OT ANUSANDE PE	ITER, SIKSHA 'O' ANUSAN (Deemed to be University	LESSON PLAN			
Programme	B.Tech.	Academic Year	2023-24		
Department	CSE	Semester	$4^{ m th}$		
Credit	4	Grading Pattern	1		
Subject Code	CSE 4131				
Subject Name	ALGORITHM DESIGN-2				
Weekly Course Format	Course Format 3L - 2P				
Instructor Dr. Satya Ranjan Das					
References Book	xs(s):				
(T1) Algorithm Design	by Jon Kleinberg and Eva Tardos, Pearson Publi	cation.			
(T2) Problem Soving in	Data Structures and Algorithms using Java by I	Hemant Jain.			
(T3) The Algorithm De	sign Manual by Steven S. Skiena, Springer Public	cation			
Students will be able to					
	CO1 To understand the Network flow problet	m and apply it to so	lve different real-		

	Students will be able to				
	CO1	To understand the Network flow problem and apply it to solve different real-world problems.			
CO2 To distinguish between computationally tractable and intractable problem and relate classP, classNP and class NP complete, define an appropriate and the verification algorithm for a given problem in NP					
Course Outcomes	CO3	To understand approximation algorithms and apply this concept to solve some prob- lems for which polynomial time exact solutions are probably unattainable.			
	CO4	To understand local search techniques and apply this concept to design heuristics for some computationally hard problems.			
	CO5	To understand randomization and apply this concept to solve problems.			
	CO6	To identify and apply an appropriate algorithmic approach to solve a problem and explain the challenges to solve it.			

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
1	Introduction to the course/subject: Lesson plan; Course Goal; Teaching methodology; Evaluation strategy etc.			
2	Review on Time and Space Complexity, Asymptotic Notations, Recurrences, Sorting and Searching			
3	Review on Graph representation, graph traversal, spanning tree and shortest path			
4	Lab#1: Java implementation of Graph related algorithms (BFS, DFS, MST, Shortest Path)	T2-12 (pg.405)	CO1-CO6	
5	Review on Greedy, DAC and DP Algorithms			Quiz-1
6	Weighted graph algorithms: Network flows and Bipartite matching (including all theorems and lemma – 7.1 to 7.5)	T1_7.1-7.2 (pg.338- 345)	CO1	
7	Weighted graph algorithms: Network flows and Bipartite matching (including all theorems and lemma – 7.6 to 7.14)	T1_7.3 (pg.345- 352)	CO1	
8	Lab#2: Java implementation of Graph related algorithms (BFS, DFS, MST, Shortest Path)	T2-12 (pg.405)	CO1-CO6	
9	Weighted graph algorithms: Network flows and Bipartite matching (including all theorems and lemma – 7.34 to 7.38)	T1_7.5 (pg.368- 370)	CO1	Assignment-1
10	NP and Computational Intractability: Problem Reductions (all subsections)	T3_9.2 (pg. 319- 323)	CO2	
11	NP and Computational Intractability: Problem Reductions (all subsections)	T3_9.3 (pg. 324- 327)	CO2	Quiz-2
12	Lab#3: Java implementation of String-based algorithms (Brute-force algorithm for searching, Rabin-Karp string matching algorithm, Symbol table/Dictionary, Hash table)	T2-13 (pg.454)	CO1-CO6	

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
13	NP and Computational Intractability: Problem Reductions (all subsections)	T1_8.1 (pg.452- 458)	CO2	
14	NP and Computational Intractability: Satisfiability (Formula-SAT, CKT-SAT etc.) (including theorems and lemma $-8.8,8.9$)	T1_802 (pg.460- 462)	CO2	
15	NP and Computational Intractability: P, NP, NPC and NPH (including theorems and lemma – 8.10, 8.11, 8.12, 8.16)	T1_8.3-8.4 (pg.463- 472)	CO2	
16	Lab#4: Java implementation of String-based algorithms (Brute-force algorithm for searching, Rabin-Karp string matching algorithm, Symbol table/Dictionary, Hash table)	T2-13 (pg.454)	CO1	
17	NP and Computational Intractability: P, NP, NPC and NPH	T1_8 (pg.460- 472)	CO2	
18	PSPACE: A class Problems Beyond NP (including all theorems and lemma – 9.1 to 9.3)	T1_9.1 (pg.531- 532)	CO1	
19	PSPACE: A class Problems Beyond NP	T_9.2 (pg.533- 535)	CO2	
20	Lab#5: Java implementation of String-based algorithms (Brute-force algorithm for searching, Rabin-Karp string matching algorithm, Symbol table/Dictionary, Hash table)	T2-13 (pg.454)	CO1-CO6	
21	PSPACE: A class Problems Beyond NP	T_9.2 (pg.533- 535)	CO2	
22	Extending the Limits of Intractability (including theorems and lemma $-$ 10.1 to 10.2 $-$ statements only with example, no proof required)	T1_10.1 (pg.553- 554)	CO2	Assignment-2

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
23	Extending the Limits of Intractability (including theorems and lemma – 10.3 to 10.4 – statements only with example, no proof required)	T1_10.1 (pg.555- 556)	CO2	Quiz-2
24	Lab#6: Java implementation of Greedy Algorithm (Interval Scheduling, Fractional Knapsack, Huffman Coding)	T2_16 (pg.488)	CO1-CO6	
25	Approximation Algorithms (including all theorems and lemma – 11.1 to 11.5)	T1_11.1 (pg.600- 605)	CO3	
26	Approximation Algorithms (including all theorems and lemma – 11.6 to 11.8)	T1_11.2 (pg.608- 611)	CO3	
27	Approximation Algorithms (including only the statements of all theorems and lemma – 11.9 to 11.10—no proofs required)	T1 ₋ 11.3 (pg.612- 615)	CO3	
28	Lab#7: Java implementation of Greedy Algorithm (Interval Scheduling, Fractional Knapsack, Huffman Coding)	T2_16 (pg.454)	CO1-CO6	
29	Approximation Algorithms (including all theorems and lemma – 11.12 to 11.13)	T1_11.4 (pg.618- 620)	CO3	
30	Approximation Algorithms (including all theorems and lemma – 11.14 to 11.15)	T1_11.4 (pg.621- 623)	CO3	Assignment-3
31	Local Search	T1 ₋ 12.1 (pg.749)	CO4	
32	Lab#8: Java implementation of Divide-and-Conquer based algorithms (Merge sort, Counting Inversions, Quick sort)	T2_17 (pg.497)	CO1-CO6	
33	Local Search (The landscape of an optimization problem – statement 12.1 with example of vertex cover problem	T1_12.1 (pg.750- 753)	CO4	

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
34	Local Search (Application of local search to Hopfield Neural Networks – algorithm with example – no proof required)	T1_12.3 (pg.760- 761)	CO4	
35	Local Search (Application of local search to Hopfield Neural Networks – algorithm with example – no proof required)	T1_12.3 (pg.762- 763)	CO4	
36	Lab#9: Java implementation of Divide-and-Conquer based algorithms (Merge sort, Counting Inversions, Quick sort)	T2_17 (pg.497)	CO1-CO6	
37	Randomized Algorithm: Contention Resolution	T1 ₋ 13.1 (pg.662- 664)	CO5	
38	Randomized Algorithm: Contention Resolution	T1 ₋ 13.1 (pg.665- 667)	CO5	
39	Randomized Algorithm: Median Finding and Quick Sort	T1_13.5 (pg.681- 684)	CO5	
40	Randomized Algorithm: Median Finding and Quick Sort	T1_13.5 (pg.684- 687)	CO5	Assignment-4
41	Randomized Algorithm: Hashing	T1_13.6 (pg.691- 692)	CO5	
42	Lab#10: Java implementation of Dynamic Programming based algorithms (Weighted Intrval Scheduling, Longest Common Subsequence, Coin Exchange, Matrix Chain Multiplication)	T2_18 (pg.506)	CO1-CO6	
43	Randomized Algorithm: Hashing	T1_13.6 (pg.692- 694)	CO5	Quiz-3

Sl.No.	Lessons/Topics to be covered	Book Reference (sections)	Mapping with COs	Home Work/ Assignments/ Quizzes
44	Lab#11: Java implementation of Dynamic Programming based algorithms (Weighted Intrval Scheduling, Longest Common Subsequence, Coin Exchange, Matrix Chain Multiplication)	T2_18 (pg.506)	CO1-CO6	
45	How to Design Algorithms; A catalog of Algorithmic Problems	P2_10,11 (pg.363- 366)	CO6	
46	How to Design Algorithms; A catalog of Algorithmic Problems	P2_10,11 (pg.363- 366)	CO6	
47	How to Design Algorithms; A catalog of Algorithmic Problems	P2_10,11 (pg.363- 366)	CO6	
48	Lab#12: Java implementation of Dynamic Programming based algorithms (Weighted Intrval Scheduling, Longest Common Subsequence, Coin Exchange, Matrix Chain Multiplication)	T2_18 (pg.506)	CO1-CO6	

 $[\]Leftrightarrow$ Few Groups will be assigned to conduct Module based Experiments (Verification / Understanding domain knowledge) and Some groups need to be assigned with term projects (Analysis/Implementation).