Previously...

- Uninformed search strategies use only the information available in the problem definition
 - Breadth-first search
 - Uniform-cost search
 - Depth-first search
 - Depth-limited search
 - Iterative deepening search
- Which is the best search strategy?

Comparing Tree Search Strategies

Criterion	Breadth-	Uniform-	Depth-	Depth-	Iterative
	First	Cost	First	Limited	Deepening
Complete?	Yes	Yes	No	No	Yes
Time	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$, , ,	$O(b^l)$	$O(b^d)$
Space	$O(b^d)$	$O(b^{1+\lfloor C^*/\epsilon \rfloor})$) O(bm)	O(bl)	O(bd)
Optimal?	Yes	Yes	No	No	Yes

- 1. BFS and IDS are complete if b is finite.
- 2. UCS is complete if b is finite and step cost $\geq \varepsilon$
- 3. BFS and IDS are optimal if step costs are identical.

Choosing a Search Strategy

- Depends on the problem:
 - □ Finite/infinite depth of search tree
 - Known/unknown solution depth
 - Repeated states
 - Identical/non-identical step costs
 - Completeness and optimality needed?
 - Resource constraints (e.g., time, space)

Faster Search?

- Yes! Represent problem-specific knowledge as heuristics to guide search
- Today:
 - □ Informed (heuristic) search
 - Order of node expansion still matters: Which nodes are "more promising"?

INFORMED SEARCH

Outline

- Best-first search
- Greedy best-first search
- □ A* search
- Heuristics

CMU's BOSS: DARPA Urban Challenge 2007

Best-First Search

- □ Idea: use an evaluation function f(n) for each node n
 - Cost estimate
 - Expand node with lowest evaluation/cost first
- Implementation:

Frontier = priority queue ordered by nondecreasing cost f

- Special cases (different choices of f):
 - Greedy best-first search
 - □ A* search

Romania with Step Costs (km)

Greedy Best-First Search

- □ Evaluation function f(n)
 - = h(n) (heuristic function)
 - = estimated cost of cheapest path from n to goal
- e.g., $h_{SLD}(n)$ = straight-line distance from n to Bucharest
- Greedy best-first search expands the node that appears to be closest to goal

Properties of Greedy Best-First Search

- Complete? No can get stuck in infinite loop,
 e.g., to get from Iasi to Fagaras, Iasi → Neamt →
 Iasi → Neamt → ...
- Optimal? No

- Time? $O(b^m)$, but a good heuristic can reduce complexity substantially
- \square Space? $O(b^m)$: keeps frontier nodes in memory

Romania with Step Costs (km)

A* Search

- Idea: Avoid expanding paths that are already expensive
- □ Evaluation function f(n) = g(n) + h(n)
- $\neg g(n)$ = path cost from start node to reach n
- □ h(n) = estimated cost of cheapest path from n to goal
- f(n) =estimated cost of cheapest path through n to goal

Admissible Heuristics

- □ A heuristic h(n) is admissible if, for every node n, $h(n) \le h^*(n)$ where $h^*(n)$ is the true cost to reach the goal state from n.
- An admissible heuristic never overestimates the cost to reach the goal, i.e., it is optimistic
- Example: $h_{SLD}(n)$ never overestimates the actual road distance
- □ Theorem: If h(n) is admissible, then A* using TREE-SEARCH is optimal

Optimality of A* using TREE-SEARCH

Proof Sketch:

• Suppose some suboptimal goal G_2 has been generated and is in the frontier. Let n be an unexpanded node in the frontier such that n is on a shortest path to an optimal goal G.

- $\Box f(G) = g(G)$ since h(G) = 0
- $f(G_2) = g(G_2)$ since $h(G_2) = 0$
- $g(G_2) > g(G)$ since G_2 is suboptimal
- □ $f(G_2) > f(G)$ from above

Optimality of A* using TREE-SEARCH

Suppose some suboptimal goal G_2 has been generated and is in the frontier. Let *n* be an unexpanded node in the frontier such that *n* is on a shortest path to an optimal goal *G*.

- □ $f(G_2) > f(G)$ from previous slide
- □ $h(n) \le h^*(n)$ since h is admissible
- $g(n) + h(n) \le g(n) + h^*(n)$
- $f(n) \leq f(G)$
- Hence $f(G_2) > f(n)$, and A* will never select G_2 for expansion

Consistent Heuristics

- □ A heuristic is consistent if, for every node n and every successor n of n generated by any action a, $h(n) \le c(n, a, n') + h(n')$.
- \Box If h is consistent, we have

$$f(n') = g(n') + h(n')$$

= $g(n) + c(n, a, n') + h(n')$
 $\ge g(n) + h(n) = f(n)$

- i.e., f(n) is non-decreasing along any path.
- □ Theorem: If h(n) is consistent, then A* using GRAPH-SEARCH is optimal

Optimality of A* using GRAPH-SEARCH

- \Box f(n) is non-decreasing along any path
- $^{\square}$ A* expands nodes in nondecreasing order of f value
- Gradually adds "f-contours" of nodes
- Contour *i* has all nodes with $f = f_i$ where $f_i < f_{i+1}$

Optimality of A* using GRAPH-SEARCH

Proof Sketch:

- 1. If h(n) is consistent, then f(n) is non-decreasing along any path
- 2. Whenever A^* selects a node n (e.g., repeated state) for expansion, the optimal path to n has been found
- 3. A* expands nodes in nondecreasing order of f(n)
- 4. First expanded goal node is optimal solution:
 - a. f is true cost for goal nodes (h(G) = 0)
 - b. all later goal nodes are at least as expensive

Properties of A*

- □ Complete? Yes (if there are finitely many nodes with $f(n) \le f(G)$)
- Optimal? Yes

- Time? $O(b^{h^*-h})$ where h^* is actual cost of getting from root to goal
- Space? Keeps all generated nodes in memory

Admissible vs. Consistent Heuristics

- Why is consistency a stronger sufficient condition than admissibility? How are they related?
 - A consistent heuristic is admissible
 - An admissible heuristic MAY be inconsistent
- An admissible but inconsistent heuristic cannot guarantee optimality of A* using GRAPH-SEARCH
 - Problem: GRAPH-SEARCH discards new paths to a repeated state. So, it may discard the optimal path. Previous proof breaks down.
 - Solution: Ensure that optimal path to any repeated state is always followed first.

Admissible Heuristics

- Let's revisit the 8-puzzle
 - Branching factor is about 3
 - Average solution depth is about 22 steps
 - Exhaustive tree search examines 3²² states
- How do we come up with good heuristics?

Admissible Heuristics

E.g., 8-puzzle:

- $h_1(n) = number of misplaced tiles$
- □ $h_2(n)$ = total Manhattan distance (i.e., no. of squares from desired location of each tile)

$$h_1(S) = ?$$
 8

$$h_2(S) = ?$$
 3+1+2+2+3+3+2 = 18

Dominance

□ If $h_2(n) \ge h_1(n)$ for all n (both admissible), then h_2 dominates h_1 . It follows that h_2 incurs lower search cost than h_1 .

Average search costs (nodes generated):

IDS = 3,644,035 nodes

$$A^*(h_1) = 227$$
 nodes
 $A^*(h_2) = 73$ nodes

IDS = too many nodes

$$A^*(h_1) = 39,135 \text{ nodes}$$

 $A^*(h_2) = 1,641 \text{ nodes}$

Deriving Admissible Heuristics

- A problem with fewer restrictions on the actions is called a relaxed problem
- The cost of an optimal solution to a relaxed problem is an admissible heuristic for the original problem

Deriving Admissible Heuristics

Rules of 8-puzzle:

A tile can move from square A to square B if A is horizontally or vertically adjacent to B and B is blank

- We can generate three relaxed problems
 - 1. A tile can move from square A to square B if A is adjacent to B
 - 2. A tile can move from square A to square B if B is blank
 - 3. A tile can move from square A to square B

Deriving Admissible Heuristics

- If the rules of the 8-puzzle are relaxed so that a tile can move anywhere, then $h_1(n)$ gives the shortest solution
- □ If the rules are relaxed so that a tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

LOCAL SEARCH

Outline

- Local search algorithms
 - Hill-climbing search
 - Simulated annealing
 - Local beam search
 - Genetic algorithms

Local Search Algorithms

- In many optimization problems, the path to goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
- Find final configuration satisfying constraints, e.g.,
 n-queens
- In such cases, we can use local search algorithms to keep a single "current" state and try to improve it
- Advantages: (1) very little/constant memory, and (2) find reasonable solutions in large state space

Example: n-queens

Put n queens on an $n \times n$ board with no two queens on the same row, column, or diagonal

Hill-Climbing Search

"Like climbing Mt. Everest in thick fog with amnesia"

Hill-Climbing Search

 Problem: depending on initial state, can get stuck in local maxima

 Non-guaranteed fixes: sideway moves, random restarts

Hill-Climbing Search: 8-Queens

- h = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-Climbing Search: 8-Queens

A local minimum with h = 1

Simulated Annealing

 Idea: escape local maxima by allowing some "downhill" moves but gradually decrease their frequency

```
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  inputs: problem, a problem
           schedule, a mapping from time to "temperature"
   current \leftarrow MAKE-NODE(problem.INITIAL-STATE)
  for t = 1 to \infty do
       T \leftarrow schedule(t)
      if T = 0 then return current
      next \leftarrow a randomly selected successor of current
      \Delta E \leftarrow next. VALUE - current. VALUE
      if \Delta E > 0 then current \leftarrow next
      else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of Simulated Annealing

- Can prove: If T decreases slowly enough, then simulated annealing search will find a global optimum with probability approaching 1
- Widely used in VLSI layout, factory scheduling, and other large-scale optimization tasks

Local Beam Search

Why keep just one best state?

□ Problem: May quickly concentrate in small region of state space → Solution: stochastic beam search

Genetic Algorithms

- Idea: a successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function): higher values for better states
- Produce the next generation of states by selection, crossover, and mutation

Genetic Algorithms Example

- Fitness function: number of non-attacking pairs of queens (min = 0, max = $(8 \times 7)/2 = 28$)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc.

Genetic Algorithms: Crossover

Exploration Problems

Exploration problems: agent(s) physically in some part of the state space

- e.g. find hotspot using an agent or agents with local temperature sensors
- Sensible to expand states easily accessible to agent (i.e. local states)
 - Local search algorithms apply (e.g., hill-climbing)