Organizační úvod

Přednášky budou nahrávány, referáty ne.

Kontaktovat přes e-mail slavikova@karlin.mff.cuni.cz

Teoretické příklady odevzdávat přes Moodle.

1 Prvočísla

Definice 1.1 (Dělitel)

Číslo $d \in$ nazýváme dělitelem čísla $n \in$, značeno $d \div n$, pokud existuje $k \in$ splňující n = kd.

Definice 1.2 (Prvočíslo)

Řekněme, že $n \in$ je prvočíslo, pokud n > 1 a jeho jediní kladní dělitelné jsou $1 \geq n$.

Například (Několik prvních prvočísel) 2, 3, 5, 7, 11, 13, 17, ...

Věta 1.1 (Základní věta aritmetiky)

Každ'e přirozen\'e číslo $n \geq 2$ lze zapsat právě jedním způsobem jako součin prvočísel ve tvaru:

$$n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

$$k \in N, p_1 < p_2 < \cdots < p_k jsou \ prvočísla, \alpha_1, \dots, \alpha_k \in$$

\(\text{Například} \)

$$2020 = 2^2 \cdot 5 \cdot 101(k = 3, p_1 = 2, p_2 = 5, p_3 = 101, \alpha_1 = 2, \alpha_2 = 1, \alpha_3 = 1)$$

 $D\mathring{u}kaz$

1. krok = existence rozkladu (indukcí):

Pro n=2 zjevně platí $2=2^1$ $(k=1,p_1=2,\alpha_1=1).$

Předpokládejme, že tvrzení platí pro všechna $2 \le x \le n$. Pokud je n+1 prvočíslo, pak $n+1=(n+1)^1$ $(k=1,p_1=n+1,\alpha_1=1)$. Pokud není, pak $n+1=a\cdot b$, kde $1 < a \le b < n+1$. Podle indukčního předpokladu lze a i b rozložit na prvočísla. Zápis rozkladu n+1 pak bude sjednocením všech prvočísel a součtem příslušných α , pokud se prvočísla vyskytují v a i b. (V přednášce byl zaveden zápis bez mocnin, kde prvočísla nemusí být různá, a pak proveden součin.)

2. krok = jednoznačnost rozkladu:

Lemma 1.2 (Euklidovo lemma (bez důkazu))

Nechť $a,b \in a$ nechť p je prvočíslo takové, že $p \mid ab$. Pak $p \mid a$ nebo $p \mid b$.

Použijeme důkaz sporem. Předpokládejme, že tvrzení neplatí. Vybereme nejmenší z přirozených čísel, pro které rozklad není jednoznačný. Označme ho n.

$$n = q_1 \cdots q_l = r_1 \cdot r_m \ (q_1, \dots, q_l, r_1, \dots, r_m \text{prvočísla})$$

A není pravda, že (r_1, \ldots, r_m) je permutací (q_1, \ldots, q_l) .

Protože $q_1 \mid n$, pak $q_1 \mid r_1 \cdots r_m$ a podle Euklidova lemmatu q_1 dělí alespoň jedno z čísel $r_1, \ldots r_m$. BÚNO $q_1 \mid r_1$, tedy $q_1 = r_1$. Vydělením n číslem q_1 dostaneme menší přirozené číslo, které nemá jednoznačný rozklad. $\left(\frac{n}{q_1} = q_2 \cdots q_l = r_2 \cdots r_m\right)$.

Věta 1.3

Prvočísel je nekonečně mnoho.

 $D\mathring{u}kaz$

Důkaz sporem. Předpokládejme, že prvočísel je konečně mnoho, a označme p největší prvočíslo. Definujeme:

$$n_p = 2 \cdot 3 \cdot 5 \cdot \cdots \cdot p + 1$$

Pak $n_p > p$ a n_p dává zbytek 1 po dělení všemi prvočísly, tedy není ani jedním dělitelné. Tedy n_p nemá prvočíselný rozklad. se základní větou aritmetiky.

Poznámka

Důkaz nedává konstrukci vyššího prvočísla, pouze dokazuje jeho existenci.

Například

Mezi 1 a 100 je 25 prvočísel.

Mezi 10^7 a $10^7 + 100$ jsou pouze 2 prvočísla.

 $Označme \Pi(N) počet prvočísel \leq N.$

Existují konstanty $c_1, c_2 > 0$ takové, že

$$\frac{c_1}{\log N} \le \frac{\Pi(N)}{N} \le \frac{c_2}{\log N}$$

Poznámko

Prvočísel je nekonečně mnoho, ale "řídnou". Musí tedy existovat dlouhé úseky bez prvočísel.

Například

Interval $[n!+2,\dots,n!+n]$ neobsahuje žádné prvočíslo. (Jeliko
žk-té číslo je dělitelné k+1.)

2 Čísla racionální a iracionální

Definice 2.1 (Racionální a iracionální číslo)

Číslo $x \in$ je racionální, pokud ho lze zapsat ve tvaru $x = \frac{p}{q}, \ q \in$, $p \in$.

Číslo $y \in$ je iracionální, pokud není racionální.

Například (Z přednášky)

 $\sqrt{2}$ je iracionální.

Věta 2.1

Nechť $n \in je \ taková, \ \check{z}e \ \sqrt{n} \notin \ (tedy \ n \ není \ druhou \ mocninou \ přirozeného \ \check{c}isla).$ Pak \sqrt{n} je iracionální.

Lemma 2.2

Jsou-li p, q nesoudělná, pak p², q² jsou také nesoudělná.

 $D\mathring{u}kaz$

Dle základní věty aritmetiky každé přirozené číslo lze rozložit na součin prvočísel. Rozložíme a dokážeme. $\hfill\Box$

Důkaz (Sporem)

Předpokládejme, že \sqrt{n} je racionální, ale není to celé číslo. Pak $\sqrt{n}=\frac{p}{q}$, kde p,q jsou nesoudělná přirozená čísla $(q\geq 2)$. Umocníme: $n=\frac{p^2}{q^2}$. q|p lightning.

Věta 2.3 (Referát 1)

Existují iracionální čísla a,
b taková, že a^b je racionální. (Text: skripta z MA, str. 14--15.)

 $D\mathring{u}kaz$

Buď
$$\sqrt{2}^{\sqrt{2}}$$
 nebo $(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^2 = 2$

Příklad (Teoretický příklad 1)

Nechť $n \in a$ nechť a_1, \ldots, a_n jsou kladná reálná čísla, taková, že $a_1 \cdot \cdots \cdot a_n = 1$.

Dokažte, že

$$(1+a_1)\cdot\cdots\cdot(1+a_n)\geq 2^n.$$

Příklad (Teoretický příklad 2)

Nalezněte supremum a infimum množiny

$$\left\{\sqrt{n} - \lfloor \sqrt{n} \rfloor : n \in \mathbb{N}\right\}$$

3 Mohutnost množin

Definice 3.1

Množiny X, Y mají stejnou mohutnost, pokud existuje bijekce X na Y. Značíme $\mathbb{X} \approx \mathbb{Y}$.

Množina $\mathbb X$ má mohutnost menši nebo rovnu mohutnosti $\mathbb Y$, pokud existuje prosté zobrazení $\mathbb X$ do $\mathbb Y$. Značíme $\mathbb X \preceq \mathbb Y$.

Množina $\mathbb X$ má menší mohutnost než $\mathbb Y,$ pokud $\mathbb X \preceq \mathbb Y,$ ale neplatí $\mathbb Y \preceq \mathbb X.$ Značíme $\mathbb X \prec \mathbb Y.$

Věta 3.1

 $(Cantor\text{-}Bernstein) \ Necht \ \mathbb{X} \ a \ \mathbb{Y} \ \textit{jsou mno\@iny splňuj\'ec\'i} \ \mathbb{X} \preceq \mathbb{Y} \ a \ \mathbb{Y} \preceq \mathbb{X}, \ pak \ \mathbb{X} \approx \mathbb{Y}.$

Lemma 3.2

Nechť \mathbb{X} je množina a $H : \mathcal{P}(\mathbb{X}) \to \mathcal{P}(\mathbb{X})$ je zobrazení splňující podmínku $\forall \mathbb{A}, \mathbb{B} \in \mathcal{P}(\mathbb{X}) : \mathbb{A} \subset \mathbb{B} \implies H(\mathbb{A}) \subset H(\mathbb{B})$. Pak existuje $\mathbb{C} \subset \mathbb{X}$ takové, že H(C) = C.

$D\mathring{u}kaz$

Položme $\mathcal{C} = \{\mathbb{A} \in \mathcal{P}(\mathbb{X}) : \mathbb{A} \subset H(\mathbb{A})\}$. Ukážeme, že $\mathbb{C} = \bigcap \mathcal{C}$ je hledanou množinou. $C \subset \mathbb{X}$ je zřejmé, $C \subset H(C)$: Pokud $\mathbb{A} \in \mathcal{C}$, pak $\mathbb{A} \subset C$, pak z vlastnosti zobrazení plyne $H(\mathbb{A}) \subset H(\mathbb{C})$. Tedy $\mathbb{A} \subset H(\mathbb{A}) \subset H(\mathbb{C})$. Z definice \mathbb{C} dostáváme $C \subset H(\mathbb{C})$. Nakonec musíme ještě dokázat $H(\mathbb{C}) \subset \mathbb{C}$. Z $\mathbb{C} \subset H(\mathbb{C})$ a z vlastnosti zobrazení $H(\mathbb{C}) \subset H(H(\mathbb{C}))$ TODO! $H(\mathbb{C}) \subset \mathbb{C}$.

$D\mathring{u}kaz$

Předpokládáme $\mathbb{X} \leq \mathbb{Y} \implies$ existuje prosté zobrazení $f: \mathbb{X} \to \mathbb{Y}$ a $\mathbb{Y} \leq X \implies$ existuje prosté zobrazení $f: \mathbb{Y} \to \mathbb{X}$.

Definujeme $H: \mathcal{P}(\mathbb{X}) \to \mathcal{P}(\mathbb{X})$ předpisem $H(\mathbb{A}) = \mathbb{X} \setminus g(\mathbb{Y} \setminus f(\mathbb{A}))$. (Pozorování, jestliže $f = g^{-1}$ je prosté a na, tak H je identita.) Nyní ověříme předpoklady Lemmatu.

Necht $\mathbb{U} \subset \mathbb{V} \subset \mathbb{X}$. Pak $f(\mathbb{U}) \subset f(\mathbb{V}) \Longrightarrow \mathbb{Y} \setminus f(\mathbb{V}) \subset \mathbb{Y} \setminus f(\mathbb{U}) \Longrightarrow g(\mathbb{Y} \setminus f(\mathbb{V})) \subset g(\mathbb{Y} \setminus f(\mathbb{U})) \Longrightarrow \mathbb{X} \setminus g(\mathbb{Y} \setminus f(\mathbb{U})) \subset \mathbb{X} \setminus g(\mathbb{Y} \setminus f(\mathbb{V})) \Longrightarrow H(\mathbb{U}) \subset H(\mathbb{V}).$

Dle lemmatu existuje $\mathbb{C} \subset \mathbb{X}$ takové, že $H(\mathbb{C}) = \mathbb{C}$. Pak $\mathbb{C} = H(\mathbb{C}) = \mathbb{X} \setminus g(\mathbb{Y} \setminus f(\mathbb{C}))$, $g(\mathbb{Y} \setminus f(\mathbb{C})) = \mathbb{X} \setminus \mathbb{C}$. Tedy $g|_{\mathbb{Y} \setminus f(\mathbb{C})}$ je prosté zobrazení $\mathbb{Y} \setminus f(\mathbb{C})$ ne $\mathbb{X} \mid \mathbb{C}$, a tedy $g^{-1}|_{\mathbb{X} \setminus \mathbb{C}}$ je prosté zobrazení $\mathbb{X} \setminus \mathbb{C}$ na $\mathbb{Y} \setminus f(\mathbb{C})$. Navíc jistě $f|_{\mathbb{C}}$ je prosté zobrazení \mathbb{C} na $f(\mathbb{C})$

Definujeme $h(a)=f(a), a\in\mathbb{C}|h(a)=g^{-1}(a), a\in\mathbb{X}\setminus\mathbb{C}.$ Potom h je prosté zobrazení \mathbb{X} na $\mathbb{Y}.$

4 Aritmetický, geometrický a harmonický průměr

Definice 4.1

Nechť $x_1, \ldots, x_n > 0$. Definujeme jejich

- aritmetický průměr jako $A_n = \frac{x_1 + \dots + x_n}{n}$.
- geometrický průměr jako $G_n = \sqrt[n]{x_1 \cdot \dots \cdot x_n}$
- harmonický průměr jako $H_n = \frac{n}{\frac{1}{x_1} + \ldots + \frac{1}{x_n}}$

Věta 4.1 (AGH nerovnost)

$A_n \ge G_n \ge H_n$

Poznámka (Pozorování)

Nerovnost $G_n \ge H_n$ snadno plyne z $A_n \ge G_N$, stačí dosadit $x_i = \frac{1}{y_i}$. Stačí ukázat nerovnost $A_n \ge G_n$.

Důkaz (1. Zpětnou indukcí)

Dokážeme pro mocniny 2. Následně dosadíme za jedno x geometrický průměr těch ostatních a budeme "indukovat" zpět.

Důkaz (2. Indukcí)

Dokážeme pro 1.

Chceme odhadnout aritmetický průměr n+1 čísel. Použijeme indukční předpoklad pro n čísel, jejichž aritmetický průměr je stejný. Za tato čísla zvolíme $x_1, \ldots, x_{n-1}, x_n'$, kde x_n' je doplnění, aby byly shodné aritmetické průměry. x_n' vyjádříme. Upravíme, řekneme, že x_n a x_{n+1} jsme zvolili, že budou nejmenší a největší číslo.

Poznámka (2. referát)

Existuje i aritmeticko-geometrický průměr a aritmeticko-harmonický průměr (je roven geometrickému).

Příklad (3. teoretický)

Najděte všechna celá čísla m splňující

 $(1+m)^n \ge 1 + mn, \forall n \in \mathbb{N}$