C127573(022)

B. Tech. (Hon's) (Fifth Semester) Examination, Nov.-Dec. 2023

(Computer Science and Engg. Branch - Artificial Intelligence)

CRYPTOGRAPHY and NETWORK SECURITY

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: All questions are compulsory. Part (a) of each unit is compulsory and carries 4 marks.

Attempt any two parts from (b), (c) and (d) and carries 8 marks each.

Unit-I

1. (a) Define symmetric cipher model.

1

	(b)	Explain how steganography can be used to enhance	
		security in communication.	8
	(c)	Discuss the Limitations of Perfect Secrecy.	8
	(d)	Describe Shannon's theorem and its significance in	
		cryptography.	8
		Unit-II	
2.	(a)	What is modular arithmetic and give a simple	
		example?	4
	(b)	How does prime factorization underpin the security	
		of modern cryptographic methods?	8
	(c)	Explain discrete logarithms and their applications in	
		cryptography.	8
	(d)	Describe computations in finite fields and their	0
		relevance to cryptography.	8
		Unit-III	
3.	(a)	Briefly explain what a pseudorandom function is.	4
	(b)	Summarize the DES encryption process.	8

	(c) Describe different modes of operation in block ciphers.	8
	(d) Discuss the vulnerabilities of DES and methods to increase its security.	8
	Unit-IV	
4.	(a) Define public-key cryptography.	4
	(b) Outline the Diffie-Hellman Key Agreement process	. 8
	(c) Explain the RSA algorithm and discuss its security.	8
	(d) Compare and contrast private and public-key encryption.	8
	Unit-V	
5.	(a) What is a hash function?	4
	(b) Explain the concept of Collision-Resistant Hash Functions.	8
	(c) Describe the role of Secure Message Authenticate Codes in network security.	8

(d) Discuss the SHA-512 hash algorithm and its advantages over its predecessors.

8