Warm-up as you login

Search internet to find:

- 1. Machine learning classification dataset
 - Discrete/unordered output
- 2. Machine learning regression dataset
 - Continuous output

Are the input values discrete/continuous?

Are the input values a single value or multiple values?

What assumptions might we make with these datasets?

Announcements

Help us help you

- Student survey (see Piazza)
- Name pronunciation (via Canvas)

Assignments:

- HW1
 - Out today
 - Due Thu, 9/10, 11:59 pm (all times will be Pittsburgh time)

No class Monday: Labor Day

Q&A

Q: In Lecture 1, why did we use the term **experience** instead of just **data**?

A: Because our concern isn't just the data itself, but also where the data comes from (e.g. an agent interacting with the world vs. knowledge from a book).

As well, the word *experience* better aligns with the notion of what humans require in order to learn.

Introduction to Machine Learning

Decision Trees

Instructor: Pat Virtue

Plan

Today

- Problem formulation (notation)
- Algorithm 0: Memorization
- Algorithm 1: Majority vote
- Algorithm 2: Decision Stump

Monday

Decision trees

Well-Posed Learning Problems

Three components <*T*,*P*,*E*>:

- 1. Task, *T*
- 2. Performance measure, P
- 3. Experience, E

Definition of learning:

A computer program **learns** if its performance at tasks in *T*, as measured by *P*, improves with experience *E*.

Experience

Hypothesis

Performance measure

Medical Prediction

Outcome	Fetal Position	Fetal Distress	Previous C-sec
Natural	Vertex	N	N
C-section	Breech	N	N
Natural	Vertex	Υ	Υ
C-section	Vertex	N	Υ
Natural	Abnormal	N	N

Medical Prediction

Y

 X_1

 X_2

 X_3

Outcome	Fetal Position	Fetal Distress	Previous C-sec
Natural	Vertex	N	N
C-section	Breech	N	N
Natural	Vertex	Υ	Υ
C-section	Vertex	N	Υ
Natural	Abnormal	N	N

$$\boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = [x_1, x_2, x_3]^T$$

$$x_1 \in \{Vertex, Breech, Abn\}$$

 $x_2 \in \{Y, N\}$
 $x_3 \in \{Y, N\}$

$$y \in \{Csection, Natural\}$$

$$\hat{y} = h(x)$$

Decision Tree Fetal Position Medical Prediction Abnormal Vertex Breech (Oversimplified example) Fetal C-section C-section Distress No Yes **Previous** C-section **C**-section No Yes Natural C-section

How could we implement training and prediction?

Algorithm 0: Memorization algorithm

Slide credit: CMU MLD Matt Gormley

Does the memorization algorithm learn?

- A. Yes
- B. No
- C. I have no clue

How could we implement training and prediction?

Algorithm 1: Majority vote algorithm

What does the majority vote algorithm return on this training data?

- A. A
- B. B
- C. C
- D. 0
- E. 1
- F. +
- G. -

Dataset:

Υ	А	В	С
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Decision Stumps

Split data based on a single attribute Majority vote at leaves

Dataset:

Output Y, Attributes A, B, C

Y	А	В	C
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Slide credit: CMU MLD Matt Gormley

How could we implement training and prediction?

Algorithm 2: Decision stump algorithm

Splitting on which attribute {A, B, C} creates a decision stump with the lowest training error?

Dataset:

Y	А	В	C
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Splitting on which attribute {A, B, C} creates a decision stump with the lowest training error?

Answer: B

Dataset:

Y	Α	В	С
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Splitting on which attribute {A, B, C} creates a decision stump with the lowest training error?

Answer: B

Dataset:

Y	Α	В	С
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1

Splitting on which attribute {A, B, C} creates a decision stump with the lowest training error?

Answer: B

Dataset:

Y	А	В	С
-	1	0	0
-	1	0	1
-	1	0	0
+	0	0	1
+	1	1	0
+	1	1	1
+	1	1	0
+	1	1	1