CAPES externe de Mathématiques session 1995 deuxième composition

Enoncé

http://perso.wanadoo.fr/megamaths

 $^{^{0}[}ag31e]$

OBJET ET NOTATIONS DU PROBLÈME

Ce problème a pour objet l'étude de certaines propriétés des matrices symétriques réelles.

L'espace \mathbb{R}^n sera muni de sa structure canonique d'espace euclidien, sa base canonique sera notée $\mathscr{E} = (e_1, e_2, ..., e_n)$ et la norme euclidienne d'un élément x sera notée $\|x\|$. Relativement à une base fixée, un élément x (resp. y, etc.) de \mathbb{R}^n sera représenté par la matrice colonne X (resp. Y, etc.) de ses coordonnées x_i (resp. y_i , etc.). On appellera plan vectoriel de \mathbb{R}^n tout sous-espace vectoriel de dimension 2 de \mathbb{R}^n .

À toute matrice symétrique réelle A, de terme général a_{ij} , on associera la forme bilinéaire symétrique Φ_A définie sur l'espace euclidien R*, rapporté à sa base canonique \mathscr{E} , par

$$\forall (x, y) \in \mathbb{R}^n \times \mathbb{R}^n, \quad \Phi_{\mathbf{A}}(x, y) = {}^{\mathrm{t}}\mathbf{X} \, \mathbf{A}\mathbf{Y} = \sum_{\substack{1 \le i \le n \\ i \ne j \le n}} a_{ij} x_i y_j.$$

On notera Q_A la forme quadratique associée à Φ_A et Σ_A la A-sphère unité définie dans l'espace euclidien \mathbb{R}^n , rapporté à sa base canonique \mathscr{E} , par

$$\Sigma_{A} = \{x \in \mathbb{R}^n | Q_{A}(x) = {}^{\mathsf{T}}X | AX = 1\}.$$

Une forme quadratique Q sur un espace euclidien E est dite définie positive si et seulement si on a Q(x) > 0 pour tout x non nul de E. Dans l'algèbre des matrices carrées réelles à n lignes et n colonnes, on notera $S_n(\mathbf{R})$ le sous-espace vectoriel des matrices symétriques et $S_n^*(\mathbf{R})$ le sous-ensemble des matrices symétriques A telles que la forme quadratique Q_A soit définie positive.

I. Caractérisations de $S_n^+(R)$ liées à la A-sphère unité Σ_A

I.1. Premier exemple.

On considère la matrice symétrique réelle $A_1 = \begin{pmatrix} 2 & \sqrt{3} \\ \sqrt{3} & 4 \end{pmatrix}$.

- I.1.1. Déterminer les valeurs propres et les sous-espaces propres de A₁.
- I.1.2. Donner l'expression d'une matrice orthogonale directe P et d'une matrice diagonale D = $\begin{pmatrix} \lambda & 0 \\ 0 & \mu \end{pmatrix}$ telles que $\lambda < \mu$ et que 'P A₁ P = D. En déduire que A₁ appartient à $S_2^{+}(\mathbf{R})$.
- I.1.3. Déterminer la nature de la conique Σ_{A_1} et son excentricité.

I.2. Deuxième exemple.

On considère la matrice symétrique réelle $A_2 = \begin{pmatrix} 2 & 2\sqrt{2} \\ 2\sqrt{2} & 4 \end{pmatrix}$.

Démontrer directement que $Q_{A_2}(x) \ge 0$ pour tout x de \mathbb{R}^2 mais que A_2 n'appartient pas à $S_2^+(\mathbb{R})$. Déterminer la nature de la conique Σ_{A_2} .

I.3. Caractérisation de $S_n^+(\mathbf{R})$ par la compacité de Σ_A .

Soit A un élément de $S_n(\mathbf{R})$. Démontrer que les propositions suivantes sont équivalentes :

- i. A appartient à S⁺(R).
- ii. Les valeurs propres de A sont toutes strictement positives.
- iii. Σ_A est un compact non vide de \mathbb{R}^n .

Caractériser en fonction des valeurs propres de A les cas où Σ_A est vide.

I.4. Caractérisation de $S_n^+(R)$ par les sections planes de Σ_A .

- 1.4.1. Soit A un élément de $S_n^+(\mathbf{R})$. Démontrer que la restriction de Q_A à un plan vectoriel Π de \mathbf{R}^n est une forme quadratique définie positive.
- I.4.2. Soit A un élément de $S_n(R)$. Démontrer que A appartient à $S_n^+(R)$ si et seulement si tout plan vectoriel de R^n coupe Σ_A suivant une ellipse.

II. Sections circulaires de la A-sphère unité Σ_A quand n=3

Soit A un élément de $S_3(\mathbb{R})$ et $\lambda_1 \leq \lambda_2 \leq \lambda_3$ ses valeurs propres.

II.1. Cas où A a une valeur propre triple.

On suppose que A a une seule valeur propre triple : $\lambda_1 = \lambda_2 = \lambda_3$.

Quelle est, suivant le signe de la valeur propre, la nature de Σ_A ? En déduire que ou bien Σ_A est vide, ou bien tout plan vectoriel coupe Σ_A suivant un cercle.

II.2. Cas où A a une valeur propre double.

On suppose que A a deux valeurs propres distinctes, une simple et une double : $\lambda_1 = \lambda_2 < \lambda_3$ ou $\lambda_1 < \lambda_2 = \lambda_3$.

- II.2.1. Démontrer que Σ_A est invariante par toute rotation d'axe le sous-espace propre Δ relatif à la valeur propre simple.
- II.2.2. Démontrer que, si un plan vectoriel Π non perpendiculaire à Δ coupait Σ_A suivant un cercle Γ , alors Σ_A contiendrait la surface obtenue en faisant tourner Γ autour de Δ et que cette surface serait incluse dans une sphère centrée à l'origine. Démontrer que cela est impossible [on pourra étudier la distance de l'origine à un point de Σ_A].
- II.2.3. Déterminer, suivant le signe de la valeur propre double, le nombre de plans vectoriels coupant \(\Sigma_A\) suivant un cercle.

II.3. Cas où A n'a que des valeurs propres simples.

On suppose que A a trois valeurs propres distinctes : $\lambda_1 < \lambda_2 < \lambda_3$.

- II.3.1. Soit Π_0 le plan vectoriel engendré par les sous-espaces propres relatifs à λ_1 et λ_2 . Démontrer que si un plan vectoriel Π coupe Σ_A suivant un cercle, alors la restriction de Q_A à $\Pi \cap \Pi_0$ est une forme quadratique définie positive. En déduire qu'une condition nécessaire pour qu'il existe un plan vectoriel Π coupant Σ_A suivant un cercle est que $\lambda_2 > 0$.
- II.3.2. L'espace \mathbb{R}^3 étant rapporté à une base orthonormale de vecteurs propres de A, justifier que $\sqrt{\lambda_3 \lambda_2}$ $x_3 \sqrt{\lambda_2 \lambda_1}$ $x_1 = 0$ est l'équation d'un plan vectoriel Π . En remarquant que

$$\lambda_1 x_1^2 + \lambda_2 x_2^2 + \lambda_3 x_3^2 = \lambda_2 (x_1^2 + x_2^2 + x_3^2) + (\lambda_3 - \lambda_2) x_3^2 - (\lambda_2 - \lambda_1) x_1^2$$

démontrer que, si $\lambda_2 > 0$, le plan Π coupe Σ_A suivant un cercle.

Pour $\lambda_2 > 0$, déterminer un autre plan vectoriel Π' , distinct de Π , coupant Σ_A suivant un cercle.

Tournez la page S.V.P.

II.3.3. Étant donné deux plans vectoriels distincts Π et Π' , on rapporte \mathbb{R}^3 à une base orthonormale (f_1, f_2, f_3) telle que f_2 appartienne à la droite $\Pi \cap \Pi'$ et que f_1 et f_3 appartiennent aux plans bissecteurs de Π et Π' . Démontrer qu'il existe $(\alpha, \beta) \in \mathbb{R}^2$ tel que $\alpha^2 + \beta^2 = 1$, $\alpha \neq 0$, $\beta \neq 0$ et que $\mathscr{R} = (\alpha f_1 - \beta f_3, f_2)$ (resp. $\mathscr{B}' = (\alpha f_1 + \beta f_3, f_2)$) soit une base orthonormale de Π (resp. Π').

Exprimer $Q_A(s(\alpha f_1 - \beta f_3) + i f_2)$ et $Q_A(s(\alpha f_1 + \beta f_3) + i f_2)$ en fonction des scalaires s, t, α, β et des $u_{ij} = \Phi_A(f_i, f_j)$ avec $1 \le i \le j \le 3$. En déduire une équation de $\Pi \cap \Sigma_A$ (resp. $\Pi' \cap \Sigma_A$) dans la base \mathscr{B} (resp. \mathscr{B}').

Démontrer que, si ces intersections sont des cercles, on a $u_{12} = u_{13} = u_{23} = 0$ et $u_{22} = \alpha^2 u_{11} + \beta^2 u_{33}$. En déduire que (f_1, f_2, f_3) est alors une base de vecteurs propres de A et que la valeur propre relative à f_2 est comprise entre celles relatives à f_1 et f_3 .

II.3.4. Déduire de ce qui précède qu'il existe exactement deux plans vectoriels distincts coupant Σ_A suivant un cercle lorsque $\lambda_2 > 0$.

II.4. Exemple.

L'espace R³ est rapporté à sa base canonique. On considère la matrice symétrique réelle

$$\mathbf{A}_3 = \begin{pmatrix} 4 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 4 \end{pmatrix}.$$

- II.4.1. Démontrer que, pour tout x de \mathbb{R}^3 , on a $\mathbb{Q}_{A_3}(x) \ge 3 \|x\|^2$ [on pourra, après l'avoir justifiée, se servir de l'inégalité $2uv \le u^2 + v^2$]. Quelle est la nature géométrique de l'intersection de Σ_{A_3} avec un plan vectoriel?
- II.4.2. En remarquant que l'équation de Σ_{A_3} peut s'écrire :

$$4(x_1^2 + x_2^2 + x_3^2) - x_2(2x_1 - x_2 + 2x_3) = 1,$$

déterminer deux plans vectoriels distincts coupant Σ_{A_1} suivant un cercle. Y en a-t-il d'autres ?

II.4.3. Déterminer, selon les valeurs du nombre réel h, la nature géométrique de l'intersection de Σ_{A3} avec les plans affines d'équation $x_2 = h$ et $2x_1 - x_2 + 2x_3 = h$.

III. Décomposition de Choleski

III.1. Existence d'une décomposition.

- III.1.1. Démontrer qu'une matrice A appartient à $S_n^+(R)$ si et seulement si il existe une matrice inversible M telle que $A = {}^{\dagger}MM$ [on pourra diagonaliser A pour établir que la condition est nécessaire].
- III.1.2. Soit $\mathscr{V} = (v_1, v_2, ..., v_n)$ la famille des vecteurs-colonnes d'une matrice inversible M. Justifier que \mathscr{V} est une base de \mathbb{R}^n . Soit $\mathscr{W} = (w_1, w_2, ..., w_n)$ la base orthonormale obtenue par application à la base \mathscr{V} du procédé d'orthonormalisation de Schmidt. Démontrer que la matrice de passage T de la base \mathscr{W} à la base \mathscr{V} est triangulaire supérieure.

Soit O la matrice de passage de la base canonique $\mathscr E$ à la base $\mathscr W$. Justifier que O est orthogonale et démontrer que M = OF.

III.1.3. Déduire de ce qui précède que toute matrice A appartenant à $S_n^+(\mathbf{R})$ peut s'écrire sous la forme 'TT avec T une matrice triangulaire supérieure inversible.

III.2. Une application : majoration du déterminant de A.

Soit A un élément de $S_n^+(R)$ et T une matrice triangulaire supérieure telle que $A = {}^tTT$. On note a_{ij} le terme général de T. Démontrer que $0 < t_{ij}^2 < a_{ij}$ pour tout $i \in \{1, 2, ..., n\}$.

En déduire que $0 < \det A \le \prod_{1 \le i \le n} a_{ii}$. À quelle condition a-t-on $\det A = \prod_{1 \le i \le n} a_{ii}$?

III.3. Algorithme de décomposition.

L'espace \mathbb{R}^n est rapporté à sa base canonique. Soit A un élément de $S_n(\mathbb{R})$ de terme général a_{ij} .

III.3.1. Démontrer qu'il est équivalent de trouver une matrice triangulaire supérieure inversible T telle que A = 'TT et de trouver une écriture de la forme quadratique Q_A de la forme :

$$\forall x \in \mathbb{R}^n, \ Q_A(x) = \sum_{1 \le i \le n} \left(\sum_{i \le i \le n} t_{ij} x_j \right)^2$$

avec $t_{ii} > 0$ pour tout $i \in \{1, 2, ..., n\}$.

III.3.2. Pour $n \ge 2$ on identifie \mathbb{R}^n avec le produit $\mathbb{R} \times \mathbb{R}^{n-1}$ et on note \bar{x} la projection sur \mathbb{R}^{n-1} d'un élément x de \mathbb{R}^n . Démontrer que, si $a_{i1} > 0$ et si on pose $t_{ij} = \frac{a_{ij}}{\sqrt{a_{i1}}}$ pour $j \in \{1, 2, ..., n\}$, il existe une unique matrice \bar{A} élément de $S_{n-1}(\mathbb{R})$ telle que :

$$\forall x \in \mathbb{R}^n, \quad Q_A(x) = \left(\sum_{i \leq i \leq n} t_{ij} x_i\right)^2 + Q_A(\tilde{x}).$$

Démontrer que, si A appartient à $S_n^+(\mathbf{R})$, alors À existe et appartient à $S_{n++}^+(\mathbf{R})$.

III.3.3. On considère l'algorithme suivant :

 $Poser A_i = A_i.$

- si k < n et si le terme de la première ligne, première colonne, de A_k est strictement positif, poser A_{k+1} = A_k et recommencer.
- sinon, arrêter

Démontrer que A appartient à $S_n^+(R)$ si et seulement si l'algorithme s'arrête pour k=n avec l'unique terme de A_n strictement positif. Démontrer qu'on a alors déterminé une décomposition $A=^tTT$ avec T triangulaire supérieure inversible.

III.4. Exemple.

Un entier $n \ge 1$ et un réel a > 0 étant fixés, on applique l'algorithme à la matrice symétrique A(n; a) à n lignes et n colonnes dont le terme général a_{ij} vaut a si i = j, vaut 1 si i = j + 1 ou i = j - 1 et vaut 0 autrement.

III.4.1. Démontrer que, si on parvient à la k-ième itération, quel que soit $x \in \mathbb{R}^n$ on a :

$$Q_{A(n;a)}(x) = \sum_{1 \le i \le k} \left(u_i x_i + \frac{x_{i+1}}{u_i} \right)^2 + \left(a - \frac{1}{u_k^2} \right) x_{k+1}^2 + a \sum_{k+2 \le i \le n} x_i^2 + 2 \sum_{k+2 \le i \le n} x_{i-1} x_i$$

où les u_i sont définis par $u_1 = \sqrt{a}$ et $u_i = \sqrt{a - \frac{1}{u_{i-1}^2}}$ pour $2 \le i \le k$. Démontrer qu'on a $u_1 > u_2 > ... > u_k$.

À quelle condition pourra-t-on faire une (k+1)-ième itération?

Tournez la page S.V.P.

- III.4.2. Démontrer que, si $a \ge 2$, la matrice A(n; a) appartient à $S_n^+(R)$ quel que soit n.
- III.4.3. Démontrer que, si a < 2, il existe un entier naturel N(a) tel que la matrice A(n; a) appartienne à $S_n^+(R)$ si et seulement si $n \le N(a)$. Calculer N(1), $N(\sqrt{2})$, N(1,9).
- III.4.4. Donner l'expression de la décomposition $A(n; 2) = {}^{t}TT$ résultant de l'algorithme.