南京工业大学概率统计试题()卷(闭)

2020-2021 学年第一学期 使用班级 2019 级本科生

题号	_	<u> </u>	三	四	五.	六	七	八	九	总分	
得分											
1 . 三个		立工作,	正常		既率分另	则为 $\frac{1}{2},\frac{2}{3}$, 3, 则	至少有	一个元件	件不能正常	
工作的	」概率为		_•								
2. 设随	机变量X	、Y相互	独立且	都服从 ((), 3) 上的	均匀分和	ਜ਼ਿ, Z=m	in(X,Y),	则 尺 Z≤	1}=	
						函 数	为。	f(x) = -	$\frac{1}{\sqrt{\pi}}e^{-x^2}$	+2x-1 , 则	
4. 设点	总体 <i>X</i> ~	$\sim N(2,2)$				× 均值,	则 2(-2) ~ <u>_</u>		. (写	
5.设取		总体 X~				本,样	本均值,	$\bar{c} = 65$, 贝	小未知参	数μ的95%置信	Ì
二、选	译题(每	小题3分	},共 15	5分)							
		, В	为 两	随机	事件	= , <i>I</i>	P(A) = 1	/3, P(B)	$ A\rangle = 1/4$	4 ,则 $P(A\overline{B}) =$	
()			(В	$\frac{1}{4}$;		(C	$\frac{1}{3}$;		(D)	$\frac{1}{6}$.	
2. 设二	维随机多	 乏量 <i>X</i> , <i>Y</i>	独立同	分布,_	且 <i>X</i> ~($\frac{-1}{2} \frac{1}{2}$),	则下列结	吉论正确	的是	()	
(A) P{X	Y = Y	$\frac{1}{2}$; (B) P	$\{X+Y=$	$=0\}=\frac{1}{4}$; (C)	$P\{X$	$+ Y = 0\}$	$=\frac{1}{3}$; (D)	
$P\{X =$	$Y\} = \frac{1}{4}.$										
3.设随机	几变量 X_1	X_2, \cdots	$X_n(n > n)$	1)独立	司分布,	$\mathbb{E}DX_1$	$=\sigma^2, \frac{1}{2}$	$ \Rightarrow \overline{X} = \frac{1}{n}$	$\sum_{i=1}^n x_i, \bigcup$	J ()	
(A)	$cov(X_1)$	$(\overline{X}) = ($	$\frac{n-1}{n}\sigma^2$	² ;		(B) co	$\mathbf{v}(X_1, \overline{X})$	$(\sigma) = \sigma^2$;			

(C)
$$D(X_1 + \overline{X}) = \frac{(n+3)}{n}\sigma^2$$
; (D) $D(X_1 + \overline{X}) = \frac{(n+1)}{n}\sigma^2$.
4. 设 $X \sim N(\mu, \sigma^2)$,则 $P\{|X - \mu| < \sigma\}$

- (A) 与 μ 和 σ^2 都有关; (B) 与 μ 有关,与 σ^2 无关; (C) 与 μ 无关,与 σ^2 有关; (D) 与 μ 和 σ^2 都无关.
- 5. 对正态总体 $X \sim N \mu, \sigma^2$)的均值 μ 进行假设检验,若在显著性水平 α =0.05下 接受假设 H_0 : $\mu=\mu_0$, 则在显著性水平 $\alpha=0.025$ 下
- (A) 拒绝*H*₀;

- (B) 接受H₀且接受域相同;
- (C) 接受 H_0 但接受域不同; (D) 可能接受 H_0 也可能拒绝 H_0
- 三、(本题 10分)某班老师发现在考试及格的学生中有80%的学生按时交作业,而在考试不及格 的学生中只有30%的学生按时交作业,现在知道有80%的学生考试及格,从这个班学生中随机抽 取一个学生,(1) 求抽到的这位学生是按时交作业的概率;(2)已知抽到的这位学生是按时交 作业, 求这位考生考试及格的概率.

四、(本题 12 分) 一箱子内有 5 个红球, 4 个白球, 现从中任取 2 球, 令 X 为取出的两个球中红 球的个数, 求 (1) X 的分布律; (2) X 的分布函数; (3) D(3X+6).

五、(本题 8 分)设X、Y独立同分布且均服从[0,1]上的均匀分布,求Z=X+Y密度函数.

六、(本题 8 分)一生产线生产成品包装箱,设每箱平均重量为 50Kg,标准差为 5Kg,如果用最大 5吨的卡车装载,用中心极限定理计算每车最多装多少箱可以保证卡车不超重的概率大于 0.977 ($\Phi(2) = 0.977$).

七、(本题 12 分)设二维随机变量(X, Y) 联合密度函数是 $f(x,y) = \begin{cases} 1, & 0 < x < 1, |y| < x, \\ 0, & \text{其他,} \end{cases}$ 求(1)X,Y的边缘密度函数并判断X,Y是否独立;(2)EX,EY,DX,DY;(3)若Z = X + 2Y,求DZ.

八、(本题 10 分) 设总体 X 的分布函数为 $F(x,\theta) = \begin{cases} 1-x^{-\theta}, & x>1, \\ 0, & x\leq 1, \end{cases}$ 其中 θ 为未知参数,

 X_1, X_2, \cdots, X_n 为来自总体**X**简单随机样本,求(1) θ 的矩估计量;(2) θ 的极大似然估计量.

九、(本题 10 分) 生产线生产袋装产品,正常情况下每袋 1Kg,准差不得超过 15g,且每袋重量服从正态分布,现检查机器生产情况,从中任取 9 袋,测得均值为x=998g,样本均方差为s=30g,问 在 显 著 性 水 平 $\alpha=0.05$ 下 机 器 生 产 是 否 正 常 ? $(t_{0.05}(8)=1.8595,t_{0.025}(8)=2.3060,\chi^2_{0.05}(8)=15.507,\chi^2_{0.05}(9)=16.909).$