## Ministério da Educação

Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE Departamento de Ciências Exatas - DCEX



Disciplina: Cálculo Diferencial e Integral I — Semestre: 2021/2 Prof. Me. Luiz C. M. de Aquino

## Lista III

- 1. Considere a função dada por  $f(x) = 3x^3 4x$ .
  - (a) Calcule f' e determine os intervalos de crescimento/decrescimento do gráfico de f.
  - (b) Calcule f'' e determine a concavidade do gráfico de f.
  - (c) Use os itens anteriores para fazer um esboço do gráfico de f.
- 2. Use a primeira derivada para determinar quais funções abaixo são sempre crescentes.

(a) 
$$f(x) = x^5 + 3x$$
.

(b) 
$$f(t) = t^7 - t$$
.

(c) 
$$f(s) = \cos^2 s$$
.

(d) 
$$f(u) = \sqrt{u} - \frac{1}{u}$$
.

3. Use a segunda derivada para determinar quais funções abaixo possuem a concavidade do gráfico sempre para baixo.

(a) 
$$f(x) = x \ln x$$
.

(b) 
$$f(r) = -r^8 + r$$
.

(c) 
$$f(t) = -t^2 + \sqrt{t}$$
.

(d) 
$$f(u) = \frac{e^u + e^{-u}}{2}$$
.

4. Determine a constante c tal que o gráfico da função dada por  $f(x) = \left(1 - \frac{2c}{3}\right)x^3 + (3 - 2c)x$  seja sempre decrescente.

## Gabarito

[1] (a) Crescente:  $\left(-\infty, -\frac{2}{3}\right)$  e  $\left(\frac{2}{3}, +\infty\right)$ ; Decrescente:  $\left(-\frac{2}{3}, \frac{2}{3}\right)$ . (b) Concavidade para baixo:  $(-\infty, 0)$ ; Concavidade para cima:  $(0, +\infty)$ .



[2] 
$$f(x) = x^5 + 3x$$
.  $f(u) = \sqrt{u} - \frac{1}{u}$ .  
[3]  $f(r) = -r^8 + r$ .  $f(t) = -t^2 + \sqrt{t}$ .  
[4]  $c \in \mathbb{R}, c > \frac{3}{2}$ .

[3] 
$$f(r) = -r^8 + r$$
.  $f(t) = -t^2 + \sqrt[a]{t}$ 

$$[4] c \in \mathbb{R}, c > \frac{3}{2}.$$