Estadística Aplicada a Medidas Nucleares

1. Objetivos de la práctica

- 1. Determinar la desviación estadística de una serie de medidas de la actividad de una muestra radiactiva.
- 2. Comparar la desviación estadística experimental con la desviación estadística de la distribución de Poisson.
 - 3. Estudiar la fiabilidad estadística del detector Geiger-Müller.

2. Medidas de la actividad

Para un tiempo de 10s, tomamos el número de cuentas para distintos voltajes, obteniendo la Tabla 1.

Medida	Cuentas				
1	2358				
2	2247				
3	2217				
4	2232				
5	2209				
6	2219				
7	2256				
8	2247				
9	2213				
10	2245				
11	2257				
12	2279				
13	2196				
14	2258				
15	2289				

Medida	Cuentas				
16	2220				
17	2124				
18	2272				
19	2298				
20	2304				
21	2149				
22	2190				
23	2214				
24	2189				
25	2275				
26	2261				
27	2208				
28	2227				
29	2218				
30	2251				

Tabla 1: Medidas para 10s

3. Tratamiento de datos

La cantidad de medidas tomadas es

$$N = 30$$

por lo tanto, los grados de libertad serán

$$f = N - 1 = 29$$

La media de impulsos por intervalo es, por tanto,

$$\frac{\sum n_i}{N} = 2237, 4$$

Según la distribución de Poisson, la desviación típica de la medida será

$$s_{teor} = \sqrt{n} = 47, 3$$

La desviación tipica experimental

$$s_{exp} = \sqrt{\frac{\sum (n_i - n)^2}{N - 1}} = 46,67$$

A partir de las desviaciones, obtenemos χ^2

$$\chi^2 = \frac{s_{exp}^2}{s_{teor}^2} (N - 1) = 28,23$$

Consultando la tabla de la Figura 1, para los 29 grados de libertad que tenemos, y el χ^2 obtenido, vemos que la probabilidad debe ser muy cercana a 0,50

$$p \simeq 0,50$$

Grados de	Probabilidad							
Libertad	0,99	0,95	0,90	0,50	0,10	0,05	0,01	
2	0,02	0,1	0,21	1,39	4,61	5,99	9,21	
3	0,12	0,35	0,58	2,37	6,25	7,82	11,35	
4	0,3	0,71	1,06	3,36	7,78	9,49	13,28	
5	0,55	1,15	1,61	4,35	9,24	11,07	15,09	
6	0,87	1,64	2,2	5,35	10,65	12,59	16,81	
7	1,24	2,17	2,83	6,35	12,02	14,07	18,48	
8	1,65	2,73	3,49	7,34	13,36	15,51	20,09	
9	2,09	3,33	4,17	8,34	14,68	16,92	21,67	
10	2,56	3,94	4,87	9,34	15,99	18,31	23,21	
11	3,05	4,58	5,58	10,34	17,27	19,68	24,73	
12	3,57	5,23	6,3	11,34	18,55	21,03	26,22	
13	4,11	5,89	7,04	12,34	19,81	22,36	27,68	
14	4,66	6,57	7,79	13,34	21,06	23,68	29,14	
15	5,23	7,26	8,55	14,34	22,31	25	30,58	
16	5,81	7,96	9,31	15,34	23,54	26,3	32	
17	6,41	8,67	10,09	16,34	24,77	27,59	33,41	
18	7,01	9,39	10,86	17,34	25,99	28,87	34,81	
19	7,63	10,12	11,65	18,34	27,2	30,14	36,19	
20	8,26	10,85	12,44	19,34	28,41	31,41	37,57	
21	8,9	11,59	13,24	20,34	29,61	32,67	38,93	
22	9,54	12,34	14,04	21,34	30,81	33,92	40,29	
23	10,2	13,09	14,85	22,34	32,01	35,17	41,64	
24	10,86	13,85	15,66	23,34	33,2	36,41	42,98	
25	11,52	14,61	16,47	24,34	34,38	37,38	44,31	
26	12,2	15,38	17,29	25,34	35,56	38,88	45,64	
27	12,88	16,15	18,11	26,34	36,74	40,11	46,96	
28	13,57	16,93	18,94	27,34	37,92	41,34	48,28	
29	14,26	17,71	19,77	28,34	39,09	42,56	49,59	

Figura 1: Probabilidad según grados de libertad

4. Discusión

Podemos comprobar como la desviación típica teórica y la experimental son muy similares. De hecho, la diferencia entre ambas respecto a la teórica es de

$$\frac{s_{teor}-s_{exp}}{s_{teor}}=0,013\longrightarrow 1,3\,\%$$

El valor de la probabilidad pa partir del χ^2 se presenta dentro de los criterios de aceptación

$$0,10$$

Por tanto, se puede concluir que existe una correspondencia biunóvica entre el número de sucesos ionizantes n y el número de impulsos detectados m, y el detector se considera estadísticamente fiable.