Calcul différentiel

Exercice 1

Soit $A \in M_n(\mathbb{C})$. Montrer que les conditions suivantes sont équivalentes :

- 1. Pour toute application continue bornée b de \mathbb{R}^+ dans \mathbb{C}^n , il existe une unique solution de x' = Ax + b bornée sur \mathbb{R}^+ .
- 2. Les valeurs propres de A sont de partie réelle > 0.

Exercice 2

Soit T > 0 un réel, et $A : \mathbb{R} \to \mathrm{M}_n(\mathbb{C})$ une application continue et T-périodique. On note R(t) la résolvante prise à partir de t = 0 de l'équation x' = Ax.

- 1. Soit $x_0 \in \mathbb{C}^n$. Montrer que $t \mapsto R(t)x_0$ est T-périodique si et seulement si $x_0 \in \operatorname{Ker}(R(T) Id)$.
- 2. On suppose $Ker(R(T) Id) = \{0\}$. Soit *b* une application continue *T*-périodique de \mathbb{R} dans \mathbb{C}^n . Montrer que l'équation différentielle

$$x' = Ax + b$$

admet une unique solution T-périodique.

3. Comment s'écrit la condition $Ker(R(T) - Id) = \{0\}$ en dimension 1?

Exercice 3 [Wronskien]

Soit I un intervalle ouvert de \mathbb{R} .

- 1. Soit $A: I \to M_n(\mathbb{C})$ une application continue, $t_0 \in I$ et R(t) la résolvante de l'équation x' = Ax qui est telle que $R(t_0) = \mathrm{Id}$. On note $\Delta(t) = \det(R(t))$. Montrer que Δ est solution de l'équation différentielle $y' = \mathrm{Tr}(A(t))y$. En déduire que $\Delta(t) = \exp(\int_{t_0}^t \mathrm{Tr}(A(s))ds$.
- 2. Soit a_1, \ldots, a_n des fonctions continues de I dans \mathbb{R} , et (u_1, \ldots, u_n) des solutions de l'équation différentielle $x^{(n)} + \cdots + a_{n-1}x' + a_nx = 0$. On note $W(t) = \det((u_i^{(j)}(t))_{1 \leq i,j \leq n})$. Donner une équation différentielle vérifiée par W. En déduire que W est nulle si et seulement si elle s'annule en un point. En déduire que $(u_i)_{1 \leq i \leq n}$ est une base de solutions de l'équation si et seulement si il existe t tel que $W(t) \neq 0$.
- 3. Soit p et q deux fonctions continues $I \to \mathbb{R}$. Soit f, g une base de solutions de l'équation différentielle homogène

$$x'' + px' + qx = 0$$

Prouver que les zéros de f sont isolés. Prouver qu'entre deux zéros consécutifs de f il y a un unique zéro de g.

Exercice 4 [Théorème de Sturm et application]

1. Soit q_1 et q_2 deux fonctions continues, telles que $q_1 \leq q_2$. On considère $x_i : I \to \mathbb{R}, i \in \{1, 2\}$ tels que :

$$x_i''(t) + q_i(t)x_i(t) = 0.$$

On suppose que x_1 est non nulle, et s'annule en α et β , avec $\alpha < \beta$. Montrer que x_2 s'annule en un point de $[\alpha, \beta]$.

Indication: On pourra considérer $W(t) = x_2(t)x'_1(t) - x'_2(t)x_1(t)$.

2. Soit $x:]a,b[\to \mathbb{R}$ une solution non triviale de x''+qx=0. Montrer que si $q \ge \lambda^2$ pour un réel $\lambda > 0$, alors x s'annule au moins une fois dans tout intervalle fermé de longueur $\frac{\pi}{\lambda}$.

Topologie

Exercice 5

- 1. Soit E un espace de Banach, et F et G des sous-espaces vectoriels fermés de E tels que $E = F \oplus G$ (comme espaces vectoriels abstraits). Montrer que l'application $s: F \times G \to E$, $(x,y) \mapsto x+y$ est un homéomorphisme.
- 2. Soit E un espace de Banach, et F et G des sous-espaces vectoriels fermés de E tels que E = F + G. Montrer qu'il existe une constante C > 0 telle que pour tout $z \in E$, on peut écrire z = x + y avec $x \in F$, $y \in G$, $||x|| \le C||z||$ et $||y|| \le C||z||$.

Exercice 6 Soit E un espace vectoriel normé (séparable), et F un sous-espace vectoriel de dimension finie de E. Montrer qu'il existe un projecteur continu $p: E \to F$.

Exercice 7

Soient E un espace de Banach, F et G des espaces vectoriels normés.

- 1. Montrer qu'une limite simple d'applications linéaires continues de E vers F est une application linéaire continue.
- 2. Soit $B: E \times F \to G$ une application bilinéaire dont les applications partielles sont continues. Montrer que B est continue.
- 3. Soit $F = \mathbb{R}[X]$, muni de la norme $||f|| = \int_0^1 |f(t)| dt$. Montrer que l'application bilinéaire $F \times F \to \mathbb{R}$ donnée par $B(f,g) = \int_0^1 f(t)g(t)dt$ est continue par rapport à chaque variable, mais n'est pas une application bilinéaire continue.

Exercice 8

Soient $\omega \in C^0([a,b],\mathbb{R})$ continue. Pour tout $n \in \mathbb{N}$, on considère des réels $(\lambda_{i,n})_{0 \le i \le n}$ et des points de [a,b] deux à deux distincts $(x_{i,n})_{0 \le i \le n}$.

Pour $f \in C^0([a,b],\mathbb{R})$ on note $I_n(f) = \sum_{i=0}^n \lambda_{i,n} f(x_{i,n})$ et $E_n(f) = \int_a^b f(x)\omega(x)dx - I_n(f)$.

1. Montrer que l'application $E_n: C^0([a,b],\mathbb{R}) \to \mathbb{R}$ est linéaire continue (pour la norme sup sur $C^0([a,b],\mathbb{R})$) et vérifie :

$$\sum_{i=0}^{n} |\lambda_{i,n}| - \int_{a}^{b} |\omega(x)| dx \le |||E_n||| \le \sum_{i=0}^{n} |\lambda_{i,n}| + \int_{a}^{b} |\omega(x)| dx$$

- 2. Montrer que les propositions suivantes sont équivalentes (Théorème de Polya) :
 - $\forall f \in C^0([a, b], \mathbb{R}) \lim_{n \to +\infty} E_n(f) = 0$
 - $-\forall P \in \mathbb{R}[X] \lim_{n \to +\infty} E_n(P) = 0 \text{ et } \exists M > 0 \ \forall n \in \mathbb{N} \ \sum_{i=0}^n |\lambda_{i,n}| \le M$

Exercice 9

Soit $f: \mathbb{R}_{>0} \to \mathbb{R}$ une fonction continue, telle que pour tout $x \in \mathbb{R}_{>0}$, la suite $(f(nx))_{n \in \mathbb{N}_{>0}}$ tend vers 0 quand n tend vers $+\infty$. Montrer que f(x) tend vers 0 quand x tend vers $+\infty$.