Digital Image Processing (CSE/ECE 478) Lecture3: Spatial Filtering

Vineet Gandhi

Center for Visual Information Technology (CVIT), IIIT Hyderabad

Before we proceed...

- Lectures slides will be uploaded after the end of each class
- First assignment coming up today
- For matlab tutorial, write to sajal.maheshwari@students.iiit.ac.in
- Subscribe to CSE478 mailing list

Lets review last lecture!

What we have seen so far!

1. Intensity Transformation Functions

2. Histogram Processing

Spatial Filtering

The idea of neighbourhood

- 4 neighbours, 8 neighbours
- Example: Paint fill
- Focus of this lecture is on spatial filtering
- More when we study morphological operations

Spatial Filtering

$$g(x.y) = w(-1,-1)f(x-1,y-1) + w(-1,0)f(x-1,y)...$$

+ $w(0,0)f(x,y) + ... + w(1,1)f(x+1,y+1)$

Smoothing Linear Filters

Square averaging filter mask size: 3,5,9,15,35

Smoothing Gaussian Filters

Smoothing Gaussian Filters

 5×5 Gaussian filter, $\sigma = 3$

Smoothing Linear Filters

Application for Noise removal using 15×15 mask

Sharpening with Laplacian Filters

Laplacian Filters

Sharpening with Laplacian Filters

$$g_{mask}(x,y) = f(x,y) - \bar{f}(x,y), \quad g(x,y) = f(x,y) + k * g_{mask}(x,y).$$

Other Spatial Filters (first order derivative)

				-1	0	+1	+1	+2	+1
+1	0	0	+1	-2	0	+2	0	0	0
0	-1	-1	0	-1	0	+1	-1	-2	-1

Robert Cross Gradient Operator

Sobel Gradient Operator

Other Spatial Filters

0	+1	
-1	0	

-1	0	+1
-2	0	+2
-1	0	+1

+1	+2	+1
0	0	0
-1	-2	-1

Other Spatial Filters (non linear)

max filter

Other Spatial Filters (non linear)

min filter

Other Spatial Filters (median filter – non linear)

max, min, median → also known as order statistic filters

Other Spatial Filters

- Geometric mean
- Harmonic mean
- Contra harmonic mean
- Mid Point filter
- Alpha trimmed mean filter
-

More details when we will study advanced noise removal techniques

Original image taken from cs.cityu.edu.hk

Usual Gaussian Filtering

Same Gaussian kernel everywhere.

The kernel shape depends on the image content.

Noisy input

Bilateral filter 7x7 window

Bilateral filter Median 3x3

Bilateral filter Median

