1 Estabilidade Estrutural

Definição 1.1. Sejam $f, g: D \to \mathbb{R}$ funções de classe \mathcal{C}^k . A \mathcal{C}^k -distância entre f e g é definida por

$$d_k(f,g) = \sup_{x \in D} \left\{ |f(x) - g(x)|, |f'(x) - g'(x)|, \dots, |f^{(k)}(x) - g^{(k)}(x)| \right\}$$

Definição 1.2. Seja $f: D \to \mathbb{R}$ uma função de classe \mathcal{C}^k . Dizemos que $f \in \mathcal{C}^k$ -estável se existe $\varepsilon > 0$ tal que se $g: D \to \mathbb{R}$ é de classe \mathcal{C}^k e $d_k(f,g) < \varepsilon$, então f e g são topologicamente conjugadas.

Exemplo 1.3. Seja $L: \mathbb{R} \to \mathbb{R}$ a função definida por $L(x) = \frac{x}{2}$. Se $g: \mathbb{R} \to \mathbb{R}$ é uma função de classe C^1 com $d_1(L,g) < \frac{1}{2}$, vamos mostrar que L e g são topologicamente conjugadas.

Inicialmente, g possui pelo menos 1 ponto fixo. Como $\left|\frac{x}{2} - g(x)\right| < \frac{1}{2}$ para todo $x \in \mathbb{R}$, temos que $-\frac{1}{2} < \frac{x}{2} - g(x) < \frac{1}{2}$ e, portanto, $-\frac{1}{2} - \frac{x}{2} < g(x) - x < \frac{1}{2} - \frac{x}{2}$. Definindo h(x) = g(x) - x, temos que 0 < h(-1) < 1 e -1 < h(1) < 0. Pelo Teorema do Valor Intermediário, existe $x_0 \in (-1, 1)$ tal que $h(x_0) = 0$ e, portanto, $g(x_0) = x_0$.

Além disso, g possui no máximo 1 ponto fixo. Como $\left|\frac{1}{2} - g'(x)\right| < \frac{1}{2}$ para todo $x \in \mathbb{R}$, temos que 0 < g'(x) < 1. De acordo com o Teorema do Valor Médio, se g possui 2 pontos fixos, então existe x_0 tal que $g'(x_0) = 1$, o que é um absurdo.

Seja $J = [-10, -5) \cup (5, 10]$. Observe que se $x \in \mathbb{R} - \{0\}$, então existe um único $n_x \in \mathbb{Z}$ tal que $L^{n_x}(x) \in J$. Analogamente, se $x \in \mathbb{R}$ e x não é ponto fixo de g, então existe um único n_x tal que $g^{n_x}(x) \in [-10, g(-10)) \cup (g(10), 10]$.

Seja h uma função tal que $h|_{[-10,-5]}$ é um homeomorfismo crescente entre [-10,-5] e [-10,g(-10)] e $h|_{[5,10]}$ é um homeomorfismo crescente entre [5,10] e [g(10),10].

Seja $x \in \mathbb{R} - \{0\}$. Como $L^{n_x}(x) \in J$, temos que $h \circ L^{n_x}(x)$ está bem definido. Sendo g um homeomorfismo, $g^{-n_x} \circ h \circ L^{n_x}(x)$ também está bem definido. Defina $h(x) = g^{-n_x} \circ h \circ L^{n_x}(x)$ para todo $x \in \mathbb{R} - \{0\}$. Observe que se $x \in J$, então $n_x = 0$ e, portanto, está bem definida em J. Por fim, defina h(0) como sendo o ponto fixo de g. Resta mostrar que $h \circ L(x) = g \circ h(x)$ para todo $x \in \mathbb{R}$.

Se $x \neq 0$, então $h(x) = g^{-n_x} \circ h \circ L^{n_x}(x)$. Se y = L(x), então $y \neq 0$ e $L^{n_x-1}(y) = L^{n_x-1}(L(x)) = L^{n_x}(x) \in J$, ou seja, $n_y = n_x - 1$. Desse modo,

$$h\circ L(x)=h(y)=g^{-n_y}\circ h\circ L^{n_y}(y)=g\circ g^{-n_x}\circ h\circ L^{n_x}(x)=g\circ h(x)$$

e g(h(0)) = h(0) = h(L(0)).

Assim, $h \circ L = g \circ h$. Além disso, h é um homeomorfismo pois é composição de homeomorfismos. Desse modo, L e g são topologicamente conjugadas e, portanto, L é \mathcal{C}^1 -estável.

Finalmente, vamos estudar a estabilidade estrutural da função quadrática $F_{\mu}(x) = \mu x(1-x)$ para $\mu > 2 + \sqrt{5}$.

Relembrando, 0 e $p_{\mu} = \frac{\mu-1}{\mu}$ são os únicos pontos fixos de F_{μ} . Além disso, F_{μ} possui um único ponto crítico em $\frac{1}{2}$, é estritamente crescente em $\left(-\infty, \frac{1}{2}\right)$ e é estritamente decrescente em $\left(\frac{1}{2}, \infty\right)$. Sendo $F_{\mu}\left(\frac{1}{2}\right) > 1$, temos que $F_{\mu}^{-1}(1)$ possui dois elementos. Denotando tais elementos por y_0 e y_1 , com $y_0 < y_1$, temos que $|F'_{\mu}(x)| > 1$ para todo $x \in [0, y_0] \cup [y_1, 1]$.

Além disso, $\lim_{n\to\infty} F_{\mu}^n(x) = -\infty$ para todo $x \notin [0, y_0] \cup [y_1, 1]$ e, desse modo, estudamos a dinâmica de F_{μ} restrita ao conjunto $\Lambda = \{x \in [0, 1] : F_{\mu}^n(x) \in [0, 1] \text{ para todo } n \geq 1\}$. Por fim, mostramos que $F_{\mu}|_{\Lambda}$ é topologicamente conjugada com a função σ em Σ_2 .

Teorema 1.4. Se $\mu > 2 + \sqrt{5}$, então F_{μ} é C^2 -estável.

Demonstração. Vamos mostrar que existe $\varepsilon > 0$ tal que se g é de classe \mathcal{C}^2 e $d_2(F_\mu, g) < \varepsilon$, então F_μ e g são topologicamente conjugadas.

Seja $\varepsilon_1 > 0$ tal que $d_2(F_\mu, g) < \varepsilon_1$ implica que g'' < 0 e, portanto, que a concavidade de g é para baixo. Existe ε_1 com essa propriedade pois $F''_\mu = -2\mu$.

Seja $0 < \varepsilon_2 < \varepsilon_1$ tal que $d_2(F_\mu, g) < \varepsilon_2$ implica que g possui dois pontos fixos $\alpha < \beta$ com $g'(\alpha) > 1$ e $g'(\beta) < -1$. Existe ε_2 com essa propriedade pois F_μ possui os pontos fixos 0 e p_μ com $F'_\mu(0) > 1$ e $F'_\mu(p_\mu) < -1$.

Pelo Teorema do Valor Médio, temos que g possui um ponto crítico $c \in (\alpha, \beta)$. Sendo g'' < 0, o ponto crítico de g é único. Além disso, g é estritamente crescente em $(-\infty, c)$ e estritamente decrescente em (c, ∞) . Desse modo, existe $\alpha' \in (c, \infty)$ tal que $g(\alpha') = \alpha$.

Por fim, seja $0 < \varepsilon < \varepsilon_2$ tal que $d_2(F_\mu, g) < \varepsilon$ implica que $g^{-1}(\alpha')$ possui os elementos x_0 e x_1 , com $x_0 < x_1$, e que |g'(x)| > 1 para todo $x \in [\alpha, x_0] \cup [x_1, \alpha']$.

Desse modo, se $d_2(F_{\mu}, g) < \varepsilon$, então os gráficos de g e F_{μ} possuem as mesmas propriedades. Em particular, $\lim_{n\to\infty} g(x) = -\infty$ para todo $x \notin [\alpha, x_0] \cup [x_1, \alpha']$. De modo análogo ao feito para F_{μ} restrita ao conjunto Λ , é possível mostrar que g restrita ao conjunto $\Lambda_g = \{x \in [\alpha, \alpha'] : g^n(x) \in [\alpha, \alpha'] \text{ para todo } n \geq 1\}$ é topologicamente conjugada com a função σ de Σ_2 . Portanto, por transitividade, F_{μ} e g são topologicamente conjugadas.

Teorema 1.5 (Hartman). Seja p um ponto fixo hiperbólico de f e suponha que $f'(p) = \lambda \neq 0$. Então existem vizinhanças U de p e V de 0 e um homeomorfismo $h: U \to V$ que conjuga as funções $f|_{U}$ e $L(x) = \lambda x$, $x \in V$.