Text Retrieval and Search Engines

Natural Language Content Analysis

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Course Schedule

Overview

- What is Natural Language Processing (NLP)?
- State of the Art in NLP
- NLP for Text Retrieval

An Example of NLP

NLP Is Difficult!

- Natural language is designed to make human communication efficient. As a result,
 - we omit a lot of "common sense" knowledge, which we assume the hearer/reader possesses
 - we keep a lot of ambiguities, which we assume the hearer/reader knows how to resolve
- This makes EVERY step in NLP hard
 - Ambiguity is a "killer"!
 - Common sense reasoning is pre-required

Examples of Challenges

- Word-level ambiguity: E.g.,
 - "design" can be a noun or a verb (Ambiguous POS)
 - "root" has multiple meanings (Ambiguous sense)
- Syntactic ambiguity: E.g.,
 - "natural language processing" (Modification)
 - "A man saw a boy with a telescope." (PP Attachment)
- Anaphora resolution: "John persuaded Bill to buy a TV for <u>himself</u>." (himself = John or Bill?)
- Presupposition: "He has quit smoking." implies that he smoked before.

The State of the Art

What We Can't Do

- 100% POS tagging
 - "He turned off the highway." vs "He turned off the fan."
- General complete parsing
 - "A man saw a boy with a telescope."
- Precise deep semantic analysis
 - Will we ever be able to precisely define the meaning of "own" in "John owns a restaurant."?

Robust & general NLP tends to be "shallow" while "deep" understanding doesn't scale up

NLP for Text Retrieval

- Must be general robust & efficient → Shallow NLP
- "Bag of words" representation tends to be sufficient for most search tasks (but not all!)
- Some text retrieval techniques can naturally address
 NLP problems
- However, deeper NLP is needed for complex search tasks

Summary

- What is Natural Language Processing (NLP)?
- State of the Art in NLP
- NLP for Text Retrieval

Additional Reading

Chris Manning and Hinrich Schütze, Foundations of Statistical Natural Language Processing, MIT Press. Cambridge, MA: May 1999.

Text Retrieval and Search Engines Text Access

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Course Schedule

Access to Relevant Text Data

How can a text information system help users get access to the relevant text data?

- Push vs. Pull
- Querying vs. Browsing

Two Modes of Text Access: Pull vs. Push

- Pull Mode (search engines)
 - Users take initiative
 - Ad hoc information need
- Push Mode (recommender systems)
 - Systems take initiative
 - Stable information need or system has good knowledge about a user's need

Pull Mode: Querying vs. Browsing

Querying

- User enters a (keyword) query
- System returns relevant documents
- Works well when the user knows what keywords to use

Browsing

- User navigates into relevant information by following a path enabled by the structures on the documents
- Works well when the user wants to explore information, doesn't know what keywords to use, or can't conveniently enter a query

Information Seeking as Sightseeing

- Sightseeing: Know address of an attraction?
 - Yes: take a taxi and go directly to the site
 - No: walk around or take a taxi to a nearby place then walk
- Information seeking: Know exactly what you want to find?
 - Yes: use the right keywords as a query and find the information directly
 - No: browse the information space or start with a rough query and then browse

Summary

Additional Reading

N. J. Belkin and W. B. Croft. 1992. Information filtering and information retrieval: two sides of the same coin?. *Commun. ACM* 35, 12 (Dec. 1992), 29-38.

Text Retrieval and Search Engines

Text Retrieval Problem

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Course Schedule

Overview

- What is Text Retrieval?
- Text Retrieval vs. Database Retrieval
- Document Selection vs. Document Ranking

What Is Text Retrieval (TR)?

- Collection of text documents exists
- User gives a query to express the information need
- Search engine system returns relevant documents to users
- Often called "information retrieval" (IR), but IR is actually much broader
- Known as "search technology" in industry

TR vs. Database Retrieval

Information

- Unstructured/free text vs. structured data
- Ambiguous vs. well-defined semantics

Query

- Ambiguous vs. well-defined semantics
- Incomplete vs. complete specification

Answers

- Relevant documents vs. matched records
- TR is an empirically defined problem
 - Can't mathematically prove one method is better than another
 - Must rely on empirical evaluation involving users!

Formal Formulation of TR

- Vocabulary: V={w₁, w₂, ..., w_N} of language
- Query: $q = q_1,...,q_m$ where $q_i \in V$
- **Document**: $d_i = d_{i1},...,d_{im_i}$, where $d_{ij} \in V$
- **Collection**: C= {d₁, ..., d_M}
- Set of relevant documents: $R(q) \subseteq C$
 - Generally unknown and user-dependent
 - Query is a "hint" on which doc is in R(q)
- Task = compute R'(q), an approximation of R(q)

How to Compute R'(q)

- Strategy 1: Document selection
 - R'(q)={d∈C|f(d,q)=1}, where f(d,q) ∈{0,1} is an indicator function or binary classifier
 - System must decide if a doc is relevant or not (absolute relevance)
- Strategy 2: Document ranking
 - $R'(q) = {d∈C|f(d,q)>θ}$, where $f(d,q) ∈ \Re$ is a relevance measure function; θ is a cutoff determined by the user
 - System only needs to decide if one doc is more likely relevant than another (relative relevance)

Document Selection vs. Ranking

Problems of Document Selection

- The classifier is unlikely accurate
 - "Over-constrained" query → no relevant documents to return
 - "Under-constrained" query → over delivery
 - Hard to find the right position between these two extremes
- Even if it is accurate, all relevant documents are not equally relevant (relevance is a matter of degree!)
 - Prioritization is needed
- Thus, ranking is generally preferred

Theoretical Justification for Ranking

- Probability Ranking Principle [Robertson 77]: Returning a ranked list of documents in descending order of probability that a document is relevant to the query is the optimal strategy under the following two assumptions:
 - The utility of a document (to a user) is independent of the utility of any other document
 - A user would browse the results sequentially
- Do these two assumptions hold?

Summary

- Text retrieval is an empirically defined problem
 - Which algorithm is better must be judged by users
- Document ranking is generally preferred to
 - Help users prioritize examination of search results
 - Bypass the difficulty in determining absolute relevance (users help decide the cutoff on the ranked list)
- Main challenge: design an effective ranking function
 f(q,d) =?

Additional Readings

- S.E. Robertson, The probability ranking principle in IR. Journal of Documentation **33**, 294-304, 1977
- C. J. van Rijsbergen, Information Retrieval, 2nd Edition, Butterworth-Heinemann, Newton, MA, USA, 1979
 - A must-read for anyone doing research in information retrieval. Chapter 6 has an in-depth discussion of PRP.

Text Retrieval and Search Engines

Overview of Text Retrieval Methods

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Course Schedule

How to Design a Ranking Function

- Query: $q = q_1,...,q_m$ where $q_i \in V$
- **Document:** $d = d_1, ..., d_n$, where $d_i \in V$
- Ranking function: $f(q, d) \in \Re$
- A good ranking function should rank relevant documents on top of non-relevant ones
- Key challenge: how to measure the likelihood that document d is <u>relevant</u> to query q
- Retrieval model = formalization of relevance (give a computational definition of relevance)

Many Different Retrieval Models

- Similarity-based models: f(q,d) = similarity(q,d)
 - Vector space model
- Probabilistic models: f(d,q) = p(R=1|d,q), where $R \in \{0,1\}$
 - Classic probabilistic model
 - Language model
 - Divergence-from-randomness model
- Probabilistic inference model: $f(q,d) = p(d \rightarrow q)$
- Axiomatic model: f(q,d) must satisfy a set of constraints
- These different models tend to result in similar ranking functions involving similar variables

Common Ideas in State of the Art Retrieval Models

Which Model Works the Best?

- When optimized, the following models tend to perform equally well [Fang et al. 11]:
 - Pivoted length normalization
 - **-BM25**
 - Query likelihood
 - **PL2**
- BM25 is most popular

Summary

- Design of ranking function f(q,d) pre-requires a computational definition of relevance (retrieval model)
- Many models are equally effective with no single winner
- State of the art ranking functions tend to rely on
 - Bag of words representation
 - Term Frequency (TF) and Document Frequency (DF) of words
 - Document length

Additional Readings

- Detailed discussion and comparison of state of the art models
 - Hui Fang, Tao Tao, and Chengxiang Zhai. 2011. Diagnostic Evaluation of Information Retrieval Models. ACM Trans. Inf. Syst. 29, 2, Article 7 (April 2011)

- Broad review of different retrieval models
 - ChengXiang Zhai, Statistical Language Models for Information Retrieval, Morgan & Claypool Publishers, 2008. (Chapter 2)

Text Retrieval and Search Engines

Vector Space Retrieval Model: Basic Idea

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Course Schedule

Many Different Retrieval Models

- Similarity-based models: f(q,d) = similarity(q,d)
 - Vector space model

Vector Space Model (VSM): Illustration

VSM Is a Framework

- Represent a doc/query by a term vector
 - Term: basic concept, e.g., word or phrase
 - Each term defines one dimension
 - N terms define an N-dimensional space
 - **Query** vector: $\mathbf{q} = (x_1, ...x_N), x_i \in \Re$ is query term weight
 - **Doc** vector: $\mathbf{d} = (y_1, ...y_N), y_i \in \Re$ is doc term weight
- relevance(q,d) ∞ similarity(q,d) =f(q,d)

What VSM Doesn't Say

- How to define/select the "basic concept"
 - Concepts are assumed to be orthogonal
- How to place docs and query in the space (= how to assign term weights)
 - Term weight in query indicates importance of term
 - Term weight in doc indicates how well the term characterizes the doc
- How to define the similarity measure

Text Retrieval and Search Engines

Vector Space Retrieval Model: Simplest Instantiation

ChengXiang "Cheng" Zhai
Department of Computer Science
University of Illinois at Urbana-Champaign

Course Schedule

What VSM Doesn't Say

Dimension Instantiation: Bag of Words (BOW)

Vector Placement: Bit Vector

Similarity Instantiation: Dot Product

$$Sim(q,d)=q.d=x_1y_1+...+x_Ny_N=\sum_{i=1}^N x_i y_i$$

Simplest VSM= Bit-Vector + Dot-Product + BOW

$$\mathbf{q} = (x_1, \dots x_N) \qquad x_i, y_i \in \{0, 1\}$$

$$\mathbf{d} = (y_1, \dots y_N) \qquad \mathbf{1}: \text{ word } W_i \text{ is present}$$

$$\mathbf{0}: \text{ word } W_i \text{ is absent}$$

$$Sim(q,d)=q.d=x_1y_1+...+x_Ny_N=\sum_{i=1}^N x_iy_i$$

What does this ranking function intuitively capture? Is this a good ranking function?

An Example: How Would You Rank These Documents?

Ideal Ranking? Query = "news about presidential campaign" d1... news about ... d2 ... **news about** organic food **campaign**... d3 ... news of presidential campaign news of presidential campaign ... d4... **presidential** candidate **news** of organic food **campaign**... d5 campaign...campaign...campaign...

Ranking Using the Simplest VSM

Query = "news about presidential campaign"

```
d1 ... news about ...
```

d3 ... news of presidential campaign ...

Is the Simplest VSM Effective?

Query = "news about presidential campaign"

d1	news about	f(q,d1)=2
d2	news about organic food campaign	f(q,d2)=3
d3	news of presidential campaign	f(q,d3)=3
d4	news of presidential campaign presidential candidate	f(q,d4)=3
d5	news of organic food campaign campaigncampaign	f(q,d5)=2

Summary

VSM instantiation: dimension, vector placement, similarity

- Simplest VSM
 - Dimension = word
 - Vector = 0-1 bit vector (word presence/absence)
 - Similarity = dot product
 - f(q,d) = number of**distinct**query words matched in d