Farmer to Farmer EPA Gulf of Mexico Program

and

Delta F.A.R.M. Project

Cropping Systems for Improving Farm Profitability and Water Quality

INSTREAM reductions

Produced in coordination with Delta F.A.R.M. and Mississippi State University 10/28/2020

Contents

TURBIDITY	
Harris Bayou	2
Porter Bayou	
TOTAL SUSPENDED SOLIDS	6
Harris Bayou	6
Porter Bayou	
TOTAL NITROGEN	10
Harris Bayou	10
Porter Bayou	
Summary	14

TURBIDITY

Harris Bayou

Historical Harris Bayou sites

n Mean Median ## 1 80 287.475 187

Data from Harris Bayou site associated with Delta FARM project

n Mean Median ## 1 22 78.37273 58.55

Plot the data points.

P-value $<\alpha$ here indicates that we can reject the null hypothesis that the difference is not less than zero and conclude, at a %95 confidence level, that the values of our recent data is in fact lower than the historical data. $\alpha=0.05$ is used throughout.

Percent reduction in the median value

```
x <- median(oldharris$TUR, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "HB", "TUR"])
z <- (y-x)/x * 100
z</pre>
```

```
## [1] -68.68984
```

Here we would use median values because there are outliers and apparent skewness from the boxplot. The mean reduction is even greater (%72). Negative value represents a decrease relative to the historical data.

Porter Bayou

Historical Porter Bayou sites

n Mean Median ## 1 107 150.7751 27.2

Data from Porter Bayou site associated with Delta FARM project

n Mean Median ## 1 24 564.8042 426.5

Plot the data points.


```
wilcox.test(y= oldporter$TUR, x= instreamdata[instreamdata$LOCCODE alternative = "greater")  
##

## Wilcoxon rank sum test with continuity correction

##

## data: instreamdata[instreamdata$LOCCODE == "PB", "TUR"] and oldporter$TUR

## W = 2339, p-value = 1.757e-10

## alternative hypothesis: true location shift is greater than 0

P-value < \alpha here indicates that we can reject the null hypothesis that the difference is not greater than zero and conclude, at a %95 confidence level, that the values of our recent data is in fact higher than the historical data.

H_0: old data \geq new data

H_a: old data \leq new data
```

Percent reduction in the median value

```
x <- median(oldporter$TUR, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "PB", "TUR"])
z <- (y-x)/x * 100
z</pre>
```

[1] 1468.015

Here we would use median values because there are outliers and apparent skewness from the boxplot. Positive values represents a relative increase. This relative change can range from (-) 100% decrease to (+) infinite increase.

TOTAL SUSPENDED SOLIDS

Harris Bayou

Historical Harris Bayou sites

n Mean Median ## 1 267 129.5443 67

Data from Harris Bayou site associated with Delta FARM project

n Mean Median ## 1 22 53.77727 39.4

Plot the data points.

P-value $<\alpha=0.05$ means we can conclude the alternative hypothesis. H_a : our recent samples had less total suspended solids than our historical observations

Percent reduction in the median value

```
x <- median(oldharris$TSS, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "HB", "TSS"])
z <- (y-x)/x * 100
z</pre>
```

[1] -41.19403

Porter Bayou

Historical Porter Bayou sites

n Mean Median ## 1 214 293.7352 42

Data from Porter Bayou site associated with the original Delta FARM project $\,$

n Mean Median ## 1 24 324.8958 235.65

Plot the data points.

^{*} some outliers clipped from visualization

P-value $< \alpha$ leads to rejection of the null hypothesis. H_a : new data is greater than the old data The test lends statistical significance to old porter bayou data values being less than what we recently collected.

Percent reduction in the median value

```
x <- median(oldporter$TSS, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "PB", "TSS"])
z <- (y-x)/x * 100
z</pre>
```

[1] 461.0714

This positive number represents a four fold increase from values formerly observed in porter bayou.

TOTAL NITROGEN

Harris Bayou

Historical Harris Bayou sites

n Mean Median ## 1 97 3.462268 1.83

Data from Harris Bayou site associated with Delta FARM project

n Mean Median ## 1 22 1.867727 1.455

Plot the data points.


```
wilcox.test(y= oldharris$TN, x= instreamdata[instreamdata$LOCCODE == "HB", "TN"], alternative = "less")

##

## Wilcoxon rank sum test with continuity correction

##

## data: instreamdata[instreamdata$LOCCODE == "HB", "TN"] and oldharris$TN

## W = 721.5, p-value = 0.009093

## alternative hypothesis: true location shift is less than 0

P-value < \alpha = 0.05: reject null that old values are \le new observations.

H_a: new observations < old observations.
```

Percent reduction in the median value

```
x <- median(oldharris$TN, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "HB", "TN"])
z <- (y-x)/x * 100
z</pre>
```

[1] -20.4918

Negative value here represents a twenty percent reduction over the historical observations.

Porter Bayou

Historical Porter Bayou sites

n Mean Median ## 1 51 2.380196 1.41

Data from Porter Bayou site associated with Delta FARM project

n Mean Median ## 1 24 2.791667 2.62

Plot the data points.

Percent reduction in the median value

are greater than old ones.

```
x <- median(oldporter$TN, na.rm= TRUE)
y <- median(instreamdata[instreamdata$LOCCODE == "PB", "TN"])
z <- (y-x)/x * 100
z
## [1] 85.8156</pre>
```

This positive value represents an increase from the historical observations.

Summary

Method	Location	Analyte	Alternative	P.value	relative.reduction
		Turbidity	less	0.0000002	-68.68984
Wilcox rank sum test	Harris Bayou	Total Suspended Solids	less	0.0208840	-41.19403
		Total Nitrogen	less	0.0090933	-20.49180
		Turbidity	greater	0.0000000	1468.01471
	Porter Bayou	Total Suspended Solids	greater	0.0000000	461.07143
		Total Nitrogen	greater	0.0036753	85.81560

Positive relative reduction values represent an increase over historical observations. Alternative specifies H_a : current observations are ____ than historical observations