Chpater 3. Characterizing Running Times

Joon Soo Yoo

March 20, 2025

Assignment

- ► Read §3.2, §3.3
- ▶ Problems:
 - ► §3.3 #4(b)
 - ► Problems #3-4,

Chapter 3: Characterizing Running Times

Overview of Asymptotic Notation

- ► Chapter 3.1: O-notation, Ω -notation, and θ -notation
- ► Chapter 3.2: Asymptotic notation formal definitions
- Chapter 3.3: Standard notations and common functions

Big-O Notation: Formal Definition

What is Big-O Notation?

- As seen in Section 3.1, O-notation provides an asymptotic upper bound.
- ▶ It describes how a function grows at most at the rate of another function, up to a constant factor.
- ► Formally, for a given function g(n), the set O(g(n)) is defined as:

$$O(g(n)) = \{f(n) \mid \exists c > 0, n_0 > 0 \text{ such that } 0 \le f(n) \le cg(n), \forall n \ge n_0\}$$

▶ This definition ensures that f(n) is bounded above by g(n) for sufficiently large n.

Visualizing Big-O Notation

Interpretation:

- The function f(n) is always below or equal to cg(n) for $n \ge n_0$.
- ▶ This means g(n) serves as an **upper bound** for f(n) in the long run.

Key Assumptions in Big-O Notation

- ► The definition requires f(n) to be **asymptotically nonnegative** for sufficiently large n.
- ▶ That means $f(n) \ge 0$ for all $n \ge n_0$.
- Likewise, the function g(n) must also be **asymptotically** nonnegative.
- ▶ Otherwise, the set O(g(n)) would be empty.

Big-O Notation as a Set

- Mathematically, we define Big-O notation using set notation.
- ▶ A function f(n) belongs to O(g(n)):

$$f(n) \in O(g(n))$$

However, in common usage, we often write:

$$f(n) = O(g(n))$$

Even though this is an abuse of equality, it is widely accepted for simplicity.

Example: Showing $4n^2 + 100n + 500 = O(n^2)$

► Consider the function:

$$f(n) = 4n^2 + 100n + 500$$

 \blacktriangleright We need to find constants c and n_0 such that:

$$f(n) \le cn^2, \quad \forall n \ge n_0$$

▶ Dividing by n^2 :

$$4 + \frac{100}{n} + \frac{500}{n^2} \le c$$

- ▶ Choosing $n_0 = 1$, c = 604 works.
- ▶ Choosing $n_0 = 10$, c = 19 also works.
- ▶ Thus, $f(n) \in O(n^2)$.

Big-Omega (Ω) Notation: Formal Definition

What is Big-Omega Notation?

- Just as O-notation provides an asymptotic upper bound, Ω-notation provides an asymptotic lower bound.
- ▶ It describes how a function grows at least as fast as another function, up to a constant factor.
- Formally, for a given function g(n), the set $\Omega(g(n))$ is defined as:

$$\Omega(g(n)) = \{f(n) \mid \exists c > 0, n_0 > 0 \text{ such that } 0 \le cg(n) \le f(n), \forall n \ge n_0\}$$

▶ This definition ensures that f(n) is bounded below by g(n) for sufficiently large n.

Visualizing Big-Omega (Ω)

Interpretation:

- The function f(n) is always above or equal to cg(n) for $n \ge n_0$.
- This means g(n) serves as a **lower bound** for f(n) in the long run.

Example: Showing $4n^2 + 100n + 500 = \Omega(n^2)$

▶ We have the function:

$$f(n) = 4n^2 + 100n + 500$$

▶ We need to find constants c and n_0 such that:

$$cn^2 \le f(n), \quad \forall n \ge n_0$$

▶ Dividing by n^2 :

$$c \le 4 + \frac{100}{n} + \frac{500}{n^2}$$

- ▶ Choosing $n_0 = 1$, c = 4 works.
- ▶ Thus, $f(n) \in \Omega(n^2)$.

Example: Showing
$$\frac{n^2}{100}-100n-500=\Omega(n^2)$$

Consider:

$$f(n) = \frac{n^2}{100} - 100n - 500$$

• We divide by n^2 :

$$\frac{1}{100} - \frac{100}{n} - \frac{500}{n^2} \le c$$

- ► Choosing $n_0 = 10,005$, we can set $c = 2.49 \times 10^{-9}$.
- ▶ If we choose a larger n_0 , we can increase c closer to $\frac{1}{100}$.
- ▶ This proves that $f(n) \in \Omega(n^2)$.

Theta (Θ) Notation: Formal Definition

What is Theta Notation?

- We use Θ-notation to represent an asymptotically tight bound.
- ▶ It describes how a function grows exactly at the rate of another function, up to constant factors.
- ► Formally, for a given function g(n), the set $\Theta(g(n))$ is defined as:

$$\Theta(g(n)) = \{f(n) \mid \exists c_1, c_2 > 0, n_0 > 0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n), \forall n \ge n_0\}$$

▶ This means f(n) is bounded both **above and below** by g(n) within constant factors.

Visualizing Theta (Θ)

Interpretation:

- The function f(n) is sandwiched between two constant multiples of g(n).
- ▶ This means g(n) provides an **exact rate of growth** for f(n).

Theorem: Relationship Between $O(g(n)), \Omega(g(n))$, and $\Theta(g(n))$

Theorem 3.1:

▶ A function $f(n) = \Theta(g(n))$ if and only if

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n))$

▶ This means if f(n) is both upper and lower bounded by g(n), then f(n) is tightly bound.

Proof of Theorem 3.1: If f(n) is both O(g(n)) and $\Omega(g(n))$, then $f(n) = \Theta(g(n))$

Proof:

Backward direction: Assume f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

Since f(n) = O(g(n)), there exist constants $c_2 > 0$ and $n_2 > 0$ such that:

$$f(n) \leq c_2 g(n), \quad \forall n \geq n_2$$

Since $f(n) = \Omega(g(n))$, there exist constants $c_1 > 0$ and $n_1 > 0$ such that:

$$f(n) \geq c_1 g(n), \quad \forall n \geq n_1$$

▶ Let $n_0 = \max(n_1, n_2)$. Then, for $n \ge n_0$, we have:

$$c_1g(n) \leq f(n) \leq c_2g(n)$$

▶ This matches the definition of $\Theta(g(n))$, so $f(n) = \Theta(g(n))$.

Proof of Theorem 3.1: If
$$f(n) = \Theta(g(n))$$
, then $f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Proof:

Forward direction: Assume $f(n) = \Theta(g(n))$.

▶ By definition of $\Theta(g(n))$, there exist positive constants c_1, c_2 and n_0 such that:

$$c_1g(n) \leq f(n) \leq c_2g(n), \quad \forall n \geq n_0$$

- ► To show f(n) = O(g(n)):
 - From the upper bound $f(n) \le c_2 g(n)$, we see that f(n) is at most a constant multiple of g(n) for sufficiently large n.
 - ▶ This satisfies the definition of O(g(n)), so $f(n) \in O(g(n))$.
- ► To show $f(n) = \Omega(g(n))$:
 - From the lower bound $c_1g(n) \le f(n)$, we see that f(n) is at least a constant multiple of g(n) for sufficiently large n.
 - ▶ This satisfies the definition of $\Omega(g(n))$, so $f(n) \in \Omega(g(n))$.
- Since we have shown both f(n) = O(g(n)) and $f(n) = \Omega(g(n))$, it follows that:

$$f(n) = O(g(n))$$
 and $f(n) = \Omega(g(n)) \Rightarrow f(n) = \Theta(g(n))$

Problem: Prove Transitivity of Θ-Notation

Prove:

$$f(n) = \Theta(g(n))$$
 and $g(n) = \Theta(h(n))$ \Rightarrow $f(n) = \Theta(h(n))$.

Proof of Transitivity of Θ -Notation

Proof:

> By the definition of Θ-notation, $\exists c_1, c_2, c_3, c_4 > 0$ and $n_1, n_2 > 0$ such that:

$$\forall n \geq n_1, \quad c_1 g(n) \leq f(n) \leq c_2 g(n).$$

 $\forall n \geq n_2, \quad c_3 h(n) \leq g(n) \leq c_4 h(n).$

- ▶ Define $n_0 = \max(n_1, n_2)$. For all $n \ge n_0$
- ▶ Substituting g(n) using the second inequality:

$$c_1(c_3h(n))\leq f(n)\leq c_2(c_4h(n)).$$

Simplifying:

$$(c_1c_3)h(n) \leq f(n) \leq (c_2c_4)h(n).$$

▶ Since $c_1c_3 > 0$ and $c_2c_4 > 0$, this shows:

$$f(n) = \Theta(h(n))$$

Asymptotic Notation in Equations and Inequalities

Key Idea:

- Asymptotic notation is formally defined in terms of sets.
- ► However, in equations, we often write:

$$f(n) = O(g(n))$$
 instead of $f(n) \in O(g(n))$.

This means we use the equal sign (=) to represent set membership (∈).

Interpreting Asymptotic Notation in Formulas

How to Interpret Asymptotic Notation in Equations:

- ▶ When asymptotic notation appears in a formula, it represents an anonymous function.
- Example:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

▶ This means there exists some function $f(n) \in \Theta(n)$ such that:

$$2n^2 + 3n + 1 = 2n^2 + f(n),$$

where
$$f(n) = 3n + 1$$
.

Why Use Asymptotic Notation in Formulas?

Eliminating Inessential Details

- Asymptotic notation simplifies expressions by ignoring lower-order terms.
- Example:

$$T(n) = 2T(n/2) + \Theta(n)$$

- ▶ Instead of writing out the full details, we use $\Theta(n)$ to hide unnecessary complexity.
- This makes equations clearer and easier to analyze.

Anonymous Functions in Asymptotic Notation

Key Rule:

- ► The number of **anonymous functions** in an expression equals the number of asymptotic notation terms.
- Example:

$$\sum_{i=1}^{n} O(i)$$

This is **not** the same as:

$$O(1) + O(2) + \cdots + O(n),$$

since the latter has multiple anonymous functions.

Asymptotic Notation on the Left-Hand Side

Interpreting Equations with Asymptotic Notation:

- ▶ When notation appears on the left-hand side, it means:
- ➤ "For any function chosen on the left, there exists a function on the right to make the equation valid."
- Example:

$$2n^2 + \Theta(n) = \Theta(n^2)$$

► This means for any function $f(n) \in \Theta(n)$, there is a function $g(n) \in \Theta(n^2)$ such that:

$$2n^2+f(n)=g(n).$$

Step 1 & Step 2: Chaining Asymptotic Notation

Step 1: Group Lower-Order Terms in $\Theta(n)$

Since 3n + 1 grows at most linearly, we recognize it belongs to $\Theta(n)$, so we rewrite:

$$2n^2 + 3n + 1 = 2n^2 + \Theta(n)$$

▶ Instead of keeping the exact form of 3n + 1, we just say it belongs to $\Theta(n)$.

Step 2: Identify Dominant Term

▶ We now focus on:

$$2n^2 + \Theta(n)$$

Since the quadratic term dominates for large n, the whole expression must behave like $\Theta(n^2)$, so:

$$2n^2 + \Theta(n) = \Theta(n^2).$$

Step 3: Conclude the Final Result

Final Step: Chaining the Results

► Since each step is valid, we chain them together to conclude:

$$2n^2+3n+1=\Theta(n^2).$$

The asymptotic notation hides lower-order terms and focuses on the dominant growth rate.

Proper Abuses of Asymptotic Notation

Why Do We Abuse Asymptotic Notation?

- Asymptotic notation is formally defined using sets, but we often simplify notation for clarity.
- Some common "abuses" are widely accepted because they make expressions more readable.
- As long as we **don't misuse** these conventions, they help focus on **essential growth behavior**.

Abuse #1: Using = Instead of \in

Set Membership vs. Equality

Asymptotic notation represents **sets of functions**, so formally we should write:

$$f(n) \in O(g(n))$$

► However, for convenience, we usually write:

$$f(n) = O(g(n))$$

- ▶ This is not strict equality; it just means f(n) belongs to the set O(g(n)).
- This abuse is acceptable as long as we interpret it correctly.

Abuse #2: Inferring the Variable from Context

Interpreting O(1) in Context

- Asymptotic notation depends on the variable tending to infinity.
- ► Normally, we assume:

$$O(g(n))$$
 means growth as $n \to \infty$.

- ▶ Writing T(n) = O(1) is **technically ambiguous**, as it does not explicitly state which variable is growing.
- ► However, by convention, we understand that *n* is the variable tending to infinity.
- ► This abuse is widely accepted because:
 - It simplifies notation.
 - The context usually makes it clear which variable is growing.

Abuse #3: Using O(1) for Small n

Example:

▶ We often write:

$$T(n) = O(1)$$
 for $n < 3$.

- ▶ Problem The formal definition of O-notation only applies for sufficiently large n, so this notation is technically meaningless.
- What it actually means

$$\exists c > 0$$
 such that $T(n) \leq c$ for all $n < 3$.

► This allows us to avoid explicitly naming constants while keeping expressions clean.

Abuse #4: Using Asymptotic Notation with Undefined Functions

What If a Function is Not Defined for Some n?

- ➤ Some algorithms are only defined for specific input sizes (e.g., powers of 2).
- We still use asymptotic notation, but only where the function is defined
- Example:

$$T(n) = O(n \log n)$$
, where n is a power of 2.

▶ **Interpretation**: The bound holds for all valid values of n, even if T(n) is undefined for some inputs.

Key Takeaways: Properly Abusing Asymptotic Notation

- Abuse #1: We write f(n) = O(g(n)) instead of $f(n) \in O(g(n))$ for simplicity.
- ▶ Abuse #2: We assume the variable tending to infinity is clear from context.
- Abuse #3: We sometimes use O(1) for small values of n, even though it's formally meaningless.
- ▶ Abuse #4: We use asymptotic notation even for functions that are only defined for certain input sizes.
- Asymptotic notation is meant to simplify analysis, but we must use it correctly to avoid incorrect conclusions.

Little-O (o)-Notation: Definition

What is Little-O Notation?

- \triangleright O(g(n)) provides an upper bound, but it may or may not be asymptotically tight.
- o(g(n)) is a **strictly looser bound** than O(g(n)), meaning f(n) grows **strictly slower** than g(n).
- Formal Definition:

$$o(g(n)) = \{f(n) \mid \forall c > 0, \exists n_0 > 0 \text{ such that } 0 \le f(n) < cg(n), \forall n \ge n_0\}$$

Intuition Behind Little-O Notation

Key Difference Between *O* and *o*

- ightharpoonup O(g(n)) allows f(n) to grow at the same rate as g(n).
- ightharpoonup o(g(n)) requires f(n) to grow strictly slower than g(n).

Mathematical Intuition:

▶ If f(n) = o(g(n)), then:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$$

▶ This means f(n) becomes insignificant relative to g(n) as $n \to \infty$.

Little-Omega (ω)-Notation: Definition

What is Little-Omega Notation?

- ▶ Just as o(g(n)) is a **strict** upper bound, $\omega(g(n))$ is a **strict** lower bound.
- ▶ We write $f(n) = \omega(g(n))$ if f(n) grows **strictly faster** than g(n).
- Formal Definition:

$$\omega(g(n)) = \{f(n) \mid \forall c > 0, \exists n_0 > 0 \text{ such that } 0 \le cg(n) < f(n), \forall n \ge n_0\}$$

Intuition Behind Little-Omega Notation

Key Difference Between Ω and ω

- $ightharpoonup \Omega(g(n))$ allows f(n) to grow at least as fast as g(n).
- \blacktriangleright $\omega(g(n))$ requires f(n) to grow strictly faster than g(n).

Mathematical Intuition:

▶ If $f(n) = \omega(g(n))$, then:

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty.$$

▶ This means f(n) becomes arbitrarily large relative to g(n) as $n \to \infty$.

Summary of O, Ω, o, ω Notation

- ightharpoonup O(g(n)): Upper bound (may be tight).
- $ightharpoonup \Omega(g(n))$: Lower bound (may be tight).
- ightharpoonup o(g(n)): Strict upper bound (not tight).
- \blacktriangleright $\omega(g(n))$: Strict lower bound (not tight).

Mathematical Limits:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \begin{cases} 0, & \text{if } f(n) = o(g(n)) \\ \infty, & \text{if } f(n) = \omega(g(n)) \\ \text{constant}, & \text{if } f(n) = \Theta(g(n)) \end{cases}$$

Transitivity of Asymptotic Notation

Transitivity Rules:

▶ If $f(n) = \Theta(g(n))$ and $g(n) = \Theta(h(n))$, then:

$$f(n) = \Theta(h(n)).$$

▶ If f(n) = O(g(n)) and g(n) = O(h(n)), then:

$$f(n) = O(h(n)).$$

▶ If $f(n) = \Omega(g(n))$ and $g(n) = \Omega(h(n))$, then:

$$f(n) = \Omega(h(n)).$$

If f(n) = o(g(n)) and g(n) = o(h(n)), then:

$$f(n) = o(h(n)).$$

▶ If $f(n) = \omega(g(n))$ and $g(n) = \omega(h(n))$, then:

$$f(n) = \omega(h(n)).$$

Reflexivity of Asymptotic Notation

Reflexivity Rules:

▶ Every function is asymptotically related to itself:

$$f(n) = \Theta(f(n)).$$

$$f(n) = O(f(n)).$$

$$f(n) = \Omega(f(n)).$$

Proof of Reflexivity for Θ-Notation

To Prove: Every function satisfies:

$$f(n) = \Theta(f(n)).$$

Proof:

▶ By definition, $f(n) \in \Theta(f(n))$ if there exist **positive** constants $c_1, c_2 > 0$ and a **threshold** $n_0 > 0$ such that:

$$c_1 f(n) \leq f(n) \leq c_2 f(n), \quad \forall n \geq n_0.$$

▶ Choosing $c_1 = 1$, $c_2 = 1$, and any $n_0 > 0$, we get:

$$f(n) \leq f(n) \leq f(n),$$

which trivially holds for all $n \ge n_0$.

 \triangleright Hence, by definition of Θ-notation:

$$f(n) = \Theta(f(n)).$$

Transpose Symmetry

Transpose Symmetry Rules:

$$f(n) = O(g(n)) \iff g(n) = \Omega(f(n)).$$

$$f(n) = o(g(n)) \iff g(n) = \omega(f(n)).$$

Analogy Between Asymptotic Notation and Real Numbers

Asymptotic notation can be compared to real number inequalities:

- ▶ f(n) = O(g(n)) is like $a \le b$.
- $f(n) = \Omega(g(n))$ is like $a \ge b$.
- $f(n) = \Theta(g(n))$ is like a = b.
- ightharpoonup f(n) = o(g(n)) is like a < b.
- $f(n) = \omega(g(n))$ is like a > b.

Trichotomy in Real Numbers vs. Asymptotic Notation

Trichotomy Property (Real Numbers)

► For any two real numbers *a* and *b*, exactly one of the following must hold:

$$a < b$$
, $a = b$, $a > b$.

Why Trichotomy Does Not Hold in Asymptotic Notation

- ▶ Not all functions are asymptotically comparable.
- ▶ There exist functions f(n) and g(n) such that neither:

$$f(n) = O(g(n))$$
 nor $f(n) = \Omega(g(n))$

holds.

Why Trichotomy Fails in Asymptotic Notation

Why Trichotomy Does Not Hold for Asymptotic Notation

- ► Consider $g(n) = n^{1+\sin n}$, where $\sin n$ oscillates between -1 and 1.
- ► This means:

$$1\leq g(n)\leq n^2.$$

- ▶ If we try to compare g(n) with f(n) = n, we find:
 - ▶ g(n) is sometimes **larger than** n (i.e., $g(n) = n^2$).
 - g(n) is sometimes **smaller than** n (i.e., g(n) = 1).
- Since neither g(n) = O(n) nor $g(n) = \Omega(n)$ is always true, **trichotomy fails**.

Chapter 3: Characterizing Running Times

Overview of Asymptotic Notation

- ► Chapter 3.1: O-notation, Ω -notation, and θ -notation
- Chapter 3.2: Asymptotic notation formal definitions
- ► Chapter 3.3: Standard notations and common functions

Monotonic Functions

Definition: A function f(n) is:

► Monotonically increasing if:

$$m \leq n \Rightarrow f(m) \leq f(n)$$
.

Monotonically decreasing if:

$$m \leq n \Rightarrow f(m) \geq f(n)$$
.

Strictly increasing if:

$$m < n \Rightarrow f(m) < f(n)$$
.

Strictly decreasing if:

$$m < n \Rightarrow f(m) > f(n)$$
.

Floor and Ceiling Functions

Definition:

- ▶ The **floor function** |x| gives the greatest integer $\leq x$.
- ▶ The **ceiling function** [x] gives the smallest integer $\ge x$.

Example Values:

- ightharpoonup | 3.7| = 3, [3.7] = 4.
- ▶ [-2.3] = -3, [-2.3] = -2.
- ightharpoonup $\lfloor 5 \rfloor = 5$, $\lceil 5 \rceil = 5$.

Properties of Floor and Ceiling Functions

Basic Properties: For any integer n,

$$\lfloor n \rfloor = n = \lceil n \rceil.$$

For all real numbers x, we have:

$$x - 1 < \lfloor x \rfloor \le x \le \lceil x \rceil < x + 1.$$

Negation Property:

$$-\lfloor x \rfloor = \lceil -x \rceil, \quad -\lceil x \rceil = \lfloor -x \rfloor.$$

Modular Arithmetic

Definition: For any integer a and any positive integer n,

$$a \mod n = a - n \lfloor a/n \rfloor$$
.

Properties:

- ▶ $0 \le a \mod n < n$, even for negative a.
- ▶ $a \equiv b \pmod{n}$ if $(a \mod n) = (b \mod n)$.
- ▶ $a \equiv b \pmod{n} \iff n \text{ divides } (a b).$

Polynomials

Definition: A polynomial of degree *d* is:

$$p(n) = \sum_{i=0}^d a_i n^i$$
, where $a_d \neq 0$.

Properties:

- ▶ p(n) is asymptotically positive if $a_d > 0$.
- ▶ If p(n) is asymptotically positive, then:

$$p(n) = \Theta(n^d)$$
.

- ▶ n^a is monotonically increasing for $a \ge 0$, and monotonically decreasing for $a \le 0$.
- A function is polynomially bounded if:

$$f(n) = O(n^k)$$
 for some constant k .

Exponentials

Basic Properties: For any a > 0, and integers m, n,

$$a^{0} = 1$$
, $a^{1} = a$, $a^{-1} = \frac{1}{a}$, $(a^{m})^{n} = a^{mn}$.
 $a^{m}a^{n} = a^{m+n}$, and $\frac{a^{m}}{a^{n}} = a^{m-n}$.

Growth Comparison:

- ▶ If a > 1, the function a^n is **monotonically increasing**.
- ▶ If a < 1, the function a^n is monotonically decreasing.
- For all a > 1 and any b, we have:

$$\lim_{n\to\infty}\frac{n^b}{a^n}=0,\quad \text{so}\quad n^b=o(a^n).$$

Any exponential function with a > 1 grows faster than any polynomial.

Logarithmic Functions

Notations:

$$\lg n = \log_2 n$$
, $\ln n = \log_e n$, $\lg^k n = (\lg n)^k$.

Properties: For any a, b, c > 0 and n:

- $ightharpoonup a = b^{\log_b a}$.

Growth Comparison:

$$\lg^b n = o(n^a)$$
 for any $a > 0$.

- Any positive polynomial function grows **faster** than any polylogarithmic function.

Factorials and Stirling's Approximation

Definition: The factorial function n! is defined as:

$$n! = \begin{cases} 1, & n = 0, \\ n \cdot (n-1)! & n > 0. \end{cases}$$

Growth Bounds:

- ▶ Weak upper bound: $n! \le n^n$.
- Stirling's Approximation:

$$n! pprox \sqrt{2\pi n} \left(rac{n}{e}
ight)^n \left(1 + \Theta \left(rac{1}{n}
ight)
ight).$$

Question?