Experiments

Overall Performance

	V	Veibo					Twitter16										
Method	Class	Acc.	Prec.	Rec.	$ F_1 $		<u> </u>	N	F	Т	U			N	F	Т	U
DTC	F T	0.831	0.847 0.815	0.815 0.824	0.831 0.819	Method	Acc. 	$ F_1 $	F_1	F_1	F_1	Method	Acc.	$ F_1 $	F_1	F_1	F_1
SVM-RBF	F	0.879		0.656		DTC	0.454	0.415	0.355	0.733	0.317	DTC	0.473	0.254	0.080	0.190	0.482
	1		0.579	0.708	0.615	SVM-RBF	0.318	0.225	0.082	0.455	0.218	SVM-RBF	0.553	0.670	0.085	0.117	0.361
SVM-TS	F T	0.885	0.950 0.124	0.932 0.047	0.938 0.059	SVM-TS	0.544	0.796	0.472	0.404	0.483	SVM-TS	0.574	0.755	0.420	0.571	0.526
RvNN	F	0.908	0.912	0.897		SVM-TK	0.750	0.804	0.698	0.765	0.733	SVM-TK	0.732	0.740	0.709	0.836	0.686
	I		0.904	0.918	0.911	RvNN	0.723	0.682	0.758	0.821	0.654	RvNN	0.737	0.662	0.743	0.835	0.708
PPC_RNN+CNN	F T	0.916	0.884 0.955	0.957 0.876	0.919 0.913	PPC_RNN+CNN	0.477	0.359	0.507	0.300	0.640	PPC_RNN+CNN	0.564	0.591	0.543	0.394	0.674
Bi-GCN	F T	0.961	0.961 0.962	0.964 0.962	0.961 0.960	Bi-GCN	0.886	0.891	0.860	0.930	0.864	Bi-GCN	0.880	0.847	0.869	0.937	0.865

- Observe that the deep learning methods performs significantly better than those using hand-crafted features.
- Demonstrates the importance and necessity of studying deep learning for rumor detection.

Experiments

Overall Performance

Weibo							Twitter16										
Method	Class	Acc.	Prec.	Rec.	$ F_1 $		1	N	F	т	U			l NI	F	т	U
DTC	F T	0.831	0.847	0.815	0.831 0.819	Method	Acc.	$ F_1 $	F_1	F_1	F_1	Method	Acc.	$egin{array}{c c} N \ \hline F_1 \end{array}$	F_1	F_1	F_1
SVM-RBF	F	0.879	0.777	0.656		DTC	0.454	0.415	0.355	0.733	0.317	DTC	0.473	0.254	0.080	0.190	0.482
	T	1	0.579	0.708	0.615	SVM-RBF	0.318	0.225	0.082	0.455	0.218	SVM-RBF	0.553	0.670	0.085	0.117	0.361
SVM-TS	F T	0.885	0.950 0.124	0.932 0.047	0.938 0.059	SVM-TS	0.544	0.796	0.472	0.404	0.483	SVM-TS	0.574	0.755	0.420	0.571	0.526
RvNN	F	0.908	0.912	0.897	0.905	SVM-TK	0.750	0.804	0.698	0.765	0.733	SVM-TK	0.732	0.740	0.709	0.836	0.686
	l E		0.904	0.918	0.911	RvNN	0.723	0.682	0.758	0.821	0.654	RvNN	0.737	0.662	0.743	0.835	0.708
PPC_RNN+CNN	T	0.916	0.884 0.955	0.957 0.876		PPC_RNN+CNN	0.477	0.359	0.507	0.300	0.640	PPC_RNN+CNN	0.564	0.591	0.543	0.394	0.674
Bi-GCN	F T	0.961	0.961 0.962	0.964 0.962	0.961 0.960	Bi-GCN	0.886	0.891	0.860	0.930	0.864	Bi-GCN	0.880	0.847	0.869	0.937	0.865

- Bi-GCN outperforms PPC_RNN+CNN in terms of all the performance measures, indicates the effectiveness of incorporating the dispersion structure for rumor detection.
- Since RNN & CNN can't process data with the graph structure, so ignore important structure features of dispersion.