Software Project Estimation

Cost

Estimation project scope must be

- project scope must be depinetly
- task and/or flacementalition is
- histessicallymeasures (metrics)

 ଧନ୍ଧ୍ୟ
- belpfist two different
 teenhiques
- psetember that uncertainty igheren
 t

To Understand Scope ...

- Understand the customers needs
- understand the business context
- understand the project boundaries
- understand the customer's motivation
- understand the likely paths for change
- understand that ...

Even when you understand, nothing is guaranteed!

Estimation Techniques

- past (similar) project experience
- conventional estimation techniques
 - task breakdown and effort estimates
 - size (e.g., FP) estimates
- tools

Functional Decomposition

Statement of Scope perform a "grammatical parse"

functional decompositio

Conventional Methods: LOC/FP Approach

- compute LOC/FP using estimates of information domain values
- use historical effort for the project

Example: LOC Approach

Functions	estimated LOC	LOC/pm	\$/LOC	Cost	Effort (months)	
UICF	2340	315	14	32,000	7.4	
2DGA	5380	220	20	107,000	24.4	
3DGA	6800	220	20	136,000	30.9	
DSM	3350	240	18	60,000	13.9	
CGDF	4950	200	22	109,000	24.7	
PCF	2140	140	28	60,000	15.2	
DAM	8400	300	18	151,000	28.0	
Totals	33,360			655,000	145.0	

Example: FP Approach

measurement parameter	count	W	weight			
number of user inputs	40	x	4	=	160	
number of user outputs	25	X	5	=	125	
number of user inquiries	12	x	4	=	48	
number of files	4	x	7	=	28	
number of ext.interfaces	4	x	7	=	28	
algorithms	60	x	3	=	180	
count-total ————————————————————————————————————			→	► 569		
complexity multiplier		.84				
feature points				478		

0.25 p-m / FP = 120 p-m

Creating a Task Matrix

Obtained from "process framework"

Empirical Estimation Models

General form:

```
exponen
   effort = tuning coefficient *
   size
usually
                                                  empiricall
ds ប៉ុម្មទំ០n-
months
                                                  Herive
of effort
                                 usually LOC
required
                                  muty also
        a number derived
                                  acnetion
        eiabed a constant
                                  point
        or
        on complexity of
        project
```

Empirical Estimation Model

LOC-Oriented Estimation models

E = 5.2 X(KLOC) .91 Waltson-Felix Model

 $E = 5.5 + 0.73 \text{ X (KLOC)}^{1.16}$ Bailey-Basili model

E = 3.2 X (KLOC) 1.05 Boehm Simplw Model

FP-Oriented Estimation models

E = -13.39 X .0545 FP Albrecht and Gaffney Model

E = 60.62 X 7.728 X 10-8 FP³ Kemerer model

E = 585.7 X 15.12 FP Matson, Barnett, and Mellichamo Model

COCOMO Model

- Bery Boehm introduced a hierarchy of s/w estimation models bearing the name COCOMO, for COnstructive COst MOdel.
 - Empirical models for estimating effort and time

See:

sunset.usc.edu/COCOMOII/cocomo.html

COCOMO II

- COCOMO II is actually a hierarchy of estimation models that address the following areas:
- Application Composition model
- Early Design Stage Model
- Reuse Model
- Post-architecture stage model

Object Points Estimate

COCOMO II application composition model uses object points

Like Function Points, the Object Point is an indirect s/w measure that is computed using counts of number of:

- 1) Screens (UI)
- 2) Reports
- 3) Components

NOP = Object Points x [(100-%reuse)/100]
PORD is a parameter with unit NOP / person-month
Estimated effort = NOP / PROD

Early Design Model

Requirement Analysis done
You can estimate the size of code by LOC
PM=A x Size^B x M

Where

M= PERS x RCPX x RUSE x PDIF x PREX x FCIL x SCED

A = 2.94, **B = 1.1** to 1.24 depending n the novelty

PERS= Personnel Capability

RCPX= Product reliability and Complexity

RUSE= Reuse required

PDIF = Platform difficulty

PREX = Personnel Experience

SCED= Required Schedule

FCIL = Team support facility

Reuse Mode

Black Box Reuse: The component will be reused with necessary configuration

White Box Reuse: Code will be modified when reused The number of new code will be estimated

For generated code

PM= (ASLOC * AT/100)/ ATPROD

ASLOC: Number of lines of Generated Code

AT: Percentage of Code Automatically Generated

ATPROD: Productivity of Engineers to generate code

When code is understood for integration

ESLOC= ASLOC * (1-AT/100) * AAM

AAM= adaptation adjustment multiplier

From the cost of changing the reused code

Post Architecture Stage Model

Same as early design model 17 rather than 7 multipliers Code size will be estimated Number of new lines of codes Modified as there might be change of requirements Exponent term depends on the following factors (ranked between 1 to 5, 1 for excellent, 5 for poor), Precedenteness Development flexibility Architecture/Risk Resolution Team Cohesion Process maturity Sum/100 +1.01 is the exponent term

The Software Equation

 It is a dynamic multivariable model that assumes a specific distribution of effort over a life of s/w development of project. [from 4000 s/ projects]

```
E = [LOC x B<sup>0.333</sup> /P ] <sup>3</sup> x (1/t<sup>4</sup>)

E = effort in person-months/person-years
t = project duration in months or years
B =special skill factors [ B = .16 (5-15 KLOC)
B = .39 (70 kloc)]
P = productivity parameter [ 2000 -> embedded s/w
10,000 -> telecomm
```

20,000 -> business

app]

Estimation Guidelines

- estimate using at least two techniques
- techniques
 get estimates from independent
 sources
- sourcesavoid over-optimism, assume difficulties
- difficulties you've arrived at an estimate, sleep on it
- on it adjust for the people who'll be doing the—they have the highest impact

The Make-Buy

Computing Expected Cost

```
expected cost

= \sum_{\text{(path probability)}} x \text{(estimated path cost)}

For example, the expected cost to build is:

expected cost
buil
d = $429 K
```

similarly

```
expected cost<sub>reus</sub> = $382K
expected cost<sub>bu</sub> = $267K
expected cost<sub>contr</sub> = $410K
```