A3 - Das R-Paket tmap

Jan-Philipp Kolb

22 Oktober 2018

Das Paket tmap

Thematische Karten

- Mit dem Paket tmap kann man thematische Karten erzeugen
- Die olgenden Beispiele basieren auf der Vignette des Paketes .

```
install.packages("tmap")
```

```
library(tmap)
```

Der Europe Datensatz

Natural Earth

• Datensatz enthält Informationen von Natural Earth

data(Europe)

Der Befehl qtm aus dem Paket tmap

Schnelle thematische Karte

- Mit dem Befehl qtm kann man eine schnelle thematische Karte erzeugen
- Beispiel aus der Vignette zum Paket tmap

qtm(Europe)

Der Europa-Datensatz

Der Europa Datensatz im Paket tmap

Um mehr Farbe in die Karte zu bekommen

Entwicklungsstand der Wirtschaft

qtm(Europe, fill="economy")

Eine Karte mit Text

Bevölkerung

qtm(Europe, fill="pop_est", text="iso_a3")

Dieses Schema passt besser:

GDP

```
qtm(Europe, fill="gdp_cap_est", text="iso_a3",
    text.size="AREA", root=5, fill.title="GDP per capita",
    fill.textNA="Non-European countries", theme="Europe")
```


Themen des Europa-Datensatzes

Verfügbare Variablen im Datensatz

- ISO Klassifikation
- Ländername
- Ist das Land Teil Europas?
- Fläche, Bevölkerung, Bevölkerungsdichte,
- Bruttoinlandsprodukt
- Bruttoinlandsprodukt zu Kaufkraftparitäten
- Ökonomie, Einkommensgruppe

Der Europa Datensatz - Variablen und was dahinter steckt

	iso_a3	name	sovereignt	continent	part
5	ALB	Albania	Albania	Europe	Southern Europe
6	ALA	Aland	Finland	Europe	Northern Europe
7	AND	Andorra	Andorra	Europe	Southern Europe
10	ARM	Armenia	Armenia	Asia	NA
17	AUT	Austria	Austria	Europe	Western Europe
18	AZE	Azerbaijan	Azerbaijan	Asia	NA
20	BEL	Belgium	Belgium	Europe	Western Europe
24	BGR	Bulgaria	Bulgaria	Europe	Eastern Europe

Die Variable continent

qtm(Europe, fill="continent")

Die Variable part

qtm(Europe, fill="part",fill.title="Teil von Europa")

Die Variable area

qtm(Europe, fill="area") # Russia is huge

Bevölkerung

qtm(Europe, fill="pop_est",fill.title="Population")

Ökonomie

qtm(Europe, fill="economy")

Einkommensgruppe

qtm(Europe, fill="income_grp",fill.title="Income group")

Zwei Karten

Bevölkerung und Entwicklungsstand

```
tm_shape(Europe) +
   tm_fill(c("pop_est", "economy"),
        title=c("Population", "Economy"))
```


Der Datensatz World im Paket tmap

Ähnlich wie der Europe Datensatz nur für die ganze Welt

data(World)

Welt - Länder nach Einkommensgruppe

qtm(World, fill="income_grp",fill.title="Income group")

Ein Datensatz zu den Provinzen in den Niederlanden (R-Paket tmap)

	code	name	population	pop_men	pop_women	pop_0_14
0	20	Groningen	582705	289795	292875	15
1	21	Friesland	646290	323215	323055	17
2	22	Drenthe	488970	242225	246755	17
3	23	Overijssel	1139680	570185	569465	18
4	24	Flevoland	399885	199940	199940	20
5	25	Gelderland	2019635	997805	1021790	17

Niederlande - Bevölkerung in den Provinzen

qtm(NLD_prov, fill="population",fill.title="population")

Ein Datensatz zu den Gemeinden in den Niederlanden

data(NLD_muni)

	name	province	population
0	Appingedam	Groningen	12065
1	Bedum	Groningen	10495
2	Bellingwedde	Groningen	8920
3	Ten Boer	Groningen	7480
4	Delfzijl	Groningen	25695
5	Groningen	Groningen	198315
6	Grootegast	Groningen	12165
7	Haren	Groningen	18780
8	Hoogezand-Sappemeer	Groningen	34305
9	Leek	Groningen	19595
10	Loppersum	Groningen	10195
	Jan-Philipp Kolb A3 - Das R-I	Paket tman	22 Oktober 2018 22 / 3

Bevölkerung der Gemeinden in den Niederlanden

```
qtm(NLD_muni, fill="population")
```


Räumliche Daten zur Flächennutzung

data(land)
data(World)

	cover_cls	trees
215556	Bare area/Sparse vegetation	0
137686	Water	NA
44785	Water	NA
88234	Other natural vegetation	1
286270	Water	NA
146833	Water	NA
307784	Water	NA
458432	Water	NA
211482	Forest	96
493482	Water	NA

Weltweite Flächennutzung

```
tm_shape(land, relative=FALSE) +
   tm_raster("trees", title="Anteil Waldfläche")
```


Räumliche Daten zu Metropolregionen

UN - World Urbanization Prospects 2018

data(metro)

	name 🍦	name_long 🏺	iso_a3 🏺	pop1950 🏺	pop1960 🏺	pop1970 🏺	pop1980 🏺	pop1990 🏺	pop2000	pop2010	pop2020	pop2030
2	Kabul	Kabul	AFG	170784	285352	471891	977824	1549320	2401109	3722320	5721697	8279607
8	Algiers	El Djazair (Algiers)	DZA	516450	871636	1281127	1621442	1797068	2140577	2432023	2835218	3404575
13	Luanda	Luanda	AGO	138413	219427	459225	771349	1390240	2591388	4508434	6836849	10428756
16	Buenos Aires	Buenos Aires	ARG	5097612	6597634	8104621	9422362	10513284	12406780	14245871	15894307	16956491
17	Cordoba	Cordoba	ARG	429249	605309	809794	1009521	1200168	1347561	1459268	1562509	1718192
25	Rosario	Rosario	ARG	554483	671349	816230	953491	1083819	1152387	1298073	1453814	1606993
32	Yerevan	Yerevan	ARM	341432	537759	778158	1041587	1174524	1111301	1065597	1023703	1057459
33	Adelaide	Adelaide	AUS	429277	571822	850168	971856	1081618	1141623	1217990	1320783	1505422
34	Brisbane	Brisbane	AUS	441718	602999	904777	1134833	1381306	1666203	2033617	2388517	2721325
37	Melbourne	Melbourne	AUS	1331966	1851220	2499109	2839019	3154314	3460541	3951216	4500501	5070873

Nur ein Land visualisieren

```
tm_shape(Europe[Europe$name=="Austria", ]) +
   tm_polygons()
```


Beispieldaten laden

Datenquelle Eurostat

• Daten zur Arbeitslosigkeit in Europa

```
url <- "https://raw.githubusercontent.com/Japhilko/
GeoData/master/2015/data/Unemployment07a13.csv"
```

```
Unemp <- read.csv(url)</pre>
```

Überblick über die Daten

GEO	Val2007M12	Val2013M01
EU28	6.9	10.9
EU27	6.9	10.9
EU25	6.9	11.0
EU15	6.9	11.1
EA	7.3	12.0
EA19	7.3	12.0
EA18	7.4	12.0
EA17	7.4	12.0
EA16	7.4	12.0
EA15	7.3	12.0
	EU28 EU27 EU25 EU15 EA EA19 EA18 EA17	EU28 6.9 EU27 6.9 EU25 6.9 EU15 6.9 EA 7.3 EA19 7.3 EA18 7.4 EA17 7.4 EA16 7.4

Nutzung des Paketes tmap mit eigenen Daten

```
library("tmap")
data(Europe)
```

Die Daten matchen

```
iso_a2<- substr(Europe@data$iso_a3,1,2)
ind <- match(iso_a2,Unemp$GEO)
Europe@data$Val2007M12 <- Unemp$Val2007M12[ind]
Europe@data$Val2013M01 <- Unemp$Val2013M01[ind]</pre>
```

Eine Karte erzeugen

qtm(Europe,c("Val2007M12","Val2013M01"))

Kleine und viele Karten

```
tm_shape(Europe[Europe$continent=="Europe",]) +
   tm_fill("part", thres.poly = 0) +
   tm_facets("name", free.coords=TRUE)
```


tmap zitieren

```
citation("tmap")
##
## To cite tmap/tmaptools in publications use:
##
## Tennekes M (2018). "tmap: Thematic Maps in R." Journal of
## Statistical Software , *84*(6), 1-39. doi: 10.18637/jss.v08
## (URL: http://doi.org/10.18637/jss.v084.i06).
##
## A BibTeX entry for LaTeX users is
##
##
     @Article{,
##
       title = {{tmap}: Thematic Maps in {R}},
##
       author = {Martijn Tennekes},
       journal = {Journal of Statistical Software},
##
       wear = \{2018\}
##
```