MANUFACTURE OF SEMICONDUCTOR AND MANUFACTURING APPARATUS OF SEMICONDUCTOR

Publication number: JP2000294550
Publication date: 2000-10-20

Inventor: MUR

MURAKAWA EMI; HONGO TOSHIAKI; KAWAKAMI

SATOSHI; YUASA MITSUHIRO

Applicant:

TOKYO ELECTRON LTD

Classification:

- international: H01L29/78; C30B29/40; H01L21/31; H01L21/316;

H01L21/318; H01L29/66; C30B29/10; H01L21/02; (IPC1-7): H01L21/316; C30B29/40; H01L21/31;

H01L21/318; H01L29/78

- european:

Application number: JP19990097831 19990405 Priority number(s): JP19990097831 19990405

Report a data error here

Abstract of JP2000294550

PROBLEM TO BE SOLVED: To provide a method and apparatus for manufacturing a semiconductor for smoothly operating film quality control on a boundary face between a silicon substrate and an SiN film, and for forming the SiN film with high quality in a short time. SOLUTION: A wafer made of silicon as main components is irradiated with microwaves via a planar antenna member RLSA 60, having plural slits under a treating gas atmosphere so that plasma containing oxygen, or nitride, or oxygen and nitride can be formed, and oxidation, or nitriding, or oxidation/ nitriding is carried out directly to the surface of the wafer by using this plasma, and an insulating film 21 which is 1 nm or less in film thickness converted equivalent to film thickness of an oxide film.

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-294550 (P2000-294550A)

(43)公開日 平成12年10月20日(2000.10.20)

デーマコート*(参考) A 4G077 502H 5F040 C 5F045 C 5F058 A		
502H 5F040 C 5F045 C 5F058 A		
C 5F045 C 5F058 A		
C 5F058		
Α		
I OL (全 11 頁) 最終頁に続く		
9967		
Cレクトロン株式会社		
東京都港区赤坂5丁目3番6号		
惠美		
8港区赤坂5丁目3番6号 東京エレ		
クトロン株式会社内		
俊明		
県韮崎市穂坂町三ッ沢650 東京エレ		
コン株式会社総合研究所内		
7849		
上 須山 佐一		
最終頁に続く		

(54) 【発明の名称】 半導体製造方法及び半導体製造装置

(57)【要約】

【課題】 シリコン基板とSiN膜との界面での膜質制御を首尾よく行うことができ、しかも、短時間で高品質のSiN膜を形成することのできる半導体の製造方法及び製造装置を提供する。

【解決手段】 処理ガス雰囲気下で、ケイ素を主成分とするウエハWに、複数のスリットを有する平面アンテナ部材RLSA60を介してマイクロ波を照射することにより酸素、又は窒素、又は酸素と窒素とを含むブラズマを形成し、このブラズマを用いて前記ウエハW表面に直接に酸化、窒化、又は酸窒化を施して酸化膜相当換算膜厚で1nm以下の絶縁膜2を形成する。

【特許請求の範囲】

【請求項1】 処理ガス雰囲気下で、ケイ素を主成分とする被処理基体に、複数のスリットを有する平面アンテナ部材を介してマイクロ波を照射することにより酸素、又は窒素、又は酸素と窒素とを含むブラズマを形成し、このブラズマを用いて前記被処理基体表面に直接に酸化、窒化、又は酸窒化を施して酸化膜相当換算膜厚で1nm以下の絶縁膜を形成することを特徴とする半導体製造方法。

【請求項2】 請求項1記載の半導体製造方法であって、前記処理ガスが、N,又はN,O又はNO又はNH,を含むととを特徴とする半導体製造方法。

【請求項3】 処理ガス雰囲気下で、ケイ素を主成分とする被処理基体に、複数のスリットを有する平面アンテナ部材を介してマイクロ波を照射することにより酸素、又は窒素、又は酸素と窒素とを含むブラズマを形成し、とのブラズマを用いて前記被処理基体表面に直接に酸化、窒化、又は酸窒化を施して第1の絶縁膜を形成する工程と、

前記第1の絶縁膜上に第2の絶縁膜を形成する工程と、 を具備するととを特徴とする半導体製造方法。

【請求項4】 請求項3記載の半導体製造方法であって、前記第2の絶縁膜を形成する工程が、窒化ケイ素からなる絶縁層を形成する工程であることを特徴とする半導体製造方法。

【請求項5】 請求項3又は4記載の半導体製造方法であって、前記第2の絶縁膜を形成する工程が、CVD法 により行われる工程であることを特徴とする半導体製造方法。

【請求項6】 請求項3又は4記載の半導体製造方法で 30 あって、前記第2の絶縁膜を形成する工程が、ブラズマ 照射により行われる工程であることを特徴とする半導体 製造方法。

【請求項7】 請求項6記載の半導体製造方法であって、前記第2の絶縁膜を形成する工程が、N,又はNH,及びモノシラン又はジクロルシラン又はトリクロルシランを含むプラズマを供給する工程であるととを特徴とする半導体製造方法。

【請求項8】 請求項6記載の半導体製造方法であって、前記プラズマ照射が、複数のスリットを有する平面 40 アンテナ部材を介して行われることを特徴とする半導体製造方法。

【請求項9】 請求項1記載の半導体製造方法を実施するための半導体製造装置であって、

マイクロ波電源と、当該マイクロ波を導く装置と複数のスリットを有する平面アンテナ部材と、被処理基体の温度を400°C以上に保持する昇温機構と、処理ガスを反応室に導くガス供給機構と、反応室を1Torr以下に減圧する真空排気機構を有する一つ又はそれ以上のブロセスチャンバと、被処理基体を真空撤送する撤送系

۲

を具備する事を特徴とする半導体製造装置。

【請求項10】 請求項9記載の半導体製造装置であって、ゲート絶縁膜を並列的に形成できるように、前記プロセスチャンバが、二つ又はそれ以上配設されていることを特徴とする半導体製造装置。

【請求項11】 請求項9記載の半導体製造装置であって、前記プロセスチャンパとは異なるCVDチャンパと、真空搬送系とを具備し、直接酸窒化に引き続いてC VDによりSiNを形成することを特徴とする半導体製造装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、半導体の製造方法 に係り、更に詳細には、MIS型半導体装置におけるゲート絶縁腹形成方法に関する。

[0002]

【従来の技術】最近、MIS型半導体デバイスの微細化 に伴い、4nm程度以下の極めて薄いゲート絶縁膜が要 20 求されている。従来、ゲート絶縁膜材料としては、85 0°C~1000°C程度の高温加熱炉を用いてシリコン基板の直接酸化によって得られるシリコン酸化膜(SiO,膜)が工業的に使用されてきた。

【0003】しかしながら、SiO、膜を4nm以下に薄くすると、このゲート絶縁膜を流れる漏れ電流(ゲートリーク電流)が多くなり、消費電力の増大やデバイス特性劣化の加速などの問題が生じる。

【0004】また、ゲート電極形成時に当該ゲートに含まれるホウ素がSiO、膜を突き抜けてシリコン基板に達し、半導体デバイス特性を劣化させるという問題も生じる。 このような問題点を解決する一つの方法として、ゲート絶縁膜材料として窒化膜(SiN膜)が検討されている。

【0005】このSiN膜をCVD法によって形成すると、シリコン基板との界面に多数の不完全結合(ダングリングボンド)が発生してデバイス特性が劣化してしまう。そのため、当該SiN膜形成では、プラズマを用いたシリコン基板を直接窒化する方法が有望と考えられる。直接窒化を行う理由は、界面準位の少ない高品質のゲート絶縁膜を得るためである。

【0006】また、ブラズマを用いる理由は、低温でSiN膜を形成するためである。SiN膜を加熱によって窒化すると1000°C以上の高温が必要であり、この熱工程によりシリコン基板に注入されたドーパントが差異拡散することによってデバイス特性が劣化してしまう。このような方法は特開昭55-134937号公報や特開昭59-4059号公報などに開示されている。【0007】しかしながら、ブラズマを用いてSiN膜を形成する場合、ブラズマ中のイオンがブラズマシース50電位により加速されて高エネルギーでシリコン基板に入

射されるため、いわゆるプラズマダメージがシリコン基 板界面或いはシリコン基板に発生し、デバイス特性が生 じるという問題が指摘されている。

【0008】との問題に対し、電子温度が低く、プラズマダメージの小さい多数のスリットを有する平面アンテナを備えたマイクロ波ブラズマ装置が報告されている。

[0000] (Ultra Clean technology Vol.10 Supplement 1,p.32,1998,Published byUltra Clean Society).

【0011】しかし、とのプラズマ装置を用いてシリコン窒化処理を行う場合でも、直接窒化によってSiN膜を形成する場合には、シリコン基板界面にのみ酸素を偏在させるととにより結合欠陥の少ない良質な界面を得るためには、シリコン基板との界面での膜質制御が難しいという問題がある。

【0012】更に、とのプラズマ装置を用いた場合、窒素原子がシリコン基板内に拡散することにより窒化が進むため、窒化速度が遅く、被処理体に所定の処理を施す時間が長く、単位時間あたりの被処理体の処理枚数が少なく、工業的に利用することができないという問題がある。例えば4 n mの S i N 膜を形成する場合、圧力やマイクロ波バワーなどのプラズマ条件を種々調整しても5分程度以上かかり、量産製造の点から要求されるスループット、例えば被処理体一枚当たり I 分程度という処理時間の目標値を大幅に下回る。

[0013]

【発明が解決しようとする課題】本発明は上記従来の問題点を解決するためになされたものである。即ち、本発明は、シリコン基板とSiN膜との界面での膜質制御を首尾よく行うことのできる半導体の製造方法及び製造装置を提供することを目的とする。

【0014】また、本発明は、短時間で高品質のSiN膜を形成することのできる半導体の製造方法及び製造装置を提供することを目的とする。

[0015]

【課題を解決するための手段】上記目的達成のため、本発明の半導体製造方法は、処理ガス雰囲気下で、ケイ素を主成分とする被処理基体に、複数のスリットを有する平面アンテナ部材を介してマイクロ波を照射するととより酸素、又は窒素、又は酸素と窒素とを含むプラズマを形成し、とのブラズマを用いて前記被処理基体表面に直接に酸化、窒化、又は酸窒化を施して1 n m以下の膜厚(シリコン酸化膜換算)の絶縁膜を形成することを特徴とする。

【0016】本発明の半導体製造方法では、絶縁膜厚が 50 ば、いわゆるRLSAアンテナを用いた方法で第1の絶

1 n m以下であるため、シリコン基板の窒化は拡散ではなくプラズマにより生成された窒素原子又は酸素原子又は酸素原子又は窒素原子と酸素原子がシリコン基板表面と反応する工程が主な工程となり、窒化速度は30秒程度の短時間で行うととができる。

【0017】この直接窒化又は酸化又は酸窒化した薄膜 絶縁膜上にCVD法により残りの絶縁膜を形成する場 合、3nm/min以上の製膜速度が比較的容易に達成 できるため、トータル4nmの膜厚の絶縁膜でも2分以 内で形成できる。

【0018】更に本発明の半導体製造方法では、直接窒化又は酸化又は酸窒化によりシリコン基板との界面に良質な絶縁膜を形成する工程とその上にCVD法により残りの絶縁膜を形成する工程とを独立に行うことができるため、全て、直接窒化又はCVD法によって絶縁膜を形成する方法に比べてシリコン基板界面での膜質制御性が向上し、より良質な絶縁膜を形成することができる。

【0019】との半導体製造方法において、前記処理ガスは、例えば、N、又はN、O又はNO又はNH、を含むガスが挙げられる。との処理ガスはアルゴンなどの希ガスを含んでいても良い。

【0020】また、本発明の他の半導体製造方法は、処理ガス雰囲気下で、ケイ素を主成分とする被処理基体に、複数のスリットを有する平面アンテナ部材を介してマイクロ波を照射することにより酸素、又は窒素、又は酸素と窒素とを含むプラズマを形成し、このプラズマを用いて前記被処理基体表面に直接に酸化、窒化、又は酸窒化を施して第1の絶縁膜を形成する工程と、前記第1の絶縁膜上に第2の絶縁膜を形成する工程と、を具備することを特徴とする。

【0021】上記半導体製造方法において、前記第2の 絶縁膜は、例えば、窒化ケイ素からなる絶縁膜が挙げら れる。

【0022】との第2の絶縁膜を形成する工程は、CV D法により行ってもよく、プラズマ照射により行っても よい。

【0023】との第2の絶縁膜の形成は、例えば、N, 又はNH,及びモノシラン又はジクロルシラン又はトリクロルシランを含むプラズマを供給するととにより形成 40 する方法が挙げられる。

【0024】本発明の半導体製造方法によれば、処理ガス雰囲気下で、ケイ素を主成分とする被処理基体に、複数のスリットを有する平面アンテナ部材を介してマイクロ波を照射する、いわゆるRLSA(Radial Line Slot Antenna)アンテナを用いる方法でシリコン基板上に直接プラズマを供給してSiN絶縁膜を形成するので、シリコン基板とその表面に形成されるSiN絶縁膜との界面の膜質制御を首尾よく行うことができる。

【0025】更に、本発明の他の半導体製造方法によれば、いわゆるRISAアンテナを用いた方法で第1の絶

縁膜を形成した上に第2の絶縁膜を全て低ダメージブラ ズマ照射により形成するので髙品質のSiN膜を形成す ることができる。特に第2の絶縁膜をCVD法により形 成する場合には短時間での製膜が可能となり、短時間で 高品質のSiN膜を形成することができる。

[0026]

【発明の実施の形態】以下に本発明の一つの実施の形態 について説明する。

【0027】まず本発明の半導体製造方法によって製造 される半導体装置の構造の一例について、絶縁膜として 10 ゲート絶縁膜を備えた半導体装置を例にして図1により 説明する。

【0028】図中1はシリコン基板、11はフィールド 酸化膜、2はゲート絶縁膜であり、13はゲート電極で ある。本発明はゲート絶縁膜2に特徴があり、このグー ト絶縁膜2は、図1(b)に示すように、シリコン基板 1との界面に形成された、品質の高い絶縁膜よりなる例 えば1mm程度の厚さの第1の絶縁膜21と、第1の絶。 縁膜21の上面に形成され、例えば3nm程度の厚さの 第2の膜22とにより構成されている。

【0029】との例では品質の高い第1の膜21は、処 理ガス雰囲気下で、ケイ素を主成分とする被処理基体 に、複数のスリットを有する平面アンテナ部材を介して マイクロ波を照射することにより酸素、又は窒素、又は 酸素と窒素とを含むプラズマを形成し、このプラズマを 用いて前記被処理基体表面に直接に酸化、窒化、又は酸 窒化を施して形成された、第1のシリコン酸窒化膜(以 下「SiON膜」という) よりなる。

【0030】また第1の膜21よりも成膜速度の大きい 第2の膜22は、前記第1の絶縁膜上に第2の絶縁膜を 30 形成する工程により形成されている。

【0031】次に、このようなゲート絶縁膜2の形成方 法について説明する。

【0032】図2は本発明の半導体製造方法を実施する ための半導体製造装置30の全体構成を示す概略図であ る。

【0033】図2に示すように半導体製造装置30のほ ば中央には搬送室31が配設されており、この搬送室3 1の周囲を取り囲むようにプラズマ処理ユニット32、 CVD処理ユニット33、二機のロードロックユニット 34及び35、加熱ユニット36が配設されている。 【0034】ロードロックユニット34、35の横には

予備冷却ユニット45、冷却ユニット46がそれぞれ配 設されている。

【0035】搬送室31の内部には搬送アーム37及び 38が配設されており、前記各ユニット32~36との 間でウエハ♥を搬送する。

【0036】ロードロックユニット34及び35の図中 手前側にはローダーアーム41及び42が配設されてい 手前側に配設されたカセットステージ43上にセットさ れた4台のカセット44との間でウエハWを出し入れす る。

【0037】なお、図2中のCVD処理ユニット33は プラズマ処理ユニット32と同型のプラズマ処理ユニッ トと交換可能であり、プラズマ処理ユニットを二基セッ トしてもよい。

【0038】更に、これらプラズマ処理ユニット32及 びCVD処理ユニット33は、ともにシングルチャンバ 型プラズマ/CVD処理ユニットと交換可能であり、プ ラズマ処理ユニット32やCVD処理ユニット33の位 置に一基又は二基のシングルチャンバ型プラズマ/CV D処理ユニットをセットすることも可能である。 プラズ マ処理が二基の場合、処理ユニット32で直接SiON 膜を形成した後、処理ユニット33でプラズマSiN膜 をCVDする方法と、処理ユニット32及び33で並列 に直接SiON膜形成とSiN CVD膜形成を行って も良い。或いは処理ユニット32及び33で並列に直接 SiON膜形成を行った後、別の装置でSiN CVD 膜形成を行うこともできる。

【0039】図3はゲート絶緑膜2の成膜に用いられる プラズマ処理ユニット32の垂直断面図である。

【0040】50は例えばアルミニウムにより形成され た真空容器である。との真空容器50の上面には、基板 例えばウエハ♥よりも大きい開口部51が形成されてお り、この開口部51を塞ぐように例えば窒化アルミ等の 誘電体により構成された偏平な円筒形状のガス供給室5 4が設けられている。このガス供給室54の下面には多 数のガス供給孔55が形成されており、ガス供給室54 に導入されたガスが当該ガス供給孔55を介して真空容 器50内にシャワー状に供給されるようになっている。 【0041】ガス供給室54の外側には、例えば銅板に より形成されたラジアルラインスロットアンテナ(以

下、「RLSA」と略記する。) 60を介して、高周波 電源部をなし、例えば2.45GHzのマイクロ波を発 生するマイクロ波電源部61に接続された導波路63が 設けられている。この導波路B3はRLSA60に下縁 が接続された偏平な円形導波管63Aと、この円形導波 管63Aの上面に一端側が接続された円筒形導波管63 Bと、この円筒形導波管63Bの上面に接続された同軸 導波変換器63Cと、との同軸導波変換器63Cの側面 に直角に一端側が接続され、他端側がマイクロ波電源部 61 K接続された矩形導波管63 Dとを組み合わせて構 成されている。

【0042】ここで本発明ではUHFとマイクロ波とを 含めて高周波領域と呼んでおり、高周波電源部より供給 される高周波電力は300MHz以上のUHFや1GH z以上のマイクロ波を含む、300MHz以上2500 MHz以下のものとし、これらの高周波電力により発生 る。とれらのローダーアーム41及び42は、更にその 50 されるプラズマを高周波プラズマと呼ぶものとする。前 記前記円筒形導波瞥63Bの内部には、導電性材料よりなる軸部62の、一端側がRLSA60の上面のほぼ中央に接続し、他端側が円筒形導波管63Bの上面に接続するように同軸状に設けられており、これにより当該導波管63Bは同軸導波管として構成されている。

【0043】真空容器50の上部側の側壁には例えばその周方向に沿って均等に配置した16か所の位置にガス供給管72が設けられており、このガス供給管72から希ガス及びNを含むガスが真空容器50のブラズマ領域P近傍にムラなく均等に供給されるようになっている。【0044】また真空容器50内には、ガス供給室54と対向するようにウエハWの載置台52が設けられている。との載置台52には図示しない温調部が内蔵されており、これにより当該載置台52は熱板として機能するようになっている。さらに真空容器50の底部には排気管53の一端側が接続されており、この排気管53の他端側は真空ボンブ55に接続されている。

【0045】図4は本発明の半導体製造装置に用いられるRLSA60の平面図である。

【0046】図4に示したように、このRLSA60では、表面に複数のスロット60a,60a,…が同心円状に形成されている。各スロット60aは略方形の貫通した溝であり、隣接するスロットどうしは互いに直交して略アルファベットの「T」の文字を形成するように配設されている。スロット60aの長さや配列間隔は、マイクロ波電源部61より発生したマイクロ波の波長に応じて決定されている。図5は本発明の半導体製造装置に用いられるCVD処理ユニット33を模式的に示した垂直断面図である。

【0047】図5に示すように、CVD処理ユニット3 3の処理室82は例えばアルミニウム等により気密可能 な構造に形成されている。図5では省略したが、処理室 82内には加熱機構や冷却機構を備えている。

【0048】処理室82には上部中央にガスを導入するガス導入管83が接続され、処理室82内とガス導入管83内とが連通されている。また、ガス導入管83はガス供給源84に接続されている。そして、ガス供給源84からガス導入管83にガスが供給され、ガス導入管83を介して処理室82内にガスが導入されている。このガスには、薄膜形成の原料となる各種のガスが用いられ、必要な場合には不活性ガスがキャリアガスとして用いられている。

【0049】処理室82の下部には、処理室82内のガスを排気するガス排気管85が接続され、ガス排気管85は真空ポンプ等からなる図示しない排気手段に接続されている。そして、との排気手段により処理室82内のガスがガス排気管85から排気され、処理室82内が所望の圧力に設定されている。

【0050】また、処理室82の下部には、ウェハ♥を 載置する載置台87が配置されている。 【0051】本実施の形態では、ウエハWと略同径大の図示しない静電チャックによりウエハWが載置台87上に載置されている。との載置台87には図示しない熱源手段が内設されており、載置台87上に載置されたウエハWの処理面を所望の温度に調整できる構造に形成されている。

【0052】との載置台87の大きさは、300mmの 大径ウエハWを載置できる大きさとなっており、必要に 応じて載置したウエハWを回転できるような機構になっ 10 ている。

【0053】とのように大型の載置台87を内蔵するととにより、300mmの大径ウエハWを処理するととができ、高い歩留まりと、その結果もたらされる、廉価な製造コストを実現するととができる。

【0054】図5中、載置台87の右側の処理室82壁面にはウエハWを出し入れするための開口部82aが設けられており、この開口部82aの開閉はゲートバルブ98を図中上下方向に移動することにより行われる。図5中、ゲートバルブ98の更に右側にはウエハWを搬送する搬送アーム(図示省略)が隣設されており、搬送アームが開口部82aを介して処理室82内に出入りして載置台87上にウエハWを載置したり、処理後のウエハWを処理室82から搬出するようになっている。 載置台87の上方にはシャワー部材としてのシャワーへッド88が配設されている。とのシャワーへッド88が配設されている。とのシャワーへッド88が配設されており、例えばアルミニウム等から作られている。

【0055】シャワーヘッド88は、その上部中央にガス導入管83のガス出口83aが位置するように形成され、処理室82内に導入されたガスがそのまま処理室82内に配設されたシャワーヘッド88内に導入されている。

【0056】次に上述の装置を用いてウエハW上にゲート絶縁膜2よりなる絶縁膜を形成する方法について説明する。

【0057】図8は本発明の方法の各工程の流れを示したフローチャートである。

【0058】まず、前段の工程でウエハ♥表面にフィー 40 ルド酸化膜11を形成する。

【0059】次いで真空容器50の側壁に設けたゲートバルブ(図示省略)を開いて搬送アーム37.38により、前記シリコン基板1表面にフィールド酸化膜11が形成されたウエハWを載置台52上に載置する。

【0060】続いてゲートバルブを閉じて内部を密閉した後、真空ポンプ55により排気管53を介して内部雰囲気を排気して所定の真空度まで真空引きし、所定の圧力に維持する。一方マイクロ波電源部56より例えば2.45GHz(3kWのマイクロ波を発生させ、との

50 マイクロ波を導波路51とより案内してRLSA60及び

ガス供給室54を介して真空容器50内に導入し、これ により真空容器50内の上部側のプラズマ領域Pにて高 周波ブラズマを発生させる。

【0061】ことでマイクロ波は矩形導波管63D内を矩形モードで伝送し、同軸導波変換器63Cにて矩形モードから円形モードに変換され、円形モードで円筒形同軸導波管63Bを伝送し、さらに円形導波管63Aにて拡げられた状態で伝送していき、RLSA60のスロット60aより放射され、ガス供給室54を透過して真空容器50に導入される。この際マイクロ波を用いているので高密度のプラズマが発生し、またマイクロ波をRLSA60の多数のスロット60aから放射しているのでブラズマが高密度なものとなる。

【0062】そして載置台52の温度を調節してウエハ Wを例えば400℃に加熱しながら、ガス供給管72より第1のガスであるXeガスと、N、ガスと、H、ガス 及びO、ガスとを、夫々500sccm、25sccm、15sccm、1.0sccmの流量で導入して第1の工程を実施する。

【0063】 Cの工程では、導入されたガスは真空容器 203 にて発生したブラズマ流により活性化(ブラズマ化) され、とのブラズマにより図7 (a) に示すように、シリコン基板1の表面が酸窒化されて第1の絶縁膜(SiON膜)21が形成される。とうしてとの窒化処理を例えば30秒間行い、1nmの厚さの第1の絶縁膜(SiON膜)21を形成する。

【0064】次に、ゲートバルブを開き、真空容器50内に搬送アーム37,38を進入させ、載置台52上のウエハWを受け取る。搬送アーム37,38はウエハWをプラズマ処理ユニット32から取り出した後、隣接す30るCVD処理ユニット33内の載置台87にセットする。

【0065】次いでとのCVD処理ユニット33内でウエハW上にCVD処理が施され、先に形成された第1の 絶縁膜上に第2の絶縁膜が形成される。

【0066】即ち、真空容器3内にて、ウエハ温度が例えば400℃、プロセス圧力が例えば50mTorr~ 記録1Torrの状態で、容器82内に第2のガスを導入し 下記第2の工程を実施する。つまりガス供給源84よりS iを含むガス例えばSiH、ガスを例えば15sccm 40 る。の流量で導入すると共に、ガス導入管83よりXeガス と、N. ガスとを、夫々500sccm、20sccm の流量で導入する。 r.

【0067】この工程では、導入された第2のガスはウエハW上に堆積し、比較的短時間で膜厚が増大する。かくして図7(b)に示すように、第1の絶縁膜(SiN膜)22が形成される。このSiN膜22は成膜速度が例えば4nm/分であるので、この成膜処理を例えば30秒行い、2nmの厚さの第2の絶縁膜(SiN膜)22を形成す

る。とのようにしてトータル30秒間で4nmの厚さのゲート絶縁膜2を形成する。

【0068】上述の第1の工程では、第1の絶縁膜を形成するに際し、処理ガス雰囲気下で、ケイ素を主成分とするウエハWに、複数のスリットを有する平面アンテナ部材(RLSA)を介してマイクロ波を照射することにより酸素、又は窒素、又は酸素と窒素とを含むブラズマを形成し、このプラズマを用いて前記被処理基体表面に直接に酸化、窒化、又は酸窒化を施して絶縁膜を形成しているので、品質が高く、かつ膜質制御を首尾よく行うことができる。

【0069】即ち、第1の絶縁膜の品質は図8に示すよ うに高いものである。

【0070】図8に示すように、本発明の半導体製造方法により、熱酸化膜と同レベルの低い界面準位を確保し、かつ、ゲート絶縁膜の耐圧性とゲート電極中のボロンの突き抜けを低減することが可能となった。

【0071】とれに対し、直接窒化及びCVD法による SiN膜では界面準位が熱酸化膜に比べて増大した。と の場合、界面でのキャリアの分散が大きくなり、トラン ジスタの駆動電流が低下する。

【0072】とのように上述の方法により形成された第 1の絶縁膜の品質が高くなる理由は次のように考えられる。

【0073】即ち、本発明の半導体製造方法では、シリコン基板界面に窒素原子と酸素原子との両方がシリコン原子の結合を効率的に終端し、ダングリングボンドが少なくなる。また、ゲート絶縁膜の耐圧性とボロンの突き抜けに対してはCVD-SiN膜が効果的に作用している。この結果、本発明の半導体製造方法では、直接酸窒化SiON膜とCVD-SiN膜の長所を首尾良く利用することができる。

【0074】とれに対して界面をSiNだけで形成する場合、ダングリングボンドの終端が不完全で、とのために界面準位が増大したと考えられる。

【0075】また、上記第2の工程を行うととにより前記第1の絶縁膜上に形成される第2の絶縁膜は短時間で形成することができる。その結果、絶縁膜2全体を形成するには下記に示すように短時間で済ませることができる。

【0076】例えば、第一の絶縁膜SiONの形成について、RLSAプラズマを用いて圧力100mTorr、Xe、Ni、Hi、Oiのガス流量を各々500sccm、25sccm、15sccm温度400°Cで成膜すると、図9に示したように、InmのSiON膜を30秒程度で形成できる。

【0077】しかし、同条件で3nmのSiON膜を形成するには245秒必要とした。この成膜速度でO,流量をゼロにしてもほとんど変化しなかった。一方、CV 50 DではXe、SiH,、N,ガス流量を各々500sc

cm、15sccm、20sccm、温度400°Cに おいて4.5nm/min程度の成膜速度が達成され た。従って、2 nmの膜厚では30秒程度以内で形成さ れた。との結果、本発明の半導体製造方法ではトータル 60秒程度以内で3nmの絶縁膜を形成できるため、直 接窒化法に比べて大幅に成膜速度を向上させるととがで きる。

【0078】また、上記RLSAプラズマによる直接酸 窒化の成膜による膜厚変化は図1-に示すように1nm とが分かる。しかし、これ以上になると、拡散律速とな り、成膜速度が徐々に低下する。従って、本発明の半導 体製造方法では、直接酸窒化によりlnmのSiON膜 を形成し、この後CVD法によりSiN膜を形成した。 【0079】(実施例)以下に実施例を示す。

【0080】本発明の半導体製造方法により、素子分離 形成を行ったn型シリコン基板上に図2に示したような 装置を用いてRLSAプラズマを用いて図2中32の処 理ユニットで2 nmのSiON膜を形成した。合計の絶 縁膜の膜厚は3nm(酸化膜換算膜厚)である。SiO 20 体製造装置の概略図である。 N成膜条件については、Xe/N,/H,/O,流量= 500sccm/25sccm/15sccm/1sc cmで圧力は100mTorr、マイクロ波パワーは 2. OKWで、温度は400°Cであった。

【0081】CVD-SiN膜の形成条件については、 Xe/SiH,/N,流量=500sccm/15sc cm/20sccmで圧力は100mTorr、マイク 口波は25KWで温度は400°Cであった。成膜時間 は62秒で、スループットは40枚/hを達成し、工業 的に十分適用できるレベルである事を確認できた。

【0082】膜厚の均一性も3シグマで3%と良好な結 果が得られた。

【0083】ゲート絶縁膜形成に引き続いて、p型po 1y-Si-ゲートを形成してゲートリーク電流と界面 準位を測定した。この結果、75mV/cmの印加電界 に対してゲートリークは1.3×10-6A/cm²、界 面準位は8.5×101°/cm'/eVと良好な結果を 得た。更にp-MOSFET (L/W=0. 25/10 μm)を形成してオン電流を計測したところ、酸化膜と 同程度以上の値(5.5×10-1A/µm)が得られ た。

【0084】以上示したように、本発明の半導体製造方 法により3nm程度の良質なゲート絶縁膜を工業的に十 分な成膜速度で形成することができた。

[0085]

【発明の効果】本発明によれば、処理ガス雰囲気下で、 ケイ素を主成分とする被処理基体に、複数のスリットを 有する平面アンテナ部材を介してマイクロ波を照射す る、いわゆるRLSAアンテナを用いる方法でシリコン 基板上に直接プラズマを供給してSiN絶縁膜を形成す るので、シリコン基板とその表面に形成されるSiN絶 縁膜との界面の膜質制御を首尾よく行うことができる。 【0086】更に、本発明の他の半導体製造方法によれ

程度までは時間に比例しており、表面反応律速であると 10 ば、いわゆるRLSAアンテナを用いた方法で第1の絶 縁膜を形成した上に第2の絶縁膜を形成するので髙品質 のSiN膜を形成することができる。特に第2の絶縁膜 をCVD法により形成する場合には短時間での製膜が可 能となり、短時間で髙品質のSiN膜を形成することが できる。

【図面の簡単な説明】

【図1】本発明の半導体製造方法により製造される半導 体装置の垂直断面図である。

【図2】本発明の半導体製造方法を実施するための半導

【図3】本発明の半導体製造方法に用いるRLSAブラ ズマ処理ユニットの垂直断面図である。

【図4】本発明の半導体製造装置に用いるRLSAの平 面図である。

【図5】本発明の半導体製造方法に用いるCVD処理ユ ニットの模式的垂直断面図である。

【図6】本発明の方法におけるゲート絶縁膜形成工程の フローチャートである。

【図7】本発明の方法によるゲート絶縁膜形成の詳細図 30 である。

【図8】各種成膜条件とその成膜条件で得られるゲート 絶縁膜の品質特性を比較した図である。

【図9】各種成膜方法における、成膜時間と膜厚との関 係を示した図である。

【図10】本発明の半導体製造方法における成膜時間と 膜厚との関係を示したグラフである。

【符号の説明】

₩…ウエハ(被処理基体)

60…RLSA(平面アンテナ部材)

40 21…第一の絶縁膜

22…第二の絶縁膜

32…プラズマ処理ユニット(プロセスチャンバ)

33…CVD処理ユニット(プロセスチャンパ)

12

[図1]

[図3]

[図2]

[図5]

[図4]

[図6]

[図7]

[図8]

	本宪明方法	RLSA75X7	RLSAプラズマ	黎 一种 一种
	(Six-cyD/SiOX)	官徒與代徵	CVD氧化酸	
(10)	2/1	8	3	3
抱殺耐压 CNV/cm)	1.7	1.7	1.5	1.2
ゲートリーク電流 (A/cm ²) 7. 5MY/cm	1×10-6	5×10-5	0 1 × 1	1×10 ⁻³
界函 ゆ 位(1/en ² /eい	6×1010	2×10 ¹¹ ·	5×10 ¹¹	6×10 ¹⁰
PNOS-FET (V) Levidaerr	0	0	0	0. 3
3 V th= V th (8f2+) -V th (8+)				

[図9]

	本発明方法 CYD-SIN/SION	RLSA7ラズマ 直接窒化方法	RLSAプラズヤ IS C V D 方法
	2 / 1	3	. 3
時間 (sec)	30/30	2 4 5	4 6

[図10]

フロントページの続き

(51)Int.Cl.⁷

識別記号

HO1L 29/78.

(72)発明者 川上 聡 山梨県韮崎市穂坂町三ッ沢650 東京エレ

クトロン株式会社総合研究所内

(72)発明者 湯浅 光博

東京都港区赤坂5丁目3番6号 東京エレ

クトロン株式会社内

FΙ

HO1L 29/78

301G

テマコート' (参考)

Fターム(参考) 4G077 AA03 BB03 BE14 BE19 DB09

DB19

5F040 DC01 ED01 ED03 ED04 FC00

5F045 AA06 AA09 AB32 AB33 AB34

AC01 AC05 AC11 AC12 AD08

AE17 AE19 AE21 AF03 AF12

B809 BB16 CA05 DC51 DP03

DQ17 EB08 EF05 EF08 EH02

EH03 EH04 EM05 EN04 HA25

5F058 BA01 BA20 BD01 BD10 BD15

BF04 BF08 BF23 BF29 BF30

BG01 BG04 BJ01 BJ10