# BM-311 Bilgisayar Mimarisi

Hazırlayan: M.Ali Akcayol Gazi Üniversitesi Bilgisayar Mühendisliği Bölümü



## Konular

- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi sinyalleri
- Hardwired kontrol birimi

# Giriş

- Mikroişlemciler instruction'ları çalıştırırken çok sayıda alt işlemi gerçekleştirir.
- Bir komut kümesi oluşturulduktan sonra her komut için yapılacak alt işlemlerin donanımsal veya yazılımsal olarak tasarlanması gereklidir.
- Bir mikroişlemcinin instruction'ları çalıştırmak için mikroişlemci dışındaki bileşenleri de bilmesi gereklidir.
- Aşağıdaki bileşenler mikroişlemcinin fonksiyonel ihtiyaçları olarak tanımlanır:
  - İşlemler (opcode)
  - Adresleme modları
  - Register'lar
  - I/O module arayüzleri
  - Memory modül arayüzleri
  - Interrupt'lar



# Konular

- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi sinyalleri
- Hardwired kontrol birimi

# Mikro işlemler

- Bir programı çalıştırırken her komut için instruction cycle tekrarlanır.
- Programın çalışması sırasında komutlar yazıldığı sırada çalıştırılmayabilir.
- Run time'da **komutlar zamana göre sıralı** olarak çalıştırılırlar.
- Her instruction, belirli sayıda küçük iş parçaları halinde oluşturulur (fetch, indirect, execute, interrupt).
- Her iş parçasını mikro işlemler (micro-operations) oluşturur.
- Mikro işlemler bir mikroişlemcinin atomik işlemleridir.



3



- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi sinyalleri
- Hardwired kontrol birimi



- Fetch cycle her komut döngüsünün başlangıcında gerçekleşir ve komut hafızadan fetch edilir.
- Mikroişlemcide MAR, MBR, PC ve IR bulunmaktadır.
- MAR (Memory Address Register): Hafıza üzerinde okuma ve yazma yapılacak adresi tutar.
- MBR (Memory Buffer Register): Hafızadan okunan veya hafızaya yazılan veriyi tutar.
- PC (Program Counter): Fetch edilecek sonraki komutun adresini tutar.
- IR (Instruction Register): Fetch edilen son komutu tutar.







- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi sinyalleri
- Hardwired kontrol birimi

# Indirect cycle

- Indirect cycle'da aşağıdaki işlemler zaman sıralı olarak gerçekleştirilir:
  - Komut içerisindeki adres alanındaki değer ile hafızaya gidilir.
  - Hafızadan okunan değer MBR'a aktarılır.
  - Komut içerisindeki adres değeri MBR'daki değer ile güncellenir.

```
\begin{array}{l} t_1 \colon \text{MAR} \; \leftarrow \; (\text{IR}(\text{Address})) \\ \\ t_2 \colon \text{MBR} \; \leftarrow \; \text{Memory} \\ \\ t_3 \colon \; \text{IR}(\text{Address}) \; \leftarrow \; (\text{MBR}(\text{Address})) \end{array}
```

# Konular

- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi sinyalleri
- Hardwired kontrol birimi

# Interrupt cycle

- Interrupt cycle'da aşağıdaki işlemler sıralı gerçekleştirilir:
  - PC değeri MBR'a aktarılır.
  - Mevcut adres değeri (MBR), hafızada belirlenen adrese (Save\_Address) saklanır.
  - Interrupt için atlanacak adres PC'a aktarılır.
  - MBR'a aktarılan dönüş adresi hafızada belirlenen adrese (Save\_Address) aktarılır.

```
\begin{array}{ll} t_1 \colon \text{MBR} \; \leftarrow \; (\text{PC}) \\ t_2 \colon \; \text{MAR} \; \leftarrow \; \text{Save\_Address} \\ \quad \quad \text{PC} \; \leftarrow \; \text{Routine\_Address} \\ t_3 \colon \; \text{Memory} \; \leftarrow \; (\text{MBR}) \end{array}
```

# Konular

- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi sinyalleri
- Hardwired kontrol birimi

## Execute cycle

- Fetch cycle, indirect cycle ve interrupt cycle basittir ve her seferinde aynı mikro işlemler tekrarlanır.
- Execute cycle'da yapılacak işleme göre hem zaman aralığı sayısı hem de sıralama farklı olmaktadır.
- ADD komutu aşağıdaki gibi gerçekleştirilir:
  - Komut içerisindeki adres MAR'a aktarılır.
  - Hafızadan okunan değer MBR'a aktarılır.
  - Toplama komutu execute edilir.

```
ADD R1, X t_1 \colon \text{MAR} \leftarrow (\text{IR}(\text{address})) t_2 \colon \text{MBR} \leftarrow \text{Memory} t_3 \colon \text{R1} \leftarrow (\text{R1}) + (\text{MBR})
```

# Execute cycle

- ISZ (Increment and Skip If Zero) komutu aşağıdaki gibi gerçekleştirilir:
  - Komut içerisindeki adres MAR'a aktarılır.
  - Hafızadan okunan değer MBR'a aktarılır.
  - MBR değeri 1 artırılır.
  - MBR değeri hafızaya aktarılır.
  - MBR=0 ise, PC değeri Instruction boyutu kadar artırılır.

# Execute cycle

- BSA (Branch and Save PC Address) komutu aşağıdaki gibi gerçekleştirilir (call/return'de procedure başına adres yazar):
  - Komut içerisindeki adres MAR'a aktarılır.
  - PC değeri MBR'a aktarılır.
  - Komut içerisindeki adres PC'a aktarılır.
  - MBR değeri hafızaya aktarılır.
  - PC değeri instruction boyutu kadar artırılır.

```
BSA X

t<sub>1</sub>: MAR ← (IR(address))
   MBR ← (PC)

t<sub>2</sub>: PC ← (IR(address))
   Memory ← (MBR)

t<sub>3</sub>: PC ← (PC) + I
```



- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi sinyalleri
- Hardwired kontrol birimi

# Instruction cycle

- Instruction cycle'in her aşaması zamana göre sıralı küçük işlemler halinde gerçekleştirilir.
- Her aşama için sadece bir tane sıralı işlem kümesi vardır.
- Her komut için opcode içerisinde kendisine ait kod oluşturulur.
- Her aşama için aşağıdaki komut döngü kodlarının (Instruction Cycle Code - ICC) atandığını varsayalım:

00: Fetch

01: Indirect

10: Execute

11: Interrupt

# Instruction cycle

Instruction cycle için akış şeması aşağıdaki gibi tanımlanabilir.



# Konular

- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi
- Hardwired kontrol birimi



## Mikroişlemcinin denetimi

#### Fonksiyonel gereksinimler

- Mikroişlemci tasarımında öncelikle kontrol biriminin fonksiyonel gereksinimleri belirlenir.
- Fonksiyonel gereksinimler, kontrol biriminin yapmak zorunda olduğu işlerdir.
- Mikroişlemci tasarımında aşağıdakilerin belirlenmesi gereklidir:
  - İşlemcinin temel bileşenleri tanımlanmalıdır.
  - İşlemcinin mikro işlemleri belirlenmelidir.
  - Mikro işlemlerin gerçekleşmesi için kontrol biriminin yapması gereken işlevler tanımlanmalıdır.



# Mikroişlemcinin denetimi

## İşlemcinin temel bileşenleri

- Aşağıda işlemcinin temel bileşenleri verilmiştir:
  - ALU: Temel aritmetik mantık işlem birimi
  - Register'lar: İşlemci içerisinde internal veri saklama birimleri
  - Internal data paths: Register'lar arasında veya register'lar ile ALU arasında veri aktarımı için kullanılır.
  - External data paths: Register'lar ile hafıza ve I/O modülleri arasında veri aktarımı için kullanılır.
  - Control unit: İşlemci içerisindeki işlemleri organize eder.

# Mikroişlemcinin denetimi

- Mikro işlemler bir zaman aralığında aşağıdakilerden birisini yapar:
  - Bir register'dan diğerine veri aktarımı
  - Bir register'dan bir external arayüze (örn.: system bus) veri aktarımı
  - Bir external arayüzden bir register'a veri aktarımı
  - Register'lar giriş ve çıkış olmak üzere aritmetik ve mantık işlemin gerçekleştirilmesi
- Kontrol birimi temel olarak iki işlevi gerçekleştirir:
  - Sıralama (Sequencing): Mikro işlemlerin doğru sıralanmasını sağlar.
  - **Çalıştırma (Execution):** Kontrol birimi her mikro işlemin gerçekleştirilmesini sağlar.

# Mikroişlemcinin denetimi

## Kontrol sinyalleri

- Kontrol biriminin her bir mikro işlemi gerçekleştirebilmesi için gerekli girişleri alması gereklidir.
- Kontrol birimi, aldığı girişlere göre istenen işlemi gerçekleştirecek birimlerin aktif yapılması için kontrol sinyallerini üretir.
- Kontrol birimi, CPU içerisindeki birimlere iletilecek sinyalleri CPU internal bus aracılığıyla iletir.
- Yukarıdaki işlemlerin tümünün gerçekleştirilmesi için gerekli kod bilgisi instruction register'da bulunan opcode içerisinden alınır.



- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi
- Hardwired kontrol birimi





#### Kontrol birimine girişler

- Clock: Kontrol birimi her clock cycle'da bir veya birkaç tane mikro işlemi yerine getirir.
- **Instruction register:** Opcode ve adresleme modu ile hangi mikro işlemlerin execute aşamasında çalışacağı belirlenir.
- **Flags:** Önceki ALU işlemlerinin sonucunda işlemcinin durumunu belirlemek için kullanılır.
- Kontrol bus'tan alınan kontrol sinyalleri: Kontrol bus üzerinden kontrol birimine sinyaller alınır.

#### Kontrol biriminden çıkışlar

- İşlemci içerisinde kontrol sinyalleri: Veriler register'lar arasında aktarılır veya ALU işlemi gerçekleştirilir.
- Kontrol bus için kontrol sinyalleri: Hafıza için ve I/O modülleri için kontrol sinyalleri iletilir.



## Instruction Fetch Cycle için kontrol biriminin yapacağı işlemler:

- Bir kontrol sinyal ile MAR içeriğini adres bus'a aktaracak kapı devreleri açılır.
- Kontrol bus'a hafızadan okuma işareti yerleştirilir.
- Bir kontrol sinyal ile data bus'taki verileri MBR'a aktaracak devreler açılır.
- Kontrol sinyalleri ile PC değerine 1 eklenerek, PC değeri güncellenir.
- Bir kontrol sinyal ile MBR ile IR arasındaki kapı devresi açılır.

# Kontrol birimi Kontrol sinyalleri – örnek Şekilde veri volları ve kontrol sinvalleri görülmektedir. Bus M В R AC $\leftarrow C_2$ $-C_{13}$ ALU signals Control Flags unit Clock Control signals

# Kontrol birimi

## Kontrol sinyalleri – örnek

- Mikroişlemcide bir tane AC bulunmaktadır.
- ullet  $C_i$ 'ler kontrol sinyalleridir ve veri geçişlerini kontrol ederler.
- Kontrol birimi girişleri: clock, instruction register ve flags.
- Her clock cycle'da kontrol birimi tüm girişleri okur ve bir grup kontrol sinyali üretir.
- Kontrol sinyalleri 3 ayrı hedefe gönderilir:
  - Veri yolları: Kontrol birimi, internal veri akışını kontrol eder.
  - ALU: Kontrol birimi, ALU'nun yapacağı işlemleri farklı mantık devrelerini aktif yaparak denetler.
  - **System bus:** Kontrol birimi, sistem bus üzerinden kontrol komutlarını (örn.: memory READ, memory WRITE) gönderir.



## Kontrol sinyalleri – örnek

- Kontrol birimi her clock pulse ile bir mikro işlemi başlatır.
- Her mikro işlem için bir veya daha fazla kontrol sinyali oluşturur.

|            | Micro-operations                                                     | Active Control Signals |
|------------|----------------------------------------------------------------------|------------------------|
|            | $t_1$ : MAR $\leftarrow$ (PC)                                        | C <sub>2</sub>         |
| Fetch:     | $t_2$ : MBR $\leftarrow$ Memory<br>PC $\leftarrow$ (PC) + 1          | $C_5, C_R$             |
|            | $t_3$ : IR $\leftarrow$ (MBR)                                        | C <sub>4</sub>         |
|            | $t_1: MAR \leftarrow (IR(Address))$                                  | C <sub>8</sub>         |
| Indirect:  | $t_2$ : MBR $\leftarrow$ Memory                                      | $C_5, C_R$             |
|            | $t_3$ : IR(Address) $\leftarrow$ (MBR(Address))                      | C <sub>4</sub>         |
|            | $t_1$ : MBR $\leftarrow$ (PC)                                        | $C_1$                  |
| Interrupt: | $t_2 : MAR \leftarrow Save-address \\ PC \leftarrow Routine-address$ |                        |
|            | $t_3$ : Memory $\leftarrow$ (MBR)                                    | $C_{12}, C_W$          |

 $C_R$  = Read control signal to system bus.

 $C_W$  = Write control signal to system bus.







- Giriş
- Mikro işlemler
  - Fetch cycle
  - Indirect cycle
  - Interrupt cycle
  - Execute cycle
  - Instruction cycle
- Mikroişlemcinin denetimi
- Kontrol birimi
- Hardwired kontrol birimi



### Hardwired kontrol birimi

### Kontrol birimi girişleri

- Kontrol birimi donanımsal (hardwired) veya mikroprogramlanmış (microprogrammed) oluşturulabilir.
- Donanımsal kontrol birimi bir durum makinesi devresidir.
- Kontrol biriminin temel girisleri; instruction register, clock, flags ve control bus sinyalleridir.
- Instruction register'dan alınan opcode kontrol biriminin girişidir ve decoder tarafından kullanılır.
- Decoder n bit giriş için 2<sup>n</sup> çıkış üretebilir.
- Clock girişi kontrol biriminin sıralı pulse'lar üretmesini sağlar.
- Clock girişleri t<sub>1</sub>, t<sub>2</sub>, t<sub>3</sub>,... için yukarı sayıcı devresine giriş oluşturur ve her mikro işlemin sonunda sayıcı sıfırlanır.



## Hardwired kontrol birimi

4 giriş ve 16 çıkışa sahip decoder

|            |   | - | - |   |   |   |   |   |   |   |   |   |   |   |   |   |
|------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| I1         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| I2         | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
| I3         | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| I4         | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
| <b>O</b> 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
| O2         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
| О3         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
| O4         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| O5         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| O6         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| O7         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| O8         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O9         | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O10        | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O11        | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O12        | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O13        | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O14        | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O15        | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| O16        | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |



# Hardwired kontrol birimi

#### Kontrol birim mantık devresi

- Kontrol birimi aldığı girişlere göre çıkış sinyalleri oluşturur.
- Herhangi bir kontrol sinyali için Boolean expression yazılabilir.
- PQ instruction cycle'daki aşamaları göstermektedir.



C<sub>5</sub> için Boolean expression aşağıdaki gibidir.

$$C_5 = \overline{P} \cdot \overline{Q} \cdot T_2 + \overline{P} \cdot Q \cdot T_2$$

# Hardwired kontrol birimi

#### Kontrol birim mantık devresi

- C<sub>5</sub> execute aşamasında da kullanılmaktadır.
- LDA, ADD ve AND işlemlerinde hafızadan okuma yapılıyor.





C<sub>5</sub> için yeni Boolean expression aşağıdaki gibidir.

$$C_5 = \overline{P} \cdot \overline{Q} \cdot T_2 + \overline{P} \cdot Q \cdot T_2 + P \cdot \overline{Q} \cdot (LDA + ADD + AND) \cdot T_2$$

# Ödev

• Mikroprogramlanmış kontrol birimi konusunda detaylı bir ödev hazırlayınız. Hardwired kontrol birimiyle karşılaştırmasını içeren bir araştırma makalesi inceleyip makalenin tam metni ile birlikte inceleme sonuçlarını değerlendirerek ödev raporuna ekleyiniz.