

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
- 2 Comment conçevoir un arbre d'alimentation?

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
- 2 Comment conçevoir un arbre d'alimentation?

Signal Integrity

- Signaux Clean
- Marges d'opérations respectées
 - Sélections
 - Crosstalk
 - # Ground Bounce
 - T Filtration de Power

Electromagnetic Interference

- Passer les tests EMC
- Ne pas influencer d'autres circuits
 - Émissions
 - Immunité au bruit
 - **Layout**
 - Grounding
 - Shielding
 - Tiltration de Power

- Le but d'un filtre est de fournir le chemin de plus faible impédance vers le ground aux signaux haute-fréquence.
- Le but d'un filtre est de contrôler la propagation du bruit sur l'alimentation.

Filtration de Power

- Tout commence avec le power
- Le PDN devrait constituer 25% à 50% de la difficulté d'un projet
- Plein de façon de filtrer
- Réduire le bruit sur l'alimentation
- Avoir une alimentation purement DC

Filtration de Power

- Tout commence avec le power
- Le PDN devrait constituer 25% à 50% de la difficulté d'un projet
- Plein de façon de filtrer
- Réduire le bruit sur l'alimentation
- Avoir une alimentation purement DC
- Jouer avec les impédances de mon alimentation
 - Découplage
 - Rajouter des inductances
 - Faire attention à son layout
- Ajouter des composantes actives
 - Régulateurs Linéaires

IC qui toggle	ъ-	IC qui	toggle
---------------	----	--------	--------

Longues lignes de transmission

Crosstalk

'A' Antennes

Mauvais chemins de retour

Crosstalk

('A')

Ground Bounce

Antennes

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
- 2 Comment conçevoir un arbre d'alimentation?

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
- 2 Comment conçevoir un arbre d'alimentation?

L'entrée d'un système d'alimentation

- Long fil qui provient d'une Power Supply
- Inductance Parasite
- Pick-Up du bruit extérieur
- Signal potentiellement bruité
- Demande de courant au travers d'une bobine.
- □ Demande de courant non-constante

Découplage

- $X_L \propto -X_C$
- Rajouter de la capacitance pour compenser l'inductance
- Plus ton fil est long, plus tu veux de capacitance
- Le power devrait provenir des condensateurs
- Couper le chemin d'inductance

- $X_L \propto -X_C$
- Rajouter de la capacitance pour compenser l'inductance
- Plus ton fil est long, plus tu veux de capacitance
- Le power devrait provenir des condensateurs
- Couper le chemin d'inductance

Filtrage avancé d'une entrée d'alimentation

- Découplage permet de fournir un chemin de faible impédance aux signaux haute-vitesse
- Bulk permet d'emmagasiner des charges et que le power provienne des condensateurs et non du fil

Filtrage avancé d'une entrée d'alimentation

- Découplage permet de fournir un chemin de faible impédance aux signaux haute-vitesse
- Bulk permet d'emmagasiner des charges et que le power provienne des condensateurs et non du fil
- Contrôler la propagation du bruit
 - → Limiter le bruit au board
 - Limiter le bruit hors du board
 - Passer EMC

Filtrage avancé d'une entrée d'alimentation

- Découplage permet de fournir un chemin de faible impédance aux signaux haute-vitesse
- Bulk permet d'emmagasiner des charges et que le power provienne des condensateurs et non du fil
- Contrôler la propagation du bruit
 - → Limiter le bruit au board
 - Limiter le bruit hors du board
 - Passer EMC
 - Principalement lorsque premier régulateur est un switching.

Rajouter des inductances

- Rajouter de l'inductance permet de bien contrôler où va le bruit haute-fréquence.
- $X_L = 2\pi f L$
- Si $X_L > X_C$, le bruit va passer par X_C .
- On vient de passer tout ce temps pour compenser l'inductance du fil d'alimentation

Rajouter des inductances

- Rajouter de l'inductance permet de bien contrôler où va le bruit haute-fréquence.
- $X_L = 2\pi f L$
- Si $X_L > X_C$, le bruit va passer par X_C .
- On vient de passer tout ce temps pour compenser l'inductance du fil d'alimentation
- Maintenant, on contrôle l'inductance!
 - Les condensateurs de découplage fournissent la puissance haute fréquence
 - Les condensateurs de bulk fournissent la puissance basse fréquence
 - Les condensateurs de bulk rechargent les condensateurs de découplage
 - L'alimentation fournit du power DC pour recharger les condensateurs de bulk

$$f = \frac{1}{2\pi\sqrt{LC}}$$

$$\zeta = \frac{1}{2R_{\scriptscriptstyle LOAD}\sqrt{LC}}$$

Damping factor

$$\zeta = \frac{1}{2R_{LOAD}\sqrt{LC}}$$

Common-Mode Noise

16 / 26

- On veut contrôler les chemins de retour de courant
- Le retour de courant est aussi important que l'aller
- Common-mode Noise: Une partie du retour qui revient par ailleurs
- Donc pas autant de courant qui rentre que qui sort

Essentiellement un transformateur

Permet d'égaler le flux qui passe à un point

→ Du courant est forcé par la bonne place si les courants ne sont pas égaux

→ Fournit un chemin de plus faible impédance vers là où on yeut aller!

Common mode

Flux adds to impede common-mode current

Differential mode

Flux cancels to pass differential-mode current

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
- 2 Comment conçevoir un arbre d'alimentation?

Pourquoi filtrer les régulateurs?

- Un régulateur linéaire n'a pas besoin d'être filtré
- Juste du bulk capacitance

Pourquoi filtrer les régulateurs?

- Un régulateur linéaire n'a pas besoin d'être filtré
- Juste du bulk capacitance
- Un régulateur switching doit avoir du bulk et du découplage
- Il faut éliminer le bruit à la fréquence de switching
- Mettre des condensateurs dont la fréquence de résonnance est celle du switching.

Fréquence de résonnance d'un condensateur

- Chaque condensateur a sa fréquence de résonnance
- Choisir le bon condensateur de découplage selon fréquence de résonnance du condensateur
- Il faut offrir la plus faible impédance vers le ground pour la fréquence visée

- Comment filtrer une alimentation?
 - Pourquoi filtrer une alimentation?
 - Démonstration
 - Filtrer l'entrée
 - Filtrer un régulateur
 - Filtrer au IC
- 2 Comment conçevoir un arbre d'alimentation?

- 1 Comment filter une alimentation?
- 2 Comment conçevoir un arbre d'alimentation?
 - Prise en compte de tous les consommateurs
 - Efficacité
 - Séquençage

- 1 Comment filter une alimentation?
- 2 Comment conçevoir un arbre d'alimentation?
 - Prise en compte de tous les consommateurs
 - Efficacité
 - Séquençage

- 1 Comment filter une alimentation?
- 2 Comment conçevoir un arbre d'alimentation?
 - Prise en compte de tous les consommateurs
 - Efficacité
 - Séquençage

- 1 Comment filter une alimentation?
- Comment conçevoir un arbre d'alimentation?
 - Prise en compte de tous les consommateurs
 - Efficacité
 - Séquençage

