CODESIGN

LAB 2: CUDA Programming

Report Deadline: May 11th 2025.

Part1: (35%)

- **1-** Give the characteristics of the used NVIDIA dedicated GPU: Architecture, local, cache Memories sizes, Number of Streaming MultiProcessors, max number of work items, work groups, etc....
- 2- Test the 2 kernel invocations (MatmulXrow and MatmulYrow for N=8192) implemented in kernel.cu cuda file. (the A, B and C matrices contain Float elements).

Kernel	Total time (Float)
MatmulXrow	
MatmulYrow	

- **a-** Compare the performances of *MatmulXrow* and *MatmulYrow* and interpret the results.
- **b-** Based on your NVIDIA device characteristics (Architecture, CUDA Cores structure, local memory), do you think that the implementation of the same kernel with integer Matrices (A, B and C) will give the same results? Explain.
 - **3-** Change the type of matrices A, B and C to **Int** (integer) and test the 2 kernel implementations, for N=8192. Fill the table with value of "*Total execution Time*" (Data Transfer + Kernel execution).

Kernel	FLOAT	INT(integer)
MatmulXrow		
MatmulYrow		

- **c-** Compare the performances of the **Float** and **Integer** implementations and interpret the results. Explain if the results correspond to the results announced in **b**.
 - **4-** Implement a <u>CUDA kernel</u> based on the <u>Block Tiling</u> principle with Block Size= (16*16 and 32*32). Test the Kernel (only for float) and <u>compare</u> the results with those obtained by the kernel <u>MatmulYrow</u>.

Is the **gain** as significant as expected? (when considering the arithmetic Intensity)

Part2: (45%)

- 1- Starting from the performances, obtained by the 'Block Tiling' kernel, as a reference value:
 - Propose improvements that may increase the matrix multiplication performance.
 - For **each** of the proposed improvement:
 - Explain the used technique, how and why it improves the performances. Implement the corresponding kernel in CUDA and give the performance gain obtained

(= Proposed technique performance / 'Block Tiling' performance)

Recommended reading:

https://siboehm.com/articles/22/CUDA-MMM "How to Optimize a CUDA Matmul Kernel for cuBLAS-like Performance: a Worklog", December 2022.

Part3: (20%)

- **1-** Implement the matrix multiplication using the **cuBLAS** Library (Developped by NVIDIA for accelerating HPC application and optimized for NVIDIA architectures).
 - Give the Host program and the Kernel.
 - Compare the performances with the best implementation you proposed.

Optional: [Bonus Question]

- *I* Explain the principle and the benefits of the TensorCore used in NVIDIA Streaming Multiprocessors. Implement the matrix using the tensorCore :
 - Explain the implementation (Host program and Kernel).
 - Compare the performances with those obtained by cuBLAS Library.