

We are given a graph G = (V, E) and an edge weight function $\omega \colon E \to \mathbb{R}$.

Length of a Path

The *length* or *weight* $\omega(P)$ of a path $P = \{v_1, v_2, \dots, v_l\}$ with at least two vertices is

$$\omega(P) = \sum_{i=1}^{l-1} \omega(v_i v_{i+1})$$

If |P| = 1, $\omega(P) = 0$.

Shortest Path

For two vertices u and v, the *shortest path* from u to v is the path P for which $\omega(P)$ is minimal. The *distance* d(u,v) from u to v is the length of a shortest path from u to v.

Variants

- Single Pair Shortest Path (SPSP)
 Find a shortest path from a vertex u to some vertex v.
- Single Source Shortest Path (SSSP)
 Find shortest paths from a source vertex v to all other vertices in the graph.
- All Pairs Shortest Path (APSP)
 Find shortest paths fall vertex pairs u and v.

There is no algorithm for SPSP which is better in general than an algorithm for SSSP.

Shortest Path Properties

Theorem

Optimal Substructure Property

Each subpath of a shortest path is a shortest path.

Theorem

riangle Inequality

For all vertices u, v, and w,

$$d(u,v) \le d(u,w) + d(w,v).$$

Negative Weight Edges and Cycles

Negative Weight Edges

- Natural in some application
- Makes finding a shortest path harder

Theorem

If there is a path from u to v containing a vertex w and w is in a cycle C with $\omega(C) < 0$, then there is no shortest path from u to v.

Avoiding Cycles

- Only permit simple paths, i. e., no vertex twice
- Follows if graph has no negative cycles
- With negative cycles, shortest simple path problem equal to longest simple path problem
- Problem: loss of optimal substructure property

General Approach

General Approach

Store for each vertex v

- $\operatorname{dist}_s(v)$, length of currently best known path P from start vertex s to v
- $par_s(v)$, parent of v in P

Relaxation

Updates best known distance.

```
Procedure Relax(u, v)

If dist_s(v) > dist_s(u) + \omega(uv) Then

Set par_s(v) := u and dist_s(v) := dist_s(u) + \omega(uv).
```

General Approach

Initialization

- ▶ Set $par_s(v) := null$ and $dist_s(v) := \infty$ for each vertex v.
- ▶ Set $dist_s(s) := 0$ for start vertex s.

Iteration

- Pick vertex pair u, v.
- ► Call Relax(*u*, *v*)
- Repeat

Open Questions

- ▶ How do we pick u and v?
- When do we stop the iteration?

Single Source Shortest Path

Shortest Path for DAGs

Directed Acyclic Graphs

- No (negative) cycles
- Topological order

Algorithm Idea

- Find a topological order $\langle v_1, v_2, \dots, v_n \rangle$.
- ▶ For i := 1 to n, relax all outgoing edges of v_i .

Properties

- ▶ Invariant: For all v_j with $j \le i$, $\operatorname{dist}(v_j)$ is optimal.
- Runtime: linear
- Works with negative edges, i. e., can be used to compute longest path.

Bellman-Ford

Observation

- ▶ A shortest path has at most n-1 edges.
- If we know all shortest path with k edges, we can compute all shortest paths with k+1 edges by relaxing all edges once.

```
1 For Each v \in V

2 \subseteq Set \operatorname{dist}(v) := \infty and \operatorname{par}(v) = \operatorname{null}.

3 Set \operatorname{dist}(s) := 0.

4 For i := 1 To |V| - 1

5 \subseteq For Each (u, v) \in E

6 \subseteq Relax(u, v)
```

Bellman-Ford

Properties

- Runtime: O(nm)
- Works with negative weight edges
- Can detect negative cycles

Detecting negative cycles

- ► Negative cycle \rightarrow There is always an edge (u, v) for which Relax(u, v) updates $\operatorname{dist}(v)$.
- ▶ If Relax(u, v) still updates $\operatorname{dist}(v)$ for $i \ge n$, then (u, v) is part of a negative cycle.

Dijkstra's Algorithm

Idea

- ▶ Let *S* be set of vertices where shortest path is known.
- ► Relax all outgoing edges (u, v), i. e., $u \in S$ and $v \notin S$.
- ▶ If dist(v) is minimal for all vertices not in S, then dist(v) is optimal.
- ▶ Add *v* to *S* and repeat.

```
1 Initialize(G, s)
2 Create a priority Q and add all vertices in V.
3 While Q is not empty
4 Remove v with minimal \operatorname{dist}(v) from Q.
5 For Each (v, w) \in E
6 Relax(v,w)
```

Dijkstra's Algorithm

Properties

- Runtime: $O(m \log n)$ with binary heaps and $O(n \log n + m)$ with Fibonacci-Heaps
- ▶ Invariant: For all vertices in S, dist(s) is optimal.
- Requirement: No negative edges. The algorithm assumes that distances are always increasing.

Dijkstra's Algorithm - Negative Edges

What happens if there are negative edges?

All Pairs Shortest Path

Floyd-Warshall

Idea

- Assume that we know, for all i and j, the shortest path from v_i to v_j using only the (additional) vertices $\langle v_1, v_2, \ldots, v_{k-1} \rangle$. Let $d_{ij}^{(k-1)}$ be this distance.
- ightharpoonup Then, we can add v_k in the next iteration and get

$$d_{ij}^{(k)} = \min \left\{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}$$

- ▶ If k = n, then $d_{ij}^{(k)} = d(v_i, v_j)$ for all i and j.
- Initial values

$$d_{ij}^{(0)} = \begin{cases} 0 & \text{if } i = j \\ \omega(v_i v_j) & \text{if } v_i v_j \in E \\ \infty & \text{else} \end{cases}$$

Floyd-Warshall

```
1 For Each pair i, j with 1 \le i, j \le |V|
2 \Big[ Set d_{ij}^{(0)} := 0 if i = j, \omega(v_i v_j) if v_i v_j \in E, and \infty otherwise.

3 For k := 1 To |V|
4 \Big[ For Each pair i, j with 1 \le i, j \le |V|
5 \Big[ Set d_{ij}^{(k)} = \min \left\{ d_{ij}^{(k-1)}, d_{ik}^{(k-1)} + d_{kj}^{(k-1)} \right\}.
```

To represent d_{ij} , use two $n \times n$ arrays.

Detecting Negative Cycles

• Check if, for some i and some k, $d_{ii}^{(k)} < 0$.

Runtime: $O(n^3)$

Dijkstra vs. Floyd-Warshall

Runtime for APSP

- ▶ Dijkstra: $O(n^2 \log n + nm)$
- Floyd-Warshall: $O(n^3)$

Observation

- ▶ Since $m \le n^2$, Dijkstra would be better, especially for sparse graphs.
- Problem: negative weight edges.

Question

Is there a way to avoid these negative edges?

Johnson's Algorithm

Algorithm

- Add a new vertex q and add, for each $v \in V$, the directed edge qv with weight 0.
- Run Bellman-Ford with start vertex q. Let h(v) be the length of a shortest path from q to v.
- ► For each edge uv, set $\tilde{\omega}(uv) := \omega(uv) + h(u) h(v)$.
- Remove q and run Dijkstra's algorithm on each vertex using $\tilde{\omega}$ as edge weights.

Properties

- ▶ Runtime $O(n^2 \log n + nm)$
- Works with negative weight edges and can detect negative cycles.

A* and Branch and Bound

Single Pair Shortest Path

Single Pair Shortest Path

- Weighted graph
- ► Find shortest path from *s* to *t*.

Dijkstra

- Explores all in distance d(s,t) before terminating. (Can be improved to d(s,t)/2 with bidirectional search)
- ▶ Next vertex is selected by distance from *s*.

Problem

Some vertices go in the wrong direction.

Idea

- For a vertex v, make an estimation $h_t(v)$ of d(v,t)
- ▶ Important: $h_t(v) \le d(v,t)$

Algorithm

- Basically Dijkstra
- For next iteration, pick vertex v for which $\mathrm{dist}_s(v) + h_t(v)$ is minimal.

Generalised A*

Idea

- Take decision tree.
- Find a shortest path from root to leaf.
- Important: Do not construct whole tree. Only construct explored parts.

Branch and Bound

- Start at root.
- Branch: Determine the children of a node.
- Bound: Compute for every node a lower bound for the cost of the solutions in this subtree.
- Select next node where estimated lower bound is minimal.

Note

Finding the optimal lower bound (i. e., $h_t(v) = d(v, t)$) is as hard as solving the original problem.