

SIMMU 동양미래대학교 전문기술 석사과정

클라우드와 네트워크 보안

Dongyang Mirae University

4 계층 장비(세션 장비)

로드 밸런서/방화벽: 4 계층 장비(세션 장비)

- 2, 3계층과 달리 통신의 방향성, 순서와 같은 통신 전반에 관한 관리 필요
- 세션 테이블(Session Table) : 통신의 방향성, 순서와 같은 통신 전반에 관한 정보 보관

4 계층 장비의 특징

- TCP와 같은 4계층 헤더 정보 이해
- 4계층 장비에서는 세션 테이블과 세션 정보의 이해가 필수
- 4계층 이상에서 동작하는 로드 밸런서, 방화벽 같은 장비를 '세션 장비'라고도 부름

세션 장비 이해를 위해 필요한 요소

세션 테이블	 세션 장비는 세션 테이블을 기반으로 운영 세션 정보는 세션 테이블에 남아있는 life time이 존재
Symmetric 경로 요구	• In-bound와 out-bound 경로가 일치 해야 함
정보 변경 (로드 밸런서의 경우)	• IP 주소가 변경되며 확장된 L7 로드 밸런스(ADC)는 애플리케이 션 프로토콜 정보도 변경됨

- IP 주소나 4계층 정보, 애플리케이션 정보를 확인 수정하여 트래픽을 분배
- 대표 IP 주소를 서비스 IP로 갖고, 로드 밸런서가 실제 시스템의 IP로 변경하여 요청을 보냄
- 웹, 앱 애플리케이션, FWLB(Fire Wall Load Balancing), VPNLB(VPN Load Balancing)

- ❖ L4 Load Balancing : TCP/UDP (port #)를 기반으로 부하 분산 수행
- ❖ L7 Load Balancing : HTTP, FTP, SMTP 등 응용 프로토콜을 기반으로 부하분산 수행
 - ✓ ADC(Application Delivery Controller): HTTP, URI 정보 기반으로 프로토콜 분석
 후, 부하를 분산함. Squid, Nginx에서 수행하는 Reverse Proxy와 유사한 기능
- ❖ 통상, Load Balancing 장비는 L4, L7을 모두 지원하며, 설정에 따라 L4, L7로 구분됨
- ❖ AWS의 경우 L4용 전용 컴포넌트로 NLB(Network Load Balancer)

L7용 전용 컴포넌트로 ALB(Application Load Balancer)를 구분하여 사용

로드 밸런서 On-Premise SLB 동작

- IP 주소와 port 쌍을 분석하여 부하 분산하는 경우, L4 스위치 활용
- HTTP 프로토콜 헤더 분석을 통해 부하를 분산하는 경우, L7 스위치 활용
- L4, L7 스위치 모두 4계층 레벨을 기반으로 트래픽을 처리하므로, 통상 L4 스위치라고도 부름

Load balancer 기능

- 사용자의 접속을 자동으로 분산
- 대량의 접속이 발생하는 경우, 부하를 각각의 Target으로 분산
- AWS의 경우, Target을 서로 다른 가용영역(AZ)으로 배치할 경우, 가용성 향상

- LB는 Target에 대해 연결과 상태를 감시하고 확인
- 감시를 통해 비정상적인 동작을 감지하면 대상을 자동으로 분리
- (예) 웹서버의 정해진 경로로 보낸 요청이 지정된 횟수만큼 실패하면, 해당 웹 서버로 요청을 보내지 않음

ELB (Elastic Load balancing): AWS에서 제공하는 로드 밸런서 서비스

- SSL(Secure Sockets Layer): 송수신 데이터를 암호화 처리
- https 프로토콜 통신시 SSL 이용(브라우저와 서비스 사이 패킷 암호화)
- 웹서버에서 암호화/복호화 처리시 성능 저하
- 로드 밸런서에 암호처리 관련 전용 시스템을 제공하여 빠른 대응

- LB는 부정한 접근을 감지하여 방지
- 로드밸런서에 부정한 접근에 대응하는 전용 시스템 제공으로 효율적
 대응

	L4로드밸런서	L7 로드밸런서
네트워크 계증	Layer 4 전송계층(Transport layer)	Layer 7 응용계층(Application layer)
특징	> TCP/UDP 포트 정보를 바탕으로 함	> TCP/UDP 정보는 물론 HTTP의 URI, FTP의 파일명, 쿠키 정보 등을 바탕으로 함
장점	> 데이터 안을 들여다보지 않고 패킷 레벨에서만 로드를 분산하기 때문에 속도가 빠르고 효율이 높음 > 데이터의 내용을 복호화할 필요가 없기에 안전함 > L7 로드밸런서보다 가격이 저렴함	> 상위 계층에서 로드를 분산하기 때문에 훨씬 더 섬세한 라우팅이 가능함 > 캐싱 기능을 제공함 > 비정상적인 트래픽을 사전에 필터링할 수 있어 서비스 안정성이 높음
단점	> 패킷의 내용을 살펴볼 수 없기 때문에 섬세한 라우팅이 불가능함 > 사용자의 IP가 수시로 바뀌는 경우라면 연속적인 서비스를 제공하기 어려움	> 패킷의 내용을 복호화해야 하기에 더 높은 비용을 지불해야 함 > 클라이언트가 로드밸런서와 인증서를 공유해야하기 때문에 공격자가 로드밸런서를 통해서 클라이언트에 데이터에 접근할 보안 상의 위험성이 존재함

- L4 스위치

- 4계층에서 동작하면서 로드 밸런싱 기능을 가진 스위치
- 내부 동작은 4계층 로드 밸런서이지만 외형은 스위치 처럼 여러 포트를 가짐
- L4 스위치는 부하 분산, 성능 최적화, 리다이렉션 기능 제공

❖ 가상 서버, 가상 IP:

- 사용자가 바라보는 실제 서비스와 서버 IP 주소
- ❖ 리얼 서버, 리얼 IP :
 - 실제 서비스를 수행하는 서버와 서버 IP 주소
- ❖ 사용자가 가상 서버의 가상 IP로 서비스 요청을 하면 로드 밸런 서는 가상 IP를 리얼 IP로 변환하고 정책에 따라 부하 분산

- ADC(Application Delivery Controller)
 - Application 계층(7 계층)에서 동작하는 로드 밸런서
 - 애플리케이션 프로토콜 헤더와 내용을 바탕으로 다양한 부하 분산, 정보 수정, 정보 필터 링이 가능하며 Proxy로 동작
 - L4에서 L7까지 로드 밸런싱 기능을 제공하며, Failover(장애 극복), 리다이렉션(Redirection), 캐싱(Caching), 압축(Compression), 콘텐츠 변환 및 재 작성, 인코딩 변환 등 기능 수행
 - WAF(Web Application Firewall) 기능이나 HTML, XML 검증과 변화 기능도 플러그 인 형태로 수행 가능

로드 밸런서/방화벽: 4계층 장비

로드 밸런서

- L4 스위치 vs ADC

[L4 스위치 성능 향상 : TCP reuse, Connection Pooling]

【ADC 성능 최적화 : 캐싱 기능】

【ADC 성능 최적화 : 압축 기능】

【ADC 성능 최적화 : SSL off loading 기능】

로드 밸런서/방화벽: 4계층 장비

92.75.100.0/16 L4 스위치의 특징 **Real Server** Real IP **Real Port** Real 1 92.75.100.82 30080 92.75.100.41 Real 1 30080 **Virtual Server 1** Group 1 http://13.246.100.82:80 13.246.100.25:80 L4 Switch Group 2 13.246.100.174:6800 http://13.246.100.174:6880 **Virtual Server 2** Real 3 **Real Server** Real IP **Real Port** Real 2 92.75.100.41 18600 92.75.100.141 Real 3 18600

- L4 switch 내부에 다수의 가상 서버 생성 가능
- 가상 서버가 트래픽을 분산하는 리얼 서버는 92.75.100.0/16 내부에 위치함
- 리얼 서버는 여러 그룹에 중복 사용 가능 (real 2는 group 1과 group 2에 중복)
- 가상 서버의 vport(80, 6800)는 리얼 서버의 rport(30090, 18600)으로 상이하게 설정 가능

로드 밸런서/방화벽: 4계층 장비

- **라운드 로빈(Round Robin)** : 순차적으로 리얼 서버에 분산
- IP 해시(Hash): 클라이언트의 IP 주소를 해시 함수의 변수로 활용하여, 고정된 리얼 서버로 분산
- Least Connection(최소 연결): 클라이언트가 신규 연결 요청하면, 리얼 서버의 기존 연결 수를 분석해서 그 수가 가장 작은 서버로 분산

로드 밸런서

[참고] Scale Up / Scale Out / Scale Down / Scale In

▼ 표 6-1 /	▼ 표 6-1 시스템 확장 방법인 스케일 업과 스케일 아웃의 장.단점 비교					
	스케일 업(Scale-Up)	스케일 아웃(Scale-Out)				
설명	하드웨어 성능 자체를 업그레이드하거나 더 높은 성능의 시스템으로 마이그레이션 하는 방법	여러 대의 서버로 로드를 분산하는 방법. 서비스 자체를 구분해 나누거나 같은 서 비스를 분산해 처리하는 방법이 있다.				
장점	부품을 쉽게 추가할 수 있으면 시스템 설계 변경 없이 서비스 사용량을 쉽게 늘릴수 있다(주로 기존 대형 유닉스 시스템에서 사용함)					
단점	부품 추가가 어렵다(최근 x86), 시스템이 커질수록 비용이 기하급수적으로 증가한 다.					

방화벽

- 네트워크 중간에 위치해서 장비를 통과하는 트래픽을 조건에 따라 허용(Permit)하거나 차단(Deny)하는 장비
- 3, 4계층에서 동작하고 세션을 인지, 관리하는 SPI(Stateful Packet Inspection) 엔진을 기 반으로 동작하는 장비

- ❖ 방화벽의 기본 정책은
 - 인터넷으로 나가는 모든 패킷은 허용
 - 내부로 들어오는 모든 패킷을 차단
- ❖ Session 정보를 관리하여,
 - 통과하는 패킷이 내부에서 시작한 것인지
 - 외부에서 시작한 것인지를 판단하여 관리
- ※ 패킷 상태 정보를 인지하여 stateful로 동작하는 장비의 경우,
 - 상태 정보를 갖고 있어 상태 테이블(State Table) 또는 해당 상태에 대한 세션 값을 유지하여 세션 테이블(Session table)이라고 부름

- 세션 테이블 유지, 세션 정보 동기화
- 세션 테이블의 세션 정보는 일정 시간만(Session Timeout) 유지
- 세션 테이블에 세션 정보가 없으면 방화벽은 패킷을 차단

【세션 테이블의 세션 만료 시간이 애플리케이션 만료 시간 보다 짧은 경우의 예】

- 1. 3방향 핸드셰이크를 통해 정상적으로 세션 설정

 ① 방화벽에서 세션 설정 과정을 확인하고 세션 테이블 기록
- 2. ②, ③ 세션 테이블을 참조해 방화벽에서 패킷 통과
- 3. 일정 시간 동안 통신 없음
- 4. ④ 세션 타임으로 세션 테이블 만료
- 5. 세션 만료 후 애플리케이션 통신 시작
- 6. ⑤ 세션이 만료되어 방화벽에서 패킷 드롭

문제 해결 방안?

4계층 장비를 통과할 때 유의점 (세션 관리)

- 세션 테이블 유지, 세션 정보 동기화

[세션 테이블의 세션 만료 시간이 애플리케이션 만료 시간 보다 짧은 경우의 예]

[문제 해결 방안] 세션 장비 운영자

- ❖ 세션 장비의 세션 만료 시간을 애플리케이션의 세션 만료 시간에 맞추어 **늘려 준다**. 애플리케이션 개발자와 협의
- ❖ 세션 테이블 세션 정보가 없는 경우에도 패킷을 차단하지 않고 통과 시킴(정책 변화) 보안에 취약해짐
- ❖ 세션 만료시, 세션 장비는 양 종단에 세션 종료를 통보함. 양 종단 장비는 해당 세션을 끊고 필요시 재 설정함

4계층 장비를 통과할 때 유의점 (세션 관리)

- 세션 테이블 유지, 세션 정보 동기화

【세션 테이블의 세션 만료 시간이 애플리케이션 만료 시간 보다 짧은 경우의 예】

[문제 해결 방안] 개발자

❖ 패킷을 주기적으로 보내 세션을 유지(Health Check)

- 비대칭 경로 문제
- 대칭 경로(Symmetric Path) : 인 바운드 패킷과 아웃 바운드 패킷이 같은 장비 통과
- 비대칭 경로(Asymmetric Path) : 인 바운드 패킷과 아웃 바운드 패킷이 다른 장비 통과
- ❖ 네트워크 안정성을 위해 회선과 장비를 이중화 운영함으로 다른 장비를 통과할 수 있음

경로, 방화벽 이중화 방화벽 1

▲ 그림 6-16 비대칭 경로, 인바운드 패킷과 아웃바운드 패킷이 한 장비를 통과하지 않아 세션 정보가 없어 패킷이 드롭된 다

- 비대칭 경로 문제 해결 방안(1)

▲ 그림 6-17 세션 동기화 기능을 이용하면 비대칭 경로인 경우에도 통신이 가능하다.

- ❖ 세션 테이블을 동기화 함
- ❖ (장점) 패킷 경로를 변경할 필요 없음
- ❖ (단점) 세션 동기화 시간보다 패킷 응답이 빠르면 오 동작
- ❖ 응답 시간이 비교적 긴 인터넷 게이트웨이 방화벽 사용시 유용

- 비대칭 경로 문제 해결 방안(2)

▲ 그림 6-18 경로 보정 기능(MAC 리라이팅, 터널링)으로 비대칭 경로를 예방할 수 있다.

- ❖ 인 바운드 패킷 통과 없이 아웃 바운드 패킷이 장비로 들어 온 경우
- ❖ 인 바운드 패킷이 들어 온 다른 장비 쪽으로 패킷을 보내 경로를 보정함
- ❖ (단점) 다른 방화벽으로 패킷을 보내기 위한 방화벽간 통신용 링크 필요
- ❖ MAC 주소를 변경(Rewriting) 등의 방식으로 경로 보정

4계층 장비를 통과할 때 유의점 (세션 관리)

- 하나의 통신에 2개 이상의 세션이 사용되는 경우

- 1. 클라이언트가 FTP 서버에 접속. 클라언트는 1023번 이상의 TCP 포트를 사용, 서버는 TC P 21번 포트를 사용
- 2. ① 클라이언트가 서버에 데이터를 1025번 포트를 사용해 수신하겠다고 알림
- 3. ② 서버는 클라이언트에 1025번 포트를 사용해 송신하겠다고 응답
- 4. ③ 서버에서 데이터를 보냄, 클라이언트에서 응답하고 데이터를 수신

통상, 서버에서 방화벽 설정을 해주면 클라이언트에서는 서비스이용이 가능해야 함

- ▲ 그림 6-20 FTP Active 모드
- ❖ 클라이언트에 방화벽이 있는 경우 클라이언트에서도 방화벽 추가 설정이 필요하다는 문제
 - 1025번 포트로 유입되는 패킷을 허용하도록 설정해 주어야 함
- ❖ 서버에 방화벽이 있는 경우
 - 21번(FTP 서버) 포트로 유입되는 패킷을 허용하도록 설정해 주어야 함

4계층 장비를 통과할 때 유의점 (세션 관리)

- 하나의 통신에 2개 이상의 세션이 사용되는 경우

- 1. 클라이언트가 서버에 접속. 클라언트는 1023번 이상의 TCP 포트를 사용, 서버는 TCP 21 번 포트를 사용(Active 모드와 동일)
- 2. ① 클라이언트가 Passive 모드를 사용하겠다고 알림
- 3. ② 서버는 클라이언트에 데이터 수신에 사용할 포트를 알림. 2024번 포트를 사용해 수신 하겠다고 응답
- 4. ③ 클라이언트에서 서버에 데이터를 요청. ② 과정에서 서버에서 알려준 2024번 포트에 요청.
- 5. 데이터 전송

통상, 서버에서 방화벽 설정을 해주면 클라이언트에서는 서비스이용이 가능해야 함

- ❖ 클라이언트에 방화벽이 있는 경우 : 클라이언트에서는 별도 설정 필요 없음
- ❖ 서버에 방화벽이 있는 경우
 - 21번(FTP 서버), 2024번 포트로 유입되는 패킷을 허용하도록 설정해 주어야 함
 - 통상, 서버에서는 데이터 전송을 위한 포트 범위를 설정

AWS 분산제어: Load Balancing

On-Premise

L4 Switch Virtual Server 2 Virtual Server 1 13.246.100.174 : 6800 13.246.100.25:80 **Target Group 1 Target Group 2** HTTP / 30080 TCP / 1860 92.75.100.141 92.75.100.41 92.75.100.82

AWS

※ L4 switch 내부에 가상 서버를 여러 개 생성 가능

ELB (Elastic Load balancing) 기능

AWS에서 제공하는 로드 밸런서 서비스

- 사용자의 접속을 자동으로 분산
- 대량의 접속이 발생하는 경우, 부하를 각각의 Target으로 분산
- 각 Target을 서로 다른 가용영역(AZ)으로 배치할 경우, 가용성 향상

- ELB는 Target에 대해 연결과 상태를 감시하고 확인
- 감시를 통해 비정상적인 동작을 감지하면 대상을 자동으로 분리
- (예) 웹서버의 정해진 경로로 보낸 요청이 지정된 횟수만큼 실패하면, 해당 웹 서버로 요청을 보내지 않음

ELB (Elastic Load balancing) 기능

AWS에서 제공하는 로드 밸런서 서비스

- AWS의 기본적인 보안 서비스 적용 가능
- HTTPS를 HTTP로 변환
 - SSL 암호화 및 복호화 처리를 ELB에서 수행
 - 웹서버의 부하를 줄이거나 인증서 관리 비용 줄임
- Port 번호 변환 (80 -> 8080)
 - Well known port(0~1023)를 통한 통신은 강력한 사용자 권한 필요
 - ELB 내부의 웹서버는 1024번 이상 포트 번호를 이용하여 일반 권한 사용자로 작동 시킴
- NLB(Network Load Balancer)는 보안 그룹 설정 불가

ELB (Elastic Load balancing) 유형

AWS에서 제공하는 로드 밸런서 서비스

이름	설명	
ALB (Application Load balancer)	 HTTP트래픽과 HTTPS 트래픽 부하분산 가능 L7으로 동작하여, 마이크로 서비스나 컨테이너 등 다양한 응용프로그램에서도 대응 가능 사용 예: 웹사이트, REST API를 제공하는 사이트 	
NLB (Network Load balancer)	L4에서 동작하여, HTTP/HTTPS, TCP, UDP, TLS 트래픽 부하분산 가능 수백만 건 이상 요청이 발생하는 대규모 트래픽에서도 속도가 빠름 사용 예 : 게임, 채팅 등	
CLB (Classic Load balancer)	 ALB, NLB 서비스 이전부터 제공되던 구형 로드 밸런서 L4 및 L7에서 동작 예전 아키텍쳐 사용 등 특별한 경우를 제외하고는 ALB, NLB사용 권장 	
GWLB (Gateway Load balancer) • AWS에서 제공하는 타사 보안 제품의 배포 및 관리 가능 • L3에서 동작		

ELB (Elastic Load balancing) 특징

- ELB 접속은 IP가 아닌 도메인으로 접속 하나의 장비가 아니라 AWS 리소스가 조합된 서비스
- 로드 밸런서 노드(Load Balancer Node): ELB 생성과 동시에 ELB용 ENI가 생성됨
- 노드 생성 위치는 ELB 생성시 선택한 가용영역의 서브넷임
- 가용영역별 1개 서브넷만 생성 가능 (**가용영역별 1개 노드**가 생성됨)
- ELB의 실제 역할은 노드가 수행함 (실제 각 가용 영역의 노드에서 로드밸런싱 수행)
- 클라이언트가 실제 접속하는 ELB IP는 노드의 IP
- ALB는 반드시 2개 이상의 가용 영역을 선택해야 함

ELB (Elastic Load balancing) 특징

- ALB는 2개 이상의 가용영역을 유지해야 함 (ap-northeast-2a와 ap-northeast-2b 의 2개 가용 영역을 선택)
- 각 가용 영역에서 노드 (Load Balancer Node)가 설치될 subnet을 하나씩 선택 (Subnet-2a-2, Subnet-2b-1 선택)
 - ① 각 가용영역에 1개씩 설치된 노드가 로드밸런싱을 수행함
 - ② 선택하지 않은 가용영역 ap-northeast-2c로의 노드밸런싱은 불가능
 - ③ Subnet-2a-1에 놓은 인스턴스로 로드밸런싱은 가능함
- NLB는 최소 1개 이상의 가용 영역만 유지해도 됨

ELB (Elastic Load balancing) 동작 시나리오

Domain Name	Resolved IP	
my-alb.ap-northeast-2.elb.amazonaws.com	3.37.237.68	
	3.37.126.253	

- 1
- ALB를 생성하고, 노드가 설치될 가용영역과 subnet을 선택하면 가용영역에 하나의 노드가 생성됨
- 노드가 생성되거나 변동되면 Amazon DNS에 등록(레코드가 갱신)
- ALB 도메인 이름에 해당하는 노드의 IP 주소 레코드가 등록됨
 - ❖ 도메인 이름 : my-alb.ap-northeast-2.elb.amazonaws.com

- 클라이언트가 ALB의 DNS 이름으로 웹 접속을 요청
 - http://my-alb.ap-northeast-2.elb.amazonaws.com
- 클라이언트는 DNS에 도메인을 쿼리하여 IP를 불러옴
 - ❖ 이때 ELB가 사용하는 2개 노드의 IP가 번갈아 가며 선택된다.

- 4. ・ 가용영역 2b의 노드가 선택되면 <u>http://3.37.126.253으로</u> 접속한다.
 - 이 웹 접속은 IGW의 NAT 테이블을 참조하여 IP를 변환
 - http://92.75.200.33

• 가용영역 2b에 있는 노드 (http://92.75.200.33)에서 웹 접속 요구를 받아

• Target Group으로 로드밸런싱 한다.

ALB와 NLB

Domain Name	ALB	NLB	CLB	GWLB
가용영역 선택	최소 2개	최소 1개		
가용영역별 선택 가능한 Subnet 수	1개 (가용 영역별 1개의 노드만 생성 가능)			
가용영역 범위	추가, 변경, 삭제 가능	추가만 가능	추가, 변경, 삭제 가능	변경 불가
노드에 EIP 연결 가능	불가	가능	불가	불가

ALB와 NLB

ALB

- ALB 생성시 2개의 가용영역을 선택(2a, 2b)
 - ALB에 대상이 없는 대상그룹(target group)을 연결
- ALB는 노드를 모든 가용영역에 생성하지 않고, 랜덤하게 한곳에 만 생성 (예: 가용영역 2b에 생성)
- 로드밸런싱 대상 인스턴스가 가용영역 2a에 등록되면
 - 가용영역 2a에 노드를 추가 생성함
 - 기존 대상 인스탄스가 중지되면, 노드를 제거하기도 함
 - ❖ ALB는 노드를 가변 적으로 운영함

ALB는 노드에 고정 public IP(EIP)를 할당하지 않고 자동할당 public IP를 할당함

ALB와 NLB

- NLB 생성시 2개의 가용영역을 선택(2a, 2b)
 - ALB에 대상이 없는 대상그룹(target group)을 연결
- NLB는 로드밸런싱 대상의 유무와 상관없이 모든 가용영역에 노 . 드를 생성함

NLB는 노드에 고정 public IP(EIP)를 할당함

ELB 보안 그룹(SG: security group) 설정 - ALB

Inbound :

3

Port range

30080

- 클라이언트의 IP와 ALB 리스너 프로토콜 접근 허용

outbound :

- ALB가 로드밸런싱할 대상 IP와 프로토콜
- 모든 목적지 IP 지정 보다는 동 일 보안그룹 적용 대상(sg-0125) 지정(효과적)

inbound:

 ALB가 노드의 IP를 일일이 지정 하기 보다는 ALB가 사용하는 SG(SG-0095)를 지정

ELB 보안 그룹(SG: security group) 설정 - NLB

Inbound:

- NLB는 sg를 사용하지 않음
- '클라이언트 IP 보존' 설정하면, 대상 인스턴스는 인바운드 트래픽의 발신 IP로 클라이언트 IP로 받을 수 있음
- '클라이언트 IP 보존' 설정하지 않으면, 일일이 NLB 노드 IP를 기술해야 함

ALB 라우팅 세션

NLB 라우팅 세션

