Análise de Desempenho

Gabriel Pelosi

DEI – Departamento de Engenharia Informática (do Instituto Politécnico do Porto) ISEP - Instituto Superior de Engenharia do Porto (do Instituto Politécnico do Porto) Porto, Portugal 1180017@isep.ipp.pt

Abstrato—Neste artigo, encontra-se presente uma análise de dados relacionados comos clientes de uma operadora móvel que se encontra numa situação de decréscimo de número de clientes. Esta análise tem por base o uso de algoritmos de Machine Learning, de regressão e classificação. Para avaliar o desempenho dos modelos utilizados, foram utilizadas métricas de desempenho como a MAE e RMSE pelo que no final deste estudo, concluímos que o modelo com melhor desempenho em termos de precisão tem o nome de rede neuronal.

Palavras-Chave—operadora móvel, modelo de regressão, modelo de classificação, regressão linear, árvore de decisão, rede neuronal, knn

I. Introdução

Este artigo foi realizado com o objetivo de documentar a investigação e aplicação de algoritmos de aprendizagem automática na exploração de dados e realizar uma comparação entre os resultados utilizando os testes estatísticos mais adequados. Ao longo deste artigo, serão encontradas secções que irão contextualizar o problema abordado, um breve enquadramento teórico sobre os algoritmos utilizados, de modo a facilitar a compreensão do leitor; a análise e discussão dos resultados obtidos e por fim, conclusões sobre os mesmos.

A metodologia adotada durante a realização deste estudo, teve inicialmente um caráter de pesquisa sobre os algoritmos a utilizar, de forma a entender como estes são aplicados em relação aos dados em estudo. De seguida, foram aplicados diferentes modelos de Machine Learning a dados treino e por fim feita uma análise e conclusão sobre os resultados obtidos.

II. CONTEXTUALIZAÇÃO DO PROBLEMA

Uma Operadora Móvel, encontra-se numa situação anormal de perda de clientes, o que esta a ter um impacto direto no desempenho da organização. Assim, tornou-se necessário identificar as razões subjacentes ao problema e identificar eventualmente medidas preventivas direcionadas. Pretende-se então realizar a análise de dados estruturados referentes aos clientes da Operadora Móvel através de modelos de classificação/regressão usando algoritmos de aprendizagem automática estudados: regressão linear, árvores de decisão, k-vizinhos-mais-próximos e redes neuronais.

III. ESTADO DE ARTE

A. Machine Learning

Machine Learning surgiu como um subcampo de Inteligência Artificial com especial foco no desenvolvimento de algoritmos para que os computadores possam aprender automaticamente modelos (preditivos) a partir de dados.

Sofia Costa

DEI – Departamento de Engenharia Informática (do Instituto Politécnico do Porto) ISEP - Instituto Superior de Engenharia do Porto (do Instituto Politécnico do Porto) Porto, Portugal 1191063@isep.ipp.pt

Estes algoritmos podem ser divididos em três áreas: Supervisionados, Semisupervisonados e de Reforço.

O estudo em foco, enfatiza a aprendizagem e utilização de algoritmos supervisionados nos quais se inserem modelos de classificação e modelos de regressão, ou seja, modelos que operam com dados de treino identificados (*labelled*) que são exemplos daquilo que se quer prever.

B. Regressão Linear

A Regressão Linear, insere-se no modelo de Regressão referido anteriormente, e trata-se de um algoritmo utilizado para prever o valor de algo com base noutros dados (históricos). Existem dois tipos de regressão linear: Simples e Múltipla. Na Regressão Linear Simples, para prever algo é utilizada apenas uma variável preditora (independente), contrariamente, a Regressão Linear Múltipla utiliza várias variáveis independentes para realizar a predição.

C. Árvores de Decisão

Uma Árvore de Decisão, é um algoritmo que pode ser utilizado tanto em modelos de Regressão, sendo a árvore chamada de Árvore de Regressão e que utiliza variáveis dependentes contínuas, como ou em modelos de Classificação, com o nome de Árvore de Classificação que utiliza variáveis dependentes categóricas.

A sua representação assimila bastante a uma árvore, contendo o nó da raiz, nós intermédios e nós-folha, que possuem o valor do resultado final. Nos ramos, que separam um nó decisão de outro ao qual está conectado, existem regras de "*if-then*" que sendo respondidas de forma diferente, irão produzir também caminhos diferentes até finalmente se chegar a um nó-folha.

D. Redes Neuronais

O modelo Rede Neuronal Artificial é inspirado nas estruturas de neurónios biológicos, do cérebro, capazes de realizar *Machine Learning* e reconhecer padrões. Um neurónio artificial tem como papel principal, receber sinais que provem de conexões de entrada e calcula um valor de saída que é enviado para outro neurónio, sendo que todos os neurónios estão conectados uns aos outros e cada ligação possui um certo peso. Existem duas fases associadas a este modelo: cálculo da soma ponderada dos valores de entrada e cálculo do neurónio de ativação usando uma função que determina se a soma anteriormente calculada é suficiente para ativar o neurónio.

E. Cross Validation

A metodologia Cross Validation é uma técnica proposta para avaliar o desempenho de modelos de *Machine Learning* com pequenos aglomerados de dados (*k-sets* ou *k-folds*).

A técnica consiste em dividir o *dataset* em *k-folds* aleatoriamente, aplicar uma parte para treino e outra para teste, testar o modelo após o treino e reservar os valores obtidos no *predict*. É importante ressalvar que esse passo pode ser repetido diversas vezes. Finalmente, recorre-se aos valores obtidos nos testes e assim pode-se avaliar o modelo e compará-lo com outros modelos existentes.

F. ML Models Evaluation Metrics

1) Métricas de Desempenho em Modelos de Regressão

Para avaliar os modelos de regressão, é necessário recorrer a métodos estatísticos para quantificar o seu desempenho. Para que isso seja possível, são utilizadas métricas como: R2, que é definido como a correlação dos resultados com os valores previstos, quanto maior o R2 melhor será o modelo [4]; RMSE, o qual quantifica o erro médio da previsão, ou seja, é a diferença média entre os resultados obtidos através das previsões e os conhecidos pelo modelo. Quanto menor o RMSE, melhor o desempenho do modelo; MAE, que é considerada uma alternativa ao RMSE pois é menos sensível a *outliers*. O MAE define a diferença média absoluta entre os valores previstos e observados, assim como o RMSE, quanto menor o seu valor, melhor o desempenho do modelo treinado [4].

2) Métricas de Desempenho em Modelos de Classificacao

Com o intuito de avaliar modelos de classificação, é necessário que para concretizar a diferença de desempenho deve ser desenvolvida uma matriz de confusão. Matriz essa que obtêm os valores de Falso Positivo, Falso Negativo, Verdadeiro Positivo e Verdadeiro Negativo, que são valores numéricos correspondentes ao número de vezes que o modelo errou um valor positivo e um valor negativo e acertou um valor positivo e um valor negativo [4].

Com a matriz de confusão construída, através de seus valores é possível calcular fatores como *Accuracy*, *Precision*, *Sensitivity/Recall*, *Specificity* e F1. Através desses cálculos, é possível avaliar os modelos de classificação [4].

G. K-Vizinhos Mais Próximos

O modelo de aprendizagem automática K-Vizinhos Mais Próximos classifica os dados de acordo com seus vizinhos mais próximos, ou seja, a o valor de classificação de um dado qualquer serátido como base o valor de classificação que seus vizinhos obtiveram.

De acordo então com sua funcionalidade, é possível identificar que sua forma de funcionamento é no reconhecimento de padrões é tanto pode ser usado com "Nearest Neighbor", como "K Nearest Neighbor", uma vez que, o valor de vizinhos é configurável.

Para que o modelo consiga classificar os dados, é necessário calcular a distância entre eles (distância euclidiana). Tendo isso em conta, é necessário realizar sempre um pré processamento dos dados para convertê-los em numéricos, para que possibilite o algoritmo a calcular as distâncias e classificar os dados.

IV. ANÁLISE E DISCUSSÃO DOS RESULTADOS

Esta secção é dedicada à análise e tratamento dos dados utilizados para a resolução do problema assim como a análise dos resultados obtidos com a adição de uma breve discussão sobre os mesmos.

A. Regressão

Antes de aplicar algoritmos e técnicas de regressão, foi necessário realizar um tratamento dos dados do ficheiro utilizado (Clientes_DataSet.csv). Foi efetuado um préprocessamento dos dados com o propósito de identificar todos os campos "NA" e consequente exclusão dos mesmos assim como a identificação de quaisquer dados inconsistentes ou *outliers*. Os dados não numéricos, foram tratados de modo a se tornarem binários, o que resultou na adição de novas colunas adicionalmente, foi excluída a coluna relativa ao atributo "ClienteID" uma vez que não possuiu dados relevantes para o estudo em causa.

Assim, com os dados num estado adequado de utilização, o primeiro passo realizado foi criar um diagrama de correlação entre todos os atributos (Fig. 1).

Figura 1 - Diagrama de Correlação

Uma vez que existem vários atributos, o diagrama representado na Figura 1 apenas inclui a correlação entre metade dos atributos, porém estes são mais que suficientes para retirar conclusões significativas.

Assim, através da observação do diagrama anterior, é possível verificar uma forte correlação, principalmente, entre os atributos "Fidelização" e "TotalTarifas" assim como entre "Tarifa Mensal" e "TotalTarifas". Tal é comprovado pelo tamanho dos círculos e a sua cor azul (superior a 60% de correlação) que indica uma correlação positiva entre os atributos, enquanto a cor vermelha representa uma correlação negativa.

Antes de aplicar técnicas de regressão, foram criados novos *data frames*, um para os dados treino e outro para os dados teste que irão ser utilizados ao longo do estudo. Os dados treino servirão para criar os modelos e os dados treino para realizar alguns testes de avaliação de desempenho.

Uma vez que os atributos "Fidelização" e "TarifaMensal" estão altamente correlacionados, recorrendo ao Modelo de Regressão Simples, é possível determinar o período de fidelização com o auxílio dos valores da tarifa mensal. Assim, obteve-se uma função linear (1), onde Fid corresponde à variável objetivo (Fidelização) e T_m à variável preditora (TarifaMensal).

$$Fid = 0.2079T_m + 19.0079 \tag{1}$$

Tal função, pode ser representada num diagrama de dispersão e verificar o seu comportamento em relação aos restantes dados com o objetivo de avaliar se se trata de um modelo adequado.

Figura 2 - Diagrama de Dispersão entre Tarifa Mensal e Fidelização

Pela observação do diagrama na Figura 2, podemos verificar que os valores se encontram bastante dispersos e que não existe preferência de proximidade dos mesmos em relação à reta de regressão linear.

Recorrendo às métricas de avaliação de desempenho, obtiveram-se valores relativamente baixos, como 20.57 para o Erro Médio Absoluto e 23.50 para a RMSE, o que nos diz que os dados teste utilizados estão próximos do valor absoluto das medições do instrumento de referência.

Tendo em conta o conjunto de dados treino em utilização, pretende-se prever o valor de um outro atributo, TotalTarifas, com o auxílio de todos os atributos. Para isso, começamos por utilizar o Modelo de Regressão Múltipla.

Uma vez que existem pelo menos 40 colunas de atributos, realizou-se em primeiro lugar um estudo de regressão múltipla para todos os atributos e de seguida um estudo apenas para os atributos significativos.

	ESTIMATE	Sta. Error	t value	Pr(>Iti)
(Intercept)	-1887.098203	56.4161765	-33.4495941	3.964576e-221
Genero	27.539696	19.8028971	1.3906903	1.643825e-01
Maior65	-21.165349	28.8696369	-0.7331353	4.635110e-01
Colaborador	15.753651	24.0036231	0.6563031	5.116600e-01
Dependentes	-33.335224	25.3756647	-1.3136690	1.890191e-01
Fidelização	61.102343	0.6886199	88.7316014	0.000000e+00
TipoServiço	-114.118936	242.3242334	-0.4709349	6.377082e-01
FaturaEletronica	3.850526	22.2818466	0.1728100	8.628079e-01
TarifaMensal	38.700452	9.5282570	4.0616507	4.948844e-05
Ativo	-156.337229	26.3426210	-5.9347636	3.145217e-09
LinhasMultiplas_Não	-72.238475	53.6759618	-1.3458254	1.784211e-01
ServiçoInternet_DSL	382.406381	620.5618250	0.6162261	5.377740e-01
ServiçoInternet_Fibra_ótica	328.100778	858.2108701	0.3823079	7.022496e-01
SegurançaOnline_Não	-184.955851	54.3899845	-3.4005498	6.778822e-04
CópiadeSegurançaOnline_Não	-238.788279	53.3773281	-4.4735899	7.865879e-06
ProteçãoTM_Não	-166.972400	54.2303583	-3.0789470	2.088837e-03
SuporteTécnico_Não	-156.169688	54.9123397	-2.8439817	4.473827e-03
ServiçoStreamingTV_Não	-73.388880	98.3177409	-0.7464460	4.554339e-01
ServiçoStreamingFilmes_Não	-86.938847	98.1858621	-0.8854518	3.759565e-01
TipodeContrato_Anual	-37.041449	31.2997506	-1.1834423	2.366913e-01
TipodeContrato_BiAnual	-203.447547	37.5175123	-5.4227355	6.151293e-08
`MétododePagamento_Cartão_de_Crédito_(automatico)`	35.088142	29.9920045	1.1699165	2.420915e-01
MétododePagamento_Cheque_Eletrónico	-48.842939	29.1793249	-1.6738886	
MétododePagamento_Cheque_por_email	249.278200	32.1084556	7.7636310	9.980090e-15

Figura 3 - Coeficientes utilizados na Regressão Linear Múltipla com p-value diferente de NA

Formularam-se as seguintes hipóteses:

- H0: O preditor não é significativo para o modelo de regressão linear.
- H1: O preditor é significativo para o modelo de regressão linear.

Para um nível de significância igual a 0.05, os valores de *pvalue* que se encontram abaixo desse nível são significativos pois rejeita-se a hipótese nula. Assim, com base nos *p-values* dos preditores, na Figura 3, pode-se afirmar que os atributos Fidelização e TarifaMensal são preditores bastante significativos para o modelo em questão, entre outros.

Para os atributos significativos, definidos anteriormente, obteve-se a seguinte equação (2):

$$T_t = 66.03Fid + 36.19 T_m (2)$$

Seguidamente, aplicando um modelo de regressão diferente, contruiu-se uma Árvore de Regressão com base nos dados dos clientes. Como resultado, foi construída uma árvore que demonstra como diferentes valores de entrada influenciam o resultado de previsão do nó final.

Figura 4 - Árvore de Regressão para prever o atributo TotalTarifas

Na construção desta árvore, foram chamados todos os atributos, contudo na Figura 3 apenas se verificam a

"Fidelização" e "TarifaMensal", uma vez que são estes os atributos que influenciam o valor do total de tarifas e com estes se consegue prever o seu valor.

Finalmente, foi aplicado um outro modelo, anteriormente referido, conhecido por Rede Neuronal. Neste modelo, foram definidos diferentes números de nós intermédios como, por exemplo, um nó, três nós e ainda seis seguidos de dois nós intermédios. Os dados de input utilizados para construir a rede neuronal, foram préprocessados através da normalização *min-max* para todos os valores binários. Como exemplo da rede neuronal resultante, na Figura 4, é possível visualizar uma rede com seis e dois nós intermédios.

Figura 5 - Rede Neuronal com seis e dois nós intermédios para prever o atributo TotalTarifas

De modo a verificar qual o modelo que apresenta o melhor desempenho, foram aplicadas as métricas de avaliação MAE e RMSE aos dados teste (30% dados) em relação aos dados treino (70% dados) usados para construir os modelos, obtendo os resultados representados na Tabela 1.

Tabela 1 - Comparação entre o MAE e RMSE de diferentes algoritmos

	MAE	RMSE
Regressão Múltipla	540.89	677.49
Árvore de Regressão	457.77	577.37
Rede Neuronal (1)	223.96	273.27
Rede Neuronal (3)	52.61	74.07
Rede Neuronal (6-2)	51.53	74.04

Analisando os valores da tabela para cada métrica de performance, podemos verificar que os modelos com o melhor desempenho em termos de precisão na determinação da previsão do resultado para observações não vistas, ou seja, dados de teste, que não foram usados para construir o modelo, são as redes neuronais. Tal se deve ao facto de apresentar o menor valor de erro em relação aos restantes modelos, que

quão mais baixo for, melhor é a performance. Adicionalmente, à medida que se adicionam nós intermédios, a performance da rede neuronal também aumenta.

Para verificar se os resultados obtidos para os dois melhores modelos são estatisticamente significativos, foi realizado um *t.test()* com os valores obtidos na Tabela 2 em relação à Rede Neuronal e Árvore de Regressão.

H0: Os resultados obtidos para os dois melhores modelos são estatisticamente significativos.

H1: Os resultados obtidos para os dois melhores modelos não são estatisticamente significativos.

Uma vez que o valor do *p-value* obtido (0.09826) é superior ao nível de significância (0.05), foi comprovado que os resultados são estaticamente significativos pois a hipótese nula não é rejeitada.

B. Classificação

Para o problema de classificação, foram inicialmente selecionados 3 modelos para avaliar a capacidade preditiva do atributo Ativo. Sendo eles: Árvore de decisão, redes neuronais e K-Nearest Neighbor. O primeiro a ser desenvolvido foi o modelo da árvore de decisão. Tendo isso em conta, foi realizado um pré processamento, que consistiu em eliminar o atributo "TotalTarifas" o qual era extremamente correlacionado com o "TarifaMensal", uma vez que não seria necessário prevê-lo. Após isso, os dados, foram aleatoriamente separados em dados de teste e de treino. Subsequentemente, foi obtido como resultado a seguinte árvore de classificação

Figura 6 - Árvore de decisão

Após o treino, o teste do modelo apresentou 78.15% de taxa de acerto ao ser executado o seu *predict* com os dados de teste.

Com a conclusão do desenvolvimento do modelo supracitado, iniciou-se o desenvolvimento das redes neuronais. Como primeira abordagem, foi necessário recorrer a uma biblioteca externa para substituir os dados em texto para numérico, pois as redes neurais não aceitam *labels*. A primeira rede foi implementada apenas com um nó, e obteve

20.66% de taxa de acerto. A segunda rede foi definida com 4 nós e apenas uma camada, resultado 22.46% de taxa de acerto. Subsequentemente, foi desenvolvida uma rede com 6 nós e 2 camadas, que resultou em 25.55% de taxa de acerto. Por fim, foi desenvolvida uma rede com 10 nós e 3 camadas, resultando 38.82% de taxa de acerto.

Figura 7 - Rede neural 10 nós e 3 camadas

Ao comparar o desempenho das redes, foi possível concluir que conforme a rede apresentava mais nós e camadas, o seu desempenho aumentava, resultando taxas de acertos mais elevadas.

Para concluir a fase de treino dos modelos, foi implementado o algoritmo K-Nearest Neighbor, que assim como as redes neuronais, só aceita valores numéricos, então exigiu também um pré processamento dos dados. Ao finalizar o processamento, foi realizar o treinamento do modelo de 1 até 50 vizinhos com passo igual a 2 e sempre que um modelo era treinado, era testado logo em seguida e seu número de vizinhos e precisão eram guardados juntos em um *array*. Ao finalizar o treinamento, foi observado que o modelo que melhor desempenhou foi o que apresentou 35 vizinhos, registando uma taxa de acerto de 72,70%.

Figura 8 - KNN

Ao comparar as taxas de acerto dos modelos, concluiu-se que os que desempenharam melhor dos três modelos citados anteriormente foram a árvore de decisão e o KNN.

Tendo isso em conta, foi realizado o treino e teste dos modelos seguindo o método *k-fold cross validation* para avaliar a taxa de acerto e sua média. Ao finalizar a execução dos testes e treinos, foram obtidos os seguintes resultados.

Tabela 2 - Valores comparativos KNN e Árvore de decisão

KNN	Árvore de decisão	
0.7888283	0.7901907	
0.7790210	0.7972028	
0.8049793	0.7980636	
0.8005865	0.7815249	
0.7789017	0.7890173	
0.7639939	0.7685325	
0.7908962	0.8022760	
0.7714681	0.7686981	
0.8017621	0.8105727	
0.7788595	0.7760779	

Com vista a identificar a existência de diferença significativa no desempenho dos modelos, recorreu-se a testes estatísticos de hipótese. Como se trata de duas amostras independentes, as opções possíveis seriam a utilização de um *t-test* ou teste de Wilcoxon. Para utilizar o *t-test*, seria necessário cumprir dois requisitos: as amostras devem ser independentes e devem ser provenientes de uma distribuição normal.

Como o primeiro requisito já havia sido confirmado, para confirmar o segundo foi necessário executar um teste a normalidade. Para isso, foi selecionado o teste de Shapiro para trabalhar sobre as seguintes hipóteses:

H0: São provenientes de uma distribuição normal.

H1: Não apresentam distribuição normal.

O resultado apresentado foi o *p-value* de 0.4 e 0.9 para as amostras. Portanto, como os valores são superiores ao nível de significância, não se rejeita a hipótese nula e assim, podese afirmar que as amostras são normalizadas.

Com base nos resultados obtidos, foi executado o t-test para verifica a diferença significativa entre o desempenho com o intuito de refutar umas das seguintes hipóteses: H0: Não apresenta diferença significativa no seu desempenho.

H1: Apesenta diferença significativa no seu desempenho.

O resultado obtido foi 0.939. Ou seja, não se rejeita a hipótese nula e assim, conclui-se que não há diferença significativa entre o desempenho dos modelos árvore de decisão e KNN.

Finalmente, para avaliar melhor os modelos, foi realizada a execução de 10 instâncias da árvoree do KNN com o intuito de aglomerar os valores médios de precisão, *recall*, *accuracy*, *specificity* e F1, resultando os seguintes valores para cada modelo.

Tabela 3 - Valores comparativos entre KNN e Árvore de decisão

X	Árvore	KNN
Accuracy	79.07%	72.73%
	Desvio = 0.0048	Desvio = 0.0013
Recall	0.922%	0.997%
	Desvio = 0.018	Desvio = 0.002
Specificity	0.432 %	0.002%
	Desvio = 0.047	Desvio = 0.003
Precisão	0.817%	0.729%
	Desvio = 0.013	Desvio = 0
F1	0.035224	0.0485101

Assim, através dos valores obtidos, pode-se concluir que a Árvore desempenhou melhor sobre o KNN.

V. Conclusões

Em suma, o estudo descrito neste artigo foca na aplicação de algoritmos de aprendizagem automática com o objetivo de avaliar os dados dos clientes de uma operadora móvel que se encontra com perda de clientes. Esta avaliação foi benéfica na identificação das causas do problema e medidas de prevenção para evitar que tal volte a acontecer.

Para o estudo em foco, a aplicação dos vários e diferentes modelos levou a concluir que o modelo que apresenta o melhor desempenho em termos de previsão de dados, é a árvore de decisão. Porém, na abordagem de um problema de aprendizagem automática, é importante estudar vários modelos, compará-los e concluir qual deles é o melhor a ser utilizado.

No caso da rede reuronal, apesar desta ter dominado no desempenho de previsão, no modelo de regressão, esta consome um grande número de recursos máquina durante o treinodos dados pelo que a sua performance não é considerada a melhor. Recomenda-se o uso de redes neuronais em

problemas que possuam um extenso e complexo número de dados pois esta retorna melhores resultados com o tempo.

A regressão linear é um modelo específico que apenas pode ser aplicado em problemas de regressão e não de classificação pois retorna um output contínuo em relação aos dados de entrada que possuem uma relação linear entre si. Por isto, no geral, o seu uso na previsão de dados com vários atributos, não é o mais aconselhável.

Em relação aos resultados obtidos pelo modelo kNN, este teve um desempenho superior à rede neuronal, quando apresentava o valor de 35 vizinhos mais próximos e seu processamento foi extremamente inferior, resultando uma opção considerável em função darede. No entanto, as métricas comparativas entre o kNN e a árvore de classificação apontaram a árvore como o melhor desempenho, mesmo não apresentando diferenças significativas.

REFERÊNCIAS

- [1] S. Raschka, L01: Intro to Machine Learning, 2018.
- [2] adminvooo, "Um tutorial completo sobre modelagem baseada em árvores de decisão (códigos R e Python)," Vooo, 8 maio 2019. [Online]. Available: https://www.vooo.pro/insights/um-tutorial-completo-sobre-a-modelagem-baseada-em-tree-arvore-do-zero-em-r-python/. [Accessed junho 2022].
- [3] T. Mitchell, Machine Learning, McGraw-Hill, 1997.
- [4] [Online]. Available: https://moodle.isep.ipp.pt/pluginfile.php/194086/mod_resource/content/3/Cross-validation.pdf. [Accessed Junho 2022].