

This is to certify that the following application annexed hereto is a true copy from the records of the Korean Intellectual Property Office.

원 번 10-2003-0008021

Application Number

워 년 Date of Application 2003년 02월 08일

FEB 08, 2003

원

인 :

삼성전자주식회사

SAMSUNG ELECTRONICS CO., LTD.

Applicant(s)

2003

80

18

COMMISSIONER

【서지사항】

【서류명】 특허출원서

【권리구분】 특허

【수신처】 특허청장

【제출일자】 2003.02.08

【발명의 명칭】 자기 기록/재생장치의 핀치롤러 구동메카니즘

【발명의 영문명칭】 Pinch-roller unit for magnetic recording/reading

apparatus

【출원인】

【명칭】 삼성전자 주식회사

【출원인코드】 1-1998-104271-3

【대리인】

【성명】 정홍식

【대리인코드】 9-1998-000543-3

【포괄위임등록번호】 2003-002208-1

【발명자】

【성명의 국문표기】 심재훈

【성명의 영문표기】 SIM, JAE HOON

【주민등록번호】 630224-1674214

【우편번호】 442-706

【주소】 경기도 수원시 팔달구 망포동 동수원엘지빌리지 107동 701

호

[국적] KR

【발명자】

【성명의 국문표기】 박병배

【성명의 영문표기】PARK,BYENG BAE【주민등록번호】710726-1030914

【우편번호】 425-170

[주소] 경기도 안산시 사동 1172-17

 【국적】
 KR

 【심사청구】
 청구

【취지】 특허법 제42조의 규정에 의한 출원, 특허법 제60조의 규정

에 의한 출원심사 를 청구합니다. 대리인

정홍식 (인)

[수수료]				
【기본출원료】	12	면	29,000	원
【가산출원료】	0	면	0	원
【우선권주장료】	0	건	0	원
【심사청구료】	5	항	269,000	원
【합계】	298,000 원			
【첨부서류 】	1. 요약서·명세서(도면)_1통			

1020030008021

출력 일자: 2003/8/21

【요약서】

【요약】

캡스턴모터의 샤프트가 직립설치되는 메인데크와; 메인데크에 로딩 언로딩되게 설치되는 서브데크와; 메인데크에 회동가능하게 설치되며, 서브데크의 로딩시 자기테이프를 샤프트에 밀착시키는 핀치롤러를 가지는 회동레버;를 포함하며, 서브데크의 로딩/언로딩시 회동레버를 연동시켜 샤프트쪽으로 회동 및 복귀되도록 서브데크와 회동레버가연결된 것을 특징으로 하는 자기 기록/재생장치의 핀치롤러 구동메카니즘이 개시된다.

【대표도】

도 2

【명세서】

【발명의 명칭】

자기 기록/재생장치의 핀치롤러 구동메카니즘{Pinch-roller unit for magnetic recording/reading apparatus}

【도면의 간단한 설명】

도 1은 종래의 자기 기록/재생장치의 핀치롤러 구동메카니즘을 나타내 보인 개략적인 평면도.

도 2는 본 발명의 실시예에 따른 자기 기록/재생장치의 핀치롤러 구동메카니즘을 나타내 보인 개략적인 평면도.

도 3은 도 2의 - I 선 단면도.

도 4는 도 2에 도시된 핀치롤러 구동메카니즘의 동작을 설명하기 위한 평면도.

< 도면의 주요부분에 대한 부호의 설명 >

50..메인데크

51..캡스턴모터

55..메인슬라이딩부재

60..서브데크

63..캠돌기

70..회동레버

71..핀치롤러

73..캠홈

75..토션스프링

【발명의 상세한 설명】

【발명의 목적】

【발명이 속하는 기술분야 및 그 분야의 종래기술】

<11> 본 발명은 자기 기록/재생장치에 관한 것으로, 보다 상세하게는 테이프카세트로부터 풀려 나와 헤드드럼에 접촉되게 로딩되는 테이프를 캡스턴모터의 축에 밀착 및 이격시키기 위한 자기 기록/재생장치의 핀치롤러 구동메카니즘에 관한 것이다.

- 의반적으로, 자기 기록/재생장치는 자기테이프와 같은 기록매체에 정보를 기록하고, 기록된 정보를 재생하는 장치로서, VCR(video cassette tape recorder), 캠코더(camcoder)등이 있다.
- <13> 도 1을 참조하면, 자기 기록/재생장치는 헤드드럼(11)이 회전 가능하게 설치되는 메인데크(10)와, 이 메인테크(10)에 B1 및 B2 방향으로 왕복 슬라이딩 가능하게 설치되는 메인 슬라이딩부재(13)와, 메인데크(10)에 로딩/언로딩 방향으로 왕복 슬라이딩 가능하게 설치되는 서브데크(20)와, 상기 서브데크(20)의 로딩시 테이프가 헤드드럼(11)에 감기도록 이동시켜 지지하는 한 쌍의 폴베이스 유닛(16,17)과, 로딩된 테이프의 주행을 가이드하는 테이프 가이드장치를 구비한다.
- <14> 상기 테이프 가이드장치는, 메인데크(10)에 고정된 캡스턴모터의 샤프트(18)와, 상기 메인 슬라이딩부재와 연동되면서 테이프를 상기 샤프트(18)에 밀착시키는 핀치롤러유 닛(40)을 구비한다.
- <15> 상기 핀치롤러유닛(40)은 메인데크(10)에 회동 가능하게 설치되는 회동레버(41)와, 그 회동레버(41)의 단부에 회전 가능하게 설치되는 핀치롤러(43)와, 회동레버(41)의 회

동축상에서 회전되는 가압레버(45) 및 가압레버(45)와 회동레버(41)를 도 1의 상태로 복 귀시키는 복귀스프링(47)을 구비하다.

- 상기 회동레버(41)는 로딩되는 서브데크(20)의 선단부(21)에 돌기(41a)가 밀려서 A 방향으로 회동되며, 핀치롤러(43)는 샤프트(18)에 접촉된다. 그리고, 서브데크(20)의 로 딩 후에, 상기 메인 슬라이딩부재(13)가 B1 방향으로 이동하면서 상기 가압레버(45)의 하단을 돌출부(13a)가 B1 방향으로 밀어낸다. 그러면, 가압레버(45)가 시계방향으로 가 압되면서 핀치롤러(43)가 샤프트(18)에 밀착된다.
- <17> 한편, 서브데크(20)의 언로딩시에는 상기 복귀스프링(47)의 복귀력에 의해 회동레 버(41)는 원위치로 복귀된다.
- <18> 그런데, 상기와 같은 구성을 가지는 종래의 핀치롤러유닛(30)은, 회동레버(41)를 복귀시키기 위한 복귀스프링(47)을 별도로 설치해야 하므로 부품수가 많아지고 비용이 증가하는 문제점이 있다.

【발명이 이루고자 하는 기술적 과제】

<19> 본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로, 부품수가 줄고 간단하게 구조가 개선된 자기 기록/재생장치의 핀치롤러 구동메카니즘을 제공하는데 그 목적이 있다.

【발명의 구성 및 작용】

<20> 상기 목적을 달성하기 위한 본 발명에 따른 자기 기록/재생장치의 핀치롤러 구동메 카니즘은, 캡스턴모터의 샤프트가 직립설치되는 메인데크와; 상기 메인데크에 로딩 언로 딩되게 설치되는 서브데크와; 상기 메인데크에 회동가능하게 설치되며, 상기 서브데크의

로딩시 자기테이프를 상기 샤프트에 밀착시키는 핀치롤러를 가지는 회동레버;를 포함하며, 상기 서브데크의 로딩/언로딩시 상기 회동레버를 연동시켜 상기 샤프트쪽으로 회동 및 복귀되도록 상기 서브데크와 회동레버가 연결된 것을 특징으로 한다.

- <21> 여기서, 상기 회동레버에는 소정 형상의 캠홈이 형성되고, 상기 서브데크에는 상기 캠홈에 끼워져 상기 서브데크의 이동시 상기 회동레버를 연동시켜 회전시키는 캠돌기가 형성된 것이 좋다.
- 또한, 상기 캠홈은 상기 회동레버와 길이방향으로 소정 길이로 형성되어, 상기 서 브데크의 로딩후에도 상기 회동레버의 추가적인 움직임이 가능한 것이 좋다.
- <23> 또한, 상기 캠돌기는 상기 서브데크의 하면을 상부쪽으로 버링가공하여 형성된 것
 이 좋다.
- 또한, 상기 회동레버에 동축적으로 설치되는 토션스프링과; 상기 메인데크에 왕복 슬라이딩 가능하게 설치되며, 상기 서브데크의 로딩시 일측으로 이동되면서 상기 토션스 프링을 가압하여 상기 서브데크에 연동하여 회동된 회동레버를 상기 샤프트쪽으로 더 가 압하도록 하는 메인슬라이딩 부재;를 더 포함하는 것이 좋다.
- <25> 이하 첨부된 도면을 참조하여 본 발명의 실시예에 따른 자기 기록/재생장치의 핀치 롤러 구동메카니즘을 자세히 설명하기로 한다.
- <26> 도 2는 본 발명의 실시예에 따른 자기 기록/재생장치의 핀치롤러 구동메카니즘을 나타내 보인 개략적인 평면도이다. 도면을 참조하면, 본 발명의 실시예에 따른 핀치롤러 구동메카니즘은, 캡스턴모터(51)의 샤프트(51a)가 직립 설치되는 메인데크(50)와, 상기

메인데크(50)에 로딩/언로딩되게 설치되는 서브데크(60)와, 자기테이프를 상기 샤프트 (51a)에 밀착되게 이동시키는 핀치롤러(71)를 지지하는 회동레버(70)를 구비한다.

- <27> 상기 메인데크(50) 상에는 헤드드럼(53)이 회전가능하게 설치되고, 구동모터(54)의 동력에 의해 왕복슬라이딩되는 메인슬라이딩부재(55)가 설치된다.
- <28> 상기 서브데크(60)는 테이프카세트의 테이프릴이 결합되는 릴디스크(61)를 가진다.
 상기 서브데크(60)에 테이프카세트가 안착된 상태로 서브데크(60)가 로딩되면, 상기 핀 치롤러(71)를 포함하는 테이프가이드부재에 의해 테이프가 풀려져 나가 헤드드럼(53)에 감긴 상태가 된다.
- 생기 핀치롤러(71)는 로딩시 테이프를 이끌고나가 샤프트(51a)에 밀착시킨다. 이러한 핀치롤러(71)는 회동레버(70)의 일단에 회전 가능하게 설치된다. 상기 회동레버(70)는 메인데크(10)에 회동 가능하게 설치된다. 이 회동레버(70)에는 캠홈(73)이 소정 길이 및 소정형상으로 형성된다. 상기 캠홈(73)에 끼워지는 캠돌기(63)가 서브데크(60)에 돌출형성된다.
- (30) 따라서, 상기 서브데크(60)의 로딩시 캠돌기(63)와 캠홈(73)의 연동에 의해 회동레 버(70)가 동시에 회동된다. 그리고, 서브데크(60)의 언로딩시에도 캠돌기(63)와 캠홈 (73)의 연동작용에 의해, 회동레버(70)가 자동으로 복귀된다. 따라서, 종래와 같이 회동 레버의 복귀를 위한 복귀스프링이 불필요하게 된다.
- <31> 여기서, 상기 캠돌기(63)는 도 3에 도시된 바와 같이, 버링(burring) 가공에 의해 서브데크(60)의 하면을 상부로 돌출 형성시켜 마련할 수 있다.

또한, 상기 회동레버(70)에는 토션스프링(75)이 동축적으로 설치된다. 상기 토션스 <32> 프링(75)은 일단이(75a) 회동레버(70)를 벗어나 상기 메인슬라이딩부재(55)에 선택적으 로 간섭될 수 있도록 연장된다. 이러한 회동부재(70)는 서브데크(60)에 의해 핀치롤러 (71)가 샤프트(51a)에 접촉된 상태에서, 상기 회동부재(70)를 더 회동시켜서 핀치롤러 (71)를 샤프트(51a)에 더 밀착시키기 위한 가압력을 제공하기 위한 것이다. 이 토션스프 링(75)은 회동레버(70)와 함께 1차적으로 A 방향으로 회동된 뒤, 그 일단(75a)은 메인슬 라이딩부재(55)의 접촉부(55a)에 밀려 더 회동된다.

상기 구성을 가지는 본 발명의 실시예에 따른 자기 기록/재생장치의 핀치롤러 구동 <33> 메카니즘의 동작을 설명하면 다음과 같다.

먼저, 도 2의 상태에서 서브데크(60)가 C1 방향으로 로딩된다. 그러면, 서브데크 <34> (60)의 캠돌기(63)에 연동되어 회동레버(70)가 A 방향으로 회동된다. 이 때, 토션스프링 (75)도 함께 회동된다. 그러면, 도 4에 도시된 바와 같이, 핀치롤러(71)가 샤프트(51a) 에 접촉된다. 그리고, 토션스프링(75)의 일단(75a)은 메인슬라이딩부재(55)의 접촉부 (55a) 좌측에 위치된다.

상기 상태에서 메인슬라이딩부재(55)가 B1 방향으로 이동된다. 그러면, 접촉부 <35> (55a)가 토션스프링(75)의 일단(75a)을 가압하게 된다. 따라서, 토션스프링(75)이 압축 되면서 그 가압력에 의해 핀치롤러(71)는 샤프트(51a) 쪽으로 더 가압된다. 이와 같이 로딩이 완료된 상태에서 테이프에 정보를 기록/재생하는 동작이 이루어진다.

그리고, 서브데크(60)를 C2 방향으로 언로딩시키면, 먼저 토션스프링(75)이 메인슬 <36> 라이딩부재(55)로부터 해제된다. 이어서, 서브데크(60)의 이동에 연동하여 회동레버(70) 로 회동되어 도 1과 같은 위치로 복귀된다.

【발명의 효과】

이상에서 설명한 바와 같은 본 발명의 자기 기록/재생장치의 핀치롤러 구동메카니 즘에 따르면, 서브데크와 회동레버가 직접 연결되어 로딩/언로딩동작에 상호 연동하여 동작됨으로써, 회동레버의 언로딩시 복귀를 위한 복귀스프링을 삭제할 수 있다. 따라서, 부품수를 줄여 비용을 절감할 수 있는 이점이 있다.

【특허청구범위】

【청구항 1】

캡스터모터의 샤프트가 직립설치되는 메인데크와;

상기 메인데크에 로딩 언로딩되게 설치되는 서브데크와;

상기 메인데크에 회동가능하게 설치되며, 상기 서브데크의 로딩시 자기테이프를 상 기 샤프트에 밀착시키는 핀치롤러를 가지는 회동레버;를 포함하며,

상기 서브데크의 로딩/언로딩시 상기 회동레버를 연동시켜 상기 샤프트쪽으로 회동 및 복귀되도록 상기 서브데크와 회동레버가 연결된 것을 특징으로 하는 자기 기록/재생 장치의 핀치롤러 구동메카니즘.

【청구항 2】

제1항에 있어서, 상기 회동레버에는 소정 형상의 캠홈이 형성되고,

상기 서브데크에는 상기 캠홈에 끼워져 상기 서브데크의 이동시 상기 회동레버를 연동시켜 회전시키는 캠돌기가 형성된 것을 특징으로 하는 자기 기록/재생장치의 핀치롤 러 구동메카니즘.

【청구항 3】

제2항에 있어서, 상기 캠홈은 상기 회동레버와 길이방향으로 소정 길이로 형성되어, 상기 서브데크의 로딩후에도 상기 회동레버의 추가적인 움직임이 가능한 것을 특징으로 하는 자기 기록/재생장치의 핀치롤러 구동메카니즘.

【청구항 4】

제2항에 있어서, 상기 캠돌기는 상기 서브데크의 하면을 상부쪽으로 버링가공하여 형성된 것을 특징으로 하는 자기 기록/재생장치의 핀치롤러 구동메카니즘.

【청구항 5】

제1항에 있어서,

상기 회동레버에 동축적으로 설치되는 토션스프링과;

상기 메인데크에 왕복슬라이딩 가능하게 설치되며, 상기 서브데크의 로딩시 일측으로 이동되면서 상기 토션스프링을 가압하여 상기 서브데크에 연동하여 회동된 회동레버를 상기 샤프트쪽으로 더 가압하도록 하는 메인슬라이딩 부재;를 더 포함하는 것을 특징으로 하는 자기 기록/재생장치의 핀치롤러 구동메카니즘.

【도면】

[도 1]

[도 2]

[도 3]

[도 4]

