Model-theoretic embeddings

Maxat Kulmanov

- none of the models discussed above are truly "semantic"
 - all syntactic
 - graph-based or based on axioms

- none of the models discussed above are truly "semantic"
 - all syntactic
 - graph-based or based on axioms
- what do we actually mean by "semantics"?

- none of the models discussed above are truly "semantic"
 - all syntactic
 - graph-based or based on axioms
- what do we actually mean by "semantics"?
 - formal definition of "truth" relies on "models"

- none of the models discussed above are truly "semantic"
 - all syntactic
 - graph-based or based on axioms
- what do we actually mean by "semantics"?
 - formal definition of "truth" relies on "models"
 - ullet universal algebra over formal languages (with signature Σ)

Description Logic EL++

Name	Syntax	Semantics
top	T	$\Delta^{\mathcal{I}}$
bottom	Τ	Ø
nominal	{a}	$\{a^{\mathcal{I}}\}$
conjunction	$C \sqcap D$	$C^{\mathcal{I}}\cap D^{\mathcal{I}}$
existential	∃r.C	$\begin{cases} \{x \in \Delta^{\mathcal{I}} \exists y \in \Delta^{\mathcal{I}} : \\ (x, y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}} \} \end{cases}$
restriction		$(x,y) \in r^{\mathcal{I}} \land y \in C^{\mathcal{I}}$
generalized	$C \sqsubseteq D$	$C^{\mathcal{I}}\subseteq D^{\mathcal{I}}$
concept		
inclusion		
role inclu-	$r_1 \circ \circ r_n \sqsubseteq r$	$r_1^{\mathcal{I}} \circ \circ r_n^{\mathcal{I}} \subseteq r^{\mathcal{I}}$
sion		

3/13

Models

- Interpretations and Σ -structures
- Model $\mathfrak A$ of a formula ϕ : ϕ is true in $\mathfrak A$ ($\mathfrak A \models \phi$)
- Theory T: set of formulas
- $\mathfrak A$ is a model of T if $\mathfrak A$ is a model of all formulas in T
- Ontologies are (special kinds of) theories

- ullet given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function is an interpretation function

- given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function is an interpretation function
- ullet any consistent \mathcal{EL}^{++} theory has infinite models

- ullet given a theory/ontology T with signature $\Sigma(T)$
- aim: find $f_e: \Sigma(T) \mapsto \mathbb{R}^n$ s.t. $f_e(\Sigma(T))$ is a model of T $(f_e(\Sigma(T)) \models T)$
- more general: find an algorithm that maps symbols (signatures) into \mathbb{R}^n so that the *semantics* of the symbol (expressed through axioms and explicit in model structures) is preserved
 - or: the embedding function is an interpretation function
- ullet any consistent \mathcal{EL}^{++} theory has infinite models
- any consistent \mathcal{EL}^{++} theory has models in \mathbb{R}^n (Loewenheim-Skolem, upwards; compactness)

Key idea

- for all $r \in \Sigma(T)$ and $C \in \Sigma(T)$, define $f_e(r)$ and $f_e(C)$
- $f_e(C)$ maps to points in an open *n*-ball such that $f_e(C) = C^{\mathcal{I}}$: $C^{\mathcal{I}} = \{x \in \mathbb{R}^n | \|f_e(C) x\| < r_e(C)\}$
 - these are the *extension* of a class in \mathbb{R}^n
- $f_e(r)$ maps a binary relation r to a vector such that $r^{\mathcal{I}} = \{(x, y) | x + f_e(r) = y\}$
 - that's the TransE property for individuals
- use the axioms in T as constraints

Algorithm

- normalize the theory:
 - every \mathcal{EL}^{++} theory can be expressed using four normal forms (Baader et al., 2005)
- eliminate the ABox: replace each individual symbol with a singleton class: a becomes {a}
- rewrite relation assertions r(a,b) and class assertions C(a) as $\{a\} \sqsubseteq \exists r.\{b\}$ and $\{a\} \sqsubseteq C$
 - something to remember for the next class-vs-instance discussion?
- normalization rules to generate:
 - C □ D
 - $C \sqcap D \sqsubseteq E$
 - *C* ⊑ ∃*R*.*D*
 - ∃*R*.*C* ⊑ *D*

Algorithm: loss functions

8/13

Male	<i>□ Person</i>	(1)
Female	<i>□ Person</i>	(2)
Father	\sqsubseteq <i>Male</i>	(3)
Mother	\sqsubseteq Female	(4)
Father	\sqsubseteq Parent	(5)
Mother	\sqsubseteq Parent	(6)
Female \sqcap Male	⊑⊥	(7)
Female \sqcap Parent	\sqsubseteq Mother	(8)
$Male \sqcap Parent$	\sqsubseteq Father	(9)
$\exists hasChild.Person$	\sqsubseteq Parent	(10)
Parent	<i>□ Person</i>	(11)
Parent	$\sqsubseteq \exists hasChild. \top$	(12)

- model with $\Delta = R^n$
- support quantifiers, negation, conjunction,...

EL BOX Embeddings

Gene Ontology

DeepGOZero - function prediction

