

CS3640

Network Layer (3): The Internet Protocol

Prof. Supreeth Shastri

Computer Science
The University of Iowa

Lecture goals

a two-part discussion on the Internet Protocol, its functionalities, shortcomings, and real-life solutions

- IPv4 format and addressing
- Address management via DHCP
- IPv6
- NAT and Middleboxes

Chapters 4.3, 4.5

ICANN allocated the last chunk of IPv4 addresses in 2011

Then, how do new hosts obtain and manage their IP addresses?

Create a new version of the Internet Protocol w/ larger range of addresses

2

Figure out a way to reuse the existing 32-bit address space

IPv6

(or what the Internet visionaries proposed)

IPv6 Datagram Format

Original Motivation

Increase available address space from 2^{32} (4 billion) to 2^{128} (340 trillion trillion)

Additional Motivation

no checksum, no options, no fragmentation or reassembly ⇒ faster packet processing at routers

Transition from IPv4 to IPv6

Not all routers can or will upgrade simultaneously

- The Internet had only one "flag day": 1/1/1983 when all ARPANET hosts switched from NCP to TCP/IP
- So, how will the Internet operate with mixed IPv4 and IPv6 routers?

Tunneling

- Key idea: carry IPv6 datagram as payload in IPv4 datagram among IPv4 routers
- The concept is used extensively in other contexts such as 3G/4G/5G networks

Tunneling and Encapsulation

Ethernet connecting two IPv6 routers

The usual: IP datagram sent as payload in link-layer frame

IPv4 network connecting two IPv6 routers

Tunneling

IPv6 Slow Adoption

30%

client access to Google search are via IPv6

33%

of all US government domains are IPv6 capable

25

years since IPv6 was standardized

(or how folks actually solved the problem in the real world)

Network Address Translation (NAT)

All devices in local network share just one IPv4 address as far as outside world is concerned

All datagrams **leaving** local network have the NAT IP address (138.76.29.7) as their source, but have different source port numbers

datagrams with destination within this network have 10.0.0/24 address for source and destination (as usual)

Network Address Translation (NAT)

All devices in local network can have addresses from the "private" IP address space (10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16) that can only be used in local network

How is this useful?

- just one IP address needed from provider ISP for all devices
- can change addresses of host in local network without notifying outside world
- can change ISP without changing addresses of devices in local network
- [bonus] security: devices internal to the local network are neither directly addressable nor visible to the outside world

Implementation of NAT

A NAT router must (transparently) perform the following:

- 1. **For all outgoing datagrams**: replace (source IP address, port #) to (NAT IP address, new port #). Remote clients/servers will perceive (NAT IP address, new port #) as the end host they are communicating with, and will address their packets to that.
- 2. **Maintain a NAT translation table**: record all mappings from (source IP address, port #) to (NAT IP address, new port #) in a look up table.
- 3. For all incoming datagrams: replace (NAT IP address, new port #) in destination field of every incoming datagram with the corresponding (source IP address, port #) stored in NAT table.

Implementation of NAT

Since early days till now NAT has been CONTROVERSIAL

- routers "should" only process up to layer 3
- address "shortage" should be solved by IPv6
- violates end-to-end argument (port # manipulation by network-layer device)
- NAT traversal: what if client wants to connect to a server that is behind NAT?

Middleboxes

(or why stop at NAT when one can rock the boat harder!)

Middlebox (RFC 3234)

any intermediary box performing functions apart from normal, standard functions of an IP router on the data path between a source host and destination host

Middleboxes are everywhere!

- NAT: home, mobile, enterprise networks
- Firewalls and Intrusion detection: enterprise networks
- Load balancers: service providers, mobile networks
- Network Function Virtualization (NFV)

The IP hourglass: An Organizing Principle for Internet Protocols

Internet's "thin waist"

one core network layer protocol that **must** be implemented by every (billions of) Internetconnected device

allows many protocols in physical, link, transport, and application layers

As the Internet enters its "middle age", its waist has expanded!

Spot Quiz (ICON)