Nekaj o kompleksni dinamiki

Beno Učakar

14. 2. 2024

Fakulteta za matematiko in fiziko

Kompleksna števila lahko enostavno vstavimo v polinom, kaj pa druge funkcije? Za primer si poglejmo, kako izračunamo $e^{i\theta}$ s pomočjo Taylorjeve vrste.

$$e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!}$$

$$= 1 + i\theta - \frac{\theta^2}{2!} - \frac{i\theta^3}{3!} + \frac{\theta^4}{4!} + \frac{i\theta^5}{5!} + \dots$$

$$= \left(1 - \frac{\theta^2}{2!} + \frac{\theta^4}{4!} - \dots\right) + i\left(\theta - \frac{\theta^3}{3!} + \frac{\theta^5}{5!} - \dots\right)$$

$$= \cos(\theta) + i\sin(\theta).$$

Naj bo $f \in O(D)$ in $z_0 \in D$ fiksna točka funkcije f. Število $\lambda = f'(z_0)$ imenujemo **večkratnost** funkcije f v točki z_0 .

3/4

Naj bo $f \in O(D)$ in $z_0 \in D$ fiksna točka funkcije f. Število $\lambda = f'(z_0)$ imenujemo **večkratnost** funkcije f v točki z_0 .

Glede na λ karakteriziramo fiksne točke:

1. $|\lambda| = 0$ je **super privlačna** fiksna točka.

Naj bo $f \in O(D)$ in $z_0 \in D$ fiksna točka funkcije f. Število $\lambda = f'(z_0)$ imenujemo **večkratnost** funkcije f v točki z_0 .

Glede na λ karakteriziramo fiksne točke:

- 1. $|\lambda| = 0$ je **super privlačna** fiksna točka.
- **2.** $|\lambda| < 1$ je **privlačna** fiksna točka.

Naj bo $f \in O(D)$ in $z_0 \in D$ fiksna točka funkcije f. Število $\lambda = f'(z_0)$ imenujemo **večkratnost** funkcije f v točki z_0 .

Glede na λ karakteriziramo fiksne točke:

- 1. $|\lambda| = 0$ je super privlačna fiksna točka.
- **2.** $|\lambda| < 1$ je **privlačna** fiksna točka.
- **3.** $|\lambda| > 1$ je **odbojna** fiksna točka.

Naj bo $f \in O(D)$ in $z_0 \in D$ fiksna točka funkcije f. Število $\lambda = f'(z_0)$ imenujemo **večkratnost** funkcije f v točki z_0 .

Glede na λ karakteriziramo fiksne točke:

- 1. $|\lambda| = 0$ je super privlačna fiksna točka.
- **2.** $|\lambda| < 1$ je **privlačna** fiksna točka.
- **3.** $|\lambda| > 1$ je **odbojna** fiksna točka.
- **4.** $|\lambda|=1$: če je $\lambda^n \neq 1$ za vsak $n \in \mathbb{N}$ je fiksna točka **iracionalno**, sicer pa **racionalno nevtralna**.

Primer Julijeve množice

