Introduction to Data Science With Probability and Statistics

Lecture 21: Unbiased Estimators and Mean Squared Error

CSCI 3022 - Summer 2020 Sourav Chakraborty Dept. of Computer Science University of Colorado Boulder

Estimators

- One of the tasks is to use a dataset to estimate a quantity of interest.
- We should be able to deal with a situation where the dataset is modeled as one of the parameters of the model distribution or as a certain function of the parameters.

ESTIMATE. An *estimate* is a value t that only depends on the dataset x_1, x_2, \ldots, x_n , i.e., t is some function of the dataset only:

$$t=h(x_1,x_2,\ldots,x_n).$$

$$\mathcal{E}_{\mathcal{S}}: \quad \tilde{\alpha} = \frac{\sum \alpha i}{n}$$

Estimators

One can often think of several estimates for the parameter of interest. This raises questions like:-

- When is one estimate better than another?
- Does there exist a best possible estimate?

We can never say which of the two estimate values 'e₁' and 'e₂' computed from a dataset is closer to the 'true' parameter. This is because:-

- → The measurements and the corresponding estimates are subject to randomness.
- → One of the things we can say for each of them is how likely it is that they are within a given distance from the 'true' parameter.

Note that estimators are special cases of 'sample statistics'.

Estimators

ESTIMATOR. Let $t = h(x_1, x_2, ..., x_n)$ be an estimate based on the dataset $x_1, x_2, ..., x_n$. Then t is a realization of the random variable

$$T = h(X_1, X_2, \dots, X_n).$$

The random variable T is called an *estimator*.

Es:
$$\bar{X}_n = \frac{\sum X_i}{n}$$

sampling
distributions
of
estimators

The sampling distribution and unbiasedness

The sampling distribution. Let $T = h(X_1, X_2, ..., X_n)$ be an estimator based on a random sample $X_1, X_2, ..., X_n$. The probability distribution of T is called the sampling distribution of T.

Definition. An estimator T is called an *unbiased* estimator for the parameter θ , if

$$E[T] = \theta$$

irrespective of the value of θ . The difference $E[T] - \theta$ is called the bias of T; if this difference is nonzero, then T is called biased.

Unbiased estimators for expectation and variance. Suppose $X_1, X_2, ..., X_n$ is a random sample from a distribution with finite expectation μ and finite variance σ^2 . Then

$$\bar{X}_n = \frac{X_1 + X_2 + \dots + X_n}{n}$$

is an unbiased estimator for μ and

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \bar{X}_n)^2$$

is an unbiased estimator for σ^2 .

$$\overline{X}_{N} = \underline{X}_{1} + \underline{X}_{2} + \dots \times \underline{N}_{N}$$

$$E[\overline{X}_{N}] = E[\underline{X}_{1} + \dots + \underline{X}_{N}]$$

$$= \frac{1}{N} E[\underline{X}_{1}] + \dots + E[\underline{X}_{N}]$$

$$= \frac{1}{N} \cdot \underline{N} \mu = \mu$$

$$\vdots E[\overline{X}_{N}] = \mu$$

$$E[S_n^2] = \frac{1}{n-1} \sum_{i=1}^n E[(x_i - \overline{x}_n)^2]$$

$$E[\sum (x_i^2 - 2\overline{x}_n x_i + \overline{x}^2)]$$

$$= E[\sum x_i^2 - 2\overline{x}_n \sum x_i + n\overline{x}_n^2]$$

$$= E[\sum x_i^2 - 2\overline{x}_n \cdot n\overline{x}_n + n\overline{x}_n^2]$$

$$= E[\sum x_i^2 - n\overline{x}_n^2] = \sum (E[x_i^2] - E[n\overline{x}_n^2])$$

Now;

$$E[x_i^2] = Var(x_i) + \mu^2$$

.'.
$$\Sigma(E[x;^2] - n(E[x^2])) = \Sigma[(\sigma^2 + \mu^2) - n.(\frac{\sigma^2}{n} + \mu^2)]$$

= $n\sigma^2 + n\mu^2 - \sigma^2 - n\mu^2$
= $\sigma^2(n-1)$

- This explains why we divide by n-1 in the formula for S_n^2 ; only in this case S_n^2 is an unbiased estimator for the "true" variance σ^2 .
- If we would divide by n instead of n-1, we would obtain an estimator with negative bias; it would systematically produce too-small estimates for σ^2 .

So,
$$E[S_n^2] = \frac{1}{n-1} E[\Sigma(x_i - \overline{x}_n)^2]$$

$$= \frac{1}{n-1} \cdot \sigma^2(n-1) = [\sigma^2]$$

Consider the following estimator for σ^2 :

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Compute the bias $E[V_n^2] - \sigma^2$ for this estimator, where you can keep computations simple by realizing that $V_n^2 = (n-1)S_n^2/n$

Consider the following estimator for σ^2 :

$$V_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{X}_n)^2.$$

Compute the bias $E[V_n^2] - \sigma^2$ for this estimator, where you can keep computations simple by realizing that $V_n^2 = (n-1)S_n^2/n$

$$E[V_n^2] = E\left[\frac{n-1}{n}S_n^2\right] = \frac{n-1}{n}.E[S_n^2] = \frac{n-1}{n}$$
Bias: $E[V_n^2] - \sigma^2 = -\frac{\sigma^2}{n}$

General Fact: Unbiasedness does not always carry over, i.e., if T is an unbiased estimator for a parameter θ , then g(T) does not have to be an unbiased estimator for $g(\theta)$.

Exception:
if
$$g(T) = aT + b$$
; & if T is unbiased for θ
 \vdots $E[aT + b] = aE[T] + b = a\theta + b$
 \therefore aT + b is unbiased for $a\theta + b$

Suppose our dataset is a realization of a random sample X_1, X_2, \ldots, X_n from a uniform distribution on the interval $[-\theta, \theta]$, where θ is unknown.

a. Show that $T = \frac{3}{n}(X_1^2 + X_2^2 + \dots + X_n^2)$ is an unbiased estimator for θ^2 .

Suppose our dataset is a realization of a random sample X_1, X_2, \ldots, X_n from a uniform distribution on the interval $[-\theta, \theta]$, where θ is unknown.

a. Show that
$$T = \frac{3}{n}(X_1^2 + X_2^2 + \dots + X_n^2)$$
 is an unbiased estimator for θ^2 .

We have to show
$$E[T] = \theta^2$$
,

So,
$$E[T] = \frac{3}{n} \left(E[x_1^2] + E[x_2^2] + \cdots + E[x_n^2] \right)$$

$$= \frac{3}{n} \left(\frac{\theta^2}{3} + \cdots + \frac{\theta^2}{3} \right)$$

$$= \frac{3}{n} \cdot n \cdot \frac{\theta^2}{3} = \begin{bmatrix} \theta^2 \end{bmatrix}$$

E[xi²] =
$$\int_{-\theta}^{2} x^{2} \cdot \frac{1}{2\theta} \cdot dx$$

= $\frac{1}{2\theta} \left[\frac{x^{3}}{3} \right]_{-\theta}^{\theta}$
= $\frac{1}{2\theta} \cdot \left[\frac{\theta^{3}}{3} + \frac{\theta^{3}}{3} \right] = \frac{\theta}{3}$

Suppose our dataset is a realization of a random sample X_1, X_2, \ldots, X_n from a uniform distribution on the interval $[-\theta, \theta]$, where θ is unknown.

b. Is \sqrt{T} also an unbiased estimator for θ ? If not, argue whether it has positive or negative bias.

Suppose our dataset is a realization of a random sample X_1, X_2, \ldots, X_n from a uniform distribution on the interval $[-\theta, \theta]$, where θ is unknown.

b. Is \sqrt{T} also an unbiased estimator for θ ? If not, argue whether it has positive or negative bias.

Suppose the random variables X_1, X_2, \ldots, X_n have the same expectation μ .

a. Is $S = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$ an unbiased estimator for μ ?

Suppose the random variables X_1, X_2, \ldots, X_n have the same expectation μ .

a. Is $S = \frac{1}{2}X_1 + \frac{1}{3}X_2 + \frac{1}{6}X_3$ an unbiased estimator for μ ?

$$E[S] = \frac{1}{2} E[X_1] + \frac{1}{3} E[X_2] + \frac{1}{6} E[X_3]$$
$$= (\frac{1}{2} + \frac{1}{3} + \frac{1}{6}) \mu = \mu$$

Suppose the random variables X_1, X_2, \ldots, X_n have the same expectation μ .

b. Under what conditions on constants a_1, a_2, \ldots, a_n is

$$T = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

an unbiased estimator for μ ?

Suppose the random variables X_1, X_2, \ldots, X_n have the same expectation μ .

b. Under what conditions on constants a_1, a_2, \ldots, a_n is

$$T = a_1 X_1 + a_2 X_2 + \dots + a_n X_n$$

an unbiased estimator for μ ?

$$E[T] = E[a_1x_1 + a_2x_2 + \dots + a_nx_n]$$

$$= a_1E[x_1] + a_2E[x_2] + \dots + a_nE[x_n]$$

$$= a_1\mu + a_2\mu + \dots + a_n\mu \quad \boxed{}$$

$$\vdots \quad a_1 + a_2 + \dots + a_n = 1 \text{ to make } \boxed{} = \mu.$$

Efficiency and mean squared error

- If several unbiased estimators for the same parameter of interest exist, we need a criterion for comparison of these estimators.
- A natural criterion is some measure of spread of the estimators around the parameter of interest.
- For unbiased estimators we will use variance.
- For arbitrary estimators we introduce the notion of mean squared error (MSE), which combines variance and bias.

Variance of an estimator

Efficiency. Let T_1 and T_2 be two unbiased estimators for the same parameter θ . Then estimator T_2 is called *more efficient* than estimator T_1 if $Var(T_2) < Var(T_1)$, irrespective of the value of θ .

Definition. Let T be an estimator for a parameter θ . The mean squared error of T is the number $MSE(T) = E[(T - \theta)^2]$.

$$\begin{aligned} \text{MSE}(T) &= \text{E} \left[(T - \theta)^2 \right] \\ &= \text{E} \left[(T - \text{E}[T] + \text{E}[T] - \theta)^2 \right] \\ &= \text{E} \left[(T - \text{E}[T])^2 \right] + 2 \text{E}[T - \text{E}[T]] \left(\text{E}[T] - \theta \right) + \left(\text{E}[T] - \theta \right)^2 \\ &= \text{Var}(T) + \left(\text{E}[T] - \theta \right)^2. \end{aligned}$$

Given are two estimators S and T for a parameter θ . Furthermore it is known that Var(S) = 40 and Var(T) = 4.

a. Suppose that we know that $E[S] = \theta$ and $E[T] = \theta + 3$. Which estimator would you prefer, and why?

Given are two estimators S and T for a parameter θ . Furthermore it is known that Var(S) = 40 and Var(T) = 4.

a. Suppose that we know that $E[S] = \theta$ and $E[T] = \theta + 3$. Which estimator would you prefer, and why?

MSE(S) =
$$Var(S) + (E[S] - \theta)^2 = 40$$

Given are two estimators S and T for a parameter θ . Furthermore it is known that Var(S) = 40 and Var(T) = 4.

b. Suppose that we know that $E[S] = \theta$ and $E[T] = \theta + a$ for some positive number a. For each a, which estimator would you prefer, and why?

Given are two estimators S and T for a parameter θ . Furthermore it is known that Var(S) = 40 and Var(T) = 4.

b. Suppose that we know that $E[S] = \theta$ and $E[T] = \theta + a$ for some positive number a. For each a, which estimator would you prefer, and why?

Suppose we have a random sample X_1, \ldots, X_n from an $Exp(\lambda)$ distribution. Suppose we want to estimate the mean $1/\lambda$. Given an estimator:

$$T_1 = \bar{X}_n = \frac{1}{n} (X_1 + X_2 + \dots + X_n)$$

is an unbiased estimator of $1/\lambda$. Let M_n be the minimum of X_1, X_2, \ldots, X_n . M_n has an $Exp(n\lambda)$ distribution. Given that:

$$T_2 = nM_n$$

is another unbiased estimator for $1/\lambda$. Which of the estimators T_1 and T_2 would you choose for estimating the mean $1/\lambda$? Substantiate your answer.

Imp:
$$Var(x_i) = \frac{1}{\lambda^2}$$
 if $X_i \sim Exp(\lambda)$

Now,'
$$Var(T_{1}) = Var\left(\frac{x_{1}}{n} + \frac{x_{2}}{n} + \cdots + \frac{x_{n}}{n}\right) = \frac{1}{n^{2}}\left(\sum Var(x_{1})\right)$$

$$= \frac{1}{n^{2}}\left(\frac{1}{\lambda^{2}} + \frac{1}{\lambda^{2}} + \cdots + \frac{1}{\lambda^{2}}\right) = \frac{1}{n^{2}}\cdot\frac{n}{\lambda^{2}} = \left(\frac{1}{n\lambda^{2}}\right)$$

$$Var\left(M_{n}\right) = \frac{1}{\lambda^{2}n^{2}}; \quad M_{n} \sim Exp\left(n\lambda\right)$$

:.
$$Var(T_2) = Var(nMm) = n^2 \cdot \frac{1}{n^2 \cdot \lambda^2} = \begin{bmatrix} \frac{1}{\lambda^2} \\ \frac{1}{\lambda^2} \end{bmatrix}$$

Next: Linear Regression