ÁLGEBRA LINEAL

Primer parcial — 23 de junio de 2020

1. Sean S y T los subespacios de $\mathbb{R}^{2\times 2}$ dados por

$$\mathbf{S} = \left\{ A \in \mathbb{R}^{2 \times 2} : \operatorname{tr}(A) = 0 \right\} \qquad \quad \mathbf{y} \qquad \quad \mathbf{T} = \left\langle \begin{pmatrix} k & -k \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & k \\ -1 & -k \end{pmatrix} \right\rangle.$$

Hallar los valores de $k \in \mathbb{R}$ para los cuales se cumple que $S \cap T \neq \{0\}$. Para cada uno de esos valores de k decidir si existe un subespacio $U \subseteq \mathbb{R}^{2 \times 2}$ tal que $S \cap T \subsetneq U \subsetneq S$.

2. Hallar una base del subespacio S de $K^{n \times n}$ dado por

$$S = \{ A \in K^{n \times n} : A = AP^{ij} \quad \forall \, 1 \le i, j \le n \},$$

donde $P^{ij} \in K^{n \times n}$ es la matriz que se obtiene permutando la fila i con la fila j de la matriz identidad.

- **3.** Sea $\mathcal{B} = \{v_1, v_2, v_3, v_4\}$ una base de un \mathbb{R} -espacio vectorial V y sean $f, g \in \text{End}(V)$ tales que:
 - Nu(f) = $\langle v_2 + v_3 + v_4, v_1 + v_4 \rangle$.
 - $f(-2v_1 v_2 + 2v_3) = v_2 + v_3 + v_4.$
 - $\bullet [g]_{\mathcal{B}} = \begin{pmatrix} 1 & 1 & 0 & 2 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 2 \\ 1 & 2 & 1 & 4 \end{pmatrix}.$

Encontrar bases de $Nu(f \circ g)$ y de $Im(f \circ g)$.

4. Sea $P \in \mathbb{R}_2[X]$ tal que $\mathcal{B} = \{2 + X - X^2, -2 + X + 3X^2, P\}$ es una base de $\mathbb{R}_2[X]$ y sea \mathcal{B}^* su base dual. Hallar generadores de $\langle 1 - X^2 \rangle^\circ$ y determinar sus coordenadas en la base \mathcal{B}^* .

Justifique todas sus respuestas, no omita detalles y sea claro al escribir. Por favor entregue cada ejercicio en hojas separadas.