CS-226: Digital Logic Design

Minimization of Logic Expression using Boolean Algebra

Virendra Singh

Professor

Computer Architecture and Dependable Systems Lab
Department of Electrical Engineering
Indian Institute of Technology Bombay

http://www.ee.iitb.ac.in/~viren/

E-mail: viren@ee.iitb.ac.in

Boolean Algebra

- Boolean Algebra is defined as
 - 1. Set of elements {0, 1}
 - 2. Set of operators {+, ., ~}
 - 3. Number of postulates
- Boolean Algebra: 5-tuple

$$\{B, +, ., \sim, 0, 1\}$$

• Closure: If a and b are Boolean then (a,b) and (a+b) are also Boolean

Postulates

Postulate	Duals	
	Expression 1	Expression 2
0	a, b, a + b ∈ B	a, b, a · b ∈ B
3	a + 0 = a	a · 1 = a
1	a+b=b+a	a · b = b · a
2	a + (b + c) = (a + b) + c	$a \cdot (b \cdot c) = (a \cdot b) \cdot c$
4	a + (b · c)=(a + b) · (a + c)	a · (b + c)=(a · b)+(a · c)
6	a + ā = 1	a . ā = 0

Theorems

Theorem	Duals		
Theorem	Expression 1	Expression 2	
Idempotency	a + a = a	a · a = a	
Null	a + 1 = 1	a · 0 = 0	
Involution	a = a	a = a	
Absorption	a + a.b = a	a · (a + b) = a	
Adsorption	a + ā.b = a + b	a · (ā + b) = a.b	
Uniting	a.b + a.b = a	(a +b)(a + b) = a	

Theorems

Theorem	Duals		
Theorem	Expression 1	Expression 2	
DeMorgan	$\overline{a+b} = \overline{a} \cdot \overline{b}$	$\overline{a \cdot b} = \overline{a} + \overline{b}$	
Consensus	a.b + a.c + b.c = a.b + a.c	(a + b)(a + c) (b +c) = (a + b).(a + c)	

Understanding Minimization

• Logic function: $F = a\overline{b} + \overline{a}\overline{b} + bd + cd$

Logic Minimization

Reducing products:

$$F = a\overline{b} + \overline{a}\overline{b} + bd + cd$$

$$= \overline{b}(a + \overline{a}) + bd + cd$$

$$= \overline{b}1 + bd + cd$$

$$= \overline{b}(c + \overline{c}) + bd + cd$$

$$= bd + \overline{b}c + cd + \overline{b}\overline{c}$$

$$= bd + \overline{b}c + \overline{b}\overline{c}$$

$$= bd + \overline{b}(c + \overline{c})$$

$$= bd + \overline{b}$$

Distributivity

Complementation

Identity

Complementation

Distribitivity

Consensus theorem

Distributivity

Complement, identity

Adsorption

Logic Minimization

• Minimized expression: $F = \overline{b} + d$

Expression Simplification

- An application of Boolean algebra
- Simplify to contain the smallest number of literals (complemented and uncomplemented variables):

$$a.b + \overline{a}.c.d + \overline{a}.b.d + \overline{a}.c.\overline{d} + a.b.c.d$$

$$= a.b + a.b.c.d + \overline{a}.c.d + \overline{a}.c.\overline{d} + \overline{a}.b.d$$

$$= a.b + a.b.(c.d) + \overline{a}.c.(d + \overline{d}) + \overline{a}.b.d$$

$$= a.b + \overline{a}.c + \overline{a}.b.d = b(a + \overline{a}.d) + \overline{a}.c$$

$$= b.(a + d) + \overline{a}.c$$

5 literals

Specification: Logic Function

Truth Table

XYZ	F
000	0
001	1
010	0
011	0
1 00	1
1 01	1
1 10	1
1 11	1

$$F = \overline{X}. \overline{Y}. \overline{Z} + X. \overline{Y}. \overline{Z} + X. \overline{Y}. Z + X. \overline{Y}. Z + X. \overline{Y}. Z$$

10

Expression Simplification

Logic minimization

$$F = \overline{x}.\overline{y}.z + x.\overline{y}.\overline{z} + x.\overline{y}.z + x.y.\overline{z} + x.y.z$$

$$F = \bar{x}.\bar{y}.z + x.\bar{y}.(\bar{z} + z) + x.y.(\bar{z} + z)$$

$$F = \overline{x}.\overline{y}.z + x.\overline{y} + x.y = \overline{x}.\overline{y}.z + x.(\overline{y} + y)$$

$$F = \overline{x}.\overline{y}.z + x = \overline{y}.z + x$$

Theorem 7: DeMorgan's Theorem

•
$$\overline{a+b} = \overline{a} \cdot \overline{b}$$
, $\forall a, b \in B$

•
$$\overline{a \cdot b} = \overline{a} + \overline{b}$$
, $\forall a, b \in B$

1806 - 1871

Generalization of DeMorgan's Theorem:

$$a + b + \cdots + z = \overline{a} \cdot \overline{b} \cdot \cdots \overline{z}$$

 $\overline{a \cdot b \cdot \cdots z} = \overline{a} + \overline{b} + \cdots + \overline{z}$

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement $F = \overline{x}.y.\overline{z} + x.\overline{y}.\overline{z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$

DeMorgan's Theorem (1)

•
$$\overline{a+b} = \overline{a} \cdot \overline{b}, \quad \forall a, b \in B$$

•
$$\overline{a+b} = a+b = \overline{a}.\overline{b}, \quad \forall a,b \in B$$

DeMorgan's Theorem (2)

•
$$a \cdot b = \overline{a} + \overline{b}, \quad \forall a, b \in B$$

•
$$\overline{\overline{a \cdot b}} = a \cdot b = \overline{a} + \overline{b}, \quad \forall a, b \in B$$

Minimum Operator Set

- Minimum number of operators
- { ~, (+ or .)} / {¬, (∧ or ∨)}

Universal Operator: NAND

NAND: Composite operator (AND and NOT)

•
$$\overline{a} = \overline{a \cdot a}$$

•
$$a \cdot b = \overline{\overline{a \cdot b}} = (\overline{a \cdot b}) \cdot (\overline{a \cdot b})$$

•
$$a + b = \overline{\overline{a} \cdot \overline{b}} = \overline{(a \cdot a) \cdot \overline{(b \cdot b)}}$$

Universal Operator: NOR

NOR: Composite operator (OR and NOT)

•
$$\overline{a} = \overline{a + a}$$

•
$$a + b = \overline{\overline{a + b}} = \overline{(a + b)} + \overline{(a + b)}$$

•
$$a \cdot b = \overline{\overline{a} + \overline{b}} = \overline{(\overline{a+a}) + (\overline{b+b})}$$

Complementing Functions

- Use DeMorgan's Theorem to complement a function:
 - 1. Interchange AND and OR operators
 - 2. Complement each constant value and literal
- Example: Complement $F = \overline{x}.y.\overline{z} + x.\overline{y}.\overline{z}$ $\overline{F} = (x + \overline{y} + z)(\overline{x} + y + z)$

Logic Expression (SOP)

•
$$F = a.b + c.d$$

•
$$\overline{F} = (\overline{a} + \overline{b}) \cdot (\overline{c} + \overline{d})$$

•
$$\overline{\overline{F}} = F = (\overline{\overline{a} + \overline{b}}) \cdot (\overline{c} + \overline{d})$$

Logic Expression (SOP)

$$\bullet \ F = a.b + c.d$$

•
$$F = (\overline{a} + \overline{b}) \cdot (\overline{c} + \overline{d})$$

Logic Expression (POS)

•
$$F = (a + b).(c + d)$$

•
$$\overline{F} = \overline{(a+b)} + \overline{(c+d)}$$

•
$$\overline{F} = (\overline{a}, \overline{b}) + (\overline{c}, \overline{d})$$

•
$$\overline{\overline{F}} = F = (\overline{\overline{a}. \overline{b}}) + (\overline{c}. \overline{d})$$

Logic Expression (POS)

•
$$F = (a + b).(c + d)$$

•
$$F = \overline{(\overline{a}. \overline{b}) + (\overline{c}. \overline{d})}$$

Thank You

