Automates à piles de piles · · · de piles

Severine Fratani

LaBRI

Équipe L3A (Logique Algorithmes Automates et Applications)
Université Bordeaux 1, France.

URL:http://dept-info.labri.u-bordeaux.fr/~fratani

PLAN

- Piles itérées
- Automates à piles itérées
- Logique du Second Ordre Monadique sur les piles
- Des classes d'automates équivalentes
- Suites d'entiers reconnues par automates
 - → Arithmétique faible
 - → Suites de rationnels et automates
- Perspectives

PILES ITÉRÉES

PILES CLASSIQUES (1-PILES)

sommet de pile

Trois instructions sont généralement applicables:

 $\omega = bacbab$

- \rightarrow lecture du symbole de tête : $top(\omega) = b$
- \rightarrow suppression du sommet de pile : $pop(\omega) = acbab$
- ightharpoonup ajout d'un symbole en sommet de pile: $\operatorname{push}_a(\omega) = abacbab$

PILES k-ITÉRÉES (k-PILES)

- 1-Pile $(A) = A^*$
- (k+1)-Pile $(A) = (A \cdot [k$ -Pile $(A)])^*$

Exemples:

- $\omega_2 = a[ab]b[a]a[cab] \in 2$ -Pile
- $\omega_3 = a[a[ab]b[a]a[cab]]b[a[ab]b[a]a[cab]] \in 3$ -Pile

REPRÉSENTATION PLANAIRE DES PILES ITÉRÉES

 $\omega = a[a[bab] b[ab] b[b]] b[a[ab] a[b] b[b]]$

INSTRUCTIONS DE PILES

Trois types d'instructions sont applicables à une k-pile:

- \rightarrow lecture des k symboles de sommet de pile: top
- ightharpoonup suppression du sommet de niveau i, $i \in [1,k]$: pop_i
- ightharpoonup ajout de a au niveau i, $i \in [1, k]$ (avec copie des sous arbres de niveau i-1): $\operatorname{push}_{a,i}$

Lecture des symboles de sommet de pile:

$$top(\omega) = aab$$

Suppression du sommet de pile de niveau i: pop_i

Suppression du sommet de pile de niveau $1: pop_1$

Suppression du sommet de pile de niveau $2: pop_2$

Suppression du sommet de pile de niveau $3: pop_3$

Ajout de l'élément a au niveau i: $push_{a,i}$

Ajout de l'élément a au niveau 3: $push_{a,3}$

Ajout de l'élément b au niveau 2: $push_{b,2}$:

Ajout de l'élément b au niveau 1: $push_{b,1}$

AUTOMATES À PILES ITÉRÉES (GREIBACH 70, MASLOV 74)

$$\mathcal{A} = (Q, \Sigma, A, \Delta, q_0, F) \in k\text{-AP}$$

- $\rightarrow Q, \Sigma, A, \Delta \text{ finis}$
- $\rightarrow q_0 \in Q, F \subseteq Q$
- \rightarrow $(p, \alpha, a_k \cdots a_1, \text{instr}, q) \in \Delta$

$$avec top(\omega) = a_k \cdots a_1$$

LANGAGES DE NIVEAU SUPÉRIEUR

 LANG_k classe des langages reconnus par automate à k-piles.

 $\mathsf{LANG}_0 \subsetneq \mathsf{LANG}_1 \subsetneq \mathsf{LANG}_2 \subsetneq \cdots$

- → LANG₀ = les langages réguliers
- → LANG₁ = les langages algébriques
- → LANG₂ = les langages indexés (Aho68)

$$L = \{ \alpha^{n} \beta^{n} \gamma^{n} \mid n \ge 0 \}$$

$$\alpha \cdots \alpha \beta \cdots \beta \gamma \cdots \gamma \#$$

$$\perp [\bot]$$

$$L = \{\alpha^{n} \beta^{n} \gamma^{n} \mid n \ge 0\}$$

$$\alpha \cdots \alpha \beta \cdots \beta \gamma \cdots \gamma \#$$

$$\perp [a^{n} \perp]$$

$$L = \{\alpha^n \beta^n \gamma^n \mid n \ge 0\}$$

$$\alpha \cdots \alpha \beta \cdots \beta \gamma \cdots \gamma \#$$

$$\alpha [a^n \perp][a^n \perp]$$

$$L = \{\alpha^n \beta^n \gamma^n \mid n \ge 0\}$$

$$\alpha \cdots \alpha \beta \cdots \beta \gamma \cdots \gamma \#$$

$$\alpha[\bot] \bot [\alpha^n \bot]$$

$$L = \{\alpha^n \beta^n \gamma^n \mid n \ge 0\}$$

$$\alpha \cdots \alpha \beta \cdots \beta \gamma \cdots \gamma \#$$

$$\perp [a^n \perp]$$

$$L = \{ \alpha^n \beta^n \gamma^n \mid n \ge 0 \}$$

$$\alpha \cdots \alpha \beta \cdots \beta \gamma \cdots \gamma \#$$

$$\perp [\perp]$$

AUTOMATES CONTRÔLÉS

$$\mathcal{A} \in k ext{-AP}^{ec{C}}$$
 avec $ec{C} = (C_1, \dots, C_m)$, $C_i \subseteq k ext{-Pile}$

 \rightarrow $(p, \alpha, a_k \cdots a_1, \vec{o}, \text{instr}, q)$ avec $\vec{o} \in \{0, 1\}^m$ applicable à (p, ω) si

$$\vec{o} = ("\omega \in C_1", \dots, "\omega \in C_m")$$

 $L=\{\alpha^n\beta^n\gamma^n\mid n\geq 0\} \text{ reconnu par automate dans 1-AP}^C \text{ où } C=\{b^na^n\perp\mid n\geq 0\}$

 $L=\{\alpha^n\beta^n\gamma^n\mid n\geq 0\} \text{ reconnu par automate dans 1-AP}^C \text{ où } C=\{b^na^n\perp\mid n\geq 0\}$

 $L=\{\alpha^n\beta^n\gamma^n\mid n\geq 0\} \text{ reconnu par automate dans } 1\text{-}\mathsf{AP}^C \text{ où } C=\{b^na^n\perp\mid n\geq 0\}$

 $L=\{\alpha^n\beta^n\gamma^n\mid n\geq 0\} \text{ reconnu par automate dans 1-AP}^C \text{ où } C=\{b^na^n\perp\mid n\geq 0\}$

 $L=\{\alpha^n\beta^n\gamma^n\mid n\geq 0\} \text{ reconnu par automate dans 1-AP}^C \text{ où } C=\{b^na^n\perp\mid n\geq 0\}$

LOGIQUE DU SECOND ORDRE MONADIQUE SUR LES PILES ITÉRÉES

LOGIQUE DU SECOND ORDRE MONADIQUE

- \rightarrow Structure: $\mathbf{Pile_k} = \langle k\text{-Pile}, (\mathsf{POP}_i, \mathsf{PUSH}_{a,i})_{1 \leq i \leq k, \ a \in A} \rangle$
 - $POP_i = \{(\omega, pop_i(\omega)) \mid \omega \in k\text{-Pile}\}$
 - $PUSH_{a,i} = \{(\omega, pop_i(\omega)) \mid \omega \in k\text{-Pile}\}$
- → Formules:
 - relations: $POP_i(x,y)$, $PUSH_{i,a}(x,y)$, $x \in X$, $X \subseteq Y$
 - opérateurs booléens: ¬, ∧, ∨
 - quantificateurs: $\exists x.\phi, \exists X.\phi, \forall x.\phi, \forall X.\phi$

Exemple:
$$\varphi(X) := \forall x \in X \ \bigwedge_{1 \leq i \leq k, \ a \in A} \neg (\exists y \cdot \mathsf{PUSH}_{i,a}(y,x)).$$

Remarque:
$$\mathbf{Pile_1} \equiv T(A) = \langle A^*, (\mathrm{SUCC}_a)_{a \in A} \rangle$$
 où $\mathrm{SUCC}_a = \{(u, ua) \mid u \in A^*\}.$

PROBLÈMES

- → Décidabilité de la théorie SOM de Pile_k.
 (i.e., décision de la valeur d'une formule close)
- → Caractérisation des ensembles définissables (en LSOM) de Pile_k.
 - ($D \subseteq k$ -Pile définissable si il existe une formule $\phi(X)$ dont l'unique solution dans $\mathbf{Pile_k}$ est D)

AU NIVEAU 1

Théorème(Rabin69,Greibach67)

- → Pile₁ admet une théorie SOM décidable
- → Pile₁ satisfait la propriété du "Modèle Définissable" (MD), i.e., toute formule satisfiable admet une solution définissable.
- → les définissables (en LSOM) de Pile₁ sont les ensembles de 1-piles générés par 1-AP
- → les définissables (en LSOM) de Pile₁ sont les langages reconnus par automates finis (à isomorphisme près)
- → les définissables (en LSOM) de Pile₁ sont les langages exprimables par une expression rationnelle (à isomorphisme près)

CAS GÉNÉRAL?

Théorème

- → Pile_k admet une théorie SOM décidable (thm 6.2.1)
- → Pile_k satisfait la propriété du "Modèle Définissable" (MD), i.e., toute formule satisfiable admet une solution définissable (thm 6.2.1)
- → les définissables (en SOML) de Pile_k sont les ensembles de k-piles générés par k-AP contrôlés au niveau k - 1 par des ensembles définissables (thm 6.2.7)
- **→** ?
- **→** ?

STRATÉGIE

- → coder des k-piles par des mots
- → définir des extensions des automates finis pour reconnaitre des langages de k-piles (via codage)
 - → automates finis à oracles
- → définir des lemmes de transfert de propriétés de Pile_k vers Pile_{k+1} (décidabilité, MD, reconnaisabilité)
 - → Outils: les jeux de parité.

CODAGE

Codage de chaque k-pile par un mot dans le groupe libre

$$F(A) = (A \cup \bar{A})^*/_{\equiv}$$

οù

- $\rightarrow \bar{A} = \{\bar{a} \mid a \in A\}$
- → ≡ est la congruence engendrée par les relations

$$a\bar{a} \equiv \varepsilon$$
, $\bar{a}a \equiv \varepsilon$, $a \in A$

CODAGE DES PILES DANS LE GROUPE LIBRE

$$\varphi: k\text{-Pile}(A) \to F(A_1 \cup \cdots A_k)$$

Chaque k-pile ω est codée par la plus courte sequence d'instructions $\operatorname{push}_{i,a}$ et $\overline{\operatorname{push}_{i,a}}$ (l'inverse de $\operatorname{push}_{i,a}$) générant ω à partir de la pile vide.

$$\operatorname{push}_{a,i} \to a_i \text{ et } \overline{push_{a,i}} \to \overline{a_i}.$$

CODAGE DES PILES DANS LE GROUPE LIBRE

Exemple

: codage de $a[\perp [b \perp]] \perp [a[b \perp] \perp [ab \perp]]$.

 $\bot \left[\bot \left[\bot\right]\right] \xrightarrow{b_1} \bot \left[\bot \left[b \bot\right]\right] \xrightarrow{a_1} \bot \left[\bot \left[ab \bot\right]\right] \xrightarrow{a_2} \bot \left[a[ab \bot] \bot \left[ab \bot\right]\right] \xrightarrow{\bar{a}_1}$ $\bot \left[a[b \bot] \bot \left[ab \bot\right]\right] \xrightarrow{a_3} a \left[a[b \bot] \bot \left[ab \bot\right]\right] \bot \left[a[b \bot] \bot \left[ab \bot\right]\right] \xrightarrow{a_1}$ $a \left[a[ab \bot] \bot \left[ab \bot\right]\right] \bot \left[a[b \bot] \bot \left[ab \bot\right]\right] \xrightarrow{\bar{a}_2} a \left[\bot \left[b \bot\right]\right] \bot \left[a[b \bot] \bot \left[ab \bot\right]\right].$ $1 \left[\bot \left[\bot \left[\bot \right]\right] \xrightarrow{a_1} \bot \left[ab \bot \right] \bot \left[ab \bot\right] \bot \left[ab \bot\right]\right] \xrightarrow{\bar{a}_2} a \left[\bot \left[b \bot\right]\right] \bot \left[a[b \bot\right] \bot \left[ab \bot\right]\right]$ $2 \left[\bot \left[\bot \left[\bot \right]\right] \xrightarrow{a_1} \bot \left[ab \bot\right]\right] \bot \left[a[b \bot\right]\right] \bot \left[a[b \bot\right]\right]$ $3 \left[\bot \left[\bot \left[\bot \right]\right] \xrightarrow{a_1} \bot \left[ab \bot\right]\right]$ $4 \left[\bot \left[\bot \left[\bot \right]\right] \bot \left[ab \bot\right]\right] \bot \left[a[b \bot\right]\right]$ $4 \left[\bot \left[\bot \left[\bot \right]\right] \bot \left[ab \bot\right]\right]$ $5 \left[\bot \left[\bot \left[\bot \left[\bot \right]\right]\right]$ $5 \left[\bot \left[\bot \left[\bot \left[\bot \left[\bot \right]\right]\right]$ $5 \left[\bot \left[\bot \left[\bot \left[\bot \right]\right]\right]$ $6 \left[\bot \left[\bot \left[\bot \left[\bot \right]\right]\right]$ $7 \left[\bot \left$

$$\varphi(a[\perp [b \perp]] \perp [a[b \perp] \perp [ab \perp]]) = b_1 a_1 a_2 \bar{a_1} a_3 a_1 \bar{a_2}.$$

AUTOMATES FINIS À ORACLES

$$O_1 = \{a^n b^n, n \ge 1\}, O_2 = \{a^m b^n c^{n-1}, n, m \ge 1\}.$$

 $L(\mathcal{A}) = \{a^n b^n c^n, n \ge 1\}$

$$(q_0, \uparrow aabbcc), \ \varepsilon \notin O_1, \notin O_2 \to (q_1, a_{\uparrow}abbcc), \ a \notin O_1, \notin O_2$$

- $\rightarrow (q_1, aa_{\uparrow}bbcc), \ aa \notin O_1, \notin O_2 \rightarrow (q_2, aab_{\uparrow}bcc), \ aab \notin O_1, \in O_2$
- $\rightarrow (q_2, aabb_{\uparrow}cc), \ aabb \in O_1, \notin O_2 \rightarrow (q_3, aabbc_{\uparrow}c), \ aabbc \notin O_1, \in O_2$
- $\rightarrow (q_F, aabbcc_{\uparrow})$

CAS GÉNÉRAL

<u>Théorème</u>

- → Pile_k admet une théorie SOM décidable (thm 6.2.1)
- → Pile_k satisfait la propriété du "Modèle Définissable" (MD) (thm 6.2.1)
- → les définissables (en SOML) de Pile_k sont les ensembles de k-piles générés par k-AP contrôlés au niveau k - 1 par des ensembles définissables (thm 6.2.7)
- ightharpoonup les définissables (en SOML) de $m Pile_k$ sont les langages reconnus par automates à oracles définissables au niveau k-1 (à codage près) (thm 6.2.7)
- → les définissables (en SOML) de Pile_k sont les ensembles dont le codage est exprimable par une expression rationnelle (Carayol 05)

CARACTÉRISATION DES LANGAGES DE NIVEAU k

Théorème 10.1.3:

$$\mathsf{LANG}_k(A_{k+1}) = racines(\mathsf{DEF}(\mathbf{Pile_k}))$$

CARACTÉRISATION DES LANGAGES DE NIVEAU k

$$\mathsf{LANG}_k(A_{k+1}) = racines(\mathsf{DEF}(\mathbf{Pile_k}))$$

DEF(Pile_k) forme une algèbre de boole.

Théorème (Guessarian):

 $L \in \mathsf{LANG}_{k+1}$ ssi L est la frontière d'une forêt k-algébrique.

DES CLASSES D'AUTOMATES ÉQUIVALENTES

SIMULATION DÉTERMINISTE

Deux automates: A_1 sur k-AP (A_1) et A_2 sur ℓ -AP (A_2)

$$\mathcal{S}: k\text{-AP}(A_1) \to \ell\text{-AP}(A_2)$$
 injective

$$(p, \omega_1)$$
 α (q, ω_1') $(p, \mathcal{S}(\omega_1))$ α ϵ $(q, \mathcal{S}(\omega_1'))$ α (p, ω_2) α (q, ω_2') $(p, \mathcal{S}(\omega_2))$ α (q, ω_2') graphe de \mathcal{A}_1 graphe de \mathcal{A}_2

SIMULATION DÉTERMINISTE

Propriétés

Soit ${\mathcal S}$ une simulation déterministe de ${\mathcal A}_1$ par ${\mathcal A}_2$

- \rightarrow L(\mathcal{A}_1) = L(\mathcal{A}_2)
- \rightarrow \mathcal{A}_1 est déterministe ssi \mathcal{A}_2 est déterministe
- ightharpoonup Les arepsilon-clôtures des graphes de calculs de \mathcal{A}_1 et \mathcal{A}_2 sont isomorphes

CONTRÔLE PAR DES PROPRIÉTÉS DÉFINISSABLES

Théorème 9.3.7: Pour tout $\vec{C} = (C_1, \dots, C_m)$, C_i définissables

en LSOM dans $Pile_k$, les classes k-AP et $k-AP^{\vec{C}}$ sont équivalentes par simulation déterministe.

CONTRÔLE PAR DES PROPRIÉTÉS DÉFINISSABLES: COROLLAIRES

<u>Théorème 9.3.7:</u> Les classes k-AP et \overline{k} -AP (automates utilisant les instructions $\operatorname{push}_{a,i}$ et $\overline{\operatorname{push}}_{a,i}$) sont équivalentes par simulation déterministe.

Proposition 10.1.7: Tout automate dans k-AP est équivalent (par simulation déterministe) à un automate "émondé" (i.e., tout calcul commencé abouti à un calcul acceptant).

Contrôle par un langage de niveau k

 $\overrightarrow{\mathsf{DLANG}_k} = \mathsf{les} \; \mathsf{vecteurs} \; \vec{L} = (L_1, \dots, L_m) \; \mathsf{tels} \; \mathsf{que} \; \mathsf{les} \; L_i \; \mathsf{sont}$ reconnus par un même k-AP déterministe (pour des états finaux différents).

Théorème 9.3.11: Les classes k + 1-AP et

 $\{1-\mathsf{AP}^{\vec{L}} \mid \vec{L} \in \overrightarrow{\mathsf{DLANG}_k}\}$ sont équivalentes par simulation déterministe.

Suites k-calculables

Automates à compteur: k-AC

Le niveau 1 de la pile ne

contient que la lettre a_1 .

Suites k-calculables

Une suite $s: \mathbb{N} \to \mathbb{N}$ est k-calculable si il existe un k-AP à compteur déterministe tel que

EXEMPLE: RÉCURRENCE LINÉAIRE

$$s(0) = 2$$
 et $\forall n \ge 0$, $s(n+1) = 2s(n) + 1$.

$$\bigcirc a_2 \qquad \xrightarrow{\alpha\alpha} \qquad > \qquad \varepsilon$$

Suites (k, N)-calculables, $N \subseteq \mathbb{N}$

Suites calculables par un k-AP déterministe contrôlé. Test: le compteur de sommet de pile appartient-il à N?

 $3 \in N$?

SUITES (k, N)-CALCULABLES

Exemple: $s(n) = \lfloor \sqrt{n} \rfloor$ est (2, N)-calculable, $N = \{n^2 \mid n \geq 0\}$

QUELQUES SUITES (k, N)-CALCULABLES

Propositions 11.4.3, 11.4.6:

- → les suites solutions de systèmes d'équations linéaires recurrentes (N-rationnelles) sont 2-calculables
- → les suites solutions de systèmes d'équations polynomiales recurrentes sont 3-calculables

PROPRIÉTÉS DE CLÔTURE

<u>Théorème 11.5.19:</u>

- ightharpoonup si $s,t\in\mathbb{S}_k^{\vec{N}}$, $k\geq 2$, la suite $f+g\in\mathbb{S}_k^{\vec{N}}$.
- ightharpoonup si $s,t\in\mathbb{S}_k^{\vec{N}}$, $k\geq 3$, alors $s\odot t\in\mathbb{S}_k^{\vec{N}}$ (le produit ordinaire), et si $u\in\mathbb{S}_{k+1}^{\vec{N}}$, alors $u^t\in\mathbb{S}_{k+1}^{\vec{N}}$.
- \Rightarrow si $s \in \mathbb{S}_{k+1}^{\vec{N}}$ et $t \in \mathbb{S}_k$, pour $k \geq 2$, alors $s \times t \in \mathbb{S}_{k+1}^{\vec{N}}$ (le produit de convolution) et $s \bullet t \in \mathbb{S}_{k+1}^{\vec{N}}$ (la substitution de séries).
- \Rightarrow si $t \in \mathbb{S}_k$, avec $k \geq 2$, la suite s définie par: s(0) = 1 et $s(n+1) = \sum_{m=0}^{n} s(m) \cdot t(n-m)$ (l'inverse de convolution de $1 X \times f$) appartient à \mathbb{S}_{k+1} .

PROPRIÉTÉS DE CLÔTURE

Théorème 11.5.19 (suite)

- \Rightarrow si $s \in \mathbb{S}_k$ et $t \in \mathbb{S}_\ell^{\vec{N}}$, pour $k, l \geq 2$, la suite $s \circ t$ (la composition) appartient à $\mathbb{S}_{k+\ell-1}^{\vec{N}}$.
- ightharpoonup pour tout $k \geq 2$ et pour tout système d'équations récurrentes exprimées par des polynômes dans $\mathbb{S}_{k+1}^{\vec{N}}[X_1,\ldots,X_p]$, avec conditions initiales dans \mathbb{N} , toute solution appartient à $\mathbb{S}_{k+1}^{\vec{N}}$.
- ightharpoonup pour tout $k \geq 2$ et pour tout système d'équations récurrentes exprimées par des polynômes à indéterminées X_1, \ldots, X_p , coefficients dans $\mathbb{S}_{k+2}^{\vec{N}}$, exposants dans $\mathbb{S}_{k+1}^{\vec{N}}$ et conditions initiales dans \mathbb{N} , toute solution appartient à $\mathbb{S}_{k+2}^{\vec{N}}$.

SUITES (k, N)-CALCULABLES

Proposition:

Si s est une suite (k,N)-calculable, alors

- \rightarrow $\{\alpha^{s(n)} \mid n \geq 0\}$ est reconnu par un k-APC^N
- ightharpoonup Soit Σs la suite définie pour tout $n \geq 0$ $\Sigma s(n) = \Sigma_{m=0}^{m=n} s(m)$. $\{\alpha^{\Sigma s(n)} \mid n \geq 0\}$ est reconnu par un k-APC N déterministe
- $\rightarrow \{\alpha^{s(0)}\beta\alpha^{s(1)}\beta\cdots\alpha^{s(n)}\beta\mid n\geq 0\}$ est reconnu par un k-APC^N déterministe

59

APPLICATION AUX EXTENSIONS DE LA LOGIQUE DE BÜCHI

Question:

Pour quels relations unaires P la théorie SOM de $\langle \mathbb{N}, +1, P \rangle$ est-elle décidable ?

• (Büchi 66) SOM-Th $\langle \mathbb{N}, +1 \rangle$ est décidable.

• (Elgot & Rabin 66)

• (Siefkes 70)

• (Carton & Thomas 00)

APPLICATION À L'ARITHMÉTIQUE

- \rightarrow La structure $\langle \mathbb{N}, +1, \Sigma s(\mathbb{N}) \rangle$ est SOM-interpétable dans le graphe de A
- \rightarrow Si $\langle \mathbb{N}, +1, N \rangle$ admet une théorie SOM décidable, alors le graphe de A admet une théorie SOM décidable.

APPLICATION À L'ARITHMÉTIQUE

<u>Théorème 13.1.4:</u>

Si $\langle \mathbb{N}, +1, N \rangle$ admet une théorie SOM

décidable, alors pour toute suite (k, N)-calculable s, la théorie SOM de $(\mathbb{N}, +1, \Sigma s(\mathbb{N}))$ est décidable.

Corollaire 13.1.5:

- $\rightarrow \langle \mathbb{N}, +1, \{\lfloor n\sqrt{n} \rfloor\}_{n \geq 0} \rangle$
- $\rightarrow \langle \mathbb{N}, +1, \{ \lfloor n \log n \rfloor \}_{n \geq 0} \rangle$

GÉNÉRALISATION À PLUSIEURS PRÉDICATS

Théorème 13.1.6: Si $\langle \mathbb{N}, +1, N_1, \dots, N_m \rangle$ a une théorie SOM

décidable, alors pour toute suite (k, \vec{N}) -calculable s (avec $\vec{N}=(N_1,\ldots,N_m)$), alors

$$\langle \mathbb{N}, +1, \Sigma s(\mathbb{N}), \Sigma s(N_1), \ldots, \Sigma s(N_m) \rangle$$

a une théorie SOM décidable.

Corollaire 13.1.7:

Pour tous $k_1, \ldots, k_m \geq 0$, la théorie SOM de la structure

$$\langle \mathbb{N}, +1, \{n^{k_m}\}_{n\geq 0}, \{n^{k_m k_{m-1}}\}_{n\geq 0}, \dots, \{n^{k_1 \cdots k_m}\}_{n\geq 0} \rangle$$

est décidable.

SUITES DE NOMBRES RATIONNELS

Soit S un ensembles de suites de nombres rationnels. On s'intéresse au problème algorithmique de l'égalité de deux suites de S.

Ce problème est défini de la façon suivante :

ENTRÉE: deux suites $u, v \in S$, QUESTION: u = v?

i.e. est-ce que , $\forall n \in \mathbb{N}, u_n = v_n$?

SUITES DE NOMBRES

Posons $\mathcal{F}(\mathbb{S}_k^{\vec{N}})$ l'ensemble des suites $(w_n)_{n\geq 0}$ de la forme

$$w_n = \frac{u_n - v_n}{u_n' - v_n'}$$
 pour tout $n \ge 0$, avec $u, v, u', v' \in \mathbb{S}_k^{\vec{N}}$.

Corollaire 14.0.17

Le problème de l'égalité de deux suites de $\mathcal{F}(\mathbb{S}_k^{\vec{N}})$, $k \geq 3$ se réduit au problème de l'équivalence de deux automates de niveau k déterministes.

Remarque : $\mathcal{F}(\mathbb{S}_k^{\vec{N}})$ est un anneau.

PERSPECTIVES

- → Largeur arborence des graphes de calculs
- → Suites multiples calculables
- → Décidabilité de la droite augmentée de prédicats non emboités

Exemple: $\langle \mathbb{N}, +1, \{n^2\}_{n \in \mathbb{N}}, \{n^3 \in \mathbb{N}\} \rangle$

→ Problème de l'equivalence des automates déterministes (dans le cas d'un graphe filaire)