FACTEURS γ DU CARRÉ EXTÉRIEUR

Soit F un corps local de caractéristique 0, ψ un caractère non trivial de F et π une représentation tempérée irréductible de $GL_{2n}(F)$. Jacquet et Shalika ont défini une fonction L du carré extérieur $L_{JS}(s,\pi,\Lambda^2)$ par des intégrales notées $J(s,W,\phi)$, où $W \in \mathcal{W}(\pi,\psi)$ est un élément du modèle de Whittaker de π et $\phi \in \mathcal{S}(F^n)$ est une fonction de Schwartz. Matringe a prouvé que, lorsque F est non archimédien, ces intégrales $J(s,W,\phi)$ vérifient une équation fonctionnelle, ce qui permet de définir des facteurs γ , que l'on note $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$.

On montre que l'on a encore une équation fonctionnelle lorsque F est archimédien et que les facteurs γ sont égaux à une constante de module 1 prés à ceux définis par Shahidi, que l'on note $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$. Plus exactement, il existe une constante $c(\pi)$ de module 1, telle que

(1)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi),$$

pour tout $s \in \mathbb{C}$. La preuve se fait par une méthode de globalisation, on considère π comme une composante locale d'une représentation automorphe cuspidale.

1. Préliminaires

1.1. **Théorie locale.** Les intégrales $J(s, W, \phi)$ sont définies par

$$\int_{\mathsf{N_n}\backslash\mathsf{G_n}}\int_{\mathsf{Lie}(\mathsf{B_n})\backslash\mathsf{M_n}}W\left(\sigma\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\right)\psi(-\mathsf{Tr}(\mathsf{X}))\mathsf{d}\mathsf{X}\phi(e_ng)|\det g|^s\mathsf{d}g$$

pour tous $W \in \mathcal{W}(\pi, \psi)$, $\phi \in \mathcal{S}(\mathsf{F}^n)$ et $s \in \mathbb{C}$. On a noté G_n le groupe $\mathsf{GL}_n(\mathsf{F})$, B_n le sous groupe des matrices triangulaires supérieures, N_n le sous-groupe de B_n des matrices dont les éléments diagonaux sont 1 et M_n l'ensemble des matrices de taille $n \times n$ à coefficients dans F . L'élément σ est la matrice associée à la permutation $\begin{pmatrix} 1 & 2 & \cdots & n \\ 1 & 3 & \cdots & 2n-1 & 2 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & \cdots & 2n \\ 2 & 1 & \cdots & 2n \end{pmatrix}$.

Jacquet et Shalika ont démontré que ces intégrales convergent pour Re(s) suffisamment grand, plus exactement, on dispose de la

Proposition 1.1 (Jacquet-Shalika). Il existe $\eta > 0$ tel que les intégrales $J(s, W, \varphi)$ convergent absolument pour $Re(s) > 1 - \eta$.

Kewat montre, lorsque F est p-adique, que ce sont des fractions rationnelles en q^s où q est le cardinal du corps résiduel de F. On aura aussi besoin d'avoir le prolongement méromorphe de ces intégrales lorsque F est archimédien et d'un résultat de non annulation.

Proposition 1.2 (Belt). Fixons $s_0 \in \mathbb{C}$. Il existe $W \in \mathcal{W}(\pi, \psi)$ et $\varphi \in \mathcal{S}(\mathsf{F}^n)$ tels que $J(s, W, \varphi)$ admet un prolongement méromorphe à tout le plan complexe et ne s'annule pas en s_0 . Si $F = \mathbb{R}$ ou \mathbb{C} , le point s_0 peut éventuellement être un pôle. Si F est p-adique, on peut choisir W et φ tels que $J(s, W, \varphi)$ soit entière.

 $Date \colon 21 \text{ novembre } 2018.$

Lorsque la représentation est non-ramifiée, on peut représenter la fonction L du carré extérieur obtenue par la correspondance de Langlands locale, que l'on note $L(s, \pi, \Lambda^2)$, (qui est égale à celle obtenue par la méthode de Langlands-Shahidi d'après un résultat d'Henniart [1]) par ces intégrales.

Proposition 1.3 (Jacquet-Shalika). Supposons que F est p-adique, le conducteur de ψ est l'anneau des entiers O de F. Soit π une représentation non ramifiée de $GL_{2n}(F)$. On note φ_0 la fonction caractéristique de O^n et W_0 l'unique fonction de Whittaker invariante par $GL_{2n}(O)$ et qui vérifie W(1) = 1. Alors

(3)
$$J(s, W_0, \phi_0) = L(s, \pi, \Lambda^2).$$

Pour finir cette section, on énonce l'équation fonctionnelle démontrée par Matringe lorsque F est un corps p-adique. Plus précisément, on a la

Proposition 1.4 (Matringe). Supposons que F est un corps p-adique et π générique. Il existe un monôme $\varepsilon(s, \pi, \Lambda^2, \psi)$ en q^s , tel que pour tous $W \in \mathcal{W}(\pi, \psi)$ et $\phi \in \mathcal{S}(F^n)$, ont ait

(4)
$$\epsilon(s, \pi, \Lambda^2, \psi) \frac{J(s, W, \phi)}{L(s, \pi, \Lambda^2)} = \frac{J(1 - s, \rho(w_{n,n})\tilde{W}, \hat{\phi})}{L(1 - s, \tilde{\pi}, \Lambda^2)},$$

où $\hat{\varphi} = \mathcal{F}_{\psi}(\varphi)$ est la transformée de Fourier de φ par rapport au caractère ψ et $\tilde{W} \in \mathcal{W}(\tilde{\pi}, \bar{\psi})$ est la fonction de Whittaker définie par $\tilde{W}(g) = W(w_n(g^t)^{-1})$, avec w_n la matrice associée à la permutation $\begin{pmatrix} 1 & \dots & 2n \\ 2n & \dots & 1 \end{pmatrix}$ et $w_{n,n} = \begin{pmatrix} 0 & 1_n \\ 1_n & 0 \end{pmatrix}$. On définit alors le facteur γ de Jacquet-Shalika par la relation

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = \varepsilon(s,\pi,\Lambda^2,\psi) \frac{L(1-s,\tilde{\pi},\Lambda^2)}{L(s,\pi,\Lambda^2)}.$$

1.2. **Théorie globale.** La méthode que l'on utilise est une méthode de globalisation. Essentiellement, on verra π comme une composante locale d'une représentation automorphe cuspidale. Pour ce faire, on aura besoin de l'équivalent global des intégrales $J(s, W, \phi)$.

Soit K un corps de nombres et $\psi_{\mathbb{A}}$ un caractère non trivial de \mathbb{A}_K/K . Soit Π une représentation automorphe cuspidale irréductible sur $GL_{2n}(\mathbb{A}_K)$. Pour $\phi \in \Pi$, on considère

$$(6) \hspace{1cm} W_{\phi}(g) = \int_{N_{2\pi}(K) \backslash N_{2\pi}(\mathbb{A}_K)} \phi(\mathfrak{u}g) \psi_{\mathbb{A}}(\mathfrak{u}) d\mathfrak{u}$$

la fonction de Whittaker associée. On considère $\psi_{\mathbb{A}}$ comme un caractère de $N_{2n}(\mathbb{A}_K)$ en posant $\psi_{\mathbb{A}}(\mathfrak{u}) = \psi_{\mathbb{A}}(\sum_{i=1}^{2n-1} \mathfrak{u}_{i,i+1})$. Pour $\Phi \in \mathcal{S}(\mathbb{A}_K^n)$ une fonction de Schwartz, on note $J(s,W_{\phi},\Phi)$ l'intégrale

$$\int_{\mathsf{N}_{\mathfrak{n}}\backslash\mathsf{G}_{\mathfrak{n}}}\int_{\mathsf{Lie}(\mathsf{B}_{\mathfrak{n}})\backslash\mathsf{M}_{\mathfrak{n}}}W_{\varphi}\left(\sigma\begin{pmatrix}1&X\\0&1\end{pmatrix}\begin{pmatrix}g&0\\0&g\end{pmatrix}\right)\psi_{\mathbb{A}}(\mathsf{Tr}(\mathsf{X}))\mathsf{d}\mathsf{X}\Phi(e_{\mathfrak{n}}g)|\det g|^{s}\mathsf{d}g$$

où l'on note G_n le groupe $GL_n(\mathbb{A}_K)$, B_n le sous groupe des matrices triangulaires supérieures, N_n le sous-groupe de B_n des matrices dont les éléments diagonaux sont 1 et M_n l'ensemble des matrices de taille $n \times n$ à coefficients dans \mathbb{A}_K .

Finissons cette section par l'équation fonctionnelle globale démontrée par Jacquet et Shalika [2].

Proposition 1.5 (Jacquet-Shalika). Les intégrales $J(s, W_{\phi}, \Phi)$ convergent absolument pour Re(s) suffisamment grand. De plus, $J(s, W_{\phi}, \Phi)$ admet un prolongement méromorphe à tout le plan complexe et vérifie l'équation fonctionnelle suivante

(8)
$$J(s, W_{\varphi}, \Phi) = J(1 - s, \rho(w_{n,n}) \tilde{W}_{\varphi}, \hat{\Phi}),$$

où $\tilde{W}_{\phi}(g) = W_{\phi}(w_n(g^t)^{-1})$ et $\hat{\Phi}$ est la transformée de Fourier de Φ par rapport au caractère $\psi_{\mathbb{A}}$.

Comme on peut s'y attendre, les intégrales globales sont reliées aux intégrales locales. Plus exactement, si $W=\prod_{\nu}W_{\nu}$ et $\Phi=\prod_{\nu}\Phi_{\nu}$, où ν décrit les places de K, on a

$$J(s,W_{\varphi},\Phi) = \prod_{\nu} J(s,W_{\nu},\Phi_{\nu}).$$

1.3. **Globalisation.** Comme la preuve se fait par globalisation, la première chose à faire est de trouver un corps de nombres dont F est une localisation. On dispose du

Lemme 1.1 (Kable [3]). Supposons que F est un corps p-adique. Il existe un corps de nombres k et une place v_0 telle que $k_{v_0} = F$, où v_0 est l'unique place de k au dessus de p.

On note $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ l'ensemble des classes d'isomorphismes de représentations tempérées irréductibles. On va définir une topologie sur $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$. Soit M un sous-groupe de Levi de $\mathsf{GL}_{2n}(\mathsf{F})$ et σ une représentation irréductible de carré intégrable de M, on note $\mathsf{X}^*(M)$ le groupe des caractères algébriques de M, on dispose alors d'une application $\chi \otimes \lambda \in \mathsf{X}^*(M) \otimes i\mathbb{R} \mapsto \mathfrak{i}_M^G(\sigma \otimes \chi_\lambda) \in \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ où $\chi_\lambda(\mathsf{g}) = |\chi(\mathsf{g})|^\lambda$. On définit alors une base de voisinage de $\mathfrak{i}_M^G(\sigma)$ dans $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ comme l'image d'une base de voisinage de 0 dans $\mathsf{X}^*(M) \otimes i\mathbb{R}$.

Cette topologie sur $Temp(GL_{2n}(F))$ nous permet d'énoncer le résultat principal dont on aura besoin pour la méthode de globalisation.

Proposition 1.6 (Beuzart-Plessis). Soient k un corps de nombres, v_0, v_1 deux places distinctes de k avec v_1 non archimédienne. Soit U un ouvert de $Temp(GL_{2n}(k_{v_0}))$. Alors il existe une représentation automorphe cuspidale irréductible Π de $GL_{2n}(\mathbb{A}_k)$ telle que $\Pi_{v_0} \in U$ et Π_v est non ramifiée pour toute place non archimédienne $v \notin \{v_0, v_1\}$.

1.4. Fonctions tempérées. On aura besoin dans la suite de connaître la dépendance que $J(s,W,\varphi)$ lorsque l'on fait varier la représentation π . Pour ce faire, on introduit la notion de fonction tempérée et on étend la définition de $J(s,W,\varphi)$ pour ces fonctions tempérées.

L'espace des fonctions tempérées $C^w(N_{2n}(F)\backslash GL_{2n}(F),\psi)$ est l'espace des fonctions $f:GL_{2n}(F)\to\mathbb{C}$ telles que $f(ng)=\psi(n)f(g)$ pour tous $n\in N_{2n}(F)$ et $g\in GL_{2n}(F)$, on impose les conditions suivantes :

- Si F est p-adique, f est localement constante et il existe d>0 et C>0 tels que $|f(\mathfrak{n}\mathfrak{a}k)|\leqslant C\delta_{B_{2\mathfrak{n}}}(\mathfrak{a})^{\frac{1}{2}}\log(\|\mathfrak{a}\|)^d$ pour tous $\mathfrak{n}\in N_{2\mathfrak{n}}(F),\ \mathfrak{a}\in A_{2\mathfrak{n}}(F)$ et $k\in GL_{2\mathfrak{n}}(\mathfrak{O}),$
- Si F est archimédien, f est C^{∞} et il existe d>0 et C>0 tels que $|(R(u)f)(nak)| \leq C\delta_{B_{2n}}(a)^{\frac{1}{2}}\log(\|a\|)^d$ pour tous $n\in N_{2n}(F)$, $a\in A_{2n}(F)$, $k\in GL_{2n}(\mathfrak{O})$ et $u\in \mathcal{U}(\mathfrak{gl}_{2n}(F))$.

définir ||a|| invariant sous la décomposition d'Iwasawa

On rappelle la majoration des fonctions tempérées sur la diagonale,

Lemme 1.2. Soit $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi)$. Alors, pour tout $N \geqslant 1$, il existe C > 0 tel que

$$|W(bk)| \leqslant C \prod_{i=1}^{2n-1} (1 + |\frac{b_i}{b_{i+1}}|)^{-N} \delta_{B_{2n}}(b)^{\frac{1}{2}} \log(||b||)^d,$$

pour tous $b \in A_{2n}(F)$ et $k \in GL_{2n}(O)$.

Lemme 1.3. Il existe N tel que pour tous s vérifiant Re(s) > 0 et d > 0, l'intégrale

(11)
$$\int_{A_n} \prod_{i=1}^{n-1} (1 + |\frac{a_i}{a_{i+1}}|)^{-N} (1 + |a_n|)^{-N} \log(||a||)^d |\det a|^s da$$

converge absolument.

On étend la définition des intégrales $J(s,W,\varphi)$ aux fonctions tempérées W, on montre maintenant la convergence de ces intégrales

Lemme 1.4. Pour $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi)$ et $\phi \in S(F^n)$, l'intégrale $J(s, W, \phi)$ converge absolument pour tout $s \in \mathbb{C}$ vérifiant Re(s) > 0.

Démonstration. D'après la décomposition d'Iwasawa, on a $N_n \backslash G_n = A_n K_n$. Il suffit de montrer la convergence de l'intégrale (12)

$$\int_{A_n}^{(-1)} \int_{K_n} \int_{\text{Lie}(B_n) \setminus M_n} \left| W \left(\sigma \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \alpha k & 0 \\ 0 & \alpha k \end{pmatrix} \right) \phi(e_n \alpha k) \right| dX dk \left| \det \alpha \right|^{Re(s)} \delta^{-1}(\alpha) d\alpha.$$

On pose $u_X = \sigma \begin{pmatrix} 1 & X \\ 0 & 1 \end{pmatrix} \sigma^{-1}$, ce qui nous permet d'écrire

(13)
$$\sigma\begin{pmatrix}1 & X\\ 0 & 1\end{pmatrix}\begin{pmatrix}\alpha & 0\\ 0 & \alpha\end{pmatrix} = bu_{\alpha^{-1}X\alpha}\sigma,$$

où $b=diag(\alpha_1,\alpha_1,\alpha_2,\alpha_2,...)$. On effectue le changement de variable $X\mapsto \alpha X\alpha^{-1}$, l'intégrale devient alors

$$\int_{A_n} \int_{K_n} \int_{\text{Lie}(B_n) \setminus M_n} \left| W \left(\text{bu}_X \sigma \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \right) \varphi(e_n ak) \right| dX dk |\det a|^{\text{Re}(s)} \delta^{-2}(a) da.$$

On écrit $u_X=n_Xt_Xk_X$ la décomposition d'Iwasawa de u_x et on pose $k_\sigma=\sigma\begin{pmatrix}k&0\\0&k\end{pmatrix}$. Le lemme 1.2 donne alors

$$(15) |W(bt_Xk_Xk_\sigma)| \leqslant C \prod_{i=1}^{2n-1} (1+|\frac{t_jb_j}{t_{j+1}b_{j+1}}|)^{-N} \delta^{\frac{1}{2}}(bt_x) \log(||bt_X||)^d.$$

On aura besoin d'inégalités prouvées par Jacquet et Shalika [2] concernant les t_i . On dispose de la

Proposition 1.7 (Jacquet-Shalika). On a $|t_k| \ge 1$ lorsque k est impair et $|t_k| \le 1$ lorsque k est pair. En particulier, $|\frac{t_j}{t_{j+1}}| \ge 1$ lorsque j est impair et $|\frac{t_j}{t_{j+1}}| \le 1$ lorsque j est pair.

On combine alors cette proposition avec le fait que $\frac{b_j}{b_{j+1}} = 1$ lorsque j est impair et $\frac{b_j}{b_{j+1}}=\frac{\alpha_{\frac{j}{2}}}{\alpha_{\frac{j}{2}+1}}$ lorsque j est pair. Ce qui nous permet d'obtenir

$$|W(bt_Xk_Xk_\sigma)| \leqslant C2^{-nN} \prod_{j=1,j \text{ impair}}^{2n-1} |\frac{t_j}{t_{j+1}}|^{-N} \prod_{i=1}^{2n-1} (1+|\frac{a_i}{a_{i+1}}|)^{-N} \delta^{\frac{1}{2}}(bt_x) \log(||bt_X||)^{\frac{1}{2}}$$

$$(17) \hspace{1cm} \leqslant C 2^{-\mathfrak{n} N} \mathfrak{m}(X)^{-\alpha N} \prod_{i=1}^{n-1} (1 + |\frac{\mathfrak{a}_i}{\mathfrak{a}_{i+1}}|)^{-N} \delta^{\frac{1}{2}}(\mathfrak{b} \mathfrak{t}_x) \log(\|\mathfrak{b} \mathfrak{t}_X\|)^d,$$

où $m(X) = \sup(1, ||X||)$, la dernière inégalité provient de la section 5.5 de Jacquet-Shalika [2]. D'autre part, il existe C' > 0 tel que

(18)
$$|\phi(e_n ak)| \leq C'(1+|a_n|)^{-N}$$
.

L'intégrale est alors majorée (à une constante prés) par le produit des intégrales

(19)
$$\int_{\operatorname{Lie}(B_n)\backslash M_n} \mathfrak{m}(X)^{-\alpha N} \delta^{\frac{1}{2}}(t_X) \log(\|t_X\|)^d dX$$

et

$$(20) \quad \int_{A_n} \prod_{i=1}^{n-1} (1+|\frac{\alpha_i}{\alpha_{i+1}}|)^{-N} (1+|\alpha_n|)^{-N} \log(||b||)^d |\det \alpha|^{Re(s)} \delta_{B_{2n}}^{\frac{1}{2}}(b) \delta_{B_n}^{-2}(\alpha) d\alpha.$$

La première intégrale converge pour N assez grand et la deuxième pour N assez grand lorsque Re(s) > 0. On a utilisé la relation $\delta_{B_{2n}}^{\frac{1}{2}}(b) = \delta_{B_n}^2(a)$. En effet,

$$(21) \hspace{1cm} \delta_{B_{2n}}(b) = |a_{1}|^{1-2n}|a_{1}|^{3-2n}|a_{2}|^{5-2n}|a_{2}|^{7-2n}...|a_{n}|^{2n-3}|a_{n}|^{2n-1},$$

$$=|\mathfrak{a}_1|^{4-4\mathfrak{n}}|\mathfrak{a}_2|^{12-4\mathfrak{n}}...|\mathfrak{a}_{\mathfrak{n}}|^{4\mathfrak{n}-4},$$

$$(23) = \delta_{B_{-}}^4(\mathfrak{a}).$$

2. Facteurs γ

Dans cette partie, on prouve l'égalité entre les facteurs $\gamma^{JS}(.,\pi,\Lambda^2,\psi)$ et $\gamma^{Sh}(.,\pi,\Lambda^2,\psi)$ à une constante (dépendant de π) de module 1 près.

On commence à montrer cette égalité pour les facteurs γ archimédiens. Pour le moment, les résultats connus ne nous donnent même pas l'existence du facteur γ^{JS} dans le cas archimédien, ce sera une conséquence de la méthode de globalisation.

Soit π une représentation tempérée irréductible de $GL_{2n}(F)$. On aura besoin d'un résultat sur la continuité du quotient $\frac{J(1-s,\rho(w_{n,n})\bar{W},\hat{\Phi})}{J(s,W,\Phi)}$ lorsque l'on fait varier la représentation π , on dispose du

Lemme 2.1. Soient $W_0 \in \mathcal{W}(\pi, \psi)$, $\phi \in \mathcal{S}(\mathsf{F}^n)$ et $s \in \mathbb{C}$ tel que $0 < \mathsf{Re}(s) < \mathsf{Re}(s)$ 1. Supposons que $J(s, W_0, \phi) \neq 0$. Alors il existe une application continue $\pi' \in$ $\mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F})) \mapsto W_{\pi'} \in C^w(\mathsf{N}_{2n}(\mathsf{F}) \backslash \mathsf{GL}_{2n}(\mathsf{F}), \psi) \ \mathit{et \ un \ voisinage} \ V \subset \mathsf{Temp}(\mathsf{GL}_{2n}(\mathsf{F}))$ $de \ \pi \ tels \ que \ W_0 = W_{\pi} \ et \ l'application \ \pi' \in V \mapsto \frac{J(1-s,\rho(w_{n,n})\bar{W}_{\pi'},\hat{\varphi})}{J(s,W_{\pi'},\varphi)} \ soit \ continue.$ $En \ particulier, \ si \ F \ est \ un \ corps \ p-adique, \ ce \ quotient \ est \ \acute{e}gal \ \grave{\alpha} \ \gamma^{JS}(s,\pi',\Lambda^2,\psi)$

(proposition 1.4); donc $\pi' \in V \mapsto \gamma^{JS}(s, \pi', \Lambda^2, \psi)$ est continue.

Démonstration. On utilise l'existence de bonnes sections $\pi' \mapsto W_{\pi'}$ (Beuzart-Plessis). La forme linéaire $W \in C^w(N_{2n}(F)\backslash GL_{2n}(F), \psi) \mapsto J(s, W, \varphi)$ est continue, il existe donc un voisinage V de π tel que $J(s, W_{\pi'}, \varphi) \neq 0$. Le quotient $\frac{J(1-s, \rho(w_{n,n})\bar{W}_{\pi'}, \varphi)}{J(s, W_{\pi'}, \varphi)}$ est alors bien une fonction continue de π' sur V.

On étudie maintenant la dépendance du quotient $\frac{J(1-s,\rho(w_{n,n})\bar{W},\mathcal{F}_{\psi}(\varphi))}{J(s,W,\varphi)}$ par rapport au caractère additif ψ , où l'on note \mathcal{F}_{ψ} pour la transformée de Fourier par rapport à ψ . Les caractères additifs de F sont de la forme ψ_{λ} avec $\lambda \in F^*$ où $\psi_{\lambda}(x) = \psi(\lambda x)$.

Lemme 2.2. Soient $\lambda \in F^*$, $W \in W(\pi, \psi)$, $\phi \in S(F^n)$ et $s \in \mathbb{C}$ tel que 0 < Re(s) < 1. Supposons que $J(s, W, \phi) \neq 0$. Alors

$$(24)\quad \frac{J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi_{\lambda}}(\varphi))}{J(s,W,\varphi)}=|\lambda|^{\mathfrak{n}(s-\frac{1}{2})}\omega_{\pi}(\lambda)\frac{J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi))}{J(s,W,\varphi)}.$$

Démonstration. En effet, la mesure de Haar auto-duale pour ψ_{λ} est reliée à la mesure de Haar auto-duale pour ψ par un facteur $|\lambda|^{\frac{n}{2}}$. On en déduit que $\mathcal{F}_{\psi_{\lambda}}(\varphi)(x) = |\lambda|^{\frac{n}{2}}\mathcal{F}_{\psi}(\varphi)(\lambda x)$. Le changement de variable $g \mapsto \lambda^{-1}g$ dans l'intégrale définissant $J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi)(\lambda))$ donne

$$(25) \quad J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi)(\lambda.)) = |\lambda|^{\mathfrak{n}(s-1)}\omega(\lambda)J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi)).$$
 On en déduit immédiatement le lemme.

Les facteurs γ de Shahidi du carré extérieur vérifient la même dépendance par rapport au caractère additif ψ (voir Henniart [1]). Dans la suite, on pourra donc choisir arbitrairement un caractère additif non trivial, les relations seront alors vérifiées pour tous les caractères additifs, en particulier pour le caractère ψ que l'on a fixé.

Proposition 2.1. Soit $F = \mathbb{R}$ ou \mathbb{C} . Soit π une représentation tempérée irréductible de $GL_{2n}(F)$.

Il existe une fonction méromorphe $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ telle que pour tous $s\in\mathbb{C}$, $W\in\mathcal{W}(\pi,\psi)$ et $\varphi\in\mathcal{S}(F^n)$, on ait

(26)
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi)J(s,W,\varphi) = J(1-s,\rho(w_{n,n})\tilde{W},\mathcal{F}_{\psi}(\varphi)).$$

De plus, il existe une constante $c(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$,

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = c(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,\psi).$$

Démonstration. Soit k un corps de nombres, on suppose que k a une seule place archimédienne, elle est réelle (respectivement complexe) lorsque $F=\mathbb{R}$ (respectivement $F=\mathbb{C}$); par exemple, $k=\mathbb{Q}$ si $F=\mathbb{R}$ et $k=\mathbb{Q}(i)$ si $F=\mathbb{C}$. Soient $\nu\neq\nu'$ deux places non archimédiennes distinctes, soit $U\subset Temp(GL_{2n}(F))$ un ouvert contenant π . On choisit un caractère non trivial $\psi_{\mathbb{A}}$ de \mathbb{A}_K/K .

D'après la proposition 1.6, il existe une représentation automorphe cuspidale irréductible Π telle que $\Pi_{\infty} \in U$ et Π_w soit non ramifiée pour toute place non archimédienne $w \neq v$.

On choisit maintenant des fonctions de Whittaker W_w et des fonctions de Schwartz ϕ_w dans le but d'appliquer l'équation fonctionnelle globale. Pour $w \notin \{\infty, \nu\}$, on prend les fonctions "non ramifiées" qui apparaissent dans la proposition 1.3. Pour

 $w=\infty$ ou v, on fait un choix, d'après la proposition 1.2, tel que $J(s,W_w,\varphi_w)\neq 0$. On pose alors

(28)
$$W = \prod_{w} W_{w} \quad \text{et} \quad \Phi = \prod_{w} \phi_{w}.$$

On note $S = \{\infty, \nu\}$ l'ensemble des places où Π est non ramifiée et T l'ensemble des places où $\psi_{\mathbb{A}}$ est non ramifié. D'après la proposition 1.5, on a

(29)
$$\prod_{w \in S \cup T} J(s, W_w, \phi_w) L^{S \cup T}(s, \Pi, \Lambda^2)$$

$$= \prod_{w \in S \cup T} J(1 - s, \rho(w_{n,n}) \tilde{W}_w, \mathcal{F}_{(\psi_{\mathbb{A}})_w}(\phi_w)) L^{S \cup T}(1 - s, \tilde{\Pi}, \Lambda^2),$$

où $L^{S \cup T}(s, \Pi, \Lambda^2) = \prod_{w \in S \cup T} L(s, \Pi_w, \Lambda^2)$ est la fonction L partielle. D'autre part, les facteurs γ de Shahidi vérifient une relation similaire (voir Henniart [1]),

$$(30) \qquad \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(\mathsf{s},\mathsf{\Pi},\Lambda^2) = \prod_{w\in\mathsf{S}\cup\mathsf{T}} \gamma^{\mathsf{Sh}}(\mathsf{s},\mathsf{\Pi}_w,\Lambda^2,(\psi_{\mathbb{A}})_w) \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(1-\mathsf{s},\tilde{\mathsf{\Pi}},\Lambda^2).$$

Les équations (29) et (30), en utilisant la proposition 1.4 pour les places $w \in \{v\} \cup T$, donne

$$J(1 - s, \rho(w_{n,n})\tilde{W}_{\infty}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty})) =$$

$$J(s, W_{\infty}, \varphi_{\infty})\gamma^{Sh}(s, \Pi_{\infty}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\infty}) \prod_{w \in \{v\} \cup T} \frac{\gamma^{Sh}(s, \Pi_{w}, \Lambda^{2}, (\psi_{\mathbb{A}})_{w})}{\gamma^{JS}(s, \Pi_{w}, \Lambda^{2}, (\psi_{\mathbb{A}})_{w})}.$$

Ce qui prouve la première partie de la proposition pour Π_{∞} , l'existence du facteur $\gamma^{JS}(s,\Pi_{\infty},\Lambda^2,(\psi_{\mathbb{A}})_{\infty})$.

On s'occupe tout de suite du quotient $\frac{\gamma^{\text{Sh}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}{\gamma^{\text{JS}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}$ lorsque $w \in \mathbb{T}$. En effet, Π_{w} est non ramifiée, une combinaison de la proposition 1.3 et du lemme 2.2 va nous permettre de calculer ce quotient. Il existe $\lambda \in \mathbb{F}^{*}$ et un caractère non ramifié ψ_{0} de \mathbb{F} tel que $(\psi_{\mathbb{A}})_{w}(x) = \psi_{0}(\lambda x)$. La remarque suivant le lemme 2.2 nous dit que les facteurs $\gamma^{\text{JS}}(s,\pi,\Lambda^{2},\psi)$ et $\gamma^{\text{Sh}}(s,\pi,\Lambda^{2},\psi)$ ont la même dépendance par rapport au caractère additif. On en déduit que

$$\frac{\gamma^{\operatorname{Sh}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})}{\gamma^{\operatorname{JS}}(s,\Pi_{w},\Lambda^{2},(\psi_{\mathbb{A}})_{w})} = \frac{\gamma^{\operatorname{Sh}}(s,\Pi_{w},\Lambda^{2},\psi_{0})}{\gamma^{\operatorname{JS}}(s,\Pi_{w},\Lambda^{2},\psi_{0})} = 1,$$

d'après la proposition 1.3 (calcul non ramifié des intégrales de Jacquet-Shalika) et le calcul non ramifié des facteurs gamma de Shahidi (voir Henniart [1]).

L'équation (31) devient alors

(33)
$$J(1-s, \rho(w_{n,n})\tilde{W}_{\infty}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty})) = \\ J(s, W_{\infty}, \varphi_{\infty})\gamma^{Sh}(s, \Pi_{\infty}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\infty}) \frac{\gamma^{Sh}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})}{\gamma^{JS}(s, \Pi_{\nu}, \Lambda^{2}, (\psi_{\mathbb{A}})_{\nu})}$$

On choisit maintenant pour U une base de voisinage contenant π , en utilisant le lemme 2.1 et la continuité des facteurs γ de Shahidi, on en déduit que $\frac{J(1-s,\rho(w_{n,n})\bar{W},\mathcal{F}_{\psi}(\varphi))}{J(s,W,\varphi)}$ est une fonction méromorphe indépendante de W et de φ , que l'on note $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$, qui est le produit de $\gamma^{Sh}(s,\pi,\Lambda^2,\psi)$ et d'une fonction, que l'on note R(s). La fonction R(s) ne dépend pas du choix de la base de

voisinage et des choix qui sont fait lors de l'utilisation de la proposition 1.6. En effet, on a

$$\mathsf{R}(s) = \frac{\mathsf{J}(1-s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{(\psi_{\mathbb{A}})_{\infty}}(\varphi_{\infty}))}{\mathsf{J}(s, W, \varphi_{\infty})\gamma^{\mathsf{Sh}}(s, \pi, \Lambda^2, (\psi_{\mathbb{A}})_{\infty})},$$

où $W \in \mathcal{W}(\pi, \psi)$, qui est bien indépendant des choix que l'on a fait. De plus, R est une limite de fractions rationnelles en q_{ν}^s (les quotients $\frac{\gamma^{Sh}(s,\Pi_{\nu},\Lambda^2,(\psi_{\mathbb{A}})_{\nu})}{\gamma^{JS}(s,\Pi_{\nu},\Lambda^2,(\psi_{\mathbb{A}})_{\nu})}$); donc R est une fonction périodique de période $\frac{2i\pi}{\log q_{\nu}}$.

En réutilisant le même raisonnement en la place v', on voit que R est aussi périodique de période $\frac{2i\pi}{\log q_{**}}$. L'équation (34) s'écrit

(35)
$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = R(s)\gamma^{Sh}(s,\pi,\Lambda^2,\psi).$$

La fonction R est donc une fraction rationnelle en q_{ν}^s périodique de période $\frac{2i\pi}{\log q_{\nu}}$. Ce qui est impossible sauf si R est constante. Ce qui nous permet de voir qu'il existe une constante $c(\pi)=R$ telle que

(36)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi) = c(\pi)\gamma^{Sh}(s, \pi, \Lambda^2, \psi).$$

Il ne nous reste plus qu'à montrer que la constante $c(\pi)$ est de module 1. Reprenons l'équation fonctionnelle locale archimédienne,

(37)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi)J(s, W, \phi) = J(1 - s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{\psi}(\phi)).$$

On utilise maintenant l'équation fonctionnelle sur la représentation $\tilde{\pi}$ pour transformer le facteur $J(1-s, \rho(w_{n,n})\tilde{W}, \mathcal{F}_{\psi}(\phi))$, ce qui nous donne

(38)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi)J(s, W, \phi) = \frac{J(s, W, \mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\phi)))}{\gamma^{JS}(1 - s, \tilde{\pi}, \Lambda^2, \bar{\psi})}.$$

Puisque $\mathcal{F}_{\bar{\psi}}(\mathcal{F}_{\psi}(\varphi)) = \varphi$, on obtient donc la relation

(39)
$$\gamma^{JS}(s, \pi, \Lambda^2, \psi)\gamma^{JS}(1 - s, \tilde{\pi}, \Lambda^2, \bar{\psi}) = 1.$$

D'autre part, en conjuguant l'équation 37, on obtient

(40)
$$\overline{\gamma^{JS}(s,\pi,\Lambda^2,\psi)} = \gamma^{JS}(\bar{s},\bar{\pi},\Lambda^2,\bar{\psi}).$$

Comme π est tempérée, π est unitaire, donc $\tilde{\pi} \simeq \bar{\pi}$. On en déduit, pour $s = \frac{1}{2}$,

(41)
$$|\gamma^{JS}(\frac{1}{2}, \pi, \Lambda^2, \psi)|^2 = 1.$$

D'autre part, le facteur γ de Shahidi vérifie aussi $|\gamma^{Sh}(\frac{1}{2},\pi,\Lambda^2,\psi)|^2=1$; on en déduit donc que $c(\pi)$ est bien de module 1.

Proposition 2.2. Supposons que F est un corps p-adique. Soit π une représentation tempérée irréductible de $GL_{2n}(F)$.

Le facteur $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ est défini par la proposition 1.4. Alors il existe une constante $c(\pi)$ de module 1 telle que pour tout $s \in \mathbb{C}$,

$$\gamma^{JS}(s,\pi,\Lambda^2,\psi) = c(\pi)\gamma^{Sh}(s,\pi,\Lambda^2,\psi). \label{eq:gamma_JS}$$

Démonstration. D'après le lemme 1.1, il existe un corps de nombres k et une place ν_0 telle que $k_{\nu_0} = F$, où ν_0 est l'unique place de k au dessus de p. Soient ν, ν' deux places distinctes non archimédiennes et différentes de ν_0 . Soit $U \subset Temp(GL_{2n}(F))$ un ouvert contenant π . On choisit un caractère non trivial $\psi_{\mathbb{A}}$ de \mathbb{A}_k/k .

D'après la proposition 1.6, il existe une représentation automorphe cuspidale irréductible Π telle que $\Pi_{\nu_0} \in U$ et Π_w soit non ramifiée pour toute place non archimédienne $w \neq \nu$.

Pour $w = v_0, v$ ou une place archimédienne, on choisit d'après la proposition 1.2, des fonctions de Whittaker W_w et des fonctions de Schwartz ϕ_w telles que $J(s, W_w, \phi_w) \neq 0$. Pour les places non ramifiées, on choisit les fonctions "non ramifiées" de la proposition 1.3. On pose alors

$$W = \prod_{w} W_{w}$$
 et $\Phi = \prod_{w} \phi_{w}$.

On note S_{∞} l'ensemble des places archimédienne, $S = S_{\infty} \cup \{\nu, \nu_0\}$ et T l'ensemble des places où $\psi_{\mathbb{A}}$ est non ramifié. D'après l'équation fonctionnelle globale (proposition 1.5), on a

$$(43) \qquad \prod_{w \in S \cup T} J(s, W_w, \phi_w) L^{S \cup T}(s, \Pi, \Lambda^2)$$

$$= \prod_{w \in S \cup T} J(1 - s, \rho(w_{n,n}) \tilde{W}_w, \mathcal{F}_{(\psi_{\mathbb{A}})_w}(\phi_w)) L^{S \cup T}(1 - s, \tilde{\Pi}, \Lambda^2),$$

où $L^{S\cup T}(s,\Pi,\Lambda^2)$ est la fonction L partielle. Les facteurs γ de Shahidi vérifient (voir Henniart [1])

$$(44) \qquad \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(\mathsf{s},\Pi,\Lambda^2) = \prod_{w\in\mathsf{S}\cup\mathsf{T}} \gamma^{\mathsf{Sh}}(\mathsf{s},\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w) \mathsf{L}^{\mathsf{S}\cup\mathsf{T}}(1-\mathsf{s},\tilde{\Pi},\Lambda^2).$$

On rappelle que lors de la preuve de la proposition précédente, on a démontré que $\frac{\gamma^{\operatorname{Sh}}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}{\gamma^{\operatorname{JS}}(s,\Pi_w,\Lambda^2,(\psi_{\mathbb{A}})_w)}=1$ pour $w\in\mathsf{T}$. En utilisant les propositions 1.4 et 2.1, on obtient donc la relation

$$(45) \qquad \prod_{\nu_{\infty} \in S_{\infty}} c(\Pi_{\nu_{\infty}}) \frac{\gamma^{JS}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})}{\gamma^{Sh}(s,\Pi_{\nu},\Lambda^{2},(\psi_{\mathbb{A}})_{\nu})} \frac{\gamma^{JS}(s,\Pi_{\nu_{0}},\Lambda^{2},\psi)}{\gamma^{Sh}(s,\Pi_{\nu_{0}},\Lambda^{2},\psi)} = 1.$$

Le reste du raisonnement est maintenant identique à la fin de la preuve de la proposition 2.1. Par continuité, le quotient $\frac{\gamma^{JS}(s,\pi,\Lambda^2,\psi)}{\gamma^{Sh}(s,\pi,\Lambda^2,\psi)}$ est une fonction périodique de période $\frac{2i\pi}{\log q_{\nu}}$. Or c'est une fraction rationnelle en $q_{\nu_0}^s$, on obtient que c'est une constante. En évaluant $\gamma^{JS}(s,\pi,\Lambda^2,\psi)$ en $s=\frac{1}{2}$, on montre que cette constante est de module 1.

Références

- [1] G. Henniart, Correspondance de langlands et fonctions l des carrés extérieur et symétrique, International Mathematics Research Notices, 2010 (2010), pp. 633-673.
- [2] H. JACQUET AND J. SHALIKA, Exterior square l-functions, Automorphic forms, Shimura varieties, and L-functions, 2 (1990), pp. 143-226.
- [3] A. C. Kable, Asai l-functions and jacquet's conjecture, American journal of mathematics, 126 (2004), pp. 789-820.