Segment the ISICs data set with the Improved UNet

Author: Tuo Yuan (46095312)

Discription

This module uses an improved U-Net neural network with all labels having a minimum DIce similarity coefficient of 0.8 for image segmenetation on the ISICs 2018 dataset.

Network architecture

this method make use of the U-Net network archietecture[1]. The context pathway aggregates hih level information that is subsequently localized precisely in the localization pathway.

Challenge

[1]In medical image segmentation problem, due to the class imbalance in the datasets, Dice coefficient performs better at class imbalanced problems than cross-entropy, it measures the similarity between two sets of data, in this case, it compare pixel to pixel between mask labels and train data.

Usage

run the preprocessing.py to load the data from ISIC dataset, it splite the data to

- data_train
- data_test
- data_val
- mask_train
- mask_test
- mask_val

as .npy file.

run train.py [2] to start trainning the model which is in the model.py [3]

finally, run test.py [2] to evaluate the performance

Results

output performance

Area under the ROC curve: 0.8567094851762822

Area under Precision-Recall curve: 0.8925321138822117

• Jaccard similarity score: 0.7493366507185417

• F1 score (F-measure): 0.8567094851762821

references:

[1] F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, "Brain Tumor Segmentation

and Radiomics Survival Prediction: Contribution to the BRATS 2017 Challenge," Feb. 2018. [Online]. Available: https://arxiv.org/abs/1802.10508v1

- [2] https://github.com/languede/BCDU-Net
- [3] https://github.com/shakes76/PatternFlow