OTE Domácí úkol 3b - Přístrojový zesilovač

Vojtěch Michal

29. března 2022

V simulacích pro tuto úlohu bylo použito nastavení parametrů operačního zesilovače uvedené v tabulce 1. Symbolem u_3 označuji napětí na výstupu přístrojového zesilovače proti zemi, napětí u_2 a u_1 jsou po řadě napětí kladného a záporného vstupu přístrojového zesilovače proti zemi (konvence použitá v zadání). Struktura symetrického přístrojového zesilovače je na obrázku 1.

parametr	symbol	hodnota	jednotka	poznámka
Vstupní napěťový offset	U_0	1	mV	
Vstupní klidový proud	$I_{ m B}$	50	$_{ m nA}$	$(I_{\rm BP} + I_{\rm BN})/2$
Vstupní zbytkový proud	I_0	20	$_{ m nA}$	$I_{ m BP}-I_{ m BN}$
Zesílení v otevřené smyčce	$A_{ m D}$	200	kVV^{-1}	
Tranzitní kmitočet	f_T	1	MHz	

Tabulka 1: Parametry operačního zesilovače použité pro simulaci

Obrázek 1: Struktura přístrojového zesilovače, převzato ze zadání

1 Použité rezistory

Pro rozdílové zesílení přístrojového zesilovače platí vztah

$$G_{\rm D} = \frac{R_4}{R_3} \left(12 + \frac{R_2}{R_1} \right). \tag{1}$$

Fixováním $R_2 = 10 \mathrm{k}\Omega$ a $R_4 = R_3 = 20 \mathrm{k}\Omega$ je možné plně ovládat rozdílové zesílení nastavováním hodnoty R_1 . Potřebné hodnoty odporu R_1 pro daná rozdílová zesílení G_D jsou v tabulce 2.

rozdílové zesílení G_{D}	$R_1 [k\Omega]$
1	∞ (rozpojený obvod)
2	20
4	$6, \bar{6}$
8	2,86

Tabulka 2: Hodnoty R_1 v závislosti na potřebném rozdílovém zesílení $G_{\rm D}$

2 Chyba zesílení a nuly

Výstupní zbytkové napětí (chyba nuly) změřené při zkratovaných vstupech přístrojového zesilovače je $U_{30} = -2,4$ mV a není závislé na nastavení rozdílového zesílení.

3 Frekvenční charakteristika rozdílového zesílení $G_{\mathbf{D}}$

S pomocí zapojení na schématu 2 a funkce AC sweep byly získány frekvenční charakteristiky rozdílového zesílení pro $G_D \in \{1, 8\}$, které jsou vykresleny na obrázkách 3 a 4. Mezní kmitočty pro jednotlivá zesílení jsou zanesena v tabulce 3 a přibližně odpovídají analytickému vztahu pro gain-bandwidth product $f_m \cdot (G_D + 1) = f_T$, tedy přibližně odpovídají příslušnému rozdílovému zesilovači analyzovanému v minulém domácím úkolu.

Jen pro zesílení $G_{\rm D}=1$ je mezní frekvence výrazně nižší než u samotného rozdílového zesilovače, zejména proto, že rozdílový zesilovač ${\rm U}_1$ se zesílením 1 obsažený v přístrojovém zesilovači má na 500 kHz vlastní mezní frekvenci a pokles zesílení o 3 dB proto nastává dříve.

Obrázek 2: Zapojení pro získání frekvenční charakteristiky rozdílového zesílení $G_{\rm D}$

rozdílové zesílení G_{D}	mezní kmitočet f_m [kHz]
1	417
2	324
4	208
8	118

Tabulka 3: Závislost mezní frekvence na rozdílovém zesílení

Obrázek 3: Frekvenční charakteristika rozdílového zesílení pro $G_{\rm D}=1$

Obrázek 4: Frekvenční charakteristika rozdílového zesílení pro $G_{\rm D}=8$

4 Frekvenční charakteristika souhlasného zesílení $G_{\mathbf{C}}$

Obrázek 5: Zapojení pro získání frekvenční charakteristiky souhlasného zesílení $G_{\rm C}$

S pomocí zapojení na schématu 5 a funkce AC sweep byly získány frekvenční charakteristiky souhlasného zesílení pro $G_D \in \{1, 8\}$, které jsou vykresleny na obrázkách 6 a 7.

Mezní kmitočet je jen málo závislý na rozdílovém zesílení a pohybuje se kolem 280 kHz, tehdy je souhlasné zesílení cca - 78 dB bez ohledu na rozdílové zesílení. Frekvenční charakteristika je podobná pásmové propusti - kmitočty kolem 1 MHz jsou propouštěny lépe než nižší i vyšší. Pro nízké frekvence (DC až 10Hz) se souhlasné zesílení pohybuje kolem -160 dB. Proto pro $f \to \infty$ je CMRR = 170dB i víc, zatímco pro $f \approx 1$ MHz je CMRR ≈ 70 dB.

Obrázek 6: Frekvenční charakteristika souhlasného zesílení pro $G_{\rm D}=1$

Obrázek 7: Frekvenční charakteristika souhlasného zesílení pro $G_{\rm D}=8$

5 Doba náběhu

Obrázek 8: Zapojení pro měření doby náběhu

S pomocí generátoru obdélníkového signálu a osciloskopu zapojeného dle schématu 8 byly zachyceny časové průběhy vykreslené na obrázku 9 pro nastavené rozdílové zesílení $G_{\rm D}=1$. Pomocí kurzorů byla odečtena doba náběhu $T_n=885{\rm ns}$ pro $G_{\rm D}=1$. To odpovídá očekávané době náběhu vypočtené dle vztahu $T_n\approx 0,35/f_m$ pro $f_m\approx 417{\rm kHz}$.

Obrázek 9: Doba náběhu přístrojového zesilovače pro rozdílové zesílení $G_{\rm D}=1$