MATHEMATICAL FOUNDATION-IV

Time: Three Hours Maximum Marks: 80

Note: Attempt *five* questions are to be attempted. Selecft **one** question from each unit. Question No. 9 (Unit-V) is compulsory.

UNIT-I

1. (a) If $u = e^{xyz}$, show that $\frac{\partial^2 u}{\partial x \partial y \partial z} = e^{xyz} (1 + 3xyz + x^2y^2z^2)$.

(b) Examine for maximum and minimum values of the

function,
$$xy + \frac{a^3}{x} + \frac{a^3}{y}$$
. $a > 0$.

2. (a) If u and v are functions of x and y defined by $x = u + e^{-v} \sin u$ and $y = v + e^{-v} \cos u$.

find
$$\frac{\partial u}{\partial x}$$
 and $\frac{\partial v}{\partial y}$.

(b) Find the minimum value of the function $x^2 + y^2 + z^2$ subject to the condition ax + by + cz = p.

UNIT-II

3.	(a)	Show that $\int_{0}^{\pi} \frac{\sin nx}{\sin x} dx = 0 \text{ or } \pi \text{ according as n}$	is
	(b)		8
4.	(a)	$3ay^2 = x(x - a)^2$. Find the intrinsic equation of the parabola y^2 4ax.	8
	(b)	Find the whole lengtg of the curve $\left(\frac{x}{a}\right)^{2/3} + \left(\frac{y}{b}\right)^{2/3}$	
		1.	8
		UNIT-III	
5.	(a)	Find the area common to the parabola $y^2 = 4x$ and $x^2 = 4y$.	nd 8
	(b)	Evalue $\iint x^2 y^2 dx dy \text{ over } x^2 + y^2 \le 1.$	8
6.	(a)	Evaluate $\int_{0}^{\infty} \int_{0}^{x} x e^{-x^{2}/y} dy dx$	8
	(b)	Find the surface area of a sphere of radius a. UNIT-IV	8
7.	(a)	If $\alpha^2 < 1$, prove that	
		$\int_{0}^{\pi/2} \log(1-\alpha^2 \sin^2 \theta) d\theta = \pi \log \left(\frac{1+\sqrt{1-\alpha^2}}{2}\right).$	8
8.	(b) (a)		8
J.	(a)	Find the equation of right circular cylinder whos	se

guiding circle is $x^2 + y^2 + z^2 = 9$, x - y + z = 3. 8 (b) Find the equation of the sphere which touches the plane 3x + 2y - z = 0 at the point (1, -2, 1) and cuts

UNIT-V

Compulsory Question

9. Attempt all the following:

- (i) Find the equation of the cylinder with genetrator parallel to X-axis and passing through the curve $x^2 + y^2 + 2z^2 = 12$ and x + y + z = 1.
- (ii) Show that the *two* spheres $x^2 + y^2 + z^2 + 6y + 2z + z = 0$, and $x^2 + y^2 + z^2 + 6x + 8y + 4z = -20$

cut orthogonally.

- (iii) Find the centre of the section of the sphere $x^2 + y^2 + z^2 = 25$ by the plane 2x + y + 2z = 9.
- (iv) If u = f(y/x), show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial u} = 0$.
- (v) If u = x(1 y) v = xy, find $\frac{\partial(u, v)}{\partial(x, y)}$.
- (vi) Evalute $\int_{0}^{1} \int_{0}^{1} \frac{dx \, dy}{\sqrt{1-x^2} \sqrt{1-y^2}}$.
- (vii) Prove that $\mu(n) = (n-1) \mu(n-1)$, n > 1, where μ is gamma function.
- (viii) Define Right circular cone.