

# Chapitre II - Continuité et dérivabilité

 ${\sf Bacomathiques-https://bacomathiqu.es}$ 

| Table des matières                                                                  |                       |  |  |  |  |
|-------------------------------------------------------------------------------------|-----------------------|--|--|--|--|
| I - Continuité         1. Définition         2. Théorème des valeurs intermédiaires | 1<br>1<br>1<br>2      |  |  |  |  |
| 3. La partie entière [x]                                                            | 3<br>3<br>3<br>3<br>4 |  |  |  |  |
| III - Tables de dérivation  1. Dérivées usuelles                                    | 5<br>5<br>5<br>6      |  |  |  |  |

#### I - Continuité

#### 1. Définition

Soient f une fonction définie sur un intervalle I et un réel  $a \in I$ . La fonction f est continue en a si on a :

$$\lim_{x \to a} f(x) = f(a)$$

f est dite continue sur I, si on peut appliquer la formule ci-dessus à tous les réels de l'intervalle I

On dit de manière générale qu'une fonction est continue sur un intervalle s'il est possible de tracer sa courbe représentative sur cet intervalle "sans lever le crayon".

- Toute somme, produit, composée ou quotient (avec le dénominateur ne s'annulant pas) de fonctions continues est également continue sur le même intervalle.
- Toute fonction dérivable sur un intervalle est continue sur cet intervalle (la réciproque n'est pas vraie cependant).

**Exemple**: la fonction  $x \mapsto \frac{1}{x}$  est continue en tout point de son ensemble de définition  $(\mathbb{R}^*)$  mais n'est pas continue sur  $\mathbb{R}$ .

### 2. Théorème des valeurs intermédiaires

Soient f une fonction, a et b deux réels tels que a < b. Voici l'énonce du théorème des valeurs intermédiaires appliqué à f et à a et b :

Si f est continue sur [a;b], alors pour tout réel  $y_0$  si on a  $f(a) < y_0 < f(b)$  (ou  $f(a) > y_0 > f(b)$ ), il existe **au moins** un réel  $x_0 \in [a;b]$  tel que  $f(x_0) = y_0$ .

#### Ce théorème est très important!

Voici un exemple : prenons  $f(x)=x^3+x^2-x$  et prouvons qu'il existe au moins un réel  $x_0\in[0;3]$  tel que  $f(x_0)=5$ . On a f(0)=0 et f(3)=33. D'après le théorème des valeurs intermédiaires, comme f est continue sur [0;3] et que 0<5<33, il existe un réel  $x_0\in[0,3]$  tel que  $f(x_0)=5$ .

On peut encore tenter d'affiner la précision : f(1)=1 et f(2)=10. On a bien 1<5<10 donc  $x_0\in[1;2]$ , etc...

Une conséquence de ce théorème est que si f(a) et f(b) sont de signes opposés, alors la fonction f s'annule au moins une fois entre a et b.

Corollaire du théorème des valeurs intermédiaires : Si f est continue sur [a;b] et que f est strictement monotone sur cet intervalle, alors pour tout réel  $y_0$  si on a  $f(a) < y_0 < f(b)$  (ou  $f(a) > y_0 > f(b)$ ), il existe un unique réel  $x_0 \in [a;b]$  tel que  $f(x_0) = y_0$ .

### 3. La partie entière [x]

Soit  $x \in \mathbb{R}$ , la partie entière de x notée [x] (ou E(x)) est l'unique réel tel que :

$$[x] \le x < [x] + 1$$

**Exemple**: 
$$[1,216] = 1$$
 et  $[-2,198] = -3$ .

La fonction partie entière définie par  $x\mapsto [x]$  n'est pas continue :



#### II - Dérivation

#### 1. Définition

Soient f une fonction définie sur un intervalle I et deux réels  $a \in I$  et  $h \neq 0$  tel que  $(a+h) \in I$ .

La fonction f est dérivable en a si la limite ci-dessous existe et est finie :

$$\lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

Ou en posant x = a + h:

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Si cette limite existe et est finie, alors elle est égale au nombre dérivé de f en a noté f'(a).

#### 2. La tangente

Soient f une fonction définie sur un intervalle I et un réel  $a \in I$ . Si f est dérivable en a, alors la courbe représentative de f admet une tangente  $\mathcal{T}$  au point de coordonnées (a; f(a)). f'(a) est le coefficient directeur de  $\mathcal{T}$ , et une équation de  $\mathcal{T}$  est :

$$y = f'(a)(x - a) + f(a)$$

Soit  $f(x) = e^x$  (voir cours sur la fonction exponentielle).

Cherchons une équation de la tangente au point d'abscisse x=0: On a  $f'(0)=\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\frac{e^x-1}{x}=1$  (voir paragraphe sur les limites de la fonction exponentielle).

Ainsi, f'(0)=1. Une équation de la tangente est donc y=f'(0)(x-0)+f(0)=x+1: on retrouve ce qui a été constaté sur la représentation graphique de la fonction exponentielle.

#### 3. Fonction dérivée

Soit f une fonction dérivable sur un intervalle I:

On appelle fonction dérivée de f sur I la fonction qui a tout réel  $x \in I$  y associe f'(x).

### 4. Applications

Plusieurs applications peuvent être trouvées aux dérivées. Ainsi, avec le signe de la dérivée, il est possible d'obtenir le sens de variation de la fonction. Pour une fonction f dérivable sur I et de dérivée f':

- Si f' > 0 sur I, alors f est strictement croissante sur I.
- Si f' < 0 sur I, alors f est strictement décroissante sur I.
- Si f' = 0 sur I, alors f est constante sur I.



Il est également possible d'en déduire diverses propriétés sur les extremums dits "locaux" (sur un certain intervalle) d'une fonction. Soient f dérivable sur I de dérivée f', et  $a \in I$ :

- Si f admet un extremum local en a, alors f'(a)=0 et le signe de f' est différent avant et après a et la réciproque :
  - si f'(a) = 0 et que le signe de f' et différent avant et après a, alors f'(a) est un extremum local de f.
- Si f'(a)=0 et qu'on est négatif avant a et positif après, cet extremum local est un minimum local.
- Si f'(a)=0 et qu'on est positif avant a et négatif après, cet extremum local est un maximum local.

# III - Tables de dérivation

## 1. Dérivées usuelles

Le tableau suivant est à connaître et nous donne la dérivée de la plupart des fonctions usuelles :

| Fonction                               | Dérivée               | Domaine de définition | Domaine de dérivabilité |
|----------------------------------------|-----------------------|-----------------------|-------------------------|
| λ                                      | 0                     | $\mathbb{R}$          | $\mathbb{R}$            |
| $x^n \text{ avec } n \in \mathbb{N}^*$ | $nx^{n-1}$            | $\mathbb{R}$          | $\mathbb{R}$            |
| $\frac{1}{x}$                          | $-\frac{1}{x^2}$      | $\mathbb{R}^*$        | $\mathbb{R}^*$          |
| $\sqrt{x}$                             | $\frac{1}{2\sqrt{x}}$ | $\mathbb{R}^+$        | $\mathbb{R}^+_*$        |
| $e^x$                                  | $e^x$                 | $\mathbb{R}$          | $\mathbb{R}$            |
| ln(x)                                  | $\frac{1}{x}$         | $\mathbb{R}^+_*$      | $\mathbb{R}^+_*$        |
| sin(x)                                 | cos(x)                | $\mathbb{R}$          | $\mathbb{R}$            |
| cos(x)                                 | -sin(x)               | $\mathbb{R}$          | $\mathbb{R}$            |

# 2. Opérations sur les dérivées

Le tableau suivant est également à connaı̂tre et nous donne la dérivée qui dépend des opérations sur les fonctions u et v :

| Fonction                         | Dérivée                                 |
|----------------------------------|-----------------------------------------|
| $\lambda \times u$               | $\lambda 	imes u'$                      |
| u+v                              | u' + v'                                 |
| $u \times v$                     | $u' \times v + u \times v'$             |
| $\frac{1}{v}$ (avec $v \neq 0$ ) | $-rac{v'}{v^2}$                        |
| $\frac{u}{v}$ (avec $v \neq 0$ ) | $\frac{u' \times v - u \times v'}{v^2}$ |

# 3. Dérivées de composées

Le tableau suivant, toujours à connaître, nous donne la dérivée des fonctions composées usuelles :

| Fonction                               | Dérivée                | Domaine de dérivabilité                                                  |
|----------------------------------------|------------------------|--------------------------------------------------------------------------|
| $u^n  \text{avec}  n \in \mathbb{N}^*$ | $nu'x^{n-1}$           | En tout point où $\boldsymbol{u}$ est dérivable.                         |
| $\frac{1}{u}$                          | $-\frac{u'}{u^2}$      | En tout point où $\boldsymbol{u}$ est dérivable et non nulle.            |
| $\sqrt{u}$                             | $\frac{u'}{2\sqrt{u}}$ | En tout point où $\boldsymbol{u}$ est dérivable et strictement positive. |
| $e^u$                                  | $u'e^u$                | En tout point où $u$ est dérivable.                                      |
| ln(u)                                  | $\frac{u'}{u}$         | En tout point où $\boldsymbol{u}$ est dérivable et strictement positive. |
| sin(u)                                 | u'cos(u)               | En tout point où $u$ est dérivable.                                      |
| cos(u)                                 | u'-sin(u)              | En tout point où $u$ est dérivable.                                      |

De manière générale, soient f dérivable sur I et g dérivable sur f(I). On a alors :

$$(g\circ f)'=(g'\circ f)\times f'$$