VAR model estimation

Step 1. Start with importing the data

Step2: create a time series variables

Step 3: set the dataset as time series

Step 4: get the optimal lags

step 5: Check for cointegration

Step 6: fit the basic var model

<u>></u>					
Vector autoregression					
Sample: 1961q3 - 2005q4		Number of	obs =	178	
Log likelihood = 779.6866		AIC	=	-8.648164	
FPE = 6.01e-07		HQIC	=	-8.575675	
$Det(Sigma_ml) = 5.38e-07$		SBIC	=	-8.469412	
Equation Parms	RMSE	R-sq	chi2	P>chi2	
lx 5	.031146	0.9995	329069.9	0.0000	
lm 5	.030893	0.9994	320549.4	0.0000	
Coef.	Std. Err.	Z	P>z	[95% Conf.	Interval]
lx		JL	I		
lx					
L19210061	.0957376	9.62	0.000	.7333639	1.108648
L20032424	.0941952	-0.03	0.973	.1878616	.1813768

lm					
L12594245	.0938018	2.77	0.006	.0755763	.4432727
L21792574	.0951692	-1.88	0.060	.3657855	.0072708
_cons .0731122	.0468551	1.56	0.119	.0187221	.1649464
lm		JI.			
lx					
L11137655	.0949621	1.20	0.231	.0723568	.2998877
L20617542	.0934322	-0.66	0.509	.2448779	.1213696
lm				- 0	
L1. 1.197059	.093042	12.87	0.000	1.0147	1.379418
L22535712	.0943983	-2.69	0.007	.4385885	068554
_cons .120423	.0464755	2.59	0.010	.0293327	.2115134
		√TABLE		*	

This is the output of the model

Above is the IRF graph

step 6: model diagnostics

These are the options for model diagnostics. Lets try the granger causality test.

Exercise:

Please using the same data, redo what has been done in this part.