

[60pts]

Departamento de Matemática, Universidade de Aveiro

Cálculo II-Agrupamento 3 — 1º Teste (VERSÃO 1)

14 de abril de 2023

Duração: 2h00

N.º Mec.:			_ No	me:								
(Declaro q	ue desis	sto:)		N. folk	nas suple	ementares:
Questão [Cotação]	1 [60pts]	2 [23pts]	3a [13pts]	3b [10pts]	4a [10pts]	4b [13pts]	5a [23pts]	5b [12pts]	6a [12pts]	6b [8pts]	7 [16pts]	Classificação (valores)
– Na	ıs que:	stões 2	2 a 6 ju	ıstifiqu	ıe toda	as as r	espos	tas e iı	ndique	os cá	lculos e	efetuados –
	4		, .						7			
	alíneas inte:	s seguin	ites assi	inale co	m uma	cruz a	opção (correta.	A cota	ıção a a	ıtribuir a	cada resposta é a
(ii) r	esposta	correta: errada: a de res	-3 pon	tos;	sta nula	a: 0 pon	tos.					
(a)	Qual é	o raio	de conv	ergênci	a da sé	rie de p	otência	$s \sum_{i=1}^{+\infty} \frac{1}{(i)^{i}}$	$\frac{(-1)^n}{n+1)5}$	$\frac{1}{n}x^n$?		
	<u> </u>			$\frac{1}{5}$			$+\infty$	n=0 \		0		
(b)	Saben	do que	uma da	da série	e de pot	ências (da form	$a \sum_{n=0}^{+\infty} a^n$	$u_n(x-x)$	$(c)^n$ tem	n domínio	o de convergência
		4], pode						n=1				
	as	série é a	ıbsoluta	mente	converg	gente en	$\mathbf{n} x = 4$					
	a s	série é s	simples	mente c	onverge	ente em	x = -	8				
		$\lim_{n \to +\infty} \frac{ a }{ a_n }$ $= 2$	$\frac{ u_n }{ u+1 } =$	6								
(c)			desenv	olvime	nto em	série de	e MacL	aurin da	a função	cossei	no hiperb	oólico,
					CO	$ \cosh x = $	$\sum_{n=0}^{+\infty} \frac{x}{(2^n)^n}$	$\frac{2n}{(2n)!}$,	$x \in \mathbb{R},$			
	qual d	as segui	intes re	presenta	ações é	válida?	70-0					
	-	_			-				cosh(-	-2x) =	$\sum_{n=0}^{+\infty} \frac{4^n}{(2n)}$	\overline{y} $x^{2n+2}, x \in \mathbb{R}$
		$^2 \cosh($	-2x) =	$=\sum_{n=0}^{+\infty}\frac{2}{(2)}$	$\frac{2^n}{(n)!}x^{2n+1}$	$^{+1}, x \in$	\mathbb{R}		$\cosh(-$	-2x) =	$\sum_{n=0}^{+\infty} \frac{(-2)}{(2n)}$	$\frac{1}{n!}x^{2n+1}, x \in \mathbb{R}$

(d) O polinómio de Taylor de ordem 3 de uma função f no ponto $c=\frac{\pi}{4}$ é dado por:							
$T^{\frac{3}{4}}(f(x)) = -2\left(x - \frac{\pi}{4}\right) + \frac{4}{3}\left(x - \frac{\pi}{4}\right)^{3}.$							
O valor de $f'''(\frac{\pi}{4})$ é igual a:							
(e) Seja f uma função que satisfaz as condições: $f(2)=0$, $f'(2)=4$, $f''(2)=2$, $f'''(2)=-6$ e $f^{(n)}(2)=0$ para todo o $n\geq 4$. Sabendo que a série de Taylor de f converge para f , podemos concluir que $f(4)$ é igual a:							
$\boxed{} -4$ $\boxed{} 4$ $\boxed{} 0$ $\boxed{} 20$							
(f) Sabendo que a série de Fourier da extensão 2π -periódica da função $f(x)= x , \ -\pi \leq x < \pi,$ é							
$\frac{\pi}{2} + \sum_{n=1}^{+\infty} \frac{-4}{\pi (2n-1)^2} \cos((2n-1)x), \ x \in \mathbb{R},$							
podemos concluir que a soma da série numérica $\sum_{n=1}^{+\infty} \frac{1}{(2n-1)^2}$ é							
Determine o domínio de convergência da série de potências $\sum_{n=1}^{+\infty} \frac{(3x-4)^n}{(n+1)^2}$, indicando os pon							
tos onde a convergência é simples ou absoluta.							

2.

[23pts]

	N °	Mec: _	Nome:	_
	•	3. Cor	nsidere a função f dada por $f(x) = \sqrt[3]{1+x}$.	
[13pts]			Escreva a fórmula de MacLaurin de ordem 1 da função f .	
			Continua na folha suplementar N	ю
[10pts]		(b)	Usando a fórmula obtida na alínea anterior, calcule um valor aproximado de $\sqrt[3]{1,3}$ e mostre que o erro absoluto cometido nessa aproximação é inferior a 10^{-2} .	

	4. Cor	nsidere a série de funções definida por $\sum_{n=1}^{+\infty} rac{ ext{sen}(nx)}{n^4}$.
[10pts]	(a)	Prove que esta série converge uniformemente em $\mathbb{R}.$
		Continua na folha suplementar N°
[13pts]	(b)	Justifique que a função soma é integrável em $[-\pi,\pi]$ e calcule $\int_{-\pi}^{\pi} \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n^4} dx$.

	5. Con	sidere a função 2π -periódica f definida em $]-\pi,\pi]$ por $f(x)=-x$.
[23pts]	(a)	Determine a série de Fourier de f .
[12pts]	(b)	Continua na folha suplementar N° Seja S a função soma da série de Fourier obtida na alínea anterior.
	. ,	Indique o valor de $S(3\pi)$ e de $S(-2\pi)$.

	6.	Cons	sidere a função $f:D_f\subseteq\mathbb{R}^2 o\mathbb{R}$ definida por $f(x,y)=rac{5}{\ln(x^2+y^2)}$.
[12pts]		(a)	Determine o domínio de $f, D_f, {\rm e}$ represente-o geometricamente.
[8pts]		(b)	Continua na folha suplementar N° Determine a curva de nível 5 , C_5 .

Continua na folha suplementar No

[16pts] 7. A função $g:\mathbb{R}^2 \to \mathbb{R}$ definida por

$$g(x,y) = \begin{cases} \frac{yx^3 - xy^3}{2x^4 + 3y^4} & \text{se } (x,y) \neq (0,0) \\ \\ 0 & \text{se } (x,y) = (0,0) \end{cases}$$

é contínua na origem? Justifique convenientemente.

Formulário de Primitivas

Função	Primitiva	Função	Primitiva	Função	Primitiva
$ \begin{array}{c} u^r u' \\ (r \neq -1) \end{array} $	$\frac{u^{r+1}}{r+1}$	$\frac{u'}{u}$	$\ln u $	$u'e^u$	e^u
$u'a^u$	$\frac{a^u}{\ln a}$	$u'\cos u$	$\operatorname{sen} u$	$u' \operatorname{sen} u$	$-\cos u$
$u'\sec^2 u$	$\operatorname{tg} u$	$u'\csc^2 u$	$-\cot g u$	$u' \sec u$	$ \ln \sec u + \operatorname{tg} u $
$u' \operatorname{cosec} u$	$-\ln \csc u + \cot g u $	$\frac{u'}{\sqrt{1-u^2}}$	$-\arccos u$ ou $\arccos u$	$\frac{u'}{1+u^2}$	rctg u ou $-rccotg u$

Algumas fórmulas trigonométricas

	$sen(x \pm y) = sen x cos y \pm cos x sen y$		
$\sec x = \frac{1}{\cos x}$	$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$	$\cos^2 x = \frac{1 + \cos(2x)}{2}$	$1 + \operatorname{tg}^2 x = \sec^2 x$
$\csc x = \frac{1}{\sec x}$	$\operatorname{sen}(2x) = 2\operatorname{sen}x\operatorname{cos}x$	$\sin^2 x = \frac{1 - \cos(2x)}{2}$	$1 + \cot^2 x = \csc^2 x$
3314	$\cos(2x) = \cos^2 x - \sin^2 x$	-	