Algoritmi di Crittografia Corso di Laurea Magistrale in Informatica

A.A. 2018/2019

Algoritmi di Crittografia

- Keyed hashing
 - General concepts
 - Classical designs
 - Designs based on Universal hash functions

Algoritmi di Crittografia

- Keyed hashing
 - General concepts
 - Classical designs
 - Designs based on Universal hash functions

What keyed hashing is

- As the term suggests, keyed hashing is hashing with keys
- Mathematically, a keyed hash function h has two inputs: a fixed size key K and a (variable length) message M, and returns a fixed size output T
- Keyed hash functions have two main purposes
- First of all, they are used to warrant message integrity, i.e., a guarantee that the message has not been altered, as well as authenticity
- The second use is in the implementation of Pseudo Random Functions (PRFs)

Authentication and message integrity

- Here is a simple protocol
- Suppose Alice wants to send a message M to Bob
- Their concern here is message integrity (rather than confidentiality)
- In any case, Alice and Bob share a secret key K
- Alice uses key to compute (what is called) an *authentication tag* T = h(K, M) and sends it to Bob, together with M
- Upon receipt, Bob computes h(K, M) and check it against t
- If the comparison is successful, Bob knows that the message has not been altered and also that it came precisely from Alice

Message Authentication Codes (MACs)

- The above protocol is an example of Message Authentication Code (or, simply, MAC), a special cryptographic algorithm that protects message integrity and guarantees the receiver on the sender's identity
- MAC is also the term often used to refer to the computed tag, i.e., T = MAC(K, M)
- As a consequence, Bob's protocol becomes: "Compute the MAC of the value received and compare with the received MAC. Accept if equal, otherwise discard."
- Some important cryptographic protocols use MACs: notable examples are TLS and SSH
- Clearly, if confidentiality is also a goal, the protocol may be enriched with encryption (i.e., send M encrypted rather than in clear)

Pseudo random Functions

- A PRF is a function whose outputs cannot be distinguished from a true random mapping
- The exact definition is more technical and involves not just a single function but, rather, a family \mathcal{F} of functions (since it does not make much sense to tag a single function as "pseudo-random").
- We shall not dive into such technicalities
- PRFs (well, practical approximations of...) can be obtained using keyed hash functions or block ciphers
- In both cases, the secret key is precisely the ingredient that makes the output unpredictable to an attacker
- The other way around, PRFs can be used to generate cryptographic keys, usually from a password

Algoritmi di Crittografia

- Keyed hashing
 - General concepts
 - Classical designs
 - Designs based on Universal hash functions

Building MACs from block ciphers

- The first MAC construction we consider is known as CBC-MAC
- CBC-MAC uses a block cipher in CBC mode
- However, since the purpose here is not to encrypt (or decrypt) a message, all the encrypted message is discarded <u>but last block</u>
- The algorithm is the following:

$$C_0 = IV$$
 $C_{i+1} = \mathbf{E}(K, C_i \oplus M_{i+1}) \quad i = 0, \dots, n-1$
 $MAC(K, M) = C_n$

where, clearly, $M = M_1 || M_2 || \dots || M_n$ is the message

• IV is usually fixed as 0, hence the first step becomes $C_1 = \mathbf{E}(K, M_1)$

CBC-MAC is insecure

- We will see two different attacks
- The first attack assumes the attacker can get the tags of two different (single block) messages, i.e., $T_1 = MAC(K, M_1)$ and $T_2 = MAC(K, M_2)$
- It is not difficult to show that $T_2 = MAC(K, M_1 || M_2 \oplus T_1)$
- In fact, applying the CBC-MAC algorithm, we get

$$C_1 = \mathbf{E}(K, M_1)$$

= T_1
 $C_2 = \mathbf{E}(K, T_1 \oplus (M_2 \oplus T_1))$
= $\mathbf{E}(K, M_2)$
= T_2

 Hence we have forged a valid message/tag pair without the knowledge of the key

CBC-MAC is insecure (cont.d)

- The second example attack is even simpler to explain
- Suppose we know $M_1 \neq M_2$ such that $T_1 = MAC(K, M_1)$, $T_2 = MAC(K, M_2)$, and $T_1 = T_2$.
- Now let m be one block message
- Then we have

$$MAC(K, M_1||m) = E(K, m \oplus T_1)$$

= $E(K, m \oplus T_2)$
= $MAC(K, M_2||m)$

- Again, we have forged a valid message/tag pair without the knowledge of the key
- Note that the initial colliding messages can be found in $2^{n/2}$ steps using the classical birthday attack

Building MACs from CS Hash Functions

- The second (and to a great extent the more "obvious") strategy to build keyed hash functions is to use ... (unkeyed) hash functions!
- Keyed hash functions have two inputs (the key and the value to be hashed) while hash functions have just one, though ...
- The obvious solution is to somehow mix the key with the value
- We will consider three different constructions, namely: Secret-prefix, Secret-Suffix, and HMAC constructions

Secret-prefix MACs

Let H be a CS hash function. We define

$$MAC(K, M) = H(K||M)$$

- Such construction is vulnerable to the length-extension attack, i.e., it
 allows an attacker to compute MAC(K, M₁||M₂) starting from the
 knowledge of the tag MAC(K, M₁)
- Also, if keys of different lengths are allowed, the resulting concatenated value (to be hashed) could be obtained in many different ways. For instance:

$$K = \text{Crypto}$$
 $M = \text{graphy}$ \Rightarrow $K||M = \text{Cryptography}$ $K = \text{Cryptography}$ \Rightarrow $K||M = \text{Cryptography}$

A simple fix here consists of including the key length ℓ:

$$MAC(K, M) = H(\ell||K||M)$$

Secret-suffix MACs

We now define

$$MAC(K, M) = H(M||K)$$

- This "simple" modification makes the length-extension attack impossible since no prefix of $M_1 || M_2 || K$ coincides with $M_1 || K$
- However, the secret-suffix construction is insecure if collisions can be found for the internal hash function (also known as internal collisions)
- Given a message M, the attacker can perform an offline search for a message M' that collides with M on the internal hash function
- An internal collision implies that the intermediate hash state before the key in involved is the same in the two cases (M and M') thus leading to identical authentication tags

HMAC

• The HMAC (Hash-based MAC) is defined as follows:

Keyed hashing

$$HMAC(K, M) = H((K_p \oplus a)||H((K_p \oplus b)||M))$$

where a and b are well defined constants of the same size as the blocks of the underlying hash function H

$$a = ' \setminus x5c \setminus x5c \dots \setminus x5c'$$

$$b = ' \setminus x36 \setminus x36 \dots \setminus x36'$$

- The constants a and b are also referred to as the opad (outer padding) and *ipad* (inner padding), respectively
- The key K_p (where p stands for "padded") is derived from K so has to have size equal to opad/ipad size (i.e., possibly reducing size by hashing and possibly increasing size with trailing 0s)

Why HMAC is better

- Length extension attacks are not critical to HMAC since the application of the second (i.e., the outer) Hash function "destroys" the result of the first (i.e., the internal) one
- In $HMAC(K, m_1||m_2)$ the hash function H is applied to the two block message

$$\underbrace{(K_p \oplus a)}_{\text{1 block}} || \underbrace{H((K_p \oplus b)||(m_1||m_2))}_{\text{1 block}}$$

• On the other hand, in $H(HMAC(K, m_1)||m_2)$ the hash function is applied to the message

$$\underbrace{H((K_p \oplus a)||H((K_p \oplus b)||m_1))}_{\text{1 block}}||m_2|$$

opad and ipad "should" have large Hamming distance

Algoritmi di Crittografia

- Keyed hashing
 - General concepts
 - Classical designs
 - Designs based on Universal hash functions

Universal hash functions

- Universal hash functions come in families (there is no such thing as <u>a</u> universal hash function)
- Intuitively, \mathcal{H} is a family of universal hash functions over a given domain \mathcal{U} if, for any two values $x, y \in \mathcal{U}$, the probability that h(x) = h(y), for a randomly chosen $h \in \mathcal{H}$, is negligible
- Let's consider a simple example. Suppose the elements of \mathcal{U} are 16 byte long (say) and define $x = (x_1, x_2, x_3, x_4)$, where x_i can be regarded as an integer in the range $[0: 2^{32} 1]$, i = 1, 2, 3, 4
- ullet The ${\cal H}$ family includes all functions defined as follows

$$h(x) = \sum_{i=1}^4 a_i x_i \bmod M$$

where M is a sufficiently long prime number ($\geq 2^{32}$) and $a_i \in \mathbf{Z}_M$

Universal hash functions (cont.d)

- Depending on the size of the domain, *M* is fixed.
- Then, to "randomly choose" a function from \mathcal{H} simply means to select the four numbers a_1, \ldots, a_4 uniformly at random
- Assume $x \neq y$, and assume h is randomly chosen
- Suppose now the a_i are "uncovered" in sequence. There is just one requirement, namely that, if a_j is the last value revealed, then $x_j \neq y_j$.
- Note that, since $x \neq y$, one such index j must exist
- For simplicity, suppose j = 4

Universal hash functions (cont.d)

• Now, after a_1 , a_2 and a_4 have been uncovered, for h(x) = h(y) to hold we must have:

$$a_4(x_4-y_4) \equiv \sum_{i=1}^3 (y_i-x_i)a_i \pmod{M}$$

• Since M is prime, the multiplicative inverse of $x_4 - y_4 \neq 0$ does exist; hence

$$a_4 = \left(\sum_{i=1}^3 (y_i - x_i)a_i\right)(x_4 - y_4)^{-1} \pmod{M}$$

• But since a_4 is chosen uniformly at random, the above equality hods with probability 1/M, which is the minimum possible

Polynomial evaluation MACs

- We need just a simple modification, at least to come up with a first MAC version
- The \mathcal{H} family is defined through two parameters only (with fixed M), say K and R, belonging to \mathbf{Z}_M
- Now, if the message to be authenticated is made of L blocks: $m = m_1, m_2, \dots, m_L$, we define:

$$h(K, R, m) = R + \sum_{i=1}^{L} m_i K^i \mod M$$

- In real cases, the message blocks may be 128 bit long, hence M must satisfy $M > 2^{128}$
- The secret key is the pair (K, R), and given the key the hash function is uniquely determined

Polynomial evaluation MACs (cont.d)

- The proof that h(K, R, m) = h(K, R, m'), for $m \neq m'$, has negligible probability is similar as the one above (we assume, for simplicity, that the two messages have the same length)
- If K and R are randomly chosen then

$$R + \sum_{i=1}^{L} m_i K^i \equiv R + \sum_{i=1}^{L} m'_i K^i \mod M$$

implies

$$\sum_{i=1}^{L} (m_i - m_i') K^i \mod = 0$$

- The above equation is satisfied if K is a zero of the degree L polynomial $p(x) = \sum_{i=1}^{L} (m_i m'_i) x^i$ over the field \mathbf{Z}_M and this means that the equation has at most L solution
- ullet Hence the probability of collision is at most ${L\over M_{\odot}}$

Vulnerability

- The Polynomial MAC presented above must be used just once
- In fact, a CPA-able attacker could ask for the tag of just two messages and recover the key
- The two messages might be (among other possibilities):

$$m' = \underbrace{00...0}_{L \text{ blocks}}$$

$$m'' = \underbrace{00...0}_{L-1 \text{ blocks}} \underbrace{00...01}_{128 \text{ bits}}$$

• In this way, h(K, R, m') = R, so that the attacker could recover R, and h(K, R, m'') = R + K, and the attacker could recover K