

REC'D

PCT

30 JUN 2003

10/541265

PCT/NL 2004 00002

KONINKRIJK DER

NEDERLANDEN

Bureau voor de Industriële Eigendom

REC'D 11 FEB 2004

WIPO PCT

Hierbij wordt verklaard, dat in Nederland op 6 januari 2003 onder nummer 1022310,
ten name van:

MACHINE SUPPORT B.V.

te Ridderkerk

een aanvraag om octrooi werd ingediend voor:

"Stelvoet voor het uitgericht opstellen van een inrichting",

en dat de hieraan gehechte stukken overeenstemmen met de oorspronkelijk ingediende stukken.

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Rijswijk, 27 januari 2004

De Directeur van het Bureau voor de Industriële Eigendom,
voor deze,

A handwritten signature in black ink.

Mw. M.M. Enhus

1022310

Uittreksel

De onderhavige uitvinding heeft betrekking op een stelvoet voor het uitgericht opstellen van een inrichting. De stelvoet omvat een ringelement voorzien van een axiale boring met inwendige schroefdraad. De stelvoet omvat verder een schachtelement voorzien van met de inwendige schroefdraad parende uitwendige schroefdraad. Dit schachtelement is, bij in de boring geschroefde toestand, door verdraaiing ten opzichte van het ringelement in axiale richting ten opzichte van het ringelement verstelbaar. De stelvoet omvat verder een aan het ringelement of schachtelement voorzien ondersteuningsdeel alsmede een drukring. De drukring en het ondersteuningsdeel zijn elk voorzien van een convex respectievelijk concaaf vlak met in wezen dezelfde krommingsstraal zodanig dat de drukring in hoek ten opzichte van het ondersteuningsdeel verstelbaar is. Volgens de uitvinding is het bovenvlak van het ringelement in radiaal buitenwaartse richting aflopend gevormd. Volgens de uitvinding omvat de stelvoet verder een kap met een diameter groter dan die van de inwendige schroefdraad. De uitvinding heeft volgens een verder aspect betrekking op een samenstel van een stelvoet volgens de uitvinding, een onderbouw, alsmede een op die onderbouw uitgericht opgestelde inrichting, alsook een spanschroef, waarbij de inrichting middels de spanschroef aan de onderbouw verankerd is onder tussenligging van de stelvoet.

1022310

B. v.d. I.E.

06 JAN. 2003

1

Stelvoet voor het uitgericht opstellen van een inrichting.

De onderhavige uitvinding heeft betrekking op een stelvoet voor het uitgericht opstellen van een inrichting, omvattende:

- 5 o een eerste steldeel voorzien van een axiale boring met inwendige schroefdraad;
- o een tweede steldeel voorzien van met de inwendige schroefdraad parende uitwendige schroefdraad, welk tweede steldeel, bij in de boring geschroefde toestand, door verdraaiing ten opzichte van het eerste steldeel in axiale richting ten opzichte van het eerste steldeel verstelbaar is;
- 10 o een aan het eerste steldeel of tweede steldeel voorzien ondersteuningsdeel alsmede een drukring, waarbij de drukring en het ondersteuningsdeel elk zijn voorzien van een convex respectievelijk concaaf vlak met in wezen dezelfde krommingsstraal zodanig dat de drukring in hoek ten opzichte van het ondersteuningsdeel verstelbaar is.

Een dergelijke stelvoet is bekend uit EP 316.283. De hieruit bekende stelvoet bestaat uit een eerste steldeel (2) en een tweede steldeel (6) met aan de bovenzijde een verbreed ondersteuningsdeel (4) dat aan zijn boveneind concaaf is uitgevoerd. Het tweede steldeel is voorzien van een uitwendige schroefdraad en het eerste steldeel is voorzien van een inwendige schroefdraad, welke inwendige en uitwendige schroefdraad onderling parend zijn zodanig dat bij verdraaiing van het tweede steldeel (6) ten opzichte van het eerste steldeel (2) deze in axiale hoogte ten opzichte van elkaar versteld worden. Bovenop het ondersteuningsdeel (4) ligt een drukring (7) die aan zijn onderzijde convex is uitgevoerd met een krommingsstraal gelijk aan de krommingsstraal van het concave boveneind van het ondersteuningsdeel (4).

Stelvoeten als bekend uit EP 316.283 worden evenals stelvoeten volgens de onderhavige uitvinding toegepast bij het stabiel, vlak neerzetten van inrichtingen op een ondergrond opdat bijvoorbeeld trillingen worden vermeden (men vergelijkt bijvoorbeeld wasmachines die men middels stelvoeten zo stabiel mogelijk op de ondergrond plaatst), alsook opdat bij aandraaien van verankerende spanschroeven introductie van spanningen in de inrichting wordt vermeden, alsook voor het onderling op elkaar uitlijnen van verschillende inrichtingen. Bij het laatste moet men bijvoorbeeld denken aan een motor die middels een as op een aangedreven installatie is aangesloten, waarbij de motor en de aangedreven installatie verschillende eenheden zijn die in

verband met de overbrengingsas veelal op elkaar uitgelijnd dienen te worden. Ook hiervoor worden stelvoeten gebruikt.

De stelvoet volgens EP 316.283 heeft als nadeel dat er vuil en vocht terecht kan komen in de schroefdraadverbinding van inwendige en uitwendige schroefdraad. Dit speelt in het bijzonder wanneer de stelvoet wanneer hij in gebruik is niet in zijn laagste stand is gedraaid. Immers dan bevindt zich tussen het verbrede ondersteuningsdeel (4) en het eerste steldeel (2) een spleet via welke vuil en vocht bij de schroefdraadverbinding terecht kunnen komen. Dit kan tot gevolg hebben dat genoemde schroefdraadverbinding vast komt te zitten en geen verdraaiing meer toelaat.

De onderhavige uitvinding heeft tot doel een verbeterde stelvoet te verschaffen waarbij het in de schroefdraadverbinding van de inwendige en uitwendige schroefdraad terechtkomen van vuil en vocht wordt tegengegaan, liefst geheel wordt verhinderd.

Voornoemd doel wordt volgens de uitvinding bij de stelvoet van de aan het begin genoemde soort bereikt doordat het bovenvlak van het eerste steldeel in radiaal buitenwaartse richting aflopend is gevormd. Door het bovenvlak van het eerste steldeel in radiaal buitenwaartse richting aflopend te vormen wordt bereikt dat hierop terecht gekomen vuil of vocht naar de buitenzijde van het eerste steldeel, dus weg van de schroefdraadverbinding, wordt geleid, althans het in omgekeerde richting, dat wil zeggen het naar de schroefdraadverbinding toe gaan van vuil en vocht wordt bemoeilijkt.

Uit kostenoverwegingen verdient het volgens de uitvinding de voorkeur wanneer het bovenvlak van het eerste steldeel in radiaal buitenwaartse richting taps afloopt. Een dergelijk taps aflopend vlak, dat wil zeggen in radiale richting langs een rechte lijn verlopend, is productietechnisch gezien eenvoudiger te vervaardigen dan een gekromd verlopend vlak, hetgeen dus tot relatief lagere kosten zal leiden. Bij voorkeur zal het bovenvlak hierbij taps aflopen onder een hoek van circa 5° à 15° ten opzichte van de axiale hartlijn, waarbij deze hoek bij voorkeur ten hoogste circa 12° bedraagt. De hoek kan bijvoorbeeld circa 10° bedragen. Indien deze hoek van tapsaflopen te groot wordt, dan zal het bovenste deel van de inwendige schroefdraad in het eerste steldeel aan dragend vermogen inboeten omdat deze dan zal rijgen radiaal op te rekken waarbij de uitwendige schroefdraad van het tweede steldeel zijn ineengrijping aldaar verliest. Bij een te kleine hoek van tapsaflopen, zal het vuil en vocht onvoldoende radiaal buitenwaarts gericht afschot ondervinden.

Teneinde het in de schroefdraadverbinding van inwendige en uitwendige schroefdraad terechtkomen van vuil en vocht verder tegen te gaan is het volgens de uitvinding van voordeel wanneer de stelvoet verder omvat een kap met een diameter groter dan de diameter van de inwendige schroefdraad en/of groter dan de diameter van de drukring. Deze kap zal de schroefdraadverbinding dan overlappen respectievelijk buiten de drukring uitsteken, en aldus een verdere belemmering tegen het indringen van vuil en vocht in de inwendige/uitwendige schroefdraad vormen respectievelijk indringing van vuil en vocht tussen de convexe en concave schaalvlakken tegengaan.

- Deze kap kan echter volgens de uitvinding ook los van een in radiaal buitenwaartse richting aflopende vlak van het eerste steldeel worden toegepast.
- Volgens een verder aspect heeft de onderhavige uitvinding dan ook betrekking op een stelvoet voor het uitgericht opstellen van een inrichting, omvattende:
- o een eerste steldeel voorzien van een axiale boring met inwendige schroefdraad;
 - o een tweede steldeel voorzien van met de inwendige schroefdraad parende uitwendige schroefdraad, welk tweede steldeel, bij in de boring geschroefde toestand, door verdraaiing ten opzichte van het eerste steldeel in axiale richting ten opzichte van het eerste steldeel verstelbaar is;
 - o een aan het eerste steldeel of tweede steldeel voorzien ondersteuningsdeel alsmede een drukring, waarbij de drukring en het ondersteuningsdeel elk zijn voorzien van een convex respectievelijk concaaf vlak met in wezen dezelfde krommingsstraal zodanig dat de drukring in hoek ten opzichte van het ondersteuningsdeel verstelbaar is;

met het kenmerk, dat de stelvoet verder omvat een kap met een diameter groter dan de diameter van de inwendige schroefdraad en/of groter dan de diameter van de drukring.

- Opdat de kap op betrouwbare wijze het binnendringen van vuil en/of vocht in de schroefdraadverbinding respectievelijk tussen de convexe en concave schaalvlakken tegengaat is het volgens de uitvinding van voordeel wanneer de diameter van de kap tenminste 10%, in het bijzonder tenminste 25%, groter is dan de diameter van de inwendige schroefdraad respectievelijk de diameter van de drukring. In dit verband is het in het bijzonder van voordeel wanneer de inwendige diameter van de kap groter is dan de grootste van de uitwendige diameters van de overige delen van de stelvoet, in het bijzonder ten minste circa 0,5 à 2% groter is dan die grootste van de uitwendige

diameters van de overige delen. Aldus wordt verzekerd dat de kap de rest van de stelvoet vanaf de bovenzijde geheel kan bedekken.

Volgens de uitvinding is het in het bijzonder van voordeel wanneer de kap vanaf de drukring beneden onder de onderste uitwendige omtreksrand van de drukring 5 uitsteekt, bij voorkeur ten minste circa 5 à 10 mm onder die onderste uitwendige omtreksrand uitsteekt. Aldus wordt op betrouwbare wijze een afschermende overlap met de uitwendige begrenzingslijn van de zone van contact tussen de concave en convexe vlakken verzekerd.

Volgens de uitvinding is het in het bijzonder van voordeel wanneer de kap een 10 door de kap begrensde ruimte omvat met een axiale hoogte die groter is dan of gelijk is aan de maximale axiale lengte waarmee het tweede steldeel uit het eerste steldeel kan uitsteken, althans bestemd is om ten hoogste uit te steken. De bestemdheid zal hierbij door het stelbereik bepaald worden. Aldus wordt verzekerd dat de benedenrand van de kap te allen tijde, van bovenaf komend, reikt tot onder de bovenrand van de zone waar 15 de inwendige en de uitwendige schroefdraad met elkaar ineengrijpen alsook dat te allen tijde de convexe en concave vlakken tegen vuil en vocht zijn afgeschermd.

Opdat de kap het volledig in elkaar draaien van de inwendige en uitwendige schroefdraad niet zal belemmeren, is het volgens de uitvinding van voordeel wanneer de axiale hoogte van de binnenuimte ten hoogste gelijk is aan de axiale hoogte van het 20 geheel van eerste steldeel, tweede steldeel en drukring bij volledig in elkaar gedraaide inwendige en uitwendige schroefdraad. Opdat de kap het kantelen van de drukring ten opzichte van de verticaal niet belemmt verdient het volgens de uitvinding hierbij de voorkeur wanneer de maximale axiale hoogte van de binnenuimte kleiner is dan of gelijk is aan 95% à 99% van de zojuist genoemde ten hoogste waarde.

Met het oog op stabiliteit van de stelvoet bij montage verdient het volgens de uitvinding de voorkeur wanneer het boveneind van het tweede steldeel het ondersteuningsdeel omvat en wanneer dit ondersteuningsdeel dus niet op het boveneind van het eerste steldeel is voorzien.

Met het oog op het minimaliseren van de bouwhoogte van de stelvoet is het 30 volgens de uitvinding van voordeel wanneer het ondersteuningsdeel geheel binnen een door de diameter van de uitwendige schroefdraad bepaalde contour ligt, meer in het bijzonder wanneer het gehele tweede steldeel binnen een door de diameter van de

uitwendige schroefdraad bepaalde contour ligt. Aldus wordt het mogelijk om het tweede steldeel geheel in het eerste steldeel te laten verzinken.

Teneinde de bouwhoogte van de stelvoet te minimaliseren verdient het volgens de uitvinding de voorkeur wanneer het ondersteuningsdeel ten minste deels, bij 5 voorkeur geheel, verzonken ligt in een door de uitwendige schroefdraad omgeven zone van het tweede steldeel.

Teneinde de bouwhoogte van de stelvoet te minimaliseren, verdient het volgens de uitvinding de voorkeur wanneer de diameter van de drukring kleiner is dan de diameter van het tweede steldeel. Aldus kan de drukring nog in hoekstand versteld 10 worden indien het tweede in het eerste steldeel is verzonken. Bij voorkeur is de diameter van de drukring circa 4 à 10 mm kleiner dan de diameter van het tweede steldeel, bijvoorbeeld circa 6 mm kleiner.

Uit stabiliteitsoverwegingen verdient het volgens de uitvinding de voorkeur 15 wanneer het ondersteuningsdeel een concaaf vlak omvat en de drukring een convex vlak omvat. De drukring kan dan niet vanzelf van het ondersteuningsdeel afglijden omdat dit in een kuil, te weten het concave vlak van het ondersteuningsdeel, ligt. Dit speelt in het bijzonder bij het installeren van een stelvoet volgens de uitvinding. Opdat de middels de stelvoet volgens de uitvinding uitgericht op te stellen inrichting ook via 20 de stelvoet aan de ondergrond is te verankeren verdient het volgens de uitvinding de voorkeur wanneer het tweede steldeel en de drukring van een axiale doorgang voor een spanschroef zijn voorzien. Opdat de drukring in voldoende mate in hoek versteld kan worden is het volgens de uitvinding van voordeel wanneer de axiale doorgang door de drukring een diameter heeft die circa 32 à 48% groter is dan de diameter van de axiale doorgang door het tweede steldeel.

25 Met het oog op het minimaliseren van de bouwhoogte van de stelvoet is het volgens de uitvinding verder van voordeel wanneer de axiale lengte van het tweede steldeel gelijk aan of kleiner is dan de axiale hoogte van het eerste steldeel, en wanneer het tweede steldeel langs geheel zijn axiale lengte van uitwendige schroefdraad is voorzien en/of de inwendige schroefdraad van de axiale boring zich over de gehele 30 axiale hoogte van het eerste steldeel uitstrekt. Aldus wordt verzekerd dat het tweede steldeel geheel in het eerste steldeel is te verzinken zonder dat het tweede steldeel daarbij aan enige zijde van het eerste steldeel hoeft uit te steken.

Volgens een verder aspect heeft de uitvinding betrekking op een samenstel van een stelvoet volgens de uitvinding, een onderbouw, een op die onderbouw uitgericht opgestelde inrichting, alsmede een spanschroef, waarbij de inrichting middels de spanschroef aan de onderbouw is verankerd onder tussenligging van de stelvoet.

- 5 Hierbij is het in het bijzonder van voordeel wanneer het eerste steldeel met een ondervlak op de onderbouw ligt en wanneer de inrichting aanligt op de drukring of op de kap welke op zijn beurt aanligt op de drukring.

Volgens een nog verder aspect, dat geheel los kan staan van de andere aspecten, heeft de onderhavige uitvinding betrekking op een stelvoet voor het uitgericht opstellen 10 van een inrichting, omvattende:

- o een ringelement voorzien van een axiale boring met inwendige schroefdraad;
- o een schachtelement voorzien van met de inwendige schroefdraad parende uitwendige schroefdraad, welk schachtelement, bij in de boring geschroefde toestand, door verdraaiing ten opzichte van het ringelement in axiale richting ten opzichte van 15 het ringelement verstelbaar is;
- o een aan het ringelement of schachtelement voorzien ondersteuningsdeel alsmede een drukring, waarbij de drukring en het ondersteuningsdeel elk zijn voorzien van een convex respectievelijk concaaf vlak met in wezen dezelfde krommingsstraal zodanig dat de drukring in hoek ten opzichte van het ondersteuningsdeel verstelbaar is, met het 20 kenmerk dat, beschouwd in axiale richting, de hoogte van het tweede steldeel kleiner dan of gelijk is aan de hoogte van het eerste steldeel, en dat, beschouwd in radiale richting, de afmetingen van het tweede steldeel geheel binnen de door de uitwendige schroefdraad bepaalde contour liggen. De minimale axiale bouwhoogte van deze stelvoet is geminimaliseerd tot de axiale hoogte van het eerste steldeel. Het tweede 25 steldeel is geheel in het eerste steldeel inschroefbaar. Het is hierbij in het bijzonder van voordeel wanneer de uitwendige diameter van de drukring kleiner is dan de diameter van de uitwendige schroefdraad, en wel in het bijzonder wanneer de uitwendige diameter van de drukring circa 4 à 10 mm, bijvoorbeeld 6 mm, kleiner is dan de diameter van de uitwendige schroefdraad. De kenmerkende gedeeltes van conclusies 1 30 en 5 vormen hierbij voordelige uitvoeringsvormen evenals ook dat de overige conclusies voordelige uitvoeringsvormen vormen die als afhankelijke conclusies hierop kunnen aansluiten.

De onderhavige uitvinding zal in het navolgende aan de hand van de bijgesloten tekeningen nader worden toegelicht. Hierin toont:

Figuur 1 in doorsnedaanzicht een stelvoet volgens de uitvinding;

5 Figuur 2 in doorsnede een variant van een stelvoet volgens de uitvinding in een gemonteerde toestand;

Figuur 3 in doorsnede, deels in aanzicht een eerste gereedschap voor montage; en

Figuur 4 in doorsnede, gedeeltelijk aanzicht een stelvoet volgens de uitvinding tezamen met een tweede gereedschap voor montage.

Fig. 1 toont schematisch in doorsnede een stelvoet volgens de uitvinding. Deze 10 stelvoet omvat een het eerste steldeel vormend ringelement 1, een het tweede steldeel vormend schachtelement 2 en een drukring 3. Het ringelement 1 is voorzien van inwendige schroefdraad 4 en het schachtelement 2 is voorzien van uitwendige schroefdraad 5. De inwendige schroefdraad 4 en uitwendige schroefdraad 5 zijn parend, dat wil zeggen het schachtelement 2 is in het ringelement 1 te schroeven. De 15 onderdelen 1, 2 en 3 zijn bij voorkeur uit staal, in het bijzonder een hoogwaardige staalsoort, vervaardigd.

Aan het boveneind is het schachtelement 2 voorzien van een ondersteuningsdeel 20 in de vorm van een concaaf vlak 6 met een krommingsstraal R. De drukring 3 is aan zijn onderzijde voorzien van een convex vlak 66 met overeenkomstige krommingsstraal R. Aldus kan de drukring 3 ten opzichte van het schachtelement 2 verschuiven waarbij het bovenvlak 7 van de drukring 3 ten opzichte van het ondervlak 8 van het ringelement 1 in hoekstand kan worden aangepast opdat enerzijds een vlakke aanligging van de onderzijde 8 van het ringelement 1 op de ondergrond en anderzijds een vlakke aanligging van het bovenvlak 7 van de drukring tegen de onderzijde van 25 de te ondersteunen inrichting kan worden gerealiseerd.

Door het schachtelement 2 ten opzichte van het ringelement 1 te verdraaien (figuren 1 en 2 tonen een volledig in elkaar gedraaide stand terwijl figuur 3 een gedeeltelijk in elkaar gedraaide stand toont) is de door de stelvoet overbrugde verticale afstand X (zie figuur 4) in te stellen naar wens.

30 Verwijzend naar de verwijzingstekens A, B, C, D, E, F en R in figuur 1 en de navolgende tabel 1, zijn in de tabel 1 bij wijze van voorbeeld 10 modellen, genaamd type 1 tot en met type 10 aangegeven met hun waarden A, B, C, D, E, F en R. Dit

betreffen op F en R na diameterwaarden. De stelvoet is cirkelsymmetrisch rondom hartlijn 9.

	A in mm	B in mm	A/B	C in mm	D in mm	E in mm	F in mm	R in mm
type 1	60	42	1,4	36	20	15	16	100
type 2	80	52	1,5	46	26	19	19	100
type 3	100	64	1,6	58	32	23	20	100
type 4	120	82	1,5	76	40	29	20	100
type 5	140	95	1,5	89	48	35	20	250
type 6	160	110	1,5	104	58	40	20	250
type 7	190	130	1,5	124	68	46	20	250
type 8	220	160	1,4	154	80	54	25	400
type 9	230	160	1,4	154	84	62	25	400
type 10	250	170	1,5	164	95	70	25	400

tabel 1

5

De diameter van de drukring 3 is (zie ook tabel 1) circa 6 mm kleiner (namelijk B-C) dan de diameter van het schachtelement 2. Dit verschaft een relatief groot hoekstandenbereik voor aanpassing van de hoekstand ook wanneer het schachtelement geheel in het ringelement 1 is geschroefd.

10 Teneinde te verhinderen dat van bovenaf op de stelvoet komend vuil en vocht in de parende schroefdraad 4, 5 kan geraken is het ringelement 1 aan zijn bovenvlak 10 in radiaal buitenwaartse richting taps aflopend onder een hoek β gevormd. Deze hoek β kan liggen in het bereik van 5° tot 15° . Hoe steiler de hoek β des te beter zal vuil en vocht radiaal buitenwaarts van de parende schroefdraad 4, 5 weggeleid worden, echter 15 des te meer zal ook het dragend vermogen van de inwendige schroefdraad 4 aangetast worden indien deze tot bovenin het ringelement doorloopt.

15

20

Figuur 2 toont in wezen ongeveer eenzelfde stelvoet als in figuur 1 echter thans voorzien van een kap 11. Opgemerkt zij dat de kap 11 aan de drukring 34 kan zijn bevestigd maar ook als een geïntegreerd geheel met de drukring 3 zou kunnen zijn gevormd.

25

De kap ligt bij voorkeur verzonken ten opzichte van het bovenvlak van de drukring. Aldus vormt de kap geen onderdeel dat de zogenaamde inrichting 14 hoeft te dragen. De kap kan dan van een ten opzichte van de drukring relatief slap materiaal, zoals kunststof, zijn vervaardigd. De kap 11 heeft primair tot doel enerzijds de parende schroefdraad 4, 5 vanaf de bovenzijde af te dekken en anderzijds de concave en

convexe vlakken 6, 66 tegen binnendringing van vuil en vocht te beschermen. Hiervoor is van belang dat de kap 11 een diameter heeft die groter is dan die van de inwendige schroefdraad 5 of uitwendige schroefdraad 4 (hetgeen op hetzelfde neerkomt) respectievelijk groter is dan de diameter van de drukring. Daartoe volstaat het wanneer 5 de kap 11, beschouwd vanaf de axiale hartlijn 9 zich uitstrekkt tot bijvoorbeeld bij ongeveer pijl Y, dat wil zeggen tot voorbij de parende schroefdraad 4, 5. Om dit te verzekeren zal de diameter van de kap 11 bij voorkeur tenminste 10%, met meer voorkeur tenminste 25% groter zijn dan de diameter van de parende schroefdraad 4, 5. Door de kap 11 een grotere diameter te geven en te voorzien van een neerhangende 10 omtrekswand 12, zodat onder het bovenvlak 13 van de kap en tussen de neerhangende wand 12 een inwendige opneemruimte 32 wordt gevormd, is te bereiken dat ook binnendringing van vuil en/of vocht radiaal van buitenaf bovenlangs het ringelement 1 wordt tegengegaan. Zoals duidelijk zal zijn is hierbij het taps aflopende bovenvlak 10 niet meer direct van belang, alhoewel dit nog wel voordelen biedt. Eventueel zou van 15 het taps aflopende vlak 10 ook kunnen worden afgezien wanneer de kap 11 een diameter heeft die zich slechts uitstrekkt tot ongeveer bij de pijl Y, dat wil zeggen wanneer de kap een diameter heeft die groter is dan de diameter van de parende schroefdraden 4,5.

Figuur 2 toont verder een voetgedeelte 14 van een uitgericht op te stellen 20 inrichting alsmede een van schroefdraad voorziene zeskantbout 15 waarmee die inrichting 14 op de ondergrond 16 is verankerd. De stelvoet in fig. 2 is in de geheel ingedraaide toestand weergegeven, het zal echter duidelijk zijn dat dit bij een uitgericht opgestelde inrichting in de praktijk niet zo vaak voorkomt.

Teneinde te voorkomen dat de kap 11 als getoond in fig. 2 het innemen van een 25 schuine stand van de drukring 3 ten opzichte van het schachtelement 2 belemmert, verdient het volgens de uitvinding de voorkeur wanneer de inwendige hoogte V van de kap 11 circa 95% à 99% van de minimale inbouwhoogte F (waarbij de axiale dikte van de kap 11 buiten beschouwing is gelaten) bedraagt. Daar bij het kantelen van de drukring 3 ten opzichte van het schachtelement 2 de naar beneden stekende wand 12 30 van de kap 11 plaatselijk zal neigen naar het ringelement 1 toe te bewegen verdient het volgens de uitvinding de voorkeur wanneer de inwendige diameter van de kap 11 groter is dan de grootste uitwendige diameter van de overige delen van de stelvoet, in het bijzonder circa 0,5 à 2% groter is dan de grootste van de uitwendige diameters van de

overige delen. De afstand W bedraagt daarbij dan de helft van die genoemde 0,5 à 2% overmaat aan kapdiameter.

Opdat voorkomen wordt dat onder invloed van een in de richting van de axiale hartlijn 9 werkzame belasting het schachtelement 2 ten opzichte van het ringelement 1 naar beneden gedrukt wordt doordat de uitwendige schroefdraad 5 de ineengrijping met de inwendige schroefdraad 4 geheel of gedeeltelijk verliest is het volgens de uitvinding van belang om voor de uitwendige diameter A van het ringelement 1 een diameter te nemen die tenminste 1,4 maal de nominale diameter van de parende schroefdraad B bedraagt. Aldus wordt op betrouwbare wijze verzekerd dat het ringelement 1 in radiale richting niet zozeer kan oplekken dat de inwendige schroefdraad 5 en uitwendige schroefdraad 4 hun ineengrijping plaatselijk verliezen. Opdat de inwendige schroefdraad volledig last dragend tot bovenaan het ringelement 1 kan doorlopen, verdient het hierbij de voorkeur wanneer de hoek β ten hoogste 15° , bijvoorbeeld circa 10° bedraagt.

Teneinde de radiale afmeting van de stelvoet volgens de uitvinding tegelijkertijd minimaal te houden verdient het volgens de uitvinding de voorkeur wanneer de uitwendige diameter van de ringelementen ten hoogste 1,9 maal de diameter van de parende inwendige en uitwendige schroefdraad bedraagt, met meer voorkeur ten hoogste 1,6 maal die diameter van de parende inwendige en uitwendige schroefdraad bedraagt.

Zoals uit de figuren 1 en 2 duidelijk zal zijn is met de voorbeschreven maatregelen volgens de uitvinding een in bouwhoogte F zeer dunne stelvoet te realiseren. Het schachtelement 2 kan een maximale hoogte krijgen die gelijk aan of kleiner is dan de maximale axiale hoogte van het ringelement 1. De concave schaal 6 ligt daarbij als het ware geheel verzonken in het door uitwendige schroefdraad 5 omgeven gebied. Dit betekent echter dat het schachtelement 2 minder goed bereikbaar wordt, althans ten opzichte van de bekende stand van de techniek als beschreven in EP 316.283. Teneinde het schachtelement 2 toch nog ten opzichte van het ringelement te kunnen verstellen voorziet de uitvinding in een speciaal gereedschap. Dit zal nader worden toegelicht aan de hand van figuur 3 en figuur 4.

Figuur 3 toont een eerste uitvoeringsvorm van een dergelijk gereedschap 40. Het getoonde gereedschap 40 omvat een van schroefdraad voorziene spanpen 46 met aan het boveneind een bedieningsmoer 50. De spanpen 46 verloopt door een bus 45. Aan

- het ondereind van de bus 45 is een als tweede dragerdeel functionerende tweede klemblokgeleider 41 voorzien. De klemblokgeleider 41 heeft een taps toelopend omtreksvlak. Onder de klemblokgeleider 41 is een als eerste dragerdeel functionerende eerste klemblokgeleider 42 voorzien met eveneens een taps toelopend geleidingsvlak.
- 5 Deze eerste klemblokgeleider 42 is afgesteund op een moer 47. Deze moer 47 is middels een blokkeerpen 48 onverdraaibaar op de pen 46 bevestigd. In omtreksrichting rondom de axiale hartlijn 52 zijn drie klemblokken 43 voorzien. Deze klemblokken 43 worden rond de hartlijn 52 bijeen gehouden door een elastische ring 44. De elastische ring 44 staat onder voorspanning en laat toe dat de klemblokken 43 radiaal naar buiten bewegen tegen een veerkracht in of onder invloed van de veerkracht radiaal naar binnen bewegen. Dit al naar gelang de verandering in de axiale afstand tussen geleidingsdeel 41 en geleidingsdeel 42. Het is van voordeel indien de moer 47 ten opzichte van het geleidingsdeel 42 kan roteren. Een rotatie van de pen 46 ten opzichte van de bus 45 wordt verhinderd door een op de pen 46 voorziene, dwars ten opzichte van de pen verlopende stift 49 die in een in de bus 45 voorziene, axiaal verlopende sleuf is opgenomen. Aan het boveneind van de bus 45 is een afsluitlens 51 voorzien.
- 10 Door nu de moer 50 te verdraaien is de axiale afstand tussen de geleidingsdelen 41 en 42 te veranderen. Wanneer de geleidingsdelen 41 en 42 axiaal naar elkaar toe bewegen, worden de klemblokken 43 radiaal naar buiten gedrukt. Wanneer de geleidingsdelen 41,42 axiaal uit elkaar bewegen zullen de klemblokken 43 onder invloed van de elastische voorspanning van ring 44 radiaal naar binnen bewegen. Het zal de vakman duidelijk zijn hoe het gereedschap 40 is te gebruiken om het schachtelement 2 ten opzichte van het ringelement 1 te verdraaien. Men steekt hiertoe het benedeneind van het gereedschap 40 in de boring 18 zodanig dat de klemblokken 43 zich in de boring bevinden. Vervolgens verdraait men de moer 50 zodanig dat de geleidingsdelen 41 en 42 naar elkaar toe komen totdat de klemblokken 43 voldoende stevig ineengrijpen met de omtrekwand van de boring 18. Vervolgens kan men dan het schachteeldeel 2 verdraaien door het gereedschap 40 vast te houden en het ringelement 1 te verdraaien of omgekeerd het ringelement 1 vast te houden en het gereedschap 40 rond de hartlijn 52 te verdraaien.
- 15
- 20
- 25
- 30

Figuur 4 toont een tweede uitvoering van het gereedschap. Het gereedschap 20 omvat een insteekind 21 dat in axiale richting in de uitsparing 19 in het schachtelement 2 is te steken. Dit insteekind 21 is daartoe voorzien van een soort

vingers 22 (welke eventueel ook tezamen een gesloten huls zouden kunnen vormen). Deze vingers zijn langs een omhoogstekend eind van een bout 17 te steken zodat men eerst de stelvoet 1, 2 op de ondergrond 16 kan plaatsen, terwijl in die ondergrond 16 al een verankeringbout 17 is bevestigd. Aan het ondereind van de vingers 22 zijn 5 aangrijpmiddelen 23 in de vorm van in dit geval klemblokken voorzien. Deze klemblokken 23 laten zich middels een hefboommechanisme, waarvan de vingers 22 deel uitmaken, bedienen. Het hefboommechanisme bestaat in wezen uit de vingers 22 en armen 33, die bij 24 scharnierend aan elkaar zijn bevestigd en waarvan de armen bij 34 scharnierend op een gezamenlijk tweede dragerdeel 25 zijn bevestigd. Bij 35 zijn de 10 vingers 22 voorts scharnierend bevestigd op een gezamenlijk eerste dragerdeel 26. Door nu de dragerdelen 25, 26 ten opzichte van elkaar te bewegen worden de klemblokken 23 radiaal naar buiten of radiaal naar binnen bewogen. Dit ten opzichte van elkaar bewegen van de dragerdelen 25 en 26 is bijvoorbeeld mogelijk door het dragerdeel 25 te bevestigen op een pen 27 waarbij rotatie van dragerdeel 25 ten 15 opzichte van de langshartlijn van de pen 27 mogelijk is en dragerdeel 26 te bevestigen onderaan een bus 28 waardoorheen de pen 27 verloopt. De bus 28 is aan zijn boveneind voorzien van een moerlichaam 29 waardoorheen de pen 27 middels schroefdraad 30 verloopt. Door nu de pen 27 middels de arm 31 te roteren ten opzichte van de bus 28 wordt de beweging van dragerdeel 25 ten opzichte van dragerdeel 26 gerealiseerd.

20 Het zal de vakman duidelijk zijn dat de in figuur 3 en 4 zeer schematisch getoonde gereedschappen slechts voorbeelden van mogelijke uitvoeringsvormen betreffen. Dergelijke gereedschappen zijn namelijk op zeer veel manieren te realiseren. Het voordeel van dergelijke gereedschappen is dat men de boring 18 door het schachtelement 2 niet van een bijzondere vormgeving hoeft te voorzien. Dit kan gewoon zoals gebruikelijk een ronde boring blijven. Echter men zou de boring 18 ook onrond kunnen uitvoeren in welk geval het gereedschap enkel hoeft te zijn voorzien van een insteekind dat zich op een vormsluitende wijze in de onronde boring 18 laat steken. Dit is bijvoorbeeld te realiseren door de onronde boring aan tegenoverliggende zijden van een axiale sleuf te voorzien en het insteekind 21 als het ware plaatvormig 25 uit te voeren, waarbij de einden van de plaat dan aan tegenoverliggende zijden van de boring 18 in de gevormde sleuven wordt opgenomen.

Verwijzend naar figuur 2 van deze aanvrage alsmede naar de figuur van EP 888514, verwijzingsnummer 23, zij opgemerkt dat ook de kap 11 kan samenwerken

met een op het ringelement 1 voorziene schaalverdeling. Omdat bij de onderhavige uitvinding de kap 11 ten opzichte van het ringelement 1 kan kantelen, verdient het bij de onderhavige uitvinding de voorkeur om het ringelement 1 te voorzien van een aantal over de omtrek verdeeld aangebrachte verticale schaalverdelingen of van een zich over de gehele omtrek uitstrekende schaalverdeling. Meerdere schaalverdelingen maakt bovendien ook het aflezen gemakkelijker. De schaalverdeling kan volgens de uitvinding ook een enkele referentielijn omvatten. Deze kan bijvoorbeeld de maximale (uitdraai-)hoogte van de stelvoet aanduiden. Deze maximale uitdraaihoogte zal dan zo zijn bepaald dat de daarbij behorende ineengrijpingslengte van de inwendige en uitwendige Schroefdraad een voldoende dragend vermogen heeft om een vooraf bepaalde ontwerpbelasting ten gevolge van de zogenaamde 'inrichting' te kunnen dragen.

Conclusies

1. Stelvoet voor het uitgericht opstellen van een inrichting, omvattende:

- o een ringelement voorzien van een axiale boring met inwendige schroefdraad;
- 5 o een schachtelement voorzien van met de inwendige schroefdraad parende uitwendige schroefdraad, welk schachtelement, bij in de boring geschroefde toestand, door verdraaiing ten opzichte van het ringelement in axiale richting ten opzichte van het ringelement verstelbaar is;
- o een aan het ringelement of schachtelement voorzien ondersteuningsdeel alsmede
- 10 een drukring, waarbij de drukring en het ondersteuningsdeel elk zijn voorzien van een convex respectievelijk concaaf vlak met in wezen dezelfde krommingsstraal zodanig dat de drukring in hoek ten opzichte van het ondersteuningsdeel verstelbaar is;
- met het kenmerk,
dat het bovenvlak van het ringelement in radiaal buitenwaartse richting aflopend is
- 15 gevormd, en het ondersteuningsdeel is voorzien aan het boveneind van het schachtelement.

2. Stelvoet volgens conclusie 1, waarbij het bovenvlak van het ringelement in radiaal buitenwaartse richting taps afloopt.

3. Stelvoet volgens conclusie 2, waarbij het bovenvlak taps afloopt onder een hoek van circa 5° à 15° ten opzichte van de axiale hartlijn, waarbij deze hoek bij voorkeur ten hoogste circa 12° bedraagt

4. Stelvoet volgens een der voorgaande conclusies, waarbij de stelvoet verder omvat een kap met een diameter groter dan die van de inwendige schroefdraad en/of groter dan de diameter van de drukring.

25 5. Stelvoet voor het uitgericht opstellen van een inrichting, omvattende:

- o een ringelement voorzien van een axiale boring met inwendige schroefdraad;
- o een schachtelement voorzien van met de inwendige schroefdraad parende uitwendige schroefdraad, welk schachtelement, bij in de boring geschroefde toestand, door verdraaiing ten opzichte van het ringelement in axiale richting ten opzichte van het ringelement verstelbaar is;
- o een aan het ringelement of schachtelement voorzien ondersteuningsdeel alsmede een drukring, waarbij de drukring en het ondersteuningsdeel elk zijn voorzien van een convex respectievelijk concaaf vlak met in wezen dezelfde krommingsstraal

zodanig dat de drukring in hoek ten opzichte van het ondersteuningsdeel verstelbaar is;

met het kenmerk.

5 dat de stelvoet verder omvat een kap met een diameter groter dan de diameter van de inwendige schroefdraad en/of groter dan de diameter van de drukring.

6. Stelvoet volgens conclusie 4 of 5, waarbij de diameter van de kap tenminste 10%, in het bijzonder tenminste 25%, groter is dan de diameter van de inwendige schroefdraad respectievelijk de diameter van de drukring.

10 7. Stelvoet volgens een der voorgaande conclusies, waarbij de inwendige diameter van de kap groter is dan de grootste van de uitwendige diameters van de overige delen van de stelvoet, in het bijzonder circa 0,5% à 2 % groter is dan die grootste van de uitwendige diameters van de overige delen.

15 8. Stelvoet volgens een der conclusie 7, waarbij de kap een door de kap omgrensde binnenruimte omvat met een axiale hoogte die groter is dan of gelijk is aan de maximale axiale lengte waarmee het schachtelement uit het ringelement kan uitsteken, althans bestemd is om ten hoogste boven het ringelement uit te steken.

9. Stelvoet volgens conclusie 8, waarbij de kap vanaf de drukring beneden onder de onderste uitwendige omtreksrand van de drukring uitsteekt, bij voorkeur ten minste circa 5 à 10 mm onder die onderste uitwendige omtreksrand uitsteekt.

20 10. Stelvoet volgens conclusie 8 of 9, waarbij de axiale hoogte van de binnenruimte ten hoogste gelijk is aan de axiale hoogte van het geheel van ringelement, schachtelement en drukring bij volledig in elkaar gedraaide inwendige en uitwendige schroefdraad, bij voorkeur kleiner is dan of gelijk is aan 95% à 99% van die maximale hoogte.

25 11. Stelvoet volgens een der voorgaande conclusies, waarbij het boveneind van het schachtelement het ondersteuningsdeel omvat.

12. Stelvoet volgens conclusie 11, waarbij het ondersteuningsdeel geheel binnen een door de diameter van de uitwendige schroefdraad bepaalde contour ligt.

30 13. Stelvoet volgens conclusie 12, waarbij het ondersteuningsdeel tenminste deels, bij voorkeur geheel, verzonken ligt in een door de uitwendige schroefdraad omgeven zone van het schachtelement.

14. Stelvoet volgens een der voorgaande conclusies, waarbij, beschouwd in axiale richting, de hoogte van het tweede steldeel kleiner dan of gelijk is aan de hoogte van

het eerste steldeel, en waarbij, beschouwd in radiale richting, de afmetingen van het tweede steldeel geheel binnen de door de uitwendige schroefdraad bepaalde contour liggen.

15. Stelvoet volgens een der voorgaande conclusies, waarbij de uitwendige diameter van de drukring ten hoogste gelijk is aan de uitwendige diameter van het tweede steldeel.

16. Stelvoet volgens een der voorgaande conclusies, waarbij het ondersteuningsdeel een concaaf vlak omvat en de drukring een convex vlak.

17. Stelvoet volgens een der voorgaande conclusies, waarbij het schachtelement en de drukring van een axiale doorgang voor een spanschroef zijn voorzien.

18. Stelvoet volgens een der voorgaande conclusies, waarbij de axiale doorgang door de drukring een diameter heeft die circa 32% à 48% groter is dan de diameter van de axiale doorgang door het schachtelement.

19. Stelvoet volgens een der voorgaande conclusies, waarbij de axiale lengte van het schachtelement gelijk aan of kleiner dan de axiale hoogte van het ringelement is en waarbij het schachtelement langs geheel zijn axiale lengte van uitwendige schroefdraad is voorzien en/of de inwendige schroefdraad van de axiale boring zich over de gehele axiale hoogte van het ringelement uitstrekkt.

20. Samenstel van een stelvoet volgens een der voorgaande conclusies, een onderbouw, een op die onderbouw uitgericht opgestelde inrichting, alsmede een spanschroef, waarbij de inrichting middels de spanschroef aan de onderbouw verankerd is onder tussenligging van de stelvoet.

21. Samenstel volgens conclusie 20, waarbij het ringelement met een ondervlak op de onderbouw ligt, en waarbij de inrichting aanligt op de drukring of op de kap welke op zijn beurt aanligt op de drukring.

10

Fig 1

Fig 2

10 11 12

W22016

Fig 3

BEST AVAILABLE COPY

1046

1022310

Fig 4

BEST AVAILABLE COPY

1022310