The pro-isomorphic zeta-functions of some nilpotent Lie algebras over integer rings

Research proposal for a Ph.D. Thesis Under the supervision of Dr. Michael M. Schein Department of Mathematics, Bar-Ilan University

Haim Lavi

September 20, 2024

Contents

1	Scientific Background								
	1.1	Introduction	3						
	1.2	Linearization	5						
	1.3	p-adic Integration	6						
2	Research Goals and Methodology 7								
	2.1	The Lie algebras $L_{n,p}$	7						
	2.2	Research goals	8						
	2.3	$L_{n,p}$ -Lie algebras for $n > 3$	9						
	2.4	Preliminary results	10						
	2.5	Base Extension	13						

Abstract

Let G be any group. For any natural number $n \in \mathbb{N}$, let $a_n(G)$ be the number of subgroups $H \leq G$, such that [G:H] = n. Assume G is finitely-generated, then $a_n(G) < \infty$, and we can define a Dirichlet series of the form $\zeta_G(s) := \sum_{n=1}^{\infty} a_n(G) n^{-s}$, where $s \in \mathbb{C}$. Assume, in addition, that G is also nilpotent and torsion-free, then this function has some properties of the Riemann zeta-function ζ , such as the Euler decomposition of ζ into a product of local factors indexed by primes. A version of this zeta-function counts pro-isomorphic subgroups, and an analogous function may be defined for appropriate Lie rings. We study here the pro-isomorphic zeta-functions for a family of nilpotent Lie rings of unbounded nilpotency class. We shall compute the automorphism groups of these Lie rings explicitly, prove uniformity of the local factors of the pro-isomorphic zeta-functions, and aim to determine them explicitly.

1 Scientific Background

1.1 Introduction

Although we will work with Lie algebras, for motivation we first present analogous and more natural questions in the context of groups.

Proposition 1.1.1. Let G be any finitely generated group, and let $n \in \mathbb{N}$ be any natural number. Then there is a finite number of subgroups $H \leq G$, such that [G:H] = n

This proposition gives rise to an entire branch of group theory, called **subgroup growth**. We denote by $a_n(G) = a_n^{\leq}(G) := |\{H \leq G : [G : H] = n\}|$ the number of subgroups of G of index n, and look at the sequence $\{a_n(G)\}_{n=1}^{\infty}$. The subject of subgroup growth aims to relate the properties of this sequence to the algebraic structure of G. We denote by $a_n^{\leq}(G) := |\{H \leq G : [G : H] = n\}|$ the number of **normal** subgroups of G. Now we define another type of subgroups of G.

Definition 1.1.2. Let G be any group, and let $\mathcal{N}(G) := \{N_k \leq G\}_{k \in I}$ be the set of all normal subgroups of G. We define a partial order on $\mathcal{N}(G)$ by reverse inclusion, that is, for every two indices i, j we say that $i \leq j$ if and

only if $N_j \subseteq N_i$, hence for every $i \leq j$ there exists a natural projection map $\pi_{ji}: {}^G/N_j \to {}^G/N_i$. The inverse limit

$$\widehat{G} = \lim_{\leftarrow} \{ G/N_k \}_{k \in I} := \{ (h_k)_{k \in I} \in \prod_{k \in I} G/N_k : \pi_{ji}(h_j) = h_i, \forall i \leq j \}$$

is called the **profinite closure** of G.

Definition 1.1.3. Let G be any group. A subgroup $H \leq G$ is called **pro-**isomorphic if $\widehat{H} \cong \widehat{G}$.

We denote by $\hat{a}_n(G) := |\{H \leq G : \widehat{H} \cong \widehat{G}, [G : H] = n\}|$ the number of **pro-isomorphic** subgroups of G.

Definition 1.1.4. Let G be a finitely-generated group, and let $* \in \{ \leq, \leq, \land \}$, then we define zeta-functions of the form $\zeta_G^*(s) := \sum_{n=1}^{\infty} a_n^*(G) n^{-s}$.

Proposition 1.1.5. Let G be a \mathcal{T} -group, i.e. finitely-generated, nilpotent and torsion-free group, and let $* \in \{ \leq, \leq, \land \}$, then the zeta-functions for G have the following attributes:

Polynomial growth and convergence. $a_n(G) \leq Cn^b$, for some b, C constant, thus, for all *, we get that $\zeta_G^*(s)$ converges on some right half-plane $\text{Re}(s) > \alpha$, for α constant. The abscissa of convergence is $\alpha^* := \inf\{\alpha : \zeta_G^*(s) < \infty, \text{Re}(s) > \alpha\}$, and we have that $\alpha^* \in \mathbb{Q}$.

Euler decomposition. For all *, we have that $\zeta_G^*(s) = \prod_p \zeta_{G,p}^*(s)$, where $\zeta_{G,p}^*(s) = \sum_{k=0}^{\infty} a_{p^k}^*(G) p^{-ks}$.

Rationality. For all *, all p, there is a rational function $W_p^* \in \mathbb{Q}(X)$, such that $\zeta_{G,p}^*(s) = W_p^*(p^{-s})$.

Functional equation. Suppose we have finite uniformity, i.e. we have r rational functions $W_1^*(X,Y), \ldots, W_r^*(X,Y) \in \mathbb{Q}(X,Y)$, such that for all p, there is some $1 \leq i \leq r$ such that $\zeta_{G,p}^*(s) = W_i^*(p,p^{-s})$. We say W_i^* satisfies a functional equation if $W_i^*(X^{-1},Y^{-1}) = X^aY^bW_i^*(X,Y)$, where $a,b \in \mathbb{N} \cup \{0\}$, X^aY^b being called the symmetry factor. Thus, if G is a T-group, then $\zeta_{G,p}^{\leq}(s)$ satisfies a functional equation, for all but finitely many p, with the same symmetry factor. If G is a T-group of nilpotency class 2, same is true for $\zeta_{G,p}^{\leq}(s)$.

If any zeta-function, which is a special case of the Dirichlet series, has some properties of convergence on some subset of \mathbb{C} , one may reconstruct its

coefficients $a_n^*(G)$, the number of subgroups of our interest, using the **Perron's formula**, which is an implementation of a **reverse Mellin transform**, as discussed, for example, in [7], but this discussion is out of the scope of our research.

This research concentrates on the growth of **pro-isomorphic** subgroups defined above, hence we shall restrict our further discussion to the pro-isomorphic case only. For example, we look at the additive group of integers $G = (\mathbb{Z}, +)$, for which, every subgroup $H \leq \mathbb{Z}$ is of the form $H = n\mathbb{Z} = \langle n \rangle$, for some $n \in \mathbb{N}$, which means that $H \cong \mathbb{Z}$, as both are infinite cyclic groups, and so, $\widehat{H} \cong \widehat{\mathbb{Z}}$. Since we have only one subgroup of index n, for every $n \in \mathbb{N}$, then $a_n(\mathbb{Z}) = \widehat{a_n}(\mathbb{Z}) = 1$. Thus, its pro-isomorphic zeta-function is $\widehat{\zeta}_{\mathbb{Z}}(s) = \sum_{i=1}^{\infty} n^{-s} = \zeta(s)$, the Riemann zeta-function, which is known to converge for $\operatorname{Re}(s) > 1$. We recall that the Riemann zeta-function decomposes into an infinite product of local zeta-functions, that is, $\zeta(s) = \prod_p \zeta_p(s) = \prod_p \sum_{k=0}^{\infty} p^{-ks} = \prod_p \frac{1}{1-p^{-s}}$, where the product runs over all the prime numbers.

1.2 Linearization

We want to transfer the ideas from the above discussion about groups to a linear context, where we can use tools from linear algebra. Hence, for finitely-generated torsion-free nilpotent groups G, we associate nilpotent Lie algebras over \mathbb{Z} . This, in general, is called the **Mal'cev correspondence**. If L is a \mathbb{Z} -Lie algebra, namely a free \mathbb{Z} -module of finite rank with a Lie bracket operation, then consider the number $\hat{a}_n(L)$ of subalgebras $M \leq L$, where n = [L : M], such that $M \otimes_{\mathbb{Z}} \mathbb{Z}_p \cong L \otimes_{\mathbb{Z}} \mathbb{Z}_p$, where \mathbb{Z}_p is the ring of p-adic integers, for all primes p, and it is also known that $\hat{a}_n(L) < \infty$ for all $n \in \mathbb{N}$. The Dirichlet series $\hat{\zeta_L}(s) := \sum_{n=1}^{\infty} \hat{a_n}(L) n^{-s}$, is called the **pro-isomorphic zeta-function** of L. By the Mal'cev correspondence, to every finitely-generated, nilpotent, torsion-free group G, one may associate a Lie algebra L = L(G), such that $\zeta_{G,p}(s) = \zeta_{L,p}(s)$, for all but finitely many primes p. If G has nilpotency class 2, one may obtain the equality for all primes. For this L, choose a basis $B = \{b_1, \ldots, b_r\}$, where r = rankL. Let $\mathcal{L}_p = L \otimes_{\mathbb{Z}} \mathbb{Q}_p$, for any p. This is a \mathbb{Q}_p -Lie algebra, and our choice of basis allows us to identify the automorphism group $G(\mathbb{Q}_p) = Aut_{\mathbb{Q}_p}(\mathcal{L}_p)$ with a subgroup of $GL_r(\mathbb{Q}_p)$. Note that \mathcal{L}_p contains a \mathbb{Z}_p -lattice, $L_p = L \otimes_{\mathbb{Z}} \mathbb{Z}_p$. If $\varphi \in G(\mathbb{Q}_p)$, then $\varphi(L_p) = L_p$ if and only if $\varphi \in G(\mathbb{Z}_p) = G(\mathbb{Q}_p) \cap GL_r(\mathbb{Z}_p)$. Here $GL_r(\mathbb{Z}_p)$ is the group of $r \times r$ matrices which are invertible over \mathbb{Z}_p .

Similarly, $\varphi(L_p) \subseteq L_p$ if and only if $\varphi \in G^+(\mathbb{Q}_p) := G(\mathbb{Q}_p) \cap \mathcal{M}_r(\mathbb{Z}_p)$, where $\mathcal{M}_r(\mathbb{Z}_p)$ is the collection of $r \times r$ matrices with entries in \mathbb{Z}_p . Note that $G^+(\mathbb{Q}_p)$ is a monoid, not a group.

Denote by $G(\mathbb{Z}_p)g$, where $g \in G^+(\mathbb{Q}_p)$, a right-coset of $G(\mathbb{Z}_p)$. One checks that the monoid $G^+(\mathbb{Q}_p)$ is a disjoint union of right-cosets of $G(\mathbb{Z}_p)$.

The discussion above reveals the construction we base our research upon. We observe that there is a bijection between the set $G(\mathbb{Z}_p)\backslash G^+(\mathbb{Q}_p)$ of right-cosets of $G(\mathbb{Z}_p)$ and the set $\{M \leq L_p : M \cong L_p\}$ of L_p -subalgebras which are isomorphic to L_p itself. This bijection takes $G(\mathbb{Z}_p)g$ to $M = \varphi(L_p)$. For any $\varphi \in G(\mathbb{Z}_p)g$, this is well-defined. One checks that for every $\psi \in G(\mathbb{Z}_p)g$, we have that $\psi(L_p) = \varphi(L_p) = M$. We end this part, as a preparation for the final part of this technical background review, with the following result, which states that for each right-coset $G(\mathbb{Z}_p)g$, if $M = \varphi(L_p)$, where $\varphi \in G(\mathbb{Z}_p)g$, then $[L_p : M] = |\det \varphi|_p^{-1}$, where $|\det \varphi|_p$ is the p-adic norm of $\det \varphi$, and therefore,

$$\hat{\zeta_{L,p}}(s) = \sum_{\substack{M \le L_p \\ M \cong L_p}} [L_p : M]^{-s} = \sum_{G(\mathbb{Z}_p)\varphi \in G(\mathbb{Z}_p) \backslash G^+(\mathbb{Q}_p)} |\det \varphi|_p^s.$$

Theorem 1.2.1. Let $* \in \{ \leq, \leq, \wedge \}$, then $\zeta_{L,p}^*(s)$ is rational, i.e. there is a rational function in one variable $W_p \in \mathbb{Q}(X)$ such that $\zeta_{L,p}^*(s) = W_p(p^{-s})$, for all p prime.

After establishing rationality for the local zeta-functions in the Euler decomposition of $\zeta_{L,p}^*(s)$, one may study the uniformity or finite-uniformity of $\zeta_L^*(s)$ itself, where ζ_L^* is said to be **finitely-uniform** if the local zeta-functions in its Euler decomposition are represented by a finite set of r rational functions, for all but finitely many p, and **uniform** if r = 1. The uniformity of the zeta-functions of some algebras is established in the work of Grunewald, Segal and Smith, see [5]. We aim to show that our target \mathbb{Z} -Lie algebra is uniform, or at least finitely-uniform.

1.3 p-adic Integration

Definition 1.3.1. Let Γ be a locally compact topological group, i.e. for all $\gamma \in \Gamma$, there is an open neighborhood of $\gamma \in U_{\gamma}$ and a compact subset K_{γ} , such that $U_{\gamma} \subset K_{\gamma}$. Then there is a measure μ , with the following property: for any measurable subset $U \subseteq \Gamma$ and any $\gamma \in \Gamma$, $\mu(U\gamma) = \mu(U)$, where $U\gamma := \{u\gamma : u \in U\}$. Such a measure μ is called a **right Haar measure**, and is unique up to multiplication by a non-zero constant.

Following this definition of a right Haar measure, we claim that for every prime number p, the group $G(\mathbb{Q}_p)$ is a locally compact topological group. We also claim that a right Haar measure μ on G can be normalized such that $\mu(G(\mathbb{Z}_p)) = 1$, and the normalized measure of any right-coset of $G(\mathbb{Z}_p)$ equals to the measure of $G(\mathbb{Z}_p)$ itself, i.e. for every $g \in G^+(\mathbb{Q}_p)$, we have that $\mu(G(\mathbb{Z}_p)g) = \mu(G(\mathbb{Z}_p)) = 1$. Following this, we calculate the p-adic norm of the determinant of every L_p -automorphism, as a p-adic integral over our measure space. Given any L_p -automorphism in some right-coset $\varphi \in G(\mathbb{Z}_p)\varphi$, we have that $|\det \varphi|_p^s = \int_{G(\mathbb{Z}_p)\varphi} |\det \varphi|_p^s d\mu$, because $\mu(G(\mathbb{Z}_p)\varphi) = 1$, and $|\det \varphi|_p^{-1}$ is fixed on $G(\mathbb{Z}_p)\varphi$.

To calculate our target function, we observe that

$$\hat{\zeta_{L,p}}(s) = \sum_{G(\mathbb{Z}_p)\varphi \in G(\mathbb{Z}_p)\backslash G^+(\mathbb{Q}_p)} |\det \varphi|_p^s = \sum_{G(\mathbb{Z}_p)\varphi \in G(\mathbb{Z}_p)\backslash G^+(\mathbb{Q}_p)} \int_{G(\mathbb{Z}_p)\varphi} |\det \varphi|_p^s d\mu = \int_{G^+(\mathbb{Q}_p)} |\det \varphi|_p^s d\mu.$$

This calculation of the local ζ_p -function as a p-adic integral was established by the work of du Sautoy and Lubotzky, in [3], and we aim to study this integral and its attributes, where the integrand and domain of integration come from our target \mathbb{Z}_p -Lie algebra.

2 Research Goals and Methodology

2.1 The Lie algebras $L_{n,p}$

Let e_{ij} be an $n \times n$ matrix, in which all the elements are zero, except for the element in row i and column j which has 1. On the set $E = \{e_{ij} : 1 \le i \le n-1 \land i+1 \le j \le n\}$ we define a bracket operation: for every $1 \le k, l \le n-1$, define $[e_{k,k+1}, e_{l,l+1}] := e_{k,k+1}e_{l,l+1} - e_{l,l+1}e_{k,k+1}$. Let \mathcal{R} be some commutative ring, then the standard operation of \mathcal{R} on E through scalar multiplication, along with the defined bracket operation, form a nilpotent \mathcal{R} -Lie algebra. Considering $\mathcal{R} = \mathbb{Z}$, we obtain a nilpotent \mathbb{Z} -Lie algebra of strictly upper triangular matrices over \mathbb{Z} , which we denote by L_n , with the bracket operation defined above as its Lie bracket. As discussed above, this \mathbb{Z} -Lie algebra can be extended to a \mathbb{Z}_p -algebra, which we denote by $L_{n,p}$, and then to a \mathbb{Q}_p -algebra, which we denote by $\mathcal{L}_{n,p}$. In all the following, we may set n and p, and denote $L := L_{n,p}$ and $\mathcal{L} := \mathcal{L}_{n,p}$, for abbreviation. One checks

that the set of matrices of the form e_{ij} , where i < j, spans the whole \mathbb{Z} -Lie algebra L and is \mathbb{Z} -linearly independent, hence it forms a basis for L as a free module over \mathbb{Z} , namely $B := \{e_{12}, e_{13}, \ldots, e_{1n}, e_{23}, \ldots, e_{2,n}, \ldots, e_{n-1,n}\}$, which we call the **standard basis** of L. One also checks easily that $r = \operatorname{rank} L = |B| = \binom{n}{2}$, which is the number of elements above the main diagonal for every $n \in \mathbb{N}$. To this standard basis we apply a linear order by defining $e_{ij} < e_{kl}$ if j-i < l-k or if j-i = l-k and i < k. In other words, we apply an order that divides B to elements of the quotients $L/\gamma_2, \gamma_2/\gamma_3, \ldots, \gamma_{n-2}/\gamma_{n-1}, \gamma_{n-1}$. The same goes also for the extensions of L, namely $L_{n,p}$ and $L_{n,p}$. The target of our research is studying the zeta-function $\zeta_{L,p}$ on these \mathbb{Z}_p -Lie algebras, and the related constructions.

Remark 2.1.1. Let \mathcal{R} be a commutative ring, and let $\mathcal{U}_n(\mathcal{R})$ be the group of $n \times n$ upper unitriangular matrices over \mathcal{R} , with the standard matrix multiplication as the group operation. Denote by $\mathcal{U}_{n,p} = \mathcal{U}_n(\mathbb{Z}_p)$ the unitriangular matrix group over \mathbb{Z}_p , then by Mal'cev correspondence, $\zeta_{\mathcal{U}_{n,p}}(s) = \zeta_{L_{n,p}}(s)$, for all but finitely many primes p. This relates the subject of research to the motivation presented at the beginning of this paper.

2.2 Research goals

The project consists of three major steps:

- 1. Computing the automorphism group of the \mathbb{Q}_p -Lie algebras \mathcal{L} , for all $n \in \mathbb{N}$ and all primes p.
- 2. Showing that the pro-isomorphic zeta-functions $\hat{\zeta_{L_{n,p}}}(s)$ are uniform for all $n \in \mathbb{N}$.
- 3. Giving an explicit uniform formula for the zeta-functions $\hat{\zeta}_{L_{n,p}}(s)$ for specific values of n, if not for all $n \in \mathbb{N}$. Specifically for n = 5 we aim to continue the work of Mark N. Berman, who proved that $\hat{\zeta}_{L_{5,p}}(s)$ is uniform.

As we elaborate further, steps 1 and 2 are already known entirely for $n \leq 5$, and step 3 is known for $n \leq 4$. We start with the first step of calculating $Aut_{\mathbb{Q}_p}(\mathcal{L})$. These automorphism groups have been studied before from a different point of view, and there are classical results showing that any automorphism may be expressed as a product of automorphisms of a specific type; see, for instance, the main result of Gibbs [4]. These results are not explicit enough for our purposes; indeed, the submonoid $G^+(\mathbb{Q}_p)$ arises for us as the domain of integration of a p-adic integral. In order to calculate

this integral, we need to decompose the automorphism group $G(\mathbb{Q}_p)$ into a repeated semi-direct product of groups with a simple structure.

After we have analyzed the structure of $G(\mathbb{Z}_p)$, we will need to construct the monoid $G^+(\mathbb{Q}_p)$ and its $G(\mathbb{Z}_p)$ right-cosets, as we have seen above. This will give us both the function to integrate, which is $\det \varphi$ for every $G(\mathbb{Z}_p)$ right-coset $G(\mathbb{Z}_p)\varphi$, and the domain of integration, which is the monoid $G^+(\mathbb{Q}_p)$. We will use this information to analyze the behavior of the padic integral we have described above and prove that its calculation depends only on p, thus showing that the $\zeta_{L,p}$ -function is uniform.

2.3 $L_{n,p}$ -Lie algebras for $n \geq 5$

Mark N. Berman, in his doctoral thesis [1], has displayed an explicit formula for $\zeta_{L_{4,p}}$, and proved that $\zeta_{L_{5,p}}$ is indeed uniform. We aim to generalize his work to prove that $\zeta_{L_{n,p}}$ is uniform for all n. We also aim to compute $\zeta_{\mathcal{L}_{n,p}}(s)$ explicitly for all n, or at least to obtain explicit formulas for some $n \geq 5$, and specifically for n = 5. By analyzing carefully Berman's work on $L_{4,p}$ and $L_{5,p}$, we gain the basic understanding of the expected structure of the local zeta-functions in the general case. We begin our discussion of the first goal, which is computing $G(\mathbb{Z}_p)$, by first recalling that for every $v \in L_{n,p}$, where $n \geq 3$, we present $\varphi(v)$ as the multiplication of v by a matrix from the right $\varphi(v) = vM$. As stated earlier, M is an $r \times r$ matrix, where $r = \operatorname{rank} L_{n,p} = \binom{n}{2}$, whose lines are set by the order we have defined above, i.e. considering the standard ordered basis

$$\mathcal{B} = \{e_{12}, e_{23}, \dots, e_{n-1,n}, e_{13}, \dots, e_{n-2,n}, \dots, e_{1n}\}\$$

then M is the following matrix,

$$M = \begin{pmatrix} \varphi(e_{12}) \\ \varphi(e_{23}) \\ \varphi(e_{n-1,n}) \\ \vdots \\ \varphi(e_{n-2,n}) \\ \vdots \\ \varphi(e_{1n}) \end{pmatrix}$$

Given an \mathcal{L} -automorphism φ , we denote by $\varphi_k : \gamma_k \mathcal{L} \to \gamma_k \mathcal{L}$ the operation of φ on all the n-k elements of the lower central series starting from k, that is, we consider only the images

$$\varphi(e_{1,1+k}), \varphi(e_{2,2+k}), \dots, \varphi(e_{n-k,n}), \varphi(e_{1,2+k}), \dots, \varphi(e_{n-k-1,n}), \dots, \varphi(e_{1n})$$

For every φ_k , we have the induced map denoted by φ_{kk} , from the quotient algebra γ_k/γ_{k+1} to itself, defined by $\varphi_{kk}(e_{l,l+k} + \gamma_{k+1}\mathcal{L}) := a_{1,1+k}e_{1,1+k} + a_{2,2+k}e_{2,2+k} + \cdots + a_{n-k,n}e_{n-k,n} + z_{k+1}$, where $z_{k+1} \in \gamma_{k+1}\mathcal{L}$, for every $1 \leq l \leq n-k$. Clearly, φ_{kk} is well-defined, since $\varphi_k(\gamma_k\mathcal{L}) = \gamma_k\mathcal{L}$, for every $1 \leq k \leq n-1$. Following this division of \mathcal{L} by the lower central series and its quotients, we view M as a block matrix,

$$M = \begin{pmatrix} M_{11} & M_{12} & \dots & M_{1,n-2} & M_{1,n-1} \\ M_{21} & M_{22} & \dots & M_{2,n-2} & M_{2,n-1} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ M_{n-1,1} & M_{n-1,2} & \dots & M_{n-1,n-2} & M_{n-1,n-1} \end{pmatrix}$$

each block is denoted by $M_{kl} \in \mathcal{M}_{m \times r}(\mathbb{Q}_p)$, where $m = \dim^{\gamma_k}/\gamma_{k+1}$ and $r = \dim^{\gamma_l}/\gamma_{l+1}$. From this, we can understand that the blocks on the main diagonal of M, which are the induced quotient maps defined above, are square matrices $\varphi_{kk} = M_{kk} \in \mathcal{M}_{n-k}(\mathbb{Q}_p)$. A trivial observation is that since all the elements of the lower central series of \mathcal{L} are characteristic subalgebras, then $\varphi(\gamma_k \mathcal{L})/\gamma_k \mathcal{L} = 0$, which means that all the matrix blocks M_{kl} , where k < l, must be zero, therefore M has the form,

	M_{11}	M_{12}	M_{13}		$M_{1,n-2}$	$M_{1,n-1}$
	0	M_{22}	M_{23}		$M_{2,n-2}$	$M_{2,n-1}$
M =	:	:	:	·	:	:
	0	0	0		$M_{2,n-2}$	$M_{2,n-1}$
	0	0	0		0	$M_{n-1,n-1}$

2.4 Preliminary results

We have made progress towards step 1 of our research program, namely determining the automorphism groups $G(\mathbb{Q}_p)$. The first result in this direction appears already in the thesis of M. N. Berman[1, Prop. 3.6].

Proposition 2.4.1. Let $\varphi \in G(\mathbb{Q}_p)$ be a \mathcal{L} -automorphism, and M its representing matrix, divided into matrix blocks, as shown earlier. Then, $M_{11} \in \mathcal{M}_{n-1}(\mathbb{Q}_p)$ is either diagonal or anti-diagonal.

Define an involution $\eta \in G(\mathbb{Q}_p)$ by $\eta(e_{ij}) := (-1)^{j-i-1}e_{n+1-j,n+1-i}$, for $1 \leq i \leq n-1$ and $i+1 \leq j \leq n$. Replacing φ by $\varphi \circ \eta$, we assume without loss of generality that M_{11} is diagonal. We check, for any $\lambda_1, \lambda_2, \ldots, \lambda_{n-1} \in \mathbb{Q}_p^*$, that the diagonal matrix

$$h = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_{n-1}, \lambda_1 \lambda_2, \lambda_2 \lambda_3, \dots, \lambda_{n-2} \lambda_{n-1}, \dots, \lambda_1 \lambda_2 \dots \lambda_{n-2} \lambda_{n-1})$$

represents an automorphism of \mathcal{L} . Thus, multiplying φ from the right by a unique such automorphism, we may now assume that M has 1's on the diagonal. By this print we know $H(\mathbb{Q}_p) := \{ \operatorname{diag}(\lambda_1, \lambda_2, \dots) : \lambda_1, \lambda_2, \dots \in \mathbb{Q} \}$ \mathbb{Q}_p^* is the **reductive part** of \mathbb{Q}_p , while $N(\mathbb{Q}_p) := \{ \varphi \in G(\mathbb{Q}_p) \text{ with 1's in }$ diagonal $\}$ is the **unipotent radical** of $G(\mathbb{Q}_p)$. Every $g \in G(\mathbb{Q}_p)$ has a unique decomposition $g = \mathfrak{nh}$, with $\mathfrak{n} \in N(\mathbb{Q}_p)$, $\mathfrak{h} \in H(\mathbb{Q}_p)$. We aim to determine the structure of the unipotent radical $N(\mathbb{Q}_p)$ by decomposing it into a semidirect product of abelian subgroups. We can simplify the domain of integration, for the p-adic integral that we aim to calculate, at the price of replacing a single integral by multiple integrals. As we saw earlier, the calculation of $\zeta_L(s)$ requires computing $G(\mathbb{Z}_p)$ and $G^+(\mathbb{Q}_p)$ first. Assuming we have already computed $G(\mathbb{Q}_p)$, based on the strategy that we have presented above, we need to identify $G(\mathbb{Z}_p)$ as a subgroup of $G(\mathbb{Q}_p)$, which is expected not to be difficult, and continue from there to identify the monoid $G^+(\mathbb{Q}_p)$, which is expected to be a substantial challenge. By applying Fubini's theorem for semidirect products of topological groups, we have that

$$\hat{\zeta}_{\mathcal{L}}(s) = \int_{G^+(\mathbb{Q}_p)} |\det \varphi|_p^s d\mu_{G(\mathbb{Z}_p)\varphi} = \int_{H^+(\mathbb{Q}_p)} \left(\int_{N_{\mathfrak{h}}^+} |\det \mathfrak{nh}|_p^s d\mu_{N(\mathbb{Q}_p)} \right) d\mu_{H(\mathbb{Q}_p)}$$

where $H^+(\mathbb{Q}_p)$ consists of all $\mathfrak{h} \in H(\mathbb{Q}_p)$ that appear in the decomposition $\varphi = \mathfrak{n}\mathfrak{h}$ for some $\varphi \in G^+(\mathbb{Q}_p)$, and, for a given $\mathfrak{h} \in H^+(\mathbb{Q}_p)$, we set $N_{\mathfrak{h}}^+(\mathbb{Q}_p) := \{\mathfrak{n} \in N(\mathbb{Q}_p) : \mathfrak{n}\mathfrak{h} \in G^+(\mathbb{Q}_p)\}$. The integrand of the inner integral is constant, so the integral amounts to computing the measure of the set $N_h^+(\mathbb{Q}_p)$. The advantage that we gain by this decomposition is that it simplifies the calculation of the integral. The integral function $|\det \mathfrak{n}\mathfrak{h}|_p^s = |\det \mathfrak{h}|_p^s$ depends only on \mathfrak{h} , so computing the inner integral amounts to finding the measure of $N_{\mathfrak{h}}^+(\mathbb{Q}_p)$. For the unipotent matrix \mathfrak{n} , the determinant is 1, for the digonal matrix \mathfrak{h} , we have the following proposition,

Proposition 2.4.2. Let $n \geq 2$, and let

$$h = \operatorname{diag}(\lambda_1, \lambda_2, \dots, \lambda_{n-1}, \lambda_1 \lambda_2, \lambda_2 \lambda_3 \dots, \lambda_{n-2} \lambda_{n-1}, \dots, \lambda_1 \lambda_2 \dots \lambda_{n-2} \lambda_{n-1})$$
as defined above, then $\operatorname{det} \mathfrak{h} = \prod_{i=1}^{n-1} \lambda_i^{i(n-i)}$.

We show this by induction on n. We conclude this section with the observation that the sets $N_h^+(\mathbb{Q}_p)$ arising in our computation are quite complicated. We will decompose $N(\mathbb{Q}_p)$ into an iterated semidirect product of a large number of subgroups, each abelian with a simple structure. This will decompose the integral over $N_h^+(\mathbb{Q}_p)$ into a multiple integral that can be computed explicitly, given a suitable combinatorical framework. Hence, we strive to decompose $N_n(\mathbb{Q}_p)$ itself into a product of finitely many simpler subgroups, $N_n(\mathbb{Q}_p) = N_n(\mathbb{Q}_p)_1 \rtimes_{\phi} N_n(\mathbb{Q}_p)_2 \rtimes_{\phi} \cdots \rtimes_{\phi} N_n(\mathbb{Q}_p)_{m_n}$, where m_n is the number of subgroups in the decomposition of $N_n(\mathbb{Q}_p)$, for every $n \in \mathbb{N}$, which means that

$$\int_{G^+(\mathbb{Q}_p)} |\det \varphi|_p^s d\mu_{G(\mathbb{Q}_p)} = \int_{H_n^+(\mathbb{Q}_p)} \left(\int_{\mathcal{N}_{m_n}^+} \cdots \left(\int_{\mathcal{N}_3^+} \left(\int_{\mathcal{N}_2^+} \left(\int_{\mathcal{N}_1^+} |\det \varphi|_p^s d\mu_{\mathcal{N}_1} \right) d\mu_{\mathcal{N}_2} \right) d\mu_{\mathcal{N}_3} \right) \cdots d\mu_{\mathcal{N}_n}^+$$
 where we denote $\mathcal{N}_i := N_n(\mathbb{Q}_p)_i$ and $\mathcal{N}_i^+ := N_n^+(\mathbb{Q}_p)_i$, for every $1 \le i \le m_n$. One checks that every \mathcal{N}_i^+ depends on $h, n_1, n_2, \ldots, n_{i-1}$, if $\varphi = n_{m_n} \cdots n_2 n_1 h$, where $h \in H_n^+(\mathbb{Q}_p)$ and $n_k \in \mathcal{N}_k$, for every $1 \le k \le i-1$. All the subgroups in the decomposition of $N_n(\mathbb{Q}_p)$ are obviously unipotent as well, which means that their determinants are also 1. This means that computing the inner integrals amounts to determining the measure of the sets \mathcal{N}_i^+ in terms of $h, n_1, n_2, \ldots, n_{n-1}$.

2.5 Base Extension

Let K be a number field of degree $d = [K : \mathbb{Q}]$, and let \mathcal{O}_K be its ring of integers. Let L be a \mathbb{Z} -Lie algebra of rank r. By base extension we can consider $L \otimes_{\mathbb{Z}} \mathcal{O}_K$ as a \mathbb{Z} -Lie algebra of rank rd, and by extension of scalars we can consider also $L_{K,p} = (L \otimes_{\mathbb{Z}} \mathcal{O}_K) \otimes_{\mathbb{Z}} \mathbb{Q}_p$ as a \mathbb{Q}_p -Lie algebra of the same rank. Berman-Glazer-Schein give a criterion in [2], under which the pro-isomorphic zeta-function of $L_{K,p}$ can be calculated without a significant extra effort relative to that of L_p itself. Note that the criterion does not necessarily apply for all p. We shall research whether the criterion applies to the \mathbb{Q}_p -Lie algebras \mathcal{L} of our work. If so, then $\hat{\zeta}_{\mathcal{L}\otimes\mathcal{O}_K,p}$ will be finitely-uniform. In other words, for each of the finitely many decomposition types of a prime in \mathcal{O}_K , there is a rational function in two variables $W \in \mathbb{Q}(X,Y)$ such that $\hat{\zeta}_{\mathcal{L}\otimes\mathcal{O}_K,p}(s) = W(p,p^{-s})$ for all p of that decomposition type.

References

- [1] Mark. N. Berman, Proisomorphic zeta functions of groups, Ph.D. thesis, University of Oxford, 2005.
- [2] Mark N. Berman, Itay Glazer, and Michael M. Schein, Pro-isomorphic zeta functions of nilpotent groups and lie rings under base extension, Trans. Amer. Math. Soc. 375 (2022), 1051–1100.
- [3] M.P.F. du Sautoy and A. Lubotzky, Functional equations and uniformity for local zeta functions of nilpotent groups, Amer. J. Math. 118 (1996), no. 1, 39–90.
- [4] John A. Gibbs, Automorphisms of certain unipotent groups, J. Algebra 14 (1970), 203-228.
- [5] F. J. Grunewald, D. Segal, and G. C. Smith, Subgroups of finite index in nilpotent groups, Invent. Math. 93 (1988), no. 1, 185–223.
- [6] Alexander Lubotzky, Avinoam Mann, and Dan Segal, Finitely generated groups of polynomial subgroup growth, Israel J. Math. 82 (1993), no. 1-3, 363–371.
- [7] Hugh L. Montgomery and Robert C. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge Studies in Advanced Mathematics 97.