Molecular Biology Basics

by Ahmet Sacan

> Overview of Molecular Biology

- Cell
- Macromolecules
- Central Dogma

Living Organisms

- Entropy (a measure of disorder) always increases (2nd Law of Thermodynamics)
- Living organisms have low entropy, accomplished at the expense of increased entropy on the "outside"

Living Organisms

- "Entropy fighting machines"
- Functions of life facilitate:
 - acquisition and
 - orderly expenditure of energy
- Tasks:
 - Gather energy from environment
 - Use energy to maintain inside/outside
 - Use energy to reproduce
 - Develop strategies to perform above tasks efficiently

Macromolecules

- Lipids: Separate inside/outside
- Proteins, RNA: perform critical functions
- DNA: encode information about how/when to produce the above molecules

Central Dogma

Central Dogma ++

Nucleotide monomers

DNA

 Watson-Crick basepairing

DNA

RNA

• Three dimensional structure of an RNA

DNA Replication

• Error rate: 1 in 10⁹

Evolution

Prokaryotes

- No nucleus or organelles
- Single, circular chromosome
- Plasmids
 - Drug resistance
 - Rare compound metabolism
- Most studied: Escherichia coli (E. coli) - gut bacterium

Eukaryotes

- Animals, plants, fungi, algae, protozoa
- Compartmentalized
 - nucleus, mitochondria, chloroplast
- Multiple linear chromosomes
 - Highly packed w/ histones

typical animal cell.

(1) nucleolus, (2) nucleus, (3) ribosome, (4) vesicle, (5) rough endoplasmic reticulum (ER), (6) Golgi apparatus, (7) Cytoskeleton, (8) smooth endoplasmic reticulum, (9) mitochondria, (10) vacuole, (11) cytoplasm, (12) lysosome, (13) centrioles within centrosome

Transcription

 Noncoding/anticoding/antisense strand serves as the physical template. Sequence of coding strand is identical to mRNA (except for T->U replacement).

Prokaryotic gene

Eukaryotic gene

Eukaryotic gene

- Posttranscriptional modifications:
 - RNA capping (5'end)
 - Polyadenylation (~200xA at 3'end)
 - RNA splicing to remove introns "alternative splicing"

Eukaryotic mRNA

Open Reading Frame (ORF)

- 5'- CATACTAGATAATATTCGATTAAGC -3'
- Frame 1:
 - CAT ACT AGA TAA* TAT TCG ATT AAG
- Frame 2:
 - ATA CTA GAT AAT ATT CGA TTA AGC
- Frame 3:
 - TAC TAG* ATA ATA TTC GAT TAA*

Overlapping ORFs, Operons

mRNA

Coding Sequence: codons

Translation initiation

• Bacteria:

- Shine-Dalgarno sequence: a consensus AGGAGGU that appear upstream of AUG.

• Eukaryotes:

 Ribosomal components bind 7-methylguanosine nucleotide at the 5' end and scan for an AUG codon.

Translation

tRNA

The Genetic Code

	Second letter						
		U	С	Α	G		S 1
First letter	U	UUU } Phe UUA } Leu	UCU UCC UCA UCG	UAU Tyr UAC Stop UAG Stop	UGU Cys UGA Stop UGG Trp	UCAG	Third letter
	O	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU His CAA GIn	CGU CGC CGA CGG	U C A G	
	A	AUU AUC IIe AUA Met	ACU ACC ACA ACG	AAU Asn AAC AAA AAA Lys	AGU Ser AGA AGG Arg	UCAG	
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU Asp GAC Asp GAA Glu	GGU GGC GGA GGG	UCAG	

Summary

