Inhomogeneous Special Solution

Inhomogeneous Second Order ODE

$$y'' + Ay' + By = f(x)$$

 y_p is special solution for the equation and homogeneous solution $y_c=c_1y_1+c_2y_2$ general solution is y_p+y_c

Exponential Input

in many situations, input f(x) has form of e^x , $\sin \omega x$, $\cos \omega x$, $e^{ax} \sin \omega x$, $e^{ax} \cos \omega x$ these input can express as e^{ax} , α can be complex

Differential Operator

define D as differential operator and operate differentiation

express
$$y'' + Ay' + By = f(x)$$
 as $D^2y + ADy + By = (D^2 + AD + B)y = f(x)$
express $D^2 + AD + B$ as a polynomial $P(D) \Rightarrow P(D)y = f(x)$

Exponential Input Theorem

let
$$y = e^{\alpha x}$$

$$P(D)e^{\alpha x} = (D^2 + AD + B)e^{\alpha x} = D^2e^{\alpha x} + ADe^{\alpha x} + Be^{\alpha x} = \alpha^2e^{\alpha x} + A\alpha e^{\alpha x} + Be^{\alpha x} = P(\alpha)e^{\alpha x}$$

$$\Rightarrow P(D)e^{\alpha x} = P(\alpha)e^{\alpha x}$$

therefore the special solution for $P(D)y = e^{\alpha x}$

$$y_p = \frac{e^{\alpha x}}{P(\alpha)} \quad P(\alpha) \neq 0$$

Exponential Shift Rule

when
$$P(D) = D$$

$$P(D)e^{\alpha x}u(x) = D(e^{\alpha x}u) = e^{\alpha x}Du + \alpha e^{\alpha x}u = e^{\alpha x}(Du + \alpha u) = e^{\alpha x}(D + \alpha)u(x)$$

when $P(D) = D^2$

$$P(D)e^{\alpha x}u(x) = D^{2}(e^{\alpha x}u) = D(D(e^{\alpha x}u)) = D(e^{\alpha x}(D+\alpha)u) = e^{\alpha x}(D+\alpha)^{2}u(x)$$

.....

by mathematical induction, we can prove for any polynomial P(D)

$$e^{\alpha x}P(D)u(x) = e^{\alpha x}P(D+\alpha)u(x)$$

when α is the only root of P(D) and $P(\alpha) = 0$

$$y_p = \frac{xe^{\alpha x}}{P'(\alpha)} \quad P'(\alpha) \neq 0$$

proved by L'Hopital's rule

when α is one of the double roots of P(D), $P(\alpha)$ may be 0

$$y_p = \frac{x^2 e^{\alpha x}}{P''(\alpha)} \quad P''(\alpha) \neq 0$$

example: when
$$P(D) = (D - b)(D - a)$$
 and $a \neq b$

$$P'(D) = (D - b) + (D - a)$$

$$P'(\alpha) = a - b$$

$$P(D)y = P(D)\frac{xe^{\alpha x}}{P'(\alpha)} = e^{\alpha x}P(D+\alpha)\frac{x}{P'(\alpha)}$$

$$\Rightarrow e^{\alpha x}(D+a-b)D\frac{x}{P'(\alpha)}$$

$$\Rightarrow (D+a-b)Dx\frac{e^{\alpha x}}{P'(\alpha)} = (a-b)\frac{e^{\alpha x}}{P'(\alpha)}$$

$$\Rightarrow e^{\alpha x}$$