How to map billions of short reads onto genomes

Methods in Bioinformatics

Student Presentation Group 4

October 30th, 2013

Next-Generation Sequencing

- ➤ A variety of sequencing-based assays:
- gene expression
- DNA-protein interaction
- human re-sequencing
- RNA splicing studies
- Examples: RNA-Seq, ChIP-Seq

Bridge amplification Billions of primed, single-molecule templates

Nature Reviews | Genetics

Metzker. Nature Reviews 2010 Volume 11: 31-46

Genome Assembly

Scientific Question

- Short sequence fragments produced by nextgeneration sequencing platforms are quite large.
- Mapping the vast quantities of data is a challenge.
- 'read mapping' problem
- What programs are available and how do they work?

Challenges of mapping short reads

How fast can The first challenge is a practical one: we align the reads? Large Reference Genome Billions of Reads Extraordinarily Efficient Algorithms Optimally Usage of Memory

Genome Assembly & Mapping Problem

Sometimes, size does matter!

© Copyright 2012 Center for Bioinformatics, Peking University

Challenges of mapping short reads

> The second challenge is a strategic:

Which copy of the reads belongs to?

Repetitive Element Reads

Multiple possible locations

A Heuristic location

More Sequencing Errors or Variations

Spliced Mapping Problems

Alignment Programs

- > Traditional alignment algorithms:
- BLAST (Basic Local Alignment Search Tool)
- BLAT (The BLAST-Like Alignment Tool)
- > New generation alignment programs:
- E.g. ELAND program from Illumina

► Third-party software packages:

Program Website		Open source? Handles ABI color space? Maximum read length		
Bowtie	http://bowtie.cbcb.umd.edu	Yes	No	None
BWA	http://maq.sourceforge.net/bwa-man.shtml	Yes	Yes	None
Maq	http://maq.sourceforge.net	Yes	Yes	127
Mosaik	http://bioinformatics.bc.edu/marthlab/Mosaik	No	Yes	None
Novoalig	n http://www.novocraft.com	No	No	None
SOAP2	http://soap.genomics.org.cn	No	No	60
ZOOM	http://www.bioinfor.com	No Copyrig	Yes sht © Peking University	240

Limitations and Open Problems

- The current solutions for short-read mapping all have limitations.
- Many challenges and questions remain for developers of read mapping software:
- Will the short-read mapping programs scale well as the reads get longer?
- How should a program's parameters be adjusted, and can that adjustment happen automatically?
- How useful is mapping quality in downstream analysis, and should it be computed while aligning reads, as Maq does, or later?

Acknowledgments

- > All the members of Group 4:
- Xiqian Chen 陈西茜
- Dongqing Jiang 姜冬青
- Yuechen Liu 刘悦晨
- Yaping Wang 王雅萍
- Yixi Xu 徐毅曦
- Han Yan 闫晗
- Li Zhou 周莉
- Wenxiong Zhou 周文雄
- Yuxin Zhuang 莊宇新

- > Our teacher:
- Ge Gao 高歌
- Our teacher assistant:
- Meng Wang 王萌