Flowers

Problem Statement

You and your K-1 friends want to buy N flowers. Flower number i has cost c_i . Unfortunately the seller does not want just one customer to buy a lot of flowers, so he tries to change the price of flowers for customers who have already bought some flowers. More precisely, if a customer has already bought x flowers, he should pay $\frac{(x+1)}{c_i}$ dollars to buy flower number i.

You and your K-1 friends want to buy all N flowers in such a way that you spend the least amount of money. You can buy the flowers in any order.

Input:

The first line of input contains two integers N and $K(K \le N)$. The next line contains N space separated positive integers c_1, c_2, \ldots, c_N .

Output:

Print the minimum amount of money you (and your friends) have to pay in order to buy all N flowers.

Constraints

1 < N, K < 100

Any c_i is not more than $10^6\,$

Result is guaranteed to be less than 2^{31}

Sample input #00

3 3 2 5 6

Sample output #00

13

Sample input #01

3 2 2 5 6

Sample output #01

15

Explanation:

Sample Case #00: In this example, all of you should buy one flower each. Hence, you'll have to pay 13 dollars.

Sample Case #01: Here one of the friend buys first two flowers in decreasing order of their price. So he will pay (0+1)*5 + (1+1)*2 = 9. And other friend will buy the costliest flower of cost 6. So total money need is 9+6=15.