Современные методы растеризации изображений

Научный руководитель: Парфенов Денис Васильевич, к.т.н., доцент

Исполнитель: Гогинян Борис Андреевич, группа: КМБО-03-16

Цели и задачи работы

Цель работы – сравнение различных реализаций алгоритмов трассировки лучей в нескольких программах рендеринга изображений для определения наиболее фотореалистичного и быстрого.

Задачи:

Построение 3D сцен различной сложности и настройка идентичных параметров для исследуемых рендеров,

Получения набора изображений для сравнения и эталонного изображения,

Построение графиков с использованием метрики PSNR для получения количественной оценки разницы между изображениями

Реалистичный рендеринг

Рис. 1 "Kitchen render" by Marcin Olejarski – luxcore render

Рис. 2 "Head Scan" by Juan C. Gutiérrez – appleseed render

Рис. 3 "Seoul" by Gleb Alexandrov – Cycles render

Концепция Physically-Based Rendering

Уравнение рендеринга

$$L_0(x,\overrightarrow{\omega_0}) = L_e(x,\overrightarrow{\omega_0}) + \int_{O} (f_r(x,\overrightarrow{\omega_0},\overrightarrow{\omega_i}) \cdot L_i(x,\overrightarrow{\omega_i}) \cdot (\overrightarrow{\omega_i},\overrightarrow{n})) d\overrightarrow{\omega_i}$$

BSDF

Рис. 4 Материалы, полученные с помощью BSDF (bidirectional scattering distribution function)

Алгоритмы трассировки

Алгоритм Path Tracing

Алгоритмы трассировки

Алгоритм Photon Mapping

Первый этап. Создание фотонной карты

Второй этап. Сбор информации в некотором радиусе

Алгоритмы трассировки

Алгоритм Bidirectional Path Tracing

Сцены для сравнения рендеров

Эксперимент 1

Эксперимент 2

Сцены для сравнения рендеров

Эксперимент 3

Эксперимент 4

Сцены для сравнения рендеров

Эксперимент 5

Результаты

Эксперимент 1

Средняя скорость роста: appleseed = **0.00779**

Cycles = 0.145291

LuxCore = 0.0328

$$t_{\%} = \frac{time_{12}}{time_6} \cdot 100$$

Рис 2. Процентное соотношение времени

Рис 1. Сравнение качества между всеми рендерами

Результаты

Эксперимент 4

Рис 3. Сравнение качества в зависимости от времени

Рис 4. Сравнение качества между всеми алгоритмами

Выводы

В большинстве тестов наилучшую динамику показал рендер luxcore, который в условиях ограниченного времени давал наиболее фотореалистичное изображение, и с течением времени демонстрировал наилучший темп роста качества изображения. При этом, рендеры appleseed и luxcore демонстрировали схожие результаты: они дали изображения приблизительно равного качества в условиях ограниченного времени, а с течением времени качество изображения менялось мало.

Спасибо за внимание