中国矿业大学 2023-2024 学年第一 学期课程考试试卷 (参考答案)

考试科目	工程数学				试卷类型	A 卷
课程代码	M10815	考试时长	100	分钟	考试方式	闭卷
开课学院	数学学院	年级专业	电气、	— 计算机、	信控 2022 级	 ኒ

学院	<u> </u>	班级		_姓名	يد	学号	
题 号				三			总分
E T		1	1	2	3	4	心力
得分							
阅卷人							

考生承诺:

- 1. 未携带通信工具及其它各类带有拍照、摄像、接收、发送、储存等功能的设备(包括但不限于手机、智能手表、智能眼镜,平板电脑、无线耳机),或关机与其它禁止携带物品、资料等放置监考老师指定位置;
- 2. 已按要求清理干净整个座位(包括考生邻座)桌面和抽屉里的所有物品(无论是否属于考生本人);
- 3. 已知晓并理解《中国矿业大学学生违纪处分管理规定》等与考试相关规定,承诺在考试中自觉遵守以上规定,服从监考教师的安排,自觉遵守考试纪律,诚信考试,不违规、不作弊。如有违反,自愿按《中国矿业大学学生违纪处分管理规定》相关条款接受处理。

考生签名

一、填空题(共 6 题,每小题 5 分,满分 30 分)

1、函数 $f(z) = z \operatorname{Re}(z) + \operatorname{Im}(z)$ 在 z = -i 处的导数为____.

$$\sum_{n=1}^{\infty} \frac{\cos(in)}{3^n}$$
 2、判别级数 $\frac{1}{3^n}$ 的敛散性 收敛. (填"发散"或者"收敛")

3、点
$$z = 3$$
 是函数 $\frac{(z^2 - 1)(z - 3)^2}{\sin^4(\pi z)}$ 的 2 阶极点.

以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

- 6、已知 $f(t) = \int_0^t e^{-2t} \cos t \, dt$,则o $[f(t)] = \frac{s+2}{s((s+2)^2+1)}$

二、单项选择题(共 6 题,每小题 5 分,满分 30 分)

- 1、像函数 $\frac{e^{-s}}{s^2+1}$ 的拉普拉斯逆变换为(A).
- (A) $\sin(t-1)u(t-1)$ (B) $\sin(t)u(t-1)$ (C) $\cos(t-1)u(t-1)$ (D) $\cos(t)u(t-1)$
- 2、将函数 $f(z) = \exp(\frac{1}{1-z})$ 展开成 $\sum_{n=0}^{+\infty} c_n z^n$,则 $c_3 = (A)$.
- (A) $\frac{13}{6}e$ (B) $\frac{13}{5}e$ (C) $\frac{11}{6}e$ (D) $\frac{7}{6}e$
- 3、级数 $\sum_{n}^{\infty} nz^n$ 的和函数为 (A).
- (A) $\frac{z}{(1-z)^2}$ (B) $\frac{2z}{(1-z)^2}$ (C) $\frac{1}{(1-z)^2}$ (D) $\frac{z+1}{(1-z)^2}$
- 4, $z_1 = -1 + i \frac{\sqrt{3}}{2}$, $z_2 = -1 i$, $\mathbb{J} \arg(z_1 z_2) = (D)$.
- (A) $-\frac{1}{12}\pi$ (B) $-\frac{5}{9}\pi$ (C) $\frac{1}{11}\pi$ (D) $\frac{1}{12}\pi$
- 5、在复数域内,下列数中为正实数的是(B)

(A)
$$i \ln i$$
 (B) $i \int_0^i z \sin z \, dz$ (C) e^{i+1} (D) $(1-i)^2$

6. 已知
$$z^3 + z^2 + z + 1 = 0$$
, 则 $z^{15} + z^6 + z^5 + 1 = (B)$.

- $(A) -1 \qquad (B) 0 \qquad (C) 1 \qquad (D) 2$

三、计算题(共 4 题,每小题 10 分,满分 40 分)

1、用留数的方法求定积分
$$\int_0^{2\pi} \frac{1}{2+\sin\theta} d\theta.$$

解: 令
$$z = e^{i\theta}$$
,则 $dz = ie^{i\theta}d\theta = izd\theta$,再利用 $\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{z^2 - 1}{2iz}$,……3 分

$$\int_0^{2\pi} \frac{1}{2 + \sin \theta} d\theta = \oint_{|z|=1} \frac{1}{2 + \frac{z^2 - 1}{2iz}} \times \frac{1}{iz} dz = 2 \oint_{|z|=1} \frac{1}{4iz + z^2 - 1} dz , \dots 2$$

可知被积函数的奇点只有 $(-2+\sqrt{3})i$ 在|z|=1内,······3分

所以

$$\int_0^{2\pi} \frac{1}{2 + \sin \theta} d\theta = 2 * 2\pi i \operatorname{Re} s \left[\frac{1}{4iz + z^2 + 1}, (-2 + \sqrt{3})i \right] = \frac{2\sqrt{3}}{3} \pi \dots 2$$

2、把函数
$$f(z) = \frac{1}{z^2(2-z)}$$
 在圆环域 $0 < |z-2| < 1$ 内展开成洛朗级数.

解:
$$\frac{1}{z^2} = -(\frac{1}{z})' = -(\frac{1}{z-2+2})'$$
,4 分
$$= -\frac{1}{2} \left(\sum_{n=0}^{+\infty} (-1)^n \left(\frac{z-2}{2} \right)^n \right)' = \frac{1}{2} \sum_{n=0}^{+\infty} (-1)^{n+1} \frac{n}{2^n} (z-2)^{n-1} \cdots 4$$
 分

从而

$$f(z) = \sum_{n=1}^{+\infty} (-1)^n \frac{n}{2^{n+1}} (z-2)^{n-2} \cdots 2$$

3、计算积分
$$\oint_{|z|=3} \frac{z^7}{(z^2+1)^3(z-2)(z-4)} dz$$
 (积分曲线为正向).

解:被积函数有 4 个奇点, $i \cdot -i$ 和 2 在 |z| < 3 内,

从而

4、利用拉氏变换的方法求下面微分方程的解

$$y'' - 3y' + 2y = 2e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解: 设
$$O[v(t)] = Y(s)$$
,对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) - 3(sY(s) - y(0)) + 2Y(s) = \frac{2}{s+1} \cdot \dots \cdot 4 \text{ }$$

$$\mathbb{P} s^{2}Y(s) - 1 - 3sY(s) + 2Y(s) = \frac{2}{s+1},$$

$$s^{2}Y(s) - 3sY(s) + 2Y(s) = \frac{s+3}{s+1} \cdot \dots \cdot 3 \text{ }$$

$$Y(s) = \frac{s+3}{(s-1)(s+1)(s-2)}$$
, 利用反演公式得

$$y(t) = \frac{5}{3}e^{2t} - 2e^t + \frac{1}{3}e^{-t}$$
3 f

诚信关乎个人一生,公平竞争赢得尊重。

以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

中国矿业大学 2023-2024 学年第一 学期课程考试试卷

考试科目	工程数学		_		试卷类型	A 卷
课程代码	M10815	考试时长	100	分钟	考试方式	闭卷
开课学院	 数学学院	年级专业	电气、计	- ⁻ 算机、 [·]	信控 2022 级	ţ

学院	<u> </u>	班级		_姓名	<u>a</u>	学号	
题 号				三			
赵与			1	2	3	4	总分
得分							
阅卷人							

考生承诺:

- 1. 未携带通信工具及其它各类带有拍照、摄像、接收、发送、储存等功能的设备(包括但不限于手机、智能手表、智能眼镜,平板电脑、无线耳机),或关机与其它禁止携带物品、资料等放置监考老师指定位置;
- 2. 已按要求清理干净整个座位(包括考生邻座)桌面和抽屉里的所有物品(无论是否属于考生本人);
- 3. 已知晓并理解《中国矿业大学学生违纪处分管理规定》等与考试相关规定,承诺在考试中自觉遵守以上规定,服从监考教师的安排,自觉遵守考试纪律,诚信考试,不违规、不作弊。如有违反,自愿按《中国矿业大学学生违纪处分管理规定》相关条款接受处理。

考生签名

一、填空题(共 6 题,每小题 5 分,满分 30 分)

1、函数 $f(z) = z \operatorname{Re}(z) + \operatorname{Im}(z)$ 在 z = -i 处的导数为______.

3、点 z = 3 是函数 $\frac{(z^2 - 1)(z - 3)^2}{\sin^4(\pi z)}$ 的 _______ 阶极点.

 $4 \times \frac{\exp(z)}{z^2-1}$ 在 ∞ 的留数为______.

- 5、函数 $f(t) = \cos(w_0 t)$ 的傅氏变换为_____
- 6、已知 $f(t) = \int_0^t e^{-2t} \cos t \, dt$,则 $\mathcal{L}[f(t)] = \underline{\qquad}$
- 二、单项选择题(共 6 题,每小题 5 分,满分 30 分)
- 1、像函数 $\frac{e^{-s}}{s^2+1}$ 的拉普拉斯逆变换为 ().
- (A) $\sin(t-1)u(t-1)$ (B) $\sin(t)u(t-1)$ (C) $\cos(t-1)u(t-1)$ (D) $\cos(t)u(t-1)$
- 2、将函数 $f(z) = \exp(\frac{1}{1-z})$ 展开成 $\sum_{n=0}^{+\infty} c_n z^n$,则 $c_3 =$ () .
- (A) $\frac{13}{6}e$ (B) $\frac{13}{5}e$ (C) $\frac{11}{6}e$ (D) $\frac{7}{6}e$
- 3、级数 $\sum_{n=1}^{\infty} nz^n$ 的和函数为 ().
- (A) $\frac{z}{(1-z)^2}$ (B) $\frac{2z}{(1-z)^2}$ (C) $\frac{1}{(1-z)^2}$ (D) $\frac{z+1}{(1-z)^2}$
- 4, $z_1 = -1 + i \frac{\sqrt{3}}{3}$, $z_2 = -1 i$, $y = arg(z_1 z_2) = ($).
 - (A) $-\frac{1}{12}\pi$ (B) $-\frac{5}{9}\pi$ (C) $\frac{1}{11}\pi$ (D) $\frac{1}{12}\pi$
- 5、在复数域内,下列数中为正实数的是()
 - (A) $i \ln i$ (B) $i \int_0^i z \sin z \, dz$ (C) e^{i+1} (D) $(1-i)^2$
- 6. 己知 $z^3 + z^2 + z + 1 = 0$, 则 $z^{15} + z^6 + z^5 + 1 = ($).
- (A) -1 (B) 0 (C) 1 (D) 2

诚信关乎个人一生,公平竞争赢得尊重。 以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

- 三、计算题(共 4 题,每小题 10 分,满分 40 分)
- 1、用留数的方法求定积分 $\int_0^{2\pi} \frac{1}{2+\sin\theta} d\theta.$

2、把函数 $f(z) = \frac{1}{z^2(2-z)}$ 在圆环域0 < |z-2| < 1内展开成洛朗级数.

诚信关乎个人一生,公平竞争赢得尊重。 以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

3、计算积分
$$\oint_{|z|=3} \frac{z^7}{\left(z^2+1\right)^3(z-2)(z-4)} dz$$
 (积分曲线为正向).

4、利用拉氏变换的方法求下面微分方程的解

$$y'' - 3y' + 2y = 2e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

中国矿业大学 2023-2024 学年第一 学期课程考试试卷 (参考答案)

考试科目	工程数学				试卷类型	B 卷
课程代码	M10815	考试时长	100	分钟	考试方式	闭卷
开课学院	数学学院	年级专业	电气、	 计算机、	信控 2022 级	<u></u>

学院	班级		姓名		学号_	
题 号	 _					总分
赵 与	_	<u>1</u>	2	<u>3</u>	<u>4</u>	心刀
得分						
阅卷人						

考生承诺:

- 1. 未携带通信工具及其它各类带有拍照、摄像、接收、发送、储存等功能的设备(包括但不限于手机、智能手表、智能眼镜,平板电脑、无线耳机),或关机与其它禁止携带物品、资料等放置监考老师指定位置;
- 2. 已按要求清理干净整个座位(包括考生邻座)桌面和抽屉里的所有物品(无论是否属于考生本人):
- 3. 已知晓并理解《中国矿业大学学生违纪处分管理规定》等与考试相关规定,承诺在考试中自觉遵守以上规定,服从监考教师的安排,自觉遵守考试纪律,诚信考试,不违规、不作弊。如有违反,自愿按《中国矿业大学学生违纪处分管理规定》相关条款接受处理。

考生签名

一、填空题(共 6 题,每小题 5 分,满分 30 分)

- 1、函数 $f(z) = x^2 + 2y + ixy$ 在 z = -2i 处的导数为____2i____.
- 3、点 z = 1 是函数 $\frac{(z^2 1)^2 (z 3)^2}{\sin^4(\pi z)}$ 的 2 阶极点.

以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

- 4、函数 $\frac{\cos z}{z^2-1}$ 在∞处的留数为____0____.
- 6、已知 $f(t) = \int_0^t e^{-t} \cos(2t) dt$,则o $[f(t)] = \frac{s+1}{s((s+1)^2+4)}$
- 二、单项选择题(共 6 题,每小题 5 分,满分 30 分)
- 1、像函数 $\frac{se^{-2s}}{s^2+1}$ 的拉普拉斯逆变换为(C).
- (A) $\sin(t-2)u(t-2)$ (B) $\sin(t)u(t-2)$ (C) $\cos(t-2)u(t-2)$ (D) $\cos(t)u(t-2)$
- 2、将函数 $f(z) = \sin(\frac{1}{1-z})$ 展开成 $\sum_{n=0}^{+\infty} c_n z^n$,则 $c_3 = (A)$
- (A) $-\sin 1 + \frac{5}{6}\cos 1$ (B) $\sin 1 + \frac{5}{6}\cos 1$ (C) $-\sin 1 \frac{5}{6}\cos 1$ (D) $\sin 1 + \frac{5}{6}\cos 1$
- 3、级数 $\sum_{n=1}^{\infty} (n+1)z^n$ 的和函数为 (A).
- (A) $\frac{2z-z^2}{(1-z)^2}$ (B) $\frac{2z+z^2}{(1-z)^2}$ (C) $\frac{z^2}{(1-z)^2}$ (D) $\frac{z^2+1}{(1-z)^2}$
- 4、 $z_1 = -1 i\frac{\sqrt{3}}{3}$, $z_2 = -1 + i$, $y = \arg(z_1 z_2) = (D)$.
- (A) $\frac{1}{12}\pi$ (B) $-\frac{5}{9}\pi$ (C) $\frac{1}{11}\pi$ (D) $-\frac{1}{12}\pi$
- 5、在复数域内,下列数中**不**为**实数**的是(B)
 - (A) $i \ln(-1)$ (B) e^{i+1} (C) $(1-i)^4$ (D) $\int_0^i z \cos(z^2) dz$

6. 已知
$$z^2 + z + 1 = 0$$
,则 $z^{11} + z^{10} + 1 = (B)$.

- $(A) -1 \qquad (B) 0 \qquad (C) 1 \qquad (D)$

三、计算题(共 4 题,每小题 10 分,满分 40 分)

1、把函数 $f(z) = \frac{1}{z^2(1-z)}$ 在圆环域 0 < |z-1| < 1 内展开成洛朗级数.

解:
$$\frac{1}{z^2} = -(\frac{1}{z})' = -(\frac{1}{z-1+1})'$$
, ……4分

$$=-(\sum_{n=0}^{+\infty}(-1)^n(z-1)^n)'=\sum_{n=1}^{+\infty}(-1)^{n+1}n(z-1)^{n-1}\cdots 4$$

从而

$$f(z) = \sum_{n=1}^{+\infty} (-1)^n n(z-1)^{n-2} \cdots 2$$

2、已知 $u(x,y) = 2y^3 - 6x^2y + 3x$ 为解析函数f(z)的实部,求f(z)的虚部v(x,y).

解:
$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = -(6y^2 - 6x^2), \dots 2$$
 分

$$v(x,y) = \int_{(0,0)}^{(x,y)} \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy + C$$

$$= \int_{(0,0)}^{(x,y)} -\frac{\partial u}{\partial y} dx + \frac{\partial u}{\partial x} dy + C,$$

$$= \int_{0}^{x} 6x^{2} dx + \int_{0}^{y} (-12xy + 3) dy + C$$

$$=2x^3-6xy^2+3y+C$$
 (C是任意实数) -----------4 分

以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

故得解析函数

3、计算积分
$$\oint_{|z|=3} \frac{z^7}{(z^2+1)^3(z-1)(z-5)} dz$$
 (积分曲线为正向).

解:被积函数有4个奇点,i、-i和1在|z|<3内.

从而

$$\oint_{|z|=3} \frac{z^7}{(z^2+1)^3} \frac{z^7}{(z-2)(z-4)} dz = -2\pi i \left\{ \operatorname{Re} s\left[\frac{z^7}{(z^2+1)^3} \frac{z^7}{(z-1)(z-5)}, \infty\right] + \operatorname{Re} s\left[\frac{z^7}{(z^2+1)^3} \frac{z^7}{(z-1)(z-5)}, 5\right] \right\}$$
......3 \cancel{f}

$$= 2\pi i \operatorname{Re} s \left[\frac{z^{-7}}{\left(z^{-2} + 1\right)^3 (z^{-1} - 1)(z^{-1} - 5)} (\frac{1}{z})^2, 0 \right] - 2\pi i \frac{5^7}{4 \cdot 26^3} \cdot \dots \cdot 3 \text{ }$$

$$= 2\pi i \operatorname{Re} s \left[\frac{1}{z(1 + z^2)^3 (1 - z)(1 - 5z)}, 0 \right] - 2\pi i \frac{5^7}{4 \cdot 26^3} \cdot \dots \cdot 2 \text{ }$$

$$= 2\pi i - 2\pi i \frac{5^7}{4 \cdot 26^3} = -\frac{7821}{35152} \pi i \cdot \dots \cdot 2 \text{ }$$

4、利用拉氏变换的方法求下面微分方程的解

$$y'' - 5y' + 4y = 2e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.

解: 设O[y(t)] = Y(s),对方程两边取拉氏变换,得

$$s^{2}Y(s) - sy(0) - y'(0) - 5(sY(s) - y(0)) + 4Y(s) = \frac{2}{s+1} \cdot \dots \cdot 4 \text{ f}$$

$$\mathbb{FI} s^{2}Y(s) - 1 - 5sY(s) + 4Y(s) = \frac{2}{s+1},$$

$$s^{2}Y(s) - 5sY(s) + 4Y(s) = \frac{s+3}{s+1} \cdot \dots \cdot 3 \text{ ff}$$

$$Y(s) = \frac{s+3}{(s-1)(s+1)(s-4)}$$
, 利用反演公式得

$$y(t) = \frac{7}{15}e^{4t} - \frac{2}{3}e^{t} + \frac{1}{5}e^{-t}$$
3 \cancel{D}

诚信关乎个人一生,公平竞争赢得尊重。

以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1. 替他人考试或由他人替考; 2. 通讯工具作弊; 3. 团伙作弊。

中国矿业大学 2023-2024 学年第一 学期课程考试试卷

考试科目	工程数学		_		试卷类型	B 卷
课程代码	M10815	考试时长	100	分钟	考试方式	闭卷
开课学院	—————————————————————————————————————	年级专业	由气、计	- -复机、	信控 2022 级	}

学院	班级		姓名		学号_	
题 号	 _					总分
赵子		1	2	3	4	125 /J
得分						
阅卷人						

考生承诺:

- 1. 未携带通信工具及其它各类带有拍照、摄像、接收、发送、储存等功能的设备(包括但不限于手机、智能手表、智能眼镜,平板电脑、无线耳机),或关机与其它禁止携带物品、资料等放置监考老师指定位置;
- 2. 已按要求清理干净整个座位(包括考生邻座)桌面和抽屉里的所有物品(无论是否属于考生本人);
- 3. 已知晓并理解《中国矿业大学学生违纪处分管理规定》等与考试相关规定,承诺在考试中自觉遵守以上规定,服从监考教师的安排,自觉遵守考试纪律,诚信考试,不违规、不作弊。如有违反,自愿按《中国矿业大学学生违纪处分管理规定》相关条款接受处理。

考生签名

一、填空题(共 6 题,每小题 5 分,满分 30 分)

1、函数 $f(z) = x^2 + 2y + ixy$ 在 z = -2i 处的导数为______.

2、判别级数 $\sum_{n=1}^{\infty} \frac{(2+i3)^n}{4^n}$ 的敛散性_______.(填"发散"或者"收敛")

4、函数 $\frac{\cos z}{z^2-1}$ 在∞处的留数为______.

5、函数 $f(t) = \sin(w_0 t)$ 的傅氏变换为______

6、已知 $f(t) = \int_0^t e^{-t} \cos(2t) dt$,则 $\mathcal{L}[f(t)] = \underline{\hspace{1cm}}$.

二、单项选择题(共 6 题,每小题 5 分,满分 30 分)

1、像函数 $\frac{se^{-2s}}{s^2+1}$ 的拉普拉斯逆变换为 ().

(A) $\sin(t-2)u(t-2)$ (B) $\sin(t)u(t-2)$ (C) $\cos(t-2)u(t-2)$ (D) $\cos(t)u(t-2)$

2、将函数 $f(z) = \sin(\frac{1}{1-z})$ 展开成 $\sum_{n=0}^{+\infty} c_n z^n$,则 $c_3 = ($

(A) $-\sin 1 + \frac{5}{6}\cos 1$ (B) $\sin 1 + \frac{5}{6}\cos 1$ (C) $-\sin 1 - \frac{5}{6}\cos 1$ (D) $\sin 1 - \frac{5}{6}\cos 1$

3、级数 $\sum_{n=1}^{\infty} (n+1)z^n$ 的和函数为 ().

(A) $\frac{2z-z^2}{(1-z)^2}$ (B) $\frac{2z+z^2}{(1-z)^2}$ (C) $\frac{z^2}{(1-z)^2}$ (D) $\frac{z^2+1}{(1-z)^2}$

4, $z_1 = -1 - i \frac{\sqrt{3}}{3}$, $z_2 = -1 + i$, $y = \arg(z_1 z_2) = ($).

(A) $\frac{1}{12}\pi$ (B) $-\frac{5}{9}\pi$ (C) $\frac{1}{11}\pi$ (D) $-\frac{1}{12}\pi$

5、在复数域内,下列数中**不**为**实数**的是()

(A) $i \ln(-1)$ (B) e^{i+1} (C) $(1-i)^4$ (D) $\int_0^i z \cos(z^2) dz$

6. 已知 $z^2 + z + 1 = 0$, 则 $z^{11} + z^{10} + 1 = ($).

(A) -1 (B) 0 (C) 1 (D) 2

三、计算题(共 4 题,每小题 10 分,满分 40 分)

1、把函数 $f(z) = \frac{1}{z^2(1-z)}$ 在圆环域 0 < |z-1| < 1 内展开成洛朗级数.

2、已知 $u(x,y) = 2y^3 - 6x^2y + 3x$ 为解析函数f(z)的实部,求f(z)的虚部v(x,y).

诚信关乎个人一生,公平竞争赢得尊重。 以下是严重作弊行为,学校将给予留校察看或开除学籍处分: 1.替他人考试或由他人替考; 2.通讯工具作弊; 3.团伙作弊。

3、计算积分
$$\oint_{|z|=3} \frac{z^7}{\left(z^2+1\right)^3(z-1)(z-5)} dz$$
 (积分曲线为正向).

4、利用拉氏变换的方法求下面微分方程的解

$$y'' - 5y' + 4y = 2e^{-t}$$
, $y(0) = 0$, $y'(0) = 1$.