Ausarbeitung zum Softwarepraktikum Verfahren und Anwendung der Feldsimulation

Denis Andric Marc Bodem Theodor Sperling

Inhaltsverzeichnis

1	Gru	ndlagen der Methode der Finiten Integration 1	2
	1.1	Vorbereitungsaufgaben	2
		1.1.1 Überzählige Kanten	2
		1.1.2 Dreiecksgitter	2
		1.1.3 Duale Gitter	5
		1.1.4 Ab hier sollen beide Gitter aus Abb. 1.1 betrachtet werden	5
	1.2	Aufgaben während der Praktikumssitzung	6
		1.2.1 Datenstruktur, Visualisierung des Gitters	6
		1.2.2 Die topologischen Matrizen C, \widetilde{C}, S und $\widetilde{S} \dots \dots \dots \dots \dots \dots \dots$	6
		1.2.3 Unbelegte Kantenelemente	7
		1.2.4 Einprägen gegebener Feldverteilungen	8
	1.3	Fragen zur Ausarbeitung	9
	1.4	Fazit	9
	1.5	Abbildungen	10
_	C	undle way alay Bilatha da day Finitan Intervetion 2	
2			16
		č č	16
	2.2	e e	18
		2.2.1 Materialmatrizen	18
		2.2.2 Interpolation und Visualisierung	19
	2.3	Fragen zur Ausarbeitung	20
	2.4		20
	2.5	Abhildungen	วก

1 Grundlagen der Methode der Finiten Integration 1

1.1 Vorbereitungsaufgaben

1.1.1 Überzählige Kanten

1. Skizzieren Sie ein zweidimensionales kartesisches Gitter mit 3×4 Punkten und tragen Sie alle Kantenindizes für die x- und y-Kanten nach dem kanonischen Indizierungsschema aus Gl. (2.5) ein. Machen Sie sich klar, welche Indizes zu nicht existierenden Kanten gehören und markieren Sie diese.

Das 3×4 Gitter ist in Abbildung 1.2 zu sehen. Die nicht existierenden Kanten sind jeweils gestrichelt dargestellt.

2. Überlegen Sie sich für ein $N_x \times N_y$ -Gitter eine Formel für die Anzahl der Indizes, zu denen keine Kanten gehören. Geben Sie diese Formel auch für den Sonderfall $N_{xy} = N_x = N_y$ in Abhängigkeit von $N_P = N_{xy}^2$ an. Geben Sie darüber hinaus auch eine Formel an, um die Indizes aller Geisterkanten nach dem kanonischen Indizierungsschema zu berechnen.

Die Anzahl der Geisterkanten eines $N_x \times N_y$ -Gitters ergibt sich zu $N_x + N_y$ da jeweils an den in positiver Richtung liegenden Aussenseiten eine Reihe an Geisterkanten besitzt.

Für den Fall von $N_x = N_y$ ergibt sich die Anzahl der Geisterkanten zu $\sqrt{N_p} \cdot 2$. Die Indizes aller Geisterkanten nach dem kanonischen Indizierungsschema lassen sich einfach berechnen. Dazu erst die Geisterkanten in x-Richtung:

$$n \in [N_x, 2N_x, \dots, N_xN_y].$$

und dann in y-Richtung:

$$n \in [N_x(N_y - 1) + 1, N_x(N_y - 1) + 2, \dots, 2N_p].$$

1.1.2 Dreiecksgitter

Gegeben sind die beiden Dreiecksgitter in Abb. 1.1, wobei zunächst nur das linke Gitter betrachtet werden soll.

3. Nummerieren Sie die Flächen und Kanten des Gitters beliebig und ordnen Sie den Kanten eine Orientierung zu.

Das gegebene Gitter wurde entsprechend nummeriert und ist in Abbildung 1.3 zu sehen.

Abbildung 1.1: Dreiecksgitter von zwei verschiedenen Rechengebieten.

4. Erstellen Sie die Punkteliste (3-spaltige Tabelle mit Index, *x*-Koordinaten und *y*-Koordinaten). Stellen Sie auch die Indexlisten Kanten-zu-Knoten und Flächen-zu-Kanten auf (auch Inzidenzen genannt). Beachten Sie dabei die Orientierung der Kanten und Flächen. Die Kanten sind von Punkt 1 zu Punkt 2 gerichtet. Bei der Flächen-zu-Kanten-Inzidenz werden Kanten, die gegen die Umlaufrichtung der Fläche zeigen, mit einem negativen Vorzeichen vor dem Index gekennzeichnet.

Mithilfe der Abbildung 1.3 bekommt man folgende Tabellen:

P_i	X	Y
1	0	0
2	1	0
3	$\cos 72^\circ$	sin 72°
4	$-\cos 36^{\circ}$	sin 36°
5	$-\cos 36^{\circ}$	−sin 36°
6	$\cos 72^{\circ}$	$-\sin 72^{\circ}$

Tabelle 1.1: Punktliste

L_i	P_{in}	P _{out}
1	1	6
2	1	2
3	1	3
4 5	1	5
	1	6
6	2	3
7	3	4
8	4	5
9	5 6	6
10	6	2

Tabelle 1.2: Kanten-zu-Knoten Indextabelle

A_i	L_1	L_2	L_3
1	1	-2	10
2	2	-3	6
3	3	-4	7
4	4	-5	8
5	-1	5	9

Tabelle 1.3: Flächen-zu-Kanten Indextabelle

5. Erstellen Sie aus der Kanten-zu-Knoten-Inzidenz die Gradientenmatrix \mathbf{G} . Gehen Sie von einem Potentialvektor φ der Dimension $N_{\rm P}$ aus, der die Werte einer Potentialfunktion in allen Gitterpunkten enthält. Legen Sie die Matrix \mathbf{G} so fest, dass die Multiplikation $-\mathbf{G}\varphi$ gerade den Vektor $\hat{\mathbf{e}}$ ergibt, was der kontinuierlichen Formel $\vec{E} = -\operatorname{grad} \varphi$ entspricht.

Aus der Kanten-zu-Knoten Tabelle 1.2 bekommt man Gradientenmatrix G:

$$\mathbf{G} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

6. Konstruieren Sie mithilfe der Flächen-zu-Kanten-Inzidenz die Curlmatrix **C**. Zur Erinnerung: $\mathbf{C}\widehat{\mathbf{e}} = -\frac{\mathrm{d}}{\mathrm{d}t}\widehat{\hat{\mathbf{b}}}$.

Aus der Flächen-zu-Kanten Tabelle 1.3 bekommt man:

$$\mathbf{C} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

7. Überprüfen Sie, ob genau wie im kontinuierlichen Fall die Beziehung rot grad = 0 auch für die aufgestellten diskreten Matrizen $\mathbf{CG} = \mathbf{0}$ gilt.

$$\mathbf{CG} = \begin{bmatrix} 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 1 \\ -1 & 1 & 0 & 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 \end{bmatrix}$$

$$=\begin{bmatrix} -1+1 & 1-1 & 1-1 & 0 & 0 & 1-1 \\ -1+1 & 1-1 & -1+1 & 0 & 0 & 0 \\ -1+1 & 0 & 1-1 & -1+1 & 0 & 0 \\ -1+1 & 0 & 0 & 1-1 & -1+1 & 0 \\ 1-1 & 0 & 0 & 0 & 1-1 & -1+1 \end{bmatrix} = \mathbf{0}$$

1.1.3 Duale Gitter

Ein mögliches Gestaltungsprinzip für das duale Gitter eines Dreiecksgitters resultiert aus der Forderung, dass die dualen Kanten die normalen Flächen (2D = normale Kanten) orthogonal durchstoßen. Es wird daher versucht, die dualen Kanten aus den *Mittelsenkrechten* der Dreiecke zu konstruieren, die sich bekanntermaßen in einem Punkt – dem neuen dualen Gitterpunkt – schneiden. Voraussetzung für dieses Vorgehen ist jedoch, dass der Schnittpunkt der Mittelsenkrechten auch innerhalb des Dreiecks liegt, was nicht immer erfüllt ist.

1.1.4 Ab hier sollen beide Gitter aus Abb. 1.1 betrachtet werden.

8. Zeichnen Sie das orthogonale duale Gitter ein, wenn möglich nach der oben beschriebenen Konstruktionsvorschrift. Markieren Sie die dualen Gitterkanten, die die Eigenschaft der Orthogonalität nicht mehr erfüllen.

Die dualen Gitter der gegebenen primären Gitter sind in den Abbildungen 1.4 und 1.5 gegeben.

9. Überlegen Sie sich, wie N_V , N_A , N_L und N_P mit den entsprechenden Größen des dualen Gitters \widetilde{N}_V , \widetilde{N}_A , \widetilde{N}_L und \widetilde{N}_P im Fall von 3D-Gittern zusammenhängen. Besonderheiten am Rand sind hierzu zu vernachlässigen. Wie verhalten sich die Größen im Fall von 2D-Gittern?

Beim dualen Gitter im dreidimensionalen entspricht die Anzahl der dualen Punkte \tilde{N}_P , aufgrund der Definition der dualen Gitterpunkte in den primären Volumen, der Anzahl der primären Volumen N_V . Durch die Definition der dualen Kante, die durch die primären Flächen verlaufen, ergibt sich $\tilde{N}_L = N_A$. Die dualen Volumen befinden sich jeweils um einen primären Punkt herum weshalb die Anzahl \tilde{N}_V der dualen Volumen mit der Anzahl N_P der primären Punkte übereinstimmt.

1.2 Aufgaben während der Praktikumssitzung

1.2.1 Datenstruktur, Visualisierung des Gitters

1. Schreiben Sie eine Methode zur Abspeicherung dreidimensionaler, kartesischer Gitter in einem struct

$$[msh] = cartMesh(xmesh, ymesh, zmesh)$$
 (1.1)

und verwenden Sie die Definitionen der Eingangsparameter aus Abschnitt 2.2.3. Die Struktur msh hält nach Aufruf dieser Funktion das durch xmesh, ymesh und zmesh definierte Gitter. Für spätere Routinen muss in msh auch die Gitterpunkteanzahl in jede Raumrichtung, d.h. nx, ny und nz, abgespeichert werden.

2. Implementieren Sie die Methode

welche ein übergebenes kartesisches Gitter msh visualisiert. Verwenden Sie hierzu den line-Befehl und eine 3-fach Schleife über die Indizes i, j, k.

3. Nutzen Sie cartMesh zur Erzeugung eines nicht äquidistanten Gitters mit $\{3,4,5\}$ Punkten in $\{x,y,z\}$ -Richtung und visualisieren Sie es mit plotMesh. Nutzen Sie hierfür die bereits gegebene Datei exampleMesh.m.

Das geforderte Gitter wurde mit plotMesh erzeugt und ist in Abbildung 1.6 dargestellt.

1.2.2 Die topologischen Matrizen C, C, S und S

4. Schreiben Sie eine Methode

$$[c, s, st] = geoMats(msh), \qquad (1.3)$$

die die Operatormatrizen für ein kanonisches, kartesisches Gitter msh erzeugt. Die Rückgabewerte c, s und st sind die Matrizen C, S und \widetilde{S} und entsprechend Abschnitt 2.2.7 definiert. Diese werden mithilfe der P_{ε} -Matrizen erzeugt. Wieso ist es nicht sinnvoll, \widetilde{C} und G zurückzugeben?

Hinweis: Schon bei mittleren Problemgrößen muss hier unbedingt mit Matlab[®]s speziellem Speicherformat für *dünnbesetzte* Matrizen gearbeitet werden (Befehle wie sparse, speye, usw.) Im Allgemeinen geben Matlab[®]-Befehle immer dann Matrizen im sparse-Format zurück, wenn *alle* ihre Argumente ebenfalls sparse sind. Mehr zu diesem Thema ist in der Matlab[®]-Dokumentation zu finden.

Die Rückgabe der dualen Rotationsmatrix $\widetilde{\mathbf{C}}$ ist nicht sinnvoll, da diese durch $\widetilde{\mathbf{C}} = \mathbf{C}^{\top}$ und die Rückgabe von \mathbf{C} bereits einfach erzeugt werden kann. Selbiges gilt für die primäre Gradientenmatrix \mathbf{G} die aus \mathbf{S}^{\top} durch $\mathbf{G} = -\mathbf{S}^{\top}$ erzeugt werden kann.

5. Lassen Sie sich die Matrizen für eine kleine Problemgröße ($N_{\rm P} < 50$) direkt ausgeben und visualisieren Sie die Matrizen für eine mittlere Problemgröße ($N_{\rm P} < 5000$) mit dem Befehl spy. Welche speichertechnisch günstige Eigenschaft würde ohne das kanonische Indizierungsschema verloren gehen? Ermitteln Sie wie viel Speicherplatz jeweils von Matlaß benötigt wird (sparse und full-Format). Legen Sie für die Ausarbeitung eine Tabelle mit dem jeweils benötigten Speicherplatz an. Nutzen Sie für diese Tests die bereits gegebene Datei exampleSparse.m.

Wie in Abbildung 1.7 zu sehen entsteht durch die kanonische Indizierung eine Matrix, die sich aus einer Mehrzahl Elementen auf den Nebendiagonalen zusammen setzt. Dies ermöglicht eine sehr günstige Speicherung.

Wie in Tabelle 1.4 zu erkennen ist, werden für die Speicherung einer mittleren C-Matrix mit 4913 Elementen im Vollformat 1,7 GB an Speicherplatz benötigt. Die selbe Matrix kann im Sparse-Format jedoch mit nur 0,4 MB gespeichert werden.

Anzahl der Elemente	Speicherbedarf im full-Format	Speicherbedarf im Sparse-Format
40	115.200 Byte	3.632 Byte
4913	1.737.904.968 Byte	466.736 Byte

Tabelle 1.4: Speicherverbrauch einer C-Matrix in unterschiedlichen Speicherformaten

6. Berechnen Sie

- 1. $\mathbf{C}(-\widetilde{\mathbf{S}}^{\mathrm{T}})$ und
- 2. SC bzw. $\widetilde{S}\widetilde{C}$

Was bedeutet das für die topologischen Matrizen in Hinblick auf die jeweiligen analytischen Operatoren? Erinnern Sie sich, welche analytischen Operatoren den jeweiligen Matrizen entsprechen.

Bei der Berechnung von $C(-\widetilde{S}^T)$ als auch SC ist das Ergebnis eine Nullmatrix. Dies zeigt die Konsistenz der Diskreten Operationen mit den analytischen, da diese mit

$$\mathbf{SC} = 0 \sim \nabla \cdot \nabla \times = 0$$
$$\mathbf{C}(-\widetilde{\mathbf{S}}^{\mathrm{T}}) = \mathbf{C}(\mathbf{G}) = 0 \sim \nabla \times \nabla = 0$$

einander entsprechen.

1.2.3 Unbelegte Kantenelemente

7. Als Fortführung von Aufgabe 2 aus der Vorbereitung konstruieren Sie eine Routine, die die überzähligen Kanten erfasst.

$$edg = boundEdg(msh)$$
 (1.4)

gibt demnach für ein gegebenes Gitter msh einen Vektor edg zurück, der entsprechend der kanonischen Indizierung true für normale und false für die überzähligen Kanten enthält.

Hinweis: Benötigt wird in diesem Versuch nur der zweidimensionale Fall nz=1, jedoch ist es für spätere Versuche hilfreich auch den dreidimensionalen Fall zu implementieren. Zusätzlich ist es sinnvoll, Erfahrungen mit Vektoroperationen zu sammeln, da diese in Matlab[®] in der Regel schneller sind als Schleifen. Das logical-Format (in anderen Programmiersprachen auch als boolean bekannt) hat den Vorteil, dass nur 1 Byte (im Vergleich zu 8 Bytes für double) pro Eintrag benötigt wird.

8. Zählen Sie mit boundEdg die unbelegten Kanten und vergleichen Sie Ihr Ergebnis mit der Formel aus der 2. Vorbereitungsaufgabe, indem Sie die relative Anzahl der unbelegten Kanten (inkl. Geisterkanten in z-Richtung) über die Anzahl aller Kanten für ein zweidimensionales Gitter msh mit $N_{xy} = N_x = N_y$ darstellen. plotBoundEdg soll diese Aufgaben dann in einem Skript zusammenfassen.

Der Funktionsverlauf aus Abbildung 1.8 ist proportional zu $\frac{\sqrt{x}+x}{x}$. Aus Vorbereitungsaufgabe 2 wurde klar, dass bei einem Quadratischen Gitter die Anzahl aller Geisterkanten gleich $2\sqrt{N_p}$ ist, wobei hier noch keine Geisterkanten in z-Richtung betrachtet wurden. Betrachtet man auch die Geisterkanten in z-Richtung, wobei die Höhe in z-Richtung 1 beträgt, so kommt man auf eine Gesamtanzahl von $2\sqrt{N_p}+N_p$.

Dies kann man nun auf die Gesamtanzahl der Kanten beziehen und kommt auf $\frac{2\sqrt{N_p}+N_p}{3N_p}$. Die Werte aus Vorbereitungsaufgabe 2 bestätigen also das Diagramm.

1.2.4 Einprägen gegebener Feldverteilungen

9. Schreiben Sie eine Methode, die für ein vorgegebenes kontinuierliches \vec{E} -Feld field die entsprechenden integralen Zustandsgrößen fieldBow in einem 3D-Gitter msh berechnet und in einem Vektor gemäß Gl. (2.8) abspeichert. Implementieren Sie:

$$[fieldBow] = impField(msh, field)$$
 (1.5)

Hinweis: field soll hierbei eine *anonymous function* sein, welche den Punkt mit x-,y- und z-Koordinate übergeben bekommt und einen Vektor mit x-,y- und z-Komponente zurückgibt. Zum Beispiel:

field =
$$@(x,y,z)([1./x.^2, 0.01*x, y+z])$$

Aufruf mit field (1, 3, 4.5) oder field ([3,6]', [1,3]', [2,4]')

Werten Sie für die notwendige Integration über eine Kante das gegebene Feld an den Kantenmittelpunkten aus und multiplizieren Sie den Wert mit der Kantenlänge anstatt das Feld tatsächlich zu integrieren.

10. Verwenden Sie Ihre Methode impField um folgende Felder zu diskretisieren:

1.
$$\vec{E}(\vec{r}) = \frac{5}{2} \vec{e}_x - 1, 3 \vec{e}_y + 2 \vec{e}_z,$$

2.
$$\vec{E}(\vec{r}) = 3 \sin\left(\frac{\pi}{x_{\text{max}} - x_{\text{min}}} (x - x_{\text{min}})\right) \vec{e}_y$$

wobei die Einheiten hier vernachlässigt werden. Mit Hilfe der vorgegebenen Routine plotEdgeVoltage sollen Sie Ihre Implementation optisch verifizieren. Fassen Sie diese Aufgabe in einem Skript plotImpField zusammen.

Die vorgegebenen Feldverteilungen sind in den Abbildungen 1.9 und 1.10 dargestellt.

1.3 Fragen zur Ausarbeitung

1. In den Vorbereitungsaufgabe zum dualen Gitter wurden Besonderheiten am Rand des Rechengebietes vernachlässigt.

Wie sollte das duale Gitter am Rand gewählt werden, damit die magnetische Randbedingung automatisch erfüllt ist. Machen Sie eine kleine Skizze für ein einfaches zweidimensionalen kartesisches Gitter sowie für das Dreiecksgitter aus Bild 1.1 a). Ist diese Wahl des dualen Gitters am Rand immer notwendig?

Bei magnetischen Randbedingungen gilt, dass die tangentiale Komponente der magnetischen Feldstärke und die normale Komponente der elektrischen Feldstärke gleich Null sind. Die normale Komponente der elektrischen Feldstärke ist am Rand immer gleich Null, da diese auf den primären Kanten definiert ist und diese immer tangential zum Rand liegen. Damit ist dieser Teil bereits erfüllt. Da die tangentiale Komponente der magnetischen Feldstärke auf dualen Kanten definiert ist und es keine tangentialen dualen Kanten am Rand gibt, ist diese Bedingung auch erfüllt. Damit können nun die Dualen Kanten bis zum Rand geführt werden (nicht weiter) und die magnetische Randbedingung ist automatisch erfüllt. Die dualen Gitter für die in der Aufgabe geforderten primären Gitter sind in den Abbildungen 1.11 und 1.12 zu sehen.

1.4 Fazit

Wie aus den Aufgaben ersichtlich wird, ist die Generierung von Mesh Matrizen relativ einfach. Weiterhin können mit einfachen Operationen die Matrizen C, \widetilde{C} , S, \widetilde{S} und G erstellt und verwendet werden, um in Zukunft Feldprobleme effizient lösen zu können.

1.5 Abbildungen

Abbildung 1.2: 3×4 Gitter mit kanonischer Kantenindizierung.

Abbildung 1.3: Gegebenes Gitter mit beliebig gewählter Indizierung für Punkte, Kanten und Flächen.

Abbildung 1.4: Duales Gitter für das erste gegebene Gitter.

Abbildung 1.5: Duales Gitter für zweites gegebenes Gitter. Kanten, die die Orthogonalität nicht erfüllen, sind grün markiert.

Abbildung 1.6: exampleMesh Plot

Abbildung 1.7: Speicherverbrauch einer C-Matrix in unterschiedlichen Speicherformaten

Abbildung 1.8: Anteil der Geisterkanten relativ zur Gesamtanzahl der Kanten.

Abbildung 1.9: Feldverteilung aus 10.1

Abbildung 1.10: Feldverteilung aus 10.2

Abbildung 1.11: Primäres und duales Gitter für Erfüllung der magnetischen Randbedingung.

Abbildung 1.12: Primäres und duales Gitter für Erfüllung der magnetischen Randbedingung.

2 Grundlagen der Methode der Finiten Integration 2

2.1 Vorbereitungsaufgaben

1. Überlegen Sie sich, wie man ausgehend vom 3-fach Index i, j, k (vgl. Gl. (3.1)) die Randpunkte eines kartesischen Rechengebietes im kanonischen Indizierungsschema bestimmt (eine Skizze ist hilfreich). Schreiben Sie hierfür ein Schleifenkonstrukt in Pseudocode.

Ausgehend von einem 3-fach Index i,j,k lasen sich die Randpunkte eines Kartesischen Rechengitters im kanonischen Indizierungsschema durch ablaufen der Außenseiten bestimmen. Hierbei werden nacheinander i,j und k zu Null gesetzt und die beiden anderen Variablen Variiert. Anschließend wird selbiges mit einem Festsetzen beim Maximalwert der jeweiligen Variable wiederholt. Alle hierbei erreichten Punkte liegen auf den Außenseiten des Gitters. Im Pseudocode lässt sich diese Verfahren für eine Richtung i darstellen durch

```
1: c \leftarrow 1
 2: d \leftarrow 1
 3: while c \le jmax do
       while d \le kmax do
         AddToListBoundaryElementAt(1, c, d)
 5:
         d \leftarrow d + 1
 6:
       end while
 7:
       c \leftarrow c + 1
 9: end while
10: c \leftarrow 1
11: d \leftarrow 1
12: while c \le \max do
       while d <= kmax do
13:
         AddToListBoundaryElementAt(i_{max}, c, d)
14:
15:
         d \leftarrow d + 1
       end while
16:
       c \leftarrow c + 1
17:
18: end while
```

Die Funktion AddToListBoundaryElementAt führt eine Liste mit den kanonischen Indizes, welche unter Zuhilfenahme von M_x , M_y und M_z bestimmt werden, der Randpunkte.

2. Wie sehen für ein äquidistantes, kartesisches Gitter die Geometriematrizen \mathbf{D}_S , $\widetilde{\mathbf{D}}_S$, \mathbf{D}_A und $\widetilde{\mathbf{D}}_A$ aus? Was ist bei den Rändern zu beachten? Welche Dimensionen besitzen die Matrizen?

Für eine äquidistantes, kartesisches Gitter bildet die Matrix DS eine Diagonalmatrizen mit dem Abstand Δx auf der Diagonalen. Die duale Matrix $\widetilde{\mathbf{D}}_S$ unterscheidet sich hiervon nur dadurch, das die Randelemente mit ½ multipliziert werden.

Für die Flächenzentrierten \mathbf{D}_{A} gilt simultan das sie Diagonalmatrizen mit den Flächeninhalt Δx^2 sind. Bei der Dualen Flächenmatrix $\widetilde{\mathbf{D}}_{\mathrm{A}}$ muss nun bei den Randelementen allerdings unterschieden werden

zwischen denen die an einer Kante liegen und mit ½ multipliziert werden und denen an einer Ecke die mit ¼ multipliziert werden.

Falls hier bereits Geisterkanten entfernt worden sind, sind bei den primären Matrizen \mathbf{D}_S und \mathbf{D}_A die Geisterelemente jeweils Null.

Die Matrizen besitzen immer die Dimension [np, 3np] mit np als Anzahl der Gitterpunkte.

3. Skizzieren Sie kurz, wie sich die Materialmatrizen zusammenstellen. Wie sind hierbei die Randbedingungen (elektrisch & magnetisch) einzuarbeiten bzw. muss überhaupt eine Änderung vorgenommen werden?

Skizze:

$$\mathbf{M}_{\varepsilon} = \widetilde{\mathbf{D}}_{A} \mathbf{D}_{\varepsilon} \mathbf{D}_{S}^{-1} = \begin{bmatrix} \tilde{d}A(1) & & & \\ & \ddots & & \\ & \tilde{d}A(3 \cdot \mathrm{np}) \end{bmatrix} \cdot \begin{bmatrix} \varepsilon(1) & & & \\ & \ddots & \\ & & \varepsilon(3 \cdot \mathrm{np}) \end{bmatrix} \cdot \begin{bmatrix} \mathrm{d}s(1) & & \\ & \ddots & \\ & & \mathrm{d}s(3 \cdot \mathrm{np}) \end{bmatrix}^{-1}$$

$$\mathbf{M}_{\mu^{-1}} = \widetilde{\mathbf{D}}_{S} \mathbf{D}_{\mu^{-1}} \mathbf{D}_{A}^{-1} = \begin{bmatrix} \tilde{d}s(1) & & & \\ & \ddots & & \\ & & \tilde{d}s(3 \cdot \mathrm{np}) \end{bmatrix} \cdot \begin{bmatrix} \mu^{-1}(1) & & & \\ & \ddots & & \\ & & \mu^{-1}(3 \cdot \mathrm{np}) \end{bmatrix} \cdot \begin{bmatrix} \mathrm{d}A(1) & & \\ & \ddots & \\ & & \mathrm{d}A(3 \cdot \mathrm{np}) \end{bmatrix}^{-1}$$

Wenn man elektrische Randbedingung hat, muss man die tangentiale Komponente der Permitivität und normale Komponente der Permeabilität am Rand auf Null setzen. Bei magnetischer Randbedingung ist die tangentiale Komponente der magnetischen Feldstärke und normale Komponente des elektrischen Feldes gleich Null. Bei den Materialmatrizen gibt es keine Veränderungen. Die normale Komponente auf dem primären Gitter ist eine Geisterkante und für die Geisterkante ist keine Kante auf dem dualen Gitter definiert. Der Code dazu ist in Listing 2.1 zu sehen.

Listing 2.1: Einsetzten der elektrischen Randbedigungen

98% Randbedingungen

```
% Spezialfall nur bei PEC Rand (bc=1)
if bc==1
 for i=1:nx
  for j=1:ny
   for k=1:nz
    n=1+(i-1)*Mx+(j-1)*My+(k-1)*Mz;
    if k==1 \mid \mid k==nz
     meanEpsX(n) = 0;
     meanEpsY(n)=0;
    endif
     if j==1 \mid j==ny
     meanEpsX(n) = 0;
     meanEpsZ(n)=0;
     endif
     if i==1 \mid \mid i==nx
     meanEpsZ(n)=0;
     meanEpsY(n)=0;
     endif
```

end end end end

4. Um die im Versuch zu implementierende Visualisierung zu testen, soll ein vorgegebenes rotationssymmetrisches Feld in Zylinderkoordinaten nach der analytischen Formel

$$\vec{D}(r,\varphi,z) = \frac{1}{r^2}\vec{e}_r \tag{2.1}$$

visualisiert werden. Es soll ein äquidistantes Gitter benutzt werden, dessen Mitte genau dem Koordinatenursprung entspricht.

Bestimmen Sie die diskreten Größen $\widehat{d}(n)$ und $\widehat{e}(n)$ des vorgegebenen Feldes. Zur Vereinfachung soll bei der hierfür notwendigen Integration der Feldwert in der Mitte der Strecke bzw. Fläche als repräsentativ gelten und damit als konstant über dem gesamten Element angenommen werden.

Hinweis: Transformieren Sie zuerst zur Bestimmung der notwendigen Feldwerte das gegebene Feld in kartesische Koordinaten $\vec{D}(x, y, z)$.

Transformiert man $\vec{D}(r, \varphi, z)$ in kartesische Koordinaten ergibt sich

$$\vec{D}(x,y,z) = \frac{x}{(x^2 + y^2)^{\frac{3}{2}}} \vec{e}_x + \frac{y}{(x^2 + y^2)^{\frac{3}{2}}} \vec{e}_y.$$

Möchte man nun $\widehat{d}(n)$ berechnen muss man einfach \overrightarrow{D} am Mittelpunkt der dualen Fläche auswerten und mit dem Flächeninhalt multiplizieren. Um daraus $\widehat{e}(n)$ zu bestimmt muss einfach die Material Matrix \mathbf{M}_{ε} mit $\widehat{d}(n)$ multipliziert werden. Daraus folgt:

$$\widehat{d}(n) = \overrightarrow{D}(x_n, y_n, z_n) \, \widetilde{d}A$$

$$\widehat{e}(n) = \mathbf{M}_{\varepsilon} \widehat{d}$$

2.2 Aufgaben während der Praktikumssitzung

2.2.1 Materialmatrizen

1. Zuerst sollen zwei Funktionen zum Bestimmen der Geometriematrizen \mathbf{D}_S , $\widetilde{\mathbf{D}}_S$ und \mathbf{D}_A geschrieben werden:

$$[DS, DSt] = createDS(msh)$$
 (2.2)

$$[DA] = createDA(DS)$$
 (2.3)

Wie kann mit der zweiten Funktion auch $\widetilde{\mathbf{D}}_{A}$ bestimmt werden?

Analog zu \mathbf{D}_A kann man zweite Funktion verwenden um $\widetilde{\mathbf{D}}_A$ bestimmen. Man soll nur als Eingabe Parameter $\widetilde{\mathbf{D}}_S$ setzen.

2. Nun sollen die Funktionen

$$[Deps] = createDeps(msh, DA, DAt, eps_r, bc)$$
 (2.4)

$$[Meps] = createMeps(DAt, Deps, DS)$$
 (2.5)

geschrieben werden, um die \mathbf{M}_{ε} -Matrix Meps aus der \mathbf{D}_{ε} -Matrix Deps der gemittelten Permittivitäten zu bestimmen. bc = 1 soll dabei elektrische und bc = 2 magnetische Randbedingungen bedeuten. Die Materialverteilung auf dem Gitter msh soll inhomogen und isotrop bezüglich der Raumrichtungen sein. Zur besseren Übersicht sollen bei der Übergabe relative Permittivitäten verwendet werden. eps_r soll damit als $N_p \times 1$ Matrix übergeben werden, also für jedes der N_p primären Volumen ein ε_r -Wert.

Hinweis: Für das Invertieren von \mathbf{D}_{S} ist die Methode nullInv vorgegeben.

3. Die Funktion (2.5) soll nun mit den Parametern xmesh = $[-2\ 0\ 2]$, ymesh = $[-1\ 0\ 1]$, zmesh = $[0\ 1]$ und isotropem $\varepsilon = \varepsilon_0$ die Materialmatrix \mathbf{M}_{ε} für elektrische Randbedingungen berechnen und ausgeben. Vervollständigen Sie hierfür das bereits gegebene Skript exampleMeps.m

2.2.2 Interpolation und Visualisierung

4. Programmieren Sie eine Routine

$$eField = fitInt (msh, eBow),$$
 (2.6)

die die Komponenten von $\widehat{\mathbf{e}}$ als \vec{E} -Feld auf die primären Punkte interpoliert.

5. Schreiben sie eine Methode

die auf Methode (2.6) aufbauend $\hat{\mathbf{e}}$ interpoliert und den Betrag des \vec{E} -Feldes mit dem Matlab Befehl surf in einer x-y-Ebene mit Index indz grafisch darstellt. Verwenden Sie hierfür bitte elektrische Randbedingungen.

Hinweis: Nutzen Sie auch für das Invertieren von \mathbf{M}_{ε} die vorgegebene Methode nullInv.

6. Geben Sie das rotationssymmetrische Feld aus der Vorbereitung als Vektor $\widehat{\mathbf{d}}$ vor, berechnen Sie daraus mit Hilfe der Materialmatrix $\mathbf{M}_{\epsilon}^{-1}$ das Feld $\widehat{\mathbf{e}}$ und wenden Sie dann Methode (2.7) an. Visualisieren Sie außerdem die selbe Schnittebene mit der in Versuch 2 vorgestellten Methode plotEdgeVoltage. Vervollständigen Sie hierfür den ersten Teil des bereits gegebenen Skripts exampleVisualEfield.m

Das elektrische Feld für isotrope Materialien ist in den Abbildungen 2.1 und 2.2 dargestellt.

7. Überlegen Sie sich, welche Änderungen an den bisher implementierten Methoden vorgenommen werden müssen, um ein anisotropes Material zu verwenden. Ändern Sie Ihre Implementierung entsprechend und verwenden Sie ein anisotropes Material mit unterschiedlichen Permittivitäten in x- und y-Richtung (z. B. $\varepsilon_x/\varepsilon_y=4$) sowie elektrische Randbedingungen. Interpolieren und visualisieren Sie das Feld $\widehat{\mathbf{e}}$ wie in der Aufgabe zuvor. Visualisieren Sie auch hier das Ergebnis zusätzlich mit der Methode plotEdgeVoltage. Vervollständigen Sie hierfür den zweiten Teil des bereits gegebenen Skripts exampleVisualEfield.m

Das elektrische Feld für anisotrope Materialien ist in den Abbildungen 2.3 und 2.4 dargestellt.

2.3 Fragen zur Ausarbeitung

1. Erstellen Sie eine 2D-Skizze einer dualen Gitterfläche mit den zugehörigen primären Gitterzellen, welche zur Mittelung der Permittivität notwendig sind (siehe (3.10)).

Die duale Fläche mit den zugehörigen primären Gitterzellen sind in Abbildung 2.6 zu sehen.

2. Häufig werden für die Visualisierung der magnetischen Feldstärke \vec{H} die entsprechenden Komponenten ebenfalls auf den Punkten des primären Gitters gemittelt und nicht auf den dualen Punkten. Beschreiben Sie für diese Mittelung kurz eine geeignete Vorgehensweise (kleine Skizze sinnvoll) und gehen Sie dabei auch auf die Randbedingungen ein.

Für die Mittelung von \vec{H} auf den Primären Punkten muss zunächst die magnetische Flussdichte \vec{B} von den 4 anliegenden primären Flächen mit $\bar{B}=\frac{1}{4}(B_1+B_2+B_3+B_4)$ gemittelt werden. Nun muss man weiterhin die Materialkonstate μ über die 4 anliegenden Flächen mit $\bar{\mu}=\frac{1}{4}(\mu_1+\mu_2+\mu_3+\mu_4)$ mitteln. Die Feldstärke \vec{H} ergibt sich nun aus der Materialbeziehung zwischen \vec{B} und \vec{H} . Damit erhalten wir $\vec{H}=\bar{\mu}\bar{B}$.

2.4 Fazit

Wie in der Ausarbeitung deutlich wird, ist es nun möglich Materialmatrizen zu erstellen, sowie elektrische Felder zu visualisieren.

2.5 Abbildungen

Abbildung 2.1: Elektrisches Feld bei isotroper Materialverteilung in 3D.

Abbildung 2.2: Elektrisches Feld bei isotroper Materialverteilung dargestellt mit Vektorpfeilen.

Abbildung 2.3: Elektrisches Feld bei anisotroper Materialverteilung in 3D.

Abbildung 2.4: Elektrisches Feld bei anisotroper Materialverteilung dargestellt mit Vektorpfeilen.

Abbildung 2.5: Duale Fläche (Mitte) mit den primären Gitterzellen. Die für die Mittelung interessanten Bereiche sind schraffiert.

Abbildung 2.6: Darstellung der örtlichen Beziehungen zwischen \vec{H} und \vec{B} .

Abbildungsverzeichnis

1.1	Dreiecksgitter von zwei verschiedenen Rechengebieten.	3
1.2	3×4 Gitter mit kanonischer Kantenindizierung	10
1.3	Gegebenes Gitter mit beliebig gewählter Indizierung für Punkte, Kanten und Flächen	11
1.4	Duales Gitter für das erste gegebene Gitter	11
1.5	Duales Gitter für zweites gegebenes Gitter. Kanten, die die Orthogonalität nicht erfüllen,	
	sind grün markiert	12
1.6	exampleMesh Plot	12
1.7	Speicherverbrauch einer C-Matrix in unterschiedlichen Speicherformaten	13
1.8	Anteil der Geisterkanten relativ zur Gesamtanzahl der Kanten.	13
1.9	Feldverteilung aus 10.1	14
1.10	Feldverteilung aus 10.2	14
1.11	Primäres und duales Gitter für Erfüllung der magnetischen Randbedingung	15
1.12	Primäres und duales Gitter für Erfüllung der magnetischen Randbedingung	15
2.1	Elektrisches Feld bei isotroper Materialverteilung in 3D	21
2.2	Elektrisches Feld bei isotroper Materialverteilung dargestellt mit Vektorpfeilen	21
2.3	Elektrisches Feld bei anisotroper Materialverteilung in 3D	22
2.4	Elektrisches Feld bei anisotroper Materialverteilung dargestellt mit Vektorpfeilen	22
2.5	Duale Fläche (Mitte) mit den primären Gitterzellen. Die für die Mittelung interessanten	
	Bereiche sind schraffiert	23
2.6	Darstellung der örtlichen Beziehungen zwischen \vec{H} und \vec{B}	23

24