Συναρτήσεις Ολοκληρώματα και Ανισότητες

Κωνσταντίνος Λόλας

 10^o ΓΕΛ Θεσσαλονίκης

Στο moodle θα βρείτε τις ασκήσεις που πρέπει να κάνετε, όπως και αυτή τη παρουσίαση

Ασκήσεις

- **1.** Δίνεται η συνάρτηση $f(x) = \sqrt{1+e^x}$. Να δείξετε ότι:
 - Η συνάρτηση f είναι γνησίως αύξουσα

- **1.** Δίνεται η συνάρτηση $f(x) = \sqrt{1+e^x}$. Να δείξετε ότι:
 - Η συνάρτηση f είναι γνησίως αύξουσα
 - ② $\sqrt{2} < f(x) < \sqrt{1+e}$, για κάθε $x \in [0,1]$

- **1.** Δίνεται η συνάρτηση $f(x) = \sqrt{1 + e^x}$. Να δείξετε ότι:
 - Η συνάρτηση f είναι γνησίως αύξουσα
 - ② $\sqrt{2} < f(x) < \sqrt{1+e}$, για κάθε $x \in [0,1]$
 - 3 $\sqrt{2} < \int_0^1 f(x) \, dx < \sqrt{1+e}$

- **2.** Δίνεται η συνάρτηση $f(x) = \frac{e^x}{x}$, x>0
 - Να μελετήσετε την f ως προς τα ακρότατα

- **2.** Δίνεται η συνάρτηση $f(x) = \frac{e^x}{r}$, x > 0
 - Να μελετήσετε την f ως προς τα ακρότατα
 - Na deixete óti $\int_{\frac{1}{2}}^2 f(x) \, dx > \frac{3e}{2}$

Συναρτήσεις 3/19

- 3. Δίνεται η συνάρτηση $f(x) = \ln(e^x + 1)$
 - Να δείξετε ότι η f είναι κυρτή

Λόλας (10^o ΓΕΛ) Συναρτήσεις 4/19

- **3.** Δίνεται η συνάρτηση $f(x) = \ln(e^x + 1)$
 - Να δείξετε ότι η f είναι κυρτή
 - Να βρείτε την εφαπτόμενη της C_f στο $x_0=0$

- **3.** Δίνεται η συνάρτηση $f(x) = \ln(e^x + 1)$
 - Nα δείξετε ότι η f είναι κυρτή
 - Να βρείτε την εφαπτόμενη της C_f στο $x_0=0$
 - Να δείξετε ότι:

- **3.** Δίνεται η συνάρτηση $f(x) = \ln(e^x + 1)$
 - Nα δείξετε ότι η f είναι κυρτή
 - Να βρείτε την εφαπτόμενη της C_f στο $x_0=0$
 - Να δείξετε ότι:
 - ① $\int_0^1 f(x) dx > \frac{1}{4} + \ln 2$ ② $\int_1^2 x f(x) dx > \frac{7 + 9 \ln 2}{6}$

- **3.** Δίνεται η συνάρτηση $f(x) = \ln(e^x + 1)$
 - Nα δείξετε ότι η f είναι κυρτή
 - Να βρείτε την εφαπτόμενη της C_f στο $x_0=0$
 - Να δείξετε ότι:
 - ① $\int_0^1 f(x) dx > \frac{1}{4} + \ln 2$ ② $\int_1^2 x f(x) dx > \frac{7 + 9 \ln 2}{6}$

Συναρτήσεις 4/19

- **4.** Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 2x + 2}$. Να δείξετε ότι:
 - Η ευθεία y=x+1 είναι ασύμπτωτη της C_f για $x\to +\infty$ και είναι κάτω από την C_f στο $[0, +\infty)$

- **4.** Δίνεται η συνάρτηση $f(x) = \sqrt{x^2 + 2x + 2}$. Να δείξετε ότι:
 - Η ευθεία y=x+1 είναι ασύμπτωτη της C_f για $x\to +\infty$ και είναι κάτω από την C_f στο $[0, +\infty)$

Συναρτήσεις 5/19

- **5.** Δίνεται η συνάρτηση $f(x) = \ln(1+x^2)$. Να δείξετε ότι:
 - ① $f(x) \leq x^2$, για κάθε $x \in \mathbb{R}$

Συναρτήσεις 6/19

- **5.** Δίνεται η συνάρτηση $f(x) = \ln(1+x^2)$. Να δείξετε ότι:
 - ① $f(x) \leq x^2$, για κάθε $x \in \mathbb{R}$

Συναρτήσεις 6/19 **6.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής και γνησίως αύξουσα. Να δείξετε ότι:

- ① $0<\int_0^{\frac{\pi}{2}}\sigma v \nu x\cdot f(\eta \mu x)\,dx<1$, όταν f(0)=0 και f(1)=1
- $\int_{0}^{1} f(e^{x}) dx < 2$, $\cot x f(e) = 2$
- ③ Aν f(1) = 2, τότε

Λόλας (10^o ΓΕΛ) Συναρτήσεις 7/19

6. Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής και γνησίως αύξουσα. Να δείξετε ότι:

- $0 < \int_0^{\frac{\pi}{2}} \sigma v \nu x \cdot f(\eta \mu x) \, dx < 1$, όταν f(0) = 0 και f(1) = 1
- $\int_{0}^{1} f(e^{x}) dx < 2$, όταν f(e) = 2

6. Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής και γνησίως αύξουσα. Να δείξετε ότι:

- ② $\int_0^1 f(e^x) \, dx < 2$, όταν f(e) = 2
- 3 Αν f(1) = 2, τότε

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 7/19

- ① $0<\int_0^{\frac{\pi}{2}}\sigma v \nu x\cdot f(\eta \mu x)\,dx<1$, όταν f(0)=0 και f(1)=1
- ② $\int_0^1 f(e^x) dx < 2$, όταν f(e) = 2
- 3 Αν f(1) = 2, τότε

 - $\int_{1}^{2} f^{2}(x) dx > 4$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 7/19

6. Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής και γνησίως αύξουσα. Να δείξετε ότι:

- ② $\int_0^1 f(e^x) dx < 2$, όταν f(e) = 2
- 3 Αν f(1) = 2, τότε

 - $\int_{1}^{2} f^{2}(x) dx > 4$

Λόλας $(10^{o}$ ΓΕΛ) Συναρτήσεις 7/19

- **7.** Δίνεται η συνάρτηση $f(x) = 2e^x x^2 x 1$.
 - Να μελετήσετε την f ως προς την κυρτότητα και τα σημεία καμπής

- **7.** Δίνεται η συνάρτηση $f(x) = 2e^x x^2 x 1$.
 - Να μελετήσετε την f ως προς την κυρτότητα και τα σημεία καμπής
 - Nα δείξετε ότι $f(x) \ge x + 1$, για κάθε $x \ge 0$

- **7.** Δίνεται η συνάρτηση $f(x) = 2e^x x^2 x 1$.
 - Να μελετήσετε την f ως προς την κυρτότητα και τα σημεία καμπής
 - Nα δείξετε ότι $f(x) \ge x + 1$, για κάθε $x \ge 0$
 - Να δείξετε ότι:

- **7.** Δίνεται η συνάρτηση $f(x) = 2e^x x^2 x 1$.
 - Να μελετήσετε την f ως προς την κυρτότητα και τα σημεία καμπής
 - Nα δείξετε ότι $f(x) \ge x + 1$, για κάθε $x \ge 0$
 - Να δείξετε ότι:

2
$$\int_{1}^{2} xf(x) dx > \frac{23}{6}$$

3 $\int_{0}^{1} xf(e^{x}) dx > \frac{3}{2}$

- **7.** Δίνεται η συνάρτηση $f(x) = 2e^x x^2 x 1$.
 - Να μελετήσετε την f ως προς την κυρτότητα και τα σημεία καμπής
 - Nα δείξετε ότι $f(x) \ge x + 1$, για κάθε $x \ge 0$
 - Να δείξετε ότι:

 - ② $\int_{1}^{2} x f(x) dx > \frac{23}{6}$ ③ $\int_{0}^{1} x f(e^{x}) dx > \frac{3}{2}$

Συναρτήσεις 8/19

- **7.** Δίνεται η συνάρτηση $f(x) = 2e^x x^2 x 1$.
 - Να μελετήσετε την f ως προς την κυρτότητα και τα σημεία καμπής
 - Nα δείξετε ότι $f(x) \ge x + 1$, για κάθε $x \ge 0$
 - Να δείξετε ότι:

 - $2 \int_{1}^{2} x f(x) dx > \frac{23}{6}$ $3 \int_{0}^{1} x f(e^{x}) dx > \frac{3}{2}$

Συναρτήσεις 8/19 **8.** Εστω $f:[1,e]\to\mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής και ισχύουν:

$$f(x) \geq rac{1}{x} + 1$$
, για κάθε $x \in [1,e]$ και $\int_1^e f(x) \, dx = e$

Nα βρείτε τη συνάρτηση f.

Συναρτήσεις 9/19

9. Να αποδείξετε ότι

$$\frac{4}{3} < \int_0^1 e^{x^2} \, dx < e$$

10/19 Συναρτήσεις

10. Εστω $f:[0,2]\to\mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής με ελάχιστη τιμή 1 και μέγιστη τιμή 3. Να δείξετε ότι:

$$\frac{4}{3} < \int_0^2 f(x) \, dx \cdot \int_0^2 \frac{1}{f(x)} \, dx < 12$$

Συναρτήσεις 11/19

11. Εστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση η οποία είναι θετική και συνεχής. Να δείξετε ότι

$$\int_{2}^{4} f(\frac{x}{2}) \, dx > \int_{1}^{2} x f(x) \, dx$$

12. Εστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής. Αν $\int_0^1 f^2(x) dx = 1$ να δείξετε ότι

$$2 + 3 \int_0^1 f(x) \, dx \ge 0$$

Συναρτήσεις 13/19 **13.** Εστω $f:[0,+\infty)\to\mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής και κυρτή. Να δείξετε ότι:

- **1** f(2x) f(x) > x f'(x), για κάθε x > 0

13. Εστω $f:[0,+\infty)\to\mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής και κυρτή. Να δείξετε ότι:

- **1** f(2x) f(x) > x f'(x), για κάθε x > 0

13. Εστω $f:[0,+\infty)\to\mathbb{R}$ μια συνάρτηση η οποία είναι συνεχής και κυρτή. Να δείξετε ότι:

- **1** f(2x) f(x) > x f'(x), για κάθε x > 0

Συναρτήσεις 14/19

14. Δίνεται η συνάρτηση
$$f(x) = \begin{cases} \dfrac{\ln x}{x-1}, & 0 < x \neq 1 \\ 1, & x=1 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής.

$$\int_{1}^{\alpha} f(x) dx < \frac{1}{\alpha^{2}} \int_{\alpha}^{\alpha^{2}} x f(x) dx$$

Συναρτήσεις 15/19

14. Δίνεται η συνάρτηση
$$f(x) = \begin{cases} \dfrac{\ln x}{x-1}, & 0 < x \neq 1 \\ 1, & x=1 \end{cases}$$

- Να δείξετε ότι η f είναι συνεχής.
- Εστω α ένας σταθερός αριθμός με $\alpha \in (0,1)$. Να δείξετε ότι:

$$\int_{1}^{\alpha} f(x) \, dx < \frac{1}{\alpha^2} \int_{\alpha}^{\alpha^2} x f(x) \, dx$$

Συναρτήσεις 15/19

- **15.** Εστω $f:[1,+\infty)\to\mathbb{R}$ μια συνεχής συνάρτηση με f(1)=0 και xf'(x) > 1, για κάθε x > 1.
 - Να δείξετε ότι $f(x) \ge \ln x$, για κάθε $x \ge 1$

Λόλας (10^o ΓΕΛ) Συναρτήσεις 16/19

- **15.** Εστω $f:[1,+\infty)\to\mathbb{R}$ μια συνεχής συνάρτηση με f(1)=0 και xf'(x) > 1, για κάθε x > 1.
 - Να δείξετε ότι $f(x) \ge \ln x$, για κάθε $x \ge 1$
 - Να δείξετε ότι η εξίωση $(x-1)\int_1^e rac{f(x)}{e-1}\,dx=1$ έχει μία τουλάχιστη λύση στο (1, e)

Συναρτήσεις 16/19 **16.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 0, η οποία είναι παραγωγίσιμη και ισχύει $f'(x)>2\left(xf(x)+e^{x^2}\right)$, για κάθε $x\in\mathbb{R}$. Να δείξετε ότι:

- **1** $f(x) \ge 2xe^{x^2}$, για κάθε $x \in [0,1]$

Συναρτήσεις 17/19 **16.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 0, η οποία είναι παραγωγίσιμη και ισχύει $f'(x)>2\left(xf(x)+e^{x^2}\right)$, για κάθε $x\in\mathbb{R}$. Να δείξετε ότι:

- **1** $f(x) \ge 2xe^{x^2}$, για κάθε $x \in [0,1]$

Συναρτήσεις 17/19

- **16.** Εστω $f: \mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0) = 0, η οποία είναι παραγωγίσιμη και ισχύει $f'(x)>2\left(xf(x)+e^{x^2}\right)$, για κάθε $x\in\mathbb{R}$. Να δείξετε ότι:
 - **1** $f(x) \ge 2xe^{x^2}$, για κάθε $x \in [0,1]$
 - 2 $\int_0^1 f(x) dx > e 1$
 - \blacksquare Η εξίσωση $x \int_0^x f(x) dx = e x$ έχει ακριβώς μία ρίζα στο (0,1)

Συναρτήσεις 17/19

- **17.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0)=0, η οποία είναι κυρτή με f'(1) = 3. Να δείξετε ότι:
 - ① $f(x) \leq 3x$, για κάθε $x \in [0,1]$

Συναρτήσεις 18/19

- **17.** Εστω $f:\mathbb{R} \to \mathbb{R}$ μια συνάρτηση με f(0)=0, η οποία είναι κυρτή με f'(1) = 3. Να δείξετε ότι:
 - ① $f(x) \leq 3x$, για κάθε $x \in [0,1]$
 - Υπάρχει μοναδικό $lpha\in(0,1)$ τέτοιο ώστε $lpha\int_0^1f(x^2)\,dx=2lpha-1$

Συναρτήσεις 18/19

- **18.** Δίνεται η συνάρτηση $f(x) = \ln(1 + e^x)$. Να δείξετε ότι:
 - Η συνάρτηση f είναι γνησίως αύξουσα και κυρτή

Συναρτήσεις 19/19

- **18.** Δίνεται η συνάρτηση $f(x) = \ln(1 + e^x)$. Να δείξετε ότι:
 - Η συνάρτηση f είναι γνησίως αύξουσα και κυρτή

Συναρτήσεις 19/19

- **18.** Δίνεται η συνάρτηση $f(x) = \ln(1 + e^x)$. Να δείξετε ότι:
 - Η συνάρτηση f είναι γνησίως αύξουσα και κυρτή

 - ③ Υπάρχει μοναδικό $\theta \in (0,1)$ τέτοιο ώστε $4\int_0^{\theta} f(x) \, dx = 4f(\theta) \theta + 1$

Συναρτήσεις 19/19