3. előadás

VALÓS SOROZATOK 2.

Tágabb értelemben vett határérték

Fordítsuk a figyelmünket most a divergens sorozatokra. Ezek között vannak olyanok, amelyek bizonyos "maghatározott tendenciát mutatnak".

Például az

$$a_n := n^2 \quad (n \in \mathbb{N})$$

sorozat divergens, de "nagy" n-ekre az a_n értékek "nagyok". Pontosabban: tetszőlegesen (nagy) pozitív P számra a sorozat tagjai bizonyos indextől kezdve P-nél nagyobbak (vagy másként fogalmazva: legfeljebb véges sok tag lesz P-nél kisebb). Az ilyen sorozatokat " $+\infty$ -hez tartó" sorozatoknak fogjuk nevezni, vagy azt is mondjuk, hogy a sorozat "határértéke $+\infty$ ".

Hasonló a helyzet a

$$b_n := -n^2 \quad (n \in \mathbb{N})$$

divergens sorozat esetén is. Itt tetszőleges P<0 számra a sorozat tagjai bizonyos indextől kezdve P-nél kisebbek (azaz legfeljebb véges sok tag lesz P-nél nagyobb). Az ilyen sorozatokat " $-\infty$ -hez tartó" sorozatoknak fogjuk nevezni, vagy azt is mondjuk, hogy a sorozat "határértéke $-\infty$ ".

1. definíciók.

 1^o Azt mondjuk, hogy az (a_n) sorozat határértéke $+\infty$ (vagy a sorozat $+\infty$ -hez tart), ha

$$\forall P > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ a_n > P.$$

Ezt az alábbi szimbólumok valamelyikével jelöljük:

$$\lim (a_n) = +\infty$$
, $\lim_{n \to +\infty} a_n = +\infty$, $a_n \to +\infty$, $ha \ n \to +\infty$.

 2^{o} Azt mondjuk, hogy az (a_n) sorozat határértéke $-\infty$ (vagy a sorozat $-\infty$ -hez tart), ha

$$\forall P < 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ a_n < P.$$

Ezt az alábbi szimbólumok valamelyikével jelöljük:

$$\lim (a_n) = -\infty$$
, $\lim_{n \to +\infty} a_n = -\infty$, $a_n \to -\infty$, $ha \ n \to +\infty$.

1. példa. A definíció alapján bizonyítsuk be, hogy

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^{n^2} = +\infty.$$

1

Megoldás. Azt kell bebizonyítani, hogy

(*)
$$\forall P > 0 \text{-hoz } \exists n_0 \in \mathbb{N}, \forall n > n_0 : \left(1 + \frac{1}{n}\right)^{n^2} > P.$$

Legyen P > 0 egy adott valós szám, és vizsgáljuk az

$$\left(\Delta\right) \qquad \left(1 + \frac{1}{n}\right)^{n^2} > P$$

egyenlőtlenséget. Azt kell megmutatni, hogy ez bizonyos n_0 küszöbindextől kezdve minden n indexre igaz. A bizonyításhoz a következő ötletet alkalmazzuk: a bal oldalnál **kisebb**, de jóval egyszerűbb kifejezésről mutatjuk meg, hogy az P-nél nagyobb bizonyos indextől kezdve.

A bal oldalt a Bernoulli-egyenlőtlenség felhasználásával csökentjük:

$$\left(1 + \frac{1}{n}\right)^{n^2} \ge 1 + n^2 \cdot \frac{1}{n} = 1 + n > n.$$

Így (\triangle) helyett a következőt kapjuk:

$$\left(1 + \frac{1}{n}\right)^{n^2} > n > P.$$

Az utolsó egyenlőtlenség nyilván teljesül, ha $n > n_0 := [P]$, és ez azt jelenti, hogy

$$\left(1 + \frac{1}{n}\right)^{n^2} > P$$
, ha $n > n_0 = [P]$.

Következésképpen P-hez (például) $n_0 = [P]$ egy jó küszöbindex.

Mivel P tetszőleges, ezért a fentiekből következik (*).

2. példa. A definíció alapján lássuk be, hogy

$$\lim_{n \to +\infty} \frac{7 - 2n^2}{n + 10} = -\infty.$$

Megoldás. Azt kell bebizonyítani, hogy

(*)
$$\forall P < 0 \text{-hoz} \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ \frac{7 - 2n^2}{n + 10} < P.$$

Legyen P < 0 egy adott valós szám, és vizsgáljuk a

$$(\triangle) \qquad \frac{7 - 2n^2}{n + 10} < P$$

egyenlőtlenséget. Azt kell megmutatni, hogy ez bizonyos n_0 küszöbindextől kezdve minden n indexre igaz. Szorozzunk be (-1)-gyel:

$$(\circ) \qquad \frac{2n^2 - 7}{n + 10} > -P,$$

így a folytatás hasonló lesz az előző példánál leírtakhoz. Ezt az egyenlőtlenséget most meg tudnánk oldani. Jóval egyszerűbb azonban, ha az előző példánál alkalmazott ötletet követjük, ti. a bal oldalt **csökkentjük:**

$$\frac{2n^2 - 7}{n+10} = \frac{n^2 + (n^2 - 7)}{n+10} > \text{ (ha } n > 2, \text{ akkor } n^2 - 7 > 0) >$$

$$> \frac{n^2}{n+10} > \text{ (ha } n > 10) > \frac{n^2}{n+n} = \frac{n^2}{2n} = \frac{n}{2}.$$

Így (o) helyett azt kapjuk, hogy

$$\frac{2n^2-7}{n+10} > \frac{n}{2} > -P$$
, ha $n > 10$.

Az $\frac{n}{2} > -P$, azaz az n > -2P egyenlőtlenség igaz minden olyan n indexre, amelyre n > [-2P]. A fentieket összefoglalva (\circ), illetve a vele ekvivalens (\triangle) egyenlőtlenségre az adódik, hogy

$$\frac{7-2n^2}{n+10} < P$$
, ha $n > 10$ és $n > [-2P]$.

Következésképpen P-hez (például) $n_0 := \max\{10, [-2P]\}$ egy jó küszöbindex.

Mivel P < 0 tetszőleges, ezért a fentiekből következik (*).

A konvergencia, illetve a $(\pm \infty)$ -hez tartás fogalmakat egységes formában is megadhatjuk. Ehhez először arra emlékeztetünk, hogy az

$$\overline{\mathbb{R}}:=\mathbb{R}\cup\{-\infty,+\infty\}$$

szimbólummal jelöltük a kibővített valós számok halmazát. Most az $\overline{\mathbb{R}}$ -beli elemek környezeteit értelmezzük.

2. definíció. Legyen $A \in \mathbb{R}$ és r > 0 valós szám. Ekkor az A elem r sugarú környezetét így definiáljuk:

$$K_r(A) := \begin{cases} (A - r, A + r), & ha \ A \in \mathbb{R} \\ \left(\frac{1}{r}, +\infty\right), & ha \ A = +\infty \\ \left(-\infty, -\frac{1}{r}\right), & ha \ A = -\infty. \end{cases}$$

Környezetekkel a $(\pm \infty)$ -hez tartás fogalmát így adhatjuk meg:

$$\lim (a_n) = +\infty \iff \forall \varepsilon > 0 \text{-hoz} \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ a_n \in K_{\varepsilon}(+\infty),$$
$$\lim (a_n) = -\infty \iff \forall \varepsilon > 0 \text{-hoz} \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ a_n \in K_{\varepsilon}(-\infty).$$

3. definíció. Azt mondjuk, hogy az (a_n) sorozatnak van határértéke, ha

$$\exists A \in \overline{\mathbb{R}}, \ \forall \varepsilon > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ a_n \in K_{\varepsilon}(A).$$

Megjegyzés. Szavakkal megfogalmazva azt is mondhatjuk, hogy "az (a_n) sorozatnak van határértéke, ha van olyan $\overline{\mathbb{R}}$ -beli A elem, hogy ennek tetszőleges környezete tartalmazza a sorozat minden, alkalmas küszöbindex utáni tagját".

A konvergenciához hasonlóan erre a határérték fogalomra is igaz az egyértelműség.

1. tétel: A határérték egyértelmű. Ha az $(a_n): \mathbb{N} \to \mathbb{R}$ sorozatnak van határértéke, akkor a fenti definícióban szereplő $A \in \overline{\mathbb{R}}$ elem egyértelműen létezik; ezt a sorzat határértékének nevezzük, és így jelöljük:

$$\lim (a_n) := A \in \overline{\mathbb{R}}, \quad \lim_{n \to +\infty} a_n := A \in \overline{\mathbb{R}}, \quad a_n \to A \in \overline{\mathbb{R}}, \quad ha \ n \to +\infty.$$

A szóhasználatunkat illetően megállapodunk abban, hogy ha a továbbiakban azt mondjuk, hogy az (a_n) sorozatnak van határértéke, akkor ezen a következőt értjük:

- az (a_n) sorozat konvergens, vagyis a határértéke véges,
- vagy $\lim (a_n) = +\infty$,
- vagy $\lim (a_n) = -\infty$.

Megjegyzés. A korábbi megállapodásunk alapján egy (a_n) sorozat vagy konvergens vagy divergens.

A fentiekben bizonyos divergens sorozatoknak is értelmeztük a határértékét, ezzel a sorozatok konvergens/divergens osztályozását tovább "finomítottuk". Ezt az osztályozást illusztrálja a következő ábra:

A továbiakban

$$\lim (a_n) \in \mathbb{R}$$

jelöli azt, hogy az (a_n) sorozat **konvergens**, vagyis véges a határértéke, a

$$\lim (a_n) \in \overline{\mathbb{R}}$$

jelölés pedig azt fejezi ki, hogy az (a_n) sorozatnak **van határértéke**, azaz a sorozat vagy konvergens, vagy $+\infty$ vagy pedig $-\infty$ a határértéke.

A rendezés és a határérték kapcsolata

- **2. tétel:** A közrefogási elv. Tegyük fel, hogy az (a_n) , (b_n) és (c_n) sorozatokra teljesülnek a következők:
 - $\exists N \in \mathbb{N}, \ hogy \ \forall n > N : \ a_n \le b_n \le c_n,$
 - $az(a_n)$ és $a(c_n)$ sorozatnak van határértéke, továbbá

$$\lim (a_n) = \lim (c_n) = A \in \overline{\mathbb{R}}.$$

Ekkor a (b_n) sorozatnak is van határértéke és $\lim (b_n) = A$.

Bizonyítás. Három eset lehetséges.

1. eset: $A \in \mathbb{R}$. Legyen $\varepsilon > 0$ tetszőleges valós szám. Ekkor $\lim (a_n) = \lim (c_n) = A \Longrightarrow$

 $\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : A - \varepsilon < a_n < A + \varepsilon$ é

 $\exists n_2 \in \mathbb{N}, \text{ hogy } \forall n > n_2 : A - \varepsilon < c_n < A + \varepsilon.$

Legyen $n_0 := \max\{N, n_1, n_2\}$. Ekkor $\forall n > n_0$ indexre

$$A - \varepsilon < a_n \le b_n \le c_n < A + \varepsilon.$$

Ez azt jelenti, hogy

$$|b_n - A| < \varepsilon$$
, ha $n > n_0$,

azaz a (b_n) sorozatnak is van határértéke és $\lim (b_n) = A$.

2. eset: $A = +\infty$. Tegyük fel, hogy P > 0 tetszőleges valós szám. Ekkor $\lim (a_n) = +\infty \Longrightarrow$ ∃ $n_1 \in \mathbb{N}$, hogy $\forall n > n_1$: $a_n > P$.

Legyen $n_0 := \max\{N, n_1\}$. Ekkor $\forall n > n_0$ indexre

$$P < a_n \le b_n,$$

és ez azt jelenti, hogy $\lim (b_n) = +\infty$.

<u>3. eset:</u> $A = -\infty$. Tegyük fel, hogy P < 0 tetszőleges valós szám és tekintsük most a (c_n) sorozatot. Mivel $\lim_{n \to \infty} (c_n) = -\infty$, ezért P-hez

 $\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : c_n < P.$

Ha $n_0 := \max\{N, n_1\}$, akkor $\forall n > n_0$ indexre

$$P > c_n \ge b_n$$
.

Ez pedig azt jelenti, hogy $\lim (b_n) = -\infty$.

A következő tételek azt állítják, hogy a határértékek közötti nagyságrendi kapcsolatok öröklődnek a sorozatok elég nagy indexű tagjaira. Sőt, bizonyos értelemben "fordítva": a tagok nagyságrendi kapcsolataiból következtethetünk a határértékek közötti nagyságrendi viszonyokra.

3. tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozatnak van határértéke és

$$\lim (a_n) = A \in \overline{\mathbb{R}}, \quad \lim (b_n) = B \in \overline{\mathbb{R}}.$$

Ekkor:

 $\mathbf{1}^{o} \ Ha \ A < B \implies \exists N \in \mathbb{N}, \ hogy \ \forall n > N : \ a_{n} < b_{n}.$

2°
$$Ha \exists N \in \mathbb{N}, hogy \forall n > N : a_n \leq b_n \implies A \leq B.$$

Bizonyítás.

1º Négy eset lehetséges.

1. eset: $A, B \in \mathbb{R}$ és A < B, vagyis (a_n) és (b_n) konvergens sorozatok. Ekkor az

$$\varepsilon := \frac{B - A}{2} > 0$$

számhoz $\lim (a_n) = A \text{ miatt}$

$$\exists n_1 \in \mathbb{N}, \text{ hogy } \forall n > n_1 : A - \varepsilon < a_n < A + \varepsilon = \frac{A + B}{2},$$

továbbá $\lim (b_n) = B$ szerint

$$\exists n_2 \in \mathbb{N}, \text{ hogy } \forall n > n_2 : B - \varepsilon = \frac{A+B}{2} < b_n < B + \varepsilon.$$

Így az $N := \max\{n_1, n_2\}$ köszöbindexszel azt kapjuk, hogy

$$a_n < \frac{A+B}{2} < b_n \ \forall n > N \text{ indexre},$$

és ez az állítás bizonyításását jelenti.

2. eset: $A \in \mathbb{R}$ és $B = +\infty$. Mivel az (a_n) sorozat konvergens és $\lim (a_n) = A$, ezért $\varepsilon := 1$ -hez $\exists n_1 \in \mathbb{N}$, hogy minden $n > n_1$ indexre

$$A - 1 < a_n < A + 1$$
.

A $\lim (b_n) = +\infty$ feltételből pedig az következik, hogy az A+1 számhoz $\exists n_2 \in \mathbb{N}$, hogy minden $n > n_2$ indexre

$$A + 1 < b_n$$
.

Így $\forall n > N := \max\{n_1, n_2\}$ index esetén az

$$a_n < A + 1 < b_n$$

egyenlőtlenség teljesül.

- 3. eset: $A = -\infty$ és $B \in \mathbb{R}$ bizonyítása hasonló.
- **4. eset:** $A = -\infty$ és $B = +\infty$ bizonyítása is hasonló.
- 2^o Indirekt módon bizonyítunk. Tegyük fel, hogy A > B. Ekkor az 1^o állítás szerint $\exists N \in \mathbb{N}$, hogy minden n > N indexre $b_n < a_n$, ami ellentmond a feltételnek.

Megjegyzés. Figyeljük meg, hogy 1° és 2° "majdnem" egymás megfordításai.

Az $\mathbf{1}^o$ állítás megfordítása nem igaz, azaz az $a_n < b_n$ feltételből nem következtethetünk az A < B egyenlőtlenségre. Tekintsük például az $a_n := -1/n$ és a $b_n := 1/n$ $(n \in \mathbb{N}^+)$ sorozatokat.

A 2^o állítás megfordítása sem igaz. Legyen például $a_n := 1/n$ és $b_n := -1/n$ $(n \in \mathbb{N}^+)$.

Műveletek konvergens sorozatokkal

Nullasorozatok

A sorozatok konvergencia-tulajdonságainak vizsgálatánál kiemelt szerepet játszanak a nullasorozatok.

4. definíció. $Az(a_n)$ sorozatot nullasorozatnak nevezzük, ha konvergens és $\lim (a_n) = 0$, azaz

$$\forall \varepsilon > 0 \text{-}hoz \ \exists n_0 \in \mathbb{N}, \ \forall n > n_0 : \ |a_n - 0| = |a_n| < \varepsilon.$$

- 4. tétel: Nullasorozatok alaptulajdonságai.
 - $\mathbf{1}^{o}(a_n)$ nullasorozat \iff $(|a_n|)$ nullasorozat.
 - $\mathbf{2}^{o}(a_n)$ konvergens és $\lim (a_n) = A \iff (a_n A)$ nullasorozat.
- **3º** Majoráns kritérium. Ha (a_n) nullasorozat és $|c_n| \leq |a_n|$ $(m.m \ n \in \mathbb{N})$, akkor (c_n) is nullasorozat.

Bizonyítás.

 $\mathbf{1}^{o} \lim (a_n) = 0 \iff \forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : |a_n| < \varepsilon, \text{ azaz } ||a_n| - 0| < \varepsilon,$ és ez azt jelenti, hogy $\lim (|a_n|) = 0.$

 $\mathbf{2}^{o}$ $\lim (a_n) = A \iff \forall \varepsilon > 0$ -hoz $\exists n_0 \in \mathbb{N}$, hogy $\forall n > n_0 : |a_n - A| < \varepsilon$, azaz $|(a_n - A) - 0| < \varepsilon$, tehát $\lim (a_n - A) = 0$.

3° $\lim (a_n) = 0 \Longrightarrow \forall \varepsilon > 0$ mellett egy alkalmas $n_1 \in \mathbb{N}$ küszöbindexszel

$$|a_n| < \varepsilon \quad \forall n > n_1 \text{ indexre.}$$

Ugyanakkor a $|c_n| \leq |a_n|$ (m.m. $n \in \mathbb{N}$) "majoráns feltétel" miatt van olyan $n_2 \in \mathbb{N}$, amellyel

$$|c_n| \le |a_n| \quad \forall n > n_2 \text{ indexre.}$$

Ha tehát $n_0 := \max\{n_1, n_2\}$, akkor

$$|c_n| \le |a_n| < \varepsilon \quad \forall n > n_0 \text{ indexre},$$

ami azt jelenti, hogy $\lim (c_n) = 0$.

5. tétel: Műveletek nullasorozatokkal. $Tegyük fel, hogy \lim (a_n) = 0$ és $\lim (b_n) = 0$. Ekkor

 $\mathbf{1}^{o}$ $(a_n + b_n)$ is nullasorozat;

 $\mathbf{2}^{o}$ ha (c_{n}) korlátos sorozat, akkor $(c_{n}\cdot a_{n})$ is nullasorozat;

 $\mathbf{3}^{o} (a_n \cdot b_n)$ is nullasorozat.

Bizonyítás.

 $\mathbf{1}^{o}$ Mivel $\lim (a_n) = \lim (b_n) = 0$, ezért

$$\forall \varepsilon > 0$$
-hoz $\exists n_1 \in \mathbb{N}$, hogy $\forall n > n_1 : |a_n| < \frac{\varepsilon}{2}$ és $\forall \varepsilon > 0$ -hoz $\exists n_2 \in \mathbb{N}$, hogy $\forall n > n_2 : |b_n| < \frac{\varepsilon}{2}$.

Legyen $n_0 := \max\{n_1, n_2\}$. Ekkor $\forall n > n_0$ indexre

$$|a_n + b_n| \le |a_n| + |b_n| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

és ez azt jelenti, hogy $\lim (a_n + b_n) = 0$, azaz $(a_n + b_n)$ valóban nullasorozat.

 $\mathbf{2}^{o}$ A (c_{n}) sorozat korlátos, ezért

$$\exists K > 0 : |c_n| < K \quad (n \in \mathbb{N}).$$

Mivel (a_n) nullasorozat, ezért

$$\forall \varepsilon > 0$$
-hoz $\exists n_0 \in \mathbb{N}, \text{ hogy } \forall n > n_0 : |a_n| < \frac{\varepsilon}{K},$

következésképpen minden $n > n_0$ indexre

$$|c_n \cdot a_n| < K \cdot \frac{\varepsilon}{K} = \varepsilon,$$

azaz $\lim (c_n \cdot a_n) = 0.$

 $\mathbf{3}^{o}$ Mivel minden konvergens sorozat korlátos, ezért a $\lim (b_n) = 0$ feltételből következik, hogy (b_n) korlátos sorozat. Az állítás tehát $\mathbf{2}^{o}$ közvetlen következménye.

Megjegyzések

- 1. Világos, hogy nullasorozatok különbsége is nullasorozat.
- 2. Nullasorozatok hányadosának a határértéke (vagyis két "kicsi" szám hányadosa) bármi lehet. Ezt illusztrálják az alábbi példák:

•
$$\frac{\frac{1}{n^2}}{\frac{1}{n^3}} = n \to +\infty$$
, ha $n \to +\infty$, • $\frac{\frac{1}{n^3}}{\frac{1}{n^2}} = \frac{1}{n} \to 0$, ha $n \to +\infty$,

$$\frac{\frac{1}{n^3}}{\frac{1}{n^2}} = \frac{1}{n} \to 0, \text{ ha } n \to +\infty$$

•
$$\frac{\frac{c}{n}}{\frac{1}{n}} = c \to c$$
, ha $n \to +\infty$ (itt $c \in \mathbb{R}$), • $\frac{\frac{(-1)^n}{n}}{\frac{1}{n}} = (-1)^n$ sorozat divergens.

•
$$\frac{(-1)^n}{\frac{1}{n}} = (-1)^n$$
 sorozat divergens.

Műveletek konvergens sorozatokkal

A konvergens sorozatok és az algebrai műveletek kapcsolatát fejezi ki a következő tétel. Azt állítja, hogy a konvergens sorozatok a műveletek során a legtöbb esetben jól viselkednek abban az értelemben, hogy a három alapművelet és a határérték képzés sorrendje felcserélhető.

6. tétel. Tegyük fel, hogy az (a_n) és a (b_n) sorozat konvergens. Legyen

$$\lim (a_n) = A \in \mathbb{R}$$
 és $\lim (b_n) = B \in \mathbb{R}$.

Ekkor

1º
$$(a_n + b_n)$$
 is konvergens és $\lim (a_n + b_n) = \lim (a_n) + \lim (b_n) = A + B$,

2°
$$(a_n \cdot b_n)$$
 is konvergens és $\lim (a_n \cdot b_n) = \lim (a_n) \cdot \lim (b_n) = A \cdot B$,

3° ha
$$b_n \neq 0 \ (n \in \mathbb{N})$$
 és $\lim (b_n) \neq 0$, akkor

$$\left(\frac{a_n}{b_n}\right)$$
 is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = \frac{\lim \left(a_n\right)}{\lim \left(b_n\right)} = \frac{A}{B}$.

Bizonyítás.

Legyen (x_n) egy valós sorozat. Azt már tudjuk, hogy

ha (x_n) konvergens, és $\alpha \in \mathbb{R}$ a határértéke \iff $(x_n - \alpha)$ nullasorozat.

1º A (*) állítás miatt elég azt megmutatni, hogy

$$((a_n + b_n) - (A + B))$$
 nullasorozat.

Ez nyilván igaz, mert

$$((a_n + b_n) - (A + B)) = (a_n - A) + (b_n - B),$$

és két nullasorozat összege is nullasorozat.

 $\mathbf{2}^{o}$ A (*) állítás miatt elég azt megmutatni, hogy $(a_{n}b_{n}-AB)$ nullasorozat.

$$|a_n b_n - AB| = |a_n b_n - Ab_n + Ab_n - AB| = |b_n (a_n - A) + A(b_n - B)| \le \underbrace{|b_n|}_{\text{torlátos}} \cdot \underbrace{|a_n - A|}_{\text{0-sorozat}} + \underbrace{|A|}_{\text{torlátos}} \cdot \underbrace{|b_n - B|}_{\text{0-sorozat}}.$$

Így $(a_nb_n - AB)$ valóban nullasorozat, ezért az $(a_n \cdot b_n)$ szorzat-sorozat konvergens, és $A \cdot B$ a határértéke, azaz

$$\lim (a_n \cdot b_n) = A \cdot B = \lim (a_n) \cdot \lim (b_n).$$

3° A bizonyításhoz először egy önmagában is érdekes állítást igazolunk.

Segédtétel. Ha $b_n \neq 0 \ (n \in \mathbb{N})$ és (b_n) konvergens, továbbá $B := \lim (b_n) \neq 0$, akkor az

$$\left(\frac{1}{|b_n|}\right)$$

reciprok-sorozat korlátos.

Ennek bizonyításához legyen $\varepsilon := |B|/2$. Ekkor egy alkalmas $n_0 \in \mathbb{N}$ küszöbindex mellett

$$|b_n - B| < \varepsilon = \frac{|B|}{2} \quad \forall n > n_0 \text{ indexre.}$$

Így minden $n > n_0$ esetén

$$|b_n| = |B + b_n - B| \ge |B| - |b_n - B| > |B| - \frac{|B|}{2} = \frac{|B|}{2}.$$

Tehát

$$\left| \frac{1}{b_n} \right| < \frac{2}{|B|}, \quad \text{ha } n > n_0,$$

következésképpen az

$$\left| \frac{1}{b_n} \right| \le \max \left\{ \frac{1}{|b_0|}, \frac{1}{|b_1|}, \dots, \frac{1}{|b_{n_0}|}, \frac{2}{|B|} \right\}$$

egyenlőtlenség már minden $n \in \mathbb{N}$ számra teljesül, ezért az $(1/|b_n|)$ sorozat valóban korlátos. A segédtételt tehát bebizonyítottuk. \square

Most azt látjuk be, hogy az

$$\left(\frac{1}{b_n}\right)$$
 sorozat konvergens és $\lim \left(\frac{1}{b_n}\right) = \frac{1}{B}$.

Tekintsük a következő átalakításokat:

$$\frac{1}{b_n} - \frac{1}{B} = \frac{B - b_n}{B \cdot b_n} =$$

$$= \underbrace{\frac{1}{B \cdot b_n} \cdot \underbrace{(B - b_n)}_{0\text{-sorzat}} \quad (n \in \mathbb{N}).}_{0\text{-sorzat}}$$

Így (*) szerint a (\triangle) állítás valóban igaz.

A 3º állítás bizonyításának a befejezéséhez már csupán azt kell figyelembe venni, hogy

$$\frac{a_n}{b_n} = a_n \cdot \frac{1}{b_n} \quad (n \in \mathbb{N}),$$

más szóval az (a_n/b_n) "hányados-sorozat" két konvergens sorozat szorzata. Így a $\mathbf{2}^o$ állítás és a reciprok sorozatról az előbb mondottak miatt

$$\left(\frac{a_n}{b_n}\right)$$
 is konvergens és $\lim \left(\frac{a_n}{b_n}\right) = \frac{A}{B} = \frac{\lim (a_n)}{\lim (b_n)}$.