

Developing a Control System to achieve a Profitable Strategy in the crypto market

Fatemeh Rafiee Benyamin Behbudi

Supervisors:

Dr. Mohammad Bagher Menhaj Dr. Amir Abolfazl Suratgar

Amirkabir University of Technology

Outline

01

Introduction and Problem Statement

03

Enhancing System
Performance

02

Methodology and System Development

04

Results and Conclusion

Trading Concepts

Candles and Charts

- Color
- OHLC
- Timeframe

Cryptocurrency Market

- Coin Market Cap
- Tradingview
- Binance

+340M

Monthly Visitors

Largest market aggregator and price tracking platform

Cryptocurrency Market

- Coin Market Cap
- Tradingview
- Binance

+50M

Traders and Investors

Charting Platform

Cryptocurrency Market

- Coin Market Cap
- Tradingview
- Binance

\$76 billion

Daily trading volume

World's largest crypto exchange

Literature Review

O1

Price Prediction

Predicting the exact price of a coin

02

Price Direction Prediction

Binary classification of candles

03

Control Based

Use of PI and LQR

Methodology

System Design

Defining system modules

Minimizing the cost function

Using control methods

Equation Determination

System identification methods

Validating results

Comparing with previous results

Choosing the Coin

☐ Comparing coins

☐ MATIC is 15th coin

Based on the Market Cap

Volatility

Features

Date	Take Profit	Stop Loss	TP category	Ratio	Difference	Volatility	Profit
2020-10-27 7:01:00	0.93%	1.50%	35	0.62041	2.4306	3	\$46.79
2020-10-28 7:01:00	0.91%	1.50%	35	0.60665	2.4100	4	\$128.46
2020-10-29 7:01:00	0.91%	1.50%	35	0.60959	2.4144	3	\$187.26
2020-10-30 7:01:00	0.94%	1.50%	35	0.62417	2.4363	3	\$226.93
2020-10-31 7:01:00	1.04%	1.50%	35	0.69275	2.5391	3	\$132.67
2023-07-28 7:01:00	0.20%	6.00%	75	0.03411	6.2047	2	-\$215.32
2023-07-29 7:01:00	0.20%	6.00%	75	0.03411	6.2047	1	-\$215.32
2023-07-30 7:01:00	0.20%	6.00%	75	0.03411	6.2047	1	-\$215.32

System Schematic

Strategy Module

Inputs:

- Take Profit (Dynamic)
- Stop Loss
- Time Limit
- Signal

Output:

- Orders (Buy/Sell)
- Profit

System Schematic

Volatility Extractor

$$len = \frac{high-low}{open \le close \cdot low + open > close \cdot high}$$

$$m inc100 = rac{max_{100}(high_{-100})-close}{close}$$

To TP module

$$ext{len}_{w1} = rac{1}{w1} \sum_{i=-w1+1}^{0} ext{len}_i$$

To Signal Module

To MPC Module

System Schematic

Signal Module

Inputs OHLC data → Volatility Configs

System Schematic

Take Profit (TP) Module

Inputs Backward Volatility List Configs

Output TP % of the volatility

Take Profit (TP) Equations

$$1 \qquad len = \frac{ \underset{\mathrm{open} \leq \mathrm{close} \cdot \mathrm{low} + \mathrm{open} > \mathrm{close} \cdot \mathrm{high}}{\mathrm{high}}$$

$$\log 2$$
 $\operatorname{len}_{10} = rac{1}{10} \sum_{i=-9}^{0} \operatorname{len}_{i}$

inc100 =
$$\frac{\max_{100}(\text{high}_{-100}) - \text{close}}{\text{close}}$$

$$\boxed{4} \qquad TP = \mathrm{inc} 100 (10,\mathrm{ds}) \cdot P\%$$

System Identification Methods

System Identification Methods

SINDy algorithm (Sparse Identification of Nonlinear Dynamics)

Lasso Regression: $Min(sum\ of\ squared\ residuals + \alpha * |slope|)$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}^{T}(t_1) \\ \mathbf{x}^{T}(t_2) \\ \vdots \\ \mathbf{x}^{T}(t_m) \end{bmatrix} = \begin{bmatrix} x_1(t_1) & x_2(t_1) & \cdots & x_n(t_1) \\ x_1(t_2) & x_2(t_2) & \cdots & x_n(t_2) \\ \vdots & \vdots & \ddots & \vdots \\ x_1(t_m) & x_2(t_m) & \cdots & x_n(t_m) \end{bmatrix} \downarrow \text{time}$$

$$\Theta(\mathbf{X}) = \begin{bmatrix} \begin{vmatrix} & & & & \\ 1 & \mathbf{X} & \mathbf{X}^{P_2} & \mathbf{X}^{P_3} & \cdots & \sin(\mathbf{X}) & \cos(\mathbf{X}) & \cdots \end{bmatrix}$$

$$\dot{\mathbf{X}} = \Theta(\mathbf{X})\Xi.$$

System Equations

$$p_{1(k+1)} = 4.5p_{1(k)}.sl - 0.1p_{1(k)} + 165061.5\ sl^2 + 42.5sl.tp - 10938.6sl - 0.1tp + 98.8$$

$$p_{2(k+1)} = 0.1p_{2(k)}.sl - 71275.5sl^2 - 188.5sl.tp + 14002.3sl + 4.1tp - 27$$

$$p_{3(k+1)} = 50777.6 \, sl^2 - 39.3 sl.tp + 136.3 sl + 0.7 tp - 23.$$

$$p_{4^{(k+1)}} = 21.2p_{4^{(k)}}.sl - 0.6p_{4^{(k)}} - 2493396.46\,sl^2 \\ - 1798.8sl.tp + 245808.8sl - 0.1tp^2 + 53.7tp - 4340.8sl - 0.1tp^2 + 53.7tp - 0.1tp^2 + 0.$$

System Equations

 \sim

Relationship between TP, SL, Next Profit

System Identification

SINDy (Sparse Identification of Nonlinear Dynamics)

Control & Optimization Methods

System Schematic

Optimization Method

MPC (Model Predictive Control)

- Handling Nonlinear Systems
- Handles Constraints
- Online Optimization
- High Flexibility

Objective Function = Profit

>> MPC

Objective Function = Profit

SL choices

TP choices

```
volatility = \frac{Rank \ of \ the \ rolling \ window \ of \ 'len\_w1'}{rolling \ window \ size}
```

 $v_{label} = Categorize (volatility, labels = [1, 2, 3, 4])$

Results

>>> Improvement by using MPC (compared to random)

MPC with Risk Management

>>> Improvement by using Risk Manager

>> Random Forest

Strategy Activation Gate

Results

Reducing great loss by using Random Forest

Future Work

Compounding (reinvestment)

Reinvesting the profits earned rather than withdrawing them

> Adding Other Coins

Handling multiple coins in portfolio

Increased Position Size

Exponential growth

Withdrawal Challenges

_ Risk Management

Market Correlations

Complex Implementation

Discussion

References

- Brian D. O. Anderson, John B. Moore; Optimal Control: Linear Quadratic Methods, Dover Publications, 2007.
- MATLAB; What Is System Identification? |System Identification; https://www.youtube.com/watch?v=Z1QS6FsxrJl.
- Steven L. Brunton, Joshua L. Proctor, and J. Nathan Kutz; "Discovering governing equations from data by sparse identification of nonlinear dynamical systems", 10.1073/pnas.1517384113, Princeton University, Aug. 2015.
- Steve Brunton; Sparse Identification of Nonlinear Dynamics: Sparse ML Models; https://www.youtube.com/watch?v=NxAn0oglMVw.

Thank You for Your Time