BSCMA1001 : Activity Questions Week-7

Contents

1	Lecture 1	2
2	Lecture 2	5
3	Lecture 3	6
4	Lecture 4	7
5	Lecture 5	9
6	Lecture 6	11
7	Lecture 7	12
8	Lecture 8	13
9	Lecture 9	14

One to One Function: Definition and Tests

- 1. Which of the following statements is(are) TRUE?
 - (a) The Vertical line test is used to find whether the given function is one-to-one or not.
 - (b) The Horizontal line test is used to find whether the given function is one-to-one or not.
 - (c) If for one value of x in domain gives more than one f(x), then f is one-to-one function.
 - (d) If for more than one value of x in domain gives one f(x), then f is one-to-one function.
- 2. Which of the following graph fails the Horizontal line test?

3. Which of the following statements is (are) TRUE?

(a) One-to-one functions never fail the Horizontal line test.

- (b) One-to-one functions may sometime fail the Horizontal line test.
- (c) No function should fail the Horizontal line test.
- (d) There are some functions that fail the Vertical line test.
- 4. Which of the following statements is(are) FALSE?
 - (a) A function $f: X \longrightarrow Y$ is called one-to-one if, $f(x_1) = f(x_2) \in Y$, then $x_1 = x_2$.
 - (b) One-to-one functions are not always reversible on their range.
 - (c) If a function fails the Horizontal line test, then it is not reversible.
 - (d) A function $f: X \longrightarrow Y$ is called one-to-one if, $f(x_1) \neq f(x_2) \in Y$, then $x_1 \neq x_2$.
- 5. Suppose $f:[0,\infty)\longrightarrow \mathbb{R}$. Which of the following is not a function?
 - (a) f(x) = 4x + 3
 - (b) $f(x) = \pm \sqrt{x+1}$
 - (c) $f(x) = x^2 + 4x + 30$
 - (d) f(x) = 100

One-to-one Functions: Examples & Theorems

- 1. Which of the following statements is(are) TRUE?
 - (a) If any horizontal line intersects the graph of a function f in at most one point, then f is one-to-one.
 - (b) If any horizontal line intersects the graph of a function f in at least one point, then f is one-to-one.
 - (c) If f is a decreasing function, then f is not one-to-one.
 - (d) If f is an increasing function, then f is one-to-one.
- 2. If $f: \mathbb{R} \longrightarrow \mathbb{R}$, then which of the following functions is(are) one-to-one?
 - (a) f(x) = |x+1| 20
 - (b) $f(x) = x^2 + 4x$
 - (c) $f(x) = x^3 + 15$
 - (d) $f(x) = x^3 5x^2 + 2x + 8$
- 3. Which of the following functions is(are) decreasing?
 - (a) $f(x) = 4x^2 + 4x + 1$, for all $x \in \mathbb{R}$
 - (b) f(x) = 7 3x, for all $x \in \mathbb{R}$
 - (c) $f(x) = -2x^3$, for all $x \in \mathbb{R}$
 - (d) $f(x) = \frac{1}{x}$, for all $x \in \mathbb{R} \setminus \{0\}$
- 4. Which of the following statements is(are) INCORRECT?
 - (a) The function $f(x) = \frac{4x+3}{3x-5}$, for all $x \in \mathbb{R} \setminus \{\frac{5}{3}\}$ is one-to-one.
 - (b) The function f(x)=mx+c, for all $x\in\mathbb{R}$ (where $m\in\mathbb{R}\setminus\{0\}$ and $c\in\mathbb{R}$) is one-to-one .
 - (c) A quadratic function having two distinct roots is always one-to-one.
 - (d) A quadratic function having equal roots can be one-to-one.

Exponential Functions: Definitions

- 1. Which of the following options is(are) TRUE?
 - (a) $a^s \times a^t = a^{s+t}$, for $s, t \in \mathbb{R}$ and $a \in \mathbb{R}$
 - (b) $(a^s)^t = a^{s+t}$, for $s, t \in \mathbb{R}$ and a > 0
 - (c) $(ab)^s = a^s \times b^s$, for $s \in \mathbb{R}$ and a, b > 0
 - (d) $a^s \times b^s = (a+b)^s$, for $s \in \mathbb{R}$ and a, b > 0
 - (e) $a^s \times a^t = a^{s+t}$, for $s, t \in \mathbb{R}$ and a > 0.
- 2. Which of the following equations is(are) CORRECT?
 - (a) $2^3 \times 2^4 = 2^{12}$
 - (b) $2^3 \times 2^4 = 2^7$
 - (c) $3^5 \times 9^3 = 3^{11}$
 - (d) $7^3 \times 5^3 = 35^9$
- 3. Simplify the expression $(2^2 \times 3^3)^5 \times 4^7 \times 5^3 \times (8 \times 25^3)^2$
 - (a) 60^{15}
 - (b) 120^{15}
 - (c) 30^{30}
 - (d) 30^{15}
- 4. Which of the following statements is(are) INCORRECT?
 - (a) Every exponential function is a one-to-one function.
 - (b) 0^0 is undefined.
 - (c) $a^0 = 1$, for all $a \in \mathbb{R}$.
 - (d) a is the exponent in the algebraic expression a^r .
- 5. Which of the following options is not an exponential function?
 - (a) $f(x) = 3^{x/2}$
 - (b) $f(x) = x^{\frac{9}{4}}$
 - (c) $f(x) = \frac{15}{8^x}$
 - (d) $f(x) = 20 \times 6^x$

Exponential Functions: Graphing

- 1. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $f(x) = 3^x + 20$. Which of the following is the domain and range of the function f respectively?
 - (a) \mathbb{R} and $(0, \infty)$
 - (b) \mathbb{R} and \mathbb{R}
 - (c) $(0, \infty)$ and $(20, \infty)$
 - (d) \mathbb{R} and $(20, \infty)$
- 2. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $f(x) = 2^x 32$. Which of the following is(are) true about f(x)?
 - (a) x-intercept is (5,0).
 - (b) y-intercept is (0,-32).
 - (c) y = -31 is the horizontal asymptote.
 - (d) y = -32 is the horizontal asymptote.
- 3. Which of the following statements is(are) INCORRECT?
 - (a) $f(x) = 8^{-x}$ is a decreasing function.
 - (b) Every $f(x) = a^x$, a > 1 has same properties as $g(x) = 6174^x$.
 - (c) $f(x) = 20^{-x}$ is an increasing function.
 - (d) Every $f(x) = a^x$, a < 1 has same properties as $g(x) = 1729^x$.
- 4. Suppose $f: \mathbb{R} \longrightarrow \mathbb{R}$ is defined by $f(x) = \frac{1}{7^x} + 15$. Which of the following is true about f(x)?
 - (a) End behaviour of f(x) as $x \longrightarrow \infty$ is 0
 - (b) End behaviour of f(x) as $x \to \infty$ is 15
 - (c) End behaviour of f(x) as $x \longrightarrow -\infty$ is 15
 - (d) End behaviour of f(x) as $x \longrightarrow -\infty$ is 0

Figure 1

- 5. Observe Figure 1 and choose the correct set of options:
 - (a) The curves f, g, h may represent $2^x, 3^x, 5^x$
 - (b) The y- intercepts of f, g, h are 2,3,5 respectively.
 - (c) The curves f, g, h may represent $5^x, 3^x, 2^x$.
 - (d) The x- intercepts of f, g, h are 1,1,1 respectively.

Natural Exponential Function:

- 1. Suppose that a stock's price continues to increase at the rate of 5% per year. If the value of one share of this stock is ₹1000 at present, then find the value(in ₹) of one share of this stock two years from now.
 - (Use the formula $S = a(1+r)^n$, where r is the increase rate per year, n is the number of years from now, a is the present value of one share of the stock, and S is the value of one share of the stock after n years from now.)
 - (a) 1157.625
 - (b) 1000
 - (c) 1050
 - (d) 1102.5
- 2. Which of the following options yield the value e'?
 - (a) The slope of the tangent line of the curve $f(x) = e^x$ at x = 1
 - (b) The slope of the tangent line of the curve $f(x) = x^2 + ex$ at x = 1
 - (c) The area under the curve $f(x) = 2e^x$, from $(-\infty, 1)$
 - (d) The area under the curve $f(x) = e^x$ from $(-\infty, 1)$
- 3. Which of the following statements is(are) CORRECT?
 - (a) If $n \longrightarrow \infty$, then $(1 + \frac{1}{n})^n \longrightarrow \infty$
 - (b) If $n \longrightarrow \infty$, then $(1 + \frac{1}{n})^n \longrightarrow e$
 - (c) Every $f(x) = a^x$, a < 1 has same properties as $g(x) = e^x$.
 - (d) Every $f(x) = a^x$, a > 1 has same properties as $g(x) = e^x$.
- 4. In 1990, the population of blue whales in the world is approximately 3200. Let F(t) be the approximate population of blue whales in the world after t years since 1990(t=0) corresponds to 1990, defined as $F(t) = 3200e^{-0.15t}$. What is the approximate population of blue whales in the world in the year 2020?
 - (a) 360
 - (b) 36
 - (c) 12
 - (d) 160

- 5. In 1990, the population of blue whales in the world is approximately 3200. Let F(t) be the approximate population of blue whales in the world after t years from 1990(t = 0 corresponds to 1990), defined as $F(t) = 3200e^{-0.15t}$. In which year will the population of blue whales approximately be 160? (HINT: Check from the given options)
 - (a) 2000
 - (b) 2005
 - (c) 2010
 - (d) 2020
- 6. Suppose the population of bacteria in a culture is growing exponentially. At today 2:00 pm, 100 bacteria were present and by 5:00 pm, 448 bacteria were present. Find an exponential function $y = ae^{kt}$ that models this growth, where t is the number of hours since 2:00 pm(t = 0 corresponds to 2:00 pm), y is the population of bacteria at t hours, and a, k are arbitrary constants.(HINT: Check from the given options)
 - (a) $y = 100e^{0.5t}$
 - (b) $y = 448e^{0.5t}$
 - (c) $y = 100e^{2t}$
 - (d) $y = 448e^{2t}$

Composite Functions:

- 1. Let f(x) and g(x) be two functions. Which of the following options is(are) INCORRECT?
 - (a) $(f \circ g)(x) = f(g(x))$
 - (b) $(g \circ f)(x) = g(f(x))$
 - (c) $(f \circ g)(x) = g(f(x))$
 - (d) $(g \circ f)(x) = f(g(x))$
- 2. Suppose f(x) and g(x) are well defined functions. Which of the following statements is(are) CORRECT?
 - (a) For any given functions f(x) and g(x), $(f \circ g)(x) = (g \circ f)(x)$.
 - (b) The domain of a composite function $(f \circ g)(x)$ is always a subset of the domain of the function g(x).
 - (c) The domain of a composite function $(f \circ g)(x)$ is always equal to the domain of the function g(x).
 - (d) The range of a composite function $(f \circ g)(x)$ is always a subset of the range of the function f(x).
- 3. Suppose f(x) = 8x, g(x) = 50 8x, h(x) = 50, and k(x) = 50 64x are functions. Which of the following options is true?
 - (a) $(f \circ g)(x) = k(x)$
 - (b) $(g \circ f)(x) = k(x)$
 - (c) $(g \circ f)(x) = h(x)$
 - (d) $(f \circ g)(x) = h(x)$

Composite Functions: Examples

- 1. If $f(x) = 10(x-5)^2 + 100x 225$ and $g(x) = \sqrt{2x+5}$, then the composite functions f(g(x)) and g(f(x)) are respectively
 - (a) 20x + 75 and $\sqrt{20x^2 + 5}$
 - (b) $\sqrt{20x+55}$ and $20x^2+25$
 - (c) 20x + 75 and $\sqrt{20x + 55}$
 - (d) 20x + 75 and $\sqrt{20x^2 + 55}$
- 2. Suppose f(x) = 3x + 10 and $g(x) = \sqrt{x+11}$ are two functions. Find the value of f(g(5)).

ANSWER: 22

3. Suppose f(x) = 3x + 10 and $g(x) = \sqrt{x+11}$ are two functions. Find the value of g(f(5)).

ANSWER: 6

- 4. Which of the following pairs of functions f(x) and g(x) satisfies the equation f(g(x)) = g(f(x))?
 - (a) f(x) = 2x and g(x) = 10x + 3
 - (b) f(x) = 7x + 6 and g(x) = 4x + 3
 - (c) $f(x) = e^x$ and g(x) = x
 - (d) $f(x) = 4e^x \text{ and } g(x) = 4x$
- 5. If $f(x) = 2\sqrt{x+9}$, $g(x) = 8x^2$, and h(x) = 5x+7, then which of the following options are CORRECT?
 - (a) f(g(0)) < g(f(0))
 - (b) h(f(0)) > f(h(0))
 - (c) f(g(x)) < g(f(x)), for all $x \in (-\infty, +\infty)$
 - (d) f(h(x)) < h(f(x)), for all $x \in [0, +\infty)$
 - (e) h(g(1)) > g(h(1))

Composite Functions: Domain

- 1. If $f(x) = \frac{x+5}{x-4}$ and $g(x) = \frac{1}{x+1}$, then find $(f \circ g)(x)$.
 - $\left(\mathbf{a}\right) \ \frac{x-4}{2x+1}$
 - (b) $\frac{2x+1}{x-4}$

 - (d) $\frac{5x+6}{4x-3}$
- 2. If $f(x) = \frac{x+5}{x-4}$ and $g(x) = \frac{1}{x+1}$, then find the domain of the function $(f \circ g)(x)$.
 - (a) $\mathbb{R} \setminus \{\frac{-3}{4}\}$
 - (b) $\mathbb{R} \setminus \{-1, \frac{-3}{4}\}$
 - (c) $\mathbb{R} \setminus \{-1, \frac{-3}{4}, 4\}$
 - (d) $\mathbb{R} \setminus \{-1, \frac{3}{4}, 4\}$
- 3. Which of the following statements is (are) CORRECT?
 - (a) If there exists $x \in \mathbb{R}$ that is not in the domain of a function f, then that x will not be in the domain of some composite function $(f \circ g)$.
 - (b) The domain of a composite function $(f \circ g)$ is the set of all x such that x is in the domain of a function f and f(x) is in the domain of a function g.
 - (c) If there exists $x \in \mathbb{R}$ that is not in the domain of a function q, then that x will not be in the domain of some composite function $(f \circ g)$.
 - (d) The domain of a composite function $(f \circ g)$ is the set of all x such that x is in the domain of a function g and g(x) is in the domain of a function f.
- 4. If the domain of a composite function $(f \circ g)$ is $(-2, \infty)$ and $f(x) = \frac{1}{x^2}$, then which of the following options can be g(x)?
 - (a) $\frac{\sqrt{x+2}}{10}$
 - (b) $\frac{\sqrt{x+2}}{5x}$ (c) $\frac{3}{\sqrt{x+2}}$

 - (d) $\sqrt{2-x}$

Inverse Functions:

- 1. Which of the following options is (are) CORRECT for a reversible function f?
 - (a) For any function f, $f^{-1}(x) = \frac{1}{f(x)}$
 - (b) The domain of a function f is always equal to the range of f^{-1} function.
 - (c) For any x = a in the domain of a function f, if (a, f(a)) is on the graph of f, then (f(a), a) is on the graph of f^{-1}
 - (d) For any function f, $(f \circ f^{-1})(x) = x$.
- 2. If $f(x) = \sqrt{x-5}$, then the domain and the range of the function f^{-1} are respectively
 - (a) $[0,\infty)$ and $[5,\infty)$
 - (b) $[5, \infty)$ and $[0, \infty)$
 - (c) \mathbb{R} and $[5, \infty)$
 - (d) $[5, \infty)$ and \mathbb{R}
- 3. Which of the following functions satisfy the condition $f(x) = f^{-1}(x)$?
 - (a) $f(x) = \frac{1}{x^3}$
 - (b) $f(x) = \frac{1}{x}$
 - (c) $f(x) = \frac{2x-1}{3x-2}$
 - (d) f(x) = 9 5x
 - (e) f(x) = -x
- 4. Which of the following statements is INCORRECT?
 - (a) The inverse function (g) of a function $f(x) = \frac{1}{x^3}$ is $g(x) = \frac{1}{\sqrt[3]{x}}$
 - (b) If $f(x) = \frac{1}{x-11}$ and $g(x) = 11 \frac{1}{x}$, then $f(x) = g^{-1}(x)$ for all $x \in \mathbb{R}$
 - (c) $(f \circ f^{-1})(x) = x = (f^{-1} \circ f)(x)$, for all x in the domain of the function f.
 - (d) A function f is symmetric to function f^{-1} about the line y = x.
- 5. If $f(x) = x^3 5$, $g(x) = \sqrt[3]{x} + 5$, $h(x) = (x 5)^3$ and $k(x) = \sqrt[3]{x + 5}$ are functions, then which of the following options is (are) true?
 - (a) $k(x) = f^{-1}(x)$, for all $x \in \mathbb{R}$
 - (b) $f(x) = h^{-1}(x)$, for all $x \in \mathbb{R}$
 - (c) $g(x) = k^{-1}(x)$, for all $x \in \mathbb{R}$
 - (d) $h(x) = g^{-1}(x)$, for all $x \in \mathbb{R}$