36 - 226 Introduction to Statistical Inference

Homework assignment 8

Due: Wednesday, March 20, 2013

- Write your full name, the course number, and the homework number at the top of each page.
- STAPLE your entire assignment together with a staple.
- Write clearly. Electronic submission of homework assignments is not accepted.
- 1. Question 1 on Exam 1
- 2. Question 4 on Exam 1
- 3. Wackerly 9.71.
- 4. Wackerly 9.74.
- 5. Wackerly 9.77.
- 6. Wackerly 9.78.
- 7. Wackerly 9.96.
- 8. Wackerly 9.97.
- 9. Let $Y_1, Y_2, ..., Y_n$ denote a random sample from a probability density function $f(y \mid \theta)$, where θ is an unknown parameter. Let $\hat{\theta}$ be an <u>unbiased</u> estimator for θ . Define the *Fisher Information* or *expected information* to be

$$I_Y(\theta) = -nE \left[\frac{\partial^2 \log f(y \mid \theta)}{\partial \theta^2} \right].$$

Then under very general conditions: $var(\hat{\theta}) \geq [I_Y(\theta)]^{-1}$. This result is known as the Cramer-Rao inequality. If equality is obtained, i.e. $var(\hat{\theta}) = [I_Y(\theta)]^{-1}$, then the estimator $\hat{\theta}$ is called *efficient*. The inequality holds for discrete probability mass functions p(y) as well.

Please use the Cramer-Rao inequality to answer the following:

- (a) Suppose that $p(y \mid \lambda)$ is Poisson with mean λ . Show that \bar{Y} is an efficient estimator of λ .
- (b) Suppose $f(y \mid \mu, \sigma^2)$ is the normal probability density with mean μ and variance σ^2 . show that \bar{Y} is an efficient estimator of μ .
- 10. Wackerly 10.3.