Sistemas de numeração

Introdução

Entender os sistemas de numeração é importante porque computadores têm como base a manipulação de dados numéricos.

Assim, é importante compreendermos como os dados são codificados nos sistemas de computação, como trafegam internamente no computador e de que forma viajam ao longo das redes de computadores, dos cabos e outros meios de comunicação existentes.

Como são representadas as quantidades

Vários povos desenvolveram empiricamente algum tipo de sistema de numeração.

Aquele que se revelou o mais prático de todos foi o sistema de numeração decimal, também chamado de base 10.

Tal sistema surgiu pelo fato do homem possuir 10 dedos em suas mãos, sendo mais fácil associar um objeto a cada dedo. Daí surgiram os símbolos usados no sistema decimal.

Por extensão nos demais sistemas, são chamados de dígitos (dedos). 3

Sistemas base 10 e base 2

- Para representar valores o ser humano utiliza o sistema de numeração decimal. Os dígitos do sistema decimal são: 0,1,2,3,4,5,6,7,8 e 9 (Sistema Decimal, base 10);
- Os computadores, por sua vez, utilizam um sistema de numeração conhecido como Sistema Binário, com apenas dois dígitos: 0 (zero) e 1 (um) (Sistema Binário, base 2).

Sistema Binário

É utilizado nos computadores eletrônicos, por representar adequadamente os possíveis estados de componentes eletrônicos:

- Ligado / Desligado
- Aceso / Apagado;

Pode-se associar também os valores:

- •Sim / Não;
- Verdadeiro / Falso, etc.

Sistema Binário

Exemplo do livro do Marçula pag 54.

Sobre as 4 possibilidades de duas lampadas relacionadas ao estado de um carro.

Representação de Caracteres

• **Bit** – **BI**nary Digi**T** é a menor unidade de informação e pode assumir 2 valores: 0 ou 1

• **Byte** - grupo de 8 bits. Cada byte pode armazenar o equivalente a um caractere de nossa linguagem.

1 Caractere = 1 byte = 8 bits → 256 combinações

Para armazenarmos a letra **B** usamos o número binário 01000010.

Quantificação das Informações

- **KB Kilo**byte (mil bytes) $2^{10} = 1.024$ bytes
 - Computador 1^a geração memória 2 KB, 3^a geração 124 KB
 - Disquete de 51/4" (diâmetro em polegadas) 360 KB.
- MB Megabyte (milhão de bytes) 2²⁰ = 1.048.576 bytes.
 Disquete 3,5"→1,44 MB, CD-ROM → 700 MB
- **GB Giga**byte (bilhão de bytes) $2^{30} = 1.073.741.824$ bytes.

 HD 500 GB, DVD 4.7 GB

Quantificação das Informações

- **TB Tera**byte (trilhão de bytes) 2⁴⁰ bytes. Robô de DLT com 6 fitas de 200 GB total de 1.2 TB
- **PB** Petabyte (quatrilhão de bytes) 2⁵⁰ bytes. Dados armazenados em uma fitoteca (Ex INPE)
- EB Exabyte 2⁶⁰ bytes,
- ZB Zettabyte 2⁷⁰ bytes,
- YB Yottabyte 280 bytes.

Representação das informações

 Para permitir que informações humanas pudessem ser representadas no computador foi preciso o desenvolvimento de tabelas de códigos de equivalência específicas para este fim; e expressos em um sistema de numeração adequado;

Exemplos:

- Códigos: ASCII, EBCDIC, UNICODE
- Sistemas de Numeração: Decimal, Binário, Hexadecimal.

Tabela ASCII

A Tabela ASCII (American Standard Code for Information Interchange) é usada pela maior parte da indústria de computadores para a troca de informações. Cada caractere é representado por um código de 8 bits (um byte).

Caractere	Decimal	Hexadecimal	Binário	Comentário
NUL	0	0	0000 0000	Caractere Nulo
SOH	1	1	0000 0001	Começo de cabeçalho de transmissão
STX	2	2	0000 0010	Começo de texto
ETX	3	3	0000 0011	Fim de texto
EOT	4	4	0000 0100	Fim de transmissão

Alguns valores da Tabela ASCII

Caractere	Decimal	Hexadecimal	Binário	Comentário
0	48	30	0011 0000	
1	49	31	0011 0001	
2	50	32	0011 0010	
3	51	33	0011 0011	
4	52	34	0011 0100	
5	53	35	0011 0101	
6	54	36	0011 0110	
7	55	37	0011 0111	
8	56	38	0011 1000	
9	57	39	0011 1001	
:	58	3A	0011 1010	12

Alguns caracteres da Tabela ASCII

Caractere	Decimal	Hexadecimal	Binário	Comentário
A	65	41	0100 0001	
В	66	42	0100 0010	
C	67	43	0100 0011	
D	68	44	0100 0100	
E	69	45	0100 0101	
F	70	46	0100 0110	
a	97	61	0110 0001	
b	98	62	0110 0010	
С	99	63	0110 0011	
d	100	64	0110 0100	
е	101	65	0110 0101	
f	102	66	0110 0110	13

Tabela UNICODE

- Diferentes tabelas geram problemas de adaptação para os usuários, torna mais difícil a configuração e comunicação entre computadores, exige muito dos sistemas de conversão e não padronizam a comunicação.
- Para resolver o problema, empresas interessadas se reuniram e desenvolveram o consórcio UNICODE, cuja missão foi o desenvolvimento de uma tabela única, para codificar todos os caracteres, de todos os idiomas.
- A tabela UNICODE foi desenvolvida com 16 bits podendo representar 65.536 caracteres (2^{16} = 65.536). Agora já trabalha com até 32 bits (2^{32} = 4.294.967.296).

Sistemas mais utilizados

- Decimal (Base 10)
 - usa os algarismos 0, 1, 2, 3, 4, 5, 6, 7, 8 e 9
 - usudo na comunicação humana fora do computador
- Binário (Base 2)
 - usa os algarismos 0 e 1
 - sistema usado pelos computadores
- Hexadecimal (Base 16)
 - usa os 10 algarismos e as letras A, B, C, D, E e F
 - é usado para representar números grandes, tais como os endereços de memória.

Valor Absoluto e Valor Relativo

Valores são representados por símbolos que no caso da base 10 são 0,1,2,3,4,5,6,7,8,9. Esses símbolos são associados a quantidades absolutas, porém além do valor absoluto, cada dígito possui também um valor relativo ou posicional.

Ex:

10 - 1 representa 1 grupo de 10 unidades 0 representa 0 grupo de 1 unidade. 10 = 1*10 + 0*1

999 – o 9 a esquerda representa 9 grupos de 100 unidades o 9 do meio representa nove grupos de 10 unidades o 9 da direita representa um grupo de 1 unidade. 999 = 9*100 + 9*10 + 9*1 = 900 + 90 + 9

Exemplo

Para entendermos melhor o conceito de número ponderado tomemos o número que corresponde à superfície do território brasileiro: 8.547.403 km²

```
8.547.403 = 8.000.000 + 500.000 + 40.000 +
7.000 + 400 + 00 + 3
= 8*1.000.000 + 5*100.000 + 4*10.000 +
7*1.000 + 4*100 + 0*10 + 3*1
= 8*10^6 + 5*10^5 + 4*10^4 + 7*10^3 + 4*10^2 +
0*10^1 + 3*10^0
```

Equação Ponderada de um Número

$$N = a_n b^{n-1} + a_{n-1} b^{n-2} + a_{n-2} b^{n-3} + \dots + a_3 b^2 + a_2 b^1 + a_1 b^0$$

Onde:

N = o número representado;

a = algarismo ou dígito;

b = base do sistema;

n = número de dígitos do numeral.

Exemplo

$$N = a_n b^{n-1} + a_{n-1} b^{n-2} + a_{n-2} b^{n-3} + \dots + a_3 b^2 + a_2 b^1 + a_1 b^0$$

1996₍₁₀₎
n = 4
b = 10
N =
$$a_4 b^3 + a_3 b^2 + a_2 b^1 + a_1 b^0$$

$$1996 = 1 * 10^3 + 9 * 10^2 + 9 * 10^1 + 6 * 10^0$$

Conversão de Sistemas de Numeração

Conversão da base 2 para base 10

Exemplo:

$$(101101110)_2 = (?)_{10}$$

 $1.2^8 + 0.2^7 + 1.2^6 + 1.2^5 + 0.2^4 + 1.2^3 + 1.2^2 + 1.2^1 + 0.2$
 $0 =$

$$1.256+0.128+1.64+1.32+0.16+1.8+1.4+1.2+0$$
 $.1 =$

$$256 + 0 + 64 + 32 + 0 + 8 + 4 + 2 + 0 = 366$$

Conversão de Sistemas de Numeração

Conversão da base 10 para base 2 Exemplo:

- \bullet 61₁₀ = (?)₂
- Sucessão de divisão do número inicial pela base 2, até ser obtido quociente menor que 2.

•
$$61_{10} = 00111101_2$$

Sistema Numérico Binário

No sistema binário, podemos representar qualquer quantidade utilizando apenas dois dígitos (0 e 1).

Equação Ponderada de Número Binário

Ex.
$$110_{(2)}$$
 n = 3 b = 2
N = $a_n * b^{n-1} + a_{n-1} * b^{n-2} + a_{n-2} * b^{n-3}$
N = $a_3 * b^{3-1} + a_{3-1} * b^{3-2} + a_{3-2} * b^{3-3}$
N = $1 * 2^2 + 1 * 2^1 + 0 * 2^0$
N = $4 + 2 + 0 = 6$
 $110_{(2)} = 6_{(10)}$

Operadores lógicas

AND

OR

X	Y	R
0	0	0
0	1	0
1	0	0
1	1	1

X	Y	R
0	0	0
0	1	1
1	0	1
1	1	1

Qual o endereço de rede do IP 10.34.23.134 com uma máscara 255.0.0.0?

- A operação booleana AND sobre o endereço IP e a máscara de sub-rede produz o endereço de rede deste host.
- Convertendo o resultado para decimal pontuado temos 10.0.0.0 que representa a parte do endereço IP correspondente à rede.