Fasit til utvalgte oppgaver MAT1110, uka 9/5-13/5

Øyvind Ryan (oyvindry@ifi.uio.no)

May 13, 2011

Oppgave 5.2.4

 $\mathbf{a})$

Anta at \mathbf{x} er et opphopningspunkt for $\{\mathbf{x}_n\}$.

- Enhver ball $B(\mathbf{x}, \frac{1}{n})$ vil da inneholde minst et punkt (uendelig mange faktisk) fra følgen. La \mathbf{y}_n være et slikt punkt fra følgen (vi har at $\mathbf{y}_n = \mathbf{x}_m$ for en eller annen m).
- Det er klart at delfølgen \mathbf{y}_n vil konvergere mot \mathbf{x} , siden $|\mathbf{y}_n \mathbf{x}| \leq \frac{1}{n}$.

Vi har dermed vist at vi alltid kan finne en delfølge som konvergerer mot \mathbf{x} når denne er et opphopningspunkt for \mathbf{x}_n . Omvendt, anta at det finnes en delfølge \mathbf{y}_n som konvergerer mot \mathbf{x} .

- La $B(\mathbf{x}, r)$ være en ball med radius r rundt \mathbf{x} .
- Siden \mathbf{y}_n konvergerer mot \mathbf{x} vil det finnes en N slik at \mathbf{y}_n er inneholdt i $B(\mathbf{x}, r)$ for alle $n \geq N$.
- Dermed inneholder $B(\mathbf{x}, r)$ uendelig mange punkter fra følgen, slik at \mathbf{x} er et opphopningspunkt for \mathbf{x}_n .

b)

Fra Bolzano-Weierstrass følger det at enhver følge fra A har en konvergent delfølge. La \mathbf{x} være punktet delfølgen konvergerer mot. Fra a) vet vi da at \mathbf{x} er et opphopningspunkt for følgen. \mathbf{x} ligger i A siden A er lukket.

c)

Hvis A ikke er lukket så finnes det et punkt \mathbf{x} som ikke ligger i A, og der hver ball $B(\mathbf{x}, \frac{1}{n})$ inneholder punkter fra A. La oss kalle et slikt punkt for \mathbf{x}_n . Da er det klart at følgen $\{\mathbf{x}_n\}$ konvergerer mot \mathbf{x} , slik at $\{\mathbf{x}_n\}$ er en følge i A som har ett eneste opphopningspunkt, og som ikke ligger i A.

d)

Hvis A ikke er begrenset så finnes en følge $\{\mathbf{x}_n\}$ fra A der $|\mathbf{x}_{n+1}| > |\mathbf{x}_n| + 1$. Spesielt har vi da at $|\mathbf{x}_{n+k}| > |\mathbf{x}_n| + k$, eller $|\mathbf{x}_{n+k}| - |\mathbf{x}_n| > k$ for alle k. Fra trekantulikheten har vi da at

$$|\mathbf{x}_{n+k} - \mathbf{x}_n| \ge ||\mathbf{x}_{n+k}| - |\mathbf{x}_n|| > k.$$

Det er klart at \mathbf{x}_n ikke kan ha noe opphopningspunkt, siden alle punkter har avstand større enn 1 fra hverandre.

Oppgave 5.3.2

Vi skal se på funksjonen $f(x) = \frac{1}{x}$, definert på (0,1). For å vise at denne er kontinuerlig i x = a må vi, for enhver ϵ , finne en δ slik at

$$|x-a| < \delta \Rightarrow \left| \frac{1}{x} - \frac{1}{a} \right| < \epsilon.$$

Siste ulikheten er det samme som $\left|\frac{a-x}{xa}\right| < \epsilon$, som igjen er det samme som $|x-a| < \epsilon xa$, siden x,a>0. La δ være slik at $\delta < \frac{a}{2}$. Da må $x>\frac{a}{2}$ for at $|x-a| < \delta$, slik at $\epsilon \frac{a^2}{2} < \epsilon xa$. Hvis vi derfor velger $\delta = \min\left(\frac{a}{2},\epsilon \frac{a^2}{2}\right)$, så vil $\delta < \epsilon \frac{a^2}{2} < \epsilon xa$, slik at f er kontinuerlig i a.

Hvis f er uniformt kontinuerlig så vil vi kunne finne en $\delta > 0$ slik at $\delta < \epsilon xa$ for alle x,a slik at $|x-a| < \delta$. Velg $x = u+h, \ a = u, \ \text{med} \ h < \delta$. Med dette valget oversetter vi $\delta < \epsilon xa$ til at $\delta < \epsilon u(u+h)$ for alle u > 0, men det er klart at, bare vi velger u liten nok, så vil $\delta > \epsilon u(u+h)$. Dette beviser at vi ikke kan finne en slik $\delta > 0$, slik at f ikke kan være uniformt kontinuerlig.