Potatoes

```
library(tidyverse)
-- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
          1.1.4 v readr
v dplyr
                                  2.1.5
v forcats 1.0.0 v stringr 1.5.1
v ggplot2 3.5.1 v tibble 3.2.1
v lubridate 1.9.3
                                  1.3.1
                    v tidyr
v purrr
          1.0.2
-- Conflicts ----- tidyverse_conflicts() --
x dplyr::filter() masks stats::filter()
x dplyr::lag()
                 masks stats::lag()
i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become
library(spmodel)
library(vroom)
Attaching package: 'vroom'
The following objects are masked from 'package:readr':
    as.col_spec, col_character, col_date, col_datetime, col_double,
    col_factor, col_guess, col_integer, col_logical, col_number,
    col_skip, col_time, cols, cols_condense, cols_only, date_names,
    date_names_lang, date_names_langs, default_locale, fwf_cols,
    fwf_empty, fwf_positions, fwf_widths, locale, output_column,
    problems, spec
```

library(viridis)

```
Loading required package: viridisLite
library(FRK)
Warning: package 'FRK' was built under R version 4.4.3
Attaching package: 'FRK'
The following object is masked from 'package:stats':
    simulate
library(fields)
Loading required package: spam
Spam version 2.11-0 (2024-10-03) is loaded.
Type 'help( Spam)' or 'demo( spam)' for a short introduction
and overview of this package.
Help for individual functions is also obtained by adding the
suffix '.spam' to the function name, e.g. 'help( chol.spam)'.
Attaching package: 'spam'
The following objects are masked from 'package:base':
    backsolve, forwardsolve
Try help(fields) to get started.
df <- vroom('PotatoCWSI.csv')</pre>
Rows: 3889 Columns: 8
-- Column specification -----
Delimiter: ","
dbl (8): POINT_X, POINT_Y, SLOPE, TWI, ASPECT, ECA_SHALLOW, NDVI, CWSI
```

i Specify the column types or set `show_col_types = FALSE` to quiet this message.

i Use `spec()` to retrieve the full column specification for this data.

```
obs <- df %>%
  filter(!is.na(CWSI))
new <- df %>%
  filter(is.na(CWSI))
```

EDA

```
obs %>%
  ggplot(aes(x=POINT_X,y=POINT_Y, color=CWSI)) +
  geom_point() +
  scale_color_viridis()
```



```
# variogram
variogram <- esv(CWSI~., data=obs, xcoord=POINT_X, ycoord=POINT_Y)
plot(variogram)</pre>
```

Empirical Semivariogram

Feature Engineering

```
# Make obs loc matrix
observed_loc_matrix <- matrix(data=cbind(obs$POINT_X,obs$POINT_Y), ncol=2)

## Number of Spatial Features
K <- 20

## "Centers" of Features
## cover.design() choose K centers spread out over spatial region
centers <- cover.design(observed_loc_matrix, nd=K)$design

## Use 1.5 rule of thumb for scale
dist_between_centers <- rdist(centers)
the_scale <- 1.5*max(apply(dist_between_centers,1,function(x){sort(x)[2]}))

## Define spatial features
spatial_features <- local_basis(
manifold=plane(),
loc=centers,
scale=rep(the_scale, K),</pre>
```

```
type="bisquare" #or "Gaussian" or "exp"
)

## Mutate new spatial features in data frame
obs <- obs %>%
    mutate(SpatialFeatures=as.matrix(eval_basis(spatial_features, observed_loc_matrix)))

# Plot
obs %>%
    ggplot(aes(x=POINT_X,y=POINT_Y, color=SpatialFeatures[,12])) +
    geom_point() +
    scale_color_viridis()
```


Model

```
obs.sp <- splm(CWSI~SLOPE+TWI+ASPECT+ECA_SHALLOW+NDVI+SpatialFeatures[,1]+SpatialFeatures[,2]
xcoord=POINT_X, ycoord=POINT_Y)
summary(obs.sp)</pre>
```

Call:

Residuals:

Min 1Q Median 3Q Max -2.2543 -0.4032 -0.1314 0.1753 2.0094

Coefficients (fixed):

		Estimate	Std. Error	z value	Pr(> z)	
(Intercept)		3.0025855	0.7524782	3.990	6.6e-05	***
SLOPE		0.0059379	0.0177375	0.335	0.738	
TWI		0.0023441	0.0133474	0.176	0.861	
ASPECT		0.0002179	0.0003477	0.627	0.531	
ECA_SHALLOW		0.0005355	0.0052826	0.101	0.919	
NDVI		-4.8873120	0.1350701	-36.184	< 2e-16	***
<pre>SpatialFeatures[,</pre>	1]	0.7298364	0.7616013	0.958	0.338	
<pre>SpatialFeatures[,</pre>	2]	0.0544470	0.6432089	0.085	0.933	
<pre>SpatialFeatures[,</pre>	3]	-0.0581519	0.6840561	-0.085	0.932	
<pre>SpatialFeatures[,</pre>	4]	-0.0274428	0.8541085	-0.032	0.974	
<pre>SpatialFeatures[,</pre>	5]	0.4862680	0.5870894	0.828	0.408	
<pre>SpatialFeatures[,</pre>	6]	-0.5598174	0.9798524	-0.571	0.568	
<pre>SpatialFeatures[,</pre>	7]	-0.6117252	0.6037053	-1.013	0.311	
<pre>SpatialFeatures[,</pre>	8]	-0.5796139	0.7498070	-0.773	0.440	
<pre>SpatialFeatures[,</pre>	9]	-0.1678815	0.6721241	-0.250	0.803	
<pre>SpatialFeatures[,</pre>	10]	0.1274221	0.8309479	0.153	0.878	
<pre>SpatialFeatures[,</pre>	11]	-0.0415590	0.5812196	-0.072	0.943	
<pre>SpatialFeatures[,</pre>	12]	0.2837621	0.6381664	0.445	0.657	
<pre>SpatialFeatures[,</pre>	13]	-0.0502747	0.5399202	-0.093	0.926	
<pre>SpatialFeatures[,</pre>	14]	0.9546484	0.6939404	1.376	0.169	
<pre>SpatialFeatures[,</pre>	15]	0.4152727	0.6339386	0.655	0.512	
<pre>SpatialFeatures[,</pre>	16]	0.8469551	0.5781594	1.465	0.143	
<pre>SpatialFeatures[,</pre>	17]	0.0283579	0.7525846	0.038	0.970	
<pre>SpatialFeatures[,</pre>	18]	0.0494055	0.8215509	0.060	0.952	
<pre>SpatialFeatures[,</pre>	19]	0.5591974	0.9579389	0.584	0.559	
<pre>SpatialFeatures[,</pre>	20]	-0.1740933	0.8850562	-0.197	0.844	

Validation

Line Assumptions

Empirical Semivariogram


```
# Normality
ggplot() +
  geom_histogram(mapping = aes(x=std_and_decorr_resid, y=..density..)) +
  stat_function(fun = dnorm, color='blue')
```

Warning: The dot-dot notation (`..density..`) was deprecated in ggplot2 3.4.0. i Please use `after_stat(density)` instead.

`stat_bin()` using `bins = 30`. Pick better value with `binwidth`.


```
# Equal Variance
ggplot() +
  geom_point(mapping = aes(y=std_and_decorr_resid, x=fitted(obs.sp)))
```


Cross Validation

```
cv_sp <- function(fold_num){</pre>
  ## Split into train-validation sets
  validationSet <- obs %>%
    filter(folds==fold_num)
  trainSet <- obs %>%
    filter(folds!=fold_num)
  # Ensure factors have at least two levels (drop unused levels)
  trainSet <- droplevels(trainSet)</pre>
  validationSet <- droplevels(validationSet)</pre>
  ## Fit a model and predict
  trainModel <- splm(CWSI~SLOPE+TWI+ASPECT+ECA_SHALLOW+NDVI+SpatialFeatures[,1]+SpatialFeature
xcoord=POINT_X, ycoord=POINT_Y, local=TRUE)
  preds <- predict(trainModel, newdata=validationSet)</pre>
  ## Validate the predictions
  rmse <- yardstick::rmse_vec(truth=validationSet$CWSI, estimate=preds)</pre>
  return(rmse)
K <- 20
folds <- rep(1:K, length = nrow(obs)) %>% #Rep K folds n times
  sample()
## CV for spatial linear model w/ spatial features
rmse_results_splm <- sapply(1:K, FUN=cv_sp) %>%
  unlist()
rmse_results <- data.frame(RMSE = rmse_results_splm)</pre>
ggplot(rmse_results, aes(x=RMSE)) +
  stat_density(geom="line",position="identity")
```


average rmse across folds
mean(rmse_results_splm)

[1] 0.1569842

standard deviation (approximate errror if we just predicted the mean for everything)
sd(obs\$CWSI) # about 4 times worse than our model

[1] 0.6007423

R-Squared

pseudoR2(obs.sp)

[1] 0.4082934

Save Model

```
saveRDS(obs.sp, 'PotatoModel.rds')
```

Predict to New Locations

```
# Make obs loc matrix
new_loc_matrix <- matrix(data=cbind(new$POINT_X,new$POINT_Y), ncol=2)</pre>
## Number of Spatial Features
K <- 20
## "Centers" of Features
## cover.design() choose K centers spread out over spatial region
centers <- cover.design(new_loc_matrix, nd=K)$design</pre>
## Use 1.5 rule of thumb for scale
dist_between_centers <- rdist(centers)</pre>
the_scale <- 1.5*max(apply(dist_between_centers,1,function(x){sort(x)[2]}))</pre>
## Define spatial features
spatial_features <- local_basis(</pre>
manifold=plane(),
loc=centers,
scale=rep(the_scale, K),
type="bisquare" #or "Gaussian" or "exp"
## Mutate new spatial features in data frame
new <- new %>%
  mutate(SpatialFeatures=as.matrix(eval_basis(spatial_features, new_loc_matrix)))
# Read in model
sp_model <- readRDS('PotatoModel.rds')</pre>
# Save predictions
new$preds <- predict(sp_model, newdata = new)</pre>
# Plot predictions
```

```
new %>%
  ggplot(aes(x=POINT_X,y=POINT_Y, color = preds)) +
  geom_point() +
  scale_color_viridis()
```

