Matematyka dyskretna Wykład 1

Adam Gregosiewicz

13 października 2023 r.

Zdania

Definicja (Zdanie logiczne)

Zdaniem logicznym nazywamy dowolne stwierdzenie, któremu można przyporządkować wartość logiczną prawda lub fałsz.

→ koniunkcja: ∧

 $p \wedge q$ czytamy: p i q

→ koniunkcja: ∧

 $p \wedge q$ czytamy: p i q

→ alternatywa: ∨

 $p \lor q$ czytamy: $p \mathsf{lub} q$

```
\leftrightarrow koniunkcja:<br/>p \land q\neq i \neq\Rightarrow alternatywa:<br/>p \lor q\Rightarrow lub \neq\Rightarrow implikacja:<br/>p \Rightarrow q\Rightarrow jeżeli p, to q (lub: p \Rightarrow q\Rightarrow równoważność:<br/>p \Leftrightarrow q\Rightarrow czytamy:\Rightarrow wtedy i tylko wtedy, gdy q
```

```
p \wedge q czytamy: p i q

→ alternatywa: ∨

   p \lor q czytamy: p \mathsf{lub} q

→ implikacja: ⇒

   p \Rightarrow q czytamy: jeżeli p, to q (lub: z p wynika q)
p \Leftrightarrow q czytamy: p wtedy i tylko wtedy, gdy q
\neg p czytamy: nie p
```

Warunek konieczny i dostateczny

p => q

p (get nountiem bostetennym dla q

p (get nountiem honeum dla p

Warunek konieczny i dostateczny

$$p \Rightarrow q$$

- \rightarrow p jest warunkiem **dostatecznym** (wystarczającym) dla q.
- \rightsquigarrow q jest warunkiem koniecznym dla p.

→ alternatywa wykluczająca lub XOR: ⊕

$$p \oplus q \equiv \neg(p \Leftrightarrow q)$$

 \rightarrow alternatywa wykluczająca lub XOR: \oplus $p \oplus q \equiv \neg(p \Leftrightarrow q)$

 $ightharpoonup kreska Sheffera lub NAND: | <math>p \mid q \equiv \neg(p \land q)$

 \rightarrow alternatywa wykluczająca lub XOR: \oplus $p \oplus q \equiv \neg(p \Leftrightarrow q)$

 $ightharpoonup kreska Sheffera lub NAND: | <math>p \mid q \equiv \neg(p \land q)$

 $ightharpoonup \operatorname{strzałka}$ Peirce'a lub NOR: $\downarrow p \downarrow q \equiv \neg(p \lor q)$

Formuly logiczne

Formuly logiczne

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną p, q, r, ..., która może przyjąć tylko dwie wartości: prawda (T) lub fałsz (F).

$$\neg \left(\mathcal{F} \oplus \left(\left(\mathcal{P} \wedge \mathcal{I} \right) \Rightarrow \mathcal{P} \right) \right)$$

Formuly logiczne

Definicja (Zmienna logiczna)

Zmienną logiczną nazywamy zmienną, zwykle oznaczaną p, q, r, ..., która może przyjąć tylko dwie wartości: prawda (T) lub fałsz (F).

Definicja (Formuła logiczna)

Formułą nazywamy wyrażenie (napis) zbudowane według następujących reguł:

- każda zmienna logiczna jest formułą,
- \rightarrow jeżeli ϕ jest formułą, to $(\neg \phi)$ jest formułą,
- \rightarrow jeżeli ϕ oraz ψ są formułami, to $(\phi \circ \psi)$, gdzie \circ jest funktorem dwuargumentowym, jest formułą.

$$P = 0$$

$$P = 0$$

$$P = 0$$

Równoważność formuł logicznych

$$\phi \quad \psi = \phi \quad \psi = \psi \quad$$

Równoważność formuł logicznych

Definicja (Formuły równoważne)

Formuły ϕ i ψ są **równoważne**, jeżeli przy dowolnym wartościowaniu zmiennych logicznych w nich występujących przyjmują tę samą wartość logiczną. Piszemy wtedy

$$\phi \equiv \psi$$
.

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p)$$

$$(p \wedge q) \equiv (q \wedge p)$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p)$$

 $(p \land q) \equiv (q \land p)$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p)$$

 $(p \land q) \equiv (q \land p)$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawa rozdzielności

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p) \ (p \land q) \equiv (q \land p)$$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawa rozdzielności

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

→ Prawa de Morgana

$$eg(p \lor q) \equiv (\neg p \land \neg q)$$
 $eg(p \land q) \equiv (\neg p \lor \neg q)$

→ Prawo podwójnego przeczenia

$$\neg(\neg p) \equiv p$$

→ Prawa przemienności

$$(p \lor q) \equiv (q \lor p)$$

 $(p \land q) \equiv (q \land p)$

→ Prawa łączności

$$[(p \lor q) \lor r] \equiv [p \lor (q \lor r)]$$
$$[(p \land q) \land r] \equiv [p \land (q \land r)]$$

→ Prawa rozdzielności

$$[p \lor (q \land r)] \equiv [(p \lor q) \land (p \lor r)]$$
$$[p \land (q \lor r)] \equiv [(p \land q) \lor (p \land r)].$$

→ Prawa de Morgana

$$eg(p \lor q) \equiv (\neg p \land \neg q) \\
eg(p \land q) \equiv (\neg p \lor \neg q)$$

→ Prawo kontrapozycji

$$(p \Rightarrow q) \equiv (\neg q \Rightarrow \neg p)$$