1. Предложите четыре химических процесса, протекающих каждый в одну стадию и удовлетворяющих схеме справа, где \mathbf{M} — металл, а \mathbf{X} — простое вещество. Напишите уравнения реакций. Все продукты реакций, за исключением простых веществ, должны быть хорошо растворимы в воде. На каждой стадии можно добавлять только одно сложное вещество (в чистом виде или в виде водного раствора).

№ 1

І вариант

Предложите четыре химических процесса, протекающих каждый в одну стадию и удовлетворяющих схеме справа, где \mathbf{M} — металл, а \mathbf{X} — простое вещество. Напишите уравнения реакций. Все продукты реакций, за исключением простых веществ, должны быть хорошо растворимы в воде. На каждой стадии можно добавлять только одно сложное вещество (в чистом виде или в виде водного раствора).

Решение.

На схеме приведены две последовательно выполняемые реакции, в каждой из которых из исходного металла при добавлении некоторого сложного вещества получается другой металл, и при движении по часовой стрелке, начиная с левого верхнего угла схемы, активность металлов падает (кадмий $\rightarrow \dots \rightarrow$ олово). Можно предположить, что в этих двух реакциях зашифрован процесс вытеснения более активным металлом \mathbf{M}' менее активного \mathbf{M}'' из его соли $\mathbf{M}''\mathbf{A}$: $\mathbf{M}' + \mathbf{M}''\mathbf{A} = \mathbf{M}'\mathbf{A} + \mathbf{M}''$. Следовательно, обозначенный на схеме символом \mathbf{M} неизвестный металл должен располагаться в ряду напряжений между двумя известными.

Остается понять, как можно замкнуть схему: перейти от менее активного металла \mathbf{M}^2 (правый нижний угол схемы) к более активному \mathbf{M}^1 (левый верхний угол). Возможное решение — получить газообразный водород \mathbf{H}_2 (простое вещество \mathbf{X}) действием металла \mathbf{M}^2 на водный раствор кислоты, и восстановить металл \mathbf{M}^1 из своего оксида водородом.

М – это любой металл (например, никель), расположенный между кадмием и оловом в электрохимическом ряду активности металлов.

 $Cd + NiSO_4$ (p-p) = $CdSO_4 + Ni$ (или реакция с другой растворимой солью никеля)

 $N_i + Sn(NO_3)_2$ (p-p) = $N_i(NO_3)_2 + Sn$ (или реакция с хлоридом или сульфатом олова(II))

 $Sn + 2HCl = SnCl_2 + H_2$ (или с другой кислотой, кроме азотной и концентрированной серной)

 $H_2 + CdO = H_2O + Cd$ (при нагревании до ~300°C)

Рекомендации к оцениванию:

1). Правильно указан металл М

1 балла

2). Верно указано простое вещество Х

2 балла

- 3). За каждую верную реакцию из четырех требуемых в 0.5 балла решении
- 4). За каждую неверную реакцию или снимать по 0.25 балла неверно уравненную реакцию