

4TH INTERNATIONAL CONFERENCE & EXHIBITION ON ENERGY STORAGE & MICROGRIDS IN INDIA

Energy Storage & Charging Infra for EV

Dr Allabaksh Naikodi

Agenda

- Energy Storage in EV
- EV Charging Eco-System
- Charging Infrastructure- India & World

Energy Storage in EV

Basic Comparison of Batteries for EVs

- Li Ion batteries with small size and light weight are best suited for EVs but requires efficient battery management controls and cell balancing
- VRLA batteries are too heavy with low life; emerging technologies like Lithium Metal are not yet safe to use.

EV Trend — Batteries for Longer Range India Energy Storage Alliance

- Clear trend for higher range using large storage capacity batteries (22kWh in 2010 to over 60kWh in 2020), thus increasing demand for battery
- Drastic increase in battery energy density resulting in higher range with same foot print

EV Charging Eco-System

EV Charging Eco-System

EV Charge Station

OEM

Vehicle Service Management

Remote User Monitoring

Energy Generation

Management of Fleets

EV Charging Framework

On-Board AC Charging

NORMAL CHARGING (AC)

1-Ø In-LINE RCD

230Vac, 16Amp, 3.3kW Mode-2 Case'C' IEC 61851-1

1-Ø TYPE-2 WM & ICCB

250Vac, 16 /32 Amp, 3.3/6.6 kW Mode-2 Case 'B & C' IEC 61851-1 IEC 62196-2

3-Ø TYPE-2 WALL MOUNT

480Vac, up to 63Amp, 43kW, Mode-3 Case'C' IEC 61851-1 IEC 62196-2

STORAGE AC Charging — Authentication Process Lindia Energy Storage Alliance

Type-2 is a physical interface with the vehicle, without any communication or cyber connectivity with grid

Off-Board DC Fast Charging

FAST CHARGING (DC)

Up to 750/1000 Vdc, Up to 250Amp

50Vdc - 500Vdc, 125Amp, 50kW

Up to 750Vdc, 125Amp, 100kW

DC Fast Charging – Communication Stds ()

All three Fast Charging protocols needs communication with the vehicle, thus has cyber connectivity with grid

Charging Infrastructure – India & World

STORAGE Geographical Distribution of EVSE Outlets Linking Storage Alliance

Slow Chargers - Global Distribution

162,000 OUTLETS

Fast Chargers - Global Distribution

28,000 OUTLETS

EVSE Installation in UK and India

Like Japan, UK has relatively large EVSE installations – over 10,000.

Source: ZAP MAP

India Lags in EV Charging infrastructure with only around 300 Installations

EVSE in Bangalore

FAME Incentive Scheme in India

2015-2016

FAME: Faster Adoption and Manufacture of Electric Vehicles in India

- Charging Infrastructure
- Pilot Projects
- Operations

535Cr

2016-2017

1	r			
. 1				
4				

ximum incentive					
(INR)					
22,000					
29,000					
61,000					
1,38,000					

Vehicle Segment	Minimum incentive	Maximum incentive
	(INR)	(INR)
2 wheeler scooter	1800	22,000
Motorcycle	3500	29,000
3 wheeler Autorikshaw	3300	61,000
4 wheeler cars	11,000	1,38,000
LCVs	17,000	1,87,000
Bus	30,00,000	66,00,000

FAME is an Initiative under the National Mission for Electric Mobility (NMEM) aiming to put Millions of EVs and HEVs on Indian Roads by 2020

EVSE Global Deployment Targets

As per Paris declaration; Over 100 times increase in EV charging infrastructure all over the globe in next 15 years

Conclusions

- EV market continues to grow at a rapid pace with over 5M vehicles by 2025
- Steady increase in energy capacity and decline of battery cost resulting in EVs with longer range
- Emergence of EV charging eco-system globally
- Phenomenal growth of charging infrastructure over 100 times in next 15 years
- India lags much behind in comparison with global surge; needs to do a lot to catch-up

Thank You

Mahindra ELECTRIC