"Sugato Weighted Long-Short Dow Trading Strategy"

Consider a daily portfolio of 6 Dow Stocks, s[1] thru s[6].

We have 6 weights, w[1] thru w[6]

Constraint on weight: Must be one of {0.05,0.1,0.15,0.2,..., 0.85,0.9,0.95}

(Diversification constraint: Weight can't be 0 or 1)

Constraint on weight: w[1] + w[2] + w[3] = 1Constraint on weight: w[4] + w[5] + w[6] = 1

Strategy: Sort yesterday's returns.

s[1] thru s[3] = Yesterday's 3 worst performing stocks

s[4] thru s[6] = Yesterday's 3 best performing stocks

Go long s[1] thru s[3]:

LR = Long Return = s[1]*w[1] + s[2]*w[2] + s[3]*w[3]

Short s[4] thru s[6]:

SR = Short Return = -(s[4]*w[4] + s[5]*w[5] + s[6]*w[6])

Close out stocks at end of day.

Total Daily Return = LR + SR

Q1. How many such {w[1], w[2],w[3],w[4],w[5],w[6]} tuples overall? Ans. 29241

Q2. What do the best possible tuples return PER MONTH?

> head(returnMat,10)

	Long	Long	Long	Short	Short	Short	Monthly Return
[1,]	0.90	0.05	0.05	0.90	0.05	0.05	0.10133349
[2,]	0.85	0.10	0.05	0.90	0.05	0.05	0.10047601
[3,]	0.90	0.05	0.05	0.85	0.05	0.10	0.09981474
[4,]	0.80	0.15	0.05	0.90	0.05	0.05	0.09961854
[5,]	0.85	0.10	0.05	0.85	0.05	0.10	0.09895726
[6,]	0.75	0.20	0.05	0.90	0.05	0.05	0.09876106
[7,]	0.90	0.05	0.05	0.80	0.05	0.15	0.09829599
[8,]	0.80	0.15	0.05	0.85	0.05	0.10	0.09809979
[9,]	0.70	0.25	0.05	0.90	0.05	0.05	0.09790359
[10,]	0.85	0.05	0.10	0.90	0.05	0.05	0.09786104

E.g. see[6]: Buy (75%, 20%,5%) of yesterday's 3 worst performing stocks. Sell (90%,5%,5%) of yesterday's 3 best performing stocks. Hold until end of day & close out. 9.87% monthly return.

Q3. What do the worst possible tuples return PER MONTH?

> tall(returnMat,10)											
	Long	Long	Long	Short	Short	Short	Monthly Return				
[29232,]	0.05	0.05	0.90	0.10	0.80	0.10	-0.01240011				
[29233,]	0.10	0.05	0.85	0.05	0.85	0.10	-0.01247322				
[29234,]	0.05	0.15	0.80	0.05	0.90	0.05	-0.01274253				
[29235,]	0.05	0.10	0.85	0.05	0.85	0.10	-0.01333070				
[29236,]	0.05	0.05	0.90	0.05	0.80	0.15	-0.01391886				
[29237,]	0.05	0.05	0.90	0.10	0.85	0.05	-0.01442692				
[29238,]	0.10	0.05	0.85	0.05	0.90	0.05	-0.01450003				
[29239,]	0.05	0.10	0.85	0.05	0.90	0.05	-0.01535750				
[29240,]	0.05	0.05	0.90	0.05	0.85	0.10	-0.01594567				
[29241,]	0.05	0.05	0.90	0.05	0.90	0.05	-0.01797247				

E.g. Buy (5%, 5%,90%) of yesterday's 3 worst performing stocks. Sell (5%,85%,10%) of yesterday's 3 best performing stocks. Hold until end of day & close out. -1.59% monthly return.

Q4. Sample Size?

N = 221 (There are 221 possible consecutive 30-day periods in 2018) So we have 29241 tuples for each of the 221 possible months.

Q5. Return Distribution?

Positive skew, averaging around 5% a month.

Q6. Advantage over equal-weighted?

An (almost) equal weighting of (30%,35%,35%) long & (30%,35%,35%) short portfolio nets 4.49% monthly. Finding the optimal tuple gets us 2.06x i.e. over twice the return we would have obtained otherwise.