习题 2.6

- 1. 证明下列方程根的问题:
 - (1) $x^5 3x 1 = 0$ 在(1,2) 内至少有一实根;
 - (2) $x = a \sin x + b$ (0 < a < 1, b > 0) 至少有一正根,且不超过 a + b.
- 2. 设函数 $f(x) \in C[0,1]$ 且满足 $0 < f(x) < 1(0 \le x \le 1)$. 证明:存在 $\xi \in (0,1)$ 使得 $f(\xi) = \xi$.
- 3. 设函数 f(x)和g(x)在[a,b]上连续,且 f(a) < g(a), f(b) > g(b). 试证:存在 $\xi \in (a,b)$ 使得 $f(\xi) = g(\xi)$.
- 4. 设函数 $f(x) \in C[0,+\infty)$,且 f(0) > 0, $\lim_{x \to +\infty} f(x) = A < 0$. 证明:存在 $\xi \in (0,+\infty)$ 使 得 $f(\xi) = 0$.
- 5. 设函数 $f(x) \in C(a,b)$,又 x_1, x_2, \dots, x_n 为(a,b)内的任意点.证明:存在 $\xi \in (a,b)$ 使得

$$f(\xi) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$$
.

- 6. 设函数 $f(x) \in C[a,b]$,又 a < c < d < b. 证明:存在 $\xi \in (a,b)$,使得 $mf(c) + nf(d) = (m+n)f(\xi) \qquad (m,n \in \mathbb{N}_+).$
- 7. 设函数 $f(x) \in C(\mathbb{R})$, 且 $\lim_{x \to \infty} f(x) = A$ (有限值). 证明: f(x) 在 \mathbb{R} 上必有界.
- 8. 设函数 $f(x) \in C(\mathbb{R})$,且 $\lim_{x \to \infty} f(x) = +\infty$. 证明: f(x) 在 \mathbb{R} 上取到它的最小值.