WITH GEPHI AND NETWORKX

ANATOMY OF A GRAPH

NODE ATTRIBUTES

TYPE: PERSON NAME: BOB

AGE: 32

OCCUPATION: EVIL GENIUS

WITH GEPHI AND NETWORKX

ANATOMY OF A GRAPH

WEIGHT

SC207-5-FY: COMPUTATIONAL SOCIAL SCIENCE AND DIGITAL ISSUES

SOCIAL NETWORK ANALYSIS WITH GEPHI AND NETWORKX

ANATOMY OF A GRAPH

SC207-5-FY: COMPUTATIONAL SOCIAL SCIENCE AND DIGITAL ISSUES

SOCIAL NETWORK ANALYSIS WITH GEPHI AND NETWORKX

ANATOMY OF A GRAPH

WITH GEPHI AND NETWORKX

DIRECTED GRAPH EDGE DIRECTION

Source	Туре	Target
A	-[Influences]->	В
В	-[Influences]->	Α
С	-[Influences]->	В
D	-[Influences]->	В
D	-[Influences]->	С
Е	-[Influences]->	В
Е	-[Influences]->	D

SC207-5-FY: COMPUTATIONAL SOCIAL SCIENCE AND DIGITAL ISSUES

SOCIAL NETWORK ANALYSIS WITH GEPHI AND NETWORKX

CENTRALITY MEASURES

Understand the different roles of nodes in a network.

Important Nodes

Bridges between groups

Influence of a node over an entire Network

WITH GEPHI AND NETWORKX

DEGREE CENTRALITY

B is the most connected node

Node	Degree
A	2
В	5
C	2
D	3

CENTRALITY MEASURES

WITH GEPHI AND NETWORKX

DEGREE CENTRALITY

	Node	Degree	In- Degree	Out- Degree
	A	2	1	1
	В	5	4	1
•	С	2	1	1
•	D	3	1	2
	_			

- ▶ B is influenced by the most nodes
- D and E are the most influential

BETWEENNESS CENTRALITY

- Which nodes are the control points.
- If every node wanted to reach every other node, which node would they have to go through most.
- High scores Very central to a community
- Low Scores On the periphery of a community

Node	Betweenness Centrality
A	0
В	3
С	0
D	1
Е	0

CLOSENESS CENTRALITY

- Which nodes disseminate information the fastest?
- Avg. distance from all other nodes (inverted: higher = closer)

Node	Closeness Centrality	
A	0.57	
В	1	
С	0.66	
D	0.8	
Е	0.66	

PAGERANK CENTRALITY

- Considers both the connectivity of a node, and that node's neighbours.
- If node X is connected to an influential node, node X is considered more influential.

Node	PageRank Centrality
A	0.42
В	0.46
С	0.04
D	0.04
Е	0.03

IDENTIFYING COMMUNITIES

- Louvain Modularity
- Based on connectivity and weights.
- Compares the density of edges 'within' a possible community, to density of edges between communities.
- Attempts to optimise so you have more density between nodes of same community.
- Resolution: 0->1 More -> Less Communities
- Modularity score of 0.4+ is optimal

K-CORE

FILTERING FOR STRUCTURE

- K-Core trims a network down to its 'core'.
- Helpful in identifying underlying structure of a network
- K refers to the minimum number of degrees (connections) each node must have.

WITH GEPHI AND NETWORKX

K = 1

FILTERING FOR STRUCTURE

WITH GEPHI AND NETWORKX

K = 2

FILTERING FOR STRUCTURE

WITH GEPHI AND NETWORKX

K = 3

