ELEN0040 - REPETITION 6

Synthèse de circuits séquentiels

Synthèse

Point de départ : système à modéliser

- → 1. Définir et <u>optimiser</u> les <u>entrées/sorties</u>
- → 2. Etablir le diagramme d'états optimal (< lois de fonctionnement)</p>
- → 3. Etablir la table d'états (< diagramme d'états)</p>
- 4. Exprimer et simplifier les fonctions logiques
- ((5. Implémenter / Représenter le schéma logique))

Diagramme d'états - Rappels

Chaque état est numéroté par une combinaison de valeurs des variables d'état (1 variable /FF)

n FF
$$\rightarrow$$
 2ⁿ états

<u>Modèle de Moore</u>: outputs = F(state)

Modèle de Mealy: outputs = F(state, inputs)

Réaliser le design d'un circuit qui a le comportement suivant :

- Si l'entrée = 1 : le circuit reste dans le même état ;
- Si l'entrée = 0 : il génère la séquence :
 00 11 01 10 00 ...

Utiliser des flip-flops D, la sortie est égale à l'état présent.

Verrous et flip-flops - Rappels

Verrou : actif sur un niveau d'horloge

Flip-flop: actif sur une transition d'horloge

D(t)	Q(t+1)
0	0
1	1

Réaliser le design d'un circuit qui a le comportement suivant :

- Si l'entrée = 1 : le circuit reste dans le même état ;
- Si l'entrée = 0 : il génère la séquence :
 00 11 01 10 00 ...

Utiliser des flip-flops D, la sortie est égale à l'état présent.

1a. Entrée(s): 1 bit X

<u>1b. Sortie(s):</u> = état présent (→ Modèle de Moore)

2. Lois de fonctionnement → Diagramme d'états :

- Si l'entrée = 1 : le circuit reste dans le même état ;
- Si l'*entrée* = 0 : il génère la séquence : **00 11 01 10 00 ...**
 - → 4 états (00, 01, 10, 11) → 2 variables d'état (2 FFD): AB

1a. Entrée(s): 1 bit X

1b. Sortie(s): = état présent (→ Modèle de Moore)

2. Lois de fonctionnement → Diagramme d'états :

- Si l'entrée = 1 : le circuit reste dans le même état ;
- Si l'*entrée* = 0 : il génère la séquence : **00 11 01 10 00 ...**
 - → 4 états (00, 01, 10, 11) → 2 variables d'état (2 FFD): AB

1a. Entrée(s): 1 bit X

<u>1b. Sortie(s):</u> = état présent (→ Modèle de Moore)

2. Lois de fonctionnement → Diagramme d'états :

- Si l'entrée = 1 : le circuit reste dans le même état ;
- Si l'entrée = 0 : il génère la séquence : 00 11 01 10 00 ...
 → 4 états (00, 01, 10, 11) → 2 variables d'état (2 FFD): AB

3. Table d'états:

X = 1 → Mode mémo

A(t)	B(t)	X	A(t+1)	B(t+1)	S ₁	S ₂
0	0	0				
0	0	1	0	0		
0	1	0				
0	1	1	0	1		
1	0	0				
1	0	1	1	0		
1	1	0				
1	1	1	1	1		

3. Table d'états:

$X = 0 \rightarrow Séquence: 00 - 11 - 01 - 10 - 00 ...$

A(t)	B(t)	Х	A(t+1)	B(t+1)	S ₁	S ₂
0	0	0	1	1		
0	0	1	0	0		
0	1	0	1	0		
0	1	1	0	1		
1	0	0	0	0		
1	0	1	1	0		
1	1	0	0	1		
1	1	1	1	1		

3. Table d'états:

Sorties = état présent = A(t) B(t)

A(t)	B(t)	Х	A(t+1)	B(t+1)	S ₁	S ₂
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	1	0	1	0	0	1
0	1	1	0	1	0	1
1	0	0	0	0	1	0
1	0	1	1	0	1	0
1	1	0	0	1	1	1
1	1	1	1	1	1	1

4. Fonctions logiques des flip-flops (et sorties):

$$A(t+1) = X.A(t) + \overline{X}.\overline{A}(t)$$

$$\equiv D_A(t)$$

$$B(t+1) = X.B(t) + A(t).B(t) + \overline{X}.\overline{A}(t).\overline{B}(t)$$

$$\equiv D_B(t)$$

Réaliser le design d'un circuit qui possède 2 entrées et qui a le comportement suivant :

- Si E = 0 : le circuit reste dans le même état sans regarder la valeur de X ;
- Si E = 1 et X = 1: le circuit passe dans les états suivants 00 01 10 11 00 ...
- Si E = 1 et X = 0: le circuit passe dans les états 00 11 10 01 00...

Utiliser des flip-flops JK, associer les sorties aux états.

Flip-flops JK - Rappels

$$Q(t+1) = J.\overline{Q(t)} + \overline{K}.Q(t)$$

Réaliser le design d'un circuit qui possède 2 entrées et qui a le comportement suivant :

- Si E = 0 : le circuit reste dans le même état sans regarder la valeur de X ;
- Si E = 1 et X = 1: le circuit passe dans les états suivants 00 01 10 11 00 ...
- Si E = 1 et X = 0: le circuit passe dans les états 00 11 10 01 00...

Utiliser des flip-flops JK, associer les sorties aux états.

- 1a. Entrée(s): 2 bits E et X
- 1b. Sortie(s): = état présent (→ Modèle de Moore)
- 2. Lois de fonctionnement → Diagramme d'états :
- Si E = 0: le circuit reste dans le même état $(\forall X)$;
- Si E = 1 et X = 1: il génère la séquence : 00 01 10 11 00 ...
- Si E = 1 et X = 0: il génère la séquence : 00 11 10 01 00 ...
 - → 4 états (00, 01, 10, 11) → 2 variables d'état (2 FFJK): AB

- 1a. Entrée(s): 2 bits E et X
- 1b. Sortie(s): = état présent (→ Modèle de Moore)
- 2. Lois de fonctionnement → Diagramme d'états :
- Si E = 0: le circuit reste dans le même état $(\forall X)$;
- Si E = 1 et X = 1: il génère la séquence : 00 01 10 11 00 ...
- Si E = 1 et X = 0: il génère la séquence : 00 11 10 01 00 ...
 - → 4 états (00, 01, 10, 11) → 2 variables d'état (2 FFJK): AB

- 1a. Entrée(s): 2 bits E et X
- 1b. Sortie(s): = état présent (→ Modèle de Moore)
- 2. Lois de fonctionnement → Diagramme d'états :
- Si E = 0: le circuit reste dans le même état $(\forall X)$;
- Si E = 1 et X = 1: il génère la séquence : 00 01 10 11 00 ...
- Si E = 1 et X = 0 : il génère la séquence : 00 11 10 01 00 ...
 - → 4 états (00, 01, 10, 11) → 2 variables d'état (2 FFJK): AB

- 1a. Entrée(s): 2 bits E et X
- 1b. Sortie(s): = état présent (→ Modèle de Moore)
- 2. Lois de fonctionnement → Diagramme d'états :
- Si E = 0: le circuit reste dans le même état $(\forall X)$;
- Si E = 1 et X = 1: il génère la séquence : 00 01 10 11 00 ...
- Si E = 1 et X = 0: il génère la séquence : 00 11 10 01 00 ...
 - → 4 états (00, 01, 10, 11) → 2 variables d'état (2 FFJK): AB

A(t)	B(t)	E	X	A(t+1)	B(t+1)	S ₁	S ₂	
0	0	0	0	0	0			
0	0	0	1	0	0			
0	0	1	0					
0	0	1	1					
0	1	0	0	0	1			
0	1	0	1	0	1			
0	1	1	0					
0	1	1	1					
1	0	0	0	1	0			
1	0	0	1	1	0			
1	0	1	0					
1	0	1	1					
1	1	0	0	1	1			
1	1	0	1	1	1			
1	1	1	0					
1	1	1	1					

 $EX = 11 \rightarrow Séquence: 00 - 01 - 10 - 11 - 00 ...$

A(t)	B(t)	E	X	A(t+1)	B(t+1)	S ₁	S ₂	
0	0	0	0	0	0			
0	0	0	1	0	0			
0	0	1	0					
0	0	1	1	0	1			
0	1	0	0	0	1			
0	1	0	1	0	1			
0	1	1	0					
0	1	1	1	1	0			
1	0	0	0	1	0			
1	0	0	1	1	0			
1	0	1	0					
1	0	1	1	1	1			
1	1	0	0	1	1			
1	1	0	1	1	1			
1	1	1	0					
1	1	1	1	0	0			

 $EX = 10 \rightarrow Séquence: 00 - 11 - 10 - 01 - 00 ...$

A(t)	B(t)	E	X	A(t+1)	B(t+1)	S ₁	S ₂	
0	0	0	0	0	0			
0	0	0	1	0	0			
0	0	1	0	1	1			
0	0	1	1	0	1			
0	1	0	0	0	1			
0	1	0	1	0	1			
0	1	1	0	0	0			
0	1	1	1	1	0			
1	0	0	0	1	0			
1	0	0	1	1	0			
1	0	1	0	0	1			
1	0	1	1	1	1			
1	1	0	0	1	1			
1	1	0	1	1	1			
1	1	1	0	1	0			
1	1	1	1	0	0			

A(t)	B(t)	E	X	A(t+1)	B(t+1)	S ₁	S ₂	
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	
0	0	1	0	1	1	0	0	
0	0	1	1	0	1	0	0	
0	1	0	0	0	1	0	1	
0	1	0	1	0	1	0	1	
0	1	1	0	0	0	0	1	
0	1	1	1	1	0	0	1	
1	0	0	0	1	0	1	0	
1	0	0	1	1	0	1	0	
1	0	1	0	0	1	1	0	
1	0	1	1	1	1	1	0	
1	1	0	0	1	1	1	1	
1	1	0	1	1	1	1	1	
1	1	1	0	1	0	1	1	
1	1	1	1	0	0	1	1	

Flip-flops JK - Rappels

J(t)	K(t)	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q(t)

$Q(t) \rightarrow Q(t+1)$	J(t)	K(t)
0 \rightarrow 0	0	Х
0 → 1	1	X
1 → 1	X	0
1 → 0	X	1

A(t)	B(t)	E	X	A(t+1)	B(t+1)	S ₁	S ₂	J _A	K _A
0	0	0	0	0	0	0	0	0	X
0	0	0	1	0	0	0	0	0	X
0	0	1	0	1	1	0	0	1	X
0	0	1	1	0	1	0	0	0	X
0	1	0	0	0	1	0	1	0	X
0	1	0	1	0	1	0	1	0	X
0	1	1	0	0	0	0	1	0	X
0	1	1	1	1	0	0	1	1	X
1	0	0	0	1	0	1	0	X	0
1	0	0	1	1	0	1	0	X	0
1	0	1	0	0	1	1	0	X	1
1	0	1	1	1	1	1	0	X	0
1	1	0	0	1	1	1	1	Х	0
1	1	0	1	1	1	1	1	Х	0
1	1	1	0	1	0	1	1	Х	0
1	1	1	1	0	0	1	1	Х	1

A(t)	B(t)	E	X	A(t+1)	B(t+1)	S ₁	S ₂	J_{B}	K _B
0	0	0	0	0	0	0	0	0	X
0	0	0	1	0	0	0	0	0	X
0	0	1	0	1	1	0	0	1	X
0	0	1	1	0	1	0	0	1	X
0	1	0	0	0	1	0	1	X	0
0	1	0	1	0	1	0	1	X	0
0	1	1	0	0	0	0	1	X	1
0	1	1	1	1	0	0	1	X	1
1	0	0	0	1	0	1	0	0	X
1	0	0	1	1	0	1	0	0	X
1	0	1	0	0	1	1	0	1	X
1	0	1	1	1	1	1	0	1	X
1	1	0	0	1	1	1	1	Х	0
1	1	0	1	1	1	1	1	Х	0
1	1	1	0	1	0	1	1	Х	1
1	1	1	1	0	0	1	1	Х	1

4. Fonctions logiques des flip-flops (et sorties):

4. Fonctions logiques des flip-flops (et sorties):

Des nombres compris entre 0 et 7 sont transmis sous forme binaire sur une ligne sérielle.

L'envoi de chaque nombre commence toujours par le bit de poids fort.

On demande de réaliser un circuit dont la sortie Z = 1 lors de la détection du bit de poids faible d'un 0 ou d'un 7.

Une nouvelle détection commencera après le passage de 3 bits.

Déterminer la table d'états.

$$X(t) = b_2$$
 $X(t+1) = b_1$
 $X(t+2) = b_0$
 $b_0 \ b_1 \ b_2 \longrightarrow b_0 \ b_1 \ b_2$

Entrée:

 $X(t+2) = b_0$
 $Entrée:$
 $X(t+2) = b_0$
 $Entrée:$
 En

On demande de réaliser un circuit dont la sortie Z = 1 lors de la détection du bit de poids faible d'un 0 ou d'un 7.

Une nouvelle détection commencera après le passage de 3 bits.

Déterminer la table d'états.

- 2. Lois de fonctionnement → Diagramme d'états :
- nouvelle détection (S0) → 1^{er} bit détecté X = 0 (S1) ou 1 (S2);
- 2) 2^{eme} bit détecté X = 0 (S1 \rightarrow S3, S2 \rightarrow S5) ou 1 (S1 \rightarrow S4, S2 \rightarrow S6);
- 3) 3^{eme} bit détecté X = 0 ou $1 \rightarrow Z = 0$ ou $1 \rightarrow$ nouvelle détection (S0);

- 2. Lois de fonctionnement → Diagramme d'états :
- nouvelle détection (S0) → 1^{er} bit détecté X = 0 (S1) ou 1 (S2);
- 2) 2^{eme} bit détecté X = 0 (S1 \rightarrow S3, S2 \rightarrow S5) ou 1 (S1 \rightarrow S4, S2 \rightarrow S6);
- 3) 3^{eme} bit détecté X = 0 ou $1 \rightarrow Z = 0$ ou $1 \rightarrow$ nouvelle détection (S0);

- 2. Lois de fonctionnement → Diagramme d'états :
- nouvelle détection (S0) → 1^{er} bit détecté X = 0 (S1) ou 1 (S2);
- 2) 2^{eme} bit détecté X = 0 (S1 \rightarrow S3, S2 \rightarrow S4) ou 1 (S1 \rightarrow S4, S2 \rightarrow S5);
- 3) 3^{eme} bit détecté X = 0 ou $1 \rightarrow Z = 0$ ou $1 \rightarrow$ nouvelle détection (S0);

- 2. Lois de fonctionnement → Diagramme d'états :
- 1) nouvelle détection (000) \rightarrow 1^{er} bit détecté X = 0 (001) ou 1 (010);
- 2) 2^{eme} bit détecté X = 0 (001 \rightarrow 011, 010 \rightarrow 100) ou 1 (001 \rightarrow 100, 010 \rightarrow 101);
- 3) 3^{eme} bit détecté X = 0 ou $1 \rightarrow Z = 0$ ou $1 \rightarrow$ nouvelle détection (000);

Q ₂ (t)	Q ₁ (t)	Q ₀ (t)	Х	Q ₂ (t+1)	Q ₁ (t+1)	$Q_0(t+1)$	Z
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0
0	0	1	0				
0	0	1	1				
0	1	0	0				
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Q ₂ (t)	Q ₁ (t)	$Q_0(t)$	X	Q ₂ (t+1)	Q ₁ (t+1)	$Q_0(t+1)$	Z
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	0
0	1	1	0				
0	1	1	1				
1	0	0	0				
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Q ₂ (t)	Q ₁ (t)	Q ₀ (t)	Х	Q ₂ (t+1)	Q ₁ (t+1)	$Q_0(t+1)$	Z
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	0
0	1	1	0	0	0	0	1
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0				
1	1	0	1				
1	1	1	0				
1	1	1	1				

Q ₂ (t)	Q ₁ (t)	Q ₀ (t)	Х	Q ₂ (t+1)	Q ₁ (t+1)	$Q_0(t+1)$	Z
0	0	0	0	0	0	1	0
0	0	0	1	0	1	0	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
0	1	0	0	1	0	0	0
0	1	0	1	1	0	1	0
0	1	1	0	0	0	0	1
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	0	0	0
1	0	1	0	0	0	0	0
1	0	1	1	0	0	0	1
1	1	0	0	Х	Х	X	X
1	1	0	1	X	X	X	X
1	1	1	0	Х	Х	X	Х
1	1	1	1	Х	X	X	Х

On vous demande de réaliser la synthèse d'un système séquentiel régi par une horloge à 0.05 Hz et dédié à la surveillance de la température des lignes haute tension.

Tant qu'il y a du vent (vitesse supérieure ou égale à 1m/s) et que la valeur du courant reste inférieure ou égale à 1200A, il n'y a rien à craindre.

Lorsque la vitesse du vent tombe à moins d'1m/s et que la valeur du courant reste inférieure ou égale à 1200A, le système passe en mode de surveillance et informe l'utilisateur par un témoin lumineux. De même, si le courant dépasse 1200 A et que la vitesse du vent reste supérieure ou égale à 1m/s. Ce mode reste actif tant que l'une de ces deux conditions est vérifiée.

L'état d'alerte doit être enclenché si la vitesse du vent chute à moins d'1m/s et que la valeur du courant est supérieure à 1200A pendant 20s ou plus. L'alerte est donnée à l'utilisateur au moyen d'une alarme. On maintient l'alerte tant que la valeur du courant reste supérieure à 1200A.

Donnez le nombre de bit(s) d'entrée(s)/sortie(s) et leur signification. Etablissez la machine d'états, les équations des FF-D et des sorties de ce système.

On vous demande de réaliser la synthèse d'un système séquentiel régi par une horloge à 0.05 Hz et dédié à la surveillance de la température des lignes haute tension. $\rightarrow T_{clk} = 20s$

Tant qu'il y a du vent (vitesse supérieure ou égale à 1m/s) et que la valeur du courant reste inférieure ou égale à 1200A, il n'y a rien à craindre.

Lorsque la vitesse du vent tombe à moins d'1m/s et que la valeur du courant reste inférieure ou égale à 1200A, le système passe en mode de surveillance et informe l'utilisateur par un témoin lumineux. De même, si le courant dépasse 1200 A et que la vitesse du vent reste supérieure ou égale à 1m/s. Ce mode reste actif tant que l'une de ces deux conditions est vérifiée.

L'état d'alerte doit être enclenché si la vitesse du vent chute à moins d'1m/s et que la valeur du courant est supérieure à 1200A pendant 20s ou plus. L'alerte est donnée à l'utilisateur au moyen d'une alarme. On maintient l'alerte tant que la valeur du courant reste supérieure à 1200A. \rightarrow durée critique = T_{clk}

Donnez le nombre de bit(s) d'entrée(s)/sortie(s) et leur signification. Etablissez la machine d'états, les équations des FF-D et des sorties de ce système.

1a. Entrées:

- V = 1 si la vitesse du vent (v_{vent}) est < 1m/s ; 0 si v_{vent} ≥ 1m/s
- C = 1 si la valeur du courant (I) est > 1200 A ; 0 si I ≤ 1200A

1b. Sorties:

- L = 1 si le témoin lumineux du mode surveillance est actif; 0 sinon
- A = 1 si l'alarme de l'état d'alerte est déclenchée ; 0 sinon

Ex 21 2. Lois de fonctionnement → Diagramme d'états :

- 1) Si $v_{\text{vent}} \ge 1 \text{m/s}$ (V=0) et I≤1200A (C=0) → tout est OK (S0): L=A=0;
- 2) Si $v_{\text{vent}} < 1 \text{m/s}$ (V=1) <u>et</u> $l \le 1200 \text{A}$ (C=0) \rightarrow mode surveillance (S1): L=1 et A=0;

Q ₁ (t)	Q ₀ (t)	V	С	Q ₁ (t+1)	$Q_0(t+1)$	L	Α
0	0	0	0	0	0	0	0
0	0	0	1				
0	0	1	0				
0	0	1	1				
0	1	0	0	0	0	0	0
0	1	0	1				
0	1	1	0				
0	1	1	1				
1	0	0	0	0	0	0	0
1	0	0	1				
1	0	1	0				
1	0	1	1				
1	1	0	0	0	0	0	0
1	1	0	1				
1	1	1	0				
1	1	1	1				

Q ₁ (t)	Q ₀ (t)	V	С	Q ₁ (t+1)	$Q_0(t+1)$	L	Α
0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1				
0	1	0	0	0	0	0	0
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	0
0	1	1	1				
1	0	0	0	0	0	0	0
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1				
1	1	0	0	0	0	0	0
1	1	0	1	!!!	!!!	!!!	!!!
1	1	1	0	0	1	1	0
1	1	1	1				

Q ₁ (t)	Q ₀ (t)	V	С	Q ₁ (t+1)	$Q_0(t+1)$	L	Α
0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1				
1	1	0	0	0	0	0	0
1	1	0	1				
1	1	1	0	0	1	1	0
1	1	1	1				

Q ₁ (t)	Q ₀ (t)	V	С	Q ₁ (t+1)	$Q_0(t+1)$	L	Α
0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	0	1
1	1	0	0	0	0	0	0
1	1	0	1				
1	1	1	0	0	1	1	0
1	1	1	1				

Q ₁ (t)	Q ₀ (t)	V	С	Q ₁ (t+1)	$Q_0(t+1)$	L	Α
0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	0	1
1	1	0	0	0	0	0	0
1	1	0	1	1	1	0	1
1	1	1	0	0	1	1	0
1	1	1	1	1	1	0	1

Q ₁ (t)	Q ₀ (t)	V	С	Q ₁ (t+1)	$Q_0(t+1)$	L	Α
0	0	0	0	0	0	0	0
0	0	0	1	0	1	1	0
0	0	1	0	0	1	1	0
0	0	1	1	1	0	0	0
0	1	0	0	0	0	0	0
0	1	0	1	0	1	1	0
0	1	1	0	0	1	1	0
0	1	1	1	1	0	0	0
1	0	0	0	0	0	0	0
1	0	0	1	0	1	1	0
1	0	1	0	0	1	1	0
1	0	1	1	1	1	0	1
1	1	0	0	0	0	0	0
1	1	0	1	1	1	0	1
1	1	1	0	0	1	1	0
1	1	1	1	1	1	0	1

4. Fonctions logiques des flip-flops et sorties:

4. Fonctions logiques des flip-flops et sorties:

