

Informační systém Masarykovy univerzity Zodpovězení odpovědníku (student)

Michal Lukáč (učo 430614) Studium FI N-IN UMI [sem 1, roč 1] podzim 2013 (jiné)

Odpovědník INTRASEM

Odpovědí k průchodu Út 12. 11. 2013 11:06.23, operaci St 13. 11. 2013 18:40.10, osobě M. Lukáč, učo 430614 (číslo zadání: 60) 24 tasks, 3 possible answers for each, only 1 is correct Evaluation: 0.5/-0.125/-0.25 for correct/missing/incorrect answer

• Klikněte: <u>Ukaž</u> Přehled nastavení parametrů odpovědníku.

Přehled nastavení parametrů odpovědníku

Kdy lze s odpovědníkem pracovat:

• od 13. 11. 2013 08:00 do 13. 11. 2013 10:00

Zobrazují se pouze správné odpovědi: ne

Test můžu skládat opakovaně: test nelze skládat, je přístupná pouze prohlídka (typicky skenovací písemky)

Implicitní počet bodů za správně zodpovězenou otázku (ok): 0.5

Implicitní počet bodů za špatně zodpovězenou otázku (nok): -0.25

Implicitní počet bodů za nezodpovězenou otázku (null): -0.125

Při vyplňování záleží na velikosti písmen: ne

Při vyplňování záleží na diakritice: ne

Při vyplňování nedovoluji zaměnit různé typy apostrofů a uvozovek: ne

Při vyplňování záleží na interpunkci: ne

_	7 1 V		_	, ,	1 11.
1	'elené	18011	vyznačeny	spravne	: odpovědí

1	For an	CIL)_tree	it ic	true	that
Ι.	roi an	-71 /I	, -1166	11 18	11111	ппат

١٠, , .	C . 1		1
it contains	tinitely	many	z nodes

O it contains at least one finite branch

$$body = ok = 0.5$$

2. In Box model, for the logic program p(a,b), after CALL of the goal p(X,a) control reaches

O REDO

O*FAIL

body = nok = -0.25

- 3. Consider $T(((C \Rightarrow A) \lor (B \land A)) \Rightarrow D)$. By using an appropriate rule for atomic tableaux, you will get
 - *branching tableau with one branch $F((C \Rightarrow A) \lor (B \land A))$ and one branch T(D)
 - O nonbranching tableau with nodes $T((C \Rightarrow A) \lor (B \land A))$ and F(D)
 - O nonbranching tableau with nodes $F(C \Rightarrow A)$ and $T((B \land A) \Rightarrow D)$

body = ok = 0.5

4. Transformation of a predicate formula into Skolem normal form preserves

```
neither satisfiability nor equivalence
   O equivalence
  ● ✓ *satisfiability
body = ok = 0.5
5. What is not a datalog evaluation strategy?
  ● ✓ *version spaces
   O top-down
   O top-down with memorization
body = ok = 0.5
6. Suppose we have the following Prolog code:
  prove(true).
  prove((A,B)):-prove(A), prove(B).
  prove(A) := clause(A, B), prove(B).
  To obtain a metainterpreter that can interpret itself it is necessary to
   \bigcirc *add the clauses prove (A):- built in (A), A.
  built in(clause( , )).
  O add the clause prove (A): - built in (A), A. and remove the clause prove (A): -
  clause(A,B), prove(B).

■ Xadd the clause prove (A): - built_in(A), A.
body = nok = -0.25
7. Consider T(\forall x \varphi(x)). By using an appropriate rule for atomic tableaux, you will get
  \bigcirc *T(\varphi(t)) for any ground term t
  \bullet \times T(\varphi(c)) for a new constant c
  \bigcirc T(\neg \varphi(c)) for a new constant c
body = nok = -0.25
8. Let P be a predicate calculus formula with at least one variable existentially quantified that is neither a contradiction
  nor a tautology.
  Which of the following propositions hold?
   There is either a formula in prenex conjunctive normal form or in prenex disjunctive normal form that is
  equivalent to P, but not both.
  *There is a formula in prenex conjunctive normal form that is equivalent to P.
  • There is a formula in Skolem normal form that is equivalent to P.
bodv = nok = -0.25
9. Suppose you have evidence A with following certain factor: CF(A) = 0.75. What is the certainty factor
  of negation of this evidence, i.e. CF(\neg A)?
   \bigcirc \times 0.25
   0*-0.75
   \bigcirc -0.25
body = nok = -0.25
10. Let P be a predicate formula which is neither a contradiction nor a tautology. Then
    there is exactly one formula in prenex conjunctive normal form equivalent to P
    *there is at least one formula in prenex conjunctive normal form equivalent to P
    Oit is possible that a formula in prenex conjunctive normal form equivalent to P does not exist
body = null = -0.125
```

11. Let F, a formal system for propositional logic, be given. Let T be a set of all theorems that can be derived in F,
set of all well-formed formulas of propositional logic and P a set of all tautologies. Which of the following
statements is true?
\bigcirc *if F si correct then T \subseteq P
\bigcirc if F is contradictory then T = P
\bullet if F is complete then $T = V$
body = nok = -0.25
12. For attributes Size ∈ {small, medium, large}, Color ∈ {red, blue, green}, Shape ∈ {square, circle, triangle}, all proper specializations of p(Size,Color,Shape): - Size=large, Color=red, not logically equivalent to false, are
● ✓ *p(Size,Color,Shape):- Size=large, Color=red, A. where A is any subgoal of the form Shape=Value
Op(Size,Color,Shape):- Size=large, Color=red, A. where A
is any subgoal of the form Size=Value or Color=Value
Op(Size,Color,Shape):- Size=large and p(Size,Color,Shape):-Color=red
body = ok = 0.5
13. Backward chaining is
an inference method which starts with the available data (list of facts)
a refinement of SLD resolution
*an inference method which starts with a hypothesis (list of goals)
body = ok = 0.5
14. Consider $T(\exists x \varphi(x))$. By using an appropriate rule for atomic tableaux, you will get
$\bigcirc T(arphi(t))$ for any ground term t
\bullet * $T(\varphi(c))$ for a new constant c
$\bigcirc F(\neg \varphi(t))$ for any ground term t
body = ok = 0.5
15. For the formulas $\{\neg a \Rightarrow b\}$ and $\{b\}$ it holds that
$\bigcirc \{ \neg a \Rightarrow b \}$ and $\{b\}$ are not related using the generalization relation
\bullet \checkmark *{b} is a generalization of the formula { $\neg a \Rightarrow b$ }
$\bigcirc \{ \neg a \Rightarrow b \}$ is a generalization of the formula $\{b\}$
body = ok = 0.5
16. Consider $F((A \Rightarrow C) \Leftrightarrow ((B \land C) \Rightarrow A))$. By using an appropriate rule for atomic tableaux, you will go
Obranching tableau with one branch containing nodes $T((A\Rightarrow C))$ and $T((B\land C)\Rightarrow A)$ and one
branch containing nodes $F((A \Rightarrow C))$ and $F((B \land C) \Rightarrow A)$
O branching tableau with one branch containing nodes $T((A \Rightarrow C) \Leftrightarrow ((B \land C)))$ and $F(A)$ and one
branch containing nodes $F((A \Rightarrow C) \Leftrightarrow ((B \land C)))$ and $T(A)$
• \checkmark *branching tableau with one branch containing nodes $T((A \Rightarrow C))$ and $F((B \land C) \Rightarrow A)$ and on
branch containing nodes $F((A\Rightarrow C))$ and $T((B\land C)\Rightarrow A)$
body = ok = 0.5
17. By processing the next example the algorithm for the version space computation
● ✓ *may decrease the version space size
O always decreases the version space size
O may increase the version space size
body = ok = 0.5
18. For Horn clauses, SLD-resolution is

O sound and not complete
● ★*sound and complete
Onot sound but complete
body = ok = 0.5
19. Which is a functionally complete set of connectives?
O{ ∨, ∧, ⇔}
● ✓ *{ ∨, ∧,NOR }
$O(V, \Lambda)$
body = ok = 0.5
20. Given the Prolog program,
a(s(X)):-a(X).
a(0).
which goal will succeed?
O ?- a(X).
$\bullet \checkmark * ?- a(s(0)).$
\circ ?- a(s(X)).
body = ok = 0.5
21. How many constants will be introduced in a tableau built from $F(\exists x P(x) \Rightarrow \forall x P(x))$?
O*2
$\bigcirc 0$
body = nok = -0.25
22. Suppose you have two rules $R_1 = if \ E_1 \ then \ H$ and $R_2 = if \ E_2 \ then \ H$ with following certain factors: $CF(R_1) = 0.8, CF(R_2) = 0.5$. What is the CF of H given that certainty factors of evidences are
$CF(E_1) = -0.5$ and $CF(E_2) = 0.4$?
Hint: You can calculate $CF(H,E)$ from rule $R=if\ E\ then\ H$ as $CF(H,E)=CF(E)*CF(R)$.
● X-0.2
O*-0.25
O-0.15
body = nok = -0.25
23. Suppose you have evidences A, B with following certain factors: $CF(A) = 0.75, CF(B) = 0.5$. What is
the certainty factor of disjunction of these evidences, i.e. $CF(A \vee B)$?
● ✓ *0.75
0.5
O 1.25
body = ok = 0.5
24. In Box model, for the logic program p(a,b)., after CALL of the goal p(X,b) control reaches OREDO
O FAIL
O*EXIT
body = null = -0.125

Celkem bodů: 4.75 (z maximálních) (celkem otázek: 24, z toho špatně 8, nezodpovězených 2)

• Zpět na výběr operace

Bez uložení:

- Zpět na výběr odpovědníku
- Moje studium
- Osobní administrativa