Motivation on a GPU MPM Approach A Gentle Introduction to the MPM A MPM Guide on GPGPU Pitfalls and Optimizations Delving Deeper: Further Opportunities References

# GPU Acceleration of the Material Point Method

Fabian Meyer

University of Koblenz

Kolloquium Computergrafik, 14 February 2019

#### A Brief MPM Overview: Do You Want to Build a Snowman?

# A short historical summary of MPM:

- Belongs to family of particle-in-cell(PIC) techniques [EHB57].
- Initial application to solids [SZS95] → MPM
- ► From research to production in *Disney's* animation film *Frozen* [Sto+13].
- ► Avalanche research [Gau+18]



Video result of my bachelor thesis on the simulation of snow [Mey15].

#### PIC ideas:

- Combine Lagrangian particles& Eulerian grid
- ▶ Particles store all information

# Typical PIC/MPM roundtrip:

- Particle-to-grid(P2G) transfer to an unmoving grid
- 2. Solve discretized governing equations on grid
- Grid-to-particle(G2P) transfer back to particles & move them
- ⇒ meshfree, non-empirical



Transfers: Interpolation functions are defined over grid nodes.

## GPGPU for performance enthusiasts

Why would('nt) you?

#### Drawbacks:

- Interactivity much easier on CPU, but slow
   PCI-Bus communication
- Code is mostly written against GPU architecture
- ► A lot of strain on the programmer

#### **Benefits:**

- Data is already on the GPU for rendering
- Higher parallelization acceleration

Governing Equations: Conservation of Mass & Momentum The Pretty Strong but Mathematically Weak Formulation Discretization of Space and Time Velocity Fields: APIC-Transfers

### Governing Equations: Conservation of Mass & Momentum

Conservation of mass, continuum assumption holds.

Lagrangian (moving with a particle  $_0x$ ):

$${}_{0}^{t}J\rho({}_{0}\boldsymbol{x},t)=\rho({}_{0}\boldsymbol{x},0). \tag{1}$$

Eulerian (outside observer  $_t x$ ):

$$\frac{\partial}{\partial t}\rho(t,x,t) = -\vec{\nabla}\cdot(\rho(t,x,t)v(t,x,t)). \tag{2}$$

Lagrangian and Eulerian view measure differently but give same results. Equations are given in the strong form! [Jia+16][Abe12]

Governing Equations: Conservation of Mass & Momentum The Pretty Strong but Mathematically Weak Formulation Discretization of Space and Time Velocity Fields: APIC-Transfers

#### Conservation of momentum:

Lagrangian (moving with a particle  $_0x$ ):

$$\rho(_0\mathbf{x},0)\mathbf{a}(_0\mathbf{x},t) = \vec{\nabla} \cdot \mathbf{P}(_0\mathbf{x},t) + \mathbf{f}^{\text{body}}(_0\mathbf{x},t)_0^t J. \tag{3}$$

Eulerian (outside observer  $_t x$ ):

$$\rho({}_{t}\boldsymbol{x},t)\boldsymbol{a}({}_{t}\boldsymbol{x},t) = \vec{\nabla}\cdot\boldsymbol{\sigma}({}_{t}\boldsymbol{x},t) + \boldsymbol{f}^{\mathsf{body}}({}_{t}\boldsymbol{x},t) \tag{4}$$

Solving this equation will tell us how the velocity fields  $\mathbf{v}(_t\mathbf{x}), \mathbf{v}(_0\mathbf{x})$  change on the whole domain due to acceleration  $\mathbf{a}$ . This is important to advect particles accounting for all forces. [Jia+16][Abe12]

## The Pretty Strong but Mathematically Weak Formulation

# Weak Formulation (or Principle of Virtual Work):

Dot product equations with arbitrarily 'test functions'  $\boldsymbol{q}$  and apply divergence theorem:

$$\int_{\Omega^0} {}_0 \boldsymbol{q} \cdot \left[ ({}_0 \rho_0) ({}_0 \boldsymbol{a}) - {}_0 \boldsymbol{f}^{\text{body}} {}_0^t \boldsymbol{J} \right] d_0 \boldsymbol{x} =$$

$$\int_{\partial \Omega^{t^n}} {}_t \boldsymbol{q} \cdot \boldsymbol{\sigma} d_t \boldsymbol{A} - \int_{\Omega^{t^n}} \nabla_t \boldsymbol{q} : \boldsymbol{\sigma} d_t \boldsymbol{x}. \tag{5}$$

A strong solution is also a solution to the weak formulation. Leave out body forces(like gravity) and boundary condition (e.g. collisions) for now:

$$\int_{\Omega^0} {}_0 \boldsymbol{q} \cdot ({}_0 \rho_0)({}_0 \boldsymbol{a}) d_0 \boldsymbol{x} = \int_{\Omega^{t^n}} \nabla_t \boldsymbol{q} : \boldsymbol{\sigma} d_t \boldsymbol{x}. \tag{6}$$

#### Weak Derivative:

$$y = |t|$$
 has weak derivative:

$$v = \begin{cases} -1, & \text{if } t < 0 \\ c, & \text{if } t = 0 \\ 1, & \text{if } t > 0 \end{cases}$$



Heaviside step function has no weak derivate:

$$s = \begin{cases} 0, & \text{if } t < 0 \\ 1, & \text{if } t \ge 0 \end{cases}$$



Allows for point loads, material discontinuities and more. [Bat06]

## Discretization of Space and Time

**Time discretization** with implicit midpoint scheme:

$$\frac{y^{n+1} - y^n}{\Delta t} = f^{n+\frac{1}{2}} = f\left(t^n + \frac{\Delta t}{2}, \frac{1}{2}y^n + \frac{1}{2}y^{n+1}\right) \tag{7}$$

- ▶ implicit requires linear system solve ⇒ more stable, larger time steps
- midpoint as it conserves gov. equations

$$\Rightarrow \int_{\Omega^t} {}_t \boldsymbol{q} \cdot {}_t \rho({}_t \boldsymbol{v}^{n+1} - {}_t \boldsymbol{v}^n) d_t \boldsymbol{x} = \int_{\Omega^t} \nabla_t \boldsymbol{q} : \boldsymbol{\sigma}^{n+\frac{1}{2}} d_t \boldsymbol{x}. \quad (8)$$

**Space Discretization** is done in a Galerkin/FEM fashion with grid based interpolants  $w_i$  with limited support. Here dyadic products

$$w_i(x) = w(x - x_i) = w(\frac{1}{h}(x - x_i))w(\frac{1}{h}(y - y_i)w(\frac{1}{h}(z - z_i))$$
(9)

of cubic b-splines suffice:

$$w(x) = \begin{cases} \frac{1}{2}|x|^3 - |x|^2 + \frac{2}{3} & 0 \le |x| < 1\\ \frac{1}{6}(2 - |x|)^3 & 1 \le |x| < 2\\ 0 & 2 \le |x| \end{cases}$$
 (10)



Governing Equations: Conservation of Mass & Momentum The Pretty Strong but Mathematically Weak Formulation Discretization of Space and Time Velocity Fields: APIC-Transfers

Thus set in:

$$_{t}\boldsymbol{q}(\boldsymbol{x},t^{n})=\sum_{i}\boldsymbol{e}_{i}w_{i}(\boldsymbol{x}),\,_{t}\boldsymbol{v}^{n(+1)}(\boldsymbol{x})=\sum_{i}\boldsymbol{v}_{j}^{n(+1)}w_{j}(\boldsymbol{x}).$$

Combine it with numerical integration where the particles function as quadrature points [SKB08]:

$$g_{i} = \int_{\Omega} g(\mathbf{x}) w_{i}(\mathbf{x}) d\mathbf{x}$$

$$\approx \sum_{p} g_{p} w_{i}(\mathbf{x}_{p}) V_{p}. \tag{11}$$

due to integration by midpoint rule:

$$\int_{\Omega} f(x)dx \approx \sum_{i=1}^{N} f(x_i) h_i.$$
 (12)



Governing Equations: Conservation of Mass & Momentum The Pretty Strong but Mathematically Weak Formulation Discretization of Space and Time Velocity Fields: APIC-Transfers

# Velocity Fields: APIC-Transfers

#### PIC-transfer

1. 
$$(m\mathbf{v})_i^n = \sum_p w_{ip}^n m_p \mathbf{v}_p^n$$

2. 
$$\mathbf{v}_{i}^{n} = \frac{(m\mathbf{v})_{i}^{n}}{m_{i}^{n}}$$

3. 
$$\mathbf{v}_{p,PIC}^{n+1} = \sum_{i} w_{ip}^{n} \mathbf{v}_{i}^{n+1}$$

APIC-transfers add a local velocity field  $C_p^n$  around  $\mathbf{v}_p^n$ :

$$(m\mathbf{v})_i^n = \sum_p w_{ip}^n m_p \left(\mathbf{v}_p^n + \mathbf{C}_p^n (\mathbf{x}_i^n - \mathbf{x}_p^n)\right)$$



## Layout of the data: SoA vs. AoS



# Nvidia Nsight[NVI] now offers metrics to identify bottlenecks:

| Metric          | Description                               |  |
|-----------------|-------------------------------------------|--|
| VRAM SOL%       | memory througput w.r.t. to hardware limit |  |
| SM SOL%         | instruction throughput                    |  |
| L2 SOL%         | L2-cache throughput                       |  |
| Tex SOL%        | L1-cache throughput                       |  |
| SM Issue Util.% | amount of cycles an instr. was issued     |  |

# A simple map(y=length(x)) shader on $1024 \times 1024$ Elements SoA vs. AoS differences:

| Layout        | $\Delta t_c(\mu s)$ | Speedup | VRAM  | SM    | L2    | SM Issue Util. |
|---------------|---------------------|---------|-------|-------|-------|----------------|
| AoS(1 instr.) | 243                 | -       | 77.7% | 7.3%  | 30.3% | 6.8%           |
| SoA(1 instr.) | 120                 | 2.26x   | 75.4% | 14.3% | 29.4% | 14.0%          |
| AoS(2 instr.) | 275                 | -       | 61.3% | 41.8% | 53.8% | 48.9%          |
| SoA(2 instr.) | 240                 | 1.16x   | 75.4% | 29.4% | 20.0% | 62.3%          |

 $\Rightarrow$  SoA increases coalescing for non-random access.



#### Parallel Reduction & Scan

Assuming an associative binary\_op(x,y):=  $x \circ y$ , a neutral element e of the binary\_op, and an array of values  $[a_0, a_1, ..., a_n]$ .

▶ Parallel reduction computes the value:

$$r = a_0 \circ a_1 \circ \dots \circ a_n. \tag{13}$$

(Exclusive) scan computes the array:

$$[e, a_0, (a_0 \circ a_1), (a_0 \circ a_1 \circ a_2), \dots, (a_0 \circ a_1 \circ a_2 \circ \dots \circ a_{n-1})].$$
 (14)

Here, only shared memory approaches without (NVIDIA exclusive) warp shuffle operations.

# **Shared Memory Bank Conflicts:**



Interleaved addressing causes bank conflicts (Short Scoreboard activity)  $\Rightarrow$  padding needed.

| Method           | $\Delta t_c$ | Speedup | VRAM  | SM    | Sel. Warp-Stall Reas. |
|------------------|--------------|---------|-------|-------|-----------------------|
| Interl. no padd. | 305          | -       | 23.0% | 60.9% | S. Scoreb.(17.2%)     |
| Sequential       | 141          | 2.16x   | 49.8% | 37.1% | S. Scoreb.(2.0%)      |

Table: Parallel reduction on  $1024 \times 1024$  vectors with y=length(x) as input.

More elements than thread group size require pyramid schemes.

# **Sequential work**: multiple elements per thread.

- Memory latency hiding (Long Scoreboard up)
- ► Higher reduction factor each dispatch ⇒ Less global memory indirections
- Unrolling loops can help but adds register pressure.

| Method      | $\Delta t_c$ | Speedup | VRAM  | SM    | Sel. Warp-Stall Reas. |
|-------------|--------------|---------|-------|-------|-----------------------|
| Sequential  | 141          | 2.16x   | 49.8% | 37.1% | S. Scoreb.(2.0%)      |
| Seq. (2x)   | 100          | 3.05x   | 69.5% | 26.2% | L. Scoreb.(80.1%)     |
| Seq. (128x) | 98           | 3.1x    | 72.9% | 16.9% | L. Scoreb.(84.4%)     |
| Seq. (256x) | 101          | 3.0x    | 66.4% | 14.6% | L. Scoreb.(76.9%)     |

Table: Parallel reduction on  $1024 \times 1024$  vectors with y=length(x) as input. Methods have 504, 8, 4 thread groups, respectively. A GTX970 has 13 SMs.

Scan is similar but cannot profit as much from sequential work having to keep multiple elements in register memory.

## Binning & Counting Sort: Where Are You?

Grid node does not know its neighboring particles  $\Rightarrow$  Binning.

# Binning combines nicely with **Counting Sort:**

- 1. Binning: Per node counting.
- 2. **Scan**: Computes new memory offset for particles.
- Reordering: Give back indexing list or do deep copy.



Sorting can dramatically increase workload performance of subsequent steps for neighboring queries:

- 1. Deep sorted accesses are now **coalesced**.
- 2. **Data reuse** due to L2-Cache and/or shared memory.

**Double buffer particles** to use last sorted state as input for new sorting to profit from item 1 and 2!

| Ordering    | $\Delta t_c(\mu s)$ | Speedup | VRAM  | SM    | L2    | L2-Hit |
|-------------|---------------------|---------|-------|-------|-------|--------|
| Random      | 1,516               | -       | 25.0% | 3.4%  | 9.1%  | 10.8%  |
| Deep sorted | 218                 | 6.95x   | 75.3% | 24.4% | 35.0% | 37.8%  |

Table: Order dependency of binning of 1024  $\times$  1024 randomly positioned particles in a 128  $\times$  128  $\times$  128 grid.

# The MPM Specific Transfers

All MPM operations belong to one of those parallelization schemes:

- ▶ 1 thread : 1 particle:  $\Box_p = \Box_p \circ \Box_p \circ ... \circ \Box_p$ .
- ▶ 1 thread : 1 node:  $\Box_p = \Box_p \circ \Box_p \circ ... \circ \Box_p$ .
- ▶ G2P-transfer:  $\Box_p = \sum_i \Box_i \circ \Box_{ip}$ .
- ▶ P2G-transfer:  $\Box_i = \sum_p \Box_p \circ \Box_{ip}$ .

MPM-Transfers are executed **multiple times per physical frame** with varying numbers of variables and mathematical operations.

 $\Rightarrow$  Preprocessing steps only need to be done **once per physical frame**. Sorting already introduced as one of these.



Pull-Operations read!

# Similar to filter or stencil operations on the GPU:

- 1 node: 1 thread, split grid into blocks corr. to thread groups.
- ▶ Interpolation function however dependent on particle position.
- Needs to be rerun for every particle in the cell.

## Typical setup of transfers:

- 1. Initialize shared memory (pull: with nodes from global memory).
- 2. Perform transfers.
- 3. Write back to global memory (push: global atomics since writes on halo).

 $\Rightarrow$  Race conditions.

Layout of the data: SoA vs. AoS Parallel Reduction & Scan Binning & Counting Sort: Where Are You? The MPM Specific Transfers



Typically simulation domain(grid) much bigger than simulation model. Filtering inactive blocks as a preprocess improves performance.

- ▶ Block is active if any cell counter is active.
- Cell counter is active if it has at least one particle.



- ▶ Block and its halo are always target of shared memory operations ⇒ P2G-Pull low occupancy.
- ▶ Batching multiple particles can increase performance due to hiding synchronization, unroll!
- Transfers respect shared memory bank conflicts fully.
- Warp divergence for varying cell counts.

| Method        | $\Delta t_c(\mu s)$ | Speedup | VRAM  | L2    | SM    |
|---------------|---------------------|---------|-------|-------|-------|
| global        | 44,442              | -       | 4.6 % | 34.4% | 7.7%  |
| global sorted | 20,484              | 2.21x   | 7.0 % | 44.0% | 16.1% |
| P2G-sync      | 2,595               | 17.47x  | 5.9%  | 7.6%  | 67.0% |

P2G-transfers of one uniformly million particles with 4 particles per cell with random velocities between  $v_x, v_y, v_z \in [-1.0; 1.0]$  in a  $128 \times 128 \times 128$  grid. Block size is (8,4,4).

## A comparison to [Gao+18]

# Largely same decision making:

|                  | Me               | [Gao+18]              |
|------------------|------------------|-----------------------|
| Sort             | Count/Histogram  | Count/Histogram       |
|                  | for each var.    | sel. variables        |
| Filtering domain | Filter-op.       | Sparse Grid structure |
| Transfers        | Shared mem. only | Warp-shuffle op.      |

Warp shuffle allows for fast parallel segmented reduction of cells of varying counts.

⇒ Solves warp divergence and shared memory issues mostly, thread groups now correspond to particles. Faster in these instances but NVIDIA only.



Rohan Abeyaratne. Volume II of Lecture Notes on, The Mechanics of Elastic Solids: Continuum Mechanics.

http:

//web.mit.edu/abeyaratne/Volumes/RCA\_Vol\_II.pdf. [Online; accessed 08-November-2018]. MIT Department of Mechanical Engineering, 2012.



Klaus-Jürgen Bathe. *Finite element procedures*. Klaus-Jürgen Bathe, 2006.



Martha W Evans, Francis H Harlow, and Eleazer Bromberg. *The particle-in-cell method for hydrodynamic calculations*. Tech. rep. LOS ALAMOS NATIONAL LAB NM, 1957.



Ming Gao et al. "GPU Optimization of Material Point Methods". In: *ACM Trans. Graph.* 37.6 (2018), 254:1–254:12. ISSN: 0730-0301.



Johan Gaume et al. "Unified modeling of the release and flow of snow avalanches using the Material Point Method". In: Aug. 2018.



Chenfanfu Jiang et al. "The material point method for simulating continuum materials". In: *ACM SIGGRAPH 2016 Courses*. ACM. 2016, p. 24.



Fabian Meyer. "Simulation von Schnee". Bachelor's Thesis. Universität Koblenz-Landau, Institut für Computervisualistik, 2015.



NVIDIA Corporation. *NVIDIA Nsight*. https://docs.nvidia.com/nsight-visual-studio-edition/Content/Performance\_Markers\_OGL.htm.

[Online; accessed 5-December-2018].



Michael Steffen, Robert M Kirby, and Martin Berzins. "Analysis and reduction of quadrature errors in the

material point method (MPM)". In: International journal for numerical methods in engineering 76.6 (2008), pp. 922–948.

Alexey Stomakhin et al. "A material point method for snow simulation". In: ACM Transactions on Graphics (TOG) 32.4 (2013), p. 102.

Deborah Sulsky, Shi-Jian Zhou, and Howard L Schreyer. "Application of a particle-in-cell method to solid mechanics". In: *Computer physics communications* 87.1-2 (1995), pp. 236–252.