GUJARAT TECHNOLOGICAL UNIVERSITY (GTU)

Competency-focused Outcome-based Green Curriculum-2021 (COGC-2023)

Semester-VI

Course Title: Industrial Automation

(Course Code: 4361706)

Diploma programmer in which this course is offered	Semester in which offered
Instrumentation and Control Engineering	Sixth

1. RATIONALE

The subject of Industrial Automation is crucial in the contemporary industrial landscape, as it addresses the growing need for increased efficiency, precision, and adaptability in various manufacturing and processing sectors. The rationale for this subject is rooted in the profound impact that automation has on enhancing productivity, reducing operational costs, and ensuring the overall competitiveness of industries.

2. COMPETENCY

Dynamic and evolving set of skills and attributes that enable students to design, implement, and maintain automated systems effectively, contributing to the efficiency, safety, and innovation within various industrial sectors.

3. COURSE OUTCOMES (COs)

The practical exercises, the underpinning knowledge and the relevant soft skills associated with this competency are to be developed in the student to display the following COs:

- a) Define Industrial Automation, know types, pros, and cons briefly.
- b) Identify key parts: sensors, actuators, and I/O devices briefly.
- c) Understand teleoperation for industry, addressing challenges with dexterous techniques.
- d) Apply automation in power, petrochemical, and cement plants briefly.
- e) Analyse Industry 4.0 evolution, key tech, and challenges briefly.

4. TEACHING AND EXAMINATION SCHEME

Teach	Teaching Scheme		Total Credits	Examination Scheme				
(Ir	(In Hours)		(L+T+P/2)	Theory	Theory Marks Practical Ma			Total
L	Т	Р	С	CA*	CA* ESE		ESE	Marks
3	0	2	5	30*	70	25	25	150

(*):Out of 30 marks under the theory CA, 10 marks are for assessment of the micro-project to facilitate integration of COs and the remaining 20 marks is the average of 2 tests to be taken during the semester for the assessing the attainment of the cognitive domain UOs required for the attainment of the COs.

Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P - Practical; C – Credit, CA - Continuous Assessment; ESE - End Semester Examination.

5. SUGGESTED PRACTICAL EXERCISES:

Following practical outcomes (PrOs) are the subcomponents of the Course Outcomes (Cos). Some of the PrOs marked '*' are compulsory, as they are crucial for that particular CO at the 'Precision Level' of Dave's Taxonomy related to 'Psychomotor Domain'.

Sr.	Practical Outcomes (PrOs)	Unit	Approx.
No.		No.	Hrs.
			Required
1	Demonstration of Fixed Automation System.	1	2
2	Comparative Analysis of Automation Types.	1	2
3	Designing a Basic Automation System.	1	2
4	Sensor and Actuator Interfacing.	2	2
5	Analog-Digital Conversion Implementation.	2	2
6	Input/Output Device Integration.	2	2
7	Teleoperation Control Algorithm Implementation.	3	2
8	Communication Channel Analysis.	3	2
9	Dexterous Telemanipulation.	3	2
10	DCS Implementation in Power Plants.*	4	2
11	Petrochemical Processes Simulation.*	4	2
12	PLC and HMI Integration in Cement Plants.*	4	2
13	IoT Integration in Industrial Automation.	5	2
14	Big Data Analytics in Automation.	5	2
15	Al Application in Industrial Processes.	5	2
16	Cyber-Physical Systems Integration.	5	2
17	Cloud Computing for Industrial Data Storage.	5	2
18	Sustainable Energy Management.	5	2

7. MAJOR EQUIPMENT/ INSTRUMENTS REQUIRED

Sr.No.	Equipment Name with Broad Specifications	PrO. No.
1	Programmable Logic Controllers (PLCs) such as Siemens S7- 1200 or Allen-Bradley CompactLogix, or microcontroller kits like Arduino or Raspberry Pi.	12
2	Microcontroller Development Board	4
3	Sensors and Actuators Kit	5
4	Teleoperation Hardware Kit (Robotic arm, force feedback devices)	9
5	IoT Development Kit (Raspberry Pi with sensors)	13

7. AFFECTIVE DOMAIN OUTCOMES

The following sample Affective Domain Outcomes (ADOs) are embedded in many of the above-mentioned COs and PrOs. More could be added to fulfil the development of this competency. a) Work as a leader/a team member. b) Follow safety practices while using electrical appliances. c) Practice environmentally friendly methods and processes. (Environment related) The ADOs are best developed through the laboratory/field-based exercises. Moreover, the level of achievement of the ADOs according to Krathwohl's 'Affective Domain Taxonomy' should gradually increase as planned below: i. 'Valuing Level' in 1st year ii. 'Organization Level' in 2nd year. iii. 'Characterization Level' in 3rd year.

8. UNDERPINNING THEORY:

Unit	Unit Outcomes (UOs)	Topics and Sub-topics		
	(4 to 6 UOs at different levels)	· ·		
	1. Define industrial	1.1 Definition of Industrial Automation		
I. Introduction to		1.2 Objective of Industrial Automation		
Industrial	2. List the objectives of	1.2 Objective of industrial Automation		
Automation	industrial automation.	1.3 Advantage and Disadvantage of Industrial		
	Propose automation objectives for a given	Automation		
	scenario.	4.4.7		
	4. Recall advantages and	1.4 Types of automation system		
	disadvantages of industrial	1. Fixed automation		
	automation.	2. Programmable automation		
	5. Evaluate the impact of	3. Flexible automation		
	automation in a specific			
	industry.	1.5 Basic Elements of an Automation System		
	6. Identify fixed,	1.6 Advance Automation Functions		
	programmable, and flexible			
	automation.	1.7 Levels of Automation		
	Explain advanced automation functions.			
	8. Identify different levels of			
	automation.			
II. Hardware	List types of sensors.	2.1 Sensors		
components	2. Select appropriate sensors	2.2 Actuators		
used for	for specific industrial	2.2.1 Electric Motors		
Industrial	applications.	2.2.2 Other Types of Actuators		
Automation	3. Identify electric motors and	2.3 Analog–Digital Conversions		
	other types of actuators.	2.3.1 Analog-to-Digital Converters		
	4. Define analog-to-digital	2.3.2 Digital-to-Analog Converters 2.4 Input/Output Devices for Discrete Data		
	and digital-to-analog converters.	2.4.1 Contact Input/Output		
	5. Convert analog signals to	Interfaces		
	digital and vice versa.	2.4.2 Pulse Counters and Generators		
	6. Explain contact			
	input/output interfaces.			
III. Teleoperation		3.1. Historical Background and		
in Automation	that shaped teleoperation	Motivation		
	development.	3.2. General Scheme and Components		
	2. Define the driving forces	3.2.1.Operation Principle		
	behind the evolution of	3.3. Challenges and Solutions		
	teleoperation technology	3.3.1.Control Algorithms		
	List the key components integral to a teleoperation	3.3.2.Communication Channels		
	system.	3.3.3.Sensory Interaction and		
	4. Explain the significance of	Immersion		
	each component in	3.3.4.Teleoperation Aids		
	facilitating effective	3.3.5.Dexterous Telemanipulation		

		T
	teleoperation.	3.4. Application Fields
	5. Explain how various control	3.4.1.Industry and Construction
	algorithms address specific	3.4.2.Mining
	challenges in teleoperation.	3.4.3. Underwater
	Explain the specific	
	applications of	
	teleoperation in industry,	
	construction, mining, and	
	underwater operations.	
IV. Industrial	Apply knowledge of	4.1 Automation in Power Plants (Control of
Automation	Distributed Control	boiler and HRGS)
Applications	Systems (DCS) in power	4.1.1 Overview of Power Plants
''	plants.	4.1.2 Distributed Control Systems
	2. Explain the role of	(DCS) in Power Plants
	instrumentation in	4.2 Automation in Petrochemical Plants
	petrochemical plants.	4.2.1 Petrochemical Processes
	3. Apply principles of	4.2.2 Instrumentation in
	petrochemical processes	Petrochemical Plants
	and instrumentation for	4.3 Automation in Cement Plants
	enhanced efficiency.	4.3.1 Cement Manufacturing
	4. Explain applications of PLC	Process
	and HMI in cement plants	4.3.2 PLC and HMI Applications in
	for automation.	Cement Plants
		4.3.3 Energy Management in
	5. Apply energy management	Cement Plants
	principles to define	Sement Hames
	strategies for optimizing	
	efficiency in cement plants.	
V. Industry 4.0 in	Recall historical context	5.1 Definition and Evolution
Industrial	and core principles leading	. Historical contact loading to
Automation	to Industry 4.0.	Historical context leading to
	Explain the evolution	Industry 4.0
	leading to Industry 4.0.	Core principles and characteristics
	Explain IoT, Big Data	5.2 Key Technologies in Industry 4.0
	Analytics, AI, CPS, and	
	Cloud Computing.	 Internet of Things (IoT)
	Integrate key technologies	Big Data Analytics
	in an Industry 4.0	Artificial Intelligence (AI)
	framework.	Cyber-Physical Systems (CPS)
	Explain the linkage	Cloud Computing
	between Industry 4.0 and	, ,
	sustainable energy.	5.3 Combining Industry 4.0 and Sustainable
	6. List challenges in	Energy
	implementing Industry 4.0.	Why link the two systems?
	7. Propose strategies to	vviiy iiiik tile two systellis:
	overcome resistance to	5.4 Implementation Challenges
	change and address	
	cybersecurity concerns and	Challenges in Implementing Industry
	skill gaps.	4.0
		Overcoming resistance to change

	•	Addressing cybersecurity concerns
		and skill gaps

9. SUGGESTED SPECIFICATION TABLE FOR QUESTIONPAPER DESIGN:

Unit		Teaching	Distribution of Theory Marks				
No.	Unit Title	Hours	R Level	U Level	Α	Total Marks	
1	Introduction to Industrial Automation	06	3	4	3	10	
11	Hardware components used for Industrial Automation	12	7	7	4	18	
III	Teleoperation in Automation	08	3	7	4	14	
IV	Industrial Automation Applications	08	4	3	7	14	
V	Industry 4.0 in Industrial Automation	08	7	4	3	14	
	Total	42	24	25	21	70	

Legends: R=Remember, U=Understand, A=Apply and above (Revised Bloom's taxonomy)

10. SUGGESTED STUDENT ACTIVITIES

Get students hands-on with real projects, simulations, and group tasks in industrial automation. Blend theory with practice through industry visits, webinars, and online learning. Boost practical experience with internships and research projects. Encourage teamwork and critical thinking, guide towards certifications, and offer career counseling for a well-rounded understanding of industrial automation careers.

11. SUGGESTED SPECIAL INSTRUCTIONAL STRATEGIES (if any)

Incorporate hands-on labs and simulations to help students practically engage with automation equipment. Introduce real-world case studies and industry expert sessions for practical insights. Encourage collaborative projects and field visits to industries for real-world exposure. Use multimedia resources and online competitions to make learning interactive and competitive. Invite practitioners for practical sessions, and implement self-paced learning modules. Conduct continuous assessments, recommend professional certifications, and encourage peer teaching to create a dynamic and engaging educational experience in industrial automation, fostering both practical skills and theoretical understanding.

12. SUGGESTED PROJECT LIST

- 1. PLC-based Traffic Light Controller
- Automated Conveyor Belt System
- 3. Temperature Control System
- 4. Water Level Control System
- 5. Smart Home Automation
- 6. Automated Parking System
- 7. Pneumatic Pick and Place Robot
- 8. PLC-based Bottle Filling Plant
- 9. Automated Greenhouse System

- 10. Material Handling System
- 11. Water Treatment Plant Simulation
- 12. Automated Coffee Machine
- 13. Smart Lighting Control
- 14. Automated Pet Feeder
- 15. PLC-based Elevator Control
- 16. Solar Tracking System

13. SUGGESTED LEARNING RESOURCES

Sr. No.	Title of book	Author	Publication with place, year and ISBN
1	Industrial Automation	Frank Lamb	McGraw Hill Education, 2013 ISBN: 978-0-07-181647-2
2	Springer Handbook of Automation	Editor : Shimon Y. Nof	Springer ISBN: 978-3-540-78830-0
3	Fundamentals of Industrial Instrumentation and Process Control	William C. Dunn	McGraw Hill Professional, 2018 ISBN: 1260122263, 9781260122268
4	Automation, Production Systems, and Computer-Integrated Manufacturing	Mikell P. Groover	Pearson, 2016 ISBN 13: 978-0-13-349961-2 ISBN 10: 0-13-349961-8
5	Pocket Guide on Industrial Automation	Edited by Srinivas Medida	IDC Technbologies

14. SOFTWARE/LEARNING WEBSITES

https://www.isa.org/

https://www.automationdirect.com/

https://learn.org/

15. PO-COMPETENCY-CO MAPPING:

Semester V	Industrial Automation (Course Code:4361706)							
	POs							
Competency & Course Outcomes	PO 1 Basic & Disciplin e specific knowled ge	PO 2 Pro ble m Ana lysi s	P O 3 Design/ develop ment of solution s	PO 4 Engineerin g Tools, Experimen ta tion & Testing	PO 5 Engineering practices for society, sustainabilit y & environmen t	PO 6 Project Manage ment	PO 7 Life- long learning	
<u>Competency</u>	student effectiv	Dynamic and evolving set of skills and attributes that enable students to design, implement, and maintain automated systems effectively, contributing to the efficiency, safety, and innovation within various industrial sectors.						

Course Outcomes CO1 Define Industrial Automation, know types, pros, and cons briefly.	3	2	-	-	-	-	2
CO2 Identify key parts: sensors, actuators, and I/O devices briefly.	3	2	-	-	-	-	-
CO3 Understand teleoperation for industry, addressing challenges with dexterous techniques.	2	2	3	-	-	-	3
CO4 Apply automation in power, petrochemical, and cement plants briefly.	2	2	2	3	2	2	-
CO5 Analyse Industry 4.0 evolution, key tech, and challenges briefly.	2	1	1	2	3	1	-

Legend: '3' for high, '2' for medium, '1' for low and '-' for no correlation of each CO with PO.

16. COURSE CURRICULUM DEVELOPMENT COMMITTEE

Member - Board of Studies (GTU), Electrical and Allied branches

Prof. Suresh Z. Shyara, IC Engineering, AVPTI, Rajkot

Prof. Mahesh J. Vadhavaniya, IC Engineering, Government Polytechnic, Palanpur

GTU Resource Persons

Prof. Haresh Bhayani, IC Engineering, AVPTI, Ahmedabad.

Prof. Jimil C. Patel, IC Engineering, Government Polytechnic, Vyara.