I. Population, Caractère et Effectif

1) Population

Définitions

- La population est l'ensemble des individus (personnes, objets, faits ...) étudiés.
- La série statistique est l'ensemble des valeurs collectées.

Exemple

Le tableau suivant présente le nombre de repas pris chaque semaine par les élèves d'un lycée professionnel :

Nombre de repas	0	1	2	3	4	5
Nombre d'élèves	56	24	72	99	259	115

Ici la population étudiée est les élèves du lycée.

2) Caractère

Définition

Le caractère est la propriété étudiée sur la population, il est :

- quantitatif quand il est mesurable :
 - → discret si les valeurs sont des nombres isolés;
 - \rightarrow continu si les valeurs ne sont pas isolées. Les valeurs sont regroupées en classes ou intervalles [a;b]; l'amplitude de l'intervalle est b-a.
- qualitatif quand il n'est pas mesurable.

Exemple

Dans l'exemple ci-dessus, le caractère étudié est le nombre de repas pris chaque semaine. Il ne peut prendre que des valeurs entières comprises entre 0 et 1, il est donc quantitatif discret.

3) Effectif

Définition

L'effectif n_i est le nombre d'individus correspondant à une valeur du caractère.

Exemple

Dans l'exemple, l'effectif n_2 des élèves qui prennent deux repas est 72.

II. Effectif Total et Fréquence

1) Effectif Total

Définition

L'effectif total N est le nombre total d'individus de la population étudiée.

Exemple

Dans l'exemple, l'effectif total est : 56 + 24 + 72 + 99 + 259 + 115 = 625.

2) Fréquence

Définition

Pour chaque valeur du caractère la **fréquence** f_i est calculée en divisant l'effectif correspondant à la valeur par l'effectif total $(\frac{n_i}{N})$.

Exemple

La fréquence f_1 de la valeur 1 du caractère est : $\frac{24}{625} = 0,384$

Nombre de repas	0	1	2	3	4	5
Fréquence	0,0896	0,0384	0,1152	0,1584	0,4144	0,1840

Remarques

- Pour obtenir un pourcentage, on multiplie la fréquence par 100.
- La somme des fréquences d'une série statistique est égale à 1 (ou 100%).

2

III. Représentations graphiques

1) Diagramme en Secteur

Le diagramme en secteurs (ou circulaire) est une représentation adaptée une série à caractère qualitatif.

Chaque valeur est représentée par un secteur circulaire dont l'aire et l'angle sont proportionnels à l'effectif n_i (ou à la fréquence f_i).

Exemple

Répartition des voix entre les trois candidats à une élection

Candidat	Nombre de voix		
Durand	300		
Fabre	150		
Lebon	50		

2) Diagramme en bâtons

Le diagramme en bâtons (ou en barres) est une représentation adaptée pour une série à caractère quantitatif discret.

Chaque valeur du caractère est reportée sur l'axe des abscisses. Les effectifs sont sont reportés sur l'axe des ordonnées. La longueur de chaque segment vertical est proportionnelle à l'effectif n_i (ou à la fréquence f_i).

Exemple

Nombre d'enfants par maison dans un lotissement

Nombre d'enfants	Nombre de maison
0	3
1	12
2	9
3	6

3) Histogramme

L'histogramme est utilisé pour représenter les séries à caractère quantitatif continu.

Un histogramme est constitué d'une successions de rectangles accolés avec pour bases les amplitudes des classes [a;b[. Si les classes ont la même amplitude b-a, tous les rectangles ont la même base et les hauteurs sont proportionnelles aux effectifs n_i (ou aux fréquences f_i).

Exemple

Hauteur des arbres dans une pépinière

Hauteur (en cm)	Nombre d'arbres
[0;100[20
[100; 200[12
[200;300[49

4) Diagramme cartésien

Le diagramme cartesien est utilisé pour représenter l'évolution d'une grandeur par rapport à une autre (souvent le temps).

Exemple Évolution du prix d'une baguette de pain entre 2001 et 2012 0,85 Année Prix (en €) 0,8 2001 0,66 0,75 2002 0,68 0,7 2003 0,71 0,65 2004 0,74 0,6 2002 2004 2006 2008 2010 2000 2005 0,75 Année 2006 0,77 20070,8 2008 0,83

IV. Schéma récapitulatif

Le schéma ci dessous indique quel diagramme choisir pour représenter une information en fonction du type de donnée.

