Алгоритм K-SVD и его усовершенствования в задачах разреженного представления.

Гальцева Дарья, Жихарев Яков, Полукеев Станислав, Сорокин Александр

AIMasters

2022

- Sparse Representation Classification
- 2 KSVD
- OKSVD
- 4 LCKSVD
- Результаты
- 6 RGB
- Выводы

- Sparse Representation Classification
- 2 KSVD
- O DKSVD
- 4 LCKSVD
- 5 Результаты
- 6 RGB
- Выводы

Downsample

Algorithm SRC

1: Input: a matrix of training samples

 $D = [D_1, D_2, \dots, D_k] \in \mathbb{R}^{m \times n}$ for k classes, a test sample $y \in \mathbb{R}^m$, (and an optional error tolerance $\varepsilon > 0$.)

Downsample

Algorithm SRC

1: Input: a matrix of training samples

 $D = [D_1, D_2, \dots, D_k] \in \mathbb{R}^{m imes n}$ for k classes, a test sample

 $y \in \mathbb{R}^m$, (and an optional error tolerance $\varepsilon > 0$.)

2: Normalize the columns of D to have unit ℓ^2 -norm.

3: Solve the ℓ^1 -minimization problem:

3: Solve the ℓ --minimization problem:

 $\hat{x}_1 = \arg\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_1 \text{ subject to } \|\boldsymbol{D}\boldsymbol{x} - \boldsymbol{y}\|_2 \leq \varepsilon$

Downsample

Algorithm SRC

1: Input: a matrix of training samples

 $D = [D_1, D_2, \dots, D_k] \in \mathbb{R}^{m \times n}$ for k classes, a test sample

 $y \in \mathbb{R}^m$, (and an optional error tolerance $\varepsilon > 0$.)

2: Normalize the columns of D to have unit ℓ^2 -norm.

3: Solve the ℓ^1 -minimization problem:

 $\hat{x}_1 = \arg\min_x \|x\|_1$ subject to $\|Dx - y\|_2 \le \varepsilon$

4: Compute the residuals $r_i(y) = \|\mathbf{y} - D\delta_i(\hat{x}_1)\|_2$ for i = 1, ..., k.

5: Output: predicted $y = \arg \min_i r_i(\mathbf{y})$.

◆□▶◆률▶◆불▶ 불 ∽Q

Улучшения

Result: x_k

 $\hat{x}_0=\arg\min_x\|x\|_0$ при $\|Dx-y\|_2\leq \varepsilon$, где $\|x\|_0$ - количество ненулевых элементов.

Orthogonal Matching Pursuit

```
Initialization \mathbf{r}_0 = \mathbf{y}, \Lambda_0 = \varnothing;

Normalize all columns of D to unit L_2 norm;

while r_k > \varepsilon and k < num do

Step-1. \lambda_k = \underset{j \notin \Lambda_{k-1}}{\operatorname{argmax}} |\langle \mathsf{d}_j, \mathsf{r}_{k-1} \rangle|;

Step-2. \Lambda_k = \Lambda_{k-1} \cup \{\lambda_k\};

Step-3. \mathsf{x}_k \ (i \in \Lambda_k) = \underset{\mathsf{x}}{\operatorname{argmin}} \|\mathsf{D}_{\Lambda_k} \mathsf{x} - \mathsf{y}\|_2, \quad \mathsf{x}_k \ (i \notin \Lambda_k) = 0;

Step-4. \hat{y}_k = \mathsf{D} \mathsf{x}_k;

Step-5. \mathsf{r}_k \leftarrow \mathsf{y} - \hat{y}_k; \ k+=1;
```

- 1 Sparse Representation Classification
- 2 KSVD
- O DKSVD
- 4 LCKSVD
- Б Результаты
- 6 RGB
- Выводь

KSVD

$$D, X = \operatorname{argmin}_{D,X} \|Y - DX\|_F^2$$
 subject to $\forall i, \|x_i\|_0 \le T$

KSVD

- 1) Initialize $\mathsf{D}^{(0)} \in \mathbb{R}^{m \times K}$ with ℓ^2 normalized columns. Set J=1.
- 1) $i = 1, 2, \dots, N$, $\min_{\mathbf{x}_i} \left\{ \|\mathbf{y}_i \mathbf{D}\mathbf{x}_i\|_2^2 \right\}$ subject to $\|\mathbf{x}_i\|_0 \leq T$.
- 2) For each column j = 1, 2, ..., K in $D^{(J-1)}$, update it by

$$\omega_j = \{i \mid 1 \le i \le N, \mathsf{x}_T^j(i) \ne 0\}$$

$$\|\mathbf{Y} - \mathbf{D}\mathbf{X}\|_F^2 = \left\| \left(\mathbf{Y} - \sum_{j \neq k} \mathsf{d}_j \mathbf{x}_T^j \right) - \mathsf{d}_k \mathbf{x}_T^k \right\|_F^2 = \left\| \mathsf{E}_k - \mathsf{d}_k \mathbf{x}_T^k \right\|_F^2.$$

$$E_j = Y - \sum_{j \neq j} d_j x_T^J.$$

Restrict
$$E_j$$
: $E_j^R = E_j \mid_{\omega_j}$

Apply SVD:
$$\mathsf{E}_j^{\check{R}} = \mathsf{U} \mathbf{\Sigma} \mathsf{V}^T$$
. $d_j := U_1 \quad \mathsf{x}^j := V_1 \sigma_1$

Set
$$J = J + 1$$

- 1 Sparse Representation Classification
- 2 KSVD
- OKSVD
- 4 LCKSVD
- Б Результаты
- 6 RGB
- Выводы

DKSVD

$$D, W, X = \operatorname{argmin} \| \begin{pmatrix} Y \\ \sqrt{\gamma}H \end{pmatrix} - \begin{pmatrix} D \\ \sqrt{\gamma}W \end{pmatrix} X \|_F$$
 subject to $\|x_i\|_0 \le T$

DKSVD

KSVD with
$$D' = \begin{pmatrix} D \\ \sqrt{\gamma}W \end{pmatrix}$$
, $Y' = \begin{pmatrix} Y \\ \sqrt{\gamma}H \end{pmatrix}$

Classification:

- 1) For y obtain x from OMP
- 2) I = Wx
- 3) predicted class: $argmax_i(I_i)$

- 1 Sparse Representation Classification
- 2 KSVD
- O DKSVD
- 4 LCKSVD
- Б Результаты
- 6 RGB
- Выводь

LCKSVD

$$< D, W, A, X > = \operatorname{argmin}_{D,W,A,X} \| \begin{pmatrix} Y \\ \sqrt{\alpha}Q \\ \sqrt{\beta}H \end{pmatrix} - \begin{pmatrix} D \\ \sqrt{\alpha}A \\ \sqrt{\beta}W \end{pmatrix} X \|_2^2$$

s.t. $\forall i \|x_i\|_0 < T$

LCKSVD

KSVD with
$$D' = \begin{pmatrix} D \\ \sqrt{\alpha}A \\ \sqrt{\beta}W \end{pmatrix} Y' = \begin{pmatrix} Y \\ \sqrt{\alpha}Q \\ \sqrt{\beta}H \end{pmatrix}$$

- 1 Sparse Representation Classification
- 2 KSVD
- 3 DKSVD
- 4 LCKSVD
- Б Результаты
- 6 RGB
- Выводь

Extended Yale B Dataset

Таблица: Train=38, Test=20

Метод, словарь	504*760	504*570	126*570	126*380
SRC	0.963	0.932	0.826	0.775
KSVD	0.03	-	-	-
DKSVD	0.962	0.951	0.841	0.794
LCKSVD	0.976	0.968	0.876	0.817

Таблица: Train=38, Test=20, salt paper=0.05

Метод, словарь	504*760	504*570	126*570	126*380
SRC	0.732	0.718	0.453	0.451
DKSVD	0.791	0.773	0.512	0.502
LCKSVD	0.866	0.859	0.579	0.567

Сравнение с другими алгоритмами

Таблица: Extended Yale B Database

Метод	результат	размерность	
ADL+SVM	0.829	504	
DADL	0.973	504	
LCKSVD	0.976	504	
LBP+SVM	0.971	16*16 blocks	
CNN	up to 0.99	all	
KNN	up to 0.85	all	

- 1 Sparse Representation Classification
- 2 KSVD
- O DKSVD
- 4 LCKSVD
- Б Результаты
- 6 RGB
- Выводы

RGB-SRC

1: Input: a matrix of training samples

$$D^R = [D_1^R, D_2^R, \dots, D_k^R], D^G, D^B \in \mathbb{R}^{m \times n}$$
 for k classes, a test sample $y \in \mathbb{R}^m$, (and an optional error tolerance $\varepsilon > 0$.)

- 2: Normalize the columns of D's to have unit ℓ^2 -norm.
- 3: Solve the ℓ^1 -minimization problems for D^G , D^B , D^R :
- $\hat{x}_1 = \mathop{\mathsf{arg\,min}}_x \|x\|_1 \; \mathsf{subject to} \; \|D^*x y\|_2 \leq \varepsilon$
- 4: Compute the residuals $r_i(y) = \sum_{R,G,B} \|\mathbf{y} D^*\delta_i(\hat{x}_1)\|_2$ for i = 1
- $i=1,\ldots,k$.
- 5: Output: predicted $y = \arg \min_i r_i(\mathbf{y})$.

Сравнение подходов

The MUCT Face Database

- 1) Grayscale, 1 dictionary, 504*540
- 2) RGB, 1 dictionary, 504*540
- 3) RGB, 3 dictionaries, 3*168*540

Таблица: Train=10, Test=5, salt & pepper= None, 0.05

Метод	1	2	3
SRC	0.833	0.871	0.890
DKSVD	0.870	0.895	0.902
LCKSVD	0.922	0.936	0.929
SRC	0.746	0.748	0.684
DKSVD	0.781	0.746	0.729
LCKSVD	0.889	0.904	0.862

- 1 Sparse Representation Classification
- 2 KSVD
- OKSVD
- 4 LCKSVD
- 5 Результаты
- 6 RGB
- Выводы

Выводы

Полученные результаты показали, что алгоритмы, основанные на KSVD, позволяют значительно улучшить качество классификации.

Как улучшить результат?

- 1) D' = (D, I)
- 2) Изменение инициализации словаря
- 3) TenSR, K-TSVD

Список литературы

- 1. Face Recognition Technology Based on Sparse Representation D. Cui (2022)
- 2. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation, M. Aharon, M. Elad, and A. Bruckstein
- 3. Learning a Discriminative Dictionary for Sparse Coding via Label Consistent K-SVD, Jiang Z., Lin Z., Davis L., 2011.
- 4. Discriminative K-SVD for dictionary learning in face recognition. Zhang Q.(2010)
- 5. Robust Face Recognition via Sparse Representation, Wright, J.; Yang, A.Y. (2009)
- 6. Random projection in dimensionality reduction: Applications to image and text data , Bingham E. and Mannila H.
- 7. Analysis Dictionary Learning based Classification: Structure for Robustness , Tang W., Panahi A., Krim H.