Problem 1. Find the approximate value of the given integrals by using Trapezoidal rule with the specified value of n.

1.
$$\int_0^5 \sqrt{x} \, dx$$
, $n = 5$.

2.
$$\int_{-2}^{2} \frac{x^2}{x^2 + 1} dx, n = 8.$$

Problem 2. Find the approximate value of the given integrals by using Simpson's rule with the specified value of n.

1.
$$\int_{1}^{3} \sqrt{x^2 - 1} \, dx \,, \, n = 4.$$

2.
$$\int_{1}^{7} \frac{\sqrt{x}}{x+1} dx, n = 6.$$

Problem 3. Find the volume of the solid obtained by revolving the region bounded by the given curves about x-axis. Use disk-washer method.

1.
$$y = 2x$$
, $x = 1$, $x = 4$, x -axis.

2.
$$y = 1 + x^3$$
, $x = 0$, $x = 1$, $y = 1$.

Problem 4. Find the volume of the solid obtained by revolving the region bounded by the given curves about *y*-axis. Use shell method.

1.
$$y = x^2 - 2x$$
 and x-axis.

2.
$$y = x + 2$$
, $y = x^2$ (first quadrant).

Hints to problem 1.

1.
$$\Delta x = 1$$
, $x_i = i \Rightarrow \int_0^5 \sqrt{x} \, dx \approx \frac{1}{2} (\sqrt{0} + 2\sqrt{1} + 2\sqrt{2} + 2\sqrt{3} + 2\sqrt{4} + \sqrt{5})$.

2.
$$\Delta x = \frac{1}{2}$$
, $x_i = -2 + \frac{i}{2}$,

$$\int_{-2}^{2} \frac{x^{2}}{x^{2} + 1} dx \approx \frac{1}{4} \left(\frac{(-2)^{2}}{(-2)^{2} + 1} + 2 \frac{(-1.5)^{2}}{(-1.5)^{2} + 1} + 2 \frac{(-1)^{2}}{(-1)^{2} + 1} + 2 \frac{(-0.5)^{2}}{(-0.5)^{2} + 1} \right)$$

$$+ 2 \frac{(0)^{2}}{(0)^{2} + 1} + 2 \frac{(0.5)^{2}}{(0.5)^{2} + 1} + 2 \frac{(1)^{2}}{(1)^{2} + 1} + 2 \frac{(1.5)^{2}}{(1.5)^{2} + 1} + \frac{(2)^{2}}{(2)^{2} + 1} \right).$$

Hints to problem 2.

1.
$$\Delta x = \frac{1}{2}$$
, $x_i = 1 + \frac{i}{2}$,

$$\int_{1}^{3} \sqrt{x^2 - 1} \, dx \approx \frac{1}{6} \left(\sqrt{(1)^2 - 1} + 4\sqrt{(1.5)^2 - 1} + 2\sqrt{(2)^2 - 1} + 4\sqrt{(2.5)^2 - 1} + \sqrt{(3)^2 - 1} \right).$$

2.
$$\Delta x = 1$$
, $x_i = 1 + i$,

$$\int_{1}^{7} \frac{\sqrt{x}}{x+1} dx \approx \frac{1}{3} \left(\frac{\sqrt{1}}{1+1} + 4 \frac{\sqrt{2}}{2+1} + 2 \frac{\sqrt{3}}{3+1} + 4 \frac{\sqrt{4}}{4+1} + 2 \frac{\sqrt{5}}{5+1} + 4 \frac{\sqrt{6}}{6+1} + \frac{\sqrt{7}}{7+1} \right).$$

Hints to problem 3.

1. Volume =
$$\pi \int_{1}^{4} (2x)^{2} dx = 252\pi/3$$
.

2. Volume =
$$\pi \int_0^1 \left[(1+x^3)^2 - (1)^2 \right] dx = 9\pi/14$$
.

Hints to problem 4.

1. Volume =
$$2\pi \int_0^2 x(2x - x^2) dx = 8\pi/3$$
.

2. Volume =
$$2\pi \int_0^2 x(2+x-x^2) dx = 16\pi/3$$
.