

Regelungssysteme

1. Mathematische Grundlagen

1.1. Komplexe Zahlen $oldsymbol{z} \in \mathbb{C} = \mathbb{R}^2$

1.2. LaPlace - Korrespondenzen und Rechenregeln

g(t)	$G(s) = \mathcal{L}\{g(t)\}$
Einheitsimpuls $\delta(t)$	1
Einheitssprung $\sigma(t)$	$\frac{1}{s}$
t	$\frac{\frac{1}{s}}{\frac{1}{s^2}}$
$\frac{t^{n-1}}{(n-1)!} \ (n=1,2,3,\ldots)$	$\frac{1}{s^n}$
$t^n \ (n=1,2,3,\ldots)$	$\frac{n!}{s^{n+1}}$
e^{-at}	$\frac{1}{s+a}$
te^{-at}	$\frac{1}{(s+a)^2}$
$\frac{1}{(n-1)!}t^{n-1}e^{-at} \ (n=1,2,3,\ldots)$	$\frac{1}{(s+a)^n}$
$t^n e^{-at} \ (n=1,2,3,\ldots)$	$\frac{\frac{1}{(s+a)^n}}{\frac{n!}{(s+a)^{n+1}}}$
$\sin \omega t$	$\frac{\omega}{s^2 + \omega^2}$
$\cos \omega t$	$\frac{s}{s^2+\omega^2}$
$\sinh \omega t$	$\frac{\omega}{s^2 - \omega^2}$
$\cosh \omega t$	$\frac{s}{s^2 - \omega^2}$
$\frac{1}{a}(1-e^{-at})$	$\frac{1}{s(s+a)}$
$\frac{1}{b-a}(e^{at}-e^{-bt})$	$\frac{1}{(s+a)(s+b)}$
$\frac{1}{b-a}(be^{-bt}-ae^{-at})$	$\frac{(s+a)(s+b)}{(s+a)(s+b)}$
$\frac{\frac{1}{ab}(1 + \frac{1}{a-b}(be^{-at} - ae^{-bt}))}{(1 + \frac{1}{a-b}(be^{-at} - ae^{-bt}))}$	$\frac{1}{s(s+a)(s+b)}$

	Zeitbereich	Frequenzbereich	Kommentar
	$c_1g_1(t) + c_2g_2(t)$	$c_1G_1(s) + c_2G_2(s)$	Linearitätsregel
	$g(t-T_t)$	$e^{-sT_t}G(s)$	Verschiebungsregel
	g(at)	$\frac{1}{a}G(\frac{s}{a})$	Ähnlichkeitsregel
	e^{at}	G(s-a)	Dämpfungsregel
	$\frac{\mathrm{d}g}{\mathrm{d}t}$	sG(s)	Differentiationsregel
	$\int_{0}^{t} g(\tau) d\tau$	$\frac{1}{s}G(s)$	Integrationsregel
П			

Hinweis: wird noch vervollständigt

1.3. Exponentialfunktion und Logarithmus

-	_	
$a^x = e^{x \ln a}$	$\log_a x = \frac{\ln x}{\ln a}$	$\ln x \le x - 1$
$ln(x^a) = a ln(x)$	$\ln(\frac{x}{a}) = \ln x - \ln a$	log(1) = 0

1.4. Matrizen

1.4.1. 2×2 -Matrix invertieren

$$A^{-1} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}^{-1} = \frac{1}{\det A} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

2. Der Regelkreis

Regelfehler	e = w - y	Differenz zwischen "Soll" und "Ist
Stellgröße	u_{S}	Eingang der Regelgröße
Führungsgröße	w	Sollverlauf, Vorgabe
Aufgabengröße	y_A	Die zu beinflussende Größe
Regelgröße	y	Die vom Sensor erfasste Größe
Störgrößen	z_i	Nicht beeinflussbare Störungen

2.1. Standardübertragungsfunktionen

Gelten für den oben dargestellten Standardregelkreis.

$$\begin{split} G_0(s) &= G_{\mathrm{R}}G_{\mathrm{S}}G_{\mathrm{r}} \\ Y(s) &= \frac{G_{\mathrm{R}}G_{\mathrm{S}}}{1+G_0}W + \frac{G_{\mathrm{S}}}{1+G_0}Z_1 + \frac{1}{1+G_0}Z_2 + \frac{-G_0}{1+G_0}Z_3 \\ E(s) &= \frac{1}{1+G_0}W + \frac{-G_{\mathrm{S}}G_{\mathrm{r}}}{1+G_0}Z_1 + \frac{-G_{\mathrm{r}}}{1+G_0}Z_2 + \frac{-G_{\mathrm{r}}}{1+G_0}Z_3 \end{split}$$

Zustand: Ausgang eines Integrators

3. Modellbildung, Linearisierung, lin. Systeme

3.1. Zustandsbeschreibung linearer Systeme

mit r Erregungen, n Zustandsgrößen und k Ausgängen. Die Zustandsgrößen æ müssen einen stetigen Verlauf haben!

Allgemeine Zustandsgleichung: Allgemeine Ausgangsgleichung:	
Zustandsvariable	$\underline{\boldsymbol{x}}(t) \in \mathbb{R}^n$
Ausgangsvariable	$oldsymbol{y}(t) \in \mathbb{R}^k$
Erregungsvektor	$\overline{\underline{oldsymbol{u}}} \in \mathbb{R}^r$
Systemmatrix	$oldsymbol{\mathcal{A}} \in \mathbb{R}^{n imes n}$
Einkopplungsmatrix	$oldsymbol{B} \in \mathbb{R}^{n imes r}$
Auskopplungsmatrix	$oldsymbol{C} \in \mathbb{R}^{k imes n}$
Durchgangsmatrix	$oldsymbol{\mathcal{Q}} \in \mathbb{R}^{k imes r}$

Falls A, B, C oder D zeitvariabel sind handelt es sich um ein LTV-System, falls nicht um ein LTI-System.

3.2. Linearisierung

Gegegeben (nicht linear): $\underline{\dot{x}} = f(\underline{x}, \underline{u})$ $y = g(\underline{x}, \underline{u})$

3.2.1. um eine allg. Referenzlösung

Referenzlösung $\underline{\boldsymbol{x}}^*(t)$, $\boldsymbol{y}^*(t)$, $\underline{\boldsymbol{u}}^*(t)$ mit $t \geq 0$ liegt vor.

$$\Delta \underline{\dot{\boldsymbol{x}}} = \underbrace{\boldsymbol{A}}_{\boldsymbol{z}}(t) \Delta \underline{\boldsymbol{x}} + \underbrace{\boldsymbol{B}}_{\boldsymbol{z}}(t) \Delta \underline{\boldsymbol{u}}$$

$$\underline{\underline{A}}(t) = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix} \Big|_{(\underline{\boldsymbol{w}}^*(t),\underline{\boldsymbol{u}}^*(t))} \qquad \underline{\underline{B}}(t) = \begin{bmatrix} \frac{\partial f_i}{\partial u_j} \end{bmatrix} \Big|_{(\underline{\boldsymbol{w}}^*(t),\underline{\boldsymbol{u}}^*(t))}$$

$$\Delta\underline{\boldsymbol{y}} = \boldsymbol{\boldsymbol{C}}(t)\Delta\underline{\boldsymbol{x}} + \boldsymbol{\boldsymbol{D}}(t)\Delta\underline{\boldsymbol{u}}$$

$$\underline{C}(t) = \begin{bmatrix} \frac{\partial g_i}{\partial x_j} \end{bmatrix} \Big|_{(\underline{\boldsymbol{w}}^*(t),\underline{\boldsymbol{u}}^*(t))} \quad \underline{\mathcal{D}}(t) = \begin{bmatrix} \frac{\partial g_i}{\partial u_j} \end{bmatrix} \Big|_{(\underline{\boldsymbol{w}}^*(t),\underline{\boldsymbol{u}}^*(t))}$$

3.2.2. um eine Ruhelage

Spezielle Referenzlösung \underline{x}^* , y^* , \underline{u}^* konstant in Ruhelage.

$$\begin{array}{lll} \Delta \underline{\dot{\boldsymbol{x}}} = \boldsymbol{A} \Delta \underline{\boldsymbol{x}} + \boldsymbol{B} \Delta \underline{\boldsymbol{u}} & \Delta \underline{\boldsymbol{y}} = \boldsymbol{C} \Delta \underline{\boldsymbol{x}} + \boldsymbol{D} \Delta \underline{\boldsymbol{u}} \\ \boldsymbol{A} = \begin{bmatrix} \frac{\partial f_i}{\partial x_j} \end{bmatrix}_{\begin{pmatrix} \underline{\boldsymbol{x}}^*, \underline{\boldsymbol{u}}^* \end{pmatrix}} & \boldsymbol{C} = \begin{bmatrix} \frac{\partial g_i}{\partial x_j} \end{bmatrix}_{\begin{pmatrix} \underline{\boldsymbol{x}}^*, \underline{\boldsymbol{u}}^* \end{pmatrix}} \\ \boldsymbol{B} = \begin{bmatrix} \frac{\partial f_i}{\partial u_j} \end{bmatrix}_{\begin{pmatrix} \underline{\boldsymbol{x}}^*, \underline{\boldsymbol{u}}^* \end{pmatrix}} & \boldsymbol{D} = \begin{bmatrix} \frac{\partial g_i}{\partial u_j} \end{bmatrix}_{\begin{pmatrix} \underline{\boldsymbol{x}}^*, \underline{\boldsymbol{u}}^* \end{pmatrix}} \end{aligned}$$

4. Darstellung von LTI-SISO Systemen

4.1. Differentialgleichungen (DGL)

Gleichung mit Funktion y und deren n-ten Ableitungen y', y'', \dots Allgemeine DGL n-ter Ordnung:

 $a_ny^{(n)}+\ldots+a_1y'+a_0y=b_mx^{(m)}+\ldots+b_1x'+b_0x$ Gesucht ist eine Funktion y und keine Zahl! In der Praxis werden DGLs numerisch für diskrete Werte gelöst.

4.1.1. DGL-Systeme

Jede DGL lässt sich reduzieren auf ein DGL-System 1. Ordnung:

$$\begin{array}{ll} \text{1. Substituiere } x_i := y^{(i-1)} \text{ und drücke } \dot{x}_i \text{ durch } x_1, ..., x_n \text{ aus.} \\ \Rightarrow \boxed{\dot{\underline{x}}(t) = \underline{A}\underline{x}(t) + \underline{s}(t)} & \text{mit } \underline{x}_{\text{ges}} = \underline{x}_{\text{hom}} + \underline{x}_{\text{part}} \end{array}$$

Hom. Lösung: 1. Bestimme EW λ_i und Basis aus EV $\underline{\boldsymbol{b}}_i$ von $\boldsymbol{\underline{\mathcal{A}}}$

2.
$$\underline{\boldsymbol{x}}_{\mathsf{hom}} = \underline{\boldsymbol{c}} \cdot e^{(x-x_0)} \tilde{\boldsymbol{A}} = \sum_{i=0}^{n} c_i \cdot e^{\lambda_i x} \cdot \underline{\boldsymbol{b}}_i$$

3. Bestimmung der Konstanten durch einsetzen der Anfangsbedingungen!

4.2. Die Übertragungsfunktion

Beschreibt das System vollständig. Wird im Laplacebereich angegeben. Übertragungsfunktion einer lin. DGL n-ter Ordnung in Polynomform:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{\beta_m s^m + \ldots + \beta_1 s + \beta_0}{\alpha_n s^n + \ldots + \alpha_1 s + \alpha_0} = \frac{Z(s)}{N(s)}$$

(n = Ordnung der DGL = Anzahl der Pole)

Übertragungsfunktion der Zustandsbeschreibung: $G(s) = \{C(sE - A)^{-1}B + D\}$

für q = r = 1 (SISO-System): $G(s) = \{\underline{c}^T (sE - A)^{-1}\underline{b} + d\}$

 $\begin{array}{l} \text{Linearfaktorenform: } G(s) = \frac{\beta_m}{\alpha_n} \frac{\prod(s-z_j)}{\prod(1s-p_i)} \\ \text{Zeitkonstantenform: } G(s) = \frac{\beta_0}{\alpha_0} \frac{\prod(1+T_v\,s)}{\prod(1+T_s)} \end{array}$

Partialbruchform: $G(s) = A_0 \sum_{s=n_i} \frac{A_j}{s=n_i} = A_0 + G^+(s)$

4.2.1. Dominierendes Verhalten und Ordnungsreduktion

Pole nahe der Imaginärachse dominieren. Anwendung auf Zeitkonstanten-

- Sortiere Zeitkonstanten nach Größe
- $\bullet \;$ Gilt zwischen 2 benachbarten Werten $T_i > 10 \tau_j$, so können $\tau_j \; \mathrm{und}$
- alle kleineren Werte vernachlässigt werden.
 $G(s) = \frac{K}{\prod_i (1+T_i s)} \frac{1}{\prod_i (1+\tau_j s)} \rightarrow G^*(s) = \frac{K}{\prod_i (1+T_i s)}$

- Zeitkonstanten aus Polen: $T_i=\frac{1}{|p_i|}$ Pole auf oder rechts von Imaginärachse dürfen nicht vernachlässigt

4.2.2. Wichtige spezielle Übertragungsfunktionen (Frequenzantw.)

u(t)	U(s)	Zeitantwort	Frequenzantwort
$\delta(t)$	1	Gewichtsfunktion $g(t)$	G(s)
$\sigma(t)$	<u>1</u>	Übergangsfunktion $h(t)$	H(s)
$t \cdot \sigma(t)$	$\frac{1}{s^2}$	Anstiegsantw.	Rampenantwort
IITE Regler Co (s)			

UTF Regler $G_{R}(s)$ ÜTF Steller/Strecke $G_{S}(s)$

ÜTF Rückführung $G_r(s)$

ÜTF offener Regelkreis $G_{\mathsf{O}}(s) = G_{\mathsf{R}}(s)G_{\mathsf{S}}(s)G_{\mathsf{r}}(s)$

Führungsübertragungsfunktion $G_w(s) = rac{Y(s)}{W(s)}$

Störübetragungsfunktion $G_z(s) = \frac{Y(s)}{Z(s)}$

Es gilt $N_{RK}(s) = N_O + Z_O$

4.2.3. Frequenzgang

Der FG ist die Systemantwort bei harmonischer Erregung $u(t) = e^{j\omega t}$ Nach dem Einschwingen (wird ignoriert) ist die Systemantwort ebenfalls harmonisch, allerdings mit anderer Amplitude und Phase.

Frequenzgang: $G(\mathrm{j}\omega)=G(s)|_{s=0+\mathrm{j}\omega,\omega>0}=A(\omega)e^{\mathrm{j}\varphi(\omega)}$

4.2.4. Zustandsraummodell

DGL n-ter Ordnung:

 $a_n y^{(n)} + \dots + a_1 y' + a_0 y = b_m u^{(m)} + \dots + b_1 u' + b_0 u$ Lässt sich immer reduzieren auf ein DGL-System 1. Ordnung:

$$\underline{\dot{x}} = \begin{bmatrix}
0 & 1 & 0 & \dots & 0 \\
0 & 0 & 1 & \dots & 0 \\
\dots & \dots & \dots & \dots & \dots \\
0 & 0 & 0 & \dots & 1 \\
-a_0 & -a_1 & -a_2 & \dots & -a_{n-1}
\end{bmatrix} \underline{x} + \begin{bmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{bmatrix} u$$
where $x = \frac{1}{2} \begin{bmatrix} u & v' & \dots & v^{(n)} \end{bmatrix}^{\top}$

Kanonische Normalform

zur Entkopplung des Systems bzw. der zugehörigen DGLs. Wähle T, sodass $T^{-1}AT$ eine Diagonalmatrix ist:

$$\begin{split} & \underline{\underline{T}}^{-1} \underline{\underline{A}} \underline{\underline{T}} = \operatorname{diag}(\lambda_i) \\ & \underline{\underline{\hat{x}}_k} = \widetilde{\operatorname{diag}}(\lambda_i) \underline{\underline{x}}_k + \underline{b}_k u \\ & y = \underline{c}_k^{\underline{T}} \underline{x_k} + du \end{split}$$

Regelungsnormalform:

nur die letzte Zustandsvariable \boldsymbol{x}_{Rn} wird direkt durch den Eingang

Steuerbarkeitsmatrix: $\mathbf{S}_S = \begin{bmatrix} \underline{b} & \mathbf{A}\underline{b} & \mathbf{A}^2\underline{b} & \dots & \mathbf{A}^{n-1}\underline{b} \end{bmatrix}$! RNF existiert nur falls S_S regulär ist \rightarrow System ist vollst. steuerbar

• Beobachtungsnormalform:

 $\underline{\dot{x}}_B = \underline{A}_B \underline{x}_B + \underline{b}_B u \quad \underline{x}_B(t_0) = \underline{x}_{B0}$ $y = \underline{c}_B^T \underline{x}_B + du$

$$\begin{split} \mathbf{S}_B &= \begin{bmatrix} \underline{c}^T & \underline{c}^T \mathbf{A} & \underline{c}^T \mathbf{A}^2 & \dots & \underline{c}^T \mathbf{A}^{n-1} \end{bmatrix}^\top \\ \text{Transformationsmatrix} \\ \mathbf{T}_B &= \begin{bmatrix} \underline{s}_B & \mathbf{A}\underline{s}_B & \dots & \mathbf{A}^{n-1}\underline{s}_b \end{bmatrix} \\ \mathbf{A}_R &= \mathbf{A}_R^T & \underline{b}_R &= \underline{c}_B & \underline{c}_R &= \underline{b}_B \end{split}$$

4.3. Schockschaltbildalgebra

Serienschaltung: $G(s) = \prod G_i(s)$

Parallelschaltung: $G(s) = \sum G_i(s)$

Kreisstruktur: $G(s) = \frac{G_{\text{Vor}}(s)}{1 \mp G_{\text{Vor}}(s) G_{\text{Riirk}}(s)}$

Umformung: $\frac{\frac{A}{B}}{1\pm\frac{A}{C}} = \frac{DA}{AC\pm BD}$ $\frac{1}{1+\frac{A}{C}} = \frac{B}{A+B}$

Umformung bei $G_{\text{R\"uck}} = 1$: $\frac{\frac{A}{B}}{1 + \frac{A}{A}} = \frac{A}{A \pm B}$

4.4. Anfangs und Endwertsatz

Vorraussetzung: höchstens ein einfacher Pol von Y(s) am Ursprung, die restlichen in der linken Halbebene.

$$\lim_{t\to 0^+} x(t) = \lim_{s\to \infty} sX(s) \qquad \qquad \lim_{t\to \infty} x(t) = \lim_{s\to 0^+} sX(s)$$

Anfangswertsatz: $y(t=0^+) = \lim_{s \to \infty} [sG(s)U(s)]$

Endwertsatz: $y(t \to \infty) = \lim_{s \to 0} [sG(s)U(s)]$

Regelfehler: $e(\infty) = w(\infty) - y(\infty) = \lim_{s \to 0} s \left(1 - G_w(s)\right) W(s)$

5. Systembausteine

System	Zeitbereich	Frequenzbereich $G(s)$
P-System	$y(t) = K_{P} u(t)$	K_{P}
I-System	$\dot{y}(t) = K_{\parallel} u(t)$	$\frac{K_{\parallel}}{s}$
D-System	$y(t) = K_{D} \dot{u}(t)$	$\overset{\circ}{K_{D}}s$
Totzeitsystem	$y(t) = Ku(t - T_t)$	Ke^{-sT_t}
$PT_1 ext{-}Systeme$	$T\dot{y}(t) + y(t) = K_{P}u(t)$	$\frac{K_{P}}{1+sT}$
$PT_2 ext{-}Systeme$	$\ddot{y}(t) + 2D\omega_0\dot{y}(t) + \omega_0^2 y$	$K_{P} \frac{\omega_0^2}{s^2 + 2D\omega_0 s + \omega_0^2}$
	$= K_{P} \omega_0^2 u(t)$	

Einstellzeit T_{Fin} bis Signal im 5% Bereich stabil.

- 1. Verschieben der Summationsstelle
- 2. Vertauschen/Zusammenfassen der Summationsstelle

5.1. PT₂ Systeme

$$\begin{split} & \text{DGL: } \ddot{y} + 2D\omega_0 \dot{y} + \omega_0^2 y = K\omega_0^2 u \\ & \ddot{\text{U}} \text{bertragungsfunktion: } G(s) = K\frac{\omega_0^2}{s^2 + 2D\omega_0 s + \omega_0^2} \\ & n \text{ Pole } \neq 0 \text{ im Nenner: } \mathbf{T}_n \text{ System} \\ & \text{Allgemeine Polform: } p_{1/2} = \underbrace{-\omega_0 D}_{} \pm \mathbf{j} \underbrace{\omega_0 \sqrt{1 - D^2}}_{} \end{split}$$

Dämpfung	Systemverhalten
D < 0	System instabil
D = 0	Grenzstabil, Dauerschwingung, Resonanzkatastrophe
$D \in]0;1[$	Abkl. Schwingung, Konjugiert komplexe Pole Für $0 < D < \frac{\sqrt{2}}{2}$ Resonanz $\omega_r = \omega_0 \sqrt{1-2D^2}$ $A_{\max} = A(\omega_r) = \frac{K}{2D\sqrt{1-D^2}}$
$D = \frac{\sqrt{2}}{2}$	Minimale Einschwingzeit $T_{\sf Ein}$
D = 1	$Aperiodisch \leftrightarrow reeler \; Doppelpol \leftrightarrow Diskriminante = 0$
D > 1	Griechfall, verschiedene reele Pole

6. Stabilität von LTI-Systemen

6.1. Definitionen

stabil bzw. zustandsstabil: $\left\|\underline{x}_0\right\|<arepsilon_1\Rightarrow\left\|\underline{\underline{x}}(t)\right\|<arepsilon_2$ asymptotisch stabil: zustandsstabil und $\lim \|\underline{\boldsymbol{x}}(t)\| = 0$ robust stabil: bleibt auch bei Paramterabweichungen stabil. Beispiel untersch. Systemmatrix: $\forall A \in \{A_{\min}; A_{\max}\}$ stabil

6.1.1. Stabilitätsbedinung für LTI-Systeme

Re
$$\{\lambda_i(A)\}\ < 0 \quad i = 1, ..., n$$

6.2. Routh-Hurwitz-Kriterium

Gegeben:

charakteristisches Polynom: $N(s) = b_n s^n + b_{n-1} s^{n-1} + \ldots + b_0$

Notwendige Bedingung: $b_i > 0 \quad \forall i \leq n \text{ oder } b_i < 0 \quad \forall i \leq n$ Betrachte Koeffizienten b_i des Nenners von G(s)

n = 1: $b_1 > 0,$ $b_0 > 0$ n=2: $b_2>0,$ $b_1>0,$ $b_0>0$ n=3: $b_3>0,$ $b_2>0,$ $b_1>0,$ $b_0>0$ $b_2b_1 - b_0b_3 > 0$ $n=4: \quad b_4>0, \quad b_3>0, \quad b_2>0, \quad b_1>0, \quad b_0>0$ $b_3b_2b_1 - b_0b_3^2 - b_1^2b_4 > 0$

> Ein System ist dann und nur dann stabil, wenn gilt: $b_n > 0$ und alle n Hurwitzdeterminanten > 0

6.3. Direkte Methode von Lyapunov

Der GGP \boldsymbol{x}^* ist asymptotisch stabil, wenn eine Lyapunov-Funktion $V(\boldsymbol{x})$ gefunden werden kann mit:

- 1. $V(\underline{x}^*) = 0$
- 2. $V(\underline{x}) > 0 \quad \forall \underline{x}$
- 3. $\frac{\mathrm{d}}{\mathrm{d}x}V(x) < 0 \quad \forall \text{ Lösungen } x(t) \text{ der DGL}$

Für lineare System mit Systemmatrix A:

$$\underline{\underline{A}}^{\top}\underline{\underline{P}} + \underline{\underline{P}}\underline{\underline{A}} = -\underline{\underline{Q}}$$

Direkte Methode von Lyapunov für lineare Systeme

- ullet Wähle $oldsymbol{Q} = oldsymbol{E}_n$
- ullet Berechne $oldsymbol{P}$
- ullet System asymptotisch stabil $\Longleftrightarrow P$ symm. und pos. definit

6.4. Eigenwerte und Polstellen

6.4.1. Pole

Pole p_i von G(s): Alle $\operatorname{Re}\left\{p_i\right\} < 0$ $G(s) = \sum \frac{k_i}{s - p_i}$ \Rightarrow $g(t) = \sum k_i e^{p_i t}$

6.4.2. Dominanz im System

Vorraussetzung $T_{\rm max} > au_{\rm min}$ Große Zeitkonstanten, Pole mit pos. Realteil (instabil)

6.5. Zustandssteuerbarkeit und -beobachtbarkeit

6.5.1. Zustandssteuerbarkeit

Def.: Man kann mit $\boldsymbol{u}(t)$ in endlicher Zeit $\boldsymbol{x}(t<\infty)=0$ erreichen

Bedingung: Rang $(\boldsymbol{Q}_{SZ}) = n$ bzw. $\det(\boldsymbol{Q}_{SZ}) \neq 0$

mit Zustandssteuerbarkeitsmatrix $Q_{SZ} = [B, AB, \dots, A^{n-1}B]$

6.5.2. Zustandsbeobachtbarkeit

Def.: Anfangszustände \underline{x}_0 aus Verlauf $y(t<\infty)$ bestimmbar

Bedingung: $\mathrm{Rang}(oldsymbol{Q}_{BZ}) = n$ bzw. $\det(oldsymbol{Q}_{BZ})
eq 0$ mit Zustandssteuebeobachtbarkeitsmatrix $Q_{SZ} = [C^{\top}, A^{\top}C^{\top}, \dots, (A^{\top})^{n-1}(C^{\top})]$

6.6. E/A (BIBO) Stabilität (äußere Stabilität)

$$\operatorname{Re}\left\{p_i\right\}<0 \quad i=1,2,\ldots n$$

∑ ist E/A-stabil, falls gilt:

Definition: $\|\boldsymbol{u}(t)\| < \varepsilon_1 \Rightarrow \|\boldsymbol{x}(t)\| < \varepsilon_2$

Pole der Übertragungsfunktion:

 $\text{Re}\{p_i\} < 0 \quad i = 1, 2, \dots n$

Stabilität anhand von PN-Diagramm und Impulsantwort:

Zusammenhang zwischen innerer und äußerer Stabilität

Falls \(\subseteq \text{vollst. steuer- und beobachtbar, oder nur auf einer Untermenge} \) steuer- und beobachtbar: ⇒ asymptotisch stabil ⇔ E/A-stabil

Stabilitätsreserve

Absolut: $\sigma_{qr} = \min p_i$

Relativ: $D_{qr} = \cos(\varphi_{qr})$

7. Stabilitätsanalyse im Frequenzteich

für alle Systeme (auch mit Totzeit) möglich

Abtastfrequenz Grenzfrequenz ω_a Systembandbreite ω_B

7.1. Frequenzgangfunktion $G(j\omega)$

Beschreibt die Auswirkungen von sinusförmigen Anregungen auf die Sy-

Die Auswirkungen auf Amplitude A und Phasenverschiebung φ ergeben die Frequenzgangfunktion $G(j\omega)$

$G(j\omega) = A(\omega)e^{j\varphi(\omega)} = \text{Re}\left\{G(j\omega)\right\} + j \text{Im}\left\{G(j\omega)\right\}$

Einschwingzeit: $T_{\sf Ein} pprox rac{3}{\omega_{\sf D1}}$ Stabilitätskriterien mit Totzeit:

geschl. RK ist E/A stabil falls: Phasenrand $\Psi_{\mathsf{R}} > 0$, bzw. Amplitudenrand $A_{\mathsf{R}} > 1$

 $\Psi_{\rm R} \approx 30^{\circ} \Leftrightarrow {\rm gutes~St\"{o}}{\rm rverhalten}$ $\Psi_{\rm R} \approx 60^{\circ} \Leftrightarrow {\rm gutes\ Folgeverhalten}$ Bodediagramm:

Amplituden-Durchtrittsfrequenz ω_{D1} : $A(\omega_{D1}) = 1$ $\varphi(\omega_{D2}) = -\pi = -180^\circ$ Phasen-Durchtrittsfrequenz ω_{D2} Phasenrand/Phasenreserve Ψ_R : $\Psi_R = \varphi(\omega_{D1}) + \pi$ $\frac{1}{A_D} = A(\omega_{D2})$ Amplitudenrand/-reserve $A_R (= K_{krit})$

7.1.1. Schwingbedingung

Situation in der der Regelkreis sich selbst erregen und (theoretisch) mit ω_{krit} weiterschwingen würde.

$$G_0(j\omega) \stackrel{!}{=} -1 + j0$$

Der Regelkreis befindet sich an der Stabilitätsgrenze:

 \Rightarrow Dauerschwingungen mit $\omega = \omega_{
m krit}$ und $K = K_{
m krit}$ (krit. Verstärkung)

7.2. Nyquist

7.2.1. Nyquist Ortskurve

Die Nyquist Ortskurve ist die Frequenzgangortskurve des offenen Regelkreises $G_o(s)$

7.2.2. Nyquist Kriterium

Ein geschlossener linearer Regelkreis ist dann stabil, wenn die Ortskurve des offenen Regelkreises $G_0(j\omega)$

- 1. *nicht* durch -1 + 0j verläuft und
- 2. die Phasenänderung von -1 + 0j aus gesehen folgende Bedingung

$$W_{\rm ist} = \mathop{\Delta}\limits_{\omega=0}^{\omega=\infty} \Phi \stackrel{!}{=} W_{\rm soll} = \pi n_{\rm rechts} + \textstyle \frac{\pi}{2} n_{\rm auf}$$

 n_{rechts} : Anzahl der Pole von $G_0(s)$ rechts der Imaginärachse n_{auf} : Anzahl der Pole von $G_0(s)$ auf der Imaginärachse

7.2.3. Linke-Hand-Regel

anwendbar falls $n_r = 0$ und $n_a \le 1$

Der geschlossens Regelkreis ist stabil, wenn beim Entlangwanderen auf der $G_0(i\omega)$ - Ortskurve von $\omega=0$ nach $\omega=\infty$ (Blick nach vorne!) der kritische Punkt P_{krit} beim Passieren des diem am nächsten liegenden Ortskurvenabschnittes stets linker Hand liegt.

7.3. Bode-Diagramm

aufteilung der Frequenzgangfunktion in Phase $(\varphi(\omega))$ und Amplitude

$$G(j\omega) = A(\omega)e^{j\varphi(\omega)}$$

7.3.1. Typische Regelstrecken

Die Eckfrequenz ω_E bezeichnet die Stelle von $G(j\omega)$ mit $A(\omega) = \frac{K}{\sqrt{2}}$

Zusätzlich gilt: $\omega_E = \frac{1}{T}$

Im PT_1 -System gilt: $A(\omega_E) = \frac{K}{\sqrt{2}}$ $\omega_B = \omega_E$

Baustein	Auswirkung auf Amplitude	Ausw. Phase
Verstärkung K	A(w) = K	$\varphi(\omega) = 0$
Pol im Ursprung	1:1 Abfall, $A(\omega=1)=1$	$\varphi(\omega) = -90^{\circ}$
Reeller Pol $s=-\omega_E$	$A(\omega)=1$ für $\omega\ll\omega_E$	$\varphi(\omega) = 0$
	1:1 Abfall für $\omega\gg\omega_E$	$\varphi(\omega) = -90^{\circ}$
Weitere Auswirkungen siehe Skript S. 130		

7.4. Systeme mit Totzeit

lassen sich schwer regeln.

Stabilitätsbedingung: $0 < K_0 < 1$

bleibende Regeldiffernz nach Sprunganregung $\sigma(t)$ immer > 0, 5

8. Grundlagen Reglerentwurf

Ziel: ideale Führung und ideal Störungsrobust:

 $y(t) \stackrel{!}{=} 1 \cdot w(t) + \sum_{i=1}^{n} 0 \cdot z_{i}(t)$ Generell: P-Strecke mit I-Regler, I-Strecke mit P-Regler!

8.1. Entwurfsvorschriften

Stabilität: $\Psi_R > 0$

Gutes stationäres Verhalten: $|G_o(j\omega)|_{\omega\ll\omega_D 1}\gg 1 o$ I-Regler oder

Gutes Einschwingverhalten:

 $|G_o(j\omega)| \approx \frac{1}{-\omega}, \quad 0, 5\omega_{D1} \leq \omega \leq 5\omega_{D1}$

 $\begin{array}{l} {}^{\omega}_{D1} \\ {\rm Bandbreite:} \ \omega_{B} \approx \omega_{D1} \\ {\rm Einschwingzeit:} \ T_{\rm ein} = 3\tilde{T} \approx \frac{3}{\omega_{D1}} \end{array}$

gutes Folgeverhalten: $\Psi \approx 60^{\circ}$ gutes Störverhalten: $\Psi \approx 30^{\circ}$

wenig Messrauschen: $|G_o(\mathrm{j}\omega)||_{\omega\gg\omega_{D1}}\ll 1$

8.2. Reglerentwurf nach Ziegler-Nichols

	_	
K_R	T_n	T_v
0.5 $K_{R,krit}$	(∞)	(0)
0.45 $K_{R, krit}$	0.85 $T_{ m krit}$	(0)
$0.7~K_{R,\mathrm{krit}}$	0.4 T_{krit}	$0.15~T_{krit}$
	0.5 $K_{R, m krit}$ 0.45 $K_{R, m krit}$	$\begin{array}{ccc} 0.5 \ K_{R, \rm krit} & (\infty) \\ 0.45 \ K_{R, \rm krit} & 0.85 \ T_{\rm krit} \end{array}$

8.3. Wurzel Ortskurven WOK

Entspricht Verlauf der Polstellen pRK des geregelten Kreises G_{RK} für steigendes K

WOK ist immer symm. zur Realachse!

Totzeitglied im System ⇒ WOK ungültig!

$$G_0(s;K) = K \frac{Z_0(s)}{N_0(s)} = KQ \frac{\prod_{\mu=1}^m (s - q_{\mu}^0)}{\prod_{\nu=1}^n (s - p_{\nu}^0)}$$

Falls offener RK G_0 linear vom Faktor K abhängt gelten folgende Regeln für den geschlossenen RK GRK:

- Die Pole p^{RK} liegen symm, zur reellen Achse bzw. darauf
- n Äste beginnen für K=0 in den Polen p^0
- m Äste enden für $K \to \infty$ in den NST q^0
- $\bullet \ n-m$ Äste enden für $K \to \infty$ im Unendlichen, ihre Asymptoten laufen durch den Wurzelschwerpunkt $p_w = \frac{\sum p^0 - \sum q^0}{n-m}$ und schließen mit der reellen Achse den Winkel Φ_I ein
- $\Phi_l=\frac{(2l-1)\pi}{n-m}$ für KQ>0 bzw. $\Phi_l=\frac{(2l-2)\pi}{n-m}$ für KQ<0 $\mathsf{mit}\ l = 1, \ldots, (n-m)$
- Ein Punkt der reellen Achse ist genau dann Teil der WOK des geschlossenen Kreises, wenn die Anzahl der rechts von dem Punkt liegenden Pole und Nullstellen des offenen Kreises
 - für KQ > 0 ungerade - für KQ < 0 gerade oder null

Verzweigungspunkt (Dplt. Polstelle): $N_{RK}(s) = 0 \wedge N'_{DK}(s) = 0$ Falls eine Grenzgerade $\mathrm{Re}\left\{s
ight\} \,=\, \sigma_{\mathrm{gr}}\,<\,0$ existiert und alle Pole links von dieser sind so schwingt das System schneller als $T = \frac{1}{|\sigma_{\sigma r}|}$ ein.

8.4. Auswahl von Reglern

für praktische Anwendungen:

	Strecke	Regler				
Тур	Beispiel	P	- 1	PΙ	PD	PID
Р	Durchfluss	-	g	F,S	-	aufw.
PT_1	Druck	F,e	g	S	g	aufw.
PT_n	Temperatur	g,e	-	g	-	F,S
T_n	Förderband	-	g	F,S	-	-
IT_n	Füllstand	F	i	S	F	S
I_2	Kurs, Lage	i	-	-	F,S	-

i: instabil, g: geeignet, F: gute Führung, S: Störungsrobust, e: bleibender Regelfehler, aufw.: zu aufwendig

9. Erweiterte Regelungsstrukturen

9.1. Vorsteuerung

Zusätzlich zum Eingang wird noch eine Steuerrung hinzugefügt Idealfall: $G_{\mathsf{V}}(s) = \frac{1}{G_{\mathsf{H}}(s)G_{\mathsf{S}}(s)}$

9.2. Störgrößenaufschaltung

Idealfall:
$$G_A(s) = -\frac{1}{G_H(s)}$$

9.3. Kaskadenregelung

Verschachtelte Regelrückführungen. Wird von außen nach innen reaktiver! System lässt sich von innen nach außen hochfahren. Beispiel: Fahrzeugabstandregelung mit innerer Geeschwindigkeitsregelung

10. Zustandsregelung

Falls Stabilität der Zustände von Interesse. Erlaubt Platzierung der Eigenwerte/Pole durch Messung/Beobachtung der Zustände

10.1. Zustandsbeobachter (Simulation)

Ein Zustandsbeobachter ist ein dynamisches (Hilfs) System das alle nicht direkt messbaren Zustands- oder davon abgeleitete Größen aufgrund weniger direkter Messungen und durch ein Prozessmodell rekonstruiert bzw.

10.1.1. Vollständiger Zustandsbeobachter

$ ilde{oldsymbol{x}}$	Schätzfehler		
$\underline{\boldsymbol{v}},\underline{\boldsymbol{w}}$	Prozess- bzw. Messrauschen		
\underline{y}	direkte Messungen		
\underline{u}	Eingangsgrößen		
$\underline{\boldsymbol{x}}$	Zustände		
\boldsymbol{L}	Beobachter-Rückführmatrix		

Gegeben: vollst. beobachtbares MIMO-System:

$$\dot{\underline{x}} = \underbrace{A}\underline{x} + \underbrace{B}\underline{u} + \underbrace{G}\underline{v} \qquad \underline{y} = \underbrace{C}\underline{x} + \underline{w}$$

allgemeiner Form eines Beobachters:

$$\hat{\underline{\hat{x}}} = \hat{A}\hat{\underline{x}} + \hat{B}\underline{u} + \hat{L}y \qquad \hat{y} = \hat{C}\hat{\underline{x}}$$

Schätzfehler:
$$\underline{\tilde{\boldsymbol{x}}}(t) = \underline{\hat{\boldsymbol{x}}}(t) - \underline{\boldsymbol{x}}(t)$$

Asymptotischer Zustandsbeobachter

$$\frac{\dot{\hat{x}}}{\hat{x}} = \underbrace{(A - \underline{L}\underline{C})}_{\hat{A} = A_{\mathsf{Ren}}} \hat{\underline{x}} + \underline{B}\underline{u} + \underline{L}\underline{y} \qquad \hat{\underline{y}} = \underline{C}\hat{\underline{x}}$$

alternative Schreibweise:
$$\underline{\hat{x}} = A\hat{x} + B\underline{u} + L(\underline{y} - C\hat{x})$$

Anschaulich ist der Beobachter ein 'Regelkreis' der die Schätzwerte für unbekannte Größen im System kontinuierlich verbessert und letztenendes den 'Regel'fehler minimiert.

$$\text{Fehler-DGL (inkl. Rauschterm): } \underbrace{\frac{\overset{\text{inhomogen}}{\underline{\hat{\boldsymbol{x}}}} = (\underline{\boldsymbol{A}} - \underline{\boldsymbol{l}}\underline{\boldsymbol{c}}^\top)\underline{\tilde{\boldsymbol{x}}}}_{\text{homogen}} + \underline{\boldsymbol{l}}w - \underline{\boldsymbol{G}}\underline{\boldsymbol{v}}}_{\text{homogen}}$$

Faustregel (für einen guten Kompromiss zwischen schnellem Einschwingen und Rauschen): Re $\{\lambda_i(\hat{\mathbf{A}})\} \leq \operatorname{Re}\{\lambda_i(\hat{\mathbf{A}})\} \quad \forall i$

10.1.2. Kalman-Bucy-Filter

Ziel: Bestimmung einer (rausch)optimalen L-Matrix.

Filtergleichungen:
$$\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$$

 $oldsymbol{L} = oldsymbol{\Pi}_+ oldsymbol{C}^ op oldsymbol{W}^{-1}$ mit Π_+ ist Kovarianzmatrix des Schätzfehlers.

Kovarianzgleichung: $-A\Pi - \Pi A^{\top} + \Pi C^{\top} W^{-1} C\Pi = GVG^{\top}$

10.1.3. Zustandsraum-Kompensator

Zusammengesetzte Regeleinrichtung aus Zustandsregler und Zustandsbe-

$$G_{\text{komp}}^{y}(s) = \frac{U(s)}{Y(s)} =$$

$$= -\underline{\boldsymbol{k}}^{\top} (s\boldsymbol{\tilde{E}} - \underline{\boldsymbol{A}}_{\mathsf{komp}})^{-1} \underline{\boldsymbol{l}} = \frac{\det \begin{bmatrix} (s\boldsymbol{E} - \underline{\boldsymbol{A}}_{\mathsf{komp}}) & -\underline{\boldsymbol{l}} \\ \underline{\boldsymbol{k}}^{\top} & 0 \end{bmatrix}}{\det [s\boldsymbol{E} - \underline{\boldsymbol{A}}_{\mathsf{komp}}]}$$

$$\begin{split} G_{\mathsf{Komp}}^{w'}(s) &= \frac{U(s)}{W'(s)} = -\underline{\boldsymbol{k}}^\top (s \underline{\boldsymbol{E}} - \underline{\boldsymbol{A}}_{\mathsf{komp}})^{-1} \underline{\boldsymbol{b}} + 1 \\ \mathrm{mit} \ \underline{\boldsymbol{A}}_{\mathsf{komp}} &= \underline{\boldsymbol{A}} - \underline{\boldsymbol{L}}\underline{\boldsymbol{c}}^\top - \underline{\boldsymbol{b}}\underline{\boldsymbol{k}}^\top \end{split}$$

mit
$$\mathbf{A}_{\text{komp}} = \mathbf{A} - \mathbf{b}\mathbf{c}^{\top} - \mathbf{b}\mathbf{k}^{\top}$$

$$\text{Nullstellen } Z^y_{\mathsf{Komp}}(s) = -\det \begin{bmatrix} s\pmb{E} - \pmb{A}_{\mathsf{Komp}} & -\underline{\pmb{l}} \\ \underline{\pmb{k}}^\top & 0 \end{bmatrix} = 0$$

Polstellen
$$N_{\mathsf{Komp}}^{y,w'}(s) = \det(s\mathbf{E} - \mathbf{A}_{\mathsf{Komp}}) = 0$$

11. Zeitdiskrete Regelungsmodelle

$$\underline{\boldsymbol{x}}_k = \underline{\boldsymbol{x}}(t_k) = \underline{\boldsymbol{x}}(kT_{\mathsf{A}})$$

Differenzengleichung ($\underline{\dot{\boldsymbol{y}}}_{k}=\underline{\boldsymbol{y}}_{k+1}$):

 $a_n y_{k-n} + a_{n-1} y_{k-n+1} + \dots + a_0 y_k = b_m u_{k-m} + \dots + b_0 u_k$

11.1. Z-Übertragungsfunktion

Z-Transformation $x(t) \circ \overset{\mathcal{Z}}{\longrightarrow} X(z)$

Differenzensatz: $x_{k+1} \circ \overset{\mathbb{Z}}{\longrightarrow} zX(z) - zx_0$

$$H(z) = \frac{Y(z)}{U(z)} = \frac{\beta_r z^r + \ldots + \beta_1 z + \beta_0}{\alpha_n z^n + \ldots + \alpha_1 z + \alpha_0}$$

MIMO
$$\underline{\underline{H}}(z) = \frac{\underline{\underline{Y}}(z)}{\underline{\underline{U}}(z)} = \underline{\underline{C}}(z\underline{\underline{1}} - \underline{\underline{A}})^{-1}\underline{\underline{B}} + \underline{\underline{D}}$$

Es gilt: $\underline{\underline{A}} = \underline{\underline{T}}\underline{\underline{\Lambda}}\underline{\underline{T}}^{-1}$ $\underline{\underline{A}}^k = \underline{\underline{T}}\underline{\underline{\Lambda}}^k\underline{\underline{T}}^{-1}$

11.2. Stabilität

Anhand der Eigenwerte λ_i der zeitdiskreten Systemmatrix A:

System stabil für $|\lambda_i(\mathbf{A})| < 1, \quad i = 1, 2, \dots, n$

11.3. Steuerbarkeit und Beobachtbarkeit

Allgemein analog zum kontinuierlichen Fall.

Steuersequenz \underline{u}_s , um Anfangszustand \underline{x}_0 in endlicher Zeit in Nullzustand zu überführen, kann berechnet werden:

Lösungsformel: $\underline{\boldsymbol{x}}_k = \underline{\boldsymbol{\mathcal{A}}}^k\underline{\boldsymbol{x}}_0 + \sum_{j=1}^{k-1}\underline{\boldsymbol{\mathcal{A}}}^{k-j-1}\underline{\boldsymbol{\mathcal{B}}}\underline{\boldsymbol{u}}_j$

11.4. Rechteck-Approximation

$$\begin{array}{lll} \Delta y := x_k h & \Rightarrow & y_k = y_{k-1} + x_k h \\ \text{Laplace in Z Umrechnen: } s \hat{=} \frac{z-1}{hz} = \frac{1-z^{-1}}{h} \end{array}$$

11.5. Trapez-Approximation

Laplace in Z Umrechnen: $s = \frac{2}{h} \frac{z-1}{z+1} = \frac{2}{h} \frac{1-z^{-1}}{1+z-1}$

11.6. Wahl der Abtastrate

Abtastrate
$$h=T_A=rac{1}{f_A}$$
 $15\omega_B\leq\omega_A\approx20\omega_g\leq50\omega_B$

- Zeitverhalten des kontinuierlichen geschlossenen Regelkreises bestimmen, z.B. durch Partialbruchzerlegung und Grenzwerte anhand Abb. 11.11 (S.199)
- T', T_e bzw. T' berechnen.
- Nach Abbildung T_A berechnen.

11.7. Schutzfilter

Messrauschen lässt sich durch Schutzfilter dämpfen. $\omega_A=2\pi f_A$

- ullet Butterworth-Filter 1. Ordnung o einfach
- $G_{\rm r}(s) = \frac{0.5\omega_A}{s+0.5\omega_A}$ Butterworth-Filter 2. Ordnung \rightarrow steilere Flanke

$$G_{\mathsf{r}}(s) = \frac{(0.5\omega_A)^2}{s^2 + \sqrt{2}(0.5\omega_A)s + (0.5\omega_A)^2}$$

12. Ereignisdiskrete Steuerung und Petrinetze

12.1. Petrinetze N = (P, T, F)

P die Menge Plätze (Zustände)

Alternativ-

verzweigung

N die Menge der Transitionen oder Übergänge

 $F \subseteq (P \times T) \cup (T \times P)$ Menge der gerichteten Kanten Marken auf Plätzen zeigen an, dass der Zustand aktiv ist.

Schalten: Alle Plätze vor transition müssen markiert sein, nach dem schalten sind alle Plätze hinter der transition markiert.

Simultan-Synchro-Begegnung verzweigung

13. Technik

Kette

Auch wichtig:

Schrödingers Katze:

Anhang

13.1. Mögliche Arten von WOKs:

13.2. Normalformen Kanonische Normalform:

$$G(s) = \frac{\theta_1 c_1}{s - \lambda_1} + \frac{\theta_2 c_2}{s - \lambda_2} + \frac{\theta_3 c_3}{s - \lambda_3}$$

Regelungsnormalformnormalform:

$$G(s) = \frac{\frac{1}{s^3}(c_2s^2 + c_1s + c_0)}{1 + \frac{1}{s^3}(a_2s^2 + a_1s + a_0)} = \frac{c_2s^2 + c_1s + c_0}{s^3 + a_2s^2 + a_1s + a_0}$$

Beobachtungsormalform: u

$$G(s) = \frac{(b_0 + b_1 s + b_2 s^2) \frac{1}{s^3}}{1 + \frac{1}{s^3} (a_0 + a_1 s + a_2 s^2)} = \frac{b_0 + b_1 s + b_2 s^2}{s^3 + a_2 s^2 + a_1 s + a_0}$$

13.3. Strecke/Regler Auswahl

DE C			bleibende Regeldifferenz e_{∞} für			
Re	gler $G_R(s)$	Regelstrecke $G_S(s)$	$z_1 = 0$ $z_2 = 0$ w_0	$z_1 = 0$ $w \qquad z_2 = 0$ $w_0 \qquad t$	$w = 0$ z_1 $z_2 = 0$	$w = 0$ $z_1 = 0$ $z_1 = 0$
Р	K_P	Р-Тур	$\frac{1}{1 + K_P \cdot K_S} \cdot w_0$	∞	$\frac{-K_S}{1+K_P\cdot K_S}\cdot z_0$	$\frac{-1}{1 + K_P \cdot K_S} \cdot z_0$
I	$\frac{K_I}{s}$	entsprechend	0	$\frac{1}{K_I \cdot K_S} \cdot w_0$	0	0
PI	$K_P + \frac{K_I}{s}$	1+	0	$\frac{1}{K_I \cdot K_S} \cdot w_0$	0	0
12	$\frac{K_I}{s^2}$	$K_S \cdot \frac{1 + \dots}{1 + \dots}$	0	0	0	0
P	K_P	I-Typ	0	$\frac{1}{K_S \cdot K_P} \cdot w_0$	$rac{-1}{K_P} \cdot z_0$	0
1	$\frac{K_I}{s}$	entsprechend	0	0	0	0
PI	$K_P + \frac{K_I}{s}$	$\frac{K_S}{s} \cdot \frac{1+\ldots}{1+\ldots}$	0	0	0	0

13.4. Zustandsbeobachter(Simulation)

