IN THE SPECIFICATION:

Please replace the section starting on page 16, line 12, with the following rewritten section:

31

--Figure 16 (SEQ ID NOS: 11-13, and 18-21) shows a schematic for β-globin genotyping. A 214 bp fragment of the b-globin gene is illustrated. The sense and anti-sense DNA strands are shown with exon 1 centrally located. Arrows indicate forward and reverse primers. Mutation probes are indicated as Probe 1 (LC Red 640 labeled) for codon 6 and Probe 2 (LC Red 705 labeled) for codon 26. The dual-labeled fluoresceinprobe is positioned between Probes 1 and 2. Point mutations are indicated by bold capitalized script and duplex mismatches by subscripts.--

Please replace the section starting on page 17, line 1, with the following rewritten section:

Ba

--Figure 18 (SEQ ID NOS:22-25) shows a schematic of probes to investigate one of the hyper-variable regions in HLA-A, at codons 62-67 in exon 2. Variable bases are indicated in bold type. Just upstream of this region is an area that is mostly conserved among the various HLA-A alleles. We will synthesize one fluorescein donor probe and two acceptor probes, one labeled with LCRed640 and one with LCRed705.--

Please replace the section starting on page 17, line 10, with the following rewritten section:

B3

--Figure 20 (SEQ ID NOS:26-30) shows a schematic of probes for investigating variation within the HLA-DRB1 region by color and Tm multiplexing. Codons 70-74 of exon 2 are hyper-variable and adjacent to a conserved region.--

Please replace the section starting on page 35, line 18, with the following rewritten section:

B4

-- Table I. Oligonucleotides and Probes Used for Genotyping the Model Apolipoprotein E Locus

Sequences for Genotyping Codon 112

1080339

05

6

€3 Target GGCGCAGGCCCGGCTGGGCGCGGACATGGAGGACGTGTGCGGCCGCCTG

GTGCAGT * (SEQ ID NO: 1)

€4 Target GGCGCAGGCCCGGCTGGGCGCGGACATGGAGGA<u>CGTGCGCGGCCGCCT</u> GGTGCAGT ^a (SEQ ID NO: 2)

Fluorescent Probes CCAGGCGGCCGCACACG-fluorescein (SEQ ID NO: 3)

LC Red 705-CCTCCATGTCCGCGCCCAGCCGGGCCTGCG (SEQ ID

NO: 4)

poral

Sequences for Genotyping Codon 158

€2 Target GCGGCTCCTGCCCGATGCCGATGACCTGCAGAAGTGCCTGGCCAGTGTA
CCA * (SEQ ID NO: 5)

€3 Target GCGGCTCCTGCCCGATGCCGATGACCTGCAGAAGCGCCTGGCAGTGTAC
CA * (SEQ ID NO: 6)

Fluorescent Probes ACACTGCCAGGCACTTC-fluorescein (SEQ ID NO: 7)

LC Red 640-GCAGGTCATCGGCATCGGCAGGAGCC (SEQ ID NO: 8)

* Underlined area indicates fluorescein probe target region.--

Please replace the section starting on page 43, line 7, with the following rewritten section:

--Materials and Methods

The human b-globin gene sequence (GenBank Accession U01317) was used to design primers and probes for the amplification of a 214 bp segment containing exon 1 (Figure 16). Due to high homology between b-globin and d-globin sequences, the primers (sense:

1080339

66

8:53AM FLEHR HOHBACH

APR. 19. 2002

NO. 9264 P. 5

> 9), GTCAGGGCAGAGCCATCTA ID NO: antisense: (SEQ GTTCTATTGGTCTCCTTAAAGGTG, SEQ ID NO: 10) were designed with 3' and additional mismatches to d-globin. Due to the close proximity of the hemoglobin mutations, a unique combination of probes were designed to detect HbS, C, and E alleles. Two probeand LightCycler Red 705 (LC Red 705, Roche Molecular Biochemicals, Indianapolis, IN), as mutation detection probes. The third probe was a dual-labeled fluoresceindonor probe which spans the distance between the mutation detection probes. When annealed, resonance energy is transferred from each fluorescein label to either the LC Red 640 or the LC Red 705 labeled probes. The codon 6 detection probe (CTCCTGTGGAGAAGTCTGC-LC Red 640, SEQ IDNO: 11) completely matched the HbS allele anti-sense strand. The codon 26 probe (LCR 705-GTTGGTGGTAAGGCCCTGG-phosphate SEQ ID NO: 12) completely matched the Hb E allele anti-sense strand. Both the LC Red 640 and LC Red 705 probes were obtained from Idaho Technology Biochem (Salt Lake City, UT). The fluorescein-labeled probe was 5' and 3' labeled with two fluoresceins (F) attached to the (F-GTTACTGCCCTGTGGGGCAAGGTGAACGTGGATGA-F, SEQ ID NO: 13) (Operon, Alameda, CA). Fifty-fiveblinded samples of human genomic DNA were randomly selected from samples submitted to Neo Gen Screening for sickle cell hemoglobinopathy screening. The DNA (80-130 ng) was prepared from blots on filter paper and had been previously genotyped by allele specific cleavage and gel electrophoresis.-

Please replace the section starting on page 45, line 27, with the following rewritten section:

1080339

one L

ГЕНВ НОНВАСН

--One of the hyper-variable regions in HLA-A is at codons 62-67 in exon 2 (Fig. 18). Variable bases are indicated in bold type. Just upstream of this region is an area that is mostly conserved among the various HLA-A alleles. One fluoresceindonor probe and two acceptor probes, one labeled with LCRed640 and one with LCRed705, are synthesized. (Lay MJ et al., Clin. Chem. 43:2262-2267(1997); Bernardet al., Am. J. Path. 153:1055-1061 (1998); Bernard et al., Anal. Biochem. 273:221-228 (1999)). A 182 bp region flanking the probes will be amplified by rapid cycle PCR with primers GACAGCGACGCCGCGAGC (SEQ ID NO: 14) and GGGCCGGGGTCACTCACCG (SEQ ID NO: 15). These primers have 3'-mismatches with all Class I loci except for HLA-A, which provides for allele specific amplification (Wittwer et al., Clin. Chem. 39:804-809 (1993)). The probes are included in the amplification mixture, PCR is performed and a melting curve is obtained at 0.1-0.2°C/sec.-

Please replace the section starting on page 46, line 9, with the following rewritten section:

--The acceptor probes are designed to melt between 50-73°C with all sequence groups (Fig. 19 and Table III). The donor probe serves as an anchor and remains annealed during the melting of the acceptor probes. Two-hundred previously-typed DNA samples (400 alleles) are tested (samples courtesy of Dr. Tom Fuller, consultant). With only the LCRed 640 probe, it is possible to distinguish all 8 HLA-A sequence groups. Heterozygotes in sequence groups that melt near each other are the most difficult to distinguish. The smallest predicted Tm difference is 1.3°C between groups A and B. The addition of the LCRed 705 probe

67

-6-

FLEHR HOHBACH IEST

APR. 19. 2002.

unambiguously distinguishes all sequence groups. The probe Tms most useful in distinguishing between sequence groups are shown in bold type. The mean and variance of the actual Tms are compared to predicted values. Any disagreement between prior typing and LightCycler analysis are resolved by sequencing and repeat analysis.

Table III. Predicted Tms for 2 Probes at a HLA-A Variable Region

		WILL VALIABLE RE	<u>gion</u>		
			Predicted Probe Tm		
Sequence		Frequency	LCRed	LCRed LCRed	
Group HLA-A Alleles		(%)	<u>64</u> 0	705	
Α	0101-0103 0106 3601	15.2	71.6	63.3	
В	3002-3006 3101 3103 3104	6.2	70.3	67.6	
	3201-3204 7401-7404				
C	0301 0302 0304 0305	13.4	67.8	65,0	
D	0201 0202-0207 0209-0219 24 XX	27.2	66.1	72,3	
	16 additional 02XX			, 2,3	
E	2301-2305 2402-2406	11.1	61.6	62.5	
	8 additional 24XX				
F	2901-2903 7 additional 68XX	3.6	58.9	59.6	
G	2501 2503 2601-2606 2608-2612	7.2	56,8	57.8	
	3301-3305			57,0	
H	2502 2613 6601 6602 6801-6802	~7	52.8	54.1	

Please replace the section starting on page page 46, line 22, with the following rewritten section:

Total Estimated Frequency

--In a similar fashion, variation within the HLA-DRB1 region is assessed by color and Tm multiplexing. Codons 70-74 of exon 2 are hyper-variable and adjacent to a conserved region

90.9

1080339

p' cmc's

109

B

ГЕНК НОНВАСН ТЕЗТ

APR. 19. 2002 8:54AM

B8 L

(Fig. 20). One donor probe and 3 acceptor probes are synthesized. A 193 bp region flanking the probes are amplified with primers AGCGGGTGCGGTTCCTGG (SEQID NO: 16) and CAACCCCGTAGTTGTGTCTGCAGTAG(SEQID NO: 17). At least one of these primers is 3'-mismatched with all other DRB subclasses. It has been verified by sequencing that these primers specifically amplify only DRB1 alleles.--

Please replace the section starting on page page 47, line 1, with the following rewritten section:

The acceptor probes are designed to melt under 70°C (Fig. 21 and Table IV). Melting temperatures below 40°C are difficult to obtain on the LightCycler and are not used for differentiation. The donor probe is stabilized with a minor groove binder to increase its Tm (Kutyavin et al., Nucl. Acids Res. 28:655-661 (2000)). The same 200 previously typed samples are analyzed. Most of the sequence groups are identified with the LCRed640- and Cy5-labeled probes, although the LCRed705 probe is required for two groups. The smallest predicted Tm difference is 1.5°C between groups I and J. Any disagreement between prior typing and LightCycler analysis is resolved by sequencing and repeat analysis. The smallest Tm difference that is reliably distinguished in heterozygotes is determined. This establishes the maximum number of sequences that can be distinguished by Tm multiplexing.

Table IV. Predicted Tms for 2 Probes at a HLA DRB1 Variable Region

Sequence Frequency LCRed LCRed

Group DRB1 Alleles (%) 640 Cv5 705

70,100

1080339

-8-

70

MAPd:8

798. 19. 2002