При решении задач желательно упростить описание схемы. Один из приемов, позволяющий это сделать состоит в том, что часть схемы с двумя зажимами рассматривают как двухполюсник с описанными свойствами, не интересуясь процессами происходящими внутри него.

Двухполюсники – это любая часть схемы, рассматриваемая относительно двух зажимов.

Двухполюсники классифицируются следующим образом.

- 1. Пассивные двухполюсники это такие, которые содержат только пассивные элементы и не содержат источников энергии.
- 2. Активные автономные двухполюсники содержат автономные источники. Если от двухполюсника отключить все внешние цепи и оставить его зажимы разомкнутыми, то обнаружится, что между ними есть напряжение (если замкнуть зажимы, то по ним потечет ток).
- 3. Активные неавтономные двухполюсники содержат пассивные элементы и только управляемые источники.

Метод эквивалентного генератора применяют для расчета тока в одной ветви схемы не содержащей управляемого источника и, в общем случае, не имеющей индуктивных связей с оставшейся частью схемы. Он основан на теореме об эквивалентном генераторе: любую часть схемы, рассматриваемую относительно двух зажимов, можно заменить эквивалентным генератором с

параметрами U_{xx} , I_{κ_3} , $R_{ex}=\frac{U_{xx}}{I_{\kappa_3}}$ при этом режим во внешней цепи не изменится.

МЭГ состоит в том, что сопротивление ветви, в которой требуется найти ток, считают сопротивлением нагрузки, а всю остальную часть схемы — активным двухполюсником. Этот двухполюсник заменяют эквивалентным генератором с параметрами U_{xx} , I_{κ^3} , $R_{\rm ex} = \frac{U_{xx}}{I_{\kappa^3}}$ и находят ток через сопротивление нагрузки.

Примерный порядок расчета

- 1. Выбирают положительное направление тока I_H в ветви с нагрузкой.
- 2. Удаляют сопротивление нагрузки $R_{\scriptscriptstyle H}$ и в месте разрыва изображают стрелку, направленную так же, как ток $I_{\scriptscriptstyle H}$ в ветви нагрузки. Стрелка указывает направление напряжения холостого хода $U_{\scriptscriptstyle xx}$
 - 3. Находят величину U_{xx} :
- записывают уравнение по второму закону Кирхгофа для фиктивного контура, включающего U_{xx} и не вносящего дополнительных неизвестных $U_{\mathtt{J}}$;
- в режиме холостого хода рациональным методом находят токи ветвей, входящие в уравнение для $U_{\mbox{\tiny {\it xx}}}$
 - рассчитывают величину $U_{\scriptscriptstyle xx}$.
- 4. Определяют входное сопротивление $R_{\rm BX}$ относительно точек разрыва. Возможно несколько способов:
 - а) $R_{\rm ex}=\frac{U_{_{_{XX}}}}{I_{_{_{K3}}}}$, где $I_{_{_{K3}}}$ ток короткого замыкания, направленный также как $I_{_{H}}$;
- б) при отсутствии в схеме управляемых источников расчет входного сопротивления рациональнее всего выполнять сворачиванием схемы к входным зажимам пассивной схемы, полученной из активной схемы, путем замены автономных источников энергии их внутренними сопротивлениями;
- в) в схеме с автономными и управляемым источниками энергии автономные источники энергии заменяют их внутренними сопротивлениями. К зажимам полученной схемы подключают пробный источник и рассчитывают неизвестный пробный ток. Получают $R_{\rm ex}$ как

$$R_{\mathrm{ex}} = rac{E_{\mathit{\PiP}}}{I_{\mathit{\PiP}}}$$
 при одинаковом направлении $E_{\mathit{\PiP}}, I_{\mathit{\PiP}}$.

5. Рассчитывают ток через сопротивление нагрузки $I_{_H} = \frac{U_{_{_{XX}}}}{R_{_{_{\!\mathit{ex}}}} + R_{_{_{\!\mathit{H}}}}}$.