EE Qualifying Examination

January 2006

Yoshihisa Yamamoto

- 1. A linear amplifier enhances the signal and noise powers by the same gain factor. In addition, amplifier internal noise is added to the output signal and so the signal-to-noise ratio is always degraded by linear amplification. Why is a linear amplifier used in optical communication systems?
- 2. A nonlinear regenerator reproduces a clean signal pulse from a distorted signal pulse. The signal-to-noise ratio of the output pulse is larger than that of the input pulse. However, there is a price we have to pay. What is the cost we have to pay for improving the signal-to-noise ratio in a nonlinear regenerator?

Qualifying Exam Questions

January 11 – 15, 2010

Yoshi Yamamoto

What are thermal noise and quantum noise in physical systems? You can choose any one of the following systems and describe the origins of those fluctuations.

- 1. Simple macroscopic conductor
- 2. Mesoscopic conductor under ballistic regime
- 3. pn junction under either forward or reverse bias
- 4. Tunnel junction
- 5. Laser/maser
- 6. Parametric oscillator
- 7. Mechanical oscillator
- 8. Bose-Einstein condensation

Qualifying Exam Questions

January 11 – 15, 2010

Yoshi Yamamoto

What are thermal noise and quantum noise in physical systems? You can choose any one of the following systems and describe the origins of those fluctuations.

- 1. Simple macroscopic conductor
- 2. Mesoscopic conductor under ballistic regime
- 3. pn junction under either forward or reverse bias
- 4. Tunnel junction
- 5. Laser/maser
- 6. Parametric oscillator
- 7. Mechanical oscillator
- 8. Bose-Einstein condensation

EE QUALIFYING EXAMINATION

January 23 – 27, 2012

Yoshihisa Yamamoto

1.	What is the difference be	etween	amplifiers	and oscill	lators?
	Discuss the difference in	terms o	of external	pumping	levels
	with respect to oscillation	n thresh	nold and ap	plication	S.

2. What is the difference between negative conductance oscillators/amplifiers and nonlinear susceptance oscillators/amplifiers?

3. What is the difference between pre-amplifiers and on-line amplifiers?