Notes du Cours : MATH2308P

Cours assuré par Sébastien GODILLON

Fiche 译正X rédigé par Corentin 邱天意 Semestre 2024-2025-2

1 Notations

Couleurs pour les tcolorboxes :

Définition/théorème/lemme

The color arugument is "red".

Proposition/propriété

The color argument is "blue".

Remarque

The color argument is "yellow".

Exemple

The color argument is "cyan".

Rappel

The color argument is "gray".

Corollaire

The color argument is "purple".

Ces tcolorboxes seront numérotés (sauf les corollaires qui seront nommés comme "Corollaire du théorème x.y").

Exemple : "Définition 2.3" sera la troisième définition du deuxième chapitre.

Table des matières

1	Notations	2
Ι	Espaces vectoriels normés	4
1	Normes et distances	4
2	Exemples d'espaces vectoriels normés	8
	2.1 Cas de la dimension finie	8
	2.2 Espaces préhilhertiens	1/1

Première partie

Espaces vectoriels normés

On commence notre travail avec les espaces vectoriels normés.

Dans tout ce chapitre, E désigne un \mathbb{K} -espace vectoriel, où $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , et on note 0_E le vecteur nul de E.

1 Normes et distances

Définition 1.1

Une **norme** sur E est une application de E dans \mathbb{R} . Elle a pour notation N, et elle vérifie les propriétés suivantes :

$$-- \forall x \in E, N(x) = 0 \Rightarrow x = 0_E$$
 (séparation)

$$- \forall (\lambda, x) \in \mathbb{K} \times E, N(\lambda x) = |\lambda| N(x)$$
 (homogénéité absolue)

$$-- \forall (x,y) \in E^2, \quad N(x+y) \le N(x) + N(y)$$
 (sous-additivité)

Dans le deuxième point, $|\lambda|$ peut représenter la valeur absolue(en \mathbb{R}) ou le module(en \mathbb{C}), et ça dépend de l'ensemble dans lequel on se place.

Définition 1.2

Si N est une norme sur E, alors on dit que (E, N) est un **espace vectoriel normé**.

Proposition 1.1

Soit N une norme sur E, alors on a:

$$-N(0_E)=0$$
 (réciproque de la séparation)

$$-- \forall x \in E, \quad N(x) \ge 0$$
 (positivité)

$$-- \forall (x,y) \in E^2, \quad |N(x) - N(y)| \le N(x-y)$$
 ("continuité")

Petit remarque 1 : la première nous donne l'équivalence dans la propriété de séparation :

$$\forall x \in E, N(x) = 0 \iff x = 0_E$$

Petit remarque 2 : dans la troisième, |N(x) - N(y)| désigne la valeur absolue puisque la norme est une application dans \mathbb{R} .

Preuve : Soient $(x, y) \in E^2$.

- $N(0_E) = N(0.x) = |0|N(x) = 0$, donc on a : $N(0_E) = 0$.

Remarque : ne mélangez pas 0_E et 0.

— D'après la propriété qu'on vient de démontrer, on a :

$$0 = N(0_E) = N(x - x) = N(x + (-x))$$

De plus, par sous-additivité, on a :

$$N(x + (-x)) < N(x) + N(-x) = N(x) + |-1|N(x) = 2N(x)$$

On obtient $N(x) \ge 0$ en mettant les deux relations ensemble.

— Rappel : $|x| \ge k \iff -k \le x \le k$.

Donc il faut démontrer les inégalités à gauche et à droite.

- $N(x) = N(x y + y) \le N(x y) + N(y)$ (par sous-additivité), et on trouve la relation $N(x) N(y) \le N(x y)$.
- De même façon on trouve l'autre, en utilisant N(y) au début : $-N(x-y) \le N(x) N(y)$.

Ces deux inégalités nous donnent le résultat : $\forall (x,y) \in E^2$, $|N(x) - N(y)| \leq N(x-y)$.

Remarque 1.1

Les normes sont les objets qui généralisent la valeur absolue et le module pour les espaces vectoriels plus grands que \mathbb{K} .

Rappel 1.1

Pour qu'on puisse commencer à étudier les distances, on rappelle que :

- La valeur absolue du réel a représent la distance entre 0 et a sur la droite réelle.
- Même chose pour le module pour les complexes, mais cette fois on trouve la distance sur le plan complexe.
- Plus généralement |a-b| représent la distance entre a et b.

Définition 1.3

Soit (E, N) un espace vectoriel normé, alors l'application :

$$d: \begin{cases} E^2 \to [0, +\infty[\\ (a, b) \mapsto d(a, b) = N(a - b) \end{cases}$$

est une distance sur E. De plus, elle vérifie 3 propriétés :

$$-- \forall (a,b) \in E^2, d(a,b) = d(b,a)$$
 (symétrie)

$$-- \forall (a,b) \in E^2, d(a,b) = 0 \iff a = b$$
 (séparation)

—
$$\forall (a, b, c) \in E^3, d(a, b) \le d(a, c) + d(c, b)$$
 (inégalité triangulaire)

Remarque : la deuxième propriété se démontre avec la séparation des normes, et la troisième avec la homogénéité absolue.

Propriété 1.1

Notre espace vectoriel normé (E,d) est un **espace métrique**.

Vous pouvez regarder les autres livres pour la définition d'un espace métrique, qui est essentiellement un ensemble muni d'une distance :).

Propriété 1.2

La translation et l'homothétie, on les a vu au MATH1301P, dans le chapitre de la géométrie euclidienne. La norme vérifie aussi ces deux propriétés :

- d est invariante par translation, c'est-à-dire : $\forall (t, x, y) \in E^3, d(x+t, y+t) = d(x, y)$.
- d est absoluement homogène par homothétie, c'est-à-dire : $\forall (\lambda, x, y) \in \mathbb{K} \times E^2, d(\lambda x, \lambda y) = |\lambda| d(x, y).$

Remarque 1.2

On peut aussi faire de la topologie dans les espaces métriques, la théorie est plus générale(car on a pas besoin de la structure d'espace vectoriel).

Les espaces métriques fournissent un cadre plus général que les espaces vectoriels normés pour introduire les différentes notions de topologie de ce chapitre. Cependant, on se limitera ici à l'étude moins abstraite des espaces vectoriels normés afin de pouvoir continuer à utiliser les opérations classiques d'algèbre linéaire.

Définition 1.4

Soit (E, N) un espace vectoriel normé, on définit :

— La **boule ouverte** de centre $a \in E$ et de rayon r > 0.

$$B(a,r) = \{x \in E | N(x-a) < r\}.$$

C'est l'ensemble des vecteurs à une distance de a strictement plus petite que r.

— La **boule fermé** de centre $a \in E$ et de rayon r > 0.

$$\overline{B}(a,r) = \{x \in E | N(x-a) \le r\}.$$

— La **sphère** de centre $a \in E$ et de rayon r > 0.

$$\partial B(a,r) = \{ x \in E | N(x-a) = r \}.$$

Propriété 1.3

On peut passer d'une boule à une autre(de la même nature), à l'aide d'une translation et une homothétie.

En particulier, $\forall (a,r) \in E \times]0, +\infty[$, on a $B(a,r) = a + rB(0_E, 1)$.

L'addition de a et la multiplication par r sont respectivement la translation et la homothétie. Mais attention, on commence toujours par la homothétie, car l'inverse nous donnerait une boule agrandie.

Preuve: Soient $B(a_1, r_1)$ et $B(a_2, r_2)$ deux boules, où $(a_1, a_2) \in E^2$ et $(r_1, r_2) \in (0, +\infty)^2$.

— On peut démontrer que l'opération de translation est faisable en justifiant l'égalité entre ces deux ensembles suivants : $B(a_1, r_1) = a_1 + r_1 B(0_E, 1)$. Vous devez procéder

par double inclusion.

— On raisonne étape par étape pour la homothétie :

$$B(a_1, r_1) = a_1 + B(0_E, r_1) = a_1 + \frac{r_1}{r_2}B(0_E, r_2)$$

Comme on a dit déjà qu'on peut faire la translation par un vecteur, on manipule :

$$a_1 + \frac{r_1}{r_2}(B(a_2, r_2) - a_2) = a_1 - \frac{r_1 a_2}{r_2} + \frac{r_1}{r_2}B(a_2, r_2)$$

C'est la même preuve pour toutes les boules ouvertes, fermées et les sphères.

2 Exemples d'espaces vectoriels normés

2.1 Cas de la dimension finie

On fixe un entier $n \geq 1$, et on considère l'espace vectoriel $E = \mathbb{K}^n$.

Définition 1.5

Pour tout $x = (x_1, x_2, ... x_n) \in \mathbb{K}^n$, on définit :

$$||x||_1 = \sum_{k=1}^n |x_k|$$

et:

$$||x||_{\infty} = \max_{k \in [\![1,n]\!]} |x_k|$$

Propriété 1.4

 $||x||_1$ et $||x||_{\infty}$ sont les normes sur \mathbb{K}^n , appelées les normes 1 et infinie.

Preuve: Soient $x = (x_1, x_2, ... x_n) \in \mathbb{K}^n$ et $y = (y_1, y_2, ... y_n) \in \mathbb{K}^n$

On va démontrer que ces applications vérifient les trois propriétés.

— (séparation)

On remarque que, pour tout $k \in [1, n]$, on a :

$$0 \le |x_k| \le ||x||_{\infty} \le ||x||_1$$

Donc, si on a $||x||_1 = 0$ ou $||x||_{\infty} = 0$, alors $x_k = 0$ pour tout k.

— (homogénéité absolue)

Soit $\lambda \in \mathbb{K}$, on a :

$$\|\lambda x\|_{1} = \|(\lambda x_{1}, \lambda x_{2}, \dots, \lambda x_{n})\|_{1} = \sum_{k=1}^{n} |\lambda x_{k}| = |\lambda| \sum_{k=1}^{n} |x_{k}| = |\lambda| ||x||_{1}$$
$$\|\lambda x\|_{\infty} = \max_{k \in [1, n]} |\lambda x_{k}| = |\lambda| \max_{k \in [1, n]} |x_{k}| = |\lambda| ||x||_{\infty}$$

On a utilisé la linéarité de |.| pour K.

— (sous-additivité)

$$||x+y||_1 = \sum_{k=1}^n (|x_k + y_k|)$$

$$\leq \sum_{k=1}^n (|x_k| + |y_k|) \quad \text{(sous-additivit\'e de } |\cdot| \text{ sur } \mathbb{K}\text{)}$$

$$= \sum_{k=1}^n |x_k| + \sum_{k=1}^n |y_k| \quad \text{(lin\'earit\'e)}$$

$$= ||x||_1 + ||y||_1.$$

Pour $\|\cdot\|_{\infty}$, on commence par remarquer que $\forall k \in [1, n]$,

On a : $|x_k + y_k| \le |x_k| + |y_k| \le ||x||_{\infty} + ||y||_{\infty}$, qui ne dépend pas de k.

Donc:

$$\max_{k \in [1,n]} |x_k + y_k| \le ||x||_{\infty} + ||y||_{\infty}$$

Conclusion : $||.||_1$ et $||.||_{\infty}$ sont des normes sur \mathbb{K}^n .

Exemple 1.2

Pour n=2 et $\mathbb{K}=\mathbb{R}$, on peut représenter graphiquement les boules unités des normes $||x||_1$ et $||x||_{\infty}$.

Définition 1.6

Pour tout réel $p \ge 1$ et tout vecteur $x = (x_1, x_2, ... x_n) \in \mathbb{K}^n$, on définit :

$$||x||_p = (\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}$$

Remarque : Pour p = 1 on retrouve la norme $||.||_1$.

Preuve : On veut démontrer que $||x||_p$ est aussi une norme.

Plus tard. On aura besoin de démontrer autres lemmes et inégalités avant de commencer la preuve de cette définition. Plus spécifiquement, on va démontrer un lemme, qui est essentiel pour démontrer l'inégalité de Hölder, qui nous donnera un corollaire(Inégalité de Minkowski), qui sera utile pour montrer la sous-additivité de $||x||_p$.

Propriété 1.5

On a : $\lim_{p\to+\infty} ||x||_p = ||x||_{\infty}$

Preuve: Soit $p \ge 1$ et $x = (x_1, \dots, x_n) \in \mathbb{K}^n$.

On pose $I = \{k \in [1, n] \mid |x_k| = ||x||_{\infty}\} \neq \emptyset$.

On a:

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} = \left(\sum_{k=1,k\in I}^n |x_k|^p + \sum_{k=1,k\notin I}^n |x_k|^p\right)^{\frac{1}{p}}$$
$$= \left(\operatorname{card}(I) + \sum_{k=1,k\notin I}^n \left(\frac{|x_k|}{\|x\|_{\infty}}\right)^p\right)^{\frac{1}{p}} \cdot ||x||_{\infty}$$

$$\longrightarrow ||x||_{\infty}$$
 lorsque $p \to +\infty$

Donc on a : $||x||_p \xrightarrow[p \to +\infty]{} ||x||_{\infty}$.

Remarque : on peut dire que $\sum_{k=1,k\notin I}^n \left(\frac{|x_k|}{\|x_k\|_{\infty}}\right)^p$ tend vers 0 parce que $\frac{|x_k|}{\|x_k\|_{\infty}}$ est strictement plus petit que 1, et le fait que c'est une somme finie.

Lemme 1.1(pour l'inégalité de Hölder après)

Pour tout réel a et b positifs et $(p,q) \in [1,+\infty]^2 {\rm tel}$ que $\frac{1}{p} + \frac{1}{q} = 1,$ on a

$$ab \le \frac{a^p}{p} + \frac{b^q}{q},$$

Preuve: On fixe $b \ge 0$ et on pose la fonction

$$f: x \mapsto f(x) = \frac{x^p}{p} + \frac{b^q}{q} - xb.$$

Elle est dérivable sur $]0, +\infty[$, et

$$\forall x > 0, \quad f'(x) = x^{p-1} - b.$$

Or, p > 1, donc $x^{p-1} - b$ est strictement croissante.

$$f'(x) < 0$$
 pour $x < b^{\frac{1}{p-1}}$
 $f'(x) = 0$ pour $x = b^{\frac{1}{p-1}}$
 $f'(x) > 0$ pour $x > b^{\frac{1}{p-1}}$

Cela montre que f(x) admet un minimum en $x = b^{\frac{1}{p-1}}$.

Et ce minimum vaut :

$$f\left(b^{\frac{1}{p-1}}\right) = \frac{b^{\frac{p}{p-1}}}{p} + \frac{b^q}{q} - b^{\frac{p}{p-1}}.$$

Or, $\frac{p}{p-1} = \frac{1}{1-\frac{1}{p}} = q$, donc

$$f\left(b^{\frac{1}{p-1}}\right) = \left(\frac{1}{p} + \frac{1}{q} - 1\right)b^q = 0.$$

C'est-à-dire que f est positive sur $[0, +\infty[$. En particulier, pour $a \ge 0$, on a :

$$f(a) = \frac{a^p}{p} + \frac{b^q}{q} - ab \ge 0, \quad \text{d'où} \quad ab \le \frac{a^p}{p} + \frac{b^q}{q}.$$

Théorème 1.1 : Inégalité de Hölder

Soient $x = (x_1, x_2, \dots, x_n) \in \mathbb{K}^n$ et $y = (y_1, y_2, \dots, y_n) \in \mathbb{K}^n$.

On se donne $p \in [1, +\infty]$ et $q \in [1, +\infty]$ tels que $\frac{1}{p} + \frac{1}{q} = 1$, alors

$$\sum_{k=1}^{n} |x_k y_k| \le ||x||_p ||y||_q.$$

Preuve:

Premier cas:

Supposons qu'on a : p = 1 et $q = +\infty$

En utilisant la linéarité et en remplaçant les normes usuelles on a :

$$\sum_{k=1}^{n} |x_k y_k| = \sum_{k=1}^{n} |x_k| |y_k| \le \left(\sum_{k=1}^{n} |x_k| \right) ||y||_{\infty} = ||x||_1 ||y||_{\infty}.$$

De même, pour la situation $p=+\infty$ et q=1, l'inégalité est évidente.

Deuxième cas:

Désormais on suppose que $(p,q) \in]1, +\infty[^2$

- On remarque que si $||x||_p = 0$, alors $x_k = 0$ pour tout $k \in [1, n]$ (par séparation), qui donne $x = 0_k$ (de même si $||y||_q = 0$). Donc l'inégalité est triviale dans ce cas.
- Supposons que $(p,q) \in]1, +\infty[^2$ et que $||x||_p \neq 0$, $||y||_q \neq 0$. On applique le lemme avec $a = \frac{|x_k|}{||x||_p}$ et $b = \frac{|y_k|}{||y||_q}$ (les deux dénominateurs sont non-nuls):

$$\sum_{k=1}^{n} \frac{|x_k y_k|}{\|x\|_p \|y\|_q} = \sum_{k=1}^{n} \frac{|x_k|}{\|x\|_p} \frac{|y_k|}{\|y\|_p} \le \sum_{k=1}^{n} \left(\frac{1}{p} \frac{|x_k|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_k|^q}{\|y\|_q^q} \right).$$

On peut retirer les constantes et on obtient :

$$\sum_{k=1}^{n} \left(\frac{1}{p} \frac{|x_k|^p}{\|x\|_p^p} + \frac{1}{q} \frac{|y_k|^q}{\|y\|_q^q} \right) \leq \frac{1}{p\|x\|_p^p} \sum_{k=1}^{n} |x_k|^p + \frac{1}{q\|y\|_q^q} \sum_{k=1}^{n} |y_k|^q = \frac{1}{p} + \frac{1}{q} = 1$$

Donc,

$$\sum_{k=1}^{n} \frac{|x_k y_k|}{\|x\|_p \|y\|_q} \le \frac{1}{p} + \frac{1}{q} = 1.$$

En multipliant par $||x||_p ||y||_q$, on obtient l'inégalité de Hölder :

$$\sum_{k=1}^{n} |x_k y_k| \le ||x||_p ||y||_q.$$

Corollaire du théorème 1.1 : Inégalité de Minkowski

Pour tout réel $p \in [1, +\infty]$, on a :

$$\forall (x,y) \in (\mathbb{K}^n)^2, ||x+y||_p \leq ||x||_p + ||y||_p$$

Cela peut nous donner la sous-additivité de ||.||_p

Preuve : de Minkowski

On sait déjà que l'inégalité est vraie pour p=1 ou $+\infty$ car on reconnaît la sous-additivité des normes 1 et $+\infty$. Donc on va supposer que $p \in]1, +\infty[$.

Posons $q=\frac{1}{1-\frac{1}{p}}=\frac{p}{p-1}$, pour qu'on puisse utiliser l'inégalité de Hölder démontrée avant. On a $\frac{1}{p}+\frac{1}{q}=1$.

Soient $x = (x_1, x_2, \dots, x_n) \in \mathbb{K}^n$ et $y = (y_1, y_2, \dots, y_n) \in \mathbb{K}^n$, on a :

$$||x + y||_p^p = \sum_{k=1}^n |x_k + y_k|^p = \sum_{k=1}^n |x_k + y_k| |x_k + y_k|^{p-1}$$

Par sous-additivité de la valeur absolue et la linéarité de la somme :

$$(\dots \text{continu\'e}) \le \sum_{k=1}^{n} |x_k| |x_k + y_k|^{p-1} + \sum_{k=1}^{n} |y_k| |x_k + y_k|^{p-1}$$

Par inégalité de Hölder :

$$(\dots continu\acute{e}) \le ||x||_p \left(\sum_{k=1}^n |x_k + y_k|^{q(p-1)} \right)^{\frac{1}{q}} + ||y||_p \left(\sum_{k=1}^n |x_k + y_k|^{q(p-1)} \right)^{\frac{1}{q}}$$

Comme on a posé q en utilisant p, on remplace :

(...continué) =
$$(\|x\|_p + \|y\|_p) \left(\sum_{k=1}^n |x_k + y_k|^p \right)^{\frac{1}{q}} = (\|x\|_p + \|y\|_p) \|x + y\|_p^{\frac{p}{q}}$$

On organise un peu : $||x+y||_p^p \le (||x||_p + ||y||_p) ||x+y||_p^{\frac{p}{q}}$. En divisant par $||x+y||_p^{\frac{p}{q}}$ et en remplaçant q on trouve l'inégalité de Minkowski :

$$||x+y||_p \le ||x||_p + ||y||_p$$

Maintenant on peut retourner finalement à la norme p.

Corollaire de l'inégalité de Minkowski

C'est en effet la définition 1.6.

Pour tout réel $p \in [1, +\infty]$ et tout vecteur $x = (x_1, x_2, ...x_n) \in \mathbb{K}^n$, on définit :

$$||x||_p = (\sum_{k=1}^n |x_k|^p)^{\frac{1}{p}}$$

Elle est une norme sur \mathbb{K}^n , appelée la norme p.

Preuve:

— (Séparation)

On sait déjà que pour les cas p=1 ou $p=+\infty$, la séparation est vérifiée.

Supposons que $p \in]1, +\infty[$.

$$||x||_p = \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} = 0 \Rightarrow x_k = 0 \text{ pour tout } k \in [1, n]$$
$$\Rightarrow x = 0_{\mathbb{K}^n}.$$

— (Absolue homogénéité)

$$\|\lambda x\|_p = \left(\sum_{k=1}^n |\lambda x_k|^p\right)^{\frac{1}{p}} = |\lambda|^{p\frac{1}{p}} \left(\sum_{k=1}^n |x_k|^p\right)^{\frac{1}{p}} = |\lambda| \|x\|_p$$

par la linéarité de la somme.

— (Sous-additivité) : par l'inégalité de Minkowski.

Exemple 1.3

Dans $\mathbb{R}^2,$ les boules unités (ouvertes) pour $\|\cdot\|_p$ où $p\in[1,+\infty]$ sont :

$$B(0_{\mathbb{K}^n}, 1) = \{(x, y) \in \mathbb{R}^2 \mid ||(x, y)||_p < 1\}$$

Elles peuvent être représentées graphiquement.

2.2 Espaces préhilbertiens

Soit E un \mathbb{R} -espace vectoriel, avec $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} .

Définition 1.7

Un **produit scalaire** sur E est une application ϕ :

$$\phi: \begin{cases} E \times E \to \mathbb{K} \\ (x,y) \mapsto \phi(x,y) \end{cases}$$

telle que :

— ϕ est **hermitien**: $\forall (x,y) \in E^2, \ \phi(x,y) = \overline{\phi(y,x)}.$

Et si $\mathbb{K} = \mathbb{R}$, c'est la **symétrie**.

— ϕ est linéaire à gauche : $\forall \lambda \in \mathbb{K}$ et $\forall (x_1, x_2, y) \in E^3$

$$\phi(x_1 + \lambda x_2, y) = \phi(x_1, y) + \lambda \phi(x_2, y).$$

— ϕ est définie positive : $\forall x \in E \setminus \{0_E\}, \ \phi(x,x) > 0$.

Remarque 1.3

On rappele que $z = \overline{z}$ est équivalente à $z \in \mathbb{R}$.

Puisque ϕ est hermitien, on a $\phi(x,x) = \overline{\phi(x,x)}$, donc $\phi(x,x) \in \mathbb{R}$.

Et comme ϕ est définie positive, on a $\phi(x,x) \in \mathbb{R}_{+}^{*}$.

Définition 1.8

Soit ϕ un produit scalaire sur E, on dit que (E, ϕ) est un **espace préhilbertien**.

Remarque 1.4

En MATH2306P, on a vu que si E est un \mathbb{R} -espace vectoriel de dimension finie, on l'appelle un **espace euclidien**.

Propriété 1.6

Soit (E, ϕ) un espace préhilbertien, alors on a deux propriétés :

$$-\forall x \in E, \phi(x,x) = 0_E \iff x = 0_E.$$

(séparation)

$$- \forall \lambda \in \mathbb{K}, \forall (x, y_1, y_2) \in E^3$$
, on a:

$$\phi(x, y_1 + \lambda y_2) = \phi(x, y_1) + \overline{\lambda}\phi(x, y_2)$$

C'est ce qu'on appelle la "sesquilinéarité à droite" de ϕ .

Preuve de la séparation : Double implication

- (\Longrightarrow) Si $\phi(x,x)=0$ alors $x=0_E$, car $x\neq 0_E \Rightarrow \phi(x,x)>0$ (définie positive).
- (\iff) Si $x = 0_E$, alors $\forall y \in E, \phi(0_E, y) = 0$ car ϕ est linéaire. En particulier, pour $y = x = 0_E$, on a : $\phi(x, x) = \phi(0_E, 0_E) = 0$.

Par double implication on trouve la propriété de la séparation.

Preuve de la sesquilinéarité On utilise les propriétés du produit scalaire

Comme Φ est hermitien, on a :

$$\phi(x, y_1 + \lambda y_2) = \overline{\phi(y_1 + \lambda y_2, x)}$$

En utilisant la linéarité du produit scalaire et la linéarité de la conjugaison :

$$\overline{\phi(y_1 + \lambda y_2, x)} = \overline{\phi(y_1, x)} + \overline{\lambda \phi(y_2, x)} = \phi(x, y_1) + \overline{\lambda \phi(x, y_2)}$$

Cette dernière égalité est vraie car le produit est hermitien.

Remarque 1.5

Dans le cas où $\mathbb{K} = \mathbb{R}$, on a :

- Hermitien ⇒ symétrique, car le conjugué d'un réel est lui-même.
- Sesquilinéarité à droite \Rightarrow linéarité à droite pour le même raison.

On a vu le semestre précédent qu'un produit scalaire dans un \mathbb{R} -espace vectoriel de dimension finie est une forme bilinéaire symétrique définie positive.

Pour bien distinguer les cas réels et complexes, on dit produit scalaire **euclidien** si $\mathbb{K} = \mathbb{R}$, et produit scalaire **hermitien** si $\mathbb{K} = \mathbb{C}$.

Attention! ϕ n'est pas bilinéaire si $\mathbb{K} = \mathbb{C}$! En fait, une forme bilinéaire symétrique définie positive ne peut pas exister pour $\mathbb{K} = \mathbb{C}$, car sinon on aura :

$$\phi(ix, ix) = i^2 \phi(x, x) < 0$$

Ce qui contredit la positivité. Mais pour un produit scalaire hermitien, tout va bien grâce à la linéarité à gauche et la sesquilinéarité à droite :

$$\phi(ix, ix) = i \cdot \bar{i}\phi(x, x)$$

Exemple 1.4

On prend $E = \mathbb{K}^n$.

Soient $x = (x_1, \dots, x_n) \in \mathbb{K}^n$ et $y \in (y_1, \dots, y_n) \in \mathbb{K}^n$, on vérifie facilement que :

$$\phi(x,y) = \langle x,y \rangle = \sum_{k=1}^{n} x_k \overline{y_k}.$$

est un produit scalaire, appelé le produit scalaire canonique.

On remarque que $\forall x = (x_1, \dots, x_n) \in \mathbb{K}^n$, $\sqrt{\langle x, x \rangle} = ||x||_2$, c'est le module dans \mathbb{C} .

De plus, soient $x=(x_1,\ldots,x_n)\in\mathbb{K}^n$ et $y\in(y_1,\ldots,y_n)\in\mathbb{K}^n$. Par la sous-additivité du module et par l'inégalité de Hölder(car $\frac{1}{2}+\frac{1}{2}=1$):

$$|\langle x, y \rangle| = \left| \sum_{k=1}^{n} x_k \overline{y_k} \right| \le \sum_{k=1}^{n} |x_k y_k| \le ||x||_2 ||y||_2 = \sqrt{\langle x, x \rangle} \cdot \sqrt{\langle y, y \rangle}$$

C'est l'inégalité de **Cauchy-Schwarz**, elle se généralise à tout produit scalaire et est essentielle pour montrer que $x \mapsto \sqrt{\langle x, x \rangle}$ est une norme sur E.

Théorème 1.2 : Inégalité de Cauchy-Schwarz

Soit (E, ϕ) un espace préhilbertien et $(x, y) \in E^2$. On a :

$$|\phi(x,y)| \le \sqrt{\phi(x,x)} \cdot \sqrt{\phi(y,y)}$$

Preuve : On doit séparer les cas $\mathbb{K} = \mathbb{R}$ et $\mathbb{K} = \mathbb{C}$

Traitons d'une manière générale :

Si $\phi(x,y) = 0$ alors l'inégalité est évidente, il n'y a rien à faire.

Supposons que $\phi(x,y) \neq 0$. En particulier, $\phi(x,x) \neq 0$, (car sinon $x=0_E$ et $\phi(x,x)=0$)

On considère la fonction f définie par :

$$\forall t \in \mathbb{R}, \quad f(t) = \phi(tx + y, tx + y) \ge 0.$$

On a par linéarité à gauche :

$$\forall t \in \mathbb{R}, \quad f(t) = \phi(tx + y, tx + y) = t\phi(x, tx + y) + \phi(y, tx + y)$$

Et par sesquilinéarité à droite :

$$t\phi(x, tx + y) + \phi(y, tx + y) = t^2\phi(x, x) + t\phi(x, y) + t\phi(y, x) + \phi(y, y)$$

On connecte les égalités, et comme ϕ est hermitien :

$$f(t) = \phi(x, x)t^2 + 2\operatorname{Re}(\phi(x, y))t + \phi(y, y)$$

On reconnaît une fonction polynomiale de degré 2. $(\phi(x,x) \neq 0)$, qui est **positive** sur \mathbb{R} . C'est-à-dire qu'elle admet au plus une racine réelle. On en déduit que Δ est négatif.

On a:

$$\Delta = 4\operatorname{Re}(\phi(x,y))^2 - 4\phi(x,x)\phi(y,y) \le 0$$

Donc:

$$|\operatorname{Re}(\phi(x,y))| \le \sqrt{\phi(x,x)} \cdot \sqrt{\phi(y,y)}$$

On en déduit immédiatement l'inégalité de Cauchy-Schwarz pour $\mathbb{K} = \mathbb{R}$.

Traitons maintenant le cas $\mathbb{K} = \mathbb{C}$:

Puisque cette inégalité est vraie pour tout $(x,y) \in E^2$, on peut remplacer y par $\phi(x,y)y$, et on peut manipuler en utilisant les propriétés.

On a:

$$\phi(x,\phi(x,y)y) = \overline{\phi(x,y)} \cdot \phi(x,y)$$
 (par sesquilinéarité)

$$= |\phi(x,y)|^2 \in \mathbb{R}_+.$$

Donc $|\text{Re}(\phi(x,\phi(x,y)y))| = |\phi(x,y)|^2$. D'après la linéarité et la sesquilinéarité, on a aussi :

$$\phi\left(\phi(x,y)y,\phi(x,y)y\right) = \phi(x,y)\overline{\phi(x,y)}\phi(y,y) = |\phi(x,y)|^2\phi(y,y)$$

Donc:

$$\sqrt{\phi\left(\phi(x,y)y,\phi(x,y)y\right)} = |\phi(x,y)| \cdot \sqrt{\phi(y,y)}.$$

Par conséquence :

$$|\phi(x,y)|^2 \le \sqrt{\phi(x,x)} \cdot |\phi(x,y)| \cdot \sqrt{\phi(y,y)}.$$

On simplifie par $|\phi(x,y)|$ car il est non nul, et on obtient l'inégalité de Cauchy-Schwarz pour les complexes.

Corollaire de l'inégalité de Cauchy-Schwarz

Soit (E, ϕ) un espace préhilbertien.

Alors $x \mapsto ||x|| = \sqrt{\phi(x,x)}$ est une norme sur E, appelée la **norme euclidienne** si $\mathbb{K} = \mathbb{R}$ et la **norme hermitienne** si $\mathbb{K} = \mathbb{C}$.

Preuve:

- La séparation est déjà faite.
- L'homogénéité absolue se démontre facilement avec la linéarité et la sesquilinéarité.
- Sous-additivité :

$$||x + y||^2 = \phi(x + y, x + y) = \phi(x, x) + \phi(x, y) + \phi(y, x) + \phi(y, y)$$
$$= ||x||^2 + 2\operatorname{Re}(\phi(x, y)) + ||y||^2 \le ||x||^2 + 2||x|| ||y|| + ||y||^2$$

$$=(||x||+||y||)^2$$

On prend la racine carrée : $||x + y|| \le ||x|| + ||y||$.