

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CANDIDATE NAME			
INAIVIE			
CENTRE NUMBER		CANDIDATE NUMBER	
CHEMISTRY			9701/32
Paper 3 Advar	nced Practical Skills 2		May/June 2014
			2 hours
Candidates ans	swer on the Question Paper.		

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Give details of the practical session and laboratory where appropriate, in the boxes provided.

As listed in the Confidential Instructions

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Additional Materials:

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Use of a Data Booklet is unnecessary.

Qualitative Analysis Notes are printed on pages 10 and 11.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 11 printed pages and 1 blank page.

1 Carbon dioxide in the atmosphere dissolves in rain water making it acidic. When this water passes through limestone containing calcium carbonate, it forms solutions of calcium hydrogen carbonate.

In this experiment, you will determine the concentration of hydrogen carbonate ions in a solution by titration with hydrochloric acid.

FB 1 is 0.100 mol dm⁻³ hydrochloric acid, HC*l*.

FB 2 contains an unknown concentration of hydrogen carbonate ions, HCO₃⁻. methyl orange indicator

(a) Method

- Fill the burette with **FB 1**.
- Pipette 25.0 cm³ of **FB 2** into a conical flask.
- Add a few drops of methyl orange indicator to the conical flask.
- Perform a rough titration and record your burette readings in the space below.

The rough titre	e is		cm ³
-----------------	------	--	-----------------

- Carry out as many accurate titrations as you think necessary to obtain consistent results.
- Make certain any recorded results show the precision of your practical work.
- Record, in a suitable form below, all of your burette readings and the volume of **FB 1** added in each accurate titration.

I	
II	
III	
IV	
V	
VI	
VII	

[7]

(b)		om your accurate titration results obtain a suitable value to be used in your cal ow clearly how you obtained this value.	culatio	ns.
		25.0 cm ³ of FB 2 required cm ³ of	FB 1.	[1]
(c)	Cal	Iculations		
		ow your working and appropriate significant figures in the final answer to each steculations.	ep of yo	oui
	(i)	Calculate the number of moles of hydrochloric acid present in the volume of FB 1 c in (b) .	alcula	ted
		moles of HC <i>1</i> =	r	no
	(ii)	Write the ionic equation for the reaction of FB 1 with FB 2.		
	/:::\	Calculate the concentration, in mol dm ⁻³ , of hydrogen carbonate ions in FB 2 .		
,	(iii)	Calculate the concentration, in morum *, or hydrogen carbonate ions in FB 2 .		
			II	
		concentration of HCO ₃ ⁻ in FB 2 =	. mol dı	m∹ [2]
			Total:	

As well as hydrogen carbonate ions, water that has passed through rocks also contains a range of metal ions such as Ca2+. The presence of Ca2+ ions leads to the water forming scum with certain types of soap. Soluble metal carbonates can be added to remove these ions. One such soluble carbonate is M₂CO₃.10H₂O.

In this experiment you will heat a sample of the carbonate salt to remove the water of crystallisation and leave the anhydrous salt, M2CO3. By working out how much water was lost you will be able to calculate the relative formula mass of M₂CO₃.10H₂O and hence identify M.

FB 3 is the hydrated salt, **M**₂CO₃.10H₂O.

(a) Method

- Weigh a clean, dry crucible and its lid.
- Transfer all the **FB 3** into the crucible and put the crucible lid on.
- Reweigh the crucible, the lid and the contents.
- Place the crucible on the pipe-clay triangle.
- Heat the crucible very gently for 5 minutes.
- Remove the lid and heat strongly for a further 5 minutes.
- Allow the crucible to cool. You should start **Question 3** while cooling is taking place.
- When the crucible is cool enough to handle, reweigh the crucible, the lid and the contents.

Record, in an appropriate form in the space below, all your weighings and calculations including the mass of FB 3 used and the mass of water lost.

(b) Calculations

Show your working and appropriate significant figures in the final answer to each step of your calculations.

(i) Use the mass of water lost on heating to calculate the number of moles of hydrated salt, M₂CO₃.10H₂O, in the initial sample.

[A_r: H, 1.0; O, 16.0]

moles of $\mathbf{M}_2 CO_3 . 10H_2O = \dots$ mol

 ${\rm III}$

(ii) Calculate the relative formula mass of $\rm M_2CO_3.10H_2O,\,FB~3.$

		relative forn	nula mass of M ₂ CO ₃ .10H ₂ O =		
	/iii\				
	(iii)	[A_r : H, 1.0; Li, 6.9; C, 12.0; O, 16.0; Na	a, 23.0; K, 39.1; Rb, 85.5; Cs, 133]		
				I	
				II	
				III	
				IV	
				V	
			M is		
					[5]
()	(1)		-D.O		
(C)	(i)				
		ma	eximum error in the mass of FB 3 =		g
	(ii)	Calculate the maximum percentage error	in the mass of water lost in (a).		
			percentage error =		%
					[1]
(d)		ggest a change to the method that would in ur answer.	mprove the accuracy of this experiment	. Exp	olain
	,				
					. [2]
				Total:	
			L ¹		. 12
				l	
				1 11 1	I

3 Qualitative Analysis

At each stage of any test you are to record details of the following.

- colour changes seen
- the formation of any precipitate
- the solubility of such precipitates in an excess of the reagent added

Where gases are released they should be identified by a test, **described in the appropriate place in your observations**.

You should indicate clearly at what stage in a test a change occurs. Marks are **not** given for chemical equations.

No additional tests for ions present should be attempted.

If any solution is warmed, a boiling tube MUST be used.

Rinse and reuse test-tubes and boiling tubes where possible.

Where reagents are selected for use in a test, the name or correct formula of the element or compound must be given.

(a)	Water in rivers and streams contains a range of different cations and anions. A particular salt
	occurs in some samples of spring water. You will carry out tests to identify this salt.

FB 4 is a solution of the salt. It contains one cation, which is listed in the Qualitative Analysis Notes on page 10. It also contains one anion, which is either sulfate, SO_4^{2-} , or sulfite, SO_3^{2-} .

(i)	Choose reagents that will allow you to identify the cation in FB 4. Carry out suitable tests
	using these reagents and record your observations in the space below.

The cation in **FB 4** is

(ii) Choose reagents to identify the anion in **FB 4**. Carry out suitable tests using these reagents and record your results in the space below.

I
II
III
IV
V
VI
VII
VIII

The anion in **FB 4** is

[8]

Before starting parts (b) and (c), half-fill a 250 cm³ beaker with water and heat with a Bunsen burner to approximately 60 °C. You will use this as a hot water bath. Turn off the Bunsen burner.

(b) FB 5, **FB 6** and **FB 7** are solutions each containing a single compound which could be ethanol, ethanal or propanone. To identify each compound you will react the samples with Tollens' reagent and with acidified potassium manganate(VII).

(i) Preparation of Tollens' reagent

- To approximately 2 cm depth of aqueous silver nitrate in a boiling tube, add approximately 0.5 cm depth of aqueous sodium hydroxide.
- Add aqueous ammonia a little at a time with continuous shaking until the brown precipitate **just** dissolves. Do not add an excess of ammonia.

40.04	observations		
test	FB 5	FB 6	FB 7
To a 1 cm depth of each solution in a clean, dry test-tube add a few drops of the Tollens' reagent that you have prepared. Do not shake the tube. If no reaction is seen, warm the tube in the hot water bath.			
When you have made your observations, rinse out all the test-tubes and the boiling tube which were used with Tollens' reagent.			
To a 1 cm depth of each solution in a test-tube add a 1 cm depth of dilute sulfuric acid. Then add a few drops of aqueous potassium manganate(VII). If no reaction is seen, warm the tube in the hot water bath.	Do not carry out this test		

(ii)	Identify each compound.	I	
	FB contains ethanol.	II	
	FB contains ethanal.	III	
		IV	
	FB contains propanone.	V	

State the reagent and the expected observations of the three tests.	
reagent:	
expected observations	
FB 5	
FB 6	
FB 7	 [7]

(iii) Another reagent can be used with these samples to identify which compounds have a carbonyl group, C=O. This reagent has not been supplied so you cannot carry out this test.

(c) FB 8 is an aqueous solution of an organic compound. Carry out the following tests. You do not need to identify FB 8.

test	observations
To a 1 cm depth of FB 8 in a test-tube add a 1 cm depth of dilute sulfuric acid. Then add a few drops of aqueous potassium manganate(VII).	
If no reaction is seen, place the test-tube in the hot water bath and leave to stand.	
To a 1 cm depth of FB 8 in a test-tube carefully add a small spatula measure of sodium hydrogen carbonate.	

[3]

[Total: 18]

Qualitative Analysis Notes

Key: [ppt. = precipitate]

1 Reactions of aqueous cations

	reaction with		
ion	NaOH(aq)	NH ₃ (aq)	
aluminium, A l^{3+} (aq)	white ppt. soluble in excess	white ppt. insoluble in excess	
ammonium, NH₄⁺(aq)	no ppt. ammonia produced on heating	_	
barium, Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.	
calcium, Ca ²⁺ (aq)	white ppt. with high [Ca ²⁺ (aq)]	no ppt.	
chromium(III), Cr³+(aq)	grey-green ppt. soluble in excess giving dark green solution	grey-green ppt. insoluble in excess	
copper(II), Cu ²⁺ (aq)	pale blue ppt. insoluble in excess	blue ppt. soluble in excess giving dark blue solution	
iron(II), Fe ²⁺ (aq)	green ppt. turning brown on contact with air insoluble in excess	green ppt. turning brown on contact with air insoluble in excess	
iron(III), Fe³+(aq)	red-brown ppt. insoluble in excess	red-brown ppt. insoluble in excess	
magnesium, Mg²+(aq)	white ppt. insoluble in excess	white ppt. insoluble in excess	
manganese(II), Mn²+(aq)	off-white ppt. rapidly turning brown on contact with air insoluble in excess	off-white ppt. rapidly turning brown on contact with air insoluble in excess	
zinc, Zn²+(aq)	white ppt. soluble in excess	white ppt. soluble in excess	

2 Reactions of anions

ion	reaction
carbonate, CO ₃ ²⁻	CO ₂ liberated by dilute acids
chloride, C <i>l</i> ⁻ (aq)	gives white ppt. with Ag ⁺ (aq) (soluble in NH ₃ (aq));
bromide, Br ⁻ (aq)	gives cream ppt. with Ag ⁺ (aq) (partially soluble in NH ₃ (aq));
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insoluble in NH ₃ (aq));
nitrate, NO ₃ ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and A <i>l</i> foil
nitrite, NO ₂ ⁻ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and Al foil; NO liberated by dilute acids (colourless $NO \rightarrow$ (pale) brown NO_2 in air)
sulfate, SO ₄ ²⁻ (aq)	gives white ppt. with Ba ²⁺ (aq) (insoluble in excess dilute strong acids)
sulfite, SO ₃ ²⁻ (aq)	SO ₂ liberated with dilute acids; gives white ppt. with Ba ²⁺ (aq) (soluble in excess dilute strong acids)

3 Tests for gases

gas	test and test result
ammonia, NH ₃	turns damp red litmus paper blue
carbon dioxide, CO ₂	gives a white ppt. with limewater (ppt. dissolves with excess CO ₂)
chlorine, Cl ₂	bleaches damp litmus paper
hydrogen, H ₂	"pops" with a lighted splint
oxygen, O ₂	relights a glowing splint
sulfur dioxide, SO ₂	turns acidified aqueous potassium manganate(VII) from purple to colourless

12

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.