RESUMO

ANÁLISE MATEMÁTICA 2

Tomás Rato

João Madeira

Índice

1. No	ções topológicas	.3
1.1.	Ponto interior	. 3
1.2.	Ponto exterior	. 3
1.3.	Ponto fronteira	. 4
1.4.	Ponto aderente ou fecho	. 4
1.5.	Ponto de acumulação	. 4
1.6.	Ponto isolado	. 5
1.7.	Conjunto aberto e/ou fechado	. 5
1.8.	Conjunto limitado e compacto	. 5
1.9.	Reconhecer equações	. 6
1.9.	1. Circunferências e semicircunferências	. 6
1.9.	2. Parábolas	. 7
1.9.	3. Retas	. 7
1.10.	Outros casos	. 8
1.11.	Como resolver questões sobre noções topológicas	. 8
2. Fui	nções de $\mathbb{R} n$ em $\mathbb{R} m$.9
2.1.	Classes de funções	. 9
2.2.	Teorema de Weierstrass	10
2.3.	Corolário do Teorema de Weierstrass	10
3. Lin	nites 1	11
3.1.	Limites iterados	11
3.2.	Limites direcionais	11
3.3.	Provar o limite	12
3.4.	Finalidades do cálculo do limite	13
4. Dei	rivação1	14
4.1.	Como derivar	14
4.2.	Diferenciabilidade	16
4.3.	Teorema de Schwarz	17
4.4.	Derivada segundo um vetor	17
4.5.	Matriz Jacobiana	18
45	1 Jacobiano	1 Ω

4.6.	Operadores diferenciais	18
4.6	.1. Gradiente	18
4.6	.2. Divergente	18
4.6	.3. Rotacional	19
4.6	.4. Laplaciano	19
4.7.	Regra da Cadeia	19
4.8.	Teorema para derivada segundo um vetor	20
4.9.	Plano tangente a um ponto	20
5. Fu	nção inversa	21
6. Fu	nção implícita	22
7. Fó	rmula de Taylor	23
	tremos	
8.1.	Calcular os pontos críticos	
8.2.	Classificar os pontos críticos	
8.2		
9. Int	tegrais duplost	28
9.1.	Funções definidas em regiões retangulares	
9.2.	Funções definidas em regiões não retangulares	
9.3.	Inverter ordem de integração	
9.4.	Volume de um sólido	
9.5.	Massa e coordenadas do centro de massa de uma região plana	30
9.6.	Coordenadas polares	
10. Int	tegrais triplost	32
10.1.	Massa e coordenadas do centro de massa de um sólido	
10.2.	Coordenadas cilíndricas	
10.3.	Coordenadas esféricas	33

1. Noções topológicas

Tal como em Análise Matemática I, as noções topológicas referem-se ao interior, exterior, entre outros, de conjuntos. A diferença das noções topológicas em Análise Matemática II para a I é que estas acontecem em \mathbb{R}^2 , \mathbb{R}^3 , etc...

Neste tópico, aparece um conceito importante, a **vizinhança** de um ponto, V. Resumidamente, imaginemos que escolhemos um $\delta > 0$ arbitrário (geralmente um número muito pequeno), então a vizinhança de um ponto a é $]a - \delta; a + \delta$ [. Então, quando nos referimos a uma vizinhança de um ponto, estamos, na verdade, a dizer que **qualquer** $\delta > 0$ arbitrário $V =]a - \delta; a + \delta$ [.

1.1. Ponto interior

Um ponto interior é um ponto de um conjunto em que, pelo menos uma vizinhança desse ponto, pertença inteiramente e exclusivamente ao conjunto. Por exemplo:

$$A = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2 \land 1 \le y \le 2\}$$

O interior deste conjunto será:

$$int(A) = \{(x, y) \in \mathbb{R}^2 : 1 < x < 2 \land 1 < y < 2\}$$

Se repararmos, neste caso, a única diferença para o conjunto A são os sinais de comparação, onde no conjunto estão como \leq e no interior estão como <. Então, **porque não incluímos a "fronteira"?** A razão pela qual não incluímos a fronteira é que, se analisarmos qualquer vizinhança de um ponto da fronteira, por exemplo o ponto (1,1), parte da vizinhança está fora do conjunto e, por isso, não pertence ao interior.

1.2. Ponto exterior

Um **ponto exterior** é um ponto de um conjunto em que, **pelo menos uma** vizinhança desse ponto, não pertença inteiramente ao conjunto. Por outras palavras, podemos afirmar que o conjunto de pontos exteriores é o **complementar** do conjunto de pontos interiores. Então, utilizando o exemplo anterior:

$$ext(A) = \{(x, y) \in \mathbb{R}^2 : x < 1 \lor x > 2 \lor y < 1 \lor y > 2\}$$

Como podemos ver, este conjunto é o complementar do int(A).

1.3. Ponto fronteira

Um **ponto fronteira** é um ponto de um conjunto que não pertence ao exterior, nem ao interior. Isto é, um ponto de um conjunto em que, **qualquer** vizinhança desse ponto, tenha pontos **pertencentes ao interior e ao exterior do conjunto**. Com o exemplo anterior, temos que:

$$fr(A) = \{(x, y) \in \mathbb{R}^2 : ((x = 2 \lor x = 1) \land 1 \le y \le 2) \lor$$

 $\lor ((y = 1 \lor y = 2)) \land 1 \le y \le 2)\}$

Então, se repararmos, $ext(A) \cup int(A) \cup fr(A) = \mathbb{R}^2$. Isto acontece com **todos** os conjuntos e é uma ótima forma de confirmarmos se determinámos bem os conjuntos dos pontos interiores, exteriores e fronteira.

1.4. Ponto aderente ou fecho

Um ponto aderente é um ponto de um conjunto cuja qualquer vizinhança contenha pelo menos um ponto desse conjunto. Então, podemos escrever o conjunto de pontos aderentes, ou fecho, da seguinte forma:

$$\bar{A} = ad(A) = int(A) \cup fr(A)$$

Desta forma, utilizando o exemplo já referido, temos que:

$$\bar{A} = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2 \land 1 \le y \le 2\}$$

1.5. Ponto de acumulação

Um **ponto de acumulação** é um ponto de um conjunto em que **qualquer** que seja a sua vizinhança, esta contenha pelo menos um ponto desse conjunto **excluindo o próprio ponto**. Na maioria dos casos, este conjunto é igual ao fecho, contudo, é importante ter atenção visto que, em conjuntos como:

$$B = \{(x, y) \in \mathbb{R}^2 : (1 \le x \le 2 \land 1 \le y \le 2) \lor (x = 0 \land y = 0)\}$$

Se repararmos, o fecho deste conjunto é:

$$\bar{B} = \{(x, y) \in \mathbb{R}^2 : (1 \le x \le 2 \land 1 \le y \le 2) \lor (x = 0 \land y = 0)\}$$

Entretanto, o ponto (0,0) **não** irá pertencer ao conjunto dos pontos de acumulação pois, excluindo o próprio ponto, não existem mais pontos do conjunto que pertençam a todas as vizinhanças do mesmo. Então, o conjunto de pontos aderentes, também chamado de **derivado**, ficaria:

$$B' = \{(x, y) \in \mathbb{R}^2 : 1 \le x \le 2 \land 1 \le y \le 2\}$$

1.6. Ponto isolado

Um **ponto isolado** é um ponto de um conjunto em que, **pelo menos numa** das suas vizinhanças, a **interseção com o conjunto seja o próprio ponto**. Por outras palavras, podemos dizer que um ponto isolado de um conjunto é um ponto que, **numa** vizinhança do mesmo, **não existam mais pontos do conjunto além dele mesmo**. No caso anterior do conjunto *B*, o conjunto de pontos isolados seria:

$$isol(B) = \{(x, y) \in \mathbb{R}^2 : x = 0 \land y = 0\}$$

1.7. Conjunto aberto e/ou fechado

Dizemos que um conjunto X é **aberto** se int(X) = X e dizemos que é **fechado** se $\overline{X} = X$. Então, parece impossível e estranho existir um conjunto que seja simultaneamente aberto e fechado. Mas de facto existe, o **conjunto vazio**, se analisarmos este conjunto, temos que:

$$int(\emptyset) = \emptyset$$

$$fr(\emptyset) = \emptyset$$

$$ad(\emptyset) = \emptyset$$

Então, temos que o conjunto é aberto, pois $int(\emptyset) = \emptyset$ e também é fechado pois, $ad(\emptyset) = \emptyset$. **Pergunta:** O conjunto A seria aberto e/ou fechado?

1.8. Conjunto limitado e compacto

Dizemos que um conjunto é **limitado** se, encontrarmos um L > 0 que, **qualquer que seja** o ponto do conjunto, a sua distância à origem seja menor ou igual a L. Em termos visuais e mais práticos, imaginemos o conjunto representado no referencial, se for possível desenhar uma circunferência de raio L, com centro na origem, que contenha todo o conjunto, então o conjunto é limitado. Utilizando o conjunto A anterior, podemos afirmar que o conjunto é limitado pois, e eis a justificação para responder a este tipo de questões:

$$\exists L > 0, \forall \vec{x} \in X : ||\vec{x}|| \le L$$
, neste caso, basta tomar $L = 3$.

Traduzindo para linguagem usual, significa que, existe pelo menos um L positivo que, para qualquer ponto \vec{x} pertencente ao conjunto X, a sua distância à origem é menor ou igual a L. Se tomarmos L=3, provamos aquilo que pretendíamos. Este exemplo é facilmente visível na prática, desenhando o conjunto e analisando-o.

Diz-se ainda que, um conjunto é compacto se esse conjunto for limitado e fechado.

1.9. Reconhecer equações

Neste tipo de questões, a maioria das equações são reconhecíveis, sendo as que mais aparecem neste tipos de perguntas, as funções padrões como $y = e^x$ e $y = \ln(x)$. Além destas, temos ainda, como mais, utilizadas as equações gerais de **parábolas**, **circunferências** e **retas** e por isso, é importante compreendê-las e reconhecer que podem aparecer em diversos formatos.

1.9.1. Circunferências e semicircunferências

As funções que descrevem circunferências são do tipo:

$$x^2 + y^2 = r^2$$
, sendo r o raio da circunferência.

É importante notar que o r está ao quadrado, ou seja, caso na equação apareça o número 4 por exemplo, o raio não é 4, e sim $\sqrt{4} = 2$. Também existem semicircunferências que têm os seguintes formatos.

- $y = \pm \sqrt{r^2 x^2}$, sendo esta uma semicircunferência horizontal e, dependendo do sinal antes da raiz quadrada, localizada na zona positiva ou negativa de y.
- $x = \pm \sqrt{r^2 y^2}$, sendo esta uma semicircunferência vertical e, dependendo do sinal antes da raiz quadrada, localizada na zona positiva ou negativa de x.

Nas circunferências e semicircunferências podem existir **deslocamentos verticais** e **horizontais**, sendo estes controlados da seguinte forma:

$$(x-a)^2 + (y-b)^2 = r^2$$

Esta circunferência apresenta um **deslocamento de** a unidades **para a direita**, e um **deslocamento de** b unidades **para cima**. É de crucial importância ter **atenção ao sinal** antes do a e do b. Imaginemos que temos, por exemplo:

$$(x+4)^2 + (y-3)^2 = 9$$

Esta circunferência é uma circunferência de raio 3, que foi deslocada 4 unidades para a esquerda (pois temos $(x - (-4))^2$) e 2 unidades para cima, logo, tem centro (-4, 2).

Existem ainda casos particulares, que são um pouco mais complicados, em que temos de **formar um caso notável** para obtermos a equação original da circunferência, por exemplo:

$$(x-2)^2 + y^2 - 4x = 0$$

Nestas situações temos de tentar compreender que caso notável é, sendo o caso notável:

$$(a-b)^2 = a^2 - 2ab + b^2$$
 ou então, $(a+b)^2 = a^2 + 2ab + b^2$

Neste caso, se somarmos 4 aos dois lados da equação, não alterando o valor da mesma, ficamos com o seguinte:

$$(x-2)^2 + y^2 - 4x + 4 = 4$$

E assim, temos o caso notável formado pois:

$$y^2 - 4x + 4 = y^2 - 2 \times 2 \times x + 2^2 = (y - 2)^2$$

Então, a equação final da circunferência é:

$$(x-2)^2 + (y-2)^2 = 4$$

Logo, esta circunferência será uma circunferência de centro (2,2), isto é, uma circunferência com um deslocamento para a direita de 2 e um deslocamento para cima de 2 e de raio 2.

1.9.2. Parábolas

As parábolas são semelhantes às circunferências, por exemplo, temos a parábola normal e mais conhecida, $y = x^2$, esta parábola está voltada para cima e tem **vértice em** (0,0). A equação geral de uma parábola é:

$$y = b \pm (x - a)^2$$

Tal como nas circunferências, o a determina o deslocamento horizontal e o b determina o deslocamento vertical. Em adição, o sinal antes do $(x-a)^2$ determina se a parábola está voltada para cima ou para baixo, se o sinal for + então está voltada para cima, caso contrário está voltada para baixo. O vértice terá coordenadas (a, b) e é aconselhado calcular os zeros da parábola para ser mais fácil esboçar a mesma.

É importante saber que estas parábolas também **podem aparecer** em formatos em que o caso notável esteja desenvolvido, tal como nas circunferências

1.9.3. Retas

As retas são mais fáceis de compreender, são do género y = mx + b, onde m é o declive, ou seja, a inclinação da reta (quanto maior m, mais a pique é a inclinação da reta), e b é a ordenada na origem, isto é, a ordenada do ponto onde a reta interseta o eixo 0y. Estas são mais fáceis de esboçar pois, caso $b \neq 0$, substituímos, na equação, x por 0 (sendo o resultado deste a ordenada na origem) e y por 0 (sendo este o zero da função). Assim determinamos os pontos onde a reta interseta os eixos do plano cartesiano e, para esboçar a reta, temos apenas de traçar uma reta que passe pelos dois pontos. Se b = 0, substituímos, na equação, x por 1, dando-nos a ordenada de um ponto com abcissa 1 e depois disso, traçamos uma reta que interseta esse ponto e a origem.

1.10. Outros casos

Existem ainda outros casos que são clássicos mas que não devem ser desprezados, por exemplo:

Para resolvermos este tipo de equações temos de analisar os diferentes casos... Quando é que a multiplicação de dois números é positiva? Das três uma, ou os dois números são positivos, ou os dois números são negativos, ou um dos números é igual a 0. Logo, a solução desta equação seria:

$$S = \{(x, y) \in \mathbb{R}^2 : (x \ge 0 \land y \ge 0) \lor (x \le 0 \land y \le 0)$$

1.11. Como resolver questões sobre noções topológicas

Normalmente, este tipo de questões pede para calcular o domínio e, por isso, é importante saber onde cada função está definida. Nas **funções racionais**, ou seja, funções que sejam, por exemplo $y = \frac{1}{x}$, temos de garantir que o **denominador é diferente de 0**. Nas **funções de raízes com índice par**, temos de garantir que o **radicando**, ou seja, o que está dentro da raiz, é **maior ou igual a 0**. Temos ainda as **funções logarítmicas** onde o **argumento** tem de ser **positivo**, ou seja, maior que 0. Além destes exemplos temos mais algumas funções que não são definidas em, neste caso, \mathbb{R}^2 . Por isso, é crucial ter noção do domínio das diferentes funções.

Também é importante não esquecer as justificações de quando um conjunto é aberto, fechado, limitado ou ilimitado. Para ser mais fácil a visualização e compreensão do conjunto, aconselha-se a esboçar o mesmo, ainda que possa não ser pedido, pois permite-nos avaliar o conjunto de forma mais segura. Este esboço deve ser feito com um tamanho considerável e, se necessário, calcular a interseção das diferentes equações que o exercício apresenta para deixar o esboço mais preciso.

Uma dica para quando estiver a estudar esta matéria é, colocar a região no site <u>Desmos</u>, o que **facilita a correção do exercício** e entender os erros que poderão ter sido cometidos.

2. Funções de \mathbb{R}^n em \mathbb{R}^m

Este tópico serve apenas para ter conhecimento das notações sobre funções

2.1. Classes de funções

Existem, essencialmente, 4 classes de funções:

• Funções reais de variável real:

Estas funções são definidas num conjunto $A \subset \mathbb{R}$ e têm como contradomínio um outro conjunto $B \subset \mathbb{R}$. Temos, por exemplo:

$$f(x) = x$$

• Funções reais de variáveis vetoriais:

Estas funções são definidas num conjunto $A \subset \mathbb{R}^n, n > 1$ e têm como contradomínio um outro conjunto $B \subset \mathbb{R}$. Temos, por exemplo:

$$f(x,y) = xy$$

• Funções vetoriais de variável real:

Estas funções são definidas num conjunto $A \subset \mathbb{R}$ e têm como contradomínio um outro conjunto $B \subset \mathbb{R}^m$, m > 1. Temos como exemplo:

$$f(x) = (x, 2x)$$

• Funções vetoriais de variável vetorial:

Estas funções são definidas num conjunto $A \subset \mathbb{R}^n, n > 1$ e têm como contradomínio um outro conjunto $B \subset \mathbb{R}^m, m > 1$. Por exemplo, temos:

$$f(x,y) = (x,y)$$

Existe ainda uma outra forma de repartir os diferentes tipos de funções, podendo-as classificar em **funções escalares** e **funções vetoriais**. As **funções escalares** são funções que têm um contradomínio $C \subset \mathbb{R}$, por outro lado, temos que as **funções vetoriais** têm o contradomínio $C \subset \mathbb{R}^m$, m > 1. As funções vetoriais representam com uma seta em cima, por exemplo $\vec{f}(x, y)$.

Estes conceitos são importantes para interpretar e compreender os exercícios e a matéria.

2.2. Teorema de Weierstrass

Este teorema é importante pois, diz-nos que, se f for uma **função contínua** e D um conjunto **limitado e fechado** então, a imagem de D por f é um conjunto limitado e fechado, isto é, f(D) resulta num conjunto limitado e fechado.

2.3. Corolário do Teorema de Weierstrass

Se f for uma função contínua e D um conjunto limitado e fechado então f tem máximo e mínimo nesse conjunto.

3. Limites

Nas funções reais de variável real, em Análise Matemática I, caso fosse pedido, tínhamos de provar a existência do limite, fazendo o **limite por definição**. A Análise Matemática II temos **sempre** de **provar a existência de limite**. Como fazemos isso? Funciona da mesma forma para todas as classes de funções? Bom, temos de começar por determinar qual seria o limite e só depois é que provamos. Imaginemos a seguinte função:

$$f(x,y) = \frac{x^2y}{x^2 + y^2}$$

E queremos determinar:

$$\lim_{(x,y)\to(0,0)}f(x,y)$$

3.1. Limites iterados

Iniciamos por calcular os **limites iterados**, ou seja, por exemplo:

$$\lim_{x \to 0} \lim_{y \to 0} f(x, y) e \lim_{y \to 0} \lim_{x \to 0} f(x, y)$$

Para calcular estes limites, tratamos as variáveis que não são variáveis do limite como constantes logo, neste caso, ficaria:

$$\lim_{x \to 0} \lim_{y \to 0} \frac{x^2 y}{x^2 + y^2} = \lim_{x \to 0} \frac{x^2 0}{x^2 + 0} = \lim_{x \to 0} \frac{0}{x^2} = 0$$

$$\lim_{y \to 0} \lim_{x \to 0} \frac{x^2 y}{x^2 + y^2} = \lim_{y \to 0} \frac{0^2 y}{0^2 + y^2} = \lim_{y \to 0} \frac{0}{y^2} = 0$$

Como os dois limites são **iguais**, **passamos para o próximo método**. Caso os limites resultassem em valores **diferentes** podíamos afirmar que **não existe** limite.

3.2. Limites direcionais

Nestes limites estudamos **como a função se comporta** a aproximar-se por **diferentes caminhos** ao ponto que queremos calcular o limite. Existem vários testes e podemos utilizar os caminhos que pretendermos e, caso algum dê resultado **diferente dos anteriormente verificados**, incluindo os limites iterados, então **não existe** limite. Existem diversos caminhos mas os mais usados são:

- $y = a_2 + m(x a_1)$, sendo (a_1, a_2) o ponto em que o limite está a ser calculado e que, caso o limite seja **dependente de m**, concluímos que **não existe** limite;
- y = x;
- x=0;

- y = 0;
- $y = x^2$; $x = y^2$, etc...

Vamos aplicar no nosso exemplo, estudemos utilizando o primeiro caminho:

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$$

Substituindo y = mx, temos:

$$\lim_{x \to 0} \frac{x^2(mx)}{x^2 + (mx)^2} = \lim_{x \to 0} \frac{mx^3}{x^2 + m^2x^2} = \lim_{x \to 0} \frac{mx^3}{x^2(1 + m^2)} = \lim_{x \to 0} \frac{mx}{1 + m^2} = \frac{m0}{1 + m^2} = 0$$

Se formos experimentar por caminhos diferentes obtemos o mesmo resultado por isso, podemos passar ao próximo passo.

3.3. Provar o limite

Temos sempre de iniciar por dizer:

Vamos provar que para qualquer $\delta > 0$ arbitrário, conseguimos encontrar $\epsilon > 0$ de forma que para **qualquer** $\vec{x} \in \mathbb{R}^2$ temos que:

 $0<\|\vec{\mathbf{x}}-\vec{\mathbf{a}}\|<\epsilon\Rightarrow|f(\vec{\mathbf{x}})-b|<\delta$, sendo b o resultado do limite que queremos provar Utilizando o nosso exemplo, vamos ter que:

$$0 < \sqrt{x^2 + y^2} < \varepsilon \Rightarrow \left| \frac{x^2 y}{x^2 + y^2} \right| < \delta$$

O que muitos alunos não entendem é, como começar ou "por que ponta pegar". O indicado seria começar pela parte:

$$\left|\frac{x^2y}{x^2+y^2}\right| < \delta$$

Para resolvermos esta inequação temos de usar as desigualdades triangulares:

$$|x + y| \le |x| + |y|$$
$$|x| \le \sqrt{x^2 + y^2}$$
$$|y| \le \sqrt{x^2 + y^2}$$

Agora conseguimos resolver a inequação até chegarmos à primeira parcela:

$$\left| \frac{x^2 y}{x^2 + y^2} \right| = \frac{|x||x||y|}{x^2 + y^2}$$

Podemos passar $x^2 + y^2$ para forma do módulo pois, a soma de dois números positivos resultará sempre num número positivo.

$$\frac{|x||x||y|}{x^2 + y^2} \le \frac{\sqrt{x^2 + y^2}\sqrt{x^2 + y^2}\sqrt{x^2 + y^2}}{x^2 + y^2} \le \frac{x^2 + y^2\sqrt{x^2 + y^2}}{x^2 + y^2} = \sqrt{x^2 + y^2} < \varepsilon = \delta$$

Agora concluímos com:

Então, basta tomar $\varepsilon = \delta$ para provarmos o pretendido, neste caso, que:

$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2} = 0$$

Caso a igualdade não fosse perfeita, tínhamos de resolver para ε , por exemplo:

$$3\varepsilon = \delta \Leftrightarrow \varepsilon = \frac{\delta}{3}$$

E assim, temos o nosso limite provado e resolvido. Atenção também aos casos:

$$\epsilon^2 = \delta \Leftrightarrow \varepsilon = \pm \sqrt{\delta}$$

Na verdade, esta igualdade está errada pois, ε tem de ser positivo logo, ficaria apenas:

$$\varepsilon = \sqrt{\delta}$$

3.4. Finalidades do cálculo do limite

O cálculo do limite tem várias finalidades, sendo as mais normais, averiguar se funções definidas por ramos são contínuas e determinar a função prolongamento por continuidade. Estas são as aplicações mais práticas e frequentes dos limites em Análise Matemática II mas podem ainda ser utilizados noutros contextos por isso é importante sabermos resolver estes limites.

4. Derivação

Existem funções, existem derivadas dessas funções, mas como as calculamos sendo que agora usamos duas ou mais variáveis? A resposta é simples, duas variáveis, duas derivadas parciais de primeira ordem, n variáveis, duas derivadas parciais de segunda ordem.

4.1. Como derivar

Para derivar uma função real de variável real contínua utilizávamos as seguintes regras de derivação:

- (ku)' = ku';
- (u + v)' = u' + v';
- (uv)' = u'v + uv';
- $\bullet \quad \left(\frac{u}{v}\right)' = \frac{u'v uv'}{v^2};$
- $\bullet \quad (u^k)' = ku'^{u^{k-1}};$
- $\bullet \quad \left(\sqrt[n]{u}\right)' = \frac{u'}{n\sqrt[n]{u^{n-1}}};$
- $(u^{v})' = vu'u^{v-1} + v'u^{v}\ln(u);$
- $(\ln(u))' = \frac{u'}{u};$
- $(\log_a(u))' = \frac{u'}{u\ln(a)};$
- $(\sin(u))' = u'\cos(u)$;
- $(\cos(u))' = -u'\sin(u)$;
- $(\tan(u))' = \frac{u'}{(\cos(u))^2}$;
- $(\sec(u))' = u' \sec(u) \tan(u);$
- $(\csc(u))' = -u' \csc(u) \cot(u)$;
- $(\sin^{-1}(u)' = \frac{u'}{\sqrt{1-u^2}};$
- $(\cos^{-1}(u))' = -\frac{u'}{\sqrt{1-u^2}};$
- $(\tan^{-1}(u))' = \frac{u'}{1+u^2};$
- $(\sinh(u))' = u'\cosh(u);$
- $(\cosh(u))' = u' \sinh(u);$
- $(\tanh(u))' = \frac{u'}{(\cosh(u))^2}$.

Agora, para funções escalares utilizamos as mesmas regas com a única diferença de considerarmos as variáveis que não são de derivação como constantes, por exemplo:

$$f(x,y) = 4x^3 + 3y^2 + x^2y$$

Então, as derivadas parciais de primeira ordem em ordem x e y, respetivamente, são:

$$\frac{\partial f}{\partial x}(x,y) = 12x^2 + 2xy$$

$$\frac{\partial f}{\partial y}(x,y) = 6y + x^2$$

Como podemos observar, por exemplo, na primeira derivada parcial de primeira ordem, consideramos que y é uma constante:

$$\frac{\partial}{\partial x}(3y^2) = 0$$

O mesmo acontece com x na segunda derivada parcial de primeira ordem:

$$\frac{\partial}{\partial y}(4x^3) = 0$$

E se quisermos a **derivada parcial num ponto** (**a**, **b**) específico? Se a função **não for definida por ramos**, podemos **calcular a função geral da derivada parcial** pretendida e substituir pelo ponto que queremos ou **utilizar a definição de limite**. Caso seja uma **função definida por ramos**, se esse ponto for um ponto de transição entre ramos somos **obrigados a usar a definição de limite**, sendo esta a seguinte:

$$\frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h}$$

$$\frac{\partial f}{\partial y}(a,b) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial x}(a,b+h) - f(a,b)}{h}$$

Se o limite não existir, então não existe derivada parcial nesse ponto.

Tal como nas funções reais de variáveis reais temos segundas derivadas, aqui temos **derivadas parciais de segunda ordem** e representam-se da seguinte forma:

$$\frac{\partial^2 f}{\partial x^2}(a,b) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial x}(a+h,b) - \frac{\partial f}{\partial x}(a,b)}{h}$$

$$\frac{\partial^2 f}{\partial y^2}(a,b) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial y}(a,b+h) - \frac{\partial f}{\partial y}(a,b)}{h}$$

$$\frac{\partial^2 f}{\partial x \partial y}(a, b) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial y}(a + h, b) - \frac{\partial f}{\partial y}(a, b)}{h}$$

$$\frac{\partial^2 f}{\partial \mathbf{v} \partial x}(a, b) = \lim_{h \to 0} \frac{\frac{\partial f}{\partial x}(a, b + h) - \frac{\partial f}{\partial x}(a, b)}{h}$$

Como podemos ler de forma prática estas derivadas parciais de segunda ordem? A primeira é a derivada parcial de segunda ordem de f em ordem a x, a segunda é a derivada parcial de segunda ordem de f em ordem a y, a terceira é a derivada parcial de segunda ordem de f em ordem a x e em ordem a y, a quarta é a derivada parcial de segunda ordem de f em ordem a y e em ordem a x.

Então, caso utilizássemos as regras de derivação, por exemplo para a derivada parcial de segunda ordem de f em ordem a x, basta derivar a derivada parcial de primeira ordem em ordem a x, em ordem a x.

Às derivadas
$$\frac{\partial^2 f}{\partial x \partial y}(a, b)$$
 e $\frac{\partial^2 f}{\partial y \partial x}(a, b)$ chamamos **derivadas parciais mistas**.

Se a função permitir podemos continuar a determinar as derivadas parciais, faz-se da mesma forma.

4.2. Diferenciabilidade

Dizemos que f é diferenciável se admitir todas as derivadas de primeira ordem e estas forem contínuas. Se quisermos restringir a apenas um ponto ou intervalo podemos, ou seja, dizermos que f é diferenciável num ponto ou intervalo, se admitir as derivadas parciais de primeira ordem e estas forem contínuas nesse mesmo ponto ou intervalo.

Dizemos que f é de classe C^k se f admitir todas as derivadas parciais até à ordem k e estas forem contínuas. Se for num ponto ou intervalo, a abordagem é a mesma.

E se nos pedirem para estudar a diferenciabilidade? Temos duas opções, caso a função não seja definida por ramos... Se nos pedirem para estudar a **função toda**, **determinamos as derivadas parciais de primeira ordem e justificamos que são contínuas**. Por exemplo, utilizando o exemplo anterior podemos justificar da seguinte forma:

"As derivadas parciais são contínuas no seu domínio, \mathbb{R}^2 , pois são produtos e somas de funções constantes, contínuas em \mathbb{R}^2 e funções polinomiais, também contínuas em \mathbb{R}^2 ."

Por outro lado, se for pedido num ponto em específico, podemos justificar que como a função é contínua no seu domínio, **então também será contínua no ponto** (sendo o ponto pertencente ao domínio).

Agora, se a **função for definida por ramos**, temos de estudar os ramos e os pontos de transição individualmente. Para os ramos podemos usar justificações como mostradas anteriormente, já **nos pontos de transição temos de usar o seguinte limite**:

$$\lim_{\substack{(h,k)\to(0,0)}} \frac{f(a+h,b+k)-f(a,b)-\frac{\partial f}{\partial x}(a,b)h-\frac{\partial f}{\partial y}(a,b)k}{\sqrt{h^2+k^2}}$$

Se este limite existir e igual 0 então, a função é diferenciável no ponto. Como informado anteriormente, temos de provar ainda que o limite é 0.

4.3. Teorema de Schwarz

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$ uma função escalar e um ponto $(a, b) \in int(D)$. Se existem derivadas parciais $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$ e $\frac{\partial^2 f}{\partial x \partial y}$ numa vizinhança de (a, b), e se $\frac{\partial^2 f}{\partial x \partial y}$ é contínua em (a, b), então existe $\frac{\partial^2 f}{\partial y \partial x}$ e:

$$\frac{\partial^2 f}{\partial x \partial y}(a, b) = \frac{\partial^2 f}{\partial y \partial x}(a, b)$$

4.4. Derivada segundo um vetor

Seja $f: D \subset \mathbb{R}^n \to \mathbb{R}$ uma função escalar, um ponto $A \in int(D)$ e \vec{v} um vetor de \mathbb{R}^n podemos afirmar que f tem derivada no ponto (a, b) segundo o vetor \vec{v} se existir e é finito o seguinte limite:

$$f'_v(A) = \lim_{t \to 0} \frac{f(a+tv) - f(a)}{t}$$

Por exemplo, se $f(x,y) = x^2y$, o ponto (1,1) e o vetor (1,1), a derivada de f no ponto (1,1) segundo o vetor (1,1) fica:

$$f'_{(1,1)}(1,1) = \lim_{t \to 0} \frac{f((1,1) + (1,1)t) - f(1,1)}{t} =$$

$$= \lim_{t \to 0} \frac{f(1+t,1+t) - f(1,1)}{t} = \lim_{t \to 0} \frac{(1+t)^2(1+t) - 1}{t} =$$

$$\lim_{t \to 0} \frac{t^3 + 3t^2 + 3t + 1 - 1}{t} = \lim_{t \to 0} \frac{t(t^2 + 3t + 3)}{t} = 3$$

Então, f tem derivada no ponto (1,1) segundo o vetor (1,1) e é $f'_{(1,1)}(1,1)=3$.

4.5. Matriz Jacobiana

Se tivermos uma função \vec{f} diferenciável, esta tem matriz Jacobiana. Esta é a matriz que contém as derivadas parciais de f, então, imaginemos que $\vec{f}: D \subset \mathbb{R}^2 \to \mathbb{R}^2$, por exemplo, logo sendo $\vec{f}(x,y) = (f_1(x,y), f_2(x,y))$ a matriz Jacobiana de f define-se como:

$$J\vec{f}(x,y) = \begin{bmatrix} \frac{\partial f_1}{\partial x}(x,y) & \frac{\partial f_1}{\partial y}(x,y) \\ \frac{\partial f_2}{\partial x}(x,y) & \frac{\partial f_2}{\partial y}(x,y) \end{bmatrix}$$

Este padrão mantém-se independente da dimensão do domínio e do contradomínio. O caso geral vai ser que a **posição** (i,j), sendo i a linha e j a coluna, **preenchida pela derivada parcial** $\frac{\partial f_i}{\partial x_i}(x,y)$.

4.5.1. Jacobiano

Como visto anteriormente, se $\vec{f}: D \subset \mathbb{R}^n \to \mathbb{R}^m$ e \vec{f} é diferenciável então tem matriz Jacobiana. Se n = m, chamamos de **Jacobiano ao determinante da matriz Jacobiana** e representamos por det $(J\vec{f}(x,y))$.

4.6. Operadores diferenciais

4.6.1. Gradiente

Seja f: D aberto $\subset \mathbb{R}^n \to \mathbb{R}$, então o gradiente no ponto A é representado, por exemplo:

$$\nabla f(A) = \operatorname{grad} f(A) = \left(\frac{\partial f}{\partial x_1}(A), \frac{\partial f}{\partial x_2}(A), \dots, \frac{\partial f}{\partial x_n}(A)\right)$$

4.6.2. Divergente

Seja \vec{f} : D aberto $\subset \mathbb{R}^n \to \mathbb{R}^n$ um campo vetorial diferenciável e $A \in D$, dizemos que a divergência de \vec{f} em A é dada por:

$$\operatorname{div} f(A) = \frac{\partial f_1}{\partial x_1}(A) + \frac{\partial f_2}{\partial x_2}(A) + \dots + \frac{\partial f_n}{\partial x_n}(A)$$

Então, podemos dizer que, se \vec{f} : D aberto $\subset \mathbb{R}^n \to \mathbb{R}^n$ um campo vetorial diferenciável e $A \in D$, o divergente é igual à soma da diagonal principal da matriz Jacobiana.

4.6.3. Rotacional

Seja f: D aberto $\subset \mathbb{R}^3 \to \mathbb{R}$ um campo vetorial diferenciável e $A \in D$. Dizemos que o rotacional de f em A é representado por:

$$rot f(A) = \left(\frac{\partial f_3}{\partial x_2}(A) - \frac{\partial f_2}{\partial x_3}(A), \frac{\partial f_1}{\partial x_3}(A) - \frac{\partial f_3}{\partial x_1}(A), \frac{\partial f_2}{\partial x_1}(A) - \frac{\partial f_1}{\partial x_2}(A)\right)$$

Existe uma **forma fácil de decorar esta fórmula** que é calculando o seguinte determinante:

$$\begin{vmatrix} e_1 & e_2 & e_3 \\ f_1 & f_2 & f_3 \\ \frac{\partial}{\partial x_1} & \frac{\partial}{\partial x_2} & \frac{\partial}{\partial x_3} \end{vmatrix}$$

Onde e1, e2 e e3 são os vetores unitários.

4.6.4. Laplaciano

Seja f: D aberto $\subset \mathbb{R}^n \to \mathbb{R}$ um campo escalar diferenciável e $A \in D$ chamamos Laplaciano de f em A:

$$Lap f(A) = \frac{\partial^2 f}{\partial x_1^2}(A) + \frac{\partial^2 f}{\partial x_2^2}(A) + \dots + \frac{\partial^2 f}{\partial x_n^2}(A)$$

Por outras palavras, o laplaciano é o divergente do gradiente:

$$Lap f(A) = div \nabla f(A)$$

4.7. Regra da Cadeia

Esta regra é crucial para caso tenhamos uma função composta. Resumidamente, se tivermos $\vec{f}: D$ aberto $\subset \mathbb{R}^n \to \mathbb{R}^p$ e $\vec{g}: E$ aberto $\subset \mathbb{R}^p \to \mathbb{R}^m$, duas funções vetoriais tais que $\vec{f}(D) \subset E$. Se \vec{f} é diferenciável em A e \vec{g} é diferenciável em B = f(A), então $\vec{g} \circ \vec{f}$, ou por outras palavras, $\vec{f}(\vec{g}(x))$, é diferenciável em A e a sua derivada é dada por, em matrizes Jacobianas:

$$J(\vec{g} \circ \vec{f})(A) = J\vec{g}(B).J\vec{f}(A)$$

Por exemplo, imaginemos o seguinte exercício:

Mostre que z = f(x - y, y - x) satisfaz a equação:

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$$

Para resolvermos este exercício usamos a regra da cadeia mas, no formato de derivada:

$$\vec{D}(\vec{g} \circ \vec{f})(A) = \vec{D}\vec{g}(B).\vec{D}\vec{f}(A)$$

Logo, como z é uma função composta, se dissermos que $z = f(f_1(x, y), f_2(x, y))$, com $f_1(x, y) = x - y$ e $f_2(x, y) = y - x$, temos que:

$$\frac{\partial z}{\partial x} = \frac{\partial f}{\partial f_1} \times \frac{\partial f_1}{\partial x} + \frac{\partial f}{\partial f_2} \times \frac{\partial f_2}{\partial x} = \frac{\partial f}{\partial f_1} - \frac{\partial f}{\partial f_2}$$

$$\frac{\partial z}{\partial y} = \frac{\partial f}{\partial f_1} \times \frac{\partial f_1}{\partial y} + \frac{\partial f}{\partial f_2} \times \frac{\partial f_2}{\partial y} = -\frac{\partial f}{\partial f_1} + \frac{\partial f}{\partial f_2}$$

Então, acabamos que:

$$\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = \frac{\partial f}{\partial f_1} - \frac{\partial f}{\partial f_2} - \frac{\partial f}{\partial f_1} + \frac{\partial f}{\partial f_2} = 0$$

Provando o que queríamos.

4.8. Teorema para derivada segundo um vetor

Como vimos anteriormente utilizamos um limite para calcular a derivada de uma função num ponto segundo um vetor agora, sabemos uma outra forma. Se tivermos que a função f: D aberto $\subset \mathbb{R}^n \to \mathbb{R}$ e $A \in D$ então existe derivada de f no ponto A segundo um vetor v e esta dá-se pelo produto interno:

$$f_{v}'(A) = \langle \nabla f(A), v \rangle$$

4.9. Plano tangente a um ponto

Se tivermos uma função escalar f diferenciável num ponto (a, b), conseguimos calcular a equação do plano tangente ao gráfico f no ponto (a, b, f(a, b)), essa equação é:

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b)$$

5. Função inversa

Nestes exercícios, temos alguns critérios a cumprir antes de resolver o exercício. Esses critérios são:

- \vec{f} é classe C^1 , pelo menos numa vizinhança de A;
- $\det\left(J\vec{f}(A)\right) \neq 0$.

Utilizando como exemplo o seguinte exemplo:

Mostre que a função $\vec{f}(x,y) = (x^3 + 2xy + y^2, x^2 + y)$ é localmente invertível numa vizinhança de (1,1). Determine a matriz Jacobiana de \vec{f}^{-1} no ponto $\vec{f}(1,1)$.

Começando por verificar que \vec{f} é classe C^1 , para isso, como já informado anteriormente precisamos verificar que as derivadas parciais de primeira ordem são contínuas.

Após a confirmarmos, vamos ver se o determinante da Jacobiana no ponto (1,1) é diferente de 0:

$$\begin{vmatrix} 3x^2 + 2y & 2x + 2y \\ 2x & 1 \end{vmatrix} (1,1) = \begin{vmatrix} 5 & 4 \\ 2 & 1 \end{vmatrix} = 5 \times 1 - 3 \times 2 = -3 \neq 0$$

Então, como os critérios se verificam, podemos afirmar que \vec{f} é localmente invertível numa vizinhança de (1,1).

Para a segunda parte da questão, aplicamos a seguinte fórmula:

$$J\vec{f}^{-1}(B) = [J\vec{f}(A)]^{-1}$$
, sendo $B = \vec{f}(A)$

Então, aplicando a fórmula temos que:

$$J\vec{f}^{-1}(\vec{f}(1,1)) = \begin{bmatrix} J\vec{f}(1,1) \end{bmatrix}^{-1} = \begin{bmatrix} 5 & 4 \\ 2 & 1 \end{bmatrix}^{-1} = \frac{1}{\det\left(\begin{bmatrix} 5 & 4 \\ 2 & 1 \end{bmatrix}\right)} \operatorname{cof}\left(\begin{bmatrix} 5 & 4 \\ 2 & 1 \end{bmatrix}\right)^{T}$$

Traduzindo para linguagem usual, a matriz Jacobiana da função inversa de \vec{f} no ponto $\vec{f}(1,1)$ é igual à inversa da matriz Jacobiana de \vec{f} no ponto (1,1) que, por sua vez, é igual ao inverso do determinante a multiplicar pela matriz transposta dos cofatores da matriz Jacobiana de \vec{f} no ponto (1,1).

Concluindo o exercício, temos que:

$$J\vec{f}^{-1}(\vec{f}(1,1)) = \begin{bmatrix} -\frac{1}{3} & \frac{4}{3} \\ \frac{2}{3} & -\frac{5}{3} \end{bmatrix}$$

6. Função implícita

Tal como na função inversa, estes exercícios exigem alguns critérios. Se tivermos a função \vec{F} : V aberto $\subset \mathbb{R}^{n+m} \to \mathbb{R}^m$, estes são os critérios:

- \vec{F} é uma função de classe C^1 , pelo menos na vizinhança do ponto;
- $\vec{F}(\vec{a}, \vec{b}) = 0$ para algum $(\vec{a}, \vec{b}) \in V$;
- $\det(J_{\nu}\vec{F}(\vec{a},\vec{b})) \neq \vec{0}$.

Então, pelo **Teorema da Função Implícita**, podemos concluir que **existe** $\vec{b} = \vec{f}(\vec{a})$ **numa vizinhança de** \vec{a} . Vamos experimentar na prática com o seguinte exercício:

Mostre que as equações xz - yt = 1 e xyzt = 20 definem z e t implicitamente como funções de x e y numa vizinhança do ponto (1,2,5,2) e calcule $\frac{\partial z}{\partial x}$ e $\frac{\partial t}{\partial x}$ nesse ponto.

Inicialmente, temos de passar as parcelas todas para um lado da equação, então, temos que:

$$xz - yt = 1 \Leftrightarrow xz - yt - 1 = 0$$

$$xyzt = 20 \Leftrightarrow xyzt - 20 = 0$$

Então, vamos ter a seguinte função \vec{F} :

$$\vec{F}(x, y, z, t) = (xz - yt - 1, xyzt - 20)$$

Agora, vamos verificar os requisitos para aplicar o Teorema da Função Implícita. Comecemos por verificar se a função é de classe C^1 e para isso, como já anteriormente mostrado, basta verificar que as derivadas parciais de primeira ordem são todas contínuas. Neste caso são por isso, podemos confirmar que a função \vec{F} é de classe C^1 .

De seguida, vamos ver se $\vec{F}(1, 2, 5, 2) = \vec{0}$:

$$\vec{F}(1,2,5,2) = (1 \times 5 - 2 \times 2 - 1,1 \times 2 \times 5 \times 2 - 20) = (0,0)$$

Então, a afirmação verifica-se e podemos ver se $\det(J_{(z,t)}\vec{F}(1,2,5,2)) \neq \vec{0}$:

$$\begin{vmatrix} \frac{\partial F_1}{\partial z} (1,2,5,2) & \frac{\partial F_1}{\partial t} (1,2,5,2) \\ \frac{\partial F_2}{\partial z} (1,2,5,2) & \frac{\partial F_2}{\partial t} (1,2,5,2) \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ 4 & 10 \end{vmatrix} = 1 \times 10 - (-2) \times 4 = 10 + 8 = 18 \neq 0$$

Então, **podemos aplicar o Teorema da Função Inversa** e, com isso, temos que existe $\vec{f}(x,y) = (z,t)$ numa vizinhança de (1,2,5,2).

Para responder à segunda parte da questão, temos de usar a seguinte fórmula:

$$J_{x}\vec{f} = -(J_{y}\vec{F})^{-1} \times J_{x}\vec{F}$$

Ou ainda, pela derivada:

$$\overrightarrow{Df}(x) = -\left(\overrightarrow{D_yF}(x, f(x))\right)^{-1} \times \overrightarrow{D_xF}(x, f(x))$$

Então, aplicando a fórmula, temos:

$$J_{(x,y)}\vec{f}(1,2) = \begin{bmatrix} 1 & -2 \\ 4 & 10 \end{bmatrix}^{-1} \times \begin{bmatrix} 5 & -2 \\ 20 & 10 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 10 & 2 \\ -4 & 1 \end{bmatrix} \times \begin{bmatrix} 5 & -2 \\ 20 & 10 \end{bmatrix} = \frac{1}{18} \begin{bmatrix} 90 & 0 \\ 0 & 18 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 1 \end{bmatrix}$$

Como esta matriz é do género (no ponto (1,2,5,2)):

$$\begin{bmatrix} \frac{\partial z}{\partial x} & \frac{\partial z}{\partial y} \\ \frac{\partial t}{\partial x} & \frac{\partial y}{\partial y} \end{bmatrix}$$

Vamos ter que $\frac{\partial z}{\partial x} = 5$ e $\frac{\partial t}{\partial x} = 0$ e assim, a questão fica resolvida.

7. Fórmula de Taylor

A **fórmula de Taylor** permite-nos aproximar uma função derivável em torno de um ponto \vec{a} . Esta é fácil de decorar e dá-se pelo seguinte padrão. Se for a fórmula de Taylor de **primeira ordem**, temos:

$$f(\vec{a} + \vec{h}) \approx \frac{1}{0!} f(\vec{a}) + \frac{1}{1!} \left(\left(\frac{\partial f}{\partial x_1} (\vec{a}) h_1 \right) + \left(\frac{\partial f}{\partial x_2} (\vec{a}) h_2 \right) \right) + R_2(\vec{h})$$

Sendo $\vec{h} = (x - a_1, y - a_2)$ e $R_2(\vec{h})$ o resto.

A fórmula de Taylor de segunda ordem ficaria:

$$\begin{split} f\left(\vec{a} + \vec{h}\right) &\approx \frac{1}{0!} f(\vec{a}) + \frac{1}{1!} \left(\left(\frac{\partial f}{\partial x_1} (\vec{a}) h_1 \right) + \left(\frac{\partial f}{\partial x_2} (\vec{a}) h_2 \right) \right) + \\ &+ \frac{1}{2!} \left(\left(\frac{\partial^2 f}{\partial x_1^2} (\vec{a}) h_1^2 \right) + \left(\frac{\partial^2 f}{\partial x_2^2} (\vec{a}) h_2^2 \right) + 2 \left(\frac{\partial^2 f}{\partial x_1 \partial x_2} (\vec{a}) h_1 h_2 \right) \right) + R_3(\vec{h}) \end{split}$$

E, a fórmula de Taylor de terceira ordem seria:

$$\begin{split} f\left(\vec{a}+\vec{h}\right) &\approx \frac{1}{0!}f(\vec{a}) + \frac{1}{1!}\left(\left(\frac{\partial f}{\partial x_1}(\vec{a})h_1\right) + \left(\frac{\partial f}{\partial x_2}(\vec{a})h_2\right)\right) + \\ &+ \frac{1}{2!}\left(\left(\frac{\partial^2 f}{\partial x_1^2}(\vec{a})h_1^2\right) + \left(\frac{\partial^2 f}{\partial x_2^2}(\vec{a})h_2^2\right) + 2\left(\frac{\partial^2 f}{\partial x_1\partial x_2}(\vec{a})h_1h_2\right)\right) + \\ &+ \frac{1}{3!}\left(\left(\frac{\partial^3 f}{\partial x_1^3}(\vec{a})h_1^3\right) + \left(\frac{\partial^3 f}{\partial x_2^3}(\vec{a})h_2^3\right) + 3\left(\frac{\partial^3 f}{\partial x_1^2\partial x_2}(\vec{a})h_1^2h_2\right) + 3\left(\frac{\partial^3 f}{\partial x_1\partial x_2^2}(\vec{a})h_1h_2^2\right)\right) \\ &+ R_4(\vec{h}) \end{split}$$

Como podemos ver, a fórmula de Taylor segue um padrão então, para escrever das seguintes ordens, se necessário, basta continuar o padrão.

8. Extremos

8.1. Calcular os pontos críticos

Tal como em funções em \mathbb{R} , existem máximos/maximizantes, mínimos/minimizantes e, no caso de \mathbb{R}^n $n \ge 2$, temos os **pontos sela**. Da mesma forma que fazíamos, temos de **determinar os zeros das derivadas parciais**. Por exemplo, imaginemos que temos a função $f(x,y) = \frac{1}{3}x^3 + y^2 + xy$, as respetivas derivadas parciais são:

$$\frac{\partial f}{\partial x}(x,y) = x^2 + y$$

$$\frac{\partial f}{\partial y}(x,y) = 2y + x$$

Igualando a zero, temos:

$$\begin{cases} x^2 + y = 0 \\ 2y + x = 0 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 \\ -2x^2 + x = 0 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 \\ x(-2x+1) = 0 \end{cases} \Leftrightarrow \begin{cases} y = -x^2 \\ x = 0 \lor x = \frac{1}{2} \end{cases}$$

Então, se $x = 0 \Rightarrow y = 0$ e se $x = \frac{1}{2} \Rightarrow y = -\frac{1}{4}$ logo, os **pontos críticos** são (0,0) e $\left(\frac{1}{2}, -\frac{1}{4}\right)$.

8.2. Classificar os pontos críticos

Para classificar os pontos críticos, temos de construir as **matrizes Hessiana** dos mesmos, estas dão-se, por exemplo, da seguinte forma:

$$\begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 x_2} & \frac{\partial^2 f}{\partial x_1 x_3} \\ \frac{\partial^2 f}{\partial x_2 x_1} & \frac{\partial^2 f}{\partial x_2^2} & \frac{\partial^2 f}{\partial x_2 x_3} \\ \frac{\partial^2 f}{\partial x_3 x_1} & \frac{\partial^2 f}{\partial x_3 x_2} & \frac{\partial^2 f}{\partial x_3^2} \end{bmatrix}$$

Então, utilizando o exemplo anterior temos que:

$$H(0,0) = \begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix}$$

$$H\begin{pmatrix} \frac{1}{2}, -\frac{1}{4} \end{pmatrix} = \begin{bmatrix} 1 & 1\\ 1 & 2 \end{bmatrix}$$

Então, se formos analisar os **determinantes destas matrizes**, ou seja, neste caso, vamos fazer o **determinante 1** \times **1 e 2** \times **2** de cada matriz temos que, para H(0,0):

$$d_1 = 0$$
 e $d_2 = -1 < 0$

E para a matriz Hessiana $H\left(\frac{1}{2}, -\frac{1}{4}\right)$:

$$d_1 = 1 > 0$$
 e $d_2 = 1 > 0$

Neste momento temos três hipóteses:

- Se todos os determinantes forem positivos, é um mínimo local;
- Se todos os determinantes de ordem ímpar forem negativos e de ordem par positivos, é um máximo local;
- Se a matriz tiver valores próprios de sinais diferentes, então é um ponto sela.

Neste caso, em \mathbb{R}^2 , temos o seguinte:

- Se $d_1 > 0$ e $d_2 > 0$, é um mínimo local;
- Se $d_1 < 0$ e $d_2 > 0$ é um máximo local;
- Se $d_2 < 0$ é um ponto sela.

Então, aplicando ao exercício de exemplo, temos que f(0,0) é um ponto sela e $f\left(\frac{1}{2}, -\frac{1}{4}\right)$ é um mínimo local.

8.2.1. Relembrar o cálculo de valores próprios

Imaginemos que temos a seguinte matriz:

$$\begin{bmatrix} 1 & 3 & 2 \\ 0 & 1 & 0 \\ 2 & 1 & 0 \end{bmatrix}$$

Vamos determinar os valores próprios. Começamos por, na diagonal principal, colocar $-\mathbf{k}$ e de seguida calculamos o determinante:

$$\begin{vmatrix} 1-k & 3 & 2 \\ 0 & 1-k & 0 \\ 2 & 1 & -k \end{vmatrix}$$

Aplicando a regra de Laplace:

$$\begin{vmatrix} 1-k & 3 & 2 \\ 0 & 1-k & 0 \\ 2 & 1 & -k \end{vmatrix} = (1-k)\begin{vmatrix} 1-k & 0 \\ 1 & -k \end{vmatrix} - 0\begin{vmatrix} 3 & 2 \\ 1 & -k \end{vmatrix} + 2\begin{vmatrix} 3 & 2 \\ 1-k & 0 \end{vmatrix} =$$

$$= (1-k)((1-k)(-k) - 0 \times 1) + 2(3 \times 0 - 2(1-k)) =$$

$$= (1-k)(k^2 - k) + 2(2k - 2) =$$

$$= k^2 - k - k^3 + k^2 + 4k - 4 = -k^3 + 2k^2 + 3k - 4$$

E agora calculamos os zeros da equação:

$$-k^3 + 2k^2 + 3k - 4 = 0$$

Utilizando o Ruffini e fórmula resolvente, temos que:

$$(k-1)(-k^2+k+4) = 0 \Leftrightarrow k = 1 \lor k = \frac{-1 \pm \sqrt{1-4 \times (-1) \times 4}}{2 \times (-1)} \Leftrightarrow$$
$$\Leftrightarrow k = 1 \lor k = \frac{1+\sqrt{17}}{2} \lor k = \frac{1-\sqrt{17}}{2}$$

Então os valores próprios são:

$$k = 1, k = \frac{1+\sqrt{17}}{2} e k = \frac{1-\sqrt{17}}{2}$$

9. Integrais duplos

Em Análise Matemática II os integrais funcionam da mesma forma que em Análise Matemática I mas, tal como na derivação, **tratamos as variáveis que não são de integração como constantes**, então, eis algumas regras importantes de derivação direta, se tivermos u = u(x) uma função de x:

•
$$\int u'^{u^n} dx = \frac{u^{n+1}}{n+1} + c, \ c \in \mathbb{R}, n \neq -1;$$

•
$$\int \frac{u'}{u} dx = \ln(u) + c$$
, $c \in \mathbb{R}$, caso particular da regra acima para $(n = -1)$;

•
$$\int u'e^u dx = e^u + c, c \in \mathbb{R};$$

•
$$\int u' \sin(u) dx = -\cos(u) + c, c \in \mathbb{R}$$
;

•
$$\int u'\cos(u) dx = \sin(u) + c, c \in \mathbb{R}$$
;

•
$$\int \frac{u'}{\sqrt{a^2 - u^2}} dx = \sin^{-1}\left(\frac{x}{a}\right) + c, \ c \in \mathbb{R}.$$

Então, por exemplo:

$$\int_0^1 \int_0^1 (x^2 + 2y) \, dy \, dx = \int_0^1 [yx^2 + y^2]_{y=0}^{y=1} dx =$$

$$= \int_0^1 (1 \times x^2 + 1^2 - (0 \times x^2 + 0^2)) dx = \int_0^1 (x^2 + 1) dx = \left[\frac{x^3}{3} + x \right]_{x=0}^{x=1} =$$

$$= \frac{1^3}{3} + 1 - \left(\frac{0^3}{3} + 0 \right) = \frac{4}{3}$$

9.1. Funções definidas em regiões retangulares

Imaginemos que queremos calcular a área de uma região retangular, por exemplo, a região:

$$A = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le 2 \land -1 \le y \le 1\}$$

Para determinar a respetiva área, utilizamos um dos seguintes integrais:

$$\text{Area} = \int_{0}^{2} \int_{-1}^{1} dy dx = \int_{-1}^{1} \int_{0}^{2} dx dy$$

Calculando, temos que:

$$\int_{-1}^{1} [x]_{x=0}^{x=2} dy = \int_{-1}^{1} 2dy = [2y]_{y=-1}^{y=1} = 4$$

Se formos comparar com o cálculo normal de uma área retangular:

$$\text{Á} rea = c \times l = |2 - 0| \times |1 - (-1)| = 2 \times 2 = 4$$

Como podemos ver, temos dois resultados idênticos, o que confirma o cálculo do integral.

9.2. Funções definidas em regiões não retangulares

E se a região não for retangular? Nesse caso, teremos uma **região definida por funções**, por exemplo, queremos calcular a área de uma região **limitada superiormente** pela equação f(x) = 2 - x e **inferiormente** por $g(x) = x^2$. Ao esboçarmos a região, vemos que esta se trata de uma parábola virada para cima e uma reta com declive negativo, cujas equações se cruzam em (-2,4) e (1,1).

Então, para calcular a área da região, vamos ter:

$$\int_{-2}^{1} \int_{x^2}^{2-x} dy dx$$

Dizendo isto com linguagem usual, temos que a área da região é determinada pelo integral duplo onde o y varia entre as equações $y = x^2$ e y = 2 - x e temos que o x vai variar entre x = -2 e x = 1.

Ainda podemos escrever este último como um único integral, fazendo:

$$\int_{-2}^{1} ((2-x) - (x^2)) dx$$

9.3. Inverter ordem de integração

Mudar a ordem das variáveis de integração **não é apenas alterar a posição das mesmas**. Para resolver este tipo de exercícios devemos **esboçar a região** e escrever o integral novo com a respetiva ordem de integração. Em relação aos intervalos de integração, temos de **resolver as equações das retas na ordem desejada**. Então, utilizando como exemplo o exercício anterior, temos que a nova equação é:

$$y = x^2 \Leftrightarrow x = \pm \sqrt{y}$$

$$y = 2 - x \Leftrightarrow x = 2 - y$$

Então, como os pontos de interseção se mantém os mesmos, temos que estes são (-2,4) e (1,1). Porém, como podemos ver, no ponto (1,1) a equação que limita superiormente a região muda e por isso, este integral passa à soma de dois integrais. Por isso, temos:

$$\int_{0}^{1} \int_{-\sqrt{y}}^{\sqrt{y}} dx dy + \int_{1}^{4} \int_{-\sqrt{y}}^{2-y} dx dy$$

9.4. Volume de um sólido

Não é novidade que um sólido possui 3 dimensões então, para calcular o volume de um sólido podemos utilizar integrais, então, como vimos no último integral podemos usar n-1 integrais para calcular a área/volume de uma região/sólido de n dimensões. Logo, imaginemos que queremos calcular o volume de um sólido limitado superiormente pela equação f(x, y) e inferiormente por g(x, y), utilizamos o seguinte integral:

$$V = \iint (f(x, y) - g(x, y)) dx dy$$

9.5. Massa e coordenadas do centro de massa de uma região plana

Para calcular a **massa de uma região plana** basta adicionar a densidade, $\rho(x, y)$, ao integral da área, ou seja:

$$m = \iint \rho(x, y) \, dx \, dy$$

Em relação às coordenadas do centro de massa, estas são calculadas de acordo com:

$$x_C = \frac{m_y}{m} e y_C = \frac{m_x}{m}$$

Onde:

$$m_y = \iint x \times \rho(x, y) \, dx \, dy$$

$$m_x = \iint y \times \rho(x, y) \, dx \, dy$$

Então, as coordenadas do centro de massa são $C = (x_C, y_C)$.

9.6. Coordenadas polares

As coordenadas polares são um formato de coordenadas que nos facilita o cálculo de integrais de áreas, volumes que possuam círculos/circunferências. Para passar de coordenadas cartesianas para coordenadas polares usamos as seguintes igualdades:

$$\begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \end{cases}$$

Onde ρ , $\rho > 0$, é a distância de um ponto P à origem, e θ , $\theta \in [0,2\pi[$ é o ângulo que "roda" em sentido anti-horário e que começa no eixo 0x. A imagem abaixo demonstra como estas duas coordenadas se comportam.

Além de alterar as coordenadas, temos ainda de multiplicar o que está dentro do integral, ou seja, a função integranda, por ρ .

Por exemplo, imaginemos que queremos calcular a área de um círculo de raio 2, e de centro na origem. Então, temos que:

$$A = \int_{-1}^{1} \int_{-\sqrt{4-x^2}}^{\sqrt{4-x^2}} dy dx$$

Calcular o este integral vai ser complicado por causa das raízes então, recorrendo a coordenadas polares, temos:

$$A = \int_0^{2\pi} \int_0^2 \rho d\rho \, d\theta = \int_0^{2\pi} \left[\frac{\rho^2}{2} \right]_{\rho=0}^{\rho=2} d\theta = \int_0^{2\pi} 2 \, d\theta = [2\theta]_{\theta=0}^{\theta=2\pi} = 4\pi$$

Confirmando com a fórmula da área do círculo temos:

$$A = \pi r^2 = \pi \times 2^2 = 4\pi$$

O que confirma o resultado e, como podemos ver, é muito mais simples, nestes casos, utilizar coordenadas polares.

10. Integrais triplos

Para os integrais triplos, a estratégia é a mesma e resolvem-se da mesma forma, no caso, ao invés de calcularmos a área, **calculamos o volume**, por exemplo:

$$\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} dx dy dz$$

Este integral calcula o volume de um cubo de aresta 1.

Agora, imaginemos que queremos calcular o volume de um sólido no primeiro octante, limitado superiormente pelo plano z = 1 - x - y e inferiormente pelo eixos. Logo, o integral para calcular este volume fica:

$$\int_0^1 \int_0^{1-x} \int_0^{1-x-y} dz dy dx$$

10.1. Massa e coordenadas do centro de massa de um sólido

O cálculo da massa de um sólido segue a mesma lógica do cálculo da massa de uma região no plano, **basta adicionarmos a densidade** $\rho(x, y, z)$ ao integral do volume. Então, vamos ter:

$$m = \iiint \rho(x, y, z) \, dx dy dz$$

Tal como nas coordenadas de centro de massa de uma região no plano, temos que as mesmas se dão por:

$$x_c = \frac{m_{yz}}{m}$$
, $y_c = \frac{m_{xz}}{m}$ e $z_c = \frac{m_{xy}}{m}$

Onde:

$$m_{yz} = \iiint x \times \rho(x, y, z) \, dx dy dz$$
$$m_{xz} = \iiint y \times \rho(x, y, z) \, dx dy dz$$

 $m_{xv} = \iiint z \times \rho(x, y, z) \, dx dy dz$

10.2. Coordenadas cilíndricas

Tal como no plano, no espaço temos outros tipos de coordenadas que nos facilitam o cálculo de alguns integrais, neste caso, por exemplo de cilindros e cones com o vértice no eixo 0z. Para fazermos a conversão de coordenadas cartesianas para **coordenadas cilíndricas** (ρ, θ, z) , onde ρ e θ funcionam da mesma forma já vista, temos as igualdades:

$$\begin{cases} x = \rho \cos(\theta) \\ y = \rho \sin(\theta) \\ z = z \end{cases}$$

Além de fazermos a conversão, temos de **multiplicar a função integranda por** ρ , por exemplo, queremos calcular o volume de um cilindro de raio 2 e centro na origem, e que é limitado superiormente pelo plano $z = 4 + x^2 + y^2$ e inferiormente pelo plano z = 0. Logo, temos o seguinte integral:

$$\int_{-2}^{2} \int_{\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{0}^{4+x^2+y^2} dz dy dx$$

Passando para coordenadas cilíndricas, temos:

$$\int_0^{2\pi} \int_0^2 \int_0^{4+(\rho\cos(\theta))^2+(\rho\sin(\theta))^2} \rho \, dz d\rho d\theta$$

Como:

$$4 + (\rho\cos(\theta))^2 + (\rho\sin(\theta))^2 = 4 + \rho^2((\cos(\theta)^2 + \sin(\theta)^2)) = 4 + \rho^2$$

Logo, temos:

$$\int_{0}^{2\pi} \int_{0}^{2} \int_{0}^{4+\rho^{2}} \rho \, dz d\rho d\theta = \int_{0}^{2\pi} \int_{0}^{2} \rho (4+\rho^{2}) d\rho d\theta =$$

$$\int_{0}^{2\pi} \int_{0}^{2} (4\rho + \rho^{3}) d\rho d\theta = \int_{0}^{2\pi} \left[2\rho^{2} + \frac{\rho^{4}}{4} \right]_{\rho=0}^{\rho=2} d\theta = \int_{0}^{2\pi} 12 \, d\theta = 24\pi$$

10.3. Coordenadas esféricas

Outra forma de coordenadas que nos facilitam o cálculo do integral são as **coordenadas esféricas**, estas facilitam o cálculo do volume de esferas, por exemplo. Estas coordenadas são um pouco mais complexas, sendo **definidas por** (r, θ, φ) e usamos as seguintes igualdades:

$$\begin{cases} x = r\cos(\theta)\sin(\varphi) \\ y = r\sin(\theta)\sin(\varphi) \\ z = r\cos(\varphi) \end{cases}$$

Onde r e θ têm a mesma funcionalidade que ρ e θ nas coordenadas polares e cilíndricas. Já o φ , $(\varphi \in]0,\pi[)$ é o ângulo que vai do semieixo positivo 0z até ao semieixo negativo de 0z.

Além das igualdades, temos de multiplicar a função integranda por $r^2 \sin(\varphi)$.

Por exemplo, imaginemos que queremos calcular o volume de uma esfera de raio 3, centro na origem. Então utilizamos o seguinte integral:

$$\int_{-3}^{3} \int_{-\sqrt{9-x^2}}^{\sqrt{9-x^2}} \int_{-\sqrt{9-x^2-y^2}}^{\sqrt{9-x^2-y^2}} dz dy dx$$

Então, utilizando coordenadas esféricas temos:

$$\int_0^3 \int_0^{\pi} \int_0^{2\pi} r^2 \sin(\varphi) \, d\theta d\varphi dr = \int_0^3 \int_0^{\pi} 2\pi r^2 \sin(\varphi) \, d\varphi dr$$
$$= \int_0^3 [-2\pi r^2 \cos(\varphi)]_{\varphi=0}^{\varphi=\pi} \, dr = \int_0^3 4\pi r^2 \, dr = \left[\frac{4\pi r^3}{3}\right]_{r=0}^{r=3} = 36\pi$$

Se confirmarmos o resultado com a fórmula do volume de uma esfera temos:

$$V = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi 3^3 = 36\pi$$