Independence

Let $(\Omega, \mathcal{F}, \mathbf{P})$ be a probability triple.

Definitions of independence

Independent σ -algebras

Sub- σ -algebras $\mathcal{G}_1,\mathcal{G}_2,\ldots$ of \mathcal{F} are called *independent* if, whenever $G_i\in\mathcal{G}_i(i\in\mathbf{N})$ and i_1,\ldots,i_n are distinct, then

$$P(G_{i_1}\cap \cdots \cap G_{i_n} = \prod_{k=1}^n P(G_{i_k}))$$

Indenpendent random variables

Random variables X_1, X_2, \ldots are called *independent* if the σ -algebras

$$\sigma(X_1), \sigma(X_2), \ldots$$

are independent.

Independent events

Events E_1, E_2, \ldots are called *independent* if the σ -algebras $\mathcal{E}_1, \mathcal{E}_2, \ldots$ are independent, where

$$\mathcal{E}_n$$
 is the σ -algebra $\{\emptyset, E_n, \Omega \backslash E_n, \Omega\}$

Since $\mathcal{E}_n = \sigma(I_{E_n})$, it follows that

event E_1, E_2, \ldots are independent if and only if the random variables I_{E_1}, I_{E_2}, \ldots are independent.

The π -system Lemma; and the more familiar definitions

We study independence via π -systems rather than σ -algebras.

(a) **LEMMA.** Suppose that \mathcal{G} and \mathcal{H} are sub- σ -algebras of \mathcal{F} , and that \mathcal{I} and \mathcal{J} are π -systems with

$$\sigma(\mathcal{I}) = \mathcal{G}, \quad \sigma(\mathcal{J}) = \mathcal{H}$$

Then $\mathcal G$ and $\mathcal H$ are *independent* if and only if $\mathcal I$ and $\mathcal J$ are independent in that

$$P(I \cap J) = P(I)P(J), \qquad I \in \mathcal{I}, \quad J \in \mathcal{J}$$

Suppose that X and Y are two random variables on $(\Omega, \mathcal{F}, \mathbf{P})$ such that, whenever $x, y \in \mathbf{R}$,

$$P(X \le x; Y \le y) = P(X \le x)P(Y \le y)$$

The π -systems $\pi(X)$ and $\pi(Y)$ are independent. Hence $\sigma(X)$ and $\sigma(Y)$ are independent.

Second Borel-Cantelli Lemma (BC2)

If $E_n:n\in {f N}$ is a sequence of **independent** events, then

$$\sum P(E_n) = \infty \Rightarrow P(E_n, \text{ i.o.}) = P(\limsup E_n) = 1$$

Definitions. Tail σ -algebras

Let X_1, X_2, \ldots be random variables. Define

$$\mathcal{T}_n := \sigma(X_{n+1}, X_{n+2}, \ldots), \quad \mathcal{T} := \bigcap_n \mathcal{T}_n$$

The σ -algebra \mathcal{T} is called the *tail* σ -algebra of the sequence $(X_n : n \in \mathbf{N})$.

Theorem. Kolmogorov's 0-1 Law

Let $(X_n:n\in \mathbf{N})$ be a sequence of **independent** random variables, and let \mathcal{T} be the tail σ -algebra of $(X_n:n\in \mathbf{N})$. Then \mathcal{T} is P-trivial, that is

(i)
$$F \in \mathcal{T} \Rightarrow P(F) = 0 ext{ or } P(F) = 1$$

(ii) if ξ is a $\mathcal T$ -measurable random variable, then, ξ is almost deterministic in that for some constant c in $[-\infty, +\infty]$,

$$P(\xi = c) = 1$$

We allow $\xi = \pm \infty$ at (ii) for obvious reasons.