CS5242 Neural Networks and Deep Learning

Lecture 03: From Shallow to Deep Neural Networks

Wei WANG

cs5242@comp.nus.edu.sg

<u>Agenda</u>

- Recap
 - Logistic regression model
 - Softmax regression model
- Multi-layer perceptron model
- Back-propagation algorithm

Recap

- Binary classification model
 - Logistic function → probability
 - Binary cross-entropy loss
- Multi-class classification model
 - Softmax/multinomial regression
 - Softmax function \rightarrow a vector of probabilities
 - Cross-entropy loss

Multilayer Perceptron (MLP)

Non-linear Activation Functions

Definition of MLPs

The Perceptron

Linear functions are limited

• Simple binary example:

$$y = \begin{cases} 1, & \text{if } \mathbf{w}^T \mathbf{x} > 0 \\ 0, & \text{otherwise} \end{cases}$$

Possible weights for AND function:

$$w_1 = 1, w_2 = 1, b = -1.5$$

Find the weights for the XOR function?

AND function

x1	x 2	y
1	1	1
1	0	0
0	0	0
0	1	0

XOR function

x1	x2	y
0	0	0
0	1	1
1	0	1
1	1	0

Non-Linear feature transformations

- $h = \max(0, Wx + c), W \in R^{2 \times 2}, c \in R^2$
- $h^T w + b$, $w \in R^2$, $b \in R$

$$\boldsymbol{X} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \\ 1 & 0 \\ 1 & 1 \end{bmatrix}. \qquad \boldsymbol{W} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \begin{array}{c} \text{Original } \boldsymbol{x} \text{ space} \\ & \mathbf{i} & & \mathbf{o} \end{array}$$

$$\boldsymbol{c} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$

$$\boldsymbol{w} = \begin{bmatrix} 1 \\ -2 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{x} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{v} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{v} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{v} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{v} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$
Original $\boldsymbol{v} \text{ space}$

$$\boldsymbol{v} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \qquad \boldsymbol{b} = 0$$

Try it! Compute h and \widetilde{y} to see the classification results More examples at google playground

A net with multiple layers that transform input features into hidden features and then make predictions

- At least one (non-linear) hidden layer
- i-th layer consists of a linear/affine transformation function

$$\mathbf{z}^{[i]} = a^{[i]}(\mathbf{h}^{[i-1]}) = W^{[i]}\mathbf{h}^{[i-1]} + \mathbf{b}^{[i]}$$

 $W^{[i]} \in R^{n_i \times n_{i-1}}, \mathbf{b}^i \in R^{n_i}$

- m_i is the number of hidden units at the i^{-th} layer and is a hyper-parameter
- followed by a non-linear activation function

$$h^{[i]} = g^{[i]}(\mathbf{z}^{[i]}), \in R^{n_i}$$

all pairwise neurons between layers are connected

How many neurons (perceptrons)?

$$4 + 2 = 6$$

How many weights (edges)?

$$(3 \times 4) + (4 \times 2) = 20$$

How many learnable parameters total?

$$20 + (4 + 2) = 26$$
6 bias terms
1 per perceptrons

Why non-linear activation?

This result says that if all activation functions were linear, we can always define an equivalent collapsed network.

Because successive linear transformations together form yet another linear transformation, a multi-layered linear network is not so interesting. Therefore, we need non-linear activations.

National University of Singapore --- CS5242

Activation function g()

• Logistic (Sigmoid, σ) VS ReLU

Logistic activation

If z_k is large, e.g. >10, then h_k is near 1 If z_k is small, e.g. <-10, Then h is near 0 For both cases, $\frac{\partial h_k}{\partial z_k} \approx 0 \rightarrow \text{gradient vanishing}$ \rightarrow gradient vanishing

ReLU activation

If z_k is positive, $\frac{\partial h_k}{\partial z_k} = 1$, no gradient vanishing

If
$$z_k$$
 is negative, $\frac{\partial h_k}{\partial z_k} = 0$ no gradients \odot

better than sigmoid, since z_k has a larger working domain Leaky ReLU (see previous slides) resolves the gradient vanishing problem for negative z_k

Activation function g()

• Activation functions perform non-linear feature transformations

name	plot	equation	derivative	range
Binary step		$f(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$f'(x) = \left\{ egin{array}{ll} 0 & ext{for } x eq 0 \ ? & ext{for } x = 0 \end{array} ight.$	{0,1}
Logistic (a.k.a. Soft step)		$f(x) = \frac{1}{1 + e^{-x}}$	f'(x)=f(x)(1-f(x))	(0,1)
TanH		$f(x)=\tanh(x)=\frac{2}{1+e^{-2x}}-1$	$f'(x) = 1 - f(x)^2$	(-1,1)
ArcTan		$f(x)=\tan^{-1}(x)$	$f'(x) = \frac{1}{x^2+1}$	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
Softsign [7][8]		$f(x) = \frac{x}{1+ x }$	$f'(x)=\frac{1}{(1+ x)^2}$	(-1,1)
Rectified linear unit (ReLU) ^[9]		$f(x) = \left\{ egin{array}{ll} 0 & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = egin{cases} 0 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$[0,\infty)$
Leaky rectified linear unit		$f(x) = \left\{egin{array}{ll} 0.01x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{array} ight.$	$f'(x) = \left\{egin{array}{ll} 0.01 & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{array} ight.$	$(-\infty,\infty)$
Parameteric rectified linear unit (PReLU) ^[11]		$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$
Randomized leaky rectified linear unit (RReLU) ^[12]		$f(lpha,x) = egin{cases} lpha x & ext{for } x < 0 \ x & ext{for } x \geq 0 \end{cases}$	$f'(lpha,x) = egin{cases} lpha & ext{for } x < 0 \ 1 & ext{for } x \geq 0 \end{cases}$	$(-\infty,\infty)$

Source from: https://en.wikipedia.org/wiki/Activation_function

Training MLP

- Cross-entropy loss for classification
- Squared Euclidean distance for regression
- GD algorithm
 - Compute J(X, Y)
 - Compute gradient : $\frac{\partial J}{\partial w^{[1]}}$, $\frac{\partial J}{\partial b^{[1]}}$, $\frac{\partial J}{\partial w^{[2]}}$, $\frac{\partial J}{\partial b^{[2]}}$...
 - Update: $\mathbf{W}^{[k]} = \mathbf{W}^{[k]} \alpha \frac{\partial J}{\partial \mathbf{W}^{[k]}}, \mathbf{b}^{[k]} = \mathbf{b}^{[k]} \alpha \frac{\partial J}{\partial \mathbf{b}^{[k]}}$

A simple MLP example

$$h^{[1]} = g^{[1]}(w^{[1]}x + b)$$

$$h^{[2]} = g^{[2]}(w^{[2]}g^{[2]})$$

$$h^{[3]} = g^{[3]}(w^3h^{[2]})$$

$$\tilde{y} = h^{[3]}$$

Entire network can be written out as one long equation

We need to train the network:

What is known? What is unknown?

Gradient descent algorithm

Random initialize $w^{[1]}, w^{[2]}$.

Repeat

$$J = 0$$

For each sample $x^{(i)}, y^{(i)}$

- a. Forward pass
- b. Accumulate Loss
- c. Accumulate partial gradient (derivative)

how to compute?

Update

$$w^{[1]} = w^{[1]} - \alpha \frac{\partial J}{\partial w^{[1]}}$$
$$w^{[2]} = w^{[2]} - \alpha \frac{\partial J}{\partial w^{[2]}}$$

move in opposite direction of partial derivatives

Back-propagation

$$loss = L(\tilde{y}, y) \qquad \tilde{y} = h^{[3]}$$

$$h^{[3]} = g^{[3]}(w^3h^{[2]})$$

$$h^{[2]} = g^{[2]}(w^{[2]}g^{[2]})$$

$$h^{[1]} = g^{[1]}(w^{[1]}x + b)$$

$$\frac{\partial L}{\partial w^{[3]}} = \frac{\partial L}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial h^{[3]}} \frac{\partial h^{[3]}}{\partial w^{[3]}}$$

$$\frac{\partial L}{\partial w^{[2]}} = \frac{\partial L}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial h^{[3]}} \frac{\partial h^{[3]}}{\partial h^{[2]}} \frac{\partial h^{[2]}}{\partial w^{[2]}}$$

$$\frac{\partial L}{\partial w^{[1]}} = \frac{\partial L}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial h^{[3]}} \frac{\partial h^{[3]}}{\partial h^{[2]}} \frac{\partial h^{[2]}}{\partial h^{[1]}} \frac{\partial h^{[1]}}{\partial w^{[1]}}$$

$$\frac{\partial L}{\partial b} = \frac{\partial L}{\partial \tilde{y}} \frac{\partial \tilde{y}}{\partial h^{[3]}} \frac{\partial h^{[3]}}{\partial h^{[2]}} \frac{\partial h^{[2]}}{\partial h^{[1]}} \frac{\partial h^{[1]}}{\partial b}$$

The term back-propagation comes from the application of the chain rule, in which the gradients or partial derivatives from down-stream are used upstream.

Backpropagation

How to compute the gradient?

- GD algorithm needs the gradient of the loss w.r.t each parameter
- Linear regression model

•
$$\frac{\partial L}{\partial w} = (\tilde{y} - y)x$$

• Logistic regression model

•
$$\frac{\partial L}{\partial w} = (p - y)x$$

• Softmax regression model

•
$$\frac{\partial L}{\partial W} = (\mathbf{p} - \mathbf{y}) \mathbf{x}^T$$

- How about MLP model with 10 hidden layers?
 - We need a modular way to compute the gradients

Chain rule I

• $c = \log 3a$ Given a = 1, what is $\frac{\partial c}{\partial a}$?

$$a \xrightarrow{3*} b \xrightarrow{b} log \xrightarrow{0} c$$

$$\frac{\partial c}{\partial a} = \frac{\partial c}{\partial b} \frac{\partial b}{\partial a} \qquad \frac{\partial c}{\partial b}$$

•
$$b = f_1(a) = 3a$$
, $c = f_2(b) = \log b$ $\rightarrow c = \log 3a$

$$\bullet \frac{\partial c}{\partial a} = \frac{\partial c}{\partial b} \frac{\partial b}{\partial a} = f_2'(b) f_1'(a) = \frac{1}{b} * 3 = \frac{1}{3a} * 3 = \frac{3}{3} = 1$$

Chain rule I

• Basic chain rule

•
$$v_2 = f_1(v_1), v_3 = f_2(v_2)$$
 ... $v_k = f_{k-1}(v_{k-1})$

• v_i could be a scalar, vector, matrix, tensor

•
$$\frac{\partial v_k}{\partial v_i} = mul(\frac{\partial v_k}{\partial v_{i+1}}, \frac{\partial v_{i+1}}{\partial v_i})$$

• Reorder and transpose

• $\frac{\partial v_k}{\partial v_{i+1}} \frac{\partial v_{i+1}}{\partial v_i}$ if all are scalars

• $\frac{\partial v_{i+1}}{\partial v_i} \frac{\partial v_k}{\partial v_{i+1}}$ if v_k is a scalar, v_{i+1} , v_i are vectors

General multiplication operation; to avoid the scalar/matrix/tensor transpose/ordering messiness ...

$$\frac{v_{i}}{\frac{\partial v_{k}}{\partial v_{i}}} = mul(\frac{\partial v_{k}}{\partial v_{i+1}}, \frac{\partial v_{i+1}}{\partial v_{i}}) \qquad \frac{\partial v_{k}}{\partial v_{i+1}}$$

$$f'_{i}(v_{i})$$

Some special cases; shapecheck to confirm!

Chain rule II

•
$$c = f(a, b) = 2a + b^2$$

• Given, $a = 1, b = 1$
• $\frac{\partial c}{\partial a} = 2$, $\frac{\partial c}{\partial b} = 2b = 2$
• $v_1 = f_1(a) = 2a, v_2 = f_2(b) = b^2, c = f_3(v_1, v_2) = v_1 + v_2$
• $\frac{\partial c}{\partial a} = \frac{\partial c}{\partial v_1} \frac{\partial v_1}{\partial a} = 1 * 2 = 2$ $\frac{\partial c}{\partial b} = \frac{\partial c}{\partial v_2} \frac{\partial v_2}{\partial b} = 1 * 2b = 2$

Chain rule II

- $v_l = f(v_i, v_j)$,
- v_k is the final output

Chain rule III

•
$$c = 2a + a^2$$

• Given
$$a = 1, \frac{\partial c}{\partial a} = 2 + 2a = 4$$

•
$$v_1 = f_1(a) = 2a$$
, $v_2 = f_2(a) = a^2$, $c = f_3(v_1, v_2) = v_1 + v_2$

•
$$\frac{\partial c}{\partial a} = \frac{\partial c}{\partial v_1} \frac{\partial v_1}{\partial a} + \frac{\partial c}{\partial v_1} \frac{\partial v_1}{\partial a} = 1 * 2 + 1 * 2a = 4$$

Chain rule III

- $v_i = f_1(v_l)$
- $v_j = f_2(v_l)$
- v_k is the final output

Practice

- $\bullet \ z = f(x, y) = x * y + x$
- Given x = 1, y = 2, compute $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$?

Backpropagation (BP)

- Computation graph
 - Denote all variables as v_1, v_2, \dots sorted in topological order
 - The last variable is the loss (L) for neural network models, which is a scalar value
 - Denote all operations as $f_1, f_2, ... f_k$
 - Each operation accepts multiple inputs and generate a single output
 - which may be used by multiple other operations
 - I(i) denotes all the input variables to f_i
 - O(i) denotes the single output variable of f_i
- Forward pass
 - For i = 1, 2, ... k
 - Run operation $f_i: I(i) \to O(i)$
- Backward pass
 - Initialize $\frac{\partial L}{\partial v} = 0$ for all v
 - For i = k, ... 1 Note the reverse order!
 - For each $v \in I(i)$ Compute $\frac{\partial L}{\partial v} += mul(\frac{\partial L}{\partial O(i)}, \frac{\partial f_i(I(i))}{\partial v})$

Logistic regression

•
$$z = \mathbf{w}^T \mathbf{x}, \mathbf{x} \in \mathbb{R}^{n \times 1}, \mathbf{w} \in \mathbb{R}^{n \times 1}$$

•
$$p = \sigma(z)$$

•
$$L(p, y) = -ylogp - (1 - y)log(1 - p)$$

- Dot
 - Forward(x, w): $w^T x$
 - Backward(dz, x, w): dz x
- Logistic
 - Forward(z): $\sigma(z)$
 - Backward(dp, z): $p = \sigma(z)$; $dp * p * (1 p) = (-\frac{y}{n} + \frac{1 y}{1 n}) * p * (1 p) = p y$
- Binary-Cross-Entropy
 - Forward(p, y): -ylog p (1 y) log (1 p)• Backward([dL], p, y): $-\frac{y}{p} + \frac{1-y}{1-p}$

dL is redundant since it is 1

$$dz = \frac{\partial L}{\partial z}, \qquad dp = \frac{\partial L}{\partial p}$$

$$\frac{\partial L}{\partial L} = 1$$

This operation can also be further decomposed; but since binary cross-entropy is used so commonly, we treat it as a whole stand-alone unit.

Softmax regression

- z = Wx, $x \in R^n, W \in R^{k*n}$
- p = softmax(z) $p \in R^k$
- $L(\boldsymbol{p}, \boldsymbol{y}) = \sum_{i=1} -y_i \log p_i$
- Matmul matrix multiplication
 - Forward(x, W): Wx
 - Backward(dz, x, W)
- Softmax
 - Forward(**z**): **p**
 - Backward(dp, z)
- Cross-entropy
 - Forward(p, y): $\sum_{i=1} -y_i \log p_i$
 - Backward(p, y)

Softmax regression

•
$$z = Wx$$
, $x \in \mathbb{R}^n, W \in \mathbb{R}^{k*n}$

•
$$p = softmax(z)$$
 $p \in R^k$

•
$$L(\boldsymbol{p}, \boldsymbol{y}) = \sum_{i=1} -y_i \log p_i$$

Matmul

- Forward(x, W): Wx
- Backward(dz, x, W): $dz x^T$

Softmax-Cross-Entropy

- Forward(\mathbf{z}): \mathbf{p} ; $\sum_{i=1}^{n} -y_i \log p_i$
- Backward(z, y): p y

L is a complex node

BP for multiple examples

So far, we've considered backpropagation for a single example. How should we handle all of our training samples?

- Approach I (individual)
 - Backpropagation for each example separately
 - Average the gradients across all examples
- Approach II (vectorised)
 - Use matrix (one row per example) in the BP
 - Average the loss
 - Compute gradient based on averaged loss

Which approach is better and why?

BP operations

These are all derived via chain rule

- Add_bias e.g. Z = XW + b
 - A is a matrix; b is a row vector
 - Forward(A, b): C = A + b
 - Backward(dC, A, b): $dA = dC, db = \mathbf{1}^T dC$
- Array and scalar multiplication
 - v is an array, k is a scalar
 - Forward(\boldsymbol{v}, k): $\boldsymbol{c} = k \boldsymbol{v}$
 - Backward($d\mathbf{c}, \mathbf{v}, k$): $d\mathbf{v} = k d\mathbf{c}$

BP operations

- Matmul matrix multiplication operation
 - $A \in \mathbb{R}^{m * k}$, $B \in \mathbb{R}^{k * \bar{n}}$ (including matrix with a single column or row)
 - Forward($\boldsymbol{A}, \boldsymbol{B}$): $\boldsymbol{C} = AB \in \mathbb{R}^{m*n}$
 - Backward(dC, A, B): dA = ?, dB = ?
- Logistic operation
 - a is an array of any shape
 - Forward(a): $b = \sigma(a)$
 - Backward(db, a): da = ?
- Softmax-Cross-entropy operation
 - Z and $Y \in \mathbb{R}^{m*k}$ are matrix of the same shape; each row of a (or b) sums to 1
 - Forward (\mathbf{Z}, \mathbf{Y}) : $\mathbf{P} = softmax(\mathbf{Z})$; $L = sum(-\mathbf{Y}log\mathbf{P})/m$
 - Backward(\mathbf{Z}, \mathbf{Y}): $d\mathbf{Z} = ?$

<u>Summary</u>

- Extending simple Perceptron to Multilayer Perceptron model
- Backpropagation algorithm
 - A modular way to compute the gradient of the loss w.r.t parameters
 - Based on chain rules and matrix calculus

Homework & Practice

- Homework
 - slide 6 & 38,
- Practice
 - Colab notebook (implement the BP operations in Python)