TELECOM Nancy (1A) — Mathématiques Appliquées pour l'Informatique Logique des propositions : syntaxe et sémantique

Exercice 1

On considère l'ensemble $P=\{p,\ q,\ r,\ s,\ t\}$ de variables propositionnelles. Pour chacune des formules suivantes donner

- l'arbre abstrait de la formule si la formule appartient à Prop(P), c'est-à-dire si la formule est bien formée
- une expression infixée, débarrassée des parenthèses superflues en tenant compte des priorités des connecteurs logiques (par ordre de priorité décroissante \neg , \wedge , \vee , \Rightarrow et \Leftrightarrow et "parenthèsage" gauche-droite)
- 1. $\neg((q \Rightarrow r) \lor p)$
- 2. $(((p \land q) \neg r) \Rightarrow p)$
- 3. $((\neg p \Rightarrow (\neg r \lor q)) \Rightarrow p)$
- 4. $(\neg\neg(q\Rightarrow r)\lor(\neg q\Rightarrow \neg r))$
- 5. $(p \lor (\neg q \land (r \land s)))$
- 6. $(((p \land (\neg q)) \lor r) \Rightarrow (s \land t))$

Exercice 2

Cet exercice a seulement pour but de rappeler la terminologie relative à la logique des propositions. On considère la formule α suivante : $\alpha = [(a \Rightarrow b) \land ((c \lor \neg b) \Rightarrow a)] \Rightarrow (b \land c)$

- 1. Quelles sont les variables propositionnelles intervenant dans α ? Sur quelles variables propositionnelles doit-on connaître la valeur d'une valuation pour connaître la valeur correspondante de α ?
- 2. Donner la sémantique de cette formule α .
- 3. Cette formule admet-elle un modèle? Donner un exemple de modèle de cette formule. Cette formule est-elle une tautologie? Est-elle contradictoire?

Exercice 3

La logique des propositions est couramment utilisée pour modéliser des énoncés exprimés dans les langages naturels (français, anglais, ...). Dans le contexte des langages naturels, une *proposition* est une affirmation qui est soit vraie, soit fausse.

Par exemple:

Les affirmations suivantes sont des propositions :

```
"2 plus 3 font 5"
```

" π est compris entre 4 et 5"

alors que les affirmations suivantes ne le sont pas :

"la présente affirmation est fausse"

"tout nombre réel strictement négatif n'est pas un carré"

La première affirmation conduit à un paradoxe, la seconde est une phrase trop imprécise, il faudrait préciser à quel ensemble appartient le nombre dont on prend le carré (\mathbb{R} ou \mathbb{C} ...).

1. En notant p et q les affirmations suivantes :

```
p = "Jean est fort en maths"
```

q = "Jean est fort en chimie"

Représenter les affirmations qui suivent sous forme symbolique, à l'aide des lettres p et q et des connecteurs \neg , \wedge , \vee , \Rightarrow .

- (a) "Jean est fort en maths mais faible en chimie"
- (b) "Jean n'est fort ni en maths ni en chimie"
- (c) "Jean est fort en maths ou il est à la fois fort en chimie et faible en maths"
- (d) "Jean est fort en maths s'il est fort en chimie"
- (e) "Jean est fort en chimie et en maths ou il est fort en chimie et faible en maths"
- 2. En notant p, q et r les affirmations suivantes :

p = "Pierre fait des maths"

q = "Pierre fait de la chimie"

r = "Pierre fait de l'anglais"

représenter les affirmations suivantes sous forme symbolique, à l'aide des lettres p, q, r et des connecteurs usuels.

- (a) "Pierre fait des maths et de l'anglais mais pas de la chimie"
- (b) "Pierre fait des maths et de la chimie mais pas à la fois de la chimie et de l'anglais"
- (c) "il est faux que Pierre fasse de l'anglais sans faire de maths"
- (d) "il est faux que Pierre ne fasse pas des maths et fasse quand même de la chimie"
- (e) "il est faux que Pierre fasse de l'anglais ou de la chimie sans faire de maths"
- (f) "Pierre ne fait ni anglais ni chimie mais il fait des maths"
- 3. Enoncer la négation des affirmations suivantes en évitant d'employer l'expression : "...il est faux ..."
 - (a) "si demain il pleut ou il fait froid je ne sortirai pas"
 - (b) "le nombre 522 n'est pas divisible par 3 mais il est divisible par 7"
 - (c) "ce quadrilatère n'est ni un rectangle ni un losange"
 - (d) "si Paul ne va pas travailler ce matin il va perdre son emploi"

Exercice 4

Dans les formules suivantes sélectionner les tautologies et examiner les raisonnements logiques sous-jacents.

$$\neg \neg x \Leftrightarrow x, \quad x \Rightarrow x, \quad (x \Rightarrow y) \Leftrightarrow (y \Rightarrow x), \quad (x \Rightarrow y) \Leftrightarrow (\neg y \Rightarrow \neg x),$$

$$(\neg x \Rightarrow y) \Rightarrow ((x \Rightarrow y) \Rightarrow y), \quad \neg x \Rightarrow (x \Rightarrow y), \quad \neg x \lor x, \quad \neg (\neg x \land x),$$

$$[x \Rightarrow (y \Rightarrow (z \Rightarrow t))] \Rightarrow [(y \Rightarrow x) \Rightarrow ((x \Rightarrow z) \Rightarrow (y \Rightarrow t))],$$

$$(x \Rightarrow (y \lor z)) \Leftrightarrow ((x \land \neg y) \Rightarrow z), \quad (x \Rightarrow (y \lor z)) \Leftrightarrow ((x \land \neg y \land \neg z) \Rightarrow \mathcal{F}),$$

$$(x \Rightarrow (y \lor z)) \Leftrightarrow ((\neg y \land \neg z) \Rightarrow \neg x)$$

Exercice 5

Soit \mathcal{A} un ensemble de formules de la logique des propositions et α une formule de la logique des propositions, on rappelle que $\mathcal{A} \models \alpha$ signifie que α est une conséquence logique de \mathcal{A} , c'est-à-dire que tout modèle de l'ensemble de formules \mathcal{A} est un modèle de α .

Pour chacun des ensembles de formules \mathcal{A} et des formules α suivants déterminer si $\mathcal{A} \models \alpha$.

- 1. $A = \{a \Rightarrow b, b \Rightarrow a, a \lor b\}, \alpha = a \land b$
- 2. $A = \{a \Rightarrow b, a \lor b\}, \alpha = b \Rightarrow a$
- 3. $\mathcal{A} = \{a \Rightarrow b, \ a \lor b\}, \ \alpha = a \lor \neg a$
- 4. $\mathcal{A} = \{a \land \neg b, \neg a \land b\}, \alpha = a$

Exercice 6

Soit \mathcal{A} un ensemble de formules et α et β deux formules.

- 1. Montrer que $\mathcal{A} \models \alpha$ si et seulement si $\mathcal{A} \cup \{\neg \alpha\}$ est contradictoire.
- 2. Montrer que $A \cup \{\alpha\} \models \beta$ si et seulement si $A \models \alpha \Rightarrow \beta$

Exercice 7

Soient f_1, \ldots, f_n et g des formules, montrer que $\{f_1, \ldots, f_n\} \models g$ si et seulement si la formule $f_1 \land \ldots \land f_n \Rightarrow g$ est une tautologie.