Bahir Dar University institute of Technology Faculty of Computing Artificial Intelligence Model Exam Time allowed 1:30 minutes

- 1. ______ is an AI approach that tries to create artificially intelligent agents by mimicking how people behave under certain circumstances.
 - a. Thinking humanly approach
 - b. Acting rationally
 - c. Thinking rationally
 - d. All of the above
- 2. Which of the following tasks can be performed by the program components of a given intelligent agent?
 - a. Runs the programs
 - b. Makes the percept from the sensors available to the programs
 - c. Feeds the program's action choices to the effectors
 - d. All of the above
- 3. In a dynamic environment.
 - a. an agent has access to the complete state of the environment
 - b. The next state is completely determined by the current state and the actions selected by the agents.
 - c. The environment is always at its constant
 - d. None of the above
- 4. ______try to solve the problem by using stored information to draw new conclusions.
 - a. Automated reasoning
 - b. Natural language processing
 - c. Robotics
 - d. None of the above
- 5. Which of the following pairs of AI approaches can go together?
 - a. Thinking Humanly-Requires Modeling Human Brain Activity
 - b. Acting Rationally- Deals with enabling a machine to do what humans can do like Speech recognition, Natural language processing, Computer Vision, and Machine Learning.
 - c. Acting Humanly- Deal with The law of Thought and Logics
 - d. None of the above
- 6. _____ Omniscience agent supposed to.
 - a. Know the actual outcome of every actions it performs
 - b. Completely observe its environment.
 - c. An agent that tries to maximize its performance Measure.
 - d. A and B
 - e. B and C
- 7. Which one of The following statements is false about the Conception of AI
 - a. Strong AI argues that one-day Computers can be a machine that has a mind in its fullest sense.
 - b. Strong AI aims at creating a machine that replicates humans' intelligence completely.
 - c. Strong AI argues computers can only think and are not conscious.
 - d. None of the above

	8.	Ominscience agent supposed	l to.
	a.	Know the actual outcome of every a	ctions it performs
	b	Completely observe its environmen	t.
	c.	An agent that tries to maximize its p	erformance Measure.
	d	A and B	
	e.	B and C	
	9. '	Which one of The following statements	s is false about the Conception of AI
	a.	Strong AI argues that one-day Comp	puters can be a machine that has a mind in its fullest sense.
	b	Strong AI aims at creating a machin	e that replicates humans' intelligence completely.
	C.	\mathcal{E}	y think and are not conscious.
		None of the above	
10.	Whic	h group of the following environment i	s more complex than the other for the agent to act
	appro	priately?	
	a.	Fully Observable, Deterministic, Ep	isodic, Static, Discrete
		Partially observable, Deterministic,	
		Partially Observable, sequential, nor	
		Partially Observable, Episodic, non-	
11		ministic environments are characterize	taran da antara da a
	a.		
		Taxi driving is a deterministic	von die current state und actions
		<u>c</u>	na agant is an mymassa
	C.	0	le agent is on purpose
		None of the above	
12.		cial intelligence is	
		The embodiment of human intellect	<u> </u>
			duce output that would be considered to reflect
		ntelligence if it were generated by l	
	C. '	The study of mental faculties with n	nental models implemented on a computer.
	D	All	
13.	Whic	n one of the following is an attribute of	AI systems
	?		
	A. In	ntelligence character	C. Sadness and happiness
	B. N	atural/biological character	D. Emotion and propensity
1/1	ΔI att	empts not only the factual knowledge	of a human but also the knowledge that relates to the
17.			owledge. What is the term used for describing the bold
	sente	_	wheage. What is the term used for describing the bold
	SCIICI	icc.	
	A.]	Heuristic knowledge	
		Factual knowledge	
		procedural knowledge	
	_	Explicit knowledge	
	D. 1	Explicit knowledge	
15	In	perspective of AI the Turing	g test was developed as a technique for determining whether a
15.		outer could or could not demonstrate	· · · · · · · · · · · · · · · · · · ·
	comp	diei could of could not demonstrate	artificial interrigence.
		A. Thinking like humans	
		B. Acting like humans	
		C. Thinking rationally	
		D. Acting rationally	
16	Patio	•	inking the right thing". The bold term refers
ı U.		ne that leads to the correct result	inking the right timing. The bold term leters
		one that leads to a goal with no error	
		ne that maximizes goal achievemen	-
	D. C	ne that is always successful based	on the available information

- 17. Which one is different from the other?
 - A. State space

C. Search space

B. Problem space

- D. State
- 18. Search strategy that paves a way to order the choices so that the most promising are explored first.
 - A. Informed search

C. Blind search

B. Uninformed search

D. Breadth First search

19. Which is true about the Evaluation function f(n) for Greedy Search?

A.
$$f(n) = h(n) + g(n)$$

C. f(n)=g(n)

B. f(n)=h(n)

D. All

20. Which is true about the Evaluation function f(n) for A*Search?

A.
$$f(n) = h(n) + g(n)$$

C. f(n)=g(n)

B. f(n)=h(n)

D. All

- 21. Which list is correct about the simplest case environment for the agent?
 - A. partially observable, stochastic, sequential, dynamic, continuous, multi-agent
 - B. partially observable, stochastic, episodic, dynamic, continuous, multi-agent
 - C. partially observable, stochastic, sequential, dynamic, discrete, multi-agent
 - D. Fully observable, Deterministic, Episodic, Static, Discrete, Single agent
- 22. The worst-case time complexity for the bidirectional search worst-case
 - A. O(b^{d/2}); where b is the branching factor, d the is a depth limit of the shallowest solution
 - B. O(bm); where b is a branching factor and m is the maximum depth of the search tree
 - C. $O(b^m)$; b is the branching factor, m maximum depth of the search tree
 - D. O(bd); where b is branching factor, d is depth limit of the shallowest solution
- 23. ______ is an AI approach that tries to create artificially intelligent agents by mimicking how people behave under certain circumstances.
 - A. Thinking humanly approach
 - B. Acting rationally
 - C. Thinking rationally
 - D. All of the above
- 24. Which of the following tasks can be performed by the program components of a given intelligent agent?
 - a. Runs the programs
 - b. Makes the percept from the sensors available to the programs
 - c. Feeds the program's action choices to the effectors
 - d. All of the above
- 25. In a dynamic environment.
 - a. an agent has access to the complete state of the environment
 - b. The next state is completely determined by the current state and the actions selected by the agents.
 - c. The environment is always at its constant
 - d. None of the above

26.		try to solve problem by using stored information to draw new conclusions.								
	a. Automated reasoning									
		b. Natural language processing								
		c.	Robotics							
		d.	None of the above							
27.	Which group of the following environment is more complex than the other for the agent to act									
		opriately?	C	•	C					
	a.	_	ervable, Deterministic, Episodic,	Static, Discre	ete					
	b. Partially observable, Deterministic, Sequential, Dynamic, Continuous									
		•	Observable, sequential, non-determ	•						
		•	Observable, Episodic, non-determi	•						
28.		-	be of agent that act and think by ass	-						
		Learning		_						
		Goal-Bas	•							
			eflex agent.							
		Utility-ba	_							
20		e. Model-based reflex agent								
<i></i> .	Which one of the following is not correct about the evolution of Artificial intelligence? a. Shifts from declarative to procedural programming paradigm									
	b. Simulate the human mind and learning behavior									
	c. Shift from general-purpose to domain-specific systems									
		None of		·						
30.			he following is true about an omn	iscient agent	?					
			e actual outcome of its actions							
			on with 100% sure of its success							
		All of the	are an omniscient agent							
			are correct							
31.			environments are characterized by							
	a.		napping of the next state given the							
	b. Taxi driving is a deterministic									
	c. the environment can change while the agent is on purpose									
	d.	None of	the above							
32.	Whi	ich one is	not a characteristics of autonon	nous systen	ns					
	A.	Applies k	knowledge and reasoning	C.	Requires user control and guidance					
	B.	Use of N	atural language for	D.	Learning, interaction & tolerance					
		programm	ning							
33.			_function estimated cost of the	cheapest pa	ath from node n to a goal node.					
	a.	Heuristic	Function.	C.	Successor function					
	b.	Goal test t	function	d.	All of the above					

34.	Which of the following heuristic function is good in measuring distance between two sub parts of a city?						
	a.	Straight line distance	c.	Ma	nhattan distance		
		Heuristic distance	d.	No	ne of the above		
35.		search algorithm aims at achie	ving to	minir	mize the total path cost.		
		Breadth-first search	c.	Gre	edy search		
	b.	A* search	d.	Dep	oth-first search		
36.	The	best first search that uses t heuristic function a	lone is				
	a.	Satisfaction constraint Problem	c.	A*	search		
	b.	Greedy Search	d.	All	of the above.		
38.	The Expr	a. The Heuristic Function does overestimate b. the heuristic function does not overestimate c. If acis tual distance lesser that the distand. All of the above closer estimated cost to the actual cost in heuristica. Fewer extra node that will be expanded b. The more extra node that will be expanded c. More admissible function d. A and Bression or structure that are allowed in a particular. Syntax b. Symantec	te the ace that stic func	uage c. d.	I function cimated by the heuristic mean is called Ontology Taxonomy		
		 ch one of the following expressions is Contradict a. A and ¬A b. A or ¬A c. A and A d. A or A 					
41.	A se	ntence which is true under all possible interpreta	ations is				
		a. Tautology			A and C		
		b. Satisfy-ablec. Valid		e.	All of The Above		
42.		ch of the following is not true? a. Inference rule that works for prepositional b. First-order logic is complete that Prepositiona c. Prepositional logic can represent quantifia	al logic		orks for first-order logic		

d. All of the above

43. Predicat	e in first-order logic used to		
	Relate one object with the other		
	To describe some or all objects satisfy the condition	on	
	Used to describe the properties of the object		
	A and C		
44. Which o	f the following description of FOL is correct for a ser	ntence	e; "There are some students who are
hard wo			
a.	$\exists X \ hardworker(X) \rightarrow student(X)$		
b.	$\forall X \ hardworker(X) \rightarrow student(X)$		
c.	$\neg \forall X \neg hardworker(X) \rightarrow student(X)$		
d.	A and C		
e.	All of the above		
45. Which	of the following sentence of First-order Logic is corr	ectly	described
a.	$\forall X \ at(X,BDU) \rightarrow Smart(X)$		
b.	$\forall X \ at(X,BDU) \land smart(X)$		
	$\exists X at(X, BDU) \rightarrow smart(X)$		
d.	All of the above		
	one of the following searching techniques does not		
	Best first search	c.	A* search
b.	Breadth first search	d.	Greedy search
47	estimated cost of the cheapest	-	_
	Edge cost		Heuristic cost
b.	Uniform cost	d.	All of the above
	ference between the uniform cost search and the gr	-	•
a.	Greedy search depends on edge cost and heuri on heuristic values	stic c	ost while uniform cost search only
b.	Greedy search depends on heuristic values wh	ile ur	niform cost search depend on both
	edge cost and heuristic values		-
c.	Uniform cost search depends only heuristic co	st wh	nile uniform cost search depends on
	edge cost		-
d.	None of the above		
49. The	e best first search that uses the heuristic function al	one is	5
a.	Satisfaction constraint Problem	c.	A* search
b.	Greedy Search	d.	All of the above.
50. Ma	nhattan Distance measures		
a.	the block distance between two objects		
b.	the straight line distance between two objects		
c.	\mathcal{E}		
	none of the above		
	function that estimates cost of the pat		_
a.			Successor function
b.	Goal test function	a.	All of the above

52. Whi	ch of the following heuristic function is go	od in measuri	ing distance between two sub parts of a
city'	?		
•	Straight line distance	c.	Manhattan distance
b.	Heuristic distance	d.	None of the above
53.	search algorithm aims a	t achieving to	minimize the total path cost.
	Breadth first search	G	·
	A* search		
	Greedy search		
	Depth first search		
u.	Depth inst scaren		
54	type of agent works by finding a r	ule whose con	dition matches the current situation (as
	ined by the percept) and then doing the acti		
	Learning agent.		
b.	Goal Based Agent		
	Simple reflex agent.		
	Utility based agent		
e.	Model based reflex agent		
	gle state problem is a problem that runs in		·
	Fully observable and Deterministic Envir		
	Partially observable and Deterministic Er Partially observable and non deterministic		
	None of the above	c environment.	•
	Is a function that returns the set of	states that are	reachable from a single state by any
	gle action		remembere from a single source of any
	Operator		
b.	Goal test function		
c.	Successor Function		
d.	Is goal test Function		
57. Co	mpleteness of a search algorithm can be me	easured	
	The capacity of algorithm to guarantee		solution whenever one exists.
	The Capacity of the algorithm in findi		
c.		-	
	All of the above.	o of process	Period or unit.
	nich of the following is true about the se	arch algorith	ms?
a.	D 11 C 1 1 1 1	_	
	Breadth-first search expands the deepe		
	Breadth first search is complete and C		
	All of the above.	pumar man	Depth inst search
	sich one of the following techniques of se	earching is us	seful in finding the shortest path to the
	il in terms of cost	careining is as	serui in initiang the shortest path to the
a.	TT 10 0 1		
b.			
c.	D 4 C . C 1		
	Iterative deepening search		
٠.			

60. Which one of the following searching techniques does not belong to the evaluation-driven							
	rch algorithm?				A str. 1		
	Best first search				A* search		
b.	Breadth-first search		a.		Greedy search		
61. Co	mpleteness of a search algorithm	m	easures				
a.	The capacity of an algorithm to	p ₁	rovide a solution	f	for a given problem when there exists		
	at least one solution for this pro	bl	em				
	The capacity of the algorithm t						
c.	The capacity of the search algo	rit	hm to find a solut	ti	ion in a minimum processing time.		
	All of the above.						
	. Which of the following is true						
	Breadth-first search is usually i	-	3				
	Breadth-first search expands th						
	Breadth-first search is more co	mp	olete and more op	ti	imal than depth-first search		
d.	All of the above						
					•		
	estimated cost of p	ath					
	Edge cost				Heuristic cost		
b.	Uniform cost		a.		All of the above		
64. The	e difference between the uniform	c	ost search and the	9	greedy search techniques lies in		
	·						
a.					e initial state to state n while uniform		
	cost search techniques only dep						
b.				n	niform cost search techniques depend		
	on both edge cost and heuristic						
c.		nly	y on heuristic cost	t '	while greedy search depends on both		
	edge costs and heuristics						
	None of the above						
	best first search that expands node	s n					
	Satisfaction constraint Problem				A* search		
b.	Greedy Search		d.		All of the above		
66 Wh	ich of the following heuristic functi	Ωn	is good in estimati	in	ng the distance between two sub-parts of		
a ci		OII	is good in estimati	.11	ig the distance between two sub-parts of		
	Straight line distance		c.		Manhattan distance		
	Heuristic distance		d.		None of the above		
67	search algorithm		me at achieving to	n	ninimize the total noth cost		
	Breadth-first search	aı			Greedy search		
	A* search				Depth-first search		
		_			•		
			_		state is 100 meters. Which one of		
	following heuristic values is adr		_	n			
a.	100		99		e. A and C		
b.	102	d.	101		f. B and D		

- 69. In the depth-first search
 - a. A non-goal dead end does the search go back and expand nodes at shallower levels
 - b. Expands the shallowest unexpanded node first
 - c. Expands the node with minimum cost first
 - d. None of the above
- 70. The problem with the greedy search
 - a. It may expand the node that is already expensive
 - b. It may depend on only path costs explored from initial state
 - c. It is a fast-searching techniques
 - d. All of the above
- 71. ______Is a function that returns the set of states that are reachable from a single state by any single action
 - a. Operator
 - b. Goal test function
 - c. Successor Function
 - d. Is goal test Function
- 72. Which one of the following is true
 - a. A* search optimality is dependent of the admissibility of the heuristic
 - b. Admissible heuristic usually overestimates the actual coast
 - c. Greedy search is more complete that A* search
 - d. All of the above
- 73. Which one of the following FOL sentences is equivalent to "Every flower in some garden is lovely"?
 - a. $\forall x \text{ flower}(X) \rightarrow \exists y \text{ garden}(y) \land \text{ in } (X, Y) \land \text{ lovely}(X)$
 - b. $\neg \exists X \text{ flower}(X) \rightarrow \exists y \text{ garden}(y) \land \text{ in } (X, Y) \land \neg \text{lovely}(X)$
 - c. $\neg \exists X \text{ flower}(X) \land \exists y \text{ garden}(y) \land \text{ in } (X, Y) \land \neg \text{lovely}(X)$
 - d. A and B
 - e. A and C
- 74. Which one of the following FOL sentences is equivalent to "None of your friends are smart."
 - a. $\forall X \ friends_of(X, you) \land Smart(X)$
 - b. $\forall X \ friends_of(X, you) \land \neg Smart(X)$
 - c. $\neg \exists X \ friends_of \ (X, you) \land Smart(X)$
 - d. A and C
 - e. B and C
- 75. A FOL's inference rule that substitutes a variable with a constant symbol that does not exist in the KB
 - a. Skolemization

c. Generalized Modus Ponens

b. Existential elimination

- d. Universal elimination
- 76. Which one of the following is a requirement for knowledge representation language?
 - a. Representational adequacy

c. Inferential adequacy

b. Understandability

d. All of the above

77	en	sume the knowledgebase contains (A V C) \land (B V \neg C). W tailed from the knowledgebase. (AVB)		h one of the following sentences can be (BV¬C)
				All of the above
78	sei	sume a knowledgebase in FOL contains ∃X loves (X, Eventences can be entailed from the knowledgebase throu	igh (existential elimination.
				—∃x loves(Everyone)
	b.	. ∀X loves(X, Everyone)	d.	None of the above
79.	Whi	ch one of the following sentences can be entailed from		
	a.	•		(P→Q)
	b.			All of the above
80.		ch one of the following characteristics is not always tru		
		Voluminous		. Imprecise
	В.	Dynamic	D	. Complete
81.		owledge based systems are better than data based sy the use of less complex syntaxes	/ste	ms (conventional systems) is because of:
	B.	Representation and communication with KBSs is	clos	se to human level language
	C.	The ability to learn and update itself		
	D.	The use of inference mechanisms		
	E.	All of the above		
82.	Sup	pose we have a rule that says 'All humans are mor	tal	'. If we construct a new fact 'Mr. Abebe
	-	cortal', where being abebe is one of the possible va		
	rule	is used?		
	A.	Universal elimination	D	. Modes ponens
	B.	Resolution	E	. Universal introduction
	C.	Existential introduction		
83.	if w	e have premises say that 'all humans are mortal a	ınd	'abebe is huuman' then we can
	cons	struct a new fact 'abebe is mortal', which inference	ru	le is used?
	F.	Universal elimination	I.	Modes ponens
	G.	Resolution	J.	Universal introduction
	Н.	Existential introduction		
84.		the have a premise that says $A \rightarrow B$, and $\neg B$, what we exerce rule?	ill l	be the possible conclusion with which
	A.	B, modus ponens	C	. ¬A, Modus Tolens
	В.	B, modus Tolens	D	- A modus ponens
0.5				•
85.		ich one is not a distinguishing feature of knowledge Data/attribute		. Learning
				_
		Reasoning	E	. Knowledge
0.5		Inference rules	,	
		structing new fact which follows from a knowledg y applying:	ge b	ase represented using a semantic network

A.	Association rules	D.	B&C
B.	Inference rules	E.	None

C. Inheritance

87. The following are not a characteristics of heuristic knowledge

A. JudgmentsB. Represented rules/factsC. ExperiencesD. Rule of thump

88. AI technique that allows computers to understand associations and relationships between objects and events is called:

A. Heuristic processing
B. Cognitive science
C. Relative symbolism
D. Pattern matching
E. None of the above

89. One definition of AI focuses on problem-solving methods that process:

A. Smell
B. Symbols
C. Touch
D. algorithms
E. None of the above

- 90. Which of the following statements is the best description of a priori knowledge?
 - A. knowledge that is available prior to perception through senses
 - B. knowledge that is verifiable through sensory perception
 - C. knowledge that indicates how to do something
 - D. knowledge that is difficult to express through language
- 91. Which statement is the best characterization of *frames* in the context of knowledge-based systems?
 - A. a frequently used method to formulate the knowledge in expert systems based on rules that describe the conversion of symbol strings into other symbol strings
 - B. a knowledge representation method based on graphs
 - C. a knowledge representation method that represents related knowledge about a subject through groups of slots and fillers
 - D. a knowledge representation method particularly suited for time-ordered sequences, e.g. of events
- 92. What does it mean that a logical sentence is *satisfiable*?
 - A. the sentence is true under all possible interpretations in all possible worlds
 - B. the sentence is true under all possible interpretations in some possible worlds
 - C. the sentence is true if there exists a true interpretation in some possible world
 - D. the sentence is syntactically correct
- 93. Which statement describes the *semantics* of a formal language for knowledge representation?
 - A. It describes how a particular sentence relates to the facts in the world.
 - B. It allows the generation of new sentences that follow from a set of given sentences.
 - C. It specifies the admissible configurations of sentences in that language.
 - D. It makes sure that only truth-preserving sentences are admitted in the language.
- 94. Which of the following statements characterizes predicate logic (in contrast to propositional logic)?
 - A. The world is described through sentences consisting of constants, symbols, connectives, and parentheses.
 - B. A simple logic in which truth tables are the only way of proving sentences.
 - C. The world is described through sentences specifying individual objects with properties, and relations between the objects.
 - D. A logic that relies on resolution as the only sound inference rule.

- 95. Which of the following is the best description of an *explanation facility*?
 - A. the transfer of knowledge from humans to computers
 - B. the storage of knowledge in a format suitable for processing by computers
 - C. a computer-based mechanism for the generation of new conclusions from existing knowledge
 - D. a description of the reasons why a particular solution was generated
- 96. What is the role of an *existential quantifier* \ni in a predicate logic sentence?
 - A. It allows statements about some objects in a collection of objects.
 - B. It allows general statements about every object in a collection.
 - C. It is used in the specification of the semantics for terms.
 - D. It can be used to make statements about quantitative aspects of objects, such as length, weight, temperature, etc.
- 97. Which statement is the best characterization of *knowledge representation*?
 - A. It describes methods and procedures for drawing conclusions on the basis of existing knowledge.
 - B. It relies on the storage of relations between individual items according to a fixed scheme applied to a large collection of elementary items.
 - C. It requires a set of formal inference methods and clearly specified syntax and semantics.
 - D. It is concerned with methods and techniques for the storage of knowledge and information in a format that is suitable for treatment by computers.
- 98. Who provides the domain expertise in the form of problem-solving strategies?
 - A. Domain expert

C. IT specialist

B. Knowledge engineer

- D. None of the above
- 99. Who formulates the domain expertise into an expert system?
 - A. Domain expert

C. Domain specialist

B. Knowledge engineer

- D. None of the above
- 100. Which IT component in an expert system takes problem facts and searches the knowledge base for rules that fit?
 - A. Knowledge base
 - B. Knowledge acquisition
 - C. Inference engine
 - D. User interface
- 101. Which of the following are correct translations of "No two adjacent countries have the same color"?
 - A. $\forall x, y \neg Country(x) \lor \neg Country(y) \lor \neg Adjacent(x, y) \lor \neg (Color(x) = Color(y))$
 - B. $\forall x, y \ Country(x) \land \ Country(y) \land \ Adjacent(x, y) => \neg(Color(x) = Color(y))$
 - C. $\forall x, y \ Country(x) \land Country(y) \land Adjacent(x, y) \land \neg(Color(x) = Color(y))$
 - D. $\forall x, y \ Country(x) \land Country(y) \land Adjacent(x, y) => Color(x \neq y)$