Autonomous Greenhouse Control

An RL approach to controlling and monitoring greenhouses by Team Parshuram. (Kaushal, Arpit, Vyoma, Pathik)

AGC & Monitoring

Autonomous Greenhouse Control & Monitoring is a reinforcement learning powered solution to manage greenhouses, increase their efficiency and monitor their environment.

INTRODUCTION

What is AGC? Why AGC? How AGC?

03

CREATING A SOLUTION AND BUILDING A PRODUCTION READY PIPELINE 02

RESEARCH AND DEVELOPMENT WORK

04

PRODUCT DEMO

INTRODUCTION

A small action for a robot, a huge leap for plants?

What is AGC?

Autonomous
Greenhouse Control
is a research area
where we find
different ways to
control greenhouses
autonomously

Why AGC?

- Reduces load of growers
- Increase produce quality and quantity

How AGC?

Using predetermined algorithms, machine learning approaches reinforcement learning.

RESEARCH AND DEVELOPMENT WORK

Can robots grow plants?

Robot Farmers?

Our Research And Development

Studying AGC 2 Datasets

Creating Environment and Training DQN Agent

Formulating problem as an RL problem

Monitoring Metrics and Rewards and Selecting Best Models

Dataset

obs[0].head(10)																			
%time	AssimLight	BlackScr	CO2air	Cum_irr	EC_drain_PC	EnScr	HumDef	PipeGrow	PipeLow		Acid	%Juice	Bite	Weight	DMC_fruit	Stem_elong	Stem_thick	Cum_trusses	stem_dens
.000000	0.0	35.0	474.0	0.2	1.9	96.0	7.1	71.000000	58.400002		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.003906	0.0	85.0	470.0	0.3	1.9	96.0	7.0	55.900002	57.500000		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.007812	0.0	96.0	482.0	0.3	1.9	96.0	7.1	53.099998	62.299999		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.011719	0.0	96.0	472.0	0.3	1.9	96.0	6.8	70.000000	60.099998		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.015625	0.0	96.0	469.0	0.3	1.9	96.0	6.7	69.300003	57.000000		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.015625	0.0	96.0	479.0	0.3	1.9	96.0	7.4	57.000000	54.200001		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.019531	0.0	96.0	487.0	0.3	1.9	96.0	6.5	48.299999	51.900002		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.023438	0.0	96.0	485.0	0.3	1.9	96.0	6.9	59.500000	49.900002		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.027344	0.0	96.0	483.0	0.3	1.9	96.0	7.3	69.400002	47.900002		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
.031250	0.0	96.0	476.0	0.3	1.9	96.0	6.6	63.400002	46.599998		13.3	68.0	193.0	9.5	8.77	15.0	8.0	1.0	2.6
: 39 colu	mns																		

actio	actions[0].head(10)														
as	sim_sp	co2_sp	dx_sp	int_blue_sp	int_farred_sp	int_red_sp	int_white_sp	scr_blck_sp	scr_enrg_sp	t_grow_min_sp	t_heat_sp	t_rail_min_sp	t_vent_sp	water_sup_intervals_sp_min	window_
0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
1	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
2	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
3	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
4	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
5	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
6	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
7	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
8	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
9	0.0	0.0	0.0	0.0	0.0	0.0	700.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	

Our Approach

Metrics

CREATING A SOLUTION AND BUILDING A PRODUCTION READY PIPELINE

I need to pay robots who farm, hence I should monitor their

performance 🤔

OUR SOLUTIONS

Integration of Dynamic Metric Monitoring System with Tableau using PostgreSQL on AWS RDS

Tableau Integration

Created an API (using FastAPI) that interacts with created Environment and Agent. Deployed on AWS EC2

Backend API to interact with Simulation and Agent

Built an Environment and Agent Metric Monitoring System using Dash Python, Plotly deployed on EC2

Environment and Agent Monitoring System

It's the farthest planet from the Sun and the fourthlargest in our Solar System

Greenhouse Simulation Environment & Agent

PIPELINE

Greenhouse Simulation and Agent

Backend API

Environment and Agent Monitoring System

Tableau Integration

Product Demo

Now presenting: Something

Cool COOL

THIS IS Kaushal Patil
OUR
TEAM
Parshuram

Arpit Vaghela

Pathik Patel

Vyoma Patel

