$\Delta Y = \Delta a$

 $\Delta C = \Delta Y (MPC)$

Change in Consumption

Change in Deficit

Δ Government's Deficit = Δ G – Δ T

Spending Multiplier

Change in Equilibrium GDP

ΔΥ **200** $\Delta C = 1,000 (0.8)$

 Δ Deficit = 0 – 0

1-MPC

Formula:

Example:

Autonomous Consumption increase by 100

Change in AE

 $\Delta AE = \Delta a + \Delta C$

 $\Delta AE = 200 + 800$

Formula:

Autonomous Consumption increase by 100

Example:

MPC = 0.8 Multiplier = 5

 Δa

GDP increase by 1000

Change in Equilibrium GDP

$$\Delta Y = \Delta a \left(\frac{1}{1-MPC} \right)$$

 $\Delta Y = 200(5)$

 $\Delta a = 200$

Consumption increase by 800

Change in Consumption $\Delta C = \Delta Y$ (MPC) $\Delta C = 1,000$ (0.8)

AE increase by

Change in AE $\Delta AE = \Delta a + \Delta C$

 $\Delta AE = 200 + 800$

Change in Deficit

 Δ Government's Deficit = Δ G – Δ T

 Δ Deficit = $0 - 0^2$

