Aula 03: Análise de algoritmos — melhor caso, pior caso e caso médio

David Déharbe
Programa de Pós-graduação em Sistemas e Computação
Universidade Federal do Rio Grande do Norte
Centro de Ciências Exatas e da Terra
Departamento de Informática e Matemáica Aplicada

Plano da aula

Pior caso, melhor caso, caso médio, análise amortizada

Conclusão

Pior caso, melhor caso, caso médio

- A complexidade do algoritmo de ordenação por inserção depende não só do tamanho da entrada, mas também do valor desta entrada.
- ▶ A complexidade do algoritmo de *busca linear* depende não só do tamanho da entrada, mas também do valor desta entrada.
 - pior caso é a função que relaciona o tamanho da entrada *n* ao maior tempo de execução possível para tratar uma entrada de tamanho *n*.
- melhor caso é a função que relaciona o tamanho da entrada n ao menor tempo de execução possível para tratar uma entrada de tamanho n.
- caso médio é a função que relaciona o tamanho da entrada n ao tempo médio de execução possível para tratar uma entrada de tamanho n, assumindo uma distribuição probabilística das entradas possíveis.

Pior caso

Como calcular?

Determinar uma entrada, de tamanho n, tal que a operação básica é executada a maior quantidade de vezes possível.

Exemplo

```
LINEAR-SEARCH(A, v)

1 j = 1

2 while A[j] \neq v and j \leq length(A)

3 j = j + 1

4 if j \leq length(A)

5 return j

6 else return NIL
```

No pior caso, $v \not\in A$ e o número de vezes que a operação básica é executada é n+1.

Melhor caso

Como calcular?

Determinar uma entrada, de tamanho n, tal que a operação básica é executada a menor quantidade de vezes possível.

Exemplo

```
LINEAR-SEARCH(A, v)

1 j = 1

2 while A[j] \neq v and j \leq length(A)

3 j = j + 1

4 if j \leq length(A)

5 return j

6 else return NIL
```

No melhor caso, v = A[1] e o número de vezes que a operação básica é executada é 1.

Complexidade média

Como calcular?

O cálculo é feito assumindo uma distribuição probabilística das entradas (ou classes de entradas) possíveis de tamanho n. É então realizada uma média ponderada do custo para aquela entrada (ou classe de entrada) com a probabilidade correspondente.

Exemplo

```
LINEAR-SEARCH(A, v)

1 j = 1

2 while A[j] \neq v and j \leq length(A)

3 j = j + 1

4 if j \leq length(A)

5 return j

6 else return NIL
```


Complexidade média (busca linear)

Assume:

- 1. $0 \le p \le 1$ é a probabilidade de v estar em A,
- 2. p/n é a probabilidade de v estar em cada A[i].
- ▶ O custo do algoritmo quando v está em A[i] é i.
- ▶ O custo do algoritmo quando v não está em A é n+1.

A complexidade média é:

$$(1-p).(n+1) + \sum_{i=1}^{n} i.\frac{p}{n} = (1-p).(n+1) + \frac{p}{n} \times (\sum_{i=1}^{n} i)$$

$$= (1-p).(n+1) + \frac{p}{n} \times \frac{n.(n+1)}{2}$$

$$= (1-p).(n+1) + \frac{p.(n+1)}{2}$$

$$= \frac{(n+1).(2-p)}{2}$$

Complexidade média (busca linear)

$$\frac{(n+1).(2-p)}{2}$$

Note que

- ▶ se p = 1, a busca é sempre bem-sucedida, e o valor $\frac{n+1}{2}$ faz sentido.
- ▶ se p = 0, a busca é sempre mal-sucedida, e o valor n + 1 faz sentido.

Considerações sobre essas medidas de complexidade

Pontos chaves

- ➤ A complexidade média é geralmente a mais importante, e a mais difícil de ser analisada.
- A complexidade no pior caso é também muito importante pois não raramente se aproxima da complexidade em média. Ela é essencial
- A complexidade no melhor caso não é tão importante, mas pode ser suficiente para descartar um algoritmo.
- ► A complexidade média não é a média da complexidade no pior caso e da complexidade no melhor caso.

Exercício

Como um algoritmo de ordenação qualquer pode ser alterado de tal forma que seu custo no melhor caso seja n-1 para ordenar uma sequência de tamanho n?

Análise amortizada

- ► A complexidade amortizada considera uma série de execuções de um algoritmo sobre alguma *estrutura de dados*.
- ► Tem como objetivo determinar o custo médio por operação.
- Não necessita de nenhuma distribuição probabilística.

Métodos de resolução

- ▶ método agregado ←
- método do contador
- método do potencial

Método agregado

- Considere uma série de n operações em alguma estrutura de dados, n qualquer.
- ▶ Determina o custo T(n) desta série de operações.
- ▶ O custo médio de cada operação é T(n)/n.
- Exemplo: contador binário

Método agregado: um exemplo

```
INCREMENT(A)

// A é um arranjo de k bits

1 i = 0

2 while i < length[A] and A[i] = 1

3 A[i] = 0

4 i = i + 1

5 if i < length[A]

6

7 A[i] = 1
```

- O tamanho da entrada é k:
- O custo da execução da INCREMENT é proporcional ao número de bits invertidos.
- ▶ No pior caso, a complexidade é proporcional a k;
- ▶ Logo, uma sequência de n operações é proporcional a $n \times k$.
- Podemos prover uma análise mais precisa?

Método agregado: um exemplo

Em uma série de *n* execuções de INCREMENT:

- ► A[0] é invertido *n* vezes;
- ▶ A[1] é invertido n/2 vezes;
- ▶ A[2] é invertido n/4 vezes;
- ▶ A[k-1] é invertido $n/2^{k-1}$ vezes;

O custo total para n operações é

$$T(n) = \sum_{i=1}^{\lfloor \lg n \rfloor} n/2^{i-1}$$

$$T(n) < \sum_{i=1}^{\infty} n/2^{i-1}$$

$$T(n) < n \times \sum_{i=1}^{\infty} 1/2^{i-1} = 2n$$

Logo o custo amortizado de Increment é T(n)/n = 2 constante?

Síntese

- ► A complexidade temporal tanto quanto a complexidade espacial são funções do tamanho da entrada.
- A complexidade temporal, ou complexidade, é determinado pelo número de vezes que a operação básica do algoritmo é executada.
- A complexidade de um algoritmo pode variar consideravelmente para entradas de mesmo tamanho.
 Nestes casos, deve-se distinguir melhor caso, pior caso, e complexidade média.
- O arcabouço teórico da análise de algoritmos baseia-se na noção de crescimento assintótico de funções.

