Due 5/10 at 3:00PM on Gradescope

Please write your answers in the boxes provided for Part 2.

You are not required to submit the solutions to Part 1.

Part 1 (Practice Problems):

Q1. Problem 4.36 from book

Real inductors have series resistance associated with the wire used to wind the coil. Suppose that we want to store energy in a 10-H inductor. Determine the limit on the series resistance so the energy remaining after one hour is at least 75 percent of the initial energy.

Q2. Problem 4.27 from book

The circuit in Figure P4.27 has been connected for a very long time. Determine the values of Vc and iR.

Figure P4.27

Q3. Problem 4.21 from book

Solve for the steady-state values of i1, i2, and i3 for the circuit shown in Figure P4.21.

Q4. Problem 4.61 from book

A DC source is connected to a series RLC circuit by a switch that closes at t=0, as shown in Figure P4.61. The initial conditions are i(0+)=0 and Vc(0+)=0. Write the differential equation for Vc(t). Solve for Vc(t), if $R=80\Omega$.

Figure P4.61

Part 2 (Graded)

Q1. Problem 4.42 from book

The switch shown in Figure P4.42 has been closed for a long time prior to t=0, then it opens at t=0 and closes again at t=1 s. Find $i_L(t)$ for all t. (5 points)

Figure P4.42

steady State, inductor To like a short circuit

We can conclude: 1(0-)=1(0+)=0

time constant

$$\tau = \frac{1}{R} \quad \tau = \frac{6}{18} = \frac{1}{3}$$

(current through inductor at t=00(Stead) (state)

$$i_L = i_2 = I \left[\frac{15.6}{15.6} \right] = 3 \left[\frac{15.46}{15.46} \right]$$

i_(a) = 2A

$$i_L(t) = i_L(\infty) - [i_L(\infty) - i(0)]e^{-t/L}$$

2. 12 resister is shorted now that the switch is closed

time anstant

T=
$$\frac{1}{R}$$
 T= $\frac{6}{6}$ =1

current just flow through the short arent

$$i_{L}(t) = i_{L}(\infty) - [i_{L}(\infty) - i_{L}(t)]e^{-t/L}$$

$$i_L(t) = i_L(0^+) = 0$$
 A
 $0 < t \le 1$ $i_L(t) = 2 - 2e^{-3t}$ A
 $t \ge 1$ $i_L(t) = 1.9e^{-(t-1)}$ A

Q2. In the circuit below switch $\underline{SW3}$ was closed and $\underline{SW4}$ was open prior to $\underline{t=0}$. Switch $\underline{SW3}$ was opened at $\underline{t=0}$ and $\underline{SW4}$ was closed at $\underline{t=0}$. It was found that the change in capacitor voltage between $\underline{t=0}$ & $\underline{t=\infty}$ was 1.5 V.

- a. What is R1/R2 (3 points)
- b. Now suppose SW3 was also closed after the circuit reached steady state. It was found that current through R1 is 3 mA just after closing SW3. Find R1 & R2 (2 points)

+>0 Sw3 open +>0 Sw4 closed

$$a.R1/R2 = 3$$

 $b.R1 = 1000 \Omega$
 $b.R2 = 333.33 \Omega$

Q3. Problem 4.63 from book

A DC source is connected to a series RLC circuit by a switch that closes at t = 0, as shown in Figure P4.61. The initial conditions are i(0 +) = 0 and $v_c(0 +) = 0$. Write the differential equation for $v_c(t)$ if $R = 20\Omega$. (5 points)

$$i(0) = 0$$
 $v_C(0) = 0$

$$V_{c}(t) = V_{s} - iR - L\frac{di}{dt} - V_{c}(t) = 0$$

$$V_{c}(t) = V_{s} - iR - L\frac{di}{dt}$$

$$V_{c}(t) = 50 - 20i(t) - 0.002 \frac{di(t)}{dt}$$

$$V = \frac{R}{2L} = \frac{20}{2(0.002)} = 5000$$

$$W_{0} = \frac{1}{\sqrt{LC}} = \sqrt{0.002 \times (5 \times 10^{-6})} = 10000$$

$$W_{0} = \sqrt{V_{0}C} = \sqrt{0.002 \times (5 \times 10^{-6})} = 10000$$

$$W_{0} = \sqrt{V_{0}C} = \sqrt{0.002 \times (5 \times 10^{-6})} = 10000$$

$$W_{0} = \sqrt{V_{0}C} = \sqrt{V_{0}C} = \frac{10000}{\sqrt{V_{0}C}} = \frac{10000}{\sqrt{V_{0}C}}$$

$$\begin{cases} V_{c}(0) = 0 = 50 + K_{1} \\ \frac{\partial V_{c}(t)}{\partial t_{0}} = 0 = -NK_{1} + W_{0}K_{2} \\ \frac{\partial V_{c}(t)}{\partial t_{0}} = 0 = -NK_{1} + W_{0}K_{2} \\ \frac{\partial V_{c}(t)}{\partial t_{0}} = 0 \\ -5000K_{1} + 8660K_{2} = 0 \\ K_{1} = -50 \quad K_{2} = -28.86 \end{cases}$$

$$P(ug) back into complete solution
$$V_{c}(t) = 50 - 50e^{-Kt} \cos(W_{0}t) - 28.86e^{-Kt} \sin(W_{0}t)$$

$$P(ug) in values$$

$$V_{c}(t) = 50 - 50e^{-5000t} \cos(8660t) - 28.86e^{-6000t} \sin(8660t)$$$$

Q4. For the circuit shown in the figure below, the switch is open for a long time and the capacitor is fully discharged. The switch closes at time t = 0s. Find an expression for the current in the inductor after the switch closes. Draw a plot for the inductor current and the energy stored in the inductor. (5 points)

Given: $V_0 = 2V$, $L = 1\mu H$, $R = 1\Omega$, $C = 0.04\mu F$ and n = 2.

No current to inductor or capacitor due to the open circuit (switch still open)

$$I_L(0^-) = 0A$$
 $I_L(0^+) = 0A$
 $V_L(0^-) = 0V$ $V_L(0^+) = 0V$

Right when switch closes, inductor acts as open circuit and capacitor acts as short Use KVL on left loop.

$$V_{0} = L \frac{di_{L}}{dt} + i_{L}(0^{+})R + V_{1}(0^{+})$$

$$\left[V_{C}(0^{+}) = 0, 50 \ V_{1}(0^{+}) = nV_{C}(0^{+}) = 0\right]$$

$$L_{3}V_{1}(0^{+}) = 0, i_{L}(0^{+}) = 0$$

$$V_{0} = L \frac{di_{L}}{dt}$$

$$\frac{di_{L}}{dt} = \frac{V_{0}}{L} = \frac{z}{L}$$

Salve for transformer.

Differentiate, with respect to t

Divide by L

Work continued on last page !

$$i_L(t) = 0.2e^{-\sigma t}$$
. Sin wat
$$\sigma = 5 \times 10^5 \frac{\text{rad}}{\text{s}}$$

$$W_d = 10 \times 10^6 \frac{\text{rad}}{\text{s}}$$

$$\text{Box was two small to}$$
write all of it in

Use Candrhate Solution

Characteristic equations

$$S = \frac{-R}{2L} + \frac{1}{2} \sqrt{(R)^2 - \frac{4n^2}{Lc}}$$

Plug in values for R, L, C, n

$$S = \frac{-1}{2 \times 10^{-6}} + \frac{1}{2} \sqrt{\left(\frac{1}{10^{-6}}\right)^2 - \frac{16}{(10^{-6} \times 0.04 \times 10^{-6})}}$$

General Solution

$$\frac{di_{L}}{dt} = e^{-\sigma t} \left(k_{1} w_{d} stn w_{d} t + k_{2} w_{d} cos w_{d} t \right)$$

$$-\sigma e^{-\sigma t} \left(k_{1} cos w_{d} t + k_{2} sin w_{d} t \right)$$

Initial conditions

Salve

il(+)=0,2e-o+sinwat

A sine wave with frequency wd, decays exponentially over them. Approaches asymptote of O.

A sine wave with frequency wd, decays expanoatically overtime. Approaches asymptote of O.