

RISC-V P Extension Implementation and DSP Application Practice

CloudBEAR Introduction

- RISC-V IP company
- Est. 2015

- Gen.1 IP multiple time licensed
- Gen.1 IP based silicon in mass production

Gen.2 cores are available for licensing

RISC-V Processor IP

Bx-3xx: RV32

Bx-6xx: RV64

Introduction

What is a P extension?

RISC-V [P]acked SIMD Extension

- Instruction set to accelerate integer and fixed point math using general purpose registers (GPR).
- ~330 instructions for SIMD, Partial-SIMD, Non-SIMD operations.
- Supports
 - RV32 and RV64 architecture
 - [8, 16, 32, 64] bit depth data
 - **Q notation** data (Q7, Q15, Q31)
 - Merged math operations to combine multiply, accumulate, shift, round, saturate.
- P extension is useful to speed up DSP algorithms at edge devices with limited resources

Programming Model

- The instructions operate on XLEN general purpose integer registers (GPRs).
- Registers are considered as small vectors divided into N values of a given bit depth. The specific interpretation of input and output registers is determined only by the instruction itself.
- An operation is performed on all values in the vectors. The output vector format can be preserved (N-to-N) or changed (N-to-M or N-to-1).
- RV32 supports 64-bit data. Such operands are composed of an even-odd pair of 32 bit GPRs. Only the even register is used explicitly in the instruction.

• Overflow/saturation is reflected in the VXSAT control-status register (CSR). No other configuration CSRs are added by the extension.

8b	8b	8b	8b
16	5b	16	5b
	32	2b	

RV32: xN GPR

64b (High 32b) 64b (Low 32b)

8b	8b	8b	8b	8b	8b	8b	8b
16	5b	16b 16b 16b				5b	
32b 32b							
64b							

RV32: x(N+1) GPR

RV64: xN GPR

Retrospect of Key Events

[2016.12]	A decision on Packed SIMD ISA extension development has been made ¹
[2017]	Andes contributed own Packed SIMD design proposal as a base for RISC-V P
[2018]	RISC-V Packed-SIMD (P) extension Task group officially started
[2021.12]	The specification version 0.9.112 has been published. After that, development slowed down
[2022.09]	An active revision of the specification has begun
[2024.05]	New Packed-SIMD Extension Chairs
[2024.08]	Specification is in development

- The specification has increased from ~150 instructions in the initial proposal to approximately 330.
- After a period of stagnation, work on the specification has resumed. John Hauser is now involved³.
- CloudBEAR team has successfully implemented P v0.9.11 in 2022 and It has already been licensed by our customers.

¹ 5th RISC-V Workshop Dec 2016.

² https://github.com/riscv/riscv-p-spec

³ http://www.jhauser.us/RISCV/ext-P/RISCV-20220911-P-extension.pdf

Applications

Where is it used?

Application Areas

- ^(♣) Audio/Speech Processing
- Motor Control
- Tiny ML
- Codecs
- Sensors Signal Processing

Solutions with P Extension

At least **4 vendors** provide P extension in commercial cores.

Several released processors with P extension:

- Telink TLSR9 Series: RV32IMAFDCPB @ 96 MHz Audio & IoT Chip
- Gigadevice GD32VW553: RV32IMAFDCPB @ 160 MHz loT chip with wide range of wireless interfaces
- Renesas RZ/Five: RV64GCPN @ 1 GHz
 Civil Infrastructure Platform (CIP) Linux core for industrial applications

CloudBEAR Customers usecase:

- SOC A (Dual core BR-350): RV32IMACBKFPN @ 200 MHz
 General purpose MCU with motor control features
- SOC B (Dual core BR-351): RV32IMACBKFDPN @ 200 MHz Motor control MCU

RZ/Five Block Diagram

System	CPU	Peripheral I/
Debugger 16ch DMAC	AX45MP Single (1GHz) With SIMD / FPU I-L1\$: 32KB (Parity), D-L1\$: 32KB (ECC)	1 x USB2.0 (Host) 1 x USB2.0 (Host / Function)
Interrupt Controller	TCM (ILM/DLM) : Total 128KB (1GHz) w/ECC	2 x 100/1000Mbps Ether MAC * 4 x I2C
PLL/SSCG	L2\$: 256KB w/ECC	2 x SCI 8/9bit (incl. Ir 5 x SCIF (UART)
Timers	Internal Memory	GPIO 3 x RSPI
1 x 32bit MTU3	RAM 128KB w/ECC	2 x CAN-FD
8 x 16bit MTU3	Security (Option)	External Memor
1 x WDT	Secure Boot	1 x DDR3L/DDR4-1600 (In line ECC)
	Crypto Engine	
Analog	Secure JTAG	1 x SPI Multi I/O (4bit DDR)
2 input 12bit ADC (1 unit)	TRNG	1 x SDHI(UHS-I)/MM
Thermal Sensor	OTP 1Kbit	1 x SDHI(UHS-I)

RISC-V Cores Product Line

CMSIS-DSP

A suite of common signal processing functions for use on Cortex-M and Cortex-A processor based devices.¹

13 subsets of functions, including:

- Basic Math: Pointwise operations (add, sub, mul, bitwise, etc)
- Transform: FFT, DCT, MFCC
- Filtering: FIR, Biquad IIR, Convolution, Correlation, etc.
- Motor Control: PID, Park and Clark Transforms, Sine Cosine
- Classic ML: SVM, Bayes classifier.
- .. 8 more groups ..

Supported data types:

- Fixed point: [q7, q15, q31]
- Floating point: [f16, f32, f64]

CMSIS-DSP compatible libraries are **provided by many vendors** who offer **embedded cores with DSP** acceleration. This is also true for the RISC-V ecosystem.

¹²

BEAR-DSP

BEAR-DSP library is a collection of optimized **DSP** primitives with intensive usage of P extensions and C level API functions.

Library Model

- A set of C functions each of which implements one specific pre-optimized DSP primitive.
- A set of P-extension intrinsics for use in user specific algorithms.
- Library **sources as a set of examples** for intrinsic usage and optimization approach.

Library Status

Version 1.0 is about to be released. Scope of this version:

- Subset of most requested **CMSIS-DSP** compatible functions.
- Support of fixed point and single precision floating point data [q7, q15, q31, fp32].
- 98 functions are included, 49 of which have been optimized with P

BEAR-DSP v1.0.0

P extension intrinsics
Controller Q31
Fast Math Q31
Filtering (IIR Biquad) Q31
Filtering (IIR Biquad) FP32
Controller FP32
FastMath FP32
Basic Math Q31 Q15 Q7
FastMath Q15
Transform (FFT) Q15 Q31
Filtering (FIR) Q15 Q31
Matrix FP32

Performance

How efficient it is?

Benchmark Environment

Evaluation cores:

BM-310: Compact single issue core with 3-stage pipeline

BR-351: Fast 32-bit Gen1 dual Issue core with deeper pipeline

BR-651: RV64 version of BR-351

CMSIS-DSP Test Framework¹

The test framework within the CMSIS-DSP repository.

```
Group: Root (1)
Group: DSP Benchmarks (1)
Group: Spectral Transformations (9)
Suite: Mel Frequency Cepstral Coefficients Q15 (1)
Profile MFCC (test_mfcc_q15 - 1): PASSED (cycles = 49051) 256,20,13
<- 256 input points; 20 fbank; 13 output features Profile MFCC
(test_mfcc_q15 - 1): PASSED (cycles = 50347) 256,20,20
...
```

Customer Use Case: Motor Control

The evaluation prototype of the motor control system: Speed Control and Field Oriented Control submodules.

Target Algorithms:

- Park and Clark Transforms
- PID Controller
- Space Vector Modulation (SVM)
- CORDIC algorithm for nonlinear functions

• Sine/Cosine

Motor Control Performance

Motor Control Prototype Performance

	Cycles per Iteration	Speed Up to Baseline	Cycles count reduction[%]
BM-310	554	x1.55	35%
BR-351	393	x1.70	41%

BR-351 Performance Details

BEAR-DSP Speedup

<u>Speedup</u> - The ratio of optimized code execution cycles to reference code execution cycles.

Function	Speedup ¹			
	BM-310	BR-351	BR-651	
cfft_q15	3.2	2.8	6.1	
cfft_q31	1.5	1.3	2.8	
biquad_cascade_q15	4.2	2.7	1.5	
biquad_cascade_q31	3.8	3.2	1.7	
dot_prod_q7	5.1	5.0	8.1	
pid_q31	1.8	1.6	1.5	
sincos_q31	3.9	4.2	1.4	

Color Coding:

- Less than the first quartile (Q1 = 1.6)
- Bigger than the third quartile (Q3 = 4.2)

¹ A value X>1.0 means that reference code spends X times more core cycles than P Extension accelerated code.

Public Performance Data: Andes

The results were <u>published</u>¹ in 2019 for the AndeStar V3 cores during the P extension specification design process.

MAX Speedup

Group	BM-310	BR-351	BR-651
Group	RV32	RV32	RV64
BasicMath	6.33	6.67	8.88
Controller	6,24	4,72	3,46
Filtering	5,05	4,54	1,93
Transform	3,24	2,79	6,18

Public Performance Data: Nuclei

- Comparable results were declared at RISC-V Summit China 2022 by Nuclei.
- The *riscv_mat_add_q15* function is almost identical to *riscv_add_q15*. For the latter, there is a P-extension accelerated version in BEAR-DSP.

Matrix Size	Basic Ops	Nuclei N305¹ [cycles]	BM-310 [cycles]	BR-351 [cycles]
16x16	256	891	791 (-11%)	702 (-21%)
32x32	1024	3386	2792 (-18%)	2209 (-34%)
64x64	4096	13370	10842 (-19%)	8286 (-38%)
128x128	16384	53306	43096 (-19%)	32839 (-38%)

¹ Nuclei N305: 32-bit single issue core with 3-stage pipeline. It is correct to compare it with the BM-310.

Public Performance Data: ARM

The performance of elementwise operations compared to Arm Cycle Models¹

Eltwise Case [Type: size]	Cortex -M7 [cycles]	BR-351 [cycles (to M7)]	Cortex M55 [cycles]	BR-651 [cycles (to M55)]
Add Q31: 16	266	223 (-16%)	168	187 (+11%)
Add Q31: 256	3557	1156 (-68%)	1848	647 (-65%)
Mult Q31: 16	364	256 (-30%)	172	207 (+20%)
Mult Q31: 256	5052	1490 (-71%)	1912	760 (-60%)

The performance of a Complex FFT compared to STM32² MCUs

CFFT [Type: Size]	Cortex-M4 [cycles]	BM-310 [cycles (to M4)]	Cortex-M7 [cycles]	BR-351 [cycles (to M7)]	BR-651 [cycles (to M7)]
Q15: 64	3509	2119 (-40%)	2994	1694(-43%)	1134 (-62%)
Q15: 1024	77371	48117 (-38%)	56898	37318(-34%)	22022 (-61%)
Q31: 64	6007	3384 (-44%)	4537	2804 (-38%)	1694 (-63%)
Q31: 1024	144214	80230 (-44%)	93725	65836 (-30%)	37286 (-60%)

Hardware Cost

The impact of P and F(D) extensions on the core area¹

P and V extensions external comparison²

- Only the 128-bit vector register file costs at least 1.6 times more gates than the entire P extension. Usually, this ratio is closer to 3.2x
- "...When you add all the computation/control circuits for vectors, you can easily find that RVV is
 usually at least 10x bigger than P-extension."

¹ FPU denotes a single-precision floating point unit (F Extension) for BM-310 and BR-351, and a double-precision floating point unit (FD Extension) for BR-651 ² Dr. Kevin Chen in the "Ensuring the value of P" topic (https://lists.riscv.org/g/tech-p-ext/message/408) May 1, 2024

Prospect

What is in the future?

P Extension Instructions Overlap

~330 instructions are listed in Pv0.9.11

~400 instructions for RV32 are mentioned in the latest proposal¹ on **Base P**.

~260 instructions for RV64 (opcodes overlap with RV32)

108 instructions are used in our use cases.

Upcoming Base P Extension

The main direction of the revision is to isolate a comprehensive "base P" subset and ratify it. If necessary, everything else can be added with follow-on Zp* extensions.

- Notable new feature: More instructions for operating with 64-bit data on the RV32 architecture
- Notable removed feature: Instructions for saturating MAC operations

Follow-on Zp* extensions under consideration

- Register-pair double word load/store for RV32
- Double-wide packed-SIMD multiply instructions
- Packed-SIMD extension for audio codecs (includes old saturating operations)

Our strategyfor upcoming release

- Keep P extension v0.9.11 in a product line and continue to support it also after release of Base P. Probably, as a custom extension.
- Analyze the final specification and community activity in parallel to make a decision on implementation update.

Conclusion

What is the key outcome?

Key Takeaways

- A compact ISA extension for integer and fixed point math using general purpose registers and (almost) without CSR
- Acceleration due to fused operations applied to multiple data by a single instruction.
- Performance **speedup** of the DSP library using P extension ranging **from +30% to +900%**.
- The hardware cost of the P extension's is comparable to FPU, and up to 10 times lower than Vector extension in terms of gates count.
- Processors with P are already available on the market, although the specification design is still ongoing.
- The performance of CloudBEAR cores with P is better than that of comparable solutions, according to open data.

