

Table of contents

01

Introduction

Problem Statement & research question

02

Data

What data to gather & How to preprocess

03

Models

What models used & performance

O4 Conclusion

Live-demo

05

Teaser Video

Teaser of the project with solution

AguroTech

Making farming more sustainable by making more efficient data-driven decisions.

- Minimize waste
- Less water use
- Efficient use of pesticides

Problem Statement

- Take precision farming to the next level by including satellite imagery into existing models.
- Making more accurate predictions
- Give better advice to farmers
- This project aim to predict the NDVI for the next 14 days.

Research Questions

Main

How can satellite imagery be used to Predict NDVI?

Sub-question

What model performs best for predicting NDVI?

Sub-question

How to collect (historical) data?

Data Collection Process Vegetation Indexes

Data Collection Weather Data

Data Collection Weather Data

Models Used

Trend analysis

TCN
Temporal convo

Temporal convolution network

LSTM

Long short term memory

Model performance

Model		Description	RMSE
Prophet		Trend Analysis based on NDVI	0.14*
TCN		Dilated, residual blocks with multiple variables	0.12
LSTM		RNN capable of learning sequence (time) data	0.72

^{*} Average RMSE for all polygons

Temporal Convolution Network (TCN) model

-TCN Model

Sliding window take historical data to predict 14 days in advance

Weights and Biases

Hyperparameter optimization through sweep

Performance

Validation RMSE error of 0.12

Optimization TCN

Returning to the research question

Main-RQ

How can satellite imagery be used to Predict NDVI?

Collecting Data

- Sentinel API
- Weather API

Model

- 3 models tried
- TCN gave best results

