(三) 近代物理

狭义相对论: 洛仑兹变换、时间膨胀、尺度收缩、狭义相对论动力学问题

>洛仑兹坐标变换

$$x' = \frac{x - vt}{\sqrt{1 - (v/c)^2}}$$

$$y' = y$$

$$z' = z$$

$$t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - (v/c)^2}}$$

$$x = \frac{x' + vt'}{\sqrt{1 - (v/c)^2}}$$

$$y = y'$$

$$z = z'$$

$$t' + \frac{v}{c^2}x'$$

$$\sqrt{1 - (v/c)^2}$$

$$\tau = \frac{\tau_0}{\sqrt{1 - (v/c)^2}}$$

▶尺度收缩

$$l = l_0 \sqrt{1 - \left(v/c\right)^2}$$

▶相对论动力学问题

$$m = \frac{m_o}{\sqrt{1 - (v/c)^2}}$$
 $\Rightarrow p = mv = \frac{m_o}{\sqrt{1 - (v/c)^2}} v$

□功和动能

$$E_K = E - E_0 = mc^2 - m_o c^2$$

$$W = \Delta E = m_2 c^2 - m_1 c^2$$

□能量和动量关系

8. (2011级, 洛仑兹变换, 同时的相对性)

- (1)对某观察者来说,发生在某惯性系中同一地点、同一时刻的两个事件, 对于相对该惯性系作匀速直线运动的其它惯性系中的观察者来说,它们是否同 时发生?
- (2)在某惯性系中发生于同一时刻、不同地点的两个事件,它们在其它惯性 系中是否同时发生?

关于上述两个问题的正确答案是:

- (A) (1) 同时, (2) 不同时. (B) (1) 不同时, (2) 同时.
- (C) (1)同时,(2)同时. (D) (1)不同时,(2)不同时. [🛕]

$$t' = \frac{t - \frac{v}{c^2}x}{\sqrt{1 - (v/c)^2}}$$

$$t' = \frac{t - \frac{v}{c^2} x}{\sqrt{1 - (v/c)^2}} \qquad \Delta t' = \frac{\Delta t - \frac{v}{c^2} \Delta x}{\sqrt{1 - (v/c)^2}} \qquad \Delta t = 0, \Delta x = 0, \text{ If } \Delta t' = 0$$

$$\Delta t = 0, \Delta x = 0, \text{ If } \Delta t' = 0$$

$$\Delta t = 0, \Delta x \neq 0, \text{ If } \Delta t' \neq 0$$

$$\Delta t = 0, \Delta x = 0, \text{ Ind } \Delta t' = 0$$

$$\Delta t = 0, \Delta x \neq 0, \text{ Ind } t \neq 0$$

18. (2012级,时间膨胀)

μ子是一种基本粒子,在相对于μ子静止的坐标系中测得其寿命为 $τ_0 = 3 ×$ 10^{-6} s. 如果μ子相对于地球的速度为v=0. 8c (c 为真空中光速),则在地球坐标

8. (2012级,尺度收缩)

边长为a的正方形薄板静止于惯性系K的Oxy平面内,且两边分别与x,y轴平行. 今有惯性系K' 以0.8c (c为真空中光速)的速度相对于K系沿x轴作匀速直线运动,则从K' 系测得薄板的面积为

(A)
$$0.6a^2$$
. (B) $0.8a^2$. (C) a^2 . (D) $a^2/0.6$. [A]

长度收缩只发生在<mark>运动方向</mark>上,在与运动方向垂直的方向 上不发生长度收缩。

$$l_x = l_{x0}\sqrt{1 - (v/c)^2} = a\sqrt{1 - (0.8c/c)^2} = 0.6a$$
 $S = 0.6a \times a = 0.6a^2$

7. (2011级,相对论动力学问题)

把一个静止质量为 m_0 的粒子,由静止加速到v = 0.6c (c 为真空中光速)需作的功等于 $W = mc^2 - m_0c^2$

- (A) $0.18m_0c^2$.
- (C) $0.36m_0c^2$.

- (B) $0.25 m_0 c^2$.
- (D) $1.25 m_0 c^2$.

早期量子论: 光电效应、康普敦效应、德布罗意波

▶光电效应

电子吸收光子能量后,一部分消耗于电子逸出金属表面时所做的功(逸出功A),另一部分转化成电子的动能

爱因斯坦光 电效应方程 $hv = A + \frac{1}{2}mv^2$

红限频率v₀或红限波长λ₀: 刚好能发生光电效应的入 射光最小频率或最大波长

$$h\nu_0 = h\frac{c}{\lambda_0} = A$$

当反向电压增至 $U_c(截止$ 电压or遏止电压)时,光电流为零。

$$\frac{1}{2}mv^2 = eU_c$$

▶德布罗意波

$$v = E/h$$
 $\lambda = h/p$ 光子

➤ 康普敦效应: X射线被物质散射时,散射光中不仅有与入射光相同的波长成分,更有波长大于入射光波长的成分——证明了光具有粒子性。

康普顿公式:
$$\Delta \lambda = \frac{h}{m_0 c} (1 - \cos \varphi) = \lambda_C (1 - \cos \varphi)$$

康普顿波长

康普顿效应: 高能光子与静止自由电子弹性碰撞

□能量守恒

$$hv_0 + m_0c^2 = hv + mc^2$$

□动量守恒

$$x$$
方向: $\frac{hv_0}{c} = \frac{hv}{c}\cos\varphi + mv\cos\theta$

$$y$$
方向: $0 = \frac{hv}{c} \sin \varphi - mv \sin \theta$

$$m = \frac{m_0}{\sqrt{1 - v^2/c^2}}$$

$$\lambda - \lambda_0 = \frac{n}{m_0 c} (1 - \cos \varphi)$$

康普顿
波长
$$\lambda_{\text{C}} = \frac{h}{m_0 c} = 2.43 \times 10^{-12} \,\text{m} = 2.43 \times 10^{-3} \,\text{nm}$$

9(2012级,光电效应)

已知一单色光照射在钠表面上,测得光电子的最大动能是 1.2 eV,而钠的红 限波长是 540nm, 那么入射光的波长是

- 535nm.
 - (B) 500nm.
- (C) 435nm. (D) 355nm.

(普朗克常量 $h=6.63\times10^{-34}$ J·s,1 eV =1.60×10⁻¹⁹ J)

$$hv = A + \frac{1}{2}mv^{2} \\ \lambda = \frac{ch}{A + 1/2mv^{2}} = \frac{ch}{hc/\lambda_{0} + E_{k}} = \frac{1}{1/\lambda_{0} + E_{k}/hc}$$

7(2010级,光电效应,洛仑兹力)

在均匀磁场B内放置一极薄的金属片,其红限波长为 λ_0 . 今用单色光照射, 发现有电子放出,有些放出的电子(质量为m,电荷的绝对值为e)在垂直于磁场 的平面内作半径为R的圆周运动,那么此照射光光子的能量是:

10 (2012级,康普顿效应)

在康普顿散射中,如果设反冲电子的速度为光速的 60%,则因散射使电子获得的能量是其静止能量的 $\Delta E = E - E_0 = mc^2 - m_o c^2$

(A) 2倍.

(B) 1.5 倍.

(C) 0.5 倍.

(D) 0.25 倍.

表面是康普顿效应, 其实是相对论力学

19(2011级, 德布罗意波, 康普顿效应, 相对论动力学)

令 $\lambda_c = h/(m_e c)$ (称为电子的康普顿波长,其中 m_e 为电子静止质量,c为真空中光速,h为普朗克常量). 当电子的动能等于它的静止能量时,它的德布罗意波长是 $\lambda = \lambda_c$.

$$E_{k} = E - E_{0} = E_{0} \implies E = 2E_{0}$$

$$E^{2} = E_{0}^{2} + p^{2}c^{2} \implies p = \sqrt{E^{2} - E_{0}^{2}}/c = \sqrt{3}E_{0}/c = \sqrt{3}m_{e}c$$

$$\lambda = h/p = h/\sqrt{3}m_{e}c = \lambda_{c}/\sqrt{3}$$

量子力学初步:波函数性质(概率波,不考薛定谔 方程)、氢原子光谱及跃迁,氢原子的量子力学结论 (能级、轨道角动量、角动量空间量子化)、四个量 子数、壳层结构、不相容原理

> 氢原子光谱及跃迁

 $E_n = E_1/n^2 = -13.6eV/n^2$

电子从 E_n 向 E_k 跃迁 放出光子的频率:

$$v = \frac{E_n - E_k}{h} = \frac{13.6eV}{h} \left(\frac{1}{k^2} - \frac{1}{n^2} \right)$$
 k<**n**

里德伯公式

$$\tilde{v} = \frac{1}{\lambda} = R(\frac{1}{k^2} - \frac{1}{n^2})$$
 R:里德伯常数

> 不相容原理

在一个原子中不可能有两个或两个以上的电子处于相同 的状态,即不可能具有相同的四个量子数。

给定的主量子数(主壳层)n,最多容纳电子数 $2n^2$

≻波函数的性质

在a到b内发现粒子的概率:

$$P = \int_a^b \left| \Psi(x,t) \right|^2 dx = \int_a^b \left| \psi(x) \right|^2 dx$$

概率密度: $|\Psi(x,t)|^2 = |\psi(x)|^2$

□某一时刻在整个空间内发现粒子的概率:

$$\int |\Psi|^2 dV = 1$$
 归一化条件

- □有限性 $\int |\Psi|^2 dV \le 1$
- □单值性 |Ψ|² 是单值的
- □连续性 Ψ和dΨ/dx一般连续

▶量子数

量子数	名称	取值	物理意义			
n	主量子数	1,2,3,	能量是量子化 $E_n = -\frac{1}{n^2} \frac{me^4}{8\varepsilon_0^2 h^2} = -\frac{13.6eV}{n^2}$			
l	轨道 量子数	0,1,2,, <i>n</i> -1	"轨道"角动量是量子化 $L = \sqrt{l(l+1)}\hbar$			
m_l	(轨道)磁 量子数	$0, \pm 1, \pm 2, \dots, \pm l$	角动量的空间取向是量子化 $L_z = m_l \hbar$,			
$m_{_S}$	自旋磁 量子数	±1/2	自旋的空间取向是量子化 $S_z = m_s \hbar$,			

主壳层 具有相同主量子数n的电子构成一个壳层

n	1	2	3	4	5	6	7
	K	L	M	N	О	P	Q

次売层

1	0	1	2	3	4	5	6
	S	p	d	f	g	h	į

18(2009级,氢原子光谱及跃迁)

氢原子由定态 1 跃迁到定态 2 可发射一个光子. 已知定态 1 的电离能为 0.85 eV,又知从基态使氢原子激发到定态 2 所需能量为 10.2 eV,则在上述跃迁中氢原子所发射的光子的能量为_____eV.

氢原子电离能:从定态(不一定是基态)到自由态(0eV)所需最小能量。

20(2012级,不相容原理,量子数)

在主量子数n=3,自旋磁量子数 $m_s=\frac{1}{2}$ 的量子态中,能够填充的 $m_s=1/2$,最大容纳电子数 n^2 最大电子数是

10(2011级,量子数)

下列各组量子数中,哪一组可以描述原子中电子的状态?

(A)
$$n=2$$
, $l=2$, $m_l=0$, $m_s=\frac{1}{2}$.

(A)
$$n=2$$
, $l=2$, $m_l=0$, $m_s=\frac{1}{2}$. (B) $n=3$, $l=2$, $m_l=-1$, $m_s=-\frac{1}{2}$.

(C)
$$n = 1$$
, $l = 2$, $m_l = 1$, $m_s = \frac{1}{2}$

(C)
$$n=1$$
, $l=2$, $m_l=1$, $m_s=\frac{1}{2}$. (D) $n=1$, $l=0$, $m_l=1$, $m_s=-\frac{1}{2}$.

根据量子数的取值规定

[B]

9(2010级,量子数)

在氢原子的 M 壳层中,电子可能具有的量子数 (n,l,m_l,m_s) 是

(A)
$$(3, 2, 0, \frac{1}{2})$$
.

(B) (2, 0, 0,
$$\frac{1}{2}$$
). M壳层,n=3

(C)
$$(3, 3, 1, -\frac{1}{2})$$
.

(D)
$$(2, 1, 0, -\frac{1}{2})$$
.

 $[A]_{14}$

20(2011级,波函数性质(概率波))

粒子在一维无限深方势阱中运动(势阱宽度为a),其波函数为

$$\psi(x) = \sqrt{\frac{2}{a}} \sin \frac{3\pi x}{a} \qquad (0 < x < a),$$

粒子出现的概率最大的各个位置是 $x = _{----}$.

一维无限深势阱

$$\varphi(x) = \sqrt{\frac{2}{a}} \sin(\frac{n\pi}{a}x)$$

n = 3

(一) 静电学

真空中的静电场: 电场强度、电势、静电场 力及其做功

▶电场强度

$$\vec{E} = \frac{\vec{F}}{q_0}$$

$$\vec{E} = \frac{\vec{F}}{q_0} \qquad \qquad 点电荷 \vec{E} = \frac{1}{4 \pi \varepsilon_0} \frac{Q}{r^2} \vec{e}_r$$

无限长带
$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$
 电荷线密度 电平面 $E = \frac{\sigma}{2\varepsilon_0}$

$$E = \frac{\sigma}{2\varepsilon_0}$$

在电介质中时, ε_0 换成 $\varepsilon = \varepsilon_0 \varepsilon_r$

电荷面密度

> 静电场力及其做功

$$\vec{F} = q\vec{E}$$
 $A = \int_{l} q\vec{E} \cdot d\vec{l}$

静电场力做功仅与始末位置有关,与路径无关,是保守力。

沿闭合路径一周,电场力作功为零

$$\oint_{l} \vec{E} \cdot d\vec{l} = 0$$

▶电势

$$U_{AB} = U_A - U_B = \int_A^B \vec{E} \cdot d\vec{l} \qquad U_A = \int_A^\infty \vec{E} \cdot d\vec{l} \qquad \frac{\mathrm{点电荷}}{\mathrm{eph}} \quad U = \frac{q}{4 \pi \varepsilon_0 r}$$

1(2012级, 电场强度)

如图所示,两个同心均匀带电球面,内球面半径为 R_1 、带有电荷 Q_1 ,外球面半径为 R_2 、带有电荷 Q_2 ,则在外球面外面、距离球心为 R_3 处的 R_4 点的场强大小 R_4 为:

$$(\mathbf{A}) \ \frac{Q_1 + Q_2}{4\pi\varepsilon_0 r^2} .$$

(B)
$$\frac{Q_1}{4\pi\varepsilon_0(r-R_1)^2} + \frac{Q_2}{4\pi\varepsilon_0(r-R_2)^2}.$$

(C)
$$\frac{Q_1 + Q_2}{4\pi\varepsilon_0(R_2 - R_1)^2}$$
.

(D)
$$\frac{Q_2}{4\pi\varepsilon_0 r^2}$$
.

 $\vec{E} = \sum_{i} \vec{E}_{i}$ 或直接高斯定理

11 (2012级, 电场强度)

两根相互平行的"无限长"均匀带正电直线 1、2,相距为 d,其电荷线密度分别为 $+\lambda_1$ 和 $+\lambda_2$ 如图所示,则场强等于零的点与直线 1 的距离 a 为 $\frac{\lambda_1}{\lambda_1+\lambda_2}$.

无限长带
$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$
 $E_1 + E_2 = \frac{\lambda_1}{2\pi\varepsilon_0 a} - \frac{\lambda_1}{2\pi\varepsilon_0 (d-a)} = 0$

13(2012级,静电场力及其做功)

图示 BCD 是以 O 点为圆心,以 R 为半径的半圆弧,在 A 点有一电荷为+q 的点电荷,O 点有一电荷为一q 的点电荷.线段 $\overline{BA}=R$.现将一单位正电荷从 B 点沿半圆弧轨道 BCD 移到 D 点,则电场力所作的功为

静电场力做功仅与始末位置有关,与路径无关

正电荷
$$A = \int_{l} q_{0} \vec{E} \cdot d\vec{l} = \int_{R}^{3R} \frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}} dr = \frac{q}{6 \pi \varepsilon_{0} R}$$

负电荷不做 功(r不变)

静电场中的导体和电介质:静电感应、真空 及有电介质时的高斯定理、电通量、有电介 质时的电场与电位移、电容、电场能量

▶静电感应 静电平衡

- □导体内部任何一点处的电场强度为零
- □导体表面处的电场强度的方向,都与导体表面垂直
- □导体是等势体
- □实心导体:导体内部无净电荷,电荷只能分布于导体外表面。
- □有空腔导体
 - •腔内无电荷: 电荷分布在外表面上(内表面无电荷)
 - •空腔内有电荷+q:内表面因静电感应出现等值异号的电荷-
 - q,外表面有感应电荷 +q(电荷守恒)

> 真空及有电介质时的高斯定理

真空:
$$\oint_{S} \vec{E} \cdot d\vec{S} = \frac{1}{\varepsilon_0} \sum_{q}$$
 有电介质: $\oint_{S} \vec{D} \cdot d\vec{S} = \sum_{20} q_{\text{the part}}$

>有电介质时的电场与电位移

$$\vec{E} = \vec{D} / \varepsilon = \vec{D} / \varepsilon_0 \varepsilon_r$$

真空中场强En与有 介质场强E,的关系

$$\vec{E} = \vec{E}_0 / \varepsilon_{\mathrm{r}}$$
 $\vec{D} = \varepsilon_0 \varepsilon_r \vec{E} = \varepsilon_0 \vec{E}_0$

▶电通量

$$\Phi_{\rm e} = \int_{S} \vec{E} \cdot d\vec{S} = \int_{S} E \cos \theta dS$$

$$C = \frac{Q}{V}$$

电容器
$$C = \frac{Q}{U} = \frac{Q}{Ed}$$

▶电容 孤立导
$$C = \frac{Q}{V}$$
 电容器 $C = \frac{Q}{U} = \frac{Q}{Ed}$ 平行板 $C = \frac{\mathcal{E}_0 \mathcal{E}_r S}{d}$

电容器间电场强度为两极板(无限大带电平面)电场的叠加, 但两极板各自感受到的电场强度为极板间电场强度的一半。

电容
$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots + \frac{1}{C_n}$$
 电容 $C = C_1 + C_2 + \dots + C_n$

电场 电容器
$$W_{\rm e} = \frac{Q^2}{2C} = \frac{1}{2}QU = \frac{1}{2}CU^2$$
 电场能 $w_{\rm e} = \frac{1}{2}\varepsilon E^2 = \frac{1}{2}ED$

2 (2012级, 静电感应, 电势)

如图所示,一带负电荷的金属球,外面同心地罩 一不带电的金属球壳,则在球壳中一点P处的场强 大小与电势(设无穷远处为电势零点)分别为: 🧸

(A)
$$E = 0$$
, $U > 0$. (B) $E = 0$, $U < 0$.

(B)
$$E = 0$$
, $U < 0$.

(C)
$$E = 0$$
, $U = 0$.

(C)
$$E = 0$$
, $U = 0$. (D) $E > 0$, $U < 0$.

静电平衡导体内部电
$$U_A = \int_{\mathbf{A}}^{\infty} \vec{E} \cdot \mathrm{d}\vec{l}$$
 \mathbf{B}] 场为零,是等势体

14(2012级, 电场能量, 电容)

一空气电容器充电后切断电源,电容器储能 W_0 ,若此时在极板间灌入相对 介电常量为 ε , 的煤油,则电容器储能变为 W_0 的 G. 如果灌煤油时电容 器一直与电源相连接,则电容器储能将是 W_0 的 倍. ↵

$$W_{\rm e} = \frac{Q^2}{2C} = \frac{W_0}{\varepsilon_r}$$

$$W_{\rm e} = \frac{1}{2}CU^2 = \varepsilon_{\rm P}W_{\rm o}$$

2(2011级,静电感应,电场强度)

一"无限大"均匀带电平面A,其附近放一与它平 行的有一定厚度的不带电的"无限大"平面导体板B, 如图所示. 已知A上的电荷面密度为 $+\sigma$,则在导体板 B的两个表面1和2上的感生电荷面密度为:

(A)
$$\sigma_1 = -\sigma$$
, $\sigma_2 = +\sigma$. 无限大带

(B)
$$\sigma_1 = -\frac{1}{2}\sigma$$
, $\sigma_2 = +\frac{1}{2}\sigma$.

(C)
$$\sigma_1 = -\frac{1}{2}\sigma$$
, $\sigma_2 = -\frac{1}{2}\sigma$.

(D)
$$\sigma_1 = -\sigma$$
, $\sigma_2 = 0$.

无限大带
$$E=\frac{\sigma}{2\varepsilon_0}$$

原来不带电
$$\sigma_1 + \sigma_2 = 0$$

$$\sigma_{1} = -\frac{1}{2}\sigma, \sigma_{2} = \frac{1}{2}\sigma$$

12 (2011级, 电通量, 高斯定理)

如图所示,一点电荷q位于正立方体的A角上,则

通过侧面abcd的电场强度通量∅。=

"以A为中心,用8个立方体构建 一个2*2*2的大立方体,其外表 面的电通量,根据高斯定理:

$$\phi = \oint_{S} \vec{E} \cdot d\vec{S} = \frac{q}{\varepsilon_0}$$
 $\phi_e = \frac{1}{24} \phi = \frac{q}{24\varepsilon_0}$

$$\phi_e = \frac{1}{24} \phi = \frac{q}{24 \varepsilon_0}$$