

Sequence Databases & Sequential Patterns

- Sequential pattern mining has broad applications
 - Customer shopping sequences
 - Purchase a laptop first, then a digital camera, and then a smartphone,
 within 6 months
 - Medical treatments, natural disasters (e.g., earthquakes), science & engineering processes, stocks and markets, ...
 - Weblog click streams, calling patterns, ...
 - Software engineering: Program execution sequences, ...
 - Biological sequences: DNA, protein, ...
- Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences

Sequential Pattern and Sequential Pattern Mining

Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A <u>sequence database</u>

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

- An <u>element</u> may contain a set of *items* (also called *events*)
- ☐ Items within an element are unordered and we list them alphabetically

 $<a(bc)dc>is a <u>subsequence</u> of <math><\underline{a(abc)(ac)d(cf)}>$

Given <u>support threshold</u> min_sup = 2, <(ab)c> is a <u>sequential pattern</u>

Sequential Pattern Mining Algorithms

- Algorithm requirement: Efficient, scalable, finding complete set, incorporating various kinds of user-specific constraints
- The Apriori property still holds: If a subsequence s_1 is infrequent, none of s_1 's super-sequences can be frequent
- Representative algorithms
 - GSP (Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)
 - Vertical format-based mining: SPADE (Zaki@Machine Leanining'00)
 - □ Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE'04)
- Mining closed sequential patterns: CloSpan (Yan, et al. @SDM'03)
- Constraint-based sequential pattern mining