热工基础 之

第2章 气体的性质

- 2-1 状态方程
- 2-2 气体的比热容
- 2-3 理想气体的热力学能、焓和熵
- 2-4 水蒸气
- 2-5 水和水蒸气热力性质图及计算机程序简介

热工基础 之 工程热力学

2-1

状态方程

理想气体

理想气体

分子是弹性的, 不具体积的质点;

分子间相互没有作用力。

体积远小于其活动空间

分子间的平均距离 远到作用力及其微弱

理想气体是气体压力趋近于零,比体积趋近于无穷大时的极限状态。

- ◆ O₂, N₂, H₂, CO,空气,燃气,烟气等气体,在温度不太低,压力不太高时。 均可作为理想气体处理。误差在工程计算允许的精度范围之内。
- ◆ 实际气体: 水蒸气, 氟利昂蒸气, 氨蒸气等, 分子本身体积及分子间作用力不 容忽略。

几个基本概念

物质的量:物质中包含的基本单元数与12g碳12的原子数目相同时 的物质的量, 即为 1mol。 → 6.0225×10²³个

摩尔质量: 1mol物质的质量。以M表示,单位:g/mol 数值上等于物质的相对分子质量。

阿伏伽德罗定律:同温同压下,各种气体的摩尔体积都相同。

标准状态 (101325Pa, 273.15K),

1mol任何气体的体积均为: V_{m0}= 0.0224141m³/mol (22.4L/mol)

(下角标0是指标准状态)

理想气体状态方程式

理想气体状态方程(1kg气体)

$$pv = R_g T$$

两边同时乘以摩尔质量

$$pv \cdot M = MR_g T$$

$$pV_{\downarrow^m} = MR_{\rm g}T$$

摩尔体积 m³/mol

以1和2表示两种不同的气体

$$\frac{p_1 V_{m1}}{T_1} = M_1 R_{g} \qquad \frac{p_2 V_{m2}}{T_2} = M_2 R_{g} \qquad M_1 R_{g} = M_2 R_{g}$$

摩尔气体常数

$$R = MR_{\rm g} = \frac{p_0 V_{m0}}{T_0} = 8.3145 \text{J/(mol · K)}$$

各种气体的气体常数

$$R_g = \frac{R}{M} = \frac{8.3145 \text{J/(mol · K)}}{M}$$

请算出氮气的气体常数。

$$R_g = \frac{R}{M} = \frac{8.3145 \text{J/(mol · K)}}{0.028 \text{kg/mol}}$$

=296.95J/(kg · K)

理想气体状态方程式(克拉贝隆方程)

5种常见的理想气体状态方程式

心)理想气体状态方程式(克拉贝隆方程)

Rg—气体常数,与气体种类有关。

$$pv = R_gT$$
 $pV_m = RT$ 上体积

R—摩尔气体常数 与气体种类无关 $R = 8.3145 \text{J/(mol \cdot K)}$

$$pV = nRT$$

理想气体状态方程式(克拉贝隆方程)

$$pV_m = RT$$
 两边同时乘以摩尔流量 $pq_V = q_n RT$ 体积流量 摩尔流量

状态方程式

定义: 系统处于平衡状态时, 状态参数服从一定的关系式, 这样的关系式叫做状态方程式。

$$v = v(p,T) T = T(p,v) p = p(v,T)$$

$$f(p,v,T) = 0$$

理想气体状态方程 (Ideal-gas equation; Clapeyron's equation)

$$pV = nRT$$

$$p$$
-[Pa] V -[m³] T -[K] n -[mol]

R—摩尔气体常数 (Molar gas constant): 与气体状态无关,与气体种类无关 $R = 8.3145 \text{J/(mol \cdot K)}$

热工基础 之 工程热力学

实际气体(real gas; imperfect gas)的状态方程

范德瓦尔方程

$$p = \frac{R_{\rm g}T}{v - b} - \frac{a}{v^2}$$

(a, b为物性常数)

R-K方程

$$p = \frac{R_{\rm g}T}{v - b} - \frac{a}{T^{0.5}v(v + b)}$$

(a, b为物性常数)

2-2

气体的比热容

比热容的定义

定义: 物体温度升高1K(或1℃)所需的热量成为热容,以C表示。(J/K) 1kg物质温度升高1K(或1℃)所需的热量称为质量热容, 又称比热容,以c表示。(J/kg.K)

$$C = \frac{\delta Q}{dT} \qquad c = \frac{\delta q}{dT}$$

摩尔热容: 1mol物质的热容,以 \mathbb{C}_{m} 表示.

体积热容:标准状态下 $1m^3$ 物质的热容。以 \mathbb{C}' 表示。 $(J/m^3.K)$

$$C_m = Mc = V_{m0}C$$

7 比热容的定义公式

- ◆定压过程中的比热容, 称为比定压热容, 以c,表示.
- ◆ 定容过程中的比热容, 称为比定容热容, 以c,表示.

$$c_p = \frac{dh}{dT}$$
 $c_v = \frac{du}{dT}$

- ◆理想气体的热力学能和焓都仅仅是温度的函数
 - \rightarrow 理想气体的 c_v 和 c_p 也都仅仅是温度的函数。

比热容的计算公式

$$h = u + R T$$

$$\frac{dh}{dT} = \frac{du}{dT} + R_g \qquad \qquad c_p = c_v + R_g$$

$$c_n = c_v + R$$

$$c_n - c_n = R$$

迈耶公式
$$C_p - C_v = R_g \qquad C_{p,m} - C_{v,m} = R$$

$$\gamma = \frac{c_p}{c_v} = \frac{C_{p,m}}{C_{v,m}}$$

 $c_p = \frac{\gamma}{\gamma - 1} R_g$
 $c_v = \frac{1}{\gamma - 1} R_g$

$$c_p = \frac{\gamma}{\gamma - 1} R$$

$$c_v = \frac{1}{\gamma - 1} R_g$$

利用比热容计算热量

- 1. 真实比热容
- 2. 平均比热容表
- 3. 平均比热容的直线关系式
- 4. 定值比热容
- 5. 算数平均值

2-3

理想气体的热力学能、焓和熵

▶

气体的热力学能和焓都只是温度的单值函数 →理想气体的等温线即等热力学线, 等焓线。

◆任意过程的热力学能和焓,与温度变化相同的特 殊过程的热力学能和焓的变化量相等。

热力学能的计算

$$q = \Delta u + w \Longrightarrow \Delta u = q - w$$

◆ 定容过程: 膨胀功为零, 热力学能变化量与过程热量相等。

$$\delta w = p dv = 0$$
 $\Delta u = q_v$

$$\Delta u = q_{\nu}$$

$$\Delta u = q_v = \int_{T_1}^{T_2} c_v dT = c_v \Big|_{T_1}^{T_2} \left(T_2 - T_1 \right)$$

$$du = c_v dT$$

焓的计算

$$q = \Delta h + w_t \Longrightarrow \Delta h = q - w_t$$

◆ 定压过程: 技术功为零, 焓变化量与过程热量相等。

$$\delta w_t = -vdp = 0$$
 $\Delta h = q_p$

$$\Delta h = q_{\mu}$$

$$\Delta h = q_p = \int_{T_1}^{T_2} c_p dT = c_p \Big|_{T_1}^{T_2} \left(T_2 - T_1 \right)$$

$$dh = c_p dT$$

热力学能和焓

热力学能变化量

定容过程

焓变化量

定压过程

- 任何一个过程的热力学能变 化量都和温度变化相同的定 容过程的热力学能变化量相
- ◆ 任何一个过程的焓变化量都 和温度变化相同的定压过程 的焓变化量相等。

$$\Delta u = c_{v} \Big|_{T_{1}}^{T_{2}} \Delta T$$

$$\Delta h = c_p \Big|_{T_1}^{T_2} \Delta T$$

热力学能和焓的查表计算

◆理想气体一般取0K时的焓值为零, 任意温度T时的焓值,都是以0K为基准的相对值。

$$h = c_p \Big|_{0K}^T T \qquad u = c_v \Big|_{0K}^T T$$

理想气体可逆过程的热量计算

$$q = \Delta u + w$$

◆ 对于理想气体可逆过程,热力学第一定律可具体化为:

以定容比热容表示
$$\delta q = c_v dT + p dv$$

$$q_{v} = c_{v} \Big|_{T_{1}}^{T_{2}} (T_{2} - T_{1}) + \int_{v_{1}}^{v_{2}} p dv$$

以定压比热容表示
$$\delta q = c_p dT - v dp$$

$$q = c_p \Big|_{T_1}^{T_2} (T_2 - T_1) - \int_{p_1}^{p_2} v dp$$

状态参数-熵 (Entropy)

定义:可逆过程中, $\delta Q_{
m rev}$ 除以传热时的温度T,所得的<mark>态</mark>。 熵的改变是传热进行的标志。

$$dS = \frac{\delta Q_{rev}}{T} \qquad \delta Q_{rev} = TdS$$

- 熵是广延参数,具有可加性质。
- 每千克工质的熵称为<mark>比熵</mark>,用s表示。

$$d\mathbf{s} = \frac{\delta q_{rev}}{T}$$

熵的单位是 J/K, 比熵的单位是 J/(kg.K)

前 状态参数熵-包含定压热容的计算

$$ds = \frac{\delta q_{rev}}{T} \qquad \delta q = c_p dT - v dp \qquad v = \frac{R_g T}{p}$$

$$ds = \frac{c_p dT - v dp}{T} = c_p \frac{dT}{T} - R_g \frac{dp}{p}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_p \, \frac{dT}{T} - R_g \ln \frac{p_2}{p_1}$$

(17) 状态参数熵-计算公式

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_p \frac{dT}{T} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_v \frac{dT}{T} + R_g \ln \frac{v_2}{v_1}$$

$$\Delta s_{1-2} = \int_{p_1}^{p_2} c_v \frac{dp}{p} + \int_{v_1}^{v_2} c_p \frac{dv}{v}$$

状态参数熵-近似计算公式

近似计算时, 按照定值比热容, 可将熵变计算公式再次简化

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_p \frac{dT}{T} - R_g \ln \frac{p_2}{p_1} \qquad \Delta s_{1-2} = c_p \ln \frac{T_2}{T_1} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = c_p \ln \frac{T_2}{T_1} - R_g \ln \frac{p_2}{p_1}$$

$$\Delta s_{1-2} = \int_{T_1}^{T_2} c_v \frac{dT}{T} + R_g \ln \frac{v_2}{v_1} \qquad \triangle s_{1-2} = c_v \ln \frac{T_2}{T_1} + R_g \ln \frac{v_2}{v_1}$$

$$\Delta s_{1-2} = c_{v} \ln \frac{T_{2}}{T_{1}} + R_{g} \ln \frac{v_{2}}{v_{1}}$$

$$\Delta s_{1-2} = \int_{p_1}^{p_2} c_v \frac{dp}{p} + \int_{v_1}^{v_2} c_p \frac{dv}{v}$$

热工基础 之 工程热力学

2-4

水蒸气

节约用水,从我做起

水是生命之源。

Water is the source of life. 水は命の源である,または人類 社会の生存と発展に欠かせない 重要な基礎である。

节约用水, 从我做起

水を大切に!

7 水和水蒸气

- ◆生命三要素之一
- ◆18世纪,蒸气机发明,水和水蒸气是唯一工质
- ◆ 直到内燃机发明, 才有燃气工质
- ◆水目前仍是火力发电、核电、供暖、化工的工质
- ◆ 优点: 便宜, 易得, 无毒, 膨胀性能好, 传热性能好
- ◆ 是其它实际气体的代表。

水蒸气

在空气中含量极小,当作理想气体 一般情况下,为实际气体,使用图:

水的三态

物质有三种聚集状态:

固态、液态、气态

水的三态:

冰、 水、蒸汽

因固相不流动, 更关心汽液两相

汽化和凝结

由液态转变为气态的过程叫做汽化。汽化又有蒸发和沸腾之分。

- ◆ 在液体表面进行的汽化过程称为蒸发;
- ◆ 在液体表面和内部同时进行的强烈汽化过程称为沸腾。
- ◆ 物质由气相转变为 液相的过程称为 凝结,凝结是汽 化的反过程。

简 饱和状态 (Saturated state)

当汽化速度=液化速度时,系统处于 动态平衡,宏观上气、液两相保持一定 的相对数量一<mark>饱和状态(Saturated state)。</mark>

- ◆饱和状态的温度—饱和温度, $t_s(T_s)$ (Saturated temperature)
- ◆饱和状态的压力—饱和压力,*p*_s (Saturated pressure)
- ◆ 饱和蒸汽的特点: 在一定容积中不能再含有更多的蒸汽, 即蒸汽压力与密度为对应温度下的最大值。

饱和温度 $T_{\rm s}$

饱和压力 $p_{\rm s}$

上海 $p_s=1.01325$ bar $\Rightarrow T_s=100$ °C

高压锅 $p_s=1.6$ bar $\longrightarrow T_s=113.32$ °C

使未饱和液达到饱和状态的途径

T<T_s(p) - 保持p不变, T↑

 $p > p_s(I)$ - 保持T不变, p↓

相图 (p-T图)-纯物质

相图:表示饱和压力和饱和温度关系的状态参数图(p-T图)

<mark>三相点</mark>:三条相平衡曲线的交点 ,称为三相点。

,称刀二相屈。 三相点的状态是物质气、液

、固三相平衡共存的状态。

◆ 在温度高于某一数值时,任何 大的压力均不能使该纯物质由 气相转化为液相,此时的温度 即被称之为临界温度Tc;

(Critical temperature)

气液两相共存的 $p_{\text{max}}, T_{\text{max}}$

福图 (p-T图)-水

水的三相点

 $p_{tr} = 611.659 Pa$

 $T_{tp} = 273.16K(t_{tp} = 0.01^{\circ}C)$

 $v_m = 0.00010021 \text{m}^3/\text{kg}$

水的临界点

 $p_{c} = 22.064 \text{MPa}$

 $T_{\rm o} = 373.99^{\rm o}$ C

 $v_{\rm c} = 0.003106 \,{\rm m}^3/{\rm kg}$

基本概念

未饱和水(unsaturated water)/过冷水

一温度低于所处压力下饱和温度的水: $t < t_s$

饱和水(saturated water)—处于饱和状态的水: $t = t_s$

湿饱和蒸汽(wet-saturated vapor; wet vapor)

-饱和液和干饱和蒸汽的混合物: $t=t_s$

干饱和蒸汽(dry-saturated vapor; dry vapor)

—处于饱和状态的蒸汽: $t=t_s$

过热蒸汽(superheated vapor)

—温度高于饱和温度的蒸汽: t > t。

心 水的定压汽化过程

水蒸气定压产生过程的几点说明

(1) 理想气体,焓是温度的单值函数 h=f(T) 实际气体汽化时, $T=T_s$ 不变,但h增加。

 $h''-h'=\gamma$ 汽化潜热

(2) 未饱和水 过冷度 $\Delta t_{\rm 过冷} = t_{\rm s} - t$

过热蒸汽 过热度 $\Delta t_{\mathrm{id},\mathrm{b}} = t - t_{\mathrm{s}}$

未饱和水区 湿饱和蒸气区

p-v 图

水蒸气定压汽化过程的p-v图, T-s图

·点,二线,三区,五态

汽(过热蒸汽区)

过热蒸汽

水和水蒸气热力学状态参数的计算

工程中应用的水和水蒸气,因其压力较高,不能用 理想气体的关系式来确定其基本状态参数。

加工基础 之 工程热力学

2-5

水和水蒸气热力性质图及 计算机程序简介

零点的规定

规定: 三相点(T=273.16K)液态水的热力学能及熵为零

$$p_0 = p_{tp} = 611.659 Pa$$
 $t_0 = t_{tp} = 0.01^{\circ} C$
 $u'_{273.16} = 0$ $s'_{273.16} = 0$

已知
$$v'_{273.16} = 0.00100021 \text{m}^3/\text{kg}$$

公式计算法-饱和水

- ◆ 压力为p温度为0.01°C的过冷水在定压下加热至 t_s , 即得到压力为 p 的饱和水。
- ♦ 饱和水的参数以 v',h',s',u' 表示。

加热量: $q_l = \int_{273.16K}^{T_s} c_p dT$

比焓: $h' = h'_{0.01} + q_l \approx 4.1868t_s$ kJ/kg

比熵: $s' = \int_{273.16K}^{T_s} c_p \frac{dT}{T} = 4.1868 \ln \frac{T_s}{273.16}$

公式计算法-干饱和蒸汽

加热饱和水,全部汽化后变成压力为p,温度为t。的干饱和蒸汽。 干饱和蒸汽的参数以 $v^{"}$, $h^{"}$, $s^{"}$, $u^{"}$ 表示。

汽化过程中加入的热量 γ ,称为汽化潜热。

$$\gamma = T_s(s^{"} - s^{'}) = h^{"} - h^{'}$$

$$= (u^{"} - u^{'}) + p(v^{"} - v^{'})$$

$$h^{"} = h^{'} + \gamma$$

$$u^{"} = h^{"} - pv^{"}$$

$$s^{"} = s^{'} + \frac{\gamma}{T_s}$$

公式计算法-湿饱和蒸汽

汽化已经开始而尚未完毕之时,部分为饱和水,部分为干饱和蒸汽。

干度 x: 1kg湿饱和蒸汽中,饱和蒸汽的含量。

比体积:
$$v_x = xv'' + (1-x)v'$$

比焓:
$$h_x = xh'' + (1-x)h' \quad h_x = h' + x\gamma$$

比热力学能:
$$u_x = h_x - pv_x$$

比熵:
$$s_x = xs'' + (1-x)s'$$
 $s_x = s' + x\frac{\gamma}{T_x}$

🕡 公式计算法-过热蒸汽

饱和蒸汽在定压下继续加热时,温度超过ts而称为过热蒸汽。 温度超过ts的值称为过热度,即 $\Delta t = t - t$ 。

比焓: $h = h'' + q_{\text{sup}}$

比熵:
$$s_x = \int_{273.16K}^{T_s} c \frac{dT}{T} + \frac{\gamma}{T_s} + \int_{T_s}^{T} c_p \frac{dT}{T}$$

表格分类

饱和水和干饱和水蒸汽表

单位: p MPa; t °C; v m^3/kg ; h kJ/kg; s $kJ/(kg \cdot K)$

	(依温度排列)									
	p	v'	ν"	h'	h"	γ	s'	s"		
0.00	0.0006112	0.00100022	206.154	-0.05	2500.51	2500.6	-0.0002	9.1544		
0.01	0.0006117	0.00100021	206.012	0.00	2500.53	2500.5				
5	0.0008725	0.00100008	147.048	21.02	2509.71	2488.7	0.0763	9.0236		
15	0.0017053	0.00100094	77.910	62.95	2528.07	2465.1	0.2243	8.7794		
25	0.0031687	0.00100302	43.362	104.77	2546.29	2441.5	0.3670	8.5560		
3.5	0.0056263	0.00100605	25.222	146.59	2564.38	2417.8	0.5050	8.3511		
70	0.031178	0.00102276	5.0443	293.01	2626.10	2333.1	0.9550	7.7540		
100	0.101325	0.00104344	1.6736	419.06	2675.71	2256.6	1.3069	7.3545		
-100 150 -	0.47571	0.00109046	0.39286	632.28	2746.35	2114.1	1.8420	6.8381		
373. 99	22.064	0.003106	0.003106	2085.9	2085.87	0.0	4.4092	4.4092		

				(依压力	力排列)				
p	t	v'	v"	h'	h"	γ	s'	s"	
0.001	6.9491	0.0010001	129.185	29.21	2513.29	2484.1	0.1056	8.9735	
0.004	28.9533	0.0010041	34.796	121.30	2553.45	2432.2	0.4221	8.4725	
0.005	32.8793	0.0010053	28.191	137.72	2560.55	2422.8	0.4761	8.3930	
0.01	45.7988	0.0010103	14.673	191.76	2583.72	2392.0	0.6490	8.1481	
0.05	81.3388	0.0010299	3.2409	340.55	2645.31	2304.8	1.0912	7.5928	
0_1	99.634	0.0010432	1.6943	417.52	_2675.14	2257.6	L3028_	7.3589	
0.5	151.867	0.0010925	0.37486	640.35	2748.59	2108.2	1.8610	6.8214	[
1.0	179.916	0.0011272	0.19438	762.84	2777.67	2014.8	2.1388	605859	
5.0	263.980	0.0012862	0.039439	1154.2	2793.64	1639.5	2.9201	5.9724	.
22.064	373.99	0.003106	0.003106	2085.9	2085.87	0.0	4.4092	4.4092	-

湿饱和蒸汽

加权求和计算

未饱和水和过热蒸汽表 (节录)

and the fibre										
p		$0.01MP_a$		$0.02MP_a$						
饱		$T_s = 45.83$		$T_s = 60.09$						
和	v' = 0.0010102		"=14.676	v' = 0.0010172		v" = 7.6515				
参	h' = 191.84		" = 2584.4	h' = 251.46		h'' = 2609.6				
数	s' = 0.6493 $s'' = 8.1505$			s' = 0.8321 $s'' = 7.9092$						
\overline{T}	ν	h	S	v	h	S				
0	0.0010002	0.0	-0.0001	0.0010002	0.0	-0.0001				
40	0.0010078	<u>167.4</u>	0.5729	0.0010078	167.5	0.5721				
60	15.34	2611.3	8.1752	0.0010171	<u>251.1</u>	0.8310				
80	16.27	2649.3	8.3437	8.119	2647.8	8.0205				
120	18.12	2725.4	8.5479	9.052	2724.4	8.2261				

Thank you!

