## О проблеме продолжения Уитни для пространств Соболева

Тюленев Александр Иванович МЦМУ МИАН tyulenev-math@yandex.ru,tyulenev@mi-ras.ru

Секция: Пленарный доклад

В 1934 году X. Уитни поставил следующую задачу. Пусть  $m,n\in\mathbb{N},$  а  $S\subset\mathbb{R}^n$  — непустое замкнутое множество. Для заданной функции  $f:S\to\mathbb{R}$  требуется найти условия, необходимые и достаточные для существования функции  $F\in C^m(\mathbb{R}^n)$ , являющейся продолжением f, т.е.  $F|_S=f$ . В полной общности эта проблема была решена Ч. Фефферманом в середине 2000-ых. Большой интерес представляет аналогичная задача, сформулированная в контексте пространств Соболева  $W_p^m(\mathbb{R}^n), \ p\in [1,\infty]$ . Такая задача ещё очень далека от своего окончательного решения.

На данный момент окончательные ответы получены лишь в случае  $m=1,\ p>n$  в работах П. Шварцмана. Некоторые результаты при p>n и  $m\in\mathbb{N}$  получены в работах Ч. Феффермана и его учеников. Также в последние два года Ч. Фефферманом и его учениками предпринимаются попытки продвижения в случае m=n=2 и p>1, однако и здесь ситуация далека от своего окончательного решения.

Основной фокус доклада — случай  $m=1,\ n\geq 2$  и  $p\in (1,n]$ . В таком диапазоне параметров ранее задача рассматривалась лишь для регулярных по Альфорсу—Давиду множеств  $S\subset \mathbb{R}^n$ . Недавно удалось получить окончательные ответы для существенно более широкого класса "толстых" множеств, введённого В. Рычковым. Более того, в контексте абстрактных метрических пространств с мерой удаётся получить естественное обобщение как этих результатов, так и некоторых результатов П. Шварцмана, относящихся к случаю m=1 и  $p\in (n,\infty)$ . Наконец, если множество  $S\subset \mathbb{R}^n$  не удовлетворяет каким-либо дополнительным условиям регулярности, то удаётся получить почти точное описание следа пространств Соболева на S.