Here, No in Compression, 110 in compression

4. The hook shown is subjected to two forces, \overline{F}_1 and \overline{F}_2 . If it is required that the resultant force have a magnitude of 150 N and be directed horizontal towards right, determine (a) the magnitudes of \overline{F}_1 and \overline{F}_2 provided $\theta = 40^\circ$ and (b) the magnitudes of \overline{F}_1 and \overline{F}_2 if \overline{F}_1 is to be minimum.

(a) Vector addition according to the parallelogram law is shown in Fig 2.23 (b). From the vector triangle, the unknowns F_1 and F_2 can be determined by using the law of sines.

$$\frac{F_1}{\sin 30^{\circ}} = \frac{F}{\sin 110^{\circ}}$$

$$\frac{F_1}{\sin 30^{\circ}} = \frac{150}{\sin 110^{\circ}}$$

$$F_1 = 79.81 \text{ N}$$

$$\frac{F_2}{\sin 40^{\circ}} = \frac{F}{\sin 110^{\circ}}$$

$$\frac{F_2}{\sin 40^{\circ}} = \frac{150}{\sin 110}$$

$$F_2 = 102.61 \text{ N}$$

(b) Here F_1 should be minimum. The direction of F_2 remains unchanged.

From the vector triangle, we can see that there are various ways to obtain F_1 and F_2 . For the fixed direction of F_2 , the force F_1 will be having minimum length when F_1 is perpendicular to F_2 , i.e. $\alpha = 60^\circ$.

$$\sin 30^{\circ} = \frac{F_1}{F} = \frac{F_1}{150}$$

$$F_1 = 75 \text{ N}$$

$$\cos 30^{\circ} = \frac{F_2}{F} = \frac{F_2}{150}$$

$$F_2 = 129.90 \text{ N}$$

tel pod in f.D

on waster