Block diagram of 8086

FIGURE 2-7 8086 internal block diagram. (Intel Corp.)

Software Model of the 8086 Microprocessors

8086 Registers

General Purpose Registers

AX - the Accumulator

BX - the Base Register

CX - the Count Register

DX - the Data Register

- Normally used for storing temporary results
- Each of the registers is 16 bits wide (AX, BX, CX, DX)
- Can be accessed as either 16 or 8 bits AX, AH, AL

General Purpose Registers

AX

- Accumulator Register
- Preferred register to use in arithmetic, logic and data transfer instructions because it generates the shortest Machine Language Code
- Must be used in multiplication and division operations
- Must also be used in I/O operations

BX

- Base Register
- Also serves as an address register

General Purpose Registers

CX

- Count register
- Used as a loop counter
- Used in shift and rotate operations

DX

- Data register
- Used in multiplication and division
- Also used in I/O operations

Pointer and Index Registers

SP	Stack Pointer
BP	Base Pointer
SI	Source Index
DI	Destination Index
IP	Instruction Pointer

- All 16 bits wide, L/H bytes are not accessible
- Used as memory pointers
 - Example: MOV AH, [SI]
 - Move the byte stored in memory location whose address is contained in register SI to register AH
- IP is not under direct control of the programmer

Flag Register

8086 Programmer's Model

BIU registers (20 bit adder)

EU registers

AX	AH	AL	Accumulator
ВХ	ВН	BL	Base Register
CX	СН	CL	Count Register
DX	DH	DL	Data Register
	S	Р	Stack Pointer
	В	Р	Base Pointer
	S	SI	Source Index Register
	D)I	Destination Index Register
	FLA	.GS	

INTEL 8086 - Pin Diagram

Contains address bits A_{15} - A_0 when ALE is 1 & data bits D_{15} – D_0 when ALE is 0.

Address Latch Enable:

When high, multiplexed address/data bus contains address information.

Non - maskable interrupt

Interrupt request

Interrupt acknowledge

S5: Indicates condition of IF flag bits.

S4-S3: Indicate which segment is accessed during current bus cycle:

S4	S3	Function
0	0	Extra segment
0	1	Stack segment
1	0	Code or no segment
1	1	Data segment

Address/Status Bus

Address bits A_{19} – A_{16} & Status bits S_6 – S_3

0,0: Whole word (16-bits)

0,1: High byte to/from odd address

1,0: Low byte to/from even address

1,1: No selection

Bus High Enable/S7

Enables most significant data bits $D_{15} - D_8$ during read or write operation.

S₇: Always 1.

Maximum Mode

Pins

Min/Max mode

Minimum Mode: +5V

Maximum Mode: 0V

Minimum Mode Pins

Minimum Mode- Pin Details

Maximum Mode - Pin Details

000: INTA

001: read I/O port

010: write I/O port

011: halt

100: code access

101: read memory

110: write memory

111: none -passive

Status Signal

Inputs to 8288 to generate eliminated signals due to max mode.

Maximum Mode - Pin Details

Lock Output

Used to lock peripherals off the system

Activated by using the LOCK: prefix on any

instruction

DMA Request/Grant

Lock Output

Maximum Mode - Pin Details

00: Queue is idle

01: First byte of opcode

10: Queue is empty

11: Subsequent byte of

opcode

Queue Status

Used by numeric coprocessor (8087)

Addressing Modes of 8086

Why study addressing modes?

Addressing modes help us to understand the types of operands and the way they are accessed while executing an instruction.

What are we going to study?

Addressing modes

- ▶ We will see the types of addressing modes present in 8086.
- ▶ We will study each addressing mode with example.

Types of addressing mode in 8086

- Immediate addressing mode
- Direct addressing mode
- 3. Register addressing mode
- 4. Register Indirect addressing mode
- 5. Indexed addressing mode
- 6. Register relative addressing mode
- 7. Base plus index addressing mode
- 8. Base relative plus index addressing mode

1: Immediate addressing mode

▶ In this type of mode, immediate data is part of instruction and appears in the form of successive byte or bytes

10 ABH

MOV AX, 10ABH

2: Direct addressing mode

▶ In this type of addressing mode a 16-bit memory address is directly specified in the instruction as a part of it.

MOV AX,[5000H]

Memory

3: Register addressing mode

▶ In this type of addressing mode, the data is stored in the register and it can be a 8-bit or 16-bit register. All the registers, except IP, may be used in this mode.

MOV AL,BLH MOV AX,BXH

4: Register Indirect addressing mode

▶ The address of the memory location which contains data or operand is determined in a indirect way, using the offset register.

MOV AX,[BX]

Memory

Reflection Spot

MOV [7000H],CX

Q) Which addressing does instruction above belong, and why?

Reflection Spot

MOV [7000H],CX

Q) Which addressing does instruction above belonging and why?

Ans) Direct addressing mode

CX 43 56

Memory

22	7000
33	7001
	7002

5: Indexed addressing mode

▶ In this addressing mode, offset of the operand is stored in one of the index registers. DS is the default segment for index register SI and DI.

MOV AX,[SI]

Memory

6: Register relative addressing mode

▶ In this mode, the data is available at an effective address formed by adding an 8-bit or 16-bit displacement with the content of any one of the registers BX, BP, SI and DI in the default (either DS or ES) segment.

Memory

MOV AX, 50H[BX]

5051

5052

5053

7: Base plus index addressing mode

▶ In this mode the effective address is formed by adding content of a base register (any one of BX or BP) to the content of an index register (SI or DI). Default segment register DS.

8: Base relative plus index addressing mode

▶ In the effective address is formed by adding an 8 or 16-bit displacement with sum of contents of any one of the base registers (BX or BP) and any one of the index registers, in a default segment.

Summery

What we have learnt

- Different types of addressing modes present in 8086.
- Location of operands with respect to different addressing modes.