Cell-type specific mediation project update

Andrea Lane

Outline

- 1. Project idea
- 2. EM initial value comparison
- 3. Bootstrap results using true values as initial values
- 4. Next steps

Project idea reminder

$$Y \sim N(\theta_0 + \theta_1 E + \sum_k \theta_2^k m_k, \ \gamma^2)$$

$$M \sim N(\sum_k m_k \pi_k, \ \sigma^2)$$

$$m_k \sim N(\beta_0^k + \beta_1^k E, \ \tau_k^2)$$

- Use TOAST to get β initial values and reduce number of sites to go through EM
- Run EM algorithm one site at a time to get estimates of Θ
- Calculate observed indirect effect $\hat{\beta}_1 \hat{\theta}_2$
- Use percentile bootstrap to assess significance of the indirect effect for each site and cell type

EM initial values

To evaluate the estimates obtained from EM depending on the initial values, I varied the mediating cell type and looked at 2 different mediating CpG sites. I used 4 different initial value cases (note that the true value for the mediating $\theta_2^k = 0.4$):

- Case 1: 0 for all θ_2^k
- Case 2: 0.2 for all θ_2^k
- Case 3: 0.1 for non-mediating cell types, 0.3 for mediating cell type
- Case 4: 0 for non-mediating cell types, 0.4 for mediating cell type (true values)

Non-mediating cell type estimates (true value 0 in all cases)

- Case 1: 0 for all θ_2^k
- Case 2: 0.2 for all θ_2^k
- $\bullet\,$ Case 3: 0.1 for non-mediating cell types, 0.3 for mediating cell type
- Case 4: 0 for non-mediating cell types, 0.4 for mediating cell type (true values)

Comments:

- for the most part, it seems case 3 and case 4 results are pretty similar, which is good.
- I don't understand what causes differences between sites? For example in the top row of the non-mediator plots, the two sites are quite different.

Results in table form, if that's preferable:

Table 1: Theta2 estimates

Site 1				Site 2				
Cell 1	Cell 2	Cell 3	Cell 4	Cell 1	Cell 2	Cell 3	Cell 4	
Initial v	value ca	se 1: 0	for all t	${f heta2}$				
0.41	0.03	-0.02	-0.39	0.24	-0.06	0.44	-0.66	
-0.02	0.38	-0.51	0.19	-0.71	0.32	0.07	0.13	
-0.06	0.02	0.29	-0.45	-0.10	0.05	0.48	-0.25	
0.09	0.03	-0.30	0.12	-0.26	0.08	-0.38	0.35	
case 2:	0.2 for	all theta	$\mathbf{a2}$					
0.43	-0.02	0.21	0.11	0.40	0.71	0.38	-0.65	
0.06	0.40	0.11	0.15	-0.03	0.63	0.02	0.06	
-0.10	0.02	0.55	0.10	0.35	0.43	0.28	-0.41	
0.05	0.00	0.22	0.38	-0.11	0.19	0.08	0.52	
case 3:	case 3: 0.1 non-med, 0.3 med							
0.44	-0.01	0.03	0.02	0.50	0.22	0.39	-0.58	
0.07	0.40	0.10	-0.09	-0.46	0.68	0.03	0.13	
-0.12	0.01	0.46	-0.08	0.04	0.26	0.46	-0.41	
0.04	0.02	-0.02	0.37	-0.16	-0.01	0.11	0.46	
case 4:	case 4: 0 non-med, 0.4 med (true values)							
0.44	0.01	-0.16	0.05	0.56	-0.12	0.40	-0.56	
0.07	0.40	-0.10	-0.01	-0.65	0.60	0.04	0.14	
-0.09	-0.01	0.46	-0.16	-0.10	0.05	0.48	-0.25	
0.05	0.02	-0.12	0.41	-0.14	-0.14	0.05	0.46	

Bootstrap results

To assess the EM/boostrap procedure, I ran it with only the mediating sites using the true values as initial values.

Settings/Notes:

- N=500
- To account for multiple testing, the (.025/Ncell*Nsite, 1-(.025/Ncell*Nsite)) quantile is used for bootstrap samples.
- for EM, max.iter=500 and tol=0.001
- EM initial values:
 - beta: from TOAST
 - theta: true values
 - tau, sigma: sampled from inverse gamma distribution with mean 0.001 (based on HIRE, which states that variance initial values are sampled from inverse gamma distribution with small mean but does not specify the mean)
 - gamma: true value 0.0004
- Scripts used: "Lane_Mediation_sim12821_cluster.R" and "mediation_sim_functions_1120.R" (functions script contains EM julia code)

Tables 2 and 3 show results from 1 and 2 sites with mediating effect sizes 0.2 and 0.4. Table 4 summarizes the results from tables 2 and 3 by averaging the non-mediating sites (type 1 error) and the mediating sites (power).

Tables 5 and 6 show results for one CpG site when increasing the number of bootstrap samples from 200 to 1000.

Table 7 summarizes the results from my last report for comparison. Here the initial values were all 0 rather than the true values.

Table 2: 1 site - 200 bootstrap

Theta = 0.2			Theta = 0.4				
Cell 1	Cell 2	Cell 3	Cell 4	Cell 1	Cell 2	Cell 3	Cell 4
317	78	167	194	874	94	162	94
315	678	115	68	158	998	79	37
80	24	942	65	23	13	998	15
57	14	42	984	19	7	13	999

Table 3: 2 sites - 200 bootstrap

Theta = 0.2				Theta = 0.4			
Cell 1	Cell 2	Cell 3	Cell 4	Cell 1	Cell 2	Cell 3	Cell 4
358	112	209	213	895	71	163	65
317	2	2	0	790	3	3	0
320	710	165	77	352	995	159	79
4	277	1	2	7	711	2	2
160	52	896	51	40	16	990	79
83	37	886	14	45	31	997	12
51	12	21	831	19	8	52	987
155	47	36	999	101	33	37	1000

Table 4: Average across mediating and nonmediating sites/cell types - 200 bootstrap

	1 site	2 sites	1 site	2 sites
	Theta = 0.2		Theta $= 0.4$	
Power	0.730	0.659	0.967	0.921
Type 1 error	0.102	0.076	0.060	0.057

Table 5: 1 site - 1000 bootstrap

Theta = 0.2			Theta = 0.4				
Cell 1	Cell 2	Cell 3	Cell 4	Cell 1	Cell 2	Cell 3	Cell 4
307	65	133	166	855	73	132	82
273	659	104	47	113	998	51	28
61	15	934	50	20	6	999	12
35	14	36	981	9	4	11	999

Table 6: Average across mediating and nonmediating sites/cell types - 1000 bootstrap

	Theta = 0.2	Theta = 0.4
Power	0.720	0.963
Type 1 error	0.083	0.045

Table 7: Average across mediating and nonmediating sites/cell types - 0s as initial values (theta=0.4)

	1 site	2 sites	3 sites
Power	0.691	0.696	0.692
Type 1 error	0.308	0.160	0.155

Next steps

- Find a way to get initial values (i.e. try TOAST $M \sim Y$)
- Increase variance
- Use bootstrap with TCA estimates
- Add covariate(s)