

Digital Systems 18B11EC213

Module 1: Boolean Function Minimization Techniques and Combinational Circuits-1

Dr. Saurabh Chaturvedi

Number Systems

- Many number systems are in use in digital technology.
- The most common number systems are:
- Decimal
- Binary
- Octal
- Hexadecimal (Hex)

Radix (Base) of Number Systems

- Decimal Base is 10
- Binary Base is 2
- Octal Base is 8
- Hexadecimal (Hex) Base is 16

Symbols in Number Systems

- Decimal (Base 10) 10 symbols (0 to 9)
- Binary (Base 2) 2 symbols (0 and 1)
 A digit in base 2 is also called a bit.
- Octal (Base 8) 8 symbols (0 to 7)
- Hexadecimal (Base 16) 16 symbols (0 to 9, A to F).
 Use letters A to F to represent values 10 to 15.
 (Alphanumeric number system)

In general, a digit in base R can range from 0 to R-1.

Positional Notation

 The value of a number is determined by multiplying each digit by a weight and then by adding. The weight of each digit is a power of the base and is determined by position.

Example:

In decimal number system, 3874 means

3 times 1000

plus 8 time 100

plus 7 times 10

plus 4 times 1

Cont..

- In decimal, there are 10 symbols and the value of each position is a power of 10.
 - $10^0 = 1$ = value of the unity position
 - $10^{1} = 10 = \text{value of next position to the left etc.}$
- In binary, there are 2 symbols, and the value of each position is a power of 2.
- In octal, 8 symbols, and powers of 8.
- In hexadecimal, 16 symbols, and powers of 16.

Base 10, Base 2, Base 16

$$953.78_{10}$$
= 9 x 10² + 5 x 10¹ + 3 x 10⁰ + 7 x 10⁻¹ + 8 x 10⁻²
= 900 + 50 + 3 + .7 + .08 = 953.78 (decimal)

$$1011.11_{2} = 1x2^{3} + 0x2^{2} + 1x2^{1} + 1x2^{0} + 1x2^{-1} + 1x2^{-2}$$

= $8 + 0 + 2 + 1 + 0.5 + 0.25$
= 11.75_{10} (binary to decimal)

$$A2F_{16} = 10x16^{2} + 2x16^{1} + 15x16^{0}$$

= 10 x 256 + 2 x 16 + 15 x 1
= 2560 + 32 + 15 = 2607₁₀ (hex to decimal)

Conversion of Any Base to Decimal

Converting from any base to decimal is done by multiplying each digit by its weight and by adding.

Examples:

Binary to decimal

$$(1011.11)_2 = 1x2^3 + 0x2^2 + 1x2^1 + 1x2^0 + 1x2^{-1} + 1x2^{-2}$$

= $8 + 0 + 2 + 1 + 0.5 + 0.25$
= $(11.75)_{10}$

Hex to decimal

$$(A2F)_{16} = 10x16^{2} + 2x16^{1} + 15x16^{0}$$

= $10x256 + 2x16 + 15x1$
= $2560 + 32 + 15 = (2607)_{10}$

Least Significant Digit Most Significant Digit

Example: For a binary number (110101)₂

- Least significant digit has weight of 2^o or 1
 For base 2 (binary), also called least significant bit (LSB)
 Always right most digit
- Most significant digit has weight of 2⁵ or 32
 For base 2 (binary), also called most significant bit (MSB)
 Always left most digit

Conversion of Decimal Integer To Any Base

- Divide Number N by base R until quotient is 0.
- Remainder at each step is a digit in base R, from least significant digit to most significant digit.

Cont...

Example: Convert (53)₁₀ to binary.

```
53/2 = 26, rem = 1
                                  Least significant digit
26/2 = 13, rem = 0
13/2 = 6, rem = 1
 6/2 = 3, rem = 0
 3/2 = 1, rem = 1
 1/2 = 0, rem = 1
                                  Most significant digit
53_{10} = 110101_2
   = 1x2^5 + 1x2^4 + 0x2^3 + 1x2^2 + 0x2^1 + 1x2^0
   = 32 + 16 + 0 + 4 + 0 + 1 = 53_{10}
```

Conversion of Decimal Fraction To Any Base

- It is accomplished by a method similar to that used for integers.
- Multiplication is used instead of division.
- Integers are accumulated instead of remainders.

Cont...

Example-1: Convert $(0.6875)_{10}$ to binary.

Inte	<u>eger</u>	<u>Fraction</u>	<u>Coefficient</u>
0.6875 * 2 = 1	+	0.3750	a ₋₁ = 1
0.3750 * 2 = 0	+	0.7500	$a_{-2} = 0$
0.7500 * 2 = 1	+	0.5000	a ₋₃ = 1
0.5000 * 2 = 1	+	0.0000	a ₋₄ = 1

Answer: $(0.6875)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4})_2 = (0.1011)_2$

Cont...

Example-2: Convert $(0.513)_{10}$ to octal.

	<u>Integer</u>		<u>Fraction</u>	Coefficient
0.513 * 8	= 4	+	0.104	a ₋₁ = 4
0.104 * 8	= 0	+	0.832	a ₋₂ = 0
0.832 * 8	= 6	+	0.656	a ₋₃ = 6
0.656 * 8	= 5	+	0.248	a ₋₄ = 5
0.248 * 8	= 1	+	0.984	a ₋₅ = 1
0.984 * 8	= 7	+	0.872	a ₋₆ = 7

Answer:
$$(0.513)_{10} = (0.a_{-1}a_{-2}a_{-3}a_{-4}a_{-5}a_{-6}...)_8$$

= $(0.406517...)_8$

Hex to Binary Conversion

- Each hexadecimal digit represents 4 bits.
- To convert a hexadecimal number to binary number, simply convert each hex digit to its four-bit binary equivalent.

Hex to binary:

```
0_{16} = 0000_2
1_{16} = 0001_2
2_{16} = 0010_2
3_{16} = 0100_2
4_{16} = 0100_2
5_{16} = 0110_2
6_{16} = 0110_2
7_{16} = 0111_2
8_{16} = 1000_2
9_{16} = 1001_2
```

Cont..

```
A_{16} = 1010_2
B_{16} = 1011_2
C_{16} = 1100_2
D_{16} = 1101_2
E_{16} = 1110_2
E_{16} = 1111_2
```

Binary and Hex Conversion

Hexadecimal to binary conversion:

```
Examples: (A2F)_{16} = (1010\ 0010\ 1111)_2
(345)_{16} = (0011\ 0100\ 0101)_2
```

 Binary to hexadecimal conversion is just the opposite, create groups of 4 bits starting from LSB.
 If last group does not have 4 bits, then pad with zeros for unsigned numbers.

Example:

$$(1010001)_2 = (0101\ 0001)_2 = (51)_{16}$$

Padded with a zero

Binary and Octal Conversion

 Octal to binary conversion - by converting each octal digit into its 3-bit equivalent binary.

Example: $(736)_8 = (111\ 011\ 110)_2$

 Binary to octal conversion - by making groups of three bits starting from LSB.

Example:
$$(1001110)_2 = (001\ 001\ 110)_2$$

= $(116)_8$

References

- M. M. Mano, *Digital Logic and Computer Design*, 5th ed., Pearson Prentice Hall, 2013.
- R. P. Jain, *Modern Digital Electronics*, 4th ed., Tata McGraw-Hill Education, 2009.