CALCULAS - | | |

PRESENTATION

PRESENTED BY:

Areesha Akbar Naima Ramzan Tamseelah Ghaffar Kashaf Rani Farwa Ansar

Polar Coordinates System Gradient IN Polar Coordinates Gradient in Spherical Coordinates

Polar Coordinates System

When each point on a plane of a two-dimensional coordinate system is decided by a distance from a reference point and an angle is taken from a reference direction, it is known as the polar coordinate system.

Explanation:

Pole = The reference point
Polar axis = the <u>line segment ray</u> from the pole
in the reference direction
In the polar coordinate system, the origin is
called a pole.

Polar Coordinates Formula:

We can write an infinite number of polar coordinates for one coordinate point.

using the formula

- •(r, θ +2 π n) or (-r, θ +(2n+1) π), where n is an integer.
- •The value of θ is positive if measured counterclockwise.
- •The value of θ is negative if measured clockwise.
- •The value of r is positive if laid off at the terminal side of θ .
- •The value of r is negative if laid off at the prolongation through the origin from the terminal side of θ .

3D Polar Coordinates

3d polar coordinates or <u>spherical coordinates</u> will have three parameters: distance from the origin and two angles. The 3d-polar coordinate can be written as (r, Φ, θ) . Here,

R = distance of from the origin

 Φ = the reference angle from XY-plane (in a counterclockwise direction from the x-axis)

 θ = the reference angle from z-axis

Cartesian to Polar Coordinates

$$x = r \cos \theta$$

 $y = r \sin \theta$

Finding r and θ using x and y:

$$x^{2} + y^{2} = (r\cos\theta)^{2} + (r\sin\theta)^{2}$$

$$= r^{2}\cos^{2}\theta + r^{2}\sin^{2}\theta$$

$$= r^{2}(\sin^{2}\theta + \cos^{2}\theta)$$

$$= r^{2}(1)$$

$$= r^{2}$$

$$\Rightarrow r = \sqrt{x^{2} + y^{2}}$$

$$\frac{y}{x} = \frac{r\sin\theta}{r\cos\theta}$$

$$\frac{y}{x} = \tan\theta$$

$$\Rightarrow \theta = \tan^{-1}\frac{y}{x}$$

Example

Convert the Bectangular or cartesian coordinates (2,2) to polar Coordinates. Colouton :-0 = tan 1 9/x Hence, the polar Coordinates are

Convert the polar coordinate (42*12) to a rectangular Point. Solution:	
Criven	
$(r,\theta)=(4,\frac{\pi}{2})$	
we know that;	
M-rcos0	
M = 4 cos x	
x = 4cos 90°	
$x = 4x0 \Rightarrow x = 0$	
y = rsino	
$y = 4\sin x \rightarrow y = 4\sin 90^{\circ}$	
$y = 4x1 \rightarrow y - 4$	
Hence II is also I to # 1 th	
Hence, the rectangular coordinates of the	
point is (0,4).	

Gradient in polar coordinates

The change in the "y" coordinate with respect to the change in the "x" coordinate of that line.

Example

$$\frac{9f}{find} = 8 \sin \theta + \tan \theta + \sin \theta - \frac{1}{5} \cos \theta - \frac{1}{5} \cos \theta + \frac{1}{5}$$

Question: find of in condiments. Soloution:-20 = cos0, 24 - cos0-15in0 : Vd-20.ex+20.e0 - (coso) ex + 1 / coso - 7500)00

Gradient in Spherical Coordinates

Spherical coordinates of the system denoted as (r, θ, Φ) is the coordinate system mainly used in three dimensional systems. In three dimensional space, the spherical coordinate system is used for finding the surface area. These coordinates specify three numbers: radial distance, polar angles and azimuthal angle. These are also called spherical polar coordinates.

Gradient in Spherical Coordinates

In spherical coordinates, the gradient of a scalar function is a vector that points in the direction of the steepest increase of the function at a given point. The spherical coordinate system uses three coordinates to specify a point in space: radial distance (r), polar angle (θ), and azimuthal angle (φ).

The gradient in spherical coordinates is given by:

$$abla f = rac{\partial f}{\partial r}\hat{r} + rac{1}{r}rac{\partial f}{\partial heta}\hat{ heta} + rac{1}{r\sin heta}rac{\partial f}{\partial \phi}\hat{\phi}$$

Gradient in Spherical Coordinates X = r cosp Sino y = Y Sind Sino Z = Y COSO o is between angle x-axis & 8 vector The function x, y, Z are in dependent Variable wist 0,8,0 So Desative w.s.t to 0.8,0.

$$\frac{\partial x}{\partial r} = \frac{\cos \phi \, \sin \phi}{\cos \phi \, \cos \phi}$$

$$\frac{\partial x}{\partial \phi} = \frac{r \, \cos \phi \, \cos \phi}{r \, \cos \phi}$$

$$\frac{\partial x}{\partial \phi} = -\frac{r \, \sin \phi \, \sin \phi}{r \, \cos \phi}$$

$$\frac{\partial Y}{\partial r} = Sin\phi Sin\Theta \qquad \frac{\partial Z}{\partial r} = Cos\Theta$$

$$\frac{\partial Y}{\partial r} = rSin\phi CosO$$

$$\frac{\partial Z}{\partial \phi} = rCos\phi SinO \qquad \frac{\partial Z}{\partial \phi} = O$$

$$\frac{\partial Z}{\partial \phi} = O$$

$$\frac{\partial}{\partial r} = \frac{\partial x}{\partial r} \frac{\partial}{\partial r} + \frac{\partial y}{\partial r} \frac{\partial}{\partial r} + \frac{\partial z}{\partial r} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial y} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial y}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial x}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial x}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial x}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial x}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial x}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial}{\partial x} + \frac{\partial x}{\partial \phi} \frac{\partial}{\partial z} + \frac{\partial z}{\partial \phi} \frac{\partial}{\partial z}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi} \frac{\partial x}{\partial \phi} + \frac{\partial x}{\partial \phi} \frac{\partial z}{\partial \phi} + \frac{\partial z}{\partial \phi} \frac{\partial z}{\partial \phi}$$

$$\frac{\partial}{\partial \phi} = \frac{\partial x}{\partial \phi$$

= -rsing 2 +rcospsing2 V= Sin O cospi +Sin O sin by 0 = COSO COS pr + COSO Sindy - SinOz 0 = - 8in 0x + CosO4

X-+ = Sinocospi X.0 = C080008\$ x. 0 = - 89nd x = 800 COS pr + COSO COS 4-5 y.r = Sinosino y.o = Cososino y. 0 = coso J = Sino singra coso sing

$$Z \cdot \phi = -8in\theta$$

$$\hat{Z} = \cos \hat{\sigma} - 8in\theta \hat{\theta}$$

Defination according. マーネヨナダヨナブヨ $\hat{X} = \begin{bmatrix} S_n^n O \cos \phi \hat{r} + \cos \phi \hat{o} \\ - 3 n O \hat{o} \end{bmatrix}$ [Cospsinor sino ap] y = 2 [Sino Sin pr+ Cososinoc (SinOSinO) + Sinocoso 2 + COSP 2] rsing 20 J

$$\frac{\hat{Z}}{\partial Z} = (Cosor - Sinoo)$$

$$= (Coso - Sino - Sin$$

Example: Find the function depending on the Valiable 8, 0, B which are Co-ordinates in Sphelical System.

Thank Jou!

www.bigstock.com · 355965752