Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Previously presented) A method for designing a specific polyamide

$$X_1X_2...X_{m}$$
- γ - $X_{(m+1)}...X_{(2m-1)}X_{2m}$ - R_1

wherein

 X_1 , X_2 , X_m , $X_{(m+1)}$, $X_{(2m-1)}$, and X_{2m} are carboxamide residues forming carboxamide binding pairs X_1/X_{2m} , $X_2/X_{(2m-1)}$, $X_m/X_{(m+1)}$;

γ is γ-aminobutyric acid or 2,4 diaminobutyric acid, and

R₁ is -NH(CH₂)₀₋₁₀₀NR₂R₃, -NH(CH₂)₀₋₁₂CONH(CH₂)₀₋₁₀₀NR₂R₃, or -NHR₂, where R₂ and R₃ are independently selected from the group consisting of H, Cl, NO, N-acetyl, benzyl, C₁.

100 alkyl, C₁₋₁₀₀ alkylamine, C₁₋₁₀₀ alkyldiamine, C₁₋₁₀₀ alkylcarboxylate, C₁₋₁₀₀ alkenyl, a C₁₋₁₀₀ alkynyl, and C₁₋₁₀₀ alkyl-L, where L is selected from the group consisting of arylboronic acids, biotins, polyhistidines comprised from about 2 to 8 amino acids, haptens, solid phase supports, oligodeoxynucleotides, N-ethylnitrosourea, fluorescein, bromoacetamide, iodoacetamide, DL-α-lipoic acid, acridine, captothesin, pyrene, mitomycin, texas red, anthracene, anthrinilic acid, avidin, DAPI, and oligodeoxynucleotide, isosulfan blue, malachite green, psoralen, ethyl red, 4-(psoraen-8-yloxy)-butyrate, tartaric acid, and (+)-α-tocopheral, suitable for use as a DNA-binding ligand that is selective for identified target DNA-sequences 5'-WN₁N₂...N_mW-3' where m is an integer having a value from 3 to 6, the method comprising:

- (a) identifying a target sequence of double stranded DNA having the form 5'- WN_1N_2 ... N_mW-3 ', N_1N_2 ... N_m being the sequence to be bound by carboxamide residues, wherein each N is independently chosen from the group A, G, C, and T, each W is independently chosen from the group A and T, and m is an integer having a value from 3 to 6;
- (b) representing the identified sequence as 5'-Wab ... xW-3', wherein a is a first nucleotide to be bound by the X_1 carboxamide residue, b is a second nucleotide to be bound by the X_2 carboxamide residue, and x is the corresponding nucleotide to be bound by the X_m carboxamide residue;
- (c) defining a as A, G, C, or T to correspond to the first nucleotide to be bound by a carboxamide residue in the identified sequence;
- (d) selecting Im as the X_1 carboxamide residue and Py as the X_{2m} carboxamide residue if a = G;
- (e) selecting Py as the X_1 carboxamide residue and Im as the X_{2m} carboxamide residue if a = C;
- (f) selecting Hp as the X_1 carboxamide residue and Py as the X_{2m} carboxamide residue if a = T;
- (g) selecting Py as the X_1 carboxamide residue and Hp as the X_{2m} carboxamide residue if a = A; and
 - (h) repeating steps c g for b through x until all carboxamide residues are selected;

wherein Im is N-methylimidazole, Hp is 3-hydroxy-N-methylpyrrole, Py is N-methylpyrrole, A is adenine, G is guanine, C is cytosine, and T is thymine; and synthesizing the polyamide.

- 2. (Cancelled)
- 3. (Previously presented) The method of claim 1 further comprising the step of determining if the binding affinity of the polyamide to the identified target sequence is subnanomolar.
- 4. (Previously presented) The method of claim 1 further comprising the step of determining if the polyamide exhibits a binding affinity that is at least ten-fold higher for said identified target sequence compared to a non-target DNA sequence.
- 5. (Previously presented) The method of claim 1 further comprising the step of replacing at least one pyrrole residue with a β -alanine residue.
 - 6-41. (Cancelled)
- 42. (Previously presented) The method of claim 1 wherein the identified target DNA sequence is a regulatory sequence.
- 43. (Previously presented) The method of claim 1 wherein the identified target DNA sequence is a promoter sequence.
- 44. (Previously presented) The method of claim 1 wherein the identified target DNA sequence is a coding sequence.

- 45. (Previously presented) The method of claim 1 wherein the identified target DNA sequence is a non-coding sequence.
- 46. (Previously presented) A polyamide composition produced by the method of claim 1 wherein the binding of the carboxamide binding pairs to the identified target DNA sequence modulates the expression of a gene.
- 47. (Previously presented) A composition comprising an effective amount of a polyamide produced by the method of claim 1 and a pharmacologically suitable excipient.
- 48. (Previously presented) A diagnostic kit comprising a polyamide produced by the method of claim 1.
- 49. (Previously presented) A polyamide designed by the method of claim 1, having the structure:

R₄ is selected from the group consisting of H, NH₂, SH, Cl, Br, F, N-acetyl, and N-formyl;

 R_5 is H or NH_2 ;

R₁ is -NH(CH₂)₀₋₁₀₀NR₂R₃, -NH(CH₂)₀₋₁₂CONH(CH₂)₀₋₁₀₀NR₂R₃, or -NHR₂, where R₂ and R₃ are independently selected from the group consisting of H, Cl, NO, N-acetyl, benzyl, C₁₋₁₀₀ alkyl, C₁₋₁₀₀ alkylamine, C₁₋₁₀₀ alkyldiamine, C₁₋₁₀₀ alkylcarboxylate, C₁₋₁₀₀ alkenyl, a C₁₋₁₀₀ alkynyl, and C₁₋₁₀₀ alkyl-L, where L is selected from the group consisting of arylboronic acids, biotins, polyhistidines comprised from about 2 to 8 amino acids, haptens, solid phase supports, oligodeoxynucleotides, N-ethylnitrosourea, fluorescein, bromoacetamide, iodoacetamide, DL-α-lipoic acid, acridine, captothesin, pyrene, mitomycin, texas red, anthracene, anthrinilic acid, avidin, DAPI, and oligodeoxynucleotide, isosulfan blue, malachite green, psoralen, ethyl red, 4-(psoraen-8-yloxy)-butyrate, tartaric acid, and (+)-α-tocopheral;

each X is independently selected from the group consisting of N, CH, and COH; each a is an integer from 2 to 5; and each b is an integer from 3 to 6.

50. (New) A method for designing a specific polyamide

$$X_1 X_2 \dots X_{m} \hbox{-} \gamma \hbox{-} X_{(m+1)} \dots X_{(2m-1)} X_{2m} \hbox{-} R_1$$

wherein

 X_1 , X_2 , X_m , $X_{(m+1)}$, $X_{(2m-1)}$, and X_{2m} are carboxamide residues forming carboxamide binding pairs X_1/X_{2m} , $X_2/X_{(2m-1)}$, $X_m/X_{(m+1)}$, and wherein one carboxamide binding pair is substituted with a β/β , wherein β is β -alanine;

γ is γ-aminobutyric acid or 2,4 diaminobutyric acid, and

R₁ is -NH(CH₂)₀₋₁₀₀NR₂R₃, -NH(CH₂)₀₋₁₂CONH(CH₂)₀₋₁₀₀NR₂R₃, or -NHR₂, where R₂ and R₃ are independently selected from the group consisting of H, Cl, NO, N-acetyl, benzyl, C₁₋₁₀₀ alkyl, C₁₋₁₀₀ alkylamine, C₁₋₁₀₀ alkyldiamine, C₁₋₁₀₀ alkylcarboxylate, C₁₋₁₀₀ alkenyl, a C₁₋₁₀₀ alkynyl, and C₁₋₁₀₀ alkyl-L, where L is selected from the group consisting of arylboronic acids, biotins, polyhistidines comprised from about 2 to 8 amino acids, haptens, solid phase supports, oligodeoxynucleotides, N-ethylmtrosourea, fluorescein, bromoacetamide, iodoacetamide, DL-α-lipoic acid, acridine, captothesin, pyrene, mitomycin, texas red, anthracene, anthrinilic acid, avidin, DAPI, and oligodeoxynucleotide, isosulfan blue, malachite green, psoralen, ethyl red, 4-(psoraen-8-yloxy)-butyrate, tartaric acid, and (+)-α-tocopheral, suitable for use as a DNA-binding ligand that is selective for identified target DNA-sequences 5'-WN₁N₂...N_mW-3' where m is an integer having a value from 3 to 6, the method comprising:

- (a) identifying a target sequence of double stranded DNA having the form 5'-WN₁N₂ ... N_mW-3', N₁N₂ ... N_m being the sequence to be bound by carboxamide residues, wherein each N is independently chosen from the group A, G, C, and T, each W is independently chosen from the group A and T, and m is an integer having a value from 3 to 6;
- (b) representing the identified sequence as 5'-Wab ... xW-3', wherein a is a first nucleotide to be bound by the X_1 carboxamide residue, b is a second nucleotide to be bound by the X_2 carboxamide residue, and x is the corresponding nucleotide to be bound by the X_m carboxamide residue;
- (c) defining a as A, G, C, or T to correspond to the first nucleotide to be bound by a carboxamide residue in the identified sequence;

- (d) selecting Im as the X_1 carboxamide residue and Py as the X_{2m} carboxamide residue if a = G;
- (e) selecting Py as the X_1 carboxamide residue and Im as the X_{2m} carboxamide residue if a = C;
- (f) selecting Hp as the X_1 carboxamide residue and Py as the X_{2m} carboxamide residue if a = T;
- (g) selecting Py as the X_1 carboxamide residue and Hp as the X_{2m} carboxamide residue if a = A; and
- (h) repeating steps c g for b through x until all carboxamide residues are selected; wherein Im is N-methylimidazole, Hp is 3-hydroxy-N-methylpyrrole, Py is N-methylpyrrole, A is adenine, G is guanine, C is cytosine, and T is thymine; and synthesizing the polyamide.