

Цельносварной шаровой кран СТМ 0 31

Предназначены для герметичного перекрытия потока среды в технологических установках в нефтяной, газовой, химической, металлургической, энергетической промышленностях, хранении и транспортировании сжиженного природного газа.

Цилиндрическая конструкция шарового крана

Номинальный диаметр	DN 50÷1500 mm
Номинальное давление	PN 1,6÷42,0 МПа
Материал корпуса	ст. 20, ст. 09Г2С, ст. 12Х18Н12М3ТЛ, A350 LF2, A350 LF3, A182 F316 Специальное исполнение по запросу
Производственный ряд	PN 1,6÷10,0 MПa DN 50÷1500 мм PN 16,0 MПa DN 50÷1400 мм PN 25,0 MПa DN 50÷900 мм PN 42,0 MПa DN 50÷500 мм
Климатическое исполнение	ГОСТ 15150-69
Рабочая температура	-196°C ÷ +750°C - широкий диапазон рабочих температур в зависимости от применяемых материалов
Форма фланцев	ГОСТ 12815-80 Специальное исполнение по запросу
Стандарт испытания герметичности в затворе	ГОСТ 9544-2015
Оснащение исполнительным механизмом	Ручной, электрический, пневматический Специальное исполнение по запросу

Цилиндрическая конструкция цельносварного шарового крана СТМ 0 31

Цельносварной корпус шарового крана цилиндрической конструкции изготавливается из стали с двумя сварными швами, без применения болтов и гаек, что исключает возможность протечек корпуса. Конструкция шарового крана позволяет работать со средой, содержащей твердые частицы, а также с криогенными и высокотемпературными средами.

1	Корпус	14	Шпонка	27	Уплотнительное кольцо
2	Концы под приварку	15	Болт	28	Уплотнительное кольцо
3	Крышка	16	Уплотнительное седло	29	Шайба
4	Шаровой затвор	17	Шайба	30	Штифт
5	Седло	18	Фланец	31	Штифт
6	Уплотнительное кольцо	19	Верхняя опора	32	Ввод для герметика
7	Пожаробезопасная прокладка	20	Нижняя опора	33	Ввод для герметика
8	Пружина	21	Втулка	34	Продувочный клапан
9	Уплотнительное кольцо 1	22	Втулка	35	Запорный клапан
10	Уплотнительное кольцо 2	23	Стойки	36	Дренажный клапан
11	Фиксатор седла	24	Подъёмная скоба	37	Дренажный клапан
12	Стопорное кольцо	25	Болт		
13	Шпиндель	26	Болт		

Сферическая конструкция цельносварного шарового крана СТМ 0 31

Цельносварной корпус шарового крана сферической конструкции изготавливается из стали с одним сварным швом без применения болтов и гаек, что исключает возможность протечек корпуса. Конструкция шарового крана позволяет работать со средой, содержащей твердые частицы, а также с криогенными и высокотемпературными средами.

1	Левая часть корпуса	18	Регулировочное кольцо
2	Правая часть корпуса	19	Фланец
3	Крышка	20	Верхняя фиксирующая деталь
4	Шар	21	Нижняя фиксирующая деталь
5	Седло	22	Втулка
6	Уплотнительное кольцо	23	Винт
7	Огнестойкая прокладка	24	Уплотнительное кольцо круглого сечения
8	Пружина	25	Уплотнительное кольцо круглого сечения
9	Уплотнительное кольцо круглого сечения 1	26	Шайба
10	Уплотнительное кольцо круглого сечения 2	27	Регулировочная шайба
11	Стопорное седельное кольцо	28	Фрикционная шайба
12	Ограничительное кольцо	29	Штифт
13	Шпиндель	30	Штифт
14	Шпонка	31	Ввод для герметика
15	Винт	32	Ввод для герметика
16	Сальниковое уплотнение	33	Дренажный клапан
17	Сальник	34	Дренажный клапан

Стандартное исполнение

Шпиндель с защитой от вырывания

Антистатическое устройство

Герметичность шарового крана в любом направлении потока

Полнопроходная или неполнопроходная конструкция

Пожаробезопасная конструкция в соответствии с СТ ЦКБА 001-2003, ISO 10497, BS 6755-2

Специальное исполнение

Присоединение к трубопроводу по варианту заказчика

Защитное износостойкое покрытие шаровой пробки и седла

Сёдла с двойным эффектом поршня (Двойная Изоляция со Сбросом)

Сёдла в компоновке - одно седло с двойным эффектом поршня, другое седло с одинарным эффектом поршня

Система двойной блокировки и сброса давления

Аварийное дополнительное уплотнение сёдел и шпинделя

Ввод уплотнительной смазки в зону уплотнения седел и шпинделя

Дренажный клапан

Удлинённый шпиндель

Расширенная крышка

Уплотнение "металл по металлу"

Соответствие материалов требованиям ГОСТ 53678-2009, ГОСТ 53679-2009, EN ISO 15156-1, NACE MR 0103

Опорные поверхности (лапы)

Отличительные особенности

Вставное мягкое уплотнительное кольцо седла шарового крана имеет хорошую герметичность до нулевой утечки; пружина седла шарового крана с предварительным натягом имеет хорошую адаптивность к изменению давления и температуры, предотвращает утечку.

Цельносварной шаровой кран имеет огнеупорную структуру, после пожара в место каждой утечки вводится наполнитель из гибкого графита или нержавеющей стали с прослойками графита, что отвечает требованиям огнестойкости в соответствии с ГОСТ 30247.0-94, СТ ЦКБА 001-2003, ISO 10497, API 607, API 6FA, BS 6755-2.

Для большого диаметра используется самая передовая структура с опорной пластиной, которая повышает срок службы шарового крана, уменьшает рабочий крутящий момент, значительно удлиняет срок службы шарового крана.

Конструкция цельносварного шарового крана подземной установки может предусматривать бесколодезную установку. Отсутствует необходимость строительства высокого колодца для шарового крана, достаточно установить небольшой неглубокий колодец на земной поверхности, что значительно экономит затраты и время на строительство.

Полнопроходной шаровой кран удобен для чистки технологических трубопроводов, оказывает малое сопротивление потоку, имеет высокую пропускную способность.

При открытии цельносварного шарового крана шар полностью охватывает седло так, что даже мелкие примеси рабочей среды не смогут разрушить седло и уплотнительную поверхность. Благодаря данной особой структуре корпус шарового крана и трубопровод имеют одинаковый срок службы.

Система двойной блокировки и сброса давления

Система «Двойной Блокировки со Сбросом» (ДБС) давления обеспечивает способность шарового крана отсечь давление со стороны каждого входного патрубка, а также сбросить среду, скопившуюся между седлами. В арматуре ДБС имеются два седла с однонаправленным уплотнением. В закрытом положении шарового затвора такие седла отсекают давление среды в трубопроводе от полости корпуса арматуры, расположенной между седлами. Если перепад давления на седле меняет знак, оно отходит от пробки, и давление сбрасывается из полости корпуса в трубопровод. Это замечательная возможность, особенно для жидких сред. Ведь если жидкость в полости корпуса нагревается во время работы системы или за счет внешних источников тепла, давление в ней может увеличиться из-за теплового расширения жидкости. При отсутствии седел, уплотняющих в одном направлении, способных сбросить давление, в корпусе арматуры может возникнуть избыточное давление, что неизменно приведет к утечке или разрыву.

В тех отраслях промышленности, где для перекрытия потока среды используются шаровые краны, в ряде случаев требуется второй барьер против давления, с независящей от первого герметичностью. Такая необходимость обычно вызвана либо требованиями техники безопасности, либо спецификой эксплуатации (газоснабжение, жесткие требования к герметичности, чистота проводимой среды и др.). Арматура Двойной Изоляции со Сбросом (ДИС) как нельзя лучше подходит для этих условиях. Изоляция может быть реализована в одном или двух направлениях в зависимости от конфигурации седел.

Седло двунаправленного действия прижимается к шаровой пробке независимо от того, с какой стороны действует давление — снаружи или изнутри крана. Это достигается благодаря изменению эффективного диаметра уплотнения корпуса в ту или иную сторону смещение реверсивного кольца в седле. Такая конфигурация ДИС пригодна для большинства ситуаций, в которых необходимо дублирование герметичности. ДИС сочетает в себе возможность сброса давления из полости корпуса и основные функции конфигурации ДБС.

Характеристики применяемых уплотнительных материалов

Значения давлений для конкретных исполнений корпуса шарового крана определяют максимально допустимые границы применения уплотнительных материалов корпуса по температуре и давлению рабочей среды. Значения температуры и давления могут быть меньше приведённых при определённых конструктивных исполнениях. Для гарантированной работы корпуса шарового крана рабочее давление должно быть на 20% меньше максимально допустимого для данной температуры и уплотнительного материала. Предельные значения выбирать не допускается.

VITON - фторэластомер, из которого изготавливаются уплотнения и, особенно, сальники, прокладки, уплотнительные кольца, уплотнения шпинделей высшего качества для применения в промышленном оборудовании для различных сред. VITON обладает улучшенными температурными свойствами, стойкостью к воздействию агрессивных сред, превосходной теплостойкостью, широкой химической совместимостью, обеспечение чистоты и целостности технологического процесса.

H-NBR - гидрированный бутадиен-нитрильный эластомер. Это термостойкий каучук с высокой стойкостью к воздействию озона и химических веществ. H-NBR обладает лучшими механическими свойствами, такими как прочность при разрыве, относительное удлинение при разрыве, устойчивость к

истиранию. H-NBR применяется в основном в тех областях, в которых наряду с высокой устойчивостью к минеральным маслам также требуется хорошая эластичность при высокой температуре в масле с высоким процентом добавок, например, уплотнительные элементы при добыче сырой нефти и природного газа (также для кислого природного газа).

РТГЕ / Фторопласт-4 (Ф-4) обладает исключительной химической инертностью по отношению практически ко всем агрессивным средам (за исключением расплавов щелочных металлов, хлора). Это качество РТГЕ используется при эксплуатации трубопроводов для транспортировки высоко агрессивных сред, запорной арматуры, прокладочно-уплотнительных деталей контактирующих с агрессивными средами и др.

РЕЕК - полиэфирэфиркетон (ПЭЭК) является линейным, ароматическим, полукристаллическим полимером, который считается одним из самых высокоэффективных термопластических материалов в мире. Полимеры РЕЕК обладают уникальной комбинацией свойств, включающей высокую термостойкость, стойкость к воздействию химических веществ, стойкость к гидролизу, износостойкость, а также электрические и механические свойства.

Конструкция удлинённого шпинделя

Для защиты сальникового узла от воздействия криогенных или высоких температур рабочей среды при эксплуатации, а также при подземной установке используется конструкция удлинённого шпинделя.

Монтажные и габаритные размеры

PN 1,6 MПа, PN 2,5 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.1	L исп.7	LПП	H1	H2	Вес, кг
50	178	191	216	106	102	14,5
65	191	203	241	155	105	18
80	203	216	283	157	111	35,5
100	229	241	305	198	187	50
150	394	406	457	242	235	135
200	457	470	521	288	280	283
250	533	546	559	323	320	430
300	610	622	635	375	355	558
350	686	699	762	430	400	793
400	762	775	838	448	470	1134
450	864	876	914	477	510	1468
500	914	927	991	520	550	1946
600	1067	1080	1143	640	640	3200
700	1245	1376	1346	728	720	4505
800	1372	1555	1524	803	760	6287
900	1524	1758	1524	895	930	9450
1000	1753	-	1780	965	948	11450
1200	1995	-	2100	1097	1066	24000
1400	2300	-	2250	1302	1253	30690
1500	2489		2489	1418	1380	42300

PN 1,6 МПа, PN 2,5 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN		1 1	1 7		114	110	n .
DN	d	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	40	178	191	216	106	102	14,5
65	50	191	203	241	106	102	18
80	50	203	216	283	106	102	19
80	65	203	216	283	130	110	20
100	80	229	241	305	157	111	41
150	100	394	406	457	198	187	62,5
200	150	457	470	521	242	235	151
250	200	533	546	559	288	280	294
300	250	610	622	635	323	320	440
350	250	686	699	762	323	320	513
350	300	686	699	762	375	355	588
400	300	762	775	838	375	355	643
400	350	762	775	838	430	400	838
450	400	864	876	914	448	470	1162
500	400	914	927	991	448	470	1235
500	450	914	927	991	477	510	1521
600	500	1067	1080	1143	520	550	2120
1000	900	1753	-	1780	895	930	9622

^{*} L исп. 1 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 1

L исп. 7— строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 7

L исп. ПП — строительная длина шарового крана с патрубками под приварку по ГОСТ 28908-91

Р 4,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

			1		1	
DN	Lисп.1	L исп.7	LNN	H1	H2	Вес, кг
50	216	232	216	100	85	19
65	241	257	241	125	100	22,5
80	283	298	283	158	121	45
100	305	321	305	191	142	78.5
150	403	419	403	242	235	140
200	502	518	521	288	280	308
250	568	584	559	337	320	469
300	648	664	635	375	355	590
350	762	778	762	407	400	845
400	838	854	838	473	460	1180
450	914	930	914	485	510	1600
500	991	1010	991	540	555	2112
600	1143	1165	1143	673	635	3300
700	1346	1372	1346	762	720	4920
800	1524	1553	1524	815	848	7050
900	1727	1756	1727	918	950	10205
1000	1850	-	1780	987	980	12546
1200	2180	-	2100	1208	1200	22540
1400	2300	-	2250	1285	1270	34340
1500	2743	-	2743	1380	1440	44910

Р 4,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	Lисп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	40	216	232	216	100	85	18
65	50	241	257	241	100	85	23,5
80	50	283	298	283	125	100	25
80	65	283	298	283	125	100	27,5
100	80	305	321	305	158	121	53
150	100	403	419	403	191	142	96
200	150	502	518	521	242	235	170
250	200	568	584	559	288	280	322
300	250	648	664	635	337	320	485
350	250	762	778	762	337	320	552
350	300	762	778	762	375	355	620
400	300	838	854	838	375	355	672
400	350	838	854	838	407	400	890
450	400	914	930	914	473	460	1208
500	400	991	1010	991	473	460	1292
500	450	991	1010	991	485	510	1657
600	500	1143	1165	1143	540	555	2335
1000	900	1850	-	1780	918	950	10376

РИ 6,3 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	292	295	292	12	98	32.5
65	330	333	330	130	110	46
80	356	359	356	165	128	65
100	406	410	406	210	160	92
150	495	498	495	242	235	180
200	597	600	597	289	280	322
250	673	676	673	337	320	496
300	762	765	762	379	365	687
350	826	829	826	398	395	890
400	902	905	902	453	470	1345
450	978	981	978	500	510	1678
500	1054	1060	1054	540	560	2291
600	1232	1241	1232	641	660	3792
700	1397	1410	1397	738	760	5170
800	1651	1667	1651	819	850	8008
900	1880	1895	1880	920	880	11005
1000	2000	-	1900	987	980	13540
1200	2400	-	2180	1208	1200	24000
1400	2710	-	2385	1290	1450	42735
1500	2949	-	2949	1510	1550	47700

РИ 6,3 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

		r					
DN	d	Lисп.1	L исп.7	LNN	H1	H2	Вес, кг
50	40	292	295	292	102	98	31,5
65	50	330	333	330	102	98	36
80	50	356	359	356	130	110	45
80	65	356	359	356	130	110	49.5
100	80	406	410	406	165	128	81
150	100	495	498	495	210	160	118
200	150	597	600	597	242	235	205
250	200	673	676	673	289	280	346
300	250	762	765	762	337	320	511
350	250	826	829	826	337	320	562
350	300	826	829	826	379	365	705
400	300	902	905	902	379	365	751
400	350	902	905	902	398	395	937
450	400	978	981	978	453	470	1375
500	400	1054	1060	1054	453	470	1455
500	450	1054	1060	1054	500	510	1740
600	500	1232	1241	1232	540	560	2552
1000	900	2000	-	1900	920	880	11070

^{*} L исп. 1 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 1

L исп. 7 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 7

L исп. ПП – строительная длина шарового крана с патрубками под приварку по ГОСТ 28908-91

Р 10,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	292	295	292	102	98	32.5
65	330	333	330	130	110	46
80	356	359	356	165	128	65
100	432	435	432	210	160	92
150	559	562	559	248	235	210
200	660	664	660	297	280	332
250	787	791	787	337	320	549
300	838	841	838	379	365	750
350	889	892	889	398	400	950
400	991	994	991	447	458	1510
450	1092	1095	1092	541	510	1860
500	1194	1200	1194	289	560	2465
600	1397	1407	1397	692	645	4220
700	1549	1562	1549	794	790	5560
800	1778	1794	1778	833	860	8480
900	2083	2099	-	920	880	11910
1000	2000	-	1900	987	980	14000
1200	2400	-	2180	1208	1200	24000
1400	2710	-	2385	1290	1450	42735
1500	2949	-	2949	1510	1550	47700

Р 10,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	40	292	295	292	102	98	31,5
65	50	330	333	330	102	98	36
80	50	356	359	356	130	110	45
80	65	356	359	356	130	110	49,5
100	80	432	435	432	165	128	81
150	100	559	562	559	210	160	124
200	150	660	664	660	248	235	235
250	200	787	791	787	297	280	377
300	250	838	841	838	337	320	560
350	250	889	892	889	337	320	595
350	300	889	892	889	379	365	765
400	300	991	994	991	379	365	820
400	350	991	994	991	398	400	1018
450	400	1092	1095	1092	447	458	1555
500	400	1194	1200	1194	447	458	1686
500	450	1194	1200	1194	541	510	1966
600	500	1397	1407	1397	289	560	2798
1000	900	2000	-	1900	920	880	11320

PN 16,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	368	371	368	104	103	45
65	419	422	419	130	115	55
80	381	384	381	163	132	68
100	457	460	457	211	169	135
150	610	613	610	259	213	234
200	737	740	737	297	264	440
250	838	841	838	342	333	692
300	965	968	965	384	379	1035
350	1029	1038	1029	398	368	1303
400	1130	1140	1130	436	137	1795
450	1219	1232	1219	484	497	2460
500	1321	1334	1321	532	503	3240
600	1549	1568	1549	617	633	5088
700	1753	1775	1753	674	706	7116
800	2032	2054	2032	784	809	10470
900	2286	2315	2286	848	898	12900
1000	2180	2210	2100	1160	1000	17930
1200	2450	2480	2380	1262	1195	28000
1400	2949	-	2400	1416	1404	42735

Р 16,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.1	L исп.7	LΠΠ	H1	H2	Вес, кг
50	40	368	371	368	104	103	39
65	50	419	422	419	104	103	47
80	50	381	384	381	130	115	52
80	65	381	384	381	130	115	55
100	80	457	460	457	163	132	75
150	100	610	613	610	211	169	165
200	150	737	740	737	259	213	270
250	200	838	841	838	297	264	480
300	250	965	968	965	342	333	725
350	250	1029	1038	1029	342	333	792
350	300	1029	1038	1029	384	379	1060
400	300	1130	1140	1130	384	379	1128
400	350	1130	1140	1130	398	368	1386
450	400	1219	1232	1219	436	137	1850
500	400	1321	1334	1321	436	137	2000
500	450	1321	1334	1321	484	497	2581
600	500	1549	1568	1549	532	503	3695
1000	900	2180	2210	2100	848	898	12200

^{*} L исп. 1 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 1

L исп. 7 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 7

L исп. ПП — строительная длина шарового крана с патрубками под приварку по ГОСТ 28908-91

РN 25,0 МПа ПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	Lисп.1	Lисп.7	LNN	H1	H2	Вес, кг
50	368	371	368	106	104	45
65	419	422	419	130	115	67
80	470	473	470	167	128	89
100	546	549	546	179	170	179
150	705	711	705	260	233	437
200	832	841	832	304	290	745
250	991	1000	991	363	352	1357
300	1130	1146	1130	417	425	2045
350	1257	1276	1257	437	426	2565
400	1384	1407	1384	475	493	3708
450	1537	1559	1537	563	608	5634
500	1664	1686	1664	617	645	7020
600	1945	1972	1945	698	724	11120
700	2032	2061	2032	941	1037	11790
800	2415	2444	2415	1060	1165	13590
900	2743	2755	2743	1180	1306	16956

Р 25,0 МПа НЕПОЛНОПРОХОДНАЯ КОНСТРУКЦИЯ

DN	d	L исп.1	L исп.7	LNN	H1	H2	Вес, кг
50	40	368	371	368	104	103	41
65	50	419	422	419	104	103	44
80	50	470	473	470	130	115	48
80	65	470	473	470	130	115	65
100	80	546	549	546	167	128	88
150	100	705	711	705	179	170	266
200	150	832	841	832	260	233	437
250	200	991	1000	991	304	290	920
300	250	1130	1146	1130	363	352	1584
350	250	1257	1276	1257	363	352	1931
350	300	1257	1276	1257	417	425	2250
400	300	1384	1407	1384	417	425	2520
400	350	1384	1407	1384	437	426	2921
450	400	1537	1559	1537	475	493	4473
500	400	1664	1686	1664	475	493	4622
500	450	1664	1686	1664	563	608	6750
600	500	1945	1972	1945	617	645	9788

^{*} L исп. 1— строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 1

L исп. 7 — строительная длина шарового крана с формой фланцев по ГОСТ 12815-80 исп. 7

L исп. ПП – строительная длина шарового крана с патрубками под приварку по ГОСТ 28908-91

Варианты оснащения исполнительными механизмами

Неполнооборотные приводы AUMA обеспечат расширенные возможности контроля потоков: расширенный диапазон времени перекрытия, высокую точность и адаптацию к любым условиям работы, безопасное управление и интеллектуальное взаимодействие с арматурой

Червячные редукторы AUMA, производимые с использованием высококачественных материалов и технологий сборки, гарантируют надежность конструкции при работе, эксплуатацию в яюбых климатических условиях, а также во взрывоопасных зонах

Комбинация редуктора и многооборотного электропривода AUMA: передаточное отношение позволяет использовать многооборотные приводы меньших размеров, а соответственно и менее дорогостоящих

Для расчета и выбора типоразмера привода необходимо учитывать факторы, влияющие на значение требуемого крутящего момента. В первую очередь на данное значение влияют перепад давления на рабочем органе, вязкость рабочей среды и наличие механических примесей. Также количество срабатываний арматуры в определенный отрезок времени является решающим фактором при расчете требуемого крутящего момента. Чем реже происходит срабатывание арматуры, тем больший коэффициент запаса следует учитывать.

Для расчета и выбора схемы управления приводом учитываются требования Заказчика по управляющим сигналам и сигналам обратной связи. Данные сигналы должны соответствовать системе АСУТП на предприятии или стыковаться с последней посредством специальных коммутационных устройств/схем.

Для расчета типа присоединения привода к арматуре необходимо обеспечить сопряжение фланца привода и посадочного места на клапанной части. В случае невозможности реализации данного сопряжения, изготавливаются и устанавливаются специальные промежуточные переходные конструкции.

Каждый технологический процесс рассматривается нашими специалистами индивидуально. Все вышеперечисленные технические особенности рассчитываются и реализуются на основании данных Опросного листа, а также данных, дополнительно полученных от Заказчика. В связи с вышеизложенным, будем Вам признательны за предоставление максимально подробной информации.

Рекомендации по заказу

Обращаем Ваше внимание, что задача контроля потока среды требует комплексного решения.

Для ее решения необходимо, помимо верного подбора арматуры, осуществить прецизионный подбор приводной части и навесного оборудования.

Данный подбор будет осуществлен оптимально только в случае предоставления Вами полной информации как по характеристикам потока и среды (клапанная часть), так и по параметрам управления, обратной связи (сервопривод и навесное оборудование). Нами приветствуется отображение данной информации в форме опросного листа.

В случае пожелания заказчика по поставке комплектного оборудования (шаровой кран, привод, навесное оборудование) последнее поставляется в сборе или собирается непосредственно на объекте. Гарантийные обязательства распространяются в полном объеме на всю сборочную единицу.

По требованию заказчика возможно осуществление помощи (силами наших специалистов) непосредственно на объекте на любой стадии процесса заказа:

- заполнение опросных листов;
- диагностика существующей схемы управления;
- монтаж и позиционирование оборудования (поэтапное и единовременное) непосредственно на объекте;
 - пусконаладочные работы;
 - обучение обслуживающего персонала.

Опросный лист на запорную арматуру

	/ понечный потреог							
Адрес:								
•	·							
Проект / (Объект реконструкц	ии:						
Технологі	ическая позиция:							
1	Тип арматуры		🗆 Шаровой кран			□ Задвижка		
	[Дисковый затвор 			□ Другое		
2	Марка ранее уста	новленной арматуры (замена)						
3	Условный диамет	р Ду, мм						
4	Условное давлени	ие Ру, МПа/бар						
5	Требуемое количе	ство, шт.						
6		Агрегатное состояние		Жидкость	□ Га	33	□ Пар	
7	Рабочая среда	Название рабочей среды / состав						
8	т аоочал среда	Максимальное рабочее давление, МПа/бар						
9		Максимальная рабочая температура, °С						
10		Пожаробезопасное исполнение		Да		□ Нет		
11		Материал корпуса		Чугун		□ Углеродистая сталь		
- 11				□ Нержавеющая сталь		🗆 Другое		
12		W	🗆 Чугун		□ Углеродистая сталь			
12	Исполнение	Материал рабочего органа		Нержавеющая сталь		□ Дру	гое	
13		Герметичность затвора						
14		Уплотнение затвора						
15		Приссединение и трубедререди		Фланцевое	□ Π	риварное	□ Резьбовое	
10		Присоединение к трубопроводу		Межфланцевое		□ Друго	ре	
16	Гидравлические	Макс. перепад давления в закрытом положении, МПа/ бар			1			
17	характеристики	Условная пропускная способность Kvy, м³/ч						
18		Направление подачи среды		Одностороннее		□ 2-х ст	гороннее	
10		Тип привода Время открытия / закрытия, сек		□ Ручной		□ Электрический		
19	Характеристики			□ Пневматический		□ Другое		
20	привода							
21		Степень защиты от внешнего		IP66		□ IP67		
		воздействия		IP68		□ Другое	,	
			□ Exia			□ Exd		
22		Степень взрывозащиты		Общепромышленное		□ Другое	1	
23		Электрический, напряжение питания		~380 B	□ ~22	20 B	□= 24 B	
24		Электрический, управляющий сигнал					•	
25		Электрический, сигнал обратной связи						
26		Пневматический, способ подачи		Простого действия		□ Дв	ойного действия	
	!	i						

27		Минимальное давление воздуха необходимое для работы привода, МПа/бар							
28		Положение безопасности		Открыт	□ Закрыт		□ Текущее положение		
29		Степень защиты от внешнего воздействия		IP66			IP67		
29				IP68			Другое		
20		Степень взрывозащиты		Exia			Exd		
30			□ Общепромышленное исполнение				□ Другое		
31		Датчик конечных положений	□ Да				□ Нет		
32	Навесное оборудование	Ручной дублер	□ Да				□ Нет		
33	ооорудови	Электромагнитный клапан для	□ Да				□ Нет		
34		Позиционер для пневмопривода	□ Да				□ Нет		
35		Фильтр-редуктор, тип пневмоприсоединения G/NPT							
36		Другие принадлежности (указать)							
37		Место установки		Помещение	🗆 Откр. плои	4.	□ Подземная		
38		Размер присоединяемого трубопровода							
39	Установка	Материал трубы							
40		Комплект ответных фланцев		Да			Нет		
41		Температура окружающей среды	Мин.			Макс.			
	Дополнительная и	нформация:							
42									
Контактн	ное лицо				()		
Должность По			дпись Ф			ИО			
Дата зап	олнения	«»		20 г.					