Floyd Warshall

Detect -ve weight Cycle --> Floyd Warshall will able to detect

$$\frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} \frac{1}{2}$$

```
d[i][j] = min (d[i][j], d[i][k] + d[k][j]) for node k
```


	D	,	L]
O	D	3	8	2
I	٦	0	8	8
l	9	1	D	8
3	8	8	2	Ð

V ₂₀ =		D			_]	
	O	٦	7	3	-	5	
	J	2	_	0	9 0	Z	7
'	L	~	þ	I	Ö	0	
	3	~	9	~	2	D	
1				•	•	,	

$$J = J_{m} \left(8^{1} + 2\right)$$

$$J = J_{m} \left(8^{1} + 2 + 2\right)$$

.V ₂ =		٥		Z]
	O	Ö	3		5
		2_	0		8
•	<u>L</u>	9	<u> </u>	Ö	0
	3	4	8	2	D
			•	•	,

	D	'	,	_]	
O	O	7)	~	2	
1 .	2)	8	8	7
し	43	I		Ð	op	号
3	8	Ŏ	0	2	D	
						ī

Find the City With the Smallest Number of Neighbors at a Threshold Distance

Prim's Algorithm (Minimum Spanning Tree)

Lan Cables 1. Subgraph of Graph

MST

- 2. Tree --> Connected and Acyclic
- 3. Spanning --> All Vtc are inter-connected with each other

Djikstra and Prims can have diff paths

