1 Aufgabe. Thema Polynome

1) Beweisen Sie: ein Polynom $f: C \to C$ nimmt genau dann für alle $x \in R$ reelle Werte an, wenn seine Koeffizienten reell sind.

Lösung:

Es sei $f(z) = \sum_{k=0}^{n} a_k z^k$. Reelle Werte $\Leftrightarrow \overline{f(z)} = f(z)$. Das ist für alle $x \in R$ gleichbedeutend mit $\sum_{k=0}^{n} \overline{a_k} x^k = \sum_{k=0}^{n} a_k x^k$. Und nach dem Identitässatz sind 2 Polynome gleich, nur wenn ihre Koeffizienten gleich sind $\Leftrightarrow \overline{a_k} = a_k$. q.e.d.

2 Aufgaben zum Thema Stetigkeit

1) Zu $a,b,c\in R$ mit a>0 bestimme man α,β so, dass $\lim_{x\to\infty}\left(\sqrt{ax^2+bx+c}-\alpha x-\beta\right)=0$

Lösung:

$$\lim_{x \to \infty} \left(\sqrt{ax^2 + bx + c} - \alpha x - \beta \right) = \lim_{x \to \infty} \frac{ax^2 + bx + c - \alpha^2 x^2 - 2\alpha x\beta - \beta^2}{\sqrt{ax^2 + bx + c} + \alpha x + \beta} = \lim_{x \to \infty} \frac{(a - \alpha^2)x^2 + (b - 2\alpha\beta)x + c - \beta^2}{\sqrt{ax^2 + bx + c} + \alpha x + \beta} \stackrel{:}{=} \lim_{x \to \infty} \frac{(a - \alpha^2)x + (b - 2\alpha\beta) + \frac{c}{x} - \frac{\beta^2}{x}}{\sqrt{a + \frac{b}{x} + \frac{c}{x^2} + \alpha + \frac{\beta}{x}}} \stackrel{!}{=} 0 \Leftrightarrow \alpha = \sqrt{a} \land \beta = \frac{b}{2\sqrt{a}}$$

2) Jedes reelle Polynom ungeraden Grades hat eine reelle Nullstelle.

Lösung:

Der Leitkoeffizient vom Polynom P(x) sei positiv. Dann gilt $\lim_{x\to +\infty} P(x) = +\infty$ und $\lim_{x\to -\infty} P(x) = -\infty$. Es gibt also Stellen $x_1>0$ und $x_2<0$ mit $P(x_1)>0$ und $P(x_2)<0$. In $[x_1,x_2]$ hat P(x) also eine Nullstelle (Zwischenwertsatz).

3) Die Funktion $f: [0;1] \to R$ sei stetig, und es sei f(0) = f(1). Dann gibt es ein $c \in \left[0, \frac{1}{2}\right]$ mit $f(c) = f(c + \frac{1}{2})$.

Lösung:

Nach der Angabe soll es gelten: $f(c+\frac{1}{2})-f(c)=0$. Man definiert eine Funktion $g\colon \left[0,\frac{1}{2}\right]\to R, x\mapsto f(x)-f(x+\frac{1}{2})$. Diese ist stetig (Differenz von stetigen Funktionen) mit $g(\frac{1}{2})=f(\frac{1}{2})-f(1)=f(\frac{1}{2})-f(0)=-g(0)$. Da die Funktion g offensichtlich ihr Zeichen ändert gitl nach dem Zwischenwertsatz, dass sie eine Nullstelle $c\in \left[0,\frac{1}{2}\right]$. Dort gilt $f(c+\frac{1}{2})-f(c)=0$.

- 4) Man bestimme die folgenden Grenzwerte:
 - 1. $\lim_{x\to 0} x \cot x$
 - $2. \lim_{x \to 0} \frac{\cos x 1}{\sin^2 x}$
 - $3. \lim_{x \to \frac{\pi}{2}} \left(\tan x \frac{1}{\cos x} \right)$
 - 4. $\lim_{x \to 0} \left(\frac{1}{e^x 1} \frac{1}{x} \right)$

Lösung:

$$\lim_{x\to 0} x \cot x = \lim_{x\to 0} \frac{x}{\tan x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{L'Hospital} \stackrel{\lim}{=} \lim_{x\to 0} \frac{1}{\cos^2 x} = 1$$

$$\lim_{x\to 0} \frac{\cos x - 1}{\sin^2 x} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}^{L'Hospital} \stackrel{\lim}{=} \frac{-\sin x}{2\sin x \cos x} = -\frac{1}{2}$$

$$\lim_{x\to \frac{\pi}{2}} \left(\tan x - \frac{1}{\cos x}\right) = \lim_{x\to \frac{\pi}{2}} \left(\frac{\sin x - 1}{\cos x}\right) = \lim_{x\to \frac{\pi}{2}} \left(\frac{\sin^2 x - 1}{\cos x(\sin x + 1)}\right) = \lim_{x\to \frac{\pi}{2}} \left(\frac{-\cos x}{(\sin x + 1)}\right) = 0$$

$$\lim_{x\to \frac{\pi}{2}} \left(\frac{1}{e^x - 1} - \frac{1}{x}\right) = \lim_{x\to 0} \left(\frac{x - e^x + 1}{(e^x - 1)x}\right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x\to 0} \left(\frac{1}{e^x + e^x - 1}\right) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lim_{x\to 0} \left(\frac{-e^x}{e^x + e^x + e^x}\right) = \frac{-1}{2}$$
5) Man bestimme die stetige Fortsetzung von der Funktion $f(x) = \frac{x}{e^x - 1}$.

Lösung:

Die Funktion $f(x) = \frac{x}{e^x - 1}$ ist im Punkt $x_0 = 0$ nicht stetig, zwar ist $\lim_{x \to 0} \frac{x}{e^x - 1} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\lim_{x \to 0} \frac{1}{e^x} = 1$, aber die Funktion selber ist an diesem Punkt nicht definiert. Da aber $x_0 = 0$ ein Häufungspunkt von f(x) ist, kann die Funktion in diesen Punkt stetig fortgesetzt werden. Es muss gelten: $\lim_{x \to 0} f(x) = f(x_0)$, also ist die stetige Fortsetzung:

$$g(x) = \begin{cases} \frac{x}{e^x - 1} & , x \neq 0 \\ 1 & , x = 0 \end{cases}$$

6*) Man zeige, dass $f(x) = \sqrt{|x|}$ überall stetig ist. Hinweis: Machen Sie eine Fallunterscheidung. Für den Fall $x_0 < \epsilon \sqrt{x_0}$ überlegen Sie sich, was δ ist

Lösung:

Bestimmung von δ zu vorgegebenem $\epsilon > 0$

1. Fall:
$$x_0 = 0$$
: $|f(x) - f(x_0)| = |\sqrt{|x|} - \sqrt{|0|} = |\sqrt{|x|}| \stackrel{!}{<} \epsilon |x - 0| < \epsilon^2 = \delta$

2. Fall: $x_0 \neq 0$ Wegen f(x) = f(-x) sei im Folgenden $x, x_0 > 0$

$$|f(x) - f(x_0)| = |\sqrt{|x|} - \sqrt{|x_0|}| \stackrel{x,x_0>0}{=} |\sqrt{x} - \sqrt{x_0}| = \frac{|x-x_0|}{\sqrt{x} + \sqrt{x_0}} < \frac{|x-x_0|}{\sqrt{x_0}} \stackrel{!}{<} \epsilon$$

D.h. $|x-x_0| < \epsilon \sqrt{x_0}$ und da $x, x_0 > 0$ es gilt auch $|x-x_0| < x_0$ wenn $x_0 < \epsilon \sqrt{x_0}$ (vgl. Bild 1). Also ist $\delta = \min\left\{\epsilon \sqrt{x_0}, x_0\right\}$

Abbildung 1: Aufgabe 1

Zusammen gilt:

$$\forall \epsilon > 0 \colon \delta \quad \colon = \quad \begin{cases} \epsilon^2 & x_0 = 0 \\ \min\left\{\epsilon\sqrt{|x_0|}, |x_0|\right\} & x_0 \neq 0 \end{cases}$$

Dann gilt die Behauptung.

- 7*) Gegeben ist die Funktion $f(x) = \frac{x}{x-1}, x \neq 1$
 - a) Für $x_0 \neq 1$ ermittle man $\delta(\epsilon, x_0)$, so dass für alle x mit $|x x_0| < \delta(\epsilon, x_0)$ gilt $|f(x) f(x_0)| < \epsilon$
 - b) Man berechne $\delta(\epsilon, x_0)$ für $\epsilon = 0.01$ und $x_0 = 2, x_0 = 1, 1, x_0 = 0.999$.

Hinweis: Für die Abschätzung $|f(x) - f(x_0)|$ benutzen Sie folgende Identität: $||a| - |b|| \le |a + b| \le |a| + |b|$. Leiten Sie mit dieser Abschätzung den Wert von δ ab.

Lösung:

a) Bestimmung von $\delta(\epsilon, x_0)$ zu vorgegebenem $\epsilon > 0$

$$|f(x) - f(x_0)| = |\frac{x}{x-1} - \frac{x_0}{x_0-1}| = |\frac{x(x_0-1)-x_0(x-1)}{(x-1)(x_0-1)}| = |\frac{x_0-x}{(x-1)(x_0-1)}| = \frac{|x_0-x|}{|x-1||x_0-1|} = \frac{|x_0-x|}{|(x-x_0)+(x_0-1)||x_0-1|} \stackrel{|x-x_0|\neq|x_0-1|}{\leq} \frac{|x_0-x|}{||x-x_0|-|x_0-1|||x_0-1|} = \frac{|x_0-x|}{(|x_0-x|-|x_0-1|||x_0-1|)} \stackrel{!}{\leq} \epsilon$$
Es wurde folgende Identität benutzt $||a| - |b|| \leq |a+b| \leq |a| + |b|$, also wenn $|a| \neq |b| : \frac{1}{|a+b|} \leq \frac{1}{||a|-|b||}$ um im Nenner den Ausdruck $|x-x_0|$ et et et $|x-x_0|$ en belowmen. Den brought man für die Abschöftzung von $|x-x_0|$. Die Ungleichung wird

Ausdruck $|x-x_0|$ statt $(x-x_0)$ zu bekommen. Den braucht man für die Abschätzung von $|x-x_0|$. Die Ungleichung wird dann umgeformt:

$$\Rightarrow |x_0 - x| < \epsilon |x_0 - 1|^2 - \epsilon |x - x_0| |x_0 - 1| \xrightarrow{|x - x_0| = |x_0 - x|} |x - x_0| < \epsilon |x_0 - 1|^2 - \epsilon |x - x_0| |x_0 - 1| \Leftrightarrow |x - x_0| (1 + \epsilon |x_0 - 1|) < \epsilon |x_0 - 1|^2 \Leftrightarrow |x - x_0| < \frac{\epsilon |x_0 - 1|^2}{1 + \epsilon |x_0 - 1|}$$

Also
$$\delta(\epsilon, x_0) = \frac{\epsilon |x_0 - 1|^2}{1 + \epsilon |x_0 - 1|}$$

Also $\delta(\epsilon, x_0) = \frac{\epsilon |x_0 - 1|^2}{1 + \epsilon |x_0 - 1|}$ Formalismus zum Nachweis der Stetigkeit:

$$\begin{aligned} & \text{Formalismus zum Nachwers der Stetigkert:} \\ & \text{Zu } x_0 \neq 1 \text{ und } \epsilon > 0 \text{ sei } \delta(\epsilon, x_0) = \frac{\epsilon|x_0 - 1|^2}{1 + \epsilon|x_0 - 1|}. \ \forall x \in R \text{ mit } |x - x_0| < \delta \text{ gilt:} \\ & |f(x) - f(x_0)| = \frac{|x_0 - x|}{|(x - x_0) + (x_0 - 1)||x_0 - 1|} \leq \frac{|x_0 - x|}{(|x_0 - 1| - |x - x_0|)|x_0 - 1|} < \frac{\delta}{(|x_0 - 1| - \delta)|x_0 - 1|} = \frac{\frac{\epsilon|x_0 - 1|^2}{1 + \epsilon|x_0 - 1|}}{(|x_0 - 1| - \frac{\epsilon|x_0 - 1|^2}{1 + \epsilon|x_0 - 1|})|x_0 - 1|} = \frac{\frac{\epsilon|x_0 - 1|^2}{1 + \epsilon|x_0 - 1|}}{(|x_0 - 1| - \frac{\epsilon|x_0 - 1|^2}{1 + \epsilon|x_0 - 1|})} = \epsilon \end{aligned}$$

b)	$\epsilon = 0,01$	$x_0 = 2$	$x_0 = 1, 1$	$x_0 = 0,999$
	$\delta(\epsilon, x_0) = \frac{\epsilon x_0 - 1 ^2}{1 + \epsilon x_0 - 1 }$	$9,9 \cdot 10^{-3}$	$9,9 \cdot 10^{-5}$	$9,99 \cdot 10^{-9}$

Aufgaben zum Thema Differenzierbarkeit 3

- 1) Man berechne die Ableitung nach x von:
 - a) $f(x) = e^{ax} \sin(\omega x + a)$,
 - b) $f(x) = \cos(\sin(\cos(x^2)))$.

a)
$$f'(x) = [e^{ax}\sin(\omega x + a)]' = ae^{ax}\sin(\omega x + a) + \omega e^{ax}\cos(\omega x + a) = e^{ax}(a\sin(\omega x + a) + \omega\cos(\omega x + a))$$

b)
$$f'(x) = \left[\cos(\sin(\cos(x^2)))\right]' = 2x \cdot (-\sin(x^2)) \cdot \cos(\cos(x^2)) \cdot (-\sin(\sin(\cos(x^2)))) = 2x \cdot \sin(x^2) \cdot \cos(\cos(x^2)) \cdot \sin(\sin(\cos(x^2)))$$

- 2) Man berechne die Ableitung nach x, dort wo die Funktion differenzierbar ist:
 - a) f(x) = |x|
 - b) $f(x) = x\sqrt{|x|}$.

Lösung:

a)
$$f(x) = |x|$$

Für den Fall
$$x > 0$$
 ist $f(x) = x \Rightarrow f'(x) = 1$

Für den Fall
$$x < 0$$
 ist $f(x) = -x \Rightarrow f'(x) = -1$

Wenn
$$x = 0 = x_0$$
 und $h \neq 0$ $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h}$

Wenn
$$x = 0 = x_0$$
 und $h \neq 0$ $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|}{h}$
Dieser Grenzwert existiert nicht, weil $\frac{|h|}{h} = \begin{cases} 1 & \text{für } h > 0 \\ -1 & \text{für } h < 0 \end{cases}$

b)
$$f(x) = x\sqrt{|x|}$$

Für den Fall
$$x>0$$
 ist also $f(x)=x^{\frac{3}{2}}\Rightarrow f'(x)=\frac{3}{2}x^{\frac{1}{2}}$

Für den Fall
$$x < 0$$
 ist also $f(x) = x^2 \Rightarrow f'(x) = \frac{1}{2}x^2$
Für den Fall $x < 0$ ist $f(x) = x\sqrt{-x} \Rightarrow f'(x) = (x \cdot (-x)^{\frac{1}{2}})' = (-x)^{\frac{1}{2}} - \frac{1}{2}x \cdot (-x)^{-\frac{1}{2}} = (-x)^{\frac{1}{2}} + \frac{1}{2}(-x) \cdot (-x)^{-\frac{1}{2}} = (-x)^{\frac{1}{2}} + \frac{1}{2}(-x)^{\frac{1}{2}} = \frac{3}{2}(-x)^{\frac{1}{2}}$

Für den Fall
$$x = 0$$
 und $h \neq 0$ $f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h} = \lim_{h \to 0} \frac{h\sqrt{|h|}}{h} = \lim_{h \to 0} \sqrt{|h|} = 0$

3) Für welche $a \in R_+$ ist die Funktion $f: R \to R$ mit $f(x): = |x|^a \sin \frac{1}{x}$ für $x \neq 0$ und f(0): = 0 im Nullpunkt differenzierbar? Gegebenfalls berechne man die Ableitung.

$$f'(x_0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|^a \sin \frac{1}{x} - 0}{x} = \lim_{x \to 0} \frac{|x|^a}{x} \sin \frac{1}{x}$$

 $f'(x_0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{|x|^a \sin \frac{1}{x} - 0}{x} = \lim_{x \to 0} \frac{|x|^a}{x} \sin \frac{1}{x}$ Es gilt $-1 \le \sin \frac{1}{x} \le 1$ und damit ist die obere Grenze nur dann definiert wenn $a > 1 \Rightarrow f'(0) = 0$.

- 4) Klausuraufgabe. Gegeben ist die Funktion $f(x) = 4|x-1|^3 + |x|^3, -\infty < x < \infty$.
 - a) Man zeige: f(x) > 0 für alle x. Welchen Wert strebt f(x) zu, falls $x \to \pm \infty$?
 - b) Man berechne f'(x)

c) Man zeige:
$$f''(x) = \begin{cases} -30x + 24 & , x \le 0 \\ -18x + 24 & , 0 < x \le 1 \\ 30x - 24 & , x > 1 \end{cases}$$

d) Man zeige, dass f(x) für alle x zweimal differenzierbar ist.

Die gegebene Funktion ist stetig als Summe stetiger Funktionen.

a)
$$\begin{cases}
|x-1|^3 \ge 0, & |x-1|^3 \ge 0 \Rightarrow f(x) \ge 0 \\
f(x) = 0 \Leftrightarrow & |x-1|^3 = 0 \land |x|^3 = 0 \Rightarrow \text{Widerspruch}
\end{cases} \Rightarrow f(x) > 0$$

$$\lim_{|x|\to\infty} f(x) = \lim_{|x|\to\infty} (4|x-1|^3+|x|^3) = +\infty$$
 b)
$$x < 0: f(x) = -4(x-1)^3 - x^3, f'(x) = -12(x-1)^2 - 3x^2 \text{ stetig}}$$

$$0 < x < 1: f(x) = -4(x-1)^3 + x^3, f'(x) = -12(x-1)^2 + 3x^2 \text{ stetig}}$$

$$x > 1: f(x) = 4(x-1)^3 + x^3, f'(x) = 12(x-1)^2 + 3x^2 \text{ stetig}}$$

$$\left\{ \lim_{x\to 0^-} f'(x) = -12 = \lim_{x\to 0^+} f'(x) \right\}$$

$$\left\{ \lim_{x\to 1^-} f'(x) = 3 = \lim_{x\to 1^+} f'(x) \right\}$$

$$\Rightarrow f'(x) \text{ stetig auf } R$$
 c)
$$x < 0: f''(x) = -24(x-1) - 6x = -30 + 24 \text{ stetig}}$$

$$0 < x < 1: f''(x) = -24(x-1) + 6x = -18x + 24 \text{ stetig}}$$

$$x > 1: f''(x) = 24(x-1) + 6x = 30x - 24 \text{ stetig}}$$

$$\left\{ \lim_{x\to 0^-} f''(x) = 24 = \lim_{x\to 0^+} f''(x) \right\}$$

$$\left\{ \lim_{x\to 1^-} f''(x) = 6 = \lim_{x\to 1^+} f''(x) \right\}$$

$$\left\{ \lim_{x\to 1^-} f''(x) = 6 = \lim_{x\to 1^+} f''(x) \right\}$$

$$\left\{ \lim_{x\to 1^-} f''(x) = 6 = \lim_{x\to 1^+} f''(x) \right\}$$
 d) Aus a), b), c) folgt
$$f(x)$$
 ist für alle x zweimal differenzierbar.