

Sistema de gestión de lockers IOT

Autor:

Lic. Leandro Percivati

Director:

No definido ()

Índice

1. Descripcion tecnica-conceptual del proyecto a realizar
2. Identificación y análisis de los interesados
3. Propósito del proyecto
4. Alcance del proyecto
5. Supuestos del proyecto
6. Requerimientos
7. Historias de usuarios ($Product\ backlog$)
8. Entregables principales del proyecto
9. Desglose del trabajo en tareas
10. Diagrama de Activity On Node
11. Diagrama de Gantt
12. Presupuesto detallado del proyecto
13. Gestión de riesgos
14. Gestión de la calidad
15. Procesos de cierre

Registros de cambios

Revisión	Detalles de los cambios realizados	Fecha
0	Creación del documento	28/02/2023
1	Se completa hasta el punto 5 inclusive	13/03/2023

Acta de constitución del proyecto

Buenos Aires, 28 de febrero de 2023

Por medio de la presente se acuerda con el Lic. Leandro Percivati que su Trabajo Final de la Carrera de Especialización en Internet de las Cosas se titulará "Sistema de gestión de lockers IOT", consistirá esencialmente en la implementación de un prototipo de un sistema de control y manipulación de lockers, y tendrá un presupuesto preliminar estimado de 600 horas de trabajo, con fecha de inicio marzo de 2023 y fecha de presentación pública diciembre de 2023.

Se adjunta a esta acta la planificación inicial.

Dr. Ing. Ariel Lutenberg Director posgrado FIUBA Ing. Sergio Starkloff Surix

No definido Director del Trabajo Final

1. Descripción técnica-conceptual del proyecto a realizar

Uno de los efectos inmediatos de la implementación de cuarentenas fue el gran crecimiento de compras online. Con el aumento de número de personas que comenzaron a trabajar desde su casa y la obligación de estar en el hogar durante la mayor parte del día, el modelo de compra online tuvo mucho éxito ya que evita que el comprador tenga contacto con otras personas y se contaba con que siempre habría alguien disponible para recibir los pedidos hechos.

Con la implementación de modelos híbridos de trabajo y la vuelta a la presencialidad de casi todas las actividades cotidianas, al modelo de compra online le surgió como desafío volver a asegurar la entrega de los pedidos ya que puede que no haya nadie para recibirlos. Existen distintas formas de enfrentar este desafío. Muchas empresas ofrecen a través de su sistema, el seguimiento del pedido para que haya una persona en la casa al momento que este llegue. Sin embargo, los sistemas no contemplan imprevistos tanto del comprador (tener que salir del hogar aunque sepa que el pedido está en camino), como del repartidor (no poder cumplir con la entrega en el día pactado).

El objetivo de este proyecto es solucionar dicha problemática: hacer innecesaria la presencia de una persona que reciba el pedido solicitado. Para cumplir con el objetivo, el sistema debe ser informativo con el comprador (notificar estado del envío cada vez que haya un cambio) y seguro (evitar robos del pedido mientras no sea recibido por el comprador).

El caso de uso atendido por el sistema es el siguiente:

- El repartidor llega a destino.
- Si el destinatario no se encuentra en el domicilio, el repartidor abre se aplicación móvil y solicita un código aleatorio de apertura del locker.
- Al recibirlo, lo marca en el teclado del locker y este se abre, permitiendo que el repartidor guarde el pedido.
- El destinatario llega a su hogar y solicita un código aleatorio de apertura del locker a través de la aplicación.
- Al marcar el código en el teclado del locker, este se abre y el destinatario retira el pedido.

Adicionalmente, se contempla que existan tres tipos de servicios ofrecidos:

- Lockers personales: solo un usuario puede hacer uso del mismo.
- Lockers compartidos: se considera esta opción por ejemplo para edificios, donde puede haber 6 lockers para 40 propietarios diferentes.
- Lockers en alquiler: pensado para negocios que quieran ofrecer el servicio de punto de entrega.

El sistema contará con aplicaciones (móvil y webapp), servidor y lockers, todos conectados por internet. En la figura 1 se presenta el diagrama en bloques del sistema.

Figura 1. Diagrama en bloques del sistema

Por otra parte, se consideran tres roles en el sistema: usuarios, administradores y super administrador. Los usuarios son quienes utilizan los lockers para guardar o retirar objetos. En cuanto a los administradores, son aquellos que determinan qué usuarios pueden abrir los lockers. Esto permite que un mismo administrador otorgue permiso de uso de locker a diferentes usuarios en distintos momentos, como el caso de lockers compartidos o en alquiler. Además, pueden abrir los lockers. Por último, el super administrador es un usuario especial, con derecho a gestionar sobre usuarios, administradores y lockers.

Por último, todas las acciones de los usuarios quedarán registrados para su consulta posterior. Esto se considera una parte importante del sistema ya que da el grado de seguridad que se tiene como objetivo. Los registros permiten poder revisar el historial de un locker en caso del robo o pérdida de un pedido.

2. Identificación y análisis de los interesados

Rol	Nombre y Apellido	Organización	Puesto
Cliente	Ing. Sergio Starkloff	Surix	СТО
Responsable	Lic. Leandro Percivati	FIUBA	Alumno
Colaboradores	Ericson Estupiñan	Surix	-
Orientador	No definido	-	Director Trabajo final
Usuario final	Público general que	-	-
	quiera hacer uso de los		
	lockers		

3. Propósito del proyecto

El propósito de este proyecto es crear un sistema de gestión de lockers que estén conectados a internet, compuesto por un servidor broker, una web y una aplicación nativa para celulares.

4. Alcance del proyecto

El proyecto incluye:

- Estudio y desarrollo del protocolo MQTT, bases de datos, programación de aplicación web y multiplataforma.
- Desarrollo de servidor broker que orqueste la interacción con los lockers y usuarios.
- Desarrollo local de una página web que incluya alta de usuarios y acceso a datos guardados en base de datos.
- Desarrollo local de aplicación multiplataforma que permita solicitar códigos aleatorios a los usuarios, otorgar permiso de uso y reserva a los usuarios por parte de los administradores, alta de usuarios e inicio de sesión.
- Documentación del sistema desarrollado.

El proyecto no incluye:

- Puesta en producción en el cliente final.
- Contratación de servicios cloud.
- Notificaciones en aplicación nativa.
- Traducciones a otros idiomas.

5. Supuestos del proyecto

Para el desarrollo del presente proyecto se supone que:

- Se dispondrá de lockers con conectividad MQTT.
- Se dispondrá de computadora para instalación del servidor broker.
- Se dispondrá de bases de datos.
- La aplicación nativa se podrá montar sobre los sistemas operativos Android y iOS.
- Se contará con asistencia de colaboradores.
- \blacksquare Se dispondrá de 15 horas semanales dedicadas al proyecto.
- Se dispondrá de licencias de software en caso de que no se utilice programas de código libre.

6. Requerimientos

Los requerimientos deben numerarse y de ser posible estar agruparlos por afinidad, por ejemplo:

- 1. Requerimientos funcionales
 - 1.1. El sistema debe...
 - 1.2. Tal componente debe...
 - 1.3. El usuario debe poder...
- 2. Requerimientos de documentación
 - 2.1. Requerimiento 1
 - 2.2. Requerimiento 2 (prioridad menor)
- 3. Requerimiento de testing...
- 4. Requerimientos de la interfaz...
- 5. Requerimientos interoperabilidad...
- 6. etc...

Leyendo los requerimientos se debe poder interpretar cómo será el proyecto y su funcionalidad.

Indicar claramente cuál es la prioridad entre los distintos requerimientos y si hay requerimientos opcionales.

No olvidarse de que los requerimientos incluyen a las regulaciones y normas vigentes!!!

Y al escribirlos seguir las siguientes reglas:

- Ser breve y conciso (nadie lee cosas largas).
- Ser específico: no dejar lugar a confusiones.
- Expresar los requerimientos en términos que sean cuantificables y medibles.

7. Historias de usuarios (*Product backlog*)

Descripción: En esta sección se deben incluir las historias de usuarios y su ponderación (history points). Recordar que las historias de usuarios son descripciones cortas y simples de una característica contada desde la perspectiva de la persona que desea la nueva capacidad, generalmente un usuario o cliente del sistema. La ponderación es un número entero que representa el tamaño de la historia comparada con otras historias de similar tipo.

El formato propuesto es: como [rol] quiero [tal cosa] para [tal otra cosa]."

Se debe indicar explícitamente el criterio para calcular los story points de cada historia

8. Entregables principales del proyecto

Los entregables del proyecto son (ejemplo):

- Manual de uso
- Diagrama de circuitos esquemáticos
- Código fuente del firmware
- Diagrama de instalación
- Informe final
- etc...

9. Desglose del trabajo en tareas

El WBS debe tener relación directa o indirecta con los requerimientos. Son todas las actividades que se harán en el proyecto para dar cumplimiento a los requerimientos. Se recomienda mostrar el WBS mediante una lista indexada:

- 1. Grupo de tareas 1
 - 1.1. Tarea 1 (tantas h)
 - 1.2. Tarea 2 (tantas hs)
 - 1.3. Tarea 3 (tantas h)
- 2. Grupo de tareas 2
 - 2.1. Tarea 1 (tantas h)
 - 2.2. Tarea 2 (tantas h)
 - 2.3. Tarea 3 (tantas h)
- 3. Grupo de tareas 3
 - 3.1. Tarea 1 (tantas h)
 - 3.2. Tarea 2 (tantas h)
 - 3.3. Tarea 3 (tantas h)
 - 3.4. Tarea 4 (tantas h)
 - 3.5. Tarea 5 (tantas h)

Cantidad total de horas: (tantas h)

Se recomienda que no haya ninguna tarea que lleve más de 40 h.

10. Diagrama de Activity On Node

Armar el AoN a partir del WBS definido en la etapa anterior.

Figura 2. Diagrama de Activity on Node.

Indicar claramente en qué unidades están expresados los tiempos. De ser necesario indicar los caminos semicríticos y analizar sus tiempos mediante un cuadro. Es recomendable usar colores y un cuadro indicativo describiendo qué representa cada color, como se muestra en el siguiente ejemplo:

11. Diagrama de Gantt

Existen muchos programas y recursos *online* para hacer diagramas de Gantt, entre los cuales destacamos:

- Planner
- GanttProject
- Trello + plugins. En el siguiente link hay un tutorial oficial: https://blog.trello.com/es/diagrama-de-gantt-de-un-proyecto
- Creately, herramienta online colaborativa. https://creately.com/diagram/example/ieb3p3ml/LaTeX
- Se puede hacer en latex con el paquete pgfgantt
 http://ctan.dcc.uchile.cl/graphics/pgf/contrib/pgfgantt/pgfgantt.pdf

Pegar acá una captura de pantalla del diagrama de Gantt, cuidando que la letra sea suficientemente grande como para ser legible. Si el diagrama queda demasiado ancho, se puede pegar primero la "tabla" del Gantt y luego pegar la parte del diagrama de barras del diagrama de Gantt.

Configurar el software para que en la parte de la tabla muestre los códigos del EDT (WBS). Configurar el software para que al lado de cada barra muestre el nombre de cada tarea. Revisar que la fecha de finalización coincida con lo indicado en el Acta Constitutiva.

En la figura 3, se muestra un ejemplo de diagrama de Gantt realizado con el paquete de *pgfgantt*. En la plantilla pueden ver el código que lo genera y usarlo de base para construir el propio.

Figura 3. Diagrama de Gantt de ejemplo

Figura 4. Ejemplo de diagrama de Gantt rotado

12. Presupuesto detallado del proyecto

Si el proyecto es complejo entonces separarlo en partes:

- Un total global, indicando el subtotal acumulado por cada una de las áreas.
- El desglose detallado del subtotal de cada una de las áreas.

IMPORTANTE: No olvidarse de considerar los COSTOS INDIRECTOS.

COSTOS DIRECTOS								
Descripción	Cantidad	Valor unitario	Valor total					
SUBTOTAL								
COSTOS INDIRECTOS								
Descripción	Cantidad	Valor unitario	Valor total					
SUBTOTAL								
TOTAL								

13. Gestión de riesgos

a) Identificación de los riesgos (al menos cinco) y estimación de sus consecuencias:

Riesgo 1: detallar el riesgo (riesgo es algo que si ocurre altera los planes previstos de forma negativa)

- Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S).
- Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10).

Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2:

- Severidad (S):
- Ocurrencia (O):

Riesgo 3:

• Severidad (S):

- Ocurrencia (O):
- b) Tabla de gestión de riesgos: (El RPN se calcula como RPN=SxO)

Riesgo	S	О	RPN	S*	O*	RPN*

Criterio adoptado: Se tomarán medidas de mitigación en los riesgos cuyos números de RPN sean mayores a...

Nota: los valores marcados con (*) en la tabla corresponden luego de haber aplicado la mitigación.

c) Plan de mitigación de los riesgos que originalmente excedían el RPN máximo establecido:

Riesgo 1: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación). Nueva asignación de S y O, con su respectiva justificación: - Severidad (S): mientras más severo, más alto es el número (usar números del 1 al 10). Justificar el motivo por el cual se asigna determinado número de severidad (S). - Probabilidad de ocurrencia (O): mientras más probable, más alto es el número (usar del 1 al 10). Justificar el motivo por el cual se asigna determinado número de (O).

Riesgo 2: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

Riesgo 3: plan de mitigación (si por el RPN fuera necesario elaborar un plan de mitigación).

14. Gestión de la calidad

Para cada uno de los requerimientos del proyecto indique:

- Req #1: copiar acá el requerimiento.
 - Verificación para confirmar si se cumplió con lo requerido antes de mostrar el sistema al cliente. Detallar
 - Validación con el cliente para confirmar que está de acuerdo en que se cumplió con lo requerido. Detallar

Tener en cuenta que en este contexto se pueden mencionar simulaciones, cálculos, revisión de hojas de datos, consulta con expertos, mediciones, etc. Las acciones de verificación suelen considerar al entregable como "caja blanca", es decir se conoce en profundidad su funcionamiento interno. En cambio, las acciones de validación suelen considerar al entregable como "caja negra", es decir, que no se conocen los detalles de su funcionamiento interno.

15. Procesos de cierre

Establecer las pautas de trabajo para realizar una reunión final de evaluación del proyecto, tal que contemple las siguientes actividades:

- Pautas de trabajo que se seguirán para analizar si se respetó el Plan de Proyecto original:
 Indicar quién se ocupará de hacer esto y cuál será el procedimiento a aplicar.
- Identificación de las técnicas y procedimientos útiles e inútiles que se emplearon, y los problemas que surgieron y cómo se solucionaron: Indicar quién se ocupará de hacer esto y cuál será el procedimiento para dejar registro.
- Indicar quién organizará el acto de agradecimiento a todos los interesados, y en especial al equipo de trabajo y colaboradores: - Indicar esto y quién financiará los gastos correspondientes.