

Nome:		Turma: IME-ITA
Unidade:	Professor:	Data:
 Instruções: Faça sua avaliação à caneta. Resoluções a lápis não serão c Questões discursivas sem dese Não serão fornecidas folhas pa 	nvolvimento não serão consideradas.	Nota:

QUÍMICA

Dados

- Constante de Avogadro, $N_{\rm A} = 6.02 \cdot 10^{23} \, {\rm mol}^{-1}$
- Carga elementar, $e = 1.6 \cdot 10^{-19} \,\mathrm{C}$
- Constante de Planck, $h = 6.6 \cdot 10^{-34} \,\mathrm{m}^2 \,\mathrm{kg} \,\mathrm{s}^{-1}$
- Constante de autoionização da água, $K_{\rm w} = 1 \cdot 10^{-14}$
- Constante de Faraday, $F = 96500 \,\mathrm{C} \,\mathrm{mol}^{-1}$
- Constante dos gases, $R = 8.31 \,\mathrm{J \, K^{-1} \, mol^{-1}}$
- Constante de Rydberg, $\mathcal{R} = 1.1 \cdot 10^7 \, \text{m}^{-1}$
- Velocidade da luz no vácuo, $c = 3 \cdot 10^8 \,\mathrm{m\,s^{-1}}$

Definições

- Composição do ar atmosférico: 79% N_2 e 21% O_2

Aproximações Numéricas

- $\sqrt{2} = 1.4$

- $\sqrt{3} = 1.7$ $\sqrt{5} = 2.2$ $\log 2 = 0.3$ $\log 3 = 0.5$ $\ln 10 = 2.3$

Tabela Periódica

1	6	7	8	11	12	16	17
H 1.01	C	N 1/ 01	0	Na	Mg	S 32,06	Cl
1,01	12,01	14,01	10,00	22,99	24,31	32,00	35,45

Quando 0,2 g de fósforo reage com cloro para formar tricloreto de fósforo, PCl₃,

$$2 P(s) + 3 Cl_2(g) \longrightarrow 2 PCl_3(l)$$

em um calorímetro de capacidade calorífica $220\,\mathrm{J\,K^{-1}}$, sob pressão constante, a temperatura do calorímetro aumenta $11\,^\circ\mathrm{C}$.

Determine a entalpia de reação.

Questão 2

Considere as reações:

$$\begin{split} \mathrm{NH_3(g) + HBr(g)} &\longrightarrow \mathrm{NH_4Br(s)} \qquad \Delta H_\mathrm{r}^\circ = -188 \, \tfrac{\mathrm{kJ}}{\mathrm{mol}} \\ \mathrm{N_2(g) + 3\,H_2(g)} &\longrightarrow 2\,\mathrm{NH_3(g)} \qquad \Delta H_\mathrm{r}^\circ = -92 \, \tfrac{\mathrm{kJ}}{\mathrm{mol}} \\ \mathrm{N_2(g) + 4\,H_2(g) + Br_2(l)} &\longrightarrow 2\,\mathrm{NH_4Br(s)} \qquad \Delta H_\mathrm{r}^\circ = -542 \, \tfrac{\mathrm{kJ}}{\mathrm{mol}} \end{split}$$

 $\bf Determine$ a entalpia de formação do brometo de hidrogênio, HBr.

Considere os dados em $25\,^{\circ}$ C.

	$H_2O(l)$	$CO_2(g)$	$C_6H_{12}O_6(s)$
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-286	-394	-1270

Determine a entalpia padrão de combustão da glicose, $C_6H_{12}O_6$, em 25 °C.

Questão 4

Considere as reações.

- 1. $NH_3(g) + HCl(g) \longrightarrow NH_4Cl(s)$
- $2. \ 2\,H_2(l) + O_2(l) \longrightarrow 2\,H_2O\left(g\right)$
- 3. $N_2(g) + 3H_2(g) \longrightarrow 2NH_3(g)$
- 4. $BaCl_2 \cdot 2 H_2O(s) \longrightarrow BaCl_2(s) + 2 H_2O(g)$

Determine o sinal da entropia padrão de cada reação.

Considere a reação de produção do ferro a partir da redução da magnetita:

$$Fe_3O_4(s) + C(grafita) \longrightarrow Fe(s) + CO_2(g)$$

Suponha que $\Delta H_{\rm r}^{\circ}$ e $\Delta S_{\rm r}^{\circ}$ são independentes da temperatura.

Determine a faixa de temperatura em que a redução da magnetita é espontânea.

Considere os dados:

	$Fe_3O_4(s)$	$CO_2(g)$	$CO_2(g)$	Fe(s)	C(grafita)
Entalpia padrão de formação, $\Delta H_{\mathrm{f}}^{\circ}/\frac{\mathrm{kJ}}{\mathrm{mol}}$	-1120	-394	-394		
Entropia padrão molar, $S_{\mathrm{m}}^{\circ}/\frac{\mathrm{J}}{\mathrm{K}\mathrm{mol}}$	146	214	214	27,3	5,74

Questão 6

Considere os compostos:

- 1. 3-isopropil-2,4-dimetilpentano
- $2. \ \, 4\text{-}etil\text{-}2\text{-}metilexano$
- $3.\ 1,\!1,\!2,\!2\text{-tetrametilciclopropano}$

 ${\bf Apresente}$ a estrutura de cada composto.

Considere os compostos:

- 1. 3-metilhex-3-eno
- 2. 3-etil-4-metilpent-2-eno
- $3.\ \ 2, 3\text{-dimetil-}5\text{-etilex-}2\text{-eno}$

Apresente a estrutura de cada composto.

Questão 8

Considere os compostos.

 ${\bf Identifique}$ as funções orgânicas de cada composto.

A testosterona é o principal hormônio sexual masculino e um esteroide anabolizante.

Apresente a fórmula molecular da testosterona.

Questão 10

O vitamina A ou retinol é um micronutriente que desempenha papel importante no ciclo visual.

Classifique todos os átomos de carbono da vitamina A quanto a sua hibridização.