11/30/2019 8 - Jupyter Notebook

Учреждение образования											
«Белорусский государственный у	ниверситет инф	орматики и	радиоэлект	роники»							

Кафедра информатики

Лабораторная работа №8 Выявление аномалий

Выполнил: Полевой Александр Вадимович магистрант кафедры информатики группа № 858641

Проверил: Стержанов Максим Валерьевич

Набор данных ex8data1.mat представляет собой файл формата *.mat (т.е. сохраненного из Matlab). Набор содержит две переменные X1 и X2 - задержка в мс и пропускная способность в мб/с серверов. Среди серверов необходимо выделить те, характеристики которых аномальные. Набор разделен на обучающую выборку (X), которая не содержит меток классов, а также валидационную (Xval, yval), на которой необходимо оценить качество алгоритма выявления аномалий. В метках классов 0 обозначает отсутствие аномалии, а 1, соответственно, ее наличие.

1. Загрузите данные ex8data1.mat из файла.

In [3]:

```
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math

data1 = scipy.io.loadmat('data/ex8data1.mat')
X1 = data1['X']
X1_val = data1['Xval']
y1_val = data1['yval']
X1.shape
Out[3]:
(307, 2)
```

2. Постройте график загруженных данных в виде диаграммы рассеяния.

In [4]:

```
def draw_scatter(X):
   plt.figure(figsize=(8,8))
   plt.scatter(X[:,0], X[:,1], s=9, marker='.')
   plt.xlabel('Latency (ms)', fontsize=14)
   plt.ylabel('Throughput (mb/s)', fontsize=14)
   plt.grid(True)
```

In [5]:

3. Представьте данные в виде двух независимых нормально распределенных случайных величин.

In [6]:

```
def draw_histogram(X, title=None):
   plt.figure(figsize=(8,5))
   plt.hist(X, 100)
   if title:
       plt.title(title, fontsize=20)
   plt.grid(True)
```

In [7]:

```
draw_histogram(X1[:, 0], 'Latency (ms)')
```


In [8]:

```
draw_histogram(X1[:,1], 'Throughput (mb/s)')
```


4. Оцените параметры распределений случайных величин.

4/11

```
In [9]:
```

```
def get_dist_params(X):
    return np.mean(X, axis=0), np.var(X, axis=0)
```

```
In [10]:
```

```
mu, sig2 = get_dist_params(X1)

print(f'\u03BC = {mu}')
print(f'\u03C3^2 = {sig2}')

μ = [14.11222578 14.99771051]
σ^2 = [1.83263141 1.70974533]
```

5. Постройте график плотности распределения получившейся случайной величины в виде изолиний, совместив его с графиком из пункта 2.

```
In [11]:
```

11/30/2019 8 - Jupyter Notebook

In [12]:

```
def draw_dist(mu, sigma2):
    grid_params = np.arange(0, 29, 0.2)
    x1, x2 = np.meshgrid(grid_params, grid_params)
    z = np.column_stack([x1.flatten(), x2.flatten()])
    z = p(z, mu, sigma2)
    z = z.reshape(x1.shape)
    levels = [10**exp for exp in range(-20,0,3)]
    plt.contour(x1, x2, z, levels=levels)

draw_scatter(X1)
    draw_dist(mu, sig2)
```


6. Подберите значение порога для обнаружения аномалий на основе валидационной выборки. В качестве метрики используйте F1-меру.

```
In [13]:
```

```
def f1_score(y_true, y_pred):
    assert y_true.shape == y_pred.shape

tp = np.sum(np.logical_and((y_true == 1), (y_pred == 1)))
    fp = np.sum(np.logical_and((y_true == 0), (y_pred == 1)))
    fn = np.sum(np.logical_and((y_true == 1), (y_pred == 0)))

if (tp + fp) == 0 or (tp + fn) == 0: return 0

precision = tp / (tp + fp)
recall = tp / (tp + fn)

result = 2 * (precision * recall) / (precision + recall)

if math.isnan(result):
    result = 0

return result
```

In [14]:

```
def find_eps(y_true, p_vals, iterations = 100):
    epsilons = np.linspace(np.max(p_vals), np.min(p_vals), iterations)

best_f1 = 0
    best_eps = 1
    best_iteration = 0

for i in range(len(epsilons)):
    eps = epsilons[i]
    y_pred = p_vals < eps
    f1 = float(f1_score(y_true, y_pred))
    if f1 > best_f1:
        best_f1 = f1
        best_eps = eps
        best_iteration = i

return best_eps, best_f1, best_iteration
```

In [15]:

```
p_vals = p(X1_val, mu, sig2)
best_eps, best_f1, best_i = find_eps(y1_val, p_vals, 200)

print(f'best_eps: {best_eps}')
print(f'best_f1: {best_f1}')
print(f'best_iteration: {best_i}')
```

```
best_eps: 0.00045180164719947624
best_f1: 0.8750000000000001
best iteration: 198
```

7. Выделите аномальные наблюдения на графике из пункта 5 с учетом выбранного порогового значения.

In [16]:

```
def highlite_anomalies(X, mu, sig2, eps):
    p_vals = p(X, mu, sig2)
    indices = np.nonzero(p_vals < eps)[0]
    anomalies = X[indices]
    plt.scatter(anomalies[:,0], anomalies[:,1], s=150, facecolors='none', edgecolors</pre>
```

In [17]:

```
draw_scatter(X1)
draw_dist(mu, sig2)
highlite_anomalies(X1, mu, sig2, best_eps)
```


Набор данных ex8data2.mat представляет собой файл формата *.mat (т.е. сохраненного из Matlab). Набор содержит 11-мерную переменную X - координаты точек, среди которых необходимо выделить аномальные. Набор разделен на обучающую выборку (X), которая не содержит меток классов, а также валидационную (Xval, yval), на которой необходимо оценить качество алгоритма выявления аномалий.

8. Загрузите данные ex8data2.mat из файла.

In [18]:

```
data2 = scipy.io.loadmat('data/ex8data2.mat')
```

```
In [19]:
```

```
X2 = data2['X']
X2_val = data2['Xval']
y2_val = data2['yval']
X2.shape
Out[19]:
(1000, 11)
```

9. Представьте данные в виде 11-мерной нормально распределенной случайной величины.

In [20]:

```
fig1, axes = plt.subplots(ncols=6, nrows=2, constrained_layout=True, figsize=(14, 4)
m, n = X2.shape

axes = axes.flatten()

for i in range(len(axes)):
    ax = axes[i]

    if i >= n:
        ax.axis('off')
        continue

    ax.hist(X2[:, i], 100)
    ax.set_title(f'X{i}')
    ax.grid(True)
```


10. Оцените параметры распределения случайной величины.

In [21]:

```
def get_dist_params_multi(X):
    mu = np.mean(X, axis=0)
    sig_p = X - mu
    Sigma = np.dot(sig_p.T, sig_p) / len(X)
    return mu , Sigma
```

```
In [22]:
```

```
mu_2, Sigma_2 = get_dist_params_multi(X2)
```

In [23]:

```
import pandas as pd

data = np.column_stack((mu_2, Sigma_2))

df = pd.DataFrame(data)

df.rename(columns={0: '\u03BC', 1: '\u03C3^2'}, inplace=True)

df
```

Out[23]:

	μ	σ^2	2	3	4	5	6	7	
0	4.939400	60.974894	1.313268	0.692818	0.130233	4.676506	-0.531987	-3.378742	4
1	-9.637268	1.313268	53.205722	-2.224656	-4.606173	1.732980	3.079553	1.383449	7
2	13.814707	0.692818	-2.224656	58.515463	2.623698	3.308372	-3.387748	2.846269	2
3	-10.464489	0.130233	-4.606173	2.623698	84.204037	1.905289	1.426925	3.763097	2
4	-7.956229	4.676506	1.732980	3.308372	1.905289	65.268592	1.183154	5.409526	-2
5	10.199504	-0.531987	3.079553	-3.387748	1.426925	1.183154	89.574878	2.256491	1
6	-6.019408	-3.378742	1.383449	2.846269	3.763097	5.409526	2.256491	55.633499	-1
7	7.969829	4.941811	7.512966	2.175521	2.568146	-2.523786	1.325419	-1.624894	87
8	-6.253182	-1.154137	4.194336	7.228553	-4.178290	0.746834	-0.120476	-1.566798	3
9	2.324513	3.912468	-4.825456	5.888981	1.912427	4.012760	-3.430006	-1.463391	-1
10	8.473723	-2.903585	7.714638	-2.846572	-1.231126	-0.517061	1.274346	-5.353484	2

11. Подберите значение порога для обнаружения аномалий на основе валидационной выборки. В качестве метрики используйте F1-меру.

```
In [24]:
```

```
def p_multi(X, mu , Sigma):
    m, n = X.shape

    Sigma_det = np.linalg.det(Sigma)
    Sigma_inv = np.linalg.pinv(Sigma)

    e1 = 1 / ( np.power((2 * math.pi), n/2) * np.sqrt(Sigma_det) )

    X_mu = X - mu

    e2 = np.exp( - 0.5 * np.sum((np.dot(X_mu, Sigma_inv) * X_mu), axis=1) )

    return (e1 * e2).reshape(-1, 1)
```

```
In [25]:
```

```
p_vals_2 = p_multi(X2_val, mu_2, Sigma_2)
```

In [26]:

```
best_eps_2, best_f1_2, best_i_2 = find_eps(y2_val, p_vals_2, 6000)

print(f'best_eps: {best_eps_2}')
print(f'best_f1: {best_f1_2}')
print(f'best_iteration: {best_i_2}')
```

```
best_eps: 2.9235687320703794e-19
best_f1: 0.7368421052631577
best iteration: 5998
```

12. Выделите аномальные наблюдения в обучающей выборке. Сколько их было обнаружено? Какой был подобран порог?

```
In [27]:
```

```
p_vals_2_train = p_multi(X2, mu_2, Sigma_2)
indices = np.nonzero(p_vals_2_train < best_eps_2)[0]
print(f'abnormals found: {len(indices)}')</pre>
```

```
abnormals found: 48
```

Вывод

Выявление аномалий - опознавание редких данных, событий или наблюдений, которые вызывают подозрения ввиду существенного отличия от большей части данных. Обычно они превращаются в подвид проблемы, как, например, мошенничество, структурный деффект или ошибки в тексте.