Team notebook

CodeRats al fallo

October 21, 2023

Contents				1.4.2 Articulation Points
				1.4.3 Bellman Ford
1	Cod	les	2	1.4.4 Bridges
	1.1	Algebra	2	1.4.5 Dijkstra
		1.1.1 FFT	2	1.4.6 Floyd Warshall
		1.1.2 Linear Recurrence	3	1.4.7 Heavy Light Decomposition
		1.1.3 Matrix Multiplication	3	1.4.8 LCA
	1.2	Data Structures	4	1.4.9 Prim
		1.2.1 Fenwick Tree	4	1.4.10 SCC
		1.2.2 Ordered Set	4	1.4.11 Topological Sort
		1.2.3 Segment Tree(Lazy)	4	1.5 Number theory
		1.2.4 Segment Tree	6	1.5.1 Chinese Remainder Theorem
		1.2.5 Sparse Table	7	1.5.2 Extended Euclidean
	1.3	Flows	7	1.5.3 Lineal Sieve
		1.3.1 Blossom	7	1.5.4 Miller Rabin
		1.3.2 Dinic	9	1.5.5 Mobius
		1.3.3 Hungarian	10	1.5.6 Modular Multiplication
		1.3.4 Maximum Bipartite Matching	10	1.5.7 Natural Sieve
		1.3.5 MinCost MaxFlow	12	1.5.8 Pollard Rho
		1.3.6 Weighted Matching	14	1.6 Strings
	1.4	Graphs	15	1.6.1 Aho Corasick
		1.4.1 2SAT	15	1.6.2 Hashing

1.6.3	Manacher	28
1.6.4	Prefix Function	29
1.6.5	Suffix Array	29
1.6.6	Suffix Automaton	30
1.6.7	Trie	31
1.6.8	Z Function	32

$1 \quad \text{Codes}$

1.1 Algebra

1.1.1 FFT

```
// Multiplicacion de polinomios en O(n log n)
const double PI = acos(-1.0);
namespace fft {
   struct pt {
       double r, i;
       pt(double r = 0.0, double i = 0.0) : r(r), i(i) {}
       pt operator + (const pt &b) { return pt(r+b.r, i+b.i); }
       pt operator - (const pt &b) { return pt(r-b.r, i-b.i); }
       pt operator * (const pt &b) { return pt(r*b.r - i*b.i,
          r*b.i + i*b.r); }
   };
   vector<int> rev:
   void fft(vector<pt> &y, int on) {
       int n = y.size();
       for (int i = 1; i < n; i++)
          if (i < rev[i]) swap(y[i], y[rev[i]]);</pre>
       for (int m = 2; m <= n; m <<= 1) {</pre>
           double ang = -on * 2 * PI / m;
```

```
pt wm(cos(ang), sin(ang));
       for (int k = 0; k < n; k += m) {
           pt w(1, 0);
           for (int j = 0; j < m / 2; j++) {
              pt u = y[k + j];
              pt t = w * y[k + j + m / 2];
              y[k + j] = u + t;
              y[k + j + m / 2] = u - t;
               w = w * wm;
          }
   }
   if (on == -1) for (int i = 0; i < n; i++) y[i].r /= n;
vector<ll> mul(vector<ll> &a, vector<ll> &b) {
   int n = 1, t = 0, la = a.size(), lb = b.size();
   for (; n \le (la+lb+1); n \le 1, t++); t = 1 \le (t-1);
   vector<pt> x1(n), x2(n);
   rev.assign(n, 0);
   for (int i = 0; i < n; i++) rev[i] = rev[i >> 1] >> 1 |
       (i & 1 ? t : 0);
   for (int i = 0; i < la; i++) x1[i] = pt(a[i], 0);
   for (int i = 0; i < lb; i++) x2[i] = pt(b[i], 0);</pre>
   fft(x1, 1); fft(x2, 1);
   for (int i = 0; i < n; i++) x1[i] = x1[i] * x2[i];</pre>
   fft(x1, -1);
    vector<ll> ans(n);
   for (int i = 0; i < n; i++) ans[i] = x1[i].r + 0.5;
   return ans;
}
```

1.1.2 Linear Recurrence

```
Calcula el n-esimo termino de una recurrencia lineal (que
   depende de los k terminos anteriores).
* Llamar init(k) en el main una unica vez si no es necesario
   inicializar las matrices multiples veces.
Este ejemplo calcula el fibonacci de n como la suma de los k
   terminos anteriores de la secuencia (En la secuencia comun k
   es 2).
Agregar Matrix Multiplication con un construcctor vacio.
matrix F, T;
void init(int k) {
   F = {k, 1}; // primeros k terminos
   F[k-1][0] = 1;
   T = \{k, k\}; // fila k-1 = coeficientes: [c_k, c_{k-1}, ...,
       c 1]
   for (int i = 0; i < k-1; i++) T[i][i+1] = 1;
   for (int i = 0; i < k; i++) T[k-1][i] = 1;
}
/// O(k^3 \log(n))
int fib(ll n, int k = 2) {
   init(k);
   matrix ans = pow(T, n+k-1) * F;
   return ans[0][0];
```

1.1.3 Matrix Multiplication

// Estructura para realizar operaciones de multiplicacion y
exponenciacion modular sobre matrices.

```
const int mod = 1e9+7;
struct matrix {
                 vector<vector<int>> v;
                int n, m;
                matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), v(n, matrix(int n, int m, bool o = false) : n(n), m(m), m(m), v(n, m), v(n,
                                 vector<int>(m)) {
                                if (o) while (n--) v[n][n] = 1;
                matrix operator * (const matrix &o) {
                                 matrix ans(n, o.m);
                                for (int i = 0; i < n; i++)</pre>
                                                 for (int k = 0; k < m; k++) if (v[i][k])
                                                                for (int j = 0; j < o.m; j++)</pre>
                                                                                  ans[i][j] = (111*v[i][k]*o.v[k][j] +
                                                                                                  ans[i][j]) % mod;
                                 return ans;
                }
                vector<int>& operator[] (int i) { return v[i]; }
};
matrix pow(matrix b, ll e) {
                matrix ans(b.n, b.m, true);
                while (e) {
                                 if (e\&1) ans = ans*b;
                                b = b*b;
                                  e /= 2;
                return ans;
```

1.2 Data Structures

1.2.1 Fenwick Tree

```
int lso(int n) {return (n & (-n));}

// las consultas estn indexadas en 1
struct FenwickTree{
   vector<int> ft;
   FenwickTree(int m) {ft.assign(m + 1, 0);};
   int rsq(int j) {
     int sum = 0;
     for(; j; j -= lso(j)) sum += ft[j];
     return sum;
   }
   void upd(int i, int v) {
      for(; i < ft.size(); i += lso(i)) ft[i] += v;
   }
};</pre>
```

1.2.2 Ordered Set

```
/*
Estructura de datos basada en politicas. Funciona como un set<>
    pero es internamente indexado, cuenta con dos funciones
    adicionales.
.find_by_order(k) -> Retorna un iterador al k-esimo elemento, si
    k >= size() retona .end()
.order_of_key(x) -> Retorna cuantos elementos hay menores (<)
    que x
*/
#include <ext/pb_ds/assoc_container.hpp>
```

1.2.3 Segment Tree(Lazy)

```
const int MOD = 1e9 + 7;
// modificar los struct
// operadores * y +
// en node + = merge
// en operation * = merge
// node * operation = como afecta la operacion al nodo
struct operation{
       bool swapped;
       operation() : swapped(false) {}
       operation(bool s) : swapped(s) {}
       operation operator * (const operation &rhs) const {
              operation res;
              res.swapped = (this -> swapped) ^ rhs.swapped;
              return res;
       bool id() {
              return !swapped;
       void clear() {
              swapped = false;
};
```

```
struct node {
   int imx, imn, mx, mn;
       node() { imx = imn = mx = mn = 0; }
   node(int imx, int imn, int mx, int mn) : imx(imx), imn(imn),
       mx(mx), mn(mn) \{ \}
       node operator + (const node &rhs) const {
              node res;
              res.mx = max(this -> mx, rhs.mx);
       res.mn = min(this -> mn, rhs.mn);
       if(this -> mx >= rhs.mx) res.imx = (this -> imx);
       else res.imx = rhs.imx;
       if(this -> mn <= rhs.mn) res.imn = (this -> imn);
       else res.imn = rhs.imn;
              return res;
       }
       node operator * (const operation &rhs) const {
              node res:
       if(rhs.swapped) {
          res.imx = imn;
          res.imn = imx;
          res.mx = MOD - mn;
          res.mn = MOD - mx;
       }else{
           res.imx = imx;
          res.imn = imn;
          res.mx = mx;
           res.mn = mn;
       }
       return res;
};
```

```
const int N = 4e6 + 20;
node tree [N * 4];
operation lazy[N * 4];
pii arr[N];
void build(int v, int tl, int tr) {
       lazy[v].clear();
       if(tl == tr) {
              tree[v] = node(arr[t1].second, arr[t1].second,
                  arr[t1].first, arr[t1].first);
              return;
       int tm = (tl + tr) / 2;
       build(v * 2, t1, tm);
       build(v * 2 + 1, tm + 1, tr);
       tree[v] = tree[v * 2] + tree[v * 2 + 1];
}
void push(int v) {
       if(lazy[v].id()) return;
       tree[v * 2] = tree[v * 2] * lazv[v];
       tree[v * 2 + 1] = tree[v * 2 + 1] * lazy[v];
       lazy[v * 2] = lazy[v] * lazy[v * 2];
       lazy[v * 2 + 1] = lazy[v] * lazy[v * 2 + 1];
       lazy[v].clear();
}
void update(int v, int tl, int tr, int l, int r, operation &op) {
       if(1 > r) return;
       if(1 == t1 && r == tr) {
              tree[v] = tree[v] * op;
              lazy[v] = op * lazy[v];
              return:
```

1.2.4 Segment Tree

```
const int N = 100000 + 5;
const long long inf = 1e18 + 10;

struct node {
    long long sum;
    long long maxi;
    node(){
        sum = 0;
        maxi = -inf;
    }

    node(long long x) {
        sum = maxi = x;
    }

    node operator + (const node &rhs) const {
```

```
node q;
               q.sum = sum + rhs.sum;
               q.maxi = max(maxi, rhs.maxi);
               return q;
};
int n;
int q;
node NIL;
long long a[N];
node st[4 * N];
void build(int pos = 1, int l = 1, int r = n) {
       if(1 == r) {
              st[pos] = node(a[1]);
              return;
       int mi = (1 + r) / 2;
       build(2 * pos, 1, mi);
       build(2 * pos + 1, mi + 1, r);
       st[pos] = st[2 * pos] + st[2 * pos + 1];
}
void update(int x, int y, int pos = 1, int l = 1, int r = n) {
       if(st[pos].maxi <= 1) return; // Funcion Potencial</pre>
           sqrt(1) = 1
       if(y < 1 or r < x) return;</pre>
       if(1 == r) {
       // to change
               st[pos].sum = sqrt(st[pos].sum);
              st[pos].maxi = st[pos].sum;
              return;
       int mi = (1 + r) / 2:
```

```
update(x, y, 2 * pos, 1, mi);
       update(x, y, 2 * pos + 1, mi + 1, r);
       st[pos] = st[2 * pos] + st[2 * pos + 1];
}
node query(int x, int y, int pos = 1, int l = 1, int r = n) {
       if(y < 1 or r < x) return NIL;</pre>
       if(x <= 1 and r <= y) return st[pos];</pre>
       int mi = (1 + r) / 2;
       return query(x, y, 2 * pos, 1, mi) + query(x, y, 2 * pos
           + 1, mi + 1, r);
}
int main() {
       build();
   update(1, r);
   query(1, r).sum;
   query(1, r).maxi;
}
```

1.2.5 Sparse Table

Estructura de datos que permite procesar consultas por rangos.

```
const int MX = 1e5+5;
const int LG = log2(MX)+1;
int spt[LG][MX];
int arr[MX];
int n;

void build() {
   for (int i = 0; i < n; i++) spt[0][i] = arr[i];
   for (int j = 0; j < LG-1; j++)
        for (int i = 0; i+(1<<(j+1)) <= n; i++)</pre>
```

```
spt[j+1][i] = min(spt[j][i], spt[j][i+(1<<j)]);
}
int rmq(int i, int j) {
   int k = 31-_builtin_clz(j-i+1);
   return min(spt[k][i], spt[k][j-(1<<k)+1]);
}</pre>
```

1.3 Flows

1.3.1 Blossom

```
// Halla el mximo match en un grafo general O(E * v ^2)
struct network {
   struct struct_edge {
       int v; struct_edge * n;
   };
   typedef struct_edge* edge;
    int n;
   struct_edge pool[MAXE]; ///2*n*n;
    edge top;
   vector<edge> adj;
   queue<int> q;
   vector<int> f, base, inq, inb, inp, match;
   vector<vector<int>> ed:
   network(int n) : n(n), match(n, -1), adj(n), top(pool),
       f(n), base(n),
                  inq(n), inb(n), inp(n), ed(n, vector<int>(n))
                     {}
```

```
8
```

```
void add_edge(int u, int v) {
   if(ed[u][v]) return;
   ed[u][v] = 1;
   top->v = v, top->n = adj[u], adj[u] = top++;
   top->v = u, top->n = adj[v], adj[v] = top++;
}
int get_lca(int root, int u, int v) {
   fill(inp.begin(), inp.end(), 0);
   while(1) {
       inp[u = base[u]] = 1;
       if(u == root) break;
       u = f[match[u]];
   }
   while(1) {
       if(inp[v = base[v]]) return v;
       else v = f[ match[v] ];
   }
}
void mark(int lca, int u) {
   while(base[u] != lca) {
       int v = match[u];
       inb[ base[u ]] = 1;
       inb[ base[v] ] = 1;
       u = f[v];
       if(base[u] != lca) f[u] = v;
}
void blossom_contraction(int s, int u, int v) {
   int lca = get_lca(s, u, v);
   fill(inb.begin(), inb.end(), 0);
   mark(lca, u); mark(lca, v);
   if(base[u] != lca) f[u] = v;
```

```
if(base[v] != lca) f[v] = u;
   for(int u = 0; u < n; u++){
       if(inb[base[u]]) {
           base[u] = lca;
           if(!inq[u]) {
              inq[u] = 1;
              q.push(u);
          }
       }
}
int bfs(int s) {
   fill(inq.begin(), inq.end(), 0);
   fill(f.begin(), f.end(), -1);
   for(int i = 0; i < n; i++) base[i] = i;</pre>
   q = queue<int>();
   q.push(s);
   inq[s] = 1;
   while(q.size()) {
       int u = q.front(); q.pop();
       for(edge e = adj[u]; e; e = e->n) {
           int v = e \rightarrow v;
           if(base[u] != base[v] && match[u] != v) {
               if((v == s) || (match[v] != -1 && f[match[v]]
                  !=-1)){}
                  blossom_contraction(s, u, v);
              }else if(f[v] == -1) {
                  f[v] = u;
                  if(match[v] == -1) return v;
                  else if(!inq[match[v]]) {
                      inq[match[v]] = 1;
                      q.push(match[v]);
               }
```

```
return -1;
   }
   int doit(int u) {
       if(u == -1) return 0;
       int v = f[u];
       doit(match[v]);
       match[v] = u; match[u] = v;
       return u != -1;
   }
   /// (i < net.match[i]) => means match
   int maximum_matching() {
       int ans = 0;
       for(int u = 0; u < n; u++)
          ans += (match[u] == -1) && doit(bfs(u));
       return ans;
   }
};
```

1.3.2 Dinic

```
Halla el flujo mximo O(E * V ^ 2)

struct edge { int v, cap, inv, flow; };

struct network {
  int n, s, t;
  vector<int> lvl;
  vector<vector<edge>> g;
```

```
network(int n) : n(n), lvl(n), g(n) {}
void add_edge(int u, int v, int c) {
   g[u].push_back({v, c, (int)g[v].size(), 0});
   g[v].push_back({u, 0, (int)g[u].size()-1, c});
}
bool bfs() {
   fill(lvl.begin(), lvl.end(), -1);
   queue<int> q;
   lvl[s] = 0;
   for(q.push(s); q.size(); q.pop()) {
       int u = q.front();
       for(auto &e : g[u]) {
          if(e.cap > 0 \&\& lvl[e.v] == -1) {
              lvl[e.v] = lvl[u]+1;
              q.push(e.v);
          }
       }
   return lvl[t] != -1;
}
int dfs(int u, int nf) {
   if(u == t) return nf;
   int res = 0;
   for(auto &e : g[u]) {
       if(e.cap > 0 \&\& lvl[e.v] == lvl[u]+1) {
          int tf = dfs(e.v, min(nf, e.cap));
          res += tf; nf -= tf; e.cap -= tf;
          g[e.v][e.inv].cap += tf;
          g[e.v][e.inv].flow -= tf;
          e.flow += tf;
          if(nf == 0) return res;
       }
```

```
}
    if(!res) lvl[u] = -1;
    return res;
}

int max_flow(int so, int si, int res = 0) {
    s = so; t = si;
    while(bfs()) res += dfs(s, INT_MAX);
    return res;
}
};
```

1.3.3 Hungarian

```
typedef 11 T;
const T inf = 1e18;
struct hung {
   int n, m;
   vector<T> u, v; vector<int> p, way;
   vector<vector<T>> g;
   hung(int n, int m):
       n(n), m(m), g(n+1), vectorT>(m+1), inf-1),
      u(n+1), v(m+1), p(m+1), way(m+1) {}
   void set(int u, int v, T w) { g[u+1][v+1] = w; }
   T assign() {
      for (int i = 1; i <= n; ++i) {
          int j0 = 0; p[0] = i;
          vector<T> minv(m+1, inf);
          vector<char> used(m+1, false);
          do {
```

```
used[j0] = true;
               int i0 = p[j0], j1; T delta = inf;
               for (int j = 1; j <= m; ++j) if (!used[j]) {</pre>
                   T cur = g[i0][j] - u[i0] - v[j];
                   if (cur < minv[j]) minv[j] = cur, way[j] = j0;</pre>
                   if (minv[j] < delta) delta = minv[j], j1 = j;</pre>
               }
               for (int j = 0; j <= m; ++j)</pre>
                   if (used[j]) u[p[j]] += delta, v[j] -= delta;
                   else minv[j] -= delta;
               j0 = j1;
           } while (p[j0]);
           do {
               int j1 = way[j0]; p[j0] = p[j1]; j0 = j1;
           } while (j0);
       return -v[0];
   }
};
```

1.3.4 Maximum Bipartite Matching

```
// Halla el maximo match en un grafo bipartito O(|E|*|V|)
struct mbm {
   int l, r;
   vector<vector<int>> g;
   vector<int> match, vis;

   mbm(int l, int r) : l(l), r(r), g(l) {}

  void add_edge(int l, int r) {
     g[l].push_back(r);
  }
```

```
bool dfs(int u) {
        for (auto &v : g[u]) {
            if (vis[v]++) continue;
            if (match[v] == -1 || dfs(match[v])) {
                match[v] = u;
                return true;
            }
        }
        return false;
    }
    int max_matching() {
        int ans = 0;
       match.assign(r, -1);
       for (int u = 0; u < 1; ++u) {</pre>
            vis.assign(r, 0);
            ans += dfs(u);
        }
        return ans;
    }
};
// Hopcroft Karp: O(E * sqrt(V))
const int INF = INT_MAX;
struct mbm {
    vector<vector<int>> g;
    vector<int> d, match;
    int nil, l, r;
    /// u \rightarrow 0 \text{ to } 1, v \rightarrow 0 \text{ to } r
    mbm(int 1, int r) : 1(1), r(r), nil(1+r), g(1+r),
                       d(1+l+r, INF), match(l+r, l+r) {}
```

```
void add_edge(int a, int b) {
   g[a].push_back(1+b);
   g[l+b].push_back(a);
bool bfs() {
   queue<int> q;
   for(int u = 0; u < 1; u++) {</pre>
       if(match[u] == nil) {
          d[u] = 0;
           q.push(u);
       } else {
          d[u] = INF;
   d[nil] = INF;
   while(q.size()) {
       int u = q.front(); q.pop();
       if(u == nil) continue;
       for(auto v : g[u]) {
          if(d[ match[v] ] == INF) {
              d[ match[v] ] = d[u]+1;
              q.push(match[v]);
          }
       }
   return d[nil] != INF;
bool dfs(int u) {
   if(u == nil) return true;
   for(int v : g[u]) {
       if(d[ match[v] ] == d[u]+1 && dfs(match[v])) {
          match[v] = u; match[u] = v;
           return true;
```

```
}
}
d[u] = INF;
return false;
}
int max_matching() {
   int ans = 0;
   while(bfs()) {
      for(int u = 0; u < 1; u++) {
            ans += (match[u] == nil && dfs(u));
      }
   }
   return ans;
}</pre>
```

1.3.5 MinCost MaxFlow

```
Dado un grafo, halla el flujo maximo y el costo minimo entre el
    source s y el sink t.

struct edge {
    int u, v, cap, flow, cost;
    int rem() { return cap - flow; }
};

const int inf = 1e9;
const int MX = 405; //Cantidad maxima TOTAL de nodos
vector<int> g[MX]; //Lista de adyacencia
vector<edge> e; //Lista de aristas
vector<bool> in_queue; //Marca los nodos que estan en cola
vector<int> pre, dist, cap; //Almacena el nodo anterior, la
    distancia y el flujo de cada nodo
```

```
int mxflow, mncost; //Flujo maximo y costo minimo
int N; //Cantidad TOTAL de nodos
void add_edge(int u, int v, int cap, int cost) {
   g[u].push_back(e.size());
   e.push_back({u, v, cap, 0, cost});
   g[v].push_back(e.size());
   e.push_back({v, u, 0, 0, -cost});
}
void flow(int s, int t) {
   mxflow = mncost = 0;
   in_queue.assign(N, false);
   while (true) {
       dist.assign(N, inf); dist[s] = 0;
       cap.assign(N, 0); cap[s] = inf;
       pre.assign(N, -1); pre[s] = 0;
       queue<int> q; q.push(s);
       in_queue[s] = true;
       while (q.size()) {
          int u = q.front(); q.pop();
          in_queue[u] = false;
          for (int &id : g[u]) {
              edge &ed = e[id];
              int v = ed.v;
              if (ed.rem() && dist[v] > dist[u]+ed.cost) {
                  dist[v] = dist[u]+ed.cost;
                  cap[v] = min(cap[u], ed.rem());
                  pre[v] = id;
                  if (!in_queue[v]) {
                     q.push(v);
                     in_queue[v] = true;
                  }
              }
```

```
13
```

```
}
       if (pre[t] == -1) break;
       mxflow += cap[t];
       mncost += cap[t] * dist[t];
       for (int v = t; v != s; v = e[pre[v]].u) {
           e[pre[v]].flow += cap[t];
           e[pre[v]^1].flow -= cap[t];
       }
   }
}
void init() {
   e.clear();
   for (int i = 0; i <= N; i++) {</pre>
       g[i].clear();
   }
}
// O(V * E * 2 * log(E))
template <class type>
struct mcmf {
   struct edge { int u, v, cap, flow; type cost; };
   int n;
   vector<edge> ed;
   vector<vector<int>> g;
   vector<int> p;
   vector<type> d, phi;
   mcmf(int n) : n(n), g(n), p(n), d(n), phi(n) {}
   void add_edge(int u, int v, int cap, type cost) {
       g[u].push_back(ed.size());
       ed.push_back({u, v, cap, 0, cost});
```

```
g[v].push_back(ed.size());
   ed.push_back({v, u, 0, 0, -cost});
bool dijkstra(int s, int t) {
   fill(d.begin(), d.end(), INF);
   fill(p.begin(), p.end(), -1);
   set<pair<type, int>> q;
    d[s] = 0;
   for(q.insert({d[s], s}); q.size();) {
       int u = (*q.begin()).second; q.erase(q.begin());
       for(auto v : g[u]) {
           auto &e = ed[v];
          type nd = d[e.u]+e.cost+phi[e.u]-phi[e.v];
          if(0 < (e.cap-e.flow) && nd < d[e.v]) {
              q.erase({d[e.v], e.v});
              d[e.v] = nd; p[e.v] = v;
              q.insert({d[e.v], e.v});
          }
       }
   for(int i = 0; i < n; i++) phi[i] = min(INF, phi[i]+d[i]);</pre>
   return d[t] != INF;
pair<int, type> max_flow(int s, int t) {
    type mc = 0;
   int mf = 0;
   fill(phi.begin(), phi.end(), 0);
   while(dijkstra(s, t)) {
       int flow = INF;
       for(int v = p[t]; v != -1; v = p[ ed[v].u ])
          flow = min(flow, ed[v].cap-ed[v].flow);
       for(int v = p[t]; v != -1; v = p[ ed[v].u ]) {
           edge &e1 = ed[v];
           edge &e2 = ed[v^1];
```

```
mc += e1.cost*flow;
    e1.flow += flow;
    e2.flow -= flow;
}
    mf += flow;
}
return {mf, mc};
}
};
```

1.3.6 Weighted Matching

```
Halla el mximo match con pesos O(V ^3)
typedef int type;
struct matching_weighted {
   int 1, r;
   vector<vector<type>> c;
   matching_weighted(int 1, int r) : 1(1), r(r), c(1,
       vector<type>(r)) {
       assert(1 <= r);</pre>
   }
   void add_edge(int a, int b, type cost) { c[a][b] = cost; }
   type matching() {
       vector<type> v(r), d(r); // v: potential
       vector<int> ml(l, -1), mr(r, -1); // matching pairs
       vector<int> idx(r), prev(r);
       iota(idx.begin(), idx.end(), 0);
       auto residue = [&](int i, int j) { return c[i][j]-v[j]; };
       for(int f = 0; f < 1; ++f) {</pre>
           for(int j = 0; j < r; ++j) {
              d[j] = residue(f, j);
```

```
prev[j] = f;
}
type w;
int j, 1;
for (int s = 0, t = 0;;) {
   if(s == t) {
       1 = s;
       w = d[idx[t++]];
       for(int k = t; k < r; ++k) {</pre>
           j = idx[k];
           type h = d[j];
           if (h <= w) {</pre>
               if (h < w) t = s, w = h;
               idx[k] = idx[t];
               idx[t++] = j;
           }
       for (int k = s; k < t; ++k) {
           j = idx[k];
           if (mr[j] < 0) goto aug;</pre>
       }
   }
   int q = idx[s++], i = mr[q];
   for (int k = t; k < r; ++k) {
       j = idx[k];
       type h = residue(i, j) - residue(i, q) + w;
       if (h < d[j]) {</pre>
           d[j] = h;
           prev[j] = i;
           if(h == w) {
               if(mr[j] < 0) goto aug;</pre>
               idx[k] = idx[t];
               idx[t++] = j;
       }
```

```
}
    aug:
    for (int k = 0; k < 1; ++k)
        v[ idx[k] ] += d[ idx[k] ] - w;
    int i;
    do {
        mr[j] = i = prev[j];
        swap(j, ml[i]);
    } while (i != f);
}
type opt = 0;
for (int i = 0; i < 1; ++i)
        opt += c[i][ml[i]]; // (i, ml[i]) is a solution
    return opt;
}
};</pre>
```

1.4 Graphs

1.4.1 2SAT

```
struct SATSolver {
    // Assumes that nodes are 0-indexed
    int n;
    int m;
    vector<bool> vis;
    vector<int> comp;
    vector<int> order;
    vector<int> component;
    vector<vector<int>> G;
    vector<vector<int>> G;
    vector<vector<int>> Gt;
```

```
// X_i = 2i
       // ~X_i = 2i + 1
       comp.resize(2 * n);
       vis.resize(2 * n, false);
       G.resize(2 * n, vector<int>());
       Gt.resize(2 * n, vector<int>());
}
void add_edge(int u, int v) {
       // u OR v
       G[u ^ 1].emplace_back(v);
       G[v ^ 1].emplace_back(u);
       Gt[v].emplace_back(u ^ 1);
       Gt[u].emplace_back(v ^ 1);
void DFS1(int u) {
       vis[u] = true;
       for(int v : G[u]) {
              if(vis[v]) continue;
              DFS1(v);
       order.emplace_back(u);
}
void DFS2(int u) {
       vis[u] = true;
       for(int v : Gt[u]) {
              if(vis[v]) continue;
              DFS2(v);
       component.emplace_back(u);
}
void get_scc() {
```

```
for(int i = 0; i < 2 * n; i++) {</pre>
               if(vis[i]) continue;
               DFS1(i);
       reverse(order.begin(), order.end());
       fill(vis.begin(), vis.end(), false);
       int component_id = 0;
       for(int u : order) {
               if(vis[u]) continue;
               component.clear();
               DFS2(u);
               for(int x : component) comp[x] =
                   component_id;
               component_id += 1;
}
vector<int> solve() {
       vector<int> res(n);
       get_scc();
       for(int i = 0; i < n; i++) {</pre>
               int val = 2 * i;
               if(comp[val] == comp[val ^ 1]) return
                   vector<int>();
               if(comp[val] < comp[val ^ 1]) res[i] = 0;</pre>
               else res[i] = 1;
       }
       return res;
}
```

1.4.2 Articulation Points

```
int n;
```

};

```
int m;
int timer;
int low[N];
int tin[N]:
bool vis[N];
bool cut_point[N];
vector<int> G[N];
void DFS(int u, int p = -1) {
       tin[u] = low[u] = timer++;
       vis[u] = true;
       int children = 0;
       for(int v : G[u]) {
              if(v == p) continue;
              if(vis[v]) {
                      // Es una backedge, aporta a low[u]
                      low[u] = min(low[u], tin[v]);
              }
              else {
                      // Es una tree-edge, verificar si u es cut
                          point
                      DFS(v, u);
                      // Minimizamos el low del padre con el del
                         hijo
                      low[u] = min(low[u], low[v]);
                      // Ya tenemos procesado low[v]
                      if (p != -1 \text{ and } low[v] >= tin[u]) {
                             // u es articulacion si low[v] >=
                                 tin[u] cuando u no es la raz
                             cut_point[u] = true;
                      children++;
              }
       // Si es la raiz, es articulación si tiene 2 o ms hijos
```

```
if(p == -1 and children > 1) cut_point[u] = true;
}
```

1.4.3 Bellman Ford

```
int n;
int m;
int D[N]; // D[u] : Minima distancia de src a u usando <= k</pre>
   aristas en la k-sima iteracin
bool vis[N]; // vis[u] : El nodo se ha vuelto alcanzable por src
vector<tuple<int, int, int>> edges;
// retorna true si no hay ciclos negativos
bool bellman_ford(int src) {
       for(int i = 0; i < n; i++) {</pre>
              D[i] = -1;
               vis[i] = false;
       }
       D[src] = 0;
       vis[src] = true;
       for(int i = 1; i < n; i++) {</pre>
              for(auto e : edges) {
                      int u, v, w;
                      tie(u, v, w) = e;
                      if(not vis[u]) continue;
                      if(not vis[v] or D[v] > D[u] + w) {
                              D[v] = D[u] + w:
                             vis[v] = true;
                      }
               }
       }
       for(auto e : edges) {
              int u, v, w;
              tie(u, v, w) = e;
```

1.4.4 Bridges

```
int n; // para guardar el numero de vertices
int m; // aristas
int k; // numero de componentes 2-conexas en el arbol final
int C[N]; // componente de cada vertice
int to[N], from[N]; // vertice de salida y llegada para cada
   arista
int timer; // para el DFS
int low[N];
int tin[N];
bool vis[N];
bool bridge[N]; // es puente ?
vector<int> T[N]; // arbol final
vector<pair<int, int>> G[N]; // first = v, second = id de arista
void DFS(int u, int p = -1) {
       vis[u] = true;
       low[u] = tin[u] = timer++;
       for(auto edge : G[u]) {
              int v, e;
              tie(v, e) = edge;
              if(v == p) continue;
              if(vis[v]) {
                     low[u] = min(low[u], tin[v]);
```

```
else {
                      DFS(v, u);
                      low[u] = min(low[u], low[v]);
                      if(low[v] > tin[u]) {
                              bridge[e] = true;
                       }
               }
       }
}
void build_tree() {
       DFS(1):
       for(int i = 1; i <= n; i++) vis[i] = false;</pre>
       k = 0;
       for(int i = 1; i <= n; i++) {</pre>
               if(vis[i]) continue;
               queue<int> Q;
               Q.emplace(i);
               vis[i] = true;
               while(!Q.empty()) {
                      int u = Q.front(); Q.pop();
                      C[u] = k;
                      for(auto edge : G[u]) {
                              int v, e;
                              tie(v, e) = edge;
                              if(bridge[e]) continue;
                              if(vis[v]) continue;
                              Q.emplace(v);
                              vis[v] = true;
                       }
               k += 1;
       }
       for(int i = 1; i <= m; i++) {</pre>
```

```
if(not bridge[i]) continue;
int u = C[to[i]], v = C[from[i]];
T[u].emplace_back(v);
T[v].emplace_back(u);
}
```

18

1.4.5 Dijkstra

```
int n;
int m;
int D[N];
vector<pair<int, int>> G[N];
// las distancias mnimas se guardan en D
// indexa en 0
void Dijkstra(int src) {
       for(int i = 0; i < n; i++) D[i] = -1;</pre>
       D[src] = 0;
       priority_queue<pair<int, int>, vector<pair<int, int>>,
           greater<pair<int, int>>> Q; // Min PQ
       Q.emplace(0, src);
       while(!Q.empty()) {
              int dis, u;
              tie(dis, u) = Q.top(); Q.pop();
              if(dis != D[u]) continue; // Verificacion de que u
                  no ha sido visitado todavia
              for(auto e : G[u]) {
                      int v, w;
                      tie(v, w) = e;
                      if(D[v] == -1 \text{ or } D[v] > D[u] + w) {
                              D[v] = D[u] + w;
                              Q.emplace(D[v], v);
```

```
}
}
}
```

1.4.6 Floyd Warshall

```
const int N = 100 + 5;
const int inf = 2e9 + 10;
int n;
int m;
int d[N][N];
/*
   * inicializar el arreglo d con INF, a menos que i == j
       for(int i = 0; i < n; i++) {
              for(int j = 0; j < n; j++) {
                      d[i][j] = i == j ? 0 : inf;
               }
       }
   * para escoger siempre la menor
   * arista en caso de aristas mltiples
       for(int i = 0; i < m; i++) {
               int u, v, w;
              scanf("%d %d %d", &u, &v, &w);
              d[u][v] = min(d[u][v], w);
       }
*/
bool floyd_warshall(){
   for(int k = 0; k < n; k++) {</pre>
              for(int i = 0; i < n; i++) {</pre>
```

19

1.4.7 Heavy Light Decomposition

```
Para inicializar llamar build().
Agregar Segment Tree con un constructor vacio,
  actualizaciones puntuales y declarar el valor neutro de forma
     global.
Para consultas sobre aristas guardar el valor de cada arista
  en su nodo hijo y cambiar pos[u] por pos[u]+1 en la linea 54.
*/

typedef int T; //tipo de dato del segtree
  const int MX = 1e5+5;
  vector<int> g[MX];
```

```
int par[MX], dep[MX], sz[MX];
int pos[MX], top[MX], value[MX];
vector<T> arr;
int idx;
int pre(int u, int p, int d) {
   par[u] = p; dep[u] = d;
   int aux = 1;
   for (auto &v : g[u]) {
       if (v != p) {
          aux += pre(v, u, d+1);
          if (sz[v] >= sz[g[u][0]]) swap(v, g[u][0]);
       }
   }
   return sz[u] = aux;
}
void hld(int u, int p, int t) {
   arr[idx] = value[u]; //vector para inicializar el segtree
   pos[u] = idx++;
   top[u] = t < 0 ? t = u : t;
   for (auto &v : g[u]) {
       if (v != p) {
          hld(v, u, t);
          t = -1;
       }
segtree sgt;
void build(int n, int root) {
   idx = 0:
   arr.resize(n):
   pre(root, root, 0);
```

```
hld(root, root, -1);
    sgt = segtree(arr);
}

T query(int u, int v) {
    T ans = neutro;
    while (top[u] != top[v]) {
        if (dep[top[u]] > dep[top[v]]) swap(u, v);
        ans = min(ans, sgt.query(pos[top[v]], pos[v]));
        v = par[top[v]];
    }
    if (dep[u] > dep[v]) swap(u, v);
    ans = min(ans, sgt.query(pos[u], pos[v]));
    return ans;
}

void upd(int u, T val) {
    sgt.upd(pos[u], val);
}
```

1.4.8 LCA

```
/*
Dados los nodos u y v de un arbol determina cual es el ancestro
    comun mas bajo entre u y v.
*Tambien puede determinar la arista de peso maximo/minimo entre
    los nodos u y v (Para esto quitar los "//")
Se debe ejecutar la funcion dfs() primero, el padre de la raiz
    es s mismo, w es el valor a almacenar del padre.

*/
const int N = 4e5+2, inf = 1e9, LOG2 = 20;
int dep[N]; // Profundidad de cada nodo
int par[LOG2][N]; // Sparse table para guardar los padres
//int rmq[LOG2][N]; // Sparse table para guardar pesos
```

```
struct edge { int v, w; };
vector<edge> g[N];
void dfs(int u, int p, int d, int w){
   dep[u] = d;
   par[0][u] = p;
   // rmq[0][u] = w;
   for(int j = 1; j < LOG2; j++){</pre>
       par[j][u] = par[j-1][par[j-1][u]];
       // rmq[j][u] = max(rmq[j-1][u], rmq[j-1][par[j-1][u]]);
   }
   for(auto &ed: g[u]){
       int v = ed.v;
       int val = ed.w;
       if(v == p)continue;
       dfs(v, u, d+1, val);
   }
}
int lca(int u, int v){
   // int ans = -1;
   if(dep[v] < dep[u])swap(u, v);</pre>
   int d = dep[v]-dep[u];
   for(int j = LOG2-1; j >= 0; j--){
       if(d >> j & 1){
          // ans = max(ans, rmq[j][v]);
           v = par[j][v];
       }
   // if(u == v)return ans;
   if(u == v)return u;
   for(int j = LOG2-1; j \ge 0; j--){
       if(par[j][u] != par[j][v]){
           // ans = max({ans, rmq[j][u], rmq[j][v]});
```

```
u = par[j][u];
v = par[j][v];
}

// return max({ans, rmq[1][u], rmq[0][v]}); // si la info es
de los nodos
// return max({ans, rmq[0][u], rmq[0][v]}); // si la info es
de las aristas
return par[0][u];
}
```

1.4.9 Prim

```
// Prim clsico, retorna el MST de un grafo
int n;
int m;
int q[N];
bool vis[N];
int wedge[N];
vector<pair<int, int>> G[N];
int Prim(int src) {
       memset(wedge, -1, sizeof wedge);
       wedge[src] = 0;
       priority_queue<pair<int, int>, vector<pair<int, int>>,
          greater<pair<int, int>>> Q;
       Q.emplace(0, src);
       while(!Q.empty()) {
              int we, u;
              tie(we, u) = Q.top(); Q.pop();
              vis[u] = true;
              for(auto e : G[u]) {
                      int v, w;
```

```
tie(v, w) = e;
                      if(wedge[v] == -1 or wedge[v] > w) {
                             wedge[v] = w;
                             Q.emplace(wedge[v], v);
                      }
               }
       }
       for(int i = 1; i <= n; i++) {</pre>
              if(not vis[i]) return -1;
       return accumulate(wedge + 1, wedge + n + 1, 0);
}
 * Caso especial para un grafo completo
 * no es posible construir el grafo (memoria)
 * pero es posible un algoritmo O(n^2)
 *
 */
int n;
int x[N];
int y[N];
bool vis[N];
int edge[N]; // Minima arista que cruza desde S hasta mi nodo
int dis(int i, int j) {
       return abs(x[i] - x[j]) + abs(y[i] - y[j]);
}
int Prim(int src) {
       vis[src] = true:
       for(int i = 0; i < n; i++) edge[i] = dis(src, i);</pre>
```

1.4.10 SCC

```
int n;
int m;
bool in[N];
bool vis[N];
int comp[N];
vector<int> order;
vector<int> component;
vector<int> G[2][N]; // en G[1] es el grafo transpuesto

void DFS(int id, int u) {
    vis[u] = id ^ 1;
    for(int v : G[id][u]) {
        if(vis[v] == (id ^ 1)) continue;
        DFS(id, v);
}
```

```
if(id == 0) order.emplace_back(u);
       else component.emplace_back(u);
int solve() {
       order.clear();
       component.clear();
       for(int i = 0; i < n; i++) {</pre>
              if(vis[i]) continue;
              DFS(0, i);
       reverse(order.begin(), order.end());
       vector<vector<int>> res;
       for(int u : order) {
              if(not vis[u]) continue;
              component.clear();
              DFS(1, u);
              for(int x : component) comp[x] = res.size();
              res.emplace_back(component);
       }
       for(int i = 0; i < n; i++) {</pre>
               for(int v : G[0][i]) {
                      if(comp[i] == comp[v]) continue;
                      in[comp[v]] = true;
       }
       int cnt = 0;
       for(int i = 0; i < res.size(); i++) cnt += !in[i];</pre>
       return cnt;
```

1.4.11 Topological Sort

```
vector<int> toposort(int n, int m, vector<vector<int>> &G) {
```

```
vector<int> in_degree(n, 0);
for(int i = 0; i < n; i++) {</pre>
       for(int v : G[i]) in_degree[v] += 1;
queue<int> Q;
vector<int> res;
for(int i = 0; i < n; i++) {</pre>
       if(in_degree[i] == 0) {
              Q.emplace(i);
       }
while(!Q.empty()) {
       int u = Q.front(); Q.pop();
       res.emplace_back(u);
       for(int v : G[u]) {
              in_degree[v] -= 1;
              if(in_degree[v] == 0) {
                      Q.emplace(v);
               }
       }
return res.size() < n ? vector<int>() : res;
```

1.5 Number theory

1.5.1 Chinese Remainder Theorem

```
/*
Encuentra un x tal que para cada i : x es congruente con A_i mod
    M_i

Devuelve {x, lcm}, donde x es la solucion con modulo lcm (lcm =
    LCM(M_0, M_1, ...)). Dado un k : x + k*lcm es solucion
    tambien.
```

1.5.2 Extended Euclidean

```
// Recursivo
int gcd(int a, int b, int& x, int& y) {
   if (b == 0) {
        x = 1;
        y = 0;
        return a;
   }
   int x1, y1;
   int d = gcd(b, a % b, x1, y1);
   x = y1;
   y = x1 - y1 * (a / b);
   return d;
}
```

```
// Iterativo
int gcd(int a, int b, int& x, int& y) {
   x = 1, y = 0;
   int x1 = 0, y1 = 1, a1 = a, b1 = b;
   while (b1) {
       int q = a1 / b1;
       tie(x, x1) = make_tuple(x1, x - q * x1);
       tie(y, y1) = make_tuple(y1, y - q * y1);
       tie(a1, b1) = make_tuple(b1, a1 - q * b1);
   return a1;
}
// UFPS
// El algoritmo de Euclides extendido retorna el gcd(a, b) y
   calcula los coeficientes enteros X y Y que satisfacen la
   ecuacion: a*X + b*Y = gcd(a, b).
int x, y;
/// O(log(max(a, b)))
int euclid(int a, int b) {
   if(b == 0) { x = 1; y = 0; return a; }
   int d = euclid(b, a%b);
   int aux = x;
   x = y;
   y = aux - a/b*y;
   return d;
```

24

1.5.3 Lineal Sieve

```
const int N = 100000000 + 5;
vector<int> primes;
```

```
bitset<N> composite;

void lineal(int n){
   for(int i = 2; i <= n; i++) {
        if(not composite[i]) primes.emplace_back(i);
        for(int p : primes) {
            if(i * p > n) break;
            composite[i * p] = true;
            if(i % p == 0) break;
        }
   }
}
```

1.5.4 Miller Rabin

```
// El algoritmo de Miller-Rabin determina si un numero es primo
   o no. Agregar Modular Exponentiation (para m 11) y Modular
   Multiplication.
/// O(log^3(n))
bool test(ll n, int a) {
   if (n == a) return true;
   11 s = 0, d = n-1;
   while (d\%2 == 0) s++, d /= 2;
   11 x = expmod(a, d, n);
   if (x == 1 || x+1 == n) return true;
   for (int i = 0; i < s-1; i++) {</pre>
       x = mulmod(x, x, n);
       if (x == 1) return false;
       if (x+1 == n) return true;
   }
   return false;
```

```
bool is_prime(ll n) {
    if (n == 1) return false;
    int ar[] = {2,3,5,7,11,13,17,19,23};
    for (auto &p : ar) if (!test(n, p)) return false;
    return true;
}
```

25

1.5.5 **Mobius**

```
/*
La funcion mu de Mobius devuelve O si n es divisible por algun
   cuadrado (x^2).
Si n es libre de cuadrados entonces devuelve 1 o -1 si n tiene
   un numero par o impar de factores primos distintos.
* Calcular Mobius para todos los numeros menores o iguales a MX
   con Sieve of Eratosthenes.
*/
const int MX = 1e6;
short mu[MX+1] = {0, 1};
/// O(MX log(log(MX)))
void mobius() {
   for (int i = 1; i <= MX; i++) {</pre>
       if (!mu[i]) continue;
       for (int j = i*2; j <= MX; j += i) {</pre>
           mu[j] -= mu[i];
   }
```

1.5.6 Modular Multiplication

```
/* Calcula (a*b) % m sin overflow cuando m es 11. */
```

```
/// 0(1)
11 mulmod(ll a, ll b, ll m) {
    ll r = a*b-(ll)((long double)a*b/m+.5)*m;
    return r < 0 ? r+m : r;
}</pre>
```

1.5.7 Natural Sieve

1.5.8 Pollard Rho

```
/*
La funcion Rho de Pollard calcula un divisor no trivial de n.
    Agregar Modular Multiplication.
*/
ll gcd(ll a, ll b) { return a ? gcd(b%a, a) : b; }

ll rho(ll n) {
    if (!(n&1)) return 2;
```

```
11 x = 2, y = 2, d = 1;
   11 c = rand() % n + 1;
   while (d == 1) {
       x = (mulmod(x, x, n) + c) \% n;
       y = (mulmod(y, y, n) + c) \% n;
       y = (mulmod(y, y, n) + c) \% n;
       d = gcd(abs(x-y), n);
   return d == n ? rho(n) : d;
* Version optimizada
11 add(ll a, ll b, ll m) { return (a += b) < m ? a : a-m; }</pre>
ll rho(ll n) {
   static ll s[MX];
   while (1) {
       11 x = rand()\%n, y = x, c = rand()\%n;
       11 *px = s, *py = s, v = 0, p = 1;
       while (1) {
           *py++ = y = add(mulmod(y, y, n), c, n);
           *py++ = y = add(mulmod(y, y, n), c, n);
           if ((x = *px++) == y) break;
           11 t = p;
           p = mulmod(p, abs(y-x), n);
           if (!p) return gcd(t, n);
           if (++v == 26) {
              if ((p = gcd(p, n)) > 1 && p < n) return p;</pre>
               v = 0;
           }
       if (v \&\& (p = gcd(p, n)) > 1 \&\& p < n) return p;
```

1.6 Strings

1.6.1 Aho Corasick

```
/*
   El trie (o prefix tree) guarda un diccionario de strings
       como un arbol enraizado.
   Aho corasick permite encontrar las ocurrencias de todos los
       strings del trie en un string s.
*/
const int alpha = 26; //cantidad de letras del lenguaje
const char L = 'a'; //primera letra del lenguaje
struct node {
   int next[alpha], end;
   //int link, exit, cnt; //para aho corasick
   int& operator[](int i) { return next[i]; }
};
vector<node> trie = {node()};
void add_str(string &s, int id = 1) {
   int u = 0;
   for (auto ch : s) {
       int c = ch-L;
       if (!trie[u][c]) {
          trie[u][c] = trie.size();
          trie.push_back(node());
       }
       u = trie[u][c];
   trie[u].end = id; //con id > 0
   //trie[u].cnt++; //para aho corasick
}
```

```
// aho corasick
void build_ac() {
   queue<int> q; q.push(0);
   while (q.size()) {
       int u = q.front(); q.pop();
       for (int c = 0; c < alpha; ++c) {</pre>
           int v = trie[u][c];
           if (!v) trie[u][c] = trie[trie[u].link][c];
           else q.push(v);
           if (!u || !v) continue;
           trie[v].link = trie[trie[u].link][c];
                      trie[v].exit = trie[trie[v].link].end ?
                         trie[v].link : trie[trie[v].link].exit;
           trie[v].cnt += trie[trie[v].link].cnt;
   }
vector<int> cnt; //cantidad de ocurrencias en s para cada patron
void run_ac(string &s) {
   int u = 0, sz = s.size();
   for (int i = 0; i < sz; ++i) {</pre>
       int c = s[i]-L;
       while (u && !trie[u][c]) u = trie[u].link;
       u = trie[u][c];
       int x = u;
       while (x) {
           int id = trie[x].end;
          if (id) cnt[id-1]++;
           x = trie[x].exit;
   }
```

27

1.6.2 Hashing

```
/*/
Convierte el string en un polinomio, en O(n), tal que podemos
   comparar substrings como valores numericos en O(1).
Primero llamar calc_xpow() (una unica vez) con el largo maximo
   de los strings dados.
*/
inline int add(int a, int b, const int &mod) { return a+b >= mod
   ? a+b-mod : a+b; }
inline int sbt(int a, int b, const int &mod) { return a-b < 0 ?
   a-b+mod : a-b; }
inline int mul(int a, int b, const int &mod) { return 111*a*b %
   mod: }
const int X[] = \{257, 359\};
const int MOD[] = {(int)1e9+7, (int)1e9+9};
vector<int> xpow[2];
struct hashing {
   vector<int> h[2];
   hashing(string &s) {
       int n = s.size();
      for (int j = 0; j < 2; ++j) {
          h[j].resize(n+1);
          for (int i = 1; i <= n; ++i) {
              h[j][i] = add(mul(h[j][i-1], X[j], MOD[j]),
                  s[i-1], MOD[j]);
          }
   }
   //Hash del substring en el rango [i, j)
   11 value(int 1, int r) {
```

1.6.3 Manacher

```
// O(n) => solo string tamanio impar
vector<int> manacher_odd(string s) {
   int n = s.size();
   s = "$" + s + "^";
   vector<int> p(n + 2);
   int l = 1, r = 1;
   for(int i = 1; i <= n; i++) {
      p[i] = max(0, min(r - i, p[l + (r - i)]));
      while(s[i - p[i]] == s[i + p[i]]) {
          p[i]++;
      }
      if(i + p[i] > r) {
          l = i - p[i], r = i + p[i];
      }
}
```

```
return vector<int>(begin(p) + 1, end(p) - 1);
}

// Para cualquier tamanio par o impar
vector<int> manacher(string s) {
    string t;
    for(auto c: s) {
        t += string("#") + c;
    }
    auto res = manacher_odd(t + "#");
    return vector<int>(begin(res) + 1, end(res) - 1);
}
```

1.6.4 Prefix Function

1.6.5 Suffix Array

```
const int MAXL = 300;
struct suffixArray {
    string s;
   int n, MX;
   vector<int> ra, tra, sa, tsa, lcp;
    suffixArray(string &_s) {
       s = _s + "$";
       n = s.size();
       MX = max(MAXL, n) + 2;
       ra = tra = sa = tsa = lcp = vector<int>(n);
       build();
   }
   void radix_sort(int k) {
       vector<int> cnt(MX, 0);
       for(int i = 0; i < n; i++)</pre>
           cnt[(i+k < n) ? ra[i+k]+1 : 1]++;
       for(int i = 1; i < MX; i++)</pre>
           cnt[i] += cnt[i-1];
       for(int i = 0; i < n; i++)</pre>
           tsa[cnt[(sa[i]+k < n) ? ra[sa[i]+k] : 0]++] = sa[i];
        sa = tsa;
   void build() {
       for (int i = 0; i < n; i++)</pre>
           ra[i] = s[i], sa[i] = i;
       for (int k = 1, r; k < n; k <<= 1) {
           radix_sort(k);
           radix_sort(0);
           tra[sa[0]] = r = 0:
           for (int i = 1; i < n; i++) {</pre>
```

29

```
if (ra[sa[i]] != ra[sa[i-1]] || ra[sa[i]+k] !=
                  ra[sa[i-1]+k]) ++r;
              tra[sa[i]] = r;
           ra = tra;
           if (ra[sa[n-1]] == n-1) break;
       }
   }
   int& operator[] (int i) { return sa[i]; }
   void build_lcp() {
       lcp[0] = 0;
       for (int i = 0, k = 0; i < n; i++) {
           if (!ra[i]) continue;
           while (s[i+k] == s[sa[ra[i]-1]+k]) k++;
           lcp[ra[i]] = k;
           if (k) k--;
       }
   }
   //Longest Common Substring: construir el suffixArray s = s1
       + "#" + s2 + "$" y m = s2.size()
   pair<int, int> lcs() {
       int mx = -1, ind = -1;
       for (int i = 1; i < n; i++) {</pre>
           if (((sa[i] < n-m-1) != (sa[i-1] < n-m-1)) && mx <</pre>
              lcp[i]) {
              mx = lcp[i]; ind = i;
           }
       return {mx, ind};
   }
};
```

1.6.6 Suffix Automaton

```
struct suffixAutomaton {
   struct node {
       int len, link; bool end;
       map<char, int> next;
       int cnt; ll in, out;
   };
   vector<node> sa;
   int last; ll substrs = 0;
   suffixAutomaton() {}
   suffixAutomaton(string &s) {
       sa.reserve(s.size()*2);
       last = add_node();
       sa[0].link = -1;
       sa[0].in = 1;
       for (char &c : s) add_char(c);
       for (int p = last; p; p = sa[p].link) sa[p].end = 1;
   int add_node() { sa.pb({}); return sa.size()-1; }
   void add_char(char c) {
       int u = add_node(), p = last;
       sa[u].len = sa[last].len + 1;
       while (p != -1 && !sa[p].next.count(c)) {
          sa[p].next[c] = u;
          sa[u].in += sa[p].in;
          substrs += sa[p].in;
          p = sa[p].link;
       }
       if (p != -1) {
          int q = sa[p].next[c];
```

30

```
if (sa[p].len + 1 != sa[q].len) {
           int clone = add_node();
           sa[clone] = sa[q];
           sa[clone].len = sa[p].len + 1;
           sa[clone].in = 0;
           sa[q].link = sa[u].link = clone;
           while (p != -1 && sa[p].next[c] == q) {
               sa[p].next[c] = clone;
               sa[q].in -= sa[p].in;
               sa[clone].in += sa[p].in;
              p = sa[p].link;
           }
       } else sa[u].link = q;
   last = u;
}
void run(string &s) {
   int u = 0;
   for (int i = 0; i < s.size(); ++i) {</pre>
       while (u && !sa[u].next.count(s[i])) u = sa[u].link;
       if (sa[u].next.count(s[i])) u = sa[u].next[s[i]];
   }
}
int match_str(string &s) {
   int u = 0, n = s.size();
   for (int i = 0; i < n; ++i) {</pre>
       if (!sa[u].next.count(s[i])) return 0;
       u = sa[u].next[s[i]];
   return count_occ(u);
}
int count_occ(int u) {
```

```
if (sa[u].cnt != 0) return sa[u].cnt;
    sa[u].cnt = sa[u].end;
    for (auto &v : sa[u].next)
        sa[u].cnt += count_occ(v.S);
    return sa[u].cnt;
}

ll count_paths(int u) {
    if (sa[u].out != 0) return sa[u].out;
    for (auto &v : sa[u].next)
        sa[u].out += count_paths(v.S) + 1;
    return sa[u].out;
}

node& operator[](int i) { return sa[i]; }
};
```

1.6.7 Trie

```
const int N = 1e6 + 100;
int trie[N][26]; // N = suma de longitudes
bool stop[N];
int ct = 0;

void insert(string word) {
    int node = 0;
    for(int i = 0; i < (int)word.size(); i++) {
        if(!trie[node][word[i] - 'a']) trie[node][word[i] - 'a'] = ++ct;
        node = trie[node][word[i] - 'a'];
    }
    stop[node] = true;
}</pre>
```

1.6.8 Z Function

```
vector<int> z_function(string s) {
   int n = s.size();
   vector<int> z(n);
   int l = 0, r = 0;
   for(int i = 1; i < n; i++) {
      if(i < r) {
        z[i] = min(r - i, z[i - 1]);
      }
      while(i + z[i] < n && s[z[i]] == s[i + z[i]]) {</pre>
```

```
z[i]++;
}
if(i + z[i] > r) {
    l = i;
    r = i + z[i];
}
return z;
}
```