MTH-203 Multivariate Calculus [Monsoon 2022] Midsem

Date: 16/10/22 Max mark: 35

Attempt any 5 out of 7 questions, each question weightage 7 marks

Q1 The derivative of f(x,y) at $P_o(1,2)$ in the direction of $\hat{i}+\hat{j}$ is $2\sqrt{2}$ and in the direction of $-2\hat{j}$ at $P_o(1,2)$ is -3. What is the derivative of f at $P_o(1,2)$ in the direction of $-\hat{i}-2\hat{j}$?

Q2 Find the maximum and minimum of f(x, y, z) = 4y - 2z subject to the constraints 2x - y - z = 2 and $x^2 + y^2 = 1$

Q3 Find the area of the region common to the interiors of the cardioids $r = 1 + \cos \theta$ and $r = 1 - \cos \theta$

Q4 Evaluate $\iiint |xyz| \, dxdydz$, over the solid ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$

Q5 Find a unit vector orthogonal to A in the plane of B and C, if $A = 2\hat{i} - \hat{j} + \hat{k}$, $B = \hat{i} + 2\hat{j} + \hat{k}$ and $C = \hat{i} + \hat{j} - 2\hat{k}$

Q6 What angle does the line of intersection of the planes 2x + y - z = 0 and x + y + 2z = 0 make with the positive x-axis?

Q7 A solid in the first octant is bounded by the planes y=0 and z=0 and by the surfaces $z=4-x^2$ and $x=y^2$ (figure given below). Its density function is $\delta(x,y,z)=kxy$, where k is a constant. Find the mass of the solid.

QI let
$$u_1 = \hat{i} + \hat{j}$$
 $\rightarrow \hat{u_1} = \frac{1}{\sqrt{2}} \hat{i} + \frac{1}{\sqrt{2}} \hat{j} = 0.5$
given
$$u_2 = -2\hat{j} \rightarrow \hat{u_2} = -\hat{j} \qquad \hat{j} = 0.5$$

$$Du_1 f = \nabla \hat{f} \cdot \hat{u_1} = 2\sqrt{2} \quad \hat{j} = 0.5$$

$$Du_2 f = \nabla \hat{f} \cdot \hat{u_2} = -3 \quad \hat{j} = 0.5$$

Duit =
$$f_{x}(112) + f_{y}(112) + f_{z} = 2\sqrt{2}$$

$$f_{z}(112) + f_{y}(112) = 4$$

(1)

Pho,
Duzf =
$$f_n(1,2)(0) + f_y(1,2)(-1) = -3$$

 $\Rightarrow f_y(1,2) = 3$
Then from $\ell q(0)$, $f_n(1,2) = 1$

$$= (1 + 3)$$

Now let u= -î-2j = û=-1=î-2j]0.5

$$\frac{A2}{f} = \frac{4y-2z}{19} = \frac{2x-y-z-2}{19},$$

$$\frac{1}{f} = \frac{4}{19} - \frac{2}{19} = \frac{2}{19$$

Two points
$$(\frac{-2}{\sqrt{13}}, \frac{3}{\sqrt{12}}, \frac{-7}{\sqrt{13}})$$
 and $(\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}}, \frac{7}{\sqrt{13}})$

Put in $F(x_1, y_1, z)$ to get minimum and maximum y adult

$$F(\frac{2}{\sqrt{13}}, \frac{3}{\sqrt{13}}, \frac{-7}{\sqrt{13}}, \frac{-2}{\sqrt{13}}) = \frac{4 + 26}{\sqrt{13}} \pmod{2}$$

F $(\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}}, \frac{-2 + 7}{\sqrt{13}}) = \frac{4 - 26}{\sqrt{13}} \pmod{2}$

All jour region are symmetrical.

So Area = $\frac{4}{\sqrt{13}} + \frac{1}{\sqrt{13}} + \frac{1}{\sqrt{13}}$

Q5
$$B = \hat{l} + 2\hat{j} + \hat{k}$$
, $C = \hat{l} + \hat{j} - 2\hat{k}$

B

The rector $B + C$ is normal to the plane of B and C
 $A + (B + C)$ is orthogonal to A and C

parallel to the plane of B and C
 $B + C = |\hat{l}| \hat{j} + \hat{k}| = -5 \hat{l} + 3\hat{j} - k$
 $|\hat{l}| = -5 \hat{l} + 3\hat{j} - k$
 $|\hat{l}| = -2\hat{l} - 3\hat{j} + k$
 $|\hat{l}| = |\hat{l}| + |\hat{l}| + |\hat{l}| = |\hat{l}| + |\hat{l}| = |\hat{l}| + |\hat{l}| = |\hat{l}| + |\hat{l}| +$

Q6 The direction of the intersection of Hyplones 2x+y-z=0 and x+y+2z=0 is 72 n7 x n2 = | 2 | 1 | 3 $\nabla = 3\hat{l} - 5\hat{j} + \hat{k}$ The angle (d) between Tond n-onis (t)

les 0 = T. [= T.] $\omega = (31-5)+k)\cdot 1$ $\sqrt{3^2+5^2+1}$ 1 0 = Wot (3/135)

¥.

17= 52 Jn 4-22 Rny dz dydn (3) = R 50 50 [n], ny dy dn = k] (17 my (4-22) dy dx 3) for correct = R 5° 5° (try - 23y) dy dr calculation = R 52 [4xy2 - x3y2] 127 du = k [2 (9x2 - 22) dn $= k \left[\frac{2\pi^{2} - \chi^{5}}{3} \right]_{\delta}^{2}$ z k [16 - 25] $= 2^{4} R \left[\frac{1}{3} - \frac{1}{5} \right]$ Another 2 forms for M, [M= \int \frac{12}{2} \frac{1}{2} \frac{1}{