§ 13 投影

13.1 引言

上一讲中,我们得到如下结果:

设A为 $m \times n$ 阶阵, $\mathbf{b} \in \mathbb{R}^m$.

- 1. $\mathbb{R}^n = C(A^T) + N(A), C(A^T) = N(A)^{\perp}.$
- 2. $\mathbb{R}^m = C(A) + N(A^T), C(A) = N(A^T)^{\perp}.$
- 3.设 $A\mathbf{x} = \mathbf{b}$ 有解,则 $A\mathbf{x} = \mathbf{b}$ 在 $C(A^T)$ 中有唯一解.

设 $\alpha \in \mathbb{R}^n$ 是 $A\mathbf{x} = \mathbf{b}$ 的解. 则 $\alpha = \alpha_r + \alpha_n, \alpha_r \in C(A^T), \alpha_n \in N(A)$.

直观上,

13.1 引言

例:
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$. $A\mathbf{x} = \mathbf{b}$ 有解 $\alpha = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$.

$$\begin{pmatrix} 1\\0 \end{pmatrix} = \frac{1}{5} \begin{pmatrix} 1\\2 \end{pmatrix} + \frac{1}{5} \begin{pmatrix} 4\\-2 \end{pmatrix}, \alpha_r = \frac{1}{5} \begin{pmatrix} 1\\2 \end{pmatrix}, \alpha_n = \frac{1}{5} \begin{pmatrix} 4\\-2 \end{pmatrix}.$$

直观上,
$$\alpha_r$$
 是 $\begin{pmatrix} 1\\0 \end{pmatrix}$ 在 $C(A^T) = \left\{ c \begin{pmatrix} 1\\2 \end{pmatrix} | c \in \mathbb{R} \right\}$ 这条直线上投影.

另一方面,若 $A\mathbf{x} = \mathbf{b}$ 无解,此时我们可以考虑问题:

求 $\hat{\mathbf{x}} \in \mathbb{R}^n$,使得 $||A\hat{\mathbf{x}} - \mathbf{b}||$ 极小(或最小)?

直观上, $A\mathbf{x} = \mathbf{b}$ 无解 $\iff \mathbf{b} \notin C(A)$. 上述问题意味着求 C(A) 上距离 \mathbf{b} 最近的点 $A\hat{\mathbf{x}}$, 它是 \mathbf{b} 在 C(A) 上的投影点.

13.1 引言

例:
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

则 $A\mathbf{x} = \mathbf{b}$ 无解

即
$$\mathbf{b} \notin C(A)$$
(平面 $x + y - z = 0$).

b 在平面上投影点为**p** = $(p_x, p_y, p_z)^T$.

$$\mathbb{P} \begin{array}{l}
p_x + p_y = p_z \\
(p_x, p_y, p_z - 1) = \lambda(1, 1, -1)
\end{array} \Rightarrow \mathbf{p} = (\frac{1}{3}, \frac{1}{3}, \frac{2}{3})^T \in C(A).$$

$$A\hat{\mathbf{x}} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \implies \hat{\mathbf{x}} = \frac{1}{3} \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

这一讲,我们讨论点(或向量)在空间投影问题.

如右图, 我们求 b 在 a 上的投影向量 p.

$$\begin{cases} \mathbf{p} + \mathbf{e} = \mathbf{b}, \, \mathbf{e} \perp \mathbf{a} \\ \mathbf{p} = t\mathbf{a}(t \in \mathbb{R}) \end{cases}$$

$$\mathbf{e} \perp \mathbf{a} \Longrightarrow \mathbf{a}^{T}(\mathbf{b} - t\mathbf{a}) = 0 \implies t = \frac{\mathbf{a}^{T}\mathbf{b}}{\mathbf{a}^{T}\mathbf{a}}(\mathbf{a} \neq \mathbf{0})$$
即 \mathbf{b} 在 \mathbf{a} 上投影向量为 $\left(\frac{\mathbf{a}^{T}\mathbf{b}}{\mathbf{a}^{T}\mathbf{a}}\right)\mathbf{a} = \mathbf{p}$.

(\mathbf{a} , \mathbf{b} 表示相应列向量.)

$$(\mathbf{a}^T \mathbf{b})\mathbf{a} = \mathbf{a}(\mathbf{a}^T \mathbf{b}) = (\mathbf{a}\mathbf{a}^T)\mathbf{b}.$$

因此,
$$\mathbf{p} = \left(\frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}}\right)\mathbf{b}$$
. (注意: $\mathbf{a}\mathbf{a}^T\mathbf{e} - \mathbf{h}^T\mathbf{e} \times \mathbf{e}$ 矩阵.)

$$S = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}}$$
 称为投影矩阵.

 $\forall \mathbf{b} \in \mathbb{R}^2$, $S\mathbf{b} \not\in \mathbf{b}$ 在 \mathbf{a} 上投影向量.

设 $l \neq a$ 所在直线,我们得到一个映射(向量空间之间的映射):

$$\mathbb{R}^2 \longrightarrow l \subset \mathbb{R}^2$$

$$\mathbf{b} \longmapsto S\mathbf{b}$$

例:
$$\mathbf{a} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
 $S = \frac{\mathbf{a}\mathbf{a}^T}{\mathbf{a}^T\mathbf{a}} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$

$$\forall \mathbf{b} = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}, S\mathbf{b} = \begin{pmatrix} b_1 \\ 0 \end{pmatrix}$$
 即 \mathbf{b} 在 x 轴上的投影.

三维空间情形是类似的.

求
$$\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
 在直线 $l = \left\{ c \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} | c \in \mathbb{R} \right\}$ 上投影 \mathbf{p} .

我们得到一个映射: $\mathbb{R}^3 \longrightarrow l \subset \mathbb{R}^3$

下面我们考虑点在平面上的投影.

给定 $\mathbf{v} = (v_1, v_2, v_3)^T \in \mathbb{R}^3$, 平面 $\pi : ax + by + cz = 0$.

设 \mathbf{p} 是 \mathbf{v} 在 π 上的投影. 求 \mathbf{p} .

$$ax + by + cz = 0$$
的基础解系或 $N((a, b, c))$

的一组基.

$$A = (\alpha_1, \alpha_2),$$
 则平面 $\pi = C(A).$

求投影 $\mathbf{p} \iff \mathbf{v} \not \to \mathbf{F} \mathbb{R}^3 = C(A) + N(A^T)$ 的分解 $\mathbf{v}_l + \mathbf{v}_{ln}$.

其中, $\mathbf{v}_l = \mathbf{p}, \mathbf{v}_{ln} = \mathbf{e} \in N(A^T)$.

$$\mathbf{p} = \mathbf{v}_l \in C(A) \iff \exists \hat{\mathbf{x}}, A\hat{\mathbf{x}} = \mathbf{p}.$$

$$\mathbf{e} = \mathbf{v} - \mathbf{p} \perp \pi \Longrightarrow A^T (A\hat{\mathbf{x}} - \mathbf{v}) = \mathbf{0}.$$

即 $\hat{\mathbf{x}}$ 是 $A^T A \mathbf{x} = A^T \mathbf{v}$ 的解.

 $A^T A$ 是可逆阵(A 列满秩) $\Longrightarrow \hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{v}$.

则 $\mathbf{p} = A(A^T A)^{-1} A^T \mathbf{v}$.

此时 $A(A^TA)^{-1}A^T$ 称为投影矩阵.

例:
$$A = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix}$$
, $\mathbf{b} = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$. 求 $\hat{\mathbf{x}}$ 使得 $\mathbf{p} = A\hat{\mathbf{x}}$ 是 \mathbf{b} 在 $C(A)$

上的投影向量.

解:
$$A^T A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix}$$
 $A^T \mathbf{b} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

解:
$$A^{T}A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix} \qquad A^{T}\mathbf{b} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$$
$$A^{T}A\hat{\mathbf{x}} = A^{T}\mathbf{b} \implies \begin{pmatrix} 3 & 3 \\ 3 & 5 \end{pmatrix} \begin{pmatrix} \hat{x}_{1} \\ \hat{x}_{2} \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix} \implies \hat{\mathbf{x}} = \begin{pmatrix} 5 \\ -3 \end{pmatrix} \qquad \mathbf{p} = A\hat{\mathbf{x}} = \begin{pmatrix} 5 \\ 2 \\ -1 \end{pmatrix}.$$

注: $A^T A$ 可逆,因为 A 的列线性无关.

13.3 一般情形

问题: $A 为 m \times n$ 阶阵. 设 $\mathbf{b} \in \mathbb{R}^m$, 求 \mathbf{b} 在C(A) 上的投影 \mathbf{p} ?

$$\mathbf{p} \in C(A) \iff \exists \hat{\mathbf{x}} \in \mathbb{R}^n, A\hat{\mathbf{x}} = \mathbf{p}.$$

$$\mathbf{e} = \mathbf{b} - \mathbf{p} \perp C(A)$$
 $\mathbb{H} \mathbf{e} \in N(A^T).$

$$\Longrightarrow A^T(\mathbf{b} - A\hat{\mathbf{x}}) = \mathbf{0}.$$

即
$$\hat{\mathbf{x}}$$
 是 $A^T A \mathbf{x} = A^T \mathbf{b}$ 的解. $\mathbf{p} = A \hat{\mathbf{x}}$.

- 1. $A^T A \mathbf{x} = A^T \mathbf{b}$ 总有解.
- 2.设 $\hat{\mathbf{x}}_1, \hat{\mathbf{x}}_2$ 是 $A^T A \mathbf{x} = A^T \mathbf{b}$ 的两个解, 则 $A \hat{\mathbf{x}}_1 = A \hat{\mathbf{x}}_2$. $\Rightarrow \mathbf{p}$ 是唯一的. $(\hat{\mathbf{x}}_1 \hat{\mathbf{x}}_2 \in N(A^T A) = N(A))$

注: 一般情形中, A^TA 未必是可逆阵, 除非 A列满秩.

13.3 一般情形

若 $A^T A$ 可逆,投影阵 $P = A(A^T A)^{-1} A^T$ 满足 $P^2 = P, P^T = P.$

一般地,一个矩阵 P 满足 $P^2 = P$, $P^T = P$, 则称 P 为投影矩阵.

自然问题: 关于哪个空间的投影矩阵?

检查投影的例子. $\mathbf{b} = \mathbf{p} + \mathbf{e}$. 设 P 为投影阵,则 $P\mathbf{p} = \mathbf{p}, P\mathbf{e} = \mathbf{0}$.

定理: 设P 是一个投影矩阵,则 C(P) = N(I - P), N(P) = C(I - P).