Let $a_n=1$. Let $a_{n+1}=\sqrt{a_n+3}$ for n=1,2,3,.... Prove that (a_n) converges and find the limit.

 $q_1 = 1$, $q_2 = \sqrt{1+3} = 2$, $q_3 = \sqrt{2+3} = \sqrt{5}$ Claim? (an) is bounded above by 3, Pf) WTS for each n, $an \leq 3$. We'll use induction. Base Case: n=1 $q_1=1 \leq 3 \checkmark$ Inductive Step: Suppose ax <3. (K>1) WIS $a_{k+1} \leq 3$. We have $a_{k+1} = \sqrt{a_{k}+3} \leq \sqrt{3+3} = \sqrt{6} \leq 3$. This proves the inductive Step. Claim? The sequence (an) is increasing, ie. 9, 492 493 494 4... Pf) We'll prove this by induction. Base case: Show = 92. $q_1=1$, $q_2=2$, so $q_1 \leq q_2$ $\sqrt{}$. Inductive Step: Assume that akeakti. WTS akti & aktz.

We have
$$a_{k+\lambda} = \sqrt{a_{k+1}+3}$$
We're assuming:

 $a_{k-1}+3 = a_k \leq a_{k+1} = \sqrt{a_{k+3}} + 3$
With $a_k \leq a_{k+1}$, $a_{k+3} \leq a_{k+1}+3$
Since $a_i \geq 0$ for all i , and since $a_i \geq 0$ for all i , $a_{k+1} = a_{k+2} + 3 = a_{k+2}$
By the Monotone Convergence theorem, $a_{n+1} = a_n + 3 = a_n + 3$
Let $a_{n+1} = a_n + 3 = a_n + 3$
So $a_{n+1} = a_n + 3 = a_n + 3$
So $a_{n+1} = a_n + 3 = a_n + 3$
 $a_{n+1} = a_n + 3 = a_n + 3$
 $a_{n+1} = a_n + 3 = a_n + 3$
 $a_{n+1} = a_n + 3 = a_n + 3$
 $a_{n+2} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+1} = a_n + 3 = a_n + 3$
 $a_{n+2} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_n + 3$
 $a_{n+3} = a_n + 3 = a_$

Since
$$a_{1} = 1 - \sqrt{13}$$
 or $\frac{1 + \sqrt{13}}{2}$
 $\frac{1}{2} = 1 + \sqrt{13}$