Data Science

Agenda

- Support Vector Machine
- Non-linear classification, Kernels
- Noisy examples
- SVM Practice in Python

Q: How would you build a classifier for this problem?

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: Which line is the best?

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: Which line is the best? Why?

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: Which line is the best? Why?

A: Minimizes the generalization error

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: Which line is the best? Why?

A: Minimizes the generalization error. Maximizes the margin

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: Which line is the best? Why?

A: Minimizes the generalization error. Maximizes the margin

Q: What's the margin?

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: Which line is the best? Why?

A: Minimizes the generalization error. Maximizes the margin

Q: What's the margin?
A: Distance from the line to the closest points of each class

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: Which line is the best? Why?

A: Minimizes the generalization error. Maximizes the margin

Q: What's the margin?
A: Distance from the line to the closest points of each class

These points are called the **Support Vectors**

Q: How would you build a classifier for this problem?

A: A line can separate the classes (linearly separable)

Q: Which line is the best? Why?

A: Minimizes the generalization error. Maximizes the margin

Q: What's the margin?
A: Distance from the line to the closest points of each class

These points are called the **Support Vectors**

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1} How is this done?

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

Set the separating line to: $w^Tx+b=0$

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

Set the separating line to: $w^Tx+b=0$

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

 $w^Tx+b=0$ Set class 1 line to: $w^Tx+b=1$ Set class -1 line to: $w^{T}x+b = -1$

Set the separating line to:

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

 w is perpendicular to the lines

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

- w is perpendicular to the lines
- Margin M = 2/||w||

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

- w is perpendicular to the lines
- Margin M = 2/||w||
 - Max M = Max 2/||w||

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

- w is perpendicular to the lines
- Margin M = 2/||w||
 - Max M = Max 2/||w||
- Minimize $||w||^2/2$

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

- w is perpendicular to the lines
- Margin M = 2/||w||
 - Max M = Max 2/||w||
- Minimize $||w||^2/2$
- s.t. $y_i(w^Tx_i + b) >= 1$

Support Vector Machine: Binary linear classifier with the maximum margin. Let the classes be {-1,+1}

How is this done? (Remember equation of line $f(x) = w^{T}x+b$)

- w is perpendicular to the lines
- Margin M = 2/||w||
 - Max M = Max 2/||w||
- Minimize $||w||^2/2$
- s.t. $y_i(w^Tx_i + b) >= 1$
- Classify: $f(x) = sign(w^Tx + b)$

- Objective:
 - Minimize $||w||^2/2$
 - S.T. $y_i(w^Tx_i + b) >= 1$
- It turns out that we can reformulate this problem to:
 - $-\operatorname{\mathsf{Max}} \Sigma_{\mathbf{i}}\alpha_{\mathbf{i}}\text{-}1/2\ \Sigma_{\mathbf{i}\mathbf{j}}\alpha_{\mathbf{i}}\alpha_{\mathbf{j}}y_{\mathbf{i}}y_{\mathbf{j}}x_{\mathbf{i}}{}^{\mathrm{T}}x_{\mathbf{j}}$
 - s.t. $\alpha_i >= 0$ and $\Sigma_i \alpha_i y_i = 0$
- Then $w = \sum_{i} \alpha_{i} y_{i} x_{i}$
- It turns out that $\alpha_i = 0$ for non support vectors
- Now we can classify by: $f(x) = sign(\Sigma_i \alpha_i y_i < x_i, x >)$
- Note that this is line Nearest Neighbors where the neighbors have been selected for you

Q: What happens if our data is not linearly separable?

Q: What happens if our data is not linearly separable?

A: Transform the features to a higher dimensional space where the data is linearly separable

Q: What happens if our data is not linearly separable?

A: Transform the features to a higher dimensional space where the data is linearly separable

These feature transformations can be computationally difficult

- These feature transformations can be computationally difficult
- We are saved by the following:

- These feature transformations can be computationally difficult
- We are saved by the following:
 - We don't need to know all the points just their inner products

- These feature transformations can be computationally difficult
- We are saved by the following:
 - We don't need to know all the points just their inner products
 - If z_1 , z are the transformations of the original x_1 , x it can be shown that $\langle z_1, z \rangle = K(x_1, x)$ where K is something called a kernel function

- These feature transformations can be computationally difficult
- We are saved by the following:
 - We don't need to know all the points just their inner products
 - If z_1 , z are the transformations of the original x_1 , x it can be shown that $\langle z_1, z \rangle = K(x_1, x)$ where K is something called a kernel function
- Common Kernel functions:
 - Gaussian: $K(x_1,x) = \exp(-||x_1-x||^2/(2\sigma^2))$
 - Linear: $K(x_1,x) = \langle x_1,x \rangle$
 - Polynomial: $K(x_1,x) = \exp(\langle x_1,x \rangle + a)^r$

- These feature transformations can be computationally difficult
- We are saved by the following:
 - We don't need to know all the points just their inner products
 - If z_1 , z are the transformations of the original x_1 , x it can be shown that $\langle z_1, z \rangle = K(x_1, x)$ where K is something called a kernel function
- Common Kernel functions:
 - Gaussian: $K(x_1,x) = \exp(-||x_1-x||^2/(2\sigma^2))$
 - Linear: $K(x_1,x) = \langle x_1,x \rangle$
 - Polynomial: $K(x_1,x) = \exp(\langle x_1,x \rangle + a)^r$
- Our new classifier is now $f(x) = sign(\Sigma_i \alpha_i y_i K(x_i, x))$

Q: What happens if our data is not linearly separable as in this case?

Q: What happens if our data is not linearly separable as in this case?

A: We introduce the idea of a slack variable:

- $-\zeta_i$ is a slack variable
- Now solve min $||w||^2 + C\Sigma_i \zeta_i$
- Now the constraint is $y_i(w^Tx_i + b) >= 1-\zeta_i$ where $\zeta_i >= 0$

• We want to find the maximum margin classifier

- We want to find the maximum margin classifier
- This is done via min $||w||^2/2$ s.t. $y_i(w^Tx_i + b) >= 1$

- We want to find the maximum margin classifier
- This is done via min $||w||^2/2$ s.t. $y_i(w^Tx_i + b) >= 1$
- We can reformulate this as:
 - Max $\Sigma_i \alpha_i$ -1/2 $\Sigma_{ij} \alpha_i \alpha_j y_i y_j x_i^T x_j$
 - s.t. $\alpha_i >= 0$ and $\Sigma_i \alpha_i y_i = 0$
 - Where $\alpha_i = 0$ for non support vectors. Example selection

- We want to find the maximum margin classifier
- This is done via min $||w||^2/2$ s.t. $y_i(w^Tx_i + b) >= 1$
- We can reformulate this as:
 - Max $\Sigma_i \alpha_i$ -1/2 $\Sigma_{ij} \alpha_i \alpha_j y_i y_j x_i^T x_j$
 - s.t. $\alpha_i >= 0$ and $\Sigma_i \alpha_i y_i = 0$
 - Where $\alpha_i = 0$ for non support vectors. Example selection
- When the decision boundary is non-linear we use kernels to find the inner product in higher dimensional spaces where the data is linearly separable

- We want to find the maximum margin classifier
- This is done via min $||w||^2/2$ s.t. $y_i(w^Tx_i + b) >= 1$
- We can reformulate this as:
 - Max $\Sigma_i \alpha_i 1/2 \Sigma_{ij} \alpha_i \alpha_j y_i y_j x_i^T x_j$
 - s.t. $\alpha_i >= 0$ and $\Sigma_i \alpha_i y_i = 0$
 - Where $\alpha_i = 0$ for non support vectors. Example selection
- When the decision boundary is non-linear we use kernels to find the inner product in higher dimensional spaces where the data is linearly separable
- When we have noisy data we introduced slack variables, ζ_i , so the new optimization problem becomes:
 - solve min $||w||^2 + C\Sigma_i \zeta_i$
 - S.t. $y_i(w^Tx_i + b) >= 1-\zeta_i$ and $\zeta_i >= 0$

- We want to find the maximum margin classifier
- This is done via min $||w||^2/2$ s.t. $y_i(w^Tx_i + b) >= 1$
- We can reformulate this as:
 - Max $\Sigma_i \alpha_i 1/2 \Sigma_{ij} \alpha_i \alpha_j y_i y_j x_i^T x_j$
 - s.t. $\alpha_i >= 0$ and $\Sigma_i \alpha_i y_i = 0$
 - Where $\alpha_i = 0$ for non support vectors. Example selection
- When the decision boundary is non-linear we use kernels to find the inner product in higher dimensional spaces where the data is linearly separable
- When we have noisy data we introduced slack variables, ζ_i , so the new optimization problem becomes:
 - solve min $||w||^2 + C\Sigma_i \zeta_i$
 - S.t. $y_i(w^Tx_i + b) >= 1-\zeta_i$ and $\zeta_i >= 0$
- We can classify new points with $f(x) = sign(\Sigma_i \alpha_i y_i K(x_i, x))$

Questions?