Before we build our null and experimental models, we need to ensure our DV is coded as an ordinal variable.

```
> Main$ratings <- as.ordered(Main$ratings)

> model.clm.null <- clmm(ratings ~ 1 + (1 + VideoCondition | Subject) + (1 + VideoCondition | SportType) + (1 + VideoCondition | Image), data = Main)

> model.clm4 <- clmm(ratings ~ VideoCondition + (1 + VideoCondition | Subject) + (1 + VideoCondition | SportType) + (1 + VideoCondition | Image), data = Main)</pre>
```

• The syntax for our null model requires we have an explicit intercept (represented by a I in the fixed effects structure) similar to when we built regression models (this is different to how we specify a null model in lme4 syntax).

 First, let's test whether our experimental model and null models differ:

```
> anova(model.clm.null, model.clm4)
```

```
## Likelihood ratio tests of cumulative link models:
##
                 formula:
## model.clm.null ratings ~ 1 + (1 + VideoCondition | Subject) + (1 + VideoCondition | SportType) + (1 +
VideoCondition | Image)
## model.clm4
                 ratings ~ VideoCondition + (1 + VideoCondition | Subject) + (1 + VideoCondition |
SportType) + (1 + VideoCondition | Image)
                 link: threshold:
## model.clm.null logit flexible
## model.clm4 logit flexible
##
        no.par AIC logLik LR.stat df Pr(>Chisq)
## model.clm.null 28 10841 -5392.6
## model.clm4 30 10837 -5388.4 8.5295 2 0.01406 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

 We can see that they do - and our experimental model has the lower AIC value.