メタボローム解析の紹介

2016年1月27日 統合データベース講習会: AJACS薩摩(鹿児島大学医学部)

櫻井 望

公益財団法人かずさDNA研究所 技術開発研究部 メタボロミクスチーム

メタボロミクス

代謝産物を網羅的に検出する技術

オーム科学: 全体像をとらえる研究

	構成要素	計測値	計測装置
ゲノム	古AACCTTA CGTTAAAGC TAGCTTTGA AACGTAGCG GATTCGAT 転写	塩基配列 遺伝子注釈	DNAシークエンサ
トランスクリ プトーム	• MRNA • MANANA • MANANA • MANANA	転写量 塩基配列	DNAマイクロアレイ DNAシークエンサ
	翻訳		
プロテオーム	※ タンパク質	蓄積量 アミノ酸配列	二次元電気泳動 質量分析装置(MS)
	酵素 反応		
メタボローム	代謝化合物	蓄積量 化合物注釈 組成式 構造式	質量分析装置(MS) 核磁気共鳴(NMR)

メタボロームデータへの期待

	サンプル1	サンプル2	サンプル3	
成分1	8325	52013	26440	
成分2	5	35	26	
成分3	624	3901	1339	
成分4	5421	76548	28575	
成分5	300	2676	276	
成分6	559	6555	5852	
成分7	9589	80873	29508	
成分8	480	1145	51	
成分9	189	3018	520	
成分10	449	2298	714	
:				

遺伝子発現解析

DNAアレイ

スキャッタープロット

検定

代謝マップにあてはめ

多変量解析・モデル構築

データ生産プロセス

メタボロームデータの実際

	サンプル1	サンプル2	サンプル3	
?	2893	39323	6074	
?	9	73	10	
成分1かも	130	1558	650	
?	2176	10138	5057	
成分2か3か4	317	3127	26	
成分5の誘導体かも	1517	3661	4617	
?	9985	35413	5006	
?	3628	8248	6357	
知りたい成分6	-	-	-	
知りたい 成分7	-	-	-	

網羅性,再現性,定性性,定量性

スキャッタープロット

検定

代謝マップにあてはめ

多変量解析・モデル構築

内容

一般的な話

どんな装置でデータが出ているか

網羅性、再現性、定量性(化合物の特性をふまえて)

どんなデータ処理がされているか

定性(同定)

データベース的 な話

どんなことが自分でできるか

データベース検索、ウェブツール 実際のメタボロームデータに触れてみる

化合物の数

遺伝子数や既知成分数からの推定

<u>1生物種あたり</u>

微生物 数百

酵母で600 Forster J et al (2003)

動物数千

ヒトで2500 Ryals (2004)

植物数万

シロイヌナズナで5000 Saito K & Matsuda F (2004)

植物界全体

~20万

Strack D & Dixon R (2003)

~100万

Afendi FM et al (2012)

化合物データベース登録数

※2015年8月現在

生物ごとのデータベース

YMDB2,027酵母ECMDB2,717大腸菌HMDB41,993ヒト
※含期待値

<u>一般のデータベース</u>

KEGG 16,684
KNApSAcK 50,899 主に植物
UNPD 229,358 天然物
DNP 272,415 天然物
PubChem 60,774,309
CAS 101,526,536

主に使われる検出装置

質量分析計 (MS)

【利点】● 高感度

- 他の成分分離装置(クロマトグラフィー)などと接続可能
- 部分開裂情報 (MS/MSフラグメンテーション) が分かる

【欠点】● 立体構造を決定することはできない

● 抽出操作が必要

LCQ (Thermo Fisher)

核磁気共鳴(NMR)

【利点】● 化合物の立体構造を知ることができる

- 抽出操作が省ける(リアルタイムで経時 的変化を知ることができる
- **【欠点】● 感度が悪い(微量成分のシグナルは見え** にくい)

http://www.tsurumi.yokohama-cu.ac.jp/taiken/taiken_damr.htmlより

化学的性質の多様性

● 幅広い性質

● 幅広い存在量

適切な抽出や、場合によっては濃縮が必要 1分析で全ての代謝物を測定するのは不可能

クロマトグラフィー-質量分析

gas chromatography (GC) - MS

揮発性化合物(臭い成分、テルペン類)、揮発性誘導体 (糖、脂肪酸、アミノ酸など)

liquid chromatography (LC) - MS

有機化合物一般、二次代謝産物(フラボノイド類など)、 サポニン、アミノ酸、脂質

capillary electrophoresis (CE) - MS

イオン性化合物、有機酸、アミノ酸、糖リン酸など

質量分析の原理

四重極型(Q)

イオントラップ型(IT)

多段階MS解析ができる

飛行時間型(TOF)

スキャンが高速。分子量に上限がない

フーリエ変換型(FT)

超精密質量が得られる

分子は荷電粒子(イオン)として検出される 単位: 質量電荷比 (m/z)

イオン化

ハードイオン化法

● 電子イオン化(EI)

ソフトイオン化法

- エレクトロスプレーイオン化(ESI)
- 大気圧化学イオン化(APCI)
- マトリックス支援レーザー脱離イオン化(MALDI)タンパク質向け

アンビエントイオン化(紙幣の表面など、身のまわりのものを直接分析する)

- 脱離エレクトロスプレーイオン化(DESI)
- リアルタイム直接分析(DART)

などなど

電子イオン化: Electron Ionization (EI)

- GC-MSで使われる
- イオン化と同時にフラグメント化が起こる(ハードイオン化法)
- 装置によらず、化合物特有のフラグメントが生成しやすい

エレクトロスプレーイオン化: Electrospray Ionization (ESI)

- LC-MS, CE-MSで使われる
- 分子があまりフラグメント化されずに検出される(ソフトイオン化法)
- イオン付加分子(アダクト)が検出される
- 陽イオン検出(Positive)と陰イオン検出(Negative)がある
- 共溶出物がイオン化を妨げる場合がある(イオンサプレッション)

フラグメント化

高エネルギーCID (HCD)

LC-MSにおけるMS/MS解析

三連四重極型MS

イオントラップ型MSにおける多段階MS解析

Data Independent Acquisition (DIA)

全化合物についてMS/MSを取得する技術

SWATH (ABSciex) MS^E (Waters) vDIA, All-ion Fragmentathion (Thermo)

(従来)データ依存解析 強度が強い順にn個

データ非依存解析

小まとめ

化合物には大きな多様性がある

- 抽出・濃縮が必要
- 異なる分析技術を組み合わせる必要性

質量分析は、イオンを検出する

- イオン化されない化合物は検出できない
- 化合物によって、イオン化法を選択する必要がある
- イオンサプレッションが起こる場合がある

部分構造の質量値も得られる

● フラグメントイオンの情報が定性に使える

網羅性 再現性 定量性

内容

一般的な話

どんな装置でデータが出ているか

網羅性、再現性、定量性(化合物の特性をふまえて)

どんなデータ処理がされているか

定性(同定)

データベース的 な話

どんなことが自分でできるか

データベース検索、ウェブツール 実際のメタボロームデータに触れてみる

質量分析における化合物の同定

精製標品 同じ装置個体、 同じ条件で測定

Multiple Reaction Monitoring (MRM)

Q1とQ3の二段階の選抜により、特異的かつ高感度に特定の化合物を検出する方法

標品を測定することにより、Q1で選択するm/zと、Q3で検出するm/zの最適な組み合わせ(MRMトランジション)を決めることができる。トランジションを適用する溶出時間範囲を限定することも可能。一分析で多数の化合物を検出することができる。

ワイドターゲットメタボロミクス

LC-MSでの化合物推定に役立つ情報

質量差分

4アダクトの判定

①精密質量による組成式の推定

FT/ICR-MS (Orbitrap-MS) フーリエ変換イオンサイクロトロン 共鳴型

質量精度: ~1 ppm

精密質量 元素 ¹²C 12(定義) ^{1}H 01.007825 ¹⁶O 15.994915 ^{14}N 14.003074 ^{31}P 30.973763 ³²S

31.972071

TOF-MS 飛行時間型

2~10 ppm

MSスペクトル

候補組成式	質量理論値 ([M+H] ⁺⁾	質量差 (Δppm)
C ₁₅ H ₁₀ O ₆	287.05501	-0.75
-C ₁₆ H ₆ N ₄ O ₂	287.05635	5.41
-C ₁₀ H ₁₀ N ₂ O ₈	287.05099	13.27
-C ₂₁ H ₆ N ₂	287.06037	-19.42
-C _{ZZ} H ₆ O ₁	287.04914	19.71
-C ₉ H ₁₀ N ₄ O ₇	287.06223	-25.87

※ppm: ある質量範囲の質量値に対する100万分率 分子量1000の場合、1 ppmの誤差は、 $1,000 \times 1 \text{ (ppm)} / 1,000,000 = 0.001 \text{ Da}$

②13C安定同位体ピーク

¹³C₁/¹²Cピーク強度比から、構造中の炭素の数が推定できる

エピカテキン四量体 C₆₀H₅₀O₂₄

安定 同位体	精密質量	天然存在 比率
¹² C	12	98.9%
¹³ C	13.0034	1.1%
³² S	31.9721	95.0%
³⁴ S	33.9679	4.2%
¹⁴ N	14.0031	99.6%
¹⁵ N	15.0001	0.4%

グルタチオン C₁₀H₁₇N₃O₆S

MSの<u>分解能</u>

③価数の判定

1価 例)[M+H]+

2価 例)[M+2H]²⁺

3価 例)[M+3H]³⁺

例)[M+4H]⁴⁺

原因

例) M = 600の分子が 2価として検出されると

¹²C:
$$[M+2H]^{2+} = 301$$
¹²C: $M+2H = 602$
¹³C₁: $[M+2H]^{2+} = 301.5$
¹³C₁: $M+2H = 603$

m/z(質量電荷比)

エレクトロスプレーイオン化: Electrospray Ionization (ESI)

4アダクト(イオン付加分子)の判別

同じ時間に同じ消長で観測されたピーク間の質量差分から判別

小まとめ

質量分析による化合物の同定

標品との比較が必要

化合物を推定するための手がかりが得られる

- 組成式候補
- 炭素の数、硫黄原子の有無
- 価数
- アダクト
- フラグメントのスペクトル

メタボロームデータ

- ・標品との比較結果(~数百)
- ・上記手がかりからの推定結果

	サンプル1	サンプル2	サンプル3	
?	2893	39323	6074	
?	9	73	10	
成分1かも	130	1558	650	
?	2176	10138	5057	
成分2か3か4	317	3127	26	
成分5の誘導体かも	1517	3661	4617	
?	9985	35413	5006	
?	3628	8248	6357	
知りたい成分6	-	-	-	
知りたい成分7	-	-	-	

PowerGet(宣伝)

精密質量の正確な評価

アダクト・多価イオンの正確な判定

高速な組成式推定

Sakurai et al. (2012) Bioinformatics

正確なピーク抽出・アダクトの判定による組成式推定

内容

一般的な話

どんな装置でデータが出ているか

網羅性、再現性、定量性(化合物の特性をふまえて)

どんなデータ処理がされているか

定性(同定)

データベース的 な話

どんなことが自分でできるか

データベース検索、ウェブツール 実際のメタボロームデータに触れてみる

美習

MS/MSスペクトル自動解読の戦略

フラボノイドの推定(宣伝)

フラボノイド 茶カテキン、ポリフェノール、大豆イソフラボンなど

- 天然には~7000種類が存在
- 糖鎖の位置などが異なる構造異性体が多い

フラボノイド基本骨格

配糖体の例:ルチン

FlavonoidSearch

- 1) 143種類の標品を質量分析(MS/MS解析)
- 2) 基本骨格の開裂のしかたをルール化(経験知)
- 3)約7000種類の既知構造に、そのルールを適用
- 4)出現するMS/MSフラグメントを予測しデータ ベース化

FlavonoidSearch FingerID CFM-ID (jaccard) ______(DotProduct) MetFrag (renumber)

MetFrag (renumber)
MetFrag (localSDF / renumber)

既存ツール以上の予測精度

網羅的なフラボノイド解析(フラボノーム)が可能に

KNApSAcK

"KNApSAck" Family

KNApSAcK Metabolomics

3D Since 2012.11

Core System

Search Engine

Pocket Search for Functional Species

Food & Health

Since 2012.11 DietDish が食べ合わせデータベース

MARCHE 旬データベース

Crude Drug

Biology

Picnic

Gene Annotation

Strap Correlation Coefficient

Pickaxe

Metalloprotein Database

代謝データベース

代謝データベース

まとめ

- いろいろ制限はあるが、背景をおさえればデータを生かせる
- DBやツールは、こなれていない部分も多い

「こういうことがしたい!」 というフィードバックを是非お寄せください

参考: 化合物データベース

KEGG	www.genome.jp/kegg/	京大、金久研がつくるデータベース。ゲノム、遺伝子、 タンパク質、パスウェイが統合されている。
KNApSAcK	kanaya.naist.jp/KNApSAcK/	奈良先端大、金谷研がつくる、天然物-生物情報を軸と した情報データベース。しっかりした文献情報に基づ くのが特徴
DNP	dnp.chemnetbase.com/	CRC出版の天然物のデータベース。詳細を見るには有料
UNPD	pkuxxj.pku.edu.cn/UNPD/	北京大学がつくる天然物のデータベース。件数が多い が出典が不明なものも。
ChEBI	www.ebi.ac.uk/chebi/	欧州バイオインフォマティクス研究所(EBI)がつく る化合物分類データベース。化学寄り。
PubChem	pubchem.ncbi.nlm.nih.gov/	米国NHIがつくる化合物データベース。合成物質なども含み登録件数が多い。
ChemSpider	www.chemspider.com/	400を越える化合物データベースを串刺し検索できるサイト。データの更新が遅め。
HMDB	www.hmdb.ca/	カナダ、アルバータ大がつくるヒトのメタボローム データベース
ECMDB	www.ecmdb.ca/	同、E. coliのメタボロームデータベース
YMDB	www.ymdb.ca/	同、酵母のメタボロームデータベース
DrugBank	www.drugbank.ca/	同、薬物のデータベース
LIPIDMAPS	www.lipidmaps.org/	脂質のデータベース。ポリフェノール類なども含む。
Flavonoid Viewer	metabolomics.jp/wiki/Category:FL	フラボノイドのデータベース。

参考: 解析ツール

MS/MS解析

MassBank	www.massbank.jp/	実測のMSnスペクトルのデータベース
mzCloud	www.mzcloud.org/	Thermo社が自社のMSで取得したスペクトルのデータベース
METLIN	metlin.scripps.edu/	MSnスペクトルのデータベース
MetFrag	msbi.ipb-halle.de/MetFrag/	MS2から化合物を予測するツール
CFM-ID	cfmid.wishartlab.com/	MS2から化合物を予測するツール
FingerID	research.ics.aalto.fi/kepaco/fingerid/	MS2から化合物を予測するツール
MAGMa	www.emetabolomics.org/	多段階MSから化合物を予測するツール
Sirius	http://bio.informatik.uni- jena.de/software/sirius/	同位体パターンと多段階MSから組成式を正確に予測する ツール

ポータルサイト・情報

KOMICS	www.kazusa.or.jp/komics/ja/	かずさ研のツール・データベースポータル
PRIMe	prime.psc.riken.jp/	理研のツール・データベースポータル
OmicsTools	omictools.com/	いろんなオミクス関係のツール、データベースを紹介する ポータル
Fiehn-Lab	fiehnlab.ucdavis.edu/	UC DavisのO. Fiehnのラボページ。有用な情報が多数。
ESI友の会	sites.google.com/site/esitomonok ai/home	日本の若手メタボロミクス研究者がつくる情報発信サイト

参考: レポジトリ

実際に分析した質量分析データの公開

MassBase	webs2.kazusa.or.jp/massbase/	かずさ研の生データ公開サイト。公開数最大級
MetaboLights	www.ebi.ac.uk/metabolights/	EUが作るレポジトリ。標準化を目指している
Metabolome Express	www.metabolome-express.org/	オーストラリアのサイト。GC-MS中心
Metabolomics Workbench	www.metabolomicsworkbench.org/	米国NIHの。ヒトデータ中心。未公開データも多数
MetabolomeX change	metabolomexchange.org/	クロス検索サイト。MetaboLights, Metabolomics Workbenchなどが探せる

実習1 データのダウンロード

実習で使うファイルのダウンロードをお願いします

http://webs2.kazusa.or.jp/sakura/ajacs58/

※アクセスPWはお手元の配布資料に

AJACS薩摩

資料

Download metabolome_files.zip (47.4 MB) 実習で使うファイル

ダウンロードファイルの内容

解析ソフト Ms2Viewer_0.6.1

サンブルデータ HU_pos_001.mzXML ヒト尿 <u>MetaboLights ID: MTBLS20, HU pc</u> Parsley.mzXML パセナ

実習1 zipファイルの展開のしかた

1) 右ドラッグで「展開…」を選択

- ①ファイル上でマウス右ボタンを押し、ボタンを押したままマウスを移動させてボタンを放す(右ドラッグ)
- ②メニューに「展開...」が現れるので、選択する

2) 「展開」ボタンを押す

展開先を確認・変更するためのウィンドウが現れる。 通常はそのまま「展開」ボタンを押せばよい

3) パスワードを入力

ウェブページアクセス用のパスワードと 一緒です

4)ファイルを確認

上記3つのファイルが出来ていれば成功 です

実習2 観測されたm/zから化合物を検索(1)

ChemSpiderで検索 (http://www.chemspider.com/)

例)166.0861455

+/-

1) Advancesを選択

2) Intrinsic Propertiesを選択 Advanced search

 Structure
v Identifier
v Elements
 Intrinsic Properties
Calculated Properties

3) 下の方に、Monoisotopic Massの欄があるので、観測されたm/z、±許容誤差、アダクトの種類、チャージを選択

✓ Monoisotopic Mass: ¹²Cピークのm/zのこと		166.0861455 ± 0.001
M+H	•	o min/max
+e	•	

4) 一番下にある「Search」ボタンを押す。

	mentary inio				
∨ Tags					
	Search Hits Limit:	100	•	CLEAR FORM	SEARCH
FILTER V					

実習3 観測されたm/zから化合物を検索(2)

HMDBで検索 (http://www.hmdb.ca/)

例)166.0861455

1) Search -> MS Searchを選択

※画面が小さいときは、右上の を押すとメニューが出てくる

2)検索するm/z、モード(Positive/Negative)、 アダクト、許容誤差(Daまたはppm)を入れてSearch ボタンを押す

Query Masses (Da)	166.0861455		Enter one mass per li query masses per rec	
Ionization Molecular Weight Tolerance ±	Ion Mode Positive ▼	Adduct Type M+H M+NH4 M+Na M+CH3OH+H M+K M+ACN+H M+2Na+H M+IsoPron+H	ppm •	Hold Ctrl (██) or Command (█) to select multiple adducts
	Search		Load E	xample

実習4 観測されたm/zから化合物を検索(3)

MFSearcherで検索

例)166.0861455

1) ダウンロードしたMS2Viewの、Run.batをダブルクリックして起動

2) ToolメニューのMFSearcherを選択

3) mass, アダクト、許容誤差、検索対象 データベースを選択し、Searchボタンを押す。

Tips1) 一覧から候補を選び、Linkボタンを押すと、オリジナルのサイトがひらく

Tips2) ToolメニューのMol Viewerを開いている状態で、一覧から候補を選ぶと、構造が表示される
※データベースによっては表示されない場合もあります

Tips3) Neutrl 2Dボタンを押して検索すると、立体を無視して化学結合が同じデータが縮約して表示されます

実習5 生データを見てみる(1)

MS2Viewerでヒト尿のデータを見る

1) Control Panelのフォルダアイコンから、ダウンロードした 「HU_pos_001.mzXML」を開く

2) 色の濃さを調整しながら、一番強度が 強そうなピークを探してみる

2) ¹²Cピーク(モノアイソトピックピーク) を十分に拡大して、ピーク位置をダブルクリックし、正確なm/z値を取得する。

3) 取得した値を使いMFSearcherで検索する

4)HMDBのデータを元サイトで見てみる 結果一覧を選んでLinkボタン

実習6 生データを見てみる(2)

パセリのデータを見てみる(データベースでMS/MS検索をしてみる)

- 1) Control Panelのフォルダアイコンか
- ら、DLした「Parsley.mzXML」を開く
- 2) グルタチオンのピークを探す

RT: 20.5分、

m/z: 308.1付近

- 3) MS2データを取得する
- ①2D画面でShow Prec.のチェックを入れ、MS/MSが取得されたプレカーサーイオンを表示させる。
- ②ピークトップ付近のプリカーサーイオン周辺をクリックし、MS2データー覧表の該当イオンをハイライトさせる
- ③一覧表でハイライトしたイオンをクリックする
- 4 MSn View画面で数値データを確認する
- ⑤「S」ボタンを押して、MassBank検査フォーマットでデータをクリップボードにコピーする

4) MassBank (www.massbank.jp/) へ行き、 画面中程の「Quick Search」を選択する

5) Search by Peakを選択する

6) Peak Dataの欄に、3) でコピーしたデータを 貼り付け、Searchボタンを押す。

結果画面で、グルタチ オンの結果がヒットし ていることが確認する

実習7 生データを見てみる(3)

パセリのデータを見てみる(MS/MSの解釈)

- 1) Control Panelのフォルダアイコンから、DLした「Parsley.mzXML」を開く
- 2) 色の濃さを調整しながら、一番強度が 強そうなピークを探してみる

RT: 48.2分、

m/z: 651.15付近

3) ¹²Cピーク(モノアイソトピックピー ク)を十分に拡大して、ピーク位置をダブ ルクリックし、正確なm/z値を取得する。

強度が極端に強い領域でマスずれが起きているデータなので、強度が弱い部分を参考に、上図のような部分を正確なm/z値として取得する

- 4)取得した値を使いMFSearcherで検索するm/z: 651.155265037963 [M+H]+, 1 ppm, KNApSAcK, KEGG, HMDBで検索
- 5)構造が異なる2種類のものがヒットしていることがわかる(HMDBなど)。
- 6) ピークトップ付近のMS2データを取得する
- ①2D画面でShow Prec.のチェックを入れ、MS/MSが取得されたプレカーサーイオンを表示させる。
- ②ピークトップ付近のプリカーサーイオン周辺をクリックし、MS2データー覧表の該当イオンをハイライトさせる
- ③一覧表でハイライトしたイオンをクリックする
- 4 MSn View画面で数値データを確認する

19 リ

m/z	Int. ▼	NL	Rel.Int.
271.06799	1,750,064	380.08624	1,000
519.10907	1,081,284	132.04517	618
565.12860	91,336	86.02563	52

7) Structure Toolを使い、上記二つの化合物 候補のうちどちらにあてはまるかを考えてみる

2D画面の基本操作(1)

色の濃さの調整

CTRLキー、SHIFTキーを両方 押しながら、マウスホイールを回す

奥に回すと 薄くなる

選択範囲を拡大

マウス右ボタンドラッグ

全体表示に戻す

右ボタンをダブルクリック

縦方向だけ全体表示

CTRLキーを 押しながら右 ボタンダブル クリック

横方向だけ全体表示

SHIFTキーを SHIFT 押しながら右 ボタンだグル クリック

2D画面の基本操作(2)

拡大・縮小

マウスホイールを回す

拡大: 手前に回す

縮小: 奥に回す

縦方向だけに拡大・縮小

CTRLキーを押 しながらマウス ホイールを回す

横方向だけに拡大・縮小

SHIFTキーを押 しながらマウス ホイールを回す

任意の選択範囲を表示

2D画面下部のボックスに任意の値を入力して、リターン キーを押す

※RT(溶出時間、単位は分)と、m/zのボックスは、そ れぞれ独立しています。両方の範囲を指定する場合は、 RT、m/zそれぞれで、値を設定後にリターンキーを押し て下さい

移動

マウス左ボタンをドラッグ

縦方向だけに移動

CTRLキーを押しながら 左ボタンドラッグ

横方向だけに移動

SHIFTキーを押しながら 左ボタンドラッグ

2D画面の基本操作(3)

現在位置の取得

2D画面上部のボックスに、ダブルクリックした位置の正確な保持時間とm/z値が表示されます。

ボックスの中の数字を選択し、CTRLキー+「C」キーを押すと、数値がクリップボードにコピーされます。

※マウス操作で数字を選択しにくい場合は、CTRLキー+「A」キーを押すと、ボックスの中が全選択されます。

CTRL + 「C」 キー: コピー

CTRL +「A」キー:数字を全選択

2D画面の右端には、m/zの差分を示すルーラーが、ダブルクリックした位置を基準点として表示されます。

拡大して正確なm/z値を取得したり、そこを起点に34Sピークを判別したり、アダクトの判断をしたりなどに利用できます。

MS2データの操作

2D画面下部、Show Prec.にチェックをつけます

2D画面上では、MS2データが取得された前駆体イオン(Precursor)の位置を示すインジケーター(青い点)が示されます。

- ①2D画面上をクリックすると、クリック位置に最も近いプリカーサーイオンが、MS2Viewer画面左の一覧表でハイライトされます。
- ②ハイライトされたプリカーサーを一覧表上でクリックすると、 2D画面上ではその位置が緑のインジケーターで示されます。
- ③また、②で一覧表をクリックすると、画面下部のMSn View 画面に、MSnスペクトルの情報が表示されます。

MSn Viewの数値データ表示画面の下部にある、「T」、「S」、「M」のボタンを押すと、数値データを決まったフォーマットでクリップボードにコピーできます。

「T」: タブ区切りテキストでコピーします。

「S」:スペース区切りでコピーします。

上記ふたつは、m/z値と強度値をコピーします。強度は、最大 強度を1000とした相対強度です。

precのチェックをつけた場合は、プリカーサーのm/z値が、1 行目に付加されます。

「M」: MAGMaというウェブツール用のフォーマットでコピーします。MAGMaはMS3以上の多段階MSのデータの場合に有効に候補を絞り込むためのツールです。

MFSearcher

m/z値から化合物DBを一括検索をしたり組成式候補を計算したりするツール

1) ToolメニューのMFSearcherを選択

2) mass, アダクト、許容誤差、検索対象 データベースを選択し、Searchボタンを押す。

ヒットした候補が一覧表示されます。

Tips1) 一覧から候補を選び、Linkボタンを押すと、オリジナルのサイトがひらく

Tips2) ToolメニューのMol Viewerを開いている状態で、一覧から候補を選ぶと、構造が表示される
※データベースによっては表示されない場合もあります

Tips3) Neutrl 2Dボタンを押して検索すると、立体を無視して化学結合が同じデータが縮約して表示されます

Structure Tool

ToolメニューからStructure Toolを選択すると、下記のような画面が表示される

MFSearcherの結果一覧をクリックすると、 Structure Tool画面内に構造式が表示される

範囲選択ツール、または投げ縄ツールを選択します

画面上の元素を囲むと、選択部分がハイライトされます。選択部分および、残った部分の組成式および精密質量が、画面の左下に表示されます

