4. Artificial Starting Solution

- Constraints are (≤) with nonnegative right hand sides offers a convenient all-slack starting basic feasible solution.
- Models with ≥ or = constraints do not.
- Artificial Variable: Starting "ill-behaved" LPs with ≥ or = constraints is to use artificial variable that play the role of slacks at the first iteration, and then dispose them legitimately at a later iteration.
- Two methods
 - M-method
 - Two phase method

M-Method

 Use x₃ surplus with constraint 2 and slack variable x₄ with constraint 3

Minimize

$$Minimize z = 4x_1 + x_2$$

$$Minimize z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$
$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \geq 0$$

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 - x_3 = 6$$

$$x_1 + 2x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4 \ge 0$$

- Constraint 1 and constraint 2 do not have slack variable
- \bullet Add artificial variable $\rm R_1$ and $\rm R_2$ and penalize them in the objective function

M-Method

Minimize
$$z = 4x_1 + x_2 + MR_1 + MR_2$$
 $Z - 4x_1 - x_2 - MR_1 - MR_2 = 0$

$$3x_1 + x_2 + R_1 = 3$$

$$4x_1 + 3x_2 - x_3 + R_2 = 6$$

$$x_1 + 2x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4, R_1, R_2 \ge 0$$

- Basic variables: (R₁, R₂, x₄)
- What should be the value of M?
 - It should be large enough relative to the original objective coefficient
 - For the given problem, M = 100

M-Method

Basic	X ₁	X ₂	x ₃	R ₁	R ₂	X ₄	Solution
Z	-4	-1	0	-100	-100	0	0
R ₁	3	1	0	1	0	0	3
R ₂	4	3	-1	0	1	0	6
X ₄	1	2	0	0	0	1	4

Inconsistency:
Non zero
coefficient
of R₁ and R₂

Minimization problem:

Add MR_i

$$Z - 4x1 - x2 - MR1 - MR2 = 0$$

$$3x_1 + x_2 + R_1 = 3$$

$$4x_1 + 3x_2 - x_3 + R_2 = 6$$

$$x_1 + 2x_2 + x_4 = 4$$

$$x_1, x_2, x_3, x_4, R_1, R_2 \ge 0$$

- \bullet Substitution such that coefficient of R_1 and R_2 becomes zero
 - For the given problem:

New z-row = Old z-row +
$$(100 \times R_1\text{-row} + 100 \times R_2\text{-row})$$

M-Method

Minimization problem

Pivot row

	PIV	ot columi	וו						
Basic	;	X ₁	X ₂	x ₃	R ₁	R ₂	x ₄	Solution	Ratio
Z		696	399	-100	0	0	0	900	
R ₁		3	1	0	1	0	0	3	1
R ₂		4	3	-1	0	1	0	6	3/2
X ₄		1	2	0	0	0	1	4	4

- Apply simplex method steps
 - Entering variable:
 - x_1 (most positive coefficient in z for minimization objective function)
 - Leaving variable:
 - R₁ (Minimum nonnegative ratio)

M-Method

• Apply Gauss-Jordon row operations

Div/	nt.	\cap	lumn
1 1 7	Οt	CO	ullill

	Basic	X ₁	Х2	Х _З	R ₁	R ₂	x ₄	Solution	Ratio
	Z	0	167	-100	-232	0	0	204	
	X ₁	1	1/3	0	1/3	0	0	1	3
Pivot row	R ₂	0	5/3	-1	-4/3	1	0	2	6/5
	X ₄	0	5/3	0	-1/3	0	1	3	9/5

Entering variable: X₂Leaving variable: R₂

M-Method

• Apply Gauss-Jordon row operations

Pivot column

	Basic	X ₁	X ₂	X ₃	R ₁	R ₂	X ₄	Solution	Ratio
	Z	0	0	1/5	-492/5	-501/5	0	18/5	
Ī	X ₁	1	0	1/5	3/5	-1/5	0	3/5	3
Ī	X ₂	0	1	-3/5	-4/5	3/5	0	6/5	-2
00000000	Х4	0	0	1	1	-1	1	1	1

Pivot row X4

Entering variable: x₃
Leaving variable: x₄

M-Method

• Apply Gauss-Jordon row operations

Any entering Variable?

Basic	X ₁	X ₂	х ₃	R ₁	R ₂	x ₄	Solution
Z	0	0	0	-493/5	-100	-1/5	17/5
X ₁	1	0	0	2/5	0	-1/5	2/5
X ₂	0	1	0	-1/5	0	3/5	9/5
X ₃	0	0	1	1	-1	1	1

•
$$x_1 = 2/5$$
, $x_2 = 9/5$ and $z = 17/5$

Two Phase Method

- M-method uses penalty M
 - Possibility of round-off error that may impair the accuracy of simplex calculations
- · Two phase method
 - Phase I attempts to find starting basic feasible solution
 - · Phase II is invoked to solve the original problem
- Problem solved in the last section

$$Minimize z = 4x_1 + x_2$$

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$
$$x_1 + 2x_2 \le 4$$

$$x_1, x_2 \ge 0$$

Phase-I of Two Phase Method

$$Minimize r = R_1 + R_2$$

$$3x_1 + x_2 + R_1 = 3$$

 $4x_1 + 3x_2 - x_3 + R_2 = 6$
 $x_1 + 2x_2 + x_4 = 4$

• Simplex tableau

$$x_1, x_2, x_3, x_4, R_1, R_2 \ge 0$$

Basic	X ₁	X ₂	x ₃	R ₁	R ₂	X ₄	Solution
r	0	0	0	-1	-1	0	0
R ₁	3	1	0	1	0	0	3
R ₂	4	3	-1	0	1	0	6
X₄	1	2	0	0	0	1	4

Inconsistence

New r-row = Old r-row +
$$(1 \times R_1$$
-row + $1 \times R_2$ -row)

Phas	e-l of	Two	Phase	e Met	hod				
	F	Pivot colum	<mark>n </mark>						1
	Basic	X ₁	x ₂	x ₃	R ₁	R ₂	x ₄	Solution	
	r	7	4	-1	0	0	0	9	
Pivot row	R ₁	3	1	0	1	0	0	3	
	R ₂	4	3	-1	0	1	0	6	
	X ₄	1	2	0	0	0	1	4	
	Basic	x ₁	x ₂	Х3	R ₁	R ₂	Х4	Solution	
	r	0	5/3	-1	-7/3	0	0	2	
	X ₁	1	1/3	0	1/3	0	0	1	
	R ₂	0	5/3	-1	-4/3	1	0	2	
	X ₄	0	5/3	0	-1/3	0	1	3	•
	Basic	X ₁	X ₂	x ₃	R ₁	R ₂	X ₄	Solution	
	r	0	0	0	-1	-1	0	0	No entering
	X ₁	1	0	1/5	3/5	-1/5	0	3/5	Variable, stop.
	X ₂	0	1	-3/5	-4/5	3/5	0	6/5	Optimal solution
	X ₄	0	0	1	1	-1	1	1	

Phase-I of Two Phase Method

- Substitution New r-row = Old r-row + $(1 \times R_1$ -row + $1 \times R_2$ -row)
- Apply simplex steps and Gauss-Jordon row operation
- After 2 iterations, the optimum solution of Phase I is

Basic	x_1	x_2	x_3	R_1 R_2	<i>x</i> ₄	Solution
r	0 -	0	0	271	0	0
x_1	1	0	1/5	3.7.7.1	0	3 5
x_2	0	1	$-\frac{3}{5}$	14 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	0	<u>6</u> 5
<i>x</i> ₄	0	0	1		1	1

- r=0, basic feasible solution $x_1 = 3/5$, $x_2 = 6/5$, $x_4 = 1$
- Eliminate columns of artificial variables for Phase II

Phase-II of Two Phase Method

• Eliminate columns of artificial variables for Phase II

 $Minimize z = 4x_1 + x_2$

Basic	X ₁	X ₂	Х _З	X ₄	Solution
z	-4	-1	0	0	0
X ₁	1	0	1/5	0	3/5
X ₂	0	1	-3/5	0	6/5
X ₄	0	0	1	1	1

Inconsistence

New z-row = Old z-row + $(4 \times x_1$ -row + $1 \times x_2$ -row)

Basic	X ₁	X ₂	хз	x ₄	Solution
Z	0	0	1/5	0	18/5
X ₁	1	0	1/5	0	3/5
X ₂	0	1	-3/5	0	6/5
X4	0	0	1	1	1

Try yourself: The optimal Solution is, x1 = 2/5, x2 = 9/5, and z = 17/5