Thoughts on Deep Learning

모두의 연구소

- 2018. 10. 24 -

Gets much deeper

	The second AI boom (1988)	The third AI boom (2015)
Layer	3 layers	7 layers
Neuron	29	1.1 million
Synapse	232	730 million

the neural network used in a mobile robot Fujitsu Laboratories The object recognition network Fujitsu Laboratories developed in 2015

Representation Power

MLP1 - Universal Approximator:

It can approximate with any desired non-zero amount of error a family of functions that includes all **continuous function** on a closed and bounded subset of R^n, and **any function** mapping from any **finite** dimensional **discrete** space to another

Hornik (1989), Cybenko (1989)

Representation Power

Limit of theorem:

- Does not discuss the learnability of the neural network.
- Does not guarantee that a training algorithm will find the correct function generating training data.
- Does not state how large the hidden layer should be.

Representation Power

Why we go deep?

There exist neural networks with many layers of bounded size cannot be approximated by networks with fewer layers unless these layers are *exponentially* large.

So there are

Why Deep Learning is so special?

Two Important Concepts:

Computation Graph Auto-grad

Allows us to *easily construct arbitrary* networks, *evaluate* their predictions for given inputs and compute gradients for their parameters with respect to *arbitrary* scalar losses.

a neural network = An (arbitrary) DAG

A computation graph is a representation of an arbitrary mathematical computation as a graph.

It is a directed acyclic graph(DAG) in which

- nodes: mathematical operations or (bound) variables
- edges: he flow of intermediary values between nodes

The graph structure defines the **order** of the computation in terms of the dependencies between the different component

a neural network = An (arbitrary) DAG

- 1. Solid Circles: parameters (to be estimated or found)
- 2. **Dashed Circles**: vector inputs/outputs (given as a training example)
- 3. **Squares**: compute nodes (functions, often continuous/differentiable)

1. Logistic regression

$$p_{\theta}(y = 1|x) = \sigma(w^{\top}x + b) = \frac{1}{1 + \exp(-w^{\top}x - b)}$$

2. 3rd-order polynomial function

$$y = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \alpha_3 x^3$$

Reference: cho, 2018

Examples from Deep Neural Network

Computation Graph

Forward Computation

computation

Backward Computation

computation

Forward Computation

Algorithm 5.3 Computation graph forward pass.

```
1: for i = 1 to N do
```

- 2: Let $a_1, ..., a_m = \pi^{-1}(i)$
- 3: $v(i) \leftarrow f_i(v(a_1), \dots, v(a_m))$

- Automatic differentiation (autograd)
 - Reverse-sweep the DAG starting from the loss function node.
 - Iteratively multiplies the Jacobian of each OP node until the leaf nodes of the parameters.
 - As expensive as forward computation with a constant overhead: O(N), where N: # of nodes.

- Automatic differentiation (autograd)
 - Implement the Jacobian-vector product of each OP node:

$$\begin{bmatrix} \frac{\partial L}{\partial x_1} \\ \vdots \\ \frac{\partial L}{\partial x_d} \end{bmatrix} = \begin{bmatrix} \frac{\partial F_1}{\partial x_1} & \dots & \frac{\partial F_{d'}}{\partial x_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial F_1}{\partial x_d} & \dots & \frac{\partial F_{d'}}{\partial x_d} \end{bmatrix} \begin{bmatrix} \frac{\partial L}{\partial F_1} \\ \vdots \\ \frac{\partial L}{\partial F_{d'}} \end{bmatrix}$$

- Can be implemented efficiently without explicitly computing the Jacobian.
- The same implementation can be reused every time the OP node is called.

- Practical Implications Automatic differentiation (autograd)
 - Unless a complete new OP is introduced, no need to manually derive the gradient
 - Nice de-coupling of specification (front-end) and implementation (back-end)
 - 1. [Front-end] Design a neural network by creating a DAG.
 - [Back-end] The DAG is "compiled" into an efficient code for a target compute device.

Algorithm 5.4 Computation graph backward pass (backpropagation).

1:
$$d(N) \leftarrow 1$$

2: **for** $i = N-1$ to 1 **do**
3: $d(i) \leftarrow \sum_{j \in \pi(i)} d(j) \cdot \frac{\partial f_j}{\partial i}$ $\triangleright \frac{\partial N}{\partial i} = \sum_{j \in \pi(i)} \frac{\partial N}{\partial j} \frac{\partial j}{\partial i}$

Do you know deep learning?

$$C = \frac{1}{2|T|} \sum_{(X,t) \in T} \sum_{p} (n_{p}^{3} - t_{p})^{2}$$

$$\frac{\partial C}{\partial w_{00}^{3}} = \frac{1}{|T|} \sum_{(X,t) \in T} \sum_{p} (n_{p}^{3} - t_{p}) \times \frac{\partial}{\partial w_{00}^{3}} (n_{p}^{3})$$

$$= \frac{1}{|T|} \sum_{(X,t) \in T} \sum_{p} (n_{p}^{3} - t_{p}) \times \frac{\partial}{\partial w_{00}^{3}} (a(z_{p}^{3}))$$

$$= \frac{1}{|T|} \sum_{(X,t) \in T} \sum_{p} (n_{p}^{3} - t_{p}) \times (n_{p}^{3} (1 - n_{p}^{3})) \times \frac{\partial}{\partial w_{00}^{3}} (z_{p}^{3})$$

$$= \frac{1}{|T|} \sum_{(X,t) \in T} \sum_{p} (n_{p}^{3} - t_{p}) \times (n_{p}^{3} (1 - n_{p}^{3})) \times \frac{\partial}{\partial w_{00}^{3}} (w_{0p}^{3} n_{0}^{2} + w_{1p}^{3} n_{1}^{2} + b_{p}^{3})$$

Summary: the equations of backpropagation

$$\delta^L = \nabla_a C \odot \sigma'(z^L) \tag{BP1}$$

$$\delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$
 (BP2)

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \tag{BP3}$$

$$\frac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \tag{BP4}$$

Only when p is 0 will there be a w_{00}^3 term, otherwise the whole thing will be multiplied by 0

$$\begin{split} &= \frac{1}{|T|} \sum_{(X,t) \in T} (n_0^3 - t_0) \times \left(n_0^3 (1 - n_0^3) \right) \times \frac{\partial}{\partial w_{00}^3} (w_{00}^3 n_0^2 + w_{10}^3 n_1^2 + b_0^3) \\ &= \frac{1}{|T|} \sum_{(X,t) \in T} (n_0^3 - t_0) \times \left(n_0^3 (1 - n_0^3) \right) \times (n_0^2) \\ &= \frac{1}{|T|} \sum_{(X,t) \in T} \frac{\partial C_{Xt}}{\partial n_0^3} \times \frac{\partial n_0^3}{\partial z_0^3} \times n_0^2 \end{split}$$

Backprop?

Deep learning Frameworks!!

Dedicated algorithm for model

Dedicated algorithm for model

Knowing Statistical models

Model Interprtation

Theories developed for interpretation

Dedicated algorithm for model

Fill the lack of information with assumption

Assumption

Model Interprtation

Theories developed for interpretation

Knowing
Statistical
models

Dedicated algorithm for model

Fill the lack of information with assumption

Assumption

Knowing
Statistical
models

Model Interprtation

Theories developed for interpretation

Existence Estimability Optimality

Theory

Dedicated algorithm for model

Fill the lack of information with assumption

Assumption

Knowing Statistical models

Statistical Flaws

Causality

Simpson's Paradox

Model Interprtation

Theories developed for interpretation

Existence Estimability Optimality

Theory

Back Propagation

Model Interprtation

Blackbox Model
No need to interpret

Back Propagation

No Assumption

Assumption

Model Interprtation

Blackbox Model
No need to interpret

Back Propagation

No Assumption

Assumption

Model Interprtation

Blackbox Model
No need to interpret

No Clear Theory

Theory

Back Propagation

No Assumption

Assumption

Knowing
Deep
Learning

Only Prediction

Only Correlation

No bias concept

Model Interprtation

Blackbox Model
No need to interpret

No Clear Theory

Theory

What is *IMPORTANT* is matrix operation!!

Understanding network

Know every details about input & output

Batch normalization

Fully Connected

AND

Pooling

Memory Cell

Layer normalization

Dropout

Convolution

Spectral normalization

Masking

Skip Connection

Padding

Dilated convolution

Variational Inference

Adversarial Network

Re-parametrization trick

Inverse autoregression

GRU

Various Ideas!! **Attention mechanism**

Self attention

Residual Block

Understanding network

Know every details about input & output

In practice, there are techniques like...

Practicalities

- Optimization algorithm:
 - Adam(Kingma and Ba, 2014): Effective & Robust to the choice of learning rate
- Initializer: magnitude of random variable matters
 - Xavier Initializer: generally good.

$$W \sim U\left(-\frac{\sqrt{6}}{\sqrt{d_{in} + d_{out}}}, \frac{\sqrt{6}}{\sqrt{d_{in} + d_{out}}}\right)$$

He: good for deep network

$$W \sim N\left(0, \frac{2}{d_{in}}\right)$$

Practicalities

- Restart & Ensemble: Do if resource allows
- Vanishing gradients:
 - Shallower network
 - Batch normalization
 - Special architecture such as LSTM or GRU
- Exploding gradients:
 - Gradient clipping
- Saturated neurons:
 - Change initializer
 - Change learning rate
 - Scale input values
 - Layer normalization

$$g_h = \frac{\tanh(\mathbf{h})}{\|\tanh(\mathbf{h})\|}$$

Practicalities

- Dead neurons: (especially for ReLU)
 - Reduce learning rate
- Shuffling
 - Crucial and double check if done when training
- Learning rate scheduling
 - Reduce learning rate