

Winning Space Race with Data Science

Ibrahim Abdullah 26 - 2 - 2024

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

Summary of methodologies:

- Data Collection via API and Web Scraping
- Data Wrangling
- Exploratory Data Analysis with SQL
- Exploratory Data with Data Visualization
- Interactive Visual Analytics with Folium
- Machine Learning Prediction

Summary of all results:

- Exploratory Data Analysis
- Interactive Analytics
- Predictive Analytics from Machine Learning

Introduction

Project background and context:

SpaceX launched a rocket called Falcon9 at an estimated cost of \$62 million. On the other hand, the cost of the missile to competing companies is high, reaching \$165 million. This is due to the rocket being relanded for use in the next mission. The goal of this project is to create a machine learning prediction of future first-stage landing outcomes.

Problems you want to find answers:

- Find the features that affect the first stage landing success
- predict if the first stage will land successfully?

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling
 - One-hot encoding was applied to categorical features.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- Datasets are collected from SpaceX API and Web Scraping Wikipedia:
- From SpaceX API:

- From Web Scraping Wikipedia:

Data Collection – SpaceX API

Used the get request to the SpaceX
 API to collect data, clean the requested data and data wrangling and formatting data.

• GitHub URL:

https://github.com/lbrahimAbdullah93/Applied-Data-Science-Capstone/blob/main/Complete%20the%20Data%20Collection%20API% 20Lab.ipynb

Data Collection - Scraping

We applied webscraping to Falcon 9
launch with BeautifulSoupm and make it
in the DataFrame.

• GitHub URL:

https://github.com/lbrahimAbdullah93/Applied-Data-Science-Capstone/blob/main/Complete%20the%20Data%20Collection%20with%20Web%20Scraping%20lab.ipynb

Data Wrangling

- There are two cases in the dataset:
- True Ocean, This means that the landing mission was successful
- False Ocean, This means that the landing mission was a failure

Here we will convert the categories into numbers, where 1 means a successful landing and 0 means a failed landing.

GitHub URL :

https://github.com/lbrahimAbdullah93/Applied-Data-Science-Capstone/blob/main/Data%20Wrangling.ipynb

EDA with Data Visualization

• Scatter Graphs:

- Flight Number vs. Payload Mass
- Flight Number vs. Launch Site
- Payload vs. Launch Site
- Orbit vs. Flight Number
- Payload vs. Orbit Type
- Orbit vs. Payload Mass

• Bar Graph:

- Success rate vs. Orbit

• Line Graph:

- Success rate vs. Year

• GitHub URL:

https://github.com/lbrahimAbdullah93/Applied-Data-Science-Capstone/blob/main/EDA%20with%20Visualization%20Lab.ipynb

EDA with SQL

- Loaded SpaceX dataset into the SQLITE.
- We applied EDA with SQL to get insight from the data.
 - The names of unique launch sites in the space mission.
 - The total payload mass carried by boosters launched by NASA (CRS)
 - The average payload mass carried by booster version F9 v1.1
 - The total number of successful and failure mission outcome
 - The failed landing outcomes in drone ship, their booster version and launch site names.

• GitHub URL:

Build an Interactive Map with Folium

- To visualize the launch data into an interactive map. We took the latitude and longitude coordinates at each launch site and added a circle marker around each launch site with a label of the name of the launch site.
- We then assigned the dataframe launch_outcomes(failure, success) to classes 0 and 1 with Red and Green markers on the map in MarkerCluster().
- We then used the Haversine's formula to calculated the distance of the launch sites to various landmark to find answer to the questions of:
 - How close the launch sites with railways, highways and coastlines?
 - How close the launch sites with nearby cities?
- GitHub URL :

Build a Dashboard with Plotly Dash

- We built an interactive dashboard with Plotly dash which allowing the user to play around with the data as they need.
- We plotted pie charts showing the total launches by a certain sites.
- We then plotted scatter graph showing the relationship with Outcome and Payload Mass (Kg) for the different booster version.

Predictive Analysis (Classification)

Building the Model:

- Load the dataset into NumPy and Pandas
- Transform the data and then split into training and test datasets
- Decide which type of ML to use

Evaluating the Model:

- Check the accuracy for each model
- Get tuned hyperparameters for each type of algorithms.
- Plot the confusion matrix

Improving the Model:

• Use Feature Engineering and Algorithm Tuning

Find the Best Model:

• The model with the best accuracy score will be the best performing model

• GitHub URL:

https://github.com/lbrahimAbdullah93/Applied-Data-Science-Capstone/blob/main/Machine%20Learning%20Prediction.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

• The success rate is increasing

Payload vs. Launch Site

Success Rate vs. Orbit Type

Flight Number vs. Orbit Type

Payload vs. Orbit Type

Launch Success Yearly Trend

All Launch Site Names

We used the key word **DISTINC**

To show only unique launch sites from the SpaceX data

Launch Site Names Begin with 'CCA'

* sqlite:///my_data1.db Done.									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASS_KG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2010- 06-04	18:45:00	F9 v1.0 B0003	CCAFS LC- 40	Dragon Spacecraft Qualification Unit	0	LEO	SpaceX	Success	Failure (parachute)
2010- 12-08	15:43:00	F9 v1.0 B0004	CCAFS LC- 40	Dragon demo flight C1, two CubeSats, barrel of Brouere cheese	0	LEO (ISS)	NASA (COTS) NRO	Success	Failure (parachute)
2012- 05-22	7:44:00	F9 v1.0 B0005	CCAFS LC- 40	Dragon demo flight C2	525	LEO (ISS)	NASA (COTS)	Success	No attempt
2012- 10-08	0:35:00	F9 v1.0 B0006	CCAFS LC- 40	SpaceX CRS-1	500	LEO (ISS)	NASA (CRS)	Success	No attempt
2013- 03-01	15:10:00	F9 v1.0 B0007	CCAFS LC- 40	SpaceX CRS-2	677	LEO (ISS)	NASA (CRS)	Success	No attempt

The **WHERE** clause followed by **LIKE** clause filters launch sites that contain the substring CCA.

LIMIT 5 shows 5 records fromfiltering.

Total Payload Mass

Average Payload Mass by F9 v1.1

```
%sql SELECT AVG(PAYLOAD_MASS__KG_) as "Payload Mass Kgs", Customer, Booster_Version FROM SPACEXTBL WHERE Booster_Version LIKE 'F9 v1.1%';

* sqlite://my_data1.db
Done.

Payload Mass Kgs Customer Booster_Version

2534.6666666666665 MDA F9 v1.1 B1003
```

First Successful Ground Landing Date

```
%sql SELECT MIN(DATE) FROM SPACEXTBL WHERE Landing_Outcome = "Success (ground pad)";
  * sqlite://my_data1.db
Done.
MIN(DATE)
2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

<pre>%%sql SELECT DISTINCT Booster_Vers AND PAYLOAD_MASSKG_ > 4000 AND P</pre>						
* sqlite:///my_data1.db Done.						
Booster_\	/ersion	Payload				
F9 F1	B1022	JCSAT-14				
F9 F1	B1026	JCSAT-16				
F9 FT E	31021.2	SES-10				
F9 FT E	31031.2	SES-11 / EchoStar 105				

Total Number of Successful and Failure Mission Outcomes

Boosters Carried Maximum Payload

<pre>%%sql SELECT Booster_Version, Payload, PAYLOAD_MASSKG_ FROM SPACEXTBL WHERE PAYLOAD_MASSKG_ = (SELECT MAX("PAYLOAD_MASSKG_") FROM SPACEXTBL);</pre>							
* sqlite:///my_data1.db Done.							
Booster_Version	Payload	PAYLOAD_MASSKG_					
F9 B5 B1048.4	Starlink 1 v1.0, SpaceX CRS-19	15600					
F9 B5 B1049.4	Starlink 2 v1.0, Crew Dragon in-flight abort test	15600					
F9 B5 B1051.3	Starlink 3 v1.0, Starlink 4 v1.0	15600					
F9 B5 B1056.4	Starlink 4 v1.0, SpaceX CRS-20	15600					
F9 B5 B1048.5	Starlink 5 v1.0, Starlink 6 v1.0	15600					
F9 B5 B1051.4	Starlink 6 v1.0, Crew Dragon Demo-2	15600					
F9 B5 B1049.5	Starlink 7 v1.0, Starlink 8 v1.0	15600					
F9 B5 B1060.2	Starlink 11 v1.0, Starlink 12 v1.0	15600					
F9 B5 B1058.3	Starlink 12 v1.0, Starlink 13 v1.0	15600					
F9 B5 B1051.6	Starlink 13 v1.0, Starlink 14 v1.0	15600					
F9 B5 B1060.3	Starlink 14 v1.0, GPS III-04	15600					
F9 B5 B1049.7	Starlink 15 v1.0, SpaceX CRS-21	15600					

2015 Launch Records

```
%%sql SELECT substr(Date,6,2), substr(Date,0,5), Booster_Version, Launch_Site, Payload, PAYLOAD_MASS__KG_, Mission_Outcome, Landing_Outcome
FROM SPACEXTBL WHERE substr(Date,0,5)='2015' AND Landing Outcome = 'Failure (drone ship)';
 * sqlite:///my_data1.db
Done.
                                                                Payload PAYLOAD_MASS__KG_ Mission_Outcome Landing_Outcome
substr(Date,6,2) substr(Date,0,5) Booster_Version Launch_Site
                                                                                                       Success Failure (drone ship)
            01
                          2015
                                  F9 v1.1 B1012 CCAFS LC-40 SpaceX CRS-5
                                                                                        2395
                                  F9 v1.1 B1015 CCAFS LC-40 SpaceX CRS-6
                                                                                                       Success Failure (drone ship)
            04
                          2015
                                                                                        1898
```

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

* sqlite:///my_data1.db									
Date	Time (UTC)	Booster_Version	Launch_Site	Payload	PAYLOAD_MASSKG_	Orbit	Customer	Mission_Outcome	Landing_Outcome
2017- 02-19	14:39:00	F9 FT B1031.1	KSC LC-39A	SpaceX CRS-10	2490	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2017- 01-14	17:54:00	F9 FT B1029.1	VAFB SLC- 4E	Iridium NEXT 1	9600	Polar LEO	Iridium Communications	Success	Success (drone ship)
2016- 08-14	5:26:00	F9 FT B1026	CCAFS LC- 40	JCSAT-16	4600	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
2016- 07-18	4:45:00	F9 FT B1025.1	CCAFS LC- 40	SpaceX CRS-9	2257	LEO (ISS)	NASA (CRS)	Success	Success (ground pad)
2016- 05-27	21:39:00	F9 FT B1023.1	CCAFS LC- 40	Thaicom 8	3100	GTO	Thaicom	Success	Success (drone ship)
2016- 05-06	5:21:00	F9 FT B1022	CCAFS LC- 40	JCSAT-14	4696	GTO	SKY Perfect JSAT Group	Success	Success (drone ship)
2016- 04-08	20:43:00	F9 FT B1021.1	CCAFS LC- 40	SpaceX CRS-8	3136	LEO (ISS)	NASA (CRS)	Success	Success (drone ship)
2015- 12-22	1:29:00	F9 FT B1019	CCAFS LC- 40	OG2 Mission 2 11 Orbcomm-OG2 satellites	2034	LEO	Orbcomm	Success	Success (ground

All launch sites global map markers

Markers showing launch sites with color labels

Launch Site distance to landmarks

The success percentage by each sites

The highest launch-success ratio: KSC LC-39A

Payload vs Launch Outcome Scatter Plot

Low Weighted Payload (0 – 5000 kg)

Heavy Weighted Payload (5000 – 10000 kg)

Classification Accuracy

```
tuned hpyerparameters :(best parameters) {'criterion': 'gini', 'max_depth': 4, 'max_features': 'sqrt', 'min_samples_leaf': 1, 'min_samples_split': 5, 'splitter': 'random'}
accuracy : 0.8892857142857142
```

Confusion Matrix

Conclusions

- The larger the flight amount at a launch site, the greater the success rate at a launch site.
- Launch success rate started to increase in 2013 till 2020.
- Orbits ES-L1, GEO, HEO, SSO, VLEO had the most success rate.
- KSC LC-39A had the most successful launches of any sites.
- The KNN classifier is the best machine learning algorithm for this task.

