Sorting Techniques

Sorting is one of the fundamental operations in computer science.

1. Bubble Sort

Overview: Repeatedly compares adjacent elements and swaps them if they are in the wrong order. It "bubbles" the largest element to the end of the list.

- Time Complexity:
 - Best case: O(n) (if already sorted).
 - Worst case: O(n²).
- Space Complexity: O(1) (in-place).
- Best for: Educational purposes or extremely small datasets.
- Why:
 - Easy to implement and understand.
- Limitations:
 - \circ Time complexity: $O(n^2)$ for all cases.
- Highly inefficient for large datasets.

```
def bubble_sort(arr):
    n = len(arr)
    for i in range(n):
        swapped = False
        for j in range(0, n - i - 1): # Last i elements are already sorted
        if arr[j] > arr[j + 1]:
            arr[j], arr[j + 1] = arr[j + 1], arr[j]
            swapped = True
    if not swapped: # Break if no swaps were made (array is sorted)
        break
    return arr
```

```
print(bubble_sort([5, 3, 8, 6, 2]))
```

2. Selection Sort

Overview: Repeatedly finds the smallest (or largest) element in the unsorted part of the list and places it in its correct position.

- **Time Complexity**: O(n²) (always, as comparisons don't depend on order).
- **Space Complexity**:O(1) (in-place).

Python Implementation

```
def selection_sort(arr):
    n = len(arr)
    for i in range(n):
        min_index = i
        for j in range(i + 1, n):
        if arr[j] < arr[min_index]:
            min_index = j
        arr[i], arr[min_index] = arr[min_index], arr[i]
    return arr</pre>
```

3. Insertion Sort

Overview: Builds the sorted array one element at a time by picking elements and inserting them into their correct position.

• Time Complexity:

print(selection_sort([5, 3, 8, 6, 2]))

- o Best case: O(n) (if already sorted).
- Worst case: O(n²).
- Space Complexity: O(1) (in-place).
- Best for: Small or nearly sorted datasets.
- Why:

Sorting Techniques

- Simple and efficient for small input sizes (O(n) for nearly sorted data).
- In-place and stable.

• Limitations:

Time complexity: O(n²) for large, unsorted datasets.

Python Implementation

```
def insertion_sort(arr):
  for i in range(1, len(arr)):
    key = arr[i]
    j = i - 1
    while j >= 0 and key < arr[j]:
        arr[j + 1] = arr[j]
        j -= 1
    arr[j + 1] = key
  return arr</pre>
```

print(insertion_sort([5, 3, 8, 6, 2]))

4. Merge Sort

Overview: A divide-and-conquer algorithm that splits the array into halves, sorts each half recursively, and then merges them.

- **Time Complexity**: O(n log n) (always).
- **Space Complexity**: O(n) (due to temporary arrays).
- Best for: Large datasets requiring stable sorting or when memory is not a concern.
- Why:
 - Always O(n logn) time complexity.
 - o Stable (maintains relative order of equal elements).
- Limitations:
 - Requires extra memory (O(n)) for temporary arrays.

```
def merge_sort(arr):
  if len(arr) <= 1:
    return arr
  mid = len(arr) // 2
  left = merge_sort(arr[:mid])
  right = merge_sort(arr[mid:])
  return merge(left, right)
def merge(left, right):
  result = []
  i = j = 0
  while i < len(left) and j < len(right):
    if left[i] < right[j]:</pre>
      result.append(left[i])
      i += 1
    else:
      result.append(right[j])
      j += 1
  result.extend(left[i:])
  result.extend(right[j:])
  return result
print(merge_sort([5, 3, 8, 6, 2]))
```

5. Quick Sort

Overview: A divide-and-conquer algorithm that selects a "pivot" and partitions the array such that all smaller elements are on one side and larger elements on the other.

- Time Complexity:
 - o Best/Average case: O(n log n).
 - o Worst case: O(n²) (if pivot is poorly chosen, e.g., smallest or largest element).
- **Space Complexity**: O(log n) (due to recursion).
- **Best for**: Large datasets in general-purpose applications.
- Why:
 - o Average time complexity: O(n logn).
 - o In-place (requires little additional memory).
 - Efficient for random datasets.
- Limitations:
 - \circ Worst-case time complexity: $O(n^2)$ (can be mitigated with randomized pivot selection).

```
def quick_sort(arr):
    if len(arr) <= 1:
        return arr

pivot = arr[len(arr) // 2]
    left = [x for x in arr if x < pivot]
    middle = [x for x in arr if x == pivot]
    right = [x for x in arr if x > pivot]

return quick_sort(left) + middle + quick_sort(right)

print(quick_sort([5, 3, 8, 6, 2]))
```

6. Heap Sort

Overview: Builds a binary heap and repeatedly extracts the maximum (or minimum) element.

- **Time Complexity**: O(n log n) (always).
- Space Complexity: O(1) (in-place).
- Best for: Memory-constrained systems where in-place sorting is required.
- Why:
 - o Time complexity: O(n logn) (worst-case, best-case, and average-case).
 - o In-place and does not require additional memory.
- Limitations:
 - Not stable (relative order of equal elements is not preserved).

Slower than Quick Sort in practice.

```
def heapify(arr, n, i):
    largest = i
    left = 2 * i + 1
    right = 2 * i + 2

if left < n and arr[left] > arr[largest]:
    largest = left
    if right < n and arr[right] > arr[largest]:
        largest = right
    if largest != i:
        arr[i], arr[largest] = arr[largest], arr[i]
        heapify(arr, n, largest)

def heap_sort(arr):
    n = len(arr)

for i in range(n // 2 - 1, -1, -1):
```

Sorting Techniques

```
heapify(arr, n, i)

for i in range(n - 1, 0, -1):

arr[i], arr[0] = arr[0], arr[i]

heapify(arr, i, 0)

return arr

print(heap_sort([5, 3, 8, 6, 2]))
```

7. Counting Sort

- **Best for**: Sorting integers or datasets with a small range of values.
- Why:
 - \circ Time complexity: O(n+k)O(n + k), where kk is the range of input.
 - Very fast for small ranges.
- Limitations:
 - o Requires additional memory (O(k)O(k)).
 - o Only works for discrete keys (e.g., integers).

8. Radix Sort

- **Best for**: Large datasets with integers or strings.
- Why:
 - o Time complexity: O(nk), where kk is the number of digits or characters.
 - o Can be faster than O(n logn) for specific datasets.
- Limitations:
 - o Requires extra memory for intermediate buckets.
 - o Not comparison-based.

Comparison of Sorting Techniques

Algorithm	Time Complexity (Best)	Time Complexity (Worst)	Space Complexity	Stable?
Bubble Sort	O(n)	O(n^2)	O(1)	Yes
Selection Sort	O(n^2)	O(n^2)	O(1)	No
Insertion Sort	O(n)	O(n^2)	O(1)	Yes
Merge Sort	O(n log n)	O(n log n)	O(n)	Yes
Quick Sort	O(n log n)	O(n^2)	O(log n)	No
Heap Sort	O(n log n)	O(n log n)	O(1)O(1)	No

The "best" sorting technique depends on the context, including factors like the size of the dataset, memory constraints, and whether the data is already partially sorted.

Best Sorting Algorithm by Use Case

Use Case	Recommended Algorithm	
Small datasets	Insertion Sort	
Large, general-purpose datasets	Quick Sort	
Stable sorting required	Merge Sort	
Memory-constrained systems	Heap Sort	
Integer datasets with small range	Counting Sort	
Sorting integers/strings (large range)	Radix Sort	
Nearly sorted datasets	Insertion Sort	
Educating beginners	Bubble Sort	