Методы оптимизации. Введение в теорию двойственность.

Александр Катруца

Московский физико-технический институт

19 марта 2019 г.

Напоминание

- Существование решения оптимизационной задачи
- Условия оптимальности для
 - задачи безусловной оптимизации
 - задачи оптимизации с ограничениями типа равенств и неравенств

Обозначения

Задача

$$\min_{x \in \mathfrak{D}} f(x) = p^*$$
 s.t. $g_i(x) = 0, \ i = 1, \dots, m$ $h_j(x) \leq 0, \ j = 1, \dots, p$

Лагранжиан

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i g_i(x) + \sum_{j=1}^{p} \mu_j h_j(x)$$

Двойственные переменные

Вектора μ и λ называются двойственными переменными.

Двойственная функция

Функция $g(\pmb{\mu},\pmb{\lambda})=\inf_{x\in\mathfrak{D}}L(x,\pmb{\lambda},\pmb{\mu})$ называется двойственной функцией Лагранжа.

Свойства двойственной функции

Вогнутость

Двойственная функция является вогнутой как инфимум аффинных функций по (μ, λ) вне зависимости от того, является ли исходная задача выпуклой.

Нижняя граница

Для любого $\boldsymbol{\lambda}$ и для $\boldsymbol{\mu} \geq 0$ выполнено $g(\boldsymbol{\mu}, \boldsymbol{\lambda}) \leq p^*.$

Двойственная задача

$$\max g(\pmb{\mu}, \pmb{\lambda}) = d^*$$
 s.t. $\pmb{\mu} \geq 0$

Зачем?

- Двойственная задача выпукла независимо от того, выпукла ли прямая
- Нижняя оценка может достигаться

Примеры

Найти двойственную функцию:

• Решение СЛУ минимальной нормы

$$\min \|\mathbf{x}\|_2^2$$

s.t.
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$

• Линейное программирование

$$\min \mathbf{c}^{\intercal}\mathbf{x}$$

s.t.
$$Ax = b$$

$$\mathbf{x} \ge 0$$

• Задача разбиения

$$\min \mathbf{x}^\mathsf{T} \mathbf{W} \mathbf{x}$$

s.t.
$$x_i^2 = 1, i = 1, \dots, n$$

Слабая и сильная двойственность

Определение

Оптимальные значения целевой функции в прямой и двойственной задаче связаны соотношением

$$d^* \le p^*.$$

Если $d^* < p^*$, то свойство называют слабой двойственностью. Если $d^* = p^*$, то — сильной двойственностью.

Замечание

Слабая двойственность есть всегда по построению двойственной задачи.

Вопросы

- При каких условиях выполняется сильная двойственность?
- Как использовать двойственность для проверки оптимальности?

Критерий субоптимальности

По построению $p^* \geq g(\boldsymbol{\lambda}, \boldsymbol{\mu})$, поэтому $f_0(x) - p^* \leq f_0(x) - g(\boldsymbol{\lambda}, \boldsymbol{\mu}) = \varepsilon$.

Определение

Разность $f_0(x)-g(\pmb{\lambda},\pmb{\mu})$ называется двойственным зазором и является оценкой сверху для разности текущего и оптимального значения функции.

Способы использования:

- критерий остановки в итерационном процессе
- теоретическая оценка сходимости алгоритма
- проверка оптимальности данной точки

Условия Слейтера

Теорема

Если задача выпукла и существует x, лежащий внутри допустимой области, т.е. ограничения типа неравенств выполнены как строгие неравенства, то выполнено свойство сильной двойственности.

- Решение СЛАУ наименьшей нормы
- Линейное программирование
- Квадратичное программирование с квадратичными огранчиениями

Геометрическая интерпретация

$$\min_{x} f_0(x), \text{ where } f_1(x) \leq 0.$$

$$g(\lambda) = \inf_{(u,t)\in\mathcal{G}} (t + \lambda u)$$
 $\mathcal{G} = \{(f_1(x), f_0(x)) \mid x \in \mathcal{D}\}$

- \bullet $\lambda = 0$
- λ^* оптимальное значение
- $\lambda > \lambda^*$

Условия дополняющей нежёсткости

Пусть \mathbf{x}^* и $(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ решения прямой и двойственной задачи. То есть

$$f(\mathbf{x}^*) = g(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*) = \inf_{\mathbf{x}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\mu}) \le$$
$$f(\mathbf{x}^*) + \sum_{i=1}^m \lambda_i^* g_i(\mathbf{x}^*) + \sum_{j=1}^p \mu_j^* h_j(\mathbf{x}^*) \le$$
$$f(\mathbf{x}^*), \quad \boldsymbol{\mu} > 0$$

Условия дополняющей нежёсткости

$$\mu_j^* h_j(\mathbf{x}^*) = 0, \qquad j = 1, \dots, p$$

Для каждого неравенства

- либо множитель Лагранжа равен нулю
- либо оно активно.

Условия Каруша-Куна-Таккера

Необходимость: если \mathbf{x}^* и $(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ оптимальные прямые и двойственные переменные и выполнена сильная двойственность, тогда

- 1. $g_i(x^*) = 0$ допустимость в прямой задаче
- 2. $h_j(x^*) \le 0$ допустимость в прямой задаче
- 3. $\mu_j^* \geq 0$ допустимость в двойственной задаче
- 4. $\mu_j^* h_j(x^*) = 0$ условие дополняющей нежёсткости
- 5. $\nabla_x L(x^*, \pmb{\lambda}^*, \pmb{\mu}^*) = 0$ стационарность лагранжиана по прямым переменным

Сильная двойственность vs. условие Слейтера

Теорема

Если задача выпукла и выполнено условие Слейтера, то выполняется сильная двойственность

Доказательство на доске

Достаточность

Если задача выпукла и для точек \mathbf{x}^* , $(\boldsymbol{\mu}^*, \boldsymbol{\lambda}^*)$ выполнены условия ККТ, то эти точки решения прямой и двойственной задачи с нулевым зазором двойственности

- $1. \ L$ выпуклая функция
- 2. Стационарность L достаточное условие минимума
- 3. Зазор двойственности равен 0
- 4. Оптимальность прямых и двойственных переменных

Итог для выпуклых задач

- 1. $KKT \Rightarrow$ оптимальность и сильная двойственность
- 2. Оптимальность и условие Слейтера \Rightarrow оптимальность и сильная двойственность \Rightarrow KKT

Механическая интерпретация

Поиск устойчивого положения системы:

$$\begin{split} \min_{\mathbf{x} \in \mathbb{R}^3} \frac{1}{2} k_1 x_1^2 + \frac{1}{2} k_2 (x_2 - x_1)^2 + \frac{1}{2} k_3 (l - x_2)^2 \\ \text{s.t. } \frac{w}{2} - x_1 &\leq 0 \\ w + x_1 - x_2 &\leq 0 \\ \frac{w}{2} - l + x_2 &\leq 0 \end{split}$$

Примеры

• Отрицательная энтропия при линейных ограничениях

$$\min_{\mathbf{x} \in \mathbb{R}^n} \sum_{i=1}^n x_i \log x_i$$
s.t. $\mathbf{A}\mathbf{x} \le \mathbf{b}$

$$\mathbf{1}^\mathsf{T}\mathbf{x} = 1$$

- QCQP
- Минимизация нормы невязки в линейной задаче аппроксимации

$$\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{b}\|$$

- Полуопределённое программирование (SDP)
- Важность условия Слейтера

$$\min_{x \in \mathbb{R}, y > 0} e^{-x}$$

s.t.
$$x^2/y \le 0$$

Резюме

- Двойственая задача: что это такое и зачем она нужна?
- Сильная и слабая двойственность
- Условия Слейтера
- Геометрическая и механическая интерпретации