AT4: NOTIONS SUR LA LIAISON CHIMIQUE

Après avoir étudié la configuration électronique des différents atomes, nous allons nous intéresser à la mise en place des liaisons chimiques et à leur nature.

En effet mise à part les gaz nobles tous les éléments existent à l'état combiné sous forme de molécule.

I. Théorie de Lewis : la liaison covalente.

Cette théorie, bien que de nos jours remplacée par la théorie quantique, permet d'aborder simplement la liaison chimique et d'associer des schémas représentatifs aux édifices atomiques.

I.1. Définition d'une liaison covalente.

Une liaison covalente est une mise en commun de deux électrons (doublets de liaison). Les éléments qui s'associent fournissent chacun un électron de valence et la liaison est localisée entre les deux atomes.

On appelle <u>valence d'un atome</u> le nombre de liaisons que peut engager cet atome. On peut également dire que c'est le nombre d'atomes d'hydrogène que l'on peut unir à cet atome.

I.2. Schéma de Lewis des atomes

Le chimiste américain Gilbert Newton Lewis (1875-1945) a remarqué que seuls les électrons des couches externes de l'atome intervenaient dans la liaison, en laissant intacts les électrons des couches internes.

							He Hélium $Z=2$ $1s^2$
Ŀi	Be	$\overline{\mathrm{B}}$.	• <u>C</u> •	• <u>N</u> •	<u>.</u>	ı F •	INel
Lithium	Bérylium	Bore	Carbone	Azote	Oxygène	Fluor	Néon
Z=3	Z=4	Z=5	Z=6	Z=7	Z=8	Z=9	Z = 10
2 <i>s</i> ¹	$2s^2$ $\uparrow \downarrow$	$\frac{2s^2}{2p^1}\uparrow\downarrow$	$\frac{2s^2}{2p^2} \uparrow \downarrow$	$\frac{2s^2}{2p^3} \uparrow \downarrow$	$\frac{2s^2}{2p^4} \uparrow \downarrow \uparrow \uparrow$	$\frac{2s^2}{2p^5} \uparrow \downarrow \downarrow \uparrow \downarrow \uparrow$	$\begin{array}{c} 2s^2 \uparrow \downarrow \\ 2p^6 \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \end{array}$
Ňa	Mg	Āl•	• S i•	• <u>P</u> •	• <u>s</u> •	ıĒ1•	lĀrl
Sodium	Magnésium	Aluminium	Silicium	Phosphore	Soufre	Chlore	Argon
Z = 11	Z = 12	Z = 13	Z = 14	Z = 15	Z = 16	Z = 17	Z = 18
3 <i>s</i> ¹ ↑	3 <i>s</i> ² ↑↓		$\frac{3s^2}{3p^2} \uparrow \downarrow$ $\frac{1}{3p^2} \uparrow \uparrow$	$\frac{3s^2}{3p^3} \uparrow \downarrow \uparrow$	$\frac{3s^2}{3p^4} \uparrow \downarrow \uparrow$	$\frac{3s^2}{3p^5} \uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \uparrow$	$\frac{3s^2}{3p^6} \uparrow \downarrow \downarrow \uparrow \downarrow \uparrow \downarrow \downarrow \uparrow \downarrow \downarrow$

Configuration électronique externe des atomes.

• électron célibataire, paire électronique

I.3. Règle de l'octet

• Règle:

Chaque atome tend, en se liant, à acquérir la structure électronique externe du gaz rare le plus proche dans la classification périodique.

Soit : pour la plupart des éléments 8 électrons externes

pour les éléments voisins de l'hélium (H, Li, Be, B) 2 électrons externes.

• Exemples :

* La molécule d'eau ₁H : 1s¹ ₈O : 2s²2p⁴

L'atome d'oxygène est divalent : Deux électrons s'apparient. L'atome d'hydrogène est monovalent : Un électron s'apparie.

$$H - \overline{O} - H$$

* La molécule de dioxygène : 80 : 2s²2p⁴

L'atome d'oxygène est divalent : Deux électrons s'apparient.

$$O = O$$

* La molécule de diazote : 7N : 2s²2p³

L'atome d'azote est trivalent : Trois électrons s'apparient.

$$\overline{N} \equiv N$$

Attention, ces schémas ne nous renseignent absolument pas sur la géométrie de la molécule.

I.4. La promotion de la valence; la lacune électronique

L'existence de certaines molécules ne peut être comprise que si l'un des atomes est dans un état excité, un électron étant « promu » à un sous niveau d'énergie supérieur.

* <u>La molécule de dioxyde de carbone</u> : $_6C$: $_6C$: $_6C$: $_6C$:

Cette divalence naturelle du carbone est exceptionnelle. Dans tous les composés l'atome de carbone est tétravalent. Cela suppose le passage par un état excité 2s¹2p³ de valence quatre :

$$\bullet \overset{\bullet}{\mathsf{C}} \bullet \Rightarrow \overset{\bullet}{\mathsf{Q}} = \mathsf{C} = \overset{\bullet}{\mathsf{Q}}$$

La règle de l'octet est ainsi satisfaite.

* La molécule de chlorure d'aluminium $_{13}AI:3s^23p^1\Rightarrow \mid AI \bullet$

Cela suppose une monovalence.

On ne peut interpréter l'existence de AlCl₃ que par le passage de l'atome Al dans un état excité 3s¹3p² de valence trois:

$$\stackrel{\bullet}{\mathsf{A}} \stackrel{\bullet}{\mathsf{I}} \stackrel{\rightarrow}{\bullet} \stackrel{|\overline{\mathsf{CI}}}{\overset{-}{\mathsf{A}}} \stackrel{|\overline{\mathsf{CI}}|}{\overset{-}{\mathsf{C}}} \stackrel{|}{\mathsf{C}} \stackrel{|}{\mathsf{I}}$$

On constate alors que le chlore est bien entouré de huit électrons, mais que l'aluminium n'est entouré que de six électrons : il existe une <u>lacune électronique</u> notée □:un manque de doublet. Une telle molécule sera avide d'électrons, elle constitue <u>un acide de Lewis</u>.

* Association du chlorure d'aluminium et de l'ammoniac :

On constate que dans la molécule d'ammoniac, l'hydrogène est bien entouré de deux électrons, l'azote est bien entouré de huit électrons mais deux d'entre eux ne sont pas engagés dans une liaison. Il existe un **doublet non liant** notée — un doublet « disponible ».

Une telle molécule cédera facilement ses électrons, elle constitue <u>une base de Lewis</u>. La liaison ainsi formée entre l'aluminium et l'azote, où seul l'azore apporte le doublet, est appelée **liaison de coordination.**

I.5. Dépassement de la règle de l'octet

• Cette règle comporte de nombreuses exceptions, on connaît par exemple des molécules telles :

PCI₅ ou SF₆

₁₅P 3s²3p³ : la valence trois permet de prévoir PCl₃ et non PCl₅.

₁₆S 3s²3p⁴: on attend une valence deux.

Or P s'entoure de 10 électrons dans PCl₅, S de 12 électrons dans SF₆.

Ceci s'explique, à partir de la période n = 3 ($Z \ge 11$), par l'apparition des orbitales d.

Ainsi pour P et S, on dispose des niveaux 3s 3p 3d permettant théoriquement d'atteindre 18 électrons. Mais l'énergie bien supérieure des 3d par rapport aux 3s et 3p fait qu'il est rare que les niveaux 3d soient utilisés.

C'est néanmoins le cas pour PCI₅ et SF₆ :

P est dans l'état excité 3s¹3p³3d¹ : valence 5 et S est dans l'état excité 3s¹3p³3d² : valence 6.

II. La charge formelle

II.1. Mise en évidence

* L'ion ammonium +NH4 : 7N : 2s22p3

Dans la molécule NH₃ il y a un doublet libre sur l'atome d'azote, ce qui permet de former une liaison de coordination avec un proton H⁺.

Rien ne distingue une liaison de coordination d'une autre liaison de covalence. Les quatre hydrogènes sont équivalents et l'azote est bien entouré de huit électrons. Néanmoins le nombre d'électrons « propres » à l'azote n'est plus que de quatre (nombre de liaisons divisé par deux), alors qu'il en possédait cinq initialement.

Il lui est associé la charge formelle +.

* <u>AICl</u> : Nous avons montré que la molécule AICl₃ possède une lacune électronique sur l'aluminium. D'où le schéma :

$$|\overline{\underline{CI}} - \overline{\underline{CI}}| \qquad |\overline{\underline{CI}} - \overline{\underline{CI}}| \rightarrow |\overline{\underline{CI}} - \overline{\underline{AI}} - \overline{\underline{CI}}| \qquad +CI^-$$

II.2. Charge formelle

• Calcul du nombre de charge formelle : n_F.

Dans le cas général n_F est égal au nombre initial d'électrons de la couche externe de valence de l'atome libre : n_O , moins le nombre propre d'électron de l'atome lié, soit sous forme d'électrons non liants : n_{NL} , soit sous forme d'électrons de liaison : $1/2n_L$.

$$n_F = n_O - (n_{NL} + \frac{1}{2}n_L)$$

• Exemples :

$$* \ ^{+}NH_{4} : pour \ l'atome \ d'azote \ n_{O} = 5$$

$$n_{NL} = 0 \qquad \Rightarrow n_{F} = 5 \cdot (0 + \frac{1}{2} \, 8) = +1$$

$$n_{L} = 8$$

$$* \ ^{-}AlCl_{4} : pour \ l'atome \ Al \qquad n_{O} = 3$$

$$n_{NL} = 0 \qquad \Rightarrow n_{F} = 3 \cdot (0 + \frac{1}{2} \, 8) = -1$$

$$n_{L} = 8$$

$$* \ H_{3}O^{+} : pour \ l'atome \ d'oxygène \ n_{O} = 6$$

$$n_{NL} = 2 \qquad \Rightarrow n_{F} = 6 \cdot (2 + \frac{1}{2} \, 6) = +1$$

$$n_{L} = 6 \qquad \Rightarrow n_{F} = 3 \cdot (0 + \frac{1}{2} \, 8) = -1$$

$$|Cl| = |Cl| = |Cl$$

III. Caractéristiques d'une liaison covalente

III.1. Energies de liaisons

Comme nous venons de le voir, les atomes s'associent entre eux pour gagner en stabilité. LA liaison covalente leurs permet d'obtenir par la mise en commune d'un doublet d'électron la structure du gaz noble le plus proche (règle de l'octet)

La molécule (le cation si l'édifice est chargé positivement, ou l'anion s'il est négative) dans laquelle les atomes sont en interaction est plus stable.

LA nature évoluant spontanément vers des états de plus base énergie, l'énergie de la molécule sera plus négative que celle des atomes qui la composent pris séparément.

On peut mesurer cette énergie en regardant l'énergie qu'il faut fournir pour rompre une liaison.

Définition

On appelle énergie de liaison, l'énergie à fournir pour rompre la liaison existant entre deux atomes ou groupement d'atomes. Toutes les espèces sont en phase gazeuse.

$$AB_{(q)} \rightarrow A_{(q)} + B_{(q)}$$

L'énergie de liaison entre les groupements AB est notée D_{AB} et est généralement exprimée en kJ/mol.

• Quels exemples :

Liaison	H ₂	O ₂	N_2	F_2	Cl ₂	HF	HCI	HBr
D _{AB} (kJ/mol)	432	494	942	155	240	565	428	362

Il est important de retenir que l'ordre de grandeur d'une énergie de liaison est de quelques centaines de kJ/mol.

Lorsque les liaisons sont multiples l'énergie de liaison augmente en effet les interactions entre les atomes sont beaucoup plus fortes :

	H₃C-CH₃	H ₂ C=CH ₂	HC≡CH
D _{CC} (kJ/mol)	346	602	835

	H_2N-NH_2	HN=NH	N≡N
D _{NN} (kJ/mol)	167	418	942

III.2. Géométrie des molécules et des ions

Les édifices polyatomiques sont caractérisés par une géométrie précise :

- distances interatomiques
- arrangement spatial
- angles entre les liaisons

-..

Des méthodes permettent de déterminer ces grandeurs

• <u>Distances interatomiques</u>

Quels exemples:

Liaison	H ₂	O ₂	N_2	F ₂	Cl ₂	HF	HCI	HBr
d _{AB} (pm)	75	121	142	142	199	92	127	141

	H ₃ C-CH ₃	H ₂ C=CH ₂	HC≡CH	
d _{CC} (pm)	154	134	120	
	H ₂ N-NH ₂	HN=NH	N≡N	
d _{NN} (pm)	145	125	110	

On note que la distance interatomique dépend de la nature des atomes en interaction mais aussi de la structure de l'édifice, de la multiplicité de la liaison.

• Arrangement spatial

L'arrangement des atomes de la molécule dans l'espace répond à des règles qui ne sont pas à notre programme.

Remarquons simplement que pour des formules comparables, les arrangements spatiaux peuvent être différents.

Par exemple la molécule CO₂ est linéaire tandis que les molécules H₂O ou SO₂ sont coudées La molécule NH₃ forme une pyramide tandis que la molécule BH₃ est plane.

IV. Polarité des molécules

IV.1. Notion de moment dipolaire électrostatique

• Dipôle électrique ou électrostatique : sys

système de deux charges opposées +q et - q placées respectivement en deux points P et N rapprochés. (La distance NP = a est très faible devant toutes les distances du problème).

• <u>Le moment dipolaire</u> (ou le moment du dipôle) $\vec{\mu} = q \overrightarrow{NP}$

Unités

→ USI : Coulomb mètre : C.m

→ Chimie : on utilise de Debye : 1D =
$$\frac{1}{3}$$
10⁻²⁹ C.m (d = 1Å = 10⁻¹⁰ m, e = 1.6010⁻¹⁹ C)

IV.2. Cas d'une molécule diatomique

• Molécule diatomique homoatomique

Dans une molécule diatomique homoatomique telle que H₂ ou Cl₂ les deux électrons qui forment la liaison sont également distribués entre les deux atomes puisque les atomes sont identiques. Il n'existe donc pas de moment dipolaire dans H₂ ou Cl₂.

Ces deux molécules ne présentent pas de moment dipolaire la liaison est dite covalente pure.

• Molécule diatomique hétéroatomique

Lorsque qu'une molécule est constituée de deux atomes d'électronégativité différente.

Les électrons seront attirés par l'atome le plus électronégatif, les électrons ne seront plus également répartis entre les deux atomes, il y aura un déséquilibre de charge plus ou moins important en fonction de la différence d'électronégativité qui existe entre les deux atomes. Ceci se traduira par l'existence d'un moment dipolaire. On dit que la liaison est polaire

L'atome possédant un excès d'électron sera repéré par le symbole -δe.

L'atome dépossédé de ses électrons sera repéré par le symbole $+\delta e$.

Ainsi le moment dipolaire de la molécule est $\vec{\mu} = \delta e \; \overrightarrow{AB}$ La norme du moment dipolaire est $\mu = \delta e d_{AB}$

- μ moment dipolaire de la liaison, en C.m ou en debye
- δ degré d'ionisation partielle de la liaison (0 < δ < 1).
- e charge élémentaire (e = $1,6.10^{-19}$ C).
- d_{AB} longueur de la liaison, en m.

D'où : $\delta = \frac{\mu}{\text{ed}_{AB}}$. Si $\delta = 0$, la liaison est purement covalente et si $\delta = 1$, la liaison est purement ionique.

• Exemple : HCl

Densité électronique autour de la molécule HCl

$$\begin{split} &\mu_{\text{exp}} = 1.07 \text{ D} = 3.57 \ 10^{\text{-}30}\text{C.m} \\ &d = 136 \text{ pm} \\ &\mu = \delta \text{ed} \\ &\delta = 3.57 \ 10^{\text{-}30} \ / 1.6 \ 10^{\text{-}19} \! / \! 136 \ 10^{\text{-}12} \! = 0.16 \\ &\text{La liaison H-CI est ionique à 16\%} \end{split}$$

Moment dipolaire expérimental de quelques molécules

composé	μ (D)
HF	1.826
HCI	1.109
HBr	0.827
Н	0.448

IV.3. Molécules polyatomiques

La géométrie d'une molécule ainsi que l'électronégativité des atomes permettent d'évaluer la polarisation de celle-ci. Certaines molécules sont polaires et d'autres apolaires (ou non polaires : leur moment dipolaire est nul). Chacune des m liaisons de la molécule $\mathsf{AX_m}$ possède un moment dipolaire $\overrightarrow{\mu_t}$ lorsque les atomes A et X ont des électronégativités différentes.

Le moment dipolaire de la molécule est alors la somme vectorielle de tous les moments individuels :

$$\vec{\mu} = \Sigma \vec{\mu}_1$$

• Molécules apolaires

Dans les molécules apolaires, le moment dipolaire doit être nul ; G+ (barycentre des charges positive) est confondu avec G- (barycentre des charges négatives).

C'est le cas des molécules diatomiques A_2 (H_2 , O_2 ..) et des molécules polyatomiques symétriques (CO_2 , BeH_2 , BH_3 ... possèdent un centre de symétrie).

Molécules polaires

Dans de nombreux cas, les molécules présentent un moment dipolaire qui traduit le fait que le barycentre des charges positives et celui des charges négatives ne sont pas confondus.

Exemples

• La molécule d'eau $d_{OH} = 95.7~pm$ angle H-O-H $\,\alpha = 104.5^{\circ}$ $\,\mu = 1,85~D$

• Autres exemples

Electronégativité

H	С	N	F	CI
2,20	2,55	3,04	3,98	3,16

• Quelques valeurs

composé	μ (D)
H₂O	1.855
H₂S	0.978
NH ₃	1.472

composé	μ (D)
СО	0.110
CO ₂	0
NO	0.159
NO ₂	0.316
SO ₂	1.633

AT4 NOTIONS SUR LA LIAISON CHIMIQUE

I. Théorie de Lewis : la liaison covalente	1
I.1. Définition d'une liaison covalente.	. 1
I.2. Schéma de Lewis des atomes	
I.3. Règle de l'octet	
I.4. La promotion de la valence; la lacune électronique	
I.5. Dépassement de la règle de l'octet	.3
II. La charge formelle	.3
II.1. Mise en évidence	.3
II.2. Charge formelle	.3
III. Caractéristiques d'une liaison covalente	4
III.1. Energies de liaisons	.4
III.2. Géométrie des molécules et des ions	5
IV. Polarité des molécules	5
IV.1. Notion de moment dipolaire électrostatique	.5
IV.2. Cas d'une molécule diatomique	.5
IV.3. Molécules polyatomiques	. 7