Teoremi base

Probabilità dell'evento nullo

$$\mathbb{P}(\emptyset) = 0$$

Dimostrazione:
$$\mathbb{P}(S) = 1$$
, $S \cap \emptyset = \emptyset \implies \mathbb{P}(S \cup \emptyset) = \mathbb{P}(S) + \mathbb{P}(\emptyset) = 1 + \mathbb{P}(\emptyset)$

Teorema delle probabilità totali

A, B eventi

$$\mathbb{P}(B) = \mathbb{P}(A \cap B) + \mathbb{P}(\bar{A} \cap B)$$

Dimostrazione:

$$B=B\cap (A\cup \bar{A})=(B\cap A)\cup (B\cap \bar{A})$$

$$\mathbb{P}((B\cap A)\cup (B\cap ar{A})=\mathbb{P}(B\cap A)+\mathbb{P}(B\cap ar{A})=\mathbb{P}(B)$$

Altre proprietà

A, B eventi

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$$

Se
$$B \subset A \implies \mathbb{P}(B) \leq \mathbb{P}(A)$$

Dimostrazione: $\mathbb{P}(A) = \mathbb{P}(B) + \mathbb{P}(A \cap \bar{B}) \geq \mathbb{P}(B)$