Your attempts

Attempt 1

Status	Finished	
Started	Monday, 13 January 2025, 11:19 AM	
Completed	Monday, 13 January 2025, 11:47 AM	
Duration	28 mins 3 secs	

Review

You are transporting some boxes through a tunnel, where each box is a parallelepiped, and is characterized by its length, width and height.

The height of the tunnel **41** feet and the width can be assumed to be infinite. A box can be carried through the tunnel only if its height is strictly less than the tunnel's height. Find the volume of each box that can be successfully transported to the other end of the tunnel. Note: Boxes cannot be rotated.

Input Format

The first line contains a single integer **n**, denoting the number of boxes.

n lines follow with three integers on each separated by single spaces - length_i, width_i and height_i which are length, width and height in feet of the i-th box.

Constraints

 $1 \le n \le 100$

 $1 \le length_i$, width_i, height_i ≤ 100

Output Format

For every box from the input which has a height lesser than **41** feet, print its volume in a separate line.

Sample Input 0

4

555

1240

10541

7 2 42

Sample Output 0

125

80

Explanation 0

The first box is really low, only **5** feet tall, so it can pass through the tunnel and its volume is $5 \times 5 \times 5 \times 5 = 125$.

The second box is sufficiently low, its volume is $1 \times 2 \times 4 = 80$.

Answer: (penalty regime: 0 %)

```
#include<stdio.h>
    #define TUNNEL_HEIGHT 41
3
    int main()
 4
    {
 5
         int n;
 6
         scanf("%d",&n);
7
         for(int i=0;i<n;i++)</pre>
8
         {
 9
              int length,breadth,heigh
10
              scanf("%d %d %d",&length
11
              if(height<TUNNEL_HEIGHT)</pre>
12 •
13
                  int volume=length*b
14
                  printf("%d\n", volume
15
16
17
         return 0;
18
```

```
2
    IT 41
 4
 5
 6
    i++)
 8
 9
    readth, height;
10
     %d",&length,&breadth,&height);
    INNEL_HEIGHT)
11
12 *
13
    ime=length*breadth*height;
14
    %d\n", volume);
15
16
17
18
```

	Input	Expected	Got	
~	4 5 5 5 1 2 40 10 5 41 7 2 42	125 80	125 80	~

Passed all tests! 🗸

You are given n triangles, specifically, their sides a_i , b_i and c_i . Print them in the same style but sorted by their areas from the smallest one to the largest one. It is guaranteed that all the areas are different.

The best way to calculate a volume of the triangle with sides **a**, **b** and **c** is Heron's formula:

$$S = \ddot{O} p * (p - a) * (p - b) * (p - c)$$
 where $p = (a + b + c) / 2$.

Input Format

First line of each test file contains a single integer **n**. **n** lines follow with **a**_i, **b**_i and **c**_i on each separated by single spaces.

Constraints

$$1 \le n \le 100$$

 $1 \le a_i, b_i, c_i \le 70$
 $a_i + b_i > c_i, a_i + c_i > b_i \text{ and } b_i + c_i > a_i$

Output Format

Print exactly n lines. On each line print 3 integers separated by single spaces, which are a_i , b_i and c_i of the corresponding triangle.

Sample Input 0

3

7 24 25

5 12 13

345

Sample Output 0

345

5 12 13

7 24 25

Explanation 0

The square of the first triangle is **84**. The square of the second triangle is **30**. The square of the third triangle is **6**. So the sorted order is the reverse one.

```
#include<stdio.h>
    #include<math.h>
 2
 3
    #include<stdlib.h>
    double calculateArea(int a,int )
 4
 5 🔻
    {
        double p=(a+b+c)/2.0;
 6
 7
        return sqrt(p*(p-a)*(p-b)*(
 8
    int compare(const void*t1,const
 9 .
        int *triangle1=(int*)t1;
10
11
        int *triangle2=(int*)t2;
12
        double area1=calculateArea(
13
        double area2=calculateArea(
        if(area1<area2)</pre>
14
15 *
         {
16
             return -1;
17
18
        if(area1>area2)
19 *
20
             return 1;
21
22
        return 0;
23
24
    int main()
25 *
    {
26
        int n;
        scanf("%d",&n);
27
28
        int triangle[n][3];
29 *
        for(int i=0;i<n;i++){
30
             scanf("%d %d %d",&trians
31
         }
32
        qsort(triangle,n,sizeof(triangle,n)
33
        for(int i=0;i<n;i++)
34 *
         {
35
             printf("%d %d %d\n",tria
36
37
        return 0;
38
    }
39
```

```
1
 2
 3
 4
 5 v
 6
 7
 8
 9 *
10
11
12
    ],triangle1[1],triangle1[2]);
    ],triangle2[1],triangle2[2]);
13
14
15 ▼
16
17
18
19 *
20
21
22
23
24
25 ▼
26
27
28
29 *
30
    triangle[i][1],&triangle[i][2]);
31
32
    ompare);
33
34 *
    ,triangle[i][1],triangle[i][2]);
35
36
37
38
39
```

	Input	Expected	Got	
~		3 4 5 5 12 13 7 24 25		~

Passed all tests! 🗸