# 1. Esquema de red para usar protocolo Siemens s7 con *Settimino*



# 2. S7-Ethernet protocol (Siemens S7-Protocol)

- 1. El protocolo S7 se basa en el estándar ISP TCP (RFC1006), es decir, los datos se transfieren mediante "bloques".
- 2. Cada bloque se denomina PDU (Protocol Data Unit) con un tamaño fijo entre <u>240 bytes y 960 bytes</u>.
- 3. El protocolo S7 es **orientado en función** o **orientado en comando**. Cada transmisión contiene o un comando o una replica de este comando en caso de renegociación por fallo en transmisión, PDU con tamaño incoherente (superior o inferior a los bytes indicados), etc.



Protocols Encapsulation

Fig.1. Esquema de protocolo Siemens S7. Tomado de http://settimino.sourceforge.net/

- 4. Cada comando (PDU) consiste en los siguientes elementos: **Un encabezado (Header)+Un conjunto de parámetros+ los datos de los parámetros+ bloque de datos**. Los comandos están divididos en las siguientes categorías:
  - Escritura/Lectura de datos
  - Escritura/Lectura de datos cíclicos
  - Información de directorio
  - Información de sistema (Por ejemplo, PLC Status)
  - Movimiento de bloques
  - Control de PLC
  - Fecha y hora
  - Seguridad
  - Programación

### 3. Usar Protocolo Siemens S7 con Settimino

- Descargar la librería (<a href="https://sourceforge.net/projects/settimino/files/">https://sourceforge.net/projects/settimino/files/</a>)
- Incluir los archivos de la librería dentro del proyecto en Arduino.
- Usar el código ejemplo (ReadDemo)-Cargar en Arduino
- Para leer las áreas o escribir en ellas tener en cuenta la siguiente tabla:

#### Area table

|          | Value | Mean             |
|----------|-------|------------------|
| S7AreaPE | 0x81  | Process Inputs.  |
| S7AreaPA | 0x82  | Process Outputs. |
| S7AreaMK | 0x83  | Merkers.         |
| S7AreaDB | 0x84  | DB               |
| S7AreaCT | 0x1C  | Counters.        |
| S7AreaTM | 0x1D  | Timers           |

Fig.2. Áreas de memoria que se pueden acceder con protocolo S7. Tomado de <a href="http://settimino.sourceforge.net/">http://settimino.sourceforge.net/</a>

• Tener en cuenta que el protocolo S7 es Big Endian, es decir, los bytes son leídos del mas significativo al menos significativo, mientras Arduino es Little Endian (Menos significativo a más significativo), entonces si tenemos una trama como:

Ox74 Ox72 Ox65 Ox63 Ox65 Ox0d Ox0a (Big Endian)-> Ox74 sería el MSB y Ox0a el LSB (Big Endian-Protocolo S7)

0x0a 0x0d 0x65 0x63 0x65 0x72 0x74-> 0x0a sería el MSB y 0x74 el LSB (Little Endian-Arduino)

- Integrar el código dentro de la aplicación industrial que se requiera.
- Tener en cuenta lo siguiente el mapeo de memoria del PLCs7-1200 cuando se quiera acceder a bloques de memoria en Entradas, salidas o bits de memoria:



Fig.3. Distribución de memoria PLC S7-1200.

## 4. Funciones para usar con S7 con Settimino

int ReadArea(int Area, uint16\_t DBNumber, uint16\_t Start,
uint16 t Amount, void \*pUsrData);

int WriteArea(int Area, uint16\_t DBNumber, uint16\_t Start,
 int Amount, void \*pUsrData);

Nota: 1 Para escritura (WriteArea) el DBnumber es un área de memoria para las salidas (Coils-Qx.x), por ejemplo, el área DBO con start 0 apuntará a las salidas DQa, mientras si DBnumber es 0 con start 1 apuntará a las salidas DQb.

Nota 2: Para la lectura de entradas, para leer el juego de entradas Dia y DIb se apunta al DBnumber 0 y se lee el número de entradas desde la posición start (0) a la cantidad de datos del buffer, por ejm, 10 bytes.

