PROYECTO COMPILANDO CONOCIMIENTO

Cálculo

Cálculo Diferencial e Integral

Funciones, Límites, Derivadas e Integrales

AUTOR:

Rosas Hernandez Oscar Andres

Índice general

Ι	Fu	nciones y Límites	2
II	\mathbf{C}	álculo Diferencial	3
ΙI	Ι (Cálculo Integral	4
1.	Inte	Integrales Impropias	
	1.1.	Integrales Impropias	6
	1.2.	Tipo 1: Intervalos Infinitos	7
	1.3	Tipo 2: Funciones Discontinuas	8

Parte I Funciones y Límites

Parte II Cálculo Diferencial

Parte III Cálculo Integral

Capítulo 1

Integrales Impropias

1.1. Integrales Impropias

Al definir la integral definida $\int_a^b f(x) dx$ estamos hablando de una función en la que:

- Esta definida en ese intervalo.
- No tiene una discontinuidad infinita
- Obviamente el intervalo es finito

Pero, que pasaría si no fuera así...

Las integrales impropias explorar esta posibilidad así que veasmola:

1.2. Tipo 1: Intervalos Infinitos

Límite Superior

Si la $\int_a^t f(x)dx$ existe para todo número $t \ge a$, entonces lo siguiente es verdad, siempre que exista el límite (como un número finito).

$$\int_{a}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{a}^{t} f(x)dx \tag{1.1}$$

Límite Inferior

Si la $\int_t^b f(x)dx$ existe para todo número $b \leq t$, entonces lo siguiente es verdad, siempre que exista el límite (como un número finito).

$$\int_{-\infty}^{b} f(x)dx = \lim_{t \to -\infty} \int_{t}^{b} f(x)dx \tag{1.2}$$

Convergencia

Las integrales impropias $\int_a^\infty f(x)dx$ y esta $\int_{-\infty}^b f(x)dx$ se llaman **convegentes** si el límite existe y **divergente** sino.

Ambos Límites

Si $\int_a^\infty f(x)dx$ y $\int_{-\infty}^b f(x)dx$ son convergentes, entonces se define esta asombrosa integral como:

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{\infty} f(x)dx$$
 (1.3)

Ejemplo

Podemos ver que con lo que sabemos ya podemos calcular la siguiente integral:

$$\begin{split} \int_{1}^{\infty} \frac{1}{x^{2}} dx &= \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2}} dx \\ &= \lim_{t \to \infty} \frac{-1}{x} \Big|_{1}^{t} \\ &= \lim_{t \to \infty} \frac{-1}{t} - \frac{1}{-1} = \frac{-1}{t} + 1 = 1 + \frac{-1}{t} \\ &= \lim_{t \to \infty} 1 + \frac{-1}{t} = 1 + 0 = 1 \end{split}$$

1.3. Tipo 2: Funciones Discontinuas

Si f(x) es continua en [a,b) pero discontinua en b, entonces (si el límite existe y es finito):

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx \tag{1.4}$$

Si f(x) es continua en (a, b] pero discontinua en a, entonces (si el límite existe y es finito):

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx \tag{1.5}$$

Si $\int_a^b f(x) dx$ es convergente, entonces se define esta asombrosa integral como (donde c es a < c < b):

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

$$\tag{1.6}$$