Time Series Analysis AR, MA and ARIMA Models

Sourav Karmakar

souravkarmakar29@gmail.com

Stationarity in Time Series

What is Stationarity

- In the most intuitive sense, stationarity means that the statistical property (mainly mean and variance)
 of a process generating time series do not change over time.
- It does not mean that the series does not change over time, just that the way it changes does not itself change over time.

Why is it important

 Stationary data are much more simpler to analyse and model. Hence, for time series analysis and modelling if a series in non-stationary we make them stationary by differencing.

Detecting the stationarity in Time Series

Visualization

Year

1992

1993

Year

1994

$$S(t) = .180 | 65 | 10 | 115 | 120 ...$$

 $S(t-1)^2 - - - | 150 | 105 | 115 | ...$

- (a) Google stock price for 200 consecutive days;
- (b) Daily change in the Google stock price for 200 consecutive days;
- (c) Annual number of strikes in the US;
- (d) Monthly sales of new one-family houses sold in the US;
- (e) Annual price of a dozen eggs in the US (constant dollars);
- (f) Monthly total of pigs slaughtered in Victoria, Australia;
- (g) Annual total of lynx trapped in the McKenzie River district of north-west Canada;
- (h) Monthly Australian beer production;

1990

Year

(i) Monthly Australian electricity production.

Detecting the stationarity in Time Series

Statistical Tests

- Sometimes identifying the stationarity of a time series can't be done just by visualizing it.
- Hence, we need to perform Statistical Tests in order to check if the time series is stationary.

The Dickey Fuller Tests

The <u>Dickey-Fuller</u> test was the first statistical test developed to test the null hypothesis that a unit root is present in an autoregressive model of a given time series, and that the process is thus not stationary. The original test treats the case of a simple lag-1 AR model.

The KPSS Tests

Another prominent test for the presence of a unit root is the <u>KPSS test</u>. [Kwiatkowski et al, 1992]
 Conversely to the Dickey-Fuller family of tests, the null hypothesis assumes stationarity around a mean or a linear trend, while the alternative is the presence of a unit root.

There are other tests to determine the stationarity of time series models.

Auto-Regressive Models

Intuition

Auto-Regressive models are based on the idea that current value of the series, X_t , can be explained as a linear combination of p past values $X_{t-1}, X_{t-2}, ..., X_{t-p}$, together with a random residual error (white noise) in the same series.

Definition

- An auto-regressive model of order p, abbreviated as AR(p) is of the form:

$$X_{t} = \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \phi_{3} X_{t-3} + \dots + \phi_{p} X_{t-p} + \epsilon_{t} = \sum_{i=1}^{p} \phi_{i} X_{t-i} + \epsilon_{t}$$

Where X_t is a stationary and ϵ_t is random residual error (usually modelled by normal distribution with zero mean) and $\phi_1, \phi_2, ..., \phi_p$ ($\phi_p \neq 0$) are model parameters. The hyperparameter p represents the length of the "direct look back" in the series (i.e. how many past time stamps we want to look into). p is usually determined by model validation methods.

Auto-Regressive Models

- The simplest of AR process is AR(0), which has no dependence between the terms. In fact, AR(0) is just random residual error (also called white noise).
- AR(1) can be given by $X_t = \phi_1 X_{t-1} + \epsilon_t$
 - Only the previous term in the process and the noise term contribute to the output.
 - If $|\phi_1|$ is close to 0, then the process still looks like a white noise.
 - If $\phi_1 < 0$, X_t tends to oscillate between positive and negative values.
 - If $\phi_1 = 1$ then the process is equivalent to a random walk.
- Simulated AR(1) process: $X_t = 0.9X_{t-1} + \epsilon_t$

Mean: $E[X_t] = 0$

Variance: $Var(X_t) = \frac{\sigma_{\epsilon}^2}{(1 - \phi_1^2)}$

Where, σ_{ϵ}^2 is the variance of noise.

Moving Average (MA) Models

• The name might be misleading but moving average models should not be confused with the moving average smoothing.

Motivation

- Recall that in AR models, current observation X_t is regressed using the previous / past observations like: X_{t-1} , X_{t-2} , ..., X_{t-p} plus an error term: ϵ_t (also called noise) at current time point.
- One problem of AR model is the ignorance of the correlated noise structures (which is unobservable) in the time series.
- In other words, the imperfectly predictable terms in the current time ϵ_t , and previous steps ϵ_{t-1} , ϵ_{t-2} , ..., ϵ_{t-q} are also informative for predicting observations.

Definition

- A moving average model of order q, abbreviated as MA(q) is of the form:

$$X_{t} = \epsilon_{t} + \theta_{1} \epsilon_{t-1} + \theta_{2} \epsilon_{t-2} + \theta_{3} \epsilon_{t-3} + \dots + \theta_{q} \epsilon_{t-q} = \epsilon_{t} + \sum_{i=1}^{q} \theta_{i} \epsilon_{t-j}$$

Where $\theta_q \neq 0$

Moving Average (MA) Models

- Although the equation of moving average (MA) model looks like a regression model, the difference is that the ϵ_t is not observable.
- Contrary to *AR* model, finite *MA* model is always stationary. (Yes, *AR* process can be non-stationary, for example: random walk)
- Finite MA models are stationary because the observation is just a weighted moving average over past forecast errors.
- Simulated MA(1) process: $X_t = \epsilon_t + 0.8 \epsilon_{t-1}$

Mean: $E[X_t] = 0$

Variance: $Var(X_t) = \sigma_{\epsilon}^2 (1 + \theta_1^2)$

Where, σ_{ϵ}^2 is the variance of noise.

ARMA Models

Intuition

Auto-Regressive and Moving Average models can be combined together to form ARMA models.

Definition

– A time series $\{X_t; t=0,\pm 1,\pm 2,...\}$ is ARMA(p,q) if it is stationary and

$$X_t = \epsilon_t + \sum_{i=1}^p \phi_i X_{t-i} + \sum_{j=1}^q \theta_j \epsilon_{t-j}$$

Where $\phi_p \neq 0$ and $\theta_q \neq 0$

- One limitation of ARMA models is the stationarity condition.
- In many situations, time series can be thought of as being composed of two components, a non-stationary trend series and a zero-mean stationary series. The strategies to **stationarize** time series models are:
 - Detrending: Subtract with an estimate for trend and deal with residual.
 - **Differencing:** Take the difference of the time series, often those are stationary.

Detrending and Differencing

ARIMA Model

ARIMA is an acronym that stands for Auto-Regressive Integrated Moving Average.

Specifically,

- AR Autoregression. A model that uses the dependent relationship between an observation and some number of lagged observations.
- I *Integrated*. The use of differencing of raw observations in order to make the time series stationary.
- MA Moving Average. A model that uses the dependency between an observation and a residual error from a moving average model applied to lagged observations.

- Each of these components are explicitly specified in the model as a parameter.
- Note that **AR** and **MA** are two widely used linear models that work on stationary time series, and **I** is a preprocessing procedure to "stationarize" time series if needed.

ARIMA Model

A standard notation is used of ARIMA (p, d, q) where the parameters are substituted with integer values to quickly indicate the specific ARIMA model being used.

- p The number of lag observations included in the model, also called the lag order.
- **d** The number of times that the raw observations are differenced, also called the degree of differencing.
- q The size of the moving average window, also called the order of moving average.
- A value of **0** can be used for a parameter, which indicates to not use that element of the model.
- In other words, ARIMA model can be configured to perform the function of an ARMA model, and even a simple AR, I, or MA model.

Thank You