Mikroekonomia II - Zadania - lista 3

termin: 1go czerwca

Zadanie 1 (2p) Rozpatrzmy problem rolnika, którego preferencje są opisane przez $u(w) = \sqrt{w}$, gdzie w określa poziom jego zbiorów. Rolnik z doświadczenia zna kaprysy pogody i jest w stanie określić, że z prawdopodobieństwem p rok będzie urodzajny, a z prawdopodobieństwem (1-p) okolice nawiedzi kataklizm niszczący większość jego zbiorów. Obecnie majątek rolnika wynosi w. Jeśli nadejdzie urodzaj, zbiory rolnika będą miały wartość w+x. Jeśli nadejdzie kataklizm, zbiory będą warte tylko w-x. Dla w>x>0:

- (i) Zapisz użyteczność oczekiwaną rolnika.
- (ii) Załóżmy, że rolnik może się ubezpieczyć, tj. płacąc składkę y przeniesie całe ryzyko na ubezpieczyciela. Ile maksymalnie będzie skłonny zapłacić rolnik za pełne ubezpieczenie?
- (iii) Sprawdź jak (maksymalna) wysokość składki z poprzedniego punktu zależy od x, p i w.
- (iv) Dla jakiego p wartość składki będzie najniższa (najwyższa)?

Zadanie 2 (2p) Rozpatrz grę Cournot z N firmami, liniowym (odwrotnym) popytem P(Q) = A - BQ i stałymi kosztami krańcowymi $c_i = c > 0$.

- a) Znajdź rownowagę Nasha tej gry,
- b) policz ceny, łączną produkcję i zyski w równowadze Nasha,
- c) jak zyski, ceny i łączna produkcja zmieniają się pod wpływem wzrostu N? Wyjaśnij intuicyjnie.

Zadanie 3 (2p) Popyt na Coca-Cole jest opisany następującym wzorem: $Q_c(P_c, P_p) = 63.42 - 3.98 P_c + 2.25 P_p$, a na Pepsi $Q_p(P_p, P_c) = 49.52 - 5.48 P_p + 1.40 P_c$, gdzie P_p to cena Pepsi, a P_c to cena Coca-Coli. Koszty krańcowe produkowania Coca-Coli są stałe i równe 4.96, a Pepsi: 3.96. Znajdź równowagę Nasha w grze pomiędzy oba firmami konkurującymi za pomocą cen. Czy jest to alokacja Pareto-optymalna?

Zadanie 4 (2p) Rozpatrz gospodarkę dwóch podmiotów z takimi samymi preferencjami $u_i(G, c_i) = G^{\alpha} c_i^{1-\alpha}$, ale innymi dochodami: $w_1 \neq w_2$. Jak duża musi być różnica w dochodach pomiędzy podmiotami, aby podmiot nr 2 nic nie przeznaczał na konsumpcję dobra publicznego G? Przyjmij, że $G = g_1 + g_2$.

Zadanie 5 (2p) Fabryka celulozy produkuje używając technologii o kosztach krańcowych $MC_f(Q) = 2Q$. Krańcowe koszty zewnętrzne (zanieczyszczeń) są zadane $MC_s(Q) = Q$. Popyt na dobra firmy jest dany przez funkcję odwrotnego popytu P(Q) = 280 - 2Q. Dla dwóch przypadków:

- doskonałej konkurencji,
- monopolu

policz wysokość podatku Pigou pozwalającego internalizować negatywne efekty zewnętrzne.