

Área e a Integral Definida

Desde os tempos mais antigos os matemáticos se preocupam com o problema de determinar a área de uma figura plana. O procedimento mais usado foi o método da exaustão, que consiste em aproximar a figura dada por meio de outras, cujas áreas são conhecidas.

Consideremos agora o problema de definir a área de uma região plana S, delimitada pelo gráfico de uma função contínua não negativa f, pelo eixo dos x e por duas retas x = a e x = b.

Para isso, fazemos uma partição do intervalo [a,b], isto é, dividimos o intervalo [a,b] em n subintervalos, escolhendo os pontos

$$a = x_0 < x_1 < ... < x_{i-1} < x_i < ... < x_n = b$$

Seja $\Delta x_i = x_i - x_{i-1}$ o comprimento do intervalo $[x_{i-1}, x_i]$. Em cada um destes intervalos $[x_{i-1}, x_i]$, escolhemos um ponto qualquer c_i . Para cada i, i = 1,, n, construímos um retângulo de base Δx_i e altura $f(c_i)$

A soma das áreas dos n retângulos, que representamos por S_n , é dada por:

$$S_n = f(c_1)\Delta x_1 + f(c_2)\Delta x_2 + ... + f(c_n)\Delta x_n = \sum_{i=1}^n f(c_i)\Delta x_i$$

Esta soma é chamada soma de Riemann da função f(x).

Podemos observar que a medida que n cresce muito e cada Δx_i , i=1,...,n, torna-se muito pequeno, a soma das áreas retangulares aproxima-se do que intuitivamente entendemos como área de S.

Portanto, se y = f(x) é uma função contínua, não-negativa em [a,b], a área sob a curva y = f(x), de a até b, é definida por

$$A = \lim_{\max \Delta x_i \to 0} \sum_{i=1}^n f(c_i) \Delta x_i$$

onde para cada $i = 1, ..., n, c_i$ é um ponto arbitrário do intervalo $[x_{i-1}, x_i]$.

Integral Definida

A integral definida está associada ao limite da definição acima. Ela nasceu com a formalização matemática dos problemas de áreas.

Se f está definida em um intervalo fechado [a,b] e o limite de uma soma de Riemann de f existe, dizemos que f é integrável em [a,b] e denotamos o limite por

$$\lim_{m \le x} \sum_{i=1}^{n} f(c_i) \Delta x_i = \int_{a}^{b} f(x) dx$$

O limite é a integral definida de f de a até b. O número a é o limite inferior de integração e b é o limite superior.

É importante observar que integrais definidas e integrais indefinidas são coisas diferentes. Uma integral definida é um número, enquanto uma integral indefinida é uma família de funcões.

Uma condição suficiente para que f se ja integrável em [a,b] é dada no teorema abaixo.

Teorema:

Se uma função f é contínua em um intervalo fechado [a,b], então f é integrável em [a,b].

Quando a função f é contínua e não negativa em [a,b], a definição da integral definida coincide com a definição da área (definição dada acima). Portanto, neste caso, a integral definida é a área da região limitada pelo gráfico de f, o eixo dos x de a até b, ou seja,

 $lpha rea = \int\limits_{a}^{b} f(x) dx$. Se f for continua, e admitir valores positivos e negativos em [a,b], então

a integral definida, não mais representa a área entre a curva y = f(x) e o intervalo [a, b] e sim a diferença das áreas - a área acima de [a,b] e abaixo da curva y = f(x) menos a área

abaixo de [a,b] e acima da curva y = f(x). Chamamos isso de área líquida com sinal entre o gráfico de y = f(x) e o intervalo [a,b].

Nos casos mais simples, as integrais definidas podem ser calculadas usando fórmulas de geometria plana para computar as áreas com sinal.

<u>EXEMPLO</u>: Esboce a região cuja área está representada pela integral definida e calcule a integral usando uma fórmula apropriada de geometria.

a)
$$\int_{0}^{2} \left(1 - \frac{1}{2}x\right) dx$$

$$b) \int_{-5}^{5} x \, dx$$

Propriedades da Integral Definida

Sempre que utilizamos um intervalo [a,b], supomos a < b. Assim em nossa definição não levamos em conta os casos em que o limite inferior é maior que o limite superior. Será conveniente estender essa definição. Geometricamente, as duas definições particulares a seguir parecem razoáveis:

(a) Se f está definida em x = a, então

$$\int_{a}^{a} f(x) dx = 0$$

(b) Se f é integrável em [a,b], então

$$\int_{b}^{a} f(x) dx = -\int_{a}^{b} f(x) dx$$

Teorema:

Se f e g são integráveis em [a,b] e c é uma constante, então as seguintes propriedades são verdadeiras:

(a)
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

(a)
$$\int_{a}^{b} cf(x) dx = c \int_{a}^{b} f(x) dx$$

(b) $\int_{a}^{b} [f(x) \pm g(g)] dx = \int_{a}^{b} f(x) dx \pm \int_{a}^{b} g(x) dx$

A parte (b) do Teorema acima pode ser estendida para mais de duas funções, e ainda ser combinada com (a).

<u>Teorema</u>: Se f é integrável nos três intervalos determinados por a, b e c, então:

$$\int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx$$

Teorema: Se $f \in g$ são contínuas no intervalo $[a,b] \in 0 \le f(x) \le g(x)$ para $a \le x \le b$, então as seguintes propriedades são verdadeiras:

(a)
$$0 \le \int_a^b f(x) dx$$

(b)
$$\int_{a}^{b} f(x) dx \le \int_{a}^{b} g(x) dx$$

Às vezes, é possível simplificar o cálculo de uma integral definida (em um intervalo simétrico em relação à origem) identificando o integrando como uma função par ou ímpar.

4

Teorema: Seja f integrável no intervalo fechado [-a,a]

(a) Se
$$f$$
 é uma função par, então
$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

(b) Se
$$f$$
 é uma função ímpar, então $\int\limits_{-a}^{a}f(x)dx=0$

Teorema Fundamental do Cálculo

Este teorema relaciona a diferenciação e a integração como operações inversas e nos diz que os processos de limite (usados para definir a derivada e a integral definida) preservam esta relação de inversão.

Teorema:

Se uma função f é contínua no intervalo fechado $\left[a,b\right]$, então

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

onde F é qualquer função tal que F'(x) = f(x) para todo x em [a,b].

Temos agora uma maneira de calcular a integral definida desde que possamos encontrar uma antiderivada de f.

Ao aplicar este teorema, a notação

$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

é bastante útil.

Finalmente, observamos que a constante de integração ${\cal C}$ pode ser retirada da antiderivada, já que

$$\int_{a}^{b} f(x)dx = [F(x) + C]_{a}^{b} = [F(b) + C] - [F(a) + C] = F(b) - F(a)$$

EXEMPLO: Calcule as seguintes integrais definidas:

a)
$$\int_{-1}^{2} 4x(1-x^2) dx$$

b)
$$\int_{1}^{2} \frac{1}{x^{6}} dx$$

c)
$$\int_{0}^{\pi/4} \sec^2 \theta d\theta$$

d)
$$\int_{\frac{1}{2}}^{1} \frac{1}{2x} dx$$

e)
$$\int_{-1}^{1} \frac{1}{1+x^2} dx$$

f)
$$\int_{-1}^{1} |2x - 1| dx$$

A exigência da continuidade de f em [a,b] no Teorema Fundamental do Cálculo é importante, pois se você aplicar este Teorema a integrandos descontínuos no intervalo de integração poderá obter resultados errôneos. Por exemplo, $\int_{-1}^{1} \frac{1}{x^2} dx - \frac{1}{x} \bigg|_{-1}^{1} = - \big[1 - \big(-1 \big) \big] = -2$

Sempre que você achar conveniente mudar a letra usada para a variável de integração em uma integral definida, isto pode ser feito sem alterar o valor da integral. Uma vez que a variável de integração em uma integral definida não desempenha nenhum papel, ela é usualmente chamada de variável muda.

Se f é uma função contínua no intervalo [a,b], definimos área total $=\int\limits_a^b \left|f(x)\right| dx$ como a área total entre a curva y=f(x) e o intervalo [a,b]. Nos subintervalos em que $f(x) \ge 0$ trocamos $\left|f(x)\right|$ por f(x); e nos intervalos em que $f(x) \le 0$, trocamos $\left|f(x)\right|$ por -f(x). A soma das integrais assim obtidas é a área total.

EXEMPLO: Esboce a curva $y = e^x - 1$ no intervalo [-1,1] e encontre a área total entre a curva e o intervalo dado do eixo x.

Integrais Definidas por Substituição

EXEMPLOS:

a)
$$\int_{0}^{\pi/4} tg^2 x \sec^2 x dx$$

1° Método:

2º Método:

$$b) \int_{1}^{\sqrt{3}} \frac{\sqrt{arctgx}}{1+x^2} dx$$

c)
$$\int_{\ln 2}^{\ln(\frac{2}{\sqrt{3}})} \frac{e^{-x}}{\sqrt{1 - e^{-2x}}} dx$$