DISKRETE STRUKTUREN - ÜBUNG 11

FELIX TISCHLER, MARTRIKELNUMMER: 191498

Relation

1.) Es sei $[M, \leq]$ eine halbgeordnete Menge und $A \subseteq M$.

a)

- o) $x \in M$ ist **untere Schranke** von $A \leftrightarrow_{df} \bigwedge_{a \in A} (a \ge x)$
- o) $x \in M$ ist **Minimum** von $A \leftrightarrow_{df}$ es gilt:
 - 1.) "x ist untere Schranke von A" und 2.) $x \in A$
- o) $x \in M$ ist **Infimum** von $A \leftrightarrow_{df}$ es gilt:

1.) "x ist untere Schranke von A" und 2.)
$$\bigwedge_{y \in M} \left(\bigwedge_{a \in A} (a \ge y) \to x \ge y \right)$$

- o) $x \in M$ ist **minimales Element** von $A \leftrightarrow_{df}$ es gilt:
 - 1.) $x \in A$ und 2.) es gibt kein Element $z \in A$ mit $z \neq x$ und $x \geq z$

b)

Beispiel 1: $[\mathbb{R}, \leq]$: Es sei $A = \mathbb{R}$. A besitzt <u>keine</u> untere Schranken, folglich kein Minimum und kein Infimum, aber auch keine minimalen Elemente.

Beispiel 2: $[\mathbb{N}, \leq]$: $A = \{0, 1, 2\}$. Untere Schranken sind 0, -1, -2, -3... Die 0 ist untere Schranke, minimales Element, Minimum und Infimum.

2.) Wir wissen: Die Menge der natürlichen Zahlen $\mathbb N$ zusammen mit der üblichen kleiner-gleich-Relation \leq ist eine halbgeordnete Menge $[\mathbb N, \leq]$

Fall:	$m \leq n$	$n \leq m$	m = n
$Sup_{\leq}(\{m,n\})$	n	m	$max\{m,n\}$
$Inf_{\leq}(\{m,n\})$	m	n	$min\{m,n\}$

Fall 1 und 2 sind wohldefiniert, Fall 3 ebenfalls, da Maximum und Minimum immer existieren.

3.) Wir wissen: Die Menge der natürlichen Zahlen $\mathbb N$ zusammen mit der üblichen Teilerrelation \setminus ist eine halbgeordnete Menge $[\mathbb N, \setminus]$

 $Sup_{\backslash}(\{m,n\}) = kgV(m,n)$, da $m \mid kgV(m,n)$ und $n \mid kgV(m,n)$, denn "kleinste" im Namen bedeutet dass es sich um die kleinste obere Schranke handelt.

 $Inf_{\backslash}(\{m,n\}) = ggT(m,n)$, da $ggT(m,n) \mid m$ und $ggT(m,n) \mid n$, denn "größte" im Namen bedeutet dass es sich um die größte untere Schranke handelt.

Falls m und n teilerfremd sind, haben sie zumindest 1 als ggT und das kgV ist höchstens $m \cdot n$. Beides existiert immer.

4.) Wir wissen: Die Menge der natürlichen Zahlen $\mathbb N$ zusammen mit der üblichen Teilmengenbeziehung \subseteq ist eine halbgeordnete Menge $[\mathscr{P}(M),\subseteq]$

 $Sup_{\subseteq}(X,Y)=X\cup Y$, wenn man ein Element wegnehmen würde, wäre die Relation nicht mehr gegeben, d.h. es handelt sich hierbei um die kleinste Schranke.

 $Inf_{\subseteq}(X,Y) = X \cap Y$, wenn man ein Element hinzugeben würde, wäre die Relation nicht mehr gegeben, d.h. es handelt sich hierbei um die größte Schranke.

Schnitt und Vereinigung existieren immer.