Intestine cell dissociation Version 2

Andrew Potter

Abstract

Protocol for human intestine cell dissociation.

Citation: Andrew Potter Intestine cell dissociation. protocols.io

dx.doi.org/10.17504/protocols.io.nx8dfrw

Published: 21 Mar 2018

Before start

Checklist prior to beginning:

- -Centrifuges, large and small, set to 4 C
- -Make enzyme stock; place 2 tubes of enzyme on dry ice.
- -Make 0.01% BSA/PBS (50 mL)
- -Things you need: petri dishes, clean forceps, razor blade, pipets, 30 µM filters, timer.

Stock solution for enzyme

- 895 μL DPBS
- 5 μL 0.5 M EDTA (2.5 mM final)

 \rightarrow Add 100 µL enzyme (100 mg/mL) to 900 µL of enzyme stock to make 1X enzyme mix. Add 28 mg of tissue to each 900 µL of enzyme mix.

Materials

Please see Guidelines for required materials by Contributed by users

Protocol

Step 1.

While excluding as much PBS as possible, weigh out tissue using Mettler.

Step 2.

After weighing out tissue, **transfer to petri dish** on ice and **mince tissue** using grinding motion with razorblade for 2-3 minutes.

Step 3.

After tissue is minced finely, **add 1 mL enzyme mix per 28 mg of tissue** to the petri dish and pipet minced tissue + enzyme into eppendorf tube (on ice).

AMOUNT

1 ml Additional info: enzyme mix per 28 mg of tissue

Step 4.

Start timer. Leave tube on ice - initially shake vigorously to break up the tissue, 3-

5x every 30-45 seconds for 5 minutes.

Step 5.

Now, when big chunks are broken up, shake every 1 minute while leaving on ice for 5 additional minutes (10 minutes total time).

Step 6.

After 10 minutes total digest time, triturate the digest mix 10X using p1000 set to 700 µL.

Step 7.

Continue shaking every minute for 5 additional minutes (15 minutes total time).

Step 8.

After 15 minutes digest time, triturate digest mix again 10X and spin digest mix at 90 G for 30 seconds at 4 °C.

I TEMPERATURE

4 °C Additional info:

Step 9.

Remove supernatant (80%) containing single cells and filter using 30 μ M filter while leaving chucks on bottom; rinse filter with 10 mL PBS/BSA into 50 mL conical (on ice) to save single cells.

AMOUNT

10 ml Additional info: PBS/BSA

Step 10.

To residual chunks of tissue add additional 1 mL of enzyme (per 28 mg tissue).

AMOUNT

1 ml Additional info: enzyme (per 28 mg tissue)

Step 11.

Shake vigorously 3-4X every minute for 10 additional minutes (25 minutes total time).

Step 12.

Triturate again 10X using 1 mL pipet set to 700 µL.

Step 13.

Continue to shake vigorously every minute for **5 minutes additional time (30 minutes total time)**.

Step 14.

Triturate again 10X and filter using the same 30 μ M filter and rinse with 10 mL PBS/BSA into the same 50 mL conical (on ice).

■ AMOUNT

10 ml Additional info: PBS/BSA

Step 15.

Divide flow-through into 2 15 mL tubes.

Step 16.

Spin 600 g for 5 minutes at 4 °C.

↓ TEMPERATURE

4 °C Additional info: Spinning

Step 17.

Carefully remove supernatant - re-suspend both pellets in 100 μL total PBS/BSA in one of the 15 mL conicals.

■ AMOUNT

100 µl Additional info: PBS/BSA

Step 18.

Add 700 µL RBC lysis buffer to 100 µL PBS/BSA (800 µL total). Triturate 20X using 1 mL pipet.

■ AMOUNT

700 μl Additional info: RBC lysis buffer

■ AMOUNT

100 µl Additional info: PBS/BSA

Step 19.

Incubate for 3 minutes on ice.

Add 10 mL of PBS/BSA to 15 mL conical to dilute the RBC lysis buffer.

Step 20.

■ AMOUNT

10 ml Additional info: PBS/BSA

Step 21.

Spin 600 G for 5 minutes at 4 °C.

↓ TEMPERATURE

4 °C Additional info:

Step 22.

Remove supernatant.

Step 23.

Briefly re-suspend cells in a small volume of PBS/BSA and check to ensure that there are no more RBCs present.

Step 24.

Re-suspend in 10 mL total PBS/BSA in the same 15 mL conical.

■ AMOUNT

10 ml Additional info: PBS/BSA

Step 25.

Spin 600 g for 5 minutes at 4 °C.

▮ TEMPERATURE

4 °C Additional info: Spinning

Step 26.

Remove supernatant and re-suspend in a small volume to check cell concentration.

Step 27.

Analyze quantity and viability of cells using a hemocytometer with trypan blue: add 10 μ L of trypan blue to 10 μ L of cell suspension, mix by pipeting and pipet into hemocytometer; for Chromium, make concentration to 1 million cells per mL. For DropSeq, make concentration to 100,000 cells/mL.