Software Verification and Z3 Theorem Prover

Yulei Sui

University of Technology Sydney, Australia

Today's class

- In this class, we will learn how to manually translate source code into logical formulas (Z3 constraints/expressions).
- We introduce Z3 solver, Z3 constraint format Z3 manager APIs.
- Then, we will demonstrate examples for manual translation from code to Z3 constraints.

Z3 Theorem Prover

- Z3 is a Satisfiability Modulo Theories (SMT) solver from Microsoft Research¹.
- Targeted at solving problems in software verification and software analysis.
- Main applications are static checking, test case generation, and more ...

Hardware verification

Software analysis/testing

Architecture

Modeling

Geometrical solving

Biological analysis

Hybrid system analysis

¹http://research.microsoft.com/projects/z3

73 Framework²

- 73 is an effective tool to solve logical formulas (Z3 constraints).
- https://github.com/Z3Prover/z3.
- Its SMT solver supports theories such as fixed-size bit-vectors. arithmetic, extensional arrays, datatypes, uninterpreted functions, and quantifiers.
- Z3 has official APIs for C, C++. Pvthon. .NET. etc.
- Z3 solver can find one of the feasible solutions in a set of constraints.

²https://nikolajbjorner.github.io/slides/Z3_System.pdf

Z3 Learning Materials

- Z3 GitHub repository https://github.com/z3prover/z3
- Getting Started with Z3: A Guide https://jfmc.github.io/z3-play
- Z3 tutorials https://github.com/philzook58/z3_tutorial
- Z3 slides https://github.com/Z3Prover/z3/wiki/Slides
- Programming Z3 http://theory.stanford.edu/~nikolaj/programmingz3. html#sec-logical-interface

Z3 Solver and Z3 Formulas

Z3 solver accepts a first-order (predicate) logical formula ϕ , and outputs one of the following results.

- sat if ϕ is satisfiable
- unsat if there is a counterexample which make ϕ unsatisfiable
- unknown if ϕ is too complex and can not be solved within a time frame.

73 Solver and 73 Formulas

Z3 solver accepts a first-order (predicate) logical formula ϕ , and outputs one of the following results.

- sat if ϕ is satisfiable
- unsat if there is a counterexample which make ϕ unsatisfiable
- unknown if ϕ is too complex and can not be solved within a time frame.

You play around and check the satisfiability of your Z3 constraints/formulas here: https://compsys-tools.ens-lvon.fr/z3/index.php

Z3's Logical Formula (Constants, Check-Sat and Evaluation)

The Z3 input format (formula format) is an extension of the SMT-LIB 2.0 standard³. A Z3 formula expression (z3::expr) has the following keywords:

- echo displays a message
- declare-const declares a constant of a given type (a.k.a sort)
- declare-fun declares a function
- assert adds a formula into the Z3 internal stack
- check-sat, determines whether the current formulas on the 73 stack are satisfiable or not
- get-model is used to retrieve an interpretation (one solution) that makes all formulas on the Z3 internal stack true
- eval evaluates a variable/expression produced by a model when the formulas is satisfiable.

³https://homepage.cs.uiowa.edu/~tinelli/papers/BarST-SMT-10.pdf

Constants, Check-Sat and Evaluation (Example)

$$\phi: (x > 10) \land (y \equiv x + 1)$$

How to represent this formula in Z3 and feed it into Z3's solver?

Constants, Check-Sat and Evaluation (Example)

$$\phi: (x > 10) \land (y \equiv x + 1)$$

How to represent this formula in Z3 and feed it into Z3's solver?

```
(echo "starting Z3...")
(declare-const x Int) /// Declare an Int type variable "x"
(declare-const y Int) /// Declare an Int type variable "y"
(assert (> x 10)) /// Add the first part (x>10) of the conjunction into the (assert (= y (+ x 1))) /// Add the second part (y==x+1) of the conjunction (check-sat) /// Check whether added formulas are satisfiable.
(eval x) /// Evaluate the value of x when the formula is satisfiable
(eval y) /// Evaluate the value of y when the formula is satisfiable
```

Constants, Check-Sat and Evaluation (Example)

$$\phi: (\mathtt{x} > \mathtt{10}) \ \land \ (\mathtt{y} \equiv \mathtt{x} + \mathtt{1})$$

How to represent this formula in Z3 and feed it into Z3's solver?

```
(echo "starting Z3...")
 (declare-const x Int) /// Declare an Int type variable "x"
 (declare-const v Int) /// Declare an Int type variable "v"
 (assert (> x 10)) /// Add the first part (x>10) of the conjunction into the solver
 (assert (= v (+ x 1))) /// Add the second part (y==x+1) of the conjunction
 (check-sat) /// Check whether added formulas are satisfiable.
 (eval x) /// Evaluate the value of x when the formula is satisfiable
8 (eval v) /// Evaluate the value of v when the formula is satisfiable
```

Outputs of Z3's solver:

```
1 starting Z3...
 sat /// (check-sat) result
 11 /// the value of x as one satisfiable solution
 12 /// the value of y as one satisfiable solution
```

Z3's Logical Formula (Uninterpreted Function)

The basic building blocks of SMT formulas are constants and uninterpreted functions

- An uninterpreted function has no other property (no priori interpretation) than its signature (i.e., function name and arguments).
- An uninterpreted functions in first-order logic have no side-effects (e.g., can not change argument values and never return different values for the same input)
- Constants in Z3 can also be seen as functions that take no arguments.
- The details and characteristics of uninterpreted functions are ignored. This can **generalize and simplify** theorems and proofs.

```
(declare-fun f (Int) Int) /// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) /// f(10) = 1
(check-sat)
```

```
(declare-fun f (Int) Int) /// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) /// f(10) = 1
(check-sat)
```

Outputs of Z3's solver:

```
sat
```

The solver returns sat, because f is an uninterpreted function (i.e., all that is known about f is its signature), so it is possible that f(10) = 1.

```
(declare-fun f (Int) Int) /// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) /// f(10) = 1
(check-sat)
```

Outputs of Z3's solver:

```
sat
```

The solver returns sat, because f is an uninterpreted function (i.e., all that is known about f is its signature), so it is possible that f(10) = 1.

```
(declare-fun f (Int) Int) /// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) /// f(10) = 1
(assert (= (f 10) 2)) /// f(10) = 2
(check-sat)
```

```
(declare-fun f (Int) Int) /// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) /// f(10) = 1
(check-sat)
```

Outputs of Z3's solver:

```
sat
```

The solver returns sat, because f is an uninterpreted function (i.e., all that is known about f is its signature), so it is possible that f(10) = 1.

```
(declare-fun f (Int) Int) /// Function f accepts an Int argument and returns a Int
(assert (= (f 10) 1)) /// f(10) = 1
(assert (= (f 10) 2)) /// f(10) = 2
(check-sat)
```

Outputs of Z3's solver:

```
unsat
```

The solver returns unsat, because f, as an uninterpreted function, can never return different values for the same input.

$$\phi: \mathtt{f}(\mathtt{x}) \equiv \mathtt{f}(\mathtt{y}) \, \wedge \, \mathtt{x}! = \mathtt{y}$$

```
(declare-const x Int)
(declare-const y Int)
(declare-fun f (Int) Int) /// Function f accepts an Int argument and returns a Int
(assert (= (f x) (f y)))
(assert (not (= x y)))
(check-sat)
```

$$\phi: \mathtt{f}(\mathtt{x}) \equiv \mathtt{f}(\mathtt{y}) \, \wedge \, \mathtt{x}! = \mathtt{y}$$

```
(declare-const x Int)
(declare-const v Int)
(declare-fun f (Int) Int) /// Function f accepts an Int argument and returns a Int
(assert (= (f x) (f y)))
(assert (not (= x y)))
(check-sat)
```

Outputs of Z3's solver:

```
sat
```

An uninterpreted function can have different inputs and return the same output. For example, f can always return 1 regardless the value of the input argument.

Constants as Uninterpreted Function (Example)

$$\phi: (\mathtt{x} > \mathtt{10}) \ \land \ (\mathtt{y} \equiv \mathtt{x} + \mathtt{1})$$

```
(declare-fun x () Int) /// "x" and "y" as an uninterpreted functions
(declare-fun y () Int) /// Accepts no argument and return an Int
(assert (> x 10))
(assert (= v (+ x 1)))
(check-sat)
(get-model)
```

Outputs of Z3's solver:

```
sat
    (define-fun x () Int
      11)
                          /// x is evaluated to be 11 for this model
    (define-fun v () Int
      12)
                          /// v is evaluated to be 11 for this model
6
```

 $(declare-const \times Int)$ can be seen as the syntax sugar for $(declare-fun \times () Int)$.

Z3's Logical Formula (Arithmetic)

- Z3 supports majority of commonly used arithmetic operators, such as +, -, *, /, <<, >>, <, >, &, | (The ones listed in SVFIR)
- Types of any two operands should be the same otherwise a type conversion is needed
- Never mix types in arithmetic, and always be explicit.

```
(declare-const a Int)
(declare-const b Float32)
(assert (= a (+ b 1)))
(check-sat)
```

Outputs of Z3's solver:

```
Error: (error "line 3 column 19: Sort mismatch at argument #1 for function
(declare-fun + (Int Int) Int) supplied sort is (_ FloatingPoint 8 24)")
```

Z3's Logical Formula (if-then-else **Expression)**

- ite(b, x, y) represents a conditional expression, where b is the condition, ite returns x if b is evaluated true, otherwise y is returned
- Used for comparison or branches

```
1 (ite (and (= x!1 11) (= x!2 false)) 21 0)
```

The above Z3 formula evaluates (returns) 21 when x!1 is equal to 11, and x!2 is equal to false. Otherwise, it returns 0.

Z3's Logical Formula (Arrays)

Formulating a program of a mathematical theory of computation McCarthy proposed a basic theory of arrays as characterized by the **select-store** axioms.

- (select a i): returns the value stored at position i of the array a;
- (store a i v): returns a new array identical to a, but on position i it contains the value v
- Z3 assumes that arrays are extensional over select. Z3 also enforces that if two arrays agree on all reads, then the arrays are equal.

Z3's Logical Formula (Arrays)

Formulating a program of a mathematical theory of computation McCarthy proposed a basic theory of arrays as characterized by the **select-store** axioms.

- (select a i): returns the value stored at position i of the array a;
- (store a i v): returns a new array identical to a, but on position i it contains the value v.
- Z3 assumes that arrays are extensional over select. Z3 also enforces that if two arrays agree on all reads, then the arrays are equal.

The following formulas store y to the x-th position of array a and then load the value at a's x-th position to z

```
(declare-const x Int)
(declare-const y Bool)
(declare-const z Bool)
(declare-const a (Array Int Bool)) /// an array of Bools with Int as the indices
(assert (= (store a x y) a)) /// a[x] == y
(assert (= (select a x) z)) /// z == a[x]
```

Z3's Logical Formula (Scopes)

Z3 maintains a global stack of declarations and assertions via **push** and **pop**

- **push**: creates a new scope by saving the current stack size.
- pop: removes any assertion or declaration performed between it and the matching push.

The check-sat command always operates on the current global stack.

Z3's Logical Formula (Scopes)

Z3 maintains a global stack of declarations and assertions via **push** and **pop**

- **push**: creates a new scope by saving the current stack size.
- pop: removes any assertion or declaration performed between it and the matching push.

The check-sat command always operates on the current global stack.

```
(declare-const x Int)
  (declare-const a (Array Int Int)) /// an array of Ints
  (push)
  (assert (= (store a 1 10) a)) /// a[1] == 10
5 (assert (= (select a 1) x)) /// x == a[1]
  (assert (= x 20)) /// x == 20
  (check-sat)
  (pop) : remove the three assertions
9 (assert (= x 20)) /// x == 10
10 (check-sat)
```

What is the output of the solver?

Translating Code to Z3 Formulas

We provide a Z3Mgr class (a wrapper class to manipulate Z3 APIs) to generate Z3 formulas or so-called z3::expr.

API	Meanings
z3::expr getZ3Expr(std::string);	Create a variable given a string name
<pre>z3::expr getZ3Expr(int);</pre>	Create a variable given an integer
<pre>z3::expr getMemObjAddress(std::string);</pre>	Create a memory object in program
z3::expr getGepObjAddress(z3::expr, u32_t);	Create a field object with an offset of an aggregate
<pre>void addToSolver(z3::expr);</pre>	Add a Z3 expression/formula to the solver
<pre>void resetSolver();</pre>	Clean all formulas in the the solver
solver.check();	Check satisfiability of an z3 formula
z3::expr getEvalExpr(z3::expr);	Evaluate an expression based on a model
<pre>void printExprValues();</pre>	Print the values of all expressions in the solver.

More details, refer to

https://github.com/SVF-tools/Teaching-Software-Verification/wiki/SVF-APIs

Translation Rules

expr p = getZ3Expr("p") expr q = getZ3Expr("q") expr r = getZ3Expr("r")		
SVFStmt	C-Like form	Operations
AddrStmt (constant)	p = c	addToSolver(p == c);
AddrStmt (mem allocation)	p = alloc	addToSolver(p == getMemObjAddress("alloc");)
CopyStmt	p = q	<pre>addToSolver(p == q);</pre>
LoadStmt	p = *q	addToSolver(p == loadValue(q));
StoreStmt	*p = q	storeValue(p, q);
GepStmt	$\mathtt{p} = \mathtt{\&}(\mathtt{q} o \mathtt{i}) \ \ or \ \mathtt{p} = \mathtt{\&}\mathtt{q}[\mathtt{i}]$	addToSolver(p == getGepObjAddress(q,i));
PhiStmt	$\mathtt{r} = \mathtt{phi}(\mathtt{l}_\mathtt{1} : \mathtt{p}, \ \mathtt{l}_\mathtt{2} : \mathtt{q})$	<pre>if(executed from l₁) addToSolver(p==r);</pre>
		<pre>if(executed from l₂) addToSolver(q==r);</pre>
		<pre>expr cond = getEvalExpr(p);</pre>
${\tt BranchStmt}$	if (p) 1 ₁ else 1 ₂	if(cond.is_false()) execute l ₂
		else execute l ₁ addToSolver(cond = true);
UnaryOPStmt	¬р	addToSolver(!p);
BinaryOPStmt	$r = p \otimes q$	$addToSolver(r == p \otimes q);$
CmpStmt	$r = p \odot q$	addToSolver(r == ite(p \odot q, true, false));
CallPE/RetPE	$\mathtt{r} = \mathtt{f}(\ldots,\mathtt{q},\ldots) \mathtt{f}(\ldots,\mathtt{p},\ldots)\{\ldots \ \mathtt{return} \ \mathtt{z}\}$	
CallPE	p = q	solver.push(); addToSolver(p == q);
RetPE	p = r	<pre>expr ret = getZ3Expr(r); solver.pop();</pre>
		<pre>addToSolver(p == ret);</pre>

Translating Code to Z3 Formulas (Scalar Example)

The target program code needs to be in **SSA form** (e.g., SVFIR).

- Top-level variables can only be defined once
 - a = 1; a = 2; $\Longrightarrow a1 = 1$; a2 = 2;
- Memory objects can only be modified/read through top-level pointers at StoreStmt and LoadStmt.
 - p = &a; *p = r; The value of a can only be modified/read via dereferencing p.

Translating Code to Z3 Formulas (Scalar Example)

The target program code needs to be in **SSA form** (e.g., SVFIR).

- Top-level variables can only be defined once
 - a = 1: a = 2: $\implies a1 = 1$: a2 = 2:
- Memory objects can only be modified/read through top-level pointers at StoreStmt and LoadStmt
 - p = &a; *p = r: The value of a can only be modified/read via dereferencing p.

```
// int a:
int main() {
                         expr a = getZ3Expr("a");
                         // a = 0;
                                                         (declare-fun a () Int)
                         addToSolver(a == 0);
int a:
                                                         (declare-fun b () Int)
int b:
                         // int b;
                                                                                          Z3's
                                                         (assert (= a 0))
                         expr b = getZ3Expr("b");
 a = 0:
                                                         (assert (= b (+ a 1)))
                                                                                      SMT solver
b = a + 1:
                         // b = a+1:
                                                         (assert (> b 0))
                         addToSolver(b == (a + 1))
assert(b>0):
                                                         (check-sat)
                         // assert(b > 0):
                         addToSolver(b > 0):
                         solver.check():
```

C code

Translator

Z3 Formulas

Translating Code to Z3 Formulas (Memory Operation Example)

- Each memory object has a unique ID and allocated with a virtual memory address
- In our modeling, the virtual address starts from 0x7f..... + ID (i.e., 2130706432 + ID in decimal)
- Memory operations will be through store and load values from loc2ValMap, an Z3 array.

```
int main() {
 int* p;
 int x:
 p = malloc1(..);
 *p = 5:
 g* = x
 assert(x==5):
```

```
// int** p;
expr p = getZ3Expr("p");
// int x:
expr x = getZ3Expr("x");
// p = malloc(..);
expr m = getMemObjAddress("malloc1");
addToSolver(p == m);
// *p = 5:
storeValue(p, getZ3Expr(5));
// x = *p:
addToSolver(x == loadValue(p)):
// assert(x==5):
addToSolver(x == getZ3Expr(5)):
solver.check():
```

```
(declare-fun p () Int)
(declare-fun loc2ValMap ()
    (Array Int Int))
(declare-fun x () Int)
(assert (= p 2130706435))
(assert (= x (select
    (store loc2ValMap 2130706435 5)
    2130706435)))
(assert (= x 5))
(model-add p () Int 2130706435)
(check-sat)
```

C code

Translator

Z3 Formulas

What's next?

- (1) Understand Z3 formula format in the slides
- (2) Understand Z3Mgr class in the GitHub Repository of Teaching-Software-Verification
- (3) Finish the quizzes of Assignment 3 on Canvas
- (4) Implement a manual translation from code to Z3 formulas using Z3Mgr i.e., coding task in Assignment 3.

Assertion-based Verification Using Static Symbolic Execution

Yulei Sui

University of Technology Sydney, Australia

Automated Assertion-based Verification

Static Symbolic Execution (SSE)

- An static interpreter follows the program, assuming symbolic values for inputs rather than obtaining actual inputs as normal execution of the program would.
- Automated testing technique that symbolically executes a program.
- Use symbolic execution to explore all program paths to find latent bugs.

Static Symbolic Execution for Assertion-based Verification

- (1) Given a Hoare triple P {prog} Q,
 - P represents program inputs.
 - prog is the actual source code,
 - Q is the assertion(s) to be verified.
- (2) SSE translates SVFStmt of each program path (which ends with an assertion) into an Z3 logical formula.
 - In our project, the path of each loop is bounded once for verification.
- (3) Proving satisibility of the logic formulas of each program path from the program entry to each assertion on the ICFG.

Driver Program of SSE (What We Have From Assignment 2)

```
Algorithm 1 Context sensitive control-flow reachability
  Input: src: ICFGNode dst: ICFGNode
         path: vector(ICFGNode) visited: set(ICFGNode):
  dfs(path.src.dst)
    visited.insert(src)
    path.push_back(src)
    if arc -- det then
     print path
    foreach edge ∈ src.getOutEdges() do
     if edge.dst ∉ visited then
         if edge.isIntraCFGEdge() then
             if handleIntra(edge) then
                dfs(path, edge.dst, dst)
         else if edge.isCallCFGEdge() then
11
             if handleCall(edge) then
12
                dfs(path, edge.dst, dst)
13
         else if edge.isRetCFGEdge() then
14
             if handleRet(edge) then
15
                dfs(path.edge.dst.dst)
    visited.erase(src)
    path.pop_back(src)
```

```
Algorithm 2 handleIntra(intraEdge) (Override in SSE)
 return true
Algorithm 3 handleCall(callEdge) (Override in SSE)
  callNode ← getSrcNode(callEdge)
  callstack.push_back(callNode)
  return true
Algorithm 4 handleRet(retEdge) (Override in SSE)
  retNode ← getDstNode(retEdge)
  if callstack \neq \emptyset then
   if callstack.back() == getCallICFGNode(retNode) then
       callstack.pop()
       return true
   else
      return false
  return true
```

Driver Program of SSE (What We Have From Assignment 2)

```
Algorithm 1 Context sensitive control-flow reachability
                                                                     Algorithm 2 handleIntra(intraEdge) (Override in SSE)
  Input: src: ICFGNode dst: ICFGNode
                                                                      return true
        path: vector(ICFGNode) visited: set(ICFGNode):
  dfs(path.src.dst)
                                                                     Algorithm 3 handleCall(callEdge) (Override in SSE)
    visited.insert(src)
    path.push_back(src)
                                                                       callNode ← getSrcNode(callEdge)
    if arc -- det then
                                                                       callstack.push_back(callNode)
     print path
                                                                       return true
    foreach edge ∈ src.getOutEdges() do
     if edge.dst ∉ visited then
                                                                     Algorithm 4 handleRet(retEdge) (Override in SSE)
         if edge.isIntraCFGEdge() then
                                                                       retNode ← getDstNode(retEdge)
            if handleIntra(edge) then
                                                                       if callstack \neq \emptyset then
               dfs(path, edge.dst, dst)
                                                                        if callstack.back() == getCallICFGNode(retNode) then
        else if edge.isCallCFGEdge() then
11
                                                                            callstack.pop()
            if handleCall(edge) then
12
                                                                            return true
               dfs(path, edge.dst, dst)
13
                                                                        else
        else if edge.isRetCFGEdge() then
14
                                                                            return false
            if handleRet(edge) then
15
               dfs(path.edge.dst.dst)
                                                                       return true
    visited.erase(src)
    path.pop_back(src)
```

Override the above three methods in SSE implementation!

Handle Intra-procedural CFG Edges (handleIntra)

```
Algorithm 2 handleIntra(intraEdge)
if intraEdge.getCondition() && !handleBranch(intraEdge)
  then
     return false
3 else
      handleNonBranch(edge)
                                                               10
  handleBranch(intraEdge)
                                                               11
    cond = intraEdge.getCondition()
                                                               12
                                                               13
    successorVal = intraEdge.getSuccessorCondValue()
                                                               14
    res = getEvalExpr(cond == suc)
4 if res.is_false() then
                                                               15
      addToSolver(cond! = suc)
                                                               16
      return false
                                                               17
                                                               18
  else if res.is_true() then
                                                               19
      addToSolver(cond == suc)
                                                               20
      return true
                                                               21
10 else
                                                               22
     return true
                                                               23
                                                               24
```

```
HandleNonBranch(intraEdge)
  dst ← intraEdge.getDstNode(): src ← intraEdge.getSrcNode()
  foreach stmt ∈ dst.getSVFStmts() do
   if addr ∈ dvn cast(AddrStmt)(stmt) then
      obj ← getMemObjAddress(addr.getRHSVarID())
      lhs ← getZ3Expr(addr.getLHSVarID())
      addToSolver(obi == lhs)
   else if copy ∈ dyn_cast(CopyStmt)(stmt) then
      lhs ← getZ3Expr(copy.getLHSVarID())
      rhs ← getZ3Expr(copv.getRHSVarID())
      addToSolver(rhs == lhs)
   else if load \in dvn_cast(LoadStmt)(stmt) then
      lhs ← getZ3Expr(load.getLHSVarID())
      rhs ← getZ3Expr(load.getRHSVarID())
      addToSolver(lhs == z3Mgr.loadValue(rhs))
   else if store ∈ dvn_cast(StoreStmt)(stmt) then
      lhs ← getZ3Expr(store.getLHSVarID())
      rhs ← getZ3Expr(store.getRHSVarID())
      z3Mgr.storeValue(lhs.rhs)
   else if gep ∈ dvn_cast(GepStmt)(stmt) then
      lhs ← getZ3Expr(gep.getLHSVarID())
      rhs ← getZ3Expr(gep.getRHSVarID())
      offset = z3Mgr.getGepOffset(gep)
      gepAddress = z3Mgr.getGepObjAddress(rhs.offset)
      addToSolver(lhs == gepAddress)
```

Handel Call (handleCall) and Return (handleRet) CFG Edges

Algorithm 3 handleCall(callEdge) callNode ← callEdge.getSrcNode(): FunEntryNode ← callEdge.getDstNode(); callstack.push_back(callNode); getSolver().push(); 5 foreach callPE ∈ calledge.getCallPEs() do lhs ← getZ3Expr(callPE.getLHSVarID()); rhs ← getZ3Expr(callPE.getRHSVarID()): addToSolver(lhs == rhs); 9 return true:

```
Algorithm 4 handleRet(retEdge)
    retNode ← retEdge.getDstNode();
    rhs(getCtx()):
    lhs(getCtx());
    if retPE = retEdge.getRetPE() then
      rhs ← getEvalExpr(getZ3Expr(retPE.getRHSVarID()));
      lhs ← getZ3Expr(retPE.getLHSVarID()):
    if callstack \neq \emptyset then
      if callstack.back() == getCallICFGNode(retNode) then
         callstack.pop_back():
         getSolver().pop():
      else
11
12
         return false:
    if retEdge.getRetPE() then
13
      addToSolver(lhs == rhs):
    return true:
```

Scalar Example

Comparison between the concrete and symbolic states before the assertion.

```
void foo(unsigned x){
    if(x > 10) {
        y = x + 1;
    else {
        y = 10;
assert(v >= x + 1):
```

Scalar Example

Comparison between the concrete and symbolic states before the assertion.

```
void foo(unsigned x){
    if(x > 10) {
        v = x + 1:
    else {
        y = 10;
assert(v >= x + 1):
```

```
Concrete Execution
(Concrete states of x, y)
    One execution:
        x : 20
        v:21
  Another execution:
        x:8
         y:9
```

Scalar Example

Comparison between the concrete and symbolic states before the assertion.

```
tooid foo(unsigned x){
   if(x > 10) {
      y = x + 1;
   }
   else {
      y = 10;
   }
assert(y >= x + 1);
}
```

```
Concrete Execution
                                        Symbolic Execution
(Concrete states of x, y)
                           (getZ3Expr(x) represents x's symbolic state)
   One execution:
                       If branch:
       x : 20
                       x: getZ3Expr(x) > 10 \land getZ3Expr(x) < UINT_MAX)
                       v: getZ3Expr(x) + 1
        v : 21
  Another execution:
                       Else branch:
        x:8
                       x: getZ3Expr(x) > 0 \land getZ3Expr(x) < 10
        v:9
                       v: 10
```

Memory Operation Example

```
void foo(unsigned x) {
int* p;
int y;

p = malloc(..);
*p = x + 5;
y = *p;
assert(y>5);
}
```

Memory Operation Example

void foo(unsigned x) { int* p; int y; p = malloc(..); *p = x + 5; y = *p; assert(y>5); }

Concrete Execution (Concrete states)

```
One execution:
    x : 10
    p : 0x1234

0x1234 : 15
    y : 15

Another execution:
    x : 0
```

Memory Operation Example

void foo(unsigned x) { int* p; int v: p = malloc(..): *p = x + 5: g = g = gassert(v>5):

Concrete Execution (Concrete states)

```
One execution:
            10
         0x1234
0x1234:
            15
            15
Another execution:
            0
         0x1234
0x1234:
```

Symbolic Execution (Symbolic states)

```
: getZ3Expr(x)
    x
           : 0x7f000001
    р
            virtual address from
            getMemObjAddress("malloc")
0x7f000001 : getZ3Expr(x) + 5
```

: getZ3Expr(x) + 5

Field Access for Struct and Array Example

```
struct st{
    int a;
    int b;
}

void foo(unsigned x) {
    struct st* p = malloc(..);
    q = &(p->b);
    *q = x;
    assert(*(&p->b) == x);
}
```

Field Access for Struct and Array Example

```
struct st{
2
      int a;
3
      int b;
4 }
  void foo(unsigned x) {
   struct st* p = malloc(..);
   q = &(p->b);
   *q = x:
   assert(*(\&p->b) == x);
10 }
```

```
(Concrete states)
  One execution:
              10
            0x1234
&(p→b)
         : 0x1238
           0x1238
0x1238
            10
 Another execution:
              20
            0x1234
\&(p\rightarrow b)
            0x1238
            0x1238
0x1238
              20
```

Concrete Execution

Field Access for Struct and Array Example

```
struct st{
   int a;
   int b;
}
void foo(unsigned x) {
   struct st* p = malloc(..);
   q = &(p->b);
   *q = x;
   assert(*(&p->b) == x);
}
```

```
Concrete Execution
(Concrete states)
One execution:
x : 10

Symbolic Execution
(Symbolic states)
```

q : 0x1238 virtual address from

0x1238 : 10 getMemObjAddress("malloc") $\&(p\rightarrow b)$: 0x7f000002

x : 20 field virtual address from p : 0x1234 getGepObjAddress(base, offset)

 $\&(p \rightarrow b)$: 0x1238 0x7f000002 : getZ3Expr(x)

q : 0x1238 0x1238 : 20

The virtual address for modeling a field is based on the index of the field offset from the base pointer of a struct (nested struct will be flattened to allow each field to have a unique index)

Call and Return Example

```
1 int foo(int z) {
2     k = z;
3     return k;
4 }
5 int main(unsigned z) {
6     int x;
7     int y;
8     x = foo(3);
9     y = foo(z);
10     assert(x == 3);
11 }
```

Concrete Execution (Concrete states)

One execution:

z : 10 stack push (calling foo at line 8)

k : 3

stack pop (returning from foo at line 4)

x : 3

stack push (calling foo at line 9)

k : 10

stack pop (returning from foo line 4)

y : 10

Symbolic Execution (Symbolic states)

One execution:

z : getZ3Expr(z) stack push (calling foo at line 8)

k : 3

stack pop (returning from foo at line 4)

x : 3

stack push (calling foo at line 9)

k : getZ3Expr(z)

stack pop (returning from foo line 4)

y : getZ3Expr(z)

What's next?

- (1) Understand SSE algorithms in the slides
- (2) Finish the guizzes of Assignment 4 on Canvas
- (3) Implement a automated translation from code to Z3 formulas using SSE and Z3Mgr i.e., coding task in Assignment 3