PATENT ABSTRACTS OF JAPAN

(11)Publication number:

£2001=024699#

(43)Date of publication of application: 26.01.2001

(51)Int.Cl.

H04L 12/56

H04L 12/24

H04L 12/26

(21)Application number: 11-189665

(71)Applicant: NEC CORP

(22)Date of filing:

02.07.1999

(72)Inventor: IWATA ATSUSHI

(54) NETWORK LOAD DISTRIBUTION SYSTEM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a network load distribution system, capable of optimal load distribution in consideration of whole network, and updating a routing table by deciding an optimal link metric following dynamic change related with the whole network, such as topology change and traffic fluctuations of the network.

SOLUTION: A network, in which plural nodes 10a, 10b, 10c, and 10d are mutually connected through links 20a, 20b, 20c, 20d, 20e, and 20f is provided with a load distribution server 30 for receiving network state information from the plural nodes 10a, 10b, 10c, and 10d, and deciding an optimal link metric, based on the network state information, and transmitting the optimal link metric to the plural nodes. In this case, dynamic path selection is made, based on the optimal link metric in each node 10a, 10b, 10c, and 10d.

LEGAL STATUS

[Date of request for examination]

15.06.2000

[Date of sending the examiner's decision of

rejection

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

3546764

[Date of registration]

23.04.2004

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] The network load distributed system to which network status information is received from said two or more nodes, and two or more nodes judge link metric optimal based on said network status information, equip with the load-distribution server which transmits said optimal link metric to said two or more nodes in the network mutually connected by the link, and perform dynamic routing based on said optimal link metric in each node.

[Claim 2] Said network status information is a network load distributed system according to claim 1 characterized by including the network topology information showing the gestalt of connection with said each adjacent node of said node, the link metric information showing the link and the metric value which are assigned to the transmit direction to said each adjoining link from said node, and the traffic flow information that expresses a traffic parameter to the traffic property in said node, and a list.

[Claim 3] The network topology information as which said network status information expresses the gestalt of connection with said each adjacent node of said node, The link metric information showing the link and the metric value which are assigned to the transmit direction to said each adjoining link from said node, The link load information that the usable maximum band is expressed to the activity band of a transmit direction, and a list from said node in said each link which adjoins said node, The traffic property in said node, the network load distributed system according to claim 1 characterized by including the traffic flow information which expresses a traffic parameter to a list.

[Claim 4] Said load-distribution server is a network load distributed system according to claim 1 to 3 which is equipped with the routing emulator which emulates actuation of routing of said all nodes in said network, is carrying out by repeating an emulation, changing the link and the metric value in said routing emulator, and is characterized by asking for said optimal link metric with reference to said network status information with said routing emulator.

[Claim 5] Said load-distribution server is a network load distributed system according to claim 4 which is carrying out by repeating said emulation with said routing emulator, changing the link and the metric value in said routing emulator so that the amount of the link load of each of said link in said network may become equal, and is characterized by asking for said optimal link metric.

[Claim 6] Said load-distribution server is a network load distributed system according to claim 4 which is carrying out by repeating said emulation with said routing emulator, changing the link and the metric value in said routing emulator so that the value which broke the amount of the activity band of each of said link in said network by the amount of a real link band may become equal mutually, and is characterized by asking for said optimal link metric.

[Claim 7] Said dynamic routing is a network load distributed system according to claim 1 to 6 characterized by updating the routing table of said node, notifying said optimal link metric further in said each node based on said optimal link metric to said both both [nodes and] that adjoin said node by the routing protocol, and updating routing table based on the information from said adjacent node. [Claim 8] Said one or more nodes in said network are network load distributed systems according to claim 1 to 7 characterized by mounting said load—distribution server in the interior.

[Claim 9] It is the network load distributed system according to claim 7 which said one or more nodes in said network mount said load-distribution server in the interior, and is characterized by for said

load-distribution server notifying said node which mounts said load-distribution server by said routing protocol to each of other node which does not mount said load-distribution server, and making the location of a load-distribution server recognize.

[Claim 10] said NETTO work piece — connection ORIEN — the network load distributed system according to claim 7 or 9 characterized by changing the existing connection according to said optimal link metric when and notifying said optimal link metric to mutual [said / adjacent node and mutual]. [Claim 11] The network load distributed system according to claim 10 characterized by cutting said existing connection after making said optimal new connection newly bypass service of a beam and said existing connection for the optimal connection, with said existing connection left so that the hits of service of said existing connection may not be generated, in case said existing connection is changed.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention]

[0001]

[Field of the Invention] About dynamic routing which determines an optimal path on the basis of link metric, especially, this invention supervises a network condition by the network administration server, is updating link metric to the optimal thing periodically, and relates to the network load distributed system which realizes the load distribution of the whole network.

[0002]

[Description of the Prior Art] When transmitting data in a network, it is called routing (or routing) to choose one path from two or more communication paths which can reach a transmission place. As the approach of routing, in order to choose the optimal path for the purpose of compaction of a transmission time, or improvement in the utilization ratio of a transmission line, various kinds of approaches are used.

[0003] Static routing is a method which defines beforehand the communication path over each transmission place considered to be the optimal fixed. The communication path over each transmission place is directed in routing table, and routing is performed by referring to this routing table.

[0004] Dynamic routing is a method which updates the contents of routing table to the optimal thing according to traffic fluctuation or change of network configuration. Furthermore, by exchanging this routing table between each node using a routing protocol, the information on other nodes is acquired and optimal routing is performed.

[0005] The number of the repeating installation in a communication path is called hop (Hop) value, the distance between the transceiver nodes by this communication path is represented by this, and the number of the repeating installation of a path with which the number of the repeating installation via which it actually goes becomes min is called cost. In this way, optimal routing is performed using the distance on link metric, i.e., a network.

[0006] The main routing protocols are RIP (Routing Infomation Protocol) and OSPF (Open Shortest Path First).

[0007] RIP determines an optimal path from a hop value and cost. However, even if the number of costs, i.e., repeating installation, is min, a transmission time does not necessarily become min. In OSPF, these faults of RIP are solved and an optimal path is determined in consideration of the congestion condition of a circuit.

[0008] The network load distributed system by the former and this kind of dynamic routing was what each node measures the load of the link between a self-node and an adjacent node independently, and fluctuates link metric appropriately according to the Ruhr decided in advance when the threshold with a load was exceeded, updates routing table corresponding to this, and notifies the link and metric modification of a parenthesis to other nodes in a network.

[0009] Moreover, the technique which consists of a detecting element of the loaded condition of a link and the link metric modification / transmitting section is indicated by JP,05-130144,A. [0010]

[Problem(s) to be Solved by the Invention] There was a trouble it is described below by the conventional network load distributed system that mentioned above.

[0011] By the conventional network load distributed system, it does not pass to the local load distribution only near each node, but the trouble that it is not the optimal load distribution in the whole network is in the 1st.

[0012] The reason is that the load distribution which did not pass to a local load distribution but took into consideration the whole network situation other than an adjacent node is not made since each node fluctuated appropriately link metric of a between [a self-node and adjacent nodes] in the local field based on the load (that is, load of only the near link) of the link between the self-node measured independently and an adjacent node.

[0013] With the conventional technique opened to said JP,05-130144,A, the trouble that the optimal link and the metric decision according to dynamic change of the whole network cannot be performed is in the 2nd

[0014] The reason is that the load distribution corresponding to topology modification, distribution fluctuation of traffic, etc. which are change concerning the whole network is not made since it is a simple static method of carrying out the constant value increase and decrease of link metric of the link beyond a threshold when a specific threshold with a link load is exceeded in the network load distributed system of said JP,05-130144,A.

[0015] In order that the purpose of this invention may solve the fault of the above-mentioned conventional technique and may aim at improvement in network transmission efficiency, dependability, and the engine performance, it is offering the network load distributed system in which the optimal load distribution in consideration of the whole network is possible.

[0016] Other purposes of this invention are following in footsteps of dynamic change concerning the whole network, such as network topology modification and traffic fluctuation, judging optimal link metric, and offering the network load distributed system which can update routing table in order to solve the fault of the above-mentioned conventional technique.

[0017]

[Means for Solving the Problem] In order to attain the above-mentioned purpose, in the network mutually connected by the link, network status information is received from two or more nodes, and two or more nodes judge link metric optimal based on network status information, and are equipped with the load-distribution server which transmits optimal link metric to two or more nodes, and the network load distributed system of this invention is characterized by performing dynamic routing based on optimal link metric in each node.

[0018] Network status information in the network load distributed system of this invention of claim 2 is characterized by including the network topology information showing the gestalt of connection with each adjacent node of a node, the link metric information showing the link and the metric value which are assigned from the node to the transmit direction to each adjoining link, and the traffic flow information that expresses a traffic parameter to the traffic property in a node, and a list.

[0019] The network status information in the network load distributed system of this invention of claim 3 The network topology information showing the gestalt of connection with each adjacent node

claim 3 The network topology information showing the gestalt of connection with each adjacent node of a node, The link metric information showing the link and the metric value which are assigned from the node to the transmit direction to each adjoining link, It is characterized by including the link load information that the usable maximum band is expressed to the use band of a transmit direction, and a list from the node in each link which adjoins a node, and the traffic flow information which expresses a traffic parameter to the traffic property in a node, and a list.

[0020] The load-distribution server in the network load distributed system of this invention of claim 4 is equipped with the routing emulator which emulates actuation of routing of all the nodes in a network, with a routing emulator, changing the link and the metric value in a routing emulator, with reference to network status information, is carrying out by repeating an emulation and is characterized by asking for optimal link metric.

[0021] Changing the link and the metric value in a routing emulator with a routing emulator, so that the amount of the link load of each link in a network may become equal, the load-distribution server in the network load distributed system of this invention of claim 5 is carrying out by repeating an emulation, and is characterized by asking for optimal link metric.

[0022] Changing the link and the metric value in a routing emulator so that the value which broke the

amount of the use band of each link in a network by the amount of a real link band may become equal mutually with a routing emulator, the load-distribution server in the network load distributed system of this invention of claim 6 is carrying out by repeating an emulation, and is characterized by asking for optimal link metric.

[0023] In each node, based on optimal link metric, dynamic routing in the network load distributed system of this invention of claim 7 updates the routing table of a node, notifies still more nearly optimal link metric to mutual [which adjoin a node by the routing protocol / other nodes and mutual], and is characterized by updating routing table based on the information from an adjacent node.

[0024] The network load distributed system of this invention of claim 8 is characterized by mounting a load-distribution server in the interior of one or more nodes.

[0025] The network load distributed system of this invention of claim 9 mounts a load-distribution server in the interior of one or more nodes in a network, and by the routing protocol, a load-distribution server notifies the node which mounts a load-distribution server to each of other node which does not mount the load-distribution server, and is characterized by making the location of a load-distribution server recognize.

[0026] the network load distributed system of this invention of claim 10 — a NETTO work piece — connection ORIEN — when and notifying optimal link metric to an adjacent node and mutual, it is characterized by changing the existing connection according to optimal link metric.

[0027] In case the network load distributed system of this invention of claim 11 changes the existing connection, after it newly stretches the optimal connection, with the existing connection left and makes the optimal new connection bypass the existing connection's service so that the hits of service of the existing connection may not be generated, it is characterized by cutting the existing connection.

[0028]

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained to a detail with reference to a drawing.

[0029] <u>Drawing 1</u> is the block diagram showing the configuration of the network load distributed system by the gestalt of operation of the 1st of this invention.

[0030] Reference of <u>drawing 1</u> constitutes the network load distributed system by the gestalt of operation of the 1st of this invention from a load-distribution server 30 connected to Links 20a, 20b, 20c, 20d, and 20e, two or more nodes 10a, 10b, 10c, and 10d mutually connected by 20f, and the nodes 10a, 10b, 10c, and 10d of these plurality.

[0031] Nodes 10a, 10b, 10c, and 10d consist of a router or the exchange, and transmit and receive data through each links 20a, 20b, 20c, 20d, 20e, and 20f.

[0032] The load-distribution server 30 has the structure which measures a load distribution by receiving the information on a network condition from each nodes 10a, 10b, 10c, and 10d, calculating optimal link metric according to it, and notifying to each node.

[0033] <u>Drawing 2</u> is the block diagram showing the configuration of the 1st of the load-distribution server 30 of the gestalt of operation of this invention.

[0034] If <u>drawing 2</u> is referred to, the load-distribution server 30 of the gestalt of operation of the 1st of this invention will be equipped with the network condition receive section 31, the link metric judging section 32, and the link metric transmitting section 33.

[0035] The network condition receive section 31 receives network status information from all the nodes 10a, 10c, and 10d, and transmits the received network status information, i.e., network topology information, link metric information, link load information, and traffic flow information to the link metric judging section 32.

[0036] The link metric judging section 32 based on the received network condition The topology of the whole network, link metric by which a current setup is carried out to each links 20a, 20b, 20c, 20d, 20e, and 20f, A link load, the traffic property of traffic flow, and a parameter are recognized, each links [20a, 20b, 20c, 20d, 20e, and 20f] optimal link metric is judged using this information, and it transmits link metric of this to the link metric transmitting section 33.

[0037] The link metric judging section 32 has the routing emulator 321 in the interior, it repeats an

emulation, modifying a link and a metric value so that the link load asked for the emulation of routing on a network by the emulation by this routing emulator 321 may serve as a proper value, and asks for optimal link metric.

[0038] The link metric transmitting section 33 transmits optimal link metric judged in the link metric judging section 32 to each nodes 10a, 10b, 10c, and 10d.

[0039] <u>Drawing 3</u> is the block diagram showing the configuration of the 1st of node 10a of the gestalt of operation of this invention.

[0040] If <u>drawing 3</u> is referred to, node 10a of the gestalt of operation of the 1st of this invention will be equipped with the network condition detecting element 11, the link metric receive section 12, a link condition and a database 13, routing table 14, a routing protocol 15, the data receive section 16, and the data transmitting section 17.

[0041] Transmission and reception of the data on the network by node 10a are performed by the data receive section 16 and the data transmitting section 17.

[0042] The data receive section 16 receives data from the adjacent nodes 10b, 10c, and 10d connected by each links 20a, 20b, and 20c.

[0043] The data transmitting section 17 determines the adjacent node which transmits to a degree with reference to the transmission place and routing table 14 of the data to the adjacent nodes 10b, 10c, and 10d similarly connected by each links 20a, 20b, and 20c, and transmits data.

[0044] The function for carrying out the load distribution of the transmission and reception of the data on this network of node 10a is performed by the routing protocol 15 with the network condition detecting element 11 which remains, the link metric receive section 12, a link condition and a database 13, and routing table 14.

[0045] The network condition detecting element 11 detects the condition of the network of node 10a, and transmits it to the load-distribution server 30.

[0046] The network condition detecting element 11 is equipped with the network topology detecting element 111, the link metric detecting element 112, the link load detecting element 113, and the traffic flow detecting element 114.

[0047] The network topology detecting element 111 detects the network topology information on by which link node 10a is connected with each adjacent node how. It is got blocked, for example, detects [connecting by link 20a etc. and] between node 10a and node 10b.

[0048] The link metric detecting element 112 detects link metric currently assigned to the transmit direction to each to the adjoining links 20a, 20b, and 20c from node 10a. A direction is specified because link metric may differ by the transmit direction and the receive direction also by the same link.

[0049] The link load detecting element 113 detects the link load of a transmit direction from node 10a in Links [20b, 20c, and 20d] each. The class of link load which the link load detecting element 113 detects here is two kinds, a current use band and the usable maximum band of a link.

[0050] The traffic flow detecting element 114 detects a traffic property and a traffic parameter for every flow.

[0051] The link metric receive section 12 receives optimal link metric transmitted from the load-distribution server 30, updates a link condition and a database 13 by optimal link metric of this, recalculates routing table 14 with this updated link condition and database 13, and updates. Here, the re-calculation of routing table 14 is re-calculating and searching for the path of the minimum cost in the whole network based on updated optimal link metric in a link condition and a database 13. [0052] Furthermore, updated optimal link metric [in / to other nodes 10b, 10c, and 10d / based on a routing protocol 15 / for updated optimal link metric of this / in the link metric receive section 12 / the nodes 10b, 10c, and 10d of others / transmitting / and / as routing information / conversely] is similarly transmitted to node 10a as routing information.

[0053] In the case of a router, as a routing protocol 15, the OSPF (Open Shortest Path Fast) routing protocol of a link state mold can be used. The same processing is realizable by using the PNNI (Private Network-Network Interface) routing protocol of for example, a link state mold also in the case of the exchange.

[0054] Next, actuation of the network load distributed system by the gestalt of the 1st operation is

explained to a detail.

[0055] Although actuation between node 10a and the distributed server 30 is explained, it is the same as that of other nodes especially here.

[0056] First, in node 10a, using the network condition detecting element 11, four network conditions, the network topology information from the network topology detecting element 111, the current link metric information of the link metric detecting element 112, the link load information from the link load detecting element 113, and the traffic flow information from the traffic flow detecting element 114, are detected, and it transmits to the load-distribution server 30.

[0057] Next, in the load-distribution server 30, the network condition receive section 31 receives the network condition transmitted from each node 10a, and it transmits to the link metric judging section 32.

[0058] Next, in the link metric judging section 32, from the network status information transmitted from each node 10a, the condition of the current whole network is recognized, optimal link metric of each link is judged, and the value is notified to the link metric transmitting section 33.

[0059] Next, the link metric transmitting section 33 transmits optimal link metric of a transmit direction to node 10a from node 10b of Links 20a, 20b, and 20c.

[0060] Again, in each node 10a, the link metric receive section 12 receives optimal link metric from the load-distribution server 30, makes optimal link metric of this reflect in a link condition and a database 13, and, thereby, re-calculates and updates the routing table 14 in node 10a. It asks for routing table 14 by re-calculating the minimum cost path in the whole network using optimal link metric.

[0061] Then, the updated link metric information is distributed to adjacent nodes 10b, 10c, and 10d as routing information by the routing protocol 15. On the other hand, since other nodes 10b, 10c, and 10d distribute the link metric information updated similarly to node 10a as routing information, if a routing protocol 15 receives the information, they store the information in a link condition and a database 13 first.

[0062] Then, with renewal of a link condition and a database 13, the minimum cost path is recalculated again and routing table 14 is updated.

[0063] In the above procedure, while all the nodes 10a, 10b, 10c, and 10d update their new link metric information, each node performs routing by the routing table 14 according to new link metric information by notifying the information to other nodes mutually.

[0064] That is, the load distribution of the traffic will actually be carried out as the link metric judging section 32 in the load-distribution server 30 calculated.

[0065] The above processing of the load-distribution server 30 and each nodes 10a, 10b, 10c, and 10d is performed periodically, whenever time amount passes, it corresponds to change of topology, link metric, a link load, and traffic flow dynamically, and traffic load distribution is always achieved. [0066] The period of periodical activation is decided to be the speed of network fluctuation according to the requirements over a load distribution.

[0067] <u>Drawing 4</u> is a flow chart for explaining the optimal link and metric judgment processing of the gestalt of operation of the 1st of this invention of the link metric judging section 32.

[0068] In this judgment processing, each variable is defined as follows.

[0069] The node in "N" and a network for the number of all nodes "Node i" The number of all the paths between "Node j" (i, j<=N), and Node i and Node j "Kij", The current link and the current metric value to Node j from the adjoining node i "Aij", The link and the metric value to Node j to calculate and which were optimized from the adjoining node i "Bij", The traffic flow according the current link load to Node j to the path k from Node i to the node j in "Cij" and a network (k<=Kij) is expressed as "Tijk" from the adjoining node i.

[0070] First, the link metric judging section 32 receives network status information from all network nodes (a node 1 - Node N) through the network condition receive section 31 (step 401).

[0071] This network status information is [contiguity] and the link load information {Cij:nodes i and j of network topology information and the link metric information {Aij:nodes i and j] contiguity} and all the information on traffic flow information {Tijk:i!=j, k<=Kij}.

[0072] next, the optimal based on such received network status information — new — link metric Bij

is calculated in the following procedures.

[0073] The counter of the routing emulator 321 inside the link metric judging section 32 is reset to "0" (step 402).

[0074] Network status information is set as the internal routing emulator 321 as initial information (step 403). Here, a variable link metric value [Aij], a link load [Cij], and traffic flow [Tijk] are stored in the calculating memory in the routing emulator 321 as [aij], [cij], and [Tijk], respectively.

[0075] With the routing emulator 321, the same processing as routing of the data based on this routing table 14 is emulated in the count of routing table 14 which all the actual nodes 1 - Node N perform, and a list.

[0076] From network topology information and link metric (aij), the routing emulator 321 calculates the minimum cost path first, and updates the routing table 14 of all the nodes in the routing emulator 321 in false (step 404).

[0077] It carries out also here, and all paths are registered into the routing table 14 in an emulator, and when two or more paths are the same minimum cost paths, path control is performed so that traffic may carry out the load distribution of the path of these plurality.

[0078] Then, it calculates which path traffic flows concretely by it by passing traffic flow {Tijk} virtually to the node in this emulator (step 405).

[0079] Link load {cij which will be expected to the link between all the nodes 1 - Node N at the time if a new path is decided to all traffic—flow {Tijk}: As for Nodes i and j, contiguity} is called for (step 406). [0080] In a procedure 225, Node y (x<=N, y<=N, Node x, and y adjoin) is chosen from a link with the greatest load in a ******* **** link load {cij}, and Node x. And positive—number delta is added only to the link and the metric value axy corresponding to this link {x, y} to the current value of link metric {aij}, and this is defined as new link metric {aij} (step 407).

[0081] link metric which was made to carry out 1 **** of counters (step 408), regarded it as the thing beyond the fixed count which has the repeated calculation which asks for optimal link metric if it becomes beyond the threshold M with a counter, ended the repetition of an emulation (step 409), and was obtained at the time — {aij} — new link metric — it transmits to the link metric transmitting section 33 as {Bij} (step 411).

[0082] moreover, a link load {link metric {aij which ended the repetition of an emulation as what was already asked for optimal link metric also when all the values in each link of cij} became the same (step 410), and was obtained at the time} — new link metric — it transmits to the link metric transmitting section 33 as {Bij} (step 411).

[0083] When it is not which [this] case, either, based on return and new link metric (aij), an emulation is again repeated to step 404.

[0084] Optimal link metric obtained by the above is transmitted to each node 1 - N by the link metric transmitting section 33.

[0085] Moreover, in judgment processing of the link metric judging section 32 explained above, although the link load information [Cij] which is initial information is not used, in not performing a load distribution etc., this information can be used until it exceeds a certain load, when using the amount of a load as decision whether a load distribution is performed that is,. Furthermore, it can use for the check of whether to have received network status information correctly by the value of the link load [cij] for which it asked by the emulation whose routing emulator 321 is the 1st time, and referring to whether there is any big difference. However, for this reason, link load information [Cij] is good also as what is not included into network status information.

[0086] Similarly the traffic flow information {Tijk} which is initial information As information on the amount of traffic flow, the information according to path is not required. Although the information between all two nodes should just be acquired, the value of the traffic flow information {tijk} which asked also for this by the emulation whose routing emulator 321 is the 1st time, and by referring to whether there is any big difference It can use for the check of whether to have received network status information correctly. However, for this reason, it is not necessary to collect traffic flow information according to a path.

[0087] As mentioned above, with the gestalt of this operation, since the load-distribution server 30 collects network conditions intensively, judges optimal link metric based on the information and

makes dynamic routing from all the nodes 10a, 10b, 10c, and 10d in a network, the optimal load distribution in the whole network can be performed.

[0088] in order [moreover,] to acquire a network condition periodically and to judge optimal link metric with the gestalt of this operation — network topology modification and the network whole, such as traffic fluctuation, — **** — it can respond to a dynamic change quickly and a load distribution can be performed.

[0089] Next, the gestalt of operation of the 2nd of this invention is explained to a detail with reference to a drawing.

[0090] <u>Drawing 5</u> is the block diagram showing the configuration of the network load distributed system by the gestalt of operation of the 2nd of this invention.

[0091] When drawing 5 is referred to, the difference from the network load distributed system by the gestalt of the 1st operation in drawing 1 of the network load distributed system by the gestalt of operation of the 2nd of this invention is having mounted the function of load-distribution server 30a in the one interior of node 40a of arbitration in hardware, without installing load-distribution server 30a independently of each node which performs data transmission.

[0092] The same actuation as the gestalt of the network load-distribution system of the gestalt of this operation which is the 1st operation functionally is performed. By making the information on node 40a which mounts load-distribution server 30a exchange by the routing protocol 15 (for example, it being exchangeable using Opaque LSA in OSPF), the location of all the nodes 40b and 40c that do not mount load-distribution server 30a, and node in which 40d mounts load-distribution server 30a automatically 40a is recognized, and the exchange with load-distribution server 30a is realized. [0093] Moreover, node 40a which mounts load-distribution server 30a does not need to be one, and can be made to mount in two or more nodes. Even if load-distribution server 30a mounted in each node is equivalent respectively, it may divide a function and may be made to mount it in each node, in making it mount in two or more of these nodes.

[0094] as mentioned above, the need of installing load-distribution server 30a with the gestalt of this operation independently of each node which performs data transmission since the function of load-distribution server 30a is mounted in the interior of node 40a — moreover, it is not necessary to connect a circuit specially because of load-distribution server 30a, each nodes 40a, 40b, and 40c, and the communication link with 40d For this reason, in addition to the effectiveness of the gestalt of the 1st operation, a NETTO work-piece load-distribution system also with easy installation is realizable with a briefer configuration.

[0095] The gestalt of operation of the 3rd of this invention is explained to a detail with reference to a drawing.

[0096] <u>Drawing 6</u> is the block diagram showing the configuration of the network load distributed system by the gestalt of operation of the 3rd of this invention.

[0097] Reference of <u>drawing 6</u> carries out the network load distributed system by the gestalt of this operation in the network of the connectionless mode which used ATM switching systems 50a, 50b, 50c, and 50d.

[0098] The network load distributed system by the gestalt of the 1st operation mainly explained the case of routing of a connectionless mode. When carrying out this invention like ATM in the network of the connection mode which is the method which sets up the communication path of each data beforehand before transmission initiation, it is desirable to add a control procedure in part as follows. [0099] After load—distribution server 30b corresponds to network status information, and calculates optimal new link metric and a notice finishes with each ATM switching systems 50a, 50b, 50c, and 50d When directly adapted, the gestalt of the 1st operation ATM switching systems 50a and 50b, 50c and 50d, a setup of a communication path is not changed about the cel under transmission, but a communication path is set up only to the cel which had the transmission demand newly using updated optimal link metric, and a load distribution is performed.

[0100] That is, it is the procedure of adding no change to the existing connection. Therefore, when it receives ATM switching systems 50a, 50b, and 50c and new link metric with optimal 50d, routing may be made to perform all the existing connections as a gestalt of the 3rd operation according to new link metric altogether.

[0101] After a detour is completed on VCC which set up optimal VCC first and newly set up the existing service, leaving the existing VCC (Virtual Channel Connection) since a connection is cut and the service on the existing connection may carry out hits while performing routing in the case of the gestalt of this operation, the method which prevents hits of service, such as cutting the existing VCC, is used together.

[0102] As mentioned above, with the gestalt of this operation, when performing a load distribution in the network of a connection mode in addition to the effectiveness of the gestalt of the 1st operation, the engine performance and an efficient NETTO work-piece load-distribution system can be realized by changing a setup into the newest, optimal path also to the data with which the communication path under transfer be already set up.

[0103] Although the gestalt and example of desirable operation were given above and this invention was explained, this invention is not necessarily limited to the gestalt and example of the above—mentioned implementation, can deform within the limits of the technical thought variously, and can be carried out.

[0104] For example, the plan of a load distribution can take various approaches like the above—mentioned approach explained to <u>drawing 4</u> according to an intention of a network administrator.
[0105] As decision whether a load distribution is performed, the approach of performing a load distribution from the moment of having not carried out but exceeding the threshold of a certain load, and the approach of always performing a load distribution even if a load is low are completely possible for a load distribution by referring to the link load information in the network status information which is the initial information on a load distribution until it exceeds a certain load.

[0106] Moreover, a load distribution is possible similarly by the flow of the flowchart of drawing 4 because the approach of performing the load distribution which equalizes the relative rate that a load occupies, and the method of performing the load distribution which equalizes the residual band by the load set up link load information as a value of the residual band according to a load in setting up as a value which broke each (a use band / real link band), i.e., a use band, amount by the amount of a real link band ****.

[0107] Moreover, it is also possible to combine the gestalt of the 3rd operation and the gestalt of the 2nd operation. That is, it is possible to give the function of load-distribution server 30a to the one interior of ATM switching system 50a of the arbitration of the gestalt of the 3rd operation by the approach of the gestalt the 2nd operation.

[0108]

[Effect of the Invention] The optimal load distribution in the whole network can be performed to the 1st.

[0109] A load-distribution server collects network conditions intensively from all the nodes in a network, and the reason is because optimal link metric for measuring the optimal load distribution based on the information is judged, optimal link metric of the spreads round all nodes by the routing protocol further with distributing it to each node and the routing table of each node is updated based on link metric of the.

[0110] topology modification of the 2nd network, and the network whole, such as traffic fluctuation, - **** — corresponding to a dynamic change, optimal link metric is determined and routing table can be changed.

[0111] The reason is for acquiring a network condition periodically and performing the optimal link and metric count.

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 『特開2001-24699 』

(P2001 - 24699A)

(43)公開日 平成13年1月26日(2001.1.26)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

H 0 4 L 12/56 12/24

12/24

11/08

H04L 11/20

102D 5K030

9A001

審査請求 有 請求項の数11 OL (全 12 頁)

(21)出願番号

特願平11-189665

(22)出願日

平成11年7月2日(1999.7.2)

FP03-0269

'06.11.28

OAG

(71)出願人 000004237

日本電気株式会社

東京都港区芝五丁目7番1号

(72)発明者 岩田 淳

東京都港区芝五丁目7番1号 日本電気株

式会社内

(74)代理人 100093595

弁理士 松本 正夫

Fターム(参考) 5K030 GA01 HA10 HB06 HD03 LB07

LB08 LC01 LC06 LE03 MA01

MB09 MD07

9A001 CC03 CC06 CC07 HH32 KK56

LL02 LL09

(54) 【発明の名称】 ネットワーク負荷分散システム

(57)【要約】

【課題】 ネットワーク全体を考慮した最適な負荷分散が可能であり、かつネットワークのトポロジー変更、トラフィック変動等のネットワーク全体に係る動的変化に追随して、最適なリンク・メトリックを判定し、ルーティング・テーブルの更新が可能なネットワーク負荷分散システムを提供する。

【解決手段】 複数のノード10a、10b、10c、10dがリンク20a、20b、20c、20d、20e、20fにより相互に接続されたネットワークにおいて、前記複数のノード10a、10b、10c、10dからネットワーク状態情報を受信し、かつ前記ネットワーク状態情報をもとに最適なリンク・メトリックを判定し、前記最適なリンク・メトリックを前記複数のノードに送信する負荷分散サーバ30を備え、各ノード10a、10b、10c、10dにおいて前記最適なリンク・メトリックに基づき動的経路選択を行なう。

【特許請求の範囲】

【請求項1】 複数のノードがリンクにより相互に接続されたネットワークにおいて、

前記複数のノードからネットワーク状態情報を受信し、かつ前記ネットワーク状態情報をもとに最適なリンク・メトリックを判定し、前記最適なリンク・メトリックを前記複数のノードに送信する負荷分散サーバを備え、各ノードにおいて前記最適なリンク・メトリックに基づき動的経路選択を行なうネットワーク負荷分散システム。

【請求項2】 前記ネットワーク状態情報は、

前記ノードの前記各隣接ノードとの接続の形態を表すネットワーク・トポロジー情報と、

前記ノードから前記各隣接リンクに対する送信方向に割り当てられているリンク・メトリックの値を表すリンク・メトリック情報と、

前記ノードにおけるトラフィック特性、並びにトラフィックパラメータを表すトラフィックフロー情報を含むことを特徴とする請求項1に記載のネットワーク負荷分散システム。

【請求項3】 前記ネットワーク状態情報は、

前記ノードの前記各隣接ノードとの接続の形態を表すネットワーク・トポロジー情報と、

前記ノードから前記各隣接リンクに対する送倡方向に割り当てられているリンク・メトリックの値を表すリンク・メトリック情報と、

前記ノードに隣接する前記各リンクにおける前記ノードから送信方向の使用帯域、並びに使用可能最大帯域を表すリンク負荷情報と、

前記ノードにおけるトラフィック特性、並びにトラフィ 30 ックパラメータを表すトラフィックフロー情報を含むことを特徴とする請求項1に記載のネットワーク負荷分散システム。

【 請求項4 】 前記負荷分散サーバは、

前記ネットワーク内の前記ノード全ての経路選択の動作をエミュレーションする経路選択エミュレータを備え、前記経路選択エミュレータにより、前記ネットワーク状態情報を参照し、かつ前記経路選択エミュレータ内のリンク・メトリックの値を変化させながらエミュレーションを繰返し行なうことで、前記最適なリンク・メトリッ 40クを求めることを特徴とする請求項1万至3に記載のネットワーク負荷分散システム。

【請求項5】 前記負荷分散サーバは、

前記経路選択エミュレータにより、

前記経路選択エミュレータ内のリンク・メトリックの値を、前記ネットワーク内の前記各リンクのリンク負荷の量が等しくなるように変化させながら、前記エミュレーションを繰返し行なうことで、前記最適なリンク・メトリックを求めることを特徴とする請求項4に記載のネットワーク負荷分散システム。

【請求項6】 前記負荷分散サーバは、

前記経路選択エミュレータにより、

前記ネットワーク内の前記各リンクの使用帯域の量を実リンク帯域の量で割った値が互いに等しくなるように、前記経路選択エミュレータ内のリンク・メトリックの値を変化させながら、前記エミュレーションを繰返し行なうことで、前記最適なリンク・メトリックを求めることを特徴とする請求項4に記載のネットワーク負荷分散システム。

10 【請求項7】 前記動的経路選択は、

前記各ノードにおいて、

前記最適なリンク・メトリックに基づき、前記ノードの ルーティング・テーブルを更新し、さらに前記最適なリ ンク・メトリックをルーティング・プロトコルにより前 記ノードに隣接する他の前記ノードと相互に通知し、前 記隣接ノードからの情報に基づきルーティング・テーブ ルを更新することを特徴とする請求項1乃至6に記載の ネットワーク負荷分散システム。

【請求項8】 前記ネットワーク内の1つ又は複数の前 20 記ノードは、

内部に前記負荷分散サーバを実装することを特徴とする 請求項1乃至7に記載のネットワーク負荷分散システ ム

【請求項9】 前記ネットワーク内の1つ又は複数の前 記ノードは、

内部に前記負荷分散サーバを実装し、

かつ前記負荷分散サーバは、

前記ルーティングプロトコルにより、前記負荷分散サーバを実装する前記ノードを、前記負荷分散サーバを実装していない他の各ノードに対し通知し、負荷分散サーバの位置を認識させることを特徴とする請求項7に記載のネットワーク負荷分散システム。

【請求項10】 前記ネットーワークがコネクションオリエンティッドな場合に、

前記最適なリンク・メトリックを前記隣接ノードと相互 に通知する時に、既存のコネクションをも前記最適なリ ンク・メトリックに応じて変更することを特徴とする請 求項7又は請求項9に記載のネットワーク負荷分散シス テム。

【請求項11】前記既存のコネクションを変更する際に、前記既存のコネクションのサービスの瞬断を発生しないように、前記既存のコネクションを残したまま新たに最適なコネクションをはり、前記既存のコネクションのサービスを新規の前記最適なコネクションに迂回させた後、前記既存のコネクションを切断することを特徴とする請求項10に記載のネットワーク負荷分散システム。

【発明の詳細な説明】

[0001]

50 【発明の属する技術分野】本発明は、リンク・メトリッ

クを基準に最適経路を決定する動的経路選択に関し、特に、ネットワーク管理サーバによりネットワークの状態を監視し、リンク・メトリックを定期的に最適なものに更新することで、ネットワーク全体の負荷分散を実現するネットワーク負荷分散システムに関する。

[0002]

【従来の技術】ネットワークにおいてデータを送信するとき、送信先に到達可能な複数の通信経路の中から1つの経路を選択することを経路選択(またはルーティング)と言う。経路選択の方法としては、伝送時間の短縮 10 や伝送路の使用効率の向上を目的として、最適な経路を選択するために各種の方法が使用されている。

【0003】静的経路選択は、予め各送信先に対する最適と考えられる通信経路を固定的に定めておく方式である。各送信先に対する通信経路は、ルーティング・テーブルにおいて指示され、このルーティング・テーブルを参照することで経路選択を行なう。

【0004】動的経路選択は、ルーティング・テーブルの内容を、トラフィック変動やネットワーク構成の変化に応じて最適なものに更新していく方式である。さらに 20 このルーティング・テーブルを、ルーティング・プロトコルを用いて各ノード間で交換することにより他のノードの情報を得て、最適な経路選択を行なう。

【 O O O 5 】 通信経路における中継装置の数をホップ (H o p) 値といい、これによりこの通信経路による送 受信ノード間の距離を代表させ、実際に経由する中継装置の数が最小になる経路の中継装置の数をコストという。こうしてリンク・メトリック、つまりネットワーク上の距離を用いて最適な経路選択を行なう。

【0006】主なルーティング・プロトコルは、RIP 30 (Routing Infomation Proto col)と、OSPF (Open Shortest Path First)である。

【OOO7】RIPは、ホップ値とコストから最適経路を決定する。しかし、コストすなわち中継装置の数が最小であっても伝送時間が最小になるとは限らない。OSPFでは、RIPのこれらの欠点を解決し、回線の輻輳状態を考慮して最適経路を決定する。

【0008】従来、この種の動的経路選択によるネットワーク負荷分散システムは、各ノードが自立的に自ノー 40ドと隣接ノードの間のリンクの負荷を測定し、負荷がある閾値を超えた時点で、事前に決められたルールに従いリンク・メトリックを適切に増減し、これに対応してルーティング・テーブルを更新し、かつこのリンク・メトリックの変更をネットワーク内の他のノードへ通知するものであった。

【0009】また、特開平05-130144号公報では、リンクの負荷状態の検出部と、リンク・メトリック変更・送信部とから構成される技術が記載されている。

[0010]

【発明が解決しようとする課題】上述したように従来の ネットワーク負荷分散システムでは、以下に述べるよう な問題点があった。

【 O O 1 1】第1に、従来のネットワーク負荷分散システムでは、各ノードの近傍のみでの局所的な負荷分散にすぎず、ネットワーク全体での最適な負荷分散ではないという問題点がある。

【〇〇12】その理由は、各ノードが自立的に測定した 自ノードと隣接ノードの間のリンクの負荷(つまり近傍 リンクのみの負荷)に基づき、自ノードと隣接ノードの 間とのリンク・メトリックを局所的な面において適切に 増減するものであったので、局所的な負荷分散にすぎず 隣接ノード以外のネットワーク状況全体を考慮した負荷 分散ができないからである。

【0013】第2に、前記特開平05-130144号公報に公開された従来技術では、ネットワーク全体の動的変化に応じた最適なリンク・メトリックの決定ができないという問題点がある。

【0014】その理由は、前記特開平05-130144号公報のネットワーク負荷分散システムでは、リンク負荷がある特定の閾値を超えた場合等に、閾値を超えたリンクのリンク・メトリックを一定値増減するという単純な静的な方法であるため、ネットワーク全体に係る変化であるトポロジー変更やトラフィックの分布変動等に対応する負荷分散ができないからである。

【 O O 1 5 】本発明の目的は、上記従来技術の欠点を解決し、ネットワークの伝送効率、信頼性、性能の向上を図るため、ネットワーク全体を考慮した最適な負荷分散が可能なネットワーク負荷分散システムを提供することである。

【 O O 1 6】本発明の他の目的は、上記従来技術の欠点を解決するため、ネットワークのトポロジー変更、トラフィック変動等のネットワーク全体に係る動的変化に追随して、最適なリンク・メトリックを判定し、ルーティング・テーブルの更新が可能なネットワーク負荷分散システムを提供することである。

[0017]

【課題を解決するための手段】上記目的を達成するため本発明のネットワーク負荷分散システムは、複数のノードがリンクにより相互に接続されたネットワークにおいて、複数のノードからネットワーク状態情報を受信し、かつネットワーク状態情報をもとに最適なリンク・メトリックを判定し、最適なリンク・メトリックを複数のノードに送信する負荷分散サーバを備え、各ノードにおいて最適なリンク・メトリックに基づき動的経路選択を行なうことを特徴とする。

【0018】請求項2の本発明のネットワーク負荷分散 システムにおけるネットワーク状態情報は、ノードの各 隣接ノードとの接続の形態を表すネットワーク・トポロ 50 ジー情報と、ノードから各隣接リンクに対する送信方向 に割り当てられているリンク・メトリックの値を表すリンク・メトリック情報と、ノードにおけるトラフィック特性、並びにトラフィックパラメータを表すトラフィックフロー情報を含むことを特徴とする。

【0019】請求項3の本発明のネットワーク負荷分散システムにおけるネットワーク状態情報は、ノードの各隣接ノードとの接続の形態を表すネットワーク・トポロジー情報と、ノードから各隣接リンクに対する送信方向に割り当てられているリンク・メトリックの値を表すリンク・メトリック情報と、ノードに隣接する各リンクに 10 おけるノードから送信方向の使用帯域、並びに使用可能最大帯域を表すリンク負荷情報と、ノードにおけるトラフィック特性、並びにトラフィックパラメータを表すトラフィックフロー情報を含むことを特徴とする。

【0020】請求項4の本発明のネットワーク負荷分散システムにおける負荷分散サーバは、ネットワーク内のノード全ての経路選択の動作をエミュレーションする経路選択エミュレータを備え、経路選択エミュレータにより、ネットワーク状態情報を参照し、かつ経路選択エミュレータ内のリンク・メトリックの値を変化させながら 20エミュレーションを繰返し行なうことで、最適なリンク・メトリックを求めることを特徴とする。

【0021】請求項5の本発明のネットワーク負荷分散システムにおける負荷分散サーバは、経路選択エミュレータにより、経路選択エミュレータ内のリンク・メトリックの値を、ネットワーク内の各リンクのリンク負荷の量が等しくなるように変化させながら、エミュレーションを繰返し行なうことで、最適なリンク・メトリックを求めることを特徴とする。

【0022】請求項6の本発明のネットワーク負荷分散 30 システムにおける負荷分散サーバは、経路選択エミュレータにより、ネットワーク内の各リンクの使用帯域の量を実リンク帯域の量で割った値が互いに等しくなるように、経路選択エミュレータ内のリンク・メトリックの値を変化させながら、エミュレーションを繰返し行なうことで、最適なリンク・メトリックを求めることを特徴とする。

【0023】請求項7の本発明のネットワーク負荷分散システムにおける動的経路選択は、各ノードにおいて、最適なリンク・メトリックに基づき、ノードのルーティ 40ング・テーブルを更新し、さらに最適なリンク・メトリックをルーティング・プロトコルによりノードに隣接する他のノードと相互に通知し、隣接ノードからの情報に基づきルーティング・テーブルを更新することを特徴とする。

【0024】請求項8の本発明のネットワーク負荷分散システムは、1つ又は複数のノードの内部に負荷分散サーバを実装することを特徴とする。

【OO25】請求項9の本発明のネットワーク負荷分散 システムは、ネットワーク内の1つ又は複数のノードの 50

内部に負荷分散サーバを実装し、かつ負荷分散サーバは、ルーティングプロトコルにより、負荷分散サーバを実装するノードを、負荷分散サーバを実装していない他の各ノードに対し通知し、負荷分散サーバの位置を認識させることを特徴とする。

【0026】請求項10の本発明のネットワーク負荷分散システムは、ネットーワークがコネクションオリエンティッドな場合に、最適なリンク・メトリックを隣接ノードと相互に通知する時に、既存のコネクションをも最適なリンク・メトリックに応じて変更することを特徴とする。

【0027】請求項11の本発明のネットワーク負荷分散システムは、既存のコネクションを変更する際に、既存のコネクションの野断を発生しないように、既存のコネクションを残したまま新たに最適なコネクションをはり、既存のコネクションのサービスを新規の最適なコネクションに迂回させた後、既存のコネクションを切断することを特徴とする。

[0028]

【発明の実施の形態】以下、本発明の実施の形態について図面を参照して詳細に説明する。

【0029】図1は、本発明の第1の実施の形態による ネットワーク負荷分散システムの構成を示すブロック図 である。

【0030】図1を参照すると、本発明の第1の実施の形態によるネットワーク負荷分散システムは、リンク20a、20b、20c、20d、20e、20fにより互いに接続された複数のノード10a、10b、10c、10dと、これら複数のノード10a、10b、10c、10dに対し接続された負荷分散サーバ30から構成される。

【0031】ノード10a、10b、10c、10dは、ルータまたは交換機から成り、各リンク20a、20b、20c、20d、20e、20fを介してデータを送受信するものである。

【0032】負荷分散サーバ30は、各ノード10a、10b、10c、10dからネットワークの状態の情報を受信し、それに応じて最適なリンク・メトリックを計算し、各ノードに通知することにより、負荷分散をはかる仕組みを持つ。

【0033】図2は、本発明の第1の実施の形態の負荷 分散サーバ30の構成を示すブロック図である。

【0034】図2を参照すると、本発明の第1の実施の 形態の負荷分散サーバ30は、ネットワーク状態受信部 31と、リンク・メトリック判定部32と、リンク・メ トリック送信部33を備える。

【0035】ネットワーク状態受信部31は、全てのノード10a、10c、10dからネットワーク状態情報を受信し、かつ、受信したネットワーク状態情報、つまりネットワーク・トポロジー情報、リンク・メトリック

情報、リンク負荷情報、トラフィックフロー情報をリンク・メトリック判定部32へ送信する。

【0036】リンク・メトリック判定部32は、受信したネットワーク状態を基に、ネットワーク全体のトポロジー、各リンク20a、20b、20c、20d、20e、20fに現在設定されているリンク・メトリック、リンク負荷、トラフィックフローのトラフィック特性、パラメータを認識し、この情報を用いて各リンク20a、20b、20c、20d、20e、20fの最適なリンク・メトリックを判定し、このリンク・メトリック 10をリンク・メトリック送信部33へ送信する。

【0037】リンク・メトリック判定部32は、内部に 経路選択エミュレータ321を持ち、この経路選択エミュレータ321によりネットワーク上の経路選択のエミュレーションを、エミュレーションで求められるリンク 負荷が適正な値となるように、リンク・メトリックの値 を少しずつ修正しながらエミュレーションを繰り返し、 最適なリンク・メトリックを求める。

【0038】リンク・メトリック送信部33は、リンク・メトリック判定部32で判定された最適なリンク・メ 20トリックを各ノード10a, 10b, 10c, 10dに対し送信する。

【0039】図3は、本発明の第1の実施の形態のノード10aの構成を示すブロック図である。

【0040】図3を参照すると、本発明の第1の実施の 形態のノード10aは、ネットワーク状態検出部11 と、リンク・メトリック受信部12と、リンク状態・データベース13と、ルーティング・テーブル14と、ルーティング・プロトコル15と、データ受信部16と、データ送信部17を備える。

【0041】ノード10aによるネットワーク上のデータの送受信は、データ受信部16と、データ送信部17により行なわれる。

【0042】データ受信部16は、各リンク20a.2 0b、20cによって接続された隣接ノード10b.1 0c.10dから、データを受信する。

【0043】データ送信部17は、同じく各リンク20 a、20b、20cによって接続された隣接ノード10 b、10c、10dに対し、そのデータの送信先とルーティング・テーブル14を参照して次に送信する隣接ノ 40 ードを決定し、データを送信する。

【0044】ノード10aの、このネットワーク上のデータの送受信を負荷分散するための機能は、残るネットワーク状態検出部11と、リンク・メトリック受信部12と、リンク状態・データベース13と、ルーティング・テーブル14と、ルーティング・プロトコル15により行なわれる。

【0045】ネットワーク状態検出部11は、ノード10aのネットワークの状態を検出し負荷分散サーバ30に対し送信する。

【0046】ネットワーク状態検出部11は、ネットワーク・トポロジー検出部111と、リンク・メトリック検出部112と、リンク負荷検出部113と、トラフィックフロー検出部114を備える。

【0047】ネットワーク・トポロジー検出部 1 1 は、ノード 1 0 a が各隣接ノードと、どのリンクでどのように接続されているのかのネットワーク・トポロジー情報を検出する。つまり例えば、ノード 1 0 a とノード 1 0 b の間はリンク 2 0 a で接続されている等の検出を行なう。

【0048】リンク・メトリック検出部112は、ノード10aから隣接リンク20a、20b、20cへのそれぞれに対する送信方向に、割り当てられているリンク・メトリックを検出する。方向を規定するのは、同一リンクでも送信方向と受信方向でリンク・メトリックが異なる場合があるためである。

【0049】リンク負荷検出部113は、リンク20 b、20c、20dのそれぞれにおける、ノード10a から送信方向のリンク負荷を検出する。ここでリンク負 荷検出部113が検出するリンク負荷の種類は、現在の 使用帯域、及びリンクの使用可能最大帯域の2種類であ る。

【0050】トラフィックフロ一検出部114は、トラフィック特性、ならびにトラフィックパラメータをフロー毎に検出する。

【0051】リンク・メトリック受信部12は、負荷分散サーバ30から送信される最適なリンク・メトリックを受信し、この最適なリンク・メトリックによりリンク状態・データベース13を更新し、この更新されたリンク状態・データベース13によりルーティング・テーブル14を再計算し更新する。ここで、ルーティング・テーブル14の再計算とは、リンク状態・データベース13における更新された最適なリンク・メトリックに基づき、ネットワーク全体で最小コストの経路を再計算し求めることである。

【0052】さらに、リンク・メトリック受信部12は、ルーティング・プロトコル15に基づき、この更新された最適なリンク・メトリックを他のノード10b、10c、10dに対し経路選択情報として送信し、かつ逆に、他のノード10b、10c、10dにおける更新された最適なリンク・メトリックが、同様に経路選択情報としてノード10aに対し送信される。

【0053】ルーティング・プロトコル15として、ルータの場合にはリンクステート型のOSPF(Open Shortest Path Fast)ルーティング・プロトコルを用いることができる。交換機の場合にも、例えばリンクステート型のPNNI(Privat e Network Network Interface)ルーティング・プロトコルを用いることで同様の処理が実現できる。

50

【0054】次に、第1の実施の形態によるネットワーク負荷分散システムの動作について詳細に説明する。

【0055】ここでは、特にノード10aと分散サーバ 30との間の動作を説明するが、他のノードとも同様で ぉる

【0056】まず、ノード10aにおいて、ネットワーク状態検出部11を用いて、ネットワーク・トポロジー検出部111からのネットワーク・トポロジー情報と、リンク・メトリック検出部112からの現在のリンク・メトリック情報と、リンク負荷検出部113からのリン 10ク負荷情報と、トラフィックフロー検出部114からのトラフィックフロー情報の4つのネットワーク状態を検出し負荷分散サーバ30に対し送信する。

【0057】次に、負荷分散サーバ30において、各ノード10aから送信されるネットワーク状態を、ネットワーク状態受信部31が受信し、リンク・メトリック判定部32へ送信する。

【0058】次に、リンク・メトリック判定部32では、各ノード10aから送信されるネットワーク状態情報から、現在のネットワーク全体の状態を認識し、各リ 20ンクの最適リンク・メトリックを判定し、リンク・メトリック送信部33へその値を通知する。

【0059】次に、リンク・メトリック送信部33は、 ノード10aに対し、リンク20a、20b、20cの ノード10bから送信方向の最適なリンク・メトリック を、送信する。

【0060】再び各ノード10aにおいて、リンク・メトリック受信部12は、最適なリンク・メトリックを負荷分散サーパ30から受信し、この最適なリンク・メトリックをリンク状態・データベース13に反映させ、そ 30れによりノード10a内のルーティング・テーブル14なを再計算し更新する。ルーティング・テーブル14は、最適なリンク・メトリックを用いて、ネットワーク全体で最小コスト経路を再計算することで求める。

【0061】その後、ルーティング・プロトコル15により、更新されたリンク・メトリック情報を隣接ノード10b、10c、10dへ経路選択情報として配布する。一方、他のノード10b、10c、10dも、同様に更新されたリンク・メトリック情報をノード10aへ経路選択情報として配布してくるので、その情報をルー40ティング・プロトコル15が受信すると、その情報をまずリンク状態・データベース13へ格納する。

【0062】その後、リンク状態・データベース13の 更新に伴い、再び最小コスト経路を再計算してルーティ ング・テーブル14を更新する。

【0063】以上の手続きにより、すべてのノード10 a、10b、10c、10dが、自分の新規のリンク・メトリック情報を更新するとともに、その情報を他のノードにも通知し合うことにより、それぞれのノードが新規のリンク・メトリック情報に従ったルーティング・テ 50

ーブル14で経路選択を行なう。

【0064】つまり、負荷分散サーバ30内のリンク・メトリック判定部32の計算した通りに、実際にトラフィックが負荷分散されることとなる。

【0065】負荷分散サーバ30と各ノード10a、10b、10c、10dの以上の処理は定期的に実行され、時間が経過する毎にトポロジー、リンク・メトリック、リンク負荷、トラフィックフローの変化に動的に対応し、常にトラフィック負荷分散が図られる。

【0066】定期的な実行の周期は、ネットワークの変動のスピードと、負荷分散に対する要求条件にしたがって決める。

【0067】図4は、本発明の第1の実施の形態のリンク・メトリック判定部32の、最適なリンク・メトリックの判定処理を説明するためのフローチャートである。 【0068】この判定処理においては、各変数を以下のように定める。

【0069】全ノードの数を「N」、ネットワーク内の ノードを、「ノードi」、「ノードi」(i, j≦ N)、ノードiとノードj間の全経路の数を

「K:;」、隣接するノード:からノード;への、現在のリンク・メトリックの値を「A:;」、隣接するノード;からノード;への、求める最適化されたリンク・メトリックの値を「B:;」、隣接するノード;からノード;への、現在のリンク負荷を「C:;」、ネットワーク内のノード;からノード;への、経路k(k≦K:))によるトラフィックフローを「T:jk」と表す

【0070】まず、リンク・メトリック判定部32は、ネットワーク状態受信部31を介して、ネットワークの全ノード(ノード1~ノードN)からネットワーク状態情報を受信する(ステップ401)。

【0071】このネットワーク状態情報とは、ネットワーク・トポロジー情報と、リンク・メトリック情報 {Aij:ノードi,jは隣接}と、リンク負荷情報 {Cij:ノードi,jは隣接}と、トラフィックフロー情報 {Tijk:i≠j、k≦Kij}との全ての情報である。

【0072】次に、受信したこれらのネットワーク状態 情報を基に、最適な新規リンク・メトリックB:; を以 下の手順で計算する。

【0073】リンク・メトリック判定部32の内部の、 経路選択エミュレータ321のカウンタを"O"にリセットする(ステップ402)。

【0074】ネットワーク状態情報を内部の経路選択エミュレータ321に初期情報として設定する(ステップ403)。ここで、変数リンク・メトリック値

【A i j 】、リンク負荷【C i j 】、トラフィックフロー 【T i j k 】 は、経路選択エミュレータ321内の計算用のメモリにそれぞれ【a i j 】、【c i j 】、【T

ijk }として格納する。

【0075】経路選択エミュレータ321により、実際の全ノード1~ノードNが行うルーティング・テーブル14の計算、並びにこのルーティング・テーブル14によるデータの経路選択と同一の処理をエミュレートする。

【0076】経路選択エミュレータ321は、ネットワーク・トポロジー情報とリンク・メトリック {ai;} とから、まず最小コスト経路を計算し、擬似的に経路選択エミュレータ321内の全ノードのルーティング・テ 10ーブル14を更新する(ステップ404)。

【0077】ここでもし複数の経路が同一の最小コスト 経路である場合、すべての経路をエミュレータ内ルーティング・テーブル14に登録し、それら複数の経路をトラフィックが負荷分散するように経路制御を行う。

【0078】その後、トラフィックフロー 【Tijk】 をこのエミュレータ内のノードへ仮想的に流して、それによってトラフィックが具体的にどの経路を流れていくかを計算する(ステップ405)。

【0079】すべてのトラフィックフロー {Tijk} に対して、新しい経路が決まると、その時点で全ノード1~ノードN間のリンクに予想されるリンク負荷 {cij:ノードi,jは隣接}が求められる(ステップ406)。

【 0080】 手順 225 では、これら求められたリンク 負荷 $\{c_{ij}\}$ の中で最大の負荷を持つリンク、ノード x からノード y $(x \le N, y \le N, J - Fx, y$ は隣 接)を選択する。そして、現在のリンク・メトリック

 $\{a:j\}$ の値に対して、このリンク $\{x,y\}$ に対応するリンク・メトリックの値 $\{a:y\}$ のみに正の数 $\{a:j\}$ として定める(ステップ $\{a:j\}$ として定める(ステップ $\{a:j\}$ と

【0081】カウンタを1増加させ(ステップ408)、もしカウンタがある閾値M以上ならば、最適なリンク・メトリックを求める反復計算がある一定の回数を超えたものとみなして、エミュレーションの繰返しを終了し(ステップ409)、その時点で得られたリンク・メトリック {aii} を、新規リンク・メトリック {Bii} として、リンク・メトリック送信部33へ送信する(ステップ411)。

【0082】また、リンク負荷 {c:;} の各リンクでの値がすべて同じとなる場合にも、既に最適なリンク・メトリックが求められたものとしてエミュレーションの繰返しを終了し(ステップ410)、その時点で得られたリンク・メトリック {a:;} を、新規リンク・メトリック {B:;} として、リンク・メトリック送信部33へ送信する(ステップ411)。

【0083】このいずれの場合でもない時には、再びステップ404に戻り、新しいリンク・メトリック【aij】に基づきエミュレーションを繰返す。

【0084】以上により得られた最適なリンク・メトリックは、リンク・メトリック送信部33により各ノード 1~Nに送信される。

【0085】また、以上説明されたリンク・メトリック 判定部32の判定処理においては、初期情報であるリン ク負荷情報【Cij】を使用していないが、この情報 は、負荷の量を負荷分散を行なうかどうかの判断として 用いる場合、つまり、ある負荷を超えるまで負荷分散を 行なわない等の場合に用いることができる。さらに、経 路選択エミュレータ321が1回目のエミュレーション により求めたリンク負荷(cij)の値と、大きな違い がないかを参照することにより、ネットワーク状態情報 を正しく受信しているかのチェックに用いることができ る。しかしこのため、リンク負荷情報 {Cij} は、ネ ットワーク状態情報の中に含めないものとしても良い。 【0086】同様に、初期情報であるトラフィックフロ 一情報 {Tijk } は、トラフィックフローの量の情報 として、経路別の情報が必要ではなく、全ての二つのノ 一ド間の情報が得られれば良いが、これも、経路選択エ ミュレータ321が1回目のエミュレーションにより求 めたトラフィックフロー情報 {tijk} の値と、大き な違いがないかを参照することにより、ネットワーク状 態情報を正しく受信しているかのチェックに用いること ができる。しかしこのため、トラフィックフロ一情報 は、経路別に集めなくとも良い。

【0087】以上のように、本実施の形態では、負荷分散サーバ30がネットワーク内の全ノード10a、10b、10c、10dから、ネットワーク状態を集中的に集め、その情報に基づいて、最適なリンク・メトリックを判定し、動的経路選択をするため、ネットワーク全体での最適な負荷分散を行うことができる。

【0088】また、本実施の形態では、定期的にネットワーク状態を取得して、最適なリンク・メトリックを判定するため、ネットワークのトポロジー変更や、トラフィック変動等のネットワーク全体に関る動的な変化に素早く対応して負荷分散を行うことができる。

【0089】次に、本発明の第2の実施の形態について、図面を参照して詳細に説明する。

【0090】図5は、本発明の第2の実施の形態による 40 ネットワーク負荷分散システムの構成を示すブロック図 である。

【0091】図5を参照すると、本発明の第2の実施の形態によるネットワーク負荷分散システムの、図1における第1の実施の形態によるネットワーク負荷分散システムとの違いは、負荷分散サーバ30aを、データ伝送を行なう各ノードから独立に設置せずに、ハードウエア的に任意の1つのノード40aの内部に負荷分散サーバ30aの機能を実装したことである。

【0092】本実施の形態のネットワーク負荷分散シス50 テムの機能的には第1の実施の形態と同じ動作を行う。

負荷分散サーバ30aを実装するノード40aの情報を、ルーティング・プロトコル15によって交換させることにより(たとえばOSPFではOpaaue LSAを用いて交換可能である)、負荷分散サーバ30aを実装しない全てのノード40b、40c、40dが自動的に負荷分散サーバ30aを実装するノード40aの位置を認識し、負荷分散サーバ30aとのやりとりを実現する。

【0093】また、負荷分散サーバ30aを実装するノード40aは、1つでなくとも良く複数のノード内に実 10装させることができる。この複数のノード内に実装させる場合には、各ノードに実装する負荷分散サーバ30aはそれぞれ同等のものであっても、機能を分割して各ノードに実装させてもよい。

【0094】以上のように、本実施の形態では、ノード40aの内部に負荷分散サーバ30aの機能を実装するために、負荷分散サーバ30aをデータ伝送を行なう各ノードから独立に設置する必要や、また、負荷分散サーバ30aと各ノード40a、40b、40c、40dとの通信のために特別に回線を繋ぐ必要がない。このため、第1の実施の形態の効果に加えて、より簡潔な構成で設置も容易なネットーワーク負荷分散システムを実現できる。

【0095】本発明の第3の実施の形態について、図面を参照して詳細に説明する。

【0096】図6は、本発明の第3の実施の形態による ネットワーク負荷分散システムの構成を示すブロック図 である。

【0097】図6を参照すると、本実施の形態によるネットワーク負荷分散システムは、ATM交換機50a、50b、50c、50dを使用したコネクションレス型のネットワークで実施されている。

【0098】第1の実施の形態によるネットワーク負荷分散システムでは、主にコネクションレス型の経路選択の場合について説明した。本発明を、ATMのように、各データの通信経路を伝送開始前にあらかじめ設定する方式であるコネクション型のネットワークで実施する場合には、以下のように一部制御手順を追加することが望ましい。

【0099】負荷分散サーバ30bが、ネットワーク状 40 態情報に対応し、最適な新規リンク・メトリックを計算し、各ATM交換機50a、50b、50c、50dに通知が終わると、第1の実施の形態を直接適応した場合には、ATM交換機50a、50b、50c、50dは伝送中のセルについては通信経路の設定を変更せず、新規に伝送要求のあったセルに対してのみ、更新された最適なリンク・メトリックを用いて通信経路を設定し負荷分散を行う。

【0100】つまり、既存のコネクションには何も変化を加えない手順である。したがって、第3の実施の形態 50

としては、ATM交換機50a、50b、50c、50 dが最適な新規リンク・メトリックを受け取った時点 で、既存のコネクションをすべて新規リンク・メトリッ クに応じてすべて経路選択を行わせる場合がある。

【0101】この実施の形態の場合、経路選択を行っている間、コネクションが切断され、既存のコネクション上のサービスが瞬断する可能性があるため、既存のVCC(Virtual Channel Connection)を残したまま、まず最適なVCCを設定し、既存のサービスを新規設定したVCC上に迂回が終了した後に、既存のVCCを切断するなどのサービスの瞬断を防ぐ方式を併用する。

【0102】以上のように、本実施の形態では、第1の実施の形態の効果に加えて、コネクション型のネットワークにおいて負荷分散を行なう時に、既に転送中の通信経路が設定されているデータに対しても最新の最適な経路に設定を変更することにより、性能、効率の良いネットーワーク負荷分散システムを実現できる。

【 O 1 O 3 】以上好ましい実施の形態及び実施例をあげて本発明を説明したが、本発明は必ずしも上記実施の形態及び実施例に限定されるものではなく、その技術的思想の範囲内において様々に変形して実施することができる。

【 O 1 O 4 】例えば、負荷分散の方針は図 4 に説明された上述の方法と同様にして、ネットワーク管理者の意図に従い、さまざまな方法をとることが可能である。

【0105】負荷分散を行なうかどうかの判断として、 ある負荷を超えるまではまったく負荷分散はおこなわず、ある負荷の閾値を超えた瞬間から負荷分散を行う方 法や、たとえ負荷が低くても常に負荷分散を行う方法 が、負荷分散の初期情報であるネットワーク状態情報中 のリンク負荷情報を参照することにより可能である。

【0106】また、負荷の占める相対的な割合を均等にする負荷分散を行う方法や、負荷による残余帯域を均等にする負荷分散を行う方法が、リンク負荷情報をそれぞれ(使用帯域/実リンク帯域)つまり使用帯域の量を実リンク帯域の量で割った値として設定したり、または負荷による残余帯域の値として設定することで、図4のフロチャートの流れにより同様に負荷分散が可能である。

【0107】また、第3の実施の形態と第2の実施の形態を組合わせることも可能である。つまり第2の実施の形態の方法により、第3の実施の形態の任意の1つのATM交換機50aの内部に負荷分散サーバ30aの機能を持たせることが可能である。

[0108]

【発明の効果】第1に、ネットワーク全体での最適な負荷分散を行うことができる。

【0109】その理由は、負荷分散サーバがネットワーク内の全ノードから、ネットワーク状態を集中的に集め、その情報に基づいて、最適な負荷分散をはかるため

の最適なリンク・メトリックを判定し、それを各ノードに配布することと、さらに、その最適なリンク・メトリックがルーティング・プロトコルによってすべてのノードに行き渡り、各ノードのルーティング・テーブルがそのリンク・メトリックに基づき更新されるためである。【0110】第2に、ネットワークのトポロジー変更や、トラフィック変動等のネットワーク全体に関る動的な変化に対応して、最適なリンク・メトリックを決定し、ルーティング・テーブルを変更できる。

【0111】その理由は、定期的にネットワーク状態を 10取得して、最適なリンク・メトリックの計算を行うためである。

【図面の簡単な説明】

【図1】 本発明の第1の実施の形態によるネットワーク負荷分散システムの構成を示すブロック図である。

【図2】 本発明の第1の実施の形態の負荷分散サーバの構成を示すブロック図である。

【図3】 本発明の第1の実施の形態のノードの構成を 示すブロック図である。

【図4】 本発明の第1の実施の形態のリンク・メトリ 20 ック判定部の、最適なリンク・メトリックの判定処理を 説明するためのフローチャートである。

【図5】 本発明の第2の実施の形態によるネットワーク負荷分散システムの構成を示すブロック図である。

【図6】 本発明の第3の実施の形態によるネットワーク負荷分散システムの構成を示すブロック図である。

【符号の説明】

10a、10b、10c、10d、40a、40b、4 0c、40d ノード

50a、50b、50c、50d ATM交換機 20a、20b、20c、20d、20e、20f リ ンク

11 ネットワーク状態検出部

111 ネットワーク・トポロジー検出部

112 リンク・メトリック検出部

113 リンク負荷検出部

114 トラフィックフロー検出部

12 リンク・メトリック受信部

13 リンク状態・データベース

14 ルーティング・テーブル

15 ルーティング・プロトコル

16 データ受信部

17 データ送信部

30、30a、30b 負荷分散サーバ

31 ネットワーク状態受信部

32 リンク・メトリック判定部

321 経路選択エミュレータ

33 リンク・メトリック送信部

【図1】

【図2】

【図3】

