Today

- Application spotlight: Games
- Supervised Learning: Linear Regression

Announcements

- Pset 1 released, due in one week
- Quiz0 graded

Quiz0 Grades

Quiz0-Grad

- If your score is below threshold (60% for grad, 50% for undergrad), you should not be taking this class
- Drop before deadline Monday Feb 2

Application Spotlight

Al playing games

Poker playing bot can beat any human

- no human expert help, only Texas Hold'em rules
- computer played against itself, playing more games than played by entire human race
- optimal strategy found using 5,000 CPUs

Al playing games

- computers also beat humans at chess, checkers, backgammon and Jeopardy!
- Different, specialized strategy for each
- Far behind human brain, which is an all-purpose game playing "machine"

IBM's Watson playing Jeopardy!

Linear Regression

Kate Saenko

Example: house price prediction

Supervised Learning

Given the "right answer" for each example in the data.

Regression Problem

Predict real-valued output

Training set

Size in feet ² (x)	Price (\$) in 1000's (y)	
2104	460	
1416	232	
1534	315	
852	178	
•••	•••	

Notation:

```
m = Number of training examples

x^{(i)} = "input" variable / features

y^{(i)} = "output" variable / "target" variable
```

Hypothesis

What should *h* be?

Linear hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 $heta_i$'s: Parameters How to choose $heta_i$'s?

Cost function

"Sum of squared differences" or SSD cost function

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Goal: minimize
$$J(\theta_0, \theta_1)$$

Cost function intuition

 $h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$J(\theta_1)$$

(function of the parameter θ_1)

Cost function intuition

 $h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

 $J(\theta_1)$

(function of the parameter θ_1)

Cost function intuition

 $h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$J(\theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

$$J(heta_1)$$

(function of the parameter θ_1)

Choose θ_1 with minimum cost

Supervised Learning

2-dimensional θ

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

 θ_i 's: Parameters

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$$

Plotting cost for 2-dimensional θ

Plotting cost for 2-dimensional θ

Note, squared loss cost is convex in parameters

SSD loss is convex

Non-convex cost function

Multidimensional inputs

Size (feet²)	Number of bedrooms	Number of floors	Age of home (years)	Price (\$1000)
2104	5	1	45	460
1416	3	2	40	232
1534	3	2	30	315
852	2	1	36	178
•••	•••	•••		

Notation:

n = number of features

 $x^{(i)}$ = input (features) of i^{th} training example.

 $x_j^{(i)}$ = value of feature j in i^{th} training example.

Multivariate Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

For convenience of notation, define $x_0 = 1$.

 θ_i 's: Parameters

Cost Function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Goal: minimize
$$J(\theta_0, \theta_1, \dots, \theta_n)$$
 $\theta_0, \theta_1, \dots, \theta_n$

Two potential solutions

```
\min_{\tau} \theta J(\theta; x \downarrow 1, y \downarrow 1, ..., x \downarrow m, y \downarrow m)
```

Gradient descent (or other iterative algorithm)

- Start with a guess for θ
- Change θ to decrease $J(\theta)$
- Until reach minimum

Direct minimization

- Take derivative, set to zero
- Sufficient condition for minima

Gradient Descent

Gradient Descent Algorithm

Set $\theta=0$

Repeat {

$$heta_j := heta_j - lpha rac{\partial}{\partial heta_j} J(heta)$$
 simultaneously for all $j=0,\dots,n$

 $j = 0, \ldots, n$

} until convergence

Gradient Descent: Intuition

 $h_{\theta}(x)$

(for fixed θ_1 , this is a function of x)

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

$$J(\theta_1)$$

(function of the parameter θ_1)

Gradient for Least Squares Cost

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

$$\frac{\partial}{\partial \theta_i} J(\theta) =$$

Gradient for Least Squares Cost

For one example

$$\frac{\partial}{\partial \theta_{j}} J(\theta) = \frac{\partial}{\partial \theta_{j}} \frac{1}{2} (h_{\theta}(x) - y)^{2}$$

$$= 2 \cdot \frac{1}{2} (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} (h_{\theta}(x) - y)$$

$$= (h_{\theta}(x) - y) \cdot \frac{\partial}{\partial \theta_{j}} \left(\sum_{i=0}^{n} \theta_{i} x_{i} - y \right)$$

$$= (h_{\theta}(x) - y) x_{j}$$

Gradient Descent Algorithm

```
Set ^{\theta=0} Repeat { \theta_j:=\theta_j+\alpha\sum_{i=1}^m\left(y^{(i)}-h_{\theta}(x^{(i)})\right)x_j^{(i)} \quad \text{simultaneously for all } j=0,\dots,n } until convergence
```


Probabilistic Solution

Maximum Likelihood

So far, we have treated observations as noiseless

An alternate view:

- data (x,y) are generated by unknown process
- however, we only observe a noisy version
- how can we model this uncertainty?

Learning models from data

- Many statistical models
 - Parametric: decision trees, linear and logistic regression, etc
 - Non-parametric: k-Nearest Neighbors, etc
- How to specify parameters in these models?
 - Manually: cumbersome and does not scale up
 - Automatically: estimate from data!
- Parameter estimation techniques
 - Maximum likelihood estimation (frequentist)
 - Bayesian inference

How to model uncertainty in data?

Hypothesis:

$$h \downarrow \theta (x) = \theta \uparrow T x$$

⊕: parameters

 $D=(x\uparrow(i),y\uparrow(i))$: data

Probability of: ???

Goal: maximize above probability

Maximum Likelihood: Example

Intuitive example: Estimate a coin toss

I have seen 3 flips of heads, 2 flips of tails, what is the chance of head (or tail) of my next flip?

Model:

Each flip is a Bernoulli random variable X

X can take only two values: 1 (head), 0 (tail)

$$p(X=1)=\theta, \quad p(X=0)=1-\theta$$

• θ is a parameter to be identified from data

Maximum Likelihood: Example

• 5 (independent) trials

Likelihood of all 5 observations:

$$p(D|\theta)=p(X\downarrow 1,...,X\downarrow 5|\theta)=\theta \uparrow 3(1-\theta)\uparrow 2$$

Intuition

ML chooses θ such that likelihood is maximized

Maximum Likelihood: Example

• 5 (independent) trials

Likelihood of all 5 observations:

$$p(D|\theta)=p(X\downarrow 1,...,X\downarrow 5|\theta)=\theta \uparrow 3(1-\theta)\uparrow 2$$

Solution (left as exercise)

$$\theta \downarrow ML = 3/(3+2)$$

i.e. fraction of heads in total number of trials

Maximum Likelihood

More generally, assume

$$X \sim p(X|\theta)$$

Observations

$$D = \{x \uparrow(1), x \uparrow(2), ..., x \uparrow(m)\}$$
Maximum likelihood estimate
$$\mathcal{L}(D) = \frac{\prod_{i=1}^{n} \uparrow(x) \uparrow(i) \mid \theta}{\prod_{i=1}^{n} \uparrow(x) \uparrow(i) \mid \theta}$$

$$\theta \downarrow ML = \operatorname{argmax}_{\tau} \theta \mathcal{L}(D)$$

$$= \operatorname{argmax}_{\tau} \theta \mathcal{L}(D)$$

$$= \operatorname{argmax}_{\tau} \theta \mathcal{L}(D)$$

$$= \operatorname{argmax}_{\tau} \theta \mathcal{L}(D)$$

$$= \operatorname{argmax}_{\tau} \theta \mathcal{L}(D)$$

Assume:

$$t=y+\epsilon$$

Noise $\epsilon \sim N\epsilon 0$, $\beta \uparrow -1$, where $\beta = 1/\sigma \uparrow 2$

h(x) h(x) ptx,θ,β $x\uparrow(i)$

we don't get to see y, only t

Assume:

$$t=y+\epsilon$$

Noise $\epsilon \sim N \epsilon 0$, $\beta \uparrow -1$, where $\beta = 1/\sigma \uparrow 2$

$$ptx,\theta,\beta = N(t|h(x),\beta \uparrow -1)$$

Assume:

$$t=y+\epsilon$$

Noise $\epsilon \sim N\epsilon 0$, $\beta \uparrow -1$, where $\beta = 1/\sigma \uparrow 2$

$$ptx,\theta,\beta = N(t|h(x),\beta\uparrow-1)$$

$$t = \{t \hat{I}(i)\}, \mathbf{x} = \{x \hat{I}(i)\}, \text{ assume } t \hat{I}(i) \text{ are i.i.d}$$

i.i.d assumption: if
$$x \downarrow i$$
 are independent r.v.s, then $p(x \downarrow 1, x \downarrow 2, ..., x \downarrow m) = p(x \downarrow 1) p(x \downarrow 2) ...p(x \downarrow m)$

Likelihood Function

Likelihood function:

$$ptx,\theta,\beta = \prod_{i=1}^{n} \sum_{i=1}^{n} N(t\hat{t}(i) | h(x\hat{t}(i)), \beta\hat{t}-1)$$

Maximum likelihood solution:

$$\theta \downarrow ML = \operatorname{argmax}_{+}\theta p t x, \theta, \beta$$

$$\beta \downarrow ML = \operatorname{argmax}_{+}\beta p t x, \theta, \beta$$

Want to maximize

$$ptx, \theta, \beta = \prod_{i=1}^{n} \sum_{i=1}^{n} N(t\hat{t}(i) | h(x\hat{t}(i)), \beta\hat{t}-1)$$

Easier to maximize log()

$$\ln p t x, \theta, \beta = -\beta/2 \sum_{i=1}^{n} \lim (h(x \uparrow(i)) - t \uparrow(i)) \uparrow 2 + m/2 \ln \beta - m/2 \ln(2\pi)$$

Want to maximize w.r.t. θ

$$\ln p t x, \theta, \beta = -\beta/2 \sum_{i=1}^{n} \lim_{n \to \infty} (h(x)(i)) - t(i)) + m/2 \ln \beta - m/2 \ln(2\pi)$$

... but this is same as minimizing sum-of-squares cost¹

$$1/2m\sum_{i=1}^{i=1} \lim_{n \to \infty} (h(x \uparrow(i)) - t \uparrow(i)) \uparrow 2$$

... which is the same as our SSE cost from before:

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^{2}$$

¹multiply by $-1/m\beta$, changing max to min, omit last two terms (don't depend on θ)

Probabilistic Motivation for SSE

 Under the Gaussian noise assumption, maximizing the probability of the data points is the same as minimizing a sum-of-squares cost function

Also known as least squares method

- Not only for linear hypotheses!
 - But linear least squares has closed-form solution

Bayesian vs. Frequentist

Frequentist: maximize likelihood

$$pDmodel = pD\theta$$

Bayesian: treat *a* as random variable, e.g. maximize posterior

$$p\theta D = pD\theta p(\theta)/p(D)$$

Summary: Max Likelihood for LR

Assume linear model with Gaussian observation noise

Likelihood function:

$$p\mathbf{t}\mathbf{x},\theta,\beta = \prod_{i=1}^{n} \sum_{i=1}^{n} N(t\hat{t}(i) | h(x\hat{t}(i)), \beta\hat{t}-1)$$

Maximum likelihood solution:

$$\theta \downarrow ML = \operatorname{argmax}_{+}\theta p t x, \theta, \beta$$

$$(h(x\uparrow(i))-t\uparrow(i))\uparrow 2$$

$$\beta \downarrow ML = \operatorname{argmax}_{-\beta} p tx, \theta, \beta$$

use Gradient Descent, or closed form solution (will see shortly) $= \operatorname{argmin}_{\tau} \theta \, 1/2m \sum_{i=1}^{t} 1/m$

(same as minimizing SSE)

(left as exercise)

Next Lecture

- Matrix calculus
- Direct solution: normal equations