AI_12_06

Map Representation

選擇地圖的表示方式

- Map precision vs. applicaiton 地圖精確 vs. 應用
- Feature precision vs. map precision 特徵精確 vs. 地圖精確
- Precision vs. computational complexity 精確 vs. 計算複雜度表示法: (1) 連續化 (2)離散化

Continuous Representaion 連續性

- 精確分析環境的方法
- 連續事件的正確性, closed-world assumption 封閉世界假設 (不會有模擬兩可的 判別)的緊凑性
- 地圖需儲存量與對環境密度成正比
- 稀疏的環境可以用低儲存量表示

Decompostion Strategies: Abstraction 分解策略: 抽象

缺點:

- 地圖失去真實度
- 高抽象地圖不如高真實地圖

優點:

- 地圖表示可以最小化
- 可以有效率地去規劃計算

Exact Cell Decompostion 精確

水平掃描,碰到障礙物、特徵就定義一個區

<u>Exact Cell Decomposition · Robotics learning Notes (shengchen-liu.github.io)</u>

care only the robot's ability to traverse from each area of free space to the adjacent areas

只關心機器人從每個自由空間區域穿越道相鄰區域的能力

問題

只有障礙物跟空間,必須知道整張地圖障礙物細節

Fixed Cell Decompostion 固定

連續的環境轉成離散化的地圖, ex. 網格化會變得不精確,可能有的道路會消失

問題

如果離散的不夠精細的話,可能會有狹窄的通道會消失

Adaptive Cell Decompostion 適應

將網格分成有大有小,細節越多的地方,網格就越小,使得地圖會變得精細,相反地,細節少且網塊都一樣的時候,網格就越大,可以防止地圖狹窄的通道消失

佔據網格表示:

優點:

- 可以用以上的方式解決地圖的表示法,去做導航的概念 缺點:
- 若要精確,cell要分得很小,這樣記憶體就必須很大
- 可能會不確定,不符合 close-world assumption
- 可能會有不必要的細節

Topological Decomposition 拓撲

- 可以避免直接測量幾何量
- 專注環境的特點
- Adjacency is the heart of the topological approach 相鄰關係是拓樸的重點若要使用拓樸圖進行導航需:
- 可以用節點知道當前位置

- 可用機器運動在節點之間移動
- 不需要知道你的準確位置,只需知道你在哪一個節點塊就可以 必須優化節點大小和特定尺寸以匹配移動機器人硬件的感官辨別力

Sunmmary

距離不是唯一一個可測量和有用的環境變數 選擇地圖的表示法

- 知道有哪些的感測器
- 知道機器人有那些功能以及要求

Current Challenges in Map Representation 現今的挑戰

- 現實世界是動態的
 - 需區分永久性障礙和暫時性障礙
 - 使用視覺
- 感知仍然是主要挑戰
 - 出錯
 - 很難提取有用訊息
- 定位,開放空間的遍歷
- 建立拓樸結構
 - 空間局部性的假設
- 傳感器的融合 神經網路分類器

Probabilistic Map-Based Locatization 地圖定位的機率性

Markov localization

在每一格都有明確的概率分布

- 一個動作出現,會更新所有格的機率
- Kalman filter localization

運用高斯機率密度表示和掃描匹配進行定位 定位不會獨立考慮機器人在空間中的每個位置

考慮移動機器人在一個已知地圖 越走越遠,不確定性越高,所以要更新資訊

Active update

- 內部動作估計的位置
- 會增加不確定性,不知道有沒有外在因素

• Perception update

• 用外部的感測器去減少不確定性