Clustering Analysis of Mobility Data

Miriam Wagner, Martin Breuer, Moritz Werthebach, Timo Bergerbusch, and Walter Schikowski

RWTH Aachen, Templergraben 55, 52062 Aachen, Germany

Abstract. The abstract should briefly summarize the contents of the paper in 150–250 words.

Keywords: Clustering · Rapidminer · Cluster · Data Mining

1 Introduction

2 Preprocessing

- max equal of 2038 for a strata
- max equal of 595 per persona in strata
- vector calc.

2.1 Vector

Instead of simple IDs for every person we expand the parsing by using a data encapsulating in a class called Person. This class stores the ID, the parameters defining a person, and all movements from that person.

Then we are able to compute the following vector, with 848 entries, for further usage, that combines all movements of the person:

$$\underbrace{\frac{\#o_1,\ldots,\#o_{413},\#d_1,\ldots,\#d_{413}}_{2\cdot 413},\underbrace{AM,MD,PM,MN}_{4},\underbrace{\#r_1,\ldots,\#r_7}_{7},}_{ghost},\underbrace{SDest,SDist,G,A,strata,strataGrouped}_{6}$$

with the following abbreviations $(1 \le i \le 413, 1 \le j \le 7)$:

 o_i : the *i*-th origin data point d_i : the *i*-th destination data point d_i : the *i*-th destination data point d_i : the *i*-th destination data point d_i : $d_$

3 Predicting

3.1 Classification

3.2 Neural Net

Also we have a max. of 595 persons for strata 6 to have an equally distributed test set.

All using the vector data

We consider 3 neural nets $\mathcal{N}_1, \mathcal{N}_2$ and \mathcal{N}_3 , all having 4 hidden layers, 50 epochs and 10 iterations. As an example of other strata aggregation we combine the stratas 1–2, 3–4 and 5–6 together and call them \mathcal{N}_i^{\star} , for $i \in \{5, 10, 20\}$. For that we take an equal distribution of all original stratas and map them correspondingly to the new stratas.

	#		Set size		
Name	Neurons	AG	100	200	595
\mathcal{N}_5	5	X	60.03	59.92	60.18
\mathcal{N}_5^{\star}	5	1	87.6	89.7	71.05
\mathcal{N}_{10}	10	×	75.83	73.54	69.56
\mathcal{N}_{10}^{\star}	10	1	92.93	93.48	74.58
\mathcal{N}_{20}	20	X	75.45	71.14	61.87
\mathcal{N}_{20}^{\star}	20	✓	92.87	94.4	78.32

Fig. 1: The accuracy values of the neural nets. (See excel-spreadsheet)

If we take 50 neurons per layer we have $14 \cdot 50^4 \cdot 6 \approx 525.000.000$ synapses for which the input data set would be to small to have sufficient training.

The greater the population, the more the borders between the stratas blur.