

Universidad Nacional de Colombia Facultad de Ciencias Análisis Funcional

Ejercicio 2 Sea E un espacio vectorial, $g, f_1, f_2, \ldots, f_k, (k+1)$ funcionales lineales sobre E tales que

$$\langle f_i, x \rangle = 0 \quad \forall i = 1, \dots, k \Longrightarrow \langle g, x \rangle = 0$$

Muestre que existen constante $\lambda_1, \dots, \lambda_n \in \mathbb{R}$ tales que $g = \sum_{i=1}^k \lambda_i f_i$. Es decir, g es combinación lineal de los f_i .

Ejercicio 9 Sea E un espacio de Banach de dimensión infinita. Muestre que cada vecindad débil ★ del origen de E* no es acotada.

Ejercicio 11 Sea K un espacio métrico compacto que no es finito. Demuestre que C(K) (con la norma del supremo $\|\cdot\|_{L^{\infty}}$) no es reflexivo.

Ejercicio 15 Sea E un espacio de Banach reflexivo. Sea a: $E \times E \to \mathbb{R}$ una forma bilineal que es continua, es decir, existe M > 0 tal que $|\alpha(x,y)| \le M \|x\| \|y\|$, para todo $x,y \in E$. Asuma que a es coerciva, esto es, existe $\alpha > 0$ tal que para todo $x \in E$

$$a(x, x) \ge \alpha ||x||^2$$

- (a) Dado $x \in E$, defina $A_x(y) = a(x,y)$, para todo $y \in E$. Muestre que $A_x \in E^*$, para cada $x \in E$. Además, concluya que la función $x \mapsto A(x) = A_x$ satisface $A \in \mathcal{L}(E, E^*)$.
- (b) Muestre que A como en (a) es una función sobreyectiva.
- (c) Deduzca que para cada $f \in E^*$, existe un único $x \in E$ tal que $a(x, y) = \langle f, y \rangle$, $\forall y \in E$. Esto es, la forma bilineal coerciva a representa todo funcional lineal continuo.

Ejercicio 18 Sea E un espacio de Banach

- (a) Demuestre que existe un espacio topológico compacto K y una isometría de E en $(C(K), \|\cdot\|_{\infty})$.
- (b) Asuma que E es separable. Entonces muestre que existe una isometría de E en l^{∞} (vea el Ejercicio 1/4 para la definición del espacio).