Unit 2: Computational Complexity

- Course contents:
 - Computational complexity
 - NP-completeness
 - Algorithmic Paradigms
- Readings
 - S&Y: Appendix A
 - Sherwani: Sections 4.1 and 4.2

Time	Big-Oh	n = 10	n = 100	$n = 10^3$	$n = 10^6$
500	O(1)	$5 \times 10^{-7} \text{ sec}$	$5 \times 10^{-7} \text{ sec}$	$5 \times 10^{-7} \text{ sec}$	5 × 10 ⁻⁷ sec
3n	O(n)	3 × 10 ⁻⁸ sec	$3 \times 10^{-7} \text{ sec}$	$3 \times 10^{-6} \text{ sec}$	0.003 sec
$n \log n$	$O(n \log n)$	3 × 10 ⁻⁸ sec	$2 \times 10^{-7} \text{ sec}$	3 × 10 ⁻⁶ sec	0.006 sec
n^2	$O(n^2)$	$1 \times 10^{-7} \text{ sec}$	$1 \times 10^{-5} \text{ sec}$	0.001 sec	16.7 min
_n 3	$O(n^3)$	1×10^{-6} sec	0.001 sec	1 sec	3 × 10 ⁵ cent.
2 ⁿ	$O(2^n)$	1×10^{-6} sec	3×10^{17} cent.	∞	œ
n!	O(n!)	0.003 sec	œ	∞	œ

Unit 2 Y.-W. Chang

O: Upper Bounding Function

- **Def**: f(n) = O(g(n)) if $\exists c > 0$ and $n_0 > 0$ such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$.
 - = Examples: $2n^2 + 3n = O(n^2)$, $2n^2 = O(n^3)$, $3n \lg n = O(n^2)$
- Intuition: $f(n) \le g(n)$ when we ignore constant multiples and small values of n.

Unit 2

2

Big-O Notation

• How to show O (Big-Oh) relationships?

$$= f(n) = O(g(n))$$
 iff $\lim_{n \to \infty} \frac{f(n)}{g(n)} = c$ for some $c \ge 0$.

• "An algorithm has worst-case running time O(f(n))": there is a constant c s.t. for every n big enough, every execution on an input of size n takes at most cf(n) time.

Unit 2

3

Computational Complexity

- Computational complexity: an abstract measure of the time and space necessary to execute an algorithm as function of its "input size".
- Input size examples:
 - sort *n* words of bounded length ⇒ *n*
 - the input is the integer $n \Rightarrow \lg n$
 - the input is the graph $G(V, E) \Rightarrow |V|$ and |E|
- Running time comparison
 - Assume 1000 MIPS (Yr: 200x), 1 instr. /op.

Time	Big-Oh	n = 10	n = 100	$n = 10^3$	$n = 10^6$
500	O(1)	5×10^{-7} sec	$5 \times 10^{-7} \text{ sec}$	$5 \times 10^{-7} \text{ sec}$	5×10^{-7} sec
3n	O(n)	3 × 10 ⁻⁸ sec	$3 \times 10^{-7} \text{ sec}$	$3 \times 10^{-6} \text{ sec}$	0.003 sec
$n \log n$	$O(n \log n)$	$3 \times 10^{-8} \text{ sec}$	$2 \times 10^{-7} \text{ sec}$	3×10^{-6} sec	0.006 sec
$_{n}^{2}$	$O(n^2)$	1×10^{-7} sec	1×10^{-5} sec	0.001 sec	16.7 min
_n 3	$O(n^3)$	1×10^{-6} sec	0.001 sec	1 sec	3×10^5 cent.
2^n	$O(2^n)$	$1 \times 10^{-6} \text{ sec}$	3×10^{17} cent.	∞	œ
n!	O(n!)	0.003 sec	∞	000	œ

Unit 2

Complexity Classes

- The class P: class of problems that can be solved in polynomial time in the size of input.
 - Size of input: size of encoded "binary" strings.
 - Edmonds: Problems in P are considered tractable.
- The class NP (Nondeterministic Polynomial): class of problems that can be verified in polynomial time in the size of input.
 - _ P = NP?

Unit 2

 The class NP-complete (NPC): Any NPC problem can be solved in polynomial time ⇒ all problems in NP can be solved in polynomial time (i.e., P = NP).

The Traveling Salesman Problem (TSP)

- **Instance**: a set of *n* cities, distance between each pair of cities, and a bound *B*.
- Question: is there a route that starts and ends at a given city, visits every city exactly once, and has total distance < B?

Unit 2 Y-W Chang 6

NP v.s. P

- TSP ∈ NP.
 - Need to check a solution (tour) in polynomial time.
 - Guess a tour.
 - Check if the tour visits every city exactly once, returns to the start, and total distance $\leq B$.
- TSP ∈ P?
 - Need to solve (find a tour) in polynomial time.
 - Still unknown if TSP ∈ P.

Unit 2

Y.-W. Chang

7

Decision Problems and NP-Completeness

- Decision problems: those having yes/no answers.
 - TSP: Given a set of cities, distance between each pair of cities, and a bound B, is there a route that starts and ends at a given city, visits every city exactly once, and has total distance at most B?
- **Optimization problems:** those finding a legal configuration such that its cost is minimum (or maximum).
 - TSP: Given a set of cities and that distance between each pair of cities, find the distance of a "minimum route" that starts and ends at a given city and visits every city exactly once.
- Could apply binary search on decision problems to obtain solutions to optimization problems.
- NP-completeness is associated with decision problems.
- c.f., Optimal solutions/costs, optimal (exact) algorithms (Attn: optimal ≠ exact in the theoretic computer science community).

Unit 2 Y.-W. Chang 8

Polynomial-time Reduction

- **Motivation:** Let L_1 and L_2 be two decision problems. Suppose algorithm A_2 can solve L_2 . Can we use A_2 to solve L_1 ?
- Polynomial-time reduction f from L_1 to L_2 : $L_1 \leq_{\mathbf{P}} L_2$
 - = f reduces input for L_1 into an input for L_2 s.t. the reduced input is a "yes" input for L_2 iff the original input is a "yes" input for L_1 .
 - $L_1 \leq_P L_2$ if \exists polynomial-time computable function $f: \{0, 1\}^* \rightarrow$ $\{0, 1\}^*$ s.t. $x \in L_1$ iff $f(x) \in L_2$, $\forall x \in \{0, 1\}^*$.
 - L₂ is at least as hard as L₁.
- *f* is computable in polynomial time.

Unit 2 Y.-W. Chang

Significance of Reduction

- Significance of $L_1 \leq_{\mathbf{P}} L_2$:
 - \exists polynomial-time algorithm for $L_2 \Rightarrow \exists$ polynomial-time algorithm for L_1 ($L_2 \in P \Rightarrow L_1 \in P$).
 - \cancel{A} polynomial-time algorithm for L_1 ⇒ \cancel{A} polynomial-time algorithm for L_2 ($L_1 \notin P \Rightarrow L_2 \notin P$).
- $\leq_{\mathbf{p}}$ is transitive, i.e., $L_1 \leq_{\mathbf{p}} L_2$ and $L_2 \leq_{\mathbf{p}} L_3 \Rightarrow L_1 \leq_{\mathbf{p}} L_3$.

10 Unit 2

Example Reduction

- Example reduction from the matching problem to the max-flow one.
- Given a bipartite graph G = (V, E), V = L ∪ R, construct a unitcapacity flow network G' = (V, E'):

$$V' = V \cup \{s, t\}$$

E '= $\{(s, u): u \in L\} \cup \{(u, v): u \in L, v \in R, (u, v) \in E\} \cup \{(v, t): v \in R\}.$

 The cardinality of a maximum matching in G = the value of a maximum flow in G' (i.e., |M| = |f|).

Unit 2

Unit 2

Y.-W. Chang

11

NP-Completeness

- NP-completeness: worst-case analyses for decision problems.
- A decision problem L is NP-complete (NPC) if
 - 1. $L \in NP$, and
 - 2. $L' \leq_{P} L$ for every $L' \in NP$.
- **NP-hard**: If *L* satisfies property 2, but not necessarily property 1, we say that *L* is **NP-hard**.
- Suppose $L \in NPC$.
 - If $L \in P$, then there exists a polynomial-time algorithm for every $L' \in NP$ (i.e., P = NP).
 - If $L \notin P$, then there exists no polynomial-time algorithm for any $L' \in NPC$ (i.e., $P \neq NP$).

12

Proving NP-Completeness

- Five steps for proving that *L* is NP-complete:
 - 1. Prove $L \in NP$.
 - Select a known NP-complete problem L'.
 - 3. Construct a reduction f transforming every instance of L' to an instance of L.
 - 4. Prove that $x \in L'$ iff $f(x) \in L$ for all $x \in \{0, 1\}^*$.
 - 5. Prove that *f* is a polynomial-time transformation.

Unit 2 Y.-W. Chang

TSP Is NP-Complete

- TSP (The Traveling Salesman Problem) ∈ NP
- TSP is NP-hard: HC ≤_P TSP.
 - 1. Define a function *f* mapping any HC instance into a TSP instance, and show that *f* can be computed in polynomial time.
 - 2. Prove that G has an HC iff the reduced instance has a TSP tour with distance $\leq B$ ($x \in HC \Leftrightarrow f(x) \in TSP$).
- The Hamiltonian Circuit Problem (HC): known to be NP-complete
 - **Instance:** an undirected graph G = (V, E).
 - Question: is there a cycle in G that includes every vertex exactly once?

14

Unit 2 Hamiltonian nonhamiltonian

HC ≤_P TSP: Step 1

- 1. Define a reduction function f for HC $\leq_{\mathbf{P}}$ TSP.
 - Given an arbitrary HC instance G = (V, E) with n vertices
 - Create a set of *n* cities labeled with names in *V*.
 - Assign distance between u and v

$$d(u,v) = \left\{ \begin{array}{ll} 1, & \text{if } (u,v) \in E, \\ 2, & \text{if } (u,v) \not \in E. \end{array} \right.$$

- Set bound B = n.
- f can be computed in $O(V^2)$ time.

Unit 2

15

$HC \leq_P TSP$: Step 2

- 2. *G* has an HC iff the reduced instance has a TSP with distance ≤ *B*.
 - -x ∈ HC \Rightarrow f(x) ∈ TSP.
 - Suppose the HC is $h = \langle v_1, v_2, ..., v_n, v_1 \rangle$. Then, h is also a tour in the transformed TSP instance.
 - The distance of the tour h is n = B since there are n consecutive edges in E, and so has distance 1 in f(x).
 - Thus, f(x) ∈ TSP (f(x) has a TSP tour with distance ≤ B).

Unit 2

$HC \leq_p TSP$: Step 2 (cont'd)

- 2. *G* has an HC iff the reduced instance has a TSP with distance $\leq B$.
 - f(x) ∈ TSP \Rightarrow x ∈ HC.
 - Suppose there is a TSP tour with distance ≤ n = B. Let it be $\langle v_1, v_2, ..., v_n, v_1 \rangle$.
 - Since distance of the tour $\leq n$ and there are n edges in the TSP tour, the tour contains only edges in E.
 - Thus, $\langle v_1, v_2, ..., v_n, v_1 \rangle$ is a Hamiltonian cycle (x ∈ HC).

Unit 2

Y.-W. Chang

17

Coping with NP-hard problems

- Approximation algorithms
 - Guarantee to be a fixed percentage away from the optimum.
 - E.g., MST for the minimum Steiner tree problem.
- Pseudo-polynomial time algorithms
 - Has the form of a polynomial function for the complexity, but is not to the problem size.
 - = E.g., O(nW) for the 0-1 knapsack problem.
- Restriction
 - Work on some subset of the original problem.
 - = E.g., the maximum independent set problem in circle graphs.
- Exhaustive search/Branch and bound
 - Is feasible only when the problem size is small.
- Local search:
 - Simulated annealing (hill climbing), genetic algorithms, etc.
- **Heuristics:** No guarantee of performance.

Algorithmic Paradigms

- Exhaustive search: Search the entire solution space.
- Branch and bound: A search technique with pruning.
- Greedy method: Pick a locally optimal solution at each step.
- Dynamic programming: Partition a problem into a collection of sub-problems, the sub-problems are solved, and then the original problem is solved by combining the solutions. (Applicable when the sub-problems are NOT independent).
- Hierarchical approach: Divide-and-conquer.
- Multilevel framework: The bottom-up approach (coarsening) followed by the top-down one (uncoarsening); often good for handling large-scale designs.
- Mathematical programming: A system of solving an objective function under constraints.
- Simulated annealing: An adaptive, iterative, non-deterministic algorithm that allows "uphill" moves to escape from local optima.
- Genetic algorithm: A population of solutions is stored and allowed to evolve through successive generations via mutation, crossover, etc.

Dynamic Programming (DP) v.s. Divide-and-Conquer

- Both solve problems by combining the solutions to subproblems.
- Divide-and-conquer algorithms
 - Partition a problem into independent subproblems, solve the subproblems recursively, and then combine their solutions to solve the original problem.
 - Inefficient if they solve the same subproblem more than once.
- Dynamic programming (DP)
 - Applicable when the subproblems are not independent.
 - DP solves each subproblem just once.

Unit 2 Y.-W. Chang

Example: Bin Packing

- The Bin-Packing Problem Π : Items $U = \{u_1, u_2, ..., u_n\}$, where u_i is of an integer size s_i ; set B of bins, each with capacity b.
- Goal: Pack all items, minimizing # of bins used. (NP-hard!)

Unit 2 YaW Chang 22

Algorithms for Bin Packing

- Greedy approximation alg.: First-Fit Decreasing (FFD)
 FFD(Π) ≤ 110PT(Π)/9 + 4)
- Dynamic Programming? Hierarchical Approach?
 Genetic Algorithm? ...
- Mathematical Programming: Use integer linear programming (ILP) to find a solution using |B| bins, then search for the smallest feasible |B|.

Unit 2 Y.-W. Chang 23

ILP Formulation for Bin Packing

• 0-1 variable: x_{ij} =1 if item u_i is placed in bin b_i , 0 otherwise.

$$\max \sum_{(i,j) \in E} w_{ij} x_{ij}$$

$$\sup_{\forall i \in U} w_{ij} x_{ij} \leq b_j, \forall j \in B / * capacity \ constraint * / \ (1)$$

$$\sum_{\forall j \in B} x_{ij} = 1, \forall i \in U / * assignment \ constraint * / \ (2)$$

$$\sum_{ij} x_{ij} = n / * completeness \ constraint * / \ (3)$$

$$x_{ij} \in \{0,1\} / * 0, 1 \ constraint * / \ (4)$$

- **Step 1:** Set |B| to the lower bound of the # of bins.
- Step 2: Use the ILP to find a feasible solution.
- Step 3: If the solution exists, the # of bins required is |B|. Then exit.
- Step 4: Otherwise, set $|B| \leftarrow |B| + 1$. Goto Step 2.

Unit 2 Y -W Chang 24

Physical Design Related Conferences/Journals

- Important Conferences:
 - ACM/IEEE Design Automation Conference (DAC)
 - IEEE/ACM Int'l Conference on Computer-Aided Design (ICCAD)
 - ACM Int'l Symposium on Physical Design (ISPD)
 - ACM/IEEE Asia and South Pacific Design Automation Conf. (ASP-DAC)
 - ACM/IEEE Design, Automation, and Test in Europe (DATE)
 - IEEE Int'l Conference on Computer Design (ICCD)
 - IEEE Custom Integrated Circuits Conference (CICC)
 - TEEE Gustoff integrated Circuits Conference (CICC)
 - IEEE Int'l Symposium on Circuits and Systems (ISCAS)
 - Others: VLSI Design/CAD Symposium/Taiwan
- Important Journals:
 - IEEE Transactions on Computer-Aided Design (TCAD)
 - ACM Transactions on Design Automation of Electronic Systems (TODAES)
 - IEEE Transactions on VLSI Systems (TVLSI)
 - IEEE Transactions on Computers (TC)
 - IEE Proceedings
 - INTEGRATION: The VLSI Journal

Unit 2 Y.-W. Chang