

POLITECNICO DI MILANO

SOFTWARE ENGINEERING 2 PROJECT

PowerEnJoy

Project Plan Document

 $Matteo\ Penco$

mat. 875740

Riccardo Pressiani

mat. 874948

Version 1.1 approved

February 7, 2017

Revision History

Revision	Date	${f Author(s)}$	Description
0.1	18.01.17	RP	Document created
1.0	22.01.17	RP and MP	Document approved
1.1	07.02.17	MP	Fix Gantt diagrams

Hours of work

Matteo Penco 15h Riccardo Pressiani 15h

Contents

1	Intr	oducti	on	3
	1.1	Purpo	se	3
	1.2	Scope		3
	1.3	Defini	tions, acronyms and abbreviations	4
		1.3.1	Definitions	4
		1.3.2	Acronyms	4
		1.3.3	Abbreviations	5
	1.4	Refere	nces	6
	1.5	Overv	iew	6
2	Pro	•	ze, cost and effort estimation	7
	2.1	Size es	stimation: Function Points	7
		2.1.1	Internal Logic Files	8
		2.1.2	External Logic Files	8
		2.1.3	External Inputs	9
		2.1.4	External Inquiries	10
		2.1.5	External Outputs	10
		2.1.6	Overall Estimation	11
	2.2	Cost a	and effort estimation: COCOMO II	12
		2.2.1	Scale Drivers	12
		2.2.2	Cost Drivers	16
		2.2.3	Effort Equation	25
		2.2.4	Schedule Estimation	25
3	Tas	ks		26
4	Res	ource	Allocation	29
5	Ris	k Man	agement	32
Li	st of	Figure	es	34
Li	st of	Tables		34
		raphy		36

Introduction

1.1 Purpose

The Project Plan Document provides an high detailed description of the PowerEnJoy project planning. First of all, an estimation of the effort related to the project development will be provided. Then, a description of the tasks and the resource allocation will be given. Finally a risk analysis will be conduct.

The intended readers of this document are all the project stakeholders, that also include the QA and development team. It is important that the information contained in this document are fully understood in order to deliver to product on time. Moreover, this document can be useful even for the local governments and all those entities that could be interested to sponsor the project.

1.2 Scope

PowerEnJoy is inteded to be a management system for a car-sharing system that exclusively employs electrical powered cars. The system allows users to find all the available cars near a given location which can be their current position or a specific address typed in. The user can book one of the cars available for a limited amount of time. Once the booked car is reached by the user, it can be unlocked from one of the smart devices of the user. After entering a PIN, decided by the user during the registration phase, on the onboard computer, the engine can be started and the rental begins. The cost of the service is calculated on the total duration of the rental multiplied by a fixed rate per minute. The user is continuously informed about the cost of the ongoing rental by the onboard computer. The user can end the rental by parking the car and stopping the engine.

The PowerEnJoy platform is intended to be available on the major mobile devices, such as smartphones and tablets running iOS [1] or Android [2].

1.3 Definitions, acronyms and abbreviations

1.3.1 Definitions

Onboard computer An onboard computer is intended to be the embedded device integrated in the car system that provide two main functions: on one hand it shows the user basic information about the ongoing rental, on the other hand it is in charge of all the communications related to the state of the car between the car and the PowerEnJoy management system.

Safe area A safe area is an area, within prede

ned edges, in which the users are allowed to park the rented cars. The users is not allowed to park, and therefore end a rental, if he/she is not inside a safe area.

Component Basing on the definition given in UML 2, a component is considered an autonomous, encapsulated unit within a system or subsystem that provides one or more interfaces. The component diagram of the system is provided in the Design Document.

1.3.2 Acronyms

AVC Average Variable Cost

COCOMO COnstructive COst MOdel

DD Design Document

EI External Input

EM Effort Multiplier

ELF External Logic File

EO External Output

EQ External Inquiry

FP Function Point

ILF Internal Logic File

KSLOC Kilo-Source Lines Of Code

PM Person-Months

QA Quality Assurance

RASD Requirements Analysis and Specification Document

SLOC Source Lines Of Code

SW-CMM Software Capability Maturity Model

UFP Unadjusted Function Point

1.3.3 Abbreviations

PREC Precedentedness

FLEX Development Flexibility

RESL Architecture / Risk Resolution

TEAM Team Cohesion

PMAT Process Maturity

RELY Required Software Reliability

DATA Database Size

CPLX Product Complexity

RUSE Required Reusability

DOCU Documentation match to life-cycle needs

TIME Execution Time Constraint

 ${f STOR}$ Storage Constraint

PVOL Platform Volatility

ACAP Analyst Capability

PCAP Programmer Capability

APEX Application Experience

PLEX Platform Experience

LTEX Language and Tool Experience

PCON Personnel Continuity

TOOL Usage of Software Tools

SITE Multisite Development

SCED Required Development Schedule

24/7 24 hours per day, 7 days per week.

1.4 References

- Assignments document for the first semester project of the Software Engineering 2 course held at Politecnico di Milano by Mottola Luca and Di Nitto Elisabetta [3].
- PowerEnjoy Requirement Analysis and Specification Document [4].
- PowerEnjoy Design Document [5].
- PowerEnjoy Integration Test Plan Document [6].

1.5 Overview

In this Chapter a first introduction of this Project Plan Document has been provided. In the following Chapters several aspects related to the PowerEnJoy project planning will be discussed.

In Chapter 2, an estimation of the expected size, cost and required effort of the project development will be provided. The Function Points approach will be exploited for the size estimation, while COCOMO II will be the approach used for the cost and effort estimation.

In Chapter 3, we are going to provide, thanks to a Gantt chart, a high-level project schedule, defining all main tasks necessary for developing the project.

In Chapter 4, we are going to provide, thanks to a Gantt chart, a general overview of how resources (in this case the two members of the team) have been assigned to various tasks of the project.

In Chapter 5, an analysis of the risk prevention and management will be provided. The risks identified and related to planning, technical and business issues and the possible strategies to overcome them will be discussed

Project size, cost and effort estimation

This chapter provides an estimation of the expected size, cost and required effort of the PowerEnJoy project.

The size estimation will be based on the Function Points approach. This approach estimates the size of a software project starting from the functionalities that it has to offer. It is important to state that only the business logic has been taken into account, while the user applications have not been included in the estimation.

The cost and effort estimation will be based on the COCOMO II approach, starting from the SLOC value obtained from the size estimation.

2.1 Size estimation: Function Points

The Function Points approach estimates the size of a software project starting from the functionalities that it has to offer. Several real projects have been analyzed to determine the number of FPs associated with a set of Function Types and the related estimated complexity. The values are provided by the table below:

Table 2.1: UFP Complexity Weights

	Complexity Weight			
Function type	Low	Average	High	
Internal Logic Files	7	10	15	
External Logic Files	5	7	10	
External Inputs	3	4	6	
External Inquiries	3	4	6	
External Outputs	4	5	7	

2.1.1 Internal Logic Files

ILFs are groups of homogeneous data or control information that are stored within the application. In the following paragraphs, a brief discussion about the PowerEnJoy ILFs will be provided.

First of all, the users data need to be stored in the system. A User entity in the database stores personal details (name, surname and tax code), the driver licence identification number, login data and payment information. All these items are stored as strings.

For what concerns the Car status entities, the items that need to be stored are the identification number, the status of the car (Available, Unavailable, Reserved and In Use) and the position as a structure that includes the latitude and longitude values.

The same structure used to store the position of the cars is used in the Safe Area entities. This information allows the system to compare the position of a car, when a rent has just ended, with the ones that represent the safe areas. Moreover, a boolean value indicates the possibility or not to plug the cars with the power grid in a specific safe area.

The last entities that need to be stored are the ones related to the bookings and rentals. The former stores the starting time of the booking and if that booking has expired or not. Moreover, it has a reference to the user that started the booking and the car that has been booked. The latter, instead, stores the rental duration and, at the end of the rental, the amount due by the driver is included.

The previous considerations and the UFP Complexity Weights provided in the Table 2.1 has led to the following ILFs Function Points estimation:

ILF	Complexity	FPs
User data	Low	7
Car status	Low	7
Safe areas	Low	7
Booking	Average	10
Rental	Average	10
Total		41

Table 2.2: ILFs Function Points

2.1.2 External Logic Files

ELFs are groups of homogeneous data used by the application to be developed but retrieved and created by external applications.

PowerEnJoy needs to exchange messages with the following services:

• Recovery service The Recovery Service is required in order to advise an external company when a car requires attention because a non expected event has happened.

- Notification service The Notification Service is required in order to notify the user via the PowerEnJoy app or the onboard computer integrated in the cars of events not triggered directly by the user (e.g. the expiration of a booking).
- Payment service The Payment Service is required in order to charge the user with the due amount related to the PowerEnJoy services.

The communications between PowerEnJoy and external application are executed through RESTful APIs and since simple strings needs to be transmitted it is expected that the data structure will be in JSON format.

The previous considerations and the UFP Complexity Weights provided in the Table 2.1 has led to the following ELFs Function Points estimation:

ELF	Complexity	FPs
Recovery request	Low	5
Notification message	Low	5
Payment request	Low	5
Total		15

Table 2.3: ELFs Function Points

2.1.3 External Inputs

EIs are all the operations offered by the application that elaborate data coming from the external environment. These operations can be triggered by the users from both the PowerEnJoy application and the onboard computer.

Based on the estimated complexity of the EIs and the UFP Complexity Weights provided in the Table 2.1, the following table provides the Function Points estimation:

EI	Complexity	FPs
User registration	Average	4
Login/Logout	Low	2*3
Book a car	Average	4
Delete booking	Low	3
Unlock car doors	Average	4
Begin rental	High	6
End rental	High	6
Total		33

Table 2.4: EIs Function Points

If the reader wants to examine in depth the functionalities mentioned in the table above, more details can be found in the RASD [4] and DD [5].

2.1.4 External Inquiries

EQs are all the operations offered by the application that involves input and ouput data. This means that this kind of operations are are triggered by the users and a response with the data required is provided through the PowerEnJoy application or the onboard computers.

Based on the estimated complexity of the EQs and the UFP Complexity Weights provided in the Table 2.1, the following table provides the Function Points estimation:

Table 2.5: EQs Function Points

EQ	Complexity	FPs
Find cars	Low	3
Get details about car	Low	3
Total		6

If the reader wants to examine in depth the functionalities mentioned in the table above, more details can be found in the RASD [4] and DD [5].

2.1.5 External Outputs

EOs are all the operations offered by the application that generates data for the external environments. These operations are triggered by the PowerEnJoy backend system and sended to the users via the PowerEnJoy application and or the onboard computers.

Based on the estimated complexity of the EOs and the UFP Complexity Weights provided in the Table 2.1, the following table provides the Function Points estimation:

Table 2.6: EOs Function Points

EO	Complexity	FPs
Elapsed booking notification	Low	4
Unlock car doors notification	Low	4
Ended rental notification	Low	4
Get info about ongoing rental	High	7
Total		19

If the reader wants to examine in depth the functionalities mentioned in the table above, more details can be found in the RASD [4] and DD [5].

2.1.6 Overall Estimation

The following table provides the overall estimation of all the Function Types discussed above:

Table 2.7: Function Points overall estimation

Function Type	Value
Internal Logic Files	41
External Logic Files	15
External Inputs	33
External Inquiries	6
External Outputs	19
Total	114

Below, the expected SLOC, calculated using the formulas provided by the Function Points method, is provided. The value has been calculated considering Java as the development language for the business logic part of the PowerEnJoy system (see Section 2.4 of DD [5] for more details).

$$SLOC = AVC * number of function points$$

Given the Java AVC values provided by QSM [7], the estimated SLOC lower bound is:

$$SLOC = 14 * 114 = 1596$$

While the upper bound is estimated to be:

$$SLOC = 134 * 114 = 15276$$

In the following section the SLOC value that will be considered is the one calculated using the AVC average value:

$$SLOC = 53 * 114 = 6042$$

2.2 Cost and effort estimation: COCOMO II

In this section we're going to use COCOMO II approach to estimate the cost and effort needed for developing PowerEnJoy system.

2.2.1 Scale Drivers

For estimating scale drivers values we refer to the official COCOMO II table: $\frac{1}{2}$

Table 2.8: Scale Drivers values for COCOMO II Model

Scale Fac-	Very Low	Low	Nominal	High	Very High	Extra High
tors						
PREC	thoroughly	largely	somewhat	generally	largely fa-	thoroughly
	unprece-	unprece-	unprece-	familiar	miliar	familiar
	dented	dented	dented			
SF_j	6.20	4.96	3.72	2.48	1.24	0.00
FLEX	rigorous	occasional	some relax-	general	some con-	general
		relax-	ation	conformity	formity	goals
		ation				
SF_j	5.07	4.05	3.04	2.03	1.01	0.00
RESL	little (20%)	some	often	generally	mostly	full (100%)
		(40%)	(60%)	(75%)	(90%)	
SF_j	7.07	5.65	4.24	2.83	1.41	0.00
TEAM	very diffi-	some diffi-	basically	largely co-	highly co-	seamless
	cult inter-	cult inter-	coop-	operative	operative	interac-
	actions	actions	erative			tions
			interac-			
			tions			
SF_j	5.48	4.38	3.29	2.19	1.10	0.00
PMAT	SW-CMM	SW-CMM	SW-CMM	SW-	SW-CMM	SW-CMM
	Level 1	Level 1	Level 2	CMM	Level 4	Level 5
	Lower	Upper		Level 3		
SF_j	7.80	6.24	4.68	3.12	1.56	0.00

Here a brief description of scale drivers considered above:

• Precedentedness - It reflects the previous experience of the team with the development of similar projects.

Table 2.9: PREC Rating Levels

Feature	Very Low	Nominal / High	Extra High
Organizational understanding of	General	Considerable	Thorough
product objectives			
Experience in working with related	Moderate	Considerable	Extensive
software systems			
Concurrent development of associ-	Extensive	Moderate	Some
ated new hardware and operational			
procedures			
Need for innovative data processing	Considerable	Some	Minimal
architectures, algorithms			

• Development Flexibility - It reflects the degree of flexibility in the development process with respect to specific constraints, requirements and external specifications.

Table 2.10: FLEX Rating Levels

Feature	Very Low	Nominal / High	Extra High
Need for software conformance	Full	Considerable	Basic
with pre-established requirements			
Need for software conformance	Full	Considerable	Basic
with external interface specifica-			
tions			
Combination of inflexibilities above	High	Medium	Low
with premium on early completion			

• Risk Resolution - It reflects the level of analysis with respect to the risk management plan and the definition of budget and schedule.

Table 2.11: RESL Rating Levels

Characteristic	Very Low	Low	Nominal	High	Very High	Extra High
Risk Management Plan identifies all critical risk items, establishes mile- stones for resolving them by PDR or LCA.	None	Little	Some	Generally	Mostly	Fully
Schedule, budget, and internal mile- stones through PDR or LCA com- patible with Risk Management Plan.	None	Little	Some	Generally	Mostly	Fully
Percent of development schedule devoted to establishing architecture, given general product objectives.	5	10	17	25	33	40
Percent of required top software architects available to project.	20	40	60	80	100	120
Tool support available for resolving risk items, developing and verifying architectural specs.	None	Little	Some	Good	Strong	Full
Level of uncertainty in key architecture drivers: mission, user interface, COTS, hardware, technology, performance.	Extreme	Significant	Consider- able	Some	Little	Very Little
Number and criticality of risk items.	> 10 Critical	5-10 Critical	2-4 Critical	1 Critical	> 5 Non Critical	< 5 Non Critical

• Team Cohesion - It reflects the level of coordination and synchronization of project's stakholders: users, customers, developers, maintainers, interfacers, others.

Table 2.12: TEAM Rating Levels

Characteristic	Very Low	Low	Nominal	High	Very	Extra
					High	High
Consistency of	Little	Some	Basic	Consider-	Strong	Full
stakeholder objec-				able		
tives and cultures						
Ability, willingness	Little	Some	Basic	Consider-	Strong	Full
of stakeholders to				able		
accommodate other						
stakeholders? ob-						
jectives						
Experience of	None	Little	Little	Basic	Consider-	Extensive
stakeholders in					able	
operating as a team						
Stakeholder team-	None	Little	Little	Basic	Consider-	Extensive
building to achieve					able	
shared vision and						
commitments						

• Process Maturity - It reflects the level of maturity of the software organization.

Characteristics of the Maturity levels

Figure 2.1: The picture above shows levels of process maturity defined by SWCMM.

Here the result of scale drivers' evaluation:

Table 2.13: Scale Drivers overall estimation

Scale Driver	Factor	Value
Precedentedness (PREC)	Low	4.96
Development flexibility (FLEX)	Low	4.05
Risk resolution (RESL)	Very high	1.41
Team cohesion (TEAM)	Very high	1.10
Process maturity (PMAT)	Level 3	3.12
Total		14.64

2.2.2 Cost Drivers

Required Software Reliability

This is the measure of the extent to which the software must perform its intended function over a period of time. Supposing that electric car sharing will be largely used in the near future and the system will have great success, a potential malfunctioning could lead to high financial losses.

Table 2.14: RELY values

RELY Cost Drivers							
RELY Descriptors	slightly incon- vinience	easily re- coverable losses	moderate recov- erabile losses	high finan- cial loss	risk to hu- man life		
Rating level	Very Low	Low	Nominal	High	Very High	Extra High	
Effort multipliers	0.82	0.92	1.00	1.10	1.26	n/a	

Database Size

This cost driver attempts to capture the effect large test data requirements have on product development. The rating is determined by calculating D/P, the ratio of bytes in the testing database to SLOC in the program. The reason the size of the database is important to consider is because of the effort required to generate the test data that will be used to exercise the program. In the case of PowerEnJoy a 5 Mb testing database has been estimated and for this reason:

$$\frac{D}{P} = 5 * 10^6 / 6042 = 828$$

Table 2.15: DATA values

	DATA Cost Drivers							
DATA De-		$\frac{D}{P} < 10$	$10 < \frac{D}{P} <$	$100 < \frac{D}{P} <$	$\frac{D}{P} > 1000$			
scriptors		_	100	1000	-			
Rating	Very Low	Low	Nominal	High	Very High	Extra High		
level								
Effort mul-	n/a	0.90	1.00	1.14	1.28	n/a		
tipliers								

Product Complexity

According to COCOMO II rating scale, the complexity of development of the system is considered high.

Table 2.16: CPLX values

	CPLX Cost Drivers						
Rating	Very Low	Low	Nominal	High	Very High	Extra High	
level							
Effort mul-	0.73	0.87	1.00	1.17	1.34	1.74	
tipliers							

Required Reusability

This cost driver accounts for the additional effort needed to construct components intended for reuse on current or future projects. "Across program" could apply to reuse across multiple financial applications projects for a single organization: for example some system's components could be reused for other "sharing-systems".

Table 2.17: RUSE values

	RUSE Cost Drivers							
RUSE Descriptors		None	Across project	Across program	Across product line	Across multiple product lines		
Rating level	Very Low	Low	Nominal	High	Very High	Extra High		
Effort multipliers	n/a	0.95	1.00	1.07	1.15	1.24		

Documentation match to life-cycle needs

The rating scale for the DOCU cost driver is evaluated in terms of the suitability of the project's documentation to its life-cycle needs.

Table 2.18: DOCU values

	DOCU Cost Drivers							
DOCU De-	Many life-	Some life-	Right-sized	Excessive	Very exces-			
scriptors	cycle needs	cycle needs	to life-cycle	for life-	sive for life-			
	uncovered	uncovered	needs	cycle needs	cycle needs			
Rating	Very Low	Low	Nominal	High	Very High	Extra High		
level								
Effort mul-	0.81	0.91	1.00	1.11	1.23	n/a		
tipliers								

Execution Time Constraint

This is a measure of the execution time constraint imposed upon a software system. The rating is expressed in terms of the percentage of available execution time expected to be used by the system or subsystem consuming the execution time resource.

Table 2.19: TIME values

	TIME Cost Drivers							
TIME Descriptors			≤ 50% use of available execution time	70% use of available execution time	85% use of available execution time	95% use of available execution time		
Rating level	Very Low	Low	Nominal	High	Very High	Extra High		
Effort multipliers	n/a	n/a	1.00	1.11	1.29	1.63		

Storage Constraint

This rating represents the degree of main storage constraint imposed on a soft-ware system or subsystem.

Table 2.20: STOR values

	STOR Cost Drivers							
STOR De-			$\leq 50\%$ use	70% use of	85% use of	95% use of		
scriptors			of available	available	available	available		
			storage	storage	storage	storage		
Rating	Very Low	Low	Nominal	High	Very High	Extra High		
level								
Effort mul-	n/a	n/a	1.00	1.05	1.17	1.46		
tipliers								

Platform Volatility

"Platform" is used here to mean the complex of hardware and software the software product calls on to perform its tasks; the platform includes any compilers or assemblers supporting the development of the software system. We estimate that a major release of the software will be needed about every 12 months.

Table 2.21: PVOL values

	PVOL Cost Drivers							
PVOL Descriptors		Major change	Major: 6mo; mi-	Major: 2mo, mi-	Major: 2wk; mi-			
Scriptors		every 12	nor: 2wk.	nor: 1wk	nor: 2 days			
		mo., minor change						
		every 1						
		mo.						
Rating	Very Low	Low	Nominal	High	Very High	Extra High		
level								
Effort mul-	n/a	0.87	1.00	1.15	1.30	n/a		
tipliers								

Analyst Capability

Analysts are personnel who work on requirements, high-level design and detailed design. The major attributes that should be considered in this rating are analysis and design ability, efficiency and thoroughness, and the ability to communicate and cooperate.

Table 2.22: ACAP values

	ACAP Cost Drivers						
ACAP De-	15th per-	35th per-	55th per-	75th per-	90th per-		
scriptors	centile	centile	centile	centile	centile		
Rating	Very Low	Low	Nominal	High	Very High	Extra High	
level							
Effort mul-	1.42	1.19	1.00	0.85	0.71	n/a	
tipliers							

Programmer Capability

Evaluation for this cost driver should be based on the capability of the programmers as a team rather than as individuals. Major factors which should be considered in the rating are ability, efficiency and thoroughness, and the ability to communicate and cooperate.

Table 2.23: PCAP values

	PCAP Cost Drivers														
PCAP De-	15th per-	35th per-	55th per-	75th per-	90th per-										
scriptors	centile	centile	centile	centile	centile										
Rating	Very Low	Low	Nominal	High	Very High	Extra High									
level															
Effort mul-	1.34	1.15	1.00	0.88	0.76	n/a									
tipliers	ers														

Application Experience

The rating for this cost driver is dependent on the level of applications experience of the project team developing the software system or subsystem. The ratings are defined in terms of the project team's equivalent level of experience with this type of application.

Table 2.24: APEX values

	APEX Cost Drivers														
APEX De-	\leq 2 6 months 1 year 3 years 6 years														
scriptors	months														
Rating	Very Low	Low	Nominal	High	Very High	Extra High									
level															
Effort mul-	1.22	1.10	1.00	0.88	0.81	n/a									
tipliers															

Platform Experience

The Post-Architecture model broadens the productivity influence of platform experience by recognizing the importance of understanding the use of more powerful platforms, including more graphic user interface, database, networking, and distributed middleware capabilities.

Table 2.25: PLEX values

PLEX Cost Drivers														
PLEX De-	\leq 2	2 6 months 1 year 3 years 6 years												
scriptors	months													
Rating	Very Low	Low	Nominal	High	Very High	Extra High								
level														
Effort mul-	1.19	1.09	1.00	0.91	0.85	n/a								
tipliers														

Language and Tool Experience

This is a measure of the level of programming language and software tool experience of the project team developing the software system or subsystem. In addition to experience in the project's programming language, experience on the project's supporting tool set also affects development effort.

Table 2.26: LTEX values

	LTEX Cost Drivers													
LTEX De-	\leq 2	\leq 2 6 months 1 year 3 years 6 years												
scriptors	months													
Rating	Very Low	Low	Nominal	High	Very High	Extra High								
level														
Effort mul-	1.20	1.09	1.00	0.91	0.84	n/a								
tipliers														

Personnel Continuity

The rating scale for PCON is in terms of the project's annual personnel turnover: team members have been the same since the begin until the end of development.

Table 2.27: PCON values

	PCON Cost Drivers													
PCON De-	48% / year													
scriptors														
Rating	Very Low	Low	Nominal	High	Very	Extra High								
level					High									
Effort mul-	1.29	1.12	1.00	0.90	0.81	n/a								
tipliers														

Usage of Software Tools

The tool rating ranges from simple edit and code, very low, to integrated life-cycle management tools, very high.

Table 2.28: TOOL values

TOOL Cost Drivers													
TOOL Descriptors	edit, code, debug	simple, frontend, backend CASE, little inte- gration	basic life- cycle tools, moderately integrated	strong, mature life-cycle tools, mod- erately integrated	strong, mature, proactive life-cycle tools, well integrated with pro- cesses, methods, reuse								
Rating level	Very Low	Low	Nominal	High	Very High	Extra High							
Effort multipliers	1.17	1.09	1.00	0.90	0.78	n/a							

Multisite Development

Determining its cost driver rating involves the assessment and judgement-based averaging of two factors: site collocation (from fully collocated to international distribution) and communication support (from surface mail and some phone access to full interactive multimedia).

Table 2.29: SITE values

	SITE Cost Drivers														
SITE Col-	Inter-	Multi-city	Multi-city	Same city	Same	Fully collo-									
location	national	and multi-	or multi-	or metro	building or	cated									
Descrip-		company	company	area	complex										
tors															
SITE	Some	Individual	Narrow	Wideband	Wideband	Interactive									
Commu-	phone,	phone, fax	band email	electronic	elect.	multime-									
nications	mail			communi-	comm.,	dia									
Descrip-				cation	occasional										
tors					video conf.										
Rating	Very Low	Low	Nominal	High	Very High	Extra High									
level															
Effort mul-	1.22	1.09	1.00	0.93	0.93 0.86										
tipliers															

Required Development Schedule

This rating measures the schedule constraint imposed on the project team developing the software. The ratings are defined in terms of the percentage of schedule stretch-out or acceleration with respect to a nominal schedule for a project requiring a given amount of effort. Accelerated schedules tend to produce more effort in the earlier phases to eliminate risks and refine the architecture, more effort in the later phases to accomplish more testing and documentation in parallel.

Table 2.30: SCED values

	SCED Cost Drivers														
SCED De-	75% of	75% of 85% of 100% of 130% of 160% of													
scriptors	nominal	nominal	nominal	nominal	nominal										
Rating	Very Low	Low	Nominal	High	Very High	Extra High									
level															
Effort mul-	1.43	1.14	1.00	1.00	1.00	n/a									
tipliers															

Cost Driver overall estimation

Here the result of cost drivers' evaluation:

Table 2.31: Cost Drivers overall estimation

Cost Driver	Factor	Value
Required Software Reliability (RELY)	High	1.10
Database size (DATA)	High	1.14
Product complexity (CPLX)	High	1.17
Required Reusability (RUSE)	High	1.07
Documentation match to life-cycle needs (DOCU)	Nominal	1.00
Execution Time Constraint (TIME)	High	1.11
Main storage constraint (STOR)	Nominal	1.00
Platform volatility (PVOL)	Low	0.87
Analyst capability (ACAP)	High	0.85
Programmer capability (PCAP)	Nominal	1.00
Application Experience (APEX)	Very low	1.22
Platform Experience (PLEX)	Low	1.09
Language and Tool Experience (LTEX)	Nominal	1.00
Personnel continuity (PCON)	Very high	0.81
Usage of Software Tools (TOOL)	High	0.90
Multisite development (SITE)	High	0.93
Required development schedule (SCED)	Nominal	1.00
Total (EAF)		1.1618

2.2.3 Effort Equation

COCOMO II provides the following equation to estimate the effort required measured in Person-Months (PM):

$$Effort = A*EAF*KSLOC^{E}$$

Where:

- A is a constant that approximates the productivity in PM / KSLOC
- ullet EAF is the product of all the effort multipliers derived from the Cost Drivers
- E is an aggregation of the five Scale Factors obtained with the following equation:

$$E = B + 0.01 * \sum_{j=1}^{5} SF_j$$

where B = 0.91.

Given that,

$$A = 2.94$$

$$E = B + 0.01 * 14.64 = 1.0564$$

$$EAF = \prod_{i=1}^{15} EM_i = 1.1618$$

the Effort can be calculated as:

$$Effort = 2.94 * 1.1618 * 6.042^{1.0564} = 22.8411PM \approx 23PM$$

2.2.4 Schedule Estimation

COCOMO II provides also an equation to estimate the project duration given the parameter previously calculated:

$$Duration = 3.67*Effort^F$$

where F is equal to:

$$F = 0.28 + 0.2 * (E - B)$$

Given that,

$$F = 0.28 + 0.2 * (1.0564 - 0.91) = 0.3093$$

$$Effort = 22.8411PM$$

the *Duration* can be calculated as:

$$Duration = 3.67 * 22.8411^{0.3093} = 9.66 \ months$$

Tasks

In this chapter we are going to provide, thanks to a Gantt chart, a high-level project schedule, defining all main tasks necessary for developing the project. Even if in reality we worked only on RASD, DD, ITPD and PPD, because of the didactic purpose of the project, we decided to provide also the time necessary for developing, testing and finally deploying the system, also using results obtained with COCOMO II analysis.

Figure 3.1: The picture above shows the first section of Gantt chart representing main tasks of the project.

Figure 3.2: The picture above shows the second section of Gantt chart representing main tasks of the project.

Resource Allocation

In this chapter we are going to provide, thanks to a Gantt chart, a general overview of how resources (in this case the two members of the team) have been assigned to various tasks of the project. For the same reasons explained in chapter 3, we provide the assignment of resources also to development, testing and deployment activities.

Figure 4.1: The picture above shows the first section of Gantt chart representing resources assigned to various taks of the project.

Figure 4.2: The picture above shows the second section of Gantt chart representing resources assigned to various taks of the project.

Risk Management

In this Chapter, all the known risks related to planning, technical and business issues will be discussed. Along with the risks identified, a possible strategy to overcome them and to reduce the probability will be provided.

First of all, the most important risk that has been identified is the one related to the possible competition with other car sharing companies. Since at this time there are several companies that operates in the same cities where PowerEnJoy is expected to be deployed, it is important to evaluate all the possible scenarios related to this risk. The strategy to overcome this issue needs to be discussed with the marketing team. Well-planned marketing campaigns, interesting prices and services with respect to other companies and simple processes to learn how to use the service can be good strategies to adopt.

Usually, projects that involves a service for the citizens are sponsored by local governments. It is fundamental to organize meeting with the local authorities in order to make them understand the importance and the benefits that PowerEnJoy would bring to the local communities. It is important to collect guarantees from the local governments about the expected economic investment in PowerEnJoy in order to deliver a complete and well designed product and to avoid wrong budget planning.

Another risk is the one related to the requirements volatility. A thorough requirement elicitation phase is fundamental to collect all the projects specifications before taking any decision about the design or the implementation. PowerEnJoy is an application that can be expanded and integrated with multiple features. For this reason, it is important to come to an agreement with all the stakeholders before any development activities start.

Since PowerEnJoy relies on multiple external service, the malfunction, the modification or the closure of one of those would be a serious issue to deal with. The three main external services integrated in PowerEnJoy are the notification, payments and recovery service. Every services mentioned is fundamental for the correct functioning of the application. For this reason, a thorough investigation must be done in order to select the most reliable and known companies in each of those sectors.

Although the overall process to take advantage of the PowerEnJoy services is intrinsically quite simple, the QA team must assure that the users will be able to easily learn how to use PowerEnJoy. If the users will face difficulties while approaching the app the first time, the effect could be catastrophic. The strategies that can be exploited to overcome this kind of risk are tests focused on the users, such as A/B and beta testing of the mobile and web application along with the interfaces of the onboard computers.

PowerEnJoy must guarantee a 24/7 service. The possible downtimes that could happen if the infrastructure supporting PowerEnJoy would not be available represent a critical risk for the whole system. Important economic losses are expected if long downtimes happen. The strategy that can be applied is to make a thorough analysis of all the possible cloud providers in order to select the most suitable one for the system to be developed and deployed.

Finally, the personnel turnover is a chance that must be considered. Serious delays of the system delivery must be expected if new developers join the project in the middle of the development process. As an example, a certain amount of time must be estimate to let the new employees learn the technologies that are used and how the already developed component works. To overcome this risk the personnel selection phase must be conduct with the right attention and the code base must be fully and high detailed documented.

List of Figures

2.1	CMM Levels	15
	Tasks 1	
	Resource Allocation - Matteo Penco	

List of Tables

2.1	UFP Complexity Weights	7
2.2	ILFs Function Points	8
2.3	ELFs Function Points	9
2.4	EIs Function Points	9
2.5	EQs Function Points	10
2.6		10
2.7	Function Points overall estimation	11
2.8	Scale Drivers values	12
2.9	PREC Rating Levels	13
2.10	FLEX Rating Levels	13
2.11	RESL Rating Levels	14
		15
		16
2.14	RELY values	16
2.15	DATA values	17

2.16	CPLX values																				17
2.17	RUSE values																				17
2.18	DOCU values																				18
2.19	TIME values																				18
2.20	STOR values																				19
2.21	PVOL values																				19
2.22	ACAP values																				20
2.23	PCAP values																				20
2.24	APEX values																				21
2.25	PLEX values																				21
2.26	LTEX values																				21
2.27	PCON values																				22
2.28	TOOL values																				22
2.29	${\rm SITE}$ values $.$																				23
2.30	SCED values																				23
2.31	Cost Drivers o	1776	r	a 11	۹	st.	in	าล	ti	Ωr	1										24

Bibliography

- [1] Apple Inc. iOS. Available at http://www.apple.com/ios/ (November 26, 2016).
- [2] Google Inc. Android. Available at https://www.android.com/ (November 26, 2016).
- [3] L. Mottola and E. Di Nitto. Assignments AA 2016-2017. Politecnico di Milano.
- [4] M. Penco and R. Pressiani. PowerEnjoy Requirement Analysis and Specification Document. Available at https://github.com/rpressiani/se2-project-2016/blob/master/releases/RASD.pdf (November 27, 2016).
- [5] M. Penco and R. Pressiani. PowerEnjoy Design Document. Available at https://github.com/rpressiani/se2-project-2016/blob/master/releases/DD.pdf (January 03, 2017).
- [6] M. Penco and R. Pressiani. PowerEnjoy Integration Test Plan Document. Available at https://github.com/rpressiani/se2-project-2016/blob/master/releases/ITPD.pdf (January 18, 2017).
- [7] QSM Quantitative Software Management. Function Point Languages Table. Available at http://www.qsm.com/resources/function-point-languages-table (January 20, 2017).