Algoritmi za klasifikacijo:

osnovne metode

Vsebina

Ni pravi klasifikator: **OR**

Enostavni klasifikator: 1R

Naivni Bayes

Klasifikacija

- Naloga: zgraditi model ali klasifikator z uporabo že klasificiranih primerov (poznan razred) ter ga uporabiti za klasifikacijo "novih" primerov (neznan razred).
- Nadzorovano učenje: vrednost razreda primerov, ki se uporabljajo za izgradnjo modela, je poznana.
- Klasifikator je lahko: množica pravil, odločitveno drevo, nevronska mreža ...
- <u>Tipične aplikacije</u>: odobritve kreditov, neposredni marketing, odkrivanje prevar, diagnoze v medicini ...

Enostavni algoritmi

- Enostavni algoritmi pogosto zelo dobro delujejo!
- Mnogo primerov enostavnih struktur:
 - Klasifikator "večinskega razreda"
 - Le en atribut "opravi vse delo"
 - Vsi atributi prispevajo v enaki meri in neodvisno
 - Utežena linearna kombinacija
 - Na podlagi razdalje med primeri
 - Preprosta logična pravila
- Uspeh algoritma je odvisen od podatkov

Učenje enostavnih pravil

- OR: napove večinski razred
- 1R: generira 1-nivojsko odločitveno drevo
 - oz. pravila, ki vsa testirajo le določen atribut
- Osnovna različica 1R algoritma:
 - Vsaka vrednost atributa določa eno vejo v drevesu
 - V vsaki veji drevesa napovemo večinski razred
 - Napaka: delež primerov, ki ne pripadajo večinskemu razredu v določeni veji drevesa
 - Izberemo atribut z najmanjšo napako

(predpostavlja, da so vsi atributi nominalni)

Psevdokoda algoritma 1R

Za vsak atribut:

Za vsako vrednost atributa naredi pravilo na sledeči način:

preštej koliko pogosto nastopa vsaka vrednost razreda,

poišči najpogostejšo vrednost razreda,

naredi pravilo, ki priredi to vrednost razreda vrednosti atributa,

izračunaj napako pravila.

Izračunaj skupno napako 1-nivojskega drevesa za atribut Izberi drevo atributa z najmanjšo skupno napako

 <u>Pozor</u>: manjkajoče vrednosti atributov so obravnavane kot ločene vrednosti

Primer: 1R na "weather" podatkih

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Atribut	Pravila	Napake	Skupna napaka
Outlook*	$Sunny \to No$	2/5	4/14
	Overcast → Yes	0/4	
	Rainy → Yes	2/5	
Temp	Hot → No*	2/4	5/14
	$Mild \rightarrow Yes$	2/6	
	Cool → Yes	1/4	
Humidity*	High o No	3/7	4/14
	Normal \rightarrow Yes	1/7	
Windy	$False \to Yes$	2/8	5/14
	True → No*	3/6	

^{*} označuje izenačen izid

Obravnava numeričnih atributov

- Z uporabo "razredne" diskretizacije
- Razpon vrednosti atributa razdelimo na intervale:
 - Uredimo vrednosti atributa po velikosti;
 - Postavimo meje intervalov, kjer se spremeni vrednost razreda:
 - razen tam, kjer se vrednost atributa ne spremeni;
 - Na ta način minimiziramo napako;
- Primer: atribut temperature podatki "weather"

Outlook	Temperature	Humidity	Windy	Play
Sunny	85	85	False	No
Sunny	80	90	True	No
Overcast	83	86	False	Yes
Rainy	75	80	False	Yes

64 65 68 69 70 71 72 72 75 75 80 81 83 85 Yes | No | Yes Yes | No No (§) Yes Yes | No | Yes Yes | No

Problem prekomernega prileganja

- Ta način diskretizacije je (zelo) občutljiv na šum:
 - primer z napačno vrednostjo razreda bo zelo verjetno povzročil tvorbo novega intervala pri diskretizaciji;
- <u>Ekstremni primer</u>: atribut *time stamp* bo diskretiziran z napako nič;

<u>Preprosta rešitev</u>:
 določimo mejo = najmanjše dovoljeno število primerov
 v posameznem intervalu

Primer "razredne" diskretizacije z mejo

Primer (min. št. primerov = 3):

```
64 65 68 69 70 71 72 72 75 75 80 81 83 85
Yes () No () Yes Yes Yes | No No Yes Yes Yes | No () Yes Yes () No
```

Končni rezultat diskretizacije za atribut temperature

```
65
64
           68
                    70
                          71 72 72 75
                                               80
                                                    81
                                                          83
                                                               85
Yes
      No
           Yes Yes Yes | No No Yes Yes |
                                                         Yes
                                              No
                                                    Yes
                                                               No
```

1R + diskretizacija z mejo

Primer pravil za "weather-numeric" podatke:

Atribut	Pravila	Napake	Skupna napaka
Outlook	Sunny → No	2/5	4/14
	Overcast → Yes	0/4	
	Rainy → Yes	2/5	
Temperature	≤ 70.5 → Yes	1/5	5/14
	$>$ 70.5 and \leq 77.5 \rightarrow Yes	2/5	
	> 77.5 → No*	2/4	
Humidity	≤ 82.5 → Yes	1/7	3/14
	$>$ 82.5 and \leq 95.5 \rightarrow No	2/6	
	> 95.5 → Yes	0/1	
Windy	False → Yes	2/8	5/14
	True → No*	3/6	

^{*} označuje izenačen izid

Zgodovina algoritma 1R

- 1R je prvi opisal R.C. Holte v svojem članku (1993):
 - Eksperiment na 16 bazah podatkov (uporaba prečnega preverjanja za oceno modelov);
 - Meja minimalnega števila primerov v intervalu za numerične atribute nastavljena na 6 (rezultat isprobavanja večih vrednosti meje);
 - Preprosta pravila algoritma 1R so se odrezala ne dosti slabše od zahtevnejših odločitvenih dreves;
- Zaključek: splača se najprej poskusiti preproste metode!

Very Simple Classification Rules Perform Well on Most Commonly Used Datasets

Robert C. Holte, Computer Science Department, University of Ottawa

Bayes-ovo (statistično) modeliranje

- "Nasprotno" od 1R: upoštevajo se vsi atributi
- Dve predpostavki atributi naj bodo:
 - Enako pomembni (za napoved razreda),
 - Statistično neodvisni (pri podanem razredu):
 - če poznamo vrednost nekega atributa, ne moremo sklepati na vrednosti ostalih atributov (pri poznani vrednosti razreda)
- Predpostavka "neodvisnosti" skoraj nikoli ne drži!
- Ampak ... Bayes-ov model v praksi dobro deluje

Primer: "weather" podatki

Out	tlook		Temp	eratur	е	Hui	midity			Windy		Pla	У
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5		Outlo	ok	Temp	Humidity	Wind	ly Play	

Tabela **frekvenc** (zgornji del) in **verjetnosti** (spodnji del)

Outlook Temp Humidity Windy Play Sunny Hot High False No Sunny Hot High True No Overcast Hot High False Yes Rainy Mild High False Yes Rainy Cool Normal False Yes Rainy Cool Normal True No Overcast Cool Normal True Yes Sunny Mild High False No Sunny Mild High False Yes Rainy True Yes Sunny Mild Normal False Yes Sunny Mild Normal False Yes Sunny Mild Normal False Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	-,, -		-, -	- , -	
Sunny Hot High True No Overcast Hot High False Yes Rainy Mild High False Yes Rainy Cool Normal False Yes Rainy Cool Normal True No Overcast Cool Normal True Yes Sunny Mild High False No Sunny Cool Normal False Yes Rainy Mild High False Yes Rainy Mild Normal False Yes Sunny Mild Normal False Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Outlook	Temp	Humidity	Windy	Play
Overcast Hot High False Yes Rainy Mild High False Yes Rainy Cool Normal False Yes Rainy Cool Normal True No Overcast Cool Normal True Yes Sunny Mild High False No Sunny Cool Normal False Yes Rainy Mild Normal False Yes Rainy Mild Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Sunny	Hot	High	False	No
Rainy Mild High False Yes Rainy Cool Normal False Yes Rainy Cool Normal True No Overcast Cool Normal True Yes Sunny Mild High False No Sunny Cool Normal False Yes Rainy Mild Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Sunny	Hot	High	True	No
Rainy Cool Normal False Yes Rainy Cool Normal True No Overcast Cool Normal True Yes Sunny Mild High False No Sunny Cool Normal False Yes Rainy Mild Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Overcast	Hot	High	False	Yes
Rainy Cool Normal True No Overcast Cool Normal True Yes Sunny Mild High False No Sunny Cool Normal False Yes Rainy Mild Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Rainy	Mild	High	False	Yes
Overcast Cool Normal True Yes Sunny Mild High False No Sunny Cool Normal False Yes Rainy Mild Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Rainy	Cool	Normal	False	Yes
Sunny Mild High False No Sunny Cool Normal False Yes Rainy Mild Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Rainy	Cool	Normal	True	No
Sunny Cool Normal False Yes Rainy Mild Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Overcast	Cool	Normal	True	Yes
Rainy Mild Normal False Yes Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Sunny	Mild	High	False	No
Sunny Mild Normal True Yes Overcast Mild High True Yes Overcast Hot Normal False Yes	Sunny	Cool	Normal	False	Yes
Overcast Mild High True Yes Overcast Hot Normal False Yes	Rainy	Mild	Normal	False	Yes
Overcast Hot Normal False Yes	Sunny	Mild	Normal	True	Yes
	Overcast	Mild	High	True	Yes
	Overcast	Hot	Normal	False	Yes
Rainy Mild High True No	Rainy	Mild	High	True	No

Primer: "weather" podatki

Out	tlook		Temp	eratur	е	Hui	midity		,	Windy		Pl	ay
	Yes	No		Yes	No		Yes	No		Yes	No	Yes	No
Sunny	2	3	Hot	2	2	High	3	4	False	6	2	9	5
Overcast	4	0	Mild	4	2	Normal	6	1	True	3	3		
Rainy	3	2	Cool	3	1								
Sunny	2/9	3/5	Hot	2/9	2/5	High	3/9	4/5	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	Mild	4/9	2/5	Normal	6/9	1/5	True	3/9	3/5		
Rainy	3/9	2/5	Cool	3/9	1/5								

Napovedovanje "novega" dneva:

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

Verjetje (likelihood) vrednosti razreda:

Za "yes" =
$$2/9 \times 3/9 \times 3/9 \times 3/9 \times 9/14 = 0,0053$$

Za "no" =
$$3/5 \times 1/5 \times 4/5 \times 3/5 \times 5/14 = 0,0206$$

Pretvorba v verjetnosti z uporabo normalizacije:

$$P("yes") = 0,0053 / (0,0053 + 0,0206) = 0,205$$

$$P("no") = 0.0206 / (0.0053 + 0.0206) = 0.795$$

Bayes-ovo pravilo

Verjetnost dohodka H pri poznanih dejstvih E:

$$\Pr[H \mid E] = \frac{\Pr[E \mid H] \Pr[H]}{\Pr[E]}$$

- *A priori* verjetnost hipoteze H: Pr[H]
 - Verjetnost dogodka H preden poznamo dejstva E
- A posteriori verjetnost hipoteze H: Pr[H | E]
 - Verjetnost dogodka H po tem, ko že poznamo dejstva E

povzeto po: Bayes "Essay towards solving a problem in the doctrine of chances" (1763)

Thomas Bayes

Rojen: 1702 v Londonu, Anglija

Preminil: 1761 v Tunbridge Wellsu, Kent, Anglija

Klasifikacija z naivnim Bayes-om

- Klasifikacijsko učenje: kakšna je verjetnost razreda pri poznanih verjetnostih vrednosti ostalih atributov primera?
 - Dejstva E = vrednosti atributov primera
 - Hipoteza H = vrednost razreda pri podanih vrednostih atributov
- <u>Naivna predpostavka</u>: dejstva razdelimo na dele (atribute), ki so *neodvisni*

$$\Pr[H \mid E] = \frac{\Pr[E_1 \mid H] \Pr[E_2 \mid H] ... \Pr[E_n \mid H] \Pr[H]}{\Pr[E]}$$

Primer "weather"

Outlook	Temp.	Humidity	Windy	Play
Sunny	Cool	High	True	?

$$Pr[yes \mid E] = Pr[Outlook = Sunny \mid yes]$$

$$\times Pr[Temperature = Cool \mid yes]$$

$$\times Pr[Humidity = High \mid yes]$$

$$\times Pr[Windy = True \mid yes]$$

$$\times \frac{Pr[yes]}{Pr[E]}$$

$$=\frac{\frac{2}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{3}{9}\times\frac{9}{14}}{\Pr[E]}$$

Problem "frekvenca = nič"

- Kaj pa, če se določena vrednost atributa ne pojavi pri vseh vrednostih razreda? (npr. "Humidity = high" za razred "yes")
 - Verjetnost bo tu enaka nič! $Pr[Humidity = High \mid yes] = 0$
 - A posteriori verjetnost bo prav tako nič! (ne glede na verjetnosti ostalih vrednosti!) $Pr[yes \mid E] = 0$
- <u>Rešitev</u>: dodamo 1 vsem frekvencam v tabeli frekvenc (*Laplace-ova ocena*)
- <u>Rezultat</u>: verjetnosti ne bodo nikoli nič! (še več: stabilizira ocene verjetnosti)

*Popravljene ocene verjetnosti

- Včasih je primerneje dodati kako drugo konstanto, ki je različna od 1
- Primer: atribut outlook za razred yes

$$\frac{2+\mu/3}{9+\mu} \qquad \frac{4+\mu/3}{9+\mu} \qquad \frac{3+\mu/3}{9+\mu}$$
Sunny Overcast Rainy

 Ni nujno, da so uteži enake (njihova vsota pa mora biti vedno 1)

$$\frac{2 + \mu p_1}{9 + \mu}$$
 $\frac{4 + \mu p_2}{9 + \mu}$ $\frac{3 + \mu p_3}{9 + \mu}$

Manjkajoče vrednosti

- Pri učenju: manjkajočih vrednosti ne upoštevamo pri izračunu frekvenc v tabeli frekvenc
- Pri klasifikaciji: atributa ne upoštevamo pri izračunu verjetij
- Primer:

Outlook	Temp.	Humidity	Windy	Play
?	Cool	High	True	?

```
Verjetje za razred "yes" = 3/9 \times 3/9 \times 3/9 \times 9/14 = 0,0238

Verjetje za razred "no" = 1/5 \times 4/5 \times 3/5 \times 5/14 = 0,0343

P("yes") = 0,0238 / (0,0238 + 0,0343) = 41\%

P("no") = 0,0343 / (0,0238 + 0,0343) = 59\%
```

Numerični atributi

 Običajna predpostavka: atributi imajo normalno ali Gaussi-ovo verjetnostno porazdelitev (glede na razred)

 Funkcija gostote verjetnosti za normalno porazdelitev je definirana z dvema parametroma:

Povprečje vzorca μ

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Standardna deviacija σ

$$\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \mu)^2$$

Funkcija gostote verjetnosti f(x) je:

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Karl Gauss, 1777-1855 znani nemški matematik

Primer "weather-numeric"

Out	look		Tempera	ature	Humidity		Windy			Play	
	Yes	No	Yes	No	Yes	No		Yes	No	Yes	No
Sunny	2	3	64, 68,	65, 71,	65, 70,	70, 85,	False	6	2	9	5
Overcast	4	0	69, 70,	72, 80,	70, 75,	90, 91,	True	3	3		
Rainy	3	2	72,	85,	80,	95,					
Sunny	2/9	3/5	μ =73	μ =75	$\mu = 79$	μ =86	False	6/9	2/5	9/14	5/14
Overcast	4/9	0/5	σ =6,2	σ =7,9	σ =10,2	σ =9,7	True	3/9	3/5		
Rainy	3/9	2/5									

Primer izračuna gostote verjetnosti:

$$f(\text{Temperature} = 66 \mid yes) = \frac{1}{\sqrt{2\pi}(6,2)} e^{-\frac{(66-73)^2}{2*(6,2)^2}}$$

Klasifikacija "novega" dneva

"Nov" dan:

Outlook	Temp.	Humidity	Windy	Play
Sunny	66	90	true	?

Verjetje za razred "yes" =
$$2/9 \times 0.0340 \times 0.0221 \times 3/9 \times 9/14 = 0.000036$$

Verjetje za razred "no" = $3/5 \times 0.0291 \times 0.0380 \times 3/5 \times 5/14 = 0.000136$
P("yes") = $0.000036 / (0.000036 + 0.000136) = 20.9\%$
P("no") = $0.000136 / (0.000036 + 0.000136) = 79.1\%$

 Manjkajoče vrednosti v fazi učenja niso vključene v izračun povprečij in standardnih deviacij

Naivni Bayes: diskusija

- Naivni Bayes deluje presenetljivo dobro (čeprav vemo, da "neodvisnosti" atributov ni zadoščeno)
- Zakaj? Ker klasifikacija ne zahteva natančnih ocen verjetnosti dokler največja verjetnost pripada "pravemu" razredu
- <u>Čeprav</u>: dodajanje prevelikega števila redundantnih atributov lahko povzroči težave (npr. popolnoma korelirani atributi)
- Pozor: številni numerični atributi niso normalno porazdeljeni (→ uporaba drugih verjetnostnih porazdelitev, t.i. jedrne funkcije)

Razširitve naivnega Bayes-a

- Izboljšave:
 - izbor "najboljših" atributov (npr. s požrešnim iskanjem);
 - pogosto deluje enako dobro, če ne boljše na podmnožici vseh atributov;

Bayes-ove mreže

Povzetek

- ZeroR ni pravi klasifikator, napove večinski razred
- OneR temelji na pravilih in upošteva en sam atribut
- Naivni Bayes vključuje vse atribute, uporablja Bayes-ovo pravilo za oceno verjetnosti razreda pri podanih vrednostih primera.
- Preproste metode pogosto dobro delujejo, ampak ...
 - zahtevnejše metode so lahko boljše (kot bomo videli kasneje)