SESA3029 Aerothermodynamics

Lecture 5.2
Convective heat transfer

Forced convection

- Laminar boundary layer
 - At lower Re and in quiet environments we have steady laminar flow, with no disturbances and zero relative velocity at the wall (no slip condition)
 - Internal energy conducted from the hot surface is swept downstream by convection leading to a thermal boundary layer
- Turbulent boundary layer
 - At higher Re and in noisy environments the boundary layer is likely to be turbulent with 3D irregular eddying motions
 - Large exchange of momentum and internal energy across the boundary layer.

Velocity boundary layer on flat plate

Ref: Bergman et al. 'Fundamentals of heat and mass transfer'

Convection heat transfer coefficient h

In our boundary-layer example

The electrical analogy still holds, so we can define a thermal resistance as

$$\Delta T = T_s - T_{\infty}$$

 $\dot{q} = h \Delta T \qquad \text{fulle temp}$ $\Delta T = T_s - T_{\infty} \qquad \text{full temp}$ $\Delta T = T_s - T_{\infty}$ conduction

Example

hot \dot{q} hot \dot{q} \dot{q}

В

 L_B

Α

 T_5

5

ole

for side L_{A} L_{B} L_{A} L_{A

$$\dot{q} = \frac{T_1 - T_5}{RA}$$

How to find h?

- Exact relations for some (laminar) flows
- Empirical relations involving dimensionless quantities
 - standard flow types only
- Solution of boundary-layer equations
 - thermal and momentum
- CFD

Dimensionless variables

Nusselt number

$$Nu = \frac{hL}{k}$$

Stanton number

$$St = \frac{h}{\rho V c_p}$$

 $Nu = \frac{hL}{k}$ $St = \frac{h}{\rho Vc_p}$ Variable for clear is the harmonic of the problem of the p

Expressed in terms of:

Reynolds number

$$Re = \frac{\rho VL}{\mu}$$

Prandtl number

$$\Pr = \frac{c_p \mu}{k}$$

Note that:

$$Nu = St.Re.Pr$$

so we can interchange Nu and St

Some useful correlations

(laminar flow) reached steady though pipe Nu = 4.364 (for uniform wall heat flux) Nu = 3.659 (for uniform wall heat flux)

Laminar boundary layer(Re<300,000) \Rightarrow over flat plute \Rightarrow not steady along with Nu =0.453Re $_x^{1/2}$ Pr $_x^{1/3}$ (for uniform wall heat flux)

 $Nu_{x} = 0.332 \text{Re}_{x}^{\frac{1}{2}} \text{Pr}^{\frac{1}{3}}$ (for uniform wall temperature)

General form (Reynolds' analogy)

$$Nu = C Re^n Pr^m$$

Refs: Kays & Crawford 'Convective Heat and Mass Transfer', Ref: Bergman et al. 'Fundamentals of Heat and Mass Transfer

Example: boundary layer cooling

- a) Check whether the flow is laminar or turbulent
- b) Find the heat transfer rate through each plate
- c) Check the boundary layer thickness at the outflow

Nu = St - Re - Pr $\sqrt{N} = \frac{0.332 \left(\frac{1}{\mu}\right)^{N_z} P_r^{N_3} + \left(\frac{1}{\chi} - N_z\right) dx}{1}$ (5.6 ± 39.76) $\dot{Q} = 39.76 \times 0.15 \times 25 = 14.91 \text{ W}$ P= 7×105 R=187 T=288.15 $\int_{L} = \frac{5L}{Re_{\perp}^{2}} = 1.86 \times 10^{-3} \text{ m}$ h M co Soundare layers don 4 mee +