## Wstęp do uczenia maszynowego

#### Estymacja parametrów

Ewa Szczurek + Bartek Wilczyński (modyfikacje)

bartek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski

23 lutego 2024





## Informacje organizacyjne

- Materiały dostępne na moodle: https://moodle.mimuw.edu.pl/course/view.php?id=2052 kod: S8KwJ810
- Dopisywanie do grup/zmiany grup: http://tinyurl.com/2rsuzzv4 Deadline 1. III 2024
- Bardzo proszę o informacje o osobach wyrejestrowujących się z przedmiotu vai e-mail.
- kontakt do mnie: pokój 5770, bartek@mimuw.edu.pl, konsultacje środy 8:30 - 10:00, w innych terminach można się umawiać via e-mail
- Możliwość zadawania pytań także via moodle, do wszystkich prowadzących
- Organizacja labów luźno powiązana z wykładem (niektóre grupy będą miały inny rozkład tygodni niż wykład).

## Kryteria zaliczenia

- dwa projekty zaliczeniowe, równo cenne (po 30 pktów)
- Egzamin pisemny (40 punktów)
- Ocena z aktywności na laboratoriach (10 pktów, zależy od prowadzącego grupę laboratoryjną)
- minimum 60punktów na zaliczenie

## Plan wykładów

- 27 II Estymacja parametrow
- 2 5 III Testowanie hipotez
- 3 12 III Testowanie wielu hipotez
- 19 III Uczenie statystyczne
- 26 III i 2 IV przerwa
- 9 IV Regresja liniowa (1)
- 16 IV Regresja liniowa (2)
- 3 23 IV Metody klasyfikacji
- 30 IV Repróbkowanie, wybór modelu
- 🐠 7 V Regularyzacja, redukcja wymiaru
- 14 V Metody drzewiaste
- 21 V SVM
- 28 V Sieci neuronowe
- 4 VI Redukcja wymiaru dokładniej
- 11 VI Analiza skupień

#### Eksperymenty

#### Eksperyment

- podstawowe narzędzie badawcze
- cel: ustalenie prawa działania danego zjawiska/badanego obiektu



## Eksperymenty losowe

#### Eksperyment losowy

- Przy powtórzeniach eksperymentu tej samej wartości wejściowej odpowiadają różne wartości wyjściowe.
- Częstość pojawiania się danej odpowiedzi stabilizuje się wraz ze wzrostem liczby powtórzeń eksperymentu.

Zatem częstość pojawiania się każdej odpowiedzi może być ustalona z dowolną dokładnością poprzez wykonanie odpowiednio dużej liczby powtórzeń eksperymentu.

## Przykład: rzut monetą

- Załóżmy, że moneta jest dokładnie symetryczna.
- Wynik doświadczenia polegającego na rzucie monetą nie jest zdeterminowany.
- Przy zwiększaniu liczby rzutów n, częstość wypadania orłów  $p_n$  zbiega do 0.5.

Tablica: Wyniki rzutów monetą

| n     | 100    | 1000   | 10000  | 100000 |
|-------|--------|--------|--------|--------|
| $p_n$ | 0.5300 | 0.4960 | 0.4964 | 0.4975 |

## Probabilistyczny model eksperymentu losowego

- Określenie przestrzeni zdarzeń elementarnych  $\Omega$  (zbioru wszystkich możliwych wyników doświadczenia).
- Zadanie na niej rodziny zdarzeń F, (podzbiorów  $\Omega$ , które z góry wyróżnia eksperymentator; często przyjmujemy rodzinę wszystkich podzbiorów  $\Omega$ . Gdy  $\Omega=\mathbf{R}$ , najczęściej przyjmujemy F równe rodzinie zbiorów borelowskich  $F=\mathcal{B}(\mathbf{R})$ ).
- Zadanie miary prawdopodobieństwa P (przyporządkowanie każdemu zdarzeniu  $A \in F$  liczby P(A) spełniającej aksjomaty prawdopodobieństwa).

## Przestrzeń probabilistyczna

#### Przestrzeń probabilistyczna

Trójka  $(\Omega, F, P)$  gdzie  $\Omega$  przestrzeń zdarzeń elementarnych, F rodzina zdarzeń, P miara prawdopodobieństwa.

#### Przestrzeń statystyczna

#### Przestrzeń statystyczna

Trójka  $(\Omega, F, \mathcal{P})$ , gdzie  $\mathcal{P}$  to rodzina miar probabilistycznych,  $\mathcal{P} = \{P_{\theta} : \theta \in \Theta\}$ , a  $\Theta$  to jakaś przestrzeń parametrów.

#### Przestrzeń statystyczna-intuicja:

• Opis możliwych mechanizmów rządzących eksperymentem.

Statystyka pomaga odpowiedzieć na pytanie: Jak wybrać przestrzeń probabilistyczną, będącą sensownym modelem danego eksperymentu losowego?

# Kanoniczna przestrzeń próbkowa (wygodny wybór przestrzeni $\Omega$ )

- Niech obserwacje: zmienne losowe  $Y_1, \ldots, Y_n$ .
- $\Omega$ : zbiór wszystkich możliwych wyników doświadczenia, zatem  $\omega = (y_1, \dots, y_n)$ .
- Przyjmujemy: zmienne losowe  $Y_i$  to funkcje określone na przestrzeni próbkowej  $\Omega$  wzorem  $Y_i(\omega) = y_i$ .
- W ten sposób wektor losowy  $Y=(Y_1,\ldots,Y_n)$  spełnia  $Y(\omega)=\omega$ .
- ullet Wtedy rozkład prawdopodobieństwa na przestrzeni  $\Omega$  tożsamy z łącznym rozkładem prawdopodobieństwa obserwacji, tzn dla  $B\in F$

$$P_{\theta}(B) = P_{\theta}(Y \in B).$$

#### Nomenklatura

#### n elementowa próba losowa

 $Y_1, \ldots, Y_n$  zmienne (wektory) losowe (odpowiadające n wartościom obserwowanym w eksperymencie).

#### Próba prosta

 $Y_1, \ldots, Y_n$  zmienne niezależne i o identycznym rozkładzie.

#### Realizacja próby losowej

 $y_1=Y_1(\omega),\ldots,y_n=Y_n(\omega)$  - liczby (wektory), wartości próby losowej odpowiadające zdarzeniu elementarnemu  $\omega\in\Omega$ .

# Podstawowe zadania statystyki: identyfikacja miary probabilistycznej

#### Estymacja punktowa

Oszacowanie  $\theta$  za pomocą funkcji, której

- argumenty to obserwacje Y
- ullet wartości to poszczególne wartości parametru  $heta \in \Theta$ .

#### Estymacja przedziałowa

Oszacowanie  $\theta$  za pomocą funkcji, której

- argumenty to obserwacje Y
- wartości to podzbiory przestrzeni parametrów Θ.

# Podstawowe zadania statystyki: identyfikacja miary probabilistycznej

#### Testowanie hipotez

Wyznaczenie zbiorów rozłącznych  $\Theta_1, \Theta_2 \subset \Theta, \ \Theta_1 \cup \Theta_2 = \Theta,$  wykonanie eksperymentów losowych i na ich podstawie podjęcie decyzji, w którym ze zbiorów  $\Theta_1, \ \Theta_2$  znajduje się  $\theta$ .

#### Statystyka

#### Statystyka

Zmienna losowa  $T:\Omega \to \mathbb{R}$  i funkcja t taka, że

$$T(\omega) = t(Y_1(\omega), \ldots, Y_n(\omega)).$$

Intuicja: statystyka "podsumowuje" dane.

## Przykład statystyki 1: średnia z próby

#### Średnia z próby $X_1, \ldots, X_n$

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$$

gdzie  $X_1, \ldots, X_n$  - próba losowa.

- ullet Jeżeli  $\mathbb{E}[X_i]= heta$  dla  $i=1,\ldots,n$  to  $\mathbb{E}[ar{X}_n]= heta.$
- ullet Jeżeli  $X_1,\ldots,X_n$  próba prosta, oraz  ${\sf Var}\left[X_i
  ight]=\sigma^2<\infty$  to

$$\operatorname{Var}\left[\bar{X}_{n}\right] = \operatorname{Var}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n^{2}}\operatorname{Var}\left[\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sigma^{2}.$$

## Przykład statystyki 2: wariancja z próby

Wariancja z próby  $X_1,\ldots,X_n$ , przy  $\mathbb{E}[X_i]= heta$  dla  $i=1,\ldots,n$  i heta znanym

$$\hat{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2.$$

Jeżeli Var $[X_i] = \sigma^2$  dla  $i = 1, \ldots, n$  to  $\mathbb{E}[\hat{S}_n^2] = \sigma^2$ .

Wariancja z próby  $X_1, \ldots, X_n$ , przy  $\mathbb{E}[X_i] = \theta$  dla  $i = 1, \ldots, n$  i  $\theta$  nieznanym

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Wykorzystuje się też statystykę  $S_n^{*2} = \frac{n}{n-1} S_n^2$ .

## Estymatory

Zauważmy, że dla próby losowej  $X_1,\ldots,X_n$  w modelu opisanym za pomocą przestrzeni statystycznej  $(\Omega,F,\mathcal{P})$ , gdzie  $\mathcal{P}=\{P_\theta,\theta\in\Theta\}$ , rozkład statystyki  $T=t(X_1,\ldots,X_n)$  na ogół zalezy od  $\theta$ . Zatem obserwacje T można wykorzystać do wnioskowania o (estymacji)  $\theta$ .

#### Estymator parametru $\theta \in \Theta$

Każda statystyka  $t(X_1,\ldots,X_n)$ , przyjmująca wartości z przestrzeni parametrów  $\Theta$ .

## Estymatory nieobciążone

#### Estymator nieobciążony

Estymator  $\theta_n = \theta_n(X_1, \dots, X_n)$  parametru  $\theta$  z próby losowej  $X_1, \dots, X_n$ , taki, że

$$\mathbb{E}[\theta_n] = \theta.$$

#### Przykład 1 cd: średnia z próby

Jeżeli  $\mathbb{E}[X_i] = \theta$  dla i = 1, ..., n to średnia z próby jest estymatorem nieobciążonym parametru  $\theta$ .

## Przykład 2 cd: wariancja z próby

Estymator wariancji z próby  $X_1, \ldots, X_n$ , przy  $\mathbb{E}[X_i] = \theta$  i  $\text{Var}[X_i] = \sigma^2$  dla  $i = 1, \ldots, n$  i  $\theta$  znanym

Estymator

$$\hat{S}_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \theta)^2$$

jest estymatorem nieobciążonym parametru  $\sigma^2$  .

$$E[\hat{S}_n^2] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[(X_i - \theta)^2]$$

$$= \frac{1}{n} \sum_{i=1}^n \left[ \mathbb{E}[X_i^2] - 2 \mathbb{E}[X_i]\theta + \theta^2 \right]$$

$$= \frac{1}{n} \cdot n \left[ \mathbb{E}[X_i^2] - \mathbb{E}[X_i]^2 \right] = \sigma^2$$

## Przykład 2 cd: wariancja z próby

Estymator wariancji z próby 
$$X_1,\ldots,X_n$$
, przy  $\mathbb{E}[X_i]=\theta$  i  $\mathsf{Var}[X_i]=\sigma^2$  dla  $i=1,\ldots,n$  i  $\theta$  nieznanym

Załóżmy dodatkowo, że  $X_i$  niezależne.

Zachodzi

$$\mathbb{E}[S_n^2] = \frac{n-1}{n}\sigma^2$$

zatem  $S_n^2$  nie jest nieobciążonym estymatorem  $\sigma^2$ .

ullet Nieobciążonym estymatorem jest  $S_n^{*2}=rac{n}{n-1}S_n^2$ , dla którego

$$\mathbb{E}[S_n^{*2}] = \mathbb{E}\left[\frac{n}{n-1}S_n^2\right] = \sigma^2.$$

## Estymatory efektywne

#### Przykład 1 cd: wariancja estymatora średniej z próby prostej

Zauważmy, że

$$\operatorname{Var}\left[\bar{X}_{n}\right] = \frac{1}{n}\sigma^{2} < \operatorname{Var}\left[\bar{X}_{n-1}\right] = \frac{1}{n-1}\sigma^{2}.$$

A zatem  $\bar{X}_n$  ma mniejszy rozrzut wokół estymowanego parametru  $\theta$  niż  $\bar{X}_{n-1}$  .

#### Estymator efektywny

Estymator o najmniejszej wariancji (nie zawsze istnieje).

## Pożądane estymatory: nieobciążone i efektywne

#### Obciążenie estymatora (ang. bias)

$$b(\theta_n) = \mathbb{E}[\theta_n] - \theta.$$

#### Przykład

Przez wzrost obciążenia łatwo zredukować wariancję. Np estymator  $\theta_c=c$  dla jakiegokolwiek  $c\in\Theta$  ma wariancję równą 0 i obciążenie  $b(\theta_c)=c-\theta.$ 

## Estymatory zgodne

#### Niech

- $X_1, X_2, \ldots$  ciąg niezależnych zmiennych losowych o tym samym rozkładzie, zależącym od parametru rzeczywistego  $\theta \in \Theta$ .
- $\theta_n = \theta_n(X_1, \dots, X_n)$  estymator parametru  $\theta \in \Theta$ .

#### Estymator zgodny

Estymator  $heta_n$  parameteru heta jest zgodny, jeśli dla każdego  $\epsilon>0$ 

$$\lim_{n\to\infty} P(|\theta_n - \theta| \ge \epsilon) = 0$$

Interpretacja: dla wystarczająco dużch liczności próby estymator przyjmuje z dużym prawdopodobieństwem wartości bliskie estymowanemu parametrowi  $\theta$ .

## Przypomnienie: nierówność Czebyszewa

#### Nierówność Czebyszewa

$$P(|X - \mathbb{E}[X]| \ge t\sigma_X) \le \frac{1}{t^2}$$

dla dowolnego t > 0.

- Przyjmijmy  $\sigma_X$ , czyli odchylenie standardowe zmiennej X, za jednostkę rozrzutu.
- Prawdopodbieństwo zdarzenia polegającego na tym, że zmienna X odchyli się od wartości oczekiwanej  $\mathbb{E}[X]$  o więcej niż t jednostek, jest nie większe niż  $\frac{1}{t^2}$ .

## Estymatory zgodne

#### Przykład: średnia arytmetyczna $\bar{X}_n$ z próby

Niech

- $\bullet$   $X_1 \dots, X_n$  próba prosta
- $\mathbb{E}[X_1] = \theta$ ,  $Var[X_1] = \sigma^2 < \infty$
- Zachodzi  $\mathbb{E}[\bar{X_n}] = \theta$  i  $\mathsf{Var}[\bar{X_n}] = \sigma^2/n$

Z nierówności Czebyszewa, przyjmując  $t=rac{\epsilon\sqrt{n}}{\sigma}$ , otrzymujemy

$$P(|\bar{X}_n - \theta| \ge \epsilon) \le \frac{\sigma^2}{n\epsilon^2}.$$

Stąd,  $\bar{X}_n$  jest zgodnym estymatorem wartości oczekiwanej  $\theta$ . Ta własność zachodzi dla dowolnych zmiennych losowych, ciągłych i skokowych, o skończonej wariancji.

## Estymatory mocno zgodne

#### Niech

- $X_1, X_2, \ldots$  ciąg niezależnych zmiennych losowych o tym samym rozkładzie, zależącym od parametru rzeczywistego  $\theta \in \Theta$ .
- ullet  $heta_{\it n}= heta_{\it n}(X_1,\ldots,X_{\it n})$  estymator parametru  $heta\in\Theta$

#### Estymator mocno zgodny

Estymator  $\theta_n$  jest mocno zgodny, jeśli

$$P(\lim_{n\to\infty}\theta_n=\theta)=1$$

Interpretacja: z prawdopodobieństwem 1 realizacje estymatora dążą, przy  $n \to \infty$ , do estymowanego parametru.

## Estymatory mocno zgodne

#### Przykład: średnia arytmetyczna $\bar{X}_n$ z próby

- $X_1 \dots, X_n$  próba prosta
- $\mathbb{E}[X_1] = \theta$

Można pokazać, że średnia arytmetyczna  $\bar{X}_n$  jest mocno zgodnym estymatorem wartości oczekiwanej  $\theta$ 

$$P(\lim_{n\to\infty}\bar{X}_n=\theta)=1$$

Każdy estymator mocno zgodny jest zgodnym estymatorem, ale nie na odwrót.

## Przypomnienie: Dystrybuanta zmiennej losowej

#### Dystrybuanta zmiennej losowej X

Funkcja dana wzorem

$$F_X(t) = P(\{\omega \in \Omega : X(\omega) \le t\}) = P_X(\{x : x \le t\}) = P(X \le t)$$

Dla X zmiennej ciągłej o gęstości f

$$F(t) = \int_{-\infty}^{t} f(x) dx.$$

## Estymatory mocno zgodne

#### Przykład: dystrybuanta empiryczna z próby

- $X_1 \dots, X_n$  próba prosta
- dystrybuanta empiryczna  $F_n$  jest średnią arytmetyczną zmiennych zerojedynkowych  $\mathbf{1}_{(-\infty,s)}(X_i)$ ,  $F_n(s)=\frac{1}{n}\sum_{i=1}^n\mathbf{1}_{(-\infty,s)}(X_i)$
- zachodzi  $P(\mathbf{1}_{(-\infty,s)}(X_i)) = F(s)$  oraz  $\mathbb{E}(F_n(s)) = F(s)$ .

 $F_n(s)$  jest mocno zgodnym estymatorem dystrybuanty

$$P\left(\lim_{n\to\infty}F_n(s)=F(s)\right)=1$$

dla każdego  $s \in R$ .

# Estymator największej wiarogodności (ang. maximum likelihood estimator; MLE)

- Niech  $X_1, \ldots, X_n$  próba prosta, w której rozkład zależy od nieznanego parametru  $\theta \in \mathbb{R}^k$ .
- $x_1, \ldots, x_n$  obserwacje  $X_1, \ldots, X_n$
- $p_{\theta}$  gęstość rozkładu  $X_1$ , gdy  $X_1$  ciągła  $(p_{\theta}(x) = f_{X_1}(x))$ , lub rozkład prawdopodobieństwa, gdy skokowa  $(p_{\theta}(x) = P(\{\omega : X_1(\omega) = x\}))$ .

#### Funkcja wiarogodności

$$L(x_1,\ldots,x_n,\theta)=p_{\theta}(x_1)\cdot\ldots\cdot p_{\theta}(x_n)$$

#### Estymator największej wiarogodności

Taki estymator  $\hat{\theta}(X_1, \dots, X_n)$  parametru  $\theta$ , dla którego funkcja wiarogodności  $L(x_1, \dots, x_n, \hat{\theta})$  osiąga największą wartość.

## Estymator największej wiarogodności

- Funkcja wiarogodności L osiąga maksimum w tym samym punkcie co funkcja I = ln(L) (In jest funkcją ściśle rosnącą).
- Korzystamy z tego faktu jako uproszczenia rachunków przy wyznaczaniu estymatora

## Estymator największej wiarogodności

#### Przykład: estymator średniej i wariancji rozkładu normalnego

- $X_1 ..., X_n$  próba prosta z rozkładu normalnego  $N(\mu, \sigma)$  o nieznanym parametrze  $\theta = (\mu, \sigma^2)$ .
- $L(x_1...,x_n,\theta) = (\sqrt{2\pi}\sigma)^{-n} \exp\left[-\frac{1}{2}\sum_{i=1}^n \left(\frac{x_i-\mu}{\sigma}\right)^2\right]$
- $l(x_1...,x_n,\theta) = -n \ln(\sigma) \frac{1}{2\sigma^2} \sum_{i=1}^n (x_i \mu)^2 + \ln[(2\pi)^{-n/2}]$

## Estymator największej wiarogodności

#### Przykład cd: estymator średniej i wariancji rozkładu normalnego

• Teraz maksymalizujemy  $I(x_1, \dots, x_n, \theta)$ : liczymy pochodne cząstkowe i przyrównujemy do zera.

$$\frac{\partial I}{\partial \mu} = \frac{\sum_{i} x_{i}}{\sigma^{2}} - \frac{n\mu}{\sigma^{2}}.$$

$$\frac{\partial I}{\partial \mu} = 0$$
 zachodzi dla  $\hat{\mu} = \frac{\sum_i x_i}{n} = \bar{x}_n$ .  
Zaś  $\frac{\partial I}{\partial (\sigma^2)} = 0$  zachodzi dla  $\hat{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{x}_n)^2$ .

- Łatwo pokazać, że w punkcie  $\hat{\theta}=(\hat{\mu},\hat{\sigma})$  funkcja  $I(\theta)$  osiąga maksimum globalne
- Zatem  $\hat{\theta} = (\hat{\mu}, \hat{\sigma})$  jest estymatorem największej wiarogodności parametru  $\theta$ .

## Kwantyle

#### Kwantyl rzędu $p \ (0$

Dla zmiennej losowej X typu ciągłego o dystrybuancie F i gęstości f, kwantylem rzędu p nazywamy każdą liczbę  $x_p$  spełniającą którykolwiek z równoważnych warunków:

$$F(x_p) = p$$

$$P(X \le x_p) = p$$

$$\int_{-\infty}^{x_p} f(x) dx = p.$$

#### Mediana

Kwantyl rzędu p = 0.5.

## Estymacja przedziałowa

Przedział ufności dla parametru  $\theta \in \Theta$  i próby  $X_1, \ldots, X_n$  na poziomie ufności  $1 - \alpha$ ,  $(0 < \alpha < 1)$ 

Przedział  $(\theta_1,\theta_2)$  taki, że

- $\theta_1 = \theta_1(X_1, \dots, X_n)$  oraz  $\theta_2 = \theta_2(X_1, \dots, X_n)$  funkcje próby losowej  $X_1, \dots, X_n$ .
- $P(\theta_1(X_1,\ldots,X_n) < \theta < \theta_2(X_1,\ldots,X_n)) = 1 \alpha.$

W drugim punkcie mówimy o prawdopodobieństwie, bo końce przedziału  $\theta_1$  i  $\theta_2$  są zmiennymi losowymi!

## Długość przedziału ufności

#### Długość przedziału ufności

Różnica 
$$I_n = \theta_2(X_1, \dots, X_n) - \theta_1(X_1, \dots, X_n)$$
.

Najbardziej dokładna estymacja przedziałowa to ta, która daje najkrótszy przedział ufności.

## Uniwersalny przedział ufności

#### Przykład: przedział ufności na podstawie nierówności Czebyszewa.

- ullet  $X_1\ldots,X_n$  próba prosta,  $\mathbb{E}[X_1]= heta, \mathsf{Var}[X_1]=\sigma^2<\infty$
- ullet Zachodzi  $\mathbb{E}[ar{X_n}] = heta$  i  $\mathsf{Var}[ar{X_n}] = \sigma^2/n$
- ullet Z nierówności Czebyszewa, przyjmując  $t=rac{\epsilon\sqrt{n}}{\sigma}$  mamy

$$P(\bar{X}_n - \epsilon < \theta < \bar{X}_n + \epsilon) \ge 1 - \frac{\sigma^2}{n\epsilon^2}$$

- Przyjmijmy  $\sigma^2$  za jednostkę w układzie współrzędnych, w których rejestrowane są realizacje próby.
- Aby poziom ufności wynosił co najmniej 0.99, musimy mieć  $n\epsilon^2 > 100$ .
- ullet Przyjmując optymalne (dające najkrótszy przedział)  $\epsilon=10/\sqrt{n}$

$$P(\bar{X}_n - 10/\sqrt{n} < \theta < \bar{X}_n + 10/\sqrt{n}) \ge 0.99.$$

## Uniwersalny przedział ufności

#### Przykład cd: przedział ufności na podstawie nierówności Czebyszewa.

- ullet Przedział ufności z tego przykładu ma długość  $I_n=20/\sqrt{n}$
- Aby  $I_n = 0.2$  musimy dokonać 10000 obserwacji.

## Przedziały ufności dla wartości oczekiwanej. Model 1

Niech  $X_1, \ldots, X_n$  próba losowa prosta z rozkładu normalnego  $N(\mu, \sigma)$  o nieznanym  $\mu$  i znanym  $\sigma$ .

- ullet Statystyka  $ar{X}_n$  ma rozkład  $N(\mu,\sigma/\sqrt{n})$
- ullet Standardyzacja: zmienna losowa  $U=rac{ar{X}_n-\mu}{\sigma/\sqrt{n}}$  ma rozkład N(0,1)
- Znajdziemy  $u_1$  i  $u_2$  takie, że  $P(u_1 < U < u_2) = 1 \alpha$  dla zadanego  $\alpha$ .
- Intuicja:



## Przedziały ufności dla wartości oczekiwanej. Model 1

- Bierzemy  $\alpha_1, \alpha_2$  takie, że  $\alpha_1 + \alpha_2 = \alpha$  i  $\alpha_1, \alpha_2 > 0$
- przyjmujemy  $u_1=q(\alpha_1), u_2=q(1-\alpha_2),$  gdzie  $q(\alpha_1)$  i  $q(1-\alpha_2)$  są kwantylami rzędu  $\alpha_1$  i  $1-\alpha_2$  zmiennej U.
- Wówczas mamy

$$P\left(q(\alpha_1)<\frac{\bar{X}_n-\mu}{\sigma}\sqrt{n}< q(1-\alpha_2)\right)=1-\alpha.$$

Najkrótszy przedział ufności dla  $\mu$  otrzymujemy dla  $\alpha_1=\alpha_2=\alpha/2$ , postaci:

$$\begin{split} &\left(\bar{X}_{n}-q\left(1-\frac{\alpha}{2}\right)\frac{\sigma}{\sqrt{n}},\bar{X}_{n}-q\left(\frac{\alpha}{2}\right)\frac{\sigma}{\sqrt{n}}\right)=\\ &\left(\bar{X}_{n}-q\left(1-\frac{\alpha}{2}\right)\frac{\sigma}{\sqrt{n}},\bar{X}_{n}+q\left(1-\frac{\alpha}{2}\right)\frac{\sigma}{\sqrt{n}}\right) \end{split}$$

## Funkcja gęstości rozkładu t-studenta



## Przedziały ufności dla wartości oczekiwanej. Model 2

Niech  $X_1, \ldots, X_n$  próba losowa prosta z rozkładu normalnego  $N(\mu, \sigma)$  o nieznanych  $\mu$  i  $\sigma$ .

- Zmienna losowa  $\frac{\bar{X}_n \mu}{S_n} \sqrt{n-1}$ , gdzie  $S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i \bar{X}_n)^2$  ma rozkład t-Studenta o n-1 stopniach swobody.
- ullet Niech t(lpha,n-1) kwantyl rzędu lpha tego rozkładu. Wówczas

$$P\left(t\left(\frac{\alpha}{2},n-1\right)<\frac{\bar{X}_n-\mu}{S_n}\sqrt{n-1}< t\left(1-\frac{\alpha}{2},n-1\right)\right)=1-\alpha.$$

i z faktu  $t(\alpha/2,n-1)=-t(1-\alpha/2,n-1)$  otrzymujemy przedział ufności na poziomie  $1-\alpha$  dla  $\mu$ 

$$\left(\bar{X}_n - t\left(1 - \frac{\alpha}{2}, n - 1\right) \frac{S_n}{\sqrt{n-1}}, \bar{X}_n + t\left(1 - \frac{\alpha}{2}, n - 1\right) \frac{S_n}{\sqrt{n-1}}\right)$$

## Porównanie funkcji gęstości: normalny, chi-kwadrat

#### Wykresy gęstości





## Przedziały ufności dla wariancji

Niech  $X_1, \ldots, X_n$  próba losowa prosta z rozkładu normalnego  $N(\mu, \sigma)$  o nieznanych  $\mu$  i  $\sigma$ .

- ullet Zmienna losowa  $\chi^2=rac{nS_n^2}{\sigma^2}$  ma rozkład chi-kwadrat o (n-1) stopniach swobody.
- ullet Niech  $\chi^2(lpha,n-1)$  kwantyl rzędu lpha tego rozkładu. Wówczas

$$P\left(\chi^2\left(\frac{\alpha}{2},n-1\right)<\frac{nS_n^2}{\sigma^2}<\chi^2\left(1-\frac{\alpha}{2},n-1\right)\right)=1-\alpha.$$

Otrzymujemy przedział ufności na poziomie 1-lpha dla  $\sigma^2$  postaci

$$\left(\frac{nS_n^2}{\chi^2\left(1-\frac{\alpha}{2},n-1\right)},\frac{nS_n^2}{\chi^2\left(\frac{\alpha}{2},n-1\right)}\right).$$

## Podsumowanie poznanych pojęć

- Eksperyment losowy
- Próba losowa
- Statystyka
- Estymator
- Estymator nieobciążony
- Estymator efektywny
- Estymator zgodny
- Estymator największej wiarogodności
- Kwantyl
- Estymacja przedziałowa