

Misura di temperatura con sensore LM335 e scheda Arduino Uno

SISTEMI ELETTRONICI, TECNOLOGIE E MISURE Alessio Carullo – 2017/2018

2

Obiettivo dell'esperienza

- > Sviluppare un termometro digitale usando
 - 🔖 un sensore elettronico di temperatura
 - ✓ LM335 (costo ≈ 1 EUR)
 - una scheda Arduino
 - ✓ Arduino UNO (costo ≈ 20 EUR)
- Progettare il circuito di condizionamento del sensore
- Stimare l'incertezza attesa

3

Il sensore

- National Semiconductor modello LM335
 - Sensibilità nominale S = 10 mV/K
 - Uscita riferita allo zero assoluto

$$^{\t}$$
 $V_{\text{out}} = 0 \text{ V } @ 0 \text{ K} \equiv -273.15 ^{\circ}\text{C}$

La corrente I_D deve essere inclusa nel campo $(0.4 \div 5)$ mA

No.

SISTEMI ELETTRONICI, TECNOLOGIE E MISURE Alessio Carullo – 2017/2018

4

Circuito di condizionamento

- Tensione di alimentazione fornita dalla scheda Arduino (uscita 5 V)
 - Verificare se l'uscita 5 V è in grado di alimentare il sensore
- ➤ Stimare il valore di R₁

$$I_{\rm D} \approx I_1 = \frac{V^+ - V_{\rm out}}{R_1}$$

 $I_{\rm D}$ dipende da $V_{\rm out}$, che a sua volta dipende dalla temperatura in misura

Circuito di condizionamento

➤ Stimare il valore di R₁

♦ Campo di temperatura: (5 ÷ 75) °C

$$I_{D,min} = \frac{V^{+} - V_{out,max}}{R_{1}} > 0.4 \text{ mA}$$

$$I_{D,max} = \frac{V^{+} - V_{out,min}}{R_{1}} < 5 \text{ mA}$$

$$I_{\rm D,max} = \frac{V^+ - V_{\rm out,min}}{R_{\rm l}} < 5 \text{ mA}$$

SISTEMI ELETTRONICI, TECNOLOGIE E MISURE Alessio Carullo – 2017/2018

8

Schema di principio

- > Campo di temperatura: (5 ÷ 75) °C
 - \succ ≈ (278 ÷ 348) K

$$\forall$$
 V_{out} : (2.78 ÷ 3.48) V

- ➤ Tensione di riferimento: V_{cc}
 - V_{cc}: dalla porta USB

$$\$$
 USB 2.0 \rightarrow $V_{cc} = (5 \pm 0.25) \text{ V}$

 $\$ USB 3.0 \rightarrow V_{cc} tra 4.45 V e 5.25 V

10

Catena di misura

$$T = D_{\text{out}} \cdot \frac{V_{\text{FR}}}{2^{N_{\text{B}}}} \cdot \frac{1}{S}$$

> Stima dell'incertezza (modello deterministico)

$$\delta T = \left| \frac{\partial T}{\partial D_{\text{out}}} \right| \cdot \delta D_{\text{out}} + \left| \frac{\partial T}{\partial V_{\text{FR}}} \right| \cdot \delta V_{\text{FR}} + \left| \frac{\partial T}{\partial S} \right| \cdot \delta S$$

$$\delta T = \frac{V_{\text{FR}}}{S \cdot 2^{N_{\text{B}}}} \cdot \delta D_{\text{out}} + \frac{D_{\text{out}}}{S \cdot 2^{N_{\text{B}}}} \cdot \delta V_{\text{FR}} + \delta T^{\text{sensor}}$$

$$\delta T^{V_{\rm FR}}$$
 17.4 K !!! (per $D_{\rm out,max}$ = 713)

Catena di misura

- > Possibili interventi per ridurre l'incertezza
 - ✓ Usare il riferimento interno dell'ADC (1.1 V)
 - Necessario attenuare il segnale di uscita del sensore
 - $^{\,\,\,\,\,\,\,\,\,\,}$ V_{int} = (1.1 ± 0.1) V ⊗⊗⊗
 - ✓ Misurare il riferimento di tensione dell'ADC
 - \forall V_{cc} oppure V_{int} ?
 - La prima scelta non richiede un partitore di tensione, ma la costante di taratura è legata al PC usato

13

Firmware del micro-controllore

- Gestire la comunicazione seriale con il PC
- Configurare l'ADC
- Acquisire il segnale di tensione
- Implementare la funzione di taratura
- Fornire le misure di temperatura

SISTEMI ELETTRONICI, TECNOLOGIE E MISURE Alessio Carullo – 2017/2018

14

Firmware del micro-controllore

- Gestire la comunicazione seriale
 - Fissare il *baud rate*, usare la *built-in function* serialEvent(), ...
 - Vedere capitoli 3, 4 e 5 della guida Using Arduino boards in Measurements for dummies
- Configurare l'ADC
- > Acquisire il segnale di tensione
 - built-in functions analogReference() e analogRead()
 - ♦ Vedere capitolo 6 della guida

Firmware del micro-controllore

- Implementare la funzione di taratura
 - Convertire il codice di uscita dell'ADC in misura di temperatura
 - Usare le opportune costanti di taratura $(V_{cc} \circ V_{int}, fattore di attenuazione)$
 - ♥ Stimare l'incertezza di misura
- > Fornire le misure di temperatura
 - Inviare i risultati al serial monitor via USB

SISTEMI ELETTRONICI, TECNOLOGIE E MISURE Alessio Carullo – 2017/2018

16

Caratterizzazione del sistema

- > Specificare:
 - √ Campo di temperatura
 - √ Risoluzione
 - ✓ Incertezza
 - ♥ unadjusted
 - ⋄ adjusted (ADC offset e gain error)
 - ✓ Dimensione del firmware