Adaptive Designs and Multiple Testing Procedures for Clinical Trials

October 2019

Hierarchical testing

Outline

- Mierarchical testing
- Semi-parametric procedures
- Closed testing
- 4 Graphical approaches
- Multiplicity in practice

Hierarchical test procedures

- Suppose hypotheses can be ordered into a *pre-specified* hierarchy H_1, \ldots, H_K , before the data are observed
 - Clinical relevance
 - Dose concentration
 - Time sequence
- Hierarchical test procedures: tests the hypotheses in the pre-defined hierarchical order
 - Fixed sequence procedure
 - Fallback procedure

 Each hypothesis is tested in the pre-specified sequence at level α until the first non-rejection

- $oldsymbol{\circ}$ Each hypothesis is tested in the pre-specified sequence at level lpha until the first non-rejection
- Rejection rule
 - ▶ if $p_1 \leq \alpha$, reject H_1 and continue; else stop
 - ▶ if $p_2 \le \alpha$ reject H_2 and continue; else stop
 - **.**..
 - if $p_k \le \alpha$ reject H_k and continue; else stop

Fixed sequence procedure

- Each hypothesis is tested in the pre-specified sequence at level α until the first non-rejection
- Rejection rule
 - if $p_1 < \alpha$, reject H_1 and continue; else stop
 - if $p_2 < \alpha$ reject H_2 and continue; else stop

 - if $p_k \leq \alpha$ reject H_k and continue; else stop
- As soon as a hypothesis H_i cannot be rejected, $p_i > \alpha$, the procedure stops and all remaining hypotheses H_{i+1}, \ldots, H_K are not rejected

Fixed sequence procedure

Advantages

- Simple procedure
- Optimal (maximises power) if previous hypotheses rejected

Disadvantages

- Ordering of testing sequence is critically important, and may be based on subjective information
- Minimises power if a previous hypothesis is not rejected
- Once a hypothesis is not rejected, no further testing is allowed

Fallback procedure

 \bullet Again test each hypothesis in the pre-specified sequence, but split the α between hypotheses

Graphical approaches

- Assign α_i to hypothesis H_i , where $\sum_i^k \alpha_i = \alpha$
- H_1 is tested at level $\alpha_1' = \alpha_1$
- For $i \geq 2$, H_i is tested at level α'_i , where

$$\alpha_i' = \begin{cases} \alpha_i & \text{if } H_{i-1} \text{ is not rejected} \\ \alpha_i + \alpha_{i-1}' & \text{if } H_{i-1} \text{ is rejected} \end{cases}$$

- Test all hypotheses even if initial hypotheses are not rejected
- Fallback procedure is implemented in the multxpert R package

Example

- $\alpha = 0.025$
- p-values $p_1 = 0.03$, $p_2 = 0.004$, $p_3 = 0.01$
- For fallback procedure, suppose α split equally: $\alpha_1 = \alpha_2 = \alpha_3 = 0.025/3$

p-value	Fixed sequence	Fallback procedure
0.03	$\alpha = 0.025$	$\alpha_1' = 0.025/3$

- $\alpha = 0.025$
- p-values $p_1 = 0.03$, $p_2 = 0.004$, $p_3 = 0.01$
- For fallback procedure, suppose α split equally: $\alpha_1 = \alpha_2 = \alpha_3 = 0.025/3$

p-value	Fixed sequence	Fallback procedure
0.03	$\alpha = 0.025$	$\alpha_1' = 0.025/3$
0.004	Not tested	$\alpha_2'=0.025/3$

- $\alpha = 0.025$
- p-values $p_1 = 0.03$, $p_2 = 0.004$, $p_3 = 0.01$
- For fallback procedure, suppose α split equally: $\alpha_1 = \alpha_2 = \alpha_3 = 0.025/3$

p-value	Fixed sequence	Fallback procedure
0.03	$\alpha = 0.025$	$\alpha_1' = 0.025/3$
0.004	Not tested	$\alpha_2^{'} = 0.025/3$
0.01	Not tested	$\alpha_3' = 0.05/3$

Semi-parametric procedures

Hierarchical testing

- Hypotheses H_1, \ldots, H_K
- ullet Aim to control the FWER at level α

Šidák procedure

- Hypotheses H_1, \ldots, H_K
- Aim to control the FWER at level α
- Šidák (also known as Dunn-Šidák) procedure uses the adjusted significance level

$$\alpha_{S} = 1 - (1 - \alpha)^{1/K}$$

- More powerful than Bonferroni for K > 1
- However, only guaranteed to control the FWER for independent or positively correlated test statistics
 - e.g. appropriate for many-to-one comparisons, where a positive correlation is induced by the control group

- Ordered p-values $p_{(1)} < \cdots < p_{(K)}$ with corresponding hypotheses $H_{(1)}, \ldots, H_{(K)}$
- Uses same significance thresholds as the Holm procedure, but reversed (step-up rather than step-down)
- Rejection rule
 - If $p_{(K)} \leq \alpha$, reject $H_{(1)}, \ldots, H_{(K)}$ and stop; else continue
 - If $p_{(K-1)} \leq \alpha/2$, reject $H_{(1)}, \ldots, H_{(K-1)}$ and stop; else continue
 - **...**
 - If $p_{(1)} \leq \alpha/K$, reject $H_{(1)}$ and stop
- Find largest i such that $p_{(i)} \leq \alpha/(K-i+1)$ and reject all hypotheses $H_{(i)}, H_{(i+1)}, ..., H_{(1)}$

Hochberg

- More powerful than Bonferroni and Holm
- Again, only guaranteed to control FWER under certain correlation assumptions
 - e.g. When test statistics are independent or positively correlated

Hommel

- Rejection rule
 - Let i be the largest integer for which

$$p_{(K-j+i)} > \frac{i\alpha}{j}$$

for all
$$i = 1, \ldots, j$$

- If no such *i* exists, reject all hypotheses
- ▶ Otherwise, reject all $H_{(i)}$ with $p_{(i)} \leq \alpha/j$
- More powerful than Hochberg, but needs same distributional assumptions
- Hommel and Hochberg procedures are implemented in the multxpert R package

Closed testing

Closed test procedures

- General methodology to construct multiple testing procedures which strongly control the FWER
- Includes many well-known procedures as special cases

Closed test procedures

- General methodology to construct multiple testing procedures which strongly control the FWER
- Includes many well-known procedures as special cases
- Closed test procedures consider all *intersection hypotheses*

$$H_J = \bigcap_{i \in J} H_i, \qquad J \subseteq \{1, \dots, K\}$$

• Closure principle: An individual hypothesis H_i is rejected at familywise level α only if every intersection hypothesis H_I with $i \in J$ is rejected at local level α

Venn diagram for K = 2 hypotheses

Closure principle

Venn diagram for K = 2 hypotheses

- Test $H_{12} = H_1 \cap H_2$ using Bonferroni or Dunnett etc. at level α
- Test H_1 and H_2 using a level α test

Closure principle

K = 2 hypotheses

$$H_{12} = H_1 \cap H_2$$

$$H_1 \qquad H_2$$

- Reject H_1 overall if H_{12} and H_1 and are rejected locally at level α
- ullet If K>2 , several intersection hypotheses have to be tested
- Different tests can be chosen for each (intersection) hypothesis

Closure principle Holm

Holm's procedure is the closure principle applied to Bonferroni:

 H_{12} is rejected if either $p_1 \leq \alpha/2$ or $p_2 \leq \alpha/2$

Closure principle Fixed sequence procedure

Bonferroni could also be applied with unequal splitting of the significance level into α_1 and α_2 , where $\alpha_1 + \alpha_2 = \alpha$

Setting $\alpha_1 = \alpha$ and $\alpha_2 = 0$ gives the *fixed sequence procedure*:

Closure principle Fallback procedure

In general, we recover the fallback procedure:

$$k = 3$$
 hypotheses

$$H_1 \cap H_2 \cap H_3$$

$$H_1 \cap H_2$$
 $H_1 \cap H_3$ $H_2 \cap H_3$

$$H_1$$
 H_2 H_3

Closure principle

Fixed sequence procedure with a-priori fixed order $H_1 \rightarrow H_2 \rightarrow H_3$

$$H_{1} \cap H_{2} \cap H_{3}$$

$$p_{1} \leq \alpha$$

$$H_{1} \cap H_{2} \qquad H_{1} \cap H_{3} \qquad H_{2} \cap H_{3}$$

$$p_{1} \leq \alpha \qquad p_{1} \leq \alpha \qquad p_{2} \leq \alpha$$

$$H_{1} \qquad H_{2} \qquad H_{3}$$

$$p_{1} < \alpha \qquad p_{2} < \alpha \qquad p_{3} < \alpha$$

Holm

$$H_1 \cap H_2 \cap H_3$$

 $p_1 \le \alpha/3$ or $p_2 \le \alpha/3$ or $p_3 \le \alpha/3$

Graphical approaches

$$H_1 \cap H_2$$

 $p_1 \leq \alpha/2$ or $p_2 \leq \alpha/2$

$$H_1 \cap H_2$$
 $H_1 \cap H_3$
 $p_1 < \alpha/2 \text{ or } p_2 < \alpha/2$ $p_1 < \alpha/2 \text{ or } p_3 < \alpha/2$

$$H_2 \cap H_3$$

 $p_2 \le \alpha/2 \text{ or } p_3 \le \alpha/2$

$$H_1$$
 $p_1 < \alpha$

$$H_2$$
 $p_2 \le \alpha$

$$H_3$$
 $p_3 \leq \alpha$

Closed test procedures

Advantages

- Includes many well-known procedures as special cases
- Closed test procedures are more powerful than the procedures they are derived from

Graphical approaches

Closed test procedures

Advantages

- Includes many well-known procedures as special cases
- Closed test procedures are more powerful than the procedures they are derived from

Graphical approaches

• By construction, it is *coherent*: if null hypothesis H_I is rejected, all subsets $H_I \subseteq H_I$ are rejected as well

Closed test procedures

Advantages

- Includes many well-known procedures as special cases
- Closed test procedures are more powerful than the procedures they are derived from
- By construction, it is *coherent*: if null hypothesis H_I is rejected, all subsets $H_I \subseteq H_I$ are rejected as well
- Any non-coherent multiple testing procedure can be replaced by a coherent one that is at least as powerful
- Any coherent multiple test controlling FWER is a closed test

Closed test procedures

Advantages

- Includes many well-known procedures as special cases
- Closed test procedures are more powerful than the procedures they are derived from
- By construction, it is *coherent*: if null hypothesis H_I is rejected, all subsets $H_I \subseteq H_I$ are rejected as well
- Any non-coherent multiple testing procedure can be replaced by a coherent one that is at least as powerful
- Any coherent multiple test controlling FWER is a closed test

Disadvantages

- No natural point estimates or confidence intervals
- Can be a very large number of intersection hypotheses to test as k increases: worst-case is $2^K - 1$. However, shortcuts exist

Motivating example: Diabetes trial

- Trial compares two doses D_1 or D_2 against placebo in diabetes patients for two endpoints
 - Primary endpoint: HbA1c
 - Secondary endpoint: Body weight
- There is a natural order: a primary endpoint is more important than a secondary endpoint
 - We test the primary null hypothesis first; only if this is rejected do we test the secondary hypothesis

Motivating example: Diabetes trial

- Trial compares two doses D_1 or D_2 against placebo in diabetes patients for two endpoints
 - Primary endpoint: HbA1c
 - Secondary endpoint: Body weight
- There is a natural order: a primary endpoint is more important than a secondary endpoint
 - We test the primary null hypothesis first; only if this is rejected do we test the secondary hypothesis
- Both doses are equally important

Motivating example: Diabetes trial

- Objective: test all four hypotheses under strong FWER while reflecting clinical objectives
- Standard multiple testing procedures do not reflect the relative importance of the two endpoints or the underlying structure
- In general, need test procedures that can deal with complex trial objectives and multiple structured hypotheses: Graphical approaches (also known as chain or sequentially rejective procedures)

Graphical approaches

Secondary

Low dose

High dose

Graphical approaches

- **1** Hypotheses H_1, \ldots, H_K represented as nodes
- 2 Split of significance level α into $(\alpha_1,\ldots,\alpha_K)$
- \bullet " α propagation" through weighted, directed edges

Graphical approaches

- Technical basis of the graphical approach: the graph defines a closed testing procedure with weighted Bonferroni tests for each intersection hypothesis
- Equivalent formulation of split of α using weights (w_1,\ldots,w_K) where $\sum_{i=1}^K w_i = 1$ and $\alpha_i = \alpha w_i$.
- α -propagation: If a hypothesis H_i can be rejected at level α_i (i.e. $p_i \leq \alpha_i$), propagate its level α_i to the remaining (not yet tested) hypotheses, according to a prefixed rule, and continue testing with the updated α levels.

Fixed sequence procedure

- Assume $H_1 \rightarrow H_2 \rightarrow H_3$
- Example fixed sequence procedure:

Examples

Fixed sequence procedure

- Assume $H_1 \rightarrow H_2 \rightarrow H_3$
- Example fixed sequence procedure:

H₂ rejected at level α

Fixed sequence procedure

- Assume $H_1 \rightarrow H_2 \rightarrow H_3$
- Example fixed sequence procedure:

 H_3 not rejected at level α (stop)

• *Bonferroni*: no α -propagation (no edges between nodes)

 $\alpha/2$

 $\alpha/2$

• *Bonferroni*: no α -propagation (no edges between nodes)

• Holm: includes α -propagation \rightarrow more powerful

Examples

Hierarchical testing

Holm procedure with $\alpha = 0.05$

Holm procedure with $\alpha = 0.05$

Examples

Holm procedure with $\alpha = 0.05$

Examples

Holm procedure with $\alpha = 0.05$

Remove node for H₂

$$p_1 = 0.07$$

Holm procedure with $\alpha = 0.05$

Test H_1 at level α $p_1 > \alpha \Rightarrow$ do not reject H_1

 $\alpha = 0.05$

 $p_1 = 0.07$

Graphical approaches

Weighted Holm procedure

Use α_1, α_2 (where $\alpha_1 + \alpha_2 = \alpha$) instead of $\alpha_1 = \alpha_2 = \alpha/2$

Primary

 H_2

Graphical approaches

Secondary

 H_4

Low dose

High dose

Primary

 H_1

α/2

Graphical approaches

Secondary

Low dose

High dose

High dose

Diabetes example

Low dose

$$m{lpha} = egin{pmatrix} rac{lpha}{2} & rac{lpha}{2} & 0 & 0 \end{pmatrix} \qquad m{G} = egin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \end{pmatrix}$$

Hierarchical testing

$$m{lpha} = egin{pmatrix} rac{lpha}{2} & rac{lpha}{2} & 0 & 0 \end{pmatrix} \qquad m{G} = egin{pmatrix} 0 & 1/2 & 1/2 & 0 \ 1/2 & 0 & 0 & 1/2 \ 0 & 1 & 0 & 0 \ 1 & 0 & 0 & 0 \end{pmatrix}$$

Update algorithm

Hierarchical testing

Transition matrix $\mathbf{G} = (g_{ii})$, where g_{ii} is the fraction of α_i allocated to H_i if H_i is rejected.

Require $0 \le g_{ii} \le 1$, $g_{ii} = 0$ and $\sum_{k=1}^{K} g_{ik} = 1$ for $i, j = 1, \dots, K$.

Closed testing

- Set $J = \{1, ..., K\}$
- Select a $j \in J$ such that $p_i \leq \alpha_i$ and reject H_i ; otherwise stop
- Update the graph:

$$egin{aligned} J &
ightarrow J \setminus \{j\} \ &lpha_\ell &
ightarrow egin{cases} lpha_\ell + lpha_j g_{j\ell} & ext{ for } \ell \in J \ 0 & ext{ otherwise} \ & g_{\ell k} &
ightarrow egin{cases} rac{g_{\ell k} + g_{\ell j} g_{jk}}{1 - g_{\ell j} g_{j\ell}} & ext{ for } \ell, k \in J, \ell
eq k, g_{\ell j} g_{j\ell} < 1 \ 0 & ext{ otherwise} \end{aligned}$$

3 If $|J| \ge 1$, go to Step 1; otherwise stop

(Bretz et al., 2009)

 $\alpha = 0.025$

Graphical approaches

Diabetes example

 $\alpha = 0.025$

$$\alpha = 0.025$$

 $\alpha = 0.025$

 $\alpha = 0.025$

$\alpha = 0.025$

gMCP package

Summary

- Graphical approach allows the following (Bretz et al. 2015):
 - Tailor advanced multiple test procedures to a structured families of hypotheses
 - Visualise complex decision strategies in an efficient and easily communicable way
 - Ensure strong FWER control
- Approach covers many common multiple test procedures as special cases
- Many possible extensions as well

Multiplicity in practice

A lot of advice available!

- Dmitrienko and D'Agostino (2013) Traditional multiplicity adjustment methods in clinical trials. Stat Med 32:5172-5218.
- Dmitrienko and D'Agostino (2018) Multiplicity Considerations in Clinical Trials. *NEJM* 378:2115-2122.
- Howard et al. (2018) Recommendations on multiple testing adjustment in multi-arm trials with a shared control group. SMMR 27(5):1513-1530.
- Li et al. (2017) An introduction to multiplicity issues in clinical trials: the what, why, when and how. Int J Epi 46(2):746-55
- Wang et al. (2011) Regulatory Perspectives on Multiplicity in Adaptive Design Clinical Trials throughout a Drug Development Program. J Biopharm Stat 21:846-59.
- Wason et al. (2014) Correcting for multiple-testing in multi-arm trials: is it necessary and is it done? Trials 15:364.

- Need to identify the adjustment method aligned with the structure of the clinical objectives, that provides highest statistical power.
- Use all available clinical and statistical information to arrive at the most appropriate and efficient method.
- Often need to do a simulation-based assessment of operating characteristics of procedures under trial-specific assumptions.
- Helpful to classify methods (see Dmitrienko and D'Agostino, 2013)
 - Logical restrictions
 - Distributional information

Choosing a multiple testing procedure Logical restrictions

- Group procedures into three classes:
 - Single-step that test all hypotheses simultaneously (e.g. Bonferroni)
 - Stepwise that rely on data-driven ordering (e.g. Holm and Hochberg)
 - Stepwise that rely on pre-specified ordering. (e.g. Fixed-sequence or Fallback)
- Single-step most basic. Stepwise more powerful; easier to tailor.

Choosing a multiple testing procedure Distributional information

- Again group into three classes:
 - Non-parametric procedures: without distributional assumptions (e.g. Bonferroni, Holm, Fixed-sequence, Fallback)
 - Semi-parametric methods: control under e.g. independence or positive correlation, but not full specification of a joint distribution (e.g. Hochberg and Hommel)
 - Parametric methods: control FWER only when joint distribution of test statistics fully specified (e.g. Dunnett)
- In general, power increases as more distributional assumptions are added

Regulatory view

- So far, we have been assuming that we have to adjust for multiplicity.
- Often we will need to, but not always.
- Latest (draft) regulatory guidance from the FDA and EMA:
 - EMA: Guideline on multiplicity issues in clinical trials (2016)
 - FDA: Multiple Endpoints in Clinical Trials (2017)

Software R

- multxpert package for common adjustments in single family (non-parametric, semi-parametric and parametric procedures) and multiple families (gatekeeping procedures).
 - http://multxpert.com/wiki/Software
 - "Multiple Testing Problems in Pharmaceutical Statistics" by Dmitrienko et al. (2009)
- gMCP for graph based multiple test procedures.
- multcomp package addresses multiplicity issues in general linear and non-linear models.
 - Adjustments for ANOVA, ANCOVA, regression models, and more.
 - "Multiple Comparisons Using R" by Bretz et al. (2016)

Graphical approaches

- Several commands support correcting for multiple comparisons.
- oneway (one-way ANOVA) commands
- Powerful test command for testing linear hypotheses from regress, stcox, logit, svy has an mtest option that supports Bonferroni, Holm, etc.

Summary

Hierarchical testing

• There is a lot of advice available on how to choose a multiple testing procedure.

Graphical approaches

- But no golden rule: have to tailor to your trial.
- Important as often required by regulatory authorities.
- Much software out there to do this in practice.

References I

M. Alosh, F. Bretz and M. Hugue

Advanced multiplicity adjustment methods in clinical trials

Statistics in Medicine, 33:693-713, 2011.

A. Dmitrienko, A. C. Tamhane and F. Bretz

Multiple testing problems in pharmaceutical statistics, CRC Press, 2009.

F Bretz et al

Confirmatory Seamless Phase II/III Clinical Trials with Hypotheses Selection at Interim: General Concepts

Biometrical Journal, 48:623-634, 2006.

F. Bretz et al.

Adaptive designs for confirmatory clinical trials Statistics in Medicine, 28:1181–1217, 2009.

F. Bretz, T. Hothorn, P. Westfall

Multiple comparisons using R, CRC Press, 2016.

F. Bretz, W. Maurer W. Brannath and M. Posch

A graphical approach to sequentially rejective multiple test procedures Statistics in Medicine, 28:586-604, 2009.

References II

F. Bretz, W. Maurer and J. Maca

Graphical approaches to multiple testing

in Clinical Trial Biostatistics and Biopharmaceutical Applications. CRC Press. 2015.

W. Maurer, E. Glimm and F. Bretz

Multiple and repeated testing of primary, coprimary, and secondary hypotheses Statistics in Biopharmaceutical Research, 3(2):336-352, 2011.

H Schmidli et al.

Confirmatory Seamless Phase II/III Clinical Trials with Hypotheses Selection at Interim: Applications and Practical Considerations Biometrical Journal, 48:635-643, 2006.

J.P. Shaffer

Multiple Hypothesis Testing

Annual Review Psychology, 46:561-84, 1995.