

Lecture 4 Operations Scheduling

Kazi Wahadul Hasan

Introduction

- Scheduling is the allocation of resources over time to perform a collection of tasks
- Resources
 - Workers, Machines, Tools
- Tasks
 - Operations that bring some physical changes to material in order to eventually manufacture products
 - Setups such as walking to reach the workplace, obtaining and returning tools, setting the required jigs and fixtures, positioning and inspecting material, cleaning etc.

Ahsanullah University of Science & Tech

Slide 2 of 32

Introduction

Work Center

- Area in a business in which productive resources are organized and work is completed.
- May be a single machine, a group of machines, or an area where a particular type of work is done.

Ahsanullah University of Science & Tech

Slide 3 of 32

Industrial Management

Introduction

Objectives of Work Center Scheduling

- · To meet due dates
- · To minimize lead time
- To minimize setup time or cost
- To minimize work-in-process inventory
- To maximize machine or labor utilization

Ahsanullah University of Science & Tech

Slide 4 of 32

Responsibilities of Production Control Department

- Loading
 - Allocate orders to workers and machines, worker and machines to work centers etc.
- Sequencing
 - Release work orders to shop & issue dispatch lists for individual machines
- Monitoring
 - Maintain progress reports on each job until it is complete

Ahsanullah University of Science & Tech

Slide 5 of 32

Industrial Management

Loading

- Allocate orders to workers and machines, workers and machines to work centers, etc.
- · Perform work on most efficient resources
- Use assignment method of linear programming to determine allocation
- Hungarian method is the method of assigning jobs by a one for one matching to identify the lowest cost solution

Ahsanullah University of Science & Tech

Slide 6 of 32

Assignment Method

- 1. Perform row reductions
 - Subtract minimum value in each row from all other row values
- 2. Perform column reductions
 - Subtract minimum value in each column from all other column values
- 3. Line Test
 - Cross out all zeros in matrix using <u>minimum</u> number of horizontal & vertical lines. If <u>number of lines equals</u> number of rows in matrix, optimum solution has been found, stop.
- 4. Matrix Modification
 - Subtract minimum uncrossed value from all uncrossed values & add it to all cells where two lines intersect. Go to Step 3.

Ahsanullah University of Science & Tech.

Slide 7 of 32

Industrial Management

Assignment Example

Cooker

Food	1	2	3	<u>4</u>
Beans	10	5	6	10
Peaches	6	2	4	6
Tomatoes	7	6	5	6
Corn	9	5	4	10

Ro	w re	duct	tion	Col	lumn	red	uctio	n	Line	Test	t
5	0	1	5	3	0	1	4	3	0	1	4
4	0	2	4	2	0	2	3	2	ø	2	3
2	1	0	1	0	1	0	0	0		ф	0
5	1	0	6	3	1	0	5	3	1	Ó	5

Number lines <> number of rows so modify matrix

Ahsanullah University of Science & Tech

Slide 8 of 32

Practice Problem

Refer to the matrix which shows Jobs 1,2,3 and 4 with Work center A, B, C and D.

Jobs	Α	В	С	D
1	8	6	2	4
2	6	7	11	10
3	3	5	7	6
4	5	10	12	9

Apply the Hungarian Method to make appropriate assignments.

Ahsanullah University of Science & Tech

Slide 10 of 32

Sequencing

- · Prioritize jobs assigned to a resource
- If no order specified use first-come first-served (FCFS)
- Many other sequencing rules exist
- · Each attempts to achieve to an objective

Ahsanullah University of Science & Tech

Slide 11 of 32

Industrial Management

Priority Rules for Sequencing

Sequencing n jobs on one machine

- FCFS first-come, first-served
- SOT shortest operating time
- DDATE earliest due date
- STR slack time remaining
 - (due date today's date) (remaining processing time)
- · LCFS last come, first served
- CR- critical ratio
- QR- queue ratio
- · Random order

Ahsanullah University of Science & Tech.

Slide 12 of 32

Schedule Performance Measures

- Meeting due dates of customers or downstream operations.
- Minimizing the flow time (the time a job spends in the process).
- Minimizing work-in-process inventory.
- Minimizing idle time of machines or workers.

Ahsanullah University of Science & Tech.

Slide 13 of 32

Industrial Management

Job Sequencing Example

First-Come First-Served

Jobs (in order of arrival)	Processing Time (days)	Due Date (days hence)	Orders submitted
A	4	5	at beginning of week
В	7	10	
С	3	6	n-jobs on one
D	1	4	machine

FCFS Schedule

Jobs (in order of arrival)	Processing Time (days)	Due Date (days hence)	Flow Time (days)
Α	4	5	4
В	7	10	11
С	3	6	14
D	1	4	15

Ahsanullah University of Science & Tech.

Slide 14 of 32

Job Sequencing Example

Shortest Operating Time

Jobs (in order of arrival)	Processing Time (days)	Due Date (days hence)
A	4	5
В	7	10
C	3	6
D	1	4

Orders submitted at beginning of week

n-jobs on one machine

Shortest Operating Time Schedule

Jobs (in order of OT)	Processing Time (days)	Due Date (days hence)	Flow Time (days)
D	1	4	1
С	3	6	4
Α	4	5	8
В	7	10	15

Ahsanullah University of Science & Tech.

Slide 15 of 32

Industrial Management

Job Sequencing Example

Last-Come First-Served

Jobs (in order of arrival)	Processing Time (days)	Due Date (days hence)
Α	4	5
В	7	10
С	3	6
D	1	4

Orders submitted at beginning of week

n-jobs on one machine

Last-Come First-Served

Jobs (in order of arrival from last)	Processing Time (days)	Due Date (days hence)	Flow Time (days)
D	1	4	1
С	3	6	4
В	7	10	11
Α	4	5	15

Ahsanullah University of Science & Tech

Slide 16 of 32

Job Sequencing Example

Earliest Due Date First

Jobs (in order of arrival)	Processing Time (days)	Due Date (days hence)
Α	4	5
В	7	10
С	3	6
D	1	4

Orders submitted at beginning of week

n-jobs on one machine

Earliest Due Date First

Jobs (in order of due date)	Processing Time (days)	Due Date (days hence)	Flow Time (days)
D	1	4	1
Α	4	5	5
С	3	6	8
В	7	10	15

Ahsanullah University of Science & Tech.

Slide 17 of 32

Industrial Management

Job Sequencing Example

Slack Time Remaining(STR)

Jobs (in order of arrival)	Processing Time (days)	Due Date (days hence)
Α	4	5
В	7	10
С	3	6
D	1	4

Orders submitted at beginning of week

n-jobs on one machine

STR Method

Jobs (in basis of STR)	Processing Time (days)	Due Date (days hence)	Flow Time (days)
Α	4	5	4
В	7	10	11
C	3	6	14
D	1	4	15

Ahsanullah University of Science & Tech.

Slide 18 of 32

Job Sequencing Example 🛐

Random Order

Jobs (in order of arrival)	Processing Time (days)	Due Date (days hence)
Α	4	5
В	7	10
С	3	6
D	1	4

Orders submitted at beginning of week

n-jobs on one machine

Jobs (in random order)	Processing Time (days)	Due Date (days hence)	Flow Time (days)
В	7	10	
С	3	6	
D	1	4	
Α	4	5	

Ahsanullah University of Science & Tech.

Slide 19 of 32

Industrial Management

Comparison of Priority Rules

Criteria	FCFS	SOT	LCFS	DDATE	STR	RND
Total Flow Time(Day)	44	28	31	29	44	
Average Flow Time	11	7	7.75	7.25	11	
Average Lateness	5	2	2.75	1.75	5	

Ahsanullah University of Science & Tech

Slide 20 of 32

Practice Problem

Job (in order of arrival)	Processing time (Days)	Due date (days hence)
A	3	5
В	4	6
С	2	7
D	6	9
Е	1	2

Ahsanullah University of Science & Tech.

Slide 21 of 32

Industrial Management

Sequencing Jobs in Two Machines

Johnson's Rule:

- 1. List time required to process each job at each machine. Set up a one-dimensional matrix to represent desired sequence with no. of slots equal to no. of jobs.
- 2. Select smallest processing time at either machine. If that time is on machine 1, put the job as near to beginning of sequence as possible.
- 3. If smallest time occurs on machine 2, put the job as near to the end of the sequence as possible.
- 4. Remove job from list.
- 5. Repeat steps 2-4 until all slots in matrix are filled & all jobs are sequenced.

Ahsanullah University of Science & Tech

Slide 22 of 32

Johnson's Rule Example

Total Flow time and Idle time calculation

Job Seq.	M1 (ln)	M1 (Out)	M2 (In)	M2 (Out)
E	0	5	5	15
Α	5	11	15	23
D	11	20	23	30
В	20	31	31	37
С	31	38	38	41

- Total flow time (Minimized) = 41 days
- Machine 1 Idle time = 41-38 = 3 days
- Machine 2 Idle time = 5+1+1=7 days

Ahsanullah University of Science & Tech.

Slide 29 of 32

Industrial Management

Shop-Floor Control

Major Functions

- 1. Assigning priority of each shop order
- 2. Maintaining work-in-process quantity information
- 3. Conveying shop-order status information to the office

Ahsanullah University of Science & Tech

Slide 30 of 32

Shop-Floor Control

Major Functions

- 4. Providing actual output data for capacity control purposes
- 5. Providing quantity by location by shop order for WIP inventory and accounting purposes
- 6. Providing measurement of efficiency, utilization, and productivity of manpower and machines

Ahsanullah University of Science & Tech

Slide 31 of 32

Industrial Management

Practice Problem

Job times (hours)

Job	Work center A	Work center B
Α	3.2	4.2
В	4.7	1.5
С	2.2	5.0
D	5.8	4.0
Е	3.1	2.8

Each of five jobs needs to go through work center A and B. Find the optimum sequence of jobs using **Johnson's** rule.

Ahsanullah University of Science & Tech

Slide 32 of 32