High Dimensional Probability Notes

Nong Minh $\mathrm{Hieu^1}$

 1 School of Physical and Mathematical Sciences, Nanyang Technological University (NTU - Singapore)

Contents

1	Random variables 1.1 Basic inequalities	
В	List of Definitions	6
В	Important Theorems	6
\mathbf{C}	Important Corollaries	6
D	Important Propositions	6
${f E}$	References	7

1 Random variables

1.1 Basic inequalities

First, we revisit the definition of a random variable as well as some basic inequalities that we learned in introductory statistics.

Definition 1.1 (Random variable).

Let $(\Omega, \Sigma, \mathbb{P})$ be a probability space. A random variable X is defined as a mapping from the sample space Ω to \mathbb{R} :

$$X: \Omega \to \mathbb{R} \tag{1}$$

 Σ is the σ -algebra containing the possible events (collection of subsets of Ω) and \mathbb{P} is a probability measure that assigns events with probabilities:

$$\mathbb{P}: \Sigma \to [0, 1] \tag{2}$$

For a given probability space $(\Omega, \Sigma, \mathbb{P})$ and a random variable $X : \Omega \to \mathbb{R}$, we will use the following basic notations throughout this note:

• $||X||_{L^p}$ - The p^{th} root of the p^{th} moment of the random variable X.

$$||X||_{L^p} = (\mathbb{E}|X|^p)^{1/p}, \ p \in (0, \infty)$$
 (3)

$$||X||_{L^{\infty}} = \operatorname{ess\,sup}|X| \tag{4}$$

• $L^p(\Omega, \Sigma, \mathbb{P})$ - The space of random variables X satisfying:

$$L^{p}(\Omega, \Sigma, \mathbb{P}) = \left\{ X : \Omega \to \mathbb{R} \middle| \|X\|_{L^{p}} < \infty \right\}$$
 (5)

Some basic inequalities and identities:

• 1. Jensen's Inequality - For a random variable X and a convex function $\varphi : \mathbb{R} \to \mathbb{R}$, we have:

$$\varphi(\mathbb{E}X) \leqslant \mathbb{E}\varphi(X) \tag{6}$$

• 2. Monotonicity of L^p norm - For a random variable X:

$$||X||_{L^p} \leqslant ||X||_{L^q}, \ 0 \leqslant p \leqslant q \leqslant \infty \tag{7}$$

• 3. Minkowski's Inequality - For $1 \le p \le \infty$ and two random variables X, Y in $L^p(\Omega, \Sigma, \mathbb{P})$ space:

$$||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p} \tag{8}$$

• 4. Holder's Inequality - For $p, q \in [1, \infty]$ such that 1/p + 1/q = 1. Then, for random variables $X \in L^p(\Omega, \Sigma, \mathbb{P})$ and $Y \in L^q(\Omega, \Sigma, \mathbb{P})$, we have:

$$|\mathbb{E}XY| \leqslant ||X||_{L^p} \cdot ||Y||_{L^q} \tag{9}$$

• 5. Markov's Inequality - For a non-negative random variable X and t > 0, we have:

$$\mathbb{P}(X \geqslant t) \leqslant \frac{\mathbb{E}X}{t} \tag{10}$$

• 6. Chebyshev's Inequality - For a random variable X with mean μ and variance σ^2 . Then, for any t > 0, we have:

$$\mathbb{P}(|X - \mu| \ge t) \le \frac{\sigma^2}{t^2} \tag{11}$$

• 7. Integral Identity - Let X be a non-negative random variable, we have:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt \tag{12}$$

Exercises

Exercise 1.1.1: Generalized Integral Identity

Let X be a random variable (not necessarily non-negative). Prove the following identity:

$$\mathbb{E}X = \int_0^\infty \mathbb{P}(X > t)dt - \int_{-\infty}^0 \mathbb{P}(X < t)dt \tag{13}$$

Solution (Exercise 1.1.1).

For $x \in \mathbb{R}$, using the basic integral indentity, we have:

$$|x| = \int_0^\infty \mathbf{1}\{t < |x|\}dt$$

We consider the following cases:

• When $x < 0 \implies x = -|x|$:

$$x = -\int_0^\infty \mathbf{1}\{t < |x|\}dt = -\int_0^\infty \mathbf{1}\{t < -x\}dt = -\int_0^\infty \mathbf{1}\{-t > x\}dt = -\int_{-\infty}^0 \mathbf{1}\{t > x\}dt$$

• When $x \ge 0 \implies x = |x|$:

$$x = \int_0^\infty \mathbf{1}\{t < |x|\}dt = \int_0^\infty \mathbf{1}\{t < x\}dt$$

Therefore, for $x \in \mathbb{R}$, we can write:

$$x = \int_0^\infty \mathbf{1}\{t < x\}dt - \int_{-\infty}^0 \mathbf{1}\{t > x\}dt$$

Therefore, for a random variable X not necessarily non-negative, we have:

$$\begin{split} \mathbb{E}X &= \mathbb{E}\Bigg[\int_0^\infty \mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbf{1}\{t > X\}dt\Bigg] \\ &= \mathbb{E}\int_0^\infty \mathbf{1}\{t < X\}dt - \mathbb{E}\int_{-\infty}^0 \mathbf{1}\{t > X\}dt \\ &= \int_0^\infty \mathbb{E}\mathbf{1}\{t < X\}dt - \int_{-\infty}^0 \mathbb{E}\mathbf{1}\{t > X\}dt \\ &= \int_0^\infty \mathbb{P}(t < X)dt - \int_{-\infty}^0 \mathbb{P}(t > X)dt \end{split}$$

Π,

Exercise 1.1.2: p^{th} -moments via tails

Let X be a random variable and $p \in (0, \infty)$. Show that:

$$\mathbb{E}|X|^p = \int_0^\infty pt^{p-1}\mathbb{P}(|X| > t)dt \tag{14}$$

Solution (Exercise 1.1.2).

Let X be a random variable that is not necessarily non-negative. Using the integral identity, we have:

$$\mathbb{E}|X|^p = \int_0^\infty \mathbb{P}(u < |X|^p) du$$

Let $t^p = u \implies pt^{p-1}dt = du$. Since we integrate u from $0 \to \infty$, we also integrate t from $0 \to \infty$ when changing the variables. Hence, we have:

$$\mathbb{E}|X|^{p} = \int_{0}^{\infty} \mathbb{P}(t^{p} < |X|^{p})pt^{p-1}dt = \int_{0}^{\infty} \mathbb{P}(t < |X|)pt^{p-1}dt$$

Hence, we obtained the desired identity.

Limit Theorems

Theorem 1.1: Weak Law of Large Numbers

Let X_1, \ldots, X_N be *i.i.d* random variables with mean μ . Consider the sum:

$$S_N = X_1 + \dots + X_N$$

Then, the sample mean converges to μ in probability $(S_N/N \xrightarrow{p} \mu)$:

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) = 0, \ \forall \epsilon > 0$$
 (15)

□.

 $\hfill\Box$.

Proof (Weak Law of Large Numbers (WLLN)). Suppose that $\operatorname{Var} X_i = \sigma^2$ for all $1 \le i \le N$. Let $\bar{X} = S_N/N$. Then, \bar{X} is a random variable with the following mean and variance:

$$\mathbb{E}\bar{X} = \mu \quad and \quad \operatorname{Var}\bar{X} = \frac{\sigma^2}{N}.$$

Hence, by the Chebyshev's inequality, we have:

$$\mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) = \mathbb{P}\Big(|\bar{X} - \mu| > \epsilon\Big) \leqslant \frac{\sigma^2}{N\epsilon^2}.$$

Therefore, we have:

$$\lim_{N \to \infty} \mathbb{P}\Big(|S_N/N - \mu| > \epsilon\Big) \leqslant \lim_{N \to \infty} \frac{\sigma^2}{N\epsilon^2} = 0.$$

Hence, we have $\lim_{N\to\infty} \mathbb{P}(|S_N/N - \mu| > \epsilon) = 0$ and we obtained (WLLN).

Theorem 1.2: Strong Law of Large Numbers

Let X_1, \ldots, X_N be *i.i.d* random variables with mean μ . Consider the sum:

$$S_N = X_1 + \cdots + X_N$$

Then, the sample mean converges to μ almost surely $(S_N/N \xrightarrow{a.s} \mu)$:

$$\mathbb{P}\left(\limsup_{N\to\infty}|S_N/N-\mu|>\epsilon\right)=0,\ \forall\epsilon>0$$
(16)

Proof (Strong Law of Large Numbers (SLLN)).

We revisit the **Borel-Cantelli** lemma: Given a sequence of events $\{E_n\}_{n=1}^{\infty}$ such that its sum of probabilities $\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty$. Then, we have:

$$P\Big(\limsup_{n\to\infty} E_n\Big) = 0 \tag{17}$$

Π.

Let $\epsilon > 0$ be given. Denote the sequence of events $\{E_n\}_{n=1}^{\infty}$ as follows:

$$E_n = \left\{ |S_n/n - \mu| > \epsilon \right\}$$

One of our goal in this proof is to prove that $\sum_{n=1}^{\infty} \mathbb{P}(E_n) < \infty$ to apply the Borel-Cantelli lemma.

1. Attempt 1: Suppose that X_i have finite variance. Denote $\bar{S}_n = S_n/n$. Then, \bar{S}_n is a random variable with $\mathbb{E}\bar{S}_n = \mu$ and $Var(\bar{S}_n) = \sigma^2/n$. For $n \ge 1$, we have:

$$\mathbb{P}(E_n) = \mathbb{P}\left(|\bar{S}_n - \mu| > \epsilon\right) \leqslant \frac{\sigma^2}{n\epsilon^2} \quad (Chebyshev's Inequality)$$

However, we cannot use the above inequality because we can only conclude:

$$\sum_{n=1}^{\infty} \mathbb{P}(E_n) \leqslant \frac{\sigma^2}{\epsilon^2} \sum_{n=1}^{\infty} n^{-1} \quad (Divergent \ sum)$$

Hence, we move on to our next attemp.

2. Attempt 2: Now, we change the strategy to bound $\mathbb{P}(E_n)$. Specifically, for any s > 0, using the Chernoff bound, we have:

$$\begin{split} P\Big(|\bar{S}_n - \mu| > \epsilon\Big) &\leqslant M_{|\bar{S}_n - \mu|}(s)e^{-s\epsilon} \\ &= \mathbb{E}\Big[e^{s|\bar{S}_n - \mu|}\Big]e^{-s\epsilon} \\ &\leqslant e^{s\mathbb{E}|\bar{S}_n - \mu|}e^{-s\epsilon} \end{split}$$

Now, we have to bound $\mathbb{E}|\bar{S}_n - \mu|$. Using the integral identity, we have:

$$\mathbb{E}|\bar{S}_n - \mu| = \int_0^\infty \mathbb{P}(|\bar{S}_n - \mu| > t)dt$$

$$\leq \frac{\sigma^2}{n} \int_0^\infty t^{-2} dt \quad (Chebyshev's Inequality)$$

This does not work either because the above integral is divergent.

В	List of Definitions	
1.	.1 Definition (Random variable)	2
\mathbf{B}	Important Theorems	
1. 1.	.1 Weak Law of Large Numbers (WLLN)	4 5
\mathbf{C}	Important Corollaries	
D	Important Propositions	

E References