Last lecture

Reference Atiyah - Macdonald &3

- ·) Spec (A) = { p c A prime rideal }
- ·) $S \subseteq A$ subset. Then there is a localization map $9: A \longrightarrow A[s]$

Today

Study Spec (4): Spec (AS-1]) - Spec (A)

& related topics.

§1 More on bralization

A mg, $S \in A$ subset, $\overline{S} := \text{nulliplicative closure}$. Then $A[T_S, S \in S]/(s \cdot T_S - 1, S \in S) \simeq \overline{S}^- A := \frac{a}{S} | a \in A, S \in S / ...$

provide two explicit description for the localitation.

 $\frac{\text{Zem 1}}{\text{Res}} = \frac{\text{Zem 1}}{\text{Res}}$

Recall SEA zero-divisor = = = 0 + a nish Sa = 0.

SEA regular = S no zero-divisor.

Thus A - ATS-13 regular elements. Examples 1) A domain, SEA-203. Then $\frac{a_1}{S_1} \sim \frac{a_2}{S_2}$ (=) $a_1S_2 = a_2S_1$. Simplifies from general defin of \sim . Quot (A) := A[(A-303)-1] quotient field ar field of fractions of A If S = A \ go g any, then $A[S^{-1}] \subseteq Ourd(A)$ subring generated by A and S^{-1} , $S \in S$. Eg. 2[=]= 2[=, =] c Q. $k[X, \frac{1}{X(X+1)}] \subset k(X) := Onot(k[X])$

2) Assume $E \in S$ is nightent. Lem 1 says $A[S^{-1}] = 0$. Can also be seen directly: If $\varepsilon^{n+1} = 0$, then $\Delta = (1 - \varepsilon T_{\varepsilon})(1 + \varepsilon T_{\varepsilon} + \cdots + \varepsilon^{n} T_{\varepsilon}^{n}),$

More sophisticated example:

$$C[x,Y]/(xY) [x^{-1}] = C[x,Y,T]/(xY,XT-1)$$

$$Hore Y = Y \cdot (1-XT) \in \sigma_1, so$$

$$(*) = C[x,Y,T]/(Y,XT-1) \cong C[x,X-1] \subset C(x)$$

$$Y \mapsto \circ$$

$$T \mapsto x^{-1}$$

§ 2 Localization and Ideals

Lon 2 S = A any subset, $4: A \rightarrow A[s:1]$ the localization.

Consider fideals of A[s:1]or 4:(b) and 4:(s:1)

The map $b \leftarrow 9^{-1}(b)$ is synchre and, more preasely, $b = 9(9^{-1}(b)) \cdot A[5^{-1}]. \quad (**)$

Proof Enough to show (**): 2 is immediate because $b = 2 \varphi(\varphi^{-1}(b))$. Show e: |f| = e b, a = A, $s \in S$, then $a = s \cdot = e + e + e$, hence $a = f \cdot = e + e$. $a \in A$

In general, ideals of ASSI are simple than there of A: Example Z[f-5] is not a PID: $T^2+5=T^2-1=(T+1)(T-1) \mod (3),$ so there are two primes above (3): $p_{\pm}=(3,1\pm \overline{+5})$ Then $\gcd(N(3),N(1\pm \overline{+5}))=\gcd(3,6)=3,$ and there are no $x+y\overline{+5}$ with

 $\mathcal{N}(x+y+5)=x^2+5y^2=3$, so there is no element duiding both 3, $1\pm \sqrt{-5}$.

But $\frac{3}{1\pm \Gamma - 5} = \frac{3}{(1\pm \Gamma - 5)(1\mp \Gamma - 5)} \cdot (1\mp \Gamma - 5) = \frac{1\mp \Gamma - 5}{2}$

We conclude that

 $p_{\pm} \cdot \mathbb{Z}[\overline{5}, \frac{1}{2}] = (1 \mp \overline{5})$ are both principal.

(In fact, Z[F-5, \frac{1}{2}] & a PID.)

Lem 3 $S \subseteq A$, f as before, $\sigma \subseteq A$ any ideal and $\pi : A \longrightarrow A/\sigma$ the quotient map. Then $A/\sigma [\pi(S)^{-1}] \stackrel{\cong}{=} A[S^{-1}]/(g(\sigma) \cdot AS^{-1}]$. Proof Let $A \stackrel{\alpha}{\longrightarrow} A$ denote either of the two may maps. Then $\alpha(\sigma) = 0$, $\alpha(S) \subseteq A \stackrel{\times}{\longrightarrow} A$. Moreover, $\alpha(S) \subseteq A \stackrel{\times}{\longrightarrow} A$ the unversal property $\alpha(S) \subseteq A \stackrel{\times}{\longrightarrow} A \stackrel{\alpha}{\longrightarrow} A \stackrel$

 $4:A \rightarrow B$ factors through $x \Leftrightarrow 4(s_1) = 0$, $4(s_1) = B^{\times}$ + such a factorization is might.

Alfenabre explicit ægunent:

LHS = $A/\sigma \left[T_{\pi(s)}, \pi(s) \in \pi(s) \right] / \left(\pi(s) T_{\pi(s)} - 1, \pi(s) \in \pi(s) \right)$ = $A/\sigma \left[T_s, s \in S \right] / \left(\pi(s) T_s - 1, s \in S \right)$ because thresses of elements are mogne. $\cong A[T_s, s \in S] / \sigma + (s \cdot T_s - 1, s \in S)$ $\cong (A[T_s, s \in S] / (s \cdot T_s - 1, s \in S)) / (\varphi(\sigma)) = RHS$. Prop 4 S = A, 4 as before. Then

1) Spec(4): Spec(ASSI) - Spec(A) is injective.

2) Its image equals EpcA | Snf= & 3.

3) If $p \cap S = \emptyset$, then $Spec(\mathfrak{P})^{-1}(p) = \mathfrak{P}(\mathfrak{P}) \cdot A[S^{-1}].$

Proof 1) Clear by Lem 2.

2) Assume $p = q^{-1}(\sigma_{\overline{1}})$ for some $\sigma_{\overline{1}} \in Spac(A[S^{-1}])$.

Then $Q(p) \cap A[S^{-1}]^{\times} \subseteq q \cap A[S^{-1}]^{\times} = \emptyset$, hence $p \cap S = \emptyset$.

Conversely, let $g \in Spec(A)$. Lem 3 says that

 $A[s^{-1}]/p.A[s^{-1}] = (A/p)[\pi(s)^{-1}].$

If $S \cap p = \emptyset$, then $O \notin \pi(S)$ in the integral domain A/p. Then $(A/p)[\pi(S)^{-1}]$ is an integral domain and hence $p \cdot A(S^{-1})$ a prime ideal.

3) By lem 1, Alp - (A/p)[T(S)-1] is shjective,

So
$$9^{-1}(p \cdot A[S^{-1}]) = ker(A \longrightarrow (A/p)[\pi(S)^{-1}])$$

$$= ker(A \longrightarrow A/p)$$

$$= p.$$

The two most common sustances:

1)
$$f \in A$$
 any element.

e.g. Spec
$$\mathbb{Z}\left[\frac{1}{3.5.11}\right] = \{(2), (7), (7), (7), (7), -1\} \cup \{(6)\}$$
.

Spec
$$\mathbb{C}[x,y]_{(xy)} = \frac{1}{2}(x-x,y) \frac{3}{3} \cup \frac{1}{2}(x,y-y) \frac{3}{5}$$

$$\cup \frac{1}{2}(x), (y) \frac{3}{5}. \qquad \frac{1}{2}x\cdot y = 0\frac{3}{5}$$

Spec
$$(x, y)$$
 (xy) (x-1)
$$= \frac{1}{2}(x-x, y), x \neq 0$$

2) & c A a prine. Then A-& is mult. set! Defu localization of A at \$ = (A p) - (A p) - A. Then Spec (Ap) 1:1 of E Spec A, of = \$p } In ptic, Ap has a unique maximal ideal, namely Termindagy Rings w/ might max ideal are local nug. K(p):= Ap/pAp residue field of p. By Lem 3: Ap/pAp = Onot (A/p). Example $\mathbb{Z}_{(p)} = \{ \frac{a}{b} \in Q \mid p + b \}$

 $2^{(p)}/p^{(p)} \cong \#_p$ $\frac{a}{b} \longrightarrow b^{(a)} \qquad b^{(a)} = a \oplus b^{(a)} \qquad b^{(a)}$

In fact, for any my A, we obtain the description $Spec(A) = \coprod Spec(A)$ Spec(A)

§ 4 Appendix: Geometric Judnition

 $X:=\mathbb{R}^n$, $A:=C^{\infty}(X,\mathbb{R})$ smooth fcts. on X $X \longrightarrow Max Spec(A)$, $x \longmapsto m_x := ff/f(x) = 0$ Revidue field $X(m_x) = A/m_x \longrightarrow \mathbb{R}$ $f \longmapsto f(x)$.

Gren fr, -, fr & A, have two operations,

1)
$$V = V(f_1, -, f_n) = \int x \in X | f_1(x) = \cdots = f_n(x) = 0$$

Then V is closed. For $g \in A/(f_1,-,f_n)$ and $x \in V$, the value $g(x) \in \mathbb{R}$ is well-defined, so $A/(f_1,-,f_n)$ is a rhy of functions on V.

2)
$$D = D(f_1, -, f_n) = \left\{ x \in X \mid (f_1 - -f_n)(x) \neq 0 \right\}$$

This sol is open and A[fi], _, fi] is a ring of functions on D.

Rule V is for "vanishing sed",

D is for "does not vanish set".

For general rug A and X = Spec(A), the intuition is exactly the same. Two differences:

1) If viewed as "function" on X takes values $f(p) := \text{image of } f \text{ in } \mathcal{K}(p)$ in the varying fields $\mathcal{K}(p)$.

2) X, V(g1,-,fn), D(g1,...fn) are coupletely described by their maps as

$$X = \operatorname{Spec} A$$

$$V(f_1, -, f_n) = \operatorname{Spec} A/(f_1, -, f_n)$$

$$D(f_1, -, f_n) = \operatorname{Spec} A[f_1, -, f_n]$$