ANÁLISE DE CONSTITUINTES QUÍMICOS DO FEIJÃO-DE-CORDA

(Vigna unguiculata)

Núbia Moura RIBEIRO (1); Wagna Piler C. SANTOS (2); Dayane Santos CONCEICAO (3); Caique Beijes da PAIXÃO (4); Reginaldo J. GOMES NETO (5).

Instituto Federal de Educação, Ciência e Tecnologia da Bahia (IFBA), Rua Emidio dos Santos s/n, Barbalho 40301-015, Salvador, BA – Brasil, E-mail: (1) nubia@ifba.edu.br; (2) jolurswp@gmail.com; (3) dadaysc@hotmail.com; (4) kiq_clarinet7@hotmail.com; (5) reginaldo-neto@hotmail.com

RESUMO

Este trabalho apresenta a análise de constituintes químicos de uma leguminosa largamente empregada na culinária nordestina: o feijão-de-corda (*Vigna unguiculata*). Foram determinados os teores de compostos fenólicos totais e de flavonóides através de métodos espectroscópicos na região do ultravioleta e visível, e foram feitas inferências quanto à relação entre o teor de compostos fenólicos totais e os fatores antinutricionais. Também foi realizada a especiação de ferro e a analisada a bioacessibilidade do ferro 2. Os resultados permitem concluir que, como apenas cerca de 10% dos compostos fenólicos presentes nos extratos são flavonóides, possivelmente a maior parte de compostos fenólicos compõem-se de fitatos ou taninos, que são considerados agentes anti-nutricionais. No que se refere ao estudo da bioacessibilidade de ferro II, observou-se que o resultado obtido encontra-se abaixo dos valores de bioacessibilidade de ferro total (37 %) determinados em estudos anteriores.

Palavras-chave: feijão-de-corda, fenóis, flavonoides, bioacessibilidade, especiação, ferro

1. 1. INTRODUÇÃO

O feijão-de-corda (*Vigna unguiculata*) constitui a base alimentar de diversas populações rurais brasileiras devido ao seu elevado valor nutritivo a nível protéico e energético, e à sua fácil adaptação a solos de baixa fertilidade e com períodos de seca prolongada. No Nordeste do país, o consumo do feijão-de-corda ocorre tanto na fase de plena maturação de seus grãos quanto em fase anterior, quando o produto é denominado "feijão verde", largamente usado na culinária regional.

Este tipo de feijão é uma planta da família das leguminosas (*Fabaceae*), subfamília papilionoídea (*Faboideae*). Há dúvidas quanto a sua origem, embora se acredite que seja uma planta originária da África Tropical. Possui várias subespécies e é utilizada também como forragem especialmente nutritiva e como adubo verde.

O feijão-de-corda, como outras leguminosas, apresenta substâncias polifenólicas na composição de seus grãos. Alguns autores atribuem características antinutricionais à presença de polifenois, embora outros autores destaquem a atividade antioxidante decorrente da presença deste tipo de substância (ASSIS, NAHAS, 1999; GONÇALVES, 2008).

O estudo da biodisponibilidade de nutrientes em importantes alimentos no cenário regional, a exemplo das leguminosas, bem como o desenvolvimento de trabalhos de investigação que visem estimar a biodisponibilidade de nutrientes, tais como os elementos essenciais, são importantes para assegurar a segurança alimentar da dieta, uma vez que leguminosas estão presentes na alimentação diária do brasileiro e o consumo desses alimentos deve ser incentivado no Brasil. Os métodos empregados para estimar a biodisponibilidade de elementos contam com diferentes abordagens, podendo empregar testes in vivo ou in vitro (NAYAK e NAIR, 2003). Os testes in vivo utilizam cobaias e humanos para simular uma exposição ao material a ser investigado e costumam ser bastante laboriosos. Já os testes in vitro, objetos deste trabalho baseiam-se na extração seletiva ou simulam a fisiologia do trato gastrointestinal. Muitos métodos in vitro vêm sendo empregados para estimar a bioacessibilidade de determinadas espécies químicas, dentre eles se

encontra o SBET (*Simple Bioaccessibility Extraction*), proposto pelo Consórcio para Pesquisas em Solubilidade e Biodisponibilidade (SBRC). É um método utilizado para simular a mobilização das substâncias nas condições gástricas do estômago, desconsiderando o compartimento intestinal. Como apenas simula a fase gástrica, fornece, em geral, resultados superestimados de bioacessibilidade, devido ao baixo pH do meio e à ausência de uma fase intestinal. O desenvolvimento, validação e padronização destes métodos é uma área que ainda demanda estudos (INTAWONGSE, DEAN, 2006).

O ferro é um importante nutriente para a dieta humana, estando presente em leguminosas como macro elemento. Sua absorção pelo organismo humano dar-se sob a forma de Fe2+, sendo necessário o desenvolvimento de metodologias analíticas que visem a sua especiação do mesmo quanto ao número de oxidação sob condições gástricas.

O método então escolhido para especiação do Ferro foi a o-fenantrolina, uma vez que a o-fenantrolina complexa o íon Fe2+, dando origem a um complexo de cor laranja avermelhado com elevada absortividade molar. A intensidade da cor do complexo ferro – o-fenatrolina é independente do pH no intervalo de 2-9, porem o método SBET simula as condições gástricas sob um pH de 1,5. A alteração do pH proposto pelo método não se faria possível uma vez que nos estudos anteriormente realizados (SANTOS *et al.*, 2009), constatou-se que a variável pH atua de forma bastante significativa nos valores finais de bioacessibilidade para o Fe.

Dada a larga utilização de feijão-de-corda na culinária nordestina, o objetivo geral deste trabalho foi avaliar constituintes químicos do feijão-de-corda in natura. Os objetivos específicos foram: (a) avaliar o melhor sistema de solventes para extração de polifenois e flavonoides dos grãos de feijão-de-corda in natura, (b) determinar os teores totais destes compostos presentes nos grãos; (c) realizar a especiação do Ferro quanto ao Estado de Oxidação no feijão-de-corda; (d) comparar os valores de bioacessibilidade, segundo o método SBET, em grãos de feijão-de-cora; (e) substituir o procedimento de extração pelo procedimento de centrifugação do Método SBET.

2. MATERIAL E MÉTODOS

2.1. Determinação de compostos fenólicos

2.1.1. Extração dos compostos fenólicos

O feijão-de-corda verde, lavado, foi triturado e a massa resultante foi colocada em maceração por 20 minutos no solvente de extração, utilizando-se a proporção de 200 mL de solvente para 250 g de feijão triturado. Após os 20 minutos a mistura foi filtrada. Repetiu-se mais duas vezes a maceração e a filtração, reunindo-se os filtrados. Foram testados dois sistemas de solventes para extração: etanol:água 4:1 v:v, e metanol:água 4:1 v:v.

Os extratos tiveram o solvente removido, até massa constante, em evaporador rotatório a pressão reduzida com aquecimento em banho-maria até no máximo 60°C.

A avaliação do melhor sistema de solventes para extração foi feita gravimetricamente e também com base no teor de compostos fenólicos totais.

2.1.2 Determinação do teor total de compostos fenólicos

A concentração dos compostos polifenólicos totais foi determinada utilizando-se 1mL do reagente de Folin-Ciocalteau, 8mL de água e 1 mL de uma solução saturada de carbonato de sódio, acrescentadas a 0,5 mL do extrato bruto dos feijões. Este sistema foi analisado em espectrofotômetro UV-Vis com absorbâncias determinadas a 760 nm. Os testes foram realizados em triplicata e para o cálculo do doseamento de compostos fenólicos utilizou-se a curva analítica tendo o ácido gálico como padrão [Y = 0,064x + 0,3786 (r= 0,9917)]. O ácido gálico nas concentrações 2,42 x 10-4 g/mL, 1,94 x 10-4 g/mL, 1,45 x 10-4 g/mL, 0,97x 10-4 g/mL; 0,48 x 10-4 g/mL foi usado como padrão externo. Os teores de compostos fenólicos foram determinados em miligrama de ácido gálico por grama de grão verde (CHAILLOU et al., 2009).

2.1.3. Determinação do teor total de flavonóides

A concentração de flavonóides foi determinada utilizando o método colorimétrico com cloreto férrico (FeCl3).O sistema foi obtido adicionando-se 3 mL de extrato bruto dos feijões a 1 mL de cloreto férrico.

Após 15 minutos, o sistema foi analisado, utilizando-se o espectrofotômetro UV-Vis, com absorbâncias lidas em 425 nm. Os testes foram realizados em triplicata e para o cálculo do doseamento de flavonóides utilizou-se a curva padrão de quercetina [Y = 0,4733x - 0,7452 (r= 0,9969)]. A quercetina nas concentrações 2,42 x 10-4 g/mL, 1,94 x 10-4 g/mL, 1,45 x 10-4 g/mL, 0,97x 10-4 g/mL; 0,48 x 10-4 g/mL; 0,24 x 10-4 g/mL foi usada como padrão externo. Os teores de flavonóides foram determinados em miligrama de quercetina por grama de grão verde (CHAILLOU et al., 2009; DOWD, 1959).

2.2. Especiação do ferro e bioacessibilidade

No preparo das amostras de feijão para determinação do teor total e da bioacessibilidade usou-se moinho criogênico MA 775 (Marconi, Brasil), contendo frasco de moagem em policarbonato com duas tampas de aço inoxidável, imersos em nitrogênio líquido e barra magnética em aço.

2.2.1. Verificação do comportamento do complexo Ferro – o-fenantrolina em pH 1,5

Para verificar o comportamento do complexo em estudo, foi construída uma curva analítica nas concentrações de 0,00; 0,05; 0,15; 0,20; 0,25 e 0,30 mg/L sob as mesmas condições do método SBET (glicina 0,40 mol/L, pH 1,5 corrigido com HCl) com a adição da o-fenantrolina sem redutor. O comprimento de onda de 504,0 nm foi escolhido por apresentar maior intensidade de absorção do complexo formado.

2.2.2. Verificação da interconversão entre os íons Fe2+ e Fe3+

Outro ponto a ser discutido no método era a possibilidade da interconversão entre os íons Fe2+ e Fe3+ ou seja, a sua seletividade a ponto de garantir a especiação efetiva do ferro II em meio a solução contendo o ion ferro III.

Para verificar tal seletividade, realizou-se um teste preliminar empregando o método baseado na formação do complexo Fe-ortofenantrolina sem a utilização do agente redutor. Prepararam-se soluções padrão dos íons Fe II e Fe III, as quais foram analisadas separadamente e em seguida em uma solução combinada.

Inicialmente, foi obtido o espectro de absorção do complexo Fe-ortofenantrolina empregando espectrofotômetro de absorção molecular no UV/Vis (CARE, Varian). Um valor máximo de absorbância foi obtido no comprimento de onda 504,0 nm.

As soluções estoque de Fe II e III foram preparadas a partir de sulfato ferroso amoniacal, (NH4)2Fe(SO4)2. 6 H20 e sulfato férrico amoniacal, (NH4)Fe(SO4)2, respectivamente. As amostras das soluções padrão foram preparadas em triplicata, sendo uma delas a 0,300 mg/L de Fe (II) e outra, contendo concentrações de Fe (II) e Fe (III) na concentração de 0,200 mg/L.

2.2.3. Bioacessibilidade

Para a determinação da bioacessibilidade do ferro, foi aplicado o método SBET. O SBET é um método utilizado para simular a mobilização das substâncias nas condições gástricas do estômago, desconsiderando o compartimento intestinal, aplicado para a determinação da solubilidade/biodisponibilidade de chumbo em amostras de solos contaminados, sendo adaptado do método descrito inicialmente por Ruby e colaboradores em 1993 (OOMEN et al., 2002). A simulação da digestão é feita empregando-se 100 mL de fluido extrator, o qual contem glicina a uma concentração de 0,4 mol L⁻¹ em um pH 1,5 ajustado com acido clorídrico concentrado, a 1g da amostra. A mistura é então submetida a uma agitação tipo *end-over-end a 30 rpm*, por um período de 1h, a uma temperatura constante de 37 °C. Em seguida é realizada uma filtração através de um filtro de disco de acetato celulose de porosidade 0,45 μm.

A razão entre o teor total do analito presente na amostra e no filtrado corresponde à bioacessibilidade. Essa relação é então multiplicada por um fator de 100 e o resultado final é expresso em percentagem de bioacessibilidade, como ilustrado na Equação 1.

$$\%B = \frac{Y}{Z} \times 100$$
 [Eq. 01]

onde Y é o teor do elemento na fração bioacessível e Z o teor total do elemento.

3. RESULTADOS

3.1. Determinação de compostos fenólicos

O procedimento de preparação dos extratos brutos do feijão triturado gerou, após remoção do solvente de extração, os seguintes rendimentos mássicos:

- 2,2% de extrato seco para extração com etanol:água 4:1 v:v
- 1,8% de extrato seco para extração com metanol:água 4:1 v:v

Observa-se que o rendimento mássico da extração com metanol:água foi superior ao da extração com etanol:água. Estes resultados indicam apenas que o sistema de solventes metanol:água extraiu maior quantidade de massa dos grãos, porém só com estes dados não é possível afirmar qual o melhor solvente para extração de polifenois. Para tanto é necessário a determinação do teor total destes compostos em cada extrato.

A Tabela 1 apresenta os dados obtidos para a construção da curva analítica para determinação do teor total de compostos fenólicos, tendo o ácido gálico como padrão externo.

Tabela 1. Dados obtidos para a construção da curva analítica
para determinação do teor total de compostos fenólicos

Concentração do ácido gálico (X10-4 g/mL)	Absorbância a 760 nm
2,42	0,539
1,94	0,499
1,45	0,466
0,97	0,442
0,48	0,412

A Figura 1 apresenta a construção da curva analítica para determinação do teor total de compostos fenólicos, tendo o ácido gálico como padrão externo.

Figura 1. Curva analítica para determinação do teor total de compostos fenólicos

As absorbâncias medidas para as amostras preparadas a partir do extrato obtido com metanol:água geram um valor médio de 0,476, que resulta na concentração de 1,52 X 10-4 g/mL de ácido gálico.

As absorbâncias medidas para as amostras preparadas a partir do extrato obtido com etanol:água geram um valor médio de 0,447, que resulta na concentração de 1,07 X 10-4 g/mL de ácido gálico.

Com base nos dados acima, constata-se que embora a extração com etanol:água tenha gerado um rendimento mássico maior (2,2% de extrato seco) do que o rendimento da extração com metanol:água (1,8% de extrato seco), o sistema de solvente metanol:água mostrou-se mais eficiente na extração de compostos polifenólicos.

A Tabela 2 apresenta os dados obtidos para a construção da curva analítica para determinação do teor total de flavonoides, tendo a quercetina como padrão externo.

Tabela 2. Dados obtidos para a construção da curva analítica para determinação do teor total de flavonoides

Concentração da quercetina (X10-4 g/mL)	Absorbância a 425 nm
2,42	1,918
1,94	1,654
1,45	1,404
0,97	1,184
0,48	0,989
0,24	0,872

A Figura 2 apresenta a construção da curva analítica para determinação do teor total de flavonoides, tendo a quercetina como padrão externo.

Figura 2. Curva analítica para determinação do teor total de compostos fenólicos

As absorbâncias medidas para as amostras preparadas a partir do extrato obtido com metanol:água geram um valor médio de 0,866, que resulta na concentração de 0,25 X 10-4 g/mL de quercetina.

As absorbâncias medidas para as amostras preparadas a partir do extrato obtido com etanol:água geram um valor médio de 0,892, que resulta na concentração de 0,31 X 10-4 g/mL de quercetina.

Com base nos dados acima, constata-se que no extrato obtido com etanol:água foi determinada uma menor proporção de compostos fenólicos porém uma maior proporção de flavonóides que no extrato obtido com metanol:água. Observa-se ainda que a relação entre o teor de flavonóides (medido em g/mL de quercetina) é cerca de 10% do teor de compostos fenólicos (medido em g/mL de ácido gálico), indicando que possivelmente a maior proporção de compostos fenólicos sejam taninos e ácidos fíticos ou seus derivados (fitatos), conforme relatado na literatura (ASSIS, NAHAS, 1999).

3.2. Especiação do Ferro e bioacessibilidade

Com base na curva analítica (Figura 3) construída sob as condições do método SBET, verificou-se uma boa sensibilidade do método além de uma boa linearidade (R2 = 0.99605) na faixa em estudo. O que indica a viabilidade da quantificação do ferro II na fração extratora.

Figura 3. Curva analítica nas condições experimentais do método SBET

Os resultados encontrados demonstraram que as soluções que continham exclusivamente o íon Fe III não apresentaram sinais analíticos intensos, uma vez que somente os íons Fe II complexam com o-fenantrolina. Além do mais, os sinais pequenos poderiam advir de impurezas presentes do reagente empregado. Para as soluções que continham apenas o Fe II, os resultados mostraram-se exatos e precisos. Já para a solução combinada, os resultados não indicaram nenhum aumento de sinais provenientes de uma possível interconversão dos íons Fe III em Fe II, denotando assim uma efetiva especiação do ferro.

Após a extração empregando o método SBET, o Fe II foi quantificado no extrato segundo o método proposto, i.e. método adaptado do complexo FeII-ortofenantrolina, sem a adição de hidroxilamina (agente redutor). Os resultados obtidos estão apresentados na Tabela 3.

	Ferro II na fração extraída	Ferro Total	Bioacessibilidade do Fe II
Média	14,45	53,47	27,03
Sd	0,82	1,68	1,54
RSD	5,68	3,14	5,68

Tabela 3. Teores, mg/kg, de ferro nas frações obtidas.

O percentual de bioacessibilidade de ferro II obtido encontra-se abaixo dos valores de bioacessibilidade de ferro total (37 %) determinados em estudos anteriores (Santos et al., 2009). Estes valores são concordantes com os reportados na literatura para ferro em leguminosas de grão. Desta forma pode-se concluir que há uma coerência com os resultados obtidos empregando o método proposto para especiação de ferro.

Considerando que o método SBET fornece resultados superestimados devido a simulação da fase gástrica somente, pode-se inferir que os resultados obtidos correspondem a fração máxima de ferro II passível a absorção no metabolismo humano.

4. CONCLUSÕES

Constatou-se que o sistema de solventes etanol:água 4:1 gerou maior rendimento mássico, porém com menor teor de compostos fenólicos no material extraído. Assim, recomenda-se o uso do sistema de solventes metanol:água 4:1 para determinação de compostos fenólicos.

Constatou-se também que apenas cerca de 10% dos compostos fenólicos presentes nos extratos são flavonóides, permitindo-se inferir que possivelmente a maior parte de compostos fenólicos compõe-se de fitatos ou taninos, que são considerados agentes anti-nutricionais. Assim sendo, embora o teor de compostos fenólicos seja significativo (cerca de 2%), apenas uma pequena parte destes são flavonóides, do que se deriva a inferência de que a grande maioria (fitatos ou taninos) são tidos como fatores antinutricionais. Vale ressaltar que descobertas recentes que evidenciam o potencial de fitatos e taninos em exercer funções benéficas ao organismo humano, já que se observou a habilidade do ácido fítico em atuar como anticarcinogênico, antioxidante e prestar contribuição nutricional no tratamento de diabetes, através da ação inibidora de a-amilases. Além disto, embora os taninos influenciem negativamente a digestibilidade de proteínas, eles são antioxidantes e inibidores de determinadas enzimas (ASSIS, NAHAS, 1999).

Quanto ao estudo da bioacessibilidade de ferro II, observou-se que o resultado obtido encontra-se abaixo dos valores de bioacessibilidade de ferro total (37 %) determinados em estudos anteriores e que os valores são concordantes com os reportados na literatura para ferro em leguminosas de grão. Sabendo que o método SBET fornece resultados superestimados devido a simulação da fase gástrica somente, pode-se inferir que os resultados obtidos correspondem a fração máxima de ferro II passível a absorção no metabolismo humano. Estudos complementares estão sendo realizados com o objetivo de conhecer a relação do ter de ferro II e ferro III nas amostras dessas leguminosas.

5. REFERÊNCIAS

ASSIS, M.A.A.; NAHAS, M.V. ASPECTOS NUTRICIONAIS DE FITATOS E TANINOS. Rev. Nutr., Campinas, 12(1): 5-19, 1999

CHAILLOU, L. L.; NAZARENO, M.A. Bioactivity of propolis from Santiago del Estero, Argentina, related to their chemical composition. LWT - Food Science and Technology v.42, p.1422–1427, 2009.

DOWD LE (1959) Spectrophotometric determination of quercetin, Anal. Chem. 31(7) 1184-1187

GONÇALVES, A.E.S.S. Avaliação da capacidade antioxidante de frutas e polpas de frutas nativas e determinação dos teores de flavonóides e Vitamina C. São Paulo.2008. Tese(Mestrado em ciência dos alimentos) – Universidade de São Paulo.

INTAWONGSE, M; DEAN, R. J. In-vitro testing for assessing oral bioaccessibility of trace metals in soil and food samples. Trends in Analytical Chemistry v. 25, p. 876-886, 2006.

OOMEN, A. G.; HACK, A.; MINEKUS, M.; ZEIJDNER, E.; CORNELIS, S. C.; SCHOETERS G.; VERSTRAETE, W.; VAN DE WIELE, T.; WRAGG, J.; ROMPELBERG, C. J. M.; SIPS, A.; VAN WIJNEN J. H.; Comparison of five in-vitro digestion model to study the bioacessiblity of soil contaminants. Environ. Sci. Technol. 2002, v. 36, p. 3326.

SANTOS, W. P. C.; GOMES NETO, R.J.; MERCANDELLI, S.S. Avaliação multivariada do método sbet para estimativa da bioacessibilidade de micronutrientes em leguminosas. Anais do CONNEPI, 2009.

AGRADECIMENTOS

Agradecemos ao apoio da FAPESB, e da Universidade Federal da Bahia pela utilização de equipamentos.	