Корни многочленов

Задача 1. Докажите, что если многочлен A(x) с целыми коэффициентами принимает при x=0 и x = 1 нечётные значения, то уравнение A(x) = 0 не имеет целых решений.

Задача 2. а) Ненулевая несократимая дробь p/q — корень многочлена $A(x) = a_n x^n + \cdots + a_0$ с целыми коэффициентами. Докажите, что тогда a_n делится на q и a_0 делится на p.

б) Пусть в пункте а) дано $a_n = 1$. Докажите, что все рациональные корни A — целые числа.

Задача 3. Найдите все рациональные корни многочленов:

a)
$$x^3 - 6x^2 + 15x - 14$$
; 6) $6x^4 + 19x^3 - 7x^2 - 26x + 12$.

Задача 4. Пусть $A(x) \in \mathbb{Q}[x], A(\sqrt{2}) = 0$. Докажите, что $A(-\sqrt{2}) = 0$.

Задача 5. а) Найдите ненулевой многочлен P с целыми коэффициентами и корнем $\sqrt{2} + \sqrt{3}$. **б)** Найдите все корни многочлена P из пункта а).

Задача 6. Найдите многочлен минимальной степени из $\mathbb{R}[x]$, для которого 3-i, 2 и 1+i — корни.

Теорема Виета

Задача 7. а) Пусть многочлен $P(x) = x^3 + ax^2 + bx + c$ раскладывается на линейные множители (то есть многочлены первой степени): $P(x) = (x - \alpha_1)(x - \alpha_2)(x - \alpha_3)$. Докажите, что справедливы формулы Виета:

$$\alpha_1 + \alpha_2 + \alpha_3 = -a$$
, $\alpha_1 \alpha_2 + \alpha_2 \alpha_3 + \alpha_3 \alpha_1 = b$, $\alpha_1 \alpha_2 \alpha_3 = -c$.

б)* Найдите подобные формулы, если $\deg P = n$ и P раскладывается на линейные множители.

Задача 8. а) Пусть a + b + c > 0, ab + bc + ac > 0, abc > 0. Докажите, что a, b и c положительны. **б)** Пусть a + b + c < 0, ab + bc + ac < 0, abc < 0. Какие знаки могут иметь числа a, b, c?

Задача 9*. а) Пусть число $c \neq 0$. Докажите, что многочлен $x^5 + ax^2 + bx + c$ не может раскладываться на пять линейных множителей. **б)** Та же задача для многочлена $x^5 + ax^4 + bx^3 + c$.

Задача 10. а) Коэффициенты многочлена (x-a)(x-b) целые. Докажите, что a^n+b^n целое при $n \in \mathbb{N}$. 6)* Найдите первые n цифр после запятой в десятичной записи числа $(\sqrt{26+5})^n$.

Дополнительные задачи

Задача 11. Коэффициенты многочленов P и Q целые. Коэффициенты их произведения делятся на 5. Докажите, что либо коэффициенты P, либо коэффициенты Q делятся на 5.

Задача 12. Пусть P — многочлен степени k из $\mathbb{C}[x]$ и n > k. Докажите, что среднее арифметическое значений P в вершинах правильного n-угольника равно значению P в центре n-угольника.

Задача 13. На графике многочлена из $\mathbb{Z}[x]$ отмечены две точки с целыми координатами. Докажите, что если расстояние между ними — целое число, то у них одинаковые ординаты.

Задача 14. Даны многочлены положительной степени P(x) и Q(x), причём выполнены тождества P(P(x)) = Q(Q(x)) и P(P(P(x))) = Q(Q(Q(x))). Обязательно ли P(x) и Q(x) совпадают?

Задача 15. При каких n многочлен степени n с нечётными коэффициентами может иметь n нечётных корней?

Задача 16. Квадратный трехчлен $ax^2 + bx + c$ при всех целых x принимает целые значения. Верно ли, что среди его коэффициентов **a)** хотя бы один — целое число; **б)** все — целые числа?

Задача 17. Докажите, что для любого числового многочлена P(x) степени n, принимающего при

всех целых
$$x$$
 целые значения, существуют такие целые числа b_0, b_1, \ldots, b_n , что
$$P(x) = b_n C_x^n + b_{n-1} C_x^{n-1} + \ldots + b_1 C_x^1 + b_0, \quad \text{где} \quad C_x^i = \frac{x(x-1)\ldots(x-i+1)}{i!}.$$

Задача 18. Многочлен P(x) степени n-1 принимает целые значения при n последовательных целых значениях x. Докажите, что $P(x) \in Q[x]$ и $P(n) \in \mathbb{N}$ при всех $n \in \mathbb{N}$.