EXAME NACIONAL DO ENSINO SECUNDÁRIO

12.º Ano de Escolaridade

(Decreto-Lei n.º 286/89, de 29 de Agosto — Programas novos e Decreto-Lei n.º 74/2004, de 26 de Março)

Duração da prova: 150 minutos 1.ª FASE

2007

PROVA ESCRITA DE MATEMÁTICA A / MATEMÁTICA

VERSÃO 1

Na sua folha de respostas, indique claramente a versão da prova.

A ausência desta indicação implica a anulação de todos os itens de escolha múltipla.

Identifique claramente os grupos e os itens a que responde.

Utilize apenas caneta ou esferográfica de tinta azul ou preta (excepto nas respostas que impliquem a elaboração de construções, desenhos ou outras representações).

É interdito o uso de «esferográfica-lápis» e de corrector.

As cotações da prova encontram-se na página 11.

A prova inclui um formulário na página 3.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

Losango:
$$\frac{Diagonal \, maior \times Diagonal \, menor}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Sector circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$
 $(r - raio da base; q - geratriz)$

Área de uma superfície esférica:
$$4 \pi r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base\ \times\ Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen (a + b) = sen a . cos b + sen b . cos a$$

$$cos(a + b) = cos a \cdot cos b - sen a \cdot sen b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \ = \ \sqrt[n]{\rho} \ \cos \frac{\theta + 2 \, k \, \pi}{n} \ , \ k \in \{0,..., \, n-1\}$$

Progressões

Soma dos n primeiros termos de uma

Prog. Aritmética:
$$\frac{u_1+u_n}{2} \times n$$

Prog. Geométrica:
$$u_1 \times \frac{1-r^n}{1-r}$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \quad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

Grupo I

- Os sete itens deste grupo são de escolha múltipla.
- Em cada um deles, são indicadas quatro alternativas de resposta, das quais só uma está correcta.
- Escreva na sua folha de respostas **apenas a letra** correspondente à alternativa que seleccionar para responder a cada item.
- Se apresentar mais do que uma letra, a resposta será anulada, o mesmo acontecendo se a letra transcrita for ilegível.
- · Não apresente cálculos, nem justificações.
- **1.** Identifique o valor de $\lim_{x \to 2^+} \frac{1}{4-x^2}$
 - **(A)** 0

(B) 1

(C) $+\infty$

(D) $-\infty$

2. Sabendo que:

 $\ln(x) - \ln(e^{\frac{1}{3}}) > 0$ (\ln designa logaritmo na base e),

um valor possível para $x\,$ é:

- **(A)** 0
- **(B)** -1
- **(C)** 1
- **(D)** 2

3. Na figura está parte da representação gráfica de uma função f, de domínio \mathbb{R} .

Tal como a figura sugere, o eixo $\,Ox\,$ e a recta de equação $\,y=1\,$ são assimptotas do gráfico de $\,f.\,$

Seja g a função, de domínio \mathbb{R} , definida por $g(x) = \ln \left[f(x) \right]$

Numa das opções seguintes está parte da representação gráfica da função $\ g.$

Em qual delas?

(A)

(B)

(C)

(D)

- **4.** Seja f uma função de domínio \mathbb{R} . Sabe-se que 3 é um zero da função f. Seja g a função definida por g(x)=f(x-1)+4, para qualquer número real x. Qual dos seguintes pontos pertence garantidamente ao gráfico da função g?
 - (A) (2,4) (B) (4,4) (C) (4,8) (D) (1,7)
- **5.** Escolhem-se, ao acaso, dois vértices diferentes de um paralelepípedo rectângulo. Qual é a probabilidade de que esses dois vértices sejam extremos de uma aresta?
 - (A) $\frac{12}{^{8}C_{2}}$ (B) $\frac{12}{8^{2}}$ (C) $\frac{8}{^{8}C_{2}}$ (D) $\frac{8}{^{8}A_{2}}$
- 6. As cinco letras da palavra TIMOR foram pintadas, cada uma em sua bola. As cinco bolas, indistinguíveis ao tacto, foram introduzidas num saco. Extraem-se, aleatoriamente, as bolas do saco, sem reposição, e colocam-se em fila, da esquerda para a direita.

Qual é a probabilidade de que, no final do processo, fique formada a palavra TIMOR, sabendo-se que, ao fim da terceira extracção, estava formada a sucessão de letras TIM?

- (A) 0 (B) $\frac{1}{3}$ (C) $\frac{1}{2}$ (D) 1
- Qual das opções seguintes apresenta duas raízes quadradas de um mesmo número complexo?
 - **(A)** 1 e i **(B)** -1 e i
 - (C) 1-i e 1+i (D) 1-i e -1+i

Grupo II

Nos itens deste grupo apresente o seu raciocínio de forma clara, indicando todos os cálculos que tiver de efectuar e todas as justificações necessárias.

Atenção: Quando não é pedida a aproximação de um resultado, pretende-se sempre o **valor exacto**.

- **1.** Em \mathbb{C} , conjunto dos números complexos, considere $z=\operatorname{cis}\alpha \ \left(\alpha\in \left]\ 0,\frac{\pi}{2}\right[\right)$
 - **1.1.** Na figura está representado, no plano complexo, o paralelogramo [AOBC]

A e B são as imagens geométricas de z e \overline{z} , respectivamente. C é a imagem geométrica de um número complexo, w.

Justifique que $w = 2\cos\alpha$

- **1.2.** Determine o valor de $\, \alpha \in \, \left] \, \, 0, \, \frac{\pi}{2} \left[\, \,$ para o qual $\, \frac{z^3}{i} \,$ é um número real.
- **2.** Considere todos os números de três algarismos que se podem formar com os algarismos

1, 2, 3, 4, 5, 6, 7, 8 e 9.

2.1. Escolhe-se, ao acaso, um desses números.

Sejam os acontecimentos:

A: «O número escolhido é múltiplo de 5»;

B: "O número escolhido tem os algarismos todos diferentes".

Averigúe se A e B são, ou não, acontecimentos independentes.

2.2. Considere o seguinte problema:

De entre todos os números de três algarismos diferentes que se podem formar com os algarismos 1, 2, 3, 4, 5, 6, 7, 8 e 9, em quantos deles o produto dos seus algarismos é um número par?

Uma resposta correcta a este problema é: $\,^9A_3-\,^5A_3.$

Numa pequena composição explique porquê.

3. Seja Ω o espaço de resultados associado a uma certa experiência aleatória.

Sejam $A,\ B$ e C três acontecimentos $(A\subset\Omega,\ B\subset\Omega$ e $C\subset\Omega)$ tais que $(A\cup B)\cap C=\emptyset.$

Sabe-se que P(A) = 0.21 e que P(C) = 0.47.

Calcule $P(A \cup C)$, utilizando as propriedades das operações com conjuntos e a axiomática das probabilidades.

4. Seja f a função, de domínio [1,5], definida por $f(x) = \ln x$ (\ln designa logaritmo na base e)

Na figura está representado, em referencial ortonormado xOy, o gráfico da função f.

Considere que um ponto P se desloca ao longo do gráfico de f. Para cada posição do ponto P, considere o rectângulo em que um dos lados está contido no eixo Ox, outro na recta de equação $\ x=5\$ e os outros dois nas rectas vertical e horizontal que passam pelo ponto P.

Exprima a área do rectângulo em função da abcissa de $\,P$, e, recorrendo à calculadora gráfica, determine a abcissa de $\,P$ (aproximada às centésimas) para a qual a área do rectângulo é máxima. Apresente os elementos recolhidos na utilização da calculadora:

- o gráfico obtido;
- o ponto de ordenada máxima e respectivas coordenadas.

5. Considere as funções f e g, definidas em \mathbb{R} por

$$f(x) = e^{x-1}$$
 e $g(x) = \operatorname{sen} x$

Considere ainda a função h, definida em \mathbb{R} por h(x) = f'(x) - g'(x)

Sem recorrer à calculadora, a não ser para efectuar eventuais cálculos numéricos, resolva os dois itens seguintes:

- **5.1.** Mostre que a função h tem, pelo menos, um zero no intervalo $\left]0,\,\frac{\pi}{2}\right[$
- **5.2.** Tendo em conta **5.1.**, justifique que existe $a \in \left]0, \frac{\pi}{2}\right[$ tal que as rectas tangentes aos gráficos de f e g, nos pontos de abcissa a, são paralelas.
- **6.** Admita que a intensidade da luz solar, x metros abaixo da superfície da água, é dada, numa certa unidade de medida, por

$$I(x) = a e^{-b x} \qquad (x \ge 0)$$

 $a \ \ e \ \ b$ são constantes positivas que dependem do instante e do local onde é efectuada a medição.

Sempre que se atribui um valor a a e um valor a b, obtemos uma função de domínio \mathbb{R}^+_0 .

6.1. Medições efectuadas, num certo instante e em determinado local do oceano Atlântico, mostraram que, a 20 metros de profundidade, a intensidade da luz solar era metade da sua intensidade à superfície da água.

Determine o valor de $\,b\,$ para esse instante e local. Apresente o resultado arredondado às centésimas.

6.2. Considere agora b = 0.05 e a = 10.

Estude essa função quanto à monotonia e existência de assimptotas do seu gráfico. Interprete os resultados obtidos no contexto da situação descrita.

FIM

COTAÇÕES

Grupo	I(7 x 9 pontos)	63 pontos
	Cada resposta certa	-
	Cada resposta errada Cada questão não respondida ou anulada	
	·	·
Grupo	II	137 pontos
	1	21 pontos
	1.1. 11	pontos
	1.2. 10	pontos
	2	22 pontos
	2.1. 10	pontos
	2.2. 12	pontos
	3	10 pontos
	4	18 pontos
	5	34 pontos
	5.1. 16	pontos
	5.2. 18	pontos
	6	32 pontos
	6.1. 16	pontos
	6.2. 16	pontos
ΤΟΤΔΙ		200 nontos