江西师范大学 2019 年硕士研究生入学考试试题(A 卷)
科目代码: 863 科目名称: 数据结构与程序设计
适用专业: 081200 计算机科学与技术
注:考生答题时,请写在考点下发的答题纸上,写在本试题纸或其他答题纸上的一律无效。
(本试题共 5 页)
一、单项选择题(10小题,每小题2分,共20分)
1. 数据逻辑结构可以分为() 两大类 。
A. 动态结构、静态结构 B. 顺序结构、链式结构
C. 线性结构、非线性结构 D. 简单结构、复合结构
2. 下面关于算法的说法,正确的是()。
A. 算法的时间复杂度一般与算法的空间复杂度成正比
B. 解决某问题的算法可能有多种,但肯定采用相同的数据结构
C. 算法的可行性是指算法的指令不能有二义性
D. 同一个算法,实现语言的级别越高,执行效率就越低
3. 用数组表示线性表的优点是()。
A. 便于随机存取 B. 运算简单
C. 便于插入和删除 D. 数据元素的物理顺序与逻辑顺序相同
4. 若链表中最常用的操作是获取一个结点的前驱结点和后继结点,则采用() 存储方
式最节省运算时间。 A. 单链表 B. 双链表 C. 循环单链表 D. 带头结点的单链表
5. 向一个栈顶指针为 top 的链式栈中插入一个由指针 p 所指结点时,对应的代码段为()
A. top->next=p; B. p->next=top->next; top->next=p;
C. p->next=top; top=p; D. p->next=top; top=top->next;
6. 稀疏矩阵的常用压缩存储方法有()两种。
A. 二维数组和三维数组 B. 三元组和散列
C. 三元组表和十字链表 D. 散列和十字链表
7. 下列说法正确的是()。
A. 二叉树中任何一个结点的度都为 2 B. 一棵二叉树的度可小于 2
C. 二叉树的度为 2 D. 任何一棵二叉树中至少有一个结点的度为 2
8. 有向图中求最短路径可用()。
A. Prim 算法 B. Kruskal 算法 C. Dijkstra 算法 D. Huffman 算法
9. Hash 表的检索性能与() 无关。
A. 关键字集合的大小 B. Hash 函数 C. 装填因子 D. 解决冲突的方法
10. 采用二分法进行查找的条件是线性表有序并且使用()结构。
A. 链式存储 B. 散列存储 C. 索引存储 D. 顺序存储
二、填空题(10 小题, 每小题 2 分, 共 20 分)
d d
1. 数据结构可用二元组 B= (K, R)形式表示,其中 K 是的有限集合, R 是

```
2. 单链表中逻辑上相邻的结点在物理位置上 相邻。
3. 中缀表达式 "a*(b-c)+ d"的后缀表达式为
4. 字符串运算中常见的"模式匹配"问题可用 KMP 算法有效解决。对模式串
  p="babbabab",其 next 数组值为:
5. 是被限定为插入和删除操作分别在表的两端进行的线性表。
6. 一棵深度为 6 的满二叉树有______个分支结点和_____个叶子结点。
7. 若一棵树中的结点 A 有 3 个兄弟, B 是 A 的双亲, 则 B 的度是
8. 在一个图中, 所有顶点的度数之和等于图的边数的 倍。
9. 在表长为n的顺序表上顺序查找某关键字,在查找不成功时与关键字的比较次数为。
10. 大多数排序算法常用的两个基本操作是 和 。
三、程序填空与程序分析题(4小题,每小题6分,共24分)
1. 写出下列程序的输出结果:
  int main()
     unsigned int a=1476, b, c=0;
     while (a!=0)
       b=a%10;
       printf("%u",b);
       c=c+b;
       a=a/10;
       if(a!=0) printf("+");
     printf("=%u\n",c);
     return 0;
2. 设顺序表的存储结构定义如下:
  #define MAXSIZE 100
  typedef int datatype;
   typedef struct{
   datatype a[MAXSIZE];
    int size;
   }sequence list;
  阅读以下程序,并描述函数fun()的功能;
  void fun(sequence list *L)
    int i=0, j=L->size-1;
    datatype x;
    while (i<j)
       x=L->a[i];
      L->a[i]=L->a[j];
```

L->a[j]=x;

```
i++;
        j--;
     }
3. 设带头结点的单链表的存储结构定义如下:
  typedef int datatype;
  typedef struct link_node{
     datatype data;
     struct link_node *next;
   }node;
   typedef node *linklist;
   函数 split(linklist head)的功能是对链表 head 中的结点进行重排,使所有的
奇数值结点放到链表的前面,所有的偶数值结点放到链表后。例如,若链表中的内容为 12
3 4 5 6 7 8 9, 则执行 head=split(head)后链表的内容为 9 7 5 3 1 2 4 6 8。
请将函数补充完整。
   linklist split(linklist head){
    linklist pre,p;
    pre=head;
    p=head->next;
    while (____(1) /*跳过单链表中前面的所有奇数值结点*/
     { pre=p; p=p->next; }
     while (p)
     { if (p->data%2==1) /*将发现的奇数值结点取下插入到链表最前面*/
      (2)
        p->next=head->next;
        head->next=p;
           (3)
```

4. 已知数组 r[1..p-1] 中的元素序列为一个大根堆(堆顶元为最大元),函数 adjust(r[],p)将 r[p]并入 r[1..p-1],并将 r[1..p]重新调整为一个大根堆。请将程序空白处补充完整。

{ pre=p; p=p->next; }

else

return head;

四、解答题(4小题,每小题10分,共40分)

- 1.已知一棵二叉树的前序遍历序列为 ABCDEFGHI,中序遍历序列为 BCAEDGHFI。
- (1) 试画出该二叉树;
- (2) 写出该二叉树的后序遍历序列;

图 1. 有向网 G

2. 给定图 1 所示的有向网络 G,指定 A 为源点,使用 Dijkstra 算法求单源最短路径。请写出执行算法过程中距离向量 d 和路径向量 p 的状态变化情况,将如下表格补充完整,其中顶点 A、B、C、D、E、F 的下标分别为 O、1、2、3、4、5。

循环	集合s	ν	距离向量 d						· 路径向量 p					
			0	1	2	3	4	5	0	1	2	3	4	5
初始化	{A}	<u>.</u>				G0.238	0.75				0.00			
1	7816			1 15	Historius	15-47	EL EL							
2				92	0-1-	ar siya		. 1	Vice in the					
3														
4	频			73	-	JE 73	n me							
5	(电压用制	in vi	1 1 20 1			72.5		4-41	1400	/s - 1				i.

- 3. 假设通信电文使用的字符集为{a,b,c,d,e,f,g},字符的哈夫曼编码依次为:0110、10、111、00、0111和010。
- (1) 请根据哈夫曼编码画出此哈夫曼树,并在叶子结点中标注相应字符;
- (2) 若这些字符在电文中出现的频度分别为: 3、35、13、15、20、5和9,求该哈夫曼树的带权路径长度。
- 4. 给定原始数据序列{7,5,3,1,9,6,8,2,4},
- (1) 写出希尔排序算法按升序排序第 1 趟的结果; (5 分)
- (2) 写出快速排序算法按升序排序第 1 趟的结果。(5 分)
- 五、算法与程序设计题(3小题,第1、2小题每小题14分,第3小题18分,

共 46 分)

答题要求:

- ① 用自然语言描述算法的基本设计思想;
- ② 用C语言(或其他程序设计语言)写出对应的算法程序,关键之处请给出简要注释。
- 1. 编写一个递归函数 print (int n)打印数字三角形,即在第一行打印输出 1 个 1,在第二行打印输出 2 个 2,在第 n 行打印输出 n 个 n。

- 2. 设不带头结点的单链表的存储结构定义同第三大题第 3 小题。 请完成以下函数 insert,在一个不带头结点的单链表 head 中值为 y 的结点前面插 入一个值为 x 的结点,使值为 x 的新结点成为值为 y 的结点的前驱结点。 void insert(linklist head, int y, int x)
- 3. 设二叉树的存储结构定义如下:

typedef char datatype;
typedef struct node{
 datatype data;
 struct node *lchild, *rchild;
}bintnode;
typedef bintnode *bintree;

编写函数 void inorder(bintree t),实现二叉树中序遍历的非递归算法,并对其中用到的结构加以定义。