Poisson regression coefficients

GENERALIZED LINEAR MODELS IN R

Richard Erickson
Instructor

Chapter overview

- Describing Poisson regressions
- Plotting Poisson GLMs with ggplot2
- Describing logistic regression with odds-ratios
- Plotting binomial GLMs with ggplot2

Fire injury data

Linear model coefficients overview

- Estimate expected daily injury per month
- Estimate reference intercept
- Estimate intercept for other months

Linear model equation

- $y \sim \beta_0 + \beta_m x_m + \ldots + \epsilon$
- β_0 : Reference intercept
- β_m : Month m effect
- y injuries per day (e.g., 1, 0, 4)
- ullet x dummy variable to code for month (0 or 1)
- ullet m corresponds to month intercept, dummy variable

Linear model results

- β_0 is expected (or average) in reference month
- β_m is effect of month m (or difference from reference)
- e.g., β_0 + β_m = ave. daily injuries for month m
- More complicated models covered in chapter 4
- Linear models are additive

Poisson model

- $y \sim \text{Poisson}(\lambda)$
- Link: $\lambda = e^{(eta_0 + eta_m x_m + \epsilon)}$
- Multiplicative
- Example results:
 - $\circ \ eta_0 imes eta_1 = \ln(ext{mean daily injuries for month } m)$
 - Take exponential to convert to raw units

Difference between Poisson and linear models

- Poisson model: $e^{eta_0 imes eta_m} = ext{expected daily injuries for month } m$
- Linear model: $\beta_0 + \beta_m = \text{expected daily injuries for month } m$

Extract in R

```
poissonOut <- glm(y ~ x, family = 'poisson')
coef(poissonOut)
exp(coef(poissonOut))</pre>
```

Tidy solution

```
library(broom)
poissonOut <- glm(y ~ x, family = 'poisson')
tidy(poissonOut, exponentiate = TRUE)</pre>
```


Statistical inferences

- Similar as linear model on link-scale
- Do coefficients differ from zero?
- On data-scale, different
- Do coefficients differ from 1?
- Exponential-scale rather than raw-scale

Let's practice!

GENERALIZED LINEAR MODELS IN R

Plotting Poisson regression

GENERALIZED LINEAR MODELS IN R

Richard Erickson
Instructor

When to use geom_smooth with Poisson

- Works best with continuous predictor variables
- ullet e.g., increasing dose and number of cells with cancer per cm 2
- Otherwise, use boxplot or similar plotting tool

Cancer cells dose study

- Simulate data
- Dose-response
 - o x: Dose
 - \circ y: Number of cancer cells per cm²

Plot points

```
ggplot(data = dat, aes(x = dose, y = cells)) +
   geom_point()
```


Jitter points

```
ggplot(data = dat, aes(x = dose, y = cells)) +
geom_jitter(width = 0.05, height = 0.05)
```


geom_smooth()

```
ggplot(data = dat, aes(x = dose, y = cells)) +
  geom_jitter(width = 0.05, height = 0.05)
  geom_smooth()
```


GLMs with geom_smooth()

```
ggplot(data = dat, aes(x = dose, y = cells)) +
  geom_jitter(width = 0.05, height = 0.05)
  geom_smooth(method = 'glm')
```


Poison GLM with geom_smooth()

```
ggplot(data = dat, aes(x = dose, y = cells)) +
  geom_jitter(width = 0.05, height = 0.05) +
  geom_smooth(method = 'glm', method.args = list(family = 'poisson'))
```


Summary of steps

- Plot non-overlapping points
- Add in Poisson trend line
- Polish figure (not-done here)

Let's practice!

GENERALIZED LINEAR MODELS IN R

Understanding output from logistic regression

GENERALIZED LINEAR MODELS IN R

Richard Erickson
Instructor

Communicating results from logistic regression?

- Linear regression is straight forward:
 - Add intercepts
 - Multiply slopes
- Poisson regression:
 - Requires exponential transformation
 - Similar to linear regression post-transformation
- Logistic regression???

Odds-ratios

- Not as straightforward as Poisson exponential
- Used to compare relative odds of two events occurring

Example odds-ratios

- Unfair coin:
 - Compare heads to tails
 - Heads 3 times for every 1 tails
 - o 3-to-1 odds
 - Odds-ratios 3.0
- Often used in sports/gambling
- Medical studies

Logistic derivation of odds-ratio

Log-odds ("logit"):

$$\phi(x) = \ln(rac{p(x)}{1-p(x)}) = eta_0 + eta_1 x$$

Odds, take exponential (e^x) :

$$rac{p(x)}{1-p(x)}=e^{eta_0+eta_1x}$$

Odd-ratio for continuous variable

Odds-ratio (OR) for continuous variable:

$$ext{OR} = rac{e^{eta_0 + eta_1(x+1)}}{e^{eta_0 + eta_1 x}} = e^{eta_1}$$

Interpretation

OR Values:

- OR = 1: Coefficient has no effect
- OR < 1: Coefficient decreases odds
- OR > 1: Coefficient increases odds

Cancer example

Non-smoking vs smoking males (Pesch et al. 2012)

- OR: 103.5 (95% CI 74.8-143.2)
- > 100-to-1 odds of getting cancer for smoking men!
- Medical literature often reports 95% confidence intervals rather than p-values
- Broader trend away from p-values

Extract from GLM

```
glm_out <- glm(y ~ x, family = 'binomial')</pre>
coef(glm_out)
exp(coef(glm_out))
confint(glm_out)
exp(confint(glm_out))
```

Tidyverse

```
library(broom)

glm_out <- glm(y ~ x, family = 'binomial')

tidy(glm_out, exponentiate = TRUE, conf.int= TRUE)</pre>
```

Let's practice!

GENERALIZED LINEAR MODELS IN R

ggplot2 and binomial GLM

GENERALIZED LINEAR MODELS IN R

Richard Erickson
Instructor

What can I see in my data?

Does commute distance change the probability of taking the bus?

```
ggplot(bus, aes(x = MilesOneWay, y = Bus)) + geom_point()
```


geom_jitter()

geom_smooth()

```
gg_jitter + geom_smooth()
```


factor to numeric

```
str(bus)
bus$Bus2 <- as.numeric(bus$Bus) - 1</pre>
```


geom_smooth()

```
gg_jitter + geom_smooth()
```


linear models

```
gg_jitter + geom_smooth(method = 'glm')
```


Logistic regressions

```
ggJitter +
geom_smooth(method = 'glm',
    method.args = list(family = "binomial"))
```


Summary of steps

- Plot as jitter to avoid overlap
- Add a smoothed geom
- Specify correct method and family
- Polish your figure (not covered in this course)

Let's practice!

GENERALIZED LINEAR MODELS IN R

