AKAD Bachelor of Science (Wirtschaftsinformatik) Modulzusammenfassung

WIM04

Formelsammlung

Daniel Falkner Rotbach 529 94078 Freyung daniel.falkner@akad.de 18. Februar 2013

Inhaltsverzeichnis

1	Folg	gen		4					
	1.1	arithn	metische Folgen	4					
		1.1.1	Bildungsgesetz	4					
	1.2	geome	etrische Folgen	4					
		1.2.1	Bildungsgesetz	4					
2	Reil	nen		4					
	2.1		metische Reihen	·-					
		2.1.1	Bildungsgesetz						
	2.2		etrische Reihen						
		2.2.1							
3	Vall	ständi	ige Induktion	5					
J				J					
4		ermina		5					
	4.1	0	l von Sarrus						
			Für 2 x 2						
		4.1.2							
	4.2	CRAN	MER'sche Regel	6					
5	Mat	Matrizen 7							
	5.1	Trans	sponierte Matrix	7					
	5.2	Addit	tion	7					
		5.2.1	vom selben Typ						
	5.3	Multi	iplikation	7					
		5.3.1	mit einer reellen Zahl (Skalar)						
		5.3.2	zweier Matrizen	7					
		5.3.3	spezielle Matrixprodukte	7					
	5.4	Invers	se	7					
		5.4.1	Bestimmung der inversen Matrix	8					
		5.4.2	mit Hilfe der Adjunktion	8					
6	Aus	sagenl	logik	8					
	6.1		nüpfungen	8					
		6.1.1	Negation						
		6.1.2	Konjunktion (und)						
		6.1.3	Disjunktion (oder)						
		6.1.4	Subjunktion (wenn dann)						
		6.1.5	Bijunktion (genau dann, wenn)						
	6.2		nalformen						
	0.2	6.2.1	Minterme						
		6.2.1	Maxterme						
		6.2.2	Kanonische disjunktive Normalform						
		6.2.4	Kanonische konjunktive Normalform						
		0.4.4	ranombene konjunkuve rodinanomi	10					

7	Schaltalgebra				
	7.1	Gesetz	ge	11	
7.2 Normalformen				11	
		7.2.1	Minterme	11	
		7.2.2	Maxterme	11	
		7.2.3	Kanonische disjunktive Normalform	11	
		7.2.4	Kanonische konjunktive Normalform	11	

1 Folgen

Eine Serie von Zahlen oder Größen 5, 10, 4, 1

$$(a_n) = a_1, a_2, a_3, ..., a_n$$

1.1 arithmetische Folgen

- $\bullet \ a_{n+1} = a_n + d$
- 7, 11, 15, 19, 23, 27, ...
- $\bullet \mapsto d = 4$

1.1.1 Bildungsgesetz

$$a_n = a_1 + d * (n-1)$$

1.2 geometrische Folgen

- $\bullet \ an + 1 = a_n * q$
- 2, 6, 18, 54, 162, 486, ...
- $\bullet \mapsto q = 3$

1.2.1 Bildungsgesetz

$$a_n = a_1 * q^{n-1}$$

$$q = \sqrt[n-1]{\frac{a_n}{a_1}}$$

2 Reihen

Aus einer Folge ergibt sich eine Reihe

$$(s_n) = s_1, s_2, s_3, ..., s_n$$

$$(s_n) = a_1 + a_2 + a_3 + \dots + a_n = \sum_{j=1}^n a_j$$

2.1 arithmetische Reihen

- $(a_n) = 7, 11, 15, 19, \dots \mapsto a_1 = 7, d = 4$
- $(s_n) = 7, 18, 33, 52, \dots$

2.1.1 Bildungsgesetz

$$s_n = \frac{n}{2} * (a_1 + a_n) = \frac{n}{2} * (2a_1 + (n-1)d)$$

2.2 geometrische Reihen

- $(a_n) = 2, 6, 18, 54, \dots \mapsto a_1 = 2, q = 3$
- $(s_n) = 2, 8, 26, 80, ...$

2.2.1 Bildungsgesetz

$$s_n = a_1 * \frac{q^n - 1}{q - 1}, q \neq 1$$

3 Vollständige Induktion

- 1. Zeigen das die Formeln für n = 1 gelten
- 2. Zeigen das die Formeln für n + 1 gelten
 - a) Induktionsannahme festhalten a_n (zu beweisende Formel)
 - b) Die zubeweisende Formel für n + 1 herleiten a_{n+1}
 - c) Die Induktionsnahme + Ursprungsformel für n + 1 herleiten a_{n+1}

4 Determinanten

4.1 Regel von Sarrus

4.1.1 Für 2 x 2

$$\det(A) = \det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - cb.$$

4.1.2 Für 3 x 3

$$\det(A) = \det\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} = aei + bfg + cdh - ceg - afh - bdi$$

4.2 CRAMER'sche Regel

Satz: (Cramersche Regel)

LGS mit zwei Variablen und zwei Gleichungen

Ist die Determinante D der Koeffizientenmatrix des LGS

$$a_1x + b_1y = c_1$$

 $a_2x + b_2y = c_2$ ungleich Null, so hat das LGS genau eine Lösung

$$(x \mid y) = \left(\frac{D_x}{D} \mid \frac{D_y}{D}\right) \text{ mit}$$

$$\mathbf{D} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{b}_1 \\ \mathbf{a}_2 & \mathbf{b}_2 \end{bmatrix}, \, \mathbf{D}_{\mathbf{x}} = \begin{bmatrix} \mathbf{c}_1 & \mathbf{b}_1 \\ \mathbf{c}_2 & \mathbf{b}_2 \end{bmatrix}, \, \mathbf{D}_{\mathbf{y}} = \begin{bmatrix} \mathbf{a}_1 & \mathbf{c}_1 \\ \mathbf{a}_2 & \mathbf{c}_2 \end{bmatrix}$$

Ist D = 0, so hat das LGS keine oder unendlich viele Lösung(en).

LGS mit drei Variablen und drei Gleichungen

Ist die Determinante D der Koeffizientenmatrix des LGS

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$ ungleich Null, so hat das LGS genau eine Lösung

$$\mathbf{a}_3\mathbf{x} + \mathbf{b}_3\mathbf{y} + \mathbf{c}_3\mathbf{z} = \mathbf{d}_3$$

$$(x | y | z) = \left(\frac{D_x}{D} \left| \frac{D_y}{D} \right| \frac{D_z}{D} \right) \text{mit}$$

$$\mathbf{D} = \left| \begin{array}{c} \mathbf{a}_1 \ \mathbf{b}_1 \ \mathbf{c}_1 \\ \mathbf{a}_2 \ \mathbf{b}_2 \ \mathbf{c}_2 \\ \mathbf{a}_3 \ \mathbf{b}_3 \ \mathbf{c}_3 \end{array} \right|, \ \mathbf{D}_{\mathbf{x}} = \left| \begin{array}{c} \mathbf{d}_1 \ \mathbf{b}_1 \ \mathbf{c}_1 \\ \mathbf{d}_2 \ \mathbf{b}_2 \ \mathbf{c}_2 \\ \mathbf{d}_3 \ \mathbf{d}_3 \ \mathbf{c}_3 \end{array} \right|, \ \mathbf{D}_{\mathbf{y}} = \left| \begin{array}{c} \mathbf{a}_1 \ \mathbf{d}_1 \ \mathbf{c}_1 \\ \mathbf{a}_2 \ \mathbf{d}_2 \ \mathbf{c}_2 \\ \mathbf{a}_3 \ \mathbf{d}_3 \ \mathbf{c}_3 \end{array} \right|, \ \mathbf{D}_{\mathbf{z}} = \left| \begin{array}{c} \mathbf{a}_1 \ \mathbf{b}_1 \ \mathbf{d}_1 \\ \mathbf{a}_2 \ \mathbf{b}_2 \ \mathbf{d}_2 \\ \mathbf{a}_3 \ \mathbf{b}_3 \ \mathbf{d}_3 \end{array} \right|.$$

Ist D = 0, so hat das LGS keine oder unendlich viele Lösung(en).

D_x (bzw. D_y, D_z) ist die Determinante der Matrix, die aus der Koeffizientenmatrix entsteht, wenn anstelle der Spalte, die die Koeffizienten der Variablen x (bzw. y, z) enthält, die rechte Seite des LGS eingesetzt wird.

Abbildung 1: AKAD WIM01 Mathematische Grundlagen, Lerneinheit 4, Seite 46

5 Matrizen

5.1 Transponierte Matrix

 ${\cal A}^T$ entsteht durch Vertauschen der Zeilen mit den Spalten von ${\cal A}$

Beispiel:

$$A_{(2,3)} = \begin{bmatrix} 1 & 2 & 3 \\ -2 & 4 & -1 \end{bmatrix} A_{(3,2)}^T = \begin{bmatrix} 1 & -2 \\ 2 & 4 \\ 3 & -1 \end{bmatrix}$$

5.2 Addition

5.2.1 vom selben Typ

die gleichstehenden Elemente addieren und zu einer neuen Matrix zusammenfassen

5.3 Multiplikation

5.3.1 mit einer reellen Zahl (Skalar)

alle Elemente der Matrix mit der Zahl multiplizeren

5.3.2 zweier Matrizen

Zwei Matrizen sind multiplikationsverträglich wenn die Spaltenanzahl von A mit der Zeilanzahl von B übereinstimmt. Eine Hilfe bietet das Falk-Schema ¹

5.3.3 spezielle Matrixprodukte

- Zeilenvektor * Spaltenvektor = Skalar
- Spaltenvektor * Zeilenvekor = Matrix

5.4 Inverse

- \bullet A vom Typ (n,n) ist regulär, d.h. A^{-1} (Inverse Matrix) existiert. Dann ist die Matrixgleichung A * X = B eindeutig lösbar.
- Eine quadratische Matrix A ist genau dann invertierbar, wenn ihre Determinate |A| ungleich Null ist

¹ http://de.wikipedia.org/wiki/Falksches_Schema

5.4.1 Bestimmung der inversen Matrix

ullet Die Inverse A^{-1} lässt sich mit dem Gauß-Jordan-Verfahren 2 ermitteln

5.4.2 mit Hilfe der Adjunktion

- 1. Determinante bestimmen und prüfen ob A^{-1} existiert
- 2. Unterdeterminaten ³ bestimmen
- 3. Kofaktorenmatrix cof(A) anhand der Unterdeterminanten aufstellen. Bei ungeraden Indizies das Vorzeichen ändern
- 4. adjungierte Matrix aufstellen, indem die Kofaktorerenmatrix transponiert wird. $adj(A) = [cof(A)]^T$
- 5. adjungierte Matrix mit dem Kehrwert der Determinate multiplizieren. $\frac{1}{D}*adj(A)$

6 Aussagenlogik

6.1 Verknüpfungen

6.1.1 Negation

6.1.2 Konjunktion (und)

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & f \\ \end{array}$$

http://de.wikipedia.org/wiki/Gau%DF-Jordan-Algorithmus

³ http://de.wikipedia.org/wiki/Minor_(Mathematik)

6.1.3 Disjunktion (oder)

р	q	$p \vee q$
W	W	w
W	\mathbf{f}	w
\mathbf{f}	W	W
\mathbf{f}	f	f

Die Verknüpfung durch das ausschließende oder (XOR) heißt Alternative oder Antivalenz

9

p	q	p XOR q
W	w	f
W	f	W
\mathbf{f}	W	w
\mathbf{f}	\mathbf{f}	f

6.1.4 Subjunktion (wenn dann)

р	q	$\mathrm{p} \to \mathrm{q}$
W	W	w
W	f	${f f}$
f	w	w
f	f	w

 $\neg p \lor q \text{ ist gleich mit } p \to q$

6.1.5 Bijunktion (genau dann, wenn)

$$\begin{array}{c|ccc} p & q & p \leftrightarrow q \\ \hline w & w & w \\ w & f & f \\ f & w & f \\ f & f & w \end{array}$$

$$(p \to q) \land (q \to p)$$
 ist gleich mit $p \leftrightarrow q$
 $(p \land q) \lor (\neg p \land \neg q)$ ist gleich mit $p \leftrightarrow q$

6.2 Normalformen

6.2.1 Minterme

Minterme sind genau diejenigen Konjunktionsterme, die den Wert 'w' nur einmal annehmen und mit dem Junktor ∧ verknüpft sind.

6.2.2 Maxterme

Maxterme sind genau diejenigen Disjunktionsterme, die den Wert 'f' nur einmal annehmen und mit dem Junktor ∨ verknüpft sind.

6.2.3 Kanonische disjunktive Normalform

Ein Disjungat (Junktor \vee) paarweise verschiedener Minterme heißt Kanonische disjunktive Normalform

6.2.4 Kanonische konjunktive Normalform

Ein Konjungat (Junktor \land) paarweiter verschiedener Maxterme heißt Kanonische konjunktive Normalform

7 Schaltalgebra

7.1 Gesetze

Verknüpfung +	Gesetze	Verknüpfung *
a + b = b + a	Kommutativgesetz	a * b = b * a
a + (b * c) = (a+b)(a+c)	Distributivgesetz	a * (b + c) = (a * b) + (a * c)
a+0=0+a=a	Neutrales Element	a * 1 = 1 * a = a
$a + \overline{a} = 1$	Inverses Element	$a*\overline{a}=0$
(a+b) + c = a + (b+c)	Assoziativgesetz	(a*b)*c = a*(b*c)
a + (a * b) = a	Absorptionsgesetz	a * (a + b) = a
a + 1 = 1	Trautologie	
	Kontradiktion	a * 0 = 0
a + a = a	Idempotenzgesetz	a * a = a
$\overline{a+b} = \overline{a} * \overline{b}$	Regeln von de Morgen	$\overline{a*b} = \overline{a} + \overline{b}$

7.2 Normalformen

7.2.1 Minterme

Minterme sind genau diejenigen vollständigen Produkte, die den Leitwert 1 genau dann annehmen, wenn jeder Faktor den Leitwert 1 annimmt.

7.2.2 Maxterme

Maxterme sind genau diejenigen vollständigen Summen, die den Leitwert 0 genau dann annehmen, wenn jeder Summand den Leitwert 0 annimmt.

7.2.3 Kanonische disjunktive Normalform

Die Summe der Minterme ergibt die Schaltfunktion in kanonischer disjunktiver Normalform

a
 b
 c
 f

 1
 1
 1
 0

 1
 1
 0
 1
 ergibt den Minterm
$$a * b * \overline{c}$$

 ...
 ...
 ...
 ...

7.2.4 Kanonische konjunktive Normalform

Das Produkt der Maxterme ergibt die Schaltfunktion in kanonischer konjunktiver Normalform

Α	В	С	x	
1	1	1	0	ergibt den Maxterm $\overline{a} + \overline{b} + \overline{c}$
1	1	0	1	