CIS 471/571 (Fall 2020): Introduction to Artificial Intelligence Assignment Project Exam Help

Lecture 10https://eduassistpro.gittublearning

Add Weart edu_assist_pro

Thanh H. Nguyen

Source: http://ai.berkeley.edu/home.html

Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Initial

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

A Learning Trial

After Learning [1K Trials]

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Assignment Project Exam Help

https://eduassistpro.github.io/

Reinforcement Learning

- Still assume a Markov decision process (MDP):
 - A set of states $s \in S$
 - A set of actions (per Atste) Ament Project Exam Help
 - A model T(s,a,s')
 - A reward function R(s,a,https://eduassistpro.github.io/
- Still looking for a policy of SWeChat edu_assist_pro
- New twist: don't know T or R
 - I.e. we don't know which states are good or what the actions do
 - Must actually try out actions and states to learn

Offline (MDPs) vs. Online (RL)

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Offline Solution

Online Learning

Model-Based Learning

Assignment Project Exam Help

https://eduassistpro.github.io/

Model-Based Learning

- Model-Based Idea:
 - Learn an approximate model based on experiences
 - Solve for values as if the learned model were correct Assignment Project Exam Help

- Step 1: Learn empirical https://eduassistpro.github.io/
 - Count outcomes s' for each
 - Normalize to give an estimated of WeChat edu_assist_pro
 - Discover each $\hat{R}(s, a, s')$ when we exp , s')

• For example, use value iteration, as before

Example: Model-Based Learning

Input Policy π

Assume: $\gamma = 1$

Observed Episodes (Training)

Assignment Project Epignode 2p

B, ehttps://eduassistpro.giffiub.io/

D, exittdxWeChat edu_assist_pto

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 Learned Model

 $\widehat{T}(s, a, s')$

T(B, east, C) = 1.00 T(C, east, D) = 0.75T(C, east, A) = 0.25

 $\hat{R}(s, a, s')$

R(B, east, C) = -1 R(C, east, D) = -1R(D, exit, x) = +10

. . .

Example: Expected Age

Goal: Compute expected age of UO students

Known P(A)

Assignment Projecto Exam Help

https://eduassistpro.github.io/

Without P(A), instead collec $[a_1, a_2, \dots a_N]$ Add WeChat edu_assist_pro

Unknown P(A): "Model Based"

Why does this work? Because eventually you learn the right model.

$$\hat{P}(a) = \frac{\text{num}(a)}{N}$$

$$E[A] \approx \sum_{a} \hat{P}(a) \cdot a$$

Unknown P(A): "Model Free"

$$E[A] \approx \frac{1}{N} \sum_{i} a_{i}$$

Why does this work? Because samples appear with the right <u>frequencies</u>

Model-Free Learning

Assignment Project Exam Help

https://eduassistpro.github.io/

Passive Reinforcement Learning

Assignment Project Exam Help

https://eduassistpro.github.io/

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(spasi) ect Exam Help
 - You don't know the rewar
 - Goal: learn the state valu https://eduassistpro.github.io/

- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

• Goal: Compute values for each state under π

• Idea: Average togetherighenvedojempkam Help values

• Act according to π

https://eduassistpro.github

Every time you visit a state wwite clawedu_assist_p
 sum of discounted rewards turned out

Average those samples

This is called direct evaluation

Example: Direct Evaluation

 $\begin{array}{c} \text{Input Policy} \\ \pi \end{array}$

Assume: $\gamma = 1$

Observed Episodes (Training)

ASPisodent Project Exisphel?

B, e https://eduassistpro.gith.up.io/

D, exited wetchat edu_assist_pfo

Episode 3

E, north, C, -1 C, east, D, -1 D, exit, x, +10 Episode 4

E, north, C, -1 C, east, A, -1 A, exit, x, -10 Output Values

	-10 A	
+8 B	+4	+10 D
	-2 E	

Problems with Direct Evaluation

- What's good about direct evaluation?
 - It's easy to understand
 - It doesn't require an ksigwhelge Pfojek Exam Help
 - It eventually computes t values, using just sampl https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- What bad about it?
 - It wastes information about state connections
 - Each state must be learned separately
 - So, it takes a long time to learn

Output Values

If B and E both go to C under this policy, how can their values be different?

Why Not Use Policy Evaluation?

• Simplified Bellman updates calculate V for a fixed policy:

• Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

Assignment Project Exam Help

https://eduassistpro.github.io/

- This approach fully exploited the connections between the states
- Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

• We want to improve our estimate of V by computing these averages:

Assignment Project Exam Help

• Idea: Take samples of https://eduassistpro.github.coaction!) and average

Add WeChat edu_assist_pro

$$sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$$

$$\dots$$

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Almost! But we can't rewind time to get sample after sample from state s.

Temporal Difference Learning

Assignment Project Exam Help

https://eduassistpro.github.io/

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often Assignment Project Exam Help

- Temporal difference learn
 Policy still fixed, still doing e

 https://eduassistpro.github.io/
 - Move values toward value of whatever succes edu_assist_pro average

Sample of V(s): $sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$

Update to V(s): $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$

Same update: $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Exponential Moving Average

- Exponential moving average
 - The running interpolation update: $\bar{x}_n = (1 \alpha) \cdot \bar{x}_{n-1} + \alpha \cdot x_n$
 - Makes recent samples more important: Exam Help

https://eduassistpro.github.io/

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States

Assume: $\gamma = 1$, $\alpha = 1/2$

Observed Transitions

$$V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we wan a trigument Phojes in trans (Hely) policy, we're sunk:

https://eduassistpro.github.io/
Add WeChat edu_assist_pro

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning

Assignment Project Exam Help

https://eduassistpro.github.io/

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)

 - You don't know the transitions T(s,a,s')
 You don't know the rewards R(s,a,s')
 - You choose the actions no https://eduassistpro.github.io/
 - Goal: learn the optimal p

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k , calculate the depth k+1 values for all states:

Assignment Project Exam Help

https://eduassistpro.github.io/

- But Q-values are more useful, so compu
 - Start with $Q_0(s,a) = 0$, which we know is right
 - Given Q_k, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

• Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{s'} Q_k(s',a') \right]$$
Resignment Project Exam Help

- Learn Q(s,a) values as
 Receive a sample (s,a,s', https://eduassistpro.github.ic

 - Consider your old estimated We Chat edu_assist_pro
 - Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

Q-Learning Properties

• Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally!

Assignment Project Exam Help

This is called off-policy l

https://eduassistpro.github.io/

Caveats:

- Add WeChat edu_assist_pro
- You have to explore enough
- You have to eventually make the learning rate small enough
- ... but not decrease it too quickly
- Basically, in the limit, it doesn't matter how you select actions (!)