$$T(n) = aT(\frac{n}{b}) + O(n^d)$$
 $C = \log_b a$

1.
$$T(n) = T(\frac{n}{2}) + O(1)$$

 $a = 1, b = 2, d = 0, c = log_1 = 0$
Since $n^d = n^c$; $T(n) = O(n^c log_1)$
 $= O(log_1)$

2
$$T(n) = 2T(\frac{n}{2}) + O(n^2)$$

 $a = 2$, $b = 2$, $c = \log_2 2 = 1$, $d = 2$
Since $n^d > n^c$; $T(n) = O(n^d)$
 $= O(n^2)$

3.
$$T(n) = 2T(\frac{n}{2}) + O(n)$$

 $Ca = 2$, $b = 2$, $C = log_2 2 = 1$, $d = 1$
Since $2^d = 2^c$; $T(n) = O(n^c log n)$
 $= O(n log n)$

4.
$$T(n) = 4T(\frac{n}{2}) + O(1)$$

 $cl = 4$, $b = 2$, $e = log_2 4$, $d = 0$
Since $p^{cl} < p^{cl} > T(n) = O(n^{cl})$
 $= O(n^{2})$

5.
$$T(n) = T(\frac{n}{3}) + O(1)$$

Q=1, b=3, c=log₃1 = 0, d=0
Since nb= nc; $T(n) = O(nclog n)$
= $O(log n)$

6.
$$T(n) = 8T(\frac{n}{2}) + O(n^2)$$

 $a = 8$, $b = 2$, $c = log_2 8 = 3$, $d = 2$
Since $n^d < n^c$; $T(n) = O(n^c)$
 $= O(n^3)$

7.
$$T(n) = qT(\frac{n}{3}) + O(n)$$

 $Q = q, b = 3, c = log_{,} q = 2, d = 1$
Since $n^{d} < n^{c}$; $T(n) = O(n^{c})$
 $= O(n^{2})$

