Ontology-based approach in the scheduling of jobs processed by applications running in virtual environments

Maksim Khegai, Dmitrii Zubok and Alexandr Maiatin ITMO University, St.Petersburg, Russia

Table of Contents

- Introduction and motivation
- Ontology-based multi-agent system architecture
 - Performance monitoring agents
 - Incoming jobs stream monitoring agents
 - Resources monitoring agents
- Agents behavior
 - Performance monitoring agents
 - Incoming jobs stream monitoring agents
 - Resources monitoring agents

Table of Contents

- Agents implementation
- Conclusion

Introduction and motivation

- Scheduling and resources allocation are two the most important problems when it comes to controlling cloud computing systems.
- A cloud system control model is required.
- Situations occur when parameters such as number of applications that process jobs and their performance change with time.

Ontology-based multi-agent system architecture

- Agents' ontologies will be integrated into agents that perform their own tasks and the whole ontology will be stored in a knowledge base.
- The knowledge base must contain actual information and its synchronization between agents.
- The model of interactions supposes that three kinds of intelligent agents exist.

Model of interactions

Performance monitoring agents

- Work in virtual machines with applications and perform an evaluation of their performance.
- As a parameter for evaluation a time needed to process one request of the same type is taken.
- Entities, that this agent works with:

```
"virtual machine";"application";"job".
```


Performance monitoring agent's ontology

Incoming jobs stream monitoring agents

- Work in every controller and evaluate incoming jobs stream intensity.
- Entities this agent works with:

```
"controller";"queue";"job stream";"job".
```


Incoming jobs stream monitoring agent's

Resources monitoring agents

- Work on hosts and interact with virtual machines monitors to get actual info about changes in resources quotas that the monitor provides.
- Entities this agent works with:

```
"host";"virtual machine";"resource";"resource types".
```


Resources monitoring agent's ontology

Agents behavior Performance monitoring agents

- Initialized when a new virtual machine with application is created.
- Subscribes to changes in knowledge base.
- Gets an unchangeable information for its ontology:
 - its virtual machine's identification number;
 - jobs type that its application processes identification number.
- Evaluates the current performance by using moving average method.

Performance monitoring agent's algorithm

Agents behavior Incoming jobs stream monitoring agent

- Starts when a new type of jobs appear.
- Leads to creation of a virtual machine with controller inside that will manage scheduling for this type of jobs.
- Gets unchangeable information about this stream's jobs type (identification number) and publishes information about this jobs type existence into knowledge base.

Incoming jobs stream monitoring agent's algorithm

Agents behavior Resources monitoring agent

- Is initialized when a new physical server is started.
- Subscribes to changes in knowledge base.
- Constantly gathers information from the virtual machines monitor about active virtual machines and their resources quotas.

Agents implementation

- Agents and controllers were created with PHP5.
- ARC2 RDF system was used to manage ontologies.
- Ontologies are stored as RDF triples in a MySQL database.
- AMQP is used as a protocol to exchange information between agents and a controller.

Conclusion

- The effective control of a complex system with changing configuration demands providing actual information about many parameters to control components.
- The use of ontology-based approach allows to make information sharing between agents flexible and independent from technologies and agents algorithms.

Thank you for your attention

