Задача: вычислить площадь пересечения двух кругов.

Введём следующие обозначения:

- d расстояние между центрами кругов,
- R радиус круга большего радиуса,
- r радиус круга меньшего радиуса.

## Aлгоритм:

- 1 Если  $d \geq R + r$  пустое пересечение, то площадь пересечения равна 0, иначе если  $R \geq r + d$ , то круг меньшего радиуса находится полностью внутри круга большего радиуса и площадь пересесечения равна площади круга меньшего радиуса,
  - иначе если R-r < d < R+r: круги пересекаются, и круг с меньшим радиусом целиком не лежит внутри круга с большим радиусом. Переход к шагу 2.
- 2 Пусть  $O_1$  центр окружности большего радиуса,
  - $O_2$  центр окружности меньшего радиуса,
  - *А* и *В* точки пересечения окружностей,
  - C основание перпендикуляров, опущенных из точек A и B на прямую  $O_1O_2$ ,
  - $d1 = O_1C,$
  - $d2 = O_2C,$
  - h = AC = BC
  - $\alpha = AO_2B$ ,
  - $\beta = AO_1B$  (см. рисунок).

Из системы

$$\begin{cases} d_1^2 + h^2 = R^2 \\ d_2^2 + h^2 = r^2 \\ d_1 + d_2 = d \end{cases}$$

получим

$$\begin{cases} d_1 = \frac{r^2 + R_1^2 - R_2^2}{2r} \\ d_2 = r - d_1 \\ h = \sqrt{R_2^2 - d_2^2} \end{cases}$$

- 3 Угол  $\beta=2arctg(\frac{h}{d_1})$ , площадь сегмента  $O_1AB$   $S_1=\frac{1}{2}R_1^2(\beta-sin(\beta))$ .
- 4 Если  $O_2$  совпадает с C, то  $d_2=0$  и  $\alpha=\pi,$  иначе  $\alpha=2arctg(\frac{h}{d_2}).$
- 5 Если  $O_2$  лежит между  $O_1$  и C, то при вычислении угла  $\alpha$  по формуле из пункта 4 результат окажется отрицательным. Для правильного ответа положим  $\alpha = \alpha + 2\pi$ .
- 6 Площадь сегмента  $O_2AB$   $S_2 = \frac{1}{2}R_2^2(\alpha \sin(\alpha)).$

7 Площадь пересечения окружностей  $S = S_1 + S_2$ .

