

Algebraic Automata Theory

Sven Dziadek Inria Paris

Formal Language Theory

Introduction: Formal Languages

Fix a finite alphabet Σ .

Introduction: Formal Languages

Fix a finite alphabet Σ .

$$\Sigma^* = \bigcup_{n>0} \Sigma^n = \{\sigma_1 \cdots \sigma_n \mid \sigma_i \in \Sigma, n \geq 0\}$$

For
$$\Sigma = \{a, b\}$$
:

$$\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$$
 (ϵ is the empty word)

Introduction: Formal Languages

Fix a finite alphabet Σ .

$$\Sigma^* = \bigcup_{n>0} \Sigma^n = \{\sigma_1 \cdots \sigma_n \mid \sigma_i \in \Sigma, n \geq 0\}$$

Example

For
$$\Sigma = \{a, b\}$$
:

$$\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, \ldots\}$$
 (ϵ is the empty word)

Formal Language

A (formal) language is $L \subseteq \Sigma^*$

Introduction: Regular Expressions

Regular Expressions

Fix a finite alphabet Σ .

- ▶ Ø
 - $ightharpoonup \epsilon$ (empty word)
 - ▶ a (for any $a \in \Sigma$)

are regular expressions

Introduction: Regular Expressions

Regular Expressions

Fix a finite alphabet Σ .

- ▶ Ø
 - $ightharpoonup \epsilon$ (empty word)
 - ▶ a (for any $a \in \Sigma$)

are regular expressions

- for regular expressions *e* and *f*:
 - ightharpoonup e + f (alternation)
 - ► ef (concatenation)
 - ► e* (Kleene star)

are regular expressions

Introduction: Regular Expressions

Regular Expressions

Fix a finite alphabet Σ .

- ▶ Ø
 - $ightharpoonup \epsilon$ (empty word)
 - ▶ a (for any $a \in \Sigma$)

are regular expressions

- for regular expressions *e* and *f*:
 - ightharpoonup e + f (alternation)
 - ► ef (concatenation)
 - ► e* (Kleene star)

are regular expressions

Example

Language of even-length words: $L = ((a + b)(a + b))^*$

$$\mathcal{L}(\mathcal{A}) = \{ w \in \{a, b\} \mid \text{amount of } a \text{ is even} \}$$

= $b^*(ab^*ab^*)^*$

$$\mathcal{L}(\mathcal{A}) = \{ w \in \{a, b\} \mid \text{amount of } a \text{ is even} \}$$
$$= b^* (ab^* ab^*)^*$$

$$\mathcal{L}(\mathcal{A}) = \{ w \in \{a, b\} \mid \text{amount of } a \text{ is even} \}$$

= $b^*(ab^*ab^*)^*$

$$\mathcal{L}(\mathcal{B}) = \{ w \in \{a, b\} \mid \text{ends on } aa \}$$

= $(a + b)^* aa$

Consider formal language $L \subseteq \Sigma^*$.

Consider formal language $L \subseteq \Sigma^*$.

Another point of view: $L \colon \Sigma^* \to \{\mathsf{True}, \mathsf{False}\}$

Consider formal language $L \subseteq \Sigma^*$.

Another point of view: $L \colon \Sigma^* \to \underbrace{\{\text{True}, \text{False}\}}_{\text{set } S}$

Consider formal language $L \subseteq \Sigma^*$.

Another point of view: $L \colon \Sigma^* \to \{ \underline{\mathsf{True}}, \underline{\mathsf{False}} \}$

Generalize:

$$s \colon \Sigma^* o S$$

(weighted languages, called series)

Consider formal language $L \subseteq \Sigma^*$.

Another point of view: $L \colon \Sigma^* \to \{\mathsf{True}, \mathsf{False}\}$

Generalize:

$$s\colon \Sigma^*\to S$$

(weighted languages, called series)

$$s \colon \Sigma^{\omega} \to S$$

$$(\omega$$
-series $)$

Consider formal language $L \subseteq \Sigma^*$.

Another point of view: $L \colon \Sigma^* \to \{\mathsf{True}, \mathsf{False}\}$

Generalize:

$$s \colon \Sigma^* \to S$$

(weighted languages, called series)

$$s \colon \Sigma^{\omega} \to S$$

 $(\omega$ -series)

- counting
- optimization (costs or gains)
- probabilities
- transducer
- average, discounting

$$\|\mathcal{A}\| \colon \Sigma^* \to S$$

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$\|\mathcal{A}\| \colon \Sigma^* \to S$$

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$A : 0$$

$$b : 0$$

$$\|\mathcal{A}\| \colon \Sigma^* \to \mathcal{S}$$

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$S = (\mathbb{N}, +, \cdot, 0, 1)$$

$$A: \bigcap_{0}^{a: 1}$$

$$b: 0$$

$$\|\mathcal{A}\| \colon \Sigma^* \to S$$
$$\|\mathcal{A}\|(w) = |w|_a$$

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$A : 0$$

$$b : 0$$

$$\|\mathcal{A}\| \colon \Sigma^* \to \mathcal{S}$$

 $\|\mathcal{A}\|(w) = |w|_a$

$$S = (\mathbb{N}, +, \cdot, 0, 1)$$

 \mathcal{B} :

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$A : 0$$

$$b : 0$$

$$\|\mathcal{A}\| \colon \Sigma^* \to S$$

 $\|\mathcal{A}\|(w) = |w|_a$

$$S = (\mathbb{N}, +, \cdot, 0, 1)$$

Example

a b a b a

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$A : 0$$

$$0$$

$$b : 0$$

$$\|\mathcal{A}\| \colon \Sigma^* \to S$$

 $\|\mathcal{A}\|(w) = |w|_a$

$$S = (\mathbb{N}, +, \cdot, 0, 1)$$

$$\mathcal{B}:$$

$$0$$

$$a : 1$$

$$0$$

$$a, b : 1$$

$$a, b : 1$$

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$A : 0$$

$$b : 0$$

$$\|\mathcal{A}\| \colon \Sigma^* \to \mathcal{S}$$

 $\|\mathcal{A}\|(w) = |w|_{a}$

$$S = (\mathbb{N}, +, \cdot, 0, 1)$$

$$\mathcal{B}:$$

$$0$$

$$a : 1$$

$$0$$

$$a, b : 1$$

$$a, b : 1$$

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$A : 0$$

$$b: 0$$

$$\|\mathcal{A}\| \colon \Sigma^* \to S$$

 $\|\mathcal{A}\|(w) = |w|_a$

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$A : 0$$

$$b : 0$$

$$\|\mathcal{A}\| \colon \Sigma^* \to \mathcal{S}$$
 $\|\mathcal{A}\|(w) = |w|_a = \|\mathcal{B}\|(w)$

$$S = (\mathbb{N}, +, \cdot, 0, 1)$$

$$\mathcal{B}:$$

$$0$$

$$a : 1$$

$$0$$

$$a, b : 1$$

$$a, b : 1$$

$$S = (\mathbb{N}^{\infty}, \min, +, \infty, 0)$$

$$A : 0$$

$$0$$

$$b : 0$$

$$\|\mathcal{A}\| \colon \Sigma^* o \mathcal{S} \ \|\mathcal{A}\|(w) = |w|_{\mathfrak{a}} = \|\mathcal{B}\|(w)$$

 $S = (\mathbb{N}, +, \cdot, 0, 1)$ \mathcal{B} : a. b: 1 a. b: 1

Example

Examples

- unweighted (Boolean semiring): $(\mathbb{B}, \vee, \wedge, \perp, \top)$
- probabilities: $(\mathbb{Q}_+, +, \cdot, 0, 1)$
- transducer: $(2^{\Sigma^*}, \cup, \cdot, \emptyset, \{\epsilon\})$
- Viterbi: ([0, 1], max, ⋅, 0, 1)

$$1 \rightarrow 1 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 2 \quad \text{wt } 1$$
$$1 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 2 \rightarrow 2 \quad \text{wt } 1$$

sum: 3

Conway Semirings

Identities for Conway Semirings

Conway semirings are star-semirings with:

- sum-star-equation: $(a+b)^* = (a^*b)^*a^*$
- product-star-equation: $(ab)^* = 1 + a(ba)^*b$
- it follows: $a^* = 1 + aa^*$ and $(ab)^*a = a(ba)^*$

Identities for Conway Semirings

Conway semirings are star-semirings with:

```
- sum-star-equation: (a+b)^*=(a^*b)^*a^*
- product-star-equation: (ab)^*=1+a(ba)^*b
- it follows: a^*=1+aa^* and (ab)^*a=a(ba)^*
```

Extension to infinite words (star-omega-semirings):

– sum-omega equation:
$$(a+b)^\omega = (a^*b)^\omega + (a^*b)^*a^\omega$$

– product-omega equation:
$$(ab)^{\omega} = a(ba)^{\omega}$$

– it follows:
$$aa^{\omega} = a^{\omega}$$

Formalization in a Proof Assistant: Baby Steps in Cubical Agda

```
record IsConwaySemiring {R : Type}
                       (Or 1r : R) ( + \cdot : R \rightarrow R \rightarrow R) ( * : R \rightarrow R) : Type where
  field
    cIsSemiring : IsSemiring Or 1r + ·
                     (x y : R) \rightarrow ((x + y)*) = (((x *) \cdot y)*) \cdot (x *)
     sumStar
    productStar : (x y : R) \rightarrow ((x \cdot y)^*) = 1r + ((x \cdot ((y \cdot x)^*)) \cdot y)
Example
starIdentityPlusL : (a : fst S) \rightarrow a * = 1r + a \cdot (a *)
starIdentitvPlusL a =
                                 =< ap (\ x \rightarrow x *) (svm (IsConwavSemiring.·IdR ics a)) >
  a *
  (a \cdot 1r)*
                                =< productStar a 1r >
  1r + a \cdot (1r \cdot a) * \cdot 1r = \langle ap (\ x \rightarrow 1r + x) (IsConwaySemiring \cdot IdR ics (a \cdot (1s)) \rangle
  1r + a \cdot (1r \cdot a)* =  =< ap (\ x \rightarrow 1r + a \cdot (x *)) (IsConwavSemiring. ·IdL ics
  1r + a · a *
                                \qed
```

Related Work

Damien Pous:

Kleene Algebra with Tests in Coq:

Related Work

Damien Pous:

Kleene Algebra with Tests in Coq:

Kleene Algebra: Similar to the above but idempotent

Related Work

Damien Pous:

Kleene Algebra with Tests in Coq:

Kleene Algebra: Similar to the above but idempotent

Related Work

Damien Pous:

Kleene Algebra with Tests in Coq:

Georg Struth:

Kleene Algebra in Isabelle/HOL:

- More than 1000 lemmas

Kleene Algebra: Similar to the above but idempotent

Weighted Automata with matrices

Transition Matrix

Transition Matrix

$$M = \left(\begin{array}{ccc} a & & b \\ c & & d \end{array}\right)$$

Transition Matrix

$$M = \left(\begin{array}{ccc} a & & b \\ c & & d \end{array}\right)$$

$$M^* = \begin{pmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ (d+ca^*b)^*ca^* & (d+ca^*b)^* \end{pmatrix}$$

Transition Matrix

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

$$M^* = \begin{pmatrix} (a + bd^*c)^* & (a + bd^*c)^*bd^* \\ (d + ca^*b)^*ca^* & (d + ca^*b)^* \end{pmatrix}$$

Transition Matrix

$$M = \left(\begin{array}{cc} a & b \\ c & d \end{array}\right)$$

$$M^* = \begin{pmatrix} (a + bd^*c)^* & (a + bd^*c)^*bd^* \\ (d + ca^*b)^*ca^* & (d + ca^*b)^* \end{pmatrix}$$

$$M^{\omega} = \begin{pmatrix} (a + bd^*c)^{\omega} + (a + bd^*c)^*bd^{\omega} \\ (d + ca^*b)^*ca^{\omega} + (d + ca^*b)^{\omega} \end{pmatrix}$$

Transition Matrix

$$M = \left(\begin{array}{ccc} a & & b \\ c & & d \end{array}\right)$$

$$M^* = \begin{pmatrix} (a + bd^*c)^* & (a + bd^*c)^*bd^* \\ (d + ca^*b)^*ca^* & (d + ca^*b)^* \end{pmatrix}$$

$$M^{\omega} = \begin{pmatrix} (a + bd^*c)^{\omega} + (a + bd^*c)^*bd^{\omega} \\ (d + ca^*b)^*ca^{\omega} + (d + ca^*b)^{\omega} \end{pmatrix}$$

(In)Finite Applications of a Matrix - Büchi Condition

Transition Matrix

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{cases} k \\ n-k \end{cases}$$

$$M^* = \begin{pmatrix} (a + bd^*c)^* & (a + bd^*c)^*bd^* \\ (d + ca^*b)^*ca^* & (d + ca^*b)^* \end{pmatrix}$$

$$M^{\omega} = \begin{pmatrix} (a + bd^*c)^{\omega} + (a + bd^*c)^*bd^{\omega} \\ (d + ca^*b)^*ca^{\omega} + (d + ca^*b)^{\omega} \end{pmatrix}$$

(In)Finite Applications of a Matrix - Büchi Condition

Transition Matrix

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{cases} k \\ n-k \end{cases}$$

$$M^* = \begin{pmatrix} (a+bd^*c)^* & (a+bd^*c)^*bd^* \\ (d+ca^*b)^*ca^* & (d+ca^*b)^* \end{pmatrix}$$

$$M^{\omega} = \begin{pmatrix} (a+bd^*c)^{\omega} + (a+bd^*c)^*bd^{\omega} \\ (d+ca^*b)^*ca^{\omega} + (d+ca^*b)^{\omega} \end{pmatrix}$$

$$M^{\omega,k} = \begin{pmatrix} (a+bd^*c)^{\omega} \\ d^*c(a+bd^*c)^{\omega} \end{pmatrix}$$

(In)Finite Applications of a Matrix - Büchi Condition

Transition Matrix

$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{cases} k \\ n-k \end{cases}$$

$$M^* = \begin{pmatrix} (a + bd^*c)^* & (a + bd^*c)^*bd^* \\ (d + ca^*b)^*ca^* & (d + ca^*b)^* \end{pmatrix}$$

$$M^{\omega} = \begin{pmatrix} (a + bd^*c)^{\omega} + (a + bd^*c)^*bd^{\omega} \\ (d + ca^*b)^*ca^{\omega} + (d + ca^*b)^{\omega} \end{pmatrix}$$

$$M^{\omega,k} = \begin{pmatrix} (a + bd^*c)^{\omega} \\ d^*c(a + bd^*c)^{\omega} \end{pmatrix}$$

Formalization in a Proof Assistant (2)

Isabell/HOL complicated with matrices? because no dependent types

Formalization in a Proof Assistant (2)

Isabell/HOL complicated with matrices? because no dependent types

I am fascinated by Homotopy Type Theory (Cubical Agda) but should I bother?

Conclusion

Algebraic Automata Theory

- Extend automata (and also grammars) to matrices

Conclusion

Algebraic Automata Theory

Extend automata (and also grammars) to matrices

Ínría_

Open Problems

- Generalize/extend more unweighted results
- Completeness
- Formalization in proof assistant

Conclusion

Algebraic Automata Theory

Extend automata (and also grammars) to matrices

Ínría_

Open Problems

- Generalize/extend more unweighted results
- Completeness
- Formalization in proof assistant

Thank you for your attention!