VE477

Introduction to Algorithms

Homework 8

Manuel — UM-JI (Fall 2020)

Reminders

- Write in a neat and legible handwriting or use LATEX
- Clearly explain the reasoning process
- Write in a complete style (subject, verb, and object)
- Be critical on your results

Questions preceded by a * are optional. Although they can be skipped without any deduction, it is important to know and understand the results they contain.

Ex. 1 — Fast multi-point evaluation and interpolation

Let R be a commutative ring, u_0, \dots, u_{n-1} be n elements in R, and $m_i = X - u_i$, with $0 \le i < n$, be n degree 1 polynomials in R[X]. Without loss of generality we assume n to be a power of 2.

In order to perform fast multi-point evaluation the set of points $U = \{u_0, \dots, u_n\}$ is recursively split into two halves of equal cardinality.

- 1. Draw the binary tree resulting from the recursive split of the set U.
- 2. Denote the depth of the binary tree by k and for all $0 \le i \le k$ and $0 \le j < 2^{k-i}$, define $M_{i,j} = \prod_{l=0}^{2^i-1} m_{j2^i+l}$. Prove that for each i,j

$$\begin{cases}
M_{i+1,j} = M_{i,2j}M_{i,2j+1} \\
M_{0,j} = m_j.
\end{cases}$$
(1.1)

- 3. How do the $M_{i,j}$ relate to the binary tree?
- 4. Fast multi-point evaluation.
 - a) Write an algorithm that builds the subproduct tree and returns the polynomials $M_{i,j}$ as defined in (1.1).
 - b) Write an recursive algorithm which takes a polynomial P of degree less than $n=2^k$ as input as well as u_0, \dots, u_{n-1} and the subproducts $M_{i,j}$. It should go down the subproduct tree and return $P(u_0), \dots, P(u_{n-1})$.
- 5. Correctness and complexity.
 - a) By induction on k, prove the correctness of the previous algorithm.
 - b) Show that the complexity of the algorithm is $\mathcal{O}(M(n) \log n)$ operations in R.

Reusing the notations from part I, let m be the product of all the m_i , i.e. $m = \prod_{i=0}^{n-1} (X - u_i)$.

* 1. Explain how to perform Lagrange interpolation.

Hint: an element a in R is invertible if there is a b in R such that ab = e, with e a unit in R.

- 2. Let $s_i = \prod_{i \neq j} 1/(u_i u_j)$. Prove that m', the derivative of m, is $m' = \sum_{j=0}^{n-1} m/(x u_j)$ and that $m'(u_i) = 1/s_i$.
- 3. Devise a divide and conquer algorithm which proceeds from the leaves to the root of the binary tree from part I question 1, in order to return the interpolation of P at the points u_0, \dots, u_{n-1} . Hint: use the M_i , j to apply a recursive approach to Lagrange interpolation.
- 4. Correctness and complexity.
 - * a) By induction on k, prove the correctness of the previous algorithm.
 - b) Prove that computing the s_i in question 2, amounts to $\mathcal{O}(M(n) \log n)$ operations in R.
 - c) Conclude that the interpolation problem can be solved in $\mathcal{O}(\mathsf{M}(n)\log n)$ ring operations.
- 5. Discuss the possibility of pre-computing the subproducts M_i , j.

Ex. 2 — Critical thinking

- * 1. Let G be a group such that for all x, y in G, $(xy)^2 = (yx)^2$, and for any $x \neq e$, $x^2 \neq e$, where e is a unit element. Prove that G is abelian.
 - 2. After passing ve477 two students, s_1 and s_2 , are asked to determine two integers x and y such that 1 < x < y and x + y < 100. Student s_1 is told that x + y, while s_2 is given xy. Remembering the importance of critical thinking they start discussing:

 $\mathbf{S_2}$: "No idea what those two numbers could be..."

S₁: "I'm not surprised, I knew you couldn't know!"

S2: "Uhm...so now I know..."

S₁: "So do !!"

What about you?

* **Ex. 3** — Beyond ve477

Explain what the Swype keyboard is and propose some hints on how it could be implemented.

* Ex. 4 — Course survey

Complete the course survey and get a +5 bonus on the homework.