EE 213 computer science luminated

Logic Gates

Dr. Krishan Arora
Assistant Professor and Head
Lovely Professional University

Logic Gates

 Logic gates are the fundamental building blocks of digital systems. The name logic gate is derived from the ability of such a device to make a decision, in the sense that it produces one output level when some combinations of input level are present, and a different output level when other combinations of input levels are present.

Computers

- There are three different, but equally powerful, notational methods for describing the behavior of gates and circuits
 - Boolean expressions
 - logic diagrams
 - truth tables

Truth Table

- Logic diagram: a graphical representation of a circuit
 - Each type of gate is represented by a specific graphical symbol
- Truth table: defines the function of a gate by listing all possible input combinations that the gate could encounter, and the corresponding output

Gates

- Let's examine the processing of the following six types of gates
 - NOT
 - AND
 - -OR
 - XOR
 - NAND
 - NOR

Truth table.

- Systematic method to describe Boolean function.
- One row for each possible input combination.
- N inputs ⇒ 2^N rows.

AND Truth Table					
x y AND					
0	0	0			
0	1	0			
1	0	0			
1	1	1			

NOT Gate

 A NOT gate accepts one input value and produces one output value

Figure 4.1 Various representations of a NOT gate

NOT Gate

- By definition, if the input value for a NOT gate is 0, the output value is 1, and if the input value is 1, the output is 0
- A NOT gate is sometimes referred to as an *inverter* because it inverts the input value

AND Gate

- An AND gate accepts two input signals
- If the two input values for an AND gate are both 1, the output is 1; otherwise, the output is 0

Figure 4.2 Various representations of an AND gate

OR Gate

 If the two input values are both 0, the output value is 0; otherwise, the output is 1

Figure 4.3 Various representations of a OR gate

XOR Gate

- XOR, or exclusive OR, gate
 - An XOR gate produces 0 if its two inputs are the same, and a 1 otherwise
 - Note the difference between the XOR gate and the OR gate; they differ only in one input situation
 - When both input signals are 1, the OR gate produces a 1 and the XOR produces a 0

XOR Gate

Figure 4.4 Various representations of an XOR gate

NAND and NOR Gates

 The NAND and NOR gates are essentially the opposite of the AND and OR gates, respectively

Figure 4.5 Various representations of a NAND gate

Figure 4.6 Various representations of a NOR gate

3-Input And gate

A	B	C	Y
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	0
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

$$Y = A \cdot B \cdot C$$

Circuits

- Two general categories
 - In a combinational circuit, the input values explicitly determine the output
 - In a sequential circuit, the output is a function of the input values as well as the existing state of the circuit
- As with gates, we can describe the operations of entire circuits using three notations
 - Boolean expressions
 - logic diagrams
 - truth tables

How to use NOR gate to build a NOT gate?

Truth Table

A	В	С	Q
0	0	0	1
1	1	1	0

Hint!

Link inputs B & C together (to a same source).

When
$$A = 0$$
, $B = C = A = 0$

When
$$A = 1$$
, $B = C = A = 1$

How to use NOR gates to build an OR gate?

Truth Table

A	В	С	D	Ш	Q
0	0	1	1	1	0
0	1	0	0	0	1
1	0	0	0	0	1
1	1	0	0	0	1

Hint 1: Use 2 NOR gates

Hint 2: From a NOR gate, build a NOT gate

Hint 3: Put this "NOT" gate after a NOR gate

How to use NOR gates to build an AND gate?

Trutti Table						
Α	В	C	D	Q		
0	0	1	1	0		
0	1	1	0	0		
1	0	0	1	0		
1	1	0	0	1		

Truth Tahla

Hint 1: Use 3 NOR gates

Hint 2: From 2 NOR gates, build 2 NOT gates

Hint 3: Each "NOT" gate

is an input to the 3rd NOR gate

How to use NOR gates to build a NAND gate?

Hint 1: Use 4 NOR gates

Hint 2: Use 3 NOR gates

to build a NAND gate

(previous lesson)

Hint 3: Use the 4th NOR gate to build a NOT gate

Hint 4: Insert "NOT" gate after "NAND" gate

Hint 5: NOT-NAND = AND

Α	В	С	D	E	Q
0	0	1	1	0	1
0	1	7	0	0	~
~	0	0	~	0	~
~	1	0	0	1	0

How to use NAND gates to build a NOT gate?

Truth Table						
A	В	O	Ø			
0	0	0	1			
1	1	1	0			

Hint!

Link inputs B & C together (to a same source).

When
$$A = 0$$
, $B = C = A = 0$
When $A = 1$, $B = C = A = 1$

4-19

How to use NAND gates to build an AND gate?

Truth Table

NAND	NOT
A B) C

Α	В	С	Q
0	0	1	0
0	1	1	0
1	0	1	0
1	1	0	1

Hint 1: Use 2 NAND gates

Hint 2: From a NAND gate, build a NOT gate

Hint 3: Put this "NOT" gate after a NAND gate

Hint 4: NOT-NAND = AND

How to use NAND gates to build an OR gate?

		_		
Trı	ıth	Ta	bl	le

A	В	C	D	Q
0	0	1	1	0
0	1	1	0	1
1	0	0	1	1
1	1	0	0	1
			1	

Hint 1: Use 3 NAND gates

Hint 2: Use 2 NAND gates to build 2 NOT gates

after the 2 "NOT" gates

How to use NAND gates to build a NOR gate?

Truth Table

Α	В	С	D	Е	Q
0	0	1	1	0	1
0	1	1	0	1	0
1	0	0	1	1	0
1	1	0	0	1	0

Hint 1: Use 4 NAND gates

Hint 2: Use 3 NAND gates to build an OR gate

Hint 3: Use a NOR gate to build a NOT gate

Hint 4: Put the "NOT" gate after "OR" gate

Find the output of the following circuit

• Answer: $(x+y)\overline{y}$

Find the output of the following circuit

Answer: xy

 Write the circuits for the following Boolean algebraic expressions

- Write the circuits for the following Boolean algebraic expressions
- b) (x+y)x

Writing X-OR using AND/OR/NOT

•
$$x \oplus y \equiv (x + y)(\overline{xy})$$

X	У	<i>x</i> ⊕y
1	1	0
1	0	1
0	1	1
0	0	0

