Telemac3d ReferenceManual

Otto Mattic

Version 7.2
December 29, 2016

AVERTISSEMENT / CAUTION

L'accès à ce document, ainsi que son utilisation, sont strictement limités aux personnes expressément habilitées par EDF.

EDF ne pourra être tenu responsable, au titre d'une action en responsabilité contractuelle, en responsabilité délictuelle ou de tout autre action, de tout dommage direct ou indirect, ou de quelque nature qu'il soit, ou de tout préjudice, notamment, de nature financier ou commercial, résultant de l'utilisation d'une quelconque information contenue dans ce document.

Les données et informations contenues dans ce document sont fournies "en l'état" sans aucune garantie expresse ou tacite de quelque nature que ce soit.

Toute modification, reproduction, extraction d'éléments, réutilisation de tout ou partie de ce document sans autorisation préalable écrite d'EDF ainsi que toute diffusion externe à EDF du présent document ou des informations qu'il contient est strictement interdite sous peine de sanctions.

The access to this document and its use are strictly limited to the persons expressly authorized to do so by EDF.

EDF shall not be deemed liable as a consequence of any action, for any direct or indirect damage, including, among others, commercial or financial loss arising from the use of any information contained in this document.

This document and the information contained therein are provided "as are" without any warranty of any kind, either expressed or implied.

Any total or partial modification, reproduction, new use, distribution or extraction of elements of this document or its content, without the express and prior written consent of EDF is strictly forbidden. Failure to comply to the above provisions will expose to sanctions.

Contents

1	Detail list of keywords	. 14
1.1	2D CONTINUATION	14
1.2	2D RESULT FILE	14
1.3	2D RESULT FILE BINARY	14
1.4	2D RESULT FILE FORMAT	15
1.5	3D RESULT FILE	15
1.6	3D RESULT FILE BINARY	15
1.7	3D RESULT FILE FORMAT	15
1.8	ABSCISSAE OF SOURCES	16
1.9	ACCURACY FOR DIFFUSION OF K-EPSILON	16
1.10	ACCURACY FOR DIFFUSION OF SEDIMENT	16
1.11	ACCURACY FOR DIFFUSION OF TRACERS	16
1.12	ACCURACY FOR DIFFUSION OF VELOCITIES	16
1.13	ACCURACY FOR PPE	16
1.14	ACCURACY FOR PROPAGATION	17
1.15	ACCURACY FOR VERTICAL VELOCITY	17
1.16	ADVECTION STEP	17
1.17	ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY	17
1.18	AIR PRESSURE	17
1.19	ASCII ATMOSPHERIC DATA FILE	18
1.20	ASCII DATABASE FOR TIDE	18
1.21	AVERAGE WATER DENSITY	18
1.22	BED LAYERS THICKNESS	18
1.23	BETA EXPANSION COEFFICIENT FOR TRACERS	18
1.24	BINARY ATMOSPHERIC DATA FILE	19
1.25	BINARY ATMOSPHERIC DATA FILE FORMAT	19

1.26	BINARY BOUNDARY DATA FILE	19
1.27	BINARY BOUNDARY DATA FILE FORMAT	19
1.28	BINARY DATA FILE 1	19
1.29	BINARY DATA FILE 1 FORMAT	20
1.30	BINARY DATA FILE 2	20
1.31	BINARY DATABASE 1 FOR TIDE	20
1.32	BINARY DATABASE 2 FOR TIDE	20
1.33	BINARY RESULTS FILE	20
1.34	BOTTOM SURFACES DELWAQ FILE	21
1.35	BOTTOM TOPOGRAPHY FILE	21
1.36	BOUNDARY CONDITION ON THE BOTTOM	21
1.37	BOUNDARY CONDITIONS FILE	21
1.38	BYPASS VOID VOLUMES	21
1.39	CHECKING THE MESH	22
1.40	COEFFICIENT FOR HORIZONTAL DIFFUSION OF TRACERS	22
1.41	COEFFICIENT FOR HORIZONTAL DIFFUSION OF VELOCITIES	22
1.42	COEFFICIENT FOR VERTICAL DIFFUSION OF TRACERS	22
1.43	COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES	22
1.44	COEFFICIENT OF WIND INFLUENCE	23
1.45	COEFFICIENT RELATIVE TO FLOC DESTRUCTION	23
1.46	COEFFICIENT TO CALIBRATE SEA LEVEL	23
1.47	COEFFICIENT TO CALIBRATE TIDAL RANGE	23
1.48	COEFFICIENT TO CALIBRATE TIDAL VELOCITIES	23
1.49	COHESIVE SEDIMENT	24
1.50	COMPUTATION CONTINUED	24
1.51	CONSOLIDATION	24
1.52	CONSOLIDATION MODEL	24
1.53	CONSTANT SEDIMENT SETTLING VELOCITY	25
1.54	CONTINUITY CORRECTION ON OPEN BOUNDARIES	25
1.55	CORIOLIS	25
1.56	CORIOLIS COEFFICIENT	25
1.57	COUPLING PERIOD FOR SISYPHE	26
1.58	COUPLING PERIOD FOR TOMAWAC	26
1.59		26
1.60	CRITICAL EROSION SHEAR STRESS OF THE MUD LAYERS	26
1.61	CRITICAL SHEAR STRESS FOR DEPOSITION	26

1.62	CULVERTS DATA FILE	27
1.63	DAMPING FUNCTION	27
1.64	DEBUGGER	27
1.65	DEFAULT EXECUTABLE	27
1.66	DEFAULT PARALLEL EXECUTABLE	27
1.67	DELWAQ PRINTOUT PERIOD	28
1.68	DELWAQ STEERING FILE	28
1.69	DENSITY LAW	28
1.70	DENSITY OF THE SEDIMENT	28
1.71	DESCRIPTION OF LIBRARIES	29
1.72	DICTIONARY	29
1.73	DIFFUSION FOR DELWAQ	29
1.74	DIFFUSION STEP	29
1.75	DIFFUSIVITY DELWAQ FILE	29
1.76	DROGUES FILE	30
1.77	DURATION	30
1.78	DYNAMIC BOUNDARY CONDITION	30
1.79	DYNAMIC PRESSURE IN WAVE EQUATION	30
1.80	ELEMENT	30
1.81	ELEMENTS MASKED BY USER	31
1.82	ELEVATIONS OF SOURCES	31
1.83	EROSION COEFFICIENT	31
1.84	EXCHANGE AREAS DELWAQ FILE	31
1.85	EXCHANGES BETWEEN NODES DELWAQ FILE	31
1.86	FICTITIOUS BED LEVEL	32
1.87	FILE FOR 2D CONTINUATION	32
1.88	FILE FOR 2D CONTINUATION FORMAT	32
1.89	FLOCCULATION	32
1.90	FLOCCULATION COEFFICIENT	32
1.91	FLOCCULATION FORMULA	33
1.92	FORMATTED DATA FILE 1	33
1.93	FORMATTED DATA FILE 2	33
1.94	FORMATTED RESULTS FILE	33
1.95	FORTRAN FILE	33
1.96	FREE SURFACE GRADIENT COMPATIBILITY	34
1.97	FRICTION COEFFICIENT FOR LATERAL SOLID BOUNDARIES	34

1.98	FRICTION COEFFICIENT FOR THE BOTTOM	34
1.99	GEOGRAPHIC SYSTEM	34
1.100	GEOMETRY FILE	35
1.101	GEOMETRY FILE FORMAT	35
1.102	GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER	35
1.103	GRAPHIC PRINTOUT PERIOD	35
1.104	GRAVITY ACCELERATION	35
1.105	HARMONIC CONSTANTS FILE	36
1.106	HINDERED SETTLING	36
1.107	HINDERED SETTLING FORMULA	36
1.108	HORIZONTAL TURBULENCE MODEL	36
1.109	HYDROSTATIC INCONSISTENCY FILTER	37
1.110	IMPLICITATION FOR DEPTH	37
1.111	IMPLICITATION FOR DIFFUSION	37
1.112	IMPLICITATION FOR VELOCITIES	37
1.113	INFORMATION ABOUT MASS-BALANCE FOR EACH LISTING PRINTOUT	37
1.114	INITIAL CONDITIONS	38
1.115	INITIAL DEPTH	38
1.116	INITIAL ELEVATION	38
1.117	INITIAL GUESS FOR DEPTH	38
1.118	INITIAL PERCENTAGE OF NON COHESIVE SEDIMENT	39
1.119	INITIAL THICKNESS OF SEDIMENT LAYERS	39
1.120	INITIAL TIME SET TO ZERO	39
1.121	INITIAL VALUES OF TRACERS	39
1.122	KARMAN CONSTANT	39
1.123	LATITUDE OF ORIGIN POINT	40
1.124	LAW OF BOTTOM FRICTION	40
1.125	LAW OF FRICTION ON LATERAL BOUNDARIES	40
1.126	LINEARIZED PROPAGATION	40
1.127	LIQUID BOUNDARIES FILE	41
1.128	LIST OF FILES	41
1.129	LISTING PRINTOUT	41
1.130	LISTING PRINTOUT PERIOD	41
1.131	LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER	42
1.132	LONGITUDE OF ORIGIN POINT	42
1.133	MASS-BALANCE	42

1.134	MASS-LUMPING FOR DEPTH	42
1.135	MASS-LUMPING FOR DIFFUSION	43
1.136	MASS-LUMPING FOR VELOCITIES	43
1.137	MASS-LUMPING FOR WEAK CHARACTERISTICS	43
1.138	MATRIX STORAGE	43
1.139	MAXIMUM CONCENTRATION OF THE CONSOLIDATED MUD	43
1.140	MAXIMUM NUMBER OF BOUNDARIES	44
1.141	MAXIMUM NUMBER OF BOUNDARIES ON THE BED	44
1.142	MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES	44
1.143	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF K-EPSILON	44
1.144	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF SEDIMENT	44
1.145	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS	45
1.146	MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF VELOCITIES	45
1.147	MAXIMUM NUMBER OF ITERATIONS FOR PPE	45
1.148	MAXIMUM NUMBER OF ITERATIONS FOR PROPAGATION	45
1.149	MAXIMUM NUMBER OF ITERATIONS FOR VERTICAL VELOCITY	45
1.150	MAXIMUM NUMBER OF SOURCES	46
1.151	MAXIMUM NUMBER OF TRACERS	46
1.152	MEAN DEPTH FOR LINEARIZATION	46
1.153	MEAN DIAMETER OF THE SEDIMENT	46
1.154	MESH TRANSFORMATION	46
1.155	MINIMAL VALUE FOR DEPTH	47
1.156	MINOR CONSTITUENTS INFERENCE	47
1.157	MIXED SEDIMENT	47
1.158	MIXING LENGTH MODEL	47
1.159	MUD CONCENTRATIONS PER LAYER	48
1.160	NAMES OF 2D PRIVATE VARIABLES	48
1.161	NAMES OF TRACERS	48
1.162	NODES DISTANCES DELWAQ FILE	48
1.163	NON COHESIVE BED POROSITY	48
1.164	NON-HYDROSTATIC VERSION	49
1.165	NORTH	49
1.166	NUMBER OF 2D PRIVATE ARRAYS	49
1.167	NUMBER OF BOTTOM SMOOTHINGS	49
1.168	NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES	49
1 169	NUMBER OF CHIVERTS	50

1.170	NUMBER OF DROGUES	50
1.171	NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS	50
1.172	NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS	50
1.173	NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS	50
1.174	NUMBER OF HORIZONTAL LEVELS	51
1.175	NUMBER OF PRIVATE ARRAYS	51
1.176	NUMBER OF SEDIMENT BED LAYERS	51
1.177	NUMBER OF SUB ITERATIONS FOR NON LINEARITIES	51
1.178	NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES	51
1.179	NUMBER OF TIME STEPS	52
1.180	NUMBER OF TRACERS	52
1.181	OIL SPILL MODEL	52
1.182	OIL SPILL STEERING FILE	52
1.183	OPEN BOUNDARY CONDITIONS ON THE BED	52
1.184	OPTION FOR CHARACTERISTICS	52
1.185	OPTION FOR CULVERTS	53
1.186	OPTION FOR LIQUID BOUNDARIES	53
1.187	OPTION FOR THE BOUNDARY CONDITIONS OF K-EPSILON	53
1.188	OPTION FOR THE DIFFUSION	53
1.189	OPTION FOR THE TREATMENT OF TIDAL FLATS	54
1.190	OPTION FOR TIDAL BOUNDARY CONDITIONS	54
1.191	OPTION FOR WIND	54
1.192	OPTION OF SOLVER FOR DIFFUSION OF K-EPSILON	55
1.193	OPTION OF SOLVER FOR DIFFUSION OF THE SEDIMENT	55
1.194	OPTION OF SOLVER FOR DIFFUSION OF TRACERS	55
1.195	OPTION OF SOLVER FOR DIFFUSION OF VELOCITIES	55
1.196	OPTION OF SOLVER FOR PPE	55
1.197	OPTION OF SOLVER FOR PROPAGATION	56
1.198	ORDINATES OF SOURCES	56
1.199	ORIGIN COORDINATES	56
1.200	ORIGINAL DATE OF TIME	56
1.201	ORIGINAL HOUR OF TIME	56
1.202	PARALLEL PROCESSORS	57
1.203	PARTITIONING TOOL	57
1.204	PRANDTL NUMBER	57
1.205	PRECONDITIONING FOR DIFFUSION OF K-EPSILON	57

1.206	PRECONDITIONING FOR DIFFUSION OF THE SEDIMENT	58
1.207	PRECONDITIONING FOR DIFFUSION OF TRACERS	58
1.208	PRECONDITIONING FOR DIFFUSION OF VELOCITIES	59
1.209	PRECONDITIONING FOR PPE	60
1.210	PRECONDITIONING FOR PROPAGATION	60
1.211	PRECONDITIONING FOR VERTICAL VELOCITY	61
1.212	PRESCRIBED ELEVATIONS	61
1.213	PRESCRIBED FLOWRATES	61
1.214	PRESCRIBED FLOWRATES ON THE BED	62
1.215	PRESCRIBED TRACERS VALUES	62
1.216	PRESCRIBED VELOCITIES	62
1.217	PREVIOUS COMPUTATION FILE	62
1.218	PREVIOUS COMPUTATION FILE FORMAT	62
1.219	PREVIOUS COMPUTATION SEDIMENTOLOGICAL FILE	63
1.220	PRINTOUT PERIOD FOR DROGUES	63
1.221	PROPAGATION STEP	63
1.222	RAIN OR EVAPORATION	63
1.223	RAIN OR EVAPORATION IN MM PER DAY	63
1.224	RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER	64
1.225	READ CRITICAL BED SHEAR STRESS PER LAYER	64
1.226	RECORD NUMBER FOR RESTART	64
1.227	RECORD NUMBER IN WAVE FILE	64
1.228	REFERENCE CONCENTRATION FORMULA	64
1.229	REFERENCE FILE	65
1.230	REFERENCE FILE FORMAT	65
1.231	RELEASE	65
1.232	RESIDENCE TIME FOR MUD	65
1.233	RESTART FILE	65
1.234	RESTART FILE FORMAT	66
1.235	RESTART MODE	66
1.236	SALINITY DELWAQ FILE	66
1.237	SALINITY FOR DELWAQ	66
1.238	SCHEME FOR ADVECTION OF DEPTH	67
1.239	SCHEME FOR ADVECTION OF K-EPSILON	67
1.240	SCHEME FOR ADVECTION OF TRACERS	67
1.241	SCHEME FOR ADVECTION OF VELOCITIES	68

1.242	SCHEME FOR DIFFUSION OF K-EPSILON	68
1.243	SCHEME FOR DIFFUSION OF TRACERS	68
1.244	SCHEME FOR DIFFUSION OF VELOCITIES	69
1.245	SCHEME OPTION FOR ADVECTION OF K-EPSILON	69
1.246	SCHEME OPTION FOR ADVECTION OF TRACERS	69
1.247	SCHEME OPTION FOR ADVECTION OF VELOCITIES	69
1.248	SEDIMENT	70
1.249	SEDIMENTOLOGICAL RESULT FILE	70
1.250	SEDIMENTOLOGICAL RESULT FILE BINARY	70
1.251	SETTLING VELOCITY OF SANDS	70
1.252	SHIELDS PARAMETER	71
1.253	SISYPHE STEERING FILE	71
1.254	SKIN FRICTION CORRECTION	71
1.255	SOLVER FOR DIFFUSION OF K-EPSILON	71
1.256	SOLVER FOR DIFFUSION OF THE SEDIMENT	72
1.257	SOLVER FOR DIFFUSION OF TRACERS	72
1.258	SOLVER FOR DIFFUSION OF VELOCITIES	72
1.259	SOLVER FOR PPE	73
1.260	SOLVER FOR PROPAGATION	73
1.261	SOLVER FOR VERTICAL VELOCITY	74
1.262	SOURCES FILE	74
1.263	SPATIAL PROJECTION TYPE	74
1.264	SPHERICAL COORDINATES	75
1.265	STAGE-DISCHARGE CURVES	75
1.266	STAGE-DISCHARGE CURVES FILE	75
1.267	STANDARD VALUES FOR TRACERS	75
1.268	STEERING FILE	76
1.269	SUPG OPTION	76
1.270	TEMPERATURE DELWAQ FILE	76
1.271	TEMPERATURE FOR DELWAQ	76
1.272	THRESHOLD CONCENTRATION FOR HINDERED SETTLING	77
1.273	THRESHOLD DEPTH FOR WIND	77
1.274	THRESHOLD FOR SEDIMENT FLUX CORRECTION ON TIDAL FLATS	77
1.275	THRESHOLD FOR VISCOSITY CORRECTION ON TIDAL FLATS	77
1.276	TIDAL DATA BASE	77
1.277	TIDAL FLATS	78

1.278	TIDAL MODEL FILE	78
1.279	TIDE GENERATING FORCE	78
1.280	TIME STEP	78
1.281	TIME STEP FOR CONSOLIDATION	78
1.282	TITLE	79
1.283	TOMAWAC STEERING FILE	79
1.284	TRACERS VERTICAL PROFILES	79
1.285	TREATMENT OF FLUXES AT THE BOUNDARIES	79
1.286	TREATMENT OF NEGATIVE DEPTHS	80
1.287	TREATMENT ON TIDAL FLATS FOR K-EPSILON	80
1.288	TREATMENT ON TIDAL FLATS FOR TRACERS	80
1.289	TREATMENT ON TIDAL FLATS FOR VELOCITIES	80
1.290	TURBULENCE REGIME FOR LATERAL SOLID BOUNDARIES	81
1.291	TURBULENCE REGIME FOR THE BOTTOM	81
1.292	TYPE OF SOURCES	81
1.293	VALIDATION	81
1.294	VALUE OF ATMOSPHERIC PRESSURE	82
1.295	VALUE OF THE TRACERS AT THE SOURCES	82
1.296	VALUES OF TRACERS IN THE RAIN	82
1.297	VARIABLES FOR 2D GRAPHIC PRINTOUTS	82
1.298	VARIABLES FOR 3D GRAPHIC PRINTOUTS	83
1.299	VECTOR LENGTH	84
1.300	VELOCITIES OF THE SOURCES ALONG X	84
1.301	VELOCITIES OF THE SOURCES ALONG Y	85
1.302	VELOCITIES OF THE SOURCES ALONG Z	85
1.303	VELOCITY DELWAQ FILE	85
1.304	VELOCITY FOR DELWAQ	85
1.305	VELOCITY PROFILES	85
1.306	VELOCITY PROJECTED ON BOTTOM	86
1.307	VELOCITY PROJECTED ON SOLID LATERAL BOUNDARIES	86
1.308	VELOCITY VERTICAL PROFILES	86
1.309	VERTICAL FLUXES DELWAQ FILE	86
1.310	VERTICAL TURBULENCE MODEL	86
1.311	VERTICAL VELOCITY DERIVATIVES	87
1.312	VOLUMES DELWAQ FILE	87
1.313	WAQTEL STEERING FILE	87

1.314	WATER DISCHARGE OF SOURCES	87
1.315	WATER QUALITY PROCESS	88
1.316	WAVE DRIVEN CURRENTS	88
1.317	WEAK SOIL CONCENTRATION FOR MUD	88
1.318	WIND	88
1.319	WIND VELOCITY ALONG X	89
1.320	WIND VELOCITY ALONG Y	89
1.321	ZERO	89
1.322	ZONE NUMBER IN GEOGRAPHIC SYSTEM	89
2	List of keywords classified according to type	90
2.1	AIR PRESSURE	90
2.2	BOUNDARY CONDITIONS	90
2.3	COHESIVE SEDIMENT	90
2.4	COMPUTATION ENVIRONMENT	90
2.5	COMPUTATIONAL INFORMATION	90
2.6	CONSOLIDATION	91
2.7	CONSTANT VISCOSITY	91
2.8	CONTROL	91
2.9	CORIOLIS	91
2.10	DEPTH	91
2.11	DURATION	91
2.12	EQUATIONS	91
2.13	EQUATIONS, ADVECTION	93
2.14	EQUATIONS, BOUNDARY CONDITIONS	93
2.15	EQUATIONS, DIFFUSION	93
2.16	EQUATIONS, INITIAL CONDITIONS	94
2.17	EQUATIONS, PROPAGATION	94
2.18	EQUATIONS, SOURCE	94
2.19	EQUATIONS, SOURCE TERMS	94
2.20	EQUATIONS, SOURCES	94
2.21	EQUATIONS, TRACER	94
2.22	FILES	94
2.23	FRICTION	94
2.24	GENERAL	95
2.25	INPUT-OUTPUT, FILES	96

		13
2.26	INPUT-OUTPUT, GRAPHICS AND LISTING	97
2.27	INPUT-OUTPUT, INFORMATION	98
2.28	K-EPSILON MODEL	98
2.29	NAMES	98
2.30	NUMERICAL PARAMETERS	99
2.31	NUMERICS VALUES	101
2.32	PARAMETER FOR BED MATERIAL	101
2.33	PHYSICAL CONSTANTS	101
2.34	PHYSICAL PARAMETERS	101
2.35	PHYSICS	102
2.36	PROPAGATION	102
2.37	SEDIMENT	102
2.38	SEDIMENT TRANSPORT	102
2.39	SMOOTHINGS	103
2.40	SOURCES	103
2.41	SUSPENSION	103
2.42	TRACER	103
2.43	TURBULENCE	103
2.44	TURBULENCE MODEL	103
2.45	TYPE OF BINARY	104
2.46	VELOCITY-CELERITY-DEPTH	104
2.47	WIND	104
3	Glossary	105
3.1	English/French glossary	105
3.2	French/English glossary	115
	Bibliography	126

1. Detail list of keywords

1.1 2D CONTINUATION

Type: Logical
Dimension: 0
Mnemo SUIT2
DEFAULT VALUE: NO

French keyword: SUITE 2D

Enables to use a 2D RESULT FILE in FILE FOR 2D CONTINUATION as initial conditions file.

1.2 2D RESULT FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DHYD)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS 2D

Name of the file into which the 2D results of the computation are written with a period given by the keyword GRAPHIC PRINTOUT PERIOD.

1.3 2D RESULT FILE BINARY

Type: String Dimension: 0

Mnemo BINHYD DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES RESULTATS 2D

Binary file type used for writing the 2D RESULT FILE. This type depends on the machine on which the file was generated. The possible values are as follows:

- IBM, for a file on an IBM (from a CRAY),
- I3E, for a file on an HP (from a CRAY),
- STD, binary type of the machine on which the user is working.

In that case, normal READ and WRITE commands are used.

1.4 2D RESULT FILE FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DHYD)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS 2D

Format of the 2D RESULT FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED : MED double precision format based on HDF5.

1.5 3D RESULT FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DRES)%NAME

DEFAULT VALUE:

French keyword: FICHIER DES RESULTATS 3D

Name of the file into which the 3D results of the computation are written, the periodicity being given by the keyword: GRAPHIC PRINTOUT PERIOD.

1.6 3D RESULT FILE BINARY

Type: String
Dimension: 0
Mnemo BINRES
DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES RESULTATS 3D

Binary file type used for writing the 3D RESULT FILE. This type depends on the machine on which the file was generated. The possible values are as follows:

- IBM, for a file on an IBM (from a CRAY),
- I3E, for a file on an HP (from a CRAY),
- STD, binary type of the machine on which the user is working.

In that case, normal READ and WRITE commands are used.

1.7 3D RESULT FILE FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DRES)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DES RESULTATS 3D

Format of the 3D RESULT FILE. Possible choices are:

- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.8 ABSCISSAE OF SOURCES

Type: Real
Dimension: 2
Mnemo XSCE

DEFAULT VALUE:

French keyword: ABSCISSES DES SOURCES

Floats giving the abscissae of potential sources of flow rates (in meters). The source will be located at the nearest node in the mesh.

1.9 ACCURACY FOR DIFFUSION OF K-EPSILON

Type: Real Dimension: 0

Mnemo SLVDKE%EPS

DEFAULT VALUE: 1.E-6

French keyword: PRECISION POUR LA DIFFUSION DU K-EPSILON Sets the accuracy needed for the computation of the diffusion of the k- ϵ model.

1.10 ACCURACY FOR DIFFUSION OF SEDIMENT

Type: Real Dimension: 0

Mnemo SLVDSE%EPS

DEFAULT VALUE: 1.E-6

French keyword: PRECISION POUR LA DIFFUSION DU SEDIMENT

Sets the accuracy needed for the computation of the diffusion of sediments.

1.11 ACCURACY FOR DIFFUSION OF TRACERS

Type: Real Dimension: 0

Mnemo SLVDTA(ITRAC)%EPS

DEFAULT VALUE: 1.E-6

French keyword: PRECISION POUR LA DIFFUSION DES TRACEURS

Sets the accuracy needed for the computation of the diffusion of the tracers.

1.12 ACCURACY FOR DIFFUSION OF VELOCITIES

Type: Real Dimension: 0

Mnemo SLVDVI%EPS

DEFAULT VALUE: 1.E-5

French keyword: PRECISION POUR LA DIFFUSION DES VITESSES

Sets the accuracy needed for the computation of the diffusion of the velocities.

1.13 ACCURACY FOR PPE

Type: Real Dimension: 0

Mnemo SLVPOI%EPS

DEFAULT VALUE: 1.E-4

French keyword: PRECISION POUR PPE

Sets the precision needed for the computation of the Poisson Pressure Equation.

1.14 ACCURACY FOR PROPAGATION

Type: Real Dimension: 0

Mnemo SLVPRO%EPS

DEFAULT VALUE: 1.E-6

French keyword: PRECISION POUR LA PROPAGATION Sets the accuracy needed for the computation of the propagation step.

1.15 ACCURACY FOR VERTICAL VELOCITY

Type: Real Dimension: 0

Mnemo SLVW%EPS

DEFAULT VALUE: 1.E-6

French keyword: PRECISION POUR LA VITESSE VERTICALE

Sets the accuracy needed for the computation of the vertical velocity.

1.16 ADVECTION STEP

Type: Logical Dimension: 0

Mnemo CONVEC DEFAULT VALUE: YES

French keyword: ETAPE DE CONVECTION

Takes into account the advection terms or not. If YES, some advection terms can still be ignored with the keywords SCHEME FOR ADVECTION OF...

1.17 ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY

Type: Integer
Dimension: 0
Mnemo SETDEP

DEFAULT VALUE: 0

French keyword: SCHEMA DE CONVECTION DIFFUSION AVEC VITESSE DE CHUTE Choice of the vertical scheme for diffusion and settling of sediment:

• 0: Implicit-diffusion scheme,

• 1: Implicit-convection scheme (Tridiagonal matrix solver),

• 2: set_fall.f

1.18 AIR PRESSURE

Type: Logical
Dimension: 0
Mnemo ATMOS
DEFAULT VALUE: NO

French keyword: PRESSION ATMOSPHERIQUE

Sets whether the influence of an atmosphere pressure field is taken into account or not.

1.19 ASCII ATMOSPHERIC DATA FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3ATMA)

DEFAULT VALUE:

French keyword: FICHIER ASCII DE DONNEES ATMOSPHERIQUES

ASCII data file containing the atmospheric data varying in time.

1.20 ASCII DATABASE FOR TIDE

Type: String
Dimension: -1

Mnemo T3D_FILES(T3DBDD)

DEFAULT VALUE: '

French keyword: BASE ASCII DE DONNEES DE MAREE

File name for the tide data base of harmonic constituents extracted from the TIDAL MODEL

FILE.

1.21 AVERAGE WATER DENSITY

Type: Real
Dimension: 0
Mnemo RHO0
DEFAULT VALUE: 1025.

French keyword: MASSE VOLUMIQUE MOYENNE DE L'EAU

Average water density in the domain, see subroutine **DRSURR**.

1.22 BED LAYERS THICKNESS

Type: Real
Dimension: 0
Mnemo EPAI0
DEFAULT VALUE: 5.E-3

French keyword: EPAISSEUR DES COUCHES DU FOND VASEUX

Reference thickness considered for the creation of new bed layers. This parameter is used if CONSOLIDATION MODEL = 2 (Gibson model (Lenormant)). With this model, the sediment which settles on the bottom arrives at first in the fresh deposit layer. When the thickness of this layer is equal to the BED LAYERS THICKNESS, a new mud layer is added to the mud bed.

1.23 BETA EXPANSION COEFFICIENT FOR TRACERS

Type: Real
Dimension: 2
Mnemo BETAC

DEFAULT VALUE:

French keyword: COEFFICIENT DE DILATATION BETA POUR LES TRACEURS Unit: K^{-1} . This coefficient is used to define the evolution of the water density with respect to the tracer concentration when using LAW OF DENSITY = 4.

1.24 BINARY ATMOSPHERIC DATA FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3ATMB)

DEFAULT VALUE:

French keyword: FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES

Binary-coded data file containing the atmospheric data varying in time and space on the mesh.

1.25 BINARY ATMOSPHERIC DATA FILE FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3ATMB)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES

Format of the BINARY ATMOSPHERIC DATA FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

1.26 BINARY BOUNDARY DATA FILE

Type: String Dimension: 0

Mnemo T3D FILES(T3DBND)%NAME

DEFAULT VALUE:

French keyword: FICHIER BINAIRE DE DONNEES DE FRONTIERE Binary-coded data file containing the boundary conditions data varying in time and space.

1.27 BINARY BOUNDARY DATA FILE FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DBND)

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER BINAIRE DE DONNEES DE FRONTIERE

Format of the BINARY BOUNDARY DATA FILE. Possible values are:

• SERAFIN : classical single precision format in Telemac;

• SERAFIND: classical double precision format in Telemac;

• MED: MED format based on HDF5.

1.28 BINARY DATA FILE 1

Type: String Dimension: 0

Mnemo T3D_FILES(T3DBI1)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES BINAIRE 1

Data file in binary mode available to the user.

1.29 BINARY DATA FILE 1 FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DBI1)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE DONNEES BINAIRE 1

Format of the BINARY DATA FILE 1. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

1.30 BINARY DATA FILE 2

Type: String Dimension: 0

Mnemo T3D_FILES(T3DBI2)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES BINAIRE 2

Data file in binary mode available to the user.

1.31 BINARY DATABASE 1 FOR TIDE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DBB1)

DEFAULT VALUE: '

French keyword: BASE BINAIRE 1 DE DONNEES DE MAREE

File name for the binary database 1 of tidal harmonic constants. In the case of the OSU satellite altimetry model (TPXO type), this file should be for free surface level, for instance h_tpxo7.2.

1.32 BINARY DATABASE 2 FOR TIDE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DBB2)

DEFAULT VALUE: '

French keyword: BASE BINAIRE 2 DE DONNEES DE MAREE

File name for the binary database 2 of tidal harmonic constants. In the case of the OSU satellite altimetry model (TPXO type), this file should be for tidal velocities, for instance u_tpxo7.2.

1.33 BINARY RESULTS FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DRBI)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS BINAIRE Additional binary-coded result file made available to the user.

1.34 BOTTOM SURFACES DELWAQ FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DDL5)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES SURFACES DU FOND

Results file for coupling with DELWAQ.

1.35 BOTTOM TOPOGRAPHY FILE

Type: String Dimension: 0

Mnemo T3D FILES(T3DFON)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES FONDS

Name of the possible file containing the bathymetric data. Where this keyword is used, these bathymetric data shall be used in the computation.

1.36 BOUNDARY CONDITION ON THE BOTTOM

Type: Integer Dimension: 0

Mnemo BC BOTTOM

DEFAULT VALUE: 1

French keyword: CONDITION A LA LIMITE AU FOND

Specifies the type of boundary conditions on the bottom layer. Possible choices are:

- 1: Neumann conditions on velocity on bottom,
- 2: velocities will be set to 0. Should be linked to a refined mesh near the bottom.

1.37 BOUNDARY CONDITIONS FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DCLI)%NAME

DEFAULT VALUE:

French keyword: FICHIER DES CONDITIONS AUX LIMITES

Name of the file containing the types of boundary conditions. This file is filled automatically by the mesh generator through colours that are assigned to the boundary nodes.

1.38 BYPASS VOID VOLUMES

Type: Logical
Dimension: 0
Mnemo BYPASS

DEFAULT VALUE: NO

French keyword: CONTOURNEMENT DES VOLUMES NULS

Will speed-up distributive and finite volumes advection schemes in case of tidal flats or generalised sigma transformation.

1.39 CHECKING THE MESH

Type: Logical

Dimension: 0

Mnemo CHECK_MESH

DEFAULT VALUE: NO

French keyword: VERIFICATION DU MAILLAGE

If this key word is equal to YES, a call to subroutine **CHECKMESH** will look for errors in the mesh, superimposed points, etc.

1.40 COEFFICIENT FOR HORIZONTAL DIFFUSION OF TRACERS

Type: Real Dimension: 2

Mnemo DNUTAH

DEFAULT VALUE:

French keyword: COEFFICIENT DE DIFFUSION HORIZONTAL DES TRACEURS Sets the values of the horizontal diffusion of tracers. These values may have a significant effect on the evolution of tracers in time. Since version 7.1, it has been an array, with one value per tracer, separated by semicolons.

1.41 COEFFICIENT FOR HORIZONTAL DIFFUSION OF VELOCITIES

Type: Real Dimension: 0

Mnemo DNUVIH
DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION HORIZONTAL DES VITESSES Sets, in an even way for the whole domain, the value of the coefficient of global (dynamic+turbulent) viscosity for the horizontal direction. This value may have a significant effect both on the shapes and sizes of recirculation zones.

1.42 COEFFICIENT FOR VERTICAL DIFFUSION OF TRACERS

Type: Real Dimension: 2

Mnemo DNUTAV

DEFAULT VALUE:

French keyword: COEFFICIENT DE DIFFUSION VERTICAL DES TRACEURS Sets the values of the vertical diffusion of tracers. These values may have a significant effect on the evolution of tracers in time. Since version 7.1, it has been an array, with one value per tracer, separated by semicolons.

1.43 COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES

Type: Real Dimension: 0

Mnemo DNUVIV DEFAULT VALUE: 1.E-6

French keyword: COEFFICIENT DE DIFFUSION VERTICAL DES VITESSES Sets, in an even way for the whole domain, the value of the coefficient of global (dynamic+turbulent) viscosity for the horizontal direction. This value may have a significant effect both on the shapes and sizes of recirculation zones.

1.44 COEFFICIENT OF WIND INFLUENCE

Type: Real
Dimension: 0
Mnemo FAIR
DEFAULT VALUE: 0.

French keyword: COEFFICIENT D'INFLUENCE DU VENT

Sets the value of the wind driving coefficient. See the User Manual for the value to give.

1.45 COEFFICIENT RELATIVE TO FLOC DESTRUCTION

Type: Real
Dimension: 0
Mnemo TURBB
DEFAULT VALUE: 0.09

French keyword: COEFFICIENT TRADUISANT LA DESTRUCTION DES FLOCS When the influence of turbulence on the settling velocity is modelled, this coefficient traduces the breaking of flocs by turbulence (coefficient b of Van Leussen formula). Value to be imposed if INFLUENCE OF TURBULENCE ON SETTLING VELOCITY = YES.

1.46 COEFFICIENT TO CALIBRATE SEA LEVEL

Type: Real
Dimension: 0
Mnemo MSL
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE CALAGE DU NIVEAU DE MER

Coefficient to calibrate the sea level. This coefficient usually corresponds to the mean sea level or a close value.

1.47 COEFFICIENT TO CALIBRATE TIDAL RANGE

Type: Real
Dimension: 0
Mnemo CTIDE
DEFAULT VALUE: 1.

French keyword: COEFFICIENT DE CALAGE DU MARNAGE

Coefficient to calibrate the tidal range of tidal wave at tidal open boundary conditions.

1.48 COEFFICIENT TO CALIBRATE TIDAL VELOCITIES

Type: Real
Dimension: 0
Mnemo CTID

Mnemo CTIDEV DEFAULT VALUE: 999999.

French keyword: COEFFICIENT DE CALAGE DES VITESSES DE COURANT Coefficient to calibrate the tidal velocities of tidal wave at tidal open boundary conditions. Default value 999999. means that the square root of COEFFICIENT TO CALIBRATE TIDAL RANGE is taken.

1.49 COHESIVE SEDIMENT

Type: Logical

Dimension: 1

Mnemo SEDCO DEFAULT VALUE: NO

French keyword: SEDIMENT COHESIF

Tells if the sediment is cohesive or not.

1.50 COMPUTATION CONTINUED

Type: Logical
Dimension: 0
Mnemo DEBU
DEFAULT VALUE: NO

French keyword: SUITE DE CALCUL

Determines whether the computation under way is independent or is following an earlier result.

- NO: It is the first run for this computation and a whole set of initial conditions should be defined,
- YES: It follows a former computation: the initial conditions consist in the last time step of the PREVIOUS COMPUTATION FILE defined in the steering file used for submitting the computation.

All the data from the steering file may be defined once again, which provides an opportunity to change, for example, the time step, the turbulence model, the friction, to add or remove a tracer...

It is also possible to define new boundary conditions (in the subroutine **BORD3D** or values defined in the steering file).

In order to get a perfect continued computation, the user has to activate the RESTART MODE in a previous computation to generate the file from which the following computation starts (RESTART FILE).

1.51 CONSOLIDATION

Type: Logical Dimension: 0 Mnemo TASSE DEFAULT VALUE: NO

French keyword: TASSEMENT DE LA VASE

If this key word is equal to YES, consolidation is simulated thanks to a multi-layers model: the bed layers are characterized by their residence time which is the time after which the quantity of mud which remains in a layer goes into a more consolidated layer.

1.52 CONSOLIDATION MODEL

Type: Integer
Dimension: 1
Mnemo ITASS
DEFAULT VALUE: 1

French keyword: OPTION DU MODELE DE TASSEMENT

Choice of the consolidation model:

- 1: Empirical multilayer model,
- 2: Gibson model (Lenormant).

1.53 CONSTANT SEDIMENT SETTLING VELOCITY

Type: Real
Dimension: 0
Mnemo WCH

Mnemo WCHU0 DEFAULT VALUE: 0.01

French keyword: VITESSE DE CHUTE CONSTANTE

Constant sediment settling velocity in m/s (>0 since v6.3). Prescribed value if INFLUENCE

OF TURBULENCE ON SETTLING VELOCITY = NO.

1.54 CONTINUITY CORRECTION ON OPEN BOUNDARIES

Type: Logical

Dimension:

Mnemo CONCOR DEFAULT VALUE: NO

French keyword: CORRECTION DE CONTINUITE SUR FRONTIERES OUVERTES

Changes the free velocities on open boundaries to get a better divergence-free field.

1.55 CORIOLIS

Type: Logical
Dimension: 0
Mnemo CORIOL
DEFAULT VALUE: NO

French keyword: CORIOLIS

The Coriolis force is taken into account or ignored.

1.56 CORIOLIS COEFFICIENT

Type: Real
Dimension: 0
Mnemo FCOR
DEFAULT VALUE: 0.

French keyword: COEFFICIENT DE CORIOLIS

Sets the value of the Coriolis force coefficient, in cartesian coordinates. This coefficient, denoted **FCOR** in the code, should be equal to $2\omega \sin(l)$ where ω denotes the earth angular speed of rotation and l the latitude. $\omega = 7.29$ 10-5 rad/s.

The Coriolis force components are then:

 $FU = FCOR \times V,$ $FV = -FCOR \times U.$

When using the spherical coordinates, the Coriolis coefficient is automatically computed.

1.57 COUPLING PERIOD FOR SISYPHE

Type: Integer

Dimension: 0

Mnemo PERCOU_SIS

DEFAULT VALUE: 1

French keyword: PERIODE DE COUPLAGE POUR SISYPHE

Sets the coupling period with the SISYPHE module, in number of time steps. By default, it is coupled at every time step.

1.58 COUPLING PERIOD FOR TOMAWAC

Type: Integer Dimension: 0

Mnemo PERCOU_WAC

DEFAULT VALUE: 1

French keyword: PERIODE DE COUPLAGE POUR TOMAWAC

Sets the coupling period with the TOMAWAC module, in number of time steps. By default, it is coupled at every time step.

1.59 COUPLING WITH

Type: String Dimension: -1

Mnemo COUPLING, IN BIEF

DEFAULT VALUE:

French keyword: COUPLAGE AVEC List of codes to be coupled with TELEMAC-3D:

- SISYPHE: internal coupling with SISYPHE,
- TOMAWAC: internal coupling with TOMAWAC,
- WAQTEL: internal coupling with WAQTEL,
- DELWAQ: will yield results file for DELWAQ.

1.60 CRITICAL EROSION SHEAR STRESS OF THE MUD LAYERS

Type: Real Dimension: 2

Mnemo TOCE_LAYER

DEFAULT VALUE:

French keyword: CONTRAINTE CRITIQUE D'EROSION DES COUCHES DE VASE Critical erosion shear stress of the mud per layer (N/m^2) . Needs to be defined for each layer (N/m^2) , starting from the condolidated bottom layer upwards.

1.61 CRITICAL SHEAR STRESS FOR DEPOSITION

Type: Real
Dimension: 0
Mnemo TOCD
DEFAULT VALUE: 0.2

French keyword: CONTRAINTE CRITIQUE DE DEPOT

Value of the critical bottom shear stress under which deposition of cohesive sediments occurs.

1.62 CULVERTS DATA FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DBUS)

DEFAULT VALUE:

French keyword: FICHIER DE DONNEES DES BUSES

Description of culverts/bridges existing in the model.

1.63 DAMPING FUNCTION

Type: Integer Dimension: 0

Mnemo DAMPING

DEFAULT VALUE: 0

French keyword: FONCTION D'AMORTISSEMENT

Specifies the type of damping function used (when using mixing length turbulence model). The possible choices are:

- 0: nothing,
- 1: user programmed,
- 2: Viollet,
- 3: Munk and Anderson.

1.64 DEBUGGER

Type: Integer
Dimension: 0
Mnemo DEBUG

DEFAULT VALUE: 0

French keyword: DEBUGGER

If 1, additional writings will be printed in the listing, in particular the calls of subroutines.

1.65 DEFAULT EXECUTABLE

Type: String
Dimension: 1
Mnemo EXEDEF

DEFAULT VALUE: 'builds|PPP|bin|telemac3dMMMVVV.exe'

French keyword: EXECUTABLE PAR DEFAUT

Default executable for TELEMAC-3D.

1.66 DEFAULT PARALLEL EXECUTABLE

Type: String Dimension: 1

Mnemo EXEDEFPARA

DEFAULT VALUE: 'builds|PPP|bin|telemac3dMMMVVV.exe'
French keyword: EXECUTABLE PARALLELE PAR DEFAUT

Default parallel executable for TELEMAC-3D.

1.67 DELWAQ PRINTOUT PERIOD

Type: Integer Dimension: 0

Mnemo WAQPRD

DEFAULT VALUE: 1

French keyword: PERIODE DE SORTIE POUR DELWAQ

Printout period for DELWAQ files.

1.68 DELWAQ STEERING FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DL11)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE COMMANDE DELWAQ

Steering file for coupling with DELWAQ.

1.69 DENSITY LAW

Type: Integer Dimension: 0

Mnemo DENLAW

DEFAULT VALUE: 0

French keyword: LOI DE DENSITE

Gives the type of the law of density used in the case of active tracers. The possible choices are:

- 0: nothing,
- 1: function of temperature,
- 2: function of salinity,
- 3: function of temperature and salinity,
- 4: function of BETA given coefficient.

1.70 DENSITY OF THE SEDIMENT

Type: Real
Dimension: 0
Mnemo RHOS
DEFAULT VALUE: 2650.

French keyword: MASSE VOLUMIQUE DU SEDIMENT

Value of the sediment density (kg/m³).

1.71 DESCRIPTION OF LIBRARIES

Type: String Dimension: 11

Mnemo LINKLIBS

DEFAULT VALUE: 'builds|PPP|lib|telemac3dMMMVVV.LLL;

builds|PPP|lib|telemac2dMMMVVV.LLL; builds|PPP|lib|tomawacMMMVVV.LLL; builds|PPP|lib|sisypheMMMVVV.LLL; builds|PPP|lib|mestorMMMVVV.LLL; builds|PPP|lib|biefMMMVVV.LLL; builds|PPP|lib|biefMMMVVV.LLL; builds|PPP|lib|damoMMMVVV.LLL;

buildslP'

French keyword: DESCRIPTION DES LIBRAIRIES

Libraries description of TELEMAC-3D.

1.72 DICTIONARY

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'telemac3d.dico'
French keyword: DICTIONNAIRE

Key word dictionary.

1.73 DIFFUSION FOR DELWAQ

Type: Logical Dimension: -1

Mnemo DIFF_DEL

DEFAULT VALUE: NO

French keyword: DIFFUSION POUR DELWAQ

Triggers the output of diffusion for DELWAQ.

1.74 DIFFUSION STEP

Type: Logical
Dimension: 0
Mnemo DIFFUS
DEFAULT VALUE: YES

French keyword: ETAPE DE DIFFUSION

Takes into account the diffusion terms or not. If YES, some diffusion terms can still be ignored with the keywords SCHEME FOR DIFFUSION OF...

1.75 DIFFUSIVITY DELWAQ FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DL10)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA DIFFUSION

Results file for coupling with DELWAQ.

1.76 DROGUES FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DFLO)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES FLOTTEURS

Results file with positions of drogues.

1.77 DURATION

Type: Real
Dimension: 0
Mnemo DUREE

DEFAULT VALUE: 0.

French keyword: DUREE DU CALCUL

Sets the duration of the simulation in seconds. May be used instead of the parameter NUMBER OF TIME STEPS. The nearest integer to (duration/time step) is taken. If NUMBER OF TIME STEPS is also given, the greater value is taken.

1.78 DYNAMIC BOUNDARY CONDITION

Type: Logical

Dimension: 0
Mnemo CLDYN

Mnemo CLDYN DEFAULT VALUE: NO

French keyword: CONDITION LIMITE DYNAMIQUE

If YES, will set at the free surface a velocity obeying the dynamic boundary condition.

1.79 DYNAMIC PRESSURE IN WAVE EQUATION

Type: Logical

Dimension: 0

Mnemo DPWAVEQ

DEFAULT VALUE: NO

French keyword: PRESSION DYNAMIQUE DANS L'EQUATION D'ONDE Defines if an estimated pressure gradient is taken into account in the wave equation.

1.80 ELEMENT

Type: String Dimension: 0

Mnemo ELEMENT
DEFAULT VALUE: 'PRISM'
French keyword: ELEMENT

Specifies the type of elements used in the computation. The possible choices are:

- PRISM: superimposed meshes of triangles,
- TETRAHEDRON: the same but prisms are split into tetrahedrons.

1.81 ELEMENTS MASKED BY USER

Type: Logical

Dimension: 0

Mnemo MSKUSE DEFAULT VALUE: NO

French keyword: ELEMENTS MASQUES PAR L'UTILISATEUR

If YES, fill in the subroutine MASKOB.

1.82 ELEVATIONS OF SOURCES

Type: Real Dimension: 2 Mnemo ZSCE

DEFAULT VALUE:

French keyword: COTES DES SOURCES

Sets the height of the sources. The source will be located at the nearest plane in the mesh. The use of a fixed plane is then recommended to avoid the change of the nearest plane in case of variation of local water height.

1.83 EROSION COEFFICIENT

Type: Real
Dimension: 0
Mnemo MPART
DEFAULT VALUE: 2.E-3

French keyword: COEFFICIENT D'EROSION

Value of the erosion coefficient used in Partheniades formula in kg/m²/s.

1.84 EXCHANGE AREAS DELWAQ FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DDL2)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES SURFACES DE FLUX

Results file for coupling with DELWAQ.

1.85 EXCHANGES BETWEEN NODES DELWAQ FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DDL6)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES ECHANGES ENTRE NOEUDS

Results file for coupling with DELWAQ.

1.86 FICTITIOUS BED LEVEL

Type: Real
Dimension: 0
Mnemo FICT
DEFAULT VALUE: 2.0

French keyword: HAUTEUR DU LIT FICTIF Ratio between the fictitious bed and the grid size above the bed.

1.87 FILE FOR 2D CONTINUATION

Type: String
Dimension: -1

Mnemo T3D_FILES(T3DS2D)%NAME

DEFAULT VALUE: '

French keyword: FICHIER POUR SUITE 2D

File to be used in case of 2D continuation.

1.88 FILE FOR 2D CONTINUATION FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DS2D)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER POUR SUITE 2D Format of the FILE FOR 2D CONTINUATION. Possible choices are:

- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.89 FLOCCULATION

Type: Logical Dimension: 0 Mnemo FLOC DEFAULT VALUE: NO

French keyword: FLOCULATION

Decides if hindered formulation is to be used to compute settling velocity for mud.

1.90 FLOCCULATION COEFFICIENT

Type: Real
Dimension: 0
Mnemo TURBA
DEFAULT VALUE: 0.3

French keyword: COEFFICIENT TRADUISANT LA FORMATION DES FLOCS When the influence of turbulence on the settling velocity is modelled, this coefficient traduces the formation of flocs by turbulence (coefficient a of Van Leussen formula). Value to be imposed if INFLUENCE OF TURBULENCE ON SETTLING VELOCITY = YES.

1.91 FLOCCULATION FORMULA

Type: Integer Dimension: 0

Mnemo FLOC_TYPE

DEFAULT VALUE: 1

French keyword: FORMULE POUR FLOCULATION

Type of flocculation formula:

• 1: Van Leussen,

• 2: Soulsby et al. (2013).

1.92 FORMATTED DATA FILE 1

Type: String Dimension: 0

Mnemo T3D_FILES(T3DFO1)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES FORMATE 1

Formatted data file available to the user.

1.93 FORMATTED DATA FILE 2

Type: String Dimension: 0

Mnemo T3D_FILES(T3DFO2)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE DONNEES FORMATE 2

Formatted data file available to the user.

1.94 FORMATTED RESULTS FILE

Type: String Dimension: -1

Mnemo T3D FILES(T3DRFO)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE RESULTATS FORMATE

Formatted file of results made available to the user.

1.95 FORTRAN FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DFORT)%NAME

DEFAULT VALUE: 'DEFAUT'

French keyword: FICHIER FORTRAN

Name of the FORTRAN file to be submitted, including specific subroutines of the model.

1.96 FREE SURFACE GRADIENT COMPATIBILITY

Type: Real Dimension: 0

Mnemo TETAZCOMP

DEFAULT VALUE: 1.

French keyword: COMPATIBILITE DU GRADIENT DE SURFACE LIBRE

Values between 0 and 1 may suppress spurious oscillations.

1.97 FRICTION COEFFICIENT FOR LATERAL SOLID BOUNDARIES

Type: Real Dimension: 0

Mnemo RUGOL0

DEFAULT VALUE: 60.

French keyword: COEFFICIENT DE FROTTEMENT POUR LES PAROIS LATERALES

Friction coefficient on the lateral boundaries, if constant.

1.98 FRICTION COEFFICIENT FOR THE BOTTOM

Type: Real Dimension: 0

Mnemo RUGOF0

DEFAULT VALUE: 60.

French keyword: COEFFICIENT DE FROTTEMENT POUR LE FOND

Friction coefficient on the bottom, if constant.

1.99 GEOGRAPHIC SYSTEM

Type: Integer Dimension: 0

Mnemo GEOSYST

DEFAULT VALUE: -1

French keyword: SYSTEME GEOGRAPHIQUE

Geographic coordinates system in which the numerical model is built. Indicate the corresponding zone with the keyword. The possible choices are:

- 0: defined by the user,
- 1: WGS84 longitude/latitude in real degrees,
- 2: WGS84 Northern UTM,
- 3: WGS84 Southern UTM,
- 4: Lambert,
- 5: Mercator projection.

1.100 GEOMETRY FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DGEO)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE GEOMETRIE

Name of the file containing the mesh. This file may also contain the topography and the friction

coefficients.

1.101 GEOMETRY FILE FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DGEO)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE GEOMETRIE

Format of the GEOMETRY FILE. Possible choices are:

- SERAFIN: classical single precision format in TELEMAC,
- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.102 GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

Type: Integer

Dimension: 0

Mnemo ICALHWG

DEFAULT VALUE: 0

French keyword: NUMERO GLOBAL DU POINT POUR CALER LA PLEINE MER Global number of the point with respect to which the tidal constituents have their phase shifted to start the calculation with a high water (for schematic tides only). Only harmonic constants databases like TPXO are concerned.

1.103 GRAPHIC PRINTOUT PERIOD

Type: Integer Dimension: 0

Mnemo GRAPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES GRAPHIQUES

Determines, in number of time steps, the printout period for the VARIABLES FOR 2D (or 3D) GRAPHIC PRINTOUTS in the 2D or 3D RESULT FILE.

1.104 GRAVITY ACCELERATION

Type: Real
Dimension: 0
Mnemo GRAV
DEFAULT VALUE: 9.81

French keyword: ACCELERATION DE LA PESANTEUR

Sets the value of the acceleration due to gravity in m/s^2 .

1.105 HARMONIC CONSTANTS FILE

Type: String
Dimension: -1

Mnemo T3D FILES(T3DHAR)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES CONSTANTES HARMONIQUES

Name of the file containing the harmonic constants extracted from the tidal model file (JMJ) or other atlases (FES, NEA, PREVIMER).

1.106 HINDERED SETTLING

Type: Logical
Dimension: 0
Mnemo HINDER
DEFAULT VALUE: NO

French keyword: VITESSE DE CHUTE ENTRAVEE

Decides if hindered formulation is to be used to compute settling velocity for mud.

1.107 HINDERED SETTLING FORMULA

Type: Integer

Dimension: 0

Mnemo HIND_TYPE

DEFAULT VALUE:

French keyword: FORMULE POUR VITESSE DE CHUTE ENTRAVEE

Type of hindered settling:

- 1: Whitehouse et al. (2000) working,
- 2: Winterwerp (1999) not currently working.

1.108 HORIZONTAL TURBULENCE MODEL

Type: Integer
Dimension: 0
Mnemo ITURBH

DEFAULT VALUE: 1

French keyword: MODELE DE TURBULENCE HORIZONTAL Specifies the horizontal turbulence model. The available choices are:

- 1: constant viscosity,
- 3: k- ε model,
- 4: Smagorinski,
- 7: $k-\omega$ model.

Caution: if option 1 is chosen, give the right COEFFICIENT FOR... DIFFUSION OF VELOCITIES... If option 3 ou 7 is chosen, this parameter must get its real physical value of molecular diffusivity, generally about 10^{-6} because it is used as well in the turbulence model.

1.109 HYDROSTATIC INCONSISTENCY FILTER

Type: Logical

Dimension: 0

Mnemo INCHYD DEFAULT VALUE: NO

French keyword: FILTRE LES INCONSISTANCES HYDROSTATIQUES

Allows to filter hydrostatic inconsistencies.

1.110 IMPLICITATION FOR DEPTH

Type: Real
Dimension: 0
Mnemo TETAH
DEFAULT VALUE: 0.55

French keyword: IMPLICITATION POUR LA HAUTEUR

Sets the value of the implicitation coefficient for water depth in the propagation step (cf. Principe note). The values lower than 0.5 give an instable scheme.

1.111 IMPLICITATION FOR DIFFUSION

Type: Real Dimension: 0

Mnemo TETADI

DEFAULT VALUE: 1.

French keyword: IMPLICITATION POUR LA DIFFUSION

Sets the value of the implicitation coefficient for the diffusion step. When OPTION FOR THE DIFFUSION = 2, this value is changed at 0 and a specific treatment is done for the diffusion.

1.112 IMPLICITATION FOR VELOCITIES

Type: Real
Dimension: 0
Mnemo TETAU
DEFAULT VALUE: 1.

French keyword: IMPLICITATION POUR LES VITESSES

Sets the value of the implicitation coefficient for the velocity in the propagation step (cf. Principe note). The values lower than 0.5 give an instable scheme.

1.113 INFORMATION ABOUT MASS-BALANCE FOR EACH LISTING PRINTOUT

Type: Logical Dimension: 0

Mnemo INFMAS DEFAULT VALUE: YES

French keyword: INFORMATION SUR LE BILAN DE MASSE A CHAQUE SORTIE LISTING

Gives the information about mass-balance at every LISTING PRINTOUT PERIOD.

1.114 INITIAL CONDITIONS

Type: String
Dimension: -1
Mnemo CDTINI

DEFAULT VALUE: 'ZERO ELEVATION'

French keyword: CONDITIONS INITIALES

Makes it possible to define the initial conditions of the water depth. The possible values are as follows:

- ZERO ELEVATION: Initializes the free surface elevation to 0. The initial water depths are then found by computing the difference between the free surface and the bottom,
- CONSTANT ELEVATION: Initializes the water elevation to the value given by the keyword INITIAL ELEVATION. The initial water depths are computed as in the previous case.
- ZERO DEPTH: Initializes the water depths to 0.
- CONSTANT DEPTH: Initializes the water depths to the value given by the keyword INITIAL DEPTH,
- TPXO SATELITE ALTIMETRY: The initial conditions on the free surface and velocities are established from the satellite program data given by the harmonic constants database coming from OSU (e.g. TPXO),
- SPECIAL or PARTICULAR: The initial conditions with the water depth should be stated in the **CONDIN** subroutine.

1.115 INITIAL DEPTH

Type: Real Dimension: 0

Mnemo HAUTIN

DEFAULT VALUE: 0.

French keyword: HAUTEUR INITIALE

Value to be used along with the option: INITIAL CONDITIONS: 'CONSTANT DEPTH'.

1.116 INITIAL ELEVATION

Type: Real
Dimension: 0
Mnemo COTINI
DEFAULT VALUE: 0.

French keyword: COTE INITIALE

Value to be used with the option: INITIAL CONDITIONS: 'CONSTANT ELEVATION'.

1.117 INITIAL GUESS FOR DEPTH

Type: Integer
Dimension: 0
Mnemo IORDRH

DEFAULT VALUE: 1

French keyword: ORDRE DU TIR INITIAL POUR LA HAUTEUR

Initial guess for the solver in the propagation step. Makes it possible to modify the initial value

of δh , upon each iteration in the propagation step, by using the ultimate values this variable had in the earlier time steps. Thus, the convergence can be speeded up when the system is being solved. 3 options are available:

- 0: $\delta h = 0$,
- 1: $\delta h = \delta h_n$ (ultimate δh value in the next previous time step),
- 2: $\delta h = 2 \delta h_n \delta h_{n-1}$ (extrapolation).

1.118 INITIAL PERCENTAGE OF NON COHESIVE SEDIMENT

Type: Real Dimension: 0

Mnemo PVSNCO0

DEFAULT VALUE: 0.

French keyword: POURCENTAGE INITIAL DE SEDIMENT NON COHESIF

Initial percentage of non cohesive sediment (mixed sediments).

1.119 INITIAL THICKNESS OF SEDIMENT LAYERS

Type: Real Dimension: 2

Mnemo ES_LAYER

DEFAULT VALUE:

French keyword: EPAISSEURS INITIALES DES COUCHES

Sediment layers thickness (m) for initialisation.

1.120 INITIAL TIME SET TO ZERO

Type: Logical Dimension: 0

Mnemo RAZTIM DEFAULT VALUE: NO

French keyword: REMISE A ZERO DU TEMPS

Initial time set to zero in case of restart.

1.121 INITIAL VALUES OF TRACERS

Type: Real
Dimension: 2
Mnemo TRAC0

DEFAULT VALUE:

French keyword: VALEURS INITIALES DES TRACEURS

Sets the initial values of tracers.

1.122 KARMAN CONSTANT

Type: Real Dimension: 0

Mnemo KARMAN

DEFAULT VALUE: 0.4

French keyword: CONSTANTE DE KARMAN

Value of Von Karman's constant.

1.123 LATITUDE OF ORIGIN POINT

Type: Real
Dimension: 0
Mnemo LATIT
DEFAULT VALUE: 0.

French keyword: LATITUDE DU POINT ORIGINE

Gives the value of the latitude of the origin point of the mesh (for the Mercator projection, see the keyword GEOGRAPHIC SYSTEM).

1.124 LAW OF BOTTOM FRICTION

Type: Integer
Dimension: 0
Mnemo KFROT

DEFAULT VALUE: 2

French keyword: LOI DE FROTTEMENT SUR LE FOND

Selects the type of formulation used for the bottom friction. The possible laws are as follows (refer to the Principle note):

- 0: no friction against bottom,
- 1: Haaland's formula,
- 2: Chezy's formula,
- 3: Strickler's formula,
- 4: Manning's formula,
- 5: Nikuradse's formula.

1.125 LAW OF FRICTION ON LATERAL BOUNDARIES

Type: Integer Dimension: 0

Mnemo KFROTL

DEFAULT VALUE: 0

French keyword: LOI DE FROTTEMENT SUR LES PAROIS LATERALES Selects the type of formulation used for the friction on lateral boundaries. The possible laws are as follows (refer to the Principle note):

- 0: no friction, or AUBOR given by the BOUNDARY CONDITION FILE,
- 5: Nikuradse's formula.

1.126 LINEARIZED PROPAGATION

Type: Logical
Dimension: 0
Mnemo PROLIN
DEFAULT VALUE: NO

French keyword: PROPAGATION LINEARISEE

Provided for linearizing the propagation step, e.g. when performing test-cases for which an analytical solution in the linearized case is available.

1.127 LIQUID BOUNDARIES FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DIMP)%NAME

DEFAULT VALUE:

French keyword: FICHIER DES FRONTIERES LIQUIDES

File containing the variations in time of boundary conditions.

1.128 LIST OF FILES

Type: String Dimension: 46

Mnemo

DEFAULT VALUE: 'STEERING FILE;

DICTIONARY; FORTRAN FILE; GEOMETRY FILE;

BOUNDARY CONDITIONS FILE; PREVIOUS COMPUTATION FILE;

3D RESULT FILE;

BOTTOM TOPOGRAPHY FILE;

2D RESULT FILE;

FORMATTED DATA FILE 1; FORMATTED DATA FILE 2; BINARY DATA FILE 1; BINARY DATA FILE 2;

SEDIMENTOLOGICAL RESULT FILE;

PREVIOUS COMPUTATION SEDIMENTOLOG'

French keyword: LISTE DES FICHIERS

File names of the used files.

1.129 LISTING PRINTOUT

Type: Logical
Dimension: 0
Mnemo LISTIN
DEFAULT VALUE: YES

French keyword: SORTIE LISTING

Result printout on hard copy. When NO is selected, the listing only includes the heading and the phrase "NORMAL END OF PROGRAM". In addition, the options MASS-BALANCE and VALIDATION are inhibited. Not recommended for use.

1.130 LISTING PRINTOUT PERIOD

Type: Integer
Dimension: 0
Mnemo LISPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES LISTING

Determines, in number of time steps, the printout period of the VARIABLES TO BE PRINTED.

The results are systematically printed out on the listing file.

1.131 LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

Type: Integer Dimension: 0

Mnemo ICALHWB

DEFAULT VALUE: 0

French keyword: NUMERO LOCAL DU POINT POUR CALER LA PLEINE MER Local number between 1 and the number of tidal boundary points (of the HARMONIC CONSTANTS FILE) where the tidal boundary conditions are computed with JMJ, NEA, FES, PREVIMER databases (except TPXO-type databases). The tidal constituents have their phase shifted with respect to this point to start the simulation with a high water (for schematic tides only).

1.132 LONGITUDE OF ORIGIN POINT

Type: Real Dimension: 0

Mnemo LONGIT

DEFAULT VALUE: 0.

French keyword: LONGITUDE DU POINT ORIGINE

Gives the value of the longitude of the origin point of the mesh (for the Mercator projection, see the keyword GEOGRAPHIC SYSTEM).

1.133 MASS-BALANCE

Type: Logical Dimension: 0

Mnemo BILMAS DEFAULT VALUE: NO

French keyword: BILAN DE MASSE

Determines whether a check of the mass-balance over the domain is done or not. This procedures computes the following at each time step:

- the domain inflows and outflows,
- the overall flow across all the boundaries,
- the relative error in the mass for that time step.

The relative error in the mass over the whole computation can be found at the end of the listing.

1.134 MASS-LUMPING FOR DEPTH

Type: Real Dimension: 0

Mnemo AGGLOH

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LA HAUTEUR

TELEMAC-3D offers the posibility to perform mass-lumping on H or U. This gathers all or part (given the value of the coefficient) of the AM1(H) or AM2(Ut) and AM3(V) matrices on their diagonal. This technique can speed-up the code a lot and also render it more stable. Yet, the solutions are smoothened. This parameter sets the mass-lumping amount done for H. Not recommended for use.

1.135 MASS-LUMPING FOR DIFFUSION

Type: Real Dimension: 1

Mnemo AGGLOD

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LA DIFFUSION

Mass-lumping of the mass-matrix in the diffusion step.

1.136 MASS-LUMPING FOR VELOCITIES

Type: Real Dimension: 0

Mnemo AGGLOU

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LES VITESSES

Sets the amount of mass-lumping that is performed on the velocity. Not recommended for use.

1.137 MASS-LUMPING FOR WEAK CHARACTERISTICS

Type: Real Dimension: 0

Mnemo AGGLOW

DEFAULT VALUE: 0.

French keyword: MASS-LUMPING POUR LES CARACTERISTIQUES FAIBLES Sets the amount of mass-lumping that is applied to the mass matrix when using weak characteristics.

1.138 MATRIX STORAGE

Type: Integer Dimension: 0

Mnemo OPTASS

DEFAULT VALUE: 3

French keyword: STOCKAGE DES MATRICES
Defines the method to store matrices. The possible choices are:

• 1: classical EBE,

• 3: edge-based storage.

1.139 MAXIMUM CONCENTRATION OF THE CONSOLIDATED MUD

Type: Real
Dimension: 0
Mnemo CFMAX
DEFAULT VALUE: 500.

French keyword: CONCENTRATION MAXIMUM DE LA VASE TASSEE

Maximum concentration which may be reached by a mud layer during consolidation. This value is used if CONSOLIDATION MODEL = 2 (Gibson model (Lenormant)).

1.140 MAXIMUM NUMBER OF BOUNDARIES

Type: Integer Dimension: 0

Mnemo MAXFRO

DEFAULT VALUE: 30

French keyword: NOMBRE MAXIMUM DE FRONTIERES

Maximal number of boundaries in the mesh. Used for dimensioning arrays. Can be increased

if needed.

1.141 MAXIMUM NUMBER OF BOUNDARIES ON THE BED

Type: Integer Dimension: 0

Mnemo MAXBLB

DEFAULT VALUE: 30

French keyword: NOMBRE MAXIMUM DE FRONTIERES SUR LE FOND

Maximal number of liquid boundaries on the bed. Used for dimensioning arrays. Can be

increased if needed.

1.142 MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

Type: Integer Dimension: 0

Mnemo MAXADV

DEFAULT VALUE: 10

French keyword: MAXIMUM D'ITERATIONS POUR LES SCHEMAS DE CONVECTION

Limits the number of solver iterations for the advection schemes, only for schemes 13 and 14.

1.143 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF K-EPSILON

Type: Integer Dimension: 0

Mnemo SLVDKE%NITMAX

DEFAULT VALUE: 200

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DU K-EPSILON

Limits the number of solver iterations for the diffusion of k- ε .

1.144 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF SEDIMENT

Type: Integer Dimension: 0

Mnemo SLVDSE%NITMAX

DEFAULT VALUE: 60

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DU SEDIMENT

Limits the number of solver iterations for the diffusion of sediment.

1.145 MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS

Type: Integer Dimension:

Mnemo SLVDTA(ITRAC)%NITMAX

DEFAULT VALUE:

French keyword: MAXIMUM D'ITERATIONS POUR LA DIFFUSION DES TRACEURS

Limits the number of solver iterations for the diffusion of tracers.

MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF VELOCITIES 1.146

Type: Integer

Dimension: 0

Mnemo SLVDVI%NITMAX

DEFAULT VALUE:

MAXIMUM D'ITERATIONS POUR LA DIFFUSION DES VITESSES French keyword:

Limits the number of solver iterations for the diffusion of velocities.

MAXIMUM NUMBER OF ITERATIONS FOR PPE 1.147

Integer Type: Dimension:

Mnemo SLVPOI%NITMAX

DEFAULT VALUE: 100

MAXIMUM D'ITERATIONS POUR PPE French keyword: Limits the number of solver iterations for the Poisson Pressure Equation.

1.148 MAXIMUM NUMBER OF ITERATIONS FOR PROPAGATION

Type: Integer Dimension:

SLVPRO%NITMAX Mnemo

DEFAULT VALUE: 200

French keyword: MAXIMUM D'ITERATIONS POUR LA PROPAGATION

Since the algorithms used for solving the propagation step are iterative, the allowed number of iterations should be limited. NOTE: a maximum number of 40 iterations per time step seems to be reasonable.

MAXIMUM NUMBER OF ITERATIONS FOR VERTICAL VELOCITY 1.149

Type: Integer Dimension: 0

Mnemo SLVW%NITMAX

DEFAULT VALUE:

French keyword: MAXIMUM D'ITERATIONS POUR LA VITESSE VERTICALE

Limits the number of solver iterations for the diffusion of vertical velocity.

1.150 MAXIMUM NUMBER OF SOURCES

Type: Integer Dimension: 0

Mnemo MAXSCE

DEFAULT VALUE: 20

French keyword: NOMBRE MAXIMUM DE SOURCES

Maximal number of source points in the mesh, including punctual sources and twice the number of culverts. Used for dimensioning arrays. Can be increased if needed.

1.151 MAXIMUM NUMBER OF TRACERS

Type: Integer Dimension: 0

Mnemo MAXTRA

DEFAULT VALUE: 20

French keyword: NOMBRE MAXIMUM DE TRACEURS

Maximal number of tracers. Used for dimensioning arrays. Can be increased if needed.

1.152 MEAN DEPTH FOR LINEARIZATION

Type: Real Dimension: 0

Mnemo HAULIN

DEFAULT VALUE: 0.

French keyword: PROFONDEUR MOYENNE POUR LA LINEARISATION

Sets the water depth about which the linearization is done when the LINEARIZED PROPAGATION option is selected.

1.153 MEAN DIAMETER OF THE SEDIMENT

Type: Real
Dimension: 1
Mnemo D50
DEFAULT VALUE: .01

French keyword: DIAMETRE MOYEN DES GRAINS Sets the value of the diameter D50 for non cohesive sediments.

1.154 MESH TRANSFORMATION

Type: Integer
Dimension: 0
Mnemo TRANSF

DEFAULT VALUE: 1

French keyword: TRANSFORMATION DU MAILLAGE

Specifies the distribution of vertical planes of the mesh. Possible choices are:

- 0: user defined (then subroutine **CALCOT** to be implemented),
- 1: sigma,
- 2: zstar,
- 3: horizontal fixed planes,

• 5: adaptive mesh.

This keyword must comply with what is done in CONDIM subroutine.

1.155 MINIMAL VALUE FOR DEPTH

Type: Real
Dimension: 0
Mnemo HMIN
DEFAULT VALUE: -1000.

French keyword: VALEUR MINIMALE POUR LA HAUTEUR

Sets the minimum water depth value H.

1.156 MINOR CONSTITUENTS INFERENCE

Type: Logical

Dimension: 0

Mnemo INTMICON

DEFAULT VALUE: NO

French keyword: INTERPOLATION DE COMPOSANTES MINEURES

For tidal solutions developed by OSU (e.g. TPXO) only. Inference of minor constituents from the ones read in input files linked to keywords BINARY DATABASE 1 FOR TIDE and BINARY DATABASE 2 FOR TIDE.

1.157 MIXED SEDIMENT

Type: Logical
Dimension: 0
Mnemo MIXTE
DEFAULT VALUE: NO

French keyword: SEDIMENT MIXTE

If YES, calculation of mixed sediment transport, there will be one cohesive sediment and one non cohesive sediment.

1.158 MIXING LENGTH MODEL

Type: Integer Dimension: 0

Mnemo MIXING

DEFAULT VALUE: 1

French keyword: MODELE DE LONGUEUR DE MELANGE

Specifies the mixing length model used for vertical turbulence. Possible choices are:

- 1: Prandtl,
- 3: Nezu and Nakawaga,
- 5: Quetin,
- 6: TsaniS.

^{4 (}jet) has been suppressed.

1.159 MUD CONCENTRATIONS PER LAYER

Type: Real Dimension: 2

Mnemo CONC_LAYER

DEFAULT VALUE:

French keyword: CONCENTRATIONS DES COUCHES DE VASE Dry density of the mud-bed layers in g/L starting form the bottom upwards.

1.160 NAMES OF 2D PRIVATE VARIABLES

Type: String Dimension: 4

Mnemo NAMES_PRIVE2D

DEFAULT VALUE: '

French keyword: NOMS DES VARIABLES PRIVEES 2D

Name of variables in 2D private arrays in 32 characters, 16 for the name, 16 for the unit. If present, will be read in the GEOMETRY FILE. Maximum number of 4 names.

1.161 NAMES OF TRACERS

Type: String Dimension: 2

Mnemo NAMETRAC

DEFAULT VALUE:

French keyword: NOMS DES TRACEURS

Name of tracers in 32 characters, 16 for the name, 16 for the unit.

1.162 NODES DISTANCES DELWAQ FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DDL7)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES DISTANCES ENTRE NOEUDS

Results file for coupling with DELWAQ.

1.163 NON COHESIVE BED POROSITY

Type: Real
Dimension: 1
Mnemo XKV
DEFAULT VALUE: 0.4

French keyword: POROSITE DU LIT NON COHESIF

The bed volume concentration **CFDEP** = $(1-XKV) \times RHOS$ is used to calculate the bed evolution of non-cohesive sand transport.

1.164 NON-HYDROSTATIC VERSION

Type: Logical

Dimension: 0

Mnemo NONHYD

DEFAULT VALUE: NO

French keyword: VERSION NON-HYDROSTATIQUE Specifies the use of the non-hydrostatic code version or not.

1.165 NORTH

Type: Real
Dimension: 0
Mnemo NORD
DEFAULT VALUE: 0.
French keyword: NORD

Angle of North, counted counter-clockwise, with Oy.

1.166 NUMBER OF 2D PRIVATE ARRAYS

Type: Integer Dimension: 0

Mnemo NPRIV2D

DEFAULT VALUE: 0

French keyword: NOMBRE DE TABLEAUX PRIVES 2D

Number of 2D arrays for own user programming in block PRIVE2D. It has to be lower or equal

to 4.

1.167 NUMBER OF BOTTOM SMOOTHINGS

Type: Integer
Dimension: 0
Mnemo LISFON

DEFAULT VALUE: 0

French keyword: NOMBRE DE LISSAGES DU FOND

Number of smoothings on bottom topography. Each smoothing is mass conservative. To be used when interpolation of bathymetry on the mesh gives very rough results.

1.168 NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 0

Mnemo NCO_DIST

DEFAULT VALUE:

French keyword: NOMBRE DE CORRECTIONS DES SCHEMAS DISTRIBUTIFS

For predictor-corrector options.

1.169 NUMBER OF CULVERTS

Type: Integer Dimension: 0 **NBUSE** Mnemo DEFAULT VALUE:

French keyword: NOMBRE DE BUSES

Number of culverts, tubes or bridges treated as source terms. They must be described as sources in the domain and their features are given in the CULVERTS DATA FILE (see written documentation).

1.170 NUMBER OF DROGUES

Type: Integer Dimension: Mnemo **NFLOT DEFAULT VALUE:**

French keyword: NOMBRE DE FLOTTEURS

Number of drogues in the computation. The user must then fill the subroutine **FLOT3D** specifying the coordinates of the starting points, their departure and arrival times. The trajectory of drogues is recorded in the DROGUES FILE that must be given in the steering file.

NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS 1.171

Type: Integer Dimension: 0

GRADEB Mnemo

DEFAULT VALUE:

French keyword: NUMERO DU PREMIER PAS DE TEMPS POUR LES SORTIES GRAPHIQUES

Determines the number of time steps after which the results are first written into the 2D or 3D

RESULT FILE.

1.172 NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS

Type: Integer Dimension: 0 **LISDEB** Mnemo

DEFAULT VALUE:

French keyword: NUMERO DU PREMIER PAS DE TEMPS POUR LES SORTIES LISTING

Determines the number of time steps after which the results are first written into the listing.

1.173 NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS

Type: Integer Dimension: 0

Mnemo **NGAUSS**

DEFAULT VALUE:

French keyword: NOMBRE DE POINTS DE GAUSS POUR LES CARACTERISTIQUES FAIBLES

See release notes v6.3.

• 1: 1 point,

• 3: 3 points,

• 6: 6 points.

1.174 NUMBER OF HORIZONTAL LEVELS

Type: Integer
Dimension: 0
Mnemo NPLAN
DEFAULT VALUE: 2

French keyword: NOMBRE DE PLANS HORIZONTAUX

Gives the number of planes from bottom to free surface. Must be at least 2.

1.175 NUMBER OF PRIVATE ARRAYS

Type: Integer
Dimension: 0
Mnemo NPRIV
DEFAULT VALUE: 0

French keyword: NOMBRE DE TABLEAUX PRIVES

Number of arrays for own user programming.

1.176 NUMBER OF SEDIMENT BED LAYERS

Type: Integer Dimension: 0

Mnemo NCOUCH

DEFAULT VALUE: 1

French keyword: NOMBRE DE COUCHES DU LIT COHESIF

Number of cohesive sediment bed layers, should be less than 20.

1.177 NUMBER OF SUB ITERATIONS FOR NON LINEARITIES

Type: Integer
Dimension: 0
Mnemo NSOUSI

DEFAULT VALUE: 1

French keyword: NOMBRE DE SOUS ITERATIONS POUR LES NON LINEARITES Used for updating, within one time step, the advection and propagation fields. Upon the first sub-iteration, these fields are given by C and the velocity field in the previous time step. At subsequent iterations, the results of the previous sub-iteration is used to update the advection and propagation field. The non-linearities can be taken into account through this technique.

1.178 NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

Type: Integer Dimension: 0

Mnemo NSP_DIST

DEFAULT VALUE:

French keyword: NOMBRE DE SOUS-PAS DES SCHEMAS DISTRIBUTIFS

Only for implicit scheme with predictor-corrector.

1.179 NUMBER OF TIME STEPS

Type: Integer
Dimension: 0
Mnemo NIT
DEFAULT VALUE: 1

French keyword: NOMBRE DE PAS DE TEMPS

Specifies the number of time steps performed when running the code.

1.180 NUMBER OF TRACERS

Type: Integer
Dimension: 0
Mnemo NTRAC

DEFAULT VALUE: 0

French keyword: NOMBRE DE TRACEURS

Defines the number of tracers.

1.181 OIL SPILL MODEL

Type: Logical

Dimension: 0

Mnemo SPILL_MODEL

DEFAULT VALUE: NO

French keyword: MODELE DE NAPPES D'HYDROCARBURES

Will trigger the oil spill model, in this case the OIL SPILL STEERING FILE is needed.

1.182 OIL SPILL STEERING FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DMIG)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DE COMMANDES HYDROCARBURES

Contains data for the oil spill model.

1.183 OPEN BOUNDARY CONDITIONS ON THE BED

Type: Logical Dimension: 0

Mnemo BEDBOU

DEFAULT VALUE: NO

French keyword: CONDITIONS OUVERTES SUR LE FOND

Defines if there are open boundary conditions on the bed.

1.184 OPTION FOR CHARACTERISTICS

Type: Integer Dimension: 0

Mnemo OPTCHA

DEFAULT VALUE: 1

French keyword: OPTION POUR LES CARACTERISTIQUES

Possible choices are:

- 1: strong form,
- 2: weak form.

1.185 OPTION FOR CULVERTS

Type: Integer Dimension: 1

Mnemo OPTBUSE

DEFAULT VALUE: 1

French keyword: OPTION POUR LES BUSES

Option for the treatment of culverts. There are two options in TELEMAC.

1.186 OPTION FOR LIQUID BOUNDARIES

Type: Integer

Dimension: 2

Mnemo FRTYPE

DEFAULT VALUE:

French keyword: OPTION POUR LES FRONTIERES LIQUIDES

One integer per liquid boundary is given. Possible choices are:

- 1: classical boundary conditions,
- 2: Thompson method based on characteristics.

1.187 OPTION FOR THE BOUNDARY CONDITIONS OF K-EPSILON

Type: Integer Dimension: 0

Mnemo OPTBCKE

DEFAULT VALUE: 1

French keyword: OPTION POUR LES CONDITIONS AUX LIMITES DU K-EPSILON

Computation of the lateral boundary conditions of k and ε . Possible choices are:

- 1: no turbulence = the minimum values **KMIN** and **EMIN** defined in **CSTKEP**,
- 2: Hans and Burchard formula.

1.188 OPTION FOR THE DIFFUSION

Type: Integer
Dimension: 0
Mnemo OPTDIF

DEFAULT VALUE: 1

French keyword: OPTION POUR LA DIFFUSION Option to solve the diffusion step. Possible choices are:

- 1: implicit diffusion,
- 2: splitting horizontal-vertical.

1.189 OPTION FOR THE TREATMENT OF TIDAL FLATS

Type: Integer Dimension: 0

Mnemo OPTBAN

DEFAULT VALUE: 1

French keyword: OPTION DE TRAITEMENT DES BANCS DECOUVRANTS

Used if TIDAL FLATS is true. Possible choices are:

• 1: equations solved everywhere with correction on tidal flats,

• 2: dry elements frozen.

1.190 OPTION FOR TIDAL BOUNDARY CONDITIONS

Type: Integer

Dimension: 2

Mnemo BND_TIDE

DEFAULT VALUE:

French keyword: OPTION POUR LES CONDITIONS AUX LIMITES DE MAREE Option for tidal boundary conditions. For real tides, option 1 is recommended. This keyword has been an array with a value given per liquid boundary, separated by semicolons, since version 7.1. This enables to have tidal conditions (or not) computed on liquid boundaries with prescribed velocities or depths, avoiding a clash when using weirs in the domain. 0 codes for conditions other than tidal. BEWARE since version 7.1! Old models must be changed if their tidal boundary is not number 1. In that case this keyword must be changed and more values given.

Possible calibration with the keywords COEFFICIENT TO CALIBRATE TIDAL RANGE, COEFFICIENT TO CALIBRATE TIDAL VELOCITIES, and COEFFICIENT TO CALIBRATE SEA LEVEL. Possible choices are:

- 0: No tide,
- 1: Real tide (recommended methodology),
- 2: Astronomical tide,
- 3: Mean spring tide,
- 4: Mean tide,
- 5: Mean neap tide,
- 6: Astronomical neap tide,
- 7: Real tide (methodology before 2010).

1.191 OPTION FOR WIND

Type: Integer Dimension: 1

Mnemo OPTWIND

DEFAULT VALUE: 1

French keyword: OPTION DU VENT Gives the option for managing the wind:

- 1: constant in time and space, given by the keywords WIND VELOCITY ALONG X and WIND VELOCITY ALONG Y,
- 2: variable in time and constant in space, given by formatted file,
- 3: variable in time and space, given by formatted file or by a binary file.

1.192 OPTION OF SOLVER FOR DIFFUSION OF K-EPSILON

Type: Integer Dimension: 0

Mnemo SLVDKE%KRYLOV

DEFAULT VALUE: 3

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DU K-EPSILON

Dimension of Krylov space for the GMRES method (7).

1.193 OPTION OF SOLVER FOR DIFFUSION OF THE SEDIMENT

Type: Integer Dimension: 0

Mnemo SLVDSE%KRYLOV

DEFAULT VALUE: 3

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DU SEDIMENT

Dimension of Krylov space for the GMRES method (7).

1.194 OPTION OF SOLVER FOR DIFFUSION OF TRACERS

Type: Integer Dimension: 0

Mnemo SLVDTA(ITRAC)%KRYLOV

DEFAULT VALUE: 3

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DES TRACEURS

Dimension of Krylov space for the GMRES method (7).

1.195 OPTION OF SOLVER FOR DIFFUSION OF VELOCITIES

Type: Integer Dimension: 0

Mnemo SLVDVI%KRYLOV

DEFAULT VALUE: 3

French keyword: OPTION DU SOLVEUR POUR LA DIFFUSION DES VITESSES

Dimension of Krylov space for the GMRES method (7).

1.196 OPTION OF SOLVER FOR PPE

Type: Integer Dimension: 0

Mnemo SLVPOI%KRYLOV

DEFAULT VALUE: 3

French keyword: OPTION DU SOLVEUR POUR PPE

Dimension of Krylov space for the GMRES method (7).

1.197 OPTION OF SOLVER FOR PROPAGATION

Type: Integer Dimension: 0

Mnemo SLVPRO%KRYLOV

DEFAULT VALUE: 3

French keyword: OPTION DU SOLVEUR POUR LA PROPAGATION

Dimension of Krylov space for the GMRES method (7).

1.198 ORDINATES OF SOURCES

Type: Real
Dimension: 2
Mnemo YSCE

DEFAULT VALUE:

French keyword: ORDONNEES DES SOURCES

Floats giving the ordinates of potential sources of flow rates (in meters). The source will be located at the nearest node in the mesh.

1.199 ORIGIN COORDINATES

Type: Integer Dimension: 2

Mnemo I_ORIG,J_ORIG

DEFAULT VALUE: 0;0

French keyword: COORDONNEES DE L'ORIGINE

Values in metres, used to avoid large real numbers, added in SERAFIN format, but so far no other treatment.

1.200 ORIGINAL DATE OF TIME

Type: Integer Dimension: 3

Mnemo MARDAT DEFAULT VALUE: 1900;1;1

French keyword: DATE DE L'ORIGINE DES TEMPS

Enables to set the date of the time origin of the model when taking into account of the tide (tide generator force and/or the tidal boundary conditions). Also used when chaining with DELWAQ.

1.201 ORIGINAL HOUR OF TIME

Type: Integer Dimension: 3

Mnemo MARTIM DEFAULT VALUE: 0;0;0

French keyword: HEURE DE L'ORIGINE DES TEMPS

Enables to set the time of the time origin of the model when taking into account of the tide (tide generator force and/or the tidal boundary conditions). Also used when chaining with DELWAQ.

1.202 PARALLEL PROCESSORS

Type: Integer Dimension: 0 Mnemo

NCSIZE

DEFAULT VALUE: 0

French keyword: PROCESSEURS PARALLELES

Number of processors for domain partition. Value 0 corresponds to a scalar computation.

1.203 PARTITIONING TOOL

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: 'METIS'

French keyword: PARTITIONNEUR

Partitioning tool selection:

• 1: METIS,

• 2: SCOTCH,

• 3: PARMETIS,

• 4: PTSCOTCH.

1.204 PRANDTL NUMBER

Real Type: Dimension:

PRANDTL Mnemo

DEFAULT VALUE: 1.0

French keyword: NOMBRE DE PRANDTL Ratio between eddy viscosity and eddy diffusivity.

1.205 PRECONDITIONING FOR DIFFUSION OF K-EPSILON

Type: Integer

Dimension: 0

SLVDKE%PRECON Mnemo

DEFAULT VALUE:

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DU K-EPSILON

Choice of preconditioning for the diffusion of the k- ε model. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,

- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.206 PRECONDITIONING FOR DIFFUSION OF THE SEDIMENT

Type: Integer

Dimension: 0

Mnemo SLVDSE%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DU SEDIMENT Choice of the preconditioning in the sediment diffusion system that the convergence is speeded up when it is being solved. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be done.

1.207 PRECONDITIONING FOR DIFFUSION OF TRACERS

Type: Integer Dimension: 2

Mnemo SLVDTA(ITRAC)%PRECON

DEFAULT VALUE:

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DES TRACEURS Choice of preconditioning for the diffusion of tracers. Possible choices are:

• 0: no preconditioning,

- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.208 PRECONDITIONING FOR DIFFUSION OF VELOCITIES

Type: Integer

Dimension: 0

Mnemo SLVDVI%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA DIFFUSION DES VITESSES

Choice of preconditioning for the diffusion of velocities. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.209 PRECONDITIONING FOR PPE

Type: Integer

Dimension: 0

Mnemo SLVPOI%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR PPE
Preconditioning for the Poisson Pressure Equation. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.210 PRECONDITIONING FOR PROPAGATION

Type: Integer Dimension: 0

Mnemo SLVPRO%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA PROPAGATION

Choice of the preconditioning in the propagation step linear system that the convergence is speeded up when it is being solved. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,

- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

Some operations (either 2 or 3 diagonal preconditioning) can be performed concurrently with the others. Only prime numbers are therefore kept to denote the preconditioning operations. When several of them are to be performed concurrently, the product of relevant options shall be done.

1.211 PRECONDITIONING FOR VERTICAL VELOCITY

Type: Integer Dimension: 0

Mnemo SLVW%PRECON

DEFAULT VALUE: 2

French keyword: PRECONDITIONNEMENT POUR LA VITESSE VERTICALE

Choice of preconditioning for the diffusion of vertical velocity. Possible choices are:

- 0: no preconditioning,
- 2: diagonal,
- 3: diagonal with the condensed matrix,
- 5: diagonal with absolute values,
- 7: Crout,
- 11: Gauss-Seidel EBE,
- 13: matrix defined by the user,
- 14: diagonal and Crout,
- 17: direct solver on the vertical,
- 21: diagonal condensed and Crout,
- 34: diagonal and direct solver on the vertical.

1.212 PRESCRIBED ELEVATIONS

Type: Real
Dimension: 10
Mnemo COTIMP

DEFAULT VALUE:

French keyword: COTES IMPOSEES
Sets the elevation on elevation-imposed boundaries.

1.213 PRESCRIBED FLOWRATES

Type: Real
Dimension: 10
Mnemo DEBIMP

DEFAULT VALUE:

French keyword: DEBITS IMPOSES

Sets the value for flow rate on flow rate-imposed boundaries.

1.214 PRESCRIBED FLOWRATES ON THE BED

Real Type: Dimension: 10 Mnemo

BEDFLO

DEFAULT VALUE: 0.:0.:0.:0.:0.:0.:0.:0.:0.:0.

French keyword: DEBITS IMPOSES SUR LE FOND Sets the value for flow rate on flow rate-imposed bed boundaries.

1.215 PRESCRIBED TRACERS VALUES

Type: Real Dimension: 2

Mnemo **TRACER**

DEFAULT VALUE:

French keyword: VALEURS IMPOSEES DES TRACEURS

Determines the imposed value of tracers at the first boundary, then at the second, and so on, with the same logic as VALUE OF THE TRACERS AT THE SOURCES.

1.216 PRESCRIBED VELOCITIES

Type: Real Dimension: 10 Mnemo **VITIMP**

DEFAULT VALUE:

French keyword: VITESSES IMPOSEES

Sets the magnitude of velocity on velocity-imposed boundaries.

1.217 PREVIOUS COMPUTATION FILE

Type: String Dimension:

Mnemo T3D_FILES(T3DPRE)%NAME

DEFAULT VALUE:

FICHIER DU CALCUL PRECEDENT French keyword:

Name of a file containing the results of an earlier computation which was made on the same mesh. The last recorded time step will provide the initial conditions for the new computation. In case of a perfect continued computation, the PREVIOUS COMPUTATION FILE has to be the RESTART FILE of the last computation. This last file is then an output file of the last computation. The PREVIOUS COMPUTATION FILE FORMAT and the RESTART FILE FORMAT have to be set with 'SERAFIND' or 'MED'.

1.218 PREVIOUS COMPUTATION FILE FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DPRE)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DU CALCUL PRECEDENT Format of the PREVIOUS COMPUTATION FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

- SERAFIND: classical double precision format in TELEMAC,
- MED: MED double precision format based on HDF5.

1.219 PREVIOUS COMPUTATION SEDIMENTOLOGICAL FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DSUS)%NAME

DEFAULT VALUE: '

French keyword: FICHIER SEDIMENTOLOGIQUE DU CALCUL PRECEDENT Name of a file containing the sedimentological parameters (thickness and concentration of the bed...), results of an earlier computation which was made on the same mesh. The last recorded time step will provide the initial conditions for the new computation.

1.220 PRINTOUT PERIOD FOR DROGUES

Type: Integer
Dimension: 0
Mnemo FLOPRD

DEFAULT VALUE: 1

French keyword: PERIODE POUR LES SORTIES DE FLOTTEURS

Number of time steps between 2 outputs of drogues positions in the binary file. It does not disturb the quality of the computation of the trajectory.

1.221 PROPAGATION STEP

Type: Logical Dimension: 0 Mnemo PROP DEFAULT VALUE: YES

French keyword: ETAPE DE PROPAGATION

Takes into account the propagation terms or not. This step has to be done currently.

1.222 RAIN OR EVAPORATION

Type: Logical Dimension: 0 Mnemo RAIN DEFAULT VALUE: NO

French keyword: PLUIE OU EVAPORATION

Enables to add or remove water at the free surface. See the keyword RAIN OR EVAPORATION IN MM PER DAY.

1.223 RAIN OR EVAPORATION IN MM PER DAY

Type: Real Dimension: 0

Mnemo RAIN_MMPD

DEFAULT VALUE: 0.

French keyword: PLUIE OU EVAPORATION EN MM PAR JOUR

Specifies the amount of water to add or remove at the free surface.

1.224 RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER

Type: Real Dimension: -1

Mnemo KSPRATIO

DEFAULT VALUE: 3.0

French keyword: RATIO ENTRE LA RUGOSITE DE PEAU ET LE DIAMETRE MOYEN

Ratio for the computation of skin friction. skin roughness = ratio \times mean diameter.

1.225 READ CRITICAL BED SHEAR STRESS PER LAYER

Type: Logical

Dimension: 0

Mnemo READ_TOCE

DEFAULT VALUE: NO

French keyword: LECTURE CONTRAINTE CRITIQUE POUR CHAQUE COUCHE

Decides if erosion shear stress at each layer is read from GEOMETRY FILE.

1.226 RECORD NUMBER FOR RESTART

Type: Integer Dimension: 0

Mnemo START_RECORD

DEFAULT VALUE: 0

French keyword: ENREGISTREMENT POUR SUITE DE CALCUL

In case of ${\tt COMPUTATION}$ CONTINUED, record number to start from in the ${\tt PREVIOUS}$ COMPUTATION

FILE. 0 means that the last record is taken.

1.227 RECORD NUMBER IN WAVE FILE

Type: Integer
Dimension: 0
Mnemo NPTH
DEFAULT VALUE: 1

French keyword: NUMERO DE L'ENREGISTREMENT DANS LE FICHIER DE HOULE

Record number to be read by TELEMAC-3D in the wave driven currents file.

1.228 REFERENCE CONCENTRATION FORMULA

Type: Integer
Dimension: -1
Mnemo ICQ
DEFAULT VALUE: 1

French keyword: FORMULE POUR LA CONCENTRATION DE REFERENCE

- 1: Zyserman and Fredsoe, equilibrium formula,
- 3: Van Rijn formula (1987).

1.229 REFERENCE FILE

Type: String Dimension: -1

Mnemo T3D FILES(T3DREF)%NAME

DEFAULT VALUE:

French keyword: FICHIER DE REFERENCE

Binary-coded result file for validation.

1.230 REFERENCE FILE FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DREF)%FMT

DEFAULT VALUE: 'SERAFIN'

French keyword: FORMAT DU FICHIER DE REFERENCE

Format of the REFERENCE FILE. Possible choices are:

• SERAFIN: classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

1.231 RELEASE

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: 'V7P2'

French keyword: NUMERO DE VERSION TODO: WRITE HELP FOR THAT KEYWORD

1.232 RESIDENCE TIME FOR MUD

Type: Real Dimension: 30

Mnemo TREST(NCOUCH)

DEFAULT VALUE:

French keyword: TEMPS DE SEJOUR DE LA VASE

Array which contains the residence times of the mud bed layers (the first value is related to the bottom layer and the last one to the top layer). These values are needed when CONSOLIDATION MODEL = 1 (Empirical multilayer model).

1.233 RESTART FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DRST)%NAME

DEFAULT VALUE: '

French keyword: FICHIER POUR SUITE

Name of the file into which the last computation results shall be written in order to get a perfect continued computation. It is then an output file for the current computation, which will be

used as an input file when a continued computation is expected to be perfect (the keyword PREVIOUS COMPUTATION FILE is then used). The RESTART FILE FORMAT and the PREVIOUS COMPUTATION FILE FORMAT have to be set with 'SERAFIND' or 'MED'.

1.234 RESTART FILE FORMAT

Type: String Dimension: -1

Mnemo T3D_FILES(T3DRST)%FMT

DEFAULT VALUE: 'SERAFIND'

French keyword: FORMAT DU FICHIER POUR SUITE

Format of the RESTART FILE. Possible choices are:

• SERAFIN : classical single precision format in TELEMAC,

• SERAFIND: classical double precision format in TELEMAC,

• MED: MED double precision format based on HDF5.

Only double precision formats ensure a perfect restart.

1.235 RESTART MODE

Type: Logical Dimension: 0

Mnemo RESTART_MODE

DEFAULT VALUE: NO

French keyword: MODE SUITE

Triggers the filling of the RESTART FILE, which ensures a perfect restart of a computation, unlike using the 3D RESULT FILE.

1.236 SALINITY DELWAQ FILE

Type: String
Dimension: -1

Mnemo T3D FILES(T3DDL4)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DE LA SALINITE

Results file for coupling with DELWAQ.

1.237 SALINITY FOR DELWAQ

Type: Logical Dimension: -1

Mnemo SALI_DEL

DEFAULT VALUE: NO

French keyword: SALINITE POUR DELWAO

Triggers the output of salinity for DELWAQ.

1.238 SCHEME FOR ADVECTION OF DEPTH

Type: Integer
Dimension: 0
Mnemo SCHCH
DEFAULT VALUE: 5

French keyword: SCHEMA POUR LA CONVECTION DE LA HAUTEUR

The conservative scheme (5) is now mandatory.

1.239 SCHEME FOR ADVECTION OF K-EPSILON

Type: Integer
Dimension: 0

Mnemo SCHCKE

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA CONVECTION DU K-EPSILON

Sets the advection scheme for the k- ε model. Possible choices are:

- 0: no convection,
- 1: characteristics,
- 2: explicit + SUPG,
- 3: explicit Leo Postma,
- 4: explicit + MURD scheme N,
- 5: explicit + MURD scheme PSI,
- 13: Leo Postma for tidal flats,
- 14: N-scheme for tidal flats.

1.240 SCHEME FOR ADVECTION OF TRACERS

Type: Integer Dimension: 2

Mnemo SCHCTA

DEFAULT VALUE:

French keyword: SCHEMA POUR LA CONVECTION DES TRACEURS

Sets the advection scheme for the tracers. Possible choices are:

- 0: no convection,
- 1: characteristics,
- 2: explicit + SUPG,
- 3: explicit Leo Postma,
- 4: explicit + MURD scheme N,
- 5: explicit + MURD scheme PSI,
- 13: Leo Postma for tidal flats,
- 14: N-scheme for tidal flats.

1.241 SCHEME FOR ADVECTION OF VELOCITIES

Type: Integer
Dimension: 0
Mnemo SCHCVI

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA CONVECTION DES VITESSES

Sets the advection scheme for the velocities. Possible choices are:

- 0: no convection,
- 1: characteristics,
- 2: explicit + SUPG,
- 3: explicit Leo Postma,
- 4: explicit + MURD scheme N,
- 5: explicit + MURD scheme PSI,
- 13: Leo Postma for tidal flats.
- 14: N-scheme for tidal flats.

1.242 SCHEME FOR DIFFUSION OF K-EPSILON

Type: Integer Dimension: 0

Mnemo SCHDKE

DEFAULT VALUE:

French keyword: SCHEMA POUR LA DIFFUSION DU K-EPSILON Monitors the choice of the diffusion scheme for k and ε . Possible choices are:

- 0: no diffusion,
- 1: implicit.

1.243 SCHEME FOR DIFFUSION OF TRACERS

Type: Integer

Dimension: 1 Mnemo SCHDTA

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA DIFFUSION DES TRACEURS Monitors the choice of the diffusion scheme for tracers. Possible choices are:

- 0: no diffusion,
- 1: implicit,
- 2: vertical diffusion only.

1.244 SCHEME FOR DIFFUSION OF VELOCITIES

Type: Integer Dimension: 0

Mnemo SCHDVI

DEFAULT VALUE: 1

French keyword: SCHEMA POUR LA DIFFUSION DES VITESSES Monitors the choice of the diffusion scheme for velocities. Possible choices are:

0: no diffusion,1: implicit.

1.245 SCHEME OPTION FOR ADVECTION OF K-EPSILON

Type: Integer

Dimension: 1

Mnemo OPTADV_KE

DEFAULT VALUE: 1

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DU K-EPSILON If present replaces and has priority over: OPTION FOR CHARACTERISTICS and SUPG OPTION. If N or PSI scheme:

- 1: explicit,
- 2: predictor-corrector,
- 3: predictor-corrector second-order in time,
- 4: implicit.

1.246 SCHEME OPTION FOR ADVECTION OF TRACERS

Type: Integer

Dimension: 1

Mnemo OPTADV_TR

DEFAULT VALUE:

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES TRACEURS If present replaces and has priority over: OPTION FOR CHARACTERISTICS and SUPG OPTION. If N or PSI scheme:

- 1: explicit,
- 2: predictor-corrector,
- 3: predictor-corrector second-order in time,
- 4: implicit.

1.247 SCHEME OPTION FOR ADVECTION OF VELOCITIES

Type: Integer Dimension: 1

Mnemo OPTADV_VI

DEFAULT VALUE: 1

French keyword: OPTION DU SCHEMA POUR LA CONVECTION DES VITESSES If present replaces and has priority over: OPTION FOR CHARACTERISTICS and SUPG OPTION. If N or PSI scheme:

- 1: explicit,
- 2: predictor-corrector,
- 3: predictor-corrector second-order in time,
- 4: implicit.

1.248 SEDIMENT

Type: Logical Dimension: 0
Mnemo SEDI DEFAULT VALUE: NO

French keyword: SEDIMENT If YES, sediment transport is modelled.

1.249 SEDIMENTOLOGICAL RESULT FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DSED)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES RESULTATS SEDIMENTOLOGIQUES

Name of the file into which the sedimentological computation results (thickness and concentration of the mud bed...) shall be written, the periodicity being given by the keyword GRAPHIC PRINTOUT PERIOD.

1.250 SEDIMENTOLOGICAL RESULT FILE BINARY

Type: String
Dimension: 0
Mnemo BIRSED
DEFAULT VALUE: 'STD'

French keyword: BINAIRE DU FICHIER DES RESULTATS SEDIMENTOLOGIQUES Binary file type used for writing the results file. This type depends on the machine on which the file was generated. The possible values are as follows:

- IBM, for a file on an IBM (from a CRAY),
- I3E, for a file on an HP (from a CRAY),
- STD, binary type of the machine on which the user is working.

In that case, normal READ and WRITE commands are used.

1.251 SETTLING VELOCITY OF SANDS

Type: Real
Dimension: 0
Mnemo WCS0
DEFAULT VALUE: 0.

French keyword: VITESSE DE CHUTE DES SABLES

Non cohesive sediment settling velocity.

1.252 SHIELDS PARAMETER

Type: Real
Dimension: -1
Mnemo AC
DEFAULT VALUE: 0.047

French keyword: PARAMETRE DE SHIELDS Used to determine the critical bed shear stress value.

1.253 SISYPHE STEERING FILE

Type: String Dimension: -1

Mnemo PAS DE MNEMO

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES DE SISYPHE

SISYPHE parameter file in case of internal coupling.

1.254 SKIN FRICTION CORRECTION

Type: Integer
Dimension: -1
Mnemo ICR
DEFAULT VALUE: 0

French keyword: CORRECTION FROTTEMENT DE PEAU

Formula to predict the skin bed roughness:

- 0: No correction (TAUP = TOB) see also RATIO ENTRE LA RUGOSITE DE PEAU ET LE DIAMETRE MOYEN KSPRATIO,
- 1: Flat bed (KSP = KSPRATIO \times D50),
- 2: Ripple correction factor (not yet implemented).

1.255 SOLVER FOR DIFFUSION OF K-EPSILON

Type: Integer Dimension: 0

Mnemo SLVDKE%SLV

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LA DIFFUSION DU K-EPSILON

Choice of the solver for the diffusion of k and ε . Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.256 SOLVER FOR DIFFUSION OF THE SEDIMENT

Type: Integer

Dimension: 0

Mnemo SLVDSE%SLV

DEFAULT VALUE: 3

French keyword: SOLVEUR POUR LA DIFFUSION DU SEDIMENT

Choice of the solver for the sediment equation. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.257 SOLVER FOR DIFFUSION OF TRACERS

Type: Integer

Dimension: 2

Mnemo SLVDTA(ITRAC)%SLV

DEFAULT VALUE:

French keyword: SOLVEUR POUR LA DIFFUSION DES TRACEURS

Choice of the solver for the diffusion of tracers. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.258 SOLVER FOR DIFFUSION OF VELOCITIES

Type: Integer Dimension: 0

Mnemo SLVDVI%SLV

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LA DIFFUSION DES VITESSES Choice of the solver for the diffusion of velocities U and V. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.259 SOLVER FOR PPE

Type: Integer

Dimension: 0

Mnemo SLVPOI%SLV

DEFAULT VALUE:

French keyword: SOLVEUR POUR PPE

Choice of the solver for the Poisson Pressure Equation. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.260 SOLVER FOR PROPAGATION

Type: Integer

Dimension: 0

Mnemo SLVPRO%SLV

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LA PROPAGATION Choice of the solver for the propagation equation. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,

- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.261 SOLVER FOR VERTICAL VELOCITY

Type: Integer

Dimension: 0

Mnemo SLVW%SLV

DEFAULT VALUE: 1

French keyword: SOLVEUR POUR LA VITESSE VERTICALE Choice of the solver for the diffusion of vertical velocity *W*. Possible choices are:

- 1: conjugate gradient,
- 2: conjugate residual,
- 3: conjugate gradient on a normal equation,
- 4: minimum error,
- 5: squared conjugate gradient,
- 6: CGSTAB,
- 7: GMRES,
- 8: direct solver.

1.262 SOURCES FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DVEF)%NAME

DEFAULT VALUE:

French keyword: FICHIER DES SOURCES

Name of the file containing time-dependent information on sources.

1.263 SPATIAL PROJECTION TYPE

Type: Integer
Dimension: 0
Mnome PROTY

Mnemo PROTYP

DEFAULT VALUE: 2

French keyword: TYPE DE PROJECTION SPATIALE

Specifies the type of spatial projection used (for example when using spherical coordinates).

Possible choices are:

- 1: Cartesian, not georeferenced,
- 2: Mercator,

• 3: latitude/longitude (in degrees).

Option 2 or 3 mandatory for spherical coordinates. Option 3: latitude an longitude in degrees! When using option 3, the coordinates are automatic treated by TELEMAC-3D using Mercator projection.

1.264 SPHERICAL COORDINATES

Type: Logical Dimension: 0

Mnemo SPHERI DEFAULT VALUE: NO

French keyword: COORDONNEES SPHERIQUES

Selection of spherical coordinates to perform the computation (for large computation domains). Warning: this option is closely related to the mesh that should have been entered onto a nautical chart drawn as per Mercator projection The LATITUDE OF ORIGIN POINT, which corresponds to ordinate y = 0 in the mesh, must moreover be given.

1.265 STAGE-DISCHARGE CURVES

Type: Integer Dimension: 10

Mnemo STA_DIS_CURVES

DEFAULT VALUE:

French keyword: COURBES DE TARAGE

Specifies if a discharge-elevation curve must be used for a given boundary (one value per open boundary):

- 0: no,
- 1: Z(Q),
- 2: Q(Z). Not yet implemented.

1.266 STAGE-DISCHARGE CURVES FILE

Type: String Dimension: 0

Mnemo T3D_FILES(T3DPAR)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DES COURBES DE TARAGE

Name of the file containing stage-discharge curves.

1.267 STANDARD VALUES FOR TRACERS

Type: Real
Dimension: 2
Mnemo TOAC

DEFAULT VALUE:

French keyword: VALEURS DE REFERENCE DES TRACEURS

Reference value of tracers corresponding to the given density.

1.268 STEERING FILE

Type: String Dimension: 0

Mnemo

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES

Name of the file containing the parameters of the computation. Written by the user.

1.269 SUPG OPTION

Type: Integer
Dimension: 4
Mnemo OPTSUP

DEFAULT VALUE: 1;0;1;1
French keyword: OPTION DE SUPG

Specifies the type of upwinding used. Possible choices are:

- 0: no upwinding,
- 1: classical SUPG,
- 2: modified SUPG.

These coefficients are applied respectively to:

- 1) U, V and W,
- 2) *H*,
- 3) T,
- 4) k and ε .

1.270 TEMPERATURE DELWAQ FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DDL8)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DE LA TEMPERATURE

Results file for coupling with DELWAQ.

1.271 TEMPERATURE FOR DELWAQ

Type: Logical Dimension: -1

Mnemo TEMP_DEL

DEFAULT VALUE: NO

French keyword: TEMPERATURE POUR DELWAQ

Triggers the output of temperature for DELWAQ.

1.272 THRESHOLD CONCENTRATION FOR HINDERED SETTLING

Type: Real
Dimension: 0
Mnemo CINI
DEFAULT VALUE: 0.0

French keyword: CONCENTRATION LIMITE POUR VITESSE DE CHUTE ENTRAVEE

The sediment concentration at which hindered settling is initiated. These values are needed

when HINDERED SETTLING = YES.

1.273 THRESHOLD DEPTH FOR WIND

Type: Real
Dimension: -1
Mnemo HWIND
DEFAULT VALUE: 1.

French keyword: PROFONDEUR LIMITE POUR LE VENT Wind is not taken into account for depths smaller than this value.

1.274 THRESHOLD FOR SEDIMENT FLUX CORRECTION ON TIDAL FLATS

Type: Real
Dimension: 0
Mnemo HSED
DEFAULT VALUE: 0.2

French keyword: SEUIL LIMITE POUR EROSION SUR BANCS DECOUVRANTS Below this limiting depth, all sediment erosion rates are set to zero. See subroutine **FLUSED**.

1.275 THRESHOLD FOR VISCOSITY CORRECTION ON TIDAL FLATS

Type: Real
Dimension: 0
Mnemo HLIM
DEFAULT VALUE: 0.2

French keyword: SEUIL POUR CORRECTION DE VISCOSITE SUR BANCS DECOUVRANTS

Below the threshold, viscosity will be progressively cancelled. See subroutine VISCLIP.

1.276 TIDAL DATA BASE

Type: Integer Dimension: 0

Mnemo TIDALDB

DEFAULT VALUE: -1

French keyword: BASE DE DONNEES DE MAREE

Gives the name of the data base used to automatically generate the boundary conditions. Possi-

ble choices are:

- 1: JMJ,
- 2: TPXO,
- 3: MISCELLANEOUS (LEGOS-NEA, FES20XX, PREVIMER...).

FOR TIDE and TIDAL MODEL FILE. For TPXO, LEGOS-NEA, FES20XX and PREVIMER, the user has to download files of harmonic constituents on the internet.

1.277 TIDAL FLATS

Type: Logical Dimension: 0

Mnemo BANDEC
DEFAULT VALUE: YES

French keyword: BANCS DECOUVRANTS

When NO, the specific treatments for tidal flats are by-passed. This spares time, but of course you must be sure that you have no tidal flats.

1.278 TIDAL MODEL FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DTID)

DEFAULT VALUE:

French keyword: FICHIER DU MODELE DE MAREE

Geometry file of the model from which harmonic constituents are extracted (JMJ only).

1.279 TIDE GENERATING FORCE

Type: Logical
Dimension: 0
Mnemo MAREE
DEFAULT VALUE: NO

French keyword: FORCE GENERATRICE DE LA MAREE

The tide generating force is taken into account.

1.280 TIME STEP

Type: Real
Dimension: 0
Mnemo DT
DEFAULT VALUE: 1.

French keyword: PAS DE TEMPS

Specifies the time step in seconds.

1.281 TIME STEP FOR CONSOLIDATION

Type: Real
Dimension: 0
Mnemo DTC
DEFAULT VALUE: 1200.

French keyword: PAS DE TEMPS DE LA CONSOLIDATION

Time step for the modelling consolidation, which can be greater than the hydrodynamic time step. This parameter is used if CONSOLIDATION MODEL = 1 (Empirical multilayer model) or 2 (Gibson model (Lenormant)).

1.282 TITLE 79

1.282 TITLE

Type: String
Dimension: 0
Mnemo TITCAS

DEFAULT VALUE:

French keyword: TITRE Title of the case being considered.

1.283 TOMAWAC STEERING FILE

Type: String Dimension: -1

Mnemo PAS DE MNEMO

DEFAULT VALUE:

French keyword: FICHIER DES PARAMETRES DE TOMAWAC

TOMAWAC parameter file in case of internal coupling.

1.284 TRACERS VERTICAL PROFILES

Type: Integer Dimension: 2

Mnemo VERPROTRA

DEFAULT VALUE:

French keyword: PROFILS DES TRACEURS SUR LA VERTICALE

Specifies the type of profiles of tracer concentration on the vertical. Possible choices are:

- 0: user defined,
- 1: constant,
- 2: Rouse equilibrium, constant (diluted tracer) or Rouse (sediment),
- 3: Rouse (normalized) and imposed concentration.
- 4: Rouse modified with molecular viscosity.

1.285 TREATMENT OF FLUXES AT THE BOUNDARIES

Type: Integer
Dimension: 2
Mnemo DIRFLU

DEFAULT VALUE:

French keyword: TRAITEMENT DES FLUX AUX FRONTIERES Used so far only with the SUPG, PSI and N schemes. Possible choices are:

- 1: priority to prescribed values,
- 2: priority to fluxes.

With option 2, Dirichlet prescribed values are not obeyed, but the fluxes are correct.

1.286 TREATMENT OF NEGATIVE DEPTHS

Type: Integer Dimension: 0

Mnemo OPT_HNEG

DEFAULT VALUE: 1

French keyword: TRAITEMENT DES HAUTEURS NEGATIVES

Only with OPTION FOR THE TREATMENT OF TIDAL FLATS = 1. Possible choices are:

• 0: no treatment,

• 1: smoothing,

• 2: flux control.

1.287 TREATMENT ON TIDAL FLATS FOR K-EPSILON

Type: Integer Dimension: 0

Mnemo TRBAKE

DEFAULT VALUE: 0

French keyword: TRAITEMENT SUR LES BANCS DECOUVRANTS POUR LE K-EPSILON Treatment of tidal flats at the diffusion step for k and ε .

• 0: forced to zero,

• 1: value before masked.

1.288 TREATMENT ON TIDAL FLATS FOR TRACERS

Type: Integer
Dimension: 0
Mnemo TRBATA

DEFAULT VALUE: 0

French keyword: TRAITEMENT SUR LES BANCS DECOUVRANTS POUR LES TRACEURS Treatment of tidal flats at the diffusion step for tracers.

• 0: forced to zero,

• 1: value before masked.

1.289 TREATMENT ON TIDAL FLATS FOR VELOCITIES

Type: Integer
Dimension: 0
Mnemo TRBAVI

DEFAULT VALUE: 0

French keyword: TRAITEMENT SUR LES BANCS DECOUVRANTS POUR LES VITESSES Treatment of tidal flats at the diffusion step for velocities.

- 0: forced to zero,
- 1: value before masked.

1.290 TURBULENCE REGIME FOR LATERAL SOLID BOUNDARIES

Type: Integer
Dimension: 0
Mnemo LISRUL

DEFAULT VALUE: 2

French keyword: REGIME DE TURBULENCE POUR LES PAROIS LATERALES

Defines the turbulence regime for the lateral boundaries:

• 1: smooth,

• 2: rough.

1.291 TURBULENCE REGIME FOR THE BOTTOM

Type: Integer
Dimension: 0
Mnemo LISRUF

DEFAULT VALUE: 2

French keyword: REGIME DE TURBULENCE POUR LE FOND

Defines the turbulence regime for the bottom in the case of a k- ε or mixing-length model:

• 1: smooth,

• 2: rough,

• 3: rough also (for compatibility with old versions).

1.292 TYPE OF SOURCES

Type: Integer Dimension: 0

Mnemo OPTSOU

DEFAULT VALUE: 1

French keyword: TYPE DES SOURCES

Defines how the sources are computed:

- 1: Source term multiplied by a finite element basis,
- 2: Source term multiplied by a Dirac function (recommended with high numbers of sources).

1.293 VALIDATION

Type: Logical Dimension: 0 Mnemo VALID DEFAULT VALUE: NO

French keyword: VALIDATION

This option is primarily used for the validation documents. The REFERENCE FILE is then considered as a reference which the computation is going to be compared with. The comparison is done by the subroutine VALIDA, which can be modified so as to include, for example, a comparison with an exact solution.

1.294 VALUE OF ATMOSPHERIC PRESSURE

Type: Real Dimension: 1

Mnemo PATMOS_VALUE

DEFAULT VALUE: 100000.

French keyword: VALEUR DE LA PRESSION ATMOSPHERIQUE Gives the value of atmospheric pressure when it is constant in time and space.

1.295 VALUE OF THE TRACERS AT THE SOURCES

Type: Real
Dimension: 2
Mnemo TASCE

DEFAULT VALUE:

French keyword: VALEURS DES TRACEURS DES SOURCES

Sets the value of the tracers at the sources. All sources for the first tracer, then all sources for the second tracer, etc. (see user manual). For example, if there are 3 tracers (T1, T2 and T3) and 2 sources (S1 and S2), the following syntax is used:

S1_T1;S1_T2;S1_T3;S2_T1;S2_T2;S2_T3

10.0; 10.0; 0.0; 0.0; 10.0; 10.0

1.296 VALUES OF TRACERS IN THE RAIN

Type: Real
Dimension: 2
Mnemo TRAIN

DEFAULT VALUE:

French keyword: VALEURS DES TRACEURS DANS LA PLUIE

Sets the value of the tracers in the rain.

1.297 VARIABLES FOR 2D GRAPHIC PRINTOUTS

Type: String Dimension: -1

Mnemo SORT2D DEFAULT VALUE: 'U,V,H,B'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES 2D

Names of variables that may be written in the 2D RESULT FILE. Every variable is represented by a group of letters with any separator between them , ; or blank possibilities are the following:

- U: depth averaged velocity along x axis (m/s),
- V: depth averaged velocity along y axis (m/s),
- C: celerity (m/s),
- H: water depth (m),
- S: free surface elevation (m),
- B: bottom elevation (m),

- F: Froude number,
- Q: scalar discharge (m²/s),
- I: discharge along x (m²/s),
- J: discharge along y (m²/s),
- M: norm of velocity (m/s),
- X: wind along x axis (m/s),
- Y: wind along y axis (m/s),
- P: atmospheric pressure (Pa),
- W: friction coefficient,
- RB: non erodible bottom elevation (m),
- FD: thickness of the fresh deposits (m),
- EF: erosion rate (kg/m²/s),
- DP: probability of deposition (kg/m²/s),
- PRIVE1: work array PRIVE 1,
- PRIVE2: work array PRIVE 2,
- PRIVE3: work array PRIVE 3,
- PRIVE4: work array PRIVE 4,
- US: friction velocity (m/s),
- MAXZ: maximum value of the free surface elevation during the computation (m),
- TMXZ: time corresponding to this maximum elevation (s).

1.298 VARIABLES FOR 3D GRAPHIC PRINTOUTS

Type: String Dimension: -1

Mnemo SORT3D DEFAULT VALUE: 'Z,U,V,W'

French keyword: VARIABLES POUR LES SORTIES GRAPHIQUES 3D

Names of variables to be written in the 3D RESULT FILE. Free choice of separator. You can ask for:

- U : velocity along x (m/s),
- V : velocity along y (m/s),
- W : velocity along z (m/s),
- Z: elevation z (m),
- TAx: concentration of tracers,

- NUX: viscosity for U and V along x (m²/s),
- NUY: viscosity for U and V along y (m²/s),
- NUZ: viscosity for U and V along z (m²/s),
- NAX: viscosity for tracers along x (m²/s),
- NAY: viscosity for tracers along $y \text{ (m}^2/\text{s)}$,
- NAZ: viscosity for tracers along z (m²/s),
- RI: Richardson number for mixing length model,
- K: turbulent kinetic energy for k- ε model (J/kg),
- EPS: dissipation of turbulent kinetic energy (W/kg),
- DP: dynamic pressure (multiplied by DT/RHO),
- PH: hydrostatic pressure (Pa),
- RHO: relative density,
- P1 : private variable 1,
- P2 : private variable 2,
- P3 : private variable 3,
- P4 : private variable 4.

1.299 VECTOR LENGTH

Type: Integer
Dimension: 0
Mnemo LVMAC

DEFAULT VALUE:

French keyword: LONGUEUR DU VECTEUR

Vector length on vector machines.

1.300 VELOCITIES OF THE SOURCES ALONG X

Type: Real
Dimension: 2
Mnemo USCE

DEFAULT VALUE:

French keyword: VITESSES DES SOURCES SELON X

Specifies the component along x of the velocities of the sources. If nothing is specified, the sources diffuse without any velocity in every direction (cf. validation case source).

1.301 VELOCITIES OF THE SOURCES ALONG Y

Type: Real
Dimension: 2
Mnemo VSCE

DEFAULT VALUE:

French keyword: VITESSES DES SOURCES SELON Y

Specifies the component along y of the velocities of the sources. If nothing is specified, the sources diffuse without any velocity in every direction (cf. validation case source).

1.302 VELOCITIES OF THE SOURCES ALONG Z

Type: Real
Dimension: 2
Mnemo WSCE

DEFAULT VALUE:

French keyword: VITESSES DES SOURCES SELON Z

Specifies the component along z of the velocities of the sources. If nothing is specified, the sources diffuse without any velocity in every direction (cf. validation case source).

1.303 VELOCITY DELWAQ FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DDL9)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DE LA VITESSE

Results file for coupling with DELWAQ.

1.304 VELOCITY FOR DELWAQ

Type: Logical Dimension: -1

Mnemo VELO_DEL

DEFAULT VALUE: NO

French keyword: VITESSE POUR DELWAQ

Triggers the output of velocity for DELWAQ.

1.305 VELOCITY PROFILES

Type: Integer Dimension: 2

Mnemo PROFVEL

DEFAULT VALUE:

French keyword: PROFILS DE VITESSE

Specifies the type of horizontal profile of velocities. Possible choices are:

- 1: constant normal profile,
- 2: *u* and *v* given in the BOUNDARY CONDITION FILE,
- 3: normal velocity given in **UBOR** in the BOUNDARY CONDITION FILE,
- 4: normal velocity in \sqrt{h} ,

• 5: like 4 but virtual depth based on the lowest elevation of the boundary.

1.306 VELOCITY PROJECTED ON BOTTOM

Type: Logical

Dimension: 0

Mnemo VELPROBOT

DEFAULT VALUE: YES

French keyword: VITESSE PROJETEE SUR LE FOND Will ensure U.n = 0 on bottom by a projection at the end of time loop.

1.307 VELOCITY PROJECTED ON SOLID LATERAL BOUNDARIES

Type: Logical

Dimension: 0

Mnemo VELPROLAT

DEFAULT VALUE: YES

French keyword: VITESSE PROJETEE SUR LES PAROIS LATERALES SOLIDES

Will ensure U.n = 0 on solid lateral boundaries by a projection at the end of time loop.

1.308 VELOCITY VERTICAL PROFILES

Type: Integer

Dimension: 2

Mnemo VERPROVEL

DEFAULT VALUE:

French keyword: PROFILS DE VITESSE SUR LA VERTICALE

Specifies the type of vertical profile of velocity. Possible choices are:

- 0: defined by user,
- 1: constant,
- 2: logarithmic.

1.309 VERTICAL FLUXES DELWAQ FILE

Type: String Dimension: -1

Dimension: -1

Mnemo T3D FILES(T3DDL3)%NAME

DEFAULT VALUE:

French keyword: FICHIER DELWAQ DES FLUX VERTICAUX

Results file for coupling with DELWAQ.

1.310 VERTICAL TURBULENCE MODEL

Type: Integer Dimension: 0

Mnemo ITURBV

DEFAULT VALUE: 1

French keyword: MODELE DE TURBULENCE VERTICAL Specifies the horizontal turbulence model. The available choices are:

- 1: constant viscosity,
- 2: mixing length,
- 3: k- ε model,
- 4: Smagorinski,
- 7: $k-\omega$ model.

Caution: if option 1 is chosen, give the right COEFFICIENT FOR... DIFFUSION OF VELOCITIES... If option 3 ou 7 is chosen, this parameter must get its real physical value of molecular diffusivity, generally about 10^{-6} because it is used as well in the turbulence model.

1.311 VERTICAL VELOCITY DERIVATIVES

Type: Integer

Dimension: 0

Mnemo LINLOG

DEFAULT VALUE:

French keyword: DERIVEES VERTICALES DES VITESSES

Way of computing the velocity derivatives along z:

- 1: linear derivative (classic),
- 2: logarithmic derivative (better for logarithmic profiles).

1.312 VOLUMES DELWAQ FILE

Type: String Dimension: -1

Mnemo T3D_FILES(T3DDL1)%NAME

DEFAULT VALUE: '

French keyword: FICHIER DELWAQ DES VOLUMES

Results file for coupling with DELWAQ.

1.313 WAQTEL STEERING FILE

Type: String Dimension: -1

Mnemo

DEFAULT VALUE: '

French keyword: FICHIER DES PARAMETRES DE WAQTEL

File for physical parameters of water quality processes (local ones of TELEMAC-TRACER not those of DELWAQ).

1.314 WATER DISCHARGE OF SOURCES

Type: Real Dimension: 2 Mnemo QSCE

DEFAULT VALUE:

French keyword: DEBITS DES SOURCES

Specifies the discharge for every source. A positive discharge means that fluid is added.

1.315 WATER QUALITY PROCESS

Type: Integer Dimension: 1

Mnemo WAQPROCESS

DEFAULT VALUE: 0

French keyword: PROCESSUS DE QUALITE D'EAU

Gives the water quality process number (from 1 to 5):

- 0: nothing,
- 1: O2,
- 2: BIOMASS,
- 3: EUTRO,
- 4: MICROPOL,
- 5: THERMIC.

1.316 WAVE DRIVEN CURRENTS

Type: Logical

Dimension: 0

Mnemo COUROU

DEFAULT VALUE: NO

French keyword: COURANTS DE HOULE

Wave driven currents are taken into account, see subroutine **TRISOU**.

1.317 WEAK SOIL CONCENTRATION FOR MUD

Type: Real
Dimension: 0
Mnemo CGEL
DEFAULT VALUE: 0.0

French keyword: CONCENTRATION LIMITE FLUIDE-SOLIDE

The sediment concentration at which sediment forms a weak soil in kg/m^3 . These values are needed when HINDERED SETTLING = YES.

1.318 WIND

Type: Logical
Dimension: 0
Mnemo VENT
DEFAULT VALUE: NO
French keyword: VENT

Determines whether the wind effects are to be taken into account or not.

1.319 WIND VELOCITY ALONG X

Type: Real
Dimension: 0
Mnemo FUAIR
DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT X Wind velocity, component along x axis (m/s), if constant.

1.320 WIND VELOCITY ALONG Y

Type: Real
Dimension: 0
Mnemo FVAIR
DEFAULT VALUE: 0.

French keyword: VITESSE DU VENT SUIVANT Y Wind velocity, component along y axis (m/s), if constant.

1.321 ZERO

Type: Real Dimension: 0

Mnemo

DEFAULT VALUE: 1.E-10 French keyword: ZERO

Not used so far.

1.322 ZONE NUMBER IN GEOGRAPHIC SYSTEM

Type: Integer

Dimension: 0

Mnemo NUMZONE

DEFAULT VALUE: -1

French keyword: NUMERO DE FUSEAU OU PROJECTION DANS LE SYSTEME GEOGRAPHIQUE Number of zone when using a plane projection. Indicate the geographic system in which the numerical model is built with the keyword GEOGRAPHIC SYSTEM. Possible choices are:

- 1: Lambert 1 north,
- 2: Lambert 2 center,
- 3: Lambert 3 south,
- 4: Lambert 4 Corsica,
- 22: Lambert 22 extended,
- X: UTM zone with WGS84 (X is the number of the zone).

2. List of keywords classified according to type

2.1 AIR PRESSURE

AIR PRESSURE

2.2 BOUNDARY CONDITIONS

OPTION FOR THE BOUNDARY CONDITIONS OF K-EPSILON STAGE-DISCHARGE CURVES

2.3 COHESIVE SEDIMENT

CRITICAL EROSION SHEAR STRESS OF THE MUD LAYERS INITIAL THICKNESS OF SEDIMENT LAYERS MUD CONCENTRATIONS PER LAYER

2.4 COMPUTATION ENVIRONMENT

DICTIONARY

2.5 COMPUTATIONAL INFORMATION

COMPUTATION CONTINUED
DEFAULT EXECUTABLE
DEFAULT PARALLEL EXECUTABLE
DESCRIPTION OF LIBRARIES
RELEASE
TITLE
VALIDATION

2.6 CONSOLIDATION 91

2.6 CONSOLIDATION

CONSOLIDATION MODEL
NUMBER OF SEDIMENT BED LAYERS

2.7 CONSTANT VISCOSITY

ACCURACY FOR DIFFUSION OF K-EPSILON

ACCURACY FOR DIFFUSION OF SEDIMENT

ACCURACY FOR DIFFUSION OF TRACERS

ACCURACY FOR DIFFUSION OF VELOCITIES

ACCURACY FOR PPE

COEFFICIENT FOR HORIZONTAL DIFFUSION OF TRACERS

COEFFICIENT FOR VERTICAL DIFFUSION OF TRACERS

COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES

2.8 CONTROL

DELWAQ PRINTOUT PERIOD OIL SPILL MODEL ORIGIN COORDINATES

2.9 CORIOLIS

CORIOLIS

2.10 **DEPTH**

MEAN DEPTH FOR LINEARIZATION

2.11 DURATION

DURATION
FREE SURFACE GRADIENT COMPATIBILITY
NUMBER OF TIME STEPS
TIME STEP

2.12 EQUATIONS

2D CONTINUATION

ABSCISSAE OF SOURCES

ACCURACY FOR DIFFUSION OF K-EPSILON

ACCURACY FOR DIFFUSION OF SEDIMENT

ACCURACY FOR DIFFUSION OF TRACERS

ACCURACY FOR DIFFUSION OF VELOCITIES

ACCURACY FOR PPE

ACCURACY FOR PROPAGATION

ACCURACY FOR VERTICAL VELOCITY

AIR PRESSURE

BOUNDARY CONDITION ON THE BOTTOM

COEFFICIENT FOR HORIZONTAL DIFFUSION OF TRACERS

COEFFICIENT FOR HORIZONTAL DIFFUSION OF VELOCITIES

COEFFICIENT FOR VERTICAL DIFFUSION OF TRACERS

COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES

COEFFICIENT OF WIND INFLUENCE

CORIOLIS

DYNAMIC BOUNDARY CONDITION

DYNAMIC PRESSURE IN WAVE EQUATION

ELEVATIONS OF SOURCES

FRICTION COEFFICIENT FOR LATERAL SOLID BOUNDARIES

FRICTION COEFFICIENT FOR THE BOTTOM

HORIZONTAL TURBULENCE MODEL

LATITUDE OF ORIGIN POINT

LAW OF BOTTOM FRICTION

LAW OF FRICTION ON LATERAL BOUNDARIES

LINEARIZED PROPAGATION

LONGITUDE OF ORIGIN POINT

MAXIMUM NUMBER OF ITERATIONS FOR PROPAGATION

MAXIMUM NUMBER OF ITERATIONS FOR VERTICAL VELOCITY

MEAN DEPTH FOR LINEARIZATION

MIXING LENGTH MODEL

NON-HYDROSTATIC VERSION

NORTH

NUMBER OF BOTTOM SMOOTHINGS

ORDINATES OF SOURCES

PARALLEL PROCESSORS

PRECONDITIONING FOR PROPAGATION

PRECONDITIONING FOR VERTICAL VELOCITY

PRESCRIBED TRACERS VALUES

SOLVER FOR PROPAGATION

SOLVER FOR VERTICAL VELOCITY

SPATIAL PROJECTION TYPE

THRESHOLD DEPTH FOR WIND

TREATMENT ON TIDAL FLATS FOR K-EPSILON

TREATMENT ON TIDAL FLATS FOR TRACERS

TREATMENT ON TIDAL FLATS FOR VELOCITIES

TURBULENCE REGIME FOR LATERAL SOLID BOUNDARIES

TURBULENCE REGIME FOR THE BOTTOM

VALUE OF THE TRACERS AT THE SOURCES

VELOCITIES OF THE SOURCES ALONG X

VELOCITIES OF THE SOURCES ALONG Y

VELOCITIES OF THE SOURCES ALONG Z

VERTICAL TURBULENCE MODEL

WATER DISCHARGE OF SOURCES WIND WIND VELOCITY ALONG X WIND VELOCITY ALONG Y

2.13 EQUATIONS, ADVECTION

ADVECTION STEP

SCHEME FOR ADVECTION OF DEPTH

SCHEME FOR ADVECTION OF K-EPSILON

SCHEME FOR ADVECTION OF TRACERS

SCHEME FOR ADVECTION OF VELOCITIES

SCHEME OPTION FOR ADVECTION OF K-EPSILON

SCHEME OPTION FOR ADVECTION OF TRACERS

SCHEME OPTION FOR ADVECTION OF VELOCITIES

2.14 EQUATIONS, BOUNDARY CONDITIONS

OPTION FOR LIQUID BOUNDARIES
TRACERS VERTICAL PROFILES
TREATMENT OF FLUXES AT THE BOUNDARIES
VELOCITY PROFILES
VELOCITY VERTICAL PROFILES

2.15 EQUATIONS, DIFFUSION

DIFFUSION STEP MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF SEDIMENT MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF VELOCITIES MAXIMUM NUMBER OF ITERATIONS FOR PPE PRECONDITIONING FOR DIFFUSION OF K-EPSILON PRECONDITIONING FOR DIFFUSION OF TRACERS PRECONDITIONING FOR DIFFUSION OF VELOCITIES PRECONDITIONING FOR PPE SCHEME FOR DIFFUSION OF K-EPSILON SCHEME FOR DIFFUSION OF TRACERS SCHEME FOR DIFFUSION OF VELOCITIES SOLVER FOR DIFFUSION OF K-EPSILON SOLVER FOR DIFFUSION OF TRACERS SOLVER FOR DIFFUSION OF VELOCITIES SOLVER FOR PPE

2.16 EQUATIONS, INITIAL CONDITIONS

IMPLICITATION FOR DIFFUSION
INITIAL CONDITIONS
INITIAL DEPTH
INITIAL ELEVATION
OPTION FOR THE TREATMENT OF TIDAL FLATS

2.17 EQUATIONS, PROPAGATION

PROPAGATION STEP

2.18 EQUATIONS, SOURCE

WATER QUALITY PROCESS

2.19 EQUATIONS, SOURCE TERMS

TYPE OF SOURCES

2.20 EQUATIONS, SOURCES

OPTION FOR WIND

2.21 EQUATIONS, TRACER

NUMBER OF TRACERS
STANDARD VALUES FOR TRACERS

2.22 FILES

ELEMENT
LIST OF FILES

2.23 FRICTION

FRICTION COEFFICIENT FOR LATERAL SOLID BOUNDARIES FRICTION COEFFICIENT FOR THE BOTTOM
LAW OF BOTTOM FRICTION
LAW OF FRICTION ON LATERAL BOUNDARIES
SKIN FRICTION CORRECTION

2.24 GENERAL 95

2.24 GENERAL

ACCURACY FOR VERTICAL VELOCITY

BOUNDARY CONDITION ON THE BOTTOM

CHECKING THE MESH

CONTINUITY CORRECTION ON OPEN BOUNDARIES

COUPLING PERIOD FOR SISYPHE

COUPLING PERIOD FOR TOMAWAC

DENSITY LAW

ELEMENTS MASKED BY USER

GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

HYDROSTATIC INCONSISTENCY FILTER

INITIAL TIME SET TO ZERO

LATITUDE OF ORIGIN POINT

LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

LONGITUDE OF ORIGIN POINT

MASS-LUMPING FOR DIFFUSION

MATRIX STORAGE

MAXIMUM NUMBER OF BOUNDARIES

MAXIMUM NUMBER OF BOUNDARIES ON THE BED

MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF VELOCITIES

MAXIMUM NUMBER OF ITERATIONS FOR PPE

MAXIMUM NUMBER OF ITERATIONS FOR VERTICAL VELOCITY

MAXIMUM NUMBER OF SOURCES

MAXIMUM NUMBER OF TRACERS

MESH TRANSFORMATION

NORTH

NUMBER OF 2D PRIVATE ARRAYS

NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

NUMBER OF CULVERTS

NUMBER OF HORIZONTAL LEVELS

NUMBER OF PRIVATE ARRAYS

NUMBER OF SUB ITERATIONS FOR NON LINEARITIES

NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

OPTION FOR CULVERTS

OPTION FOR THE DIFFUSION

OPTION FOR TIDAL BOUNDARY CONDITIONS

ORIGINAL DATE OF TIME

ORIGINAL HOUR OF TIME

PARALLEL PROCESSORS

PARTITIONING TOOL

PRECONDITIONING FOR DIFFUSION OF K-EPSILON

PRECONDITIONING FOR DIFFUSION OF TRACERS

PRECONDITIONING FOR DIFFUSION OF VELOCITIES

PRECONDITIONING FOR PPE

PRECONDITIONING FOR VERTICAL VELOCITY

RAIN OR EVAPORATION

RAIN OR EVAPORATION IN MM PER DAY

RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER

RECORD NUMBER FOR RESTART

```
RECORD NUMBER IN WAVE FILE
SCHEME FOR ADVECTION OF DEPTH
SCHEME FOR ADVECTION OF K-EPSILON
SCHEME FOR ADVECTION OF TRACERS
SCHEME FOR ADVECTION OF VELOCITIES
SCHEME FOR DIFFUSION OF K-EPSILON
SCHEME FOR DIFFUSION OF TRACERS
SCHEME FOR DIFFUSION OF VELOCITIES
SCHEME OPTION FOR ADVECTION OF K-EPSILON
SCHEME OPTION FOR ADVECTION OF TRACERS
SCHEME OPTION FOR ADVECTION OF VELOCITIES
SOLVER FOR DIFFUSION OF K-EPSILON
SOLVER FOR DIFFUSION OF TRACERS
SOLVER FOR DIFFUSION OF VELOCITIES
SOLVER FOR PPE
SOLVER FOR VERTICAL VELOCITY
SPATIAL PROJECTION TYPE
SPHERICAL COORDINATES
SUPG OPTION
TIDAL FLATS
TIDE GENERATING FORCE
TREATMENT ON TIDAL FLATS FOR K-EPSILON
TREATMENT ON TIDAL FLATS FOR TRACERS
TREATMENT ON TIDAL FLATS FOR VELOCITIES
VECTOR LENGTH
WAVE DRIVEN CURRENTS
ZERO
```

2.25 INPUT-OUTPUT, FILES

- 2D RESULT FILE
- 2D RESULT FILE BINARY
- 2D RESULT FILE FORMAT
- 3D RESULT FILE
- 3D RESULT FILE BINARY
- 3D RESULT FILE FORMAT

ASCII ATMOSPHERIC DATA FILE

ASCII DATABASE FOR TIDE

BINARY ATMOSPHERIC DATA FILE

BINARY ATMOSPHERIC DATA FILE FORMAT

BINARY BOUNDARY DATA FILE

BINARY BOUNDARY DATA FILE FORMAT

BINARY DATA FILE 1

BINARY DATA FILE 1 FORMAT

BINARY DATA FILE 2

BINARY DATABASE 1 FOR TIDE

BINARY DATABASE 2 FOR TIDE

BINARY RESULTS FILE

BOTTOM SURFACES DELWAQ FILE

BOTTOM TOPOGRAPHY FILE

BOUNDARY CONDITIONS FILE

COUPLING WITH

CULVERTS DATA FILE

DELWAO STEERING FILE

DIFFUSIVITY DELWAQ FILE

DROGUES FILE

EXCHANGE AREAS DELWAQ FILE

EXCHANGES BETWEEN NODES DELWAQ FILE

FILE FOR 2D CONTINUATION

FILE FOR 2D CONTINUATION FORMAT

FORMATTED DATA FILE 1

FORMATTED DATA FILE 2

FORMATTED RESULTS FILE

FORTRAN FILE

GEOMETRY FILE

GEOMETRY FILE FORMAT

HARMONIC CONSTANTS FILE

LIQUID BOUNDARIES FILE

NAMES OF 2D PRIVATE VARIABLES

NAMES OF TRACERS

NODES DISTANCES DELWAQ FILE

OIL SPILL STEERING FILE

PREVIOUS COMPUTATION FILE

PREVIOUS COMPUTATION FILE FORMAT

PREVIOUS COMPUTATION SEDIMENTOLOGICAL FILE

REFERENCE FILE

REFERENCE FILE FORMAT

RESTART FILE

RESTART FILE FORMAT

SALINITY DELWAQ FILE

SEDIMENTOLOGICAL RESULT FILE

SEDIMENTOLOGICAL RESULT FILE BINARY

SISYPHE STEERING FILE

SOURCES FILE

STAGE-DISCHARGE CURVES FILE

STEERING FILE

TEMPERATURE DELWAQ FILE

TIDAL MODEL FILE

TOMAWAC STEERING FILE

VELOCITY DELWAQ FILE

VERTICAL FLUXES DELWAQ FILE

VOLUMES DELWAQ FILE

WAQTEL STEERING FILE

2.26 INPUT-OUTPUT, GRAPHICS AND LISTING

DIFFUSION FOR DELWAQ
GRAPHIC PRINTOUT PERIOD

INFORMATION ABOUT MASS-BALANCE FOR EACH LISTING PRINTOUT

LISTING PRINTOUT

LISTING PRINTOUT PERIOD

MASS-BALANCE

NUMBER OF DROGUES

NUMBER OF FIRST TIME STEP FOR GRAPHIC PRINTOUTS

NUMBER OF FIRST TIME STEP FOR LISTING PRINTOUTS

PRINTOUT PERIOD FOR DROGUES

SALINITY FOR DELWAQ

TEMPERATURE FOR DELWAQ

VARIABLES FOR 2D GRAPHIC PRINTOUTS

VARIABLES FOR 3D GRAPHIC PRINTOUTS

VELOCITY FOR DELWAQ

2.27 INPUT-OUTPUT, INFORMATION

COMPUTATION CONTINUED

DEFAULT EXECUTABLE

DEFAULT PARALLEL EXECUTABLE

DELWAQ PRINTOUT PERIOD

DESCRIPTION OF LIBRARIES

DICTIONARY

OIL SPILL MODEL

ORIGIN COORDINATES

RELEASE

TITLE

VALIDATION

2.28 K-EPSILON MODEL

MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF K-EPSILON TURBULENCE REGIME FOR LATERAL SOLID BOUNDARIES TURBULENCE REGIME FOR THE BOTTOM

2.29 NAMES

2D RESULT FILE

3D RESULT FILE

ASCII ATMOSPHERIC DATA FILE

ASCII DATABASE FOR TIDE

BINARY ATMOSPHERIC DATA FILE

BINARY BOUNDARY DATA FILE

BINARY DATA FILE 1

BINARY DATA FILE 2

BINARY DATABASE 1 FOR TIDE

BINARY DATABASE 2 FOR TIDE

BINARY RESULTS FILE

BOTTOM SURFACES DELWAO FILE

BOTTOM TOPOGRAPHY FILE

BOUNDARY CONDITIONS FILE

COUPLING WITH

CULVERTS DATA FILE

DELWAQ STEERING FILE

DIFFUSIVITY DELWAQ FILE

DROGUES FILE

EXCHANGE AREAS DELWAQ FILE

EXCHANGES BETWEEN NODES DELWAQ FILE

FILE FOR 2D CONTINUATION

FORMATTED DATA FILE 1

FORMATTED DATA FILE 2

FORMATTED RESULTS FILE

FORTRAN FILE

GEOMETRY FILE

HARMONIC CONSTANTS FILE

LIQUID BOUNDARIES FILE

NAMES OF 2D PRIVATE VARIABLES

NAMES OF TRACERS

NODES DISTANCES DELWAQ FILE

OIL SPILL STEERING FILE

PREVIOUS COMPUTATION FILE

PREVIOUS COMPUTATION SEDIMENTOLOGICAL FILE

REFERENCE FILE

RESTART FILE

SALINITY DELWAQ FILE

SEDIMENTOLOGICAL RESULT FILE

SISYPHE STEERING FILE

SOURCES FILE

STAGE-DISCHARGE CURVES FILE

STEERING FILE

TEMPERATURE DELWAQ FILE

TIDAL MODEL FILE

TOMAWAC STEERING FILE

VELOCITY DELWAQ FILE

VERTICAL FLUXES DELWAQ FILE

VOLUMES DELWAQ FILE

WAQTEL STEERING FILE

2.30 NUMERICAL PARAMETERS

BYPASS VOID VOLUMES

COEFFICIENT TO CALIBRATE SEA LEVEL

COEFFICIENT TO CALIBRATE TIDAL RANGE

COEFFICIENT TO CALIBRATE TIDAL VELOCITIES

CONTINUITY CORRECTION ON OPEN BOUNDARIES

COUPLING PERIOD FOR SISYPHE

COUPLING PERIOD FOR TOMAWAC

DEBUGGER

DENSITY LAW

DURATION

ELEMENTS MASKED BY USER

FREE SURFACE GRADIENT COMPATIBILITY

GEOGRAPHIC SYSTEM

GLOBAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

HYDROSTATIC INCONSISTENCY FILTER

IMPLICITATION FOR DEPTH

IMPLICITATION FOR VELOCITIES

INITIAL GUESS FOR DEPTH

INITIAL TIME SET TO ZERO

INITIAL VALUES OF TRACERS

LOCAL NUMBER OF THE POINT TO CALIBRATE HIGH WATER

MASS-LUMPING FOR DEPTH

MASS-LUMPING FOR DIFFUSION

MASS-LUMPING FOR VELOCITIES

MATRIX STORAGE

MAXIMUM NUMBER OF ITERATIONS FOR ADVECTION SCHEMES

MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF K-EPSILON

MESH TRANSFORMATION

MINIMAL VALUE FOR DEPTH

MINOR CONSTITUENTS INFERENCE

NUMBER OF 2D PRIVATE ARRAYS

NUMBER OF CORRECTIONS OF DISTRIBUTIVE SCHEMES

NUMBER OF CULVERTS

NUMBER OF GAUSS POINTS FOR WEAK CHARACTERISTICS

NUMBER OF HORIZONTAL LEVELS

NUMBER OF PRIVATE ARRAYS

NUMBER OF SUB ITERATIONS FOR NON LINEARITIES

NUMBER OF SUB-STEPS OF DISTRIBUTIVE SCHEMES

NUMBER OF TIME STEPS

OPEN BOUNDARY CONDITIONS ON THE BED

OPTION FOR CULVERTS

OPTION FOR THE DIFFUSION

OPTION FOR TIDAL BOUNDARY CONDITIONS

ORIGINAL DATE OF TIME

ORIGINAL HOUR OF TIME

PARTITIONING TOOL

PRESCRIBED ELEVATIONS

PRESCRIBED FLOWRATES

PRESCRIBED FLOWRATES ON THE BED

PRESCRIBED VELOCITIES

RAIN OR EVAPORATION

RAIN OR EVAPORATION IN MM PER DAY

RATIO BETWEEN SKIN FRICTION AND MEAN DIAMETER

RECORD NUMBER FOR RESTART

RECORD NUMBER IN WAVE FILE

RESTART MODE

SPHERICAL COORDINATES

SUPG OPTION

THRESHOLD FOR SEDIMENT FLUX CORRECTION ON TIDAL FLATS

THRESHOLD FOR VISCOSITY CORRECTION ON TIDAL FLATS

TIDAL DATA BASE

TIDAL FLATS

TIDE GENERATING FORCE

TIME STEP

TREATMENT OF NEGATIVE DEPTHS

VALUES OF TRACERS IN THE RAIN

VECTOR LENGTH

VELOCITY PROJECTED ON BOTTOM

VELOCITY PROJECTED ON SOLID LATERAL BOUNDARIES

VERTICAL VELOCITY DERIVATIVES

WAVE DRIVEN CURRENTS

ZERO

ZONE NUMBER IN GEOGRAPHIC SYSTEM

2.31 NUMERICS VALUES

COEFFICIENT OF WIND INFLUENCE THRESHOLD DEPTH FOR WIND WIND VELOCITY ALONG X WIND VELOCITY ALONG Y

2.32 PARAMETER FOR BED MATERIAL

MEAN DIAMETER OF THE SEDIMENT

2.33 PHYSICAL CONSTANTS

AVERAGE WATER DENSITY
BETA EXPANSION COEFFICIENT FOR TRACERS
CORIOLIS COEFFICIENT
GRAVITY ACCELERATION

2.34 PHYSICAL PARAMETERS

MASS-LUMPING FOR WEAK CHARACTERISTICS
OPTION FOR CHARACTERISTICS
SHIELDS PARAMETER
VALUE OF ATMOSPHERIC PRESSURE

2.35 PHYSICS

NON COHESIVE BED POROSITY
READ CRITICAL BED SHEAR STRESS PER LAYER

2.36 PROPAGATION

ACCURACY FOR PROPAGATION
LINEARIZED PROPAGATION
MAXIMUM NUMBER OF ITERATIONS FOR PROPAGATION
PRECONDITIONING FOR PROPAGATION
SOLVER FOR PROPAGATION

2.37 SEDIMENT

ADVECTION-DIFFUSION SCHEME WITH SETTLING VELOCITY BED LAYERS THICKNESS COEFFICIENT RELATIVE TO FLOC DESTRUCTION COHESIVE SEDIMENT CONSOLIDATION CONSTANT SEDIMENT SETTLING VELOCITY CRITICAL SHEAR STRESS FOR DEPOSITION DENSITY OF THE SEDIMENT EROSION COEFFICIENT FLOCCULATION FLOCCULATION COEFFICIENT FLOCCULATION FORMULA HINDERED SETTLING HINDERED SETTLING FORMULA INITIAL PERCENTAGE OF NON COHESIVE SEDIMENT MAXIMUM CONCENTRATION OF THE CONSOLIDATED MUD

RESIDENCE TIME FOR MUD

SEDIMENT

SETTLING VELOCITY OF SANDS

SOLVER FOR DIFFUSION OF THE SEDIMENT

THRESHOLD CONCENTRATION FOR HINDERED SETTLING

TIME STEP FOR CONSOLIDATION

WEAK SOIL CONCENTRATION FOR MUD

PRECONDITIONING FOR DIFFUSION OF THE SEDIMENT

2.38 SEDIMENT TRANSPORT

MIXED SEDIMENT

SHIELDS PARAMETER

2.39 SMOOTHINGS 103

2.39 SMOOTHINGS

NUMBER OF BOTTOM SMOOTHINGS

2.40 SOURCES

ABSCISSAE OF SOURCES
ELEVATIONS OF SOURCES
ORDINATES OF SOURCES
PRESCRIBED TRACERS VALUES
VALUE OF THE TRACERS AT THE SOURCES
VELOCITIES OF THE SOURCES ALONG X
VELOCITIES OF THE SOURCES ALONG Y
VELOCITIES OF THE SOURCES ALONG Z
WATER DISCHARGE OF SOURCES

2.41 SUSPENSION

REFERENCE CONCENTRATION FORMULA

2.42 TRACER

MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF SEDIMENT MAXIMUM NUMBER OF ITERATIONS FOR DIFFUSION OF TRACERS WATER QUALITY PROCESS

2.43 TURBULENCE

FICTITIOUS BED LEVEL KARMAN CONSTANT PRANDTL NUMBER

2.44 TURBULENCE MODEL

ACCURACY FOR DIFFUSION OF K-EPSILON

ACCURACY FOR DIFFUSION OF SEDIMENT

ACCURACY FOR DIFFUSION OF TRACERS

ACCURACY FOR DIFFUSION OF VELOCITIES

ACCURACY FOR PPE

COEFFICIENT FOR HORIZONTAL DIFFUSION OF TRACERS

COEFFICIENT FOR HORIZONTAL DIFFUSION OF VELOCITIES

COEFFICIENT FOR VERTICAL DIFFUSION OF TRACERS

COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES

HORIZONTAL TURBULENCE MODEL

MIXING LENGTH MODEL

OPTION FOR THE BOUNDARY CONDITIONS OF K-EPSILON

TURBULENCE REGIME FOR LATERAL SOLID BOUNDARIES TURBULENCE REGIME FOR THE BOTTOM VERTICAL TURBULENCE MODEL

2.45 TYPE OF BINARY

2D RESULT FILE BINARY
3D RESULT FILE BINARY
SEDIMENTOLOGICAL RESULT FILE BINARY

2.46 VELOCITY-CELERITY-DEPTH

IMPLICITATION FOR DEPTH
IMPLICITATION FOR VELOCITIES
INITIAL GUESS FOR DEPTH
MASS-LUMPING FOR DEPTH
MASS-LUMPING FOR VELOCITIES
MINIMAL VALUE FOR DEPTH

2.47 WIND

COEFFICIENT OF WIND INFLUENCE THRESHOLD DEPTH FOR WIND WIND WIND VELOCITY ALONG X WIND VELOCITY ALONG Y

3. Glossary

3.1 English/French glossary

2D CONTINUATION	SUITE 2D
2D RESULT FILE	FICHIER DES RESULTATS 2D
2D RESULT FILE BINARY	BINAIRE DU FICHIER DES
	RESULTATS 2D
2D RESULT FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
	2D
3D RESULT FILE	FICHIER DES RESULTATS 3D
3D RESULT FILE BINARY	BINAIRE DU FICHIER DES
	RESULTATS 3D
3D RESULT FILE FORMAT	FORMAT DU FICHIER DES RESULTATS
	3D
ABSCISSAE OF SOURCES	ABSCISSES DES SOURCES
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DU
K-EPSILON	K-EPSILON
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DU
SEDIMENT	SEDIMENT
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DES
TRACERS	TRACEURS
ACCURACY FOR DIFFUSION OF	PRECISION POUR LA DIFFUSION DES
VELOCITIES	VITESSES
ACCURACY FOR PPE	PRECISION POUR PPE
ACCURACY FOR PROPAGATION	PRECISION POUR LA PROPAGATION
ACCURACY FOR VERTICAL VELOCITY	PRECISION POUR LA VITESSE
	VERTICALE
ADVECTION STEP	ETAPE DE CONVECTION
ADVECTION-DIFFUSION SCHEME WITH	SCHEMA DE CONVECTION DIFFUSION
SETTLING VELOCITY	AVEC VITESSE DE CHUTE
AIR PRESSURE	PRESSION ATMOSPHERIQUE
ASCII ATMOSPHERIC DATA FILE	FICHIER ASCII DE DONNEES
	ATMOSPHERIQUES
ASCII DATABASE FOR TIDE	BASE ASCII DE DONNEES DE MAREE

AVERAGE WATER DENSITY	MASSE VOLUMIQUE MOYENNE DE
BED LAYERS THICKNESS	EPAISSEUR DES COUCHES DU FOND VASEUX
BETA EXPANSION COEFFICIENT FOR TRACERS	COEFFICIENT DE DILATATION BETA POUR LES TRACEURS
BINARY ATMOSPHERIC DATA FILE	FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES
BINARY ATMOSPHERIC DATA FILE FORMAT	FORMAT DU FICHIER BINAIRE DE DONNEES ATMOSPHERIQUES
BINARY BOUNDARY DATA FILE	FICHIER BINAIRE DE DONNEES DE FRONTIERE
BINARY BOUNDARY DATA FILE FORMAT	FORMAT DU FICHIER BINAIRE DE DONNEES DE FRONTIERE
BINARY DATA FILE 1	FICHIER DE DONNEES BINAIRE 1
BINARY DATA FILE 1 FORMAT	FORMAT DU FICHIER DE DONNEES BINAIRE 1
BINARY DATA FILE 2	FICHIER DE DONNEES BINAIRE 2
BINARY DATABASE 1 FOR TIDE	BASE BINAIRE 1 DE DONNEES DE MAREE
BINARY DATABASE 2 FOR TIDE	BASE BINAIRE 2 DE DONNEES DE MAREE
BINARY RESULTS FILE	FICHIER DE RESULTATS BINAIRE
BOTTOM SURFACES DELWAQ FILE	FICHIER DELWAQ DES SURFACES DU FOND
BOTTOM TOPOGRAPHY FILE	FICHIER DES FONDS
BOUNDARY CONDITION ON THE BOTTOM	CONDITION A LA LIMITE AU FOND
BOUNDARY CONDITIONS FILE	FICHIER DES CONDITIONS AUX LIMITES
BYPASS VOID VOLUMES	CONTOURNEMENT DES VOLUMES NULS
CHECKING THE MESH	VERIFICATION DU MAILLAGE
COEFFICIENT FOR HORIZONTAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF TRACERS	HORIZONTAL DES TRACEURS
COEFFICIENT FOR HORIZONTAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF VELOCITIES	HORIZONTAL DES VITESSES
COEFFICIENT FOR VERTICAL	COEFFICIENT DE DIFFUSION
DIFFUSION OF TRACERS	VERTICAL DES TRACEURS
COEFFICIENT FOR VERTICAL DIFFUSION OF VELOCITIES	COEFFICIENT DE DIFFUSION VERTICAL DES VITESSES
COEFFICIENT OF WIND INFLUENCE	COEFFICIENT D'INFLUENCE DU VENT
COEFFICIENT OF WIND INFLOENCE COEFFICIENT RELATIVE TO FLOC	COEFFICIENT TRADUISANT LA
DESTRUCTION	DESTRUCTION DES FLOCS
COEFFICIENT TO CALIBRATE SEA LEVEL	COEFFICIENT DE CALAGE DU NIVEAU DE MER
COEFFICIENT TO CALIBRATE TIDAL RANGE	COEFFICIENT DE CALAGE DU MARNAGE

COEFFICIENT TO CALIBRATE TIDAL	COEFFICIENT DE CALAGE DES
VELOCITIES COMECTIVE CERTIFICATION	VITESSES DE COURANT
COMPLIATION CONTINUED	SEDIMENT COHESIF
COMPUTATION CONTINUED	SUITE DE CALCUL
CONSOLIDATION	TASSEMENT DE LA VASE
CONSOLIDATION MODEL	OPTION DU MODELE DE TASSEMENT
CONSTANT SEDIMENT SETTLING VELOCITY	VITESSE DE CHUTE CONSTANTE
CONTINUITY CORRECTION ON OPEN	CORRECTION DE CONTINUITE SUR
BOUNDARIES	FRONTIERES OUVERTES
CORIOLIS	CORIOLIS
CORIOLIS COEFFICIENT	COEFFICIENT DE CORIOLIS
COUPLING PERIOD FOR SISYPHE	PERIODE DE COUPLAGE POUR SISYPHE
COUPLING PERIOD FOR TOMAWAC	PERIODE DE COUPLAGE POUR TOMAWAC
COUPLING WITH	COUPLAGE AVEC
CRITICAL EROSION SHEAR STRESS	CONTRAINTE CRITIQUE D'EROSION
OF THE MUD LAYERS	DES COUCHES DE VASE
CRITICAL SHEAR STRESS FOR	CONTRAINTE CRITIQUE DE DEPOT
DEPOSITION	
CULVERTS DATA FILE	FICHIER DE DONNEES DES BUSES
DAMPING FUNCTION	FONCTION D'AMORTISSEMENT
DEBUGGER	DEBUGGER
DEFAULT EXECUTABLE	EXECUTABLE PAR DEFAUT
DEFAULT PARALLEL EXECUTABLE	EXECUTABLE PARALLELE PAR DEFAUT
DELWAQ PRINTOUT PERIOD	PERIODE DE SORTIE POUR DELWAQ
DELWAQ STEERING FILE	FICHIER DE COMMANDE DELWAQ
DENSITY LAW	LOI DE DENSITE
DENSITY OF THE SEDIMENT	MASSE VOLUMIQUE DU SEDIMENT
DESCRIPTION OF LIBRARIES	DESCRIPTION DES LIBRAIRIES
DICTIONARY	DICTIONNAIRE
DIFFUSION FOR DELWAQ	DIFFUSION POUR DELWAQ
DIFFUSION STEP	ETAPE DE DIFFUSION
DIFFUSIVITY DELWAQ FILE	FICHIER DELWAQ DE LA DIFFUSION
DROGUES FILE	FICHIER DES FLOTTEURS
DURATION	DUREE DU CALCUL
DYNAMIC BOUNDARY CONDITION	CONDITION LIMITE DYNAMIQUE
DYNAMIC PRESSURE IN WAVE	PRESSION DYNAMIQUE DANS
	L'EQUATION D'ONDE
EQUATION	ELEMENT D'ONDE
ELEMENT	
ELEMENTS MASKED BY USER	ELEMENTS MASQUES PAR
DIDIATIONS OF SOURCES	L'UTILISATEUR
ELEVATIONS OF SOURCES	COTES DES SOURCES
EROSION COEFFICIENT	COEFFICIENT D'EROSION
EXCHANGE AREAS DELWAQ FILE	FICHIER DELWAQ DES SURFACES DE FLUX

EXCHANGES BETWEEN NODES DELWAQ	FICHIER DELWAQ DES ECHANGES
FILE	ENTRE NOEUDS
FICTITIOUS BED LEVEL	HAUTEUR DU LIT FICTIF
FILE FOR 2D CONTINUATION	FICHIER POUR SUITE 2D
FILE FOR 2D CONTINUATION FORMAT	FORMAT DU FICHIER POUR SUITE 2D
FLOCCULATION	FLOCULATION
FLOCCULATION COEFFICIENT	COEFFICIENT TRADUISANT LA
	FORMATION DES FLOCS
FLOCCULATION FORMULA	FORMULE POUR FLOCULATION
FORMATTED DATA FILE 1	FICHIER DE DONNEES FORMATE 1
FORMATTED DATA FILE 2	FICHIER DE DONNEES FORMATE 2
FORMATTED RESULTS FILE	FICHIER DE RESULTATS FORMATE
FORTRAN FILE	FICHIER FORTRAN
FREE SURFACE GRADIENT	COMPATIBILITE DU GRADIENT DE
COMPATIBILITY	SURFACE LIBRE
FRICTION COEFFICIENT FOR	COEFFICIENT DE FROTTEMENT POUR
LATERAL SOLID BOUNDARIES	LES PAROIS LATERALES
FRICTION COEFFICIENT FOR THE	COEFFICIENT DE FROTTEMENT POUR
BOTTOM	LE FOND
GEOGRAPHIC SYSTEM	SYSTEME GEOGRAPHIQUE
GEOMETRY FILE	FICHIER DE GEOMETRIE
GEOMETRY FILE FORMAT	FORMAT DU FICHIER DE GEOMETRIE
GLOBAL NUMBER OF THE POINT TO	NUMERO GLOBAL DU POINT POUR
CALIBRATE HIGH WATER	CALER LA PLEINE MER
GRAPHIC PRINTOUT PERIOD	PERIODE POUR LES SORTIES
	GRAPHIQUES
GRAVITY ACCELERATION	ACCELERATION DE LA PESANTEUR
HARMONIC CONSTANTS FILE	FICHIER DES CONSTANTES
	HARMONIQUES
HINDERED SETTLING	VITESSE DE CHUTE ENTRAVEE
HINDERED SETTLING FORMULA	FORMULE POUR VITESSE DE CHUTE
	ENTRAVEE
HORIZONTAL TURBULENCE MODEL	MODELE DE TURBULENCE HORIZONTAL
HYDROSTATIC INCONSISTENCY	FILTRE LES INCONSISTANCES
FILTER	HYDROSTATIQUES
IMPLICITATION FOR DEPTH	IMPLICITATION POUR LA HAUTEUR
IMPLICITATION FOR DIFFUSION	IMPLICITATION POUR LA DIFFUSION
IMPLICITATION FOR VELOCITIES	IMPLICITATION POUR LES VITESSES
INFORMATION ABOUT MASS-BALANCE	INFORMATION SUR LE BILAN DE
FOR EACH LISTING PRINTOUT	MASSE A CHAQUE SORTIE LISTING
INITIAL CONDITIONS	CONDITIONS INITIALES
INITIAL DEPTH	HAUTEUR INITIALE
INITIAL ELEVATION	COTE INITIALE
INITIAL GUESS FOR DEPTH	ORDRE DU TIR INITIAL POUR LA
	HAUTEUR
INITIAL PERCENTAGE OF NON	POURCENTAGE INITIAL DE SEDIMENT
COHESIVE SEDIMENT	NON COHESIF
COULDATAD DEDITIEDIAL	TAOTA COULDAIL

INITIAL THICKNESS OF SEDIMENT	EPAISSEURS INITIALES DES
LAYERS	COUCHES
INITIAL TIME SET TO ZERO	REMISE A ZERO DU TEMPS
INITIAL VALUES OF TRACERS	VALEURS INITIALES DES TRACEURS
KARMAN CONSTANT	CONSTANTE DE KARMAN
LATITUDE OF ORIGIN POINT	LATITUDE DU POINT ORIGINE
LAW OF BOTTOM FRICTION	LOI DE FROTTEMENT SUR LE FOND
LAW OF FRICTION ON LATERAL	LOI DE FROTTEMENT SUR LES
BOUNDARIES	PAROIS LATERALES
LINEARIZED PROPAGATION	PROPAGATION LINEARISEE
LIQUID BOUNDARIES FILE	FICHIER DES FRONTIERES LIQUIDES
LIST OF FILES	LISTE DES FICHIERS
LISTING PRINTOUT	SORTIE LISTING
LISTING PRINTOUT PERIOD	PERIODE POUR LES SORTIES
	LISTING
LOCAL NUMBER OF THE POINT TO	NUMERO LOCAL DU POINT POUR
CALIBRATE HIGH WATER	CALER LA PLEINE MER
LONGITUDE OF ORIGIN POINT	LONGITUDE DU POINT ORIGINE
MASS-BALANCE	BILAN DE MASSE
MASS-LUMPING FOR DEPTH	MASS-LUMPING POUR LA HAUTEUR
MASS-LUMPING FOR DIFFUSION	MASS-LUMPING POUR LA DIFFUSION
MASS-LUMPING FOR VELOCITIES	MASS-LUMPING POUR LES VITESSES
MASS-LUMPING FOR WEAK	MASS-LUMPING POUR LES
CHARACTERISTICS	CARACTERISTIQUES FAIBLES
MATRIX STORAGE MAXIMUM CONCENTRATION OF THE	STOCKAGE DES MATRICES CONCENTRATION MAXIMUM DE LA
CONSOLIDATED MUD	VASE TASSEE
MAXIMUM NUMBER OF BOUNDARIES	NOMBRE MAXIMUM DE FRONTIERES
MAXIMUM NUMBER OF BOUNDARIES ON	NOMBRE MAXIMUM DE FRONTIERES
THE BED	SUR LE FOND
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LES
FOR ADVECTION SCHEMES	SCHEMAS DE CONVECTION
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF K-EPSILON	DIFFUSION DU K-EPSILON
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF SEDIMENT	DIFFUSION DU SEDIMENT
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF TRACERS	DIFFUSION DES TRACEURS
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR DIFFUSION OF VELOCITIES	DIFFUSION DES VITESSES
MAXIMUM NUMBER OF ITERATIONS FOR PPE	MAXIMUM D'ITERATIONS POUR PPE
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR PROPAGATION	PROPAGATION
MAXIMUM NUMBER OF ITERATIONS	MAXIMUM D'ITERATIONS POUR LA
FOR VERTICAL VELOCITY	VITESSE VERTICALE
MAXIMUM NUMBER OF SOURCES	NOMBRE MAXIMUM DE SOURCES
MAAIMUM NUMBER OF SOURCES	NOMBRE MAXIMUM DE SOURCES

MAXIMUM NUMBER OF TRACERS	NOMBRE MAXIMUM DE TRACEURS
MEAN DEPTH FOR LINEARIZATION	PROFONDEUR MOYENNE POUR LA
	LINEARISATION
MEAN DIAMETER OF THE SEDIMENT	DIAMETRE MOYEN DES GRAINS
MESH TRANSFORMATION	TRANSFORMATION DU MAILLAGE
MINIMAL VALUE FOR DEPTH	VALEUR MINIMALE POUR LA HAUTEUR
MINOR CONSTITUENTS INFERENCE	INTERPOLATION DE COMPOSANTES
	MINEURES
MIXED SEDIMENT	SEDIMENT MIXTE
MIXING LENGTH MODEL	MODELE DE LONGUEUR DE MELANGE
MUD CONCENTRATIONS PER LAYER	CONCENTRATIONS DES COUCHES DE VASE
NAMES OF 2D PRIVATE VARIABLES	NOMS DES VARIABLES PRIVEES 2D
NAMES OF TRACERS	NOMS DES TRACEURS
NODES DISTANCES DELWAQ FILE	FICHIER DELWAQ DES DISTANCES
	ENTRE NOEUDS
NON COHESIVE BED POROSITY	POROSITE DU LIT NON COHESIF
NON-HYDROSTATIC VERSION	VERSION NON-HYDROSTATIQUE
NORTH	NORD
NUMBER OF 2D PRIVATE ARRAYS	NOMBRE DE TABLEAUX PRIVES 2D
NUMBER OF BOTTOM SMOOTHINGS	NOMBRE DE LISSAGES DU FOND
NUMBER OF CORRECTIONS OF	NOMBRE DE CORRECTIONS DES
DISTRIBUTIVE SCHEMES	SCHEMAS DISTRIBUTIFS
NUMBER OF CULVERTS	NOMBRE DE BUSES
NUMBER OF DROGUES	NOMBRE DE FLOTTEURS
NUMBER OF FIRST TIME STEP FOR	NUMERO DU PREMIER PAS DE TEMPS
GRAPHIC PRINTOUTS	POUR LES SORTIES GRAPHIQUES
NUMBER OF FIRST TIME STEP FOR	NUMERO DU PREMIER PAS DE TEMPS
LISTING PRINTOUTS	POUR LES SORTIES LISTING
NUMBER OF GAUSS POINTS FOR WEAK	NOMBRE DE POINTS DE GAUSS POUR
CHARACTERISTICS	LES CARACTERISTIQUES FAIBLES
NUMBER OF HORIZONTAL LEVELS	NOMBRE DE PLANS HORIZONTAUX
NUMBER OF PRIVATE ARRAYS NUMBER OF SEDIMENT BED LAYERS	NOMBRE DE TABLEAUX PRIVES NOMBRE DE COUCHES DU LIT
MONDER OF SENTHENT DEN PRIEKS	COHESIF
NUMBER OF SUB ITERATIONS FOR	NOMBRE DE SOUS ITERATIONS POUR
NON LINEARITIES	LES NON LINEARITES
NUMBER OF SUB-STEPS OF	NOMBRE DE SOUS-PAS DES SCHEMAS
DISTRIBUTIVE SCHEMES	DISTRIBUTIFS
NUMBER OF TIME STEPS	NOMBRE DE PAS DE TEMPS
NUMBER OF TRACERS	NOMBRE DE TRACEURS
OIL SPILL MODEL	MODELE DE NAPPES
	D'HYDROCARBURES
OIL SPILL STEERING FILE	FICHIER DE COMMANDES
	HYDROCARBURES
OPEN BOUNDARY CONDITIONS ON THE BED	CONDITIONS OUVERTES SUR LE FOND

	T
OPTION FOR CHARACTERISTICS	OPTION POUR LES
	CARACTERISTIQUES
OPTION FOR CULVERTS	OPTION POUR LES BUSES
OPTION FOR LIQUID BOUNDARIES	OPTION POUR LES FRONTIERES
	LIQUIDES
OPTION FOR THE BOUNDARY	OPTION POUR LES CONDITIONS AUX
CONDITIONS OF K-EPSILON	LIMITES DU K-EPSILON
OPTION FOR THE DIFFUSION	OPTION POUR LA DIFFUSION
OPTION FOR THE TREATMENT OF	OPTION DE TRAITEMENT DES BANCS
TIDAL FLATS	DECOUVRANTS
OPTION FOR TIDAL BOUNDARY	OPTION POUR LES CONDITIONS AUX
CONDITIONS	LIMITES DE MAREE
OPTION FOR WIND	OPTION DU VENT
OPTION OF SOLVER FOR DIFFUSION	OPTION DU SOLVEUR POUR LA
OF K-EPSILON	DIFFUSION DU K-EPSILON
OPTION OF SOLVER FOR DIFFUSION	OPTION DU SOLVEUR POUR LA
OF THE SEDIMENT	DIFFUSION DU SEDIMENT
OPTION OF SOLVER FOR DIFFUSION	OPTION DU SOLVEUR POUR LA
OF TRACERS	DIFFUSION DES TRACEURS
OPTION OF SOLVER FOR DIFFUSION	OPTION DU SOLVEUR POUR LA
OF VELOCITIES	DIFFUSION DES VITESSES
OPTION OF SOLVER FOR PPE	OPTION DU SOLVEUR POUR PPE
OPTION OF SOLVER FOR	OPTION DU SOLVEUR POUR LA
PROPAGATION	PROPAGATION
ORDINATES OF SOURCES	ORDONNEES DES SOURCES
ORIGIN COORDINATES	COORDONNEES DE L'ORIGINE
ORIGINAL DATE OF TIME	DATE DE L'ORIGINE DES TEMPS
ORIGINAL HOUR OF TIME	HEURE DE L'ORIGINE DES TEMPS
PARALLEL PROCESSORS	PROCESSEURS PARALLELES
PARTITIONING TOOL	PARTITIONNEUR
PRANDTL NUMBER	NOMBRE DE PRANDTL
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF K-EPSILON	DIFFUSION DU K-EPSILON
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF THE SEDIMENT	DIFFUSION DU SEDIMENT
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF TRACERS	DIFFUSION DES TRACEURS
PRECONDITIONING FOR DIFFUSION	PRECONDITIONNEMENT POUR LA
OF VELOCITIES	DIFFUSION DES VITESSES
PRECONDITIONING FOR PPE	PRECONDITIONNEMENT POUR PPE
PRECONDITIONING FOR PROPAGATION	PRECONDITIONNEMENT POUR LA
INCOMPTITONING FOR PROPAGATION	PROPAGATION
DDECONDITIONING FOR VERTICAL	
PRECONDITIONING FOR VERTICAL	PRECONDITIONNEMENT POUR LA
VELOCITY DDESCRIBED ELEVATIONS	VITESSE VERTICALE
PRESCRIBED ELEVATIONS	COTES IMPOSEES
PRESCRIBED FLOWRATES	DEBITS IMPOSES
PRESCRIBED FLOWRATES ON THE BED	DEBITS IMPOSES SUR LE FOND

PRESCRIBED TRACERS VALUES	VALEURS IMPOSEES DES TRACEURS
PRESCRIBED VELOCITIES	VITESSES IMPOSEES
PREVIOUS COMPUTATION FILE	FICHIER DU CALCUL PRECEDENT
PREVIOUS COMPUTATION FILE	FORMAT DU FICHIER DU CALCUL
FORMAT	PRECEDENT
PREVIOUS COMPUTATION	FICHIER SEDIMENTOLOGIQUE DU
SEDIMENTOLOGICAL FILE	CALCUL PRECEDENT
PRINTOUT PERIOD FOR DROGUES	PERIODE POUR LES SORTIES DE
	FLOTTEURS
PROPAGATION STEP	ETAPE DE PROPAGATION
RAIN OR EVAPORATION	PLUIE OU EVAPORATION
RAIN OR EVAPORATION IN MM PER	PLUIE OU EVAPORATION EN MM PAR
DAY	JOUR
RATIO BETWEEN SKIN FRICTION AND	RATIO ENTRE LA RUGOSITE DE PEAU
MEAN DIAMETER	ET LE DIAMETRE MOYEN
READ CRITICAL BED SHEAR STRESS	LECTURE CONTRAINTE CRITIQUE
PER LAYER	POUR CHAQUE COUCHE
RECORD NUMBER FOR RESTART	ENREGISTREMENT POUR SUITE DE
	CALCUL
RECORD NUMBER IN WAVE FILE	NUMERO DE L'ENREGISTREMENT DANS
	LE FICHIER DE HOULE
REFERENCE CONCENTRATION FORMULA	FORMULE POUR LA CONCENTRATION
	DE REFERENCE
REFERENCE FILE	FICHIER DE REFERENCE
REFERENCE FILE FORMAT	FORMAT DU FICHIER DE REFERENCE
RELEASE	NUMERO DE VERSION
RESIDENCE TIME FOR MUD	TEMPS DE SEJOUR DE LA VASE
RESTART FILE	FICHIER POUR SUITE
RESTART FILE FORMAT	FORMAT DU FICHIER POUR SUITE
RESTART MODE	MODE SUITE
SALINITY DELWAQ FILE	FICHIER DELWAQ DE LA SALINITE
SALINITY FOR DELWAQ	SALINITE POUR DELWAQ
SCHEME FOR ADVECTION OF DEPTH	SCHEMA POUR LA CONVECTION DE LA
	HAUTEUR
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DU
K-EPSILON	K-EPSILON
SCHEME FOR ADVECTION OF TRACERS	SCHEMA POUR LA CONVECTION DES TRACEURS
SCHEME FOR ADVECTION OF	SCHEMA POUR LA CONVECTION DES
VELOCITIES	VITESSES
	l
SCHEME FOR DIFFUSION OF	SCHEMA POUR LA DIFFUSION DU
SCHEME FOR DIFFUSION OF K-EPSILON	SCHEMA POUR LA DIFFUSION DU K-EPSILON
K-EPSILON	K-EPSILON SCHEMA POUR LA DIFFUSION DES

COURME OPETON FOR ADVECTION OF	ODETON DII GGUENA DOUD LA
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
K-EPSILON	CONVECTION DU K-EPSILON
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
TRACERS	CONVECTION DES TRACEURS
SCHEME OPTION FOR ADVECTION OF	OPTION DU SCHEMA POUR LA
VELOCITIES	CONVECTION DES VITESSES
SEDIMENT	SEDIMENT
SEDIMENTOLOGICAL RESULT FILE	FICHIER DES RESULTATS
	SEDIMENTOLOGIQUES
SEDIMENTOLOGICAL RESULT FILE	BINAIRE DU FICHIER DES
BINARY	RESULTATS SEDIMENTOLOGIQUES
SETTLING VELOCITY OF SANDS	VITESSE DE CHUTE DES SABLES
SHIELDS PARAMETER	PARAMETRE DE SHIELDS
SISYPHE STEERING FILE	FICHIER DES PARAMETRES DE
	SISYPHE
SKIN FRICTION CORRECTION	CORRECTION FROTTEMENT DE PEAU
SOLVER FOR DIFFUSION OF	SOLVEUR POUR LA DIFFUSION DU
K-EPSILON	K-EPSILON
SOLVER FOR DIFFUSION OF THE	SOLVEUR POUR LA DIFFUSION DU
SEDIMENT	SEDIMENT
SOLVER FOR DIFFUSION OF TRACERS	SOLVEUR POUR LA DIFFUSION DES
	TRACEURS
SOLVER FOR DIFFUSION OF	SOLVEUR POUR LA DIFFUSION DES
VELOCITIES	VITESSES
SOLVER FOR PPE	SOLVEUR POUR PPE
SOLVER FOR PROPAGATION	SOLVEUR POUR LA PROPAGATION
SOLVER FOR VERTICAL VELOCITY	SOLVEUR POUR LA VITESSE
	VERTICALE
SOURCES FILE	FICHIER DES SOURCES
SPATIAL PROJECTION TYPE	TYPE DE PROJECTION SPATIALE
SPHERICAL COORDINATES	COORDONNEES SPHERIQUES
STAGE-DISCHARGE CURVES	COURBES DE TARAGE
STAGE-DISCHARGE CURVES FILE	FICHIER DES COURBES DE TARAGE
STANDARD VALUES FOR TRACERS	VALEURS DE REFERENCE DES
	TRACEURS
STEERING FILE	FICHIER DES PARAMETRES
SUPG OPTION	OPTION DE SUPG
TEMPERATURE DELWAQ FILE	FICHIER DELWAQ DE LA
~	TEMPERATURE
TEMPERATURE FOR DELWAQ	TEMPERATURE POUR DELWAQ
THRESHOLD CONCENTRATION FOR	CONCENTRATION LIMITE POUR
HINDERED SETTLING	VITESSE DE CHUTE ENTRAVEE
THRESHOLD DEPTH FOR WIND	PROFONDEUR LIMITE POUR LE VENT
THRESHOLD FOR SEDIMENT FLUX	SEUIL LIMITE POUR EROSION SUR
CORRECTION ON TIDAL FLATS	BANCS DECOUVRANTS
THRESHOLD FOR VISCOSITY	SEUIL POUR CORRECTION DE
CORRECTION ON TIDAL FLATS	VISCOSITE SUR BANCS DECOUVRANTS
COUNTRY ON TIDAL LIMIS	VIDCODIII DON DANCO DECOGNANIO

	DAGE DE DOMMERG DE MADES
TIDAL DATA BASE	BASE DE DONNEES DE MAREE
TIDAL FLATS	BANCS DECOUVRANTS
TIDAL MODEL FILE	FICHIER DU MODELE DE MAREE
TIDE GENERATING FORCE	FORCE GENERATRICE DE LA MAREE
TIME STEP	PAS DE TEMPS
TIME STEP FOR CONSOLIDATION	PAS DE TEMPS DE LA
	CONSOLIDATION
TITLE	TITRE
TOMAWAC STEERING FILE	FICHIER DES PARAMETRES DE TOMAWAC
TRACERS VERTICAL PROFILES	PROFILS DES TRACEURS SUR LA VERTICALE
TREATMENT OF FLUXES AT THE	TRAITEMENT DES FLUX AUX
BOUNDARIES	FRONTIERES
TREATMENT OF NEGATIVE DEPTHS	TRAITEMENT DES HAUTEURS
	NEGATIVES
TREATMENT ON TIDAL FLATS FOR	TRAITEMENT SUR LES BANCS
K-EPSILON	DECOUVRANTS POUR LE K-EPSILON
TREATMENT ON TIDAL FLATS FOR	TRAITEMENT SUR LES BANCS
TRACERS	DECOUVRANTS POUR LES TRACEURS
TREATMENT ON TIDAL FLATS FOR	TRAITEMENT SUR LES BANCS
VELOCITIES	DECOUVRANTS POUR LES VITESSES
TURBULENCE REGIME FOR LATERAL	REGIME DE TURBULENCE POUR LES
SOLID BOUNDARIES	PAROIS LATERALES
TURBULENCE REGIME FOR THE	REGIME DE TURBULENCE POUR LE
BOTTOM	FOND
TYPE OF SOURCES	TYPE DES SOURCES
VALIDATION	VALIDATION
VALUE OF ATMOSPHERIC PRESSURE	VALEUR DE LA PRESSION ATMOSPHERIQUE
VALUE OF THE TRACERS AT THE	VALEURS DES TRACEURS DES
SOURCES	SOURCES
VALUES OF TRACERS IN THE RAIN	VALEURS DES TRACEURS DANS LA PLUIE
VARIABLES FOR 2D GRAPHIC	VARIABLES POUR LES SORTIES
PRINTOUTS	GRAPHIQUES 2D
VARIABLES FOR 3D GRAPHIC	VARIABLES POUR LES SORTIES
PRINTOUTS	GRAPHIQUES 3D
VECTOR LENGTH	LONGUEUR DU VECTEUR
VELOCITIES OF THE SOURCES ALONG	VITESSES DES SOURCES SELON X
X	
VELOCITIES OF THE SOURCES ALONG Y	VITESSES DES SOURCES SELON Y
VELOCITIES OF THE SOURCES ALONG Z	VITESSES DES SOURCES SELON Z
VELOCITY DELWAQ FILE	FICHIER DELWAQ DE LA VITESSE
VELOCITY FOR DELWAQ	VITESSE POUR DELWAQ
ATTOCK DUTMYA	ATTEONE LOOK DEFINATO

VELOCITY PROFILES	PROFILS DE VITESSE
VELOCITY PROJECTED ON BOTTOM	VITESSE PROJETEE SUR LE FOND
VELOCITY PROJECTED ON SOLID	VITESSE PROJETEE SUR LES PAROIS
LATERAL BOUNDARIES	LATERALES SOLIDES
VELOCITY VERTICAL PROFILES	PROFILS DE VITESSE SUR LA
	VERTICALE
VERTICAL FLUXES DELWAQ FILE	FICHIER DELWAQ DES FLUX
	VERTICAUX
VERTICAL TURBULENCE MODEL	MODELE DE TURBULENCE VERTICAL
VERTICAL VELOCITY DERIVATIVES	DERIVEES VERTICALES DES
	VITESSES
VOLUMES DELWAQ FILE	FICHIER DELWAQ DES VOLUMES
WAQTEL STEERING FILE	FICHIER DES PARAMETRES DE
	WAQTEL
WATER DISCHARGE OF SOURCES	DEBITS DES SOURCES
WATER QUALITY PROCESS	PROCESSUS DE QUALITE D'EAU
WAVE DRIVEN CURRENTS	COURANTS DE HOULE
WEAK SOIL CONCENTRATION FOR MUD	CONCENTRATION LIMITE
	FLUIDE-SOLIDE
WIND	VENT
WIND VELOCITY ALONG X	VITESSE DU VENT SUIVANT X
WIND VELOCITY ALONG Y	VITESSE DU VENT SUIVANT Y
ZERO	ZERO
ZONE NUMBER IN GEOGRAPHIC	NUMERO DE FUSEAU OU PROJECTION
SYSTEM	DANS LE SYSTEME GEOGRAPHIQUE

3.2 French/English glossary

ABSCISSES DES SOURCES	ABSCISSAE OF SOURCES
ACCELERATION DE LA PESANTEUR	GRAVITY ACCELERATION
BANCS DECOUVRANTS	TIDAL FLATS
BASE ASCII DE DONNEES DE MAREE	ASCII DATABASE FOR TIDE
BASE BINAIRE 1 DE DONNEES DE	BINARY DATABASE 1 FOR TIDE
MAREE	
BASE BINAIRE 2 DE DONNEES DE	BINARY DATABASE 2 FOR TIDE
MAREE	
BASE DE DONNEES DE MAREE	TIDAL DATA BASE
BILAN DE MASSE	MASS-BALANCE
BINAIRE DU FICHIER DES	2D RESULT FILE BINARY
RESULTATS 2D	
BINAIRE DU FICHIER DES	3D RESULT FILE BINARY
RESULTATS 3D	
BINAIRE DU FICHIER DES	SEDIMENTOLOGICAL RESULT FILE
RESULTATS SEDIMENTOLOGIQUES	BINARY
COEFFICIENT D'EROSION	EROSION COEFFICIENT
COEFFICIENT D'INFLUENCE DU VENT	COEFFICIENT OF WIND INFLUENCE
COEFFICIENT DE CALAGE DES	COEFFICIENT TO CALIBRATE TIDAL
VITESSES DE COURANT	VELOCITIES

COEFFICIENT DE CALAGE DU	COEFFICIENT TO CALIBRATE TIDAL
MARNAGE	RANGE
COEFFICIENT DE CALAGE DU NIVEAU	COEFFICIENT TO CALIBRATE SEA
DE MER	LEVEL
COEFFICIENT DE CORIOLIS	CORIOLIS COEFFICIENT
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR HORIZONTAL
HORIZONTAL DES TRACEURS	DIFFUSION OF TRACERS
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR HORIZONTAL
HORIZONTAL DES VITESSES	DIFFUSION OF VELOCITIES
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR VERTICAL
VERTICAL DES TRACEURS	DIFFUSION OF TRACERS
COEFFICIENT DE DIFFUSION	COEFFICIENT FOR VERTICAL
VERTICAL DES VITESSES	DIFFUSION OF VELOCITIES
COEFFICIENT DE DILATATION BETA	BETA EXPANSION COEFFICIENT FOR
POUR LES TRACEURS	TRACERS
COEFFICIENT DE FROTTEMENT POUR	FRICTION COEFFICIENT FOR THE
LE FOND	BOTTOM
COEFFICIENT DE FROTTEMENT POUR	FRICTION COEFFICIENT FOR
LES PAROIS LATERALES	LATERAL SOLID BOUNDARIES
COEFFICIENT TRADUISANT LA	COEFFICIENT RELATIVE TO FLOC
DESTRUCTION DES FLOCS	DESTRUCTION
COEFFICIENT TRADUISANT LA	FLOCCULATION COEFFICIENT
FORMATION DES FLOCS	
COMPATIBILITE DU GRADIENT DE	FREE SURFACE GRADIENT
SURFACE LIBRE	COMPATIBILITY
CONCENTRATION LIMITE	WEAK SOIL CONCENTRATION FOR MUD
FLUIDE-SOLIDE	
CONCENTRATION LIMITE POUR	THRESHOLD CONCENTRATION FOR
VITESSE DE CHUTE ENTRAVEE	HINDERED SETTLING
CONCENTRATION MAXIMUM DE LA	MAXIMUM CONCENTRATION OF THE
VASE TASSEE	CONSOLIDATED MUD
CONCENTRATIONS DES COUCHES DE	MUD CONCENTRATIONS PER LAYER
VASE	
CONDITION A LA LIMITE AU FOND	BOUNDARY CONDITION ON THE
	BOTTOM
CONDITION LIMITE DYNAMIQUE	DYNAMIC BOUNDARY CONDITION
CONDITIONS INITIALES	INITIAL CONDITIONS
CONDITIONS OUVERTES SUR LE FOND	OPEN BOUNDARY CONDITIONS ON THE
	BED
CONSTANTE DE KARMAN	KARMAN CONSTANT
CONTOURNEMENT DES VOLUMES NULS	BYPASS VOID VOLUMES
CONTRAINTE CRITIQUE D'EROSION	CRITICAL EROSION SHEAR STRESS
DES COUCHES DE VASE	OF THE MUD LAYERS
CONTRAINTE CRITIQUE DE DEPOT	CRITICAL SHEAR STRESS FOR
~	DEPOSITION
COORDONNEES DE L'ORIGINE	ORIGIN COORDINATES
COORDONNEES SPHERIQUES	SPHERICAL COORDINATES

CORIOLIS	CORIOLIS
CORRECTION DE CONTINUITE SUR	CONTINUITY CORRECTION ON OPEN
FRONTIERES OUVERTES	BOUNDARIES
CORRECTION FROTTEMENT DE PEAU	SKIN FRICTION CORRECTION
COTE INITIALE	INITIAL ELEVATION
COTES DES SOURCES	ELEVATIONS OF SOURCES
COTES IMPOSEES	PRESCRIBED ELEVATIONS
COUPLAGE AVEC	COUPLING WITH
COURANTS DE HOULE	WAVE DRIVEN CURRENTS
COURBES DE TARAGE	STAGE-DISCHARGE CURVES
DATE DE L'ORIGINE DES TEMPS	ORIGINAL DATE OF TIME
DEBITS DES SOURCES	WATER DISCHARGE OF SOURCES
DEBITS IMPOSES	PRESCRIBED FLOWRATES
DEBITS IMPOSES SUR LE FOND DEBUGGER	PRESCRIBED FLOWRATES ON THE BED
	DEBUGGER
DERIVEES VERTICALES DES VITESSES	VERTICAL VELOCITY DERIVATIVES
DESCRIPTION DES LIBRAIRIES	DESCRIPTION OF LIBRARIES
DIAMETRE MOYEN DES GRAINS	MEAN DIAMETER OF THE SEDIMENT
DICTIONNAIRE	DICTIONARY
DIFFUSION POUR DELWAQ	
DUREE DU CALCUL	DIFFUSION FOR DELWAQ DURATION
ELEMENT ELEMENTS MASQUES PAR	ELEMENT ELEMENTS MASKED BY USER
L'UTILISATEUR	ELEMENIS MASKED BI USEK
ENREGISTREMENT POUR SUITE DE	RECORD NUMBER FOR RESTART
CALCUL	NECOLD MORDER TOR RESTART
EPAISSEUR DES COUCHES DU FOND	BED LAYERS THICKNESS
VASEUX	
EPAISSEURS INITIALES DES	INITIAL THICKNESS OF SEDIMENT
COUCHES	LAYERS
ETAPE DE CONVECTION	ADVECTION STEP
ETAPE DE DIFFUSION	DIFFUSION STEP
ETAPE DE PROPAGATION	PROPAGATION STEP
EXECUTABLE PAR DEFAUT	DEFAULT EXECUTABLE
EXECUTABLE PARALLELE PAR DEFAUT	DEFAULT PARALLEL EXECUTABLE
FICHIER ASCII DE DONNEES	ASCII ATMOSPHERIC DATA FILE
ATMOSPHERIQUES	
FICHIER BINAIRE DE DONNEES	BINARY ATMOSPHERIC DATA FILE
ATMOSPHERIQUES	
FICHIER BINAIRE DE DONNEES DE	BINARY BOUNDARY DATA FILE
FRONTIERE	
FICHIER DE COMMANDE DELWAQ	DELWAQ STEERING FILE
FICHIER DE COMMANDES	OIL SPILL STEERING FILE
HYDROCARBURES	
FICHIER DE DONNEES BINAIRE 1	BINARY DATA FILE 1
FICHIER DE DONNEES BINAIRE 2	BINARY DATA FILE 2
	1

	T
FICHIER DE DONNEES DES BUSES	CULVERTS DATA FILE
FICHIER DE DONNEES FORMATE 1	FORMATTED DATA FILE 1
FICHIER DE DONNEES FORMATE 2	FORMATTED DATA FILE 2
FICHIER DE GEOMETRIE	GEOMETRY FILE
FICHIER DE REFERENCE	REFERENCE FILE
FICHIER DE RESULTATS BINAIRE	BINARY RESULTS FILE
FICHIER DE RESULTATS FORMATE	FORMATTED RESULTS FILE
FICHIER DELWAQ DE LA DIFFUSION	DIFFUSIVITY DELWAQ FILE
FICHIER DELWAQ DE LA SALINITE	SALINITY DELWAQ FILE
FICHIER DELWAQ DE LA	TEMPERATURE DELWAQ FILE
TEMPERATURE	
FICHIER DELWAQ DE LA VITESSE	VELOCITY DELWAQ FILE
FICHIER DELWAQ DES DISTANCES	NODES DISTANCES DELWAQ FILE
ENTRE NOEUDS	
FICHIER DELWAQ DES ECHANGES	EXCHANGES BETWEEN NODES DELWAQ
ENTRE NOEUDS	FILE
FICHIER DELWAQ DES FLUX	VERTICAL FLUXES DELWAQ FILE
VERTICAUX	
FICHIER DELWAQ DES SURFACES DE	EXCHANGE AREAS DELWAQ FILE
FLUX	
FICHIER DELWAQ DES SURFACES DU	BOTTOM SURFACES DELWAQ FILE
FOND	
FICHIER DELWAQ DES VOLUMES	VOLUMES DELWAQ FILE
FICHIER DES CONDITIONS AUX	BOUNDARY CONDITIONS FILE
LIMITES	
FICHIER DES CONSTANTES	HARMONIC CONSTANTS FILE
HARMONIQUES	
FICHIER DES COURBES DE TARAGE	STAGE-DISCHARGE CURVES FILE
FICHIER DES FLOTTEURS	DROGUES FILE
FICHIER DES FONDS	BOTTOM TOPOGRAPHY FILE
FICHIER DES FRONTIERES LIQUIDES	LIQUID BOUNDARIES FILE
FICHIER DES PARAMETRES	STEERING FILE
FICHIER DES PARAMETRES DE	SISYPHE STEERING FILE
SISYPHE	
FICHIER DES PARAMETRES DE	TOMAWAC STEERING FILE
TOMAWAC	
FICHIER DES PARAMETRES DE	WAQTEL STEERING FILE
WAQTEL	
FICHIER DES RESULTATS 2D	2D RESULT FILE
FICHIER DES RESULTATS 3D	3D RESULT FILE
FICHIER DES RESULTATS	SEDIMENTOLOGICAL RESULT FILE
SEDIMENTOLOGIQUES	
FICHIER DES SOURCES	SOURCES FILE
FICHIER DU CALCUL PRECEDENT	PREVIOUS COMPUTATION FILE
FICHIER DU MODELE DE MAREE	TIDAL MODEL FILE
FICHIER FORTRAN	FORTRAN FILE
FICHIER POUR SUITE	RESTART FILE
·	•

FICHIER POUR SUITE 2D	FILE FOR 2D CONTINUATION
FICHIER SEDIMENTOLOGIQUE DU	PREVIOUS COMPUTATION
CALCUL PRECEDENT	SEDIMENTOLOGICAL FILE
FILTRE LES INCONSISTANCES	HYDROSTATIC INCONSISTENCY
HYDROSTATIQUES	FILTER
FLOCULATION	FLOCCULATION
FONCTION D'AMORTISSEMENT	DAMPING FUNCTION
FORCE GENERATRICE DE LA MAREE	TIDE GENERATING FORCE
FORMAT DU FICHIER BINAIRE DE	BINARY ATMOSPHERIC DATA FILE
DONNEES ATMOSPHERIQUES	FORMAT
FORMAT DU FICHIER BINAIRE DE	BINARY BOUNDARY DATA FILE
DONNEES DE FRONTIERE	FORMAT
FORMAT DU FICHIER DE DONNEES	BINARY DATA FILE 1 FORMAT
BINAIRE 1	
FORMAT DU FICHIER DE GEOMETRIE	GEOMETRY FILE FORMAT
FORMAT DU FICHIER DE REFERENCE	REFERENCE FILE FORMAT
FORMAT DU FICHIER DES RESULTATS	2D RESULT FILE FORMAT
2D	
FORMAT DU FICHIER DES RESULTATS	3D RESULT FILE FORMAT
3D	
FORMAT DU FICHIER DU CALCUL	PREVIOUS COMPUTATION FILE
PRECEDENT	FORMAT
FORMAT DU FICHIER POUR SUITE	RESTART FILE FORMAT
FORMAT DU FICHIER POUR SUITE 2D	FILE FOR 2D CONTINUATION FORMAT
FORMULE POUR FLOCULATION	FLOCCULATION FORMULA
FORMULE POUR LA CONCENTRATION	REFERENCE CONCENTRATION FORMULA
DE REFERENCE	
FORMULE POUR VITESSE DE CHUTE	HINDERED SETTLING FORMULA
ENTRAVEE	
HAUTEUR DU LIT FICTIF	FICTITIOUS BED LEVEL
HAUTEUR INITIALE	INITIAL DEPTH
HEURE DE L'ORIGINE DES TEMPS	ORIGINAL HOUR OF TIME
IMPLICITATION POUR LA DIFFUSION	IMPLICITATION FOR DIFFUSION
IMPLICITATION POUR LA HAUTEUR	IMPLICITATION FOR DEPTH
IMPLICITATION POUR LES VITESSES	IMPLICITATION FOR VELOCITIES
INFORMATION SUR LE BILAN DE	INFORMATION ABOUT MASS-BALANCE
MASSE A CHAQUE SORTIE LISTING	FOR EACH LISTING PRINTOUT
INTERPOLATION DE COMPOSANTES	MINOR CONSTITUENTS INFERENCE
MINEURES	
LATITUDE DU POINT ORIGINE	LATITUDE OF ORIGIN POINT
LECTURE CONTRAINTE CRITIQUE	READ CRITICAL BED SHEAR STRESS
POUR CHAQUE COUCHE	PER LAYER
LISTE DES FICHIERS	LIST OF FILES
LOI DE DENSITE	DENSITY LAW
LOI DE FROTTEMENT SUR LE FOND	LAW OF BOTTOM FRICTION
LOI DE FROTTEMENT SUR LES	LAW OF FRICTION ON LATERAL
PAROIS LATERALES	BOUNDARIES
1111.010 111111111111	2001,2111,120

LONGITUDE DU DOINT ODICINE	LONGITUDE OF ODICIN DOINT
LONGITUDE DU POINT ORIGINE LONGUEUR DU VECTEUR	LONGITUDE OF ORIGIN POINT VECTOR LENGTH
MASS-LUMPING POUR LA DIFFUSION	MASS-LUMPING FOR DIFFUSION
MASS-LUMPING POUR LA HAUTEUR	MASS-LUMPING FOR DEPTH
MASS-LUMPING POUR LES	MASS-LUMPING FOR WEAK
	CHARACTERISTICS
CARACTERISTIQUES FAIBLES MASS-LUMPING POUR LES VITESSES	MASS-LUMPING FOR VELOCITIES
MASSE VOLUMIQUE DU SEDIMENT	DENSITY OF THE SEDIMENT
MASSE VOLUMIQUE MOYENNE DE L'EAU	AVERAGE WATER DENSITY
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DES TRACEURS	FOR DIFFUSION OF TRACERS
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DES VITESSES	FOR DIFFUSION OF VELOCITIES
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DU K-EPSILON	FOR DIFFUSION OF K-EPSILON
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
DIFFUSION DU SEDIMENT	FOR DIFFUSION OF SEDIMENT
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
PROPAGATION	FOR PROPAGATION
MAXIMUM D'ITERATIONS POUR LA	MAXIMUM NUMBER OF ITERATIONS
VITESSE VERTICALE	FOR VERTICAL VELOCITY
MAXIMUM D'ITERATIONS POUR LES	MAXIMUM NUMBER OF ITERATIONS
SCHEMAS DE CONVECTION	FOR ADVECTION SCHEMES
MAXIMUM D'ITERATIONS POUR PPE	MAXIMUM NUMBER OF ITERATIONS
	FOR PPE
MODE SUITE	RESTART MODE
MODELE DE LONGUEUR DE MELANGE	MIXING LENGTH MODEL
MODELE DE NAPPES	OIL SPILL MODEL
D'HYDROCARBURES	
MODELE DE TURBULENCE HORIZONTAL	HORIZONTAL TURBULENCE MODEL
MODELE DE TURBULENCE VERTICAL	VERTICAL TURBULENCE MODEL
NOMBRE DE BUSES	NUMBER OF CULVERTS
NOMBRE DE CORRECTIONS DES	NUMBER OF CORRECTIONS OF
SCHEMAS DISTRIBUTIFS	DISTRIBUTIVE SCHEMES
NOMBRE DE COUCHES DU LIT	NUMBER OF SEDIMENT BED LAYERS
COHESIF	
NOMBRE DE FLOTTEURS	NUMBER OF DROGUES
NOMBRE DE LISSAGES DU FOND	NUMBER OF BOTTOM SMOOTHINGS
NOMBRE DE PAS DE TEMPS	NUMBER OF TIME STEPS
NOMBRE DE PLANS HORIZONTAUX	NUMBER OF HORIZONTAL LEVELS
NOMBRE DE POINTS DE GAUSS POUR	NUMBER OF GAUSS POINTS FOR WEAK
LES CARACTERISTIQUES FAIBLES	CHARACTERISTICS
NOMBRE DE PRANDTL	PRANDTL NUMBER
NOMBRE DE SOUS ITERATIONS POUR	NUMBER OF SUB ITERATIONS FOR
LES NON LINEARITES	NON LINEARITIES

NOMBRE DE SOUS-PAS DES SCHEMAS	NUMBER OF SUB-STEPS OF
DISTRIBUTIFS	DISTRIBUTIVE SCHEMES
NOMBRE DE TABLEAUX PRIVES	NUMBER OF PRIVATE ARRAYS
NOMBRE DE TABLEAUX PRIVES 2D	NUMBER OF 2D PRIVATE ARRAYS
NOMBRE DE TRACEURS	NUMBER OF TRACERS
NOMBRE MAXIMUM DE FRONTIERES	MAXIMUM NUMBER OF BOUNDARIES
NOMBRE MAXIMUM DE FRONTIERES	MAXIMUM NUMBER OF BOUNDARIES ON
SUR LE FOND	THE BED
NOMBRE MAXIMUM DE SOURCES	MAXIMUM NUMBER OF SOURCES
NOMBRE MAXIMUM DE TRACEURS	MAXIMUM NUMBER OF TRACERS
NOMS DES TRACEURS	NAMES OF TRACERS
NOMS DES VARIABLES PRIVEES 2D	NAMES OF 2D PRIVATE VARIABLES
NORD	NORTH
NUMERO DE FUSEAU OU PROJECTION	ZONE NUMBER IN GEOGRAPHIC
DANS LE SYSTEME GEOGRAPHIQUE	SYSTEM
NUMERO DE L'ENREGISTREMENT DANS	RECORD NUMBER IN WAVE FILE
LE FICHIER DE HOULE	MECOND MODEL IN WAVE FILE
NUMERO DE VERSION	RELEASE
NUMERO DU PREMIER PAS DE TEMPS	
	NUMBER OF FIRST TIME STEP FOR
POUR LES SORTIES GRAPHIQUES	GRAPHIC PRINTOUTS
NUMERO DU PREMIER PAS DE TEMPS	NUMBER OF FIRST TIME STEP FOR
POUR LES SORTIES LISTING	LISTING PRINTOUTS
NUMERO GLOBAL DU POINT POUR	GLOBAL NUMBER OF THE POINT TO
CALER LA PLEINE MER	CALIBRATE HIGH WATER
NUMERO LOCAL DU POINT POUR CALER LA PLEINE MER	LOCAL NUMBER OF THE POINT TO
	CALIBRATE HIGH WATER
OPTION DE SUPG	SUPG OPTION OPTION FOR THE TREATMENT OF
OPTION DE TRAITEMENT DES BANCS	TIDAL FLATS
DECOUVRANTS	
OPTION DU MODELE DE TASSEMENT	CONSOLIDATION MODEL
OPTION DU SCHEMA POUR LA CONVECTION DES TRACEURS	SCHEME OPTION FOR ADVECTION OF TRACERS
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DES VITESSES	VELOCITIES
OPTION DU SCHEMA POUR LA	SCHEME OPTION FOR ADVECTION OF
CONVECTION DU K-EPSILON	K-EPSILON
OPTION DU SOLVEUR POUR LA	OPTION OF SOLVER FOR DIFFUSION
DIFFUSION DES TRACEURS	OF TRACERS
OPTION DU SOLVEUR POUR LA	OPTION OF SOLVER FOR DIFFUSION
DIFFUSION DES VITESSES	OF VELOCITIES
OPTION DU SOLVEUR POUR LA	OPTION OF SOLVER FOR DIFFUSION
DIFFUSION DU K-EPSILON	OF K-EPSILON
DIFFUSION DU K-EPSILON OPTION DU SOLVEUR POUR LA	OF K-EPSILON OPTION OF SOLVER FOR DIFFUSION
DIFFUSION DU K-EPSILON OPTION DU SOLVEUR POUR LA DIFFUSION DU SEDIMENT	OF K-EPSILON OPTION OF SOLVER FOR DIFFUSION OF THE SEDIMENT
DIFFUSION DU K-EPSILON OPTION DU SOLVEUR POUR LA DIFFUSION DU SEDIMENT OPTION DU SOLVEUR POUR LA	OF K-EPSILON OPTION OF SOLVER FOR DIFFUSION OF THE SEDIMENT OPTION OF SOLVER FOR
DIFFUSION DU K-EPSILON OPTION DU SOLVEUR POUR LA DIFFUSION DU SEDIMENT	OF K-EPSILON OPTION OF SOLVER FOR DIFFUSION OF THE SEDIMENT

ODTION DII VENT	ODTION FOR WIND
OPTION DOUB IN DIFFUSION	OPTION FOR WIND
OPTION POUR LA DIFFUSION OPTION POUR LES BUSES	OPTION FOR THE DIFFUSION OPTION FOR CULVERTS
OPTION POUR LES BUSES OPTION POUR LES	OPTION FOR CULVERIS OPTION FOR CHARACTERISTICS
CARACTERISTIQUES	OFITON FOR CHARACIERISITES
OPTION POUR LES CONDITIONS AUX	OPTION FOR TIDAL BOUNDARY
LIMITES DE MAREE	CONDITIONS
OPTION POUR LES CONDITIONS AUX	OPTION FOR THE BOUNDARY
LIMITES DU K-EPSILON	CONDITIONS OF K-EPSILON
OPTION POUR LES FRONTIERES	OPTION FOR LIQUID BOUNDARIES
LIQUIDES	OT TOWN TOWN HI WOULD DOOMNOTHING
ORDONNEES DES SOURCES	ORDINATES OF SOURCES
ORDRE DU TIR INITIAL POUR LA	INITIAL GUESS FOR DEPTH
HAUTEUR	
PARAMETRE DE SHIELDS	SHIELDS PARAMETER
PARTITIONNEUR	PARTITIONING TOOL
PAS DE TEMPS	TIME STEP
PAS DE TEMPS DE LA	TIME STEP FOR CONSOLIDATION
CONSOLIDATION	
PERIODE DE COUPLAGE POUR	COUPLING PERIOD FOR SISYPHE
SISYPHE	
PERIODE DE COUPLAGE POUR	COUPLING PERIOD FOR TOMAWAC
TOMAWAC	
PERIODE DE SORTIE POUR DELWAQ	DELWAQ PRINTOUT PERIOD
PERIODE POUR LES SORTIES DE	PRINTOUT PERIOD FOR DROGUES
FLOTTEURS	
PERIODE POUR LES SORTIES	GRAPHIC PRINTOUT PERIOD
GRAPHIQUES	
PERIODE POUR LES SORTIES	LISTING PRINTOUT PERIOD
LISTING	DATA OR HUNDORSTEON
PLUIE OU EVAPORATION	RAIN OR EVAPORATION
PLUIE OU EVAPORATION EN MM PAR	RAIN OR EVAPORATION IN MM PER
JOUR	DAY
POROSITE DU LIT NON COHESIF	NON COHESIVE BED POROSITY
POURCENTAGE INITIAL DE SEDIMENT	INITIAL PERCENTAGE OF NON
NON COHESIF	COHESIVE SEDIMENT
PRECISION POUR LA DIFFUSION DES TRACEURS	ACCURACY FOR DIFFUSION OF TRACERS
PRECISION POUR LA DIFFUSION DES	ACCURACY FOR DIFFUSION OF
VITESSES	VELOCITIES
PRECISION POUR LA DIFFUSION DU	ACCURACY FOR DIFFUSION OF
K-EPSILON	K-EPSILON
PRECISION POUR LA DIFFUSION DU	ACCURACY FOR DIFFUSION OF
SEDIMENT	SEDIMENT
PRECISION POUR LA PROPAGATION	ACCURACY FOR PROPAGATION
PRECISION POUR LA VITESSE	ACCURACY FOR VERTICAL VELOCITY
VERTICALE	
^ TI(T T O17TIT	

PRECISION POUR PPE	ACCURACY FOR PPE
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DES TRACEURS	OF TRACERS
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DES VITESSES	OF VELOCITIES
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DU K-EPSILON	OF K-EPSILON
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR DIFFUSION
DIFFUSION DU SEDIMENT	OF THE SEDIMENT
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR PROPAGATION
PROPAGATION	
PRECONDITIONNEMENT POUR LA	PRECONDITIONING FOR VERTICAL
VITESSE VERTICALE	VELOCITY
PRECONDITIONNEMENT POUR PPE	PRECONDITIONING FOR PPE
PRESSION ATMOSPHERIQUE	AIR PRESSURE
PRESSION DYNAMIQUE DANS	DYNAMIC PRESSURE IN WAVE
L'EQUATION D'ONDE	EQUATION
PROCESSEURS PARALLELES	PARALLEL PROCESSORS
PROCESSUS DE QUALITE D'EAU	WATER QUALITY PROCESS
PROFILS DE VITESSE	VELOCITY PROFILES
PROFILS DE VITESSE SUR LA	VELOCITY VERTICAL PROFILES
VERTICALE	
PROFILS DES TRACEURS SUR LA	TRACERS VERTICAL PROFILES
VERTICALE	
PROFONDEUR LIMITE POUR LE VENT	THRESHOLD DEPTH FOR WIND
PROFONDEUR MOYENNE POUR LA	MEAN DEPTH FOR LINEARIZATION
LINEARISATION	
PROPAGATION LINEARISEE	LINEARIZED PROPAGATION
RATIO ENTRE LA RUGOSITE DE PEAU	RATIO BETWEEN SKIN FRICTION AND
ET LE DIAMETRE MOYEN	MEAN DIAMETER
REGIME DE TURBULENCE POUR LE	TURBULENCE REGIME FOR THE
FOND	BOTTOM
REGIME DE TURBULENCE POUR LES	TURBULENCE REGIME FOR LATERAL
PAROIS LATERALES	SOLID BOUNDARIES
REMISE A ZERO DU TEMPS	INITIAL TIME SET TO ZERO
SALINITE POUR DELWAQ	SALINITY FOR DELWAQ
SCHEMA DE CONVECTION DIFFUSION	ADVECTION-DIFFUSION SCHEME WITH
AVEC VITESSE DE CHUTE	SETTLING VELOCITY
SCHEMA POUR LA CONVECTION DE LA HAUTEUR	SCHEME FOR ADVECTION OF DEPTH
SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF TRACERS
TRACEURS	SCHEME FOR ADVECTION OF TRACERS
SCHEMA POUR LA CONVECTION DES	SCHEME FOR ADVECTION OF
VITESSES	VELOCITIES
SCHEMA POUR LA CONVECTION DU	SCHEME FOR ADVECTION OF
K-EPSILON	K-EPSILON
1. 21 312011	1. 21 31 2011

	T = = = = = = = = = = = = = = = = = = =
SCHEMA POUR LA DIFFUSION DES	SCHEME FOR DIFFUSION OF TRACERS
TRACEURS	
SCHEMA POUR LA DIFFUSION DES	SCHEME FOR DIFFUSION OF
VITESSES	VELOCITIES
SCHEMA POUR LA DIFFUSION DU	SCHEME FOR DIFFUSION OF
K-EPSILON	K-EPSILON
SEDIMENT	SEDIMENT
SEDIMENT COHESIF	COHESIVE SEDIMENT
SEDIMENT MIXTE	MIXED SEDIMENT
SEUIL LIMITE POUR EROSION SUR	THRESHOLD FOR SEDIMENT FLUX
BANCS DECOUVRANTS	CORRECTION ON TIDAL FLATS
SEUIL POUR CORRECTION DE	THRESHOLD FOR VISCOSITY
VISCOSITE SUR BANCS DECOUVRANTS	CORRECTION ON TIDAL FLATS
SOLVEUR POUR LA DIFFUSION DES	SOLVER FOR DIFFUSION OF TRACERS
TRACEURS	
SOLVEUR POUR LA DIFFUSION DES	SOLVER FOR DIFFUSION OF
VITESSES	VELOCITIES
SOLVEUR POUR LA DIFFUSION DU	SOLVER FOR DIFFUSION OF
K-EPSILON	K-EPSILON
SOLVEUR POUR LA DIFFUSION DU	SOLVER FOR DIFFUSION OF THE
SEDIMENT	SEDIMENT
SOLVEUR POUR LA PROPAGATION	SOLVER FOR PROPAGATION
SOLVEUR POUR LA VITESSE	SOLVER FOR VERTICAL VELOCITY
VERTICALE	
SOLVEUR POUR PPE	SOLVER FOR PPE
SORTIE LISTING	LISTING PRINTOUT
STOCKAGE DES MATRICES	MATRIX STORAGE
SUITE 2D	2D CONTINUATION
SUITE DE CALCUL	COMPUTATION CONTINUED
SYSTEME GEOGRAPHIQUE	GEOGRAPHIC SYSTEM
TASSEMENT DE LA VASE	CONSOLIDATION
TEMPERATURE POUR DELWAQ	TEMPERATURE FOR DELWAQ
TEMPS DE SEJOUR DE LA VASE	RESIDENCE TIME FOR MUD
TITRE	TITLE
TRAITEMENT DES FLUX AUX	TREATMENT OF FLUXES AT THE
FRONTIERES	BOUNDARIES
TRAITEMENT DES HAUTEURS	TREATMENT OF NEGATIVE DEPTHS
NEGATIVES	TICHTINI OF IVEOLITIVE DELINE
TRAITEMENT SUR LES BANCS	TREATMENT ON TIDAL FLATS FOR
DECOUVRANTS POUR LE K-EPSILON	K-EPSILON
TRAITEMENT SUR LES BANCS	TREATMENT ON TIDAL FLATS FOR
DECOUVRANTS POUR LES TRACEURS	TRACERS
TRAITEMENT SUR LES BANCS	TREATMENT ON TIDAL FLATS FOR
DECOUVRANTS POUR LES VITESSES	VELOCITIES
TRANSFORMATION DU MAILLAGE	MESH TRANSFORMATION
TYPE DE PROJECTION SPATIALE	SPATIAL PROJECTION TYPE
TYPE DES SOURCES	TYPE OF SOURCES

Bibliography 125

VALEUR DE LA PRESSION	VALUE OF ATMOSPHERIC PRESSURE
ATMOSPHERIQUE	
VALEUR MINIMALE POUR LA HAUTEUR	MINIMAL VALUE FOR DEPTH
VALEURS DE REFERENCE DES	STANDARD VALUES FOR TRACERS
TRACEURS	
VALEURS DES TRACEURS DANS LA	VALUES OF TRACERS IN THE RAIN
PLUIE	
VALEURS DES TRACEURS DES	VALUE OF THE TRACERS AT THE
SOURCES	SOURCES
VALEURS IMPOSEES DES TRACEURS	PRESCRIBED TRACERS VALUES
VALEURS INITIALES DES TRACEURS	INITIAL VALUES OF TRACERS
VALIDATION	VALIDATION
VARIABLES POUR LES SORTIES	VARIABLES FOR 2D GRAPHIC
GRAPHIQUES 2D	PRINTOUTS
VARIABLES POUR LES SORTIES	VARIABLES FOR 3D GRAPHIC
GRAPHIQUES 3D	PRINTOUTS
VENT	WIND
VERIFICATION DU MAILLAGE	CHECKING THE MESH
VERSION NON-HYDROSTATIQUE	NON-HYDROSTATIC VERSION
VITESSE DE CHUTE CONSTANTE	CONSTANT SEDIMENT SETTLING
	VELOCITY
VITESSE DE CHUTE DES SABLES	SETTLING VELOCITY OF SANDS
VITESSE DE CHUTE ENTRAVEE	HINDERED SETTLING
VITESSE DU VENT SUIVANT X	WIND VELOCITY ALONG X
VITESSE DU VENT SUIVANT Y	WIND VELOCITY ALONG Y
VITESSE POUR DELWAQ	VELOCITY FOR DELWAQ
VITESSE PROJETEE SUR LE FOND	VELOCITY PROJECTED ON BOTTOM
VITESSE PROJETEE SUR LES PAROIS	VELOCITY PROJECTED ON SOLID
LATERALES SOLIDES	LATERAL BOUNDARIES
VITESSES DES SOURCES SELON X	VELOCITIES OF THE SOURCES ALONG
	X
VITESSES DES SOURCES SELON Y	VELOCITIES OF THE SOURCES ALONG
	Y
VITESSES DES SOURCES SELON Z	VELOCITIES OF THE SOURCES ALONG
	Z
VITESSES IMPOSEES	PRESCRIBED VELOCITIES
ZERO	ZERO

- [1] JOLY A., GOEURY C., and HERVOUET J.-M. Adding a particle transport module to telemac-2d with applications to algae blooms and oil spills. Technical Report H-P74-2013-02317-EN, EDF R&D-LNHE, 2013.
- [2] AUTHOR. Title. Journal de Mickey, 666.
- [3] PHAM C.-T., BOURBAN S., DURAND N., and TURNBULL M. Méthodologie pour la simulation de la marée avec la version 6.2 de telemac-2d et telemac-3d. Technical Report H-P74-2012-02534-FR, EDF R&D-LNHE, 2012.
- [4] Sampath Kumar Gurram, Karam S. Karki, and Willi H. Hager. Subcritical junction flow. *Journal of Hydraulic Engineering*, 123(5):447–455, may 1997.
- [5] TSANIS I. Simulation of wind-induced water currents. *Journal of hydraulic Engineering*, 115(8):1113–1134, 1989.
- [6] SMAGORINSKY J. General simulation experiments with the primitive equations. *Monthly Weather Review*, 91(3):99–164, March 1963.
- [7] HERVOUET J.-M. *Méthodes itératives pour la solution des systèmes matriciels*. Rapport EDF HE43/93.049/A, 1996.
- [8] HERVOUET J.-M. Hydrodynamics of Free Surface Flows. Modelling with the finite element method. Wiley, 2007.
- [9] HERVOUET J.-M. Guide to programming in the telemac system version 6.0. Technical Report H-P74-2009-00801-EN, EDF R&D-LNHE, 2009.
- [10] JANIN J.-M., HERVOUET J.-M., and MOULIN C. A positive conservative scheme for scalar advection using the M.U.R.D technique in 3D free-surface flow problems. XIth International Conference on Computional methods in water resources, 1996.
- [11] GAUTHIER M. and QUETIN B. Modèles mathématiques de calcul des écoulements induits par le vent. In *17e congrès de l'AIRH*, Baden-Baden, August 1977.
- [12] METCALF M. and REID J. Fortran 90 explained. Oxford Science Publications, 1990.