

# Frequentist vs Bayesian and Probabilistic Programming

Filipe Rodrigues

Francisco Pereira



**DTU Management Engineering**Department of Management Engineering

#### **Outline**



- Step back: The big picture so far
- Approximate inference overview
- Frequentist vs Bayesian perspective
- Probabilistic Programming in STAN
- Mixture models in STAN

# Learning objectives



At the end of this lecture, you should be able to:

- Relate PGMs, generative processes and joint distributions (and their factorizations)
- Provide a high-level explanation of the differences between exact and approximate inference methods
- Explain the differences between the Frequentist and Bayesian views and some of their practical implications
- Explain the concept of probabilistic programming and the ideas behind it
- Implement simple probabilistic models in STAN or Pyro

# Step back: The big picture so far



- Probability and statistics recap
  - Probability theory at the center of everything that we do
  - Allows to capture uncertainty
- Probabilistic graphical models (PGMs)
  - Intuitive and compact way of representing the structure of a prob. model
  - Relationships between variables and conditional independencies
  - How the joint distribution factorizes
- Generative processes
  - A "story" of how the observed data was generated
  - Explicit description of how the different variables in the model are related
  - Complementary to PGM representation: more detailed, but less intuitive
- Joint probability distribution and Bayesian inference
  - Joint probability of the model: central object for all computations
  - ullet Bayesian inference: model + data o patterns
  - Important concepts: likelihood, prior, posterior, conjugate prior, etc.

# Step back: The big picture so far



Everything is related...

$$p(\boldsymbol{\beta}, \mathbf{z}, \mathbf{k}, \mathbf{dt}) = p(\boldsymbol{\beta}|\sigma_{\beta}) \prod_{n=1}^{N} p(k_{n}|\mathbf{x}_{n}, \boldsymbol{\beta}, \sigma_{\epsilon}) p(z_{n}|\pi) p(dt_{n}|z_{n}, k_{n})$$

- **1** Draw a pair of parameters<sup>1</sup>,  $\boldsymbol{\beta} \sim \mathcal{N}(\mathbf{0}, I\sigma_{\beta})$
- **2** For n = 1..N
  - **1** Draw one value for  $z_n$ , such that  $z_n \sim Bern(\pi)$ .
    - If  $z_n = 1$ , the bus has stopped ( $z_n = 0$  otherwise)
    - Distributed as Bernoulli, with parameter  $\pi$
  - **2** Draw one value for  $k_n$ , such that  $k_n \sim \mathcal{N}(\mathbf{x}_n^T \boldsymbol{\beta}, \sigma_{\epsilon})$
  - **3** If  $z_n = 1$ ,  $dt_n = k_n$ ,
    - otherwise  $dt_n = 0$



# The problem of inference



- Model + Data → Insights
- Answer various types of questions about the data by computing the posterior distribution of the latent variables given the observed ones



• Example:  $p(x_2|x_5, x_6, x_7) = ?$ 

#### The problem of inference



- Inference in general: given a set of latent variables  $\mathbf{z} = \{z_m\}_{m=1}^M$  and observed variables  $\mathbf{x} = \{x_n\}_{n=1}^N$ , compute  $p(\mathbf{z}|\mathbf{x})$
- Two classes of approaches:
  - Exact inference (Bayes' theorem)

$$\underbrace{p(\mathbf{z}|\mathbf{x})}_{p(\mathbf{z}|\mathbf{x})} = \underbrace{\frac{p(\mathbf{x},\mathbf{z})}{p(\mathbf{x})}}_{p(\mathbf{x})} = \underbrace{\frac{p(\mathbf{x}|\mathbf{z})}{p(\mathbf{x})}}_{\text{evidence}} \underbrace{\frac{p(\mathbf{x})}{p(\mathbf{z})}}_{\text{evidence}}$$

- For most problems of interest, it is often infeasible to evaluate posterior exactly or to compute expectations with respect to it
- Approximate Inference
  - STAN and Pyro use approximate inference!
  - Stochastic vs. variational methods



- Stochastic
- Variational



- Stochastic
  - We try to sample from the posterior distribution
  - Samples provide approximate representation of the true posterior
  - We can use samples to compute expectations w.r.t. the posterior
  - Example: Markov Chain Monte Carlo (MCMC) methods



Variational



- Stochastic
- Variational
  - Approximate intractable distribution with a simpler, tractable one
  - Goal: find the parameters of the simpler distribution that make it as similar as possible to the true distribution
  - Similar in what sense?
    - E.g. using Kullback-Leibler (KL) divergence
  - Becomes an optimization problem (of minimizing the difference between true and approximate distribution)





- Stochastic
- Variational
- STAN and Pyro mainly use:
  - MCMC Hamiltonian Monte Carlo ("HMC" or "NUTS")
  - Black-box Variational Inference ("SVI" in Pyro or "ADVI" in STAN) a variational approach with a stochastic component...
- We will talk about these in more detail later on in the course

#### Frequentist vs Bayesian perspective



What is probability?

"The probability that a coin will land heads is 0.5"

But what does this mean?

- Two different interpretations of probability:
- Frequentist interpretation
  - Probabilities represent long run frequencies of events e.g. if we flip the coin many times, we expect it to land heads about half the time
- Bayesian interpretation
  - Probability is used to quantify our uncertainty about something
  - It is fundamentally related to information rather than repeated trials e.g. we believe the coin is equally likely to land heads or tails on the next toss
  - Can be used to model our uncertainty about events that do not have long term frequencies! E.g. what is the probability that the polar ice cap will melt by 2025?

#### Frequentist vs Bayesian perspective



- Frequentist or Bayesian: which one are you? :-)
- Consider the following ML problems:
  - You received a new email. What is the probability that it is spam?
  - Your self-driving car receives data from its cameras. What is the probability that the pedestrian in the sidewalk will cross the road?
  - You keep track of the public transport demand. What is the probability that the demand tomorrow will exceed X given that Metallica is playing nearby?
- In all these cases, the idea of repeated trials does not make sense
- Also, we want to be able to quantify the uncertainty in the predictions!

#### Note

We are not strictly advocating in favour of the Bayesian perspective. In many cases, a frequentist approach works perfectly fine! And it is often much easier to implement and computationally efficient...

#### Frequentist vs Bayesian in practice



- Consider that you have a probabilistic model with parameters  $\theta$ . Given that you observe some data X, you want to estimate  $\theta$
- A frequentist approach would be to use maximum likelihood estimation (MLE)

$$m{ heta}_{ extsf{MLE}} = rg \max_{m{ heta}} \Big( \log p(\mathbf{X}|m{ heta}) \Big)$$

• We can take a step towards a Bayesian approach by considering a prior  $p(\theta)$ , and using **maximum-a-posteriori** (MAP) estimation

$$m{ heta}_{\mathsf{MAP}} = rg \max_{m{ heta}} \Big( \log p(\mathbf{X}|m{ heta}) + \log p(m{ heta}) \Big)$$

ullet Both MLE and MAP provide point-estimates of ullet! In a fully Bayesian approach, we perform **Bayesian inference** of the posterior distribution over ullet

$$p(\boldsymbol{\theta}|\mathbf{X}) = \frac{p(\mathbf{X}|\boldsymbol{\theta}) p(\boldsymbol{\theta})}{p(\mathbf{X})}$$

# Playtime!



- Frequentist vs Bayesian: a practical example
  - See "4 Frequentist vs Bayesian.ipynb" notebook
  - Expected duration: 30 minutes

# Playtime!

# DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE)





#### FREQUENTIST STATISTICIAN:

THE PROBABILITY OF THIS RESULT HAPPENING BY CHANCE IS  $\frac{1}{36}$ =0.027. SINCE p < 0.05, I CONCLUDE. THAT THE SUN HAS EXPLODED.



Bayesian Statistician:



# Probabilistic programming



Allows you to specify a probabilistic model



- Don't need to worry about inference: it does inference for you!
- Many probabilistic programming languages available:
  - STAN we will use this throughout the course
  - Pyro NEW! we will have Pyro versions of the notebooks (experimental)
  - Edward2
  - PyMC3
  - Infer.NET
  - BUGS
  - And so many more...



- Suppose that you commute to work everyday by bicycle
- As a methodic cycler, you keep track of your daily travel times (tt)

$$\mathcal{D} = \{tt_1, \dots, tt_N\}$$

 Based on your collected data, you start building a (simple) PGM to understand your cycling behaviour

 $tt_n$  - travel time in the  $n^{\rm th}$  day at - average travel-time tu - traffic uncertainty



• Making it a bit more formal...

$$tt_n \sim \mathcal{N}(tt_n|at, tu)$$



We have our likelihood

$$tt_n \sim \mathcal{N}(tt_n|at,tu)$$

Time to specify the priors

$$at \sim \mathcal{N}(at|\mu, \sigma^2)$$
  
 $tu \sim \mathcal{IG}(tu|\alpha, \beta)$ 

- We chose conjugate priors (for all the advantages explained before)
   However, STAN does not care about conjugacy!
- More complete representation of the model





• Complete representation of the model



- Corresponding generative process
  - **1** Draw average travel time  $at \sim \mathcal{N}(at|\mu, \sigma^2)$
  - **2** Draw traffic uncertainty  $tu \sim \mathcal{IG}(tu|\alpha,\beta)$
  - **3** For each day  $n \in \{1, \dots, N\}$ 
    - a Draw travel time  $tt_n \sim \mathcal{N}(tt_n|at,tu)$
- This generative process description is what STAN relies on!

#### **STAN Workflow**





- The top part is completely **seamless** to the user!
- The user needs only to:
  - Specify STAN program (based on the generative process)
  - Assemble data in a Python dictionary
  - Call one of STAN's inference methods
  - Extract and interpret the results





```
functions {
      // Define functions (optional)
data {
      // Declare the input data to the model (observed variables)
transformed data {
       // Apply transformations to the data (optional)
parameters {
       // Declare latent variables in the model (to be inferred)
transformed parameters {
       // Apply transformations to the latent variables (optional)
}
model {
       // Specify the model (generative process)
generated quantities {
       // Generate data from the model (e.g. predictions for testset)
```

# Building blocks of a STAN program



- Going back to our case study of cyclist travel times...
- Data block: where we declare the input data to the model (observed variables)

```
data {
   int<lower=1> N; // number of samples
   vector[N] tt; // observed travel times
}
```

- ullet We can specify constraints on the inputs (sanity checks) E.g. N must be positive
- Parameters block: where we declare the latent variables in the model

ullet We can also specify constraints on the latent variables E.g. the traffic uncertainty tu (variance of a Gaussian) must be positive

# Building blocks of a STAN program



• Model block: where we specify the model (generative process)

```
model {
  at ~ normal(12, 10); // prior on the avg travel times
  tu ~ cauchy(0, 10); // prior on the traffic uncertainty
  for (n in 1:N) {
    tt[n] ~ normal(at, tu); // likelihood
  }
}
```

- We placed an informative prior on at (you should do this whenever you can!)
- In STAN, the second parameter of "normal(12, 10)" is a standard deviation and not a variance! So, the variance is actually  $10^2=100$
- Cauchy distribution is often recommended as a prior for variances<sup>1</sup>
  - It has a bell-shape like the Gaussian, but fatter tails
  - ullet Due to the positive constraint on tu, this is effectively a half-Cauchy
- We can make the "for" loop more efficient (vectorization)

```
tt ~ normal(at, tu); // likelihood
```

<sup>&</sup>lt;sup>1</sup>See STAN best practices online DTU Management Engineering



• Putting everything together...

```
data {
   int<lower=1> N; // number of samples
   vector[N] tt; // observed travel times
parameters {
  real at; // average travel time
   real<lower=0> tu; // traffic uncertainty
model {
   at ~ normal(12, 10); // prior on the avg travel times
   tu ~ cauchy(0, 10); // prior on the traffic uncertainty
   tt ~ normal(at, tu); // likelihood
```

• The model is specified! Let's now look at the data...

#### Note

"model" block encodes the (log) joint distribution (used by STAN for inference)!

# Input data to STAN



Recall our data block:

```
data {
   int<lower=1> N; // number of samples
   vector[N] tt; // observed travel times
}
```

In Python, we wrap input data in a dictionary object

```
cyclist_dat = {'N': 14,
'tt': [13,17,16,32,12,13,28,12,14,18,36,16,16,31]}
```

Dictionary keys must match exactly the names in the data block declaration!

#### Inference with STAN



- Recall that STAN provides two types of inference methods
  - Markov chain Monte Carlo (MCMC) the No U-Turn Sampler (NUTS)
  - Automatic Differentiation Variational Inference (ADVI) a combination of variational and stochastic...
- We begin by compiling the model (regardless of the inference method)

```
sm = pystan.StanModel(model_code=model_definition)
```

 Run MCMC (NUTS) to compute the posterior distribution of the latent variables (inference)

```
fit = sm.sampling(data=data, iter=1000, chains=4)
```

Or use ADVI (typically much faster, but still experimental)

```
fit = sm.vb(data=data, iter=10000)
```

# Interpreting the output of STAN



We can print a summary of the results using

```
print(fit)
```

Inference for Stan model: anon\_model\_257f22c9ec6a2127b7174a37ecde293c.
4 chains, each with iter=1000; warmup=500; thin=1;
post-warmup draws per chain=500, total post-warmup draws=2000.

```
sd 2.5%
                                         75% 97.5% n eff
     mean se mean
                              25%
                                    50%
                                                          Rhat
  14.67
            0.03
                 0.83 13.14 14.15 14.64 15.21 16.33
                                                     874
                                                         1.0
at
     2.53 0.03 0.75 1.54 1.99 2.38 2.86
                                                     735 1.01
tu
lp -12.64
            0.04
                 1.13 -15.63 -13.05 -12.31 -11.86 -11.53
                                                     635
                                                          1.01
```

Samples were drawn using NUTS at Mon Jan 29 15:18:04 2018. For each parameter, n\_eff is a crude measure of effective sample size, and Rhat is the potential scale reduction factor on split chains (at convergence, Rhat=1).

- Make sure to check the diagnostics provided!
  - The value of Rhat should be close to 1 (or slightly higher)
  - The number of effective samples (n\_eff) should not be small

# Interpreting the output of STAN



• We can plot the posterior distributions using fit.plot()



• Extract the samples from the posterior distribution:

samples = fit.extract(permuted=True)

# **About Pyro**



- Pyro is a universal probabilistic programming language written in Python and supported by PyTorch on the backend (that means no C code compilation!)
- Pyro enables flexible and expressive deep probabilistic modeling
- Unifies the best of modern deep learning and Bayesian modeling
  - Allows us to implement cutting-edge machine learning models: https://pyro.ai/examples/
- It is built on top of PyTorch in order to leverage PyTorch's fast tensor math and autograd (automatic differentiation) capabilities during inference
- It is more "lower level" than STAN
  - That implies more control over implementations
  - The range of modelling options is also wider
  - But implementing complex models can sometimes become complicated
- If you are comfortable with programming and matrix algebra (e.g. in Numpy, Tensorflow or PyTorch), we recommend that you give Pyro a try!

# Implementing a model in Pyro



 Implementing a model in Pyro is as easy as defining a Python function (called a "stochastic function"):

```
def model(tt):
    at = pyro.sample("at", pyro.distributions.Normal(12, 10))
    tu = pyro.sample("tu", pyro.distributions.HalfCauchy(10))
    with pyro.plate("data", len(tt)):
        pyro.sample("tt", pyro.distributions.Normal(at, tu), obs=tt)
```

- Model function takes as input the observed data and, optionally, hyper-parameters that may be relevant
- The "pyro.sample(...)" primitive allows us to define (named!) random variables
- Observed variables are specified using the keyword argument "obs="
- The "pyro.plate(...)" primitive denotes repetition and conditional independence (just like plates in PGM representations)
- But be careful with tensor shapes and batch semantics... (see notebook)

# Inference in Pyro



- Just like STAN, Pyro supports multiple types of inference methods
- Throughout the course, we will focus on two main types
  - Markov chain Monte Carlo (MCMC) the No U-Turn Sampler (NUTS)
  - Stochastic Variational Inference (SVI)
- Running inference in Pyro using MCMC is extremely easy:

```
# Input data for model - must be a PyTorch tensor!
tt_obs = torch.tensor([13,17,16,32,12,13,28,12,14,18,36,16,16,31])

# Run inference in Pyro
nuts_kernel = NUTS(model)
mcmc = MCMC(nuts_kernel, num_samples=1000, warmup_steps=500, num_chains=1)
mcmc.run(tt_obs)

# Show summary of inference results
mcmc.summary()
```

# Inference in Pyro



- Pyro thrives at variational inference (massive speed ups when combined with GPU and CUDA)
- Here the implementation difficulty can vary depending on model complexity and the degree of control that you want to have
- For most models it can be as easy as:

```
# Setup guide function
guide = AutoDiagonalNormal(model)

# Setup the inference algorithm
optimizer = Adam({"lr": 0.01})
svi = SVI(gmm, guide, optimizer, loss=Trace_ELBO())

# Do gradient steps
for step in range(num_steps):
    elbo = svi.step(data)
    if step % 100 == 0:
        print("[%d] ELBO: %.1f" % (step, elbo))
```

# Playtime!



- The basics of STAN and PyStan (Section 1 of the notebook)
- First STAN model: Cyclist's daily travel times (Sections 2.1 and 2.2)
  - See "4 Probabilistic Programming with STAN.ipynb" notebook
  - Only until Section 2.2 (inclusive)!
  - Expected duration: 45 minutes





- A single Gaussian distribution might not be the best choice...
  - Ocasional extraordinary circumstances (e.g. flat tire or a road closed by construction) often add a substantial amount to the usual travel time





- Mixture model with two Gaussians
  - First Gaussian models the travel time of ordinary trips

$$\mathcal{N}(at_o, tu_o)$$

Second Gaussian models abnormal travel times

$$\mathcal{N}(at_a, tu_a)$$

ullet Latent Bernoulli variable  $z_n$  indicates which mixture component was responsible for the each outcome  $tt_n$ 

$$z_n \sim \mathsf{Bernoulli}(z_n|\pi)$$

- Variable  $\pi$  controls mixing proportions, where  $\pi \sim \mathsf{Beta}(\pi|\alpha,\beta)$
- The likelihood becomes

$$p(tt_n|at_o, tu_o, at_a, tu_a) = p(z_n = 1) \mathcal{N}(at_o, tu_o) + p(z_n = 0) \mathcal{N}(at_a, tu_a)$$
$$= \pi \mathcal{N}(at_o, tu_o) + (1 - \pi) \mathcal{N}(at_a, tu_a)$$



• The graphical model becomes





- Corresponding generative process
  - **1** Draw average travel time for ordinary days  $at_o \sim \mathcal{N}(at_o|\mu_o,\sigma_o^2)$
  - **2** Draw traffic uncertainty for ordinary days  $tu_o \sim \mathcal{IG}(tu_o|\alpha_o,\beta_o)$
  - **3** Draw average travel time for abnormal days  $at_a \sim \mathcal{N}(at_a|\mu_a,\sigma_a^2)$
  - **4** Draw traffic uncertainty for abnormal days  $tu_a \sim \mathcal{IG}(tu_a|\alpha_a,\beta_a)$
  - **5** Draw mixing proportions  $\pi \sim \text{Beta}(\pi | \alpha, \beta)$
  - **6** For each day  $n \in \{1, \ldots, N\}$ 
    - a Decide type of day  $z_n \sim \mathsf{Bernoulli}(z_n|\pi)$
    - **b** If  $z_n = 1$

Draw ordinary travel time  $tt_n \sim \mathcal{N}(tt_n|at_o, tu_o)$ 

**6** If  $z_n = 0$ 

Draw abnormal travel time  $tt_n \sim \mathcal{N}(tt_n|at_a, tu_a)$ 

# Playtime!



- Mixture model of cyclist's daily travel times (Sections 2.3 and 2.4)
- K-means clustering (Part 2 of the notebook)
  - See "4 Probabilistic Programming with STAN.ipynb" notebook
  - Expected duration: 45 minutes