

Química Nivel Medio Prueba 1

Miércoles 9 de noviembre de 2022 (mañana)

45 minutos

Instrucciones para los alumnos

- · No abra esta prueba hasta que se lo autoricen.
- · Conteste todas las preguntas.
- Seleccione la respuesta que considere más apropiada para cada pregunta e indique su elección en la hoja de respuestas provista.
- Como referencia, se incluye la tabla periódica en la página 2 de esta prueba.
- La puntuación máxima para esta prueba de examen es [30 puntos].

	r		· · · · · · · · · · · · · · · · · · ·		1					
	8	2 He 4,00	10 Ne 20,18	18 Ar 39,95	36 Kr 83,90	54 Xe 131,29	86 Rn (222)	118 Uuo (294)		
	17		9 F 19,00	17 CI 35,45	35 Br 79,90	53 I 126,90	85 At (210)	117 Uus (294)	71 Lu 174,97	103 Lr (262)
	16		8 o 16,00	16 \$ 32,07	34 Se 78,96	52 Te 127,60	84 Po (209)	116 Uuh (293)	70 Yb 173,05	102 No (259)
	15		7 N 14,01	15 P 30,97	33 As 74,92	51 Sb 121,76	83 Bi 208,98	115 Uup (288)	69 Tm 168,93	101 Md (258)
	41		6 (12,01	14 Si 28,09	32 Ge 72,63	50 Sn 118,71	82 Pb 207,2	114 Uug (289)	68 Er 167,26	100 Fm (257)
	5		5 B 10,81	13 Al 26,98	31 Ga 69,72	49 In 114,82	81 T1 204,38	113 Unt (286)	67 Ho 164,93	99 Es (252)
	12				30 Zn 65,38	48 Cd 112,41	80 Hg 200,59	112 Cn (285)	66 Dy 162,50	98 Cf (251)
	7				29 Cu 63,55	47 Ag 107,87	79 Au 196,97	111 Rg (281)	65 Tb 158,93	97 Bk (247)
riódica	10				28 Ni 58,69	46 Pd 106,42	78 Pt 195,08	110 Ds (281)	64 Gd 157,25	96 Cm (247)
Tabla periódica	6				27 Co 58,93	45 Rh 102,91	77 Ir 192,22	109 Mt (278)	63 Eu 151,96	95 Am (243)
Ľ	œ		utómico nnto ca relativa		26 Fe 55,85	44 Ru 101,07	76 0s 190,23	108 Hs (269)	62 Sm 150,36	94 Pu (244)
	7		Número atómico Elemento Masa atómica relativa		25 Mn 54,94	43 7c (98)	75 Re 186,21	107 Bh (270)	61 Pm (145)	93 Np (237)
	ဖ		Me	**	24 Cr 52,00	42 Mo 95,96	74 W 183,84	106 Sg (269)	60 Nd 144,24	92 U 238,03
	ល		L	J	23 V 50,94	41 Nb 92,91	73 Ta 180,95	105 Db (268)	59 Pr 140,91	91 Pa 231,04
	4				22 Ti 47,87	40 Zr 91,22	72 Hf 178,49	104 Rf (267)	58 Ce 140,12	90 Th 232,04
	ო				21 Sc 44,96	39 × 88,91	57 † La 138,91	89 ‡ Ac (227)	+	++
	8		4 Be 9,01	12 Mg 24,31	20 Ca 40,08	38 Sr 87,62	56 Ba 137,33	88 Ra (226)		
	4	(F)	6,94	11 Na 22,99	19 7 × 39,10	37 Rb 85,47	55 Cs 132,91	87 Fr (223)		
		-	2	n	4	ro	φ	>		

1. ¿Cuántos átomos de oxígeno hay en 0,0500 mol de Ba(OH)₂•8H₂O?

$$N_A = 6.02 \times 10^{23}$$

- A. $3{,}01 \times 10^{23}$
- B. $6,02 \times 10^{23}$
- C. $3{,}01 \times 10^{24}$
- D. $6,02 \times 10^{24}$
- 2. ¿Cuál es el cambio de estado de gas a sólido?
 - A. Condensación
 - B. Deposición
 - C. Congelación
 - D. Sublimación
- 3. ¿Cuántos moles de dióxido de carbono se producen por la combustión completa de 7,0 g de eteno, $C_2H_4(g)$?

$$M_{\rm r} = 28$$

- A. 0,25
- B. 0,5
- C. 0,75
- D. 1,0
- 4. ¿Cuál es una posible fórmula empírica de una sustancia de $M_r = 42$?
 - A. CH
 - B. CH₂
 - C. C₃H₆
 - D. C₃H₈

5.	¿Qué	e cantidades son diferentes entre dos especies representadas por la notación $^{128}_{52}$ Te y $^{128}_{53}$ I $^-$?
	A.	Solo el número de protones
	B.	Solo el número de protones y electrones
	C.	Solo el número de protones y neutrones
	D.	El número de protones, neutrones y electrones
6.	¿Cu 30%	ál es la masa atómica relativa de una muestra de cloro que contiene 70 % del isótopo ³⁵ Cl y o del isótopo ³⁷ Cl?
	A.	35,4
	B.	35,5
	C.	35,6
	D.	35,7
7.	¿Qι	ué elementos se consideran metaloides?
		I. Galio
		II. Germanio
		III. Arsénico
	A.	Solo I y II
	В.	Solo I y III
	C.	Solo II y III
	D.	i, ii y iii
8.	ر un	Qué propiedad de los elementos aumenta hacia abajo en un grupo pero disminuye a través de período?
	A.	Radio atómico
	В.	Electronegatividad
	C.	Radio iónico
	D	. Energía de ionización

- 9. ¿Qué molécula se puede representar por estructuras de resonancia?
 - A. H₂S
 - B. HNO₃
 - C. H₂O₂
 - D. HClO
- 10. ¿Qué molécula es polar?
 - A. BeH₂
 - B. AlH₃
 - C. PH₃
 - D. SiH₄
- 11. ¿Qué estructura del CF_2Cl_2 se muestra con dipolos correctos de enlace y molecular?

- La aleación de un metal con un metal de menor radio atómico puede distorsionar la red y 12. hacer más difícil que los átomos se deslicen entre ellos. ¿Qué propiedad aumentará como consecuencia?
 - A. Conductividad eléctrica
 - B. Ductilidad
 - C. Maleabilidad
 - D. Resistencia
- Los clorofluorocarbonos (CFCs) contienen enlaces de las siguientes longitudes: 13.

$$C-C = 1.54 \times 10^{-10} \text{ m}$$

$$C-F = 1.38 \times 10^{-10} \text{ m}$$

$$C-Cl = 1.77 \times 10^{-10} \text{ m}$$

¿Cuál es el orden creciente de fuerza de enlace en la molécula de CFC?

A.
$$C-C < C-F < C-Cl$$

B.
$$C-C < C-Cl < C-F$$

C.
$$C-Cl < C-C < C-F$$

D.
$$C-F < C-C < C-Cl$$

¿Cuál es el valor de la entalpía de formación del metano a partir de las entalpías de 14. combustión dadas?

$$C\left(s\right)+O_{_{2}}(g)\rightarrow CO_{_{2}}(g)$$

$$\Delta H = -394 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(l)$$

$$\Delta H = -286 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$$
 $\Delta H = -891 \text{ kJ mol}^{-1}$

$$\Delta H = -891 \,\mathrm{kJ} \,\mathrm{mol}^{-1}$$

A.
$$(-394 - 286 - 891) \text{ kJ mol}^{-1}$$

B.
$$(-394 - (2 \times 286) - 891) \text{ kJ mol}^{-1}$$

C.
$$(-394 - 286 + 891) \text{ kJ mol}^{-1}$$

D.
$$(-394 - (2 \times 286) + 891) \text{ kJ mol}^{-1}$$

- 15. ¿Qué enunciado describe mejor el calor?
 - A. Cantidad de energía potencial de las partículas
 - B. Cantidad promedio de la energía cinética de las partículas
 - C. Cantidad de energia transferida entre partículas
 - D. Cantidad de energía total que poseen las partículas
- 16. ¿Qué velocidad inicial de reacción se puede determinar a partir del gráfico?

- A. 0,1 mol dm⁻³ s⁻¹
- B. 0,2 mol dm⁻³ s⁻¹
- C. 1,0 mol dm⁻³ s⁻¹
- D. 1,6 mol dm⁻³ s⁻¹

17. ¿Qué cambios aumentarían la velocidad de una reacción exotérmica?

	Temperatura	Tamaño de partícula	
Α.	Aumento	Disminución	
В.	Aumento	Aumento	
с.	Disminución	Aumento	
D.	Disminución	Disminución	

- 18. La reacción exotérmica $I_2(g) + 3Cl_2(g) \rightleftharpoons 2ICl_3(g)$ está en equilibrio en un volumen fijo. ¿Qué es correcto sobre el cociente de reacción, Q, y el desplazamiento de la posición de equilibrio en el instante en el que se eleva la temperatura?
 - A. Q > K, el equilibrio se desplaza a la derecha hacia los productos
 - B. Q > K, el equilibrio se desplaza a la izquierda hacia los reactivos
 - C. Q < K, el equilibrio se desplaza a la derecha hacia los productos
 - D. Q < K, el equilibrio se desplaza a la izquierda hacia los reactivos
- 19. Volúmenes iguales de ácido débil y ácido fuerte 0,10 mol dm⁻³ se titulan con solución de NaOH 0,10 mol dm⁻³. ¿Cuál de los siguientes es igual para los dos ácidos?
 - A. El pH inicial
 - B. El calor desprendido en la neutralización
 - C. El volumen de NaOH para completar la neutralización completa
 - D. La conductividad eléctrica inicial
- 20. ¿Qué especie tiene la base conjugada más débil?
 - A. HCl
 - B. NH_a+
 - C. HCO₃
 - D. H₂O

21. ¿Qué sucede durante el funcionamiento de una pila voltaica basada en la reacción dada?

$$2Cr(s) + 3Fe^{2+}(aq) \rightarrow 2Cr^{3+}(aq) + 3Fe(s)$$

	Circuito externo	Movimiento del ion en solución
A.	Los electrones se mueven del Cr al Fe	Fe ²⁺ (aq) se aleja del Fe(s)
B.	Los electrones se mueven del Cr al Fe	Fe ²⁺ (aq) se acerca al Fe(s)
C.	Los electrones se mueven del Fe al Cr	Cr³+(aq) se aleja del Cr(s)
D.	Los electrones se mueven del Fe al Cr	Cr³+ (aq) de acerca al Cr(s)

22. ¿Qué sustancia es el agente reductor en la reacción dada?

$${\rm H^{^+}(aq)} + 2{\rm H_2O(l)} + 2{\rm MnO_4^{^-}(aq)} + 5{\rm SO_2(g)} \rightarrow 2{\rm Mn^{2^+}(aq)} + 5{\rm HSO_4^{^-}(aq)}$$

- A. H⁺
- B. H₂O
- C. MnO₄
- D. SO,

23. ¿Qué combinación es correcta en lo que respecta al ánodo y al flujo de electrones en una celda electrolítica?

	Polaridad del ánodo	Movimiento de los electrones en el circuito exterior
A.	Electrodo positivo	Del ánodo hacia el cátodo
B.	Electrodo positivo	Del cátodo hacia el ánodo
C.	Electrodo negativo	Del ánodo hacia el cátodo
D.	Electrodo negativo	Del cátodo hacia el ánodo

24. ¿Cuáles son isómeros del C₅H₁₂?

- A. Solo I y II
- B. Solo I y III
- C. Solo II y III
- D. I, II y III
- 25. ¿Qué serie homóloga tiene la fórmula general $C_nH_{2n}O$ (n > 2)?
 - A. Alcoholes
 - B. Ácidos carboxílicos
 - C. Éteres
 - D. Cetonas
- **26.** ¿Qué condiciones favorecen mejor la oxidación de alcoholes primarios directamente a ácidos carboxílicos?
 - A. Exceso de dicromato (VI) de potasio acidificado y destilación
 - B. Exceso de dicromato (VI) de potasio acidificado y reflujo
 - C. Unas gotas de dicromato (VI) de potasio acidificado y destilación
 - D. Unas gotas de dicromato (VI) de potasio acidificado y reflujo
- 27. ¿Con cuál de los siguientes será más probable que reaccionen los nucleófilos?
 - A. Alquenos
 - B. Benceno
 - C. Alcanos
 - D. Haluros de alquilo

28. ¿Qué combinación es la más efectiva para reducir errores aleatorios y errores sistemáticos?

Reducir error aleatorio	Reducir error sistemático
Repetir ensayos	Repetir ensayos
Recalibrar el equipo	Recalibrar el equipo
Repetir ensayos	Recalibrar el equipo
Recalibrar el equipo	Repetir ensayos
	Repetir ensayos Recalibrar el equipo Repetir ensayos

- 29. Una idea científica bien probada que se ha usado para realizar predicciones no puede explicar un evento particular. ¿Qué enunciado describe el enfoque científico sobre este dilema?
 - A. La hipótesis se debe descartar
 - B. La hipótesis se debe revisar
 - C. La teoría se debe descartar
 - D. La teoría se debe revisar

30. ¿Qué información sobre el ácido 2-hidroxibutanoico se puede inferir por medio de la espectrometría de masas, EM, la espectroscopía infrarroja, IR, y la resonancia magnética nuclear protónica, RMN de ¹H?

	EM	IR	RMN de ¹ H
A.	M = 104 g mol ⁻¹	El compuesto contiene grupos carboxilo e hidroxilo	El grupo hidroxilo está sobre el 2.º carbono en lugar del 4.º
В.	$M = 104 \mathrm{g \ mol^{-1}}$	El grupo hidroxilo está sobre el 2.º carbono en lugar del 4.º	El compuesto contiene grupos carboxilo e hidroxilo
C.	El compuesto contiene grupos carboxilo e hidroxilo	$M = 104 \mathrm{g \ mol^{-1}}$	El grupo hidroxilo está sobre el 2.º carbono en lugar del 4.º
D.	El compuesto contiene grupos carboxilo e hidroxilo	El grupo hidroxilo está sobre el 2.º carbono en lugar del 4.º	M = 104g mol ⁻¹

