Digital Integrated Circuits homework 4 電子所 陳柏翔 313510156

- 1. A 6-bit one stage pipelining ripple adder as shown at Fig.4.1(a) is designed with Fully Complementary Static Logic Gate for the 1-bit FA as shown at Fig4.1(c) and the D-register as shown at Fig.4.1(b). Input signals are A[5:0], B[5:0] and Cin which are provided by a unit size inverter. Outputs are Cout@Sum [6:0] with loading of 4 unit size inverters (FO4) connected in parallelism. (You shall provide SPICE simulation results of timing and power waveforms.)
 - (1) Try your best to design the **fastest adder without pipelining registers**. First, show your **block diagrams** in terms of the **1-bit Full-Adder(FA)**. Second, show the **circuit schematic** of **each block**. Use **logic effort concepts** (you do not have to write down the procedure) **to design transistor widths** (in table form). Describe your design concept. (40%)

• Block diagram in terms of the 1-bit FA:

據題目要求,為了設計最快的 Ripple-Carry Adder,我採用與講義上 Fig. 10.12 相同的架構(如下圖 Block diagram),其中每個 1-bit FA 在輸出端都不具有 Inverter,這樣就能在 Carry 的傳遞路徑上少 6 個 Inverters,因此有較短的 Delay (但相對的需要在某些輸入與輸出端加上 Inverters 以修正電路邏輯)。

在整個 Ripple-Carry Adder 的輸入端與輸出端上,按照題目(以及助教在作業討論區所述)的要求,加上了 DFF 與 Inverters。此外,由於輸入端的要求是需要加上 Inverters,因此模擬時給到輸入端 DFF 的訊號是相反的。

• Circuit schematic of each block:

對於上圖Block diagram中的所有Block (即⊕號),都代表著1-bit FA (without inverter at outputs)、以及Inverter與DFF (D-register)如下所示:

Circuit schematic of 1-bit Full adder (without inverter at outputs)

Circuit schematic of Inverter

Circuit schematic of DFF

接著我重新從Transistor-level驗證電路邏輯的正確性,如附圖所示,

可以發現當輸入訊號相反時 ,其對應的輸出結果正好也 是相反的,因此在前面的 Block diagram中,接在輸入 端與輸出端的Inverters是交 替出現在不同的FA上,而 Carry的傳遞路徑上則不需要 加上任何Inverters。

• <u>Design transistor widths</u>:

根據先前Homework 3中的實驗結果,NMOS與PMOS的比例應保持為 1:1 才能讓一個Inverter的Logical Threshold更靠近 $(1/2)V_{DD}$ 的位置,因此 我將以此為基礎來決定出電路中個個電晶體的大小(寬度)。

首先要先決定DFF電路中個電晶體大小,才能方便後續的計算順利進行,考量到電晶體的串並聯結構,以及輸入端所看到的電容希望能越小越好的情況下,再經過HSPICE測試微調mp4, mn4, mn5使 T_{pcq0} 與 T_{pcq1} 接近一致,所得電晶體大小結果如下(DFF的模擬結果請見第(2)小題):

Transistor widths of all DFFs:

MOS	mp1	mp2	mn1	тр3	mn2	mn3	mp4	mn4	mn5	mp5	mn6
nfin	1	2	1	1	2	2	2	1	1	1	1

接著將一個FA拆分為 $\overline{C_{out}}$ 電路與 \overline{Sum} 電路兩個部分,右 圖為拆分後的初步預設大小, 後續將根據這樣的大小進行每 一級的縮放。

為了讓電路有最快的速度

,以Logical effort的概念來看,希望Critical Path (從FAO輸入端的Unit size inverter,到FA5的sum輸出端外所接的DFF+FO4電容)上的Delay能夠最小,使每一級的 \hat{f} 能夠盡量趨近於一致的大小。據題目所述,此部分不需要敘述計算過程,因此下方是我計算後的最終結果:

Transistor widths of all FAs:

nfin	mp1-5	mn1-5	mp6-9	mn6-9	mp10-12	mn10-12
FA0	2	2	2	2	3	3
FA1	2	2	2	2	3	3
FA2	2	2	2	2	3	3
FA3	2	2	2	2	3	3
FA4	2	2	2	2	3	3
FA5	2	2	2	2	3	3

由於此計算結果顯示每個FA的大小皆設置相同寬度,直覺上不容易 反應出此結果,因此以下簡述此結果的計算過程:

透過計算第二長的Critical path(由FA0 $C_{\rm in}$ 到FA5 $C_{\rm out}$),假設每一級 1-bit FA電路與下一級FA電路有 x 倍的大小縮放關係,經過的每一級 $\overline{C_{\rm out}}$ 電路所形成的 $G=1\times 2^6$, $B=((7x+2)/2x)^5$,H=5/1,經過疊代求解 $F=GBH=\hat{f}^6=(g_ih_i)^6$,可以反推算出當每一級的 $h_i=4.5$,對應的解 x=1。此結果表示不同級FA之間不需要進行比例縮放。

最後還要決定交替出現在FA輸入與輸出上的Inverters,考量到FA的 大小與輸出端負載趨近於FO4,我決定將所有的Inverters都設為Unit size。 Transistor widths of all Inverters (inside RCA):

nfin	INV0	INV1a	INV1b	INV2	INV3a	INV3b	INV4	INV5a	INV5b
PMOS	1	1	1	1	1	1	1	1	1
MMOS	1	1	1	1	1	1	1	1	1

對於以上所有設置的Transistor widths,我還有再用HSPICE實驗數種 其他設置方式(如每一級的FA寬度遞增),但結果是此設置方法相較其他設 置都來得更快,因此驗證了以上的計算與設置方式的正確性。

(2) Based on the design of (1), run SPICE to find the **propagation delay time** (with pattern from **0000001111110** to **0000001111111** (**A[5:0]@B[5:0]@Cin**). Determine the **minimum clock cycle time** with the delay time estimated by SPICE. (20%)

• Setup time & Clock-to-Q propagation delay of DFF:

為了後續決定出最小的Cycle time,此處需要先測量DFF的時間資訊,詳細的各種時間分析在講義Ch6.5中可以找到。測量Setup time的方式是從輸入D至第一個儲存點n0所花費的時間,Clock-to-Q propagation delay則是從Clock訊號改變至Q改變所花費的時間。

	t_{setup1}	t_{pcq1}	t_{setup0}	t_{pcq0}
Time	3.87ps	5.31ps	3.56ps	6.44ps

• Propagation delay time & Minimum clock cycle time :

由於訊號太多,因此以下只截圖主要改變的訊號以及Critical path從輸入C_{in}到FA5的sum輸出訊號:

Propagation delay time (C _{in} to sum[5])	Minimum clock cycle time
59.27ps	0.075ns (=75ps)

以上結果可以發現符合先前所學的公式: $t_{pd} \leq T_c - (t_{setup} + t_{pcq})$ 帶入測量結果: $59.27ps \leq 75 - (3.56 + 6.44) = 65ps$

考量到輸入DFF與RCA的C_{in}輸入端之間還有一個Inverter,因此還有約5ps的Delay造成Cycle time沒辦法低於75ps,如果將Cycle time設置得更小則會造成sum[5] (after output DFF)往後一個Cycle才改變為0。

(3) Run SPICE to get the average, peak and leakage power dissipation and energy/bit, respectively of this adder with loading (FO4) when working at the maximum working frequency. (20%)

• Input pattern:

Average & Peak power	Leakage power
A[5:0] = 6'd0, 6'd1,, 6'd63	A[5:0] = 6'b0000000
B[5:0] = 6'd63, 6'd62,, 6'd0	B[5:0] = 6'b111111
C _{in} is 0/1 by turns	$C_{in} = 0$, clk=0

(Input pattern for average & peak power)

• Average & Peak power – Timing & Power waveforms:

Average & Peak power - Timing & Power waveforms (Zoomed in):

Simulation Time (Total 128.5 cycles)

= $0.075 ns \times 128.5 = 9.6375 ns$ (多0.5 cycle是為了錯開clk posedge)

* nycu iee dic 1132 homework 4					
***** transient analysis tnom	= 25 000	temn= 25 6	100 *****		
avg power = 115.3683u	_ 25.000	from=	0.	to=	9.6375n
peak_power= 618.3058u at=	4.8472n	from=	Θ.	to=	9.6375n
***** job concluded					

• Leakage Power – Timing & Power waveforms:

Simulation Time = 10ns

(模擬時由於鎖定clk=0會無法傳遞A,B與 C_{in}訊號,因此我將clk設定為跳動一次後 再定為0,並且Power從訊號穩定的0.1ns ******

* nycu iee dic 1132 homework 4

****** transient analysis tnom= 25.000 temp= 25.000 ******
leak_power= 28.0939n from= 100.0000p to= 10.0000n

****** ioh concluded

後才做測量,經過這個過程才能正確測得Input pattern所對應的結果。)

• Power analysis of RCA with maximum working frequency:

計算 Energy/Bit: (Average power × Simulation time) / Bits = $115.3683 \times 10^{-6} \times 9.6375 \times 10^{-9}$ / $6 = 1.8531 \times 10^{-13} = 185.31$ fJ

Average power	Peak power	Leakage power	Energy/Bit
115.37μW	618.31μW	28.09nW	185.31fJ

- (4) Add one pipelining stage using the designed D register (Fig.4.1(b)) into the 6-bit ripple adder as shown at Fig.4.1(a). Run SPICE to find the the propagation delay time (with pattern from 0000001111110 to 0000001111111 (A[5:0]@B[5:0]@Cin) between pipelining stages to determine the maximum working frequency of the clock with the delay time estimated by SPICE.
 - Pipelined (2-stage) RCA block diagram:

經過Pipelined後的設計,輸出會再延遲一個Cycle才給出原本的計算結果,如上一頁附圖所示,我在6個FAs的中間(FA2, 3之間)加上了Pipeline register,由於考量到資料傳遞的正確性,我也在FA0, FA1, FA2的輸出以及FA3, FA4, FA5的輸入端加上了Pipeline registers。

因此原本最長的Critical path從 C_{in} 到sum[5]變成了兩段不同Stage的 Critical paths: Stage 1^{st} 的是從 C_{in} 到sum[2],而Stage 2^{nd} 的則是從中間 Pipeline register輸出的 $\overline{C_{out}[2]}$ 到sum[5]。

以下為模擬後的波形圖以及Propagation delay time測量結果:

Propagation delay time	Propagation delay time	Maximum working	
$(C_{in}[0] \text{ to sum}[2])$	$(\overline{C_{in}[3]} \text{ to sum}[5])$	frequency	
26.27	33.37ps	20.83GHz (=1/48ps)	