Порождающие грамматики

- VT множество терминальных символов;
- VN множество нетерминальных символов;
- Р непустое конечное множество правил грамматики;
- S начальный(стартовый) символ грамматики, S ∈ VN.

Язык L(G) – в общем случае подмножество VT*.

Формальный язык

$$L(G) = \{\alpha \mid \alpha \in VT^* \& S \Rightarrow * \alpha\}$$

Грамматика определяет структуру предложения.

Процесс порождения предложения называется вывод

$$S \rightarrow aQb \mid accb$$

$$Q \rightarrow cSc$$

$$S \Rightarrow aQb \Rightarrow acScb \Rightarrow acaccbcb!$$
 accccb?

Цепочка принадлежит языку, порождаемому грамматикой, только в том случае, если существует ее вывод из начального символа этой грамматики.

Решение обратной задачи

- Принадлежит ли цепочка символов языку, порождаемому грамматикой?
- Распознаватель алгоритм или программа, позволяющие определить принадлежность цепочки символов некоторому языку.

• Очевидно существует очень тесная связь между порождающей грамматикой и распознавателем.

Распознаватель

Конфигурация распознавателя

- содержимое входной цепочки символов и положение считывающей головки в ней;
- состояние УУ;
- содержимое внешней памяти.

Распознаватель (продолжение)

Типы конфигураций

- Начальная конфигурация
- Одна или больше конечных конфигураций
- Промежуточные конфигурации

Детерминизм

• для каждой допустимой конфигурации распознавателя, которая возникла на некотором шаге его работы, существует единственно возможная конфигурация, в которую распознаватель перейдет на следующем шаге работы

Классификация распознавателей

- По видам считывающего устройства распознаватели могут быть двусторонние и односторонние.
- По видам устройства управления распознаватели бывают детерминированные и недетерминированные.
- По видам внешней памяти распознаватели бывают следующих типов:
- распознаватели без внешней памяти;
- распознаватели с ограниченной внешней памятью;
- распознаватели с неограниченной внешней памятью.

Классификация распознавателей

языки типа 0	Машина Тьюринга
языки типа 1	Линейно-ограниченные автоматы МТ с ограниченной лентой
языки типа 2	Автоматы с магазинной памятью
языки типа 3	Конечные автоматы

Комбинационная схема vs Автомат

Комбинационная схема

•

Автомат

Конечные автоматы.

Абстрактный дискретный исполнитель, преобразующий последовательность входных символов в последовательность выходных символов, так, что значение символа на выходе исполнителя зависит не только от значения входного символа, но и от предыдущей последовательности входных символов (предыстории) принято называть автоматом.

Подробности:

Карпов Ю. Г., Теория автоматов: Учебник для вузов. - 1-е издание.

– СПб: Издат. дом ПИТЕР, 2003 год. – 208c.

Конечный автомат.

- X конечное непустое множество входных сигналов (входной алфавит);
- Y конечное непустое множество выходных сигналов (выходной алфавит);
- S конечное непустое множество состояний;
- s_0 начальное состояние автомата, $s_0 \in S$;
- $\delta: S \times X \rightarrow S \phi$ ункция переходов;
- $\lambda: S \times X \rightarrow Y функция выходов.$

Конечный автомат-преобразователь

- Пусть символам A, B, C, D соответствуют неравномерные двоичные коды 0, 10, 110, 111.
- $X = \{0, 1\}$
- Y = {A, B, C, D, -}

δ	0	1
S1	S1	S2
S2	S1	S3
S3	S1	S1

λ	0	1
S1	А	-
S2	В	-
S3	С	D

Конечный автомат-распознаватель.

- X конечное непустое множество входных сигналов (входной алфавит);
- S конечное непустое множество состояний;
- s_0 начальное состояние автомата, $s_0 \in S$;
- $\delta: S \times X \rightarrow S \phi$ ункция переходов;
- F непустое множество заключительных состояний.

Конечный автомат-распознаватель. 2

- Под конфигурацией ДКА понимается двойка вида (s, ω)
- Начальная конфигурация ДКА (s_0 , ω)
- пусть $\delta(s_i, t) = s_j$, причем $s_i, s_j \in S$, $t \in X$, тогда для всех цепочек $\omega \in X^*$ справедливо следующее отношение:

$$(s_i, t\omega_i) \vdash (s_i, \omega)$$

Конечной конфигурацией ДКА является двойка (s, ϵ) где s \in F ДКА допускает цепочку входящих символов α (s $_0$, α) \vdash * (s, ϵ), для некоторых s \in F

Автомат-распознаватель (продолжение)

- язык L1 = $\{\alpha \mid \alpha = \{a, b\}^+ \ u \ \alpha$ включает подцепочку bb $\}$
- ДКА

Начальная вершина Принимающая (допускающая) вершина

ДКА пример

Для ДКА из данного состояния s_i по a_i : Существует единственное s_{i+1} \Rightarrow допуск/не допуск за линейное время


```
"a" допуск
"aa" отвергнута
"b" допуск
"bb" отвергнута
"baaa" допуск
"" отвергнута
Lge(A) =
{a,b,ba,baa,baaa,baaaa,...}
```

Недетерминированный конечный автомат

- $A = (X, S, s_0, \delta, F)$, где:
- Х входной алфавит;
- S конечное непустое множество состояний;
- s_0 начальное состояние автомата, $s_0 \in S$;
- $\delta: S \times X \to 2^S функция$ переходов; (было $\delta: S \times X \to S$)
- F множество принимающих состояний, F ⊆ S.

ДКА vs. HKA

- Детерминированный конечный автомат (ДКА):
 - Для каждого состояния s и символа a: существует единственная исходящая дуга, помеченная a (проще моделировать)
- Недетерминированный конечный автомат (НКА) для некоторых состояний может быть несколько исходящих дуг помеченным одним и тем же символом, кроме того допускаются *є-дуги* (проще

синтезировать)

НКА пример

$$L(A) = \{a,ab,abb,abbb,...\}$$

Принята!

Регулярное множество

- Ø (пустое множество) регулярное множество для Т;
- {ε} регулярное множество для T (ε– пустая цепочка);
- {a} регулярное множество Т, причем а∈Т;
- если Р и Q регулярные множества, то регулярными являются и множества
 - PUQ (объединение),
 - PQ (конкатенация),
 - Р^{*} (итерация);
- ничто другое не является регулярным множеством для Т.

Регулярное выражение

- Ø регулярное выражение, обозначающее множество Ø;
- ε регулярное выражение, обозначающее множество {ε};
- а регулярное выражение, обозначающее множество {а};
- если р и q регулярные выражения, соответствующие регулярным множествам Р и Q соответственно, то
 - p|q регулярное выражение, обозначающее регулярное множество
 PUQ,
 - pq регулярное выражение, обозначающее регулярное множество PQ= {xy | x∈P, y∈Q},
 - $-p^*$ регулярное выражение, обозначающее регулярное множество P^* .

Регулярные выражения

	Регулярное выражение	Регулярное множество (язык)
1	abc	{abc}
2	a b c	{a, b,c}
3	a*	{ε, a, aa, aaa, aaaa,}
4	p ⁺ = pp* p? = ε p	a,b b S_1 b S_2 b S_3
5	(a b)*bb(a b)*	$+$ (S_1) $+$ (S_2)

Teopeмa Клини (Stephen Cole Kleene)

- ДКА с входным алфавитом X допускает язык L тогда и только тогда, когда L является регулярным множеством для алфавита X.
- регулярные грамматики, конечные автоматы и регулярные выражения являются равномощными средствами определения регулярных языков, и значит, что существуют любые их взаимные преобразования на уровне алгоритмов
- Хопкрофт, Д. Введение в теорию автоматов, языков и вычислений. –М.: Изд.дом Вильямс, 2008. Стр. 109

Регулярное выражение → НКА

- Определено в [AhoLamSethiUllman] Алгоритм Мак-Нотона Ямады Томпсона (McNaughton Yamada Thompson)
 - Немного отличается от[Appel] Andrew W. Appel Modern Compiler Implementation in C

Регулярное выражение → НКА

• M N

$$-N(M|N) =$$

• M.N

$$-N(M.N) =$$

Регулярное выражение → НКА

• M*

3

- Можем начинать конструировать НКА по регулярному выражению.
- Есть проблема с реализацией.

Пример: $PB \rightarrow HKA$

- (a | b)*ab
- a | b →

- ab \rightarrow
- Объединяем:

Построение ДКА по НКА

Пусть N — НКА, причем N = <X $_N$, S $_N$, S $_0$, δ_N , F $_N$ >. Введем следующие обозначения: s — состояние автомата N, $s \in S_N$; T — множество состояний автомата N, T $\subset S_N$.

ε-closure(s)	Множество состояний НКА, достижимых из s по	
	ε-переходам (эпсилон-замыкание).	
ε-closure(T)	Множество состояний НКА, достижимых из $s \in T$ по ϵ -переходам. ϵ -closure(T) = $U_{s \in T}$ ϵ -closure(s)	
move(T, a)	Множество состояний НКА в которые существуют переходы из состояний s _i ∈ T по входному символу а.	

Построение ДКА по НКА

- є-замыкание рекурсивно определяется следующим образом:
- $s_i \in \epsilon$ -closure(s_i);
- Шаг рекурсии. Пусть s_j является элементом ϵ -closure(s_i). Если $s_k \in \delta(s_i, \epsilon)$, то $s_k \in \epsilon$ -closure(s_i).
- Замыкание: $s_j \in \epsilon$ -closure(s_i) только если оно достижимо из состояния s_i конечного числа применения шага рекурсии.

Неформальное определение алгоритма

- Получаем начальное состояние s ДКА как ε -замыкание начального состояния НКА ($S_{ODFA} = \varepsilon$ -closure(S_{ONFA}));
- Создаем пустое множество М. Для каждого символа t, по которому есть переход из s, строим множество Move(s, t) и добавляем к М.
- Строим множество $K = \varepsilon$ -closure(M)
- Если К отсутствует в таблице переходов ДКА, помещаем это множество в таблицу в качестве нового состояния.
- Повторяем шаги 2-4 до тех пор, пока появляются новые состояния.

Пример: НКА → ДКА

Начальное состояние = ε-closure(1)

	State	а	b
	1,2,3,4,8	2,3,4,5,7,8,9	2,3,4,6,7,8
2	2,3,4,5,7,8,9	2,3,4,5,7,8,9	2,3,4,6,7,8,10
3	2,3,4,6,7,8	2,3,4,5,7,8,9	2,3,4,6,7,8
4	2,3,4,6,7,8,10	2,3,4,5,7,8,9	2,3,4,6,7,8

