Math 113 Definitions.

- 1. **Set.** A set is an unordered collection of elements.
- 2. **Map.** A map from X to Y is $f: X \to Y$ (a rule that assigns elements to Y to elements in X). So, for any $x \in X$ there exists a unique $y \in Y$ such that f(x) = y.
- 3. Cartesian Product. The Cartesian product of X and Y is the set $X \times Y = \{(x,y) \mid x \in X, y \in Y\}$.
- 4. **Equivalence Relation.** An equivalence relation R, \sim on X is a subset $R \subset X \times X$ such that
 - (a) Reflexive. $((x, x) \in R \text{ for all } x \in X)$.
 - (b) Symmetric. (if $(x, y) \in R$, then $(y, x) \in R$).
 - (c) Transitive. (if $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$).
- 5. **Equivalence Class.** Let X be a set and R be an equivalence relation on X. Then, an equivalence class of $x \in X$ is the set $[x] = [x]_R = [x]_\sim = \{a \in X \mid x \sim a\}$.
- 6. $\mathbb{Z}/m\mathbb{Z}$. The set of distinct equivalence classes of $\equiv \pmod{n}$ is $\mathbb{Z}/m\mathbb{Z}$.
- 7. **Group.** A group G (denote: (G, \star)) is a set G with a closed binary operation $\star : G \times G \to G$ such that:
 - (a) Associativity: $(a \star b) \star c = a \star (b \star c)$ for all $a, b, c \in G$.
 - (b) Identity: There exists an $e \in G$ such that for any $a \in G$, we have $a \star e = e \star a = a$.
 - (c) Inverse: For any $a \in G$, there exists an $a^{-1} \in G$ such that $a \star a^{-1} = a^{-1} \star a = e$.
- 8. Symmetric Group. The symmetric group on n letters is S_n .
- 9. **Disjoint Cycles.** Two cycles (a_1, \ldots, a_k) and (b_1, \ldots, b_l) are disjoint if $a_i \neq b_j$ for all i, j.
- 10. **Transpositions.** The simplest permutation is a cycle of length 2, which is called a transposition.
- 11. Even, Odd Permuatations. A permutation is even if it can be expressed as an even number of transpositions. A permutation is odd if it can be expressed as an odd number of transpositions.
- 12. **Subgroup.** A subgroup H of a group G is a subset H of G such that when the group operation of G is restricted to H, then H is a group.
- 13. **Trivial/Proper Subgroup.** The trivial subgroup of a group G is $\{e\}$ and a proper subgroup is a subgroup H of G where H is a proper subset of G.

- 14. **General/Special Linear Group.** $GL_2(\mathbb{R})$ is the set of 2x2 invertible matrices with real entries. $SL_2(\mathbb{R})$ is the set of 2x2 invertible matrices with real entries and with determinant 1.
- 15. Cyclic Group. A cyclic group is a group generated by one element.
- 16. **Isomorphism.** An isomorphism is a homomorphism which is bijective.
- 17. **Kernel of homomorphism.** If $\phi : G \to H$ is a homomorphism, then $\ker \phi$ is the pre-image of $e_H \in H$, that is, $\ker \phi \{g \in G \mid \phi(g) = e_H\}$.
- 18. Coset. Let $(G, \star) \ge (H, \star)$ and $g \in G$. Then, an H- coset of g is a (sub)set of G where $gH = g \star H = \{g \star h \mid h \in H\}$ (left coset) and $Hg = \{h \star g \mid h \in H\}$ (right coset).
- 19. **Index.** A set of distinct equivalence classes with respect to H is G/H, a quotient of G by H. Then, |G/H| = [G:H] is the index of H in G.
- 20. The following are definitions listed in the homeworks:
 - (a) Group of units in $\mathbb{Z}/n\mathbb{Z}$ is the set $(\mathbb{Z}/n\mathbb{Z})^{\times} = \mathbb{Z}/n\mathbb{Z}^{\times} := \{[a] \in \mathbb{Z} \mid \exists [b] \in \mathbb{Z}/n\mathbb{Z} \text{ with } [a] \times [b] = [1]\}.$
 - (b) If G is a group, then the center of G is the set $Z(G) := \{a \in G \mid ga = ag \forall g \in G\}.$
 - (c) \mathbb{C}^{\times} is the set of nonzero complex numbers.
 - (d) \mathbb{R}^{\times} is the set of nonzero real numbers.
 - (e) GL(n, K) is the set of $n \times n$ invertible matrices with entries in K.
 - (f) If G is a group, then the torsion subgroup of G is called G_T , which is the set of all elements of G with finite order.
 - (g) The Klein four-group is V is a subgroup of S_4 and consists of $V = \{id, (12), (34), (12)(34)\}.$
- 21. **Dihedral group.** This is the group of symmetries on a regular *n*-gon with r being rotation s flip. We have $r^n = \mathrm{id}$, $s^2 = \mathrm{id}$, and $srs = r^{-1}$.
- 22. (External) Direct Product Let $G = (G, \star)$ and $H = (H, \circ)$ be groups. Then, $G \times H = \{G \times H, (\star, \circ)\}.$
- 23. **Normal Subgroup.** Let G be a group and H a subgroup of G. Then H is a normal subgroup (write $H \subseteq G$) iff for all $g \in G$, gH = Hg, or equivalently, for all $h \in H$, $ghg^{-1} \in H$ for all $g \in G$.
- 24. **Quotient (factor) group.** The quotient group of a group G and a normal subgroup N of G is the group G/N (where G/N is the group of cosets of N in G) under the operation (aN)(bN) = abN.

- 25. **Internal Direct Product.** Let G be a group and $H, K \leq G$. G is an internal direct product of H and K iff:
 - (a) $G = H \cdot K := \{h \cdot k \mid h \in H, k \in K\}.$
 - (b) $H \cap K = \{e_G\}$ ("as small as possible").
 - (c) $h \cdot k = k \cdot h$ for all $h \in H, k \in K$.
- 26. **Simple group.** A group G is simple if the only normal subgroups are $\{e_G\}$ are G.
- 27. **Symmetry.** A symmetry of X is a bijective map $\sigma: X \to X$ preserving the structure where X is some set with some additional structure.
- 28. Group of permutations on a set X. G is a group of permutations on a set X if $\phi: G \to \operatorname{Sym}(X) = S_X = S_{|X|}$ is a homomorphism that is 1-1.
- 29. G acts on a set X. G acts on a set X is a homomorphism $\phi: G \to \operatorname{Sym}(X)$.
- 30. **Stabilizer of** $x \in X$. Let G be a group and X a set. Then, the stabilizer of $x \in X$ is $\operatorname{Stab}_G(x) = \{g \in G \mid g(x) = x\}$, which are elements of g that preserve $x \in X$.
- 31. Orbit of $x \in X$. Take $x \in X$. Then the orbit of X is $\operatorname{orb}_G(x) = \mathcal{O}_G(x) = \mathcal{O}(x) = \{g(x) \mid g \in G\} \subseteq X$.
- 32. G acts on a set X (equivalent) def. A group G acts on a set X iff $\Phi: G \times X \to X$ with $(q, x) \mapsto \Phi(q, x) = q \circ x$ such that:
 - (a) for all $x \in X$, $\Phi(e_G, x) = x$.
 - (b) for all $x \in X$, $g, h \in G$, $\Phi(gh, x) = \Phi(g, \Phi(h, x))$.
- 33. Left regular action of G on G. Define $\Lambda: G \times G \to G$ be a group action, where G is a group (and a set) such that $(g,h) \mapsto g \circ h$. Equivalently, the left regular action of G on G is defined as the homomorphism $\lambda: G \to \operatorname{Sym}(G)$ such that $g \mapsto (\lambda_g: h \mapsto \lambda_g(h) = g \circ h)$, where λ_g is a permutation on the set G for $g \in G$.
- 34. **Ring.** A ring $R = (R, +, \times)$ is a set with two closed binary operations (+ and \times) such that:
 - (a) (R, +) is an abelian group.
 - (b) (R, \times) is associative.
 - (c) Both distributive properties hold, i.e. $a \times (b+c) = (a \times b) + (a \times c)$ and $(a+b) \times c = (a \times c) + (b \times c)$ for all $a, b, c \in R$.
- 35. R^{\times} . Let R be a ring. Then, we define $R^{\times} = \{a \in R \mid \exists b \in R : ab = 1_R\}$, where (R^{\times}, \times) is a group, possibly abelian.
- 36. **Field.** Let $R = (R, +, \times)$ be a commutative ring with 1_R being the multiplicative identity. Then if $R^{\times} = R \setminus \{0\}$, then R is a field.

- 37. **Ring Homomorphism.** Let $R = (R, +, \times)$ and $S = (S, +, \times)$ be rings. Then a map $\phi : R \to S$ is a homomorphism of rings iff $\phi(a +_R b) = \phi(a) +_S \phi(b)$ and $\phi(a \times_R b) = \phi(a) \times_S \phi(b)$. Additionally, axiomatically, $\phi(1_R) = 1_S$ and a property is $\phi(0_R) = 0_S$. Also, define $\ker \phi := \{r \in R \mid \phi(r) = 0_S\}$.
- 38. BELOW IS ADDITIONAL DEFS FOR MT2
- 39. A ring with unity (or with identity) is a ring R that has multiplicative identity.
- 40. A **commutative ring** is a ring R that has multiplicative commutativity.
- 41. A **division ring** is a ring R that has multiplicative inverse for all nonzero $a \in R$.
- 42. A **zero divisor** of a commutative ring R is an $a \in R$ $(a \neq 0)$ such that there exists a nonzero $b \in R$ such that ab = 0.
- 43. The **ring of quaternions** is the set $\mathbb{H} = \{a + b\hat{i} + c\hat{j} + d\hat{k} \mid a, b, c, d \in \mathbb{R}\}$, where $1 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $\hat{i} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, $\hat{j} = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$, $\hat{k} = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}$.
- 44. A **field** is a commutative division ring.
- 45. A **ring isomorphism** is a bijective map $\phi: R \to S$ where R, S are rings.
- 46. The **kernel** of a ring homomorphism $\phi: R \to S$ is the set $\ker \phi := \{r \in R \mid \phi(r) = 0\}$.
- 47. An evaluation homomorphism is a ring homomorphism of the form ϕ_{α} : $C[a,b] \to \mathbb{R}$ or other such related homomorphisms.
- 48. An **ideal** of a ring R is a subring I such that
 - (a) (I, +) is a subgroup of (R, +).
 - (b) if $a \in I$ and $r \in R$, then $ar, ra \in I$.
- 49. The **trivial ideals** of a ring R are the subrings $\{0\}$ and R.
- 50. A **principal ideal** of a commutative ring R (with identity) is an ideal of the form $\langle a \rangle = \{ar \mid r \in R\}$.
- 51. A **two-sided ideal** I is a subring of a ring R such that $rI \subset I$ and $Ir \subset I$ for all $r \in R$.
- 52. A **one-sided ideal** I is a subring of a ring R is one such that $rI \subset I$ for all $r \in R$ (a **left ideal**) or $Ir \subset I$ for all $r \in R$ (a **right ideal**).
- 53. Quotient ring. Let R be a ring and I a two-sided ideal of R. Then the quotient ring R/I is defined to be the set of all cosets of I with respect to + and \times .

- 54. Natural/canonical homomorphism. The map $\phi: R \to R/I$ is called the natural/canonical homomorphism.
- 55. **proper ideal.** $I \subseteq R$ is a proper ideal of R iff $I \neq \{0_R\}$ and $I \neq R$.
- 56. **Integral domain.** A commutative ring R with 1_R is an integral domain if there are no (nonzero) zero-divisors.
- 57. **Prime ideal.** An ideal I of a ring R is a prime ideal if $ab \in I$ means $a \in I$ or $b \in I$.
- 58. **Prime.** Let $p \in D$, where D is an integral domain and p a non-unit. p is prime iff if $p \mid ab$, then $p \mid a$ or $p \mid b$.
- 59. **Irreducible.** Let $x \in D$, where D is an integral domain and x a non-unit. x is irreducible iff if x = ab means a is a unit or b is a unit.
- 60. **Principal ideal domain (PID).** A principal ideal is an integral domain in which every ideal is a principal ideal.
- 61. Unique factorization domain (UFD). An integral domain D is a unique factorization doman (UFD) if:
 - (a) Let $a \in D$ such that $a \neq 0$ and a is a non-unit. Then a can be written as the product of irreducible elements of D.
 - (b) Let $a = p_1 \cdots p_r = q_1 \cdots q_s$, where p_i, q_k are irreducible. Then r = s and there is a $\pi \in S_r$ such that p_i and $q_{\pi(j)}$ are associates for $j = 1, \ldots, r$.
- 62. **Euclidean domain.** Let D be an integral domain such that there is a function $v: D \setminus \{0\} \to \mathbb{N}$ such that:
 - (a) If a, b are nonzero elements of D, then $v(a) \leq v(ab)$.
 - (b) Let $a, b \in D$ and suppose $b \neq 0$. Then There exist elements $q, r \in D$ such that a = bq + r and either r = 0 or v(r) < v(b).

Then D is a Euclidean domain.

- 63. Gaussian Integers. The set of Gaussian integers is the set $\{a + bi \mid a, b \in \mathbb{Z}, i^2 = -1\} =: \mathbb{Z}[i]$.
- 64. **Norm.** Let $z \in \mathbb{Z}[i]$. Then we define the norm of z to be $N(z) = z \cdot \overline{z}$, or if $z = a + bi \in \mathbb{Z}[i]$, then $N(z) = a^2 + b^2$.
- 65. Norm (again). Norm of $z = a + b\sqrt{-5} \in \mathbb{Z}[\sqrt{-5}]$ is $a^2 + 5b^2 = z\overline{z} \in \mathbb{Z}$.
- 66. **Product of ideals.** Let I, J be ideals in R. Then define the product of ideals as $I \cdot J = \{\sum_{i=1}^{n} a_i b_i \mid a_i \in I, b_i \in J, n \in \mathbb{Z}_{>0}\}.$
- 67. Finitely generated ideal. Let R be a ring and $x_1, \ldots, x_n \in R$. Then a finitely generated ideal of R is $\langle x_1, \ldots, x_n \rangle := \{a_1x_1 + \cdots + a_nx_n \mid a_1, \ldots, a_n \in R\}$.

- 68. **Associates.** Let R be a commutative ring with identity. Then nonunits elements $x, y \in R$ are associates if there exists a unit $u \in R$ such that x = uy.
- 69. Finite field notation. We write a finite field with p^n elements as $GF(p^n)$ or \mathbb{F}_{p^n} .
- 70. Vector space V over a field F is
 - (a) an abelian group (addition of vectors) with $V \times V \to V$ by $(v, w) \mapsto v + w$.
 - (b) operation of multiplication by elements of F with $F \times v \mapsto V$ by $(\lambda, v) \mapsto \lambda \cdot v$.
 - (c) $\alpha(\beta v) = (\alpha \beta)v$.
 - (d) $(\alpha + \beta)v = \alpha v + \beta v$.
 - (e) $\alpha(u+v) = \alpha u + \alpha v$.
 - (f) $1 \cdot v = v$.

where $u, v \in V$, and $\alpha, \beta = \in F$.

- 71. **Linear map.** A linear map is $\phi: V \to W$, where V, W are F-vector spaces, where $\phi(v+w) = \phi(v) + \phi(w)$ and $\phi(\lambda \cdot v) = \lambda \phi(v)$.
- 72. Extension of fields. Let E, F be fields and $F \leq E$ a subfield. Then we write this extension of fields as

- 73. Simple algebraic extension (def 1). E over F is a simple algebraic extension iff $E = F[\alpha]$ for some $\alpha \in E$, algebraic element over F.
- 74. Simple algebraic extension (def 2). E over F is a simply algebraic extension iff $E \cong F[x]/\langle p(x)\rangle$, where p(x) is irreducible.
- 75. F[p(x)]. We define this to be $F(\alpha_1, \ldots, \alpha_n)$ where $\alpha_1, \ldots, \alpha_n$ are all the roots of p(x).
- 76. **Splitting field.** Let F be a field and $p(x) = a_0 + a_1 x + \cdots + a_n x^n$ be a nonconstant polynomial in F[x]. An extension E of F is called a splitting field of p(x) if there exist elements $\alpha_1, \ldots, \alpha_n$ in E so that $E = F(\alpha_1, \ldots, \alpha_n)$ and $p(x) = (x \alpha_1) \cdots (x \alpha_n)$.
- 77. **degree of splitting field.** this is the dimension of the vector space 'generated' by splitting field extension.
- 78. Automorphism of E over F. Let $E \geq F$ be a field extension. Then an automorphism of E over F is a bijective ring homomorphism $\phi : E \to E$ so that for any $f \in F$, $\phi(f) = f$, i.e. $\phi|_{F} = \mathrm{id}$.