Design of Framework Agreements

Marek Bojko¹ Lucas Condeza ¹

April 15, 2025

 $^1 \mbox{Yale University}$

Introduction

- Governments make repeated purchases of certain products (e.g. medical devices, gasoline, laptops)
- Framework Agreements (FAs) streamline procurement through a two-stage process.
 - **Stage 1 (Auction):** Pre-selection of suppliers/products via auction.
 - Stage 2 (Marketplace): Creation of a "marketplace" where pre-selected suppliers offer goods/services to government agencies.
- Research Question: How to design FAs?
- ▶ Focus on FAs for vehicles between 2017 and 2024 in Chile

Motivation and Policy Relevance

- FAs are a common procurement tool. They are used in:
 - EU (2010): 17% of procured value
 - Chile: 25%
 - Brasil: 10%
 - Costa Rica, China, Trinidad & Tobago, etc.
- Benefits of FA compared with public tenders:
 - Centralize procurement expertise (Decarolis et al. 2020)
 - Increase competition by reducing firm participation costs
 - Decrease purchasing times
 - Decrease cost of running auctions

Stages of FAs

- 1. First Stage: selection through auction
 - The procurement agency calls for a public tender.
 - Firms submit bids (price, characteristics).
 - Subset of firms/products are selected.
- 2. Second Stage: marketplace
 - Selected firms offer products on a government-run online platform.
 - Government agencies purchase directly.
 - First-stage bid acts as a price-ceiling

Literature

- Framework Agreements
 - Choi et al. (2023), Gur et al. (2017), and Saban and Weintraub (2021)
 ⇒ Theoretical literature, we aim to estimate a structural model
- Effects of centralizing procurement
 - Castellani et al. 2021; Dubois et al. 2021; Ferraresi et al. 2021; Lotti et al. 2024
 ⇒ We study FAs, a specific way of centralizing procurement
- Market design
 - Agarwal and Budish (2021) and Kapor et al. (2024)
 - \Rightarrow Optimal design of FAs

Institutional Context and Data

Institutional Context: Chile Compra

- ► Chilean public procurement system managed by *Chile Compra* through the *Mercado Público* platform.
- Most gov. agencies (hospitals, ministries, universities) are required to use this platform.
- ► FAs account for 25% of procurement value
- Currently 18 active FA. Examples: medical devices, hardware products, food, stationery, etc.
- ightharpoonup FA for vehicles are active for pprox 3 years and the public tender takes pprox 5 months

Figure 1: Marketplace for vehicles

Some details

	2017	2021	2023
Categories	Pick-up,	SUV and pick-up	Pick-up, SUV, sedan,
	SUV, sedan,		minibuses, vans
	minibuses, vans		
Bids	Discount over list	Price and delivery	Discount over list price and
	price (e.g. 8%)	fee	delivery fee
Market	National	5 macro-regions and	Region
		4 tiers	
Selection criteria	Score threshold	2-3 lowest price de-	60% highest scores, mini-
		pending on region	mum of 5
Auction level	1	Product-tier-region:	Product-region $pprox 70$
and number		40	

The tender for a fourth FA will be implemented this year

Data

- ▶ Purchase Data: All vehicle transactions through FAs (2017-2024).
 - Buyer (agency type, location), Seller
 - Product (type, model)
 - Price
- ▶ **Auction Data:** Bids from 3 vehicle FAs (2017, 2021, 2023).
 - Bidder identity
 - Bids
 - Date of bid
 - Product (model, category, region)
 - List prices (work in progress)
- Web-scraped data: product characteristics (work in progress)

Motivation

Research Question

What is the optimal design of a FA?

- ▶ Optimal number of firms to choose in auction
- ► Selection criteria (e.g. discount price or prices with tiers)
- ► Segmentation (e.g. national or regional auctions)
- other...?

Empirical model

Overview

- Model stages
 - Second stage: Demand estimation following Berry et al. (1995) and Petrin (2002)
 - First stage: Auction

Demand

▶ We consider the demand of gov. agencies in markets defined as a region-semester. Given evidence of different consumption patterns we group gov. agencies in types according to their sector (e.g. hospital, university, etc.)

▶ Details

▶ Gov. agency i, in market $t \in \mathcal{T}$ in sector s has a utility for product $j \in \mathcal{J}_t$.

$$u_{ijt} = \underbrace{x'_{jt}\beta_{s(i)} + \xi_{jt}}_{\delta_{jts(i)}} + \underbrace{x'_{jt}\Sigma\nu_{it}}_{\mu_{ijt}} + \varepsilon_{ijt}, \quad u_{i0t} = \varepsilon_{i0t}$$
(1)

where ν_{it} are random taste shocks.

Demand heterogeneity

Demand(2)

The probability that a buyer in sector s in market t chooses a product $j \in \mathcal{J}_t$

$$s_{jts} = \int \frac{\exp(\delta_{jts} + \mu_{ijt})}{1 + \sum_{k \in \mathcal{J}_t} \exp(\delta_{kts} + \mu_{ikt})} dF_{\mu}(\mu_{it})$$
 (2)

Aggregate market shares are given

$$s_{jt} = \sum_{s} w_{st} \cdot s_{jts} \tag{3}$$

where w_{st} is the share of agencies of type s in market t

The vector of parameters to estimate is $\theta = (\beta, \Sigma)$

► Moments

Supply

 \triangleright Firm's (z) profits, in market t are:

$$\pi_{zt} = \sum_{j \in P_z} N_t s_{jt} \left(p_{jt} - MC_{jt} \right) \tag{4}$$

Where N_t is the number of buyers in market t and MC_{jt} is the marginal cost.

Assuming single product firms, p_{it}^* is the price that satisfies the FOC:

$$p_{jt}^* = MC_{jt} - s_{jt} \left[\frac{\partial s_{jt}}{\partial p_{jt}} \right]^{-1}$$
 (5)

Hence the observed price (p_{jt}) will satisfy

$$p_{jt} = \min\{\bar{P}_{jt}, p_{jt}^*\} = \min\left(\bar{P}_{jt}, MC_{jt} - s_{jt} \left[\frac{\partial s_{jt}}{\partial p_{jt}}\right]^{-1}\right)$$

Cost is point identified if the price ceiling is not binding

Auction

Set-up:

- $ightharpoonup i \in \{1,...,N\}$ have cots c_i and bid \bar{p}_i , assume $c_1 < ... < c_N$
- lacktriangle Assume that costs are common knowledge ightarrow firms compete in the private market
- ▶ Selection of K firms using selection rule $S_k(\bar{P}_k)$
- ullet $\Psi_k = (S_k, ar{P}_k)$ the equilibrium selected firms (S_k) and their bids
- $\blacktriangleright \pi_i(\Psi_k)$: second-stage profits

Differences from standard auction:

- ▶ Valuations depend on 1) bids and 2) selected firms
- Discount over list prices

What lies ahead

- ▶ Obtain list prices (or assume there are no discounts)
- Model the first stage
- Estimate the model
- Counterfactuals, estimate the impact of:
 - 1. Choose the optimal number of sellers in the auction stage
 - 2. Allow the selection criteria to depend on product characteristics ould change when we change

descriptives

- number of selected firms
- important sources of variation in the data wha are the effects of changin the procurement rules for the selection
- 1. motivation-: minimize frictions, cost of the governm

how the cost of procurement would change when we change the rules

weighted sum of the welfare and cost

Appendix

Acquisition process

Figure 2: Procurement decision process (Castro et al. 2020)

Moments

Aggregate moments: $\mathbb{E}[\xi_{jt} \cdot z_{jt}] = 0$ with sample moment:

$$\hat{g}_{A}(\theta) = \frac{1}{N_{A}} \sum_{t \in \mathcal{T}} \sum_{j \in \mathcal{J}_{t}} \left(\hat{\delta}_{jt}(\Pi, \Sigma) - x'_{jt} \beta \right) \cdot z_{jt}, \tag{6}$$

Micro-moments: target 1) buying a certain type of vehicle λ given the type of the state agency and 2) the average price of the vehicles bought by each state agency type. Denote by n a state agency, by i(n) its type, $N = \sum_{n \in \mathcal{N}} 1$ and p_{j_n} the price of the good bought by n. Then the in sample moments are:

$$\bar{v}_{ip} = \frac{\frac{1}{N} \sum_{n \in \mathcal{N}} 1\{(i(n) = i)\} 1\{j_n \in \mathcal{J}_{\lambda}\}}{\frac{1}{N} \sum_{n \in \mathcal{N}} 1\{(i(n) = i)\}} \equiv f_1(\bar{v})$$

$$(6)$$

$$\bar{v}_{i\lambda} = \frac{\frac{1}{N} \sum_{n \in \mathcal{N}} 1\{(i(n) = i)\} p_{j_n}}{\frac{1}{N} \sum_{n \in \mathcal{N}} 1\{(i(n) = i)\}} \equiv f_2(\bar{v})$$

$$(7)$$

