Приклад № 9. Скласти рівняння площини, що проходить через точку $M_0(1; 0; -1)$ і пряму x = 2t - 1, y = -t + 2, z = -2t + 3.

Розв'язання. За умовою задачі напрямний вектор заданої

прямої $\vec{S} = \{2; -1; -2\}$ лежить у шуканій площині Q (рис. 4).

На заданій прямій лежить точка $M_1(-1; 2; 3)$. Визначаємо вектор

$$\overrightarrow{M_0M_1} = \{-2; 2; 4\}.$$

Вибираємо у шуканій площині біжучу точку M(x; y; z) і визначаємо вектор $\overrightarrow{M_0M}$. Маємо $\overrightarrow{M_0M} = \{x-1; y; z+1\}$. Три вектори $\overrightarrow{M_0M}$, $\overrightarrow{M_0M_1}$, \overrightarrow{S} лежать в одній площині, тобто вони компланарні. За умовою компланарності трьох векторів маємо

$$\begin{vmatrix} x-1 & y & z+1 \\ 2 & -1 & -2 \\ -2 & 2 & 4 \end{vmatrix} = 0, \quad \text{afo} \quad 0 \cdot (x-1) - 4y + 2 \cdot (z+1) = 0.$$

Звідки 2y - z - 1 = 0 - шукане рівняння площини.

5 Криві другого порядку

Еліпс	r^2 v^2		Центр еліпса - <i>O</i> (0; 0);
	$\left \frac{x^2}{a^2} + \frac{y^2}{b^2} \right = 1$	a > b	$A_1(-a; 0), A_2(a; 0), B_1(0; -b),$
			$B_2(0; b)$ – вершини еліпса,
		$x = -\frac{a}{\varepsilon} x = \frac{a}{\varepsilon}$	$F_1(-c; 0), F_2(c; 0)$ – фокуси;
		$\left \begin{array}{c ccc} \varepsilon & \varepsilon & \varepsilon \\ B_2 & \end{array}\right $	2a – велика вісь, $2b$ – мала
		$ \begin{array}{c cccc} F_1 & F_2 \\ \hline A_1 & O & A_2 x \end{array} $	вісь, $a > b$, $\varepsilon = \frac{c}{a}$, $0 < \varepsilon < 1$
		B_1	- ексцентриситет;
			$a^2 = b^2 + c^2, \ a > c;$
			$x = \pm \frac{a}{\varepsilon}$ - рівняння
			директрис.
		b > a	Центр еліпса - <i>O</i> (0; 0);
		A 11	b > a; $2a$ — мала вісь;
		$\frac{\mathbf{T}^{y}}{h}$	$F_1(0; -c), F_2(0; c)$ – фокуси;
		$y = \frac{b}{\varepsilon}$ F_2	$b^2 = a^2 + c^2, b > c, \varepsilon = \frac{c}{b},$
		A_1 O A_2 x	$0 < \varepsilon < 1$ - ексцентриситет;
		$y = -\frac{b}{\varepsilon} \begin{vmatrix} F_I \\ B_I \end{vmatrix}$	$y = \pm \frac{b}{\varepsilon}$ - рівняння
		-	директрис.

Гіпер	2 2		Центр гіперболи - <i>O</i> (0; 0);
Гіпер-	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$a \qquad x = \frac{a}{}$	
бола	$a^2 b^2$	$\begin{vmatrix} x = -\frac{a}{\varepsilon} & x = -\\ & \varepsilon & & \varepsilon \end{vmatrix}$	$F_1(-c; 0), F_2(c; 0)$ – фокуси;
			2a – дійсна вісь, $2b$ –
		-a x	уявна вісь, $c^2 = a^2 + b^2$,
		F_1 A_1 A_2 F_2	$c > a;, \ \varepsilon = \frac{c}{a}, \ \varepsilon > 1$
			ексцентриситет; $x = \pm \frac{a}{\varepsilon}$ -
			рівняння директрис.
			$A_1(-a; 0), A_2(a; 0) -$
			вершини, $y = \pm \frac{b}{a}x$ -
			рівняння асимптот.
	y^2 x^2		Спряжена гіпербола.
	$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$		$O(0; 0)$ – центр; $F_1(0; -c)$,
		\$\dagger{\partial}{y}	$F_2(0; c)$ – фокуси; $2a$ –
		$B_2 \stackrel{F_2}{b} y = -\frac{b}{a}$	уявна вісь, $2b$ – дійсна
		ϵ	вісь, $B_1(0; -b), B_2(0; b)$ —
		y = b	вершини, $c^2 = a^2 + b^2$,
		F_1 ε	$c > b$; $\varepsilon = \frac{c}{b}$, $\varepsilon > 1$ -
			ексцентриситет; $y = \pm \frac{b}{\varepsilon}$ -
			рівняння директрис;
			$y = \pm \frac{b}{a}x$ - рівняння
			асимптот.

-		I	[n
Пара	$y^2 = 2px,$		Вершина параболи -
бола	p > 0	. 🗛	O(0; 0); p>0 — параметр;
		$x = -\frac{p}{2}$	$F\left(\frac{p}{2};0\right) - \text{фокус}; \ x = -\frac{p}{2}$
			- рівняння директриси;
		O M_2 X	$M_1\left(\frac{p}{2};p\right), M_2\left(\frac{p}{2};-p\right)$
			точки перетину фокальної
			хорди з параболою.
			Гілки параболи – вздовж
			додатного напряму осі Ох
	$y^2 = -2px,$		Вершина параболи -
	p > 0		O(0; 0); p>0 — параметр;
		† y	$F\left(-\frac{p}{2};0\right) - \text{фокус}; \ x = \frac{p}{2}$
		$X = \frac{p}{2}$	- рівняння директриси;
			$M_1\left(-\frac{p}{2};p\right), M_2\left(-\frac{p}{2};-p\right)$
		M_2	- точки перетину
			фокальної хорди з
			параболою.
			Гілки параболи – вздовж
			від'ємного напряму осі Ох

x^{2}	$^2 = 2py$,		Вершина параболи -
p	> 0		O(0; 0); p>0 – параметр;
		$M_1 = -\frac{p}{2}$ $y = -\frac{p}{2}$	$F\left(0; \frac{p}{2}\right)$ - фокус; $y = -\frac{p}{2}$ - рівняння директриси; $M_1\left(-p; \frac{p}{2}\right), M_2\left(p; \frac{p}{2}\right)$ - точки перетину фокальної хорди з параболою. Гілки параболи — вздовж додатного напряму осі Oy
<u> </u>	$^2 = -2py$,		Вершина параболи -
	0 > 0		O(0; 0); p>0 – параметр;
		$y = \frac{p}{2}$ O M_1 F M_2	$F\left(0; -\frac{p}{2}\right)$ - фокус; $y = \frac{p}{2}$ - рівняння директриси; $M_1\left(-p; -\frac{p}{2}\right), M_2\left(p; -\frac{p}{2}\right)$ -

Загальне рівняння кривих другого порядку:

$$Ax^2 + Cy^2 + 2Ex + 2Ey + F = 0$$

Після виділення повних квадратів дістаємо рівняння зсунутих кривих.

11	тнеля виділення новних квадратів дістаємо рівняння зсунутих кривих.				
Коло AC>0 (A=C)	$(x-x_0)^2 + (y-y_0)^2 = R^2$	y_0 O X_0 X_0	Центр кола $O_I(x_0; y_0)$, R — радіус кола		
Еліпс АС>0	$\frac{(x-x_0)^2}{a^2} + \frac{(y-y_0)^2}{b^2} = 1$	$x = x_0 - \frac{a}{\varepsilon}$ B_2 $A = x_0 - \frac{a}{\varepsilon}$ B_2 $A = x_0 - \frac{a}{\varepsilon}$ B_2 $A = x_0 - \frac{a}{\varepsilon} + x_0$ $A = x_0 - \frac{a}{\varepsilon}$ B_1 $A = x_0 - \frac{a}{\varepsilon}$ B_2 $A = x_0 - \frac{a}{\varepsilon}$ B_1	Центр еліпса - $O_I(x_0;y_0)$, $A_1(-a+x_0;y_0)$, $A_2(a+x_0;y_0)$, $B_1(x_0;-b+y_0)$, $B_2(x_0;b+y_0)$ - вершини еліпса, $F_1(-c+x_0;b_0)$, $(c+x_0;b_0)$ - фокуси; $\varepsilon = \frac{c}{a}$, $0 < \varepsilon < 1$ - ексцентриситет; $a^2 = b^2 + c^2$, $a > c$; $x = \pm \frac{a}{\varepsilon} + x_0$ - рівняння директрис.		

	-	$b > a$ y_0 y_0 y_0 A_1 y_0 y_0 A_1 y_0 y_0 A_1 y_0 F_2 A_1 F_2 F_3 F_4 F_5 F_7 F_8 $F_$	Центр еліпса - $O_I(x_0; y_0)$, $A_1(-a+x_0;y_0)$, $A_2(a+x_0;y_0)$, $B_1(x_0; -b+y_0)$, $B_2(x_0; b+y_0)$ - вершини еліпса, $F_1(x_0; -c+y_0)$, $F_2(x_0; c+y_0)$ - фокуси; $\varepsilon = \frac{c}{b}$, $0 < \varepsilon < 1$ - ексцентриситет; $b^2 = a^2 + c^2$, $b > c$; $y = \pm \frac{b}{\varepsilon} + y_0$ - рівняння директрис.
Гіпер- бола <i>AC</i> <0	$\frac{(x-x_0)^2}{a^2} - \frac{(y-y_0)^2}{b^2} = 1$	$x = -\frac{a}{\varepsilon} + x_0 \qquad x = \frac{a}{\varepsilon} + x_0$ $y_0 \qquad a \qquad b \qquad A_2 F_2$ $O \qquad x_0 \qquad x$	Гіпербола з центром в точці $O_I(x_0; y_0)$; $F_1(-c+x_0; y_0)$, $F_2(c+x_0; y_0)$ — фокуси; $A_1(-a+x_0;y_0)$, $A_2(a+x_0;y_0)$ — вершини, $c^2=a^2+b^2$, $c>a$; $\varepsilon=\frac{c}{a}$, $\varepsilon>1$ — ексцентриситет; $x=\pm\frac{a}{\varepsilon}+x_0$ — рівняння директрис, $y-y_0=\pm\frac{b}{a}(x-x_0)$ — рівняння асимптот.

	$\frac{(y-y_0)^2}{b^2} - \frac{(x-x_0)^2}{a^2} = 1$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Центр гіперболи $O_I(x_0; y_0); F_1(x_0; -c + y_0),$ $F_2(x_0; c + y_0) - \phi$ окуси; $B_1(x_0; -b + y_0),$ $B_2(x_0; b + y_0) - \text{вершини}; \varepsilon = \frac{c}{b}, \varepsilon > 1$ - ексцентриситет; $y = \pm \frac{b}{\varepsilon} + y_0$ - рівняння директрис, $y - y_0 = \pm \frac{b}{a}(x - x_0)$ - рівняння асимптот.
Пара- бола $AC=0$, $C \neq 0$	$(y-y_0)^2 = 2p(x-x_0),$ p > 0	$x = -\frac{p}{2} + x_0$ y_0 y_0 Q_1 X	Вершина параболи — $O_I(x_0; y_0)$; $F\left(\frac{p}{2} + x_0; y_0\right) - \phi$ окус; $x = -\frac{p}{2} + x_0$ - рівняння директриси; вісь симетрії — пряма $y = y_0$.

	$(y-y_0)^2 = -2p(x-x_0),$ p > 0	$y_0 = \frac{y}{2} + x_0$ $x = \frac{p}{2} + x_0$ $x_0 = \frac{p}{2} + x_0$	Вершина параболи — $O_I(x_0; y_0); p>0$ — параметр; $F\left(-\frac{p}{2}+x_0; y_0\right)$ - фокус; $x=\frac{p}{2}+x_0$ - рівняння директриси; вісь симетрії — пряма $y=y_0$.
<i>A</i> ≠0, <i>C</i> =0	$(x - x_0)^2 = 2p(y - y_0),$ p > 0	y_0 $y = -\frac{p}{2} + y_0$ x_0	Вершина параболи - $O_I(x_0; y_0)$; $F\left(x_0; \frac{p}{2} + y_0\right) - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{окус}; \ y = -\frac{p}{2} + y_0 - \phi \text{okyc}$

$$(x - x_0)^2 = -2p(y - y_0),$$

$$p > 0$$

$$y = \frac{p}{2} + y_0$$

$$y_0$$

$$F$$

$$x_0$$

Вершина параболи - $O_I(x_0; y_0)$; $F\left(x_0; -\frac{p}{2} + y_0\right) - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{окус}; \ y = \frac{p}{2} + y_0 - \phi \text{okyc}; \ y = \frac{p}{2} + y_0 -$

Приклад № 10. Дано точки A(6; 4), B(0; -4). Записати рівняння кола, діаметром якого є відрізок AB.

Рис. 5

Розв'язання. Рівняння кола має вигляд $(x-x_0)^2+(y-y_0)^2=R^2$ (рис. 5). Знаходимо діаметр кола. Маємо

$$|AB| = \sqrt{(6-0)^2 + (4+4)^2} = 10$$
. Тоді $R = \frac{|AB|}{2} = 5$.

Центр кола знаходиться в точці $O_1(x_0; y_0)$ – посередині відрізка AB. Тому

$$x_{O_1} = \frac{x_A + x_B}{2} \Rightarrow x_{O_1} = \frac{6+0}{2} = 3;$$

$$y_{O_1} = \frac{y_A + y_B}{2} \Rightarrow y_{O_1} = \frac{4 - 4}{2} = 0.$$

Отже, $O_1(3; 0)$ і рівняння шуканого кола має вигляд $(x-3)^2+y^2=25$.

6 Полярна система координат

Полярна система координат визначається деякою точкою O – полюсом, променем, що починається в точці O – полярною віссю, і масштабною одиницею на полярній осі.

Точка M на площині визначається координатами ρ та φ , де ρ – відстань від