In [153]:

```
#Pré-Processamento de dados
import pandas as pd
dados = pd.read_csv('iris.csv')
print(dados.head())
```

```
sepal_length sepal_width petal_length petal_width species
0
            5.1
                         3.5
                                       1.4
                                                    0.2 setosa
1
            4.9
                         3.0
                                       1.4
                                                    0.2 setosa
2
            4.7
                         3.2
                                       1.3
                                                    0.2 setosa
                                                    0.2 setosa
3
            4.6
                         3.1
                                       1.5
4
            5.0
                         3.6
                                       1.4
                                                    0.2 setosa
```

In [154]:

```
#pegando os dados unicos
dados['species'].unique()
```

Out[154]:

```
array(['setosa', 'versicolor', 'virginica'], dtype=object)
```

In [179]:

```
#Substituindo os valores texto do rotulo por numero
dados = dados.replace({'species':{'setosa':1.1}})
dados = dados.replace({'species':{'versicolor':2.2}})
dados = dados.replace({'species':{'virginica':3.3}})
```

In [180]:

```
print(dados.head())
```

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	1.1
1	4.9	3.0	1.4	0.2	1.1
2	4.7	3.2	1.3	0.2	1.1
3	4.6	3.1	1.5	0.2	1.1
4	5.0	3.6	1.4	0.2	1.1

In [183]:

```
X = dados.iloc[:, :-1].values
y = dados.iloc[:, -1].values
```

In [184]:

```
from sklearn.preprocessing import LabelEncoder,OneHotEncoder
labelencoder = LabelEncoder()
X[:, -1] = labelencoder.fit_transform(X[:, -1])
onehotencoder = OneHotEncoder(categorical_features = [-1])
X = onehotencoder.fit_transform(X).toarray()
```

C:\Users\Daniel\Anaconda3\lib\site-packages\sklearn\preprocessing_encoder s.py:415: FutureWarning: The handling of integer data will change in versi on 0.22. Currently, the categories are determined based on the range [0, m ax(values)], while in the future they will be determined based on the uniq ue values.

If you want the future behaviour and silence this warning, you can specify "categories='auto'".

In case you used a LabelEncoder before this OneHotEncoder to convert the c ategories to integers, then you can now use the OneHotEncoder directly. warnings.warn(msg, FutureWarning)

C:\Users\Daniel\Anaconda3\lib\site-packages\sklearn\preprocessing_encoder s.py:451: DeprecationWarning: The 'categorical_features' keyword is deprec ated in version 0.20 and will be removed in 0.22. You can use the ColumnTr ansformer instead.

"use the ColumnTransformer instead.", DeprecationWarning)

In [186]:

```
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)
```

In [187]:

```
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
X_train[:,3:] = scaler.fit_transform(X_train[:,3:])
X_test[:,3:] = scaler.transform(X_test[:,3:])
```

In [188]:

```
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,Y_train)
print(model.score(X_test,Y_test))
```

0.9445672250090675

In [189]:

```
import numpy as np
X_train = np.append (arr=np.ones([X_train.shape[0],1]).astype(int), values = X_train, a
xis = 1)
```

In [191]:

```
import statsmodels.api as sm
X_opt = [0,1,2,3,4,5,6]
regressor = sm.OLS(Y_train, X_train[:,X_opt]).fit()
print(regressor.summary())
```

OLS Regression Results

=======================================										
==== Don	_			D						
Dep. Variable 0.757	•		У	K-Sq	uared:					
Model:			OLS	Adi.	R-squared:					
0.744			OLS	naj.	N Squarea:					
Method:		Least Squ	ares	F-st	atistic:		5			
8.75		•								
Date:	Τι	ue, 12 Nov	2019	Prob	(F-statistic)	:	1.79			
e-32										
Time:		10:1	6:47	Log-	Likelihood:		-7			
4.500										
No. Observation	ons:		120	AIC:			1			
63.0										
Df Residuals:			113	BIC:			1			
82.5										
Df Model:			. 6							
Covariance Typ		nonro								
=======================================	=======	=======	=====	:====	========	=======	=====			
====	coef	std ann		+	P> t	[0 025	0.			
975]	COET	sta en		C	17 []	[0.023	0.			
const	2.7127	0.050	54	.388	0.000	2.614				
2.811										
x1	-1.6975	0.214	-7	.941	0.000	-2.121	-			
1.274										
x2	-1.6975	0.110	-15	.487	0.000	-1.915	-			
1.480										
x3	-1.6975	0.214	-7	.941	0.000	-2.121	-			
1.274										
x4	-0.3047	0.043	-7	144	0.000	-0.389	-			
0.220			_							
x5	-0.1543	0.042	-3	.637	0.000	-0.238	-			
0.070	0.4543	0.043	-		0.000	0 220				
x6	-0.1543	0.042	-3	.63/	0.000	-0.238	-			
0.070										
====				-====	==========					
Omnibus:		278	011	Durh	in-Watson:					
1.963		2,0	.011	Duib	in watson.					
Prob(Omnibus):		О	.000	Jarg	ue-Bera (JB):		1			
1.754	•	· ·		3 d. q	ac 20. a (02).		_			
Skew:		-0	-0.211		Prob(JB):					
0280					(-)-		0.0			
			.526	Cond	. No.					
5.35										
=========			=====	=====	=========		=====			
====										

Warnings:

 $^{\[1\]}$ Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [192]:

```
#Essa linha é usada pra retirar o modelo que o valor de P está acima de 0,05
#X_opt = [0,1,2,3,4,6]
#regressor_OLS = sm.OLS(Y_train, X_train[:,X_opt]).fit()
#print(regressor_OLS.summary())
```

In [200]:

```
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X[:,[0,1,2,3,4,5,6]], y, test_size
= 0.2, random_state = 0)
scaler = StandardScaler()
X_train[:,3:] = scaler.fit_transform(X_train[:,3:])
X_test[:,3:] = scaler.transform(X_test[:,3:])
from sklearn.linear_model import LinearRegression
model = LinearRegression()
model.fit(X_train,Y_train)
print('Model score: '+str(model.score(X_test,Y_test)))
```

Model score: 0.706142730673673

In []: