Lineare Algebra II

Benjamin Dropmann

February 26, 2025

1 Polynome

1.1 polynomdivision

Seien f und $g \neq 0$ zwei polynome in K[x] dann $\exists q(r), r(r) \in K[x]$ mit deg(r) = 0 oder deg(r) < deg(g) und f = qg + r. **Korollar 9.0.4**: Sei $f(x) \in K[x], f(x) = 0$ sei $\lambda \in K$ so dass $f(\lambda) = 0$. Dann $\exists q(x) \in K[x]$ so dass $f(x) = (x - \lambda)q(x)$ **Beweis** $\exists q(x), r(x) \in K[x]$ $deg(r) < deg(x - \lambda) = 1$ so dass $f(x) = (x - \lambda)(q(x) + r(x), \rightarrow r \in K \Rightarrow f(\lambda) = 0$ **Korollar 9.0.6** Sei $f(x) \in K[x], deg(f) = n > 0$ Dann hat f(x) höchstens n Nullstellen. (Fundamentaler satz der Algebra sehr ähnlich).

Beispiel 9.0.7 Es sei $f(x) = x + 1(x^2 + 1)$, als poly in $\mathbb{R}[x]$ hat es nur eine nullstelle x = -1. Als polynom in $\mathbb{C}[x]$ gilt f(x) = (x + 1)(x + i)(x - i)

Theorem 9.0.8 Fundamentaler Satz der Algebra Es sei $f(x) \in \mathbb{C}[x], deg(f) = n > 0$ dann hat f(x) in $\mathbb{C}[x]$ genau n nullstellen. Dass heisst es existieren $\exists \lambda_1, ..., \lambda_n$ nicht unbedingt verschieden, so dass $f(x) = (x - \lambda_1) \cdot \cdots \cdot (x - \lambda_n)$ Wir sagen \mathbb{C} is Algebraisch abgeschlossen.

9.0.11: sei $f(x) \in K[x], \lambda \in K$ so dass $f(\lambda = 0$ Die Ordnung der Nullstelle (Vielfachheit) λ is die Ganze zahl $n \ge 1$ so dass $\exists q(x) \in K[x]$ so dass

$$f(x) = x - \lambda)^n q(x)$$

beispiele 9.0.12

1. $f(x) = x + 1(x^2 + 1)$ Einfache nullstelle $\lambda = -1$ daher ist die ordnung 1

2.
$$p > 2$$
 $g(x) = x^p \in \mathbb{F}_p[x]$

 $\mathbb{F}_p = [a_n x^n + ... + a_1 x + a_0 | n \ge 0, a_i \in \mathbb{F}_p]$ Und $g(x) = x^p - 1 = (x - 1)^p$ (leicht ausrechnen) **Bemerkung 9.0.13** Analogien $\mathbb{Z} \leftrightarrow K[X]$

${\mathbb Z}$	K[x]
±1	$K \setminus 0$
Primzahlen	Unzerlegbare Polynome grad<0
$\mathbb{Z}/_{p\mathbb{Z}}=\mathbb{F}_{\scriptscriptstyle \parallel}$	$f(x)$ ist unzerlegbar: $K[x]/_{f(x)}$ Körper

2 Eigenwerte und Eigenvektoren

Definition 10.1.1 V/K Vektorraum, $T: V \to V$ Endomorphismus.

- 1. $\lambda \in K$ ist ein Eigenwert von T wenn $\exists v \in V, v \neq 0_v$ so dass $T(v) = \lambda v$
- 2. Ein solches V heisst Eigenvektor mit Eigenwert λ

Bemerkung 10.1.12 Wenn v Eigenveltor von T ist, $T(v) = \lambda v$ dann ist auch αv Eigenveltor von T mit Eigenwer $\lambda, \forall \alpha \in K, \alpha \neq 0$

Beispiele 10.1.3 Rechnung von eigenwerte und Eigenvektoren

1.
$$A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$
 Eigenwerte $\lambda = 3$ und $\lambda = -1$

$$A \cdot \begin{pmatrix} x \\ b \end{pmatrix} = \lambda \cdot \begin{pmatrix} x \\ b \end{pmatrix}$$

Wir kommen dann auf

$$\begin{pmatrix} 1x & 2y \\ 2x & 1y \end{pmatrix} = \lambda \cdot \begin{pmatrix} x \\ b \end{pmatrix}$$

und also

$$2x + y = \lambda x$$
$$x + 2y = \lambda y$$

Wir bekommen also

$$y((1-\lambda)^2 - 4) = 0$$

 $y \neq 0, x \neq 0$ Da die nullvektoren keine Eigenvektoren sind $\Rightarrow (1 - \lambda)^2 = 4 \Rightarrow \lambda = [-1, 3]$ Warum spezifisch zwei?

2. $B = \begin{pmatrix} 1 & -2 \\ 1 & 4 \end{pmatrix}$ Wir Suchen ein λ sodass $b(v) = \lambda \cdot v$ für $v \in \mathbb{R}^2, v \neq 0$

$$\left(B - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) v = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Alsow für welche λ ist $B - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ nicht invertierbar (wann ist der kern nicht trivial) \Leftrightarrow Für welche $\lambda \in K$ ist

$$\det\left(B - \lambda \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}\right) = 0?$$

$$\det\left(\begin{pmatrix}1-\lambda & -2\\ 1 & 4-\lambda\end{pmatrix}\right) = (1-\lambda)(4-\lambda) \Rightarrow \lambda = [2,3]$$

Und jetzt fur die Eigenvektoren: für $\lambda = 2$

$$b(v) = 2v \Rightarrow v = \alpha \begin{pmatrix} -1\\2 \end{pmatrix}, \alpha \neq 0$$

Satz 10.1.4 $T: V \to V$ linear. Dann gilt: $\lambda \in K$ eigenwert von $T \Leftrightarrow ker(T - \lambda 1_v) = 0$ Bis hier habe ich was verpasst... Fibonaccifolgen sei V der V-R der Fibonnacci Folgen. wir haben $S:V\to V$ ist die Verschiebungsabbiildung, (die ist definiert in satz 1.1.15)

Die Basis war $B = \{\mathbb{F}_{0,1}, \mathbb{F}_{1,0} < \}$ Und die matrix ist $[S]_B^B = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$ und $det(S) = \lambda^2 - \lambda - 1$ eigenwerte sind also

 $\phi und\varphi$ und die Eigenfolgen sind $\{\mathbb{F}_{\phi,1},\mathbb{F}_{\varphi,0}<\}$ also die diagonal matrix ist dann $[S]_C^C=\begin{pmatrix}\phi&0\\0&\varphi\end{pmatrix}$ Das charakteristische **polynom** Sei $A \in M_{m \times n}(K)$ Dann ist $X_A(x) = det(A - x \partial_n)$ das charakteristische polynom von A

 $\textbf{10.2.2} \ A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \text{ dann ist } X_a(x) = ichhabenichtabgeschrieben \text{ aber der konstante term des carachteristischen polynomer}$

 $det(A-x1_n)$ Insbesondere $X_{1_2}(x)=x^3-2x+1=(x-1)^2$ **Definition 10.2.3** $T:V\to V$ linear dann sei $X_T(x)=det([T]_B^B-x1_n)$ dies ist unabhängig von der wahl der Basis B. 10.2.4: $X_T(x)$ ist wohldefiniert

Beweis $[T]_{c}^{C} = [D]_{C}^{B}[T]_{B}^{B}[D^{-1}]_{B}^{C}$ danns ist

$$det([T]_C^C - 1_n x) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - 1_n x) = det(D[T]_B^B D^{-1} - xDD^{-1})$$
$$= det(D([T]_B^B - xT)D^{-1}) = det(D)det([T]_B^B - x)det(d^{-1} =) = det(D)det([T]_B^B - x)$$

2.1Theorem 10.2.5:

ist die Determinante.

Es sei $T: V \to V$ linear. Dann gilt dans die Eigenverte von $T = \{\lambda \in K | X_T(\lambda) = 0\}$ **Lemma 10.2.6**Sei $A = (a_{ij}) \in M_{n \times n}(K)$ eine obere Dreiecksmatrix fann gilt

$$X_A(x) = \prod_{n=1}^n (a_{ii} - x)$$

Sei
$$M = \begin{pmatrix} a & b \\ c & cd \end{pmatrix} \Rightarrow X_A = x^2 - (a+d)x + ad - bc$$

Sei $M = \begin{pmatrix} a & b \\ c & cd \end{pmatrix} \Rightarrow X_A = x^2 - (a+d)x + ad - bc$ Trace (noch nachzu sehen) $Tr: M_{n \times n}(K) \to A = (a_{ij}) \to \sum a_{ii} 1$ **Def 10.2.7** Sei $T: V \to V$ linear dann ist die Spur von

$$Tr(T) = Tr([T]_B^B)$$

10.2.8 Tr(T) ist wohldefiniert

Beweis Zu zeigen wann C eine Andere Basis un $D = id|_B^C$ dann gilt

$$Tr([T]_{B}^{B}) = Tr(D^{-1}[T]_{C}^{C}D)$$

Es reicht aus zu zeigen dass wenn $M_1, M-2 \in M_{n \times n}(K)$ dann gilt $Tr(M_1M_2) = Tr(M-2M_1)$ (mit explizite rechnung beweisen)

Daher gilt auch 10.2.8

Satz10.2.9es sei $T:v\to V$ linear dann gilt

$$X_T = (-1)^n x^n + (-1)^{n-1} x^{n-1} Tr(T) + \dots + det(T)$$

Beweis es sei $A = \begin{bmatrix} B \\ B \end{bmatrix}$ Mit induktion kann man beweisen dass wenn es für eine $M_{n-1 \times n-1}$ geht dann geht es für $M_{n \times n}$ als übung zu machen. Der Zweite beweis geht wie folgt ab:

Sei $B \in M_{n \times n}$ und $b = (b_{ij})$ dann gitl die formel

$$\sum_{\sigma \in S_n} b_{\sigma(1,1)} \dots b_{\sigma(n,n)}$$

Sei $B = A - x1_n$ und $\sigma \in S_n$ Fur welche σ hat

$$b_{\sigma(1,1)}b_{\sigma(2,2)}....b_{\sigma(n,n)}$$

ein polynom von grad >n-1? Der beweis ist todlich, nacheher schauen ich tippe jetzt was ich nicht verstehe...

3 2. Viewing von der Vorlesung am 25.02

 $T:V\to V$ linear, dann ist $\lambda\in K$ eine Eigenvector wenn $\exists v\in V,v\neq 0_v$ so dass $Tv=\lambda v$. Hier merken wir dass der skalar eines Eigenvektors, auch ein egeinvektor ist, und dass die addition von zwei vektoren mir den selben eigenwert, auch ein Eigenvektor ist, also hat dies die Struktur eines unterraums...

Wir sind auf dem Folgenden Satz gekommen. Sei $T:V\to V$ linear, dann gilt $\lambda\in K$ ist genau dann Eigenwert von T wenn $\ker(T-\lambda I_n)\neq\{\emptyset\}$

Beweis $\lambda \in K$ Eigenwert $\Leftrightarrow \exists v \in V, v \neq 0_v$ so dass $Tv = \lambda v \Leftrightarrow (T - \lambda I_n)v = 0_v$ Und daher ist $v \in ker(T - \lambda I_n)$

Das ist Praktisch da wenn $(T - \lambda I_n)$ nicht injektiv ist dann ist $ker(T - \lambda I_n) \neq \emptyset$ und wenn die Determinante nicht null ist dann ist $T - \lambda I_n$ kein endomorphismus.

Bemerkung 0 ist ein Eigenwert wenn T kein isomorphismus ist

Korollar Folgende aussagen sind äquivalent:

- λ ist ein Eigenwert von T
- $ker(T_{\lambda}I_n) \neq = 0_v$
- $T \lambda I_n$ ist kein Isomorphismus
- $det(T \lambda I_n) = 0$

Der Beweis ist eine zusammenfassung von vorherigen beweisen

Mit dieses wissen kann man Finden dass es hochstens n Unterschliedliche eigenwerte gibt, da die mit einen grad n polynom definiert sind.

3.1 Das charachteristische polynom

Definition 10.2.1 Sei $A \in M_{n \times n}(K)$. dann ist $X_a(x) = det(A - x1_n)$ das charakteristische polyom von A Für eine 2×2 Matrix ist dann

$$X_A(X) = x^2 - \underbrace{(a-d)x}_{Tr(A)} + \underbrace{ad - bc}_{det(A)}$$

Kleine errinerung, die Trace ist die Summe der Diagonale elemente. Diese bemerkung gilt auch für 3×3 . Wir rechnen jetzt für $n \times n$. Der Konstante term von $det(A - xI_n)$ ist det(A) (da es der Fall bei x = 0 ist) Insbesondere:

$$X_1(x) = x^2 - 2x + 1 = (x - 1)^2$$

Definition 10.2.3 $T: V \to V$ linear dann ist $X_T(x) = det([T]_b^b - xI_n)$ Für eine Basis B von V. **10.2.4** $X_T(x)$ ist wohldefiniert.

Beweis

$$[T]_C^C = [D]_C^B [T]_B^B [D^{-1}]_B^C$$

Multiplikativität von det:

$$det([T]_C^C - xI_n) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - xI_n) = det([D]_C^B [T]_B^B [D^{-1}]_B^C - xD^{-1}D) = det(D)det([T]_B^B - xI_n)det(D^{-1})$$

Was unsere aussage zustimmt.

Da das Charakteristische Polynom unabhängig von der Wahl der Basis, ist sie Eindeutig und daher Wohldefiniert. **Theorem 10.2.5** Es sei $T: V \to V$ linear, dann gilt dass

{Eigenwerte von
$$T$$
} = { $\lambda \in K | X_T(\lambda) = 0$ }

Lemma 10.2.6 Sei $A = (a_{ij}) \in M_{n \times n}(K)$ Eine Obere Dreiecksmatrix. Dann ist das Charakteristische Polynom

$$X_A(x) = \prod_{i=1}^n (a_{ii} - x)$$