TITLE PAGE

Class	:	BE - 8
Roll. No		42428
Assignment No.		B. 3
Assignment Name	:	1-bit SRAM Cell
Date Of Performance	:	28-11-2020

Theory:

F= 90 nm.

3.a): 1-bit SRAM Cell using NMOS Switches-

NI, Na: NMOS SIW'S

Function Table-

C	SRAM_WA	SRAM_RD
1	0	WEAK-
1	1	STRONG-0
0	×	OHOLD

Waveforms

a) Read output when c = 1 and Write = 0; Read = WEAK-1

b) Read output when c = 1 and Write = 1; Read = STRONG-0

c) Read output when c = 0 and Write = 0; Read = HOLD

Theory:

3.6) - 1-bit SRAM cell using TG switches.

the spirit state of the state of

TGI, TG2: Transmission Gate switches

Function Table.

C	SRAM_WR	SRAM_RD
1	O	STRONG-1
1	l	STRONG-0
0	X	O/HOLD

Waveforms

a) Read output when c = 1 and Write = 0; Read = STRONG-1

b) Read output when c = 1 and Write = 1; Read = STRONG-0

c) Read output when c = 0 and Write = 0; Read = HOLD

Conclusion:

Thus we have:

- 1) Drawn the LAYOUT for 1-bit SRAM Cell using 2 CMOS Inverters and 2 NMOS Transistors for switching purpose, using 90 nm Foundry.
- 2) Simulated the LAYOUT to observe waveforms & verified its functionality as per TRUTH-TABLE.
- 3) Observed the inability of NMOS to provide STRONG 1 at the output.
- 4) To avoid the WEAK-1/WEAK-0 outputs while using NMOS and PMOS Switches respectively, replacing them with TG Switches gives STRONG-1 and STRONG-0 at the Read Line.
- 5) The only drawback of this circuit is that a complemented value of the data written is read.