Tony Li **CSE150**

HW02b

Problem 5

Show that each function $f : \mathbb{N} \to \mathbb{N}$ has the listed properties.

1.
$$f(x) = 2x$$
 (one-to-one but not onto)

Injection: $\forall_{a,b} \in A$, $f(a) = f(b) \Rightarrow a = b$ Take any two arbitrary x: x_1, x_2 . If $f(x_1) = f(x_2)$, then $x_1 = x_2$ is true if the function is one-to-one.

$$f(x_1) = 2x_1$$

$$f(x_2) = 2x_2$$

$$2x_1 = 2x_2$$

$$x_1 = x_2$$

So f(x) is one-to-one.

Onto: $\forall_y \in Y, \exists x \in X, f(x) = y$ For this to be onto, every element in the set of $\mathbb N$ must have a corresponding element in the set of \mathbb{N} .

Let's take the number 7, from the set \mathbb{N} .

Since only f(3.5) = 7, and 3.5 is not in the set \mathbb{N} , then it's not onto.

2.
$$f(x) = x + 1$$
 (one-to-one but not onto)

Injection: $\forall_{a,b} \in A$, $f(a) = f(b) \Rightarrow a = b$

then $x_1 = x_2$ is true if the function is one-to-one.

$$f(x_1) = x_1 + 1$$

$$f(x_2) = x_2 + 1$$

$$x_1 + 1 = x_2 + 1$$

$$x_1 = x_2$$

So f(x) is one-to-one.

Onto: $\forall_y \in Y, \exists x \in X, f(x) = y$ For this to be Take any two arbitrary x: x_1, x_2 . If $f(x_1) = f(x_2)$, onto, every element in the set of $\mathbb N$ must have a corresponding element in the set of \mathbb{N} .

Let's take the number 0, from the set \mathbb{N} .

Since only f(-1) = 0, and -1 is not in the set \mathbb{N} , then it's not onto.

3. f(x) = if x is odd then x - 1 else x + 1 (bijective)

Injection: $\forall_{a,b} \in A$, $f(a) = f(b) \Rightarrow a = b$

Take any two arbitrary x for the even case and $f(x_1) = 2x_1 + 1 - 1$

any two arbitrary x for the odd case, where: $f(x_3) = 2x_3 + 1 - 1$

-2x represents the xth even number and $2x_1 + 1 = 2x_3 + 1$

-2x + 1 represents the xth odd number: $2x_1 + 1 = 2x_3 + 1$

 x_1, x_3 for odds.

 x_2, x_4 for evens.

If $f(2x_1+1) = f(2x_3+1)$, then $2x_1+1 = 2x_3+1$ $f(x_2) = 2x_2+1$

is true if the function is one-to-one. $f(x_4) = 2x_4 + 1$

If $f(2x_2) = f(2x_4)$, then $2x_2 = 2x_4$ is true if the $2x_1 + 1 = 2x_3 + 1$

function is one-to-one. $2x_2 = 2x_4$

So f(x) is one-to-one.

Onto: $\forall y \in Y, \exists x \in X, f(x) = y$ For this to be onto, every element in the set of \mathbb{N} must have a corresponding element in the set of \mathbb{N} .

For this piecewise function to be onto, both pieces must also be onto.

For any arbitrary x_1 , let x_1 represent the odd inputs, where $x_1 = 2n + 1$ and $n \in \mathbb{N}$.

For any arbitrary x_2 , let x_2 represent the even inputs where $x_2 = 2n$ and $n \in \mathbb{N}$.

$$f(x_1) = x_1 - 1 = (2n+1) - 1 = 2n$$

$$f(x_2) = x_2 + 1 = (2n) + 1 = 2n + 1$$

This proves that for every odd input, there will be a corresponding even input and for every even input, there will be a corresponding odd input.

Problem 6

Show that the product (a + bi)(c + di) of two complex numbers can be evaluated using just three real-number multiplications. You may use a few extra additions.

1.
$$(a+bi)(c+di)$$

2.
$$ac + cbi + adi - bd$$
 [by foiling]

3.
$$ac - bd + i(cb + ad)$$
 [by grouping]

4.
$$ac - bd + i(cb + ad) + bc - bc - ad + ad$$
 [adding zero]

5.
$$ac + bc - bd - ad + i(cb + ad) - bc + ad$$
 [by grouping]

6.
$$c(a+b) - d(b+a) + i(cb+ad) - bc + ad$$
[by grouping]

7.
$$(a+b)(c+d)+i(cb+ad)-bc+ad$$
[by grouping]

Problem 7

Given a function $f: A \to A$. An element $a \in A$ is called a *fixed point of f* if f(a) = a. Find the set of fixed points for each of the following functions.

- 1. $f: A \to A$ where f(x) = x $\{x \mid x \in \mathbb{R} \}$
- 2. $f: \mathbb{N} \to \mathbb{N}$ where f(x) = x + 1 $\{\}$
- 3. $f: \mathbb{N}_6 \to \mathbb{N}_6$ where $f(x) = 2x \mod 6$ $\{0\}$
- 4. $f: \mathbb{N}_6 \to \mathbb{N}_6$ where $f(x) = 3x \mod 6$ {0,3}

Problem 8

Let $f(x) = x^2$ and g(x, y) = x + y. Find the compositions that use the functions f and g for each of the following expressions.

- 1. $(x+y)^2 = f(g(x,y))$
- 2. $x^2 + y^2 = g(f(x), f(y))$
- 3. $(x + y + z)^2 = f(g(g(x, y), z))$
- 4. $x^2 + y^2 + z^2 = g(g(f(x), f(y)), f(z))$

***Collaborated with David Song, Raymond Wu, Sean Chu

****Special thanks to Zane for help with Problem 5