

Tarea 1

13 de marzo de 2024

1º semestre 2024 - Profesores P. Bahamondes - S. Bugedo - N. Alvarado

Requisitos

- La tarea es individual. Los casos de copia serán sancionados con la reprobación del curso con nota 1,1.
- Entrega: Hasta las 23:59 del 20 de marzo a través del buzón habilitado en el sitio del curso (Canvas).
 - Esta tarea debe ser hecha completamente en L^AT_EX. Tareas hechas a mano o en otro procesador de texto **no serán corregidas**.
 - Debe usar el template LATEX publicado en la página del curso.
 - Cada solución de cada problema debe comenzar en una nueva hoja. *Hint:* Utilice \newpage
 - Los archivos que debe entregar son el archivo PDF correspondiente a su solución con nombre numalumno.pdf, junto con un zip con nombre numalumno.zip, conteniendo el archivo numalumno.tex que compila su tarea. Si su código hace referencia a otros archivos, debe incluirlos también.
- El no cumplimiento de alguna de las reglas se penalizará con un descuento de 0.5 en la nota final (acumulables).
- No se aceptarán tareas atrasadas.
- Si tiene alguna duda, el foro de Github (issues) es el lugar oficial para realizarla.

Problemas

Problema 1

(a) Demuestre por inducción que para todo natural $n \ge 2$ se cumple

$$\prod_{k=2}^{n} \frac{k-1}{k} = \frac{1}{n}$$

(b) Demuestre por inducción que para todo natural $n \geq 0$ y $x \neq 1$ se cumple

$$a + ax + ax^{2} + \dots + ax^{n} = \frac{ax^{n+1} - a}{x - 1}$$

(c) Sea $k \ge 1$ natural. Encuentre un natural n_0 tal que $n^k < 2^n$ para todo $n \ge n_0$. Demuestre que dicho n_0 cumple lo pedido mediante inducción.

Solución

(a) Haremos una demostración por inducción simple sobre n.

• BI: Para n = 2, notamos que

$$\prod_{k=2}^{n} \frac{k-1}{k} = \prod_{k=2}^{2} \frac{k-1}{k}$$
$$= \frac{2-1}{2}$$
$$= \frac{1}{2}$$
$$= \frac{1}{n}$$

 $\bullet\,$ HI: Supongamos que para algún $n\geq 2$ se cumple que

$$\prod_{k=2}^{n} \frac{k-1}{k} = \frac{1}{n}$$

• TI: Queremos demostrar entonces que

$$\prod_{k=2}^{n+1} \frac{k-1}{k} = \frac{1}{n+1}$$

2

Para esto, notemos que

$$\prod_{k=2}^{n+1} \frac{k-1}{k} = \frac{(n+1)-1}{(n+1)} \cdot \prod_{k=2}^{n} \frac{k-1}{k}$$

$$= \frac{n}{n+1} \cdot \prod_{k=2}^{n} \frac{k-1}{k}$$

$$= \frac{n}{n+1} \cdot \frac{1}{n}$$

$$= \frac{1}{n+1}$$
(HI)

Concluimos que para todo $n \geq 2$ se cumple que

$$\prod_{k=2}^{n} \frac{k-1}{k} = \frac{1}{n}$$

- (b) Nuevamente hacemos una demostración por inducción simple sobre n.
 - **BI**: Para n = 0, tenemos que

$$\sum_{i=0}^{n} ax^{i} = \sum_{i=0}^{0} ax^{i}$$

$$= a \cdot 1$$

$$= \frac{a(x-1)}{x-1}$$

$$= \frac{ax-a}{x-1}$$

$$= \frac{ax^{n+1} - a}{x-1}$$
 \checkmark

 \bullet HI: Supongamos que para algún $n \geq 0$ se cumple que

$$\sum_{i=0}^{n} ax^{i} = \frac{ax^{n+1} - a}{x - 1}$$

• TI: Queremos demostrar entonces que

$$\sum_{i=0}^{n+1} ax^i = \frac{ax^{(n+1)+1} - a}{x-1}$$

3

Notemos entonces que

$$\sum_{i=0}^{n+1} ax^{i} = \sum_{i=0}^{n} ax^{i} + ax^{n+1}$$

$$= \frac{ax^{n+1} - a}{x - 1} + ax^{n+1}$$

$$= \frac{(ax^{n+1} - a) + ax^{n+1}(x - 1)}{x - 1}$$

$$= \frac{ax^{n+1} - a + ax^{n+2} - ax^{n+1}}{x - 1}$$

$$= \frac{ax^{(n+1)+1} - a}{x - 1}$$

$$\checkmark$$

Concluimos que para todo natural $n \geq 0$ se cumple que

$$\sum_{i=0}^{n} ax^{i} = \frac{ax^{n+1} - a}{x - 1}$$

(c) Para esta pregunta utilizaremos $n_0=(k+1)^2$, pues nos permite demostrar más fácilmente algunas desigualdades que necesitaremos durante la demostración. Obviamente cotas mayores o similares también son bienvenidas, pero deben realizar demostraciones válidas por inducción.

Herramientas gráficas pueden ayudarnos a encontrar algún n_0 adecuado para el punto de partida, pero no deberían contar como herramientas rigurosas de demostración.

Para esta demostración haremos más de una inducción. Divideremos esta demostración en 3 partes, i) k = 1, ii) k = 2, y iii) $k \ge 3$, siempre considerando $n \ge n_0$

• (i) Para k=1, queremos demostrar que para todo $n\geq n_0$ se cumple que

$$n < 2^n$$

Demostraremos esto por inducción simple sobre n.

$$\circ$$
 BI: Para $n_0 = (k+1)^2 = 4$, tenemos que

$$n_0 = 4 < 16 = 2^4 = 2^{n_0}$$

o HI: Supongamos que para $n \geq n_0$ se tiene que

$$n < 2^n$$

 $\circ\,$ TI: Queremos demostrar entonces que

$$n+1 < 2^{n+1}$$

Para esto, notemos que:

$$n+1 < 2^{n}+1$$

$$< 2^{n}+2^{n}$$

$$= 2 \cdot 2^{n}$$

$$= 2^{n+1}$$
(HI)

Concluimos que para todo $n \ge n_0$ se cumple que

$$n < 2^n$$

• (ii) Para k=2, queremos demostrar que para todo $n\geq n_0$ se cumple que

$$n^2 < 2^n$$

Demostraremos esto por inducción simple sobre n.

$$n_0^2 = 9^2 = 81 < 512 = 2^9 = 2^{n_0}$$

 \checkmark

o HI: Supongamos que para $n \geq n_0$ se tiene que

$$n^2 < 2^n$$

• TI: Queremos demostrar entonces que

$$(n+1)^2 < 2^{n+1}$$

Para esto, notemos que:

$$(n+1)^2 = n^2 + 2n + 1$$

 $< 2^n + 2n + 1$ (HI)

Demostraremos a continuación, también por inducción, que $2n + 1 < 2^n$ (*) para $n \ge n_0$, con lo que lo anterior queda como

$$(n+1)^2 < 2^n + 2^n$$

$$= 2^{n+1}$$
(*)

Demostramos (*) por inducción entonces:

 \diamond **BI**: Para $n = n_0 = 9$, tenemos que

$$2n_0 + 1 = 19 < 512 = 2^9 = 2^{n_0}$$

- \diamond HI: Suponemos que para algún $n \geq n_0$ se tiene que $2n+1 < 2^n$
- \diamond **TI**: Queremos demostrar entonces que $2(n+1)+1<2^{n+1}$. Para esto, notemos que:

$$2(n+1) + 1 = 2n + 2 + 1$$

$$= (2n+1) + 2$$

$$< 2^{n} + 2$$

$$< 2^{n} + 2^{n}$$

$$= 2^{n+1}$$
(HI)

Concluimos que para todo $n \geq n_0$ se cumple que

$$2n+1<2^n$$

Dado que solo nos faltaba demostrar esto para el caso k=2, concluimos que para todo $n \ge n_0$ se cumple que

$$n^2 < 2^n$$

• (iii) Para $k \geq 3$, queremos demostrar que para todo $n \geq n_0$ se cumple que

$$n^k < 2^n$$

 \circ BI: Para el caso base, tomamos $n = n_0$, vale decir, queremos mostrar que

$$((k+1)^2)^k < 2^{(k+1)^2}$$

Lo haremos por una segunda inducción, pero sobre k.

 \diamond **BI**: Para k=3, tenemos que

$$((k+1)^{2})^{k} = ((3+1)^{2})^{3}$$

$$= 16^{3}$$

$$= 2^{12}$$

$$< 2^{16}$$

$$= 2^{(3+1)^{2}}$$

$$= 2^{(k+1)^{2}}$$

 \diamond HI: Supongamos que se cumple para $k \geq 3$ que

$$((k+1)^2)^k < 2^{(k+1)^2}$$

♦ TI Demostraremos entonces que

$$\left(((k+1)+1)^2 \right)^{k+1} < 2^{((k+1)+1)^2}$$

Para demostrar esto, haremos uso de la siguiente propiedad que es un caso particular de $2^m > m^2$:

$$2^{k+2} > (k+2)^2$$

Nótese que la demostración de esta propiedad es equivalente a la del caso ii), pero partiendo de m=5, donde el caso base sale de que:

$$2^m = 2^7 = 128 > 49 = 7^2 = m^2$$

De la propiedad anterior, observemos que al elevar por (k+1) a ambos lados obtenemos

$$((k+1)+1)^{2(k+1)} = (k+2)^{2(k+1)}$$

$$= ((k+2)^2)^{k+1}$$

$$< (2^{k+2})^{k+1}$$

$$= 2^{(k+2)(k+1)}$$

$$< 2^{(k+2)(k+2)}$$

$$= 2^{((k+1)+1)^2}$$

Concluimos que para todo $k \geq 3$, se tiene que $n_0^k < 2^{n_0}$.

o HI: Sea $n \geq n_0$ un natural y supongamos que

$$2^m > m^k$$

para todo m tal que $n_0 \le m \le n$

o TI Queremos demostrar, por inducción fuerte, que

$$2^{n+1} > n+1^k$$

Consideraremos acá dos casos:

1. Si (n+1) es par En este caso, podemos escribir (n+1)=2j, con $j=\frac{n+1}{2}\geq n$. Notemos entonces que

$$(n+1)^k = (2j)^k$$

$$= 2^k \cdot j^k$$

$$< 2^k \cdot 2^j$$

$$= 2^{k+j}$$

$$< 2^{2 \cdot \max(k,j)}$$
(HI)

Además, como $n \ge n_0 = (k+1)^2$, tenemos que $n \ge 2k-1$, es decir, $k \le \frac{n+1}{2}$. Por otra parte, como (n+1) = 2j, tenemos que $j = \frac{n+1}{2}$. Por lo tanto, máx(k,j) = j y obtenemos que

$$(n+1)^k < 2^{2 \cdot \max(k,j)}$$

 $< 2^{2j}$
 $= 2^{n+1}$

2. Si (n+1) es impar En este caso, podemos escribir (n+1)=2j-1, con $j=\frac{n+2}{2}$. Observemos aquí que

$$(n+1)^{k} = (2j-1)^{k}$$

$$< (2j)^{k}$$

$$= 2^{k} j^{k}$$

$$< 2^{k} 2^{j}$$

$$= 2^{k+j}$$

$$= 2^{k+\frac{n+2}{2}}$$

$$= 2^{k+\frac{n}{2}+1}$$
(HI)

Notemos finalmente que $2(k+1) \le (k+1)^2$ pues $k \ge 1$, y que $(k+1)^2 = n_0 \le n$, por lo tanto, $(k+1) \le \frac{n}{2}$ y obtenemos que

$$(n+1)^k < 2^{k+\frac{n}{2}+1} \le 2^n < 2^{n+1}$$

Concluimos que para todo $n \ge n_0$ y $k \ge 3$ se cumple que

$$n^k < 2^n$$

Los casos i), ii) y iii) en conjunto demuestran que para todo $k \ge 1$, podemos utilizar $n_0 = (k+1)^2$ de manera que para todo $n \ge n_0$ se cumpla que

$$n^k < 2^n$$

Pauta (6 pts. + 1 pt. de bonus)

- (a) 1.0 por casos base, 0.5 por cada uno.
 - 0.5 por plantear hipótesis correctamente.
 - 1.5 por desarrollar la tesis.
- (b) 0.5 por el caso base.
 - 0.5 por plantear hipótesis correctamente.
 - 2.0 por desarrollar la tesis.
- (c) Bonus máximo de 1.0 por la demostración completa

Puntajes parciales y soluciones alternativas a criterio del corrector.

Problema 2

Para $n \ge 0$, denotamos por F(n) al n-ésimo término de la sucesión de Fibonacci. Demuestre los siguientes resultados usando inducción.

(a) Para todo par de naturales $n, m \geq 0$, se tiene que

$$F(m+n+1) = F(m)F(n) + F(m+1)F(n+1)$$

Sugerencia: dado que existen dos variables m y n simétricas, realice inducción sobre n tomando m fijo.

(b) Para todo par de naturales $k \ge 1$ y $n \ge 0$, existe un natural a tal que F(kn) = aF(n). Sugerencia: realice inducción sobre k y use el inciso (a).

Solución

(a) Definimos la propiedad P según:

$$P(n): F(m+n+1) = F(m)F(n) + F(m+1)F(n+1)$$

para un $m \ge 0$ fijo. Demostraremos P(n) por inducción fuerte sobre n.

BI: Consideramos los casos n = 0 y n = 1. A saber,

 $\circ P(0)$:

$$F(m+0+1) = F(m+1) = F(m) \cdot 0 + F(m+1) \cdot 1$$

= $F(m)F(0) + F(m+1)F(1)$

 $\circ P(1)$:

$$F(m+1+1) = F(m+2) = F(m) \cdot 1 + F(m+1) \cdot 1$$

= $F(m)F(1) + F(m+1)F(2)$

HI: Suponemos que para todo $k \leq n$ se cumple P(k).

TI: Consideramos P(n+1).

$$F(m+(n+1)+1) = F(n+n+2)$$

$$= F(m+n+1) + F(m+n)$$

$$= F(m+(n)+1) + F(m+(n-1)+1)$$

$$= F(m)F(n) + F(m+1)F(n+1) + F(m)F(n-1) + F(m+1)F(n)$$

$$= F(m)[F(n) + F(n-1)] + F(m+1)[F(n+1) + F(n)]$$

$$= F(m)F(n+1) + F(m+1)F(n+2)$$

$$= F(m)F(n+1) + F(m+1)F(n+1) + F(n+1)$$

lo que prueba que P(n+1) es verdadera.

Concluimos que P(n) para todo natural $n \geq 0$.

(b) Definimos la propiedad P según:

$$P(k)$$
: existe a tal que $F(kn) = aF(n)$

es decir, que F(kn) es múltiplo de F(n). Demostraremos por inducción simple sobre $k \geq 1$.

BI: Consideramos P(1). Es claro que $F(1 \cdot n) = F(n) = 1 \cdot F(n)$. es decir, a = 1.

HI: Suponemos que para un $k \ge 1$ se cumple P(k).

TI: Consideramos P(k+1).

$$F((k+1)n) = F(kn+n)$$
= $F(kn+(n-1)+1)$
= $F(kn)F(n-1) + F(kn+1)F(n)$ por inciso (a)
= $aF(n)F(n-1) + F(kn+1)F(n)$ por HI sobre $F(kn)$
= $(aF(n-1) + F(kn+1))F(n)$

luego, basta tomar b = (aF(n-1) + F(kn+1)) que cumple F((k+1)n) = bF(n) y se demuestra que P(k+1) es cierta.

Concluimos que P(k) para todo natural $k \ge 1$.

Pauta (6 pts.)

- (a) 1.0 por casos base, 0.5 por cada uno.
 - 0.5 por plantear hipótesis correctamente.
 - 1.5 por desarrollar la tesis.
- (b) 0.5 por el caso base.
 - 0.5 por plantear hipótesis correctamente.
 - 2.0 por desarrollar la tesis.

Puntajes parciales y soluciones alternativas a criterio del corrector.