Kernels in SVM

SVM = SVC + Kernels

- Works with non-linear data
- Kernel takes your data to higher dimension:

- Data becomes linearly separable in higher dimension.
- You apply SVM/SVC in higher dimension & bring the data back to lower dimension.

Kernel Trick – Handling Non-Linearly Separable Data

What if a straight line cannot separate classes?

- SVM uses **kernel functions** to **map data into a higher-dimensional space** where it **becomes separable**.
- It's called trick because we do not transform the data to higher dimension.

from sklearn.datasets import make_circles X, y = make_circles(100, factor=.1, noise=.1)

plt.scatter(X[:, 0], X[:, 1], c=y, s=50, cmap='bwr')

factor=.1:

- This determines the ratio between the radius of the inner circle and the radius of the outer circle.
- A factor of 0 means the inner circle is a point.
- A factor of 1 would mean that the inner and outer circles have the same radius.
- A factor of .1 means the inner circle's radius is very small relative to the outer circle's radius.

noise=.1:

- This controls the amount of Gaussian noise added to the data points.
- Noise introduces randomness, making the circles less perfectly formed.

Return Values:

- x: A NumPy array of shape (n_samples, 2) containing the coordinates of the generated points.
- y: A NumPy array of shape (n_samples,) containing the class labels (0 or 1) for each point, indicating which circle it belongs to.

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20)
```

Calculate Accuracy:

```
classifier = SVC(kernel="linear")
classifier.fit(X_train, y_train.ravel())
y_pred = classifier.predict(X_test)

from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)

Output: 0.55
```

Visualize the boundary:

```
stop = X_set[:, 1].max() + 1,
                   step = 0.01))
 plt.contourf(X1, X2, clf.predict(np.array([X1.ravel(),
                          X2.ravel()]).T).reshape(X1.shape),
        alpha = 0.75,
        cmap = zero_one_colourmap)
 plt.xlim(X1.min(), X1.max())
 plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
   plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
        c = (zero_one_colourmap)(i), label = j)
 plt.title('SVM Decision Boundary')
 plt.xlabel('X1')
 plt.ylabel('X2')
 plt.legend()
 return plt.show()
plot_decision_boundary(X, y, classifier)
```


Plot these points in 3D:

```
def plot_3d_plot(X, y):
    r = np.exp(-(X ** 2).sum(1))
    ax = plt.subplot(projection='3d')
    ax.scatter3D(X[:, 0], X[:, 1], r, c=y, s=100, cmap='bwr')
    ax.set_xlabel('X1')
    ax.set_ylabel('X2')
    ax.set_zlabel('y')
    return ax

plot_3d_plot(X,y)
```


Now, apply rbf Kernel instead of linear:

```
rbf_classifier = SVC(kernel="rbf")
rbf_classifier.fit(X_train, y_train)
y_pred = rbf_classifier.predict(X_test)
accuracy_score(y_test, y_pred)
Output: 1
```

plot_decision_boundary(X, y, rbf_classifier)

• You can do the same thing with polynomial kernel, degree 2

```
poly_classifier = SVC(kernel="poly",degree=2)
poly_classifier.fit(X_train, y_train)
y_pred = poly_classifier.predict(X_test)
accuracy_score(y_test, y_pred)
Output: 1
```

plot_decision_boundary(X, y, poly_classifier)

$$X_new=np.exp(-(X**2))$$

it computes $e^{(-x^2)}$ for each element x in x.

plt.scatter(X_new[:, 0], X_new[:, 1], c=y, s=50, cmap='bwr')

Types of Kernels

- 1. Linear Kernel
- 2. Polynomial Kernel
- 3. Radial Basis Function (RBF) Kernel (Most Common)
- 4. Sigmoid Kernel

1. Linear Kernel

kernel = 'linear'

- Simplest kernel, used when data is linearly separable.
- No transformation needed, just computes the **dot product**.

$$K(x,y)=x\cdot y$$

Fast, simple, and works well when data is already separated by a straight line.

\rightarrow

Use Case: Text classification, linearly separable datasets.

- Advantages: Computationally efficient; less prone to overfitting.
- **Disadvantages**: Only suitable for linearly separable data.

2. Polynomial Kernel:

SVC(kernel='poly', degree=2)

• It maps the data into a higher-dimensional space where it can be linearly separable.

Formula:

$$K(x_i,x_j) = (x_i^Tx_j + c)^d$$

where:

- d is the degree of the polynomial.
- c is a constant term (often set to 1).

☑Captures polynomial relationships between features.

♦ Use Case:

- Handwritten digit recognition
- Image classification.

Disadvantages: Can be computationally expensive for higher-degree polynomials and prone to overfitting for higher **d**.

3. Radial Basis Function (RBF) Kernel (Gaussian Kernel):

SVC(kernel='rbf', C=1.0, gamma=0.1)

The RBF kernel is one of the most commonly used kernels in SVM.

- It transforms the data into an infinite-dimensional space, making it **effective** for complex, non-linear data.
- Maps features to infinite dimensions for complex decision boundaries.
- Works well when no prior knowledge about data structure exists.

Formula:

$$K(x,y)=e^{-\gamma ||x-y||^2}$$

✓Works in most real-world problems.

♦ Use Case:

- Facial recognition
- Bioinformatics
- Financial predictions
- **Advantages:** Very powerful for non-linear problems, as it works well for data that is not linearly separable.
- **Disadvantages:** Can lead to overfitting if the parameter σ is not properly tuned.

σ\sigma

Hyperparameters:

- gamma (y): Controls how far the influence of a point extends.
 - **Small y** → smoother decision boundary (generalizes more).
 - Large $\gamma \rightarrow$ complex boundary, but risk of overfitting.

4. Sigmoid Kernel

kernel = 'sigmoid'

• Similar to the activation function used in neural networks.

$$K(x_i, x_j) = anh(lpha x_i^T x_j + c)$$

where:

• α and c are parameters.

✓ Works well for data with neural network-like patterns.

♦ Use Case:

• Biological sequence classification.

Disadvantages: Can be harder to tune and may not perform as well as the RBF kernel in practice.

Python Code:

Dataset: make_moons


```
from sklearn.svm import SVC
from sklearn.datasets import make_moons
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt
```

Generate non-linear data (moons dataset)
X, y = make_moons(n_samples=100, noise=0.2, random_state=42)

Split the data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_stat e=42)

Create SVM models with different kernels
linear_svm = SVC(kernel='linear')
poly_svm = SVC(kernel='poly', degree=3)
rbf_svm = SVC(kernel='rbf', gamma=0.7)

Train the models linear_svm.fit(X_train, y_train)

```
poly_svm.fit(X_train, y_train)
rbf_svm.fit(X_train, y_train)
```

Make predictions

y_pred_linear = linear_svm.predict(X_test)
y_pred_poly = poly_svm.predict(X_test)
y_pred_rbf = rbf_svm.predict(X_test)

Evaluate the models

print("Linear Kernel Accuracy:", accuracy_score(y_test, y_pred_linear))
print("Polynomial Kernel Accuracy:", accuracy_score(y_test, y_pred_poly))
print("RBF Kernel Accuracy:", accuracy_score(y_test, y_pred_rbf))

Choosing the Right Kernel

Condition	Best Kernel
Data is linearly separable	Linear Kernel
Data has curved patterns	Polynomial Kernel (low-degree)
Data is highly complex & non-linear	RBF Kernel
Data behaves like a neural network	Sigmoid Kernel

Understanding Hyperparameters and Tuning Strategies

Hyperparameter	Effect	Tuning Strategy
C (Regularization Parameter)	Controls how much the model allows misclassifications. Higher C → strict decision	Try logarithmic scale values: 0.01, 0.1, 1, 10, 100

Hyperparameter	Effect	Tuning Strategy
	boundary, lower $C \rightarrow$ flexible boundary.	
gamma (RBF Kernel Parameter)	Controls how far influence of a single training example extends. Higher gamma → more complex decision boundary.	Try 'scale', 0.01, 0.1, 1
degree (Polynomial Kernel Parameter)	Defines the degree of the polynomial kernel.	Choose 2, 3, 4 (higher degrees increase complexity)

1. **C**:

- Start with values like [0.1, 1, 10, 100].
- If the model overfits, reduce CC. If it underfits, increase CC.

2. Kernel:

- Try linear, poly, and rbf kernels.
- Use rbf for highly non-linear data.

3. **Gamma**:

- For rbf , poly , and sigmoid kernels, try values like [0.1, 1, 10] or use 'scale' and 'auto'.
- A smaller γ means a larger influence radius (smoother decision boundary).
- A larger γ means a smaller influence radius (more complex decision boundary).
 - If **gamma is large (e.g., 10)**, the model will only care about points that are **very close** to the decision boundary.
 - This makes the boundary very detailed and wiggly.
 - Overfitting
 - If gamma is small (e.g., 0.01), the model will consider points that are farther away.
 - This makes the boundary smoother and less detailed.

Underfitting

• "scale" & "auto": These are just **shortcuts** for setting the value of **gamma** without you having to pick a number.

gamma='scale':

- The model automatically sets **gamma** based on the **spread of your data**.
- If your data points are spread out, it will use a smaller gamma.
- If your data points are close together, it will use a larger gamma.
- This is usually a good default choice.

gamma='auto':

- The model sets **gamma** to a fixed value: γ = 1/Number of features
- This is simpler but may not work as well as 'scale' for all datasets.

4. Degree:

- For the polynomial kernel, try degrees like [2, 3, 4].
- Higher degrees can lead to overfitting.