Tutorial 5

Recall that $\mathbb{N}^* := \mathbb{N} \setminus \{0\}$.

Question 1. Determine whether the following sequences $(u_n)_{n\in\mathbb{N}^*}$ are monotonic.

(a)
$$u_n = \frac{n}{2n+1}$$

(b)
$$u_n = \frac{2^n}{n^2}$$

(c)
$$u_n = a + (n-1)d$$
 $(a, d \in \mathbb{R})$

(d)
$$u_n = ar^n$$
 $(a, r \in \mathbb{R})$

Question 2. Given the sequence $(u_n)_{n\in\mathbb{N}^*}$, its n^{th} partial sum, S_n , is $S_n = \sum_{j=1}^n u_j$. Show that

(a) for
$$u_n = a + (n-1)d$$
 with $a, d \in \mathbb{R}$, $S_n = na + \frac{n(n-1)}{2}d$;

(b)
$$u_n = ar^n$$
 with $a, r \in \mathbb{R}$, $S_n = a \frac{1 - r^n}{1 - r}$ if $r \neq 1$.

Discuss the convergence or otherwise of the corresponding series.

Question 3.

Show that the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges.