FCC SAR Test Report

FCC ID: 2AENAYPZNLT

Project No. : 1903T095

Equipment : Smart Tracker By Yepzon Model Name : YPZNLT

Model Name : YPZNLT Applicant : Yepzon Oy

Address : Finlaysoninkuja 9, 33210 Tampere Finland

Date of Receipt: Mar. 25, 2019

Date of Test : Mar. 26, 2019 ~ Apr. 09, 2019

Issued Date : May. 09, 2019 Tested by : BTL Inc.

PREPARED BY : (Morrison Huang)

Morrison Huang

APPROVED BY : (Herbort Liu)

BTL INC.

No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan

TEL:+886-2-2657-3299 FAX: +886-2-2657-3331

Report No.: BTL-FCC SAR-1-1903T095 Page 1 of 46
Report Version: R00

Declaration

BTL represents to the client that testing is done in accordance with standard procedures as applicable and that test instruments used has been calibrated with standards traceable to international standard(s) and/or national standard(s).

BTL's reports apply only to the specific samples tested under conditions. It is manufacture's responsibility to ensure that additional production units of this model are manufactured with the identical electrical and mechanical components. BTL shall have no liability for any declarations, inferences or generalizations drawn by the client or others from BTL issued reports.

The report must not be used by the client to claim product certification, approval, or endorsement by NVLAP. NIST, A2LA, or any agency of the U.S. Government.

This report is the confidential property of the client. As a mutual protection to the clients, the public and ourselves, the test report shall not be reproduced, except in full, without our written approval.

BTL's laboratory quality assurance procedures are in compliance with the ISO/IEC 17025 requirements. and accredited by the conformity assessment authorities listed in this test report.

BTL is not responsible for the sampling stage, so the results only apply to the sample as received.

The information, data and test plan are provided by manufacturer which may affect the validity of results, so it is manufacturer's responsibility to ensure that the apparatus meets the essential requirements of applied standards and in all the possible configurations as representative of its intended use.

Limitation

For the use of the authority's logo is limited unless the Test Standard(s)/Scope(s)/Item(s) mentioned in this test report is (are) included in the conformity assessment authorities acceptance respective.

Please note that the measurement uncertainty is provided for informational purpose only and are not use in determining the Pass/Fail results.

Report No.: BTL-FCC SAR-1-1903T095 Page 2 of 46

Table of Contents	Page
1. GENERAL SUMMARY	6
2. RF EMISSIONS MEASUREMENT	7
2.1. TEST FACILITY	7
2.2. MEASUREMENT UNCERTAINTY	7
3. GENERAL INFORMATION	8
3.1. STATEMENT OF COMPLIANCE	8
3.2. GENERAL DESCRIPTION OF EUT	9
3.3. LABORATORY ENVIRONMENT	10
3.4. MAIN TEST INSTRUMENTS	11
4. SAR MEASUREMENTS SYSTEM CONFIGURATION	12
4.1. SAR MEASUREMENT SET-UP	12
4.1.1. TEST SETUP LAYOUT	12
4.2. DASY5 E-FIELD PROBE SYSTEM	13
4.2.1. EX3DV4 PROBE SPECIFICATION 4.2.2. E-FIELD PROBE CALIBRATION	13
4.2.2. E-FIELD PROBE CALIBRATION 4.2.3. OTHER TEST EQUIPMENT	14 15
4.2.4. SCANNING PROCEDURE	16
4.2.5. SPATIAL PEAK SAR EVALUATION	17
4.2.6. DATA STORAGE AND EVALUATION	18
4.2.7. DATA EVALUATION BY SEMCAD	19
5. SYSTEM VERIFICATION PROCEDURE	21
5.1. TISSUE VERIFICATION	21
5.2. SYSTEM CHECK	22
5.3. SYSTEM CHECK PROCEDURE	22
6. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY	23
6.1. SAR MEASUREMENT VARIABILITY	23
7. OPERATIONAL CONDITIONS DURING TEST	24
7.1. SAR TEST CONFIGURATION	24
7.1.1. GSM TEST CONFIGURATION	24
7.1.2. LTE CAT.M1 TEST CONFIGURATION	25
7.1.3. NB-IOT NB1 TEST CONFIGURATION 7.1.4. WIFI TEST CONFIGURATION	27 29
7.1.4. WILLIEST CONTIGURATION 7.2. TEST POSITION ANTENNA LOCATION	31
8. TEST RESULT	32
8.1. CONDUCTED POWER RESULTS	32
8 1 1 CONDUCTED POWER MEASUREMENTS OF GSM BAND	32

Table of Contents	Page
8.1.2. CONDUCTED POWER MEASUREMENTS OF LTE CAT.M1	33
8.1.3. CONDUCTED POWER MEASUREMENTS OF LTE NB-IOT	37
8.1.3. CONDUCTED POWER MEASUREMENTS OF LTE NB-IOT	37
8.1.4. CONDUCTED POWER MEASUREMENTS OF BT BAND	37
8.1.5. CONDUCTED POWER MEASUREMENTS OF WIFI 2.4G	38
8.2. SAR TEST RESULTS	39
8.2.1. SAR MEASUREMENT RESULT	40
9. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS & ESTIMA	ATED SAR
	42
10. MULTIPLE TRANSMITTER EVALUATION	43
APPENDIX	44
1. TEST LAYOUT	44
Appendix A. SAR Plots of System Verification Appendix B. SAR Plots of SAR Measurement Appendix C. Calibration Certificate Appendix D. Photographs of the Test Set-Up	

Report No.: BTL-FCC SAR-1-1903T095 Page 4 of 46
Report Version: R00

REPORT ISSUED HISTORY

Report Version	Description	Issued Date
R00	Original Issue	May. 09, 2019

Report No.: BTL-FCC SAR-1-1903T095 Page 5 of 46
Report Version: R00

1. GENERAL SUMMARY

Equipment	Smart Tracker By Yepzon
Brand Name	YEPZ0N
Model Name	YPZNLT
Manufacturer	VVDN Technologies Pvt. Ltd
Address	B-22,Infocity Sector-34, Gurgaon-122001, Haryana,India
Standard(s)	ANSI Std C95.1-1992 Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz - 300 GHz.(IEEE Std C95.1-1991)
	IEEE Std 1528-2013 Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
	KDB447498 D01 General RF Exposure Guidance v06 KDB248227 D01 802. 11 Wi-Fi SAR v02r02 KDB865664 D01 SAR measurement 100 MHz to 6 GHz v01r04 KDB865664 D02 SAR Reporting v01r02 KDB690783 D01 SAR Listings on Grants v01r03 KDB941225 D01 3G SAR Procedures v03r01 KDB941225 D05 SAR for LTE Devices v02r05 KDB941225 D06 Hot Spot SAR v02r01

The above equipment has been tested and found compliance with the requirement of the relative standards by BTL Inc.

The test data, data evaluation, and equipment configuration contained in our test report (Ref No. BTL-FCC SAR-1-1903T095) were obtained utilizing the test procedures, test instruments, test sites that has been accredited by the Authority of TAF according to the ISO/IEC 17025 quality assessment standard and technical standard(s).

Report No.: BTL-FCC SAR-1-1903T095 Page 6 of 46
Report Version: R00

2. RF EMISSIONS MEASUREMENT

2.1. TEST FACILITY

The test facilities used to collect the test data in this report is **SAR room** at the location of No. 68-1, Ln. 169, Sec.2, Datong Rd., Xizhi Dist., New Taipei City 221, Taiwan.

2.2. MEASUREMENT UNCERTAINTY

Note: Per KDB865664 D01 SAR Measurement 100 MHz to 6 GHz, when the highest measured 1-g SAR within a frequency band is < 1.5 W/kg, the extensive SAR measurement uncertainty analysis described in IEEE Std 1528-2013 is not required in SAR reports submitted for equipment approval. The equivalent ratio (1.5/1.6) is applied to extremity and occupational exposure conditions.

Report No.: BTL-FCC SAR-1-1903T095 Page 7 of 46

3. GENERAL INFORMATION

3.1. STATEMENT OF COMPLIANCE

Equipment Class	Band	Highest Body SAR-1g (W/kg)	NB-IOT Highest Body SAR-1g (W/kg)	LTE Cat.M1 Highest Body SAR-1g (W/kg)
	GSM850	0.699		
	GSM1900	0.728		
PCE	LTE 2		0.75	1.273
	LTE 4		0.181	0.64
	LTE 12		0.037	0.264

Note:

1) The device is in compliance with Specific Absorption Rate(SAR) for general population uncontrolled exposure limits according to the FCC rule §2.1093, the ANSI C95.1:1992/IEEE C95.1:1991, the NCRP Report Number 86 for uncontrolled environment and had been tested in accordance with the measurement methods and procedures specified in IEEE Std 1528-2013.

Report No.: BTL-FCC SAR-1-1903T095 Page 8 of 46

3.2. GENERAL DESCRIPTION OF EUT

Equipment	Smart Tracker By Yepzon				
	YPZNLT				
IMEI Code	911658550000300				
IMSI(DEC)	001010123456789				
	GSM(GMSK/8PSK), LTE_Cat.M1(QPSK/16QAM), LTE NB-lot(BPSK_3.75KHz/				
Modulation	QPSK_15KHz) , BT(GFSK/ π /4-DQPSK/8	B-DPSK) , WiFi(DSSS/C	OFDM),		
	Band	TX (MHz)	RX (MHz)		
	GSM850	824-849	869-894		
Operation	GSM1900	1850-1910	1930-1990		
Operation Frequency	LTE Band 2	1850-1910	1930-1990		
Range(s)	LTE Band 4	1710-1755	2110-2155		
rtarige(s)	LTE Band 12	699-716	729-746		
	Bluetooth	2402-2483.5			
	WIFI 2.4G	2412-	-2462		
	Band	Cha	nnel		
	GSM850	128-18	38-251		
	GSM1900	512-66			
	LTE Cat.M1_Band 2 BW=20MHz	18700-189	900-19100		
Test Channels	LTE Cat.M1_Band 4 BW=20MHz	20050-20175-20300			
(low-mid-high):	LTE Cat.M1_Band 12 BW=10MHz	23060-23095-23130			
	LTE NB-lot_Band2 BW=15KHz	18601-18900-19199			
	LTE NB-lot_Band4 BW=15KHz	19951-20 ²			
	LTE NB-lot_Band12 BW=15KHz	23011-23095-23179			
	WIFI 2.4G	1-6			
	BLE	0-19-39			
	Other Informa				
	Model	BZ502435			
Battery	Capacitance	450mAh			
Dation	Rated Voltage	3.7V			
	Manufacturer	Shenzhen Benzo Energ	gy Technology Co.,Ltd.		

Antenna Information							
Brand	Model	Type	Band	Gain(dBi)			
			GSM850	-7.27			
			GSM1900	-4.45			
Pulse NBLT	NBLT			LTE Band 2	-4.45		
		Pulse NBLT PCB LTE Band 4 LTE Band 12 Bluetooth	Pulse NBLT	PCB	PCB	LTE Band 4	-0.24
				LTE Band 12	-6.70		
				Bluetooth	-0.16		
			WIFI 2.4G	-0.24			

Page 9 of 46 Report Version: R00 Report No.: BTL-FCC SAR-1-1903T095

3.3. LABORATORY ENVIRONMENT

Relative humidity Min. = 30%, Max. = 70%		
Ground system resistance $< 0.5 \Omega$		

Ambient noise is checked and found very low and in compliance with requirement of standards. Reflection of surrounding objects is minimized and in compliance with requirement of standards.

Report No.: BTL-FCC SAR-1-1903T095 Page 10 of 46
Report Version: R00

3.4. MAIN TEST INSTRUMENTS

Item	Equipment	Manufacturer	Model	Serial No.	Cal. Date	Cal. Interval
1	Data Acquisition Electronics	Speag	DAE4	1486	Sep. 18, 2018	1 Year
2	Data Acquisition Electronics	Speag	DAE4	1561	Nov. 07, 2018	1 Year
3	E-field Probe	Speag	EX3DV4	7520	Nov. 05, 2018	1 Year
4	E-field Probe	Speag	EX3DV4	3901	Sep. 27, 2018	1 Year
5	System Validation Dipole	Speag	D750V3	1095	Jun. 05, 2018	3 Year
6	System Validation Dipole	Speag	D835V2	4d160	Jun. 05, 2018	3 Year
7	System Validation Dipole	Speag	D1750V2	1101	Jun. 07, 2018	3 Year
8	System Validation Dipole	Speag	D1900V2	5d179	Jun. 07, 2018	3 Year
9	Twin Sam Phantom	Speag	Twin Sam Phantom V5.0	1897	N/A	N/A
10	Radio Communication Analver	Anritsu	MT8821C	6261935354	Feb. 28, 2019	1 Year
11	Power Meter	Anritsu	ML2495A	1128008	Dec. 06, 2018	1 Year
12	Power Sensor	Anritsu	MA2411B	1126001	Dec. 06, 2018	1 Year
13	Power Meter	Keysight	8990B	MY5100051	Aug. 17, 2018	1 Year
14	Power Sensor	Keysight	N1923A	MY58310005	Aug. 09, 2018	1 Year
15	ENA Network Analyzer	Agilent	E5071C	MY46524658	Mar. 16, 2019	1 Year
16	Signal Generator	R&S	SMR40	100502	Jun. 03, 2019	1 Year
17	Dielectric Probe Kit	Agilent	85070E	2593	N/A	N/A
18	Low pass filter	Mini-Circuits	SLP-2950+	M108294	N/A	N/A
19	Power Amplifier	Mini-Circuits	ZVE-2W-272+	N650001538	N/A	N/A
20	Power Amplifier	Mini-Circuits	ZVE-8G+	N628801631	N/A	N/A
21	Dielectric Probe Kit	Agilent	85070E	2593	N/A	N/A
22	Dielectric Probe Kit	Agilent	85070E	2593	N/A	N/A

Note:

- 1. "N/A" denotes no model name, serial No. or calibration specified.
- 2. * These test equipments have been recalibrated between the test periods. All these test equipments were within the valid period when the tests were performed.
- 3. 1) Per KDB865664 D01 requirements for dipole calibration, the test laboratory has adopted three-year extended calibration interval. Each measured dipole is expected to evaluate with the following criteria at least on annual interval in Appendix C.
 - a) There is no physical damage on the dipole;
 - b) System check with specific dipole is within 10% of calibrated value;
 - c) The most recent return-loss result , measured at least annually, deviates by no more than 20% from the previous measurement;
 - d) The most recent measurement of the real or imaginary parts of the impedance, measured at least annually is within 5Ω from the previous measurement.
 - 2) Network analyzer probe calibration against air, distilled water and a short block performed before measuring liquid parameters.

Report No.: BTL-FCC SAR-1-1903T095 Page 11 of 46
Report Version: R00

4. SAR MEASUREMENTS SYSTEM CONFIGURATION

4.1. SAR MEASUREMENT SET-UP

The DASY5 system for performing compliance tests consists of the following items:

- 1. A standard high precision 6-axis robot (Stäubli RX family) with controller and software. An arm extension for accommodating the data acquisition electronics (DAE).
- 2. A dosimetric probe, i.e. an isotropic E-field probe optimized and calibrated for usage in tissue simulating liquid. The probe is equipped with an optical surface detector system.
- 3. A data acquisition electronic (DAE) which performs the signal amplification, signal multiplexing, AD-conversion, offset measurements, mechanical surface detection, collision detection, etc. The unit is battery powered with standard or rechargeable batteries. The signal is optically transmitted to the EOC.
- 4. A unit to operate the optical surface detector which is connected to the EOC.
- 5. The Electro-Optical Coupler (EOC) performs the conversion from the optical into a digital electric signal of the DAE. The EOC is connected to the DASY5 measurement server.
- 6. TheDASY5 measurement server, which performs all real-time data evaluation for field measurements and surface detection, controls robot movements and handles safety operation. A computer operating Windows.
- 7. DASY5 software and SEMCAD data evaluation software.
- 8. Remote control with teach panel and additional circuitry for robot safety such as warning
- 9. The generic twin phantom enabling the testing of left-hand and right-hand usage.
- 10. The device holder for handheld mobile phones.
- 11. Tissue simulating liquid mixed according to the given recipes.
- 12. System validation dipoles allowing to validate the proper functioning of the system.

4.1.1. TEST SETUP LAYOUT

Report No.: BTL-FCC SAR-1-1903T095 Page 12 of 46

4.2. DASY5 E-FIELD PROBE SYSTEM

The SAR measurements were conducted with the dosimetric probe EX3DV4 (manufactured by SPEAG), designed in the classical triangular configuration and optimized for dosimetric evaluation.

4.2.1. EX3DV4 PROBE SPECIFICATION

Construction	Symmetrical design with triangular core Interleaved sensors Built-in shielding against static charges PEEK enclosure material (resistant to organic solvents, e.g., DGBE)
Calibration	ISO/IEC 17025 calibration service available
Frequency	10 MHz to 6 GHz Linearity: ± 0.2 dB (30 MHz to 6 GHz)
Directivity	± 0.3 dB in HSL (rotation around probe axis) ± 0.5 dB in tissue material (rotation normal to probe axis)
Dynamic Range	10 μW/g to > 100 mW/g Linearity:± 0.2dB
Dimensions	Overall length: 330 mm (Tip: 20 mm) Tip diameter: 2.5 mm (Body: 12 mm) Distance from probe tip to dipole centers: 1.0 mm

EX3DV4 E-field Probe

Report No.: BTL-FCC SAR-1-1903T095 Page 13 of 46 Report Version: R00

4.2.2. E-FIELD PROBE CALIBRATION

Each probe is calibrated according to a dosimetric assessment procedure with accuracy better than ±10%. The spherical isotropy was evaluated and found to be better than ± 0.25dB. The sensitivity parameters (NormX, NormY, NormZ), the diode compression parameter (DCP) and the conversion factor (ConvF) of the probe are tested.

The free space E-field from amplified probe outputs is determined in a test chamber. This is performed in a TEM cell for frequencies bellow 1 GHz, and in a wave guide above 1 GHz for free space. For the free space calibration, the probe is placed in the volumetric center of the cavity and at the proper orientation with the field. The probe is then rotated 360 degrees.

E-field temperature correlation calibration is performed in a flat phantom filled with the appropriate simulated brain tissue. The measured free space E-field in the medium correlates to temperature rise in a dielectric medium. For temperature correlation calibration a RF transparent thermistor-based temperature probe is used in conjunction with the E-field probe.

$$\mathbf{SAR} = \mathbf{C} \frac{\Delta T}{\Delta t}$$

Where: $\Delta t = \text{Exposure time (30 seconds)}$,

C = Heat capacity of tissue (brain or muscle).

 ΔT = Temperature increase due to RF exposure.

Or
$$SAR = \frac{|E|^2 \sigma}{\rho}$$

Where: σ = Simulated tissue conductivity,

 ρ = Tissue density (kg/m3).

Report No.: BTL-FCC SAR-1-1903T095 Page 14 of 46

4.2.3. OTHER TEST EQUIPMENT

4.2.3.1. Device Holder for Transmitters

Construction: Simple but effective and easy-to-use extension for Mounting Device that facilitates the testing of larger devices (e.g., laptops, cameras, etc.) It is light weight and fits easily on the upper part of the Mounting Device in place of the phone positioner. The extension is fully compatible with the Twin SAM, ELI4and SAM v6.0Phantoms.

Material: POM, Acrylic glass, Foam

4.2.3.2 Phantom

Model	ELI4 Phantom
Construction	Phantom for compliance testing of handheld and body-mounted wireless devices in the frequency range of 30 MHz to 6 GHz. ELI is fully compatible with the IEC 62209-2 standard and all known tissue simulating liquids. ELI has been optimized regarding its performance and can be integrated into our standard phantom tables. A cover prevents evaporation of the liquid. Reference markings on the phantom allow installation of the complete setup, including all predefined phantom positions and measurement grids, by teaching three points. The phantom is compatible with all SPEAG dosimetric probes and dipoles.
Shell Thickness	2±0.1 mm
Filling Volume	Approx. 30 liters
Dimensions	Length: 600 mm ; Width: 190mm Height: adjustable feet
Aailable	Special

Model	Twin SAM
Construction	The shell corresponds to the specifications of the Specific Anthropomorphic Mannequin (SAM) phantom defined in IEEE 1528 and IEC 62209-1. It enables the dosimetric evaluation of left and right hand phone usage as well as body mounted usage at the flat phantom region. A cover prevents evaporation of the liquid. Reference markings on the phantom allow the complete setup of all predefined phantom positions and measurement grids by teaching three points with the robot.
Shell Thickness	2 ± 0.2 mm
Filling Volume	Approx. 25 liters
Dimensions	Length:1000mm; Width: 500mm Height: adjustable feet
Aailable	Special

Report No.: BTL-FCC SAR-1-1903T095 Page 15 of 46
Report Version: R00

4.2.4. SCANNING PROCEDURE

The DASY5 installation includes predefined files with recommended procedures for measurements and validation. They are read-only document files and destined as fully defined but unmeasured masks. All test positions (head or body-worn) are tested with the same configuration of test steps differing only in the grid definition for the different test positions.

The "reference" and "drift" measurements are located at the beginning and end of the batch process. They measure the field drift at one single point in the liquid over the complete procedure. The indicated drift is mainly the variation of the DUT's output power and should vary max. ± 5 %.

The "surface check" measurement tests the optical surface detection system of the DASY5 system by repeatedly detecting the surface with the optical and mechanical surface detector and comparing the results. The output gives the detecting heights of both systems, the difference between the two systems and the standard deviation of the detection repeatability. Air bubbles or refraction in the liquid due to separation of the sugar-water mixture gives poor repeatability (above ± 0.1mm). To prevent wrong results tests are only executed when the liquid is free of air bubbles. The difference between the optical surface detection and the actual surface depends on the probe and is specified with each probe. (It does not depend on the surface reflectivity or the probe angle to the surface within ± 30°.)

Area Scan

The "area scan" measures the SAR above the DUT or verification dipole on a parallel plane to the surface. It is used to locate the approximate location of the peak SAR with 2D spline interpolation. The robot performs a stepped movement along one grid axis while the local electrical field strength is measured by the probe. The probe is touching the surface of the SAM during acquisition of measurement values. The standard scan uses large grid spacing for faster measurement. Standard grid spacing for head measurements is 15 mm in x- and y- dimension(≤2GHz), 12 mm in x- and y- dimension(2-4 GHz) and 10mm in x- and y- dimension(4-6GHz). If a finer resolution is needed, the grid spacing can be reduced. Grid spacing and orientation have no influence on the SAR result. For special applications where the standard scan method does not find the peak SAR within the grid, e.g. mobile phones with flip cover, the grid can be adapted in orientation.

Zoom Scan

A "zoom scan" measures the field in a volume around the 2D peak SAR value acquired in the previous "coarse" scan. This is a fine grid with maximum scan spatial resolution: Δ x_{zoom}, Δy_{zoom} ≤ 2GHz - \leq 8mm, 2-4GHz - \leq 5 mm and 4-6 GHz- \leq 4mm; Δ z_{zoom} \leq 3GHz - \leq 5 mm, 3-4 GHz- \leq 4mm and 4-6GHz-≤2mm where the robot additionally moves the probe along the z-axis away from the bottom of the Phantom. DASY is also able to perform repeated zoom scans if more than 1 peak is found during area scan. In this document, the evaluated peak 1g and 10g averaged SAR values are shown in the 2D-graphics in Appendix B. Test results relevant for the specified standard (see chapter 1.4.) are shown in table form form in chapter 7.2.

A Z-axis scan measures the total SAR value at the x-and y-position of the maximum SAR value found during the cube scan. The probe is moved away in z-direction from the bottom of the SAM phantom in 2 mm steps. This measurement shows the continuity of the liquid and can - depending in the field strength – also show the liquid depth.

Page 16 of 46 Report No.: BTL-FCC SAR-1-1903T095

The following table summarizes the area scan and zoom scan resolutions per FCC KDB 865664D01:

	Maximun Area	Maximun Zoom	Maximun Z	oom Scan sp	atial resolution	Minimum	
Frequency	Scan	Scan spatial	Uniform Grid G		ded Grad	zoom scan	
rrequency	resolution (Δx _{area} , Δy _{area})	resolution $(\Delta x_{Zoom}, \Delta y_{Zoom})$	Δz _{Zoom} (n)	Δz _{Zoom} (1)*	Δz _{Zoom} (n>1)*	volume (x,y,z)	
≤2GHz	≤15mm	≤8mm	≤5mm	≤4mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥30mm	
2-3GHz	≤12mm	≤5mm	≤5mm	≤4mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥30mm	
3-4GHz	≤12mm	≤5mm	≤4mm	≤3mm	≤1.5*∆z _{Zoom} (n-1)	≥28mm	
4-5GHz	≤10mm	≤4mm	≤3mm	≤2.5mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥25mm	
5-6GHz	≤10mm	≤4mm	≤2mm	≤2mm	$\leq 1.5^*\Delta z_{Zoom}(n-1)$	≥22mm	

4.2.5. SPATIAL PEAK SAR EVALUATION

The spatial peak SAR - value for 1 and 10 g is evaluated after the Cube measurements have been done. The basis of the evaluation are the SAR values measured at the points of the fine cube grid consisting of 5 x 5 x 7 points(with 8mm horizontal resolution) or 7 x 7 x 7 points(with 5mm horizontal resolution) or 8 x 8 x 7 points(with 4mm horizontal resolution). The algorithm that finds the maximal averaged volume is separated into three different stages.

- The data between the dipole center of the probe and the surface of the phantom are extrapolated. This data cannot be measured since the center of the dipole is 2.7 mm away from the tip of the probe and the distance between the surface and the lowest measuring point is about 1 mm (see probe calibration sheet). The extrapolated data from a cube measurement can be visualized by selecting "Graph Evaluated".
- The maximum interpolated value is searched with a straight-forward algorithm. Around this maximum the SAR - values averaged over the spatial volumes (1g or 10 g) are computed using the 3d-spline interpolation algorithm. If the volume cannot be evaluated (i.e., if a part of the grid was cut off by the boundary of the measurement area) the evaluation will be started on the corners of the bottom plane of the cube.
- All neighboring volumes are evaluated until no neighboring volume with a higher average value is found.

Extrapolation

The extrapolation is based on a least square algorithm [W. Gander, Computer mathematic, p.168-180]. Through the points in the first 3 cm along the z-axis, polynomials of order four are calculated. These polynomials are then used to evaluate the points between the surface and the probe tip. The points, calculated from the surface, have a distance of 1 mm from each other.

Interpolation

The interpolation of the points is done with a 3d-Spline. The 3d-Spline is composed of three one-dimensional splines with the "Not a knot"-condition [W. Gander, Computer mathematic, p.141-150] (x, y and z -direction) [Numerical Recipes in C, Second Edition, p.123ff].

Volume Averaging

At First the size of the cube is calculated. Then the volume is integrated with the trapezoidal algorithm. 8000 points (20x20x20) are interpolated to calculate the average.

Advanced Extrapolation

DASY5 uses the advanced extrapolation option which is able to compensate boundary effects on E-field probes.

Report No.: BTL-FCC SAR-1-1903T095 Page 17 of 46

4.2.6. DATA STORAGE AND EVALUATION

4.2.6.1 Data Storage

The DASY5 software stores the acquired data from the data acquisition electronics as raw data (in microvolt readings from the probe sensors), together with all necessary software parameters for the data evaluation (probe calibration data, liquid parameters and device frequency and modulation data) in measurement files with the extension "DAE4". The software evaluates the desired unit and format for output each time the data is visualized or exported. This allows verification of the complete software setup even after the measurement and allows correction of incorrect parameter settings. For example, if a measurement has been performed with a wrong crest factor parameter in the device setup, the parameter can be corrected afterwards and the data can be re-evaluated.

The measured data can be visualized or exported in different units or formats, depending on the selected probe type ([V/m], [A/m], [°C], [mW/g], [mW/cm²], [dBrel], etc.). Some of these units are not available in certain situations or show meaningless results, e.g., a SAR output in a lossless media will always be zero. Raw data can also be exported to perform the evaluation with other software packages.

Report No.: BTL-FCC SAR-1-1903T095 Page 18 of 46 Report Version: R00

4.2.7. DATA EVALUATION BY SEMCAD

The SEMCAD software automatically executes the following procedures to calculate the field units from the microvolt readings at the probe connector. The parameters used in the evaluation are stored in the configuration modules of the software:

Probe parameters: Sensitivity Normi, a_{i0}, a_{i1}, a_{i2}

> ConvF_i Conversion factor

Diode compression point Dcpi

Device Frequency f parameters:

> Crest factor cf

Media parameters: Conductivity

Density

These parameters must be set correctly in the software. They can be found in the component documents or they can be imported into the software from the configuration files issued for the DASY5 components. In the direct measuring mode of the multi meter option, the parameters of the actual system setup are used. In the scan visualization and export modes, the parameters stored in the corresponding document files are used.

The first step of the evaluation is a linearization of the filtered input signal to account for the compression characteristics of the detector diode. The compensation depends on the input signal, the diode type and the DC-transmission factor from the diode to the evaluation electronics.

If the exciting field is pulsed, the crest factor of the signal must be known to correctly compensate for peak power. The formula for each channel can be given as:

$$V_i = U_i + U_i^2 \cdot cf / dcp_i$$

 V_i = compensated signal of channel i (i = x, y, z) With

> U_i = input signal of channel i (i = x, y, z)

cf = crest factor of exciting field (DASY parameter)

 dcp_i = diode compression point (DASY parameter)

Report No.: BTL-FCC SAR-1-1903T095 Page 19 of 46 From the compensated input signals the primary field data for each channel can be evaluated:

E-field probes:
$$E_i = (V_i / Norm_i \cdot ConvF)^{1/2}$$

H-field probes:
$$H_i = (V_i)^{1/2} \cdot (a_{i0} + a_{i1} f + a_{i2} f^2) / f$$

With V_i = compensated signal of channel i (i = x, y, z)

Norm_i = sensor sensitivity of channel i (i = x, y, z) $[mV/(V/m)^2]$ for E-field Probes

ConvF = sensitivity enhancement in solution

aij = sensor sensitivity factors for H-field probes

f = carrier frequency [GHz]

 E_i = electric field strength of channel i in V/m

 H_i = magnetic field strength of channel i in A/m

The RSS value of the field components gives the total field strength (Hermitian magnitude):

$$E_{tot} = (E_X^2 + E_Y^2 + E_Z^2)^{1/2}$$

The primary field data are used to calculate the derived field units.

SAR =
$$(E_{tot})^2 \cdot \sigma / (\rho \cdot 1000)$$

With SAR = local specific absorption rate in mW/g

 E_{tot} = total field strength in V/m

= conductivity in [mho/m] or [Siemens/m]

= equivalent tissue density in g/cm³

Note that the density is normally set to 1 (or 1.06), to account for actual brain density rather than the density of the simulation liquid. The power flow density is calculated assuming the excitation field to be a free space field.

$$P_{pwe} = E_{tot}^2 / 3770 \text{ or } P_{pwe} = H_{tot}^2 \cdot 37.7$$

With P_{pwe} = equivalent power density of a plane wave in mW/cm²

 E_{tot} = total field strength in V/m

 H_{tot} = total magnetic field strength in A/m

5. SYSTEM VERIFICATION PROCEDURE

5.1. TISSUE VERIFICATION

The simulating liquids should be checked at the beginning of a series of SAR measurements to determine of the dielectic parameter are within the tolerances of the specified target values. The measured conductivity and relative permittivity should be within ± 5% of the target values.

The following materials are used for producing the tissue-equivalent materials.

Tissue Type	Bactericide	DGBE	HEC	NaCI	Sucrose	Triton X-100	Water	Diethylene Glycol Mono- hexylether
Body 750	0.2	-	0.2	8.0	48.8	-	50.0	-
Body 835	0.2	-	0.2	0.9	48.5	-	50.2	-
Body 1750	-	31.0	-	0.2	-	-	68.8	-
Body 1900	-	29.5	-	0.3	-	-	70.2	-
Body 2000	-	30.0	-	0.2	-	-	69.8	-
Body 2450	-	31.4	-	0.1	-	-	68.5	-
Body 2600	-	31.8	-	0.1	ı	-	68.1	-
Body 5G	-	-	-	-	ı	10.7	78.6	10.7

Salt: 99+% Pure Sodium Chloride; Sugar: 98+% Pure Sucrose; Water: De-ionized, 16M + resistivity HEC: Hydroxyethyl Cellulose; DGBE: 99+% Di(ethylene glycol) butyl ether,[2-(2-butoxyethoxy)ethanol] Triton X-100(ultra pure): Polyethylene glycol mono [4-(1,1,3,3-tetramethylbutyl)phenyl]ether

	Tissue Verification													
Tissue Type	Frequency (MHz)	Liquid Temp. (°C)	Conductivity (σ)	Permittivity	Targeted Conductivity (σ)	Targeted Permittivity (εr)	Deviation Conductivity (σ) (%)	Deviation Permittivity (εr) (%)	Date					
Body	750	22.1	0.960	56.483	0.96	55.5	0.00	1.77	Apr. 08, 2019					
Body	835	22.0	0.981	53.997	0.97	55.2	1.13	-2.18	Mar. 26, 2019					
Body	1750	22.2	1.487	54.389	1.49	53.4	-0.20	1.85	Apr. 03, 2019					
Body	1750	22.1	1.481	54.739	1.49	53.4	-0.60	2.51	Apr. 09, 2019					
Body	1900	22.2	1.558	53.307	1.52	53.3	2.50	0.01	Mar. 26, 2019					
Body	1900	22.5	1.555	53.605	1.52	53.3	2.30	0.57	Apr. 03, 2019					

Note:

- 1) The dielectric parameters of the tissue-equivalent liquid should be measured under similar ambient conditions and within 2 °C of the conditions expected during the SAR evaluation to satisfy protocol requirements.
- 2) KDB 865664 was ensured to be applied for probe calibration frequencies greater than or equal to 50MHz of the EUT frequencies.
- 3) The above measured tissue parameters were used in the DASY software to perform interpolation via the DASY software to determine actual dielectric parameters at the test frequencies. The SAR test plots may slightly differ from the table above since the DASY rounds to three significant digits.

Report No.: BTL-FCC SAR-1-1903T095 Page 21 of 46

5.2. SYSTEM CHECK

The system check is performed for verifying the accuracy of the complete measurement system and performance of the software. The system check is performed with tissue equivalent material according to IEEE P1528 (described above). The following table shows system check results for all frequency bands and tissue liquids used during the tests.

System Check	Date	Frequency (MHz)	Targeted SAR-1g (W/kg)	Measured SAR-1g (W/kg)	normalized SAR-1g (W/kg)	Deviation (%)	Dipole S/N
Body	Apr. 08, 2019	750	8.51	2.20	8.80	3.41	1095
Body	Mar. 26, 2019	835	9.53	2.50	10.00	4.93	4d160
Body	Apr. 03, 2019	1750	37.40	9.76	39.04	4.39	1101
Body	Apr. 09, 2019	1750	37.40	9.74	38.96	4.17	1101
Body	Mar. 26, 2019	1900	39.80	9.75	39.00	-2.01	5d179
Body	Apr. 03, 2019	1900	39.80	10.40	41.60	4.52	5d179

5.3. SYSTEM CHECK PROCEDURE

The system check is performed by using a system check dipole which is positioned parallel to the planar part of the SAM phantom at the reference point. The distance of the dipole to the SAM phantom is determined by a plexiglass spacer. The dipole is connected to the signal source consisting of signal generator and amplifier via a directional coupler, N-connector cable and adaption to SMA. It is fed with a power of 250 mW(below 3GHz) or 100mW(3-6GHz). To adjust this power a power meter is used. The power sensor is connected to the cable before the system check to measure the power at this point and do adjustments at the signal generator. At the outputs of the directional coupler both return loss as well as forward power are controlled during the system check to make sure that emitted power at the dipole is kept constant. This can also be checked by the power drift measurement after the test.

System check results have to be equal or near the values determined during dipole calibration (target SAR in table above) with the relevant liquids and test system (±10 %).

Report No.: BTL-FCC SAR-1-1903T095 Page 22 of 46

6. SAR MEASUREMENT VARIABILITY AND UNCERTAINTY

6.1. SAR MEASUREMENT VARIABILITY

Per KDB865664 D01 SAR measurement 100 MHz to 6 GHz, SAR measurement variability must be assessed for each frequency band, which is determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. The additional measurements are repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device should be returned to ambient conditions (normal room temperature) with the battery fully charged before it is re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

- 1) Repeated measurement is not required when the original highest measured SAR is < 0.80 W/kg; steps 2) through 4) do not apply.
- 2) When the original highest measured SAR is ≥ 0.80 W/kg, repeat that measurement once.
- 3) Perform a second repeated measurement only if the ratio of largest to smallest SAR for the original and first repeated measurements is > 1.20 or when the original or repeated measurement is ≥ 1.45 W/kg (~ 10% from the 1-g SAR limit).
- 4) Perform a third repeated measurement only if the original, first or second repeated measurement is ≥1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.

The same procedures should be adapted for measurements according to extremity and occupational exposure limits by applying a factor of 2.5 for extremity exposure and a factor of 5 for occupational exposure to the corresponding SAR thresholds.

The detailed repeated measurement results are shown in Section 8.2.

Report No.: BTL-FCC SAR-1-1903T095 Page 23 of 46

7. OPERATIONAL CONDITIONS DURING TEST

7.1. SAR TEST CONFIGURATION

7.1.1. GSM TEST CONFIGURATION

SAR tests for GSM850 and GSM1900, a communication link is set up with a base station by air link. Using 8960 Series the power lever is set to "5" and "0" in SAR of GSM850 and GSM1900. The tests in the band of GSM850 and GSM1900 are performed in the mode of GPRS/EGPRS function. Since the GPRS class is 12 for this EUT, it has at most 4 timeslots in uplink and at most 4 timeslots in downlink, the maximum total timeslot is 5. The EGPRS class is 12 for this EUT, it has at most 4 timeslots in uplink, and at most 4 timeslots in downlink, the maximum total timeslot is 5.

When SAR tests for EGPRS mode is necessary, GMSK modulation should be used to minimize SAR measurement error due to higher peak-to-average power (PAR) ratios inherent in 8PSK.

According to specification 3GPP TS 51.010, the maximum power of the GSM can do the power reduction for the multi-slot.

The allowed power reduction in the multi-slot configuration is as following:

Number of times assignr		Reduction	n of maximum output p	ower (dB)	
Band	Time Slots	GPRS (GMSK)	EGPRS (GMSK)	EGPRS (8PSK)	
	1 TX slot	0.0	0.0	6.4	
GSM850	2 TX slots	3.0	3.0	9.4	
GSIVIOSU	3 TX slots	4.8	4.8	11.2	
	4 TX slots	6.0	6.0	12.4	
	1 TX slot	0.0	0.0	4.3	
GSM1900	2 TX slots	3.0	3.0	7.3	
GSW11900	3 TX slots	4.8	4.8	9.1	
	4 TX slots	6.0	6.0	10.3	

Report No.: BTL-FCC SAR-1-1903T095 Page 24 of 46

7.1.2. LTE CAT.M1 TEST CONFIGURATION

SAR for LTE band exposure configurations is measured according to the procedures of KDB 941225 D05 SAR for LTE Devices. The MT8821C WideBand Radio Communication Tester was used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR test were performed with the same number of RB and RB offsets transmitting on all TTI frames(Maximum TTI)

1. Spectrum Plots for RB configurations

A properly configured base station simulator was used for LTE output power measurements and SAR testing Therefore, spectrum plots for RB configurations were not required to be included in this report.

2. MPR

When MPR is implemented permanently within the UE, regardless of network requirements, only those RB configurations allowed by 3GPP for the channel bandwidth and modulation combinations may be tested with MPR active. Configurations with RB allocations less than the RB thresholds required by 3GPP must be tested without MPR.

The allowed Maximum Power Reduction (MPR) for the maximum output power due to higher order modulation and transmit bandwidth configuration (resource blocks) is specified in Table 6.2.3EA-1 of the 3GPP TS36.521:

Table 6.2.3EA-1: Maximum Power Reduction (MPR) for Power Class 3

Modulation	Cha	MPR (dB)					
	1.4 MHz	3.0 MHz	5 MHz	10 MHz	15 MHz	20 MHz	
QPSK	>2	>2	>1	>4			≤1
QPSK	>5.	>5					≤2
16 QAM	≤ 2	≤2	>1	>3			±1
16QAM	>2	>2	>3	>5			≤ 2

Report No.: BTL-FCC SAR-1-1903T095 Page 25 of 46 Report Version: R00

3. A-MPR

The allowed A-MPR(Additional MPR) values specified below in Table 6.2.4EA-1 of 3GPP TS36.521 are in addition to the allowed MPR requirements. All the measurements below were performed with A-MPR disabled, by using Network Signaling Value of "NS_01".

Table 6.2.4EA-1: Additional Maximum Power Reduction (A-MPR) for category M1 UE

Network	Requirements	E-UTRA Band	Resources	A-MPR (dB)
Signalling	(subclause)		Blocks (N _{RB})	
value				
NS_01	6.6.2.1.1	Table 5.2-1	Table 5.4.2-1	N/A
NS_03	6.6.2.2.1	2, 4	Table 5.4.2-1	N/A
NS_04	6.6.2.2.2	41	[TBD]	[TBD]
NS_05	6.6.3.3.3.2	1	Table 5.4.2-1	N/A
NS_06	6.6.2.2.3	12, 13, 14	Table 5.4.2-1	N/A
NC 07	6.6.2.2.3	40	Table (20405
NS_07	6.6.3.3.3.3	13	Table	6.2.4-2E
NS_08	6.6.3.3.3.4	19	Table 5.4.2-1	N/A
NS_09	6.6.3.3.3.5	21	Table 5.4.2-1	N/A
NS_10		20	Table 5.4.2-1	N/A
NS_12	6.6.3.3.3.7	26	[T	BD]
NS_13	6.6.3.3.3.8	26	Table 5.4.2-1	N/A
NS_14	6.6.3.3.3.9	26	Table 5.4.2-1	N/A
NS_15	6.6.3.3.3.10	26	Table	6.2.4-9
NS_16	6.6.3.3.3.11	27	Table 5.4.2-1	N/A
NS_17	6.6.3.3.3.12	28	Table 5.4.2-1	N/A
NS_18	6.6.3.3.3.13	28	Table 5.4.2-1	N/A
NS_32	-	-	-	-
NS_35	[TBD]	71	[TBD]	[TBD]
NS_38	6.6.3.3.3.27	74	Table 5.4.2-1	N/A
NS_39	6.6.3.3.3.28	74	Table 5.4.2-1	N/A

Report No.: BTL-FCC SAR-1-1903T095 Page 26 of 46 Report Version: R00

7.1.3. NB-IOT NB1 TEST CONFIGURATION

The Category NB1 for a 3.75 kHz subcarrier spacing, the maximum output power is defined as the average measured power. When the UE does not transmit, the period is at least one time slot (2 ms), excluding the 2304 Ts gap. For a 15 kHz subcarrier spacing, the maximum output power is defined as the average measured power, which is at least one subframe (1 ms).

The initial test configurations of the environmental conditions and test frequencies based on the subset of E-UTRA operating defined. NB-IoT in clause 5.2F. All of these configurations shall be tested with applicable test parameters, and are shown in table 6.2. 2F.4.1-1 of 3GPP TS36.521.

Table 6.2.2F.4.1-1: Test Configuration Initial Conditions

Test Environment a TS 36.508 [7] subcl		Normal, TL/VL, TL/VH, TH/VL, TH/VH						
Test Frequencies as TS 36.508 [7] subdi	s specified in	Frequency ranges defined in Annex K.1.2						
15 36.306 [7] Subu		st Parameters						
Configuration ID	Downlink Configuration	Uplir	nk Configuration					
	N/A	Modulation	N _{tones}	Sub-carrier				
				spacing				
				(kHz)				
1 (Note 2)		BPSK	1@0	3.75				
2 (Note 3)		BPSK	1@47	3.75				
3 (Note 2)		QPSK	1@0	15				
4 (Note 3)		QPSK	1@11	15				
5 (Note 1)		QPSK	3@3	15				

Note 1: Applicable to UE supporting UL multi-tone transmissions

Note 2: only applicable for low range

Note 3: only applicable for high range

Report No.: BTL-FCC SAR-1-1903T095 Page 27 of 46 Report Version: R00

4. LTE procedures for SAR testing

A) Largest channel bandwidth standalone SAR test requirements

i) QPSK with 1 RB allocation

Start with the largest channel bandwidth and measure SAR for QPSK with 1 RB allocation, using the RB offset and required test channel combination with the highest maximum output power for RB offsets at the upper edge, middle and lower edge of each required test channel. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required for 1 RB allocation; otherwise, SAR is required for the remaining required test channels and only for the RB offset configuration with the highest output power for that channel. When the reported SAR of a required test channel is > 1.45 W/kg, SAR is required for all three RB offset configurations for that required test channel.

ii) QPSK with 50% RB allocation

The procedures required for 1 RB allocation in i) are applied to measure the SAR for QPSK with 50% RB allocation

iii) QPSK with 100% RB allocation

For QPSK with 100% RB allocation, SAR is not required when the highest maximum output power for 100 % RB allocation is less than the highest maximum output power in 50% and 1 RB allocations and the highest reported SAR for 1 RB and 50% RB allocation in i) and ii) are ≤ 0.8 W/kg. Otherwise, SAR is measured for the highest output power channel and if the reported SAR is > 1.45 W/kg, the remaining required test channels must also be tested.

iv) Higher order modulations

For each modulation besides QPSK; e.g., 16-QAM, 64-QAM, apply the QPSK procedures in above sections to determine the QAM configurations that may need SAR measurement. For each configuration identified as required for testing, SAR is required only when the highest maximum output power for the configuration in the higher order modulation is > ½ dB higher than the same configuration in QPSK or when the reported SAR for the QPSK configuration is > 1.45 W/kg.

B) Other channel bandwidth standalone SAR test requirements

For the other channel bandwidths used by the device in a frequency band, apply all the procedures required for the largest channel bandwidth in section A) to determine the channels and RB configurations that need SAR testing and only measure SAR when the highest maximum output power of a configuration requiring testing in the smaller channel bandwidth is > \frac{1}{2} dB higher than the equivalent channel configurations in the largest channel bandwidth configuration or the reported SAR of a configuration for the largest channel bandwidth is > 1.45 W/kg.

Report No.: BTL-FCC SAR-1-1903T095 Page 28 of 46

7.1.4. WIFI TEST CONFIGURATION

For WLAN SAR testing, WLAN engineering testing software installed on the DUT can provide continuous transmitting RF signal.

2.4G

Mode	802.11b	802.11g	802.11n HT20	802.11n HT40
Duty cycle			100%	
Crest factor			1	

For WiFi SAR testing, a communication link is set up with the test mode software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode. The RF signal utilized in SAR measurement has 100% duty cycle and its crest factor is 1. The test procedures in KDB 248227 D01 are applied.

7.1.1.1 2.4G SAR Test Requirements

802.11b DSSS SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either a fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- 1) When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that exposure configuration using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11g/n OFDM SAR Test Exclusion Requirements

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, the measurement and test reduction procedures for OFDM are applied. SAR is not required for the following 2.4 GHz OFDM conditions.

- 1) When KDB Publication 447498 SAR test exclusion applies to the OFDM configuration.
- 2) When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg.

SAR Test Requirements for OFDM configurations

When SAR measurement is required for 2.4 GHz 802.11g/n OFDM configurations, each standalone And frequency aggregated band is considered separately for SAR test reduction. In applying the initial test configuration and subsequent test configuration procedures, the 802.11 transmission configuration with the highest specified maximum output power and the channel within a test configuration with the highest measured maximum output power should be clearly distinguished to apply the procedures.

Report No.: BTL-FCC SAR-1-1903T095 Page 29 of 46

7.1.1.3 OFDM transmission mode and SAR test channel selection

For the 2.4GHz, when the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is the same for equivalent OFDM configurations(for example 802.11g and 802.11n,with the same channel bandwidth, modulation, and data rate, etc.). When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

7.1.1.4 Initial test configuration procedure

For OFDM, in both 2.4G bands, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, and lowest data rate. If the average RF output powers of the highest identical transmission modes are within 0.25 dB of each other, mid channel of the transmission mode with highest average RF output powers is the initial test channel. Otherwise, the channel of the transmission mode with the highest average RF output power will be the initial test configuration.

When the reported SAR is \leq 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is \leq 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurement.

7.2. TEST POSITION ANTENNA LOCATION

	Antenna	Front Face	Rear Face	Right Side	Left Side	Top Side	Bottom Side
ı	WWAN	1.7mm	12mm	4.4mm	21.7 mm	5.8mm	38.4 mm
	WLAN	1.7mm	12mm	28.8mm	3.5 mm	5.6 mm	28 mm

8. TEST RESULT

8.1. CONDUCTED POWER RESULTS

8.1.1. CONDUCTED POWER MEASUREMENTS OF GSM BAND

		Max	Burst Avera	age Power	(dBm)	Max	Frame Aver	age Powe	r (dBm)
GSM85	0	Max.	Channe	I/Frequenc	cy(MHz)	Max.	Channe	I/Frequenc	cy(MHz)
		Tune-up	128/824.2	188/836.2	251/848.8	Tune-up	128/824.2	188/836.2	251/848.8
	1 Tx Slot	27.00	26.88	26.93	26.92	17.81	17.69	17.74	17.73
GPRS/EDGE	2 Tx Slot	27.50	27.07	26.74	26.76	21.37	20.94	20.61	20.63
(GMSK)	3 Tx Slot	27.50	27.04	26.93	26.68	23.08	22.62	22.51	22.26
	4 Tx Slot	27.00	26.94	26.84	26.53	23.82	23.76	23.66	23.35
	1 Tx Slot	25.00	24.84	24.73	24.69	15.81	15.65	15.54	15.50
EDGE	2 Tx Slot	25.00	24.68	24.62	24.58	18.87	18.55	18.49	18.45
(8PSK)	3 Tx Slot	25.00	24.66	24.52	24.43	20.58	20.24	20.10	20.01
	4 Tx Slot	25.00	24.51	24.42	24.39	21.82	21.33	21.24	21.21
		Max	Burst Avera	age Power	(dBm)	Max	Frame Aver	age Powe	r (dBm)
GSM190	00	Max.	Channe	I/Frequenc	cy(MHz)	Max.	Max. Channel/Frequency(
		Tune-up	512/1850.2	661/1880	810/1909.8	Tune-up	512/1850.2	661/1880	810/1909.8
	1 Tx Slot	21.50	21.15	21.11	20.09	12.31	11.96	11.92	10.90
GPRS/EDGE	2 Tx Slot	21.50	21.11	21.04	20.02	15.37	14.98	14.91	13.89
(GMSK)	3 Tx Slot	21.50	21.02	20.98	19.94	17.08	16.60	16.56	15.52
	4 Tx Slot	22.00	21.94	20.86	20.07	18.82	18.76	17.68	16.89
	1 Tx Slot	19.50	19.34	18.78	17.66	10.31	10.15	9.59	8.47
EDGE	2 Tx Slot	19.50	19.03	18.53	17.62	13.37	12.90	12.40	11.49
(8PSK)	3 Tx Slot	19.00	18.79	18.32	17.13	14.58	14.37	13.90	12.71
	4 Tx Slot	18.50	18.46	17.94	16.83	15.32	15.28	14.76	13.65

Note:

The conducted power of GSM Band is measured with RMS detector.

8.1.2. CONDUCTED POWER MEASUREMENTS OF LTE CAT.M1

LTE B2/I	BW=1.4M	Average	Conduc	ted Powe	r(dBm)	LTE B	2/BW=3M	Average	Conduct	ted Powe	r(dBm)
	RB Size/		Channe	l/Frequen	cy(MHz)		RB Size/		Channe	l/Frequen	cy(MHz)
Modula -tion	Offset / NB Index	Max. Tune-up	18607/ 1850.7	18900/ 1880	19193/ 1909.3	Modula -tion	Offset / NB Index	Max. Tune-up	18615/ 1851.5	18900/ 1880	19185/ 1908.5
	1/0/0	24.00	23.37	23.67	23.15		1/0/0	24.00	23.46	23.79	23.28
	1/5/0	24.00	23.53	23.57	22.71		1/5/1	24.00	23.62	23.66	22.80
QPSK	3/0/0	24.00	23.47	23.52	22.68	QPSK	3/0/0	24.00	23.56	23.61	22.77
QFSK	3/3/0	24.00	23.41	23.47	22.57	QFSK	3/3/1	24.00	23.50	23.56	22.66
	6/0/0	24.00	23.39	23.66	23.02		6/0/0	24.00	23.78	23.69	22.96
	0/0/0	24.00	20.00	20.00	20.02		6/0/1	24.00	23.45	23.52	22.90
	1/0/0	22.50	22.08	22.14	21.31		1/0/0	22.50	22.15	22.21	21.38
	1/4/0	22.50	22.05	22.09	21.23		1/4/1	22.50	22.12	22.16	21.30
16QAM	3/0/0	22.50	21.99	22.04	21.20	16QAM	3/0/0	22.50	22.06	22.11	21.27
IOQAW	3/2/0	22.50	21.93	21.99	21.09	IOQAW	3/2/1	22.50	22.00	22.06	21.16
	5/0/0	22.00	21.88	21.95	21.33		5/0/0	22.50	21.99	22.08	21.46
	5/0/0	22.00	21.00	21.95	21.33		5/0/1 22.50		21.95	22.02	21.40
LTE B2	/BW=5M	Average	Conducted Power(dBm)			LTE B2	2/BW=10M	Average	Conduct	ed Powe	r(dBm)
Madula		Mari	Channel/Frequency(MHz)			Madala	RB Size/	Mov	Channe	l/Frequen	cy(MHz)
Modula -tion		Max. Tune-up	18625/ 1852.5	18900/ 1880	19175/ 1907.5	Modula -tion	Offset / NB Index	Max. Tune-up	18650/ 1855	18900/ 1880	19150/ 1905
	1/0/0	24.00	23.80	23.86	23.03		1/0/0	24.00	23.87	23.93	23.10
	1/0/3	24.00	23.77	23.81	22.95		1/0/3	24.00	23.84	23.88	23.02
	1/5/0	24.00	23.71	23.76	22.92	1	1/5/4	24.00	23.78	23.83	22.99
ODOK	1/5/3	24.00	23.65	23.71	22.81	ODCK	1/5/7	24.00	23.72	23.78	22.88
QPSK	3/0/0	24.00	23.64	23.73	23.11	QPSK	3/0/0	24.00	23.71	23.80	23.18
	3/3/3	24.00	23.60	23.67	23.05		3/3/7	24.00	23.67	23.74	23.12
	6/0/0	24.00	23.48	23.66	23.08		6/0/0	24.00	23.55	23.73	23.15
	6/0/3	24.00	23.36	23.58	22.94		6/0/7	24.00	23.43	23.65	23.01
	1/0/0	22.50	22.30	22.36	21.53		1/0/0	22.50	22.37	22.43	21.60
	1/0/3	22.50	22.27	22.31	21.45		1/0/3	22.50	22.34	22.38	21.52
	1/4/0	22.50	22.21	22.26	21.42		1/4/4	22.50	22.28	22.33	21.49
160 4 14	1/4/3	22.50	22.15	22.21	21.31	160 4 14	1/4/7	22.50	22.22	22.28	21.38
16QAM	3/0/0	22.50	22.14	22.23	21.61	16QAM	3/0/0	22.50	22.21	22.30	21.68
	3/2/3	22.50	22.10	22.17	21.55		3/2/7	22.50	22.17	22.24	21.62
	5/0/0	22.50	21.98	22.16	21.58		5/0/0	22.50	22.05	22.23	21.65
	5/0/3	22.50	21.86	22.08	21.44		5/0/7	22.50	21.93	22.15	21.51

LTE	B2/BW=15M	Average	Conduct	ted Powe	er(dBm)	LTE I	B2/BW=20M	Average	Conduct	ted Powe	er(dBm)
Madula	RB Size/	Max.	Channel	/Frequen	cy(MHz)	Modula	RB Size/	Max.	Channel	/Frequen	cy(MHz)
Modula -tion	Offset / NB Index	Tune-up	18675/ 1857.5	18900/ 1880	19125/ 1902.5	-tion	Offset / NB Index	Tune-up	18700/ 1860	18900/ 1880	19100/ 1900
	1/0/0	24.50	23.99	24.05	23.22		1/0/0	24.50	24.06	24.12	23.29
	1/0/3	24.50	23.96	24.00	23.14		1/0/3	24.50	24.03	24.07	23.21
	1/5/8	24.50	23.90	23.95	23.11		1/5/12	24.50	23.97	24.02	23.18
QPSK	1/5/11	24.00	23.84	23.90	23.00	QPSK	1/5/15	24.00	23.91	23.97	23.07
QPSK	3/0/0	24.00	23.83	23.92	23.30	QPSK	3/0/0	24.00	23.99	23.90	23.37
	3/3/11	24.00	23.79	23.86	23.24		3/3/15	24.00	23.86	23.93	23.31
	6/0/0	24.00	23.67	23.85	23.27		6/0/0	24.00	23.74	23.92	23.34
	6/0/11	24.00	23.55	23.77	23.13		6/0/15	24.00	23.62	23.84	23.20
	1/0/0	23.00	22.49	22.55	21.72		1/0/0	23.00	22.56	22.62	21.79
	1/0/3	23.00	22.46	22.50	21.64		1/0/3	23.00	22.53	22.57	21.71
	1/4/8	23.00	22.40	22.45	21.61		1/4/12	23.00	22.47	22.52	21.68
160 4 14	1/4/11	23.00	22.34	22.40	21.50	16QAM	1/4/15	23.00	22.41	22.47	21.57
16QAM	3/0/0	22.50	22.33	22.42	21.80	IOQAW	3/0/0	22.50	22.40	22.49	21.87
	3/2/11	22.50	22.29	22.36	21.74		3/2/15	22.50	22.36	22.43	21.81
	5/0/0	22.50	22.17	22.35	21.77		5/0/0	22.50	22.24	22.42	21.84
	5/0/11	22.50	22.05	22.27	21.63		5/0/15	22.50	22.12	22.34	21.70

LTE I	B4/BW=1.4M	Average	Conduct	ted Powe	er(dBm)	LTE	B4/BW=3M	Average	Conduc	ted Powe	er(dBm)
Madula	RB Size/	May	Channel	/Frequer	ncy(MHz)	Madula	RB Size/		Channel	/Frequen	icy(MHz)
Modula -tion	Offset / NB Index	Max. Tune-up	19957/ 1710.7	20175/ 1732.5	20393/ 1754.3	Modula -tion	Offset / NB Index	Max. Tune-up	19965/ 1711.5	20175/ 1732.5	20385/ 1753.5
	1/0/0	24.00	23.72	23.11	22.71		1/0/0	24.00	23.79	23.22	22.77
	1/5/0	24.00	23.76	23.29	22.83		1/5/1	24.00	23.81	23.20	22.80
QPSK	3/0/0	24.00	23.70	23.19	22.72	QPSK	3/0/0	24.00	23.85	23.38	22.92
QPSK	3/3/0	24.00	23.69	23.26	22.89	QPSK	3/3/1	24.00	23.79	23.28	22.81
	6/0/0	24.00	22.57	23.16	20.04		6/0/0	24.00	23.78	23.35	22.98
	6/0/0	24.00	23.57	23.10	22.81		6/0/1	24.00	23.66	23.25	22.90
	1/0/0	22.50	22.49	21.88	21.48		1/0/0	23.00	22.57	22.00	21.55
	1/4/0	22.50	22.46	22.06	21.60		1/4/1	23.00	22.59	21.98	21.58
160 4 14	3/0/0	22.50	22.47	21.96	21.49	160 4 14	3/0/0	23.00	22.63	22.16	21.70
16QAM	3/2/0	22.00	21.53	21.44	21.55	16QAM	3/2/1	23.00	22.57	22.06	21.59
	F 10.10	04.50	04.00	04.40	04.04		5/0/0	22.00	21.63	21.54	21.65
	5/0/0	21.50	21.22	21.18	21.21		5/0/1	22.00	21.35	21.23	21.29

LTE B4	1/BW=5M	Average	Conduct	ted Power	(dBm)	LTE B4	/BW=10M	Average	Conduct	ted Power	(dBm)
	DD Ci-o/			I/Frequen	· · · · · · · · · · · · · · · · · · ·		RB Size/			I/Frequen	•
Modula -tion	Offset / NB Index	Max. Tune-up	19975/ 1712.5	20175/ 1732.5	20375/ 1752.5	Modula -tion	Offset / NB Index	Max. Tune-up	20000/ 1715	20175/ 1732.5	20350/ 1750
	1/0/0	24.00	23.99	23.52	22.94		1/0/0	24.50	24.06	23.59	23.01
	1/0/3	24.00	23.94	23.41	22.86		1/0/3	24.50	24.01	23.48	22.93
	1/5/0	24.00	23.90	23.33	22.88		1/5/4	24.50	23.97	23.40	22.95
QPSK	1/5/3	24.00	23.92	23.31	22.91	QPSK	1/5/7	24.50	23.99	23.38	22.98
QFSIX	3/0/0	24.00	23.96	23.49	23.03	QFSK	3/0/0	24.50	24.03	23.56	23.10
	3/3/3	24.00	23.90	23.39	22.92		3/3/7	24.50	23.97	23.46	22.99
	6/0/0	24.00	23.89	23.46	23.09		6/0/0	24.50	23.96	23.53	23.16
	6/0/3	24.00	23.77	23.36	23.01		6/0/7	24.00	23.84	23.43	23.08
	1/0/0	23.00	22.77	22.30	21.72		1/0/0	23.00	22.84	22.37	21.79
	1/0/3	23.00	22.72	22.19	21.64		1/0/3	23.00	22.79	22.26	21.71
	1/4/0	23.00	22.68	22.11	21.66		1/4/4	23.00	22.75	22.18	21.73
16QAM	1/4/3	23.00	22.70	22.09	21.69	16QAM	1/4/7	23.00	22.77	22.16	21.76
TOQAW	3/0/0	23.00	22.74	22.27	21.81	TOQAM	3/0/0	23.00	22.81	22.34	21.88
	3/2/3	23.00	22.68	22.17	21.70		3/2/7	23.00	22.75	22.24	21.77
	5/0/0	22.00	21.74	21.65	21.76		5/0/0	22.00	21.81	21.72	21.83
	5/0/3	22.00	21.46	21.34	21.40		5/0/7	22.00	21.53	21.41	21.47
LTE B4	/BW=15M	Average	Conduct	ted Power	(dBm)	LTE B4	/BW=20M	Average	Conduct	ted Power	r(dBm)
Madula	RB Size/	May	Channe	I/Frequen	cy(MHz)	Madula	RB Size/	May	Channe	I/Frequen	cy(MHz)
Modula -tion	RB Size/ Offset / NB Index	Max. Tune-up	Channe 20025/ 1717.5	I/Frequen 20175/ 1732.5	20325/ 1747.5	Modula -tion	RB Size/ Offset / NB Index	Max. Tune-up	Channe 20050/ 1720	I/Frequen 20175/ 1732.5	20300/ 1745
	Offset /		20025/	20175/	20325/		Offset /		20050/	20175/	20300/
	Offset / NB Index	Tune-up	20025/ 1717.5	20175/ 1732.5	20325/ 1747.5		Offset / NB Index	Tune-up	20050/ 1720	20175/ 1732.5	20300/ 1745
	Offset / NB Index 1/0/0	Tune-up 24.50	20025/ 1717.5 24.12	20175/ 1732.5 23.65	20325/ 1747.5 23.07		Offset / NB Index 1/0/0	Tune-up 24.50	20050/ 1720 24.20	20175/ 1732.5 23.73	20300/ 1745 23.15
-tion	Offset / NB Index 1/0/0 1/0/3	24.50 24.50	20025/ 1717.5 24.12 24.07	20175/ 1732.5 23.65 23.54	20325/ 1747.5 23.07 22.99	-tion	Offset / NB Index 1/0/0 1/0/3	Tune-up 24.50 24.50	20050/ 1720 24.20 24.15	20175/ 1732.5 23.73 23.62	20300/ 1745 23.15 23.07
	Offset / NB Index 1/0/0 1/0/3 1/5/8	24.50 24.50 24.50 24.50	20025/ 1717.5 24.12 24.07 24.03	20175/ 1732.5 23.65 23.54 23.46	20325/ 1747.5 23.07 22.99 23.01		Offset / NB Index 1/0/0 1/0/3 1/5/12	24.50 24.50 24.50 24.50	20050/ 1720 24.20 24.15 24.11	20175/ 1732.5 23.73 23.62 23.54	20300/ 1745 23.15 23.07 23.09
-tion	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11	24.50 24.50 24.50 24.50 24.50	20025/ 1717.5 24.12 24.07 24.03 24.05	20175/ 1732.5 23.65 23.54 23.46 23.44	20325/ 1747.5 23.07 22.99 23.01 23.04	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15	24.50 24.50 24.50 24.50 24.50	20050/ 1720 24.20 24.15 24.11 24.13	20175/ 1732.5 23.73 23.62 23.54 23.52	20300/ 1745 23.15 23.07 23.09 23.12
-tion	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0	24.50 24.50 24.50 24.50 24.50 24.50	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0	24.50 24.50 24.50 24.50 24.50 24.50	20050/ 1720 24.20 24.15 24.11 24.13 24.17	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70	20300/ 1745 23.15 23.07 23.09 23.12 23.24
-tion	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0 3/3/11	24.50 24.50 24.50 24.50 24.50 24.50 24.50	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09 24.03	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62 23.52	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16 23.05	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0 3/3/15	24.50 24.50 24.50 24.50 24.50 24.50 24.50	20050/ 1720 24.20 24.15 24.11 24.13 24.17 24.11	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70 23.60	20300/ 1745 23.15 23.07 23.09 23.12 23.24 23.13
-tion	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0 3/3/11 6/0/0	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09 24.03 24.02	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62 23.52 23.59	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16 23.05 23.22	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0 3/3/15 6/0/0	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50	20050/ 1720 24.20 24.15 24.11 24.13 24.17 24.11 24.10	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70 23.60 23.67	20300/ 1745 23.15 23.07 23.09 23.12 23.24 23.13 23.30
-tion	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0 3/3/11 6/0/0 6/0/11	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09 24.03 24.02 23.90	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62 23.52 23.59 23.49	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16 23.05 23.22 23.14	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0 3/3/15 6/0/0 6/0/15	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.00	20050/ 1720 24.20 24.15 24.11 24.13 24.17 24.11 24.10 23.98	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70 23.60 23.67 23.57	20300/ 1745 23.15 23.07 23.09 23.12 23.24 23.13 23.30 23.22
-tion	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0 3/3/11 6/0/0 6/0/11 1/0/0	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.00 23.00	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09 24.03 24.02 23.90 22.90	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62 23.52 23.59 23.49 22.43	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16 23.05 23.22 23.14 21.85	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0 3/3/15 6/0/0 6/0/15 1/0/0	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.00 23.00	20050/ 1720 24.20 24.15 24.11 24.13 24.17 24.11 24.10 23.98 22.98	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70 23.60 23.67 23.57 22.51	20300/ 1745 23.15 23.07 23.09 23.12 23.24 23.13 23.30 23.22 21.93
-tion QPSK	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0 3/3/11 6/0/0 6/0/11 1/0/0 1/0/3	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.00 23.00	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09 24.03 24.02 23.90 22.90 22.85	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62 23.52 23.59 23.49 22.43 22.32	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16 23.05 23.22 23.14 21.85 21.77	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0 3/3/15 6/0/0 6/0/15 1/0/0 1/0/3	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.00 23.00	20050/ 1720 24.20 24.15 24.11 24.13 24.17 24.11 24.10 23.98 22.98 22.93	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70 23.60 23.67 23.57 22.51 22.40	20300/ 1745 23.15 23.07 23.09 23.12 23.24 23.13 23.30 23.22 21.93 21.85
-tion	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0 3/3/11 6/0/0 6/0/11 1/0/0 1/0/3 1/4/8	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.00 23.00 23.00	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09 24.03 24.02 23.90 22.90 22.85 22.81	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62 23.52 23.59 23.49 22.43 22.32 22.24	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16 23.05 23.22 23.14 21.85 21.77 21.79	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0 3/3/15 6/0/0 6/0/15 1/0/0 1/0/3 1/4/12	24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.00 23.00 23.00	20050/ 1720 24.20 24.15 24.11 24.13 24.17 24.11 24.10 23.98 22.98 22.98 22.89	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70 23.60 23.67 23.57 22.51 22.40 22.32	20300/ 1745 23.15 23.07 23.09 23.12 23.24 23.30 23.22 21.93 21.85 21.87
-tion QPSK	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0 3/3/11 6/0/0 6/0/11 1/0/0 1/0/3 1/4/8 1/4/11	Tune-up 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.30 23.00 23.00 23.00 23.00	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09 24.03 24.02 23.90 22.90 22.85 22.81 22.83	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62 23.52 23.59 23.49 22.43 22.32 22.24 22.22	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16 23.05 23.22 23.14 21.85 21.77 21.79 21.82	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0 3/3/15 6/0/0 6/0/15 1/0/0 1/0/3 1/4/12 1/4/15	Tune-up 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.00 23.00 23.00 23.00	20050/ 1720 24.20 24.15 24.11 24.13 24.17 24.11 24.10 23.98 22.98 22.93 22.89 22.91	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70 23.60 23.67 23.57 22.51 22.40 22.32 22.30	20300/ 1745 23.15 23.07 23.09 23.12 23.24 23.13 23.30 23.22 21.93 21.85 21.87 21.90
-tion QPSK	Offset / NB Index 1/0/0 1/0/3 1/5/8 1/5/11 3/0/0 3/3/11 6/0/0 6/0/11 1/0/0 1/0/3 1/4/8 1/4/11 3/0/0	Tune-up 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.30 23.00 23.00 23.00 23.00 23.00	20025/ 1717.5 24.12 24.07 24.03 24.05 24.09 24.03 24.02 23.90 22.90 22.85 22.81 22.83 22.87	20175/ 1732.5 23.65 23.54 23.46 23.44 23.62 23.52 23.59 22.43 22.32 22.24 22.22 22.40	20325/ 1747.5 23.07 22.99 23.01 23.04 23.16 23.05 23.22 23.14 21.85 21.77 21.79 21.82 21.94	-tion	Offset / NB Index 1/0/0 1/0/3 1/5/12 1/5/15 3/0/0 3/3/15 6/0/0 6/0/15 1/0/0 1/0/3 1/4/12 1/4/15 3/0/0	Tune-up 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.50 24.30 23.00 23.00 23.00 23.00 23.00	20050/ 1720 24.20 24.15 24.11 24.13 24.17 24.11 24.10 23.98 22.98 22.93 22.89 22.91 22.95	20175/ 1732.5 23.73 23.62 23.54 23.52 23.70 23.60 23.67 22.51 22.40 22.32 22.30 22.48	20300/ 1745 23.15 23.07 23.09 23.12 23.24 23.13 23.30 23.22 21.93 21.85 21.87 21.90 22.02

LTE B	12/BW=1.4M	Average	Conduc	ted Powe	er(dBm)	LTE	B12/BW=3M	Average	Conduc	ted Powe	er(dBm)
	RB Size/		1	/Frequer					<u> </u>	/Freguen	
Modula -tion	Offset / NB Index	Max. Tune-up	23017/ 699.7	23095/ 707.5	23173/ 715.3	Modula -tion	RB Size/ Offset / NB Index	May	23025/ 700.5	23095/ 707.5	23165/ 714.5
	1/0/0	23.50	23.03	23.31	22.96		1/0/0	24.00	23.27	23.55	23.20
	1/5/0	23.50	22.92	23.20	22.85		1/5/1	24.00	23.14	23.42	23.07
ODOK	3/0/0	23.50	23.07	23.35	23.00	ODOK	3/0/0	23.50	23.03	23.31	22.96
QPSK	3/3/0	23.50	23.11	23.39	23.04	QPSK	3/3/1	23.50	23.18	23.46	23.11
	0/0/0	00.50	00.05	00.00	00.00		6/0/0	23.50	23.22	23.50	23.15
	6/0/0	23.50	23.05	23.33	22.98		6/0/1	23.50	23.16	23.44	23.09
	1/0/0	22.50	22.00	22.29	21.95		1/0/0	22.50	22.11	22.42	22.05
	1/4/0	22.50	22.05	22.26	22.00		1/4/1	22.50	22.07	22.36	22.02
460 4 4	3/0/0	22.50	22.01	22.29	22.06	400 4 44	3/0/0	22.50	22.12	22.33	22.07
16QAM	3/2/0	21.50	21.03	21.30	20.94	16QAM	3/2/1	22.50	22.08	22.36	22.13
	F 10.10	04.50	20.00	04.45	00.07		5/0/0	21.50	21.10	21.37	21.01
	5/0/0	21.50	20.98	21.15	20.87		5/0/1	21.50	21.05	21.22	20.94
LTE E	B12/BW=5M	Average	Conduc	ted Powe	r(dBm)	LTE E	312/BW=10M	Average	Conduc	ted Powe	r(dBm)
	RB Size/		Channel	/Frequer	icy(MHz)		RB Size/		Channel	/Frequen	icy(MHz)
Modula -tion	Offset / NB Index	Max. Tune-up	23035/ 701.5	23095/ 707.5	23155/ 713.5	Modula -tion	Offset / NB Index	Max. Tune-up	23060/ 704	23095/ 707.5	23130/ 711
	1/0/0	24.00	23.35	23.63	23.28		1/0/0	24.00	23.47	23.75	23.40
	1/0/3	24.00	23.22	23.50	23.15		1/0/3	24.00	23.34	23.62	23.27
	1/5/0	24.00	23.11	23.39	23.04		1/5/4	24.00	23.23	23.51	23.16
ODOK	1/5/3	24.00	23.26	23.54	23.19	ODOK	1/5/7	24.00	23.38	23.66	23.31
QPSK -	3/0/0	24.00	23.30	23.58	23.23	QPSK	3/0/0	24.00	23.42	23.70	23.35
	3/3/3					-					
	3/3/3	24.00	23.24	23.52	23.17		3/3/7	24.00	23.36	23.64	23.29
	6/0/0	24.00	23.24	23.52 23.53	23.17 23.34		3/3/7 6/0/0	24.00 24.00	23.36 23.31	23.64 23.65	23.29 23.46
-	6/0/0	24.00	23.19	23.53	23.34		6/0/0	24.00	23.31	23.65	23.46
<u>-</u>	6/0/0 6/0/3	24.00 24.00	23.19 23.09	23.53 23.41	23.34 23.22		6/0/0 6/0/7	24.00 24.00	23.31 23.21	23.65 23.53	23.46 23.34
-	6/0/0 6/0/3 1/0/0	24.00 24.00 23.00	23.19 23.09 22.19	23.53 23.41 22.50	23.34 23.22 22.13		6/0/0 6/0/7 1/0/0	24.00 24.00 23.00	23.31 23.21 22.31	23.65 23.53 22.62	23.46 23.34 22.25
-	6/0/0 6/0/3 1/0/0 1/0/3	24.00 24.00 23.00 23.00	23.19 23.09 22.19 22.15	23.53 23.41 22.50 22.44	23.34 23.22 22.13 22.10	10001	6/0/0 6/0/7 1/0/0 1/0/3	24.00 24.00 23.00 23.00	23.31 23.21 22.31 22.27	23.65 23.53 22.62 22.56	23.46 23.34 22.25 22.22
16QAM	6/0/0 6/0/3 1/0/0 1/0/3 1/4/0	24.00 24.00 23.00 23.00 23.00	23.19 23.09 22.19 22.15 22.20	23.53 23.41 22.50 22.44 22.41	23.34 23.22 22.13 22.10 22.15	16QAM	6/0/0 6/0/7 1/0/0 1/0/3 1/4/4	24.00 24.00 23.00 23.00 23.00	23.31 23.21 22.31 22.27 22.32	23.65 23.53 22.62 22.56 22.53	23.46 23.34 22.25 22.22 22.27
16QAM-	6/0/0 6/0/3 1/0/0 1/0/3 1/4/0 1/4/3	24.00 24.00 23.00 23.00 23.00 23.00	23.19 23.09 22.19 22.15 22.20 22.16	23.53 23.41 22.50 22.44 22.41 22.44	23.34 23.22 22.13 22.10 22.15 22.21	-16QAM	6/0/0 6/0/7 1/0/0 1/0/3 1/4/4 1/4/7	24.00 24.00 23.00 23.00 23.00 23.00	23.31 23.21 22.31 22.27 22.32 22.28	23.65 23.53 22.62 22.56 22.53 22.56	23.46 23.34 22.25 22.22 22.27 22.33
16QAM-	6/0/0 6/0/3 1/0/0 1/0/3 1/4/0 1/4/3 3/0/0	24.00 24.00 23.00 23.00 23.00 23.00 22.00	23.19 23.09 22.19 22.15 22.20 22.16 21.18	23.53 23.41 22.50 22.44 22.41 22.44 21.45	23.34 23.22 22.13 22.10 22.15 22.21 21.09	-16QAM	6/0/0 6/0/7 1/0/0 1/0/3 1/4/4 1/4/7 3/0/0	24.00 24.00 23.00 23.00 23.00 23.00 22.00	23.31 23.21 22.31 22.27 22.32 22.28 21.30	23.65 23.53 22.62 22.56 22.53 22.56 21.57	23.46 23.34 22.25 22.22 22.27 22.33 21.21

8.1.3. CONDUCTED POWER MEASUREMENTS OF LTE NB-IOT

LTE B2/BW	/=3.75KHz	Avera	ge Conduc	ted Powe	r(dBm)	LTE B2/B\	N=15KHz	Avera	ge Conduct	ed Power	r(dBm)	
Madula		May	Channel	/Frequenc	y(MHz)	Madula		May	Channel/	Channel/Frequency(MH		
Modula -tion	Ntones	Max. Tune-up	18601/ 1850.1	18900/ 1880	19199/ 1909.9	Modula -tion	Ntones	Max. Tune-up	18601/ 1850.1	18900/ 1880	19199/ 1909.9	
	1@0	23.00	22.29	23.00	22.67		1@0	23.00	22.48	22.74	22.95	
BPSK	1@0	23.00	22.29	23.00	22.07	QPSK	1@11	23.50	22.85	22.99	23.06	
	1@47	23.00	22.42	22.96	22.71		3@3	24.50	23.70	23.97	24.06	

LTE B4/BW	/=3.75KHz	Avera	ge Condu	cted Powe	er(dBm)	LTE B4/B	W=15KHz	Avera	ge Condu	cted Powe	er(dBm)		
Modula		Max.	Channe	I/Frequen	cy(MHz)	Modula		May	Channe	I/Frequen	Frequency(MHz)		
-tion	Ntones	Tune-up	19951/ 1710.1	20175/ 1732.5	20399/ 1754.9	-tion	Ntones	Max. Tune-up	19951/ 1710.1	20175/ 1732.5	20399/ 1754.9		
	1@0	22.50	22.41	22.23	22.36		1@0	22.50	22.14	22.03	22.32		
BPSK	1@0	22.50	22.41	22.23	22.30	QPSK	1@11	23.00	21.98	22.04	22.52		
	1@47	23.00	22.51	22.18	22.14		3@3	23.50	23.41	22.92	23.02		

LTE B12/BV	V=3.75KHz	Averag	je Condu	cted Powe	r(dBm)	LTE B12/B	W=15KHz	Averag	je Condu	cted Powe	er(dBm)
Modula		Max.	Channe	I/Frequen	cy(MHz)	Modula		Max.	Channe	Channel/Frequency(MHz	
-tion	Ntones	Max. Tune-up	23011/ 699.1	23095/ 707.5	23179/ 715.9	-tion	Ntones	Tune-up	23011/ 699.1	23095/ 707.5	23179/ 715.9
	1@0	22.00	21.74	21.60	21.62		1@11	22.00	21.74	21.70	21.60
BPSK	1@0	22.00	21.74	21.00	21.02	QPSK	1@11	22.00	21.82	21.53	21.58
	1@47	22.00	21.71	21.49	21.58		3@3	22.50	22.22	22.18	21.92

8.1.4. CONDUCTED POWER MEASUREMENTS OF BT BAND

		Average	Conducted Power	(dBm)	SAR Test
BT	Tune Up	CH0	CH19	CH39	(Yes/No)
BLE	1.0	-0.51	0.75	0.31	NO

Note:

1) The conducted power of BT is measured with RMS detector.

2) The BT standalone SAR test exclusion, reference to section 9 for explanation of rationale for exemption of testing.

Report No.: BTL-FCC SAR-1-1903T095 Page 37 of 46

Report Version: R00

8.1.5. CONDUCTED POWER MEASUREMENTS OF WIFI 2.4G

Conducted power measurement results of WiFi 2.4G

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Tune-up	Average Power (dBm)	SAR Test (Yes/No)
	1	2412		9.0	8.92	NO
802.11b	6	2437	1	9.0	8.50	NO
	11	2462		9.0	7.86	NO
	1	2412		8.5	8.23	NO
802.11g	6	2437	6	8.5	8.20	NO
	11	2462		8.5	8.12	NO
000 44.5	1	2412		9.0	7.49	NO
802.11n HT20	6	2437	6.5	9.0	8.64	NO
11120	11	2462		9.0	8.29	NO
000 44 =	3	2422		8.5	6.49	NO
802.11n HT40	6	2437	13.5	8.5	7.30	NO
11140	9	2452		8.5	8.34	NO

Note: 1) The Average conducted power of WiFi is measured with RMS detector.

²⁾ The WIFI standalone SAR test exclusion, reference to section 9 for explanation of rationale for exemption of testing.

8.2. SAR TEST RESULTS

General Notes:

- 1) Per KDB447498 D01, all measurement SAR results are scaled to the maximum tune-up tolerance limit to demonstrate compliant.
- 2) Per KDB447498 D01, testing of other required channels within the operating mode of a frequency band is not required when the reported 1-g or 10-g SAR for the mid-band or highest output power channel is: ≤0.8 W/kg or 2.0 W/kg, for 1-g or 10-g respectively, when the transmission band is≤100 MHz. When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel must be used.
- 3) Per KDB865664 D01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg; if the deviation among the repeated measurement is ≤ 20% and the measured SAR <1.45W/kg, only one repeated measurement is required.
- 4) Per KDB865664 D02, SAR plot is only required for the highest measured SAR in each exposure configuration, wireless mode and frequency band combination; Plots are also required when the measured SAR is > 1.5 W/kg, or > 7.0 W/kg for occupational exposure. The published RF exposure KDB procedures may require additional plots; for example, to support SAR to peak location separation ratio test exclusion and/or volume scan post-processing.

GSM Notes:

- 1) Per KDB648474 D04, body-worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2) Per KDB941225 D01, SAR test reduction for GPRS and EDGE modes is determined by the source-based time-averaged output power specified for production units, including tune-up tolerance. The data mode with highest specified time-averaged output power should be tested for SAR compliance in the applicable exposure conditions. For modes with the same specified maximum output power and tolerance, the higher number time-slot configuration should be tested

LTE notes:

- 1) The LTE test configurations are determined according to KDB941225 D05 SAR for LTE Devices. The general test procedures used for SAR testing can be found in Section 7.1.3.
- 2) A-MPR was disabled for all SAR test by setting NS 01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames(maximum TTI)

Report No.: BTL-FCC SAR-1-1903T095 Page 39 of 46

8.2.1. SAR MEASUREMENT RESULT

1) SAR test results of GSM _separation distance=0.5cm

Test No.	Band	Mode	Channel	Test Position	Maximum Tune-up (dBm)	Conducted Power (dBm)	Power Drift	SAR 1g (W/kg)	Reported 1g SAR (W/kg)
T01	GSM 850	GPRS12	251	Front Face	25	24.39	0.13	0.607	0.699
T02	GSM 850	GPRS12	251	Rear Face	25	24.39	-0.04	0.087	0.100
T03	GSM 850	GPRS12	251	Left Side	25	24.39	0.06	0.113	0.130
T04	GSM 850	GPRS12	251	Right Side	25	24.39	-0.01	0.032	0.037
T05	GSM 850	GPRS12	251	Top Side	25	24.39	0.09	0.369	0.425
T06	GSM 850	GPRS12	251	Bottom Side	25	24.39	-0.14	0.00824	0.009
T10	GSM 1900	GPRS12	512	Front Face	22	21.94	-0.09	0.718	0.728
T11	GSM 1900	GPRS12	512	Rear Face	22	21.94	-0.11	0.000584	0.001
T12	GSM 1900	GPRS12	512	Left Side	22	21.94	0.06	0.139	0.141
T13	GSM 1900	GPRS12	512	Right Side	22	21.94	-0.07	0.0121	0.012
T14	GSM 1900	GPRS12	512	Top Side	22	21.94	0.04	0.375	0.380
T15	GSM 1900	GPRS12	512	Bottom Side	22	21.94	0.07	0.224	0.227

2) SAR test results of LTE Cat.M1 _separation distance=0.5cm

Test No.	Band	Mode	Channel	RB	offset	NB Index	Test Position	Maximum Tune-up (dBm)	Conducted Power (dBm)	Power Drift	SAR 1g (W/kg)	Reported 1g SAR (W/kg)
T50	LTE B2_CatM1	QPSK20M	18900	1	0	0	Front Face	24.5	24.12	0.01	1.11	1.211
T51	LTE B2_CatM1	QPSK20M	18900	1	0	0	Rear Face	24.5	24.12	0.15	0.43	0.469
T52	LTE B2_CatM1	QPSK20M	18900	1	0	0	Left Side	24.5	24.12	0.07	0.367	0.401
T53	LTE B2_CatM1	QPSK20M	18900	1	0	0	Right Side	24.5	24.12	-0.11	0.04	0.044
T54	LTE B2_CatM1	QPSK20M	18900	1	0	0	Top Side	24.5	24.12	-0.05	0.0072	0.008
T55	LTE B2_CatM1	QPSK20M	18900	1	0	0	Bottom Side	24.5	24.12	-0.12	0.207	0.226
T56	LTE B2_CatM1	QPSK20M	18700	1	0	0	Front Face	24.5	24.06	0.08	1.15	1.273
T57	LTE B2_CatM1	QPSK20M	19100	1	0	0	Front Face	24.5	23.29	0.05	0.911	1.204
T58	LTE B2_CatM1	QPSK20M	18700	1	0	0	Front Face	24.5	24.06	0.07	1.14	1.262
T59	LTE B2_CatM1	QPSK20M	18700	3	0	0	Front Face	24	23.99	0.09	1.03	1.032
T60	LTE B2_CatM1	QPSK20M	18700	3	0	0	Rear Face	24	23.99	0.12	0.38	0.381
T61	LTE B2_CatM1	QPSK20M	18700	3	0	0	Left Side	24	23.99	0.04	0.328	0.329
T62	LTE B2_CatM1	QPSK20M	18700	3	0	0	Right Side	24	23.99	-0.08	0.046	0.046
T63	LTE B2_CatM1	QPSK20M	18700	3	0	0	Top Side	24	23.99	-0.09	0.00556	0.006
T64	LTE B2_CatM1	QPSK20M	18700	3	0	0	Bottom Side	24	23.99	0.04	0.202	0.202
T65	LTE B2_CatM1	QPSK20M	18900	3	0	0	Front Face	24	23.90	0.07	1.05	1.074
T66	LTE B2_CatM1	QPSK20M	19100	3	0	0	Front Face	24	23.37	0.01	0.848	0.980
T67	LTE B2_CatM1	QPSK20M	18900	3	0	0	Front Face	24	23.90	0.11	1.04	1.064
T101	LTE B2_CatM1	QPSK20M	18900	6	0	0	Front Face	24	23.95	0.06	1.03	1.042
T102	LTE B2_CatM1	QPSK20M	18700	6	0	0	Front Face	24	23.74	0.07	1.12	1.189
T103	LTE B2_CatM1	QPSK20M	19100	6	0	0	Front Face	24	23.34	0.02	0.889	1.035
T104	LTE B2_CatM1	QPSK20M	18700	6	0	0	Front Face	24	23.74	0.11	1.11	1.178

Note: The value with boldface is the maximum SAR Value of each test band.

.

Test No.	Band	Mode	Channel	RB	offset	NB Index	Test Position	Maximum Tune-up (dBm)	Conducted Power (dBm)	Power Drift	SAR 1g (W/kg)	Reported 1g SAR (W/kg)
T68	LTE B4_CatM1	QPSK20M	20050	1	0	0	Front Face	24.5	24.2	0.1	0.594	0.636
T69	LTE B4_CatM1	QPSK20M	20050	1	0	0	Rear Face	24.5	24.2	0.02	0.107	0.115
T70	LTE B4_CatM1	QPSK20M	20050	1	0	0	Left Side	24.5	24.2	-0.14	0.000601	0.001
T71	LTE B4_CatM1	QPSK20M	20050	1	0	0	Right Side	24.5	24.2	0.06	0.041	0.044
T72	LTE B4_CatM1	QPSK20M	20050	1	0	0	Top Side	24.5	24.2	-0.04	0.000707	0.001
T73	LTE B4_CatM1	QPSK20M	20050	1	0	0	Bottom Side	24.5	24.2	0.07	0.124	0.133
T77	LTE B4_CatM1	QPSK20M	20050	3	0	0	Front Face	24.5	24.17	-0.05	0.593	0.640
T78	LTE B4_CatM1	QPSK20M	20050	3	0	0	Rear Face	24.5	24.17	-0.14	0.103	0.111
T79	LTE B4_CatM1	QPSK20M	20050	3	0	0	Left Side	24.5	24.17	-0.02	0.037	0.040
T80	LTE B4_CatM1	QPSK20M	20050	3	0	0	Right Side	24.5	24.17	0.02	0.039	0.042
T81	LTE B4_CatM1	QPSK20M	20050	З	0	0	Top Side	24.5	24.17	-0.11	0.000411	0.000
T82	LTE B4_CatM1	QPSK20M	20050	3	0	0	Bottom Side	24.5	24.17	0.07	0.122	0.132
T86	LTE B12_CatM1	QPSK10M	23095	1	0	0	Front Face	24	23.75	-0.02	0.244	0.258
T87	LTE B12_CatM1	QPSK10M	23095	1	0	0	Rear Face	24	23.75	-0.06	0.031	0.033
T88	LTE B12_CatM1	QPSK10M	23095	1	0	0	Left Side	24	23.75	0.14	0.013	0.014
T89	LTE B12_CatM1	QPSK10M	23095	1	0	0	Right Side	24	23.75	0.05	0.059	0.062
T90	LTE B12_CatM1	QPSK10M	23095	1	0	0	Top Side	24	23.75	NA	<0.001	<0.001
T91	LTE B12_CatM1	QPSK10M	23095	1	0	0	Bottom Side	24	23.75	-0.03	0.00526	0.006
T95	LTE B12_CatM1	QPSK10M	23095	3	0	0	Front Face	24	23.70	-0.02	0.246	0.264
T96	LTE B12_CatM1	QPSK10M	23095	3	0	0	Rear Face	24	23.70	0.04	0.034	0.036
T97	LTE B12_CatM1	QPSK10M	23095	3	0	0	Left Side	24	23.70	0.12	0.13	0.139
T98	LTE B12_CatM1	QPSK10M	23095	3	0	0	Right Side	24	23.70	-0.04	0.06	0.064
T99	LTE B12_CatM1	QPSK10M	23095	3	0	0	Top Side	24	23.70	NA	<0.001	<0.001
T100	LTE B12_CatM1	QPSK10M	23095	3	0	0	Bottom Side	24	23.70	-0.09	0.00536	0.006

Note:1.The value with boldface is the maximum SAR Value of each test band.

2. The area scan SAR result < 0.001, can not find zoom scan cube.

3) SAR test results of LTE_NB-lot _separation distance=0.5cm

Test No.	Band	Mode	Channel	Ntones	Test Position	Maximum Tune-up (dBm)	Conducted Power (dBm)	Power Drift	SAR 1g (W/kg)	Reported 1g SAR (W/kg)
T209	LTE B2_NB1	QPSK_15KHz	19199	3@3	Front Face	24.5	24.06	0.04	0.678	0.750
T210	LTE B2_NB1	QPSK_15KHz	19199	3@3	Rear Face	24.5	24.06	0.01	0.164	0.181
T211	LTE B2_NB1	QPSK_15KHz	19199	3@3	Left Side	24.5	24.06	-0.06	0.133	0.147
T212	LTE B2_NB1	QPSK_15KHz	19199	3@3	Right Side	24.5	24.06	-0.14	0.00616	0.007
T213	LTE B2_NB1	QPSK_15KHz	19199	3@3	Top Side	24.5	24.06	0.05	0.103	0.114
T214	LTE B2_NB1	QPSK_15KHz	19199	3@3	Bottom Side	24.5	24.06	0.09	0.08	0.089
T227	LTE B4_NB1	QPSK_15KHz	19951	3@3	Front Face	23.5	23.41	0.1	0.177	0.181
T228	LTE B4_NB1	QPSK_15KHz	19951	3@3	Rear Face	23.5	23.41	-0.08	0.000824	0.001
T229	LTE B4_NB1	QPSK_15KHz	19951	3@3	Left Side	23.5	23.41	-0.14	0.041	0.042
T230	LTE B4_NB1	QPSK_15KHz	19951	3@3	Right Side	23.5	23.41	-0.16	0.011	0.011
T231	LTE B4_NB1	QPSK_15KHz	19951	3@3	Top Side	23.5	23.41	0.06	0.055	0.056
T232	LTE B4_NB1	QPSK_15KHz	19951	3@3	Bottom Side	23.5	23.41	0.04	0.032	0.033
T245	LTE B12_NB1	QPSK_15KHz	23011	3@3	Front Face	22.5	22.22	0	0.035	0.037
T246	LTE B12_NB1	QPSK_15KHz	23011	3@3	Rear Face	22.5	22.22	NA	<0.001	<0.001
T247	LTE B12_NB1	QPSK_15KHz	23011	3@3	Left Side	22.5	22.22	NA	<0.001	<0.001
T248	LTE B12_NB1	QPSK_15KHz	23011	3@3	Right Side	22.5	22.22	0.06	0.011	0.012
T249	LTE B12_NB1	QPSK_15KHz	23011	3@3	Top Side	22.5	22.22	0.15	0.016	0.017
T250	LTE B12_NB1	QPSK_15KHz	23011	3@3	Bottom Side	22.5	22.22	NA	<0.001	<0.001

Note:1.The value with boldface is the maximum SAR Value of each test band.

2. The area scan SAR result < 0.001, can not find zoom scan cube.

9. STANDALONE SAR TEST EXCLUSION CONSIDERATIONS & ESTIMATED SAR

Per FCC KDB 447498 D01, the 1-q SAR and 10-q SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances ≤ 50 mm are determined by:

[(max. power of channel, including tune-up tolerance, mW)/(min. test separation distance,mm)][√f(GHz)] ≤ 3.0 for 1-g SAR and ≤ 7.5 for product specific 10-g SAR, where:

- f(GHz) is the RF channel transmit frequency in GHz
- Power and distance are rounded to the nearest mW and mm before calculation
- The result is rounded to one decimal place for comparison

When the minimum test separation distance is < 5 mm, a distance of 5 mm is applied to determine SAR test exclusion.

Standalone SAR test exclusion for WIFI and BT

Mode	Position	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	Calculation Result	SAR Exclusion threshold	Test Requirement (Yes/No)
802.11b	Body	9	7.94	5	2.412	2.467	3	No
ВТ	Body	1	1.26	5	2.48	0.395	3	No

Note: Therefore, WIFI and BT standalone SAR are not required.

When standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standalone SAR must be estimated according to following to determine simultaneous transmission SAR test exclusion:

 (max. power of channel, including tune-up tolerance, mW)/(min. test separation distance, mm)] •

 $\sqrt{f(GHz)/x}$ W/kg for test separation distances \leq 50 mm, where x = 7.5 for 1-g SAR and x = 18.75 for 10-q SAR.

0.4 W/kg for 1-g SAR and 1.0 W/kg for 10-g SAR, when the test separation distance is > 50

According to KDB 447498 D01, when standalone SAR test exclusion applies to an antenna that transmits simultaneously with other antennas, the standslone SAR was estimated according to following formula to result in substantially conservative SAR values of ≤0.4W/kg to determine simultaneous transmission SAR test exclusion.

$$\text{Estimated SAR} = \frac{\text{Max.Tune up Power}_{(mW)}}{\text{Min.Test Separation Distance}_{(mm)}} \times \frac{\sqrt{f_{(GHz)}}}{7.5}$$

Mode	Position	P _{max} (dBm)*	P _{max} (mW)	Distance (mm)	f (GHz)	×	Estimated 1-g SAR (W/kg)
802.11b	Body	9	7.94	5	2.412	7.5	0.33
ВТ	Body	1	1.26	5	2.48	7.5	0.053

Report No.: BTL-FCC SAR-1-1903T095 Page 42 of 46

Report Version: R00

10. MULTIPLE TRANSMITTER EVALUATION

The EUT not support simultaneous transmission.

.

APPENDIX

1. Test Layout

Liquid depth in the flat Phantom (≥15cm depth)

Report No.: BTL-FCC SAR-1-1903T095 Page 44 of 46
Report Version: R00

Body(1750MHz)_15.6cm

Body(1900~3800MHz)_15.6cm

Appendix A. SAR Plots of System Verification

(PIs See BTL-FCC SAR-1-1903T095_Appendix A.)

Appendix B. SAR Plots of SAR Measurement

(PIs See BTL-FCC SAR-1-1903T095_Appendix B.)

Appendix C. Calibration Certificate

(PIs See BTL-FCC SAR-1-1903T095_Appendix C.)

Appendix D. Photographs of the Test Set-Up

(PIs See BTL-FCC SAR-1-1903T095_Appendix D.)

End of Test Report