q1

CP -> synchronous

 $Z = X \oplus Q$ -> output = f(input, state) -> **Mealy**

q2

excitation: T=Z output: $Z=X\oplus Q$

next-state: $Q_{t+1}=Q\oplus T=Q\oplus Z=Q\oplus X\oplus Q=0\oplus X=0'X+X'0=X+0=X$

q3

X	Q	T (excutation)	Q_{t+1} (next-state)	Z (output)
0	0	0	0	0
0	1	1	0	1
1	0	1	1	1
1	1	0	1	0

q4

table:

$\frac{X}{Q}$	0	1
0	0/0	1/1
1	0/1	1/0

 Q_{t+1}/Z

diagram:

$$Q \xrightarrow{{\bf X}/{\bf Z}} Q'$$

q5

数据变化检测电路:输入数据变化时,输出高电平/正脉冲。

q6

Notes

- CP, Colok Pulse
- X输入
- Z输出
- =1 异或

时序电路(Sequential Circuit)

- 同步电路(Synchronous Circuit): 所有状态变化依赖于统一时钟信号(clock)。
- **异步电路(Asynchronous Circuit)**: 状态变化由输入的变化直接触发,不依赖统一时钟。

Moore vs Mealy

- Moore 型电路 (Moore Machine): 输出仅依赖当前状态 (Output = f(State))。
- Mealy 型电路 (Mealy Machine): 输出依赖当前状态和输入(Output = f(State, Input))。

方程(Equations)

- 激励方程 (Excitation Equation): 决定触发器的输入值,控制状态转换。
- **输出方程(Output Equation)**: 定义电路的输出与状态(和输入,若为 Mealy)之间的关系。
- 次态方程 (Next-State Equation): 根据当前状态和输入计算出次态。

状态 (State)

- 状态表 (State Table): 列出每个状态在各种输入下的次态和输出。
- 状态图 (State Diagram): 用图形方式表示状态间的转移关系和输出。

表 6-3 Mealy 型输出状态表

表 6-4 Moore 型输出状态表

1

D

A

B

C

输出Z

0

0

0

1

S _t X	0	1	Sı	0
A	B/0	D/1	A	B
B	C/0	A/0	B	C
C	D/0	B/0	C	D
D	A/1	C/0	D	A

 $S_{t+1}/Z(次态/输出)$

 S_{i+1} (次态)

时序波形图(Timing Waveform)

• 显示时钟、输入、状态、输出等信号随时间的变化,用于验证时序逻辑行为。

T触发器(Toggle Flip-Flop)

- 功能: 当 T = 1 时翻转输出 (Toggle), T = 0 时保持当前状态。
- 状态转换:
 - T = 0 → Q(next) = Q (keep 不变)
 - T = 1 → Q(next) = ¬Q (toggle 翻转)
- 激励方程: Q(next) = T ⊕ Q
 - 0 ⊕ Q = Q (keep)
 - 1 ⊕ Q = ¬Q (toggle)
- 用途: 常用于计数器 (如二进制计数器)。

为什么输出用 Q 表示?

- 在FFs中, Q 通常代表主输出(主状态),源自"Q-output"的传统命名。
- 这是历史惯例,在所有触发器中(包括 D、T、JK、SR),主输出通常标为 **Q**,反向输出 为 **Q'** 或 ¬**Q**。