Занятие от 04.03. Геометрия и топология. 1 курс. Решения.

Глеб Минаев @ 102 (20.Б02-мкн)

10 марта 2021 г.

Задача 97.

Лемма 1. Пусть даны аффинные подпространства A, B, A' и B' пространства \mathbb{R}^n (V_A , V_B , $V_{A'}$ и $V_{B'}$ — их векторные пространства). Следующие утверждения равносильны.

- 1. Существует аффинная биекция \mathbb{R}^n на себя, переводящая A в A' и B в B'.
- 2. $\dim(A) = \dim(A')$, $\dim(B) = \dim(B')$, $\dim(V_A \cap V_{A'}) = \dim(V_B \cap V_{B'})$ $u \cap A \cap B = \emptyset \leftrightarrow A' \cap B' = \emptyset$.

Доказательство.

- $1\Rightarrow 2)$ Пусть такая биекция существует. Тогда все утверждения из пункта (2) очевидны для V_A и V_B , а значит и для самих аффинных пространств.
- $2\Rightarrow 1)$ Возьмём любой базис $\{e_i\}_{i=1}^{\deg(V_A\cap V_B)}$ в $V_A\cap V_B$ и дополним его в V_A и в V_B до базисов множествами $\{g_i\}_{i=1}^{\deg(V_A)-\deg(V_A\cap V_B)}$ и $\{h_i\}_{i=1}^{\deg(V_B)-\deg(V_A\cap V_B)}$ соответственно. Заметим, что объединение трёх множеств есть базис V_A+V_B . Действительно, пусть это не так и есть такие нетривиальные коэффициенты, что

$$\sum e_i a_i + \sum g_i b_i + \sum h_i c_i = \overline{0}$$

Тогда имеем, что

$$\sum e_i a_i + \sum g_i b_i = \sum h_i(-c_i)$$

При этом левая часть выражения лежит в V_A , а правая в V_B , следовательно в $V_A \cap V_B$. Но так как $\{e_i\} \cup \{h_i\}$ и $\{e_i\}$ — базисы V_B и $V_A \cap V_B$ соответственно, то $c_i = 0$ для всех i; аналогично $b_i = 0$. Следовательно

$$\sum e_i a_i = 0$$

т.е. $a_i = 0$ — противоречие. Следовательно в $V_A + V_B$ можно построить "правильный" базис состоящий из базисов $V_A \cap V_B$, V_A и V_B , и по аналогии его можно получить для $V_{A'}$ и $V_{B'}$. Рассмотрим два случая:

— Пусть $A \cap B$ и $A' \cap B'$ непусты. Тогда в них можно выбрать по точке p и p' соответственно. Тогда $A = p + V_A$, $B = p + V_B$, $A' = p' + V_{A'}$, $B' = p' + V_{B'}$. Тогда можно рассмотреть аффинное преобразование, которое переводит p в p', а в пространстве векторов переводит e_i в e_i' , g_i в g_i' и h_i в h_i' . Оно то и переведёт A в A' и B в B'.

— Пусть $A \cap B = \emptyset = A' \cap B'$. Выберем во всех четырёх пространствах по точке a, b, a' и b' соответственно. Несложно видеть, что $\overrightarrow{ab} \notin V_A + V_B$, так как иначе V_A и V_B пересекаются. Тогда можно рассмотреть аффинное преобразование, которое переводит a в a', а в пространстве векторов переводит \overrightarrow{ab} в $\overrightarrow{a'b'}$, e_i в e_i' , g_i в g_i' и h_i в h_i' . Оно то и переведёт b в b', а следовательно A в A' и B в B'.

Заметим, что искомые классы эквивалентности эквивалентны парам $(\deg(V_A \cap V_B), [A \cap B = \varnothing])$, т.е. паре из числа равному размерности $V_A \cap V_B$ и булевому значению, определяющему пусто ли $A \cap B$.

Заметим, что $A \cap B$ может быть пусто тогда и только тогда, когда $\dim(V_A + V_B) < n$. Следовательно искомое количество компонент связности равно количеству достижимых выше описанных пар. Несложно видеть, что $\deg(V_A \cap V_B)$ может принимать все значения от $\max(0, k+m-n)$ до $\min(k,m)$ и только их. И во всех случаях кроме $\deg(V_A \cap V_B)$ второе значение в паре может принимать два значение; в исключённом случае только одно. Таким образом искомый ответ равен

$$\begin{aligned} & 2(\min(k,m) - \max(0,k+m-n) + 1) - [\max(0,k+m-n) \leqslant n \leqslant \min(k,m)] \\ & = 2(\min(k,m) - \max(0,k+m-n) + 1) - [\max(0,k+m-n) \leqslant n \land n \leqslant \min(k,m)] \\ & = 2(\min(k,m) - \max(0,k+m-n) + 1) - [0 \leqslant n \land k + m - n \leqslant n \land n \leqslant k \land n \leqslant m] \\ & = 2(\min(k,m) - \max(0,k+m-n) + 1) - [k+m \leqslant 2n \land n \leqslant k \land n \leqslant m] \\ & = 2(\min(k,m) - \max(0,k+m-n) + 1) - [k=n \land m=n] \end{aligned}$$

(где [*] — "скобка Айверсона").

Отсюда рассматривая конкретные k и m несложно получить ответ.

Задача 100. Заметим, что f имеет вид Ax+b для некоторых линейного оператора A и вектора b. Тогда несложно видеть, что

$$\underbrace{f \circ \cdots \circ f}_{n \text{ pas}} = A^n x + (A^{n-1} + A^{n-2} + \cdots + A^0)b$$

Заметим также, что для всяких операторов A и B и вектора b верно следующее.

Уравнение
$$BAx + Bb = 0$$
 имеет корень.
 \iff Уравнение $Ax + b \in \operatorname{Ker} B$ имеет корень.
 \iff $b \in \{s - t \mid s \in \operatorname{Ker} B \land t \in \operatorname{Im} A\}$
 \iff $b \in \operatorname{Ker} B + \operatorname{Im} A$

Теперь поймём, что существование неподвижной точки f равносильно разрешимости уравнения (A-1)x+b=0, а $f^n-(A^n-\mathrm{Id})x+(A^{n-1}+\cdots+A^0)=0$, что равносильно $(A^{n-1}+\cdots+A^0)((A-1)x+b)=0$. Таким образом нужно показать, что если $b\in \mathrm{Ker}(A^{n-1}+\cdots+A^0)+\mathrm{Im}(A-1)$, то $b\in \mathrm{Im}(A-1)$. Т.е. нужно показать, что $\mathrm{Ker}(A^{n-1}+\cdots+A^0)\subseteq \mathrm{Im}(A-1)$.

Перейдём в поле комплексных чисел и докажем данное утверждение там; после сужения поля факт несомненно останется верным. Обозначим за ζ первообразный корень из 1 степени n. Тогда несложно видеть, что

$$A^{n-1} + \dots + A^0 = \prod_{i=1}^{n-1} A - \zeta^i$$

Покажем по индукции по k, что для любых различных констант $\lambda_1, \ldots, \lambda_k$ и для всякого оператора A верно, что

$$\operatorname{Ker} \prod_{i=1}^{k} A - \lambda_{i} = \sum_{i=1}^{k} \operatorname{Ker}(A - \lambda_{i})$$

База. При k = 0, 1 очевидно.

Шаг. Заметим, что по предположению индукции всякий элемент $\ker \prod_{i=1}^{k-1} A - \lambda_i$ имеет вид $v_1 + \cdots + v_{k-1}$, где $v_i \in \ker(A - \lambda_i)$. Соответственно если $(\prod_{i=1}^k A - \lambda_i)x = 0$, то $(A - \lambda_k)x$ имеет вид $v_1 + \cdots + v_{k-1}$. Следовательно

$$\left(\prod_{i=1}^{k} A - \lambda_i\right) \left(x - \frac{v_1}{\lambda_1 - \lambda_k} - \dots - \frac{v_1}{\lambda_{k-1} - \lambda_k}\right) = 0$$

Таким образом х имеет вид

$$\frac{v_1}{\lambda_1 - \lambda_k} + \dots + \frac{v_1}{\lambda_{k-1} - \lambda_k} + v_k$$

где $v_i \in \text{Ker}(A - \lambda_i)$, т.е. По той же причине несложно видеть, что всякий элемент $\sum_{i=1}^k \text{Ker}(A - \lambda_i)$ лежит в ядре $\prod_{i=1}^k A - \lambda_i$.

Теперь покажем (ещё раз), что $\operatorname{Ker}(A-\zeta^i)\subseteq\operatorname{Im}(A-1)$ при $i\in\{1;\ldots;n-1\}$. Отсюда будет следовать требуемое утверждение. Действительно, если $v\in\operatorname{Ker}(A-\zeta^i)$, то

$$(A-1)\frac{v}{\zeta^{i}-1} = \frac{1}{\zeta^{i}-1}(A-1)v = \frac{1}{\zeta^{i}-1}(\zeta^{i}v - v) = v$$

T.e. $v \in \operatorname{Im}(A-1)$.