CC0293 - Análise Multivariada

Matrizes - 10/01/2020— Prof. Mauricio Mota

1. Alguns Resultados Matriciais Importantes.

Definição 1. Duas matrizes A e M são ditas congruentes se existe uma matriz não singular C, tal que

$$M = C^t A C. (1)$$

Notação: $A \sim M$ (A semelhante ou congruente a M) Em nosso estudo temos particular

interesse em encontrar uma matriz diagonal que seja congruente à uma dada matriz simétrica A, isto é,

$$D = C^t A C. (2)$$

Assim estaremos interessados em diagonalizar matrizes reais simétricas através de operações de congruência em suas linhas e colunas. Um algoritmo, já consagrado, é : A transformação da matriz ampliada [A|I] na matriz $[D \mid C^t]$ através de operações de congruência em A e operações elementares em I. Como se nota no final obtemos as matrizes D e C de (2).

Entendemos por operações de congruência, as operações efetuadas simultaneamente sobre as linhas e as colunas da matriz.

Exemplo1. Considere a matriz:

$$A = \left[\begin{array}{rrr} 4 & 12 & 20 \\ 12 & 45 & 78 \\ 20 & 78 & 136 \end{array} \right]$$

Vamos seguir com cuidado os passos para diagonalizar a matriz A:

a. Construção da matriz ampliada AI = [A|I];

$$AI = \begin{bmatrix} 4 & 12 & 20 & | & 1 & 0 & 0 \\ 12 & 45 & 78 & | & 0 & 1 & 0 \\ 20 & 78 & 136 & | & 0 & 0 & 1 \end{bmatrix}$$

b. Multiplicando a primeira linha de AI por -3 e somando a segunda linha e depois multiplicando a primeira linha de AI por -5 e somando a terceira linha. Conservamos a primeira linha e obtemos a matriz AI1:

$$AI1 = \left[\begin{array}{cccc|ccc|ccc|ccc|ccc|ccc|} 4 & 12 & 20 & | & 1 & 0 & 0 \\ 0 & 9 & 18 & | & -3 & 1 & 0 \\ 0 & 18 & 36 & | & -5 & 0 & 1 \end{array} \right]$$

c. Multiplicando a primeira coluna de AI1 por -3 e somando a segunda coluna de AI1 depois multiplicando a primeira coluna de AI1 por -5 e somando a terceira coluna de AI1a. Conservamos a primeira coluna e obtemos matriz AI2:

$$AI2 = \begin{bmatrix} 4 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 9 & 18 & | & -3 & 1 & 0 \\ 0 & 18 & 36 & | & -5 & 0 & 1 \end{bmatrix}$$

d. Multiplicando a segunda linha de AI2 por -2 e somando a terceira linha de AI2. Conservamos a primeira linha e obtemos matriz AI3:

$$AI3 = \left[\begin{array}{ccccccc} 4 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 9 & 18 & | & -3 & 1 & 0 \\ 0 & 0 & 0 & | & 1 & -2 & 1 \end{array} \right]$$

e. Multiplicando a segunda coluna de AI3 por -2 e somando a terceira coluna de AI3. Conservamos as demais colunas e obtemos matriz AI4:

$$AI4 = \left[\begin{array}{cccc|ccc|ccc|ccc|ccc|ccc|} 4 & 0 & 0 & | & 1 & 0 & 0 \\ 0 & 9 & 0 & | & -3 & 1 & 0 \\ 0 & 0 & 0 & | & 1 & -2 & 1 \end{array} \right]$$

$$=[D \mid C']$$

Assim,

$$C' = \left[\begin{array}{rrr} 1 & 0 & 0 \\ -3 & 1 & 0 \\ 1 & -2 & 1 \end{array} \right]$$

, portanto:

$$C = \left[\begin{array}{rrr} 1 & -3 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{array} \right].$$

Como C é uma matriz triangular superior seu determinante é o produto dos elementos da diagonal principal e portanto, $\det(C)=1$, logo C é inversível. A matriz cofatora de C, $\operatorname{cof}(C)$, é dada por:

$$cof(C) = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 5 & 2 & 1 \end{array} \right].$$

A matriz adjunta de C, adj(C) = [cof(C)]', vale

$$adj(C) = \left[\begin{array}{ccc} 1 & 3 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right].$$

A matriz inversa de C, $C^{-1} = \frac{1}{det(C)}adj(C)$, vale

$$C^{-1} = \left[\begin{array}{rrr} 1 & 3 & 5 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right].$$

Fazendo o produto C'A obtemos:

$$C'A = \left[\begin{array}{ccc} 4 & 12 & 20 \\ 0 & 9 & 18 \\ 0 & 0 & 0 \end{array} \right],$$

e finalmente o produto C'AC vale

$$C'AC = \left[\begin{array}{ccc} 4 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 0 \end{array} \right] = D$$

, assim D e A são congruentes.

Teorema 1. A matriz quadrada A de ordem n pode ser diagonalizável por operações de congruência. Nesse caso a matriz diagonal resultante fornece a classificação de A. Seja d_{ii} , o i-ésimo elemento da diagonal principal de D, então:

- i. Se $d_{ii} > 0$, então A é positiva definida(p.d.);
- ii. Se $d_{ii} \geq 0$ e existe pelo menos um elemento não nulo na diagonal principal, A é semipositiva definida (s.p.d.);
- iii. Se $d_{ii} < 0$, A é negativa definida(n.d.);
- iv. Se $d_{ii} \leq 0$ e existe pelo menos um elemento não nulo na diagonal principal, A é seminegativa definida (s.n.d.);
- v. Se d_{ii} troca de sinal , então A não é definida.

Nosso interesse é apenas nos casos (i) e (ii). No exemplo 1, $d_{11} = 4 > 0$, $d_{22} = 9 > 0$ e $d_{33} = 0$. Assim, A é semipositiva definida.

Teorema 2. Se A é uma matriz real positiva semidefinida, quadrada de ordem n e posto k, existem matrizes B de ordem n e posto k, tais que A = BB'. Nesse caso

$$B = (C')^{-1}D^{\frac{1}{2}} = (C^{-1})'D^{\frac{1}{2}}, \tag{3}$$

em que A e D são matrizes congruentes e D é diagonal, (B em geral não é única)

No exemplo 1 a matriz B é dada por:

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \\ 5 & 2 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{4} & 0 & 0 \\ 0 & \sqrt{9} & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 6 & 3 & 0 \\ 10 & 6 & 0 \end{bmatrix}.$$

O posto de B vale 2 e

$$BB' = \begin{bmatrix} 4 & 12 & 20 \\ 12 & 45 & 78 \\ 20 & 78 & 136 \end{bmatrix} = A.$$

Teorema 3. Se A é uma matriz real, quadrada de ordem n e posto k. Então as condições (c1)e (c2) são necessárias e suficientes para que A seja semipositiva definida e, as condições (c3), (c4)e (c5) são necessárias e suficientes para que A seja positiva definida.

- c1. Existe B quadrada de posto k < n tal que BB' = A;
- c2. As raízes características de A são não negativas e ao menos uma é nula;
- c3. Existe B quadrada não singular de ordem n tal que BB' = A;
- c4. As raízes características de A são estritamente positivas;

c5.

$$a_{11} > 0; \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} > 0, \dots, det(A) > 0.$$

2. Conceituação e Classificação

Definição 2. Uma função do tipo

$$Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{ij} x_i x_j,$$
(4)

em que os elementos a_{ij} são constantes reais, é definida como uma forma quadrática em ${\bf x}$.

Exemplo 2.

$$Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x} = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = (a_{11}x_1^2 + a_{12}x_1x_2) + (a_{22}x_2^2 + a_{21}x_1x_2)$$
$$= \sum_{j=1}^2 a_{1j}x_1x_j + \sum_{j=1}^2 a_{2j}x_2x_j = \sum_{i=1}^2 \sum_{j=1}^2 a_{ij}x_ix_j.$$

É imediato notar que em caso de simetria da matriz A

$$Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x} = \sum_{i=1}^{n} a_{ii} x_i^2 + \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} a_{ij} x_i x_j.$$
 (5)

Casos Particulares Importantes

1. Se
$$A = I_n$$
, $Q(\mathbf{x}) = \sum_{i=1}^n x_i^2$ (soma de quadrados);

2. Se
$$A = J_n$$
, $Q(\mathbf{x}) = (\sum_{i=1}^n x_i)^2$ (quadrado da soma);

3. Se
$$A = I_n - \frac{1}{n}J_n$$
, $Q(\mathbf{x}) = \sum_{i=1}^n (x_i - \bar{x})^2$ (soma de quadrados total);

4. Se
$$A = \frac{I_n - \frac{1}{n}J_n}{n-1}$$
, a forma quadrática fornece a variância das medidas x_1, x_2, \ldots, x_n .

Exemplo 3.

Se $Q(\mathbf{y}) = 2y_1^2 + 5y_2^2 - y_3^2 - y_1y_2 + 3y_2y_3$. Sabendo que A é simétrica, como determiná-la?

Solução. Note que $Q(\mathbf{y}) = a_{11}y_1^2 + a_{22}y_2^2 + a_{33}y_3^2 + 2a_{12}y_1y_2 + 2a_{13}y_1y_3 + 2a_{23}y_2y_3$. Fazendo a comparação temos: $a_{11} = 2$; $a_{22} = 5$; $a_{33} = -1$; $a_{12} = -1/2$; $a_{13} = 0$; $a_{23} = 3/2$. Portanto a matriz A da forma quadrática $Q(\mathbf{y}) = \mathbf{y}'A\mathbf{y}$ é dada por:

$$A = \left[\begin{array}{ccc} 2 & -1/2 & 0 \\ -1/2 & 5 & 3/2 \\ 0 & 3/2 & -1 \end{array} \right].$$

Definição 3. Dada a forma quadrática $Q(\mathbf{y}) = \mathbf{y}'A\mathbf{y}$, então no tocante à sua classificação temos:

- i. Se $Q(\mathbf{y}) > 0$ para todo $\mathbf{y} \neq \mathbf{0}$, então $Q(\mathbf{y})$ é positiva definida (p.d.);
- ii. Se $Q(\mathbf{y}) \ge 0$ e existe $\mathbf{y} \ne \mathbf{0}$ tal que $Q(\mathbf{y}) = 0$, então $Q(\mathbf{y})$ é semipositiva definida (s.p.d.);
- iii. Se $Q(\mathbf{y}) < 0$ para todo $\mathbf{y} \neq \mathbf{0}$, então $Q(\mathbf{y})$ é negativa definida(n.d.);
- iv. Se $Q(\mathbf{y}) \leq 0$ para $\mathbf{y} \neq \mathbf{0}$ e existe pelo menos um $\mathbf{y} \neq \mathbf{0}$ tal que $Q(\mathbf{y}) = 0$, então $Q(\mathbf{y})$ é seminegativa definida (s.n.d.);
- v. Se $Q(\mathbf{y})$ troca de sinal conforme a escolha de $\mathbf{y} \neq \mathbf{0}$, então $Q(\mathbf{y})$ não é definida.

Exemplo 4. Vamos classificar algumas formas quadráticas que aparecem com frequência na teoria estatística.

- a. $Q(\mathbf{y}) = \mathbf{y}' I_n \mathbf{y} = \mathbf{y}' \mathbf{y} = \sum_{i=1}^n y_i^2$ é positiva definida pois é uma soma de quadrados e $\mathbf{y}' \mathbf{y} = 0$ $\leftrightarrow \mathbf{y} = 0$;
- b. $Q(\mathbf{y}) = \mathbf{y}' J_n \ \mathbf{y} = (\sum_{i=1}^n y_i)^2$ é semipositiva definida pois é uma um quadrado de uma soma , sendo portanto não negativa. No entanto, qualquer vetor \mathbf{y} tal que a soma de seus componentes seja nula acarreta que $Q(\mathbf{y}) = 0$. Por exemplo se $\mathbf{y}' = [-1, 1]$, então $Q(\mathbf{y}) = (-1+1)^2 = 0$ e $\mathbf{y} \neq \mathbf{0}$;
- c. Se $\mathbf{y}' = [y_1, y_2]$ e

$$A = \left[\begin{array}{cc} 1 & 3 \\ 3 & 1 \end{array} \right]$$

, então $Q(\mathbf{y})$ é não definida, pois muda de sinal conforme a escolha de $\mathbf{y} \neq \mathbf{0}$. Para $\mathbf{y}' = [1, 1]$ temos que $Q(\mathbf{y}) = 8$ e para $\mathbf{y}' = [1, -1]$ temos que $Q(\mathbf{y}) = -4$.

Naturalmente a classificação de formas quadráticas através da definição é pouco operacional. Uma alternativa interessante pode ser obtida quando se verifica que essa classificação é a mesma da sua matriz núcleo. Basta , então, diagonalizar a matriz núcleo através de operações de congruência. Facilmente se nota que a matriz A do item c anterior é semelhante a matriz

$$D = \left[\begin{array}{cc} 1 & 3 \\ 0 & -8 \end{array} \right],$$

como os elementos da diagonal de D têm sinais diferentes, A não é definida.

Teorema 5. A classificação de uma forma quadrática não se altera por transformação não singular.

Seja $Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x}$ e a transformação não singular $\mathbf{x} = C \mathbf{y}$. Então

 $Q(\mathbf{x}) = \mathbf{x}'A\mathbf{x} = \mathbf{y}'C'AC\mathbf{y} = \mathbf{y}'M\mathbf{y} = Q(\mathbf{y})$, onde $A \in M$ são congruentes, tendo portanto a mesma classificação e o mesmo acontecendo com $Q(\mathbf{x})$ e $Q(\mathbf{y})$.

Exemplo 5. Classifique a forma quadrática $Q(\mathbf{x}) = 2x_1^2 + 3x_2^2 + 2x_1x_2$.

Solução. Seja a matriz núcleo

$$A = \left[\begin{array}{cc} 2 & 1 \\ 1 & 3 \end{array} \right]$$

, multiplicando a primeira coluna de A por -1/2 e somando a segunda coluna obtemos a matriz D congruente a A:

$$D = \left[\begin{array}{cc} 2 & 1 \\ 0 & 5/2 \end{array} \right]$$

, e assim $Q(\mathbf{x})$ é positiva definida pois $d_{ii} > 0$, para i = 1, 2. Vamos agora calcular o valor numérico de $Q(\mathbf{x})$ para $\mathbf{x}' = [10, 20]$. Assim

$$Q(10,20) = \begin{bmatrix} 10 & 20 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} = \begin{bmatrix} 40 & 70 \end{bmatrix} \begin{bmatrix} 10 \\ 20 \end{bmatrix} = 1800.$$

Considere agora a transformação não singular $\mathbf{x} = C\mathbf{y}$, em que

$$C = \left[\begin{array}{cc} 2 & 3 \\ 4 & 5 \end{array} \right].$$

A inversa de C é dada por:

$$C^{-1} = -1/2 \left[\begin{array}{cc} 5 & -3 \\ -4 & 2 \end{array} \right]$$

e a matriz M = C'AC é dada por:

$$M = \left[\begin{array}{cc} 72 & 94 \\ 94 & 123 \end{array} \right].$$

A matriz D congruente a M é dada por:

$$D = \left[\begin{array}{cc} 72 & 0 \\ 0 & 5/18 \end{array} \right]$$

. Assim, $Q(\mathbf{y}) = 72y_1^2 + 123y_2^2 + 188y_1y_2$ é positiva definida.

Teorema 6. Se A é uma matriz quadrada simétrica de ordem n e posto $k \leq n$, então a forma quadrática $Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x}$ pode ser escrita na forma

$$Q(\mathbf{y}) = \sum_{i=1}^{k} \lambda_i y_i^2, \tag{6}$$

em $\lambda_i, i=1,2,\ldots,k$, são as k raízes caracteristicas não nulas de A.

Observação. Sendo A, quadrada de ordem n, simétrica de posto k existe P ortogonal tal que

$$P'AP = D = \begin{bmatrix} \Lambda_{(k)} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

 $=diag(\lambda_1,\lambda_2,\cdots,\lambda_k,0,\ldots,0).$

Seja $Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x}$ e $\mathbf{x} = P \mathbf{y}$, então

$$Q(\mathbf{y}) = \mathbf{y}'P'AP\mathbf{y} = \mathbf{y}'D\mathbf{y} = \sum_{i=1}^{k} \lambda_i y_i^2.$$

Exemplo 6. Seja a forma quadrática $Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x}$ com matriz núcleo dada por:

$$A = \left[\begin{array}{rrr} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{array} \right]$$

, considere a transformação $\mathbf{y}=P'\mathbf{x}$, em que $P'=H_3$, a matriz de Helmert de ordem 3, isto é:

$$H_3 = \begin{bmatrix} 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 1/\sqrt{6} & 1/\sqrt{6} & -2/\sqrt{6} \end{bmatrix}$$

assim,

$$P'AP = HAH' = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$

, o que implica que $Q(\mathbf{x})$ é semipositiva definida. Isto também pode ser notado considerando o vetor 1_3 e mostrando que $Q(\mathbf{1_3})=0$. Além disso, $Q(\mathbf{y})=\sum_{i=1}^3 \lambda_i y_i^2=3y_2^2+3y_3^2$.

Teorema 7. Se $A_{(n)}$ é uma matriz real quadrada simétrica de ordem n e positiva definida, então a forma quadrática $Q(\mathbf{x}) = \mathbf{x}' A_{(n)} \mathbf{x}$ pode ser escrita na forma

$$Q(\mathbf{y}) = \sum_{i=1}^{n} \lambda_i y_i^2,\tag{7}$$

em $\lambda_i, i = 1, 2, \dots, k$, são as k raízes caracteristicas não nulas de A.

Prova. Se A é positiva definida existe uma matriz B, não singular, tal que A = BB'. Seja $\mathbf{y} = B'\mathbf{x}$, então $\mathbf{x} = (B')^{-1}\mathbf{y}$ e então,

$$Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x} = \mathbf{y}' B^{-1} A(B')^{-1} \mathbf{y} = \mathbf{y}' B^{-1} B B'(B')^{-1} \mathbf{y} = \mathbf{y}' \mathbf{y} = \sum_{i=1}^{n} \lambda_i y_i^2$$

Exemplo 7. Seja a forma quadrática $Q(\mathbf{x}) = \mathbf{x}' A \mathbf{x}$ com matriz núcleo dada por:

$$A = \left[\begin{array}{rrr} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{array} \right]$$

. Classifique essa forma quadrática. Ache uma matriz B tal que A = BB'. Calcule $Q_{\mathbf{x}}(\mathbf{1}_3)$.

Solução. As raízes caracteristícas de A são: $\lambda_1 = 5$, $\lambda_2 = 2$ e $\lambda_3 = 2$, assim a matriz núcleo é positiva definida e portanto a forma quadrática é positiva definida. Seja a matriz diagonal dos autovalores de A

$$\Lambda = \left[\begin{array}{ccc} 5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{array} \right]$$

e considere

$$B = H_3' \Lambda^{1/2} = 1/3 \begin{bmatrix} \sqrt{15} & 3 & \sqrt{3} \\ \sqrt{15} & -3 & \sqrt{3} \\ \sqrt{15} & 0 & -2\sqrt{3} \end{bmatrix}$$

, facilmente se verifica que A=BB'. e, $Q_{\mathbf{x}}(\mathbf{1_3})=\mathbf{1_3A1_3'}=15$. Vamos mostrar a invariância por transformação não singular $\mathbf{y}=B'\mathbf{x}$. Seja o vetor $\mathbf{y}=B'\mathbf{1_3}=[\sqrt{15},0,0]'$. Assim $Q(\mathbf{y})=15$ como no caso de $Q(\mathbf{1_3})$.