ARM®SBSA Architecture Compliance Kit

Revision: r0p1

Application User Guide

Non-Confidential - Beta

ARM®SBSA Architecture Compliance Kit UEFI Shell Application User Guide

Copyright © 2017 ARM Limited or its affiliates. All rights reserved.

Release Information

The following changes have been made to this document.

Change History

Issue	Date	Confidentiality	Change
A	30 November 2016	Non-Confidential	Release for alpha
В	31 March 2017	Non-Confidential	Release for Beta

Proprietary Notice

This document is protected by copyright and other related rights and the practice or implementation of the information contained in this document may be protected by one or more patents or pending patent applications. No part of this document may be reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by estoppel or otherwise to any intellectual property rights is granted by this document unless specifically stated.

Your access to the information in this document is conditional upon your acceptance that you will not use or permit others to use the information for the purposes of determining whether implementations infringe any third party patents.

THIS DOCUMENT IS PROVIDED "AS IS". ARM PROVIDES NO REPRESENTATIONS AND NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY, SATISFACTORY QUALITY, NON-INFRINGEMENT OR FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE DOCUMENT. For the avoidance of doubt, ARM makes no representation with respect to, and has undertaken no analysis to identify or understand the scope and content of, third party patents, copyrights, trade secrets, or other rights.

This document may include technical inaccuracies or typographical errors.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL ARM BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF ANY USE OF THIS DOCUMENT, EVEN IF ARM HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

This document consists solely of commercial items. You shall be responsible for ensuring that any use, duplication or disclosure of this document complies fully with any relevant export laws and regulations to assure that this document or any portion thereof is not exported, directly or indirectly, in violation of such export laws. Use of the word "partner" in reference to ARM's customers is not intended to create or refer to any partnership relationship with any other company. ARM may make changes to this document at any time and without notice.

If any of the provisions contained in these terms conflict with any of the provisions of any signed written agreement covering this document with ARM, then the signed written agreement prevails over and supersedes the conflicting provisions of these terms. This document may be translated into other languages for convenience, and you agree that if there is any conflict between the English version of this document and any translation, the terms of the English version of the Agreement shall prevail.

Words and logos marked with ® or TM are registered trademarks or trademarks of ARM Limited or its affiliates in the EU and/or elsewhere. All rights reserved. Other brands and names mentioned in this document may be the trademarks of their respective owners. Please follow ARM's trademark usage guidelines at http://www.arm.com/about/trademark-usage-guidelines.php

Copyright © 2017, ARM Limited or its affiliates. All rights reserved.

ARM Limited. Company 02557590 registered in England.

110 Fulbourn Road, Cambridge, England CB1 9NJ.

Confidentiality Status

This document is non-confidential.

Product Status

The information in this document is for a Beta product, that is a product under development.

Web Address

http://www.arm.com

Contents

ARM®SBSA UEFI Shell Application User Guide

	ARM	[®] SBSA Architecture Compliance Kit	5
		UEFI Shell Application User Guide	5
Document C	Overview		7
		A ACS Overview	
PΔRT 1 _ III	FFI Shell Δr	oplication	8
, AM, i	_	Application arguments	
		Memory requirements	
		Code	
		Data	
	1.3 In	nterfaces consumed by Shell Application	
		Libraries	9
		Protocols	
	1.4	Toolchain	10
	1.5	System Dependencies	10
		1.5.1 PSCI	10
	1.6	Platform Override	10
	1.7	Test ID	10
	1.8	UEFI implementation of PAL APIs	11
		1.8.1 Infrastructure APIs	11
		1.8.2 Module Specific APIs	12
PART – 2	Linux Kern	nel Module and Application	13
	2.1	Application arguments	13
		2.1.1 Loading the Kernel Module	13
	2.2	SBSA ACS - Linux Application	13
		2.2.1 Kernel Module - Build	13
		2.2.2 SBSA Linux Application Build	14
		2.2.3 Target Environment – Setup	14
		2.2.4 Runtime Environment	14

Document Overview

This document is divided into 2 sections.

The first half describes the SBSA Architecture Compliance Suite tests which run as a UEFI Shell Application.

The second half describes the SBSA ACS tests which run within an Operating system environment.

SBSA ACS Overview

For general introduction and Build steps for SBSA ACS, please refer to https://github.com/ARM-software/sbsa-acs/blob/master/README.md

For more details on the Validation Methodology, please refer to https://github.com/ARM-software/sbsa-acs/tree/master/docs.

The general division of Tests between UEFI Shell Application and Linux Application are as follows.

Test Environment	Components covered
UEFI Shell	PE, GIC, Timers, Watchdog,
	Wakeup, Secure Devices
Linux command line	PCIe, SMMU

PART 1 - UEFI Shell Application

1.1 Application arguments

uefi shell> Sbsa.efi [-v < n>] [-l < n>] [-skip < x,y,z>] [-f < file name>] [-s]

Parameters	Description	
V	This is for the Print Level.	
	1 – DEBUG & above	
	2 – INFO & above	
	3 – TEST & above	
	4 – WARN & ERROR	
	5 - ERROR	
1	This is for the level of compliance to be tested	
	against. (0 thru	
skip	This will override the suite to skip the execution of a	
	particular test(s).	
	Example 33 will skip test case with ID 33.	
	30 will skip all tests in module with ID = 30.	
	50 will skip all tests in module with ID = 50.	
	(refer to test ID section below for more	
	details on Module IDs)	
	comma separated. Maximum of 3 values.	
f	File name to which the output log is written	
S	This will run secure tests before executing non-	
	secure tests. (requires secure firmware code from	
	SBSA ACS to be ported to EL3 FW)	
	Not giving this option will run only non-secure tests	

Example

Shell>Sbsa.efi -v 2 -l 3 -f acs.txt -skip 10,36

These set of parameters will

- print messages with verbosity of 2 and above
- test for compliance against SBSA level 3
- skip execution of all tests belonging to GIC module and test number
 36

1.2 Memory requirements

Code

Binary size – 153KB

Data

EfiBootServicesData

Data Structure	Size (in Bytes)
PE_INFO_TABLE	8192
GIC_INFO_TABLE	2048
TIMER_INFO_TABLE	1024
WD_INFO_TABLE	512
PCIE_INFO_TABLE	64
PERIPHERAL_INFO_TABLE	1024
IO-Virtualization Table	2048
PE_SHARED_MEMORY	(num_of_pe) * 16
PE_SECONDARY_STACK	(num_of_pe) * 256
Total (Assuming 48 PEs)	27,992

EfiRuntimeServicesData
None

1.3 Interfaces consumed by Shell Application

Libraries

- UefiLib
- ShellLib
- BaseMemoryLib
- ShellCEntryLib
- UefiBootServicesTableLib
- UefiRuntimeServicesTableLib

Protocols

- gEfiAcpiTableProtocolGuid
- gHardwareInterruptProtocolGuid
- gEfiPciloProtocolGuid

1.4 Toolchain

Linaro aarch64 5.3 toolchain was used to compile this application.

The toolchain is located at http://releases.linaro.org/components/toolchain/binaries/5.3-2016.02/aarch64-linux-gnu/

1.5 System Dependencies

1.5.1 **PSCI**

The compliance suite makes the following PSCI calls:

```
ARM_SMC_ID_PSCI_CPU_SUSPEND_AARCH64 (0xc4000001)
ARM_SMC_ID_PSCI_CPU_OFF (0x84000002)
ARM_SMC_ID_PSCI_CPU_ON_AARCH64 (0xc4000003)
```

1.6 Platform Override

It is anticipated that on certain platforms, the underlying ACPI infrastructure to provide information on the system is not implemented yet. To enable running SBSA ACS on these platforms, override hooks are provided for certain modules which will take the relevant hardware information from the override file rather than the underlying UEFI framework.

See <acs_local_path>/sbsa-acs/platform/pal_uefi/include/platform_override.h file in the source code for available options.

1.7 Test ID

Test ID of each test is generated as an addition of Module-ID and Unit Test ID.

For a given module, Unit Test ID begins from 1.

Module-IDs are as follows.

Module Name	Module ID
PE	0
GIC	20
Timer	30
Watchdog	40
PCIe	50
SMMU	60
Power & Wakeup	70
Peripheral	80
Secure	900

1.8 UEFI implementation of PAL APIs

The following table lists the UEFI interfaces used for the implementation of the Platform Abstraction Layer (PAL) APIs mentioned in the SBSA Validation Methodology Document.

(https://github.com/ARM-software/sbsa-acs/tree/master/docs/SBSA_Val_Methodolgy.pdf)

1.8.1 Infrastructure APIs

PAL API	UEFI Interfaces used
Pal_print	AsciiPrint
Mem_alloc	gBS->AllocatePool
Mem_free	gBS->FreePool
Mem_alloc_shared	gBS->AllocatePool
Mem_free_shared	gBS->FreePool
Mem_get_shared_addr	None
Mmio_read	None
Mmio_write	None

1.8.2 Module Specific APIs

PAL API	UEFI Interfaces consumed	ACPI Table consumed
Pe_create_info_table	gST->ConfigurationTable	MADT Table
	CompareGuid	
	IndustryStandard/Acpi61.h	
Call_smc	None	
Pe_execute_payload	None	
Pe_install_esr	gEfiCpuArchProtocolGuid	
	Cpu->RegisterInterruptHandler	
Gic_create_info_table	gST->ConfigurationTable	MADT table
	CompareGuid	
	IndustryStandard/Acpi61.h	
Gic_install_isr	gHardwareInterruptProtocolGuid	
	RegisterInterruptSource	
	EnableInterruptSource	
Timer_create_info_table	gST->ConfigurationTable	GTDT Table
	CompareGuid	
	IndustryStandard/Acpi61.h	
Timer_system_start_count	To be implemented	
down		
Wd_create_info_table	gST->ConfigurationTable	GTDT Table
	CompareGuid	
	IndustryStandard/Acpi61.h	
Pcie_create_info_table	gST->ConfigurationTable	MCFG Table
	CompareGuid	
	IndustryStandard/Acpi61.h	
Pcie_get_mcfg_ecam	gST->ConfigurationTable	MCFG Table
	CompareGuid, IndustryStandard/Acpi61.h	
	IndustryStandard/MemoryMappedConfigurat	
	ionSpaceAccessTable.h	
lovirt_create_info_table	gST->ConfigurationTable	IORT Table
	CompareGuid, IndustryStandard/Acpi61.h	
Peripheral_create_info_tab	gEfiPciloProtocolGuid	
le	Pci->GetLocation	
	Pci->Pci.Read	
Memory_create_info_table	gBS->GetMemoryMap	

PART - 2 Linux Kernel Module and Application

2.1 Application arguments

shell> sbsa [-l <n>]

Parameters	Description
L	This is for the level of compliance to be tested
	against. (0 thru

Example

Shell>Sbsa-I3

These set of parameters will test for compliance against SBSA level 3.

2.1.1 Loading the Kernel Module

Before the SBSA ACS Linux application can be run, the SBSA ACS kernel module has to be loaded. This can be achieved by using the "insmod" command.

Example -

Shell>insmod sbsa_acs.ko

2.2 SBSA ACS - Linux Application

2.2.1 Kernel Module - Build

Pre-requisites

- 1. Linux Kernel source version 4.9 or above.
- 2. Linaro GCC tool chain 5.3 or above.
- 3. Build environment for AArch64 Linux kernel.

Porting steps - Linux kernel

- 1. git clone git://linux-arm.org/linux-acs.git <local dir>
- 2. Apply the <local_dir>/kernel/src/001-SBSA-ACS-linux-4.10.patch to your Kernel source tree.
- 3. Build the kernel.

Build steps - SBSA Kernel Module

- cd <local dir>/sbsa-acs-drv/files
- 2. set the GCC path to the ARM64 toolchain.
- 3. Export KERNEL SRC=linux kernel path>
- 4. Make

sbsa_acs.ko file is generated.

2.2.2 SBSA Linux Application Build

- 1. cd <sbsa-acs path>/linux app/sbsa-acs-app
- 2. set GCC49_AARCH64_PREFIX to the ARM64 toolchain path.
 - a. export GCC49_AARCH64_PREFIX=<local_dir>/gcc-linaro-5.3-2016.02/bin/aarch64-linux-gnu-
- 3. make

Executable file: "sbsa" is generated.

2.2.3 Target Environment - Setup

The present set of tests makes the assumption of at least one SATA controller behind a PCIe root complex.

The SATA controller may or may not be behind an IOMMU.

Before running these tests, it is required that at least one SATA hard disk is connected to the SATA controller.

The test will perform read and write operations to the SATA hard disk. Hence, the Data on the HDD will be over-written. It is imperative that the SATA drive was not the boot device for the operating system.

2.2.4 Runtime Environment

Hardware Functional blocks

The PCIe-DMA tests initiate data transfers from a DMA master, by default the test searches for a SATA controller which is part of the PCIe sub-system.

- 1. The test first writes known data from the PE to Main memory.
- 2. The test then programs the DMA master to transfer this known data to its end-point device.
- 3. The test asks the DMA master to transfer the data back to a different location in the main memory.
- 4. The test compares the data at both the locations.

Also, if the SATA controller is not behind an IOMMU, during this data transfer the address used by the SATA controller is retrieved and compared with the DMA address seen by the PE.

If the DMA master is behind an IOMMU, then the address used by the SATA controller is compared with the address seen by the IOMMU. Both these addresses must match.

To enable the export of the addresses seen by the SATA controller and IOMMU, the kernel drivers for these two modules must be patched.

The patch for the kernel tree is hosted separately on the http://linux-arm.org/git?p=linux-acs.git;a=summary.