COM 2545 Drill Comparing Orders of Growth 1

Raziel Siegman ()

September 24, 2020

Question 1.

$$\lim_{n \to +\infty} \frac{(2n)^2}{n^2} = 4$$

$$\lim_{n \to +\infty} \frac{(n+1)^2}{n^2} = 1$$

 $\lim_{n \to +\infty} \frac{n^2}{n^2} = 1$ Therefore, when the input size is doubled, it is slower by a factor of 4, and when the input size is increased by 1, it is slower by a factor of 1.

2) n^{3}

$$\lim_{n \to +\infty} \frac{(2n)^3}{n^3} = 8$$
$$\lim_{n \to +\infty} \frac{(n+1)^3}{n^3} = 1$$

$$\lim_{n \to +\infty} \frac{(n+1)^3}{3} = 1$$

Therefore, when the input size is doubled, it is slower by a factor of 8, and when the input size is increased by 1, it is slower by a factor of 1.

3) $100n^2$

$$\lim_{n\to+\infty} \frac{(100)(2n)^2}{100n^2} = 4$$

$$\lim_{n \to +\infty} \frac{(100)(2n)^2}{100n^2} = 4$$

$$\lim_{n \to +\infty} \frac{(100)(n+1)^2}{100n^2} = 1$$

Therefore, when the input size is doubled, it is slower by a factor of 4, and when the input size is increased by 1, it is slower by a factor of 1.

$$\lim_{n \to +\infty} \frac{(2n) \log(2n)}{n \log n} = \lim_{n \to +\infty} \frac{(2n)(2) \frac{1}{2n} + 2 \log(2n)}{n(\frac{1}{n}) + \log n} = \lim_{n \to +\infty} \frac{2 + 2 \log(2n)}{1 + \log n} = \lim_{n \to +\infty} \frac{2(2)(\frac{1}{2n})}{\frac{1}{n}} = 2$$

$$\lim_{n \to +\infty} \frac{(n+1) \log(n+1)}{n \log n} = \lim_{n \to +\infty} \frac{(n+1)(\frac{1}{n+1}) + \log(n+1)}{n(\frac{1}{n}) \log n} = \lim_{n \to +\infty} \frac{\log(n+1)}{\log n} = \lim_{n \to +\infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1$$
Therefore, where the invertex is in a label of the property of the property

$$\lim_{n \to +\infty} \frac{(n+1)\log(n+1)}{n\log n} = \lim_{n \to +\infty} \frac{(n+1)(\frac{1}{n+1}) + \log(n+1)}{n(\frac{1}{n})\log n} = \lim_{n \to +\infty} \frac{\log(n+1)}{\log n} = \lim_{n \to +\infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = 1$$

Therefore, when the input size is doubled, it is slower by a factor of 2, and when the input size is increased by 1, it is slower by a factor of 1.

$$\lim_{n \to +\infty} \frac{2^{2n}}{2^n} = \infty$$

$$\lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2$$

$$\lim_{n \to +\infty} \frac{2^{n+1}}{2^n} = 2$$

Therefore, when the input size is doubled, it is slower by a factor of (up to) infinity, and when the input size is increased by 1, it is slower by a factor of 2.

1

Question 2.

The computer is able to perform $10^{10}(60)(60) = 3.6E13$ operations per hour.

1)
$$n^2$$

 $\sqrt{3.6E13} = 6,000,000$. Therefore, $n = 6,000,000$.

2)
$$n^3$$
 $\sqrt[3]{3.6E13} = 33,019.3$. Therefore, $n = 33,019$.

3) $100n^2$

$$100n^2 = 3.6E13 \rightarrow n^2 = 3.6E11 \rightarrow \sqrt{3.6E11} = 600,000$$
. Therefore, $n = 600,000$.

4) $n \log n$

$$n \log n = 3.6E13 \rightarrow \text{Therefore}, n = 2,889,069,821,506 \text{ (trial and error)}.$$

$$2^{n} = 3.6E13 \rightarrow \log_2 3.6E13 = 45.03$$
. Therefore, $n = 45$.

6)
$$2^{2^n}$$
 $2^{2^n} = 3.6E13 \rightarrow \log_2 3.6E13 = 2^n \rightarrow 45.03 = 2^n \rightarrow \log_2 45.03 = 5.49$. Therefore, $n = 5$.