Лабораторная работа № 3.5.1 Изучение плазмы газового разряда в неоне.

Никита Москвитин, Б04-204

2023

1 Аннотация

В данной работе был получен ВАХ тлеющего заряда. Так же изучалась плазма и ее свойства.

2 Введение

Плазма

В ионизированном газе поле ионов «экранируется» электронами. Для поля ${\bf E}$ и плотности ρ электрического заряда

div
$$\mathbf{E} = 4\pi\rho$$
,

а с учётом сферической симметрии и $\mathbf{E} = -\mathrm{grad}\ \varphi$:

$$\frac{d^2\varphi}{dr^2} + \frac{2}{r}\frac{d\varphi}{dr} = -4\pi\rho. \tag{1}$$

Плотности заряда электронов и ионов (которые мы считаем бесконечно тяжёлыми и поэтому неподвижными)

$$\rho_e = -ne \cdot \exp\left(\frac{e\varphi}{kT_e}\right),$$

$$\rho_i = ne.$$
(2)

Тогда из (1) в предположении $\frac{e\varphi}{kT_e}\ll 1$ получим

$$\varphi = \frac{Ze}{r}e^{-r/r_D},\tag{3}$$

где $r_D = \sqrt{\frac{kT_e}{4\pi ne^2}}$ – радиус Дебая. Среднее число ионов в сфере такого радиуса

Рис. 1: Плазменные колебания.

$$N_D = n \frac{4}{3} \pi r_D^2. (4)$$

Теперь выделим параллелепипед с плотностью n электронов, сместим их на x. Возникнут поверхностные заряды $\sigma = nex$, поле от которых будет придавать электронам ускорение:

$$\frac{d^2x}{dt^2} = -\frac{eE}{m} = -\frac{4\pi ne^2}{m}x.$$

Отсюда получаем плазменную (ленгмюровскую) частоту колебаний электронов:

$$\omega_p = \sqrt{\frac{4\pi ne^2}{m}}. (5)$$

Одиночный зонд

При внесении в плазму уединённого проводника — зонда — с потенциалом, изначально равным потенциалу точки плазмы, в которую его помещают, на него поступают токи электроннов и ионов:

$$I_{e0} = \frac{n\langle v_e \rangle}{4} eS,$$

$$I_{i0} = \frac{n\langle v_i \rangle}{4} eS,$$
(6)

где $\langle v_e \rangle$ и $\langle v_i \rangle$ — средние скорости электронов и ионов, S — площадь зонда, n — плотность электронов и ионов. Скорости электронов много больше скорости ионов, поэтому $I_{i0} \ll I_{e0}$. Зонд будет заряжаться до некоторого равновестного напряжения $-U_f$ — плавающего потенциала.

В равновесии ионный ток мало меняется, а электронный имеет вид

Рис. 2: Реальная зондовая характеристика для одиночного зонда.

$$I_e = I_0 \exp\left(-\frac{eU_f}{kT_e}\right).$$

Будем подавать потенциал U_3 на зонд и снимать значение зондового тока I_3 . Максимальное значение тока $I_{\rm en}$ — электронный ток насыщения, а минимальное $I_{\rm in}$ — ионный ток насыщения. Значение из эмпирической формулы Бомона:

$$I_{iH} = 0.4 neS \sqrt{\frac{2kT_e}{m_i}}. (7)$$

Двойной зонд

Двойной зонд — система из двух одинаковых зондов, расположенных на небольшом расстоянии друг от друга, между которыми создаётся разность потенциалов, меньшая U_f . Рассчитаем ток между ними вблизи I=0. При небольших разностях потенциалов ионные токи на оба зонда близки к току насыщения и компенсируют друг друга, а значит величина результирующего тока полностью связана с разностью электронных токов. Пусть потенциалы на зондах

$$U_1 = -U_f + \Delta U_1,$$

$$U_2 = -U_f + \Delta U_2.$$

Между зондами $U=U_2-U_1=\Delta U_2-\Delta U_1$. Через первый электрод

$$I_1 = I_{iH} + I_{e1} = I_{iH} - \frac{1}{4} neS \langle v_e \rangle \exp\left(-\frac{eU_f}{kT_e}\right) \exp\left(\frac{e\Delta U_1}{kT_e}\right) = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_1}{kT_e}\right)\right). \tag{8}$$

Аналогично через второй получим

$$I_2 = I_{iH} \left(1 - \exp\left(\frac{e\Delta U_2}{kT_e}\right) \right) \tag{9}$$

Из (7) и (8) с учётом последовательного соединение зондов ($I_1 = -I_2 = I$):

$$\Delta U_1 = \frac{kT_e}{e} \ln \left(1 - \frac{I}{I_{i\text{H}}} \right)$$

$$\Delta U_2 = \frac{kT_e}{e} \ln \left(1 + \frac{I}{I_{i\text{H}}} \right)$$

Тогда итоговые формулы для разности потенциалов и тока

$$U = \frac{kT_e}{e} \ln \frac{1 - I/I_{iH}}{1 + I/I_{iH}}, I = I_{iH} th \frac{eU}{2kT_e}.$$
 (10)

Реальная зависимость выглядит несколько иначе и описывается формулой

Рис. 3: Реальная зондовая характеристика для двойного зонда.

$$I = I_{iH} th \frac{eU}{2kT_e} + AU.$$
(11)

Из этой формулы можно найти формулу для T_e : для U=0 мы найдём $I_{i\mathrm{H}}$, продифференцируем в точке U=0 и с учётом th $\alpha\approx\alpha$ при малых α и $A\to0$ получим:

$$kT_e = \frac{1}{2} \frac{eI_{iH}}{\frac{dI}{dU}}.$$
(12)

3 Экспериментальная установка

Стеклянная газоразрядная трубка имеет холодный (ненакаливаемый) полый катод, три анода и $\mathit{геттерный}$ узел — стеклянный баллон, на внутреннюю повехность которого напылена газопоглощающая плёнка (remmep). Трубка наполнена изотопом неона ²2Ne при давлении 2 мм рт. ст. Катод и один из анодом (I и II) с помощью переключателя Π_1 подключается через балластный резистор R_6 (≈ 450 кОм) к регулируемому ВИП с выкодным напряжением до 5 кВ.

При подключении к ВИП анода-I между ним и катодом возникает газовый разряд. Ток разряда измеряется миллиамперметром A_1 , а падение напряжения на разрядной трубке – цифровым вольтметром V_1 , подключённым к трубке черезе высокоомный (25 МОм) делитель напряжения с коэффициентом $(R_1 + R_2)/R_2 = 10$.

При подключении к ВИП анода-II разряд возникает в пространстве между катодом и анодом-II, где находятся двойной зонд, используемый для диагностики плазмы положительного столба. Зонды изготовлены из молибденовой проволоки диаметром d=0.2 мм и

Рис. 4: Эксперементальная установка.

имеют длину l=5.2 мм. Они подключены к источнику питания GPS через потенциометр R. Переключатель Π_2 позволяет изменять полярность напряжения на зондах. Величина напряжения на зондах изменяеься с помощью дискретного переключателя «V» выходного напряжения источника питания и потенциометра R, а измеряется цифровым вольтметром V_2 . Для измерения зондового тока используется мультиметр A_2 .

4 Измерения

Измерим ВАХ, а так же зондовые харакетристики при 1,5 мА, 3 мА и 5мА.

5 Обработка результатов

Построем графики по зависимостям измеренным в пункте 4. Результаты характеристик приведены в таблице. Также получаем из ВАХа телющего разряда, что $R_{\text{диф}} = (147 \pm 5)$ кOм.

Таблица 1: Итогове результаты

I_p , мА	$T_e, 10^4 \text{ K}$	$n_e, 10^{15} \text{ m}^{-3}$	$\omega_p,~10^4~{ m pag/c}$	$r_D, 10^{-5} \text{ cm}$	N_D	α , 10^{-7}
5.0	41 ± 4	58 ± 6	144 ± 10	49 ± 3	30	24
3.0	42 ± 4	33 ± 4	107 ± 9	66 ± 5	40	13
1.5	41 ± 6	16 ± 2	75 ± 8	94 ± 10	57	7

6 Вывод

Мы изучили свойства плазмы в разряде, резултьтаты приведены в таблице. Так же исходя из велечины максимального сопротивления $R_{\text{диф}} = (147 \pm 5)$ кОм на BAXe и его вида, BAX мы измерили примерно на поднормальном - переход на нормальный тлеющий разряд.

Рис. 5: ВАХ.

Рис. 6: Зондовая характеристика при $I=5\,\mathrm{mA}.$

Рис. 7: Зондовая характеристика при $I=3\,\mathrm{mA}.$

Рис. 8: Зондовая характеристика при $I=1,5\,\,\mathrm{mA}.$