SURVEY OF SENSOR PAYLOADS for UAVs

NATO SET Meeting Advanced Sensor Payloads for UAVs 2-4 May 2005 Lisbon, Portugal R.T. HINTZ
NAVAIR 45T000D
CHINA LAKE, CA 93555
(760)939-2890
Robert.hintz@navy.mil

maintaining the data needed, and of including suggestions for reducing	empletion of information is estimated to completing and reviewing the collect this burden, to Washington Headquuld be aware that notwithstanding aromb control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 01 MAY 2005				3. DATES COVERED		
4. TITLE AND SUBTITLE				5a. CONTRACT	NUMBER	
Survey of Sensor Payloads for UAVs				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
	ZATION NAME(S) AND AE China Lake, CA 93	` '		8. PERFORMING REPORT NUMB	G ORGANIZATION ER	
9. SPONSORING/MONITO	PRING AGENCY NAME(S) A	ND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)	
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release, distributi	on unlimited				
13. SUPPLEMENTARY NO See also ADM2020	OTES 32., The original do	cument contains col	or images.			
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
a. REPORT unclassified	ь. abstract unclassified	c. THIS PAGE unclassified	UU	26	REST ONSIBLE I ERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

SURVEY of UAV SENSOR PAYLOADS

- BACKGROUND on SURVEY
- EO/IR SENSORS
 - FLIR
 - IRST
 - Multi / Hyperspectral Infrared
- LASER SENSORS
 - LIDAR (soft targets)
 - Pollution Monitoring
 - Chem / Bio Sensors
 - LADAR (hard targets)
 - Obstacle Avoidance
 - Terrain Mapping
- RADAR SENSORS (MTI / SAR)
 - Surveillance & Reconnaisance
 - Targeting & Fire Control
- ELECTRONIC WARFARE SENSORS
 - Precision ESM Sensors
 - Missile Warning Receivers
- TARGET LOCATION ERROR (TLE)
- AUTOMATIC TARGET RECOGNITION / BDA
- SUMMARY

Background on Survey

- Original surveys performed for Navy UAV
 Programs and summarized in CY2000 reports
- Types of information in each report
 - UAV sensor payloads (< 200 pounds)
 - Small UAV sensor payloads (<40 pounds)
- Presentation represents excerpts from reports
- Updated with new sensor payload information

FSI "Brite Star"

TABLE 4. Hypothetical MWIR 512 x 512-Element Staring FPA Sensor Design Parameters.

Parameter	Characteristic
Aperture diameter (cm)	15.24
Focal length (cm)	62.4
F/number	4.09
NFOV (mrad)	16.4
IFOV(mrad)	0.032
Noise equivalent temperature difference (NETD) (°C)	0.013
Detector integration time (ms)	16.5
Frame rate (Hz)	30
Noise bandwidth (Hz)	30.3
Nyquist frequency limit (cycles/mrad)	15.6
Magnification (with 12-in. display)	30

TABLE 5. Predicted Performance of a Hypothetical 512- by 512-Element Staring FPA System.

Discrimination		Slant range, km			
level	Example	Jitter = 10 μrad	Jitter = 20 μrad	Jitter = 30 μrad	
Classification	Vehicle	18.6	15.7	13.1	
Type recognition	Tracked vehicle	16.2	13.6	11.3	
Recognition	Tank	12.8	10.7	8.8	
Friend or foe	Hostile tank	9.1	7.5	6.1	
ID	Tank type	7.0	5.8	4.7	
Authentication	Decoy Discrim.	5.7	4.7	3.8	
Positive ID	Allegiance	4.8	4.0	3.2	

Fast Boat in Middle East MWIR ID(N95)*

•ID(N95) – 95% of the Operators viewing the MWIR image will correctly identify (highest level of discrimination) this maritime target

UAV IRST MISSION & HARDWARE

Weight (total)	260.6 lbs		
Turret (with ELRF)	69 (121)		
Controller	53		
Processor	65		

GPS/INS 21.6

Volume (total) 7.2 cu. ft.

Turret 1.6
Controller 1.5
Processor 3.7
GPS/INS .4

Power (total) 1774 watts

Turret 580
Controller 214
Processor 750
GPS/INS 40

Performance

FOR 90° EL x 165° AZ

FOV $3^{\circ} \times 3^{\circ} (NFOV) 28^{\circ} \times 28^{\circ} (WFOV)$

1.10 mR (NFOV) 1.0 mR (WFOV)

UAV IRST FIRST FLIGHT

FEB. 2, 2000

- INSTALLED ON CONVAIR 580 BASED IN Greenville, Texas
- BO2D TARGET AIRCRAFT
- COOPERATIVE PATTERNS
 - OVALS
 - FORMATION
- ELECTRO-MECHANICAL CHECKOUT @ 5000 ft.
- DEMONSTRATED
 - VIDEO TRACKER
 - WFOV
 - NFOV
 - DATA RECORDING

Multispectral/Hyperspectral Imaging

- ◆Detection/identification of clear and partly concealed targets over large regions of the battlefield
 - Improved Battlefield/Situation Awareness
 - Onboard sensor data screening, reduced bandwidth
 - *Rapid sensor-to-shooter cycle
 - **♦**Counter-CC&D

◆Technical Issues:

- ❖Spectral Band Choice
- ❖Spectral Analyzer Development
- Algorithm Development
- ❖System Integration
- ❖Performance Demonstration

AISA AIRBORNE SENSOR

Chem / Bio Agent Detection with LIDAR

LIDAR

- Sensing of Atmospheric Aerosols
 - Pollution Monitoring
 - Chemical Agent Detection
 - Biological Agent Detection
- Airborne "Biological Agent Sensor"
 - Aerosol Spatial Distributions
 - Precise wind speed of aerosol cloud
 - Bio-material detection by fluorescent scattering
 - Flown on Queen Air in CY 2000
 - < 40 lb payload for UAV
- Differential Absorption LIDAR (DIAL)
 - Carbon Dioxide Laser for Long Wavelengths
 - Compact systems in development

EOO Inc.

DIAL Chemical/Biological Agent Detection

LADAR Obstacle Avoidance HELLAS (EADS)

Collision Avoidance -- Tunnel

Safety Line

Flight 13 - (19 Mar 03)

Flight Video

Hellas LADAR

EYESAFE LADAR @ 1.54 MICRON

Applications of 3-D Imaging LADAR

Terrain Mapping

FOA laser generated model

Airborne laserradar

(Top Eye Saab, 10 cm avst.noggr.)

Ex. of laser scanning of buildings

Intensitetsbild

Höjdbild

TABLE 16. Demonstrated UAV SAR Systems.

		J	
Radar system	LARGE (UAV System)	MEDIUM (UAV System)	SMALL (UAV System)
Operating frequency (GHz)	8.4 to 9.0	15.2 to 18.2	Exact freq. TBD
	Stripmap Mode		
Range (km)	200	7 to 30	4.4 to 10.8
Resolution (m)	1.0	0.3 to 3.0	0.3
Ground swath (pixels)	TBD	2600	1000
View size (m)	TBD	934	~800
Squint angle (deg)	±45	\pm (45 to 135)	±45
	Spotlight Mode		
Range (km)	200	4 to 25	4.4 to 10.9
Resolution (m)	0.3	0.1 to 3	0.3 to 1
Swath width (pixels)	TBD	2x(640x480)	1000
Depression angle (deg)	TBD	TBD	-10 to -60
Squint angle (deg)	±45	\pm (45 to 135)	±45
Peak side lobes (dB)	TBD	TBD	TBD
Dynamic range (dB)	TBD	>85	>75
Absolute RCS calibration, 3σ (dB)		TBD	<10
Weight (lb)	635	120	168
Circular error probability (CEP) (m)		< 4	< 25
Size (ft ³)	15	3	~2

Lynx SAR (AN/APY-8) – Ku-band Radar

Lynx SAR mounted on King Air

- Developed by Sandia National Laboratories and General Atomics for UAV applications
- In Production at General Atomics
 - Installed on King Air, Predator, IGNAT, Black Hawk
- High-performance, multi-mode radar
 - SAR spotlight resolution 0.3 m to 3 m
 - Strip-map resolution 0.3 m to 3m
 - GMTI mode
- Extended-range operation
 - 33 km for .3m resolution in weather
 - 54 km for .3m resolution in clear air
- Low weight and power
 - 115-lb total weight
 - <100-lb version developed
 - − <1.2-kW prime power

UAV Synthetic Aperture Radar (SAR)

MISSION: Provide Surveillance, Targeting and Battle Damage Assessment Capability that Penetrates Weather, Haze and Obscurants

Example Current ATD (TUAVR)

Size: 1.2 cu. ft. Weight: 65 lbs.

Range: 7-10 Km. most cond. Resolution: 1.0 m, strip mode

0.3 m, spot mode

CEP: 25 m

Flight Test: 4th quart. FY00

Demonstration Goals by 2005*

Size: < 0.5 cu. ft. Weight: < 20 lbs.

Range: 3 - 7 Km. in weather

7 - 10 Km. most conditions

Resolution: 0.3 - 1.0 m., strip mode

0.3 m., spot mode

CEP: < 10 m

*current programs

Maturing Critical Technologies

- •Monolithic Microwave Integrated Circuits (MMIC's)
- Advanced Microwave Antenna Designs
- Multi-Resolution Signal Processing
- Computer Processing / Packaging
- Advanced Precision Navigation

Expected Advanced Capabilities by 2005*

- •Reduced CFP
- Improved Ground Moving Target Capabilities (GMTI)
- Interferometric SAR
 - •3D Imaging
 - Battle Damage Assessment
 - Target Identification
- Absolute Geo-Location
- Improved Imaging Techniques

*current development areas

Comm/EW Suite Modular Mission Payload

- Real time specific emitter/platform ID & precise geo-location
- Sensor fusion of RF and EO/IR signal processing for Comm/ESM/MWS into one MMP
- Lightweight EO/IR MWS sensor
- Lightweight, short duration towed IR flares/RF decoys
- Real time sensor cueing for shooter, GCS, RCS

REQUIREMENTS/NEEDS

- Specific threat RF emitter identification & location
- Compact, low power, lightweight
- Integrated RF Comm/ESM/ECM/MWS mission payload
- Long range combat ID
- Lightweight, compact RF/IR towed decoys
- Comm intercept/relay
- Lightweight, compact EO/IR MWS sensor

BENEFITS

- Passive emitter targeting/sensor-to-shooter cueing
- Minimize fratricide
- Characterize battlespace/deconfliction
- Increase reaction time
- OTH Comm relay for SAR/FAC
- Improved situational awareness
- Platform survivability

ESM for UAVs

- Autonomous UAV Operation
- Cue to Emitter Bearing/Location
- Real Time Emitter/Platform ID
- <35 Lbs. including Antenna

Target Location Error

- Target Location Error (TLE) model for EO/IR sensors
 - Relative to platform coordinates
 - Absolute in GPS coordinates
- 2 Options for modeling TLE
 - Sensor direct observations of target
 - Target position relative to observation of mensurated point in scene
- Inputs to Model
 - EO system parameters
 - Aircraft Altitude and Slant range
- Outputs are plots of relative and absolute target location error with respect to range and altitude

TLE Model Results

ABSOLUTE AND RELATIVE CROSSRANGE ERROR

Sensor Image

- Map Overlay

CONCEPT DESCRIPTION

REQUIREMENTS/NEEDS

- Target prioritization and weapon selection and tasking: less than 10 sec. from receipt of relevant information
- Minimize target location error
- Targeting and navigation in the absence of GPS

• All source sensor and data fusion

IR Video ~ 2 m/pixel Resolution (416.2 m²); Color Actual Finoto ~ 3 m/pixel Resolution (USGS DEM 30m/pixel Resolution

BENEFITS

- Replace intensive manual updating
- Enable near real time sensor archive update
- Imagery linkage for situational awareness
- Improved timelines for mission planning
- Common view of the battlespace
- Enable reach-back capability

ATR and ABDA for VTUAV

CONCEPT DESCRIPTION:

- ATR and ABDA decision aid
- Integrate SAR, LADAR, and IIR into coordinated network-centric target information source for ATR and ABDA
- Employ SAR for longrange wide-area GMTI, detection, recognition, and ABDA
- Employ IIR for limited FOV detection and recognition

- Exploit LADAR to collect close-range highquality data for target identification
- Fully exploit HRR SAR for ATR and ABDA by analytically enhancing resolution
- Exploit unmanned platforms by tasking multiple LADAR equipped UAVs to collect close-range, narrow FOV, high quality imagery for ATR

- Requirements/Needs:
 Real-Time Detection, Identification, and Battle Damage Assessment of Moving and Stationary Mobile Targets
 - Under the Following Conditions:
 - Heavy Urban and Rural Clutter
 - In-Hide Behind Trees, Terrain, **Buildings**
 - All-Weather

Benefits

- •Improved weapon efficiency and effectiveness
- •Improved op-tempo
- •Reduce image analyst time to detect and declare targets < 1 min
- •Reduced time to weaponeer to collateral damage constraints <1 min
- •Reduced time to ascertain strike damage < 1-5 min

Current General ATR Capabilities (Applicable to all Sensors/Seekers)

Stationary Mobile Targets In-The-Clear with no Obscuration

POT	Detection	F	Recognition	n ID
50				No
100				Capability
200				Uncertain
400				Capability
600				
800				Demonstrated
1000				Capability

Meaning of Demonstrated

- Demonstrated in 6.3
- 80% Correct Identification Rate
- Acceptable FAR

- Detection => Vehicle
- Recognition => Tank
- Identification => T-72 Tank
- POT => Pixels-on-Target

UAV SENSOR PAYLOAD STUDY

SUMMARY OF CAPABILITIES

- EO/IR TECHNOLOGY
 - EO/IR/TV
 - MULTI/HYPERSPECTRAL IR
- LIDAR TECHNOLOGY
 - POLLUTION MONITORING
 - CHEM/BIO AGENT DETECTION AND TRACKING
- EYESAFE 3-D LADAR TECHNOLOGY
 - OBSTACLE AVOIDANCE & TERRAIN MAPPING
 - TARGETING & FIRE CONTROL
- SAR TECHNOLOGY
 - ALL WEATHER RECONNAISANCE & SURVEILLANCE
 - SUFFICIENT RESOLUTION FOR DETECTION & RECOGNITION
- EW TECHNOLOGY
 - INTEGRATED WITH OTHER RF/IR SYSTEMS
 - SMALL MISSILE WARNING RECEIVERS
- TARGET LOCATION ERROR (TLE)
 - PRECISION NAVIGATORS versus SCENE MATCHING CORRELATION
 - PREDICTIONS FOR EO/IR SENSORS
- ATR/ABDA TECHNOLOGY
 - TARGETS IN OPEN BY 2005 (LADAR, SAR)
 - TARGETS IN HEAVY CLUTTER BY 2010 (FOPEN, UHRR SAR, IFSAR)

Survey of Sensor Payloads for UAVs

R.T. Hintz NAVAIR 45T000D China Lake, CA 93555 USA (760) 939-2890

Robert.hintz@navy.mil

This paper was received as a PowerPoint presentation without supporting text.

Hintz, R.T. (2005) Survey of Sensor Payloads for UAVs. In *Advanced Sensor Payloads for UAV* (pp. 8-1 – 8-2). RTO Meeting Proceedings RTO-MP-SET-092, Paper 8. Neuilly-sur-Seine, France: RTO. Available from: http://www.rto.nato.int/abstracts.asp.

