Foundations of Information Processing

Data structures

Considerations about data structures

Consideration 1:

What is needed to interpret data and information?

Consideration 2:

How should complex and many-sided data be stored?

Data is

the regular representation of something in a communicable or processable form.

Information is processed data.

Knowledge is a human interpretation of data, or more typically information.

Data structures: concepts and implementation

- An algorithm needs suitable structured representations of data, depending on a problem to be solved, especially for the input and the output.
- Data types:
 - Integer (int), float (real), character (char), string (str), Boolean.
- Data structures.
 - Aggregates (records).
 - Arrays.
 - Lists, stacks and queues.
 - Trees: binary trees.
 - Graphs.

Source (partly/modified from): J. Boberg, Johdatus tietojenkäsittelytieteeseen, Turun yliopisto, 2010 (in Finnish), and Brookshear, J.G., Brylow, D., Computer Science - An Overview, 13th edition, Addison Wesley, 2003/2019 (figures).

Data types: numbers

Data type	Size in bits	Size in bytes	Range
Unsigned integer	8	1	[0, 255]
	16	2	[0, 65535]
long	32	4	[0, 4294967295]
	64	8	$[0, 2^{64}-1]$
Signed integer	8	1	[-128, +127]
	16	2	[-32768, +32767]
long	32	4	[-2147483648, +2147483647]
	64	8	$[-2^{32}, +2^{32}-1]$
Float (real)	32 (1+23+8)	4	$[10^{-38}, 10^{+38}]$
double	64 (1+52+11)	8	$[10^{-308}, 10^{+308}]$
	128 (1+112+15)	16	$[10^{-4931}, 10^{+4931}]$

the sign bit + the mantissa + the exponent (one bit for the sign) 32 bits => 7 bits for the exponent $\Rightarrow 2^7 = 128 \Rightarrow 2^{128} \Rightarrow 10^{38}$

Data types: Boolean and character

Data type	Size in bits	Size in bytes	Range
Boolean	1 (8)	(1)	[0, 1]
Character	8	1	ASCII ISO 8859-1, 2, UTF-8
	16	2	UTF-16 UCS-2
	32	4	UTF-32 UCS-4
String			A sequence of characters

In theory, the Boolean data type needs one bit only (value 0 or 1). In practice, data is stored in bytes.

Note: different implementations in programming languages.

Data structures

- Data structures are abstract ways of storing encoded data and information in a structured form.
 - For example, how to present the players of an icehockey team and their information?
- The data structure is selected on an application-specific basis.
 - What data structures does the application support?
 - For example, RTF, HTML, XML, LaTeX, LISP, Prolog.
- Structured storing of data suitable to an algorithm makes problem solving more efficient.
 - The algorithm is suitable to the data structure.
 - The data structure is suitable to the algorithm.
- Next, let us see what data structures are available.

Aggregates (records)

- A data structure which consists of fields of different types and sizes, each field with the same structure = the aggregate type.
- The structure is defined in the pseudo language as follows:

```
record_name = RECORD
  field_name: data_type
  ...
ENDRECORD
```

• The use of the structure:

```
record_name variable_name variable_name.field_name
```

personaldata person person.surname := "Kälviäinen" personaldata = RECORD givenname: STRING surname: STRING address: STRING phone: INTEGER FNDRFCORD

Arrays: vectors and matrices

- A data structure which consists of elements of the same data type.
- Dimensions:
 - Vectors (1-dimensional).
 - Matrices (2-dimensional).
- The definitions of the data structure in the pseudo language:

```
datatype variable_name[number_of_elements]
INTEGER A[10]
REAL B[3][3]
```

The use of the data structure:
 variable_name[index_of_element]

```
A[1] := 1
```

B[2][2] := 3.1415926536

One-dimensional arrays in memory

- Memory cells and their addresses in case of a one-dimensional array (a vector).
- "Readings" is the name of a variable where measurements are stored.

Two-dimensional arrays in memory

- Rows and columns in case of a two-dimensional array (a matrix).
- Entries of each row represent the corresponding columns.

Lists, stacks, queues

Definitions:

- List: a collection whose entries (data elements) are arranged sequentially.
- Head: the beginning of a list.
- Tail: the end of a list.
- Stack: entries are inserted and removed only at the head.
- Queue: entries are removed only at the head and new entries are inserted only at the tail.

Storing lists: contiguous and linked

 A contiguous list: the entire list is stored in one large block of memory, with successive entries following each other in contiguous memory cells.

- How about the deletion/insertion? Time-consuming shuffling of entries?
- ⇒ **Linked lists:** a list where memory cells are linked by pointers:
 - Head pointer: the pointer points to the beginning (head) of the list.
 - Null pointer: the pointer marks the end of the list.

The structure of a linked list

- Which one is better? The contiguous list or the linked list?
- How about memory allocation?
- Memory for the pointers?
- A need of changing memory cells/fields when deleting/inserting?

Example: books linked by the author's name

Inserting an entry into a linked list

Deleting an entry from a linked list

Stacks in memory

- Entries are inserted and removed only at the head.
- LIFO: Last-in-first-out.
- Stack's base: the location where the first entry is pushed onto the stack (memory is usually allocated in a contiguous manner).
- Stack pointer: a pointer to the top of a stack.
- Deletion: removes an entry from the top of a stack.
- Insertion: inserts an entry onto the top of a stack.

Queues in memory

 Entries are removed only at the head (the head pointer) and new entries are inserted only at the tail (the tail pointer).

Circular queue: conceptual storage

In the previous page's example, the queue crawls through memory as entries are inserted and removed. => Confine the queue to its reserved block of memory => a circular queue.

b. Conceptual storage with last cell "adjacent" to first cell

An organization chart: an example of a tree

- Hierarchy is needed. Items must have an order how to present.
- In a company maybe quite clear.

A tree as a hierarchical data structure

• The root node, the subtrees, the siblings, the leaf nodes.

Concepts of the tree structure

- Tree: a collection of hierarchically organized information.
- Node: a data element in a tree.
- Root node: the highest node.
- Leaf node: the lowest node in a branch.
- Inner node: a node which contains the parent and at least one child.
- Parent: a node immediately above the node.
- Child: a node immediately below the node.
- Grandparent: parents, grandparents, etc.
- Descendant: children, grandchildren, etc.
- Siblings: nodes having the same parent.
- Subtree: a tree below a node.
- Binary tree: a tree with two children at maximum.
- **Depth:** the number of nodes in the longest path from the root node to a leaf node. In the figure the depth is 4 (the root => the leaf, 4 nodes).

The structure of a node in a binary tree

The data and the pointers:

Cells containing Left child Right child pointer pointer

- A linked structure:
 - The pointer to the root node.
 - Node: the data + the pointers to the children.
- Defined as arrays:
 - A[1] = the root node.
 - A[2],A[3] = the children of A[1].
 - A[4],A[5],A[6],A[7] = the children of A[2]:n ja A[3]:n.

A binary tree using a linked storage

Conceptual tree

Note: that the tree has been just filled with the characters in the alphabetical order, but here is no hierarchy between nodes.

 What would be the benefit of hierarchy?

=> See the next page.

Actual storage organization

Balanced and ordered binary trees

- A tree becomes a robust data structure if the elements of a tree are ordered so that a tree is balanced and ordered.
- Balanced: the heights of leaf nodes differ by one at maximum.
- Ordered: the alphabetical or numeric order can be applied.
 - Example: place smaller numbers in the left and larger numbers in the right in each node, keeping the tree balanced at the same time.
- Thus, the search of an element in the tree is efficient since the search is logarithmic $O(\log_2 n)$, instead of linear O(n) (as in the list).
 - See the lecture notes about the complexity of algorithms for details.

A tree stored without pointers

Conceptual tree

Actual storage organization

Graphs: no limitations to linking nodes

- The tree structure is hierarchical, starting from the root node:
 - Nodes contain child nodes which contain child nodes, etc.
- How about if the nodes could be connected without limitations?
- This kind of a structure is called as a graph.
 - A tree is the special case of a graph (the subset of a graph).
- Example: travelling salesperson
 - How to visit each town once so that the total length of the journey is minimized?

Summary

- The data type is needed when exploring data and information.
- The data structures are abstract ways to store the encoded data in memory in a structured form.
- A structured way to store
 which is suitable for the purpose
 makes the use of data more efficient.

