

Predicting 10-Year CHD Risk Using Logistic Regression

A data-driven approach to identifying patients at risk for coronary heart disease using logistic regression modeling with a focus on clinical interpretability and addressing class imbalance challenges.

Project Objective

Build Predictive Model

Develop a logistic regression model to predict 10-year coronary heart disease risk using patient health data.

Ensure Medical Interpretability

Create a model that produces results healthcare professionals can understand and trust.

Handle Class Imbalance

Address the challenge of uneven distribution between positive and negative CHD cases.

Medical Chart 616,991 N frame My Stand 60 2.0.40 20 %

Dataset Features

Demographics

- Age
- Sex

Behavioral

- Smoking status
- Cigarettes per day

Medical History

- Hypertension
- Diabetes
- Stroke

Clinical

- Blood pressure
- Cholesterol
- Glucose
- BMI

Data Preprocessing

Handle Missing Values

Missing data imputed using median for numerical variables and mode for categorical variables.

Manage Outliers

Extreme values clipped to 1st-99th percentile range to reduce model bias.

Standardize Features

All numerical features scaled to have mean=0 and standard deviation=1.

Split Dataset

Data divided into 80% training and 20% testing sets for proper validation.

Modeling Approach

Balanced Class Weights

Implemented

'class_weight=balanced'

parameter to address the

imbalance between CHD

and non-CHD cases.

Threshold Optimization

Compared default (0.5) and optimal thresholds to maximize model performance.

Key Metrics Focus

Prioritized Recall and F1 Score to ensure high sensitivity for at-risk patients.

Heart disease prediction innetids Performance meting for heart disease windigitional comfigmand ceiver Charrixes. HPC Aanuragrs 66,647 1.7% Acities | Recal F1-score FOC Accuracy Prepertion Confusion matthx 1.77 11 k ars Flive 1.3% Tiou presitives 10.0% F1-scores 01.6. s (comes Predicted vars acut actual influsion matrix influsion matris outcomes Accuracy True nectives Precisin Recuill F71 Time nectable 50,% 32% 50% ctess on foove, punt adion 01.17 on the l'oranulications for VOT lo cliey. Fre elloet lore l'atoriet nedicion.

Performance Results

Metric	Default (0.5)	Optimal (~0.51)
Accuracy	71.5%	73.0%
Precision	29.8%	31.0%
Recall	65.7%	64.7%
F1 Score	0.41	0.42
ROC AUC	0.725	0.725

The model shows balanced performance with minimal threshold adjustment needed, indicating robust predictive capability.

Feature Importance

Clinical Interpretation

Balanced Model

Logistic regression with balanced class weights performed effectively

Clinical Utility

Ideal for integration into CHD screening protocols

Strong Detection

Achieved over 65% recall at default threshold

Medically Aligned

Key predictors match established clinical risk factors

Limitations and Next Steps

Advanced Models

Explore non-linear approaches including Random Forest and XGBoost for potentially higher accuracy.

Expanded Features

Incorporate longitudinal data and additional lab markers to improve predictive power.

External Validation

Test model performance on independent datasets from different patient populations.