Statistical physics approach to 1d and 2d Log-gases

Thomas Leblé (Courant Institute - NYU)

Optimal and Random Point Configurations ICERM, February 26, 2018

Log-gases

N point particles $\vec{X}_N = (x_1, \dots, x_N)$ in \mathbb{R}^d (d = 1, 2)

- Logarithmic pairwise interaction $-\log|x-y|$
- Confining field/potential V(x) (continuous + growth at infinity, e.g. $V(x) = |x|^2$).

Energy in the state \vec{X}_N

$$\mathcal{H}_N(\vec{X}_N) := \sum_{i \neq j} -\log|x_i - x_j| + \sum_{i=1}^N NV(x_i)$$

Gibbs measure

Canonical Gibbs measure at (inverse) temperature β

$$d\mathbb{P}_{N,eta}(ec{X}_N) := rac{1}{Z_{N,eta}} \exp\left(-rac{eta}{2} \mathcal{H}_N(ec{X}_N)
ight) dec{X}_N$$

 $d\vec{X}_N = \text{Lebesgue on } (\mathbb{R}^d)^N$, with $Z_{N,\beta}$ (the partition function)

$$Z_{N,eta} := \int_{(\mathbb{R}^d)^N} \exp\left(-rac{eta}{2}\mathcal{H}_N(ec{X}_N)
ight) dec{X}_N.$$

(factor $\frac{\beta}{2}$ for reasons of convention)

Questions

Asymptotic behavior of the system $(N \to \infty)$? Fluctuations? Dependency on β ? Dependency on V ("universality")?

Motivation I - Random Matrix Theory (RMT)

Classical Gaussian Hermitian ensembles

 $\mbox{GOE, GUE, GSE} = \mbox{Gaussian Orthogonal/Unitary/Symplectic} \\ \mbox{Ensemble}$

Large $(N \times N)$ matrix with Gaussian coefficients in $\mathbb{R}, \mathbb{C}, \mathbb{H}$ (quaternions)

Coefficients independent up to symmetry (symmetric, Hermitian, self-dual).

→ N real eigenvalues

A non-Hermitian ensemble: the Ginibre ensemble

Ginibre ensemble: $N \times N$ matrix with complex Gaussian i.i.d coefficients. No symmetry.

→ N complex eigenvalues

Observation (Dyson, Ginibre)

Joint law of eigenvalues explicitly computable (thanks to Gaussian distribution). Coincides with the canonical Gibbs measure of a log-gas.

$$dP_{\mathsf{RMT}}(\lambda_1,\ldots,\lambda_N) = \frac{1}{Z_{N,\beta}} \exp\left(-\frac{\beta}{2}\mathcal{H}_N(\lambda_1,\ldots,\lambda_N)\right) d\lambda_1\ldots d\lambda_N$$

d = 1 for Hermitian matrices, d = 2 for non-Hermitian.

 $\beta=1,2,4$ (GOE, GUE, GSE) and $\beta=2$ (Ginibre)

V quadratic.

In d = 1, for all β , existence of a tridiagonal matrix model whose eigenvalues are distributed as $\mathbb{P}_{N,\beta}$ (Dimitriu-Edelman).

Motivation II - Statistical physics

Statistical physics

- Model with singular, long-range interactions in \mathbb{R}^d .
- d = 2 'One-component plasma', 'Coulomb gas' (log is Coulomb interaction!), 'Dyson gas', 'jellium'...
- "Real-life" implementations (vortex systems, electrostatics, Calogero-Sutherland model, Laughlin wave function)

Also approximation theory, etc.

Global behavior

Empirical measure

Encodes the global/macroscopic behavior

$$\mu_N := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}.$$

 $\lim_{N\to\infty}\mu_N=\mu_{\mathrm{eq},V}$ "equilibrium measure"

In general

V confining (growth at infinity) \Longrightarrow the support Σ_V of $\mu_{\mathrm{eq},V}$ is compact.

Remark: $\mu_{eq,V}$ depends on V, d but not on β .

Examples

ullet d = 1, V quadratic o Wigner's semicircle law

$$d\mu(x) = \frac{1}{2\pi} \sqrt{4 - x^2} dx$$

- = eigenvalues of symmetric/Hermitian Gaussian random matrices (in fact, *universality*).
- d = 2, V quadratic \rightarrow Circular law

$$d\mu(x) = \frac{1}{\pi} \mathbf{1}_{|x| \le 1} dx$$

= eigenvalues of Ginibre ensemble (in fact, universality).

Variational characterization of macroscopic behavior

Variational property of $\mu_{\mathrm{eq},V}$

 $\mu_{\mathrm{eq},V} = \mathsf{minimizer}$ on $\mathcal{P}(\mathbb{R}^d)$ of weighted logarithmic energy

$$I_V(\mu) := \iint -\log|x-y|d\mu(x)d\mu(y) + \int V(x)d\mu(x).$$

Large deviations at speed N^2 (Guionnet-Zeitouni, Ben Arous-Zeitouni, Hiai-Petz, etc.)

Remark

 $I_V(\mu)$ can be seen as "continuum" or "mean-field" limit of finite-N energy

$$\mathcal{H}_N(\vec{X}_N) := \sum_{i \neq j} -\log|x_i - x_j| + \sum_{i=1}^N NV(x_i) \approx N^2 I_V(\mu_N)$$

Further questions

Microscopic behavior

Zoom into the system by $N^{1/d} \to \text{finite (N-)}$ point configuration. What does it look like?

Fluctuations

In which sense does $\mu_{\it N} \approx \mu_{\rm eq,\it V}$ (empirical measure \approx equilibrium measure)?

- At small scales $(O(1) o O(N^{-\frac{1}{d} + \varepsilon}))$?
- Deviations bounds?
- Central limit theorem?

Possible approaches

- Integrable probability. For $\beta=1,2,4$, algebraic structure. E.g. $\beta=2$, for d = 1,2, determinantal point process.
- Orthogonal polynomial (Riemann-Hilbert problems).
- Dynamical approach (Dyson Brownian Motion).
- Loop equations.

"Statistical physics" approach

- β , V general, d = 1,2 (and maybe other interactions, dimensions?)
- Energy $\mathcal{H}_N(\vec{X}_N)$, volume term $d\vec{X}_N$.
- More robust, less precise?

Splitting formula

Sandier-Serfaty

$$\mathcal{H}_{N}(\vec{X}_{N}) = \sum_{i \neq j} -\log|x_{i} - x_{j}| + N\sum_{i=1}^{N}V(x_{i})$$
 becomes

$$\mathcal{H}_N(\vec{X}_N) = N^2 I_V(\mu_{\mathrm{eq},V}) - \frac{N \log N}{\mathsf{d}} + 2N \zeta_N(\vec{X}_N) + F_N^{\mu_{\mathrm{eq},V}}(\vec{X}_N)$$

- First-order energy
- Constant term (due to scaling)
- Confining term (say, 0 on support Σ_V and $+\infty$ outside)
- Second-order interaction energy

Second-order interaction I

Old term

$$\sum_{i\neq j} -\log|x_i-x_j| = N^2 \iint_{(\mathbb{R}^d \times \mathbb{R}^d) \setminus \triangle} -\log|x-y| d\mu_N^{\otimes 2}(x,y)$$

Old system: N point charges.

New term

$$F_{N}^{\mu_{\mathrm{eq},V}}(\vec{X}_{N}) = \iint_{(\mathbb{R}^{d} \times \mathbb{R}^{d}) \setminus \triangle} -\log|x - y| (d\nu'_{N} - d\mu'_{\mathrm{eq},V})^{\otimes 2}(x,y)$$

New system (zoomed!):

- N point charges $\nu'_N = \sum_{i=1}^N \delta_{N^{1/d} \times i}$
- ullet Negative background of density $\mu'_{\mathrm{eq},V}(x) = \mu_{\mathrm{eq},V}({\color{red}N^{-1/d}x})$

Second-order interaction II

Some intuition

Recall:

$$u'_{N} = \sum_{i=1}^{N} \delta_{N^{1/d}x_{i}}, \quad \mu_{\text{eq},V}(x) = \mu_{\text{eq},V}(N^{-1/d}x)$$

- $F_N^{\mu_{\mathrm{eq},V}}(\vec{X}_N)$ measures the difference between finite-N point configuration ν_N' and continuous background $\mu_{\mathrm{eq},V}'$.
- Fact: $F_N^{\mu_{\text{eq}},V}$ is typically of order N.
- The limit $N \to \infty$ of ν_N' is an infinite point configuration.
- The limit $N o \infty$ of $\mu'_{\text{eq.}V}$ is a constant density.

Microscopic behavior I

Microscopic behavior I

Microscopic behavior II

Non-averaged point process

Let $z \in \mathring{\Sigma_V}$ be fixed. Zoom around z at scale $N^{1/d}$.

$$\boxed{\mathcal{C}_{N,z}: \vec{X}_N \mapsto \sum_{i=1}^N \delta_{N^{1/d}(x_i-z)}.}$$

Values in \mathcal{X} , the space of point configurations.

Empirical field

Let $\Omega \subset \Sigma_V$ be fixed. Randomly pick z in Ω and zoom around it.

$$\boxed{\overline{\mathcal{C}}_{N,\Omega}: \vec{X}_N \mapsto \frac{1}{|\Omega|} \int_{\Omega} \delta_{\mathcal{C}_{N,z}} dz}$$

Average of $\mathcal{C}_{N,z}$'s. Values in $\mathcal{P}(\mathcal{X})$.

×

×

Empirical field = random variable

$$(1/5)$$
 or $(1/5)$ or $(1/5)$ or $(1/5)$ or $(1/5)$ or $(1/5)$

Microscopic behavior - III

Rate function

For m>0, define \mathcal{F}^m_β on the space $\mathcal{P}(\mathcal{X})$

$$\mathcal{F}^m_{\beta}(P) := \beta \mathbb{W}^{\mathrm{elec}}_m(P) + \mathbf{ent}[P|\Pi^m]$$

 $\mathbb{W}_m^{\mathrm{elec}}(P)$ is an energy functional, $\mathbf{ent}[P|\Pi^m]$ is a relative entropy functional, $\Pi^m = \text{Poisson point process of intensity } m$.

Theorem (L. - Serfaty)

Zoom around a point z for which $\mu_{eq,V}(z) = m$ and do a small averaging.

The law of the empirical field concentrates on minimizers of \mathcal{F}_{β}^{m} except for events of probability $\exp(-N)$.

(Large Deviation Principle at speed N with rate function built out of \mathcal{F}^m_β)

Variational property of microscopic behavior

- Microscopic behavior \iff minimizers of free energy $\beta \mathbb{W}_m^{\text{elec}}(P) + \mathbf{ent}[P|\Pi^m]$
- Depend on m only through scaling, hence some kind of universality.

Terms

- Specific relative entropy $\mathbf{ent}[P|\Pi^1]$ minimized for $P=\Pi^1$.
- Energy $\mathbb{W}^{\text{elec}}(P)$ expected to favorize ordered configurations (true for d = 1).

Statistical physics approach?

Basic idea

 $\mathbb{P}_{N,\beta}$ (Empirical field $\approx P$)

$$\propto \int_{(\Sigma_V)^N} \mathbf{1}_{\mathrm{Empirical\ field} pprox P} \exp\left(-\beta F_N^{\mu_{\mathrm{eq},V}}(\vec{X}_N)\right) d\vec{X}_N$$

Separate between

Energy contribution

$$\text{Empirical field} \approx P \Longrightarrow F_N^{\mu_{\mathrm{eq},V}}(\vec{X}_N) \approx N \mathbb{W}^{\mathrm{elec}}(P).$$

Volume contribution

$$\int_{(\Sigma_{+})^{N}} \mathbf{1}_{\text{Empirical field} \approx P} d\vec{X}_{N} \approx \exp\left(-N \text{ent}[P|\Pi]\right).$$

+ throw away bad configurations (high energy/small volume)

What is known about microscopic behavior?

- For d = 1 and β > 0, existence of a limit point process (Valkó-Virág, also Killip-Stoiciu) named "Sine $_{\beta}$ " point process (for V quadratic). The description involves counting explosions of a certain diffusion on the hyperbolic disk. Existence + properties of the limit (Holcomb-Valkó, Allez-Dumaz).
- Universality of the microscopic behavior in d=1 with respect to V (Bourgade-Erdös-Yau-Lin, Bekerman-Figalli-Guionnet)
- For d = 2, β = 2, the finite-N Ginibre ensemble is determinantal, converges to a well-understood limit point process (Ginibre). Some universality for β = 2 (Ameur-Hedenmalm-Makarov).

What can we say about our rate function?

$$\mathcal{F}_{eta}(P) := eta \mathbb{W}^{ ext{elec}}(P) + \mathbf{ent}[P|\Pi^1]$$

- The Sine_{β} point processes are minimizers of \mathcal{F}_{β} for $\beta > 0$ in the d=1 case. Expected to be unique.
- The Ginibre point process minimizes \mathcal{F}_{β} for $\beta=2$ in the d=2 case.
- Minimizers of \mathcal{F}_{β} tend (in entropy sense) to a Poisson point process as $\beta \to 0$. (Known for Sine_{β} by studying the diffusion in d = 1, Allez-Dumaz)
- In dimension 1 minimizers of \mathcal{F}_{β} converge to $P_{\mathbb{Z}}$ ("clock process") as $\beta \to \infty$. $P_{\mathbb{Z}}$ is the unique stationary minimizer of the energy.

Physical description of minimizers

For finite N the law of the (finite) point process

$$dP_N(\vec{X}_N) = \frac{1}{Z_N} \exp(-\beta \mathsf{Energy}_N) d\vec{X}_N$$

minimizes

$$\beta \mathbf{E}$$
. [Energy_N] + Ent[·].

Infinite volume, is $\exp(-\beta \text{Energy}_{\infty}) d\Pi^1$ the minimizer of

$$\mathcal{F}_{\beta}(P) := \beta \mathbf{E}_{P}[\mathsf{Energy}_{\infty}] + \mathbf{ent}[P|\Pi^{1}]$$

(where $\Pi = Poisson$)? Answer: no.

DLR equations

Dobrushin-Lanford-Ruelle (DLR) formalism: condition on the exterior.

DLR description for canonical Gibbs

On a fixed box Λ , the law of P is given by

$$\mathbf{E}_{P}[F] = \int dP(\gamma) \int F(\eta) \frac{\exp\left(-\beta \mathsf{Energy}(\eta, \gamma_{\mathsf{\Lambda}^c})\right)}{Z_{\beta, \mathsf{\Lambda}}^{\gamma}} d\mathbf{B}_{\mathsf{\Lambda}, \#\gamma \cap \mathsf{\Lambda}}(\eta)$$

where

- F is a local test function on the space of point configurations
- γ, η are point configurations
- γ_{Λ^c} is the exterior
- η is sampled in Λ instead of γ_{Λ} , same number of points, according to a Gibbs-like measure

$$\frac{1}{Z_{\beta,\Lambda}^{\gamma}}\exp\left(-\beta\mathrm{Energy}(\eta,\gamma_{\Lambda^c})\right)d\mathbf{B}_{\Lambda,\#\gamma\cap\Lambda}(\eta)$$

DLR for $Sine_{\beta}$

Theorem (Dereudre - Hardy - L. - Maïda (in progress))

For $\beta > 0$, $\operatorname{Sine}_{\beta}$ satisfies a canonical Gibbs DLR description.

Already known for "integrable case" ($\beta=2$) Bufetov, Kuijlaars-Miña-Díaz.

Applications?

Fluctuations

CLT for fluctuations

The "statistical physics" approach can be used to study fluctuations of log-gases, and to obtain CLT's

$$\int arphi \left(\sum_{i=1}^{\mathit{N}} \delta_{\mathsf{x}_i} - \mathit{N}\mu_{\mathrm{eq},\mathit{V}} \right) o \mathsf{Gaussian}.$$

L.-Serfaty for d = 2 (see also Bauerschmidt-Bourgade-Nikula-Yau), Bekerman-L.-Serfaty d = 1 (well-known since Johansson, Shcherbina, Borot-Guionnet, see also Lambert-Ledoux-Webb). Some similarities with "loop/Dyson-Schwinger equations" (cf. Paul's talk), with crucial use of a consequence of LDP: expansion of $Z_{N,\beta}$ to order N.

Questions

"Optimal and random point configurations"

Two big questions for d = 2

- 1. Minimizers of the energy? [Optimal]
- 2. Phase transition? [Random]

For 1. the conjectured answer is triangular/hexagonal/Abrikosov lattice. "Crystallization conjecture". Proof???

What about the phase transition?

Origin

Alastuey-Jancovici(1981) "On the classical two-dimensional one-component Coulomb plasma"

It is an intriguing question to know whether the exact model has a phase transition (or perhaps several ones).

Order parameter? Probably two-point correlation function $\rho_2(x,y)$. For $\beta=2$ (high temperature, Ginibre ensemble), known exactly

$$\rho_2(x,y) \approx 1 - \exp(-|x-y|^2).$$

Numerical evidence - I

Caillol-Levesque-Weis-Hansen (1982) "A Monte Carlo Study of the Classical Two-Dimensional One-Component Plasma"

We have located the fluid-solid phase transition by comparing the free energies of both phases [liquid and solid].

When plotted as functions of β , the two free-energy curves intersect at $\beta=140$; the fluid phase has the lower free energy and is hence the stable phase, below $\beta=140$, while above that value of the coupling constant the solid is the stable phase.

Note that a simple comparison of the free energies of the fluid and solid phases does not rule out the possible existence of an intermediate "hexatic" phase, the first-order transition being replaced by a succession of two "continuous" (second-order) transitions.

Two-point correlation

Caillol-Levesque-Weis-Hansen

Fig. 1. Pair distribution function g(r) versus x = r/a, from the Monte Carlo simulations on a sphere at $\Gamma = 0.5$ (triangles), $\Gamma = 2$ (circles), $\Gamma = 10$ (crosses), and $\Gamma = 40$ (dots).

Two-point correlation

Caillol-Levesque-Weis-Hansen

Fig. 2. Same as Fig. 1 for Γ = 80 (crosses) and Γ = 200 (dots).

Numerical evidence - II

Choquard, Clerouin "Cooperative Phenomena below Melting of the One-Component Two-Dimensional Plasma" (1983)

Compare S_3 ($\beta = 140$) and L_2 ($\beta = 137$)!!

Numerical evidences - III

Krauth et al. (2010's)

Generic two-dimensional particle systems cannot crystallize at finite temperature because of the importance of fluctuations, yet they may form solids.

A crystal thus possesses long-range orientational order. The positional correlations of a two-dimensional solid decay to zero as a power law at large distances [but] the lattice distortions preserve long-range orientational order.

Questions

- Can we replicate the numerics?
- Is there a phase transition? Of which nature? Non-uniqueness of minimisers (up to rotations)?
- Take $\beta=2$. The positional decay of correlations is $\exp(-|x-y|^2)$. Can it really be specific to $\beta=2$? Is there some sort of KT transition?
- Where does $\beta = 140$ come from?

Thank you for your attention!