Egzamin próbny 2009 r. Arkusz I, poziom rozszerzony, zadanie 3. KOSMOS LICZB

Po dotarciu w okolice gwiazdy Proxtar ludzie zasiedlili 9 krążących wokół niej planet i nazwali je odpowiednio Prox_2 , Prox_3 , ..., Prox_{10} . Do zapisu liczb na planecie Prox_p jej mieszkańcy używają systemu liczbowego o podstawie p.

Na przykład rok narodzin Anny Kowalskiej na planecie Prox₁₀ zapisuje się jako 1988, zaś po zakodowaniu w systemie planety Prox₄ zapisuje się go jako 133010.

- a) W układzie Proxtar mieszka dwójka przyjaciółek:
 - Elżbieta mieszkanka Prox₄, jej rok urodzenia zapisany w systemie tej planety to 132313,
 - Joanna mieszkanka Prox₂, urodzona w roku 11110111000 (zapis w systemie dwójkowym).

Elżbieta i Joanna podróżują pomiędzy poszczególnymi planetami, dlatego chciałyby znać rok swojego urodzenia wyrażony w systemach stosowanych na tych planetach. Aby im pomóc, uzupełnij poniższą tabelkę:

Osoba	Rok narodzin zapisany w systemie planety			
	Prox ₂	Prox ₄	Prox ₁₀	
Elżbieta		132313		
Joanna	11110111000			

b) Stare ziemiańskie nawyki utrudniają też dodawanie. Aby dodać liczby a i b zapisane w systemie planety Prox_p , Ziemianie zamieniają a i b na system dziesiętny, wyliczają ich sumę c, a potem zamieniają c na system o podstawie p. Tymczasem można to zrobić bez zamiany liczb na system dziesiętny. Np. w systemie o podstawie 4:

Podaj algorytm w postaci listy kroków, schematu blokowego lub w języku programowania, który dla dwóch liczb a i b zapisanych w systemie o podstawie p, $2 \le p \le 9$, wyznacza i wypisuje wartość sumy $a +_p b$ zapisaną w systemie o podstawie p. Twój algorytm nie może dokonywać zamiany liczb a i b na inny system liczbowy.

Specyfikacja:

Dane:

p — podstawa systemu liczbowego, $2 \le p \le 9$,

n — liczba cyfr w zapisie każdej z liczb naturalnych $a, b, 1 \le n \le 200$,

 $a_1,...,a_n$ — kolejne cyfry liczby a w zapisie w systemie o podstawie p, a_n jest cyfrą jedności,

 $b_1,...,b_n$ — kolejne cyfry liczby b w zapisie w systemie o podstawie p,b_n jest cyfrą jedności.

Uwaga: Jeśli do zapisu liczby wystarczy mniej niż *n* cyfr, to jej zapis jest uzupełniony od lewej strony zerami do długości *n*.

Wynik:

Liczba $c = a +_p b$ zapisana w systemie o podstawie p w postaci ciągu cyfr $c_0, ..., c_n, c_n$ jest cyfrą jedności.

Przykład

Dla liczb a = 20012 i b = 1221 w systemie trójkowym mamy:

Dane:

$$p = 3, n = 5$$

ciąg $a_1,...,a_5$ to 2,0,0,1,2

ciag $b_1,...,b_5$ to 0,1,2,2,1

Wynik:

Ciąg
$$c_0, ..., c_5$$
 to 0,2,2,0,1,0.

Uwaga: Pamiętaj, że zapis liczby o mniejszej niż wymagana liczbie cyfr uzupełniamy zerami.

c) Liczba cyfr potrzebna do zapisania tej samej liczby w systemach różnych planet może być inna. O liczbie *a* mówimy, że jest liczbą *n*-cyfrową w jakimś systemie, gdy można ją zapisać przy użyciu *n* cyfr w tym systemie, ale *n*-1 cyfr to za mało.

Przykład

Do zapisania liczby 17_{10} potrzebujemy 5 cyfr, gdy chcemy zapisać ją w systemie dwójkowym ($17_{10} = 10001_2$), oraz 3 cyfr do zapisania jej w systemie trójkowym ($17_{10} = 122_3$). A zatem jest ona liczbą 5-cyfrową w systemie dwójkowym i 3-cyfrową w systemie trójkowym.

Uwaga: Dolny indeks przy zapisie liczby oznacza podstawę systemu, w którym ta liczba jest zapisana.

(i) Uzupełnij poniższą tabelkę, wpisując w ostatnich dwu kolumnach liczby **zapisane** w systemie o podstawie *p*:

n: liczba cyfr	p: podstawa systemu	najmniejsza liczba n -cyfrowa w systemie o podstawie p	największa liczba <i>n</i> -cyfrowa w systemie o podstawie <i>p</i>
4	2	1000	1111
6	2		
2	5		44
3	7	100	
4	8		7777

Zauważmy, że:

- liczby 10_p , 100_p , 1000_p , 10000_p itd. są równe odpowiednio p, p^2 , p^3 , p^4 itd.
- największa liczba n-cyfrowa w dowolnym systemie jest o jeden mniejsza od najmniejszej liczby (n+1)-cyfrowej w tym systemie; na przykład $777_8 = 1000_8 1_8$
- (ii) Korzystając z tych obserwacji i powyższej tabelki, uzupełnij poniższą tabelkę, ale w ostatnich dwu kolumnach wpisz wartości liczb **zapisane w systemie dziesiętnym**:

n: liczba cyfr	p: podstawa systemu	najmniejsza liczba n -cyfrowa w systemie o podstawie p	największa liczba <i>n</i> -cyfrowa w systemie o podstawie <i>p</i>
4	2	8	15
6	2		
1	3		2
2	5	5	
3	7	49	
4	8		4095