Banco de Dados

ÁLGEBRA RELACIONAL - PARTE I

Bibliografia

ELMASRI, R.; SHAMKANT, B.N. *Sistemas de banco de dados.* 7º edição. São Paulo: Pearson, 2018.

- Capítulo 8: Álgebra e cálculo relacional

HEUSER, C.A. *Banco de dados relacional: conceitos, linguagens e administração.* 1º edição. Clube de Autores, 2019.

- Capítulo 3: Álgebra relacional I
- Capítulo 4: Álgebra relacional II

Introdução

- Além dos conceitos para definir a estrutura e as restrições do banco de dados, um modelo de dados precisa incluir um conjunto de operações para manipular o banco de dados.
- O conjunto básico de operações para o modelo relacional é a álgebra relacional.
 - Essas operações permitem que um usuário especifique as solicitações de recuperação básicas com **expressões da álgebra relacional**.
 - Uma sequência de operações da álgebra relacional forma uma expressão da álgebra relacional.
 - O resultado de uma recuperação é uma nova relação. Assim, as operações da álgebra produzem novas relações, que podem ser manipuladas ainda mais usando operações da mesma álgebra.
- A álgebra relacional é importante por diversos motivos:
 - Ela oferece o alicerce formal para as operações do modelo relacional.
 - Ela é usada como base para implementação e otimização de consultas nos módulos de gerenciamento de bancos de dados relacionais.
 - Alguns de seus conceitos são incorporados nas linguagens de consulta padrão SQL para SGBDs relacionais.

Introdução

- Embora a álgebra defina um conjunto de operações para o modelo relacional, o cálculo relacional oferece uma linguagem declarativa de nível mais alto para especificar consultas relacionais.
- Em uma expressão do cálculo relacional, não existe ordem de operações para especificar como recuperar o resultado da consulta, somente qual informação o resultado deve conter.
 - Esse é o principal fator de distinção entre a álgebra relacional e o cálculo relacional.
- O cálculo relacional é importante porque tem uma firme base na lógica matemática e porque a linguagem de consulta padrão (SQL) para SGBDs relacionais tem alguns alicerces em uma variação do cálculo relacional conhecida como cálculo relacional de tupla.

• Relação, tupla e atributo

placa	marca	modelo	ano
DAE 6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

• Relação, tupla e atributo

veiculos

<u>placa</u>	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019
JJM3692	Chevrolet	Onix	2019

Uma **relação** é formada por um conjunto de tuplas.

Na linguagem prática, uma relação é uma **tabela**.

• Relação, tupla e atributo

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

Uma **tupla** é uma lista ordenada de valores.

Na linguagem prática, uma tupla é uma linha da tabela.

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

Um **atributo** é um nome utilizado para identificar um valor de uma tupla.

Na linguagem prática, um atributo é uma **coluna**.

- A álgebra relacional é uma linguagem de consulta procedural e formal.
 - Ela é fundamental para a extração de dados de um banco de dados relacional.
- Uma operação da álgebra relacional tem como operandos as relações, resultando igualmente em uma nova relação.

operação(
$$REL_1$$
) \rightarrow REL_2
operação(REL_1 , REL_2) \rightarrow REL_3

- As operações da álgebra relacional podem ser:
 - Operações unárias
 - Operações que ocorrem sobre uma única relação.
 - Operações binárias
 - Operações que ocorrem sobre duas relações, combinando tuplas relacionadas baseadas em condições de junção.

- As operações da álgebra relacional podem ser divididas em dois grupos.
 - Um grupo inclui operações de conjunto da teoria matemática de conjuntos.
 - Elas são aplicáveis porque cada relação é definida como um conjunto de tuplas no modelo relacional formal.
 - As operações de conjunto incluem união, interseção, diferença de conjunto e produto cartesiano.
 - O outro grupo consiste em operações desenvolvidas especificamente para bancos de dados relacionais.
 - Entre elas estão *seleção*, *projeção* e *junção*, entre outras.

Operação de SELEÇÃO

• A operação **SELEÇÃO** é usada para escolher um subconjunto das tuplas de uma relação que satisfaça uma determinada **condição de seleção**.

$$\sigma_{condição}$$
 (R)

- A SELEÇÃO pode ser interpretada como um filtro que mantém apenas as tuplas que satisfazem uma determinada condição.
- A relação resultante da operação **SELEÇÃO** sobre uma relação **R** tem os **mesmos atributos** de **R**.
- O operador SELEÇÃO é unário, ou seja, ele é aplicado a uma única relação.

Operação de SELEÇÃO

• A operação **SELEÇÃO** é usada para escolher um subconjunto das tuplas de uma relação que satisfaça uma determinada **condição de seleção**.

- A SELEÇÃO pode ser interpretada como um filtro que mantém apenas as tuplas que satisfazem uma determinada condição.
- A relação resultante da operação **SELEÇÃO** sobre uma relação **R** tem os **mesmos atributos** de **R**.
- O operador **SELEÇÃO** é unário, ou seja, ele é aplicado a uma única relação.

Operação de SELEÇÃO

 A operação SELEÇÃO é usada para escolher um subconjunto das tuplas de uma relação que satisfaça uma determinada condição de seleção.

- A SELEÇÃO pode ser interpretada como um filtro que mantém apenas as tuplas que satisfazem uma determinada condição.
- A relação resultante da operação **SELEÇÃO** sobre uma relação **R** tem os **mesmos atributos** de **R**.
- O operador SELEÇÃO é unário, ou seja, ele é aplicado a uma única relação.

Operação de SELEÇÃO

 A operação SELEÇÃO é usada para escolher um subconjunto das tuplas de uma relação que satisfaça uma determinada condição de seleção.

- A SELEÇÃO pode ser interpretada como um filtro que mantém apenas as tuplas que satisfazem uma determinada condição.
- A relação resultante da operação **SELEÇÃO** sobre uma relação **R** tem os **mesmos atributos** de **R**.
- O operador SELEÇÃO é unário, ou seja, ele é aplicado a uma única relação.

Operação de **SELEÇÃO**

• Exemplos de uso da operação **SELEÇÃO**:

Dada a relação:

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

A operação $\sigma_{ano=2019}$ (veiculos) seleciona as tuplas cujo valor do atributo ano é igual a 2019, resultando na relação:

placa	marca	modelo	ano
DKL7878	Hyundai	НВ20	2019
JJM3692	Chevrolet	Onix	2019

Operação de **SELEÇÃO**

• Exemplos de uso da operação **SELEÇÃO**:

Dada a relação:

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

A operação $\sigma_{ano \ge 2018\,AND\,ano < 2020}$ (veiculos) seleciona as tuplas cujo valor do atributo ano seja maior ou igual a 2018 e menor que menor que 2020:

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL7878	Hyundai	НВ20	2019
JJM3692	Chevrolet	Onix	2019

Operação de SELEÇÃO

- A operação de seleção é aplicada a cada tupla individualmente.
 - Logo, as condições de seleção não podem envolver mais de uma tupla.
- Algumas propriedades do operador de SELEÇÃO:
 - O grau (número de atributos) da relação resultante de uma operação de seleção sobre uma relação R é o mesmo que o grau de R.
 - O número de tuplas da relação resultante de uma operação de seleção sobre uma relação R é sempre menor ou igual ao número de tuplas em R, ou seja, $|\sigma_{cond}(R)| \le |R|$ para qualquer que seja a condição.
 - A fração de tuplas selecionadas por uma condição de seleção é conhecida como **seletividade** da condição.
 - A operação de seleção é comutativa, ou seja,

$$\sigma_{cond1}(\sigma_{cond2}(R)) = \sigma_{cond2}(\sigma_{cond1}(R))$$

Portanto, uma sequência de seleções pode ser aplicada em qualquer ordem.

 Sempre podemos combinar uma sequência de operações de seleção a uma única operação de seção com uma condição conjuntiva (AND), ou seja,

$$\sigma_{cond1}(\sigma_{cond2}(R)) = \sigma_{cond1 AND cond2}(R)$$

Operação de **SELEÇÃO**

- Em SQL, a condição **SELEÇÃO** normalmente é especificada na cláusula *WHERE* de uma consulta.
 - Exemplo:

A operação a seguir:

```
σ<sub>ano ≥ 2018 AND ano < 2020</sub> (veiculos)
```

Corresponderia à seguinte consulta SQL:

```
SELECT *
FROM veiculos
WHERE ano >= 2018 AND ano < 2020;
```

Operação de **PROJEÇÃO**

- Se pensarmos em uma relação como uma tabela, a operação de seleção escolhe algumas linhas da tabela enquanto descarta outras. A operação de PROJEÇÃO, por sua vez, seleciona certas colunas da tabela e descarta outras.
 - Se estivermos interessados em apenas certos atributos de uma relação, usamos a operação de **PROJEÇÃO** para projetar a relação apenas por esses atributos.

$$\pi_{\text{lista de atributos}}$$
 (R)

- O resultado da operação de PROJEÇÃO pode ser visualizado como uma partição vertical da relação.
- A relação resultante da operação PROJEÇÃO sobre uma relação R tem todas as tuplas de R.
- O operador PROJEÇÃO é unário, ou seja, ele é aplicado a uma única relação.

Operação de **PROJEÇÃO**

- Se pensarmos em uma relação como uma tabela, a operação de seleção escolhe algumas linhas da tabela enquanto descarta outras. A operação de **PROJEÇÃO**, por sua vez, seleciona certas **colunas** da tabela e descarta outras.
 - Se estivermos interessados em apenas certos atributos de uma relação, usamos a operação de **PROJEÇÃO** para projetar a relação apenas por esses atributos.

- O resultado da operação de **PROJEÇÃO** pode ser visualizado como uma **partição vertical** da relação.
- A relação resultante da operação PROJEÇÃO sobre uma relação R tem todas as tuplas de R.
- O operador **PROJEÇÃO** é unário, ou seja, ele é aplicado a uma única relação.

Operação de **PROJEÇÃO**

 Se pensarmos em uma relação como uma tabela, a operação de seleção escolhe algumas linhas da tabela enquanto descarta outras. A operação de PROJEÇÃO, por sua vez, seleciona certas colunas da tabela e descarta outras.

• Se estivermos interessados em apenas certos atributos de uma relação, usamos a operação de **PROJEÇÃO** para projetar a relação apenas por esses atributos.

 $\pi_{lista\ de\ atributos}$ (R)

Entre parênteses, é especificada uma relação R sobre a qual a operação será realizada.

A relação **R** costuma ser uma **expressão da álgebra relacional**, cujo resultado é uma relação. A mais simples expressão desse tipo é apenas o nome de uma relação de banco de dados.

- O resultado da operação de **PROJEÇÃO** pode ser visualizado como uma **partição vertical** da relação.
- A relação resultante da operação PROJEÇÃO sobre uma relação R tem todas as tuplas de R.
- O operador **PROJEÇÃO** é unário, ou seja, ele é aplicado a uma única relação.

Operação de **PROJEÇÃO**

- Se pensarmos em uma relação como uma tabela, a operação de seleção escolhe algumas linhas da tabela enquanto descarta outras. A operação de **PROJEÇÃO**, por sua vez, seleciona certas **colunas** da tabela e descarta outras.
 - Se estivermos interessados em apenas certos atributos de uma relação, usamos a operação de **PROJEÇÃO** para projetar a relação apenas por esses atributos.

mesma ordem em que eles aparecem na lista.

- O resultado da operação de PROJEÇÃO pode ser visualizado como uma partição vertical da relação.
- A relação resultante da operação PROJEÇÃO sobre uma relação R tem todas as tuplas de R.
- O operador PROJEÇÃO é unário, ou seja, ele é aplicado a uma única relação.

Operação de **PROJEÇÃO**

• Exemplos de uso da operação **PROJEÇÃO**:

Dada a relação:

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

A operação $\pi_{\text{placa, modelo}}$ (veiculos) resulta em uma relação contendo apenas os atributos placa e modelo:

placa	modelo	
DAE6534	Ecosport	
DKL4598	Polo	
DKL7878	НВ20	
JDM8774	T-Cross	
JJM3692	Onix	

Operação de **PROJEÇÃO**

• Exemplos de uso da operação **PROJEÇÃO**:

Dada a relação:

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

A operação π_{marca} (veiculos) resulta em uma relação contendo apenas o atributos marca:

marca
Ford
Volskswagen
Hyundai
Chevrolet

Operação de **PROJEÇÃO**

• Exemplos de uso da operação **PROJEÇÃO**:

Dada a relação:

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

A operação π_{marca} (veiculos) resulta em uma relação contendo apenas o atributos marca:

A operação de projeção **remove quaisquer tuplas duplicadas**, de modo que o resultado dessa operação é um conjunto de tuplas distintas, e, portanto, uma relação válida.

Isso é conhecido como eliminação de duplicatas.

Operação de **PROJEÇÃO**

- A eliminação de duplicatas envolve a classificação ou alguma outra técnica para detectar duplicatas.
 - Portanto, aumenta o processamento.
- Se as duplicatas não fossem eliminadas, o resultado seria um multiconjunto ou bag de tuplas, em vez de um conjunto.
 - Isso não é permitido no modelo relacional, mas pode ocorrer na SQL.

Operação de **PROJEÇÃO**

- Algumas propriedades do operador de **PROJEÇÃO**:
 - O número de tuplas em uma relação resultante de uma operação PROJEÇÃO é sempre menor ou igual ao número de tuplas em R.
 - Se a lista de atributos da projeção é uma superchave de R (ou seja, inclui alguma chave de R), a relação resultante tem o mesmo número de tuplas que R.
 - Além disso,

$$\pi_{< lista \ 1>}(\pi_{< lista \ 2>}(R)) = \pi_{< lista \ 1>}(R)$$
 desde que $< lista \ 2>$ contenha os atribuos em $< lista \ 1>$; caso contrário, o lado esquerdo é uma expressão incorreta.

• É importante notar que a comutatividade não é mantida na projeção.

Operação de **PROJEÇÃO**

- Em SQL, a lista de atributos de **PROJEÇÃO** é especificada na cláusula **SELECT** de uma consulta.
 - Exemplo:

A operação a seguir:

 π_{marca} (veiculos)

Corresponderia à seguinte consulta SQL:

SELECT DISTINCT marca
FROM veiculos;

Operação de **PROJEÇÃO**

- Em SQL, a lista de atributos de **PROJEÇÃO** é especificada na cláusula **SELECT** de uma consulta.
 - Exemplo:

A operação a seguir:

 π_{marca} (veiculos)

Corresponderia à seguinte consulta SQL:

Observe que, se removermos a palavra-chave **DISTINCT** dessa consulta SQL, as duplicatas não serão eliminadas.

Esta opção não está disponível na álgebra relacional formal, mas a álgebra pode ser estendida para incluir essa opção e permitir que relações sejam multiconjuntos (ou *bags*).

Sequência de operações e operação RENOMEAR

- Em geral, para a maioria das consultas, precisamos aplicar várias operações da álgebra relacional uma após a outra.
 - Para isso, podemos escrevê-las como uma única expressão da álgebra relacional aninhando as operações, também conhecida como uma expressão em linha.
 - Exemplo:
 - Para recuperarmos os valores de placa e modelo de todos os veículos com ano de 2019, devemos aplicar uma operação **SELEÇÃO**, seguida por uma operação **PROJEÇÃO**.

$$\pi_{\text{placa, modelo}}(\sigma_{\text{ano} = 2019}(\text{veiculo}))$$

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

Sequência de operações e operação RENOMEAR

- Em geral, para a maioria das consultas, precisamos aplicar várias operações da álgebra relacional uma após a outra.
 - Para isso, podemos escrevê-las como uma única expressão da álgebra relacional aninhando as operações, também conhecida como uma expressão em linha.
 - Exemplo:
 - Para recuperarmos os valores de placa e modelo de todos os veículos com ano de 2019, devemos aplicar uma operação **SELEÇÃO**, seguida por uma operação **PROJEÇÃO**.

 $\pi_{\text{placa, modelo}}(\sigma_{\text{ano} = 2019}(\text{veiculo}))$

marca	modelo	ano
Ford	Ecosport	2018
Volskswagen Polo		2020
Hyundai	НВ20	2019
Volskswagen	T-Cross	2021
Chevrolet	Onix	2019
	Ford Volskswagen Hyundai Volskswagen	Ford Ecosport Volskswagen Polo Hyundai HB20 Volskswagen T-Cross

placa	marca	modelo	ano
DKL7878	Hyundai	НВ20	2019
JJM3692	Chevrolet	Onix	2019

Sequência de operações e operação RENOMEAR

- Em geral, para a maioria das consultas, precisamos aplicar várias operações da álgebra relacional uma após a outra.
 - Para isso, podemos escrevê-las como uma única expressão da álgebra relacional aninhando as operações, também conhecida como uma expressão em linha.
 - Exemplo:
 - Para recuperarmos os valores de placa e modelo de todos os veículos com ano de 2019, devemos aplicar uma operação **SELEÇÃO**, seguida por uma operação **PROJEÇÃO**.

$$\pi_{\text{placa, modelo}}(\sigma_{\text{ano} = 2019}(\text{veiculo}))$$

<u>placa</u>	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet Onix		2019
	·		

<u>placa</u>	marca	modelo	ano
DKL7878	Hyundai	НВ20	2019
JJM3692	Chevrolet	Onix	2019

placa	modelo
DKL7878	НВ20
JJM3692	Onix

Sequência de operações e operação RENOMEAR

• Como alternativa, podemos explicitamente mostrar a sequência de operações, dando um nome a cada relação intermediária, e usando o **operador de atribuição**, indicado por \leftarrow (seta para a esquerda).

$$\begin{aligned} \text{VEIC_2019} &\leftarrow \sigma_{\text{ano} = 2019}(\text{veiculo}) \\ \text{RESULTADO} &\leftarrow \pi_{\text{placa, modelo}}(\text{VEIC_2019}) \end{aligned}$$

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

• Às vezes, é mais simples desmembrar uma sequência complexa de operações especificando relações de resultado intermediário que escrever uma única expressão da álgebra relacional.

Sequência de operações e operação RENOMEAR

• Como alternativa, podemos explicitamente mostrar a sequência de operações, dando um nome a cada relação intermediária, e usando o **operador de atribuição**, indicado por \leftarrow (seta para a esquerda).

VEIC_2019
$$\leftarrow \sigma_{ano = 2019}(veiculo)$$

RESULTADO $\leftarrow \pi_{placa, modelo}(VEIC_2019)$

veiculos	S		
placa	marca	modelo	ano
DAE 6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

• Às vezes, é mais simples desmembrar uma sequência complexa de operações especificando relações de resultado intermediário que escrever uma única expressão da álgebra relacional.

Sequência de operações e operação RENOMEAR

• Como alternativa, podemos explicitamente mostrar a sequência de operações, dando um nome a cada relação intermediária, e usando o **operador de atribuição**, indicado por ← (seta para a esquerda).

$$\begin{aligned} \text{VEIC_2019} &\leftarrow \sigma_{\text{ano} = 2019}(\text{veiculo}) \\ \text{RESULTADO} &\leftarrow \pi_{\text{placa, modelo}}(\text{VEIC_2019}) \end{aligned}$$

• Às vezes, é mais simples desmembrar uma sequência complexa de operações especificando relações de resultado intermediário que escrever uma única expressão da álgebra relacional.

Sequência de operações e operação RENOMEAR

- Também podemos usar a técnica para **renomear os atributos** nas relações intermediárias e de resultado.
 - Isso pode ser útil em conexão com operações mais complexas, como UNIÃO e JUNÇÃO, conforme veremos mais a frente.
- Para renomear os atributos em uma relação, simplesmente listamos os novos nomes de atributo entre parênteses, como no exemplo abaixo:

TEMP
$$\leftarrow \sigma_{\text{ano} = 2019}(\text{veiculo})$$

R(id, modelo) $\leftarrow \pi_{\text{placa, modelo}}(\text{TEMP})$

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
DKL7878	Hyundai	НВ20	2019
JDM8774	Volskswagen	T-Cross	2021
JJM3692	Chevrolet	Onix	2019

- Também podemos usar a técnica para **renomear os atributos** nas relações intermediárias e de resultado.
 - Isso pode ser útil em conexão com operações mais complexas, como UNIÃO e JUNÇÃO, conforme veremos mais a frente.
- Para renomear os atributos em uma relação, simplesmente listamos os novos nomes de atributo entre parênteses, como no exemplo abaixo:

TEMP
$$\leftarrow \sigma_{ano = 2019}(veiculo)$$

R(id, modelo) $\leftarrow \pi_{placa, modelo}(TEMP)$

veic	ulos	1		
plac	ca	marca	modelo	ano
DAE 65	534	Ford	Ecosport	2018
DKL45	598	Volskswagen	Polo	2020
DKL78	878	Hyundai	НВ20	2019
JDM87	774	Volskswagen	T-Cross	2021
JJM36	692	Chevrolet	Onix	2019

- Também podemos usar a técnica para renomear os atributos nas relações intermediárias e de resultado.
 - Isso pode ser útil em conexão com operações mais complexas, como UNIÃO e JUNÇÃO, conforme veremos mais a frente.
- Para renomear os atributos em uma relação, simplesmente listamos os novos nomes de atributo entre parênteses, como no exemplo abaixo:

TEMP
$$\leftarrow \sigma_{\text{ano} = 2019}(\text{veiculo})$$

R(id, modelo) $\leftarrow \pi_{\text{placa, modelo}}(\text{TEMP})$

Sequência de operações e operação RENOMEAR

- Também podemos usar a técnica para renomear os atributos nas relações intermediárias e de resultado.
 - Isso pode ser útil em conexão com operações mais complexas, como UNIÃO e JUNÇÃO, conforme veremos mais a frente.

 Para renomear os atributos em uma relação, simplesmente listamos os novos nomes de atributo entre parênteses, como no exemplo abaixo:

Sequência de operações e operação RENOMEAR

- Também podemos usar a técnica para renomear os atributos nas relações intermediárias e de resultado.
 - Isso pode ser útil em conexão com operações mais complexas, como UNIÃO e JUNÇÃO, conforme veremos mais a frente.

 Para renomear os atributos em uma relação, simplesmente listamos os novos nomes de atributo entre parênteses, como no exemplo abaixo:

- Podemos, também, definir uma operação RENOMEAR formal como um operador unário.
 - Esse operador pode renomear o nome da relação, os nomes de atributo, ou ambos.
- A operação **RENOMEAR** geral, quando aplicada a uma relação **R** de grau n, é indicada por:

- Podemos, também, definir uma operação RENOMEAR formal como um operador unário.
 - Esse operador pode renomear o nome da relação, os nomes de atributo, ou ambos.
- A operação **RENOMEAR** geral, quando aplicada a uma relação **R** de grau n, é indicada por:

- Podemos, também, definir uma operação **RENOMEAR** formal como um operador unário.
 - Esse operador pode renomear o nome da relação, os nomes de atributo, ou ambos.
- A operação **RENOMEAR** geral, quando aplicada a uma relação **R** de grau n, é indicada por:

- Podemos, também, definir uma operação RENOMEAR formal como um operador unário.
 - Esse operador pode renomear o nome da relação, os nomes de atributo, ou ambos.
- A operação **RENOMEAR** geral, quando aplicada a uma relação **R** de grau n, é indicada por:

- Podemos, também, definir uma operação RENOMEAR formal como um operador unário.
 - Esse operador pode renomear o nome da relação, os nomes de atributo, ou ambos.
- A operação **RENOMEAR** geral, quando aplicada a uma relação **R** de grau n, é indicada por:

- A operação **RENOMEAR** também pode ser utilizada das seguintes formas:
 - Renomear apenas a relação, mantendo os nomes dos atributos: $\rho_{S}\left(R\right)$
 - Renomear apenas os atributos da relação, mantendo o nome da relação caso houver: $\rho_{(B1, B2, ..., Bn)}(R)$

Sequência de operações e operação RENOMEAR

• Exemplos de uso da operação **RENOMEAR**:

Considerando a relação:

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
JDM8774	Volskswagen	T-Cross	2021

Temos os seguintes resultados para cada uma das operações RENOMEAR descritas abaixo:

$\rho_{carros(codigo, montadora, modelo, ano)}(veiculos)$			ρ _{carros} (veiculos)			ρ _(codigo, montadora, modelo, ano) (veiculos)					
carros			carros			veiculos					
codigo	montadora	modelo	ano	placa	marca	modelo	ano	codigo	montadora	modelo	ano
DAE6534	Ford	Ecosport	2018	DAE6534	Ford	Ecosport	2018	DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020	DKL4598	Volskswagen	Polo	2020	DKL4598	Volskswagen	Polo	2020
JDM8774	Volskswagen	T-Cross	2021	JDM8774	Volskswagen	T-Cross	2021	JDM8774	Volskswagen	T-Cross	2021

Sequência de operações e operação RENOMEAR

- Em SQL, uma única consulta costuma representar uma expressão complexa da álgebra relacional.
 - A renomeação em SQL é obtida por apelidos usando AS:
 - Exemplo 1:

Dada a relação (tabela) veiculos abaixo:

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
JDM8774	Volskswagen	T-Cross	2021

A operação:

 $\rho_{c(codigo, \, montadora, \, modelo, \, ano)}(veiculos)$

Corresponde à seguinte consulta SQL:

```
SELECT c.placa AS codigo, c.marca AS montadora, c.modelo, c.ano
FROM veiculos AS c;
```

Sequência de operações e operação RENOMEAR

- Em SQL, uma única consulta costuma representar uma expressão complexa da álgebra relacional.
 - A renomeação em SQL é obtida por apelidos usando AS:
 - Exemplo 2:

Dada a relação (tabela) veiculos abaixo:

veiculos

placa	marca	modelo	ano
DAE6534	Ford	Ecosport	2018
DKL4598	Volskswagen	Polo	2020
JDM8774	Volskswagen	T-Cross	2021

A operação:

 $\rho_{(codigo, \, montadora, \, modelo)}\left(\pi_{\, placa, \, marca, \, modelo}\left(\sigma_{ano \, \geq \, 2020}(\rho_c(veiculos))\right)\right)$

Corresponde à seguinte consulta SQL:

```
SELECT c.placa AS codigo, c.marca AS montadora, c.modelo
FROM veiculos AS c
WHERE c.ano >= 2020;
```

Operações de álgebra relacional com base na teoria dos conjuntos

- Várias operações de teoria de conjuntos são usadas para mesclar os elementos de dois conjuntos de diversas maneiras, incluindo UNIÃO, INTERSEÇÃO e DIFERENÇA DE CONJUNTO (também chama SUBTRAÇÃO ou EXCEÇÃO).
 - Essas operações são binárias, ou seja, cada uma é aplicada a dois conjuntos de tuplas.
- Quando essas operações são adaptadas aos bancos de dados relacionais, as duas relações sobre as quais qualquer uma dessas três operações são aplicadas precisam ter o mesmo tipo de tuplas.
 - Essa condição é chamada de compatibilidade de união ou compatibilidade de tipo.
- Duas relações $R(A_1, A_2, ..., A_n)$ e $S(B_1, B_2, ..., B_n)$ são consideradas **compatíveis na união** (ou **compatíveis no tipo**) se tiverem o mesmo grau n e se o domínio de A_i é igual ao domínio de B_i para $1 \le i \le n$.
 - Isso significa que as duas relações têm o mesmo número de atributos e cada par correspondente de atributos tem o mesmo domínio.

Operações de álgebra relacional com base na teoria dos conjuntos

• Exemplo de duas relações **compatíveis** na união:

alunos

<u>matricula</u>	nome	documento	curso
20191010023	Nathaniel Natal	16947446040	Medicina
20191020013	Chloe Lins	43824951053	Medicina
20201010021	Helena Frois	90801573092	Física

professores

<u>registro</u>	nome	documento	formacao
50072	Patrícia Figueiredo	55307020074	Medicina
23007	Cátia Varela	98696136080	Medicina
37131	Hélder Franca	78871206088	Química
66356	Ezequiel Souto	42715858078	Estatística
59580	Leah Ponte	62918596027	Química

Operações de álgebra relacional com base na teoria dos conjuntos

• Exemplo de duas relações **compatíveis** na união:

alunos

<u>matricula</u>	nome	documento	curso
20191010023	Nathaniel Natal	16947446040	Medicina
20191020013	Chloe Lins	43824951053	Medicina
20201010021	Helena Frois	90801573092	Física

professores

<u>registro</u>	nome	documento	formacao
50072	Patrícia Figueiredo	55307020074	Medicina
23007	Cátia Varela	98696136080	Medicina
37131	Hélder Franca	78871206088	Química
66356	Ezequiel Souto	42715858078	Estatística
59580	Leah Ponte	62918596027	Química

Operações de álgebra relacional com base na teoria dos conjuntos

• Exemplo de duas relações compatíveis na união:

Operações de álgebra relacional com base na teoria dos conjuntos

• Exemplo de duas relações **não compatíveis** na união:

alunos

<u>matricula</u>	nome	documento	curso
20191010023	Nathaniel Natal	16947446040	Medicina
20191020013	Chloe Lins	43824951053	Medicina
20201010021	Helena Frois	90801573092	Física

professores

<u>registro</u>	nome	departamento_id	dedicacao
50072	Patrícia Figueiredo	2	20
23007	Cátia Varela	2	20
37131	Hélder Franca	5	40
66356	Ezequiel Souto	1	40
59580	Leah Ponte	5	20

Operações de álgebra relacional com base na teoria dos conjuntos

• Exemplo de duas relações **não compatíveis** na união:

Ambas as relações possuem grau 4, ou seja, ambas possuem 4 atributos.

alunos

<u>matricula</u>	nome	documento	curso
20191010023	Nathaniel Natal	16947446040	Medicina
20191020013	Chloe Lins	43824951053	Medicina
20201010021	Helena Frois	90801573092	Física

professores

<u>registro</u>	nome	departamento_id	dedicacao
50072	Patrícia Figueiredo	2	20
23007	Cátia Varela	2	20
37131	Hélder Franca	5	40
66356	Ezequiel Souto	1	40
59580	Leah Ponte	5	20

Operações de álgebra relacional com base na teoria dos conjuntos

• Exemplo de duas relações **não compatíveis** na união:

Operações de álgebra relacional com base na teoria dos conjuntos

• Exemplo de duas relações **não compatíveis** na união:

Operações de álgebra relacional com base na teoria dos conjuntos

• Exemplo de duas relações **não compatíveis** na união:

Operações de álgebra relacional com base na teoria dos conjuntos

• Podemos definir as três operações **UNIÃO**, **INTERSEÇÃO** e **DIFERENÇA DE CONJUNTO** sobre duas relações compatíveis na união, *R* e *S*, como segue:

UNIÃO

• O resultado dessa operação, indicado por R U S, é uma relação que inclui todas as tuplas que estão em R ou em S ou tanto em R quanto em S. As tuplas duplicadas são eliminadas.

INTERSEÇÃO

• O resultado dessa operação, indicado por R ∩ S, é uma relação que inclui todas as tuplas que estão tanto em R quanto em S.

DIFERENÇA DE CONJUNTO (ou SUBTRAÇÃO)

• O resultado dessa operação, indicado por R-S, é uma relação que inclui todas as tuplas que estão em R, mas não em S.

Observação:

- Vamos adotar a convenção de que a relação resultante terá os mesmos nomes de atributo da primeira relação R.
- Sempre é possível renomear os atributos no resultado usando o operador de renomeação.

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as relações (compatíveis na união):

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as relações (compatíveis na união):

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 1 (UNIÃO):

A operação: alunos U professores

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto
João	Silva
Ricardo	Braga
Francisco	Leme

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as relações (compatíveis na união):

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 1 (UNIÃO):

A operação: alunos U professores

Resulta em:

Observe que as tuplas duplicadas aparecem uma única vez na relação resultante da operação de união.

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto
João	Silva
Ricardo	Braga
Francisco	Leme

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as relações (compatíveis na união):

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 2 (INTERSEÇÃO):

A operação: alunos ∩ professores

nome	sobrenome
Susana	Yao
Ronaldo	Lima

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as relações (compatíveis na união):

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 3 (DIFERENÇA):

A operação: alunos – professores

sobrenome
Gonçalves
Pires
Tavares
Wang
Gilberto

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as relações (compatíveis na união):

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 4 (DIFERENÇA):

A operação: professores – alunos

nome	sobrenome
João	Silva
Ricardo	Braga
Francisco	Leme

Operações de álgebra relacional com base na teoria dos conjuntos

- Algumas propriedades:
 - Tanto UNIÃO quanto INTERSEÇÃO são operações comutativas, ou seja:
 - $R \cup S = S \cup R$
 - $R \cap S = S \cap R$
 - Tanto **UNIÃO** quanto **INTERSEÇÃO** podem ser tratadas como operações *n*-árias, aplicáveis a qualquer quantidade de relações, pois ambas também são *operações associativas*, ou seja:
 - $R \cup (S \cup T) = (R \cup S) \cup T$
 - $R \cap (S \cap T) = (R \cap S) \cap T$
 - A operação **DIFERENÇA** (**SUBTRAÇÃO**) *não é comutativa*, ou seja, em geral:
 - $R S \neq S R$
 - A operação INTERSEÇÃO pode ser expressa em termos de união e diferença de conjunto da seguinte forma:
 - $R \cap S = ((R \cup S) (R S)) (S R)$

Operações de álgebra relacional com base na teoria dos conjuntos

- Em SQL, existem três operações:
 - UNION
 - Que corresponde à operação de UNIÃO.
 - INTERSECT
 - Que corresponde à operação de INTERSEÇÃO.
 - EXCEPT
 - Que corresponde à operação de **DIFERENÇA DE CONJUNTO**.

- Além disso, existem operações de multiconjunto, ou seja, que não eliminam duplicatas:
 - UNION ALL
 - INTERSECT ALL
 - EXCEPT ALL

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as tabelas:

alunos

sobrenome
Yao
Lima
Gonçalves
Pires
Tavares
Wang
Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 1 (UNION):

A operação: alunos U professores

Corresponde à seguinte consulta em SQL:

SELECT * FROM alunos
UNION
SELECT * FROM professores;

Que resulta em:

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto
João	Silva
Ricardo	Braga
Francisco	Leme

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as tabelas:

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 1 (UNION):

A operação: alunos U professores

Corresponde à seguinte consulta em SQL:

SELECT * FROM alunos
UNION

41014

SELECT * FROM professores;

Que resulta em:

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto
João	Silva
Ricardo	Braga
Francisco	Leme

Observe que o operador **UNION** da SQL é uma operação sobre conjuntos.

Portanto, linhas duplicadas são removidas do resultado.

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as tabelas:

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 2 (UNION ALL):

A operação: alunos U professores

Corresponde à seguinte consulta em SQL:

SELECT * FROM alunos
UNION ALL
SELECT * FROM professores;

Que resulta em:

sobrenome
Yao
Lima
Gonçalves
Pires
Tavares
Wang
Gilberto
Silva
Braga
Yao
Leme
Lima

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as tabelas:

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

sobrenome
Silva
Braga
Yao
Leme
Lima

Exemplo 2 (UNION ALL):

A operação: alunos U professores

Corresponde à seguinte consulta em SQL:

SELECT * FROM alunos
UNION ALL

SELECT * FROM professores;

Que resulta em:

Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme

nome Susana

Ronaldo

sobrenome

Yao

Lima

Observe que o operador **UNION ALL** da SQL é uma operação sobre multiconjuntos. Dessaforma, linhas duplicadas **não são removidas** resultado.

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as tabelas:

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 3 (INTERSECT):

A operação: alunos ∩ professores

Corresponde à seguinte consulta em SQL:

SELECT * FROM alunos
INTERSECT
SELECT * FROM professores;

Que resulta em:

nome	sobrenome
Susana	Yao
Ronaldo	Lima

Operações de álgebra relacional com base na teoria dos conjuntos

Considerando as tabelas:

alunos

nome	sobrenome
Susana	Yao
Ronaldo	Lima
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

professores

nome	sobrenome
João	Silva
Ricardo	Braga
Susana	Yao
Francisco	Leme
Ronaldo	Lima

Exemplo 4 (EXCEPT):

A operação: alunos – professores

Corresponde à seguinte consulta em SQL:

SELECT * FROM alunos
EXCEPT
SELECT * FROM professores;

Que resulta em:

nome	sobrenome
José	Gonçalves
Barbara	Pires
Ana	Tavares
Jonas	Wang
Ernesto	Gilberto

Operação de **PRODUTO CARTESIANO**

- A operação **PRODUTO CARTESIANO** é uma operação de conjunto binária que produz novas tuplas combinando cada tupla de uma relação com cada tupla da outra relação.
 - Esta operação é também conhecida como PRODUTO CRUZADO ou JUNÇÃO CRUZADA.
- Diferente das operações de conjunto descritas anteriormente, as relações sobre as quais a operação de **PRODUTO** CARTESIANO é aplicada **não** precisam ser compatíveis na união.
- A operação **PRODUTO CARTESIANO** é indicada pelo símbolo ×, como apresentado abaixo:

$$R \times S$$

- Em geral, o resultado do produto cartesiano $R(A_1, A_2, ..., A_n) \times S(B_1, B_2, ..., B_m)$ é:
 - Uma relação Q com grau n + m atributos, ou seja, o número de atributos é igual à soma do número de atributos de R e S.
 - A relação Q_1 resultante da operação, tem a forma $Q(A_1, A_2, ..., A_n, B_1, B_2, ..., B_m)$, nesta ordem.
 - A relação Q, resultante da operação, tem uma tupla para cada combinação de tuplas uma de R e uma de S.
 - Logo, se R tem n_R tuplas (indicado como $|R| = n_R$) e S tem n_S tuplas, então $R \times S$ terá $n_R \cdot n_S$ tuplas.

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos

matricula	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400

cursos

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos

matricula	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400

cursos

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

O resultado da operação **alunos × cursos** é:

matricula	nome	curso_id	id	nome
12628	Susana Yao	400	100	Matemática Computacional
12628	Susana Yao	400	200	Sistemas de Informação
12628	Susana Yao	400	300	Ciência da Computação
12628	Susana Yao	400	400	Engenharia da Computação
73158	Ronaldo Lima	100	100	Matemática Computacional
73158	Ronaldo Lima	100	200	Sistemas de Informação
73158	Ronaldo Lima	100	300	Ciência da Computação
73158	Ronaldo Lima	100	400	Engenharia da Computação
88983	Barbara Pires	400	100	Matemática Computacional
88983	Barbara Pires	400	200	Sistemas de Informação
88983	Barbara Pires	400	300	Ciência da Computação
88983	Barbara Pires	400	400	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos

<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400

cursos

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

O resultado da operação **alunos × cursos** é:

matricula	nome	curso_id	id	nome
12628	Susana Yao	400	100	Matemática Computacional
12628	Susana Yao	400	200	Sistemas de Informação
12628	Susana Yao	400	300	Ciência da Computação
12628	Susana Yao	400	400	Engenharia da Computação
73158	Ronaldo Lima	100	100	Matemática Computacional
73158	Ronaldo Lima	100	200	Sistemas de Informação
73158	Ronaldo Lima	100	300	Ciência da Computação
73158	Ronaldo Lima	100	400	Engenharia da Computação
88983	Barbara Pires	400	100	Matemática Computacional
88983	Barbara Pires	400	200	Sistemas de Informação
88983	Barbara Pires	400	300	Ciência da Computação
88983	Barbara Pires	400	400	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos		
<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400

cursos

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

A operação **PRODUTO CARTESIANO** aplicada isoladamente não tem significado.

Alguma das linhas geradas, aparentemente, não fazem sentido, já que estão associando alunos com cursos dos quais eles não pertencem.

O resultado da operação **alunos × cursos** é:

matricula	nome	curso_id	id	nome
12628	Susana Yao	400	100	Matemática Computacional
12628	Susana Yao	400	200	Sistemas de Informação
12628	Susana Yao	400	300	Ciência da Computação
12628	Susana Yao	400	400	Engenharia da Computação
73158	Ronaldo Lima	100	100	Matemática Computacional
73158	Ronaldo Lima	100	200	Sistemas de Informação
73158	Ronaldo Lima	100	300	Ciência da Computação
73158	Ronaldo Lima	100	400	Engenharia da Computação
88983	Barbara Pires	400	100	Matemática Computacional
88983	Barbara Pires	400	200	Sistemas de Informação
88983	Barbara Pires	400	300	Ciência da Computação
88983	Barbara Pires	400	400	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos		
<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400

cursos

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Apenas as linhas que combinam os alunos com seus respectivos cursos fazem sentido.

Dessa forma, a operação PRODUTO CARTESIANO é mais útil quando seguida por uma seleção que combina valores de atributos vindos das relações componentes. O resultado da operação **alunos × cursos** é:

matricula	nome	curso_id	id	nome
12628	Susana Yao	400	100	Matemática Computacional
12628	Susana Yao	400	200	Sistemas de Informação
12628	Susana Yao	400	300	Ciência da Computação
12628	Susana Yao	400	400	Engenharia da Computação
73158	Ronaldo Lima	100	100	Matemática Computacional
73158	Ronaldo Lima	100	200	Sistemas de Informação
73158	Ronaldo Lima	100	300	Ciência da Computação
73158	Ronaldo Lima	100	400	Engenharia da Computação
88983	Barbara Pires	400	100	Matemática Computacional
88983	Barbara Pires	400	200	Sistemas de Informação
88983	Barbara Pires	400	300	Ciência da Computação
88983	Barbara Pires	400	400	Engenharia da Computação

A operação **PRODUTO CARTESIANO** aplicada isoladamente não tem significado.

Alguma das linhas geradas, aparentemente, não fazem sentido, já que estão associando alunos com cursos dos quais eles não pertencem.

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

cursos

alunos		
<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Suponha que queiramos obter uma lista nomes dos alunos seguidos pelos nomes dos seus respectivos cursos. Para isso, podemos fazer da seguinte forma:

 ρ (aluno, curso) (π alunos.nome, cursos.nome (σ alunos.curso_id = cursos.id (alunos × cursos)))

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos		
<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400
cursos		

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Suponha que queiramos obter uma lista nomes dos alunos seguidos pelos nomes dos seus respectivos cursos. Para isso, podemos fazer da seguinte forma:

 $\rho_{\text{ (aluno, curso)}} \text{ (} \pi_{\text{ alunos.nome, cursos.nome}} \text{ (} \sigma_{\text{ alunos.curso_id = cursos.id}} \text{ (} \text{ alunos} \times \text{ cursos} \text{)} \text{)} \text{)}$

matricula	nome	curso_id	id	nome
12628	Susana Yao	400	100	Matemática Computacional
12628	Susana Yao	400	200	Sistemas de Informação
12628	Susana Yao	400	300	Ciência da Computação
12628	Susana Yao	400	400	Engenharia da Computação
73158	Ronaldo Lima	100	100	Matemática Computacional
73158	Ronaldo Lima	100	200	Sistemas de Informação
73158	Ronaldo Lima	100	300	Ciência da Computação
73158	Ronaldo Lima	100	400	Engenharia da Computação
88983	Barbara Pires	400	100	Matemática Computacional
88983	Barbara Pires	400	200	Sistemas de Informação
88983	Barbara Pires	400	300	Ciência da Computação
88983	Barbara Pires	400	400	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos		
<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400
Cursos		

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Suponha que queiramos obter uma lista nomes dos alunos seguidos pelos nomes dos seus respectivos cursos. Para isso, podemos fazer da seguinte forma:

 $\rho_{\text{ (aluno, curso)}}\text{ (}\pi_{\text{ alunos.nome, cursos.nome}}\text{ (}\sigma_{\text{ alunos.curso_id = cursos.id}}\text{ (}\text{ alunos}\times\text{ cursos}\text{)}\text{)}\text{)}$

matricula	nome	curso_id	id	nome
12628	Susana Yao	400	100	Matemática Computacional
12628	Susana Yao	400	200	Sistemas de Informação
12628	Susana Yao	400	300	Ciência da Computação
12628	Susana Yao	400	400	Engenharia da Computação
73158	Ronaldo Lima	100	100	Matemática Computacional
73158	Ronaldo Lima	100	200	Sistemas de Informação
73158	Ronaldo Lima	100	300	Ciência da Computação
73158	Ronaldo Lima	100	400	Engenharia da Computação
88983	Barbara Pires	400	100	Matemática Computacional
88983	Barbara Pires	400	200	Sistemas de Informação
88983	Barbara Pires	400	300	Ciência da Computação
88983	Barbara Pires	400	400	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

cursos

alunos		
matricula	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400
▼		

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Suponha que queiramos obter uma lista nomes dos alunos seguidos pelos nomes dos seus respectivos cursos. Para isso, podemos fazer da seguinte forma:

$$\rho_{\text{ (aluno, curso)}}\text{ (}\pi_{\text{ alunos.nome, cursos.nome}}\text{ (}\sigma_{\text{ alunos.curso_id = cursos.id}}\text{ (}\text{ alunos }\times\text{ cursos}\text{)}\text{)}\text{)}$$

matricula	nome	curso_id	id	nome
12628	Susana Yao	400	400	Engenharia da Computação
73158	Ronaldo Lima	100	100	Matemática Computacional
88983	Barbara Pires	400	400	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos		
<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400
♥ cursos		

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Suponha que queiramos obter uma lista nomes dos alunos seguidos pelos nomes dos seus respectivos cursos. Para isso, podemos fazer da seguinte forma:

$$\rho$$
 (aluno, curso) (π alunos.nome, cursos.nome (σ alunos.curso_id = cursos.id (alunos × cursos)))

matricula	nome	curso_id	id	nome
12628	Susana Yao	400	400	Engenharia da Computação
73158	Ronaldo Lima	100	100	Matemática Computacional
88983	Barbara Pires	400	400	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

cursos

alunos		
<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400
*		

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Suponha que queiramos obter uma lista nomes dos alunos seguidos pelos nomes dos seus respectivos cursos. Para isso, podemos fazer da seguinte forma:

 $\rho_{\text{ (aluno, curso)}} \text{ (} \pi_{\text{ alunos.nome, cursos.nome}} \text{ (} \sigma_{\text{ alunos.curso_id = cursos.id}} \text{ (} \text{ alunos} \times \text{ cursos} \text{)} \text{)} \text{)}$

nome	nome
Susana Yao	Engenharia da Computação
Ronaldo Lima	Matemática Computacional
Barbara Pires	Engenharia da Computação

Operação de **PRODUTO CARTESIANO**

• Exemplos de uso da operação **PRODUTO CARTESIANO**:

Dada as relações:

alunos		
<u>matricula</u>	nome	curso_id
12628	Susana Yao	400
73158	Ronaldo Lima	100
88983	Barbara Pires	400
cursos		

<u>id</u>	nome
100	Matemática Computacional
200	Sistemas de Informação
300	Ciência da Computação
400	Engenharia da Computação

Suponha que queiramos obter uma lista nomes dos alunos seguidos pelos nomes dos seus respectivos cursos. Para isso, podemos fazer da seguinte forma:

 ρ (aluno, curso) (π alunos.nome, cursos.nome (σ alunos.curso_id = cursos.id (alunos × cursos)))

aluno	curso		
Susana Yao	Engenharia da Computação		
Ronaldo Lima	Matemática Computacional		
Barbara Pires	Engenharia da Computação		

Operação de **PRODUTO CARTESIANO**

• Em SQL, a operação de **PRODUTO CARTESIANO** pode ser realizada especificando duas ou mais tabelas na cláusula **FROM**.

• Exemplo 1:

A operação a seguir:

alunos X cursos

Corresponderia à seguinte consulta SQL:

```
SELECT *
FROM alunos, cursos;
```

Operação de **PRODUTO CARTESIANO**

- Em SQL, a operação de **PRODUTO CARTESIANO** pode ser realizada especificando duas ou mais tabelas na cláusula *FROM*.
 - Exemplo 2:

```
A operação a seguir:
```

```
\rho_{\text{(aluno, curso)}} ( \pi_{\text{alunos.nome, cursos.nome}} ( \sigma_{\text{alunos.curso\_id}} = cursos.id ( alunos × cursos ) ) )
```

Corresponderia à seguinte consulta SQL:

```
SELECT alunos.nome AS aluno, cursos.nome AS curso
FROM alunos, cursos
WHERE alunos.curso_id = cursos.id;
```

Operação de **PRODUTO CARTESIANO**

- A sequência de **PRODUTO CARTESIANO** seguida por **SELEÇÃO** é muito utilizada para combinar tuplas relacionadas de duas relações.
 - Devido a isso, uma operação especial, chamada **JUNÇÃO**, foi criada para especificar essa sequência de operações como uma única operação.
- Discutiremos as operações de JUNÇÃO a seguir.

Conjunto mínimo de operações

- O conjunto e operações visto até aqui forma a base para a definição de outras operações.
- Entretanto, do ponto de vista do poder de expressão da linguagem de consulta, nem todas operações são necessárias.
 - Como é conhecido da álgebra de conjuntos, a operação de interseção pode ser definida a partir de:

$$R \cap S = ((R \cup S) - (R - S)) - (S - R)$$

- Quando se definiu a álgebra relacional, procurou-se traçar um compromisso entre a simplicidade da linguagem e a facilidade em expressar consultas na linguagem.
 - Se a linguagem fosse mínima, sem operações definíveis a partir de outras, alguns padrões de consulta que aparecem frequentemente na prática poderiam exigir consultas complexas e difíceis de escrever.
 - Por outro lado, se muitas operações redundantes fossem definidas, a linguagem ficaria grande e difícil de entender.
- As linguagens teóricas, ou seja, a álgebra relacional e o cálculo relacional, têm poucas operações redundantes.
 - Já a SQL é uma linguagem complexa, com muitas construções redundantes.

Resumo das operações básicas

OPERAÇÃO	FINALIDADE	NOTAÇÃO
SELEÇÃO	Seleciona todas as tuplas que satisfazem a condição de seleção de uma relação R.	$\sigma_{\rm condição}(R)$
PROJEÇÃO	Produz uma nova relação com apenas alguns dos atributos de $\it R$ e remove tuplas duplicadas.	$\pi_{ m atributos}(R)$
RENOMEAR	A partir de uma relação $R(A_1, A_2,, A_n)$ produz uma nova relação $S(B_1, B_2,, B_n)$ contendo as mesmas tuplas em R .	$\rho_{S(B1, B2,, Bn)}(R)$
UNIÃO	Produz uma relação que inclui todas as tuplas em R_1 ou R_2 ou tanto R_1 quanto R_2 . As relações R_1 e R_2 precisam ser compatíveis na união.	$R_1 \cup R_2$
INTERSEÇÃO	Produz uma relação que inclui todas as tuplas em R_1 e também em R_2 . As relações R_1 e R_2 precisam ser compatíveis na união.	$R_1 \cap R_2$
DIFERENÇA	Produz uma relação que inclui todas as tuplas em R_1 que não estão R_2 . As relações R_1 e R_2 precisam ser compatíveis na união.	$R_1 - R_2$
PRODUTO CARTESIANO	Produz uma relação que tem os atributos de R_1 e R_2 e inclui como tuplas todas as possíveis combinações de tuplas de R_1 e R_2 .	$R_1 \times R_2$

Dúvidas?

André L. Maravilha

andre.maravilha@cefetmg.br https://andremaravilha.github.io/

