#### EN-2425

## Energia, meio ambiente e sociedade

#### Impactos ambientais da energia

João Moreira UFABC

#### Sumário

- \* Principais impactos ambientais das fontes de energia
- Principais critérios de avaliação dos impactos socioambientais
- Coeficientes de impacto coeficiente de impacto da energia e intensidade energética
- \* Exemplos de coeficientes de impactos
- \* Fatalidades em acidentes relacionados a cadeia energética

#### Principais impactos ambientais

- Emissões de gases do efeito estufa
- \* Liberação de resíduos no meio ambiente durante a geração e uso da energia
- Perturbações na região dos empreendimentos energéticos
- \* Deslocamento populacional e suas implicações econômicas e sociais

### Critérios de avaliação

- \* Avaliar toda a cadeia energética
- \* Avaliar todo o ciclo de vida dos empreendimentos
- \* Avaliar o footprint ou pegada ecológica dos empreendimentos
- \* Reciclagem dos resíduos
- \* Impactos globais, regionais e locais

## Problemas ambientais mais relevantes e suas principais causas

| Tipo de impacto | Problema ambiental                     | Principal causa                                               |
|-----------------|----------------------------------------|---------------------------------------------------------------|
| Local           | Poluição urbana do ar                  | Energia (indústria e transporte)                              |
|                 | Poluição do ar em ambiente fechado     | Energia (cozimento)                                           |
| Regional        | Chuva ácida                            | Energia (queima de combustível<br>fóssil)                     |
|                 | Má qualidade da água doce              | Aumento populacional, agricultura, indústria                  |
| Global          | Aquecimento global / efeito estufa     | Energia (emissão de gases na queima<br>de combustível fóssil) |
|                 | Diminuição da camada de ozônio         | Indústria                                                     |
|                 | Degradação costeira e marinha          | Transporte e energia                                          |
|                 | Desmatamento e desertificação          | Aumento populacional, agricultura e energia                   |
|                 | Resíduos tóxicos, químicos e perigosos | Indústria e energia (fóssil, nuclear e outras)                |

Fonte: Goldemberg & Lucon (2008, p.113)

# Emissões de gases do efeito estufa em 2004 (IPCC, 2007)



# Interação entre as etapas da cadeia produtiva e ciclo de vida da energia



### Elos da cadeia de geração de energia elétrica

Quanto mais elos na cadeia produtiva da energia mais impactos são esperados.

| Cadeia de energia elétrica | n° de elos |
|----------------------------|------------|
| Nuclear                    | 17         |
| Petróleo                   | 10         |
| Gás natural                | 10         |
| Carvão                     | 10         |
| Biomassa                   | 8          |
| Hidrelétrica               | 5          |
| Eólica                     | 3          |
| T1 1 1 (1 (1 (2            | 15.00      |

Elaborada a partir de: Scheer (2002, p.45,80).

## Densidade de energia e massa requerida para gerar 1000 MWe por meio de urânio

| Fonte de energia<br>elétrica | Densidade<br>energética<br>(kWh/kg) | Massa<br>(t) | Referências                             |
|------------------------------|-------------------------------------|--------------|-----------------------------------------|
| Nuclear                      | 3.500.000                           |              | IAEA (1997)                             |
| (com reprocessamento)        | 3.500.000                           |              | Rashad & Hammad (2000, p. 213)          |
| Nuclear                      | 50.000                              | 30           | Goldemberg & Lucon (2008, p.192)        |
| (sem reprocessamento)        | 50.000                              | 30           | IAEA (1997)                             |
|                              | 50.000                              | 30           | Rashad & Hammad (2000, p. 213)          |
|                              |                                     | 30           | PWR: Cochran & Tsoulfanidis (1999,      |
|                              |                                     | 35           | p.4,370)                                |
|                              |                                     |              | BWR: Cochran & Tsoulfanidis (1999, p.4) |

## Densidade de energia e massa requerida para gerar 1000 MWe por fontes fósseis

| Fonte de energia<br>elétrica | Densidade<br>energética<br>(kWh/kg) | Massa<br>(t) | Referências                        |
|------------------------------|-------------------------------------|--------------|------------------------------------|
| Gás natural                  | 3,48                                | 2.520.102    | EPE (2009, p.209,213,216)          |
| Petróleo (óleo diesel)       | 2,82                                | 3.110.050    | EPE (2009, p.209,213,216)          |
| (óleo comb)                  | 4                                   | 2.000.000    | Goldemberg & Lucon (2008, p.192)   |
|                              | 4                                   | 2.000.000    | IAEA (1997)                        |
|                              | 4                                   | 2.000.000    | Rashad & Hammad (2000, p. 213)     |
| Carvão                       | 1,53                                | 5.720.543    | EPE (2009, p.209,213,216), vegetal |
|                              | 3                                   | 2.700.000    | Goldemberg & Lucon (2008, p.192)   |
|                              | 3                                   | 2.600.000    | IAEA (1997)                        |
|                              | 3                                   | 2.600.000    | Rashad & Hammad (2000, p. 213)     |

## Densidade de energia e massa requerida para gerar 1000 MWe por biomassa

|             | e energia<br>trica | Densidade<br>energética<br>(kWh/kg) | Massa<br>(t) | Referências                      |
|-------------|--------------------|-------------------------------------|--------------|----------------------------------|
| Biomassa (b | agaço de           | 0,215                               | 40.772.093   | Brasil (2007f, p.183,190)        |
| cana)       |                    | 0,340                               | 25.782.352   | Brasil (2007f, p.183)            |
|             |                    | 1,050                               | 8.348.571    | Brasil (2007f, p.183)            |
|             |                    | 1                                   | 3.400.000    | Goldemberg & Lucon (2008, p.192) |
| Biomassa    | (lenha)            | 1                                   | 3.400.000    | IAEA (1997)                      |
|             |                    | 1                                   | 3.400.000    | Rashad & Hammad (2000, p. 213)   |

#### Principais impactos das fontes fósseis

- Poluição do ar
- Emissão de óxidos de enxofre (SOx, SO<sub>2</sub>)
- Emissão de óxidos de nitrogênio (NOx)
- Emissão de monóxido de carbono (CO)
- Emissão de matéria particulada suspensa (metais pesados)
- Destruição da camada de ozônio
- Aquecimento global via efeito estufa
  - Emissão de dióxido de carbono (CO<sub>2</sub>)
  - Emissão de metano (CH<sub>4</sub>)
- · Chuva ácida
  - Emissão de SO<sub>2</sub> formando ácido sulfúrico na atmosfera
  - Emissão de NOx formando ácido nítrico na atmosfera
- Perturbação acústica na fauna (marinha ou terrestre) pela exploração sísmica
- Alteração da qualidade do solo e da água
- Modificação dos padrões de uso e ocupação do solo
- Remanejamento involuntário de comunidades locais para construção de dutos
- Geração de apreensão na população local pela possibilidade de acidentes

Carvão Petróleo Gás natural

# Principais impactos das hidrelétrica, nuclear, biomassa e eólica

| Hidrelétrica | Formação de grandes represas                                                                |  |
|--------------|---------------------------------------------------------------------------------------------|--|
|              | <ul> <li>Realocação das populações</li> </ul>                                               |  |
|              | <ul> <li>Aquecimento global via efeito estufa</li> </ul>                                    |  |
|              | - Emissão de gás metano (CH <sub>4</sub> ) e dióxido de carbono (CO <sub>2</sub> )          |  |
| Nuclear      | Rejeitos de nível baixo e médio de radioatividade                                           |  |
|              | Rejeitos de nível alto de radioatividade que requerem<br>armazenamento por milhares de anos |  |
|              | Desativação das instalações nucleares após término da vida útil                             |  |
| Biomassa     | Poluição do ar                                                                              |  |
|              | - Emissão de monóxido de carbono (CO)                                                       |  |
|              | - Emissão de matéria particulada                                                            |  |
|              | • Emissão de CO <sub>2</sub>                                                                |  |
|              | <ul> <li>Uso intensivo do solo e da água</li> </ul>                                         |  |
|              | <ul> <li>Diminuição da biodiversidade</li> </ul>                                            |  |
| Eólica       | Ruído causado pelos aerogeradores                                                           |  |
|              | Colisão de pássaros                                                                         |  |
|              | Impacto visual                                                                              |  |
|              | <ul> <li>Certa limitação do uso do espaço ocupado</li> </ul>                                |  |

### Coeficiente de impacto ambiental

Em princípio, qualquer atividade produtiva gera algum tipo de degradação ambiental. Se Y é o produto gerado pela economia de uma sociedade, podemos escrever que a taxa de produção de um dado fator causador de degradação ambiental (S<sub>i</sub>) devido a este produto seja dada por

$$S_i = \sigma_i Y$$

onde  $\sigma_i$  é o coeficiente de produção do fator causador do dano ambiental do tipo i causado pelo produto Y produzido pela sociedade

### Coeficiente de impacto ambiental

- Se o produto for a geração de energia os danos podem ser:
  - \* Emissão de CO2
  - Resíduos nucleares
  - \* Áreas alagadas
  - \* Poluição do ar
  - \* Ruído
- \* O índice i representa os vários impactos decorrente do produto gerado para a economia

$$S_i = \sigma_i Y$$

#### Definição do coeficiente de impacto

O coeficiente de intensidade do fator causador de impacto ambiental (i) pode ser definido como

$$\sigma_i = \frac{\Delta S_i}{\Delta Y}$$

onde  $\Delta S_i$  é a quantidade do iésimo fator de impacto ambiental gerado durante uma produção  $\Delta Y$  do produto da economia.

$$\sigma_i = \frac{\Delta S_i}{\Delta Y} = \frac{\Delta S_i}{\Delta E} \frac{\Delta E}{\Delta Y}$$

onde  $\Delta E$  é a energia elétrica gerada ou consumida pela economia ou sociedade para produzir  $\Delta Y$ .

### Coeficiente de impacto

O primeiro termo,  $\frac{\Delta S_i}{\Delta E}$ , pode ser definido como o coeficiente de produção do fator *i* para se gerar ou consumir uma quantidade  $\Delta E$  de energia,  $\sigma_{iE}$ ,

$$\sigma_{iE} = \frac{\Delta S_i}{\Delta E}$$

O segundo termo está relacionado à intensidade energética,  $I_E$ , definida pela razão  $\frac{E}{Y}$ , que fornece certa quantidade de energia para que uma dada economia consiga gerar uma dada quantidade de produto.

$$I_E = \frac{E}{Y}$$

### Coeficiente de impacto

Essa razão pode ser expressa para certo ano como sendo, por exemplo, quilowatt-hora por reais de produto interno bruto. Utilizando o conceito de elasticidade eletricidade-produto,  $\gamma_{EY}$ , definida como

$$I_{E} = \frac{E}{Y} \qquad \qquad \gamma_{EY} = \frac{\frac{dE}{E}}{\frac{dY}{Y}},$$

podemos reescrever a Eq. 3 como

$$\sigma_i = \sigma_{iE} I_E \gamma_{EY}.$$

# Como baixar o coeficiente de impacto, $\sigma_i$ ?

- \* Baixar o coeficiente  $\sigma_{iE}$  de intensidade de produção de impacto significa
  - \* Optar por investimentos que gerem menores quantidades de fatores de impacto no ambiente e sociedade
- \* Baixar a intensidade energética e a elasticidade energia-produto significa
  - Rever procedimentos e condutas dos vários agentes da sociedade para que se utilize menos energia para produzir bens e serviços

## Alguns impactos da energia e respectivos coeficientes

| Impacto considerado                                                                          | Coeficiente $(\sigma_{iE})$ de impacto                                                                                      |
|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| 1. aquecimento global                                                                        | 1. emissão de CO <sub>2</sub> equivalente (kg CO <sub>2</sub> eq/MWh)                                                       |
| <ol><li>área imobilizada (área x tempo)</li></ol>                                            | 2. área imobilizada (m².ano/MWh)                                                                                            |
| <ol> <li>consumo de matéria-prima e<br/>desmaterialização da geração<br/>elétrica</li> </ol> | <ol> <li>massa de material fortemente perturbador do<br/>meio ambiente usado como insumo energético<br/>(kg/MWh)</li> </ol> |
| 4. uso de água                                                                               | 4. consumo de água (m³/MWh)                                                                                                 |
| 5. radiação, poluentes e saúde humana                                                        | 5. morbidade humana (morbidade/MWh)                                                                                         |
| 6. segurança e riscos de acidentes                                                           | 6. fatalidade em acidentes (número de mortes)                                                                               |

## Coeficiente de impacto de emissões diretas e indiretas de CO2



#### Coeficientes de impacto de emissões de gases de efeito estufa para várias formas de energia



## Coeficiente de impacto de área ocupada ao longo do tempo para várias energias



# Coeficiente de impacto de consumo de matéria prima



# Coeficiente de impacto de consumo de água para várias energias



# Coeficiente de impacto de morbidade para várias energias



### Fatalidades causadas em acidentes de várias fontes de energia (toda cadeia produtiva)

| Fonte de<br>energia elétrica | (o <sub>6E-1</sub> )<br>[fatalidades] | Acidente de<br>Shimantan na |
|------------------------------|---------------------------------------|-----------------------------|
| Hidrelétrica                 | 171.216                               | China<br>Acidente           |
| Carvão                       | 5.099                                 | de<br>Chernobyl             |
| Nuclear                      | 4.100                                 | na URSS                     |
| Petróleo                     | 3.330 <                               |                             |
| Gás Natural                  | 737 <                                 | Inúmeros<br>acidentes com   |
| Biomassa                     |                                       | fatalidades de 1            |
| Eólica                       |                                       | a 10 pessoas                |

#### Acidentes

- \* A geração e uso da energia causam acidentes e fatalidades.
- \* Acidentes da proporção de Shimantan e Chernobyl com grande número de fatalidades ocorreram somente uma única vez.
- \* Em Shimantan as mortes ocorreram devido a inundação (~ 30 mil) e doenças causadas após a inundação
- \* Em Chernobyl, 31 morreram durante o acidente e cerca de 4000 após o acidente ao longo de vários anos

### Como avaliar danos ambientais distintos?

- \* Análises de sustentabilidade incluem normalmente 3 dimensões, cada uma com diferentes variáveis:
  - \* Ambiental emissão de gases do efeito estufa, consumo de água, etc;
  - Social deslocamento de populações, poluição, geração de empregos, etc
  - \* Econômica eficiência econômica, menores custos de energia, etc.
- \* Como comparar diferentes variáveis? Que critérios utilizar?
- \* Como tomar decisão tendo em vista diferentes dimensões e variáveis?
  - \* As variáveis constituem critérios a serem considerados

### Requisitos de possíveis análises

- \* Análises quantitativas e qualitativas análises multicritérios são muito utilizadas
  - Critérios das 3 dimensões
- \* Definição do objetivo e extensão da análise (escopo estabelecer os limites do problema)
- Definir métodos consistentes com os objetivos
- Considerar a opinião de possíveis stakeholders para definir as variáveis e critérios da análise
- Utilização de indicadores
- Discussão aberta dos pesos para os diferentes critérios levando em consideração a opinião de stakeholders

#### Comentários finais

- \* A geração e uso de energia causam impactos socioambientais e econômicos
- \* Pode-se mensurar esses efeitos de várias formas
- \* É necessário levar em conta todo o ciclo de vida e toda a cadeia produtiva nas análises de impacto
- \* Empreendimentos que geram ou utilizam a mesma fonte de energia podem ter impactos distintos devido seu footprint e características de projeto
- Deve-se baixar a intensidade energética e o coeficiente de impacto

Fim