1 Wstęp

W obwodach RLC, czyli składających się z rezystorów, cewek oraz kondensatorów zasilanych prądem zmiennym może wystąpić zjawisko rezonansu elektromagnetycznego. Prąd w obwodzie gwałtownie osiąga wtedy maksimum. Ma to miejsce, gdy $X_L+X_C=0$, gdzie $X_L=\omega L$ - reaktancja cewki, a $X_C=-\frac{1}{\omega C}$ - reaktancja kondensatora. Z tej równości można wyznaczyć:

$$f_r = \frac{1}{2\pi\sqrt{LC}}. (1)$$

Dla f_r amplituda prądu osiąga maksymalną wartość:

$$I = \frac{U_0}{Z} = \frac{U_0}{R + j\omega L + \frac{1}{j\omega C}} = \frac{U_0}{R}.$$
 (2)

Wynika to z prawa Ohma oraz faktu, że impedancja dla częstotliwości rezonansowej zależy jedynie od części rzeczywistej, czyli rezystancji. Łatwo więc zauważyć, że krzywa rezonansowa powinna osiągać większą amplitudę wraz ze spadkiem rezystancji.

Rysunek 1: Schemat wykorzystanego układu pomiarowego

Dobroć układu - stosunek wymuszonych drgań rezonansowych do analogicznej amplitudy w obszarze częstotliwości nierezonansowych:

$$Q = \frac{f_r}{\Delta f} = \frac{U_C}{U_0},\tag{3}$$

gdzie:

- Δf szerokość krzywej rezonansowej w połowie jej wysokości,
- U_C napięcie na kondensatorze.

2 Wykorzystane wzory

Niepewność napięcia źródła

$$u(U_0) = 3\% \ rdg \tag{4}$$

Niepewność pomiaru rezystancji

$$u(R_i) = 0.5\% \ rdg + 1 \ dgt$$
 (5)

Niepewność pomiaru pojemności

$$u(C) = 5\% \ rdg + 10 \ dgt \tag{6}$$

Niepewność pomiaru częstotliwości

$$u(f) = 1\% \ rdg + 1 \ dgt \tag{7}$$

Niepewność pomiaru prądu

$$u(I) = 2.5\% \ rdg + 3 \ dgt$$
 (8)

Niepewność pomiaru napięcia

$$u(U) = 0.8\% \ rdg + 1 \ dgt$$
 (9)

Wyznaczana pojemność kondensatora

$$C = \frac{1}{(2\pi f_r)^2 L} \tag{10}$$

Niepewność wyznaczanej pojemności kondensatora

$$u_C(C) = \frac{1}{2\pi^2} \sqrt{\left[\frac{u(L)}{2f_r^2 L^2}\right]^2 + \left[\frac{u(f_r)}{f_r^3 L}\right]^2}$$
 (11)

Wyznaczana (szacowana z wykresu) dobroć układu

$$Q = \frac{U_C}{U_0} \left(= \frac{f_r}{\Delta f}\right) \tag{12}$$

Niepewność wyznaczanej dobroci układu

$$u_C(Q) = \sqrt{\left[\frac{u(U_C)}{U_0}\right]^2 + \left[\frac{U_C}{U_0^2}u(U_0)\right]^2}$$
(13)

3 Przykładowe obliczenia

Niepewność napięcia źródła

$$u(3) = 0.8\% \cdot 3 = 0.09 [V]$$

Niepewność pomiaru rezystancji

$$u(55.7) = 0.5\% \cdot 55.5 + 0.1 = 0.38 [\Omega]$$

Niepewność pomiaru pojemności

$$u(100) = 5\% \cdot +10 = 15 [nF]$$

Niepewność pomiaru częstotliwości

$$u(1000) = 1\% \cdot 1000 + 1 = 11 [Hz]$$

Niepewność pomiaru prądu

$$u(0.190) = 2.5\% \cdot 0.190 + 0.003 = 0.035$$

Niepewność pomiaru napięcia

$$u(3.053) = 0.8\% \cdot 3.053 + 0.001 = 0.026$$

4 Opracowanie pomiarów

Tablica 1: Zmierzone bezpośrednio parametry obwodu RLC

i	1	2	3	
$R_i [\Omega]$	55.70	111.50	275.9	
$u(R_i) [\Omega]$	0.38	0.66	1.5	
$C_2 [nF]$	100 ± 15			
$L_2 [mH]$	33.0 ± 3.3			
$U_0[V]$	3.00 ± 0.09			

Tablica 2: Wyniki pomiarów dla obwodu z opornikiem R₁

Tablica 2: Wyniki pomiarow dla obwodu z opornikiem R_1					
f[Hz]	u(f) [Hz]	I [mA]	u(I) [mA]	U[V]	u(U) [V]
100	2	0.190	0.035	3.053	0.026
500	6	1.040	0.056	3.108	0.026
1000	11	2.220	0.086	3.279	0.028
1500	16	3.72	0.13	3.630	0.031
2000	21	5.97	0.18	4.360	0.036
2500	26	10.15	0.29	5.780	0.048
2600	27	11.49	0.32	6.230	0.051
2700	28	13.09	0.36	6.790	0.056
2800	29	15.05	0.41	7.470	0.061
2900	30	17.46	0.47	8.280	0.068
3000	31	20.36	0.54	9.240	0.075
3100	32	23.62	0.63	10.290	0.084
3200	33	26.88	0.71	11.260	0.092
3300	34	29.44	0.77	11.920	0.097
3400	35	30.6	0.8	12.030	0.098
3500	36	30.23	0.79	11.580	0.094
3600	37	28.70	0.75	10.750	0.087
3700	38	26.6	0.7	9.77	0.08
3800	39	24.40	0.64	8.800	0.072
3900	40	22.29	0.59	7.920	0.065
4000	41	20.39	0.54	7.130	0.059
4100	42	18.7	0.5	6.430	0.053
4200	43	17.16	0.46	5.830	0.048
4300	44	15.82	0.43	5.300	0.044
4400	45	14.7	0.4	4.84	0.04
4500	46	13.62	0.38	4.440	0.037
5000	51	9.95	0.28	3.001	0.026
5500	56	7.74	0.23	2.203	0.019
6000	61	6.29	0.19	1.701	0.015
6500	66	5.26	0.17	1.364	0.012

Maksymalny prąd I = (30.6 \pm 0.8) A przy częstotliwości f = (3400 \pm 35) Hz. Napięcie na kondensatorze dla tej częstotliwości wynosi U = (12.030 \pm 0.098) V. Dobroć układu Q = 4.01 \pm 0.13.

Tablica 3: Wyniki pomiarów dla obwodu z opornikiem R₂

Tablica 3. Wylliki poliliarow dia obwodu z oporilikieni κ_2					
f[Hz]	u(f) [Hz]	I [mA]	u(I) [mA]	U[V]	u(U) $[V]$
100	2	0.190	0.035	3.053	0.026
500	6	1.040	0.056	3.105	0.026
1000	11	2.210	0.086	3.265	0.028
1500	16	3.68	0.13	3.6	0.03
2000	21	5.79	0.18	4.240	0.035
2500	26	9.31	0.27	5.340	0.044
2600	27	10.30	0.29	5.650	0.047
2700	28	11.41	0.32	5.990	0.049
2800	29	12.64	0.35	6.360	0.052
2900	30	13.98	0.38	6.760	0.056
3000	31	15.37	0.42	7.150	0.059
3100	32	16.74	0.45	7.500	0.061
3200	33	17.56	0.47	7.770	0.064
3300	34	18.90	0.51	7.920	0.065
3400	35	19.44	0.52	7.910	0.065
3500	36	19.55	0.52	7.740	0.063
3600	37	19.27	0.52	7.450	0.061
3700	38	18.7	0.5	7.070	0.058
3800	39	17.92	0.48	6.630	0.055
3900	40	17.05	0.46	6.190	0.051
4000	41	16.13	0.44	5.760	0.048
4100	42	15.22	0.42	5.340	0.044
4200	43	14.35	0.39	4.950	0.041
4300	44	13.52	0.37	4.590	0.038
4400	45	12.71	0.35	4.250	0.035
4500	46	11.99	0.33	3.950	0.033
5000	51	9.21	0.27	2.793	0.024
5500	56	7.34	0.22	2.101	0.018
6000	61	6.06	0.19	1.645	0.015
6500	66	5.11	0.16	1.328	0.012

Maksymalny prąd I = (19.55 \pm 0.52) A przy częstotliwości f = (3500 \pm 36) Hz. Napięcie na kondensatorze dla tej częstotliwości wynosi U = (7.740 \pm 0.063) V. Dobroć układu Q = 2.580 \pm 0.081.

Tablica 4: Wyniki pomiarów dla obwodu z opornikiem R₃

Tablica 4. Vvylliki poliliarow dia obwodu z oporilikieni κ_3					
f[Hz]	u(f) [Hz]	I [mA]	u(I) [mA]	U[V]	u(U) $[V]$
100	2	0.19	0.035	3.052	0.026
500	6	1.03	0.056	3.086	0.026
1000	11	2.16	0.084	3.190	0.027
1500	16	3.45	0.12	3.383	0.029
2000	21	5.01	0.16	3.663	0.031
2500	26	6.83	0.21	3.960	0.033
2600	27	7.21	0.22	3.998	0.033
2700	28	7.57	0.22	4.120	0.034
2800	29	7.91	0.23	4.150	0.035
2900	30	8.23	0.24	4.170	0.035
3000	31	8.51	0.25	4.170	0.035
3100	32	8.76	0.25	4.150	0.035
3200	33	8.97	0.26	4.120	0.034
3300	34	9.11	0.26	4.070	0.034
3400	35	9.21	0.27	4.000	0.033
3500	36	9.25	0.27	3.920	0.033
3600	37	9.26	0.27	3.820	0.032
3700	38	9.21	0.27	3.710	0.031
3800	39	9.13	0.26	3.5	0.03
3900	40	9.01	0.26	3.417	0.029
4000	41	8.86	0.26	3.291	0.028
4100	42	8.69	0.25	3.163	0.027
4200	43	8.5	0.25	3.036	0.026
4300	44	8.3	0.24	2.910	0.025
4400	45	8.09	0.24	2.786	0.024
4500	46	7.88	0.23	2.667	0.023
5000	51	6.83	0.21	2.138	0.019
5500	56	5.89	0.18	1.728	0.015
6000	61	5.11	0.16	1.418	0.013
6500	66	4.46	0.15	1.182	0.011

Maksymalny prąd I = (9.25 \pm 0.27) A przy częstotliwości f = (3600 \pm 37) Hz. Napięcie na kondensatorze dla tej częstotliwości wynosi U = (3.820 \pm 0.032) V. Dobroć układu Q = 1.27 \pm 0.04.

Rysunek 2: Wykres zależności amplitudy prądu w funkcji częstotliwości dla układu z kondensatorem C_2 i cewką L_2 przy wyborze różnych wartości oporu

Wykres zależności amplitudy prądu w funkcji częstotliwości dla układu z kondensatorem C2 i cewką L2 przy wyborze różnych wartości oporu

5 Wnioski

- ullet Częstotliwość rezonansowa układu wynosi f $_r=$ (3 500.00 \pm 20.79) Hz
- \bullet Zmierzona bezpośrednio pojemność kondensatora C $_2$ wynosi C = (100 \pm 15) nF.
- ullet Wyznaczona pośrednio pojemność kondensatora C_2 wynosi $\mathsf{C} = (103 \pm 11) \ \mathsf{nF}.$
- Pojemności wyznaczona pośrednio oraz zmierzona bezpośrednio są zbieżne, jednak metoda bezpośrednia w tym wypadku daje rezultat obarczony niepewnością większą o 4 nF.
- Wyznaczona dobroć układu z opornikiem:

$$- R_1$$
: Q = 4.01 ± 0.13,

$$-R_2$$
: Q = 2.580 \pm 0.081,

$$-R_3$$
: Q = 1.27 \pm 0.04.

• Szacowana dobroć układu z opornikiem:

$$- R_1: Q = 2.33,$$

$$- R_2: Q = 1.6,$$

$$- R_3: Q = 1.1.$$

Wartości oszacowane obarczone są dużą niepewnością, która może mocno fałszować wynik.