ECE595 ML Project Report - Checkpoint 1 Efficacy of Noise2Noise on Different Types of Noise

Zhanpeng Yang, MSAAE 1

Abstract

This is an abstract for this project report, blahblah blah

1. Intorduction

I plan to pursue topic one in the list for this project to explore self-supervised learning for image denoising. (Lehtinen et al., 2018). Some dataset is available on GitHub ² as well as Kodak database ³ My background is in Autonomy and Control for unmanned aerial systems (UAS), where self-supervised learning has lots of potential to make control decisions. By conducting research and experiment on this topic, specifically in determining the efficacy of noise2noise on other types of noise, I hope to gain more insight in integration of Deep Learning and control's theory.

2. Related Work

TBD

3. Method

TBD

4. Experiment

TBD

5. Conclusion

TBD

Proceedings of the 38th International Conference on Machine Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

Acknowledgements

TBD

References

- Chen, C., Chen, Q., Xu, J., and Koltun, V. Learning to See in the Dark. *Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition*, pp. 3291–3300, 5 2018. URL http://arxiv.org/abs/1805.01934.
- Chi, Y., Gnanasambandam, A., Koltun, V., and Chan, S. H. Dynamic Low-light Imaging with Quanta Image Sensors. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 12366 LNCS:122–138, 7 2020. URL http://arxiv.org/abs/2007.08614.
- Gnanasambandam, A. and Chan, S. H. Image Classification in the Dark using Quanta Image Sensors. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, 12353 LNCS:484–501, 6 2020. URL http://arxiv.org/abs/2006.02026.
- Lehtinen, J., Munkberg, J., Hasselgren, J., Laine, S., Karras, T., Aittala, M., and Aila, T. Noise2noise: Learning image restoration without clean data. Technical report, 2018. URL https://arxiv.org/pdf/1803.04189.pdf.

¹School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana, USA.

²https://github.com/NVlabs/noise2noise

http://r0k.us/graphics/kodak/