Relatedness analysis (allele sharing)

lan Graffelman¹

¹Department of Statistics and Operations Research Universitat Politècnica de Catalunya Barcelona, Spain

jan.graffelman@upc.edu

December 17, 2019

Contents

- Introduction
- 2 IBS methods
- 3 IBD methods
- 4 Computer exercise

Motivation

Introduction

•000000000

The detection of (closely) related individuals in genetic studies is of interest in various contexts.

- In association studies, many methods assume independent individuals. Closely related individuals will not be independent.
- In conservation genetics, breeding programs are set up for preferably unrelated individuals.
- In quality control of the data, samples can be accidentally duplicated, and it is of interest to detect it
- In paternity testing.
- In forensic genetics, e.g. identification of remains.
- To verify documented family relationships.
- To uncover cryptic relatedness.
- ...

- A distinction is generally drawn between
 - Close or recent relatedness: family relationships (MZ, PO, FS, HS, AV, FC, ...)
 - Distant or remote relatedness: population substructure (non-homogeneous genetic data)
- Here we mostly address recent relatedness
- Focus is on 1° and 2° relationships:

1°	2°
MonoZygotic twins (MZ)	Half Sibs (HS)
Full Sibs (FS)	Avuncular (AV)
Parent-Offspring (PO)	Grandparent-Grandchild (GG)

Introduction

Close relatedness: family relationships

Introduction

Close relatedness: family data and pedigrees

Standard Pedigree Nomenclature

Introduction

Coding of family data

- A database of related individuals is typically coded in .ped file format.
- Besides the genotype information, Family ID, Sample ID, Paternal ID, Maternal ID, Sex (1=male; 2=female; other=unknown) and Affection status (1=affected; 0=unaffected) are registered.

Example:

-	Family id	Sample id	Father	Mother	Sex	Affected	-
	2	201	0	0	1	1	
	2	202	0	0	2	NA	
	2	203	0	0	1	1	
	2	204	201	202	2	0	
	2	205	201	202	1	NA	
	2	206	201	202	2	1	
	2	207	201	202	2	1	L
	2	208	201	202	2	0	
	2	209	0	0	1	0	
	2	210	203	204	1	0	
	2	211	203	204	1	0	
	2	212	209	208	2	0	Г
	2	213	209	208	1	0	2
	2	214	209	208	1	1	

Allele Sharing

Much of relatedness research is based on the principle of allele sharing

- For diploid individuals, a pair of individuals can share 0, 1 or 2 alleles for a certain locus.
- The degree to which individuals share alleles indicates the extent to which they are related.

Introduction

- A pair of alleles can be identical by state (IBS) or identical by descent (IBD)
- IBS alleles simply match irrespective of their provenance
- IBD alleles match because of a common ancestor.
- IBD implies IBS but not the reverse.

IBD and IBS

2 alleles IBS but 0 alleles IBD

IBS alleles

Introduction

- For any locus, we can record for a pair of individuals how many alleles are IBS (how many alleles "match") and this can be 0, 1 or 2.
- E.g., for an A/T single nucleotide polymorphism (SNP):

	AA	ΑT	TT
AA	2	1	0
ΑT	1	1	1
TT	0	1	2

- The number of IBS alleles can be recorded for many loci, and averaged over loci.
- An average of 2 would mean that the two individuals are identical (monozygotic twins) or that a sample has been accidentally duplicated.
- This principle can be used to uncover closely related individuals, or to detect sample heterogeneity (individuals from different populations).

Allele sharing

Introduction

000000000

Allele sharing statistics are often graphed in one of the following ways:

- By plotting means (m) and standard deviation (s) of IBS statistics: (m,s) plot
- By plotting percentages of markers with 0, 1 or 2 IBS alleles: (p_0, p_2) plot
- By plotting estimates of IBD probabilities with 0, 1 or 2 IBS alleles: (k_0, k_1) plot

Notes:

- The (p_0, p_2) plot and (k_0, k_1) plot leave out one of the three proportions. The three proportions can be explicitly visualized simultaneously in a ternary diagram
- Variants with multiple alleles (e.g. microsatellites) are more informative for discriminating relationship categories than bi-allelic variants (SNP data).
- High MAF variants are more informative for discriminating relationship categories.

(m, s) plot (Abecasis et al, 2001)

Let

 X_{ijk} = number of shared alleles between individual i and j for marker k (0,1,2)

Compute:

$$m_{ij} = rac{1}{K} \sum_{k=1}^{K} x_{ijk} \text{ and } s_{ij}^2 = rac{1}{K-1} \sum_{k=1}^{K} \left(x_{ijk} - m_{ij}
ight)^2$$

- Plot m_{ij} against s_{ij} .
- This plot reveals characteristic clusters that correspond to the different family relationships.
- Precise position of the different clusters depends on the distribution of the allele frequencies.

Example: CEU sample from the 1000G project (n = 165, p = 26.081 pruned highly variable SNPs)

(p_0, p_2) plot (Rosenberg et al. 2001)

Compute for each pair ij

$$p_0 = \frac{1}{K} \sum_{k=1}^{K} I_{(x_{ijk}=0)}$$

IBD methods

$$p_1 = \frac{1}{K} \sum_{k=1}^{K} I_{(x_{ijk}=1)}$$

$$p_2 = \frac{1}{K} \sum_{k=1}^{K} I_{(x_{ijk}=2)}$$

- Plot p_0 against p_2 (or other combinations).
- This plot also reveals clusters that correspond to the different family relationships.
- (p_0, p_2) and (m, s) are mathematically related:

$$m = 1 - p_0 + p_2$$
 and $s = \sqrt{p_0(1 - p_0) + p_2(1 - p_2) + 2p_0p_2}$

Example: CEU sample from the 1000G project (n = 165, p = 26.081 pruned highly variable SNPs)

IBD probabilities for a given relationship

	α/A	α/B	β/A	β/B
α/A	2	1	1	0
α/A α/B	1	2	0	1
β/A β/B	1	0	2	1
β/B	0	1	1	2

Cotterman coefficients:

$$k_0 = P(\#IBD = 0|FS) = 0.25$$

$$k_1 = P(\#IBD = 1|FS) = 0.50$$

$$k_2 = P(\#IBD = 2|FS) = 0.25$$

Cotterman coefficients

Introduction

Identity-by-descent probabilities for some standard relationships:

Relationship	<i>k</i> ₀	k_1	k ₂	θ
MZ	0	0	1	$\frac{1}{2}$
PO	0	1	0	$\frac{1}{2}$ $\frac{1}{4}$ 1
FS	$\frac{1}{4}$	$\frac{1}{2}$	$\frac{1}{4}$	
HS	$\frac{1}{2}$	1/2	Ó	$\frac{1}{8}$
AV	1412121212	1 2 1 2 1 2 1 2	0	41 81 81 8 O
GG	$\frac{1}{2}$	$\frac{1}{2}$	0	$\frac{1}{8}$
UN	ī	Ō	0	Ŏ

- Kinship or coancestry coefficient: $\theta = \frac{1}{4}k_1 + \frac{1}{2}k_2$
- Probability that two alleles at a locus, one taken at random from two individuals, are identical-by-descent.

Procedure

- IBD probabilities can be estimated from the genotype data by maximum likelihood (Thompson, 1975)
- If the estimated probabilities are "close" to one of the standard relationships, then we infer that particular relationship.
- The inferred relationship may (or not) differ from the putative relationship.

ML approach

Introduction

- Let G_1 and G_2 be the pair of genotypes observed at a locus for two individuals.
- Let m (0, 1 or 2) represent the number of IBD alleles.
- By the law of total probability:

$$P\left(G_{1} \, \cap \, G_{2} | k0, k1, k2\right) = P\left(G_{1} \, \cap \, G_{2} | m=0\right) k_{0} + P\left(G_{1} \, \cap \, G_{2} | m=1\right) k_{1} + P\left(G_{1} \, \cap \, G_{2} | m=2\right) k_{2}$$

• The probabilities $P(G_1 \cap G_2 | m = 0)$ depend on the genotypes of the individuals and are calculated from the allele frequencies in the population.

Calculating the joint genotype probabilities

Let $G_1 = i/i$ and $G_2 = i/i$, and let p_i be the *i*th allele frequency.

$$P(G_1 = i/i \cap G_2 = i/i | m = 0) = P(G_1 = i/i) P(G_2 = i/i) = p_i^2 p_i^2 = p_i^4$$

$$P(G_1 = i/i \cap G_2 = i/i | m = 2) = P(G_1 = i/i) = P(G_2 = i/i) = p_i^2$$

$$P(G_1 = i/i \cap G_2 = i/i | m = 1) = P(G_1 = i/i) P(G_2 = i/i | G_1 = i/i | m = 1) = p_i^2 p_i = p_i^3$$

For all possible genotype pairs

Pair	Shared alleles	m = 0	m = 1	m = 2
$(A_i/A_i,A_i/A_i)$	2	p_i^4	p_i^3	p_i^2
$(A_i/A_i,A_j/A_j)$	0	$p_i^2 p_i^2$	·	·
$(A_i/A_i,A_i/A_j)$	1	$2p_i^3p_i$	$p_i^2 p_i$	
$(A_i/A_i,A_j/A_m)$	0	$2p_i^2p_ip_m$		
$(A_i/A_j, A_i/A_j)$	2	$4p_{i}^{2}p_{i}^{2}$	$p_i p_j (p_i + p_j)$	$2p_ip_j$
$(A_i/A_j,A_i/A_m)$	1	$4p_i^2p_ip_m$	$p_i p_j p_m$	
$(A_i/A_j,A_m/A_l)$	0	$4p_i p_j p_m p_l$	•	

$$P(G_1 \cap G_2 | k_0, k_1, k_2) = d_0 k_0 + d_1 k_1 + d_2 k_2$$

$$L(k_0, k_1, k_2|G) = \prod_{i=1}^{n} (d_{0i}k_0 + d_{1i}k_1 + d_{2i}k_2)$$

Assumptions:

- Hardy-Weinberg equilibrium
- Known population allele frequencies
- Independent variants

Example: HapMap Phase III, Mexican population (n = 86)

lt.	1	\hat{k}_0	\hat{k}_1	\hat{k}_2
1	-9483.1290	0.41422	0.48104	0.10474
2	-9368.1777	0.18452	0.56753	0.24796
3	-9366.4621	0.21746	0.52776	0.25478
4	-9366.4615	0.21697	0.52798	0.25505
5	-9366.4615	0.21697	0.52798	0.25505

ML estimation of IBD probabilities of a FS pair, using 5.000 SNPs, with initial point (0.575,0.400,0.025). Iteration history for the maximization of the log-likelihood (I)

Software for relatedness research

- R-package SNPRelate
- R-package GWASTools
- GRR
- Relpair
- PLINK

Estimation of IBD probabilities with PLINK

```
# convert .ped to .bed and .fam files
runstring01 <- paste("plink -file hapmap3_r3_b36_fwd.consensus.qc.poly",
                     "-make-bed -out hapmap", sep="")
system(runstring01)
# Select the CEU individuals
runstring02 <- "plink -bfile hapmap -keep CEUsubset.txt -make-bed -out CEU"
system(runstring02)
# exclude the X chromosome
runstring03 <- "plink --bfile CEU --chr 1-22 --make-bed -out CEU2"
system(runstring03)
# Selecting complete SNPs with MAF > 0.40 only
runstring05 <- "plink --bfile CEU2 --geno 0 --maf 0.40 -make-bed -out CEU3"
system(runstring05)
# HWE filter
runstring06 <- "plink --bfile CEU3 --hwe 0.05 midp -make-bed -out CEU4"
system(runstring06)
```

Estimation of IBD probabilities with PLINK

```
# LD pruning
runstring07 <- "plink --bfile CEU4 --indep-pairwise 50 5 0.2 -make-bed -out CEU5"
system(runstring07)
runstring08 <- "plink --bfile CEU5 --extract CEU5.prune.in --make-bed --out CEU6"
system(runstring08)
# Calculate IBD probabilities
runstring09 <- "plink --bfile CEU6 --genome --genome-full --out CEU7"
system(runstring09)
# Read the IBD probabilities in R
X <- read.table("CEU7.genome",header=TRUE)
# Make a k_0 versus k_1 plot
plot(X$Z0,X$Z1,asp=1,xlab=expression(k[0]),ylab=expression(k[1]),main="IBD probabilities CEU")
```

IBD probabilities CEU sample

IBD probabilities CEU

Restrictions on estimators

All estimators live in a constrained space

$$(p_0, p_1, p_2)$$
 is a composition with $p_0 + p_1 + p_2 = 1$ (k_0, k_1, k_2) is a composition with $k_0 + k_1 + k_2 = 1$

Some references

- Abecasis, G.R., Cherny, S.S., Cookson W.O.C. and Cardon, L. R. (2001) GRR: graphical representation of relationship errors. Bioinformatics, 17(8) pp. 742-743.
- Graffelman, J., Galván-Femenía, I., De Cid, R., and Barceló-Vidal, C. (2019) A log-ratio biplot approach for exploring genetic relatedness based on identity by state. Frontiers in Genetics doi: 10.3389/fgene.2019.00341
- Rosenberg, N. A. (2006). Standardized subsets of the HGDP-CEPH Human Genome Diversity Cell Line Panel, accounting for atypical and duplicated samples and pairs of close relatives. Annals of Human Genetics, 70: 841-847.
- Thompson, E.A. (1975). The estimation of pairwise relationships. Annals of Human Genetics, 39(2): 173-188.
- Weir, B.S., Anderson, A.D., Hepler, A.B. (2006) Genetic relatedness analysis: modern data and new challenges. Nature Review Genetics 7(10) pp. 771-780.

Computer exercise

Introduction

The filed YRI.raw contains SNPs of a Yoruba population consisting of parent-offspring trios (2 parents and 1 child). We wish to investigate if the genetic data is consistent with the specified relationships. The PLINK files YRI.fam, YRI.bed and YRI.bim are also available

- Load the data in YRI raw
- Compute the mean m of the number of alleles shared for each pair of individuals.
- Compute the standard deviation s of the number of alleles shared for each pair of indiduals.
- Plot all pairs in a scatterplot of s against m.
- Plot the fraction of variants for which the individuals share 0 alleles against the fraction of variants for which the individuals share 2 alleles, and try to interpret the results
- Use PLINK to estimate the IBD probabilities, and plot the probabilities of sharing 0 and 1 IBD alleles (k_0 and k_1) for all pairs of individuals.
- Do you think all relationships between all individuals were correctly specified?