

Network Infrastructures

A.A. 2019-2020 Prof. Francesca Cuomo

Outline

- Why FTTx
- How FTTx: PON
- Principles of Optical Fibre Systems
- PON characteristics (APON, BPON, EPON, GPON)
- Future: WDM PON
- Application
- · Market (cost, unbundling)

Part of these slides are taken from:
Towards Fiber to the X (FTTX): Passive Optical Networks,
Francesco Matera Responsabile Area Tecnologie Reti di Nuova Generazione
mat@fub.it; +39 06 5480 2215

Main source: Project EU E-Photon/One+, Lessons from Prof. A. Pattavina, G. Maier, Politecnico di Milano

Passive Splitters

■ 1x2 Splitter

- The basic element consists of two fibers fused together
- Every time the signal is split two ways, the signal is reduced by 10log(0.5)=3dB
 - Loss ~3dB x log₂(#ONUs)

	Conventional	Low-loss
Splitter 1x2	3.7dB	3.4dB

Photodiodes (PD)

- PIN Photodiodes
 - Good optical sensitivity (~-22 dBm)
 - Silicon for shorter λ 's (eg 850nm)
 - InGaAs for longer λ's (eg 1310/1550nm)
- Avalanche Photodiodes (APDs)
 - Higher sensitivity (~-30 dBm)
 - Primarily for extended distances in Gb/s rates
 - Much higher cost than PIN diodes

Transceiver Assumptions

	TX Power	RX Sensitivity
ONU (FP+PIN)	0 dBm	-22 dBm
OLT (DFB+APD)	1 dBm	-30 dBm

- □ Upstream (@1310nm) Power Budget = 30 dB
- Downstream (@1490nm) Power Budget = 22 dB

30-40 K €/km per microtrincea

Soffiaggio della fibra (ERICSSON)

Time vs. Spectrum Sharing

- Downstream → point-to-multipoint network
 - The OLT manages the whole bandwidth
- Upstream → multipoint-to-point network
 - ONUs transmit only towards the OLT
 - ONUs cannot detect other ONUs transmissions
 - Data transmitted by ONUs may collide

Need of a channel separation mechanism to fairly share bandwidth resources

PON Overview

- TDM-PONs
 - Standardized
 - Use few wavelengths (typically 2 or 3)
 - Low cost and mature devices (splitters, lasers, etc.)
 - Limited power budget
 - Maximum distances ≤ 20km, Split ratios ≤ 64
 - Traffic distribution
 - Broadcast scheme in downstream
 - TDMA techniques in upstream
 - Examples: APON/BPON, EPON & GPON
- WDM-PONs
 - Proposed in literature and/or demonstrated
 - Introduce WDM techniques and devices (AWG)
 - Long-reach and bandwidth
 - Examples: CPON, LARNET, RITENET, Success-DWA...

Upstream Traffic Scheduling 2/4

- In general, PON standards propose Time Division Multiplexing Access (TDMA) schemes
 - Upstream time slicing and assignment

Upstream Frame Reception

- The OLT receives frames with different powers
 - Much difficult to recover synchronism (clock and data recovery)
 - Burst Mode Receiver (complex) @ OLT
 - · Sets 0-1 threshold on a burst basis

Fiber in the loop PON standardization: a brief history

- ATM PON (A-PON)
 - Traffic is carried using ATM raw-cell format and framing
 - 1982: idea of PON (British Telecom)
 - 1987 1999: PON testbeds by BT, Deutsche Telekom (Eastern Germany), NTT (Japan), BellSouth (Atlanta, USA)
 - 1995: 622 Mbit/s APON testbed (RACE BAF project)
 - 1996: beginning of Full Service Access Network (FSAN) works
 - 1997-'98: ACTS BONAPARTE and EXPERT/VIKING projects
- Broadband PON (B-PON)
 - APON system is standardized by ITU-T with a new name to indicate that the PON can offer full broadband service and not just ATM
 - Line rates: 155 Mbit/s symmetrical or 622/155 Mbit/s down/upstream; ONU/OLT max distance: 20 km; max. # ONUs: 64
 - 1998-'00: ITU-T G.983.1 (physical aspects) and G.983.2 (ONT management and control)
 - 2001-'02: other ITU-T G.983.x and Q.834.x, e.g.
 - G.983.4/.7: Dynamic Bandwidth Assignment (DBA), providing statistical multiplexing (\Rightarrow more users per ONU) and Quality of Service (QoS) enforcement G.983.3: adoption of WDM to increase capacity or to carry video signals

Fiber in the loop PON standardization: a brief history

- Ethernet PON (EPON)
 - Traffic is carried using Ethernet framing
 - Cheaper user equipment then BPON
 - Ethernet much more widespread than ATM
 - Higher subscriber rates (up to 1.25 GbE symmetrical), 16 ONU (power budget)
 - 2001: IEEE 802.3ah Study Group "Ethernet in the First Mile (EFM)"
 - First documents in Sept. 2003)
 - 2004: final approval of Standard IEEE 802.3ah
- ☐ Gigabit-capable PON (G-PON)
 - Traffic is carried by using different possible framings: ATM (G.983 base) or via G-PON Encapsulation Method (GEM), which can interface SDH (G.707 base) or Ethernet (IEEE802.3 base).
 - Various line rates, up to 2.4 Gbit/s symmetrical, ONU/OLT max distance: 20 km; max. # ONUs: 64-128
 - 2001: activity initiated by the FSAN group
 - 2003: ITU-T G.984.x

Ethernet PONs (EPONs)

- □ All packets carried in EPON are encapsulated in Ethernet frames
 - Support for variable size packets
- ☐ Similar wavelength plan to BPON
- Maximum bit rate is 1Gbps MAC-MAC (1.25 Gbps at the physical layer with 8b/10b line coding)
- ☐ Minimum number of splits is 16
- Maximum reach is
 - 10 km (FP-LD @ ONUs, limited by dispersion in downstrea for G.652)
 - 20 km (DFB-LD @ ONUs)
- Different configurations are allowed

The Multi-Point Control Protocol (MPCP)

- Original Ethernet MAC protocol cannot operate properly in the upstream channel (no collision detection) since each ONU cannot hear other ONUs
- MPCP (Multi-Point Control Protocol) is a new function of the MAC control sublayer. It is developed to support dynamic capacity allocation but the algorithms are an equipment vendors choice (Dynamic Bandwidth Allocation - DBA)
 - In-band signalling
 - Messages (64 bytes)
 - GATE
 - REGISTER
 - REGISTER_REQUEST
 - REGISTER_ACK
 - REPORT

Autodiscovery mode

- 3 control messages:
 - Register, start message sent by OLT;
 - Register_Request, answer message from ONU not registered yet;
 - Register_Ack, message by OLT that allows ONU registration.

GPON Standardization

ITU-T	Outline	Adoption
G.984.1	G-PON service requirements (General characteristics)	Mar. 2003
G.984.2	G-PON Physical Layer spec. (Physical Media Dependent (PMD) layer specification)	Mar. 2003
G.984.3	G-PON TC layer spec. (Transmission convergence layer specification)	Feb. 2004

G.984.1 Service Requirements

Item	Target		
Bit rates	1.25Gbit/s symmetric or higher (2.4 Gbit/s). Asymmetric with 155/622Mb/s upstream		
Physical reach	Max. 20 km or max. 10 km		
Logical reach	Max. 60 km		
Branches	Max. 64 in physical layer		
Wavelength allocation	Downstream: 1480 – 1500nm Upstream: 1260 – 1360nm	Downstream video wavelength (1550 – 1560nm) may be overlaid	

GPON Encapsulation Mode (GEM)

- GEM provides a Generic Frame where to carry both TDM and packet traffic over fixed data-rate channels
 - Similar Generic Framing Procedure (GFP) used in SDH/SONET
- ☐ A *Generic Frame* consists of:
 - a core header
 - a payload header
 - an optional extension header
 - a payload
 - an optional frame check sequence (FCS).

Downstream Frame Structure 1/3

- It consists of
 - a Physical Control Block Downstream (PCBD)
 - the ATM partition (N×53 bytes)
 - the GEM partition

International development overview

- China
 - GPON and EPON are being tested in China: future PON growth mainly depends on Chinese market evolution
 - Beijing, Wuhan, Shanghai e Guangzhou are the cities with the greatest FTTX deployment
- Japan
 - The number of xDSL users has decreased for the first time at the end of 2006, while FTTH users have grown by 10% in 2006 last trimester.
 - At the end of 2006, out of 26 million Broadband lines, FTTH accounted for 30% of the total amount.
- South Korea
 - In July 2007, 500.000 FTTH users
 - Almost 4 million FTTB "apartment LANs"

International development overview

- USA
 - Large average cable-length
 - Large investments form cable operators, that account for a relevant share of the broadband market
 - No unbundling required for new fiber infrastructures.
- Brazil, Colombia, Argentina, Chile
 - Less than 300.000 FTTH users
- ☐ Australia, New Zeeland, Kuwait, Russia, United Arab Emirates, Pakistan
 - Less than 2 million FTTH users

Ref: EXFO, may 2007

International development overview

- Mostly in Northern Europe, local administrations are building the infrastructure, with equal access conditions for service providers
- The leading incumbents are deploying extended FTTCab/VDSL infrastructure plans.
- Sweden: more than 500.000 FTTH users
- France, UK: more than 600.000 FTTH users
- Italy: more than 250.000 FTTH users
- Denmark: more than 400.000 FTTH users
- Holland: more than 500.000 FTTH users

FUB study on NGN economics

- 1400 Mega Euro for digital Divide end (connection of central office to babckbone)
- FTTC/B/H for all? No 2 Mb/s for all but 20 Mb/s for almost all and >50 Mb/s for many
- 10 million of users based on FTTB: total cost 15000 Mega Euro!
- Unbundling problems:
 - For OLO no PON, yes Point-to-point
 - We say yes PON since:
 - » with logical unbundling now and WDM later!
 - » Too cost to include devices in central office and fibres in current ducts
 - » With PON we can shift OLO location from central office to

Conclusions

- FTTx necessary for NGN
- PON is the best current solution
- Problems for investments and network properties