

Data Exploration and Preprocessing Report

Date	15 April 2024
Team ID	Team-738164
Project Title	Rainfall Prediction Using Machine Learning
Maximum Marks	6 Marks

Data Exploration Screenshots:

Section	Descr	Description									
Data Overview	Describe df.describe count 14397 mean 1:	60 rows iptive () () MinTemp M 5.000000 144196 2.194034 23 6.398495 7	S X 23 C Statistic axTemp Ri .000000 142199.0 .0221348 2.3 .119049 8.4	CS:	ation Sunshine	135197.000000 3 40.035230 3 13.607062	WindSpeed9am 143693.00000 14.043426 8.915375 0.00000		Humidity9am 142806.00000 68.880831 19.029164 0.000000		
	25% 50% 1175% 11	7.600000 17 2.000000 22 6.900000 28	.900000 0.0	00000 2.60 00000 4.80 00000 7.40	0000 4.80000 0000 8.40000 0000 10.60000	31.000000 39.000000 48.000000	7.000000 13.000000 19.000000 130.000000	13.000000 19.000000 24.000000 87.000000	57.00000 70.00000 83.00000 100.00000	37.00000 52.00000 66.00000 100.000000	
Univariate Analysis	3000 8 2000 1000 0 -10		20 30 femp	300 Tuno 100	0	20 40 laxTemp	600 400	0000	0 200 Rainfall	300	
	4000 3000 1 8 2000 1000		100 f	300 200 100		10 Sunshine	Count 4	0000	50 10 VindGustSpeed		
Bivariate Analysis											


```
df_imputed = df.dropna(axis=0, subset=['RainTomorrow'])
                                                       cont_feats = [col for col in df_imputed.columns if df_imputed[col].dtype != object]
                                                       cont_feats.remove('RainTomorrow')
cont_feats.remove('RainToday')
                                                       imputer = IterativeImputer(random_state=42)
                                                       df_imputed_cont = imputer.fit_transform(df_imputed[cont_feats])
df_imputed_cont = pd.DataFrame(df_imputed_cont, columns=cont_feats)
                                                       cat_feats = [col for col in df_imputed.columns if col not in cont_feats]
                                                        cat_feats.remove('RainTomorrow')
                                                       # Also removing Date and Location since no values are missing
cat_feats.remove('Date')
cat_feats.remove('Location')
Handling Missing Data
                                                       import numpy as np
                                                       df_imputed_cat = df_imputed[cat_feats]
                                                       for col in df_imputed_cat.columns:
                                                           # Find missing values in the current column
missing_values = df_imputed_cat[col].isnull()
                                                           # Calculate probabilities based on non-missing values
                                                           probabilities = df_imputed_cat[col][~missing_values].value_counts(normalize=True)
                                                            # Replace missing values with random choice based on probabilities
                                                           df_imputed_cat.loc[missing_values, col] = np.random.choice(probabilities.index,
                                                                                                                           size=np.sum(missing_values),
p=probabilities.values)
                                                       df_date_loc = df_imputed[['Date', 'Location']]
                                                       df_target = df_imputed.RainTomorrow
                                                       df_month = df_imputed_final.copy()
df_month.insert(1, 'Month', df_month.Date.apply(lambda x: int(str(x)[5:7])))
df_month.drop(columns='Date', inplace=True)
                                                        from sklearn.preprocessing import LabelEncoder
                                                       df_month['Month']=le.fit_transform(df_month['Month'])
Data Transformation
                                                        df_month['Location']=le.fit_transform(df_month['Location'])
                                                        df_month['WindGustDir']=le.fit_transform(df_month['WindGustDir'])
                                                       df_month['WindDir9am']=le.fit_transform(df_month['WindDir9am'])
                                                       df_month['WindDir3pm']=le.fit_transform(df_month['WindDir3pm'])
                                                       df_month['RainToday']=le.fit_transform(df_month['RainToday'])
                                                       df_month['RainTomorrow']=le.fit_transform(df_month['RainTomorrow'])
Feature Engineering
                                                      Attached the codes in final submission.
                                                       # Saving the preprocessed data
df_final = df_month.copy()
Save Processed Data
```