Database Management System

Semester-III (Batch-2024)

Courier Delivery Tracking System

Submitted To: Submitted By:

Gaurav, 2410991148 (G15)

Sachin Garg Gauri Bansal, 2410991151 (G15)

Godswill Khojee, 2410991158 (G15)

Department of Computer Science and Engineering

Chitkara University Institute of Engineering & Technology,

Chitkara University, Punjab

Table of Contents

Sr no.	Topic	Page no.	
1.	Introduction	3	
2.	Problem Overview	4	
3.	Scope of the Project	5	
4.	Objectives	6	
5.	Significance of Project	7	
6.	ER Diagram	8-10	
7.	Database Schema	11-12	
8.	Relational Queries	13-15	
9.	References	16	

1. Introduction

In today's digital era, the courier and logistics industry play a vital role in enabling e-commerce, trade, and day-to-day deliveries. With the rapid growth of online shopping and global supply chains, customers expect **speed**, **accuracy**, **and transparency** in the delivery process. Traditional paper-based methods of booking and tracking parcels are no longer efficient, as they often lead to delays, errors, and lack of real-time information.

The Courier Delivery Tracking System is a database-driven application designed to overcome these challenges by providing a centralized, automated, and user-friendly platform for managing courier operations. This system simplifies the workflow for all stakeholders:

- Customers can book shipments, track their parcels in real time, and receive timely updates.
- **Employees** can manage assignments, update delivery statuses, and optimize their workload.
- Administrators can monitor performance, analyze data, and ensure smooth logistics operations.

By integrating modern database management principles with courier services, the system ensures efficient data storage, quick retrieval, secure transactions, and scalable design that can adapt to growing demands.

The primary goal of this project is to build a **reliable and transparent courier management solution** that not only reduces manual effort but also improves operational efficiency, enhances customer satisfaction, and supports future expansion of courier businesses.

2. Problem Overview

Courier and shipment companies without a computerized system face several issues:

- Manual inefficiency Recording bookings and deliveries on paper is slow and error-prone.
- Lack of real-time tracking Customers cannot know the exact location or status of their parcels.
- **Data redundancy & inconsistency** The same details often get recorded multiple times, leading to mismatched records.
- **Poor resource allocation** Assigning shipments to delivery staff is difficult without a centralized system.
- Limited scalability Managing hundreds of consignments daily becomes unmanageable with manual methods.
- **Security concerns** Physical registers are prone to loss, theft, or unauthorized access of sensitive data.
- Low customer satisfaction Delays, mismanagement, and lack of transparency reduce trust in the service.

The **Courier Delivery Tracking System** is proposed to overcome these problems by introducing automation, centralized data management, and real-time parcel tracking.

3. Scope of the Project

The proposed Courier Delivery Tracking System will:

- Maintain detailed records of customers, consignments, employees, and payments in a centralized database.
- Allow customers to book parcels, track real-time delivery status, and receive timely notifications.
- Enable employees to manage courier assignments, update shipment statuses, and optimize delivery routes.
- Provide **administrators** with tools to monitor performance, generate reports, and ensure smooth operations.
- Implement **role-based access control** to protect sensitive data and restrict unauthorized usage.
- Support **scalability** to handle an increasing number of customers, parcels, and employees as the business grows.
- Ensure data accuracy and consistency using relational database principles such as primary keys and foreign keys.
- Improve efficiency, transparency, and customer satisfaction through automation of booking, tracking, and reporting

4. Objectives

The main objectives of the Courier Delivery Tracking System are:

- Centralized Data Management Maintain all courier, customer, employee, and payment records in a single database.
- Efficient Data Retrieval Provide optimized queries to quickly fetch shipment status, customer details, and payment history.
- **Real-Time Tracking** Allow customers to track their parcels and receive live updates about delivery progress.
- Role-Based Access Control Ensure secure access by defining different privileges for administrators, employees, and customers.
- **Error Reduction** Minimize human errors and inconsistencies by automating booking and reporting processes.
- Improved Transparency Provide clear visibility of courier operations for customers and management.
- Scalability Support future business growth with the ability to handle more consignments, employees, and services.
- Customer Satisfaction Enhance user experience through faster service, reliable tracking, and timely deliveries.

5. Significance of the Project

The Courier Delivery Tracking System is significant because it:

- **Streamlines operations** Automates booking, tracking, and delivery updates, reducing delays and confusion.
- Increases accuracy Eliminates errors caused by manual data entry and record keeping.
- **Enhances transparency** Provides clear visibility of courier status, employee activity, and customer interactions.
- Saves time and effort Enables quick data retrieval and faster processing of courier-related tasks.
- Improves customer trust Real-time tracking and timely updates increase customer satisfaction and reliability.
- Strengthens security Protects sensitive customer and payment details using role-based access and secure databases.
- **Supports scalability** Easily adapts to business expansion and increased courier volumes.
- **Promotes efficiency** Optimizes resource allocation and delivery management for better performance

6. E-R Diagram

The **Entity–Relationship** (**E-R**) **Diagram** is used to model the logical structure of the Courier Delivery Tracking System. It highlights the main entities and their relationships, ensuring that data is well-organized and easily accessible.

Key Entities and Relationships

- Client \leftrightarrow Consignment: A client can book many consignments (1:M).
- Client ↔ Transaction: Each client makes one payment per consignment (1:1).
- Consignment ↔ Shipment: One consignment may have multiple shipment records (1:M).
- Staff \leftrightarrow Shipment: A staff member can handle multiple shipments (1:M).
- Consignment \leftrightarrow Transaction: Each consignment corresponds to a single transaction (1:1).

[Figure 1: E-R Diagram Placeholder]

[Figure 2: E-R Model Placeholder]

7. Database Schema

A database schema defines how data will be stored in the system. It includes tables, attributes, data types, and relationships.

Table 1: Client

Field	Туре	Description	
ClientID (PK)	INT	Unique ID for each client	
Full Name	VARCHAR (50)	Name of Client	
Mobile	VARCHAR (15)	Contact Number	
Address	VARCHAR (100)	Client's Address	
Email	VARCHAR (100)	Client's Email ID	

Table 2: Consignment

Field	Туре	Description	
Consignment ID (PK)	INT	Unique ID of Consignment	
Client ID(FK)	INT	Linked to client	
PickupLocation	VARCHAR (50)	Pickup Address	
DeliveryLocation	VARCHAR (50)	Destination Address	

Status	VARCHAR (20)	Pending/Out for	
		Delivery/Delivered	

Table 3: Shipment

Field	Туре	Description	
Shipment ID (PK)	INT	Unique ID of Shipment	
Consignment ID (FK)	INT	Linked to Consignment	
Date	DATE	Shipment date	
Time	TIME	Shipment time	
Status	VARCHAR (20)	InProgress/Delivered/Failed	

Table 4: Staff

Field	Туре	Description
Staff ID	INT	Unique ID to Staff
Full Name	VARCHAR (50)	Staff Member Name

Contact NO	VARCHAR (15)	Staff Contact Number
Role	VARCHAR (20)	Delivery/Manager

Table 5: Transaction

Field	Type Description		
Transaction ID (PK)	INT	Unique ID of transaction	
Consignment ID (FK)	INT	Linked to consignment	
Amount	DECIMAL (10,2)	Payment Amount	
Status	VARCHAR (20)	Completed/Failed	

8. Relational Algebra Queries -20-25

Table 6: Dummy data table for queries

Courier ID	CustomerID	Source	Destination	Weight	Status
101	1	Delhi	Mumbai	5.2	Booked
102	2	Chennai	Bangalore	2.5	In transit
103	3	Delhi	Pune	7.8	Delivered
104	4	Mumbai	Kolkata	1.2	Booked
105	3	Delhi	Mumbai	9.0	In transit
106	6	Hyderabad	Delhi	0.9	Delivered
108	8	Delhi	Goa	6.0	In transit
109	1	Pune	Delhi	4.1	Delivered
110	9	Kolkata	Delhi	8.3	Booked

Queries

1. List all clients:

π ClientID, FullName, Email (Client)

```
2. Find clients living in "Delhi":
   σ Address="Delhi" (Client)
3. Get clients with mobile numbers starting with "98":
   σ Mobile LIKE "98%" (Client)
4. Find clients who ordered consignments:
   \pi ClientID, FullName (Client \bowtie Consignment)
5. Find clients who did not order any consignments:
   \pi ClientID, FullName (Client) – \pi ClientID, FullName (Client \bowtie Consignment)
6. List all consignments with pickup & delivery:
   π ConsignmentID, PickupLocation, DeliveryLocation (Consignment)
7. Find consignments with status "Pending":
   σ Status="Pending" (Consignment)
8. Get consignments where pickup="Mumbai" and delivery="Delhi":
   σ PickupLocation="Mumbai" Λ DeliveryLocation="Delhi" (Consignment)
9. Find consignments of a specific client (ClientID=5):
   σ ClientID=5 (Consignment)
10. Count number of consignments per client:
   γ ClientID, COUNT(ConsignmentID) (Consignment)
11. List all shipments and their status:
   \pi ShipmentID, Status (Shipment)
12. Find shipments completed on "2025-01-01":
   σ Date="2025-01-01" Λ Status="Completed" (Shipment)
```

13. Show shipments linked to consignments:

 π ShipmentID, ConsignmentID (Shipment \bowtie Consignment)

```
σ Status="In Transit" (Shipment)
15. Find clients whose consignments are still in transit:
   \pi FullName (Client \bowtie Consignment \bowtie Shipment \sigma Status="In Transit")
16. List all staff names and roles:
   \pi FullName, Role (Staff)
17. Find staff with role "Delivery Boy":
   σ Role="Delivery Boy" (Staff)
18. Get staff who handled at least one shipment:
   \pi StaffID, FullName (Staff \bowtie Shipment)
19. Find staff who never handled a shipment:
   \pi StaffID, FullName (Staff) – \pi StaffID, FullName (Staff \bowtie Shipment)
20. List staff and consignments they handled:
   \pi FullName, ConsignmentID (Staff \bowtie Shipment \bowtie Consignment)
21. List all transactions with amount:
   π TransactionID, Amount (Transaction)
22. Find transactions greater than ₹5000:
   \sigma Amount > 5000 (Transaction)
23. Get transactions made via "UPI":
   σ Method="UPI" (Transaction)
24. Find successful transactions:
   σ Status="Successful" (Transaction)
25. Show client names with their payment details:
   \pi FullName, Amount, Method (Client \bowtie Consignment \bowtie Transaction)
```

14. Get shipments still "In Transit":

9. References

- -https://www.w3schools.com/sql/
- https://www.geeksforgeeks.org/dbms/
- -Database System Concepts by Abraham Silberschatz, Henry F. Korth, S. Sudarshan