$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \star & \star \\ 0 & 1 & \star & \star \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & \star & \star \\ 0 & 1 & \star & \star \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A\mathbf{X} = \mathbf{A}\mathbf{X}$$

$$A = [a_{ij}]$$

$$A : \mathbb{R}^n \to \mathbb{R}^n$$

$$A(a\mathbf{u} + b\mathbf{v}) = aA\mathbf{u} + bA\mathbf{v}$$

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$$

MAT A22: Linear Algebra 1 for Mathematical Sciences (Winter 2022)

Welcome to Week 8 of the course.

Questions? Thoughts? Comments?

Readings:

- ▶ 5.4 Rank of a Matrix
- ▶ 5.5 Similarity and Diagonalization

News and Reminders:

▶ Homework #4 Thursday March 10th at 13:00.

The Tiniest Example

Question

```
Let \vec{u} \in \mathbb{R}^n and let S = {\vec{u}}.
```

For which vectors \vec{u} is S linearly independent?

If $\vec{u} = \vec{0}_n$, then S is dependent.

If $\vec{u} \neq \vec{0}_n$, then *S* is independent.

As a consequence, $S = \{\vec{u}\}$ is independent if and only if $\vec{u} \neq \vec{0}_n$.

An Explicit Example

Question

$$Is S = \left\{ \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix} \right\}$$
 linearly independent?

Abstract Example

Question

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{\vec{u} + \vec{v}, 2\vec{u} + \vec{w}, \vec{v} - 5\vec{w}\}$ linearly independent?

Suppose
$$a(\vec{u} + \vec{v}) + b(2\vec{u} + \vec{w}) + c(\vec{v} - 5\vec{w}) = \vec{0}_n$$
 for some $a, b, c \in \mathbb{R}$. Then
$$(a + 2b)\vec{u} + (a + c)\vec{v} + (b - 5c)\vec{w} = \vec{0}_n.$$

Abstract Example

Question

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{\vec{u} + \vec{v}, 2\vec{u} + \vec{w}, \vec{v} - 5\vec{w}\}$ linearly independent?

Suppose
$$a(\vec{u} + \vec{v}) + b(2\vec{u} + \vec{w}) + c(\vec{v} - 5\vec{w}) = \vec{0}_n$$
 for some $a, b, c \in \mathbb{R}$. Then
$$(a + 2b)\vec{u} + (a + c)\vec{v} + (b - 5c)\vec{w} = \vec{0}_n.$$

Since $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent,

$$a+2b = 0$$

$$a+c = 0$$

$$b-5c = 0$$

Abstract Example

Question

Let $\{\vec{u}, \vec{v}, \vec{w}\}$ be an independent subset of \mathbb{R}^n . Is $\{\vec{u} + \vec{v}, 2\vec{u} + \vec{w}, \vec{v} - 5\vec{w}\}$ linearly independent?

Suppose
$$a(\vec{u} + \vec{v}) + b(2\vec{u} + \vec{w}) + c(\vec{v} - 5\vec{w}) = \vec{0}_n$$
 for some $a, b, c \in \mathbb{R}$. Then
$$(a + 2b)\vec{u} + (a + c)\vec{v} + (b - 5c)\vec{w} = \vec{0}_n.$$

Since $\{\vec{u}, \vec{v}, \vec{w}\}$ is independent,

$$a+2b = 0$$
$$a+c = 0$$
$$b-5c = 0.$$

This system of three equations in three variables has the unique solution a=b=c=0. Therefore, $\{\vec{u}+\vec{v},2\vec{u}+\vec{w},\vec{v}-5\vec{w}\}$ is independent.

An Abstract Example

Question

Let $\vec{x}, \vec{y} \in \mathbb{R}^n$, $U_1 = \text{span}\{\vec{x}, \vec{y}\}$, and $U_2 = \text{span}\{2\vec{x} - \vec{y}, 2\vec{y} + \vec{x}\}$. Prove that $U_1 = U_2$.

Since $2\vec{x}-\vec{y}, 2\vec{y}+\vec{x} \in U_1$, it follows that: span $\{2\vec{x}-\vec{y}, 2\vec{y}+\vec{x}\} \subseteq U_1$.

That is: $U_2 \subseteq U_1$.

We calculate:

$$\vec{x} = \frac{2}{5}(2\vec{x} - \vec{y}) + \frac{1}{5}(2\vec{y} + \vec{x}),$$

 $\vec{y} = -\frac{1}{5}(2\vec{x} - \vec{y}) + \frac{2}{5}(2\vec{y} + \vec{x}),$

Therefore, $\vec{x}, \vec{y} \in U_2$. We get: span $\{\vec{x}, \vec{y}\} \subseteq U_2$. That is: $U_1 \subseteq U_2$.

Null is a Span

Example

Let A be an $m \times n$ matrix, and let $\{\vec{x_1}, \vec{x_2}, \dots, \vec{x_k}\}$ denote a set of basic solutions to $A\vec{x} = \vec{0}_m$. Then $\vec{x_i} \in \text{null}(A)$ for each i, $1 \le i \le k$. It follows that

$$span\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\} \subseteq null(A).$$

Conversely, every solution to $A\vec{x} = \vec{0}_m$ can be expressed as a linear combination of basic solutions, implying that

$$\operatorname{null}(A) \subseteq \operatorname{span}\{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k\}.$$

Therefore, $\operatorname{null}(A) = \operatorname{span}\{\vec{x_1}, \vec{x_2}, \dots, \vec{x_k}\}.$

Image is a Span

Example

Let A be an $m \times n$ matrix with columns $\vec{c_1}, \vec{c_2}, \dots, \vec{c_n}$.

Suppose $\vec{y} \in \text{image}(A)$. Then (by definition) there is a vector $\vec{x} \in \mathbb{R}^n$ so that $\vec{y} = A\vec{x}$. Write $\vec{x} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}^T$. Then

$$\vec{y} = A\vec{x} = \begin{bmatrix} \vec{c_1} & \vec{c_2} & \dots & \vec{c_n} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} = x_1\vec{c_1} + x_2\vec{c_2} + \dots + x_n\vec{c_n}.$$

Therefore, $\vec{y} \in \text{span}\{\vec{c}_1, \vec{c}_2, \dots, \vec{c}_n\}$, implying that

$$image(A) \subseteq span\{\vec{c_1}, \vec{c_2}, \dots, \vec{c_n}\}.$$

Find a Basis

Question

Let

$$U = \left\{ \left[egin{array}{c} a \ b \ c \ d \end{array}
ight] \in \mathbb{R}^4 \ \left| \ a-b=d-c
ight\}.$$

Show that U is a subspace of \mathbb{R}^4 , find a basis of U, and find dim(U).

1. *U* is the null space of $T_A : \mathbb{R}^4 \to \mathbb{R}$ given by:

$$T_A \left(egin{bmatrix} a \ b \ c \ d \end{bmatrix}
ight) = egin{bmatrix} 1 & -1 & 1 & -1 \end{bmatrix} egin{bmatrix} a \ b \ c \ d \end{bmatrix} = a - b + c - d$$

Therefore, it is a subspace.

2. *U* is spanned by the basic solutions of a - b + c - d = 0:

$$U = \mathsf{span} \left\{ egin{bmatrix} 1 \ 1 \ 0 \ 0 \end{bmatrix}, egin{bmatrix} 1 \ 0 \ -1 \ 0 \end{bmatrix}, egin{bmatrix} 1 \ 0 \ 0 \ 1 \end{bmatrix}
ight\}$$

Thus, dim(U) = 3.

Invertible Matrices and Bases

Question

Suppose that $B = \{\vec{x}_1, \vec{x}_2, \dots, \vec{x}_n\}$ is a basis of \mathbb{R}^n and that A is an $n \times n$ invertible matrix. Let $D = \{A\vec{x}_1, A\vec{x}_2, \dots, A\vec{x}_n\}$. Prove that D is a basis of \mathbb{R}^n .

Context for Extra Problems

Definition

If U and V are subspaces of \mathbb{R}^n then we can form a sum subspace:

$$U + V = \{u + v : u \in U \text{ and } v \in V\}$$

If every vector in U + V can be written uniquely, then we call the sum a direct sum and write:

$$U+V=U\oplus V$$

Example

$$\mathbb{R}^2 = \{ [x, 0]^T : x \in \mathbb{R} \} \oplus \{ [0, y]^T : y \in \mathbb{R} \}$$

Question

What's an example of a sum of subspaces that is not direct?

Extra Problems (1)

Question

Let $V = F(\mathbb{R})$ be the real vector space of functions from \mathbb{R} to \mathbb{R} . Define

$$V_e = \{ f \in V \mid f(-x) = f(x) \ \forall x \in \mathbb{R} \}$$

$$V_o = \{ f \in V \mid f(-x) = -f(x) \ \forall x \in \mathbb{R} \}.$$

- ightharpoonup Prove that $V = V_e \oplus V_o$.
- ▶ Give the decomposition of the function $f(x) = e^x$ according to the above direct sum.

Extra Problems (2)

Question

Suppose U and W are both five-dimensional subspaces of \mathbb{R}^9 . Prove that $U \cap W \neq \{0\}$.

Extra Problems (3)

Question

Check if the following statement is true. If it's true, prove it. If not , show a counter example.

$$\{M_{n\times n}\}=\{Sy_{n\times n}\}\oplus\{Sk_{n\times n}\}$$

where $\{Sy_{n\times n}\}$ means the set of all n by n symmetric matrices and $\{Sk_{n\times n}\}$ means the set of all n by n skew symmetric matrices.