

Name: Devkate. Vijay

Roll no: 2201063

Group: EC31

Lab: VLSI lab

Experiment Title: Input and Output Characteristics of NMOS Using Cadence

1. Objective:

The objective of this experiment is to analyze the input and output characteristics of an NMOS transistor using Cadence Virtuoso. This includes observing the **transfer characteristics** (**Id vs. Vgs**) and **output characteristics** (**Id vs. Vds**) of the NMOS transistor.

Circuit Design and Setup:

1. Schematic Design:

- Open Cadence Virtuoso and create a new schematic.

 Place an NMOS transistor (e.g., from a 180nm/130nm PDK).
 Connect the drain to a DC voltage source Vds.
 Connect the gate to a DC voltage source Vgs.
 Connect the source to ground (0V).
- Place a current probe at the drain to measure Id.

2. Simulation Setup:

- o Open ADE-L/XL and set up a DC Analysis.
- For output characteristics (Id vs. Vds):
 - Sweep **Vds** from 0V to a maximum value (e.g., 2V).
 - Set Vgs at multiple fixed values (e.g., 0.5V, 1V, 1.5V, etc.). For transfer characteristics (Id vs. Vgs):
 - Sweep Vgs from 0V to a maximum value (e.g., 2V) while keeping Vds fixed (e.g., 1V).
- Run the simulations and save the results.

Results:

Observations:

Output Characteristics (Id vs. Vds):

- For low Vds, Id increases linearly, indicating the ohmic region.
- As **Vds** increases, **Id** saturates, indicating the **saturation region**.
- Higher Vgs values lead to higher Id, following the MOSFET equations.

Transfer Characteristics (Id vs. Vgs):

- Id increases exponentially when Vgs surpasses the threshold voltage (Vth).
- The transistor remains off for Vgs < Vth.
- Id follows the quadratic relationship with Vgs in the saturation region.

Conclusion:

This experiment successfully demonstrated the input and output characteristics of an NMOS transistor using Cadence Virtuoso. The simulation results validated theoretical MOSFET behavior, with **Id vs. Vgs** showing a threshold voltage dependency and **Id vs. Vds** confirming the transition from the ohmic region to saturation.

Experiment 2: Input and Output Characteristics of PMOS Transistor

Objective

To study and plot the input and output characteristics of a PMOS transistor using Cadence Virtuoso.

Tools Used

- Cadence Virtuoso
- Spectre Simulator
- GPDK 180nm PDK (or your used PDK)

Theory

A PMOS transistor is a type of MOSFET where holes are the majority carriers. It turns **ON** when the gate-to-source voltage VGSV_{GS} is **less than** the threshold voltage VthV_{th}.

Regions of Operation

- 1. **Cut-off:** VSG<VthV_{SG} < V_{th}
- 2. Linear (Triode): VSD<VSG-VthV {SD} < V {SG} V {th}
- 3. **Saturation:** VSD≥VSG-VthV_{SD} \geq V_{SG} V_{th}

Schematic Setup

- PMOS transistor (from analogLib)
- Connect source to VDD, gate to DC voltage source, and drain to VDS sweep source.

• Bulk tied to source (VDD).

Simulations Performed

- 1. Output Characteristics (Id vs VSD)
 - Sweep VSD from 0 to VDD (e.g., 0 to 1.8V)
 - VSG fixed at multiple values (e.g., 1.2V, 1.5V, 1.8V)
- 2. Input Characteristics (Id vs VSG)

 Sweep VSG from 0 to

VDD

• **VSD** constant (e.g., VSD = 1.8V)

Steps in Cadence Virtuoso

- 1. **Design the schematic** as per PMOS biasing.
- 2. Launch ADE (Analog Design Environment).
- 3. Choose **DC analysis**:
 - o For output: VSD sweep; VSG as parameter.
 - For input: VSG sweep; VSD constant.
- 4. Run simulation.
- 5. Use **Calculator** or direct plotting to plot Id vs VSD and Id vs VSG.
- 6. Annotate curves and export graphs.

Results

Output Characteristics

- Id increases with VSD initially (linear region), then saturates.
- · Higher VSG (more negative gate voltage) increases Id.

Input Characteristics

- Id increases exponentially when VSG increases past threshold (~0.5V).
- Very low current for VSG < Vth.

Conclusion

- PMOS operates in three regions depending on VSG and VSD.
- The characteristics confirm expected PMOS behavior.
- Simulations match theoretical behavior of PMOS.

Observations

- Threshold voltage Vth ~ -0.5V for the PMOS in this PDK.
- PMOS conducts when gate is at lower potential than source.

Experiment 3: Gain and Phase Response of Common Source Amplifier

Objective

To analyze the **gain** and **phase response** of a **Common Source (CS) Amplifier** using Cadence Virtuoso.

Tools Used

- Cadence Virtuoso
- Spectre Simulator
- GPDK 180nm PDK (or the PDK you are using)

Theory

The **Common Source amplifier** is a basic analog amplifier configuration using an NMOS transistor. It provides:

- High voltage gain
- 180° phase shift between input and output

Voltage Gain

 $Av = -gmRDA_v = -g_m R_D$

Where:

- gmg_m = transconductance
- RDR_D = drain resistance

The negative sign indicates a **phase inversion**.

Schematic Setup

• NMOS transistor (from analogLib)

Biasing:

- $_{\circ}$ Gate: connected through a resistor to DC voltage (bias) $_{\circ}$ Source: grounded
- Drain: connected to VDD through resistor RDR_D
- Input: small AC signal superimposed on gate bias
- Output: taken from the drain

Simulation Configuration

- 1. AC Analysis (Gain & Phase)
 - Sweep frequency: 1Hz to 1GHz (log scale)
 - AC magnitude: 1V at input (for easy gain reading)

Steps in Cadence Virtuoso

- 1. Draw the CS amplifier schematic with proper biasing.
- 2. Launch ADE.
- 3. Set up AC analysis:
 - $_{\circ}$ AC input source with magnitude 1V
 - o Sweep frequency: 1Hz to 1GHz (decade sweep, 10 points/decade) 4.

Run simulation

- 5. Use **Calculator**:
 - Gain: v(out)/v(in)
 - o Gain in dB: 20*log10(mag(...)) o Phase: phase(...)
- 6. Plot and annotate.

Results

Gain Plot

- · Midband gain is approximately constant.
- Low gain at very low and very high frequencies due to coupling and parasitic capacitances.

Phase Plot

- Phase shift is around -180° in midband.
- Shows typical low-pass phase behavior at high frequencies.

Conclusion

- The CS amplifier exhibits a significant voltage gain in midband frequency.
- Phase shift confirms the inverting nature (~180°).
- Frequency response matches expected behavior of a single-stage CS amplifier.

Observations

- **3-dB bandwidth** indicates the frequency range over which gain is nearly constant.
- Miller effect limits high-frequency performance.
- Gain depends on transistor parameters and load resistance.

Objective

To obtain and analyze the **DC transfer characteristics** of a **CMOS inverter** using Cadence Virtuoso.

Tools Used

- Cadence Virtuoso
- Spectre Simulator
- GPDK 180nm PDK

Theory

A **CMOS inverter** is built using a PMOS and an NMOS transistor:

- PMOS: Source connected to VDD
- NMOS: Source connected to GND
- Gates tied together: input
- Drains tied together: output Working Principle
- Vin = $0 \rightarrow PMOS ON, NMOS OFF \rightarrow Vout = VDD$
- Vin = VDD \rightarrow PMOS OFF, NMOS ON \rightarrow Vout = 0
- Vin = VDD/2 \rightarrow both transistors partially ON \rightarrow transition region

Schematic Setup

- PMOS and NMOS connected in inverter configuration
- Input connected to DC voltage source (Vin)
- Output taken at common drain node
- PMOS bulk connected to VDD, NMOS bulk to GND

Simulation Configuration

DC Sweep Analysis

- Sweep **Vin** from 0 to VDD (e.g., 0 to 1.8V)
- Measure Vout across the same sweep
- Plot Vout vs Vin

Steps in Cadence Virtuoso

- 1. **Draw schematic** of CMOS inverter.
- 2. Connect:
 - Vin to gate of both transistors (sweep source)
 - $_{\circ}$ Vout from common drain $_{\circ}$ VDD = 1.8V (or as
 - per PDK), GND = 0V
- 3. Launch ADE (Analog Design Environment).
- 4. Select **DC sweep**: Sweep Vin from 0V to 1.8V (or your VDD)
- 5. Run simulation.
- 6. Plot Vout vs Vin.

Results

• **Vout vs Vin** plot shows sharp transition.

- Transition point ≈ VDD/2
- · Confirms inverter behavior.

Conclusion

The CMOS inverter exhibits expected switching characteristics.

- Output is high when input is low and vice versa.
- Sharp transition region observed, indicating high gain during switching.

Observations

- Noise margins can be estimated from the curve.
- The inverter acts as a NOT gate with rail-to-rail swing.

Experiment 5: NAND Gate Using CMOS (NMOS and PMOS) - Truth Table Verification

Objective

To implement a 2-input NAND gate using NMOS and PMOS transistors and verify its truth table using DC analysis in Cadence Virtuoso.

Tools Used

- Cadence Virtuoso
- Spectre Simulator
- GPDK 180nm PDK (or your available PDK)

Theory

A CMOS NAND gate uses:

• Two PMOS transistors in parallel at the pull-up network.

Two NMOS transistors in series at the pull-down network.
A B Y (NAND)
0 0 1
1 1
1 0 1
1 1 0

Schematic Setup

- Pull-up network:
 - Two PMOS transistors in
 parallel ∘ Sources connected to VDD ∘
 Drains connected to output ∘ Gates:
 connected to A and B □ Pull-down
 network:
 - Two NMOS transistors in series
 Drain of first to output Source of
 second to GND Gates: connected to
 A and B
- Inputs: A and B (DC voltage sources)
- Output: Common connection between pull-up and pull-down

DC Sweep (Truth Table Verification)

- Apply all four input combinations: \circ A = 0/1V, B = 0/1V (or 0/1.8V if using 1.8V VDD)
- Observe Vout for each case
- Compare with expected NAND truth table

Steps in Cadence Virtuoso

- 1. Design CMOS NAND gate schematic using PMOS and NMOS from analogLib
- 2. Add two DC sources: A and B
- 3. Connect output node to a wire label out
- 4. In ADE:
 - Use DC sweep with nested sweeps:
 - Sweep A: 0V to VDD
 - Sweep B: 0V to VDD
 - Or manually set A and B to all 4 combinations using Design Variables
 & parametric sweep
- 5. Run simulation
- 6. Plot Vout vs input combinations or check from results table

Results

A B Vout (Simulated) Logic Level

0 0 ~VDD (1.8V) 1

0 1 ~VDD (1.8V) 1

1 0 ~VDD (1.8V) 1

Conclusion

- The CMOS NAND gate behaves as expected.
- The output goes LOW only when both inputs are HIGH.
- Truth table is verified successfully using DC simulation.

Observations

- PMOS transistors are ON when input is LOW
- NMOS transistors are ON when input is HIGH
- CMOS logic ensures low static power consumption and sharp transitions

:

Experiment 6: NOR Gate Using CMOS (NMOS and PMOS) – Truth Table Verification

Objective

To design and simulate a **2-input NOR gate** using **CMOS technology** (NMOS and PMOS transistors) and verify its **truth table** in **Cadence Virtuoso** using DC analysis.

Tools Used

- Cadence Virtuoso
- Spectre Simulator
- GPDK 180nm PDK

Theory

A CMOS NOR gate is built using:

- PMOS transistors in series for the pull-up network
- NMOS transistors in parallel for the pull-down network

ABY (NOR)

001

010

100

110

Schematic Setup

- Pull-up network (PMOS in series):
 - $_{\circ}$ Sources: connected to VDD $_{\circ}$ Drains: connected together to output $_{\circ}$ Gates: A and B
 - Middle connection between PMOS

transistors

Pull-down network

(NMOS in parallel):

 $_{\circ}$ Drains: connected together to output $_{\circ}$ Sources: to GND $_{\circ}$ Gates: A and

В

- Inputs: A and B (DC voltage sources)
- Output: Taken from node where pull-up and pull-down networks meet

Simulation Configuration

DC Sweep (Truth Table Verification)

- Apply all combinations of A and B: A = 0V or VDD, B = 0V or VDD (e.g.,
 VDD = 1.8V)
- Observe Vout for each case
- Compare results with expected NOR truth table

Steps in Cadence Virtuoso

1. Build CMOS NOR gate using PMOS (series) and NMOS (parallel)

- 2. Use **DC voltage sources** for A and B inputs
- 3. Output node labeled as out
- 4. In **ADE**:
 - $_{\circ}$ Set **Design Variables** for A and B $_{\circ}$ Run **DC parametric sweep** over combinations:
 - A: 0, 1.8V
 - B: 0, 1.8V
- 5. Simulate and observe **Vout** for each combination

Results

A B Vout (Simulated) Logic Level

0 0 ~VDD (1.8V) 1

01~0V 0

10~0V 0

11~0V 0

Conclusion

- The CMOS NOR gate functions correctly.
- Output is HIGH only when both inputs are LOW
- Truth table matches theoretical NOR logic behavior

Observations

- PMOS turns ON when input is LOW
- NMOS turns ON when input is HIGH
- Series PMOS ensures output is HIGH only when both inputs are LOW

 CMOS design gives low power and full-swing output

Experiment 7: D Flip-Flop Functional Verification with 20% and 25% Clock Duty Cycles

Objective

To design a **D Flip-Flop (DFF)** using CMOS logic and verify its correct behavior with **non-standard clock duty cycles** of **20%** and **25%** using transient simulation in **Cadence Virtuoso**.

Tools Used

- Cadence Virtuoso
- Spectre Simulator
- GPDK 180nm PDK (or your PDK)

Theory

A **D Flip-Flop** (positive-edge triggered) transfers input D to output Q on the **rising edge** of the clock (CLK).

Truth Table

CLK (个) D Q (next)

Rising 00

Rising 11

Else x Hold

Duty Cycle

- 20% duty cycle → clock HIGH for 20% of one period
- 25% duty cycle → clock HIGH for 25% of one period

Schematic Setup

- Use : Custom-built CMOS DFF (master-slave latch)
 ☐ Inputs:
 - D: pulse or square wave o CLK:

pulse source with:

- 20% duty cycle
- 25% duty cycle
- Output: Q

Simulation Configuration

Transient Analysis

- Time: 0 to e.g. 500ns $\hfill\Box$ Input D: toggling every 50ns
- · CLK:
 - o **20% duty** o **25% duty** □ Observe:

Steps in Cadence Virtuoso 1. Create

- **D Flip-Flop** schematic.
- 2. Add:
 - Pulse source for CLK (adjust duty)
 Pulse or square source for D
- 3. Set up **transient simulation**:
 - o Run time: ~500ns
- 4. Plot D, CLK, and Q.

Repeat simulation with:

- Clock duty cycle = **20**%
- Clock duty cycle = **25**%

Results

Case 1: 20% Duty Cycle

- CLK HIGH for 20ns every 100ns
- Q changes at rising edge
- Q holds otherwise

Case 2: 25% Duty Cycle

- CLK HIGH for 25ns every 100ns
- · Q again changes at rising edge only

Conclusion

- The D Flip-Flop correctly samples D at CLK rising edges, even under low duty cycles (20% and 25%)
- Output Q remains stable between edges, confirming edge-triggered behavior

Observations

- Duty cycle affects **timing margin** and setup/hold time constraints
- Even with low duty cycle, as long as rise edge is defined, DFF functions properly

Experiment 8: Current Mirror Design and Verification in Cadence Virtuoso Objective

To design and simulate a **basic current mirror** using **NMOS transistors** in **Cadence Virtuoso**, and verify that the output current mirrors the reference current.

Tools Used

- Cadence Virtuoso
- Spectre Simulator
- GPDK 180nm PDK

Theory

A **current mirror** copies a reference current (I_REF) to an output branch using matched transistors. It's widely used in analog ICs for biasing and current control.

Basic NMOS Current Mirror

• M1: Diode-connected NMOS (gate and drain shorted)

- **M2**: Output transistor, gate tied to M1's gate
- Both sources connected to GND
- Same **W/L ratios** ensure mirrored current:

Schematic Setup

- M1: Gate and drain connected, reference current sourced via I_REF
- M2: Gate connected to M1's gate, drain is output
- Connect both sources to GND
- Power supply: VDD = 1.8V
- Use ideal current source or resistor from VDD to drain of M1 to set I_REF

Simulation Configuration DC

Analysis

- Sweep Vout (M2's drain) from 0 to VDD
- Observe lout as Vout changes
- Expect constant current when **M2** is in saturation

Steps in Cadence Virtuoso

- 1. Draw basic NMOS current mirror schematic.
- 2. Set **M1** and **M2** to same W/L (e.g., W = 2μ , L = 180nm)
- 3. Apply **I_REF** via current source or resistor
- 4. Sweep **Vout** via DC voltage source
- 5. In ADE, choose DC sweep:

$_{\circ}$ Sweep Vout from 0 to 1.8V

6. Plot lout vs Vout

Results

Expected Behavior

- For Vout > Vdsat, **M2** stays in saturation
- **lout** ≈ **Iref** (flat region in plot)

Plot

- X-axis: Vout (M2's drain)
- Y-axis: lout (drain current of M2)
- Flat region confirms current mirroring

Conclusion

- The current mirror successfully replicates I_REF at the output
- lout remains constant over a range of Vout, indicating M2 stays in saturation
- Confirms proper current mirror operation

Observations