Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning

Sorokin Dmitrii 2024

Феномены ансамблей

• Ансамбль из моделей, отличающихся только сидом, дает прирост в качестве

Феномены ансамблей

- Ансамбль из моделей, отличающихся только сидом, дает прирост в качестве
- Ансамбль можно дистиллировать в одну модель и не потерять в качестве

Феномены ансамблей

- Ансамбль из моделей, отличающихся только сидом, дает прирост в качестве
- Ансамбль можно дистиллировать в одну модель и не потерять в качестве
- Можно дистиллировать модель в саму себя и все равно получить прирост в качестве

Гипотезы: Random Features Mapping

NTK:
$$f(W,x) pprox f(W_0,x) + \langle W-W_0,
abla_W f(W_0,x)
angle$$
 $\Phi_{W_0}(x) :=
abla_W f(W_0,x)$

- Усреднение давало лучшее качество
- Дистилляция не работает с NTK

Почему модель может через дистилляцию выучить признаки, которая не может выучить непосредственно при использовании NTK? Все дело в **Dark Knowledges**

Dark Knowledge

Гипотезы: Multi View

• When the label is class 1, then:²

```
both v_1, v_2 appears with weight 1, one of v_3, v_4 appears with weight 0.1 w.p. 80%; only v_1 appears with weight 1, one of v_3, v_4 appears with weight 0.1 w.p. 10%; only v_2 appears with weight 1, one of v_3, v_4 appears with weight 0.1 w.p. 10%.
```

• When the label is class 2, then

both v_3, v_4 appears with weight 1, one of v_1, v_2 appears with weight 0.1 w.p. 80%; only v_3 appears with weight 1, one of v_1, v_2 appears with weight 0.1 w.p. 10%; only v_4 appears with weight 1, one of v_1, v_2 appears with weight 0.1 w.p. 10%.

Гипотезы: Multi View

Ансамбли: откуда прирост в качестве?

Теоретическое обоснование

- 1. В нашей постановке задачи, при обучении одиночной модели точность на трейне будет 100%, точность на тесте от 49% до 51%
- 2. При обучении ансамбля точность на обеих выборках около 100%*
- 3. При обучении дистилляции точность на обеих выборках около 100%*
- 4. При обучении селф дистилляции точность на трейне 100%, точность на тесте строго лучше чем в одиночной модели

^{*} При достаточно большом количестве моделей в ансамбле

Эксперименты

		R10 test accuracy		CIFAR100 test accuracy				
	single model (over 10)	ensemble (over 10)	10 runs of knowledge distill	ensemble over knowledge distill	single model (over 10)	ensemble (over 10)	10 runs of knowledge distill	ensemble over knowledge distill
ResNet-28-2	95.22±0.14%	96.33%	95.89±0.07%	96.21%	76.38±0.23%	81.13%	78.94±0.21%	80.35%
ResNet-34	93.65±0.19%	94.97%	94.37±0.13%	94.88%	71.66±0.43%	76.85%	73.57±0.34%	75.60%
ResNet-34-2	95.45±0.14%	96.55%	96.00±0.12%	96.42%	77.01±0.35%	81.48%	79.43±0.23%	81.56%
ResNet-16-10	96.08±0.16%	96.80%	96.73±0.07%	96.76%	80.03±0.17%	83.18%	82.51±0.14%	83.36%
ResNet-22-10	96.44±0.09%	97.12%	97.01±0.09%	97.09%	81.17±0.23%	84.33%	83.54±0.19%	84.27%
ResNet-28-10	96.70±0.21%	97.20%	97.06±0.08%	97.24%	81.51 <u>±</u> 0.16%	84.69%	83.75±0.16%	84.87%

Эксперименты

neural networks	single model (-171	knowledge distillation		single model (over 10)(7)		-171	knowledge distillation	
ResNet-28-2	95.22±0.14%		95.02%	96.16%	95.78%	76.38±0.23%	81.13%	73.18%	79.03%	78.12%
ResNet-34	93.65±0.19%	94.97%	93.12%	94.59%	94.21%	71.66±0.43%	76.85%	68.88%	73.74%	73.14%
ResNet-34-2	95.45±0.14%	96.55%	95.00%	96.08%	95.86%	77.01±0.35%	81.48%	72.99%	79.23%	79.07%
ResNet-16-10	96.08±0.16%	96.80%	95.88% (over 6)°	96.81%	96.62%	80.03±0.17%	83.18%	80.53% (over 6)°	82.67%	82.25%
ResNet-22-10	96.44±0.09%	97.12%	96.41% (over 5) ⁰	97.09%	97.05%	81.17±0.23%	84.33%	81.59% (over 5)°	83.71%	83.26%
ResNet-28-10	96.70±0.21%	97.20%	96.46% (over 4) ⁰	97.22%	97.13%	81.51±0.16%	84.69%	81.83% (over 4) ⁰	83.81%	83.56%

Message ④: for neural nets, ensemble helps on improving test accuracies, **and** this accuracy gain <u>cannot</u> be matched by training the sum of the individuals directly. In other words, the benefit of using ensemble comes from somewhere other than enlarging the model.

Message (5): for neural nets, the superior test performance of ensemble <u>can be distilled</u> into single model by a large extent.

Message (6): for neural nets, self-distillation *clearly improves* the test performance of single models.

Message (7): for neural nets, the superior performance of ensemble <u>does not</u> come from the variance of test accuracies in single models.