re:Invent

NOV. 28 - DEC. 2, 2022 | LAS VEGAS, NV

DAT215

Samsung SmartThings powers home automation with Amazon MemoryDB

Tim Farber-Newman (he/him) Kent Bredeson (he/him)

Senior Staff Software Engineer SmartThings

Senior Software Engineer SmartThings

Abhay Saxena (he/him)

Principal Product Manager AWS

Agenda

What is SmartThings?

Core requirements of a home IoT platform

Where we are and where we are going

Why SmartThings chose Redis and Amazon MemoryDB for Redis

What is MemoryDB?

SmartThings new architecture

Q&A

About SmartThings

- **4.3** App rating
- > 4.5 App rating
- ORIGINAL FOUNDING MEMBERS

SMARTTHINGS INTEGRATES WITH THOUSANDS OF DEVICES

talented people across Samsung are dedicated to SmartThings

15 DEVICE CATEGORIES

9 ADD-ON SERVICES

SmartThings' original kickstarter raised over

\$1.2M

The kickstarter was supported by over

5,700 backers 2014

The year SmartThings was acquired by Samsung

V

v2

V

The SmartThings Hub was released in 3 versions

- SmartThings app
 - User experience

- SmartThings app
 - User experience
- SmartThings cloud
 - Cloud-connected devices (CCD)
 - Automations

- SmartThings app
 - User experience
- SmartThings cloud
 - Cloud-connected devices (CCD)
 - Automations
- SmartThings edge
 - Hub-connected devices (HCD)
 - Automations

- SmartThings app
 - User experience
- SmartThings cloud
 - Cloud-connected devices (CCD)
 - Automations
- SmartThings edge
 - Hub-connected devices (HCD)
 - Automations
- Hub Connectivity Platform
 - Bridge between cloud and edge

Hub Connectivity Platform

- Hundreds of thousands of hub connections
 - Long-lived connections
 - Custom binary data format
- Bidirectional communication
- One of the oldest parts of SmartThings

Hub Connectivity Platform 1.0

- Shard architecture
- Aging infrastructure
- Growth outpacing architecture

Core principles

Ultra-fast performance

Reliable

Scalable

Easily maintainable

Hub Connectivity Platform 1.0

CORE PRINCIPLES CHECKLIST

	Natural growth	
Low latency	Pass	
Reliable	Depends	
Scalable	Barely	
Maintainable	Fail	

Future of home IoT

Future of home IoT

- Matter
 - Billions of devices by 2030
 - More devices per hub

Future of home IoT

- Matter
 - Billions of devices by 2030
 - More devices per hub
- Hub Everywhere
 - Hubs in more devices (for example, TVs)
 - Massive increase in connected hubs

Future of home loT

- Matter
 - Billions of devices by 2030
 - More devices per hub
- Hub Everywhere
 - Hubs in more devices (for example, TVs)
 - Massive increase in connected hubs
- Actual future is unknown
 - 500 million users in the next three years
 - What's the impact? 5x increase? 100x increase?

Hub Connectivity Platform 1.0

CORE PRINCIPLES CHECKLIST

	Natural growth	Matter + Hub Everywhere	
Low latency	Pass	Depends	
Reliable	Depends	Fail	
Scalable	Barely	Fail	
Maintainable	Fail	Fail	

Requirements

- Ultra-fast performance
 - <10 ms for each hop</p>

- Reliable
 - Fail fast, tolerate multiple failure scenarios

- Scalable
 - Support 100 million hubs and beyond

- Easily maintainable
 - Less time on infrastructure

Hub Connectivity Platform 2.0

Hub Connectivity Platform 2.0

- Cell topology
 - Smaller blast radius (fixed number of hubs per cell)
 - Greater fault tolerance (AZ and Region fail-over)
 - Need more capacity? Add more cells

Hub Connectivity Platform 2.0

- Cell topology
 - Smaller blast radius (fixed number of hubs per cell)
 - Greater fault tolerance (AZ and Region fail-over)
 - Need more capacity? Add more cells
- Amazon MemoryDB for Redis

Why Amazon MemoryDB for Redis?

- Multiple uses
 - Streams, hashes, sorted sets, etc.
- Fast
 - Testing over 155,000 messages/second (using MemoryDB)
 - Mean round-trip time: <7 ms</p>
 - p99 round-trip time: <25 ms</p>
- Massively scalable
- Elastic clients

Why Amazon MemoryDB for Redis?

- Durable
- Managed service
- Easy self-service
- Existing Amazon partnership

What is MemoryDB for Redis?

Access data with microsecond reads, process more than 160 million requests per second

In-memory performance, Multi-AZ durability

Performance and durability

- Microsecond reads, single-digit millisecond writes
- Multi-AZ data durability
- Designed for scale
 - Scale horizontally and vertically
 - Online scaling
 - High availability with read replicas

Features

- Expand storage with data tiering
- HIPAA, PCI-DSS, and others
- Automatic failovers

Multi-AZ durability

Automatic multi-AZ durability

No data loss, even in case of node or AZ failure

Architecture

HCP 2.0 – Ingress

HCP 2.0 – Egress

HCP 2.0 with Amazon MemoryDB

CORE PRINCIPLES CHECKLIST

	Current architecture		HCP 2.0
	Natural growth	Matter + Hub Everywhere	All future growth
Low latency	Pass	Depends	Pass
Reliable	Depends	Fail	Pass
Scalable	Barely	Fail	Pass
Maintainable	Fail	Fail	Pass

What's next

- Explore compression and/or other serialization
 - Currently uncompressed JSON strings
 - Using a more tightly packed payload can save money
- Better stream consumer health awareness
 - Current consumer "idle time" does not include all interactions
 - Needed for better stream/consumer cleanup
 - Redis changes are coming!

Additional resources

Get started with a 2-month free trial of MemoryDB

MemoryDB service documentation

Contact the MemoryDB team for more questions or help

Learn more about Samsung SmartThings and Matter

Thank you!

Tim Farber-Newman tim.farber-newman@smartthings.com

Kent Bredeson kent.bredeson@smartthings.com

Abhay Saxena abhays@amazon.com

Please complete the session survey in the mobile app

