MATH 560, Homework 2

Colin Roberts
September 7, 2017

Solutions

Problem 1. The singular value decomposition of a real $m \times n$ matrix is written

$$A = U\Sigma V^T$$

where $U^TU = I_{m \times m}$, $V^TV = I_{n \times n}$ and $\Sigma_{m \times n}$ has zero entries aside from the $n \times n$ block diagonal with entries $(\sigma_1, ..., \sigma_r)$. We will assume, without loss of generality, that $m \ge n$.

- (a) Show exactly the structure of Σ as a matrix, populating this matrix with the r non-zero singular values.
- (b) Show that the left singular vectors can be found by solving an $m \times m$ eigenvector problem. Explicitly construct this problem.
- (c) Show that the right singular vectors can be found by solving an $n \times n$ eigenvector problem. Explicitly construct this problem.
- (d) Show that these eigenvector problems are for symmetric matrices in each case.
- (e) Show that the left singular vectors associated with non-zero singular values may be computed in terms of A, Σ and V. Write down the formula.

:

Solution (Part (a)).

With m rows n columns and the off diagonals all zero.

:

Solution (Part (b)).

$$A = U\Sigma V^{T}$$

$$AA^{T} = U\Sigma V^{T} (V\Sigma^{T} U^{T})$$

$$AA^{T} = U(\Sigma \Sigma^{T}) U^{T}$$

Which is an $m \times m$ eigenvalue problem. It gives us the following,

$$AV_i = \sigma_i U_i$$

Where the V_i and U_i are the i^{th} columns of the matrices. with U_i being the left singular vectors and V_i being the right singular vectors.

:

Solution (Part (c)).

$$A = U\Sigma V^{T}$$

$$A^{T} A = (V\Sigma^{T} U^{T})(U\Sigma V^{T})$$

$$A^{T} A = V(\Sigma^{T} \Sigma)V^{T}$$

Which is an $n \times n$ eigenvalue problem. It gives us the following,

$$A^T U_i = \sigma_i V_i$$

Where the V_i and U_i are the i^{th} column vectors with U_i being the left singular vectors and V_i being the right singular vectors.

:

Solution (Part (d)). Since $U^TU = I_{m \times m}$ and $V^TV = I_{n \times n}$ then we have that U and V are symmetric matrices.

:

Solution (Part (e)).

$$A = U\Sigma V^{T}$$

$$AV = U\Sigma$$

$$\frac{1}{\det(\Sigma)}\Sigma AV = U$$

Which allows us to find *U* in terms of A, Σ and V.

Problem 2. This problem concerns finding bases for the four fundamental subspaces in terms of the SVD of a matrix.

- (a) Reconstruct the argument in class to find a basis for $\mathcal{R}(A)$. What is the column rank?
- (b) Reconstruct the argument in class to find a basis for $\mathcal{R}(A^T)$. What is the row rank?
- (c) Find a basis for $\mathcal{N}(A)$. Prove that is is a basis. What is the dimension of the null space?
- (d) Find a basis for $\mathcal{N}(A^T)$. Prove that this is a basis. What is the dimension of the left null space?

:

Solution (Part (a)). The column rank is r. Since we have a basis $\{v_1,...,v_n\}$ for \mathbb{R}^n and $\{Av_1,...,Av_n\}$ forms the range. But Av_i for i=r,...n is zero. Thus our basis for the range is $\{u_1,...,u_r\}$.

:

Solution (Part (b)). The column rank is r. Since we have a basis $\{u_1, ..., u_m\}$ for \mathbb{R}^m and $\{A^T u_1, ..., A^T u_m\}$ forms the range. But Av_i for i = r, ...m is zero. Thus our basis for the range is $\{v_1, ..., v_r\}$.

:

Solution (Part (c)). The dim $\mathcal{N}(A) = n - r$. Then with a basis $\{v_1, ... v_n\}$ for \mathbb{R}^n we have that $\{v_{r+1}, ..., v_n\}$ is the basis for $\mathcal{N}(A)$ by the argument in part (a).

:

Solution (Part (d)). The dim $\mathcal{N}(A) = m - r$. Then with a basis $\{u_1, ... u_m\}$ for \mathbb{R}^m we have that $\{u_{r+1}, ..., v_m\}$ is the basis for $\mathcal{N}(A^T)$ by the argument in part (b).

§1.6 Problem 35. Let W be a subspace of a finite-dimensional vector space V, and consider the basis $\{u_1, u_2, ..., u_k\}$ for W. Let $\{u_1, ..., u_k, u_{k+1}, ..., u_n\}$ be an extension of this basis to a basis for V.

- (a) Prove that $\{u_{k+1} + W, u_{k+2} + W, ..., u_n + W\}$ is a basis for V/W.
- (b) Derive a formula relating $\dim(V)$, $\dim(W)$, and $\dim(V/W)$.

:

Proof (Part (a)). Consider the following,

$$a_{k+1}(u_{k+1}+W)+...+a_n(u_n+W)=0+W.$$

Which implies $a_{k+1}u_{k+1}+...+a_nu_n=0$. But these vectors linearly independent, thus we would have that each a_i is 0. Finally, consider $x+W\in V/W$ be arbitrary and we have that $x=a_1u_1+...+a_nu_n$ so that $x+W=(a_1u_1+...+a_nu_n)+W=(a_{k+1}u_{k+1}...a_nu_n+W$. Thus any arbitrary element is in the span of these linearly independent vectors. So we have $\{u_{k+1}+W,u_{k+2}+W,...,u_n+W\}$ is a basis.

:

Proof (Part (b)). We have that $\dim(V) = n$, $\dim(W) = k$ and we know that $V/W = \operatorname{span}\{u_{k+1} + W, ..., u_n + W\}$ Thus we have that

$$\dim(V/W) = \dim(V) - \dim(W).$$

§2.1 Problem 3. $T: \mathbb{R}^2 \to \mathbb{R}^3$ defined by $T(a_1, a_2) = (a_1 + a_2, 0, 2a_1 - a_2)$. Prove that T is linear and find bases for both $\mathcal{N}(T)$ and $\mathcal{R}(T)$. The compute the nullity and rank of T, and verify the dimension theorem. Finally, use the appropriate theorems in this section to determine whether T is injective or surjective.

:

Proof. Consider

$$T(a(x_1, x_2) + (y_1, y_2)) = T(ax_1 + y_1, ax_2 + y_2)$$

$$= (ax_1 + x_2 + y_1 + y_2, 0, 2ax_1 + 2y_1 - 2ax_2 - y_2)$$

$$= (a(x_1 + x_2) + (y_1 + y_2), 0, a(2x_1 - x_2) + (2y_1 - y_2))$$

$$= aT(x_1, x_2) + T(y_1, y_2)$$

So T is linear. To find the basis for $\mathcal{N}(T)$ we find what elements are mapped to the zero vector. Thus we need to satisfy

$$a_1 + a_2 = 0$$
$$2a_1 - a_2 = 0$$

Which implies that $a_1 = a_2 = 0$. So the basis for $\mathcal{N}(T)$ is $\{0\}$. A basis for $\mathcal{R}(T)$ is given by $\{(1,0,0),(0,0,1)\}$. nullity(T) = 0, rank(T) = 2 and we have dim(V) = 2 = nullity(T) + rank(T) = 0 + 2. Since nullity(T) = 0 we have that T is injective. But since dim(\mathbb{R}^3) > rank(T) we have that T is not surjective.

§2.1 Problem 4. $T: M_{2\times 3}(F) \rightarrow M_{2\times 2}(F)$ defined by

$$T\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} = \begin{bmatrix} 2a_{11} - a_{12} & a_{13} + 2a_{12} \\ 0 & 0 \end{bmatrix}.$$

Prove that T is linear and find bases for both $\mathcal{N}(T)$ and $\mathcal{R}(T)$. The compute the nullity and rank of T, and verify the dimension theorem. Finally, use the appropriate theorems in this section to determine whether T is injective or surjective.

:

Proof. To show that T is linear, we want to show T(aA+B) = aT(A) + T(B). So we have,

$$T(aA+B) = T \begin{pmatrix} \begin{bmatrix} aA_{11} + B_{11} & aA_{12} + B_{12} & aA_{13} + B_{13} \\ aA_{21} + B_{21} & aA_{22} + B_{22} & aA_{23} + B_{23} \end{bmatrix} \end{pmatrix}$$

$$= \begin{bmatrix} 2aA_{11} + B_{12} - aA_{12} - B_{12} & aA_{13} + B_{13} + 2aA_{12} + 2B_{12} \\ 0 & 0 \end{bmatrix}$$

$$= a \begin{bmatrix} 2A_{11} - A_{12} & A_{13} + 2A_{12} \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} B_{12} - B_{12} & B_{13} + 2B_{12} \\ 0 & 0 \end{bmatrix}$$

$$= aT(A) + T(B)$$

So T is linear. A basis for $\mathcal{N}(T)$ is given by

$$\left\{ \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 1 & -2 \\ 0 & 0 & 0 \end{bmatrix} \right\}$$

A basis for $\mathcal{R}(T)$ is given by

$$\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$

Then we have $\operatorname{nullity}(T) = 4$ and $\operatorname{rank}(T) = 2$. And $\dim(M_{2\times 3}(\mathbb{F})) = 6 = \operatorname{nullity}(T) + \operatorname{rank}(T) = 4 + 2$. T is not injective since $\operatorname{nullity}(T) \neq 0$ and not surjective since $\operatorname{rank}(T) < \dim(M_{2\times 2}(\mathbb{F}))$.

§2.1 Problem 11. Prove that there exists a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ such that T(1,1) = (1,0,2) and T(2,3) = (1,-1,4). What is T(8,11)?

.

Solution.

$$(8,11) = a(1,1) + b(2,3)$$

 $\implies a = 2, b = 3$

Thus we have

$$T(8,11) = 2T(1,1) + 3T(2,3)$$
$$= 2(1,0,2) + 3(1,-1,4)$$
$$= (5,-3,16)$$

§2.1 Problem 15. Recall the definition of $P(\mathbb{R})$ on page 10. Define

$$T: P(\mathbb{R}) \to P(\mathbb{R})$$
 by $T(f(x)) = \int_0^x f(t) dt$.

Prove that T is linear and injective, but not surjective.

:

Proof. To show that *T* is linear we show that T(af(x) + g(x)) = aT(f(x)) + T(g(x)). So

$$T(af(x) + g(x)) = \int_0^x (af(t) + g(t)dt)$$

= $a \int_0^x f(t)dt + \int_0^x g(t)dt$ = $aT(f(x)) + T(g(x))$

by properties of integrals.

Suppose that $f(x) = a_0 + a_1 x + ... + a_n x^n \in \mathcal{N}(T)$. Thus

$$T(f(x)) = \int_0^x (a_0 + \dots + a_n x^n) dt$$

= $a_0 \int_0^x 1 dt + \dots + a_n \int_0^x x^n dt$

Thus since no integrand evaluates to 0, we have that $a_i = 0 \ \forall i$. So $\mathcal{N}(T) = \{0\}$. So T is injective. Consider $c \in P(\mathbb{R})$. Then let $f(x) = a_0 + a_1x + ... + a_nx^n \in P(\mathbb{R})$ Thus

$$c = T(f(x)) = \int_0^x (a_0 + \dots + a_n x^n) dt$$

= $a_0 \int_0^x 1 dt + \dots + a_n \int_0^x x^n dt$
 $c = a_0 x + \dots + a_n x^{n+1}$

Which has no solution. Thus T is not surjective since there exists an element of $P(\mathbb{R})$ not in $\mathcal{R}(T)$. \square

§2.1 Problem 17. Let V and W be finite-dimensional vector spaces and $T: V \to W$ be linear.	
(a) Prove that if $\dim(V) < \dim(W)$, then T cannot be surjective.	
(b) Prove that if $\dim(V) > \dim(W)$, then T cannot be injective.	
:	
<i>Proof (Part (a)).</i> We have that	
$\dim(W) > \dim(V) \ge \operatorname{rank}(T)$	
Since $rank(T)$ is less than $dim(W)$, T is not surjective.	
:	
<i>Proof (Part (b)).</i> We have that	
$\operatorname{rank}(T) \le \dim(W) < \dim(V)$	
So we have	
$\dim(V) - \operatorname{rank}(T) > 0$	
Which means that $\operatorname{nullity}(T) > 0$ by the dimension theorem. This means that T is not injective.	

§2.1 Problem 35. Let *V* be a finite-dimensional vector space and $T: V \to V$ be linear.

- (a) Suppose that $V = \mathcal{R}(T) + \mathcal{N}(T)$. Prove that $V = \mathcal{R}(T) \oplus \mathcal{N}(T)$.
- (b) Suppose that $\mathcal{R}(T) \cap \mathcal{N}(T) = \{0\}$. Prove that $V = \mathcal{R}(T) \oplus \mathcal{N}(T)$.

:

Proof (*Part* (*a*)). Suppose that $V = \mathcal{R} + \mathcal{N}(T)$ and that we have $v \in \mathcal{R}(T) \cap \mathcal{N}(T)$. Then we have T(v) = 0 since $v \in \mathcal{N}(T)$, which means that v = 0 since $v \in \mathcal{R}(T)$. Thus $\mathcal{R}(T) \cap \mathcal{N}(T) = \{0\}$ and thus $V = \mathcal{R}(T) \oplus \mathcal{N}(T)$. □

:

Proof (Part (b)). Suppose that $\Re(T) \cap \mathcal{N}(T) = \{0\}$. Suppose we have $v \in V$ so that $T(v) \notin \Re(T) + \mathcal{N}(T)$. Thus we know that $T(v) \neq 0$ since $0 \in \Re(T) + \mathcal{N}(T)$. But then if $T(v) \neq 0$ then $T(v) \in \Re(T)$ and we contradict $T(v) \notin \Re(T) + \mathcal{N}(T)$. So $V = \mathcal{N}(T) \oplus \Re(T)$. □

§2.1 Problem 40. Let *V* be a vector space and *W* be a subspace of *V*. Define the mapping $\eta: V \to V/W$ by $\eta(v) = v + W$ for $v \in V$.

- (a) Prove that η is a linear transformation from V onto V/W and that $\mathcal{N}(\eta) = W$.
- (b) Suppose that V is finite-dimensional. Use (a) and the dimension theorem to derive a formula relating $\dim(V)$, $\dim(W)$, and $\dim(V/W)$.
- (c) Read the proof of the dimension theorem. Compare the method of solving (b) with the method of deriving the same result as outlined in Exercise 35 of Section 1.6.

:

Proof (Part (a)). Let $u, v \in V$ and $a \in \mathbb{F}$. Then

$$\eta(av + u) = (av + u) + W$$

$$= (av + W) + (u + W)$$

$$= a(v + W) + (u + W)$$

$$= a\eta(v) + \eta(u)$$

So η is linear. Then let $v + W \in V/W$ be arbitrary and note that $\eta(v) = v + W$ for $v \in V$ and thus η is surjective.

:

Proof (Part (b)). We have

$$\dim(V) = \dim(\mathcal{R}(\eta)) + \dim(\mathcal{N}(\eta))$$

$$= \dim(V/W) + \dim(W) \qquad \text{since } \eta \text{ is onto}$$

$$\implies \dim(V/W) = \dim(V) - \dim(W)$$

:

Solution (Part (c)). (b) uses an onto linear transformation to allow us to utilize the dimension theorem. But Ex. 35 of \$1.6 uses an argument which involves constructing bases for $\Re(T)$ and $\mathcal{N}(T)$.