第三章 微分中值定理及导数应用

大纲考试内容	大纲考试要求		
	数一	数二	数三
罗尔(Rolle) 定理、拉格朗日(Lagrange) 中值定理	理解并	理解并	理解并
泰勒(Taylor) 定理	会用	会用	会用
柯西(Cauchy) 中值定理	了解并 会用	了解并 会用	了解并 会用
函数图形的拐点	会求	会求	会求
用导数判断函数图形的凹凸性	会用	会用	会用
用导数判断函数的单调性和求函数极值的方法 函数的最大值和最小值的求法及其应用	掌握	掌握	掌握
函数的极值概念	理解	理解	理解
洛必达法则求未定式极限的方法	掌握	掌握	掌握
曲率、曲率圆和曲率半径的概念	了解	了解	
曲率和曲率半径	会计算	会计算	
函数图形的水平、铅直和斜渐近线	会求 ,	会求	会求
导数的经济意义(含边际与弹性的概念)			了解
函数的图形	会描绘	会描绘	会描绘

。考试内容概要 🐎

一、微分中值定理

定理 (费马引理) 设函数 f(x) 在点 x_0 处可导,如果函数 f(x) 在点 x_0 处取得极值,

那么 $f'(x_0) = 0$.

定理(**罗尔定理**) 如果 f(x) 满足以下条件:

- (1) 在闭区间[a,b]上连续,
- (2) 在开区间(a,b) 内可导,
- (3) f(a) = f(b),

则在(a,b) 内至少存在一点 ξ ,使得 $f'(\xi) = 0$.

定理(拉格朗日中值定理) 如果 f(x) 满足以下条件:

- (1) 在闭区间[a,b]上连续,
- (2) 在开区间(a,b) 内可导,

则在(a,b) 内至少存在一点 ξ ,使得

$$f(b) - f(a) = f'(\xi)(b-a).$$

推验 如果在(a,b) 内恒有 f'(x) = 0,则在(a,b) 内 f(x) 为常数.

定理(柯西中值定理) 如果 f(x), F(x) 满足以下条件:

- (1) 在闭区间[a,b] 上连续,
- (2) 在开区间(a,b) 内可导,且 F'(x) 在(a,b) 内每一点处均不为零,

则在(a,b) 内至少存在一点 ε ,使得

$$\frac{f(b)-f(a)}{F(b)-F(a)} = \frac{f'(\xi)}{F'(\xi)}.$$

定理 (皮亚诺型余项春勒公式)

如果 f(x) 在点 x。有直至 n 阶的导数,则有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + o[(x - x_0)^n],$$

常称 $R_n(x) = o[(x-x_0)^n]$ 为皮亚诺型余项. 若 $x_0 = 0$,则得麦克劳林公式:

$$f(x) = f(0) + f'(0)x + \frac{1}{2!}f''(0)x^2 + \dots + \frac{1}{n!}f^{(n)}(0)x^n + o(x^n).$$

定理(拉格朗日型余项泰勒公式)

设函数 f(x) 在含有 x_0 的开区间(a,b) 内有直到 n+1 阶的导数,则当 $x \in (a,b)$ 时有

$$f(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2!}f''(x_0)(x - x_0)^2 + \dots + \frac{1}{n!}f^{(n)}(x_0)(x - x_0)^n + R_n(x),$$

其中 $R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$,这里 ξ 介于 x_0 与 x 之间,称为**拉格朗日型余项**.

几个常用的泰勒公式(拉格朗日型余项)

$$(1)e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \frac{e^{ax}}{(n+1)!}x^{n+1};$$

$$(2)\sin x = x - \frac{x^3}{3!} + \dots + (-1)^{n-1} \frac{x^{2n-1}}{(2n-1)!} + (-1)^n \frac{\cos (\theta x)}{(2n+1)!} x^{2n+1};$$

$$(3)\cos x = 1 - \frac{x^2}{2!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + (-1)^{n+1} \frac{\cos (\theta x)}{(2n+2)!} x^{2n+2};$$

$$(4)\ln(1+x) = x - \frac{x^2}{2} + \dots + (-1)^{n-1} \frac{x^n}{n} + (-1)^n \frac{x^{n+1}}{(n+1)(1+\theta x)^{n+1}};$$

(5)
$$(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!} x^2 + \dots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!} x^n + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)(\alpha-n)}{(n+1)!} (1+\theta x)^{\alpha-n-1} x^{n+1}.$$

(以上 θ 满足 $\theta \in (0,1)$)

二、导数应用

1. 函数的单调性

定型 设 f(x) 在[a,b] 上连续,在(a,b) 内可导.

- (1) 若在(a,b) 内 f'(x) > 0,则 f(x) 在[a,b] 上单调增;
- (2) 若在(a,b) 内 f'(x) < 0,则 f(x) 在[a,b] 上单调减.

2. 函数的极值

度以 设 y = f(x) 在点 x_0 的某邻域内有定义. 如果对于该邻域内任何 x, 恒有 $f(x) \le f(x_0)$ 或($f(x) \ge f(x_0)$),则称 x_0 为 f(x) 的一个极大值点(或极小值点),称 $f(x_0)$ 为 f(x) 的极大值(或极小值). 极大(小) 值统称为极值;极大(小) 值点统称为极值点. 导数为零的点称为函数的驻点.

定理(**极值的必要条件**) 设 y = f(x) 在点 x_0 处可导,如果 x_0 为 f(x) 的极值点,则 $f'(x_0) = 0$.

爰照 (**极值的第一充分条件**) 设y = f(x) 在点 x_0 的某去心邻域内可导,且 $f'(x_0) = 0$ (或 f(x) 在 x_0 处连续).

- (1) 若 $x < x_0$ 时, f'(x) > 0; $x > x_0$ 时, f'(x) < 0,则 x_0 为 f(x) 的极大值点;
- (2) 若 $x < x_0$ 时, f'(x) < 0; $x > x_0$ 时, f'(x) > 0,则 x_0 为 f(x) 的极小值点;
- (3) 若 f'(x) 在 x_0 的两侧同号,则 x_0 不为 f(x) 的极值点.

定體(**极值的第二充分条件**) 设 y = f(x) 在点 x_0 处二阶可导,且 $f'(x_0) = 0$.

- (1) 若 $f''(x_0) < 0$,则 x_0 为 f(x) 的极大值点;
- (2) 若 $f''(x_0) > 0$,则 x_0 为 f(x) 的极小值点;
- (3) 若 $f''(x_0) = 0$,则此方法不能判定 x_0 是否为极值点.

3. 函数的最大值与最小值

定义 设函数 y = f(x) 在闭区间[a,b]上有定义, $x_0 \in [a,b]$. 若对于任意 $x \in [a,b]$, 恒有 $f(x) \leq f(x_0)$ (或 $f(x) \geq f(x_0)$),则称 $f(x_0)$ 为函数 f(x) 在闭区间[a,b]上的最大值(或最小值),称 x_0 为 f(x) 在[a,b]上的最大值点(或最小值点).

函数的最值主要有以下两种问题:

(1) 连续函数 f(x) 在闭区间[a,b] 上的最大最小值

第一步,求出 f(x) 在开区间(a,b) 内的驻点和不可导的点 x_1,x_2,\cdots,x_n ;

第二步:求出 f(x) 在点 x_1, x_2, \dots, x_n 和区间端点 a, b 处的函数值

$$f(x_1), f(x_2), \dots, f(x_n), f(a), f(b);$$

第三步:比较以上各点函数值,其中最大的即为 f(x) 在[a,b] 上的最大值,最小的即为 f(x) 在[a,b] 上的最小值.

【注】 当连续函数 f(x) 在[a,b] 内仅有唯一极值点,若在该点 f(x) 取极大值(或极小值),则它也是 f(x) 在[a,b] 上的最大值(或最小值).

(2) 最大最小值的应用题

这种问题首先建立目标函数并确定其定义域,然后按照以上三步求其最大值(或最小值).

4. 曲线的凹凸性

定义 设函数 f(x) 在区间 I 上连续,如果对 I 上任意两点 x_1,x_2 恒有

$$f(\frac{x_1+x_2}{2}) < \frac{f(x_1)+f(x_2)}{2}$$

则称 f(x) 在 I 上的图形是凹的;如果恒有

$$f(\frac{x_1+x_2}{2}) > \frac{f(x_1)+f(x_2)}{2}$$

则称 f(x) 在 I 上的图形是凸的.

定理 设函数 y = f(x) 在[a,b] 上连续,在(a,b) 内二阶可导,那么

- (1) 若在(a,b) 内有 f''(x) > 0,则 f(x) 在[a,b] 上的图形是凹的;
- (2) 若在(a,b) 内有 f''(x) < 0,则 f(x) 在[a,b] 上的图形是凸的.

定以(初点) 连续曲线弧上的凹与凸的分界点称为曲线弧的拐点.

定理 (拐点的必要条件) 设 y = f(x) 在点 x_0 处二阶可导,且点 $(x_0, f(x_0))$ 为曲线 y = f(x) 的拐点,则 $f''(x_0) = 0$.

定理 (拐点的第一充分条件) 设 y = f(x) 在点 x_0 的某去心邻域内二阶可导,且 $f''(x_0)$ = 0(或 f(x) 在 x_0 处连续).

- (1) 若 f''(x) 在 x_0 的左、右两侧异号,则点(x_0 , $f(x_0)$) 为曲线 y = f(x) 的拐点;
- (2) 若 f''(x) 在 x_0 的左、右两侧同号,则点 $(x_0,f(x_0))$ 不为曲线 y=f(x) 的拐点.

定理 (拐点的第二充分条件) 设 y = f(x) 在点 x_0 处三阶可导,且 $f''(x_0) = 0$.

- (1) 若 $f'''(x_0) \neq 0$,则点 $(x_0, f(x_0))$ 为曲线 y = f(x) 的拐点;
- (2) 若 $f''(x_0) = 0$,则此方法不能判定 $(x_0, f(x_0))$ 是否为曲线 y = f(x) 的拐点.

5. 曲线的渐近线

 \mathscr{L} 若点 M 沿曲线 y=f(x) 无限远离原点时,它与某条定直线 L 之间的距离将趋近于零,则称直线 L 为曲线 y=f(x) 的一条渐近线,若直线 L 与 x 轴平行,则称 L 为曲线 y=f(x) 的水平渐近线;若直线 L 与 x 轴垂直,则称 L 为曲线 y=f(x) 的铅直渐近线;若直线 L 既不平行于 x 轴,也不垂直于 x 轴,则称直线 L 为曲线 y=f(x) 的斜渐近线.

水平渐近线

若 $\lim_{x\to\infty} f(x) = A($ 或 $\lim_{x\to\infty} f(x) = A,$ 或 $\lim_{x\to\infty} f(x) = A)$,那么y = A 是曲线y = f(x) 的水平渐近线,

铅直渐近线

若 $\lim_{x\to x_0} f(x) = \infty$ (或 $\lim_{x\to x_0^+} f(x) = \infty$),那么 $x = x_0$ 是曲线 y = f(x) 的 铅直渐近线.

斜渐近线

若 $\lim_{x \to \infty} \frac{f(x)}{x} = a$ 且 $\lim_{x \to \infty} (f(x) - ax) = b($ 或 $x \to -\infty$,或 $x \to +\infty$),那么 y = ax + b 是 曲线 y = f(x) 的斜渐近线.

6. 函数的作图

利用函数的单调性、极值、曲线的凹凸性、拐点及渐近线可以做出函数曲线.

7. 曲线的弧微分与曲率(数三不卷水)

定义 设 y = f(x) 在(a,b) 内有连续导数,则有弧微分

$$ds = \sqrt{1 + y'^2} dx.$$

定义 设 y = f(x) 有二阶导数,则有曲率

$$K = \frac{|y''|}{(1+y'^2)^{3/2}},$$

8. 导数在经济学中的应用《《数三卷末》

经济学中常见的函数

(1) **需求函数**; $x = \varphi(p)$;其中 x 为某产品的需求量,p 为价格.

需求函数的反函数 $p = \varphi^{-1}(x)$ 称为**价格函数**.

- (2) 供給函数: $x = \phi(p)$;其中x为某产品的供给量,p为价格.
- (3) **成本函数**: 成本 C = C(x) 是生产产品的总投入,它由固定成本 C_1 (常量) 和可变成本 $C_2(x)$ 两部分组成,其中 x 表示产量,即

$$C = C(x) = C_1 + C_2(x),$$

称 $\frac{C}{r}$ 为**平均成本**,记为 \overline{C} 或AC,

$$AC = \overline{C} = \frac{C}{x} = \frac{C_1}{x} + \frac{C_2(x)}{x}.$$

(4) **收益**(入) 函数:收益 R=R(x) 是产品售出后所得的收入,是销售量x 与销售单价 p 之积,即收益函数为

$$R = R(x) = px$$

(5) **利润函数**:利润 L = L(x) 是收益扣除成本后的余额,由总收益减去总成本组成,即利润函数为

$$L = L(x) = R(x) - C(x)$$
 (x 是销售量).

边际函数与边际分析

- (1) **边际函数的有关概念** 设 y = f(x) 可导,则在经济学中称 f'(x) 为边际函数, $f'(x_0)$ 称为 f(x) 在 $x = x_0$ 处的边际值.
 - (2) 经济学中常用的边际分析
 - ① 边际成本:设成本函数为C = C(q)(q是产量),则边际成本函数MC为MC = C'(q);
 - ② 边际收益:设收益函数为 R=R(q)(q 是产量),则边际收益函数 MR 为 MR=R'(q);
 - ③ **边际利润**;设利润函数为 L=L(q)(q 是销售量),则边际利润函数 ML 为 ML=L'(q). 弹性函数与弹性分析
- (1) **弹性函数的有关概念** 设 y = f(x) 可导,则称 $\frac{\Delta y/y}{\Delta x/x}$ 为函数 f(x) 当 x 从 x 变到 $x + \Delta x$ 时的相对弹性,称

$$\eta = \lim_{\Delta x \to 0} \frac{\Delta y/y}{\Delta x/x} = f'(x) \frac{x}{y} = \frac{f'(x)}{f(x)}x$$

为函数 f(x) 的弹性函数,记为 $\frac{E_y}{E_x}$,即

$$\eta = \frac{Ey}{Ex} = f'(x) \frac{x}{f(x)}.$$

它在经济学上解释为函数 f(x) 在 x 处的相对变化率.

- (2) 经济学中常用的弹性分析
- ① 需求的价格弹性:设需求函数 $Q = \varphi(p)(p)$ 为价格),则需求对价格的弹性为 $\eta_u = \frac{p}{\varphi(p)}\varphi'(p)$.由于 $\varphi(p)$ 是单调减少函数,故 $\varphi'(p) < 0$,从而 $\eta_u < 0$.

经济学中的解释为:当价格为p时,若提价(或降价)1%,则需求量将减少(或增加) $+\eta_1+\%$.需要注意的是,很多试题中规定需求对价格的弹性 $\eta_1>0$,此时应该有公式

$$\eta_l = -\frac{p}{\varphi(p)} \varphi'(p).$$

② 供给的价格弹性: 设供给函数 $Q = \psi(p)(p)$ 为价格),则供给对价格的弹性为 $\eta = \frac{p}{\psi(p)} \psi'(p)$. 由于供给函数 $\psi(p)$ 单调增加,故 $\psi'(p) > 0$,从而 $\eta > 0$.

经济学中的解释为:当价格为 p 时,若提价(或降价)1%,则供给量将增加(或减少)η%.

【例 1】 (2014) 设某商品的需求函数为 Q = 40 - 2p(p) 为商品的价格),则该商品的边际收益为_____.

由题设知收益函数为

$$R=pQ=\frac{40-Q}{2}\cdot Q,$$

则边际收益为

$$\frac{\mathrm{d}R}{\mathrm{d}Q} = 20 - Q.$$

【注】 一种典型的错误是填 40-4p. 边际收益是"当商品的需求量在 Q 的基础上再增加一件所获得的收益",所以边际收益为 $\frac{dR}{dQ}$. 部分考生错误地将 $\frac{dR}{dp}$ 当作边际收益.

《例 2》 (2017)设生产某产品的平均成本 $\overline{C}(Q) = 1 + e^{-Q}$,其中产量为Q,则边际成本为

成本

$$C(Q) = \overline{C}(Q)Q = Q(1 + e^{-Q}),$$

边际成本为

$$\frac{dC}{dQ} = (1 + e^{-Q}) - Qe^{-Q} = 1 + (1 - Q)e^{-Q}.$$

【例 3】 (2009) 设某产品的需求函数为 Q = Q(p),其对价格 p 的弹性 $\epsilon_p = 0.2$,则当需求量为 10000 件时,价格增加 1 元会使产品收益增加_____元.

由题设知

$$-\frac{p}{Q}\frac{\mathrm{d}Q}{\mathrm{d}p}=\varepsilon_p=0.2.$$

收益函数

$$R = Q_{\mathcal{D}}$$
,

收益微分为

$$dR = pdQ + Qdp = Q\left(1 + \frac{p}{Q}\frac{dQ}{dp}\right)dp = Q(1 - \epsilon_p)dp.$$

当 Q = 10000, dp = 1 时,产品的收益增加

$$dR = 10000 \times (1 - 0.2) \times 1 = 8000(\overline{\pi}).$$

【注】 一种典型的错误是 $\frac{p}{Q}\frac{dQ}{dp}=0.2$,导致得出错误的结果 12000.

用的配件基础常

《例 4》 (2010) 设某商品的收益函数为 R(p), 收益弹性为 $1+p^3$, 其中 p 为价格, 且 R(1)=1, 则 R(p)= ______.

邻

由题意知
$$\frac{p}{R} \cdot \frac{dR}{dp} = 1 + p^3$$
,即 $\frac{dR}{R} = \left(\frac{1}{p} + p^2\right) dp$,两边同时积分,得
$$\ln R = \ln p + \frac{1}{3}p^3 + C.$$

从而有
$$R(p) = pe^{\frac{1}{3}p^3+C}$$
,将 $R(1) = 1$ 代入上式解得 $C = -\frac{1}{3}$,故 $R(p) = pe^{\frac{1}{3}(p^3-1)}$.

。 常考题型与典型例题

常考题型

- 1. 求函数的极值和最值,确定曲线的凹向和拐点
- 2. 求渐近线
- 3. 方程的根
- 4. 不等式的证明
- 5. 中值定理证明题

一、求函数的极值和最值及确定曲线的凹向和拐点

〖例 5〗 (2003,数一、二)设函数 f(x) 在($-\infty$, $+\infty$) 内连续,其导函数的图形如图 1 所示,则 f(x) 有

- (A) 一个极小值点和两个极大值点.
- (B) 两个极小值点和一个极大值点.
- (C) 两个极小值点和两个极大值点.
- (D) 三个极小值点和一个极大值点.

【例 6】 (1990,数一) 已知 f(x) 在 x=0 的某个邻域内连续,且 f(0)=0, $\lim_{x\to 0}\frac{f(x)}{1-\cos x}=0$

2,则在点 x = 0 处 f(x)

(A) 不可导.

(B) 可导,且 $f'(0) \neq 0$.

(C) 取得极大值.

(D) 取得极小值.

【方法 1】 直接法

由 $\lim_{x\to 0} \frac{f(x)}{1-\cos x} = 2 > 0$ 及极限的保号性知在 x=0 某去心邻域内

$$\frac{f(x)}{1-\cos x} > 0.$$

又 $1-\cos x > 0$,则 f(x) > 0 = f(0),由极值定义知 f(x) 在 x = 0 处取极小值,则应选(D).

【方法2】 排除法

由于
$$\lim_{x\to 0} \frac{f(x)}{1-\cos x} = \lim_{x\to 0} \frac{f(x)}{\frac{1}{2}x^2} = 2$$
,则取 $f(x) = x^2$ 显然满足题设条件.

但 $f(x) = x^2$ 在 x = 0 处可导,且 f'(0) = 0,取极小值,则排除选项(A)(B)(C). 故应选(D).

《例7》 在半径为 R 的球中内接一直圆锥,试求圆锥的最大体积.

 $[\frac{32}{81}\pi R^3]$

【例 8】 (2018,数二,三)曲线 $y = x^2 + 2 \ln x$ 在其拐点处的切线方程是____

$$y' = 2x + \frac{2}{x}, y'' = 2 - \frac{2}{x^2}, \Leftrightarrow y'' = 0$$
 得

$$x = 1, x = -1($$
 舍去).

拐点为(1,1).又 f'(1) = 2 + 2 = 4,则拐点处的切线方程是为

$$y-1=4(x-1)$$
,

即 y = 4x - 3.

〖例 9〗 (2004,数二、三)设 f(x) = |x(1-x)|,则

 $(A)_x = 0$ 是 f(x) 的极值点,但(0,0) 不是曲线 y = f(x) 的拐点.

(B)x = 0 不是 f(x) 的极值点,但(0,0) 是曲线 y = f(x) 的拐点.

 $(C)_x = 0$ 是 f(x) 的极值点,且(0,0) 是曲线 y = f(x) 的拐点.

 $(D)_x = 0$ 不是 f(x) 的极值点, (0,0) 也不是曲线 y = f(x) 的拐点.

x = 0 的邻域 $(|x| < \delta)$ 内 【方法』】

$$f(x) = \begin{cases} -x(1-x), & x < 0, \\ x(1-x), & x \ge 0. \end{cases}$$

$$f'(x) = \begin{cases} -1 + 2x, & x < 0, \\ 1 - 2x, & x > 0. \end{cases}$$

由于 f(x) 在 x = 0 处连续, f'(x) 在 x = 0 的邻域内由负 变正,则 f(x) 在 x=0 处取极小值.

$$f''(x) = \begin{cases} 2, & x < 0, \\ -2, & x > 0. \end{cases}$$

由于 f''(x) 在 x = 0 的两侧变号, (0,0) 是曲线 y = f(x) 的 拐点.

图 2

【方法2】 如图 2, 先画曲线 y = x(1-x)(开口朝下抛物 线), 再画 f(x) = |x(1-x)| (把曲线 y = x(1-x) 在 x 轴下方的图形对称地翻上

去),由图可知,x = 0 是 f(x) 的极值点,且(0,0) 是曲线 y = f(x) 的拐点.

二、求渐近线

【例 10】 (2014,数一、二)下列曲线中有渐近线的是

$$(A)y = x + \sin x.$$

(B)
$$y = x^2 + \sin x$$
.

(C)
$$y = x + \sin \frac{1}{x}$$
.

$$(D)y = x^2 + \sin\frac{1}{x}.$$

由渐近线定义可知,若

$$f(x) = ax + b + a(x),$$

其中 $\lim_{\alpha}(x) = 0$,则直线 y = ax + b 为曲线 y = f(x) 的斜渐近线.

由此可知,曲线

$$y = x + \sin\frac{1}{x}$$

有斜渐近线 y = x,因为这里 $\limsup_{x \to \infty} \frac{1}{x} = 0$,故应选(C).

〖例 11〗 (2007,数一、二) 曲线
$$y = \frac{1}{x} + \ln(1 + e^x)$$
 渐近线的条数为 (A)0, (B)1. (C)2, (D)3.

(D)

[例 12] (2017,数二) 曲线
$$y = x(1 + \arcsin \frac{2}{x})$$
的斜渐近线方程为_____.

[v = x + 2]

三、方程的根

〖例 13〗 (1992, 数五) 求证:方程 $x+p+q\cos x=0$ 恰有一个实根,其中 p,q 为常数,且0<q<1.

$$\diamondsuit f(x) = x + p + q\cos x, \emptyset$$

$$\lim_{x\to-\infty}f(x)=-\infty, \lim_{x\to+\infty}f(x)=+\infty,$$

则必存在a < 0, b > 0,使

又 f(x) 在区间[a,b] 上连续,由连续函数零点定理知,f(x) 在(a,b) 上至少有一个零点,即方程 $x+p+q\cos x=0$ 在(a,b) 内至少有一实根、又

$$f'(x) = 1 - q\sin x > 0,$$

则 f(x) 在 $(-\infty, +\infty)$ 上最多有一个零点,即方程

$$x + p + q\cos x = 0$$

在 $(-\infty,+\infty)$ 上最多有一个实根. 原题得证.

【例 14】 设 $a_1 + a_2 + \cdots + a_n = 0$,求证:方程 $na_n x^{n-1} + (n-1)a_{n-1} x^{n-2} + \cdots + 2a_2 x + a_1 = 0$ 在(0,1) 内至少有一个实根.

四、不等式的证明

[例 15] 证明: $\frac{x}{1+x} < \ln(1+x) < x, (x > 0).$

(L

由拉格朗日中值定理可知

$$\ln(1+x) = \ln(1+x) - \ln 1$$

$$= \frac{(1+x)-1}{\xi} = \frac{x}{\xi}, (1 < \xi < 1+x)$$

则
$$\frac{x}{1+x} < \frac{x}{\xi} < x$$
,即 $\frac{x}{1+x} < \ln(1+x) < x$.

【例 16】 (1991,数三) 利用导数证明: 当x > 1 时, $\frac{\ln(1+x)}{\ln x} > \frac{x}{1+x}$.

[例 17] (2012,数一、二、三)证明: $x \ln \frac{1+x}{1-x} + \cos x \ge 1 + \frac{x^2}{2} (-1 < x < 1)$.

(iš.

令 $f(x) = x \ln \frac{1+x}{1-x} + \cos x - \frac{x^2}{2} - 1(-1 < x < 1)$, 显然 f(x) 是偶函数, 所以

是要证 $f(x) \geqslant 0 (0 \leqslant x < 1)$.

$$f'(x) = \ln \frac{1+x}{1-x} + \frac{2x}{1-x^2} - \sin x - x$$

$$\geqslant 2x - \sin x - x = x - \sin x \geqslant 0$$
,

则 f(x) 在[0,1) 上单调增,又 f(0) = 0,则 $f(x) \ge 0$ (0 $\le x < 1$).

五、中值定理证明题

【例 18】 设 f(x) 在区间 [a,b] 上连续, a(a,b) 上二阶可导, 且 a(a) = f(b) = f(c) a < c < b , 证明存在 a(a,b) , 使 a(a,b) , 他 a(a,b) , a(a,b)

(iL)

由题设条件及罗尔定理知,存在 $\xi_1 \in (a,c), \xi_2 \in (c,b)$,使

$$f'(\xi_1) = 0, f'(\xi_2) = 0.$$

在区间 $[\xi_1,\xi_2]$ 上对 f'(x) 用罗尔定理得,存在 $\xi \in (\xi_1,\xi_2)$,使

$$f''(\xi)=0.$$

原题得证,

【例 19】 (1990, 数一、二) 设不恒为常数的函数 f(x) 在闭区间[a,b] 上连续,在开区间 (a,b) 内可导,且 f(a) = f(b),证明在(a,b) 内至少存在一点 ε ,使得 $f'(\varepsilon) > 0$.

【例 20】 设 f(x) 在[a,b] 上二阶可导,f(a) = f(b) = 0,且存在 $c \in (a,b)$ 使 f(c) < 0. 试证: $\exists \xi, \eta \in (a,b)$, $f'(\xi) < 0$, $f''(\eta) > 0$.

【例 21】 (2013, 数三)设函数 f(x) 在[0, + ∞)上可导,且 f(0) = 0, $\lim_{x \to +\infty} f(x) = 2$. 证明:

- (1) 存在 a > 0, 使得 f(a) = 1;
- (2) 对(1) 中的 a,存在 $\xi \in (0,a)$,使得 $f'(\xi) = \frac{1}{a}$.

医神经病 使强化性

HI

(1) 由 $\lim_{x\to +\infty} f(x) = 2$ 可知,存在 A > 0,使

$$f(A) > 1$$
.

由题设可知 f(x) 在[0,A] 上连续,又

$$0 = f(0) < 1 < f(A)$$

由连续函数介值定理知,存在 $a \in (0,A)$,使 f(a) = 1.

(2) $\frac{1}{a} = \frac{f(a) - f(0)}{a - 0}$,由拉格朗日中值定理知,存在 $\xi \in (0,a)$,使

$$\frac{f(a) - f(0)}{a - 0} = f'(\xi),$$

即
$$f'(\xi) = \frac{1}{a}$$
.

或者,要证 $f'(\xi) = \frac{1}{a}$,只要证 $f'(\xi) - \frac{1}{a} = 0$,因此,令 $F(x) = f(x) - \frac{x}{a}$,则

$$F(0) = f(0) = 0, F(a) = f(a) - 1 = 0,$$

即 F(x) 在区间[0,a] 上满足罗尔定理条件,则存在 $\xi \in (0,a)$,使

$$F'(\xi)=0,$$

原题得证.