Efficient one and multiple time-step Monte Carlo simulation of the SABR model

Álvaro Leitao, Lech A. Grzelak and Cornelis W. Oosterlee

Delft University of Technology - Centrum Wiskunde & Informatica

Frankfurt - April 20, 2017

"Our" definition of simulation

- Generate samples from (sampling) stochastic processes.
- The standard approach to sample from a given distribution, Z:

$$F_Z(Z) \stackrel{\mathrm{d}}{=} U$$
 thus $z_n = F_Z^{-1}(u_n)$,

- F_Z is the cumulative distribution function (CDF).
- ullet means equality in the distribution sense.
- $U \sim \mathcal{U}([0,1])$ and u_n is a sample from $\mathcal{U}([0,1])$.
- The computational cost depends on inversion F_Z^{-1} .

Outline

- SABR model
- 2 Distribution of the SABR's integrated variance
- One-step SABR simulation
- Multiple time-step SABR simulation
- Conclusions

SABR model

The formal definition of the SABR model [6] reads

$$dS(t) = \sigma(t)S^{\beta}(t)dW_{S}(t), \quad S(0) = S_{0} \exp(rT),$$

$$d\sigma(t) = \alpha\sigma(t)dW_{\sigma}(t), \qquad \sigma(0) = \sigma_{0}.$$

- $S(t) = \bar{S}(t) \exp(r(T-t))$ is the forward price of the underlying $\bar{S}(t)$, with r an interest rate, S_0 the spot price and T the maturity.
- $\sigma(t)$ is the stochastic volatility.
- $W_f(t)$ and $W_{\sigma}(t)$ are two correlated Brownian motions.
- SABR parameters:
 - ▶ The volatility of the volatility, $\alpha > 0$.
 - ▶ The CEV elasticity, $0 \le \beta \le 1$.
 - ▶ The correlation coefficient, ρ ($W_f W_\sigma = \rho t$).

"Exact" simulation of SABR model

• Based on Islah [7], the conditional cumulative distribution function (CDF) of S(t) in a generic interval [s, t], $0 \le s \le t \le T$:

$$Pr\left(S(t) \leq K|S(s) > 0, \sigma(s), \sigma(t), \int_{s}^{t} \sigma^{2}(z) dz\right) = 1 - \chi^{2}(a; b, c),$$

where

$$a = \frac{1}{\nu(t)} \left(\frac{S(s)^{1-\beta}}{(1-\beta)} + \frac{\rho}{\alpha} (\sigma(t) - \sigma(s)) \right)^{2},$$

$$c = \frac{K^{2(1-\beta)}}{(1-\beta)^{2}\nu(t)},$$

$$b = 2 - \frac{1 - 2\beta - \rho^{2}(1-\beta)}{(1-\beta)(1-\rho^{2})},$$

$$\nu(t) = (1-\rho^{2}) \int_{s}^{t} \sigma^{2}(z) dz,$$

and $\chi^2(x; \delta, \lambda)$ is the non-central chi-square CDF.

• Exact in the case of $\rho = 0$, an approximation otherwise.

Simulation of SABR model

• Simulation of the volatility process, $\sigma(t)|\sigma(s)$:

$$\sigma(t) \sim \sigma(s) \exp(\alpha \hat{W}_{\sigma}(t) - \frac{1}{2}\alpha^2 t),$$

where $\hat{W}_{\sigma}(t)$ is a independent Brownian motion.

- Simulation of the integrated variance process, $\int_s^t \sigma^2(z) dz |\sigma(t), \sigma(s)|$.
- Simulation of the forward process, $S(t)|S(s), \int_s^t \sigma^2(z)dz, \sigma(t), \sigma(s)$ by inverting the CDF.
- The conditional integrated variance is a challenging part. We propose:
 - Approximate the conditional distribution by using Fourier techniques and copulas.
 - Marginal distribution based on COS method [4].
 - Conditional distribution based on copulas.
 - Improvements in performance and efficiency.

Distribution of the integrated variance

- Not available.
- For notational convenience, we will use $Y(s,t) := \int_s^t \sigma^2(z) dz$.
- Discrete equivalent, *M* monitoring dates:

$$Y(s,t) := \int_s^t \sigma^2(z) dz \approx \sum_{j=1}^M \Delta t \sigma^2(t_j) =: \hat{Y}(s,t)$$

where $t_j = s + j\Delta t$, j = 1, ..., M and $\Delta t = \frac{t-s}{M}$.

• In the logarithmic domain, where we aim to find an approximation of $F_{\log \hat{Y} \mid \log \sigma(s)}$:

$$F_{\log \hat{Y}|\log \sigma(s)}(x) = \int_{-\infty}^{x} f_{\log \hat{Y}|\log \sigma(s)}(y) dy,$$

where $f_{\log \hat{Y} \mid \log \sigma(s)}$ is the *probability density function* (PDF) of $\log \hat{Y}(s,t) \mid \log \sigma(s)$.

PDF of the integrated variance

- Equivalent: Characteristic function and inversion (Fourier pair).
- Recursive procedure to derive an approximated $\phi_{\log \hat{Y}|\log \sigma(s)}$.
- We start by defining the logarithmic increment of $\sigma^2(t)$:

$$R_j = \log\left(\frac{\sigma^2(t_j)}{\sigma^2(t_{j-1})}\right), j = 1, \ldots, M.$$

• $\sigma^2(t_j)$ can be written:

$$\sigma^{2}(t_{j}) = \sigma^{2}(t_{0}) \exp(R_{1} + R_{2} + \cdots + R_{j}).$$

We introduce the iterative process

$$Y_1 = R_M,$$

 $Y_j = R_{M+1-j} + Z_{j-1}, \quad j = 2, ..., M.$

with $Z_j = \log(1 + \exp(Y_j))$.

PDF of the integrated variance (cont.)

• $\hat{Y}(s,t)$ can be expressed:

$$\hat{Y}(s,t) = \sum_{i=1}^{M} \sigma^2(t_i) \Delta t = \Delta t \sigma^2(s) \exp(Y_M).$$

• And, we compute $\phi_{\log \hat{Y} \mid \log \sigma(s)}(u)$, as follows:

$$\phi_{\log \hat{Y} | \log \sigma(s)}(u) = \exp\left(iu \log(\Delta t \sigma^2(s))\right) \phi_{Y_M}(u).$$

• By applying COS method [4] in the support $[\hat{a}, \hat{b}]$:

$$f_{\log \hat{Y}|\log \sigma(s)}(x) \approx \frac{2}{\hat{b}-\hat{a}} \sum_{k=0}^{N-1'} C_k \cos\left((x-\hat{a})\frac{k\pi}{\hat{b}-\hat{a}}\right),$$

with

$$C_k = \Re\left(\phi_{\log \hat{Y}|\log \sigma(s)}\left(rac{k\pi}{\hat{b}-\hat{a}}
ight) \exp\left(-irac{\hat{a}k\pi}{\hat{b}-\hat{a}}
ight)
ight).$$

CDF of the integrated variance

• The CDF of log $\hat{Y}(s,t)|\log \sigma(s)$:

$$F_{\log \hat{Y}|\log \sigma(s)}(x) = \int_{-\infty}^{x} f_{\log \hat{Y}|\log \sigma(s)}(y) dy$$

$$\approx \int_{\hat{a}}^{x} \frac{2}{\hat{b} - \hat{a}} \sum_{k=0}^{N-1'} C_k \cos\left((y - \hat{a}) \frac{k\pi}{\hat{b} - \hat{a}}\right) dy.$$

- The efficient computation of $\phi_{\log \hat{Y} \mid \log \sigma(s)}$ is crucial for the performance of the whole procedure (specially, one-step case).
- The inversion of $F_{\log \hat{Y} \mid \log \sigma(s)}$ is relatively expensive (unafforable in the multi-step case).

Copula-based simulation of $\int_{s}^{t} \sigma^{2}(z) dz | \sigma(t), \sigma(s)$

- In order to apply copulas, we need (logarithmic domain):
 - $ightharpoonup F_{\log \hat{Y} \mid \log \sigma(s)}$.
 - $ightharpoonup F_{\log \sigma(t) | \log \sigma(s)}$.
 - ▶ Correlation between log Y(s, t) and log $\sigma(t)$.
- The distribution of $\log \sigma(t) |\log \sigma(s)$ is known ($\sigma(t)$ follows a log-normal distribution).
- Approximated Pearson's correlation coefficient:

$$\mathcal{P}_{\log Y, \log \sigma(t)} pprox rac{t^2 - s^2}{2\sqrt{\left(rac{1}{3}t^4 + rac{2}{3}ts^3 - t^2s^2
ight)}}.$$

ullet For some copulas, like Archimedean, Kendall's au is required:

$$\mathcal{P} = \sin\left(\frac{\pi}{2}\tau\right)$$
 .

Sampling $\int_{s}^{t} \sigma^{2}(z) dz | \sigma(t), \sigma(s)$: Steps

- ① Determine $F_{\log \sigma(t) \mid \log \sigma(s)}$ and $F_{\log \hat{Y} \mid \log \sigma(s)}$.
- ② Determine the correlation between log Y(s, t) and log $\sigma(t)$.
- **3** Generate correlated uniform samples, $U_{\log \sigma(t) | \log \sigma(s)}$ and $U_{\log \hat{Y} | \log \sigma(s)}$ by means of copula.
- **9** From $U_{\log \sigma(t)|\log \sigma(s)}$ and $U_{\log \hat{Y}|\log \sigma(s)}$ invert original marginal distributions.
- **3** The samples of $\sigma(t)|\sigma(s)$ and $Y(s,t)=\int_s^t \sigma^2(z)\mathrm{d}z|\sigma(t),\sigma(s)$ are obtained by taking exponentials.

One time-step simulation of the SABR model

- s = 0 and t = T, with T the maturity time.
- The use is restricted to price European options up to T=2.
- $\log \sigma(s)$ becomes constant.
- $F_{\log \sigma(t)|\log \sigma(s)}$ and $F_{\log \hat{Y}|\log \sigma(s)}$ turn into $F_{\log \sigma(T)}$ and $F_{\log \hat{Y}(T)}$.
- The computation of $\phi_{\log \hat{Y}(T)}$ is much simpler and very fast.
- The approximated Pearson's coefficient results in a constant value:

$$\mathcal{P}_{\log Y(T),\log \sigma(T)} pprox rac{T^2}{2\sqrt{rac{1}{3}T^4}} = rac{\sqrt{3}}{2}.$$

Approximated correlation

Figure: Pearson's coefficient: Empirical (surface) vs. approximation (red grid)?

Copula analysis

- Based on the one-step simulation, a copula analysis is carried out.
- Gaussian, Student t and Archimedean (Clayton, Frank and Gumbel).
- A goodness-of-fit (GOF) for copulas needs to be evaluated.
- Archimedean: graphic GOF based on Kendall's processes.
- Generic GOF based on the so-called *Deheuvels or empirical copula*.

					ρ	
Set I	1.0	0.5	0.4	0.7	0.0	2
Set II	0.05	0.1	0.4	0.0	-0.8	0.5
Set I Set II Set III	0.04	0.4	8.0	1.0	-0.5	2

Table: Data sets.

GOF - Archimedean

Figure: Archimedean GOF test: $\hat{\lambda}(u)$ vs. empirical $\lambda(u)$.

	Clayton	Frank	Gumbel
Set I	1.3469×10^{-3}	2.9909×10^{-4}	5.1723×10^{-5}
Set II	1.0885×10^{-3}	2.1249×10^{-4}	8.4834×10^{-5}
Set III	2.1151×10^{-3}	7.5271×10^{-4}	2.6664×10^{-4}

Table: MSE of $\hat{\lambda}(u) - \lambda(u)$.

Generic GOF

	Gaussian	Student $\mathbf{t}\;(u=5)$	Gumbel
Set I	5.0323×10^{-3}	5.0242×10^{-3}	3.8063×10^{-3}
Set II	3.1049×10^{-3}	3.0659×10^{-3}	4.5703×10^{-3}
Set III	5.9439×10^{-3}	6.0041×10^{-3}	4.3210×10^{-3}

Table: Generic GOF: D_2 .

- The three copulas perform very similarly.
- For longer maturities: Gumbel performs better.
- ullet The Student ullet copula is discarded: very similar to the Gaussian copula and the calibration of the u parameter adds extra complexity.
- As a general strategy, the Gumbel copula is the most robust choice.
- With short maturities, the Gaussian copula may be a satisfactory alternative.

Pricing European options

• The strike values K_i are chosen following the expression:

$$K_i(T) = S(0) \exp(0.1 \times T \times \delta_i),$$

 $\delta_i = -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5.$

- Forward asset, S(t): enhanced inversion by Chen et al. [3].
- Martingale correction:

$$egin{aligned} S(t) &= S(t) - rac{1}{n} \sum_{i=1}^n S_i(t) + \mathbb{E}[S(t)], \ &= S(t) - rac{1}{n} \sum_{i=1}^n S_i(t) + S_0, \end{aligned}$$

Pricing European options - Convergence and time

	n = 1000	n = 10000	n = 100000	n = 1000000
		Gaussia	n (Set I, <i>K</i> ₁)	
Error	519.58	132.39	37.42	16.23
Time	0.3386	0.3440	0.3857	0.5733
		Gumbe	I (Set I, <i>K</i> ₁)	
Error	151.44	-123.76	34.14	11.59
Time	0.3492	0.3561	0.3874	0.6663

Table: Convergence in number of samples, *n*: error (basis points) and execution time (*sec.*).

Pricing European options - Implied volatilities

Strikes	K_1	K ₂	<i>K</i> ₃	K ₄	K ₅	<i>K</i> ₆	K ₇
			Set I (Re	ference: An	tonov [1])		
Hagan	55.07	52.34	50.08	N/A	47.04	46.26	45.97
MC	23.50	21.41	19.38	N/A	16.59	15.58	14.63
Gaussian	16.23	20.79	24.95	N/A	33.40	37.03	40.72
Gumbel	11.59	15.57	19.12	N/A	25.41	28.66	31.79
			Set II (F	Reference: k	(orn [8])		
Hagan	-558.82	-492.37	-432.11	-377.47	-327.92	-282.98	-242.22
MC	5.30	6.50	7.85	9.32	10.82	12.25	13.66
Gaussian	9.93	9.98	10.02	10.20	10.57	10.73	11.04
Gumbel	-9.93	-9.38	-8.94	-8.35	-7.69	-6.83	-5.79
			Set III (Re	eference: Mo	C Milstein)		
Hagan	287.05	252.91	220.39	190.36	163.87	141.88	126.39
Gaussian	16.10	16.76	16.62	15.22	13.85	12.29	10.67
Gumbel	6.99	3.79	0.67	-2.27	-5.57	-9.79	-14.06

Table: Implied volatility: errors in basis points.

- One-step SABR simulation is a fast alternative to Hagan formula.
- Overcomes the known issues, like low strikes and high volatilities.
- For longer maturities and more complex options: multiple time-step

Multiple time-step simulation of the SABR model

- We denote it mSABR simulation method (scheme).
- In intermediate steps, $\phi_{\log \hat{Y}|\log \sigma(s)}$ becomes "stochastic".
- $f_{\log \hat{Y} \mid \log \sigma(s)}$ needs to be computed for each sample of $\log \sigma(s)$. Consequently, the inversion of $F_{\log \hat{Y} \mid \log \sigma(s)}$ is unaffordable $(n \uparrow \uparrow)$.
- Solution: Stochastic Collocation Monte Carlo (SCMC) sampler [5].

$$y_n|v_n \approx g_{L_{\hat{Y}},L_{\sigma}}(x_n) = \sum_{i=1}^{L_{\hat{Y}}} \sum_{j=1}^{L_{\sigma}} F_{\log \hat{Y}|\log \sigma(s)=v_j}^{-1}(F_X(x_i))\ell_i(x_n)\ell_j(v_n),$$

where x_n are the samples from the *cheap variable*, X, and v_n the given samples of $\log \sigma(s)$. x_i and v_i are the collocation points of Xand $\log \sigma(s)$, respectively. ℓ_i and ℓ_i are the Lagrange polynomials defined by

$$\ell_i(x_n) = \prod_{k=1, k \neq i}^{L_{\hat{Y}}} \frac{x_n - x_k}{x_i - x_k}, \quad \ell_j(v_n) = \prod_{k=1, k \neq j}^{L_{\sigma}} \frac{v_n - v_k}{v_i - v_k}.$$

Application of 2D SCMC to $F_{\log \hat{Y} \mid \log \sigma(s)}$

(b) $F_{\log \hat{Y} \mid \log \sigma(s)}(x)$.

Samples	Without SCMC	With SCMC				
		$L_{\hat{Y}} = L_{\sigma} = 3$	$L_{\hat{Y}} = L_{\sigma} = 7$	$L_{\hat{Y}} = L_{\sigma} = 11$		
100	1.0695	0.0449	0.0466	0.0660		
10000	16.3483	0.0518	0.0588	0.0798		
1000000	1624.3019	0.2648	0.5882	1.0940		

mSABR method - Experiments

• The strike values K_i are chosen following the expression:

$$K_i(T) = S(0) \exp(0.1 \times T \times \delta_i),$$

 $\delta_i = -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5.$

- Forward asset, S(t): enhanced inversion by Chen et al. [3].
- Martingale correction:

$$S(t) = S(t) - \frac{1}{n} \sum_{i=1}^{n} S_i(t) + S_0,$$

New data sets:

	S_0	σ_0	α	β	ρ	T
Set I [5]	0.5	0.5	0.4	0.5	0.0	4
Set II [3]	0.04	0.2	0.3	1.0	-0.5	5
Set III [1]	1.0	0.25	0.3	0.6	-0.5	20
Set IV [2]	0.0056	0.011	1.080	0.167	0.999	1

Table: Data sets.

mSABR method - Convergence test I

• Convergence in number of time-steps, m: Antonov vs. mSABR. Set I.

Strikes	K_1	K ₂	<i>K</i> ₃	<i>K</i> ₄	<i>K</i> ₅	K_6	K ₇
Antonov	73.34%	71.73%	70.17%	N/A	67.23%	65.87%	64.59%
m = T/4	73.13%	71.75%	70.41%	69.11%	67.85%	66.64%	65.48%
Error(bp)	-21.51	2.54	24.38	N/A	61.71	76.66	89.26
m = T/2	73.30%	71.78%	70.29%	68.86%	67.49%	66.17%	64.93%
Error(bp)	-4.12	4.94	12.71	N/A	25.48	30.40	34.73
m = T	73.25%	71.67%	70.14%	68.66%	67.24%	65.89%	64.62%
Error(bp)	-9.56	-5.93	-2.79	N/A	0.92	2.21	3.17
m = 2T	73.32%	71.71%	70.16%	68.65%	67.22%	65.85%	64.55%
Error(bp)	-2.08	-1.56	-1.20	N/A	-1.65	-2.35	-3.36
m = 4T	73.34%	71.73%	70.18%	68.67%	67.24%	65.87%	64.58%
Error(bp)	0.15	0.58	0.78	N/A	0.43	0.04	-0.48

mSABR method - Convergence test II

• Convergence in number of samples, n: Antonov vs. mSABR. Set I.

Strikes	κ_1	κ_2	K_3	K_4	κ_5	κ_6	K_7
Antonov	73.34%	71.73%	70.17%	N/A	67.23%	65.87%	64.59%
$n = 10^2$	67.29%	65.55%	63.84%	62.20%	60.63%	59.01%	57.65%
RE	8.24×10^{-2}	8.61×10^{-2}	9.01×10^{-2}	N/A	9.82×10^{-2}	1.04×10^{-1}	1.07×10^{-1}
$n = 10^4$	73.41%	71.87%	70.36%	68.91%	67.51%	66.19%	64.94%
RE	9.65×10^{-4}	1.94×10^{-3}	2.75×10^{-3}	N/A	4.08×10^{-3}	4.93×10^{-3}	5.48×10^{-3}
$n = 10^6$	73.34%	71.73%	70.18%	68.67%	67.24%	65.87%	64.58%
RE	2.04×10^{-5}	8.08×10^{-5}	1.11×10^{-4}	N/A	6.39×10^{-5}	6.07×10^{-6}	7.43×10^{-5}

mSABR method - Stability in ρ

• Implied volatility, varying ρ : Monte Carlo (MC) vs. mSABR. Set II.

Strikes	<i>K</i> ₁	K ₂	<i>K</i> ₃	<i>K</i> ₄	<i>K</i> ₅	<i>K</i> ₆	K ₇
				$\rho = -0.5$			
MC	22.17%	21.25%	20.38%	19.57%	18.88%	18.33%	17.95%
mSABR	22.21%	21.28%	20.39%	19.58%	18.88%	18.32%	17.94%
Error(bp)	3.59	2.86	1.78	0.95	-0.19	-0.96	-1.10
				$\rho = 0.0$			
MC	21.35%	20.96%	20.71%	20.63%	20.71%	20.96%	21.34%
mSABR	21.35%	20.95%	20.69%	20.60%	20.68%	20.93%	21.32%
Error(bp)	0.04	-1.04	-2.51	-3.02	-3.33	-3.19	-2.56
				$\rho = 0.5$			
MC	19.66%	20.04%	20.61%	21.34%	22.20%	23.14%	24.16%
mSABR	19.59%	19.96%	20.54%	21.28%	22.15%	23.11%	24.11%
Error(bp)	-6.93	-7.36	-6.77	-5.53	-4.35	-3.76	-4.05

mSABR method - Performance

• But, is it worth to use the mSABR method?

Error	< 100 bp	< 50 bp	< 25 bp	< 10 bp
MC Euler	6.85(200)	10.71(300)	27.42(800)	42.90(1200)
Y-Euler	2.18(4)	6.55(16)	11.85(32)	45.12(128)
Y-trpz	2.17(3)	4.24(8)	7.25(16)	14.47(32)
mSABR	3.46(1)	2.98(2)	3.72(3)	4.89(4)

Table: Execution times and time-steps, m (parentheses).

Error	< 100 bp	< 50 bp	< 25 bp	< 10 bp
MC Euler	1.98	3.59	7.37	8.77
Y-Euler	0.63	2.19	3.18	9.22
Y-trpz	0.62	1.42	1.94	2.95

Table: Speedups provided by the mSABR method.

mSABR method - Pricing barrier options

- The *up-and-out* call option is considered here
- The price, with the barrier level, B, $B > S_0$, $B > K_i$, reads:

$$V_i(K_i, B, T) = \exp(-rT) \mathbb{E}\left[(S(T) - K_i) \mathbb{1}(\max_{0 < t_k \le T} S(t_k) > B) \right],$$

where t_k are the times where the barrier condition is checked.

- Setting: $n = 10^6$ and m = 4T.
- We define the mean squared error (MSE) as

$$MSE = \frac{1}{7} \sum_{i=1}^{7} \left(V_i^{MC}(K_i, B, T) - V_i^{mSABR}(K_i, B, T) \right)^2$$

where $V_i^{MC}(K_i, B, T)$ and $V_i^{mSABR}(K_i, B, T)$ are the barrier option prices provided by standard Monte Carlo method and by the mSABR method, respectively.

mSABR method - Pricing barrier options

• Pricing barrier options with mSABR: $V_i(K_i, B, T) \times 100$. Set II:

Strikes	κ_1	K_2	K_3	K_4	K_5	κ_6	K_7			
				B = 0.08						
MC	1.1702	0.9465	0.7268	0.5215	0.3423	0.1996	0.0987			
mSABR	1.1724	0.9486	0.7285	0.5226	0.3428	0.1997	0.0986			
MSE	1.8910×10^{-10}									
	B = 0.1									
MC	1.3099	1.0766	0.8462	0.6290	0.4367	0.2794	0.1626			
mSABR	1.3092	1.0761	0.8456	0.6282	0.4355	0.2782	0.1618			
MSE	7.5542×10^{-11}									
	B = 0.12									
MC	1.3521	1.1168	0.8841	0.6644	0.4695	0.3093	0.1891			
mSABR	1.3518	1.1166	0.8838	0.6639	0.4686	0.3080	0.1880			
MSE	6.3648×10^{-11}									

• Pricing barrier options with mSABR: $V_i(K_i, B, T) \times 100$. Set III:

	-								
Strikes	K_1	K ₂	K ₃	K ₄	K ₅	K ₆	K ₇		
				B = 2.0					
MC	29.1174	23.4804	17.2273	10.7825	5.0203	1.1750	0.0036		
mSABR	29.2346	23.5828	17.3086	10.8327	5.0385	1.1805	0.0036		
MSE	4.8146×10^{-7}								
	B = 2.5								
MC	41.3833	34.5497	26.8311	18.6089	10.7281	4.4893	0.9434		
mSABR	41.3394	34.5097	26.7948	18.5747	10.6943	4.4546	0.9320		
MSE	1.2131×10^{-7}								
	B = 3.0								
MC	48.5254	41.1652	32.7980	23.7807	14.9344	7.5364	2.6692		
mSABR	48.5008	41.1515	32.7888	23.7655	14.9097	7.5117	2.6549		
MSE	3.6201×10^{-8}								

mSABR method - Negative interest rates

The mSABR method in combination with the shifted SABR model:

$$dS(t) = \sigma(t)(S(t) + \theta)^{\beta}dW_S(t),$$

$$S(0) = (S_0 + \theta)\exp(rT),$$

where $\theta > 0$ is a displacement, or shift, in the underlying.

• Setting: $n = 10^6$, m = 4T and $\theta = 0.02$.

(f) Set IV: $S_0 = 0$

Conclusions

- We propose an efficient SABR simulation based on Fourier and copula techniques.
- The one-step SABR is a fast alternative to Hagan formula for short maturities.
- Overcomes the known issues of Hagan's expression.
- When longer maturities and/or more involved options are considered, multi-step version.
- High accuracy with very few number of time-steps, even in the context of negative interest rates.
- Good balance between accuracy and computational cost.
 - Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee.

 On a one time-step Monte Carlo simulation approach of the SABR model: application to European options. *Applied Mathematics and Computation*, 293:461–479, 2017.
 - Álvaro Leitao, Lech A. Grzelak, and Cornelis W. Oosterlee.

 On an efficient multiple time-step Monte Carlo simulation of the SABR model. Quantitative Finance, 2017.

References

Alexandre Antonov, Michael Konikov, and Michael Spector.

SABR spreads its wings.

Risk Magazine, pages 58-63, August 2013.

Alexandre Antonov, Michael Konikov, and Michael Spector.

The free boundary SABR: natural extension to negative rates. *Risk Magazine*, pages 58–63, August 2015.

Bin Chen, Cornelis W. Oosterlee, and Hans van der Weide.

A low-bias simulation scheme for the SABR stochastic volatility model.

International Journal of Theoretical and Applied Finance, 15(2):1250016-1 - 1250016-37, 2012.

Fang Fang and Cornelis W. Oosterlee.

A novel pricing method for European options based on Fourier-cosine series expansions.

SIAM Journal on Scientific Computing, 31:826-848, 2008.

Lech A. Grzelak, Jeroen A. S. Witteveen, M. Suárez-Taboada, and Cornelis W. Oosterlee.

The Stochastic Collocation Monte Carlo sampler: highly efficient sampling from "expensive" distributions, 2015. Available at SSRN: https://ssrn.com/abstract=2529691.

Patrick S. Hagan, Deep Kumar, Andrew S. Lesniewski, and Diana E. Woodward.

Managing smile risk.

Wilmott Magazine, pages 84-108, 2002.

Othmane Islah.

Solving SABR in exact form and unifying it with LIBOR market model, 2009.

Available at SSRN: http://ssrn.com/abstract=1489428.

Ralf Korn and Songyin Tang.

Exact analytical solution for the normal SABR model.

Wilmott Magazine, 2013(66):64-69, 2013.

Acknowledgments

Thank you for your attention