	EXAMEN DU BACCALAURÉAT	SESSION 2023	
RÉPUBLIQUE TUNISIENNE OOO Ministère de l'Éducation	ÉPREUVE PRATIQUE		
	Matière : Algorithmique et Programmation		
	Section : Sciences de l'informatique		
	Coefficient de l'épreuve: 1	Durée: 1h 30mn	

Le sujet comporte 3 pages numérotées de 1/3 à 3/3

Important:

- 1) Toutes les ressources à utiliser se trouvent dans le dossier "Ressources" situé sur la racine du disque C.
- 2) Il est demandé au candidat de :
 - Créer, dans le dossier **Bac2023** situé sur la racine du disque **C**, un dossier de travail portant son **numéro d'inscription** (6 chiffres) et dans lequel il doit enregistrer, au fur et à mesure, tous les fichiers solution de ce sujet.
 - Copier, dans son dossier de travail, le fichier "Algo.rar" situé dans "C:\Ressources", puis d'extraire son contenu, en utilisant le mot de passe "b8kjm4", dans ce même dossier de travail.
 - S'assurer que le contenu extrait est formé des deux fichiers "Interface_Racine.ui" et "Racine.py".
 - Proposer une solution modulaire au problème posé.
 - Vérifier à la fin de l'épreuve que tous les fichiers sont dans son dossier de travail.

La suite de **Héron Alexandrie** est une suite permettant de trouver une valeur approchée de la racine carrée d'un réel positif x. Elle est définie par :

$$\begin{cases} U_0 = p & p \text{ est le plus grand entier qui vérifie } p^2 \le x \\ U_n = \frac{1}{2} \left(U_{n-1} + \frac{x}{U_{n-1}} \right) & n > 0 \end{cases}$$

Le dernier terme U_n qui vérifie $|U_n - U_{n-1}| \le \text{epsilon}$ est une estimation à epsilon près de \sqrt{x}

Exemple:

Si x = 29 alors p = 5, car le plus grand entier vérifiant $p^2 \le x$ est 5 ($5^2 = 25 \le 29$).

Selon la définition de la suite U, le calcul de la valeur approchée de $\sqrt{29}$ à 10^{-5} près est présenté dans le tableau suivant :

	n = 1	n=2	n = 3	n=4
U_{n-1}	5	5,4	5,385185185185	5,385164807173060
U_n	5,4	5,385185185185	5,385164807173060	5,385164807134505
$ U_n-U_{n-1} $	0,4	0,014814814815	0,000020378012124	0,000000000038555

D'où, pour x = 29, la valeur approchée de \sqrt{x} est égale à 5,385164807134505

On se propose de concevoir une interface graphique "Interface_Racine" permettant de créer et de remplir un fichier d'enregistrements nommé "Approchee.dat" par une valeur approchée à 10^{-5} près de la racine carrée de chaque nombre x saisi (avec $2 \le x \le 200$).

Chaque enregistrement du fichier "Approchee.dat" est formé par les champs suivants

- x : Le réel x saisi.
- RC: Une valeur approchée de la racine carrée de x à 10^{-5} près.

L'interface graphique "Interface_Racine.ui", comme le montre la Figure1 ci-dessous, contient les éléments suivants :

- Un label contenant le texte "Donner la valeur de x :".
- Une zone de saisie pour saisir une valeur de x.
- Un bouton intitulé "Ajouter".
- Un bouton intitulé "Afficher Racines".
- Une table widget contenant deux colonnes : "Nombre" et "Racine carrée" pour afficher le contenu du fichier "Approchee.dat".

Figure1: Interface Racine

Travail demandé:

- 1) Ouvrir le fichier "Interface_Racine.ui" situé dans le dossier de travail et compléter l'interface graphique par les éléments manquants.
- 2) Ouvrir le fichier nommé "Racine.py" situé dans le dossier de travail et y apporter les modifications suivantes :
 - Développer le module "Racine" qui s'exécute suite à un clic sur le bouton "Ajouter" et qui permet :
 - d'afficher un message d'alerte (QMessagebox) indiquant une anomalie de saisie si la contrainte de saisie n'est pas respectée (voir les imprimes écran dans la page suivante), ou bien,
 - d'ajouter dans le fichier "Approchee.dat" le nombre x saisi ainsi que la valeur approchée de sa racine carrée, à 10⁻⁵ près, dans le cas contraire.
 - Développer le module "Afficher" qui s'exécute suite à un clic sur le bouton "Afficher Racines" et qui permet d'afficher dans la table widget le contenu du fichier "Approchee.dat".

NB: On pourra utiliser les méthodes suivantes :

- setRowCount(nbrelignes)
- insertRow(numligne)
- setItem(numligne, numcolonne, QTableWidgetItem("valeur"))
- Modifier les instructions de la partie exploitation de l'interface graphique "Interface_Racine.ui"
 par les informations nécessaires à l'appel de l'interface et aux différents modules développés.

Ci-dessous quelques captures d'écran montrant des exemples d'exécutions :

Figure3 : Message d'erreur (la valeur de x n'appartient pas à l'intervalle demandé)

Figure4: Affichage du contenu du fichier "Approchee.dat" pour les nombres 29, 10.5 et 120.23:

Grille d'évaluation :

Traitement	Nombre de points
Complétion de l'interface graphique	2,75
Développement des modules dans le fichier "Racine.py"	15
Complétion de la partie exploitation de l'interface graphique	2,25