Negative Nominal Interest Rates and Monetary Policy

Duhyeong Kim

January 30th, 2023

University of Western Ontario

What determines the lower bound on interest rates?

- Lower bound is determined by the rate of return on paper currency (zero)
 - Arbitrage may arise at a negative interest rate

What determines the lower bound on interest rates?

- Lower bound is determined by the rate of return on paper currency (zero)
 - Arbitrage may arise at a negative interest rate
- In practice, slightly negative interest rates are sustainable
 - Frictions preventing arbitrage: Storage/security costs of holding paper currency
 - Rate of return on currency is effectively negative → Effective lower bound < o

What determines the lower bound on interest rates?

- Lower bound is determined by the rate of return on **paper currency** (zero)
 - Arbitrage may arise at a negative interest rate
- In practice, slightly negative interest rates are sustainable
 - Frictions preventing arbitrage: Storage/security costs of holding paper currency
 - Rate of return on currency is effectively negative → Effective lower bound < o
- Reducing the effective lower bound on interest rates introduces trade-offs
 - Benefit: Central banks can expand the set of available interest rates
 - Cost: They may have to raise the cost of holding currency to reduce its effective rate of return

How to use reserve policy to reduce the effective lower bound

• Private banks exchange between currency and reserves **one-to-one** at the central bank

How to use reserve policy to reduce the effective lower bound

- Private banks exchange between currency and reserves one-to-one at the central bank
- "Nonpar exchange rate" policy of reserves for currency withdrawals
 - · Private banks withdraw one unit of currency by paying more than one unit of reserves
 - Central bank determine the rate of return from withdrawing, holding, and redepositing currency

How to use reserve policy to reduce the effective lower bound

- Private banks exchange between currency and reserves one-to-one at the central bank
- "Nonpar exchange rate" policy of reserves for currency withdrawals
 - · Private banks withdraw one unit of currency by paying more than one unit of reserves
 - Central bank determine the rate of return from withdrawing, holding, and redepositing currency
- I **evaluate the effectiveness** of this policy by developing a micro-founded framework
 - In the model, the lower bound is determined by costs of holding currency and a nonpar exchange rate policy

Question #1: Is it possible to reduce the effective lower bound?

→ Yes. Central bank can reduce the lower bound with nonpar exchange rate policy if the cost of holding currency is sufficiently high

Question #1: Is it possible to reduce the effective lower bound? Yes

Question #2: What is the key cost of reducing the lower bound?

→ Reducing the lower bound can increase the aggregate cost of holding currency

Nonpar exchange rate \rightarrow Banks' demand for currency $\uparrow \rightarrow$ Currency holding \uparrow

Question #1: Is it possible to reduce the effective lower bound? Yes

Question #2: What is the key cost of reducing the lower bound? Cost of holding currency ↑

Question #3: To what extent should the central bank reduce the effective lower bound?

→ **Never optimal** to reduce the lower bound as it is only costly without any benefits

Question #1: Is it possible to reduce the effective lower bound? Yes

Question #2: What is the key cost of reducing the lower bound? Cost of holding currency ↑

Question #3: To what extent should the central bank reduce the effective lower bound?

- → **Never optimal** to reduce the lower bound as it is only costly without any benefits
 - Key idea: Only relative interest rates matter (interest rate on reserves relative to currency)
 - Suppose the central bank lowers the interest rate by reducing the lower bound
 - Effective lower bound $\downarrow \rightarrow$ Interest rate on reserves relative to currency $\uparrow \rightarrow$ **Offsets the effects** of lowering the interest rate

Related literature

- How to reduce the lower bound on interest rates:
 Eisler (1932), Buiter (2010), Goodfriend (2016), Rogoff (2017a, b), Agarwal and Kimball (2015, 2019)
- Implications of a negative interest rate:
 He, Huang, and Wright (2008), Brunnermeier and Koby (2019),
 Eggertsson, Juelsrud, Summers, and Wold (2019), Jung (2019)
- Search-theoretic models with currency and bank deposits:
 Cavalcanti, Erosa, and Temzelides (1999), Williamson (1999, 2012), He, Huang, and Wright (2005, 2008),
 Li (2006, 2011), He, Huang, and Wright (2005, 2008), Sanches and Williamson (2010)

Contribution

- 1. First work that formally evaluates whether the central bank can reduce the lower bound
- 2. Provides a **novel reason** why a negative interest rate policy can go wrong

Table of contents

Baseline Model

A Model with Endogenous Costs of Holding Currency

Optimal Monetary Policy

Quantitative Analysis and Disintermediation

Conclusion

Environment

- Three types of agents buyers, sellers, and private banks
- Time is discrete, t = 0, 1, 2, ...
- Two sequential markets
 - · Centralized Market: Walrasian market
 - Decentralized Market: Random matching and bargaining
- Two types of transactions in the decentralized market
 - Currency transactions & (private) bank deposit transactions
 - Transaction type is unknown before matching
- Limited commitment and no memory (no record-keeping)

Private banks

Buyers can withdraw **currency** from their bank accounts

#2

Private banks • Details

Limited commitment

- → a bank's liabilities must be backed by its assets (collateral)
- → Incentive constraint

#3

Government

(1) Nominal interest rate on reserves

#4

- (1) Nominal interest rate on reserves
- (2) Nonpar exchange rate of reserves for currency withdrawals

After the centralized market closes

Fraction ρ of buyers **withdraw** currency

Before the next centralized market opens

- 1. Proportional cost of storing currency across periods (from one centralized market to the next)
 - Higher cost \rightarrow Rate of return on currency \downarrow \rightarrow **Effective lower bound** \downarrow

- 1. Proportional cost of storing currency across periods (from one centralized market to the next)
 - Higher cost \rightarrow Rate of return on currency $\downarrow \rightarrow$ **Effective lower bound** \downarrow
- 2. Fixed cost of storing currency after the decentralized market closes
 - · Sellers who receive currency must pay the cost
 - Creates inefficiency in currency transactions → Implications for optimal monetary policy

- 1. Proportional cost of storing currency across periods (from one centralized market to the next)
 - Higher cost \rightarrow Rate of return on currency \downarrow \rightarrow **Effective lower bound** \downarrow
- 2. Fixed cost of storing currency after the decentralized market closes
 - Sellers who receive currency must pay the cost
 - Creates inefficiency in currency transactions → Implications for optimal monetary policy
- 3. Later: Add an endogenous cost of holding currency

Stationary equilibrium • Definition of stationary equilibrium

- Price of currency (in units of reserves) is determined at the centralized market
 - Sellers want to sell currency at a price higher than one-to-one exchange rate
 - Private banks want to purchase currency at a price lower than nonpar exchange rate

Stationary equilibrium • Definition of stationary equilibrium

- Price of currency (in units of reserves) is determined at the centralized market
 - Sellers want to sell currency at a price higher than one-to-one exchange rate
 - Private banks want to purchase currency at a price lower than nonpar exchange rate
- When inflation > 0, the market supply of currency cannot meet its demand (Case of deflation
 - Private banks must be indifferent between purchasing and withdrawing currency
 - \rightarrow Price of currency = **nonpar exchange rate** $\eta > 1$
 - Sellers **strictly prefer** to sell currency in the market rather than depositing with banks

Stationary equilibrium • Definition of stationary equilibrium

- Price of currency (in units of reserves) is determined at the centralized market
 - Sellers want to sell currency at a price higher than one-to-one exchange rate
 - · Private banks want to purchase currency at a price lower than nonpar exchange rate
- When inflation > 0, the market supply of currency cannot meet its demand Case of deflation
 - Private banks must be indifferent between purchasing and withdrawing currency
 - \rightarrow Price of currency = nonpar exchange rate $\eta > 1$
 - Sellers **strictly prefer** to sell currency in the market rather than depositing with banks
- Lower bound is determined by **no arbitrage** from holding currency across periods
 - Two conditions: No arbitrage for private banks & no arbitrage for sellers

Private bank's problem in equilibrium

Each bank maximizes the representative buyer's expected utility by solving

$$\max_{(k,c',d),(c,m,b)} \mathbb{E} U_{\text{buyer}}(k,c',d) = -k + \rho u(x^c) + (1-\rho)u(x^d)$$

subject to

$$\mathbb{E}[\operatorname{Payoff_{bank}}|(k,c',d,c,m,b)] = 0, \quad (\text{free entry})$$

$$\mathbb{E}[\operatorname{Payoff_{bank}^{repay}}|(k,c',d,c,m,b)] - \mathbb{E}[\operatorname{Payoff_{bank}^{default}}|(k,c',d,c,m,b)] \geq 0, \quad (\text{bank's IC})$$

- (k, c', d) deposit contract; k price of contract; c' **currency offered to buyer**; d deposit claims
- (c, m, b) asset portfolio; c **currency**; m reserves; b government bonds
- $x^c = x(c')$ consumption in currency transaction
- $x^d = x(d)$ consumption in bank deposit transaction

Private bank's payoffs

$$\mathbb{E}[\operatorname{Payoff}_{\operatorname{bank}}] = k - b - m - \eta \boldsymbol{c} + \beta \left[-(1 - \rho)d + \frac{(1 + R^m)m + (1 + R^b)b + \boldsymbol{c} - \rho \boldsymbol{c'}}{\pi} - \gamma(\boldsymbol{c} - \rho \boldsymbol{c'}) \right]$$

$$\mathbb{E}[\operatorname{Payoff}_{\operatorname{bank}}^{\operatorname{repay}}] = -(1 - \rho)d + \frac{(1 + R^m)m + (1 + R^b)b + \boldsymbol{c} - \rho \boldsymbol{c'}}{\pi}$$

$$\mathbb{E}[\operatorname{Payoff}_{\operatorname{bank}}^{\operatorname{default}}] = \frac{\delta \left[(1 + R^m)m + (1 + R^b)b + \boldsymbol{c} \right]}{\pi}$$

- π inflation rate; β discount factor; γ proportional storage cost
- δ fraction of assets not pledged as collateral
- R^m and R^b nominal interest rates on reserves and bonds, respectively
- ightarrow In equilibrium, holding currency across periods is not profitable, i.e., c=
 ho c'

Private bank's arbitrage: payoff from holding currency c> ho c'

$$-\eta \mathbf{c} + \beta \left[\frac{\mathbf{c} - \rho c'}{\pi} - \gamma (\mathbf{c} - \rho c') \right] + \dots = 0, \quad \text{(free entry)}$$

$$\frac{(1 - \delta)\mathbf{c} - \rho c'}{\pi} + \dots \ge 0, \quad \text{(bank's IC with multiplier } \lambda \text{)}$$

• No arbitrage from holding currency across periods implies

$$(FOC \text{ w.r.t. } c) \qquad -\underbrace{\eta}_{\text{price of}} \qquad +\underbrace{\beta\left(\frac{1}{\pi} - \gamma\right)}_{\text{net payoff in}} \qquad +\underbrace{\frac{\lambda\left(1 - \delta\right)}{\pi}}_{\text{value as}} \leq 0$$

$$\text{currency} \qquad \text{next period} \qquad \text{collateral}$$

Private bank's arbitrage: payoff from holding currency c> ho c'

$$-\eta \mathbf{c} + \beta \left[\frac{\mathbf{c} - \rho c'}{\pi} - \gamma (\mathbf{c} - \rho c') \right] + \dots = 0, \quad \text{(free entry)}$$

$$\frac{(1 - \delta)\mathbf{c} - \rho c'}{\pi} + \dots \ge 0, \quad \text{(bank's IC with multiplier } \lambda \text{)}$$

• No arbitrage from holding currency across periods implies

(FOC w.r.t.
$$c$$
) $-\frac{\eta}{}$ $+\frac{\beta\left(\frac{1}{\pi}-\gamma\right)}{}$ $+\frac{\lambda\left(1-\delta\right)}{\frac{\pi}{}}$ ≤ 0 price of net payoff in value as currency next period collateral

• Use other FOCs and define R_{hanks}^c as the *net* rate of return on currency for banks \bullet FOCS

$$\Rightarrow 1 + R^m \ge \frac{1}{\eta + \beta \gamma} \equiv 1 + R_{banks}^c$$

Seller's arbitrage: payoff from holding currency c^s

$$\mathbb{E}[\text{Payoff}_{\text{seller}}] = -b^s - m^s - \eta \boldsymbol{c^s} + \beta \left[\frac{(1+R^m)m^s + (1+R^b)b^s + \eta \boldsymbol{c^s}}{\pi} - \gamma \boldsymbol{c^s} \right]$$

• No arbitrage from holding currency across periods implies

$$(\text{FOC w.r.t. } c^s) \qquad -\underbrace{\eta} \qquad +\underbrace{\beta\left(\frac{\eta}{\pi} - \gamma\right)} \qquad \leq 0$$
 price of $\qquad \text{net payoff in} \qquad \qquad$

Seller's arbitrage: payoff from holding currency c^{s}

$$\mathbb{E}[\text{Payoff}_{\text{seller}}] = -b^s - m^s - \eta c^s + \beta \left[\frac{(1+R^m)m^s + (1+R^b)b^s + \eta c^s}{\pi} - \gamma c^s \right]$$

• No arbitrage from holding currency across periods implies

$$(\text{FOC w.r.t. } c^s) \qquad -\underbrace{\eta} \qquad +\underbrace{\beta\left(\frac{\eta}{\pi} - \gamma\right)} \qquad \leq 0$$
 price of net payoff in currency next period

• Use other FOCs and define $R_{collers}^c$ as the *net* rate of return on currency for sellers \bigcirc

$$\Rightarrow 1 + R^m \ge \frac{\eta}{(\eta + \beta \gamma)[1 + \lambda(1 - \delta)/\beta]} \equiv 1 + R_{sellers}^c$$

+ $\lambda(1-\delta)/\beta$ represents the cost of holding currency that is not used as collateral

Effective Lower Bound (ELB) on nominal interest rates

Combining the two no-arbitrage conditions:

$$1 + R^m \ge \max \left[\underbrace{\frac{1}{\eta + \beta \gamma}}_{1 + R^c_{banks}}, \underbrace{\frac{\eta}{(\eta + \beta \gamma)[1 + \lambda(1 - \delta)/\beta]}}_{1 + R^c_{sellers}} \right] \equiv \text{ELB}$$

Effective Lower Bound (ELB) on nominal interest rates

Combining the two no-arbitrage conditions:

$$1 + R^m \ge \max \left[\underbrace{\frac{1}{\eta + \beta \gamma}}_{1 + R^c_{banks}}, \underbrace{\frac{\eta}{(\eta + \beta \gamma)[1 + \lambda(1 - \delta)/\beta]}}_{1 + R^c_{sellers}} \right] \equiv \text{ELB}$$

ightarrow Introducing a nonpar exchange rate **reduces** the ELB iff $R_{banks}^c \geq R_{sellers}^c$

because it reduces the rate of return on currency only for private banks

Nonpar exchange rate η and the Effective Lower Bound (ELB) • comparative statics

Why can a nonpar exchange rate policy fail to reduce the ELB?

Nonpar exchange rate $\eta \uparrow \to \text{Price of currency} \uparrow \to \text{Sellers' rate of return on currency } R^c_{sellers} \uparrow$

- For high η or low λ (tightness of the bank's IC), the ELB is determined by $R_{sellers}^c$

Why can a nonpar exchange rate policy fail to reduce the ELB?

Nonpar exchange rate $\eta \uparrow \to \text{Price}$ of currency $\uparrow \to \text{Sellers'}$ rate of return on currency $R^c_{sellers} \uparrow \to \text{Sellers'}$

- For high η or low λ (tightness of the bank's IC), the ELB is determined by $R_{sellers}^c$

Key assumption: it is **costless** to transport currency in the centralized market

- In practice, transporting currency can be costly
 - $\bullet\,$ E.g., Private banks transport currency using armored vehicles due to the risk of theft
- If theft or other costs arise **endogenously**, this could limit the scope of arbitrage

ELB when there is an endogenous cost of holding currency

Table of contents

Baseline Mode

A Model with Endogenous Costs of Holding Currency

Optimal Monetary Policy

Quantitative Analysis and Disintermediation

Conclusion

Adding theft as a cost of holding currency • Details

• Between the decentralized market and the next centralized market, add theft market

Adding theft as a cost of holding currency • Details

- Between the decentralized market and the next centralized market, add theft market
- · At the beginning of the theft market,
 - Buyers can invest in a **theft technology** at a fixed cost κ
 - Sellers can deposit currency to avoid theft

Adding theft as a cost of holding currency • Details

- · Between the decentralized market and the next centralized market, add theft market
- · At the beginning of the theft market,
 - Buyers can invest in a **theft technology** at a fixed cost κ
 - · Sellers can deposit currency to avoid theft
- In the theft market,
 - Random matches between buyers and sellers
 - If the buyer has a theft technology and the seller carries currency in a match, the buyer can steal the seller's currency

Two types of equilibria • Definition of stationary equilibrium

- If the cost of theft κ is sufficiently **high**, then
 - no buyers invest in the theft technology $(\alpha^b = 0) \rightarrow$ theft does not exist
 - all sellers carry currency to sell in the CM $(\alpha^s=1)$

Two types of equilibria • Definition of stationary equilibrium

- If the cost of theft κ is sufficiently **high**, then
 - no buyers invest in the theft technology $(\alpha^b=0)$ \rightarrow theft does not exist
 - all sellers carry currency to sell in the CM $(\alpha^s=1)$
 - \rightarrow Model with a sufficiently high κ is **equivalent** to the baseline model

Two types of equilibria • Definition of Stationary equilibrium

- If the cost of theft κ is sufficiently **high**, then
 - no buyers invest in the theft technology $(\alpha^b = 0) \rightarrow$ theft does not exist
 - all sellers carry currency to sell in the CM $(\alpha^s=1)$
 - \rightarrow Model with a sufficiently high κ is **equivalent** to the baseline model
- If the cost of theft κ is sufficiently **low**, then
 - some buyers invest in the theft technology $(0 < \alpha^b < 1) \rightarrow$ theft exists
 - some sellers deposit currency to avoid theft $(0 < \alpha^s < 1)$

Two types of equilibria • Definition of Stationary equilibrium

- If the cost of theft κ is sufficiently **high**, then
 - no buyers invest in the theft technology $(\alpha^b = 0) \rightarrow$ theft does not exist
 - all sellers carry currency to sell in the CM $(\alpha^s = 1)$
 - \rightarrow Model with a sufficiently high κ is **equivalent** to the baseline model
- If the cost of theft κ is sufficiently **low**, then
 - some buyers invest in the theft technology $(0 < \alpha^b < 1) \rightarrow$ theft exists
 - some sellers deposit currency to avoid theft $(0 < \alpha^s < 1)$
 - → Buyers and sellers **become indifferent** between two choices they have in theft market

Effective lower bound (ELB) in an equilibrium with theft

ullet Sellers are indifferent between depositing currency and carrying it ullet

Payoff{Depositing currency} = Payoff{Selling currency at price
$$\eta$$
 with prob. $1 - \alpha^b$ }
$$1 = \eta(1 - \alpha^b)$$

Effective lower bound (ELB) in an equilibrium with theft

• Sellers are indifferent between depositing currency and carrying it \rightarrow

Payoff{Depositing currency} = Payoff{Selling currency at price
$$\eta$$
 with prob. $1 - \alpha^b$ }
$$1 = \eta(1 - \alpha^b)$$

· ELB on nominal interest rate:

$$1 + R^{m} \ge \max \left[\underbrace{\frac{1}{\eta + \beta \gamma}}_{1 + R_{banks}^{c}}, \underbrace{\frac{\eta(1 - \alpha^{b})}{(\eta + \beta \gamma)[1 + \lambda(1 - \delta)/\beta]}}_{1 + R_{sellers}^{c}} \right] = \frac{1}{\eta + \beta \gamma}$$

- Therefore, introducing a nonpar exchange rate η always reduces the ELB

Equilibrium with theft - Comparative statics

- Holding interest rate R^m constant, an **increase** in the nonpar exchange rate η ...
 - · reduces the nominal rate of return on currency and the ELB
 - decreases currency c' and increases bank deposits d offered by private banks
 - \rightarrow consumption in currency transactions x^c decreases consumption in bank deposit transactions x^d increases
 - increases the fraction of buyers who acquire costly theft technology α^b

	∂ELB	∂x^c	∂x^d	$\partial \pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
$\partial \eta$	_		+		+	+	?

Equilibrium with theft - Comparative statics

- Holding interest rate R^m constant, an **increase** in the nonpar exchange rate η ...
 - reduces the nominal rate of return on currency and the ELB
 - decreases **currency** c' and increases **bank deposits** d offered by private banks Equilibrium conditions
 - \rightarrow consumption in currency transactions x^c decreases consumption in bank deposit transactions x^d increases \checkmark same effects of an increase in \mathbb{R}^m
 - increases the fraction of buyers who acquire costly theft technology α^b

	∂ELB	∂x^c	∂x^d	$\partial \pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
$\partial \eta$	_		+		+	+	?

Equilibrium with theft - Comparative statics

- Holding interest rate R^m constant, an **increase** in the nonpar exchange rate η ...
 - reduces the nominal rate of return on currency and the ELB
 - decreases currency c' and increases bank deposits d offered by private banks
 - \rightarrow consumption in currency transactions x^c decreases consumption in bank deposit transactions x^d increases
 - increases the fraction of buyers who acquire costly theft technology α^b other results

	∂ELB	∂x^c	∂x^d	$\partial \pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^{\scriptscriptstyle S}$
дη	_	_	+	_	+	+	?

Table of contents

Baseline Mode

A Model with Endogenous Costs of Holding Currency

Optimal Monetary Policy

Quantitative Analysis and Disintermediation

Conclusion

Optimal monetary policy

- Optimal monetary policy consists of (η, R^m) that maximize welfare
 - Welfare measure \equiv the sum of expected utilities across agents \bigcirc Details

Optimal monetary policy

- Optimal monetary policy consists of (η, R^m) that maximize welfare
- Given a one-to-one exchange rate $\eta=1$, a **negative interest rate** $R^m<0$ can be **optimal**
 - Buyers must carry extra currency to compensate for the sellers' costs → Inefficiency
 - Friedman rule ($R^m=0$) is not optimal due to inefficiency in transactions
 - Lowering R^m further helps **mitigate inefficiency** (by raising the real rate of return on currency)

• Suppose the central bank lowers the interest rate R^m by lowering the ELB

(i.e., the central bank increases η and decreases R^m by the same magnitude)

- Suppose the central bank lowers the interest rate R^m by lowering the ELB (i.e., the central bank increases η and decreases R^m by the same magnitude)
 - · Both the interest rate and the rate of return on currency decrease
 - → no change in the interest rate on reserves relative to currency
 - \rightarrow no change in the bank's asset portfolio and the allocation of means of payment
 - → no change in consumption allocation → **no welfare benefits** Equilibrium conditions

- Suppose the central bank lowers the interest rate R^m by lowering the ELB (i.e., the central bank increases η and decreases R^m by the same magnitude)
 - Both the interest rate and the rate of return on currency decrease
 - → no change in the interest rate on reserves *relative to* currency
 - → no change in the bank's asset portfolio and the allocation of means of payment
 - → no change in consumption allocation → **no welfare benefits** Equilibrium conditions
 - No real effects imply no change in the real interest rate
 - \rightarrow inflation rate π decreases one-for-one with the interest rate R^m (a pure Fisher effect)

- Suppose the central bank lowers the interest rate R^m by lowering the ELB (i.e., the central bank increases η and decreases R^m by the same magnitude)
 - Both the interest rate and the rate of return on currency decrease
 - → no change in the interest rate on reserves relative to currency
 - → no change in the bank's asset portfolio and the allocation of means of payment
 - → no change in consumption allocation → no welfare benefits Equilibrium conditions
 - No real effects imply no change in the real interest rate
 - \rightarrow inflation rate π decreases one-for-one with the interest rate R^m (a pure Fisher effect)
 - Fraction of currency-stealing buyers α^b increases \rightarrow welfare cost increases

- Suppose the central bank lowers the interest rate R^m by lowering the ELB (i.e., the central bank increases η and decreases R^m by the same magnitude)
 - Both the interest rate and the rate of return on currency decrease
 - → no change in the interest rate on reserves relative to currency
 - ightarrow no change in the bank's asset portfolio and the allocation of means of payment
 - → no change in consumption allocation → **no welfare benefits** Equilibrium conditions
 - No real effects imply no change in the real interest rate
 - \rightarrow inflation rate π decreases one-for-one with the interest rate R^m (a pure Fisher effect)
 - Fraction of currency-stealing buyers α^b increases \rightarrow welfare cost increases
- Therefore, the optimal policy is to set $\eta = 1$ and $R^m = \text{Base lower bound}$

Table of contents

Baseline Mode

A Model with Endogenous Costs of Holding Currency

Optimal Monetary Policy

Quantitative Analysis and Disintermediation

Conclusion

Further results

• Quantitative analysis • Details

- Calibrate the model to the US economy during 2013-2015
- Ask how much consumption individuals would need to be compensated to endure welfare loss
- In three scenarios where the cost of theft is {2.5%, 5%, 10%} of consumption, reducing the ELB by 5 percentage points **costs** {0.1%, 0.2%, 0.4%} of consumption
 - Cost of 10% inflation has been estimated to be around 1% of consumption

- · Takes place when more consumers opt out of banking system
- Allow currency and bank deposits to be substitutable
- Nonpar exchange rate policy helps **prevent disintermediation**

Table of contents

Baseline Mode

A Model with Endogenous Costs of Holding Currency

Optimal Monetary Policy

Quantitative Analysis and Disintermediation

Conclusion

Conclusion

- A model of currency, reserves, and bank deposits is developed to study:
 - the effectiveness of a nonpar exchange rate policy
 - the implications of negative nominal interest rates
- A nonpar exchange rate reduces the effective lower bound if the cost of holding currency is sufficiently high
- Reducing the lower bound increases the aggregate cost of holding currency
- It is **not desirable** to reduce the effective lower bound because it is only costly without any benefits

Buyers

• Supply labor in the centralized market (CM) and consume goods in the decentralized market (DM):

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[-H_t + u(x_t) \right]$$

where $0 < \beta < 1$ is discount factor, H_t is labor supply in CM, and x_t is consumption in DM

Choices:

- 1. Supply labor to produce goods in the CM
- 2. Exchange goods for assets in the CM
 - Acquire bank deposits offered by private banks
 - At the end of CM, learn the transaction type and can withdraw currency
- 3. Buy goods with either currency or bank deposits and consume them in the DM

Sellers • back

• Consume goods in the centralized market (CM) and supply labor in the decentralized market (DM):

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[X_t^s - h_t^s \right]$$

where X_t^s is consumption in CM and h_t^s is labor supply in DM

Choices:

- 1. At the beginning of CM, currency-holding sellers can either ...
 - · deposit currency with a private bank at one-to-one exchange rate or
 - · choose to sell currency at a market price in the CM
- 2. Exchange assets for goods and consume them in the CM
- 3. Sell goods in exchange for assets (currency or bank deposits) in the DM

Private banks

Private banks supply labor and consume goods in the centralized market (CM):

$$E_0 \sum_{t=0}^{\infty} \beta^t \left[-H_t^b + X_t^b \right]$$

where H_t^b is labor supply and X_t^b is consumption in the CM

Choices:

- 1. In the CM, issue bank deposits which allow depositors to withdraw currency at the end of CM
 - ightarrow Deposit contracts are useful as they play an **insurance role** for buyers
- 2. In the CM, acquire currency either
 - from the central bank at a **nonpar exchange rate** η or
 - from private agents at a market price
- 3. In the CM, acquire government bonds and reserves

Private banks • back

- · At the end of the centralized market (CM), deliver currency for buyers who liquidate their deposits
- · At the beginning of the next CM, ...
 - deposit the remaining currency with the central bank at one-to-one exchange rate
 - · redeem deposits
- · Private banks cannot commit to repaying their liabilities (limited commitment)
 - · Assets serve as collateral to back their liabilities
 - → Incentive constraint arises, limiting the quantities of currency and deposits offered to buyers

- **Central bank** issues currency \bar{c} and reserves \bar{m} and determines:
 - nominal interest rate on reserves R^m (conventional monetary policy)
 - nonpar exchange rate between currency and reserves $\boldsymbol{\eta}$

Fiscal authority

- issues one-period government bonds $ar{b}$
- sets the real quantity of government bonds issued by the fiscal authority $v=\eta ar c + ar m + ar b$
- gives lump-sum transfer au to each buyer

Definition of stationary equilibrium in the baseline model

Definition: Given fiscal policy v and monetary policy (R^m, η) , a stationary equilibrium can be characterized by

- DM consumption quantities (x^c, x^d) , asset quantities (k, c', d, c, m, b),
- fraction of sellers carrying currency α^s , price of real currency ϕ
- transfers (τ_0, τ) , gross inflation rate π , and nominal interest rate on government bonds R^b ,

satisfying consolidated government budget constraints, fiscal policy v, first-order conditions for private bank's problem, no arbitrage conditions for private banks and sellers, incentive compatibility condition for sellers carrying currency, and market clearing conditions

Equilibrium conditions

• Consolidated government budget constraints:

$$\eta \bar{c} + \bar{m} + \bar{b} = \tau_0 \qquad \text{for } t = 0$$

$$\eta \bar{c} + \bar{m} + \bar{b} = \frac{\bar{c} + R^m \bar{m} + R^b \bar{b}}{\pi} + \tau \qquad \text{for } t = 1, 2, \dots$$

• Fiscal policy rule:

$$v = \eta \bar{c} + \bar{m} + \bar{b}$$

• Incentive compatibility for sellers carrying currency:

$$\begin{array}{ll} \text{if} & \phi < 1, & \text{then} & \alpha^s = 0 \\ \\ \text{if} & \phi = 1, & \text{then} & 0 \leq \alpha^s \leq 1 \\ \\ \text{if} & \phi > 1, & \text{then} & \alpha^s = 1 \\ \end{array}$$

Equilibrium conditions, continued

• No arbitrage condition for sellers :

$$-\phi + \beta \left[\frac{1 - \alpha^s + \alpha^s \phi}{\pi} - \gamma \right] \le 0$$

• Market clearing conditions :

$$c = \bar{c}; \quad m = \bar{m}; \quad b = \bar{b}$$

First-order conditions for a bank's problem

$$\begin{split} &(c') \quad \frac{\beta[1-\alpha^s+\alpha^s\phi]}{\pi}u'\left(x^c\right)-\phi-\frac{\lambda\delta}{\pi}=0\\ &(d) \quad \beta u'(x^d)-\beta-\lambda=0\\ &(c) \quad -\phi+\frac{\beta}{\pi}-\beta\gamma+\frac{\lambda\left(1-\delta\right)}{\pi}\leq0\\ &(m) \quad -1+\frac{\beta R^m}{\pi}+\frac{\lambda R^m\left(1-\delta\right)}{\pi}=0\\ &(b) \quad -1+\frac{\beta R^b}{\pi}+\frac{\lambda R^b\left(1-\delta\right)}{\pi}=0\\ &\lambda\left[-(1-\rho)d+\frac{(1-\delta)\left(R^mm+R^bb+c\right)}{\pi}-\frac{\rho c'}{\pi}\right]=0 \end{split}$$

where $x^c=[1-\alpha^s+\alpha^s\phi]rac{eta c'}{\pi}-eta\mu$ and $x^d=eta d$ are the solutions to the bargaining problems

$$(c') \quad \frac{\beta[1-\alpha^{s}+\alpha^{s}\phi]}{\pi}u'(x^{c})-\phi-\frac{\lambda\delta}{\pi}=0$$

$$(d) \quad \beta u'(x^{d})-\beta-\lambda=0$$

$$(c) \quad -\phi+\frac{\beta}{\pi}-\beta\gamma+\frac{\lambda\left(1-\delta\right)}{\pi}\leq0$$

$$(m) \quad -\mathbf{1}+\frac{\beta R^{m}}{\pi}+\frac{\lambda R^{m}\left(\mathbf{1}-\delta\right)}{\pi}=\mathbf{0}$$

$$(b) \quad -1+\frac{\beta R^{b}}{\pi}+\frac{\lambda R^{b}\left(1-\delta\right)}{\pi}=0$$

$$\lambda\left[-(1-\rho)d+\frac{(1-\delta)\left(R^{m}m+R^{b}b+c\right)}{\pi}-\frac{\rho c'}{\pi}\right]=0$$

where $x^c = [1 - \alpha^s + \alpha^s \phi] \frac{\beta c'}{\pi} - \beta \mu$ and $x^d = \beta d$ are the solutions to the bargaining problems

Stationary equilibrium with deflation • back

- Real value of currency increases over time
- Private banks (demanders) can acquire a sufficient quantity of currency in the centralized market
 - → **No need to withdraw** currency from the central bank
- Sellers (suppliers) will be **indifferent** between depositing currency and selling currency in the centralized market
 - → Price of currency = exchange rate for currency deposits = 1

Effective Lower Bound (ELB) in an equilibrium with deflation

$$1 + R^{m} \ge \max \left[\underbrace{\frac{1}{1 + \beta \gamma}}_{1 + R_{banks}^{c}}, \underbrace{\frac{1}{(1 + \beta \gamma)[1 + \lambda(1 - \delta)/\beta]}}_{1 + R_{sellers}^{c}} \right] = \frac{1}{1 + \beta \gamma}$$

- β discount factor; γ proportional cost of storing currency
- R^m nominal interest rate on reserves
- R^c_{banks} and $R^c_{sellers}$ nominal rates of return on currency perceived by banks and sellers
- → Introducing a nonpar exchange rate does not affect the ELB because private banks do not withdraw currency at the nonpar exchange rate

Comparative statics in the baseline model

- With R^m held constant, an **increase** in the nonpar exchange rate η ...
 - increases the rate of return on currency for sellers ightarrow Effect on the ELB depends on η
 - · increases currency and decreases bank deposits offered by private banks
 - \rightarrow consumption in currency transactions x^c increases consumption in bank deposit transactions x^d decreases
 - increases inflation, mitigating an increase in the real rate of return on currency
 - tightens collateral constraints, leading to higher prices of collateralizable assets
 - \rightarrow real interest rate r^m falls

$$\partial ELB \quad \partial x^c \quad \partial x^d \quad \partial \pi \quad \partial r^m$$
 $\partial \eta \quad ? \quad + \quad - \quad + \quad -$

Comparative statics in the baseline model

- With R^m held constant, an **increase** in the nonpar exchange rate η ...
 - increases the rate of return on currency for sellers \rightarrow Effect on the ELB depends on η
 - · increases currency and decreases bank deposits offered by private banks
 - ightarrow consumption in currency transactions x^c increases consumption in bank deposit transactions x^d decreases
 - increases inflation, mitigating an increase in the real rate of return on currency
 - tightens collateral constraints, leading to higher prices of collateralizable assets
 - \rightarrow real interest rate r^m falls

$$\partial ELB \quad \partial x^c \quad \partial x^d \quad \partial \pi \quad \partial r^m$$
 $\partial \eta \quad ? \quad + \quad - \quad + \quad -$

Comparative statics in the baseline model

- With R^m held constant, an **increase** in the nonpar exchange rate η ...
 - increases the rate of return on currency for sellers \rightarrow Effect on the ELB depends on η
 - · increases currency and decreases bank deposits offered by private banks
 - \rightarrow consumption in currency transactions x^c increases consumption in bank deposit transactions x^d decreases
 - increases inflation, mitigating an increase in the real rate of return on currency
 - tightens collateral constraints, leading to higher prices of collateralizable assets
 - \rightarrow real interest rate r^m falls

$$\partial ELB \quad \partial x^c \quad \partial x^d \quad \partial \pi \quad \partial r^m$$
 $\partial \eta \quad ? \quad + \quad - \quad + \quad -$

Comparative statics in the baseline model • back

- With R^m held constant, an **increase** in the nonpar exchange rate η ...
 - increases the rate of return on currency for sellers \rightarrow Effect on the ELB depends on η
 - · increases currency and decreases bank deposits offered by private banks
 - \rightarrow consumption in currency transactions x^c increases consumption in bank deposit transactions x^d decreases
 - increases inflation, mitigating an increase in the real rate of return on currency
 - tightens collateral constraints, leading to higher prices of collateralizable assets
 - \rightarrow real interest rate r^m falls

$$\partial ELB \quad \partial x^c \quad \partial x^d \quad \partial \pi \quad \partial r^m$$
 $\partial \eta \quad ? \quad + \quad - \quad + \quad -$

Equilibrium conditions in the baseline model •••••

$$\eta R^{m} = \frac{\eta u'(x^{c}) - \delta u'(x^{d}) + \delta}{u'(x^{d}) - \delta u'(x^{d}) + \delta} \\
\left[u'(x^{c}) + \frac{\delta}{(1 - \delta)\eta} \right] \rho(x^{c} + \beta\mu) + \left[u'\left(x^{d}\right) + \frac{\delta}{1 - \delta} \right] (1 - \rho)x^{d} = v \\
\pi = \frac{\beta}{\eta} \left[\eta u'(x^{c}) - \delta u'(x^{d}) + \delta \right] \\
r^{m} = \frac{1}{\beta \left[u'(x^{d}) - \delta u'(x^{d}) + \delta \right]} \\
\kappa \ge \frac{\rho(x^{c} + \beta\mu)}{\beta}$$

At the beginning of Theft Market (TM)

Definition of stationary equilibrium in a model with theft

Definition: Given fiscal policy v and monetary policy (R^m, η) , a stationary equilibrium can be characterized by

- DM consumption quantities (x^c, x^d) , asset quantities (k, c', d, c, m, b), price of real currency ϕ
- fraction of buyers investing in the theft technology α^b , fraction of sellers carrying currency α^s ,
- transfers (τ_0,τ) , gross inflation rate π , and nominal interest rate on government bonds R^b ,

satisfying consolidated government budget constraints, fiscal policy rule v, first-order conditions for private bank's problem, no arbitrage conditions for private banks and sellers, incentive compatibility conditions for buyers and sellers in TM, and market clearing conditions.

Equilibrium conditions in a model with theft

· Consolidated government budget constraints:

$$\eta \bar{c} + \bar{m} + \bar{b} = \tau_0 \qquad \text{for } t = 0$$

$$\eta \bar{c} + \bar{m} + \bar{b} = \frac{\bar{c} + R^m \bar{m} + R^b \bar{b}}{\pi} + \tau \qquad \text{for } t = 1, 2, \dots$$

• Fiscal policy rule:

$$v = \eta \bar{c} + \bar{m} + \bar{b}$$

• Incentive compatibility for sellers carrying currency:

if
$$(1-\alpha^b)\phi < 1$$
, then $\alpha^s = 0$
if $(1-\alpha^b)\phi = 1$, then $0 \le \alpha^s \le 1$
if $(1-\alpha^b)\phi > 1$, then $\alpha^s = 1$

Equilibrium conditions in a model with theft, continued

• Incentive compatibility for buyers investing in the theft technology:

$$\begin{array}{ll} \text{if} \quad \kappa > \frac{\rho \alpha^s \phi c'}{\pi}, \quad \text{then} \quad \alpha^b = 0, \\ \\ \text{if} \quad \kappa = \frac{\rho \alpha^s \phi c'}{\pi}, \quad \text{then} \quad 0 \leq \alpha^b \leq 1, \\ \\ \text{if} \quad \kappa < \frac{\rho \alpha^s \phi c'}{\pi}, \quad \text{then} \quad \alpha^b = 1, \end{array}$$

No arbitrage condition for (non-bank) individuals:

$$-\phi + \beta \left[\frac{1 - \alpha^s + \alpha^s (1 - \alpha^b) \phi}{\pi} - \gamma \right] \le 0$$

Market clearing conditions :

$$c = \bar{c}; \quad m = \bar{m}; \quad b = \bar{b}$$

First-order conditions for a bank's problem in a model with theft

$$(c') \quad \frac{\beta[1 - \alpha^s + \alpha^s(1 - \alpha^b)\phi]}{\pi} u'(x^c) - \phi - \frac{\lambda\delta}{\pi} = 0$$

$$(d) \quad \beta u'(x^d) - \beta - \lambda = 0$$

$$(c) \quad -\phi + \frac{\beta}{\pi} - \beta\gamma + \frac{\lambda(1 - \delta)}{\pi} \le 0$$

$$(m) \quad -1 + \frac{\beta R^m}{\pi} + \frac{\lambda R^m(1 - \delta)}{\pi} = 0$$

$$(b) \quad -1 + \frac{\beta R^b}{\pi} + \frac{\lambda R^b(1 - \delta)}{\pi} = 0$$

$$\lambda \left[-(1 - \rho)d + \frac{(1 - \delta)(R^m m + R^b b + c)}{\pi} - \frac{\rho c'}{\pi} \right] = 0$$

where $x^c = [1 - \alpha^s + \alpha^s (1 - \alpha^b)\phi] \frac{\beta c'}{\pi} - \beta \mu$ and $x^d = \beta d$ are the solutions to the bargaining problems

Equilibrium with theft - Comparative statics with respect to R^m

- Holding the nonpar exchange rate η constant, an **increase** in interest rate R^m ...
 - decreases **currency** c' and increases **bank deposits** d offered by private banks
 - \rightarrow consumption in currency transactions x^c decreases consumption in bank deposit transactions x^d increases
 - increases inflation, reducing the real rate of return on currency
 - relaxes collateral constraints, leading to lower prices of collateralizable assets
 - \rightarrow real interest rate r^m rises
 - increases the fraction of sellers carrying currency in the theft market α^s

	∂ELB	∂x^c	∂x^d	$\partial\pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
∂R^m		_	+	+	+		+

Equilibrium with theft - Comparative statics with respect to \mathbb{R}^m

- Holding the nonpar exchange rate η constant, an **increase** in interest rate R^m ...
 - ullet decreases currency c^\prime and increases bank deposits d offered by private banks
 - \rightarrow consumption in currency transactions x^c decreases consumption in bank deposit transactions x^d increases
 - · increases inflation, reducing the real rate of return on currency
 - relaxes collateral constraints, leading to lower prices of collateralizable assets
 - \rightarrow real interest rate r^m rises
 - increases the fraction of sellers carrying currency in the theft market $\alpha^{\rm s}$

	∂ELB	∂x^c	∂x^d	$\partial \pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
∂R^m			+	+	+		+

Equilibrium with theft - Comparative statics with respect to \mathbb{R}^m

- Holding the nonpar exchange rate η constant, an **increase** in interest rate R^m ...
 - ullet decreases currency c^\prime and increases bank deposits d offered by private banks
 - \rightarrow consumption in currency transactions x^c decreases consumption in bank deposit transactions x^d increases
 - increases inflation, reducing the real rate of return on currency
 - relaxes collateral constraints, leading to lower prices of collateralizable assets
 - \rightarrow real interest rate r^m rises
 - increases the fraction of sellers carrying currency in the theft market $lpha^s$

	∂ELB	∂x^c	∂x^d	$\partial\pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
∂R^m			+	+	+		+

Equilibrium with theft - Comparative statics with respect to R^m

- Holding the nonpar exchange rate η constant, an **increase** in interest rate R^m ...
 - decreases currency c' and increases bank deposits d offered by private banks
 - \rightarrow consumption in currency transactions x^c decreases consumption in bank deposit transactions x^d increases
 - increases inflation, reducing the real rate of return on currency
 - relaxes collateral constraints, leading to lower prices of collateralizable assets
 - \rightarrow real interest rate r^m rises
 - increases the fraction of sellers carrying currency in the theft market α^s

	∂ELB	∂x^c	∂x^d	$\partial\pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
∂R^m			+	+	+		+

Equilibrium with theft - Comparative statics, continued

- With R^m held constant, an **increase** in the nonpar exchange rate η ...
 - · reduces inflation, mitigating a fall in the real rate of return on currency
 - relaxes collateral constraints, leading to lower prices of collateralizable assets
 - \rightarrow real interest rate r^m rises
 - has an ambiguous effect on the fraction of sellers carrying currency in the theft market $lpha^s$

	∂ELB	∂x^c	∂x^d	$\partial \pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
$\partial \eta$	_		+	_	+	+	?

Equilibrium with theft - Comparative statics, continued

- With R^m held constant, an **increase** in the nonpar exchange rate η ...
 - reduces inflation, mitigating a fall in the real rate of return on currency
 - relaxes collateral constraints, leading to lower prices of collateralizable assets
 - \rightarrow real interest rate r^m rises
 - has an ambiguous effect on the fraction of sellers carrying currency in the theft market $lpha^s$

	∂ELB	∂x^c	∂x^d	$\partial\pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
$\partial \eta$	_		+		+	+	?

Equilibrium with theft - Comparative statics, continued

- With R^m held constant, an **increase** in the nonpar exchange rate η ...
 - reduces inflation, mitigating a fall in the real rate of return on currency
 - relaxes collateral constraints, leading to lower prices of collateralizable assets
 - \rightarrow real interest rate r^m rises
 - ullet has an ambiguous effect on the fraction of sellers carrying currency in the theft market $lpha^s$

	∂ELB	∂x^c	∂x^d	$\partial\pi$	∂r^m	$\partial \alpha^b$	$\partial \alpha^s$
$\partial \eta$	_		+		+	+	?

Equilibrium α^s and Monetary Policy (R^m , η)

· Welfare measure is defined by

$$\mathcal{W} = \underbrace{0}_{\text{CM surpluses}} + \underbrace{\rho \left[u(x^c) - x^c + \beta \mu \right] + (1 - \rho) \left[u(x^d) - x^d \right]}_{\text{DM surpluses}} - \underbrace{\left(\rho \beta \mu + \alpha^b \kappa \right)}_{\text{total cost in TM}},$$

which is the sum of surpluses from trade in the Centralized Market (CM) and the Decentralized Market (DM), net of the total cost incurred in the Theft Market (TM)

• This is the same as the sum of **expected utilities across agents**

Optimal monetary policy in a model with theft

Optimal monetary policy when the cost of theft is sufficiently high

• If κ is sufficiently high, the optimal monetary policy is characterized by

$$\eta = \bar{\eta} \quad \text{and} \quad 1 + R^m > \frac{1}{\bar{\eta}}$$

where $\bar{\eta}$ is the highest possible level that does not cause theft

Equilibrium conditions in an equilibrium with theft

$$\begin{split} \eta R^m &= \frac{u'(x^c) - \delta u'(x^d) + \delta}{u'(x^d) - \delta u'(x^d) + \delta} \\ \left[u'(x^c) + \frac{\delta}{1 - \delta} \right] \rho(x^c + \beta \mu) + \left[u'\left(x^d\right) + \frac{\delta}{1 - \delta} \right] (1 - \rho) x^d = v \\ \pi &= \frac{\beta}{\eta} \left[u'(x^c) - \delta u'(x^d) + \delta \right] \\ r^m &= \frac{1}{\beta \left[u'(x^d) - \delta u'(x^d) + \delta \right]} \\ \alpha^b &= \frac{\eta - 1}{\eta} \\ \alpha^s &= \frac{\beta \kappa}{\rho \eta(x^c + \beta \mu)} \\ \kappa &< \frac{\rho \eta(x^c + \beta \mu)}{\beta} \end{split}$$

Quantitative analysis - Calibration

- The utility function for consumption in the DM is $u(x) = \frac{x^{1-\sigma}}{1-\sigma}$
- Excluding the cost of theft κ , there are eight parameters to calibrate
- Calibration is based on the U.S. data during 2013-2015
 - the policy rate was close to zero → suitable to discuss the welfare cost of reducing the ELB
 - nominal interest rate on reserves and domestically-held public debt to GDP were stable

Quantitative analysis - Calibration results

- First three parameters are calibrated externally and the last five are calibrated internally
- Sources: Federal Reserve Economic Data (FRED)

Param's	Values	Calibration targets	Sources
β	0.96	Standard in literature	
R^m	1.0025	Avg. interest rate on reserves: 0.25%	FRED
γ	0.00	Lowest target range for fed funds rate: 0-0.25%	FRED
σ	0.17	Money demand elasticity (1959-2007): -4.19	FRED
ρ	0.17	Currency to M1 ratio: 17.22%	FRED; Lucas and Nicolini (2015)
v	1.13	Avg. locally-held public debt to GDP: 66.73%	FRED
δ	0.45	Avg. inflation rate: 1.06%	FRED
μ	0.01	Fixed storage cost: 2% of currency payments	Author's assumption

Quantitative analysis - Counterfactual analysis

- · Consider three scenarios where
 - Cost of theft κ is (i) 2.5%, (ii) 5%, and (iii) 10% of the current consumption level
- Ask how much consumption (fraction $\Delta_{\eta}-1$) would need to be compensated to endure η

44	ELB	D*)	
η ELB	R_{η}^{*}	<i>κ</i> = 2.5%	κ = 5%	<i>κ</i> = 10%	
1.00	1.000	1.000	-	-	-
1.025	0.976	0.976	0.0561	0.1118	0.2236
1.05	0.952	0.952	0.1095	0.2183	0.4367
1.10	0.909	0.909	0.2091	0.4168	0.8339

- Cost of 10% inflation has been estimated to be around **1% of consumption**
 - E.g., 0.62% in Chiu-Molico (2010), 0.87% in Lucas (2000), and 1.32% in Lagos-Wright (2005)

Disintermediation

- · Disintermediation might determine the the effective lower bound
 - · ... a situation where more consumers opt out of bank deposit contracts
 - A practical concern : disintermediation might cause long-run inefficiency in financial system
- To study the implication of a nonpar exchange rate for potential disintermediation,
 - allow currency and bank deposits to be substitutable
 - fraction ρ of sellers accept only currency while $1-\rho$ of sellers accept both means of payment

Disintermediation

• If the cost of theft is sufficiently low, the ELB is given by

$$1 + R^m \ge \frac{u'(x^o)}{\eta \left[(1 - \delta)u'(x^d) + \delta \right]}$$

- x^{o} quantity of DM consumption for buyers opting out of bank contracts
- x^d quantity of consumption in bank deposit transactions for buyers acquiring bank contracts
- δ fraction of assets private banks can abscond with
- Complete disintermediation **cannot** be supported in equilibrium → determines the ELB
 - Due to a shortage of government bonds, central bank cannot meet the demand for currency

Discussion • back

- Which model specification is more realistic?
 - There are transactions where both means of payment can be accepted
 - There are also transactions where currency cannot be accepted
 - Reality may be somewhere between the two versions of the model
- Implication for the ELB?
 - As there are transactions where currency cannot be used
 - Complete disintermediation may not happen → no arbitrage conditions will determine ELB

Bibliography

- How to reduce the lower bound on interest rates
 (Eisler, 1932; Buiter, 2010; Goodfriend, 2016; Rogoff, 2017a,b; Agarwal and Kimball, 2015, 2019)
- Implications of a negative interest rate
 (He et al., 2008; Brunnermeier and Koby, 2019; Eggertsson et al., 2019; Jung, 2019)
- Search-theoretic models with currency and bank deposits
 (Cavalcanti et al., 1999; Williamson, 1999; He et al., 2005; Li, 2006; He et al., 2008; Li, 2011; Williamson, 2012)
- Endogenous theft (He et al., 2005, 2008; Sanches and Williamson, 2010)

Bibliography i

- Agarwal, R. and Kimball, M. S. (2015). Breaking Through the Zero Lower Bound. IMF Working Paper, 224:1–39.
- Agarwal, R. and Kimball, M. S. (2019). Enabling Deep Negative Rates to Fight Recessions: A Guide. *IMF Working Paper*, 84:1–88.
- Brunnermeier, M. K. and Koby, Y. (2019). The Reversal Interest Rate. Working Paper, pages 1-42.
- Buiter, W. H. (2010). Negative Nominal Interest Rates: Three Ways to Overcome the Zero Lower Bound. *The North American Journal of Economics and Finance*, 20(3):213–238.
- Cavalcanti, R. d. O., Erosa, A., and Temzelides, T. (1999). Private Money and Reserve Management in a Random-Matching Model. *Journal of Political Economy*, 107(5):929–945.
- Eggertsson, G. B., Juelsrud, R. E., Summers, L. H., and Wold, E. G. (2019). Negative Nominal Interest Rates and the Bank Lending Channel.
- Eisler, R. (1932). Stable Money, the Remedy for the Economic World Crisis: a Programme of Financial Reconstruction for the International Conference, 1933. Search Publishing Company.
- Goodfriend, M. (2016). The Case for Unencumbering Interest Rate Policy at the Zero Bound. In *Designing Resilient Monetary Policy Frameworks for the Future*, pages 127–160, Jackson Hole, Wyoming. Proceedings of the 2016 Economic Policy Symposium.
- He, P., Huang, L., and Wright, R. (2005). Money and Banking in Search Equilibrium. *International Economic Review*, 46(2):637–670.

Bibliography ii

- He, P., Huang, L., and Wright, R. (2008). Money, Banking, and Monetary Policy. *Journal of Monetary Economics*, 55(6):1013–1024.
- Jung, K. M. (2019). Optimal Negative Interest Rate under Uncertainty. *International Journal of Central Banking*, 15(3):1–25.
- Li, Y. (2006). Banks, Private Money, and Government Regulation. *Journal of Monetary Economics*, 53(8):2067–2083.
- Li, Y. (2011). Currency and Checking Deposits as Means of Payment. Review of Economic Dynamics, 14(2):403–417.
- Rogoff, K. (2017a). Dealing with Monetary Paralysis at the Zero Bound. Journal of Economic Perspectives, 31(3):47–66.
- Rogoff, K. (2017b). The Curse of Cash: How Large-Denomination Bills Aid Tax Evasion and Crime and Constrain Monetary Policy. Princeton University Press.
- Sanches, D. and Williamson, S. D. (2010). Money and Credit with Limited Commitment and Theft. *Journal of Economic Theory*, 145(4):1525–1549.
- Williamson, S. D. (1999). Private Money. Journal of Money, Credit and Banking, 31(3):469–491.
- Williamson, S. D. (2012). Liquidity, Monetary Policy, and the Financial Crisis: A New Monetarist Approach. *American Economic Review*, 102(6):2570–2605.