mix the various streams in a manner to achieve a temperature where bacteria can work faster. This eventually will reduce detention period requirement, and a smaller nitrification unit may be adequate. It is therefore proposed to study the effect of temperature on the metabolic activity of nitrifying bacteria.

2. LITERATURE REVIEW

2.1 Fertilizer Waste and its Treatment

As a method of treatment for nitrogenous fertilizer industry waste, Nitrification denitrification process is drawing attention in recent times. It has high potentiality to convert all the combined nitrogen to elemental nitrogen which escapes into atmosphere.

"Nitrification" is the process where ammonia from the breakdown of proteins or from other sources is oxidized biologically to nitrate. The process goes in two steps. First ammonia is oxidized to nitrite ($\text{NH}_3 + \frac{3}{2} \text{O}_2 \rightarrow \text{HNO}_2 + \text{H}_2\text{O}$) by a group of bacteria, Nitrosomonas europaea being the most common one. Later nitrite is oxidized to nitrate ($\text{HNO}_2 + \frac{1}{2}\text{O}_2 \rightarrow \text{HNO}_3$) by other group of bacteria, Nitrobacter vinogradskii being the most common one. Table 4 and 5 summarize informations regarding Nitrosomonas and Nitrobacter (7).

TABLE 4
NITROSONOMAS EUROPEA

Order : Pseudomonadales

Family : Nitrobacteraceae

Rods 0.9 to 1.0 by 1.1 to 1.8 μ , occuring singly, rarely in chains of three to four. Possess a single polar flagellum 3 to 4 times the length of the rods, or rarely one at either end.

Grow readily in aqueous medium without organic matter and containing ammonium sulphate, potassium phosphate and magnesium carbonate. The cells accumulate in soft masses around the particles of magnesium carbonates at the bottom of the flask. The liquid is occasionally turbid through development of motile swarm cells or monads.

Small, compact, sharply defined colonies brownish in colour on silica gel.

Aerobic.

Strictly autotrophic.

Source : Soils.

Habited: Presumably widely distributed in soil.

TABLE 5

NITROBACTER WINGRADSKII

Order : Pseudomonadales

Family : Nitrobacteraceae

Short, Non-motile rods with gelatinous membrane, 0.6 to 0.8 by 1.0 to 1.2 microns. Do not stain readily. Gram-negative.

Can be cultivated on media free of organic matter. Sensitive to certain organic compounds.

Washed agar colonies : In 7 to 10 days very small light, brown, circular to irregular colonies, becoming darker.

Silica gel : Colonies smaller but more dense than those on washed agar.

Washed agar slant : In 7 to 10 days, scant, grayish streak.

Inorganic solution medium : After 10 days flocculent sediment. Sensitive to ammonium salts under alkaline conditions.

Nitrite is oxidized to nitrate.

Aerobic.

Strictly autotrophic.

Optimum temperature : between 25°C and 28°C

Source : Soil

Habitat: Presumably widely distributed in soil.

"Denitrification" the process of forming nitrite NO_2 or N_2 from nitrates was observed as early as in 1868 by Schloesing. "In its essence the reduction of nitrate is the use of oxygen of nitrate as a hydrogen acceptor. Consequently a source of combined hydrogen, i.e., organic matter, and a limitation on the supply of free oxygen, are needed".(8)

The following are the intermediate steps in the Denitrification process.

Hyponitrite is unstable and can undergo breakdown differently.

There is evidence of nitrous oxide also being reduced to nitrogen gas.

Ps. denitrificans which ordinarily reduces nitrate to nitrogen, is able to synthesise "adaptive enzyme" for the reduction of N_2O (9). Ps. stutzeri and Ps. pyocyannea can rapidly decompose N_2O while Denitrobacillus seems to act slow (8).

Reduction of nitrate to ammonia is also possible. The reducing bacteria include a wide variety of groups like Azotobacter, Radiobacter, Cl. walchii, Desulfovibrio, Denitrobacillus licheniformis and Bac. subtilis. In the case of Cl. walchii (10) even hydrogen gas can act as a hydrogen donor. The reaction goes like

2.2 Effect of Temperature on Bacterial Growth

Rate of any chemical reaction is enhanced by increase in temperature. And it is not difficult to imagine that bacterial growth also is affected by temperature in a similar way when one considers that enzymatic reactions are purely of chemical nature. However, growth is an outcome of a sequence of reactions and one must expect a certain complexity in the variation of growth-rate with temperature. Nevertheless, it has been observed by many workers (11) (12) (13) that agglomeration of unorganised systems leads to an approximate accordance with the Arrhenius Law

$$\frac{d \ln K}{dT} = \frac{E}{RT^2}$$

where K is the velocity of reaction, E the energy of activation, R the Universal gas constant and T temperature in absolute degree.

Barber's work (11) is most widely quoted for effect of temperature on bacterial growth. He plotted mean generation time as a function of temperature. In lower temperature ranges the rate of growth of bacteria increases rapidly with increase in temperature, the change being about two to three fold for each 10°C rise in temperature, Fig. (1). Up to 35°C generation time drops, between 35° and 45° it remains almost constant, and between 45° and 50° it increases very slowly. At still higher temperatures growth fails completely and the cells are killed.

Ingram (14) has studied a psychrophile and a mesophile, and has shown the essential validity of Arrhenius equation, Fig.(2). He plotted logarithm of growth-rate against inverse of temperature in absolute degree. Both the curves were linear over the lower temperature range, giving a temperature characteristic of 14,200

FIG. 1. GENERATION TIMES OF B. COLI AFTER BARBER (11)

FIG. 2. ARRHENIUS PLOT OF GROWTH RATES AFTER INGRAHAM (14)

cal/mole for the mesophile (*L. casei*), and 9,050 cal/mole for the psychrophile. At higher temperatures growth rate was falling rapidly.

It is evident from the works of Barber, Ingraham and others that bacterial multiplication-rate does not increase when a certain temperature is reached, and after that the rate falls down rapidly. This signifies the difference between biological and chemical reactions. While any chemical reaction can be made faster infinitely by increasing temperature, biological one cannot be made so. This limitation in the case of biological growth is stated to be due to inactivation of enzymes, and coagulation and denaturation of cell material at high temperatures. Thus high temperature brings in a second series of reactions, viz., coagulation of protein etc.

A complete and logical formulation for growth constant has been proposed by Minschelwood (15). The equation is

$$\mu_m = \mu_1 e^{-E_1/RT} - \mu_2 e^{-E_2/RT}$$

where μ_1 μ_2 are constants. E_1 E_2 are known as temperature characteristic or Arrhenius constant. T is temperature $^{\circ}\text{C}$ and R is the universal gas constant.

The first term represents rate of growth and the second term rate of death. In the lower temperature ranges (around 10° to 35°C) the first term is much more predominant so that growth rate increases with temperature. With further increase in temperature the second term becomes appreciably large with the result that growth rate does not change much, and later falls down rapidly.

2.2.1 Effect of Low Temperature and the Psychrophiles

The minimum temperatures at which bacteria can multiply is difficult to determine accurately, because there is no sharp declination in the growth rate at low temperatures. Moreover, with decrease in temperature, generation time goes on extending very much. In fact, Ingraham (14) has observed generation time as long as 103 hrs. For this reason some suggest that in determining the minimum temperature incubation be continued for a week or so.

Many bacteria are killed by cooling down to 0°C. The mechanism by which freezing kills bacteria is believed to be the disruption of cell organization by the formation of relatively large ice crystals. Yet there are many who can survive at such temperatures (8). *E.Coli* was found to survive better at -20°C than at -2°C. In cream stored for a year at -20°C the total count was reduced from 2½ million per c.c. to only 690,000 per c.c. Milk-souring organism, *Sc.lactis*, in gelatin or in water, survived 111 days' immersion in liquid air (-191°C) or 45 minutes in liquid hydrogen (-253°C), and subsequently grew at the same rate as controls. *Salmonella typhosa* have been isolated from ice cream kept for two years and four months at -20°C.

Psychrophiles, the so called "cold loving" bacteria, which predominate at low temperatures over others, can even grow at 0°C. How these bacteria can grow at this temperature or rather the mechanism of their survival has been of considerable interest in recent years. Ingraham (16) has discussed and evaluated the merits of some of the explanations.

(i) Fig. (2) shows the basic difference in the pattern of curves for Psychrophiles and Mesophiles. The slope of the linear portion of the curve is lesser for Psychrophiles so that its projection reaches 0°C on the positive side of growth rate. Now that the slope represents activation energy, it has been well assumed by some people that the psychrophily property lies in the basic nature of their enzymes of having lesser activation energy. The theory, however, has been disapproved by Ingraham and Bailey (17) who studied cell-free enzymes from Psychrophiles and Mesophiles and found them identical with respect to temperature characteristics.

(ii) The explanation that Psychrophiles contain larger amounts of enzyme does not seem to hold ground. "Because at about 8°C the growth rate of Psychrophiles is more than 100 times faster than the growth rate of Mesophiles, and it hardly seems possible that they could contain more than 100 times as much enzyme".

(iii) Brown and also Ingraham and Baily have observed that Psychrophiles have less temperature characteristic than Mesophiles for the oxidation of certain substrates. But the difference disappears when the broken cells are tested. They attribute the psychrophily character to the "intact cells" rather than the constituting enzymes.

In frozen foods, ice crystals cut separately, leaving a relatively concentrated solution. Thimann (8) considers it possible that bacteria can survive in this aqueous phase which does not solidify at ordinary freezing temperatures.

2.2.2 Moderate Temperature and the Mesophiles

The most widely and commonly encountered bacteria are the Mesophiles. They cover a temperature range of more or less 10°C to 45°C with optima around 37°C. Nitrosomonas and Nitrobacter, the bacteria that have been studied here are Mesophiles. Studies of Knowles et al (18) reveal that growth of nitrifying bacteria is considerably affected by temperature. Over a temperature range of 8°C to 23°C which they studied, growth constant of Nitrosomonas increased about 95 percent per degree centigrade rise in temperature, and that of Nitrobacter increased about 5.9 per cent per degree. The equations of best fit as found by them are

$$\log_{10} \mu = 0.0413 T - 0.944 \quad (T \text{ in } ^\circ\text{C})$$

in the case of Nitrosomonas and

$$\log_{10} \mu = 0.0255 T - 0.492$$

in the case of Nitrobacter.

Mesophilic bacteria are killed by exposure to temperature of 50° to 60°C. Proteins the constituting material of cell cannot withstand this temperature, and are denatured and coagulated.

2.2.3 Effect of High Temperature and the Thermophiles

Thermophilic bacteria are found in nature in hot springs, sewage, the intestinal contents of various animals, in the air, in milk and in the soil. Some strains cause spoilage of canned foods which are sterilized at elevated temperatures. Thermophiles are particularly troublesome in the dairy industry since they may grow most rapidly at pasteurization temperatures (62°C or 72°C). As a rule the thermophiles encountered are aerobic sporeformers such as Bacillus coagulans or B.stearothermophilus but Lactobacillus thermophilus may also be a source of trouble (19).

Much effort has been expended to bring out the mechanism by which Thermophiles can grow and survive at temperatures where proteins are generally degenerated.

Allen (20) has put forward her theory of "dynamic nature of thermophily". All the proteins which are denatured at high temperature are substituted and synthesised back rapidly "much as it would be possible to keep a leaking ship afloat by rapidly pumping water from her hold" (16).

A second theory that Thermophiles contain proteins with greater heat stability has drawn much support. In fact, Miltzer and his co-workers (21) in a series of experiments, have confirmed the theory. They have examined the corresponding enzymes from a Mesophile and Bacillus stearothermophilus and found that while malic dehydrogenase from the Thermophile is stable at 65°C, the corresponding one from the Mesophile gets inactivated within 10 minutes at the same temperature. Also an apyrase and a pyrophosphatase from the Thermophile are found to have marked heat stability. On the other hand, it has also been shown that pyruvic acid oxidation system of the same Thermophile gets inactivated, but not when in the intact cell, at 65°C. So it can be inferred that most enzymes, but not all, from Thermophiles have greater heat stability than those of Mesophiles.

Koffler et al (22) have studied non-enzymic proteins also like "flagellins" the fibrous proteins that constitute flagella. They disintegrate and lose their structure on heating, the change being measurable by viscosity determinations. Flagellins from Thermophiles seem to be stable up to 70°C whereas those of Mesophiles are denatured at temperatures over 50°C.

Resistance of spores to heat has been attributed to their

low moisture content. Dry proteins are usually quite resistant to high temperatures. Ovalbumin has been stated to retain its solubility in cold water even after heating at 170°C in the dry state. Partially dry preparations or highly concentrated solutions tolerate intermediate temperatures (8).

Heat-resistance is often enhanced by the protective action of proteins, fats, and other colloids in the suspending medium. "Temperature required to kill lactic acid bacteria is much greater in cream or milk than in peptone water". Proteinase from *Ps. fluorescens* is well protected by broth medium at 60°C, while at 80°C it is denatured by 80 percent if in water, and only 27 percent in the presence of casein.

2.3 Growth Kinetics

Under favourable conditions of moisture, nutrition, pH and temperature bacterial cells grow in size and divide into daughter ones. Growth rate however varies with increasing time. The number of bacteria increases at first logarithmically, and then the growth rate goes on diminishing until a stationary phase is reached. The bacterial number is limited to this stationary phase possibly due to depletion of nutrients or accumulation of metabolites or non-availability of space. Later the bacteria die away.

Growth rate has been expressed mathematically by Quastel (23) for nitrifying bacteria as

$$\frac{dx}{dt} = \mu_m x \quad \dots \quad \dots \quad (1)$$

where x is the number of bacteria at any time t ,
and μ_m is growth constant.

Knowles et al (18) included in this equation Monod's often used substrate term $\mu_m \frac{S}{K_s + S}$ where S is the substrate concentration and K_s is the Michaelis constant, to take care of retarding effect on growth due to reduction in substrate concentration. However, usually Michaelis constant is pretty low. In their study, it rarely exceeded 8.0 mg/l. ammonium-N for Nitrosomonas, and 8.0 mg/l. nitrite-N for Nitrobacter. Consequently, by keeping substrate concentration at high level, a simplification like equation 1 can be applied.

Equation 1 on integration gives,

$$\log_e \frac{X}{X_0} = \mu_m \cdot t \quad \dots \quad \dots \quad (2)$$

where X_0 is the number of bacteria initially present.

If "p" is the rate of mean metabolic activity of each cell so that " pX " is the rate of metabolism which may be represented by rate of oxygen uptake, for X cells.

Equation 2 can be re-written as

$$\log_e \frac{pX}{pX_0} = \mu_m \cdot t \quad \dots \quad \dots \quad (3)$$

$$\text{or } pX = pX_0 \cdot e^{\mu_m t} \quad \dots \quad \dots \quad (4)$$

Now pX or rate of oxygen uptake can be written as $\frac{dy}{dt}$, so that

$$\frac{dy}{dt} = pX_0 \cdot e^{\mu_m t} \quad \dots \quad \dots \quad (5)$$

which on integration gives

$$y = \mu' (e^{\mu_m t} - 1) \quad \dots \quad \dots \quad (6)$$

where $\mu' = \frac{pX_0}{\mu_m} = \text{a constant.}$

For solving for μ_m in the above equation, Quastel et al simplified this equation further by assuming $e^{\mu_m t}$ is much larger compared to unity. This simplification is not well justified when t is small, and one considers that μ_m may be as low as 0.2 per day at 2.3°C for Nitrosomonas and 0.5 per day at 2.3°C for Nitrobacter(18)

As a method of solving for μ_m , it is proposed here to use finite difference method in a similar way as has been used by Fumi Noto (24) for solving for BOD rate constant. If at every 'h' unit interval of time, oxygen uptake readings are noted, then,

$$y_t = \mu' (e^{\mu_m t} - 1) \quad \dots \quad \dots \quad (7)$$

$$\text{and } y_{t+h} = \mu' (e^{\mu_m(t+h)} - 1) \quad \dots \quad \dots \quad (8)$$

Substituting for $e^{\mu_m t}$ in equation 8 from equation 7,

$$y_{t+h} = e^{\mu_m h} \cdot y_t + \mu' (e^{\mu_m h} - 1) \quad \dots \quad \dots \quad (9)$$

The variables y_{t+h} and y_t result in a linear plot and the slope is a measure of μ_m .

3. MATERIALS AND METHODS

3.1 Preparation of Inoculum:

Fresh sewage settled for half an hour was used as a source of nitrifying bacteria. A one liter beaker was taken and in it was provided a sand bed of depth about 7 cms and of grain size 18/25 mesh. The sewage was poured over the bed to a volume of about 700 ml. and was continuously aerated with the help of a sparger. The reactor was daily fed with a 30 ml. solution of 0.02 M ammonium chloride. The feed solution was buffered to pH 8.1 with phosphate buffer of one tenth molarity containing nutrients as described later. Initially nitrification proceeded at a slow rate and the nitrifying bacteria built up profusely within a week as indicated by the extent of nitrification.

3.2 Substrate for Growth:

Ammonium chloride of 0.05 molarity and sodium nitrite of 0.05 molarity were chosen as substrates for Nitrosomonas and Nitrobacter respectively. The choice of concentration was somewhat arbitrary. 0.1 M $\text{NH}_3\text{-N}$ is inhibitory to Nitrosomonas and 0.069 M $\text{NO}_2\text{-N}$ is inhibitory to Nitrobacters (25). Furthermore, at very low concentrations of substrate, growth constant becomes concentration-dependent, which is not desired. Therefore intermediate values of substrate concentration were chosen.

The main substrate was supplemented with nutrients table 6 used by Siddiqi et al. (26) and buffered with 0.1 molar phosphate buffer. The pH was maintained at 8.1 in accordance with the observations of Mojundar (25) who found optimum pH range for Nitrosomonas as 7.8 to 8.3 and for Nitrobacter as 8.0 to 8.5.

TABLE 6
INORGANIC MEDIA

Inorganic Salts	Amount
Fe Cl ₃ . 6 H ₂ O	0.125 mg/l.
Mg SO ₄ . 7 H ₂ O	25.00 mg/l.
K ₂ HPO ₄	3.00 mg/l.
Ca CO ₃	50.00 mg/l.
Na HCO ₃	250.00 mg/l.

3.3 Measurement of Growth:

Growth - rates of Nitrosomonas and Nitrobacter were followed in Warburg Respirometer. Separate flasks were used for ammonia and nitrite substrates. Respiration in two replicates for each case together with a thermobarometer were observed. A few grams of sand granules were taken out from the nitrifying reactor, washed several times with distilled water to wash away ammonia, nitrite and nitrate, and dried by pressing between filter papers. These "active granules" were then mixed uniformly with blank sand particles. Each reactor flask was filled with four grams of this mixed soil and two milliliters of feed solution. This combination provided for adequate oxygen supply by diffusion through the liquid. Shaking was adjusted to about 48 oscillations per minute with an amplitude of 4 cms. The Warburg flask constants were calculated by using the formula (27).

$$X = h \cdot \frac{Vg \cdot \frac{273}{T} + Vg \cdot \alpha}{P_0} \quad \dots \quad \dots \quad (10)$$

= h.K

where,

X = oxygen uptake in $\mu\text{l.}$,

h = change of manometric reading in mm. ,

V_g = volume of gas in the flask in $\mu\text{l.}$

V_f = volume of fluid in the flask in $\mu\text{l.}$

T = temperature in $^{\circ}\text{K}$.

α = solubility of oxygen in ml of O_2 dissolved per ml. water.

P_0 = standard pressure = 10,000 mm of Brodie's fluid.

K = flask constant.

In measuring V_g , volume of sand particles taken in the flask, besides the volume of liquid, was excluded from volume of flask. (see appendix A for flask constants table 7 and solubility of oxygen in water table 8 at different temperatures).

The respiration rates were determined at ten different temperatures in the range between 20°C and 41.5°C .

3.4 Analytical Techniques:

At the end of a run final concentrations of ammonia, nitrite and nitrate were determined chemically.

Ammonia: Ammonia was determined spectrophotometrically (28) by using Neassler's Reagent. The standard calibration curve is shown in Fig. 3.

Nitrite: Sulfanilic acid-naphthyleamine hydrochloride method (28) was followed for nitrite determination. The standard curve is shown in Fig. 4.

Nitrate: Nitrate was determined photometrically using Brucine sulfanilic acid (28). The standard curve is shown in Fig. 5.

FIG. 3. STANDARD CURVE FOR ESTIMATING AMMONIA

FIG. 4. STANDARD CURVE FOR ESTIMATING NITRITE

FIG. 5. STANDARD CURVE FOR ESTIMATING NITRATE

4. RESULTS & DISCUSSIONS

4.1 Preliminary Observations:

4.1.1 Approach the Problem

Kinetics of bacterial growth has been studied by many workers in different ways. Ingraham (14) utilized "turbidity of the medium" as a measure of growth. In studying E.Coli in trypticase-soy medium he observed, at intervals of time, turbidity photometrically at 660 m μ . The period in which turbidity doubled is obviously the generation time.

Knowles et al. (18) utilized "exhaustion of substrate" and "production of metabolites" as a measure of growth. They studied nitrifying bacteria, and followed the concentrations of ammonia, nitrite and nitrate with time. They obtained growth constants by fitting the data in an equation whose differential form is $\frac{dx}{dt} = M_m \cdot \frac{s}{K_s + s} \cdot x$

In the present study "oxygen uptake" or the "respiration" of bacteria has been taken as a measure of growth. Oxygen uptake of nitrifying bacteria has been observed at intervals of time in the Warburg Respirometer. This method is supposed to be more accurate than any of the two methods previously described.

4.1.2 Effect of Substrate Concentration

Since some workers reported that growth characteristics of nitrifying bacteria are affected by substrate concentration a trial run was made at 28.1°C with different concentrations of ammonia. Oxygen uptake plots are shown in Fig. 6. Magnitude of growth constant u_m of equation 1 was around 0.63 day $^{-1}$ for concentrations of 0.05, 0.03 and 0.01 M, indicating that growth constant is unaffected at these levels of substrate concentration.

FIG. 6. OXYGEN UPTAKE FOR OXIDATION OF AMMONIA AT DIFFERENT CONCENTRATIONS

At 0.1 M ammonia, oxidation was much less; possibly this concentration of ammonia is inhibitory to nitrifying bacteria.

At concentrations .001 M and .005 M ammonia, growth constant is pretty low as compared to those at higher concentrations. This shows that around and below 0.005 M (70 mg/l.) NH₃-N, growth of Nitrosomonas is retarded with the depletion of substrate. This has been further confirmed by the nature of curve for 0.01 M (140 mg/l.) NH₃-N in the same fig. The slope of the curve started dropping distinctly when oxygen consumption was around 400 mg/l. or when NH₃-N concentration reduced to 25 mg/l. Here it may be recollect that Michaelis constant as found by Knowles for Nitrosomonas is around 8.0 mg/l. of NH₃-N. And in that case it is not surprising why the curve started falling at around 25 mg/l.

However, in all the studies reported here, starting ammonia concentration is 0.05 M (700 mg/l.) so that even if the concentration reduces to as low as 100 mg/l. there will not be any appreciable error.

4.1.3 Effect of Active Granules:

At 40°C Fig. 15 in the flasks containing nitrite, all the sand particles present were active granules taken from 'seed reactor'. It will be seen that after about 10-12 hours, oxygen uptake varied almost linearly with time. This indicates that after about 10-12 hours the Nitrobacters could not multiply or in other words, death rate and growth rate became equal. This situation might have been created by the over-crowding of bacteria or rather non-availability of space for their growth.

Therefore in all the studies, active granules constituted only about one-tenth of the total sand particles.

4.2 Effect of Temperature:

Table 9 to table 18 (Appendix B) show oxygen uptake by Nitrosomonas and Nitrobacter at different temperatures as recorded in Warburg Respirometer. At the end of each table final concentrations of ammonia, nitrite and nitrate are mentioned. Corresponding plots of oxygen uptake against time are shown in Fig. 7 through Fig. 16.

To evaluate growth constants, finite difference method as described on page 20 has been employed throughout. All such plots have not been shown, instead a sample plot Fig. 17 is shown in Appendix C. Table 19 summarizes these results.

TABLE 19
GROWTH CONSTANTS

Temp. °C	Nitrosomonas					Nitrobacter				
	Reactor I		Reactor II		day ⁻¹ average	Reactor I		Reactor II		day ⁻¹ average
20°	.279	.232	.255		.1312	.135	.133			
22°	.281	.324	.302		.212	.1905	.201			
25°	.48	.484	.482		.24	.25	.245			
28°	.62	.654	.637		.322	.333	.327			
32°	.9	.905	.903		.35	.494	.4			
34°	.922	.68	.777		.635	.795	.71			
36°	.698	.39	.539		.85	.745	.8			
38°	.492	.3545	.418		1.09	1.19	1.14			
40°	.119	.12	.1195		0*	0*	0*			
41.5°	-	-	-		.41	.431	.42			

* with active granules only.

FIG. 7. OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 20°C

FIG. 8. OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 22°C

FIG. 9. OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 25°C

FIG. 10. OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 26°C

FIG. 11. OXYGEN UPTAKE FOR OXIDATION OF AMMONIA AND NITRITE AT 32 °C

FIG. 12. OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 34 °C

FIG. 13. OXYGEN UPTAKE FOR OXIDATION OF AMMONIA AND NITRITE AT 36°C

FIG. 14. OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 38°C

FIG. 15. OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 40 °C

FIG. 16. OXYGEN UPTAKE FOR NITRITE OXIDATION AT 41.5 °C

Fig. 18 shows how growth constant varies with temperature for Nitrosomonas as well as Nitrobacter. In the case of Nitrosomonas growth constant μ_m increased from 0.255 day^{-1} to 0.903 day^{-1} in the temperature range of 20°C to 33°C and then dropped to 0.12 day^{-1} at 40°C . On the other hand, growth constant of Nitrobacter increased from 0.133 day^{-1} to 1.14 day^{-1} in the range of 20°C to about 36°C , and then decreased to 0.42 day^{-1} at 41.5°C . Knowles et al. (18), too, studied the growth of nitrifying bacteria but comparatively at low temperatures (about 9°C to 23°C). In general, their values are higher than those obtained in this work; in the above range of temperature, it increased from 0.2 to 1.02 for Nitrosomonas, and from 0.5 to 1.2 for Nitrobacter.

Knowles et al fitted their data to an equation of the type,

$$\log_{10} \mu = a T - b \quad \dots \quad \dots \quad (11)$$

where T is in $^\circ\text{C}$

and a , b are constants.

The present data according to this equation for Nitrosomonas are shown in Fig. 19. The best fit follows an equation,

$$\log_{10} \mu_m = 0.0476 T - 1.545 \quad \dots \quad (12)$$

giving about 11.6 percent increase in μ_m per degree centigrade, as compared to Knowles' 9.5 percent.

And for Nitrobacter it will be, Fig. 20,

$$\log_{10} \mu_m = 0.0495 T - 1.96 \quad \dots \quad (13)$$

giving about 12.0 percent increase in μ_m per degree centigrade, as compared to Knowles 5.9 percent.

FIG. 18. VARIATION OF GROWTH CONSTANT WITH TEMPERATURE

FIG. 19. VARIATION OF GROWTH CONSTANT WITH TEMPERATURE

FIG. 20. VARIATION OF GROWTH CONSTANT WITH TEMPERATURE

The a,b values as found by Knowles are 0.0413 and 0.944 for Nitroscoccus, and 0.0255 and 0.492 for Nitrobacter.

Equations (12) and (13) can be converted to another form used by Phelps, (29). For Nitroscoccus it becomes

$$\frac{\mu_1}{\mu_2} = 1.116^{t_1 - t_2} \quad \dots \quad \dots \quad (14)$$

and for Nitrobacter,

$$\frac{\mu_1}{\mu_2} = 1.12^{t_1 - t_2} \quad \dots \quad \dots \quad (15)$$

Equations (14) and (15) are comparable to those used by Gotsas (30) for doxygenation constant K of sewage,

$$\frac{K_1}{K_2} = e^{t_1 - t_2} \quad \dots \quad \dots \quad (16)$$

where e is called temperature coefficient, and t is temperature in °C.

We obtained temperature coefficient ranging from 0.9672 to 1.1086.

Carpenter et al (31) also used similar equation while studying the effect of temperature on treatment of paper mill waste. He found e as 1.016.

However it should be realized that the above equations are valid for a limited range of temperature only. Equation (12) and (16) are valid upto about 32°C, and equation (13) and (15) are upto 36°C. At temperatures above these values growth rate falls instead of rising which is typical of any biological process.

Arrhenius Plot:

Logarithm of growth constant has been plotted against

inverse of temperature in absolute degree, in Fig. 21. Both for Nitrosomonas and Nitrobacter, the curves are linear over a lower range of temperature. Thus growth constant temperature relationship follows Arrhenius Law, the equation being

$$\mu = \mu_1 e^{-E_1/RT} \quad \dots \quad \dots \quad (17)$$

However with further increase in temperature, the above equation apparently does not hold good, and growth constant falls off in the negative side with increasing temperature. Enzyme inactivation and denaturation of cell material are known to be some of the causes of this lowering of growth. Hinshelwood has included a second term in the above equation to take care of this effect. The complete equation takes the form,

$$\mu = \mu_1 e^{-E_1/RT} - \mu_2 e^{-E_2/RT} \quad \dots \quad \dots \quad (18)$$

The temperature characteristic E_1 as determined from the slope of the initial portion of the curves is 17,150 cal/mole for the oxidation of ammonia by Nitrosomonas and is 17,600 cal/mole for the oxidation of nitrite by Nitrobacter.

Ingraham (14) found a value of 14,200 cal/mole in the case of E.Coli and for the same bacterium Johnson and Lewis (13) found 15,000 cal/mole.

It should be realised that the second term in the above equation represents a purely chemical reaction, viz., heat coagulation of proteins. Generally E_2 values are quite high. Depending on the nature of protein it varies from 60,000 to 130,000 cal/mole (8). For the cell material of Nitrosomonas and Nitrobacter these values are found to be around 88,000 cal/mole.

FIG. 21. ARRHENIUS PLOT OF GROWTH RATES FOR NITRIFYING BACTERIA

Since E_2 is much larger compared to E_1 (more than about five times), the second term in the above equation is negligible as compared to the first term in the low range of temperature. And as a result we get a straight line in the plot of $\log \mu$ against $1/T^{\circ}\text{K}$. When the temperature is increased further, the second term becomes comparable to first one, and the curves of ammonia oxidation and nitrite oxidation pass through a temporary stationary phase. With still further increase in temperature, the second term outweighs the first one, and since E_2 is quite high the curves drop with temperature rapidly.

Generation Time

Generation time and growth constant are related by

$$t_g = \log_e 2/\mu \quad \dots \quad \dots \quad (19)$$

Generation times have been calculated from growth constants at various temperatures, and plotted in Fig. 22.

Generation time of Nitrosomonas decreased upto 32°C to a value of 0.72 days and then increased considerably to a value of 4.8 days at 40°C . That of Nitrobacter decreased from a high value of 4.9 days to a value of 0.76 days at 35°C and then started increasing.

The optimum temperature for the growth of Nitrosomonas seems to be around 34°C and of Nitrobacter around 38°C .

FIG. 22. GENERATION TIME OF NITRIFYING BACTERIA AT DIFFERENT TEMPERATURES

5. CONCLUSIONS

Based on the above discussions following conclusions can be drawn.

1. Growths of Nitrosomonas and Nitrobacter are affected considerably by variation of temperature.
2. Growth constant μ_m varies from 0.1195 day^{-1} in the minimum to 0.903 day^{-1} in the maximum for Nitrosomonas and from 0.133 day^{-1} to 1.14 day^{-1} for Nitrobacter.
3. Optimum temperature for growth of Nitrosomonas is around 34°C and that of Nitrobacter is around 38°C . On both higher and lower sides of these optima, growth is affected adversely. The rate of this effect at increasing temperature is much more than at decreasing temperature.
4. Growth of Nitrosomonas can be increased about 11.6 percent per degree rise in temperature, and growth of Nitrobacter about 12.0 percent, provided the temperatures are below optima.
5. Temperature characteristic (or activation energy) for the oxidation of ammonia by Nitrosomonas seems to be 17,150 cal/mole and that for the oxidation of nitrite by Nitrobacter to be 17,600 cal/mole.
6. Generation time of Nitrosomonas varied from 0.72 days to a maximum of 5.8 days, and that of Nitrobacter varied from 0.72 days to 5.3 days.

REFERENCES

1. Report of Studies on the Effluents of Sindri Fertilizer Factory and Their Effect on Damodar River, (Cited by Mojudar).
2. Fertiliser Project: Preliminary Effluent Disposal Scheme with Lagoon, Indian Explosives Ltd. (cited by Mojudar).
3. Lackey, J.B., "Effect of Fertilization on Receiving Waters", Sewage and Industrial Wastes 30, 1411, (1958).
4. Sawyer, C.N., "Causes, Effects and Control of Aquatic Growth", Journal of Water Pollution Control Federation 24, 279, (1962).
5. Sawyer, C.N., Chemistry for Sanitary Engineers, McGraw Hill Book Co., N.Y., 1960.
6. Slaassen, R. & Tchobanoglou, G., "Removal of Nitrogen and Phosphorus", Prog. 23rd Industrial Waste Conference, Purdue University, Extension Series 132, 35, (1966).
7. Breed, R.S., Murray, E.G.D., Smith, N.R. and Others, "Bergey's Manual of Determinative Bacteriology", The Williams & Wilkins Co., Baltimore, 1957.
8. Thimann, K.V., The Life of Bacteria, The Macmillan Co., New York, 1961.
9. Sacks, L.E. & Barker, H.A., "Substrate Oxidation and Nitrous Oxide Utilization in Denitrification", Journal of Bacteriology, 64, 247, (1952).
10. Woods, D.P., Biochemical Journal 32, 2000, (1939). (Cited by Thimann).
11. Barber, M.A., "The Rate of Multiplication of Bacillus Coli at Different Temperatures", Journal of Infectous Disease, 5, 379, (1908).
12. Frost & Pearson, Kinetics and Mechanism, John Wiley & Sons Inc. N.Y., London, 1961.

13. Johnson, F.H. and Lewin, I., "The Growth rate of Escherichia coli in Relation to Temperature, Quinine and Coenzyme", Journal of Cellular Composition Physiology, 28, 47, (1946).
14. Ingraham, J.L., "Growth of Psychrophilic Bacteria", Journal of Bacteriology, 76, 75, (1958).
15. Minshelwood, C.N., Chemical Kinetics of the Bacterial Cell, Oxford Clarendon Press, 1946.
16. Ingraham, J.L., "Temperature Relationship" in Gunsalus I.C. and Stanier R.Y. (ed.) The Bacteria Vol. IV, Academic Press, N.Y. & London, 1962.
17. Ingraham, J.L. & Bailey, G.F., "Comparative Study of the Effect of Temperature on Metabolism of Psychrophilic & Mesophilic Bacteria", Journal of Bacteriology, 77, 609, (1959).
18. Knowles, G., Downing, A.L. and Barrett, M.J., "Determination of Kinetic Constants for Nitrifying Bacteria in Mixed Culture with the Aid of an Electronic Computer", Journal of General Microbiology, 39, 263, (1965).
19. Walter, W.G. & McBee, R.H., General Microbiology, Van Nostrand Co. Inc., East West Press, New Delhi, 1965.
20. Allen, M.B., "Dynamic Nature of Thermophily", Journal of General Physiology 33, 205, (1950).
21. Brown, K.D., Miltzer, W. & Georgi, C.E., "Effect of Growth Temperature on the Heat Stability of Bacterial Pyrophosphatase", Archives of Biochemistry & Biophysics 70, 248, (1957).
22. Adye, J., Koffler, H., & Mallett, G.E., "Relative Thermostability of Flagella from Thermophilic Bacteria", Archives of Biochemistry and Biophysics 67, 251, (1957).
23. Quastel, J.H. & Scholefield, P.G., "Biochemistry of Nitrification in Soil", Bacteriological Reviews, 15, 1-53, (1951).

24. Fujimoto, Y., "Graphical Use of First Stage BOD Equation", Journal of Water Pollution Control Federation 36, 69. (1964).
25. Mojunder, S.P., Treatment of Fertilizer Industry Waste: A Study on Nitrification, M.Tech. Thesis, Indian Institute of Technology, Kanpur, 1968.
26. Siddiqi, R.H. et al., "Elimination of Nitrification in the BOD Determination with 0.10 N Ammonia Nitrogen", Journal of Water Pollution Control Federation, 42, 579, (1967).
27. Umbreit, W.W., Burris, R.H. & Stauffer, J.F., Micrometric Techniques, 4th ed., Burgess Publishing Co., Minnesota, 1964.
28. Standard Methods for the Examination of Water and Waste-Water, 12th Ed., American Public Health Association Inc., New York, 1965.
29. Phelps, E.B., Stream Sanitation, John Wiley and Co., New York 1944.
30. Göttsche, "Temperature and Biochemical Oxidation", Sewage Works Journal, 20, 441. (1948).
31. Carpenter, L.W., Vamvakas, J.G., & Gellman, I., "Temperature Relationships in Aerobic Treatment and Disposal of Pulp and Paper Wastes", Journal of Water Pollution Control Federation, 42, 132, (1968).

APPENDIX A

卷之三

SISTEMAS DE GESTIÓN DE LA CALIDAD

TABLE 8
SOLUBILITY OF OXYGEN (27)

Temperature °C	Solubility of Oxygen, α , ml. oxygen dissolved per ml of water when gas is at 1 atm.
0	.04872
10	.03793
15	.03441
20	.03091
25	.02822
30	.02612
35	.0246
40	.0230

APPENDIX B

TABLE 9
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 20°C

Time in hr	NH ₃ Rector I					NH ₃ Rector II					NO ₂ Rector I					NO ₂ Rector II					Thermobarometer			
	a	b	c	d	e	a	b	c	d	e	a	b	c	d	e	a	b	c	d	e	a	b		
6	229					245					184					131						178		
8	219	-10	-3			220	-25	-18	18	16	171	-13	-6	6	6	117	-14	-7	7	7	171	-7		
10	202	-17	+1			178	-42	-24	42	37	148	-23	-5	11	11	9	-27	-9	16	16	153	-18		
12	197	-5	-8	8	11	157	-21	-24	66	59	165	-2	-5	16	16	86/183	-4	-7	23	23	156	+3		
19	161	-36	-24	32	40	45/237	-112	-100	166	147	122/179	-24	-12	28	29	150	-33	-21	44	43	144	-12		
22	133	-28	-10	42	53	171	-46	-48	214	190	153	-26	-8	36	37	122	-28	-10	54	53	126	-18		
24	131	-2	-11	53	67	140	-31	-40	254	225	158	+5	-4	48	41	121	-1	-10	64	63	135	+9		
26	132	+1	-12	65	82	112	-38	-41	395	262	164	+6	-7	47	43	123	+2	-11	75	73	148	+13		
28	131	-1	-5	7	96	75/251	-37	-41	336	298	159	-5	-9	56	574	116	-7	-11	86	84	152	+4		
30	118	-13	-10	80	107	208	-43	-40	376	333	152	-7	-4	60	615	99	-17	-14	100	98	145	-3		
32	94	-24	-9	89	112	153	-55	-40	416	368	132	-20	-5	65	67	79	-20	-5	105	103	134	-15		
34	72	-22	-10	99	125	191	-52	-40	456	404	115	-17	-5	70	72	63	-16	-4	109	107	122	-12		
36	57/192	-15	-11	110	139	57/242	-44	-40	496	440	111/172	-4	0	70	72	56/17	-7	-3	112	110	118	-4		
43	141	-51	-47	157	198	94	-148	-144	64	567	160	-12	-8	78	80	151	-19	-15	127	124	114	-4		
45	123	-18	-9	166	209	45/243	-49	-40	68	603	149	-11	-2	80	82	14	-11	-2	129	126	105	-9		
47	112	-11	-10	176	222	200	-43	-42	722	640	144	-5	-4	84	86	134	-6	-5	134	131	104	-1		
49	123	+11	-7	183	230	178	-22	-40	762	676	160	+16	-2	86	88	148	+16	-4	139	135	122	+18		
53 ₁	126	+3	-11	194	244	102	-76	-90	852	755	168	+8	-6	92	94	152	+4	-10	148	145	136	+14		

55 ₁	107	-19 - 8 202 252 71	-31 -20 872 773 155	-13 - 2 94 96 138	-14 - 3 151 148 125 -11
57 ₁	83	-24 - 4 206 259 41	-30 -10 882 782 131	-24 - 4 98 100 114	-24 - 4 155 152 105 -20
60 ₁	74/196	- 9 -17 223 282 35/225 - 6	-14 896 795 133	+ 2 - 6 104 107 116	+ 2 - 6 161 158 113 + 8
66 ₁	177	-19 -18 241 303 132	-93 -92 988 876 122	-11 -10 128 117 101	-15 -14 175 171 112 - 1
68 ₁	155	-22 - 6 247 311 101	-31 -15 1003 886 102	-20 - 4 118 121 91	-20 - 4 179 175 96 -16
71 ₁	155	0 -10 257 323 60	-41 -51 1054 934 106	+ 4 - 6 124 127 96	+ 5 - 5 184 980 106 +10
73 ₁	167	+12 - 9 266 335 70	+10 -11 1065 944 123	+17 - 4 128 132 100	+16 - 5 189 185 127 +21
75 ₁	175	+ 8 - 6 272 342 77	+ 7 - 7 1072 950 133	+10 - 4 132 135 109	+ 9 - 5 194 190 141 +14
77 ₁	170	- 5 - 7 279 351		131 - 2 - 4 136 139 107	- 2 - 4 198 194 143 + 2
79 ₁	156	-14 - 3 262 365	stopped	116 -15 - 4 140 144 90	-17 - 6 204 199 132 -11
81 ₁	140	-16 - 8 290 365		103 -13 - 5 145 149 77	-13 - 5 209 204 124 - 8
83 ₁	132	- 8 -11 301 379		99/155 - 4 - 7 152 156 74/157 - 3 - 6 215 210	127 + 3
90 ₁	97	-35 -21 322 405		121 -34 -20 172 176 153	-34 +20 235 230 113 -14
92 ₁	67	-30 -13 335 422		100 -21 - 4 176 180 131	-22 - 5 240 234 96 -17
94 ₁	56	-11 - 3 338 425		84 -16 - 8 194 199 119	-12 - 4 244 236 88 - 8
97	69	+13 -12 350 440		99 +15 -10 194 199 133	+14 -11 255 249 113 +25
99	71			100 + 1 - 6 200 205 135	+ 2 - 5 260 254 126 + 7

Flask constants 1.7613

1.24

1.4323

1.3603

Initial NH₃ or NO₂ 700

700

700

700

Final NH₃ 570

390

-

-

Final NO₂ 110

260

520

480

Final NO₃ 20

50

100

220

TABLE 10
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 22°C

Time hrs. l. a. ³	NH ₃ Reactor I					NH ₃ Reactor II					NO ₂ Reactor I					NO ₂ Reactor II					Thermo barometer	
	b	c	d	e	f	b	c	d	e	f	a	b	c	d	e	f	b	c	d	e	f	
9	288					252					240						233					195
13	254/193	-	34	-	50	50	51	246/186	-12	-20	26	35	224/163	-16	-32	52	31	206/151	+52	+36		211/15 +1
17	152	-	41	-	56	104	106	171	-15	-20	56	70	140	-23	-36	68	66	162	+12	-1	1	163 +1
19	125	-	27	-	26	124	126	146	-23	-16	72	90	121	-19	-32	60	70	148	-14	-7	8	7 156 -
21	73	-	52	-	36	160	166	116	-32	-16	96	110	97	-24	-8	68	96	134	-14	+2	6	5 14 -1
23	38/291	-	35	-	36	196	199	101/162	-15	-16	164	130	90/156	-7	-8	56	93	125/221	-9	-10	16	14 141/175 +
30	170	-	121	-	126	316	321	101	-61	-60	164	205	131	-25	-24	150	117	196	-27	-26	42	37 174 -
32	112	-	58	-	44	360	366	71	-30	-16	160	225	109	-21	-8	128	125	168	-26	-12	54	48 160 -1
34	69	-	43	-	36	396	403	48	-23	-16	196	245	96	-13	-6	134	130	180	-18	411	65	57 153 -
36	32/263	-	37	-	44	440	447	36/174	-9	-16	212	265	95/185	-1	-8	142	138	169/197	-1	-8	73	64 160/193 +
38	251	-	32	-	44	484	492	175	-4	-16	258	285	190	-5	-7	149	146	207	+10	-2	75	66 162 +1
40 ₁	194	-	57	-	56	540	549	169	-21	-20	243	310	130	-10	-9	158	154	191	-16	-15	90	70 161 -
42 ₁	153	-	41	-	36	576	585	125	-24	-19	267	334	167	-13	-8	166	162	172	-19	-14	104	92 156 -
44 ₁	104	-	49	-	40	616	626	99	-26	-17	284	355	154	-13	-4	170	165	149	-23	-14	118	104 147 -
46 ₁	63	-	41	-	34	650	660	74	-25	-18	302	378	135	-19	-12	188	177	134	-15	-8	126	111 140 -1
48 ₁	24/251	-	39	-	42	692	703	63/151	-11	-14	316	395	132/177	-3	-6	188	183	124/192	-10	-7	133	118 143/150 +3

Contd.....

59 ₁	112	-139 -124 816 830	72	-79 -64 360 475	130	-47 -32 220 215	137	-55 -40 173 152	135	-15
57 ₁	78	- 34 - 26 942 855	66	-26 -18 398 498	114	-16 - 8 220 222	108	-29 -21 194 171	127	- 8
59 ₁	60/184	- 18 - 26 968 882	36/176	-10 -18 416 520	110	- 4 -12 240 234	10/188	- 8 -16 288 185	135	+ 8
61 ₁	180	- 4 - 20 888 904	172	- 4 -20 436 545	116	+ 6 -10 250 243	189	+ 1 -15 225 198	166	+16
64	167	- 13 - 22 910 925	157	-15 -24 440 575	113	- 3 -12 262 255	176	-13 -22 247 217	175	+ 9
66	143	- 24 - 20 930 945	131	-26 -32 432 602	95	-18 -14 276 269	157	-19 -23 270 238	171	- 4
68	111	- 32 - 12 942 956	93	-38 -38 500 625	61	-34 -14 290 282	118	-39 -39 289 254	151	-20
70	90	- 21 - 12 954 968	64	-29 -30 520 650	46	-15 - 6 296 286	96	-22 -13 302 266	142	- 9
72	83/142	- 7 - 10 964 979	48/151	-19 -22 542 678	37/150	- 9 -12 308 300	73/203	-23 -26 328 289	145/147 + 3	
78	121	- 21 - 20 984 1000	90	-61 -60 502 752	113	-37 -36 344 334	136	-68 -67 395 347	146	- 1
80	108	- 13 0 984 1000	51	-39 -26 628 785	86	-27 -14 358 348	103	-32 -19 414 364	133	- 13

Flask constant	1.42	1.75	1.36	1.23
Initial NH ₃ or NO ₂	700	700	700	700
Final NH ₃	390	445	-	-
Final NO ₂	265	215	390	380
Final NO ₃	50	40	310	320

TABLE II
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 25°C

Time hrs. 1/2	NH ₃ React. I I a b c d e	NH ₃ React. II I a b c d e	NO ₂ React. I I a b c d e	NO ₂ React. II I a b c d e	Thermobarometer									
					b	c	d	e	b	c	d	e	b	
10½	169		168						165				161	
12½	200	+31 -11	204	+36 -6					169	+24 -18	18	19	191	
14½	230	+30 +5	236	+32 +7					202	+13 -12	20	31	205	
16½	235/151 +6 -4	4 5	245/151 +9 -1	1 1					201/150 -1 -11	41	43	207/151 +2 -8	31 38	
18½	139	-12 -20	147	-4 -2	3	4			136	-14 -12	53	55	142	
20½	127	-12 -6	139	-8 -2	5	7			123	-13 -7	60	62	133	
24½	120	-7 -17	37 46	140 +1 -9	14 18				120	-3 -13	73	76	122	
31½	53/172 -67	-36 75	93	88/171 -5 -21	35 45				68/171 -52 -21	94	98	49/170 -73 -42	104 129	
33½	136	-36 -11	84 104	139 -32 -7	42 55				160	-31 -6	100 104	139	-31 -6 110 136	
35½	134	-2 -12	96 119	140 +1 -9	51 66				144	+4 -6	106 110	134	-5 -6 116 143	
39½	143	+9 -23	119 147	156 +16 -16	67 67				167	+23 -9	115 119	153	+29 -13 129 159	
41½	133	-10 -10	129 160	147 -9 -2	76 99				164	-3 -3	119 123	147	-6 -6 135 167	
43½	116	-17 -11	140 173	132 -15 -9	86 111				153	-11 -5	123 129	136	-11 -5 140 173	
45½	104	-12 -14	154 191	126 -6 -10	95 123				150/156 -3 -5	128 133	132	-4 -6 146 181	163 +3	
46½	98	-6 -7	161 198	120 -4 -5	100 130				167	+11 +10	138 143		164 +1	
48½	93/175 -5	-12 173	214	117/180 -3 -10	110 143				173/151 +6 -1	139 145		130/165 -2 -9	155 193	
55½	110	-65 -55	228 282	118 -51 -41	151 196				118	-33 -23	162 169	132	-33 -23 178 220	140 -10
57½	64/180 -46	-17 245	303	76/176 -43 -24	165 214				84/177 -34 -5	167 174	97/175 -35 -6	184 228	111/165-29	

Contd.....

59 ₄	169	-11 -15	260 322	169	- 7 -11	176 229	174	- 3 - 7	174 178	170	-5 - 9	193 238	169	+ 4
61 ₄	172	+ 3 -19	279 346	175	+ 6 -16	192 250	187	+13 - 9	183 190	184	+14 - 9	201 249	191	+22
64 ₄	194	-18 -26	305 376	162	-13 -21	213 278	187	0 - 8	191 199	182	- 2 -10	211 261	199	+ 8
68 ₄	127	-27 -22	327 405	139	-23 -18	231 300	171	-11 -11	202 210	168	-14 - 9	220 272	194	- 5
69 ₄	86	-41 -31	358 443	104	-15 -25	256 333	150	-21 -11	213 221	145	-23 -13	233 288	184	-10
72 ₄	58/186	-28 -32	390 463	83/182	-21 -25	281 366	143/172	- 7 -11	224 233	138/150	- 7 -11	244 302	182/150	+ 4
79 ₄	87	-99 -83	473 595	94	-88 -72	353 459	124	-48 -32	254 266	103	-47 -31	375 340	134	-16
81 ₄	40/104	-47 -24	497 616	49/191	-45 -22	375 489	293/178	-31 - 9	264 274	68/172	-34 -11	286 394	111/186	-23
83 ₄	181	-23 -27	524 668	170	-21 -25	400 502	175	- 3 - 7	271 282				190	+ 4

Flask constant	1.7295	Initial NH ₃ or NO ₂	700	1.8205	700	Final NH ₃	490	1.4515	700	1.7285	700
							540				
							130				
							30				
								-		-	
								455		390	
								250		310	

TABLE 12
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 28°C

Time hrs. ^a	NH ₃ a	Reactor I				NH ₃ b				Reactor II				NO ₂ c				Reactor I				NO ₂ d				Reactor II				I Thermobaro- meter			
		b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e
11	165					168								171										181								163	
12	174	+ 9	- 0	0	0	177	+ 9	0	0	0	180	+ 9	0	0	0	190	+ 9	0	0	0	172	+ 9	0	0	0	172	+ 9						
14	183/178	+ 9	- 9	9	11	176/174	0	- 17	17	22	192/183	+ 12	- 5	5	6	191/189	+ 1	- 16	16	16	189/	+ 17											
15	181	+ 3	- 4	13	16	173	- 1	- 9	25	32	189	+ 5	- 2	7	9	187	- 2	- 9	25	26	187	+ 7											
17	175	- 6	- 3	16	19	155	- 18	- 15	40	51	181	- 7	- 4	11	14	169	- 18	- 15	40	41	154	- 3											
19	158/172	- 17	- 10	26	32	134/184-21	- 14	54	69	170/185	- 11	- 4	15	19	135/186	- 34	- 27	67	69	147/150-	7												
22 ₁	132	- 40	- 21	49	60	130	- 46	- 29	83	107	142	- 23	- 6	21	27	141	- 45	- 28	95	98	133	- 17											
24 ₁	113/186	- 19	- 17	66	80	111/199-27	- 25	108	139	135/190	- 7	- 5	26	33	126/186	- 15	- 13	108	111	131/150-	2												
31 ₁	90/224	- 96	- 84	130	158	80/236	- 19	- 87	195	251	147/197	- 43	- 11	37	47	130/193	- 56	- 24	132	136	118/150-32												
33 ₁	187	- 37	- 24	154	187	195	- 41	- 28	223	267	184	- 13	0	37	47	172	- 21	- 8	140	144	137	- 13											
35 ₁	168	- 19	- 18	172	209	172	- 23	- 22	245	313	184	0	+ 1	36	45	161	- 11	- 10	150	154	136	- 1											
37 ₁	149	- 19	- 39	211	256	152	- 20	- 40	285	366	198	+ 14	- 6	42	53	169	+ 8	- 12	162	166	156	+ 20											
39 ₁	131	- 19	- 24	235	285	133	- 19	- 25	310	398	200	+ 2	- 4	46	58	165	- 4	- 10	172	177	162	+ 6											
42	89/196	- 62	- 39	273	332	94/207	- 39	- 35	345	443	191/165	- 9	- 5	51	64	148/187	- 17	- 13	185	190	158/150-	4											
44	152	- 44	- 27	300	364	189	- 38	- 21	366	470	150	- 15	+ 2	49	62	160	- 27	- 10	195	200	133	- 17											
46	108	- 44	- 32	332	402	135	- 34	- 22	388	498	135	- 15	- 3	52	66	132	- 27	- 15	210	216	121	- 12											
48	75/226	- 33	- 39	370	458	116/235-11	- 24	412	530	133/174	- 2	- 7	59	74	123/215	- 10	- 15	225	231	126/150+	5												
55	79	- 347	- 127	497	609	166	- 70	- 59	462	594	136	- 36	- 16	75	95	192	- 63	- 43	268	276	130	- 20											

Contd.....

57	31/223	-48	-32	529	642	143/197-22	- 6	468	600	115/163	-23	- 7	62	203	119/169	-33	-17	295	293	114/150	-16	
59	187	-36	-30	559	679	187	-10	- 4	472	606	156	- 7	- 1	63	205	191	-18	-12	297	305	144	- 1
61	166	-21	-27	586	711	188	+ 1	- 5	477	613	157	+ 1	- 5	68	111	142	- 9	-15	312	320	150	+ 1
63	152	-14	-28	614	745	200	+12	- 2	479	615	161	+ 4	-10	98	124	143	+ 1	-13	325	334	164	+14
66	107	-45	-39	653	797	189	-11	- 5	484	621	141	-20	-14	112	141	110	-33	-27	352	362	158	- 1
68	75	-32	-19	672	815	173	-16	- 3	487	626	121	-20	- 7	119	150	81	-29	-16	368	378	145	-13
70	52/224	-23	-13	695	831	163/196-10	0	487	626	102/196	-19	- 9	128	162	86/179	-25	-15	383	393	135/158	-14	
72	212	-12	-13	698	848	192	- 4	- 5	492	632	190	- 6	- 7	135	170	163	-16	-17	400	411	159	+ 1
79	168	-44	-28	726	872	168	-24	- 8	500	641	138	-52	-36	171	216	92	-71	-55	455	466	143	-16
81	146	-22	- 9	735	890	147	-21	- 8	508	651	112	-26	-13	184	232	69	-23	-10	465	477	130	-12
83	139	- 7	- 2	737	895	139	- 8	- 3	511	656	98	-14	-11	195	246	59	-10	- 5	470	482	125	- 1
85	145	+ 6	- 4	741	900	Stopped		98	0	-10	205	298	Stopped		135	+10						
87	152	+ 7	- 2	743	905	Stopped		98	0	- 9	214	270	Stopped		144	+ 9						
90	150	- 2	- 1	744	905	Stopped		86	-12	-11	225	284	Stopped		143	- 1						
92	136	-14	- 1	745	907	Stopped		72	-14	- 1	226	285	Stopped		130	-11						

Flask constant	1.70	1.798	1.762	1.435
Initial NH ₃ or NO ₂	700	700	700	700
Final NH ₃	410	490	-	-
Final NO ₂	240	170	450	280
Final NO ₃	90	40	250	420

TABLE 13
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 32°C

Time hrs.	NH ₃	Reactor I				NH ₃				Reactor II				Thermobarometer				NO ₂				Reactor II					
		a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	
11	204						208							151		152									207		
12	180	-24	-16	16	20	184		-24	-13	13	12	143		-8	138	-14	201	-17	-6	6	6	200					
13	182	+2	-7	23	29	97		-87	-96	109	102	152		+9	133	-9	157	-44	-39	45	44	192	-19	-13	13	11	
22	143/204-39	-6	30	37	27/205-70	-35	144	135	118/166-33	96/166-37	111/210-46	-11	56	55	147/147-35	0	13	11									
23	202	-2	-6	36	45	175	-30	-33	177	166	170		+4	168	+2	205	-8	-8	64	63	169	+1	-2	15	13		
25	216	+14	-10	46	57	158	-17	-39	216	202	194		+24	199	+21	217	+13	-10	74	73	164	+16	-6	21	18		
27	217	+1	-9	55	69	133	-25	-34	230	234	204		+10	197	+8	220	+3	-6	80	79	168	+4	-5	26	22		
30	210	-7	-12	67	84	75	-58	-61	311	291	209		+5	197	0	208	+12	-15	95	94	155	-13	-16	42	36		
32	176/218-34	-16	83	103	10/203-66	-46	357	334	191/167-18	177/165-30	179/178-19	-10	105	103	126/188-20	-10	52	44									
34	111	-27	-13	96	120	136	-67	-52	409	383	903	-14	148	-17	151	-37	-12	117	115	162	-26	-11	63	54			
36	179/226-12	-20	116	145	102/234-24	-41	450	421	161/151+8	154/151+6	149/195-2	-9	126	124	157/208-5	-12	75	64									
43	172	-54	-44	160	200	76	-158	-461	591	553	161	-10	134	-17	145	-50	-33	159	156	149	-59	-42	117	100			
45	150/219-32	-5	165	206	24/238-52	-33	624	584	124/150-17	123/151-21	115/231-30	-11	170	167	117/214-32	-13	130	111									
49	226	+7	-10	175	216	183	-55	-69	693	647	167	+17	163	+12	222	-9	-23	193	190	200	-14	-28	158	134			
53	243	+17	-11	186	232	165	-18	-44	737	690	195	+28	187	+24	221	-1	-27	220	216	198	-2	-28	196	158			
55	239	-14	-8	194	242	141	-24	-16	753	704	189	-6	177	-10	199	-22	-14	234	230	178	-20	-12	198	168			
57	211/211-18	-4	198	247	115/231-26	-12	765	715	175/150-14	162/151-15	172/220-27	-13	247	243	153/211-25	-10	208	177									

Contd.....

59	234	+23 -2 200 249	242	+11 -13 778 728	177	+27 172	+21 231	+11 -13 260 256	223	+12 -12 220 187
66			238	- 4 -11 789 737	196	+19 184	+12 190	-41 -56 316 310	163	-60 -75 295 290
68	Scooped			200/189-38 - 3 792 741	162/151-34	148/151-36 138/189-52	-17 333 329	108/184 -55 -20	315 268	
70			150	-39 - 6 798 740	117	-34 129	-32 140	-49 -16 349 343	131	-53 -20 335 285
72			151	+ 1 0 798 740	114	- 3 113	- 6 119	-21 -17 366 360	107	-24 -20 355 302
74			180	+29 + 1 797 747	142	+28 138	+25 130	+11 -15 381 373	112	+ 5 -21 375 320
78 ₁			186	+ 6 0 797 747	150	+ 8 142	+ 4 118	-12 -18 399 393	89	-23 -29 405 345
78 ₂					147	- 3 138	- 4 112	- 6 -10 409 403	65	-24 -20 425 362
80 ₁					125	-22 116	-22 87	-25 - 3 412 406	28	-37 -15 440 374

Flask constant	1.746	1.31		1.379	1.19
Initial NH ₃ or NO ₂	700	700		700	700
Final NH ₃	620	470			
Final NO ₂	80	210		345	370
Final NO ₃	-	30		360	330

TABLE 14
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 34°C

Time hrs.	NH ₃ Reactor I					NH ₃ Reactor II					NO ₂ Reactor I					NO ₂ Reactor II					Thermobarometer liter
	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s		
12	167					150				176						171					152
14 ₁	176					158				183						176					152 0
16 ₁	219/150	+43	+11			200/151				216/150	+33	+1				206/150	+30	-2	2	2	184/152 +32
18 ₁	160	+10	+5			159				144	-6	-11	11	10	141	-9	-14	16	14	157	+5
20 ₁	159	-1	+6			158				117	-27	-20	31	29	116	-25	-18	34	29	150	-7
22 ₁	151	-8	+5			148				87	-30	-17	48	45	96	-20	-7	41	35	137	-13
26 ₁	147/150	-4	-3	3	4	144/152	-4	-3	3	4	71/150	-16	-15	63	59	79/150	-17	-16	57	48	136/150 -1
33 ₁	104	-46	-25	28	36	113	-39	-19	21	26	103	-47	-26	59	83	79	-71	-50	107	90	129 -21
35 ₁	71/169	-33	-10	38	48	83/160	-30	-7	28	35	70/181	-33	-10	99	92	36/178	-43	-20	127	107	106/161 -26
37 ₁	171	+2	-5	43	58	160	0	-7	35	43	184	+3	-4	103	96	172	-6	-13	140	118	169 +7
41 ₁	175	+4	-22	65	83	173	+13	-13	48	58	198	+14	-12	115	107	158	-14	-40	180	152	194 +26
43 ₁	162	-13	-11	76	97	164	-9	-7	55	68	192	-6	-4	129	111	134	-24	-22	202	171	192 -2
45 ₁	139	-23	-10	96	110	143	-21	-8	63	78	173	-19	-6	125	116	101	-33	-20	222	188	179 -13
47 ₁	116	-23	-15	101	129	125	-10	-10	73	96	156	-17	-9	134	125	68	-33	-25	247	208	171 -8
50 ₁	98/169	-18	-19	119	152	112/165	-13	-13	86	107	146/179	-10	-10	146	134	35/195	-33	-33	280	236	171/153 0
57 ₁	106	-63	-55	174	222	120	-45	-37	123	153	143	-36	-28	172	160	119	-76	-68	348	294	145 -8
59 ₁	67/176	-39	-14	188	239	63/159	-37	-12	135	167	110/184	-33	-8	180	168	87/187	-32	-7	355	300	120/158 -25

Contd.....

$61\frac{1}{2}$	168	- 8 -13 201 256 150	- 8 -13 148 184 184	0 - 5 185 172 190	+ 3 - 2 357 302	<u>163</u>	+ 5
$63\frac{1}{2}$	167	- 1 -19 220 290 156	+ 6 -12 160 198 191	+ 7 -11 196 182 199	+ 9 - 9 366 309	<u>161</u>	+ 16
$64\frac{1}{2}$	161	- 6 -12 232 296 156	0 - 6 166 206 192	+ 1 - 5 201 187 201	+ 2 - 4 370 312	<u>167</u>	+ 6
$65\frac{1}{2}$	139	-22 -27 259 330 146	+10 -15 181 224 185	- 7 -12 213 198 202	+ 1 - 4 374 316	<u>192</u>	+ 5
$66\frac{1}{2}$	105	-34 -25 284 362 124	-22 -13 194 240 164	-21 -12 225 209	<u>67/174</u> -15 - 6 380 321	<u>183</u>	- 9
$71\frac{1}{2}$	50/166	-55 -44 328 418	<u>59/172</u> -35 -24 218	270 133/16 -31 -20 245	228 179/158	367	327
$72\frac{1}{2}$	149	-17 -10 338 430	161 -11 - 6 222	275 149 -11 - 6 249	231 148 -10 - 3 390	<u>150</u>	- 1
$74\frac{1}{2}$	123	-26 -28 366 466	152 - 9 -11 233	289 138 -11 -13 262	244 144 - 4 - 6 396	<u>152</u>	+ 2
$81\frac{1}{2}$			<u>59/150</u> -54 -33 266	330 56/196 -82 -61 323	300 98/177 -46 -25 421	<u>131/157</u>	-21
$83\frac{1}{2}$				164 -32 -16 337	314 156 -21 - 2 425	357	

Flask constant	1.781	1.734	1.30	1.18
Initial NH_3 or NO_2	700	700	700	700
Final NH_3	500	580	-	-
Final NO_2	160	90	425	390
Final NO_3	40	30	275	310

TABLE 15
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 36°C

Time hrs.	NO ₂ a	Reactor I				NO ₂ Reactor II				Thermobarometer				NH ₃ , Reactor I				NH ₃ , Reactor II					
		a	b	c	d	a	b	c	d	a	b	c	d	a	b	c	d	a	b	c	d		
12 ₁	152					165				153		152		174				191					
13 ₁	177					196				176	+23	173	-21	211				229					
15 ₁	191					206				187	+11	180	+7	232				256					
16	191					185				179	-8	170	-10	232				256					
20	166					166	-19	-2	2	162	-17	150	-20	234				248					
22	150	-16	-2	2	2	149	-17	-4	5	149	-13	135	-15	211				240					
24	143	-7	-4	6	6	142	-7	-5	11	13	-2	130	-5	205	-6	-1	2	237	-3				
30	124	-19	-12	18	18	124	-12	-15	26	31	-3	119	-11	180	-25	-14	16	19	220	-17	6	7	
32	115	-9	-2	20	20	113	-11	-4	3	36	-7	112	-7	171	-9	-2	17	21	206	-14	7	13	
34	109	-6	-4	24	24	110	-3	-3	33	39	-0	108	-4	166	-3	-3	20	25	198	-8	4	17	
36	119	+10	0	24	24	117	+7	-3	36	43	147	+10	117	+9	172	+4	-5	25	31	200	+2	-7	24
38	127	+8	0	24	24	125	+8	-2	38	45	157	+10	123	+7	175	+3	-4	29	37	202	+2	-5	29
40	133	+6	-2	26	26	130	+9	-3	43	51	167	+10	129	+6	176	+1	-5	34	43	200	-2	-3	37
42	125	-8	-2	28	28	122	-8	-3	45	54	161	-6	123	-6	163	-13	-7	41	52	182	-18	-12	49
44	99	-26	-4	32	32	97	-25	-4	49	58	140	-21	99	-24	131	-32	-8	49	62	142	-40	-16	65
46	69	-30	0	32	32	66	-31	-0	49	58	109	-31	70	-29	95	-36	-7	56	70	100	-42	-13	78
48	69/139	0	-2	34	34	69/195	+2	-4	53	63	119/161	+6	69/152	-2	69/181	-6	-4	66	79	64/173	-16	-14	92
55	160	-29	-8	42	42	162	-33	-14	67	60	142	-19	129	-23	129	-52	-29	81	112	93	-75	-52	144
58	146	-14	-6	49	49	148	-14	-8	75	89	136	-6	118	-11	105	-24	-13	102	129	61	-37	-26	170

Contd.....

60	146	0 - 8	56	56	153	+ 5 - 7	92	97	149	+12	122	+ 4	101	- 4 - 6	110	138	52/198	- 9	-13	183	225
62	152	+ 6 - 4	60	60	157	+ 4 - 8	90	107	160	+12	131	+ 9	99	- 2 - 11	121	152	190	- 8	-17	200	246
66	134	-18 -12	72	72	137	-20 -19	105	125	155	- 5	126	- 7	64/217	-35 -28	149	157	141	-49	-42	242	297
68	104	-30 - 9	81	81	103	-30 -10	115	137	135	-20	102	-22	182	-35 -13	162	203	97	-44	-22	264	324
70	82	-22 - 9	90	90	87	-20 - 8	123	147	123	-12	87	-15	154	-28 -13	175	220	59	-38	-23	287	352
72	77	- 5 - 9	99	99	84	- 3 - 8	131	156	120	+ 5	89	+ 2	145	- 9 - 11	186	234	36/141	-23	-25	312	393
79	27/169	-50 -37	136	136	30/182	-54 -43	174	207	117/153-11	73/151	-16	72/198	-73 -57	243	305	46/187	-95	-79	391	480	
81	181	-18 -10	146	146	164	-18 -11	185	230	146	- 7	142	- 9	167	-21 -12	255	320	156	-29	-20	411	505
83	139	-12 -14	160	160	153	-11 413	198	236	148	+ 2	144	+ 2	153	-14 -16	270	340	133	-27	-29	440	540
85	136	- 3 -14	174	174	153	0 -14	212	252	162	+14	152	+ 8	145	- 8 -16	287	360	115	-16	-24	464	570
93 ₁	115	-21 -32	206	206	130	-23 -35	247	294	174	+12	161	+ 9	101/198	-44 -53	340	427	54/194	-61	-70	534	655
93 ₂	82	-33 -18	224	224	100	-30 -15	262	312	159	-15	146	-15	159	-39 -24	364	457	153	-41	-26	560	688
93 ₃	48	-34 -16	240	240	67	-33 -14	276	328	140	-19	129	-17	118	-40 -24	388	487	109	-44	-27	587	720
96; 21	-27 -30	270	270	49	-18 -24	300	357	146	+ 6	129	0	84	-34 -34	422	530	73	-36 -36	623	765		

Blask constant	1.395	1.664	1.755	1.72
Initial NH ₃ or NO ₂	700	700	700	700
Final NH ₃	-	-	530	450
Final NO ₂	420	390	140	200
Final NO ₃	230	315	30	50

TABLE 16
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 38°C

Time hrs.	NH_3	Reactor I				Reactor II				NO ₂				Reactor I				Reactor II				Thermobarometer			
		b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y
11	142						139				134					138								141	
12	151						179				169					170								162	
14	169	+ 6	+ 2				199	+ 20	+ 14		175	+ 6				152	- 18	- 24	24	22	168	168	+ 6		
16	189	0	- 15	13	13	198	- 1	- 16	2	25	179	+ 4	- 11	11	9	167	+ 15	0	24	22	183	183	+ 15		
18	141	- 48	- 19	32	31	150	- 49	- 19	21	26	140	- 39	- 10	21	18	136	- 31	- 2	26	24	154	154	- 29		
20	111	- 30	- 14	46	46	119	- 31	- 15	36	45	117	- 23	- 7	28	23	116	- 20	- 4	30	28	138	138	- 16		
22	87	- 24	- 21	87	86	98	- 21	- 18	54	68	108	- 4	- 6	34	28	113	- 3	0	30	28	135	135	- 3		
24	99/182	- 28	- 16	103	99	71/173	- 27	- 15	69	87	90/184	- 18	- 6	40	33	104/204	- 9	+ 3	27	25	123/159	123/159	- 12		
31	103	- 79	- 69	172	165	116	- 57	- 47	116	146	156	- 28	- 18	58	48	194	- 10	0	27	25	149	149	- 10		
33	60/213	- 43	- 20	192	185	90/212	- 36	- 13	129	162	129/216	- 27	- 4	62	52	169/169	- 25	- 2	29	27	126/165	126/165	- 23		
35	194	- 19	- 19	211	103	198	- 14	- 14	143	179	214	- 2	- 2	64	53	168	- 1	- 1	30	28	165	165	0		
37	189	- 5	- 27	238	229	200	+ 2	- 20	163	205	222	+ 8	- 14	70	65	198	+ 20	- 2	32	29	187	187	+ 22		
39	171	- 18	- 15	253	243	192	- 8	- 11	174	218	224	+ 2	- 1	79	66	190	+ 2	- 1	33	30	190	190	+ 3		
41	139	- 32	- 26	279	269	166	- 26	- 20	194	243	213	- 11	- 5	84	70	182	- 8	- 2	35	32	184	184	- 6		
44	76/177	- 63	- 39	318	306	116/179-50	- 26	220	276	171/177	- 42	- 18	102	95	157/170	- 25	- 1	36	33	160/149	160/149	- 24			
46	113/186	- 64	- 44	362	348	122/192-57	- 37	257	322	125/194	- 52	- 32	134	112	148/191	- 22	- 2	38	35	129/150	129/150	- 20			
55 ₁	67/215	- 121	- 91	453	436	83/205	- 109	- 79	336	422	44/222	- 150	- 20	254	212	151/201	- 40	- 10	48	44	120/161	120/161	- 30		
57 ₁	177	- 38	- 21	474	456	171	- 34	- 17	353	443	169	- 53	- 36	290	242	178	- 23	- 6	54	50	144	144	- 17		
59 ₁	159	- 18	- 18	493	474	155	- 16	- 17	370	464	136	- 33	- 34	324	270	174	- 4	- 5	59	54	145	145	+ 1		

Contd.....

614	157	- 2	-14	507	487	155	0	-12	382	480	124	-12	-24	348	290	182	+ 8	- 4	63	58	157	+12
65	119	-38	-38	545	525	123	-32	-32	414	520	72	-52	-32	400	334	172	-10	-10	73	87	157	0
67	99/201	-30	-19	564	543	94/192	-29	-19	432	542	32/194	-40	-29	429	358	153/204	-19	-8	81	75	146	-11
70	171	-30	-18	582	560	152	-40	-28	460	576	144	-50	-38	467	390	177	-27	-15	96	89	134	-12
72	148	-23	-13	595	572	127	-25	-15	475	596	110	-34	-24	491	410	198/200	-19	-9	105	97	124	-10
79	117/149	-31	-11	606	583	78/150	-49	-29	504	632	39/154	-71	-51	542	456	135/192	-65	-45	150	138	104/144	-20
83	136	-13	- 9	615	592	134	-16	-12	516	648	120	-34	-30	572	476	150	-42	-38	188	173	140	- 4
87	135	- 1	-12	627	604	132	- 2	-13	529	664	113	- 7	-18	590	492	124	-26	-37	225	207	151	+11

Flask constant	1.347	1.757	1.167	1.285
Initial NH ₃ or NO ₂	700	700	700	700
Final NH ₃	500	490	-	-
Final NO ₂	165	175	270	500
Final NO ₃	35	40	430	205

TABLE 17
OXYGEN UPTAKE FOR AMMONIA AND NITRITE OXIDATION AT 40°C

Time in hrs.i a	NH ₃ b	Reactor I				NH ₃ c				Reactor II				NO ₂ d				Reactor I (All Active Granules)				NO ₂ e				Reactor II (Thermometer f)				
		b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e	b	c	d	e	
8	191					180				201				195				170												
9	191	0	+ 4			183				205				199				186									- 4			
10	178	-13	-11	11	13	185				206				200				164									- 2			
11	168	-10	-9	20	24	181				207				201				163									- 1			
12	159	- 9	- 6	26	31	180				142	-65	-62	62	61	150	-51	-48	48	51	160	- 3									
19	87	-72	-59	85	103	122	-58	-45	45	56	7/199	-135	-122	184	182	37/201	-113	-100	148	174	147	-13								
21	41/226	-48	-27	112	136	90/193	-32	-13	58	72	160	-39	-20	204	202	160	-41	-22	170	200	128/168	-19								
22	212	-14	- 6	118	143	180	-13	- 5	63	78	142	-18	-10	214	212	142	-18	-10	180	212	160	- 8								
24 ₁	197	-15	-34	152	184	187	+ 7	-12	75	93	137	- 5	-24	238	235	137	- 5	-24	204	240	179	+19								
26 ₁	189	- 8	-23	174	211	180	+ 1	-13	88	109	133	- 4	-18	256	253	133	- 2	-16	220	259	193	+14								
28 ₁	172	-17	-24	198	240	178	-10	-17	105	130	120	-13	-20	276	273	120	- 9	-16	236	278	200	+ 7								
32	111	-61	-42	240	291	134	-44	-25	130	161	65	-55	-56	312	308	77	-49	-30	266	313	181	-19								
34	80	-31	-22	262	318	110	-24	-15	145	180	36	-29	-20	322	328	50	-27	-18	286	334	172	- 9								
36	50/195	-22	-27	289	350	100/215	-10	-15	160	199	22/160	-14	-19	351	347	39/150	-11	-16	300	353	177/151	+ 5								
42 ₁	112	-53	-74	263	440	171	-44	-35	195	242	90	-70	-61	412	407	85	-65	-56	356	419	142	- 9								
44 ₁	77/224	-35	-22	305	467	140/165	-23	-10	205	254	57/194	-33	-20	432	426	56/166	-29	-16	372	438	129/168	-13								
46 ₁	194	-30	-20	405	492	140	-25	-15	220	273	154	-30	-20	452	446	140	-26	-16	388	456	158	-10								
48 ₁	184	-10	-26	431	524	146	+ 6	-10	230	285	152	- 2	-18	470	465	134	- 6	-22	410	482	174	+16								
50 ₁	175	- 9	-31	462	560	153	+ 7	-15	245	304	156	+ 2	-20	490	484	141	+ 7	-15	425	500	196	+22								

Contd.....

52 ₁	149	-26	-25	487	590	142	-11	-10	255	316	133	-21	-20	510	-504	122	-19	-18	443	520	195
54 ₁	120	-29	-24	511	620	122	-20	-15	270	334	107	-26	-21	531	524	100	-22	-17	460	540	190
57 ₁	58/247	-62	-44	555	674	59/179	-33	-15	285	353	65/168	-42	-24	555	548	58/159	-42	-24	484	569	172/160
59 ₁	217	-30	-28	583	706	162	-17	-15	300	372	151	-17	-15	570	563	140	-19	-17	501	589	198
66 ₁	109	-103	-99	682	926	103	-59	-50	350	434	104	-47	-38	608	600	97	-53	-44	545	640	149
69 ₁	49/217	-60	-42	724	878	65/156	-38	-20	370	459	70/152	-34	-16	624	616	64/152	-23	-5	550	647	131/166
71 ₁	201	-8	-12	742	900	151	-5	-15	385	477	154	+2	-8	632	624	160	+8	-2	552	649	176
73 ₁	190	-11	-27	769	934	152	+1	-15	400	496	162	+8	-8	640	632						192
75	183	-7	-13	782	949	145	-7	-13	413	512	165	+3	-3	643	635						198
78	136	-45	-47	829	1005	120	-25	-27	440	545											200

Flask constant	1.6979	1.7329	1.381	1.6449
Initial NH ₃ or NO ₂	700	700	700	700
Final NH ₃	360	530	-	-
Final NO ₂	290	150	60	70
Final NO ₃	40	20	620	630

TABLE 18
OXYGEN UPTAKE FOR NITRITE OXIDATION AT 41.5°C

Time hrs. ^a	NO ₂ b	Reactor I					NO ₂ a	Reactor II					Thermobarometric b	
		b	c	d	e	f		b	c	d	e	f	g	
10	190						202						181	
11	192	+ 2	0	0	0		204	+ 4	+ 2	0	0		183	+ 2
13	169	-23	-27	27	36		194	-10	-14	14	13		187	+ 5
15	142	-27	-32	59	56		174	-20	-25	40	36		192	+ 5
19	90	-52	-57	116	110		135	-39	-44	84	76		197	+ 5
21	67	-23	-23	139	132		118	-18	-18	101	92		197	0
24	29/238	-38	-31	170	162		87/229	-31	-24	125	114		190/192	- 7
31	171	-67	-52	222	212		163	-66	-51	176	160		177	-15
33	143	-28	-13	235	224		137	-26	-11	187	170		162	-15
35	127	-16	-13	248	236		122	-15	-12	199	181		159	- 3
38	111	-16	-21	269	256		104	-18	-23	222	202		164	+ 5
40	102	- 9	-13	262	269		95	- 9	-13	235	214		168	+ 4
42	95	- 7	-14	296	282		89	- 6	-13	248	226		175	+ 7
44	81	-14	-15	311	296		76	-13	-14	262	238		176	+ 1
46	66	-15	-17	328	312		63	-13	-15	277	252		178	+ 2
48	44/244	-22	-16	344	328		42/242	-21	-15	292	266		172/187	- 6
55	170	-74	-58	402	383		173	-69	-53	345	314		171	-15
57	151	-19	-14	416	397		153	-20	-15	360	328		166	- 5
61	115	-36	-34	450	428		115	-36	-36	396	360		164	- 2
63	93	-17	-20	470	448		100	-15	-16	414	376		167	+ 3
65	86	-12	-16	486	464		88	-12	-16	430	392		171	+ 4
68	64	-22	-28	514	489		68	-20	-26	456	416		177	+ 6
70	46	-18	-20	534	509		51	-17	-19	475	432		179	+ 2
72	23/195	-23	-21	555	529		28/188	-23	-21	496	452		177/180	- 2
79	120	-75	-65	620	590		94	-94	-84	580	528		170	-10
Flask constant				1.332						1.272				
Initial NO ₂				700						700				
Final NO ₂				510						230				
Final NO ₃				510						460				

APPENDIX C

FIG. 17. DETERMINATION OF μ BY FINITE DIFFERENCE METHOD

SAMPLE CALCULATION
FOR
DETERMINING GROWTH CONSTANT

Temperature 20°C

Reactor Nitrite 2,

Reference - Fig. 17.

Slope of the straight line

$$= \frac{264 - 100}{260 - 98} = \frac{164}{162} = 1.0113$$

From equation (9),

$$\text{Slope} = \mu_m \cdot h = 1.0113$$

so that $\mu_m \cdot h = 0.0113$

In plotting the straight line in Fig. 17, finite interval has been taken as two hours or $h = 2$.

Solving for μ_m from the above equation, after substituting 2 for h ,

$$\mu_m = 0.00563 \text{ hour}^{-1}$$

$$= 0.135 \text{ day}^{-1}$$