Introduction to Reinforcement Learning (RL)

I-Chen Wu

- Sutton, R.S. and Barto, A.G., Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA, 1998.
 - http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
 - Bible in this area.
- David Silver, Online Course for Deep Reinforcement Learning.
 - http://www.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

Successful RL Examples

- Games: Super-human levels
 - Backgammon (Tesauro, 1994).
 - Connect6/2048/Threes! (CGI, 2022). Reach the top levels.
 - AlphaGo/AlphaZero/Muzero, using deep reinforcement learning (2016)
 - Open AI Five for Dota 2, 2019
 - AlphaStar for StarCraft by DeepMind (in nature), 2019
- Robotics: robot-controlled helicopters and humanoid robot walk (Abbeel et al.).
- Autonomous driving/racing: AWS DeepRacer (Amazon, CGI, 2019-)
- Manufacturing scheduling (CGI, 2022).
- Chip design: a fast graph placement by Google Brain (Nature, 2021)
- Optimizing matrix multiplication: AlphaTensor (2022)
- Chat bot: RLHF in Chat-GPT (OpenAI, 2022)
 - Reinforcement Learning from Human Feedback
- ...(Many more successful examples for deep reinforcement learning)

Stochastic Game: 2048

The First Game Reaching 65536 in the World (in 10,000 Trials) in 2015

http://2048.aigames.nctu.edu.tw/replay.php

AlphaGo/AlphaZero

- The Game of Go
 - AlphaGo vs. 李世石: 4:1 (2016)
 - AlphaGo Zero vs. 柯潔: 3:0 (2017)

Dota 2: OpenAI Five (OpenAI)

- Dota 2 is played with two teams defending bases in opposite corners. Each team have five players, each controlling a hero unit with unique abilities
- OpenAI Five became the first AI system to defeat the world champions at an esports game (2019)

StarCraft II: AlphaStar (DeepMind)

- StarCraft is a real-time strategy game in which players balance highlevel economic decisions with individual control of hundreds of units
- AlphaStar was rated at Grandmaster level for all three StarCraft races, above 99.8% of officially ranked human players (2019)

Pluribus Poker (CMU and FAIR)

 Pluribus: stronger than top human professionals in six-player no-limit Texas hold'em poker (2019)

Source of image: https://zhuanlan.zhihu.com/p/73336511 Noam Brown Tuomas Sandholm ,Superhuman AI for multiplayer poker.Science365,885-890(2019).DOI:10.1126/science.aay2400

AlphaTensor (2022)

Size (n, m, p)	Best method known	Best rank known		nsor rank Standard
(2, 2, 2)	(Strassen, 1969) ²	7	7	7
(3, 3, 3)	(Laderman, 1976) ¹⁵	23	23	23
(4, 4, 4)	(Strassen, 1969) ² $(2, 2, 2) \otimes (2, 2, 2)$	49	47	49
(5, 5, 5)	(3,5,5) + (2,5,5)	98	96	98
(2,2,3)	(2, 2, 2) + (2, 2, 1)	11	11	11
(2, 2, 4)	(2, 2, 2) + (2, 2, 2)	14	14	14
(2, 2, 5)	(2, 2, 2) + (2, 2, 3)	18	18	18
(2, 3, 3)	(Hopcroft and Kerr, 1971) ¹	⁶ 15	15	15
(2, 3, 4)	(Hopcroft and Kerr, 1971) ¹	⁶ 20	20	20
(2, 3, 5)	(Hopcroft and Kerr, 1971) ¹	⁶ 25	25	25
(2, 4, 4)	(Hopcroft and Kerr, 1971) ¹	⁶ 26	26	26
(2, 4, 5)	(Hopcroft and Kerr, 1971) ¹	⁶ 33	33	33
(2, 5, 5)	(Hopcroft and Kerr, 1971) ¹	⁶ 40	40	40
(3, 3, 4)	(Smirnov, 2013) ¹⁸	29	29	29
(3, 3, 5)	(Smirnov, 2013) ¹⁸	36	36	36
(3, 4, 4)	(Smirnov, 2013) ¹⁸	38	38	38
(3, 4, 5)	(Smirnov, 2013) ¹⁸	48	47	47
(3, 5, 5)	(Sedoglavic and Smirnov, 202	21) ¹⁹ 58	58	58
(4, 4, 5)	(4, 4, 2) + (4, 4, 3)	64	63	63
(4, 5, 5)	$(2,5,5)\otimes(2,1,1)$	80	76	76

Alhussein Fawzi, Matej Balog, Aja Huang, Thomas Hubert, Bernardino Romera-Paredes, Mohammadamin Barekatain, Alexander Novikov, Francisco J. R. Ruiz, Julian Schrittwieser, Grzegorz Swirszcz, David Silver, Demis Hassabis, and Pushmeet Kohli. Discovering faster matrix multiplication algorithms with reinforcement learning. Nature, 610:47–53, 2022.

DeepRacer

- AWS DeepRacer (by our lab CGI)
 - 2020 AWS DeepRacer World Championship Cup: 1st + 3rd places
 - 2022 AWS DeepRacer World Championship Cup: 1st + 2nd + 3rd places

Hoang-Giang Cao, I Lee, Bo-Jiun Hsu, Zheng-Yi Lee, Yu-Wei Shih, Hsueh-Cheng Wang, I-Chen Wu, "Image-based Regularization for Action Smoothness in Autonomous Miniature Racing Car with Deep Reinforcement Learning", 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Detroit, October 2023.

Better and Faster Chip Design

- Better and faster for chip design than any human designer.
 - Generate chip floorplans that are comparable or superior to human experts in under six hours,
 - whereas humans take months to produce acceptable floorplans for modern accelerators.

[1] A. Mirhoseini, et al. (by Google brain), A graph placement methodology for fast chip design, Nature, 2021

Reinforcement Learning from Human Feedback (RLHF) for ChatGPT

By OpenAI CEO (2022)

(at 6:56/2:23:56, Sam Altman in Lex Fridman Podcast)

- "... And RLHF is how we take some human feedback,
 - the simplest version of this is show two outputs
 - ask which one is better than the other
 - which one the human raters prefer
 - and then feed that back into the model with RL
 - that process works remarkably well with in my opinion
 - remarkably little data to make the model more useful
- So, RLHF is how we align the model to what humans want it to do.

• • •

Sam Altman: OpenAl CEO on GPT-4, ChatGPT, and the Future of Al | Lex Fridman Podcast #367

David Silver:

(the leader of the AlphaGo team)

"
$$DL+RL = AI$$
"

Many Faces of Reinforcement Learning

- Computer Science
 - Machine Learning
- Engineering
 - Optimal Control
- Mathematics
 - Operations Research
- Economics
 - Bounded Rationality
- Psychology
 - Classical/Operant Conditioning
- Neuroscience
 - Reward System

Branches of Machine Learning

- Supervised Learning (SL)
 - learning from a training set of labeled examples provided by a knowledgeable external supervisor.
- Unsupervised Learning (UL)
 - typically about finding structure hidden in collections of unlabeled data.
- Reinforcement Learning (RL)
 - learning from interaction

What are different from others?

• Characteristics:

- No supervisor, only a reward signal
- Feedback is delayed, not instantaneous
- Time really matters
- Agent's actions affect the subsequent data and actions

• UL vs. RL:

- RL is learning from interaction.
- RL does not rely on examples of correct behavior.
- RL is trying to maximize a reward signal, instead of trying to find hidden structure.

Reinforcement Learning

- A computational approach to learning from interaction
 - Explore designs for machines that are effective in
 - solving learning problems of scientific or economic interest,
 - evaluating the designs through mathematical analysis or computational experiments.
 - Focus on goal-directed learning from interaction, when compared with other approaches to machine learning.
 - The learner must discover which actions yield the most reward by trying them.
 - ► Two characteristics: most important distinguishing features of reinforcement learning.
 - trial-and-error search
 - delayed reward

Agent-Environment Interaction Framework

- A kind of AI computational approach to learning from interaction
- Agent-Environment Interaction Framework (代理者-環境 互動框架)

- A kind of AI computational approach to learning from interaction
- Agent-Environment Interaction Framework (代理者-環境 互動框架)

- A kind of AI computational approach to learning from interaction
- Agent-Environment Interaction Framework (代理者-環境 互動框架)

- A kind of AI computational approach to learning from interaction
- Agent-Environment Interaction Framework (代理者-環境 互動框架)

- A kind of AI computational approach to learning from interaction
- Agent-Environment Interaction Framework (代理者-環境 互動框架)

- A kind of AI computational approach to learning from interaction
- Agent-Environment Interaction Framework (代理者-環境 互動框架)

- A kind of AI computational approach to learning from interaction
- Agent-Environment Interaction Framework (代理者-環境 互動框架)

- A kind of AI computational approach to learn from interaction
- Agent-Environment Interaction Framework

- A kind of AI computational approach to learn from interaction
- Agent-Environment Interaction Framework

States and Actions in the Framework

Environment: reaction

Agent: action

Environment: reaction

Agent: action

Environment: reaction

Agent: action

2048

Go

Robot

Environment: Dynamics

Agent: Navigate

Environment: Dynamics

Agent: Navigate

Environment: Dynamics

Agent: Navigate

More Example: Flappy Bird

More Toy Example: Pendulum

More Example: RL Demo (DDPG)

Markov Decision Processes (MDP)

• A (Finite) Markov Decision Process is a tuple

$$<\mathcal{S}, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma>$$

- $-\mathcal{S}$ is a (finite) set of states
- $-\mathcal{A}$ is a (finite) set of actions
- \mathcal{P} is a state transition probability matrix (part of the environment), $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
- \mathcal{R} is a reward function, $\mathcal{R}_{S}^{a} = \mathbb{E}[R_{t+1}|S_{t} = s, A_{t} = a]$
- $-\gamma$ is a discount factor $\gamma \in [0, 1]$.

Markov Property

- An episode: (assuming finite and MDP here for simplicity)
 - States: S_i
 - ▶ Initial state: S_1
 - Current state: S_t
 - ightharpoonup End state: S_T (not necessarily required)
 - Actions: A_i
 - History: $H_t = (S_1, A_1, R_2, S_2, A_2, R_3, S_3, ..., R_t)$
- Markov Property:
 - "The future is independent of the past given the present"
 - A state S_t is Markov if and only if $\mathbb{P}[S_{t+1}|S_t] = \mathbb{P}[S_{t+1}|S_1,...,S_t]$

Episode and Space

Environment State vs. Agent State

- The environment state S_t^e :
 - the environment's private representation
 - i.e. whatever data the environment uses to pick the next observation/reward

- The environment state is not necessarily visible to the agent
 - Even if S_t^e is visible, it may contain irrelevant information
- The agent state S_t^a :
 - The agent's internal representation
 - i.e. whatever information the agent uses to pick the next action
 - i.e. it is the information used by reinforcement learning algorithms
 - It can be any function of history:

$$S_t^a = f(H_t)$$

- Partially Observable: (not discussed here)
 - When $S_t^a \neq S_t^e$

Example: Mahjong

Partially observable:

I-Chen Wu

Rewards

- state S_t R_{t+1} S_{t+1} Environment A_t
- A reward R_t is a scalar feedback signal
 - Indicates how well agent is doing at step t
 - The agent's job is to maximize cumulative reward

 S_t

Reinforcement learning is based on the reward hypothesis

- Example: (2048)

4	8	16	16	Right move Reward = 40	4	8	32
2		4	4			2	8
			2				2
		2		s_t'			2

Definition (Reward Hypothesis)

 All goals can be described by the maximization of expected cumulative reward

Sequential Decision Making

- Goal:
 - Select actions to maximize total future reward
- Maximize $R_{t+1} + R_{t+2} + \cdots + R_T$
 - assuming time = t.

- Notes:
 - Actions may have long term consequences
 - Reward may be delayed
 - It may be better to sacrifice immediate reward to gain more longterm reward

Sequential Decision Making – Examples

• Examples:

- In 2048, establish a sequence of $(2^t, 2^{t-1}, 2^{t-2}, ...)$
- In chess, block opponent moves
 to help winning chances many moves from now.
- In a financial investment, may take months to mature
- In robotics, refuel a helicopter to prevent a crash.

Return

Definition

• The return G_t is the total discounted reward from time-step t.

$$G_t = R_{t+1} + \gamma R_{t+2} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

Notes:

- The discount $\gamma \in [0, 1]$ is the present value of future rewards
- The value of receiving reward R is diminishing
 - $-\gamma^k R$, after k+1 time-steps.
- This values immediate reward above delayed reward.
- Discount:
 - γ close to 0 leads to "myopic" evaluation
 - γ close to 1 leads to "far-sighted" evaluation
 - Important for infinite episodes.

Major Components of an RL Agent

- Value function: how good is each state and/or action
- Policy: agent's behavior function
- Model: agent's representation of the environment

Policy

- A policy is the agent's behavior
 - It is a map from state to action,

- Deterministic policy: $a = \pi(s_i)$
- Stochastic policy: $\pi(a|s) = \mathbb{P}[A_t = a | S_t = s]$
 - ▶ Sometimes, written in $\pi(s, a)$.

• Examples:

- In 2048: Up/down/left/right
- In robotics: angle/force/...

Agent

Environment

Value Function

state

 S_t

reward

 R_t

- A value function is a prediction of future reward
 - Used to evaluate the goodness/badness of states
 - therefore to select between actions.

- Return
$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

- Types of value functions under policy π :
 - State value function: the expected return from s.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma \bar{R}_{t+2} + \gamma^2 R_{t+3} + \dots \mid S_t = s]$$

= $\mathbb{E}_{\pi}[G_t \mid S_t = s]$

- Q-Value function: the expected return from s taking action a.

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t \mid S_t = s, A_t = a]$$

- Examples:
 - In 2048, the expected score from a board S_t .

action

Model

- A model predicts what the environment will do next
 - $-\mathcal{P}$ is a state transition probability matrix, $\mathcal{P}_{ss'}^a = \mathbb{P}[S_{t+1} = s' | S_t = s, A_t = a]$
 - predicts the next state
 - $-\mathcal{R}$ is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1}|S_t = s, A_t = a]$
 - predicts the next (immediate) reward
- Examples:
 - In 2048:
 - \blacktriangleright After a move, \mathcal{P} is to generate a tile randomly as follows:
 - 2-tile: with probability of 9/10
 - 4-tile: with probability of 1/10

Categorizing RL Agents (Policy & Value)

- Value Based
 - No Policy (Implicit)
 - Value Function
- Policy Based
 - Policy
 - No Value Function (Implicit)
- Actor Critic
 - Policy
 - Value Function

Categorizing RL Agents (Model)

- Model Free
 - Policy and/or Value Function
 - No Model
- Model Based
 - Policy and/or Value Function
 - Model

