Wireless Security

Why is Security More of a Concern in Wireless?

- □ No inherent physical protection
 - physical connections between devices are replaced by logical associations
 - sending and receiving messages do not need physical access to the network infrastructure (cables, hubs, routers, etc.)
- Broadcast communications
 - wireless usually means radio, which has a broadcast nature
 - transmissions can be overheard by anyone in range
 - anyone can generate transmissions, which will be received by other devices in range
 - which will interfere with other nearby transmissions and may prevent their correct reception (jamming)
- □ Eavesdropping is easy
- Injecting bogus messages into the network is easy
- Replaying previously recorded messages is easy
- □ Illegitimate access to the network and its services is easy
- Denial of service is easily achieved by jamming

Overview

Attacking Wireless Networks

Attack 1: CSMA Selfish Behaviors

- □ Carrier sense: When a node wishes to transmit a packet, it first waits until the channel is idle
- □ Backoff Interval: used to reduce collision probability
- When transmitting a packet, choose a backoff interval in the range [0,cw]: cw is contention window
- Count down the backoff interval when medium is idle
 - Count-down is suspended if medium becomes busy
- When backoff interval reaches 0, transmit
- □ IEEE 802.11 DCF: contention window cw is chosen dynamically depending on collision occurrence

Binary Exponential Backoff

- When a node faced a transmission failure, it increases the contention window
 - o cw is doubled (up to an upper bound)
- When a node successfully completes a data transfer, it restores cw to Cwmin
- cw follows a sawtooth curve

Attack 1: CSMA Selfish Behaviors

- Use smaller backoff window
 - Transmit with you should not
 - Attacker gets more bandwidth
 - Cause collisions to others

Attack 2: Jamming

Attack 3: Injecting Bogus Information

Introduction

- Traditionally, Denial of Service (DoS) attacks involve filling receiving buffers and/or bringing down servers
- □ In the wireless domain, DoS is more fundamentally linked with the medium
 - MAC misbehavior or
 - Preventing nodes from even communicating (i.e., jamming)

Roadmap

Advanced
Detection
Mechanisms

Basic Detection Mechanisms

Jamming Models

What is a Jammer?

□ A jammer is purposefully trying to interfere with the physical transmit/receive

Jammers -- Hardware

- Cell phone jammer unit
 - Block every cellular phone!!!
- □ Signal generator
- Conventional devices

Goal of Jammer

- □ Interference
 - Prevent a sender from sensing out packets
 - Prevent a receiver from receiving legitimate packets
- ☐ How to measure their effectiveness:
 - □ Packet Send Ratio (PSR):
 - Ratio of actual # of packets sent out versus # of packets intended
 - □ Packet Delivery Ratio (PDR):
 - Ratio of # of successfully delivered packets versus # of packets sent out
 - Measured at sender [ACKs] or receiver [CRC check]

Jammer Attack Models

Normal MAC protocol: Jammer:

Jamming Models

- □ Constant Jammer
 - Continuously emits radio signal (random bits, no MAC-etiquette)
- □ Deceptive Jammer
 - Continuously sends regular packets (preamble bits) without gaps in transmission
 - Targeting sending
- □ Random Jammer
 - Alternates between sleeping and jamming states.
 - Takes energy conservation into consideration
- □ Reactive Jammer:
 - Reacts to a sent message
 - Targeting reception;
 - Harder to detect

Constant Jammer

□ Constant Jammer - continually emits a radio signal (noise). The device will not wait for the channel to be idle before transmitting. Can disrupt even signal strength comparison protocols.

Deceptive Jammer

Deceptive Jammer - constantly injects regular packets with no gap between packets. A normal device will remain in the receive state and cannot switch to the send state because of the constant stream of incoming packets.

Random Jammer

■ Random Jammer - alternates between sleeping and jamming. Can act as constant or deceptive when jamming. Takes energy conservation into consideration.

Reactive Jammer

□ Reactive Jammer - other three are active this is not. It stays quiet until there is activity on the channel. This targets the reception of a message. This style does not conserve energy however it may be harder to detect.

Basic Jamming Detection

What attributes will help us detect jamming?

- □ Signal strength (PHY-layer detection)
- □ Carrier sense (MAC layer detection)
- Packet Delivery Ratio
 - Detects all jamming models
 - Differentiates jamming from congestion
 - Cannot differentiate jamming from node failure, battery loss, departure, etc.

Detection 1: Analyzing Signal Strength

How can we use Signal Strength to detect Jamming?

- □ Signal strength distribution may be affected by the presence of a jammer
- □ Each device should gather its own statistics to make its own decisions on the possibility of jamming
- Establish a base line or build a statistical model of normal energy levels prior to jamming of noise levels....But how??

Two Methods for Signal Strength

1. Basic Average and Energy Detection

 We can extract two statistics from this reading, the average signal strength and the energy for detection over a period of time

2. Signal Strength Spectral Discrimination

- A method that employs higher order crossings (HOC) to calculate the differences between samples
- This method is practical to implement on resource constrained wireless devices, such as sensor nodes

Experiment Setup

- □ Involving three parties:
 - Normal nodes:
 - · Sender A
 - · Receiver B
 - Jammer X
- Parameters
 - Four jammers model
 - Distance
 - Let $d_{XB} = d_{XA}$
 - Fix d_{AB} at 30 inches
 - O Power
 - $P_A = P_B = P_X = -4dBm$

<u>Signal Strength</u>

- □The average values for the constant jammer and the MaxTraffic source are roughly equal
- □The constant jammer and deceptive jammer have roughly the same average values
- The signal strength average from a CBR source adoes not differ much from the reactive jammer scenario
- These results suggest that we may not be able to use simple statistics such as average signal strength to identify jamming

<u>Signal-Strength: Higher Order</u> <u>Crossing</u>

- We can not distinguish the reactive or random jammer from normal traffic
- A reactive or random jammer will alternate between busy and idle in the same way as normal traffic behaves
- □ HOC will work for some jammer scenarios but are not powerful enough to detect all jammer scenarios

Detection 2: Analyzing Carrier Sensing Time

- □ A jammer can prevent a legitimate source from sending out packets ← channel might appear constantly busy to the source
- □ Keep track of the amount of time it spends waiting for the channel to become idle (carrier sensing time)
 - Compare it with the sensing time during normal traffic operations to determine whether it is jammed
 - Only true if MAC protocol employs a fixed signal strength threshold to determine whether channel is busy
- Determine when large sensing times are results of jamming by setting a threshold
- □ Threshold set conservatively to reduce false positive

Detection 2: Analyzing Carrier Sensing Time

<u>Detection 3: Analyzing Packet Delivery</u> <u>Ratio</u>

- □ How much PDR degradation can be caused by non-jamming, normal network dynamics, such as congestion? (PDR 78%)
- □ A jammer causes the PDR drop significantly, almost to 100%
- □ A simple threshold based on PDR is a powerful statistic to determine Jamming vs. congestion
- □ PDR can not differentiate nonaggressive jamming attacks from poor channel quality...

Basic Statistics Summary

- Both Signal Strength and Carrier Sensing time can only detect the constant and deceptive jammer
- Neither of these two statistics is effective in detecting the random or the reactive jammer
- PDR is a powerful statistic to determine Jamming vs. congestion
 - It can not account for all network dynamics

Solution: Consistency Checks

- □ PDR is relatively good
 - □ Normal scenario:
 - High signal strength → high PDR
 - Low signal strength → low PDR
 - □ Low PDR in real life
 - Poor channel quality
 - Jamming attacks → high signal strength
- □ Consistency check
 - Look at transmissions from neighbors
 - □ If at least one neighbor has high PDR
 - □ If all have low PDR \rightarrow check signal strength \rightarrow high
 - → I am being jammed!

Location-Based Consistency Check

- □ Concept:
 - Close neighbor nodes → high PDR
 - \circ Far neighbor nodes \rightarrow lower PDR
- ☐ If all nearby neighbors exhibit low PDR
 - → jammed!

PRD/Signal Strength Consistency

Results

- Observed Normal relationships
 - High signal strength yields a high PDR
 - Low signal strength yields a low PDR
- Jammed scenario: a high signal strength but a low PDR
- The Jammed region has above 99% signal strength confidence intervals and whose PDR is below 65%

What Happens After Detection??

- □ This work has identified jamming models and described a means of detection
- Prevention? Reaction?
 - Channel surfing and spatial retreats
 - o SSCH

Our Jammers

- MAC-layer Jammer
 - Mica2 Motes (UC Berkeley)
 - 8-bit CPU at 4MHz
 - 512KB flash, 4KB RAM
 - 916.7MHz radio
 - 05: Tiny05
 - O Disable the CSMA Preamble Sync
 - Keep sending out the preamble
- □ PHY-layer Jammer
 - Waveform Generator
 - Tune frequency to 916.7MHz

Packet

Escaping From Jamming Attacks

Channel Surfing

- Utilize frequency hopping if a node detects that it is being jammed it just switches to another channel
 - Inspired by frequency hopping techniques, but operates at the link layer
- System Issues: Must have ability to choose multiple "orthogonal" channels
 - Practical Issue: PHY specs do not necessarily translate into correct "orthogonal" channels
 - Example: MICA2 Radio recommends: "choose separate channels with a minimum spacing of 150KHz" but.....

Throughput VS. Channel Assignment

- Sender sends the packet as fast as it can
- Receiver counts the packet and calculates the throughput
- □ The radio frequency of the sender and receiver was fixed at 916.7MHz
- Increased the interferer's communication frequency by 50kHz each time
- When the Jammer's communication frequency increases to 917.5MHz, there is almost no interference

Is Channel Surfing Feasible??

Escaping From Jamming Attacks

- "Orthogonal" channels
 - The fact is that we need at least 800KHz to escape the interference
 - Therefore, explicit determination of the amount of orthogonal channels is important
- Channel Surfing
 - Target: maximize the delay before the attacker finds the new channel
 - Solution: use a (keyed) pseudo-random channel assignment between nodes

Escaping from Jamming Attacks

Spatial Retreats:

- If a node is jammed move spatially (physically) to another location
- When a node changes location, it needs to move to a new location where it can avoid being jammed but minimize network degradation
- Sometimes a spatial retreat will cause a network partition
- Two different strategies to defend against jamming
 - Channel-surfing: changing the transmission frequency to a range where there is no interference from the attacker
 - Spatial retreat: moving to a new location where there is no interference

Jammers will be Punished

- □ A man skilled in the operation of commercial wireless Internet networks was sentenced for intentionally bringing down wireless Internet services across the region of Vernal, Utah.
- □ Ryan Fisher, 24, was sentenced to 24 months in prison to be followed by 36 months of supervised release, and to pay \$65,000 in restitution.
- □ In total, more than 170 customers lost Internet service, some of them for as long as three weeks

Bottom Line

Don't be Evil !!