(Deep convolutional GAN)

2019.06.22 Lee Jun Seong







### Review for GAN (generative adversarial network)









### **GAN**

- Problem
  - Stability
  - Quality
  - Black-box method (Visualization)

# UNSUPERVISED REPRESENTATION LEARNING WITH DEEP CONVOLUTIONAL GENERATIVE ADVERSARIAL NETWORKS

#### Alec Radford & Luke Metz

indico Research
Boston, MA
{alec,luke}@indico.io

#### Soumith Chintala

Facebook AI Research New York, NY soumith@fb.com

https://arxiv.org/pdf/1511.06434.pdf





#### DCGAN (Deep convolutional GAN)

- Generator & Discriminator networks: MLP → CNN



Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps. A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called deconvolutions) then convert this high level representation into a  $64 \times 64$  pixel image. Notably, no fully connected or pooling layers are used.

#### Contribution

- 대부분의 상황에서 안정적으로 학습되는 Convolutional GAN 구조 제안
- <mark>벡터 산술 연산이 가능한</mark> Generator (semantic 수준에서의 sample generation)
- DCGAN이 학습한 특정 filter 들을 시각화하여 이미지의 특징을 학습했다는 것을 보여줌.
- 이렇게 학습된 Discriminator가 다른 비지도 학습 알고리즘들과 비교해 비등한 이미지 분류 성능을 보임





#### Architecture

- (Extensive research and testing) 엄청난 시도를 통해 얻어진 결과

### Architecture guidelines for stable Deep Convolutional GANs

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.
- Deterministic spatial pooling → Strided convolutions (discriminator) and fractionalstrided convolutions (generator), allowing the network to learn its own spatial downsampling or upsampling.
- Batch normalization (Except for generator output layer and discriminator input layer)
- Pre-processing → [-1, 1]
- Mini-batch size of 128.
- Adam optimizer (learning rate:  $0.001 \rightarrow 0.0002$ , Momentum =  $0.9 \rightarrow 0.5$ )





#### Architecture

- Generator



Fractional strided convolution

#### - Architecture

- Discriminator







#### - Result

- LSUN dataset (침실 데이터) GAN에 의해 생성된 영상이 Training data의 Overfitting/Memorization이 아님을 증명. (특징을 학습하는게 아니라 영상 자체를 외워버리는 것이 아니냐는 비판을 받았기 때문) \*Deduplication



1 epoch 학습 후 결과 → Mini-batch로 1 Epoch 학습한 영상으로 네트워크가 Training data를 Overfitting/Memorization 할 수 없음에도 침실 비슷한 결과를 보여줌.







#### - Result

- LSUN dataset (침실 데이터)



5 epoch 학습 후 결과 → 자세히 보면 그림의 몇몇 침대의 Base board에 noise texture가 반복적으로 나타나고 있는데 이런 점을 통해 5 epoch 동안도 여전히 Under fitting 상태임을 알 수 있다. → Overfitting 안됐다는 것 을 강조하고 싶음.





#### Result

- Classifying CIFAR-10 using GAN as a feature extractor GAN이 얼마나 Unsupervised representation을 잘 학습했는지 평가하는 한 방법으로써, 학습된 GAN을 supervised datsets 에 대해 feature extractor로 사용해보는 것.

To evaluate the quality of the representations learned by DCGANs for supervised tasks, we train on Imagenet-1k and then use the discriminator's convolutional features from all layers, maxpooling each layers representation to produce a  $4 \times 4$  spatial grid. These features are then flattened and concatenated to form a 28672 dimensional vector and a regularized linear L2-SVM classifier is trained on top of them.

Imagenet-1k 데이터로 GAN을 학습 → CIFAR-10 dataset 에 대해 Discriminator로 Feature extraction 후 최종단에 SVM을 연결하여 분류.

| Model                      | Accuracy | Accuracy (400 per class) | max # of features units |
|----------------------------|----------|--------------------------|-------------------------|
| 1 Layer K-means            | 80.6%    | 63.7% (±0.7%)            | 4800                    |
| 3 Layer K-means Learned RF | 82.0%    | $70.7\%~(\pm 0.7\%)$     | 3200                    |
| View Invariant K-means     | 81.9%    | $72.6\%~(\pm 0.7\%)$     | 6400                    |
| Exemplar CNN               | 84.3%    | $77.4\%~(\pm 0.2\%)$     | 1024                    |
| DCGAN (ours) + L2-SVM      | 82.8%    | $73.8\%~(\pm 0.4\%)$     | 512                     |

기존의 Unsupervised representation learning algorithm 들과 비교해도 비등하다. (단, DCGAN의 경우 CIFAR-10 data에 대해 학습되지 않기에 domain robustness를 강조)





### - Result

- Walking in the latent space







### - Result

- Visualizing the discriminator features



Random filters

**Trained filters** 



#### - Result

- Forgetting to draw certain objects



"Window" representation 을 학습한 filter를 dropout하니 Window가 없는 영상을 생성.



#### Result

Vector arithmetic on face samples



### - Result









