${\it FYS2140}$ Kvantefysikk, Oblig 3

 $\label{eq:main_main_main} \text{Mitt navn (kandidatnummer)}, \ \text{og gruppe}$

24. januar 2012

Obliger i FYS2140 merkes med navn (kandidatnummer) og gruppenummer!

Dette oppgavesettet sveiper innom siste rest av Del I av pensum, med tre oppgaver om materiebølger (de Broglie bølgelengden, og gruppe- og fasehastighet). To av disse finnes som Oppgave 4.2 og 4.5 i kompendiet.

Oppgave 1 En partikkel med ladning e og masse m_0 akselereres av et elektrisk potensial V til en relativistisk hastighet.

a) Vis at de Broglie bølgelengden for partikkelen er gitt ved

$$\lambda = \frac{h}{\sqrt{2m_0eV}} \left(1 + \frac{eV}{2m_0c^2} \right)^{-1/2}$$

- b) Vis at dette gir $\lambda = h/m_0 v$ i den ikke-relativiske grensen.
- c) Vis at for en relativistisk partikkel med hvileenergi E_0 er de Broglie bølgelengden gitt ved

$$\lambda = \frac{1.24 \times 10^{-2}}{E_0 (\mathrm{MeV})} \cdot \frac{\sqrt{(1-\beta^2)}}{\beta} \ \text{Å}, \label{eq:lambda}$$

hvor $\beta = v/c$, og hvor $E_0(\text{MeV})$ er hvileenergien målt i MeV.

Oppgave 2 Et fysisk system beskrevet ved hjelp av bølgeligninger som tillater $y = A\cos(kx - \omega t)$ som løsninger, der sirkelfrekvensen ω er en reell funksjon av bølgetallet k, kalles for et lineært, dispersivt system. Funksjonen $\omega(k)$ kalles for dispersjonsrelasjonen til systemet.

a) Vis at dispersjonsrelasjonen for frie, relativistiske elektronbølger er gitt ved

$$\omega(k) = c\sqrt{k^2 + \left(\frac{mc}{\hbar}\right)^2},$$

der m er elektronets hvilemasse.

- b) Finn et uttrykk for fasehastigheten $v_f(k)$ og gruppehastigheten $v_g(k)$ til disse bølgene, og vis at produktet $v_f(k) \cdot v_g(k)$ er en konstant (uavhengig av k).
- c) Fra uttrykket for v_f ser vi at $v_f > c$! Kommenter dette fenomenet og hva det har å si for tolkningene av v_f og v_g ut fra den spesielle relativitetsteorien.

Oppgave 3 Utfordrende!

a) Hvis du legger sammen to sinusbølger $y_1(x,t) = \sin [k_1x - \omega(k_1)t]$ og $y_2(x,t) = \sin [k_2x - \omega(k_2)t]$ med dispersjonsrelasjon som i Oppgave 2, og med bølgetall som ligger nær hverandre, $k_1 = k_0 + \Delta k$, $k_2 = k_0 - \Delta k$, $\Delta k \ll k_0$, hvordan vil den resulterende funksjonen se ut, og hvordan tolker man de to delene av denne funksjonen? For å forenkle regningen kan du innføre $\hbar = c = 1$. Hint: Du kan få bruk for identiteten (se Rottmann):

$$\sin x + \sin y = 2\sin\frac{x+y}{2}\cos\frac{x-y}{2}. (1)$$

b) Lag et plott av superposisjonen hvor du velger $A=m=1,\,k_1=0.6$ og $k_2=0.7.$ Hva blir fase- og gruppehastigheten?

¹Dette betegnes i fysikk som såkalte naturlige enheter (!) i kontrast til metriske enheter.