P1.

(A)

Solve the initial linear equation and then branch on any variables that have a fractional value. Add the constrains of the fractional variables, solve the linear equation, and repeat until the solution is integral and not fractional.

Branches	Solution	Optimal value
	x = [-5 -5 1.5 5]	2.5
$x_4 \le -1$	$x = \begin{bmatrix} -5 & -5 & 2 & -1 \end{bmatrix}$	2
$x_4 \ge 0$	$x = \begin{bmatrix} -2 & -4 & 0 & 0 \end{bmatrix}$	2

The optimal value of the objective function is 2. One solution that leads to this value is:

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 1$ $x_4 = 1$

(B)

Branches	Solution	Optimal value
	x = [1.3333 1 1 .6667]	6.3333
$x_4 \ge 1$	$x = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$	6
$x_4 \le 0$	$x = \begin{bmatrix} 0 & 1 & 1 & 0 \end{bmatrix}$	3
$x_1 \leq 1$	$x = \begin{bmatrix} 1 & 1 & 1 & 1 \end{bmatrix}$	6
$x_1 \ge 2$	Infeasible	

The optimal value of the objective function is 6. One solution that leads to this value is:

$$x_1 = 1$$
 $x_2 = 1$ $x_3 = 1$ $x_4 = 1$

P2.

Dictionary # 1

First, we choose x_1 because it is a variable with a fractional solution. We rewrite the equation for x_1 as:

$$0.666667x_5 - 0.333333x_4 + x_1 = 0.6666666666667$$

Next we rewrite the above equation in terms of an integer part and a fractional part.

$$(0x_5 - x_4 + x_1) + (0.666667x_5 + 0.777777x_4) = 0 + 0.6666666666667$$

The fractional part $(0.666667x_5 + 0.777777x_4) \ge 0.6666666666667$. The cutting plane is then given by the equation:

$$(0.666667x_5 + 0.777777x_4) + w_6 = 0.6666666666667$$

Dictionary # 2

Equations for variables with fractional solutions:

$$-0.333333x_8 - 0.666667x_9 + 0.3333333x_3 + x_4 = 4.33333333333$$

$$0.333333x_8 - 0.333333x_9 + 2.666667x_3 + x_5 = 8.66666666667$$

$$0.333333x_8 + 0.666667x_9 - 0.333333x_3 + x_1 = 5.66666666667$$

$$-0.333333x_8 + 0.333333x_9 - 2.666667x_3 + x_2 = 1.3333333333$$

Equations written with integral and fractional parts:

Cutting planes for the above equations:

P3.

(A)

Let x_i be node n_i . If $x_i = 1$ then there is a hospital at that node. If $x_i = 0$ then there is no hospital at that node, but there should be at least one other node $x_j = 1$ and the distance to that node W(i,j) should be between 0 and 1.

This is a 0-1 Integer Linear Program given by the following formulation:

$$\begin{array}{ll} \min & \sum_{j=1}^n (cost_j*node_j) \\ \text{s.t.} & \\ & \sum_{j=1}^n I(W(i,j) \leq 1)*n_j & \geq 1 \text{ for all } i=1...n \\ & n_j & \in \{0,1\} \end{array}$$

For the objective function, we want to minimize the cost of placing hospitals. The constraint

$$\sum_{j=1}^{n} I(W(i,j) \le 1) * n_j \ge 1 \text{ for all } i = 1...n$$

says that for each node i we want to make sure that there is a node j that has a hospital $n_j = 1$ and is within 1 hour of it $I(W(i,j) \le 1) = 1$.

(B)

The code to the solution is at the end of this document. The solution itself is the vector

$$x = [0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad 0 \quad 1]$$

This means in order to minimize the cost of building the hospitals within the driving time of 1 hour for each node, hospitals should be placed at node 6 and node 8. The total cost of the hospitals ends up being 2.1 million dollars.

P4.

(A) We add the indicator variable $z_1...z_n$ to the problem. If $x_i == 0$ then $z_i = 0$ else $z_i = 1$. In this problem we want to minimize the sum of z_i and this occurs best when x_i is 0.

$$\begin{array}{ll} \min & \sum z \\ \text{s.t.} & \\ & Ax & \leq b \\ & x & \leq u*z \\ & x & \geq \ell*z \\ & x & \leq u \\ & x & \geq \ell \\ & z & \in \{0,1\} \end{array}$$

The additional constraints:

$$x \le u * z$$
$$x \ge \ell * z$$

say that if x is negative then z must equal 1, referring to $x \ge \ell * z$. If x is positive then z must be equal to 1, referring to $x \le u * z$. But if x is 0 then z should be equal to 0 because this is a minimization problem. Write down mixed integer programs that will find the point $\mathbf{x} \in P$ with the smallest number of 0 entries in \mathbf{x} .

(B)

We can use the same problem formulation from above except we make it a maximization problem instead of a minimization.

$$\begin{array}{ll} \max & \sum z \\ \text{s.t.} & Ax & \leq b \\ & x & \leq u*z \\ & x & \geq \ell*z \\ & x & \leq u \\ & x & \geq \ell \\ & z & \in \{0,1\} \end{array}$$

The additional constraints:

$$x \le u * z$$
$$x \ge \ell * z$$

say that if x is negative then z must equal 1, referring to $x \ge \ell * z$. If x is positive then z must be equal to 1, referring to $x \le u * z$. But if x is 0 then z should be equal to 1 because this is a maximization problem.

(C) Write down a mixed integer program that will search for a solution $\mathbf{x} \in P$ maximizing an objective function $\mathbf{c}^t \mathbf{x}$ such that \mathbf{x} does not satisfy $\mathbf{a} \leq \mathbf{x} \leq \mathbf{b}$, for given \mathbf{a}, \mathbf{b} . In order to not satisfy the inequality $a \leq x \leq b$, \mathbf{x} needs to be < a or > b.

P5.

We have to find a subset S that contains at least one element in the set S_i for i = 1, ..., k and the sum of the elements in S is minimized.

$$\min_{\substack{\mathbf{s.t.}\\ \mathbf{s.t.}\\ x_i}} \sum_{i=1}^n (i*x_i) \geq 1 \text{ for all } j=1...k$$

 $x_i = 1$ if the element i is in the subset S otherwise $x_i = 0$. The constraint

$$\sum_{j=1}^{n} (j * x_{ji}) \ge 1 \text{ for all } i = 1...k$$

says that for each set S_i , the subset S must contain at least one element from S_i . Solving the above example in the 0-1 ILP we get the solution vector

$$x = [1 \quad 1 \quad 0 \quad 0]$$

This means the subset $S = \{1, 2\}$ which sums to 3.