Folk Music as a Natural Language

Kevin Zecchini March 31, 2016

Motivation:

Can we determine the musical influence of a song?

- Songs constantly build on each other over time
- Interested in predicting origin based on similarities in musical content

Approach:

- Treat sheet-music as a natural language
- Develop a model which can predict the origin of music
- Use n-gram and 'bag-of-notes' analysis as features

Data

- Scraped approximately 10,000 folk songs stored in individual .krn files:
 - 5365 German (11 sub-regions)
 - 2276 Chinese (4 sub-regions)
 - 619 Luxembourg (4 sub-regions)
 - 339 French (2 sub-regions)
 - o 153 UK
 - 373 Native American (3 sub-regions)
 - 152 Canadian
 - o 136 USA
 - 848 Other European songs (Russian, Italian, Polish, Danish, Swiss, etc.)

- Music can be transposed to various keys and played with various tempos focus on relativity:
 - Relative pitch intervals between notes
 - Relative duration the equivalent quarter note value
- Remove 'stopwords' and 'punctuation':
 - Take away structure in the song
 - Remove measures/rests
 - Simplify chords to root note

Interval: +5

Duration: (0.5, 0.5)

Interval: -2

Duration: (0.25, 1)

Interval: -3

Duration: (0.5, 0.5)

Interval: +5

Duration: (0.5, 0.5)

Create three separate tf-idf feature sets with various n-gram length iterations:

- Only using intervals
- Only using duration
- Based both on interval and duration

Generating data - Markov Model:

- Highly unbalanced data
- Used Markov model to generate additional music of a given label
- Given n-gram number, will use that as the state to predict the next note
- Probability of next note determined by probability over the label's corpus

Generating data - Markov Model:

- Highly unbalanced data
- Used Markov model to generate additional music of a given label
- Given n-gram number, will use that as the state to predict the next note
- Probability of next note determined by probability over the label's corpus

Previous state - bigram

Generating data - Markov Model:

- Highly unbalanced data
- Used Markov model to generate additional music of a given label
- Given n-gram number, will use that as the state to predict the next note
- Probability of next note determined by probability over the label's corpus

Final Model and Results:

- Condensed labels into 16 representative regions
- Three distinct feature sets searched over n-gram range 1-6
- Best model takes into account both pitch and duration
- Logistic Regression 61.4% accuracy based on interval and duration for n-gram range 3-4

Future Work:

- Use a note2vec analysis in place of bag-of-notes approach
- Expand to music/scores with additional voicings
- Create similarity metric between songs:
 - Use this similarity score in a recommendation engine/search engine
- Use this approach to predict composer or additional characteristics of music
 - Complex sequences in classical music

Thank You!

kzecchini@gmail.com github.com/kzecchini linkedin.com/in/kzecchini

Example data:

```
**kern =3
*M3/4 {4b
```

*k[f#] 4b

*G: 4cc

=1 =4

{4g 4.a

4g 8a

4g 4b}

=2 =5

4.f# {4a

8g 4.f#

4a} 8g

- Many aspects to music key, time signature, melody, harmony, lyrics etc.
- Simplify to one voicing
- Construct nlp features based on some basic characteristics - pitch and duration