

(b) Offenlegungsschrift 24 44 034

(i) Aktenzeichen:
(iii) Anmeldetag:

Anmeldetag: Offenlegungstag: 14. 9.74 1. 4.76

30 Unionspriorität:

99 99 99

Bezeichnung: Trocknungsanlage f
ür feuchtes Getreide

Anmelder: Engelbrecht & Lemmerbrock, 4520 Melle

Erfinder: Nichtnennung beantragt

Prüfungsantrag gem. § 28b PatG ist gestellt

2444034

Anmelder:

1 3. Sep. 1974

Engelbrecht & Lemmerbrock, 4520 Melle, Neuerostr. 6

Trocknungsanlage für feuchtes Getreide

Die Erfindung bezieht sich auf eine Trocknungsanlage nach dem Oberbegriff des Anspruches 1. Bei Trocknungsanlagen dieser Art soll gemäß der Erfindung erreicht werden, daß die Trocknung und Kühlung des feuchten Getreides automatisch so durchgeführt und gesteuert wird, daß in jedem Fall eine Trocknung bis zur Lagerfähigkeit des Getreides erfolgt und auch Einsparungen an aufzuwendender Wärmeenergie erzielt werden.

Diese Aufgabe wird durch die Erfindung bei Trocknungsanlagen der eingangs erwähnten Art dadurch gelöst, daß die Merkmale des kennzeichnenden Teils des Anspruches 1 zur Anwendung kommen.

Mit dieser Lösung ist es möglich, nach Feststellung oder ungefährer Feststellung des Feuchtigkeitsgehaltes des Getreides die Trocknungszeit des Getreides in der von Heißluft eines Wärmetauschers durchströmten Trocknungszone einzustellen, Während die Zeit für die Abnahme des Getreides aus der Kühlzone und des aus der Trocknungszone in die Kühlzone nachsinkenden, trockenen Getreides konstant gehalten wird. Ist die Feststellung des Feuchtigkeits-

- 2 -

gehalts ungenau getroffen und hat das Getreide z.B. mehr Feuchtigkeit als angenommen wurde, oder besitzen Partien des Getreides '
unterschiedliche Feuchtigkeit, so sorgt ein oder sorgen mehrere
Kontaktthermometer oder Thermostaten dafür, daß die Verweilzeit
des Getreides in der Trocknungszone automatisch verlängert wird,
d.h. der Abnahmeförderer bleibt durch diese Sicherung abgeschaltet bis das Getreide die erforderliche Trockentemperatur erreicht
hat, die eine Größe für die Feststellung des Trocknungsgrades
ist.

Durch die Trocknungsanlage nach der Erfindung ist die größtmögliche Sicherheit dafür erreicht, daß das Getreide nach dem Abfördern aus der Kühlzone unbedingt die erforderliche Lagerfähigkeit besitzt, die bei 15 % Feuchtigkeitsgehalt erreicht ist. Damit ist es auch möglich, den Wärmeaufwand der Trocknungsanlage optimal auszunutzen.

Der Energieaufwand für den Wärmetauscher kann entscheidend weiter dadurch verringert werden, daß die Abluft aus der Trocknungszone oder Vortrocknungszone teilweise an die eine Seite und die Abluft aus dem Kühler an die andere Seite eines doppelflutigen Gebläses des Wärmetauschers angeschlossen ist. Dabei erreicht man durch die Verwendung des doppelflutigen Gebläses eine wesentliche Kostenherabsetzung und durch die teilweise Rückführung der aus der Trocknungs- oder Vortrocknungszone kommenden Warmluft zum Gebläse und von dort in den Wärmeaustauscher wird erheblich.

an Energieaufwand für den Wärmetauscher bis zu 50 % eingespart. Es ist aber auch möglich, mit einem einflutigen Gebläse die Wärme der Abluft aus der Trocknungszone oder Vortrocknungszone auszunutzen, wobei man dann so vorgeht, daß die Abluft aus der Trocknungszone oder Vortrocknungszone teilweise der zwischen der Kühlzone und einem einflutigen Gebläse des Wärmetauschers verlaufenden Luftleitung zugeführt wird.

Die Erfindung wird nachstehend anhand der Zeichnung erläutert, in der Ausführungsbeispiele dargestellt sind. Es zeigen:

- Fig. 1 einen schematischen senkrechten Schnitt durch eine Trocknungsanlage mit Aufsicht auf einen zugehörigen Wärmetauscher,
- Fig. 2 einen senkrechten schematischen Schnitt durch eine gegenüber der Fig. 1 abgeänderte Trocknungsanlage ohne Darstellung des Wärmetauschers.
- Fig. 3 einen schematischen senkrechten Schnitt durch eine Trocknungsanlage ohne Vortrocknungszone,
- Fig. 4 ein Strömungsschema für die Führung der Trocknungsluft und Kühlluft mit schematisch angedeuteter Trocknungs- und Kühlvorrichtung.

Nach dem Beispiel Fig. 1 sinkt das zu trocknende feuchte Schwergetreide aus einem größeren Vorratsbehälter 1 als Schicht zwischen zwei durchlässigen parallelen Wandungen durch eine Vortrocknungszone 2 sodann durch eine schichtförmige Trocknungszone 3 und schließlich durch eine Kühlzone 4. Unterhalb des Kühlzonenauslaufes 5 befindet sich ein horizontales Förderband 6 od.dgl., welches in bestimmter Weise gesteuert wird, wie noch zu beschreiben ist, und auf dem sich ein Schüttkegel des Getreides aus dem Auslauf 5 bildet, der als Verschluß für den Auslauf 5 dient, solange das Förderband 6 stillsteht.

Die Führung von Kühl- und Warmluft bzw. Heißluft erfolgt so, daß durch die eine Saugseite eines doppelflutigen Gebläses 7 Kühlluft über den Stutzen 8 als Frischluft angesaugt wird, die das Getreide in der Kühlzone 4 durchströmt und dann etwas angewärmt mittels des Gebläses durch den z.B. mit einem Ölbrenner 9 beheizten Wärmeaustauscher 10 gedrückt wird, in welchem sich die Luft auf Trocknungstemperatur, z.B. auf 140° erhitzt. Aus dem Wärmetauscher 10 strömt die Trocknungsluft durch die Trocknungszone 3 und deren warme Abluft sodann durch die Vortrocknungszone 2, aus der die warme Abluft teilweise über eine Leitung der zweiten Saugseite des doppelflutigen Gebläses 7 zugeführt wird. Der übrige Teil der Abluft aus der Vortrocknungszone 2 gelangt über einen Stutzen 12 ins Freie. Die über die Rohrleitung 11 dem Gebläse 7 zugeführte Abluftmenge ist zwar teilweise mit Feuchtigkeit gesättigt, aber sie führt dazu, daß der Energiebedarf des Wärmeaustauschers bis zu 50 % gesenkt werden kann. Die Mengen der angewärmten Frischluft aus der Kühlzone 4 und der Warmluft aus der Vortrocknungszone 2 zum Gebläse 7 sind prozentual zueinander einstellbar, und zwar in Abhängigkeit vom Frischluftbedarf für die Kühlzone und Heißluftbedarf für die Trocknungszone.

In bezug auf die Führung der Kühlluft und der Trocknungsluft kann man nach dem Schema der Figur 4, in der nur eine Trocknungszone 3 mit Kühlzone 4 gezeigt ist, in der gleichen Weise arbeiten, wie zu Figur 1 beschrieben ist. Man kann aber auch mit einem einflutigen Gebläse 7 arbeiten, wobei dann die Leitung 11 zwischen den Punkten a und b in Wegfall kommt und die warme Abluft aus der Trocknungszone 3 oder auch aus einer Vortrocknungszone 2 als einstellbarer Teil über die gestrichelt dargestellte Leitung 11a der Rohrleitung zwischen der Kühlzone 4 und dem Ansaug des dann nur einflutigen Gebläses 7 zugeführt wird. Auch in diesem Fall wird eine Energieeinsparung erreicht, jedoch erfordert dies neben dem teureren einflutigen Gebläse zusätzlich eine Regelung der Abluftmengen aus der Trocknungszone und der Kühlzone.

Nach der wesentlichen Lösung der Erfindung soll eine automatische gesicherte Trocknung und Kühlung des Getreides bis auf die Lagerfähigkeit erreicht werden.

Zu diesem Zweck ist bei dem Beispiel Figur 1 eine Zeitsteuerung bzw. eine Steuerung des Abnahmeförderers 6 durch Zeitschaltuhren vorgesehen, die als Blockbild mit 13 bezeichnet ist. Diese Zeitsteuerung wird so eingestellt, daß der Antrieb 14 des Förderbandes 6 so lange abgeschaltete bleibt, bis das Getreide in der Trocknungszone 3 auf die Lagerfähigkeit getrocknet ist, wobel auch die Kühlung des bereits in der Kühlzone 4 befindlichen trockenen Getreides erfolgt. Diese Abschaltzeit des Förderbandes 6 wird nach dem festzustellenden oder etwa festzustellenden

Feuchtigkeitsgehalt des Getreides eingestellt. Nach Ablauf dieser Zeit ist das Getreide in der Trocknungszone 3 trocken und es wird das Förderband eingeschaltet, welches das Getreide aus der Kühlzone 4 abnimmt, wobei das getrocknete Getreide aus der Trocknungszone 3 in die Kühlzone nachsinkt. Diese Anschaltzeit des Antriebes 14 ist ständig konstant und richtet sich nach der aus der Kühlzone 4 abzunehmenden Getreidemenge und der Förderkapazität.

Es ist nun für den Besitzer der Trocknungsanlage im allgemeinen nur möglich, den Feuchtigkeitsgehalt des Getreides nur annähernd zu bestimmen und dadurch die Trocknungszeit in der Zone 3 bzw. die Zeit des Stillstandes des Bandes 6 zu bestimmen, zumal auch Teilmengen im Vorratsbehälter unterschiedlich feucht sind. Um nun zu erreichen, daß die Trocknungszeit bzw. die Verweilzeit des Getreides in der Trocknungszone 3 verlängert wird, wenn das Getreide mehr Feuchtigkeit enthält als angenommen wurde, ist im Unterteil der Trocknungszone 3 mindestens ein Kontaktthermometer 15 oder Thermostat eingebaut, der die Temperatur des Getreides in der Trocknungszone 3 mißt. Diese Temperatur ist eine Größe für die Feststellung des Trocknungsgrades. Ist nun die Temperatur nach Ablauf der eingestellten Stillstandszeit des Bandes 6 zu klein, so wird durch das Kontakithermometer 15 die Abschaltzeit. des Förderbandes entsprechend verlängert, und zwar so lange bis die erforderliche Temperatur durch das Kontaktthermometer gemessen wird. Damit wird in jedem Fall eine einwandfreie automatisch gesteuerte Trocknung des Getreides bis zur Lagerfähigkeit erreicht und zwar unabhängig davon, ob die Stillstandszeit des Bandes 6 durch die Zeitsteuerung richtig eingestellt war oder nicht. Es wird also mittels der Automatik ein gesicherter, kontinuierlich ablaufender Trocknungsprozeß erreicht.

In Abänderung der Trocknungsanlage nach Figur 1 kann nach Figur 3 auch so vorgegangen werden, daß das zu trocknende Getreide aus einem größeren Vorratsbehälter 1 in eine zylinderringförmige Trocknungszone 3a und aus dieser in eine kegelige Kühlzone 4a, die unten verschlossen ist, absinkt. Der Innenraum 16 der Trocknungszone 3a, dem die erhitzte Luft in der zu Figur 1 beschriebenen Weise über einen Anschluß 17 zugeführt wird, ist durch eine Trennwand 18 gegen den Innenraum 19 der Kühlzone 4a getrennt. Die Frischluft tritt durch den Stutzen 8a in den Innenraum 19 und durch die Kühlzone 4a nach außen in einen Ringraum 20, aus dem sie über den Stutzen 21 zum Gebläse 7 des Wärmetauschers 10 geführt wird. Die erhitzte Trocknungsluft strömt radial durch die Trocknungszone 3a in einen äußeren Ringraum 22, aus dem sie über einen Stutzen 23 abgenommen und teilweise wieder dem Gebläse 7 zugeführt wird. In das Unterende der Kühlzone 4a ragt eine in einem Zylinder 24 umlaufend antreibbare Förderschnecke, die am Oberende in einen winklig nach unten und außen gerichteten Auslauf 25 fördert.

Diese Förderschnecke 24 wird ebenso, wie zu Figur 1 beschrieben, zeitlich gesteuert angeschaltet, sobald das Getreide in der

Ĵ

Trocknungszone 3a getrocknet ist und dann während der einzustellenden Trocknungszeit abgeschaltet. Auch in diesem Fall ist die Sicherung durch Kontaktthermometer 15 oder Thermostaten vorgesehen, wie zu Figur 1 erörtert ist.

Der Trocknungsanlage nach Figur 3 kann auch eine Vortrocknungszone 2a zugeordnet werden, wie in Figur 2 dargestellt ist. Die Trocknungszone 3a mit den zugehörigen Ausbauten ist ebenso ausqebildet wie es zu Figur 3 beschrieben ist. Die Kühlzone 4a wird jedoch von außen nach innen von Frischluft durchströmt und dann über den Stutzen 21 zum Gebläse 7 des Wärmetauschers 10 geführt. Die aus der Trocknungszone 3a über den Ringraum 22 abzunehmende etwas abgekühlte Abluft wird über den Stutzen 23 dem Innenraum 26 einer zylinderringförmigen Vortrocknungszone 2a zugeführt, die unten in einen unten geschlossenen kegeligen Teil übergeht und die aus einem Vorratsbehälter 1 mit feuchtem Getreide beschickt wird. Die Abluft der Vortrocknungszone 2a wird über den Ringraum 27 und den Stutzen 28 abgenommen und teilweise wieder als Warmluft dem Gebläse 7 zugeführt, wie zu Figur 1 erläutert ist. Aus dem Unterteil der Vortrocknungszone 2a wird das vorgetrocknete Getreide mittels einer aufrechten Förderschnecke in einem Zylinder 26 abgenommen und mittels einer Förderung 30 oben abgenommen und der Trocknungszone 3a zugeführt.

Auch in diesem Fall ist die Zeitsteuerung 13 nach Figur 1 für den Betrieb der Förderschnecke 24 der Trocknungszone 3a und die

_ 0 _

Sicherung durch Kontaktthermometer 15 od.dgl. vorgesehen. Sowie das Getreide in der Trocknungszone 3a getrocknet ist, wird es aus der Kühlzone 4a abgenommen und das Getreide aus der Trocknungszone 3a sinkt in die Kühlzone 4a nach. Gleichzeitig wird durch die Zeitsteuerung 13 aber auch der Antrieb der Förderschnecken 29 und 30 eingeschaltet, so daß das vorgetrocknete Getreide aus der Vortrocknungszone 2a in die Trocknungszone 3a geleitet wird. Sobald die Trocknungszone 3a mit vorgetrocknetem Getreide gefüllt ist, werden die Förderschnecken 29 und 30 durch einen Füllstandsmesser 31 oberhalb der Trocknungszone 3a abgeschaltet.

Die einzelnen Vorgänge wiederholen sich, so daß ein automatisch gesteuerter Getreideaustrag mit auf die Lagerfähigkeit getrocknetem Getreide mit Sicherheit erreicht wird.

1 3, Sep. 1974

Anmelder:

Engelbrecht & Lemmerbrock, 4520 Melle, Neuerostraße 6

Ansprüche

1. Trocknungsanlage für feuchtes Getreide, welches aus einem Vorratsbehälter absinkend als Schicht bzw. Ringschicht in einer Trocknungszone zwischen lotrechten. luftdurchlässigen Wandungen oder in einer solchen Trocknungszone mit vorgeschalteter Vortrocknungszone von Warmluft eines die Warmluft aus einem Wärmetauscher durch die Zonen leitenden Gebläses bzw. von Warmluft und Abluft aus der Trocknungszone durchströmt wird, worauf das Getreide in einer sich unten an die Trocknungszone anschließenden Kühlzonenschicht mittels durchströmender Frischluft durchströmt wird, aus welcher Kühlzone das Getreide abgenommen wird. dadurch gekennzeichnet, daß ein das gekühlte Getreide abnehmender Förderer (6,24) mit Zeitschaltuhren (13) kombiniert ist, die den Förderer entsprechend der erforderlichen Abnahmezeit des gekühlten Getreides aus der Kühlzone mit nachsinkendem trockenem Getreide aus der Trocknungszone (3) einschaltet und dann entsprechend der nach dem Feuchtigkeitsgehalt des zu trocknenden Getreides festzulegenden Trocknungszeit in der Trocknungszone (3) abschaltet und daß im unteren Bereich der schichtförmigen Trocknungszone, (3) Kontaktthermometer (15) oder Thermostate angeordnet sind, durch das oder die der zeitgesteuerte Förderer(6,24) abgeschaltet bleibt, solange die erforderliche Trocknungstemperatur des Getreides in der Trocknungszone (3) nicht erreicht ist.

- 2. Trocknungsanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Abnahmeförderer (24) aus einer in den unteren Teil der Kühlzonenschicht reichenden nach oben gerichteten Förderschnecke in einem Zylinder besteht, an dessen Oberende ein nach unten und außen geneigter Auslauf (25) angeschlossen ist.
- Trocknungsanlage nach Anspruch 1, dadurch gekennzeichnet, daß der Abnahmeförderer aus einem waagerechten Förderband (6) unter einem unteren freien, sich durch einen auf dem Förderband bildenden Schüttkegel des gekühlten Getreides schließenden Auslaufs (5) besteht.
- 4. Trocknungsanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Abluft aus der Trocknungszone (3) oder Vortrocknungszone (2) teilweise an die eine Seite und die Abluft aus dem Kühler (4,4a) an die andere Seite eines doppelflutigen Gebläses (7) des Wärmetauschers (10) angeschlossen ist.
- 5. Trocknungsanlage nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Abluft aus der Trocknungszone (3) teilweise der zwischen der Kühlzone (4) und einem einflutigen Gebläse des Wärmetauschers (10) verlaufenden Rohrleitung zugeführt wird.

609814/0507

F26B 17-12

AT: 14.09.1974 OT: 01.04.1976 sa

6 0 9 8 1 4 / 0 5 0 7 ORIGINAL INSPECTED

BUSDDCID <DE

- rr-

BNSDOCID: <DE_____2444034A1_L>

609814/0507

1/1973 Rathbun .

4/1974 Fassauer .

1/1978 Bradford .

5/1979 Westelaken

5/1981 Noyes et al. . 4,308,669 1/1982 Noyes et al. . 4,392,310 7/1983 Hohman et al.

United States Patent [19]

[54] GRAIN METERING SYSTEM FOR A GRAIN

DRYER WHICH INCLUDES A PIVOTABLE

Watson et al.

6,098,305 [11] Patent Number: [45] Date of Patent: *Aug. 8, 2000

> 34/65 ... 34/167 X

	BETWEE	UPPORT MEMBER POSITIONED IN A METERING ROLL AND A RGE OPENING OF A GRAIN	
[75]	Inventors:	L. Michael Watson, Waldron; Phillip C. Middaugh, Indianapolis, both of Ind.	
[73]	Assignee:	fil Corporation, Indianapolis, Ind.	
[*]	Notice:	This patent is subject to a terminal dis- claimer.	
[21]	Appl. No.: 09/198,995		
[22]	Filed:	Nov. 23, 1998	
[51] [52] [58]	U.S. Cl Fleld of S	F26B 17/12 34/167; 34/169; 34/173 eurch 34/64, 65, 86, 7, 168, 169, 170, 173, 174, 176; 222/367,	

	4,404,756	9/1983	Noves 34/65				
	4,423,557	1/1984	Westelaken 34/167 X				
	4,463,503	8/1984	Applegate .				
	4,528,848	7/1985	Häfner .				
	5,538,747	7/1996	Mueller .				
	5,651,193	7/1997	Rhodes et al 34/531				
Primary Examiner—Stephen Gravini Attorney, Agent, or Firm—Maginot, Addison & Moore							
	,, ,						
[5	7]		ABSTRACT				
gr	ain may flo	w is disc	cludes a grain column through which closed. The grain column has a dis-				

3,710,449

3.804.303

4,067,120

4.152,841

4,268,971

column through which ain column has a disther includes a metering roll positioned to contact grain advancing out of the discharge opening of the grain column and a grain support member interposed between the metering roll and the discharge opening. The grain support member being movable between a grain support position and a cleaning position. The grain dryer yet further includes a transport bin positioned below the metering roll. The grain support member directs grain flowing out of the discharge opening to the metering roll when the grain support member is positioned in the grain support position. The grain support member directs grain positioned on the grain support member to advance under the metering roll and into the transport bin when the grain support member is positioned in the cleaning position.

[56] References Cited NTS

	U.S. PA	TENT DOCUMEN
2,552,093	5/1951	Gollbach et al
2,740,204	4/1956	Scitzer et al
3,000,110	9/1961	Forth et al
3,090,133	5/1963	Kline et al
3,092,472	6/1963	Figley .
3,097,934	7/1963	Applegate .
3,129,073	4/1964	Mathews .
3,233,337	2/1966	Tomlinson.

28 Claims, 13 Drawing Sheets

368: 239/676

Fig. 1

Fig. 2

Fig. 5

S0E'860'9

Ac .yiT

Fig. 5B

Aug. 8, 2000

Fig. 5C

Fig. 6

GRAIN METERING SYSTEM FOR A GRAIN DRYER WHICH INCLUDES A PIVOTABLE GRAIN SUPPORT MEMBER POSITIONED BETWEEN A METERING ROLLAND A DISCHARGE OPENING OF A GRAIN

COLUMN CROSS REFERENCE

Cross reference is made to copending U.S. patent applications Ser. No. 09/198,974 (Attorney Docket No. 1571- 10 the metering passage. As a result, a quantity of residual dried 0005), entitled "Apparatus and Method for Metering Grain in a Grain Dryer which Utilizes a Grain Flow Regulator" by Phillip C. Middaugh and L. Michael Watson, and Scr. No. 09/197,988 (Attorney Docket No. 1571-0007), entitled "Grain Metering System for a Grain Dryer having Improved 15 Grain Flow Angle Configuration at Grain Column Discharge Opening" by L. Michael Watson and Phillip C. Middaugh, and Serial No. 09/198,301 (Attorney Docket No. 1571-0008), entitled "Grain Metering System for a Grain Dryer having Improved Grain Column Discharge Opening and 20 Metering Roll Configuration" by L. Michael Watson and Phillip C. Middaugh, all of which are assigned to the same assignce as the present invention, and all of which are filed concurrently herewith.

BACKGROUND OF THE INVENTION

The present invention relates generally to a grain dryer, and more particularly to an apparatus and method for metering grain in a grain dryer.

In many instances, agricultural grain products must be 30 stored for an extended period of time prior to being used. However, prior to storage, it is necessary to dry the grain to a condition in which it is less subject to molding or other deterioration. Accordingly, it has become known to remove moisture from grain by passing the grain through a grain 25 dryer prior to storage.

Grain dryers typically have a plenum chamber through which heated air is advanced. The grain is passed through columns which surround the plenum chamber. Each column includes an inner perforated wall that is in fluid communication with the plenum chamber and an outer perforated wall which is in fluid communication with the ambient environment surrounding the grain dryer. As the grain moves through the column, heated air from the plenum chamber passes through the inner perforated wall, through the flow of 45 grain, and out through the outer perforated wall. As the heated air moves through the flow of grain, moisture is removed from the grain.

To control the amount of moisture removed from the grain, it is necessary to precisely control the flow rate of the 50 grain through the grain column. In particular, grain that remains in the grain column and is exposed to the heated air for an extended period of time may become too dry and even catch on fire, whereas grain that passes quickly through the grain column may retain an undesirable amount of moisture. ss To control the flow rate of grain through the grain column, a metering roll is utilized at a discharge opening of the grain column. In particular, the metering roll is located in a relatively narrow grain flow metering passage, and rotation of the metering roll within the metering passage causes grain 60 to be advanced through the grain column at a desired rate. Controlling the speed of rotation of the metering roll controls the flow rate of grain through the grain dryer which, in turn, controls the amount of moisture removed from the grain.

A problem with grain dryers that have heretofore been designed is that an amount of residual grain cannot be

removed from the metering passage of the grain dryer at or near the metering roll after a drying operation is completed. In particular, in the midst of a grain drying operation, grain advances out of the discharge opening of the grain column and through the metering passage until it reaches the metering roll. Thereafter, the metering roll advances dried grain from the metering passage to a transport bin. However, some of the dried grain may not be able to be advanced by the metering roll into the transport bin due to the geometry of grain may be left in the metering passage. If this residual grain is not removed from the grain dryer within a reasonable amount of time, the residual grain may rot or sprout which is undesirable.

What is needed therefore is an apparatus and method for cleaning residual grain from a grain dryer which overcomes one or more of the abovementioned disadvantages.

SUMMARY OF THE INVENTION

In accordance with a first embodiment of the present invention, there is provided a grain dryer. The grain dryer includes a grain column through which grain may flow. The grain column has a discharge opening. The grain dryer further includes a metering roll positioned to contact grain 25 advancing out of the discharge opening of the grain column and a grain support member interposed between the metering roll and the discharge opening. The grain support member being movable between a grain support position and a cleaning position. The grain dryer yet further includes a transport bin positioned below the metering roll. The grain support member directs grain flowing out of the discharge opening to the metering roll when the grain support member is positioned in the grain support position. The grain support member directs grain positioned on the grain support member to advance under the metering roll and into the transport bin when the grain support member is positioned in the cleaning position.

In accordance with a second embodiment of the present invention, there is provided an apparatus for controlling grain flow within a grain dryer. The apparatus includes a grain column through which grain may flow. The grain column having a discharge opening. The apparatus further includes a metering roll positioned to contact grain advancing out of the discharge opening of the grain column and a grain support member which is movable between a grain support position and a cleaning position. When the grain support member is positioned in the grain support position, the grain support member directs grain flowing out of the discharge opening to the metering roll so that rotation of the metering roll causes grain to be transported from a first side of the metering roll to a second side of the metering roll over the metering roll. When the grain support member is positioned in the cleaning position, the grain support member directs grain positioned on the grain support member to advance under the metering roll.

It is an object of the present invention to provide a new and useful apparatus for controlling grain flow within a column of a grain dryer.

It is another object of the present invention to provide an improved apparatus and method for controlling grain flow within a column of a grain dryer.

It is still another object of the present invention to provide an apparatus for controlling grain flow within a column of a 65 grain dryer which allows a quantity of residual grain to be removed from the metering passage of the grain dryer after a grain drying operation is completed.

It is still another object of the present invention to provide a graph aparatus for controlling grain flow within a column of a grain dryer which allows a quantity of residual grain to be removed from the metering passage of the grain dryer after 10 a grain drying operation is completed which is relatively

The above and other objects, features, and advantages of the present invention will become apparent from the following description and attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of a grain dryer which incorporates the features of the present invention therein;

FIG. 2 is partial cut away perspective view of the grain dryer of FIG. 1, showing the plenum chamber and a number of grain columns;

FIG. 3 is fragmentary perspective view of the inside of the grain dryer of FIG. 1, showing a number of inner perforated 25 walls, a number of regulator members, and a transport auger;

FIG. 4 is a fragmentary cross sectional view of the grain dryer of FIG. 1, showing metering rolls and regulator members;

FIG. 5 is a fragmentary cross sectional view of the left 36 side of the grain dryer of FIG. 2 showing the relative geometry of the discharge opening, metering roll, and grain support member (note that the grain is shown removed from the grain dryer for clarity of description):

FIG. 5A is a fragmentary side elevational view of the interior of the grain dryer taken along line 5A—5A of FIG. 5, as viewed in the direction of the arrows (note that the metering roll and regulator member is shown removed for clarity of description).

FIG. 5B is a fragmentary cross sectional view of the left side of the grain dryer of FIG. 2, but showing a trash object located in a metering passage of the grain dryer:

FIG. 5C is a view similar to FIG. 5B but showing the trash object advancing between the metering roll and the regulator 45

FIG. 5D is a view similar to FIG. 5C, but showing the trash object advanced to a position beyond the metering roll; FIG. 6 is a fragmentary cross sectional view of the

regulator member of FIG. 5D;
FIG. 7A is a fragmentary perspective view of the dump door of the grain dryer of FIG. 1, note that the dump door is shown in the closed position;

FIG. 7B is an enlarged side elevational view of the grain dryer components which are encircled in FIG. 7A and indicated as FIG. 7B;

FIG. 7C is a fragmentary perspective view of the dump door of FIG. 7A, but showing the dump door in the open position;

FIG. 7D is an enlarged side elevational view of the grain dryer components which are encircled in FIG. 7C and indicated as FIG. 7D;

FIG. 8A is a view similar to FIG. 5, but showing a residual amount of grain on the grain support member after a grain 65 drying operation (note that the grain support member is shown positioned in a grain support position); and

4

FIG. 8B is a view similar to FIG. 8A, but showing the grain support member positioned in a cleaning position.

DESCRIPTION OF THE PREFERRED EMBODIMENT

While the invention is susceptible to various modifications and alternative forms, a psecific embodiment thereof has been shown by vay of example in the drawings and will herein be described in detail. It should be understood, however, that there is no intent to limit the invention to the particular form disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.

Referring now to FIGS. 1 and 2, there is shown a grain dyer 10. The grain dyer 10 includes a grain index 12 positioned on an upper portion of the grain dryer 10. Grain from a grain source 14 is advanced through the grain index 12 to an inlet channel 16 defined in the upper portion of the grain dryer 10. An inlet super 18 is positioned within the inlet channel 16 as shown in FIG. 2. An inlet motor 20 is operable to rotte the inlet suger 18 in the general direction of arrow 22. As the inlet suger 18 is to stated in the general direction of arrow 22, the rotated in the outer surface of the inlet suger 18 causes the grain in the inlet channel to advance in the general direction of arrow 24.

The grain dayer 10 further includes a forward wall 25, a number of columns 26, and an aft wall 27 which cooperate potential of the appearum chamber 28. An upper portion of each of the columns 26 is in fluid communication with the inlet channel 28. As the grain is advanced in the inlet channel 126. As the grain is advanced in the inlet channel 18. Grain flows from the inlet channel 16 to full teach of the columns 26 (see FIG. 2). The lower portion of each of the columns 26 is in fluid communication with a metering assembly 30 which controls the flow of grain out of the lower portion of each of the columns 26.

Each of the columns 26 includes an inner perforated wall 32 and an outer perforated wall 34. The inner perforated wall 40 32 allows fluid communication between the interior chamber 28 and the grain that is contained within the column 26. In particular, the perforations in the inner perforated wall 32 are large enough to allow air flow through the inner perforated wall 32, but small enough to prevent grain from passing from the column 26 to the plenum chamber 28 of the grain dryer 10. The outer perforated wall 34 allows fluid communication between the grain contained in the columns 26 and the ambient environment surrounding the grain dryer 10. In a similar manner, the perforations in the outer perforated 50 wall 34 are large enough to allow air flow through the outer perforated wall 34, but small enough to prevent from grain from passing from the column 26 to the exterior of the grain dryer 10. In addition, each of the grain columns 26 is separated from adjacent grain columns 26 by a divider 29

55 (see 14G. 3).
The grain dryer 10 further includes a heating unit 40 which is operable to draw ambient air from the environment, heat the ambient air, and advance the heated air into the plenum chamber 28. It should be appreciated that the heated on air in the plenum chamber 28 passes though the inner perforated wall 32 in the general direction of a row with the properties of the second of the properties of the second of the se

grain is a function of (i) the amount and temperature of the heated air supplied to the pleutum chamber 28 by the heating unit 40, and (ii) the amount of time that the grain is exposed to the flow of the heated air that passess from the pleutum chamber 28, through the inner perforated wall 32, through 5 the flow of grain, and out to the ambient environment through the outer perforated wall 32.

Referring to FIG. 3, there is shown the lower portion of the grain dryer 10. The grain dryer 10 further includes a transport bin 80 located in the lower portion of the grain 10 dryer 10, A transport auger 82 is positioned within the transport bin 80. A transport motor (not shown) is operable to rotate the transport auger 82 in the general direction of arrow 21. As the transport auger 80 is rotated in the general direction of arrow 21, the rotating helical blade defined in 15 the outer surface of the transport auger 82 causes grain in the transport bin 80 to advance in the general direction of arrow 23. From the transport bin 80, the grain advances to a grain outlet 84 (shown in FIGS. 1 and 2), where the grain exits the grain dryer 10. A cover 83 is positioned above the transport 20 auger 82 to isolate the transport auger 82 from the plenum chamber 28. Note that a substantial portion of the cover 83 is shown removed in FIG. 3 for clarity of description.

Referring now to FIGS. 4 and 5 there is shown the lower portion of the interior of the grain dryer 10. The inner 25 portion of the interior of the grain dryer 10. The lower portion and the is positioned substantially working lay within the grain dryer 10. The lower portion of the upper column wall 43 defines an upper discharge surface 45. The outer perforated surface 34 includes a lower column wall 47. The upper portion of the grain support member 48 90 starface 34 includes a lower column wall 47. The upper portion of the grain support member 48 defines a lower discharge surface 49. The lower discharge surface 49 is the surface of the grain support member 48 which lies closes of the upper discharge surface 45. A discharge of the grain 40 starface 10 st

It should be appreciated that the size of the discharge opening 46 is one factor that determines the amount of grain and that that advances from the grain column 26. In the preferred embodiment show, the size D1 of the discharge opening 46 is greater than or equal to 5.0 inches. More preferably, the size D1 of the discharge opening 46 is equal to show the 5.0 inches. In most unetering devices heretofore designed, the discharge opening is generally less than 3.0 inches. A smaller discharge opening is generally less than 3.0 inches. A smaller discharge opening has the advantage of allowing necessary of the size o

Referring now to FIG. 5A, the lower discharge surface 49 and the upper discharge surface 45 define a width W which is the width of the discharge opening 46. The width W is 52 coult to the size D1. The discharge opening 46 is further defined by a left lateral sidewall 86 and a right lateral sidewall 88 for left lateral sidewall 86 and a right lateral sidewall 88 flee file rateral sidewall 86 and the right lateral sidewall 88 flee file rateral sidewall 86 and the right lateral sidewall 88 flee file rateral sidewall 86 and the right lateral sidewall 88 flee file rateral sidewall 86 and the right lateral sidewall 88 flee file rateral sidewall 86 and the right lateral sidewall 88 flee file file rateral sidewall 80 sidewal

Referring again to FIG. 5, the metering apparatus 30 65 includes a metering roll 50 positioned above the grain support member 48 at a distance away from the discharge

opening 46. By spacing the metering roll 50 apart from the discharge opening 46 by the distance shown in FIG. 5, the weight of the grain located in the column 26 is not directly supported by the metering roll 50. Thus, the metering roll 50 areas in the research to extend in comparison to metering rolls.

requires less energy to rotate in comparison to metering rolls which support a substantial amount of weight generated by grain in a grain column.

gram in a gram course. Referring again to FIG. 4, it should be appreciated that a second metering roll 50 is positioned on the left side of the grain dryer 10 and is substantially identical to the melering roll 50. Each of the metering roll 50. Each of the metering roll 50. Each of the metering roll 50 on the left is rotated in the particular, the metering roll 50 on the left is rotated in the general direction of arrow 58. How metering roll 50 on a frow 50. How the metering roll 50 of a total excitation of arrow 59. Both the metering roll 50 and the metering roll 50 and the metering roll 50 and the rotated roll 50. Stock the metering roll 50 and the rotated in the general direction of arrow 59. Both Stock the metering roll 50 years in a substantially identical manner to the metering roll 50 you have be structure and operation of the metering roll 50 you have be structure and operation of the metering roll 50 you have be structure and operation of the metering roll 50 you have be structure and the metering roll 50 you have been structure and the structure an

The metering roll 50 includes a number of vanes 56. Each of the vanes 56 extend longitudinally along the length of the metering roll 50 (see FIG. 3). A pair of adjacent vanes 56 forms a bucket 62 which accepts grain flowing over the grain support member 48. Since the metering roll 50 rotates in the general direction of arrow 58, the buckets move through the positions shown in FIG. 4 as 62A, 62B, 62C, 62D, 62E, and 62F. As the metering roll 56 is rotated in the general direction of arrow 58, grain from the discharge opening 46 begins to fill the bucket 62 and becomes entrapped between the vanes when the bucket 62 is positioned in the position 62A. As the bucket 62 continues to rotate in the general direction of arrow 58, additional grain from the discharge opening 46 advances into and becomes entrapped in the bucket 62 when the bucket is in the position shown as 62B. This slow filling of the bucket 62 helps to ensure the each of the buckets is completely filled as the metering roll 50 is rotated in the general direction of arrow 58. Thus, as the metering roll 50 is rotated in the general direction of arrow 58, grain is advanced from a first side of the metering roll 50 proximate to the discharge opening 46 to a second side of the metering roll 50 proximate to the transport bin 80.

including the second process. Second process are second process. But second process are second process as the second process and the second process are second process. But second process are second process as the second process are second process. But second process are second process are second process. But second process are second process are second process. But second process are second process are second process are second process. But process are second process are second process. But process are second process are second process are second process. But process are second process a

The presentation section 48A of the grain support member 48 is arised and configured so as to chainse 148 is a friend and configured so as to chainse the flow of grain from the discharge opening 46 to the metering roll 30, la particular, the grain presentation section defines a line L1 which forms an angle 0 with a horizontal line H1. The angle 0 has a magnitude which is perfectably between zero and thirty degrees. More preferably, the angle 0 has a magnitude which is equal to about eighteen degrees. The angle 0 accommodates the natural angle of repose is a grain such a cont. The angle 0 repose is a natural flow angle that a

quantity of grain assumes as it exits a discharge opening of a grain column. Orienting the presentation section 48A to possess the angle θ relative to the horizontal line H1 facilitates uniform flow of grain from the discharge opening

It should be appreciated that a significant advantage of the present invention is that the angle θ accommodates the angle of repose of a quantity of grain and allows the grain to flow uniformly from column 26. In particular, accommodating the angle of repose of the grain causes the grain near the 10 inner perforated wall 32 and grain near the outer perforated wall 34 to advance at substantially the same rate as the grain in the center of the column 26. It should be appreciated that grain that moves through the column 26 at the same rate will have a substantially similar amount of moisture removed as 15 it passes through the grain dryer 10. Thus, accommodating the angle of repose of the grain allows the grain in the column 26 to be dried in a substantially uniform manner.

The metering roll 50 defines a vane diameter VD. In particular, the vane diameter VD is defined as the distance 20 between the tips of two vanes, where the two vanes 56 are spaced 180° apart from each other as shown in FIG. 5. In the preferred embodiment, the vane diameter is greater than or equal to six inches. More preferably, the vane diameter is equal to about seven inches. An advantage to such a large 25 vane diameter VD, is that trash objects are less likely to obstruct the flow of grain through the metering roll 50.

Referring now to FIG. 5B, 5C, and 5D, the metering apparatus 30 further includes a regulator member 52. The regulator member 52 controls the amount of grain advanced by each bucket 62 of the metering roll 50, regardless of the rotational speed of the metering roll 50. The regular member 52 pivots about a rod 64 secured to the dividers 29 which separate adjacent columns 26 from each other. In particular, 35 the regulator member 52 pivots between a flow regulating position, shown in FIG. 5B, and a trash escape position shown in FIG. 5C. The regulator member 52 can also be placed in a storage position, shown by the regulator memacts to pivot the regulator member 52 in the general direction of arrow 58. In the flow regulating position, the regulator member 52 is supported by either a vane 56 or the grain positioned in a bucket 62 shown in the position of bucket 62D of FIG 4

The regulator member 52 and the vanes 56 cooperate to control the amount of grain advanced by the rotation of the metering roll 50. The slow filling of the buckets 62 caused by rotating the metering roll from the position 62A to the position 62D ensures that each of the buckets 62 fills 50 completely with grain as the metering roll 50 is rotated in the general direction of arrow 58. The weight of the regulator member 52 acting on the grain prevents grain that extends beyond the tip of the vanes 56 from advancing from the discharge opening 46 to the transport bin 80 as the metering 55 roll 50 is rotated in the general direction of arrow 58.

A trash object 68 may become intermixed with the grain during either the harvesting or storage of the grain. Such trash objects 68 may include corn cobs, plant stalks, leaves or other agricultural non-grain objects. As the grain is 60 advanced toward the metering roll 50, the trash object 68 is also advanced from the discharge opening 46 to a first position (shown in FIG. 5C). In the first position, the force of the vanes 56 acting on the trash object 68 causes the trash object 68 to be urged against the regulator member 52. If the 65 regulator member 52 were fixed, the trash object 68 could become wedged between the vanes 56 and the regulator

member 52, possibly preventing rotation of the metering roll 50, and stopping the operation of the grain dryer 10.

However, the pivotal attachment of the regulator member 52 allows the trash object 68 to pass between the vanes 56 of the metering roll 50 and the regular member 52. In particular, as the trash object 68 moves from the position shown in FIG. 5B to the first position shown in FIG. 5C, the trash object 68 causes the regulator member 52 to pivot in the general direction of arrow 70 from the flow regulating position (shown in FIG. 5B) to the trash escape position (shown in FIG. 5C) thereby allowing the trash object 68 to pass between the vanes 56 of the metering roll 50 and the regulator member 52. From the first position, the trash object 68 passes to a second position in the transport bin 80 (shown in FIG. 5D) and thereafter is advanced by the transport auger 82 out of the grain outlet 84.

It should be appreciated that the regulator member 52 is advantageously weighted so that the regulator member 52 remains in the regulating position when grain is present between the vanes 56 of the metering roll 50 and the regulator member 52, and moves to the trash escape position when a trash object 68 is placed between the vanes 56 and the regulator member 52. To this end, an ancillary weight 74 (see FIG. 6) is attached to an end of the regulator member 52 by a fastener 75. The effect of the ancillary weight 74 helps cause the regulator member 52 to be maintained in the regulator position until a trash object 68 of sufficient size is able to urge the regulator member 52 from the flow regulating position to the trash escape position.

Referring now to FIGS. 7A, 7B, 7C, and 7D, there is shown an emergency release mechanism 90 positioned on the lower column wall 47. The emergency release mechanism 90 includes an emergency door 92 which is pivotally secured to a bracket 91 on the lower column wall 47 by a pair of fasteners 94. The emergency door 92 can rotate about an axis 96 in the general direction of arrows 99 and 100. The emergency door 92 covers an exit opening 93 defined in the outer perforated wall 34 (see FIGS. 5A and 7C). A beveled bers 52 in FIG. 3. In the flow regulating position, gravity 40 portion 98 is defined along an upper edge of the emergency release door 92.

> An actuator 102 is also pivotally secured to the bracket 91 by a pair of fasteners 104 such that the actuator 102 can rotate about an axis 106. The ends of the actuator 102 proximate to the fasteners 104 each include a retaining portion 108 and a notched portion 110. When the actuator is in a first position (shown in FIGS. 7A and 7B), the retaining portion 108 of the actuator 102 holds the beveled portion 98 of the emergency door 92 against the lower column wall 47. Holding the beveled portion 98 against the lower column wall 47 places the emergency door 92 in a closed position which prevents grain from exiting the grain column 26 via the exit opening 93 (see FIG. 5B).

When the actuator 102 is rotated in the general direction of arrow 99, the retaining portion 108 of the actuator 102 is rotated out of contact with the beveled section 98 of the emergency door 92. The notched portion 110 of the actuator 102 is moved proximate to the beveled portion 98 of the emergency door 92. The notched portion 110 allows the beveled portion 108 of the emergency door 102 to move away from the lower column wall 47 thereby allowing the emergency door 92 to rotate about the axis 96 in the general direction of arrow 99 into the open position (shown in FIG. 7C). When the emergency door 92 is placed in the open position, grain from the grain column 26 is allowed to exit the grain dryer 10 through the exit opening 93 (shown in phantom in FIG. 5B).

It should be appreciated that the emergency door 92 can be used to rapidly empty grain from the grain columns 26 in case of an emergency in the grain drycr 10. Typically, such emergencies arise when the grain or other material, such as a trash object, catches on fire within the grain dryer.

Referring now to FIGS. 8A and 8B, there is shown the interior of the grain dryer 10 after a grain drying operation. It should be noted that an amount of residual grain 112 remains on the grain support member 48. Because of the shallow angle of the grain support member 48 from the 10 horizontal, the residual grain 112 cannot be advanced by the metering roll 50. If the residual grain were to remain on the grain support member 48 for an extended period of time (e.g. over a winter season), the residual grain 112 could either rot or sprout, both of which are undesirable.

To remove the residual grain 112 from the grain support member 48, the grain support member 48 is pivotally secured to the dividers 29 by a rod 116. In particular, the in FIG. 8B) in the general direction of arrow 118. When the grain support member 48 is in the grain support position, grain must pass over the metering roll 50 prior to entering the transport bin 80. When the grain support member 48 is in the cleaning position, grain bypasses under the metering 25 roll 50 and flows directly to the transport bin 80 from the grain support member 48.

When the grain dryer 10 is full of grain (as shown in grain column 26 applies a downward force on the grain support member 48 in the general direction of arrow 119 thereby preventing the grain support member 48 from rotating about the rod 116 in the general direction of arrow 118. Thus, the weight of the grain in the grain column 26 biases the grain support member 48 into the grain support position.

To move the grain support member 48 from the grain support position to the cleaning position, a handle 120 is secured to the grain support member 48. To access the handle 120, an access opening 122 is defined in the outer 40 surface of the grain dryer 10 (see FIG. 7A) which allows the operator to reach the handle 120 from the exterior of the grain dryer 10. To move the grain support member 48 from the grain support position to the cleaning position, an operator reaches through the access opening 122 and urges 45 advanced to the transport bin 80. the handle 120 in the general direction of arrow 124.

Referring again to FIG. 2, the grain dryer 10 further includes a grain column temperature sensor 126, a plenum chamber temperature sensor 128, and a control unit 130. The of grain columns 26 and is operable to sense the temperature of the grain in the columns 26 and generate a grain column temperature signal in response thereto. The plenum chamber temperature sensor 128 is positioned within the plenum chamber 28 and is operable to sense temperature of the air 55 drying of grain within grain dryer 10. in the plenum chamber 28 and generate a plenum chamber temperature signal in response thereto. The control unit 130 is operable to receive the grain column temperature signal and the plenum chamber temperature signal and make adjustments to the grain drying operation.

If the grain column temperature signal indicates that the temperature of the grain in the columns 26 is too high, then the control unit 130 can either (i) increase the rate at which the metering roll 50 rotates by increasing the speed of the metering motor 60 thereby decreasing the amount of time 65 that the grain is exposed to the heated air from the plenum chamber 28, or (ii) decrease the amount of heated air that the

heating unit 40 introduces into the plenum chamber 28. On the other hand, if the grain column temperature signal indicates that the temperature of the grain in the columns 26 is too low, then the control unit 130 can either (i) decrease the rate at which the metering roll 50 rotates by decreasing the speed of the metering motor 60 thereby increasing the amount of time that the grain is exposed to the heated air from the plenum chamber 28, or (ii) increase the amount of heated air that the heating unit 40 introduces into the plenum chamber 28

Operational Summary

During a grain drying operation, grain with a high moisture content is advanced to the inlet 12 of the grain dryer 10 (see c.g. FIG. 2). The grain advances from the inlet 12 to the 15 inlet channel 16. From the inlet channel 16, grain is distributed among a number columns 26.

A heating unit 40 advances heated air into a plenum chamber 28. From the plenum chamber 28, the heated air passes through the inner perforated wall 32 in the general position (shown in FIG. 8A) to a cleaning position (shown perforated wall 34 in the general direction of arrow 44 of FIG. 2. As the heated air passes through the flow of grain, moisture is removed from the grain thereby drying the grain. It should be appreciated that the amount of moisture removed from the grain is a function of how long the grain remains within the column 26.

A metering assembly 30 controls the amount of grain that exits through discharge openings 46 defined in the bottom of FIGS. 5B, 5C, and 5D), the weight of the grain from the 30 the grain columns 26. The control unit 130 receives plenum chamber temperature signal from the plenum chamber temperature sensor 128 and grain moisture content signals from the moisture sensor 126 and generates a metering roll control signal which controls the rotational speed of the metering roll 50, and thus the flow rate of grain through the columns 26

The relatively large width D1 of the discharge opening 46 allows a smooth flow of grain from the column 26 to the metering roll 50. In addition, the magnitude of the width D1 is large enough to allow trash objects, such as corn cobs and stalks, to pass from the column 26 to the metering roll 50. Furthermore, the relatively large vane diameter VD of the metering roll 50 helps assure that trash objects will not become lodged in the metering roll 50 as the grain is

As the grain flows from the discharge opening 46 to the metering roll 50, the grain passes through a metering passage and over the presentation section 48A of the grain support member 48. The presentation section 48A forms an grain column temperature sensor 126 runs through a number 50 angle 0 with a horizontal line. The magnitude of the angle θ accommodates the angle of repose of a quantity of grain (e.g. corn) exiting the discharge opening 46 of the grain column 26, and allows the grain to flow uniformly from column 26. This uniform flow of grain facilitates uniform

In addition to the sizing of the metering roll 50 and the discharge opening 46, the regulator member 52 also helps to prevent trash objects from becoming jammed in the metering passage, near the metering roll 50. As the trash object 68 60 comes into contact with the metering roll 50, the trash object 68 is advanced in the general direction of arrow 58 by the metering roll 50 (shown in FIG. 5B). As the trash object 68 advances in the general direction of arrow 58, the trash object urges the regulator member 52 to move from the flow regulating position (shown in FIG. 5B) to the trash escape position (shown in FIG. 5C). When the regulator member 52 is in the trash escape position, the trash object 68 advances

Because of the large amount of heat produced by the 5 heating unit 40, grain or trash objects in the grain column 26 may begin to burn during a grain drying operation. When a fire is detected in the grain dryer 10, the grain in the column 26 must be rapidly emptied to prevent damage to the grain dryer 10. To empty the grain from the column 26, the 10 48 to pivot about the rod 116 so as to move the grain support actuator 102 is rotated in the general direction of arrow 99 about the axis 106 (see FIG. 7A). Rotation of the actuator 102 in the general direction of arrow 99 moves the retaining portion 108 of the actuator 102 of contact with the beveled emergency door 92 to rotate about the axis 96 in the general direction of arrow 99. As a result, grain exits the column 26 via the exit opening 93.

dryer 10 over an extended period of time may rot or sprout which is undesirable. Because the grain presentation section 48A has an angle of between zero and thirty degrees from the horizontal a small amount of residual grain 112 will remain on the grain support member 48 after a grain drying 25 operation. To remove the residual grain 112 from the support member, an operator pushes the handle 120 in the general direction of arrow 124 (see FIG. 7A) which moves the grain support member 48 from the grain support position (shown in FIG. 8A) to the cleaning position (shown in FIG. 8B). In 30 the cleaning position, the residual grain 112 flows under the metering roll 50 from the grain support member 48 to the transport bin 80. From the transport bin 80, the residual grain 112 is advanced to the grain outlet 84 by the transport auger

While the invention has been illustrated and described in detail in the drawings and foregoing description, such illustration and description is to be considered as exemplary and not restrictive in character, it being understood that only the preferred embodiment has been shown and described and 40 that all changes and modifications that come within the spirit of the invention are desired to be protected.

For example, while the emergency release mechanism 90 has been described in detail above and its design possesses many advantages, other designs of emergency release 45 mechanisms may be used in the grain dryer 10. For instance, another design of an emergency release mechanism which may be substituted for emergency release mechanism 90 includes a slide member which is positionable to cover exit opening 93 during normal operation of the grain dryer 10. 50 Thereafter, when it is desirable to rapidly empty grain from the grain columns 26, the slide member can be slid upwardly away from the exit opening 93 so as to allow the escape of grain through the exit opening 93. The slide member could include an upper flange portion which could be grasped by 55 an operator of the grain dryer 10. The slide member could be slidingly attached to an outer wall of the grain dryer 10 by a number of retainer guide members which would allow the slide member to be slidable between a closed positioned in which the slide member is positioned over the exit opening 60 93 and an open position in which the slide member is positioned away from the exit opening 93 so as to allow grain to advance through the exit opening 93.

In addition, the grain support member 48 is described as having a handle 120 attached thereto as shown in FIGS. 8A 65 and 8B which an operator would grasp by reaching through an opening defined in an outer wall of the grain dryer 10.

12

While such an arrangement has numerous advantages, the grain support member may alternatively have a push rod coupled thereto in place of the handle 120. The push rod would be accessible to an operator by extending through a small hole defined in the outer wall of the grain dryer 10. When it is desirable for an operator to remove residual grain 112 from the grain support member 48, the operator would push an outer end of the push rod toward the outer wall of the grain dryer 10 thereby causing the grain support member member 48 from the grain support position (shown in FIG. 8A) to the cleaning position (shown in FIG. 8B) in the general direction of arrow 118.

Moreover, the flow regulator 52 is depicted in the figures section 98 of the emergency door 92 thereby allowing the 15 (e.g. FIGS. 4 and 5) as having an ancillary weigh 74 attached thereto, and has many advantages thereby. However, it should be appreciated that the ancillary weight 74 may be climinated if the flow regulator is made from a relatively After the grain drying operation, grain must be emptied thick piece of metal to provide increased weight to the flow out of the grain dryer 10. Any grain remaining in the grain 20 regulator. This increased weight of the flow regulator 52 would help cause the regulator member 52 to be maintained in the regulator position until a trash object 68 of sufficient size is able to urge the regulator member 52 from the flow regulating position to the trash escape position.

> In addition, while the flow regulator 52 is oriented so as to define a plane which intersects a horizontal line to create an angle of about 30° and has many advantages thereby, the flow regulator may be oriented in other manners. For example, the flow regulator 52 may be oriented so as to define a plane which intersects a horizontal line to create an angle of about 45°.

What is claimed is:

1. A grain dryer, comprising:

a grain column through which grain may flow, said grain column having a discharge opening;

a metering roll positioned to contact grain advancing out of said discharge opening of said grain column; and a grain support member interposed between said metering roll and said discharge opening, said grain support member being movable between a grain support position and a cleaning position; and

a transport bin positioned below said metering roll,

wherein said grain support member directs grain flowing out of said discharge opening to said metering roll when said grain support member is positioned in said grain support position, and

wherein said grain support member directs grain positioned on said grain support member to advance under said metering roll and into said transport bin when said grain support member is positioned in said cleaning position.

2. The grain dryer of claim 1, wherein when said grain support member is positioned in said grain support position: rotation of said metering roll causes grain flowing through said discharge opening to be advanced (i) over said grain support member, (ii) into contact with said metering roll, (iii) over said metering roller, and (iv) into said transport bin

3. The grain dryer of claim 1, wherein:

said grain column includes a lower column wall, and said grain support member extends from said lower column wall when said grain support member is posi-

tioned in said grain support position. 4. The grain dryer of claim 3, wherein:

said grain support member includes a first end portion and a second end portion.

said second end portion of said grain support member is 5 positioned under said metering roll when said grain support member is positioned in said grain support position.

5. The grain dryer of claim 4, wherein said first end portion of said grain support member is spaced apart from 10 said lower column wall when said grain support member is positioned in said cleaning position.

6. The grain dryer of claim 1, wherein:

said metering roll includes a plurality of vanes, each of said plurality of vanes extends longitudinally

along a length of said metering roll, and

rotation of said metering roll causes grain advancing over said grain support member to become entrapped within a pair of adjacent vanes of said plurality of vanes when said grain support member is positioned in said grain support position.

7. The grain dryer of claim 5, wherein said grain column includes a lower discharge surface, an upper discharge surface, a left lateral sidewall, and a right lateral sidewall 25 which collectively define said discharge opening. 8. The grain dryer of claim 7, wherein:

said discharge opening possesses a substantially rectan-

said lower discharge surface and said upper discharge 30

surface define a width W of said discharge opening, said left lateral sidewall and said right lateral sidewall

define a length L of said discharge opening, said width W is substantially uniform along said length L of said discharge opening, and

said length L is substantially uniform along said width W of said discharge opening.

9. The grain dryer of claim 1, wherein said metering roll is spaced apart from said discharge opening.

10. The grain dryer of claim 1, wherein said grain support 40 member pivots between said grain support position and said cleaning position.

11. The grain dryer of claim 1, wherein:

when said grain support member is positioned in said 45 grain support position, said grain support member is positioned at a first orientation relative to said metering roll in which grain supported on said grain support member is presented to said metering roll at a location which allows said metering roll to meter said grain to said transport bin, and

when said grain support member is positioned in said cleaning position, said grain support member is positioned at a second orientation relative to said metering roll in which grain located on said grain support 55 member is caused to slide off said grain support member, under said metering roll, and into said transport bin.

12. The grain dryer of claim 1, wherein:

said metering roll is positioned over a downstream portion 60 positioned in said cleaning position of said grain support member when said grain support member is positioned in said grain support position, and

said downstream portion of said grain support member is moved away from said metering roll when said grain 65 support member is moved from said grain support position to said cleaning position.

13. The grain dryer of claim 12, wherein:

when said grain support member is moved from said grain support position to said cleaning position, grain supported on said grain support member slides off said grain support member, under said metering roll, and into said transport bin.

14. The grain dryer of claim 13, wherein:

when said grain support member is positioned in said grain support position, grain supported on said grain support member is presented to said metering roll at a location which allows said metering roll to meter said grain to said transport bin.

15. An apparatus for controlling grain flow within a grain dryer, comprising:

a grain column through which grain may flow, said grain column having a discharge opening:

a metering roll positioned to contact grain advancing out

of said-discharge opening of said grain column; and a grain support member which is movable between a grain support position and a cleaning position;

wherein when said grain support member is positioned in said grain support position, said grain support member directs grain flowing out of said discharge opening to said metering roll so that rotation of said metering roll causes grain to be transported from a first side of said metering roll to a second side of said metering roll over said metering roll, and

wherein when said grain support member is positioned in said cleaning position, said grain support member directs grain positioned on said grain support member to advance under said metering roll.

16. The apparatus of claim 15, further comprising a transport bin, wherein:

when said grain support member is positioned in said cleaning position, said grain support member directs grain positioned on said grain support member to advance into said transport bin.

17. The apparatus of claim 15, wherein:

said grain column includes a lower column wall, and said grain support member extends from said lower column wall when said grain support member is positioned in said grain support position.

18. The apparatus of claim 17, wherein:

said grain support member includes a first end portion and a second end portion.

said first end portion of said grain support member is positioned in contact with said lower column wall when said grain support member is positioned in said grain support position, and

said second end portion of said grain support member is positioned under said metering roll when said grain support member is positioned in said grain support position.

19. The apparatus of claim 18, wherein said first end portion of said grain support member is spaced apart from said lower column wall when said grain support member is

20. The apparatus of claim 15, wherein:

said metering roll includes a plurality of vanes,

each of said plurality of vanes extends longitudinally along a length of said metering roll, and

rotation of said metering roll causes grain advancing over said grain support member to become entrapped within a pair of adjacent vanes of said plurality of vanes when

BNSDOCID: <US______6098305A1_L >

said grain support member is positioned in said grain support position.

21. The apparatus of claim 19, wherein said grain column includes a lower discharge surface, an upper discharge surface, a left lateral sidewall, and a right lateral sidewall swhich collectively define said discharge opening.

22. The apparatus of claim 21, wherein:

said discharge opening possesses a substantially rectangular shape,

said lower discharge surface and said upper discharge ¹⁰ surface define a width W of said discharge opening, said left lateral sidewall and said right lateral sidewall

define a length L of said discharge opening, said width W is substantially uniform along said length L 15 of said discharge opening, and

said length L is substantially uniform along said width W of said discharge opening.

23. The apparatus of claim 15, wherein said metering roll is spaced apart from said discharge opening.

24. The apparatus of claim 15, wherein said grain support member pivots between said grain support position and said cleaning position.

25. The apparatus of claim 15, wherein:

when said grain support member is positioned in said 25 grain support position, said grain support member is positioned at a first orientation relative to said metering roll in which grain supported on said grain support member is presented to said metering roll at a location which allows said metering roll at a location which allows said metering roll to meter said grain to 30 said transport bin and

16

when said grain support member is positioned in said cleaning position, said grain support member is positioned at a second orientation relative to said metering roll in which grain located on said grain support member is caused to slide off said grain support member, under said metering roll, and into said transport bin.

26. The apparatus of claim 15, wherein:

said metering roll is positioned over a downstream portion of said grain support member when said grain support member is positioned in said grain support position,

said downstream portion of said grain support member is moved away from said metering roll when said grain support member is moved from said grain support position to said desains sociation.

position to said cleaning position.

27. The apparatus of claim 26, wherein:

when said grain support member is moved from said grain support position to said cleaning position, grain supported on said grain support member slides off said grain support member, under said metering roll, and into said transport bin.

28. The apparatus of claim 27, wherein:

when said grain support member is positioned in said grain support position, grain supported on said grain support member is presented to said metering roll at a location which allows said metering roll to meter said grain to said transport bin.

.