# Calcul différentiel et fonctions holomorphes

Pierron Théo

ENS Ker Lann

# Table des matières

| Ι | Ca                                      | alcul différentiel                                     | 1  |  |  |  |  |
|---|-----------------------------------------|--------------------------------------------------------|----|--|--|--|--|
| 1 | Fonctions différentielles               |                                                        |    |  |  |  |  |
|   | 1.1                                     | Définitions et propriétés élémentaires                 | 4  |  |  |  |  |
|   | 1.2                                     | Applications <i>n</i> -linéaires                       | 6  |  |  |  |  |
|   | 1.3                                     | Différentielle de fonctions composées                  | 9  |  |  |  |  |
|   | 1.4                                     | Différentielles partielles                             | 10 |  |  |  |  |
|   |                                         | 1.4.1 Différentielles partielles                       | 10 |  |  |  |  |
|   |                                         | 1.4.2 Fonctions définies sur un produit                | 11 |  |  |  |  |
| 2 | Théorème des accroissements finis       |                                                        |    |  |  |  |  |
|   | 2.1                                     | Le cas de la variable réelle                           | 15 |  |  |  |  |
|   | 2.2                                     | Cas général                                            | 17 |  |  |  |  |
|   | 2.3                                     | Applications                                           | 18 |  |  |  |  |
|   |                                         | 2.3.1 Différentielle nulle implique fonction constante | 18 |  |  |  |  |
|   |                                         | 2.3.2 Différentielles partielles                       | 18 |  |  |  |  |
|   |                                         | 2.3.3 Différentielle d'une suite de fonctions          | 20 |  |  |  |  |
| 3 | Différentielles et formule de TAYLOR 23 |                                                        |    |  |  |  |  |
|   | 3.1                                     | La variable réelle                                     | 23 |  |  |  |  |
|   | 3.2                                     | Différentielle d'ordre supérieur                       | 25 |  |  |  |  |
|   | 3.3                                     | Formes différentielles                                 | 28 |  |  |  |  |
|   | 3.4                                     | Fonctions convexes                                     | 30 |  |  |  |  |
|   |                                         | 3.4.1 Cas réel                                         | 30 |  |  |  |  |
|   |                                         | 3.4.2 Cas général                                      | 31 |  |  |  |  |
|   | 3.5                                     | Différentielle d'ordre supérieur                       | 31 |  |  |  |  |
|   | 3.6                                     | Formules de Taylor                                     | 32 |  |  |  |  |
| 4 | TIL                                     | a et TFI                                               | 35 |  |  |  |  |
|   | 4.1                                     | Théorème d'inversion locale                            | 35 |  |  |  |  |
|   | 4.2                                     | Théorème des fonctions implicites                      | 39 |  |  |  |  |

| <b>5</b> | Pro             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>!</b> 1 |  |  |  |  |
|----------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|--|--|
|          | 5.1             | Problème général                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11         |  |  |  |  |
|          | 5.2             | Extrema liés                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 13         |  |  |  |  |
| 6        | Sou             | s variétés différentiables de $\mathbb{R}^n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15         |  |  |  |  |
|          | 6.1             | Introduction: courbes et surfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 45         |  |  |  |  |
|          |                 | 6.1.1 Courbes dans $\mathbb{R}^2$ ( $C^1$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45         |  |  |  |  |
|          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 46         |  |  |  |  |
|          | 6.2             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 17         |  |  |  |  |
|          | 6.3             | Espaces tangents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18         |  |  |  |  |
| тт       | 10              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0          |  |  |  |  |
| II       | F               | onctions holomorphes 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9          |  |  |  |  |
| 7        | Pre             | mières propriétés 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 51         |  |  |  |  |
|          | 7.1             | Définition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 51         |  |  |  |  |
|          | 7.2             | Séries entières                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52         |  |  |  |  |
|          | 7.3             | Conditions de Cauchy-Riemann                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53         |  |  |  |  |
|          | 7.4             | Intégration sur des chemins                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 54         |  |  |  |  |
| 8        | Thé             | <b>J</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 69         |  |  |  |  |
|          | 8.1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 59         |  |  |  |  |
|          | 8.2             | Le logarithme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33         |  |  |  |  |
|          | 8.3             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 34         |  |  |  |  |
|          | 8.4             | 8 - 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 - 8 8 8 8 8 8 8 8 8 8 8 - 8 8 8 8 8 8 8 8 8 8 8 - 8 8 8 8 8 8 8 8 8 8 8 - 8 8 8 8 8 8 8 8 8 8 8 | 35         |  |  |  |  |
|          | 8.5             | Le théorème des résidus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37         |  |  |  |  |
|          | 8.6             | Principe du maximum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 72         |  |  |  |  |
| 9        | Généralisations |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            |  |  |  |  |
|          | 9.1             | T - T - T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 77         |  |  |  |  |
|          | 9.2             | $\checkmark$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 78         |  |  |  |  |
|          | 9.3             | Exemple de calculs d'intégrales                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79         |  |  |  |  |

# Première partie Calcul différentiel

# Chapitre 1

## Fonctions différentielles

## Rappels

<u>Définition 1.1</u> Soit  $f: I \to F$  avec I un intervalle ouvert de  $\mathbb{R}$  et F un espace vectoriel normé.

Soit  $a \in I$ .

f est dite continue en a ssi

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - a| \leqslant \eta \Rightarrow ||f(x) - f(a)||_F \leqslant \varepsilon$$

f est dite dérivable en a ssi  $\lim_{t\to a} \frac{f(t)-f(a)}{t-a}$  existe. Elle se note f'(a).

**<u>Définition 1.2</u>** Soit  $f: U \to \mathbb{R}^p$  avec U un ouvert de  $\mathbb{R}^n$ .

f est dite continue en a ssi

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, \|x - a\|_{\mathbb{R}^n} \leqslant \eta \Rightarrow \|f(x) - f(a)\|_{\mathbb{R}^p} \leqslant \varepsilon$$

Remarque 1.1 Comme on n'a pas de division dans  $\mathbb{R}^p$ , on ne peut pas parler de dérivabilité.

#### Exemple 1.1

$$f: \begin{cases} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & \frac{x^5}{(y-x^2)^2+x^8} \end{cases}$$

avec f(0,0) = 0.

On a avec  $x \to 0$ :

$$f(x,0) = \frac{x}{1+x^4} \to 0$$

$$f(0,y) = 0 \to 0$$

$$f(x,ax) = \frac{x^5}{a^2(x-x^2)^2 + x^8} \sim \frac{x^3}{a^2} \to 0$$

f est continue dans toutes les directions, mais  $f(x, x^2) = \frac{1}{x^3}$  n'est pas continue en 0.

f est même dérivable dans toutes les directions mais pas continue.

## 1.1 Définitions et propriétés élémentaires

**<u>Définition 1.3</u>** Soient E et F deux espaces vectoriels normés, U un ouvert de E,  $a \in U$  et  $f: U \to F$ .

f est dite différentiable en a ssi il existe  $L \in \mathscr{L}_c(E, F)$  tel que  $\forall h \in F$  tel que  $a + h \in U$ ,  $f(a + h) = f(a) + L(h) + ||h||_E \varepsilon(h)$  avec  $\lim_{h \to 0} \varepsilon(h) = 0$ .

Remarque 1.2

- (Définition équivalente) f est dite différentiable en a ssi f est continue en a et il existe  $L \in \mathcal{L}(E,F)$  tel que  $\forall h \in F$  tel que  $a+h \in U$ ,  $f(a+h)=f(a)+L(h)+\|h\|_{E} \varepsilon(h)$  avec  $\lim_{h\to 0} \varepsilon(h)=0$ .
- Les définitions dépendent des normes sur E et F, mais on s'en fiche en dimension finie.

**Proposition 1.1 (Rappel)** Soit  $f:(E,\|\cdot\|_E) \to (E',\|\cdot\|_{E'})$  linéaire.

Les assertions suivantes sont équivalentes :

- f est continue
- f est continue en 0
- f est bornée sur les bornés
- f est lipschitzienne en 0
- f est lipschitzienne

Remarque 1.3 En particulier, si E est de dimension finie,  $\mathcal{L}(E,F) = \mathcal{L}_c(E,F)$ .

**Proposition 1.2** Si f est différentiable en a, alors L est unique. On l'appelle différentielle de f en a ou application linéaire tangente et on la note Df(a) ou f'(a) ou df(a) ou  $d_a f$  ou  $\overrightarrow{D_a f}$ , ...

 $D\acute{e}monstration$ . On suppose qu'il existe  $L_1$  et  $L_2$  qui marchent.

On a  $f(a) + L_1(h) + ||h||_E \varepsilon_1(h) = f(a+h) = f(a) + L_2(h) + ||h||_E \varepsilon_2(h)$ avec  $\varepsilon_1(h)$  et  $\varepsilon_2(h) \to 0$  quand  $h \to 0$ .

Il existe r > 0 tel que  $B(a, r) \subset U$ .

Donc, pour tout h tel que  $||h||_E \leqslant r$ ,  $L_1(h) - L_2(h) = ||h||_E \varepsilon(h)$  avec  $\lim_{h\to 0} \varepsilon(h) = 0$ .

Soit  $\lambda \in ]0,1]$ .  $a + \lambda h \in U$  donc  $L_1(\lambda h) - L_2(\lambda h) = ||\lambda h||_E \varepsilon(\lambda h)$ 

Donc  $L_1(h) - L_2(h) = ||h||_E \varepsilon(\lambda h)$ . Avec  $\lambda \to 0$ , on a  $L_1(h) = L_2(h)$  sur B(a,r) donc sur E.

Remarque 1.4 Dans le cas  $E = \mathbb{R}$  et I un intervalle ouvert de  $\mathbb{R}$ .

Si f est dérivable en a, f est différentiable en a avec  $Df(a) = (h \mapsto hf'(a))$ .

Si f est différentiable en a alors f est dérivable en a puisque :

$$\varphi: \begin{cases} F & \to & \mathscr{L}_c(\mathbb{R}, F) \\ f & \mapsto & m_f: \begin{cases} \mathbb{R} & \to & F \\ \lambda & \mapsto & \lambda f \end{cases} \end{cases}$$

est un isomorphisme donc  $Df(a) \in \mathcal{L}_c(\mathbb{R}, F)$  est une homothétie de rapport  $\lambda(a) = f'(a)$ .

#### Exemple 1.2

•

$$f: \begin{cases} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x^2 y \end{cases}$$

$$f(x+h,y+k) = (x+h)^{2}(y+k)$$

$$= \underbrace{x^{2}y}_{f(x,y)} + \underbrace{x^{2}k + 2hxy}_{Df(x,y)(h,k)} + \underbrace{2xhk + h^{2}y + h^{2}k}_{\|(h,k)\|\varepsilon(h,k)}$$

Il faut montrer que  $\varepsilon(h,k) = \frac{2xhk + h^2y + h^2k}{\|(h,k)\|} \to 0$  quand  $(h,k) \to 0$ . C'est bien le cas, avec la norme euclidienne :

$$\left| \frac{2xhk}{\|(h,k)\|_{2}} \right| \leq |x|\sqrt{h^{2} + k^{2}} \to 0$$

$$\left| \frac{h^{2}y}{\|(h,k)\|_{2}} \right| \leq |y|\sqrt{h^{2} + k^{2}} \to 0$$

$$\left| \frac{h^{2}k}{\|(h,k)\|_{2}} \right| \leq |k|\sqrt{h^{2} + k^{2}} \to 0$$

• On montre de même que :

$$f: \begin{cases} \mathbb{R}^2 \setminus \{(x, -1), x \in \mathbb{R}\} & \to \mathbb{R} \\ (x, y) & \mapsto \frac{x}{y+1} \end{cases}$$

est différentiable.

• On munit  $C^0([0,1])$  de la norme infinie et on pose :

$$I_p: \begin{cases} C^0([0,1]) & \to & \mathbb{R} \\ f & \mapsto & \int_0^1 f^p(x) \, \mathrm{d}x \end{cases}$$

$$I_{p}(f+h) = \int_{0}^{1} (f(x) + h(x))^{p} dx$$

$$= \sum_{k=0}^{p} \int_{0}^{1} {p \choose k} f^{k}(x) h^{p-k}(x) dx$$

$$= \int_{0}^{1} f^{p}(x) dx + \underbrace{p \int_{0}^{1} f^{p-1}(x) h(x) dx}_{DI_{p}(f)(h)} + \sum_{k=0}^{p-2} \int_{0}^{1} {p \choose k} f^{k}(x) h^{p-k}(x) dx$$

On a  $|DI_p(f)(h)| \leq p ||f||^{p-1} ||h||$  donc  $DI_p(f)$  est lipschitzienne donc continue.

On a aussi:

$$\frac{\left|\sum_{k=0}^{p-2} \int_0^1 \binom{p}{k} f^k(x) h^{p-k}(x) \, \mathrm{d}x\right|}{\|h\|} \leqslant \sum_{k=0}^{p-2} \binom{p}{k} \|f\|^k \|h\|^{p-k} \to 0$$

Donc  $I_p$  est différentiable et sa différentielle est  $DI_p(f)$ .

- Toute application linéaire continue est différentiable de différentielle elle-même.
- Toute application affine S = b + T continue est différentiable de différentielle T.
- La différentielle d'une application constante est nulle. La réciproque n'est pas facile.

**<u>Définition 1.4</u>** Soient E et F deux espaces vectoriels normés, U un ouvert de E,  $f: U \to F$  et  $V \subset U$ .

On dit que f est différentiable sur V ssi f est différentiable en tous les points de V.

On définit alors

$$Df: \begin{cases} V & \to & \mathscr{L}_c(E,F) \\ a & \mapsto & Df(a) \end{cases}$$

Si Df est continue sur V, on dit que f est de classe  $C^1$  sur V.

## 1.2 Applications *n*-linéaires

**<u>Définition 1.5</u>** Soient  $E_1, \dots, E_n$  et F des espaces vectoriels normés.

 $f:\prod_{i=1}^n E_i \to F$  est dite n-linéaire ssi elle est linéaire par rapport à chaque variable.

#### Proposition 1.3 Les assertions suivantes sont équivalentes :

- (i). f est continue
- (ii). f est continue en 0
- (iii). f est bornée au voisinage de 0

(iv). 
$$\exists M > 0, \forall (a_1, \dots, a_n) \in \prod_{i=1}^n E_i, \|f(a_1, \dots, a_n)\|_F \leqslant M \prod_{i=1}^n \|a_i\|_{E_i}$$

Démonstration.

$$(i) \Rightarrow (ii) \Rightarrow (iii)$$
 Clair

$$(iii) \Rightarrow (iv)$$
 On munit  $E = \prod_{i=1}^n E_i$  de la norme  $||x||_E = \max_{1 \le i \le n} ||x_i||_{E_i}$ .

D'après 3, il existe r>0 et K>0 tel que  $\forall x\in E, \, \|x\|_E\leqslant r\Rightarrow$  $||f(x)||_F \leqslant K.$ 

Soit 
$$a \in E$$
 tel que pour tout  $i, a_i \neq 0$ .  
On a  $\left\| r(\frac{a_1}{\|a_1\|_{E_1}}, \dots, \frac{a_n}{\|a_n\|_{E_n}}) \right\| = r \text{ donc } \left\| f(r(\frac{a_1}{\|a_1\|_{E_1}}, \dots, \frac{a_n}{\|a_n\|_{E_n}})) \right\|_F \leqslant K$ .

Donc 
$$||f(a)||_F \leqslant \frac{K}{r^n} \prod_{i=1}^n ||a_i||_{E_i}$$
.

 $(iv) \Rightarrow (i)$  On se place dans le cas n=2. Les autres cas se traitent de la même manière.

On a  $f(a_1 + h_1, a_2 + h_2) = f(a_1, a_2) + f(a_1, h_2) + f(h_1, a_2) + f(h_1, h_2)$ . Par 4,  $||f(a_1, h_2)||_F \leq M ||a_1||_{E_1} ||h_2||_{E_2} \to 0$  donc les trois derniers termes tendent vers 0 quand  $(h_1, h_2) \to 0$  donc f est continue.

**Proposition 1.4** Soit  $f: E = \prod_{i=1}^n E_i \to F$  *n*-linéaire continue.

f est différentiable sur E et

$$Df(a)(h) = \sum_{i=1}^{n} f(a_1, \dots, a_{i-1}, h_i, a_{i+1}, \dots, a_n)$$

Démonstration dans le cas n = 3.

$$f(a_1 + h_1, a_2 + h_2, a_3 + h_3) = f(a_1, a_2, a_3)$$

$$+ f(h_1, a_2, a_3) + f(a_1, h_2, a_3) + f(a_1, a_2, h_3)$$

$$+ f(h_1, h_2, a_3) + f(h_1, a_2, h_3) + f(a_1, h_2, h_3)$$

$$+ f(h_1, h_2, h_3)$$

 $Df(a)(h) = f(h_1, a_2, a_3) + f(a_1, h_2, a_3) + f(a_1, a_2, h_3)$  est bien linéaire et :  $||Df(a)(h)||_F \le ||f(a_1, a_2, h_3)||_F + ||f(a_1, h_2, a_3)||_F + ||f(h_1, a_2, a_3)||_F$  $\leqslant M(\|a_1\|_{E_1} \|a_2\|_{E_2} \|h_1\|_{E_3} + \|a_1\|_{E_1} \|h_2\|_{E_2} \|a_1\|_{E_3} + \|h_1\|_{E_1} \|a_2\|_{E_2} \|a_1\|_{E_3})$  $\leq M \|a\|_E^2 \|h\|_E$ 

donc  $Df(a) \in \mathcal{L}_c(E, F)$ . De plus,  $\frac{\|f(h_1, h_2, a_3)\|_F}{\|h\|_E} \leqslant M \|h\|_E \|a\|_E \to 0$  et on a la même chose pour les deux autres termes. De même,  $\frac{\|f(h_1,h_2,h_3)\|_F}{\|h\|_E} \leqslant M \|h\|_E^2 \to 0.$ 

Donc on a le résultat.

Exemple 1.3 Différentielle du déterminant det :  $(\mathbb{R}^n)^n \to \mathbb{R}$  est nlinéaire continue (car on est en dimension finie)

Donc

$$D \det(C_1|\cdots|C_n)(H_1|\cdots|H_n) = \sum_{i=1}^n \det(C_1|\cdots|C_{i-1}|H_i|C_{i+1}|\cdots|C_n)$$

On peut remarquer que  $D \det(I_n)(H) = \operatorname{tr}(H)$  et que, si  $M \in GL_n(\mathbb{R})$ ,

$$\det(M+H) = \det(M) \det(I_n + M^{-1}H)$$
$$= \det(M) + \det(M) \operatorname{tr}(M^{-1}H) + ||H|| \varepsilon(H)$$

Donc  $D \det(M)(H) = \operatorname{tr}(M^t H)$  si M est inversible.

Or le déterminant est  $C^1$  (polynômial) donc  $D \det(M)$  est continue et, comme  $M \mapsto (H \mapsto \operatorname{tr}(M^t H))$  est polynômiale donc continue, cette formule est valable sur tout compact de  $\mathfrak{M}_n(\mathbb{R})$  donc partout.

COROLLAIRE 1.1 Soit E, F deux espaces vectoriels normés,  $n \in \mathbb{N}$  et f:  $E^n \to F$  n-linéaire continue.

On pose  $F: x \mapsto f(x, \dots, x)$ . F est différentiable et  $C^1$  sur E et on a  $DF(x)(h) = \sum_{i=1}^{n} f(\underbrace{x, \dots, x}_{i-1}, h, x, \dots, x).$ 

Démonstration.

$$F(x+h) - F(x) = f(x+h, \dots, x+h) - f(x, \dots, x)$$

$$= Df(x, \dots, x)(h, \dots, h) + \|(h, \dots, h)\|_{E^n} \varepsilon(h, \dots, h)$$

$$= \sum_{i=1}^n f(\underbrace{x, \dots, x}_{i-1 \text{ fois}}, h, x, \dots, x) + \|h\|_E \varepsilon(h)$$

Remarque 1.5 Si on suppose que f est symétrique,

$$DF(x)(h) = nf(h, x, \cdots, x)$$

#### Exemple 1.4

- Si H est un Hilbert, de produit scalaire f, f est bilinéaire continue (par Cauchy-Schwartz) et symétrique donc  $F = \|\cdot\|^2$  est  $C^1$  et  $DF(u)(v) = 2\langle u, v \rangle$ .
- Si  $E = \mathfrak{M}_n(\mathbb{K})$ , on note f la multiplication matricielle. f est bilinéaire continue (car lipschitzienne pour les normes d'algèbre) et on a Df(M,N)(H,K) = MK + NH.  $F = M \mapsto M^2$  est donc  $C^1$  et DF(M)(H) = MH + HM.

## 1.3 Différentielle de fonctions composées

Soient E, F et G des espaces vectoriels normés, U un ouvert de E, V un ouvert de F.

Soit 
$$f: U \to F$$
 et  $g: V \to G$ .

Théorème 1.1 Soit  $a \in U$  tel que  $f(a) \in V$ .

Si f est différentiable en a et g différentiable en f(a), alors  $g \circ f$  est différentiable en a et :

$$D(g \circ f)(a) = Dg(f(a)) \circ Df(a)$$

Démonstration. Soit  $a \in U$  tel que  $f(a) \in V$ . Comme f est continue en a, pour h suffisament petit, on peut écrire :

$$(g \circ f)(a + h) = g(f(a) + Df(a)(h) + ||h||_{E} \varepsilon_{f}(h))$$

$$= g(f(a) + k) \text{ avec } k = Df(a)(h) + ||h||_{E} \varepsilon_{f}(h)$$

$$= g(f(a)) + Dg(f(a))(k_{f}) + ||k||_{F} \varepsilon_{g}(k)$$

$$= g(f(a)) + Dg(f(a))(Df(a)(h)) + Dg(f(a))(||h||_{E} \varepsilon_{f}(h)) + ||k||_{F} \varepsilon_{g}(k)$$

$$= g(f(a)) + Dg(f(a))(Df(a)(h)) + ||h||_{E} \left(Dg(f(a))(\varepsilon_{f}(h)) + \frac{||k||_{F}}{||h||_{E}} \varepsilon_{g}(k)\right)$$

Et on a  $\lim_{h\to 0} Dg(f(a))(\varepsilon_f(h)) = 0$  car Dg(f(a)) est continue.

De plus,  $||k||_F \le ||Df(a)|| ||h||_E + ||h||_E ||\varepsilon_f(h)||_F$ .

Donc  $\lim_{h\to 0} \frac{\|k\|_F}{\|h\|_E} \varepsilon_g(k) = 0.$ 

D'où le résultat.

COROLLAIRE 1.2 Si f est différentiable (resp.  $C^1$ ) sur U,  $f(U) \subset V$  et g différentiable (resp.  $C^1$ ) sur V, alors  $g \circ f$  est différentiable (resp.  $C^1$ ) sur U.

COROLLAIRE 1.3 Soit E, F deux espaces vectoriels normés,  $f: U \to F$  avec U un ouvert de E.

Soit  $\gamma: I \to E$  avec I un intervalle ouvert de  $\mathbb{R}$ .

Soit  $t_0 \in I$  tel que  $\gamma(t_0) \in U$ .

Si  $\gamma$  est dérivable en  $t_0$  et f est différentiable en  $\gamma(t_0)$ , alors  $f \circ \gamma$  est dérivable en  $t_0$  et :

$$(f \circ \gamma)'(t_0) = Df(\gamma(t_0))(\gamma'(t_0))$$

Remarque 1.6

- $Si \gamma = t \mapsto a + th$ , on  $a (f(a+th))'|_{t=0} = Df(a)(h)$ .
- Il est possible que f(a + th) soit dérivable en t = 0 pour tout h mais que f ne soit pas différentiable en a

#### Exemple 1.5

$$f: \begin{cases} \mathfrak{M}_n(\mathbb{R}) & \to & \mathfrak{M}_n(\mathbb{R}) \\ M & \mapsto & M^2 \end{cases}$$

On a Df(M)(H) = MH + HM et  $(f(M + tH))'(0) = (MH + HM + 2tH^2)(0) = MH + HM$ .

## 1.4 Différentielles partielles et fonctions à valeurs dans un produit

## 1.4.1 Différentielles partielles

Soient  $E_1, \dots, E_n, F$  des espaces vectoriels normés,  $E = \prod_{i=1}^n E_i, f : U \to F$  avec U un ouvert de E et  $a \in U$  tel que f soit différentiable en a.

**<u>Définition 1.6</u>** Pour tout  $j \in [1, n]$ , on pose :

$$\lambda_a^j : \begin{cases} E_j & \to & E \\ b & \mapsto & f(a_1, \dots, a_{j-1}, b, a_{j+1}, \dots, a_n) \end{cases}$$

 $\lambda_a^j$  est affine continue donc  $f\circ\lambda_a^j$  est différentiable en  $a_j$  et

$$D(f \circ \lambda_a^j)(a_j)(h_j) = Df(a)(0, \dots, 0, h_j, 0, \dots, 0)$$

On note alors ceci  $D_j f(a)(h_j)$  ou  $\partial_j f(a)(h_j)$  et on parle de différentielle partielle de f en a par rapport à  $a_j$ .

Théorème 1.2 Si f est différentiable, les différentielles partielles existent

$$Df(a)(h) = \sum_{j=1}^{n} \partial_{j} f(a)(h_{j})$$

Remarque 1.7

• La réciproque est fausse.
• Dans le cas  $E = \mathbb{R}^n$ ,  $\partial_j f(a)$  est identifié à un élément de F et on a  $\partial_j f(a) = \frac{\partial f}{\partial x_j}(a).$ 

#### 1.4.2Fonctions définies sur un produit

Soit  $E, F_1, \dots, F_n$  des espaces vectoriels normés,  $f: U \to \prod_{i=1}^n F_i$  avec Uun ouvert de E.

On définit  $f_1, \dots, f_n$  par  $f(x) = (f_1(x), \dots, f_n(x))^t$ .

**Proposition 1.5** f est différentiable (resp.  $C^1$ ) en a ssi  $f_1, \dots, f_n$  le sont. On a alors:

$$Df(a)(h) = \begin{pmatrix} Df_1(a)(h) \\ \vdots \\ Df_n(a)(h) \end{pmatrix}$$

Démonstration.

⇒ Clair par composition avec les projections.

 $\Leftarrow$  On a:

$$f(a+h) - f(a) = (f_1(a+h) - f_1(a), \dots, f_n(a+h) - f_n(a))$$
  
=  $(Df_1(a)(h), \dots, Df_n(a)(h)) + ||h||_E (\varepsilon_1(h), \dots, \varepsilon_n(h))$ 

 $(Df_1(a)(h), \cdots, Df_n(a)(h))$  est bien linéaire continue en h car lispschitzienne:  $\|Df(x)(h)\|_F \le \max_{1 \le i \le n} \|Df_i(x)\|_{F_i} \|h\|_E$ . De plus,  $\lim_{h \to 0} (\varepsilon_1(h), \dots, \varepsilon_n(h)) = 0$ .

De plus, 
$$\lim_{h\to 0} (\varepsilon_1(h), \dots, \varepsilon_n(h)) = 0.$$

Remarque 1.8

• Dans le cas  $E = \mathbb{R}^n$ ,  $F = \mathbb{R}^p$ , on prend  $f: U \to \mathbb{R}^p$  avec U un ouvert  $de \mathbb{R}^n$ .

On définit  $f_1, \dots, f_p$  comme précédemment.

On a vu que f est différentiable en a ssi  $f_1, \dots, f_p$  le sont. De plus,

$$Df(a)(h) = \begin{pmatrix} Df_1(a)(h) \\ \vdots \\ Df_p(a)(h) \end{pmatrix} = \begin{pmatrix} \sum_{i=1}^n \frac{\partial f_1}{\partial x_j}(a)(h_j) \\ \vdots \\ \sum_{i=1}^n \frac{\partial f_p}{\partial x_j}(a)(h_j) \end{pmatrix} = J_f^a h$$

avec  $J_f^a = (\frac{\partial f_i}{\partial x_j})_{i,j}$  la matrice jacobienne de f en a. La différentielle d'une composée se réécrit alors :

$$J_{g \circ f}^a = J_g^{f(a)} J_f^a$$

• Si p = 1,  $J_f^a$  est un vecteur ligne et

$$Df(a)(h) = \langle (J_f^a)^t, h \rangle = \langle \overrightarrow{\operatorname{grad}} f(a), h \rangle$$

• Dans le cas d'un Hilbert H et U un ouvert de H, si f est différentiable en a,  $Df(a) \in H'$  (dual topologique) et il existe  $g(a) \in H$  tel que  $Df(a)(h) = \langle g(a), h \rangle$ .

#### Exemple 1.6

•  $\varphi: F_1 \times F_2 \to G$  bilinéaire continue,  $f_1: U \to F_1, f_2: U \to f_2$ .

$$F: \begin{cases} U & \to & G \\ x & \mapsto & \varphi(f_1(x), f_2(x)) \end{cases}$$

Si  $f_1$  et  $f_2$  sont différentiables en a, F est différentiable et :

$$DF(a)(h) = D_{\varphi}(f_1(a), f_2(a))(Df_1(a)(h), Df_2(a)(h))$$
  
=  $\varphi(Df_1(a)(h), f_2(a)) + \varphi(f_1(a), Df_2(a)(h))$ 

• On pose, pour un Banach E,

$$\varphi: \begin{cases} \mathscr{L}_c(E) \times \mathscr{L}_c(E) & \to & \mathscr{L}_c(E) \\ (u,v) & \mapsto & u \circ v \end{cases}$$

est bilinéaire continue (pour une norme d'algèbre).

On pose  $I(E) = \{u \in \mathcal{L}_c(E), \exists v \in \mathcal{L}_c(E), u \circ v = v \circ u = \mathrm{Id}\} = \{u \in \mathcal{L}_c(E), \exists v \in \mathcal{L}(E), u \circ v = v \circ u = \mathrm{Id}\}\$  et:

$$f_1: \begin{cases} I(E) & \to & \mathscr{L}_c(E) \\ u & \mapsto & u^{-1} \end{cases} \qquad f_2: \begin{cases} I(E) & \to & \mathscr{L}_c(E) \\ u & \mapsto & u \end{cases}$$

#### 1.4. DIFFÉRENTIELLES PARTIELLES

I(E) est bien un ouvert : on montre qu'il existe r>0 tel que  $B(\mathrm{Id},r)\subset I(E)$  :  $(\mathrm{Id}-h)$  est inversible d'inverse  $\sum_{n\geqslant 0}h^n$  qui converge pour  $\|h\|<1$ .

De même, si  $||h|| < \frac{1}{||u^{-1}||}$ , u + h est inversible donc I(E) est un ouvert (mais la complétude de E est nécessaire).

 $F = \varphi(f_1, f_2)$  est donc la fonction constante égale à  $\mathrm{Id}_E$  et DF(u)(h) = 0.

Or  $DF(u)(h) = u^{-1} \circ h + Df_1(u)(h) \circ u$  donc  $Df_1(u)(h) = -u^{-1} \circ h \circ u$ .

• Autre démonstration de ce résultat :

$$(u+h)^{-1} - u^{-1} = u^{-1}(I+hu^{-1})^{-1} - u^{-1}$$
$$= u^{-1} \sum_{n=0}^{\infty} (-1)^n (hu^{-1})^n - u^{-1}$$
$$= -u^{-1}hu^{-1} + ||h|| \varepsilon(h)$$

• Une troisième :

$$(u+h)^{-1} - u^{-1} = (u+h)^{-1}(u - (u+h))u^{-1}$$
$$= -(u+h)^{-1}hu^{-1}$$
$$= -u^{-1}hu^{-1} - ((u+h)^{-1}hu^{-1} - u^{-1}hu^{-1})$$

Or:

$$\|(u+h)^{-1}hu^{-1} - u^{-1}hu^{-1}\| = \|((u+h)^{-1} - u^{-1})hu^{-1}\|$$

$$\le \|(u+h)^{-1} - u^{-1}\| \|h\| \|u^{-1}\|$$

Donc ça marche.

| СН         | IAPITRE 1. | FONCTIONS | DIFFÉRENT | ΓΙΕLLES              |
|------------|------------|-----------|-----------|----------------------|
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
|            |            |           |           |                      |
| PIERRON Th | <br>.éo    | Page 14   |           | Tous droits réservés |

# Chapitre 2

# Théorème des accroissements finis

Théorème 2.1 Soient E, F deux espaces vectoriels normés, U un ouvert de E et  $f: U \to F$  différentiable sur U.

Soient  $a, b \in U$  tel que  $[a, b] \subset U$ .

$$||f(b) - f(a)||_F \le ||b - a||_E \sup_{y \in [a,b]} ||Df(y)||_{\mathscr{L}_c(E,F)}$$

Remarque 2.1 Le sup n'est pas forcément fini. Dans le cas  $C^1$ , il l'est.

## 2.1 Le cas de la variable réelle

THÉORÈME 2.2 Soient  $a < b \in \mathbb{R}$ ,  $f:[a,b] \to E$  et  $g:[a,b] \to \mathbb{R}$  continues, dérivables à droite sur [a,b] et telle que pour tout  $t \in [a,b]$ ,  $|f'_d(t)| \leq g'_d(t)$ . Alors  $||f(b) - f(a)||_E \leq g(b) - g(a)$ .

Démonstration.

• Cas général :

Soit 
$$\eta > 0$$
. On pose  $A_{\eta} = \{t \in [a, b], ||f(t) - f(a)||_{E} \leq g(t) - g(a) + \eta(t - a) + \eta\}.$ 

On veut montrer que  $b \in A_{\eta}$  pour tout  $\eta > 0$ . On aura alors  $b \in A_{\eta}$ 

$$\bigcap_{\eta>0} A_{\eta} = A_0.$$

 $A_{\eta}$  est clairement fermé borné donc  $A_{\eta}$  contient  $t_0 = \sup A_{\eta}$ . Montrons que  $b = t_0$ .

Supposons  $t_0 < b$ .

On a 
$$||f(t_0) - f(a)||_E \le g(t_0) - g(a) + \eta(t_0 - a) + \eta$$
.

Soit  $\delta > 0$  tel que  $t_0 + \delta \leq b$ . On a  $f(t_0 + \delta) = f(t_0) + \delta f'_d(t_0) + \delta \varepsilon_1(\delta)$  et de même avec g.

$$||f(t_{0} + \delta) - f(a)||_{E} \leq ||f(t_{0} + \delta) - f(t_{0})||_{E} + ||f(t_{0}) - f(a)||_{E}$$

$$\leq \delta ||f'_{d}(t_{0})||_{E} + \delta |\varepsilon_{1}(\delta)| + g(t_{0}) - g(a) + \eta(t_{0} - a) + \eta$$

$$\leq \delta g'_{d}(t_{0}) + g(t_{0}) - g(a) + \delta |\varepsilon_{1}(\delta)| + \eta(t_{0} - a) + \eta$$

$$\leq g(t_{0} + \delta) - g(a) + \delta |\varepsilon_{1}(\delta)| + \delta |\varepsilon_{2}(\delta)| + \eta(t_{0} + \delta - a) + \eta$$

$$\leq g(t_{0} + \delta) - g(a) + \eta(t_{0} + \delta) + \eta + \delta (|\varepsilon_{1}(\delta)| + |\varepsilon_{2}(\delta)| - \eta)$$

Il existe  $\delta > 0$  tel que  $|\varepsilon_1(\delta)| + |\varepsilon_2(\delta)| - \eta < 0$ . On a alors :

$$||f(t_0 + \delta) - f(a)||_E \le g(t_0 + \delta) - g(a) + \eta(t_0 + \delta) + \eta$$

Donc  $t_0 + \delta \in A_\eta$  ce qui est une contradiction donc  $b = t_0 \in A_\eta$ .

• Dans le cas  $C^1$ , et si on a une notion d'intégrale sur E (généralement c'est possible quand E est un Banach) :

Soit  $g: t \mapsto f(at + (1-t)b)$ . Elle est  $C^1$  et on a :

$$g(1) - g(0) = \int_0^1 g'(t) dt$$

Donc

$$||f(b) - f(a)|| \le \int_0^1 ||Df(ta + (1 - t)b)(a - b)|| dt$$
$$\le \sup_{y \in [a,b]} ||Df(t)|| ||b - a||$$

• Si  $E = \mathbb{R}$  et f, g dérivables, on peut utiliser le théorème de Rolle.

Remarque 2.2

- Le résultat est encore vrai si f et g continues sur [a, b] et dérivables sur [a, b] privé d'un nombre dénombrable de points.
- L'escalier du diable est continu sur [0,1] mais de dérivée nulle presque partout. Donc le résultat est faux quand f et g sont dérivables sur [a, b] privé d'un ensemble de mesure nulle.

COROLLAIRE 2.1 Soit E un Banach,  $f: ]a,b[ \to E$  continue, dérivable à droite telle que  $\lim_{t\to a} f'_d(t)$  existe. Alors f est prolongeable par une application continue et dérivable à droite sur [a,b[.

Démonstration.  $f'_d(t)$  a une limite en a donc il existe  $\eta > 0$  et  $M \ge 0$  tel que  $\|f'_d(t)\|_E \le M$  pour tout  $t \in ]a, a + \eta[$ .

Par le théorème des accroissements finis avec  $g=M(\operatorname{Id}-a)$ , comme  $\|f_d'(t)\|_E\leqslant g'(t)=M$ , on a, pour  $t\geqslant s\in ]a,a+\eta[,\|f(t)-f(s)\|_E\leqslant g(t)-g(s)=M(t-s).$ 

Donc pour tout  $\varepsilon > 0$ , il existe  $\delta > 0$  tel que si  $|t - a| \le \delta$  et  $|s - a| \le \delta$ , alors  $||f(t) - f(s)||_E \le \varepsilon$ .

E est complet donc f a une limite à droite en a notée f(a).

Notons  $l = \lim_{\substack{t \to a \\ t > a}} f'_d(t)$ .

Pour tout  $\varepsilon > 0$ , il existe  $\eta > 0$  tel que si  $|t-a| \leqslant \eta$  alors  $||f'_d(t) - l||_E \leqslant \varepsilon$ . Par le TAF,  $||f(t) - f(a) - (t-a)l||_E \leqslant \varepsilon (t-a)$ .

Donc f est dérivable à droite en a de dérivée l.

## 2.2 Cas général

Théorème 2.3 Soient E, F deux espaces vectoriels normés,  $f: U \to F$  avec U un ouvert de E.

Pour tout  $a, b \in U$  tels que  $[a, b] \subset U$ , on a:

$$\begin{split} \|f(b) - f(a)\|_F &\leqslant \|b - a\|_E \sup_{t \in [0,1]} \|Df(ta + (1-t)b)\| \\ &\leqslant \|b - a\|_E \sup_{y \in [a,b]} \|Df(y)\| \end{split}$$

Démonstration. Posons :

$$\widetilde{f}: \begin{cases} [0,1] & \to & F \\ t & \mapsto & f(ta+(1-t)b) \end{cases}$$

 $\tilde{f}$  est continue et dérivable sur [0,1].

On a  $\tilde{f}'(t) = Df(ta + (1-t)b)(b-a)$ . Donc :

$$\left\|\widetilde{f}'(t)\right\|_F\leqslant \sup_{t\in[0,1]}\left\|Df(ta+(1-t)b)(b-a)\right\|_F\leqslant \|b-a\|_E\sup_{y\in[a,b]}\left\|Df(y)\right\|$$

On a donc, par le TAF (avec  $g(t) = t \|b - a\|_E \sup_{y \in [a,b]} \|Df(y)\|$ ):

$$\left\|\widetilde{f}(1)-\widetilde{f}(0)\right\|_F\leqslant \|b-a\|_E\sup_{y\in[a,b]}\|\!|\!|Df(y)|\!|\!|$$

Remarque 2.3

• Il est possible que  $\sup_{y \in [a,b]} ||Df(y)|| = \infty$ 

- Si Df(y) est majoré sur V avec  $[a,b] \subset V$  alors  $||Df(y)|| \leq M$  pour  $y \in [a,b]$ . On a alors  $||f(b) f(a)||_F \leq M ||b-a||_E$ . Si V est convexe, alors f est lipschitzienne sur V.
- Si f est  $C^1$  alors f est localement lipschitzienne. En effet, en dimension finie, la différentielle est bornée sur un voisinage compact de tout point. En dimension infinie, Df est continue en x donc pour r > 0, il existe un voisinage  $V_x$  de x tel que pour tout  $y \in V_x$ ,  $||Df(y) Df(x)|| \le r$ . En particulier,  $||Df(y)|| \le ||Df(x)|| + r$  sur  $V_x$  et on a fini.
- $Si \dim F > 1$  il n'y a pas d'égalité dans les accroissements finis (prendre  $e^{i\cdot}$ ).

COROLLAIRE 2.2 Soient E, F des espaces vectoriels normés,  $f: U \to F$  différentiable avec U un ouvert de E,  $T: E \to F$  linéaire continue.

Soit  $[a,b] \subset U$ .

Alors:

$$\|f(b) - f(a) - T(b - a)\|_F \leqslant \|b - a\|_E \sup_{y \in [a,b]} \|Df(x) - T\|$$

Démonstration. TAF avec f - T.

## 2.3 Applications

## 2.3.1 Différentielle nulle implique fonction constante

**Proposition 2.1** Soit  $f: U \to F$  avec U un ouvert connexe de E. Si f est différentiable sur U et Df(x) = 0 pour tout  $x \in U$ , alors f est constante sur U.

Démonstration. Soit  $a \in U$  et  $V = \{x \in U, f(x) = f(a)\}.$ 

V est clairement un fermé de U.

Soit  $x_0 \in V$ . Il existe r > 0 tel que  $B(x_0, r) \subset U$ .

Si  $y \in B(x_0, r)$ ,  $[x_0, y] \subset U$  donc, via le TAF,  $|f(x_0) - f(y)| \leq |x_0 - y| \times 0 = 0$ .

Donc  $f(y) = f(x_0) = f(a)$  donc  $y \in V$  donc  $B(x_0, r) \subset V$  donc V est ouvert. On conclut par connexité puisque  $a \in V \neq \emptyset$ .

### 2.3.2 Différentielles partielles

Théorème 2.4 Soit  $E = \prod_{i=1}^{n} E_i$  et F des espaces vectoriels normés.

Soit U un ouvert de E,  $f: U \to F$  tel que pour tout  $j \in [1, n]$ ,  $\partial_j f: U \to \mathcal{L}_c(E_j, F)$  existe et est continue sur U alors f est différentiable sur U et f est  $C^1$  sur U. La réciproque est vraie.

Démonstration.

 $\Rightarrow$  Soit  $a \in U$ . On pose :

$$L: \begin{cases} E & \to & F \\ h & \mapsto & \sum_{j=1}^{n} \partial_{j} f(a)(h_{j}) \end{cases}$$

 $L \in \mathscr{L}_c(E, F)$  et on a :

$$||L(h)||_{F} = \left\| \sum_{j=1}^{n} \partial_{j} f(a) h_{j} \right\|_{F}$$

$$\leq \sum_{j=1}^{n} |||\partial_{j} f(a)||| ||h_{j}||_{E_{j}}$$

$$\leq ||h||_{E} \sum_{j=1}^{n} |||\partial_{j} f(a)|||$$

Soit  $g = h \mapsto f(a+h) - f(a) - L(h)$ .

$$g(h) = \sum_{j=1}^{n} (f(a_1 + h_1, \dots, a_j + h_j, a_{j+1}, \dots, a_n) - f(a_1 + h_1, \dots, a_{j-1} + h_{j-1}, a_j, \dots, a_n) - \partial_j f(a)(h_j))$$

Or:

$$||f(a_1 + h_1, \dots, a_j + h_j, a_{j+1}, \dots, a_n)| - f(a_1 + h_1, \dots, a_{j-1} + h_{j-1}, a_j, \dots, a_n) - \partial_j f(a)(h_j)||_F$$

$$\leq ||h_j||_{E_j} \sup_{\lambda \in [0,1]} |||\partial_j f(a_1 + h_1, \dots, a_j + \lambda h_j, a_{j+1}, \dots, a_n) - \partial_j f(a)||$$

Posons  $g_{j}(h_{j}) = f(a_{1} + h_{1}, \dots, a_{j} + h_{j}, a_{j+1}, \dots, a_{n}) - \partial_{j} f(a)(h_{j}).$   $Dg_{j}(h_{j})(k_{j}) = \partial_{j} f(a_{1} + h_{1}, \dots, a_{j} + h_{j}, a_{j+1}, \dots, a_{n}) - \partial_{j} f(a)(k_{j}).$ Soit r > 0 tel que  $B(a, r) \subset U$  et ||h|| < r.  $\{(a_{1} + h_{1}, \dots, a_{j} + \lambda h_{j}, a_{j+1}, \dots, a_{n}), \lambda \in [0, 1]\} \subset U.$ Pour tout  $\varepsilon > 0$  il existe  $\eta_{j} > 0$  tel que  $||k_{j}||_{E_{j}} \leqslant \eta_{j}, ||h_{1}||_{E_{1}} \leqslant \eta_{j}, \dots, ||h_{j-1}||_{E_{j-1}} \leqslant \eta_{j} \text{ implique } |||\partial_{j} f(a_{1} + h_{1}, \dots, a_{j-1} + h_{j-1}, a_{j} + k_{j}, a_{j+1}, \dots, a_{n}) - \partial_{j} f(a)||^{\epsilon} \leqslant \varepsilon.$ 

Avec  $\eta = \min_{1 \leq j \leq n} \eta_i$ , pour tout j, si  $||h||_E \leq \eta$ , on a  $\sup_{\lambda \in [0,1]} |||\partial_j f(a_1 + h_1, \dots, a_j + \lambda h_j, a_{j+1}, \dots, a_n) - \partial_j f(a)||| \leq \varepsilon$ .

Donc  $||g(h)||_F \leqslant \sum_{i=1}^n \varepsilon ||h_i||_{E_i} \leqslant N\varepsilon ||h||_E$ .

Donc  $g(h) - f(a+h) - f(b) - L(h) = ||h||_E \varepsilon(h)$  et f est différentiable en a de différentielle L.

On a donc  $Df(a) = \sum_{j=1}^{n} \partial_j f(a) \pi_j$  et  $a \mapsto Df(a)$  est continue donc f est  $C^1$ 

 $\Leftarrow$  Si f est  $C^1$  sur U, alors on a vu que  $\partial_1 f$  existe sur U. De plus,  $\partial_j f(a) = Df(a)p_j$  avec  $p_j : h_j \mapsto (0, \dots, 0, h_j, 0, \dots, 0)$  donc  $\partial_j f$  est continue sur U.

COROLLAIRE 2.3 Dans le cas  $f: U \to \mathbb{R}^p$  et U un ouvert de  $\mathbb{R}^n$ , f est  $C^1$  sur U ssi pour tout  $i, j, \frac{\partial f_i}{\partial x_j}$  existe et est continue sur U.

Application : det est  $C^1$  car polynômial en les cœfficients.

 $M \mapsto (H \mapsto \operatorname{tr}(\tilde{M}^t H))$  et D det coïncident sur  $GL_n(\mathbb{R})$  qui est dense donc elles sont égales.

#### 2.3.3 Différentielle d'une suite de fonctions

**Proposition 2.2** Soit  $(f_n)_n$  une suite de fonctions de  $U \to F$  avec U un ouvert connexe de E et F un Banach vérifiant :

- Pour tout  $n, f_n$  est différentiable sur U
- Pour toute boule fermée  $\overline{B}(x,r) \subset U$ ,  $Df_n$  converge uniformément sur  $\overline{B}(x,r)$  dans  $\mathscr{L}_c(E,F)$ .
- Il existe  $a \in U$  tel que  $(f_n(a))_n$  converge.

Alors  $(f_n)_n$  converge uniformément sur toute boule fermée incluse dans U. On note f sa limite.

f est différentiable sur U et Df est la limite simple des  $Df_n$ . De plus, si les  $f_n$  sont  $C^1$ , alors f aussi.

Démonstration.

• Soit  $b \in U$ . Montrons que si  $(f_n(b))_n$  converge et r > 0 vérifie  $\overline{B}(b,r) \subset U$  alors  $f_n$  converge uniformément sur  $\overline{B}(b,r)$ .

Soit  $x \in \overline{B}(b, r)$ .

$$\begin{aligned} &\|f_{n+p}(x) - f_n(x)\|_F \leqslant \|f_{n+p}(b) - f_n(b)\|_F \\ &+ \|f_{n+p}(x) - f_{n+p}(b) - (f_n(x) - f_n(b))\|_F \\ \leqslant &\|f_{n+p}(b) - f_n(b)\|_F + \|x - b\|_E \sup_{y \in [x,b]} \|Df_{n+p}(y) - Df_n(y)\| \\ \leqslant &r \sup_{y \in \overline{B}(x,r)} \|Df_{n+p}(y) - Df_n(y)\| \end{aligned}$$

Pour tout  $\varepsilon > 0$ , il existe  $N_1(b, \varepsilon)$  tel que pour tout  $n \ge N_1$  et  $p \ge 0$ ,  $||f_{n+p}(b) - f_n(b)||_F \le \frac{\varepsilon}{2}$ .

Pour tout  $\varepsilon > 0$ , il existe  $N_2(b, r, \varepsilon)$  tel que pour tout  $n \ge N_2$  et  $p \ge 0$ ,  $\sup_{y \in \overline{B}(x,r)} ||Df_{n+p}(y) - Df_n(y)|| \le \frac{\varepsilon}{2r}$ .

Donc, si  $n \geqslant \max(N_1, N_2)$ ,  $||f_{n+p}(x) - f_n(x)||_F \leqslant \varepsilon$ .

Donc  $(f_n(x))_n$  est de Cauchy donc converge uniformément sur  $\overline{B}(x,r)$ .

• Posons  $A = \{x \in U, (f_n(x))_n \text{ converge}\}$ . C'est un ouvert par le point précédent.

Soit  $(x_n)_n \in A$  qui converge vers  $b \in U$ .

Il existe r > 0 tel que  $B(b, 2r) \subset U$ .

Il existe  $n_0$  tel que  $x_{n_0} \in \overline{B}(b,r)$  ie  $b \in \overline{B}(x_{n_0},r)$ . Par le point précédent,  $(f_n(b))_n$  converge donc A est fermé.

Comme  $A \neq \emptyset$ , par connexité A = U.

• Notons g la limite simple de  $(Df_n)_n$ . Soit  $x \in U$  tel que  $B(x,r) \subset U$  et  $||h||_E < r$ .

On a:

$$||f(x+h) - f(x) - g(x)(h)||_F$$

$$= ||f_n(x+h) - f_n(x) - Df_n(x)(h)||_F + ||(Df_n(x) - g(x))(h)||_F$$

$$+ ||f_n(x+h) - f_n(x) - f(x+h) + f(x)||_F$$

On a  $f_n(x+h) - f_n(x) - Df_n(x)(h) = ||h||_E \varepsilon_n(h)$ .

De plus,  $||(Df_n(x) - g(x))(h)||_F \le ||Df_n(x) - g(x)|| ||h||_E$ .

On a:

$$||f_n(x+h) - f_n(x) - f_{n+p}(x+h) + f_{n+p}(x)||_F$$

$$\leq ||h||_E \sup_{y \in [x,x+h]} ||Df_n(y) - Df_{n+p}(y)||$$

$$\leq ||h||_E \sup_{y \in B(x,\frac{r}{2})} ||Df_{n+p}(y) - Df_n(y)||$$

si  $||h||_E < \frac{r}{2}$ .

Avec  $p \to +\infty$ ,

$$||f_n(x+h) - f_n(x) - f(x+h) + f(x)||_F$$

$$\leq ||h||_E \sup_{y \in B(x, \frac{r}{2})} |||g(y) - Df_n(y)||$$

On a donc:

$$\begin{split} & \left\| f(x+h) - f(x) - g(x)(h) \right\|_F \\ & \leqslant \left\| h \right\|_E \left( \varepsilon_n(h) + 2 \sup_{y \in B(x, \frac{r}{2})} \left\| g(y) - Df_n(y) \right\| \end{split}$$

Il existe n(x,r) tel que  $\sup_{y \in B(x,\frac{r}{2})} |||g(y) - Df_n(y)||| \leqslant \frac{\varepsilon}{4}$ .

Il existe  $\eta > 0$  tel que  $\left\| \varepsilon_{n(x,r)} \right\|_F \leqslant \frac{\varepsilon}{2}$ .

Donc pour  $||h||_E \leqslant \eta$ , on a le résultat.

#### Application:

• On considère un Banach E et l'exponentielle sur  $\mathscr{L}_c(E)$  muni de la norme usuelle.

Comme  $\mathcal{L}_c(E)$  reste un Banach, la série qui définit l'exponentielle converge absolument (vive les normes d'algèbres) donc converge.

Notons 
$$f_n = M \mapsto \sum_{k=0}^n \frac{M^k}{k!}$$
.

Les 
$$f_n$$
 sont différentiables et  $Df_n(M)(H) = \sum_{k=0}^n \frac{D(M^k)(H)}{k!}$ .

On a 
$$||D(M^k)(H)|| \le k ||M||^{k-1} ||H||$$

On a  $||D(M^k)(H)|| \le k ||M||^{k-1} ||H||$ . Donc la norme de  $D(M^k)$  dans  $\mathcal{L}_c(\mathcal{L}_c(E))$  est inférieure à  $k ||M||^{k-1}$ .

La série  $\sum_{n=0}^{\infty} \frac{D(M^n)}{n!}$  converge donc absolument et uniformément sur les

boules donc 
$$e^M$$
 est différentiable.  
De plus,  $D(e^M)(H) = \sum_{k=1}^{\infty} \frac{1}{(k-1)!} \sum_{i=0}^{k-1} M^i H M^{k-1-i}$ .

On a alors le fait que  $t \mapsto e^{Mt}$  est dérivable (et  $C^1$ ) de dérivée  $t \mapsto$  $Me^{Mt}$ .

• On a vu que si u, v sont des isométries d'un Banach E vérifiant  $||v|| \le$  $\frac{1}{\|u^{-1}\|}$ , alors  $(u-v)^{-1} = u^{-1} \sum_{n=0}^{\infty} (vu^{-1})^k$ .

On regarde  $v\mapsto (u-v)^{-1}$ . Le même argument montre la différentiabilité de ce truc.

# Chapitre 3

# Différentielles d'ordre supérieur et formule de TAYLOR

#### 3.1 La variable réelle

**<u>Définition 3.1</u>** Soit I un intervalle de  $\mathbb{R}$  et E un espace vectoriel normé.

Soit  $f: I \to E$ .

Si f est dérivable sur I et  $f': I \to E$  est aussi dérivable, on dit qu'elle est deux fois dérivable et on note f'' = (f')'.

Par récurrence, on définit  $f^{(n)}$  par  $f^{(n)} = (f^{(n-1)})'$  si  $f^{(n-1)}$  est dérivable.

On peut parler de la dérivée n-ème en un point a si f a une dérivée (n-1)-ème sur un voisinage de a.

On dit aussi que f est  $C^n$  ssi  $f^{(n)}$  est continue.

**Proposition 3.1 (Formule de Leibniz)** Soient  $f, g: I \to E$  et  $\lambda, \mu \in \mathbb{R}$ .

Si f et g sont dérivables (resp.  $C^1$ , n fois dérivables,  $C^n$ ) en a alors  $\lambda f + \mu g$  aussi.

Soit  $B: E \times E \to F$  bilinéaire.

B(f,q) est aussi dérivable (resp.  $C^1$ , n fois dérivable,  $C^n$ ) en a et :

$$B(f,g)^{(n)}(a) = \sum_{k=0}^{n} \binom{n}{k} B(f^{(k)}(a), g^{(n-k)}(a))$$

Démonstration. Par récurrence, n = 1 étant clair.

On a:

$$B(f,g)^{(n)}(a) = \sum_{k=0}^{n-1} {n-1 \choose k} (B(f^{(k+1)}(a), g^{(n-1-k)}(a)) + B(f^{(k)}(a), g^{(n-k)}(a))$$

$$= \sum_{k=1}^{n} {n-1 \choose k-1} B(f^{(k)}(a), g^{(n-k)}(a)) + \sum_{k=0}^{n-1} {n-1 \choose k} B(f^{(k)}(a), g^{(n-k)}(a))$$

$$= B(f(a), g^{(n)}(a)) + \sum_{k=1}^{n-1} {n \choose k} B(f^{(k)}(a), g^{(n-k)}(a)) + B(f^{(n)}(a), g^{(n)}(a))$$

**Proposition 3.2** Soit  $f: I \to E$  n fois dérivable en  $a, \varphi: J \to \mathbb{R}$  n fois dérivable en f(a) avec J un intervalle tel que  $\varphi(J) \subset I$ .

 $\varphi \circ f$  est donc n fois dérivable en b et on obtient  $(\varphi \circ f)^{(n)}(b)$  par la formule de FAÀ DI BRUNO.

THÉORÈME 3.1 (FOMULE DE TAYLOR-YOUNG) Soit  $f: I \to E$  avec I un intervalle ouvert de  $\mathbb{R}$  et  $a \in I$ .

Si f est n fois dérivable en a alors :

$$f(a+h) = f(a) + hf'(a) + \dots + \frac{h^n}{n!}f^{(n)}(a) + h^n\varepsilon(h)$$

Démonstration. Par récurrence, n = 1 étant trivial.

On applique la formule à l'ordre n-1 à f':

$$f'(a+h) = f'(a) + hf''(a) + \dots + \frac{h^{n-1}}{(n-1)!}f^{(n)}(a) + h^{n-1}\varepsilon(h)$$

Posons 
$$g(h) = f(a+h) - (f(a) + hf'(a) + \dots + \frac{h^n}{n!}f^{(n)}(a)).$$
  
On a  $g'(h) = h^{n-1}\varepsilon(h).$ 

Pour tout  $\varepsilon > 0$ , il existe  $\eta > 0$  tel que si  $|h| \leqslant \eta$  alors  $|\varepsilon(h)| \leqslant \varepsilon$ . Si  $|h| \leqslant \eta$ ,  $||g(h)||_E = ||g(h) - g(0)||_E \leqslant ||h||_E \sup_{t \in [0,1]} |g'(t)| \leqslant \varepsilon ||h||_E^n$ .

D'où le résultat.

Théorème 3.2 (Formule de Taylor-Lagrange) Soit  $f: I \to E$  avec I un intervalle ouvert de  $\mathbb R$  et  $a \in I$  tel que f soit n+1 fois dérivable sur I. Alors:

$$\left\| f(a+h) - \left( f(a) + hf'(a) + \dots + \frac{h^n}{n!} f^{(n)}(a) \right) \right\|$$

$$\leq \frac{h^{n+1}}{(n+1)!} \sup_{t \in [a,a+h[]} \left\| f^{(n+1)}(t) \right\|_E$$

Démonstration. On pose  $g(t) = f(a+th) + (1-t)hf'(a+th) + \cdots + \frac{(1-t)^n}{n!}h^nf^{(n)}(a+th)$ .

On remarque que g'(t) est télescopique et vaut  $\frac{(1-t)^n}{n!}h^{n+1}f^{(n+1)}(a+th)$ . On a de plus :

$$||g'(t)||_{E} \leqslant \left\| \frac{(1-t)^{n}}{n!} h^{n+1} f^{(n+1)}(a+th) \right\|$$

$$\leqslant \underbrace{\frac{(1-t)^{n}}{n!} h^{n+1} \sup_{y \in [a,a+h]} \left\| f^{(n+1)}(y) \right\|_{E}}_{h'(t)}$$

On a 
$$h(t) = -\frac{(1-t)^{n+1}}{(n+1)!} h^{n+1} \sup_{t \in [a,a+h]} \left\| f^{(n+1)}(y) \right\|_{E}$$
.

Par le TAF,  $||g(1) - g(0)||_E \le h(1) - h(0)$ , ce qui est le résultat.

Théorème 3.3 (Formule de Taylor avec reste intégral) Soit  $f: I \to E$  avec I un ouvert de  $\mathbb{R}$  et E un Banach.

Si f est  $C^{n+1}$  sur I et  $a \in I$  tel que  $a + h \in I$ .

$$f(a+h) = f(a) + hf'(a) + \dots + \frac{h^n}{n!}f^{(n)}(a) + \int_0^1 \frac{(1-t)^n}{n!}h^{n+1}f^{(n+1)}(a+th) dt$$

Démonstration. Idem que la précédente, mais il faut intégrer au lieu d'utiliser le TAF.

Remarque 3.1 Si  $\dim(E) = 1$ , il y a égalité, mais on s'en fiche.

## 3.2 Différentielle d'ordre supérieur

Soient E, F deux espaces vectoriels normés,  $U \subset E$  un ouvert,  $a \in U$ .

**<u>Définition 3.2</u>** Soit  $f: U \to F$  différentiable sur V voisinage de a.

Si  $Df: V \to \mathscr{L}_c(E, F)$  est différentiable en a, on dit que f est deux fois différentiable en a.

On note  $D^2 f(a) = D(Df)(a) \in \mathscr{L}_c(E, \mathscr{L}_c(E, F)).$ 

#### Proposition 3.3

$$\Psi: \begin{cases} \mathscr{L}_c(E, \mathscr{L}_c(E, F)) & \to & \underbrace{\mathscr{L}_c^2(E, F)}_{\text{bilinéaires}} \\ b & \mapsto & \Psi(b) \end{cases}$$

avec  $\Psi(b)(u,v)=(b(u))(v)$  est une isométrie bijective.

Démonstration. Si  $\Psi(b) = 0$ , (b(u))(v) = 0 pour tout u, v donc b(u) = 0 donc b = 0.

Si E et F sont de dimension finie, alors on a la surjectivité.

Sinon,  $B_u: v \mapsto B(u, v)$  est linéaire et continue par continuité de B.

Posons  $b: u \mapsto B_u$ .  $b \in \mathcal{L}_c(E, \mathcal{L}_c(E, F))$ 

On a  $||b(u)||_{\mathscr{L}_{c}(E,F)} \le ||b||_{\mathscr{L}_{c}^{2}(E,F)} ||u||_{E} \operatorname{donc} ||b||_{\mathscr{L}_{c}(E,\mathscr{L}_{c}(E,F))} \le ||B||_{\mathscr{L}_{c}^{2}(E,F)}.$ 

On a de plus  $B = \Psi(b)$  donc  $\Psi$  est surjective.

Montrons que  $\Psi$  est une isométrie :

$$\begin{split} \|\Psi(b)\| &= \sup_{\|u\| = \|v\| = 1} \|\psi(b)(u,v)\|_F \\ &= \sup_{\|u\| = \|v\| = 1} \|(b(u))v\|_F \\ &= \sup_{\|u\| = 1} \sup_{\|v\| = 1} \|(b(u))v\|_F \\ &= \sup_{\|u\| = 1} \|b(u)\| \\ &= \|b\| \end{split}$$

Théorème 3.4 de Schwarz Soit  $f: U \to F$  avec U un ouvert de E et  $a \in U$ .

Si f est deux fois différentiable alors  $D^2f(a)$  est symétrique.

Démonstration. On a

$$f(a+h+k) - f(a+k) - f(a+h) + f(a) - D^2 f(a)(k,h)$$
  
=  $(\|h\|_E + \|k\|_E)^2 \varepsilon_1(\|h\|_E + \|k\|_E)$ 

De même:

$$f(a+h+k) - f(a+k) - f(a+h) + f(a) - D^2 f(a)(h,k)$$
  
=  $(\|h\|_E + \|k\|_E)^2 \varepsilon_2(\|h\|_E + \|k\|_E)$ 

Donc  $D^2 f(a)(k,h) - D^2 f(a)(h,k) = (\|h\|_E + \|k\|_E)^2 \varepsilon_3(\|h\|_E + \|k\|_E)$ . Soit  $\lambda > 0$ .

$$\lambda^2(D^2f(a)(k,h) - D^2f(a)(h,k)) = \lambda^2(\|h\|_E + \|k\|_E)^2\varepsilon_3(\lambda(\|h\|_E + \|k\|_E))$$

Avec  $\lambda \to 0$ , on a  $D^2 f(a)(h,k) = D^2 f(a)(k,h)$ .

De plus:

$$f(a+h+k) - f(a+k) - f(a+h) + f(a) - D^{2}f(a)(k,h)$$

$$= \underbrace{f(a+h+k) - f(a+k) - Df(a+k)(h) - (f(a+h) - f(a) - Df(a)(h))}_{B_{k}(h)} + \underbrace{D(a+k)(h) - Df(a)(h) - D^{2}f(a)(k,h)}_{c(h,k)}$$

Comme Df est différentiable en a,

$$c(h,k) = (Df(a+k) - Df(a) - D^2f(a)(k))(h) = (\|k\|_E \varepsilon(k))h$$

Donc

$$\|c(h,k)\|_{F} \le \|h\|_{E} \|k\|_{E} \|\varepsilon\| = (\|h\|_{E} + \|k\|_{E})^{2} \varepsilon'_{1} (\|h\|_{E} + \|k\|_{E})$$

 $B_k$  est différentiable en h pour k petit.

$$DB_{k}(h) = Df(a+h+k) - Df(a+k) - Df(a+h) + Df(a)$$

$$= Df(a+h+k) - Df(a) - (Df(a+k) - Df(a)) - (Df(a+h) - Df(a))$$

$$= D^{2}f(a)(h+k) + o(\|h+k\|_{E}) - D^{2}f(a)(k) + o(\|k\|_{E})$$

$$- D^{2}f(a)(h) + o(\|h\|_{E})$$

$$= o(\|h\|_{E} + \|k\|_{E})$$
Or  $B_{k}(0) = 0$  donc
$$\|B_{k}(h)\|_{F} \leq \|h\|_{E} \sup_{t \in [0,h]} \|DB_{k}(h)\|$$

$$\leq (\|h\|_{E} + \|k\|_{E})^{2} \sup_{t \in [0,h]} |o(\|h\|_{E} + \|k\|_{E})|$$

$$\leq o((\|h\|_{E} + \|k\|_{E})^{2})$$

Et apparament, ça conclut.

COROLLAIRE 3.1 Pour calculer  $D^2 f(a)(h,k)$ , il suffit de connaître la valeur de  $D^2 f(a)(h,h)$  pour tout h.

Démonstration. Il suffit d'utiliser la polarisation :

$$D^{2}f(a)(h,k) = \frac{D^{2}f(a)(h+k,h+k) - D^{2}f(a)(h-k,h-k)}{4}$$
$$= \frac{D^{2}f(a)(h+k,h+k) - D^{2}f(a)(k,k) - D^{2}f(a)(h,h)}{2}$$

COROLLAIRE 3.2 Si f est deux fois différentiable en a, alors pour tout i, j,  $\frac{\partial^2 f}{\partial x_i \partial x_j}$  existe et on a;

$$\frac{\partial^2 f}{\partial x_i \partial x_j} = \frac{\partial^2 f}{\partial x_j \partial x_i}$$

$$De \ plus \ D^2 f(a)(h, k) = \sum_{i,j} \frac{\partial^2 f(a)}{\partial x_i \partial x_j} h_i k_j \ et :$$

$$D^2 f(a)(h, h) = \sum_{i=1}^n \frac{\partial^2 f(a)}{\partial x_i^2} h_i^2 + 2 \sum_{i < j} \frac{\partial^2 f(a)}{\partial x_i \partial x_j} h_i h_j$$

 $D\acute{e}monstration.$   $\frac{\partial f}{\partial x_i}(a)$  existe est vaut  $Df(a)e_i$ . Sa différentielle selon  $e_j$  vaut

$$D^2 f(a)(e_i, e_j).$$

$$\frac{\partial^2 f}{\partial x_i \partial x_j} \text{ existe donc et vaut } D^2 f(a)(e_i, e_j).$$

**Définition 3.3**  $D^2 f(a)$  est une forme bilinéaire symétrique sur  $\mathbb{R}^n$ . Pour une base fixée et le produit scalaire  $\langle \cdot, \cdot \rangle$  canonique dans cette base, il existe une matrice  $H_a$  telle que  $D^2 f(a)(h,k) = \langle H_a h, k \rangle$ .

 $H_a$  est appellée matrice hessienne.

**<u>Définition 3.4</u>** f est deux fois différentiable ssi elle l'est en tout point. f est  $C^2$  ssi f est deux fois différentiable et  $a\mapsto D^2f(a)$  et continue.

**Proposition 3.4** f est  $C^2$  sur U ssi pour tout  $i, j, \frac{\partial^2 f}{\partial x_i \partial x_j}$  existe et  $a \mapsto$  $\frac{\partial^2 f}{\partial x_i \partial x_j}(a)$  est continue.

Démonstration.

- $\Rightarrow$  Si f est  $C^2$ , f est deux fois différentiable donc les dérivées partielles
- secondes existent et valent  $D^2 f(a)(e_i, e_j)$  donc sont continues.  $\Leftarrow$  Les  $\frac{\partial f}{\partial x_i}$  existent sur U et  $x \mapsto \frac{\partial f}{\partial x_i}(x)$  a des dérivées partielles continues donc est  $C^1$ .

En particulier,  $x \mapsto \frac{\partial f}{\partial x_i}(x)$  est continue pour tout i donc f est  $C^1$ .

Comme  $Df(a)(h) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i}(a)(h_i)$  donc  $x \mapsto Df(x)(h)$  a des dérivées partielles continues dans toutes les directions donc est  $C^1$ .

**Exemple 3.1** det est deux fois différentiable et

$$D^2(\det(A))(H,K) = \det(A)\operatorname{tr}(A^{-1}KA^{-1}H)$$

#### 3.3 Formes différentielles

**<u>Définition 3.5</u>** Une forme différentielle de degré 1 sur U (ouvert de E) est une application  $U \to \mathscr{L}_c(E,\mathbb{R}) = E'$ . On dit qu'une forme différentielle est exacte ssi c'est une différentielle.

THÉORÈME 3.5 Soit  $\omega = \sum_{i=1}^{n} a_i dx_i$  une forme différentielle  $C^1$  sur U ouvert  $de \mathbb{R}^n$ .

Si  $\omega$  est exacte, on a pour tout i, j,  $\frac{\partial a_i}{\partial x_j} = \frac{\partial a_j}{\partial x_i}$ . Réciproquement, si pour tout i, j,  $\frac{\partial a_i}{\partial x_j} = \frac{\partial a_j}{\partial x_i}$  et si U est étoilé, alors  $\omega$  est exacte.

Démonstration. La première assertion est débile par Schwarz.

On suppose ensuite U étoilé par rapport à 0.

Soit 
$$f = x \mapsto \int_0^1 \omega(tx) x \, dt = \sum_{i=1}^n \int_0^1 a_i(tx) \, dt$$
.

 $\omega(tx)x$  est dérivable en  $x_i$  pour tout i et

$$\frac{\partial \omega(tx)x}{\partial x_i} = \sum_{j=1}^n t \frac{\partial a_j}{\partial x_i}(tx)x_j + a_i(tx)$$

qui est continue en  $(t, x_i)$  donc on peut dériver sous l'intégrale.

$$\frac{\partial f}{\partial x_j}(x) = \int_0^1 \sum_{i=1}^n t \frac{\partial a_i}{\partial x_j}(tx) x_i + a_j(tx) dt$$

$$= \int_0^1 \sum_{i=1}^n t \frac{\partial a_i}{\partial x_j}(tx) x_i + a_j(tx) dt$$

$$= \int_0^1 \frac{d}{dt}(ta_j(tx)) dt$$

$$= a_j(x)$$

 $\frac{\partial f}{\partial x_i}$  est  $C^1$  donc f est  $C^2$  et  $\omega = \mathrm{d}f$ .

Exemple 3.2  $\omega(x,y) = \frac{y^2}{(x+y)^2} dx + \frac{x^2}{(x+y)^2} dy \text{ sur } U = \{(x,y), x+y>0\}.$  $\omega$  est  $C^1$  sur U.

$$\frac{\partial}{\partial y} \left( \frac{y^2}{(x+y)^2} \right) = \frac{2y(x+y)^2 - 2(x+y)y^2}{(x+y)^4}$$
$$= \frac{2xy + 2y^2 - 2y^2}{(x+y)^3}$$
$$= \frac{2xy}{(x+y)^3}$$

 $\frac{\partial}{\partial x}(\frac{x^2}{(x+y)^2}) = \frac{2xy}{(x+y)^3} \text{ donc } \omega \text{ est exacte.}$ On cherche f tel que  $\omega = \mathrm{d}f$ .  $\frac{\partial f}{\partial x}(x,y) = \frac{y^2}{(x+y)^2} \text{ donc } f(x,y) = -\frac{y^2}{x+y} + \varphi(y).$ De plus  $\frac{\partial f}{\partial y} = \frac{y^2 - 2y(x+y)}{(x+y)^2} + \varphi'(y).$ Donc  $\frac{x^2}{(x+y)^2} = \varphi'(y) + \frac{y^2 - 2xy}{(x+y)^2}.$ On trouve  $\varphi(y) = \frac{xy}{x+y} + \lambda.$ 

$$\frac{\partial f}{\partial x}(x,y) = \frac{y^2}{(x+y)^2}$$
 donc  $f(x,y) = -\frac{y^2}{x+y} + \varphi(y)$ 

De plus 
$$\frac{\partial f}{\partial y} = \frac{y^2 - 2y(x+y)}{(x+y)^2} + \varphi'(y)$$
.

Donc 
$$\frac{x^2}{(x+y)^2} = \varphi'(y) + \frac{y^2 - 2xy}{(x+y)^2}$$
.

On trouve 
$$\varphi(y) = \frac{xy}{x+y} + \lambda$$
.

#### 3.4 Fonctions convexes

#### Cas réel 3.4.1

**<u>Définition 3.6</u>** Pour toute fonction  $f: C \to \mathbb{R}$  avec C un convexe de E, on appelle épigraphe de f et on note Ep(f) l'ensemble  $\{(x,y)\in C\times\mathbb{R},y\geqslant$ f(x).

On dit que f est convexe ssi pour tout  $t \in [0,1]$  et  $x,y \in C$ , f(tx+(1-t)) $(t)y \le tf(x) + (1-t)f(y)$  ssi Ep(f) est convexe.

THÉORÈME 3.6 Soit I un intervalle de  $\mathbb{R}$ ,  $g: I \to \mathbb{R}$ .

g est convexe ssi

- g est continue sur l'intérieur de I et si  $l \in \partial I$ ,  $\lim_{x \to l} g(x) \leqslant g(l)$
- q dérivable à droite et à gauche en tout point de l'intérieur de I et pour tout  $t_1 < t_2$  dans l'intérieur,

$$g'_g(t_1) \leqslant g'_d(t_1) \leqslant \frac{g(t_2) - g(t_1)}{t_2 - t_1} \leqslant g'_g(t_2) \leqslant g'_d(t_2)$$

De plus g est dérivable sauf sur un ensemble au plus dénombrable.

COROLLAIRE 3.3 Soit  $g: I \to \mathbb{R}$  est dérivable, I un ouvert.

g est convexe ssi g' est croissante.

Si g est deux fois dérivable, g est convexe ssi  $g'' \geqslant 0$ .

Démonstration.

 $\Rightarrow$  Soit t dans l'intérieur de I, k > h > 0.

$$\frac{g(t+h) - g(t)}{h} \leqslant \frac{g(t+k) - g(t)}{k}$$

On a  $t + h = \lambda t + (1 - \lambda)(t + k)$ .

Donc  $g(t+h) \leq \lambda g(t) + (1-\lambda)g(t+k) = (1-\frac{h}{k})g(t) + \frac{h}{k}g(t+k)$ . Donc  $g'_d(t) = \lim_{h \to 0^+} \frac{g(t+h)-g(t)}{\leq h} \frac{g(t+k)-g(t)}{h}$  donc  $g'_d(t)$  existe et est finie.

De même, si  $h < k < 0, g_g'(t) \geqslant \frac{g(t+h)-g(t)}{h}$  existe et est finie.

Enfin, si h < 0 < k, on obtient  $g'_g(t) \leq g'_d(t)$ .

De plus,  $g'_d$  est croissante donc continue presque partout.

 $\Leftarrow$  Soit  $a < b \in I$ .

On a 
$$g(t) = f(t) - f(a) - \frac{t-a}{b-a}(f(b) - f(a)) = f(t) - ((1 - \frac{t-a}{b-a})f(a) + \frac{t-a}{b-a}f(b)).$$

Il suffit de montrer que  $g(t) \ge 0$  sur a, b.

Par l'absurde, s'il existe  $t_0 \in ]a, b[$  tel que  $g(t_0) > 0$ .

On a  $g(t') = \max g > 0$  et  $g'_q(t') \ge 0$  et  $g'_d(t') \le 0$ .

Or 
$$g'_q(t') \leq g'_d(t')$$
 donc  $g'(t') = 0$ .

#### 3.4.2 Cas général

Théorème 3.7 Soit  $f: C \to \mathbb{R}$  différentiable avec C un ouvert.

f est convexe ssi pour tout  $a,b \in C$ ,  $Df(a)(b-a) \leqslant f(b)-f(a) \leqslant Df(b)(b-a)$ .

Démonstration.

- $\Rightarrow$  Soit g(t) = f((1-t)a + tb). g est convexe et dérivable. g'(t) = Df((1-t)a + tb)(b-a) donc  $g'(0) \leqslant \frac{g(1)-g(0)}{1-0} \leqslant g'(1)$ . D'où le résultat.

Donc  $g'(t_1) \leq g'(t_2)$ . g' est croissante donc g est convexe. Comme c'est vrai pour tout a, b, f est connexe.

**Proposition 3.5** Si f est deux fois dérivable, f est convexe ssi  $D^2f(a)$  est une forme quadratique positive pour tout  $a \in C$ .

Démonstration.

- $\Rightarrow$  Si f est convexe, pour tout a,b,  $D^2f(ta+(1-t)b)(b-a,b-a)\geqslant 0$ Si  $\alpha\in C,$   $\alpha=\frac{\alpha-h}{2}+\frac{\alpha+h}{2}.$ Il existe r tel que  $B(\alpha,r)\subset C.$  Si  $\|h\|\leqslant r,$   $D^2f(\alpha)(h,h)\geqslant 0$  donc
- $\Leftarrow$  Si  $D^2 f(a) \ge 0$ ,  $g: t \mapsto f(ta + (1-t)b)$  est deux fois dérivable est  $g'' = D^2 f(ta + (1-t)b)(b-a,b-a) \ge 0$ . Donc f est convexe.

## 3.5 Différentielle d'ordre supérieur

**<u>Définition 3.7</u>** Soit  $f: U \to F$  avec  $U \subset E$  un ouvert et  $a \in U$ .

On dit que f est n fois différentiable en a ssi f est n-1 fois différentiable sur un voisinage de a et  $D^{n-1}f$  est différentiable en a.

On pose alors  $D^n f(a) = D(D^{n-1} f)(a)$ . On utilise de plus des isomorphismes isométriques pour se ramener à  $D^n f(a) \in \mathscr{L}^n_c(E, F)$ .

**Proposition 3.6** Soit  $a \in U$ . Si f est n fois différentiable en a alors  $D^n f(a)$  est symétrique.

 $D\acute{e}monstration.$  Par récurrence : le cas n=2 se fait avec le théorème de Schwarz.

Si c'est vrai pour n-1.

Soit  $\sigma \in \mathfrak{S}_n$ . Si  $\sigma(1) = 1$ ,

$$D^{n} f(a)(h_{1}, \dots, h_{n}) = D^{n-1}(Df(x)(h_{1}))(h_{2}, \dots, h_{n})$$

$$= D^{n-1}(Df(x)(h_{1}))(h_{\sigma(2)}, \dots, h_{\sigma(n)})$$

$$= D^{n} f(a)(h_{\sigma(1)}, \dots, h_{\sigma(n)})$$

Sinon,  $\sigma = \sigma'(12)\sigma'$  avec  $\sigma'(1) = 1$ .

Il suffit donc de le prouver pour (12). C'est vrai par Schwarz.

**Proposition 3.7** Sous les mêmes hypothèses,  $D^n f(a)(h, \dots, h) = \frac{d^n f(a+th)}{dt^n}$ .

**<u>Définition 3.8</u>** f est n fois différentiable sur U ssi f est n fois différentiable en tout point de U.

f est  $C^n$  sur U ssi f est n fois différentiable sur U et  $x\mapsto D^nf(x)$  est continue.

**Proposition 3.8** Une application n-linéaire continue est  $C^{\infty}$ .

**Proposition 3.9** Si f est n fois différentiable en a et g en f(a) alors  $g \circ f$  l'est en a.

Démonstration. Récurrence

## 3.6 Formules de Taylor

**Proposition 3.10 (Taylor-Young)** Soit E, F des espaces vectoriels normés,  $U \subset E$  un ouvert,  $f: U \to F$  n fois différentiable en  $a \in U$  tel que  $[a, a+h] \subset U$ .

$$f(a+h) = \sum_{i=0}^{n} \frac{1}{i!} D^{i} f(a) (\underbrace{h, \dots, h}_{i \text{ fois}}) + o(\|h\|^{n})$$

Démonstration. Par récurrence, n = 1 débile.

Si c'est vrai pour n-1, soit  $\varphi(h)=f(a+h)-\sum_{i=0}^n\frac{1}{i!}D^if(a)(\underbrace{h,\cdots,h}_{i\text{ fois}}).$ 

On a 
$$D\varphi(h) = Df(a+h) - \sum_{i=1}^{n} \frac{1}{(i-1)!} D^{i} f(a) (\underbrace{h, \dots, h}_{i \text{ fois}}).$$

Par hypothèse de récurrence appliquée à Df,  $D\varphi(h) = o(\|h\|^{n-1})$ . Donc  $\varphi(h) = o(\|h\|^n)$ .

**Proposition 3.11 (Taylor-Lagrange)** Sous les mêmes hypothèses, avec f n+1 différentiable,

$$\left| f(a+h) - \sum_{i=0}^{n} \frac{1}{i!} D^{i} f(a) (\underbrace{h, \dots, h}_{i \text{ fois}}) \right| \leq \frac{\|h\|^{n+1}}{(n+1)!} \sup_{[a,a+h]} \|D^{n+1} f(a)\|$$

Démonstration. On applique Taylor-Lagrange dans le cas réel à  $t\mapsto f(a+th)$  sur [0,1].

**Proposition 3.12 (reste intégral)** Si F est un Banach et f  $C^{n+1}$  sur U avec  $[a, a+h] \subset U$ ,

$$f(a+h) = \sum_{i=0}^{n} \frac{1}{i!} D^{i} f(a) (\underbrace{h, \dots, h}_{i \text{ fois}}) + \int_{0}^{1} \frac{(1-t)^{n}}{n!} D^{n+1} f(a+th)(h, \dots, h) dt$$

Démonstration. On applique Taylor avec reste intégral dans le cas réel à  $t\mapsto f(a+th)$  sur [0,1].



# Chapitre 4

# TIL et TFI

Dans tout le chapitre, E et F sont des espaces de Banach.

### 4.1 Théorème d'inversion locale

**<u>Définition 4.1</u>** Soit  $U \subset E$  et  $V \subset F$  deux ouverts.  $f: U \to V$  est un  $C^1$  difféomorphisme ssi f est bijective,  $C^1$  sur U et  $f^{-1}$   $C^1$  sur V.

Remarque 4.1

- $x \mapsto x^2$  est un homéomorphisme  $C^1$  mais pas un  $C^1$  difféomorphisme.
- En différentiant  $f \circ f^{-1} = \operatorname{Id}$ , on a  $Df(f^{-1}(y)) \circ Df^{-1}(y) = \operatorname{Id}$ . En différentiant aussi  $f^{-1} \circ f = \operatorname{Id}$ , on obtient  $Df^{-1}(y) = Df(f^{-1}(y))^{-1}$ .
- Soit  $T \in \mathscr{L}_c(E, F)$  bijective.  $T^{-1} \in \mathscr{L}_c(F, E)$ .

THÉORÈME 4.1 Soit  $U \subset E$  un ouvert,  $f: U \to F$   $C^1$  et  $a \in U$  tel que Df(a) soit inversible.

Îl existe  $\widetilde{U}$  un voisinage de a et  $\widetilde{V}$  un voisinage de f(a) tel que  $f:\widetilde{U}\to\widetilde{V}$  soit un  $C^1$  difféomorphisme.

Démonstration.

• Montrons qu'il existe  $r_1, r_2 > 0$  tel que pour tout  $y \in B(f(a), r_2)$ , il existe un unique  $x \in \overline{B}(a, r_1)$  tel que y = f(x).

On aura alors  $f: f^{-1}(B(f(a), r_2)) \to B(f(a), r_2)$  bijective et

$$f^{-1}(B(f(a), r_2)) \subset \overline{B}(a, r_1)$$

Soit  $y \in B(f(a), r_2)$  et  $r_2$  à préciser. Soit  $\varphi_y(x) = x + Df(a)^{-1}(y - f(x))$ . On a  $D\varphi_y(x) = \operatorname{Id} - Df(a)^{-1}Df(x) = Df(a)^{-1}(\underline{D}f(a) - Df(x))$ . Pour tout  $\eta > 0$  il existe  $r_1 > 0$  tel que  $x \in \overline{B}(a, r_1) \Rightarrow ||Df(a) - Df(x)|| \leqslant \eta$ . On a donc  $||D\varphi_y(x)|| \leqslant ||Df(a)^{-1}||\eta$ . Pour  $\eta \leqslant \frac{1}{2||Df(a)^{-1}||}$  alors  $||D\varphi_y(x)|| \leqslant \frac{1}{2}$ .

Par le TAF,  $\varphi_y$  est contractante sur  $\overline{B}(a, r_1)$  de rapport  $\frac{1}{2}$ . Soit  $x \in \overline{B}(a, r_1)$ .

$$\|\varphi_{y}(x) - a\| \leq \|\varphi_{y}(x) - \varphi_{y}(a)\| + \|\varphi_{y}(a) - a\|$$

$$\leq \frac{1}{2} \|x - a\| + \|Df(a)^{-1}\| \|y - f(a)\|$$

$$\leq \frac{1}{2} \|x - a\| + \|Df(a)^{-1}\| r_{2}$$

$$\leq \frac{r_{1}}{2} + \|Df(a)^{-1}\| r_{2}$$

$$\leq r_{1}$$

pour  $r_2 \leqslant \frac{r_1}{2||Df(a)^{-1}||}$ .

Pour ce choix de  $r_1$  et  $r_2$ , on a  $\varphi_y(\overline{B}(a, r_1)) \subset \overline{B}(a, r_1)$  et  $\varphi_y$  strictement contractante sur  $\overline{B}(a, r_1)$ .

On conclut par le théorème du point fixe.

• Montrons que  $f^{-1}: B(f(a), r_2) \to f^{-1}(B(f(a), r_2))$  est continue. Soit  $y_1, y_2 \in B(f(a), r_2)$ .

$$\begin{aligned} \left\| f^{-1}(y_1) - f^{-1}(y_2) \right\| &= \left\| \varphi_{y_1}(f^{-1}(y_1)) - \varphi_{y_2}(f^{-1}(y_2)) \right\| \\ &\leq \left\| \varphi_{y_2}(f^{-1}(y_2)) - \varphi_{y_1}(f^{-1}(y_2)) \right\| \\ &+ \left\| \varphi_{y_1}(f^{-1}(y_2)) - \varphi_{y_2}(f^{-1}(y_2)) \right\| \\ &\leq \frac{1}{2} \left\| f^{-1}(y_1) - f^{-1}(y_2) \right\| + \left\| Df(a)^{-1} \right\| \left\| y_1 - y_2 \right\| \\ &\leq 2 \left\| Df(a)^{-1} \right\| \left\| y_1 - y_2 \right\| \end{aligned}$$

D'où la lipschitzianité et la continuité.

• On montre que  $f^{-1}$  est différentiable en f(a) et  $Df^{-1}(f(a)) = Df(a)^{-1}$ . f(a+h) = f(a) + Df(a)(h) + o(h) donc  $Df(a)^{-1}(f(a+h) - f(a)) = h + Df(a)^{-1}(o(h))$ .

On pose k = f(a+h) - f(a).  $a+h = f^{-1}(f(a)+k)$  donc  $h = f^{-1}(f(a)+k) - f^{-1}(f(a))$ .

 $f^{-1}(f(a) + k) = f^{-1}(f(a)) + Df(a)^{-1}(k) - Df(a)^{-1}(o(h)).$ 

Par l'étape 2, si h est suffisament petit :  $||h|| \leq 2 ||Df(a)^{-1}|| ||k||$ , alors :

$$f^{-1}(f(a) + k) = f^{-1}(f(a)) + Df^{-1}(a)(k) + o(k)$$

Donc  $f^{-1}$  est différentiable en f(a).

• Soit  $y \in B(f(a), r_2)$ . Par construction,  $f^{-1}(y) \in \overline{B}(a, r_1)$ . Par l'étape 1,  $||Df(a) - Df(f^{-1}(y))|| \leq \frac{1}{2||Df(a)^{-1}||}$ .

Donc 
$$Df(f^{-1}(y)) = Df(a)(\text{Id} + \underbrace{Df(a)^{-1}(Df(f^{-1}(y)) - Df(a)}_{\|\cdot\| \leqslant \frac{1}{2}}).$$

Donc  $Df(f^{-1}(y))$  est une isométrie.

On remplace a par  $f^{-1}(y)$  dans les preuves précédentes.

$$f^{-1}$$
 est donc différentiable en  $y$  et  $Df^{-1}(y) = Df(f^{-1}(y))^{-1}$ .

Remarque 4.2 Si dim(E) est finie alors dim(F) l'est et dim(E) = dim(F). De plus Df(a) peut être identifiée à une matrice. Il suffit alors de vérifier que  $\det(Df(a)) \neq 0$ .

#### Exemple 4.1

• Dans  $\mathfrak{M}_2(\mathbb{R})$ ,  $f: X \mapsto X^2$ .

Df(X)(H) = XH + HX donc Df(Id)(H) = 2H.

Df(Id) est inversible. Donc f est un  $C^1$  difféomorphisme d'un voisinage de Id sur un voisinage de Id.

On pourrait donc définir une application racine carrée sur un voisinage de Id.

• Soit l'application :

$$f: \begin{cases} \mathbb{R}^2 & \to & \mathbb{R}^2 \\ (x,y) & \mapsto & (\mathrm{e}^x \cos(y), \mathrm{e}^x \sin(y)) \end{cases}$$

La jacobienne est:

$$J = \begin{pmatrix} e^x \cos(y) & -e^x \sin(y) \\ e^x \sin(y) & e^x \cos(y) \end{pmatrix}$$

 $det(J) = e^{2x} donc J est inversible.$ 

f est donc un  $C^1$  difféomorphisme au voisinage de chaque point de  $\mathbb{R}^2$  mais pas un  $C^1$  difféomorphisme de  $\mathbb{R}^2$  dans lui-même.

Théorème 4.2 Soit U un ouvert de E et  $f:U\to F$   $C^1$  telle que :

- Pour tout  $x \in U$ , Df(x) est un isomorphisme.
- f est injective

Alors f(U) est un ouvert de F et f est un  $C^1$  difféomorphisme de U dans f(U).

Démonstration. Soit  $y \in f(U)$ .

Il existe  $x \in U$  tel que y = f(x).

Df(x) est un isomorphisme donc par le TIL, f est un  $C^1$  difféomorphisme d'un voisinage de x vers un voisinage de y inclus dans f(U). Donc f(U) est ouvert.

 $f^{-1}:f(U)\to U$  est bien définie par injectivité de f.

Par le TIL, pour tout  $y \in f(U)$ ,  $f^{-1}$  est différentiable en y de différentielle  $Df(f^{-1}(y))^{-1}$  et  $f^{-1}$  est  $C^1$  au voisinage de y.

#### Exemple 4.2

• Soit  $f: \mathbb{R}^n \to \mathbb{R}^n$   $C^1$  telle que pour tout  $x, |||Df(x)||| \le \lambda < 1$ . Alors:

$$F: \begin{cases} \mathbb{R}^{2n} & \to & \mathbb{R}^{2n} \\ (x,y) & \mapsto & (x-f(y),y-f(x)) \end{cases}$$

est un  $C^1$  difféomorphisme.

► En effet, DF(x,y)(h,k) = (h - Df(y)(k), k - Df(x)(h)) donc si DF(x,y)(h,k) = 0 alors h = Df(y)(k) et k = Df(x)(h).

Donc  $||k|| \leqslant \lambda ||h|| \leqslant \lambda^2 ||k||$ .

Donc ||k|| = 0 donc k = h = 0.

▶ f est injective car si  $f(x_1, y_1) = f(x_2, y_2)$  par le TAF,  $||x_1 - x_2|| \le \lambda ||y_1 - y_2|| \le \lambda^2 ||x_1 - x_2||$ .

Donc  $x_1 = x_2$  et  $y_1 = y_2$ .

▶ Maintenant on montre la surjectivité :

Soit  $(a, b) \in \mathbb{R}^{2n}$ .

On pose  $\varphi(x,y) = (a,b) + (x,y) + (x - f(y), y - f(x)) = (a,b) + (f(y), f(x)).$ 

On a  $D\varphi(x,y)(h,k) = (Df(y)(k), Df(x)(h))$  donc  $||D\varphi(x,y)|| \le \lambda < 1$  donc on peut appliquer le théorème du point fixe.

On a alors  $\varphi(x_0, y_0) = (x_0, y_0)$  donc  $(a, b) = F(x_0, y_0)$ .

Donc F est un  $C^1$  difféomorphisme de  $\mathbb{R}^{2n}$  dans  $\mathbb{R}^{2n}$ .

• Soit g continue sur [0,1]. On cherche  $y \in C^1([0,1])$  telle que  $y' + y^2 = g$  et  $y(0) = \lambda$ .

On pose:

$$\varphi: \begin{cases} C^1([0,1]) & \to & C^0([0,1]) \times \mathbb{R} \\ y & \mapsto & (y'+y^2, y(0)) \end{cases}$$

 $\varphi(0)=(0,0)$  et  $D\varphi(y)(k)=(k'+2yk,k(0))$  donc  $D\varphi(0)(k)=(k',k(0))$  qui est clairement inversible.

Par le TIL,  $\varphi$  est un  $C^1$  difféomorphisme d'un voisinage de 0 sur un voisinage (0,0).

Il existe r > 0 tel que pour tout  $|\lambda| \le r$  et  $g \in C^0([0,1])$  telle que  $||g|| \le r$ , il existe un unique  $y \in C^1([0,1])$  vérifiant  $y' + y^2 = g$  et  $y(0) = \lambda$ . De plus, y est dans un voisinage de 0.

**Exemple 4.3** Soit  $k \in C^0([0,1]^2)$  et  $g \in C^0([0,1])$ . On cherche  $u \in C^0([0,1])$  tel que :

$$u(x) + \int_0^1 k(x, y)u^2(y) dy = g(x)$$

On pose  $\phi: u \mapsto u + \int_0^1 k(\cdot, x) u^2(x) dx$ 

$$\phi(0) = 0, \ D\phi(u)(h) = h + 2\int_0^1 k(x, y)u(y)h(y) \, dy.$$

 $\phi(u+th)$  est dérivable et  $D\phi(0) = \text{Id}$  qui est un isomorphisme donc il existe U, V voisinages de 0 tel que  $\phi: U \to V$  soit un  $C^1$  difféomorphisme.

Ce qui assure l'existence et l'unicité d'un u qui marche pour g suffisamment petit.

**Proposition 4.1** Soit  $f: U \to F$   $C^n$ .

Si f est un  $C^1$  difféomorphisme,  $f^{-1}$  est  $C^n$ .

Démonstration. Par récurrence en utilisant  $Df^{-1}(y) = (Df(f^{-1}(y)))^{-1}$ .

COROLLAIRE 4.1 Si dans les hypothèses du TIL, f est aussi de classe  $C^n$ , sa restriction est un  $C^n$ -difféomorphisme.

# 4.2 Théorème des fonctions implicites

Théorème 4.3 Soit E, F, G des Banachs,  $U \subset E, V \subset F$  ouverts.

Soit  $f: U \times V \to G$   $C^1$  et  $a \in U \times V$  tel que f(a) = 0 et  $D_{a_2}f(a)$  soit un isomorphisme de F dans G.

Il existe des voisinages U', V' de  $a_1$  et  $a_2$  et  $\varphi : U' \to V'$  de classe  $C^1$  tel que  $(f(x,y) = 0 \text{ sur } U' \times V') \text{ ssi } (y = \varphi(x) \text{ sur } U')$ .

Démonstration. On pose :

$$F: \begin{cases} U \times V & \to & E \times G \\ (x,y) & \mapsto & (x,f(x,y)) \end{cases}$$

F est  $C^1$  et  $DF(a)(h,k)=(h,D_{a_1}f(a)(h)+D_{a_2}f(a)(k))$  qui est un isomorphisme.

Par le TIL, il existe un voisinage  $\mathcal{U}$  de  $(a_1, a_2)$  et  $\mathcal{V}$  de  $(a_1, 0)$  tel que  $F : \mathcal{U} \to \mathcal{V}$  soit un  $C^1$  difféomorphisme.

Soit U', V' des voisinages de  $a_1$  et  $a_2$  tel que  $U' \times V' \subset \mathcal{U}$ .

Alors  $F: U' \times V' \to W = F(U' \times V')$  est un  $C^1$  difféomorphisme.

Pour tout  $x \in U'$  tel que  $(x,0) \in W$ , il existe un unique x',y tel que F(x',y)=(x,0).

On pose  $y = \varphi(x) = \pi_F(F^{-1}(x, 0))$ .

On restreint  $U': U'' = \{x \in U', (x, 0) \in W\}$ . On a f(x, y) = 0 sur  $U'' \times V'$  ssi  $y = \varphi(x)$  sur U'' et  $\varphi$  est  $C^1$  par composition.

Remarque 4.3

- On peut supposer f continue. On a alors l'existence de  $D_{a_2}f$  au voisinage de a. Si on suppose sa continuité, on a l'existence de  $\varphi$ , mais on ne sait pas si elle est  $C^1$ .
- Le théorème n'implique pas que  $f(x,z) = 0 \Rightarrow z = y$ . En revanche, c'est vrai si  $z \in V'$ .
- On a  $f(x, \varphi(x)) = 0$  donc  $D_{a_1}f(x, \varphi(x)) + D_{a_2}f(x, \varphi(x))D\varphi(x) = 0$ .
- Si f est  $C^n$ ,  $\varphi$  l'est aussi.

#### Exemple 4.4

- $f:(x,y)\mapsto x^2+y^2-2$  en (1,1) vérifie les conditions du théorème. On a f(-1,-1)=f(1,1) donc  $(-1,-1)\notin U$ .
- Soit l'équation  $x^n + \lambda x^2 1 = 0$ . Si  $\lambda = 0$ , x = 1 est solution et la différentielle partielle de f par rapport à x en (1,0) est la multiplication par n donc inversible. En différentiant  $x^n(\lambda) + \lambda x^2(\lambda) - 1 = 0$  par rapport à  $\lambda$ , comme x(0) = 1,  $x'(0) = -\frac{1}{n}$ . De même  $x''(0) = \frac{5-n}{n^2}$ .
- On considère l'équation  $y = \sin(y')$  avec  $y(0) = \lambda$ . On prend  $E = \mathbb{R}$ ,  $F = C^1(\mathbb{R}, \mathbb{R})$  et  $\phi : (\lambda, y) \mapsto (\sin(y') - y, y(0) - \lambda)$ .  $\phi(0,0) = (0,0)$  et  $D_y \phi(0,0)(h) = (h' - h, h(0))$  est un isomorphisme. Donc il existe un voisinage U de 0 dans  $\mathbb{R}$  et V de 0 dans  $C^1(\mathbb{R}, \mathbb{R})$  et  $\psi : U \to V$  tel que  $\phi(\lambda, y) = 0$  ssi  $y = \phi(\lambda)$ . En particulier, pour tout  $\lambda \in U$ , il existe un unique  $y \in V$  tel que  $y = \sin(y')$ .

# Chapitre 5

# Problèmes d'extrema

# 5.1 Problème général

```
On prend U \subset E un ouvert et f: U \to \mathbb{R}.
```

THÉORÈME 5.1 Si  $f(a) = \min_{x \in U} f(x)$  et f différentiable en a alors Df(a) = 0.

Démonstration. Il existe r > 0 tel que  $B(a, r) \subset U$ .

Pour tout  $h \in E$  tel que |h| < r, on pose g(t) = f(a + th).

g est dérivable en 0 et g'(0) = Df(a)(h). g'(0) = 0 donc Df(a)(h) = 0 donc par dilatation Df(a) = 0.

**Proposition 5.1** Si  $C \subset U$  est convexe et  $f(a) = \min_{x \in C} f(x)$  avec  $a \in C$  et f différentiable en a alors  $Df(a)(v-a) \ge 0$  pour tout  $v \in C$ .

Démonstration. Soit  $v \in C$ .

On pose g(t) = f(ta + (1 - t)v).

g est dérivable à gauche en 1 et  $g'_q(1) = Df(a)(a-v)$ .

Comme g atteint son minimum en 1,  $g_g'(1)\leqslant 0$  d'où le résultat.

Remarque 5.1 Si  $E = \mathbb{R}^n$ , Df(a) = 0 signifie  $\frac{\partial f}{\partial x_i}(a) = 0$ .

C'est une condition non suffisante (prendre  $x \mapsto x^3$ ).

**Proposition 5.2** Soit  $a \in U$  et f deux fois différentiable en a tel que  $f(a) = \min_{x \in U} f(x)$ .

On a  $D^2 f(a) \ge 0$ .

Démonstration. S'il existe  $h \in E$  tel que  $D^2 f(a)(h,h) < 0$ , alors par Taylor-Young à l'ordre 2, on a :

$$f(a+h) = f(a) + 0 + \frac{1}{2}D^2 f(a)(h,h) + o(\|h\|^2)$$

On a  $f(a + \lambda h) = f(a) + \frac{\lambda^2}{2} D^2 f(a)(h, h) + o(\|\lambda h\|^2)$ .

Il existe  $\varepsilon > 0$  tel que si  $|\lambda| < \varepsilon$  alors  $o(\|\lambda h\|^2) < \frac{\lambda^2 |Df(a)(h,h)|}{4}$ .

On a alors  $f(a + \lambda h) < f(a) + \frac{3\lambda^2}{4} Df(a)(h, h)$ . Donc, avec  $\lambda \to 0$ , f(a) < f(a). Contradiction.

**Proposition 5.3** Soit  $a \in U$  tel que f soit deux fois différentiable en a, Df(a) = 0 et  $D^2f(a)$  soit cœrcive (ie il existe  $\alpha > 0$  tel que  $D^2f(a)(h,h) \ge$  $\alpha \|h\|^2$ ) alors f a un minimum local strict en a (ie il existe un voisinage V de a tel que  $f(a) = \min_{x \in V} f(x)$ ).

Démonstration.

$$f(a+h) = f(a) + \frac{D^2 f(a)(h,h)}{2} + o(\|h\|^2) \geqslant f(a) + \frac{\alpha}{2} \|h\|^2 + \|h\|^2 \varepsilon(h)$$

Il existe r > 0 tel que si ||h|| < r alors  $||\varepsilon(h)|| \leqslant \frac{\alpha}{4}$ .

On a alors 
$$f(a+h) \ge f(a) + \frac{\alpha}{4} \|h\|^2$$
.  
Donc  $f(a) = \min_{x \in B(a,r)} f(x)$ .

Remarque 5.2

•  $Si E = \mathbb{R}^n$  alors  $D^2 f(a)(h,h)$  est une forme quadratique et on peut étudier son signe.  $D^2 f(a)$  est de plus cœrcive ssi elle est strictement

En effet, si elle est strictement positive, elle est continue et strictement positive sur  $\mathbb{S}^{n-1}$  qui est compact donc admet un minimum strictement positif dessus en  $h_0$ .

 $Si h \in \mathbb{R}^n$ ,

$$D^{2}f(a)(h,h) = ||h||^{2} D^{2}f(a) \left(\frac{h}{||h||}, \frac{h}{||h||}\right) \ge ||h||^{2} D^{2}f(a)(h_{0}, h_{0})$$

- On peut aussi passer par la hessienne et ses valeurs propres ( $\alpha$  =  $\min \operatorname{Sp}(H_a)$ ).
- En dimension infinie, c'est faux :  $E = l^2$  avec  $D^2 f(a)(h,h) = \sum_{n=0}^{\infty} \frac{h_n^2}{n} >$ 0 mais n'est pas cærcive (en  $e_n$  par exemple).

#### Exemple 5.1

• Sur  $L^2$ , on pose  $J(f) = \int_{\mathbb{D}} f^2 - fg$ .

$$DJ(f)(h) = \int_{\mathbb{R}} 2fh - hg.$$

Si J est minimale en f alors DJ(f)(h) = 0 et  $f = \frac{g}{2}$ .

De plus,  $D^2 J(f)(h,h) \ge 2 \|h\|^2$  donc J e un minimum local en  $\frac{q}{2}$ .

•  $E = \{u \in C^2, u(0) = u(1) = 0\}, J(u) = \int_0^1 (u'(x)) - fu.$ 

Si J est minimal en u alors DJ(u)(h) = 0 donc on calcule et on trouve pour tout  $h \in E$ ,

$$\int_0^1 (f - 2u'')h = 0$$

Donc (on admet que) f - 2u'' = 0. Donc  $u'' = \frac{f}{2}$ .

## 5.2 Extrema liés

On cherche un minimum sur une surface d'équation g(x) = 0.

THÉORÈME 5.2 Soit U un ouvert de  $\mathbb{R}^n$ , f et g  $C^1$  et  $a \in U$  tel que g(a) = 0,  $f(a) = \min_{g(x)=0} f(x)$  et  $Dg(a) \neq 0$ .

On a alors l'existence de  $\lambda \in \mathbb{R}$  tel que  $Df(a) = \lambda Dg(a)$ .

Démonstration.  $Dg(a) \neq 0$  donc  $\overrightarrow{\operatorname{grad}} g(a) \neq 0$  donc il existe  $i \in [1, n]$  tel que  $\frac{\partial g}{\partial x_i}(a) \neq 0$  et OPS i = n.

Par le TFI, il existe un voisinage U de  $(a_1, \dots, a_{n-1})$  et V de  $a_n$  ainsi que  $\varphi: U \to V$   $C^1$  tel que  $g((x_1, \dots, x_{n-1}), x_n) = 0$  ssi  $x_n = \varphi(x_1, \dots, x_{n-1})$ .

Pour tout y, on note  $y' = (y_1, \dots, y_{n-1})$ .

On a 
$$f(x) = f(x', x_n) = f(x', \varphi(x'))$$
 si  $g(x) = 0$  et  $(x', x_n) \in U \times V$ .

Comme f est différentiable en a alors  $f(x', \varphi(x'))$  l'est en a' et sa différentielle par rapport à x' est nulle en a'. D'où :

$$D_{x'}f(a',\varphi(a')) + D_{x_n}f(a',\varphi(a'))D_{x'}\varphi(a') = 0$$

Donc, pour tout i,

$$\frac{\partial f}{\partial x_i}(a) + \frac{\partial f}{\partial x_n}(a) \frac{\partial \varphi}{\partial x_i}(a) = 0$$

Or, en différentiant  $g(x', \varphi(x')) = 0$  pour i < n, on obtient :

$$\frac{\partial g}{\partial x_i}(x', \varphi(x')) + \frac{\partial g}{\partial x_n}(x', \varphi(x')) \frac{\partial \varphi}{\partial x_i}(x') = 0$$

Donc en réinjectant,

$$\frac{\partial f}{\partial x_i}(a) - \frac{\partial g}{\partial x_i}(a) \left(\frac{\partial g}{\partial x_n}(a)\right)^{-1} \frac{\partial f}{\partial x_n}(a) = 0$$

On pose  $\lambda = \frac{\partial f}{\partial x_n}(a)(\frac{\partial g}{\partial x_n}(a))^{-1} \neq 0$ . On a alors pour i < n,  $\frac{\partial f}{\partial x_i}(a) = \lambda \frac{\partial g}{\partial x_i}(a)$ . Et pour i = n, c'est débile par définition de  $\lambda$ .

#### Remarque 5.3

- $\lambda$  s'appelle multiplicateur de Lagrange.
- f différentiable en a suffit.
- ullet Plus généralement, si  $\widetilde{f}$  et g sont  $C^1$  et si  $a \in U$  vérifie g(a) = 0, Dg(a) surjective et  $f(a) = \min_{g(x)=0} f(x)$ , alors il existe  $\lambda_1, \dots, \lambda_p$  tel que

$$\overrightarrow{\operatorname{grad}} f(a) = \sum_{i=1}^{p} \lambda_i \overrightarrow{\operatorname{grad}} g_i(a).$$

### Exemple 5.2

• On minimise x sur  $\mathbb{S}^2$ .  $f = (x, y, z) \mapsto x \text{ et } g = (x, y, z) \mapsto x^2 + y^2 + z^2 - 1.$ Si  $(x_0, y_0, z_0)$  est extrémal, il existe  $\lambda \in \mathbb{R}^*$  tel que :

$$\begin{cases} 1 &= 2\lambda x \\ 0 &= 2\lambda y \\ 0 &= 2\lambda z \end{cases}$$

Donc, comme  $\lambda \neq 0$ , y = z = 0 et  $x = \pm 1$ .

Or 1 > -1 donc (-1, 0, 0) est solution. On vérifie que -1 est bien le min.

• Soit  $u \in L(\mathbb{R}^n)$  symétrique et  $f = \langle u, \cdot \rangle$ . On minimise f pour  $||x||^2 = 1$ . Il existe  $x_0$  tel que  $f(x_0) = \min_{\|x\|^2 = 1} f(x)$  et  $\lambda \in \mathbb{R}$  tel que  $\overrightarrow{\operatorname{grad}} f(x_0) = 0$  $\lambda \overrightarrow{\operatorname{grad}} q(x_0).$ On a  $Df(x_0) = 2u(x_0)$  donc  $u(x_0) = \lambda x_0$ .

# Chapitre 6

# Sous variétés différentiables de $\mathbb{R}^n$

# 6.1 Introduction: courbes et surfaces

# **6.1.1** Courbes dans $\mathbb{R}^2$ ( $C^1$ )

Il y en a trois types:

- Les graphes  $\{(x, f(x)), x \in I\}$  avec  $I \subset \mathbb{R}$  et  $f: I \to \mathbb{R}$   $C^1$ .
- Les équations cartésiennes :  $\{(x,y) \in U, g(x,y) = 0\}$  avec  $g: U \to \mathbb{R}$  et  $U \subset \mathbb{R}^2$ .



FIGURE  $6.1 - x^2 + y^2 = 2.25$ 

Graphe  $\Rightarrow$  équation cartésienne : g(x, y) = y - f(x).

• Les courbes paramétrées :  $\{(x(t),y(t)),t\in I\}$  avec  $I\subset\mathbb{R}$  et  $x,y:I\to\mathbb{R}$   $C^1.$ 



FIGURE 
$$6.2 - x(t) = t^3$$
,  $y(t) = t^2$ 

Graphe  $\Rightarrow$  équation paramétrique : x(t) = t, y(t) = f(t).

Les réciproques sont fausses globalement, mais localement, avec des hypothèses supplémentaires, on a l'équivalence.

Théorème 6.1 (ÉQUATION CARTÉSIENNE  $\Rightarrow$  GRAPHE LOCALEMENT) Si  $\frac{\partial g}{\partial y}(x_0, y_0) \neq 0$  ou  $\frac{\partial g}{\partial x}(x_0, y_0) \neq 0$ , (ssi  $Dg(x_0, y_0) \neq 0$ ), alors il existe un voisinage de  $(x_0, y_0)$  et f  $C^1$  tel que pour tout  $x, y \in U$ , g(x, y) = 0 ssi y = f(x).

Théorème 6.2 (ÉQUATION PARAMÉTRÉE  $\Rightarrow$  GRAPHE LOCALEMENT)  $Si(x'(t_0), y'(t_0)) \neq (0, 0)$  et  $t \mapsto (x(t), y(t))$  injective, alors il existe un voisinage I de  $t_0$  tel qu'il existe  $\varphi: I \to \mathbb{R}$   $C^1$  tel que la courbe soit le graphe de  $f(x) = y(\varphi(x))$ .

Démonstration. OPS  $x'(t_0) \neq 0$ .

On applique le TIL en  $t_0$  à x. On a alors  $t = \varphi(x)$ . D'où le résultat.

**Définition 6.1** (Sous variété  $C^1$  de dimension 1 de  $\mathbb{R}^2$ )  $X \subset \mathbb{R}^2$  est une sous-variété de dimension 1 ssi pour tout  $a \in X$ , il existe  $U \subset \mathbb{R}^2$  voisinage de  $a, V \subset \mathbb{R}^2$  un voisinage de 0 et  $\varphi : V \to U$  un  $C^1$ -difféomorphisme tel que  $\varphi(0) = a$  et  $\varphi(V \cap (\mathbb{R} \times \{0\})) = X \cap U$ .

Remarque 6.1 Cela implique qu'il n'y a pas de point double.

#### 6.1.2 Surfaces dans $\mathbb{R}^3$

On a aussi trois types de définition : les graphes, les équations et les nappes paramétrées.



Figure 6.3 – Sous variété et difféomorphisme

# 6.2 Sous-variétés $C^k$ de dimension d de $\mathbb{R}^n$

#### **<u>Définition 6.2</u>** Soit $\emptyset \neq X \subset \mathbb{R}^n$ .

X est une sous-variété  $C^k$  de dimension d de  $\mathbb{R}^n$  ssi pour tout  $a \in X$ , il existe  $U \subset \mathbb{R}^n$  voisinage de  $a, V \subset \mathbb{R}^n$  voisinage de 0 et  $\varphi : V \to U$  un  $C^k$ -difféomorphisme tel que  $\varphi(0) = a$  et  $\varphi(V \cap (\mathbb{R}^d \times \{0\}^{n-d})) = X \cap U$ .

« X ressemble localement à un espace vectoriel de dimension d dans  $\mathbb{R}^n$  ».

Remarque 6.2 On a  $k \geqslant 1$  et on aura généralement  $k = +\infty$ . On dit alors « lisse ».

#### Exemple 6.1

- Tout espace affine de dimension d est une sous-variété de dimension d.
- Si d=0, X est un point.
- Si d=1, ce sont les courbes lisses
- Si d=2, ce sont les surfaces sympathiques
- Si d = n 1, ce sont les hypersurfaces

#### THÉORÈME 6.3 Soit $X \subset \mathbb{R}^n$ non vide. Il y a équivalence entre :

- 1. X est une sous-variété  $C^1$  de dimension d de  $\mathbb{R}^n$
- 2. Pour tout  $a \in X$ , il existe un système de coordonnées de  $\mathbb{R}^n$  tel que  $\mathbb{R}^n = \mathbb{R}^d \times \mathbb{R}^{n-d}$ , il existe  $U \subset \mathbb{R}^n$  voisinage de a,  $V \subset \mathbb{R}^d$  voisinage de a et  $f: V \to \mathbb{R}^{n-d}$   $C^1$  tel que  $f(a_1) = a_2$  et  $X \cap U = \{(x, f(x)), x \in V\}$  avec  $a = (a_1, a_2)$ .
- 3. Pour tout  $a \in X$ , il existe  $U \subset \mathbb{R}^n$  voisinage de  $a, V \subset \mathbb{R}^{n-d}$  voisinage de 0 et  $g: U \to V$   $C^1$  tel que  $X \cap U = g^{-1}(\{0\})$  et Dg(a) surjective.
- 4. Pour tout  $a \in X$ , il existe  $U \subset \mathbb{R}^n$  voisinage de  $a, V \subset \mathbb{R}^d$  voisinage de 0 et  $\Theta : V \to \mathbb{R}^n$   $C^1$  tel que  $\Theta(0) = a, \Theta(V) = X \cap U$ ,  $D\Theta$  injective et  $\Theta : V \to X \cap U$  est un homéomorphisme.

Remarque 6.3 À retenir : 2. image réciproque de 0 par une submersion (ie différentielle surjective) et 3. image d'une immersion (ie différentielle injective).

## 6.3 Espaces tangents

**<u>Définition 6.3</u>** Soit X une sous variété de dimension d de  $\mathbb{R}^n$ ,  $a \in X$ . L'espace tangent en a à X est :

$$T_a X = \{ v \in \mathbb{R}^n, \exists \gamma : ] -1, 1[ \to X \quad C^1, \gamma(0) = a, \gamma'(0) = v \}$$

**Proposition 6.1**  $T_aX = D\varphi(0)(\mathbb{R}^d \times \{0\}^{n-d})$  avec  $\varphi$  le difféomorphisme  $V \to U$ .

Démonstration. Une courbe tracée sur X peut s'écrire  $\gamma = \varphi \circ \widetilde{\gamma}$  avec  $\widetilde{\gamma}$  une courbe tracée sur  $\mathbb{R}^d \times \{0\}^{n-d}$ .

On a 
$$\underbrace{\gamma'(t_0)}_{\in T_a X} = D\varphi(0)(\underbrace{\widetilde{\gamma}'(t_0)}_{\in \mathbb{R}^d}).$$

COROLLAIRE 6.1  $T_aX$  est un espace vectoriel de dimension d.

Proposition 6.2 Pour les définitions équivalentes,

- $T_a X = Df(a_1)(\mathbb{R}^d) = \operatorname{Im}(Df(a_1))$
- $-T_a X = Dg(a)^{-1}(0) = Ker(Dg(a))$
- $-T_aX = D\Theta(0)(\mathbb{R}^d) = \operatorname{Im}(D\Theta(0)).$

**Exemple 6.2 Plan tangent à la sphère**  $\mathbb{S}^2$ . On a  $g(x, y, z) = x^2 + y^2 + z^2 - 1$ . Soit  $(a, b, c) \in \mathbb{S}^2$ . On a Dg(a, b, c) = (2a, 2b, 2c).

Donc l'équation du plan tangent est 2ax+2by+2cz=0 ie ax+by+cz=0.

# Deuxième partie Fonctions holomorphes

# Chapitre 7

# Premières propriétés

On se place sur  $\Omega$  un ouvert connexe.

## 7.1 Définition

**<u>Définition 7.1</u>** Soit  $z_0 \in \Omega$ .

f est holomorphe en  $z_0$  ssi  $\frac{f(z)-f(z_0)}{z-z_0}$  admet une limite pour  $z \to z_0$ . On note alors  $f'(z_0)$  cette limite.

**<u>Définition 7.2</u>** f est holomorphe sur  $A \subset \Omega$  ssi f est holomorphe en tout point de A.

Exemple 7.1

•  $f(z) = z^n$ ,  $\Omega = \mathbb{C}$ .

$$\frac{f(z) - f(z_0)}{z - z_0} = \sum_{k=0}^{n-1} z^k z_0^{n-k-1} \to n z_0^{n-1}$$

•  $f(z) = \frac{1}{z} \operatorname{sur} \mathbb{C}^*$ .

$$\frac{f(z) - f(z_0)}{z - z_0} = -\frac{z}{z_0} \to -\frac{1}{z_0^2}$$

•  $f(z) = \overline{z}$  n'est pas holomorphe : si  $z = z_0 + ee^{i\theta}$ ,

$$\frac{f(z) - f(z_0)}{z - z_0} = e^{-2i\theta}$$

qui n'a pas de limite quand  $z \to z_0$ .

• Idem pour  $\Re$ ,  $\Im$ 

**Proposition 7.1** L'ensemble des fonctions holomorphes muni de +,  $\times$  et  $\cdot$  est une algèbre et on a les formules usuelles pour la dérivée de la somme et des produits.

Démonstration. On montre celle pour le produit : soit f, g holomorphes et  $z_0 \in \Omega$ .

$$\frac{fg(z) - fg(z_0)}{z - z_0} = \frac{f(z)g(z) - f(z_0)g(z_0)}{z - z_0}$$
$$= f(z)\frac{g(z) - g(z_0)}{z - z_0} + g(z_0)\frac{f(z) - f(z_0)}{z - z_0}$$

Remarque 7.1 Si f est holomorphe, f est continue.

**Proposition 7.2** Si f est holomorphe en  $z_0$  et  $f(z_0) \neq 0$  alors  $\frac{1}{f}$  est holomorphe en  $z_0$  et :

$$\left(\frac{1}{f}\right)'(z_0) = -\frac{f'(z_0)}{f(z_0)^2}$$

Remarque 7.2 exp est holomorphe par permutation somme-limite.

## 7.2 Séries entières

**<u>Définition 7.3</u>** On appelle rayon de convergence de la série  $\sum_{n=0}^{\infty} a_n z^n$  le réel :

$$R = \sup \left\{ |z|, \sum_{n=0}^{\infty} a_n z^n \text{ converge} \right\}$$

$$= \sup \{ |z|, a_n z^n \text{ borné} \}$$

$$= \sup \left\{ r > 0, \sum_{n=0}^{\infty} |a_n| r^n \text{ converge} \right\}$$

$$= \frac{1}{\limsup_{n \to \infty} \sqrt[n]{|a_n|}}$$

Démonstration.

- $R_3 \leqslant R_1 \leqslant R_2$ .
- Soit  $\varepsilon > 0$  et  $z_0$  tel que  $a_n z_0^n$  borné et  $|z_0| \geqslant R_2 \varepsilon$ . On a  $|a_n| r^n \leqslant |a_n| |z_0|^n |\frac{r}{z_0}|^n \leqslant M |\frac{r}{z_0}|^n$  qui est TG de série convergente. Donc  $R_3 \geqslant R_2 - 2\varepsilon$ . D'où  $R_1 = R_2 = R_3$ . •  $R_4 = \liminf_n \frac{1}{\sqrt[n]{|a_n|}}$ .
- $R_4 = \liminf_n \frac{1}{\sqrt[n]{|a_n|}}$ . Soit  $\varepsilon > 0$ . Pour n suffisamment grand,  $\sqrt[n]{|a_n|} \geqslant R_4 - \varepsilon$ .

Donc  $|a_n|r^n \leq (\frac{r}{R_4-\varepsilon})^n$  donc converge pour  $r < R_4-\varepsilon$  donc  $R_3 \geqslant R_4-\varepsilon$  donc  $R_3 \geqslant R_4$ .

On fait pareil avec un  $+\varepsilon$  et on a  $R_3 \leqslant R_4 + \varepsilon$ .

**Proposition 7.3** Il y a convergence uniforme sur tout disque fermé inclus dans D(0, R).

**Proposition 7.4** Toute série entière  $\sum_{n=0}^{\infty} a_n z^n$  de rayon non nul est holomorphe sur D(0,R).

De plus 
$$f'(z) = \sum_{n=1}^{\infty} na_n z^{n-1}$$
.

#### Proposition 7.5

$$\frac{f(z) - f(z_0)}{z - z_0} = \sum_{n=1}^{\infty} a_n \sum_{l=0}^{n-1} z^l z_0^{n-1-l}$$

Si R' < R et  $|z_0| < R', |z| < R'$ , alors

$$|a_n| \left| \sum_{l=0}^{n-1} z^l z_0 n - 1 - l \right| \le n|a_n|R'^{n-1}$$

On sait que  $n|a_n|R'^{n-1}$  converge car  $\limsup_n \sqrt[n]{n|a_n|} = \limsup_n \sqrt[n]{|a_n|}$ . On conclut par convergence dominée.

# 7.3 Conditions de Cauchy-Riemann

**Proposition 7.6**  $f: \Omega \to \mathbb{C}$  peut être vue comme  $\Omega \to \mathbb{R}^2$ . Si f est holomorphe alors elle est différentiable.

Démonstration. Si f est holomorphe en  $z_0$  alors  $f(z) = f(z_0) + (z - z_0) f'(z_0) + o(z)$  pour  $z \to z_0$ .

Si 
$$f = F + iG$$
,  $z = x + iy$  et  $f'(z_0) = A + iB$  alors:

$$F(x+iy) + iG(x+iy) = F(x_0+iy_0) + iG(x_0+iy_0) + (x-x_0)A$$
$$-(y-y_0)B + i((x-x_0)B + (y-y_0)A) + o(z)$$

Donc F et G sont différentiables et  $\frac{\partial F}{\partial x} = A = \frac{\partial G}{\partial y}$  et  $\frac{\partial F}{\partial y} = -\frac{\partial G}{\partial x} = -B$ .

**Proposition 7.7** Réciproquement, si f est différentiable et si  $\frac{\partial F}{\partial x} = \frac{\partial G}{\partial y}$  et  $\frac{\partial F}{\partial y} = -\frac{\partial G}{\partial x}$  alors f est holomorphe. (Ce sont les conditions de Cauchy-Riemann)

COROLLAIRE 7.1 Si  $f: \Omega \to \mathbb{C}$  est holomorphe sur  $\Omega$  et f'(z) = 0 pour  $z \in \Omega$  alors, comme  $\Omega$  est connexe, f est constante.

**Proposition 7.8** On peut appliquer tous les résultats de calcul différentiel. *Remarque 7.3* 

- Si F et G sont différentiables, alors  $\Delta F = \Delta G = 0$ . On dit alors que F et G sont harmoniques.
- Les conditions de Cauchy-Riemann sont équivalentes à  $\frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = 0$ .
- On  $a df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ . En changeant de base (dz = dx + idy) et  $d\overline{z} = dx idy$ , on a:

$$df = \frac{1}{2} \left( \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right) dz + \frac{1}{2} \left( \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right) d\overline{z}$$

On note  $\frac{\partial f}{\partial z} = \frac{1}{2} \left( \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} \right)$  et  $\frac{\partial f}{\partial \overline{z}} = \frac{1}{2} \left( \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} \right)$ . Les conditions s'écrivent alors  $\frac{\partial f}{\partial \overline{z}} = 0$ .

# 7.4 Intégration sur des chemins

**Définition 7.4**  $\gamma: [a,b] \to \mathbb{C}$  est un chemin ssi  $\gamma$  est continue et il existe  $t_0, \dots, t_n$  tel que  $a = t_0 < \dots < t_n = b$  et  $\forall i \in [0, n-1], \gamma|_{[t_i, t_{i+1}]}$  est  $C^1$ .  $\gamma$  est fermé ssi  $\gamma(a) = \gamma(b)$ .

**<u>Définition 7.5</u>** Soit f continue et  $\gamma$  un chemin.

On définit :

$$\int_{\gamma} f(z) dz = \int_{a}^{b} f(\gamma(t)) \gamma'(t) dt$$

**Proposition 7.9** Soit f continue et  $\gamma$  un chemin.

$$\left| \int_{\gamma} f(z) \, \mathrm{d}z \right| \leqslant \sup_{t \in [a,b]} |f(\gamma(t))| l(\gamma)$$

avec  $l(\gamma)$  sa longueur.

**Proposition 7.10** Soit  $\gamma:[a,b]\to\mathbb{C}$  et  $\widetilde{\gamma}:[b,c]\to\mathbb{C}$ .

Si  $\gamma(b) = \widetilde{\gamma}(b)$  alors la concaténation  $\overline{\gamma}$  de  $\gamma$  et  $\widetilde{\gamma}$  est un chemin et :

$$\int_{\overline{\gamma}} f(z) dz = \int_{\gamma} f(z) dz + \int_{\overline{\gamma}} f(z) dz$$

**Proposition 7.11** Soit  $\gamma:[a,b]\to\Omega,\ f:\Omega\to\mathbb{C}$  et  $\varphi:[c,d]\to[a,b]$   $C^1,$  bijective, d'inverse  $C^1.$ 

Alors  $\gamma \circ \varphi$  est un chemin et :

$$\int_{\gamma \circ \varphi} f(z) dz = \operatorname{Sgn}(\varphi') \int_{\gamma} f(z) dz$$

Démonstration. Théorème de changement de variable.

On définira les chemins par des dessins :



$$\int_{\gamma} f(z) dz = \int_{0}^{1} f(t) dt + i \int_{0}^{1} f(1+it) dt + \int_{1}^{0} f(t+i) dt + i \int_{1}^{0} f(ti) dt$$



$$\int_{\gamma} f(z) dz = \int_{-R}^{R} f(t) dt + iR \int_{0}^{\pi} f(Re^{i\theta}) e^{i\theta} d\theta$$

**Définition 7.6** On appelle indice de  $z \in \mathbb{C} \setminus \text{Im}(\gamma)$  par rapport à  $\gamma$  (fermé) et on note  $I_{\gamma}(z)$  le nombre :

$$\frac{1}{2i\pi} \int_{\gamma} \frac{\mathrm{d}\xi}{\xi - z}$$

Théorème 7.1 Soit  $\gamma$  fermé et  $z \in \mathbb{C} \setminus \text{Im}(\gamma)$ .

Alors  $I_{\gamma}(z) \in \mathbb{Z}$  et  $I_{\gamma}$  est constant sur les composantes connexes de  $\mathbb{C} \setminus$  $\operatorname{Im}(\gamma)$  et nul sur celle non bornée.

Démonstration.

•  $\operatorname{Im}(\gamma)$  est compact donc il existe R > 0 tel que  $D(0, R)^c \subset \mathbb{C} \setminus \operatorname{Im}(\gamma)$ . On n'a donc qu'une seule composante connexe non bornée. On a donc  $\varphi(t) = \exp\left(\int_a^t \frac{\gamma'(s)}{\gamma(s)-z} \, \mathrm{d}s\right)$  et  $\varphi$  est  $C^0$  et  $C^1$  par morceaux. On a donc  $\varphi'(t) = \frac{\gamma'(t)}{\gamma(t)-z} \varphi(t)$  sur  $]t_i, t_{i+1}[$ . Donc  $\left(\frac{\varphi}{\gamma-z}\right)' = \frac{\varphi'(\gamma-z)-\varphi\gamma'}{(\gamma-z)^2} = 0$ .

On a donc 
$$\varphi'(t) = \frac{\gamma'(t)}{\gamma(t) - z} \varphi(t)$$
 sur  $]t_i, t_{i+1}[$ 

Donc 
$$\left(\frac{\varphi}{\gamma - z}\right)' = \frac{\varphi'(\gamma - z) - \varphi \gamma'}{(\gamma - z)^2} = 0.$$

 $\frac{\varphi}{\gamma-z}$  est constante par morceaux et continue donc constante sur [a,b].

On a donc  $\frac{\varphi(a)}{\gamma(a)-z} = \frac{\varphi(b)}{\gamma(b)-z}$ .

D'où  $\varphi(a) = \varphi(b) = 1$ 

Donc  $\exp\left(\int_a^b \frac{\varphi'(s)}{\gamma(s) - z} ds\right) = 1 \text{ donc } \in 2i\pi\mathbb{Z}.$ 

• Si  $z_0 \in \mathbb{C} \setminus \text{Im}(\gamma)$  qui est ouvert, il existe r > 0 tel que  $D(z_0, r) \subset$  $\mathbb{C} \setminus \operatorname{Im}(\gamma)$ .

Pour tout  $z \in D(z_0, \frac{r}{2})$ ,  $|\gamma(t) - z| \geqslant \frac{r}{2}$  donc  $|\frac{\gamma'(t)}{\gamma(t) - z}| \leqslant \frac{2|\gamma'(t)|}{r}$ . Donc  $I_{\gamma}$  est continue sur  $D(z_0, r)$  donc sur  $\mathbb{C} \setminus \text{Im}(\gamma)$  donc constante sur chaque composante connexe.

• Si |z| > R avec R tel que  $\operatorname{Im}(\gamma) \subset D(0,R)$  alors  $\frac{1}{|\gamma(t)-z|} \leqslant \frac{1}{|z|-R}$ .

Donc 
$$|I_{\gamma}(z)| \leq \frac{1}{2\pi} \int_a^b \frac{|\gamma'(t)|}{|z| - R} dt \to 0 \text{ pour } |z| \to +\infty.$$

**Exemple 7.2**  $\gamma_1$  le cercle C(a,r) dans le sens trigonométrique,  $\gamma_2$  icelui parcouru deux fois et  $\gamma_3$  parcouru dans le sens inverse.

On a : 
$$I_{\gamma_1}(z) = \frac{1}{2i\pi} \int_0^{2\pi} \frac{r i e^{i\theta} d\theta}{a + r e^{i\theta} - z} = 0.$$

Si  $z \notin \overline{D(a,r)}$ ,  $z \in D(a,r)$  et :

$$I_{\gamma_1}(z) = I_{\gamma_1}(a) = \int_0^{2\pi} \frac{rie^{i\theta}}{re^{i\theta}} d\theta = 1$$

Donc  $I_{\gamma_2} = 2I_{\gamma_1}$  et  $I_{\gamma_3} = -I_{\gamma_1}$ .

**<u>Définition 7.7</u>** (Homotopie) Soient  $\gamma_1, \gamma_2$  chemins fermés dans  $\Omega$  indexés par [0,1].  $\gamma_1,\gamma_2$  sont homotopes dans  $\Omega$  ssi  $\exists H:[0,1]\times[0,1]\to\Omega$  continue telle que:

- $H(t,0) = \gamma_0(t), t \in [0,1]$
- $H(t,1) = \gamma_1(t), t \in [0,1]$
- $H(0,s) = H(1,s), s \in [0,1]$

Remarque 7.4  $s \in ]0,1[t \mapsto H(t,s)]$  est une courbe fermée mais pas nécessairement  $C^1$  par morceaux.

**Définition 7.8**  $\Omega$  ouvert connexe est simplement connexe si tous les chemins fermés sont homotopes à un point.

**Proposition 7.12** Tout convexe est simplement connexe. En particulier,  $\mathbb{C}$ est simplement connexe.

Théorème 7.2 Soit  $\Omega$  un ouvert connexe et  $\gamma_1$ ,  $\gamma_2$  fermés dans  $\Omega$  homotopes.

Si  $\alpha \notin \Omega$ , alors  $I_{\gamma_0}(\alpha) = I_{\gamma_1}(\alpha)$ .

Démonstration. On suppose en plus que  $t \mapsto H(t,s)$  est fermé pour tout s.

#### Lemme 7.2.1

Soient  $\gamma_0$  et  $\gamma_1$  est chemins fermés et  $\alpha \in \mathbb{C}$  tel que  $|\gamma_0(t) - \gamma_1(t)| < |\alpha - \gamma_0(t)|$ . Alors  $I_{\gamma_0}(\alpha) = I_{\gamma_1}(\alpha)$ .

Démonstration. Soit  $\alpha \notin \text{Im}(\gamma_0) \cup \text{Im}(\gamma_1)$ .

Soit  $\gamma$  le chemin :

$$\gamma(t) = \frac{\gamma_1(t) - \alpha}{\gamma_0(t) - \gamma}$$

On a:

$$|\gamma(t) - 1| = \left| \frac{\gamma_1(t) - \gamma_0(t)}{\gamma_0(t) - \alpha} \right| < 1$$

Donc 0 appartient à la composante connexe non bornée de  $\mathbb{C} \setminus \text{Im}(\gamma)$ .

Donc  $I_{\gamma}(0) = 0$  et  $I_{\gamma}(0) = I_{\gamma_0}(\alpha) - I_{\gamma_1}(\alpha)$ .

Nécessairement,  $\alpha \notin \text{Im}(\gamma_0)$ .

Si  $\delta = d(\alpha, \operatorname{Im}(\gamma_0)) > 0$ , le lemme implique  $|\gamma_0 - \gamma_1| < \delta$  donc  $I_{\gamma_0}(\alpha) = I_{\gamma_1}(\alpha)$ .

L'indice est donc continu par rapport au chemin.

On a  $d(\alpha, \text{Im}(H)) = \delta > 0$  et H est uniformément continue sur  $[0, 1]^2$ .

Il existe  $\eta>0$  tel que pour tout (t,s),(t',s') tel que  $|t-t'|<\eta$  et  $|s-s'|<\eta,$  alors  $|H(t,s)-H(t',s')|<\frac{\varepsilon}{4}.$ 

On pose  $s_0 = 0$ ,  $s_1 = \frac{\eta}{2} \cdots , s_{n-1} n \frac{\eta}{2}$  et  $s_n = 1$  avec  $n = \lfloor \frac{2}{n} + 1 \rfloor$ .

On pose  $\widetilde{\gamma}_i = H(\cdot, s_i)$ .

Pour tout  $i, \ \widetilde{\gamma}_i$  est un chemin fermé,  $\widetilde{\gamma}_0 = \gamma_0$  et  $\widetilde{\gamma}_n = \gamma_1$ .

De plus, pour tout i, t,

$$|\widetilde{\gamma}_i(t) - \widetilde{\gamma}_{i+1}(t)| < \frac{\delta}{4} < |\alpha - \widetilde{\gamma}_i(t)|$$

Par le lemme 7.2.1,  $I_{\widetilde{\gamma_i}}(\alpha) = I_{\widetilde{\gamma_{i+1}}}(\alpha)$ . D'où le résultat.

**Proposition 7.13** Soit  $\gamma$  un chemin fermé dans  $\Omega$  un ouvert connexe, f et  $\varphi: \Omega \to \mathbb{C}$  continue.

Alors:

$$F: \begin{cases} \Omega & \to & \mathbb{C} \\ z & \mapsto & \int_{\gamma} \frac{f(\xi)}{\varphi(\xi) - z} \, \mathrm{d}\xi \end{cases}$$

est développable en série entière en tout  $z \in \mathbb{C} \setminus \varphi(\operatorname{Im}(\gamma))$ .

Démonstration. Soit  $z_0 \in \mathbb{C} \setminus \varphi(\operatorname{Im}(\gamma))$ .

On a  $d(z_0, \varphi(\operatorname{Im}(\gamma)) > 0$ .

On prendra  $r < r_0 < d(z_0, \varphi(\operatorname{Im}(\gamma)))$  tel que

$$D(z_0, r) \subset D(z_0, r_0) \subset \mathbb{C} \setminus \varphi(\operatorname{Im}(\gamma))$$

Soit  $z \in D(z_0, r)$ . On a:

$$\left| \frac{z - z_0}{\varphi(\xi) - z_0} \right| < \frac{r}{r_0} < 1$$

$$\sum_{n=0}^{\infty} \left( \frac{z - z_0}{\varphi(\xi) - z_0} \right)^n = \frac{1}{1 - \frac{z - z_0}{\varphi(\xi) - z_0}} = \frac{\varphi(\xi) - z_0}{\varphi(\xi) - z}$$

et la convergence est uniforme en  $(\xi,z)\in \mathrm{Im}(\gamma)\times D(z,r).$  Donc :

$$\int_{\gamma} \frac{f(\xi)}{\varphi(\xi) - z} dz = \int_{\gamma} \frac{f(\xi)}{\varphi(\xi) - z_0} \frac{\varphi(\xi) - z_0}{\varphi(\xi) - z} d\xi$$

$$= \int_{\gamma} \sum_{n=0}^{\infty} \frac{f(\xi)}{\varphi(\xi) - z_0} \left(\frac{z - z_0}{\varphi(\xi) - z_0}\right)^n d\xi$$

$$= \sum_{n=0}^{\infty} \int_{\gamma} \frac{f(\xi)}{(\varphi(\xi) - z_0)^{n+1}} d\xi (z - z_0)^n$$

# Chapitre 8

# Théorème de Cauchy et conséquences

### 8.1 Le cas convexe

Soit  $\Omega$  un ouvert convexe.

THÉORÈME 8.1 Soit  $\gamma$  un chemin fermé,  $p \in \Omega$ ,  $f \in \mathcal{H}(\Omega \setminus \{p\})$  continue sur  $\Omega$ .

Alors 
$$\int_{\gamma} f(z) dz = 0$$
.

**Proposition 8.1** Soit  $F \in \mathcal{H}(\Omega)$  et  $\Omega$  connexe.

Si F' est continue sur  $\Omega$  et  $\gamma$  un chemin fermé dans  $\Omega$ .

Alors 
$$\int_{\gamma} F'(z) dz = 0$$

Démonstration.

$$\int_{\gamma} F'(z) dz = \int_{0}^{1} F'(\gamma(t))\gamma'(t) dt$$
$$= \int_{0}^{1} (F \circ \gamma)'(t) dt$$
$$= F(\gamma(1)) - F(\gamma(0))$$
$$= 0$$

**Exemple 8.1** Soit  $\gamma$  un chemin fermé et :

$$f(z) = \sum_{n=0}^{\infty} a_n z^n = \left(\sum_{n=0}^{\infty} a_n \frac{z^{n+1}}{n+1}\right)'$$

On a bien :  $\int_{\gamma} f(z) dz = 0$ .

## CHAPITRE 8. THÉORÈME DE CAUCHY ET CONSÉQUENCES

Démonstration du théorème 8.1. • Par l'absurde, si  $I = \int_{\Delta} f(z) dz \neq 0$  avec  $\Delta$  le contour d'un triangle On coupe le triangle en 4 lacets :



avec  $\Delta_1, \, \Delta_3$  et  $\Delta_4$  orientés comme  $\Delta$  et  $\Delta_2$  dans le sens contraire. et on a:

$$|I| \leqslant \sum_{i=1}^{4} \left| \int_{\Delta_i} f(z) \, \mathrm{d}z \right|$$

Or , il existe  $i_0 \in \llbracket 1, 4 \rrbracket$  tel que :

$$\left| \int_{\Delta_{i_0}} f(z) \, \mathrm{d}z \right| \geqslant \frac{|I|}{4}$$

On pose  $\Delta^1 = \Delta_{i_0}$ . On a  $l(\Delta^1) = \frac{l(\Delta)}{2}$ . Par récurrence, on construit une suite  $\Delta^n$  de triangles tels que :

$$\left| \int_{\Delta^n} f(z) \, \mathrm{d}z \right| \geqslant \frac{|I|}{4^n}$$

et  $l(\Delta^n) = \frac{l(\Delta)}{2^n}$ .

On a  $\bigcap \overline{\Delta^n} \neq \emptyset$  donc il existe  $z_0$  dedans.

f est holomorphe en  $z_0$  et :

$$\int_{\Delta^n} f(z) dz = \int_{\Delta^n} f(z_0) + f'(z_0)(z - z_0) + o(z - z_0) dz = \int_{\Delta^n} o(z - z_0) dz$$
  
D'où:

$$\frac{|I|}{4^n} \leqslant \left| \int_{\Delta^n} f(z) \, dz \right|$$

$$\leqslant l(\Delta^n) \max_{z \in \Delta^n} ((z - z_0)\varepsilon(z - z_0))$$

$$\leqslant l(\Delta^n)^2 \max_{z \in \Delta^n} |\varepsilon(z - z_0)|$$

$$\leqslant \frac{1}{4^n} l(\Delta)^2 \max_{z \in \Delta^n} |\varepsilon(z - z_0)|$$

Donc |I| est plus petit qu'un truc qui tend vers 0 quand  $n \to +\infty$ . Donc |I| = 0.

• Si P est un sommet de  $\Delta$ .

$$\left| \int_{\Delta} f(z) \, dz \right| = \left| \sum_{i=0}^{2} \int_{\Delta_{\varepsilon}^{i}} f(z) \, dz \right|$$

$$= \left| \int_{\Delta_{\varepsilon}^{0}} f(z) \, dz \right| \text{ par } 1$$

$$\leq l(\Delta_{\varepsilon}^{0}) \max_{z \in \Delta} |f(z)|$$

$$\leq 4\varepsilon \max_{z \in \Delta} |f(z)|$$

Pour  $\varepsilon \to 0$ , on a le résultat.

Si P est une arête de  $\Delta$ , ça marche aussi (on coupe en deux triangles), de même s'il est à l'intérieur (en trois triangles) ou si le triangle est plat (trivial).

• On fixe  $z_0 \in \Omega$  en on pose  $F(z) = \int_{[z_0,z]} f(\xi) d\xi$ .

On a 
$$F(z) - F(z') = \int_{[z_0, z]} f(\xi) d\xi - \int_{[z_0, z']} f(\xi) d\xi$$
.  
Sur  $\Delta$  le triangle  $(z_0, z, z')$  on a :

$$\int_{[z_0,z]} f(\xi) \,d\xi + \int_{[z,z']} f(\xi) \,d\xi + \int_{[z',z_0]} f(\xi) \,d\xi = 0$$

Donc 
$$F(z) - F(z') = \int_{[z',z]} f(\xi) \,d\xi.$$

En divisant par z-z', on a :

$$\frac{F(z) - F(z')}{z - z'} - f'(z) = \frac{1}{z - z'} \int_{[z', z]} f(\xi) - f(z) \,d\xi$$

f est continue en z donc pour tout  $\varepsilon > 0$ , il existe  $\eta > 0$  tel que si  $|\xi - z| \le \eta, |f(\xi) - f(z)| \le \varepsilon.$ 

Si  $|z'-z| \leq \eta$ , on a alors:

$$\left| \frac{F(z) - F(z')}{z - z'} - f'(z) \right| \leqslant \frac{1}{|z - z'|} \left| \int_{[z', z]} f(\xi) - f(z) \, \mathrm{d}\xi \right| \leqslant \varepsilon$$

Donc F est holomorphe en z et F'(z) = f(z) sur  $\Omega$ .

Théorème 8.2 Soit  $\Omega$  un ouvert convexe de  $\mathbb{C}$ ,  $\gamma$  un chemin fermé dans  $\Omega$  et  $f \in \mathcal{H}(\Omega)$ .

Soit  $z \in \Omega$ ,  $z \notin \text{Im}(\gamma)$ .

$$I_{\gamma}(z)f(z) = \frac{1}{2i\pi} \int_{\gamma} \frac{f(\xi)}{\xi - z} \,d\xi$$

Corollaire 8.1  $Si I_{\gamma_1} = I_{\gamma_2} \ alors$  :

$$\int_{\gamma_1} \frac{f(\xi)}{\xi - z} \, \mathrm{d}\xi = \int_{\gamma_2} \frac{f(\xi)}{\xi - z} \, \mathrm{d}\xi$$

Démonstration. On pose :

$$g: \begin{cases} \frac{f(\xi) - f(z)}{\xi - z} & \text{si } \xi \neq z\\ f'(z) & \text{sinon} \end{cases}$$

 $g \in \mathcal{H}(\Omega \setminus \{z\})$  et g continue sur  $\Omega$  donc :

$$0 = \int_{\gamma} g(\xi) \, \mathrm{d}\xi$$

$$= \int_{\gamma} \frac{f(\xi) - f(z)}{\xi - z} \, \mathrm{d}\xi$$

$$= \int_{\gamma} \frac{f(\xi)}{\xi - z} - 2i\pi I_{\gamma}(z) f(z)$$

Corollaire 8.2 Soit  $\Omega$  un ouvert connexe.

- $-f \in \mathcal{H}(\Omega)$  alors f est développable en série entière en tout point de  $\Omega$ .
- $Si \ f \in \mathcal{H}(\Omega) \ alors \ f' \in \mathcal{H}(\Omega).$

Démonstration. Pour tout  $z_0 \in \Omega$ , il existe r > 0 tel que  $D(z_0, 2r) \subset \Omega$ . C(z,r) (sens trigo, parcouru une fois) est un chemin dans  $D(z_0, 2r)$ . On a  $I_{C(z,r)}(z) = 1$  pour tout  $z \in D(z_0, r)$  donc:

$$f(z) = \frac{1}{2i\pi} \int_{C(z,r)} \frac{f(\xi)}{\xi - z} \,\mathrm{d}\xi$$

qui est DSE en tout  $z \in D(z_0, r)$ .

Théorème 8.3 de Morera Soit  $\Omega$  un ouvert connexe, f continue sur  $\Omega$ . Si, pour tout triangle  $\Delta$  inclus dans  $\Omega$ ,

$$\int_{\Lambda} f(z) \, \mathrm{d}z = 0$$

alors  $f \in \mathcal{H}(\Omega)$ .

Démonstration. Soit  $z_0 \in \Omega$ . Il existe r > 0 tel que  $D(z_0, r) \subset \Omega$ .

$$F(z) = \int_{[z_0, z]} f(\xi) \,\mathrm{d}\xi$$

Par le théorème de Cauchy, F est holomorphe et F' = f donc  $f \in$  $\mathcal{H}(D(z_0,r)).$ 

Comme c'est vrai en tout  $z_0, f \in \mathcal{H}(\Omega)$ .

THÉORÈME 8.4 Soit  $\Omega$  un ouvert connexe,  $(f_n)_n$  une suite dans  $\mathcal{H}(\Omega)$  et f telle que pour tout compact  $K \subset \Omega$ ,  $f_n$  cvu vers f sur K.

Alors  $f \in \mathcal{H}(\Omega)$ .

Démonstration. f est continue sur tout compact  $K \subset \Omega$  donc f est continue sur K.

Soit  $\Delta$  un triangle inclus dans  $\Omega$ .

Pour  $2\varepsilon = d(\Delta, \Omega^c) > 0$ , on note  $O_{\varepsilon} = \{z \in \Omega, d(z, \Delta) < \varepsilon\}$ .

Par théorème de Cauchy,  $\int_{\Lambda} f_n(z) dz = 0$  sur  $O_{\varepsilon}$ .

 $f_n$  evu vers f sur  $O_{\varepsilon}$  donc en permutant limite et intégrale,  $\int_{\Lambda} f(z) dz = 0$ . Donc f est holomorphe sur  $\Omega$  par le théorème de Morera.

#### Le logarithme 8.2

**Définition 8.1** On a 
$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$
.

Proposition 8.2

- $e^{z_1+z_2} = e^{z_1}e^{z_2}$
- $e^{i\theta} = \cos(\theta) + i\sin(\theta)$
- $e^{x+iy} = e^x(\cos(y) + i\sin(y))$
- $e^{z+2ik\pi} = e^z$
- exp est surjective dans  $\mathbb{C}^*$ .

THÉORÈME 8.5 On peut définir un inverse  $\ln(z) = \ln(r) + i\theta$  avec  $\theta \in ]-\pi, \pi[$  $et \ z \in \mathbb{C} \setminus \mathbb{R}$ .

**Proposition 8.3** In est holomorphe et sa dérivée est la fonction inverse.

Démonstration. On montre la continuité en passant en polaires.

De plus, si  $a = \ln(z)$ ,  $\ln(z+h) = a+k$  avec  $k \to 0$  quand  $h \to 0$ .

On a 
$$z + h = e^{a+k}$$
 donc:

$$\frac{\ln(z+h) - \ln(z)}{h} = \frac{k}{e^{a+k} - e^a} \to \frac{1}{e^a} = \frac{1}{z}$$

Remarque 8.1 In ne se prolonge pas à  $\mathbb{C}$ .

**Définition 8.2** Soit  $\Omega$  un ouvert connexe de  $\mathbb{C}$ .

 $L \in \mathcal{H}(\Omega)$  est une détermination du logarithme ssi  $\mathrm{e}^{L(z)} = z$  pour tout  $z \in \Omega$ .

Remarque 8.2

- Nécessairement  $0 \notin \Omega$ .
- $L'(z)e^{L(z)} = 1 \ donc \ L'(z) = \frac{1}{z}$ .
- Si on a deux déterminations sur un ouvert connexe alors elles diffèrent d'une constante.

**Proposition 8.4** Soit  $\Omega$  un ouvert convexe.

Il existe une détermination du logarithme ssi pour tout chemin fermé dans  $\Omega$ ,

$$\int_{\gamma} \frac{1}{\xi} \, \mathrm{d}\xi = 0$$

Démonstration.

 $\Rightarrow$  Si L existe et est holomorphe, sa dérivée est holomorphe et, par le théorème de Cauchy,

$$\int_{\gamma} \frac{1}{\xi} \, \mathrm{d}\xi = 0$$

pour tout chemin fermé.

 $\Leftarrow$  Soit  $z_0 \in \Omega$  fixé. On pose

$$L(z) = \int_{[z_0, z]} \frac{1}{\xi} \,\mathrm{d}\xi + \lambda$$

Comme dans la preuve du théorème de Cauchy, on a  $L \in \mathcal{H}(\Omega)$  et  $L'(z) = \frac{1}{z}$ .

On pose  $G(z) = ze^{-L(z)}$ .

On a  $G'(z) = e^{-L(z)} - zL'(z)e^{-L(z)} = 0.$ 

Donc G est constante sur  $\Omega$  et  $G(z_0) = z_0 e^{-\lambda}$ .

On prend  $\lambda$  tel que  $e^{\lambda} = z_0$  (existe par surjectivité de exp)

Alors 
$$G(z) = G(z_0) = 1$$
 donc  $e^{L(z)} = z$ .

Remarque 8.3 La proposition est vraie si  $\Omega$  est simplement connexe.

# 8.3 Théorème des zéros isolés

Théorème 8.6 Soit  $\Omega$  un ouvert connexe, f holomorphe sur  $\Omega$  non nulle. Alors  $Z = \{z \in \Omega, f(z) = 0\}$  n'a pas de points d'accumulation et est au plus dénombrable.

De plus, son intersection avec tout compact est finie.

Remarque 8.4 Ça ne marche pas dans  $\mathbb{R}$  avec par exemple  $e^{-\frac{1}{x^2}} 1_{\{x \ge 0\}}$ .

 $D\acute{e}monstration.$  Z est fermé et s'écrit  $Z_{\rm acc} \cup Z_{\rm isol\acute{e}}.$ 

f est holomorphe en  $z_0$  donc DSE en  $z_0$ . Il existe donc r>0 et  $a\in\mathbb{C}^{\mathbb{N}}$  tel que :

$$f(z) = \sum_{n \geqslant 0} a_n (z - z_0)^n$$

pour  $z \in D(z_0, r)$ .

Si pour tout n,  $a_n = 0$ , f = 0 sur  $D(z_0, r)$  donc  $z_0$  n'est pas isolé et  $D(z_0, r) \subset Z$ .

Sinon, il existe  $n_0$  tel que  $a_{n_0} \neq 0$ . Il est loisible de la supposer minimale. On écrit alors :

$$f(z) = \sum_{n=n_0}^{\infty} a_n (z - z_0)^n = (z - z_0)^{n_0} \underbrace{\sum_{n=n_0}^{\infty} a_n (z - z_0)^{n-n_0}}_{g(z)}$$

 $g(z_0) = a_{n_0} \neq 0$  donc il existe r > 0 tel que  $g(z) \neq 0$  sur  $D(z_0, r)$ .

Alors  $f(z) \neq 0$  sur  $D(z_0, r) \setminus \{z_0\}$  donc  $z_0$  est isolé.

Donc  $z_0$  est isolé ou  $z_0$  est un point d'accumulation et dans ce cas, il existe r > 0 tel que  $D(z_0, r) \subset Z_{acc}$ .  $Z_{acc}$  est donc ouvert fermé, donc par connexité et non nullité de f,  $Z_{acc} = \emptyset$ .

COROLLAIRE 8.3 Soit  $\Omega$  un ouvert connexe, f, g holomorphes sur  $\Omega$ .

Si f et g coïncident sur un ensemble ayant un point d'accumulation, alors elles sont égales partout.

Exemple 8.2 L'exponentielle complexe est l'unique prolongement complexe de l'exponentielle réelle.

## 8.4 Singularités

THÉORÈME 8.7 Soit  $\Omega$  connexe,  $f \in \mathcal{H}(\Omega \setminus \{a\})$ . Trois cas sont possibles :

- 1. f est bornée sur un voisinage de a donc f est prolongeable en une fonction holomorphe sur  $\Omega$ . (singularité éliminable)
- 2. Il existe  $m \in \mathbb{N}$  tel que  $(z-a)^m f(z)$  est bornée alors  $(z-a)^m f(z)$  est prolongeable en une fonction holomorphe sur  $\Omega$ . On dit que f a un pôle d'ordre m en a.
- 3. Pour tout  $\varepsilon > 0$ ,  $f(D(a, \varepsilon) \setminus \{a\})$  est dense dans  $\mathbb{C}$ . (singularité essentielle)

Démonstration.

1. Si f est bornée en a, alors  $g(z) = (z - a)^2 f(z)$  s'annule en a. g est holomorphe sur  $\mathbb{C} \setminus \{a\}$  et continue sur  $\Omega$  car f est bornée en a. De plus,

$$\frac{g(z) - g(a)}{z - a} = (z - a)f(z) \to 0$$

Donc  $g \in \mathcal{H}(\Omega)$ . On a de plus g(a) = g'(a) = 0.

g est DSE en a donc il existe r > 0 et  $(a_n)_n$  tel que pour tout  $z \in D(a,r)$ ,

$$g(z) = \sum_{k=0}^{\infty} a_k (z - a)^k$$

Donc 
$$g(z) = (z - a)^2 \sum_{k=2}^{\infty} a_k (z - a)^{k-2}$$
.

On a  $f(z) = \sum_{k=2}^{\infty} a_k (z-a)^{k-2}$ . Donc f est DSE en a donc holomorphe en a.

2. Si le troisième point n'est pas vrai, il existe  $\varepsilon > 0$  tel que  $f(D(a,\varepsilon) \setminus \{a\})$  n'est pas dense, ie son complémentaire est d'intérieur non vide.

Il existe donc  $b \in \mathbb{C}$  et r > 0 tel que  $D(b,r) \subset f(D(a,\varepsilon) \setminus \{a\}.$ 

Pour tout  $z \in D(a,\varepsilon) \setminus \{a\}, f(z) \notin D(b,r)$  donc  $|f(z) - b| \ge r$ .

On pose  $g = \frac{1}{f-b} \operatorname{sur} D(a,\varepsilon) \setminus \{a\}.$ 

On a g holomorphe sur  $D(a,\varepsilon)\setminus\{a\}$  et  $|g(z)|\leqslant\frac{1}{z}$  donc g bornée en a donc holomorphe sur  $D(a,\varepsilon)$ .

Si  $g(a) \neq 0$ ,  $f(z) = b + \frac{1}{g(z)}$  pour  $z \in D(a, \varepsilon)$ , donc f est holomorphe sur  $D(a, \varepsilon)$  et on se retrouve dans le premier cas.

Si g(a) = 0,  $f(z) = \frac{bg(z)+1}{g(z)}$  qui est le quotient de deux fonctions holomorphes qui a donc un pôle en a. On se retrouve dans le cas 2.

3. Donc si on n'est pas dans le cas 3, on est dans le cas 1 ou 2.

Remarque 8.5 Dans le cas d'un pôle  $g(z) = (z-a)^m f(z)$ , g est holomorphe sur  $\Omega$  et DSE en  $\underline{a}$ .

On 
$$a$$
  $g(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$  sur  $D(a,r)$ .

Donc 
$$f(z) = \sum_{n=0}^{\infty} a_n (z-a)^{n-m} = \sum_{n=-m}^{\infty} \underbrace{a_{n+m}} (z-a)^n$$
 (série de Laurent)

 $sur\ D(a,r)\setminus\{a\}.$ 

**Définition 8.3** Avec ces hypothèses,  $b_{-1} = \text{Res}(f, a)$ , résidu de f en a

**Exemple 8.3** Soient q, h holomorphes sur  $\Omega$  et  $a \in \Omega$ ,  $m \in \mathbb{N}$  tel que  $h'(a) = \cdots = h^{(m-1)}(a) = 0$  et  $h^{(m)}(a) \neq 0$ .

Alors 
$$h$$
 est DSE en  $a$  et  $h(z) = \sum_{n=m}^{\infty} a_n (z-a)^n$ .  $a_m \neq 0$   $f = \frac{g}{h}$  est définie sur  $D(a,r) \setminus \{a\}$ .

$$f = \frac{g}{h}$$
 est définie sur  $D(a,r) \setminus \{a\}$ .  
On prend  $r$  tel que  $\sum_{n=m}^{\infty} a_n(z-a)^{n-m} \neq 0$  sur  $D(a,r)$ .  
De plus,  $(z-a)^m f(z) = (z-a)^m \frac{g(z)}{h(z)} = \frac{g(z)}{\sum_{n=m}^{\infty} a_n(z-a)^{n-m}}$  qui est borné voisinage de  $a$  donc  $f$  a un pôle d'ordre  $m$  en  $a$ .

au voisinage de a donc f a un pôle d'ordre m en

Remarque 8.6 Dans le cas d'une singularité essentielle, on a en plus, pour tout  $\varepsilon > 0$ ,  $f(D(a, \varepsilon) \setminus \{a\}) = \mathbb{C}$  ou  $\mathbb{C}$  privé d'un point.

Exemple 8.4  $f(z) = e^{\frac{1}{z}}$ .

0 est une singularité essentielle puisque  $z^n e^{\frac{1}{z}}$  est non borné en 0 Si  $b=e^{\frac{1}{z}}$ , on note  $b=re^{i\theta}$  et on a  $z=\frac{\ln(r)-i(\theta+2k\pi)}{\ln(r)^2+(\theta+2k\pi)^2}$ .

Donc pour tout  $b \neq 0$ , il existe z tel que f(z) = b. De plus, pour tout  $\varepsilon > 0$ , il existe  $z \in D(0, \varepsilon) \setminus \{0\}$  tel que f(z) = b.

#### 8.5 Le théorème des résidus

#### **Définition 8.4** Soit $\Omega$ connexe.

f est dite méromorphe sur  $\Omega$  ssi il existe  $A \subset \Omega$  au plus dénombrable sans point d'accumulation tel que f soit holomorphe sur  $\Omega \setminus A$  et pour tout  $a \in A$ , f a un pôle en a.

Exemple 8.5 Soit  $g, h \in \mathcal{H}(\Omega)$ .

 $f = \frac{g}{h}$  est méromorphe sur  $\Omega$  et les pôles de f sont des zéros de h.

On écrit 
$$h(z) = (z - a)^m \sum_{k=0}^{\infty} a_k (z - a)^k$$
 avec  $a_0 \neq 0$ , et  $g(z) = (z - a)^m \sum_{k=0}^{\infty} a_k (z - a)^k$ 

$$a)^n \sum_{k=0}^{\infty} b_k (z-a)^k$$
 avec  $b_0 \neq 0$ .

Alors on a un pôle de f ssi m > n car si  $m \leq n$ , on a une singularité éliminable.

**Proposition 8.5** L'ensemble des fonctions méromorphes est stable par +,  $\times$  et division.

Théorème 8.8 (des résidus dans le cas convexe)  $Soit \Omega$  convexe, fméromorphe sur  $\Omega$ , A l'ensemble de ses pôles et  $\gamma$  un chemin fermé de  $\Omega$  tel que  $\operatorname{Im}(\gamma) \cap A = \emptyset$ .

Alors:

$$\int_{\gamma} f(z) dz = 2i\pi \sum_{a \in A} I_{\gamma}(a) \operatorname{Res}(f, a)$$

 $D\acute{e}monstration.$  Dans le cas  $A=\{a\},\ f$  a un développement en série de Laurent au voisinage de a :

$$f(z) = \sum_{k=-m}^{\infty} a_k (z-a)^k$$

 $f(z) - \sum_{k=-m}^{-1} a_k (z-a)^k$  a une singularité éliminable en a on peut donc la prolonger en une fonction holomorphe.

On intègre sur  $\gamma$  et on a donc :

$$\int_{\gamma} f(z) dz = \sum_{k=-m}^{-1} \int_{\gamma} a_k (z - a)^f dz$$
$$= a_{-1} \int_{\gamma} \frac{1}{z - a} dz$$
$$a_{-1} I_{\gamma}(a) = 2i\pi \operatorname{Res}(f, a) I_{\gamma}(a)$$

Dans le cas général, on sait que l'enveloppe convexe de  $\mathrm{Im}(\gamma)$  est incluse dans  $\Omega.$ 

Il existe  $a_1, \dots, a_n$  dans cette enveloppe et pour tout  $a \in A \setminus \{a_1, \dots, a_n\}$ , a n'appartient pas à ce compact (puisque A n'a pas de points d'accumulation).

On pose  $\varepsilon > 0$  la distance entre  $A \setminus \{a_1, \dots, a_n\}$  et l'enveloppe convexe  $\Gamma$  de  $\operatorname{Im}(\gamma)$ .

On pose  $\Omega_{\varepsilon} = \{z \in \Omega, d(z, \Gamma) < \varepsilon\}.$ 

 $\Omega_{\varepsilon}$  est un ouvert convexe de  $\Omega$  et  $\Omega_{\varepsilon} \cap A = \{a_1, \cdots, a_n\}$ 

 $\gamma$  est un chemin fermé dans  $\Omega_{\varepsilon}$ .

Pour tout  $i \in [1, n]$ , f a un pôle en a donc il existe  $m_i$  et  $(a_k^i)_k$  tel que  $f(z) = \sum_{k=-m}^{\infty} a_k^i (z-a_i)^k$  au voisinage de a.

 $f - \sum_{i=1}^{n} \sum_{k=-m_i}^{-1} a_k^i (z - a_i)^k$  a des singularités éliminables en  $a_1, \dots, a_n$  on la prolonge donc en une fonction holomorphe sur  $\Omega_{\varepsilon}$ .

On intègre et, en permutant somme (finie) et intégrales, on obtient :

$$\int_{\gamma} f(z) dz = \sum_{i=1}^{n} a_{-1}^{i} \int_{\gamma} \frac{1}{z - a_{i}} dz = 2i\pi \sum_{i=1}^{n} \text{Res}(f, a_{i}) I_{\gamma}(a_{i})$$

Or, si  $a \in A \setminus \{a_1, \dots, a_n\}$ ,  $I_{\gamma}(a) = 0$  (a appartient à la composante connexe non bornée de  $\mathbb{C} \setminus \operatorname{Im}(\gamma)$ ).

Donc on a bien:

$$\int_{\gamma} f(z) dz = 2i\pi \sum_{a \in A} \operatorname{Res}(f, a) I_{\gamma}(a)$$

Cas 1 : Si  $f = \frac{g}{h}$  avec g, h holomorphes sur  $\Omega$  ouvert convexe et  $g(a) \neq 0$ ,  $h(a) = 0 \text{ et } h'(a) \neq 0.$ 

Alors  $h(z) = (z - a)h_1(z)$  avec  $h_1$  holomorphe sur  $\Omega$ .

On a  $h_1(a) = h'(a) \neq 0$ . On écrit :

$$\frac{g(z)}{h(z)} - \frac{g(a)}{(z-a)h'(a)} = \frac{g(z)h'(a) - g(a)h_1(z)}{(z-a)h_1(z)h'(a)}$$

Le numérateur s'annule en a et on a  $g(z)h'(a) - g(a)h_1(z) = (z-a)k(z)$ avec k holomorphe sur  $\Omega$ .

On a donc 
$$\sum_{k=0}^{\infty} a_k (z-a)^k = \frac{g(z)}{h(z)} - \frac{g(a)}{(z-a)h'(a)} \in \mathcal{H}(\Omega).$$

On a donc le développement de f en série de Laurent :

$$f(z) = \sum_{k=0}^{\infty} a_k (z - a)^k + \frac{g(a)}{(z - a)h'(a)}$$

D'où Res $(f,a) = \frac{g(a)}{h'(a)}$ 

#### Exemple 8.6

• On pose  $f(z) = \frac{1}{1+z^2}$ . Ses pôles sont  $\pm i$ . On a g = 1,  $h(z) = 1 + z^2$ . h(i) = 0, h'(i) = 2i. Donc Res $(f, i) = \frac{1}{2i}$ .

De même,  $h(-i) \stackrel{2i}{=} 0$ , h'(-i) = -2i donc  $\operatorname{Res}(f, -i) = -\frac{1}{2i}$ . Si on intègre sur le cercle  $\gamma = C(0, R)$  avec  $R \neq 1$ , on a :

$$\int_{\gamma} f(z) dz = 2i\pi \left( \text{Res}(f, i) I_{\gamma}(i) + \text{Res}(f, -i) I_{\gamma}(-i) \right)$$

Donc si R < 1,  $\int_{z} f(z) dz = 0$ .

On recommence avec R > 1 et on trouve  $2i\pi(\frac{1}{2i} - \frac{1}{2i}) = 0$ .

• Si on intègre sur :



Ladite intégrale vaut  $2i\pi(\frac{1}{2i}+0)=\pi$  quand R>1. On peut écrire :

$$\int_{\gamma} \frac{1}{1+z^2} dz = \int_{-R}^{R} \frac{1}{1+x^2} dx + \int_{0}^{\pi} \frac{iRe^{i\theta}}{1+R^2e^{2i\theta}} d\theta$$

On fait tendre R vers  $+\infty$ :  $\int_{-R}^{R} \frac{1}{1+x^2}$  converge facilement vers

$$2\int_0^\infty \frac{1}{1+x^2} \, \mathrm{d}x$$

On constate que  $\left|\frac{iRe^{i\theta}}{1+R^2e^{2i\theta}}\right| \leqslant \frac{R}{R^2-1}$ . En intégrant, on obtient :

$$\left| \int_0^\pi \frac{iRe^{i\theta}}{1 + R^2e^{2i\theta}} \, \mathrm{d}\theta \right| \leqslant \frac{\pi R}{R^2 - 1} \to 0$$

Donc on en déduit  $\int_0^\infty \frac{1}{1+x^2} dx = \frac{\pi}{2}$ .

• On prend  $f = z \mapsto \frac{e^{2iz}}{1+z^2}$ . Ses pôles sont  $\pm i$  et on a  $\operatorname{Res}(f,i) = \frac{e^{-2}}{2i}$  et  $\operatorname{Res}(f,-i) = -\frac{e^{-2}}{2i}$ . Sur le même  $\gamma$ , on a :

$$\int_{\gamma} \frac{e^{2iz}}{1+z^2} dz = 2i\pi \frac{e^{-2}}{2i} = \pi e^{-2}$$

Or cette intégrale vaut :

$$\int_{-R}^{R} \frac{e^{2ix}}{1+x^2} dx + \int_{0}^{\pi} \frac{e^{2iRe^{i\theta}}iRe^{i\theta}}{1+R^2e^{2i\theta}} d\theta$$

Quand  $R \to +\infty$ , on a :

$$\int_{-R}^{R} \frac{e^{2ix}}{1+x^2} dx \to 2 \int_{0}^{\infty} \frac{\cos(2x)}{1+x^2} dx$$

et:

$$\int_0^{\pi} \frac{e^{2iRe^{i\theta}}iRe^{i\theta}}{1 + R^2e^{2i\theta}} d\theta \to 0$$

puisque l'intégrande est dominée par  $\frac{Re^{-2R\sin(\theta)}}{R^2-1} \leqslant \frac{R}{R^2-1}$ .

Donc 
$$\int_0^\infty \frac{\cos(2x)}{1+x^2} dx = \frac{\pi}{2} e^{-2}$$
.

Deuxième cas :

$$f = \frac{g}{h}, g(a) \neq 0, h(a) = \dots = h^{(m-1)}(a) = 0 \text{ et } h^{(m)}(a) \neq 0.$$

On a  $h(z) = (z - a)^m h_1(z)$  avec  $h_1$  holomorphe. f a un pôle d'ordre m.

$$h$$
 a un DSE de la forme  $(z-a)^m \sum_{k=0}^{\infty} a_k (z-a)^k$ .

h(a+t) a un développement limité à tout ordre en 0 de la forme :

$$h(a+t) = t^{m} \sum_{k=0}^{N} a_{k} t^{k} + o(t^{m+N})$$

On a aussi un DL pour q:

$$g(a+t) = \sum_{k=0}^{N} b_k t^k + o(t^N)$$

Donc  $t^m \frac{g(a+t)}{h(a+t)}$  admet un DL en 0 qu'on écrit  $\sum_{k=0}^{N} c_k t^k + o(t^N)$ 

Or  $(z-a)^m \frac{g(z)}{h(z)}$  a un DSE en a dont les coefficients coı̈ncident avec ceux du DL :

$$(z-a)^m \frac{g(z)}{h(z)} = \sum_{k=0}^N c_k (z-a)^k + (z-a)^{N+1} \sum_{k=0}^\infty \widetilde{c}_k (z-a)^k$$

Donc 
$$\frac{g(z)}{h(z)} = \sum_{k=0}^{N} c_k (z-a)^{k-m} + (z-a)^{N-m+1} \sum_{k=0}^{\infty} \tilde{c}_k (z-a)^k$$
.

On a donc  $\operatorname{Res}(f) = c_{m-1}$ .

 $\underline{\text{Conclusion}}: \begin{bmatrix} \text{Pour calculer les résidus, on fait un DL à l'ordre } m-1 \text{ de } \\ t^m \frac{g(t)}{h(t)} \text{ et le résidu est le coefficient de } t^{m-1}. \end{bmatrix}$ 

**Exemple 8.7** On veut calculer  $\int_{\gamma} \frac{1}{(1+z^2)^2} dz$  avec  $\gamma$  le demi-cercle de rayon R et fermé par un segment réel.

Cette intégrale vaut  $2i\pi\,\mathrm{Res}(\frac{1}{(1+z^2)^2},i).$  i est un pôle d'ordre 2 et on a :

$$\frac{1}{(1+(t+i)^2)^2} = \frac{1}{(t^2+2it)^2}$$

$$= \frac{1}{t^2(2i+t)^2}$$

$$= \frac{1}{-4t^2(1+\frac{t}{2i})^2}$$

$$= -\frac{1}{4t^2} \left(1 - \frac{t}{i} + o(t)\right)$$

$$= -\frac{1}{4t^2} - \frac{i}{4t} + o\left(\frac{1}{t}\right)$$

Donc Res $(\frac{1}{(1+z^2)^2}, i) = -\frac{i}{4}$ . Donc l'intégrale vaut  $\frac{\pi}{2}$ .

D'où:

$$\int_{-R}^{R} \frac{1}{(1+x^2)^2} dx + \int_{0}^{\pi} \frac{iRe^{i\theta}}{(1+R^2e^{2i\theta})^2} d\theta = \frac{\pi}{2}$$

On majore le deuxième terme :

$$\left| \int_0^{\pi} \frac{iRe^{i\theta}}{(1+R^2e^{2i\theta})^2} d\theta \right| \leqslant \int_0^{\pi} \frac{R}{(R^2-1)^2} d\theta \to 0$$

Donc

$$\int_{-\infty}^{+\infty} \frac{1}{(1+x^2)^2} \, \mathrm{d}x = \frac{\pi}{2}$$

Par symétrie :

$$\int_0^\infty \frac{1}{(1+x^2)^2} \, \mathrm{d}x = \frac{\pi}{4}$$

### 8.6 Principe du maximum

THÉORÈME 8.9 Soit  $\Omega$  un ouvert connexe et  $f \in \mathcal{H}(\Omega)$ . S'il existe  $a \in \Omega$  tel que  $|f(a)| = \max_{z \in \Omega} |f(z)|$  alors f est constante.

Démonstration. Soit  $a \in \Omega$  où f atteint son maximum.

On prend  $g(z) = e^{i\theta} f(z)$  avec  $\theta$  tel que  $e^{i\theta} f(a) \in \mathbb{R}^+$ .

On a  $g(a) = \max_{z \in \Omega} |g(z)|$ .

Soit R > 0 tel que  $D(a, R) \subset \Omega$ . On prend aussi  $r \leq R$ .

$$1 = I_{C(a,r)}(a)g(a)$$

$$= \frac{1}{2i\pi} \int_{C(a,r)} \frac{g(z)}{z - a} dz$$

$$= \frac{1}{2i\pi} \int_0^{2\pi} \frac{g(a + re^{i\theta})ire^{i\theta}}{re^{i\theta}} d\theta$$

Donc

$$g(a) = \frac{1}{2\pi} \int_0^{2\pi} g(a + re^{i\theta}) d\theta$$
$$= \frac{1}{2\pi} \Re \left( \int_0^{2\pi} g(a + re^{i\theta}) d\theta \right)$$
$$\leqslant \int_0^{2\pi} \int_0^{2\pi} \Re (g(a + re^{i\theta})) d\theta$$
$$\leqslant \frac{1}{2\pi} \int_0^{2\pi} g(a) d\theta = g(a)$$

Donc 
$$\frac{1}{2\pi} \int_0^{2\pi} \underbrace{\Re(g(a+re^{i\theta})) - g(a)}_{\leq 0} d\theta = 0.$$

Donc  $\Re(g(a+re^{i\theta}))=g(a)$  pour tout  $\theta, r$ .

Donc  $\Re(g(z)) = g(a)$  sur D(a,r). Donc g est constante sur D(a,r) (par Cauchy-Riemann).

Comme D(a,r) a un point d'accumulation, q est constante sur  $\Omega$ .

COROLLAIRE 8.4 Si de plus, f est continue sur  $\overline{\Omega}$  et  $\Omega$  borné et f non constante alors pour tout  $z \in \Omega$ ,

$$|f(z)| < \max_{z \in \partial \Omega} |f(z)|$$

**Exemple 8.8** Soient  $f, g \in \mathcal{H}(\Omega)$  avec  $\Omega$  connexe tel que  $\overline{D}(0, 1) \subset \Omega$ .

On suppose que |f(z)| = |g(z)| si z = 1.

En effet, f et g ne s'annulent pas sur  $\overline{D}(0,1)$ .  $h = \frac{f}{g}$  vérifie les hypothèses du corollaire donc si h n'est pas constante, on a :

$$|h(z)| < \max_{|z|=1} |h(z)| = 1$$

 $\frac{q}{f}$  vérifie les mêmes hypothèses et on a donc |h(z)| > 1.

Donc on a une contradiction et h est constante sur  $\Omega$ .

Donc il existe  $\lambda \in \mathbb{C}$  de module 1 tel que  $f = \lambda g$  sur  $\Omega$ .

THÉORÈME 8.10 Soit  $\Omega$  un ouvert convexe,  $\gamma$  un chemin fermé de  $\Omega$  et  $f \in \mathcal{H}(\Omega)$ .

Pour tout  $z \in \mathbb{C} \setminus \operatorname{Im}(\gamma)$ ,

$$I_{\gamma}(z)f^{(n)}(z) = \frac{n!}{2i\pi} \int_{\gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi$$

 $D\'{e}monstration.$ 

- (Première méthode) DSE de  $\int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$ . Soit  $z_0 \in \Omega$  et r > 0 tel que  $D(z_0, r) \subset \Omega \setminus \text{Im}(\gamma)$ . Soit  $z \in D(z_0, r)$ . Comme z et  $z_0$  sont dans la même composante connexe de  $\mathbb{C} \setminus \text{Im}(\gamma)$ .  $I_{\gamma}(z) = I_{\gamma}(z_0)$ .

On a  $(I_{\gamma}(z))'|_{z=z_0}=0$ . On écrit aussi :

$$\int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi = \int_{a}^{b} \frac{f(\gamma(t))\gamma'(t)}{\gamma(t) - z} dt$$

On a  $\frac{1}{|\gamma(t)-z|} < \frac{2}{r}$ .

On domine donc la dérivée de l'intégrande par  $\frac{4}{r^2}|f(\gamma(t))||\gamma'(t)|$ . Par convergence dominée, on a donc :

$$I_{\gamma}(z)f'(z) = \int_a^b \frac{f(\gamma(t))\gamma'(t)}{(\gamma(t) - z)^2} dt = \int_{\gamma} \frac{f(\xi)}{(\xi - z)^2} d\xi$$

D'où le résultat pour n = 1. On conclut par récurrence (l'hérédité est similaire).

- On pose:

$$g(\xi) = \frac{f(\xi) - \left(f(z) + f'(z)(\xi - z) + \dots + \frac{1}{n!}f^{(n)}(z)(\xi - z)^n\right)}{(\xi - z)^{n+1}}$$

g est holomorphe sur  $\Omega\setminus\{z\}$  et  $g(z)=\frac{1}{(n+1)!}f^{(n+1)}(z)$  donc continue en z.

g est donc holomorphe sur  $\Omega.$  On applique le théorème de Cauchy :

$$\int_{\gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} = \int_{\gamma} \frac{f(z)}{(\xi - z)^{n+1}} + \frac{f'(z)}{(\xi - z)^n} + \dots + \frac{1}{(n-1)!} \frac{f^{(n-1)}(z)}{(\xi - z)^2} d\xi + \frac{1}{n!} \int_{\gamma} \frac{f^{(n)}(\xi)}{\xi - z} d\xi$$

Dans le second membre, toutes les intégrales sont nulles car les intégrandes sont des dérivées de fonctions holomorphes donc :

$$\int_{\gamma} \frac{f(\xi)}{(\xi - z)^{n+1}} d\xi = \frac{f^{(n)}(z)}{n!} \int_{\gamma} \frac{1}{\xi - z} d\xi$$

CQFD

COROLLAIRE 8.5 Soit  $f \in \mathcal{H}(\Omega)$ . Soit  $a \in \Omega$  et r > 0 tel que  $D(a, r) \subset \Omega$ . Alors pour tout  $n \in \mathbb{N}$ ,

$$|f^{(n)}(a)| \le \frac{n!}{r^n} \max_{z \in C(a,r)} |f(z)|$$

Démonstration. On pose  $\gamma = C(a, r)$ . On a  $I_{\gamma}(a) = 1$ .

$$f^{(n)}(a) = \frac{n!}{2i\pi} \int_{\gamma} \frac{f(\xi)}{(\xi - a)^{n+1}} d\xi$$
$$= \frac{n!}{2\pi} \int_{0}^{2\pi} \frac{f(a + re^{i\theta})ire^{i\theta}}{r^{n+1}e^{i(n+1)\theta}} d\theta$$

Donc on majore le module :

$$|f^{(n)}(a)| \leqslant \frac{n!}{2\pi} \int_0^{2\pi} \frac{|f(a+re^{i\theta})|}{r^n} d\theta \leqslant \frac{n!}{r^n} \max_{z \in \operatorname{Im}(\gamma)} |f(z)|$$

COROLLAIRE 8.6 LIOUVILLE  $Si\ f$  est holomorphe  $sur\ \mathbb{C}$  et bornée alors fest constante.

Démonstration. Pour tout  $a \in \mathbb{C}$ ,  $n \in \mathbb{N}^*$ , r > 0, on a  $\overline{D}(a,r) \subset \mathbb{C}$ .

On a:

$$|f^{(n)}(a)| \leqslant \frac{n!}{r^n} M$$

Avec  $r \to +\infty$ , on a  $f^{(n)}(a) = 0$  donc f est constante.

Remarque 8.7 Plus généralement, si f est holomorphe sur  $\mathbb{C}$ , et s'il existe  $p \in \mathbb{N}$  et  $A, B \in \mathbb{R}^+$  tel que pour tout  $z \in \mathbb{C}$ ,  $|f(z)| \leq A|z|^p + B$ . Alors on  $a: |f^{(n)}(0)| \leq \frac{n!}{r^n} (A|r|^p + B).$ 

Pour n > p, on fait tendre r vers  $+\infty$  et on a  $f^{(n)}(0) = 0$  pour tout n > p.

Donc 
$$f - \sum_{k=0}^{p} \frac{f^{(k)}(0)}{k!} z^{k} = 0$$
 sur  $D(0,r)$  donc partout.

COROLLAIRE 8.7 D'ALEMBERT Tout polynôme non constant a une racine dans  $\mathbb{C}$ .

Démonstration. Soit P un polynôme. On suppose qu'il ne s'annule pas. On a alors  $f = \frac{1}{P}$  holomorphe sur  $\mathbb{C}$ .

On pose 
$$n = \deg(P)$$
.  
 $|z|^n |f(z)| = \frac{|z|^n}{|P(z)|} \to |a_n| \text{ quand } |z| \to +\infty.$ 

Donc  $|f(z)| \sim \frac{|a_n|}{|z|^n} \to 0$ .

Donc f est bornée donc constante.

THÉORÈME 8.11 Soit  $\Omega$  un ouvert connexe et  $(h_n)_n$  une suite de fonctions holomorphes sur  $\Omega$  telles que pour tout  $K \subset \Omega$  compact,  $f_n$  cvu vers f sur K. f est holomorphe (par Morera) et pour tout k,  $f_n^{(k)}$  cvu vers  $f^{(k)}$  sur K.

Démonstration. Soit  $K \subset \Omega$  compact.

On pose  $\varepsilon=d(K,\Omega^c)>0$  et  $K_\varepsilon=\{z\in\Omega,d(z,K)\leqslant\frac{3\varepsilon}{4}\}$ . C'est un compact inclus dans  $\Omega$ .

Si  $z \in \mathbb{K}$  alors  $D(z, \frac{\varepsilon}{2}) \subset K_{\varepsilon}$  et on a :

$$|f_n^{(p)}(z) - f^{(p)}(z)| \le \frac{p!}{(\frac{\varepsilon}{2})^p} \max_{C(z,\frac{\varepsilon}{2})} |f_n(z') - f(z')|$$

Or 
$$\max_{C(z,\frac{\varepsilon}{2})} |f_n(z') - f(z')| \leq \max_{K_{\varepsilon}} |f_n(z') - f(z')| \to 0.$$
  
D'où le résultat.

Remarque 8.8 On peut munir  $\mathcal{H}(\Omega)$  avec une topologie associée à la cvu.

On écrit  $\Omega = \bigcup_{p=0}^{\infty} K_p$  avec  $K_p$  des compacts contenant un point d'accumulation.

On pose 
$$d_p(f,g) = \max_{z \in K_p} |f(z) - g(z)|$$
 et  $d(f,g) = \sum_{p=0}^{\infty} \frac{\min(1, d_p(f,g))}{2^p}$ .

On a même une métrique.

Soit  $A \subset \mathcal{H}(\Omega)$  borné pour cette métrique et  $f \in A$ .

f est bornée sur chaque  $K_p$  donc ses dérivées aussi. Par le théorème d'Ascoli, toute suite de A va avoir une sous-suite qui cvu sur  $K_p$ .

Par extraction diagonale, on obtient une sous-suite qui cvu sur tous les  $K_p$  donc sur tous les compacts. Donc les fermés bornés sont compacts! (mais pas de contradiction car on n'est pas normé).

# Chapitre 9

## Généralisations

### 9.1 Exemple

On se place sur une couronne  $\Omega = \{z, R_1 < |z| < R_2\}.$ 

On prend  $\gamma_1$  un lacet qui tourne une fois dans le mauvais sens autour du cercle intérieur et  $\gamma_2$  dans le bon sens.

On pose  $\gamma = \gamma_1 + \gamma_2$ .

Soit f holomorphe sur la couronne.

$$\int_{\gamma} f(z) dz = \int_{\gamma_2} f(z) dz - \int_{\gamma_1} f(z) dz = 0$$

comme  $\gamma_1$  et  $\gamma_2$  sont homotopes.

Pour tout  $z \in \Omega$ , on pose  $g(\xi) = \frac{f(\xi) - f(z)}{\xi - z}$  qui est holomorphe.

$$\int_{\gamma} g(\xi) \, \mathrm{d}\xi = 0 = \int_{\gamma} \frac{f(\xi)}{\xi - z} \, \mathrm{d}\xi - f(z) \int_{\gamma} \frac{1}{\xi - z} \, \mathrm{d}\xi$$

D'où 
$$2i\pi I_{\gamma}(z)f(z) = \int_{\gamma} \frac{f(\xi)}{\xi - z} d\xi$$
. Donc

$$2i\pi I_{\gamma}(z)f(z) = \int_{\gamma_1} \frac{f(\xi)}{\xi - z} d\xi + \int_{\gamma_2} \frac{f(\xi)}{\xi - z} d\xi$$

De plus,

$$\int_{\gamma_1} \frac{f(\xi)}{\xi - z} \, \mathrm{d}\xi = \int_{\gamma} \frac{f(\xi)}{z(\frac{\xi}{z} - 1)} \, \mathrm{d}\xi$$

$$= \int_{\gamma_1} -f(\xi) \frac{1}{z} \sum_{n=0}^{\infty} \left(\frac{\xi}{z}\right)^n \, \mathrm{d}\xi$$

$$= -\int_{\gamma_1} f(\xi) \sum_{n=1}^{\infty} \xi^{n-1} z^{-n} \, \mathrm{d}\xi$$

$$= -\sum_{n=1}^{\infty} \int_{\gamma_1} f(\xi) \xi^{n-1} \, \mathrm{d}\xi z^{-n}$$

On fait pareil sur  $\gamma_2$  et on a donc un développement en série de Laurent. Ce raisonnement marche si f est holomorphe sur  $\Omega \setminus \{0\}$  avec  $\Omega$  un voisinage de 0.

Donc f holomorphe sur un voisinage de 0 et 0 est une singularité isolée de f.

### 9.2 Intégrale sur des cycles

**<u>Définition 9.1</u>** Soient  $\gamma_1, \dots, \gamma_n$  des chemins fermés dans  $\Omega$ . Le cycle  $\gamma = \gamma_1 + \dots + \gamma_n$  est défini par ;

$$\int_{\gamma} f(z) dz = \sum_{i=1}^{n} \int_{\gamma_i} f(z) dz$$

**Exemple 9.1** Soit K un compact à bord orienté, dont le bord est formé d'un nombre fini de chemins fermés. On définit le cycle dont les chemins fermés sont les morceaux du bord de K tel que l'intérieur de K soit à gauche.

Théorème 9.1 Soit  $\Omega$  un ouvert connexe, f holomorphe sur  $\Omega$ .

Soit  $\gamma$  un cycle de  $\Omega$ ,  $z \notin \Omega$  tel que  $I_{\gamma}(z) = 0$ .

Alors 
$$\int_{\gamma} f(z) dz = 0$$
.

Remarque 9.1 Si  $\Omega$  est simplement connexe,  $\Omega$  vérifie les hypothèses précédentes. Donc on a les théorèmes de Cauchy dans les ouverts simplement connexe.

COROLLAIRE 9.1 Soit  $\Omega$  un ouvert simplement connexe. Si f est holomorphe sur  $\Omega$ , il existe F holomorphe telle que F' = f.

Démonstration. Soit  $z_0 \in \Omega$ .

Soit  $\gamma$  un chemin allant de  $z_0$  à z. On pose  $F(z) = \int_{\gamma} f(\xi) d\xi$ .

La définition de F ne dépend pas de  $\gamma$ .

Soit  $z \in \Omega$ . Il existe r > 0 tel que  $D(z, r) \subset \Omega$ .

Soit  $\gamma$  allant de  $z_0$  à z et  $\xi \in D(z, r)$ .

$$F(\xi) = \int_{\gamma + [z,\xi]} f(\eta) \, d\eta \text{ donc on a} :$$

$$\frac{F(z) - F(\xi)}{z - \xi} = \frac{1}{z - \xi} \int_{[z,\xi]} f(\eta) \, \mathrm{d}\eta \underset{\xi \to z}{\to} f(z)$$

COROLLAIRE 9.2 Si  $\Omega$  est simplement connexe et ne contient pas 0, alors il existe un logarithme.

### 9.3 Exemple de calculs d'intégrales

1.  $I = \int_0^{2\pi} R(\sin(t), \cos(t)) dt$  avec R une fraction rationnelle sans pôle sur C(0, 1).

On pose  $\gamma(t) = e^{it}$ .

On a  $\sin = \frac{1}{2i}(\gamma - \frac{1}{\gamma})$  et  $\cos = \frac{1}{2}(\gamma + \frac{1}{\gamma})$ . Donc

$$I = 2i\pi \sum_{\alpha \in A} \operatorname{Res}\left(\frac{1}{iz}R\left(\frac{1}{2i}\left(\gamma - \frac{1}{\gamma}\right), \frac{1}{2}\left(\gamma + \frac{1}{\gamma}\right)\right), \alpha\right) I_{\gamma}(\alpha)$$

avec A l'ensemble des pôles.

2.  $I = \int_{-\infty}^{\infty} R(x) dx$  avec R une fraction rationnelle telle que  $|xR(x)| \to 0$  quand  $|x| \to +\infty$ .

On a:

$$\int_{-r}^{r} R(x) dx + \int_{0}^{\pi} R(re^{i\theta}) i r e^{i\theta} d\theta = 2i\pi \sum_{\alpha \in A} \operatorname{Res}(R, \alpha) I_{\gamma}(\alpha)$$

avec A l'ensemble des pôles de R.

On montre que la seconde intégrale tend vers 0 et on a alors le résultat.

3.  $I = \int_{-\infty}^{\infty} f(x)e^{ix} dx$  avec f holomorphe au voisinage de tout z tel que  $\Im(z) \geqslant 0$ .



$$0 = \int_0^{\pi} \frac{e^{ire^{i\theta}}}{re^{i\theta}} i r e^{i\theta} d\theta + \int_{-r}^{-\varepsilon} \frac{e^{ix}}{x} dx + \int_{\varepsilon}^{r} \frac{e^{ix}}{x} dx - \int_0^{\pi} \frac{e^{i\varepsilon e^{i\theta}}}{\varepsilon e^{i\theta}} i \varepsilon e^{i\theta} d\theta$$

De plus:

$$\left| \int_0^{\pi} \frac{e^{ire^{i\theta}}}{re^{i\theta}} ire^{i\theta} d\theta \right| \leqslant \int_0^{\pi} e^{-r\sin(\theta)} d\theta \to 0$$

par convergence dominée.

Enfin, la deuxième intégrale est majorée par  $M\varepsilon\pi-i\pi$ .

Donc 
$$\int_{-\infty}^{\infty} \frac{e^{ix}}{x} dx = i\pi$$
.

4.  $I = \int_{-\infty}^{\infty} \frac{R(x)}{x^{\alpha}} dx$  avec  $\alpha \in ]0,1[$  et R une fraction rationnelle qui tend vers 0 à l'infini et qui n'a pas de pôle sur  $\mathbb{R}^+$ .



Soit  $\delta > 0$  assez petit pour que R n'ait pas de pôle de partie imaginaire strictement plus petite que  $\delta$ .

$$\int_{\gamma} \frac{R(z)}{z^{\alpha}} dz = 2i\pi \sum_{\alpha} \operatorname{Res} \left( \frac{R(z)}{z^{\alpha}}, \alpha \right) I_{\gamma}(\alpha) 
= \int_{\gamma} \frac{R(z)}{z^{\alpha}} dz + \int_{\gamma} \frac{R(z)}{z^{\alpha}} dz + \int_{\varepsilon}^{r} \frac{R(x+i\delta)}{(x+i\delta)^{\alpha}} dx - \int_{\varepsilon}^{r} \frac{R(x-i\delta)}{(x-i\delta)^{\alpha}} dx$$

De plus,

$$\int_{\varepsilon}^{r} \frac{R(x+i\delta)}{(x+i\delta)^{\alpha}} dx \to \int_{\varepsilon}^{r} \frac{R(x)}{x^{\alpha}} dx$$

Et

$$\int_{\varepsilon}^{r} \frac{R(x - i\delta)}{(x - i\delta)^{\alpha}} dx \to e^{-2i\pi\alpha} \int_{\varepsilon}^{r} \frac{R(x)}{x^{\alpha}} dx$$