Uniform Distribution

STAT 330 - Iowa State University

Outline

In this lecture, students will introduced to some known continuous distributions that are commonly used in practice. We begin here with the Uniform distribution.

Continuous Distributions

Continuous Distributions

Common distributions for continuous random variables

Uniform distribution

$$X \sim Unif(a, b)$$

Exponential distribution

$$X \sim Exp(\lambda)$$

• Gamma distribution

$$X \sim Gamma(\alpha, \lambda)$$

Normal distribution

$$X \sim Normal(\mu, \sigma^2)$$

Uniform Distribution

Uniform Distribution

If a random variable follows a uniform distribution, then the R.V has constant probability between values a and b.

$$X \sim Unif(a, b)$$

- Probability Density Function (pdf)

 - Im(X) = (a,b)• $f_X(x) = \begin{cases} \frac{1}{b-a} & \text{for } a \le x \le b \\ 0 & \text{otherwise} \end{cases}$

Uniform Distribution Cont.

• Cumulative Distribution Function (cdf)

$$F_X(t) = \begin{cases} 0 & \text{for } t < a \\ \frac{t-a}{b-a} & \text{for } a \le t \le b \\ 1 & \text{for } t > b \end{cases}$$

• Expected Value: $\mathbb{E}(X) = \frac{a+b}{2}$

$$\mathbb{E}(X) = \int_{a}^{b} \frac{x}{b-a} dx = \frac{1}{b-a} \left(\frac{x^{2}}{2}\right) \Big|_{a}^{b} = \frac{b^{2}-a^{2}}{2(b-a)} = \frac{a+b}{2}$$

• Variance: $Var(X) = \frac{(b-a)^2}{12}$

$$Var(X) = \int_{a}^{b} \left(x - \frac{a+b}{2}\right)^{2} \frac{1}{b-a} dx = \dots = \frac{(b-a)^{2}}{12}$$

Can also get variance by $Var(X) = \mathbb{E}(X^2) - [\mathbb{E}(X)]^2$

Example

Example 1: A basic (pseudo) random number generator creates realizations of Unif(0,1) random variables.

X = number obtained from the random number generator.

- 1. What is Im(X)?
- 2. Give the pdf and cdf of X

3. What is the probability that it generates a number greater than 0.85?

$$\mathbb{P}(X > .85) = \int_{.85}^{1} 1 dx = (x) \Big|_{.85}^{1} = .15$$

3. What is the probability that it generates a number between 0.1 and 0.85?

$$\mathbb{P}(.1 < X < .85) = F_X(.85) - F_X(.1) = .85 - .1 = .75$$

4. What is the expected value?

$$\frac{a+b}{2} = \frac{0+1}{2} = \frac{1}{2}$$

5. What is the variance?

$$\frac{(b-a)^2}{12} = \frac{(1-0)^2}{12} = \frac{1}{12}$$

Example 2: Suppose X has a uniform distribution between 5 and 10. Calculate

- 1. P(X < 7) =
- 2. P(6 < X < 7) =

Recap

Students have been introduced to some commonly used known continuous distributions. Students should be familiar with the Uniform distribution, and be able to use it to answer questions.