OSPF:

Router posiada trzy tabele: neighbour table, routing table oraz link-state database (LSDB).

Rodzaje wiadomości:

- Hello (odkrywanie sąsiadów, odnawianie), utrzymywanie tabeli sąsiedztwa
- Database Description (DD/DBD) wymiana LSA Link State Advertisement
- Link State Request LSR prośba o informację o LSA
- Link State Update LSU wysyłany w odpowiedzi na LSR. Zawiera pełne informacje o LSAs.
- Link State Acknowledgement LSAck potwierdzenie otrzymania wiadomości LSU

Link-state database zawiera wpisy - każdy wpis to osobny LSA. Taka baza zawierą pełną topologię sieci. Ostatecznie, każdy router powinien posiadać **taką samą** LSDB.

Posiadając LSDB (innymi słowy wszystkie wierzchołki, krawędzie ich koszty w sieci), każdy router może uruchomić samodzielnie **algorytm Dijkstry** i obliczyć najkrótsze ścieżki do sieci docelowych.

Routery sąsiednie wysyłają sobie **DBD** - <u>powierzchowne</u>, <u>skrócone</u> informacje o swoich tablicach **LSDB**. Kiedy router otrzyma taką tablicę i zauważamy, że danego wpisu nie ma w swojej, wysyła **LSR**, na co odpowiedni router wysyła **LSU**. **LSAck** potwierdza otrzymanie **LSU**.

Kiedy router wykryje błąd, niedostępność wysyła do sąsiadów LSU (lub tylko do DR - Designated Router).

OSPF jest protokołem IGP (Interior Gateway Protocol) - czyli używany wewnątrz obszaru autonomicznego.

ASBR - Autonomous System Boundary Router

ABR - Area Border Router

BR - Backbone routers

BDR - Backup Designated Router

Porównanie LSA Type 1 i Type 2		
Cecha	LSA Type 1: Router LSA	LSA Type 2: Network LSA
Twórca	Każdy router	Designated Router (DR)
Reprezentuje	Bezpośrednie połączenia routera	Sieci wielodostępowe (broadcast)
Zasięg	Lokalny dla obszaru	Lokalny dla obszaru
Cel	Informacja o łączach routera	Reprezentacja sieci wielodostępnych
Typ sieci	Wszystkie typy sieci	Sieci broadcast (np. Ethernet)

Porównanie Type 3 i Type 4 LSA

Cecha	Type 3 LSA	Type 4 LSA
Twórca	ABR	ABR
Cel	Podsumowanie tras między obszarami	Informacja o lokalizacji ASBR
Informacje o	Sieciach w innych obszarach	Droga do ASBR
Przykład użycia	Trasy wewnętrzne OSPF	Zewnętrzne trasy (Type 5 LSA)

Hierarchiczny OSPF:

• poziom pierwszy to same pojedyncze obszary, a drugi to tzw. backbone (obszar 0), czyli struktura sieci ogarniająca połączenie tych obszarów

- LSA są wysyłane tylko w obrębie danego obszaru, tam OSPF działa normalnie (każde area ma własną instancję OSPFa)
- area border routers znają dystanse wewnątrz własnego obszaru i ogłaszają "podsumowanie" swojego obszaru innym area border routers, tzw. summary LSA
- backbone routers to area border routers + te powyżej, utrzymują hierarchię, mają własną instancję OSPFa
- nie ma automatycznego tworzenia backupowego połączenia na wypadek padnięcia czegoś w backbone'ie

