OUTLINE: THE SYMPATHETIC INNERVATION OF THE HEART

1. Introduction

- a. Purpose
 - i. Sympathetic outflow to the heart regulates normal responses to stress, but leads to pathology in disease states. <u>Cardiac disease should be viewed from the perspective of sympathetic dysfunction.</u>
- b. Objectives / overview
 - i. Review the relevant anatomy of the neurocardiac axis
 - ii. Understand the physiology of cardiac sympathetic innervation in normal circumstances
 - iii. Learn through examples of sympathetic toxicity in pathological states
 - iv. Identify treatment paradigms in place, and consideration of future directions targeting the ANS
- 2. Relevant cardiac anatomy
 - a. Historical descriptions of sympathetic innervation
 - i. Evolutionary perspective of development of sympathetic nervous system in vertebrates ("management of the internal environment of the organism")
 - b. Neurocardiac axis overview
 - i. Pathways connecting the brain, spinal cord, and heart
 - ii. Respective anatomical innervations of the ventricles and atria, focusing on the conduction systems and relevant myocardium
 - iii. Imaging and anatomical evidence of how the heart is innervated (MIBG, clinically relevant imaging techniques)
- 3. Normal cardiovascular responses to sympathetic tone
 - a. Sympathovagal interaction and local neurotransmitters
 - i. Nor epinephrine, epinephrine, galanin, neuropeptide Y, acetylcholine
 - ii. Chronotropy, inotropy as physiological responses to innervation
 - b. Coronary perfusion
 - i. Coronary blood flow and vasoconstriction/vasodilation
 - ii. Coronary artery innervation
- 4. Pathological responses to sympathetic tone
 - a. Ventricular fibrillation
 - i. Psychological factors precipitating sudden cardiac death
 - ii. Change in ventricular fibrillatory threshold with psychological stress
 - b. Myocardial ischemia and infarction
 - i. Myocardial scars lead to a focus for VF/VT and SNS heterogeneity
 - ii. Myocardial infraction leads to asymmetrical effects based on location of injury
 - c. Catecholamine excess
 - i. Lead to heterogeneous, receptor-density-dependent changes in the myocardium (e.g. stress cardiomyopathy)
 - ii. Catecholamines lead to hypertrophy, neuronal edema, and vagal withdrawal (e.g. obesity and hypertension)
- 5. Treatment methods
 - a. Historical methods
 - i. Stellate ganglion block and stellectomy lead to reduction in VT and VF events
 - b. Neurohormonal blockade
 - i. Beta blockers as protective in ischemia, VT, but mixed role in chronically elevated SNS states (e.g. hypertension, chronic heart failure)
 - ii. Discussion of nor epinephrine spill over in different disease states
 - iii. Angiotensin converting enzyme inhibitors
- 6. Conclusion
 - a. Review central purpose of paper: how cardiac disease are also manifestations of inappropriate SNS responses
 - b. Future directions including treatment with other sympatholytic techniques (e.g. ablations on cardiac ganglia, vagal nerve stimulation)