A QCNN for Quantum State Preparation Carnegie Vacation Scholarship

David Amorim

Week 5 (29/07/2024 - 02/08/2024)

Table of Contents

1 Preliminaries

2 Improving the Loss Function

Next Steps

David Amorim QCNN State Preparation 05/08/2024 2 / 11

Aims for the Week

The following aims were set at the last meeting (29/07/2024):

Improve Loss Function

Work on an improved version of WILL. Incorporate some phase extraction metrics (e.g. χ , ϵ) into the loss function.

Investigate Phase Extraction

Study the relationship between mismatch and the extracted phase, i.e. study the operator $\tilde{Q}^{\dagger}(\hat{I}\otimes\hat{R})\tilde{Q}.$

Mitigate Barren Plateaus

Work on strategies to mitigate barren plateaus, e.g. implement layer-by-layer training.

David Amorim QCNN State Preparation 05/08/2024 3 / 11

THIS WEEK INCLUDE EXAMPLES WITH HIGH m !! KEEP WORKING ON CHIL!! MAYBE RENAME TO QRQ??v DOES NOT WORK !!! I I I I

Table of Contents

Preliminaries

2 Improving the Loss Function

Next Steps

WILL Revisited

 As discussed at the meeting on 29/07, the definition of WILL (weighted L_p loss) was amended to:

$$\mathsf{WILL}_{\mathsf{p},\mathsf{q}} = \left(\sum_{k} \left| x_k - y_k \right|^p + |\mathbf{x}_k| \left| [k]_m - \Psi([k]_n) \right|^q \right)^{1/p}, \quad (1)$$

where the changes to the previous definition are highlighted

• Testing this for different Ψ (with L=6, m=3 and 600 epochs) yielded the following optimal values for p, q:

$\Psi(f)$	p	q
$\sim f$	0.25	0.5
$\sim f^2$	1	1.5
Ψ_{H23}	0.75	2

Table 1: Optimal identified p, q values for WILL

David Amorim QCNN State Preparation 05/08/2024 6/11

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	3.4e-2	6.0e-2	4.5e-1
σ	1.4e-1	1.1e-1	4.7e-1
ϵ	1.9e-2	9.2e-2	2.6e-1
χ	3.2e-2	5.1e-2	3.7e-1
Ω	4.46	3.19	0.76

Table 2: Comparing loss function metrics for $\Psi(f)\sim f$ ($L=6,\ m=3,\ 600$ epochs)

Figure 1: Comparing extracted phase functions for $\Psi(f) \sim f$ (L=6, m=3, 600 epochs)

7/11

David Amorim QCNN State Preparation 05/08/2024

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	1.9e-1	2.3e-1	6.6e-1
σ	1.2e-1	1.0e-1	4.1e-1
ϵ	2.2e-1	4.2e-1	2.8e-2
χ	1.9e-1	2.0e-1	6.1e-1
Ω	1.39	1.05	0.57

Table 3: Comparing loss function metrics for $\Psi(f) \sim f^2$ ($L=6,\ m=3,\ 600$ epochs)

Figure 2: Comparing extracted phase functions for $\Psi(f)\sim f^2$ ($L=6,\ m=3,$ 600 epochs)

8/11

David Amorim QCNN State Preparation 05/08/2024

Comparing SAM, WIM, and WILL

	SAM	WIM	WILL
μ	6.8e-2	8.4e-2	7.6e-2
σ	1.8e-1	1.2e-1	2.6e-1
ϵ	4.5e-2	1.8e-1	7.3e-3
χ	7.4e-2	1.0e-1	6.2e-2
Ω	2.75	2.07	2.48

Table 4: Comparing loss function metrics for $\Psi_{\rm H23}$ ($L=6,\ m=3,\ 600$ epochs)

Figure 3: Comparing extracted phase functions for $\Psi_{\rm H23}$ ($L=6,\ m=3,\ 600$ epochs)

9/11

Table of Contents

Preliminaries

2 Improving the Loss Function

Next Steps

David Amorim QCNN State Preparation 05/08/2024 10 / 11

Next Steps