

Aprendizaje automático

Regresión logística

Regresión logística es un modelo de clasificación probabilístico, en el sentido que intenta modelar

$$P(L = 0|X = x)$$
 y $P(L = 1|X = x)$.

La regla de decisión se define por:

$$P(L = 1|X = x) > P(L = 0|X = x)$$

Lo cual es equivalente a la siguiente relación:

$$\frac{P(L=1|X=x)}{P(L=0|X=x)} > 1$$

Regresión logística

- Aun cuando regresión logística es un clasificador probabilístico, su derivación viene de la regresión lineal generalizada.
- En regresión lineal múltiple, para una observación (x, y), la variable de respuesta y se modela como:

$$\hat{y} = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_3 + \dots + \beta_p x_p = x\beta$$

• En regresión logística, para una observación (x, l), se modela una variable de respuesta P(L = l | X = x) está dada por:

$$P(L = l | X = x) = \begin{cases} \frac{1}{1 + e^{x\beta}} & \text{si } l = 0\\ \frac{1}{1 + e^{-x\beta}} & \text{si } l = 1 \end{cases}$$

¿Cómo funciona regresión logística?

Proyección lineal de los datos

• La parte lineal del modelo $(x\beta)$ tiene la función de proyectar los datos a una línea.

Separación en clases

• Los datos pasan a un plano donde las observaciones de una clase tienen un valor en el eje vertical de 0, y las de la otra clase un valor de 1.

Función logística

• Para poder generar un modelo continuo en este nuevo espacio, se utiliza la función logística:

$$g(u) = \frac{1}{1 + e^{-u}}$$

• Dicha función es cercana a cero cuando u es negativa (es decir $x\beta$), y cercana a uno cuando u es positiva.

Ajuste del modelo

Ajuste del modelo de regression logística

- El problema en regresión logística es encontrar la línea de proyección tal que las clases se separen lo mejor posible en el espacio donde se modelan los datos proyectados.
- En otras palabras, queremos que, en lo posible, para la mayoría de las observaciones de la clase 0 su respectiva probabilidad P(L=0|X=x) sea 1, mientras que para los datos de la clase 1 su respectiva probabilidad P(L=1|X=x) sea 1.
- Esto se resuelve como un problema de optimización.

Ejemplos de proyecciones

Ejemplos de proyecciones

Métodos para el ajuste del modelo

- Estimación de máxima verosimilitud
 - Método favorito, usualmente se integra en las librerías.

- Estimación por mínimos cuadrados
 - No es el preferido, pero algunas librerías lo incluyen.

Método de máxima verosimilitud

• En este método, para un conjunto de datos $D = \{(x_1, l_1), (x_2, l_2), ..., (x_n, l_n)\}$ con n observaciones, se resuelve el siguiente problema de optimización:

$$\beta^* = \underset{\beta}{\operatorname{arg\,min}} \left(-\sum_{i=1}^n \ln(P(L=l_i|X=x_i)) \right)$$

 Este problema indica que queremos los coeficientes β tales que minimicen la función de –log-verosimilitud, o su problema equivalente, encontrar los coeficientes que maximizan la función de verosimilitud.

Método de máxima verosimilitud

Para optimización de gradiente:

$$\nabla L = \sum_{i \in C_0} \frac{e^{x_i \beta}}{1 + e^{x_i \beta}} x_i^T - \sum_{i \in C_1} \frac{e^{-x_i \beta}}{1 + e^{-x_i \beta}} x_i^T$$

donde L es la función de costo (-log-verosimilitud), C_0 es el conjunto de índices con observaciones de la clase 0 y C_1 es el conjunto de observaciones de la clase 1.

Método de mínimos cuadrados

• Para un conjunto de datos $D = \{(x_1, l_1), (x_2, l_2), ..., (x_n, l_n)\}$ con n observaciones, se resuelve el siguiente problema de optimización:

$$\beta^* = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} (l_i - g(x_i \beta))^2 = \arg\min_{\beta} \frac{1}{n} \sum_{i=1}^{n} \left(l_i - \frac{1}{1 + e^{-x_i \beta}} \right)^2$$

• En este caso, queremos el conjunto de parámetros β tales que minimicen el error cuadrático medio del modelo al predecir la etiqueta correcta.

Método de mínimos cuadrados

Para optimización de gradiente:

$$\nabla MSE(D,\beta) = -\frac{2}{n} \sum_{i=1}^{n} r_i \frac{e^{-x_i \beta}}{(1 + e^{-x_i \beta})^2} x_i^T$$

Nótese que sólo agregamos el término $\frac{e^{-x_i\beta}}{\left(1+e^{-x_i\beta}\right)^2}$ a la expresión que obtuvimos para regresión lineal.

Para ambos casos, los parámetros del modelo se ajustan con algún método iterativo como descenso de gradiente.

Regularización de parámetros

Regularización

 Al igual que otros modelos de regresión, es posible agregar un término de regularización al problema de optimización.

Para el método de máxima verosimilitud:

$$\beta^* = \arg\min_{\beta} \left(-\sum_{i=1}^n \ln(P(L = l_i | X = x_i)) + \lambda \sum_{i=1}^p \beta_i^2 \right)$$

$$\nabla L = \sum_{i \in C_0} \frac{e^{x_i \beta}}{1 + e^{x_i \beta}} x_i^T - \sum_{i \in C_1} \frac{e^{-x_i \beta}}{1 + e^{-x_i \beta}} x_i^T + 2\lambda \beta$$

Regularización

Para el método de mínimos cuadrados:

$$\beta^* = \arg\min_{\beta} \left(\frac{1}{n} \sum_{i=1}^n \left(l_i - \frac{1}{1 + e^{-x_i \beta}} \right)^2 + \lambda \sum_{i=1}^p \beta_i^2 \right)$$

$$\nabla MSE(D,\beta) = -\frac{2}{n} \sum_{i=1}^{n} r_i \frac{e^{-x_i \beta}}{(1 + e^{-x_i \beta})^2} x_i^T + 2\lambda \beta$$

Modelos multiclase

Regresión logística multiclase

Regresión logística multinomial

• Se selecciona la clase k como referencia, y con ella se requieren k-1 parámetros β_i :

$$P(L = l | X = x) = \begin{cases} \frac{1}{1 + \sum_{i=1}^{K-1} e^{x\beta_i}} & \text{si } l = 1, 2, 3, \dots k - 1\\ \frac{e^{x\beta_k}}{1 + \sum_{i=1}^{K-1} e^{x\beta_i}} & \text{si } l = k \end{cases}$$

- Regresión logística softmax
 - Se asume que para todas las clases:

$$P(L = l|X = x) = \frac{e^{x\beta_k}}{\sum_{i=1}^{K-1} e^{x\beta_i}}$$

Bibliografía

- James, G., Witten, D., Hastie, T. & Tibshirani, R. (2023). *An introduction to statistical learning: with applications in Python* (2da ed.). Springer.
 - Capítulo 4
- Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: data mining, inference, and prediction (2da ed.). Springer.
 - Capítulo 4