2. Linear Least Squares

- Least squares for data fitting
- Linear systems
- Least squares properties
- QR factorization

Least squares for data fitting

Fitting a line to data

Fit a line to observations y_i given input z_i , i = 1, ..., n

minimize
$$\frac{1}{2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 subject to $sz_i + c = \hat{y}_i$

Fitting a line to data

$$\label{eq:minimize} \mathop{\mathrm{minimize}}_{s,c} \quad \sum_{i=1}^n (y_i - \hat{y}_i)^2 \qquad \text{subject to} \quad sz_i + c = \hat{y}_i$$

Reframe as least squares problem

minimize
$$||Ax - b||_2^2 = \sum_{i=1}^m (a_i^T x - b_i)^2$$

where

$$A = \begin{bmatrix} z_1 & 1 \\ z_2 & 1 \\ \vdots & \vdots \\ z_m & 1 \end{bmatrix}, \quad b = \begin{bmatrix} \hat{y}_1 \\ \hat{y}_2 \\ \vdots \\ \hat{y}_m \end{bmatrix}$$

Solution $x \in \mathbf{R}^2$ contains slope s and intercept c:

$$x = \begin{bmatrix} s \\ c \end{bmatrix}$$

Example: Polynomial data fitting

Given m distinct points t_i (eg, measurement times) and values (eg, measurement values):

$$(t_1, y_1), (t_2, y_2), \ldots, (t_m, y_m)$$

Goal: fit a polynomial of degree n to the m points:

$$p(t) = x_0 + x_1 t + x_2 t^2 + \ldots + x_n t^n$$
 $(x_i = \text{coeff's})$

If n = m - 1, then can fit perfectly:

Often better to approximate with a lower-order polynomial, eg, $b \ll m$. Must then settle for an approximate fit:

$$p(t_1) = y_1$$

$$p(t_2) = y_2$$

$$\vdots$$

$$p(t_m) = y_m$$
or
$$\begin{bmatrix} 1 & t_1 & t_1^2 \cdots t_1^n \\ 1 & t_2 & t_2^2 \cdots t_2^n \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ \vdots \\ x_n \end{bmatrix} \approx \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}$$

There are fewer unknowns than equations, and so we fit in the least-squares sense:

minimize
$$\frac{1}{2} \sum_{i=1}^{m} [p(t_i) - y]^2$$

Linear systems

Solving linear systems

Find x where $Ax \approx b$.

$$A = \begin{bmatrix} m & m & A = m \\ n & m & m \\ m > n & m < n & m = n \end{bmatrix}$$

- m > n overdetermined (possibly no solution)
- m < n underdetermined (possibly infinite solutions)
- m = n might be invertible (possibly 1 solution)

Least-squares problem finds "best" (in 2-norm sense) solution to $Ax \approx b$:

- residual vector r = Ax b
- find x^* such that $||Ax^* b||_{\mathbf{Z}} \le ||Ax b||_{\mathbf{Z}}$ for all x ie, $||r^*|| < ||r||$

Solving linear systems

Find x where Ax = b.

Least squares properties

Back to least squares

$$x^* = \underset{x}{\operatorname{argmin}} \|Ax - b\|_2^2$$

• Normal equations

$$A^T A x^* = A^T b$$

Residual

$$r^* = Ax^* - b, \qquad A^T r^* = 0$$

- x^* satisfying normal equations is minimizer, may not be unique
- $y^* = Ax^*$ is unique

(Why? Hint: reformulate as quadratic over y.)

• In MATLAB or Julia

$$x = A \setminus b$$

Geometry

Recall

• range $(A) = \{y : y = Ax \text{ for some } x\}$ • null $(A^T) = \{z : A^Tz = 0\}$ = $\{x + y \mid x \in R(A)\}$

Orthogonal complement:

$$\widehat{\mathbf{range}(A) \oplus \mathbf{null}(A^T)} = \mathbf{R}^m.$$

• for all $x \in \mathbf{R}^m$,

$$x = u + v$$
, $u \in \mathbf{range}(A)$, $v \in \mathbf{null}(A^T)$, $u^T v = 0$

u and v are uniquely determined.

Geometry

$$b = Ax_{LS} + r$$
, $Ax_{LS} \in \mathbf{range}(A)$, $r \in \mathbf{null}(A^T)$

Least-squares optimality

• orthogonality of residual r = Ax - b with columns of A

$$\begin{aligned} a_1^T r &= 0 \\ \vdots & \text{or} & \begin{bmatrix} a_1^T \\ a_2^T \\ \vdots \\ a_n^T \end{bmatrix} r &= 0 & \text{or} & A^T r &= 0 \\ \end{bmatrix}$$

equivalent conditions:

$$A^T r = 0$$
 $(r = Ax - b)$ and $A^T Ax = A^T b$

• projection $y := Ax_{LS}$ is **unique**: suppose $z \neq y$ and $z \in \mathbf{range}(A)$. Then $z-y\perp b-y$ and

$$\|b-y \text{ and } \|b-z\|^2 = \|b-y+y-z\|^2 = \|b-y\|^2 + \|y-z\|^2 > \|b-y\|^2$$

Thus, no vector other than y is optimal.

x_{LS} is unique if and only if A is full rank

$$\min_{x} \min_{0} \frac{1}{2} \|Ax - b\|_{2}^{2}$$

$$A = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} = e \in \mathbf{R}^m \quad \text{and} \quad b = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \quad \mathbf{e_1} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}$$

What is
$$x^*$$
?

$$A^{T}Az = A^{T}b$$

$$mz = \sum_{i=1}^{n} b_{i}$$

Least squares

minimize
$$f(x) := \frac{1}{2} ||Ax - b||_2^2 = \frac{1}{2} \sum_{i=1}^m (a_i^T x - b_i)^2$$

• Gradient

$$\nabla f(x) = A^T(Ax - b)$$
 is PSD if

Hessian

$$\nabla^2 f(x) = A^T A$$

$$\text{at } x \in \mathbb{R}^7.$$

• Is the Hessian positive definite? positive semidefinite?

Ans: Always positive semidefinite. Positive definite if A has full row rank.

• Conditions for $x = x^*$ to be a global minimizer?

$$A^T(Ax^* - b) = 0$$

These are the **normal equations** of the least squares problem.