Tuborid 4

T(n) =
$$3 + (n/2) + n^2$$

And $a = 3$, $b = 2$
 $n \log_2 s^2 = n \log_2 s^2$

Comparing $n \log_2 s^3 = n \log_2 s^3 < n^2$ (cone 3)

- according to most of T(n) = $8(n^2)$

T(n) = $4 + (n/2) + n^2$

a = $1 + b = 2$
 $n \log_2 s^2 = n^2 = f(n)$ (code 2)

: according to masters theorem $T(n) = 8(n^2)$

T(n) = $T(n/2) + s^n$
 $a = 1 + b = 2$
 $n \log_2 s^2 = n^2 = 1$
 $a = 1 + b = 2$
 $n \log_2 s^2 = n^2 = 1$

According to must be theorem $T(n) = 8(s^n)$

According to must be theorem $T(n) = 8(s^n)$

(4)
$$T(n) = 2^n T(n/2) + n^n$$
... Master's theorem is not applicable as a is function

(5) $T(n) = 16T(n_G) + n$ a = 16, b = 4, p(n) = n n = 16, b = 4, p(n) = n n = 16, a = 1

(6)
$$T(n) = aT(n/2) + ndagn$$
 $a=2$, $b=2$, $f(n) = ndagn$
 $n^{1}a^{1}b^{2} = n^{1}b^{2}a^{2} = n$

Now $f(n) > n$

... According to markow $T(n) = 0$ (nlagn)

$$T(n) = aT(n) + \frac{n}{dayn}$$
 $a=2$, $b=2$, $f(n) = \frac{n}{dayn}$
 $n^{1}a^{1}b^{2} = n^{1}a^{2}a^{2} = n$
 $n > f(n)$

... According to markov theorem $T(n) = 0$ (n)

(7) $T(n) = aT(n) + n^{0.51}$
 $a=2$, $b=4$, $f(n) = n^{0.51}$

... According to markey Theorem $T(n) = 0$ ($n^{0.5}$)

(9) $T(n) = 0.5T(n/2) + \frac{1}{n}$

... Harthis Not-applicable as $a < 1$

(10) $T(n) = t^{1}T(n/4) + n!$
 $a=16$, $b=4$, $f(n)=n!$
 $a=16$, $b=4$, $f(n)=n!$
 $a=16$, $b=4$, $f(n)=n!$

According to markov, $T(n)=0$ ($n!$)

II)
$$T(n) = 4T(n) + \log n$$
 $a = 4$, $b = 2$
 $n^{2} > f(n)$

Actualization to marteria, $T(n) = \delta(n^{2})$.

In $= squt(n) + (n/2) + \log n$

That this is Not applicable as a is not constant.

If $m = squt(n) + (n/2) + \log n$
 $square = square = square$

The Thin =
$$3T(n/q) + ndogn$$
 $a = 3$, $b = 4$, $f(n) = ndogn$
 $a = 3$, $b = 4$, $f(n) = ndogn$
 $a = 3$, $b = 4$, $f(n) = ndogn$
 $a = 3$, $a =$

T(n) = 64T (n/8)-n2logn

Master's thrown is not applicable as P(n) is not increasing fruition.

(E)

 $T(n) = 7T(n/3) + n^2$ a = 7, b = 3, $p(n) = n^2$

nlogs = nlog = = 17

n"7 < n2

... According to mouters, $T(n) = O(n^2)$

(22)

T(n) = T(n/2)+n(2-ain)

In Marties theorem is n't applicable since regularity condition is isockated in cone 3.