Programme de colle - Semaine 6

Notation

On adoptera les principes suivants pour noter les étudiants :

- \times si l'étudiant sait répondre à la question de cours, il aura une note > 8.
- \times si l'étudiant ne sait pas répondre à la question de cours ou s'il y a trop d'hésitations, il aura une note ≤ 8 .

Questions de cours

- Propriétés d'une probabilité On choisira 3 propriétés à démontrer parmi les suivantes : Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé. Alors
 - 1. Pour tous événements A et B tel que $A \subset B$, alors $\mathbb{P}(A) \leqslant \mathbb{P}(B)$.
 - 2. Pour tout événement $A \in \mathcal{A}$, $\mathbb{P}(\overline{A}) = 1 \mathbb{P}(A)$. En particulier, $\mathbb{P}(\emptyset) = 0$.
 - 3. $\mathbb{P}(B \setminus A) = \mathbb{P}(B) \mathbb{P}(A \cap B)$
 - 4. $\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) \mathbb{P}(A \cap B)$ $\mathbb{P}(A \cup B \cup C) = \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$ 5. $- \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) - \mathbb{P}(B \cap C)$ $+ \mathbb{P}(A \cap B \cap C)$

(formule du crible)

Preuve.

1. Pour tous événements A et B, les événements $A \cap B$ et $\overline{A} \cap B$ sont incompatibles. Si $A \subset B$ alors $A \cap B = A$. Ainsi

$$\mathbb{P}(B) = \mathbb{P}\big((A \cap B) \cup (\overline{A} \cap B)\big) = \mathbb{P}(A \cap B) + \mathbb{P}(\overline{A} \cap B) = \mathbb{P}(A) + \underbrace{\mathbb{P}(\overline{A} \cap B)}_{\geqslant 0}.$$

Donc $\mathbb{P}(B) \geqslant \mathbb{P}(A)$.

- 2. A et \overline{A} forment un système complet d'événements donc $\mathbb{P}(\Omega) = \mathbb{P}(A \cup \overline{A}) = \mathbb{P}(A) + \mathbb{P}(\overline{A})$. Donc $\mathbb{P}(A) = 1 \mathbb{P}(A)$.
- 3. On a : $(A \setminus B) \cup (A \cap B) = A$ (réunion disjointe). Ainsi, par σ -additivité :

$$\mathbb{P}((A \setminus B) \cup (A \cap B)) = \mathbb{P}(A \setminus B) + \mathbb{P}(A \cap B) = \mathbb{P}(A)$$

4. On a : $A \cup B = A \cup (B \setminus A)$ (la deuxième réunion est disjointe). On en déduit, à l'aide du point **2**) que :

$$\begin{split} \mathbb{P}(A \cup B) &= \mathbb{P}(A \cup (B \setminus A)) \\ &= \mathbb{P}(A) + \mathbb{P}(B \setminus A) \\ &= \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B) \end{split}$$

5. Généralisation de la formule précédente :

$$\begin{split} \mathbb{P}(A \cup B \cup C) \\ &= \mathbb{P}(A \cup (B \cup C)) \\ &= \mathbb{P}(A) + \mathbb{P}(B \cup C) - \mathbb{P}(A \cap (B \cup C)) \\ &= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(B \cap C) - \mathbb{P}(A \cap (B \cup C)) \\ &= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(B \cap C) - \mathbb{P}((A \cap B) \cup (A \cap C)) \\ &= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) - \mathbb{P}(B \cap C) - \mathbb{P}((A \cap B) \cap (A \cap C)) \\ &- (\mathbb{P}(A \cap B) + \mathbb{P}(A \cap C) - \mathbb{P}((A \cap B) \cap (A \cap C))) \\ &= \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C) \\ &- \mathbb{P}(B \cap C) - \mathbb{P}(A \cap B) - \mathbb{P}(A \cap C) \\ &+ \mathbb{P}(A \cap B \cap C) \end{split}$$

• Probabilité conditionnelle

Soit $(\Omega, \mathscr{A}, \mathbb{P})$ un espace probabilisé fini. Soit B un événement tel que $\mathbb{P}(B) \neq 0$. Alors l'application $\mathbb{P}_B : A \mapsto \mathbb{P}_B(A)$ est une probabilité sur Ω .

Preuve.

Il s'agit de vérifier que \mathbb{P}_A vérifie les axiomes d'une probabilité.

1. Soit $B \in \mathscr{A}$.

• Comme
$$\mathbb{P}(A \cap B) \geqslant 0$$
 et $\mathbb{P}(A) > 0$ (car $\mathbb{P}(A) \neq 0$), on a : $\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} \geqslant 0$

• Comme
$$A \cap B \subset A$$
, on a $\mathbb{P}(A \cap B) \leqslant \mathbb{P}(A)$ et donc : $\frac{\mathbb{P}(A \cap B)}{\mathbb{P}(A)} \leqslant 1$

2.
$$\mathbb{P}_A(\Omega) = \frac{\mathbb{P}(A \cap \Omega)}{\mathbb{P}(A)} = \frac{\mathbb{P}(A)}{\mathbb{P}(A)} = 1$$

3. Soit $(B_n)_{n\in\mathbb{N}}$ une suite d'événements deux à deux incompatibles. Alors :

$$\mathbb{P}_{A}\left(\bigcup_{n=0}^{+\infty}B_{n}\right) = \frac{\mathbb{P}\left(A \cap \bigcup_{n=0}^{+\infty}B_{n}\right)}{\mathbb{P}(A)} = \frac{\mathbb{P}\left(\bigcup_{n=0}^{+\infty}(A \cap B_{n})\right)}{\mathbb{P}(A)}$$

Notons alors $C_n = A \cap B_n$.

Les événements de la suite (C_n) sont deux à deux incompatibles.

En effet, si $i \neq j$:

$$C_i \cap C_j = (A \cap B_i) \cap (A \cap B_j) = A \cap (B_i \cap B_j) = A \cap \emptyset = \emptyset$$

Par σ -additivité de \mathbb{P} , on a alors : $\mathbb{P}\left(\bigcup_{n=0}^{+\infty} (A \cap B_n)\right) = \sum_{n=0}^{+\infty} \mathbb{P}(A \cap B_n)$.

Et ainsi:

$$\mathbb{P}_{A}\left(\bigcup_{n=0}^{+\infty} B_{n}\right) = \frac{\sum_{n=0}^{+\infty} \mathbb{P}(A \cap B_{n})}{\mathbb{P}(A)} = \sum_{n=0}^{+\infty} \frac{\mathbb{P}(A \cap B_{n})}{\mathbb{P}(A)} = \sum_{n=0}^{+\infty} \mathbb{P}_{A}(B_{n})$$

• Variance d'une $\mathcal{G}(p)$

Soit $p \in]0,1[$ et soit $X \hookrightarrow \mathcal{G}(p)$. Alors

 ${\it 1.}~X$ admet une espérance et une variance

2. De plus :
$$\mathbb{E}(X) = \frac{1}{p}$$
 et $\mathbb{V}(x) = \frac{1-p}{p^2}$.

Preuve.

Calculons $\mathbb{E}(X^2)$:

On rappelle que $k^2 = k(k-1) + k$. Soit $n \in \mathbb{N}$.

$$\sum_{k=1}^{n} k^{2} \mathbb{P}([X=k]) = \sum_{k=1}^{n} k(k-1)p(1-p)^{k-1} + \sum_{k=1}^{n} kp(1-p)^{k-1} \qquad (car \ k^{2} = k(k-1) + k)$$

$$= p(1-p)\sum_{k=1}^{n} k(k-1)(1-p)^{k-2} + p\sum_{k=1}^{n} k(1-p)^{k-1}$$

$$= p(1-p)\sum_{k=2}^{n} k(k-1)(1-p)^{k-2} + p\sum_{k=1}^{n} k(1-p)^{k-1} \qquad (car \ 1(1-1)(1-p)^{1-2} = 0)$$

On reconnaît la série géométrique dérivée $\sum\limits_{k\geqslant 1}k(1-p)^{k-1}$ et la série géométrique dérivée deux fois

 $\sum_{k\geqslant 2} k(k-1)(1-p)^{k-2}$ toutes deux de raison $(1-p)\in]0,1[$ qui sont des séries convergentes.

Donc X admet un moment d'ordre 2, donc une variance. Et on a :

$$\mathbb{E}(X^2) = p(1-p) \sum_{k=2}^{+\infty} k(k-1)(1-p)^{k-2} + p \sum_{k=1}^{+\infty} k(1-p)^{k-1}$$

$$= p(1-p) \frac{2}{(1-(1-p))^3} + p \frac{1}{(1-(1-p))^2}$$

$$= 2 \frac{1-p}{p^2} + \frac{1}{p}$$

$$= \frac{2}{p^2} - \frac{1}{p}$$

D'après la formule de Koenig-Huyghens, on en déduit que

$$\mathbb{V}(X) = \mathbb{E}(X^2) - \mathbb{E}(X)^2 = \frac{2}{p^2} - \frac{1}{p} - \frac{1}{p^2} = \frac{1}{p^2} - \frac{1}{p} = \frac{1-p}{p^2}$$

Connaissances exigibles

- définition de tribu, probabilité
- événements incompatibles, système complet d'événements, indépendance
- probabilités conditionnelles, formule de Bayes
- formule du crible, formule des probabilités totales, formule des probabilités composées
- v.a.r. discrètes finies et infinies, leurs lois (usuelles ou non)
- espérance, théorème de transfert, moments, variance, formule de Koenig-Huygens
- variables aléatoires discrètes finies et infinies, leurs lois
- variables aléatoires discrètes usuelles (finies et infinies), leurs espérances et variances.
- Les colleurs sanctionneront **très sévèrement** les confusions entre objets mathématiques : probabilité / événement, variable aléatoire / événement, etc.
- l'indépendance entre v.a.r. n'a pas encore été abordée.