18-100 Introduction to Electrical and Computer Engineering

Lecture 16
Complex Numbers, Phasors, and Impedances

5-Feb	W	Exam 1	Pause for exam	N/A
10-Feb	М	L07: Capacitors, RC Time Constants, RC Circuits		Mark
12-Feb	W	LO8: Inductors, RL Time Constants, 555	Lab3 : MOSFETs	Mark
17-Feb	М	L09: Binary, Logic Gates, Boolean Logic		Greg
19-Feb	W	L10: Latches, Registers, RAM, Flip-Flops	Lab4: Timer Lab	Greg
24-Feb	М	L11: Computers		Greg
26-Feb	W	L12: Op Amps	Lab5: Op Amps	Mark
3-Mar	М	SPRING BREAK		
5-Mar	W	SPRING BREAK	Pause for break	
10-Mar	М	L13: Arduino Programming Case Study		Greg
12-Mar	W	L14: Serial Communication Protocols	Lab 6: I2C	Greg
		L15: Analog-to-Digital (ADC) and Digital-to-Analog (DAC)		
17-Mar	M	Conversion		Greg
19-Mar	W	L16: Complex Numbers, Phasors, and Impedance	Lab7: ADC	Mark
24-Mar	М	L17: Analog Filters, LC Circuits , Resonance		Mark
26-Mar	W	L18: Review/Exam Preview	Pause for exam	Greg
31-Mar	M	Exam 2		
2-Apr	W	L19: Time Varying Signals and Spectra (Trig)	Pause for Carnival	Mark
7-Apr	М	L20: Wireless Communication: Modulation to Protocols		Mark
9-Apr	W	L21: Crypto	Lab 8: Radio out	Greg
14-Apr	М	L22: IoT and Cloud		Greg
16-Apr	W	L23: Information Theory and Data Compression	Lab 9: Crypto out	Greg
21-Apr	М	L24: Al and ML		Greg
23-Apr	W	L25: Course wrap up	Crypto Due	Greg and Mark
Exams	Period	Exam 3 (Scheduled by Registrar during the Final Exams Period)		

Objectives of this Lecture

- Capacitors and Inductors
- Complex Numbers
- Great Mysteries of the Universe Unveiled
- Impedance
- Everything Old Is New Again

Inductors and Capacitors Are Opposites....

Capacitors

Cannot Change Current

Initially, When Current

 $i_L(t=0^-) = i_L(t=0^+)$ Open

Short

First Starts to Flow, It Looks Like a Eventually, It Gets Fully

Instantly

Open

Charged Up, and It Looks Like a Short

Inductors

Series Equivalence

 $L_{eq} = L_1 + L_2 + \dots + L_N$

Parallel Equivalence

 $\frac{1}{L_{eq}} = \frac{1}{L_1} + \frac{1}{L_2} + \dots + \frac{1}{L_N}$

 $C_{eq} = C_1 + C_2 + \dots + C_N$

Time Constant

"Ohm-ish" Law

 $\tau = RC$

$$\tau = \frac{L}{R}$$

$$\frac{1}{C_{eq}} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_N}$$

for Solving RC Circuits

For Capacitors (No Sources)

- You are given $v_c(t=0^-)$
 - Capacitor voltage cannot change
 - instantly: $v_{c}(t=0^{+}) = v_{c}(t=0^{-}) = V_{0}$ If necessary, find the current
 - $i_{C}(t=0^{+})$ based on V_{0}
 - Without an external source:

 - $i_C(t=\infty) = 0$ A and $v_C(t=\infty) = 0$ V
- Find time constant: $\tau = RC$ Both the current and voltage
- 5. 6. equations will have the form of: $i_C(t)=I_0e^{-t/\tau}$ and $v_C(t)=V_0e^{-t/\tau}$

For Capacitors (Constant Sources)

- Calculate $v_C(t=0^-)$ as if capacitor
- is an open circuit
- Capacitor voltage cannot change instantly: $v_{C}(t=0^{+}) = v_{C}(t=0^{-}) = V_{0}$
- Eventually, capacitor looks like 3. an open again, find $v_c(t=\infty)$
 - If necessary, find the current
- $i_{C}(t=0^{+})$ and $i_{C}(t=\infty)$
- To find the time constant, zero out 5.
- all sources (0V and 0A): $\tau = RC$
- Current and voltage each of the form: 6. $v_{C}(t) = V_{O}e^{-t/\tau} \text{ or } v_{C}(t) = (V_{H/} - V_{LO})(1 - e^{-t/\tau}) + V_{LO}$

Budnik's Home Cooking Recipes for Solving RL Circuits

- For Inductors (No Sources)
- You are given $i_t(t=0^-)$
 - Inductor current cannot change instantly: $i_I(t=0^+) = i_I(t=0^-) = I_0$
 - If necessary, find the voltage
 - $v_I(t=0^+)$ based on I_0 Without an external source:
 - $i_I(t=\infty) = 0$ A and $v_I(t=\infty) = 0$ V
- 5. Find time constant: $\tau = L/R$ Both the current and voltage
- 6. equations will have the form of: $i_{I}(t)=I_{0}e^{-t/\tau}$ and $v_{I}(t)=V_{0}e^{-t/\tau}$

For Inductors (Constant Sources)

- Calculate $i_T(t=0^-)$ as if inductor
- is a short circuit Inductor current cannot change instantly:
- $i_I(t=0^+) = i_I(t=0^-) = I_0$ Eventually, inductor looks like 3.
- a short again, find $i_t(t=\infty)$ If necessary, find the voltage
- $v_{I}(t=0^{+})$ and $v_{I}(t=\infty)$ To find the time constant, zero out 5.
- all sources (0V and 0A): $\tau = L/R$
- Current and voltage each of the form: 6. $i_{I}(t) = I_{0}e^{-t/\tau}$ or $i_{I}(t) = (I_{HI} - I_{IO})(1 - e^{-t/\tau}) + I_{IO}$

Steady State Response

(NOT CONSTANT DC SOURCES)

• Ignore "start-up" and consider only the "steady-state" response

• The source is assumed to exist forever: $-\infty < t < +\infty$

Finding Steady-State Response

(the hard way....)

1. Apply KVL:

$$V_m \cos(\omega t) = iR + L \frac{di}{dt}$$

2. Make a good guess:

$$i(t) = I_m \cos(\omega t + \theta)$$

3. Solve for the constants:

$$i(t) = \frac{V_m}{\sqrt{R^2 + \omega^2 I^2}} \cos\left(\omega t - \tan^{-1}\left[\frac{\omega L}{R}\right]\right)$$

Finding Steady-State Response (the hard way....)

1. Apply KVL:

$$V_m \cos(\omega t) = iR + L \frac{di}{dt}$$

2. Make a good guess:

$$i(t) = I_m \cos(\omega t + \theta)$$

3. Solve for the constants:

$$i(t) = \frac{V_m}{\sqrt{R^2 + \omega^2 L^2}} \cos\left(\omega t - \tan^{-1}\left[\frac{\omega L}{R}\right]\right)$$

Time Domain vs. Frequency Domain

Time Domain

Uses "real" numbers, but requires calculus and/or differential equations

Frequency Domain

Uses "complex" numbers, but only requires algebra

Steady State Response (with Complex Numbers)

Inductors and capacitors act like frequency dependent resistors

Steady State Response (with Complex Numbers)

Current through an inductor cannot change instantly

Resistance to current flow increases with ω

act like frequency dependent resistors

Steady State Response (with Complex Numbers)

Use our models:

- Ohm's Law
- KCL
- KVL
- Equivalent circuits

act like frequency dependent resistors

act like frequency dependent resistors

Complex Numbers Are Real!

Cartesian form

$$z = \mathbf{a} + \mathbf{b}\sqrt{-1} = \mathbf{a} + \mathbf{b}j$$

Polar form

$$z = r \angle \theta$$

- Complex numbers occur all the time in the "real" world
- Complex numbers are just another way to "name" a sinusoidal signal

$$z = r\cos\left(\omega t + \theta\right)$$

- Complex numbers occur all the time in the "real" world
- Complex numbers are just another way to "name" a sinusoidal signal

$$z = r\cos(\omega t + \theta) = r\angle\theta = a + bj$$

Complex Numbers - Learn to Use Your Calculator!!!

Complex Numbers - Learn to Use Your Calculator!!!

ti 84 plus ce user manal pdf

Αll Images Videos Shopping Web Forums Books : More

These are results for ti 84 plus ce user *manual* pdf Search instead for ti 84 plus ce user manal pdf

https://education.ti.com > guidebook > details > ti-84-plu...

TI-84 Plus CE Guidebooks - Texas Instruments

TI-84 Plus CE Guidebooks. Download Item, PDF, eGuide, Version, Size (KB). Graphing Calculator Apps Guide for the TI-84 Plus CE (English) · View: · View, 5.7 ...

TI Education

https://education.ti.com > download > ed-tech > Tl... PDF

Getting Started with the TI-84 Plus CE Graphing Calculator

Dec 23, 2024 — Use this guide to learn more about these features and other essential tools of your.

Complex Numbers Are Real!

Cartesian form

$$z = a + b\sqrt{-1} = a + bj$$

Polar form

$$z = r \angle \theta$$

- Complex numbers occur all the time in the "real" world
- Complex numbers are just another way to "name" a sinusoidal signal

$$z = r\cos(\omega t + \theta) = r\angle\theta = a + bj$$

Complex Numbers and Algebra 2

- Intro to Imaginary Numbers (5:20)
- Simplifying roots of negative numbers (4:04)
- Intro to complex numbers (4:44)
- Classifying complex numbers (4:39)
- Plotting numbers on the complex plane (1:14)
- Adding complex numbers (1:11)
- Subtracting complex numbers (1:53)
- Multiplying complex numbers (5:32)
- Intro to complex number conjugates (8:04)
- Dividing complex numbers (4:58)

Addition and Subtraction of Complex Numbers (Combine Like Terms)

$$(1+2j)+(3+4j) = (1+3)+(2j+4j)$$

= 4+6j

$$(1+2j)-(3+4j) = (1-3)+(2j-4j)$$
$$= -2-2j$$

Multiplication of Complex Numbers

(FOIL - First, Outer, Inner, Last)

$$(1+2j)(3+4j) = (1)(3) + (1)(4j) + (2j)(3) + (2j)(4j)$$
$$= 3+4j+6j+8j^2$$

$$= 3 + 10j + 8\left(\sqrt{-1}\right)^2$$

$$= 3 + 10j + 8(-1) = -5 + 10j$$

Division of

Complex Numbers
$$\frac{-1+5j}{2+3j} = \left(\frac{-1+5j}{2+3j}\right) \left(\frac{2-3j}{2-3j}\right) = \frac{(-1+5j)(2-3j)}{(2+3j)(2-3j)}$$

$$= \frac{(-1)(2) + (-1)(-3j) + (5j)(2) + (5j)(-3j)}{(2)(2) + (2)(-3j) + (3j)(2) + (3j)(-3j)}$$

$$= \frac{-2+3j+10j-15j^2}{4-6j+6j-9j^2}$$

$$= \frac{-2+13j-15(-1)}{4-9(-1)} = \frac{13+13j}{13} = 1+j$$

the denominator will be real

If you get it right,

Phasors: Polar Form of Complex Numbers

- Absolute value [magnitude] of complex numbers (3:33)
- Complex numbers with the same absolute value [magnitude] (2:52)
- Absolute value & angle of complex numbers (13:04)
- Polar & rectangular forms of complex numbers (12:16)
- Converting a complex number from polar to rectangular form (2:39)
- Multiplying complex numbers in polar form (2:27)
- Dividing complex numbers in polar form (3:10)
- Complex numbers for electrical and computer engineers (8:36)
- <u>Euler's formula (8:42)</u>

Real

Converting from Cartesian to Phasor (Polar) Form

• $2 + j3 = 3.61 \angle 56.3^{\circ}$ $= 3.61e^{j0.983\text{rad}} = 3.61e^{j0.983}$

$$r = \sqrt{a^2 + b^2} = \sqrt{(2)^2 + (3)^2} = 3.61$$

$$\theta = \tan^{-1} \left(\frac{b}{a} \right) = \tan^{-1} \left(\frac{3}{2} \right) = \tan^{-1} \left(1.5 \right)$$
$$= 56.3^{\circ} = 0.983 rad$$

Converting from Cartesian to Phasor (Polar) Form

• $2 + j3 = 3.61 \angle 56.3^{\circ}$

$$= 3.01 \angle 30.3^{\circ}$$
$$= 3.61e^{j0.983 \text{rad}} = 3.61e^{j0.983}$$

$$r = \sqrt{a^2 + b^2} = \sqrt{(2)^2 + (3)^2} = 3.61$$

$$\theta = \tan^{-1} \left(\frac{b}{a} \right) = \tan^{-1} \left(\frac{3}{2} \right) = \tan^{-1} \left(1.5 \right)$$

$$= 56.3^{\circ} = 0.983 rad$$

Converting from Cartesian to Phasor (Polar) Form

•
$$2 - j3 = 3.61 \angle -56.3^{\circ}$$

 $r = \sqrt{a^2 + b^2} = \sqrt{(2)^2 + (-3)}$

$$r = \sqrt{a^2 + b^2} = \sqrt{(2)^2 + (-3)^2} = 3.61$$

$$\theta = \tan^{-1} \left(\frac{-3}{2}\right) = \tan^{-1} (-1.5) = -56.3$$

$$\theta = \tan^{-1} \left(\frac{-3}{2} \right) = \tan^{-1} \left(-1.5 \right) = -56.3^{\circ}$$

Converting from Cartesian to Phasor (Polar) Form

•
$$2 - j3 = 3.61 \angle -56.3^{\circ}$$

$$r = \sqrt{a^2 + b^2} = \sqrt{(2)^2 + (-3)^2} = 3.61$$

$$\theta = \tan^{-1}\left(\frac{-3}{2}\right) = \tan^{-1}(-1.5) = -56.3^{\circ}$$

•
$$-2 + j3 =$$

$$r = \sqrt{a^2 + b^2} = \sqrt{(-2)^2 + (3)^2} = 3.61$$

$$r = \sqrt{a^2 + b^2} = \sqrt{(-2)^2 + (3)^2} = 3.61$$

$$\theta = \tan^{-1}\left(\frac{3}{-2}\right) = \tan^{-1}\left(-1.5\right) = -56.3^{\circ}$$

 $3.61\cos(\omega t - 56.3^{\circ})$

Converting from Cartesian to Phasor (Polar) Form

• $2 - j3 = 3.61 \angle -56.3^{\circ}$

$$r = \sqrt{a^2 + b^2} = \sqrt{(2)^2 + (-3)^2} = 3.61$$

$$\theta = \tan^{-1} \left(\frac{-3}{2}\right) = \tan^{-1} (-1.5) = -56.3^{\circ}$$

•
$$-2 + j3 =$$

$$r = \sqrt{a^2 + b^2} = \sqrt{(-2)^2 + (3)^2} = 3.61$$

$$\theta = \tan^{-1}\left(\frac{3}{-2}\right) = \tan^{-1}(-1.5) = -5.3^{\circ}$$

Imaginary —

Multiplication and Division with Phasors

$$(3\angle +30^{\circ})(4\angle +45^{\circ})=(3)(4)\angle(30^{\circ}+45^{\circ})=12\angle(75^{\circ})$$

$$\frac{-1+5j}{2+3j} = \frac{5.099\angle 101.3^{\circ}}{3.606\angle 56.3^{\circ}} = \frac{5.099}{3.606} \angle (101.3^{\circ} - 56.3^{\circ}) = \sqrt{2}\angle 45^{\circ}$$

Time Domain vs. Frequency Domain

$$2.82\cos(\omega t + 45^{\circ}) = 2 + j2 = 2.82\angle 45^{\circ}$$

Time Domain

Frequency Domain

$$\mathbf{V} = j\omega L\mathbf{I}$$

$$\mathbf{V} = j\omega L\mathbf{I}$$

$$\mathbf{V} = \frac{1}{j\omega C}\mathbf{I}$$

$$\mathbf{V} = \frac{1}{j\omega C}\mathbf{I}$$

$$\mathbf{V} = \frac{1}{j\omega C}\mathbf{I}$$

Uses "real" numbers,

| Uses "real" numbers,
| Continue of the continue of the

Uses "complex" numbers, but only requires algebra

Phasor Representation

$$V_{m} \cos(2\pi f t + \theta) = V_{m} \cos(\omega t + \theta) = V_{m} \angle \theta$$

$$I_{m} \cos(2\pi f t + \theta) = I_{m} \cos(\omega t + \theta) = I_{m} \angle \theta$$

We will also see that we can represent resistors, inductors, and capacitors as complex numbers

We will use the term impedance (Z) to refer to a "resistance" to current flow that varies with **frequency**

$$Z_{Resistor} = Z_R = R$$

$$Z_{Resistor}$$
 Z_{R}

$$Z_{Inductor} = Z_L = j\omega L$$

$$Z_{Capacitor} = Z_C = \frac{1}{j\omega C} = \left(\frac{1}{j\omega C}\right) \left(\frac{j}{j}\right) = \frac{j}{j^2\omega C} = \frac{j}{-1\omega C} = \frac{-j}{\omega C}$$

AND it will result in a 90° phase shift to any current that flows through it

 $10\mu F$ acts like a 265Ω resistor to a 377 rad/s sinusoidal voltage,

Changing ω will change the resistance of the 1μ F, but not the (-j) 90° phase shift

$$I = \frac{120 \angle 0^{\circ} \text{ V}}{100\Omega - j265\Omega}$$

$$I = 0.1496 + j0.3964 \text{ A} = 424 \angle 69.3^{\circ} \text{ mA}$$

$$i(t) = 424\cos(377t + 69.3^{\circ}) \text{ mA}$$

$$V_{OUT} = (424\angle 69.3^{\circ} \text{ mA})(-j265) = 112\angle -20.7^{\circ} \text{ V}$$

$$v_{out}(t) = 112\cos(377t - 20.7^{\circ}) \text{ V}$$

Circuit Analysis is Easy with Phasors (Voltage Division)

 $V_{OUT} = (120 \angle 0^{\circ} \text{ V}) \left| \frac{(-j265\Omega)}{(100\Omega) + (-j265\Omega)} \right|$

 $v_{out}(t) = 112 \angle -20.7^{\circ} \text{ V} = 112 \cos(377t - 20.7^{\circ}) \text{ V}$

$$= \frac{12020 \text{ V}}{100\Omega - j265\Omega}$$

$$I = 0.1496 + j0.3964 \text{ A} = 424 \angle 69.3^{\circ} \text{ mA}$$

$$i(t) = 424\cos(377t + 69.3^{\circ}) \text{ mA}$$

$$V_{OUT} = (424\angle 69.3^{\circ} \text{ mA})(-j265) = 112\angle -20.7^{\circ} \text{ V}$$

 $v_{out}(t) = 112\cos(377t - 20.7^{\circ}) \text{ V}$

Changing will change the resistance of the 1 vF, but not the (i) 90° phase shift

 $10\mu F$ acts like a 265Ω resistor to a 377 rad/s sinusoidal voltage,

AND it will result in a 90° phase shift

Changing ω will change the resistance of the 1μ F, but not the (-j) 90° phase shift

What Do You Need to Do Next?

- 1. Take the **Lecture 15 Quiz** on canvas!
- 2. Check out Piazza and Gradescope

