

Principal components of distributional SD

A. Irpino, R. Verde ESTP Cologne 14-16 May 2024

Principal Component Analysis of distributional data

We use the HistDAWass R package for showing the main procedures.

```
1 # install.packages("HistDAWass",dependencies = T) #Installing the first time
2 library(HistDAWass)
```

The main procedures available for the PCA are:

- WH.1d.PCA for the analysis of a single distributional variable.
- WH.MultiplePCA for analysing more than one distributional variable.

The Ozone dataset

The dataset contains MatH (matrix of histogram-valued data) object This data set list 78 stations located in the USA recording four variables, without missing data.

```
$nrows
1 get.MatH.main.info(OzoneFull)
                                       [1] 78
                                       $ncols
                                       [1] 4
                                       $rownames
                                        [1] "I1" "I2" "I3" "I4" <u>"</u>I5" "I6" "I7" "<u>I</u>8" "<u>I</u>9" "I10" "<u>I</u>11" "I12"
                                            "I13" "I14" "I16" "I17" "I18" "I19" "I20" "I21" "I22" "I23"
                                            "I26" "I27" "I28" "I30" "I32" "I33" "I34" "I36" "I37"
                                       [37] "I41" "I42" "I43" "I44" "I45" "I46" "I47" "I48" "I49" "I50" "I51" "I52"
                                            "I53" "I54" "I56" "I57" "I58" "I59" "I60" "I61" "I62" "I63" "I64" "I66"
                                           "167" "168" "169" "170" "171" "172" "173" "174" "175" "176" "177" "178"
                                       [73] "179" "180" "181" "182" "183" "184"
                                       $varnames
                                                                     "Temperature.C"
                                       [1] "Ozone.Conc.ppb"
                                                                                                "Solar.Radiation.WattM2"
```

[4] "Wind.Speed.mSec"

The data

1d PCA: the analysis of Ozone COncentration ppb

1 OZ 1d PCA<-WH.1d.PCA(OzoneFull,1,quantiles=20)

We do a PCA on variable ---> Ozone.Conc.ppb

Let's see the scree plot and the first plane

Stations on the first plane

Interpreting PCs

The Spanish fan plot for variable correlation

Stations on the first plane

PCA of all the variables

Now we take into consideration all the four variables and we start performing the multiple PCA using the function WH.MultiplePCA

```
1 OZ_PCA<-WH.MultiplePCA(data=OzoneFull, list.of.vars = c(1:4), quantiles = 20)
```

The code executes a Multiple PCA and produces a set of textual and graphical outputs. The code make use of the FactoMiner package which is specialized for dimension reduction techniques and the output interpretation.

Ouput of the procedure

```
**Results of the Multiple Factor Analysis (MFA) **
The analysis was performed on 78 individuals, described by 84 variables
*Results are available in the following objects:
                       description
  name
                       "eigenvalues"
1 "$eiq"
2 "$separate.analyses" "separate analyses for each group of variables"
3 "$group"
                       "results for all the groups"
4 "$partial.axes"
                       "results for the partial axes"
5 "$inertia.ratio"
                       "inertia ratio"
6 "$ind"
                       "results for the individuals"
7 "$quanti.var"
                       "results for the quantitative variables"
8 "$summary.quanti"
                       "summary for the quantitative variables"
9 "$global.pca"
                       "results for the global PCA"
```

The analysis of the eigenvalues: the scree-plot

The plot of individuals (the 78 stations) on the first plane

The plot(s) of variables on the first plane: the spanish fun plots

Some comments:

- The horizontal direction is highly correlated with the Ozone and solar radiation. And both, Ozone and Solar Radiation, are highly and positively correlated.
- The vertical dimension is more related to the Temperature.
- Temperature is rather uncorrelated to the Wind Speed (The two fans are almost at 90 degrees).
- Wind Speed is moderately and positively correlated with the Ozone, but the correlation decrease from the minimum of the wind speed to the maximum.

The plot of distributions for each variable 1

The plot of distributions for each variable 2

Tools for the interpretation of axes: plots of COS2 and correlations

The quality of representation of individuals

The size of the balls is proportional to the quality of representation of points on the plane

Conclusions

- PCA for distributional data allows to discover more patterns in the data with recpect to the PCA on points;
- If data are intervals, you can consider them as uniform distributions, namely, a histogram with just one bin;
- If distributions have a discrete domain, it is easy to generalize the method.
- If distributions has a nomimal support, you can't use PCA (other methods are available).