This file was provided by: Muath Alghamdi

Saudi International Olympiad Math Teams November 2019 Level 4 Test I

السؤال الأول:

Let P(x) be a polynomial of degree n > 1 with integer coefficients. What is the largest possible number of consecutive integers that can be presented in the following set $P(k) \mid k \in \mathbb{Z}$?

لتكن P(x) كثيرة حدود من الدرجة n>1 ومعاملاتما أعداد صحيحة. ما أكبر عدد ممكن من الأعداد . $P(k)\mid k\in\mathbb{Z}$ الصحيحة المتتالية التي يمكن تمثيلها في المجموعة التالية

السؤال الثاني

الشكل ABCD رباعي دائري تقاطع قطراه AC,BD في X ، والنقطتان E,F منتصفا ABCD على الشكل الشكل ABCD بانترتيب. أثبت أنه إذا كان $ABCD=\angle ABC$ فإن ABCD فإن

السؤال الثالث:

Let $n \geq 2$ be an integer and $a_{i,j}$ for $1 \leq i \leq n+2$ and $1 \leq j \leq n$ be real numbers. Prove that one can find indices $1 \leq i_0 < i_1 \leq n+2$ such that:

$$\sum_{k=1}^{n} (a_{i_1,k} - a_{i_2,k})^2 \neq 1$$

لتكن $2 \leq n$ عدد صحيح و $a_{i,j}$ لكل $a_{i,j}$ لكل $1 \leq i \leq n$ و $1 \leq i \leq n+2$ أعداد حقيقية. اثبت أنه يمكن إيجاد ترقيم $1 \leq i \leq n+2$ بحيث:

$$\sum_{k=1}^{n} (a_{i_1,k} - a_{i_2,k})^2 \neq 1$$

السؤال الرابع:

Let $n \geq 2$ be a fixed integer. Consider the sequence $\left(a_k\right)_{k \in \mathbb{N}}$ defined by

لتكن
$$(a_k)_{k\in\mathbb{N}}$$
 عدد صحيح ثابت. اعتبر المتتابعة $n\geq 2$

$$a_k = \text{lcm}(k, k+1, \dots, k+n-1).$$

Find all integers n such that there exist number M such that $a_{k+1}>a_k$ for all $k\geq M$.

.
$$k \geq M$$
 لكل $a_{k+1} > a_k$ أوجد كل الأعداد الصحيحة n بحيث يوجد عدد صحيح M يحقق أل يوجد عدد صحيح مع أطيب التمنيات بالتوفيق والسداد