Answers and mark scheme

1. (a)	resistances of individual sections are R, R/2, R/3	(1)	
(,	total resistance is therefore $(11/6)R$ $(11/6)R = 22 k\Omega$	(1) (1)	
/I= \	$R = 12 \text{ k}\Omega$ calculate current <i>I</i> entering the network: $I^2R = 0.0018 \text{ W}$	(1) (2)	[4]
(b)	/ = 0.388 mA	(1) (1)	
	current in (i) = 0.194 mA power in (i) = 0.00045 W (0.45 mW)	(1)	
	power in (ii) = 0.2 mW	(1)	[6]
2 . (a)	pressure x volume = constant for constant mass and temperature		[1]
(b)	initial pressure in air column = $(A + 100)$ mm Hg, where $A =$ atmospheric pressure in mm Hg	(1)	
	second pressure in air column = (A - 100) mmHg	(1) (1)	
	apply Boyle's law: $(A + 100)(400) = (A - 100)(520)$ solve for A; $A = 767$ mmHg	(1)	[4]
(c)	(i) force = pressure x area area = $4\pi R^2$ = 5.15 x 10^{14} m ²	(1) (1)	
	magnitude = $(101 \times 10^{3}) \times (5.15 \times 10^{17})$	(1)	* 43
	= 5.3 x 10 ¹⁹ N (unit required)	(1) · (1)	[4]
	(ii) divide result in (i) by <i>g</i> mass = 5.3 x 10 ¹⁸ kg (unit required)	(1)	[2]
3 . (a)	$L = T^2 g/(4\pi^2)$	(1)	
	= 0.248 m (expect three significant figures)	(1) (1)	[2]
(b)	period with length 0.124 m = 0.707 s new oscillation consists of two different half-periods	(2)	
	T' = (0.500 + 0.353) s	(1) (1)	[5]
	= 0.853 s	(1)	[O]
4 . (a)	$mc\theta$ (or similar) used. c = (2100 x 240)/(1.50 x 80)	(1)	
	= 4200 J kg ⁻¹ K ⁻¹ (unit required: working must be shown)	(2)	[3]
(p)	mL (or similar) used $L = (2100 \times 800)/0.75$	(1)	
	= 2.24 x 10 ⁶ J kg ⁻¹ (unit required): working must be shown)	(2)	[3]
(c)	appreciation that volume and length are in a power 3 relation ratio of volumes of steam and water = 1600	(1) (1)	
	ratio of mean separations = (1600) ^{1/3} = 11.7	(2)	[4]
5 . (a)	sensible time scale (e.g. 1 cm = 1s)	(1)	
, ,	sensible speed scale (e.g. 1 cm = 2 m s ⁻¹) correct speed-time line for stolen car	(1) (1)	
	correct speed-time line for accelerating motor-cyclist	(1)	
	correct speed-time line for constant-speed motor-cyclist	(1)	[5]
(b)	appreciation that areas under the graphs represent distances travelled method:	(1)	
	e.g. motor-cyclist attains maximum speed of 20 m s ⁻¹ after 5.0 s	(1)	
	distance travelled whilst accelerating = 50 m distance travelled by car in this 5 s = 75 m	(1) (1)	
	separation of car and motor-cyclist at this juncture = 25 m	(1)	
	subsequent relative speed = 5.0 m s ⁻¹ so motor-cyclist reaches car 5.0 s later	(1)	
	total distance travelled by car in 10 s at 15 m s ⁻¹ = 150 m	(1)	[7]