

Introduction: Specific Topology Quantities 1 Topological Boundary

Gradient of the field line mapping $f_B: r \rightarrow R$. Separatrix: $|\nabla f_B| = \infty$. Quasi-separatrix: $|\nabla f_B| \gg 1$.

Widely used measurement of the gradient is:

$$rac{\|\mathbf{J}\|^2}{|\det \mathbf{J}|}$$

```
, where J is the Jacobian
matrix of the map f.
Q=e+1/e
```


Introduction: Specific Topology Quantities 1

Topological Boundary

Gradient of the field line mapping $f_B: r \rightarrow R$.

Separatrix: $|\nabla f_B| = \infty$.

Quasi-separatrix: $|\nabla f_B| \gg 1$.

Widely used measurement of the

gradient is:

 $Q = \frac{\|\mathbf{J}\|^2}{|\det \mathbf{J}|}$

,where J is the Jacobian matrix of the map f.

$$Q=e+1/e$$

Introduction: Specific Topology Quantities 2 Topological Invariant

Helicity

$$H = \int_{\Omega} (\mathbf{A} \cdot \mathbf{B}) d^{3}\mathbf{x}$$

$$= \int_{\Omega} \int_{\Omega} \mathbf{B}(\mathbf{x}) \times \mathbf{B}'(\mathbf{x}') \cdot \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{3}} d^{3}\mathbf{x}' d^{3}\mathbf{x}$$

$$= \iint d\Phi d\Phi' \mathcal{L}$$

$$\mathcal{L} = \oint \oint d\mathbf{l} \times d\mathbf{l}' \cdot \frac{\mathbf{x} - \mathbf{x}'}{|\mathbf{x} - \mathbf{x}'|^{3}}$$

Relative Helicity

$$H_R = \int_{\Omega} (\mathbf{A} + \mathbf{A}_R) \cdot (\mathbf{B} - \mathbf{B}_R) d^3 \mathbf{x}$$

$$B_R = -\nabla \Phi$$

$$(\mathbf{B}_R - \mathbf{B}) \cdot \mathbf{n} \Big|_{\partial \Omega} = 0$$

Ideal cases

Coronal cases

