# **Problem D - Medical Imaging**

### **Description**

Your new job at a medical imaging company consists of developing image processing algorithms to detect tumour growth from pairs of computerised axial tomography images. Given a pair of greyscale images (see image below) captured at different times, the image processing equipment aligns the images, and computes the difference between them in order to produce a file with  $m \times n$  values corresponding to pixels of the (aligned) original images. Large positive differences in adjacent positions indicate that a tumour may be developing in that region.



In order to identify possible tumour sites, your decide to develop an algorithm to detect a rectangular shape in the images such that the sum of the corresponding values in the file is as large as possible.

#### Input

Each input is a sequence of test cases as generated by the image processing equipment. For each test case, m and n are given in the first line, such that  $m \times n$  is at most 250 000. Then, m lines of data follow, each line containing n values. The j-th value in line i corresponds to the difference value recorded at position (i,j) in the original images. Another test case may follow on the next line.

### **Output**

The output is the maximum sum of values that may be found in a rectangular shape, printed on a separate line for each test case. If the maximum is negative, then the output should be 0.

## **Example**

#### **Example input:**

3 3 1 2 -1 -3 -1 4 1 -5 -2

#### **Example output:**

4