

План

Что такое изображение
Как классифицировать
Свёртка (Convolution)
Отступ (Padding) Шаг (stride), Расширение (Dilation)
Свёрточные нейронные сети (ConvNet, CNN)
Рооling (агрегация, субдискретизация / subsampling)
Какие бывают свёртки
Отступ (Padding) Шаг (stride), Расширение (Dilation)
Свёрточные сети (ConvNet, CNN)
Рооling (агрегация субдискретизация / subsampling)
Какие бывают свёртки

Что такое изображение – H×W-матрица

63 65 67 67 68 69 69 70 71 71 72 64 2 22 54 55 2 64 68 68 67 66 65 64 63 62 61 59 58 58 64 65 66 66 68 69 70 71 41 22 24 12 17 22 48 60 37 43 30 52 66 68 67 66 65 64 63 61 60 59 58 57 16319 4 47 44 27 62 40 67 66 66 65 65 64 63 61 60 59 58 57 9 20 27 51 78 41 44 66 65 65 65 64 63 62 60 59 58 57 19 6 7 54 64 20 59 65 65 64 64 64 63 62 61 60 59 57 56 4 6 44 10 40 66 64 64 63 61 72 67 63 62 61 59 58 57 6 13 66 20 57 60 46 20 75 70 62 61 70 67 62 61 60 59 58 58 6 41 59 20 60 58 44 22 63 71 72 60 69 68 61 60 58 59 59 58 5 5 70 50 43 61 62 64 3 42 64 60 62 56 63 65 65 67 61 53 53 6 11 39 21 33 51 50 45 46 18 32 38 33 23 44 70 71 51 42 27 31 6 42 69 28 34 42 39 43 37 26 29 40 26 29 26 35 42 35 33 18 19 5 44 56 17 51 54 53 54 56 51 77 54 54 55 55 54 53 53 53 52 52 6 18 52 42 24 51 54 51 49 49 50 22 41 45 42 42 41 40 41 44 43 42 16 17 3 4 6 17 46 40 13 43 47 46 49 52 54 53 53 54 18 50 49 46 47 47 47 47 45

«чёрно-белое» (в градациях серого) – целочисленная матрица

Что такое изображение – трёхмерный С×Н×W -тензор

цветное – 3-х мерная целочисленная матрица (тензор)

Линейный подход к классификации на несколько классов

Изображение → вытянуть в вектор признаков
3 класса = 3 вектора весов
линейно получаем оценки за классы (класс по тах оценке)

Линейный подход к классификации на несколько классов

Почему такой подход к работе с изображениями не очень?

Минутка кода: наивный линейный подход

```
class Mlinear(nn.Module):
    def init (self, input size, output size):
        super(Mlinear, self). init ()
        self.conv = nn.Conv2d(in channels=1, out channels=10, kernel size=28)
        # self.fc = nn.Linear(28*28, output size)
   def forward(self, x, verbose=False):
       x = self.conv(x)
       x = x.view(-1, 10)
        x = F.\log_softmax(x, dim=1)
        return x
```

Проблемы

• детектирование объекта в одном месте изображения

можно решить аугментацией но не понятно, что будет с интерпретацией и разделимостью классов

- примитивность модели вряд ли подойдёт линейное правило
- слишком много параметров в простой задаче!

если изображение $256 \times 256 \times 3 \sim 200 k$, то чтобы изображение \rightarrow изображение надо $3.9 \cdot 10^9$ параметров!

Как сравнивать изображения

хотим устойчивость к сдвигам / небольшим поворотам / сжатиям-растяжениям хотим нахождения паттернов

Свёрточные нейронные сети (ConvNet, CNN)

- специальный вид нейронных сетей, для обработки «равномерных сигналов»

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/

Что такое свёртка в математике

$$(f * g)(x) = \int_{\mathbb{R}^n} f(y)g(x - y)dy$$

Дискретный случай:

$$(f * g)(i) = \sum_{j \in \mathbb{Z}} f(j)g(i-j)$$

Случай, когда одна функция равна нулю за пределами окна...

свёртка коммутативна, а после этого предположения появляется асимметрия

$$(f * g)(i) = \sum_{j=-k}^{k} f(j)g(i-j) = f(-k)g(i-k) + \dots + f(0)g(i) + \dots + f(+k)g(i+k)$$

https://ru.wikipedia.org/wiki/Свёртка_(математический_анализ)

Что такое 1-D свёртка (Convolution)

пусть
$$I=(i_1,\dots,i_n)\in\mathbb{R}^n$$
 – сигнал / массив, $K=(k_1,\dots,k_r)\in\mathbb{R}^r$ – ядро свёртки, тогда свёртка:

$$I * K = (i_1k_1 + ... + i_rk_r, i_2k_1 + ... + i_{r+1}k_r, ..., i_{n-r+1}k_1 + ... + i_nk_r) \in \mathbb{R}^{n-r+1}$$

-1	0	1							
1	2	3	4	5	5	4	3	2	1
	3 – 1								

	-1	0	1						
1	2	3	4	5	5	4	3	2	1
	2	4 – 2							

							-1	0	1
1	2	3	4	5	5	4	3	2	1
	2	2	2	1	-1	-2	-2	1 – 3	

Отступ (Padding)

Нулевой

-1	0	2	0	-1				
0	0	1	2	3	4	5	0	0
		-1	0	0	6	7		

Константный

-1	0	2	0	-1				
1	1	1	2	3	4	5	5	5
		-2	-1	0	1	2		

Зеркальный

-1	0	2	0	-1				
2	1	1	2	3	4	5	5	4
		-3	-1	0	1	3		

Циклический

-1	0	2	0	-1				
4	5	1	2	3	4	5	1	2
		-5	-5	0	5	5		

позволяет получать вектор нужной длины

Шаг (Stride)

свёртка с шагом 3

-1	0	1							
1	2	3	4	5	5	4	3	2	1
	3 – 1								
		ı			_			1	

			-1	0	1				
1	2	3	4	5	5	4	3	2	1
	3 – 1			5 – 4					

						-1	0	1	
1	2	3	4	5	5	4	3	2	1
	2			1			-4 + 2		

2 1 -2

позволяет получать вектор небольшой длины и делать его элементы менее коррелированными

Расширение (Dilation)

-1	0	1							
			свёр	тка с ра	сшире	нием 3			
-1			0			1			
1	2	3	4	5	5	4	3	2	1
			4 – 1						
							•		
	-1			0			1		
1	2	3	4	5	5	4	3	2	1
			3	3 – 2					
						1	1		

			-1			0			1
1	2	3	4	5	5	4	3	2	1
			3	1	-1	-3			

позволяет увеличить область действия свёртки («рецептивную зону»)

Минутка кода: свёртка – слой сети

```
import torch
x = torch.Tensor([1, 2, 3, 4, 5, 5, 4, 3, 2, 1]).view(1,1,10)
c = torch.nn.Conv1d(in channels=1, out channels=1,
                    kernel size=3, bias=False)
c.weight = torch.nn.Parameter(torch.Tensor([-1, 0, 1]).view([-1, 1, 3])
c.weight.data.copy (torch.tensor([-1, 0, 1])) # лучше так
c(x)
tensor([[[ 2., 2., 2., 1., -1., -2., -2., -2.]]], grad fn=<SqueezeBackward1>)
c = torch.nn.Conv1d(in channels=1, out channels=1,
                    kernel size=3, bias=False, stride=3)
c(x)
tensor([[[ 2., 1., -2.]]], grad fn=\langle SqueezeBackward1 \rangle)
c = torch.nn.Conv1d(in channels=1, out channels=1,
                    kernel size=3, bias=False, dilation=3)
c(x)
tensor([[[ 3., 1., -1., -3.]]], grad fn=<SqueezeBackward1>)
```

Для справки: в Pytorch есть слои отступов (но есть и как параметр свёртки)

Padding Layers

nn.ReflectionPad1d	Pads the input tensor using the reflection of the input boundary.
nn.ReflectionPad2d	Pads the input tensor using the reflection of the input boundary.
nn.ReplicationPad1d	Pads the input tensor using replication of the input boundary.
nn.ReplicationPad2d	Pads the input tensor using replication of the input boundary.
nn.ReplicationPad3d	Pads the input tensor using replication of the input boundary.
nn.ZeroPad2d	Pads the input tensor boundaries with zero.
nn.ConstantPad1d	Pads the input tensor boundaries with a constant value.
nn.ConstantPad2d	Pads the input tensor boundaries with a constant value.
nn.ConstantPad3d	Pads the input tensor boundaries with a constant value.

2-D свёртка (Convolution)

$$(I * K)_{xy} = \sum_{i=1}^{h} \sum_{j=1}^{r} K_{ij} I_{x+i-1,y+j-1}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 1 & 0 & 2 \end{bmatrix} * \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} * \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix}$$

может быть немного другая индексация

хорошее объяснение: Vincent Dumoulin, Francesco Visin «A guide to convolution arithmetic for deep learning» https://arxiv.org/pdf/1603.07285.pdf

Свёртка (Convolution)

.0	12.0	17.0	
.0	17.0	19.0	
o	6.0	14.0	

_	_	_
12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

_				
3	3	2	1	0
0	0	10	3,	12
3	1	22	2_2	30
2	0	00	2,	2_2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	0	1	3	1
30	1,	2_2	2	3
22	0_2	00	2	2
20	0,	0_2	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

3	3	2	1	0
0	0	1	3	1
3	10	2_{1}	2_2	3
2	0_2	02	20	2
2	00	0,	0_2	1

12.0 12.0 17.0 10.0 17.0 19.0			
	12.0	12.0	17.0
	10.0	17.0	19.0
9.0 6.0 14.0	9.0	6.0	14.0

3	3	2	1	0
0	0	1	3	1
3	1	20	2,	32
2	0	02	22	20
2	0	00	0,	12

10.0 17.0 19.0	12.0	12.0	17.0
	10.0	17.0	19.0
9.0 6.0 14.0	9.0	6.0	14.0

Что делает свёртка?

Что делает свёртка?

исследует локальные участки изображения – ищет паттерны

Что делает свёртка?

Фильтры в CV

- устраняют шум
- находят границы
- детектируют текстуры

оригинал

blur

$$\begin{bmatrix} 1/16 & 1/8 & 1/16 \\ 1/8 & 1/4 & 1/8 \\ 1/16 & 1/8 & 1/16 \end{bmatrix}$$

sharpen

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

top sobel $\begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix}$

bottom sobel $\begin{bmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ +1 & +2 & +1 \end{bmatrix}$

left sobel $\begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix}$

right sobel $\begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix}$

outline $\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$

custom $\begin{bmatrix} +1 & -1 & +1 \\ -1 & 0 & -1 \\ +1 & -1 & +1 \end{bmatrix}$

Текстура в природе

https://people.cs.pitt.edu/~kovashka/cs2770_sp19/

Фильтры для текстур

Можно поиграться здесь: https://setosa.io/ev/image-kernels/

Свёртка (Convolution): мотивация

Раньше: обработка изображений – специально построенные свёртки edges, corners, colors, shapes...

Сейчас: не будем специально конструировать свёртки – их параметры настроятся сами!

Важно: свёртку можно применять к изображениям любых размеров!

Нет ограничений на размеры входа...

Свёртка (Convolution)

Глубина (depth) / число каналов

Высота (height) и ширина (width) тензора (изображения) / ядра

Шаг (stride) — на сколько смещается ядро при вычислении свёрток (чем больше, тем меньше размер итогового изображения)

Отступ (padding) – для дополнения изображения нулями по краям Ядро (kernel) или фильтр (filter) – размерность как у предыдущего тензора; в 3D длина и ширина меньше (глубина совпадает)

Свёртка (Convolution): глубина

глубина тензора (число каналов) = глубина свёртки

Свёртка (Convolution): глубина

https://d2l.ai/chapter_convolutional-neural-networks/channels.html

Свёртка (Convolution): применение нескольких свёрток

каждая свёртка – 1 «лист» на выходе, k свёрток – k-канальный выход получаем на выходе тензор, глубина = число применяемых свёрток свёрточный слой (для картинок) – 4D-массив C_{out}×C_{in}×h×w

Свёртка (Convolution): отступы (padding) – чтобы сохранялись размеры изображения

$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 1 & 0 & 2 \end{bmatrix} * \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ 5 & 3 \end{bmatrix}$

без отступов

с отступами

$$\begin{bmatrix} 1 & 2 & 3 \\ 3 & 4 & 5 \\ 1 & 0 & 2 \end{bmatrix} * \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \equiv$$

$$\begin{bmatrix} 1 & 2 & 3 & 0 \\ 3 & 4 & 5 & 0 \\ 1 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} * \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 5 \\ 5 & 3 & 4 \\ 0 & 2 & 0 \end{bmatrix}$$

Свёртка (Convolution): шаг (stride)

смещаемся при вычислении свёртки (можно в каждой её размерности)

с шагом 2

$$\begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 3 & 4 & 5 & 2 & 1 \\ 1 & 0 & 2 & 3 & 4 \\ 0 & 1 & 3 & 1 & 2 \\ 1 & 2 & 4 & 2 & 3 \end{bmatrix} * \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ -5 & 2 \end{bmatrix}$$

Свёртка (Convolution): минутка кода

```
torch.nn.Conv2d(in channels: int,
                     out channels: int,
                     kernel size: Union[T, Tuple[T, T]],
                      stride: Union[T, Tuple[T, T]] = 1,
                     padding: Union[T, Tuple[T, T]] = 0,
                     dilation: Union[T, Tuple[T, T]] = 1,
                     groups: int = 1,
                     bias: bool = True,
                     padding mode: str = 'zeros') # 'reflect', 'replicate', 'circular'
     input = torch.randn(20, 16, 50, 100)
    m = nn.Conv2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2),
                   dilation=(3, 1)
     output = m(input)
in_channels, out_channels – количество каналов на входе и выходе – должны делиться на groups!
kernel_size - размеры ядра
stride – смещение (можно понижать разрешение)
padding – отступы
dilation – расстояние между точками ядра (увеличивает область зависимости)
groups - опр. связи между входом и выходом
```

Минутка кода: свёртка (Convolution)

Shape:

- Input: $(N, C_{in}, H_{in}, W_{in})$
- ullet Output: $(N, C_{out}, H_{out}, W_{out})$ where

$$H_{out} = \left\lfloor rac{H_{in} + 2 imes \mathrm{padding}[0] - \mathrm{dilation}[0] imes (\mathrm{kernel_size}[0] - 1) - 1}{\mathrm{stride}[0]} + 1
ight
floor$$

$$W_{out} = \left \lfloor rac{W_{in} + 2 imes \mathrm{padding}[1] - \mathrm{dilation}[1] imes (\mathrm{kernel_size}[1] - 1) - 1}{\mathrm{stride}[1]} + 1
floor$$

размеры выхода (в разных реализациях – по-разному)

Реализация: свёртка – это линейная операция (нужно быстро умножать матрицы)

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} * \begin{pmatrix} k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 & 0 & 0 & 0 \\ 0 & k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 & 0 \\ 0 & 0 & 0 & 0 & k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 \\ 0 & 0 & 0 & 0 & k_{21} & k_{22} & k_{22} & k_{22} & 0 \\ 0 & 0 & 0 & 0 & k_{21} & k_{22} & k_{22} & k_{22} & k_{22} \\ 0 & 0 & 0 & 0 & 0 & k_{21} & k_{22} & k_{22} & k_{22} & k_{22} \\ 0 & 0 & 0 & 0 & 0 & k_{21} & k_{22} & k_{22} & k_{22} & k_{22} \\ 0 & 0 & 0 & 0 & 0 & k_{21} & k_{22} & k_{22} & k_{22} & k_{22} \\ 0 & 0 & 0 & 0 & 0 & 0 & k_{21} & k_{22} & k_{22} & k_{22} & k_{22} \\ 0 & 0 & 0 & 0 & 0 & 0 & k_{21} & k_{22} & k_{22} & k_{22} \\ 0 & 0 & 0 & 0 & 0 &$$

$$= \begin{pmatrix} k_{11}x_{11} + k_{12}x_{12} + k_{21}x_{21} + k_{22}x_{22} \\ k_{11}x_{12} + k_{12}x_{13} + k_{21}x_{22} + k_{22}x_{23} \\ k_{11}x_{21} + k_{12}x_{21} + k_{21}x_{31} + k_{22}x_{32} \\ k_{11}x_{22} + k_{12}x_{23} + k_{21}x_{32} + k_{22}x_{33} \end{pmatrix}$$

$$\sim \begin{bmatrix} k_{11}x_{11} + k_{12}x_{12} + k_{21}x_{21} + k_{22}x_{22} & k_{11}x_{12} + k_{12}x_{13} + k_{21}x_{22} + k_{22}x_{23} \\ k_{11}x_{21} + k_{12}x_{22} + k_{21}x_{31} + k_{22}x_{32} & k_{11}x_{22} + k_{12}x_{23} + k_{21}x_{32} + k_{22}x_{33} \end{bmatrix}$$

Разреженные взаимодействия (sparse interactions)

http://www.deeplearningbook.org/contents/convnets.html

Полная связность (full connections)

Локальная связность (local connections)

неразделяемая свёртка (unshared convolution)

Свёртка (convolution)

разделяемая свёртка

Смысл свёрток 1×1 (Pointwise Convolution)

линейная комбинация одинаковая для каждого пикселя «вдоль каналов» (признаков)

потом может (должна) идти нелинейность ⇒ это маленькая НС

https://d2l.ai/chapter_convolutional-neural-networks/channels.html

Смысл свёрток 1×1 (Pointwise Convolution)

применение 32 свёрток 64×1×1:

Преобразование признаков!

будет часто использоваться – это своеобразная мини-нейронка

+ изменение числа каналов

+ «узкое горло» в НС

Смысл свёрток 1×1 (Pointwise Convolution)

Нейрон, действующий по пикселям «вдоль каналов»

[Practical Machine Learning for Computer Vision]

Pooling (агрегация, субдискретизация / subsampling)

для каждого признака канала надо определить, нашли ли паттерн

используем функцию агрегации (mean, max, ...)

делается независимо по каналам \Rightarrow сохраняет число каналов (глубину тензора)

Агрегация (Pooling) усреднением

1.7	1.7	1.7	
1.0	1.2	1.8	
1.1	0.8	1.3	

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

	_	
1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

3	3	2	1	0
0	0	1	3	1
3	1	2	2	3
2	0	0	2	2
2	0	0	0	1

1.7	1.7	1.7
1.0	1.2	1.8
1.1	0.8	1.3

Агрегация (Pooling)

Max-pooling – инвариантность к небольшим сдвигам «equivariant representation»

Аналог голосования...

Если надо найти кошку, то в определённой окрестности ⇒ опросить соседей, есть ли кошка

Агрегация (Pooling): виды пулинга

- усреднение
- усреднение с весами
 - L2-норма
 - Stochastic Pooling

выдаём значение с вероятностью ~ значение

Агрегация (Pooling): виды пулинга

Динамический – длина может от чего-то зависеть http://www.phontron.com/class/nn4nlp2020/schedule.html

Агрегация (Pooling): дифференцирование

При дифференцировании возвращают градиент в позициях максимумов

Почему...
$$\frac{\partial \max[f(x,w),g(x,w)]}{\partial w} = \begin{cases} \frac{\partial f(x,w)}{\partial w}, & f(x,w) \ge g(x,w), \\ \frac{\partial g(x,w)}{\partial w}, & f(x,w) < g(x,w). \end{cases}$$

https://leonardoaraujosantos.gitbook.io/artificial-inteligence/machine_learning/deep_learning/pooling_layer

Pooling layer = downsampling layer

С помощью пулинга можно приводить изображение к нужному размеру!

(его можно/нужно делать с шагом)

90x60

Почему не уменьшают свёртками с шагом?

- 1. Shift invariance
 - 2. Non-linearity

в дополнении к ReLu

3. Speed

пулинг быстрее свёртки

пулинг в каждой локальной области независим от значений в других областях!

https://www.quora.com/Why-would-we-do-max-pooling-when-we-can-downsample-by-Strided-convolution

Минутка кода: aгрегация (Pooling)

Shape:

- Input: (N, C, H_{in}, W_{in})
- ullet Output: (N,C,H_{out},W_{out}) , where

$$H_{out} = \left\lfloor rac{H_{in} + 2 * \mathrm{padding}[0] - \mathrm{dilation}[0] imes (\mathrm{kernel_size}[0] - 1) - 1}{\mathrm{stride}[0]} + 1
ight
floor$$

$$W_{out} = \left \lfloor rac{W_{in} + 2 * \mathrm{padding}[1] - \mathrm{dilation}[1] imes (\mathrm{kernel_size}[1] - 1) - 1}{\mathrm{stride}[1]} + 1
floor$$

Устройство слоя свёрточной НС:

свёрточная часть: [свёртка ightarrow нелинейность ightarrow пулинг] imes k

Мотивация:

• разреженные взаимодействия (sparse interactions) / локальные признаки

нет связи нейронов «каждый с каждым» У свёрточных НС мало весов!!!

• разделение параметров (parameter sharing)

одна свёртка используется «по всему изображению» ⇒ мало параметров

• инвариантные преобразования (equivariant representations)

инвариантность относительно сдвига

http://www.deeplearningbook.org/contents/convnets.html

Свёрточный слой: тензор ightarrow тензор

каждый слой (свёртка ightarrow нелинейность ightarrow пулинг) переводит тензор ightarrow тензор

важно, что всегда получаем тензор, возможно, других размеров

32×32×3 → 28×28×6 (карта признаков)

Свёрточная НС: тензор → **тензор**

Каждый тензор: # признаков / каналов (глубина) × высота × ширина

Свёрточная НС: тензор → **тензор**

```
f = nn.Conv2d(in channels=1, out channels=1, kernel size=3)
x = torch.randn(1, 1, 28, 28)
print (x.shape)
x = f(x)
print (x.shape)
x = F.max pool2d(x, kernel size=2)
print (x.shape)
x = f(x)
print (x.shape)
x = F.max pool2d(x, kernel_size=2)
print (x.shape)
torch.Size([1, 1, 28, 28])
torch.Size([1, 1, 26, 26])
torch.Size([1, 1, 13, 13])
torch.Size([1, 1, 11, 11])
torch.Size([1, 1, 5, 5])
```

Визуализация признаков: за что могут отвечать свёртки последующих слоёв...

https://www.kaggle.com/c/siim-isic-melanoma-classification/discussion/160147

Визуализация признаков

[Practical Machine Learning for Computer Vision]

Визуализация признаков

[Mohamed Elgendy]

Последние слои CNN – векторизация / глобальный пулинг

как перейти от H×W-пространства к пространству «однородных признаков»

Совсем пропадает пространственная информация

[Practical Machine Learning for Computer Vision]

Последние слои CNN – «полносвязная часть»

тензор $3 \times 32 \times 32 \to 3072$ D-вектор \to линейный слой \to активация:

в конце свёрточной сети «обычные» полносвязные слои для решения задачи классификации / регрессии

есть специальные сети без этих слоёв (дальше)

Архитектура CNN

https://www.geeksforgeeks.org/vgg-16-cnn-model/

Минутка кода

```
class CNN(nn.Module):
    def init (self, input_size, n_feature, output_size):
        super(CNN, self). init ()
        self.n feature = n feature
        self.conv1 = nn.Conv2d(in_channels=1, out_channels=n_feature, kernel_size=5)
        self.conv2 = nn.Conv2d(n_feature, n feature, kernel size=5)
        self.fc1 = nn.Linear(n feature*4*4, 50)
        self.fc2 = nn.Linear(50, 10)
    def forward(self, x, verbose=False):
        x = self.conv1(x)
        x = F.relu(x)
        x = F.max pool2d(x, kernel size=2)
        x = self.conv2(x)
        x = F.relu(x)
        x = F.max pool2d(x, kernel size=2)
        x = x.view(-1, self.n feature*4*4)
        x = self.fcl(x)
        x = F.relu(x)
        x = self.fc2(x)
        x = F.\log softmax(x, dim=1)
        return x
```

Минутка кода

Выученные фильтры:

линейная модель: Average loss: 0.2849, Accuracy: 9203/10000 (92%)

свёрточная сеть: Average loss: 0.0784, Accuracy: 9753/10000 (98%)

Минутка кода

Если сделать 3×3-свёртки:

но тут маленький датасет, нет аугментаций...

Революция в машинном обучении

ошибка человека - 5.1

Какие бывают свёртки: Spatial Separable Convolutions

$$\begin{bmatrix} -1 & 0 & +1 \\ -2 & 0 & +2 \\ -1 & 0 & +1 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \cdot \begin{bmatrix} -1 & 0 & 1 \end{bmatrix}$$

идея – факторизовать свёртку, тогда параметров для обучения свёртки не k^2 , а 2k

не все свёртки так представимы!

проводим сначала $k \times 1$ -свёрстку, а потом $1 \times k$

Минутка кода: Spatial Separable Convolutions

```
conv1k = torch.nn.Conv2d (1, 1, (1, k), bias = False)
convk1 = torch.nn.Conv2d (1, 1, (k, 1), bias = False)
y = convk1 (conv1k (x))

Здесь 1 канал → 1 канал,
как в общем случае?
```

Какие бывают свёртки: Group Convolutions

идея из AlexNet, где были ограничения по памяти могут быть лучшие (разреженные) признаковые представления но выходные каналы зависят от узкой группы входных

https://blog.yani.io/filter-group-tutorial/

Какие бывают свёртки

convolution

depth-wise convolution

каждый канал «сворачивается» отдельно

https://eli.thegreenplace.net/2018/depthwise-separable-convolutions-for-machine-learning/

Какие бывают свёртки: Depth-wise separable convolution

теперь результат зависит от всех каналов

S=128, F=3, inC=3, outC=16

Regular convolution:

Parameters:

3*3*3*16 = 432

Computation cost:

3*3*3*128*128*16 = ~7e6

Depthwise separable convolution:

Parameters:

3*3*3+3*16 = 75

Computation cost:

3*3*3*128*128+128*128*3*16

 $= \sim 1.2e6$

Минутка кода: Depth-wise separable convolution

```
class depthwise separable conv(nn.Module):
    def init (self, nin, nout):
        super(depthwise separable conv, self). init ()
        self.depthwise = nn.Conv2d(nin, nin,
                                   kernel size=3,
                                   padding=1,
                                   groups=nin)
        self.pointwise = nn.Conv2d(nin, nout, kernel size=1)
    def forward(self, x):
        out = self.depthwise(x)
        out = self.pointwise(out)
        return out
```

Мотивация – во многих задачах на разных каналах приходится «примерно одинаково действовать»

Transposed convolution (deconvolution / upconvolution / conv-transpose)

термин «deconvolution» считается плохим ~ learnable upsampling operation

[Practical Machine Learning for Computer Vision]

Transposed convolution

Напомним...

$$\begin{pmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{pmatrix} * \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} = \underbrace{\begin{pmatrix} k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 & 0 & 0 & 0 \\ 0 & k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 & 0 \\ 0 & 0 & 0 & 0 & k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 \\ 0 & 0 & 0 & 0 & k_{11} & k_{12} & 0 & k_{21} & k_{22} & 0 \\ 0 & 0 & 0 & 0 & k_{11} & k_{12} & 0 & k_{21} & k_{22} \end{pmatrix} \cdot \underbrace{\begin{pmatrix} x_{11} \\ x_{12} \\ x_{13} \\ x_{21} \\ x_{22} \\ x_{23} \\ x_{31} \\ x_{32} \\ x_{33} \end{pmatrix}}_{32}$$

Можно для «обратной» операции (увеличивающий тензор) использовать транспонированную матрицу...

Transposed convolution

$$\begin{pmatrix} \mathbf{z}_{11} & \mathbf{z}_{12} \\ \mathbf{z}_{21} & \mathbf{z}_{22} \end{pmatrix} *^{\mathsf{T}} \begin{pmatrix} k_{11} & k_{12} \\ k_{21} & k_{22} \end{pmatrix} = H^{\mathsf{T}} \cdot \begin{pmatrix} \mathbf{z}_{11} \\ \mathbf{z}_{21} \\ \mathbf{z}_{12} \\ \mathbf{z}_{22} \end{pmatrix} =$$

$$= (k_{11}z_{11}, k_{12}z_{11} + k_{11}z_{12}, k_{12}z_{11} + k_{11}z_{12}, k_{12}z_{21} + k_{11}z_{22}, k_{22}z_{11} + k_{21}z_{12} + k_{12}z_{21} + k_{11}z_{22}, k_{22}z_{12} + k_{12}z_{22}, k_{22}z_{21} + k_{21}z_{22}, k_{22}z_{22})$$

«Обратная» свёртка увеличивает пространственное разрешение...

(можно увеличить изображение с помощью НС), эквивалентная запись:

Минутка кода: Transposed convolution

```
H = torch.arange(1, 17).float().view(1, 1, 4, 4)
print (H)
tensor([[[ 1., 2., 3., 4.],
         [5., 6., 7., 8.],
         [ 9., 10., 11., 12.],
          [13., 14., 15., 16.]]])
f = nn.ConvTranspose2d(in channels=1, out channels=1, kernel size=2, bias=False)
f.weight.data.fill (1.)
H2 = f(H)
print (H2, H2.shape)
tensor([[[ 1., 3., 5., 7., 4.],
         [ 6., 14., 18., 22., 12.],
         [14., 30., 34., 38., 20.],
         [22., 46., 50., 54., 28.],
          [13., 27., 29., 31., 16.]]], grad fn=<SlowConvTranspose2DBackward>)
torch.Size([1, 1, 5, 5])
```

Минутка кода: Transposed convolution

```
H = torch.randn(1, 10, 20, 30)
cnv = nn.Conv2d(in_channels=10, out_channels=20, kernel_size=2)
ct = nn.ConvTranspose2d(in_channels=20, out_channels=10, kernel_size=2)
print (H.shape)
print (cnv(H).shape)
print (ct(cnv(H)).shape)

torch.Size([1, 10, 20, 30])
torch.Size([1, 20, 19, 29])
torch.Size([1, 10, 20, 30])
```

Dropout в свёрточных сетях

соседние пиксели коррелированы ⇒ по-другому надо dropout

Spatial Dropout / Dropout2D – выбрасываем каналы, а не нейроны

[Tompson et al. (2015)] но нельзя реализовать как отдельный слой;)

cutout - маска-прямоугольник

но оказалось, что лучше применять на исходном изображении как аугментацию

Stochastic depth – удаление слоёв (дальше)

Pooling Dropout

Figure 4: Max-pooling dropout in convolutional neural networks [12].

Минутка кода: Dropout

```
from torch import nn
H = torch.arange(1, 17).reshape(1, 4, 2, 2).float()
drop = nn.Dropout2d(p=0.5) # Dropout 2D - зануление каналов
print(drop(H))
                                                            Dropout Layers
tensor([[[ 0., 0.],
                                                                                 During training, randomly zeroes some of the elements of
                [ 0., 0.]],
                                                                                 the input tensor with probability p using samples from a
                                                              nn.Dropout
                                                                                 Bernoulli distribution.
              [[10., 12.],
               [14., 16.]],
                                                                                 Randomly zero out entire channels (a channel is a 2D feature
                                                                                 map, e.g., the j-th channel of the i-th sample in the batched
                                                              nn.Dropout2d
              [18., 20.],
                                                                                 input is a 2D tensor input [i, j]).
                [22., 24.]],
                                                                                 Randomly zero out entire channels (a channel is a 3D feature
              [[0., 0.],
                                                                                 map, e.g., the j-th channel of the i-th sample in the batched
                                                              nn.Dropout3d
                [0., 0.]
                                                                                 input is a 3D tensor input [i, j]).
```

Почему неожиданно большие значения?

nn.AlphaDropout Applies Alpha Dropout over the input.

P.S. BN при свёртках

https://nvlabs.github.io/eccv2020-mixed-precision-tutorial/files/szymon_migacz-pytorch-performance-tuning-guide.pdf

В при свёртках

FCN

$$x \sim N \times D$$

$$\mu, \sigma \sim 1 \times D$$

CCN

$$x \sim N \times C \times H \times W$$

$$\mu$$
, σ ~ 1× C ×1×1

Итог

В изображениях свёртки – естественная операция

- классическая линейная операция
 - поиск паттернов
 - реализация фильтра
 - разделение параметров
- реализация разреженных взаимодействий (sparse interactions)

Естественное устройство CNN: n×[conv + activ + pool] + k×FC какой порядок лучше в нелинейность + пулинг?

В отличие от классического CV не придумываем фильтры Они обучаются сами!

Свёртка – первый пример разделения весов.

Есть способы экономии параметров – и ими пользуются!

Свёртки продолжают совершенствоваться

(более разумные представления, экономия параметров)

Литература

Vincent Dumoulin, Francesco Visin «A guide to convolution arithmetic for deep learning» //

https://arxiv.org/pdf/1603.07285v1.pdf