PHYS465: Statistical Data Analysis in Physics

Week 2: Hypothesis Testing, Common distributions, Model testing

Dr. Mathew Smith

mat.smith@lancaster.ac.uk

Physics Building; C46

Week 12: Learning aims

Today we will introduce

- Probabilities and how they relate to measurements
- The Null Hypothesis
 - And how to test it
- How our experiment will change how the data is distributed
- How to test which distribution is correct
- How to select which model is most likely

Revision: Probabilities

Given an experiment:

- Ω is the list of all possible outcomes

Axioms:

- $-0 \le P(A) \le 1$
- $-P(\Omega)=1$
- $P(A_1 \cup A_2 \cup A_3 \dots) = P(A_1) + P(A_2) + P(A_3) + \dots$

Consequences:

- $-P(A) + P(A^c) = 1$
- $P(A \cup B) = P(A) + P(B) + P(A \cap B)$
- $P(A \cap B) = P(A) \times P(B)$ if A, B are independent

Conditional Probabilities

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$$

The probability of A given B (an event or condition)

when θ is a model, or parameter

 $P(A \mid \theta)$ is called the *likelihood:* $\mathcal{L}(\theta \mid A)$

"the *likelihood* of obtaining the data 'A' given the model"

Hypothesis testing

How good is the model?

Fundamental question: Is the model that we are testing a good fit to our measured data?

Is there a more likely alternative?

Null Hypothesis: Our starting assumption

Can be either parameter values or choice of model

In practice: Compares our assumption (or prediction) with experimental

measurements

e.g. does the luminosity distribution of galaxies match a Schechter

function?

Outcome: Make a statement on the probability of obtaining our result

(see confidence level slides).

Null Hypothesis testing

e.g. Given a model $f(\theta)$, with parameter θ , is the value of θ in a set of possible values Θ_0 ?

 H_0 : The Null Hypothesis: $\theta \in \Theta_0$

 H_1 : An Alternative Hypothesis:

• $\theta \in \Theta_1$ where $\Theta_0 \cap \Theta_1 = 0$

 α : threshold of rejection (e.g. 0.05)

With new observations X, such that $p(X, \theta)$

 $p(X) < \alpha$ reject H_0 and accept H_1

 $p(X) > \alpha$ no evidence to reject H_0

		Outcome	
		$H_{\!0}$ not rejected	H_{0} rejected
Truth	H_0 is true	Probability of this: $1 - \alpha$	Type I error Will happen $lpha$ % of the time
	$H_{ m l}$ is true	Type II error Happens $1-\beta$ % of the time	$P_{H_1}(H_0 \text{ is rejected})$ $= \beta$

Confidence Intervals

Given a probability threshold, what is the allowed range of the parameter:

$$\hat{p} - \delta p \le P_0 \le \hat{p} + \delta p$$

Interpretation: if we repeat our experiment, how often will P_0 be within our quoted range

For multiple variables (A, B):

An error ellipse containing δp of the probability

Typical values are 68%, 90%, 95%.

Key Assumption:

The probability, p, needed for **Hypothesis testing** and **confidence intervals** depend on how the data and model are distributed

Are they both drawn from a Gaussian distribution?

Key Distributions: Gaussian

Aka a normal

$$P(x) = \frac{1}{\sigma\sqrt{(2\pi)}} \exp\{-(x - \mu)^2/2\sigma^2\}$$

The limiting case ($\rightarrow \infty$) of most other distributions

Expectation value: $mean = \mu$

Variance:

$$\sigma^2 = \sigma^2$$

$$P(-t\sigma < x_0 < t\sigma) = \frac{1}{\sqrt{2}} \int_{-t}^{t} e^{-z^2/2} dz$$

Common assumption across physics

Key Distributions: Binomial

Fixed number of outcomes

$$P(X = k) = \binom{n}{k} p^k (1 - p)^{n-k}$$

draw n events from k possibilities each with probability p

Expectation value: mean = np

Variance: np(1-p)

=> Gaussian distribution as $N \to \infty$

Example: coin tossing

Key Distributions: Poisson

The counting distribution

$$P(X=k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

observe k events drawn from λ possibilities

mean = λ **Expectation value:**

> $\sigma^2 = \lambda$ Variance:

=> Gaussian distribution as $k \to \infty$

Example: histogram (or photon) counting

Key Distributions: χ^2

Related to the Gamma distribution

$$P \propto (\chi^2)^{\frac{\nu-2}{2}} \exp(-\chi^2/2)$$

 ν is the number of degrees of freedom

Expectation value:
$$mean = \nu = N - p$$

Variance:
$$\sigma^2 = 2\nu$$

i.e. if the model is correct then we expect $\chi^2 \sim \nu \pm \sqrt{(2\nu)}$ $\chi^2/\nu \sim 1$

Gaussian Distribution: probabilities

Recall
$$P(x) = \frac{1}{\sigma\sqrt{(2\pi)}} \exp\{-(x-\mu)^2/2\sigma^2\}$$

$$P(-t < x_0 < t) = \frac{1}{\sqrt{2}} \int_{-t}^{t} e^{-z^2/2} dz$$

 1σ : contains **68.3%** of the probability

 2σ : contains **95.5%** of the probability

 3σ : contains **99.7%** of the probability

 5σ : contains **99.99994**% of the probability

area containing 68% of the probability

WARNING: This process knows nothing about

physics: beware of unphysical regions

Multiple parameters: Marginalisation

Distributions are often NOT the function of 1 parameter

NB: Coursework 1: is 'happiness' a function solely of GDP?

The probability of x is calculated by integrating over y

$$p(x) = \int p(x, y) \, dy$$

NB: We wanted to measure p(happiness | GDP), but we measured p(happiness, country | GDP)

 $p(\textit{happiness} \mid \textit{GDP}) = p(\textit{happiness}, \textit{UK} \mid \textit{GDP}) + p(\textit{happiness}, \textit{France} \mid \textit{GDP}) + p(\textit{happiness}, \textit{Spain} \mid \textit{GDP}) + \dots$

An aside: Covariance

When two measurements are not independent, we call them covariant

For two connected variables (z = x + y):

$$\sigma_z = \sqrt{\sigma_x^2 + \sigma_y^2}$$

if x is related to y

$$\sigma_z = \sqrt{\left(\frac{\partial z}{\partial x}\sigma_x\right)^2 + \left(\frac{\partial z}{\partial y}\sigma_y\right)^2 + 2\frac{\partial z}{\partial x}\frac{\partial z}{\partial y}cov(x,y)}$$

$$cov(x, y) = \frac{1}{N-1} \sum_{i=1}^{N} (x - \hat{x})(y - \hat{y})$$

An aside: Covariance

Often expressed in matrix form:

$$\begin{pmatrix} \sigma_x^2 & \sigma_{xy} \\ \sigma_{xy} & \sigma_y^2 \end{pmatrix}$$

Variance in the diagonal terms; covariance in the off-diagonals

Finding the Distribution

Kolmogorov-Smirnov (KS) testing

Null hypothesis: the two distributions are the same

The maximal distance between

Cumulative Density Functions (CDF)

$$D = \max_{-\infty < x < \infty} |S_N(x) - F(x)|$$

Recall: a CDF is a rank-ordered PDF.

No assumptions about the underlying distribution

NB: See also Anderson-Darling test

Testing for Correlations

Spearman's Rank (SR)

Testing whether two variables are related

Compares the ordered rankings (R) of two datasets

$$p_s = 1 - \frac{\sum_{i=1}^{N} [R(x_i) - R(y_i)]^2}{N(N^2 - 1)}$$

Output will be a value between -1 and 1.

Null Hypothesis: the two variables are uncorrelated

NB: A non-parametric version of the Pearson test

Likelihoods

Given a set of measurements $x = (x_1, x_2, ...)$

the *likelihood:*

$$\mathcal{L}(\theta \mid x) = \prod_{i=0}^{N} P(x_i \mid \theta)$$

Best-fit value:

The value that maximises ${\mathscr L}$

Plausible values:

Determined by the width of ${\mathscr L}$

Uncertainty:

For a Gaussian distribution 1σ

Log Likelihoods

Given a set of measurements $x = (x_1, x_2, ...)$

the *log-likelihood*:

$$\mathcal{E}(\theta) = \ln \mathcal{L}(\theta) = \sum_{i=0}^{N} P(x_i | \theta)$$

Much easier to maximise

Best-fit value:

The value that maximises ℓ

Plausible values:

Determined by the width of ℓ

Uncertainty:

$$\ell = \ell_{\text{max}} - 0.5$$

Log Likelihoods: the Gaussian case

Given a set of measurements $x = (x_1, x_2, \dots)$

$$p(x_i) = \frac{1}{\sqrt{2\pi\sigma_i}} \exp\left(-\frac{(x_i - \mu_i(\theta))^2}{2\sigma_i^2}\right)$$

$$\mathcal{L}(\theta \mid x) = p(x_1 \mid \theta) * p(x_2 \mid \theta) * \dots$$

$$\mathcal{L}(\theta \mid x) = e^{-\chi^{2}/2} * \prod_{i=1}^{N} \frac{1}{\sigma_{i}} \times (2\pi)^{(-N/2)}$$

$$-2\ln\mathcal{L}(\theta|x) = \chi^2 + 2\sum_{i=1}^{N} \ln \sigma_i + N\ln(2\pi)$$

Maximising $\mathcal{L}(\theta \mid x)$ is equivalent to minimising χ^2

Confidence levels & χ^2

If our best-fit value has $\chi^2 = \chi^2_{min}$:

Contours of equal probability are defined by

$$\chi^2 = \chi^2_{min} + \Delta$$

WARNING: This process knows nothing about physics: beware of unphysical regions

χ^2 : estimating uncertainties : bootstrapping

Resampling the data with replacement

(For a dataset with N measurements)

For each of k samples:

> Randomly select N values

> Calculate the χ^2

Calculate the mean, and variance on χ^2

Does not assume a functional form for the distribution

NB: Can also sample from uncertainties: 'MonteCarlo'

Model Selection

Given two models M_1, M_2 how do we know which one to choose?

Recall that for a good fit, we expect: $\min(\chi^2_{red}) \sim 1$

Akaike Information Criteria (AIC)

$$AIC = -2\ln(\mathcal{L}(\theta)) + 2p$$

Bayes Information Criteria (BIC)

$$BIC = -2\ln(\mathcal{L}(\theta)) + p\log N$$

$$(p = N_{\mathsf{params}}; n = N_{\mathsf{data}})$$

Week 12: Learning outcomes

Today you have learnt

- How to relate probabilities to measurements: the likelihood
- How to define a null hypothesis
 - How to use probabilities to test our hypothesis
- Three key distributions in Physics
- Key tests of whether our hypothesis (assumptions) are correct
 - Distributions: KS test
 - Correlations: Spearman's Rank
- Goodness-of-fit metrics: calculating likelihoods
 - Selecting a model given a likelihood