MATH 225A: Metamathmatics

Jad Damaj

Fall 2022

Contents

1	Str	ictures and Theories	3
	1.1	August 25	3
		1.1.1 Review	3
		1.1.2 Definable Sets	1
2	Bas	ic Techniques	6
	2.1	August 30	6
		2.1.1 Compactness Theorem	
	2.2	September 1	
		2.2.1 Compactness	7
	2.3	September 6	
		2.3.1 Complete Theories	
	2.4	September 8	
		2.4.1 Complete Theories	
		2.4.2 Up and Down	
	2.5	September 13	
		2.5.1 Up and Down	

Chapter 1

Structures and Theories

1.1 August 25

1.1.1 Review

Definition 1.1.1. A language \mathcal{L} consists of $\{\mathcal{C}, \mathcal{R}, \mathcal{F}\}$ where \mathcal{C} is the set of constant symbols, \mathcal{R} is the set of relation symbols, \mathcal{F} is the set of function symbols, and and arity function $n : \mathcal{R} \cup \mathcal{F} \to \mathbb{N}$. For $R \in \mathcal{R}$, n_R is the arity of R, for $f \in \mathcal{F}$, n_f is the number of inputs f takes.

Definition 1.1.2. An *L*-structure consist of

- \bullet a set M called the domain
- an element $c^{\mathcal{M}}$ for each $c \in \mathcal{C}$
- a subset $R^{\mathcal{M}} \subseteq M^{n_R}$ for each $R \in \mathcal{R}$
- a function $f^{\mathcal{M}}: M^{n_f} \to M$ for each $f \in \mathcal{F}$

denoted $\mathcal{M} = (M : \{c^{\mathcal{M}} : c \in \mathcal{C}\}, \{R^{\mathcal{M}} : R \in \mathcal{R}\}, \{f^{\mathcal{M}} : f \in \mathcal{F}\})$

Definition 1.1.3. An \mathcal{L} -embedding $\eta: \mathcal{M} \to \mathcal{N}$ is a one to one function $M \to N$ that preserves interpretation

eg.
$$\eta(c^{\mathcal{M}}) = c^{\mathcal{N}}, \, \eta(f^{\mathcal{M}})(m_1, \dots, m_{n_f}) = f^{\mathcal{N}}(\eta(m_1), \dots, \eta(m_{n_f})),$$

 $(m_1, \dots, m_{n_R}) \in R^{\mathcal{M}} \iff (\eta(m_1), \dots, \eta(m_n)) \in R^{\mathcal{N}}$

Definition 1.1.4. An \mathcal{L} -isomorphim is an \mathcal{L} -embedding that is onto.

Definition 1.1.5.
$$\mathcal{M}$$
 is a substructure if \mathcal{N} , written $\mathcal{M} \subseteq \mathcal{N}$ if: $c^{\mathcal{M}} = c^{\mathcal{N}}, f^{\mathcal{M}} = f^{\mathcal{N}} \upharpoonright M^{n_f}, R^{\mathcal{M}} = R^{\mathcal{N}} \cap M^{n_R}$

First Order language:

• Use symbols:

1.1. AUGUST 25 225A: Metamathmatics

- $-\mathcal{L}$
- Logical symbols: connectives (\land, \lor, \neg) , quantifiers (\forall, \exists) , equality (=), variables (v_0, v_1, \ldots)
- paranthesis and commas
- terms
 - -c: constants
 - $-v_i$: variables
 - $-f(t_1,\ldots,t_{n_f})$ for terms t_1,\ldots,t_{n_f}
- given an \mathcal{L} -structure \mathcal{M} , a term $t(v_0,\ldots,v_n)$, and $m_0,\ldots,m_n\in M$ we inductively define $t^{\mathcal{M}}(m_0,\ldots,m_n)$
- atomic formulas: $t_1 = t_2$ and $R(t_1, \ldots, t_{n_R})$
- \mathcal{L} -formulas: If $\phi and \psi$ are \mathcal{L} -formulas, then so are: $\neg \phi$, $(\phi \land \psi)$, $(\phi \lor \psi)$, $\exists v \phi$, $\forall v \phi$

Definition 1.1.6. We say a variable v occurs freely in ψ when it is not in a quantifier $\forall v$ or $\exists v$

ullet an \mathcal{L} -sentence is an \mathcal{L} -formula with no free variables

Definition 1.1.7. A theory is a set of \mathcal{L} -sentences

Definition 1.1.8. Given an \mathcal{L} -formla $\psi(v_1, \ldots, v_k)$, \mathcal{L} -structure \mathcal{M} , $m_1, \ldots, m_k \in M$ we can define $\mathcal{M} \models \phi(m_1, \ldots, m_k)$ inductively. We say (m_1, \ldots, m_k) satisfies ϕ in \mathcal{M} or ϕ is true in $\mathcal{M}, m_1, \ldots, m_k$.

• A theory T is satisfiable if it has a model \mathcal{M} , eg. \mathcal{M} such that $\mathcal{M} \models \phi$ for $\phi \in T$

Proposition 1.1.9. If $\mathcal{M} \subseteq \mathcal{N}$, $\phi(\overline{v})$ is quantifier free, $\overline{m} \in M$, then $\mathcal{M} \models \phi(\overline{m}) \leftrightarrow \mathcal{N} \models \phi(\overline{m})$.

Definition 1.1.10. \mathcal{M} is elementarily equivalent to \mathcal{N} if for all \mathcal{L} -sentences ϕ , $\mathcal{M} \models \phi \leftrightarrow \mathcal{N} \models \phi$, denoted $\mathcal{M} \equiv \mathcal{N}$

- Th(\mathcal{M}), the full theory of \mathcal{M} , is $\{\phi \ \mathcal{L} \text{sentence } | \mathcal{M} \models \phi\}$
- $\mathcal{M} \equiv \mathcal{N} \iff \mathrm{TH}(\mathcal{M}) = \mathrm{Th}(\mathcal{N})$
- A class of \mathcal{L} -structures \mathcal{K} is elementary if there is a theory T such that \mathcal{K} is the class of all \mathcal{M} such that $\mathcal{M} \models T$.

Logical implication: $T \models \phi$ if for every $\mathcal{M} \models T$, $\mathcal{M} \models \phi$ Gödels Completeness Theorem: $T \models \phi \leftrightarrow$ there is a formal proof for $T \vdash \phi$ 1.1. AUGUST 25 225A: Metamathmatics

1.1.2 Definable Sets

Definition 1.1.11. $X \subseteq M^n$ is definable if there is an \mathcal{L} -formula $\phi(v_1, \dots, v_n, w_1, \dots, w_m)$ and $b_1, \dots, b_m \in M$ such that $\forall \overline{a}, \overline{a} \in X \leftrightarrow \mathcal{M} \models \phi(\overline{a}, \overline{b})$ (definable over \overline{b})

• Given $A \subseteq M$, X is definable over A, or A-definable, if it is definable over \bar{b} for some $\bar{b} \in A$.

Proposition 1.1.12. Suppose $\mathcal{D} = (D_n : n \in \omega)$ is the smallest collection of subsets $D_n \subseteq \mathcal{P}(M^n)$ such that

- $M^n \in D_n$
- D_n is closed under union, intersection, complement, permutation
- if $X \in D_{n+1}$, then $\pi(X) \in D_n$ where $\pi(m_1, \dots, m_{n+1}) = (m_1, \dots, m_n)$
- $\{\bar{b}\}\in D_n \text{ for } \bar{b}\in M^n$
- $R^{\mathcal{M}} \in D_{n_R}$, $\operatorname{graph}(f) \in D_{n_f+1}$
- if $X \in D_n$, $M \times X \in D_{n+1}$
- $\{(m_1, \ldots, m_n) : m_i m_i\} \in D_n$

Then $X \subseteq \mathcal{M}^n$ is definable $\leftrightarrow X \in D_n$

Chapter 2

Basic Techniques

2.1 August 30

2.1.1 Compactness Theorem

Theorem 2.1.1 (Compactness). If T is finitely satisfiable, then T has a model \mathcal{M} . Furthermore, $|\mathcal{M}| \leq |\mathcal{L}| + \aleph_0$

 \bullet T is finitely satisfiable if every finite subset is satisfiable

Compactness II: if $T \models \phi$, then there is finite $T_0 \subset T$ such that $T_0 \models \phi$ $T \models \phi \leftrightarrow T \cup \{\neg \phi\}$ is not satisfiable

Proposition 1: If T is finitely satisfiable, maximal, and has the witness property, then T has a model \mathcal{M} with $|\mathcal{M}| \leq |\mathcal{L}|$

Proposition 2: If T is finitely satisfiable, then there is $\mathcal{L}^* \supseteq \mathcal{L}$ and an \mathcal{L}^* -theory $T^* \supseteq T$ such that T^* is finite; satisfiable, maximal, and has the witness property. Further, $|\mathcal{L}^*| \leq |\mathcal{L}| + \aleph_0$

Definition 2.1.2. • T is maximal if for any sentence ϕ , either $\phi \in T$ or $\neg \phi \in T$

• T has the witness property if for all \mathcal{L} -formulas $\phi(v)$ there is a constant c_{ϕ} such that $\exists v \phi(v) \rightarrow \phi(c_{\phi}) \in T$

Lemma 1: If T is maximal and finitely satisfiable, if there is finite $\Delta \subseteq T$ such that $\Delta \models \phi$, then $\phi \in T$.

Proof. If $\phi \notin T$, $\neg \phi \in T$. Since $\Delta \models \phi$, $\Delta \cup \{\neg \phi\}$ is not satisfiable, contradicting our assumption.

Henekin Construction:

We want to define $\mathcal{M} = (M, c^{\mathcal{M}}, R^{\mathcal{M}}, f^{\mathcal{M}})$

- Let $M = \mathcal{C}/\sim$ where \mathcal{C} is the set of constant symbols and \sim is the equivalence relation defined by $c_1 \sim c_2 \leftrightarrow c_1 = c_2 \in T$
- $R^{\mathcal{M}} \subseteq M^{n_R}$ by $(c_1^*, \dots, c_{n_R}^*) \in R^{\mathcal{M}} \leftrightarrow R(c_1, \dots, c_n) \in T$ where c^* equivalence class of c This is well defined since if we have $c_1' \sim c_1, \dots, c_n' \sim c_n, R(c_1, \dots, c_n) \in T$ then $R(c_1', \dots, c_n') \in T$

2.2. SEPTEMBER 1 225A: Metamathmatics

- $f^{\mathcal{M}}$ by $f^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=d^*\leftrightarrow f(c_1,\ldots,c_n)=d\in T$. SUch a d^* exists since T has the witness property: $\exists v f(c_1, \dots, c_n) = v \rightarrow f(c_1, \dots, c_n) \in T$
- $c^{\mathcal{M}} := c^*$

Claim: For every formula $\phi(v_1, \ldots, v_k)$ and constant symbols $c_1, \ldots, c_k, \mathcal{M} \models \phi(c_1^*, \ldots, c_n^*) \leftrightarrow \phi(c_1, \ldots, c_n) \in T$ This implies $\mathcal{M} \models T$

Proof. By induction on formulas $\phi(v_1,\ldots,v_l)$

- atomic formulas: $\phi(v_1, \dots, v_k)$ is $t_1(v_1, \dots, v_k) = t_2(v_1, \dots, v_k)$ Subclaim: $t^{\mathcal{M}}(c_1^*,\ldots,c_n^*)=c^*\leftrightarrow t(c_1\ldots,c_n)=c\in T$ Proved by induction on terms
- $\phi(v_1,\ldots,v_k)$ is $R(v_1,\ldots,v_k)$. Follows by deifnition of $R^{\mathcal{M}}$
- Suppose $\phi(\overline{v})$ is $\psi_1(\overline{v}) \wedge \psi_2(\overline{v})$, then $\mathcal{M} \models \psi_1 \land \psi_2(\overline{v}) \leftrightarrow \mathcal{M} \models \psi_1(\overline{v}) \text{ and } \mathcal{M} \models \psi_2(\overline{v}) \overset{\text{IH}}{\leftrightarrow} \psi_1(\overline{c}) \in T \text{ and } \psi_2(\overline{c}) \in T \overset{\text{lemma}}{\leftrightarrow} \psi_1 \land \psi_2(\overline{c}) \in T$
- Suppose $\phi(\overline{v})$ is $\neg \psi(\overline{v})$, then $\mathcal{M} \models \neg \psi(\overline{c}^*) \leftrightarrow \mathcal{M} \not\models \psi(\overline{c}^*) \overset{\mathrm{IH}}{\leftrightarrow} \varphi(\overline{c}) \notin T \overset{\mathrm{maximality}}{\longleftrightarrow} \neg \psi(\overline{(c})) \in T$
- Suppose $phi(\overline{v})$ is $\exists w\varphi(\overline{v},w)$, then $\mathcal{M} \models \exists w \varphi(\overline{c}^*, w) \leftrightarrow \exists d \in M \text{ such that } \mathcal{M} \models \phi(\overline{c}^*, d) \leftrightarrow \exists d \in M \text{ such that } \varphi(\overline{c}, d) \in T \overset{\text{witness principle}}{\longleftrightarrow}$ $\exists w \varphi(\overline{c}w) \in T$

2.2September 1

2.2.1Compactness

Proof of Compactness continued:

We now prove proposition 2

Lemma 1: If T is finitely satisfiable then there is $\mathcal{L}^* \supset \mathcal{L}$, $T^* \supset T$ such that T^* has the witness property and is finitely satisfiable

Proof. For each \mathcal{L} -formula define a new constant symbol c_{ϕ} . Let $\mathcal{L}_1 = \mathcal{L} \cup \{c_{\phi} : \phi(v)\mathcal{L} - \text{formula}\}$, $T_1 = T \cup \{\exists v \phi(v) \to \phi(c_\phi) : \phi(v) \mathcal{L} - \text{formula}\}.$

Claim: T_1 is finitely satisfiable.

Take $\Delta \subseteq T_1$ finite. $\Delta = T' \cup \{\exists v \phi_i(v) \to c_{\phi_i} : i = 1, ..., k\}$ for finite T' in T. We make an \mathcal{L}_1 -structure \mathcal{M}_1 that satisfies Δ . Take $\mathcal{M} \models T'$, \mathcal{M} \mathcal{L} -structure. Make \mathcal{M} an \mathcal{L}_1 -structure by defining $c_{\phi}^{\mathcal{M}_1}$ for each c_{ϕ} . If $\mathcal{M} \models \exists v \phi(v)$ let $c^{\mathcal{M}_1}$ be such a v otherwise let $c^{\mathcal{M}_1}$ be anything.

We repeat this process, defining \mathcal{L}_{n+1} from \mathcal{L}_n similarly.

We have $\mathcal{L} \subseteq \mathcal{L}_1 \subseteq \mathcal{L}_2 \subseteq \mathcal{L}_3 \subseteq \cdots$, $T \subseteq T_1 \subseteq T_2 \subseteq T_3 \subseteq \cdots$ such that each T_i is finitely satisfiable and for $\phi(v)$ an \mathcal{L}_{i-1} -formula, there is c_{ϕ} in \mathcal{L}_i such that $\exists v \phi(v) \to \phi(c_{\phi}) \in T_i$.

Let $\mathcal{L}^* = \bigcup_{n \in \omega} \mathcal{L}_n$, $T^* = \bigcup_{n \in \omega} T_n$. We see T^* has the witness property. Sub-claim: If $T_0 \subset T_1 \subset T_2 \subset \cdots$ all finitely satisfiable, then $U_{n \in \omega} T_n$ is finitely satisfiable.

Lemma 2: If T is finitely satisfiable and ϕ a sentence, one of $T \cup \{\phi\}$ or $T \cup \{\neg \phi\}$ is finitely satisfiable.

2.3. SEPTEMBER 6 225A: Metamathmatics

Proof. Assume that both $T \cup \{\phi\}$ and $T \cup \{\neg\phi\}$ are not finitely satisfiable. Then there are $T_0, T_1 \subseteq T$ such that $T_0 \cup \{\phi\}$ and $T_1 \cup \{\neg\phi\}$ are not satisfiable. Let $\mathcal{M} \models T_0 \cup T_1$, then $\mathcal{M} \models \phi$ or $\mathcal{M} \models \neg\phi$ so $T_0 \cup \{\phi\}$ or $T_1 \cup \{\neg\phi\}$ is satisfiable, contradicting our assumption.

Zorn's Lemma: Let \mathcal{A} be a collection of sets such that for any chain $\mathcal{C} \in \mathcal{A}$. $\bigcup \mathcal{C} \in \mathcal{A}$ where \mathcal{C} is a chain if for $A, B \in \mathcal{C}$ either $A \subseteq B$ or $B \subseteq A$, then \mathcal{A} has a maximal element, eg. $A \in \mathcal{A}$ such that there is not $B \in \mathcal{A}$ with $A \subseteq B$.

Lemma: For every T, finitely satisfiable, there is $T' \supseteq T$ that is maximal and finitely satisfiable.

Proof. Let $\mathcal{A} = \{S \ \mathcal{L}$ -theory $| \ S \supseteq T, \ S$ finitely satisfiable $\}$. Can apply zorns lemma since for any $\mathcal{C} \subseteq A$, $\bigcup \mathcal{C} \in \mathcal{A}$ so we have a maximal S.

Example 2.2.1. Let $\mathcal{L} = \{\cdot, e\}$ be the language of groups. In a group $G, g \in G$, ordg = least n such that n times

 $\widetilde{g \cdots g} = e$, if it exists.

Observation: If T is an \mathcal{L} -theory extending the axioms of groups, $\phi(v)$ such that for every n there is $G_n \models T$, $g_n \in G_n$ of order greater than n such that $G_n \models \phi(g_n)$. Then there is $G \models T$ and $g \in G$, $\operatorname{ord}(g) = \infty$ such that $G \models \phi(g)$.

Proof. Let $\mathcal{L}' = \{\cdot, e, c\}$. Let $T^* = T \cup \phi(c) \cup \{\psi_n\}$ where ψ_n is $\underbrace{c \cdot c}_{n \text{ times}} \neq e$. T^* finitely satisfiable so follows by compactness.

This tells us that there is not sentence that axiomatizes when an element is torsion.

Lemma 2.2.2. Let κ be a carindal $\kappa \geq |\mathcal{L}|$. Let T be a satisfiable theory such that $\forall n \in \mathbb{N}$, there is $\mathcal{M} \models T$ such that $|\mathcal{M}| > n$. Then T has a model of size κ .

Proof. Extend the language by adding κ may new constant symbols c_i for $i \in \kappa$. $T^* = T \cup \{c_i \neq c_j \mid i \neq j\}$. If $\mathcal{M} \models T^*$, $|\mathcal{M}| \ge \kappa$. T^* is finitely satisfiable so by compactness T^* has a model \mathcal{M} , $|\mathcal{M}| \le |\mathcal{L}^*| + \aleph_0 = \kappa$. Thus, $|\mathcal{M}| = \kappa$.

2.3 September 6

2.3.1 Complete Theories

Definition 2.3.1. Let κ be an infinite cardinal. A theory T is κ -categorical if all models of T of size κ are isomorphic (and there is at least one).

Example 2.3.2. The theory of torsion free abelian division groups (TFADG) is κ categorical for all uncountable κ .

Language = $\{\cdot, e\}$, TFADG = group axioms, commutativity, torsion free - $\forall a \neq e \ \overrightarrow{a \cdot a \cdot \cdot \cdot a} \neq e \ \text{for } n \in \omega$, divisible - $\forall a \exists b \ \overrightarrow{b + b + \cdot \cdot \cdot + b}$ for each $n \in \omega$

2.3. SEPTEMBER 6 225A: Metamathmatics

Observation: TFADG are essentialy \mathbb{Q} -vector spaces

n times

For $a \in G$, $n \in \mathbb{N}$ $a \cdot n = \overbrace{a + \cdots + a}^{\underline{a}} \stackrel{a}{=}$ is b such that $b \cdot n = a$. Such a b exists since the group is division and is uniquely defined since if $b \cdot n = a = b' \cdot n$, $(b - b') \cdot n = 0$ so since the group is torsion free, b - b' = 0. For $a \in G$, $\frac{p}{q} \in \mathbb{Q}$ we define $a \cdot \frac{p}{q} = \frac{a}{q} \cdot p$

Two vector \mathbb{Q} -vector spaces are isomorphic \leftrightarrow they have the same dimension. A \mathbb{Q} vector space of size κ must have dimension κ so two \mathbb{Q} vector spaces of size κ must be isomorphic.

Let ACF_p be the theory of algebraicly closed fields of characteristic p.

Language = $\{0, 1, +, \times\}$. ACF_P: field axioms, char $p - \underbrace{1 + \cdots + 1}_{p} = 0$, char $0 - \underbrace{1 + \cdots + 1}_{n} \neq 0$ for $n \in \omega$,

algebraicly closed - every non-constant polynomial has at least one root: for degree $n, \forall z_0, z_1, \dots, z_n z_n \neq 0 \exists x(z_n x^n + z_{n-1} x^{n-1} + \dots + z_0 = 0)$. For each $n \in \omega$

Proposition 2.3.3. ACF is κ categorical for all uncountable κ .

Facts and Definitions

- Every fielf F has a prime subfield $P = \{\underbrace{\overbrace{1+\cdots+1}^p}_q : p \in \mathbb{Z}, q \in \mathbb{N}\}$
 - if F has char p > 0, then the prime subfield is $\mathbb{Z}/p\mathbb{Z} = \mathbb{F}_p$
 - If F has char o=0, then the prime subfield in \mathbb{Q}
- An element $a \in F$ is algebraic if there is a polynomial $p(x) \in P[x]$ such that p(x) = 0. (Can think of as a polynomial in $\mathbb{Z}[x]$)
- Otherwise a is transcendental
- A tuple \overline{a} is algebraicly independent if there is no nontrivial polynomial $p(\overline{x}) \in P[x]$ such that $p(\overline{x}) = 0$.
- the transcendence degree of a field F is the size fo a maximal algebraicly independent set.
- Algebraicly closed fields are isomorphic ↔ they have the same transcendence degree.

Observation: an ACF_p of size κ must have transcendence degree κ

If $M \subset F$ is a maximal algebraicly independent set, $\forall a \in F$ there is a polynomial $p(\overline{x}, y) \in P[\overline{x}, y]$ and $\overline{m} \in M$ such that $p(\overline{m}, a) = 0$.

Definition 2.3.4. A theory T is complete if for all \mathcal{L} -sentences, ϕ either $T \models \phi$ or $T \models \neg \phi$

Theorem 2.3.5 (Vaught's Test). If T is satisfiable and has no finite models and is κ -categorical for $\kappa > |\mathcal{L}|$, then T is complete.

Corollary 2.3.6. ALL ACF_p satisfy the same sentences.

Proof. Suppose not. There is ϕ such that $T \models \phi$, $T \models \neg \phi$ so $T \cup \{\phi\}$ and $T \cup \{\neg \phi\}$ are satisfiable. Both

2.4. SEPTEMBER 8 225A: Metamathmatics

have models of size κ , contradicting κ -categoricity.

Definition 2.3.7. T is decidable if there is an algorithm to decide $T \models \phi$ given ϕ

Observation: If T is computably enumerable and complete then T is decidable

Corollary 2.3.8. Th(\mathbb{C} ; 0, 1, +, ×) is decidable.

2.4 September 8

2.4.1 Complete Theories

Observation: Let f be a function : $k \to k$. If f is one to one then f is onto, provided k is finite.

Theorem 2.4.1. Every injective polynomial map $\mathbb{C}^n \to \mathbb{C}^n$ is surjective. (A polynomial map consists of n polynomials $p_1[x_1,\ldots,x_n],\ldots,p_n[x_1,\ldots,x_n] \in \mathbb{C}[x]$)

Lemma 2.4.2. Let *phi* be a senctence in the language $\{0, 1, +, \times\}$. TFAE

- 1. $C \models \phi$
- 2. ϕ is true in any algebraically closed field of characteristic 0.
- 3. ϕ is true in some algebraically closed field of characteristic 0.
- 4. There are arbitrarily large primes p such that ϕ is true in some $F \models ACF_p$
- 5. There is an $m \in \mathbb{N}$ such that for all $p \ge n$ and all $F \models ACF_p$, $F \models \phi$

Proof. (1), (2), (3) equivalent since ACF₀ is complete. (4) \rightarrow (5) clear. (2) \rightarrow (5) ACF₀ $\models \phi$. There is finite $\Delta \subseteq \text{ACF}_0$ such that $\Delta \models \phi$. If $p \geqslant n$ for an all n such that " $1+\cdot+1\neq 0$ " shows up in Δ , then if $F \models \text{ACF}_p$, $F \models \Delta$ so $f \models \phi$ (4) \rightarrow (3) If (3) was false, ACF₀ $\models \neq \phi$ and for some n, all p > n, if $F \models \text{ACF}_p$ then $F \models \neg \phi$ so (4) is false.

Claim: Every injective polynomial function $f: (\mathbb{F}_p^{\mathrm{alg}})^n \to (\mathbb{F}_p^{\mathrm{alg}})^n$ is onto where $\mathbb{F}_p^{\mathrm{alg}}$ is the algebraic closure of $\mathbb{F}_p: \mathbb{Z}/p\mathbb{Z}$. $\mathbb{F}_p^{\mathrm{alg}} = \bigcup_{n \in \mathbb{N}} \mathbb{F}_{p^n}$ where \mathbb{F}_{p^n} is the unique field of size p^n .

For every polynomial $p(\overline{x}) \in F$ there is an atomic $t(\overline{x}, \overline{z})$ and parameters $\overline{c} \in F$ such that $p(\overline{x}) = t(\overline{x}, \overline{c})$ so $t_1(\overline{x}, \overline{c}), \dots, t_n(\overline{x}, \overline{c})$ for $\overline{c} \in \mathbb{F}_p^{\text{alg}}, \overline{x} = x_1, \dots, x_n$ Claim states $\forall \overline{z} (\forall \overline{x} \forall \overline{y} \bigwedge_{i=1}^n t_i(x_i, z) = t_i(y_1, z) \to \overline{x} = \overline{y}) \to (\forall \overline{w} \exists \overline{x} \bigwedge_{i=1}^n t_i(\overline{x}, z) = w_i)$

Proof (Pf of Claim). Take $\bar{b} \in (\mathbb{F}_p^{\mathrm{alg}})^n$, want to show \bar{b} is in the range of fLet k be the finite subfield of $\mathbb{F}_p^{\mathrm{alg}}$ generated by \bar{c} and \bar{b} . $\mathbb{F}_p(\bar{c}, \bar{d})$ Restricting f to k^n , we get a one to one function from k^n to k^n so $f \upharpoonright k^n$ is onto so \bar{b} is in the range of f 2.5. SEPTEMBER 13 225A: Metamathmatics

2.4.2Up and Down

Definition 2.4.3. A map $j: \mathcal{M} \to \mathcal{N}$ is an elementary embedding if for all formulas $\phi(\overline{x})$, all $m \in M$

$$\mathcal{M} \models \phi(\overline{m}) \leftrightarrow \mathcal{N} \models \phi(j(\overline{m}))$$

Definition 2.4.4. If for $\mathcal{M} \subseteq \mathcal{N}$, \mathcal{M} is an elementary subset of \mathcal{N} if $i: M \hookrightarrow N$ is elementary $(\mathcal{M} \leq \mathcal{N})$

• $\mathbb{Q}^{\text{alg}} \leq \mathbb{C}, (\mathbb{Q}, 0, +) \leq (\mathbb{R}, 0, +)$

Definition 2.4.5. Given \mathcal{M} , let $\mathcal{L}_M = \mathcal{L} \cup \{c_m \mid m \in M\}$. \mathcal{M} can be made into an \mathcal{L}_m -structure \mathcal{M}^* by letting $c_m^{\mathcal{M}^*} = m$

Definition 2.4.6. Diag(\mathcal{M}) the atomic diagram of $\mathcal{M} = \{\phi \mid \phi \text{ atomic } \mathcal{L}_M \text{ sentence such that } \mathcal{M} \models \phi\} \cup$ $\{\neg\phi\mid\phi\text{ atomic }\mathcal{L}_M\text{ sentence such that }\mathcal{M}\models\neg\phi\}$

This is equivalent to $\{\phi \mid \phi \text{ is an } \mathcal{L}\text{-formula } \mathcal{M} \models \phi\}$

 $\operatorname{Diag}_{\mathrm{el}}(\mathcal{M})$, the elementary diagram of \mathcal{M} is $\{\phi \mid \phi \text{ is an } \mathcal{L} \text{formula } \mathcal{M} \models \phi\}$

(i) if $\mathcal{N}^* \models \text{Diag}(\mathcal{M})$ then there is an \mathcal{L} -embedding $\mathcal{M} \to \mathcal{N}$ (where \mathcal{N} the restriction Lemma 2.4.7. of \mathcal{N}^* to \mathcal{L})

Proof. Suppose $\mathcal{N}^* \models \text{Diag}(\mathcal{M})$. If $\phi(\overline{x})$ is an \mathcal{L} formula and $\overline{c_m}$ new constants, we can give an embedding by $m \mapsto c_m^{\mathcal{M}^*}$ $\mathcal{M} \models \phi(\overline{m}) \leftrightarrow \mathcal{M}^* \models \phi(\overline{c_m}) \leftrightarrow \mathcal{N}^* \models \phi(\overline{c_m}) \leftrightarrow \mathcal{N} \models \phi(\overline{m})$

Example 2.4.8. $\mathcal{M} = (\mathbb{Z}, +), \mathcal{L} = \{*\}, \mathcal{L}_M = \{*, c_0, c_1, c_2, \dots, c_{-1}, c_{-2}, \dots\}, \text{ in } \mathcal{M}^*, c_n^{\mathcal{M}^*} = n$ $\mathcal{N} = (\mathbb{R}, \times), \text{ define } \mathcal{N}^* \text{ by } c_n^{\mathcal{N}^*} = 2^n. \ \mathcal{N}^* = (\mathbb{R}, \times, c_n \mapsto 2^n)$ $\mathcal{N}^* \models \text{Diag}(\mathcal{M}) \text{ size } (\mathbb{Z}, +) \to (\mathbb{R}, \times) \text{ by } n \mapsto 2^n \text{ is an embedding.}$

If $j: \mathcal{M} \to \mathcal{N}$ is an embedding, let $c_m^{\mathcal{M}^*} = j(m)$. Then $\mathcal{N}^* \models \text{Diag}(\mathcal{M})$

2.5September 13

2.5.1Up and Down

Definition 2.5.1. $\mathcal{L}^- \subseteq \mathcal{L}$, \mathcal{M} is an \mathcal{L} -stucture, then \mathcal{L}^- reduct of \mathcal{M} is the \mathcal{L}^- stucture with the same domain and \mathcal{L}^- interpretations of \mathcal{M} . We say that \mathcal{M}^- is a reduction of \mathcal{M} , \mathcal{M} is an expansion of \mathcal{M}^-

Lemma 2.5.2. Consider \mathcal{L} structures \mathcal{M}, \mathcal{N}

- 1. there is an embedding $\mathcal{M} \to \mathcal{N} \leftrightarrow$ there is an \mathcal{L}_M expansion \mathcal{N}^* of \mathcal{N} such that $\mathcal{N}^* \models \text{Diag}(\mathcal{M})$
- 2. there is an elementary embedding $\mathcal{M} \to \mathcal{N} \leftrightarrow$ there is an \mathcal{L}_M expansion \mathcal{N}^* of \mathcal{N} such that

2.5. SEPTEMBER 13 225A: Metamathmatics

$$\mathcal{N}^* \models \mathrm{Diag}_{\mathrm{el}}(\mathcal{M})$$

Here $\mathcal{N}^* = (\mathcal{N}, c_m^{\mathcal{N}} \in N \text{ for } m \in M)$

Proof. \to) Suppose $f: \mathcal{M} \to \mathcal{N}$ is an embedding. We need to find a \mathcal{L}_M expansion \mathcal{N}^* of \mathcal{N} by defining $c_m^{\mathcal{N}}$ for $m \in M$ such that for all \mathcal{L} -formulas $\varphi(\overline{x})$, all $\overline{m} \in M$, if $\varphi(\overline{c_m}) \in \operatorname{Diag}(M) \to \mathcal{N}^* \models \varphi(\overline{c_m})$. Let $c_m^{\mathcal{N}} = f(m)$ so $\varphi(\overline{c_m}) \in \operatorname{Diag}(\mathcal{M}) \leftrightarrow \mathcal{M} \models \varphi(\overline{m}) \leftrightarrow \mathcal{N} \models \varphi(f(\overline{m})) \leftrightarrow \mathcal{N}^* \models \varphi(c_m^{\mathcal{N}})$ \leftarrow) Given the \mathcal{L}_M expansion \mathcal{N}^* of \mathcal{N} such that $\mathcal{N}^* \models \operatorname{Diag}(\mathcal{M})$. Let $f: \mathcal{M} \to \mathcal{N}$ by $f(m) = c_m^{\mathcal{N}^*}$

Theorem 2.5.3 (Upwards Lowenheim-Skolem). Let \mathcal{M} be an infinite \mathcal{L} -strucutre. For every $\kappa \geq |M| + |\mathcal{L}|$ there is an \mathcal{L} -strucure \mathcal{N} such that $|\mathcal{N}| = \kappa$ and $\mathcal{M} \leq \mathcal{N}$.

Proof. It suffices to show there is an elementary embedding $j: \mathcal{M} \to \mathcal{N}$ as \mathcal{M} can be identified with its image. Lt \mathcal{N}^* be a model of Diag(\mathcal{M}) of size κ . Let \mathcal{N} be the \mathcal{L} -reduct of \mathcal{N}^*

Example 2.5.4. $(\mathbb{Q}, 0, +) \leq (\mathbb{R}, 0, \kappa$ -categorical so there is only structure of size 2^{\aleph_0} up to isomorphism **Example 2.5.5.** $(\mathbb{Q}^{\text{deg}}, 0, 1, +, \times) \leq (\mathbb{C}, 0, 1, +, \times)$

Theorem 2.5.6 (Downward Lowenheim-Skolem). Let \mathcal{M} be an infinite \mathcal{L} -structure. For all $X \subseteq \mathcal{M}$, there is an \mathcal{L} structure $\mathcal{N} \subseteq \mathcal{M}$, $|\mathcal{N}| = |X| + |\mathcal{L}| + \aleph_0$ and $\mathcal{N} \leq \mathcal{M}$

Proposition 2.5.7 (Tarski-Vaught Test). Suppose $\mathcal{N} \subseteq \mathcal{M}$. Then $\mathcal{N} \preceq \mathcal{M} \leftrightarrow$ formulas $\phi(\overline{v}, w)$ and all $\overline{n} \in \mathcal{N}$ if $\mathcal{M} \models \exists \phi(\overline{n}, w)$ then there is $c \in \mathcal{N}$ such that $\mathcal{M} \models \phi(\overline{n}, c)$.

Proof. \rightarrow) Assume $\mathcal{N} \leq \mathcal{M}$, $\mathcal{M} \models \exists w \phi(\overline{n}, w)$ then $\mathcal{N} \models \exists w \phi(\overline{n}, w)$ so there is $c \in N$ such that $\mathcal{N} \models \phi(\overline{n}, c)$ so $\mathcal{M} \models \phi(\overline{n}, c)$

- \leftarrow) We use induction on \mathcal{L} -formulas to show that for all formulas $\psi(\overline{x})$ and all \overline{n} , $\mathcal{N} \models \psi(\overline{n}) \leftrightarrow \mathcal{M} \models \psi(\overline{n})$
 - For ψ atomic, this follows since $\mathcal{N} \subseteq \mathcal{M}$
 - For $\psi = \psi_1 \wedge \psi_2$, $\neg \psi_1$ clear by applying IH
 - For $\psi(\overline{x})$ of the form $\exists \phi(\overline{x}, w)$, pick $\overline{n} \in N$, $\mathcal{M} \models \psi(\overline{n}) \leftrightarrow \mathcal{M} \models \exists w \phi(\overline{n}, w) \leftrightarrow$ there is $c \in N$ such that $\mathcal{M} \models \phi(\overline{n}, c) \leftrightarrow \mathcal{N} \models \exists w \phi(\overline{n}, w) \leftrightarrow \mathcal{N} \models \psi(\overline{n})$.

Proof (Proof of Lowenheim Skolem). Let $X = X_0$. For any $\overline{n} \in X$ and $\varphi(\overline{v}, w)$ if $\mathcal{M} \models \exists w \varphi(\overline{n}, w)$. let $c_{\overline{n}, \varphi} \in m$ such that $\mathcal{M} \models \phi(\overline{n}, c_{\overline{n}, \varphi})$. Let $X_1 = \{c_{\overline{n}, \varphi} \mid \varphi \mathcal{L} \text{ forumula }, \overline{n} \in X_0, \mathcal{M} \models \exists w \varphi(\overline{n}, w)\} \cup X_0$ We can define X_{n+1} from X_n similarly and let $N = \bigcup_{i \in \omega} X_i$

 $|X_1| = (\# \mathcal{L} \text{ forumas}) \times (\# \text{ terms } X_0) = (|\mathcal{L}| + \aleph_0) \times (|X_0|)$

Since $|\mathcal{N}| \leq |\mathcal{L}| + |\aleph_0| + |X_0|$, then $|X| \leq |\mathcal{N}| \leq |X| + |\mathcal{L}| + \aleph_0$.

We define \mathcal{N} with domain N by restricting functions, relations, and constants from \mathcal{M} . If $\varphi(\overline{x}, w)$ is the formula $f(\overline{x}) = w$ and $\overline{n} \in X$, $\mathcal{M} \models \exists w f(\overline{m}) = w$ in X_{i+1} so $c_{\varphi,n}$ satisfies $f(\overline{n}) = c_{\varphi,n}$