Manifole Learning Homework 4

安捷 1601210097

2017年3月19日

习题 (50). 证明. 已知目标函数为

$$\frac{1}{2} \sum_{i,j=1}^{k} \pi_i p_{ij} \left(\frac{g_i}{\sqrt{\pi_i}} - \frac{g_j}{\sqrt{\pi_j}} \right)^2, \quad s.t. \quad \|\mathbf{g}\| = 1$$
 (1)

$$=\frac{1}{2}\sum_{i,j=1}^{k}\pi_{i}p_{ij}\frac{g_{i}^{2}}{\pi_{i}}+\frac{1}{2}\sum_{i,j=1}^{k}\pi_{i}p_{ij}\frac{g_{j}^{2}}{\pi_{j}}+\frac{1}{2}\sum_{i,j=1}^{k}\pi_{i}p_{ij}\frac{g_{i}g_{j}}{\sqrt{\pi_{i}}\sqrt{\pi_{j}}}+\frac{1}{2}\sum_{i,j=1}^{k}\pi_{i}p_{ij}\frac{g_{j}g_{i}}{\sqrt{\pi_{j}}\sqrt{\pi_{i}}} \qquad (2)$$

由于

$$\sum_{j=1}^{k} p_{ij} = 1, \qquad \sum_{i=1}^{k} \pi_i p_{ij} = \pi_j$$
 (3)

所以有

$$\frac{1}{2} \sum_{i,j=1}^{k} \pi_i p_{ij} \frac{g_i^2}{\pi_i} = \frac{1}{2} \sum_{i,j=1}^{k} \pi_i p_{ij} \frac{g_j^2}{\pi_j} = \frac{1}{2} \sum_{i=1}^{k} g_i^2 = \mathbf{g}^T \mathbf{I} \mathbf{g}$$
(4)

而剩余两项可以写为

$$\frac{1}{2} \sum_{i,j=1}^{k} \pi_i p_{ij} \frac{g_i g_j}{\sqrt{\pi_i} \sqrt{\pi_j}} + \frac{1}{2} \sum_{i,j=1}^{k} \pi_i p_{ij} \frac{g_j g_i}{\sqrt{\pi_j} \sqrt{\pi_i}}$$
 (5)

$$= \frac{1}{2} \sum_{i,j=1}^{k} \sqrt{\pi_i} p_{ij} \frac{g_i g_j}{\sqrt{\pi_j}} + \frac{1}{2} \sum_{i,j=1}^{k} \sqrt{\pi_j} p_{ji} \frac{g_i g_j}{\sqrt{\pi_i}}$$
 (6)

$$= \frac{1}{2} \mathbf{g}^T \left(\Pi^{\frac{1}{2}} \mathbf{P} \Pi^{-\frac{1}{2}} + \Pi^{-\frac{1}{2}} \mathbf{P}^T \Pi^{\frac{1}{2}} \right) \mathbf{g} = \Theta$$
 (7)

其中

$$\Pi = \operatorname{diag}(\pi) \tag{8}$$

所以原式可以写成矩阵形式

$$\mathbf{g}^{T}(\mathbf{I} - \Theta) \mathbf{g}. \quad s.t. \quad \|\mathbf{g}\| = 1$$
 (9)

习题 (51). 准确率 =0.5479, 我认为具有较低准确率的原因在于, 欧式距离不能很好的度量两个人脸的相似性, 因为不同视角的人脸的欧式距离很大, 因此, 使用更为合适的距离度量或许可以显著提高分类的准确率。

习题 (57). PCA 与标准化 PCA 求得的平均脸如下图所示:

图 1: mean face result