1. Find all critical points of the function $f(x) = \sin(x)^{1/3}$.

Critical points:

$$f'(x)=0 \text{ or } f'(x) \text{ DNE}.$$

$$f'(x)=\cos(x)^{1/3} \cdot \frac{1}{3}x^{2/3} = 0$$

$$\frac{\cos(x)^{1/3}}{3x^{2/3}}=0 \text{ (a)} \cos(x)^{1/3}=0 \text{ (a)} x^{1/3}=\pm \frac{\pi}{2}+\pi n, \text{ in } 2$$

$$x \neq 0 \qquad \qquad x = \left(\pm \frac{\pi}{2}+\pi n\right)^3 \text{ CP}$$

Therefore, we have the following CP:
$$X=\left(\pm \frac{\pi}{2}+\pi n\right)^3, \text{ is an integer}$$

$$X=0$$

2. Find the absolute maximum and minimum values (y-values) of $f(x) = e^{-x^2}$ on the interval [-2,3], and the locations (x-values) where those values are attained.

$$f(x) = e^{-x^2}$$
, Dom $(f) = IR$, [-2,3] $\subset IR$
1. Critical points:
 $f'(x) = 0$ or $f'(x)$ DNE

$$e^{-x^2} \cdot (-2x) = 0 = 0 \text{ in } [-2,3]$$

2. f'(x) is defined for all zin [-2,3].

3.
$$f(0) = 1$$

 $f(-2) = e^{-4} = \frac{1}{e^4}$
UAF Calculus I $e^{-9} = \frac{1}{e^9}$ 1

$$fabs = 1 at x = 0$$

$$fabs = \frac{1}{e^{9}} at x = 3$$

$$min = \frac{1}{e^{9}} at (day 2)$$

3. A ball thrown in the air at time t = 0 has a height given by

$$h(t) = h_0 + v_0 t - \frac{1}{2} g_0 t^2$$

meters where t is measured in seconds, h_0 is the height at time 0, v_0 is the velocity (in meters per second) at time 0 and g_0 is the constant acceleration due to gravity (in m/s²). Assuming $v_0 > 0$, find the time that the ball attains its maximum height. Then find the maximum height.

hmax 1. CP: h'(+)=0 Let us remark that h'(t) is defined for all 0 t so since it is a linear function with respect to t. p((f) = 20 - dof = 0 To = got => t = 50 the only one CP h(\frac{100}{90}) = ho + \frac{100}{90} - \frac{1}{2} g_0 \frac{100}{90} = ho + \frac{100}{90} - \frac{1}{2} \frac{100}{90} = $= h_0 + \frac{30}{290}$ Therefore, h(t) attains height at $t = \frac{v_0}{q_0}$ (Seconds) The maximum height attained $h(t) = ho + \frac{50}{2}$ (meters). h(t) = ho + 300

UAF Calculus I

4-1 (day 2)