Pocket Fireman

Alertas de incêndio industrial

Introdução e Problemática

- Incêndios em ambientes industriais são uma ocorrência frequente e preocupante. A situação se complica ainda mais quando esses ambientes apresentam grande poluição sonora e visual.
- Pensando nisso, decidimos desenvolver um dispositivo de uso pessoal que será capaz de alertar sobre incêndios, independentemente das limitações do ambiente e do funcionário.

Relembrando a Solução

O Pocket Fireman será um dispositivo leve e pequeno que ficara no bolso do funcionário e por meio de luzes e vibrações irá alertar sobre incêndios.

Os dados sobre incêndios serão recebidos por um servidor central com um detector de fumaça, um sensor de temperatura e um botão de alerta manual.

Benefícios

Quebra as barreiras de limitação visual e sonora.

Permite o alerta rápido e evita a dúvidas em situação de emergência.

Trabalha muito bem com sistemas redundantes.

Lista de Materiais

- ESP32
- Ponte H L298N
- Motor de Vibração
- Sensor de Gás Inflamável e Fumaça MQ-02
- Sensor de Temperatura DHT22
- Leds
- Push Button
- Resistores
- Bateria de Lítio 18650
- Módulo Carregador de Baterias 134N3P

Cronograma

Fase	Semanas	Início	Atividade
Idealização	Semana 1	04/ago	Etapa de decisão e construção da ideia do projeto;
	Semana 2	11/ago	
	Semana 3	18/ago	
Apresentação	Semana 4	25/ago	Apresentação inicial do projeto;
Orçamento	Semana 6	01/set	Compra de equipamentos e dispositivos;
Sprint 1	Semana 7	08/set	Desenvolvimento do Dispositivo de Alerta;
	Semana 8	15/set	
	Semana 9	22/set	
	Semana 10	29/set	
Testes	Semana 11	06/out	Testes dos itens desenvolvidos nas semanas 7, 8, 9 e 10;
Sprint 2	Semana 12	13/out	Desenvolvimento do Sistema de Controle Central e Apuração de Dados Estatísticos;
	Semana 13	20/out	
	Semana 14	27/out	
Testes	Semana 15	03/nov	Testes dos itens desenvolvidos nas semanas 12, 13 e 14;
Sprint 3	Semana 16	10/nov	Montagem do Hardware definitivo;
Testes	Semana 17	17/nov	Testes dos itens desenvolvidos nas semana 16;
Sprint 4	Semana 18	24/nov	Ajustes e testes finais;
Apresentação	Semana 19	01/dez	Apresentação final do projeto.

Metodologia Scrum

Product Owner:

Cristian Sena

Scrum Master:

Guilherme Marcos

Equipe de Desenvolvimento Scrum:

Lucas Henrique e Dayane Cordeiro

Montagem na Protoboard

- Transmissor acima e receptor abaixo;
- Primeira versão:

Montagem na Protoboard

- Segunda versão do transmissor:
- Obs: a Segunda versão do receptor foi desenvolvida diretamente na placa perfurada.

Esquemático Receptor

Esquemáticos Transmissor

Montagem na Placa Perfurada - Transmissor

Montagem na Placa Perfurada - Receptor

Montagem da Bateria do Receptor

Diagrama de Funcionalidade

Comunicação via MQTT

Explicação do código

Mapa de Mensagens

Comunicação via MQTT

Ponto de configuração da rede

Mensagens no Broker

Verificação no Cppcheck

```
check: Windows 64-bit binaries currently default to the 'win64' platform. Starting with Cppcheck 2
  they will default to 'native' instead. Please specify '--platform=win64' explicitly if you rely o
      Pocket_Fireman_Transmissor.ino ...
       reman Transmissor.ino:7:0: information: Include file: <arduino.h> not found. Please note: Cp
       s not need standard library headers to get proper results. [missingIncludeSystem]
        rduino.h>
          an Transmissor.ino:8:0: information: Include file: <WiFi.h> not found. Please note: Cppch
          need standard library headers to get proper results. [missingIncludeSystem]
            .h>
             Transmissor.ino:9:0: information: Include file: <PubSubClient.h> not found. Please not
              not need standard library headers to get proper results. [missingIncludeSystem]
             Client.h>
              ransmissor.ino:10:0: information: Include file: "DHT.h" not found. [missingInclude]
              ansmissor.ino:244:0: style: The function 'setup' is never used. [unusedFunction]
              wnloads\iot>cppcheck --enable=all Pocket Fireman Receptor.ino
               64-bit binaries currently default to the 'win64' platform. Starting with Cppcheck 2
              ault to 'native' instead. Please specify '--platform=win64' explicitly if you rely o
              Fireman Receptor.ino ...
             eceptor.ino:4:0: information: Include file: <arduino.h> not found. Please note: Cppch
             ed standard library headers to get proper results. [missingIncludeSystem]
             no.h>
            Receptor.ino:5:0: information: Include file: <WiFi.h> not found. Please note: Cppcheck
            standard library headers to get proper results. [missingIncludeSystem]
           i.h>
        man Receptor.ino:6:0: information: Include file: <PubSubClient.h> not found. Please note:
       oes not need standard library headers to get proper results. [missingIncludeSystem]
       <PubSubClient.h>
    Fireman Receptor.ino:227:0: style: The function 'setup' is never used. [unusedFunction]
   setup() {
tive checkers: 134/565
```

\Users\lucas\Downloads\iot>cppcheck --enable=all Pocket Fireman Transmissor.ino

Dificuldades

- Soldagem de componentes pequenos como a ponte H;
- Definição do design de trilhas otimizadas na placa perfurada.

Futuras Melhorias

- Desenvolvimento de uma Case sob medida para as duas placas desenvolvidas;
- Substituição da bateria cilíndrica por uma retangular e mais fina para economia de espaço;
- Desenvolvimento de uma PCB compacta para impressão.

