

Last week's work

- Implemented Fourier discretisation
- Compared it against splines
- Some ideas about surrogates and CBC
- Manuscript editing [c. 5400 words]

From last time...

Fitting periodic splines:

1. Find the period

From last time...

- 1. Find the period
 - ightharpoonup Autocorrelation or nonlinear least squares F_0 estimation

From last time...

- 1. Find the period
 - ightharpoonup Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?

From last time...

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?
- 2. 'Stack' periods

From last time...

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - Fourier?
- Stack' periods
 - $lackbox{ Re-label data } t_i$ s to phase $\phi_i = rac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$

From last time...

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - Fourier?
- 2. 'Stack' periods
 - ▶ Re-label data t_i s to phase $\phi_i = \frac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$
- 3. Build splines model

From last time...

- 1. Find the period
 - ightharpoonup Autocorrelation or nonlinear least squares F_0 estimation
 - Fourier?
- 2. 'Stack' periods
 - ▶ Re-label data t_i s to phase $\phi_i = \frac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$
- 3. Build splines model
 - Discretisation = BSpline coefficients

From last time...

Choosing knots is hard; since we're wanting a minimal knot set...

1. Choose the desired number of knots

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random
- 3. Numerically optimize the knot vector

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random
- Numerically optimize the knot vector
 - Minimise training error of a splines model fitted with these knots

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random
- 3. Numerically optimize the knot vector
 - Minimise training error of a splines model fitted with these knots
- 4. Repeat steps 2,3 lots, and choose the best result

From last time...

- 1. Choose the desired number of knots
- 2. Choose knots at random
- 3. Numerically optimize the knot vector
 - Minimise training error of a splines model fitted with these knots
- 4. Repeat steps 2,3 lots, and choose the best result
 - Helps overcome the local minima issue

From last time...

From last time...

We can quantify goodness-of-fit:

 \normalfont{k} Let $\operatorname{reconstruction}(t)$ be the fitted splines model

- \normalfont{k} Let $\operatorname{reconstruction}(t)$ be the fitted splines model
- $\norm{\ensuremath{\textit{k}}}$ Let ${
 m signal}(t)$ be the signal we wish to discretise

- \normalfont{k} Let $\operatorname{reconstruction}(t)$ be the fitted splines model
- \bigvee Let $\operatorname{signal}(t)$ be the signal we wish to discretise
- $\ensuremath{\mathbb{K}}$ Let $\operatorname{error}(t) = \operatorname{signal}(t) \operatorname{reconstruction}(t)$

- \bigvee Let $\operatorname{signal}(t)$ be the signal we wish to discretise
- $\ensuremath{\mathbb{K}}$ Let $\operatorname{error}(t) = \operatorname{signal}(t) \operatorname{reconstruction}(t)$

- $\normalfont{\mathsf{\textit{L}}}$ Let $\operatorname{reconstruction}(t)$ be the fitted splines model
- \bigvee Let $\operatorname{signal}(t)$ be the signal we wish to discretise
- \bigvee Let error(t) = signal(t) reconstruction(t)
- K Goodness-of-fit = $\int_0^T \left[\operatorname{error}(t) \right]^2 \mathrm{d}t$
- This gives a metric for comparing splines, Fourier, etc.

Splines vs Fourier

Hodgkin-Huxley neuron; error decays significantly faster with splines

Splines vs Fourier

Hodgkin-Huxley neuron; error decays significantly faster with splines

Open problems

Robustness

- Does it break down on stochastic systems? Eg. if data aren't fully periodic
- Do we need a human in the loop, to manually adjust anything?

Locality

- ▶ Knots are fitted / work well for λ_0 ; can the same knots model $\lambda_1, \lambda_2, \ldots, \lambda_i$?
- (They need to for predicting the next PO in an iteration)

CBC approach

Question: there's several ways of performing CBC; which is best for this?

bristol.ac.uk

Method 1. 'Easy' approach for harmonically forced systems

Set the response amplitude

- ✓ Set the response amplitude
- Find the input forcing amplitude that gives that response

- Set the response amplitude
- Find the input forcing amplitude that gives that response
- Lumps the bifurcation parameter together with the control action

- Set the response amplitude
- Find the input forcing amplitude that gives that response
- Lumps the bifurcation parameter together with the control action
 - Fast and efficient iteration scheme

- Set the response amplitude
- Find the input forcing amplitude that gives that response
- Lumps the bifurcation parameter together with the control action
 - Fast and efficient iteration scheme
 - Similar approach exists for continuing equilibria

Method 1 issues

We don't have a harmonically forced system

Method 2. Harder, fully general approach [Sieber Krauskopf]

Lefine the 'IO map' from control-target to system output

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target
- Map fixed point means control-target = system output

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target
- Map fixed point means control-target = system output
- [Claim:] map fixed point occurs only when there's non-invasive control

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target
- Map fixed point means control-target = system output
- [Claim:] map fixed point occurs only when there's non-invasive control
- Use Newton iterations to solve for fixed point of discretised map

Methods for PO CBC

Method 2. Harder, fully general approach [Sieber Krauskopf]

- Define the 'IO map' from control-target to system output
 - Says what the system output is, for any given control target
- Map fixed point means control-target = system output
- [Claim:] map fixed point occurs only when there's non-invasive control
- Use Newton iterations to solve for fixed point of discretised map
- Solution is the noninvasive control target

I think this is wrong...

- Integral control \Rightarrow no proportional error
 - Possibly true for other control strategies too

- - Possibly true for other control strategies too
 - ► (Irene won't have this issue when using MPC, since she can lump the control action in with the bifurcation parameter and avoid the IO map method)

- Integral control \Rightarrow no proportional error
 - Possibly true for other control strategies too
 - ► (Irene won't have this issue when using MPC, since she can lump the control action in with the bifurcation parameter and avoid the IO map method)
- № No proportional error ⇒ system output == control target

- Integral control \Rightarrow no proportional error
 - Possibly true for other control strategies too
 - ► (Irene won't have this issue when using MPC, since she can lump the control action in with the bifurcation parameter and avoid the IO map method)
- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target

- Integral control \Rightarrow no proportional error
 - Possibly true for other control strategies too
 - ► (Irene won't have this issue when using MPC, since she can lump the control action in with the bifurcation parameter and avoid the IO map method)
- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target
- System output == control target => every control target is a fixed point of the IO map

- Integral control \Rightarrow no proportional error
 - Possibly true for other control strategies too
 - ► (Irene won't have this issue when using MPC, since she can lump the control action in with the bifurcation parameter and avoid the IO map method)
- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target
- System output == control target every control target is a fixed point of the IO map
 - Control target and system output are identical for all targets

I think this is wrong...

- Integral control \Rightarrow no proportional error
 - Possibly true for other control strategies too
 - ► (Irene won't have this issue when using MPC, since she can lump the control action in with the bifurcation parameter and avoid the IO map method)
- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target
- System output == control target => every control target is a fixed point of the IO map
 - ► Control target and system output are identical for all targets
- Every point is a fixed point ⇒ can't find noninvasive control by solving the map

bristol.ac.uk

- - Possibly true for other control strategies too
 - ► (Irene won't have this issue when using MPC, since she can lump the control action in with the bifurcation parameter and avoid the IO map method)
- № No proportional error
 ⇒ system output == control target
 - System output exactly tracks control target
- System output == control target => every control target is a fixed point of the IO map
 - Control target and system output are identical for all targets
- Every point is a fixed point ⇒ can't find noninvasive control by solving the map
- Feels like a big claim to say the paper's wrong, but I haven't found any way to resolve this....

Approach 1. Only use P, PD control

No integral controller ⇒ ∃ proportional error

bristol.ac.uk

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 control action is zero (noninvasiveness)

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 control action is zero (noninvasiveness)
 - ► System output = control target ←⇒ control is noninvasive

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 control action is zero (noninvasiveness)
 - ► System output = control target ←⇒ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 control action is zero (noninvasiveness)
 - ► System output = control target ←⇒ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - Let u* = control target discretisation

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 control action is zero (noninvasiveness)
 - ► System output = control target ← control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - Let u* = control target discretisation
 - Let x = system output discretisation

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 \(\infty\) control action is zero (noninvasiveness)
 - ► System output = control target ←⇒ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - ightharpoonup Let $\mathbf{u}^* = \text{control target discretisation}$
 - ightharpoonup Let x =system output discretisation
 - Equality \imp no proportional error \imp zero control action, noninvasiveness, etc.

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 \(\infty\) control action is zero (noninvasiveness)
 - ► System output = control target ←⇒ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - ightharpoonup Let $\mathbf{u}^* = \text{control target discretisation}$
 - ightharpoonup Let x =system output discretisation

 - $\mathbf{u}^* = \mathbf{x}$ can therefore be solved for noninvasive \mathbf{u}^*

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 \(\infty\) control action is zero (noninvasiveness)
 - ► System output = control target ←⇒ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - ightharpoonup Let $\mathbf{u}^* = \text{control target discretisation}$
 - ightharpoonup Let x =system output discretisation
 - ► Equality ⇒ no proportional error ⇒ zero control action, noninvasiveness, etc.
 - $\mathbf{u}^* = \mathbf{x}$ can therefore be solved for noninvasive \mathbf{u}^*
- This is exactly the method proposed in Sieber Krauskopf

- No integral controller ⇒ ∃ proportional error
- Proportional error = 0 \(\infty\) control action is zero (noninvasiveness)
 - ► System output = control target ←⇒ control is noninvasive
- Can then use Newton iterations to solve for noninvasiveness
 - ightharpoonup Let $\mathbf{u}^* = \text{control target discretisation}$
 - ightharpoonup Let x =system output discretisation
 - ► Equality ⇒ no proportional error ⇒ zero control action, noninvasiveness, etc.
 - $\mathbf{u}^* = \mathbf{x}$ can therefore be solved for noninvasive \mathbf{u}^*
- This is exactly the method proposed in Sieber Krauskopf
- Downside: locked into a single control method

Approach 2. Reformulate the zero problem

Explicitly solve for noninvasive control

- Explicitly solve for noninvasive control
- Ke Total control action = $\int u(\mathbf{u}^*, t)^2 dt$

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- \swarrow Solve for \mathbf{u}^* that sets total control action to zero

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- & Solve for \mathbf{u}^* that sets total control action to zero
 - lacktriangle Underdetermined n inputs, one output; minimisation problem

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- \swarrow Solve for \mathbf{u}^* that sets total control action to zero
 - ▶ Underdetermined n inputs, one output; minimisation problem
 - $\blacktriangleright\,$ Eg. gradient descent on u^* with Broyden Jacobian update

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- & Solve for \mathbf{u}^* that sets total control action to zero
 - ightharpoonup Underdetermined n inputs, one output; minimisation problem
 - ightharpoonup Eg. gradient descent on \mathbf{u}^* with Broyden Jacobian update
 - This is similar to standard Newton iterations

- Explicitly solve for noninvasive control
- \checkmark Total control action = $\int u(\mathbf{u}^*, t)^2 dt$
- \swarrow Solve for \mathbf{u}^* that sets total control action to zero
 - ightharpoonup Underdetermined n inputs, one output; minimisation problem
 - ightharpoonup Eg. gradient descent on \mathbf{u}^* with Broyden Jacobian update
 - This is similar to standard Newton iterations

Maybe we don't need to find \mathbf{u}^* that sets control action to zero...

Much like tracking bifurcations optimally – don't need to see the actual bifurcation point, as long as we're confident it's there

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- \mathbf{k} Find a local surrogate model of total invasiveness $I(\mathbf{u}^*) = \int u(\mathbf{u}^*, t)^2 dt$

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- f k Find a local surrogate model of total invasiveness $I({f u}^*)=\int u({f u}^*,t)^2{
 m d}t$
 - lacktriangle Maps a discretisation ${f u}^*$ to total control action required to stabilise it

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- ${\it k}$ Find a local surrogate model of total invasiveness $I({\bf u}^*)=\int u({\bf u}^*,t)^2{
 m d}t$
 - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- f k Find a local surrogate model of total invasiveness $I({f u}^*)=\int u({f u}^*,t)^2{
 m d}t$
 - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $ightharpoonup I(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- ${\it k}$ Find a local surrogate model of total invasiveness $I({\bf u}^*)=\int u({\bf u}^*,t)^2{
 m d}t$
 - lacktriangle Maps a discretisation ${f u}^*$ to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $ightharpoonup I(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- Fit local model on 'maximally informative' datapoints

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- f k Find a local surrogate model of total invasiveness $I({f u}^*)=\int u({f u}^*,t)^2{
 m d}t$
 - lacktriangle Maps a discretisation ${f u}^*$ to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $ightharpoonup I(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- Fit local model on 'maximally informative' datapoints
 - Choose datapoints that maximise our certainty of the minima location

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- $\mbox{\it K}$ Find a local surrogate model of total invasiveness $I({\bf u}^*)=\int u({\bf u}^*,t)^2{\rm d}t$
 - lacktriangle Maps a discretisation ${f u}^*$ to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $ightharpoonup I(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- Fit local model on 'maximally informative' datapoints
 - Choose datapoints that maximise our certainty of the minima location
- & Solve for $I(\mathbf{u}^*) = 0$ on the local surrogate model

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- $\mbox{\it ke}$ Find a local surrogate model of total invasiveness $I({\bf u}^*)=\int u({\bf u}^*,t)^2{\rm d}t$
 - lacktriangle Maps a discretisation \mathbf{u}^* to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $ightharpoonup I(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- Fit local model on 'maximally informative' datapoints
 - Choose datapoints that maximise our certainty of the minima location
- $\ensuremath{\mathbb{K}}$ Solve for $I(\mathbf{u}^*)=0$ on the local surrogate model
 - No need for experimental Newton iterations, gradient descent, Jacobians, finite differences => fast!

Optimal design of gradient-descent method

Maybe we don't need to find \mathbf{u}^* that sets control action to zero...

- Much like tracking bifurcations optimally don't need to see the actual bifurcation point, as long as we're confident it's there
- $\mbox{\it K}$ Find a local surrogate model of total invasiveness $I({\bf u}^*)=\int u({\bf u}^*,t)^2{\rm d}t$
 - lacktriangle Maps a discretisation ${f u}^*$ to total control action required to stabilise it
 - Quantifies invasiveness of target u*
 - $ightharpoonup I(\mathbf{u}^*) = 0 \implies u^*$ is noninvasive, so natural system behaviour
- Fit local model on 'maximally informative' datapoints
 - Choose datapoints that maximise our certainty of the minima location
- $\ensuremath{\mathbb{K}}$ Solve for $I(\mathbf{u}^*)=0$ on the local surrogate model
 - No need for experimental Newton iterations, gradient descent, Jacobians, finite differences => fast!
- Experimentally test \mathbf{u}_i^* that solves $I(\mathbf{u}^*) = 0$, to ensure that's the moninvasive solution

Proposed route

Initially, use PD control, IO map with Newton iterations

- Standard method, so don't have to develop anything new
- Need to use PD control, but that also means no need to develop any fancy controller
- Gets results quickly!

If PD doesn't work well, develop the surrogate gradient descent method

- Makes it truly control-strategy independent
- Extends CBC to systems that are harder to control with PD

An extravagant aside

Interesting aside: control-free continuation

- Some systems are hard to control
- Can we run CBC without needing a controller?

We can deduce the existence of an unstable equilibrium

✓ Stable features are easy to spot – the system converges to them

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features
- Easy method: fit a local surrogate, find unstable features from that

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features
- Easy method: fit a local surrogate, find unstable features from that
 - Eg. fit a neural ODE / neural GP to the previous bistable system

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features
- Easy method: fit a local surrogate, find unstable features from that
 - Eg. fit a neural ODE / neural GP to the previous bistable system
 - Simple root-finding for locating equilibria

- Stable features are easy to spot the system converges to them
- We can often deduce the existence of unstable features
- Easy method: fit a local surrogate, find unstable features from that
 - Eg. fit a neural ODE / neural GP to the previous bistable system
 - Simple root-finding for locating equilibria
 - More optimal-experimental-design opportunities, for increasing confidence at equilibrium locations

General method:

1. Collect some data

- 1. Collect some data
 - Set the system running

- 1. Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it

- 1. Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there
 - Can use standard methods to locate unstable POs from the models

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there
 - Can use standard methods to locate unstable POs from the models
 - Could use standard continuation on the models, or...

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there
 - Can use standard methods to locate unstable POs from the models
 - Could use standard continuation on the models, or...
 - ... Could find POs, UPOs at lots of parameter values, to track them without control or continuation

- Collect some data
 - Set the system running
 - Every time instabilities drive it away from the region of interest, restart with the system where we want it
- 2. Reconstruct state space from recorded time series
- 3. Fit a neural / GP ODE model to reconstructed state space
- 4. Run standard analyses on the models
 - If we keep the system near some feature of interest, the models will be locally accurate there
 - Can use standard methods to locate unstable POs from the models
 - Could use standard continuation on the models, or...
 - Could find POs, UPOs at lots of parameter values, to track them without control or continuation

Back on topic...

- Paper needs to make their usage cases clear

Slow signals:

- № No high harmonics
 ⇒ Fourier discretisation works fine
- № No high harmonics ⇒ low-pass filtering works fine

No need for surrogates

Fast signals:

No need for surrogates

Medium-speed signals:

- Can be more efficiently discretised with splines than Fourier
- However, for harmonically forced systems, it's faster to use Fourier iterations than Newton iterations
- Enough HF harmonics that we wouldn't want to use LP filtering ⇒ we need a surrogate

This is surrogates usage case

- Better to use Fourier iterations than Newton iterations on harmonically forced systems
- Surrogates are useful for Fourier iteration on faster signals

Туре	Harmonically forced	Unforced
Slow signal	Fourier iter's, LP filters	Newton iter's, LP filters
Fast signal	Fourier iter's, surrogates	Newton iter's, novel discretisation

The two new methods complement each other; one for Newton iter's, one for Fourier iter's; paper should make this clear

CBC implementation should use Newton iterations, spline discretisation, PD control

bristol.ac.uk

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful
- Interesting aside 1: we need a different approach to use non-PD control with the most general CBC method

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful
- Interesting aside 1: we need a different approach to use non-PD control with the most general CBC method
 - Less general methods (where parameter and control action can be lumped together) don't require this

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful
- Interesting aside 1: we need a different approach to use non-PD control with the most general CBC method
 - Less general methods (where parameter and control action can be lumped together) don't require this
 - Lots of room for interesting optimal experimental design

- CBC implementation should use Newton iterations, spline discretisation, PD control
- Conference paper needs to be clear / explicit about when surrogates, new discretisations are useful
- Interesting aside 1: we need a different approach to use non-PD control with the most general CBC method
 - Less general methods (where parameter and control action can be lumped together) don't require this
 - Lots of room for interesting optimal experimental design
- Interesting aside 2: might be possible to run CBC without a controller?

Next steps

- 1. Test splines generalisation ability
 - Fit knots for signal at $\lambda = \lambda_0$
 - \blacktriangleright See if those knots still work for $\lambda = \lambda_i$, i > 0
 - If they do, splines will be able to predict new PO locations, and work for CBC
- Write up results so far
- Demonstrate splines with CBC

Key dates

- Bath maths ML conference, week of Aug.3rd 7th