Regularization of Neural Networks using DropConnect

Li Wan, Matthew Zeiler, Sixin Zhang, Yann LeCun, Rob Fergus

Dept. of Computer Science, Courant Institute of Mathematical Science, New York University

June 17, 2013

NEW YORK UNIVERSITY

Introduction

- Neural Networks are good at classifying large labeled datasets
- Large capacity is essential: more layers and more units
- But without regularization, model with millions or billions of parameters can easily overfit
- Existing regularization methods:
 - ullet ℓ_1 or ℓ_2 penalty
 - Bayesian methods
 - Early stopping of training
 - DropOut network [Hinton et al. 2012]

Introduction

- Neural Networks are good at classifying large labeled datasets
- Large capacity is essential: more layers and more units
- But without regularization, model with millions or billions of parameters can easily overfit
- Existing regularization methods:
 - ullet ℓ_1 or ℓ_2 penalty
 - Bayesian methods
 - Early stopping of training
 - DropOut network [Hinton et al. 2012]
- We introduce a new form of regularization: DropConnect

Overview

- What is DropConnect Network
- Theoretical Result about DropConnect Network
- Experiments
- 4 Implementation Details
- Conclusion

Review of DropOut Network [Hinton et al. 2012]

- Stochastic dropping of units
- Each element of a layer's output is kept with probability p, otherwise being set to 0 with probability (1-p)
- Input v, weights W, activation function a(.), output r and DropOut mask m:

$$r = m \cdot * a(Wv)$$

• For every training example at every epoch has different mask m

Normal Network

DropOut Network

DropConnect Network

- Applies only to fully-connected layers
- Randomly drop *connections* in network, with probability 1 p
- Generalization of Dropout: $r = a((M \cdot *W)v)$ (for a(0) = 0, e.g. relu)

DropOut Network

DropConnect Network

DropConnect Network: Training and Inference

Training

- ullet For every training example at every epoch has different binary mask matrix M
- ullet Backward-prop gradient uses the same M as forward-prop, for each example
- Use SGD with mini-batch
- Efficient implementation requires care

DropConnect Network: Training and Inference

Training

- For every training example at every epoch has different binary mask matrix M
- ullet Backward-prop gradient uses the same M as forward-prop, for each example
- Use SGD with mini-batch
- Efficient implementation requires care

Inference

- Exact solution is intractable
- Approximate neuron activation by Gaussian distribution

DropConnect Network: Inference

DropConnect Network Inference

Exact solution requires sum over all possible $2^{|M|}$ masks M:

$$r = \mathsf{E}_{M}[a((M \cdot * W) v)] = \sum_{M} p(M)a((M \cdot * W) v)$$

DropConnect Network: Inference

DropConnect Network Inference

Exact solution requires sum over all possible $2^{|M|}$ masks M:

$$r = \mathbf{E}_{M}[a((M \cdot * W) v)] = \sum_{M} p(M)a((M \cdot * W) v)$$

Inference Approximation

A single neuron u_i before activation function: $u_i = \sum_j (W_{ij}v_j)M_{ij}$. Approximate u_i by a Gaussian distribution via moment matching.

$$u \sim \mathcal{N}\left(pWv, p\left(1-p\right)\left(W .* W\right)\left(v .* v\right)\right)$$

where 1 - p is drop connect rate

DropConnect Network: Inference

DropConnect Network Inference

Exact solution requires sum over all possible $2^{|M|}$ masks M:

$$r = \mathbf{E}_{M}[a((M \cdot * W) v)] = \sum_{M} p(M)a((M \cdot * W) v)$$

Inference Approximation

A single neuron u_i before activation function: $u_i = \sum_j (W_{ij} v_j) M_{ij}$. Approximate u_i by a Gaussian distribution via moment matching.

$$u \sim \mathcal{N}(pWv, p(1-p)(W .* W)(v .* v))$$

where 1 - p is drop connect rate

Inference Algorithm

- Compute layer response at test time: $r \approx \mathbf{E}_u \left[a(u) \right]$ by sampling or numerical integration
- Each neuron activation sampled independently, thus very efficient

Inference comparison: DropOut v.s. DropConnect

DropOut Network Inference[Hinton et al. 2012]

Approximate by changing the order of expectation and neuron activation:

$$\mathsf{E}_M[\mathsf{a}((M . * W) \mathsf{v}] \approx \mathsf{a}(\mathsf{E}_M(M . * W) \mathsf{v}) = \mathsf{a}(\mathsf{p} \mathsf{W} \mathsf{v})$$

Inference comparison: DropOut v.s. DropConnect

DropOut Network Inference[Hinton et al. 2012]

Approximate by changing the order of expectation and neuron activation:

$$\mathsf{E}_M[\mathsf{a}((M \cdot *W)\mathsf{v}] \approx \mathsf{a}(\mathsf{E}_M(M \cdot *W)\mathsf{v}) = \mathsf{a}(\mathsf{p} \mathsf{W} \mathsf{v})$$

Failure Example

$$u \sim \mathcal{N}(0,1)$$
 with $a(u) = max(u,0)$. $a(\mathbf{E}_M(u)) = 0$ while $\mathbf{E}_u(a(u)) = 1/\sqrt{2\pi} \approx 0.4$

Inference comparison: DropOut v.s. DropConnect

DropOut Network Inference[Hinton et al. 2012]

Approximate by changing the order of expectation and neuron activation:

$$\mathsf{E}_M[\mathsf{a}((M \cdot *W)\mathsf{v}] \approx \mathsf{a}(\mathsf{E}_M(M \cdot *W)\mathsf{v}) = \mathsf{a}(\mathsf{p} \mathsf{W} \mathsf{v})$$

Failure Example

$$u \sim \mathcal{N}(0,1)$$
 with $a(u) = max(u,0)$. $a(\mathbf{E}_M(u)) = 0$ while $\mathbf{E}_u(a(u)) = 1/\sqrt{2\pi} \approx 0.4$

DropConnect Network Inference

Approximate by Gaussian moment matching:

$$\mathbf{E}_{M}[a((M \cdot * W)v] \approx \mathbf{E}_{u}[a(u)]$$

gives the right answer for the above example

Why DropConnect Regualize Network

DropConnect Network Model

Model averaging interpretation: a mixture model of $2^{|\mathcal{M}|}$ classifiers

$$f(x;\theta) = \mathbf{E}_M[f_M(x;\theta,M)] = \sum_M p(M)f_M(x;\theta,M)$$

Why DropConnect Regualize Network

DropConnect Network Model

Model averaging interpretation: a mixture model of $2^{|M|}$ classifiers

$$f(x;\theta) = \mathbf{E}_M [f_M(x;\theta,M)] = \sum_M p(M) f_M(x;\theta,M)$$

Rademacher Complexity of Model

Let W_s be the weights of soft-max layer and W be the weights of DropConnect layer, where $\max |W_s| \leq B_s$, $\max |W| \leq B$. Define k is the number of classes, $\hat{R}_\ell(\mathcal{G})$ is the Rademacher complexity of the feature extractor (layers before DropConnect layer), n and d are the dimensionality of the input and output of the DropConnect layer respectively.

$$\hat{R}_{\ell}(\mathcal{F}) \leq p\left(2\sqrt{k}dB_{s}n\sqrt{d}B_{h}\right)\hat{R}_{\ell}(\mathcal{G})$$

Why DropConnect Regualize Network

DropConnect Network Model

Model averaging interpretation: a mixture model of $2^{|M|}$ classifiers

$$f(x;\theta) = \mathbf{E}_M[f_M(x;\theta,M)] = \sum_M p(M)f_M(x;\theta,M)$$

Rademacher Complexity of Model

Let W_s be the weights of soft-max layer and W be the weights of DropConnect layer, where $\max |W_s| \leq B_s$, $\max |W| \leq B$. Define k is the number of classes, $\hat{R}_\ell(\mathcal{G})$ is the Rademacher complexity of the feature extractor (layers before DropConnect layer), n and d are the dimensionality of the input and output of the DropConnect layer respectively.

$$\hat{R}_{\ell}(\mathcal{F}) \leq p\left(2\sqrt{k}dB_{s}\,n\sqrt{d}\,B_{h}\right)\hat{R}_{\ell}(\mathcal{G})$$

Special Cases of p

- **1** p = 0: the model complexity is zero, since the input has no influence on the output.
- 2 p = 1: it returns to the complexity of a standard model.
- **3** p = 1/2: all sub-models have equal preference.

Experiments overview

- DataSet: MNIST, CIFAR-10, and SVNH
- Kept Rate p = 0.5 for both DropOut and DropcConnect network (except where explicitly stated)
- Normal Network, DropOut Network and DropConnect Network have:
 - · exactly the same architecture
 - exactly the same model/training parameters
 - · exactly the same data augmentation algorithm
- We use:
 - Data Augmentation: Translation, Rotation and Scaling
 - · Aggregating multiple models: 5 or more

Varying Size of Network

MNIST test error with two hidden layer network (p = 0.5)

- No-Drop Network overfits with a large number of neurons
- Both DropConnect and DropOut regularize model nicely
- DropConnect performance better than DropOut and No-Drop

Varying Kept Rate p

MNIST test error with two hidden layer network with 400 neurons each

- Optimal value of p is roughly at 0.5 for both DropOut and DropConnect
- DropConnect: Sampling inference works better than mean inference

Comparison of Convergence Rates

MNIST test error with two hidden layer network with 400 neurons each

- Cross Entropy, continuous measure of error
- DropConnect slower than DropOut but better test error

MNIST Results(1)

MNIST 784-800-800-10 network classification error rate without data augmentation:

neuron	model	error(%)	voting	
		5 network	error(%)	
relu	No-Drop	1.62 ± 0.037	1.40	
	Dropout	1.28 ± 0.040	1.20	
	DropConnect	1.20 ± 0.034	1.12	
sigmoid	No-Drop	1.78 ± 0.037	1.74	
	Dropout	1.38 ± 0.039	1.36	
	DropConnect	1.55 ± 0.046	1.48	
tanh	No-Drop	1.65 ± 0.026	1.49	
	Dropout	1.58 ± 0.053	1.55	
	DropConnect	1.36 ± 0.054	1.35	

- relu neuron is always performs better than other neuron
- Error Rate: DropConnect < DropOut < No-Drop for *relu* and *tanh*
- DropOut works best for sigmod which does not have a(0) = 0.

MNIST Results(2)

MNIST classification error

crop	rotation	model	error(%)	voting	
	scaling		5 network	error(%)	
no	no	No-Drop	0.77 ± 0.051	0.67	
		Dropout	0.59 ± 0.039	0.52	
		DropConnect	0.63 ± 0.035	0.57	
yes	no	No-Drop	0.50 ± 0.098	0.38	
		Dropout	0.39 ± 0.039	0.35	
		DropConnect	0.39 ± 0.047	0.32	
yes	yes	No-Drop	0.30 ± 0.035	0.21	
		Dropout	0.28 ± 0.016	0.27	
		DropConnect	0.28 ± 0.032	0.21	

0.21% is the new state-of-the-art

Previous state-of-the-art is:

- \bullet 0.45% for a single model without elastic distortions [Goodfellow et al. 2013]
- 0.23% with elastic distortions and voting [Ciresan et al. 2012]

CIFAR-10 Results

- ullet 10 classes of 32 imes 32 colored images
- 50K train/class
- 10K test/class

CIFAR-10 classification error

model	error(%) 5 network	voting error(%)
No-Drop	11.18± 0.13	10.22
Dropout	$11.52\pm\ 0.18$	9.83
DropConnect	11.10± 0.13	9.41

Voting with 12 DropConnect networks produces a new state-of-the-art of 9.32%

Previous state-of-the-art is:

- 11.21% [Ciresan et al. 2012]
- 9.5% [Snoek et al. 2012]
- 9.38% [Goodfellow et al. 2013]

SVHN Results

- ullet 10 classes of 32 imes 32 colored image
- 604,388 training images (both training set and extra set)
- 26,032 testing images
- large variety of colors and brightness

SVHN classification error

model	error(%) 5 network	voting error(%)
No-Drop	2.26 ± 0.072	1.94
Dropout	2.25 ± 0.034	1.96
DropConnect	2.23 ± 0.039	1.94

1.94% is the new state-of-the-art

Previous state-of-the-art is:

- 2.8% stochastic pooling[Zeiler et al. 2013]
- 2.47% maxout network[Goodfellow et al. 2013]

How-to Implement DropConnect Layer

Implementation	Mask Weight	Time(ms)			Speedup	
		fprop	bprop acts	bprop weights	total	
CPU	float	480.2	1228.6	1692.8	3401.6	1.0 ×
CPU	bit	392.3	679.1	759.7	1831.1	1.9 ×
GPU	float(global memory)	21.6	6.2	7.2	35.0	97.2 ×
GPU	float(tex1D memory)	15.1	6.1	6.0	27.2	126.0 ×
GPU	bit(tex2D aligned memory)	2.4	2.7	3.1	8.2	414.8 ×

- NVidia GTX580 GPU relative to a 2.67Ghz Intel Xeon (compiled with -03 flag).
- Input and output dimension: 1024 and mini-batch size: 128
- Tricks:
 - encode connection information with bits
 - bind mask weight matrix to 2D texture memory
- CUDA code avaiable at http://cs.nyu.edu/~wanli/dropc/

Conclusion

We introduced DropConnect Network

- A simple stochastic regularization algorithm for neural network
- Generalization of DropOut
- Only effective on fully-connected layers
- Set new state-of-the-art on three popular data sets