Motivation
Existing Models
Piccoli Junction Model
Fixing Two-by-two Junctions
Guaranteeing Onramp Demand Conservation
Riemann Solver for Junction

Continuous, Junction-based Model for Ramp Metering

Jack Reilly¹ Maria-Laura Delle-Monache² Walid Krichene¹ Samitha Samaranayake¹

 ${\sf UC}\ {\sf Berkeley}^1$

INRIA²

October 21, 2012

- Motivation
- 2 Existing Models
- 3 Piccoli Junction Model
- 4 Fixing Two-by-two Junctions
- 5 Guaranteeing Onramp Demand Conservation
- 6 Riemann Solver for Junction

- Motivation
- 2 Existing Models
- 3 Piccoli Junction Model
- 4 Fixing Two-by-two Junctions
- 5 Guaranteeing Onramp Demand Conservation
- 6 Riemann Solver for Junction

Motivation Existing Models Piccoli Junction Model Fixing Two-by-two Junctions Guaranteeing Onramp Demand Conservation Riemann Solver for Junction

Slide 1

Program for computing the height of a ball thrown up in the air: $y = v_0 t - \frac{1}{2}gt^2$

The following table describes the variables used in the implementation and their dimensions.

in the implementation and their dimensions.			
Variable	Description	Din	nen
Т	total time steps		1
N	total cells		1
V	total number of variables		1
С	total number of constraints		1
J	objective function		1
Н	system of constraints	1 × (Γ.
λ	adjoint variables	1 × (Ī.

Reilly et al.

Cont. model for ramps

- Motivation
- 2 Existing Models
- 3 Piccoli Junction Model
- 4 Fixing Two-by-two Junctions
- 5 Guaranteeing Onramp Demand Conservation
- 6 Riemann Solver for Junction

- Motivation
- 2 Existing Models
- 3 Piccoli Junction Model
- 4 Fixing Two-by-two Junctions
- 5 Guaranteeing Onramp Demand Conservation
- 6 Riemann Solver for Junction

- Motivation
- 2 Existing Models
- 3 Piccoli Junction Model
- 4 Fixing Two-by-two Junctions
- 5 Guaranteeing Onramp Demand Conservation
- 6 Riemann Solver for Junction

- Motivation
- 2 Existing Models
- 3 Piccoli Junction Model
- 4 Fixing Two-by-two Junctions
- **5** Guaranteeing Onramp Demand Conservation
- 6 Riemann Solver for Junction

- Motivation
- 2 Existing Models
- 3 Piccoli Junction Model
- 4 Fixing Two-by-two Junctions
- 5 Guaranteeing Onramp Demand Conservation
- 6 Riemann Solver for Junction