Assignment

Write a code in MATLAB that will

- 1. Take system data in the prescribed format (see next page)
- 2. Obtain bus admittance (Y_{bus}) matrix of the given system.
- 3. Carry out Newton-Raphson Load Flow on the given system by
 - (i) Computing the mismatch vector and jacobian matrix in each iteration
 - (ii) Finding the correction vector. (Do not invert the jacobian matrix, instead use Gaussian Elimination).
 - (iii) Updating the variables and checking for convergence
- 4. After convergence, print the following in the workspace
 - (a) Bus voltage magnitude (p.u.) and angle (deg),
 - (b) Active and reactive power injections at all the buses
 - (c) Reactive power generation at the P-V buses
- (d) The complex power flow through the lines (both from sending end and from receiving end)
 - The code should be general so that it can accept and work with data for system of any size (provided given in the prescribed format).
 - Data of a 2-machine, 6-bus power system systems is provided in the next page to show the format.
 - Please stick to the variable names specified in order to maintain uniformity.

Six-bus system data

General Data:

No of buses (variable name 'nbs'): 6;

No of machines (variable name 'nmc'): 2

Bus data (variable name 'bus_dat'):

Bus	Bus	Voltage	Angle	P_g	Q_g	P_L	Q_L
No.	type	(p.u.)	(deg)	(MW)	(MVAR)	(MW)	(MVAR)
1	101	1.00	0	0	0	0.55	0.13
2	101	1.00	0	0	0	0	0
3	101	1.00	0	0	0	0.30	0.18
4	101	1.00	0	0	0	0.50	0.05
5	102	1.03	0	0.75	0	0.30	0.10
6	103	1.02	0	0	0	0	0

101: P-Q bus; 102: P-|V| bus; 103: |V|-θ bus

Branch data ('line_dat'):

From bus	To bus	Resistance r (p.u.)	Reactance x (p.u.)	Line Charging B (p.u.)	ONR
6	2	0.080	0.370	0.280	1.000
6	4	0.123	0.518	0.400	1.000
5	1	0.723	1.050	0.200	1.000
5	3	0.282	0.640	0.300	1.000
2	4	0.097	0.407	0.240	1.000
2	1	0.0	0.133	0.000	1.050
4	3	0.0	0.300	0.000	1.025