

Description

The VSM100N15 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. This device is suitable for use in PWM, load switching and general purpose applications.

General Features

- $V_{DS} = 150V, I_D = 100A$ $R_{DS(ON)} < 11m\Omega @ V_{GS} = 10V$ (Typ:9.5m Ω)
- High density cell design for ultra low Rdson
- Fully characterized avalanche voltage and current
- Special designed for convertors and power controls
- Good stability and uniformity with high E_{AS}
- Excellent package for good heat dissipation
- Special process technology for high ESD capability

Application

- Power switching application
- Hard switched and high frequency circuits
- Uninterruptible power supply

TO-263

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM100N15-T3	VSM100N15	TO-263	-	-	-

Absolute Maximum Ratings (T_C =25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	150	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	100	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	70	Α	
Pulsed Drain Current	I _{DM}	390	Α	
Maximum Power Dissipation	P _D	370	W	
Derating factor		2.47	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	1600	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	°C	

Thermal Characteristic

Thermal Resistance,Junction-to-Cas ^{e(Note 2)}	$R_{ heta JC}$	0.41	°C/W	
---	----------------	------	------	--

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•	•		
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	150	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =150V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)	•					
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	2.5	3.4	4.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =40A	-	9.5	11	mΩ
Forward Transconductance	g FS	V _{DS} =25V,I _D =40A	100	-	-	S
Dynamic Characteristics (Note4)						,
Input Capacitance	C _{lss}		-	7500	-	PF
Output Capacitance	Coss	V_{DS} =25V, V_{GS} =0V, F=1.0MHz	-	640	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.0WHZ	-	426	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	32.5	-	nS
Turn-on Rise Time	t _r	VDD=75V,ID=2A,RL=15Ω	-	30	-	nS
Turn-Off Delay Time	t _{d(off)}	,RG=2.5Ω,VGS=10V	-	113	-	nS
Turn-Off Fall Time	t _f		-	48	-	nS
Total Gate Charge	Qg	\/ 75\/\ 40A	-	138	-	nC
Gate-Source Charge	Q_{gs}	$V_{DS}=75V,I_{D}=40A,$	-	46	-	nC
Gate-Drain Charge	Q_gd	V _{GS} =10V	-	39	-	nC
Drain-Source Diode Characteristics	•					,
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =40A	-	-	1.2	V
Diode Forward Current (Note 2)	Is		-	-	100	А
Reverse Recovery Time	t _{rr}	Tj=25℃,I _F =40A,di/dt=100A/μs	-	45		nS
Reverse Recovery Charge	Qrr	(Note3)	-	80		nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- **2.** Surface Mounted on FR4 Board, $t \le 10$ sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- **4.** Guaranteed by design, not subject to production
- **5.** EAS condition: Tj=25 $^{\circ}\text{C}$,VDD=50V,VG=10V,L=0.5mH,Rg=25 Ω

Test circuit

1) E_{AS} test Circuits

2) Gate charge test Circuit:

3) Switch Time Test Circuit:

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 8 Safe Operation Area

Figure 9 BV_{DSS} vs Junction Temperature

Figure 10 $V_{\text{GS(th)}}$ vs Junction Temperature

Figure 11 Normalized Maximum Transient Thermal Impedance