

#### МИНОБРНАУКИ РОССИИ

## федеральное государственное бюджетное образовательное учреждение высшего образования

## «Московский государственный технологический университет «СТАНКИН» (ФГБОУ ВО «МГТУ «СТАНКИН»)

**ИНСТИТУТ** информационных систем и технологий

**Кафедра** информационных систем

#### КУРСОВОЙ ПРОЕКТ

по дисциплине «**Проектирование информационных систем**» на тему: Проектирование системы управления конфигурацией межсетевых экранов.

Направление 09.03.02 Информационные системы и технологии

| Студент           |         |                 |
|-------------------|---------|-----------------|
| группы ИДБ-15-13  |         | Степанов Е.С.   |
|                   | подпись |                 |
| Руководитель      |         |                 |
| ст. преподаватель | подпись | Овчинников П.Е. |

### ОГЛАВЛЕНИЕ

| Введение                               | 3  |
|----------------------------------------|----|
| Глава 1. Функциональная модель (IDEF0) | 4  |
| Глава 2. Модель потоков данных (DFD)   | 7  |
| Глава 3. Диаграммы классов (ERD)       | 11 |
| Заключение                             | 12 |

#### **ВВЕДЕНИЕ**

Администрирование информационно-телекоммуникационных сетей зачастую включает в себя периодическое выполнение рутинных задач, ряд из которых не включен в состав популярных средств управления конфигурацией, таких как Cisco ASDM (Adaptive Security Device Manager). В связи с этим, специалистам, для экономии времени, приходится прибегать к другим, ненадежным способам, таким, как написание скриптов для изменения списков контроля доступа. Эти способы создают в системе существенную уязвимость — RSA ключи отсутствуют, а конфигурационные листы и данные для подключения по SSH хранятся в открытом виде, и могут быть использованы злоумышленниками для получения доступа.

Автоматизированная система управления конфигурацией позволяет устанавливать защищенное соединение с сетевым оборудованием и проводить операции по извлечению данных, модифицированию, агрегации списков контроля доступа по ключевым параметрам, позволяя существенно сэкономить время выполнения траблшутинга и плановых работ.

Объектом исследования является процесс работы со списками контроля доступа.

Исследования выполняются путем построения следующих моделей:

- 1. функциональной (IDEF0);
- 2. потоков данных (DFD);
- 3. реляционной базы данных (ERD).

Функциональная модель разрабатывается для точки сетевого администратора.

Целью моделирования является визуализация процесса работы со списками контроля доступа.

#### ГЛАВА 1. ФУНКЦИОНАЛЬНАЯ МОДЕЛЬ (IDEF0)

Внешними входными информационными потоками процесса являются:

- 1. Сведения о требуемых мерах по обеспечению безопасности.
- 2. Шаблонные задачи.

Внешними выходными информационными потоками процесса являются:

- 1. Данные о состоянии соединения
- 2. Данные о списках контроля доступа
- 3. Измененная рабочая конфигурация

Внешними управляющими потоками процесса являются:

- 1. Должностные обязанности.
- 2. Плановые работы.
- 3. ГОСТ Р ИСОМЭК 27001-2008.

Основными механизмами процесса являются:

- 1. Сетевой администратор.
- 2. Автоматизированная система управления конфигурацией.



Рис. 1.1. Контекстная диаграмма



Рис. 1.2. Работа со списками контроля доступа



Рис. 1.3. Формирование требований



Рис. 1.4. Проверка конфигурации

## ГЛАВА 2. МОДЕЛЬ ПОТОКОВ ДАННЫХ (DFD)



Рис. 2.1. Извлечение необходимых данных



Рис. 2.1. Устранение ошибок конфигурации

# Определение числовых показателей для цели потенциального проекта автоматизации

Проектируемая система следует паттерну «автоматизация снижает время обслуживания (ожидания).

Данный паттерн прямо следует из понятия "мура" (неравномерность) и связан, как правило, с совершенствованием процессов диспетчерского управления, т.е. с качеством распределения потоков поступающих заданий на выполнение определенных операций по исполнителям.

Система автоматизации настройки конфигурации позволяет сетевому администратору произвести настройку списков контроля доступа и быстрое извлечение необходимой информации в максимально сжатые сроки.

Таблица 2.1. Сравнение времени типовых операций над списком контроля доступа

|                     | Вручную                 | С помощью системы      |  |
|---------------------|-------------------------|------------------------|--|
| Агрегация правил по | Требует нескольких      | Система мгновенно      |  |
| потоку и объектным  | запросов и анализа      | производит агрегацию   |  |
| группам             | полученной              | и выводит наглядный    |  |
|                     | информации. Занимает    | список (максимум       |  |
|                     | до 10 минут.            | 5 сек).                |  |
| Поиск избыточных    | Требует от специалиста  | До 10 секунд уходит на |  |
| правил              | построчного поиска и    | введение требуемых     |  |
|                     | анализа списка, расчета | параметров. Анализ     |  |
|                     | вхождения адресов в     | списка происходит      |  |
|                     | подсеть. Может          | мгновенно (максимум 5  |  |
|                     | занимать до нескольких  | сек).                  |  |
|                     | минут.                  |                        |  |

# Определение числовых показателей для трудозатрат на разработку программных средств

Таблица 2.2. Определение числа и сложности функциональных точек для модулей и хранилищ

| Номер      | Наименование                   | Форм | Данных | UFP |
|------------|--------------------------------|------|--------|-----|
|            | Работа со списками контроля    |      |        |     |
| A0         | доступа                        |      |        |     |
| <b>A</b> 1 | Формирование требований        | 2    | 0      | 8   |
| A2         | Устранение ошибок конфигурации | 2    | 1      | 15  |
| A3         | Извлечение необходимых данных  | 3    | 1      | 19  |
| A4         | Проверка конфигурации          | 3    | 0      | 12  |
|            |                                |      |        | 54  |

Таблица 2.3.

Расчет сложности разработки методом FPA/IFPUG.

| VAF:  | 1,08 |
|-------|------|
| UFP:  | 54   |
| DFP:  | 58   |
| SLOC: | 2916 |
| KLOC: | 3    |

Таблица 2.4.

Расчет трудозатрат на разработку «с нуля» методом СОСОМО II.

| SF:   | 19,2     |
|-------|----------|
| E:    | 1,10     |
| EM:   | 2,23     |
| PM:   | 21 ч/мес |
| TDEV: | 9 мес    |

### ГЛАВА 3. ДИАГРАММЫ КЛАССОВ (ERD)



Рис. 3.1. Диаграмма потоков



Рис. 3.2. Диаграмма ролей



Рис. 3.3. Диаграмма модулей

#### ЗАКЛЮЧЕНИЕ

В ходе данной работы был исследован процесс конфигурации списков контроля доступа путем выполнения функционального моделирования системы, а также построения модели потоков данных и диаграммы классов.

Определены показатели для поставленной цели моделирования и для цели потенциального проекта автоматизации, сделан вывод о том, что автоматизация уменьшает время поставленной задачи по обслуживанию сети в среднем с 5 минут до 15 секунд.

Были определены числовые показатели для трудозатрат на разработку программных средств, а именно: определены число и сложность функциональных точек для модулей и хранилищ, рассчитана сложность разработки методом FPA/IFPUG, рассчитаны трудозатраты на разработку «с нуля» методом СОСОМО II.