1 Question 1

For the data sets in Problems 1–4, construct a divided difference table. Is smoothing with a low-order polynomial appropriate? If so, choose an appropriate polynomial and fit using the least-squares criterion of best fit. Analyze the goodness of fit by examining appropriate indicators and graphing the model, the data points, and the deviations.

```
Code Pasting Area

x = [0, 1, 2, 3, 4, 5, 6, 7];
y = [2, 8, 24, 56, 110, 192, 308, 464];
```

```
Code Pasting Area

x = [0, 1, 2, 3, 4, 5, 6, 7];
y = [23, 48, 73, 98, 123, 148, 173, 198];
```

```
Code Pasting Area

x = [0, 1, 2, 3, 4, 5, 6, 7];
y = [7, 15, 33, 61, 99, 147, 205, 273];
```

```
Code Pasting Area

x = [0, 1, 2, 3, 4, 5, 6, 7];
y = [1, 4.5, 20, 90, 403, 1808, 8103, 36316];
```

1.1 Problem 1

The divided difference table for data:

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$
0	2	6			
1	8	16	5	1	
2	24	32	8	1	0
3	56	54	11	1	0
4	110	82	14	1	0
5	192	116	17	1	0
6	308	156	20	1	
7	464	130			

So I chose the 3-order polynomial to fit this data set:

1.2 Problem 2

The divided difference table for data:

x	y	Δy	$\Delta^2 y$
0	23	25	
1	48	25	0
2	73	25	0
3	98	25	0
4	123	25	0
5	148	25	0
6	173	25	0
7	198	23	

So I chose the 1-order polynomial to fit this data set:

1.3 Problem 3

The divided difference table for data:

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$
0	7	0		
1	15	8	5	0
2	33	18	5	0
3	61	28	5	0
4	99	38	5	0
5	147	48	5	0
6	205	58	5	0
7	273	68		

So I chose the 2-order polynomial to fit this data set:

1.4 Problem 4

The divided difference table for data:

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	$\Delta^6 y$	$\Delta^7 y$
0	1	3.5						
1	4.5	15.5	6	7.0833				
2	20	70	27.25	31.417	6.0833	4.2875		
3	90	313	121.5	141.5	27.521	19.071	2.4639	1.2338
4	403	1405	546	633	122.87	85.675	11.101	1.2336
5	1808	6295	2445	2838	551.25	65.075		
6	8103	28213	10959	2030				
7	36316	20213						

So I chose the 7-order polynomial to fit this data set :

2 Question 2

In the following data, X represents the diameter of a ponderosa pine measured at breast height, and Y is a measure of volume—number of board feet divided by 10. Construct a scatterplot of the given data. Is there a trend in the data? Are any of the data points outliers? Construct a divided difference table. Is smoothing with a low-order polynomial appropriate? If so, choose an appropriate polynomial and fit using the least-squares criterion of best fit. Analyze the goodness of fitt by examining appropriate indicators and graphing the model, the data points, and the deviations.

X	17	19	20	22	23	25	31	32	33	36	37	38	39	41
\overline{Y}	19	25	32	51	57	71	141	123	187	192	205	252	248	294

Remove the outliers form the data set:

Figure 1: Before

Figure 2: After

The divided difference table for data:

x	y	Δy	$\Delta^2 y$	$\Delta^3 y$	$\Delta^4 y$	$\Delta^5 y$	$\Delta^6 y$	$\Delta^7 y$
17	19	3						
19	25	3 7	1.3333	0.1				
20	32	9.5	0.8333	-0.1 -0.5	-0.0667	0.025		
22	51		-1.1667	0.3	0.1333	0.025	-0.0027	$0.1879*10^{-3}$
23	57	6 7	0.3333		-0.0247		0.0008	
25	71	,	0.5833	0.0278	-0.0059	0.0012	-0	$-0.0478*10^{-3}$
31	141	11.667	-0.1333	-0.0551	0.0075	0.0009	-0	0.0196.10=3
36	192	10.2	0.4667	0.05	0.0176	0.0006	-0.0004	$-0.0186*10^{-3}$
37	205	13	2.8333	0.2958	-0.0788	-0.006		
39	248	21.5	0.375	-0.4917				
41	294	23						

So I chose the 6-order, 7-order, 8-order and 9-order polynomial to fit this data set:

It is found that the 7-order polynomial is enough to fit this data set.