brief contents

- 1 Laying the groundwork 1
- 2 Exploring probability and counting 16
- 3 Exploring probability distributions and conditional probabilities 41
- 4 Fitting a linear regression 79
- 5 Fitting a logistic regression 111
- 6 Fitting a decision tree and a random forest 140
- 7 Fitting time series models 184
- 8 Transforming data into decisions with linear programming 222
- 9 Running Monte Carlo simulations 242
- **10** Building and plotting a decision tree 271
- 11 Predicting future states with Markov analysis 294
- **12** Examining and testing naturally occurring number sequences 319
- 13 Managing projects 349
- 14 Visualizing quality control 378

contents

preface xiii
acknowledgments xv
about this book xvii
about the author xxiv
about the cover illustration xxv

1 Laying the groundwork 1

1.1 Stats and quant 2

Understanding the basics 2 • Why they matter 2 • The broader effect 3 • Diving deeper: Core concepts 3

1.2 Why Python? 4

Rich ecosystem 4 • Ease of learning 5 • Online support and community 5 • Industry adoption 5 • Versatility 6

1.3 Python IDEs 6

IDLE: A starting point 6 • PyCharm: A professional tool 7 Other popular IDEs 7

1.4 Benefits and learning approach 8

From statistical measures to real-world application 9
Expanding beyond traditional techniques 9 • A balanced approach to theory and practice 10

VIII CONTENTS

	1.5	How this book works 11 Foundational learning with exploration and practice 12 Using Python for precision and efficiency 13 • Adaptable learning for diverse skill levels 14
	1.6	What this book does not cover 14
2 E	xplo	ring probability and counting 16
	2.1	Basic probabilities 17
		Probability types 19 • Converting and measuring probabilities 19
	2.2	Counting rules 22
		Multiplication rule 22 • Addition rule 22 • Combinations and permutations 23
	2.3	Continuous random variables 30
		Examples 31 • Probability density function 31 • Cumulative distribution function 33
	2.4	Discrete random variables 34
		Examples 35 • Probability mass function 36 • Cumulative distribution function 37
3 E	xplo	ring probability distributions and conditional

Exploring probability distributions and conditional probabilities 41

3.1 Probability distributions 42

Normal distribution 42 • Binomial distribution 50

Discrete uniform distribution 56 • Poisson
distribution 60

3.2 Probability problems 63

Complement rule for probability 65 • Quick reference guide 66 • Applied probability: Examples and solutions 68

3.3 Conditional probabilities 72

Examples 72 • Conditional probabilities and independence 73 Intuitive approach to conditional probability 74 • Formulaic approach to conditional probability 76

4 Fitting a linear regression 79

4.1 Primer on linear regression 81

Linear equation 81 • Goodness of fit 85 • Conditions for best fit 85

CONTENTS ix

4.0	O' 1	1.		0.5
49	Simple	linear	regression	87
	SILLIPIC	mine	1051000001	0.

Importing and exploring the data 88 • Fitting the model 93
Interpreting and evaluating the results 95 • Testing model assumptions 105

5 Fitting a logistic regression 111

- 5.1 Logistic regression vs. linear regression 113
- 5.2 Multiple logistic regression 114

Importing and exploring the data 115 • Fitting the model 125 Interpreting and evaluating the results 128 • Calculating and evaluating classification metrics 131

Fitting a decision tree and a random forest 140

- 6.1 Understanding decision trees and random forests 141
- 6.2 Importing, wrangling, and exploring the data 142

 Understanding the data 143 Wrangling the data 144

 Exploring the data 148
- 6.3 Fitting a decision tree 157

Splitting the data 158 • Fitting the model 160 • Predicting responses 161 • Evaluating the model 161 • Plotting the decision tree 163 • Interpreting and understanding decision trees 164 • Advantages and disadvantages of decision trees 173

6.4 Fitting a random forest 174

Fitting the model 175 • Predicting responses 177 • Evaluating the model 177 • Feature importance 179 • Extracting random trees 181

7 Fitting time series models 184

- 7.1 Distinguishing forecasts from predictions 185
- 7.2 Importing and plotting the data 186

 Fetching financial data 186 Understanding the data 189

 Plotting the data 190
- 7.3 Fitting an ARIMA model 191

Autoregression (AR) component 192 • Integration (I) component 192 • Moving average (MA) component 192 Combining ARIMA components 192 • Stationarity 193 Differencing 195 • Stationarity and differencing applied 197 AR and MA components 205 • Fitting the model 207 Evaluating model fit 209 • Forecasting 213

X CONTENTS

7.4	Fitting exponential smoothing models 215 Model structure 216 • Applicability 216 • Mathematical properties 216 • Types of exponential smoothing models 216 Choosing between ARIMA and exponential smoothing 217 SES and DES models 217 • Holt–Winters model 218
Trans	forming data into decisions with linear programming
8.1	Problem formulation 223
	The scenario 224 • The challenge 224 • The approach 225 Feature summaries 227
8.2	Developing the linear optimization framework 229
	Explanation of linear equations and inequalities 230 Data definition 230 • Objective function 232 Constraints 233 • Decision variable bounds 236 • Solving the linear programming problem 236 • Result evaluation 239
Runni	ing Monte Carlo simulations 242
9.1	Applications and benefits of Monte Carlo
	simulations 243
9.2	Step-by-step process 244
9.3	Hands-on approach 246
	Establishing a probability distribution (step 1) 246 • Computing a cumulative probability distribution (step 2) 248 • Establishing an interval of random numbers for each variable (step 3) 250 Generating random numbers (step 4) 252 • Simulating a series of trials (step 5) 253 • Analyzing the results (step 6) 254
9.4	Automating simulations on discrete data 255
	Plotting and analyzing the results 257
9.5	Automating simulations on continuous data 259
	Predicting stock prices with Monte Carlo simulations 259 Analyzing historical data (step 1) 261 • Calculating log returns (step 2) 262 • Computing statistical parameters (step 3) 264 Generating random daily returns (step 4) 265 • Simulating prices (step 5) 266 • Simulating multiple trials (step 6) 267 Analyzing the results (step 7) 268
Build	ing and plotting a decision tree 271
10.1	Decision-making without probabilities 272
	Maximax method 273 • Maximin method 276 • Minimax Regret method 277 • Expected Value method 279

222

CONTENTS xi

	10.2	Decision trees 282
		Creating the schema 283 • Plotting the tree 289
11	Predic	cting future states with Markov analysis 294
	11.1	Understanding the mechanics of Markov analysis 295
	11.2	States and state probabilities 296
		Understanding the vector of state probabilities for multistate systems 297 • Matrix of transition probabilities 300
	11.3	Equilibrium conditions 307
		Predicting equilibrium conditions programmatically 308
	11.4	Absorbing states 311
		Obtaining the fundamental matrix 313 • Predicting absorbing states 315 • Predicting absorbing states programmatically 316
12		ining and testing naturally occurring number uences 319
	12.1	Benford's law explained 320
	12.2	Naturally occurring number sequences 324
	12.3	Uniform and random distributions 325
		Uniform distribution 325 • Random distribution 327 Plotted distributions 328
	12.4	Examples 330
		Street addresses 330 • World population figures 333 Payment amounts 336
	12.5	Validating Benford's law 337
		Chi-square test 338 • Mean absolute deviation 341 Distortion factor and z-statistic 343 • Mantissa statistics 344
13	Mana	ging projects 349
	13.1	Creating a work breakdown structure 350
	13.2	Estimating activity times with PERT 354
	13.3	Finding the critical path 357
		Earliest times 357 • Latest times 359 • Slack 360 Finding the critical path programmatically 362
	13.4	Estimating the probability of project completion 369
	13.5	Crashing the project 374

14 Visualizing quality control 378

14.1 Quality control measures 380

Upper control limit and lower control limit 380 • Mean and center line 381 • Standard deviation 381 • Range 382 • Sample size 383 • Proportion defective 383 • Number of defective items 384 • Number of defects 385 • Defects per unit 385 Moving range 386 • z-score 386 • Process capability indices 387

14.2 Control charts for attributes 388

p-charts 388 • np-charts 392 • c-charts 394 • g-charts 396

14.3 Control charts for variables 398

x-bar charts 400 • r-charts 401 • s-charts 403 • I-MR

charts 405 • EWMA charts 407

index 411