SDSC3001 Tutorial 2

Graph search

2024.09.19

Content

- 1. Examples of Graph Data, And their applications.
- 2. Some basic concepts
- 3. How to describe a Graph in Python?
- 4. Breadth-first/ Depth-first Search
- 5. Game: Painting a Picture.

Graph Data

Graph: Nodes and edges

Social network

Computer network

Traffic network

Bitcoin network

Graph Data Applications

Problems on Graph

- Graph Search: Given a source node and a destination node, find a path between them.
- Dense Subgraph Mining: Find dense subgraph in a graph.
- Graph Clustering: Find similar nodes in a group.
- Graph Representation Learning: Learn representations for node/edge/subgraph.

Some concepts in Graph

Definition: A graph represents the relations (edges) between a collection of entities (nodes).

- V Vertex (or node) attributes e.g., node identity, number of neighbors
- **E** Edge (or link) attributes and directions e.g., edge identity, edge weight
- **U** Global (or master node) attributes e.g., number of nodes, longest path

- Vertex (or node) attributes
 e.g., node identity, number of neighbors
- **E** Edge (or link) attributes and directions e.g., edge identity, edge weight
- **U** Global (or master node) attributes e.g., number of nodes, longest path

Same meaning:

- Vertex, Node, Entity
- Edge, Link

A Gentle Introduction to Graph Neural Networks

Neural networks have been adapted to leverage the structure and properties of graphs. We explore the components needed for building a graph neural network - and motivate the design choices behind them.

https://distill.pub/2021/gnn-intro/

How to define a Graph in practice?

1. Array (adjacency matrix)

Most of the elements are zero Sparse matrix

 $a_{ij} = 1$, if node i, j are connected $a_{ij} = 0$, otherwise

Q: What is $a_{ii} = 1$?

In <u>graph theory</u>, a **loop** (also called a **self-loop** or a *buckle*) is an <u>edge</u> that connects a <u>vertex</u> to itself.

Represent Graph in Python

2. Neighbor Dictionary (adjacency table)

BFS: Breadth-First Search (See Jupyter)

Initial	
Waiting List	[1]
Visited List	[]

Deal with 1	
Waiting List	[2 3 4]
Visited List	[1]

Deal with 2	
Waiting List	[3 4 5 6]
Visited List	[1 2]

Deal with 3	
Waiting List	[4 5 6]
Visited List	[1 2 3]

BFS: Breadth-First Search

BFS: Breadth-First Search

Running example

BFS: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

DFS: Depth-First Search

Initial	
Waiting List	[1]
Visited List	[]

Deal with 1	
Waiting List	[2 3 4]
Visited List	[1]

Deal with 2	
Waiting List	[2 3 7 8]
Visited List	[1 4]

Deal with 3	
Waiting List	[2 3 7]
Visited List	[1 4 8]

DFS: Depth-First Search

DFS: Depth-First Search

Running example

DFS: [1, 4, 8, 7, 12, 11, 3, 2, 6, 5, 10, 9]

Now, let's do some arts!

Draw a picture by graph search

Basic logic

- A pixel is a node.
- The neighbors of a pixel is the node near it.
- We can color a node and then spread the color to its neighbor nodes.
- It just like a flood!
- https://observablehq.com/@mbostock/ randomized-flood-fill

Thank you!