

CONTRACTOR REPORT BRL-CR-610

BRL

CONCEPTUAL VALVE DESIGN
FOR THE DRIVER TUBE
OF THE LARGE-BLAST, THERMAL SIMULATOR

T. R. REED EG&G IDAHO, INC. (INEL)

MAY 1989

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

U.S. ARMY LABORATORY COMMAND

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

89 5 22 055

DESTRUCTION NOTICE

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers names in this report does not constitute indorsement of any commercial product.

REPORT DOCUMENTATION PAGE				Form Approved OMB No. 0704-0188	
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		16. RESTRICTIVE MARKINGS NONE			
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION	3 . DISTRIBUTION / AVAILABILITY OF REPORT		
N/A 2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			FOR PUBLIC R		
N/A		DISTRIBUT	DISTRIBUTION UNLIMITED		
4. PERFORMING ORGANIZATION REPORT NUMBER	R(S)	5. MONITORING	ORGANIZATION RE	PORT NU	IMBER(S)
BRL-CR-610					
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	7a. NAME OF MO	ONITORING ORGAN	IZATION	
IDAHO NATIONAL ENGINEERING LAB (EG&G IDAHO INC.)	(ii oppiiicoic)	II S ADMV	RALLISTIC P	FSFARC	CH LABORATORY
6c. ADDRESS (City, State, and ZIP Code)	<u> </u>		y, State, and ZIP C		IL LABORATORI
IDAHO FALLS, IDAHO 83415		ABERDEEN	PROVING GROU	ND, MD	21005-5066
8a. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT	INSTRUMENT IDE	NTIFICAT	ION NUMBER
U.S. Army BRL	SLCBR-TB-B	BRL-	PO-75-87		
8c. ADDRESS (City, State, and ZIP Code)	TOTOR IS	10. SOURCE OF F	UNDING NUMBERS		
ABERDEEN PROVING GROUND, MD	21005-5066	PROGRAM ELEMENT NO. 62120	PROJECT NO. AH25	TASK NO.	WORK UNIT ACCESSION NO.
11. TITLE (Include Security Classification)			<u> </u>		
CONCEPTUAL VALVE DESIGN FOR	THE DRIVER TUBE	OF THE LARG	E BLAST/THER	MAL SI	MULATOR
12. PERSONAL AUTHOR(S) T. R. REED					
13a. TYPE OF REPORT 13b. TIME CO	OVERED	14. DATE OF REPO	RT (Year, Month, L	Day) 15	. PAGE COUNT
Final FROM	9/87 to 4/88	28 March 1	989		29
16. SUPPLEMENTARY NOTATION					
17. COSATI CODES	18. SUBJECT TERMS (~		•
FIELD GROUP SUB-GROUP	Rapid Opening/	~			Simulation
20 04	Fast Acting Va Variable Ar <u>ea</u>				ing Time, mermal Simulator,
19. ASTRACT (Continue on reverse if necessary	and identify by block n	umber)			(325)
the results of a conceptual	design study of	fast acting	throat valv	es for	· metering the 🏠
flow out of the driver tubes times specified make it nece	s of the propose	d U.S. LB/TS a multi-elem	are reporte	ed. It sian d	ne short response
of this wave shaping technic	me.	a muiti-eiem	ent valve de	sign i	or development
or citra wave shaping teemine	<i>1</i> 40.				
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	RPT.	21. ABSTRACT SE	CURITY CLASSIFICA	TION	
UNCLASSIFIED/UNLIMITED SAME AS F	22h TELEDHONE	INCLASSIFIC		FFICE SYMBOL	
Mr. Klaus O. OPALKA		(301) 278-		SLC	BR-TB-B

TABLE OF CONTENTS

Page	
LIST OF ILLUSTRATIONS v	
INTRODUCTION 1	
VALVE REQUIREMENTS 8	
MAJOR DESIGN DIFFICULTIES 10	
VALVE DESCRIPTION	
Single Element Design	
Double Sliding Sleeve Design	
Multi-Element Design	
DESIGN EVALUATION 14	
Single Element Design 14	
Multi-Element Design	
CONCLUSION 17	
DISTRIBUTION LIST 19	

Acces	TOT TOT	
NTIS		, <u> </u>
DTIC :		
Unanu		į
Justi.	floation	
	ibution/	CYKO CYKO
Avai	lability Code:	S CALITY SPECIFIE
Dist	Avoil eni/or Special	
A-1		}

LIST OF ILLUSTRATIONS

		Pa	g e
Figure	1.	Single Element Design - Closed Position	2
Figure	2.	Single Element Design - Open Position	3
Figure	3.	Double Sliding Sleeve Design - Start Position	4
Figure	4.	Double Sliding Sleeve Design - Intermediate Position	5
Figure	5.	Multi-Element Design - Overall Arrangement	6
Figure	6.	Multi-Element Design - Element Details	7
Figure	7.	Valve Opening/Closing Schedule	9
Figure	8.	Position Dependent Hydraulic Dampers	12

INTRODUCTION

A key component required in the development of the Large Blast Thermal Simulator is the high speed driver tube valves. Although successful blast simulation facilities have been built without using driver tube valves, the simulation envelope, simulation accuracy, test turn around, and per test costs can be considerably improved by incorporating valves in the facility design. EG&G Idaho Mcchanical Engineering has completed investigation and evaluation of different valve designs which could be used in this application. It is planned to develop a half scale model based on the preferred design which will be tested and evaluated by the Ballistics Research Laboratory, Aberdeen Maryland.

Although highly desirable, no existing valves could be found which would meet the operating requirements necessary for blast simulation, thus such a valve design needs to be developed. The initial phase of this development was the procurement of four separate conceptual designs from valve specialty companies. A fifth design concept was pursued independently by EG&G Idaho to be used as a comparative design. From these afforts, three basic designs emerged, 1) single element, 2) double sliding sleeve and 3) multi-element. Two of the vendor concepts were of the multi-element type, one chose the double sliding sleeve concept, while the remaining vendor developed a single element design. EG&G's baseline design was a double sliding sleeve type. Figures 1 through 6 of this report illustrate each of these designs. In the case where there are two similar designs, only one is shown.

VALVE REQUIREMENTS

In the conceptual design of these valves the following general design requirements were used:

- 1) Flow Media: Nitrogen
- 2) Inlet Pressure: 35-2250 psig
- 3) Outlet Pressure: 0-1000 psig
- 4) Media temperature: 700 F max
- 5) Ambient conditions: -40 to 130 F at 0 to 100% relative humidity
- 6) Opening time: 10 ms max
- 7) Dwell time (time valve is fully open): 0 to 200 ms
- 8) Closing time: Valve must have variable open area verses time schedules which can be modified to produce the desired blast simulation. A typical closing schedule is shown in figure 7.
- 9) Upstream connection: Full scale 72 in. ID driver tube Half scale - 36 in. ID driver tube
- 10) Downstream connection: Full scale 36 in rupture disks
 Half scale 18 in rupture disks
- 11) Flow coefficient: Full scale valve must flow the equivalent of a 36 inch pipe of similar length. Half scale valve must flow the equivalent of an 18 inch pipe of similar length.

MAJOR DESIGN DIFFICULTIES

The primary difficulties in the design of a valve to meet the above requirements is 1) achieving the 10 ms opening times, 2) achieving 0 dwell time and 3) producing a closing schedule which is adjustable as well as capable of the fast cycle times. The fact the the valve is large, as well as subject to high pressure and temperature certainly complicates the design, but these items themselves are certainly within the capability of existing technology.

Achieving a 10 ms opening time in a valve of this size can be accomplished by several methods, including hydraulic actuation, gas actuation, propellant driven actuators and kinetic energy transfer devices. All of these methods require that a relatively large amount of energy be deposited in short period of time. Of these different methods, gas actuation was judged by EG&G Idaho to be the technology of choice. Dynamic simulation of a gas actuator was performed and verified that 10 ms opening times were possible in a valve of this size. However, in a single element valve design, opening times faster than 10 ms become difficult to achieve. Using helium as a driver gas, incorporating self venting actuator designs and utilizing exotic materials, opening times of 5 ms are possible. Of course if smaller valves are used, 10 ms opening times become easier to achieve. It is interesting to note that one of the major limitations of valve opening speed is the ability to transport the actuator gas into and out of the actuator volume. To attain high valve speeds the actuator control valves and supply/vent lines need to be large is comparison to the actuator size. Indeed, in most cases actuator flow restriction is the limit on valve speed rather than the mass of the moving element or the actuating pressure. However, in general, quick opening times are a balance of actuator pressure, actuator flow area, moving element mass and actuator piston area.

The requirement of a 0 dwell time is a significant complication in the design of single element large valves. This means that as the valve comes to 100% open it must immediately be driven in the opposite direction. If this were not a concern, the valve moving element could be accelerated throughout its

travel so as to minimize the opening time and, after opening being completed, be snubbed to a stop. However, to achieve 0 dwell, a single element valve must be decelerated prior to reaching 100% open. In effect the valve element must be accelerated for half of its travel, and then decelerated for the remaining half. This requires higher acceleration forces than would be necessary merely to open the valve quickly.

Perhaps the most challenging requirement is the necessity of a variable closing schedule. This requires that the valve element is in a specific position with respect to time. Complicating the matter is the fact the time duration for the closing is very short. In some instances the valve is 90% closed in about 80 ms. This would require that an active control system have to have a response time of less than 10 ms to adequately control the closing schedule. A complete control loop which would operate at these speeds would require custom fabrication and development. A simpler approach to this problem is to use open loop control in which the time delay for the control equipment can be accounted for. This approach requires highly repeatable control system components. Mechanically the most simple approach to this problem is to use damping equipment which is position sensitive, such as tapered pin or piccolo tube dampers. These devices, illustrated in figure 8, allow the hydraulic resistance to be related to damper position. However, these items have reduced flexibility. To alter the damping profile in the tapered pin type would require change out of the tapered pin. To some degree the damping profile on the piccolo tube type can be altered by connecting valves to the holes on the piccolo tube and adjusting these valves for the different conditions. This eliminates the need for equipment change out but still produces damping profiles within a limited envelope. Whatever control scheme is used, recording the actual closing schedule delivered would be useful in tuning the system and troubleshooting problems.

VALVE DESCRIPTION

Single Element Design

This concept was developed by Ring-O Valve S.p.A. and is illustrated in figure 1 and 2. This valve is an axial flow design using a single moving assembly. The sealing disk moves to the left to expose an annular flow area. Disk actuation is provided by hydraulic fluid which is routed to the piston actuator through each of three drilled locating webs. The hydraulic fluid pressure is attained in two gas charged accumulators. Sealing disk travel is approximately 9 inches. Closing schedule control is achieved by controlling the hydraulic fluid flow rate through an array of on/off cartridge valves. Control of the cartridge valves is via a computer which receives position input from a transducer in the valve.

Double Sliding Sleeve Design

This concept was developed by S & Q Corporation, and was also investigated independently by EG&G Idaho as a baseline design. An illustration of the S & Q design is found in figure 3 and 4. This valve uses two separate sleeves, one of which operates on the outside of a ported cylinder, while the other operates on the inside. During a blast sequence, the inner closing sleeve uncovers the flow port, while the outer sleeve is used to close the port. Each of the sleeves are pneumatically actuated, the opening sleeve being also pneumatically snubbed. The controlled closing schedule is provided by limiting the flow of hydraulic fluid from the closing sleeve actuating rams. Positioning rams are used to reset the inner opening sleeve to the armed position. The outer sleeve is likewise set to the start position using the positioning/regulating rams. Two separate sleeves are used to allow each sleeve some approach distance to 'get up to speed' prior to uncovering/covering the port. This also allows the opening sleeve to be accelerated throughout the port opening, and decelerated after the port is fully open. This results in fast opening times at reduced actuating forces while maintaining the capability for 0 dwell time.

Multi-Element Designs

Eaton Consolidated Controls and The Digital Valve Company independently developed a multi-element type design. The Eaton concept is illustrated in figures 5 and 6. These concepts incorporate 19 to 36 identical valve elements which have an total equivalent flow area of the single element valve. These elements are pneumatically operated to either an open or closed position at a fixed rate. No closing schedule regulation for an individual element is provided. The capability to achieve a closing schedule is provided by sequentially closing valve pairs to produce a stepped closing curve which approximates the required closing schedule. Other than the center valve element, the valves are closed in pairs, each pair being diametrically opposite so as to produce coaxial loading on the driver tube. The one off nature of these valve elements results in a stepped closing schedule which approximates the ideal closing profile. Control for this sequential closing will be provided by a digital computer which will time the closing of each valve. Position sensors are used on each element to monitor system performance.

DESIGN EVALUATIONS

Single Element Design

This design is the most basic, and at first look appears to have promise. The primary advantages of this concept is its mechanical simplicity. However, on closer inspection several problems can be seen with this approach:

1) When using a actuator piston diameter of 12.6 inches, and a moving element weight of 1500 lbs, approximately 10,000 gpm hydraulic fluid at 5000 psig would be required to open the valve in 20 ms. To open the valve in 10 ms would require 20,000 psig pressure at 10,000 gpm. Another approach would be to double the diameter of the cylinder which would give a 10 ms opening time at a flow rate of

40,000 gpm at 5000 psig. From this it can be seen that this design requires the use of high pressure hydraulics at very high flow rates particularly when fast opening times are desired. Small hydraulic actuated valves can be made to operate very fast, however as the valve is scaled up, the actuating forces to maintain the same opening time increase with the square of the valve diameter.

- The force required to accelerate the hydraulic fluid in the line is considerable. Assuming the 20 ms opening time stated in the base case above, and also assuming that three 25 foot lines of 10 inch ID are to be used for each valve, then an additional 1500 psi would be required to accelerate the hydraulic fluid. If smaller line sizes are chosen the required accelerating pressure rises dramatically. Conversely, larger hydraulic lines are thought to be impractical. This item then tends to further increase the necessary hydraulic pressure requirements.
- 3) Using hydraulic actuation will require large lines and high pressures. Leakage at these high pressures is likely, and with the large volumes of oil involved, can result in very costly and time consuming maintenance.
- 4) This valve design is vulnerable to control system malfunction. For example, should the hydraulic valves which slow the piston fail to open, the valve disk can slam into the seat at speeds in excess of 75 ft/s. This can result in serious valve damage, necessitating valve replacement. A passive damping unit which could adsorb the maximum kinetic energy of moving elements and hydraulic fluid could be incorporated but would complicate the design and interfere with the requirement for controlled closing.
- As previously stated this valve will have a hydraulic flow rate of at least 10,000 gpm. Since the programmable closing schedule is provided in this design by sequentially closing pilot operated on/off hydraulic valves, a large number of specialty high pressure high flow rate valves would be required.

- 6) In comparison with the multi-element concept, maintenance and repair of the valve would be difficult and time consuming.
- 7) Due to the single element nature of this valve, scale up problems from a smaller prototype could be expected. Also, development of the hydraulic control system is viewed as a potential problem area. Therefore this concept is seen to entail considerable risk in development.

Double Sliding Sleeve Valve The use of two moving elements rather than one offer some distinct advantages. This allows each sleeve to utilize acceleration and deceleration approach zones which result in high sleeve velocities as they open/close the ports. Over travel distances with the use of passive snubbing allow the sleeves be brought to rest in a reliable manner. With two sleeves a 0 dwell time is easily met by the proper timing of the closing and opening sleeves. Additionally, the closing sleeve can be at some velocity before opening the port which allows for greater flexibility in the possible closing schedules.

The major difficulty seen with this design is the hydraulic regulation of the closing sleeve. In order to meet a variety of closing schedules the hydraulic resistance in the regulating system needs to be sleeve position dependent. A single hydraulic resistance will not produce the variety of closing schedules required. Several passive snubbing systems are available that are position sensitive, such as the tapered pin and piccolo tube dampers previously discussed, but their lack of flexibility is judged to be a serious handicap. A closed loop control system would be very flexible, but difficult to engineer due to the response times required. In addition, similar to the single element design, significant risk is seen in the scale up development of this valve.

Multi-Element Design

By using a multitude of smaller elements many of the problems with the single element and double sliding sleeve valves can be minimized. Due to their

smaller size the individual elements can be made operate acceptably fast while keeping the kinetic energy of the elements low. Likewise, attaining a 0 dwell time is easier with a smaller element. The multi-element concept has other advantages which include:

- 1) Because the valve elements are small a single valve element can be fabricated and tested at a relatively modest cost. This would assure that the the desired valve speed and leakage could be attained, and would greatly reduce scale up problems.
- 2) Timing of the opening and closing schedule is easily changed and very flexible.
- 3) Failure of a single element would not seriously compromise test results.
- 4) Maintenance or replacement of a valve element is relatively easy since each element could be handled by hand or small handling equipment.

The major criticism of this proposal is that a stepped closing schedule is produced rather than a smooth transition. Although this appears to be a problem, computational models of the LBTS indicate that this stepped curve will not significantly compromise the blast simulation. Although not a serious limitation, this valve design requires a larger physical envelope to accommodate the reduced flow efficiency of the smaller elements.

CONCLUSION

The development of a LBTS valve which meets the design requirements is within the capability of existing technology. Although several viable approaches are available, the concept that appears to have the most promise is the multi-element design. This design will allow for early prototype testing which will highlight possible design problems. Thus the risk to the

overall program is considerably reduced with this concept. Also, the multi-element concept is thought to have the most technical merit. It is therefore recommended that the multi-element design be pursued for further development.

No. of No. of Copies Organization Copies Organization 1 Director 12 Administrator Defense Technical Info Center National Security Agency ATTN: DTIC-DDA ATTN: R15 (E. F. Butala) Ft. George G. Meade, MD 20755 Cameron Station Alexandria, VA 22304-6145 Director **HQDA (SARD-TR)** Defense Nuclear Agency Washington, DC 20310-0001 ATTN: CSTI (Tech Lib) **DDIR** DFSP (Ullrich) Director of Defense Research & Engineering ATTN: DD/TWP NANS Washington, DC 20301 **OPNA** SPSD (Goering/Rohr) Assistant Secretary of Defense TDTR (Kennedy/Hrinishin) Washington, DC 20305 (Atomic Energy) ATTN: Document Control Washington, DC 20301 Commander Field Command, DNA ATTN: FCPR Chairman Joint Chiefs of Staff **FCTMOF** ATTN: J-5 (R&D Div) Kirtland AFB, NM 87115 Washington, DC 20301 1 Commander Field Command, DNA Deputy Chief of Staff for Operations and Plans Livermore Branch ATTN: FCPRL ATTN: Technical Library Director of Chemical P.O. Box 808 and Nuclear Operations Livermore, CA 94550 Department of the Army Washington, DC 20310 10 Central Intelligence Agency DIR/DB/Standard ATTN: GE-47 HQ Director Washington, DC 20505 Defense Advanced Research Projects Agency ATTN: Tech Lib 1400 Wilson Boulevard Commander Arlington, VA 22209 US Army Materiel Command ATTN: AMCDRA-ST 5001 Eisenhower Avenue Alexandria, VA 22333-0001 Federal Emergency Management Agency ATTN: Public Relations Office Commander Technical Library Washington, DC 20472 US Army Laboratory Command ATTN: AMSLC-DL Director Adelphi, MD 20783-1145 Defense Intelligence Agency

ATTN: DT-2/Wpns & Sys Div

Washington, DC 20301

No. of No. of Copies Organization Organization Copies 3 Director US Army Harry Diamond Labs ATTN: SLCHD-NW-RA (L. Belliveau) SLCHD-NW-P (Gwaltney/Meszaros) SLCHD-TA-L (Tech Lib) 2800 Powder Mill Road Adelphi, MD 20783-1197 Commander US Army Communications - Electronics Command (CECOM) HQ Commander ATTN: AMSEL-RD Armament RD&E Center AMSEL-IM-L ATTN: SMCAR-TDC Dover, NJ 07801-5000 AMSEL-RO-TPPO-P Fort Monmouth, NJ 07703-5301 Commander Armament RD&E Center 1 Commander ATTN: SMCAR-MSI CECOM R&D Technical Library ATTN: ASNC-ELC-I-T, Myer Center Ficatinny Arsenal, NJ 07806-5000 Fort Monmouth, NJ 07703-5301 1 Commander Armament RD&E Center Commander ATTN: SMCAR-TSS US Army Missile Command Dover, NJ 07801-5001 ATTN: AMSMI-AS Redstone Arsenal, AL 35898-5000 1 Director Benet Weapons Laboratory Armament RD&E Center Director US Army Missile and Space Intelligence US Army AMCCOM ATTN: SMCAR-LCB-TL Center Watervliet, NY 12189-4050 ATTN: AIAMS-YDL Redstone Arsenal, AL 35898-5500 1 Commander US Army Armament, Munitions and Chemical 1 Commander Command US Army Tank Automotive Command ATTN: SMCAR-ESP-L ATTN: ASQNC-TAC-DI(Tech Lib) Rock Island, IL 61299-5000 Warren, MI 48397-5000 Commander 1 Director US Army Aviation Systems Command US Army TRADOC Analysis Command ATTN: AMSAV-DACL ATTN: ATAA-SL 4300 Goodfellow Boulevard White Sands Missile Range, NM 88002-5502 St. Louis, MO 63120-1798 Commandant US Army Infantry School 1 Director US Army Aviation Research and Technology ATTN: ATSH-CD-CSO-OR Fort Benning, GA 31905-5660 Activity Ames Research Center

Moffett Field, CA 94035-1099

No. of		No. of	
Copies	<u>Organization</u>	Copies	<u>Organization</u>
=	Commander	1	Commander
	US Army Foreign Science and Technology		US Army Research Office
	Center		ATTN: SLCRO-D
	ATTN: Research & Data Branch		P.O. Box 12211
	220 7th Street, NE.		Research Triangle Park, NC 27709-2211
	Charlottesville, VA 22901		
			Commander
_	Commander		US Army Nuclear & Chemical Agency
	US Army Logistics Management Center		ATTN: ACTA-NAW
	ATTN: ATCL-O (R. Cameron)		MONA-WE
	Fort Lee, VA 23801		Tech. Lib.
			7500 Backlick Rd, Bldg. 2073
_	Commander		Springfield, VA 22150
	US Army Materials Technology Laboratory		
	ATTN: AMXMR-ATL	_	Director
	Watertown, MA 02172-0001		Requirements and Programs Directorate
			HQ, TRADOC Analysis Command
	Commander		ATTN: ATRC-RP
	US Army Strategic Defense Command		Fort Monroe, VA 23651-5143
	ATTN: CSSD-H-MPL (Tech Lib)		
	CSSD-H-XM (Dr. Davies)		Commander
	P.O. Box 1500		TRADOC Analysis Command
	Huntsville, AL 35807		ATTN: ATRC
•	a		Fort Leavenworth, KS 66027-5200
_	Commander		Commondos
	US Army Natick Research and Development	1	Commander
	Center		US Army Test & Evaluation Command Nuclear Effects Laboratory
	ATTN: AMDNA-D (Dr. D. Sieling) STRNC-UE (J. Calligeros)		ATTN: STEWS-TE-NO (Dr. J.L. Meason)
	Natick, MA 01762		P.O. Box 477
	Natick, MA 01702		White Sands Missile Range, NM 88002
1	Commander		White bands Missile Hange, 14M 50002
_	US Army Engineer Division	1	Commander
	ATTN: HNDED-FD	•	US Army Development & Employment
	P.O. Box 1500		Agency
	Huntsville, AL 35807		ATTN: MODE-ORO
	11440.416, 125 0000.		Fort Lewis, WA 98433-5000
3	Commander		
	US Army Corps of Engineers	2	Director
	Waterways Experiment Station		Joint Strategic Target Planning Staff JCS
	ATTN: CAWES-SS-R (J. Watt)		ATTN: JLTW
	CAWES-SE-R (J. Ingram)		ТРТР
	CAWES-TL (Tech Lib)		Offut AFB
	P.O. Box 631		Omaha, NB 68113
	Vicksburg, MS 39180-0631		
	-	1	Commandant
			Interservice Nuclear Weapons School
			ATTN: Technical Library
			Kirtland AFB, NM 87115

No. of Copies		No. of Copies	
2	Chief of Naval Operations	1	Commander
	ATTN: OP-03EG		Naval Surface Weapons Center
	OP-985F		ATTN: Code DX-21 (Library)
	Department of the Navy		Dahlgren, VA 22448-5000
	Washington, DC 20350		
		2	Commander
	Chief of Naval Research		Naval Surface Weapons Center
	ATTN: N. Perrone		ATTN: Code WA501 (Navy Nuclear
	Department of the Navy		Programs Office)
	Arlington, VA 22217		Code WX21 (Tech Library)
			Silver Spring, MD 20902-5000
_	Director		
	Strategic Systems Projects Office	1	Commander
	ATTN: NSP-43, Tech Library		Naval Weapons Center
	Department of the Navy		ATTN: Code 533 (Tech Library)
	Washington, DC 20360		China Lake, CA 93555-6001
1	Commander	1	Commander
· -	Naval Electronic Systems Command	•	Naval Weapons Evaluation Fac
	ATTN: PME 117-21A		ATTN: Document Control
	Washington, DC 20360		Kirtland AFB, NM 87117
	•		·
1	Commander	1	Commander
	Naval Facilities Engineering Command		Naval Research Laboratory
	ATTN: Technical Library		ATTN: Code 2027, Tech Library
	Washington, DC 20360		Washington, DC 20375
1	Commander	1	Superintendent
	Naval Sea Systems Command		Naval Postgraduate School
	ATTN: Code SEA-62R		ATTN: Code 2124, Tech Library
	Department of the Navy		Monterey, CA 93940
	Washington, DC 20362-5101		• .
		1	AFSC/SDOA
5	Officer-in-Charge		Andrews AFB, MD 20334
	Naval Construction Battalion Center		
	Civil Engineering Laboratory	1	Air Force Armament Laboratory
	ATTN: Code L64 (N. P. Clark)		ATTN: AFATL/DLODL
	Code L54 (R. J. Odello)		Eglin AFB, FL 32542-5000
	Code L51 (W. Keenan)		
	Code LO6C/LO8A (Tech Lib)	2	Air Force Armament Laboratory
	Port Hueneme, CA 93041		ATTN: AFATL/DOIL
			AFATL/DLYV
_	Commander		Eglin AFB, FL 32542-5000
	David W. Taylor Naval Ship Research &		
	Development Command	1	AFESC/RDCS
	ATTN: Code 522 (Lib Div)		ATTN: Paul Rosengren
	Bethesda, MD 20084-5000		Tyndall AFB, FL 32403

No. of		No. of	
Copies	<u>Organization</u>	Copies	<u>Organization</u>
1	RADC (EMTLD/Docu Library) Griffiss AFB, NY 13441	2	Director Los Alamos Scientific Lab. ATTN: Doc Control for Rpts
1	AFWL/SUL Kirtland AFB, NM 87117-5800		Library P.O. Box 1663 Los Alamos, NM 87544
2	Air Force Weapons Laboratory ATTN: NTES, R. Henny NTED, J. W. Aubrey Kirtland AFB, NM 87117-6008	2	Director Sandia Laboratories ATTN: Doc Control 3141 Sandia Rpt Collection
2	Commander-in-Chief Strategic Air Command ATTN: NRI-STINFO Lib Offutt AFB, NB 68113		L. J. Vortman P.O. Box 5800 Albuquerque, NM 87185-5800
1	AFIT ATTN: Tech Lib (Bldg. 640/B) Wright-Patterson AFB, OH 45433	1	Director Sandia Laboratories Livermore Laboratory ATTN: Doc Control for Tech Library
1	FTD/NIIS Wright-Patterson AFB Ohio 45433		P.O. Box 969 Livermore, CA 94550
1	U.S. Department of Energy Idaho Operations Office ATTN: Spec Programs (J. Patton) 785 DOE Place Idaho Falls, ID 83402	Ī	Director National Aeronautics and Space Administration ATTN: Scientific & Tech Info Fac P.O. Box 8757, BWI Airport Baltimore, MD 21240
2	Director Idaho National Engineering Laboratory EG&G Idaho Inc. ATTN: Mr. W. C. Reed Mr. T. R. Reed	1	Director NASA-Langley Research Center ATTN: Tech Lib Hampton, VA 23665
	P.O. Box 1625 Idaho Falls, ID 83415	1	Director NASA-Ames Research Center Applied Computational Aerodynamics
1	Director Lawrence Livermore Lab. ATTN: Tech Info Dept L-3 P.O. Box 808		Branch ATTN: MS 202-14, Dr. T. Holtz Moffett Field, CA 94035
	Livermore, CA 94550	3	Aberdeen Research Center ATTN: N.H. Ethridge J. Keefer Library P.O. Box 548 Aberdeen, MD 21001

No. of		No. of	
Copies	<u>Organization</u>	Copies	Organization
1	Aerospace Corporation	1	EATON Corporation
	ATTN: Tech Info Services		Defense Valve & Actuator Div.
	P.O. Box 92957		ATTN: Dr. J. Y. S. Yang
	Los Angeles, CA 90009		2338 Alaska Ave.
			El Segundo, CA 90245-4896
1	Agbabian Associates		
	ATTN: M. Agbabian	1	Goodyear Aerospace Corporation
	250 North Nash Street		ATTN: R. M. Brown, Bldg 1
	El Segundo, CA 90245		Shelter Engineering
1	Applied Research Associates, Inc.		Litchfield Park, AZ 85340
1	ATTN: R. L. Guice	4	Kaman AviDyne
	7114 West Jefferson Ave., Suite 305	1	ATTN: Dr. R. Reutenick (2 cys)
	Lakewood, CO 80235		Mr. S. Criscione
	Lakewood, CO 80233		Mr. R. Milligan
,	The BDM Corporation		83 Second Avenue
1	ATTN: Richard Hensley		Northwest Industrial Park
	P.O. Box 9274		Burlington, MA 01830
	Albuquerque, NM 87119		buttington, MA 01830
	Albadueidae, MM 01113	3	Kaman Sciences Corporation
1	Black & Veach Consulting Engineers	0	ATTN: Library
1	ATTN: H. D. Laverentz		P. A. Ellis
	1500 Meadow Lake Parkway		F. H. Shelton
	Kansas City, MO 64114		1500 Garden of the Gods Road
	Training City, Mic City		Colorado Springs, CO 80907
1	The Boeing Company		,
	ATTN: Aerospace Library	1	Kaman Sciences Corporation
	P.O. Box 3707		ATTN: Mr. F. W. Balicki
	Seattle, WA 98124		6400 Uptown Boulevard N.E. Suite 300
			Albuquerque, NM 87110
1	California Research & Technology, Inc.		
	ATTN: M. Rosenblatt	2	Kaman-TEMPO
	20943 Devonshire Street		ATTN: DASIAC
	Chatsworth, CA 91311		Don Sachs
			P.O. Drawer QQ
1	Carpenter Research Corporation		816 State Street
	ATTN: H. Jerry Carpenter		Santa Barbara, CA 93102
	27520 Hawthorne Blvd., Suite 263		
	P. O. Box 2490	1	Lockheed Missiles & Space Co.
	Rolling Hills Estates, CA 90274		ATTN: J. J. Murphy,
			Dept. 81-11, Bldg. 154
1	Dynamics Technology, Inc.		P.O. Box 504
	ATTN: D. T. Hove		Sunnyvale, CA 94086
	Suite 300 21311 Hawthorne Blvd.		Martin Mariatta Agrashasa
		1	Martin Marietta Aerospace Orlando Division
	Torrance, CA 90503		ATTN: G. Fotieo
			P.O. Box 5837
			Orlando, FL 32805
			Offauld, P.D. 02000

No. of Copies	Organization	No. of Copies	
	McDonnell Douglas Astronautics Corporation ATTN: Robert W. Halprin K.A. Heinly 5301 Bolsa Avenue Huntington Beach, CA 92647	2	S-CUBED ATTN: C. E. Needham Lynn Kennedy PO Box 8243 Albuquerque, NM 87198
	Physics International Corporation 2700 Merced Street San Leandro, CA 94577	3	S-CUBED ATTN: Technical Library R. Duff K. Pyatt
	R&D Associates ATTN: Technical Library Allan Kuhl P.O. Box 9695		PO Box 1620 La Jolla, CA 92037-1620 Texas Engineering Experiment Station ATTN: Dr. D. Anderson
1	Marina Del Rey, CA 90291 R&D Associates		301 Engineering Research Center College Station, TX 77843
	ATTN: G.P. Ganong P.O. Box 9330 Albuquerque, NM 87119	1	Thermal Science, Inc. ATTN: R. Feldman 2200 Cassens Dr.
	Science Applications, Inc. ATTN: W. Layson	1	St. Louis, MO 63026 TRW -
	John Cockayne PO BOX 1303 1710 Goodridge Drive McLean, VA 22102	1	Ballistic Missile Division ATTN: H. Korman, Mail Station 526/614 P.O. Box 1310
1	Science Applications International Corp. ATTN: Mr. J. Guest		San Bernadino, CA 92402
1	4615 Hawkins Blvd. N.E. Albuquerque, NM 87109 Sparta, Inc.	1	Battelle Memorial Institute ATTN: Technical Library 505 King Avenue Columbus, OH 43201
	ATTN: I. B. Osofsky Suite 250, 23293 So. Pointe Dr. Laguna Hills, CA 92653	1	California Institute of Technology ATTN: T. J. Ahrens 1201 E. California Blvd. Pasadena, CA 91109
1	Sverdrup Technology, Inc. ATTN: R. F. Starr P. O. Box 884 Tullahoma, TN 37388	2	Denver Research Institute University of Denver ATTN: Mr. J. Wisotski Technical Library
1	SRI International ATTN: Dr. G. R. Abrahamson 333 Ravenswood Avenue Menlo Park, CA 94025		PO Box 10127 Denver, CO 80210

No. of

Copies

Organization

- 1 Massachusetts Institute of Technology Aeroelastic and Structures Research Laboratory ATTN: Dr. E. A. Witmer Cambridge, MA 02139
- 1 Massachusetts Institute of Technology ATTN. Technical Library Cambridge, MA 02139
- New Mexico Engineering Research Institute (CERF)
 University of New Mexico ATTN: Dr. J. Leigh
 P.O. Box 25
 Albuquerque, NM 87131
- 1 Northrop University ATTN: Dr. F. B. Safford 5800 W. Arbor Vitae St. Los Angeles, CA 90045
- 2 Southwest Research Institute ATTN: Dr. W. E. Baker A. B. Wenzel 8500 Culebra Road San Antonio, TX 78228
- 1 Stanford University ATTN: Dr. D. Bershader Durand Laboratory Stanford, CA 94305

Aberdeen Proving Ground

Dir, USAMSAA ATTN: AMXSY-D AMXSY-MP (H. Cohen)

Cdr, USATECOM ATTN: AMSTE-TO-F AMSTE-TE-F (L. Teletski)

Cdr, CRDEC, AMCCOM ATTN: SMCCR-RSP-A SMCCR-MU SMCCR-SPS-IL

Cdr, USATHMA ATTN: AMXTH-TE

USER EVALUATION SHEET/CHANGE OF ADDRESS

	Does this report satisfy a need? the report will be used.)			
2.	etc.)			
3.	Has the information in this repo operating costs avoided, or effic	rt led to any quant dencies achieved, e	itative savings as far tc? If so, please elabo	
١.	General Comments. What do you torganization, technical content,	format, etc.)		
		,		
	BRL Report Number		Division Symb	ol
	Check here if desire to	be removed fr	rom distribution	list.
	Check here for address	change		
	Current address: Or Ad	ganization _ dress _		
		_		
		FOLD AND	TAPE CLOSED	
		2022	1.1.2 0.000.00	, , , , , , , , , , , , , , , , , , ,
U. AT	irector .S. Army Ballistic Resear TTN: SLCBR-DD-T(NEI) berdeen Proving Ground, M	ch Laboratory		NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES
U. AT Ab	irector .S. Army Ballistic Resear TTN: SLCBR-DD-T(NEI)	ch Laboratory D 21005-5066 BUSINESS		NECESSARY IF MAILED IN THE UNITED STATES

Director
U.S. Army Ballistic Research Laboratory
ATTN: SLCBR-DD-T(NEI)
Aberdeen Proving Ground, MD 21005-9989