15 Chapter

Definition 15.1. Ring Homomorphism, Ring Isomorphism

A ring homomorphism ϕ from a ring R to a ring S is a mapping from R to S that preserves the two ring operations; that is, for all a, b in R,

$$\phi(a+b) = \phi(a) + \phi(b)$$
 and $\phi(ab) = \phi(a)\phi(b)$.

A ring homomorphism that is both one-to-one and onto is called a ring isomorphism.

Theorem 15.1. Properties of Ring Homomorphisms

Let ϕ be a ring homomorphism from a ring R to a ring S. Let A be a subring of R and let B be an ideal of S.

- 1. For any $r \in R$ and any positive integer n, $\phi(nr) = n\phi(r)$ and $\phi(r^n) = (\phi(r))^n$.
- 2. $\phi(A) = {\phi(a) \mid a \in A}$ is a subring of S.
- 3. If A is an ideal and ϕ is onto S, then $\phi(A)$ is an ideal.
- 4. $\phi^{-1}(B) = \{r \in R \mid \phi(r) \in B\} \text{ is an ideal of } R.$
- 5. If R is commutative, then $\phi(R)$ is commutative.
- 6. If R has a unity 1, $S \neq \{0\}$, and ϕ is onto, then $\phi(1)$ is the unity of S.
- 7. ϕ is an isomorphism if and only if ϕ is onto and $Ker\phi = \{r \in R \mid \phi(r) = 0\} = \{0\}$.
- 8. If ϕ is an isomorphism from R onto S, then ϕ^{-1} is an isomorphism from S onto R.

Theorem 15.2. Kernels Are Ideals

Let ϕ be a ring homomorphism from a ring R to a ring S. Then $Ker \phi = \{r \in R \mid \phi(r) = 0\}$ is an ideal of R.

Theorem 15.3. First Isomorphism Theorem for Rings

Let ϕ be a ring homomorphism from R to S. Then the mapping from $R/\mathrm{Ker}\,\phi$ to $\phi(R)$, given by $r+\mathrm{Ker}\,\phi \to \phi(r)$, is an isomorphism. In symbols, $R/\mathrm{Ker}\,\phi \approx \phi(R)$.

Theorem 15.4. Ideals Are Kernels

Every ideal of a ring R is the kernel of a ring homomorphism of R. In particular, an ideal A is the kernel of the mapping $r \to r + A$ from R to R/A.

Theorem 15.5. Homomorphism from \mathbb{Z} to a Ring with Unity

Let R be a ring with unity 1. The mapping $\phi: \mathbb{Z} \to R$ given by $n \to n \cdot 1$ is a ring homomorphism.

Corollary 15.6. A Ring with Unity Contains \mathbb{Z}_n or \mathbb{Z}

If R is a ring with unity and the characteristic of R is n > 0, then R contains a subring isomorphic to \mathbb{Z}_n . If the characteristic of R is 0, then R contains a subring isomorphic to \mathbb{Z} .

Corollary 15.7. \mathbb{Z}_m Is a Homomorphic Image of \mathbb{Z}

For any positive integer m, the mapping of $\phi: \mathbb{Z} \to \mathbb{Z}_m$ given by $x \to x \mod m$ is a ring homomorphism.

Corollary 15.8. A Field Contains \mathbb{Z}_p or \mathbb{Q} (Steinitz, 1910)

If F is a field of characteristic p, then F contains a subfield isomorphic to \mathbb{Z}_p . If F is a field of characteristic 0, then F contains a subfield isomorphic to the rational numbers.

Theorem 15.9. Field of Quotients

Let D be an integral domain. Then there exists a field F (called the field of quotients of D) that contains a subring isomorphic to D.

Exercises

3.1 Prove Theorem 15.3.

We're asked to prove the First Isomorphism Theorem for Rings, or that $r + \operatorname{Ker} \phi \to \phi(r)$ is an isomorphism. Due to the fact that ϕ is a ring homomorphism from R to S, we know that for $a, b \in R$ and $\phi(a), \phi(b) \in S$ that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$. We also know from Theorem 15.1.7 that ϕ is an isomorphism if and only if ϕ is onto and $\operatorname{Ker} \phi = \{r \in R \mid \phi(r) = 0\} = \{0\}$. We also know from 15.2 that $\operatorname{Ker} \phi$ is an ideal of R.

I'm going to try and use the notation $0_S, 1_S$ for the additive and multiplicative identities of S, respectively.

Intuitively, it's clear that $\operatorname{Ker} \phi = \{0\}$, or $\phi(r + \operatorname{Ker} \phi) = \phi(r) + \phi(\operatorname{Ker} \phi) = \phi(r) + \phi(\{0\}) = \phi(r) + \phi(0)$. However, we know that the additive identity of R, 0, must be mapped to the additive identity of S; this means that $\phi(r) + \phi(0) = \phi(r) + 0_S = \phi(r)$.

On the other hand, let's assume that there is an element $a \in \text{Ker } \phi$ such that $a \neq 0$. This means that we would have the expression $\phi^{-1}(r) + \phi^{-1}(a) = r + \text{Ker } \phi + a + \text{Ker } \phi = r + a + \text{Ker } \phi$ or that $\phi^{-1}(r+a) = r + a + \text{Ker } \phi$. Although since $a \neq 0$ we can assume that $\text{Ker } \phi$ possesses at least 0 and a, or $a + \text{Ker } \phi$ is at least $\{a, a + a\}$; which we can then evaluate $\phi(r) + \phi(\{a, a + a\})$ as $phi(r) + \phi(a), \phi(r) + \phi(a + a)$. But $a \in \text{Ker } \phi$ which implies that $\phi(r) + \phi(a), \phi(r) + \phi(a + a) = \phi(r)$. I know I've made an error in here somewhere but I can't find where.

3.2 Prove Theorem 15.1.6

If R has a unity 1, $S \neq \{0\}$ and ϕ is onto, then $\phi(1)$ is the unity of S.

We assume that R has a unity 1, and we know that ϕ is a homomorphism from R to S. Now let a be an element of R. So $\phi(1a) = \phi(1)\phi(a)$, but $\phi(1a) = \phi(a)$; which implies that $\phi(1)\phi(a) = \phi(a)$, due to the fact that ϕ is onto. This immediately implies that $\phi(1)$ is the unity of S by the definition of unity.

13. Let

$$S = \left\{ \begin{bmatrix} a & b \\ -b & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$

Show that $\phi: \mathbb{C} \to S$ given by

$$\phi(a+bi) = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$$

is a ring isomorphism.

Restatement: Show $\phi(a_0 + b_0 i + a_1 + b_1 i) = \phi(a_0 + b_0 i) + \phi(a_1 + b_1 i)$ and $\phi((a_0 + b_0 i)(a_1 + b_1 i)) = \phi(a_0 + b_0 i)\phi(a_1 + b_1 i)$.

(a)
$$\phi(a_0 + b_0 i + a_1 + b_1 i) = \phi(a_0 + a_1 + (b_0 + b_1)i) = \begin{bmatrix} a_0 + a_1 & b_0 + b_1 \\ -(b_0 + b_1) & a_0 + a_1 \end{bmatrix}$$
.
Which we can then see $\begin{bmatrix} a_0 + a_1 & b_0 + b_1 \\ -(b_0 + b_1) & a_0 + a_1 \end{bmatrix} = \begin{bmatrix} a_0 & b_0 \\ -b_0 & a_0 \end{bmatrix} + \begin{bmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{bmatrix}$, by the laws of matrix addition.

Observing the right hand side, we see $\phi(a_0 + b_0 i) + \phi(a_1 + b_1 i) = \begin{bmatrix} a_0 & b_0 \\ -b_0 & a_0 \end{bmatrix} + \begin{bmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{bmatrix}$. This implies that $\phi(a_0 + b_0 i) + a_1 + b_1 i = \phi(a_0 + b_0 i) + \phi(a_1 + b_1 i)$.

(b)
$$\phi(a_0 + b_0 i)\phi(a_1 + b_1 i) = \begin{bmatrix} a_0 & b_0 \\ -b_0 & a_0 \end{bmatrix} \begin{bmatrix} a_1 & b_1 \\ -b_1 & a_1 \end{bmatrix} = \begin{bmatrix} a_0 a_1 - b_0 b_1 & a_0 b_1 + b_0 a_1 \\ -a_0 b_1 - b_0 a_1 & a_0 a_1 - b_0 b_1 \end{bmatrix}$$
. Now, by looking to the left hand side, we observe

$$\phi((a_0 + b_0 i)(a_1 + b_1 i)) = \phi(a_0 a_1 - b_0 b_1 + (a_0 b_1 + b_0 a_1) i).$$

Which evaluates as $\begin{bmatrix} a_0 a_1 - b_0 b_1 & a_0 b_1 + b_0 a_1 \\ -(a_0 b_1 + b_0 a_1) & a_0 a_1 - b_0 b_1 \end{bmatrix}$, and means that $\phi((a_0 + b_0 i)(a_1 + b_1 i)) = \phi(a_0 + b_0 i)\phi(a_1 + b_1 i)$.

14. Let $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Z}\}$ and

$$H = \left\{ \begin{bmatrix} a & 2b \\ b & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}.$$

Show that $\mathbb{Z}[\sqrt{2}]$ and H are isomorphic as rings.

Let ϕ be a homomorphism from $\mathbb{Z}[\sqrt{2}]$ to H, where $\phi(a+b\sqrt{2})=\begin{bmatrix} a & 2b \\ b & a \end{bmatrix}$. Show that $\operatorname{Ker} \phi=\{0\}$.

Define $A = \begin{bmatrix} a_0 & 2b_0 \\ b_0 & a_0 \end{bmatrix}$ and $B = \begin{bmatrix} a_1 & 2b_1 \\ b_1 & a_1 \end{bmatrix}$. This implies that $\phi^{-1}(A) = a_0 + b_0\sqrt{2}$ and $\phi^{-1}(B) = a_1 + b_1\sqrt{2}$.

So we begin with $\phi^{-1}(A \times B) = \phi^{-1}(\begin{bmatrix} a_0a_1 + 2b_0b_1 & 2a_1b_0 + 2a_0b_1 \\ a_1b_0 + a_0b_1 & a_0a_1 + 2b_0b_1 \end{bmatrix}) = a_0a_1 + 2b_0b_1 + (a_1b_0 + a_0b_1)\sqrt{2}$, which is not equal to zero unless either A or B is equal to the zero matrix; due to the fact that $\mathbb Z$ is an integral domain.

We can say the same of $\phi^{-1}(\begin{bmatrix} a_0+a_1 & 2b_0+2b_1 \\ b_0+b_1 & a_0+a_1 \end{bmatrix}) = a_0+a_1+(b_0+b_1)\sqrt{2}$, which is only equal to 0 if A is the additive inverse of B or vice versa, as this would imply that we started with the zero matrix.

This shows that $\operatorname{Ker} \phi = \{0\}$, and that ϕ is an isomorphism.

16. Let $R = \left\{ \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mid a, b, c \in \mathbb{Z} \right\}$. Prove or disprove that the mapping $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \rightarrow a$ is a ring homomorphism.

Let $A_0 = \begin{bmatrix} a_0 & b_0 \\ 0 & c_0 \end{bmatrix}$, $A_1 = \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}$, and $\phi : \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \mapsto a$. We can determine

$$\phi(A_0 + A_1) = \phi(\begin{bmatrix} a_0 & b_0 \\ 0 & c_0 \end{bmatrix} + \begin{bmatrix} a_1 & b_1 \\ 0 & c_1 \end{bmatrix}) = \phi(\begin{bmatrix} a_0 + a_1 & b_0 + b_1 \\ 0 & c_0 + c_1 \end{bmatrix}) = a_0 + a_1.$$

Or,

$$\phi(A_0) + \phi(A_1) = a_0 + a_1$$

Under multiplication,

$$\phi(A_0 \times A_1) = \phi(\begin{bmatrix} a_0 a_1 & a_0 b_1 + b_0 c_1 \\ 0 & c_0 c_1 \end{bmatrix}) = a_0 a_1,$$

or,

$$\phi(A_0) \times \phi(A_1) = a_0 a_1$$

Which shows that ϕ is a homomorphism.

22. Determine all ring isomorphisms from \mathbb{Z}_n to itself.

This one has me a bit baffled. If n is prime, then there should be n isomorphisms, since every element is a unit. However, if n is not prime, then we don't have an integral domain. Assuming our mapping is defined as $\phi : \mathbb{Z}_n \to \mathbb{Z}_n$, Ker $\phi \neq \{0\}$.

27. Let R be a ring with unity and let ϕ be a ring homomorphism from R onto S where S has more than one element. Prove that S has a unity.

Let 1 be the unity of R. Because R has unity and S has more than one element, or $S \neq \{0\}$, we only need to show that ϕ is onto. We know that R has an additive identity, 0, which we claim is mapped to 0_S . Now, consider two elements in S, $\phi(a)$ and $\phi(b)$. Because ϕ is a homomorphism we know that $\phi(a+b) = \phi(a) + \phi(b)$ and $\phi(ab) = \phi(a)\phi(b)$. Allowing a to be 1, we see that $\phi(a)\phi(b) = \phi(1)\phi(b) = \phi(1)b = \phi(b)$, which implies that $\phi(1)$ is the unity of S.

37. For any integer n > 1, prove that $\mathbb{Z}_n[x]/\langle x \rangle$ is isomorphic to \mathbb{Z}_n .

Let $P(x), Q(x) \in \mathbb{Z}_n[x]$, we can see that $\mathbb{Z}_n[x]/\langle x \rangle$ is of the form $P(x) + \langle x \rangle \mod n$. Show that the mapping $\phi : P(x) + \langle x \rangle \mod n \mapsto c$ where $c \in \mathbb{Z}_n$, and c is the constant term of P(x). It makes sense to suppose that if P(x) is the zero polynomial, $P(x) + \langle x \rangle \to 0$, as everything in $\langle x \rangle$ is of the form xQ(x). So we have $P(x) + xQ(x) \mod n$, which under our mapping only preserves c. Now, as a result of everything in $\langle x \rangle$ being of the form xQ(x), we know that every P(x) with zero constants must be contained in $\langle x \rangle$, which implies that $\operatorname{Ker} \phi = \{0\}$, and ϕ is an isomorphism.

38. For any integer n > 1, prove that $\langle x \rangle$ is a maximal ideal of $\mathbb{Z}_n[x]$ if and only if n is prime.

Let $Q(x) \in \mathbb{Z}_n[x]$. Everything in $\langle x \rangle$ looks like $xQ(x) \mod n$. Now, as we showed above $\mathbb{Z}_n/\langle x \rangle$, is isomorphic to \mathbb{Z}_n , which in this scenario implies that $\mathbb{Z}_n/\langle x \rangle$ is isomorphic to a field. By Theorem 14.4, we know that $\mathbb{Z}_n/\langle x \rangle$ is a field if and only if $\langle x \rangle$ is maximal. We just showed that $\mathbb{Z}_n/\langle x \rangle$ is a field, which means $\langle x \rangle$ is maximal.

- 42. Determine all ring homomorphisms from \mathbb{Q} to \mathbb{Q} .
- 44. Let R be a commutative ring of prime characteristic p. Show that the Frobenius map $x \mapsto x^p$ is a ring homomorphism from R to R.

Let $x, y \in R$, and define the Frobenius map as $f: R \to R$.

(a) Show that
$$f(x+y) = f(x) + f(y)$$
. We see that $f(x+y) = (x+y)^p = \underbrace{(x+y)(x+y)\dots(x+y)}_{p \text{ times}}$

By the Binomial Theorem, we know that

$$(x+y)^p = \binom{p}{0} x^p + \binom{p}{1} x^{p-1} y + \dots + \binom{p}{p-1} x y^{p-1} + \binom{p}{p} y^p$$

So now, by observing that 0 < k < p in $\binom{p}{k}$, we can reduce the expression to $\binom{p}{k} = \frac{p!}{(p-k)!k!}$, which always has a factor of p. Thus, utilizing the fact that R has characteristic p, we see that

$$(x+y)^{p} = \binom{p}{0} x^{p} + \binom{p}{1} x^{p-1} y + \dots + \binom{p}{p-1} x y^{p-1} + \binom{p}{p} y^{p}$$

$$= \binom{p}{0} x^{p} + p \cdot \left(\binom{p-1}{1} x^{p-1} y + \dots + \binom{p-1}{p-1} x y^{p-1} \right) + \binom{p}{p} y^{p}$$

$$= x^{p} + 0 + y^{p}$$

$$= x^{p} + y^{p}$$

Almost trivially at this point, $f(x) + f(y) = x^p + y^p$.

This means that f(x+y) = f(x) + f(y).

1. Show that f(xy) = f(x)f(y). So the expression

$$f(xy) = (xy)^p = \underbrace{(xy)(xy)\dots(xy)}_{p \text{ times}} = \underbrace{(xx\dots)\underbrace{(yy\dots)}_{p \text{ times}}}_{p \text{ times}} = 0 \cdot 0 = 0,$$
or $f(x)f(y) = x^p y^p = \underbrace{(x)(x)\dots\underbrace{(y)(y)\dots}_{p \text{ times}}}_{p \text{ times}} = 0 \cdot 0 = 0,$ which implies that $f(xy) = f(x)f(y)$.

This implies that f is a homomorphism from R to R.

Let $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ and $\mathbb{Q}[\sqrt{5}] = \{a + b\sqrt{5} \mid a, b \in \mathbb{Q}\}$. Show that these two rings are not ring-isomorphic.

A mapping
$$\phi: \mathbb{Q}[\sqrt{2}] \to \mathbb{Q}[\sqrt{5}]$$
, defined as $\phi: a+b\sqrt{2} \mapsto a+b\sqrt{5}$ is not onto. Take $a_0+b_0\sqrt{5}, a_1+b_1\sqrt{5} \in \mathbb{Q}[\sqrt{5}]$, $\phi^{-1}((a_0+b_0\sqrt{5})(a_1+b_1\sqrt{5})) = \phi^{-1}(a_0a_1+5b_0b_1+(a_1b_0+a_0b_1)\sqrt{5}) = a_0a_1+5b_0b_1+(a_1b_0+a_0b_1)\sqrt{2}$, but $\phi^{-1}(a_0+b_0\sqrt{5})\phi^{-1}((a_1+b_1\sqrt{5})) = (a_0+b_0\sqrt{2})(a_1+b_1\sqrt{2}) = a_0a_1+2b_0b_1+(a_1b_0+a_0b_1)\sqrt{2}$

Which shows that $\mathbb{Q}[\sqrt{2}]$ is not isomorphic to $\mathbb{Q}[\sqrt{5}]$.