TD K-Means Clustering

Exemple Résolu : K-Means Clustering

Énoncé:

- La tâche de data mining consiste à regrouper des points en trois clusters.
- Les points sont :

$$A_1(2,10), A_2(2,5), A_3(8,4), B_1(5,8), B_2(7,5), B_3(6,4), C_1(1,2), C_2(4,9). \\$$

- La fonction de distance utilisée est la distance Euclidienne.
- Initialement, nous assignons A_1 , B_1 et C_1 comme centres de chaque cluster respectivement.

Solution

Centres Initiaux:

- $A_1:(2,10)$
- $B_1:(5,8)$
- $C_1:(1,2)$

Calcul des Distances:

$$d(p_1, p_2) = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Les résultats sont résumés dans le tableau suivant :

Points de Données	Distance à (2,10)	Distance à (5,8)	Distance à (1,2)	Cluster
$A_1(2,10)$	0.00	3.61	8.06	1
$A_2(2,5)$	5.00	4.24	3.16	3
$A_3(8,4)$	8.49	5.00	7.28	2
$B_1(5,8)$	3.61	0.00	7.21	2
$B_2(7,5)$	7.07	3.61	6.71	2
$B_3(6,4)$	7.21	4.12	5.39	2
$C_1(1,2)$	8.06	7.21	0.00	3
$C_2(4,9)$	2.24	1.41	7.62	1

Nouveaux Centres:

- $A_1:(2,10)$
- $B_1:(6,6)$
- $C_1:(1.5,3.5)$

Questions:

- 1. Recalculez les distances entre chaque point et les centres initiaux.
- 2. Attribuez chaque point au cluster correspondant.
- 3. Déterminez les nouveaux centres après une itération.

Exercice 2: Ajout d'un nouveau point

Ajoutez le point de données $D_1(3,6)$ aux points suivants :

- $A_1(2,10), A_2(2,5), A_3(8,4),$
- $B_1(5,8), B_2(7,5), B_3(6,4),$
- $C_1(1,2), C_2(4,9).$

Questions:

- 1. Calculez les distances entre chaque point (y compris D_1) et les centres initiaux : $A_1(2, 10)$, $B_1(5, 8)$, $C_1(1, 2)$.
- 2. Attribuez chaque point au cluster correspondant.
- 3. Recalculez les nouveaux centres après une itération.

Exercice 3 : Distance de Manhattan

Reprenez les points suivants :

- $A_1(2,10), A_2(2,5), A_3(8,4),$
- $B_1(5,8), B_2(7,5), B_3(6,4),$
- $C_1(1,2), C_2(4,9).$

Utilisez la distance de Manhattan :

$$d(p_1, p_2) = |x_2 - x_1| + |y_2 - y_1|.$$

Questions:

- 1. Calculez les distances entre chaque point et les centres initiaux : $A_1(2,10)$, $B_1(5,8)$, $C_1(1,2)$.
- 2. Attribuez chaque point au cluster correspondant.
- 3. Déterminez les nouveaux centres après une itération.

Exercice 4 : Analyse de données médicales

Les points représentent des patients avec leurs caractéristiques mesurées :

- $P_1(60, 120)$: âge (en années) et pression artérielle systolique (en mmHg),
- $P_2(45, 130)$: âge (en années) et pression artérielle systolique (en mmHg),
- $P_3(50, 110)$: âge (en années) et pression artérielle systolique (en mmHg),
- $P_4(30, 100)$: âge (en années) et pression artérielle systolique (en mmHg),
- $P_5(25,90)$: âge (en années) et pression artérielle systolique (en mmHg),
- $P_6(65, 140)$: âge (en années) et pression artérielle systolique (en mmHg).

Les centres initiaux sont :

- $C_1(60, 120)$,
- $C_2(30, 100)$.

Questions:

- 1. Calculez les distances euclidiennes entre chaque patient et les centres initiaux.
- 2. Assignez chaque patient à un cluster.
- 3. Déterminez les nouveaux centres après une itération.
- 4. Interprétez les clusters en termes médicaux (ex. : groupe à haut risque, groupe à faible risque).

Exercice 5 : Analyse des ventes de produits

Les points représentent des produits avec leurs ventes mensuelles (en milliers d'euros) et leur taux de retour client (en pourcentage) :

- $P_1(50,5)$: Produit 1,
- $P_2(60, 10)$: Produit 2,
- $P_3(40,8)$: Produit 3,
- $P_4(70, 12)$: Produit 4,
- $P_5(30,6)$: Produit 5,
- $P_6(80, 15)$: Produit 6.

Les centres initiaux sont :

- $C_1(50,5)$,
- $C_2(70, 12)$.

Questions:

1. Calculez les distances euclidiennes entre chaque produit et les centres initiaux.

- 2. Assignez chaque produit au cluster le plus proche.
- 3. Recalculez les centres après une itération.
- 4. Interprétez les clusters obtenus : quels produits nécessitent des ajustements dans leur stratégie de vente?

Exercice 6: Classification des clients

Les points représentent des clients avec leur montant total dépensé (en milliers d'euros) et leur fréquence d'achat (en visites par mois) :

- $C_1(10,2)$,
- $C_2(15,5)$,
- $C_3(8,3)$,
- $C_4(20,7)$,
- $C_5(12,4)$,
- $C_6(25,6)$.

Les centres initiaux sont :

- $M_1(10,2)$,
- $M_2(20,7)$.

Questions:

- 1. Calculez les distances euclidiennes entre chaque client et les centres initiaux.
- 2. Attribuez chaque client à un cluster.
- 3. Déterminez les nouveaux centres après une itération.
- 4. Expliquez ce que représentent les clusters : quels groupes de clients nécessitent des offres promotionnelles ou des programmes de fidélité?

Exercice 7: Optimisation des prix dans un magasin

Les points représentent des produits avec leur prix unitaire (en euros) et leur popularité (nombre de ventes par mois) :

- $P_1(20,50)$,
- $P_2(15,40)$,
- $P_3(30,60)$,
- $P_4(25,70)$,
- $P_5(10,30)$,
- $P_6(35,80)$.

Les centres initiaux sont :

- $C_1(20, 50)$,
- $C_2(30,60)$.

Questions:

- 1. Calculez les distances entre chaque produit et les centres initiaux.
- 2. Attribuez chaque produit à un cluster.
- 3. Recalculez les centres après une itération.
- 4. Analysez les clusters : quels produits nécessitent des ajustements de prix pour maximiser les ventes?

Exercice 7 : Analyse des performances d'équipes sportives avec K-means

Les données suivantes représentent les performances de 10 équipes sportives sur une saison. Chaque équipe est caractérisée par :

- x_1 : Nombre de victoires,
- x_2 : Nombre de défaites,
- x_3 : Nombre de matchs nuls,
- x_4 : Nombre total de buts marqués,
- x_5 : Nombre total de buts encaissés.

Les données des équipes sont les suivantes :

```
Équipe 1: (20,5,3,50,20) Équipe 2: (18,6,4,45,25)

Équipe 3: (22,3,3,55,18) Équipe 4: (10,12,6,30,40)

Équipe 5: (15,8,5,40,30) Équipe 6: (5,18,5,20,50)

Équipe 7: (8,15,5,25,45) Équipe 8: (25,3,0,60,15)

Équipe 9: (12,10,6,35,35) Équipe 10: (16,7,5,42,28)
```

Les centres initiaux sont choisis arbitrairement comme suit :

$$C_1(20,5,3,50,20)$$
 $C_2(10,12,6,30,40)$ $C_3(5,18,5,20,50)$

Questions

1. Distances et affectation initiale :

- (a) Calculez les distances euclidiennes entre chaque équipe et les centres initiaux.
- (b) Assignez chaque équipe au cluster le plus proche.

2. Recalcul des centres :

- (a) Déterminez les nouveaux centres des clusters après la première itération.
- (b) Répétez les calculs pour une deuxième itération.

3. Visualisation en 2D:

• Utilisez une projection 2D (par exemple, sur les dimensions x_4 et x_5) pour représenter graphiquement les clusters obtenus.

4. Analyse des clusters :

• Expliquez les caractéristiques des clusters. Quels types d'équipes (fortes, moyennes, faibles) se retrouvent dans chaque cluster?

5. Programmation Python:

- (a) Implémentez l'algorithme K-means en Python pour effectuer le clustering.
- (b) Ajoutez une visualisation des clusters en 2D avec des couleurs différentes pour chaque cluster.
- (c) Calculez la somme des distances intra-cluster (somme des distances des points à leur centre respectif).
- (d) Testez votre algorithme avec des centres initiaux différents pour observer l'impact sur les résultats.

6. Exploration avancée:

- Intégrez la méthode du coude (Elbow Method) pour déterminer le nombre optimal de clusters.
- Utilisez la bibliothèque scikit-learn pour comparer les résultats avec votre implémentation.