<u>Página inicial</u> Meus cursos <u>QXD0116 - ÁLGEBRA LINEAR - 01A - 2025.1</u> <u>Frequência</u>

(24/06/2025) - Transformações Lineares II

		~~ `
Iniciado em	terça, 8 jul 2025, 14:58	
Estado	Finalizada	
Concluída em	sábado, 12 jul 2025, 11:06	
Tempo empregado	3 dias 20 horas	
Notas	2,00/3,00	

Questão **1**Incorreto
Atingiu 0,00

de 1,00

Considere a base
$$\mathbb{S}=\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$$
 de \mathbb{R}^3 com $\mathbf{v}_1=\begin{bmatrix}1\\1\\1\end{bmatrix}$, $\mathbf{v}_2=\begin{bmatrix}1\\1\\0\end{bmatrix}$ e $\mathbf{v}_3=\begin{bmatrix}1\\0\\0\end{bmatrix}$. Seja $T:\mathbb{R}^3\to\mathbb{R}^2$ a transformação linear tal que $T(\mathbf{v}_1)=\begin{bmatrix}1\\0\end{bmatrix}$, $T(\mathbf{v}_2)=\begin{bmatrix}2\\-1\end{bmatrix}$ e $T(\mathbf{v}_3)=\begin{bmatrix}4\\3\end{bmatrix}$. Calcule $T([2\ -3\ 5]^T)$.

Escolha uma opção:

$$\bigcirc \text{ a. } T \left(\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} 5 \\ 8 \end{bmatrix}$$

Avaliar 6,67 de um máximo de 10,00(67%)

$$\bullet \ \, \mathrm{b.}\,T\left(\left[\begin{array}{c} 2 \\ -3 \\ 5 \end{array}\right]\right) = \left[\begin{array}{c} 23 \\ 9 \end{array}\right]$$

×

$$\circ \mathsf{c.x}T \left(\left[\begin{array}{c} 2 \\ -3 \\ 5 \end{array} \right] \right) = \left[\begin{array}{c} 8 \\ 5 \end{array} \right]$$

$$\bigcirc \text{ d. } T \left(\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} 9 \\ 23 \end{bmatrix}$$

$$\circ \text{ e. } T \left(\begin{bmatrix} 2 \\ -3 \\ 5 \end{bmatrix} \right) = \begin{bmatrix} 7 \\ 18 \end{bmatrix}$$

Sua resposta está incorreta.

A resposta correta é:
$$T\left(\begin{bmatrix}2\\-3\\5\end{bmatrix}\right)=\begin{bmatrix}9\\23\end{bmatrix}$$

 $\vec{\mathcal{V}}$

仚

(>)

 \bigcirc

Considere a base $\mathbb{S}=\{\mathbf{v}_1,\mathbf{v}_2\}$ de \mathbb{R}^2 com $\mathbf{v}_1=egin{bmatrix} -2 \\ 1 \end{bmatrix}$ e $\mathbf{v}_2=egin{bmatrix} 1 \\ 3 \end{bmatrix}$.

Seja $T:\mathbb{R}^2 o\mathbb{R}^3$ a transformação linear tal que $T(\mathbf{v}_1)=egin{bmatrix} -1\ 2\ \end{matrix}$,

 $T(\mathbf{v}_2) = egin{bmatrix} 0 \ -3 \ 5 \end{bmatrix}$. Encontre a fórmula para $T\left(egin{bmatrix} x_1 \ x_2 \end{bmatrix}
ight)$.

Dica: Construa um sistema de equações para satisfazer a combinação linear para um vetor genérico:

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = a \cdot \begin{bmatrix} -2 \\ 1 \end{bmatrix} + b \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

isto é

$$\begin{cases} -2 \cdot a + b = x_1 \\ a + 3 \cdot b = x_2 \end{cases}$$

A seguir, encontre os valores de a e b em função de x_1 e x_2 .

Escolha uma opção:

$$\circ$$
 a. $T\left(egin{bmatrix}x_1\x_2\end{bmatrix}
ight)=egin{bmatrix}rac{2x_1-7x_2}{7}\ rac{-x_1-x_2}{7}\ rac{x_1+x_2}{7}\end{bmatrix}$

$$igcup b.\, T\left(egin{bmatrix} x_1 \ x_2 \end{bmatrix}
ight) = egin{bmatrix} rac{x_1-x_2}{7} \ rac{x_1-3x_2}{7} \ rac{x_1+2x_2}{7} \end{bmatrix}$$

$$ullet$$
 c. $T\left(egin{bmatrix}x_1\x_2\end{bmatrix}
ight)=egin{bmatrix}rac{3x_1-x_2}{7}\-rac{-9x_1-4x_2}{7}\ rac{5x_1+10x_2}{7}\end{bmatrix}$

o d. $T\left(\left[egin{array}{c} x_1 \ x_2 \end{array}
ight]
ight)=\left[egin{array}{c} rac{x_1}{7} \ rac{3x_1-2x_2}{7} \ rac{10x_1+5x_2}{7} \end{array}
ight]$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} rac{3x_1}{7} \ rac{x_1-4x_2}{7} \ rac{x_2}{7} \end{aligned} \end{bmatrix} \end{aligned}$$

Sua resposta está correta.

A resposta correta é: $T\left(\begin{bmatrix}x_1\\x_2\end{bmatrix}\right) = \begin{bmatrix}\frac{-6x_1-x_2}{7}\\-9x_1-4x_2\\7\end{bmatrix}$ $\left[\begin{array}{c} \frac{5x_1+10x_2}{7} \end{array}\right]$ \mathfrak{V}

仚

(~)

 \bigcirc

O núcleo (*kernel*) de uma transformação linear $T:\mathbb{U}\to\mathbb{V}$ é o conjunto de todos os vetores no domínio \mathbb{U} que são mapeados para o elemento nulo de \mathbb{V} . Ou seja, $Nu(T)=\{\mathbf{u}\in\mathbb{U}|T(\mathbf{u})=\theta++\mathbb{V}\}$. O núcleo é um subespaço vetorial do domínio \mathbb{U} .

Considere a transformação linear $T:\mathbb{R}^3 o \mathbb{R}^2$ definida por

$$T\left(egin{bmatrix}x\\y\\z\end{bmatrix}
ight)=egin{bmatrix}x+2y-z\\y+z\end{bmatrix}$$
 . Qual é o núcleo de T ?

Escolha uma opção:

- o a. O núcleo de T é o conjunto de todos os vetores da forma $\begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$,
 - para quaisquer números reais \boldsymbol{x} e \boldsymbol{y} .
- \bigcirc b. O núcleo de T é o conjunto de todos os vetores da forma $\left[\begin{array}{c} x \\ -x \\ x \end{array}\right]$, para qualquer número real x.
- o c. O núcleo de T é o conjunto de todos os vetores da forma $\begin{bmatrix} x \\ y \\ y \end{bmatrix}$ para quaisquer números reais x e y.
- O d. O núcleo de T contém apenas o vetor nulo $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$
- e. O núcleo de T é o conjunto de todos os vetores da forma $\begin{bmatrix} 3z \\ -z \\ z \end{bmatrix}$, para qualquer número real z.

Sua resposta está correta.

A resposta correta é: O núcleo de T é o conjunto de todos os vetores

da forma
$$\begin{bmatrix} 3z \\ -z \end{bmatrix}$$
 , para qualquer número real z .

©2020 - Universidade Federal do Ceará - Campus Quixadá.

Todos os direitos reservados. Av. José de Freitas Queiroz, 5003

Cedro – Quixadá – Ceará CEP: 63902-580

Secretaria do Campus: (88) 3411-9422

🛚 Baixar o aplicativo móvel.