高二数学练习 12.30

命题人:王颖超 审题人:张敏

一、单选题

1. 已知直线 $l_1: x + (2-k)y + 1 = 0$ 与 $l_2: 2y + 3 = 0$ 垂直,则 k = (

A. 0

B. 1

C. 2

D. $\frac{1}{2}$

2. 已知数列 $\left\{a_{n}\right\}$ 为等差数列,前n项和为 S_{n} .若 $S_{3}=6$, $S_{6}=3$,则 $S_{9}=($)

A. -18

В. -9

C. 9

D. 18

3. 已知点 $A(3,\sqrt{21})$, 抛物线 $C: y^2 = 4x$ 上有一点 $P(x_0,y_0)$,则 $\frac{y_0^2}{2} + 2|PA|$ 的最小值是

A. 10

B. 8

C. 5

D. 4

4. 已知函数 $f(x) = e^x + e(x - a - 1)$ (e 为自然对数的底数), $g(x) = \ln(xe^x) - a$ 的零点分别为 \mathbf{X}_1 , \mathbf{X}_2 , 则 $\frac{x_1}{x_2}$ 的最大值为 ()

A. e

B. $\frac{1}{e}$

C. 1

D. $\frac{2}{e}$

二、多选题

5. 已知曲线 $C: \frac{x^2}{m-1} + \frac{y^2}{3-m} = 1(x \in \mathbf{R})$,下列说法正确的是()

- A. 若1 < m < 3,则曲线 C 为椭圆
- B. 若m < 1,则曲线C为双曲线
- C. 若曲线 C 为椭圆,则其长轴长一定大于 2
- D. 若曲线 C 为焦点在 x 轴上的双曲线,则其离心率小于 $\sqrt{2}$ 大于 1

6. 函数 $f(x) = x^3 + ax^2 + bx - 1$.下列说法中正确的有 ()

- A. 当a = 3, b = 1时,有f(-2-x) + f(x) = 0恒成立
- B. $\exists a,b \in \mathbf{R}$, 使 f(x) 在 $(-\infty,1)$ 上单调递减
- C. 当b=0时,存在唯一的实数a,使f(x)恰有两个零点
- D. 当 $b = 0, x \in [-2,0]$ 时, $x 6 \le f(x) \le x$ 恒成立,则 $a \in \left[\frac{1}{4}, 1\right]$

三、填空题

- 7. 已知等比数列 $\{a_n\}$ 满足 $a_4+a_8=-3,a_5a_7=2$,则 $a_6=$ _____.
- 8. 已知双曲线 $C: \frac{x^2}{a^2} \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的左,右焦点分别为 F_1, F_2 ,点 P 在双曲线 C 上,且满足 $F_1F_2 \cdot PF_2 = 0$,倾斜角为锐角的渐近线与线段 PF_1 交于点 Q,且 $F_1P = 4QP$,则 $\frac{|PF_1|}{|PF_2|}$ 的值为______.

四、解答题

- 9. (8+8) 已知数列 $\left\{a_n\right\}$, $\left\{b_n\right\}$, $a_n=(-1)^n+2^n$, $b_n=a_{n+1}-\lambda a_n(\lambda>0)$, 且 $\left\{b_n\right\}$ 为等比数列.
 - (1) 求 λ 的值;
 - (2) 记数列 $\left\{b_n\cdot n^2\right\}$ 的前n项和为 T_n .若 $T_i\cdot T_{i+2}=15T_{i+1}\left(i\in \operatorname{N}^*\right)$,求i的值.

- 10. (6+8+6) 已知 $f(x) = \ln(x+1)$
- (1) 设h(x) = xf(x-1), 求h(x)的极值.
- (2) 若 $f(x) \le ax$ 在 $[0,+\infty)$ 上恒成立,求a的取值范围.
- (3) 若存在常数 M ,使得对任意 $x \in I$, $f(x) \le M$ 恒成立,则称 f(x) 在 I 上有上界 M ,函数 f(x) 称为有上界函数。如 $y = e^x$ 是在 R 上没有上界的函数, $y = \ln x$ 是在 $(0, +\infty)$ 上没有 上 界的 函数; 函数 $y = -e^x$, $y = -x^2$ 都是在 R 上有上界的函数。如果 $g(n) = 1 + \frac{1}{2} + \frac{1}{3} + L + \frac{1}{n} (n \in N^*)$,则 g(n) 是否在 N^* 上有上界?若有,求出上界;若没有,给出证明。