

Contents to volume 115

Computational physics

Simos, T.E.	
An exponentially-fitted Runge-Kutta method for the numerical integration of initial-value problems with periodic or oscillating solutions	1
Decyk, V.K., C.D. Norton and B.K. Szymanski How to support inheritance and run-time polymorphism in Fortran 90	9
Wei, G.W., D.S. Zhang, S.C. Althorpe, D.J. Kouri and D.K. Hoffman Wavelet-distributed approximating functional method for solving the Navier-Stokes equation	18
Garrido, L. and A. Juste On the determination of probability density functions by using Neural Networks	25
Fulling, S.A., I. Borosh and A. da Conturbia Cataloguing general graphs by point and line spectra	93
Gracey, J.A. Computation of perturbative renormalization group functions – the large N_f algorithm	113
Semenov, A. LanHEP – a package for automatic generation of Feynman rules from the Lagrangian	124
Brücher, L., J. Franzkowski and D. Kreimer xloops – automated Feynman diagram calculation	140
Baikov, P.A. and M. Steinhauser Three-loop vacuum integrals in FORM and REDUCE	161
Fernández, F.M., R. Guardiola and J. Ros Computer algebra and large scale perturbation theory	170
Portugal, R. An algorithm to simplify tensor expressions	215
Klioner, S.A. New system for indicial computation and its applications in gravitational physics	231
Christensen, S.M. Large scale tensor analysis by computer	245
Socorro, J., A. Macías and F.W. Hehl Computer algebra in gravity: Reduce–Excalc programs for (non-)Riemannian space-times. I	264

Jakubi, A.S.	
Generalized power expansions in cosmology	284
Rutz, S.F. Theorems of Birkhoff type in Finsler spaces	300
Wolf, T. Structural equations for Killing tensors of arbitrary rank	316
d'Inverno, R.A. Applications of SHEEP in General Relativity	330
Koutras, A. and J.E.F. Skea An algorithm for determining whether a space-time is homothetic	350
Jerie, M., J.E.R. O'Connor and G.E. Prince Computer algebra determination of symmetries in general relativity	363
Santosuosso, K., D. Pollney, N. Pelavas, P. Musgrave and K. Lake Invariants of the Riemann tensor for class B warped product space-times	381
Delgaty, M.S.R. and K. Lake Physical acceptability of isolated, static, spherically symmetric, perfect fluid solutions of Einstein's equations	395
Ayari, M.A., M.I. Ayari and V. Hussin Computation of Lie supersymmetries for the supersymmetric two bosons equations	416
Hereman, W., Ü. Göktaş, M.D. Colagrosso and A.J. Miller Algorithmic integrability tests for nonlinear differential and lattice equations	428
Sanders, J.A. and J.P. Wang Combining Maple and Form to decide on integrability questions	447
Mansfield, E.L., G.J. Reid and P.A. Clarkson Nonclassical reductions of a 3 + 1-cubic nonlinear Schrödinger system	460
Aldridge, J.E. and G.E. Prince Computer algebra solution of the inverse problem in the calculus of variations	489
Ablamowicz, R. Spinor representations of Clifford algebras: a symbolic approach	510
Dray, T. and C.A. Manogue Finding octonionic eigenvectors using Mathematica	536
Computer programs in physics	
Berends, F.A., C.G. Papadopoulos and R. Pittau WEXTER and ERAFITTER: two programs to fit M_W at LEP2 using the best measurable kinematical variables	32
Hoyles, M., S. Kuyucak and SH. Chung Solutions of Poisson's equation in channel-like geometries	45
Segura, J. and A. Gil Parabolic Cylinder Functions of integer and half-integer orders for nonnegative arguments	69

Nguyen, NA. and T.T. Nguyen-Dang Symbolic calculations of unitary transformations in quantum dynamics	183
Cyganowski, S. and J. Carminati The Maple package NPTOOLS; a symbolic algebra package for tetrad formalisms in general relativity	200
Gomez, C. and T. Scott Maple programs for generating efficient FORTRAN code for serial and vectorised machines	548
New version announcements	
Torrens, F., M. Rubio and J. Sánchez-Marín AMYR 2: A new version of a computer program for pair potential calculation of molecular associations	87
Abrashkevich, A.G., D.G. Abrashkevich, M.S. Kaschiev and I.V. Puzynin FESSDE 2.2: A new version of a program for the finite-element solution of the coupled-channel Schrödinger equation using high-order accuracy approximations	90