Лабораторная работа:

Сравнение контейнеров ручной работы и контейнеров из stl

Зависимость объема выделенной памяти от размера вектора при push_back

•Каждый раз, достигая степени двойки, вектор из stl выделяет в 2 раза

больше уже используемой памяти в рассчете на дальнейшее заполнение

Зависимость среднего времени вставки в произвольное место вектора от его размера

Зависимость среднего времени удаления элемента из произвольного места вектора от его размера

•Вектор ручной работы не оптимизирован, поэтому он создает новый вектор, копируя в него элементы старого, чтобы добавить/удалить один элемент. А вектор из stl увеличивает сарасіtу с запасом, как видно из первого графика, и добивается константного времени работы.

•Асимптотика subvector: erase и insert – O(n)

•Асимптотика vector: erase и insert - O(1)

Зависимость среднего времени доступа к произвольному элементу вектора от его размера

константу, в отличие от, например, списка

•Т.к. все элементы в векторе лежат подряд, то доступ к ним возможен за

•Асимптотика: О(1)

Зависимость времени добавления элемента в начало списка от его размера

- •Список из stl при добавлении нового элемента выделяет памяти с запасом, a subforwardlist выделяет для каждого элемента отдельно.
- •Асимптотика: оба работают за O(1), но к subforwardlist прибавляется еще константа выделения памяти

Зависимость времени удаления элемента из начала списка от его размера

поэтому непонятно, почему list из stl работает дольше

•Асимптотика: работают за O(1), но тонкости реализации неизвестны,

Зависимость среднего времени обхода контейнера от его размера

- •Выполняем операцию присваивания значения элемента переменной, чтобы для всех контейнеров получить прибавление одинаковой константы и сравнить более честно
- •Односвязный и двусвязные списки совершают обход одинаково долго, т.к. им приходится разыменовывать все указатели на элементы.
- •Вектор работает быстро, потому что все его элементы лежат в куче подряд
- •Асимптотика: O(n)