- If A and B have almost identical environments we say that they are synonyms.

 (Harris, 1954)
- You shall know a word by the company it keeps.

(Firth, 1957)

• The degree of semantic similarity between two linguistic expressions A and B is a function of the similarity of the linguistic contexts in which A and B can appear.

(Lenci, 2008)

	QuatreVT	Voyage Bal	Bête Hum.	Mme Bovary	
	119 Kw	82 kw	128 kw	117 kw	
bataille	35	4	6	2	
clair	105	26	96	52	
facile	12	19	6	10	
politique	11	0	9	5	
voyage	17	196	94	44	
idiot	2	1	2	6	
amour	19	0	47	94	

TABLE K.1 – Matrice terme-documents pour quelques mots et 4 romans (Quatrevingt-treize (Hugo); Le voyage en ballon (Verne); La bête humaine (Zola); Mme Bovary (Flaubert)).

FIGURE K.9 – Représentation graphique de quelques romans dans le plan (voyage, amour)

FIGURE K.10 – Représentation graphique de quelques mots dans le plan (93, Bovary)

Pondération	Formule du tf					
binaire	$\begin{cases} 1 & \text{si } f_{t,d} > 0 \\ 0 & \text{sinon} \end{cases}$					
fréquence brute	$f_{t,d}$					
fréquence (normalisée)	$\frac{f_{t,d}}{\sum_{t'\in d} f_{t',d}}$					
normalisation logarithmique	$\log(1+f_{t,d})$					
normalisation par le max	$K + (1 - K) \frac{f_{t,d}}{\max_{t' \in d} f_{t',d}}$					
Formule pour idf						
$idf_t = \log\left(\frac{ D }{df_t}\right)$						
Formule complète						
td - $idf_{t,d} = tf_{t,d} \times idf_t$						

Table K.2 – Formules pour le calcul du tf-idf, avec les variantes les plus courantes pour le calcul du tf.

Notations : t terme D ensemble de documents, $d \in D$ $f_{t,d}$ fréquence de t dans d df_t $|\{d \in D \mid f_{t,d} \neq 0\}|$

woman - queen		queen – woman		king – ma	king - man		man - king	
+ man		+ king		+ queen	+ queen		+ woman	
king	0.749	man	0.733	woman	0.745	son	0.728	
prince	0.708	who	0.712	beautiful	0.726	queen	0.716	
kingdom	0.694	men	0.711	girl	0.672	elizabeth	0.710	
victoria	0.644	whom	0.708	my	0.655	brother	0.706	
scotland	0.643	killed	0.685	lady	0.646	emperor	0.699	
wales	0.640	person	0.676	she	0.628	wife	0.693	
lord	0.638	young	0.673	thing	0.613	henry	0.691	
great	0.627	himself	0.639	good	0.606	younger	0.686	
elizabeth	0.622	said	0.637	her	0.595	daughter	0.681	
throne	0.614	father	0.636	naked	0.592	prince	0.665	

Table K.3 – Quelques calculs analogiques réalisés avec la démo de GloVe (https://github.com/stanfordnlp/GloVe) avec les 10 mots les plus proches par distance cosinus du point obtenu par l'opération additive sur les vecteurs.

Figure 1. The relative locations of word embeddings for the analogy "man is to king as woman is to ..?". The closest embedding to the linear combination $\mathbf{w}_K - \mathbf{w}_M + \mathbf{w}_W$ is that of queen. We explain why this occurs and interpret the difference between them.

Figure K.11 – Graphique sur la fameuse analogie homme/femme|roi/x, version de Allen et Hospedales (2019)