EXHIBIT 2

1	IN THE DISTRICT COURT OF THE UNITED STATES
2	FOR THE EASTERN DISTRICT OF MICHIGAN
3	
4	
5	FARM BUREAU MUTUAL INSURANCE
6	COMPANY OF MICHIGAN, a Michigan
7	Corporation, a/s/o New Flevo
8	Dairy, Inc.,
9	Plaintiff,
10	vs. Case No. 2:17-cv-14044-BAF-EAS
11	
12	
13	CNH INDUSTRIAL AMERICA, LLC
14	D/B/A NEW HOLLAND AGRICULTURE,
15	a Wisconsin Corporation,
16	Defendant.
17	
18	
19	
20	The Deposition of JERRY DAHL, P.E.,
21	Taken at 217 Grandville Avenue, S.W., Suite 302,
22	Grand Rapids, Michigan,
23	Commencing at 9:30 a.m.,
24	Tuesday, August 21, 2018,
25	Before Rebecca L. Russo, CSR-2759, RMR, CRR.

- 1 A. It does great things for people.
- 2 Q. Okay, in what way?
- 3 A. They provide a variety of engineering services, civil
- 4 engineering services, land planning development,
- 5 surveying, and the segment I'm involved with, forensic
- 6 engineering and fire investigation.
- 7 Q. When you say "forensic engineering and fire
- 8 investigation, does that involve litigation
- 9 consultation?
- 10 A. It can.
- 11 Q. What percentage of your practice involves litigation
- 12 work?
- 13 A. I don't have a good answer.
- 14 Q. Is it more than half?
- 15 A. I don't believe so.
- 16 Q. The half that does not -- well, let me rephrase that.
- 17 The portion of your practice that does not
- involve litigation, describe for me what it is that
- 19 you do.
- 20 A. We would be contacted by a client, individual,
- 21 business owner, insurance company, attorney, to
- investigate a loss, damage, accident, fire, injury,
- and to render an opinion in terms of failure, fault,
- causation. Typically a report is issued, and that
- 25 wraps up our investigation.

1	Q.	Have you ever been retained by Farm Bureau before this
2		case?
3	Α.	Yes.
4	Q.	Do you have a number, say, more than ten times you've
5		been retained by Farm Bureau?
6	A.	Yes.
7	Q.	Would it be more than fifty times?
8	A.	I don't know.
9	Q.	What's the highest level of education you've achieved?
10	Α.	I have a master's degree of mechanical engineering
11		from Washington University, in St. Louis.
12	Q.	What year did you obtain that master's?
13	A.	1983.
14	Q.	Where'd you go to college?
15	A.	I went to Augustana College, now Augustana University,
16		in Sioux Falls, South Dakota, focusing in mathematics
17		and physics. After three years of attending, I had an
18		opportunity to transfer to either Columbia University,
19		in New York City, or Washington University, in
20		St. Louis, for another two-year period, studying
21		engineering, and at the end of five years both schools
22		grant four-year degrees.
23		So I completed the program at Washington
24		University, in St. Louis, with a bachelor's degree in
25		mechanical engineering, and also having received a
		·

1		bachelor of arts degree in mathematics and physics
2		from Augustana College, now University.
3	Q.	Where is Augustana College?
4	A.	Sioux Falls, South Dakota.
5	Q.	Oh, you just said that, okay.
6	A.	Let me further preface, I grew up on a farm. I've
7		operated farm equipment. I've operated new equipment,
8		old equipment, well-maintained, poorly-maintained
9		equipment. So I have some experiential background in
10		terms of operating farm equipment, and still family
11		members participate in either operating equipment for
12		gainful employment or in the service industry, where
13		they're operating for service companies, or repair
14		companies, or dealerships.
15	Q.	Where did you grow up?
16	A.	Nebraska.
17	Q.	Was there a particular type of farm that you gained
18		your experience on, what type of crops, what type of
19		livestock?
20	A.	Dry land farming, corn, soybeans, wheat, alfalfa;
21		livestock, chickens, sheep, hogs, beef cattle.
22	Q.	Was your father a farmer?
23	A.	Yes.
24	Q.	How many acres, approximately, did he raise and farm?
25	A.	240.

1	incident	more	recently?

- 2 A. No.
- 3 Q. And your title has stayed the same the entire time?
- 4 A. Yes.
- 5 Q. I understand from your CV that you are a professional
- engineer. In what states do you have a license?
- 7 A. I have a license in Missouri, a license in Michigan,
- 8 and a license in South Dakota. I've previously held
- 9 licenses in other states.
- 10 Q. Are you a certified fire investigator?
- 11 A. No.
- 12 Q. Have you ever attended any training seminars on
- investigation of fires?
- 14 A. Yes.
- 15 Q. Have they been provided by a particular organization?
- 16 A. No.
- 17 Q. Have you ever attended a NFPA fire investigation
- 18 seminar training session?
- 19 A. No.
- 20 Q. Are you familiar with the phrase NFPA?
- 21 A. Yes.
- 22 Q. And when I say NFPA 921, are you familiar with that
- 23 publication?
- 24 A. Yes.
- 25 Q. Do you have any other types of certifications or

1	Q.	The portions that he provided, he's not here to
2		testify. Do you feel qualified and competent to offer
3		those same opinions that he was providing to the
4		report?
5	A.	No.
6	Q.	Okay. If we get to a particular place where you feel
7		like a certain opinion is something from Dr. Smith,
8		can you tell me where those opinions are?
9	Α.	I believe so.
10	Q.	Okay. And, in particular, it looks like he is a
11		certified fire investigator, he's a certified vehicle
12		fire investigator, and he's also a master automotive
13		technician. Those are certifications or
14		qualifications that you don't possess, is that
15		correct?
16	Α.	Correct.
17	Q.	So as far as investigating the cause of the fire and
18		certain aspects of the origin of the fire, are those
19		areas that you would have to leave to others to offer
20		those opinions?
21	A.	Yes.
22	Q.	As it pertains to this investigation, what was your
23		role, what were you providing to this report, just in
24		general?
25	A.	There was some general discussions with Dr. Smith in
1		

1		terms of the assignment. Oftentimes, as assignments
2		occur in the office, we speak within generalities,
3		"Yesterday I went to look at this, yesterday I saw
4		this, generally." In drafting the report, there may
5		have been some back and forth with Dr. Smith in terms
6		of documentation relating to what's available to
7		support the report.
8		Upon Dr. Smith's departure, then I
9		completed the report. So it would have been
10		finalizing the report.
11	Q.	Was there a reason why the two of you collaborated on
12		this investigation?
13	A.	Other than time and availability, not that I recall.
14	Q.	Did he have certain areas where he did not consider
15		himself an expert and he needed your assistance to
16		offer expertise in those areas?
17	A.	I don't believe so.
18	Q.	And then, vice versa, were there areas where he is an
19		expert that you may not be, and you needed his
20		assistance to offer opinions on those areas?
21	A.	His particular experience is certification in fire
22		investigation, something that I do not have.
23	Q.	Without him to offer testimony well, as we go
24		through the report, if there are areas or statements
25		in the report that are related to fire investigation
1		

1		where they would fall under his umbrella, feel free to
2		let me know. That's what we need to know, is where
3		your expertise starts and stops and where his starts
4		and stops, okay?
5	Α.	Yes.
6	Q.	Do you consider yourself an expert in fire cause and
7		origin?
8	Α.	No.
9	Q.	Do you consider yourself an expert in fire dynamics
10		and how fires spread?
11	A.	No.
12	Q.	Do you consider yourself an expert in heat transfer
13		from one side of a material to another?
14	Α.	No.
15	Q.	Do you consider yourself an expert in ignition
16		temperatures of particular types of materials?
17	Α.	No.
18	Q.	Do you consider yourself an expert in the operation of
19		farming equipment?
20	A.	I don't know that there's a qualification for expert
21		farm equipment operator. I've never seen such a
22		certification available.
23	Q.	I'm not necessarily
24	A.	I do
25	Q.	I'm sorry.

- 1 A. Those are old.
- 2 Q. Like sixties, seventies?
- 3 A. Seventies.
- 4 Q. And then the Generation II John Deeres, do you have
- 5 any idea what years those would be?
- 6 A. Those are late seventies.
- 7 Q. But as far as whether the turbo on the T8.390 actually
- 8 operates at a temperature to become red hot, you don't
- 9 have knowledge?
- 10 A. I don't have knowledge, specific knowledge.
- 11 Q. And then as to other components of the exhaust system
- on the T8.390, you wouldn't know whether they operate
- 13 red hot or not?
- 14 A. I wouldn't know, but I doubt they do.
- 15 Q. And, in fact, you don't know specific temperatures
- that those components of the entire exhaust system
- 17 actually operate during full throttle?
- 18 A. I do not.
- 19 Q. Have you ever drafted warnings pertaining to the use
- of heavy equipment?
- 21 A. No.
- 22 Q. Do you consider yourself an expert in the drafting of
- 23 warnings?
- 24 A. No.
- 25 Q. What about the drafting of safety instructions?

- 1 A. No.
- 2 Q. What about human factors?
- 3 A. No.
- 4 O. And when I say "human factors," you're familiar with
- 5 that phrase in the litigation context, is that
- 6 correct?
- 7 A. Yes.
- 8 Q. So you don't consider yourself an expert in how
- 9 operators will interpret certain warnings, is that
- 10 correct?
- 11 A. Correct.
- 12 O. And then how they actually will implement the
- instructions that they are given on a day-to-day
- basis, you wouldn't be an expert in that, either?
- 15 A. Correct.
- 16 Q. Have you personally seen the tractor that was involved
- in this fire before?
- 18 A. No.
- 19 O. You didn't do a field inspection or an inspection of
- the unit following the fire?
- 21 A. No.
- 22 Q. Do you know if your colleague, Dr. Smith, did?
- 23 A. Yes.
- 24 Q. And are you relying, in part, on his observations at
- 25 those inspections?

1	A.	Yes.		

- 2 Q. And would his observations be encapsulated in this
- 3 report?
- 4 A. Yes.
- 5 Q. And to the extent that there are notes or memos
- drafted of his observations, those would be in the
- 7 file that you're talking about?
- 8 A. Correct.
- 9 Q. Would he have sent you emails describing what he saw
- or his thoughts?
- 11 A. No.
- 12 Q. Was there a reason why Dr. Smith went to the site or
- the inspection of the unit and you did not?
- 14 A. The assignment of our projects typically is a single
- individual acting as the investigator. So Dr. Smith's
- assignment would have been for the investigation. I
- 17 would have been assigned elsewhere.
- 18 So my assignment at the time of the
- investigation was something other than follow
- 20 Dr. Smith.
- 21 Q. So what was your role in the entire project from the
- 22 beginning?
- 23 A. My role in the beginning was nothing. My role in the
- beginning was this was an assignment to Dr. Smith. So
- my involvement came as Dr. Smith was departing.

1	Q.	Okay, and that clarifies a lot. I thought you were
2		all working together the whole time, but it sounds
3		like you're saying that you only became involved when
4		Dr. Smith announced that he was departing, is that
5		correct?
6	A.	Correct.
7	Q.	Okay. When did you first hear about this fire and
8		become involved?
9	A.	First heard about the fire would have been
10		contemporary to the general assignment, again, because
11		there's office banter, "Hey, we have a project
12		involving whatever." So my recollection is hazy at
13		that point in time, but, "Dr. Smith's going to
14		investigate a tractor fire." That would have been my
15		first general knowledge of it.
16		Specific involvement, then, would have
17		fallen into June of 2018.
18	Q.	So the report is drafted July 19th, 2018, and your
19		involvement would have begun a month before that?
20	A.	Roughly.
21	Q.	So by June of 2018, Dr. Smith announced that he was
22		leaving the company, and somebody needed to pick up
23		the file?
24	A.	Yes.
25	Q.	And that person happened to be you?

0.

2

Page 51

1	A.	Yes.			

- 3 opposed to someone else?
- 4 A. I'm very good.
- 5 Q. Okay. Was it in your area of expertise, or was there

Is there a particular reason why you picked it up as

- 6 some reason why this one happened to fall to you,
- 7 other than you being good?
- 8 A. I believe from my particular background of farming
- 9 equipment, both in investigations here at Nederveld
- and prior personal experience, it may have been
- 11 slotted for me.
- 12 Q. So you haven't seen the tractor individually. Have
- you been to the location of where the tractor fire
- 14 occurred?
- 15 A. No.
- 16 Q. Have you spoken with any of the witnesses to the fire?
- 17 A. No.
- 18 Q. When you became involved in June of 2018, what was
- 19 your first task that you undertook?
- 20 A. To make arrangements to meet with Dr. Smith and review
- 21 the status of the project, the report in progress, and
- what needed to be completed to issue a final report.
- 23 Q. How did you go about getting a download from Dr. Smith
- of all the information that he had already gained in
- 25 his investigation?

00/21/	2010	1 ago 33
1	A.	I do not.
2	Q.	Approximately how much time did you prepare let me
3		rephrase that.
4		How much time did you spend looking at
5		these file materials and gathering your thoughts
6		before this report was drafted?
7	A.	Zero, because the report was drafted before I assumed
8		the project.
9	Q.	So once you became involved, you were just finalizing
10		the report, is that correct?
11	A.	Correct.
12	Q.	Did you add any particular sections to the report?
13	A.	Yes.
14	Q.	In general, can you tell me which sections you added?
15	Α.	On page 3, top of the page, second paragraph,
16		regarding the technical feasibility and production
17		practice for manufacturing, that particular paragraph
18		was my insertion.
19	Q.	Is it fair to say that the rest of the report,
20		although you may have edited and tweaked things, it
21		was the work product of Dr. Smith?
22	A.	Yes.
23	Q.	Do you agree with the remainder of the opinions and
24		the conclusions that are reached in the rest of the
25		report?

1		type of materials fall?
2	Α.	They fall at the lesser ignition temperature.
3	Q.	So they'd have the lower end of that range?
4	A.	Yes.
5	Q.	Would you agree that for a surface to ignite material
6		due to contact, the hot surface has to have a
7		temperature that exceeds the ignition point of the
8		material?
9	Α.	Can you repeat the question?
10	Q.	Sure. In order for a hot surface to actually ignite
11		debris, would you agree that the hot surface has to
12		reach a temperature that's in excess of the ignition
13		temperature of the debris?
14	Α.	No.
15	Q.	Okay, why not?
16	Α.	You can have ignition from radiant heat, so it doesn't
17		have to touch the surface, and that radiant heat
18		accumulates. So very much like focusing a magnifying
19		glass on a surface, the temperature around it remains
20		at room temperature, but that focus of radiant energy
21		accumulates to the point of ignition.
22		So that would be a non-contact ignition
23		from radiant heat.
24	Q.	So if the surface, the skin temperature of a
25		particular material reaches, let's just say X degrees,

1		is it possible for the radiant temperature in the area
2		to be higher than the X temperature of the surface?
3	A.	Yes.
4	Q.	Okay, in what context, or what would cause that to
5		occur?
6	A.	So in the radiant heat, what happens is you're
7		applying energy to a surface, and that energy
8		accumulates until it dissipates, and it can dissipate
9		by conduction, by convection, by radiation itself.
10		Radiation is a poor means of removing heat.
11		So if I have something that is near in proximity to
12		this surface, and it's receiving radiant heat and it's
13		insulated, it will form a combustion pocket.
14	Q.	And what do you mean by a "combustion pocket"?
15	Α.	The area around it is compacted and insulated, such
16		that the energy is focused in a particular area and
17		cannot relieve itself.
18		Does that make sense to you?
19	Q.	It does. And so I guess I'm hearing you say that
20		because the energy
21	Α.	What happens is the surface is releasing energy. It
22		has a surface temperature, let's say 500 degrees F,
23		okay? It's also radiating heat as part of its heat
24		loss, heat transfer, okay? So in that particular
25		case, what you can do is you can have a surface that's

		· · · · · · · · · · · · · · · · · · ·
1		receiving radiant heat. A sponge; so I have water
2		attacking the sponge. The sponge can reach the point
3		where it's saturated and can't hold any more. That's
4		what I would call combustion.
5		So because of this radiant effect, you can
6		have something that ignites where it's not in direct
7		contact with that surface.
8	Q.	So it will cause the temperature in that pocket to
9	A.	To elevate, because you're always adding energy to
10		that pocket.
11	Q.	Wouldn't that also cause the surface to become higher
12		in temperature, as well?
13	A.	Which surface?
14	Q.	The surface
15	A.	The receiving surface?
16	Q.	that's radiating no, the providing or the
17		radiating surface. If the energy for instance, in
18		this case we have an SCR canister, and it is emitting
19		heat or radiating heat, correct?
20	A.	Correct.
21	Q.	And if that heat cannot dissipate in the immediate
22		area around the SCR canister, wouldn't that also heat
23		up and cause the surface of the SCR canister to reach
24		a higher temperature?
25	A.	It could.

		· · · · · · · · · · · · · · · · · · ·
1	Q.	And so do you still believe that in the context of the
2		gap, a one-inch gap around an SCR canister, do you
3		believe that the debris on the outside of the canister
4		would reach temperatures higher than the surface of
.5		the SCR canister?
6	A.	It could.
7	Q.	Through the radiating process?
8	Α.	Through heat transfer, where the radiant heat flux
9		overwhelms the ability for that debris to relieve
10		itself either through conduction, convection, or
11		radiation itself.
12	Q.	Now, you mentioned a magnifying glass as an example,
13		but that's a little different, right, because it's
14		bringing heat and it's pinpointing it into a
15		particular location, right?
16	Α.	Not entirely, because what I'm offering with the
17		magnifying glass is everything around there is at
18		temperature, is at room temperature, and the radiant
19		flux through that area is at room temperature. All
20		I'm doing is focusing that. So I'm causing an
21		acceleration of the event, okay?
22	Q.	You're focusing the
23	A.	The energy.
24	Q.	the flux that goes through the glass
25	A.	Correct.

1	that	right?
_	LIIdl	TIGHT

- 2 A. That's a possibility.
- 3 Q. You could have somebody dropping a cigarette butt
- 4 along the side of the tractor that could cause that
- 5 fire?
- 6 A. Yes.
- 7 Q. Okay. So if the only evidence we have of the cause of
- 8 the fire is that it started next to the SCR, can we
- 9 agree that that evidence alone does not establish that
- 10 heat from the SCR ignited the debris either through
- 11 contact or through radiant heat?
- 12 A. In only that context, yes.
- 13 Q. Do you consider yourself an expert in evaluating and
- reaching conclusions based on burn patterns?
- 15 A. No.
- 16 Q. Are you familiar with burn patterns? Do you see them
- in other cases?
- 18 A. Yes.
- 19 Q. If there is a V burn pattern, does that tell you
- anything?
- 21 A. Oftentimes, V patterns are used by fire investigators
- 22 to locate an origin.
- 23 Q. But as far as interpreting those V patterns, you would
- 24 leave that to others?
- 25 A. That's correct.

design, you're talking about	
------------------------------	--

- MR. ROBINSON: Yeah, let me rephrase that.
- 3 BY MR. ROBINSON:
- 4 Q. Have you identified any manufacturing defects in this
- 5 particular unit?
- 6 A. No.
- 7 Q. And a manufacturing defect would be any deviations
- 8 from the specifications of how it should be built as
- 9 opposed to how it actually was built?
- 10 A. Correct.
- 11 Q. And you have not identified any of those?
- 12 A. I have not.
- 13 Q. Are you offering opinions today about the sufficiency
- of the warnings and instructions that CNH provided to
- its operators?
- 16 A. No.
- 17 Q. So you won't be testifying that CNH's warnings should
- 18 have included additional detail?
- 19 A. No.
- 20 Q. Do you believe that the warnings were sufficient to
- instruct operators on how to appropriately clean this
- 22 tractor?
- 23 A. No.
- 24 Q. You do not believe they were sufficient?
- 25 A. I don't.

1	Q.	But you are you going to be offering that opinion
2		in this case?
3	A.	No.
4	Q.	Okay. Is there a reason why you're not offering that
5		opinion, even though you hold that opinion?
6	A.	I've not seen the particular vehicle itself, so I
7		can't render that specific opinion.
8	Q.	But you've seen
9	A.	From the photographs I've seen, obviously there was
10		crop debris still left within the vehicle. So in
11		terms of instruction by the manufacturer to clean
12		particular areas or to expose particular areas, had
13		those instructions been followed, they were
14		incomplete. Had they been followed, material still
15		resided in the vehicle.
16		So I'm not clear whether it's due to lack
17		of maintenance or improper instruction. However, we
18		have an entrapment area that's available on the
19		vehicle, which is a design issue.
20	Q.	Okay. Are you offering the opinion that the
21		instructions that CNH provided did not tell the
22		operator to clean that particular entrapment area that
23		you're describing?
24	A.	No.
25	Q.	And let me expand on that. Mr. Wilson is testifying,

1	1	or testified yesterday that CNH should have
2		specifically told operators to make sure to clean in
3		the area immediately around the SCR canister, and
4		CNH's failure to specifically instruct about that area
5		is a warning defect.
6		Do you hold that same opinion?
7	Α.	İ don't have that opinion.
8	Q.	So your opinion is there was debris on the tractor
9		that has not been cleaned, but whether that was the
10		result of the operator not following instructions or
11		the instructions not being sufficient, you don't know?
12	Α.	Correct.
13	Q.	Have you had a chance to review the instructions that
14		CNH does provide?
15	A.	Cursorily.
16	Q.	Are they part of your file materials?
17	A.	Yes, we would have that in electronic fashion.
18	Q.	And I think during the break you were going to look
19		for additional materials related to Dr. Smith's
20		investigation. Were you able to find anything?
21	A.	Yes.
22	Q.	What did you locate?
23	A.	So I located the physical file, typically what we were
24		working with, and I found three documents which I've
25		copied for our purposes. The first is a single-page

Page 104

00/21	72010	1 450 101
1		increasing the temperature of the inside surface of
2		the shield?
3	Α.	Yes.
4	Q.	Do you know how much of a gap is between the shield
5		and the canister surface itself?
6	A.	Approximately two inches.
7	Q.	Is that uniform all the way around the canister?
8	Α.	Not entirely, because there's convolutions within the
9		fuel tank. Let me offer, it does not appear to
10		intrude shorter than the two inches but extends
11		further than the two inches.
12	Q.	Okay. So the closest the surface would be is two
13		inches?
14	A.	Yes.
15	Q.	Do you know what the melting temperature of the
16		surface of that shield would be?
17	A.	No.
18	Q.	And when I say "shield," I'm talking about the
19		component around the canister that can be removed to
20		expose the canister. Are you familiar with that?
21	A.	Yes, but the canister also has an insulation shroud or
22		shield, also, as well.
23	Q.	Okay, so

Α.

24

25

cover or the surrounding insulation blanket.

So your discrimination is between the front protective

- 1 Q. Okay. So the canister has a blanket all the way
- around it or just in certain portions?
- 3 A. In certain portions.
- 4 Q. Where is that blanket?
- 5 A. The blanket is where it's facing the fuel tank, so on
- 6 the bottom three sides.
- 7 Q. And what is that blanket composed of?
- 8 A. It's composed of a reflective panel and some fabric
- 9 insulation and a fabric backing.
- 10 Q. And does that, that blanket, does it actually touch
- the canister itself?
- 12 A. It may.
- 13 Q. But the two-inch gap that you're talking about, you
- believe that blanket's in that gap?
- 15 A. Yes.
- 16 Q. And it only encapsulates on the three sides that also
- 17 have the fuel tank?
- 18 A. Yes.
- 19 Q. So, in essence, it separates the canister from the
- 20 fuel tank?
- 21 A. Yes.
- 22 Q. What about the side that does not have the fuel tank
- 23 surrounding it or adjacent to the canister, is there
- any kind of fabric or blanket there?
- 25 A. No.

1	Α.	Correct.
2	Q.	The fuel tank ultimately did breach, but that was the
3		result of an ongoing fire, fair?
4	Α.	Correct.
5	Q.	Okay. So the presence of the SCR next to the fuel
6		tank is, although you may believe it's a
7		less-than-optimal design, it didn't cause this fire?
8	Α.	Can you repeat the question?
9	Q.	The presence of the SCR canister next to the fuel
10		tank, although you believe that less than optimal in
11		design, did not cause this fire?
12	Α.	Correct.
13	Q.	So what is your defect theory as to the design that
14		actually caused this fire?
15	Α.	The design defect is the entrapment area between the
16		SCR and the next available surface that does not
17		self-clean, and let me further refer to that in the
18		case of the front cover that we discussed earlier,
19		there is a gap under the cover facing groundways, such
20		that if debris would fall in front of the SCR, it can
21		fall through that area.
22		There's nothing to say that that fuel tank
23		that's encircling the SCR could not have had the void
24		space immediately beneath the SCR so there's nothing
25		for anything to accumulate upon.

08/21/2	2018	Page 113
1	Q.	How much gap is between the blanket and the surface of
2		the SCR?
3	A.	Less than two inches.
4	Q.	Do you know how thick the blanket is?
5	A.	No.
6	Q.	Have you looked at any design specifications for the
7		blanket?
8	A.	No design specifications have been provided.
9	Q.	How do you know that there was a blanket that went
10		around that surface of the canister?
11	A.	I would have to assume so, because that's listed in
12		the parts diagram, and exemplar tractors in an
13		unburned condition have a similar blanket.
14	Q.	So your theory is that the gap between the surface of
15		the SCR and the blanket allowed for the accumulation
16		of debris that did not self-clean?
17	A.	Correct.
18	Q.	And you believe the fire did not start on the forward
19		side of the canister, but on the rear side of the
20		canister?
21	A.	Correct.
22	Q.	And maybe you've already answered this, but I just
23		want to make sure. You can't say whether it started
24		as a result of the heat from the inlet pipe or heat
25		from the surface of the SCR?

1	08/21/2	2018	Page 117
	1	Q.	So you would agree that: At least once each day and
	2		at the end of the day, remove all trash and debris
	3		from the machine, especially around hot components
	4		such as the engine, transmission, exhaust, and
	5		battery, et cetera. That's what it instructs, is that
	6		correct?
	7	A.	Yes.
	8	Q.	And then later it states: More frequent cleaning of
	9		your machine may be necessary depending on the
	10		operating environment and conditions. That's the
	11	٠	instruction, correct?
	12	Α.	Yes.
	13	Q.	And you don't have any criticism as to the frequency
	14		with which CNH instructs operators to clean around hot
	15		components. Is that right?
	16	A.	I do not.
	17	Q.	And would you agree that the SCR canister is a
	18		component of the exhaust system?
	19	A.	Yes.
	20	Q.	And so do you believe that the instruction here
	21		adequately instructs operators to clean around the
	22		SCR canister?
	23	A.	No.
	24	Q.	And in what way do you not agree with that?
	25	A.	The SCR canister strung by the fuel tank presents an

1		entrapment area, that in the general revealing of the
2		SCR canister by removing the front cover does not
3		fully expose the entrapment areas, and with the
4		entanglement obstruction interaction with the
5		surrounding blanket may not readily clean from normal
6		cleaning methods, and there may have been a further
7		instruction, make sure you rake behind components,
8		make sure you evacuate this particular ash pit or
9		collection point to remove.
10		So the truly crude example is when my wife
11		tells me to clean the house and I'm done, she starts
12		over and does a different type of cleaning.
13		So when you say "clean the machine,"
14		kitchen clean or operating theater clean? That
15		distinction is not here, and kitchen clean is removing
16		the chunks. So removing the chunks may be sufficient
17		for cleaning. That distinction is not offered in this
18		instruction.
19	Q.	And earlier I thought you were you testified that
20		you would not be offering any opinions as to the
21		sufficiency of the instructions or warnings. Was I
22		mistaken earlier or
23	Α.	You were not mistaken earlier.
24	Q.	Okay.
25	A.	Though I've offered it here.

1		transfer?
2	A.	The point at which the SCR canister does not exceed
3		240 C would be a service that would be in proximity to
4		where we believe the fire occurred.
5	Q.	I'm sorry?
6	Α.	So let me offer an example. As the test may be
7		conducted to identify temperature point on the
8		SCR canister, we can have crop debris that is in
9		proximity, in contact or surrounding area, such that
10		the planned/designed/natural convection for the
11		SCR canister to relieve heat is impeded by the debris,
12		such that in a purest test, where the SCR is naked and
13		I can verify no temperature exceeds 240 C, but in the
14		event that I apply crop debris in the area, that that
15		impedes the airflow and I have temperatures reaching
16		300 C in that area, that's a different test, and that
17		would not be picked up by the first virgin test.
18		So, yes, in fact, if in all conditions we
19		can verify through testing or documentation that even
20		with an overburden of crop debris no surface ever
21		exceeds 240, I would agree. But without the benefit
22		of an impairment or a contaminant present, I can't
23		agree with that premise.
24	Q.	Now, in this particular model there is no
25		convection there's no airflow from the bottom up,

1 is that right?	
------------------	--

- 2 A. No.
- 3 Q. So --
- 4 A. There is airflow.
- 5 Q. But there's no airflow from the ground up through the
- 6 bottom?
- 7 A. The platform terminates before the front cover. So
- there is an open mail slot at the base of the front
- 9 cover and the floor of the fuel compartment that
- 10 allows air to enter and convectively travel through
- that compartment and up beyond the opening of the top
- of the cover.
- 13 Q. If there --
- 14 A. Now, that convective current only sees the front of
- the SCR, it doesn't travel behind it, because there's
- 16 a solid floor beneath it.
- 17 Q. Okay. So the back of the SCR that we're talking about
- where you believe the origin of the fire was --
- 19 A. Yes.
- 20 O. -- there's no airflow from that mail slot?
- 21 A. Correct.
- 22 Q. And there's no airflow from any other direction, is
- 23 that correct?
- 24 A. Correct.
- 25 Q. Okay. So whether there's debris there or not is not

1	Α.	Yes.
2	Q.	And did you eliminate that as a potential origin
3		location?
4	A.	Let me stop. I am not a fire investigator. I did not
5		determine the origin. In general observation of the
6		progression of the fire in the video provided, as well
7		as the examination of the artifact after the loss, the
8		progression of the fire witnessing the fire in
9		progress did not appear to have originated under the
10		cab in the transmission area.
11		Once again, fire burns up and out. And at
12		that point in time the fuel tanks were quite involved,
13		which is unusual for it to be burning up and out from
14		beneath the cab versus somewhere originating near the
15		isothermic SCR.
16	Q.	Okay. Would it change your opinion if the first
17		observation of smoke in this case was coming from
18		under the cab?
19		MR. CORETTI: Assuming a fact not in
20		evidence, form of the question.
21	BY N	MR. ROBINSON:
22	Q.	Would it affect your opinion if the first observation
23		of smoke was coming from under the cab?
24	A.	No.
25	Q.	If the first smoke was coming from under the cab, you
ŀ		

1		would you expect debris to accumulate in that
2		vicinity, given the open mail slot on the front?
3	A.	The mail slot is linear, goes along the front edge of
4		the rectangular platform of the fuel tank. So
5		immediately at the front of the SCR, where that mail
6		slot is open, I wouldn't expect any accumulation. As
7		the SCR is oval, then I would expect that as the ledge
8		beneath the SCR is revealed, I can collect debris on
9		those ledges.
10	Q.	So as it starts to turn around, sort of towards the
11		back of the tractor, that's where you would expect
12		there might be debris, sort of underneath of the
13		SCR or the inlet pipe?
14	Α.	The diagram I provided earlier of the fuel tank from
15		Exhibit 28, on page 3 of Exhibit 28, I've drawn an
16		arrow to illustrate where the inlet pipe for the SCR
17		existed, and I see that the floor of the fuel tank
18		protrudes further forward from the centerline of that
19		pipe, which would provide a shelf extending forward of
20		the pipe that would be available to collect debris.
21	Q.	And in that location, where the debris would
22		accumulate in that location, there would be airflow
23		from the mail slot that would have prevented that
24		convection reduction, is that correct?
25	A.	Yes.

	·····	
1	Q.	So the surface temperature of the inlet pipe on that
2		side, you would not expect it to be elevated as a
3		result of convection reduction?
4	A.	Correct. Back to your illustration in this
5		Exhibit 38, we see the tractor frame rail to the right
6	4	of the view, the inlet pipe as we're seeing
7		progressing from the frame rail downward, that
8		particular cavity and opening extending into the
9		engine compartment is open. There are no guards,
10		shrouds, or shields in this area. So if a smoke event
11		is occurring within/near the area of the inlet pipe,
12		it can be aspirated into this area and travel beneath
13		the cab.
14	Q.	Okay. If the wind was blowing from left to right,
15		would you have expected the smoke to emanate that
16		direction into the wind and up under the cab?
17	Α.	It depends upon where the smoke traveled to, where if
18		it traveled beneath the cab and was entrained in the
19		cooling airflow, it could be pushed under the cab, and
20		then whichever way it's ventilating or leaving from
21		there, whether it's directed by the air stream outside
22		or not, I couldn't say. That would have a greater
23		control of where the smoke would travel under the cab.
24	Q.	In your file you had a section of the Babrauskas
25		Ignition Handbook. Do you know anything about this