级数收敛的判别与幂级数的收敛

1. 数项级数收敛的判别

[**柯西准则**] 级数 $\sum_{n=1}^{\infty} a_n$ 收敛的充分必要条件是: $\forall \varepsilon > 0, \exists N = N(\varepsilon) \in N^*$ 使得当 n > N 时, 对一切 $p \in N^*, |A_{n+p} - A_n| = \left| \sum_{i=n+1}^{n+p} a_i \right| < \varepsilon$ 成立.

[级数收敛的必要条件] 级数 $\sum_{n=1}^{\infty} a_n$ 收敛 $\Rightarrow \lim_{n\to\infty} a_n = 0$.

[同号级数收敛判别法]

达朗贝尔判别法 (比值审敛法): 若 $a_n > 0 (n \in N^*)$, $\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = q$, 则当 q < 1 时级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 当 q > 1 时级数 $\sum_{n=1}^{\infty} a_n$ 发散.

柯西判别法 (根值审敛法): 若 $a_n \ge 0 (n \in N^*)$, $\lim_{n \to \infty} \sqrt[n]{a_n} = 1$, 则当 q < 1 时级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 当 q > 1 时级数 $\sum_{n=1}^{\infty} a_n$ 发散.

极限审敛法: 对于 $a_n > 0 (n \in N^*)$, 级数 $\sum_{n=1}^{\infty} a_n$:

- (1). 若满足 $\lim_{n\to\infty} na_n = l > 0$,则级数 $\sum_{n=1}^{\infty} a_n$ 发散;
- (2). 若 $\exists p>1$ 满足 $\lim_{n\to\infty}n^pa_n=l\geq 0$ 且 $l<+\infty$, 则级数 $\sum_{n=1}^\infty a_n$ 收敛.

[**数项级数的绝对收敛**] 若级数 $\sum\limits_{n=1}^{\infty}a_n$ 收敛, 并且级数 $\sum\limits_{n=1}^{\infty}|a_n|$ 也收敛, 则称级数 $\sum\limits_{n=1}^{\infty}a_n$ 绝对收敛.

[**数项级数的条件收敛**] 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 而级数 $\sum_{n=1}^{\infty} |a_n|$ 发散, 则称级数 $\sum_{n=1}^{\infty} a_n$ 条件收敛.

[变号级数收敛判别法]

莱布尼兹判别法 (交错级数审敛法): 若交错级数 $\sum\limits_{n=1}^{\infty} (-1)^{n-1}a_n$ 满足条件 $a_n \geq a_{n+1}$, 且 $\lim\limits_{n \to \infty} a_n = 0$, 则该级数收敛.

达朗贝尔判别法: 若变号级数 $\sum\limits_{n=1}^{\infty}a_n$ 满足 $\lim\limits_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=l$,则当 l<1 时,级数 $\sum\limits_{n=1}^{\infty}a_n$ 绝对收敛; 当 l>1 时,级数 $\sum\limits_{n=1}^{\infty}a_n$ 发散.

狄里克莱判别法: 若部分和 $A_n = \sum_{i=1}^n a_i$ 有界, b_n 单调且 $\lim_{n\to\infty} b_n = 0$, 则级数 $\sum_{n=1}^\infty a_n b_n$ 收敛.

阿贝尔判别法: 若级数 $\sum_{n=1}^{\infty} a_n$ 收敛, 且 $b_n(n \in N*)$ 为单调有界数列, 则级数 $\sum_{n=1}^{\infty} a_n b_n$ 收敛.

2. 函数项级数收敛的判别

[函数项级数的逐点收敛] 若函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 对每一个 $x \in [a,b]$ 的部分和 $S_n(x) = \sum_{k=1}^{n} u_k(x)$ 都有极限 $\lim_{n \to \infty} S_n(x) = \lim_{n \to \infty} \sum_{k=1}^{\infty} u_k(x) = S(x)$, 则函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在区间 [a,b] 上逐点收敛, 函数 S(x) 是它的和, 区间 [a,b] 是它的收敛区域.

[函数项级数的一致收敛] 若函数项级数 $\sum\limits_{n=1}^{\infty}u_n(x)$ 对于 $\forall \varepsilon>0, \exists N=N(\varepsilon)\in N*$,使得当 n>N 时,对 $x\in I$,都有 $|r_n(x)|=|S(x)-S_n(x)|<\varepsilon$ 成立,则函数项级数 $\sum\limits_{n=1}^{\infty}u_n(x)$ 在区间 I 上一致收敛于和 S(x). 也称函数序列 $\{S_n(x)\}$ 在区间 I 上一致收敛于 S(x).

[函数项级数一致收敛的几何意义] 若函数项级数 $\sum\limits_{n=1}^{\infty}u_n(x)$ 在区间 I 上一致收敛于和 $S(x), \forall \varepsilon > 0$, 则 $\exists N \in N^*$, 当 n > N 时,每一个 $x \in I$ 的部分和 $S_n(x) = \sum\limits_{i=1}^n u_i(x)$,曲线 $S_n(x)$ 都将位于 $y = S(x) + \varepsilon$ 与 $y = S(x) - \varepsilon$ 之间.

[函数项级数一致收敛的判别法]

柯西准则: 函数项级数 $\sum_{n=1}^{\infty} u_n(x)$ 在区间 [a,b] 上一致收敛的充分必要条件是: 对 $\forall \varepsilon > 0$, $\exists N = N(\varepsilon) \in N^*$, 当 n > N 时使 $|S_{n+p}(x) - S_n(x)| = \left|\sum_{k=n+1}^{n+p} u_k(x)\right| < \varepsilon$ 对 $\forall p \in N$ 以及 $\forall x \in [a,b]$ 成立.

外尔斯特拉斯判别法: 对于函数项级数 $\sum_{n=1}^{\infty} u_n(x)$, 若有收敛的数项级数 $\sum_{n=1}^{\infty} a_n$ 存在,且 $\forall x \in [a,b], |u_n(x)| \leq a_n (n \in N^*)$ 成立,则级数 $\sum_{n=1}^{\infty} u_n(x)$ 在区间 [a,b] 上绝对且一致收敛.

狄里克莱判别法: 若级数 $\sum_{n=1}^{\infty} u_n(x)$ 的部分和对 $\forall x \in [a,b]$ 和 $n \in N^*$ 都有 $S_n(x) \leq M$, 函数序列 $\{v_n(x)\}$ 对 $\forall x \in [a,b]$ 都单调且 $\lim_{n \to \infty} = 0$, 则级数 $\sum_{n=1}^{\infty} u_n(x)v_n(x)$ 在区间 [a,b] 上一致收敛.

阿贝尔判别法: 若级数 $\sum\limits_{n=1}^{\infty}u_n(x)$ 在区间 [a,b] 上一致收敛, 函数序列 $\{v_n(x)\}$ 对每个 x 是单调序列, 且 $\forall x \in [a,b]$ 和 $\forall n \in N^*$ 都有 $|v_n(x)| \leq M$, 则级数 $\sum\limits_{n=1}^{\infty}u_n(x)v_n(x)$ 在区间 [a,b] 上一致收敛.

3. 幂级数的收敛

[**幂级数的绝对收敛性**] 若幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x = \alpha$ 时收敛, 则 $\forall x \in \{x | x \in R, |x| < |\alpha|\}$, 级数 $\sum_{n=0}^{\infty} a_n x^n$ 都绝对收敛.

[**收敛半径与收敛区间**] 对于任何幂级数 $\sum_{n=0}^{\infty} a_n x^n, \exists R \in [0, +\infty), \$ 使当 |x| < R 时级数绝对收敛,当 |x| > R 时级数发散. 这个数 R 称为给定级数的收敛半径, 区间 (-R, R) 为它的收敛区间. 但在区间端点 x = -R 和 x = R 处级数可能收敛也可能发散.

[幂级数收敛半径的计算]

柯西-阿达玛公式:
$$\frac{1}{R} = \lim_{n \to \infty} \sqrt[n]{|a_n|}$$

另一个公式:
$$\frac{1}{R} = \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

[幂级数和的连续性] 幂级数的和在收敛区间内每一点都连续.

[**幂级数的逐项积分**] 在幂级数的收敛区间内任一点 x 都有 $\int_0^x S(x) dx = \sum_{n=0}^\infty a_n \int_0^x x^n dx = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$.

[**幂级数的逐项微分**] 若幂级数的和 S(x) 在该级数的收敛区间内任一点 x 都可微, 则逐项微分的和 $\sum_{n=0}^{\infty}a_n\frac{dx^n}{dx}=\sum_{n=0}^{\infty}na_nx^{n-1}=\frac{dS(x)}{dx}=S'(x)$ 且与原幂级数有同样的收敛半径.