Guía de problemas de Análisis de Señales y Sistemas

Requisito para aprobación: Posee 10 problemas, 4 de resolución obligatoria y se requieren 8 correctamente resueltos para su aprobación.

Ejercicio Nro. 1:

Partiendo del esquema mostrado debajo, se pide completar la tabla.

Siendo:

Vi: Tensión de entrada eficaz del cuadripolo [V]

Zi: Impedancia de entrada del cuadripolo $[\Omega]$

Zo: Impedancia de salida del cuadripolo $[\Omega]$

G: Ganancia del cuadripolo [dB]

Pi: potencia de entrada del cuadripolo [dBm]

Po: Potencia de salida del cuadripolo [dBm]

	A1	A2	А3	L	Total	Unidad	
Vi eff				0.38	-	[V]	
Zi	75	300	600	8	-	[Ω]	
Zo	300	600	8	-	-	[Ω]	
Pi	4.10 ⁻⁹				-	[W]	
Ро				-	-	[W]	
G		0.01		-		[-]	
Pi				-	_	[dBm]	
Ро				-	-	[dBm]	
G	50			-		[dB]	

Ejercicio Nro. 2:

En el sistema presentado en la figura y suponiendo que el ruido que ingresa es despreciable, se pide:

¿Cuál es la relación señal a ruido (S/R) a la salida del sistema en las siguientes condiciones?

- a) ¿Cuál es la relación señal a ruido (S/R) a la salida si el módulo "II" es igual aisladamente al "I"?
- b) ¿Cuál es la relación señal a ruido (S/R) a la salida si el módulo "II" adiciona -30 dBm de ruido?

Ejercicio Nro. 3 (OBLIGATORIO):

De acuerdo con el sistema planteado debajo se pretende una relación señal a ruido, indicada más adelante, (SNR = Ps / Pr) a la entrada del amplificador. Se sabe que la potencia de ruido de entrada del amplificador es de 50pW (Pr).

Se pide:

- a) Calcular la potencia de transmisión (en W, dBW y dBm) de un radioenlace para las siguientes distancias: 5 Km, 10 Km y 20 Km
- b) Repetir el punto anterior, pero en vez de un radioenlace usar un cable coaxil con una atenuación de 5dB / km e impedancia característica $Zo = 75\Omega$.
- c) Encuentre la problemática que se produce al duplicar las distancias en cada caso. Compare y extraiga conclusiones. Proponga alguna solución práctica a esa problemática.

Datos:

 $SNR = 33 \, dB \, Fc = 200 \, MHz \, Ga = 2,15 \, dBi \, Gs = 1.64 \, [veces]$

El Adaptador es ideal, no agrega ruido.

dBi refiere a isotrópico, es la ganancia de la antena real respecto de una antena ideal isotrópica.

Complete la siguiente tabla con los resultados de los ítems a y b.

	d [km]				
	5	10	20		
				[dB]	Atenuación
Radioenlace				[W]	Potencia Trans.
Radioeiliace				[dBW]	
				[dBm]	
				[dB]	Atenuación
				[W]	
Coaxil				[dBW]	Potencia Trans.
				[dBm]	
				[dBmV]	

Para la atenuación del radioenlace considere la fórmula de Friis para atenuación de espacio libre:

$$L_{bf} = 20 \, \log \left(\frac{4\pi \, d}{\lambda} \right)$$

Donde:

- Lbf: atenuación espacio libre [dB]
- d: Distancia entre antenas [m]
- λ: longitud de onda [m]

X [dBmV] = 20*log(X[Vef]/1mV) y Z=75ohms

Ejercicio Nro. 4 (OBLIGATORIO):

Dado el tren de pulsos de la figura:

x(t)

Se pide:

a) Grafique el espectro de amplitudes en frecuencias genérico para los siguientes casos:

	1	2	3	4	
Α	1	1	0.5	1	
Т	50	50	50	250	[mSg]
t	25	10	25	25	[mSg]

b) En base a lo anterior $(x_{(t)})$ explique qué sucede para los siguientes casos límite:

I.
$$T \rightarrow \infty$$
 t = cte.

I.
$$T \rightarrow \infty$$
 $t = cte$. $A = cte$. II. $T = cte$. $t \rightarrow 0$ $A = cte$.

III.
$$T = cte.$$
 $t \rightarrow 0$ $A \rightarrow$

$$A \rightarrow \infty$$
 de manera que $A^* \mathbf{t} = \text{cte.}$

c) Para el caso "a.2", calcule en el dominio del tiempo la potencia normalizada total de la señal y en el dominio de la frecuencia la potencia y el valor cuadrático medio de cada una de las componentes significativas. Identifique y verifique una identidad definida en la teoría.

Ejercicio Nro. 5:

La figura presenta solo tres "pulsos de RF" pero la señal es periódica, es decir, es una sucesión infinita de estos pulsos de RF. Se pide hallar:

a) El espectro del módulo de la transformada de Fourier

$$fc = 20 MHz$$

$$t$$
 activo = 0.5 uS

$$t_reposo = 0.5 uS$$

- b) Idem al a) pero duplicando la frecuencia de senoidal (fc = 40MHz).
- c) Idem al a) pero aumentando al doble los tiempos activo y de reposo (1 uS).
- d) Idem al a) pero aumentando al doble sólo el tiempo activo (1 uS).

Para ambos casos, señale métodos alternativos para resolverlo y aplique uno a su elección.

Ejercicio Nro. 6:

Dadas las siguientes señales s1 y s2 definidas por:

$$s1(t) = A_0 + A_1 \cdot cos(w_1 \cdot t)$$

Donde:

- A₀ = 1V
- A₁ = 0,5V
- $W_1 = 2 . \pi . 5 MHz$

s2(t) es tal que su transformada de Fourier es real y se corresponde con:

F2 = 2 MHz

$$A2 = 0.5V$$

Se pide:

a)
$$S3(f) = |S1(f) * S2(f)|$$
 ("*" = Convolución)

- b) Expresión en el dominio del tiempo de s3(t) en función de s1(t) y s2(t)
- c) Calcular Potencia normalizada de s1
- d) Calcular Potencia normalizada de s3

Ejercicio Nro. 7 (OBLIGATORIO):

Sea $v_{(t)}$ una función periódica con periodo T_0 , definida por la repetición de la función $z_{(t)}$ entre - $T_0/2$ y $T_0/2$:

$$z_{t} = 1 + \cos\left(\pi/T_0 \cdot t\right)$$

Se pide hallar la serie de Fourier, expresada en formato exponencial.

Ejercicio Nro. 8:

Dado el siguiente diagrama en bloques:

Donde S1 y S2 son como se indican

Donde:

Se pide:

- a) Hallar el espectro antes del filtro pasa bajos
- b) Hallar el espectro a la salida del filtro pasa bajos
- c) Hallar el espectro a la salida del filtro pasa bajos si F2 = 2402 KHz
- d) Hallar el espectro antes del filtro pasa bajos si F2 = 2398 KHz

<u>Nota:</u> Se sugiere graficar el espectro negativo en un color y espectro positivo en otro color y vea que sucede con ambos luego de la convolución.

Ejercicio Nro. 9:

Sea una señal pulso unitario de 1 seg de duración y amplitud de 5 Volts. Se pide, usando algún software de ayuda (octave, Matlab, etc):

- a) Graficar la transformada de Fourier.
- b) Calcular la energía normalizada de la señal.
- c) Repita los ítems a y b considerando la duración en 4 seg y la amplitud de 2,5 Volt.
- d) Repita los ítems a y b considerando la duración en 0,25 seg y la amplitud de 10 Volts.
- e) ¿Qué sucede en todos los casos con la energía? Compare la energía calculada en el tiempo con la energía calculada en la frecuencia ¿Qué nota?
- f) ¿Qué ancho de banda debería tener un filtro pasabajos RC de primer orden para dejar pasar el pulso rectangular con rise times de 1useg y de 1miliseg?

Ejercicio Nro. 10 (OBLIGATORIO):

Dado un receptor Superheterodino pensado para recibir señales pasabanda de 200 KHz entre 88 y 108 MHz, con frecuencia intermedia de 10,7 MHz.

Se pide:

- a) Características de filtro de RF, considerado Brickwall (Banda de paso y de rechazo).
- b) Características de filtro de FI, considerado Brickwall (Banda de paso y de rechazo).
- c) Rangos de operación del Oscilador Local.
- d) Rangos de las frecuencias imágenes.
- e) Frecuencia del oscilador para sintonizar 102,3 MHz

Problemas extras con resultados

Ejercicio Nro. 1:

Siendo $f_{(t)}$ un pulso único de amplitud A y 2 mSg. de duración (" τ "). Por otra parte $x_{(t)}$ es un tren de deltas de Dirac de valor 1 y 10 mSg de periodo (" τ "), como muestra la siguiente gráfica:

Se pide:

- a) Representar en el tiempo $f_{(t)} * x_{(t)}$ ("*" = Convolución)
- b) Hallar la transformada de Fourier de a) y graficar entre 2 KHz y 2 KHz.

Resultados

a) $f_{(t)} * x_{(t)}$

b) Transformada de Fourier de a)

