Clave Primaria:

 conjunto de atributos que, en forma conjunta, identifican de manera unívoca toda una tupla.

Dependencia Funcional:

- Permite expresar restricciones que identifican de manera unívoca el valor de determinado atributo.
- Es una conexión entre uno o mas atributos.

Conocer las **dependencias funcionales** en el momento del diseño de la base de datos permite crear mecanismos para evitar la redundancia y mejorar la eficiencia

Α	В	С	D
a1	b1	c1	d1
a1	b2	c1	d2
a2	b2	c2	d2
a2	b3	c2	d3
a3	b3	c2	d4

- El valor de C esta determinado por A
- A determina a C
- C depende funcionalmente de A

Dependencias funcionales triviales

Son aquellas dependencias funcionales que las satisfacen todas las relaciones.

De manera análoga

$$AB \rightarrow A$$

Las dependencias funcionales de la forma $\alpha \to \beta$ son **TRIVIALES** si se cumple la condición β está incluido en α

Aspectos a tener en cuenta a la hora de detectar dependencias

funcionales

А	В	С
a1	b1	C1
a1	b1	C3
a2	b3	C4
a2	b3	C3
a3	b2	C1

Calle	Ciudad	
San Martín	Córdoba Capital	C1
San Martín	Córdoba Capital	C3
Sarmiento	Rosario	C4
Sarmiento	Rosario	C3
Salta	Rio Cuarto	C1

Dependencias implicadas lógicamente

Son aquellas dependencias que se obtienen a partir de otras y que no están a simple vista en el momento de analizar una relación.

Supongamos la siguiente relación:

R = (A,B,C,G,H,I) y el conjunto de dependencias funcionales siguientes:

La dependencia funcional A -> H está implicada lógicamente

Axiomas de Amstrong

Proporcionan una técnica sencilla para el razonamiento sobre las dependencias funcionales.

Regla de la Reflexividad	Si B ⊆ A	\Rightarrow	$A \rightarrow B$
Regla de la Aumentatividad	Si A → B	\Rightarrow	$CA \rightarrow CB$
Regla de Transitividad	Si A \rightarrow B y B \rightarrow C	\Rightarrow	$A \rightarrow C$

Reglas Adicionales

Si bien los axiomas de Amstrong son completos, existen otras reglas creadas a partir de dichos axiomas para simplificar el trabajo de detectar dependencias funcionales.

Unión	Si B \rightarrow A y B \rightarrow C	\Rightarrow	B → AC
Descomposición	Si B → AC	\Rightarrow	$B \rightarrow A y B \rightarrow C$
Pseudo-transitiva	Si A \rightarrow B y CB \rightarrow D	\Rightarrow	$CA \rightarrow D$

• Dado R (A, B, C, D, E) y el conjunto de dependencias funcionales:

$$F = \{A->BC, CD->E, B->D, E->A\},\$$

Probar, utilizando los axiomas, que las siguientes dependencias pertenecen a F⁺.

- a) E->B
 - Si E->A y A->BC, por transitividad E->BC
 - Por descomposición, E->B y E->C
- b) EA->CA
- c) AD->E
- d) AC->E

Solución

a)

- Si E->A y A->BC, por transitividad E->BC
- Por descomposición, E->B y E->C

b)

- Si E->A y A->BC, por transitividad E->BC
- Por descomposición, E->B y E->C
- Por aumentatividad, EA->CA

c)

- Si A->BC, por aumentatividad, AD->BCD
- Por descomposicion, AD->CD y AD->B
- Si AD->CD y CD->E, por transitividad AD->E

d)

- Si A->BC, por aumentatividad, AC->BC
- Por descomposicion, AC->B y AC->C
- Si AC->B y B->D, por transitividad AC->D
- Si AC->D y AC->C, por unión AC->DC
- Si AC->DC y CD->E, por transitividad, AC->E

Sea R(A,B,C,D,E) con F = { A \rightarrow B, B \rightarrow D, C \rightarrow E, E \rightarrow B }. ¿Cuáles de las siguientes relaciones de R satisfacen F ?.

a.				
A	В	C	D	E
$\mathbf{a}_{\mathbf{l}}$	b_1	c_1	\mathbf{d}_{1}	e_{l}
\mathbf{a}_2	b_2	c_2	\mathbf{d}_{1}	$\mathbf{e}_{\mathbf{l}}$

c.				
A	В	C	D	E
\mathbf{a}_1	b_1	c_1	d_1	e_1
a_2	b_1	c_1	d_2	e_1

Solución

Sea R(A,B,C,D,E) con F = { A \rightarrow B, B \rightarrow D, C \rightarrow E, E \rightarrow B }. ¿Cuáles de las siguientes relaciones de R satisfacen F ?.

В	С	D	E
bı	c_1	d_1	e ₁
b_1	c_1	d_2	e_1

Dada la siguiente Relación:

Α	В	С	D	Е
A1	B1	C1	D1	E1
A1	B1	C2	D1	E2
A2	B1	C1	D1	E1
A2	B1	C3	D1	E1
A3	B2	C1	D1	E1
A3	B2	C3	D1	E1
A3	В3	C4	D2	E4
A4	B4	C1	D2	E1

- ABC→DE,
- ACD→BE,
- B→D,
- BC \rightarrow DE,
- C→AB,

Dada la siguiente Relación:

Α	В	С	D	E
A1	B1	C1	D1	E1
A1	B1	C2	D1	E2
A2	B1	C1	D1	E1
A2	B1	C3	D1	E1
A3	B2	C1	D1	E1
A3	B2	C3	D1	E1
A3	В3	C4	D2	E4
A4	B4	C1	D2	E1

- ABC→DE,
- ACD→BE,
- B→D,
- BC \rightarrow DE,
- C→AB,

Dada la siguiente Relación:

Α	В	С	D	E
a3	B2	c2	d4	e1
a2	b1	C4	d2	e1
a1	b2	C5	d1	e3
a4	b2	с3	d1	e2
a3	b2	с3	d1	e3

- BE \rightarrow D,
- E→B,
- D→B,
- AD→E,
- C→AB,

Dada la siguiente Relación:

Α	В	С	D	Е
a3	B2	c2	d4	e1
a2	b1	C4	d2	e1
a1	b2	C5	d1	e3
a4	b2	с3	d1	e2
a3	b2	с3	d1	е3

- BE \rightarrow D,
- $E \rightarrow B$,
- D→B,
- AD \rightarrow E,
- C→AB,

Sea la relación R(A, B, C, D, E, G, H) y F={ $E \rightarrow GH, C \rightarrow D, D \rightarrow A, H \rightarrow C$ }. Supongamos que la relación R tiene ya almacenadas las tuplas:

A	В	С	D	E	G	Н
a1	b1	c1	d2	e1	g1	h1
a1	b2	c2	d2	e2	g1	h2
a1	b1	c2	d2	e2	g1	h2
a1	b2	c3	d1	e3	g2	h3

Decidir si cada una de las siguientes tuplas podrían estar almacenadas en R:

- 1. (a1, b1, c1, d1, e2, g1, h2)
- 2. (a1, b3, c2, d2, e1,g1, h1)
- 3. (a1, b2, c3, d1, e4, g2, h3)

Sea la relación R(A, B, C, D, E, G, H) y F={ $E \rightarrow GH, C \rightarrow D, D \rightarrow A, H \rightarrow C$ }. Supongamos que la relación R tiene ya almacenadas las tuplas:

Α	В	C	D	E	G	Н
a1	b1	c1	d2	e1	g1	h1
a1	b2	c2	d2	e2	g1	h2
a1	b1	c2	d2	e2	g1	h2
a1	b2	c3	d1	e3	g2	h3

Decidir si cada una de las siguientes tuplas podrían estar almacenadas en R:

- 1. (a1, b1, c1, d1, e2, g1, h2)
- 2. (a1, b3, c2, d2, e1,g1, h1)
- 3. (a1, b2, c3, d1, e4, g2, h3)

Sea la relación R(Curso, Profesor, Libro, Aula, Editorial, Ciudad, Teléfono) y las siguientes dependencias funcionales:

Aula → Curso, Profesor, Libro, Aula, Editorial, Ciudad, Teléfono Profesor → Curso, Teléfono Libro → Editorial Supongamos que la relación R tiene ya almacenadas las tuplas:

Curso	Profesor	Libro	Aula	Editorial	Ciudad	Teléfono
Fisica	Luis	А	1	Ciencia	Madrid	212121
Fisica	Luis	В	2	Saber	Sevilla	212121
Fisica	Paco	А	3	Ciencia	Madrid	434343
Fisica	Paco	В	4	Saber	Sevilla	434343
Lengua	Pepe	С	5	Saber	Sevilla	545454
Lengua	Pepe	D	6	Futuro	Barcelona	545454
Lengua	Ana	С	7	Saber	Sevilla	323232
Lengua	Ana	D	8	Futuro	Barcelona	323232
Lengua	Juan	С	9	Saber	Sevilla	123123
Lengua	Juan	D	10	Futuro	Barcelona	123123

Decidir si cada una de las siguientes tuplas podrían estar almacenadas en R:

Fisica	Luis	D	11	Futuro	Barcelona	212121
Fisica	Paco	В	11	Saber	Sevilla	123123
Lengua	Juan	Α	9	Ciencia	Madrid	123123
Lengua	Pepe	С	5	Saber	Sevilla	545454
Lengua	Ana	С	11	Ciencia	Sevilla	323232
Lengua	Ana	Α	11	Ciencia	Madrid	323232

Solución

Fisica	Luis	D	11	Futuro	Barcelona	212121
Fisica	Paco	В	11	Saber	Sevilla	123123
Lengua	Juan	Α	9	Ciencia	Madrid	123123
Lengua	Pepe	С	5	Saber	Sevilla	545454
Lengua	Ana	С	11	Ciencia	Sevilla	323232
Lengua	Ana	Α	11	Ciencia	Madrid	323232

Dada la siguiente Relación:

С	Р	L	Α	E	Z	Т
C1	P1	L1	A1	E1	Z1	T1
C1	P1	L2	A2	E2	Z2	T1
C1	P2	L1	A3	E1	Z1	T2
C1	P2	L2	A4	E2	Z2	T2
C2	Р3	L3	A5	E2	Z2	T3
C2	Р3	L4	A6	E3	Z3	T3
C2	P4	L3	A7	E2	Z2	T4
C2	P4	L4	A8	E3	Z3	T4
C2	P5	L3	A9	E2	Z2	T5
C2	P5	L4	A10	E3	Z3	T5

- L→E,
- $P \rightarrow TC$,
- A→EZP,
- Z→C,
- $Z \rightarrow CP$

Dada la siguiente Relación:

С	Р	L	Α	E	Z	Т
C1	P1	L1	A1	E1	Z1	T1
C1	P1	L2	A2	E2	Z2	T1
C1	P2	L1	A3	E1	Z1	T2
C1	P2	L2	A4	E2	Z2	T2
C2	Р3	L3	A5	E2	Z2	T3
C2	Р3	L4	A6	E3	Z3	T3
C2	P4	L3	A7	E2	Z2	T4
C2	P4	L4	A8	E3	Z3	T4
C2	P5	L3	A9	E2	Z2	T5
C2	P5	L4	A10	E3	Z3	T5

- L→E,
- $P \rightarrow TC$
- $A \rightarrow EZP$,
- Z→C,
- $Z \rightarrow CP$

G	GS	Cl	CL	PR	CA
Α	11	CORDOBA	JUAN	170	1000
Α	12	BS AS	SEBASTIÁN	23	1000
Α	13	MENDOZA	WALTER	15	1000
В	11	CORDOBA	LUCAS	1	1500
В	17	MENDOZA	JUAN	170	1500
В	18	MENDOZA	CARLOS	93	1500
С	11	MENDOZA	WALTER	15	1200
С	13	MADRID	JUAN	170	1200
D	11	CORDOBA	PABLO	15	1200
D	17	MENDOZA	GASTON	170	1200

G	GS	Cl	CL	PR	CA
Α	11	CORDOBA	JUAN	170	1000
Α	12	BS AS	SEBASTIÁN	23	1000
Α	13	MENDOZA	WALTER	15	1000
В	11	CORDOBA	LUCAS	1	1500
В	17	MENDOZA	JUAN	170	1500
В	18	MENDOZA	CARLOS	93	1500
С	11	MENDOZA	WALTER	15	1200
С	13	MADRID	JUAN	170	1200
D	11	CORDOBA	PABLO	15	1200
D	17	MENDOZA	GASTON	170	1200

- G, GS \rightarrow R (G,GS,CI,CL,PR,CA)
- $G \rightarrow CA$
- CL → PR

C1	C2	C3	C4	C5	C6	C7
FAC	1	12/4	JUAN	CBA	L1	100
FAC	2	12/4	ESTELA	BSAS	L2	200
FAC	3	12/4	BETO	BSAS	L3	300
FAC	4	12/4	BETO	CBA	L9	400
NCR	1	15/4	JUAN	MZA	L5	300
NCR	2	15/4	OMAR	CBA	L1	100
NDE	1	15/4	JUAN	CBA	L1	100
NDE	2	15/4	JUAN	CBA	L1	100
NDE	3	19/4	VICTOR	BSAS	L4	100
FAR	1	20/4	DELIA	MZA	L6	200
FAR	2	20/4	BETO	MZA	L7	200

C1	C2	C3	C4	C5	C6	C7
FAC	1	12/4	JUAN	CBA	L1	100
FAC	2	12/4	ESTELA	BSAS	L2	200
FAC	3	12/4	BETO	BSAS	L3	300
FAC	4	12/4	BETO	CBA	L9	400
NCR	1	15/4	JUAN	MZA	L5	300
NCR	2	15/4	OMAR	CBA	L1	100
NDE	1	15/4	JUAN	CBA	L1	100
NDE	2	15/4	JUAN	CBA	L1	100
NDE	3	19/4	VICTOR	BSAS	L4	100
FAR	1	20/4	DELIA	MZA	L6	200
FAR	2	20/4	BETO	MZA	L7	200

- C1, C2 → R (C1,C2,C3,C4,C5,C6,C7)
- C6 \rightarrow C7
- C6 → C5
- C4,C5 → C6
- C4,C5 \rightarrow C7

Normalización

ID	Nombre	Puesto	Salario	Emails
111	Juan Pérez	Jefe de Área	3000	juan@hotmail.com; juan@gmail.com;
222	José Sánchez	Administrativo	1500	jsanchez@outlook.com
333	Ana Díaz	Administrativo	1500	adiaz@gmail.com; DiazAna@live.com;

Primera forma normal (1FN)

Una tabla está en 1FN si sus atributos contienen valores atómicos.

Un dominio es **atómico** si se considera que los elementos de ese dominio no tienen subestructuras.

El ejemplo mostrado no cumple con la primera forma normal. Para lograr esto, podemos proceder de dos formas:

Duplicar los registros con valores repetidos

ID	Nombre	Puesto	Salario	Emails
111	Juan Pérez	Jefe de Área	3000	juan@hotmail.com
111	Juan Pérez	Jefe de Área	3000	juan@gmail.com
222	José Sánchez	Administrativo	1500	jsanchez@outlook.com
333	Ana Díaz	Administrativo	1500	adiaz@gmail.com
333	Ana Díaz	Administrativo	1500	DiazAna@live.com

Utilizando esta opción, nos vemos obligado a usar como clave primaria (ID, Emails)

separar el atributo que viola 1FN en una tabla

ID	Nombre	Puesto	Salario
111	Juan Pérez	Jefe de Área	3000
222	José Sánchez	Administrativo	1500
333	Ana Díaz	Administrativo	1500

Id_ empleado	Email
111	juan@hotmail.com;
111	juan@gmail.com;
222	jsanchez@outlook.com;
333	adiaz@gmail.com;
333	DiazAna@live.com;

Clientes = (ID, Nombre, Puesto, Salario)

Emails = (Id_Empleado, email)

Detectar Dependencias funcionales y llevar a la 1ra Forma normal a la siguiente tabla.

ID Client e	Nombre	Email	Cp.	Teléfono Fijo	Teléfono Personal	Direcciones de envío	Ciudad
CF001	Juan Pérez	JuanP@gmail.com; juanPerez@outlook.com	5000	0351- 4567803	0351- 15511625	Montevideo 321 "4F"; San Martín 255 "Of 101";	Córdoba
CF002	José Toro	Jose.san@hotmail.com	5127		03574- 15625907	Sarmiento 1124 "casa 2";	Rio Cuarto
RI001	Ana Díaz	Adiaz@gmail.com; Ana Diaz45@live.com;	5000	011- 4351243	011- 15243214	General Paz 4650 "dto. 12"; General Paz 5000;	Córdoba
CF003	Leandro Juarez	leojuarez@gmail.com; l.juarez@yahoo.com;	5320	0341- 4125673		Salta 75 "5A"; Oncativo 530 "2B";	Villa María
RI002	xGaming S.A.	info@xgaming.com	5320	0351- 5685000		Ayacucho 123 "Of B"	Villa María
RI003	Clínica "Santo Domingo"	info@clinicaStoDgo.com; drjuarez@gmail.com;	1000	0351- 5689034	03574- 15423547	24 de septiembre 2300 "piso 1"	Cosquín
Ri004	Juan Pérez	Juanperez@live.com;	5127		0351- 15267589	Juan XXIII 770 "Of C"	Rio Cuarto

Detectar Dependencias funcionales y llevar a la 1ra Forma normal a la siguiente tabla.

Α	В	С	D	Е	F	G	Н
CF001	N1	M1; M2	CP1	TF1	TM1	D1; D2	C1
CF002	N2	M3	CP2		TM2	D3	C2
RI001	N3	M4,M5	CP1	TF2	TM3	D4 ; D5	C1
CF003	N4	M6; M7	СРЗ	TF3		D6 ; D7	C3
RI002	N5	M8	СРЗ	TF4		D8	C3
RI003	N6	M9; M10	CP4	TF5	TM4	D9	C4
RI004	N1	M11	CP2	TF6	TM5	D10	C2

Normalización Primera forma normal (1FN) Descomposición solo del atributo Direcciones de envío

Desco	Descomposición solo del atributo Direcciónes de envio								
ID Cliente	Nombre	Email	Ср.	Teléfono Fijo	Teléfono Personal	Direcciones de envío	Ciudad		
CF001	Juan Pérez	<u>JuanP@gmail.com;</u> <u>juanPerez@outlook.com</u>	5000	0351- 4567803	0351- 15511625	Montevideo 321 "4F";	Córdoba		
CF001	Juan Pérez	<u>JuanP@gmail.com;</u> <u>juanPerez@outlook.com</u>	5000	0351- 4567803	0351- 15511625	San Martín 255 "Of 101";	Córdoba		
CF002	José Toro	Jose.san@hotmail.com	5127		03574- 15625907	Sarmiento 1124 "casa 2";	Rio Cuarto		
RI001	Ana Díaz	Adiaz@gmail.com; Ana Diaz45@live.com;	5000	011- 4351243	011- 15243214	General Paz 4650 "dto. 12";	Córdoba		
RI001	Ana Díaz	Adiaz@gmail.com; Ana_Diaz45@live.com;	5000	011- 4351243	011- 15243214	General Paz 5000;	Córdoba		
CF003	Leandro Juarez	leojuarez@gmail.com; l.juarez@yahoo.com;	5320	0341- 4125673		Salta 75 "5A";	Villa María		
CF003	Leandro Juarez	leojuarez@gmail.com; l.juarez@yahoo.com;	5320	0341- 4125673		Oncativo 530 "2B";	Villa María		
RI002	xGaming S.A.	info@xgaming.com	5320	0351- 5685000		Ayacucho 123 "Of B"	Villa María		
RI003	Clínica "Sto Dgo"	info@clinicaStoDgo.com; drjuarez@gmail.com;	1000	0351- 5689034	03574- 15423547	24 de septiembre 2300 "piso 1"	Cosquín		
Ri004	Juan Pérez	Juanperez@live.com;	5127		0351- 15267589	Juan XXIII 770 "Of C"	Rio Cuarto		

Normalización Primera forma normal (1FN) Descomposición solo del atributo Direcciones de envío

А	В	С	D	Е	F	G	Н
CF001	N1	M1; M2	CP1	TF1	TM1	D2	C1
CF001	N1	M1; M2	CP1	TF1	TM1	D1	C1
CF002	N2	M3	CP2		TM2	D3	C2
RI001	N3	M4;M5	CP1	TF2	TM3	D4	C1
RI001	N3	M4;M5	CP1	TF2	TM3	D5	C1
CF003	N4	M6; M7	СР3	TF3		D6	C3
CF003	N4	M6; M7	СР3	TF3		D7	C3
RI002	N5	M8	СР3	TF4		D8	C3
RI003	N6	M8; M10	CP4	TF5	TM4	D9	C4
Ri004	N1	M11	CP2	TF6	TM5	D10	C2

Tupla "Juan Pérez" en 1era forma normal utilizando la opción 1

ID Cliente	Nombre	Email	Cp.	Teléfono Fijo	Teléfono Personal	Direcciones de envío	Ciudad
CF001	Juan Pérez	JuanP@gmail.com	5000	0351- 4567803	0351- 15511625	Montevideo 321 "4F";	Córdoba
CF001	Juan Pérez	juanPerez@outlook.com	5000	0351- 4567803	0351- 15511625	Montevideo 321 "4F";	Córdoba
CF001	Juan Pérez	JuanP@gmail.com;	5000	0351- 4567803	0351- 15511625	San Martín 255 "Of 101";	Córdoba
CF001	Juan Pérez	juanPerez@outlook.com	5000	0351- 4567803	0351- 15511625	San Martín 255 "Of 101";	Córdoba

Descomposición de la tabla propuesta mediante el segundo método

ID Cliente	Email
CF001	JuanP@gmail.com;
CF001	juanPerez@outlook.com
CF002	Jose.san@hotmail.com
RI001	Adiaz@gmail.com
RI001	Ana Diaz45@live.com
CF003	leojuarez@gmail.com
CF003	l.juarez@yahoo.com
RI002	info@xgaming.com
RI003	info@clinicaStoDgo.com
RI003	drjuarez@gmail.com
Ri004	Juanperez@live.com

ID Cliente	Direcciones de envío
CF001	Montevideo 321 "4F";
CF001	San Martín 255 "Of 101";
CF002	Sarmiento 1124 "casa 2";
RI001	General Paz 4650 "dto. 12";
RI001	General Paz 5000;
CF003	Salta 75 "5A";
CF003	Oncativo 530 "2B";
RI002	Ayacucho 123 "Of B"
RI003	24 de septiembre 2300 "piso 1"
Ri004	Juan XXIII 770 "Of C"

Email = (id cliente, email)
Direcciones = (id cliente, direcciones de envío)

Llevar a la 1ra Forma normal a la siguiente tabla.

Α	В	С	D	Е	F	G	Н
CF001	N1	M1; M2	CP1	TF1	TM1	D1 ; D2	C1
CF002	N2	M3	CP2		TM2	D3	C2
RI001	N3	M4,M5	CP1	TF2	TM3	D4 ; D5	C1
CF003	N4	M6; M7	СРЗ	TF3		D6;D7	C3
RI002	N5	M8	СРЗ	TF4		D8	C3
RI003	N6	M9; M10	CP4	TF5	TM4	D9	C4
Ri004	N1	M11	CP2	TF6	TM5	D10	C2

$$R = (A, B, C, D, E, F, G, H)$$

Descomposición de la tabla propuesta mediante el **segundo método**

Α	В	D	E	F	Н
CF001	N1	CP1	TF1	TM1	C1
CF002	N2	CP2		TM2	C2
RI001	N3	CP1	TF2	TM3	C1
CF003	N4	CP3	TF3		C3
RI002	N5	СР3	TF4		C3
RI003	N6	CP4	TF5	TM4	C4
RI004	N1	CP2	TF6	TM5	C2

$$R = (A, B, D, E, F, H)$$

Descomposición de la tabla propuesta mediante el segundo método

Tablas Resultantes

Α	В	D	E	F	Н
CF001	N1	CP1	TF1	TM1	C1
CF002	N2	CP2		TM2	C2
RI001	N3	CP1	TF2	TM3	C1
CF003	N4	СРЗ	TF3		C3
RI002	N5	СРЗ	TF4		C3
RI003	N6	CP4	TF5	TM4	C4
Ri004	N1	CP2	TF6	TM5	C2

А	G
CF001	D1
CF001	D2
CF002	D3
RI001	D4
RI001	D5
CF003	D6
CF003	D7
RI002	D8
RI003	D9
RI004	D10

Α	С
CF001	M1
CF001	M2
CF002	M3
RI001	M4
RI001	M5
CF003	M6
CF003	M7
RI002	M8
RI003	M9
RI003	M10
RI004	M11

Dependencias funcionales resultantes

$$A \rightarrow A$$
, B, D, E, F, H
D \rightarrow H
H \rightarrow D

$$A,G \rightarrow A,G$$

$$A,C \rightarrow A,C$$

Nro. Pedido	Cód. Vendedor	Cód. Producto	Nombre y apellido	Sucursal	Horario
1310001	001	PR01	Juan, Gonzales	S1	Turno 1
1310002	002	PR03	Karina, Fasetta	S2	Turno 1
1310003	003	PR03	Raúl, Gonzales	S1	Turno 2
1311001	001	PR01	Juan, Gonzales	S1	Turno 1
1311002	002	PR02	Karina, Fasetta	S2	Turno 1
1311002	002	PRO2	Karina, Fasetta	S2	Turno 1
1312001	001	PR02	Juan, Gonzales	S1	Turno 1

Nro. pedido: Fecha (año, mes), nro. pedido

Nombre y apellido: nombre, apellido

Nro. Pedido	Fecha	Cód. Producto	Cód. Vendedor	Nombre	Apellido	Sucursa I	Horario
001	10/13	PR01	001	Juan	Gonzales	S1	Turno 1
002	10/13	PR03	002	Karina	Fasetta	S2	Turno 1
003	10/13	PR03	003	Raúl	Gonzales	S1	Turno 2
001	11/13	PR01	001	Juan	Gonzales	S1	Turno 1
002	11/13	PR02	002	Karina	Fasetta	S2	Turno 1
003	11/13	PR02	002	Karina	Fasetta	S2	Turno 1
001	12/13	PR02	001	Juan	Gonzales	S1	Turno 1

Nro. pedido, Fecha → Nro. Pedido, Fecha, Cod. producto, Cód.. Vendedor, Nombre, Apellido, Sucursal, Horario

Cód.. Vendedor → Nombre

Cód.. Vendedor → Apellido

Cód.. Vendedor → Sucursal

Cód.. Vendedor → horario

Nombre, Apellido → horario

Apellido → Sucursal

Nro. Pedido	Fecha	Cód. Producto	Cód. Vendedor	Nombre	Apellido	Sucursa I	Horario
001	10/13	PR01	001	Juan	Gonzales	S1	Turno 1
002	10/13	PR03	002	Karina	Fasetta	S2	Turno 1
003	10/13	PR03	003	Raúl	Gonzales	S1	Turno 2
001	11/13	PR01	001	Juan	Gonzales	S1	Turno 1
002	11/13	PR02	002	Karina	Fasetta	S2	Turno 1
003	11/13	PR02	002	Karina	Fasetta	S2	Turno 1
001	12/13	PR02	001	Juan	Gonzales	S1	Turno 1

Nro. pedido, Fecha → Nro. Pedido, Fecha, Cód.. producto, Cód..
 Vendedor, Nombre, Apellido, Sucursal, Horario
 Cód.. Vendedor → Nombre, Apellido, Sucursal, horario

Normalización Forma normal de boyce codd (FNBC)

Decimos que una Relación R está en FNBC si sus dependencias funcionales cumplen al menos una de las siguientes condiciones:

- $\alpha \rightarrow \beta$ es una dependencia funcional **trivial**
- α es súper clave de R

Regla general para descomposición hacia la FNBC

Si tenemos una relación R con una dependencia funcional **NO TRIVIAL** $\alpha \rightarrow \beta$ y que además no sea **súper clave**, El diseño original se remplaza por las siguiente Estructuras:

- (α∪β)
- $(R (\beta \alpha))$

Normalización Forma normal de boyce codd (FNBC)

Primera Forma normal y detección de dependencias funcionales

Nro. Pedido	Fecha	Cód. Producto	Cód. Vendedor	Nombre	Apellido	Sucursa I	Horario
001	10/13	PR01	001	Juan	Gonzales	S1	Turno 1
002	10/13	PR03	002	Karina	Fasetta	S2	Turno 1
003	10/13	PR03	003	Raúl	Gonzales	S1	Turno 2
001	11/13	PR01	001	Juan	Gonzales	S1	Turno 1
002	11/13	PR02	002	Karina	Fasetta	S2	Turno 1
003	11/13	PR02	002	Karina	Fasetta	S2	Turno 1
001	12/13	PR02	001	Juan	Gonzales	S1	Turno 1

Nro. pedido, Fecha → Nro. Pedido, Fecha, Cód.. producto, Cód.. Vendedor, Nombre, Apellido, Sucursal, Horario

Cód.. Vendedor → Nombre, Apellido, Sucursal, horario

Normalización Forma normal de boyce codd (FNBC)

Aplicación de la regla de BC para la dependencia:

Cód.. Vendedor → Nombre, Apellido, Sucursal, horario

 $(R - (\beta - \alpha))$

 $(\alpha \cup \beta)$

Nro. Pedido	Fecha	Cód. Producto	Cód. Vendedor	Cód. Vendedor	Nombre	Apellido	Sucursal	Horario
001	10/13	PR01	001	001	Juan	Gonzales	S1	Turno 1
002	10/13	PR03	002	002	Karina	Fasetta	S2	Turno 1
003	10/13	PR03	003	003	Raúl	Gonzales	S1	Turno 2
001	11/13	PR01	001	001	Juan	Gonzales	S1	Turno 1
002	11/13	PRO2	002	002	Karina	Fasetta	S2	Turno 1
003	11/13	PRO2	002	002	Karina	Fasetta	S2	Turno 1
001	12/13	PRO2	001	001	Juan	Gonzales	S1	Turno 1

Nro. pedido, Fecha \rightarrow Nro. Pedido, Fecha, Cod. producto, Cód..

Vendedor

Cód.. Vendedor -> Nombre, Apellido, Sucursal, horario

Α	Р	C	Е	Н	J	K	L
A1	P1	C1;D1	E1	H8	J2	K5	L2;M5
A2	P2	C2;D1	E1	H8	J3	K5	L1;M8
A1	P3	C1;D1	E1	H8	J2	K5	L2;M5
A3	P4	C2;D2	E2	H8	J3	K5	L1;M8
A3	P5	C2;D2	E2	H9	J4	K6	L9;M8
A3	P6	C2;D2	E2	H9	J4	K6	L9;M8
A2	P7	C2;D1	E1	H10	J4	K6	L9;M8
A1	P8	C1;D1	E2	H10	J5	K6	L9;M7

- Llevar el modelo a primera forma normal
- Detectar dependencias funcionales
- Normalizar el modelo llevándolo a la FNBC
- C y L son compuestos
- no tener en cuenta las dependencias J → K , L → K , M → C y J → C

Primera forma normal

Α	Р	C	D	E	Н	J	K	L	M
A1	P1	C1	D1	E1	H8	J2	K5	L2	M5
A2	P2	C2	D1	E1	H8	J3	K5	L1	M8
A1	Р3	C1	D1	E1	H8	J2	K5	L2	M5
A3	P4	C2	D2	E2	H8	J3	K5	L1	M8
A3	P5	C2	D2	E2	H9	J4	K6	L9	M8
A3	P6	C2	D2	E2	H9	J4	K6	L9	M8
A2	P7	C2	D1	E1	H10	J4	K6	L9	M8
A1	P8	C1	D1	E2	H10	J5	K6	L9	M7

Dependencias funcionales detectadas

A	P	С	D	E	Н	J	K	L	M
A1	P1	C1	D1	E1	H8	J2	K5	L2	M5
A2	P2	C2	D1	E1	H8	J3	K5	L1	M8
A1	Р3	C1	D1	E1	H8	J2	K5	L2	M5
A3	P4	C2	D2	E2	H8	J3	K5	L1	M8
A3	P5	C2	D2	E2	H9	J4	K6	L9	M8
A3	P6	C2	D2	E2	H9	J4	K6	L9	M8
A2	P7	C2	D1	E1	H10	J4	K6	L9	M8
A1	P8	C1	D1	E2	H10	J5	K6	L9	M7

- $P \rightarrow (A, P, C, D, E, H, J, K, L, M)$
- A \rightarrow C, D
- H → K
- $J \rightarrow L,M$

Dependencias funcionales que no cumple la FNBC:

- $A \rightarrow C, D$
- H → K
- J → L,M

Descomposición para A → C, D

 $(R - (\beta - \alpha))$

 $(\alpha \cup \beta)$

Α	Р	Е	Н	J	K	L	M
A1	P1	E1	Н8	J2	K5	L2	M5
A2	P2	E1	Н8	J3	K5	L1	M8
A1	Р3	E1	Н8	J2	K5	L2	M5
A3	P4	E2	Н8	J3	K5	L1	M8
A3	P5	E2	H9	J4	K6	L9	M8
A3	P6	E2	H9	J4	K6	L9	M8
A2	P7	E1	H10	J4	K6	L9	M8
A1	P8	E2	H10	J5	K6	L9	M7

Α	С	D
A1	C1	D1
A2	C2	D1
A1	C1	D1
А3	C2	D2
А3	C2	D2
А3	C2	D2
A2	C2	D1
A1	C1	D1

Descomposición para H → K

$$(R - (\beta - \alpha))$$

Α	Р	Е	Н	J	L	M
A1	P1	E1	H8	J2	L2	M5
A2	P2	E1	Н8	J3	L1	M8
A1	P3	E1	H8	J2	L2	M5
A3	P4	E2	H8	J3	L1	M8
A3	P5	E2	Н9	J4	L9	M8
A3	P6	E2	H9	J4	L9	M8
A2	P7	E1	H10	J4	L9	M8
A1	P8	E2	H10	J5	L9	M7

(α	U	β)
•				1

Н	K
Н8	K5
Н9	K6
Н9	K6
H10	K6
H10	К6

Descomposición para J → L,M

$$(R - (\beta - \alpha))$$

Α	Р	Е	Н	J
A1	P1	E1	H8	J2
A2	P2	E1	H8	J3
A1	P3	E1	H8	J2
A3	P4	E2	H8	J3
A3	P5	E2	H9	J4
A3	P6	E2	H9	J4
A2	P7	E1	H10	J4
A1	P8	E2	H10	J5

$(\alpha \cup \beta)$

L	M
L2	M5
L1	M8
L2	M5
L1	M8
L9	M7
	L2 L1 L2 L1 L9 L9

R resultantes después de normalizar.

Α	P	E	Н	J	J	L	M	Н	K	Α	С
	P1	E1	Н8	J2	J2	L2	M5	H8	K5	A1	C1
	P2	E1	Н8	J3	J3	L1	M8	H8	K5	A2	C2
L	Р3	E1	Н8	J2	J2	L2	M5	H8	K5	A1	C1
3	P4	E2	Н8	J3	J3	L1	M8	H8	K5	A3	C2
3	P5	E2	Н9	J4	J4	L9	M8	H9	K6	A3	C2
3	Р6	E2	H9	J4	J4	L9	M8	H9	K6	A3	C2
2	P7	E1	H10	J4	J4	L9	M8	H10	K6	A2	C2
1	P8	E2	H10	J5	J5	L9	M7	H10	K6	A1	C1
Р	$\rightarrow A$, P,	E, H	, J	J -	→ L,	Μ	H -	→ K	Α.	→ C

Todas las nuevas relaciones tienen dependencias que cumplen con la FNBC

Dada la Siguiente Relación R, Detectar Dependencias Funcionales Relevantes y llevar a FNBC

Curso	Id_profesor	Profesor	Libro	Aula	Editorial	Ciudad	Teléfono	Email
Fisica	001	Luis	А	1	Ciencia	Madrid	212121-202121	<u>Luis@gmail.com</u>
Fisica	001	Luis	В	2	Saber	Sevilla	212121-202121	Luis@gmail.com
Fisica	002	Paco	А	3	Ciencia	Madrid	434343-033435	Paco009@outlook.com
Fisica	002	Paco	В	4	Saber	Sevilla	434343-033435	Paco009@outlook.com
Lengua	003	Pepe	С	5	Saber	Sevilla	545454122323	pepe_2003@yahoo.com.ar
Lengua	003	Pepe	D	6	Futuro	Barcelona	545454122323	pepe_2003@yahoo.com.ar
Lengua	004	Ana	С	7	Saber	Sevilla	323232;12222	A_barrera@gmail.com
Lengua	004	Ana	D	8	Futuro	Barcelona	323232;12222	A_barrera@gmail.com
Lengua	005	Juan	С	9	Saber	Sevilla	123123(Fijo); 25324(Trabajo)	jmoreno@hotmail.com
Lengua	005	Juan	D	10	Futuro	Barcelona	123123(Fijo); 25324(Trabajo)	jmoreno@hotmail.com

El Atributo **Teléfono** es multivalorado

Primera Forma Normal

Curso	Id_profesor	Profesor	Libro	Aula	Editorial	Ciudad	Email

Id_profesor

Teléfono

Dependencias funcionales

Curso Id_profesor Profesor Libro Aula Editorial Ciudad Emai	Curso	Id_profesor	Profesor	Libro	Aula	Editorial	Ciudad	Email
---	-------	-------------	----------	-------	------	-----------	--------	-------

Aula --> Curso, Id_profesor, Profesor, Libro, Editorial, Email

Id_profesor -->profesor, Curso, Email

Libro --> Editorial, Ciudad

Id_profesor Teléfono

Id_profesor, Teléfono --> Id_profesor ,Teléfono

Id_profesor, Teléfono --> Id_profesor ,Teléfono

FNBC

Curso	ld_profesor	Profesor	Libro	Aula	Editorial	Ciudad	Email				
Aula> Curso, Id_profesor, Profesor, Libro, Editorial, Email Cumple											
Id_profesor>profesor, Curso, Email Libro> Editorial, Ciudad No cumple											
		No cumple									
Id profesor T	eléfono										

Cumple

FNBC Id_profesor -->profesor, Curso, Email

Id_profesor	Libro	Aula	Editorial	Ciudad	$(R - (\beta - \alpha))$
	ld mafaan	Compa	Duefeesu	E!!	/ ~ O \
	Id_profesor	Curso	Profesor	Email	(α∪β)

FNBC **Libro** --> Editorial, ciudad

Id_profesor	Libro	Aula

Libro Editorial Ciudad (
$$\alpha \cup \beta$$
)

 $(R - (\beta - \alpha))$

R resultante con dependencias funcionales que cumplen con la FNBC

Aula -->Id_profesor, Libro, Ciudad

Id_profesor, Teléfono --> Id_profesor ,Teléfono

Id_profesor -->profesor, Curso, Email

Libro --> Editorial, ciudad

Dada la siguiente relación, detectar dependencias funcionales y llevar a la FNCB

Cod_Tit.	Titulo	Año	Duración	Género	Estudio	Nombre y apellido de actor	Fecha_Nac	ID_actor
001	Star wars	1977	124	Ciencia Fic.	FOX	Carrie, Fisher	21 de octubre de 1956	ac1
001	Star wars	1977	124	Ciencia Fic.	FOX	Mark, Hamill	25 de septiembre de 1951	ac2
001	Star wars	1977	124	Ciencia Fic.	FOX	Harrison, Ford	21 de Octubre de 1956	ac3
002	Mighty Ducks	1991	104	Comedia	Disney	Emilio, Estevez	12 de mayo de 1962	ac4
003	Wayne's World	1992	95	Comedia	Paramount	Dana, Fisher	2 de junio de 1955	ac5
003	Wayne's World	1992	95	Comedia	Paramount	Mike, Meyers	25 de mayo de 1963	ac6
004	Ben Hur	1959	212	Acción	MGM	Carrie, Heston	4 de octubre de 1923	ac7
004	Ben Hur	1959	212	Acción	MGM	Marta, Scott	22 de septiembre de 1912	ac8

Nombre y apellido del actor: compuesto

1ra forma normal del modelo.

Cod_Tit.	Titulo	Año	Duración	Género	Estudio	Nombre Actor	Apellido Actor	Fecha_Nac	ID_actor
001	Star wars	1977	124	Ciencia Fic.	FOX	Carrie	Fisher	21 de octubre de 1956	ac1
001	Star wars	1977	124	Ciencia Fic.	FOX	Mark	Hamill	25 de septiembre de 1951	ac2
001	Star wars	1977	124	Ciencia Fic.	FOX	Harrison	Ford	21 de Octubre de 1956	ac3
002	Mighty Ducks	1991	104	Comedia	Disney	Emilio	Estevez	12 de mayo de 1962	ac4
003	Wayne's World	1992	95	Comedia	Paramount	Dana	Fisher	2 de junio de 1955	ac5
003	Wayne's World	1992	95	Comedia	Paramount	Mike	Meyers	25 de mayo de 1963	ac6
004	Ben Hur	1959	212	Acción	MGM	Carrie	Heston	4 de octubre de 1923	ac7
004	Ben Hur	1959	212	Acción	MGM	Marta	Scott	22 de septiembre de 1912	ac8

Dependencias funcionales Detectadas

Cod_Tit.	Titulo	Año	Duración	Género	Estudio	Nombre Actor	Apellido Actor	Fecha_Nac	ID_actor
001	Star wars	1977	124	Ciencia Fic.	FOX	Carrie	Fisher	21 de octubre de 1956	ac1
001	Star wars	1977	124	Ciencia Fic.	FOX	Mark	Hamill	25 de septiembre de 1951	ac2
001	Star wars	1977	124	Ciencia Fic.	FOX	Harrison	Ford	21 de Octubre de 1956	ac3
002	Mighty Ducks	1991	104	Comedia	Disney	Emilio	Estevez	12 de mayo de 1962	ac4
003	Wayne's World	1992	95	Comedia	Paramount	Dana	Fisher	2 de junio de 1955	ac5
003	Wayne's World	1992	95	Comedia	Paramount	Mike	Meyers	25 de mayo de 1963	ac6
004	Ben Hur	1959	212	Acción	MGM	Carrie	Heston	4 de octubre de 1923	ac7
004	Ben Hur	1959	212	Acción	MGM	Marta	Scott	22 de septiembre de 1912	ac8

Id_Actor → Nombre_Actor, Apellido_actor, Fecha Nacimiento Cod_titulo → Titulo, Año, Duración, Género, Estudio

Solución

Dependencia: Id_Actor → Nombre_Actor, Apellido_Actor, Fecha Nacimiento

Cod_Tit.	•	Γitulo	Año	Duración	Género	Estudio	Id_Actor	$(R - (\beta - \alpha))$
		ID_act	or	Nombre Acto	or Apelli	do Actor	Fecha_Nac	(α∪β)

Dependencia: Cod_titulo → Titulo, Año, Duración, Género, Estudio

Solución

Modelo Resultante

ID_actor	Nombre Actor	Apellido Actor	Fecha_Nac
----------	--------------	----------------	-----------

Id_Actor → Nombre_Actor, Apellido_actor, Fecha Nacimiento

Cod_Tit. Titulo Año Duracion Género Estu
--

Cod_titulo → Titulo, Año, Duración, Género, Estudio

```
Cod_Tit. Id_Actor
```

Id_Actor → Cod_titulo