Project Euler #231: The prime factorisation of binomial coefficients

This problem is a programming version of Problem 231 from projecteuler.net

For a positive integer $n=\prod\limits_{i=1}^r p_i^{lpha_i}$ where p_i are distinct primes, define $\omega(n)=\sum\limits_{i=1}^r lpha_i$.

For example, $\omega(1)=0$, $\omega(9)=2$ and $\omega(12)=3$.

Let

$$f(N,M,k) = \sum_{\substack{d \mid inom{N}{M} \ \omega(d) = k}} d$$

That is, f(N,M,k) is the sum of all positive divisors d of the binomial coefficient $\binom{N}{M}$ satisfying $\omega(d)=k$. Given N, M and K, find f(N,M,k) modulo 1004535809, for all $1\leq k\leq K$.

Input Format

The only line of each test file contains three space-separated integers: N, M and K.

Constraints

- $1 \le M \le N \le 10^9$.
- $1 \le K \le 15$.

Output Format

Print exactly K lines, the \emph{i} -th line must contain the answer when $\emph{k}=\emph{i}$.

Sample Input 0

15 9 3

Sample Output 0

36 466 2556

Explanation 0

$$\binom{15}{9} = 5 \cdot 7 \cdot 11 \cdot 13 = 5005.$$

- k = 1:5 + 7 + 11 + 13 = 36.
- k = 2:35 + 55 + 65 + 77 + 91 + 143 = 466
- k = 3:385 + 455 + 715 + 1001 = 2556.

Sample Input 1

16 3 1

Sample Output 1

14

Explanation 1

$$\binom{16}{3} = 2^4 \cdot 5 \cdot 7 = 560.$$

• k = 1: the answer is 2 + 5 + 7 = 14.

Sample Input 2

22 6 4

Sample Output 2

Explanation 2

$$\binom{22}{6} = 3 \cdot 7 \cdot 11 \cdot 17 \cdot 19 = 74613.$$

- k = 1: 3 + 7 + 11 + 17 + 19 = 57.
- k = 2: 21 + 33 + 51 + 57 + 77 + 119 + 133 + 187 + 209 + 323 = 1210.
- k = 3: 231 + 357 + 399 + 561 + 627 + 969 + 1309 + 1463 + 2261 + 3553 = 11730.
- k = 4:3927 + 4389 + 6783 + 10659 + 24871 = 50629.