



Course > Unit 7: ... > Lec. 16:... > 14. Exe...

## 14. Exercise: Theoretical properties

Exercises due Apr 15, 2020 05:29 IST Completed

Exercise: Theoretical properties

2/2 points (graded)

Let  $\widehat{\Theta}$  be an estimator of a random variable  $\Theta$ , and let  $\widetilde{\Theta}=\widehat{\Theta}-\Theta$  be the estimation error.

a) In this part of the problem, let  $\widehat{\Theta}$  be specifically the LMS estimator of  $\Theta$ . We have seen that for the case of the LMS estimator,  $\mathbf{E}\left[\widetilde{\Theta}\mid X=x\right]=0$  for every x. Is it also true that  $\mathbf{E}\left[\widetilde{\Theta}\mid \Theta=\theta\right]=0$  for all  $\theta$ ? Equivalently, is it true that  $\mathbf{E}\left[\widehat{\Theta}\mid \Theta=\theta\right]=\theta$  for all  $\theta$ ?



b) In this part of the problem,  $\widehat{\Theta}$  is no longer necessarily the LMS estimator of  $\Theta$ . Is the property  $\operatorname{Var}(\Theta) = \operatorname{Var}(\widehat{\Theta}) + \operatorname{Var}(\widehat{\Theta})$  true for every estimator  $\widehat{\Theta}$ ?

No **✓ Answer:** No

## **Solution:**

- a) There is no reason for this relation to be true. For an example, suppose that  $\Theta$  is a Bernoulli random variable. With a noisy measurement,  $\widehat{\Theta}$  will be somewhere in between 0 and 1, and therefore will never be equal to the true value of  $\theta$ , which is either 0 or 1 exactly.
- b) There is no reason for this to be the case. In fact, the variance of  $\Theta$ , for a poorly chosen estimator, can be larger than the variance of  $\Theta$ . For an example, consider the usual model of an observation  $X=\Theta+W$  and the estimator  $\widehat{\Theta}=100X$ .

Submit

You have used 1 of 1 attempt



**1** Answers are displayed within the problem

## Discussion

**Hide Discussion** 

**Topic:** Unit 7: Bayesian inference:Lec. 16: Least mean squares (LMS) estimation / 14. Exercise: Theoretical properties

| Show all posts   ✓ by recent activity  ✓ |                                                                                                                                                                                            |   |
|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| ?                                        | Part a) why my reasoning is incorrect                                                                                                                                                      | 2 |
| ?                                        | Isn't it the question b) asking if the very definition of the property ok?  Am I Reading wrong or the question asks whether the definition of the property is correct in every case?       | 1 |
| ?                                        | Point (a)  As seen on Unit 6 Lec 13, E[T T=t] = t since T no longer is a random variable. In here, in a conditional uni                                                                    | 7 |
| ?                                        | Part (a) posterior distribution                                                                                                                                                            | 1 |
| ?                                        | Regarding Part b                                                                                                                                                                           | 1 |
| <b>∀</b>                                 | Covariance of error and estimator                                                                                                                                                          | 2 |
| ?                                        | Calculate $\mathbf{E}[\Theta^{} \Theta=\theta]$ Hello! I want to find a more formal solution to the exercise 14.a). So, I tried to calculate $\mathbf{E}[\Theta^{} \Theta=\theta]$ explici | 5 |

© All Rights Reserved

