Ínría-

Stage INRIA - Réunion $n^{\circ}6$

Quentin RAPILLY

Cette semaine - 1

Déplacement d'un IRM (et ses labels) dans MNI

L'espace MNI

L'espace MNI (pour Montreal Neurological Institute) correspond à un espace basé sur un "cerveau moyen".

Un **IRM de référence** est construit à partir de plusieurs cerveaux de sujets sains et constitue un **modèle sur lequel les autres IRM étudiés sont alignés.**

Cette semaine - 1

Déplacement d'un IRM (et ses labels) dans MNI

L'espace MNI

L'espace MNI (pour Montreal Neurological Institute) correspond à un espace basé sur un "cerveau moyen".

Un **IRM de référence** est construit à partir de plusieurs cerveaux de sujets sains et constitue un **modèle sur lequel les autres IRM étudiés sont alignés.**

Espace MNI dans notre cas

Cette semaine - 1

Déplacement d'un IRM (et ses labels) dans MNI

L'espace MNI

L'espace MNI (pour Montreal Neurological Institute) correspond à un espace basé sur un "cerveau moyen".

Un **IRM de référence** est construit à partir de plusieurs cerveaux de sujets sains et constitue un **modèle sur lequel les autres IRM étudiés sont alignés.**

Espace MNI dans notre cas

Création d'un script permettant de recaler :

- les images de notre base de données
- les labels correspondant
- les labels provenant des autres méthodes de segmentation

Création du script de barycentre itératif

Description de l'algorithme

 $Input \rightarrow figures : liste[figure]$

$$\mu = pop(figures), w = 1$$

Tant que len(figures) > 0:

- 1. s = pop(figures)
- 2. $traj = registration(\mu, s)$
- 3. $w \leftarrow w + 1$
- 4. $\mu \leftarrow shooting(traj, \frac{1}{w})$

Création du script de barycentre itératif

Description de l'algorithme

Input → *figures* : *liste*[*figure*]

$$\mu = pop(figures), w = 1$$

Tant que len(figures) > 0:

- 1. s = pop(figures)
- 2. $traj = registration(\mu, s)$
- 3. $w \leftarrow w + 1$
- 4. $\mu \leftarrow shooting(traj, \frac{1}{w})$

Détails

- registration(s₁, s₂): effectue le recalage de s₁ vers s₂ et renvoie la trajectoire correspondante.
- $shooting(traj, \omega)$: donne la forme se trouvant au point $\omega \in [0, 1]$ de la trajectoire traj.

