Cross-correlating GW Events and Galaxy Catalogs

Federico Berlfein

Topics

General Idea

Understanding the Inputs

GW Events
Galaxy Catalogs

Cross-Correlation Pipeline

Pre-Processing

Cross-Correlations

Outputs

Results

Gaussian Blob

Antonella's Simulations

Conclusion

Idea

- Method of cross-correlating GW events and galaxy catalogs
- Cosmology comes into play:
 - Galaxies have redshifts
 - GW events have **luminosity distances**
 - We need a common coordinate system
 - Transform the redshifts and luminosity distances into comoving distances using a given cosmological model
- Infer H₀ from cosmology that produces maximum cross-correlation!

Computing Cross-Correlations using TreeCorr

- Galaxy weight: w
- GW pixel weight: ω , and probability: k
- Look at different separation bins: r
- For N galaxies and M pixels

$$\chi(r) = \sum_{i=1}^N \sum_{j=1}^M \delta_{ij}^r w_i \omega_j k_j$$
, $W(r) = \sum_{i=1}^N \sum_{j=1}^M \delta_{ij}^r w_i \omega_j$

 $\xi(r) = \frac{\chi(r)}{W(r)}$ ("finished" correlation)

$$\delta_{ij}^r = \begin{cases} 1, & r_{ij} < r \\ 0, & else \end{cases}$$

• Compute cross-correlation for **random** galaxy catalog and have a **corrected** $\boldsymbol{\xi}(\boldsymbol{r})$:

$$\xi(r)_{corrected} = \xi(r) - \xi(r)_{Randoms}$$

Understanding the Inputs

GW Events

- **Pixelated sky map** where each pixel contains:
 - **Probability** of hosting event
 - Luminosity distance measurement and uncertainty (can be up to 20-30%)
- TreeCorr does not allow pixels or uncertainties as inputs
- How do we represent the GW events in TreeCorr?
 - Pixels: RA and DEC of pixel center
 - Luminosity distances are not that simple...

Luminosity Distance Uncertainty

- Use weighted instances of each pixel
- 100 instances of the same pixel with different luminosity distances. Each instance is weighted using its respective pdf value.
- Cross correlate 100 weighted instances of each event with the galaxy catalog

Histogram blob of galaxies and GW-event distances (blue lines): H_0 =70.0 km / (Mpc s)

Galaxy Catalogs

- Straight forward
- Already provide galaxy sky localizations (RA and DEC) with high precision
- Redshifts: smaller uncertainties
- **Not considered** in this analysis, although they should eventually
- Luminosity distance errors dominate

Cross-Correlation Pipeline

Settings

- 1 Paths to files or directories to GW events, galaxy catalogs, and output directory
- 2 Galaxy catalog, GW column names, and ordering of GW pixels
- 3 Range and step of H₀ values to analyze
- 4 Minimum percentage of pixels containing galaxies
- 5 Whether or not to calculate randoms or skip already analyze events
 - 6 TreeCorr Settings
 - 7 Parallelization Settings

```
# gw dir is the directory of all GW events to analyze. This can also be a single file
gw dir : 'des40a/mockTest/25GW mockEvents/
# cat dir is the directory where correspodning
                                                      catalogs are. This can be a single file
cat dir : 'des40a/mockTest/Galaxy Catalogs/'
#directory for all output folders, files, and plots
outdir : 'des40a/mockTest/Final Mock NKObjects/'
# column names for galaxy catalog
ra col name : 'RA'
dec col_name : 'DEC'
redshift col name : 'Z'
# column names for GW event file
prob col name : 'PROB'
distmu col name : 'DISTMU'
distsigma col name : 'DISTSIGMA'
distnorm col name : 'DISTNORM
# nest for GW events (True or False)
nest : False
# set HO values to analyze. hO step represents size of step between HO values
h0 min : 40
h0 max : 100
h0 step: 2
# min completeness for GW event to be cross-corr
min completeness: 0.8
# do randoms sets if the random cross-correlation or each event are done. If skip done = True, analysis will be skipped
# for events in set output directory that have already been analyzed
do randoms : True
skip done : False
# TreeCorr settings
min sep: 3
max sep : 500
nbins: 50
#Parralelization settings. n jobs sets the number of parallelized jobs. n threads sets number of CPU's to use per job
n jobs: 8
n threads: 3
```

Creating Directories

Creates directory for all events

TreeCorr objects for every event will be saved here

Plots concerning combination of events

□ NKObjects
 □ NKObjects_Randoms
 □ combine_MaxCorr_Plot_noRandoms.png
 □ combine_MaxCorr_Plot_withRandoms.png

Creates directories and subdirectories for individual

□ output_noRandoms
□ output_Randoms

Output Directory

□(all_events

- GW_mockEvents_0
- ☐ GW_mockEvents_1
- ☐ GW_mockEvents_10
- ☐ GW_mockEvents_11
- ☐ GW_mockEvents_12

Pre-Processing

- GW Event
 - Eliminates pixels :
 - Zero probability
 - Luminosity distance uncertainties higher than 50%
 - Weighted instances of event:
 - 100 equally spaced distances in each pixels' 95% luminosity distance range
 - Weighting them by the pdf value of that distance squared
 - Using squared value to amplify effect of distances closer to mean
- Galaxy Catalog
 - Redshift range
 - Only considers galaxies inside GW event 95% confidence region
 - Calculates completeness: percentage overlap between GW event and Galaxy Catalog

Running Cross-Correlations

- **Parallelization** over H₀ values
- For every cosmology:
 - Calculate weights for galaxies
 - Transform to common coordinate system
 - Calculates $\chi(r)$ and W(r) for all instances of GW event and adds them together
 - Does not finish correlation
- Randoms galaxies are uniformly distributed in comoving volume
- Saves unfinished correlations
- Updates logs

Plots and Outputs with Randoms

Plots and Outputs All Events

Results

Gaussian Blobs

- 25 Gaussian Blobs
- Luminosity Distance: 200-1000 Mpc
- 15% uncertainty
- TreeCorr Method does not produce narrower distribution with multiple similar events

Different Combination Method

- Multiplying finalized
- Distribution **narrows** with more events
- No randoms included in this type of combination
 - Randoms correction can produce negative crosscorrelations

Antonella's BCC Sims

- 200 GW Events
- Minimum completeness: **80**%
- 38 events used

Combined NK Cross-Correlation Peak Using Multiplication

Conclusion

- Maximum cross-correlation analysis seems like a viable method to infer H₀
- More work needed in understanding combination methods
- Other questions:
 - When creating randoms, how many do we use? Same as galaxy catalog? Fixed density?
 - Are redshift uncertainties statistically significant in this analysis? If so how much?

Running Cross-Correlations

- Parallelization over H₀ values
- For every cosmology:
 - Calculate weights for galaxies
 - Transform to common coordinate system
 - Calculates $\chi(r)$ and W(r) for all instances of GW event and adds them together
 - Does not finish correlation
- Randoms galaxies are uniformly distributed in comoving volume
- Saves unfinished correlations
- Updates logs

D log_80.0

Complete! 100/100 Time taken: 00:07:56