西安工业大学试题纸

学年学期	2017-2018 学年第二学期			课程名称	线	线性代数 A 卷		
命题教师	线代教学组	审 批		考试形式	闭卷	考试类型	考试	
使用班级	2017 级理工科学生		考试时间	2018年7月11日		考试地点		
学生班级		姓 名		学 号		备 注		

题号	-	二	三	四	Ŧī.	六	七	总分
得分								

注意: 所有题目都在试卷上作答, 第三题至第七题要有计算或证明过程

一、单项选择题(每题4分,共24分)

1. 行列式
$$D = \begin{vmatrix} ab & ac & -ae \\ bd & -cd & de \\ -bf & cf & ef \end{vmatrix} = ($$
)

- (A) 4abcdef (B) -4abcdef (C) abcdef (D) 2abc-2def
- 2. 设矩阵 $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, $B = \begin{bmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} + a_{11} & a_{32} + a_{12} & a_{33} + a_{13} \end{bmatrix}$, $P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$, 则有 () (A) $AP_1P_2 = B$ (B) $AP_2P_1 = B$ (C) $P_1P_2A = B$ (D) $P_2P_1A = B$

$$P_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad P_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, \qquad \text{Maf} \ ()$$

- 3. 设 α_1 , α_2 , α_3 , α_4 是 4 个同维向量, 如果向量组 α_1 , α_2 , α_3 线性相关, 那么(
 - (A) $\alpha_1, \alpha_2, \alpha_3$ 中必有零向量; (B) 向量组 α_1, α_2 必定线性相关;
 - (C) 向量组 α_1, α_2 必定线性无关; (D) 向量组 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 必定线性相关
- 4. 设矩阵 $A = (a_{ij})_{m \times n}$, AX = O 仅有零解的充分必要条件是(
 - (A) A 的列向量组线性相关 (B) A 的行向量组线性相关.
 - (C) A 的列向量组线性无关 (D) A 的行向量组线性无关
- 5. 设矩阵 A 的特征多项式 $|\lambda E A| = (\lambda + 1)(\lambda + 4)^2$,则 |A = ()
 - $(A) -4 \qquad (B) -16 \qquad (C) 4 \qquad (D) 16$

更多考试真题请扫码获取

- 6. 实二次型 $f = x_1^2 + 2x_2^2 + 3x_3^2 2x_1x_3 + 2x_2x_3$ 是 () 二次型.

- (A) 正定 (B) 负定 (C) 不定 (D) 半正定
- 二、填空题 (每题 4 分, 共 20 分)

1. 设
$$D = \begin{vmatrix} 1 & 5 & 7 & 8 \\ 1 & 1 & 1 & -1 \\ 2 & 0 & 3 & 6 \\ 1 & 2 & 3 & 4 \end{vmatrix}$$
, A_{4j} 为 a_{4j} 的代数余子式($j = 1, 2, 3, 4$),则

$$A_{41} + A_{42} + A_{43} - A_{44} =$$
______.

- [3 4 5]
 3. 已知矩阵 $A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & x \end{bmatrix}$ 与 $B = \begin{bmatrix} 2 & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & -1 \end{bmatrix}$ 相似,则 $y = \underline{\hspace{1cm}}$ 4. 设 $A \neq n$ 所方阵, $E \neq n$ 所单位阵,且有 $A^2 2A 4E = \mathbf{0}$,则 $(A + E)^{-1} = \underline{\hspace{1cm}}$ 5. 设向量 $x_1 = (-1, 8, 4)^T$ 和 $x_2 = (4, k, -5)^T$ 分别是实对称矩阵 A 的属于特征值 λ_1

三. 已知
$$A = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$
, 且 $A^2 - AX = E$, 其中 E 为 3 阶单位阵,求矩阵 X 。(10 分)

四、设矩阵
$$A = \begin{bmatrix} 1 & 2 & -1 & 1 \\ 3 & 2 & \lambda & -1 \\ 5 & 6 & 3 & \mu \end{bmatrix}$$
,已知 $R(A) = 2$,求 λ 与 μ 的值. (10 分)

五,求向量组 $\alpha_1=(2,4,2,)^T$, $\alpha_2=(1,1,0)^T$, $\alpha_3=(2,3,1)^T$, $\alpha_4=(3,5,2)^T$ 的一个极 大线性无关组,并将其余向量表示成该极大无关组的线性组合. (10分)

 $\int x_1 + x_3 = \lambda$ 六. 问常数 λ 取何值时, 方程组 $\{4x_1 + x_2 + 2x_3 = \lambda + 2 \$ 有解, 并求出其解的一般形式. $6x_1 + x_2 + 4x_3 = 2\lambda + 3$ (12分)

七. 设矩阵 $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 0 \\ 2 & 0 & -2 \end{bmatrix}$, 求一个正交矩阵 P,使得 $P^{-1}AP = \Lambda$ 为对角矩阵. (14 分)