

NORTHERN BEACHES SECONDARY COLLEGE

MANLY SELECTIVE CAMPUS

HIGHER SCHOOL CERTIFICATE

TRIAL EXAMINATION

2018

Mathematics Extension II

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using black pen
- Write your Student Number at the top of each page
- Answer Section I- Multiple Choice on Answer Sheet provided
- Answer Section II Free Response in a separate booklet for each question.
- Answer Section II Question 13d in the supplied additional sheet
- NESA approved calculators and templates may be used.

Section I Multiple Choice

- 10 marks
- Attempt all questions
- Allow about 15 minutes for this section

Section II – Free Response

- 90 marks
- Each question is of equal value
- All necessary working should be shown in every question.
- Allow about 2 hours 45 minutes for this section

Weighting: 40%

Section 1: Multiple Choice (10 marks)

Indicate your answer on answer sheet provided.

Allow approximately 15 minutes for this section.

Q1. A hyperbola has the equation $x^2 - 4y^2 = 4$. The distance between its two directrices is:

A √5

B $\frac{4\sqrt{5}}{5}$

C $2\sqrt{5}$

- D $\frac{8\sqrt{5}}{5}$
- Q2. The equation $x^3 4x^2 + 7x + 3 = 0$ has roots $x = \alpha$, $x = \beta$ and $x = \gamma$. Which of the equations below has roots $x = -\alpha$, $x = -\beta$ and $x = -\gamma$?

 $\Delta \qquad x^3 - 4x^2 + 7x + 3 = 0$

- $B \qquad x^3 + 4x^2 + 7x 3 = 0$
- $C \qquad x^3 4x^2 + 7x 3 = 0$
- $D \qquad x^3 + 4x^2 7x 3 = 0$
- Q3. Which of the following is $\int_{0}^{\frac{\pi}{2}} 2x \cos x \, dx ?$

A $\pi-2$

B $\pi + 2$

 $C \qquad \frac{\pi^2}{4}$

 $D \qquad \frac{\pi^2}{8}$

Q4.

The diagram shows a particle P of mass m kilograms suspended from a fixed point O by a light inextensible string of length l metres.

P moves in a circle with centre *C* directly below *O* and has uniform angular speed ω rads⁻¹.

The string makes an angle θ with the vertical line CO and the acceleration due to gravity is g ms⁻².

Which of the following is the tension *T* in the string?

- A $m l \omega$ newtons
- B $m l \omega^2$ newtons
- C $m g l \omega$ newtons
- D $mgl\omega^2$ newtons

Q5. The complex number z is such that $Im\left(\frac{1}{z}\right) = -\frac{1}{2}$.

Which of the diagrams below represents the locus of z?

A

В

C

D

Q6. The equation |z-3| + |z+3| = 10 defines an ellipse.

The length of the semi minor axis is:

- A 4
- B 5
- C 8
- D 10

Q7. Consider the following statements:

$$I \int_{0}^{1} \frac{dx}{1+x^{n}} < \int_{0}^{1} \frac{dx}{1+x^{n+1}}$$

$$II \int_{0}^{\frac{\pi}{2}} \sqrt{\sin x} \ dx = \int_{0}^{\frac{\pi}{2}} \sqrt{\cos x} \ dx$$

Which of these statements is correct?

- A Both statements I and II are correct
- B Only statement I is true
- C Only statement II is true
- D Both statements are false
- Q8. The hyperbola with equation xy = 8 is the hyperbola $x^2 y^2 = a^2$ referred to different axes.

What is the value of *a*?

- A 2
- B 4
- C 8
- D 16

Q9.

The graph of y = f(x) is shown above. The graph of y = f(2 - x) is:

A

В

C

D

Q10.

The Argand diagram above shows the point A(a,b) representing the complex number z = a + ib, where a and b are real. B is the point (-b,0).

P is a point such that PB=2AB and $\angle ABP = 90^{\circ}$.

Which of the following complex numbers does P represent?

A
$$-2b + 2ai$$

B
$$-b + ai$$

C
$$-2b + (2a + 2b)i$$

D
$$-3b + (2a + 2b)i$$

Section II Total Marks is 90

Attempt Questions 11 – 16.

Allow approximately 2 hours & 45 minutes for this section.

Answer all questions, starting each new question in a new booklet with your **student ID number** in the top right hand corner and the question number on the left hand side of your paper.

All necessary working must be shown in each and every question.

Question 11. – Start New Booklet

15 marks

3

1

- a) Given z = 1 + i, represent on an Argand diagram each of the following:
 - i. z
 - ii. $\frac{1}{z}$
 - iii. z
- b) Prove that for any two complex numbers z_1 and z_2 ,

i.
$$|z_1 - z_2|^2 + |z_1 + z_2|^2 = 2|z_1|^2 + 2|z_2|^2$$

- ii. Give a geometric interpretation of this result
- c) Find the equation of the normal to the curve $x^3 6xy + y^3 = 5$ at the point (1, -2).

d) Show that
$$\int \frac{\sin^3 x}{\cos^2 x} dx = \sec x + \cos x$$

e) The hyperbola H:
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (where $a > 0, b > 0$)

has a focus at the point $(2\sqrt{13}, 0)$. The line $y = \frac{2}{3}x$ is an asymptote.

Find the values of a and b.

a)

The diagram shows the graph y = f(x).

On separate diagrams, draw $\frac{1}{3}$ page sketches of the following graphs:

$$(i) y = f(|2x|) 2$$

$$(ii) y = \frac{1}{f(x)}$$

(iii)
$$y = \sqrt{f(x)}$$

(iv)
$$y = e^{f(x)}$$

$$(v) y = x^{f(x)}$$

b)

i. Find
$$\sqrt{-8+6i}$$
 in cartesian form

$$2z^2 - (3+i)z + 2 = 0$$

Express the result in the form x + iy

Question 13. – Start New Booklet

15 marks

a)

- i. On the same diagram, sketch the graphs of $y = |x^3 1|$ and y = 1 x
- ii. Hence, or otherwise, solve $|x^3 1| < 1 x$
- b) Draw neat, labelled sketches to indicate the regions of the Argand plane defined by:

i.
$$|z| \le 2$$
 and $0 \le \arg z \le \frac{\pi}{4}$

ii.
$$|z - \overline{z}| \le 6$$
 and $0 \le Re(2z) \le 4$

c) The equation $8x^4 + 44x^3 + 54x^2 + 25x + 4 = 0$ has a triple root. Solve the equation completely.

d)

The diagram shows \triangle ABC inscribed in a circle.

G is the point on AC such that $BG \perp AC$. F is the point on BC such that $AF \perp BC$. AF and BG intersect at E.

AF produced meets the circle at D.

USE THE SUPPLIED SHEET TO ANSWER THE FOLLOWING:

i. Explain why *ABFG* is a cyclic quadrilateral.

3

1

ii. Show that DF=EF.

Question 14. - Start New Booklet

15 marks

2

a) The ellipse $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (where a > b > 0) has area $A = \pi ab$, eccentricity e and foci S and S'. The ellipse E touches the hyperbola $H: xy = \frac{1}{2}ab$ at the points P and Q.

i. Find the coordinates of *P* in terms of *a* and *b*.

ii. Show that the ratio of the area of the quadrilateral PSQS' to the area of the ellipse E is $e\sqrt{2}$: π

b) Find $\int \frac{x^2 + 6}{x^2 + x - 6} dx$

c) Using the result $\int_0^a f(x) dx = \int_0^a f(a-x) dx$, or otherwise, evaluate $\int_0^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\cos x - \sin x} dx$

Question 14 continues next page.

Question 14 continued

d) The circle $x^2 + y^2 = 16$ is rotated about the line x = 9 to form a torus. When the circle is rotated, the line segment S at height y sweeps out an annulus.

- i. Show that the area A of the annulus is given by $A = 36\pi\sqrt{16 y^2}$
- ii. Find the volume of the torus in exact form.

3

Show that $1 + \omega + \omega^2 = 0$

a)

ii.

- i. Let ω be a complex root of the equation $x^3 = 1$. Show that the other complex root is ω^2
 - 1
- iii. Find the monic cubic equation for which the roots are $\alpha + \beta$, $\alpha\omega + \beta w^2$ and 3 $\alpha w^2 + \beta \omega$ where α , β are real numbers.
- b) Using the substitution $t = \tan\left(\frac{x}{4}\right)$, or otherwise, evaluate 4

$$\int_{0}^{\pi} \frac{1}{1 + \cos\left(\frac{x}{2}\right) + \sin\left(\frac{x}{2}\right)} dx$$

State your answer in simplest exact form.

Question 15 continued.

c)

A particle of mass 4kg is attached to a string 2 metres in length. The particle and string revolve as a conical pendulum.

The constant speed of the particle is $v = \sqrt{g} m s^{-1}$, where $g m s^{-2}$ is the acceleration due to gravity.

Let θ be the angle of inclination of the string to the vertical, and let r metres be the radius of the horizontal circle in which the particle is revolving, and let Tnewtons be the tension in the string.

i. Show that
$$\tan \theta = \frac{1}{r}$$

i. Show that
$$\tan \theta = \frac{1}{r}$$
 2

ii. Hence show that $\cos \theta = \frac{\sqrt{17} - 1}{4}$ 3

iii. Find the value of T, correct to one decimal place, given
$$g = 9.8ms^{-2}$$
.

a)

The equation of the tangent to the hyperbola $xy = c^2$ at the point $P\left(cp, \frac{c}{p}\right)$ is $x + p^2y = 2cp$

The point N is the foot of the perpendicular line ON drawn from the origin O to the tangent at P.

- (i) Show that the coordinates of N are $\left(\frac{2cp}{1+p^4}, \frac{2cp^3}{1+p^4}\right)$
- (ii) Show that the Cartesian equation of the locus of N is $(x^2 + y^2)^2 = 4c^2xy$ 2

Question 16 continued.

b)

i. Let
$$I_n = \int_0^{\frac{\pi}{2}} \cos^n x \, dx$$
 for $n = 0, 1, 2, ...$

Show that $I_n = \frac{n-1}{n} I_{n-2}$

ii. Show that
$$\frac{I_{2n}}{I_0} = \frac{(2n)!}{2^{2n} \times (n!)^2}$$
 for $n = 0, 1, 2, ...$

iii. Let y = f(x) be a continuous function over $0 \le x \le a$.

3

Show that
$$\int_{0}^{a} f(x) dx = \int_{0}^{\frac{a}{2}} \{f(x) + f(a-x)\} dx$$

iv. Using parts (i) and (iii), show that

$$\int_{0}^{\pi} x \cos^{6} x \, dx = \frac{5\pi^{2}}{32}$$

End of Examination

MULTIPLE CHOICE

1	$x^{2} - 4y^{2} = 4$ $\frac{x^{2}}{4} - y^{2} = 1$ Distance = $2\frac{a}{e}$ $a = 2b = 1$ $e = \sqrt{1 + \frac{b^{2}}{a^{2}}} = \sqrt{\frac{5}{4}}$ $= \frac{\sqrt{5}}{2}$ $D = 2 \times \frac{2}{\left(\frac{\sqrt{5}}{2}\right)}$	D Check.
2 3 4 5	$D = 2 \times \frac{2}{\left(\frac{\sqrt{5}}{2}\right)}$ $= \frac{8}{\sqrt{5}} = \frac{8\sqrt{5}}{5}$	B A B C
6		A
7	$y = \frac{1}{1 + x^{n+1}}$ Point of Intersection $y = \frac{1}{1 + x^n}$ Point of Intersection $\frac{1}{y} = \frac{1}{1 + x^n}$ Both are true.	A
8	$xy = c^2 = 8$ $x^2 - y^2 = a^2$ $c^2 = \frac{1}{2}a^2 = 8$ $\therefore a^2 = 16$ $a = 4$	В

QUESTION 11

a	$z = 1 + i$ $z^{2} = 1 + 2i + i^{2}$ $= 2i$ $\frac{1}{z} = \frac{1}{1+i} \times \frac{1-i}{1-i}$ $= \frac{1-i}{2}$ $z = \frac{1}{2}$	3 marks-correct solution for each
	V	
bi	$ z_1 - z_2 ^2 + z_1 + z_2 ^2$	2 marks-
	$= (z_1 - z_2) \overline{(z_1 - z_2)} + (z_1 + z_2) \overline{(z_1 + z_2)}$	correct solution
	$= (z_1 - z_2) \left((z_1) - (z_2) \right) + (z_1 + z_2) \left(z_1 + z_2 \right)$	1 mark- partial correct
	$= z_1 z_1 - z_1 z_2 - z_2 z_1 + z_2 z_2 + z_1 z_1 + z_1 z_2 + z_2 z_1 + z_2 z_2$	expansion and
	$= z_1 ^2 + z_2 ^2 + z_1 ^2 + z_2 ^2$	simplification
	$=2 z_1 ^2 + 2 z_2 ^2$	of RHS/LHS

1		1
bii		1 mark- correct
		explanation
	2 + 2	
	$z_1 + z_2$	
	$ z_1 $ z_1-z_2	
	z_2	
	$ z_2 $	
<u></u>	$2 \times \text{magnitudes of sides} = \text{sum squares of magnitudes of diagonals}$	
c		3 marks-
	$x^3 - 6xy + y^3 = 5$	correct solution
		Correct Solution
	$\frac{d}{dx}\{x^3 - 6xy + y^3\} = \frac{d}{dx}\{5\}$	2 marks- partial
	un un	correct with
	$3x^{2} + 3y^{2} \frac{dy}{dx} - 6\left\{\frac{xdy}{dx} + y\right\} = 0$	only one error
	$3x^2 + 3y^2 \frac{y}{dx} - 6\left(\frac{3x^2}{dx} + y\right) = 0$	only one end
	,	1
	$x^2 + y^2 \frac{dy}{dx} - 2x \frac{dy}{dx} - 2y = 0$	1 mark- correct
	$x + y \frac{dx}{dx} - 2x \frac{dx}{dx} - 2y = 0$	application to
	dv	eqn of line but
	$\frac{dy}{dx}\{y^2 - 2x\} = 2y - x^2$	incorrect diff
		and gradient
	$\frac{dy}{dx} = \frac{2y - x^2}{v^2} - 2x$	
1 1	$\frac{\partial}{\partial x} = \frac{\partial}{\partial x} - 2x$	
	ux y	
	at $(1 2)$	[
	at (1 2)	
	$m = \frac{-4-1}{}$	
	$m_1 = \frac{-4-1}{(-2)^2-2(1)}$	
	5	
	=	
	2	
	2	
	$m_2 = \frac{2}{5}$	
	<u> </u>	
	$y+2+\frac{2}{5}(x-1)$	}
	3	
	2x - 5y - 12 = 0	
		·

d	$\int \sin^3 x$	3 marks-
	$\int \frac{\sin^3 x}{\cos^2 x}$	correct solution
	$= \int \sin x \left\{ \frac{1 - \cos^2 x}{\cos^2 x} \right\} dx$	2 marks- partial
	$= \sin x \left\{ \frac{1 - \cos x}{2} \right\} dx$	correct with
	$\int \cos^2 x$	only one error
	C ginyang ² y	only one circl
	$= \int \sin^{2} \cos^{2} x \ dx - \int \frac{\sin x \cos^{2} x}{\cos^{2} x} \ dx$	1 monte on a
}	$\int \cos^2 x$	1 mark- one
	-1. (-2 ,	correct
	$= \sin x (\cos x)^{-2} dx - \int \sin x dx$	technique in
		relevant
	$= -\int (-\sin x)(\cos x)^{-2} dx - \int \sin x dx$	progress to int
	(coer)	
	$=-\frac{(\cos x)^{-1}}{-1}-(-\cos x)$	
	-1 ` ´	
	1	
	$=\frac{1}{\cos x} + \cos x$	
e		3 marks-
	$H \cdot \frac{x}{y} = 1$	
	a^2 b^2	correct solution
		2 marks- partial
	$S(ae, 0) \Rightarrow S(2\sqrt{13}, 0) \Rightarrow ae = 2\sqrt{13}$	correct only
	$h = 2 + h + 2 + h^2 + 4$	one error in
	$y = \frac{b}{a}x \implies y = \frac{2}{3}x \implies \frac{b}{a} = \frac{2}{3} \implies \frac{b^2}{a^2} = \frac{4}{9}$	correct progress
	u	
	$a^2e^2 = 4 \times 13$	1 mark- correct
	[,2]	solution for
	$a^2 \left 1 + \frac{b^2}{a^2} \right = 52$	values of a, b
	$a \mid a^2 \mid a^2 \mid a^2$	and e
	r j	
	$a^2 \left[1 + \frac{4}{9} \right] = 52$	
	" [
	$a^2 = 36$	
	a = 6	ļ
	u - v	
	b 2	
	$\frac{b}{6} = \frac{2}{3}$	
]		
	b = 4	

С	$P(x) = 8x^4 + 44x^3 + 54x^2 + 25x + 4$	4 marks- correct
	$P'(x) = 32x^3 + 132x^2 + 108x + 25$	solution
	$P''(x) = 96x^2 + 264x + 108$	3 marks- correct
	$24x^2 + 66x + 27 = 0$	solution from
	$66\left(+\sqrt{66^2 + 44 \times 24 \times 27}\right)$	incorrect triple root
	$x = \frac{-66\left(\pm\sqrt{66^2 - (4 \times 24 \times 27)}\right)}{48}$	
	$= -\frac{9}{4}, -\frac{1}{2}$	2 marks- partial correct with solution to triple root and
	4 2	check
	$P'\left(-\frac{9}{4}\right) = \frac{343}{4}$	1 1
	$P\left(-\frac{1}{4}\right) = \frac{1}{4}$	1 mark- only correctly solves for
	$\begin{pmatrix} 1 \end{pmatrix}$	values of x on $P''(x)$
	$P'\left(-\frac{1}{2}\right) = 0$	variate of x on 1 (x)
	$\therefore \qquad x = -\frac{1}{2} \implies 2x + 1 = 0$	
	$P(x) = (2x+1)^3(\alpha x + \beta)$	
	$\alpha = 1, \beta = 4$	
	$P(x) = (2x = 1)^3(x + 4)$	
	$x = -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -4$	
	P(-4) = 0	
di	A G	1 mark- correct solution with correct reasons
	$\angle AGB = 90^{\circ} \text{ (given)}$ $\angle AFB = 90^{\circ} \text{ (given)}$	
}	$\therefore \angle AFB = \angle AGB$	
	$\therefore ABFG$ is cyclic (= \angle on chord AB)	
dii	join AB	3 marks- correct
	$\angle DAC = \angle DBC = x (= \angle \text{ on "arc CD circle ABDC})$	solution with correct
	ang FAG=ang FBG = x (= ang on "arc FG crcle $ABFG$)	reasons
	$\therefore \angle DBF = \angle EBF = x$ $\triangle DBF \text{ is is as } (1 \text{ to } A \text{ bisects } \angle DBF)$	2 marks- only one
ļ	$\triangle DBE$ is isos (\bot to \triangle bisects $\angle DBE$) DE=DF (\bot from apex to base bisects "DE")	error at least two
	•	correct and relevant
	OR	theorems
	$\Delta DBF \equiv \Delta EBF (AAS)$ $DE-DE (and eight in a property A)$	
	DE=DF ($c \circ rr$ sides in congruent Δ)	1 mark- one correct
		and relevant
		and relevant theorem

a-i	$xy = \frac{1}{2}ab$ $y = \frac{ab}{2x} \Rightarrow y^2 = \frac{a^2b^2}{4x^2}$ $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ $\frac{x^2}{a^2} + \frac{1}{b^2} \times \frac{a^2b^2}{4x^2} = 1$ $\frac{x^2}{a^2} + \frac{a^2}{4x^2} = 1$ $4x^4 + a^4 = 4x^2a^2$ $4x^4 - 4x^2a^2 + a^4 = 0$ $(2x^2 - a^2)^2 = 0$ $x^2 = \frac{a^2}{2}$ $x = \pm \frac{a}{\sqrt{2}}$ $x = \frac{a}{\sqrt{2}} \Rightarrow y = \frac{ab}{2} \times \frac{\sqrt{2}}{a}$ $P = \left(\frac{a}{\sqrt{2}}, \frac{b}{\sqrt{2}}\right)$ $Q = \left(-\frac{a}{\sqrt{2}}, -\frac{b}{\sqrt{2}}\right)$	2 marks
a- ii	distance $S S' = 2ae$ Area of $\Delta S'SP = \frac{1}{2} \times 2ae \times \frac{b}{\sqrt{2}}$ $= \frac{abe}{\sqrt{2}}$ $\therefore \text{ quad QS'PS}$ $= 2 \times \frac{abe}{\sqrt{2}}$ $= \sqrt{2}abe$ $\frac{Area \text{ QS'PS}}{Area E} = \frac{\sqrt{2}abe}{\pi ab} = \frac{\sqrt{2}e}{\pi}$ $\therefore \text{ Ratio } \Rightarrow \sqrt{2}e : \pi$	2 marks – correct solution for general case 1 mark - Correct solution for specific solution only - finding a ratio in e only

b	$\int \frac{x^2 + 6}{x^2 + x - 6} dx$ $\frac{x^2 + 6}{x^2 + x - 6} = \frac{x^2 + x - 6 - x + 12}{x^2 + x - 6}$ $= 1 - \frac{x - 12}{x^2 + x - 6}$ $\therefore \frac{x - 12}{x^2 + x - 6} = \frac{A}{x + 3} + \frac{B}{x - 2}$ $x - 12 = A(x - 2) + B(x + 3)$ Let $x = 2$ $-10 = 5B \implies B = -2$ Let $x = -3$ $-15 = -5A \implies A = 3$ $\int \frac{x^2 + 6}{x^2 + x - 6}$ $= \int 1 - \left[\frac{3}{x + 3} - \frac{2}{x - 2} \right] dx$ $= x - 3\ln x + 3 + 2\ln x - 2 $ $= x + \ln\left \frac{(x - 2)^2}{(x + 3)^3} \right + C$	3 marks – correct solution 2 marks – correct use of partial fractions 1 mark – correct rearrangement of initial algebraic fraction
С	$\int_{0}^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\cos x - \sin x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos \left(\frac{\pi}{2} - x\right) + \sin \left(\frac{\pi}{2} - x\right)}{\cos \left(\frac{\pi}{2} - x\right) - \sin \left(\frac{\pi}{2} - x\right) dx}$ $= \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\sin x - \cos x} dx$ $\therefore 2 \times \int_{0}^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\cos x - \sin x} dx = \int_{0}^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\cos x - \sin x} dx + \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\sin x - \cos x} dx$ $= \int_{0}^{\frac{\pi}{2}} \frac{\cos x + \sin x}{\cos x - \sin x} dx - \int_{0}^{\frac{\pi}{2}} \frac{\sin x + \cos x}{\cos x - \sin x} dx$ $\therefore 2I = 0$ $\therefore I = 0$	3 marks – correct solution fully demonstrated. 2 marks – use of result but failure to achieve the correct solution and/or insufficient demonstration 1 mark – use fo correct trig identify to simplify. Nb question did require the use of the specified result

a- i	$\omega = \operatorname{cis}\left(\frac{2\pi}{3}\right)$ $\omega_2 = \operatorname{cis}\left(\frac{4\pi}{3}\right) = \left(\operatorname{cis}\left(\frac{2\pi}{3}\right)\right)^2 = \omega^2$ or $\omega^3 = 1$ $\therefore (\omega^3)^2 = 1^2 = 1$ $\therefore (\omega^2)^3 = 1$ $\therefore \omega^2 \text{ is a root}$	1 mark – correct explanation
a- ii	Roots of the Polynomial are $1, \omega, \omega^2$ $\Sigma \alpha = -\frac{b}{a} = 0$ $\therefore 1 + \omega + \omega^2 = 0$	1 mark – correct explanation
a- iii	$P(x) = x^{3} + bx^{2} + cx + d$ $\Sigma\alpha = -\frac{b}{a} = -b \text{ as } a = 1$ $= \alpha + \beta + a \omega + b\omega^{2} + a\omega^{2} + b\omega$ $= \alpha(1 + \omega + \omega^{2}) + \beta(1 + \omega + \omega^{2})$ $= \alpha \times 0 + \beta \times 0 = 0$ $\therefore b = 0$ $\Sigma\alpha \beta = \frac{c}{a} = c \text{ as } a = 1$ $= (\alpha + \beta)(\alpha\omega + \beta\omega^{2}) + (\alpha + \beta)(\alpha\omega^{2} + \beta\omega) + (\alpha\omega + \beta\omega^{2})(\alpha\omega^{2} + \beta\omega)$ $= (\alpha^{2}\omega + \alpha\beta\omega + \alpha\beta\omega^{2} + \beta^{2}\omega^{2}) + (\alpha^{2}\omega^{2} + \alpha\beta\omega + \alpha\beta\omega^{2} + \beta^{2}\omega)$ $+ (\alpha^{2}\omega^{3} + \alpha\beta\omega^{4} + \alpha\beta\omega^{4} + \beta^{2}\omega^{3})$ $= \alpha^{2}(\omega + \omega^{2} + \omega^{3}) + \beta^{2}(\omega + \omega^{2} + \omega^{3}) + 3\alpha\beta(\omega + \omega^{2})^{*}$ $*(\alpha\beta\omega^{4} = \alpha\beta\omega^{3}\omega = \alpha\beta\omega)$ $\text{also } \omega + \omega^{2} = -1$ $c = 0 + 0 - 3\alpha\beta = -3\alpha\beta$	1 mark per correct pronumeral.

$$\Sigma \alpha \beta \gamma = -\frac{d}{a} = -d$$

$$-d = (\alpha + \beta)(\alpha \omega + \beta \omega^{2})(\alpha \omega^{2} + \beta \omega)$$

$$= (\alpha + \beta)(\alpha^{2} \omega^{3} + \alpha \beta \omega^{4} + \alpha \beta \omega^{2} + \beta^{2} \omega^{3})$$

$$= (\alpha + \beta)(\alpha^{2} + \beta^{2} + \alpha \beta(\omega^{4} + \omega^{2}))$$

$$= (\alpha + \beta)(\alpha^{2} + \beta^{2} + \alpha \beta(\omega + \omega^{2}))$$

$$= (\alpha + \beta)(\alpha^{2} + \beta^{2} - \alpha \beta)$$

$$= (\alpha^{3} + \beta^{3})$$

$$\therefore P(x) = x^{3} + 0x^{2} - 3\alpha \beta x - (\alpha^{3} + \beta^{3})$$

$$= x^{3} - 3\alpha \beta x - (\alpha^{3} + \beta^{3})$$

$$\tan\left(\frac{x}{4}\right) = t \qquad x = 0 \implies t = \tan 0 = 0 \qquad t = \tan\left(\frac{x}{4}\right)$$

$$\cos\left(\frac{x}{2}\right) = \frac{1 - t^2}{1 + t^2} \qquad x = \pi \implies t = \tan\frac{\pi}{4} = 1 \qquad x = 4\tan^{-1}(t)$$

$$\sin\left(\frac{x}{2}\right) = \frac{2t}{1 + t^2}$$

$$dx = \frac{4}{1 + t^2} dt$$

$$\int_{0}^{\frac{1}{1+\frac{1-t^{2}}{1+t^{2}}+\frac{2t}{1+t^{2}}}} \cdot \frac{4}{1+t^{2}} dt$$

$$= \int_0^1 \frac{1+t^2}{1+t^2+1-t^2+2t} \times \frac{4}{1+t^2} dt$$

$$=\int_0^1 \frac{4}{2+2t} \, \mathrm{d}t$$

$$=2\int_0^1 \frac{1}{1+t} \, \mathrm{d}t$$

$$= 2 \left[\ln(1+t) \right]_{0}^{1}$$

$$= 2 \left\{ \ln 2 - \ln 1 \right\}$$

$$= 2 \ln 2 = \ln 4$$

4 marks – correct solution

3 marks

- incorrect final simplification
- one error in final integration process

2

- correct t substitution and limits

1

- correct t substitution or new limts

$$\cos\theta = \frac{r}{\sqrt{1+r^2}} \text{ also } \cos\theta = \frac{\sqrt{4-r^2}}{2}$$

$$\frac{r}{\sqrt{1+r^2}} = \frac{\sqrt{4-r^2}}{2}$$

$$\frac{r^2}{1+r^2} = \frac{4-r^2}{4}$$

$$4r^2 = (1+r^2)(4-r^2)$$

$$4r^2 = 4+4r^2-r^2-4r^4$$

$$4r^4+r^2-4=0$$

$$r^2 = \frac{-1\pm\sqrt{17}}{2}$$

but
$$r^2 \ge 0$$

$$r = \frac{-1 + \sqrt{17}}{2}$$

$$r = \frac{-1 + \sqrt{17}}{2}$$

c-ii

$$\cos \theta = \frac{r}{\sqrt{1 + r^2}}$$

$$\cos^2 \theta = \frac{r^2}{1 + r^2}$$

$$= \frac{\frac{\sqrt{17 - 1}}{2}}{1 + \frac{\sqrt{17 - 1}}{2}}$$

$$= \frac{\sqrt{17 - 1}}{\sqrt{17 + 1}}$$

$$= \frac{(\sqrt{17 - 1})^2}{17 - 1}$$

$$\therefore \cos\theta = \sqrt{\frac{(\sqrt{17} - 1)^2}{16}}$$
$$= \frac{\sqrt{17} - 1}{4}$$

4marks – correct solution fully demonstrated.

3 marks

derivation of positive r with reasons

2 marks - 2 correct expressions for $\cos\theta$ and production of quadratic or similar

1 marks – 2 correct expressions for cosθ

c-iii	14 ∨ 0.0	1 mark – correct answer
-------	----------	----------------------------

(i)
$$x = 2cb \Rightarrow x(1 + b^{4}) = 2cb \Rightarrow x^{2}(1+b^{4})^{2} = 4c^{2}p^{2}(0)$$
 $y \neq p^{2}x \Rightarrow p^{2} = \sqrt{x} \Rightarrow p^{2} = y^{2}/2^{2}$

Substitute @ into @:

 $x^{2}(1+(\frac{y}{2})^{2})^{2} = 4c^{2}(\frac{y}{2})$
 $x^{2}(\frac{x^{2}+y^{2}}{x^{2}})^{2} = 4c^{2}y$
 $x^{2}(\frac{x^{2}+y^{2}}{x^{2}})^{2} = 4c^{2}y$
 $x^{2}(\frac{x^{2}+y^{2}}{x^{2}})^{2} = 4c^{2}xy$

$$x^{2}$$

[$x^{2}+y^{2}$] = $4c^{2}xy$

$$x^{2}$$

Amarks: correct answer

1 Mark: significant progress

beyond elimination

of p.

