Семинарские занятия по предмету Теория вероятностей

Алексей Хачиянц

2016/2017 учебный год

1 Семинар от 09.09.2016

Перед тем, как начать решать задачи, кратко опишем вероятностное пространство для броска n-гранного кубика: $\Omega = \{\omega_1, \omega_2, \dots, \omega_n\}, \omega_i = \{\text{выпало число } i\}, P(\omega_i) = \frac{1}{n}$ для всех i.

Задача 1. Пусть бросаются n-гранный и m-гранный кубики. Какова вероятность P того, что выпадет одно чётное и одно нечётное число?

Решение. В данной задаче есть два случая:

- На первом выпало чётное число очков, а на втором нечётное. Количество чётных чисел от 1 до n равно $\lfloor \frac{n}{2} \rfloor$, а нечётных чисел от 1 до $m \lceil \frac{m}{2} \rceil$. Тогда есть $\lceil \frac{m}{2} \rceil \lfloor \frac{n}{2} \rfloor$ успешных исходов.
- На первом выпало нечётное число очков, на втором чётное. Аналогичными рассуждениями получаем $\left\lfloor \frac{m}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil$ успешных исходов.

Всего же исходов mn. Следовательно,

$$P = \frac{\left\lceil \frac{m}{2} \right\rceil \left\lfloor \frac{n}{2} \right\rfloor + \left\lfloor \frac{m}{2} \right\rfloor \left\lceil \frac{n}{2} \right\rceil}{mn}.$$

Задача 2. Пусть бросаются два n-гранных кубика. Какова вероятность P(i) того, что суммарно выпадет $2 \le i \le 2n$ очков?

Решение. В данной задаче есть два случая:

- $i \le n+1$. Представим i в следующем виде: i=k+(i-k), где $1 \le k \le i-1$. Такое ограничение сверху на k объясняется тем, что иначе i-k будет меньше 1, а при броске кубика не может выпасть меньше 1 очка. Ограничение снизу объясняется аналогично. Тогда есть i-1 подходящий случай.
- $n+2 \le i \le 2n$. Опять же, представим i в виде i=k+(i-k). Теперь определим границы для k. Очевидно, что $k \le n$. Так как $i-k \le n$, то $k \ge i-n$. Тогда получаем $i-n \le k \le n$. Тогда есть n-(i-n)+1=2n-i+1 подходящий случай.

Так как всего есть n^2 разных вариантов того, сколько очков выпадет на кубиках, то получаем, что

$$P(i) = \begin{cases} \frac{i-1}{n^2} & i \le n+1\\ \frac{2n-i+1}{n^2} & n+2 \le i \le 2n \end{cases}$$

Примечание 1. Если нарисовать график функции P(i), то он будет выглядеть, как треугольник с вершиной в точке $(n+1,\frac{1}{n})$. Такой график называют треугольным распределением.

Перейдём от кубиков к монеткам.

Задача 3. Пусть последовательно бросают n монет (полагается, что $\Omega = \{O, P\}$). Какова вероятность P того, что не выпадет последовательно

- 1. орёл и решка?
- 2. два орла?

Решение. 1. В таком случае легко понять, что будут допустимы только последовательности вида $\underbrace{\text{РР}\dots\text{Р}\underbrace{\text{ОО}\dots\text{O}}_{n-k\text{ раз}}}$, где $0\leq k\leq n$. Тогда есть n+1 подходящий исход.

2. Пусть f_n — количество последовательностей длины n, в которых нет двух орлов подряд. Как посчитать f_n ? Попробуем выразить рекурсивно. Если при последнем броске выпал орёл, то при предпоследнем обязательно выпала решка. То, что идёт до решки, явно угадать невозможно. Но нам известно, что это последовательность размера n-2 и в ней нет двух орлов подряд. Тогда их f_{n-2} вариантов. Если же выпала решка, то есть f_{n-1} вариант. Отсюда получаем, что

$$f_n = f_{n-1} + f_{n-2}$$

Так как $f_1 = 2$, а $f_2 = 3$ (допускаются OP, PO, PP), то $f_n = F_{n+2}$, где $F_n - n$ -е число Фибоначчи.

Как рассказывалось ранее, в такой модели есть 2^n элементарных исходов. Поэтому ответы равны

$$1. \ \frac{n+1}{2^n}$$

$$2. \frac{F_{n+2}}{2^n}$$

Перед тем, как идти дальше, сделаем небольшое отступление. Во втором пункте последней задачи нам повезло, что последовательность совпала с последовательностью чисел Фибоначчи. А что делать, если не удаётся угадать последовательность? В таком случае можно воспользоваться общим методом решения. Рассмотрим его на примере из последней задачи:

$$f_n = f_{n-1} + f_{n-2}$$

 $f_1 = 2$
 $f_2 = 3$

2

Выпишем характеристическое уравнение:

$$\lambda^2 - \lambda - 1 = 0$$

Находим его корни. В данном случае они равны $\frac{1\pm\sqrt{5}}{2}$. Тогда

$$f_n = a_1 \left(\frac{1+\sqrt{5}}{2}\right)^n + a_2 \left(\frac{1-\sqrt{5}}{2}\right)^n.$$

После чего по начальным условиям находим a_1 и a_2 .

Задача 4 (Парадокс дней рождения). В группе 27 студентов. Считаем их дни рождения случайными и равновероятными. Какова вероятность P того, что хотя бы у двух студентов совпадают дни рождения?

Решение. В данной задаче гораздо проще посчитать вероятность дополнения, то есть вероятность того, что у всех 27 студентов будут разные дни рождения. Так как порядок дней рождения важен, то эта вероятность равна $\frac{A_{365}^{27}}{365^{27}}$. В итоге получаем, что $P=1-\frac{A_{365}^{27}}{365^{27}}$.

Хорошо, ответ получен. Но по нему сложно сказать, много ли это или мало. Попробуем посчитать его приближенно:

$$P = 1 - \left(1 - \frac{1}{365}\right) \left(1 - \frac{2}{365}\right) \dots \left(1 - \frac{27}{365}\right)$$

Так как $1+x\approx e^x$, то

$$P \approx 1 - e^{-\frac{1+2+...+27}{365}} \approx 1 - e^{-1.04} \approx 0,66$$

Как видно, вероятность достаточно велика.

Сделаем небольшое теоретическое отступление. Вспомним формулу включений-исключений:

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

Попробуем придумать аналогичную формулу для трёх событий:

$$P(A \cup B \cup C) = P(A \cup B) + P(C) - P((A \cup B) \cap C) = P(A \cup B) + P(C) - P((A \cap C) \cup (B \cap C)) = P(A) + P(B) + P(C) - P(A \cap B) - P(A \cap C) - P(B \cap C) + P(A \cap B \cap C)$$

Уже видна некоторая закономерность. Сформулируем обобщение.

Лемма (Общая формула включений-исключений). Пусть A_1, A_2, \ldots, A_n — некоторые события на Ω , а $S_k = \sum_{1 \le i_1 < i_2 < \ldots < i_k \le n} P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k})$. Тогда

$$P(A_1 \cup A_2 \cup \ldots \cup A_n) = \sum_{k=1}^{n} (-1)^{k-1} S_k$$

Доказательство. По индукции. База (n=2) была доказана ранее. Теперь предположим, что утверждение верно для какого-то n. Докажем, что из этого следует, что утверждение верно и для n+1:

$$P(A_1 \cup A_2 \cup \ldots \cup A_n \cup A_{n+1}) = P(A_1 \cup A_2 \cup \ldots \cup A_n) + P(A_{n+1}) - P((A_1 \cup A_2 \cup \ldots \cup A_n) \cap A_{n+1})$$

Так как $(A_1 \cup A_2 \cup \ldots \cup A_n) \cap A_{n+1} = \bigcup_{i=1}^n (A_i \cap A_{n+1})$, то, пользуясь предположением индукции, получаем желаемое.

Примечание 2. Важное следствие из этой формулы: если A_1, A_2, \ldots, A_n — некоторые события на Ω , то по закону де Моргана получаем, что

$$P\left(\bigcap_{i=1}^{n} \overline{A_i}\right) = P\left(\bigcup_{i=1}^{n} A_i\right) = 1 - P\left(\bigcup_{i=1}^{n} A_i\right) = 1 - \sum_{k=1}^{n} (-1)^{k-1} S_k$$

Если положить $S_0 = 1$, то эту формулу можно записать в виде

$$P\left(\bigcap_{i=1}^{n} \overline{A_i}\right) = \sum_{k=0}^{n} (-1)^k S_k$$

Задача 5. Пусть мы раскидали п шаров по т ящикам. Какова вероятность Р того, что ни один ящик не пуст? Рассмотрите случаи, когда шары различимы и неразличимы.

Решение. Начнём со случая различимых шаров. В данном случае элементарным исходом будет $\omega=(\omega_1,\omega_2,\ldots,\omega_m)$, где ω_i — количество шаров в i-м ящике. В таком случае $|\Omega|=C_{n+m-1}^{m-1}$ (схема выбора неупорядоченных наборов с возвратом). Теперь посчитаем количество подходящих исходов. Так как ни один ящик не пуст, то в каждом из них есть хотя бы по одному шару. Тогда нужно посчитать количество способов раскидать n-m шаров по m ящикам. Это можно сделать C_{n-1}^{m-1} способом. Отсюда получаем, что вероятность равна

$$\frac{C_{n-1}^{m-1}}{C_{n+m-1}^{m-1}}.$$

Теперь предположим, что шары неразличимы. Рассмотрим событие $A_i = \{i$ -й ящик пуст $\}$. Чему равна вероятность такого события? Для каждого из n шаров есть m-1 подходящий ящик. Тогда $P(A_i) = \frac{(m-1)^n}{m^n} = \left(1-\frac{1}{m}\right)^n$. Пересечение $A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}$ означает, что

k ящиков с номерами i_1, i_2, \ldots, i_k пусты. Тогда $P(A_{i_1} \cap A_{i_2} \cap \ldots \cap A_{i_k}) = \left(1 - \frac{k}{m}\right)^n$. Заметим, что событие "ни один ящик не пуст" равно $\overline{A_1} \cap \overline{A_{i_2}} \cap \ldots \cap \overline{A_m}$. Пользуясь формулой включений-исключений, получаем, что вероятность равна

$$\sum_{k=0}^{m} (-1)^{k} C_{m}^{k} \left(1 - \frac{k}{m}\right)^{n}$$

П

Задача 6. Алиса и Боб случайно подбрасывают n монет. Какова вероятность P того, что число орлов у Алисы будет строго больше, чем у Боба? Каков будет ответ на этот вопрос, если Алиса подбросила n+1 монету?

Решение. Для начала посмотрим, чему равна вероятность того, что число орлов у Алисы равно числу орлов у Боба. Если у Алисы выпало k орлов, что достигается в C_n^k случаев, то у Боба тоже должно выпасть k орлов. Тогда достаточно логично, что число успешных исходов равно $\sum_{k=0}^{n} \left(C_n^k\right)^2$. Как это упростить? Воспользуемся тем, что $C_n^k = C_n^{n-k}$. Теперь представим себе следующую ситуацию: пусть есть строка, содержащая 2n символов. Из первых n нужно выбрать k символов, из вторых n нужно выбрать k способами. Если просуммировать эти числа по k от k

$$\sum_{k=0}^{n} \left(C_n^k \right)^2 = C_{2n}^n$$

Всего исходов 4^n (по 2^n на Алису и на Боба). Тогда вероятность равна $\frac{C_{2n}^n}{4^n}$. Теперь рассмотрим вероятность из условия. Из-за симметричности она равна вероятности того, что у Алисы будет строго меньше орлов, чем у Боба. Тогда получаем, что $2P + \frac{C_{2n}^n}{4^n} = 1$. Отсюда $P = \frac{1}{2} - \frac{C_{2n}^n}{2^{2n+1}}$.

Теперь перейдём ко второму пункту. Его мы решим двумя способами — стандартным и "олимпиадным". Начнём со стандартного. Если у Алисы уже было больше орлов, чем у Боба, то что бы у неё не выпало, то ситуация не изменится. Если же было так, что у нё столько же орлов, сколько у Боба, то ей необходимо, чтобы выпал орёл. Тогда искомая вероятность равна

$$P' = P + \frac{1}{2} \frac{C_{2n}^n}{4^n} = \frac{1}{2}.$$

Теперь рассмотрим "олимпиадный" способ решения. Заметим, что вероятность того, что у Алисы будет больше орлов, чем у Боба, равна вероятности того, что у неё будет больше решек (из-за симметрии). При этом вероятность того, что у неё будет больше орлов, равна вероятности того, что у неё будет не больше решек, чем у Боба (пусть у неё на одного орла больше, тогда число решек у них совпадает). Отсюда сразу получаем, что

$$P' = \frac{1}{2}$$

А сейчас мы посмотрим, почему стоит быть осторожным с азартными играми.

Задача 7. Пусть есть 52 карты, и игроку выдают 5 случайных карт. Найдите вероятности получения различных наборов из покера.

Peшение. Начнём с того, что заметим, что выбрать 5 карт из 52 мы можем C_{52}^5 способами. Теперь достаточно найти количество подходящих исходов.

- 1. Royal Flush туз, король, дама, валет и десятка одной масти. Есть лишь 4 подходящих исхода.
- 2. Straight Flush пять последовательных по достоинству карт одной масти (начиная не с туза). Так как первую карту можно выбрать 8 способами (от пятёрки до короля), то есть $9 \cdot 4 = 36$ успешных исходов.

- 3. Four Of A Kind четыре карты одного достоинства. Выберем достоинство (это можно сделать 13) способами и последнюю карту (это можно сделать 48 способами). Тогда есть $13 \cdot 48$ подходящих комбинаций.
- 4. Full House три карты одного достоинства и две карты другого достоинства. Выберем первое достоинство (13 вариантов) и выберем 3 карты из 4 подходящих (C_4^3 способов). Теперь выберем второе достоинство (12 вариантов) и 2 карты из 4 ($_4^2$ вариантов). Тогда всего есть $13 \cdot C_4^3 \cdot 12 \cdot C_4^2$ вариантов.
- 5. Flush пять карт одной масти. Всего выбрать пять карт одной масти можно C_{13}^5 способами. Но в таком случае мы ещё учитываем Straight Flush и Royal Flush. Тогда есть $4(C_{13}^5-10)$ вариантов.
- 6. Straight пять последовательных карт (не одной масти). Всего пять последовательных карт можно выбрать $10 \cdot 4^5$ способами (сначала выбираем старшую карту, после чего масть для каждой). Но в таком случае учитывается Straight Flush и Royal Flush. Тогда есть $10(4^5-4)$ подходящих наборов.
- 7. Three Of A Kind три карты одного достоинства. Сначала выберем достоинство (13 вариантов), после чего выберем 3 карты из 4 (C_4^3 вариантов). После чего выберем два разных достоинства (иначе будет Full House), что можно сделать C_{12}^2 способами, и масти для двух карт (4^2 способа). Итого $13 \cdot C_4^3 \cdot C_{12}^2 \cdot 4^2$ варианта.
- 8. Тwo Pair две пары карт одного достоинства. Выберем достоинства и масти для двух пар (C_{13}^2) варианта для достоинств, по C_4^2 для выбора 2-х карт каждого достоинства). Осталось выбрать последнюю карту это можно сделать 52-8=44 способами. Итого $C_{13}^2 \left(C_4^2\right)^2 \cdot 44$ исхода.
- 9. Опе Раіг одна пара карт одного достоинства. Выберем достоинство и 2 карты из 4 $(C_{13}^1 \cdot C_4^2$ вариантов). Теперь выберем три разных достоинства и масти для карт $(C_{12}^3 \cdot 4^3$ варианта). Итого $C_{13}^1 \cdot C_4^2 \cdot C_{12}^3 \cdot 4^3$ исходов.
- 10. High Card ничего из вышеперечисленного. Выберем пять разных достоинств, не идущих подряд (C_{13}^5-10 вариантов) и выберем масти для каждой карты так, чтобы они не совпадали (4^5-4 варианта). Итого (C_{13}^5-10)(4^5-4) вариантов.

Теперь приближенно посчитаем вероятность каждого из наборов:

Тип	Вероятность
Royal Flush	$4/2598960 \approx 0,00015\%$
Straight Flush	$36/2598960 \approx 0.0014\%$
Four Of A Kind	$624/2598960 \approx 0.024\%$
Full House	$3744/2598960 \approx 0.15\%$
Flush	$5108/2598960 \approx 0.2\%$
Straight	$10200/2598960 \approx 0.39\%$
Three Of A Kind	$54912/2598960 \approx 2{,}11\%$
Two Pair	$123552/2598960 \approx 4,75\%$
One Pair	$1098240/2598960 \approx 42,26\%$
High Card	$1302540/2598960 \approx 50{,}12\%$

Как видно из таблицы, получить что-то лучше, чем одну пару, уже не так просто.