● 4회차

16 4 17 2

[서술형 1] 5

[서술형 2] $-\frac{1}{2}$

[서술형 3] 192

01
$$\frac{x^2+x}{x-1} \div \frac{x+1}{2x^2-2x} = \frac{x(x+1)}{x-1} \div \frac{x+1}{2x(x-1)}$$

$$= \frac{x(x+1)}{x-1} \times \frac{2x(x-1)}{x+1}$$

$$= 2x^2$$

02
$$f(2) = \frac{2 \cdot 2 + 1}{2 - 1} = 5$$

 $f^{-1}(3) = k$ 라 하면 $f(k) = 3$ 이므로
 $\frac{2k + 1}{k - 1} = 3, 2k + 1 = 3k - 3$
 $\therefore k = 4, 즉 f^{-1}(3) = 4$
 $\therefore f(2) + f^{-1}(3) = 5 + 4 = 9$

03
$$y = \frac{ax+5}{x+3} = \frac{a(x+3)-3a+5}{x+3} = \frac{-3a+5}{x+3} + a$$
 이므로 점근선의 방정식은 $x=-3, y=a$ 즉 $a=1, k=-3$ 이므로 $a+k=1+(-3)=-2$

04
$$y = \frac{3x-5}{x-2} = \frac{3(x-2)+1}{x-2} = \frac{1}{x-2} + 3$$

① 정의역은 $\{x \mid x \neq 2$ 인 실수 $\}$ 이다.

②
$$x=0$$
을 $y=\frac{3x-5}{x-2}$ 에 대입하면
$$y=\frac{-5}{-2}=\frac{5}{2}$$

즉 그래프와 y축의 교점의 좌표는 $\left(0, \frac{5}{2}\right)$ 이다.

③ 함수 $y = \frac{3x-5}{x-2}$ 의 그래프는 다음 그림과 같으므로 그래프는 제3사분면을 지나지 않는다.

- ④ 그래프는 점 (2,3)에 대하여 대칭이다.
- ⑤ 그래프는 함수 $y = \frac{1}{x}$ 의 그래프를 x축의 방향으로 2만큼, y축의 방향으로 3만큼 평행이동한 것이다. 따라서 옳지 않은 것은 ④이다.
- **05** 점근선의 방정식이 x=-1, y=1이므로 주어진 함수의 식을 $y=\frac{k}{x+1}+1$ (k<0)로 놓을 수 있다. 이 함수의 그래프가 원점을 지나므로 $0=\frac{k}{0+1}+1$ $\therefore k=-1$ 따라서 구하는 함수의 식은 $y=\frac{-1}{x+1}+1=\frac{-1+(x+1)}{x+1}=\frac{x}{x+1}$ 이므로 a=1,b=0,c=1 $\therefore a+b+c=1+0+1=2$

Lecture 유리함수의 식 구하기

점근선의 방정식이 x=p, y=q이고 점 (a,b)를 지나는 유리함수의 식은 $y=\frac{k}{x-p}+q$ $(k\neq 0)$ 로 놓은 후 x=a, y=b를 대입하여 상수 k의 값을 구한다.

06
$$-2x+10\ge 0$$
에서 $-2x\ge -10$
 $\therefore x\le 5$
즉 주어진 함수의 정의역은 $\{x|x\le 5\}$ $\therefore a=5$
또 $\sqrt{-2x+10}\ge 0$ 에서 $\sqrt{-2x+10}+b\ge b$ 이므로 주어진 함수의 치역은 $\{y|y\ge b\}$ $\therefore b=3$
 $\therefore ab=5\cdot 3=15$

- 07 함수 $y=\sqrt{2x}$ 의 그래프를 x축의 방향으로 -2만큼, y축의 방향으로 k만큼 평행이동한 그래프의 식은 $y=\sqrt{2(x+2)}+k$ 이 함수의 그래프가 점 (6,3)을 지나므로 $3=\sqrt{2(6+2)}+k$, 3=4+k $\therefore k=-1$
- 08 $\neg . 2-2x \ge 0$ 에서 $-2x \ge -2$ $\therefore x \le 1$ 즉 정의역은 $\{x | x \le 1\}$ 이다.

사분면을 지나지 않는다.

- ㄴ. $-\sqrt{2-2x} \le 0$ 에서 $-\sqrt{2-2x} + 1 \le 1$ 이므로 치역은 $\{y \mid y \le 1\}$

- 르. $y = -\sqrt{4-2x} = -\sqrt{-2(x-2)}$ 이므로 주어진 함수의 그래프는 평행이동에 의하여 함수 $y = -\sqrt{4-2x}$ 의 그래프와 겹쳐지게 할 수 있다. 따라서 옳은 것은 다, 르이다.
- 09 $y=-\sqrt{4-x}+5=-\sqrt{-(x-4)}+5$ 이므로 함수 $y=-\sqrt{4-x}+5$ 의 그래프는 함수 $y=-\sqrt{-x}$ 의 그래프를 x축의 방향으로 4만큼, y축의 방향으로 5만큼 평행이동한 것이다. 즉 $-5 \le x \le 0$ 에서 x=-5일 때 최솟값 2를 갖고, x=0일 때 최댓값 3을 갖는다. 따라서 M=3, m=2이므로 M+m=3+2=5
- **10** 함수 $y = \frac{2}{x-3} + 2$ 의 그래프는 함수 $y = \frac{2}{x}$ 의 그래 프를 x축의 방향으로 3만큼, y축의 방향으로 2만큼 평행이동한 것이다.

 $y=\sqrt{3x-k}=\sqrt{3\left(x-\frac{k}{3}\right)}$ 이므로 함수 $y=\sqrt{3x-k}$ 의 그래프는 함수 $y=\sqrt{3x}$ 의 그래프를 x축의 방향으로 $\frac{k}{3}$ 만큼 평행이동한 것이다.

이때 두 함수의 그래프가 제1사분면에서 한 개의 교점을 가지려면 다음 그림에서 함수 $y=\sqrt{3x-k}$ 의 그래프가 점 (2,0)의 오른쪽 부분에서 시작해야 한다.

즉 $\frac{k}{3}$ >2이어야 하므로 k>6 따라서 자연수 k의 최솟값은 7이다.

11 모든 경우의 수는

 $12 \cdot 12 = 144$

두 눈의 수의 곱이 홀수인 경우는 (홀수)×(홀수)이 므로 그 경우의 수는

6.6 = 36

따라서 구하는 경우의 수는

144 - 36 = 108

다른 풀이

두 눈의 수의 곱이 짝수인 경우는 (짝수)×(짝수), (짝수)×(홀수), (홀수)×(짝수)

- (i)(짝수)×(짝수)인 경우의 수 6·6=36
- (ii) (짝수)×(홀수)인 경우의 수 6·6=36
- (iii) (홀수)×(짝수)인 경우의 수 6⋅6=36
- (i)~(iii)에서 구하는 경우의 수는 36+36+36=108
- **12** 3500보다 큰 자연수는 35□□, 36□□, 4□□□, 5□□□, 6□□□ 꼴이다.

35 \square 꼴인 자연수의 개수는 $_4P_2$ $=12$
36
$4\square\square\square$ 꼴인 자연수의 개수는 $_5\mathrm{P}_3$ $=60$
5□□□ 꼴인 자연수의 개수는 ₅P₃=60
$6\square\square\square$ 꼴인 자연수의 개수는 $_5\mathrm{P}_3$ $=60$
따라서 구하는 자연수의 개수는
12+12+60+60+60=204

13	a□□□□ 꼴의 개수는 4!=24
	b□□□□ 꼴의 개수는 4! =24
	c□□□□ 꼴의 개수는 4!=24
	da□□□ 꼴의 개수는 3!=6
	db□□□ 꼴의 개수는 3!=6
	즉 a□□□□ 꼴부터 db□□□ 꼴까지의 총 개수는
	24 + 24 + 24 + 6 + 6 = 84
	이므로 86번째에 오는 문자열은 dcabe, dcaeb, \cdots
	에서 dcaeb이다.

- 14 B 국가 선수 2명을 한 사람으로 생각하여 A 국가 선수 1명과 함께 2명을 일렬로 나열하는 경우의 수는 2!=2
 B 국가 선수 2명이 자리를 서로 바꾸는 경우의 수는 2!=2
 오른쪽 그림과 같이 A 국가 선수와 ○A○B○이웃한 B 국가 선수 사이와 양 끝의 3개의 자리에 C 국가 선수 2명을 세우는 경우의 수는 ₃P₂=6
 따라서 구하는 경우의 수는 2·2·6=24
- 15 A에 칠할 수 있는 색은 4가지B에 칠할 수 있는 색은 A에 칠한 색을 제외한 3가지C에 칠할 수 있는 색은 A, B에 칠한 색을 제외한 2가지

 ${
m D}$ 에 칠할 수 있는 색은 ${
m A}$, ${
m C}$ 에 칠한 색을 제외한 ${
m 2}$ 가지

E에 칠할 수 있는 색은 C, D에 칠한 색을 제외한 2 가지 따라서 구하는 경우의 수는 4·3·2·2·2=96

- 16 짝수 2, 4, 6이 적힌 공 3개 중에서 2개를 꺼내는 경우의 수는 ₃C₂=3
 홀수 1, 3, 5, 7이 적힌 공 4개 중에서 2개를 꺼내는 경우의 수는 ₄C₂=6
 따라서 구하는 경우의 수는 3⋅6=18
- 17 f(2)의 값이 될 수 있는 것은 1, 2, 3, 4의 4가지이고, f(1), f(3)의 값은 공역의 원소 4개 중에서 2개를 택하여 크기 순서대로 대응시키면 되므로 구하는 함수 f의 개수는 $4\cdot_4C_2$ =24

[서술형 1]
$$y = \frac{2x-3}{x+1} = \frac{2(x+1)-5}{x+1} = -\frac{5}{x+1} + 2$$

이므로 함수 $y = \frac{2x-3}{x+1}$ 의 그래프를 x축의 방향으로 -1만큼, y축의 방향으로 2만큼 평행이동한 그래프의 식은

$$y = -\frac{5}{(x+1)+1} + 2 + 2$$

$$\therefore y = -\frac{5}{x+2} + 4$$

이 함수의 그래프가 점 (3, k)를 지나므로

$$k = -\frac{5}{3+2} + 4 = 3$$

또 함수 $y=-\frac{5}{x+2}+4$ 의 그래프의 점근선의 방정 식은 x=-2,y=4이므로 a=-2,b=4

k+a+b=3+(-2)+4=5

채점 기준	배점
♠ k의 값을 구할 수 있다.	3점
② <i>a</i> , <i>b</i> 의 값을 구할 수 있다.	2점
★+a+b의 값을 구할 수 있다.	1점

[서술형 2] $f(x) = \begin{cases} \sqrt{x+1} & (x \ge -1) \\ \sqrt{-(x+1)} & (x < -1) \end{cases}$ 이고 직선

y=mx는 기울기가 m이고 원점을 지나는 직선이다. 즉 함수 y=f(x)의 그래프와 직선 y=mx가 서로 다른 두 점에서 만나는 경우는 다음 그림과 같이 직 선 y=mx (m<0)가 함수 $y=\sqrt{-x-1}$ 의 그래프 에 접하는 경우이다.

0

 $\sqrt{-x-1} = mx$ 의 양변을 제곱하면 $-x-1 = m^2x^2$ $\therefore m^2x^2 + x + 1 = 0$ 이 이차방정식의 판별식을 D라 하면 $D = 1^2 - 4 \cdot m^2 \cdot 1 = 0$ $-4m^2 = -1$ $\therefore m = -\frac{1}{2} \ (\because m < 0)$

채점 기준	배점
$lue{1}$ 함수 $y=f(x)$ 의 그래프와 직선 $y=mx$ 가 서로 다른 두 점에서 만나도록 그래프를 그릴 수 있다.	4점
② m의 값을 구할 수 있다.	3점

[서술형 3] A, B 두 사람의 좌석 번호를 순서쌍 (A, B)로 나타내면 A, B 두 사람이 서로 옆자리에 앉는 경우는

(1,2), (2,1), (2,3), (3,2), (4,5), (5,4), (5,6), (6,5)

의 8가지

나머지 4명이 남아 있는 4자리에 앉는 경우의 수는 4 명을 일렬로 세우는 경우의 수와 같으므로

4! = 24

따라서 구하는 경우의 수는

 $8 \cdot 24 = 192$

채점 기준	배점
$lackbox{1}{lackbox{1}}{lackbox{1}{lackbox{1}}{lackbox{1}{lackbox{1}}{lackbox{1}{lackbox{1}}{lackbox{1}{lackbox{1}}{lackbox{1}{lackbox{1}}{lackbox{1}{lackbox{1}}}}}}}}}}}}}}}}} $	3점
② A, B 두 사람을 제외한 나머지 4명이 남아 있는 4자 리에 앉는 경우의 수를 구할 수 있다.	2점
❸ 6명이 함께 영화를 관람할 때, A, B 두 사람이 서로 옆자리에 앉는 경우의 수를 구할 수 있다.	2점