(二十二) B卷

1=+15x+b.

サメンジョダ·

y=4X

1. 双曲线 $3x^2 - y^2 = 3$ 的新近线方程为(().

(B) $y = \pm \frac{1}{3}x$ (C) $y = \pm \sqrt{3}x$ (D) $y = \pm \frac{\sqrt{3}}{3}x$

2. 过双曲线 $x^2 - \frac{y^2}{3} = 1$ 的左焦点,且与新近线平行的直线是(\int).

(B) $y = \pm \frac{\sqrt{3}}{3}(x-2)$

(C) $y = \pm \frac{\sqrt{3}}{2}(x+2)$

(D) $y = \pm \sqrt{3}(x+2)$

3. 双曲线 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 的两条渐近线的夹角大小等于(/ $\frac{1}{2}$).

5 (A) $\arccos \frac{24}{25}$

(B) $\arccos \frac{7}{25}$

(C) π -arccos $\frac{24}{25}$

(D) π -arccos $\frac{7}{25}$

4. 以椭圆 $\frac{x^2}{169}$ + $\frac{y^2}{144}$ =1 的右焦点为圆心且与双曲线 $\frac{x^2}{9}$ - $\frac{y^2}{16}$ =1 的新近线相切的圆的方程是($\begin{pmatrix} \ddots & \ddots & \ddots & \ddots \\ & \ddots & \ddots & \ddots \end{pmatrix}$ - $\frac{1}{169}$ + \frac

(A) $x^2 + y^2 - 10x + 9 = 0$

(C) $x^2 + y^2 + 10x - 9 = 0$

x - 2y=).

二、填空题

5. 过点(2,-2),且与双曲线 $x^2-2y^2=2$ 有相同新近线的双曲线方程是 $x^2-2y^2=2$ 有相同新近线的双曲线的标准方程为 $x^2-2y^2=2$ 有相同新近线的双曲线方程是 $x^2-2y^2=2$ 有相同新近线的双曲线方程是 $x^2-2y^2=2$ 有相同新近线的双曲线方程是 $x^2-2y^2=2$ 有相同新近线的双曲线方程是 $x^2-2y^2=2$ 有相同新近线的双曲线方程是 $x^2-2y^2=2$ 有相同新近线的双曲线方程是 $x^2-2y^2=2$ 有相同新近线的双曲线的标准方程为 $x^2-2y^2=2$ 有相同新近线的双曲线的标准方程为 $x^2-2y^2=2$ 有相同新近线的双曲线的标准方程为 $x^2-2y^2=2$ 有相同新近线的双曲线的标准方程为 $x^2-2y^2=2$ 有相同新近线的双曲线的标准方程为 $x^2-2y^2=2$ 有相同新近线的双曲线的标准方程为 $x^2-2y^2=2$ 有相同新近线的标准方程为 $x^2-2y^2=2$ 有相同新近线的环准方程为 $x^2-2y^2=2$ 有相同新近线的环准方程为 $x^2-2y^2=2$ 有相同新近线的环准方程为 $x^2-2y^2=2$ 有相同新近线的环准方程为 $x^2-2y^2=2$ 有由的 $x^2-2y^2=2$ 有由的 $x^2-2y^2=2$ 有由的 $x^2-2y^2=2$ 有由的 $x^2-2y^2=2$ 有相同新近线的双曲线的环准方程 $x^2-2y^2=2$ 有由的 $x^2-2y^2=2$ 有由

8. 与椭圆 $\frac{x^2}{49} + \frac{y^2}{24} = 1$ 有公共焦点,且实轴长与虚轴长之比为 $\frac{4\cdot 3}{3}$ 的双曲线方程为 $\frac{x^2}{49} + \frac{y^2}{24} = 1$

9. 已知双曲线的渐近线方程为 火= ± ½ x ,焦点在 y 轴上 ,焦距为 10 ,则此双曲线的方程是

10. 双曲线 $\frac{x^2}{4}$ $-y^2$ = 1 的两条新近线的夹角余弦值等于 _____.

J=1=1=x-

11. 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,且 $\frac{a}{c} = \frac{1}{2} (c 为半焦距,a>0,b>0),F_1、F_2 为双曲线的两个焦$

· 91 ·

点、P为双曲线上一点、ZF、PF、=60°、SAF、FF、=12√3、水双曲线方程、 大型意、α=シレ、カ=√ル、ヨ α= ン カニ√ル C= 4

12. 已知等轴双曲线的中心在原点,焦点在 x 轴上,直线 $y = \frac{1}{2}x$ 裁双曲线所得效长为 $2\sqrt{15}$,求此双曲线的方程. $2\sqrt{15}$,求此双曲线的方程. $2\sqrt{15} = \sqrt{\frac{1}{4}}$

(24) = sav

水野。 20年12. · スカンでの : y=+ 紫x=+5元X . で ままます ここででの : y=+ 紫x=+5元X .

14. 已知倾斜角为 45°的直线 l 过点 A(1,-2)及点 B,点 B 在第一象限,且 |AB|=3√2.

- (1) 求点 B 的坐标; (2) 若直线 l 与双曲线 $C: \frac{x^2}{a^2} y^2 = 1$ (a>0)相交于 E、F 两点,且线段 EF 的中点坐标为 (4,1),求 a 的值.

+ -1 KD=350 : B (4 3)

1) l= y= x+ x-3. 2) | av-y=1 =7 x-a(x-s)= ~ (1-a)x+6ax+1-8a=0

$$X_1 + \lambda_1 = \frac{-ba^2}{1-a^2} = \beta^{-1}$$

$$R = t^2$$

$$a^2 = \frac{ba^2}{1-a^2} = \beta^{-1}$$

· 91 ·

(二十二) B卷

y=7x" 1=11x 11=+15X+b.

张 少村女X 2th 13

开小沙 みがずる。 y== 4x

1. 双曲线 3x - y = 3 的新近线方程为(().

- (A) $y = \pm 3x$
- (B) $y = \pm \frac{1}{3}x$ (C) $y = \pm \sqrt{3}x$

2. 过双曲线 x²-y²=1 的左焦点,且与浙近线平行的直线是(

(A) $y = \pm \sqrt{3}(x-2)$

(B) $y = \pm \frac{\sqrt{3}}{3}(x-2)$

(C) $y = \pm \frac{\sqrt{3}}{3}(x+2)$

(D) $y = \pm \sqrt{3}(x+2)$

3. 双曲线 $\frac{x^2}{16} - \frac{y^2}{9} = 1$ 的两条渐近线的夹角大小等于(/ $\frac{1}{2}$).

☆ (A) arccos 24/25

(B) $\arccos \frac{7}{25}$

(C) π -arccos $\frac{24}{25}$

(D) π -arccos $\frac{7}{25}$

4. 以椭圆 $\frac{x^2}{169} + \frac{y^2}{144} = 1$ 的右焦点为圆心且与双曲线 $\frac{x^2}{9} - \frac{y^2}{16} = 1$ 的渐近线相切的圆的方程是 (S_1) (S_2) (S_3) (S_4) (S_4) (S_5) (S_5)

- (A) $x^2 + y^2 10x + 9 = 0$
- (C) $x^2 + y^2 + 10x 9 = 0$
- (D) $x^2 + y^2 + 10x + 9 = 0$

x - zy= >. 二、填空题

- 5. 过点(2,-2),且与双曲线 $x^2-2y^2=2$ 有相同渐近线的双曲线方程是 X-1/(z-z)
- 7. 浙近线方程为 $y=\pm\frac{2}{3}x$,虚轴长是 6 的双曲线的标准方程为 $\frac{2}{2}-\frac{1}{6}$ $\frac{1}{2}$
- 8. 与椭圆型 + 21 = 1 有公共焦点, 且实轴长与虚轴长之比为 4 3的双曲线方程为
- 9. 已知双曲线的渐近线方程为 y= 壬½x, 焦点在 y 轴上, 焦距为 10,则此双曲线的方程是

11. 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,且 $\frac{a}{c} = \frac{1}{2}(c$ 为半焦距,a > 0,b > 0), F_1 、 F_2 为双曲线的两个焦

either: la Sib took to.

12. 已知等轴双曲线的中心在原点,焦点在 x 轴上,直线 $y = \frac{1}{2}x$ 截双曲线所得弦长为 $2\sqrt{15}$,求此双曲线的方程. $2\sqrt{15}$,求此双曲线的方程. $2\sqrt{15} - \sqrt{15} = \sqrt{15}$ $2\sqrt{15} - \sqrt{15}$ $2\sqrt{15$

(24) = sav

 x^2 13. 已知 F_1 、 F_2 是双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0)的两个焦点,过 F_2 作垂直于 x 轴的直线交

水野 四十七

14. 已知倾斜角为 45° 的直线 ι 过点 A(1,-2)及点 B,点 B 在第一象限,且 $|AB|=3\sqrt{2}$.

(1) 求点 B 的坐标;

(2) 若直线 l 与双曲线 $C: \frac{x^2}{a^2} - y^2 = 1(a>0)$ 相交于 E、F 两点,且线段 EF 的中点坐标为

(4,1),求 a 的值.

(4,1),求 a 的值.
1)
$$f: y= x + x - 3$$
.
 $f: y= x - 3$.

$$X_1 + X_2 = \frac{-ba^2}{1-a^2} = \beta^{-1}$$

$$A = +2$$

$$2 = 2$$

:. a=2 .

-1 KID=15 :. B (4 3)