

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 59: Variational Autoencoder - III

Concepts Covered ☐ Generative Model ☐ Limitations of usual auto-encoder **CONCEPTS COVERED** ☐ Intuitions behind VAE ■ Variational Inference ☐ Practical Realization of VAE

 \square In VAE, we assume that there is a latent (unobserved) variable, z, generating our observed random variable, x.

- \square Our aim: To compute the posterior $P(z|x) = \frac{P(x|Z)P(z)}{P(x)}$
- $\square P(x) = \int P(x|z)P(z)dz \longrightarrow \text{Intractable}$

- Let's assume there is a tractable distribution Q, such that $P(z|x) \approx Q(z|x)$
- We want $Q(\cdot)$ to be in the family of tractable distributions (Gaussian for example) such that we can play around with its parameters to match P(z|x)
- \square So, we will aim towards minimizing KL divergence of P(z|x) with respect to Q(z|x)
- \square Our objective: minimize $KL(Q(z|x) \mid\mid P(z|x))$

Minimize KL(Q(z|x)||P(z|x))

$$KL(Q(z|x)||P(z|x)) = -\sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)} + logP(x)$$

$$\log P(x) = KL(Q(z|x)||P(z|x)) + \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)}$$

$$\log P(x) = KL(Q(z|x)||P(z|x)) + \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)}$$

- ☐ Since, x is given, LHS is constant.
- \square Aim is to minimize KL(Q(z|x)||P(z|x))
- \square This is same as maximizing $\sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)}$

$$\log P(x) = KL(Q(z|x)||P(z|x)) + \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)}$$

- ☐ Since, x is given, LHS is constant.
- \square Aim is to minimize KL(Q(z|x)||P(z|x))
- \Box This is same as maximizing $\sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)}$

Variational Lower Bound

Variational Lower Bound

$$\log P(x) = KL(Q(z|x)||P(z|x)) + \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)}$$

$$KL(Q(z|x)||P(z|x)) \ge 0$$

$$\sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)} \le log P(x)$$

- \square Our initial objective: minimize $KL(Q(z|x) \mid\mid P(z|x))$
- \square Which is same as maximizing $\sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)}$

Variational Lower Bound

So, aim now is: maximize

$$L = \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)} = \sum_{z} Q(z|x) \log \frac{P(x|z)P(z)}{Q(z|x)}$$

$$L = \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)} = \sum_{z} Q(z|x) \log \frac{P(x|z)P(z)}{Q(z|x)}$$

$$L = \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)} = \sum_{z} Q(z|x) \log \frac{P(x|z)P(z)}{Q(z|x)}$$

$$= \sum Q(z|x) \log P(x|z) + \sum Q(z|x) \log \frac{P(z)}{Q(z|x)}$$

$$L = \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)} = \sum_{z} Q(z|x) \log \frac{P(x|z)P(z)}{Q(z|x)}$$

$$= \sum Q(z|x) \log P(x|z) + \sum Q(z|x) \log \frac{P(z)}{Q(z|x)}$$

$$E_{Q(z|x)} \log P(x|z) \qquad -KL(Q(z|x) || P(z))$$

Maximize

$$L = \sum_{z} Q(z|x) \log \frac{P(x,z)}{Q(z|x)} = \sum_{z} Q(z|x) \log \frac{P(x|z)P(z)}{Q(z|x)}$$

$$= \sum_{z} Q(z|x) \log P(x|z) + \sum_{z} Q(z|x) \log \frac{P(z)}{Q(z|x)}$$

$$= \sum_{z} Q(z|x) \log P(x|z) + \sum_{z} Q(z|x) \log \frac{P(z)}{Q(z|x)}$$

$$= \sum_{z} Q(z|x) \log P(x|z) + \sum_{z} Q(z|x) \log \frac{P(z)}{Q(z|x)}$$

Translate the loss functions into an auto-encoder architecture.

- ☐ We have the following graphical model
 - P(x|z) Q(z|x)

Realize both $P(\cdot)$ and $Q(\cdot)$ with neural networks

- The z codes we get here should match with the distribution of P(z) and we can decide what prior distribution to choose for P(z).
- Usual practice is to select a Normal distribution N(0, I) for the prior.

- ☐ Instead of generating a fixed code for an input, Encoder now gives parameters of the distribution of the latent code.
- \Box For a given input x, we need to generate mean vector $\mu(x)$ and diagonal covariance matrix, $\Sigma(x)$.
- We need to SAMPLE a code from that latent distribution and pass forward to the Decoder.

https://www.jeremyjordan.me/variational-autoencoders/

Sampling breaks computational graph and hinders Gradient Descent based optimization

Variational Autoencoder: Reparameterization Trick

 \Box We randomly sample ε from a unit Gaussian, and then shift the randomly sampled ε by the latent distribution's mean μ and scale it by the latent distribution's variance σ .

Variational Autoencoder: Reparameterization Trick

Re-parameterization enables

- ☐ Optimization of the parameters of the distribution.
- ☐ Still maintaining the ability to randomly sample from that distribution.

Variational Autoencoder: Coding the Cost Functions

$$E_{Q(z|x)}\log P(x|z) - KL(Q(z|x)||P(z))$$

Maximize

Minimize

Variational Autoencoder: Coding the Cost Functions

- Maximizing $E_{Q(z|x)} \log P(x|z)$ is a maximum likelihood estimation. It is observed all the time in discriminative supervised model, for example Logistic Regression, SVM, or Linear Regression.
- In the other words, given an input z and an output x, we want to maximize the conditional distribution P(x|z) under some model parameters.
- So we could implement it by using any classifier with input z and output x, then optimize the objective function by using for example log loss or regression loss.

Variational Autoencoder: Coding the Cost Functions

- \square We want to minimize the second component of the loss, KL((Q(z|x) || P(z)))
- lacksquare We assumed that P(z) follows N(0,I), so we have to push Q(z|x) towards N(0,I)

Assuming P(z) to be N(0, I) has 2 advantages:

- \square Easy to sample latent vectors from N(0,I) when we want to generate samples.
- Assuming Q(z|x) to be a Gaussian distribution with parameters, $\mu(x)$ and $\Sigma(x)$ allows KL(Q(z|x) || P(z)) to be in a closed form and easy for optimization.

NPTEL ONLINE CERTIFICATION COURSES

