

WEG ELECTRICAL EQUIPMENT S/A – AUTOMATION WEG DRIVES & CONTROLS – AUTOMATION R&D Motion Control

$\begin{array}{c} {\rm Test\ Plan} \\ {\rm of} \\ {\rm VVW\ HSRM\ Control} \end{array}$

Prepared by: Marcos Aurélio Araujo Costa

Verified by:

Driving efficiency and sustainability

SUMÁRIO

Sumário

1	Objective	3
2	Equipment	3
3	Test Plan Results 3.1 Test - Motor Spin	7 8 11
4	Notes	15
5	Conclusion	16

1 Objective

- Verify the functionality of the **VVW HSRM** control.
- Verify the motor's maximum current protection to prevent currents above the maximum allowed for the W23 Sync⁺ motor.

2 Equipment

- 1 Inverter and 1 Test Motor:
 - Inverter Data: CFW500C16P0T4DB2H00G2 (version 'V14.32' revision 'r7157') [380-480V], 16 A (HD)
 - Motor Data: 380 V, 12.5 A, 4 poles, 60 Hz, 1800 RPM, 53.3 V/kRPM.
 - Electrical Parameters from the Motor Nameplate: [Y] $L_d=33.37$ mH, $L_q=146.51$ mH, $K_e=53.0$ V/krpm [Cold]
- Monitoring of the motor and inverter's electrical and mechanical variables:
 - WPS.
 - 3 AC/DC Current Probe Tektronix.
 - 1 Fluke True RMS Multimeter with Filter.
 - Isolated Digital Oscilloscope RTH1004 ROHDE & SCHWARZ.
- 1 Dynamometer
- Before starting the tests, record the nameplate data of the motor to be tested (photo of the nameplate).
- During all tests, in case of failure, check: the current before it (pre-trigger) and the parameters related to the "current failure": P0049 and the history of the "last failure": P0050 to P0055.

3 Test Plan Results

3.1 Test - Motor Spin

Voltage generated by the motor at 1000 RPM (K_e initial and final)

	Expected	Measured	Unit
K_e Initial	53.3	53.0	V/kRPM
K_e Final	53.3	52.7	V/kRPM

${\bf Oriented~Start Up}$

Parameter	Configuration	Unit
317	1	
202	10	
298	0	
296	1	
398	1	
400	380	V
401	12.5	A
431	4	Poles
402	1800	RPM
435	53	V/kRPM
404	13	
405	1024	
406	0	
407	0.83	

Segue a tradução em inglês do trecho solicitado:

Check and record the following parameters

Parameter	Configuration	Unit
100	20	S
101	20	\mathbf{s}
133	6	Hz
134	60	Hz
135	18.7	A
136	2.0	%
142	100.0	%
143	66.7	%
144	33.3	%
145	60	$_{\mathrm{Hz}}$
146	40	$_{\mathrm{Hz}}$
147	20	$_{\mathrm{Hz}}$
156	13.7	A
157	12.5	A
158	10.4	A
470	175	%
471	0	ms

Set the Reference Speed

Parameter	Configuration	Unit	
121	60.0	Hz	

Registrar s formas de onda da corrente das 3 fases no osciloscópio e o Trend da corrente no WPS durante a aceleração, em regime permanente, e desaceleração.

Figura 1: P0100 = 10 s. Acceleration and Steady State

Acceptance Criteria

- $[\ \mbox{DEFINE}\]$ All parameters in item 3 must comply with the programming manual.
 - Define factory setting of P0454.
- $\left[\right.$ OK $\left]\right.$ During the tests for items 5 and 8, no failures should occur.
- [OK] The voltage generated by the motor at the end of the test: K_e final > 0.9 x K_e initial.
- [OK] The instantaneous output current must not exceed 175% of the motor's rated current amplitude (1.75 x P401 x 1.41).

3.2 Test - Acceleration Ramp

1. Verify the Voltage Generated at 1000 RPM (K_e Initial and Final)

	Expected	Measured	Unit
K_e Initial	53.3		V
K_e Final	53.3		V

[2-3]. Configure P0121 and P100

Pε	arameter	Configuration	Unit
10	00	[10.0-5.0-2.0]	s
12	21	60.0	${ m Hz}$

5. Record the waveforms of the current in the 3 phases on the oscilloscope and the current trend in the WPS during acceleration.

Acceptance Criteria

[OK] Fault F0073 may occur during the acceleration ramp.

No fault occurred.

[OK] The voltage generated by the motor at the end of the test: K_e final > 0.9 x K_e initial.

[OK] The instantaneous output current must not exceed 175% of the motor's nominal current amplitude (1.75 x P401 x 1.41).

Figura 2: P0100 = 5 s. Acceleration

3.3 Test - Temperature Elevation

1. Verify the Voltage Generated at 1000 RPM (K_e Initial and Final)

	Expected	Measured	Unit
K_e Initial	53.3	52.5	V
K_e Final	53.3	47.5	V

Figura 3: P0100 = 2 s. Acceleration

[2-3]. Configure P0121 and P100

Parameter	Configuration	Unit
100	20.0	s
121	60.0	$_{\mathrm{Hz}}$

[5-8]. Record the waveforms of the current in the 3 phases on the oscilloscope and the current Trend in the WPS.

Acceptance Criteria

- [OK] No faults should occur.
- [OK] The voltage generated by the motor at the end of the test: K_e final > 0.85 x K_e initial.
- [OK] The instantaneous output current must not exceed 175% of the motor's nominal current amplitude (1.75 x P401 x 1.41).

3.4 Test - Load Test

1. Verify the Voltage Generated at 1000 RPM (K_e Initial and Final)

	Expected	Measured	Unit
K_e Initial	53.3		V
K_e Final	53.3		V

[2-3]. Configure P0121 and P100

Parameter	Configuration	Unit
100	20.0	s
121	60.0	$_{\mathrm{Hz}}$

[5-7-9]. Record the waveforms of the current in the 3 phases on the oscilloscope and the current Trend in the WPS.

Acceptance Criteria

[OK] No faults should occur during the test of item 5.

OK Fault F0073 may occur during the tests of items 7 and 9.

- Fault F0073 occurred after surpassing the current limitation.

[OK] The voltage generated by the motor at the end of the test: K_e final > 0.9 x K_e initial.

[OK] The instantaneous output current must not exceed 175% of the motor's nominal current amplitude (1.75 x P401 x 1.41).

Figura 4: Nominal Load

3.5 Test - One Phase Disconnected from the Motor

1. Verify the Voltage Generated at 1000 RPM (K_e Initial and Final)

	Expected	Measured	Unit
K_e Initial	53.3		V
K_e Final	53.3		V

Figura 5: 150% of Nominal Load

[3-4]. Configure *P*0121 and *P*100

Parameter	Configuration	Unit
100	20.0	s
121	60.0	$_{\mathrm{Hz}}$

Figura 6: Phase U Current Disconnected

[2-8-10]. Record the waveforms of the current in the 3 phases on the oscilloscope and the current Trend in the WPS.

Acceptance Criteria

 $\left[\right.$ OK $\left]\right.$ Fault F0073 or Fault F0076 must occur during the startup.

[OK] The voltage generated by the motor at the end of the test: K_e final > 0.9 x K_e initial.

[OK] The instantaneous output current must not exceed 175% of the motor's nominal current amplitude (1.75 x P401 x 1.41).

4 Notes

5 Conclusion