Algorytmy i metody optymalizacji

Optymalizacja bez ograniczeń Projekt nr 1, Zestaw nr 24 Maciej Kłos

1. Układ równań określających nasze położenie w układzie współrzędnych kartezjańskich

Układ geograficzny opiera się na trzech współrzędnych:

r – promień wodzący

Φ – długość geograficzna

 θ – szerokość geograficzna

Aby przejść z tego układu na układ współrzędnych kartezjańskich należy skorzystać z następujących wzorów:

 $x = r \cos \theta \cos \Phi$

 $y = r \cos \theta \sin \Phi$

 $z = r \sin \theta$

Z powyższych wzorów możemy określić położenie w układzie współrzędnych kartezjańskich każdego z 5 satelitów. Położenia te oznaczymy w następujący sposób:

$$(x_i, y_i, z_i), i = 1, ..., 5$$

Nasze położenie zostanie natomiast oznaczone następująco: (x_p, y_p, z_p) . Wykorzystując te oznaczenia możemy ułożyć równanie które określa naszą odległość od każdego z satelitów:

$$d_i = \sqrt{(x_P - x_i)^2 + (y_P - y_i)^2 + (z_P - z_i)^2}, \quad i = 1, ..., 5$$

Wykorzystując czasy nadejścia sygnałów i pamiętając o tym, że sygnały elektromagnetyczne poruszają się z prędkością światła $c=299792458\frac{m}{s}$, można ułożyć układ 5 równań:

$$0 = d_i - ct_i, \qquad i = 1, \dots, 5$$

2. Zadanie optymalizacji

Zadanie optymalizacji bez ograniczeń wykorzystujące metodę najmniejszych kwadratów ma postać:

$$\min_{x_p, y_p, z_p} \sum_{i=1}^{5} \sqrt{(x_P - x_i)^2 + (y_P - y_i)^2 + (z_P - z_i)^2} - ct_i$$

3. Wyznaczenie położenia

Do znalezienia rozwiązania wykorzystano metodę optymalizacji bez ograniczeń z pakietu MATLAB Optimization Toolbox – Isqnonlin, realizującej metodę Levenberga-Marquardta. Używając programu AMPL z solverem MINOS uzyskiwane rezultaty były bardzo zbliżone, więc do przyszłej analizy wykorzystywany będzie tylko pakiet MATLAB. Rozpoczynając algorytm z punktu startowego równego (r,r,r), gdzie r – promień ziemi, uzyskano następujące położenie w współrzędnych kartezjańskich:

 $x_p = 3622845.21227951$

 $y_p = 1440132.16469300$

 $z_n = 5048135.47556870$

Przekształcając je na współrzędne w systemie geograficznym uzyskamy następujący wynik:

Szerokość geograficzna: 52.3217 Długość geograficzna: 21.6785 Wysokość nad poziomem morza: 159.0000

4. Wpływ zmian parametrów na uzyskane rozwiązanie

1. Wpływ punktu początkowego

Zadanie optymalizacji rozwiązano startując z 5 różnych punktów początkowych, rezultaty zapisane są w tabeli poniżej:

Punkt startowy	Szerokość	Długość	Wysokość nad	Błąd
	geograficzna	geograficzna	poziomem morza	średniokwadratowy
(r, r, r)	52.3217	21.6785	159.0000	9.7755e-13
(0, 0, 0)	52.3217	21.6785	159.0000	6.8066e-12
(1e7, 1e7, 1e7)	52.3217	21.6785	159.0000	1.4436e-10
(1e8, 1e8, 1e8)	52.9177	20.5265	39798568.9888	10939071648.1104
(1e9, 1e9, 1e9)	52.9177	20.5265	39798568.9591	10939071648.0989

Jak widać do momentu przekroczenia wysokości satelitów uzyskiwane są bardzo zbliżone rezultaty, jednakże gdy przekroczymy tę granicę uzyskujemy zupełnie inny rezultat – metoda zbiega do innego minimum lokalnego.

2. Wpływ dokładności w teście stop metody

Przetestowano uzyskane rozwiązanie startując z tego samego punktu początkowego: (r,r,r), gdzie r – promień ziemi, zmieniając maksymalną liczbę iteracji algorytmu. Wyniki przedstawiono poniżej:

Maksymalna liczba iteracji	Szerokość geograficzna	Długość geograficzna	Wysokość nad poziomem morza	Błąd średniokwadratowy
400	52.3217	21.6785	159.0000	9.7755e-13
4	52.3217	21.6785	159.0000	9.7755e-13
3	52.3217	21.6785	158.9975	0.0002
2	52.3201	21.6792	-66.8167	248063.8478
1	51.5327	22.2083	-94849.2543	45079998247.5122

Jak widać metoda Levenberga-Marquardta charakteryzuje się bardzo szybką zbieżnością, już w czterech iteracjach znajduje poprawne rozwiązanie, ograniczenie do mniejszej liczby iteracji skutkuje otrzymaniem niewłaściwych rozwiązań.

Następnie przetestowano algorytm ze względu na maksymalną liczbę obliczeń funkcji celu:

Maksymalna liczba obliczeń funkcji celu	Szerokość geograficzna	Długość geograficzna	Wysokość nad poziomem morza	Błąd średniokwadratowy
400	52.3217	21.6785	159.0000	9.7755e-13
20	52.3217	21.6785	159.0000	9.7755e-13
17	52.3217	21.6785	158.9976	0.0002
10	51.5327	22.2083	-94849.2544	45079998247.5122
5	37.5741	37.3842	159658.1272	500369986986.386

Jak widać znowu wystarcza niewielka liczba obliczeń funkcji celu, co świadczy o szybkiej zbieżności zastosowanego algorytmu.

Kolejnym krokiem było sprawdzenie parametru stopu ze względu na minimalną długość kroku algorytmu (StepTolerance):

Dopuszczalna długość kroku	Szerokość geograficzna	Długość geograficzna	Wysokość nad poziomem morza	Błąd średniokwadratowy
1e-6	52.3217	21.6785	159.0000	9.7755e-13
1e-5	52.3217	21.6785	159.0000	9.7755e-13
1e-4	52.3217	21.6785	158.9976	0.0002
1e-2	52.3217	21.6785	158.9976	0.0002
1e-1	52.3201	21.6792	-66.8167	248063.8478
1	37.5741	37.3842	159658.1272	500369986986.386

Przy wartości 1e-4 następuje pogorszenie jakości rozwiązania, jednakże całkowicie błędne wyniki pojawiają się przy wartości 1e-1.

Ostatnim analizowanym parametrem jest minimalna poprawa w funkcji jakości (FunctionTolerance):

Dopuszczalna długość kroku	Szerokość geograficzna	Długość geograficzna	Wysokość nad poziomem morza	Błąd średniokwadratowy
1e-6	52.3217	21.6785	159.0000	9.7755e-13
1e-5	52.3217	21.6785	159.0000	9.7755e-13
1e-4	52.3217	21.6785	158.9976	0.0002
1e-2	52.3217	21.6785	158.9976	0.0002
1e-1	52.3201	21.6792	-66.8167	248063.8478
1	37.5741	37.3842	159658.1272	500369986986.386

Jak widać wyniki są identyczne jak w przypadku poprzedniego parametru.

3. Wpływ zaburzeń danych

Aby zbadać wpływ zaburzeń danych do każdej z podanych współrzędnych i czasów dodawane było pewne stałe zakłócenie, generowane losowo co do modułu mniejsze bądź równe podanym wartościom:

Maksymalne	Szerokość	Długość	Wysokość nad	Błąd
zakłócenie	geograficzna	geograficzna	poziomem morza	średniokwadratowy
1e-12	52.3217	21.6785	158.9998	1.0028e-08
1e-10	52.3217	21.6785	158.9809	1.4065e-05
1e-8	52.3218	21.6785	157.0946	0.6353
1e-6	52.3200	21.6794	44.5136	10999.8347
1e-4	52.3647	21.4015	-9194.1504	88952174.8509
1e-2	75.8876	49.3781	2776097.6101	2817562891236.28
1e-1	22.5917	-55.1393	34146977.5205	192439636308372

Jak widać nawet niewielkie zakłócenia znacząco wpływają na jakość uzyskanego rozwiązania co świadczy o dużej dokładności urządzeń które odpowiadają za system pozycjonowania.

5. Znalezione położenie

Wyznaczone położenie znajduje się we wsi Dobre, położonej w województwie mazowieckim, w powiecie mińskim.

