Recitation 7

October 1, 2024

1 Recap

1.1 Orthogonal projection

Given a subspace S of some vector space V, the **orthogonal projection** p = Pb of some vector $b \in V$ is the unique vector $p \in S$ such that $b - p \in S^{\perp}$. We call the linear operator P that gives p = Pb for any b the "projection matrix" for S.

- $P^2 = P$ since P doesn't change vectors already in S. We can also immediately see that C(P) = S and $N(P) = S^{\perp}$. I P is the projection matrix onto S^{\perp} , since (I P)b = b p = e.
- If S = C(A), then $p = A\hat{x}$ where \hat{x} solves the "normal equations" $A^T A \hat{x} = A^T b$. If A has full column rank, then $A^T A$ turns out to be invertible (see below), and hence $P = A(A^T A)^{-1} A^T$.
- If S = C(Q) where the columns of Q are an orthonormal basis $(Q^TQ = I)$, then the above simplifies to $Pb = Q\hat{x}$ where $\hat{x} = Q^Tb$, or equivalently $P = QQ^T$.
- If S = C(Q) where $Q = (q_1)$ is a matrix with a *single* unit-vector column q_1 (i.e. S is a 1d subspace), then P further simplifies to the rank-1 matrix $q_1q_1^T$ (projection onto a line!).

We showed that the orthogonal projection p = Pb is the closest vector to b in S. That is, for S = C(A), $p = A\hat{x}$ minimizes the "error norm" ||b - Ax|| over all possible x: the **least-square solution** \hat{x} is an approximate solution to Ax = b in cases where $b \notin C(A)$. Furthermore, we showed how this can be used for least-square fitting of models to data: Ax represents a "model" (e.g. a polynomial) with unknown coefficients x (e.g. the polynomial coefficients), and b represents the dependent variables of the data we are trying to fit. The least-square solution \hat{x} are the best-fit parameters of the model for the data.

LAOP: Recitation 7 October 1, 2024

1.2 Gram-Schmidt and QR

Given a set of linearly independent vectors a_1, a_2, a_3, \ldots (the columns of a matrix A with full column rank), we can *construct* an orthonormal basis q_1, q_2, q_3, \ldots for C(A) with the following "Gram–Schmidt" algorithm:

1.
$$q_1 = a_1 / \underbrace{\|a_1\|}_{r_{11}}$$
 (just normalize the first vector). Now, span $\{q_1\}$ = span $\{a_1\}$.

2.
$$v_2 = (I - q_1 q_1^T) a_2 = a_2 - q_1 \underbrace{(q_1^T a_2)}_{r_{12}}$$
 (project a_2 to $v_2 \perp q_1$) and $q_2 = v_2 / \underbrace{\|v_2\|}_{r_{22}}$ (normalize). Now, span $\{q_1, q_2\} = \operatorname{span}\{a_1, a_2\}$.

3.
$$v_3 = (I - q_1 q_1^T - q_2 q_2^T) a_3 = a_3 - q_1 \underbrace{(q_1^T a_3)}_{r_{13}} - q_2 \underbrace{(q_2^T a_3)}_{r_{23}}$$
 (project a_3 to $v_3 \perp q_1, q_2$) and $q_3 = v_3 / \underbrace{\|v_3\|}_{r_{33}}$ (normalize). Now, span $\{q_1, q_2, q_3\} = \text{span}\{a_1, a_2, a_3\}$.

Here, we have labelled the coefficients in the algorithm because it turns out that you can interpret this as a factorization of A (much like we interpreted Gaussian elimination as an LU factorization), the ("thin") **QR factorization**:

$$\underbrace{\begin{pmatrix} a_1 & a_2 & a_3 & \cdots \end{pmatrix}}_{A} = \underbrace{\begin{pmatrix} q_1 & q_2 & q_3 & \cdots \end{pmatrix}}_{Q} \underbrace{\begin{pmatrix} r_{11} & r_{12} & r_{13} & \cdots \\ & r_{22} & r_{23} & \cdots \\ & & & & \ddots \end{pmatrix}}_{P}$$

in which A is $m \times n$ (assumed full column rank, "tall" $m \ge n$), Q is $m \times n$ with orthonormal columns $(Q^TQ = I)$, and R is $n \times n$ upper-triangular and invertible. The reason for the upper-triangular structure is that, by construction, $\operatorname{span}\{q_1, \ldots, q_k\} = \operatorname{span}\{a_1, \ldots, a_k\}$ for any k: each column of A is made up of that column of Q and preceding columns only, and vice versa.

1.3 New material

In class, Prof. Johnson claimed that if A has full column rank, then A^TA is invertible. The key fact to show this is that $N(A) = N(A^TA)$ for any matrix A.

Proof: Easy: if $x \in N(A)$, then Ax = 0 and hence $A^TAx = 0$ and $x \in N(A^TA)$. Tricky: if $x \in N(A^TA)$, then $A^TAx = 0$, hence $x^TA^TAx = 0 = (Ax)^T(Ax) = ||Ax||^2$. But the only way we can have ||Ax|| = 0 is if Ax = 0, hence $x \in N(A)$. Q.E.D.

It follows that if A has full column rank, i.e. if $N(A) = \{\vec{0}\}$, then $A^T A$ also has full column rank. But since $A^T A$ is square, this means it is invertible.

LAOP: Recitation 7 October 1, 2024

2 Exercises

- 1. Since $N(A) = N(A^T A)$, explain why:
 - (a) (Using orthogonal complements) why $C(A^T) = C(A^TA)$.
 - (b) Why, therefore, $A^T A \hat{x} = A^T b$ must always have a solution \hat{x} , even if $A^T A$ is not invertible.
 - (c) If A^TA is not invertible, \hat{x} is not unique. But why is the projection $p = A\hat{x}$ still unique?
- 2. Find the projection matrix P onto the column space C(A) for $A = \begin{pmatrix} 3 & 6 & 6 \\ 4 & 8 & 8 \end{pmatrix}$. Look closely at the matrix before you plunge into calculations!
- 3. (From Strang section 4.3.) Consider the two lines in 3d defined by the points $\mathcal{P}(x) = \begin{pmatrix} x \\ x \\ x \end{pmatrix}$ and $\mathcal{Q}(y) = \begin{pmatrix} y \\ 3y \\ -1 \end{pmatrix}$. We want to choose x and y to minimize $\|\mathcal{P}(x) \mathcal{Q}(y)\|^2$.
 - (a) Express this problem in matrix form as minimizing $||A\vec{x} \vec{b}||^2$ for $\vec{x} = \begin{pmatrix} x \\ y \end{pmatrix}$, some matrix A, and some vector \vec{b} .
 - (b) Find the values \hat{x}, \hat{y} that minimizes the distance.
 - (c) The line connecting the closest points, i.e. connecting $\mathcal{P}(\hat{x})$ and $\mathcal{Q}(\hat{y})$ is perpendicular to ______ ?

LAOP: Recitation 7 October 1, 2024

3 Solutions

- 1. (a) $C(A^T) = N(A)^{\perp} = N(A^T A)^{\perp} = C((A^T A)^T) = C(A^T A)$.
 - (b) $A^T A \hat{x} = A^T b$ must always have a solution \hat{x} because the right-hand-side $A^T b \in C(A^T) = C(A^T A)$ is in the column space of the matrix $A^T A$ on the left-hand side.
 - (c) The solution is not unique because $\hat{x}+v$ is also a solution for any $v \in N(A^TA) = N(A)$. But this gives the *same* projection $p = A(\hat{x}+v) = A\hat{x} + A\hat{v} = A\hat{x}$.
- 2. By inspection, all of the columns are parallel, so the column space is spanned by $a = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$. In this case, our projection formula simplifies to

$$P = a(a^{T}a)^{-1}a^{T} = \frac{aa^{T}}{a^{T}a} = \frac{\begin{pmatrix} 3 & 4 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix}}{3^{2} + 4^{2}} = \frac{1}{25} \begin{pmatrix} 9 & 12 \\ 12 & 16 \end{pmatrix}$$

since $a^T a$ is a scalar that we can easily invert and pull out of the expression.

- 3. (From Strang section 4.3.) Consider the two lines in 3d defined by the points $\mathcal{P}(x) = \begin{pmatrix} x \\ x \\ x \end{pmatrix}$ and $\mathcal{Q}(y) = \begin{pmatrix} y \\ 3y \\ -1 \end{pmatrix}$. We want to choose x and y to minimize $\|\mathcal{P}(x) \mathcal{Q}(y)\|^2$.
 - (a) We have $\mathcal{P}(x) = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ and $\mathcal{Q}(y) = y \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$, so the difference is:

$$\mathcal{P}(x) - \mathcal{Q}(y) = x \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - y \begin{pmatrix} 1 \\ 3 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} = \underbrace{\begin{pmatrix} 1 & -1 \\ 1 & -3 \\ 1 & 0 \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} x \\ y \end{pmatrix}}_{\overline{x}} - \underbrace{\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}}_{b},$$

which defines our A and \vec{b} .

(b) The minimum of $||A\vec{x} - \vec{b}||$ is found by solving the normal equations $A^T A \vec{x} = A^Y \vec{b}$. Plugging our A and \vec{b} in gives:

$$\underbrace{\begin{pmatrix} 3 & -4 \\ -4 & 10 \end{pmatrix}}_{A^T A} \begin{pmatrix} \hat{x} \\ \hat{y} \end{pmatrix} = \begin{pmatrix} -1 \\ 0 \end{pmatrix} ,$$

which has solution $\hat{x} = -5/7$ and $\hat{y} = -2/7$.

(c) The line connecting the closest points, i.e. connecting $\mathcal{P}(\hat{x})$ and $\mathcal{Q}(\hat{y})$ is perpendicular to the **column space** C(A) (because this is orthogonal projections), which means that it is perpendicular to **both lines**.