

PRAYAS 2.0

FOR IIT - JEE 2023

P
W

COORDINATE GEOMETRY

HYPERBOLA

LEC – 01

Physics Wallah

SACHIN JAKHAR

TODAY's GOAL

Properties / Highlights of Ellipse

HYPERBOLA

Equation of Standard Hyperbola

Basic Terminology

OP-QP

LAST CLASS

Four Important Terms:

e.o.c.

$$\bar{T}_1 = 0$$

C.W.G.M.P.

$$T_1 = S_1$$

P.O.T.

$$T_1^2 = SS_1$$

P&P

$$\bar{T}_1 = 0$$

Diameter & Conjugate Diameter:

$$y^2 = -\frac{b^2}{a^2} x$$

slopes (m_1 & m_2)

$$\# m_1 m_2 = -\frac{b^2}{a^2}$$

$$\# CP^2 + CQ^2 = a^2 + b^2$$

$$\# \text{area (llgm)} = 4ab$$

formed by Tangents
at P, Q, R & S.

Q.

Let $E_1 : \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, $a > b$. Let E_2 be another ellipse such that it touches the end points of major axis of E_1 and the foci of E_2 are the end points of minor of E_1 . If E_1 and E_2 have same eccentricities, then its value is

?

- A** $\frac{-1 + \sqrt{5}}{2}$
- B** $\frac{-1 + \sqrt{8}}{2}$
- C** $\frac{-1 + \sqrt{3}}{2}$
- D** $\frac{-1 + \sqrt{6}}{2}$

[JEE Mains-2021]

$$a = A$$

$$b = B e_2$$

$$\# e_2^2 = 1 - \frac{A^2}{B^2}$$

$$\# e_2^2 = 1 - \frac{a^2}{\left(\frac{b}{e_2}\right)^2}$$

$$\# \quad e_2 = \frac{\sqrt{5}-1}{2}$$

$$\Leftarrow e_2 = \sqrt{\frac{6-2\sqrt{5}}{4}}$$

$$e_2^2 = 1 - \frac{a^2}{b^2} (e_2^2)$$

$$e_1^2 = e_2^2 = 1 - \frac{b^2}{a^2}$$

$$e_2 = \sqrt{\frac{3-\sqrt{5}}{2}}$$

$$\frac{b^2}{a^2} = 1 - e_2^2$$

$$\begin{aligned} e_2^2 &= \alpha \\ \alpha(2-\alpha) &= 1-\alpha \end{aligned}$$

$$2\alpha - \alpha^2 = 1 - \alpha$$

$$\alpha^2 - 3\alpha + 1 = 0$$

$$\alpha = e_2^2 = \frac{3 \pm \sqrt{5}}{2}$$

$$e_2^2 + \frac{a^2}{b^2} e_2^2 = 1$$

$$e_2^2 \left(1 + \frac{a^2}{b^2} \right) = 1$$

$$e_2^2 \left(1 + \frac{1}{1-e_2^2} \right) = 1$$

$$e_2^2 (1 - e_2^2 + 1) = 1 - e_2^2$$

Q.

If a tangent of slope $\frac{1}{3}$ of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ ($a > b$) is normal to the circle $x^2 + y^2 + 2x + 2y + 1 = 0$

$(-1, -1)$

$$m = \frac{1}{3}$$

A ✓ maximum value of ab is $\frac{2}{3}$

B ✓ $a \in \left(\sqrt{\frac{2}{5}}, 2\right)$

C $a \in \left(\frac{2}{3}, 2\right)$

D ✗ maximum value of ab is 1

$$e^2 = \frac{10}{9} - \frac{4}{9a^2} < 1$$

$(-1, -1)$

$$* y = \frac{1}{3}x \pm \sqrt{\frac{a^2}{9} + b^2}$$

$$-1 = -\frac{1}{3} \pm \sqrt{\frac{a^2}{9} + b^2}$$

$$+\frac{2}{3} = \pm \sqrt{\frac{a^2}{9} + b^2}$$

Eqn

$$\frac{4}{9} = \frac{a^2}{9} + b^2$$

$$\div a^2$$

$$\frac{4}{9a^2} = \frac{1}{9} + \frac{b^2}{a^2}$$

$$\# \quad \frac{a^2}{9}, b^2 \rightarrow AM > GM$$

$$\frac{a^2}{9} + b^2 \geq \sqrt{\frac{a^2 b^2}{9}}$$

$$3g(2) \geq \frac{ab}{3}$$

$$\boxed{\frac{2}{3} \geq ab}$$

$a, b \in +ve.$

$$0 < \frac{10}{9} - \frac{4}{9a^2} < 1$$

$$\frac{4}{9a^2} < \frac{10}{9}$$

$$\frac{4}{10} < a^2$$

\Downarrow

$$\frac{2}{5} < a^2$$

$$a^2 - \frac{2}{5} > 0$$

$$(a - \sqrt{\frac{2}{5}})(a + \sqrt{\frac{2}{5}}) > 0$$

$$\frac{10}{9} - 1 < \frac{4}{9a^2}$$

$$\frac{1}{9} < \frac{4}{9a^2}$$

$$a^2 < 4$$

$$a^2 - 4 < 0$$

$$(a-2)(a+2) < 0$$

$$\# a \in \left(\sqrt{\frac{2}{5}}, 2 \right)$$

Q. If two concentric ellipses be such that the foci of one be on the other and if $\frac{\sqrt{3}}{2}$ and $\frac{1}{\sqrt{2}}$ be their eccentricities. Then angle between their axes is

- A** $\cos^{-1} \sqrt{\frac{2}{3}}$
- B** $\cos^{-1} \frac{2}{3\sqrt{3}}$
- C** $\cos^{-1} \frac{1}{\sqrt{6}}$
- D** $\cos^{-1} \frac{\sqrt{2}}{3}$

$$\left. \begin{array}{l} \# f_1S_1 + f_1S_2 = 2a \\ \# f_1S_1 + S_1f_2 = 2p \end{array} \right\} \Rightarrow a = p$$

$$\# \cos^2 \theta = \frac{2}{3} \Leftarrow + \frac{3 \cos^2 \theta}{2} = +1$$

$$\frac{\alpha - 0}{\cos \theta} = \frac{\beta - 0}{\sin \theta} = + p e_1$$

$$\left. \begin{array}{l} \alpha = p e_1 \cos \theta \\ \beta = p e_1 \sin \theta \end{array} \right\}$$

Put f_1

dies on $E_1 = \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

$$\frac{p^2 e_1^2 \cos^2 \theta}{a^2} + \frac{p^2 e_1^2 \sin^2 \theta}{b^2} = 1$$

$$\frac{1}{2} \cos^2 \theta + \frac{1}{4} \left(\frac{1}{e}\right) \sin^2 \theta = 1 \Rightarrow \frac{\cos^2 \theta}{2} + 2(1 - \cos^2 \theta) = 1$$

$$\# e_1 = \frac{\sqrt{3}}{2} \Rightarrow e_1^2 = 1 - \frac{b^2}{a^2}$$

$$e_2 = \frac{1}{\sqrt{2}}$$

$$p = a$$

$$\left(\frac{b^2}{a^2} = 1 - \frac{3}{4} = \frac{1}{4} \right)$$

$$\frac{b^2}{a^2} = \frac{1}{4} \Rightarrow \frac{a^2}{b^2} = 4$$

PROPERTIES OF ELLIPSE

✓ P-1: Locus of foot of perpendicular drawn from foci on any tangent is Auxiliary Circle.

✓ P-2: Product of lengths of perpendiculars from foci on Tangent is always constant & equals to (semi-minor axis)²

$$\# p_1 p_2 = (\text{semi-minor axis})^2$$

P-3: Portion of tangent intercepted between point of contact and directrix subtend 90° at corresponding focus.

$$\text{(-1)} = \frac{b^2}{-a^2(1-e^2)} \in \frac{b \sin \theta}{a(\cos \theta - e)} \cdot \frac{e}{a(1-e^2)} \times \frac{b}{\sin \theta} \cdot \frac{(e-\cos \theta)}{e}$$

Proof:

$T_P :$

$$\frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$$

$$x = \frac{a}{e}, y = \frac{b \sin \theta}{\cos \theta - e}$$

$$\frac{x \cos \theta}{\frac{a}{e}} + \frac{y \sin \theta}{b} = 1$$

$$y \frac{\sin \theta}{b} = 1 - \frac{\cos \theta}{e}$$

$$y = \frac{b}{\sin \theta} \left(\frac{e - \cos \theta}{e} \right)$$

$$m_{PS_1} = \frac{b \sin \theta}{\frac{b}{\sin \theta} \left(\frac{e - \cos \theta}{e} \right) - ae}$$

$$m_{S_1 Q_1} = \frac{y}{\left(\frac{a}{e} - ae \right)}$$

$$\Rightarrow \frac{b \sin \theta}{a(\cos \theta - e)} \times \frac{ye}{a(1-e^2)}$$

P-4: Chord of contact corresponding to any point on directrix always passes through corresponding focus.

Note: If focus is Pole then Directrix is Polar.

(i) **P-5: Tangent and Normal at any point P bisects the angle between focal distances (PS_1 & PS_2).**

(ii) **Image of focus in any tangent lies on line joining point of contact & other focus.**

* Proof :

angle bisector of $\angle P$

$$\text{eqn: } \frac{ax}{\cos\theta} - \frac{by}{\sin\theta} = a^2 e^2$$

To prove :

$$\frac{S_2 Q}{S_1 Q} = \frac{PS_2}{PS_1}$$

$$\text{LHS} = \frac{S_2 Q}{S_1 Q} = \frac{ae^2 \cos\theta + ae}{ae - ae^2 \cos\theta} = \cancel{ae} \frac{(e \cos\theta + 1)}{\cancel{ae} (1 - e \cos\theta)}$$

$$\begin{aligned} Q (\gamma=0) \Rightarrow \text{RHS} &= \frac{PS_2}{PS_1} = \frac{e \left(\frac{a}{e} + a \cos\theta \right)}{e \left(\frac{a}{e} - a \cos\theta \right)} \\ &= \left(\frac{1 + e \cos\theta}{1 - e \cos\theta} \right) \end{aligned}$$

same
H.H.P.P.

REFLECTION PROPERTY:

Any ray passing through one focus, after reflection from Ellipse passes from another focus.

P-6: Circle with focal distance as diameter touches auxiliary circle.

Proof:

To prove:

$$\# C_1C_2 = a - r_1$$

NOTE :-

$PA \cdot PB = PT^2$
= (Power of point P)
= (point P ke coord. circle
ki eqn mein put kro.)

P-7: If the normal at any point P on the ellipse with centre C meet the major and minor axes in G & g respectively, and if CF be perpendicular upon this normal, then

- (i) $PF \cdot PG = b^2$
 (iii) $PG \cdot Pg = SP \cdot S'P$

- (ii) $PF \cdot Pg = a^2$
 (iv) $CG \cdot CT = CS^2$

$$\# b^2 = b^2(c^2\theta + s^2\theta)$$

(where T is the point where Tangent at P cuts major axis)

(i) Proof : Circle with C & Q as dia. \therefore

$$x(x - ae^2 \cos \theta) + y^2 = 0$$

$$x^2 + y^2 - (ae^2 \cos \theta)x = 0$$

$$PF \cdot PG = \left(\text{power of point } P \right) = s_1$$

$$= (a \cos \theta)^2 + (b \sin \theta)^2 - (ae^2 \cos \theta)a \cos \theta$$

$$a^2 c^2 \theta + b^2 s^2 \theta$$

$$a^2 c^2 (1 - e^2) + b^2 s^2 \theta$$

$$a^2 c^2 + b^2 s^2 \theta - a^2 e^2 c^2 \theta$$

$$(a \cos \theta)^2 + (b \sin \theta)^2 - (ae^2 \cos \theta)a \cos \theta$$

P-7: If the normal at any point P on the ellipse with centre C meet the major and minor axes in G & g respectively, and if CF be perpendicular upon this normal, then

- (i) $PF \cdot PG = b^2$
- (iii) $PG \cdot Pg = SP \cdot S'P$

- ~~(ii)~~ $\checkmark PF \cdot Pg = a^2$
- (iv) $CG \cdot CT = CS^2$

(where T is the point where Tangent at P cuts major axis)

Summary

$$\# \quad PG \cdot PF = b^2$$

$$\# \quad Pg \cdot Pf = a^2$$

P-7: If the normal at any point P on the ellipse with centre C meet the major and minor axes in G & g respectively, and if CF be perpendicular upon this normal, then

(i) $PF \cdot PG = b^2$

(iii) $\underline{PG \cdot Pg = SP \cdot S'P}$

(ii) $PF \cdot Pg = a^2$

(iv) $\checkmark CG \cdot CT = CS^2$

(where T is the point where Tangent at P cuts major axis)

P-8: If tangent at point P meets axes of standard ellipse at T & t and CY is perpendicular on it from centre then :

(i) $(Tt)(PY) = a^2 - b^2$

(ii) Least value of $(Tt) = (a + b)$

*** (iii) Maximum distance of normal from centre = $(a - b)$

already
done.

$$\left| \frac{CF}{\max.} \right| = \frac{a^2 - b^2}{\sqrt{a^2 \sec^2 \theta + b^2 \operatorname{cosec}^2 \theta}} \Bigg|_{\min.} = \frac{a^2 - b^2}{a + b}$$

$T_P : \frac{x \cos \theta}{a} + \frac{y \sin \theta}{b} = 1$

$T = (a \sec \theta, 0)$

$t = (0, b \operatorname{cosec} \theta)$

$Tt = \sqrt{a^2 \sec^2 \theta + b^2 \operatorname{cosec}^2 \theta} \Bigg|_{\min.} = (a + b)$

$= (a^2 - b^2) \sqrt{a^2 \sec^2 \theta + b^2 \operatorname{cosec}^2 \theta}$

$CF \cdot Tt = a^2 - b^2$

$PY = \left| \frac{- (a^2 - b^2)}{\sqrt{a^2 \sec^2 \theta + b^2 \operatorname{cosec}^2 \theta}} \right|$

P-09 :

$$\begin{aligned}\text{Area of ellipse} &= \pi a b \\ &= \pi (\text{semi-Major})(\text{semi-Minor})\end{aligned}$$

Note:

If any **general circle** intersect standard ellipse at 4 points

(say : $A(\theta_1)$, $B(\theta_2)$, $C(\theta_3)$ & $D(\theta_4)$)

then $\theta_1 + \theta_2 + \theta_3 + \theta_4 = 2n\pi$

$$\tan\left(\frac{\theta_1}{2} + \frac{\theta_2}{2} + \frac{\theta_3}{2} + \frac{\theta_4}{2}\right) = \frac{s_1 - s_3}{1 - s_2 + s_4}$$

$$S_1 = S_3 = 0 \Leftrightarrow \left(\tan\frac{\theta_1}{2}, \tan\frac{\theta_2}{2}, \tan\frac{\theta_3}{2}, \tan\frac{\theta_4}{2}\right)$$

form a
Biquadrat

$$(\cos \theta \& \sin \theta) \rightarrow \tan \theta$$

$$\tan \frac{\theta}{2}$$

Q.

An ellipse is with major axis = $2a$, minor axis = $2b$ is sliding between coordinate axes, then find locus of centre & focii of ellipse

CHALLENGER#H.W.

HYPERBOLA

BASICS OF HYPERBOLA

Definition: For Hyperbola $e > 1$

For second degree Equation: $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$

Condition: $\Delta \neq 0, h^2 > ab$

STANDARD HYPERBOLA

Focus on X-axis & Directrix parallel to Y-axis.

$$\# \quad \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \quad \# b^2 = a^2(e^2 - 1)$$

$$\# PS = e PM$$

$$PS^2 = e^2 PM^2$$

$$(x - ae)^2 + y^2 = e^2 \left(x - \frac{a}{e} \right)^2$$

$$y^2 + x^2 + \cancel{a^2 e^2} - 2ae/x = e^2 x^2 + a^2 - \cancel{2ae/x}$$

$$x^2 - e^2 x^2 + y^2 = a^2 - a^2 e^2$$

$$(1 - e^2)x^2 + y^2 = a^2(1 - e^2)$$

$$\frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} = 1 \quad b^2$$

Very Important BAAT :

Ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

Hyperbola

$$b^2 \rightarrow (-b^2)$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

- # “Many results” of ellipse can be converted into results for Hyperbola by replacing b^2 by $(-b^2)$

Draw:

$$\# \boxed{\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1}$$

$$\# \frac{x^2}{a^2} - 1 = \boxed{\frac{y^2}{b^2}}$$

RHS ≥ 0 .

Symm. w.r.t.
x-axis
&
y-axis.

P.O.I. with x-axis:

$$\text{Put: } \boxed{y=0}$$

$$\frac{x^2}{a^2} = 1 \Rightarrow x = \pm a.$$

P.O.I. with y-axis:

$$\boxed{x=0}$$

$$-\frac{y^2}{b^2} = 1 \Rightarrow \boxed{y^2 = -b^2} \Rightarrow \emptyset.$$

$$(x-a)(x+a) \geq 0.$$

$$x \in (-\infty, -a] \cup [a, \infty)$$

#

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

intersects x-axis but not y-axis.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

intersects y-axis but not x-axes.

"Bada-chota"
HB X

COMPLETE HYPERBOLA

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Foci: $S_1 \& S_2 \equiv (\pm ae, 0)$

Directrices: $x = \pm \frac{a}{e}$

Vertices: $A' \& A \equiv (\pm a, 0)$

Axes / Principle Axes:

Centre: P.O.I. of T.A. & C.A. ($C \equiv (0,0)$)

Focal Length: $SS_1 = 2ae$.

Transverse axis
 $AA = 2a$

Conjugate Axis

\perp to T.A. &
passing thru
centre.

$BB' = 2b$

ECCENTRICITY & LATUS RECTUM

$$\# b^2 = a^2 (e^2 - 1)$$

$$\hookrightarrow \frac{b^2}{a^2} = e^2 - 1$$

$$\# 1 + \frac{b^2}{a^2} = e^2$$

$$e^2 = 1 + \left(\frac{2b}{2a} \right)^2$$

$$\hookrightarrow e^2 = 1 + \left(\frac{\text{C.A.}}{\text{T.A.}} \right)^2$$

$$\# d.R. = \frac{2b^2}{a}$$

$$d.R. = \frac{(\text{C.A.})^2}{(\text{T.A.})}$$

OR

$$d.R. = 2e (\text{distance b/w focus \& corresponding directrix})$$

distance b/w S & CD directix
 $= ae - \frac{a}{e}$

Ex. Find 'e' & draw diagram of following:

(i) $\frac{x^2}{9} - \frac{y^2}{4} = 1$

(ii) $\frac{x^2}{4} - \frac{y^2}{9} = 1$

(iii) $\frac{x^2}{9} - \frac{y^2}{4} = -1$

$$-\frac{x^2}{9} + \frac{y^2}{4} = 1 \quad (1)$$

(iv) $\frac{x^2}{4} - \frac{y^2}{9} = -1$

$$-\frac{x^2}{4} + \frac{y^2}{9} = 1$$

T.A. = 6 # C.A. = 4

$$\alpha R = \frac{(4)^2}{6} = \frac{16}{6} = \frac{8}{3}$$

$$e^2 = 1 + \left(\frac{4}{6}\right)^2 = 1 + \frac{4}{9}$$

$$\# e^2 = \frac{13}{9} \Rightarrow e = \sqrt{\frac{13}{9}}$$

TA = 4, CA = 6

$$\# e^2 = 1 + \left(\frac{6}{4}\right)^2 = 1 + \left(\frac{3}{2}\right)^2 = 1 + \frac{9}{4} = \frac{13}{4} \Rightarrow e = \sqrt{\frac{13}{4}}$$

$$\alpha R = \frac{(6)^2}{9} = \frac{36}{9} = 4.$$

TA = 4, CA = 6

$$\hookrightarrow e = \sqrt{\frac{13}{4}}, \alpha R = 4.$$

TA = 6, CA = 4

$$e^2 = 1 + \frac{4}{9} = \frac{13}{9} \Rightarrow \sqrt{\frac{13}{9}} = e$$

$$\alpha R = 2 \left(\frac{4}{3} \right) = \frac{8}{3}.$$

ANOTHER HYPERBOLA

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$e^2 = 1 + \left(\frac{2a}{2b}\right)^2$$

$$e^2 = 1 + \frac{a^2}{b^2}$$

Vertices = B & B'
 $\hookrightarrow (0, \pm b)$

Axes :-
 $T.A. = BB' = 2b$

$CA = AA' = 2a$.

$e^2 = 1 + \frac{a^2}{b^2}$

$dR = \frac{2a^2}{b}$

Directrix $\Rightarrow y = \pm \frac{b}{e}$

Foci = $(0, \pm be)$

HYPERBOLA & CONJUGATE HYPERBOLA

Directrices:

Foci:

Vertices:

Principle Axes:

Centre:

Focal Length:

Eccentricity:

Latus Rectum:

Hyperbola

$$x = \pm \frac{a}{e}$$

$$(\pm ae, 0)$$

$$(\pm a, 0)$$

$$T.A. = 2a, C.A = 2b$$

$$(0, 0)$$

Conjugate Hyperbola

$$y = \pm \frac{b}{e}$$

$$(0, \pm be)$$

$$(0, \pm b)$$

$$T.A. = 2b, C.A = 2a$$

$$(0, 0)$$

$$2be$$

$$e_1^2 = 1 + \frac{b^2}{a^2}$$

$$LR = \frac{2b^2}{a}$$

$$e_2^2 = 1 + \frac{a^2}{b^2}$$

$$LR = \frac{2a^2}{b}$$

Important Results: (HB & CHB)

Result-01 : The foci of a hyperbola and its conjugate are concyclic and form the vertices of square.

Result-02 : If e_1 & e_2 are eccentricities of hyperbola and its conjugate then :

$$\frac{1}{e_1^2} + \frac{1}{e_2^2} = 1$$

$$e_1^2 = \frac{a^2 + b^2}{a^2}$$

$$e_2^2 = \frac{a^2 + b^2}{b^2}$$

$$\frac{a^2}{a^2 + b^2} + \frac{b^2}{a^2 + b^2}$$

FOCAL DIRECTRIX PROPERTY

$$\# PS = e PM$$

$$= e \left(x_1 - \frac{a}{e} \right) = ex_1 - a$$

$$\# PS' = e PN.$$

$$= e \left(x_1 + \frac{a}{e} \right) = ex_1 + a.$$

$$\# PS' - PS = (ex_1 + a) - (ex_1 - a)$$

$$\boxed{PS' - PS = 2a}$$

(independent of x_1)

SECOND DEFINITION OF HB

Locus of point which moves such that difference of its distances from two fixed points is constant.

“foci of H.B.” “length of Transverse axis”

Ex. Show that locus of centre of a variable circle which touches two fixed non-intersecting circles externally is hyperbola.

and one doesn't lie inside other.

$$\# CC_1 = r_1 + r$$

$$\# CC_2 = r_2 + r$$

$$CC_2 - CC_1 = r_2 - r_1$$

↳ const.

H.B.
=

$c_1 \& c_2 = \text{foci}$

$$T.A. = (r_2 - r_1)$$

Ex. If HB : $\frac{x^2}{b^2} - \frac{y^2}{a^2} = 1$ passes through three foci of E : $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ then find 'e'

of both.

x-axis intersect

$$(\pm b, 0)$$

$$\text{foci} \equiv S_1 + S_2$$

$$ae_1 = b$$

$$e_1 = \frac{b}{a} = \frac{1}{\sqrt{2}}$$

$$\begin{aligned} \# e_2^2 &= 1 + \frac{b^2}{a^2} \\ &= 1 + \left(\frac{1}{\sqrt{2}}\right)^2 \\ &= 1 + \frac{1}{2} \\ e_2^2 &= \frac{3}{2} \Rightarrow e_2 = \sqrt{\frac{3}{2}} \end{aligned}$$

$$\# e_1^2 = 1 - \frac{b^2}{a^2}$$

$$e_1^2 = 1 - e_1^2$$

$$2e_1^2 = 1$$

$$e_1^2 = \frac{1}{2}$$

$$e_1 = \frac{1}{\sqrt{2}}$$

Ex. If E: $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ & $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ are confocal then find $b^2 = ?$

?

Same foc.

H.W.
=

Ex. Find the equation of the hyperbola whose eccentricity is $\sqrt{2}$ and the distance between the foci is 16, taking transverse and conjugate axes of the hyperbola as x and y-axes respectively.

H.W.
=

Ex. Find e of conic whose parametric equation

$$x = \frac{e^t + e^{-t}}{2} \quad \& \quad y = \frac{e^t - e^{-t}}{3}, \quad t \in \mathbb{R}$$

H.W.

TODAY's HOMEWORK

MODULE ELLIPSE

Exercise – II (ALMCQ) – COMPLETE

THANK YOU

to all future IITians

PRAYAS 2.0

FOR IIT - JEE 2023

COORDINATE GEOMETRY

HYPERBOLA

LEC – 02

Physics Wallah

SACHIN JAKHAR

TODAY's GOAL

- # Auxiliary Circle & Parametric Point
- # Position of Point w.r.to HB
- # Line & Hyperbola
- # Equation of Tangent & Normal

LAST CLASS

Properties of Ellipse:

↳ Reflection Prop. :

Introduction to Hyperbola:

$$\# \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$S(\pm ae, 0)$$

↳ intersects x-axis but not y-axis

$$e^2 = 1 + \frac{b^2}{a^2} \quad dR = \frac{2b^2}{a}$$

A, B → A.C.

$$\# \# p_1 p_2 = (\text{semi-minor})^2$$

$$\# \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

$$e^2 = 1 + \frac{a^2}{b^2}$$

$$dR = \frac{2a^2}{b} \quad S(0, \pm be)$$

$$Tt \cdot PM = a^2 - b^2$$

Q.

An ellipse is with major axis = $2a$, minor axis = $2b$ is sliding between coordinate axes, then find **locus of centre** & **focii of ellipse** ?

(i)

(0, 0) lies on D.C. of ellipse.

$$(i) \# s_1 s_2^2 = (\alpha a e)^2 \quad \# k_1 k_2 = b^2$$

$$\# h_1 h_2 = b^2$$

$$(h_2 - h_1)^2 + (k_2 - k_1)^2 = 4a^2 e^2$$

$$h_2 = \frac{b^2}{h_1} \quad \& \quad k_2 = \frac{b^2}{k_1}$$

$$\left(\frac{b^2}{h_1} - h_1 \right)^2 + \left(\frac{b^2}{k_1} - k_1 \right)^2 = 4a^2 \left(1 - \frac{b^2}{a^2} \right)$$

CHALLENGER

$$\text{eqn: } (x-h)^2 + (y-k)^2 = (\sqrt{a^2+b^2})^2$$

Pass (0, 0)

$$h^2 + k^2 = a^2 + b^2$$

$$x^2 + y^2 = a^2 + b^2$$

$h_1 \rightarrow x$
 $k_1 \rightarrow y$

Ex. If E: $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ & $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ are **confocal** then find $b^2 = ?$

$$\# e^2 = 1 - \frac{b^2}{16}$$

$$\text{foci} = (\pm ae, 0)$$

$$ae = 3.$$

$$4\sqrt{1 - \frac{b^2}{16}} = 3$$

$$4\sqrt{16 - b^2} = 3 \Rightarrow 16 - b^2 = 9$$

$$a^2 \left(\frac{144}{25} \right) - \left(\frac{81}{25} \right) = 1$$

$$\# e = \frac{5}{4} \Leftarrow e = \frac{15}{12}$$

$$\text{foci} = \left(\pm \frac{12}{5} \times \frac{5}{4}, 0 \right)$$

$$= (\pm 3, 0)$$

$$\boxed{4 = b^2}$$

↑

$$e^2 = 1 + \frac{\frac{81}{25}}{\frac{144}{25}} = 1 + \frac{81}{144}$$

$$e^2 = \frac{225}{144}$$

Ex. Find the equation of the hyperbola whose eccentricity is $\sqrt{2}$ and the distance between the foci is 16, taking transverse and conjugate axes of the hyperbola as x and y-axes respectively. ?

$$\# 2ae = 16, e = \sqrt{2}$$

$$\hookrightarrow 2a(\sqrt{2}) = 16 \rightarrow a = 4\sqrt{2}$$

$$\# \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{x^2}{32} - \frac{y^2}{32} = 1$$

$$\frac{x^2}{32} - \frac{y^2}{32} = 1 \quad \text{or} \quad \frac{y^2}{32} - \frac{x^2}{32} = 1$$

$$e^2 = 1 + \frac{b^2}{a^2}$$

$$e^2 = 1 + \frac{b^2}{a^2}$$

$$a^2 = b^2$$

$$1 = \frac{b^2}{a^2}$$

Ex. Find e of conic whose parametric equation

$$x = \frac{e^t + e^{-t}}{2} \quad \& \quad y = \frac{e^t - e^{-t}}{3}, \quad t \in \mathbb{R}$$

$$2x = e^t + \frac{1}{e^t}$$

\Downarrow
89.

$$4x^2 = \left(e^{2t} + \frac{1}{e^{2t}}\right) + 2$$

\Downarrow

$$4x^2 = (9y^2 + 2) + 2 \Rightarrow 4x^2 - 9y^2 = 4$$

$$3y = e^t - \frac{1}{e^t}$$

\Downarrow
89.

$$9y^2 = \left(e^{2t} - \frac{1}{e^{2t}}\right) - 2$$

$$\# \quad \frac{x^2}{1} - \frac{y^2}{(\frac{4}{9})} = 1$$

$$e^2 = 1 + \frac{(\frac{4}{9})}{1} = \frac{13}{9}$$

$$e = \sqrt{\frac{13}{9}}$$

?

Q.

Let $H : \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ where $a > b > 0$, be a hyperbola in the xy-plane whose conjugate axis LM subtends an angle of 60° at one of its vertices N. Let the area of the triangle LMN be $4\sqrt{3}$.

List-I

- A** The length of the conjugate axis of H is
S $\hookrightarrow 2b = 4$.
- B** The eccentricity of H is
R
- C** The distance between the foci of H is
P $\hookrightarrow 2ae = 2(2\sqrt{3})\frac{2}{\sqrt{3}} = 8$
- D** The length of the latus rectum of H is
Q $\frac{2b^2}{a} = \frac{2(4)}{2\sqrt{3}} = \frac{4}{\sqrt{3}}$

[JEE (Adv.)-2018 (Paper-1)]

List-II

- P** 8
- Q** $\frac{4}{\sqrt{3}}$
- R** $\frac{2}{\sqrt{3}}$
- S** 4

$$\# \text{ar}(\Delta LMN) = 4\sqrt{3}.$$

$$\cancel{\frac{1}{2}} (2b)a = 4\sqrt{3}$$

$$ab = 4\sqrt{3}$$

$$\cancel{a} \left(\frac{a}{\sqrt{3}} \right) = 4\sqrt{3} \Rightarrow \boxed{a^2 = 12}$$

$$\tan 30^\circ = \frac{b}{a}$$

$$\frac{1}{\sqrt{3}} = \frac{b}{a}$$

$$\frac{a}{\sqrt{3}}$$

$$= b \rightarrow b = \frac{a\sqrt{3}}{\sqrt{3}}$$

$$\boxed{b=2}$$

$$\begin{aligned} e^2 &= 1 + \frac{9}{12} \\ &= 1 + \frac{1}{3} = \frac{4}{3} \end{aligned}$$

$$\# e = \frac{2}{\sqrt{3}}$$

Q. If second degree equations $(x - 1)^2 + (y - 2)^2 = \alpha(2x + y - 1)^2$ and $|\sqrt{(x - 1)^2 + (y - 2)^2} - \sqrt{(x - x_1)^2 + (y - y_1)^2}| = k^2$ represent same conic then find (x_1, y_1) , α & k . ($\alpha = 3$; given) ?

$(x-1)^2 + (y-2)^2 = 5\alpha \left(\frac{2x+y-1}{\sqrt{5}} \right)^2$

$|PS_1 - PS_2| = k^2$

Good Ques.

$PS^2 = e^2 (PM)^2$

Hyperbola.

$S(1, 2)$, $e^2 = 5\alpha$, $D: 2x + y - 1 = 0$

$S_1(1, 2)$
* $S_2(x_1, y_1)$

Transverse axis = $k^2 = 2a$

$k^2 = \frac{3\sqrt{3}}{7}$

$a e - \frac{a}{e} = \left(\frac{2(1)+2-1}{\sqrt{5}} \right)$

$a \left(\frac{e^2 - 1}{e} \right) = \frac{3}{\sqrt{5}} \rightsquigarrow a \left(\frac{15-1}{\sqrt{3}\sqrt{5}} \right) = \frac{3}{\sqrt{5}} \Rightarrow 14a = 3\sqrt{3}$

$a = \frac{3\sqrt{3}}{14}$

$$\# \quad \partial x + y - 1 = 0$$

$$\curvearrowright m = -2$$

$$\curvearrowleft m = \tan \theta = \frac{1}{2}$$

$$\begin{aligned} \# \quad a &= \frac{3\sqrt{3}}{19} \\ \# \quad e &= \sqrt{15} \end{aligned} \quad \left. \right\}$$

$$\# \quad \frac{x_1 - 1}{\cos \theta} = \frac{y_1 - 2}{\sin \theta} = \pm \sqrt{-2ae}$$

$$\curvearrowright (x_1, y_1)$$

∂ values

(find correct one.)

SHIFTED HYPERBOLA

Ex. Find everything for Hyperbola : $9x^2 - 16y^2 - 72x + 96y - 144 = 0$

$$e^2 = 1 + \frac{9}{16} = \frac{25}{16} \quad \left(e = \frac{5}{4} \right)$$

$$\Rightarrow \begin{cases} a = 4 \\ b = 3 \end{cases} \quad \left\{ \rightarrow ae = 5 \right.$$

C.R. $aR = \frac{2(9)}{4} = \frac{9}{2}$

$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Shift $\frac{(x-4)^2}{16} - \frac{(y-3)^2}{9} = 1$

$$9(x^2 - 8x) - 16(y^2 - 6y) = 144$$

$$9(x^2 - 8x + 16 - 16) - 16(y^2 - 6y + 9 - 9) = 144$$

$$9(x-4)^2 - 144 - 16(y-3)^2 + 144 = 144$$

$$9(x-4)^2 - 16(y-3)^2 = 144$$

EQUILATERAL / RECTANGULAR HYPERBOLA

If length of conjugate axis and transverse axis equal then hyperbola is called as **Rectangular/Equilateral** hyperbola.

If $a = b$ $\Rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

$a = b$ $\Rightarrow x^2 - y^2 = a^2$

$e^2 = 1 + \frac{a^2}{a^2} \Rightarrow e^2 = 2$

$e = \sqrt{2}$

POSITION OF POINT W.R.T TO HYPERBOLA

$$S_1 = \left(\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1 \right)$$

outside \Rightarrow -ve

on \Rightarrow zero

inside \Rightarrow +ve

$$S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} + 1$$

inside \rightarrow -ve

on \rightarrow '0'

outside \rightarrow +ve

AUXILIARY CIRCLE & PARAMETRIC POINT

Auxiliary Circle: Circle with transverse axis as diameter.

$\theta \equiv$ eccentric angle

Parametric eqn:

$$\begin{aligned} x &= a \sec \theta \\ y &= b \tan \theta \end{aligned}$$

Note:

Hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \Rightarrow$$

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \Rightarrow$$

Parametric Point

$$x = a \sec \theta, \quad y = b \tan \theta$$

$$x = a \tan \theta, \quad y = b \sec \theta$$

Line : $y = mx + c$

Hyperbola : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ → $c = \pm\sqrt{a^2m^2 - b^2}$

Hyperbola : $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ → $c = \pm\sqrt{b^2 - a^2m^2}$

Condition of Tangency

Note: Range of slope:

EQUATION OF TANGENT

1. SLOPE FORM: when slope of Tangent is given

Hyperbola

** $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ $\alpha \frac{x^2}{(-\alpha^2)} + \frac{y^2}{b^2} = 1$

$\frac{(x-\alpha)^2}{a^2} - \frac{(y-\beta)^2}{b^2} = 1$

Tangent with slope 'm'

$y = mx \pm \sqrt{a^2m^2 - b^2}$

$y = mx \pm \sqrt{b^2 - a^2m^2}$

$y - \beta = m(x - \alpha) \pm \sqrt{a^2m^2 - b^2}$

Cartesian Form :

$$\begin{cases} x_1 = a \sec \theta \\ y_1 = b + a \tan \theta \end{cases}$$

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$$

Parametric Form :

$$\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$$

Tangent at $P(x_1, y_1)$ on

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

Tangent from external point :

T in 'm' form

Passes
through point

'm' mein
quad.

DIRECTOR CIRCLE

Locus of the point of intersection of perpendicular tangents.

Equation of Director Circle :

$$x^2 + y^2 = a^2 - b^2$$

Important Note:

1. If ($a < b$) \Rightarrow No real D.C. (No \perp tangent exists)

2. If ($a = b$) \Rightarrow $x^2 + y^2 = 0$ \Rightarrow Point circle (centre of HB)
 ↘ Rectangular HB

3. If ($a > b$) \Rightarrow D.C. exists

4. For other HB :

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

$$x^2 + y^2 = b^2 - a^2$$

Circle with same centre.

Radius = $\sqrt{\left(\text{Semi}\right)^2 - \left(\text{T.A.}\right)^2}$

Q.

If $2x - y + 1 = 0$ is a tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{16} = 1$, Then which of the following cannot be sides of a right angled triangle?

[JEE (Adv.)-2017 (Paper-1)]

A $2a, 4, 1$

$$y = 2x + 1$$

B $a, 4, 1$

$$m = 2, c = 1 = + \sqrt{a^2(4) - 16}$$

$$1 = 4a^2 - 16 \Rightarrow 4a^2 = 17$$

$$a = \frac{\sqrt{17}}{2}$$

C $a, 4, 2$

$$\sqrt{17}, 4, 1 \quad \checkmark$$

D $2a, 8, 1$

$$\frac{\sqrt{17}}{2}, 4, 1 \quad \times$$

$$\frac{\sqrt{17}}{2}, 4, 2 \quad \times$$

Q.

Tangent are drawn to the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$, parallel to the straight line $2x - y = 1$. The point of contact of the tangents on the hyperbola are } $a^2 = 9, b^2 = 4$.

?

A ✓ $\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$

B ✗ $\left(-\frac{9}{2\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$

C $(3\sqrt{3}, -2\sqrt{2})$

D $(-3\sqrt{3}, 2\sqrt{2})$

$$y = 2x - 1 \Rightarrow m = 2.$$

[IIT-JEE-2012 (Paper-1)]

eg. : $y = 2x \pm \sqrt{9(2)^2 - 4}$

$y = 2x \pm 4\sqrt{2} \Rightarrow -2x + y = \pm 4\sqrt{2}$

$-\frac{x}{2\sqrt{2}} + \frac{y}{4\sqrt{2}} = 1$

$\frac{x}{9} - \frac{y}{4} = 1$

$\frac{x}{2\sqrt{2}} - \frac{y}{4\sqrt{2}} = 1$

Tangent at P : (x_1, y_1)

$\left(\frac{-9}{2\sqrt{2}}, \frac{-1}{\sqrt{2}}\right) \Leftarrow \frac{x_1}{9} = \frac{-1}{2\sqrt{2}} \& \frac{-y_1}{4} = \frac{1}{4\sqrt{2}}$

$\frac{1}{2\sqrt{2}} = \frac{x_1}{9}, \frac{y_1}{4} = \frac{1}{4\sqrt{2}}$

EQUATION OF NORMAL

1. Normal at Point $P(x_1, y_1)$: when point lies on Hyperbola

$$\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$$

(valid for both)

2. Parametric Form: {when point given in parametric form}

$$\begin{aligned} x_1 &= a \sec \theta \\ y_1 &= b \tan \theta \end{aligned}$$

$$\frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$$

$$\frac{ax}{\tan \theta} + \frac{by}{\sec \theta} = a^2 + b^2$$

3. Slope Form: when slope of Normal is given

$$y = mx \pm \frac{(a^2 + b^2)m}{\sqrt{a^2 - b^2 m^2}}$$

Ex.

If line $lx + my - n = 0$ is normal to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ then show that

$$\frac{a^2}{l^2} - \frac{b^2}{m^2} = \frac{(a^2+b^2)^2}{n^2}$$

?

$$\frac{l}{n} = \frac{a}{(a^2+b^2) \sec \theta}$$

$$\frac{m}{n} = \frac{b}{(a^2+b^2) \tan \theta}$$

$$\sec \theta = \frac{an}{l(a^2+b^2)}$$

$$\tan \theta = \frac{nb}{m(a^2+b^2)}$$

$$lx + my = n$$

Parametric form:

$$\# \frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$$

$$\left(\frac{a}{(a^2+b^2) \sec \theta} \right) x + \left(\frac{b}{(a^2+b^2) \tan \theta} \right) y = 1$$

$$\frac{a^2 n^2}{l^2 (a^2+b^2)^2} - \frac{n^2 b^2}{m^2 (a^2+b^2)^2} = 1$$

$$\left(\frac{l}{n} \right) x + \left(\frac{m}{n} \right) y = 1$$

HHPP

Q.

Let $P(6, 3)$ be a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If the normal at the point P intersects the x -axis at $(9, 0)$, then the eccentricity of the hyperbola is

?

A

$$\sqrt{\frac{5}{2}}$$

B

$$\sqrt{\frac{3}{2}}$$

C

$$\sqrt{2}$$

D

$$\sqrt{3}$$

$$\begin{aligned} e^2 &= 1 + \frac{b^2}{a^2} \\ &= 1 + \frac{1}{2} = \frac{3}{2} \end{aligned}$$

eqn of N at P :

[IIT-JEE-2011 (Paper-2)]

$$\frac{a^2 x}{x_1} + \frac{b^2 y}{y_1} = a^2 + b^2$$

$$\frac{a^2 x}{6} + \frac{b^2 y}{3} = a^2 + b^2$$

(9, 0)

$$\frac{a^2(9)}{6} = a^2 + b^2$$

$$\frac{3a^2}{2} - a^2 = b^2$$

$$\begin{aligned} \frac{a^2}{2} &= b^2 \\ \frac{1}{2} &= \frac{b^2}{a^2} \end{aligned}$$

Q.

Let a and b be positive numbers such that $a > 1$ and $b < a$. Let P be a point in the first quadrant that lies on hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Suppose the tangent to the hyperbola at P passes through the point $(1, 0)$ and suppose the normal to the hyperbola at P cuts off equal intercepts on the coordinates axes. Let Δ denote the area of the triangle formed by the tangent at P , the normal at P and the x -axis. If e denotes the eccentricity of the hyperbola, then which of the following is/are TRUE?

A

$$1 < e < \sqrt{2}$$

C

$$\Delta = a^4$$

B

$$\sqrt{2} < e < 2$$

D

$$\Delta = b^4$$

A & D.

[JEE (Adv.)-2020 (Paper-2)]

$$\# e^2 = 1 + \frac{b^2}{a^2} = 1 + \frac{a^2 - 1}{a^2} = 1 + 1 - \frac{1}{a^2} = \left(2 - \frac{1}{a^2}\right)$$

$$1 < e^2 < 2$$

$$e^2 \begin{cases} \rightarrow 2 & \text{max.} \\ \rightarrow 1 & \text{min.} \end{cases}$$

m = -1

?

$$\# \text{ of } \begin{cases} x = 0 \\ y = 0 \end{cases} \text{ is } \frac{a \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$$

$$\# \quad \frac{\sec \theta}{a} = 1 \quad \Rightarrow \boxed{\sec \theta = a}$$

$$\sqrt{a^2 - b^2} = \alpha$$

$$l = \sqrt{a^2 - b^2}$$

$$l = a^2 - b^2$$

$$1+b^2=a^2$$

$$b^2 = a^2 - 1$$

$$\# \frac{ax}{\sec \theta} + \frac{by}{\tan \theta} = a^2 + b^2$$

$$m = -l = -\frac{a}{b} \sin \theta.$$

$$x = \frac{(a^2 + b^2)}{a} \sec\theta.$$

$$\left(\frac{b}{a} = \sin \theta \right) \rightarrow [0, 1] \rightarrow e^{\theta} = 1 + \sin^2 \theta \cdot e^2 \in [1, 2]$$

$$\Delta = \frac{1}{2} (MN)(PO) = \frac{1}{2} \left(\frac{a^2+b^2}{a} \sec(\theta - 1) \right) b \tan \theta$$

 Q.

Tangents are drawn to the hyperbola $x^2 - y^2 = a^2$ enclosing at an angle of 45° . Show that the locus of their point of intersection is $(x^2 + y^2)^2 + 4a^2(x^2 - y^2) = 4a^4$.

?

H.W.

Q.

Consider a branch of the hyperbola $x^2 - 2y^2 - 2\sqrt{2}x - 4\sqrt{2}y - 6 = 0$, with vertex at the point A. Let B be one of the end points of its rectum. If C is the focus of the hyperbola nearest to the point A. Then the area of the triangle ABC is

[IIT-JEE-2006 (Paper-2)]

21.0.

A $1 - \sqrt{\frac{2}{3}}$

B $\sqrt{\frac{3}{2}} - 1$

C $1 + \sqrt{\frac{2}{3}}$

D $\sqrt{\frac{3}{2}} + 1$

Q.

Let the eccentricity of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be reciprocal to that of the ellipse $x^2 + 4y^2 = 4$. If the hyperbola passes through a focus of the ellipse, then

[IIT-JEE-2011 (Paper-1)]

H.W.

A

The equation of the hyperbola $\frac{x^2}{3} - \frac{y^2}{2} = 1$

B

A focus of the hyperbola is $(2, 0)$

C

The eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$

D

The equation of the hyperbola is $x^2 - 3y^2 = 3$

Q.

Show that condition for two concentric ellipse $a_1x^2 + b_1y^2 = 1$ & $a_2x^2 + b_2y^2 = 1$ to intersect ORTHOGONALLY is $\frac{1}{a_1} - \frac{1}{a_2} = \frac{1}{b_1} - \frac{1}{b_2}$

?

Ellipse.

H.W.

TODAY's HOMEWORK

MODULE HYPERBOLA

- # Exercise – I (**TWQ**) – Ques: 1 to 18
- # Exercise – II (**LP**) – Ques: 1 to 10
- # Exercise – III (**ALMCQ**) – Ques: 1,2,3

THANK YOU

to all future IITians

PRAYAS 2.0

FOR IIT - JEE 2023

P
W

COORDINATE GEOMETRY

HYPERBOLA

LEC – 03

Physics Wallah

SACHIN JAKHAR

TODAY's GOAL

- # Chord & Focal Chord
- # Four Important Terms
- # Asymptotes & its Properties
- # OP-QP

Q.

Tangents are drawn to the hyperbola $x^2 - y^2 = a^2$ enclosing at an angle of 45° . Show that the locus of their point of intersection is $(x^2 + y^2)^2 + 4a^2(x^2 - y^2) = 4a^4$.

?

Tangent : $y = mx \pm \sqrt{a^2m^2 - a^2}$

Pass(h, k) $\rightarrow k - mh = \pm \sqrt{a^2m^2 - a^2}$

$\therefore k^2 + m^2 h^2 - 2hk m = a^2 m^2 - a^2$

$$(h^2 - a^2)m^2 - (2kh)m + k^2 + a^2 = 0$$

$$\tan(45^\circ) = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right|$$

$$\Rightarrow 1 = \left| \frac{\sqrt{4k^2h^2 - 4(h^2 - a^2)(k^2 + a^2)}}{h^2 - a^2 + k^2 + a^2} \right|$$

$$m_1 \quad m_2$$

$$\Rightarrow h^2 + k^2 = \sqrt{4k^2h^2 - 4h^2k^2 + 4a^2k^2 - 4a^2h^2 + 4a^4}$$

$$(h^2 + k^2)^2 = 4a^2(k^2 - h^2) + 4a^4$$

H.P.

NOTE

Q.

Consider a branch of the hyperbola $x^2 - 2y^2 - 2\sqrt{2}x - 4\sqrt{2}y - 6 = 0$, with vertex at the point A. Let B be one of the end points of its rectum. If C is the focus of the hyperbola nearest to the point A. Then the area of the triangle ABC is

?

- A** $1 - \sqrt{\frac{2}{3}}$
- B** $\checkmark \sqrt{\frac{3}{2}} - 1$
- C** $1 + \sqrt{\frac{2}{3}}$
- D** $\sqrt{\frac{3}{2}} + 1$

[IIT-JEE-2006 (Paper-2)]

$$\begin{aligned}
 & x^2 - 2\sqrt{2}x - 2(y^2 + 2\sqrt{2}y) = 6 \\
 \Rightarrow & (x^2 - 2\sqrt{2}x + 2 - 2) - 2(y^2 + 2\sqrt{2}y + 2 - 2) = 6 \\
 \downarrow & \\
 & (x - \sqrt{2})^2 - 2 - 2(y + \sqrt{2})^2 + 4 = 6
 \end{aligned}$$

$$\begin{aligned}
 & e^2 = \frac{3}{2} \\
 & e^2 = 1 + \frac{2}{4} \\
 & a = 2, b = \sqrt{2}
 \end{aligned}$$

$$\frac{(x - \sqrt{2})^2}{4} - \frac{(y + \sqrt{2})^2}{2} = 1$$

Q.

Let the eccentricity of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be reciprocal to that of the ellipse $x^2 + 4y^2 = 4$. If the hyperbola passes through a focus of the ellipse, then

$$\frac{x^2}{4} + \frac{y^2}{1} = 1 \quad e^2 = 1 - \frac{1}{4} = \frac{3}{4}$$

?

[IIT-JEE-2011 (Paper-1)]

A

The equation of the hyperbola $\frac{x^2}{3} - \frac{y^2}{2} = 1$

$$e_E = \frac{\sqrt{3}}{2} \Rightarrow e_H = \frac{2}{\sqrt{3}}$$

B ✓

A focus of the hyperbola is $(2, 0)$

QIBY!!

C

The eccentricity of the hyperbola is $\sqrt{\frac{5}{3}}$

D ✓

The equation of the hyperbola is $x^2 - 3y^2 = 3$

Q.

Show that condition for two concentric ellipse $a_1x^2 + b_1y^2 = 1$ & $a_2x^2 + b_2y^2 = 1$ to intersect **ORTHOGONALLY** is $\frac{1}{a_1} - \frac{1}{a_2} = \frac{1}{b_1} - \frac{1}{b_2}$

?

(at Point of intersection tangents are \perp .)

 E_1 :

$$\frac{x^2}{(1/a_1)} + \frac{y^2}{(1/b_1)} = 1 .$$

 E_2 :

$$\frac{x^2}{(1/a_2)} + \frac{y^2}{(1/b_2)} = 1 .$$

 (x_1, y_1)

$$a_1x_1^2 + b_1y_1^2 = 1 .$$

$$a_2x_1^2 + b_2y_1^2 = 1 .$$

Sub.

$$(a_1-a_2)x_1^2 + (b_1-b_2)y_1^2 = 0$$

$$\frac{x_1^2}{y_1^2} = -\frac{(b_1-b_2)}{(a_1-a_2)}$$

Given:

$$m_1 m_2 = -1$$

$$\left(-\frac{a_1 x_1}{b_1 y_1} \right) \times \left(-\frac{a_2 x_1}{b_2 y_1} \right) = -1 .$$

$\frac{a_1 a_2}{b_1 b_2} \left(\frac{x_1^2}{y_1^2} \right) = -1 .$

$\frac{a_1 a_2}{b_1 b_2} \left(-\frac{(b_1-b_2)}{(a_1-a_2)} \right) = +1$

$\frac{a_1 a_2}{b_1 b_2} \left(\frac{b_1 - b_2}{a_1 - a_2} \right) = 1 .$

$$\frac{b_1 - b_2}{b_1 b_2} = \frac{a_1 - a_2}{a_1 a_2}$$

$$\frac{1}{b_2} - \frac{1}{b_1} = \frac{1}{a_2} - \frac{1}{a_1}$$

HHPP.

CHORD & FOCAL CHORD

Equation of chord joining $P(\alpha)$ & $Q(\beta)$

$$\frac{x}{a} \cos\left(\frac{\alpha - \beta}{2}\right) - \frac{y}{b} \sin\left(\frac{\alpha + \beta}{2}\right) = \cos\left(\frac{\alpha + \beta}{2}\right)$$

If PQ is focal chord passing then $S_1(ae, 0)$

$$\tan \frac{\alpha}{2} \tan \frac{\beta}{2} = \frac{1-e}{1+e}$$

for focal chord.

Similarly for another focal chord AB

$R(r) \& S(s)$

\Downarrow

$S_2(-ae, 0)$

$$\tan \frac{r}{2} \tan \frac{s}{2} = \frac{1+e}{1-e}$$

$$\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{r}{2} \tan \frac{s}{2} = 1$$

Same as ellipse.

FOUR IMPORTANT TERMS

1. *Chord of Contact:* # $T_1 = 0$

2. *Chord with given midpoint:*

$$\# \quad T_1 = S_1$$

3. *Pair of Tangents:*

$$T_1^2 = S S_1$$

4. *Pole & Polar:*

$$\text{Polar} \Rightarrow T_1 = 0$$

NOTE :-

$$\# ax^2 + bx + c = 0$$

$x \rightarrow \frac{1}{x}$

$\frac{a}{x^2} + \frac{b}{x} + c = 0$

$$a + bx + cx^2 = 0$$

$$cx^2 + bx + a = 0$$

\downarrow

$a = 0$

If one root
is
at infinity

$\text{cond}^n. = a = 0$

Roots
↓
Reciprocal

$\frac{1}{\infty} \Rightarrow 0$

$$\# ax^2 + bx + c = 0$$

$x \rightarrow \frac{1}{x}$

$$cx^2 + bx + a = 0$$

\downarrow

$a = 0, b = 0$

Reciprocal

non-zero

Both roots at infinity $\Rightarrow 0x^2 + 0x + c = 0$

coeff of $x^2 = \text{coeff of } x = 0$

& constant term $\neq 0$

Asymptotes:

line which touches the curve at ' ∞ '

OR

Tangent at ' ∞ '

ASYMPTOTES

$$\text{HB: } \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

& line: $y = mx + c$

Solve: $\frac{x^2}{a^2} - \frac{(mx+c)^2}{b^2} = 1$

$$b^2x^2 - a^2m^2x^2 - a^2c^2 - 2cm a^2 x - a^2 b^2 = 0$$

$$(b^2 - a^2 m^2)x^2 - (2cm a^2)x - (a^2 c^2 + a^2 b^2) = 0$$

condⁿ:

$$b^2 - a^2 m^2 = 0$$

$$-2cm a^2 = 0$$

∞

$$-a^2(c^2 + b^2) \neq 0$$

$$\frac{b^2}{a^2} = m^2$$

$$m = \pm \frac{b}{a}$$

$$c = 0$$

$$-a^2 b^2 \neq 0$$

line: $y = mx + c \Rightarrow$ symp. $\Rightarrow y = (\pm \frac{b}{a})x$

PROPERTIES OF ASYMPTOTES

Property-01: *Hyperbola & Conjugate Hyperbola have same pair of asymptotes.*

Property-02: *Equation of Hyperbola, Conjugate Hyperbola & pair of Asymptotes only differs in constant part.*

Property-03: *Asymptotes passes through centre of HB and T.A. & C.A. are angle bisectors of angle between asymptotes.*

P-02 :- HB :-

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

CHB :-

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$$

P.O.A :-

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$$

Generalise :- (valid for every type of HB)

$$(eq^n. HB + eq^n. CHB) = 2(eq^n. P.O. Asym.)$$

P-03

Property-04: If angle between asymptotes is ' α ' then eccentricity $(e) = \sec\left(\frac{\alpha}{2}\right)$ ***

$$e^2 = 1 + \frac{b^2}{a^2} = 1 + \tan^2 \frac{\alpha}{2}$$

$$e^2 = \sec^2 \frac{\alpha}{2}$$

$$e = \sec \frac{\alpha}{2}$$

Property-05:

- (i) Portion of tangent intercepted between pair of asymptotes is bisected at point of contact.** (or midpoint of Q + R is P)

- (ii) Area of triangle formed by any tangent & pair of asymptotes is always constant & is equals to 'ab'** (or area (ΔOQR) = ab)

Proof :- T_P :-

$$\frac{x \sec \theta}{a} - \frac{y \tan \theta}{b} = 1$$

Q solve

$$y = \frac{b}{a}x$$

R solve

$$y = -\frac{b}{a}x$$

$$\Rightarrow \frac{x \sec \theta}{a} - \frac{b x \tan \theta}{a} = 1$$

$$\frac{x}{a} (\sec \theta - \tan \theta) = 1$$

$$x = \frac{a}{\sec \theta - \tan \theta} = a(\sec \theta + \tan \theta)$$

Lightbulb icon

$$\text{ar}(\Delta OQR) = \frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ a(s+t) & b(s+t) & 1 \\ a(s-t) & -b(s-t) & 1 \end{vmatrix} = \frac{1}{2} \begin{vmatrix} -ab(1) & -ab(1) \\ -2ab & 2 \end{vmatrix}$$

$$= \frac{1}{2} (-2ab) = -ab.$$

$$\# \Delta = ab.$$

Property-06: From any point on Hyperbola product of lengths of perpendicular drawn on asymptotes is always constant and is equals to $\left(\frac{a^2b^2}{a^2+b^2}\right) = p_1 p_2$

$$y = \frac{b}{a}x \Rightarrow bx - ay = 0$$

$$P(a \sec \theta, b \tan \theta)$$

$$y = -\frac{b}{a}x \Rightarrow bx + ay = 0$$

$$ab (\sec \theta - \tan \theta)$$

$$p_1 = \left\{ \frac{\text{base}(\sec \theta - \tan \theta)}{\sqrt{a^2 + b^2}} \right\}$$

$$p_2 = \left\{ \frac{\text{base}(\sec \theta + \tan \theta)}{\sqrt{a^2 + b^2}} \right\}$$

$$ab (\sec \theta + \tan \theta)$$

$$ab (\sec \theta - \tan \theta)$$

$$\frac{a^2 b^2}{a^2 + b^2}$$

H.P.

NOTE:

Ex.

Find centre, pair of asymptotes, equation of conjugate hyperbola for HB: $x^2 - 4y^2 - 3xy - 5x + 10y = 0$?

Oblique.

P.O. Asymp. \Rightarrow

$$x^2 - 4y^2 - 3xy - 5x + 10y + \lambda = 0$$

$$a=1, b=-4, c=\lambda, h=-\frac{3}{2}, g=-\frac{5}{2}, f=5.$$

POSL or POAs.

$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

$$x^2 - 4y^2 - 3xy - 5x + 10y + 6 = 0$$

$$x^2 - 4y^2 - 3xy - 5x + 10y + 12 = 0$$

Centre = point of int.

$$\# \begin{vmatrix} 1 & -\frac{3}{2} & -\frac{5}{2} \\ -\frac{3}{2} & -4 & 5 \\ -\frac{5}{2} & 5 & \lambda \end{vmatrix} = 0$$

CHB:

$$\left\{ \begin{array}{l} HB + CHB = 2 \text{ POAs.} \\ 0 + \mu = 2(6) \end{array} \right.$$

$$\mu = 12$$

$$1(-4\lambda - 25) + \frac{3}{2}\left(-\frac{3\lambda + 25}{2}\right) - \frac{5}{2}\left(\frac{-15 - 20}{2}\right) = 0.$$

$$\lambda = 6$$

 Ex.

Find equation & eccentricity of hyperbola whose equation of asymptotes are $x + y = 3$ & $x - 4y = 2$ and passes through $(5, 0)$. ?

H.W.

Ex. Find everything for hyperbola : $xy - 3y - 2x = 0$.

H.W.

TODAY's HOMEWORK

MODULE HYPERBOLA

- # Exercise – I (TWQ) – Ques: 1 to 18
 - # Exercise – II (LP) – Ques: 1 to 10
 - # Exercise – III (ALMCQ) – Ques: 1,2,3
-
- # IV-(PYQ) → Complete

THANK YOU

to all future IITians

PRAYAS 2.0

FOR IIT - JEE 2023

COORDINATE GEOMETRY

HYPERBOLA

LEC – 04

Physics Wallah

SACHIN JAKHAR

A simple white lightbulb icon with radiating lines, positioned in the top left corner.

TODAY's GOAL

- # Rectangular Hyperbola
 - # Properties / Highlights of Hyperbola
 - # OP-QP
-
- A dark, moody background featuring a desk lamp on the right and an open book at the bottom right.

LAST CLASS

Asymptotes:

→ Tangent at ' ∞ ' } $\rightarrow y = \pm \frac{b}{a}x$

Properties of Asymptotes:

① HB & CHB
↳ same Asy

② (T.A. & C.A) are AB's b/w asy

③ $e^m \div nH + CHB = 2(P.O.A)$

④ $\theta \Rightarrow e = \sec \frac{\theta}{2}$

⑤ $s^4 \cdot \ar(AABC) = ab.$

$\# P_1 P_2 = \frac{ab}{\sqrt{a^2 + b^2}}$

Property-07 :

The asymptotes of a hyperbola are the diagonals of the rectangle formed by the lines drawn through the extremities of each axis parallel to the other axis.

Remarks:

The point of intersection of tangents at ' θ ' and ' ϕ ' on the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ is}$$

$$\# R \left(\frac{a \cos\left(\frac{\theta - \phi}{2}\right)}{\cos\left(\frac{\theta + \phi}{2}\right)}, \frac{b \sin\left(\frac{\theta + \phi}{2}\right)}{\cos\left(\frac{\theta + \phi}{2}\right)} \right)$$

Ex. Find equation & eccentricity of hyperbola whose equation of asymptotes are $x + y = 3$ & $x - 4y = 2$ and passes through $(5, 0)$. ?

Pair of asymptotes:

$$(x+y-3)(x-4y-2) = 0$$

$$x^2 + xy - 3x - 4xy - 4y^2 + 12y - 2x - 2y + 6 = 0$$

$$x^2 - 4y^2 - 3xy - 5x + 10y + 6 = 0$$

eqn of HB $\therefore x^2 - 4y^2 - 3xy - 5x + 10y + \lambda = 0$

Pass $(5, 0)$

$$25 - 25 + \lambda = 0$$

$$\lambda = 0$$

$$e = \frac{\sqrt{29}}{2} \Leftarrow \frac{29}{4} = e^2 \quad \frac{25+4}{4} = e^2$$

$$\frac{25}{4} = e^2 - 1$$

$$\left. \begin{array}{l} a = 1 \\ b = -4 \\ h = -\frac{3}{2} \end{array} \right\} \Rightarrow \left(\frac{-3}{2} \right)^2 - (1)(-4)$$

$$\frac{9}{4} + 4 = \frac{25}{4} = h^2 - ab$$

Ex. Find equation & eccentricity of hyperbola whose equation of asymptotes are $x + y = 3$ & $x - 4y = 2$ and passes through $(5, 0)$.

$$\# \tan \theta = \frac{\frac{1}{4} - (-1)}{1 + \frac{1}{4}(-1)} = \frac{\frac{5}{4}}{\frac{5}{4}} = \frac{5}{3}$$

$$\cos \theta = \frac{3}{\sqrt{34}}$$

$$2 \cos^2 \frac{\theta}{2} - 1 = \frac{3}{\sqrt{34}}$$

$$2 \cos^2 \frac{\theta}{2} = 1 + \frac{3}{\sqrt{34}} = \frac{\sqrt{34} + 3}{\sqrt{34}}$$

$$\cos^2 \frac{\theta}{2} = \frac{\sqrt{34} + 3}{2\sqrt{34}}$$

$$e = \sec \frac{\theta}{2}$$

$$\# e = \sqrt{\frac{2\sqrt{34}}{\sqrt{34} + 3}}$$

Ex. Find everything for hyperbola : $xy - 3y - 2x = 0$.

H.B. \rightarrow P.O.A. $\rightarrow \Delta = 0 \rightarrow \lambda \checkmark$

$$\boxed{xy - 3y - 2x = 0} \rightarrow \boxed{xy - 3y - 2x + \lambda = 0}$$

$$\lambda(x-1) - 3(y-1) - 2x$$

Oblique H.B.

$$e = \sqrt{2}$$

R.H.B.

$$\# a = b$$

P.O.A. : $\boxed{xy - 3y - 2x + 6 = 0}$
 $y(x-3) - 2(x-3) = 0$

$$\boxed{(x-3)(y-2) = 0}$$

$$\left. \begin{array}{l} x-3=0 \\ y-2=0 \end{array} \right\}$$

$$\Delta = \begin{vmatrix} 0 & \frac{1}{2} & -1 \\ \frac{1}{2} & 0 & -\frac{3}{2} \\ -1 & -\frac{3}{2} & \lambda \end{vmatrix} = 0 \Rightarrow \lambda = 6$$

Origin lies on H_B

$dR = \frac{\partial b^2}{a} = \partial a$

$dR = 2\sqrt{12}$

RECTANGULAR HYPERBOLA

* also
Equilateral HB .

The Hyperbola whose:

Length of T.A. = Length of C.A. = Length of L.R.

or

whose eccentricity (e) = $\sqrt{2}$

or

whose asymptotes are perpendicular

or

whose director circle is a point Circle

or

whose ' e ' is equal to eccentricity of CHB

or

whose equation is : $x^2 - y^2 = a^2$

all results are valid
just put $(a=b)$

Asymptotes :-

$$y = \pm x$$

$x^2 - y^2 = a^2$

STANDARD RECTANGULAR HYPERBOLA

For which asymptotes are co-ordinate axes.

$$\begin{aligned} \text{x-axis} \Rightarrow y &= 0 \\ \text{y-axis} \Rightarrow x &= 0 \end{aligned} \quad \left. \begin{array}{l} y = 0 \\ x = 0 \end{array} \right\} \text{Asymp.}$$

Pair of asympt.

$$\boxed{xy = 0}$$

eqⁿ of HB :-

$$\boxed{xy = c}$$

#

$$x^2 - y^2 = a^2$$

for standard HB

$$y=x$$

Rotation of axis by 45°

ALL TOGETHER

$a = \text{semi}^{\circ} \text{T.A. or semi}^{\circ} \text{C.A.}$ # $C^2 = \text{given const. in SRHB}$

$xy = C^2$ ($a, c > 0$)

$\angle C = \alpha e$

$\frac{a}{c} = \frac{a}{\sqrt{2}} = c$

$\# OA = a = \sqrt{a^2 + a^2} \Rightarrow a = \sqrt{2}a$

Relation b/w 'c' & 'a': $a = \sqrt{2}c$

Foci: $S_1(a, a) \equiv (\sqrt{2}c, \sqrt{2}c)$ & $S_2(-\sqrt{2}c, -\sqrt{2}c) \equiv (-a, -a)$

Vertices: $\left(\frac{a}{\sqrt{2}}, \frac{a}{\sqrt{2}}\right) \equiv (c, c)$ & $\left(-\frac{a}{\sqrt{2}}, -\frac{a}{\sqrt{2}}\right) \equiv (-c, -c)$

Transverse Axis: $y = x$

Conjugate Axis: $y = -x$

Centre: Origin

Directrix₁: $y = -x + \sqrt{2}c$

Directrix₂: $y = -x - \sqrt{2}c$

Parametric Eqn: $\left(ct, \frac{c}{t}\right), t \in R - \{0\}$ Parameter.

$$\text{H.B.} \stackrel{?}{=}$$

$$\boxed{xy = c^2}$$

$$\text{CHB} \stackrel{?}{=}$$

$$\boxed{xy = -c^2}$$

Point $\equiv \left(ct, -\frac{c}{t} \right)$

TANGENT & NORMAL

$$xy = c^2$$

Tangent:

(i) At $P(x_1, y_1)$:

$$\frac{xy_1 + yx_1}{2} = c^2 \Rightarrow xy_1 + yx_1 = 2c^2$$

$$m_T = -\frac{y_1}{x_1}$$

(ii) Parametric Form:

$$P(x_1, y_1) = (\alpha t, \frac{c}{t})$$

$$x\left(\frac{c}{t}\right) + y\alpha t = 2c^2$$

$$\frac{x}{t} + y\alpha t = 2c$$

Normal:

(i) At $P(x_1, y_1)$:

$$y - y_1 = m_N (x - x_1) \Rightarrow y - y_1 = \frac{x_1}{y_1} (x - x_1)$$

$$m_N = -\frac{1}{t^2} < 0.$$

(ii) Parametric Form:

$$P(x_1, y_1) = (\alpha t, \frac{c}{t})$$

$$y - \frac{c}{t} = \frac{\alpha t}{t^2} (x - \alpha t) \Rightarrow y - \frac{c}{t} = t^2 (x - \alpha t)$$

Shifted Standard RHB:

S_{RHB}:

$$\# xy = c^2$$

Centre (α, β)

$$x \rightarrow x - \alpha$$

$$y \rightarrow y - \beta$$

$$(x - \alpha)(y - \beta) = c^2$$

Note:

Show that the **orthocenter** of the triangle formed by 3 points lying on a rectangular Hyperbola always lies on the **same Rectangular Hyperbola**.

Each in
ir
e
summary

∴

R.H.B. \Rightarrow

$$a = b$$

$$x^2 - y^2 = a^2$$

$$e = \sqrt{2}$$

Asymp. \perp .

S.R.H.B.

" x & y axis are asymptotes"

$$xy = c^2$$

$$a = \sqrt{2}c$$

Ex.

Show that equation of chord joining $P(x_1, y_1)$ and $Q(x_2, y_2)$ on R.H.B

$$xy = c^2 \text{ is } \frac{x}{x_1+x_2} + \frac{y}{y_1+y_2} = 1$$

$$\# xy - c^2 = 0.$$

eqn. of AB with m.p. M :

$$T_1 = S_1$$

$$x\left(\frac{y_1+y_2}{2}\right) + y\left(\frac{x_1+x_2}{2}\right) = \left(\frac{x_2+x_1}{2}\right)\left(\frac{y_2+y_1}{2}\right) - c^2$$

$$\begin{aligned} & \cancel{x\left(\frac{y_1+y_2}{2}\right)} + \cancel{y\left(\frac{x_1+x_2}{2}\right)} = \cancel{\left(\frac{x_2+x_1}{2}\right)} \cancel{\left(\frac{y_2+y_1}{2}\right)} \\ & \quad \downarrow \quad \downarrow \\ & (y_1+y_2)x + y(x_1+x_2) = (x_2+x_1)(y_2+y_1) \end{aligned}$$

Ex.

If normal drawn at point $P(t_1)$ to hyperbola $xy = c^2$ meets it again at $Q(t_2)$ then value of $t_1^3 t_2 =$

Normal at $P(t_1)$:-

$$\left(ct_2, \frac{c}{t_2} \right) \text{ pass.}$$

$$y - \frac{c}{t_1} = t_1^2 (x - ct_1)$$

$$\frac{c}{t_2} - \frac{c}{t_1} = t_1^2 (ct_2 - ct_1)$$

$$\frac{ct_1 - ct_2}{t_1 t_2} = t_1^2 (ct_2 - ct_1)$$

$$-1 = t_1^3 t_2$$

Q.

A variable tangent to $x^2 = 4ay$ intersects $xy = c^2$ in P and Q. Find the locus of mid-point of PQ.

If Any tangent :

$$y = mx - am^2$$

eqn of PQ with m.p. M(h, k) :- $T_1 = S_1$

$$\frac{hk + yh}{2} - x = hk - x^2$$

Same
Compare

$$\frac{1}{2h} = \frac{1}{am} \leftarrow -\frac{1}{am^2} = \frac{1}{2k}$$

$$m = \frac{2h}{a}$$

$$\left(\frac{-2k}{a} \right)^2 = m^2$$

$$\frac{-2k}{a} = \frac{2h^2}{a^2} \Rightarrow -ak = 2h^2$$

$$mx - y = am^2$$

$$\frac{x}{am} - \frac{y}{am^2} = 1.$$

$$\frac{xk + yh}{2} - x = hk - x^2$$

$$\frac{x}{2h} + \frac{y}{2k} = 1.$$

Q.

Show that the mid points of focal chords of a hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ lies on another similar hyperbola.

→ "having same eccentricity"

H.W.

Q. Any tangent to rectangular hyperbola $x^2 - y^2 = 9$ intersects parabola $y^2 = 8x$ at A & B. If point of intersection of tangents at A & B lies on an ellipse whose eccentricity is ____.

#H.W.

Q.

A common tangent T to the curves $C_1 : \frac{x^2}{4} + \frac{y^2}{9} = 1$ and $C_2 : \frac{x^2}{42} - \frac{y^2}{143} = 1$ does not pass through the fourth quadrant. If T touches C_1 at (x_1, y_1) and C_2 at (x_2, y_2) , then $|2x_1 + x_2|$ is equal to _____.

[JEE Mains-2022]

H.W.

Diameter:

eqⁿ ÷

$$y^2 = \frac{b^2}{a^2 m} x$$

PROPERTIES OF HB

P-1: Locus of foot of perpendicular drawn from foci on any tangent is Auxiliary Circle.

P-2: Product of lengths of perpendiculars from foci on Tangent is always constant & equals to $(\text{semi-conjugate axis})^2$

$$\# \quad p_1 p_2 = (\text{semi}^\circ \text{CA})^2 = b^2$$

P-3: Portion of tangent intercepted between point of contact and directrix subtend 90° at corresponding focus.

P-4: Tangent and Normal at any point P bisects the angle between focal distances (PS_1 & PS_2).

REFLECTION PROPERTY: Any ray passing through one focus, after reflection from Hyperbola it passes from another focus.

P-5: Using Reflection Property we can say that:

If Ellipse & Hyperbola are confocal (having same foci) then they are Orthogonal (angle between tangents at point of intersection is 90°)

Conversely if Ellipse & Hyperbola are Orthogonal they are Confocal.

Q.

An ellipse intersects the hyperbola $2x^2 - 2y^2 = 1$ orthogonally. The eccentricity of the ellipse is reciprocal of that of the hyperbola. If the axes of the ellipse are along the coordinate axes, then

?

A ✓

Equation of ellipse is $x^2 + 2y^2 = 2$

B ✓

The foci of ellipse are $(\pm 1, 0)$

C ✗

Equation of ellipse is $x^2 + 2y^2 = 4$

$$x^2 + 2y^2 = 2 \Leftrightarrow \frac{x^2}{2} + \frac{y^2}{1} = 1$$

D ✗

The foci of ellipse are $(\pm \sqrt{2}, 0)$

$$\frac{1}{2} = 1 - \frac{b^2}{2} \Leftrightarrow e_E^2 = 1 - \frac{b^2}{a^2}$$

$$\frac{b^2}{2} = \frac{1}{2} \Rightarrow b^2 = 1$$

[IIT-JEE-2009 (Paper-2)]

$$\# e_H = \frac{1}{e_E}$$

$$\sqrt{2} = \frac{1}{e_E}$$

$$\# e_E = \frac{1}{\sqrt{2}}$$

$$\# \boxed{\frac{x^2}{(\frac{1}{2})} - \frac{y^2}{(\frac{1}{2})} = 1}$$

$$e_H = \sqrt{2}$$

$$\text{foci} \equiv (\pm ae, 0)$$

$$\equiv \left(\pm \frac{1}{\sqrt{2}} (\sqrt{2}, 0) \right)$$

$$\Rightarrow (\pm 1, 0)$$

$$\# \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$\# ae = 1$$

$$\# a = \frac{1}{e} = \sqrt{2}$$

Q.

If $x = 9$ is the chord of contact of the hyperbola $x^2 - y^2 = 9$, then the equation of the corresponding pair of tangents is

A

$$9x^2 - 8y^2 + 18x - 9 = 0$$

B

$$9x^2 - 8y^2 - 18x + 9 = 0$$

C

$$9x^2 - 8y^2 - 18x - 9 = 0$$

D

$$9x^2 - 8y^2 + 18x + 9 = 0$$

[JEE-1999, 2M]

Method-I :-

find A & B

Tangent at A & B

fair ✓

$$\# PA \cdot PB = 0$$

$$\begin{aligned} &\text{comp.} \\ &\left. \begin{array}{l} \alpha = 1 \\ \beta = 0 \end{array} \right\} \\ &P(1,0) \end{aligned}$$

$$x^2 - y^2 - 9 = 0 \quad T_1^2 = SS_1$$

$$(x(1) - y(0) - 9)^2 = (x^2 - y^2 - 9)(1 - 0 - 9)$$

$$\begin{aligned} &(x - 9)^2 = -8x^2 + 8y^2 + 72 \\ &x^2 + 81 - 18x \end{aligned}$$

Method-II :-

$$P(\alpha, \beta)$$

$$\begin{aligned} &\text{COC} \Rightarrow T_1 = 0 \\ &x\alpha - y\beta = 9 \end{aligned}$$

Q.

If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points $P(x_1, y_1), Q(x_2, y_2), R(x_3, y_3), S(x_4, y_4)$, then

A ✓ $x_1 + x_2 + x_3 + x_4 = 0$

B ✓ $y_1 + y_2 + y_3 + y_4 = 0$

C ✓ $x_1 x_2 x_3 x_4 = c^4$

D ✓ $y_1 y_2 y_3 y_4 = c^4$

[JEE-1998, 2M]

$$\# \quad x^2 + y^2 = a^2$$

$$\# \quad xy = c^2 \Rightarrow y = \frac{c^2}{x}$$

$$x^2 + \left(\frac{c^2}{x}\right)^2 = a^2$$

$$x^2 + \frac{c^4}{x^2} = a^2$$

$$a^4 + c^4 = a^2 x^2$$

$$x^4 + 0x^3 - a^2 x^2 + 0x + c^4 = 0$$

Sum of Roots = 0

Product = c^4 .

General Circle :-

$$x^2 + y^2 + 2gx + 2fy + d = 0$$

SRHB :-

$$xy = c^2$$

Point of Int.

$$\left\{ \begin{array}{l} P(t_1) \\ Q(t_2) \\ R(t_3) \\ S(t_4) \end{array} \right.$$

$$(ct)^2 + \left(\frac{c}{t}\right)^2 + 2g(ct) + 2f\left(\frac{c}{t}\right) + d = 0$$

any point

$$(ct, \frac{c}{t})$$

Roots

$$(ct)^2 + \left(\frac{c}{t}\right)^2 + 2g(ct) + 2f\left(\frac{c}{t}\right) + d = 0$$

$$c^2t^2 + \frac{c^2}{t^2} + 2gc t + \frac{2fc}{t} + d = 0$$

$$c^2t^4 + c^2 + 2gc t^3 + 2fc t + dt^2 = 0$$

$$c^2t^4 + (2gc)t^3 + dt^2 + (2fc)t + c^2 = 0$$

$$\text{Product of roots} = \frac{c^2}{c^2} = 1 = t_1 t_2 t_3 t_4$$

Q.

$$a=10, b=8$$

Consider the hyperbola $\frac{x^2}{100} - \frac{y^2}{64} = 1$ with foci at S and S_1 , where S lies on the positive x-axis. Let P be a point on the hyperbola, in the first quadrant. Let $\angle SPS_1 = \alpha$, with $\alpha < \frac{\pi}{2}$. The straight line passing through the points S and having the same slope as that of the tangent at P to the hyperbola, intersects the straight line S_1P at P_1 . Let δ be the distance of P from the straight line SP_1 , and $\beta = S_1P$.

Then the greatest integer less than or equal to $\frac{\beta\delta}{9} \sin \frac{\alpha}{2}$ is _____.

?

** [JEE (Adv.)-2022]

$$\cos\left(\frac{\pi}{2} - \frac{\alpha}{2}\right) = \frac{\delta}{PS}$$

$$\sin \frac{\alpha}{2} = \frac{\delta}{PS}$$

 Q.

The number of points of intersection of $|z - (4 + 3i)| = 2$ and $|z| + |z - 4| = 6, z \in \mathbb{C}$ is:

 [JEE Mains-2022]

H.W.

- A 0
- B 1
- C 2
- D 3

TODAY's HOMEWORK

MODULE

HYPERBOLA

Exercise – IV (PYQ) – COMPLETE

The END of
COORDINATE GEOMETRY.

THANK YOU

to all future IITians