TEMA 4 MATRICES CON COEFICIENTES EN LIN CUERPO

Sea I=11,2,..., ml y J=11,2,..., nl. lua matriz de orden mxn sobre un cuerpo K es una aplicación

$$A: I \times J \longrightarrow K$$

$$(i,i) \longrightarrow aij$$

Mormalmente a la matriz A la representaremos de la forma

J' direuros que A es una matriz con m filas y n columnas.

Demotaremos por Mmxn (tx) al conjunto formado por todas las matricas de orden mxn sobre el cuerpo X.

PROPOSICION

Mmxn (Zp) = pm.n.

EJEMPLO

$$M_{2\times3}(\mathcal{Z}_2) = \left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} \Delta & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \Delta & 0 \\ 0 & 0 & 0 \end{pmatrix}, \dots, \begin{pmatrix} \Delta & \Delta & \Delta \\ \Delta & \Delta & \Delta \end{pmatrix} \right\}$$

Suma la matrices

matrius de Monxo (ki) entours

es tambien une matriz de Monxo (K).

PROPOSICION

Mmxn (K) con la operación suma tiene estructura de grupo abeliano, esto es, la operación suma de matricos es commutativa, asociativa, tiene elemento nentro y todo elemento tiene inverso. El nentro lo durotaramos 0 y - A durota el inverso de la matriz A.

NOTA

EJERCICIO

- a) Calular A+B.
- b) Quieu er el élements neutro de la suma en Mex3 (25).
- c) Calcular A

$$a) A+B = \begin{pmatrix} 4 & 4 & 4 \\ 2 & 2 & 3 \end{pmatrix}$$

Producto de matrices

Si A E Mmxn tx) } B E Mnxp [X] entours A.B E Mmxp[K].

Admiss, si (ais aiz -- ain) es la fila i de la matriz A y

(bei)
bei) es la Columna j de B, entours el elements que

binj es la posicion (i,i) en la matriz A-B es

ais bej + aiz bej + -- + ain binj

· Una matriz de orden nxn direvers que es une matriz Cuadrade de orden n.

PROPOSICION

(Mnxn (K),+,) es un avillo (no conmutativo). Adunas, el elements nentro para el producto es In = (0,0-0) que la llamarcano la matriz identidad de orden n.

EJERCICIO

Sean
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
 $y B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \end{bmatrix}$ dos elemento de Mexa (Q).
Comprobar que $A \cdot B \neq B \cdot A$.

$$A.B = \begin{pmatrix} \Delta 2 \\ 34 \end{pmatrix} \begin{pmatrix} \Delta 2 \\ 20 \end{pmatrix} = \begin{pmatrix} 52 \\ 44 \end{pmatrix}$$

$$B.A = \begin{pmatrix} \Delta 2 \\ 20 \end{pmatrix} \begin{pmatrix} \Delta 2 \\ 34 \end{pmatrix} = \begin{pmatrix} 740 \\ 24 \end{pmatrix}$$

Dada una matriz andrada A, definiment el diferminant de A, que divotavement /A/ ó det(A), de la signiente forma:

Ejercicio
Calcular | 12 | 7 | 211 | eu 25.

$$-D \begin{vmatrix} 1 & 2 \\ 3 & 4 \end{vmatrix} = 4-1 = 3$$

denotarement por Aij a la matriz sur se obtiene a partir le la matriz A quitanclole la fila i y la Columna j. Llamaremos adjunts del elements aij and la columna a (-1) ^+i / Aij/ y la denotarement Xij.

Dada la matriz A = (121) EM 3x3 (25). Calcular X12.

$$A_{32} = \begin{bmatrix} \Lambda & 1 & \Lambda \\ \Lambda & 0 & \Lambda \\ 3 & 3 & \Lambda \end{bmatrix} = \begin{bmatrix} \Lambda & \Lambda \\ 3 & \Lambda \end{bmatrix}$$

 $X_{42} = (-3)^{A+2} \begin{vmatrix} A & A \\ 3 & A \end{vmatrix} = 4(A-3) = 4 \cdot 3 = 2$

Desarrollo de Laplace

ni A= (an - an) E Mon (IX), entours:

1) (Desarrollo por la lila i) /A/= aisXist --- + ainXin.

2) (Desarrollo por la Columnaj) /A/= asj Xzj+ --- + anj Xnj.

EJERCICIO

Calcular el diterminante de A= (1231) EMuxy (25)

Hacemos el desarrolle de Laplace por la 2ª columna.

|A|=2. x12+0. x22+1. x32+0. x42. =2.1+1.0 =2.

$$X_{12} = (-1)^{1/2} \begin{vmatrix} 2 & 1 & 1 \\ 3 & 0 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 4(0+2+3-0-4-2) = 1$$

 $\times 32 = (-1)^{3+2} \begin{vmatrix} 2 & 3 & 4 \\ 2 & 1 & 1 \\ 2 & 1 & 3 \end{vmatrix} = 4(3+1+2-2-3-1) = 0$

· Si A= ail aiz -- ain

azi azz -- azn

EMmxn(K) entains lamavemos

lama amz -- amn

matriz transpuesta de A a la matriz A = ail azi -- amn

ain azi -- amn

em lamazi -- amn

ain azi -- amn

ain azi -- amn

em lamazi -- amn

· Una matriz anadrada A diremos que es pinietrica si A=At.

Propiedades de los determinantes Sea A E Monxo (TX). Entones:

1) / A/ = /A//

- 2) si intercambiamos dos filas (ó dos columnas) de A obtenemos una muera matriz anyo determinante es -/A/.
- 3) si multiplicamos todos los elementos de una fila (ó de una Columna) de A por XEK, obtenemos una miera matrizamo deferminante es XIAI.
- 4) Si a una fila de A le sumamos otra fila distinta multiplicada por un elemente de K dotenenas una mueva matriz cuyo determinante coincide con el determinante de A (la mismo Ocurre si esta operación la hacemos por columnas)
 - 5) si BEMnxn (tr.), entouces (A.B)=IA1. |B1.

A la segunda lila le sumo la primera A la tercura lila le sumo la primera multiplicada por 3 A la cuarta fila le sumo la primera multiplicada por Y

Calcular d'determinante de
$$A = \begin{bmatrix} 4 & 2 & 2 & 4 & 5 \\ 2 & 4 & 3 & 4 & 3 \\ 6 & 4 & 4 & 2 & 3 \\ 3 & 3 & 4 & 4 & 2 \\ 3 & 0 & 2 & 4 & 0 \end{bmatrix} \in M_{5x5}(\mathbb{Z}_7)$$
.

· Una matriz A ∈ Mnxn tx) es regular si tiene inversa para el producto, esto es, si existe BEMnxn (K) Ex A.B = B.A = In. En dicho caso diremos qu B es la inversa de A y la Devotaremos A.

· La matrit adjunta de A = (an -.. ann) E Monxo (TX)

del elevents aij.

EOREMA

Sea A & Maxa (K). Entouer A es regular si y solo Mi /A/‡0. Adman, en dicho caso A== \A|-1. (A)t.

Calcular la inversa de A = (12/E Mexx(Z/z).

1A=4-2=2.

$$\overline{A} = \begin{pmatrix} 4 & 6 \\ 5 & 1 \end{pmatrix} \qquad (\overline{A})^{t} = \begin{pmatrix} 4 & 5 \\ 6 & 1 \end{pmatrix}$$

$$A^{-1} = 2^{-1} \begin{pmatrix} 4 & 6 \\ 6 & 1 \end{pmatrix} = 4 \begin{pmatrix} 4 & 5 \\ 6 & 1 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} 2 & 6 \\ 3 & 4 \end{pmatrix}$$

$$\overline{A} = \begin{pmatrix} \begin{vmatrix} 23 \\ 24 \end{vmatrix} - \begin{vmatrix} 43 \\ 24 \end{vmatrix} & \begin{vmatrix} 42 \\ 22 \end{vmatrix} \\ -\begin{vmatrix} 23 \\ 24 \end{vmatrix} & \begin{vmatrix} 13 \\ 24 \end{vmatrix} - \begin{vmatrix} 42 \\ 22 \end{vmatrix} \\ \begin{vmatrix} 12 \\ 23 \end{vmatrix} & -\begin{vmatrix} 13 \\ 43 \end{vmatrix} & \begin{vmatrix} 12 \\ 42 \end{vmatrix} \end{pmatrix} = \begin{pmatrix} 4 & 2 & 4 \\ 4 & 0 & 2 \\ 0 & 4 & 4 \end{pmatrix}$$

$$(\overline{A})^{t} = \begin{pmatrix} 1 & 4 & 0 \\ 2 & 0 & 4 \\ 4 & 2 & 4 \end{pmatrix}$$
 $A^{-1} = 3 \begin{pmatrix} 1 & 4 & 0 \\ 2 & 0 & 4 \\ 4 & 2 & 4 \end{pmatrix} = \begin{pmatrix} 3 & 2 & 0 \\ 1 & 0 & 2 \\ 2 & 1 & 2 \end{pmatrix}$

Otra forma de cabinlar inversas (operacions por lilas)

$$\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
4 & 2 & 3 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 2 & 3 & 1 & 0 & 0 \\
9 & 2 & 3 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & 4 & 0 & 1 \\
0 & 4 & 0 & 1 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & 4 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 3 & 4 & 0 & 1 \\
0 & 0 & 1 & 0 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 1 & 0 & 3 & 4 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 2
\end{pmatrix}$$

$$\begin{pmatrix}
0 & 0 & 0 & | & 3 & 2 & 0 \\
0 & A & 0 & | & A & 0 & 2 \\
0 & 0 & A & | & 2 & A
\end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 320 \\ 102 \\ 212 \end{pmatrix}$$

· Intercambiar dos Vilas.

· Multiplicar todos los elementos de cualita por XEK/404

· Sumarle a una fila otra multiplicada por un element UK.

Resuelve en el avillo Hexz (Z/) la emacion

$$\begin{pmatrix} \sqrt{3} \sqrt{X} + \sqrt{3} \sqrt{Y} \end{pmatrix} = \begin{pmatrix} \sqrt{3} \sqrt{X} + \sqrt{3} \sqrt{X} \\ \sqrt{3} \sqrt{X} \end{pmatrix} = \begin{pmatrix} \sqrt{3} \sqrt{X} + \sqrt{3} \sqrt{X} \end{pmatrix}$$

$$\begin{bmatrix} \begin{pmatrix} 2 & \Lambda \\ \Lambda & \Lambda \end{pmatrix} - \begin{pmatrix} \Lambda & \Lambda \\ 0 & 0 \end{pmatrix} \end{bmatrix} X = \begin{pmatrix} \Lambda & 0 \\ 0 & 0 \end{pmatrix} - \begin{pmatrix} \Lambda & \Lambda \\ \Lambda & \Lambda \end{pmatrix} \Rightarrow$$

$$\Rightarrow \begin{bmatrix} \sqrt{1} & \sqrt{1} \\ \sqrt{1} & 0 \end{bmatrix} X = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \Rightarrow X = \begin{bmatrix} \sqrt{1} & 1 \\ \sqrt{1} & 0 \end{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\Rightarrow X = \begin{pmatrix} 0 & 1 \\ 0 & 6 \end{pmatrix} = 0 \quad X = \begin{pmatrix} 0 & 6 \\ 6 & 0 \end{pmatrix}$$

EJERCICIO

Resuelve et signiente sistema de ecuacians en et aville Mexe (25).

$$A + 2B = \begin{pmatrix} 32 \\ 00 \end{pmatrix}$$

$$2A + B = \begin{pmatrix} 30 \\ 44 \end{pmatrix}$$

$$3A+B = \begin{pmatrix} 4 & 1 \\ 0 & 0 \end{pmatrix} = D 2B = \begin{pmatrix} 2 & 1 \\ 4 & 4 \end{pmatrix} \Rightarrow B = 2^{-1} \begin{pmatrix} 2 & 1 \\ 4 & 4 \end{pmatrix} \Rightarrow B = \begin{pmatrix} 3 & 0 \\ 4 & 4 \end{pmatrix} \Rightarrow B = 3\begin{pmatrix} 2 & 1 \\ 4 & 4 \end{pmatrix} \Rightarrow B = \begin{pmatrix} 4 & 3 \\ 2 & 2 \end{pmatrix}$$

$$A = \begin{pmatrix} 32 \\ 00 \end{pmatrix} + 3B = \begin{pmatrix} 32 \\ 00 \end{pmatrix} + 3\begin{pmatrix} 13 \\ 22 \end{pmatrix} = \begin{pmatrix} 114 \\ 114 \end{pmatrix}.$$