

Table of contents

O1 Carbon Emitters O3 Carbon Sequestration

O2 Carbon Capture Tech

O4 Looking Forward

CO2 Emissions since 1750

Carbon Sources

Mostly smaller engines, often without filters

Industrial

Factories, warehouses, and large-scale operations

Agriculture

Cows, fertilizers, and pesticide-related effects

Electric Power

The costs in generating power for the public

Commercial / Residential

The energy along the main power grid

Miscellaneous

The smaller, sometimes unintentional polluters

Companies working in Capture

CO2 Emissions By Economic Sector

Total U.S. Greenhouse Gas Emissions by Economic Sector in 2021

Total U.S. Greenhouse Gas Emissions by Economic Sector

Total U.S. Greenhouse Gas Emissions by Economic Sector and Electricity End-Use

O2Carbon Capture

What technology is currently in use?

Carbon utilization involves converting carbon dioxide into useful products like fuels, chemicals, and building materials to reduce greenhouse gas emissions.

Carbon Capture History

How long do you think carbon capture has been around?

- A) 10 years
- B) 50 years
- C) 100 years
- D) Since the Beginning of time

O3 Carbon Sequestration

What does the natural carbon cycle look like?

TYPES OF ENGINEERING 21 ICONS

ELECTRICAL

CIVIL

MECHANICAL ENGINEERING

ENVIRONMENTAL ENGINEERING

COMPUTER

BIOMEDICAL

AEROSPACE ENGINEERING

AUTOMOTIVE ENGINEERING

ELECTRONIC

CHEMICAL ENGINEERING

NUCLEAR

HEALTH AND SAFETY ENGINEERING

PETROLEUM

SOFTWARE ENGINEERING

MATERIALS ENGINEERING

SYSTEMS ENGINEERING

GEOTECHNICAL ENGINEERING

MARINE ENGINEERING

MANUFACTURING ENGINEERING

MINING

AGRICULTURAL ENGINEERING

Increased Efficiency

The future of carbon capture technology is bright, with advancements likely to reduce costs and enhance efficiency, encouraging broader adoption and support from governments and industries to help combat climate change.

In the next 50 years...

What are the obstacles in the way?

Quiz Time!

