UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE FISICA

SEGUNDO PARCIAL DE FISICA I (35%)

Nombre:	Sección:
Carnet:	Número:
C. I. :	
Firma:	

Cuando lo necesite use como valor numérico para la aceleración de gravedad, $\mathbf{g} = 10 \, \mathbf{m}/\mathbf{s}^2$ En este examen se usará, para los vectores unitarios cartesianos, la siguiente notación:

$$\mathbf{i}=\hat{i}=\hat{x}=\hat{u}_{x}\;\;;\;\mathbf{j}=\hat{j}=\hat{y}=\hat{u}_{x}\;;\;\mathbf{k}=\hat{k}=\hat{z}=\hat{u}_{z}$$

- 1.- Dos partículas P1 y P2 se encuentran inicialmente en reposo. P_1 está en el punto de coordenadas (0,0) [m] y P_2 en (9,0) [m], tal como se indica en la figura. Ambas comienzan a moverse en el mismo instante $(t_0=0$ [seg]), P_1 con aceleración constante $\vec{a}=2$ \hat{j} [m/seg²] y P_2 con aceleración angular constante α , desconocida, en el sentido de las agujas del reloj describiendo una circunferencia de radio R=9[m].
 - 1. Si se encuentran antes de que P2 complete su primera vuelta, calcule el tiempo que tardan en encontrarse y el valor de la aceleración angular α. (5 Puntos)
 - 2. Hallar los vectores velocidad y aceleración de P_2 , en el instante de encuentro, tanto en coordenadas polares como cartesianas. (5 Puntos)

- 2.- Un bloque M_1 de 5 Kg se coloca sobre un bloque M_2 de 10 Kg tal como se muestra en la figura. Una fuerza horizontal \vec{F} de 45 N se aplica al bloque M_2 , y el bloque de 5 Kg se amarra a la pared. El coeficiente de fricción cinética entre todas las superficies es $\mu_k=0.2$.
- a) Dibuje un diagrama de cuerpo libre para cada bloque e identifique las fuerzas de acción-reacción entre los bloques. (5 Puntos)
- b) Determine la tensión en la cuerda y la magnitud de la aceleración del bloque de 10 Kg. (5 Puntos)

- **3.-** Un bloque de masa M_2 se apoya en una pared vertical lisa, mientras que, otro bloque de masa M_1 se apoya en él. Un agente aplica una fuerza $\vec{\mathbf{F}}$ sobre M_1 como se indica en la figura. Suponga que hay roce entre los dos bloques y estos no deslizan entre sí.
- a) Dibuje por separado el diagrama de cuerpo libre de cada uno de los dos cuerpos involucrados. Identifique claramente las diferentes fuerzas. (3 Puntos)
- b) Escriba las ecuaciones de movimiento de cada una de las dos masas. (3 Puntos)
- c) Tome $M_1=1$ Kg, $M_2=2$ Kg, $\alpha=30^{\circ}$ y $|\vec{F}|=12N$. Determine: la aceleración de M_1 y la fuerza de roce (Módulo y dirección) que actúa sobre esta. (6 Puntos).
- d) Determine cuáles son los valores posibles del coeficiente de roce estático. (3 Puntos)

