Introducción al Modelamiento en Scikit-Learn

Alfonso Tobar Arancibia

Data Scientist

18-05-2021

github.com/datacubeR/clases-ml/Slides

Qué es modelar?

Modelar es describir una realidad utilizando Lenguajes/Conceptos Matemáticos. Un modelo se utiliza para explicar un sistema, estudiar los efectos de sus componentes y hacer predicciones.

"...en esencia , todos los modelos están equivocados, pero algunos son útiles..."

George Edward Pelham Box

Qué es Machine Learning?

Machine Learning es la capacidad de enseñar a un computador. Una definición formal podría ser:

Una maquina se dice que aprende de la **Experiencia E**, respecto a una clase de **Tarea T** medido por una medida de **Performance P** si su performance de la **Tarea T** medido a través de **P** mejora con la **Experiencia E**.

Tom Mitchell, 1997

Tipos de Modelamiento

Supervised Learning

- Modelos de Regresión
- Modelos de Clasificación
 - Modelos Binarios
 - Modelos Multiclase
 - Modelos Multilabel

Unsupervised Learning

- Clustering
- Reducción de Dimensionalidad
- Factorization Machines

Semi Supervised Learning

Reinforcement Learning

- Autos autónomos
- Robots autónomos
- X Autónomo

Flujo de un Problema de Machine Learning

Scikit Learn

- Es una librería de código abierto en Python diseñada para Machine Learning.
- Nace como un proyecto de Google Summer of Code project, tiene más de 10 años de desarrollo y está auspiciada por:
 - Microsoft
 - Intel
 - Nvidia
 - Universidad de Columbia
 - o Inria
 - BNP Paribas
 - o entre otros.
- Su documentación es demasiado buena. Incluyendo claras instrucciones de cómo usar su API, además de códigos de ejemplo y la teoría asociada a cada modelo. Además todos los modelos suelen tener papers asociados citados en la documentación.
- Es sumamente estricta al momento de aceptar nuevos modelos. Suele exigir 3 años desde su publicación en papers más 200+ citas y uso masivo.

Scikit-learn está orientado a modelos predictivos del lado del ML, mientras que statsmodels está orientado a la inferencia y y modelos más del lado estadístico.

Scikit Learn API

```
X # estructura de datos de dos dimensiones, matriz de features
y # estructura de datos de una dimensión*, vector de target
```

Estimators

```
from sklearn.submodule import Estimator

estimator = Estimator(p_1, p_2, ..., p_k)
estimator.fit(X,y)
estimator.predict(X)*
estimator.score(X,y)
```

Transformers

```
from sklearn.submodule import Transformer

transformer = Transformer(p_1,p_2, ..., p_k)
transformer.fit(X,y)
transformer.transform(X)
transformer.fit_transform(X,y)
```

- * Para modelos de clasificación Multiclass o Multilabel este vector podría ser bidimensional también.
- * Algunos modelos poseen también un método .fit_predict(X)
- * La API de scikit-learn es sumamente ordenada y **consistente** por lo que es fácil de entender/aprender.
- * Normalmente para Estimators Supervisados existirá la versión Classifier y Regressor.

Qué es un modelo?

Normalmente estamos acostumbrados a calcular funciones, donde teniendo un valor de X obtenemos un valor de y siempre y cuando conozcamos la función.

- y = f(x)
- f(x) = x
- $f(x) = x^2$
- f(x) = log(x)
- $f(x) = \sqrt{x}$
- f(x) = blackbox

En un modelo, nosotros conocemos los valores de entrada X y conocemos los valores de salida y, lo que no sabemos es $f(\cdot)$. Por lo tanto al modelar, lo que queremos encontrar es el valor de $f(\cdot)$ tal que cuando le agreguemos X, obtengamos y.

En scikit-learn un modelo será la combinación de Estimators y Transformers con hiperparámetros óptimos que realicen una tarea T determinada.

Ejemplos

Determinar el precio de una casa dado que conozco:

- N de baños,
- N de dormitorios
- Precio de Arriendo,
- Ubicación
- Barrio
- etc.

Problema de Regresión

Determinar si una vacuna contra una enfermedad será efectiva o no si conocemos:

- Concentración de Antígenos,
- Resultados anteriores,
- Dosis
- etc

Problema de Clasificación

Problemas de Regresión

Los problemas de Regresión son aquellos donde nuestra variable a predecir y es de tipo continua.

NOTA: En este caso la experiencia **E** corresponde a los datos, la tarea **T** corresponde a un problema de Regresión y la métrica **P** podría corresponder al error promedio.

La Regresión Lineal

$$E[y|X] = \sum_{i=0}^p eta_i X_i + \epsilon_i, \ p: \ ext{Número de Features}$$

Los valores de β se obtienen mediante un proceso de optimización, este método puede ser:

Mínimos Cuadrados

En ambos métodos se busca minimizar una función de costo, de tal manera de encontrar β_i óptimos que minimizen el error.

$$J = \sum_{i}^{n} (y_i - \hat{y_i})^2, \ n : ext{Número de Observaciones}$$

NOTA: Una función de Costo refleja el error asociado al modelo en cuestión. (ERROR DE AJUSTE)

Aplicación en Scikit-Learn

```
import pandas as pd
df = pd.read_csv('mtcars.csv',index_col = 0)
X = df.drop(columns = 'mpg')
y = df.mpg
```

```
        Mazda RX4
        21.0
        6
        160.0
        110
        3.90
        2.620
        16.46
        0
        1
        4
        4

        Mazda RX4 Wag
        21.0
        6
        160.0
        110
        3.90
        2.875
        17.02
        0
        1
        4
        4

        Datsun 710
        22.8
        4
        108.0
        93
        3.85
        2.320
        18.61
        1
        1
        4
        1

        Hornet 4 Drive
        21.4
        6
        258.0
        110
        3.08
        3.215
        19.44
        1
        0
        3
        1

        Hornet Sportabout
        18.7
        8
        360.0
        175
        3.15
        3.440
        17.02
        0
        0
        3
        2
```

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression()
lr.fit(X,y)
lr.score(X,y)
```

- 0.8690157644777647
- .score() devuelve el \mathbb{R}^2 Score para modelos de regresión. Esta métrica va entre 0 y 1, siendo 0 el peor ajuste y 1 un ajuste perfecto. Ver Docs

Aplicación en Scikit-Learn

• Es posible extraer cada uno de los coeficientes obtenidos al optimizar por mínimos cuadrados. β_i

lr.coef_

```
array([-0.11144048, 0.01333524, -0.02148212, 0.78711097, -3.71530393, 0.82104075, 0.31776281, 2.52022689, 0.65541302, -0.19941925])
```

• Además se puede calcular el Intercepto: β_0

lr.intercept

12.30337415599627

¿Cuál es la interpretación de cada β_i ?

Bias-Variance Trade-Off

- **Bias/Sesgo**: Corresponde a la simplificación de los supuestos que el modelo hace para que el modelo se ajuste al Target de mejor manera.
- Variance/Varianza: Corresponde a las variaciones de la estimación dependiendo de cómo se entrene.

Bias-Variance Trade-Off

Underfitting/Subajuste

Overfitting/Sobreasjustado

Honest Assessment

Cuando se quiere que alguien aprenda, normalmente se enseña contenido/materia (**E**) para realizar una tarea (**T**) y luego se mide (**P**). Pero nunca se mide lo aprendido con respuestas que ya viste.

En los modelos, se debe aplicar exactamente lo mismo. El modelo debiera ser entrenado con E_{train} y luego medido con E_{test} que no haya visto previamente demodo de medir de manera honesta si 'aprendió' o 'memorizó'.

Implementación en Scikit-Learn

```
from sklearn.model_selection import train_test_split

# pueden escribir este código en una sóla línea

X_train, X_test, y_train, y_test = train_test_split(df.drop(columns = 'mpg'), df.mpg,
    test_size = 0.3, random_state = 123)
```

• Esto genera 2 subsets de Train y Test, uno para entrenar y el otro para medir performance. Luego para modelar, el código cambia levemente.

```
from sklearn.linear_model import LinearRegression
lr = LinearRegression() # crea el modelo
lr.fit(X_train,y_train) # entrenamiento en el train_set
lr.score(X_test,y_test) # evaluación en el test_set
```

0.5347705850352262

NOTA: Es posible apreciar que la métrica de performance disminuyó drásticamente, ya que en este caso se está realizando una evaluación honesta de la performance en un dataset que nunca ha visto.

Ejercicios

Ajuste una Regresión Lineal y mida su performance en los siguientes datasets:

NOTA: Utilice siempre un random_state = 123

Diabetes Dataset

```
from sklearn.datasets import load_diabetes
diabetes = load_diabetes(as_frame = True)
X = diabetes.data
y = diabetes.target
```

- Qué se está prediciendo?
- Genere un split del 30% test.
- Calcule cuál es la variable que más aporta al target y la que más resta.

Boston Dataset

```
from sklearn.datasets import load_boston
X,y = load_boston(return_X_y = True)
names = load_boston()['feature_names']
```

- Qué se está prediciendo?
- Genere un split del 20% test.
- Calcule cuál es la variable que más aporta al target y la que más resta.

Ejercicios

```
Score Train: 0.5174979976746197
Score Test: 0.5078285584893742
Max coef: s5
Min coef: s1
```

Score Train: 0.7559380876016175 Score Test: 0.6592466510354097

Max coef: RM Min coef: NOX

```
# Solución Diabetes

X_train, X_test, y_train, y_test = train_test_split(X,y, test_size = 0.3, random_state = 123)

lr = LinearRegression()
lr.fit(X_train, y_train)
print('Score Train:', lr.score(X_train, y_train))
print('Score Test:', lr.score(X_test, y_test))
ind_pos = np.argmax(lr.coef_)
ind_neg = np.argmin(lr.coef_)
print('Max coef:', X.columns[ind_pos])
print('Min coef:', X.columns[ind_neg])
```

Bias-Variance Tradeoff

- Scorers: Los scorers indican ajuste del modelo, normalmente más alto es mejor
- **Errors/Losses**: Indican la diferencia entre el valor predicho y el valor real, en este caso, un valor más bajo es mejor.

MSE: Mean squared error

$$MSE = rac{1}{N}\sum_{i=1}^{N}(y_i - \hat{y_i})^2$$

Pros:

- Métrica fácil de optimizar.
- Simple de entender.
- Castiga los errores grandes de manera más severa mientras que errores pequeños de manera más suave.

```
from sklearn.metrics import mean_squared_error
mean_squared_error(y_test, y_pred)
```

Contras:

- Métrica en unidades cuadráticas, dificil de interpretar.
- Es sensible a los valores extremos.

RMSE: Root Mean squared error

Corresponde a una variación del MSE manteniendo casi todas sus características.

$$RMSE = \sqrt{MSE} = \sqrt{rac{1}{N}\sum_{i=1}^{N}(y_i - \hat{y_i})^2}$$

• Actualmente no existe una implementación directa en Python por lo que se calcula de la siguiente manera:

```
from sklearn.metrics import mean_squared_error
np.sqrt(mean_squared_error(y_test, y_pred))
```

• **Pro**: Se mide en las mismas unidades que la variable a predecir. Por lo tanto es interpretable como un error promedio.

MAE: Mean Absolute Error

$$MAE = rac{1}{N} \sum_{i=1}^N |y_i - \hat{y_i}|$$

```
from sklearn.metrics import mean_absolute_error
mean_abolute_error(y_test, y_pred)
```

En este caso se utiliza el valor absoluto y todos los valores son penalizados de manera proporcional.

Pro

• Es una métrica muy robusta en contra de los valores extremos.

\mathbb{R}^2 Score:

Corresponde al porcentaje de Ajuste de un modelo. Varía entre 0 y 1.

$$R^2 = 1 - rac{rac{1}{N} \sum_{i=1}^N (y_i - \hat{y_i})^2}{rac{1}{N} \sum_{i=1}^N (y_i - ar{y})^2} = 1 - rac{MSE}{rac{1}{N} \sum_{i=1}^N (y_i - ar{y})^2}$$

from sklearn.metrics import r2_score
r2_score(y_test, y_pred)

Pros:

• Es una métrica que permite medir por sí sola.

Contras: Se ve afectada por lo complejidad del modelo, por lo que en ML no es tan usada ya que todos los modelos son relativamente complejos.

• En scikit-learn el (R^2) puede ser un valor negativo para demostrar un pésimo ajuste.

MSPE: Mean Squared Percentage Error*

Corresponde al MSE pero de tipo porcentual

MAPE: Mean Absolute Percentage Error

Corresponde al MAE de tipo Porcentual

Median Absolute Error

Error similar al MAE pero utilizando la mediana para agregar los valores.

^{*}Estas métricas no se encuentran implementadas actualmente en scikit-learn de manera directa, pero pueden ser métricas útiles al momento de evaluar un modelo. En caso de dudas ver docs

Ejercicios

NOTA: Utilice siempre un random_state = 123

Utilice los datasets anteriores de Diabetes y Boston para relizar lo siguiente:

- Mostrar la Predicción de los primeros 10 casos del test set en conjunto con los valores reales.
 - Utililce el método .predict() para calcular y_pred en el test set.
- ullet Calcular las métricas de \mathbb{R}^2 , MSE, RMSE y MAE para el train_set como para el test_set.
- Qué se puede concluir a partir de aquello?
- Muestre qué coeficientes son más importantes en magnitud y su contribución al modelo.
- Cuánto vale el Intercepto para cada modelo?

Ejercicios

```
Diabetes:
R2 Train: 0.5174979976746197
R2 Test 0.5078285584893742
MSE Train: 2854.168253060431
MSE Test: 2926.8005772468828
RMSE Train: 53.424416263169704
RMSE Test: 54.099912913487046
MAE Train: 43.03474379534746
MAE Test: 44.48057319064366
Boston:
R2 Train: 0.7647156501433012
R2 Test 0.6485645742370703
MSE Train: 20.184336639873155
MSE Test: 28.40585481050824
RMSE Train: 4.492698146979514
RMSE Test: 5.329714327288869
MAE Train: 3.1219958710301117
MAE Test: 3.6913626771162673
```


Todas las clases del curso de Machine Learning Aplicado en Scikit-Learn fueron creadas por Alfonso Tobar y están licenciadas bajo Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.