ELECTIVE C – EXAM PROJECT REPORT

Daniel Blom

Repository https://github.com/dani153i/kea-embeddedc-exam

Københavns Erhvervsakademi Embedded C 2020

Which problem I solved

I chose to solve the second assignment (The One-Arm Arduino Bandit), since I had already worked on a Windows-version of this for the second mandatory assignment.

What I planned to do

I started gathering requirements by defining my systems external input and output.

External I/O

Actor/Stakeholder	Component/Protocol	Functionality
Player	Push button	Bandit wheels spin when button is pressed.
Technician / Owner	Serial	Menu (input) Play Mode Statistics Output Menu Bandit information every spin tick Spins available Bandit wheels
Player	Liquid Crystal Display	Spins availableBandit wheels

Circuit Components

I decided on how to make my circuit.

Exte	nal Input	Exter	nal Output
Serial (Arduino IDE)		Serial (Arduino IDE)	
Baud	9600	Baud	9600
Autoscroll	ON	Autoscroll	ON
Input	No line ending	Input	No line ending
Show timestamp	OFF	Show timestamp	OFF

Liquid Crystal Display

Push-Button		
Push button	Arduino	
D3	D2	
D1	+5V	
10K Resistor:		
Ends to D2		
Wiper to GND		

2 rows, 16 cells.	
LCD	Arduino
D7	D3
D6	D4
D5	D5
D4	D6
enable-pin	D11
RS-pin	D12
R/W	GND
VSS	GND
VCC	+5V
10K Resistor: Ends to +5V	
Wiper to LCD VO pin (pin 3)	

I also planned on implementing some standards.

- Comment my code.
- Write clean, readable, and maintainable code.
- Keep a simple structure to my project.
- Break project source into smaller pieces with specific concerns.
- Separate definitions and implementation in .h and .c files.
- Conserve memory as well as possible.

What I ended up doing

I used my One-Arm Bandit from the second mandatory assignment, spiced it up and made it run on the Arduino Uno (rev3). The Arduino is connected to a button and can be communicated with through the Serial monitor.

Sadly, I do not have a big enough breadboard for the LCD. Even if I did, it would not look like wheels spinning, since the display only have 2 rows and the player must have displayed the spins available.

Software Requirement

Arduino IDE Serial Monitor.
 It must be setup as described in the 'External Output' column under 'Functionality'.
 (I do not recommend use with any other terminal.)

Functionality

We have two stakeholders who needs to be able to fulfil a few cases each.

Technician/Owner	Player
Use Menu	 Press button to spin wheels.
Select Play ModeSelect Statistics	 Use Serial communication to insert tokens. (This should be done with a `Coin/Token Collection Component` instead.)

Circuit Components

Same as intended but without LCD.

Exte	rnal Input	Exter	nal Output
Serial (Arduino IDE)		Serial (Arduino IDE)	
Baud	9600	Baud	9600
Autoscroll	ON	Autoscroll	ON
Input	No line ending	Input	No line ending
Show timestamp	OFF	Show timestamp	OFF

Push-Button	
Push button	Arduino
D3	D2
D1	+5V
10K Resistor:	
Ends to D2	
Wiper to GND	

Reflections

Even though the project source is not as well structured and coherent as I would like, I believe it follows my defined standards quite well considering the amount of time it took to develop.

I had some minor issues with memory allocation, but the only real struggle was implementing the ISR and manipulating registers. I spent a lot of time reading the manual, which is big and quite challenging, that I otherwise could have spent on completing all other tasks. However, the ISR was such a fundamental part of the system, that it had to be prioritized.