









# Ciencia de datos

## Práctica 4. Visualización de la información con plotly

#### **Alberto Benavides**

De los datos correspondientes a los registros obtenidos de los PDFs de la Secretaría de Salud de México

```
In [104]: import pandas as pd
             import plotly.plotly as py
             import plotly.graph_objs as go
             data1 = pd.read_csv("D:/FIME/Epidemia/Data/csvSemanales/enf.csv")
data = data1[data1.estado == "TOTAL"]
data.loc[:, 'cie'] = data['cie'].astype(str).str[0]
             # https://plot.ly/python/table/
             trace = go.Table(
                  header=dict(
                       values=list(data),
fill = dict(color='#a1c3d1'),
                  cells=dict(values=data.sample(10).T)) # https://stackoverflow.com/a/19483025
             table = [trace]
             py.iplot(table, filename = 'semanalesTodas')
```

Out[104]:

| # m       | f1        | f2         | f3         | f4        | ac1        | ac2        | ac3         | ac4       | ac5         | ac6       | enf                                                 | cie | cluster |
|-----------|-----------|------------|------------|-----------|------------|------------|-------------|-----------|-------------|-----------|-----------------------------------------------------|-----|---------|
| 247537666 | 83486464  | 93731794   | 8670563045 | 684695312 | 40828232   | 5974057264 | 935253089   | 371411923 | 104939236   |           | LCERAS<br>ASTRITIS<br>UODENITI                      | К   | 9       |
| 067739577 | 69352733  | 9386192019 | 554480803  | 40944904  | 309651978  | 524507871  | 639404751   | 058482949 | 377191427   |           | TOXICACIO<br>DR<br>DNZONA<br>UMALES                 | Т   | 11      |
| 579839400 | 602818565 | 471689475  | 124010299  | 107675162 | 861322503  | 446081546  | 177816572   | 739485587 | 366288274   | )55171519 | COCERCO                                             | В   | 13      |
| 274729603 | 442769226 | 093731794  | 397286672  | 39618523  | 853240672  | 217797494  | 125426692   | 946332908 | 27088156    |           | eaton<br>esionado<br>n<br>ccidente<br>e<br>ransport | ٧   | 0       |
| 67076333  | 44500000  | 476644750  | 2000000267 | EE740060  | 0044455046 | Ennee4EA   | ACC4 CC AC4 | 242202060 | CE04 4054 E | 00022500  |                                                     |     | 4.5     |

EDIT CHART

y estos mismos preprocesados

```
In [105]: data2 = pd.read_csv("D:/FIME/Epidemia/Data/semanalesTodasKmeans.csv")
            trace = go.Table(
header=dict(
                    values=list(data2),
fill = dict(color='#a1c3d1'),
                cells=dict(values=data2.sample(10).T)) # https://stackoverflow.com/a/19483025
            table = [trace]
            py.iplot(table, filename = 'semanalesTodas')
```

Out[105]:

|   | # m      | f1       | f2       | f3         | f4        | ac1       | ac2       | ac3       | ac4       | ac5       | ac6 | enf                  | cie | cluster |
|---|----------|----------|----------|------------|-----------|-----------|-----------|-----------|-----------|-----------|-----|----------------------|-----|---------|
| 2 | 47537666 | 83486464 | 93731794 | 8670563045 | 684695312 | 408282321 | 974057264 | 935253089 | 371411923 | 104939236 |     | ILCERAS<br>IASTRITIS | К   | 9       |
|   |          |          |          |            |           |           |           |           |           |           |     | UODENITI             |     |         |

| 0  | 67739577 | 693527338 | 38619201 | 554480803 | 40944904  | 309651978  | 524507871 | 639404751   | 058482945  | 377191427  | 293940901             | TOXICACIO     | Т | 11 |
|----|----------|-----------|----------|-----------|-----------|------------|-----------|-------------|------------|------------|-----------------------|---------------|---|----|
|    |          |           |          |           |           |            |           |             |            |            |                       | DR<br>DNZONA  |   |    |
|    |          |           |          |           |           |            |           |             |            |            |                       | IIMALES       |   |    |
|    |          |           |          |           |           |            |           | 177816572   |            |            |                       |               | В | 13 |
| 2  | 74729603 | 442769226 | 93731794 | 39728667  | 396185237 | 353240672  | 217797494 | 125426692   | 1946332908 | 27088156   | 89670227 <sup>-</sup> | EATON         | ٧ | 0  |
|    |          |           |          |           |           |            |           |             |            |            |                       | ESIONADO<br>N |   |    |
|    |          |           |          |           |           |            |           |             |            |            |                       | CCIDENTE      |   |    |
|    |          |           |          |           |           |            |           |             |            |            |                       | ransport      |   |    |
| Į, | .7075353 | 445000000 | 17661175 | 200000026 | EE1400601 | 0044755046 | ENGELER   | ACC4 CC AC4 | 242202060  | CEO4 40541 | 00022500              |               |   | 45 |

EDIT CHART

se pueden mostrar visualizaciones de los resultados de las estadísticas básicas reportadas. Empezaremos por mostrar un diagrama de cantidad de registros por letra inicia de CIE de los datos extraidos de los PDFs

```
In [106]: # https://plot.ly/python/pie-charts/
    x = data['cie'].value_counts()

values = x.values

x = x.to_frame().T

labels = x.columns.values

trace = go.Pie(labels = labels, values = values)

py.iplot([trace], filename='conteoCIE')
```

### Out[106]:



De modo que las enfermedades cuya CIE inicia con la letra A ocupan el 42.2% de los registros.

Ahora bien, se puede obtener una descripción de los datos agrupados por número de casos registrados y letra inicial de CIE

### Out[107]:



Quizás una mejor visualización del resto de enfermedades, se podría obtener al remover las que inician con j

```
In [108]: boxes = []
    for cie in data.groupby(['cie']):
        if cie[0] != 'j':
            trace = go.Box(y=cie[1]['casos'], name=str(cie[0]))
            boxes.append(trace)
    py.iplot(boxes)
```

Out[108]:



Al preprocesar los datos, se agrupan las enfermedades por primera letra de la CIE y se descubre que los grupos A y B contienen la mayoría de los registros, contando un 31.19% y un 19.57% respectivamente.

```
In [109]: # https://stackoverfLow.com/a/51453257
pd.options.display.max_columns
data = data2

x = data['cie'].value_counts()
values = x.values

x = x.to_frame().T

labels = x.columns.values

trace = go.Pie(labels = labels, values = values)
py.iplot([trace], filename='conteoCIECluster')
```

Out[109]:





```
W H S V C
```

También se obtuvieron las correlaciones existentes entre las características de los datos preprocesados, siendo de interés aquéllas que guardan correlación con el tipo de cluster asignado por k-medias

```
In [110]: # https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.factorize.html
data['cie'], uniques = pd.factorize(data['cie'])

#https://stackoverflow.com/a/19483025
#print(List(data.corr()))

trace = go.Heatmap(z=data.corr().values, x = list(data.corr()), y= list(data.corr()))
corr=[trace]
py.iplot(corr, filename='basic-heatmap')
```

#### Out[110]:



EDIT CHART

Finalmente, se seleccionan las características de los datos

```
In [111]: features = ["# m", "f1", "f2", "f3", "f4", "ac1", "ac2", "ac3", "ac4", "ac5", "ac6"]
x = data.loc[:, features].values
```

se normalizan

y con estas características normalizadas se puede hacer una selección a partir del umbral de varianza

```
In [113]: # https://stackoverflow.com/a/7670325
print("Columnas iniciales = {}".format(x.shape[1]))

# https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.VarianceThreshold.html#sklearn.feature_selection.VarianceThreshold
th = 0.05 # .8 * (1 - .8)
print("Umbral de varianza = {}".format(th))
sel = VarianceThreshold(threshold=th)
x = sel.fit_transform(x)
print("Columnas finales")
# https://stackoverflow.com/q/39812885
dataSelected = data[data.columns[sel.get_support(indices=True)]]
```

Columnas iniciales = 11 Umbral de varianza = 0.05 Columnas finales

y mostrar sus correlaciones

```
In [114]: # https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html
#print(data[['cie']])
dataSelected = dataSelected.assign(cluster=data[['cie']])
```

trace = go.Heatmap(z=dataSelected.corr().values, x = list(dataSelected.corr()), y= list(dataSelected.corr()))
corr=[trace]
py.iplot(corr, filename='basic-heatmap')

## Out[114]:



This website does not host notebooks, it only renders notebooks available on other websites.

notebooks as a section of the control of the co

ıbviewer version: aa587da ıbconvert version: 5.3.1 Delivered by Fastly, Rendered by Rackspace