Data Structures

Stacks and Queues

Objectives

Primary Objectives

- What is a stack and when could I use it?
- What is a queue and when could I use it?

Secondary Objectives

- What trade-offs am I making when I use a stack?
- What trade-offs am I making when I use a queue?

Stacks

Characteristics

First-in, last-out

Linked Stack

 Based on the strengths and weaknesses of the linked list.

Array Stack

- Based on the strengths and weaknesses of the linked list.
- Most common implementation.

Stacks

Push (add)

Add a value to the top of the collection.

Pop (remove)

Remove a value from the top of the collection.

```
Stack<Integer> s = new Stack<Integer>();
s.add(5);
s.add(3);
s.add(7);
s.remove(); // returns 7
s.remove(); // returns 3
s.remove(); // returns 5
      Top
                             7
                             3
                             5
                           Stack
```

Stack Summary

General Strengths and Weaknesses

- Relies on the underlying data structure.
- Differences are often minor and exist at the fringes.

Runtime Analysis		
push	O(1)	
рор	O(1)	

Queues

Characteristics

• First-in, First-out

Linked Queue

- Based on the strengths and weaknesses of the linked list.
- Good for unbounded and non-blocking queues.

Array Queue

- Based on the strengths and weaknesses of the linked list.
- Good for bounded and blocking queues.

Queues

Push (add)

Add a value at the tail of the collection.

Pop (remove)

Remove a value from the head of the collection.

```
Queue<Integer> q = new LinkedList<Integer>();
q.add(5);
q.add(3);
q.add(7);

q.remove(); // returns 5
q.remove(); // returns 3
q.remove(); // returns 7
```

3

Queue Summary

General Strengths and Weaknesses

- Depends on the intended behaviour.
- Implementation will depend on which behaviour you want.

Runtime Analysis		
push	O(1)	
рор	O(1)	

Performance

Why do stacks and queues have such good runtime performance?

	Stacks	Queues
Push	O(1)	O(1)
Рор	O(1)	O(1)

Reflection

Primary Objectives

- What is a stack and when could I use it?
- What is a queue and when could I use it?

Secondary Objectives

- What trade-offs am I making when I use a stack?
- What trade-offs am I making when I use a queue?