Contrôle S1 Architecture des ordinateurs

Ré	épondre exclusivement sur le sujet		Durée : 1 h 30
No	om : Prénom :	Groupe	:
E >	xercice 1 (2 points)		
	mplifiez les expressions suivantes. Donnez chaq	ue résultat sous la forme d'une puis	sance de deux. Le
res	sultat seul est attendu (pas de détail).		
	Expression	Résultat	7
	$\frac{64^4 \cdot 16^5 \cdot 8^{-8}}{(256^{-3} \cdot 32^{16})^4}$		
	$\frac{((65536 \cdot 32^{-3})^3 \cdot 2048^{10})^5}{(64^{-7} \cdot 1024)^{-7} \cdot 256}$		
E)	Donnez, en puissance de deux, le nombre d'octat seul est attendu (pas de détail). • 256 Gio = • 128 Kib =	ctets que contiennent les grandeurs so	uivantes. Le résul-
2.	Donnez, à l'aide des préfixes binaires (Ki, Mi o suivantes. Vous choisirez un préfixe qui per tière . Le résultat seul est attendu (pas de détail)	met d'obtenir la plus petite valeu	•
	 2¹⁵ bits = 4 Mio = 		

Contrôle S1 1/4

• 2^{35} octets =

Exercice 3 (5 points)

Convertissez les nombres suivants de la forme de départ vers la forme d'arrivée. Ne pas écrire le résultat sous forme de fraction ou de puissance (p. ex. écrire 0,25 et non pas $\frac{1}{4}$ ou 2^{-2}). Le résultat seul est attendu (pas de détail).

Nombre à convertir	Forme de départ	Forme d'arrivée	Résultat
10111001,01101	Binaire	Décimale	
CE,68	Hexadécimale	Décimale	
88,88	Décimale	Hexadécimale (2 chiffres après la virgule)	
105,40625	Décimale	Binaire	
151,32	Base 8	Binaire	
151,32	Base 8	Hexadécimale	
151,32	Hexadécimale	Base 8	
59,27	59,27 Décimale 32 Base 4		
32			
101110101,01011	Binaire	Hexadécimale	

Exercice 4 (2 points)

Partie 1 : Encodage d'entiers <u>non signés</u>

1. Soit l'addition sur 8 bits suivante : **250 + 10**

	Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.
2.	Soit la soustraction sur 8 bits suivante : 4 – 10 Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utilisez la base 10.

Contrôle S1 2/4

Partie 2 : Encodage d'entiers <u>signés</u>

1.	Soit l'addition sur 8 bits suivante : 120 + 10
	Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utili-
	sez la base 10.

2.	Soit la soustraction sur 8 bits suivante : $-126 - 10$
	Les deux opérandes et le résultat sont sur 8 bits. Donnez la représentation du résultat sur 8 bits. Utili-
	sez la base 10.

Exercice 5 (4 points)
Effectuez les opérations suivantes. Le détail des calculs devra apparaître.

Base 2 Ba									Base 1	.6											
			1	1	0	0		0	1	1	1	L	0				9	С	A	8	
	_			1	1	1		0	0	1	1	L	1		+		В	F	С	Е	
Base 2 Base 8																					
Dasc	1	0	1	0	1	0	0	0	1	1	0	0			Dusc		7	2	4	6	
	<u> </u>	U	<u> </u>	U	1	U		U	\vdash	1	0	0	_		+		2	6	5	3	
																		U	5	3	

Contrôle S1 3/4

		ce 6 (4 points)									
1. Une mémoire possède 4000 ₁₆ adresses.											
Combien de fils d'adresse possède cette mémoire ?											
Si l'adresse basse est 0 ₁₆ , quelle est l'adresse haute (en hexadécimal) ?											
2.	Une r	némoire possède 10	fils d'adresse.				•				
	Combien d'adresses comporte-t-elle (en hexadécimal)?										
	Si l'a	dresse basse est 0 ₁₆ , o	quelle est l'adresse h	aute	(en hexade	écimal) ?					
3.	-	ace mémoire d'un m 2 possèdent 4000 ₁₆ a	=		-	,		•			
		re suivant : M1 puis l		-			`	,			
	Comp	oléter le tableau ci-de	essous (en hexadécim	nal):							
	3.54	Adresse basse			3.50	Adresse basse	2				
	M1	Adresse haute			M3	Adresse haute	2				
	M2	Adresse basse			N/A	Adresse basse	2				
		Adresse haute			M4	Adresse haute	2				
Si		est le nombre minim nanquez de place, vou									

Contrôle S1 4/4