MINIMAX TIME SERIES PREDICTION

WOUTER M. KOOLEN ALAN MALEK PETER BARTLETT YASIN ABBASI-YADKORI

TIME SERIES EVERYWHERE

Pose estimation

Self-driving

Tracking

Finance

WHAT WE DO: ONLINE PREDICTION

MODEL: TIME SERIES GAME

For some convex set C, each round t = 1, ..., T

- We play $a_t \in \mathcal{C}$
- Nature reveals $x_t \in C$
- We incur loss $\|\boldsymbol{a}_t \boldsymbol{x}_t\|^2$

Fix horizon T and regularization scalar $\lambda_T > 0$. Regret is:

$$\sum_{t=1}^{T} \|\boldsymbol{a}_{t} - \boldsymbol{x}_{t}\|^{2} - \min_{\hat{\boldsymbol{a}}_{1}, \dots, \hat{\boldsymbol{a}}_{T}} \left\{ \sum_{t=1}^{T} \|\hat{\boldsymbol{a}}_{t} - \boldsymbol{x}_{t}\|^{2} + \lambda_{T} \sum_{t=1}^{T+1} \|\hat{\boldsymbol{a}}_{t} - \hat{\boldsymbol{a}}_{t-1}\|^{2} \right\}$$
Our loss
Loss of Comparator
Comparator Complexity

OBJECTIVE: MINIMAX REGRET

If we assume a perfect adversary, how well can we do? Value is

$$V\coloneqq\min_{oldsymbol{a}_1}\max_{oldsymbol{x}_1:\|oldsymbol{x}_1\|\leq 1}\ldots\min_{oldsymbol{a}_T}\max_{oldsymbol{x}_T:\|oldsymbol{x}_T\|\leq 1} \operatorname{Regret}$$

We play to minimize the worst-case regret; e.g. find a_t that guarantees we achieve the game's value.

IN GENERAL

Let
$$\boldsymbol{X}_t = [\boldsymbol{x}_1 \cdots \boldsymbol{x}_t]$$
 and $\hat{\boldsymbol{A}} = [\hat{\boldsymbol{a}}_1 \cdots \hat{\boldsymbol{a}}_T]$. For $\boldsymbol{v}_t \in \mathbb{R}^t$ and $\boldsymbol{K} \succeq \boldsymbol{0}$,

Data domain $\|\boldsymbol{X}_t \boldsymbol{v}_t\| \leq 1$ e.g. $\|\boldsymbol{x}_t\| \leq 1$

Complexity $\operatorname{tr}(\boldsymbol{K}\hat{\boldsymbol{A}}^\mathsf{T}\hat{\boldsymbol{A}})$ e.g. $\sum_{t=1}^{T+1} \|\hat{\boldsymbol{a}}_t - \hat{\boldsymbol{a}}_{t-1}\|^2$

Spectrum of games (in particular: higher order differences)

OFFLINE PROBLEM

Theorem 1 For any complexity matrix $K \succeq 0$, regularization scalar $\lambda_T \geq 0$, and $d \times T$ data matrix $\boldsymbol{X}_T = [\boldsymbol{x}_1 \cdots \boldsymbol{x}_T]$ the problem

$$L^* \coloneqq \min_{\hat{\boldsymbol{a}}_1,...,\hat{\boldsymbol{a}}_T} \sum_{t=1}^T \lVert \hat{\boldsymbol{a}}_t - \boldsymbol{x}_t \rVert^2 + \lambda_T \operatorname{tr}(\boldsymbol{K}\hat{\boldsymbol{A}}^{\mathsf{T}}\hat{\boldsymbol{A}})$$

has linear (in X_T) minimizer and quadratic (in X_T) value given by

$$\hat{\boldsymbol{A}} = \boldsymbol{X}_T (\boldsymbol{I} + \boldsymbol{\lambda}_T \boldsymbol{K})^{-1}$$
 and $L^* = \operatorname{tr} \left(\boldsymbol{X}_T (\boldsymbol{I} - (\boldsymbol{I} + \boldsymbol{\lambda}_T \boldsymbol{K})^{-1}) \boldsymbol{X}_T^\intercal \right)$.

BACKWARD INDUCTION SOLUTION

We solve for the **value-to-go** V from each state $X_t = [x_1 \cdots x_t]$. We have $V(\boldsymbol{X}_T) := -L^*$ and

$$V(\boldsymbol{X}_{t-1}) \coloneqq \min_{\boldsymbol{a}_t} \max_{\boldsymbol{x}_t: \|\boldsymbol{X}_t \boldsymbol{v}_t\| \le 1} \|\boldsymbol{a}_t - \boldsymbol{x}_t\|^2 + V(\boldsymbol{X}_t).$$

The minimax regret V equals value-to-go $V(\epsilon)$ from empty history.

CRUX

Value-to-go V stays quadratic in X_t for all $t \leq T$ and corresponding minimax strategy is linear in X_{t-1} . Remains to compute coefficients.

SINGLE-SHOT SQUARED LOSS GAME

Theorem 2 *If* $||b|| \le 1$, then the minimax problem

$$V^* \coloneqq \min_{oldsymbol{a}} \max_{oldsymbol{x}: \|oldsymbol{x}\| \leq 1} \|oldsymbol{a} - oldsymbol{x}\|^2 + (lpha - 1) \|oldsymbol{x}\|^2 + 2oldsymbol{b}^\intercal oldsymbol{x}$$

has value and minimizer

$$V^* = \begin{cases} \frac{\|\mathbf{b}\|^2}{1-\alpha} & \text{if } \alpha \leq 0, \\ \|\mathbf{b}\|^2 + \alpha & \text{if } \alpha \geq 0, \end{cases} \quad \text{and} \quad \mathbf{a} = \begin{cases} \frac{\mathbf{b}}{1-\alpha} & \text{if } \alpha \leq 0, \\ \mathbf{b} & \text{if } \alpha \geq 0. \end{cases}$$

Non-trivial induction:

- Curvature of optimization can switch between rounds
- Yet can pre-compute beforehand

MINIMAX TIME SERIES PREDICTION

We precompute:

Theorem 3 *Under a (typical)* no clipping condition on X_T ,

$$V(\boldsymbol{X}_t) = \operatorname{tr}(\boldsymbol{X}_t(\boldsymbol{R}_t - \boldsymbol{I})\boldsymbol{X}_t^{\intercal}) + \sum_{s=t+1}^{T} \max\{c_s, 0\}$$

linear filter
$$m{a}_t = m{X}_{t-1} egin{cases} rac{m{b}_t}{1-c_t} & \textit{if } c_t \leq 0, \ m{b}_t - c_t m{v}_t^{< t} & \textit{if } c_t \geq 0. \end{cases}$$

VANILLA CASE NORM-BOUNDED DATA WITH INCREMENT SQUARED REGULARIZATION

- Cheap scalar O(T) preprocessing sweep.
- Predict in O(d) time per round using O(d) memory.
- Filter weights roughly decay exponentially backwards.
- Can upper and lower bound regret to get

constant λ_T overfits

$$V = \Theta\left(\frac{T}{\sqrt{1+\lambda_T}}\right).$$

BUT WAIT, THERE'S MORE

- Computation: if K and v_t are banded then R_t^{-1} is sparse
- Here we *imposed* data bound $\|\boldsymbol{X}_t \boldsymbol{v}_t\| \leq 1$. In the paper we show that the minimax strategy guarantees an adaptive bound scaling with $\|\boldsymbol{X}_t \boldsymbol{v}_t\|$.
- A second order smoothness version of K gives complicated c_t

Figure 1: $v_t = e_t - e_{t-1}$

Figure 2: $v_t = e_t - 2e_{t-1} + e_{t-2}$