Эконометрика (продвинутый уровень I)

Домашняя работа

Анализ продвинутой модели гибкого акселератора на примере экономики Великобритании за период 1972-2021

Крылов Иван Дмитриевич Магистратура, МЭЭП222 Летушко Виктория Романовна Магистратура, МЭЭП222

Постановка задачи исследования

В данной работе на основании продвинутой модели гибкого акселератора оцениваются структурные параметры экономики Великобритании за 50 лет в период с 1972 - 2021 гг. В основе акселераторной модели инвестиций лежит идея об устойчивой связи между величиной валовых инвестиций в основной капитал и величиной валового внутреннего продукта страны. Данная зависимость может быть выражена в виде формулы:

$$I_{t} = \mu \cdot \lambda \cdot Y_{t} - (1 - \delta) \cdot \mu \cdot \lambda \cdot Y_{t-1} + (1 - \lambda) \cdot I_{t-1}$$
(1)

Применение формулы (1) позволит выявить эмпирически, имеются ли у экономики Великобритании механизмы эндогенного роста, выражающиеся в наличии лаговых откликов.

Описание данных

Данные для исследования представляют собой годовые макроэкономические временные ряды ВВП (GDP_current) и инвестиций (I_gross_current) в основной капитал для Великобритании за период 1972—2021 гг. Эти ежегодные показатели измерены в текущих ценах в долларах США. Источник данных — база The World Bank Group¹. Изменение текущих ВВП и инвестиций в основной капитал Великобритании в течение исследуемого периода времени представлено на рисунке 1.

Рисунок 1 – Изменение текущих ВВП и инвестиций в основной капитал за период 1972-2021 гг

1

¹ The World Bank Group [Электронный ресурс] https://databank.worldbank.org/source/world-development-indicators

На графике наблюдается практически линейный тренд роста как ВВП, так и инвестиций в основной капитал, а также заметна корреляция колебаний.

Для дальнейшего анализа были использованы ряд показателей, лаги которых выступали в роли инструментальных переменных:

- pound_per_dollar официальный обменный курс (фунт стерлингов по отношению к доллару США): обменный курс, определяемый национальными властями или на законодательно санкционированном валютном рынке; рассчитывается как среднегодовой показатель на основе среднемесячных значений; источник данных база The World Bank Group;
- *Inflation* инфляция, потребительские цены (в годовом исчислении, %): отражает ежегодное процентное изменение затрат среднего потребителя на приобретение корзины товаров и услуг, используется формула Ласпейреса; источник данных база The World Bank Group;
- $M3_to_GDP$ широкая денежная масса (M3) в процентах от ВВП; источник данных база The World Bank Group;
 - avg bank rate среднегодовая ставка процента 2 .

На рисунке 2 проиллюстрирована подвыборка используемых данных:

	year	GDP_current	I_gross_current	pound_per_dollar	Inflation	M3_to_GDP	avg_bank_rate
2	1972	1.699650e+11	3.926963e+10	0.400390	7.071098	38.185852	7.900000
3	1973	1.925380e+11	4.752335e+10	0.408171	9.196033	42.169886	9.227273
4	1974	2.061314e+11	5.399694e+10	0.427756	16.044011	42.444689	12.125000
5	1975	2.417566e+11	6.159052e+10	0.452041	24.207288	36.697659	10.846154
6	1976	2.326146e+11	5.847463e+10	0.556510	16.559523	34.562379	11.678571
7	1977	2.630665e+11	6.276262e+10	0.573272	15.840267	32.479976	8.960526
8	1978	3.358830e+11	7.881902e+10	0.521505	8.263141	32.039301	9.041667
9	1979	4.389941e+11	1.036073e+11	0.472181	13.421280	30.453995	14.000000
10	1980	5.649477e+11	1.286321e+11	0.430295	17.965924	30.764263	15.000000
11	1981	5.407657e+11	1.115765e+11	0.497641	11.876627	34.790122	14.159722

Рисунок 2 – Подвыборка используемых в исследовании данных

На рисунке 3 представлены описательные статистики переменных выборки:

_

² Bank of England [Электронный ресурс] https://www.bankofengland.co.uk/monetary-policy/the-interest-rate-bank-rate

	count	mean	std	min	25%	50%	75%	max
year	50.0	1.996500e+03	1.457738e+01	1.972000e+03	1.984250e+03	1.996500e+03	2.008750e+03	2.021000e+03
GDP_current	50.0	1.569977e+12	1.018100e+12	1.699650e+11	5.468112e+11	1.491713e+12	2.679150e+12	3.131378e+12
I_gross_current	50.0	2.830002e+11	1.647688e+11	3.926963e+10	1.158404e+11	2.646708e+11	4.372792e+11	5.569408e+11
pound_per_dollar	50.0	6.084501e-01	9.855602e-02	4.003905e-01	5.516262e-01	6.121995e-01	6.606293e-01	7.834451e-01
Inflation	50.0	5.239017e+00	5.267374e+00	3.680468e-01	1.993583e+00	2.635365e+00	6.821172e+00	2.420729e+01
M3_to_GDP	50.0	8.930295e+01	4.594620e+01	3.045400e+01	4.223859e+01	8.425168e+01	1.380172e+02	1.634192e+02
avg_bank_rate	50.0	6.527784e+00	4.654390e+00	1.750000e-01	1.666667e+00	5.898438e+00	1.000067e+01	1.500000e+01
GDP_current_lag	50.0	1.510312e+12	1.012127e+12	1.481139e+11	5.214781e+11	1.383902e+12	2.636004e+12	3.092821e+12
l_gross_current_lag	50.0	2.728107e+11	1.640293e+11	3.485929e+10	1.076071e+11	2.599213e+11	4.239846e+11	5.569408e+11
l_gross_current_diff	50.0	1.018952e+10	3.261511e+10	-1.270419e+11	-2.376790e+09	7.923652e+09	2.358175e+10	8.054887e+10
pound_per_dollar_lag	50.0	5.948606e-01	1.009160e-01	4.003905e-01	5.445197e-01	6.110044e-01	6.542658e-01	7.834451e-01
avg_bank_rate_lag	50.0	6.774284e+00	4.472764e+00	2.500000e-01	3.962500e+00	6.210938e+00	1.000067e+01	1.500000e+01
M3_to_GDP_lag	50.0	8.439906e+01	4.508222e+01	3.045400e+01	3.817406e+01	7.979229e+01	1.318061e+02	1.630591e+02
Inflation_lag	50.0	5.485088e+00	5.248885e+00	3.680468e-01	2.117138e+00	3.139696e+00	7.364112e+00	2.420729e+01

Рисунок 3 – Описательные статистики переменных выборки

Модель инвестиций

Для проведения анализа продвинутая модель гибкого акселератора была переписана в эконометрическую модель инвестиций:

$$I_{t} = \alpha_{0} + \alpha_{1}Y_{t} + \alpha_{2}Y_{t-1} + \alpha_{3}I_{t-1} + u_{t},$$
(2)

где

$$u_t = \varepsilon_t - (1 - \delta)\varepsilon_{t-1}$$

$$\alpha_1 = \lambda \mu \qquad \alpha_2 = -\lambda \mu (1 - \delta) \quad \alpha_3 = 1 - \lambda$$

Методология

Для оценивания предполагается применение подходов:

- 1) MHK;
- 2) 2SLS;
- 3) GMM;
- 4) ARIMAX.

1) <u>Оценивание регрессионной модели с помощью метода наименьших квадратов (МНК/OLS)</u>

На первом этапе исследования продвинутая модель гибкого акселератора (2) была оценена с помощью метода наименьших квадратов. Результаты оценивания модели представлены на рисунке 4.

OLS Regression Results

Dep. Variable:	I_gross_c	urrent	R-sq	uared:		0.99	6
Model:		OLS	Adj.	R-squared:		0.99	6
Method:	Least S	quares	F-st	atistic:		3876	
Date:	Fri, 24 Fe	b 2023	Prob	(F-statist	ic):	2.74e-5	5
Time:	14	:22:57	Log-	Likelihood:		-1223.	4
No. Observations:		50	AIC:			2455	
Df Residuals:		46	BIC:			2462	
Df Model:		3					
Covariance Type:	non	robust					
					=======		
						[0.025	_
Intercept							
I_gross_current_lag	0.8445	0.0	75	11.292	0.000	0.694	0.995
GDP_current	0.1947	0.0	010	19.797	0.000	0.175	0.214
GDP_current_lag	-0.1702	0.6	916	-10.394	0.000	-0.203	-0.137
========= Omnibus:				in-Watson:		1.10	
Prob(Omnibus):		0.265	Jara	ue-Bera (JB):	1.75	8
Skew:		0.247			•	0.41	5
Kurtosis:		3.774		. ,		6.32e+1	2

Рисунок 4 – Оценки коэффициентов модели методом МНК

С помощью решения системы уравнений были найдены оценки структурных параметров продвинутой модели гибкого акселератора и их стандартные ошибки. Полученные значения представлены в таблице 1.

Таблица 1 — Оценки структурных параметров продвинутой модели гибкого акселератора, полученной методом МНК

параметр модели	оценка параметра	стандартные ошибки параметров
λ	0.1555	0.0748
μ	1.2516	0.6120
δ	0.1258	0.0632

Для обоснования состоятельности оценок были проведены следующие статистические тесты.

• *Тест Рамсея* для выявления возможных пропущенных существенных переменных в модели:

Результаты теста Рамсея: F-статистика: 0,003726; P-value: 0,9516

Bывод: Нет оснований отвергнуть гипотезу об отсутствии существенных пропущенных переменных, то есть тест Рамсея говорит об отсутствии ошибок спецификации.

• Тест Дарбина-Уотсона для выявления ложной регрессии:

Известно, что в динамических моделях с лагом зависимой переменной данный тест не применим, однако, совместный анализ значений тестовой статистики и коэффициента детерминации позволяет выявить ложную регрессию.

Результат теста Дарбина-Уотсона: Статистика Дарбина-Уотсона: 1,10926; R-квадрат = 0,996

Bывод: Регрессия не ложная, так как статистика Дарбина-Уотсона оказалась не близка к нулю, а ближе к 2.

• *Тест Харке-Бера* на нормальность остатков для проверки адекватности функциональной формы:

Плотность распределение остатков для модели МНК показана на рисунке 5.

Рисунок 5 – Плотность распределения остатков для модели МНК

Результаты теста Харке-Бера: хи-квадрат 1,758163; P-value 0,415164

Bывод: Распределение остатков не является нормальным. Так как нормальность остатков нарушается, то результаты, полученные с помощью МНК становятся ненадежными, и нельзя с уверенностью обобщить выводы из выборочных данных.

• *Тест Бройша-Годфри* для диагностики автокорреляции: *Результаты теста Бройша-Годфри:* F-статистика: 16,37804; P-value: 0,0002015 *Вывод:* Нулевая гипотеза об отсутствии автокорреляции отвергается — в модели присутствует автокорреляция. Данный результат характерен для многих временных рядов, где зависимая переменная имеет "память" и ее изменение от периода к периоду

• *Тест Бройша-Пагана* для диагностики гетероскедастичности: *Результаты теста Бройша-Пагана:* F-статистика = 3,03825; P-value = 0,038362 *Вывод:* Нулевая гипотеза о гомоскедастичности отвергается – в модели

Вывоо: Нулевая гипотеза о гомоскедастичности отвергается — в модели присутствует гетероскедастичность. В дальнейшем при оценке моделей будут использованы стандартные ошибки коэффициентов, состоятельные в условиях гетероскедастичности.

взаимосвязано.

Обобщая выводы пункта 1, можно сказать, что оценки полученные с помощью метода наименьших квадратов не являются достоверными, таким образом, необходимо провести корректировки.

2) <u>Оценивание регрессионной модели с помощью метода</u> инструментальных переменных (IV2SLS)

Для коррекции эндогенности текущего ВВП, ВВП прошлого периода и инвестиций в основной капитал прошлого периода Великобритании ($I_gross_current_lag$, $GDP_current$, $GDP_current_lag$) были выбраны лаги следующих переменных: официальный обменный курс, инфляция, денежная масса (M3) в процентах от ВВП и среднегодовая ставка процента ($pound_per_dollar_lag$, $Inflation_lag$, $M3_to_GDP_lag$, $avg_bank_rate_lag$)³.

Для проверки качества выбранных инструментальных переменных были проведены тесты на релевантность и валидность каждого инструмента.

- Релевантность: коррелированность регрессора (I_gross_current_lag) и инструментов (инструмент считается релевантным, есть F-статистика в гипотезе о незначимости регрессии больше 10);
- Валидность: некоррелированность остатков метода инструментальных переменных и инструментов (инструмент считается валидным, если корреляция инструмента и остатков близка к 0).

Результаты проверки инструментальных переменных представлены в таблице 2.

Таблица 2 – Результаты проверки выбранных инструментов на релевантность и валидность.

Инструмент	Релевантность	Валидность
M3_to_GDP_lag	инструмент релевантен (F-статистика = 323.6798)	инструмент валиден corr = -1.006e-14
avg_bank_rate_lag	инструмент релевантен (F-статистика = 79.9042)	инструмент валиден corr = -1.554e-13
pound_per_dollar_lag	инструмент релевантен (F-статистика = 15.7749)	инструмент валиден corr = -9.753e-12
Inflation_lag	инструмент релевантен (F-статистика = 46.1847)	инструмент валиден cov = -4.958e-13

С помощью выбранных инструментов регрессия была переоценена методом двухэтапного МНК. Результаты оценивания коэффициентов модели представлены на рисунке 6.

_

³ The flexible accelerator model of investment: An application to Ugandan tea-processing firms

IV-2SLS Estimation Summary

Dep. Variable:	I_gross_current	R-squared:	0.9937
Estimator:	IV-2SLS	Adj. R-squared:	0.9933
No. Observations:	50	F-statistic:	9814.6
Date:	Fri, Feb 24 2023	P-value (F-stat)	0.0000
Time:	14:22:58	Distribution:	chi2(3)
Cov. Estimator:	robust		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	7.23e+09	3.526e+09	2.0505	0.0403	3.191e+08	1.414e+10
I_gross_current_lag	0.6835	0.1506	4.5374	0.0000	0.3883	0.9787
GDP_current	0.2385	0.0238	10.028	0.0000	0.1919	0.2851
GDP_current_lag	-0.1888	0.0342	-5.5168	0.0000	-0.2559	-0.1217

Рисунок 6 – Оценки коэффициентов модели методом двухэтапного МНК

С помощью решения системы уравнений были найдены оценки структурных параметров продвинутой модели гибкого акселератора и их стандартные ошибки. Полученные значения представлены в таблице 3.

Таблица 3 — Оценки структурных параметров продвинутой модели гибкого акселератора, полученной методом двухэтапного МНК

параметр модели	оценка параметра	стандартные ошибки параметров
λ	0.3165	0.1506
μ	0.7535	0.3639
δ	0.2084	0.1071

Для проверки экзогенности регрессоров оцениваемой модели использовался тест Дарбина-Ву-Хаусмана.

Результаты теста Дарбина-Ву-Хаусмана: хи-квадрат = 6,4149; P-value: 0,0931 Вывод: Нулевая гипотеза об экзогенности регрессоров отвергается на уровне значимости 10%. Таким образом, модель с инструментальными переменными является адекватна.

3) <u>Оценивание регрессионной модели с помощью обобщенного метода моментов (GMM)</u>

Исследуемая модель гибкого акселератора была переоценена с помощью обобщенного метода моментов. Результаты оценивания коэффициентов модели представлены на рисунке 7.

IV-GMM Estimation Summary

Dep. Variable:	I_gross_current	R-squared:	0.9939
Estimator:	IV-GMM	Adj. R-squared:	0.9935
No. Observations:	50	F-statistic:	1.221e+04
Date:	Fri, Feb 24 2023	P-value (F-stat)	0.0000
Time:	14:22:59	Distribution:	chi2(3)
Cov. Estimator:	robust		

Parameter Estimates

	Parameter	Std. Err.	T-stat	P-value	Lower CI	Upper CI
Intercept	6.625e+09	3.372e+09	1.9648	0.0494	1.642e+07	1.323e+10
I_gross_current_lag	0.6776	0.1488	4.5532	0.0000	0.3859	0.9693
GDP_current	0.2362	0.0232	10.194	0.0000	0.1908	0.2816
GDP_current_lag	-0.1849	0.0339	-5.4598	0.0000	-0.2513	-0.1186
=======================================						

Рисунок 7 – Оценки коэффициентов модели методом ОММ

С помощью решения системы уравнений были найдены коэффициенты продвинутой модели гибкого акселератора и их стандартные ошибки. Полученные значения представлены в таблице 4.

Таблица 4 — Оценки структурных параметров продвинутой модели гибкого акселератора с помощью метода ОММ

параметр модели	оценка параметра	стандартные ошибки параметров
λ	0.3224	0.1488
μ	0.7325	0.3450
δ	0.2169	0.1071

Был проведен сравнительный анализ коэффициентов модели гибкого акселератора, полученных методами МНК, двухэтапного МНК и ОММ. Сравнительная таблица коэффициентов представлена на рисунке 8.

Model Comparison

	OLS	2SLS	GMM
Dep. Variable	I_gross_current	I_gross_current	I_gross_current
Estimator	OLS	IV-2SLS	IV-GMM
No. Observations	50	50	50
Cov. Est.	robust	robust	robust
R-squared	0.9961	0.9937	0.9939
Adj. R-squared	0.9958	0.9933	0.9935
F-statistic	2.76e+04	9814.6	1.221e+04
P-value (F-stat)	0.0000	0.0000	0.0000
Intercept	4.016e+09**	7.23e+09**	6.625e+09**
	(1.921e+09)	(3.526e+09)	(3.372e+09)
I_gross_current_lag	0.8445***	0.6835***	0.6776***
	(0.0844)	(0.1506)	(0.1488)
GDP_current	0.1947***	0.2385***	0.2362***
	(0.0139)	(0.0238)	(0.0232)
GDP_current_lag	-0.1702***	-0.1888***	-0.1849***
	(0.0211)	(0.0342)	(0.0339)
Instruments		pound_per_dollar_lag	pound_per_dollar_lag
		avg_bank_rate_lag	avg_bank_rate_lag
		M3_to_GDP_lag	M3_to_GDP_lag
		Inflation_lag	

Рисунок 8 — Сравнительный анализ оценок продвинутой модели гибкого акселератора, оцененной методами OLS, IV2SLS и GMM

Оценки коэффициентов методами IV2SLS и GMM практически не отличаются, при этом стандартные ошибки коэффициентов, полученных методом GMM меньше стандартных ошибок соответствующих коэффициентов, полученных методом IV2SLS. Таким образом, оценки коэффициентов обобщенным методом моментов обладают большей эффективностью. Высокие R-квадраты всех трех методов не дают никакой информации об объясняющей силе, поэтому на основании полученных результатов нельзя ничего сказать о необходимости использовать данные оценки коэффициентов продвинутой модели гибкого акселератора. Стандартные ошибки коэффициентов в МНК ниже, чем у двух других методов, однако, это не дает основания назвать метод наилучшим, так как используемые тесты показали неадекватность выбранной формы.

Для анализа временных рядов также был использован использовать метод ARIMAX (AutoRegressive Integrated Moving Average eXtended) — это математическая модель, объединяющая в себе интегрированную авторегрессию, скользящее среднее и возможность учета дополнительных внешних факторов.

4) <u>Оценивание продвинутой модель гибкого акселератора с помощью</u> метода ARIMAX

4.1 Проверка на стационарность ряда

Метод ARIMAX предназначен для моделирования и прогнозирования либо стационарных временных рядов, либо временных рядов, которые могут быть преобразованы к стационарным.

С помощью теста Дики-Фуллера был проведен анализ стационарности используемого временного ряда.

Результат теста Дики-Фуллера: ADF = -2,216782; P-value = 0,480411.

Вывод: Нулевая гипотеза о не отклоняется, то есть ряд нестационарный.

4.2 Преобразование ряда к стационарному

Для того, чтобы преобразовать ряд к стационарному виду, была взята первая разность переменной I_gross_current, равная разности инвестиций в основной капитал текущего периода и инвестиций прошлого периода. Затем повторно был проведен тест Дики-Фуллера для проверки стационарности временного ряда в первых разностях.

Результат теста Дики-Фуллера: ADF = -5,830284; P-value = 0,000005.

Вывод: Нулевая гипотеза о нестационарности временного ряда отклоняется, следовательно, ряд стационарный.

Для наглядного представления стационарности были построены графики автокорреляционной (ACF) и частной автокорреляционной (PACF) функции. Результаты представлены на рисунке 9. Независимо от значений в первом лаге, функции быстро убывают после несколько первых значений.

Рисунок 9 – Графики автокорреляционной и частной автокорреляционной функций

4.3 Подбор параметров

В отличие от простых моделей AR или MA, параметры которых можно достаточно точно предскадсказать по коррелограммам, со смешенными моделями такое предсказание сделать трудно. Однако, из результатов теста Дики-Фуллера, можно с определенностью сказать, что модель ARIMAX будет представлена в первых разностях.

A. ARIMAX(1,1,0)

Оценки параметров модели ARIMAX(1, 1, 0) представлены на рисунке 10.

SARIMAX Results						
						:
Dep. Variable:	I_gross_cu	rrent N	lo. Observations	s:	50)
Model:	ARIMA(1,	1,0) L	og Likelihood		-1197.212	2
Date:	Fri, 24 Feb	2023 A	AIC .		2404.424	.
Time:	14:	23:01 E	BIC		2413.883	1
Sample:		0 H	QIC		2408.012	
		- 50				
Covariance Type:		opg				
	coef	std err	z	P> z	[0.025	0.975]
I_gross_current_lag	0.3998	0.424	0.942	0.346	-0.432	1.232
GDP_current	0.1959	0.007	26.730	0.000	0.182	0.210
GDP_current_lag	-0.0769	0.085	-0.902	0.367	-0.244	0.090
ar.L1	0.0386	0.384	0.101	0.920	-0.713	0.791
sigma2	9.94e+19	nar	n nan	nan	nan	nan
						=====
Ljung-Box (L1) (Q):		0.0)2 Jarque-Bera	a (JB):		3.17
Prob(Q):		0.8	88 Prob(JB):			0.20
Heteroskedasticity ((H):	2.5	Stew:			-0.56
Prob(H) (two-sided):		0.0	7 Kurtosis:			3.56

Рисунок 10 – Оценки параметров модели ARIMAX(1, 1, 0)

Модель неадекватна, так как значимым оказался только коэффициент при ВВП в текущем периоде.

<u>Б. ARIMAX(0,1,1)</u>

Оценки параметров модели ARIMAX(0, 1, 1) представлены на рисунке 11.

SARIMAX Results							
Dep. Variable:	I_gross_cu	rrent	No.	Observations	:	50	
Model:	ARIMA(0,	1, 1)	Log	Likelihood		-1197.281	
Date:	Fri, 24 Feb	2023	AIC			2404.562	
Time:	14:	23:01	BIC			2414.021	
Sample:		0	HQIC			2408.151	
		- 50					
Covariance Type:		opg					
	coef	std e	err	Z	P> z	[0.025	0.975]
I_gross_current_lag	0.4235	0.3	387	1.095	0.274	-0.335	1.182
GDP_current	0.1960	0.0	800	25.407	0.000	0.181	0.211
GDP_current_lag	-0.0816	0.0	978	-1.044	0.296	-0.235	0.072
ma.L1	0.0109	0.3	343	0.032	0.975	-0.661	0.683
sigma2	1.054e+20	r	nan	nan	nan	nan	nan
Ljung-Box (L1) (Q):		6	0.01	Jarque-Bera	(JB):	3	3.25
Prob(Q):		6	9.93	Prob(JB):		(0.20
Heteroskedasticity (H):	2	2.51	Skew:		- 6	0.56
Prob(H) (two-sided):		6	0.07	Kurtosis:		3	3.56

Рисунок 11 – Оценки параметров модели ARIMAX(0, 1, 1)

Модель также неадекватна, так как значимым оказался только коэффициент при ВВП в текущем периоде.

B. ARIMAX(1,1,1)

Оценки параметров модели ARIMAX(1, 1, 1) представлены на рисунке 12.

SARIMAX Results							
Dep. Variable:	I_gross_cu	ırrent	No.	Observations 4 1	:	50	
Model:	ARIMA(1,	1, 1)	Log	Likelihood		-1197.174	
Date:	Fri, 24 Feb	2023	AIC			2406.349	
Time:	14:	23:02	BIC			2417.700	
Sample:		0	HQI	С		2410.655	
•		- 50					
Covariance Type:		opg					
	coef	std e	rr	Z	P> z	[0.025	0.975]
I_gross_current_lag	0.2411	3.2	39	0.074	0.941	-6.107	6.590
GDP_current	0.1959	0.0	07	26.697	0.000	0.181	0.210
GDP_current_lag	-0.0453	0.6	35	-0.071	0.943	-1.289	1.198
ar.L1	0.3508	1.5	42	0.228	0.820	-2.671	3.373
ma.L1	-0.1441	1.9	41	-0.074	0.941	-3.948	3.659
sigma2	9.097e+19	1.95e-	20	4.66e+39	0.000	9.1e+19	9.1e+19
Ljung-Box (L1) (Q):		0	.06	Jarque-Bera	(JB):		3.11
Prob(Q):		0	.81	Prob(JB):			0.21
Heteroskedasticity (H):	2	.52	Skew:			-0.56
Prob(H) (two-sided):		0	.07	Kurtosis:			3.54

Рисунок 12 – Оценки параметров модели ARIMAX(1, 1, 1)

Модель неадекватна, так как значимым оказался только коэффициент при ВВП в текущем периоде.

4.4 Поиск оптимальных параметров ARIMAX

С помощью процедуры поиска оптимальных параметров была подобрана модель ARIMAX(0, 1, 3), обладающая минимальными значениями информационных критериев:

Минимальное значение AIC = 2396,48122

Минимальное значение ВІС = 2409,72396

Результаты оценки параметров модели ARIMAX(0, 1, 3) представлены на рисунке 13.

SARIMAX Results ______ Dep. Variable: I_gross_current No. Observations: 50 Model: ARIMA(0, 1, 3) Log Likelihood -1191.241 Date: Fri, 24 Feb 2023 AIC 2396.481 Time: 14:23:57 BIC 2409.724 Sample: 0 HOTC 2401.506 Sample: HQIC 2401.506 - 50 Covariance Type: opg ______ coef std err z P>|z| [0.025 0.975] ______ GDP_current 0.1910 0.008 23.732 0.000 0.175 0.207 GDP_current_lag -0.1415 0.029 -4.952 0.000 -0.197 -0.085 I_gross_current_lag 0.6926 0.174 3.981 0.000 0.352 1.034 ma.L1 -0.3548 0.332 -1.068 0.286 -1.006 0.297 ma.L2 0.0035 0.312 0.011 0.991 -0.608 0.615 ma.L3 -0.6006 0.210 -2.864 0.004 -1.012 -0.190 sigma2 9.85e+19 nan nan nan nan nan nan ______ Ljung-Box (L1) (Q): 0.02 Jarque-Bera (JB): Prob(Q): 0.90 Prob(JB): Heteroskedasticity (H): 1.60 Skew: Prob(H) (two-sided): 0.36 Kurtosis: 3.79 0.15

Рисунок 13 – Оценки параметров модели ARIMAX(0, 1, 3)

Все коэффициенты модели значимы. Однако только третий лаг ошибки оказался значимым.

С помощью решения системы уравнений были найдены коэффициенты продвинутой модели гибкого акселератора и их стандартные ошибки. Полученные значения представлены в таблице 5.

Таблица 5 - Оценки структурных параметров продвинутой модели гибкого акселератора с помощью метода ARIMAX

THE TOTAL PROPERTY OF THE PROP							
параметр модели	оценка параметра	стандартные ошибки параметров					
λ	0.3074	0.1740					
μ	0.6214	0.3468					
δ	0.2596	0.1538					

4.5 Сравнительный анализ оценок коэффициентов в модели ARIMAX с различными параметрами

В таблице 6 представлен сравнительный анализ оценок коэффициентов модели гибкого акселератора в различных спецификациях метода ARIMAX.

4.11

Таблица 6 — Сравнительный анализ оценок коэффициентов в модели ARIMAX с различными параметрами Уровни значимости: *-p < 0,1; **-p < 0,05; ***-p < 0,01

Tr. Tr. Tr.	· r ·, ,	r	- , -	
	(1,1,0)	(0,1,1)	(1,1,1)	(0,1,3)
I_gross_current_lag	0,3998	0,4235	0,2411	0,191***
GDP_current	0,1959***	0,196***	0,1959***	-0,1415***
GDP_current_lag	-0,0769	-0,0816	-0,0453	0,6926***
ar.L1	0,00386	-	0,3508	-
ma.L1	-	0,0109	-0,1441	-0,3548
ma.L2	-	-	-	0,0035
ma.L3	-	-	-	-0,6006***
AIC	2404,424	2404,562	2406,349	2396.481
BIC	2413,012	2414,151	2417,7	2409.724

Оценка структурных параметров с использованием всех представленных в работе методов. Выводы проведенного исследования

В таблице 7 представлены оценки структурных параметров экономики Великобритании, полученные с помощью всех использованных методов.

Таблица 7 – Оценки структурных параметров экономики, полученные с использованием различных методов.

	Скорость приспособления, λ	Акселератор, µ	Норма амортизации, δ
МНК	0.1555 (0.0748)	1.2516 (0.6120)	0.1258 (0.0632)
Двухшаговый МНК	0.3165 (0.1506)	0.7535 (0.3639)	0.2084 (0.1071)
OMM	0.3224 (0.1488)	0.7325 (0.3450)	0.2169 (0.1071)
ARIMAX(0,1,3)	0.3074 (0.1740)	0.6214 (0.3468)	0.2596 (0.1538)

<u>Выводы</u>

Исходя из полученных результатов, представленных в таблице 7, можно заключить, что все методы оценки структурных параметров экономики, кроме простого МНК, дают близкие значения искомых коэффициентов и их стандартных ошибок. Неэффективность полученных оценок может быть связана с присутствием гетероскедастичности, однако, в большей мере она объясняется тем, что метод максимального правдоподобия, применяющийся для оценки модели ARIMAX, и методы, основанные на инструментальных переменных, носят асимптотический характер. Асимптотические методы могут давать плохую аппроксимацию на коротких выборках (в данном исследовании всего 50 наблюдений), в которых присутствует немонотонная динамика показателей и нет возможности разбиения ее на однородные подвыборки приемлемого объема для более точного статистического анализа⁴. Среди представленных в работе методов оценки, по нашему мнению, адекватнее всего использовать ARIMAX(0, 1, 3), так как данный метод, во-первых, предназначен для работы с временными рядами, а, во-вторых, показывает значения структурных параметров, которые согласуются с действительностью. В частности норма амортизации в Великобритании равна 25-26% (хотя данный термин в этой стране заменен на надбавку на капитал)⁵. Тогда скорость подстройки фактического объема основных фондов к оптимальному равна 0,3074, а акселератор, показывающий, как объем основных фондов должен соотносится с фактическим выпуском, равен 0,6214.

-

⁴ Эконометрика (продвинутый курс). Применение пакета STATA. Учебное пособие для ВУЗов (Вакуленко Е. С., Ратникова Т. А., Фурманов К. К.). 10 глава.

⁵ https://digital.library.unt.edu/ark:/67531/metadc821611/m1/6/ https://corporatefinanceinstitute.com/resources/accounting/allowed-depreciation/

Список литературы

- [1] https://digital.library.unt.edu/ark:/67531/metadc821611/m1/6/
- [2] https://corporatefinanceinstitute.com/resources/accounting/allowed-depreciation/
- [3] Bank of England [Электронный ресурс]
- [4] https://www.bankofengland.co.uk/monetary-policy/the-interest-rate-bank-rate
- [5] The flexible accelerator model of investment: An application to Ugandan tea-processing firms. African Journal of Agricultural and Resource Economics Vol. 10 № 1 p. 1-15
- [6] Эконометрика (продвинутый курс). Применение пакета STATA. Учебное пособие для ВУЗов (Вакуленко Е. С., Ратникова Т. А., Фурманов К. К.).