This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

7.5 kDa PEG by Tsuji et al. 1985 by Nishimura et al. 1979 2 x 5-kDa PEG by Nishimura et al. 1981 by Yasuda et al. 1990 10-kDa PEG by MVP ▲ 30-kDa PEG by MVP Non-immunoreactive □ 5-kDa PEG by MVP 2 x 5-kDa PEG by Fujita et al. 1991 by Tsuji et al. 1985 by Davis et al. 1981 by Chen et al. 1981 by Tsuji et al. 1985 2 x 5-kDa PEG 10-kDa PEG 5-kDa PEG 5-kDa PEG 5-kDa PEG 5-kDa PEG × 0 × 0 **\rightarrow** ٥ Figure 1A: Retention of Activity by PEGylated Candida Uricase 25 PEG Strands Coupled / Uricase Subunit 20 19 100 内 8 9 6 20 Percent of Specific Activity without PEG

Figure 6: Deduced amino acid sequences of Pig-Baboon Chimeric (PBC) uricase, PBC uricase that is truncated at the amino and carboxyl terminals (PBC-NT-CT) and Porcine uricase containing the mutations R291K and T301S (PKS Uricase) (SEQ ID NO:3), compared with the porcine sequence (SEQ ID NO: 1) and baboon sequence (SEQ ID NO: 2)

•	Porcine	MAHYRNDYKK NDEVEFVRTG	YGKDMIKVLH IQRDGKYHSI	40
	PBC	porcine sequence 1-225		40
	PBC-NT-CT	porcine sequence		34
	PKS	porcine sequence 1-288		40
	Baboon	MADYHNNYKK NDELEFVRTG	YGKDMVKVLH IQRDGKYHSI	40
•	Porcine	KEVATSVOLT LSSKKDYLHG	DNSDVIPTDT IKNTVNVLAK	80
	PBC	porcine sequence →		80
	PBC-NT-CT	porcine sequence →		74
	PKS	porcine sequence →		80
	Baboon	KEVATSVQLT LSSKKDYLHG	DNSDIIPTDT IKNTVHVLAK	80
•	Porcine	FKGIKSIETF AVTICEHFLS	SFKHVIRAQV YVEEVPWKRF	120
	PBC	porcine sequence \rightarrow		120
	PBC-NT-CT	porcine sequence \rightarrow		114
	PKS	porcine sequence →		120
	Baboon	FKGIKSIEAF GVNICEYFLS	SFNHVIRAQV YVEEIPWKRL	120
	Porcine	EKNGVKHVHA FIYTPTGTHF	CEVEQIRNGP PVIHSGIKDL	160
	PBC	porcine sequence $ ightarrow$		160
	PBC-NT-CT	porcine sequence $ ightarrow$		154
	PKS	porcine sequence →		160
	Baboon	EKNGVKHVHA FIHTPTGTHF	CEVEQLRSGP PVIHSGIKDL	160
	Porcine	KVLKTTQSGF EGFIKDQFTT	LPEVKDRCFA TQVYCKWRYH	200
	PBC	porcine sequence \rightarrow		200
	PBC-NT-CT	porcine sequence →		194
	PKS	porcine sequence →		200
	Baboon	KVLKTTQSGF EGFIKDQFTT	LPEVKDRCFA TQVYCKWRYH	200
	Porcine	QGRDVDFEAT WDTVRSIVLQ	KFAGPYDKGE YSPSVQKTLY	240
	PBC	porcine sequence	\rightarrow \leftarrow baboon sequence	240
	PBC-NT-CT	porcine sequence	\rightarrow \leftarrow baboon sequence	234
	PKS	porcine sequence →		240
	Baboon	QCRDVDFEAT WGTIRDLVLE	KFAGPYDKGE YSPSVQKTLY	240
	Porcine	DIQVLTLGQV PEIEDMEISL	PNIHYLNIDM SKMGLINKEE	280
	PBC	baboon sequence $ ightarrow$		280
	PBC-NT-CT	baboon $sequence ightarrow$		27 <u>4</u> 280
	PKS	porcine sequence →	DATINGATOM CVMCI TAIVEE	
	Baboon	DIQVLSLSRV PEIEDMEISL	PNIHYFNIDM SKMGLINKEE	280
	Porcine	VLLPLDNPYG RITGTVKRKL	TSRL 304 304	
	PBC	baboon sequence →	295	
	PBC-NT-CT	baboon sequence →		
	PKS	porcine ← baboon VLLPLDNPYG KITGTVKRKL	→ 304 SSRL 304	
	Baboon	VLLPLDNPYG KITGTVKRKL	SSRL 304	

a nadikisti oʻzasis tan more Antis sama

Figure 7: Serum Uricase Activity 24 Hours after Each PEG-Uricase Injection, Relative to the First Injection

Days after First Injection

Figure 9: Decreased Severity of Urine-Concentrating Defect

A CONTROL OF STATE OF

Figure 10: Decreased Severity of Nephrogenic Diabetes Insipidus in Uricase - Deficient Mice Treated with PEG-Uricase

Figure 11:

Decreased S v rity of Uric Acid-Induced Nephropathy aft r Tr atment with PEG-Uricase, as Visualized by Magnetic Resonanc Microscopy

ルンが行ばばり

Figure 12: Clearance from the Circulation of BALB/c Mice of PBC Uricase Tetramer and Octamer Coupled to 5-6 Strands of 10-kDa PEG/Subunit

