Problem

For any string $w = w_1 w_2 \cdots w_n$, the **reverse** of w, written w^R , is the string w in reverse order, $w_n \cdots w_2 w_1$. For any language A, let $A^R = \{w^R | w \in A\}$. Show that if A is regular, so is A^R .

Step-by-step solution

Step 1 of 3

Let $M = (Q, \Sigma, \delta, q_0, F)$ be the DFA that recognizes A,

Now we build a NFA M' for A^R as follows:

- \bullet Reverse all the arrows of M
- \bullet Convert the start state for M as the only accept state $\ q^{\,\prime}_{\,\, accept}$ for $\,\, M'$.
- Add a new start state q_0' for M', and from q_0' , add \in -transitions to each state of M' corresponding to accept states of M.

M

Comment

Step 2 of 3

M':

Comment

Step 3 of 3

Here $q_0' = q_{accept}'$

- For any $w \in \Sigma^*$, there is a path following w from the start state to an accept sate in M iff there is a path following w^R from q_0' to q_{accept}' in M'
- $\bullet \text{ That means that } \ w \in A \text{ iff } \ w^R \in A^R \,.$

Comments (1)