Intro to Data Structures and Algorithms

(DS&A)

What are Data Structures?

- Data Structures are used to store, organize, and manage data in specific formats enabling efficient access and modification
- It is a collection of stored values, the relationships between those values, and the functions or methods which can be applied to the values or structure.

Common Data Structures

Node

Queue

Stack

Binary Tree

Trees

Graphs

Linked Lists

Node

- Most basic data structure
- Building block of other data structures
- Can contain data and pointers to other nodes

Stack

- LIFO Principle Last In, First Out
- Linear data structure
- Has a top and a bottom
- Items may only be added or removed from the top

Common Stack Methods and Functions

- Push adds a new element to the top of the stack
- Pop removes and returns the top element of the stack
- Size returns the length of the stack
- Peek returns the top element of the stack but does not remove it

Queue

- FIFO Principle First In, First Out
- Linear data structure
- Has a front and back
- Items may only be removed from the front
- Items may only be added to the back

Common Queue Methods and Functions

- Enqueue adds a new element to the back of the queue
- Dequeue removes the first element (front) of the queue
- Size returns the length of the queue

Linked Lists

Singly Linked List

Doubly Linked List

- Constructed with Nodes, having a one way reference chain
- Linear data structure

- Constructed with Nodes, having a two way reference chain
- Linear data structure

Common Linked List Methods and Functions

- Append adds a new Node to the end of the list
- Prepend adds a new Node to the beginning of the list
- Insert adds a new Node at a given position (index) of the list
- Remove removes the first Node with the given value
- NodeAtIndex returns the Node at the given index
- Print prints the list
- Size returns the length of the list

Binary Tree

- Constructed with Nodes
- Each Node may have at most two children
- Tree structure (non-linear)
- Starting Node is referred to as the 'root node'
- Nodes having no children are referred to as 'leaf nodes'

DFS vs BFS

Depth First Search

Breadth First Search

- An algorithm to traverse trees
- Starts from the root node and visits all possible routes to reach leaf nodes

- An algorithm to traverse trees
- Starts att the root node and visits all nodes within the same level (sibling nodes) before moving on to the next level

Questions, comments, concerns?