(2) Consider the $n \times n$ symmetric matrices $S^{i,j}$ defined for all i, j with $1 \le i < j \le n$ and $n \ge 3$, such that the only nonzero entries are

$$S^{i,j}(i,j) = 1$$

 $S^{i,j}(i,i) = 0$
 $S^{i,j}(j,i) = 1$
 $S^{i,j}(j,j) = 0$
 $S^{i,j}(k,k) = 1, \quad 1 \le k \le n, k \ne i, j,$

and if $i + 2 \le j$ then $S^{i,j}(i + 1, i + 1) = -1$, else if i > 1 and j = i + 1 then $S^{i,j}(1, 1) = -1$, and if i = 1 and j = 2, then $S^{i,j}(3, 3) = -1$.

For example,

Note that $S^{i,j}$ has a single diagonal entry equal to -1. Prove that the $S^{i,j}$ are rotations matrices.

Use Problem 3.15 together with the $S^{i,j}$ to form a basis of the $n \times n$ symmetric matrices.

(3) Prove that if $n \geq 3$, the set of all linear combinations of matrices in $\mathbf{SO}(n)$ is the space $M_n(\mathbb{R})$ of all $n \times n$ matrices.

Prove that if $n \geq 3$ and if a matrix $A \in M_n(\mathbb{R})$ commutes with all rotations matrices, then A commutes with all matrices in $M_n(\mathbb{R})$.

What happens for n=2?

Problem 12.13. (1) Let H be the affine hyperplane in \mathbb{R}^n given by the equation

$$a_1x_1 + \cdots + a_nx_n = c$$
,

with $a_i \neq 0$ for some $i, 1 \leq i \leq n$. The linear hyperplane H_0 parallel to H is given by the equation

$$a_1x_1 + \dots + a_nx_n = 0,$$