Lecture 11. Introduction to Artificial Neural Networks

COMP90051 Statistical Machine Learning

Semester 2, 2015 Lecturer: Andrey Kan

Content is largely based on slides provided by Jeffrey Chan and Ben Rubinstein

Introduction to Artificial Neural Networks

A biologically-inspired non-linear model that can be competitive with state-of-the-art, with learning algorithms based on gradient descent.

The Human Brain

- 10¹¹ neurons of over 20 types, 10¹⁴ synapses
 - Signals are noisy "spike trains" of electrical potential
- Neurons (nerve cells) have:
 - Dendrites (inputs) and an axon (outputs)
- Synapses (connections b/w cells)
 - Can be excitatory or inhibitory
 - May change over time (plasticity)

Artificial Neural Networks

- ANNs made up of nodes having
 - inputs edges, each with some weight
 - outputs edges (with weights)
 - a transfer function (aka activation function) which is a function of inputs

 Weights of edges can be positive or negative and may change over time (learning).

Artificial Neural Networks: Activation

- The *input function* is the weighted sum of input activation levels: $in_i = \sum_{j=1}^n w_j x_j$
- The transfer function is the function of input: $a_i = f(in_i) = f(\sum_{j=1}^n w_j x_j)$

Artificial Neural Networks: Architecture?

- How can the weights be changed to produce the desired output?
- What is the best topology?

The Perceptron

ANN building block; yet another linear learner.

Perceptron Model

Compare to linear regression and linear logistic regression

- x_1 , x_2 inputs
- w_1 , w_2 synaptic weights
- w_0 bias weight
- *f* transfer function

Transfer functions *f*

Step function

$$f(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ 0, & \text{if } s < 0 \end{cases}$$

Sign function

$$f(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ -1, & \text{if } s < 0 \end{cases}$$

Logistic function

$$f(s) = \frac{1}{1 + e^{-s}}$$

Many others: *tanh*, rectifier, etc.

Still, for classification just a linear separator (s is a linear function of input)

Binary Classification

Consider a binary classification task with labels -1 and 1

Classifier: perceptron with sign function

Stochastic Gradient Descent

- 1. Initialisation: choose starting guess $oldsymbol{w}^{(0)}$, k=0
- 2. Randomly choose one training example (x, y)
- 3. Compute discrepancy $D = \left(y f(\sum_{i=0}^{n} w_i^{(k)} x_i)\right)^2$
- 4. <u>Termination</u>: decide whether to stop
- 5. Update: $w_i^{(k+1)} = w_i^{(k)} \eta \frac{\partial D}{\partial w_i}$
- 6. Go to Step 2

Problems?

Stochastic Gradient Descent

- 1. Initialisation: choose starting guess $oldsymbol{w}^{(0)}$, k=0
- 2. Randomly choose one training example (x, y)
- 3. Compute discrepancy $D = -y \sum_{i=0}^{n} w_i^{(k)} x_i$
- 4. Termination: decide whether to stop
- 5. Update: $w_i^{(k+1)} = w_i^{(k)} \eta \frac{\partial D}{\partial w_k}$
- 6. Go to Step 2

Taking derivatives is convenient!

Perceptron (Online) Learning Rule

discrepancy
$$D = -y \sum_{i=0}^{n} w_i^{(k)} x_i$$

If
$$f(s) = -1$$
, but $y = 1$:
 $w_i \leftarrow w_i + \eta x_i$
 $w_0 \leftarrow w_0 + \eta$

If
$$f(s) = 1$$
, but $y = -1$:
 $w_i \leftarrow w_i - \eta x_i$
 $w_0 \leftarrow w_0 - \eta$

so that:

$$s \leftarrow s + \eta \left(1 + \sum_{i} x_i^2 \right)$$

so that:

$$s \leftarrow s - \eta \left(1 + \sum_{i} x_i^2 \right)$$

Otherwise, weights are unchanged

 $\eta > 0$ is called *learning rate*

Perceptron (Online) Learning Rule

- This rule is equivalent to
 - Minimising loss over training data (like in linear regression)
 - Using gradient descent to do the minimisation (different from linear regression)
 - Stochastic gradient descent: applying gradient descent for training examples one by one (→ a method for online learning)
- Theorem: A perceptron will learn to classify the data correctly if:
 - The data is linearly separable
 - * η is suitably small

Basic setup

Start with random weights

Consider training example 1

Update weights

Consider training example 2

Update weights

<u>Further examples</u>

<u>Further examples</u>

Modelling Boolean Functions

Consider a Boolean function of two variables, e.g., $y = x_1$ AND x_2

Classifier: perceptron with step function

$$f(s) = \begin{cases} 1, & \text{if } s \ge 0 \\ 0, & \text{if } s < 0 \end{cases}$$

More Examples and Limitations

Some function are linearly separable, but many are not

Possible solution: composition

$$x_1 \text{ XOR } x_2 = (x_1 \text{ OR } x_2) \text{ AND } \overline{(x_1 \text{ AND } x_2)}$$

Summary

- Neural networks are biologically inspired
- Perceptron as a building block of ANN
 - Graphical representation of an equation
 - Linear model (plus transformation)
- Online learning rule
 - Perceptron can learn any linearly separable function