(2D) Linear transformations

UCSD CSE 167 Tzu-Mao Li

Motivation: rendering an ellipse

testing whether a point is inside an ellipse is slightly more complex

Idea: map the ellipse to a simple circle

Motivation 2: instancing

only want to store one star

Motivation 3: animation

Transformation

each point \mathbf{p} is mapped to a point $f(\mathbf{p})$

Linear Transformation

each point ${\bf p}$ is mapped to a point $f({\bf p})$ by a linear function f

(we will define linearity later)

Why linear transformation?

- linear transformations are easier to analyze and well understood
 - e.g., there are well-established ways to compute their inverses
- linear transformations are expressive
- non-linear transformations can often be broken down to many small linear transformations

Things linear transformation can do

Linear algebra

- excellent resources:
 - Essence of Linear Algebra https://www.youtube.com/playlist? list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab
 - Immersive Linear Algebra http://immersivemath.com/ila/index.html

Linear basis

each point in the 2D space can be written as a linear combination of two basis vectors \mathbf{i} and \mathbf{j}

Linear basis

each point in the 2D space can be written as a linear combination of two basis vectors \mathbf{i} and \mathbf{j}

Linear basis

we can use a different linear basis to represent the same 2D space (and they don't need to be perpendicular to each other!)

$$\mathbf{v} \qquad \mathbf{2i} + \mathbf{j} = \frac{1}{2}\mathbf{v} + \mathbf{w}$$

$$-2\mathbf{i} - \mathbf{j} = -\frac{1}{2}\mathbf{v} - \mathbf{w}$$

Linear transformation = preserves the coordinates, but changes the basis

 $2\mathbf{v} + \mathbf{w}$

Example: scaling

Example: rotation

Computing linear transformation

• step 1: write down the new basis in terms of the old basis

$$\mathbf{v} = 2\mathbf{i}$$
 $\mathbf{w} = \mathbf{i} + \mathbf{j}$

 $2\mathbf{v} + \mathbf{w}$

Computing linear transformation

• step 1: write down the new basis in terms of the old basis

$$\mathbf{v} = 2\mathbf{i}$$
 $\mathbf{w} = \mathbf{i} + \mathbf{j}$

• step 2: substitute $2\mathbf{v} + \mathbf{w} = 2(2\mathbf{i}) + (\mathbf{i} + \mathbf{j}) = 5\mathbf{i} + \mathbf{j}$

 $2\mathbf{v} + \mathbf{w}$

Computing linear transformation

• step 1: write down the new basis in terms of the old basis

$$\mathbf{v} = 2\mathbf{i}$$
 $\mathbf{w} = \mathbf{i} + \mathbf{j}$

• step 2: substitute

$$x\mathbf{v} + y\mathbf{w} = x(2\mathbf{i}) + y(\mathbf{i} + \mathbf{j}) = (2x + y)\mathbf{i} + y\mathbf{j}$$

xv + yw

Representing linear transformation as a matrix

 $x\mathbf{v} + y\mathbf{w}$

Representing linear transformation as a matrix

$$\mathbf{v} = 2\mathbf{i}$$

$$\mathbf{w} = \mathbf{i} + \mathbf{j}$$

where does i go?

-xi + yj

xv + yw

Representing linear transformation as a matrix

$$\mathbf{v} = 2\mathbf{i}$$

$$\mathbf{w} = \mathbf{i} + \mathbf{j}$$

$$\mathbf{v} = \mathbf{w}$$

$$\begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix}$$

$$\mathbf{v} = \mathbf{i} + \mathbf{j}$$
where does \mathbf{j} go?

 $x\mathbf{v} + y\mathbf{w}$

Applying linear transformation as matrix-vector product

$$\mathbf{v} = 2\mathbf{i}$$

$$\mathbf{w} = \mathbf{i} + \mathbf{j}$$

$$\begin{bmatrix} \mathbf{v} & \mathbf{w} \\ 2 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2x + y \\ y \end{bmatrix}$$

xv + yw

Quiz: what is the matrix form of this transformation?

scaling

$$S_{x}$$
 O S_{y}

x shearing

$$\begin{bmatrix} 1 & \lambda_x \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

 $\cos(\phi + \theta) = \cos(\phi)\cos(\theta) - \sin(\phi)\sin(\theta)$ $\sin(\phi + \theta) = \sin(\phi)\cos(\theta) + \cos(\phi)\sin(\theta)$

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

$$\mathbf{p}' = \left(r\cos\left(\phi + \theta\right), r\sin\left(\phi + \theta\right)\right)$$

$$\mathbf{p} = \left(r\cos\phi, r\sin\phi\right)$$

What about translation?

we can't write translation as a 2x2 matrix! (the basis vectors don't encode the information of where is the origin)

-> translation is not a 2D linear transformation!

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

Trick: augmented matrix

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\downarrow$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Trick: augmented matrix

 $\begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix}$

the 2D transformations represented by this matrix are called **affine transformation**

Augmented matrices allow us to distinguish **points** and **vectors**

points: locations in space

vectors: offsets in space

Augmented matrices allow us to distinguish **points** and **vectors**

points: locations in space

vectors: offsets in space

points are affected by translation

vectors are not affected by translation

Augmented matrices allow us to distinguish **points** and **vectors**

setting the third coordinate to 0 allows us to "turn off" the translation feature

$$\begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} a & b & t_x \\ c & d & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 0 \end{bmatrix}$$

points are affected by translation

vectors are not affected by translation

Combining multiple transformations = multiplying matrices

e.g., first scale (S), then rotate (R), then translate (T)

translate
$$\left(\text{rotate}\left(\text{scale}\left(\mathbf{p}\right)\right)\right) = TRS\mathbf{p}$$

we can premultiply the TRS matrices if we want to apply them to many ps

How do we use linear transformation to render an ellipse?

Object space vs "canvas space"

I invented this term

object space

canvas space

the space we define the object and test whether a point is inside the circle

the space we actually see the transformed circle

Rendering by testing in object space

Rendering by testing in object space

object space

canvas space

we apply the inverse transform F^{-1} to the point, converting it from image space to object space

Rendering by testing in object space

object space canvas space we test in object space which is much simpler F given a point in image space, we want to know if it hits the ellipse

we apply the inverse transform F^{-1} to the point, converting it from canvas space to object space

Dot product

dot products measure projected length of vectors

Dot product

dot products measure projected length of vectors

but we can also compute it by element-wise products — why?

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}_x \mathbf{b}_x + \mathbf{a}_y \mathbf{b}_y$$

we can see $\mathbf{a} \cdot \mathbf{b}$ as applying a linear transformation \mathbf{a}^T to \mathbf{b}

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

$$\mathbf{a}^T = \begin{bmatrix} \mathbf{a}_x & \mathbf{a}_y \end{bmatrix}$$

we can see $\mathbf{a} \cdot \mathbf{b}$ as applying a linear transformation \mathbf{a}^T to \mathbf{b}

let's for now assume a is a unit vector

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

$$\mathbf{a}^T = \begin{bmatrix} \mathbf{a}_x & \mathbf{a}_y \end{bmatrix}$$

we can see $\mathbf{a} \cdot \mathbf{b}$ as applying a linear transformation \mathbf{a}^T to \mathbf{b}

let's for now assume a is a unit vector

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$
where \mathbf{j} goes
 $\mathbf{a}^T = \begin{bmatrix} \mathbf{a}_x & \mathbf{a}_y \end{bmatrix}$
where \mathbf{i} goes

we can see $\mathbf{a} \cdot \mathbf{b}$ as applying a linear transformation \mathbf{a}^T to \mathbf{b}

let's for now assume a is a unit vector

 \mathbf{a}_{x} happens to be the projection length of \mathbf{i} !

we can see $\mathbf{a} \cdot \mathbf{b}$ as applying a linear transformation \mathbf{a}^T to \mathbf{b}

 \mathbf{a}_{x} happens to be the projection length of \mathbf{i} !

if **a** is not a unit vector, just need to scale the result by its length

we can see $\mathbf{a} \cdot \mathbf{b}$ as applying a linear transformation \mathbf{a}^T to \mathbf{b}

$$\mathbf{a} \cdot \mathbf{b} = \mathbf{a}^T \mathbf{b}$$

we can decompose \mathbf{b} into linear combination of \mathbf{i} and \mathbf{j}

therefore, $\mathbf{a} \cdot \mathbf{b} = \text{projecting } \mathbf{b} \text{ to } \mathbf{a} \text{ and scale by}$ $\mathbf{a}' \text{s length}$

See the 3Blue1Brown video!

https://www.youtube.com/watch?v=LyGKycYT2v0

Next: Cameras

