Clase 5: Árboles de Decisión

Matías Leoni

Aprendizaje Automático I *Maestría en IA - Universidad de San Andrés*

15 de Julio de 2025

• 1. Concepto y Estructura: ¿Qué son y cómo se organizan?

- 1. Concepto y Estructura: ¿Qué son y cómo se organizan?
- 2. Construcción y Criterios de División:
 - Regresión: Suma de Errores Cuadráticos (RSS).
 - Clasificación: Gini, Entropía y la Ganancia de Información.

- 1. Concepto y Estructura: ¿Qué son y cómo se organizan?
- 2. Construcción y Criterios de División:
 - Regresión: Suma de Errores Cuadráticos (RSS).
 - Clasificación: Gini, Entropía y la Ganancia de Información.
- 3. Poda de Árboles: La técnica clave contra el sobreajuste.

- 1. Concepto y Estructura: ¿Qué son y cómo se organizan?
- 2. Construcción y Criterios de División:
 - Regresión: Suma de Errores Cuadráticos (RSS).
 - Clasificación: Gini, Entropía y la Ganancia de Información.
- 3. Poda de Árboles: La técnica clave contra el sobreajuste.
- 4. Interpretación y Visualización: Extrayendo valor.

- 1. Concepto y Estructura: ¿Qué son y cómo se organizan?
- 2. Construcción y Criterios de División:
 - Regresión: Suma de Errores Cuadráticos (RSS).
 - Clasificación: Gini, Entropía y la Ganancia de Información.
- 3. Poda de Árboles: La técnica clave contra el sobreajuste.
- 4. Interpretación y Visualización: Extrayendo valor.
- 5. Ventajas y Desventajas: ¿Cuándo usarlos?

- 1. Concepto y Estructura: ¿Qué son y cómo se organizan?
- 2. Construcción y Criterios de División:
 - Regresión: Suma de Errores Cuadráticos (RSS).
 - Clasificación: Gini, Entropía y la Ganancia de Información.
- 3. Poda de Árboles: La técnica clave contra el sobreajuste.
- 4. Interpretación y Visualización: Extrayendo valor.
- 5. Ventajas y Desventajas: ¿Cuándo usarlos?
- Taller Práctico: Construcción con 'scikit-learn'.

- 1. Concepto y Estructura: ¿Qué son y cómo se organizan?
- 2. Construcción y Criterios de División:
 - Regresión: Suma de Errores Cuadráticos (RSS).
 - Clasificación: Gini, Entropía y la Ganancia de Información.
- 3. Poda de Árboles: La técnica clave contra el sobreajuste.
- 4. Interpretación y Visualización: Extrayendo valor.
- 5. Ventajas y Desventajas: ¿Cuándo usarlos?
- Taller Práctico: Construcción con 'scikit-learn'.

 Es un método de aprendizaje supervisado para clasificación y regresión.

- Es un método de aprendizaje supervisado para clasificación y regresión.
- Segmenta el espacio de los predictores en regiones simples y no superpuestas.

- Es un método de aprendizaje supervisado para clasificación y regresión.
- Segmenta el espacio de los predictores en regiones simples y no superpuestas.
- La predicción se basa en la media (regresión) o la clase más común (clasificación) de los datos en cada región.

- Es un método de aprendizaje supervisado para clasificación y regresión.
- Segmenta el espacio de los predictores en regiones simples y no superpuestas.
- La predicción se basa en la media (regresión) o la clase más común (clasificación) de los datos en cada región.
- Funciona haciendo una secuencia de preguntas simples sobre las características.

Laboratory Troubleshooting Flowchart

Figura: Un árbol de decisión puede verse como un simple diagrama de flujo.

 Nodo Raíz: El primer nodo, representa la muestra completa.

- Nodo Raíz: El primer nodo, representa la muestra completa.
- Nodos Internos: Puntos donde se divide el espacio predictor.

- Nodo Raíz: El primer nodo, representa la muestra completa.
- Nodos Internos: Puntos donde se divide el espacio predictor.
- Ramas: Conectan los nodos, representan las respuestas.

- Nodo Raíz: El primer nodo, representa la muestra completa.
- Nodos Internos: Puntos donde se divide el espacio predictor.
- Ramas: Conectan los nodos, representan las respuestas.
- Hojas: Nodos terminales, contienen la predicción final.

- Nodo Raíz: El primer nodo, representa la muestra completa.
- Nodos Internos: Puntos donde se divide el espacio predictor.
- Ramas: Conectan los nodos, representan las respuestas.
- Hojas: Nodos terminales, contienen la predicción final.

Figura: Ejemplo de un árbol de regresión. (Ref. ISLP, Fig 8.1)

• El proceso se llama **División Binaria Recursiva** (Recursive Binary Splitting).

- El proceso se llama División Binaria Recursiva (Recursive Binary Splitting).
- Es un enfoque top-down y greedy (voraz).

- El proceso se llama División Binaria Recursiva (Recursive Binary Splitting).
- Es un enfoque top-down y greedy (voraz).
 - **Top-down:** Comienza en el nodo raíz y divide el espacio sucesivamente.

- El proceso se llama División Binaria Recursiva (Recursive Binary Splitting).
- Es un enfoque top-down y greedy (voraz).
 - **Top-down:** Comienza en el nodo raíz y divide el espacio sucesivamente.
 - Greedy: En cada paso, elige la mejor división posible en ese momento, sin mirar hacia adelante.

- El proceso se llama División Binaria Recursiva (Recursive Binary Splitting).
- Es un enfoque top-down y greedy (voraz).
 - **Top-down:** Comienza en el nodo raíz y divide el espacio sucesivamente.
 - **Greedy:** En cada paso, elige la mejor división posible *en ese momento*, sin mirar hacia adelante.
- El algoritmo busca el predictor X_j y el punto de corte s que logren la mayor "mejora" según un criterio.

 Para regresión, el objetivo es minimizar la Suma de Errores Cuadráticos (RSS).

- Para regresión, el objetivo es minimizar la Suma de Errores Cuadráticos (RSS).
- Se elige la variable X_m y el corte s que producen la mayor reducción en el RSS:

$$RSS = \sum_{m=1}^{M} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2$$

donde \hat{y}_{R_m} es la media de la respuesta para las observaciones en la región j-ésima (R_j) .

- Para regresión, el objetivo es minimizar la Suma de Errores Cuadráticos (RSS).
- Se elige la variable X_m y el corte s que producen la mayor reducción en el RSS:

$$RSS = \sum_{m=1}^{M} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2$$

donde \hat{y}_{R_m} es la media de la respuesta para las observaciones en la región j-ésima (R_i) .

• Se repite hasta cumplir un criterio de detención.

- Para regresión, el objetivo es minimizar la Suma de Errores Cuadráticos (RSS).
- Se elige la variable X_m y el corte s que producen la mayor reducción en el RSS:

$$RSS = \sum_{m=1}^{M} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2$$

donde \hat{y}_{R_m} es la media de la respuesta para las observaciones en la región j-ésima (R_i) .

• Se repite hasta cumplir un criterio de detención.

Figura: Partición del espacio de predictores. (Ref. ISLP, Fig 8.2)

• En clasificación, no se usa RSS. Buscamos maximizar la **pureza** de los nodos.

- En clasificación, no se usa RSS. Buscamos maximizar la pureza de los nodos.
- Un nodo es "puro" si contiene mayormente observaciones de una sola clase.

- En clasificación, no se usa RSS. Buscamos maximizar la pureza de los nodos.
- Un nodo es "puro" si contiene mayormente observaciones de una sola clase.
- Métricas comunes para evaluar la calidad de una división:
 - 1 Tasa de Error de Clasificación: Simple pero poco sensible para el crecimiento.
 - Indice de Gini: Medida de la probabilidad de clasificar incorrectamente un elemento.
 - Entropía: Medida del desorden, proveniente de la teoría de la información.

- En clasificación, no se usa RSS. Buscamos maximizar la pureza de los nodos.
- Un nodo es "puro" si contiene mayormente observaciones de una sola clase.
- Métricas comunes para evaluar la calidad de una división:
 - Tasa de Error de Clasificación: Simple pero poco sensible para el crecimiento.
 - 2 Índice de Gini: Medida de la probabilidad de clasificar incorrectamente un elemento.
 - Entropía: Medida del desorden, proveniente de la teoría de la información.
- Gini y Entropía son preferidos para construir el árbol.

Fórmulas (para un nodo *m*):

• Índice de Gini: $G = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk})$

- Índice de Gini: $G = \sum_{k=1}^K \hat{p}_{mk} (1 \hat{p}_{mk})$
- Entropía: $D = -\sum_{k=1}^K \hat{p}_{mk} \log_2(\hat{p}_{mk})$

- Índice de Gini: $G = \sum_{k=1}^K \hat{p}_{mk} (1 \hat{p}_{mk})$
- Entropía: $D = -\sum_{k=1}^{K} \hat{p}_{mk} \log_2(\hat{p}_{mk})$
- Error: $E = 1 \max_k(\hat{p}_{mk})$

- Índice de Gini: $G = \sum_{k=1}^K \hat{p}_{mk} (1 \hat{p}_{mk})$
- Entropía: $D = -\sum_{k=1}^{K} \hat{p}_{mk} \log_2(\hat{p}_{mk})$
- Error: $E = 1 \max_k(\hat{p}_{mk})$

Figura: Comparación de métricas de impureza para un problema de dos clases.

¿Por qué estamos seguros de que una división ayuda?

• El objetivo en cada paso es encontrar la división que maximice la **Ganancia de Información**.

¿Por qué estamos seguros de que una división ayuda?

- El objetivo en cada paso es encontrar la división que maximice la Ganancia de Información.
- Se define como la reducción de la impureza (ej. entropía) del nodo padre gracias a la división:

$$Ganancia = D(padre) - \sum_{j \in hijos} w_j D(hijo_j)$$

• Donde w_j es la proporción de observaciones en el nodo hijo j.

¿Por qué estamos seguros de que una división ayuda?

- El objetivo en cada paso es encontrar la división que maximice la Ganancia de Información.
- Se define como la reducción de la impureza (ej. entropía) del nodo padre gracias a la división:

$$Ganancia = D(padre) - \sum_{j \in hijos} w_j D(hijo_j)$$

- Donde w_j es la proporción de observaciones en el nodo hijo j.
- **Pregunta clave:** ¿Existe una garantía matemática de que esta ganancia es siempre positiva o cero? ¿O podría una división, por azar, aumentar la entropía total?

¿Por qué estamos seguros de que una división ayuda?

- El objetivo en cada paso es encontrar la división que maximice la Ganancia de Información.
- Se define como la reducción de la impureza (ej. entropía) del nodo padre gracias a la división:

$$\mathsf{Ganancia} = D(\mathsf{padre}) - \sum_{j \in \mathsf{hijos}} w_j D(\mathsf{hijo}_j)$$

- Donde w_j es la proporción de observaciones en el nodo hijo j.
- **Pregunta clave:** ¿Existe una garantía matemática de que esta ganancia es siempre positiva o cero? ¿O podría una división, por azar, aumentar la entropía total?

Spoiler

La respuesta es sí, hay una garantía. Y reside en una propiedad fundamental de la función de entropía.

 La propiedad matemática que hace a la Entropía ideal es que es una función estrictamente cóncava.

- La propiedad matemática que hace a la Entropía ideal es que es una función estrictamente cóncava.
- Una función cóncava cumple la Desigualdad de Jensen, que para nuestro caso implica:

"La entropía de un promedio es mayor o igual al promedio de las entropías."

- La propiedad matemática que hace a la Entropía ideal es que es una función estrictamente cóncava.
- Una función cóncava cumple la Desigualdad de Jensen, que para nuestro caso implica:

"La entropía de un promedio es mayor o igual al promedio de las entropías."

 Como la distribución de clases del nodo padre es un promedio ponderado de las de sus hijos, se puede demostrar que:

$$D(\mathsf{padre}) \geq \sum_j w_j D(\mathsf{hijo}_j)$$

- La propiedad matemática que hace a la Entropía ideal es que es una función estrictamente cóncava.
- Una función cóncava cumple la Desigualdad de Jensen, que para nuestro caso implica:

"La entropía de un promedio es mayor o igual al promedio de las entropías."

 Como la distribución de clases del nodo padre es un promedio ponderado de las de sus hijos, se puede demostrar que:

$$D(\mathsf{padre}) \geq \sum_j w_j D(\mathsf{hijo}_j)$$

Esto garantiza que la Ganancia de Información siempre es ≥ 0.
 Cada división del algoritmo es un paso en la dirección correcta para reducir la impureza.

Preguntas y Pausa

(15 minutos)

 Si un árbol crece sin restricciones, se vuelve demasiado complejo, memorizando el ruido de los datos de entrenamiento.

- Si un árbol crece sin restricciones, se vuelve demasiado complejo, memorizando el ruido de los datos de entrenamiento.
- Esto resulta en un excelente rendimiento en entrenamiento, pero muy pobre en datos nuevos (error de test).

- Si un árbol crece sin restricciones, se vuelve demasiado complejo, memorizando el ruido de los datos de entrenamiento.
- Esto resulta en un excelente rendimiento en entrenamiento, pero muy pobre en datos nuevos (error de test).
- Un árbol complejo tiene bajo sesgo (bias) pero alta varianza (variance).

- Si un árbol crece sin restricciones, se vuelve demasiado complejo, memorizando el ruido de los datos de entrenamiento.
- Esto resulta en un excelente rendimiento en entrenamiento, pero muy pobre en datos nuevos (error de test).
- Un árbol complejo tiene bajo sesgo (bias) pero alta varianza (variance).

Figura: Curvas de error vs. complejidad del árbol. (Ref. ISLP, Fig 8.5)

• La estrategia no es detener el crecimiento prematuramente (sería "miope").

- La estrategia no es detener el crecimiento prematuramente (sería "miope").
- La mejor estrategia es:

- La estrategia no es detener el crecimiento prematuramente (sería "miope").
- La mejor estrategia es:
 - **①** Crecer un árbol muy grande y complejo (T_0) .

- La estrategia no es detener el crecimiento prematuramente (sería "miope").
- La mejor estrategia es:
 - **①** Crecer un árbol muy grande y complejo (T_0) .
 - Podar este árbol hacia atrás, generando una secuencia de subárboles más simples.

- La estrategia no es detener el crecimiento prematuramente (sería "miope").
- La mejor estrategia es:
 - **①** Crecer un árbol muy grande y complejo (T_0) .
 - Podar este árbol hacia atrás, generando una secuencia de subárboles más simples.
- Se elige el mejor subárbol usando validación cruzada para encontrar el que generaliza mejor.

• Introduce un parámetro de "tuning" $\alpha \geq 0$.

- Introduce un parámetro de "tuning" $\alpha \geq 0$.
- Para cada α , se busca el subárbol T que minimiza:

$$\sum_{m=1}^{|T|} \sum_{i:x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \underbrace{\alpha |T|}_{\text{Penalización por complejidad}}$$
 Error de entrenamiento (RSS)

- Introduce un parámetro de "tuning" $\alpha \geq 0$.
- Para cada α , se busca el subárbol T que minimiza:

$$\underbrace{\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2}_{\text{Error de entrenamiento (RSS)}} + \underbrace{\alpha |T|}_{\text{Penalización por complejidad}}$$

 \bullet A medida que α aumenta, la penalización es mayor, forzando al árbol a ser más pequeño para minimizar el costo.

- Introduce un parámetro de "tuning" $\alpha \geq 0$.
- Para cada α , se busca el subárbol T que minimiza:

$$\underbrace{\sum_{m=1}^{|T|} \sum_{i: x_i \in R_m} (y_i - \hat{y}_{R_m})^2}_{\text{Error de entrenamiento (RSS)}} + \underbrace{\alpha |T|}_{\text{Penalización por complejidad}}$$

- A medida que α aumenta, la penalización es mayor, forzando al árbol a ser más pequeño para minimizar el costo.
- El valor óptimo de α se determina con validación cruzada.

Figura: Impureza vs. α efectivo (Ref. scikit-learn docs.)

• La interpretabilidad es una de las mayores fortalezas de los árboles.

- La interpretabilidad es una de las mayores fortalezas de los árboles.
- Visualización del Árbol: Permite seguir el camino de decisión para cualquier observación.

- La interpretabilidad es una de las mayores fortalezas de los árboles.
- Visualización del Árbol: Permite seguir el camino de decisión para cualquier observación.
- Importancia de Características: Cuantifica qué tan "útil" es cada predictor.
 - Se calcula la reducción total del RSS o Entropía atribuida a todas las divisiones hechas sobre esa característica.
 - Un valor alto indica que el predictor es importante.

- La interpretabilidad es una de las mayores fortalezas de los árboles.
- Visualización del Árbol: Permite seguir el camino de decisión para cualquier observación.
- Importancia de Características: Cuantifica qué tan "útil" es cada predictor.
 - Se calcula la reducción total del RSS o Entropía atribuida a todas las divisiones hechas sobre esa característica.
 - Un valor alto indica que el predictor es importante.

Figura: Gráfico de importancia de variables. (Ref. ISLP, Fig 8.9)

 Cada árbol corresponde a una partición del espacio de características en "cajas" rectangulares.

- Cada árbol corresponde a una partición del espacio de características en "cajas" rectangulares.
- Visualizar esta partición da una comprensión geométrica de las decisiones del modelo.

- Cada árbol corresponde a una partición del espacio de características en "cajas" rectangulares.
- Visualizar esta partición da una comprensión geométrica de las decisiones del modelo.
- Limitación: Las divisiones son siempre paralelas a los ejes; no capturan límites de decisión diagonales o curvos de forma natural.

- Cada árbol corresponde a una partición del espacio de características en "cajas" rectangulares.
- Visualizar esta partición da una comprensión geométrica de las decisiones del modelo.
- Limitación: Las divisiones son siempre paralelas a los ejes; no capturan límites de decisión diagonales o curvos de forma natural.

Figura: Particiones del espacio 2D con árboles y fronteras lineales.

• **Fáciles de interpretar y explicar:** Son muy intuitivos y se pueden visualizar gráficamente.

- **Fáciles de interpretar y explicar:** Son muy intuitivos y se pueden visualizar gráficamente.
- Manejan datos no numéricos: Pueden trabajar con variables categóricas de forma natural.

- **Fáciles de interpretar y explicar:** Son muy intuitivos y se pueden visualizar gráficamente.
- Manejan datos no numéricos: Pueden trabajar con variables categóricas de forma natural.
- No requieren escalado de características: El proceso de división no se ve afectado por la escala.

- **Fáciles de interpretar y explicar:** Son muy intuitivos y se pueden visualizar gráficamente.
- Manejan datos no numéricos: Pueden trabajar con variables categóricas de forma natural.
- No requieren escalado de características: El proceso de división no se ve afectado por la escala.
- Capturan interacciones y no linealidades de forma automática.

 Menor precisión predictiva: Por sí solos, no suelen ser tan precisos como métodos más avanzados.

- Menor precisión predictiva: Por sí solos, no suelen ser tan precisos como métodos más avanzados.
- Inestables y no robustos: Pequeños cambios en los datos pueden resultar en un árbol muy diferente (alta varianza).

- Menor precisión predictiva: Por sí solos, no suelen ser tan precisos como métodos más avanzados.
- **Inestables y no robustos:** Pequeños cambios en los datos pueden resultar en un árbol muy diferente (alta varianza).
- **Propensos al sobreajuste:** Requieren poda para evitar que se ajusten en exceso al ruido.

- Menor precisión predictiva: Por sí solos, no suelen ser tan precisos como métodos más avanzados.
- Inestables y no robustos: Pequeños cambios en los datos pueden resultar en un árbol muy diferente (alta varianza).
- **Propensos al sobreajuste:** Requieren poda para evitar que se ajusten en exceso al ruido.
- **Dificultad con límites lineales:** Necesitan muchas divisiones para aproximar un simple límite diagonal.

• Los árboles dividen el espacio de forma recursiva y voraz.

- Los árboles dividen el espacio de forma recursiva y voraz.
- Usan RSS (regresión) o Gini/Entropía (clasificación) como criterios.
 La entropía tiene la propiedad de **concavidad**, que garantiza la ganancia de información.

- Los árboles dividen el espacio de forma recursiva y voraz.
- Usan RSS (regresión) o Gini/Entropía (clasificación) como criterios.
 La entropía tiene la propiedad de **concavidad**, que garantiza la ganancia de información.
- El sobreajuste es un problema serio que se combate con la poda (pruning).

- Los árboles dividen el espacio de forma recursiva y voraz.
- Usan RSS (regresión) o Gini/Entropía (clasificación) como criterios.
 La entropía tiene la propiedad de **concavidad**, que garantiza la ganancia de información.
- El sobreajuste es un problema serio que se combate con la poda (pruning).
- Su gran ventaja es la interpretabilidad, su debilidad es la alta varianza.

- Los árboles dividen el espacio de forma recursiva y voraz.
- Usan RSS (regresión) o Gini/Entropía (clasificación) como criterios.
 La entropía tiene la propiedad de **concavidad**, que garantiza la ganancia de información.
- El sobreajuste es un problema serio que se combate con la poda (pruning).
- Su gran ventaja es la interpretabilidad, su debilidad es la alta varianza.

Adelanto de la Próxima Clase

La debilidad de los árboles (alta varianza) puede ser una fortaleza. Al promediar muchos árboles inestables (un *ensemble*), reducimos la varianza y mejoramos la precisión. ¡Esto da lugar a **Bagging** y **Random Forests**!

¡Manos al Código!

Taller Práctico en Jupyter Notebook

- Cargar y explorar un dataset.
- Entrenar un árbol de decisión para clasificación.
- Visualizar el árbol y sus particiones.
- Aplicar poda por complejidad de costo.
- Interpretar la importancia de las características.