S455 Analysis $Z_1 = 50 Z_2 = 41/42$

After Fission:

 $E_{Z1/Z2} = 637 \text{ AmeV (lab. sys)} + 100 \text{ MeV (cms. sys.)}$

Before Fission:

E = 637 AmeV (laboratory system)

Doppler Correction

Estimating Error when not considering the 100 MeV for each Fission Product:

- $\rightarrow \gamma$ for fission products in the cms: $\gamma = E/m = (938+1)/938 = 1.001067 \rightarrow \beta = 0.046139$
- → relativistic addition of velocities of different systems:
- x' moves with respect to x with the velocity v in x-direction.
- With respect to x', body A moves with velocity \mathbf{u} '. The velocity \mathbf{u} of A with respect to x is:

$$u_x = \frac{u_x' + v}{1 + \frac{u_x' \, v}{c^2}}$$

$$u_x = rac{u_x' + v}{1 + rac{u_x' \ v}{c^2}} \qquad \qquad \Leftrightarrow rac{u_x}{c} = rac{rac{u_x'}{c} + rac{v}{c}}{1 + rac{u_x'}{c} \cdot rac{v}{c}}$$

$$u_z = rac{u_z'\sqrt{1-\left(rac{v}{c}
ight)^2}}{1+rac{u_x'\,v}{c^2}} = u_z'\,rac{1}{\gamma\left(1+rac{u_x'\,v}{c^2}
ight)}$$

$$u_y = rac{u_y'\sqrt{1-\left(rac{v}{c}
ight)^2}}{1+rac{u_x'\;v}{c^2}} = u_y'\,rac{1}{\gamma\left(1+rac{u_x'\;v}{c^2}
ight)}$$

Doppler Correction in x and y

$$u_y = rac{u_y'\sqrt{1-\left(rac{v}{c}
ight)^2}}{1+rac{u_x'\,v}{c^2}} = u_y'\,rac{1}{\gamma\left(1+rac{u_x'\,v}{c^2}
ight)}$$

$$\gamma = 1.68385$$

 $v = 0.804555$
 $\beta = u'_{x} = 0$

Maximum/minimum value of $u_v = +- 0.0274009$

$$|\mathbf{u}| = \text{sqrt}(\mathbf{u'_x}^2 + \mathbf{v^2}) = 0.8050214637933256 \rightarrow \gamma = 1.68564 \text{ (vs } 1.68385)$$

Calculate E_lab: 0.6099599062725896

Transform it back with $\gamma = 1.68385$ to E_cms: 0.9989543959941344

Doppler correction in beam direction z

$$u_x = \frac{u_x' + v}{1 + \frac{u_x' v}{c^2}}$$

Method same as before:

- \rightarrow compute E_lab with the true γ and β
- → reconstruct E_cms only with the information F = 637 AmeV

Error less than +-3 %

Doppler Correction without considering relative fission product momentum (100 MeV)

States we are looking for

Reaction 238U \rightarrow Sn (Z=50) + Nb (Z=41) / Mo (Z=42)

- → 126 Sn, 2+, 1140 keV
- → 128 Sn, 2+, 1169 keV
- → 130 Sn, 2+, 1221 keV
- → 132 Sn, 2+, 4041 keV

Gamma Spectrum

No Doppler Correction:

Doppler Corrected

Multiplicities

Highest Energy Hit Spectrum

WR Master – WR CALIFA

Cuts on WR and Multiplicity

1200 < WR Master – WR CALIFA < -200 and Multiplicity < 4

Back on the envelope calculation

How many signal events do we expect?

$$N_{\rm exp} = \frac{N_{obs} * \epsilon_{califa} * P_{exc}}{Multiplicity * Isotopes}$$

$$N_{\rm exp} = \frac{2500 * 0.3 * 0.5}{3 * 10} \approx 13 \, Events$$

(1)
$$sig+bkg \sim 17$$

 $bkg\sim 5 \rightarrow sig \sim 12$ Events

Open Questions p2p events

Proton Spectrum CALIFA

Restriction: 400 MeV < E sum < 700 MeV

Why do we see protons for Z_sum = 92 ??

Proton Spectrum for Z sum = 92

Possible Explanation:

- → we do not see 2 protons, but one proton and one neutron or multiple neutrons
- → neutrons are from the 238U- neutron-skin
- → quasi free scattering, therefore clearer angular distribution than for the real P2p-events
- → or went there some wrong with proton and gamma range?? → next slide

Separation of gamma-ray and neutron events with CsI(TI) pulse shape analysis, Y Ashida et. al.

Theta_vs_Phi distribution of hits

Restrictions on the two protons: 400 < E_sum < 700 MeV, dphi = +-30°, E_hit > 30 MeV

Seems to be fine, but:

- → wrong energy reconstruction in gamma region. ToT information has to be used
- \rightarrow ~ 6 times more events for Z_sum = 92. Are all those (p,n) reactions?

Next steps

"Simple" Mass Reconstruction with MW2 && MW3

Method:

→ we only select TWIM events where we have crossed hits:

→ therefore we can combine the individual hits to the y -values in the MW2 and MW3

→ what we get:

 $P1 = (Q1, mw2_x, mw2_y, mw3_x, mw3_y)$

P2 = (Q2, mw2_x,mw2_y,mw3_x,mw3_y)

For each Fission Product

This could be used for:

- → Sn gamma spectrum. Gives us less background
- \rightarrow to analyze p2p events for fixed charges of the fission products.

MW2_x

First Results from Sn

And from Z = 41/42

Using ToF information

