Institut für Agrarwissenschaften D-USYS ETH Zürich

751-7602-00 V Prüfung

Angewandte Statistische Methoden in den Nutzierwissenschaften

FS 2017

Name:

Legi-Nr:

Aufgabe	Maximale Punktzahl	Erreichte Punktzahl
1	10	
2	16	
3	14	
4	22	
Total	62	

Aufgabe 1: Genomische Selektion

a) In der genomischen Selektion werden häufig Zielgrössen verwendet, welche auf BLUP-Zuchtwerten basieren. Was wird in der klassischen Zuchtwertschätzung als Zielgrösse verwendet? Wo liegen die Vorund die Nachteile der jeweilen verwendeten Zielgrössen? Füllen Sie die nachfolgende Tabelle aus und geben Sie je einen Vor- und einen Nachteil der Zielgrössen in der klassischen Zuchtwertschätzung und der genomischen Selektion an.

6

Lösung:

Punkt	klassische Zuchtwertschätzung	Genomische Selektion
Zielgrössen		
Vorteile		
Nachteile		
racincine		

b)	Angenommen wir würden rohe BLUP-Zuchtwerte als Zielgrössen in der genomischen Zuchtwertschätzung
	verwenden, welche Nachteile hätte das? Nennen Sie zwei Nachteile.

 $\mathbf{2}$

c)	Wie lautet die	Korrekturmassn	ahme zur	Behebung	${\rm der} \ {\rm unter}$	Aufgabe b)	genannten	Nachteile	und a	uf
	welcher Grösse	e basiert diese Ma	assnahme'	?						

 $\mathbf{2}$

Aufgabe 2: Lineare Regression

Wir haben den gleichen Datensatz mit zwei unterschiedlichen linearen Regressionsmodellen analysiert. Der R-Output dieser beiden Analysen ist nachfolgend als Output A und Output B gegeben.

Output A

```
##
## Call:
## lm(formula = y ~ X1, data = dfSimData)
##
## Residuals:
##
      Min
                1Q Median
                                3Q
                                       Max
## -4.2899 -1.4864 0.2526 1.2982 4.6501
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.8929
                            2.6536 -0.713
                                              0.482
                 4.0680
                            0.8675
                                     4.689 6.49e-05 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.108 on 28 degrees of freedom
## Multiple R-squared: 0.4399, Adjusted R-squared: 0.4199
## F-statistic: 21.99 on 1 and 28 DF, p-value: 6.487e-05
```

Output B

```
##
## lm(formula = y ~ -1 + X1, data = dfSimData)
## Residuals:
      Min
               1Q Median
                               30
                                      Max
## -4.0925 -1.4013 -0.0846 1.6308 4.3171
##
## Coefficients:
##
     Estimate Std. Error t value Pr(>|t|)
## X1
       3.4557
                  0.1247
                           27.71
                                   <2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.09 on 29 degrees of freedom
## Multiple R-squared: 0.9636, Adjusted R-squared: 0.9623
## F-statistic: 767.6 on 1 and 29 DF, p-value: < 2.2e-16
```

a)	Geben	Sie die	Formeln	${\rm der}$	beiden	statistischen	Modelle ar	, welch	e zu	Output	A ur	nd Outp	ut E	geführt
	hahen	Wo lie	egt der ha	unt	sächlick	ne Unterschie	d zwischen	den be	iden	Modelle	n o			

Plot 1

Plot 2

- Plot 1 gehört zu OutputPlot 2 gehört zu Output

Plot 1

Plot 2

Aufgabe 3: LASSO und Bayes

a) In der genomischen Zuchtwertschätzung sind die SNP-Genotypen die hauptsächliche Informationsquelle. Für die statistische Modellierung dieser Daten können wir ein einfaches lineares Regressionsmodell verwenden. Weshalb kann bei der genomischen Zuchtwertschätzung Least Squares nicht als Schätzmethode verwendet werden?

b)	LASSO (1	Least	Absolute Sh	rinkage a	nd Selection	Operator)	ist eine .	Alternative z	zu Least S	quares.	${\rm Worin}$
	untersche	eiden s	sich LASSO	und Leas	st Squares?						

- c) Unterschiede zwischen Bayesianer und Frequentisten
 - Frequentisten unterscheiden in einer statistischen Analyse zwischen Daten und Parameter. Wie lautet die äquivalente Unterscheidung in einer Bayes'schen Analyse?
 - Fehlende Daten werden in einer frequentistischen Datenanalyse ignoriert. Was passiert damit in einer Bayes'schen Analyse
 - Aus welchem Grund muss die Bedingung n>p in einer Bayes'schen Analyse nicht gelten?

d)	In einer Bayes'schen	Analyse basieren die Schätzung der unbel	kannten Grössen auf der sogenannten a
	nosteriori-Verteilung	Aug welchen Komponenten besteht diese	a nosteriori Verteilung

Aufgabe 4: Genomisches BLUP

a) Worin besteht der Unterschied zwischen RR-BLUP und GBLUP und wie werden die SNP-Informationen in RR-BLUP und in GBLUP berücksichtigen?

b)	Wenn wir uns die	e Grösse der	entstehenden	Gleichungssysteme	anschauen,	welche Methode RR-BLU	Ρ
	oder CRLUP ergi	iht die kleine	eren Gleichung	rssysteme? Regriina	len Sie Ihre	Antwort	

c) Gegeben ist der folgende Datensatz. Bei allen SNPs nehmen wir an, dass G_1 das Allel mit der positiven Wirkung sei. Stellen Sie die Modelle und die Gleichungssysteme für RR-BLUP auf. Verwenden Sie bei den Gleichungssystemen so weit als möglich die im Datensatz gegebenen Zahlenwerte. Als fixen Effekt können Sie ein allgemeines Mittel μ annehmen. Das Verhältnis zwischen Restvarianz und genetischer Varianz λ betrage $\lambda=1$.

	Tier 1	Tier 2
SNP1	G_0G_0	G_1G_1
SNP2	G_0G_1	G_0G_1
SNP3	G_0G_0	G_1G_1
y	5.2	31.99

d)	Verwenden Sie den	gleichen Datensatz	und die gleichen	Annahmen,	wie unter	Aufgabe 4c)	und stellen
	sie das Modell und	das Gleichungssyste	em gleich wie in	Aufgabe 4c,	aber für G	BLUP auf.	