

DMA: Proofs

Laura Mančinska Institut for Matematiske Fag

Outline

• Proof method: case analysis

Outline

- Proof method: case analysis
- To prove or to disprove?

Outline

- Proof method: case analysis
- To prove or to disprove?
- The axiomatic method
- "The blue-eyed islanders"

Task: Prove q

Task: Prove q

Proof template

• Write: "We use case analysis."

Task: Prove q

Proof template

- Write: "We use case analysis."
- Identify a list of conditions, at least one of which must hold.

(If it is not obvious that the list is exhaustive, you must prove it.)

Task: Prove q

Proof template

- Write: "We use case analysis."
- Identify a list of conditions, at least one of which must hold.

(If it is not obvious that the list is exhaustive, you must prove it.)

- For each condition:
 - State the condition.
 - Prove q assuming that the condition holds.

Task: Prove that in every set *S* of 6 people there are

- at least 3 mutual strangers OR
- at least 3 mutual friends.

Task: Prove that in every set S of 6 people there are

- at least 3 mutual strangers OR
- at least 3 mutual friends.

Proof. Let \mathcal{A} be a set of six people and $P \in \mathcal{A}$ be one of them. We analyze cases:

Task: Prove that in every set *S* of 6 people there are

- at least 3 mutual strangers OR
- at least 3 mutual friends.

Proof. Let \mathcal{A} be a set of six people and $P \in \mathcal{A}$ be one of them. We analyze cases:

- P has at least 3 (different) friends $F_1, F_2, F_3 \in A$.
- **2** P is stranger to at least 3 (different) people $S_1, S_2, S_3 \in \mathcal{A}$.

Task: Prove that in every set *S* of 6 people there are

- at least 3 mutual strangers OR
- at least 3 mutual friends.

Proof. Let A be a set of six people and $P \in A$ be one of them. We analyze cases:

- **1** P has at least 3 (different) friends $F_1, F_2, F_3 \in A$.
- **2** P is stranger to at least 3 (different) people $S_1, S_2, S_3 \in \mathcal{A}$.

Q: Why is the list exhaustive?

(finish on the board)

Sometimes we don't know whether a statement q is true or not.

1 If $x, y \in \mathbb{Z}$ are odd, then x + y is even.

- 1 If $x, y \in \mathbb{Z}$ are odd, then x + y is even.
 - True (we proved it on Tuesday).

- 1 If $x, y \in \mathbb{Z}$ are odd, then x + y is even.
 - True (we proved it on Tuesday).
- $\textbf{2} \text{ For all } x,y \in \mathbb{R}, \ (x=y) \Leftrightarrow (x^2=y^2).$

- 1 If $x, y \in \mathbb{Z}$ are odd, then x + y is even.
 - True (we proved it on Tuesday).
- 2 For all $x, y \in \mathbb{R}$, $(x = y) \Leftrightarrow (x^2 = y^2)$.
 - Not true. Why?

- 1 If $x, y \in \mathbb{Z}$ are odd, then x + y is even.
 - True (we proved it on Tuesday).
- $\textbf{2} \text{ For all } x,y \in \mathbb{R}, \, (x=y) \Leftrightarrow (x^2=y^2).$
 - Not true. Why?
- 3 Let $a, b, d \in \mathbb{Z}^+$. If $d \mid (ab)$, then $d \mid a$ or $d \mid b$.

- 1 If $x, y \in \mathbb{Z}$ are odd, then x + y is even.
 - True (we proved it on Tuesday).
- 2 For all $x, y \in \mathbb{R}$, $(x = y) \Leftrightarrow (x^2 = y^2)$.
 - Not true. Why?
- 3 Let $a, b, d \in \mathbb{Z}^+$. If $d \mid (ab)$, then $d \mid a$ or $d \mid b$.
 - Not true. Why?

Sometimes we don't know whether a statement q is true or not.

- 1 If $x, y \in \mathbb{Z}$ are odd, then x + y is even.
 - True (we proved it on Tuesday).
- $\textbf{2} \text{ For all } x,y \in \mathbb{R}, \, (x=y) \Leftrightarrow (x^2=y^2).$
 - Not true. Why?
- 3 Let $a, b, d \in \mathbb{Z}^+$. If $d \mid (ab)$, then $d \mid a$ or $d \mid b$.
 - Not true. Why?

An x which invalidates " $\forall x \in S P(x)$ " is called a counterexample.

Sometimes we don't know whether a statement q is true or not.

- 1 If $x, y \in \mathbb{Z}$ are odd, then x + y is even.
 - True (we proved it on Tuesday).
- $\textbf{2} \text{ For all } x,y \in \mathbb{R}, \, (x=y) \Leftrightarrow (x^2=y^2).$
 - Not true. Why?
- 3 Let $a, b, d \in \mathbb{Z}^+$. If $d \mid (ab)$, then $d \mid a$ or $d \mid b$.
 - Not true. Why?

An x which invalidates " $\forall x \in S \ P(x)$ " is called a counterexample. To disprove a "for all"-type statement, we only need a counterexample.

In 300 BC Euclid invented the axiomatic method for establishing the truth of a statement.

In 300 BC Euclid invented the axiomatic method for establishing the truth of a statement.

Postulate a number of axioms.

In 300 BC Euclid invented the axiomatic method for establishing the truth of a statement.

- Postulate a number of axioms.
- Prove new statements from axioms and previously proven statements.

In 300 BC Euclid invented the axiomatic method for establishing the truth of a statement.

- Postulate a number of axioms.
- Prove new statements from axioms and previously proven statements.

Proof is a a sequence of logical deductions (valid arguments).

• Assume, we have shown that an implication

$$p \Rightarrow q$$

is a true statement.

Assume, we have shown that an implication

$$p \Rightarrow q$$

is a true statement.

Q: Can we conclude that q is a true statement?

Assume, we have shown that an implication

$$p \Rightarrow q$$

is a true statement.

- Q: Can we conclude that q is a true statement?
- A: No! When we prove that (p ⇒ q) is true, we don't show that q is true, but that

if p is true, then q is true.

Assume, we have shown that an implication

$$p \Rightarrow q$$

is a true statement.

- Q: Can we conclude that q is a true statement?
- A: No! When we prove that (p ⇒ q) is true, we don't show that q is true, but that

if p is true, then q is true.

 Q: What additional assumption do we need, to conclude that q is true?

Assume, we have shown that an implication

$$p \Rightarrow q$$

is a true statement.

- Q: Can we conclude that q is a true statement?
- A: No! When we prove that (p ⇒ q) is true, we don't show that q is true, but that

if p is true, then q is true.

- Q: What additional assumption do we need, to conclude that q is true?
- Indeed, $(p \land (p \Rightarrow q)) \Rightarrow q$ is a tautology (check!).

Logical deductions

Def. Given logical statements $p_1, ..., p_n$ and q, we say that q logically follows from $p_1, ..., p_n$ if

$$(p_1 \wedge p_2 \wedge ... \wedge p_n) \Rightarrow q$$
 is a tautology.

Logical deductions

Def. Given logical statements $p_1, ..., p_n$ and q, we say that q logically follows from $p_1, ..., p_n$ if

$$(p_1 \wedge p_2 \wedge \ldots \wedge p_n) \Rightarrow q \quad \text{ is a tautology.}$$

Notation:

$$p_1$$
 p_2
 \vdots
 p_n
Conclusion

Logical deductions

Def. Given logical statements $p_1, ..., p_n$ and q, we say that q logically follows from $p_1, ..., p_n$ if

$$(p_1 \wedge p_2 \wedge \ldots \wedge p_n) \Rightarrow q \quad \text{ is a tautology.}$$

Notation:

$$p_1$$
 p_2
 \vdots
 p_n
 q
Conclusion

Example (modus ponens)

$$\frac{p \Rightarrow q}{q}$$

On Tuesday...

We proved that for any $\alpha \in \mathbb{Z}$:

 $(a \text{ is even}) \Leftrightarrow (a^2 \text{ is even})$

On Tuesday...

We proved that for any $\alpha \in \mathbb{Z}$:

$$(a \text{ is even}) \Leftrightarrow (a^2 \text{ is even})$$

We also proved that $\sqrt{2}$ is irrational via proof by contradiction:

- Assume (for contradiction) that $\sqrt{2}$ is rational, *i.e.* $\sqrt{2} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}^+$, where $\gcd(a, b) = 1$.
- Then $2 = \frac{a^2}{b^2}$.

On Tuesday...

We proved that for any $\alpha \in \mathbb{Z}$:

$$(a \text{ is even}) \Leftrightarrow (a^2 \text{ is even})$$

We also proved that $\sqrt{2}$ is irrational via proof by contradiction:

- Assume (for contradiction) that $\sqrt{2}$ is rational, i.e. $\sqrt{2} = \frac{a}{b}$ for some $a,b \in \mathbb{Z}^+$, where $\gcd(a,b) = 1$.
- Then $2 = \frac{a^2}{b^2}$. So $a^2 = 2b^2$

On Tuesday...

We proved that for any $\alpha \in \mathbb{Z}$:

$$(a \text{ is even}) \Leftrightarrow (a^2 \text{ is even})$$

We also proved that $\sqrt{2}$ is irrational via proof by contradiction:

- Assume (for contradiction) that $\sqrt{2}$ is rational, *i.e.* $\sqrt{2} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}^+$, where $\gcd(a, b) = 1$.
- Then $2 = \frac{\alpha^2}{b^2}$. So $\alpha^2 = 2b^2$ which shows that α^2 is even.

On Tuesday...

We proved that for any $\alpha \in \mathbb{Z}$:

$$(a \text{ is even}) \Leftrightarrow (a^2 \text{ is even})$$

We also proved that $\sqrt{2}$ is irrational via proof by contradiction:

- Assume (for contradiction) that $\sqrt{2}$ is rational, i.e. $\sqrt{2} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}^+$, where $\gcd(a, b) = 1$.
- Then $2 = \frac{\alpha^2}{b^2}$. So $\alpha^2 = 2b^2$ which shows that α^2 is even.

So we had established that

$$a^2$$
 is even \wedge $((a^2 \text{ is even}) \Rightarrow (a \text{ is even}))$

On Tuesday...

We proved that for any $\alpha \in \mathbb{Z}$:

$$(a \text{ is even}) \Leftrightarrow (a^2 \text{ is even})$$

We also proved that $\sqrt{2}$ is irrational via proof by contradiction:

- Assume (for contradiction) that $\sqrt{2}$ is rational, *i.e.* $\sqrt{2} = \frac{a}{b}$ for some $a, b \in \mathbb{Z}^+$, where $\gcd(a, b) = 1$.
- Then $2 = \frac{\alpha^2}{b^2}$. So $\alpha^2 = 2b^2$ which shows that α^2 is even.

So we had established that

$$\alpha^2$$
 is even \wedge $((\alpha^2 \text{ is even}) \Rightarrow (\alpha \text{ is even}))$

Then we concluded that α must be even. This was modus ponens.

Example.

If today is Wednesday, then Mette has POP today.

Today is not Wednesday.

Mette does not have POP today.

Example.

If today is Wednesday, then Mette has POP today.

Today is not Wednesday.

Mette does not have POP today.

Not a valid argument, since

$$((p \Rightarrow q) \land (\sim p)) \Rightarrow (\sim q)$$

is not a tautology. (When does it fail to be true?)

Example.

If I cycle to university, then I arrive tired.

I did not arrive tired.

I did not cycle to university.

Example.

If I cycle to university, then I arrive tired.

I did not arrive tired.

I did not cycle to university.

Valid argument, since

$$((p \Rightarrow q) \land (\sim q)) \Rightarrow (\sim p)$$

is a tautology (check!).

Let's "prove" that 1/8 > 1/4

Bogus proof

$$3 > 2 \Leftrightarrow 3 \log_{10}(1/2) > 2 \log_{10}(1/2) \Leftrightarrow \log_{10}(1/2)^{3} > \log_{10}(1/2)^{2} \Leftrightarrow (1/2)^{3} > (1/2)^{2}$$

Let's "prove" that 1/8 > 1/4

Bogus proof

$$3 > 2$$
 \Leftrightarrow $3 \log_{10}(1/2) > 2 \log_{10}(1/2)$ \Leftrightarrow $\log_{10}(1/2)^3 > \log_{10}(1/2)^2$ \Leftrightarrow $(1/2)^3 > (1/2)^2$

What's wrong here?

Let $\alpha,b\in\mathbb{R}^+.$ It is a fact that the Arithmetic Mean is at least as large as the Geometric Mean, namely,

$$\frac{a+b}{2}\geqslant \sqrt{ab}$$

Let $a, b \in \mathbb{R}^+$. It is a fact that the Arithmetic Mean is at least as large as the Geometric Mean, namely,

$$\frac{a+b}{2} \geqslant \sqrt{ab}$$

Bogus proof

$$\frac{a+b}{2} \geqslant \sqrt{ab}$$
 so
$$a+b \geqslant 2\sqrt{ab}$$
 so
$$a^2 + 2ab + b^2 \geqslant 4ab$$
 so
$$a^2 - 2ab + b^2 \geqslant 0$$
 so

$$(a-b)^2 \geqslant 0$$
 which we know is true.

Let $\alpha,b\in\mathbb{R}^+$. It is a fact that the Arithmetic Mean is at least as large as the Geometric Mean, namely,

$$\frac{a+b}{2} \geqslant \sqrt{ab}$$

Bogus proof

$$\frac{a+b}{2}\geqslant\sqrt{ab} \qquad \qquad \text{so}$$

$$a+b\geqslant2\sqrt{ab} \qquad \qquad \text{so}$$

$$a^2+2ab+b^2\geqslant4ab \qquad \qquad \text{so}$$

$$a^2-2ab+b^2\geqslant0 \qquad \qquad \text{so}$$

$$(a-b)^2\geqslant0 \qquad \qquad \text{which we know is true.}$$

So we have shown that $(a+b)/2 \ge \sqrt{ab}$.

Let $a, b \in \mathbb{R}^+$. It is a fact that the Arithmetic Mean is at least as large as the Geometric Mean, namely,

Bogus proof
$$\frac{a+b}{2}\geqslant \sqrt{ab}$$

$$\frac{a+b}{2}\geqslant\sqrt{ab} \qquad \qquad \text{so}$$

$$a+b\geqslant2\sqrt{ab} \qquad \qquad \text{so}$$

$$a^2+2ab+b^2\geqslant4ab \qquad \qquad \text{so}$$

$$a^2-2ab+b^2\geqslant0 \qquad \qquad \text{so}$$

$$(a-b)^2\geqslant0 \qquad \qquad \text{which we know is true.}$$

which we know is true.

So we have shown that
$$(a+b)/2 \ge \sqrt{ab}$$
.

What is wrong here and how can we fix it?

Let $\alpha,b\in\mathbb{R}^+$. It is a fact that the Arithmetic Mean is at least as large as the Geometric Mean, namely,

 $\frac{a+b}{2}\geqslant \sqrt{ab}$

Bogus proof

$$\frac{a+b}{2} \geqslant \sqrt{ab}$$
 so
$$a+b \geqslant 2\sqrt{ab}$$
 so
$$a^2 + 2ab + b^2 \geqslant 4ab$$
 so

$$a^2 - 2ab + b^2 \geqslant 0$$
 so

$$(a-b)^2 \geqslant 0$$
 which we know is true.

So we have shown that $(a+b)/2 \ge \sqrt{ab}$.

What is wrong here and how can we fix it? **Take-away:** NEVER start with what you want to prove.

The islanders: 100 with blue eyes and 100 with brown eyes.

The islanders: 100 with blue eyes and 100 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The islanders: 100 with blue eyes and 100 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any blue-eyed person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in

The islanders: 100 with blue eyes and 100 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any blue-eyed person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in The guru: proclaims on Day 1 that someone on the island has blue eyes.

The islanders: 100 with blue eyes and 100 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any blue-eyed person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in The guru: proclaims on Day 1 that someone on the island has blue eyes.

The question: Who gets off the island and when?

The islanders: 1 with blue eyes and 1 with brown eyes.

The islanders: 1 with blue eyes and 1 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The islanders: 1 with blue eyes and 1 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any *blue-eyed* person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in

The islanders: 1 with blue eyes and 1 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any blue-eyed person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in The guru: proclaims on Day 1 that someone on the island has blue eyes.

The islanders: 1 with blue eyes and 1 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any blue-eyed person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in The guru: proclaims on Day 1 that someone on the island has blue eyes.

The question: Who gets off the island and when?

The islanders: 2 with blue eyes and 2 with brown eyes.

The islanders: 2 with blue eyes and 2 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The islanders: 2 with blue eyes and 2 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any blue-eyed person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in

The islanders: 2 with blue eyes and 2 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any blue-eyed person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in The guru: proclaims on Day 1 that someone on the island has blue eyes.

The islanders: 2 with blue eyes and 2 with brown eyes.

They don't know: their own eye color and they don't know the total number of blue-eyed people. Also they cannot talk to each other.

The pirate captain: visits every night and will free any blue-eyed person who can tell him their own eye color. (He will kill anyone who guesses incorrectly.) vspace.2in The guru: proclaims on Day 1 that someone on the island has blue eyes.

The question: Who gets off the island and when?

