

Global United Technology Services Co., Ltd.

Report No.: GTS201708000157F05

FCC REPORT

Applicant: Quantum Creations LLC.

15705 NW 13th Ave, Miami Gardens, Miami, Florida 33169. **Address of Applicant:**

United States

Manufacturer/Factory: Shenzhen Mele Star Technology Ltd.

Address of 1F, Bldg#1, 28 Cuijing Road, Pingshan District, Shenzhen,

PR China. Manufacturer/Factory:

Equipment Under Test (EUT)

Product Name: MINI PC

Model No.: A-1153-AB3, A-1153-AB3-1, A-1153-AB3-2, A-1153-AB3-3,

> A-1153-AB3-4, A-1153-AB3-5, A-1153-AB3-6, A-1153-AB3-7, A-1153-AB3-8, A-1153-AB3-9

Trade Mark: AZULLE[®]

FCC ID: 2AFJI20171153

FCC CFR Title 47 Part 15 Subpart C Section 15.407:2017 **Applicable standards:**

Date of sample receipt: July 03, 2017

Date of Test: July 04-10, 2017

Date of report issued: July 11, 2017

PASS * **Test Result:**

Authorized Signature:

Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	July 11, 2017	Original

Dualant Englisher		
Project Engineer		
Andy was	Date:	July 11, 2017
	Project Engineer Andrew Reviewer	Andy W Date:

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
_			
3	CON	TENTS	3
4	TES	T SUMMARY	4
	4.1	MEASUREMENT UNCERTAINTY	4
5	GEN	ERAL INFORMATION	5
	5.1	GENERAL DESCRIPTION OF EUT	
	5.2	TEST MODE	
	5.3	DESCRIPTION OF SUPPORT UNITS	7
	5.4	TEST FACILITY	
	5.5	TEST LOCATION	7
6	TES	T INSTRUMENTS LIST	8
7	TES	T RESULTS AND MEASUREMENT DATA	9
	7.1	ANTENNA REQUIREMENT	9
	7.2	CONDUCTED EMISSIONS	
	7.3	CONDUCTED PEAK OUTPUT POWER	13
	7.4	CHANNEL BANDWIDTH	14
	7.5	POWER SPECTRAL DENSITY	20
	7.6	BAND EDGES	26
	7.6.1	Radiated Emission Method	26
	7.7	Spurious Emission	34
	7.7.1	Radiated Emission Method	34
	7.8	FREQUENCY STABILITY	41
8	TES	T SETUP PHOTO	46
9	FUT	CONSTRUCTIONAL DETAILS	47

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.407(a)(3)	Pass
Channel Bandwidth	15.407(e)	Pass
Power Spectral Density	15.407(a)(3)	Pass
Band Edge	15.407(b)(4)	Pass
Spurious Emission	15.205/15.209/15.407(b)(4)	Pass

Pass: The EUT complies with the essential requirements in the standard.

Remark: Test according to ANSI C63.10:2013 and ANSI C63.4:2014.

4.1 Measurement Uncertainty

Test Item	Frequency Range	Measurement Uncertainty	Notes		
Radiated Emission	9kHz ~ 30MHz	± 4.34dB	(1)		
Radiated Emission	30MHz ~ 1000MHz	± 4.24dB	(1)		
Radiated Emission	1GHz ~ 40GHz	± 4.68dB	(1)		
AC Power Line Conducted Emission	0.15MHz ~ 30MHz	± 3.45dB	(1)		
Note (1): The measurement uncertainty is for coverage factor of k=2 and a level of confidence of 95%.					

5 General Information

5.1 General Description of EUT

Product Name:	MINI PC
Model No.:	A-1153-AB3, A-1153-AB3-1, A-1153-AB3-2, A-1153-AB3-3, A-1153-AB3-4, A-1153-AB3-5, A-1153-AB3-6, A-1153-AB3-7,A-1153-AB3-8, A-1153-AB3-9
Test Model No:	A-1153-AB3
	ls are identical in the same PCB layout, interior structure and electrical circuits. and model name for commercial purpose.
Operation Frequency:	802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 5745MHz ~ 5825MHz
	802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 5755MHz ~ 5795MHz 802.11ac(HT80): 5775MHz
Channel numbers:	802.11a/802.11n(HT20)/802.11ac(HT20) @5.8G Band: 6
	802.11n(HT40)/ 802.11ac(HT40) @ 5.8G Band: 2
	802.11ac(HT80): 1
Channel bandwidth:	802.11a/802.11n(HT20)/802.11ac(HT20): 20MHz
	802.11n(HT40)/802.11ac(HT40): 40MHz
	802.11ac(HT80): 80MHz
Modulation technology:	802.11a/802.11n(H20)/802.11n(H40)/802.11ac(HT20)/802.11ac(HT40) /802.11ac(HT80):
	Orthogonal Frequency Division Multiplexing (OFDM)
Antenna Type:	Integral antenna
Antenna gain:	2.0dBi
Power supply:	SWITCHING ADAPTER
	MODEL:ADS-25D-12 12024E
	INPUT: AC 100-240V, 50/60Hz, Max 0.7A
	OUTPUT: DC 12V, 2.0A

Operation Frequency each of channel @ 5.8G Band							
Channel Frequency Channel Frequency Channel Frequency						Frequency	
149	5745MHz	153	5765MHz	155	5775MHz	157	5785MHz
161 5805MHz 165 5825MHz							

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel		Frequency (MHz)				
		5.8G Band				
	802.11a 802.11n(HT20)	802.11n(HT40)	802.11ac(HT80)			
Lowest channel	5745	5755				
Middle channel	5785		5775			
Highest channel	5825	5795				

5.2 Test mode

Transmitting mode Keep the EUT in continuously transmitting mode

Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.

Mode	Data rate
802.11a	6Mbps
802.11n(HT20)	6.5Mbps
802.11n(HT40)	13Mbps
802.11ac(HT20)	6.5Mbps
802.11ac(HT40)	13.5Mbps
802.11ac(HT80)	29.3Mbps

5.3 Description of Support Units

None.

5.4 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 600491

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fuly described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 600491, June 22, 2016.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. Has been

Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2, August 15, 2016.

5.5 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

No. 301-309, 3/F., Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

6 Test Instruments list

Rad	Radiated Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July 03 2015	July 02 2020			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June 28 2017	June 27 2018			
4	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June 28 2017	June 27 2018			
5	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June 28 2017	June 27 2018			
6	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	9120D-829	GTS208	June 28 2017	June 27 2018			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	June 28 2017	June 27 2018			
8	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
9	Coaxial Cable	GTS	N/A	GTS213	June 28 2017	June 27 2018			
10	Coaxial Cable	GTS	N/A	GTS211	June 28 2017	June 27 2018			
11	Coaxial cable	GTS	N/A	GTS210	June 28 2017	June 27 2018			
12	Coaxial Cable	GTS	N/A	GTS212	June 28 2017	June 27 2018			
13	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June 28 2017	June 27 2018			
14	Amplifier(2GHz-20GHz)	HP	8349B	GTS206	June 28 2017	June 27 2018			
15	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June 28 2017	June 27 2018			
16	Band filter	Amindeon	82346	GTS219	June 28 2017	June 27 2018			
17	Power Meter	Anritsu	ML2495A	GTS540	June 28 2017	June 27 2018			
18	Power Sensor	Anritsu	MA2411B	GTS541	June 28 2017	June 27 2018			

Cond	Conducted Emission:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Shielding Room	ZhongYu Electron	7.0(L)x3.0(W)x3.0(H)	GTS264	May.16 2014	May.15 2019			
2	EMI Test Receiver	Rohde & Schwarz	ESCS30	GTS223	June 28 2017	June 27 2018			
3	10dB Pulse Limita	Rohde & Schwarz	N/A	GTS224	June 28 2017	June 27 2018			
4	Coaxial Switch	ANRITSU CORP	MP59B	GTS225	June 28 2017	June 27 2018			
5	LISN	SCHWARZBECK MESS-ELEKTRONIK	NSLK 8127	GTS226	June 28 2017	June 27 2018			
6	Coaxial Cable	GTS	N/A	GTS227	June 28 2017	June 27 2018			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			

Gen	General used equipment:								
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Barometer	ChangChun	DYM3	GTS257	June 28 2017	June 27 2018			

7 Test results and Measurement Data

7.1 Antenna requirement

Standard requirement: FCC Part15 C Section 15.203

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

E.U.T Antenna:

The antenna is integral antenna. The best case gain of the antenna is 2.0dBi.

7.2 Conducted Emissions

Test Requirement:	FCC Part15 C Section 15.207		
Test Method:	ANSI C63.10:2013		
Test Frequency Range:	150KHz to 30MHz		
Class / Severity:	Class B		
Receiver setup:	RBW=9KHz, VBW=30KHz, Sv	weep time=auto	
Limit:	Frequency range (MHz)	Limit (c	dBuV)
	, , ,	Quasi-peak	Average
	0.15-0.5	66 to 56*	56 to 46*
	0.5-5	56	46
	5-30	60	50
Tankanka	* Decreases with the logarithm	or the frequency.	
Test setup:	Reference Plane		•
	AUX Equipment E.U.T Test table/Insulation plane Remark: E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m	Filter — AC pow	
Test procedure:	 The E.U.T and simulators a line impedance stabilization 50ohm/50uH coupling imped The peripheral devices are LISN that provides a 50ohm termination. (Please refer to photographs). Both sides of A.C. line are cointerference. In order to find 	n network (L.I.S.N.). The dance for the measuring also connected to the n/50uH coupling imped to the block diagram of checked for maximum	is provides a ng equipment. main power through a lance with 50ohm the test setup and conducted
	positions of equipment and according to ANSI C63.10:2	all of the interface cab 2013 on conducted me	les must be changed
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.3 for details		
Test results:	Pass		

Measurement data

Line:

Freq MHz	Reading level dBuV	lISN/ISN factor dB	Cable loss dB	level dBuV	Limit level dBuV	Over limit dB	Remark
0.150	46.24	0.42	0.12	46.78	66.00	-19.22	QP
0.150	29.63	0.42	0.12	30.17	56.00	-25.83	Average
0.178	42.78	0.42	0.13	43.33	64.59	-21.26	QP
0.178	28.12	0.42	0.13	28.67	54.59	-25.92	Average
0.346	43.17	0.43	0.10	43.70	59.05	-15.35	QP
0.346	31.54	0.43	0.10	32.07	49.05	-16.98	Average
0.356	43.24	0.43	0.10	43.77	58.83	-15.06	QP
0.356	31.33	0.43	0.10	31.86	48.83	-16.97	Average
0.476	30.26	0.39	0.11	30.76	56.41	-25.65	QP
0.476	17.31	0.39	0.11	17.81	46.41	-28.60	Average
0.634	30.21	0.30	0.13	30.64	56.00	-25.36	QP
0.634	22.80	0.30	0.13	23.23	46.00	-22.77	Average

Neutral:

Notes:

0.456

20.93

1. An initial pre-scan was performed on the line and neutral lines with peak detector.

0.11

2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.

21.41

46.76

-25.35

Average

3. Final Level = Receiver Read level + LISN Factor + Cable Loss

0.37

4. If the average limit is met when using a quasi-peak detector receiver, the EUT shall be deemed to meet both *limits and measurement with the average detector receiver is unnecessary.*

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

7.3 Conducted Peak Output Power

Test Requirement:	FCC Part15 E Section 15.407(a)(3)
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01
Limit:	30dBm
Test setup:	Power Meter E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

Measurement Data

			Peak Outpu	ıt Power (dBr	n)			
Test CH	802.11a	802.11n	802.11ac	802.11n	802.11ac	802.11ac	Limit(dBm)	Result
	002.11a	(HT20)	(HT20)	(HT40)	(HT40)	(HT80)		
Lowest	13.85	11.65	11.37	11.50	8.02			
Middle	13.77	11.77	11.22			7.53	30.00	Pass
Highest	13.91	11.71	11.68	11.64	8.12			

Remark: "---" is not applicable

7.4 Channel Bandwidth

Test Requirement:	FCC Part15 E Section 15.407(e)
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01
Limit:	>500KHz
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

			5	.8G Band				
Toot			Channel Ban	dwidth (MHz)			l imit	
Test CH	802.11a	802.11n(H T20)	802.11ac(HT20)	802.11n(H T40)	802.11ac(HT40)	802.11ac(HT80)	Limit (KHz)	Result
Lowest	13.862	12.037	13.241	35.164	33.851	N/A		
Middle	13.875	13.154	12.609	N/A	N/A	75.405	>500	Pass
Highest	15.186	11.759	13.235	33.920	33.836	N/A		

Remark: "---" is not applicable

Test plot as follows:

Test mode: 802.11a

Lowest channel

Highest channel

Test mode: 802.11n(HT20) @ 5.8G Band

Lowest channel

Highest channel

Test mode: 802.11ac(HT20) @ 5.8G Band

Lowest channel

Highest channel

Test mode: 802.11n(HT40) @ 5.8G Band

Lowest channel

Highest channel

Lowest channel

Highest channel

Xixiang Road, Baoan District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

7.5 Power Spectral Density

Test Requirement:	FCC Part15 E Section 15.407(a)(3)
Test Method:	ANSI C63.10:2013 and KDB789033 D02 General UNII Test Procedures New Rules v01
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement Data

				5.8G Band				
Test		Po	wer Spectra	Density (dB	m)		Limit	
CH	802.11a	802.11n(HT 20)	802.11ac(H T20)	802.11n(HT 40)	802.11ac(H T40)	802.11ac(H T80)	(dBm/500kH z)	Result
Lowest	0.90	-0.19	-2.35	-3.39	-4.76			
Middle	0.81	0.18	-1.60			-8.55	30.00	Pass
Highest	0.43	-0.31	-1.29	-3.38	-4.09			

Remark: "---" is not applicable

Test plot as follows:

Test mode: 802.11a

Lowest channel

Highest channel

Test mode: 802.11n(HT20) @ 5.8G Band

Lowest channel

Highest channel

Test mode: 802.11ac(HT20)

Lowest channel

Highest channel

Test mode: 802.11n(HT40) @ 5.8G Band

Lowest channel

Highest channel

Test mode: 802.11ac(HT40)

Lowest channel

Highest channel

Test mode: 802.11ac(HT80)

Middle channel

7.6 Band edges

7.6.1 Radiated Emission Method

Test Requirement:	FCC Part15 C S	ection 15.209	and 15.205		
Test Method:	ANSI C63.10: 20				
Test Frequency Range:	30MHz to 40GH	z, only worse	case is repor	ted	
Test site:	Measurement D	istance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	Above 1GHz	Peak	1MHz	3MHz	Peak
	Above TOTIZ	Peak	1MHz	10Hz	Average
Limit:	Freque	ncy	Limit (dBuV/	m @3m)	Value
	Above 1	GHz	54.0		Average
Test setup:	7.0070	01.12	74.0	0	Peak
	Turn Tables <150cm >	< 3m ²	Test Antenna»	pplifier	SE TO SECUL
	determine the 2. The EUT was antenna, whice tower. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota te the maximum 5. The test-rece Specified Bar 6. If the emission limit specified the EUT woul 10dB margin average meth	e position of the set 3 meters ch was mount height is varied ermine the made vertical polate. Pected emission antenna was trable was turn a reading. Silver system with the level of the le	ne highest race away from the ed on the toped from one maximum value rizations of the fon, the EUT valued to heighed from 0 decays set to Peak aximum Hold EUT in peak could be stoped. Otherwise the ested one by ed and then rested one from the ed away and then rested one toped away from the ed away from the toped away from th	liation. The interference of a variable of the field of the field of the antenna and the field of the field o	meters above the strength. Both are set to make the ed to its worst case meter to 4 meters of degrees to find anction and odB lower than the e peak values of s that did not have eak, quasi-peak or
	worst case m	ode is recorde	ed in the repo		ase, only the test
Test Instruments:	Refer to section				
Test mode:	Refer to section	5.3 for details	5		

Test results: Pass

Remark:

According to KDB 789033 D02V01 section G) 1) (d), for For measurements above 1000 MHz @ 3m distance, the limit of field strength is computed as follows:

E[dBuV/m] = EIRP[dBm] + 95.2;

For example, if EIRP = -27dBm

E[dBuV/m] = -27 + 95.2 = 68.2dBuV/m.

The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Measurement data:

Remark: The pre-test were performed on lowest, middle and highest frequencies, only the worst case's (lowest and highest frequencies) data was showed.

Test mode:		802.1	1a	Te	st channel:	L	owest	
Peak value:					_			
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	39.67	32.68	9.97	23.86	58.46	68.20	-9.74	Horizontal
5725.00	38.32	32.68	9.97	23.86	57.11	68.20	-11.09	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	30.05	32.68	9.97	23.86	48.84	54.00	-5.16	Horizontal
5725.00	29.13	32.68	9.97	23.86	47.92	54.00	-6.08	Vertical
Test mode:		802.1	1a	Te	st channel:	H	Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	35.99	32.70	9.99	23.87	54.81	68.20	-13.39	Horizontal
5850.00	37.90	32.70	9.99	23.87	56.72	68.20	-11.48	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	30.80	32.70	9.99	23.87	49.62	54.00	-4.38	Horizontal
5850.00	30.68	32.70	9.99	23.87	49.50	54.00	-4.50	Vertical

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.1	1n(HT20) @	5.8G Band	Tes	t channel:		Lowest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	36.68	32.68	9.97	23.86	55.47	68.2	-12.73	Horizontal
5725.00	38.93	32.68	9.97	23.86	57.72	68.2	-10.48	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	31.83	32.68	9.97	23.86	50.62	54.00	-3.38	Horizontal
5725.00	31.52	32.68	9.97	23.86	50.31	54.00	-3.69	Vertical
						<u>.</u>		
Test mode:	802.1	1n(HT20) @	5.8G Band	Tes	t channel:		Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	40.24	32.70	9.99	23.87	59.06	68.2	-9.14	Horizontal
5850.00	41.69	32.70	9.99	23.87	60.51	68.2	-7.69	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	30.04	32.70	9.99	23.87	48.86	54.00	-5.14	Horizontal
5850.00	30.32	32.70	9.99	23.87	49.14	54.00	-4.86	Vertical

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Report No.: GTS201708000157F05

Test mode:	802.1	1ac(HT20)		Tes	t channel:		Lowest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	39.33	32.68	9.97	23.86	58.12	68.2	-10.08	Horizontal
5725.00	37.94	32.68	9.97	23.86	56.73	68.2	-11.47	Vertical
Average va	lue:							
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	28.32	32.68	9.97	23.86	47.11	54.00	-6.89	Horizontal
5725.00	29.39	32.68	9.97	23.86	48.18	54.00	-5.82	Vertical
Test mode:	802.1	1ac(HT20)		Tes	t channel:		Highest	
Peak value:								
		1		1				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
	Read Level	Factor	Loss	Factor			Limit	Polarization Horizontal
(MHz)	Read Level (dBuV)	Factor (dB/m)	Loss (dB)	Factor (dB)	(dBuV/m)	(dBuV/m)	Limit (dB)	
(MHz) 5850.00	Read Level (dBuV) 38.77 36.78	Factor (dB/m) 32.74	Loss (dB) 10.04	Factor (dB) 23.87	(dBuV/m) 57.68	(dBuV/m) 68.2	Limit (dB) -10.52	Horizontal
(MHz) 5850.00 5850.00	Read Level (dBuV) 38.77 36.78	Factor (dB/m) 32.74	Loss (dB) 10.04	Factor (dB) 23.87	(dBuV/m) 57.68	(dBuV/m) 68.2	Limit (dB) -10.52	Horizontal
(MHz) 5850.00 5850.00 Average val Frequency	Read Level (dBuV) 38.77 36.78 Iue: Read Level	Factor (dB/m) 32.74 32.74 Antenna Factor	Loss (dB) 10.04 10.04 Cable Loss	Factor (dB) 23.87 23.87 Preamp Factor	(dBuV/m) 57.68 55.69 Level	(dBuV/m) 68.2 68.2 Limit Line	Limit (dB) -10.52 -12.51 Over Limit	Horizontal Vertical

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.1	1n(HT40) @	5.8G Band	Tes	t channel:	l	_owest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	35.48	32.53	9.83	23.84	54.00	68.2	-14.20	Horizontal
5725.00	39.40	32.53	9.83	23.84	57.92	68.2	-10.28	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5725.00	31.37	32.53	9.83	23.84	49.89	54.00	-4.11	Horizontal
5725.00	29.50	32.53	9.83	23.84	48.02	54.00	-5.98	Vertical
Test mode:	802.1	1n(HT40) @	5.8G Band	Tes	t channel:	l	Highest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	37.25	32.7	9.99	23.87	56.07	68.2	-12.13	Horizontal
5850.00	36.16	32.7	9.99	23.87	54.98	68.2	-13.22	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
5850.00	29.86	32.7	9.99	23.87	48.68	54.00	-5.32	Horizontal
5850.00	29.15	32.7	9.99	23.87	47.97	54.00	-6.03	Vertical

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:	802.1	1ac(HT40)		Tes	t channel:		Lowest	
Peak value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Limit	Polarization
5725.00	34.75	32.53	9.83	23.84	53.27	68.2	-14.93	Horizontal
5725.00	36.02	32.53	9.83	23.84	54.54	68.2	-13.63	Vertical
RMS value:								_
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5725.00	30.01	32.53	9.83	23.84	48.53	54.00	-5.47	Horizontal
5725.00	29.96	32.53	9.83	23.84	48.48	54.00	-5.52	Vertical
Test mode:	802.1	1ac(HT40)		Tes	t channel:		Highest	
Peak value:								_
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5850.00	38.57	32.7	9.99	23.87	57.39	68.2	-10.81	Horizontal
5850.00	37.94	32.7	9.99	23.87	56.76	68.2	-11.44	Vertical
RMS value:								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5850.00	29.21	32.7	9.99	23.87	48.03	54.00	-5.97	Horizontal
5850.00	31.46	32.7	9.99	23.87	50.28	54.00	-3.72	Vertical

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Test mode:		802.1	1ac(HT80)		Tes	t channel:		Middle	
Peak value	:								
Frequency (MHz)	Rea Lev (dBu	vel	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I limit l	Polarization
5725.00	37.	10	32.53	9.83	23.84	55.62	68.2	12.58	Horizontal
5850.00	38.	80	32.7	9.99	23.87	57.62	68.2	-10.58	Vertical
RMS value:									
Frequency (MHz)	Rea Lev (dBu	vel	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	I I imit	Polarization
5725.00	28.4	47	32.53	9.83	23.84	46.99	54.00	-7.01	Horizontal
5850.00	29.	13	32.7	9.99	23.87	47.95	54.00	-6.05	Vertical

^{1.} Final Level =Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor The emission levels of other frequencies are very lower than the limit and not show

7.7 Spurious Emission

7.7.1 Radiated Emission Method

Test Requirement:	FCC Part15 C Se	ection 15.209, l	Part 15E Se	ection 15.40	07(b)(4)
Test Method:	ANSI C63.10:201	13			
Test Frequency Range:	30MHz to 40GHz	, =			
Test site:	Measurement Dis	stance: 3m			
Receiver setup:	Frequency	Detector	RBW	VBW	Value
	30MHz-1GHz	Quasi-peak	120KHz	300KHz	Quasi-peak Value
		Peak	1MHz	3MHz	Peak Value
	Above 1GHz	Peak	1MHz	3MHz	Average Value
Limit:	Frequen	icy L	imit (dBuV	/m @3m)	Remark
	30MHz-88	MHz	40.0)	Quasi-peak Value
	88MHz-216	6MHz	43.5	5	Quasi-peak Value
	216MHz-96	0MHz	46.0	0	Quasi-peak Value
	960MHz-1	GHz	54.0	0	Quasi-peak Value
	Frequen		Limit (dBn		Remark
	Above 10	GHz	-27.	0	Peak Value
	Above 1GHz	EUT- Tum Ta	Receiver•	Ŷ	
Test Procedure:	Tum Table 150cm > 1. The EUT was	placed on the	Test Ante	m >v	0.8m for below

1GHz and 1.5 meters for above 1GHz) above the ground at a 3 meters camber. The table was rotated 360 degrees to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenratower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both	
antenna, which was mounted on the top of a variable-height antenr tower. 3. The antenna height is varied from one meter to four meters above ground to determine the maximum value of the field strength. Both	
ground to determine the maximum value of the field strength. Both	ıa
horizontal and vertical polarizations of the antenna are set to make measurement.	
For each suspected emission, the EUT was arranged to its worst c and then the antenna was tuned to heights from 1 meter to 4 meter and the rota table was turned from 0 degrees to 360 degrees to fine the maximum reading.	s
5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.	
6. If the emission level of the EUT in peak mode was 10dB lower than limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not he 10dB margin would be re-tested one by one using peak, quasi-peat average method as specified and then reported in a data sheet.	f ave
7. The radiation measurements are performed in X, Y, Z axis position And found the X axis positioning which it is worse case, only the test worst case mode is recorded in the report.	
Test Instruments: Refer to section 6.0 for details	
Test mode: Refer to section 5.3 for details	
Test results: Pass	

Measurement Data Below 1GHz

Only the data of worst case at each channel plan (nominal bandwidth =20MHz, 40MHz, 80MHz) is reported.

				•			,	•
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
30.64	50.37	11.30	0.56	30.10	32.13	40.00	-7.87	Vertical
70.83	47.89	7.38	0.95	29.85	26.37	40.00	-13.63	Vertical
135.51	49.74	7.57	1.47	29.48	29.30	43.50	-14.20	Vertical
272.28	42.10	12.63	2.24	29.81	27.16	46.00	-18.84	Vertical
482.22	36.59	17.14	3.23	29.33	27.63	46.00	-18.37	Vertical
724.26	34.93	20.16	4.18	29.20	30.07	46.00	-15.93	Vertical
75.45	41.93	7.35	0.99	29.82	20.45	40.00	-19.55	Horizontal
181.92	46.54	8.80	1.75	29.27	27.82	43.50	-15.68	Horizontal
440.20	32.55	16.29	3.05	29.41	22.48	46.00	-23.52	Horizontal
524.55	39.78	17.98	3.42	29.30	31.88	46.00	-14.12	Horizontal
689.57	37.75	19.74	4.05	29.21	32.33	46.00	-13.67	Horizontal
833.32	38.02	21.59	4.58	29.17	35.02	46.00	-10.98	Horizontal

Above 1GHz:

802.11a(HT20) 5745MHz

		•	1					1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	31.44	39.85	14.98	34.6	51.67	74	-22.33	Vertical
17235.00	33.59	45.51	18.98	33.95	64.13	74	-9.87	Vertical
11490.00	31.92	39.85	14.98	34.6	52.15	74	-21.85	Horizontal
17235.00	33.99	45.51	18.98	33.95	64.53	74	-9.47	Horizontal
11490.00	20.77	39.85	14.98	34.6	41.00	54	-13.00	Vertical
17235.00	20.45	45.51	18.98	33.95	50.99	54	-3.01	Vertical
11490.00	18.53	39.85	14.98	34.6	38.76	54	-15.24	Horizontal
17235.00	19.89	45.51	18.98	33.95	50.43	54	-3.57	Horizontal

802.11a(HT20) 5785MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	35.00	39.76	14.99	34.75	55.00	74	-19.00	Vertical
17355.00	31.86	46.19	18.98	34.45	62.58	74	-11.42	Vertical
11570.00	35.38	39.76	14.99	34.75	55.38	74	-18.62	Horizontal
17355.00	31.82	46.19	18.98	34.45	62.54	74	-11.46	Horizontal
11570.00	20.25	39.76	14.99	34.75	40.25	54	-13.75	Vertical
17355.00	17.47	46.19	18.98	34.45	48.19	54	-5.81	Vertical
11570.00	18.31	39.76	14.99	34.75	38.31	54	-15.69	Horizontal
17355.00	19.96	46.19	18.98	34.45	50.68	54	-3.32	Horizontal

802.11a(HT20) 5825MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	34.86	39.61	14.99	34.86	54.60	74	-19.40	Vertical
17475.00	33.43	46.78	18.97	34.95	64.23	74	-9.77	Vertical
11650.00	34.53	39.61	14.99	34.86	54.27	74	-19.73	Horizontal
17475.00	35.82	46.78	18.97	34.95	66.62	74	-7.38	Horizontal
11650.00	18.67	39.61	14.99	34.86	38.41	54	-15.59	Vertical
17475.00	17.26	46.78	18.97	34.95	48.06	54	-5.94	Vertical
11650.00	19.33	39.61	14.99	34.86	39.07	54	-14.93	Horizontal
17475.00	17.47	46.78	18.97	34.95	48.27	54	-5.73	Horizontal

802.11n(HT20) 5745MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	34.76	39.85	14.98	34.6	54.99	74	-19.01	Vertical
17235.00	33.60	45.51	18.98	33.95	64.14	74	-9.86	Vertical
11490.00	31.91	39.85	14.98	34.6	52.14	74	-21.86	Horizontal
17235.00	33.29	45.51	18.98	33.95	63.83	74	-10.17	Horizontal
11490.00	19.09	39.85	14.98	34.6	39.32	54	-14.68	Vertical
17235.00	19.55	45.51	18.98	33.95	50.09	54	-3.91	Vertical
11490.00	18.24	39.85	14.98	34.6	38.47	54	-15.53	Horizontal
17235.00	17.91	45.51	18.98	33.95	48.45	54	-5.55	Horizontal

802.11n(HT20) 5785MHz

		•	•					1
Frequency (MHz)	Read Level	Antenna Factor	Cable Loss	Preamp Factor	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
	(dBuV)	(dB/m)	(dB)	(dB)			` '	
11570.00	34.26	39.76	14.99	34.75	54.26	74	-19.74	Vertical
17355.00	32.28	46.19	18.98	34.45	63.00	74	-11.00	Vertical
11570.00	33.75	39.76	14.99	34.75	53.75	74	-20.25	Horizontal
17355.00	31.70	46.19	18.98	34.45	62.42	74	-11.58	Horizontal
11570.00	19.74	39.76	14.99	34.75	39.74	54	-14.26	Vertical
17355.00	18.32	46.19	18.98	34.45	49.04	54	-4.96	Vertical
11570.00	17.46	39.76	14.99	34.75	37.46	54	-16.54	Horizontal
17355.00	18.52	46.19	18.98	34.45	49.24	54	-4.76	Horizontal

802.11n(HT20) 5825MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	33.05	39.61	14.99	34.86	52.79	74	-21.21	Vertical
17475.00	33.93	46.78	18.97	34.95	64.73	74	-9.27	Vertical
11650.00	34.04	39.61	14.99	34.86	53.78	74	-20.22	Horizontal
17475.00	32.32	46.78	18.97	34.95	63.12	74	-10.88	Horizontal
11650.00	18.23	39.61	14.99	34.86	37.97	54	-16.03	Vertical
17475.00	17.45	46.78	18.97	34.95	48.25	54	-5.75	Vertical
11650.00	17.14	39.61	14.99	34.86	36.88	54	-17.12	Horizontal
17475.00	17.77	46.78	18.97	34.95	48.57	54	-5.43	Horizontal

802.11ac(HT20) 5745MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11490.00	31.18	39.85	14.98	34.6	51.41	74	-22.59	Vertical
17235.00	34.39	45.51	18.98	33.95	64.93	74	-9.07	Vertical
11490.00	34.82	39.85	14.98	34.6	55.05	74	-18.95	Horizontal
17235.00	33.11	45.51	18.98	33.95	63.65	74	-10.35	Horizontal
11490.00	19.15	39.85	14.98	34.6	39.38	54	-14.62	Vertical
17235.00	19.93	45.51	18.98	33.95	50.47	54	-3.53	Vertical
11490.00	17.53	39.85	14.98	34.6	37.76	54	-16.24	Horizontal
17235.00	18.57	45.51	18.98	33.95	49.11	54	-4.89	Horizontal

802.11ac(HT20) 5785MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11570.00	35.57	39.76	14.99	34.75	55.57	74	-18.43	Vertical
17355.00	30.83	46.19	18.98	34.45	61.55	74	-12.45	Vertical
11570.00	33.36	39.76	14.99	34.75	53.36	74	-20.64	Horizontal
17355.00	34.95	46.19	18.98	34.45	65.67	74	-8.33	Horizontal
11570.00	20.99	39.76	14.99	34.75	40.99	54	-13.01	Vertical
17355.00	18.09	46.19	18.98	34.45	48.81	54	-5.19	Vertical
11570.00	17.20	39.76	14.99	34.75	37.20	54	-16.80	Horizontal
17355.00	19.71	46.19	18.98	34.45	50.43	54	-3.57	Horizontal

802.11ac(HT20) 5825MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11650.00	35.89	39.61	14.99	34.86	55.63	74	-18.37	Vertical
17475.00	32.17	46.78	18.97	34.95	62.97	74	-11.03	Vertical
11650.00	33.00	39.61	14.99	34.86	52.74	74	-21.26	Horizontal
17475.00	31.11	46.78	18.97	34.95	61.91	74	-12.09	Horizontal
11650.00	18.37	39.61	14.99	34.86	38.11	54	-15.89	Vertical
17475.00	19.89	46.78	18.97	34.95	50.69	54	-3.31	Vertical
11650.00	20.45	39.61	14.99	34.86	40.19	54	-13.81	Horizontal
17475.00	19.54	46.78	18.97	34.95	50.34	54	-3.66	Horizontal

802.11n(HT40) 5755MHz

		1						1
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
44540.00	,	, ,	, ,	` '	- 4 0		· · · ·	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
11510.00	34.58	39.85	14.98	34.63	54.78	74	-19.22	Vertical
17265.00	30.78	45.51	18.98	34.09	61.18	74	-12.82	Vertical
11510.00	34.48	39.85	14.98	34.63	54.68	74	-19.32	Horizontal
17265.00	30.42	45.51	18.98	34.09	60.82	74	-13.18	Horizontal
11510.00	19.73	39.85	14.98	34.63	39.93	54	-14.07	Vertical
17265.00	18.35	45.51	18.98	34.09	48.75	54	-5.25	Vertical
11510.00	18.01	39.85	14.98	34.63	38.21	54	-15.79	Horizontal
17265.00	20.19	45.51	18.98	34.09	50.59	54	-3.41	Horizontal

802.11n(HT40) 5795MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	32.27	39.71	14.99	34.78	52.19	74	-21.81	Vertical
17385.00	32.41	46.49	18.98	34.59	63.29	74	-10.71	Vertical
11590.00	35.91	39.71	14.99	34.78	55.83	74	-18.17	Horizontal
17385.00	30.94	46.49	18.98	34.59	61.82	74	-12.18	Horizontal
11590.00	17.09	39.71	14.99	34.78	37.01	54	-16.99	Vertical
17385.00	17.20	46.49	18.98	34.59	48.08	54	-5.92	Vertical
11590.00	18.94	39.71	14.99	34.78	38.86	54	-15.14	Horizontal
17385.00	18.00	46.49	18.98	34.59	48.88	54	-5.12	Horizontal

802.11ac(HT40) 5755MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11510.00	35.21	39.85	14.98	34.63	55.41	74	-18.59	Vertical
17265.00	32.57	45.51	18.98	34.09	62.97	74	-11.03	Vertical
11510.00	35.69	39.85	14.98	34.63	55.89	74	-18.11	Horizontal
17265.00	33.35	45.51	18.98	34.09	63.75	74	-10.25	Horizontal
11510.00	17.27	39.85	14.98	34.63	37.47	54	-16.53	Vertical
17265.00	18.01	45.51	18.98	34.09	48.41	54	-5.59	Vertical
11510.00	20.59	39.85	14.98	34.63	40.79	54	-13.21	Horizontal
17265.00	17.75	45.51	18.98	34.09	48.15	54	-5.85	Horizontal

802.11ac(HT40) 5795MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11590.00	34.42	39.71	14.99	34.78	54.34	74	-19.66	Vertical
17385.00	30.67	46.49	18.98	34.59	61.55	74	-12.45	Vertical
11590.00	35.09	39.71	14.99	34.78	50.01	74	-18.99	Horizontal
17385.00	30.38	46.49	18.98	34.59	61.26	74	-12.74	Horizontal
11590.00	25.08	39.71	14.99	34.78	45.00	54	-9.00	Vertical
17385.00	19.67	46.49	18.98	34.59	51.55	54	-3.45	Vertical
11590.00	25.98	39.71	14.99	34.78	49.90	54	-8.10	Horizontal
17385.00	18.84	46.49	18.98	34.59	51.72	54	-4.28	Horizontal

802.11ac(HT80) 5775MHz

Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	polarization
11550.00	35.28	39.76	14.98	34.72	55.30	74	-18.70	Vertical
17325.00	31.94	46.19	18.98	34.31	62.80	74	-11.20	Vertical
11550.00	35.45	39.76	14.98	34.72	53.47	74	-18.53	Horizontal
17325.00	32.78	46.19	18.98	34.31	65.64	74	-10.36	Horizontal
11550.00	28.30	39.76	14.98	34.72	48.32	54	-5.68	Vertical
17325.00	19.37	46.19	18.98	34.31	50.23	54	-3.77	Vertical
11550.00	25.80	39.76	14.98	34.72	45.82	54	-8.18	Horizontal
17325.00	18.98	46.19	18.98	34.31	49.84	54	-4.16	Horizontal

Note:

- 1. Level = Read Level + Antenna Factor+ Cable loss- Preamp Factor.
- 2. The test trace is same as the ambient noise (the test frequency range: 18GHz~40GHz), therefore no data appear in the report.

7.8 Frequency stability

Test Requirement:	FCC Part15 C Section 15.407(g)
Test Method:	ANSI C63.10:2013, FCC Part 2.1055
Limit:	Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified
Test Procedure:	The EUT was setup to ANSI C63.4, 2003; tested to 2.1055 for compliance to FCC Part 15.407(g) requirements.
Test setup:	Spectrum analyzer EUT Att. Variable Power Supply Note: Measurement setup for testing on Antenna connector
Test Instruments:	Refer to section 5.10 for details
Test mode:	Refer to section 5.3 for details
Test results:	Pass

Measurement data:

			802.11a		
		Frequen	cy stability versus T	emp.	
		Power	r Supply: AC 120V/60)Hz	
Tomp	Operating	0 minute	2 minute	5 minute	10 minute
Temp.	Frequency	Measured	Measured	Measured	Measured
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5745	5743.0302	5744.1556	5744.2613	5743.3041
-30	5785	5784.1201	5783.3088	5783.2664	5782.7812
	5825	5823.8526	5824.1625	5822.2227	5822.8056
	5745	5744.7299	5743.4057	5744.7047	5744.6214
-20	5785	5783.0067	5784.1940	5784.3845	5784.5720
	5825	5824.7684	5823.1323	5824.7691	5824.8299
	5745	5743.8662	5743.7967	5744.9488	5744.9848
-10	5785	5784.8448	5783.7267	5784.0480	5784.7969
	5825	5824.9480	5824.5123	5824.9075	5824.0742
	5745	5743.3776	5743.7060	5744.3406	5744.9140
0	5785	5783.0715	5784.6229	5784.3416	5783.7054
	5825	5823.0033	5824.8055	5824.8000	5824.0733
	5745	5744.5459	5743.4945	5744.5218	5744.5160
10	5785	5784.8936	5783.0098	5784.3532	5784.3318
	5825	5823.6037	5823.9313	5824.1110	5824.9953
	5745	5744.9410	5744.2743	5744.6371	5744.9431
20	5785	5784.4691	5783.6755	5784.7238	5783.9856
	5825	5824.6210	5823.8166	5824.8046	5824.3259
	5745	5743.8383	5743.1869	5744.0249	5744.8932
30	5785	5784.5497	5784.6526	5783.4290	5783.1087
	5825	5823.6334	5824.0741	5823.7204	5823.9118
	5745	5744.2785	5744.2952	5743.8820	5744.2352
40	5785	5784.4654	5784.2599	5784.2623	5784.0802
	5825	5824.7652	5824.3493	5824.2001	5824.8649
	5745	5743.8188	5744.5067	5744.0265	5743.7614
50	5785	5783.7339	5783.2345	5784.0107	5784.4315
	5825	5823.7479	5824.7577	5824.0267	5824.9885

		Frequenc	cy stability versus Vo	oltage	
		T	emperature: 25°C		
Power	Operating	0 minute	2 minute	5 minute	10 minute
Supply	Frequency	Measured	Measured	Measured	Measured
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5745	5744.7460	5744.3696	5744.9550	5744.5700
102	5785	5784.2273	5784.7881	5783.7133	5784.6475
	5825	5823.6214	5824.3046	5824.6056	5824.8272
	5745	5744.4597	5744.5155	5743.2279	5743.8474
120	5785	5783.2630	5783.1581	5784.5639	5783.5271
	5825	5823.4312	5824.2821	5823.8535	5824.4484
	5745	5743.7509	5743.4244	5744.6991	5744.7393
138	5785	5784.2143	5783.0291	5784.3245	5784.9476
	5825	5824.1934	5824.8501	5824.2599	5824.9493

Note: The worst case is FL=5743.0302MHz, FH=5824.9953MHz

			802.11n(HT20)		
		Frequen	cy stability versus T	emp.	
		Power	Supply: AC 120V/60)Hz	
Tomp	Operating	0 minute	2 minute	5 minute	10 minute
Temp.	Frequency	Measured	Measured	Measured	Measured
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)
	5745	5742.7437	5743.9651	5741.6655	5741.0970
-30	5785	5784.2283	5784.4807	5782.5529	5784.1383
	5825	5824.4368	5824.8502	5824.0085	5824.8468
	5745	5744.7418	5744.0124	5744.0642	5744.5626
-20	5785	5784.4133	5784.6515	5784.3514	5784.0929
	5825	5824.5650	5824.7329	5824.5086	5824.3081
	5745	5744.9269	5744.5499	5744.2130	5744.1688
-10	5785	5784.5715	5784.0370	5784.2143	5784.5753
	5825	5824.4667	5824.7411	5824.9399	5824.6733
	5745	5744.3529	5744.1841	5744.8938	5744.9934
0	5785	5784.1741	5784.3324	5784.2298	5784.7940
	5825	5824.6858	5824.0036	5824.2547	5824.8597
	5745	5744.3363	5744.2243	5744.9825	5744.5560
10	5785	5784.5175	5784.3541	5784.0098	5784.1762
	5825	5824.8883	5824.5552	5824.8565	5824.2586
	5745	5744.2383	5744.0222	5744.5464	5744.9671
20	5785	5784.1733	5784.4745	5784.4284	5784.5033
	5825	5824.5695	5824.8167	5824.5865	5824.1343
	5745	5744.8614	5744.7241	5744.9203	5744.4709
30	5785	5784.7772	5784.3426	5784.0420	5784.4695
	5825	5824.8034	5824.1427	5824.5778	5824.9385
	5745	5744.8450	5744.0693	5744.0728	5744.1810
40	5785	5784.6370	5784.8643	5784.7487	5784.5530
	5825	5824.8956	5824.6445	5824.5268	5824.7790
	5745	5744.9457	5744.4646	5744.8355	5744.9903
50	5785	5784.1685	5784.0575	5784.2110	5784.7770
	5825	5824.7811	5824.2737	5824.8277	5824.7398

Frequency stability versus Voltage						
Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute	
Supply	Frequency	Measured	Measured	Measured	Measured	
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
	5745	5742.6803	5744.2155	5746.5212	5746.3422	
102	5785	5784.3841	5784.0629	5786.5015	5786.2322	
	5825	5824.5542	5824.9847	5825.7049	5826.3574	
120	5745	5744.8861	5744.4316	5745.1127	5746.0814	
	5785	5784.4326	5784.4869	5785.0630	5785.5963	
	5825	5824.9328	5824.2569	5825.1296	5825.3811	
138	5745	5744.5575	5744.8437	5745.8528	5745.3526	
	5785	5784.5598	5784.1243	5785.2077	5785.7809	
	5825	5824.1280	5824.7558	5825.7400	5825.6344	

Note: The worst case is FL=5741.0970MHz, FH=5826.3574MHz

Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

802.11ac(HT20)						
Frequency stability versus Temp.						
Power Supply: AC 120V/60Hz						
Tomp	Operating	0 minute	2 minute	5 minute	10 minute	
Temp. (°C)	Frequency	Measured	Measured	Measured	Measured	
	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
	5745	5747.7485	5742.4676	5742.4188	5746.5443	
-30	5785	5786.2622	5783.8117	5782.6676	5785.1291	
	5825	5826.0182	5824.6856	5822.1809	5825.7679	
	5745	5745.2962	5744.3210	5744.9311	5745.8859	
-20	5785	5785.1948	5784.1585	5784.8452	5785.4841	
	5825	5825.5545	5824.1749	5824.9285	5825.4561	
	5745	5745.9272	5744.3923	5744.4154	5745.7533	
-10	5785	5785.9201	5784.9383	5784.4642	5785.3793	
	5825	5825.1328	5824.9545	5824.1368	5825.1524	
	5745	5745.7858	5744.7969	5744.4741	5745.1758	
0	5785	5785.9672	5784.8913	5784.0033	5785.0085	
	5825	5825.0166	5824.3454	5824.2287	5825.6793	
	5745	5745.9372	5744.9385	5744.8295	5745.6131	
10	5785	5785.0661	5784.1494	5784.9472	5785.9042	
	5825	5825.0035	5824.5168	5824.1425	5825.3954	
	5745	5745.2194	5744.1538	5744.6145	5745.5084	
20	5785	5785.5042	5784.1984	5784.0965	5785.1782	
	5825	5825.9159	5824.7215	5824.4857	5825.8638	
	5745	5745.4064	5744.5769	5744.1700	5745.8125	
30	5785	5785.7258	5784.8197	5784.1078	5785.4705	
	5825	5825.3342	5824.5180	5824.2712	5825.6175	
_	5745	5745.8648	5744.0932	5744.4043	5745.4775	
40	5785	5785.9397	5784.5778	5784.0032	5785.7978	
	5825	5825.3366	5824.7250	5824.5100	5825.4472	
	5745	5745.4655	5744.0249	5744.3160	5745.4641	
50	5785	5785.4779	5784.2756	5784.4072	5785.7912	
	5825	5825.2306	5824.7169	5824.8038	5825.0387	

Frequency stability versus Voltage						
Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute	
Supply	Frequency	Measured	Measured	Measured	Measured	
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	
	5745	5746.3967	5745.3492	5743.4901	5744.1073	
102	5785	5786.6327	5785.3081	5784.6820	5784.7521	
	5825	5826.3226	5825.2597	5824.1542	5824.9156	
	5745	5746.4725	5745.9257	5744.6001	5744.8729	
120	5785	5785.7330	5785.6478	5784.1082	5784.6586	
	5825	5825.7985	5825.6836	5824.3274	5824.3093	
138	5745	5745.3016	5745.7539	5744.2186	5744.3671	
	5785	5785.5029	5785.1749	5784.5758	5784.0678	
	5825	5825.9995	5825.2613	5824.7977	5824.7855	

Note: The worst case is FL=5742.4188MHz, FH=5826.3226MHz

802.11n(HT40)							
Frequency stability versus Temp.							
	Power Supply: AC 120V/60Hz						
Temp.	Operating	0 minute	2 minute	5 minute	10 minute		
	Frequency	Measured	Measured	Measured	Measured		
(°C)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
-30	5755	5757.6666	5754.3065	5752.9130	5757.4889		
-30	5795	5796.4666	5794.3974	5792.4759	5796.4868		
-20	5755	5756.3015	5754.2723	5753.0206	5755.1874		
-20	5795	5796.4981	5794.8019	5793.7587	5795.4950		
10	5755	5755.7432	5754.4842	5754.9521	5755.6247		
-10	5795	5795.9053	5794.6043	5794.9009	5795.2756		
0	5755	5755.7834	5754.5528	5754.9804	5755.3146		
U	5795	5795.9743	5794.9769	5794.9322	5795.9528		
10	5755	5755.8509	5754.3453	5754.4543	5755.2965		
10	5795	5795.0849	5794.9398	5794.7590	5795.8942		
20	5755	5755.8010	5754.2840	5754.7403	5755.2267		
20	5795	5795.2239	5794.0509	5794.6084	5795.1479		
20	5755	5755.5101	5754.4138	5754.0807	5755.1392		
30	5795	5795.1803	5794.3764	5794.2827	5795.5343		
40	5755	5755.5570	5754.9810	5754.2560	5755.7866		
	5795	5795.9540	5794.3634	5794.4275	5795.2129		
50	5755	5755.3128	5754.5054	5754.5714	5755.4589		
	5795	5795.6850	5794.8251	5794.2769	5795.3897		

Frequency stability versus Voltage							
	Temperature: 25°C						
Power	Operating	0 minute	2 minute	5 minute	10 minute		
Supply	Frequency	Measured	Measured	Measured	Measured		
(VDC)	(MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (MHz)		
400	5755	5755.3108	5754.0056	5756.7220	5752.5301		
102	5795	5795.7445	5794.2561	5795.7387	5793.6873		
120	5755	5755.2352	5754.4188	5755.7217	5753.6908		
	5795	5795.9931	5794.0684	5795.9517	5793.5667		
138	5755	5755.6381	5754.7489	5755.9703	5754.3480		
	5795	5795.6837	5794.3910	5795.9492	5794.4174		

Note: The worst case is FL=5752.5301MHz, FH=5796.4981MHz

8 Test Setup Photo

Radiated Emission

Conducted Emission

9 EUT Constructional Details

Reference to the test report No. GTS201708000157E01

-----END-----