

Europäisches Patentamt
European Patent Office
Office européen des brevets

⑪ Veröffentlichungsnummer:

0 375 833
A1

⑫

EUROPÄISCHE PATENTANMELDUNG

㉑ Anmeldenummer: 89112409.1

㉓ Int. Cl.^s: B42D 15/02, G06K 19/08

㉒ Anmeldetag: 07.07.89

㉔ Priorität: 12.12.88 CH 4576/88

㉕ Anmelder: Landis & Gyr Betriebs AG

㉖ Veröffentlichungstag der Anmeldung:
04.07.90 Patentblatt 90/27

CH-6301 Zug(CH)

㉗ Benannte Vertragsstaaten:
AT BE CH DE FR GB IT LI NL SE

㉘ Erfinder: Antes, Gregor
Moussonstrasse 14
CH-8044 Zürich(CH)

㉙ Optisch variables Flächenmuster.

㉚ Ein Flächenmuster ist in einen Träger (4) eingeprägt und ist in M Rasterfelder (6) unterteilt. Jedes Rasterfeld (6) ist in N Feldanteile (7) aufgeteilt, wobei jeder Feldanteil (7) einem Pixel einer von N Darstellungen (3) zugeordnet ist und je ein Beugungselement (8) aufweist, das die Informationen über einen Farbwert, über eine Stufe des Helligkeitswertes und über eine Betrachtungsrichtung (15) enthält. Die N Darstellungen (3) sind aus Bündeln gebogten Lichtes zusammengesetzt und stellen beispielsweise einzelne alphanumerische Zeichen, Textteile, Ansichten von Objekten oder Personen usw. dar, die unter den N Betrachtungsrichtungen (15) sichtbar werden. Die Flächenmuster sind in Reflexion oder Transmission betrachtbar. Der Träger (4) kann als Klebeetikett ausgebildet sein.

Fig. 1

Xerox Copy Centre

EP 0 375 833 A1

Optisch variables Flächenmuster

Die Erfindung bezieht sich auf ein optisch variables Flächenmuster der im Oberbegriff des Anspruchs 1 genannten Art.

Solche optisch variable Flächenmuster mit einer mikroskopischen Reliefstruktur eignen sich beispielsweise zur Erhöhung der Fälschungssicherheit und der auffälligen Kennzeichnung von Gegenständen aller Art und sind insbesondere bei Wertpapieren, Ausweisen, Zahlungsmitteln und ähnlichen zu sichernden Gegenständen verwendbar.

Die eingravierten Reliefstrukturen mit einem optisch wirksamen Überzug verursachen Beugung des auf die Struktur einfallenden Lichtes. Die Beugungseigenschaften dieser Reliefstrukturen werden unter anderem durch die Spatialfrequenz, d. h. die Anzahl Linien pro mm, durch die Profilform der Reliefstruktur und durch die Amplitude oder Höhenunterschiede in der Reliefstruktur sowie durch die azimutale Orientierung der Reliefstruktur auf dem zu sichernden Gegenstand bestimmt.

Die Reliefstrukturen weisen z. B. Querschnittsformen bekannter periodischer Funktionen auf mit den für die Beugung von sichtbarem Licht wirksamen Spatialfrequenzen von mehr als 10 Linien pro mm. Herstellungsbedingte Grenzen beschränken den praktisch nutzbaren Bereich auf etwa 5000 Linien/mm. Aber auch Querschnittsformen mit aperiodischen Funktionen, die lokal eine Spatialfrequenzgemisch aus diesem Bereich enthalten, wie z. B. Mattstrukturen, sind anwendbar. Der Höhenunterschied dieser Reliefstrukturen ist typisch zwischen 50 nm und 10'000 nm gewählt.

Die Beugungseigenschaften der verschiedenen Reliefstrukturen sind z. B. in R. Petit, Electromagnetic Theory of Gratings, Springer Verlag, Berlin Heidelberg New York 1980, beschrieben.

Diese Strukturen lassen sich beispielsweise kostengünstig durch Verformen einer thermoplastischen Kunststoffschicht mit einem heizbaren Prägestempel herstellen, der dabei das reliefartige, von einer Masterstruktur galvanisch abgeformte Negativ des Sicherheitselementes trägt, wie dies aus der CH-PS 594 936 bekannt ist.

Ein Flächenmuster der im Oberbegriff des Anspruchs 1 genannten Art sowie eine andere Methode zur Herstellung der Masterstruktur für den Prägestempel derartiger Flächenmuster sind in der CH-Anmeldung 00805/88-4 beschrieben.

Andererseits sind Hologramme zur Erzeugung eines dreidimensionalen Bildeindrucks bekannt. Die optische, jeden Punkt eines holographisch registrierten, diffus reflektierenden Objektes betreffende Information ist über die ganze aktive Fläche des Hologramms verteilt, so dass eine Verkleinerung der Hologrammfläche den sichtbaren Bildteil nur

unwesentlich verkleinert, jedoch den nutzbaren Blickwinkelbereich reduziert.

Ein Verfahren zur Gewinnung einer Reliefstruktur aus einem Hologramm ist in US-PS 4 094 575 beschrieben. Diese Reliefstruktur ist in eine Kunststofffolie einprägbar und vervielfältigbar. Solche Strukturen sind bei Beleuchtung mittels flächenhafter Leuchten, wie z. B. Fluoreszenzleuchten, nur schwer erkennbar.

Der Erfindung liegt die Aufgabe zugrunde, ein schwer kopierbares, sich auf vorbestimmte Art änderndes lichtmodifizierendes Flächenmuster mit wenigstens zwei verschiedenen graphisch gestalteten Darstellungen zu schaffen, die unter verschiedenen Betrachtungswinkeln sichtbar sind, und dessen Echtheit bei normaler Beleuchtung mit Tages- oder Kunstlicht auch von Nichtfachleuten optisch erkennbar ist.

Die Erfindung ist im Anspruch 1 gekennzeichnet. Weiterbildungen der Erfindung ergeben sich aus den Unteransprüchen.

Nachfolgend werden Ausführungsbeispiele der Erfindung anhand der Zeichnung näher erläutert.

Es zeigt:

Fig. 1 ein Flächenmuster mit einer graphischen Darstellung, die in Teilflächen und Rasterfelder eingeteilt ist, und

Fig. 2 den Aufbau eines Rasterfeldes im Detail und die Beugung von einfallendem Licht an einem Beugungselement.

In der Figur 1 bedeutet 1 eine beliebig geformte Begrenzung eines Flächenmusters, 2 verschiedene Teilflächen einer graphisch gestalteten Darstellung, 3, 4 einen Träger des Flächenmusters, 5 einen Gegenstand, der ein Flächenmuster als Sicherheitselement aufweist, 6 mehrere Rasterfelder, 7 verschiedene Feldanteile des Rasterfeldes 6 und 8 ein Beugungselement.

In der beispielhaft gezeigten Ausführung ist ein Haus aus den drei Teilflächen 2, dem Dach, der Wand und der Tür, und ein Hintergrund mittels einer vierten Teilfläche 2 dargestellt. Jede Teilfläche 2 ist in Rasterfelder 6 eingeteilt, wobei Grenzen zwischen den Teilflächen 2 und die Begrenzung 1 stückweise aus den Grenzen der Rasterfelder 6 zusammengesetzt sind. Vorteilhaft weisen alle Teilflächen 2 gleich grosse Rasterfelder 6 auf.

Das Flächenmuster kann beispielsweise nur ein Teil eines grösseren graphisch gestalteten, in einer anderen Technik erstellten Motivs sein. Die Begrenzung 1 ist wenigstens teilweise von diesem Motiv umgeben. Die nicht zum Flächenmuster gehörigen Teile des Motivs sind beispielsweise nach dem aus der CH-Anmeldung 00 805/88-4 bekannten Verfahren hergestellt oder mittels eines konven-

tionellen Druckverfahrens gestaltet.

Das ganze Flächenmuster ist aus M Rasterfeldern 6 zusammengesetzt, wobei M wenigstens den Wert zwei aufweist. Für graphisch anspruchsvolle Flächenmuster ist ein durch die Berandung 1 begrenztes Feld in eine grosse Anzahl von Rasterfelder 6 zu unterteilen, damit die Rasterfelder 6 vom unbewaffneten Auge in der normalen Sehdistanz von etwa 30 cm nicht mehr als störend wahrgenommen werden.

In einem Beispiel sind alle M Rasterfelder 6 gleich gross. Sie bedecken die Fläche innerhalb der Berandung 1 und weisen Kreisform oder die Form eines regelmässigen Vielecks auf, wobei der Durchmesser oder eine grösste Diagonale weniger als 0,3 mm beträgt. Eine quadratische Zeichnung von 12 mm Seitenlänge weist daher für M einen Wert von mehr als 1600 auf.

Jedes Rasterfeld 6 ist in wenigstens zwei Feldanteile 7 eingeteilt, die in der Figur 2 mit 7a bis 7f bezeichnet sind. Vorteilhaft ist als Form der Rasterfelder 6 ein regelmässiges Vieleck verwendbar, da diese Vielecke leicht flächendeckend in regelmässige, andere Vielecke der Feldanteile 7 unterteilbar sind. Gut geeignet sind Drei-, Vier- oder Sechsecke.

Jeder Feldanteil 7 enthält ein optisch aktives Beugungselement 8, das eine mikroskopische Reliefstruktur 9 mit einer Spatialfrequenz von mehr als 100 Linien pro mm aufweist. Das Beugungselement 8 beugt einfallendes Licht 10 auf eine durch die Reliefstruktur 9 vorbestimmte Art.

Aus zeichnerischen Gründen ist in der Figur 2 die eine der Schmalseiten des zentralen Rasterfeldes 6, das in sechs Feldanteile 7a bis 7f eingeteilt ist, als Schnittfläche gezeichnet, um den Aufbau des Trägers 4 zu zeigen. Ebenso sind zum besseren Verständnis die Rasterfelder 6 mit einer doppelt gezogenen Trennlinie und die Einteilung der Feldanteile 7a bis 7f mit einer dick ausgezogenen Linie angedeutet. In Wirklichkeit sind die Einteilungen nur durch die verschiedenen Reliefstrukturen 9 bestimmt.

Die Reliefstrukturen 9 des Flächenmusters werden mit einem Prägestempel in den Träger 4 geprägt und anschliessend mit einer Schutzschicht 11 überzogen. Eine zwischen der Schutzschicht 11 und der in den Träger 4 geprägten Reliefstruktur 9 vorhandene, optisch wirksame Zwischenschicht bestimmt die Betrachtungsweise des Flächenmusters:

Das Flächenmuster ist in Transmission betrachtbar, wenn die Schutzschicht 11 und der Träger 4 aus optisch transparenten Materialien bestehen, die einen unterschiedlichen Brechungsindex aufweisen. Der beim Uebergang von der Schutzschicht 11 in den Träger 4 vorhandene Sprung der Brechungsindices wirkt als eine optisch wirksame Zwischenschicht.

Ist die optisch wirksame Schicht eine vor oder nach dem Prägen auf dem Träger aufgebrachte, dünne reflektierende Metallschicht, z. B. aus Aluminium, Gold, Nickel, Silber usw., dann ist das Flächenmuster in Reflexion durch die Schutzschicht 11 betrachtbar. Die Beugungselemente 8 reflektieren das einfallende Licht 10, das durch die Beugung modifiziert wurde, mit grosser Intensität.

Der Träger 4 kann auch auf nicht transparenten Gegenständen 5 befestigt werden und ist daher vielseitig verwendbar. Beispielsweise kann der Träger 4 auf der nicht geprägten Seite mit einer Klebeschicht 12 ausgerüstet und als selbstklebende Etikette auf den zu sichernden Gegenstand 5 aufgeklebt werden. Beim Versuch, den Träger 4 vom Gegenstand 5 zu trennen, verformen die Adhäsionskräfte der Klebeschicht 12 den Träger 4 mit den Reliefstrukturen 9 und zerstören dadurch das Flächenmuster.

Das Flächenmuster weist eine Referenzrichtung 13 in der Ebene des Trägers 4 auf. Relativ zur Referenzrichtung 13 ist die Orientierungsrückrichtung 14 jeder Reliefstruktur 9 durch einen Azimutwinkel Φ zwischen den beiden Richtungen 13 und 14 bestimmbar.

Beim Entwurf des Flächenmusters wird seine Gesamtfläche in M Rasterfelder 6 aufgeteilt, wobei jedes Rasterfeld 6 seinerseits N Feldanteile 7a bis 7f aufweist. Die beiden Zahlen M und N sind ganz und grösser als 1.

Das Flächenmuster enthält N Darstellungen 3, wobei eine davon in der Figur 1 gezeigt ist. Jede der N Darstellungen wird in M Rasterflächen oder Pixel entsprechend der Einteilung der Rasterflächen 6 aufgeteilt. Jede der N Darstellungen ordnet einem der N Feldanteile 7a bis 7f das dem Rasterfeld 6 entsprechende Pixel zu. Jeder Pixel weist als Parameter einen Farbwert und einen Helligkeitswert für die Flächenhelligkeit auf.

Die Richtung des auf das Flächenmuster einfallenden Lichtes 10 (Fig. 2) und eine für die Darstellung 3 vorgesehene Betrachtungsrichtung 15, die auf die Orientierungsrichtung 14 bezogen ist, und der Farbwert des Pixels bestimmen die wichtigen Parameter der Reliefstruktur 9 des dem betreffenden Pixel zugeordneten Beugungselementes 8.

Sofern die Reliefstrukturen 9 einfache geradlinige Beugungsgitter sind, genügen als Parameter der Reliefstrukturen 9 die Spatialfrequenz, der Azimutwinkel Φ und das Reliefprofil. Die Spatialfrequenz und die Wellenlänge des Lichtes 10 bestimmen den Beugungswinkel θ .

Asymmetrische Reliefprofile sind besonders vorteilhaft, da bei geeigneter Dimensionierung des Profils das aus bestimmten Richtungen einfallende Licht 10 an diesen Profilen entweder fast vollständig in eine vorbestimmte Raumrichtung 17 gebrochen wird oder ein bestimmtes, von 1:1 abweichendes

Verhältnis zwischen den Intensitäten des in die plus erste und in die minus erste Beugungsordnung gebeugten Lichtes erreicht werden kann. Diese Eigenschaft asymmetrischer Reliefprofile ist z. B. in der bereits erwähnten Schrift von R. Petit, Electromagnetic Theory of Gratings, auf den Seiten 159ff beschrieben.

Die Raumrichtung 17 von gebeugtem Licht 16 ist durch den Azimutwinkel Φ und den Beugungswinkel θ bestimmt, wobei der Azimutwinkel Φ einen vorbestimmten Wert aus dem Bereich 0° bis 360° aufweist. Bei symmetrischen Profilen teilt sich senkrecht einfallendes Licht 10 gleichmässig auf die beiden möglichen Raumrichtungen 17 (θ , Φ und $\theta, \Phi + 180^\circ$) auf. Symmetrische Reliefprofile sind daran erkennbar, dass jede Darstellung 3 in zwei verschiedenen Betrachtungsrichtungen 15 sichtbar ist. Bei geeigneten dimensionierten asymmetrischen Profilen hingegen ist jede der N Darstellungen 3 nur in einer einzigen Betrachtungsrichtung 15 sichtbar. Ein Flächenmuster, das sowohl symmetrische wie asymmetrische Profilarten aufweist, ist zwar aufwendiger in der Herstellung, aber ergibt besonders auffällige optische Effekte.

Die Spatialfrequenz kann innerhalb eines Beugungselementes 8 mit einer vorbestimmten Spatialfrequenzamplitude A moduliert sein, so dass sich das gebeugte Licht 16 in einen durch die Amplitude A vorbestimmten Bereich des Beugungswinkels θ auffächert. Dies ist besonders vorteilhaft, wenn der Träger 4 sehr dünn und der Gegenstand 5 nicht ganz flach ist, wie z. B. das Papier einer zerknitterten Banknote. Das Flächenmuster bleibt trotz der Unebenheiten leicht sichtbar, da ein Teil des gebeugten Lichtes 16 im Bereich des Beugungswinkels θ in die Betrachtungsrichtung 15 fällt und so die Unebenheit des Trägers 4 ausgleicht.

Die bei der vorbestimmten Richtung des einfallenden Lichtes 10 und der Beobachtungsrichtung 15 darzustellenden Helligkeitswerte der einer Rasterfläche 6 zugeordneten N Pixel legen die relative Grösse der N Flächenanteile 7a bis 7f oder, falls jede der Rasterflächen 6 fest in N Flächenanteile 7a bis 7f eingeteilt ist, einer Beugungsfläche 18 des Beugungselementes 8 in jedem der N Flächenanteile 7a bis 7f fest.

Das unter einem vorbestimmten Winkel θ gebeugte Licht 16 weist eine Intensität auf, die, abgesehen von den Beleuchtungs- und Betrachtungsbedingungen und der Profilform, von der wirksamen Beugungsfläche 18 des Beugungselementes 8 und dem Beugungswirkungsgrad der Reliefstruktur 9 abhängt.

Wird beispielsweise der Anteil der N Beugungsflächen 18 im Rasterfeld 6 durch den Helligkeitswert des Pixels jeder Darstellung 3 bestimmt, weisen die unter der vorbestimmten Richtung 15 betrachteten Rasterfelder 6 Unterschiede in ihren

relativen Helligkeiten auf.

In einer anderen Ausführung sind die N Feldanteile 7a bis 7f gleich gross, jedoch werden die Reliefstrukturen 9 mit einer dem Helligkeitswert des Pixels zugeordneten Beugungswirkungsgrad vorbestimmt.

Jedem Rasterfeld 6 (Fig. 1) ist ein vorbestimmter Pixel aus jeder der N verschiedenen Darstellungen 3 zugeordnet. Jedes Rasterfeld 6 weist daher in jedem der N Feldanteile 7 ein Beugungselement 8 auf, das dem vorbestimmten Pixel dieser N Darstellungen 3 entspricht und dessen Reliefstruktur 9 und die Grösse der Beugungsfläche 18 durch die Parameter des Pixels vorbestimmt sind. Jedes Rasterfeld 6 enthält daher die ganze Information über den zugeordneten Pixel der N Darstellungen.

Da jeder der N verschiedenen Darstellungen 3 wenigstens eine ihr zugeordnete Betrachtungsrichtung 15 aufweist, sieht ein Betrachter des Flächenmusters bei nicht diffuser Beleuchtung unter einer der N Betrachtungsrichtungen 15 nur eine der N Darstellungen 3. Durch Kippen oder Drehen des Trägers 4 werden für den Betrachter nacheinander alle N Darstellungen 3 sichtbar.

In der Figur 2 beispielsweise ist N=6, weil das Flächenmuster sechs Darstellungen 3 enthält. Das Beugungselement 8, das dem Pixel der ersten Darstellung 3 entspricht, ist dem Feldanteil 7a zugeordnet. Der Feldanteil 7b ist für den Pixel der zweiten Darstellung 3 usw. bestimmt. Die N Feldanteile 7a bis 7f sind gleich gross. Die der relativen Helligkeit entsprechende Beugungsfläche 18 ist kleiner oder gleich der Fläche der Feldanteile 7a bis 7f. In der Figur 2 sind die Beugungsflächen 18 schraffiert wiedergegeben. Ein vom Beugungselement 8 nicht beanspruchter Flächenteil 19 der Feldanteile 7a, 7c und 7d ist völlig glatt und reflektiert das einfallende Licht 10. Da die Richtung des reflektierten Lichtes durch das Reflexionsgesetz bestimmt ist, ist dessen Richtung ebenfalls vorbestimmt und darf mit keiner der Betrachtungsrichtungen 15 zusammenfallen, da die Reflexion das Erkennen der Darstellung 3 stört.

Es ist möglich, in den Flächenteil 19 eine Mattstruktur einzuprägen, die das einfallende Licht 10 gleichmässig in alle Richtungen zerstreut und bei der Betrachtung einer der N Darstellungen 3 wegen der geringen Intensität nicht stört.

Die N Darstellungen 3 können verschiedene Perspektiven ein und desselben Objektes sein, wobei beispielsweise die Beobachtungsrichtungen der entsprechenden Ansichten des Objektes mit den N Betrachtungsrichtungen 15 zusammenfallen können. Durch Ändern der Betrachtungsrichtung 15, z. B. durch Drehen des Flächenmusters oder durch Bewegen des Kopfes, erhält man im Gegensatz zu einem Hologramm eine sich sprunghaft ändernde Ansicht des Objektes aus der entsprechenden Be-

trachtungsrichtung 15. Ist beispielsweise das Objekt ein menschliches Antlitz, wirkt das sich ändernde Objekt auf den Betrachter besonders auffällig.

In einer anderen Ausführung verändert sich unter den N Betrachtungsrichtungen 15 nur die Schattierung eines Objektes bei einer vorbestimmten Perspektive, wobei der Eindruck einer sich ändernden Beleuchtungsrichtung des Objektes entsteht.

Besonders gut eignen sich für die N Darstellungen 3, die den N Betrachtungsrichtungen 15 entsprechen, auch einzelne Ziffern, Buchstaben, Firmen-Logos, Teile von Texten usw., die der Betrachtungsrichtung 15 entsprechend beim Drehen des Flächenmusters für den Betrachter nacheinander sichtbar werden.

Bei der Anwendung des Flächenmusters auf einer Banknote eines mehrsprachigen Landes kann jede der N Darstellungen 3 z. B. den Wert der Note in Ziffern oder in Worten in einer der Landessprachen zeigen.

Die Betrachtungsrichtungen 15 können paarweise so geordnet sein, dass bei normalem Betrachtungsabstand die beiden Betrachtungsrichtungen 15 eines jeden Paars gerade mit den verlängerten Achsen der beiden auf das Flächenmuster gerichteten Augen des Betrachters zusammenfallen. Falls die unter den beiden Richtungen 15 sichtbaren Darstellungen 3 ein stereoskopisches Paar des gleichen Objektes bilden, gewinnt der Betrachter des Flächenmusters einen räumlichen Eindruck des Objektes aus einer Beobachtungsrichtung, die für jedes dieser Paare vorbestimmt ist.

Schliesslich können die N Darstellungen 3, die den N Betrachtungsrichtungen 15 entsprechen, eine zeitliche Abfolge von Situationen beinhalten. Der Betrachter sieht beim Drehen des Flächenmusters eine zeitlich ablaufende Handlung, wobei nacheinander die der Betrachtungsrichtung 15 entsprechende Darstellung 3 für ihn sichtbar ist.

Als graphische Darstellung 3 dient vorteilhaft eine gerasterte Schwarz-Weiss-Photographie eines Objektes, wobei die einzelnen Pixel einen Helligkeitswert von wenigstens zwei Stufen aufweisen.

Die N Darstellungen 3 des Flächenmusters können auch aus den vorhergehend aufgeführten Beispielen zusammengesetzt werden. Dabei kann auch Bild und Text gemischt werden. Die Grenzen sind nur durch die technisch mögliche Auflösung in M x N Flächenanteilen 7 bei einer vorgegebenen Spatialfrequenz gegeben.

Die vorstehend erwähnte Richtung des einfallenden Lichtes 10 und die erwähnten Betrachtungsrichtungen 15 beziehen sich auf ein durch das Flächenmuster definiertes Koordinatensystem, wobei die Parameter der Reliefstrukturen 9 der ent-

sprechenden Pixel jeweils für eine feste Richtung des einfallenden Lichtes 10 so gewählt werden, dass ein Betrachter, der seine Augen um ein räumlich fixiertes Flächenmuster herum bewegt, die beschriebenen Änderungen wahrnimmt.

5 schriebenen Änderungen wahrnimmt.
In einer anderen Ausführung bewirken die vor-
bestimmten Parameter der Reliefstrukturen 9, dass
die N Darstellungen 3 auch bei einer räumlich
fixierten Richtung des einfallenden Lichtes 10 und
10 einem unbeweglichen Betrachter nacheinander
sichtbar werden, wenn die Ebene des Flächenmu-
sters durch Kippen um eine ihrer Achsen bewegt
wird. Dabei ändern sich die Richtung des einfallen-
den Lichtes 10 und die Betrachtungsrichtung 15
15 gleichzeitig bezüglich des durch das Flächenmu-
ster festgelegten Koordinatensystems.

Zwei besonders auffällige Folgen der nacheinander sichtbaren N Darstellungen 3 bei der Verkipung der Vertikalachse der Ebene des Flächenmusters sind beispielhaft erwähnt:

- Die Perspektive der Objektansicht ändert sich beim Verkippen nicht.
 - Die Perspektive ändert sich so, wie wenn das Objekt mit dem Flächenmuster mtdrehen würde.

Die Herstellung des Flächenmusters erfolgt beispielsweise in den nachstehend beschriebenen Schritten.

Schritt 1:
Zunächst werden die N Darstellungen 3 beispielsweise mit Hilfe optischer Mittel auf die vorbestimmten Abmessungen gebracht und in gleich grosse Pixel eingeteilt. Für jeden Pixel wird der Farbwert und die Stufe des Helligkeitswertes bestimmt. Anschliessend wird für jede Darstellung 3 die vorgesehene Betrachtungsrichtung 15 festgelegt.

Diese Informationen bestimmen die Parameter der Reliefstruktur 9, die relative Grösse des Beugungselementes 8 und damit die Grösse des Flächenteils 19 für jeden Feldanteil 7 in jedem Rasterfeld 6.

Eine Masterstruktur für den Prägestempel des Flächenmusters ist auf der in der CH-Anmeldung 00805/88-4 beschriebenen Apparatur herstellbar. Die beiden Parameter der Reliefstruktur 9, die Spatialfrequenz und die Profilform, bestimmen einen Matrizontyp zum Abformen der Beugungsfläche 18 auf ein Flächenelement einer thermoplastischen Deckschicht mittels der Apparatur. Der dritte Parameter legt die Orientierungsrichtung 14 bzw. den Azimutwinkel Φ fest, um den die Matrize vor dem Abformen gedreht werden muss. Von dieser Apparatur vorzunehmende Schritte zur Herstellung der Masterstruktur des Flächenmusters sind durch eine digitale Steuerung kontrollierbar.

Die Mattstruktur der Flächenteile 19 kann von einer speziellen Matrize wie eine der Reliefstrukturen 9 auf die Deckschicht abgeformt werden.

Diese Arbeit wird vorteilhaft mittels eines

Computer-Programmes zur Gestaltung des Flächenmusters durchgeführt.

Es ist auch möglich zuerst die Mattstruktur auf die Oberfläche der Deckschicht abzuformen, wobei dies in der Apparatur gemäss der CH-Anmeldung 00805/88-4 oder in einem vorhergehenden, separaten Arbeitsgang mittels Prägewalzen erfolgt. Anschliessend wird die Oberfläche der Deckschicht für jede Beugungsfläche 18 mit der entsprechenden Matrize umgeprägt.

Von der Masterstruktur werden in bekannter Weise (CH-PS 594 936) galvanisch erzeugte Negative für die Prägestempel angefertigt und die Flächenmuster geprägt und ausgerüstet.

Ansprüche

1. Optisch variables Flächenmuster mit einer graphisch gestalteten Darstellung, das in M Rasterfelder eingeteilt ist, die optisch aktive Beugungselemente mit einer Spatialfrequenz von mehr als 10 Linien pro mm enthalten, dadurch gekennzeichnet, dass jedes Rasterfeld (6) eine grösste Abmessung von weniger als 0,3 mm und eine Einteilung in N Feldanteile (7a bis 7f) mit je einem Beugungselement (8) aufweist, wobei jedes Beugungselement (8) einem vorbestimmten Pixel einer von N Darstellungen (3) entspricht, un dass die Parameter einer Reliefstruktur (9) in jedem der N Beugungselemente (8) durch die Zugehörigkeit zu einer Teilfläche (2) vorbestimmt sind, so dass jede der N Darstellungen (3) unter einer vorbestimmten Betrachtungsrichtung (15) des Flächenmusters sichtbar ist, wobei sowohl M als auch N grösser als 1 sind

2. Flächenmuster nach Anspruch 1, dadurch gekennzeichnet, dass wenigstens ein Reliefprofil der Beugungselemente (8) asymmetrisch ist und dass der Azimutwinkel (Φ) jedes der N Beugungselemente (8) einen vorbestimmten Wert aus dem Bereich 0° bis 360° aufweist.

3. Flächenmuster nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Form der Rasterfelder (6) ein regelmässiges Vieleck ist und dass das Vieleck eine grösste Diagonale von höchstens 0,3 mm aufweist.

4. Flächenmuster nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet dass die relative Grösse der Beugungsfläche (18) jedes der N Beugungselemente (8) im Rasterfeld (6) der relativen, vorbestimmten Helligkeit des Rasterfeldes (6) für jede der N Darstellungen (3) entspricht.

5. Flächenmuster nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet dass der relative Beugungswirkungsgrad jedes der N Beugungselemente (8) im Rasterfeld (6) der relativen, vorbestimmten Helligkeit des Rasterfeldes (6) für jede der N Darstellungen (3) entspricht.

6. Flächenmuster nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass jedes Rasterfeld (6) N gleich grosse Feldanteile (7a bis 7f) aufweist.

7. Flächenmuster nach Anspruch 6, dadurch gekennzeichnet, dass in jedem Feldanteil (7a bis 7f) ein vom Beugungselement (8) nicht beanspruchter Flächenanteil (19) eine Mattstruktur aufweist.

8. Flächenmuster nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet dass die N graphisch gestalteten Darstellungen (3) Ansichten eines gleichen Objektes unter verschiedenen vorbestimmten Perspektiven des Objektes sind.

9. Flächenmuster nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet dass die N graphisch gestalteten Darstellungen (3) Ansichten eines gleichen Objektes unter einer vorbestimmten Perspektive des Objektes bei verschiedenen vorbestimmten Beleuchtungsrichtungen des Objektes sind.

10. Flächenmuster nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet dass die N Darstellungen (3) gerasterte Photographien sind und dass die Pixel der Teilflächen (2) wenigstens zwei Stufen des Helligkeitswertes aufweisen.

11. Flächenmuster nach einem der Ansprüche 4 bis 8, dadurch gekennzeichnet dass N geradzahlig ist, dass die Darstellungen (3) wenigstens ein stereoskopisches Paar des gleichen Objektes sind, so dass dem unbewaffneten Auge wenigstens eine räumliche Ansicht des Objektes erscheint.

12. Flächenmuster nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Flächenmuster nur ein Teil eines grösseren graphisch gestalteten Motivs ist und dass eine Begrenzung (1) des Flächenmusters wenigstens teilweise von einem in einer anderen Technik erstellten Motiv umgeben ist.

13. Flächenmuster nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass ein Träger (4), in den das Flächenmuster eingeprägt ist, auf der nichtgeprägten Seite eine Klebeschicht (11) aufweist.

45

50

55

Fig. 1

Fig. 2

Europäisches
Patentamt

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

EP 89 11 2409

EINSCHLÄGIGE DOKUMENTE

Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	Betrifft Anspruch	KLASSIFIKATION DER ANMELDUNG (Int. CLS)
A	EP-A-105099 (LGZ LANDIS UND GYR ZUG) * Seite 11, Zeile 25 - Seite 12, Zeile 11; Figur 6 *	1	B42D15/02 G06K19/08
A	EP-A-146151 (DE LA RUE GIORI) * das ganze Dokument *	1	
A	GB-A-2126949 (RCA CORPORATION) * das ganze Dokument *	1	
			RECHERCHIERTE SACHGEBIETE (Int. CLS)
			B42D B44F G06K G02B

Der vorliegende Recherchenbericht wurde für alle Patentansprüche erstellt

1

Recherchenort	Abschlußdatum der Recherche	Prüfer
DEN HAAG	16 MAERZ 1990	EVANS A.J.
KATEGORIE DER GENANNTEN DOKUMENTE		
X : von besonderer Bedeutung allein betrachtet	T : der Erfindung zugrunde liegende Theorien oder Grundsätze	
Y : von besonderer Bedeutung in Verbindung mit einer anderen Veröffentlichung derselben Kategorie	E : älteres Patentdokument, das jedoch erst am oder nach dem Anmeldedatum veröffentlicht worden ist	
A : technologischer Hintergrund	D : in der Anmeldung angeführtes Dokument	
O : nichtschriftliche Offenbarung	L : aus andern Gründen angeführtes Dokument	
P : Zwischenliteratur	& : Mitglied der gleichen Patentfamilie, übereinstimmendes Dokument	

EPO FORM 1501 03.92 (P0400)

No active trail

DELPHION**RESEARCH****PRODUCTS****INSIDE DELPHION**[Log Out](#) [Work Files](#) [Saved Searches](#)

My Account

Search: Quick/Number Boolean Advanced Derwent

[Select CR](#)[Stop/Track](#)

The Delphion Integrated View

Get Now: [PDF](#) | [File History](#) | [Other choices](#)Tools: Add to Work File: [Create new Work File](#) ▾View: [Expand Details](#) | [INPADOC](#) | Jump to: [Top](#)Go to: [Derwent](#) [Email this to a](#)? Title: **EP0375833A1: Optically variable planar pattern**[\[German\]](#)[\[French\]](#)? Derwent Title: Optically variable surface pattern for graphical image representation - has individual fields divided into diffraction element sections [\[Derwent Record\]](#)High
Resc

? Country: EP European Patent Office (EPO)

? Kind: A1 Publ. of Application with search report¹ (See also: [EP0375833B1](#))? Inventor: **Antes, Gregor;**? Assignee: **Landis & Gyr Betriebs AG**
[News, Profiles, Stocks and More about this company](#)? Published / Filed: **1990-07-04 / 1989-07-07**? Application Number: **EP1989000112409**? IPC Code: **IPC-7: B42D 15/02; G06K 19/08;**? Priority Number: **1988-12-12 CH1988000004576**

? Abstract: The planar pattern is impressed in a backing (4) and is divided into M grid squares (6). Each grid square (6) is divided into N square portions (7), each square portion (7) being assigned to a pixel of one of N illustrations (3) and each having a diffraction element (8) which contains the information via a colour value, via a stage of the brightness value and via a viewing direction (15). The N illustrations (3) are composed of bundles of diffracted light and constitute, for example, individual alphanumeric characters, parts of text, views of objects or persons, etc., which are visible in the N viewing directions (15). The planar patterns can be viewed in reflection or transmission. The backing (4) can be constructed as an adhesive label.

? INPADOC Legal Status: [Show legal status actions](#) Get Now: [Family Legal Status Report](#)

? Designated Country: AT BE CH DE FR GB IT LI NL SE

? Family: [Show 10 known family members](#)? First Claim: [Show all claims](#)
1. Optisch variables Flächenmuster mit einer graphisch gestalteten Darstellung, das in M Rasterfelder eingeteilt ist, die optisch aktive Beugungselemente mit einer Spatialfrequenz von mehr als 10 Linien pro mm enthalten, dadurch gekennzeichnet, dass jedes Rasterfeld (6) eine grösste Abmessung von weniger als 0,3 mm und eine Einteilung in N Feldanteile (7a bis 7f) mit je einem Beugungselement (8) aufweist, wobei jedes Beugungselement (8) einem vorbestimmten Pixel einer von N Darstellungen (3) entspricht, um dass die Parameter einer Reliefstruktur (9) in jedem der N Beugungselemente (8) durch die Zugehörigkeit zu einer Teilfläche (2) vorbestimmt sind, so dass jede der N Darstellungen (3) unter einer vorbestimmten Betrachtungsrichtung (15) des

Flächenmusters sichtbar ist, wobei sowohl M als auch N grösser als 1 sind

[? Description](#)
[Expand description](#)

Die Erfindung bezieht sich auf ein optisch variables Flächenmuster der im Oberbegriff des Anspruchs 1 genannten Art.

[? Forward References:](#)

[Go to Result Set: Forward references \(12\)](#)

PDF	Patent	Pub.Date	Inventor	Assignee	Title
	US6974218	2005-12-13	Schilling; Andreas	OVD Kinegram AG	Retroreflector
	US6975438	2005-12-13	Schilling; Andreas	OVD Kinegram AG	Optically variable surface pattern
	US6927885	2005-08-09	Staub; René	OVD Kinegram AG	Label with a diffractive bar code and reading arrangement for labels
	US6924934	2005-08-02	Schilling; Andreas	OVD Kinegram AG	Diffractive safety element
	US6870678	2005-03-22	Tompkin; Wayne Robert	OVD Kinegram AG	Surface pattern
	US6801346	2004-10-05	Schilling; Andreas	OVD Kinegram AG	Diffractive safety element
	DE10221491A1	2003-12-04	Schilling, Andreas, Dr., Zug, CH	Leonhard Kurz GmbH & Co. KG	Optisch variables Flächenmuster
	US6417968	2002-07-09	Staub; Rene		Diffractive surface pattern
	US5886798	1999-03-23	Staub; Rene	Landis & Gyr Technology Innovation AG	Information carriers with diffraction structures
	US5882463	1999-03-16	Tompkin; Wayne Robert	Landis & Gyr Technology Innovation AG	Method of applying a security element to a substrate
	DE4436192C1	1996-03-21	Stork, Wilhelm, Dr.	Leonhard Kurz GmbH & Co, 90763 Fuerth, DE	Strukturanordnung, insbesondere fuer ein Sicherheitselement
	US5461239	1995-10-24	Atherton; Peter S.	Mikoh Pty Ltd	Method and apparatus for coding and reading information in diffraction gratings using the divergence of diffracted light beams

[? Other Abstract](#)

None

[Info:](#)

Nominate this for the Gallery...

THOMSON

Copyright © 1997-2006 The Thomson Corp

[Subscriptions](#) | [Web Seminars](#) | [Privacy](#) | [Terms & Conditions](#) | [Site Map](#) | [Contact Us](#) | [Help](#)