Diferansiyel Denklemler

Hafta 9 – Devam

Finalde vizeden önceki son konumuzun 2. kısmındayız.

Sabit Katsayılı Homojen Olmayan Lineer Denklemler

n.inci mertebeden sabit katsayılı homojen olmayan lineer diferansiyel denklemi

$$a_n y^{(n)} + a_{n-1} y^{(n-1)} + \dots + a_1 y' + a_0 y = Q(x)$$

şeklinde yazılır.

Q(x) = 0 olursa homojen denklem olur.

Bu denklemlerin çözümünü nasıl bulacağız?

(1)Denklemin genel çözümü

$$y_a = y_h + y_{\ddot{0}} , \dots \dots (2)$$

şeklinde iki parçadan oluşur.

 y_h : Q(x) = 0 için bulunan çözümdür.

 $y_{\ddot{0}}$: Q(x)için bulunacak özel çözümdür.

Bizim burda uğraşacağımız kısım özel çözümünün bulunması,

diğer kısımları zaten biliyoruz.

Sinavdaki birinci sor
$$u: y'' - y' - 2y = -2x - 1$$

Çözümü:
$$y = c_1 r + e^{2x} + c_2 e^{-x} + x$$

Özel çözüm bulma yöntemleri (yö bulma)

i) Belirsiz Katsayılar Yöntemi

ii) Parametrenin (Sabitin)Değişimi Yöntemi

iii) Operatör Yöntemi (Türev ve integralden bahsediyoruz)

 $Mesela\ y''=x\ denklemi\ olsun, homojen\ de\ değil.\ Operatör\ deyince\ aslında$

aklınıza integral gelsin. Eğer alınırsa
$$y' = \frac{x^2}{2} + c_1$$

Bir integral daha alırız. $y = \frac{x^3}{6} + c_1 x + c_2$ bulunur. c'li kısımlar

burada homojen (y_h) kısımdır. x^3 lü if ade de özel çözüm $(y_{\ddot{0}})$ dür.

i) Belirsiz Katsayı Yöntemi

Bu yöntem kısıtlı bir yöntemdir. Eğer fonksiyonumuz,

 $Q(x) = P_n(x)$; polinomda çalışır.

 $Q(x) = e^{mx}$; üstel ise çalışır.

 $Q(x) = \sin kx$, $\cos kx$, $A\cos kx + B\sin kx$; de yine çalışır.

 $\ln x$, $\arctan x$, $\arcsin x$, $\frac{P_n(x)}{q_n(x)}$, $\tan x$, $\cot x$, $\sec x$ gibi fonksiyonlar için bu yöntem

işlevsizdir.

- $Q(x) = e^{mx}$ ($m \in Reel \, sayılar$) olsun. $y'' + y = e^{-x}$ 1)
 - a) Karakteristik köklerde m YOKSA $y_0 = Ae^{mx}$
 - b) Karakteristik köklerde k adet VARSA $y_0 = Ax^k e^{mx}$

şeklinde çözüm aranır. A bulunması gereken bir katsayıdır.

Yöntemin adı zaten A'dan geliyor. (Belirsiz Katsayı Yöntemi)

 $|\ddot{O}RNEK(1)|$ $y'' - 4y = 7e^{-x}$ denkleminin genel çözümünü bulalım.

1. ADIM:
$$y_q = y_h + y_{\ddot{0}}$$

2. $ADIM: y_h bulmak için;$

$$(y^{\prime\prime} - 4y = 0)$$

$$(r^2 - 4 = 0)$$

$$\left(r = \pm 2 \implies y_h = c_1 e^{-2x} + c_2 e^{2x}\right)$$

$$3.ADIM: y_0 = ?$$

3.
$$ADIM: y_0 = ?$$

 $m = 1 \Rightarrow r_1 = 2, r_2 = -2$

köklerde 1 olmadığı için $y_0 = Ae^x$ şeklinde $y^{\prime\prime} - 4y = 7e^x$

$$Ae^x - 4Ae^x = 7e^x$$

$$-3Ae^x = 7e^x$$

$$A = -\frac{7}{3}$$

$$y_{\ddot{0}} = -\frac{7}{3}e^x$$

 $\ddot{O}RNEK\ 2$ $y'' - y = e^x$ ise y_g çözümü nedir?

1. Adım: y_h için

 $Karakteristik\ Denklem: r^2 - 1 = 0$

$$r_1 = 1$$
, $r_2 = -1$

$$y_h = c_1 e^x + c_2 e^{-x}$$

2. Adım: yö için

Ae^x diyemiyoruz çünkü homojen denklemde aynısı var.

Bu yüzden bu if adeyi x ile çarpacağız.

(x ile çarptıktan sonra hala varsa tekrar çarpın.)

 $O \text{ halde } y_{\ddot{0}} = Axe^x \text{ alınır.}$

Ya almazsak bakalım ne olacak?

$$y = Ae^{x} i \varsigma i n$$

$$y' = Ae^{x}, \ y'' = Ae^{x}$$

$$y'' - y = e^{x}$$

$$Ae^{x} - Ae^{x} = e^{x}$$

$$0 = e^{x} (\varsigma eliski)$$

$$y'_{\ddot{0}} = A(1+x)e^{x}$$
, $y''_{\ddot{0}} = A(2+x)e^{x}$ gelir.
 $y''_{\ddot{0}} - y_{\ddot{0}} = e^{x}$
 $A(2+x)e^{x} - Axe^{x} = e^{x}$
 $2Ae^{x} + Axe^{x} - Axe^{x} = e^{x}$
 $2Ae^{x} = e^{x}$
 $2A = 1$
 $A = \frac{1}{2}$

$$2A = 1$$

$$A = \frac{1}{2}$$

3. ADIM:
$$y_g = y_n + y_{\ddot{0}}$$

$$y_g = c_1 e^x + c_2 e^{-x} + \frac{1}{2} x e^x$$

2)
$$Q(x) = b_0 + b_1 x + \dots + b_n x^n \text{ (Polinom)}$$

- a) Karakteristik köklerde (e^{mx} polinoma dönüştürmek için m=0 olmalı) SIFIR $yoksa y_0 = A_0 + A_1 x + \dots + A_n x^n$
- b) Karakteristik köklerde k adet SIFIR varsa $y_0 = x^k(A_0 + A_1x + \dots + A_nx^n)$ bkz. Örnek4

$$|\ddot{O}RNEK(3)| y'' - y = 2x + 1 \text{ ise } y_g \ \ddot{c}\ddot{o}\ddot{z}\ddot{u}\ddot{m}\ddot{u} \text{ nedir}?$$

1. $ADIM: y_h için;$

 $Karakteristik \; denklem: r^2-1=0 \; \Rightarrow \; r_1=1, \qquad r_2=-1$

$$y_h = c_1 e^x + c_2 e^{-x}$$

Köklerde SIFIR yok!

 $y_0 = Ax + B$ şeklinde olmalı.

$$y'_{\ddot{0}} = A, \ y''_{\ddot{0}} = 0$$

$$y''_{\ddot{0}} - y_{\ddot{0}} = 2x + 1$$

$$0 - (Ax + B) = 2x + 1$$

$$A=-2, \qquad B=-1$$

$$y_{\ddot{0}} = -2x - 1$$

 $|\ddot{O}RNEK(4)|y^{(4)} - 4y'' = 2 - 4x^2$ ise y_g çözümü bulun.

1. $ADIM: y_h$ çözüm bulacağız.

 $Karakteristik\ denklem: r^4 - 4r^2 = 0$

Kökler:
$$r_{1,2} = 0$$
, $r_3 = 2$, $r_4 = -2$

$$y_h = (c_1 + c_2 x)e^{0x} + c_3 e^{2x} + c_4 e^{-2x}$$

2. ADIM: yo için;

Köklerde 2 adet SIFIR var!

$$y_{\ddot{0}} = x^2(Ax^2 + Bx + C)$$

şeklinde olur.

$$y_0 = Ax^4 + Bx^3 + Cx^2$$
, birinci türev

$$y' = 4Ax^3 + 3Bx^2 + 2Cx$$
, ikinci türev

$$y'' = 12Ax^2 + 6Bx + 2C$$
, üçüncü türev

$$y''' = 24Ax + 6B$$
, ve dördüncü türevi de alırsak

$$y^{(4)} = 24A$$

$$y^{(4)}_{\ddot{0}} - 4y''_{\ddot{0}} = 2 - 4x^2$$

$$24A - 4(12Ax^2 + 6Bx + 2C) = 2 - 4x^2$$

$$-48Ax^2 - 24Bx + (24A - 8C) = -4x^2 + 0x + 2$$

$$A = \frac{1}{12}$$
, $B = 0$, $C = 0$

$$y_{\ddot{0}} = x^2 \left(\frac{1}{12}x^2\right) = \frac{x^4}{12}$$

$$y_g = c_1 + c_2 x + c_3 e^{2x} + c_4 e^{-2x} + \frac{1}{12} x^4$$

Problemler

1)
$$y'' - 2y' + y = 1905e^{-x}$$

2)
$$y'' - 3y' - 4y = e^x$$

3) $y''' - y'' = x^3 + 2x$

3)
$$y''' - y'' = x^3 + 2x$$

4)
$$y'' + y = 5 - x$$

© Copyright Barış Şenyerli