THE CLAIMS

What is claimed is:

5

10

15

1. A compound of a formula I:

 W^1 Z_m G Z_m W^2

1

- (a) each occurrence of Z is independently CH₂, CH=CH, or phenyl, wherein each occurrence of m is independently an integer ranging from 1 to 9, but when Z is phenyl then its associated m is 1;
- (b) G is (CH₂)_x, CH₂CH=CHCH₂, CH=CH, CH₂-phenyl-CH₂, or phenyl, wherein x is 2, 3, or 4;
- (c) W¹ and W² are independently L, V, C(R¹)(R²)-(CH₂)_c-C(R³)(R⁴)-(CH₂)_n-Y, or C(R¹)(R²)-(CH₂)_c-V, wherein c is 1 or 2 and n is an independent integer ranging from 0 to 4;
- (d) R¹ and R² are independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl or when W¹ or W² is C(R¹)(R²)-(CH₂)_c-C(R³)(R⁴)-Y, then R¹ and R² can both be H, or R¹ and R² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;
- 20 (e) R³ and R⁴ are independently H, OH, CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkynyl, (C₁-C₆)alkoxy, phenyl, benzyl, Cl, Br, CN, NO₂, or CF₃, with the proviso that when R¹ and R² are both H, then one of R³ or R⁴ is not H or R³ and R⁴ and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;;
- 25 (f) L is $C(R^1)(R^2)$ - $(CH_2)_{n-}Y$;
 - (g) V is

Y is (C₁₋C₆)alkyl, OH, COOH, CHO, COOR⁵, SO₃H, (h)

 R^5 is (C_1-C_6) alkyl, (C_2-C_6) alkenyl, (C_2-C_6) alkynyl, phenyl, or **(I)** benzyl and is unsubstituted or substituted with one or more 10 halo, OH, (C₁₋C₆)alkoxy, or phenyl groups,

each occurrence of R⁶ is independently H, (C₁₋C₆)alkyl, (C₂₋ (ii) C₆)alkenyl, or (C₂-C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C1_C6 alkoxy, or phenyl groups; and each occurrence of R⁷ is independently H, (C₁₋C₆)alkyl, (C₂₋ 5 (iii) C₆)alkenyl, or (C₂-C₆)alkynyl; and provided that: if G is (CH₂)x, x is 4, each occurrence of Z is CH₂, each (i) occurrence of m is 4, and W1 is -CH(CH3)CO2H, then W2 is not the same as W1; 10 if G is CH2-phenyl-CH2, each occurrence of Z is CH2, each (ii) occurrence of m is 2, and W¹ is -C(CH₃)₂CH(CO₂CH₂CH₃)₂, then W² is not the same as W¹; if G is CH2-phenyl-CH2, each occurrence of Z is CH2, each (iii) occurrence of m is 2, and W1 is -C(CH3)2CH2(CO2CH2CH3), 15 then W² is not the same as W¹; if G is CH2-phenyl-CH2, each occurrence of Z is CH2, each (iv) occurrence of m is 1, and W1 is -COCH2C(CH3)2CH2CO2H, then W² is not the same as W¹; if G is (CH₂)_x, x is 4, each occurrence of Z is CH₂, each (v) 20 occurrence of m is 2, and W1 is -C(phenyl)2CH2CO2H, then W² is not the same as W¹; if G is CH=CH, each occurrence of Z is CH2, each occurrence (vi) of m is 1, and W1 is -C(CH3)2CH2(CO2H), then W2 is not the same as W1; and 25 if G is phenyl, each occurrence of Z is CH2, each occurrence (vii) of m is 1, and W1 is -C(phenyl)2CO2H, then W2 is not the same as W1. The compound of claim 1, wherein: 2. W¹ and W² are independently L, V, or C(R¹)(R²)-(CH₂)_c-V where c is 1 or 2; and 30 (a)

benzyl.

(b)

R¹ or R² are independently (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or

- 3. The compound of claim 1, wherein W¹ is L.
- 4. The compound of claim 1, wherein W¹ is V.
- 5. The compound of claim 1, wherein W¹ is $C(R^1)(R^2)$ - $(CH_2)_0$ - $C(R^3)(R^4)$ - $(CH_2)_n$ -Y.
- 6. The compound of claim 1, wherein W^1 is $C(R^1)(R^2)-(CH_2)_{c-}V$.
- 5 7. The compound of claim 1, wherein W¹ and W² are independent L groups.
 - 8. The compound of claim 7, wherein each occurrence of Y is independently (CH₂)_nOH, (CH₂)_nCOOR⁵, or (CH₂)_nCOOH.
 - 9. A compound of the formula Ia:

$$W^1$$
 Z_m G Z_m W^2

10

- (a) each occurrence of Z is independently CH₂ or CH=CH, wherein each occurrence of m is independently an integer ranging from 1 to 9;
- (b) G is (CH₂)_x, CH₂CH=CHCH₂, or CH=CH, where x is 2, 3, or 4;
- 15 (c) W¹ and W² are independently L, V, or C(R¹)(R²)-(CH₂)_c-V, where c is 1 or 2;
 - (d) each occurrence of R¹ and R² is independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkynyl, phenyl, benzyl, or R¹ and R² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;
- 20 (e) L is $C(R^1)(R^2)$ — $(CH_2)_n$ —Y, where n is an independent integer ranging from 0 to 4;
 - (f) V is

(g) each occurrence of Y is independently (C₁₋C₆)alkyl, OH, COOH, CHO, (CH₂)_nCOOR³, SO₃H,

where

(I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,

(ii) each occurrence of R⁴ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C₁-C₆ alkoxy, or phenyl groups; and

5

(iii) each occurrence of R⁵ is independently H, (C₁_C₆)alkyl, (C₂_C₆)alkynyl; and

provided that:

(i) if x is 4, each occurrence of Z is CH₂, each occurrence of m is 4, and W¹ is -CH(CH₃)CO₂H, then W² is not the same as W¹;

10

- if x is 4, each occurrence of Z is CH₂, each occurrence of m is
 2, and W¹ is -C(phenyl)₂CH₂CO₂H, then W² is not the same
 as W¹.
- 10. The compound of claim 9, wherein W¹ is L.
- 11. The compound of claim 9, wherein W¹ is V.
- 15 12. The compound of claim 9, wherein W^1 is $C(R^1)(R^2)$ - $(CH_2)_{c-}V$.
 - 13. The compound of claim 9, wherein W¹ and W² are independent L groups.
 - 14. The compound of claim 13, wherein each occurrence of Y is independently OH, COOR³, or COOH.
 - 15. A compound of the formula Ib

R¹R² O O R¹¹ R¹² Y (CH₂)_m (CH₂)_m (CH₂)_x (CH₂)_m (CH₂)_n

20

Ib

- (a) each occurrence of m is independently an integer ranging from 1 to 9;
- (b) $x ext{ is 2, 3, or 4;}$
- 25 (c) n is an independent integer ranging from 0 to 4;

(d) each occurrence of R¹ and R² is independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, benzyl, or R¹ and R² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;

- each occurrence of R¹¹ and R¹² is independently H, CO₂H, CO₂(C₁_C₆)alkyl, (C₁_C₆)alkyl, (C₂_C₆)alkynyl, phenyl, benzyl, or R¹¹ and R¹² and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloakyl group;
- (f) each occurrence of Y is independently (C₁_C₆)alkyl, OH, COOH, CHO, COOR³, SO₃H,

where

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- 20 (ii) each occurrence of R⁴ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkynyl and is unsubstituted or 309 -

substituted with one or two halo, OH, C₁₋C₆ alkoxy, or phenyl groups; and

- (iii) each occurrence of R⁵ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl;
- 5 provided that:
- (i) if x is 4 each occurrence of m is 4, and W¹ is -CH(CH₃)CO₂H, then W² is not the same as W¹;
- (ii) if x is 4 occurrence of m is 2, and W¹ is
 -C(phenyl)₂CH₂CO₂H, then W² is not the same as W¹.
- 16. The compound of claim 15, wherein each occurrence of Y is independently OH, COOR³, or COOH.
 - 17. The compound of claim 16, wherein each R^1 or R^2 is the same or different (C_{1-} C_6)alkyl group.
 - 18. A compound of the formula Ic

(CH₂)_m (CH₂)_x (CH₂)_m

15

Ic

- (a) each occurrence of m is an independent integer ranging from 1 to 9;
- (b) x is 2, 3, or 4;
- 20 (c) V is

provided that:

5

15

- (i) if x is 4 each occurrence of m is 4, and W¹ is -CH(CH₃)CO₂H, then W² is not the same as W¹; and
- (ii) if x is 4 each occurrence of m is 2, and W¹ is -C(phenyl)₂CH₂CO₂H, then W² is not the same as W¹.
- 19. A compound according to claim 1, having the formula 5-[2-(5-hydroxy-4,4-dimethyl-pentyloxy)-ethoxy]-2,2-dimethyl-pentan-1-ol or 4-[3-(3,3-Dimethyl-4-oxo-butoxy)-propoxy]-2,2-dimethyl-butyric acid.

10 20. A compound of the formula II:

$$W_{(CH_2)_m}^{1} \xrightarrow{R^2} O_{(CH_2)_n}^{R^{11}} \xrightarrow{R^{12}} W^2$$
 $(CH_2)_m$

п

- (a) R¹ and R² are independently CO₂H, CO₂(C₁_C₆)alkyl, (C₁_C₆)alkyl, (C₂_C₆)alkenyl, (C₂_C₆)alkynyl, phenyl, or benzyl; or R¹, R², and the carbon to which they are both attached are taken together to form a (C₃_C₇)cycloalkyl group;
 - (b) R¹¹ and R¹² are independently CO₂H, CO₂(C₁_C₆)alkyl, (C₁_C₆)alkyl, (C₂_C₆)alkynyl, phenyl, or benzyl; or R¹¹, R¹², and the carbon to which they are both attached are taken together to form a (C₃_C₇)cycloalkyl group;
- 20 (c) n is an integer ranging from 1 to 6;
 - (d) each occurrence of m is independently an integer ranging from 0 to 4;

(e) W¹ and W² are independently (C₁-C₆)alkyl, CH₂OH, C(O)OH, CHO, OC(O)R³, C(O)OR³, SO₃H,

where

10

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R⁴ is independently H, (C₁₋C₆)alkyl, (C₂₋C₆)alkenyl, or (C₂₋C₆)alkynyl and is unsubstituted or

- 312 -

substituted with one or two halo, OH, C₁₋C₆ alkoxy, or phenyl groups;

(iii) each occurrence of R⁵ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl.

5 21. A compound of formula IIa:

10

Пa

or a pharmaceutically acceptable salt, hydrate, solvate, or a mixture thereof, wherein

(a) R¹ and R² are OH, COOH, CHO, COOR⁷, SO₃H,

where

5

- (I) R⁷ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R⁸ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C₁-C₆ alkoxy, or phenyl groups,
- (iii) each occurrence of R⁹ is independently H, (C₁₋C₆)alkyl, (C₂₋C₆)alkynyl;
- (b) R³ and R⁴ are CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl;
- 15 (c) R^5 and R^6 are hydrogen, halogen, (C_1-C_4) alkyl, (C_1-C_4) alkoxy, (C_6) aryloxy, (C_1-C_4) alkyl, phenyl, or benzyl;
 - (d) each occurrence of m is independently an integer ranging from 1 to 5;
 - (e) each occurrence of n is independently an integer ranging from 0 to 4; and
- (f) *1 and *2 represent independent chiral-carbon centers, wherein each center may independently be R or S.
 - 22. A compound as in claim 21 wherein *1 is a chiral-carbon center of the stereochemical configuration R or substantially R.
 - 23. A compound as in claim 21 wherein *1 is a chiral-center of the stereochemical configuration S or substantially S.

- 24. A compound as in claim 21 wherein *2 is a chiral-carbon center of the stereochemical configuration R or substantially R.
- 25. A compound as in claim 21 wherein *2 is a chiral-center of the stereochemical configuration S or substantially S.
- 5 26. A compound of the formula III:

15

$$W^{l} = Z_{m} \qquad \qquad G \qquad \qquad (CH_{2})_{p} \qquad \qquad W^{2}$$

Ш

- (a) each occurrence of Z is independently CH₂, CH=CH, or phenyl, where each occurrence of m is independently an integer ranging from 1 to 5, but when Z is phenyl then its associated m is 1;
 - (b) G is (CH₂)_x, CH₂CH=CHCH₂, CH=CH, CH₂-phenyl-CH₂, or phenyl, where x is an integer ranging from 1 to 4;
 - (c) W^1 and W^2 are independently $C(R^1)(R^2)$ — $(CH_2)_n$ —Y where n is an integer ranging from 0 to 4;
 - (d) R¹ and R² are independently CO₂H, CO₂(C₁-C₆)alkyl, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl or R¹ and R² are both H, or R¹, R¹, and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloalkyl group;
- 20 (e) Y is (C_1-C_6) alkyl, $(CH_2)_nOH$, $(CH_2)_nCOOH$, $(CH_2)_nCHO$, $(CH_2)_nCOOR^3$, SO_3H ,

$$\sim_{O}$$
 \sim_{O} \sim_{O

where

5 (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,

(ii) each occurrence of R⁴ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C₁-C₆ alkoxy, or phenyl groups,

- (iii) each occurrence of R⁵ is independently H, (C₁₋C₆)alkyl, (C₂₋C₆)alkenyl, or (C₂₋C₆)alkynyl; and
- (f) each occurrence of p is independently 2 or 3 where the broken line represents an optional presence of one or more additional carbon-carbon bonds that when present complete one or more carbon-carbon double bonds.
 - 27. The compound of claim 26, wherein W^1 and W^2 are independent $C(R^1)(R^2)$ — $(CH_2)_n$ —Y groups, where n is an independent integer ranging from 0 to 4, and each occurrence of Y is independently OH, COOR⁴, or COOH.
 - 28. The compound of claim 26, wherein p is 0.
- 10 29. The compound of claim 26, wherein p is 1.
 - 30. A compound of the formula IIIa:

5

$$W^{1} = Z_{m}$$

$$Q = Q$$

$$Q = Z_{m}$$

$$Q = Q$$

IIIa

- 15 (a) each occurrence of m is independently an integer ranging from 1 to 5;
 - (b) x is an integer ranging from 1 to 4;
 - (c) W^1 and W^2 are independently $C(R^1)(R^2)$ - $(CH_2)_{n-}Y$;

(d) each occurrence of R¹ or R² is independently (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, benzyl, or R¹, R¹, and the carbon to which they are both attached are taken together to form a (C₃-C₇)cycloalkyl group;

(e) Y is (C₁_C₆)alkyl, OH, COOH, CHO, COOR³, SO₃H,

where

5

10

- (I) R³ is (C₁-C₆)alkyl, (C₂-C₆)alkenyl, (C₂-C₆)alkynyl, phenyl, or benzyl and is unsubstituted or substituted with one or more halo, OH, (C₁-C₆)alkoxy, or phenyl groups,
- (ii) each occurrence of R⁴ is independently H, (C₁_C₆)alkyl, (C₂_C₆)alkenyl, or (C₂_C₆)alkynyl and is unsubstituted or substituted with one or two halo, OH, C₁_C₆ alkoxy, or phenyl groups,
- (iii) each occurrence of R⁵ is independently H, (C₁-C₆)alkyl, (C₂-C₆)alkenyl, or (C₂-C₆)alkynyl; and

- (f) each occurrence of p is independently 0 or 1.
- 31. The compound of claim 30, wherein W^1 and W^2 are independent $C(R^1)(R^2)$ — $(CH2)_{n-1}$ Y groups, where n is an integer from 0 to 4, and each occurrence of Y is independently OH, $COOR^3$, or COOH.
- 5 32. The compound of claim 30, wherein p is 0.

- 33. The compound of claim 30, wherein p is 1.
- 34. A pharmaceutical composition comprising a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30 and a pharmaceutically acceptable vehicle, excipient, or diluent.
- 35. A pharmaceutical composition comprising the following compound:
 6-(5,5-Dimethyl-6-hydroxy-hexane-1-sulfinyl)-2,2-dimethyl-hexan-1-ol or pharmaceutically acceptable salts, hydrates, solvates, clathrates, enantiomers, diasteriomers, racemates, or mixures of steroisomers thereof and a pharmaceutically acceptable vehicle, excipient, or diluent.
- 36. A method for treating or preventing a cardiovascular disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 37. A method for treating or preventing a dyslipidemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 20 38. A method for treating or preventing a dyslipoproteinemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 39. A method for treating or preventing a disorder of glucose metabolism in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

40. A method for treating or preventing Alzheimer's Disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 41. A method for treating or preventing Syndrome X or Metabolic Syndrome in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 42. A method for treating or preventing septicemia in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 10 43. A method for treating or preventing a thrombotic disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 44. A method for treating or preventing a peroxisome proliferator activated receptor associated disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

15

- 45. A method for treating or preventing obesity in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 20 46. A method for treating or preventing pancreatitis in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 47. A method for treating or preventing hypertension in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

48. A method for treating or preventing renal disease in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

- 49. A method for treating or preventing cancer in a patient, comprising administering to a patient in claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 50. A method for treating or preventing inflammation in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 51. A method for treating or preventing impotence in a patient, comprising

 administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
 - 52. A method for treating or preventing a neurodegenerative disease or disorder in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

15

- 53. A method of inhibiting hepatic fatty acid synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 54. A method of inhibiting sterol synthesis in a patient, comprising administering to a patient in need thereof a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.
- 25 55. A method of treating or preventing metabolic syndrome disorders in a patient, comprising administering to a patient in need of such treatment or prevention a therapeutically or prophylactically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

56. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by increasing HDL levels, which comprises administering to a patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.

5

57. A method of treating or preventing a disease or disorder that is capable of being treated or prevented by lowering LDL levels, which comprises administering to such patient in need of such treatment or prevention a therapeutically effective amount of a compound of claim 1, 9, 15, 18, 20, 21, 26, or 30.