Định nghĩa 1. Hàm số $f: \mathbb{R}^n \to \mathbb{R}$ được gọi là **lồi** (convex) nếu với mọi $x, y \in \mathbb{R}^n$ và $\theta \in \mathbb{R}$ sao cho $0 \le \theta \le 1$, ta có

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y) \quad (*).$$

Tương tự, ta nói f là:

- **lồi ngặt** (strictly convex) nếu dấu ≤ trong (*) được thay bằng dấu <,
- **lõm** (concave) nếu dấu ≤ trong (*) được thay bằng dấu ≥,
- lõm ngặt (strictly concave) nếu dấu ≤ trong (*) được thay bằng dấu >.

Nhận xét 2.

- Nếu f là hàm lồi (lõm) thì -f là hàm lõm (lồi).
- Về mặt hình học, (*) có nghĩa là đoạn thẳng nối (x, f(x)) và (y, f(y)) luôn nằm trên đồ thị của hàm số f.

Ví dụ 3. Hàm affine vừa lồi vừa lõm.

Mệnh đề 4. Cho $f: \mathbb{R}^n \to \mathbb{R}$ có đạo hàm liên tục đến cấp 2, các phát biểu sau là tương đương:

- (i) f là hàm lồi.
- (ii) $f(y) \ge f(x) + \nabla f(x)^T (y x)$, với mọi $x, y \in \mathbb{R}^n$.
- (iii) $\nabla^2 f(x) \ge 0$ ($\nabla^2 f(x)$ là ma trận nửa xác định dương), với mọi $x \in \mathbb{R}^n$.

Tương tự, các phát biểu sau là tương đương:

- (i) f là hàm lõm.
- (ii) $f(y) \le f(x) + \nabla f(x)^T (y x)$, với mọi $x, y \in \mathbb{R}^n$.
- (iii) $\nabla^2 f(x) \leq 0$ ($\nabla^2 f(x)$ là ma trận nửa xác định âm), với mọi $x \in \mathbb{R}^n$.

Nhận xét 5.

- Ta đã biết $f(x) + \nabla f(x)^T (y x)$ là xấp xỉ Taylor bậc nhất của f tại x. Do đó (ii) có nghĩa là xấp xỉ Taylor bậc nhất luôn là **ước lượng dưới** (underestimator) của hàm f.
- Cũng từ (ii) nếu $\nabla f(x)^T = \mathbf{0}$ thì $f(y) \ge f(x)$ với mọi $y \in \mathbb{R}^n$ nên x là một **điểm cực tiểu toàn** cục (global minimum point) mà tại đó hàm f nhận **giá trị nhỏ nhất** (minimum value).

• (iii) cho phép ta kiểm tra tính lồi (lõm) của hàm số bằng các kĩ thuật của đại số tuyến tính.

Ví dụ 6. Cho $A \in \mathbb{R}^{n \times n}$ là ma trận đối xứng ($A^T = A$), $\mathbf{b} \in \mathbb{R}^n$, $\mathbf{c} \in \mathbb{R}$, hàm số $f : \mathbb{R}^n \to \mathbb{R}$ được xác định bởi

$$f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

được gọi là hàm bậc hai (quadratic function).

۷ì

$$\nabla f(\mathbf{x}) = 2A\mathbf{x} + \mathbf{b}, \qquad \nabla^2 f(\mathbf{x}) = 2A$$

Nên ta có

- f lồi khi và chỉ khi A nửa xác định dương ($A \ge 0$),
- f lồi ngặt khi và chỉ khi A xác định dương (A > 0),
- f lõm khi và chỉ khi A nửa xác định âm ($A \le 0$),
- f lõm ngặt khi và chỉ khi A xác định âm (A < 0).

Ví dụ 7. Hàm số $f: \mathbb{R}^n \to \mathbb{R}$ được xác định bởi

$$f(\mathbf{x}) = \|\mathbf{x}\|^2$$

là hàm lồi ngặt vì ta có

$$f(x) = ||x||^2 = x^T x = x^T I_n x$$

với I_n là ma trận đơn vị cấp n nên $\nabla^2 f(x) = 2I_n > 0$. Điểm cực tiểu duy nhất của hàm số chính là nghiệm duy nhất của hệ PTTT

$$\nabla f(\mathbf{x}) = 2I_n \mathbf{x} = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}.$$

Ví dụ 8. Khảo sát tính lồi/lõm và tìm các điểm cực trị toàn cục (nếu có) của hàm số 3 biến sau

$$f(x_1, x_2, x_3) = x_1^2 + x_2^2 + x_3^2 - x_1 x_2 + x_1 x_3 + 2x_1 - 6x_3 + 5.$$

Định nghĩa 9. Cho $A \in \mathbb{R}^{m \times n}$ và $\pmb{b} \in \mathbb{R}^m$, bài toán tìm $\widehat{\pmb{x}} \in \mathbb{R}^n$ để

minimize
$$||Ax - b||^2$$

được gọi là **bài toán bình phương tối tiểu** (least squares problem). Vector $\mathbf{r} = A\mathbf{x} - \mathbf{b} \in \mathbb{R}^m$ được gọi là **phần dư** (residual) và $\hat{\mathbf{x}}$ được gọi là nghiệm của bài toán.

Nhận xét 10.

- $||A\mathbf{x} \mathbf{b}||^2 = ||\mathbf{r}||^2 = r_1^2 + r_2^2 + \dots + r_m^2 = (a_1^T \mathbf{x} b_1)^2 + (a_2^T \mathbf{x} b_2)^2 + \dots + (a_m^T \mathbf{x} b_m)^2$, với $a_i^T \in \mathbb{R}^n$ là dòng thứ i của ma trận A.
- $A\mathbf{x} = x_1a_1 + x_2a_2 + \dots + x_na_n$, với $a_j \in \mathbb{R}^m$ là cột thứ j của ma trận A ($A\mathbf{x}$ là một tổ hợp tuyến tính của các cột của A).
- Khi \boldsymbol{b} là một tổ hợp tuyến tính của các cột của A thì $\hat{\boldsymbol{x}}$ là nghiệm của hệ PTTT $A\boldsymbol{x} = \boldsymbol{b}$, khi đó $\hat{\boldsymbol{r}} = A\hat{\boldsymbol{x}} \boldsymbol{b} = \boldsymbol{0}$ và $||A\hat{\boldsymbol{x}} \boldsymbol{b}||^2 = 0$.
- Khi \boldsymbol{b} không là một tổ hợp tuyến tính của các cột của A thì hệ PTTT $A\boldsymbol{x} = \boldsymbol{b}$ vô nghiệm, khi đó $||A\widehat{\boldsymbol{x}} \boldsymbol{b}||^2 > 0$ nhưng $A\widehat{\boldsymbol{x}}$ là "xấp xỉ tốt nhất" của \boldsymbol{b} ($A\widehat{\boldsymbol{x}} \approx \boldsymbol{b}$) theo nghĩa phần dư $\hat{\boldsymbol{r}} = A\widehat{\boldsymbol{x}} \boldsymbol{b}$ có chuẩn nhỏ nhất.

Ví dụ 11. Cho

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}.$$

Hệ PTTT $Ax = \mathbf{b}$ vô nghiệm vì $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ không là tổ hợp tuyến tính của $\begin{bmatrix} 2 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$.

Bài toán bình phương tối tiểu

minimize
$$||Ax - b||^2$$
 là minimize $(2x_1 - 1)^2 + (-x_1 + x_2)^2 + (2x_2 + 1)^2$

có nghiệm là (tìm bằng công thức bên dưới) $\hat{\pmb{x}} = \left(\frac{1}{3}, -\frac{1}{3}\right)$ với phần dư $\hat{\pmb{r}} = A\hat{\pmb{x}} - \pmb{b} = \left(-\frac{1}{3}, -\frac{2}{3}, \frac{1}{3}\right)$ và $\|\hat{\pmb{r}}\|^2 = \frac{2}{3}$.

Không có trường hợp x nào cho phần dư có chuẩn nhỏ hơn $\|\hat{r}\| = \sqrt{\frac{2}{3}}$. Chẳng hạn, với $\tilde{x} = \left(\frac{1}{2}, -\frac{1}{2}\right)$ ta có $\tilde{r} = A\tilde{r} - b = (0, -1, 0)$ và $\|\tilde{r}\| = 1$.

Mênh đề 12. Nghiêm \hat{x} của bài toán bình phương tối tiểu

minimize
$$||Ax - b||^2$$

thỏa

$$A^T A \hat{\boldsymbol{\chi}} = A^T \boldsymbol{b}.$$

Trường hợp các cột của A độc lập tuyến tính (A có hạng là n) thì A^TA khả nghịch nên

$$\widehat{\boldsymbol{\chi}} = (A^T A)^{-1} A^T \boldsymbol{b} = A^{\dagger} \boldsymbol{b}.$$

là nghiệm duy nhất của bài toán.

Ma trận $A^{\dagger}=(A^TA)^{-1}A^T$ được gọi là ma trận **giả nghịch đảo** (pseudo-inverse) của A. Nhận xét, khi A là ma trận vuông khả nghịch thì $A^{\dagger}=(A^TA)^{-1}A^T=A^{-1}(A^T)^{-1}A^T=A^{-1}$ và $\widehat{\boldsymbol{x}}=A^{\dagger}\boldsymbol{b}=A^{-1}\boldsymbol{b}$ là nghiệm duy nhất của hệ PTTT $A\boldsymbol{x}=\boldsymbol{b}$.

Chứng minh 13. Với $A \in \mathbb{R}^{m \times n}$ và $\mathbf{b} \in \mathbb{R}^m$, xét hàm số $f: \mathbb{R}^n \to \mathbb{R}$ được xác định bởi

$$f(\mathbf{x}) = \|A\mathbf{x} - \mathbf{b}\|^2.$$

Ta có

$$f(x) = ||Ax - b||^2 = (Ax - b)^T (Ax - b) = (x^T A^T - b^T)(Ax - b)$$

= $x^T A^T Ax - x^T A^T b - b^T Ax + b^T b = x^T (A^T A)x - (2b^T A)x + b^T b$.

Do đó

$$\nabla f(x) = 2(A^T A)x - (2b^T A)^T = 2(A^T A)x - 2A^T b \text{ và } \nabla^2 f(x) = 2(A^T A).$$

Do $\mathbf{h}^T \nabla^2 f(\mathbf{x}) \mathbf{h} = 2(\mathbf{h}^T (A^T A) \mathbf{h}) = 2((\mathbf{h}^T A^T) (A \mathbf{h})) = 2((A \mathbf{h})^T (A \mathbf{h})) = 2\|A\mathbf{h}\|^2 \ge 0$ với mọi $\mathbf{h} \in \mathbb{R}^n$ nên $\nabla^2 f(\mathbf{x})$ là ma trận nửa xác định dương với mọi $\mathbf{x} \in \mathbb{R}^n$. Như vậy f là hàm lồi nên đạt giá trị nhỏ nhất tại $\hat{\mathbf{x}}$ là nghiệm của hệ PTTT

$$\nabla f(\mathbf{x}) = 2(A^T A)\mathbf{x} - 2A^T \mathbf{b} = \mathbf{0} \Leftrightarrow A^T A \widehat{\mathbf{x}} = A^T \mathbf{b}.$$

Ví dụ 14 (tiếp Ví dụ 11). Với

$$A = \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix}, \qquad \boldsymbol{b} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix},$$

Ta có

$$A^{T}A = \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix} = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}, (A^{T}A)^{-1} = \begin{bmatrix} \frac{5}{24} & \frac{1}{24} \\ \frac{1}{24} & \frac{5}{24} \end{bmatrix},$$

$$A^{\dagger} = (A^{T}A)^{-1}A^{T} = \begin{bmatrix} \frac{5}{24} & \frac{1}{24} \\ \frac{1}{2} & \frac{5}{24} \end{bmatrix} \begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{5}{12} & -\frac{1}{6} & \frac{1}{12} \\ \frac{1}{12} & \frac{5}{12} & \frac{5}{12} \end{bmatrix},$$

$$\begin{bmatrix} \frac{1}{24} & \frac{5}{24} \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{12} & \frac{1}{6} \\ \frac{5}{12} & -\frac{1}{12} & \frac{1}{12} \end{bmatrix} \begin{bmatrix} \frac{1}{12} & \frac{1}{12} \end{bmatrix}$$

$$\hat{\mathbf{x}} = A^{\dagger} \mathbf{b} = \begin{bmatrix} \frac{5}{12} & -\frac{1}{6} & \frac{1}{12} \\ \frac{1}{12} & \frac{1}{6} & \frac{5}{12} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}.$$

Ứng dụng 15 (polynomial fitting). Trong mặt phẳng cho 5 điểm có tọa độ

x_i	y_i
-2	9
-1	-1
0	1
1	3
2	17
	-2 -1

Tìm đa thức có bậc không quá k "khớp" các điểm trên.

Giải: (xem file Notebook)

Ta tìm các hệ số a_i của đa thức

$$\hat{y}(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k$$

để $\hat{y}(x)$ "khớp tốt nhất" n=5 điểm trên, nghĩa là

$$\hat{y}(x_i) = a_0 + a_1 x_i + a_2 x_i^2 + \dots + a_k x_i^k \approx y_i \text{ tức là } \hat{r}_i = \hat{y}(x_i) - y_i \approx 0, i = 1, 2, \dots, n.$$

Đặt

$$A = \begin{bmatrix} 1 & x_1 & x_1^2 & \cdots & x_1^k \\ 1 & x_2 & x_2^2 & \cdots & x_2^k \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_n & x_n^2 & \cdots & x_n^k \end{bmatrix} \in \mathbb{R}^{n \times (k+1)}, \qquad \boldsymbol{a} = \begin{bmatrix} a_0 \\ a_1 \\ \vdots \\ a_k \end{bmatrix} \in \mathbb{R}^{k+1}, \qquad \boldsymbol{r} = A\boldsymbol{a} - \boldsymbol{y} \in \mathbb{R}^n.$$

Ta có bài toán bình phương tối tiểu, cụ thể, ta cần tìm vector hệ số a sao cho tổng bình phương "lỗi" sau là nhỏ nhất

$$\sum_{i=1}^{n} (\hat{y}(x_i) - y_i)^2 = \sum_{i=1}^{n} r_i^2 = ||r||^2 = ||Aa - y||^2$$

Khi các hoành độ $x_i (i=1,2,\dots,n)$ phân biệt, ta có các cột của ma trận A là độc lập tuyến tính, do đó vector các hệ số cần tìm là

$$\widehat{\boldsymbol{a}} = (A^T A)^{-1} A^T \boldsymbol{y} = A^{\dagger} \boldsymbol{y}.$$

k = 0:

$$A = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \qquad (A^T A) = n, \qquad (A^T A)^{-1} = \frac{1}{n}, \qquad A^{\dagger} = (A^T A)^{-1} A^T = \begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{bmatrix},$$

$$\hat{\boldsymbol{a}} = A^{\dagger} \boldsymbol{y} = \begin{bmatrix} \frac{1}{n} & \frac{1}{n} & \cdots & \frac{1}{n} \end{bmatrix} \begin{bmatrix} y_1 \\ y_1 \\ \vdots \\ a_n \end{bmatrix} = \frac{\sum_{i=1}^n y_i}{n} = \bar{y} = 5.8$$

Đa thức bậc không (hằng số) khớp tốt nhất (tổng bình phương lỗi tối tiểu) là

$$\hat{v}(x) = \bar{v} = 5.8.$$

k = 1:

$$A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_n \end{bmatrix}, \qquad (A^T A) = \begin{bmatrix} n & \sum_{i=1}^n x_i \\ \sum_{i=1}^n x_i & \sum_{i=1}^n x_i^2 \end{bmatrix} = \begin{bmatrix} 5 & 0 \\ 0 & 10 \end{bmatrix}, \qquad (A^T A)^{-1} = \begin{bmatrix} 0.2 & 0 \\ 0 & 0.1 \end{bmatrix},$$

$$\widehat{\boldsymbol{a}} = A^{\dagger} \boldsymbol{y} = \begin{bmatrix} 5.8 \\ 2 \end{bmatrix}$$

Đa thức bậc nhất (đường thẳng) khớp tốt nhất là

$$\hat{y}(x) = 5.8 + 2x.$$

k = 2:

$$A = \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix}, \qquad \mathbf{y} = \begin{bmatrix} 9 \\ -1 \\ 1 \\ 3 \\ 17 \end{bmatrix}$$

Đa thức bậc hai (parabol) khớp tốt nhất là

$$\hat{y}(x) = -1.05714286 + 2x + 3.42857143x^2.$$

Các đa thức bậc cao hơn (xem Notebook).

Vì có 5 điểm nên đa thức bậc 4 sau "đi qua" 5 điểm (không lỗi)

$$\hat{y}(x) = 1 + 2x - x^2 + x^4.$$