哈尔滨工业大学(威海)数学系

Discrete Math.

图论起源

- □ 图论起源于18世纪, 追朔到1736年瑞士 数学家L.Euler出版 第一本图论著作,提 出和解决了著名的 Konigsberg七桥 问题.
- 欧拉(Leonhard Euler, 1707-1783年)

欧拉(Euler)

Konigsberg七桥问题

引言

□图论是专门研究图的理论的一门数学分支,属于 <u>离散数学</u>范畴,与<u>运筹学</u>有交叉,它有200多年历 史,大体可划分为三个阶段:

萌芽阶段,多数 问题因游戏而产 生,最有代表性 的是七桥问题, 即一笔画问题 图论问题大量出现,如Hamilton问题,地图染色的四色问题以及可平面性问题等

网络流理论与线性规划,动态规划等优化理论和方法相互渗透,促进了图论对实际问题的应用

18世纪中叶

19世纪中叶

20世纪中叶

引言

- □ 图论以图为研究对象:图由若干给定的点和连接 两点的线构成,借以描述某些事物之间的关系.
 - 点代表事物,
 - 连接两点的线表示两个事物之间具有特定关系.
- 回图论在许多领域,如计算机科学,物理学,化学,运筹学,信息论,控制论,网络通讯,社会科学以及经济管理,军事,国防,工农业生产等方面都得到广泛的应用.

|4| **4| >**| **>**

Graph Theory 2

图的基本概念

- □ 无向图及有向图
- □ 通路、回路、图的连通性
- □ 图的矩阵表示
- □ 最短路径及关键路径

无序积

设A,B为两集合,

- □ <a,b>
 - \blacksquare A×B={<a,b>|a∈A \land b∈B}
- □ {a,b}
 - A&B={{a,b}|a∈A∧b∈B}:A与B的无序积
 - 将无序对{a,b}记作(a,b)
 - 无论a,b是否相等,均有
 - \square (a,b)=(b,a)
 - □ A&B=B&A

无向图

- 一个无向图G是一个二元组<V,E>,即G=<V,E>
- □1). V是一个非空的集合,称为G的顶点集,V中元素称为<u>顶点</u>或<u>结点</u>;
- □2). E是无序积V&V的一个多重子集,称E为G的 边集,E中元素称为<u>无向边</u>或简称<u>边</u>.
 - 多重集:元素可以重复出现的集合.
- □ **V**? **E**?

有向图

- 一个有向图D是一个二元组<V,E>,即D=<V,E>
- □1). V是一个非空的集合,称为G的顶点集,V中元素称为<u>顶点</u>或<u>结点</u>;
- 口2). E是卡氏积的多重子集,其元素称为<u>有向边</u>, 也简称<u>边</u>.
 - ■用小圆圈(实心点)表示顶点,顶点间的连线表示 无向边,有方向的连线表示有向边.V₁
- □ **V**? **E**?

图的图示

口 常用一个图形来表示图, 称为图的图示

加权图

- □给每条边赋予权的图G=<V,E>称为加权图,
- □ 记为G=<V,E,W>,其中W表示各边权的集合.

概念

- 设G=<V,E>为一无向图或有向图
- □1). 若V,E都是有穷集合,则称G是有限图.
- □ 2). 若 | V | = n,则称G为n阶图.
- □ 3). 若E=Ø,则称G为零图.
 - ■特别是,若此时又有 | V | = 1,则称G为平凡图.
- □ 4). 在图的运算中可能产生顶点集为空集的运算结果,为此规定顶点集为空集的图为空图,记为Ø

关联

- 口设 $e_k = (v_i, v_j)$ 为无向图 $G = \langle V, E \rangle$ 中的一条边,称 v_i, v_j 为 e_k 的端点, e_k 与 v_i (或 v_j)是彼此关联的.
 - 无边关联的顶点称为孤立点.
 - 若一条边所关联的两个顶点重合,则称此边为环.

|4 **4 > >**|

设无向图G=<V,E>,v_i,v_j∈V,e_k,e_l∈E.

- □1). 若存在一条边e以v_i,v_i为端点,即e=(v_i,v_j), 则称v_i,v_j是彼此相邻的,简称相邻的.
- □2). 若ek,el至少有一个公共端点,则称ek,el是彼 此相邻的,简称相邻的.
- 口相邻:点与点,边与边
- 口关联:点与边

始点、终点(有向图)

以上两定义(关联、相邻)对有向图也是类似的

- 口若 $e_k = \langle v_i, v_j \rangle$,除称 v_i, v_j 是 e_k 的端点外,还称 v_i 是 e_k 的始点, v_i 是 e_k 的终点
- □邻接:
 - v_i邻接到v_j
 - v_j邻接于v_i

度

口设 $G=<V,E>为无向图, <math>v_i \in V,$ 称 v_i 作为边的端点的次数之和为 v_i 的度数, 简称度, 记作 $d(v_i)$.

□称度数为1的顶点为悬挂顶点

■它所对应的边为悬挂边

□度数为0的顶点?

□度数为2的顶点?

|4 4 > b|

度(有向图)

设D=<V,E>为一有向图,v_i∈V,

- □ v_i的出度: v_i作为边的始点的次数之和,记作d+(v_i);
- □ v_i的入度:v_i作为边的终点的次数之和,记作d⁻(v_i);
- □ v_i的度数: v_i作为边的端点的次数之和,简称度,记作d(v_i).
- 口显然 $d(v_i)=d^+(v_i)+d^-(v_i)$.

度(有向图)

- $\Box d(v_1) = 2, d^+(v_1) = 1, d^-(v_1) = 1;$
- $\Box d(v_2)=3,d^+(v_2)=2,d^-(v_2)=1;$
- $\Box d(v_3)=4,d^+(v_3)=2,d^-(v_3)=2;$
- $\Box d(v_4)=d^+(v_4)=d^-(v_4)=0;$
- $\Box d(v_5)=1,d^+(v_5)=0,d^-(v_5)=1;$
 - v₅是悬挂结点,<v₁,v₅>为悬挂边.

最大度、最小度

对于图G=<V,E>,记

□G的最大度: $\Delta(G)$ =max{d(v)|v∈V}

□G的最小度: $\delta(G)$ =min $\{d(v)|v\in V\}$

最大出度、入度

若D=<V,E>是有向图,除 Δ (D), δ (D)外,还有,

□最大出度: Δ+(G)=max{d+(v)|v∈V},

□最大入度: Δ⁻(G)=max{d⁻(v)|v∈V},

□最小出度: $\delta^+(G)=\min\{d^+(v)|v\in V\}$,

□最小入度: δ⁻(G)=min{d⁻(v)|v∈V}.

基本定理(握手定理)

□Th.设图G=<V,E>为无向图或有向图, V={v₁,v₂,...,v_n}, |E|=m(m为边数),则

$$\sum_{i=1}^{n} d(v_i) = 2m$$

□推论.任何图(无向的或有向的)中,度为奇数的顶点个数为偶数.

定理

设有向图D=<V,E>, $V=\{v_1,v_2,...,v_n\}$,|E|=m,则:

$$\sum_{i=1}^{n} d^{+}(v_{i}) = \sum_{i=1}^{n} d^{-}(v_{i}) = m$$

度数序列

- 口设 $V = \{v_1, v_2, ..., v_n\}$ 为图G的顶点集,称 $(d(v_1), d(v_2), ..., d(v_n))$ 为G的<u>度数序列</u>.
- □例.
 - (1) (3,3,2,3),(5,2,3,1,4)能成为图的度数 序列吗?为什么?
 - ■(2)已知图G中有10条边,4个3度顶点,其余 顶点的度数均小于等于2.问G中至少有多少 个顶点?为什么?
 - $\square 4+4$

平行边、重数、多重图

□无向图中,关联一对顶点的无向边如果多于1条, 称这些边为平行边.

平行边、重数、多重图

口有向图中,关联一对顶点的有向边如果多于1条, 且它们的始点与终点相同,则称这些边为有向平 行边,简称平行边.

口含平行边的图称为多重图.

口区别关系图?

简单图

□简单图:

- 既不含平行边,
- 也不含环的图.

无向完全图

口设G=<V,E>是n阶无向简单图,若G中任何顶点都与其余的n-1个顶点相邻,则称G为n阶无向完全图,记作K_n.

■ K_n均指无向完全图.

有向完全图

□设D= $\langle V,E\rangle$ 为n阶有向简单图,若对于任意的顶点u, $v\in V(u\neq v)$,既有有向边 $\langle u,v\rangle$,又有 $\langle v,u\rangle$,则称D是n阶有向完全图.

3阶有向完全图

子图、真子图

□若G'_G且G'≠G(即V'_V或E'_E),则G'是G的 真子图. $\overline{e_8}$ $\overline{e_8}$ (a) (b)

生成子图、导出子图

- □若G'⊆G且V'=V,则称G'是G的生成子图
- $\square V_1$ 导出的导出子图:设 $V_1 \subseteq V \coprod V_1 \neq \emptyset$,以 V_1 为顶点,以两端点均在 V_1 中的全体边为边集的G的子图
- $\Box E_1$ 导出的导出子图:设 $E_1 \subseteq E \coprod E_1 \neq \emptyset$,以 E_1 为边集,以 E_1 中关联的顶点的全体为顶点集的G的子图

图G的生成子图G",结点集 $\{v_1,v_2,v_4,v_5,v_6\}$ 的导出子图G'

无向图子图举例

[4 | 4 | D | D |

补图

- 口设G=<V,E>是n阶无向简单图.以V为顶点集,以 所有能使G成为完全图K_n的添加边组成的集合为 边集的图,称为G相对于完全图K_n的补图,简称G 的补图,记作G.
- □ 有向简单图的补图可类似定义.

图的同构

- □ Def.设两个无向图G=<V,E>,G'=<V',E'>,若 存在双射f:V→V',s.t.对∀a,b∈V, (a,b)∈E⇔(f(a),f(b))∈E',且(a,b)与(f(a),f(b))
 - (a,b)∈E⇔(f(a),f(b))∈E',且(a,b)与(f(a),f(b)) 重数相同,则称G与G'同构,记为G≅G'.
- 注① 两图同构是等价关系.
 - ② 两图同构时不仅结点之间要有一一对应关系, 而且这种对应关系保持点间的邻接关系.对有向 图同构还要求保持边的方向.
 - ③ 寻求判断图同构的简单有效方法仍是图论待解决的重要问题.

同构图举例

非同构图举例

□ 存在结点数及每个结点对应度都相等的两个图 仍然不同构的情况.

注. 两个4度点或邻接或不相邻接

彼德森(Petersen)图

(4),(5),(6)彼此间都不同构

Graph Theory 2

图的基本概念

- □ 无向图及有向图
- □ 通路、回路、图的连通性
- □ 图的矩阵表示
- □ 最短路径及关键路径

通路与回路

- 给定图G=<V,E>.设G中顶点和边的交替序列为 $\Gamma=V_0e_1V_1e_2V_2...V_{s-1}e_sV_s$,若 Γ 满足如下条件:
- 口其中 $e_i = (v_{i-1}, v_i)$ (G是有向图时, $e_i = < v_{i-1}, v_i >$), 则称 Γ 为顶点 v_0 到 v_s 的通路.
- $\square V_0$ 和 V_s 分别称为此通路的起点和终点, Γ 中边的数目S称为 Γ 的长度.

简单通路(回路)

- 口若 Γ 中的所有边 e_1,e_2,\cdots,e_s 互不相同,则称 Γ 为简单通路.
- □若回路中的所有边互不相同,称此回路为简单回 路或一条闭迹.

初级通路(回路)

- □若通路的所有顶点V₀,V₁···,V_s互不相同,称此通路 为初级通路或一条路径
 - 初级通路中所有边互不相同

口若回路中,除 $V_0 = V_s$ 外,其余顶点各不相同,称此回路为初级回路或圈.

- $\square \Gamma = V_4 e_7 V_3 e_3 V_1 e_2 V_2 e_4 V_3 e_8 V_5$
- $\square \Gamma = V_4 e_6 V_2 e_2 V_1 e_3 V_3 e_8 V_5$
- $\square \Gamma = V_4 e_7 V_3 e_8 V_5$

14 4 >>

复杂通路(复杂回路)

- □有边重复出现的通路称为复杂通路,有边重复出现的回路称为复杂回路.
- □初级通路(回路)是简单通路(回路),但反之不真.
 - 初级通路 → 简单通路
 - 顶点互不相同 → 边互不相同

定理

- □任何图G中若有从u到w的通路(回路)必有从u到w的初级通路(回路)
- 证. P:G的一条长度最小的从u到w的通路;
- □如果P不是初级通路
 - \blacksquare $P=ue_1v_1e_2\cdots v_ie_{i+1}\cdots v_je_{j+1}\cdots e_nw$
 - P-{e_{i+1},...,e_i}仍是一条从u到w的通路, 矛盾

定理

口在n个顶点的图中任何初级通路的长度都不大于 n-1;任何初级回路的长度都不大于n

证.设任一初级通路P的长度为k,则P含k+1个结点

$$P=v_0e_1v_1e_2v_2\cdots e_kv_kv_k$$
.

 $\mathbf{D}\mathbf{V}_{0},\mathbf{V}_{1},\cdots,\mathbf{V}_{k}$ 两两不同,故 $\mathbf{k}+1\leq\mathbf{n}$,从而 $\mathbf{k}\leq\mathbf{n}-1$.

同理,长度为k的基本回路有k个不同结点,从而 $k \le n$.

连通

- 口在一个无向图G中,若从顶点 v_i 到 v_j 存在通路,则 称 v_i 与 v_i 是连通的.
 - 从v_i到v_i也存在通路
 - 规定v_i到自身总是<mark>连通</mark>的
- 口在一个有向图D中,若从顶点 v_i 到 v_j 存在通路,则称 v_i 可达 v_i .
 - 规定v_i到自身总是可达的.

短程线(无向图)

- □设v_i,v_j为无向图G中的任意两点,若v_i与v_j是连通的,则称v_i与v_j之间长度最短的通路为v_i与v_j间的短程线
- 口短程线的长度称为 v_i 与 v_j 间的距离,记作 $d(v_i, v_j)$

短程线(有向图)

- 口设v_i,v_j为有向图D中任意两点,若v_i可达v_j,则称从v_i到v_i长度最短的通路为v_i到v_i的短程线
- □短程线的长度称为v_i到v_j的距离,记作d<v_i,v_j>

性质

若 v_i 不可达 v_j ,规定 $d < v_i, v_j > = ∞$. $d < v_i, v_j >$ 具有下面性质:

- □1). d<v_i,v_j>≥0;v_i=v_j时,等号成立.
- □2). 满足三角不等式,即 d<v_i,v_j>+d<v_j,v_k>≥d<v_i,v_k>.
- 口在无向图中,还有对称性,即 $d(v_i,v_i)=d(v_i,v_i)$.

连通图(无向图)

- □若无向图G是平凡图,或G中任意两顶点都是连通的,则称G是连通图;否则,称G是非连通图.
- □设G为无向图,R是G中顶点间的<u>连通关系</u>,
 - 连通关系是等价关系
 - 按R可将V(G)划分成k(k≥i≥1)个等价类,记成V_i,
 - 由 V_i 导出的导出子图 $G[V_i]$ 称为G的连通分支,其个数记为p(G).

例

- $\square G_1$ 是连通图, $p(G_1)=1$;
- $\square G_2$ 是非连通图,且 $p(G_2)=2$ 。

例

- □R_{许诵}:等价关系
- 口等价类: $V_1 = \{v_1, v_2, ..., v_5\}, V_2 = \{v_6, v_7, v_8\}, V_3 = \{v_9\};$
- □连通分支:G[V₁], G[V₂], G[V₃], p(G)=3

连通图(有向图)

- 口设D是一个有向图,如果略去D中各有向边的方向 后所得无向图G是连通图,则称D是连通图,或称 D是弱连通图.
- 口若D中任意两顶点至少一个可达另一个,则称D是单向连通图.
- 口若D中任何一对顶点都是相互可达的,则称D是强

连通图(有向图)

- □ 1). 强连通图
- □ 2). 单向连通图
- □ 3). 弱连通图

点割集

- □设无向图G=<V,E>,若存在V'⊂V,使G删除V'后, p(G-V')>p(G),而删除V'的任何真子集V''后, p(G-V'')=p(G),则称V'为G的一个点割集.
 - 删除V':将V'中顶点及其关联的边都删除
- □若点割集中只有一个顶点∨,则称∨为割点.

边割集

- □设无向图G=<V,E>,若存在E'⊂E,使G删除E后, p(G-E')>p(G),而删除E'的任何真子集E''后, p(G-E'')=p(G),则称E'是G的一个边割集.
 - 删除E':将E'中的边从G中全删除
- 口若边割集中只有一条边e,则称e为割边或桥.

例

- □ {v₃,v₅},{v₂},{v₆}是点割集,
- □ {v₂,v₄}不是点割集,
- □ {e₃,e₄},{e₄,e₅},{e₁,e₂,e₄},{e₉}等都是边割集, 其中e₉是桥,
- □ {e₆,e₇,e₉}不是边割集.

Graph Theory 2

图的基本概念

- □ 无向图及有向图
- □ 通路、回路、图的连通性
- □ 图的矩阵表示
- □ 最短路径及关键路径

无向图的关联矩阵

关联矩阵性质(无向图)

$$1.\sum_{i=1}^{n} m_{ij} = 2(j=1,2,...,m)$$
 每条边关联两个顶点

$$2. \sum_{i=1}^{m} m_{ij} = d(v_i)$$

第i行元素之和为v_i的度数

关联矩阵性质(无向图)

3.
$$2m = \sum_{j=1}^{m} \sum_{i=1}^{n} m_{ij} = \sum_{i=1}^{n} \sum_{j=1}^{m} m_{ij} = \sum_{i=1}^{n} d(v_i)$$
 握手定理

$$4.\sum_{i=1}^{m} m_{ij} = 0$$
 iff v_i 为孤立点

5. 若第j列与第k列相同,则说明 e_i 与 e_k 为平行边

$$M(G) = \begin{pmatrix} 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 2 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

有向图的关联矩阵

- 口要求有向图D中无环存在.
- 口设D=<V,E>, v_3 $V=\{v_1,v_2,\dots,v_n\},E=\{e_1,e_2,\dots e_m\},$

$$m_{ij} = \begin{cases} 1 & v_i \Rightarrow e_j$$
的始点,
 $0 & v_i \Rightarrow e_j$ 不关联,
 $-1 & v_i \Rightarrow e_j$ 的终点.

则称 $(m_{ij})_{n\times m}$ 为D的关联矩阵,记作M(D).

关联矩阵性质(有向图)

1.
$$\sum_{i=1}^{n} m_{ij} = 0$$
 ($j = 1, 2, ..., m$), $\sum_{i=1}^{m} \sum_{i=1}^{n} m_{ij} = 0$

2.
$$\sum_{j=1}^{m} (m_{ij} = 1) = d^{+}(v_{i}), \sum_{j=1}^{m} (m_{ij} = -1) = -d^{-}(v_{i}),$$

$$\sum_{i=1}^{n} \sum_{j=1}^{m} (m_{ij} = 1) = \sum_{i=1}^{n} d^{+}(v_{i}) = m = \sum_{i=1}^{n} d^{-}(v_{i}) = -\sum_{i=1}^{n} \sum_{j=1}^{m} (m_{ij} = -1)$$

有向图的邻接矩阵

- □设有向图D=<V,E>.V={v₁,v₂,···,v_n},|E|=m.
- 口令a_{ij}⁽¹⁾为v_i邻接到v_j的边的条数,称(a_{ij}⁽¹⁾)_{m×n}为 D的邻接矩阵,记作A(D).

$$A(D) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

邻接矩阵性质

$$A(D) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$1. \sum_{j=1}^{n} a_{ij}^{(1)} = d^{+}(v_{i}), \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(1)} = \sum_{i=1}^{n} d^{+}(v_{i}) = m \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$2. \sum_{i=1}^{n} a_{ij}^{(1)} = d^{-}(v_{j}), \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij}^{(1)} = \sum_{i=1}^{n} d^{-}(v_{j}) = m$$

 $3. \sum \sum a_{ij}^{(1)} 为 D$ 中边的总数,即D中长度为1的通路总数,

$$\sum_{i=1}^{n} a_{ii}^{(1)}$$
为 D 中环的总数

通路(回路)数的计算

$$A(D) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

$$A^{l}(D) = \begin{pmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

$$\mathbf{V}_{1}$$

$$\mathbf{V}_{2}$$

$$\mathbf{V}_{2}$$

有向图的可达矩阵

口设D=<V,E>为一有向图,V= $\{v_1,v_2,...,v_n\}$,令 $p_{ij} = \begin{cases} 1, & V_i \overline{\mathbf{D}} \mathbf{b} \mathbf{v}_j, \mathbf{i} \neq \mathbf{j} & \mathbb{R} \mathbf{p}_{ii} = 1 \\ 0, & \text{else} \end{cases}$

口称 $(p_{ij})_{n\times n}$ 为D的可达矩阵,记作P(D),简记P.

$$P = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{pmatrix}$$

Graph Theory 2

图的基本概念

- □ 无向图及有向图
- □ 通路、回路、图的连通性
- □ 图的矩阵表示
- □ 最短路径及关键路径

最短路径及关键路径

- 口对于有向图或无向图G的每条边附加一个实数 $\omega(e)$,则称 $\omega(e)$ 为边e上的权.G连同附加在各边上的实数称为(边)带权图,记为G=<V,E,W>
- 口设 G_1 是带权图G的子图,称 $\Sigma_{e \in E(G_1)} \omega(e)$ 为 G_1 的权,记为 $W(G_1)$
- 口当无向边e= (v_i,v_j) 或有向边e= $<v_i,v_j>$ 时, ω (e) 也可记为 ω_{ij}

7.8

最短路径问题

- 口设带权图G=<V,E,W>,G中每条边带的权均大 于等于0. u,v为G中任意两个顶点,从u到v的所 有通路中带权最小的通路称为u到v的最短路径
- □求给定两顶点之间的最短路径问题称为最短路径问题
- 口公认的求最短路径问题的<u>较好</u>的算法是由E.W. Dijkstra(狄克斯特拉)于1959年给出的标号法

Edsger W. Dijkstra(1930-2002)

- □ 我现在年纪大了,搞了这么多年 软件,错误不知犯了多少,现在 觉悟了.我想,假如我早年在数 理逻辑上好好下点功夫的话,我 就不会犯这么多的错误.不少东 西逻辑学家早就说了,可我不知 道.要是我能年轻20岁的话,就 要回去学逻辑.
- □ 1972年Turing Award获得者
 - ■图灵奖:国际上计算机领域内最高奖,纪念对计算机理论作出历史性贡献的英国数学家Turing.
 - ■从1966年开始,每年授一次奖, 一般授予一人...

Dijkstra标号法

设 P_r ={v|v已获得p标号} 为第r步通过集, r≥0. 设 T_r =V- P_r 为第r步未通 过集, r≥0.

G=<V,E,W>是n阶简单带权图, ω_{ij} ≥0. 若顶点 v_i 与 v_j 不相邻,令 ω_{ii} = ∞

<u>Def.</u>设 $I_i^{(r)*}$ 为顶点 V_1 到顶点 V_i 最短路径的权,若顶点 V_i 获得了标号 $I_i^{(r)*}$,称 V_i 在第r步获得了p标号 $I_i^{(r)*}$ (永久性标号),其中,r≥0.

设 $l_j^{(r)}$ 为 V_1 到 V_j 的最短路径的上界,若 V_j 获得 $l_j^{(r)*}$,称 V_j 在第r步获得了t标号 $l_i^{(r)}$ (临时性标号),r≥0.

Dijkstra标号法

Dijkstra标号法

Dijkstra标号法

Dijkstra标号法

Dijkstra标号法

标号法说明

- □可求任何顶点V。到其他任一顶点间的最短距离
 - 在算法开始时,先给V_s加p标号0
- □若已求出从顶点V_i到顶点V_j的最短路径,则从V_i 到此路径上其余各顶点的最短路径也都求出了
 - $\blacksquare \Gamma = V_0 V_1 V_2 V_4 V_3 V_5$
 - $\blacksquare \Gamma = V_1 V_2 V_4 V_3$

[4 4 > b]

关键路径问题

- □工程计划→若干工序→工序间的关系? →工序之间的次序关系可用有向图表示,这种有向图称为 PERT图
- □设D=<V,E>为一个有向图,v∈V,称
- □ v的后继元集: $\Gamma_D^+(v) = \{x | x \in V \land < v, x > \in E\}$
- □ v的先驱元集: $\Gamma_D^-(v) = \{x | x \in V \land < x, v > \in E\}$

PERT图(计划评审技术图)

设D=<V,E,W>是n阶有向带权图,满足:

- 1).D是简单图;
- 2).D中无回路;
- 3).有一个顶点入度为0,称此顶点为发点;有一个顶点出度为0,称此顶点为收点;
- 4).记边 $\langle v_i, v_j \rangle$ 带的权为 ω_{ij} ,它常表示时间.

则称D为PERT图.

最早完成时间

- 口自发点(记为 v_1)开始沿最长路径(按权计算)到达 v_i 所需要的时间,称为 v_i 的最早完成时间,记为 $TE(v_i),i=1,2,...,n$.
- □显然TE(v₁)=0
- □ v_i(i≠1)的最早完成时间可按如下公式计算:
- $\Box TE(v_i) = \max\{TE(v_j) + \omega_{ij}\}, v_j \in \Gamma_{D^-}(v_i),$ i=2,...,n.
- 口收点 V_n 的最早完成时间 $TE(V_n)$,就是从 V_1 到 V_n 的最长路径的权.

最晚完成时间

- 口在保证收点 v_n 的最早完成时间不增加的条件下, 自 v_1 最迟到达 v_i 的时间称为 v_i 的最晚完成时间,记 为TL(v_i),i=1,2,...,n.
- 口显然 $TL(v_n) = TE(v_n)$
- $\square v_i(i \neq n)$ 的最晚完成时间可按如下公式计算:
- $\Box TL(v_i) = min\{TL(v_j) \omega_{ij}\}, v_j \in \Gamma_D^+(v_i),$ i = 1, 2, ..., n-1.

缓冲时间

- □TL(v_i)-TE(v_i)≥0,称TL(v_i)-TE(v_i)为v_i的缓冲 时间
- $\square ES(v_i) = TL(v_i) TE(v_i)$
- □在关键路径上,任何工序如果耽误了时间t,整个 工程就耽误了时间t,因而在关键路径上各顶点的 缓冲时间均为0

PERT图(计划评审技术图)

	V_1	V_2	V_3	${f V_4}$	V_5	V_6	\mathbf{V}_7	V_8
$TE(v_i)$	0	1	2	4	8	9	6	12
$TL(v_i)$	0	2	2	6	10	11	6	12
ES(v _i)	0	1	0	2	2	2	0	0

,	A	В	С	D	Ш	F
	√			\checkmark		\checkmark
乙	\checkmark					
丙			\checkmark		\checkmark	1
丁丁	\checkmark				\checkmark	1
戊	\checkmark	$\sqrt{}$			\checkmark	1