2024/10/9 (水)

参考問題

- 1. 質量 m の質点が一端を固定したバネに水平につながれている。質点の平衡位置からの変位を x、バネ定数 を k とする。質点には抵抗力が働かない時、質点に周期的に変動する外力 $mf_0\cos\omega t$ を与えた。なお、 $\omega_0=\sqrt{k/m}$ を用いてよい。
 - (a) 運動方程式を書け。
 - (b) 抵抗がある時の強制振動と同じように解を求めよ。
 - (c) t=0 のとき、x=0, v=0 の時の解を求めよ。ただし $\omega \neq \omega_0$ とする。
 - (d) $\omega = \omega_0 + \Delta \omega$ とし、 $\Delta \omega \to 0$ とすることにより、 $\omega = \omega_0$ の時の解を求めよ。
- 2. 質量 m の質点に対する重力のする仕事を計算してみよう。図のように水平面内に x 軸、鉛直上方に向かって y 軸をとる。重力加速度の大きさを g とする。質点が図の A 点 (0, +a) から B 点 (0, -a) まで 3 通りの経路を通って移動した。それぞれの場合について重力のする仕事を計算せよ。

3. 積分 $\int \mathbf{F} \cdot d\mathbf{r}$ が始点と終点で決まり、途中の経路によらないときは、ある関数 U(x,y,z) が存在し、

$$F_x = -\frac{\partial U}{\partial x}, F_y = -\frac{\partial U}{\partial y}, F_z = -\frac{\partial U}{\partial z}$$

が成り立つことをしめせ。このとき F を保存力、U をポテンシャルと呼ぶ。O を基準点、P を任意の点として、

$$\int_{O}^{P} \mathbf{F} \cdot d\mathbf{r} = -U_{P}$$

とおく。十分近くにある2点A,Bを考えればよい。

4. 平面内で働く力 $F_x = -axy$, $F_y = -\frac{1}{2}ax^2 - y^2$ がある。この力は保存力か? 保存力ならばポテンシャルを求めよ。

課題

1. A(x,y), P(x+h,y), Q(x,y+k), B(x+h,y+k) となる四角形を考える。h,k は微小量とする。経路 I を A から y 方向に Q まで、Q から x 方向に B まで、経路 II を A から x 方向に P まで、P から y 方向に B ま でとする。力 F が保存力である時、経路 I と経路 II で仕事 ($\int_A^B F \cdot dr$) は等しい。この時、以下を示せ。

$$\frac{\partial F_x}{\partial y} = \frac{\partial F_y}{\partial x}$$

2. 平面内で働く力 $F_x=3x^2y$, $F_y=x^3$ がある。この力は保存力か? 保存力ならばポテンシャルを求めよ。