Teorija programskih jezikov: 3. izpit

8. julij 2020

1. naloga (20 točk)

V λ -računu, razširjenem s seznami, definirajmo:

$$sum = \text{rec fun } s \ \ell$$
. match ℓ with $[] \mapsto 0 \ | \ h :: t \mapsto h + s \ t$

- a) Zapišite vsa pravila, ki določajo operacijsko semantiko malih korakov za izraz rec fun f x.e.
- b) Zapišite vse korake v evalvaciji izraza sum (19::(23::[])) v semantiki malih korakov.
- c) Izračunajte najbolj splošen tip izraza sum.

2. naloga (20 točk)

Naj bo (D, \leq) domena in $x, y \in D$. Pravimo, da je x daleč pod y, kar označimo z $x \ll y$, kadar vsaka veriga, katere supremum preseže y, preseže x že po končno mnogo členih. Torej, če za vsako verigo $w_0 \leq w_1 \leq w_2 \leq \cdots$, za katero velja $y \leq \bigvee_i w_i$, obstaja nek j, da velja $x \leq w_j$.

- **a**) Dokažite, da za poljubna $x, y \in D$ iz $x \ll y$ sledi $x \le y$.
- **b)** Dokažite, da za poljubne $x, y, z \in D$ iz $x \ll y$ in $y \le z$ sledi $x \ll z$.
- **c**) Dokažite, da za poljubne $x, y, z \in D$ iz $x \le y$ in $y \ll z$ sledi $x \ll z$.
- **d**) Poiščite primer domene (D, \leq) ter elementa $x \leq y$, za katere *ne velja* $x \ll y$.

3. naloga (20 točk)

V λ -račun dodamo nedeterministično izvajanje, v katerem se lahko izrazi evalvirajo v več kot eno možno vrednost:

$$e := x \mid \texttt{true} \mid \texttt{false} \mid \texttt{if} \ e \ \texttt{then} \ e_1 \ \texttt{else} \ e_2 \mid \lambda x.e \mid e_1 \ e_2 \mid e_1 \oplus e_2$$

- **a)** Zapišite pravilo za določitev tipa za izraz $e_1 \oplus e_2$, ki se nedeterministično odloči, ali bo nadaljeval kot e_1 ali kot e_2 .
- **b**) Operacijsko semantiko za razširjeni λ -račun lahko podamo na dva načina. Prvi je, da v semantiko malih korakov dodamo pravili:

$$\frac{}{e_1 \oplus e_2 \leadsto e_1} \qquad \frac{}{e_1 \oplus e_2 \leadsto e_2}$$

Drugi pa je semantika velikih korakov oblike $e \Downarrow \{v_1, ..., v_n\}$, kjer so $v_1, ..., v_n$ vse možne vrednosti, v katere se lahko evalvira izraz e. Zapišite pravila, ki določajo takšno semantiko.

4. naloga (20 točk)

 $Polimorfni \ \lambda$ -račun oziroma $sistem \ F$ je λ -račun, razširjen z eksplicitnimi univerzalno kvantificiranimi tipi ter izrazoma za abstrakcijo in aplikacijo tipov. Sintaksa njegovih tipov, izrazov in vrednosti je:

$$\begin{split} A &::= \texttt{bool} \mid \texttt{int} \mid A \to B \mid \alpha \mid \forall \alpha.A \\ e &::= \cdots \mid \Lambda \alpha.e \mid eA \\ v &::= \cdots \mid \Lambda \alpha.e \end{split}$$

pravila za operacijsko semantiko in tipe novih izrazov pa so

$$\frac{e \leadsto e'}{e \: A \leadsto e' \: A} \qquad \frac{\Gamma, \alpha \vdash e : A}{\Gamma \vdash \Lambda \alpha . e : \forall \alpha . A} \qquad \frac{\Gamma \vdash e : \forall \alpha . A}{\Gamma \vdash \alpha . e : \forall \alpha . A}$$

pri čemer lahko konteksti Γ vsebujejo tako proste spremenljivke x:A kot proste spremenljivke za tipe α . Poleg tega za vsak $\Gamma \vdash e:A$ zahtevamo, da se vse proste spremenljivke α v izrazu e in tipu A pojavijo v Γ .

Dokažite izreka o napredku in ohranitvi za polimorfni λ -račun.

Theory of programming languages: third exam

8 July 2020

Question 1 (20 marks)

In λ -calculus extended with lists, we define:

$$sum = \operatorname{rec} \operatorname{fun} s \ \ell$$
. match ℓ with $[] \mapsto 0 \ | \ h :: t \mapsto h + s \ t$

- **a)** Write down all the rules that specify the small-step operational semantics of the expression rec fun f x.e.
- **b)** Write down all the steps in the evaluation of the expression sum (19 :: (23 :: [])) in the small-step semantics.
- **c**) Compute the most general type of the expression *sum*.

Question 2 (20 marks)

Let (D, \leq) be a domain and let $x, y \in D$. We say that x is well below y, written as $x \ll y$, when each chain, whose supremum exceeds y, exceeds x after finitely many elements. In other words, if for any chain $w_0 \leq w_1 \leq w_2 \leq \cdots$ such that $y \leq \bigvee_i w_i$, there exists some j, such that $x \leq w_j$.

- **a)** Prove, that $x \ll y$ implies $x \le y$ for arbitrary $x, y \in D$.
- **b)** Prove, that $x \ll y$ and $y \le z$ implies $x \ll z$ for arbitrary $x, y, z \in D$.
- c) Prove, that $x \le y$ and $y \ll z$ implies $x \ll z$ for arbitrary $x, y, z \in D$.
- **d)** Find an example of a domain (D, \leq) and elements $x \leq y$, such that $x \ll y$ does not hold.

Question 3 (20 marks)

We extend λ -calculus with non-deterministic evaluation, where each expression can evaluate to more than one possible value:

$$e := x \mid \text{true} \mid \text{false} \mid \text{if } e \text{ then } e_1 \text{ else } e_2 \mid \lambda x.e \mid e_1 e_2 \mid e_1 \oplus e_2$$

- **a)** Write down the typing rule for the expression $e_1 \oplus e_2$, which non-deterministically chooses between proceeding as e_1 or as e_2 .
- **b)** Operational semantics for the extended λ -calculus can be given in two different ways. The first one is extending small-step semantics with rules:

$$\overline{e_1 \oplus e_2 \leadsto e_1}$$
 $\overline{e_1 \oplus e_2 \leadsto e_2}$

The second one is big step semantics of the form $e \downarrow \{v_1, ..., v_n\}$, where $v_1, ..., v_n$ are all possible values into which e can evaluate. Write down all the rules that define such semantics.

Question 4 (20 marks)

Polymorphic λ -calculus or system F is λ -calculus, extended with explicit universally quantified types and expressions for type abstraction and application. The syntax of its types, expressions and values is:

$$A ::= \texttt{bool} \mid \texttt{int} \mid A \to B \mid \alpha \mid \forall \alpha.A$$

$$e ::= \cdots \mid \Lambda \alpha.e \mid eA$$

$$v ::= \cdots \mid \Lambda \alpha.e$$

while the additional rules for operational semantics and typing judgements are:

$$\frac{e \leadsto e'}{eA \leadsto e'A} \qquad \frac{\Gamma, \alpha \vdash e : A}{\Gamma \vdash \Lambda \alpha . e : \forall \alpha . A} \qquad \frac{\Gamma \vdash e : \forall \alpha . A}{\Gamma \vdash \alpha . B : A[B/\alpha]}$$

where the context Γ may contain both free variables of the form x:A and free type variables α . In addition, we require that in each $\Gamma \vdash e:A$ all free type variables α in the expression e or type A appear in Γ .

Prove progress and preservation theorems for polymorphic λ -calculus.