Matemática Básica

Graciela Moro e Ligia Liani Barz

12 de Fevereiro de 2014

Conteúdo

1	Nún	Números 1			
	1.1	Conjuntos numéricos	1		
		1.1.1 Naturais	1		
		1.1.2 Inteiros	1		
		1.1.3 Racionais	1		
		1.1.4 Irracionais	2		
		1.1.5 Reais	2		
	1.2	Intervalos	3		
	1.3	Operações com conjuntos	3		
	1.4	Exercícios resolvidos	4		
	1.5	Exercícios propostos	6		
	1.6	0 0	7		
	1.7	Exercícios resolvidos	8		
	1.8	Exercícios propostos	9		
2	E	nossã as algábricas	0		
4	2.1	0			
	$\frac{2.1}{2.2}$	Expressões que envolvem expoentes e radicais			
	2.2		.2		
	۷.5	3	2		
			.2		
	2.4	0 1	2		
	$\frac{2.4}{2.5}$. 2 .3		
	$\frac{2.5}{2.6}$		3		
	$\frac{2.0}{2.7}$.o .4		
	2.1	-1 - 3 - 3	.4 .4		
	$\frac{2.8}{2.9}$.4 5		
			.5 .5		
	2.10				
	2.11		5		
	0.10	0	6		
	2.12	Exercícios propostos	7		

Graciela e Ligia

3	\mathbf{Int}	rodução às funções 1	8
	3.1	Definição de função	18
	3.2	Representação gráfica	20
	3.3	Domínio e imagem de uma função:	20
	3.4	Operações com funções	22
	3.5	Exercícios resolvidos	24
	3.6	Exercícios propostos	25
4	Fun	ições especiais	27
	4.1	Função constante	27
	4.2	Função do primeiro grau	27
			28
	4.3		29
5	Fun	ıção quadrática 3	31
	5.1		31
		5.1.1 Gráfico	
	5.2		36
	5.3		40
	5.4		12
		1 3	12
	5.5		14
6	Fun	ıção modular	15
	6.1	Módulo ou valor absoluto	15
	6.2		18
	6.3		53
	6.4		55
	6.5		57
7	Pro	opriedades das Funções	60
			30
	7.2		31
	7.3		34
	7.4		66
8	Fun	ıção exponencial 7	7 0
J	8.1		70
	8.2	-	71
	8.3		73
	8.4		76
	8.5		76
		1 3 1	76
	8.6	3	. o 78

Graciela e Ligia

9	Fun	ção logarítmica	7 9	
	9.1	Logarítmos	79	
		9.1.1 Logarítmos com algumas bases especiais	80	
	9.2	Exercícios resolvidos	81	
	9.3	Exercícios propostos	82	
	9.4	Função logarítmica	82	
	9.5	Exercícios propostos		
10	Fun	ções trigonométricas	87	
	10.1	Ângulos e arcos	87	
		10.1.1 Unidade de medida de ângulo		
		10.1.2 Área do setor circular		
	10.2	O círculo trigonométrico		
		10.2.1 Seno e cosseno		
		10.2.2 Tangente	91	
		10.2.3 Cotangente		
		10.2.4 Secante e cossecante		
		10.2.5 Outras relações trigonométricas importantes		
	10.3	Funções trigonométricas		
		10.3.1 Função seno		
		10.3.2 Função cosseno		
		10.3.3 Função tangente		
		10.3.4 Função cotangente		
		10.3.5 Função secante		
		10.3.6 Função cossecante		
	10.4	Funções trigonométricas inversas		
		10.4.1 Função arco seno		
		10.4.2 Função arco cosseno		
		10.4.3 Função arco tangente		
		10.4.4 Função arco cotangente		
		10.4.5 Função arco secante		
		10.4.6 Função arco cossecante		
	10.5	Exercícios propostos		
11	Fun	ções hiperbólicas	108	
		Funções seno hiperbólico e cosseno hiperbólico	108	
		11.1.1 Por que o nome "Funções Hiperbólicas"?		
	11.2	Funções tangente, cotangente, secante e cossecante hiperbólicas		
		Funções hiperbólicas inversas		
		Exercícios propostos		
Re	spos	tas dos exercícios propostos	115	
Ribliografia 1				

Números

O objetivo deste capítulo é fornecer a base matemática necessária para a boa compreensão de funções. Faremos um estudo dos números reais e de operações envolvendo desigualdades.

1.1 Conjuntos numéricos

1.1.1 Naturais

Definimos o conjunto dos números naturais por $\mathbb{N} = \{0, 1, 2, 3, 4, 5, ...\}$. Convém destacar um subconjunto $\mathbb{N}^* = \mathbb{N} - \{0\} = \{1, 2, 3, 4, 5, ...\}$.

1.1.2 Inteiros

Definimos o conjunto dos números inteiros por $\mathbb{Z} = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$. No conjunto dos números inteiros destacamos os seguintes subconjuntos:

$$\mathbb{Z}^* = \mathbb{Z} - \{0\} = \{..., -3, -2, -1, 1, 2, 3, ...\}$$

 $\mathbb{Z}_+ = \{0,1,2,3,4,...\}$ (inteiros não negativos)

$$\mathbb{Z}_{-} = \{..., -4, -3, -2, -1, 0\}$$
 (inteiros não positivos)

$$\mathbb{Z}_{+}^{*} = \{1, 2, 3, 4, ...\}$$
 (inteiros positivos)

$$\mathbb{Z}_{-}^{*}=\{...,-4,-3,-2,-1\}$$
 (inteiros negativos)

1.1.3 Racionais

O conjunto dos números racionais contém todos os números da forma $\frac{p}{q}$ onde $p \in \mathbb{Z}$ e $q \in \mathbb{Z}^*$.

Denotamos:

$$\mathbb{Q} = \left\{ x/x = \frac{p}{q}, p \in \mathbb{Z}, q \in \mathbb{Z}, q \neq 0 \right\}$$

Obs.: Um número racional pode aparecer na forma de dízima periódica, isto é, um número decimal, com a parte decimal formada por infinitos algarismos que se repetem periodicamente, como por exemplo: 4,5555... (período 5), 10,878787... (período 87) e 9,8545454... (período 54, parte não periódica 8).

No conjunto dos números racionais destacamos os seguintes subconjuntos:

$$\mathbb{Q}_{+} = \{x \in \mathbb{Q}/x \ge 0\}$$
 (racionais não negativos)

$$\mathbb{Q}_{-} = \{x \in \mathbb{Q}/x \le 0\}$$
 (racionais não positivos)

$$\mathbb{Q}^* = \mathbb{Q} - \{0\}$$
 (racionais não nulos)

1.1.4 Irracionais

Neste conjunto temos números decimais não exatos e não periódicos, bem como toda raiz não exata, ou seja, todo número que não pode ser expresso como o quociente de dois números inteiros. Denotamos o conjunto dos irracionais por I.

Exemplos:

- 1) $\sqrt{2} = 1,41421...$
- 2) $\sqrt{3} = 1,73205...$
- 3) $\pi = 3,14159...$

1.1.5 Reais

Definimos o conjunto dos números reais como a união entre os conjuntos dos números racionais e irracionais: $\mathbb{Q} \cup \mathbb{I}$.

Diante do exposto acima, concluímos que:

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R}, \ \mathbb{I} \subset \mathbb{R} \in \mathbb{Q} \cap \mathbb{I} = \emptyset$$

Figura 1.1: Representação em diagrama dos números reais.

No conjunto dos números reais destacamos os seguintes subconjuntos:

$$\mathbb{R}^* = \mathbb{R} - \{0\}$$
 (reais não nulos)

$$\mathbb{R}_+^* = \{x \in \mathbb{R}/x > 0\}$$
 (reais positivos)

$$\mathbb{R}_{-}^{*} = \{x \in \mathbb{R}/x < 0\} \text{ (reais negativos)}$$

1.2 Intervalos

Intervalos são subconjuntos dos números reais. Sejam a e b números reais com a < b.

Notação de intervalo	Tipo de intervalo	Notação de conjunto	Representação gráfica
(a,b)	aberto	$\{x \in \mathbb{R}/a < x < b\}$	$ \stackrel{\bigcirc}{a}$ $\stackrel{\bigcirc}{b}$
[a,b]	fechado	$\{x \in \mathbb{R}/a \le x \le b\}$	a b
[a,b)	fechado à esquerda e aberto à direita	$\{x \in \mathbb{R}/a \le x < b\}$	$a \qquad b$
(a,b]	aberto à esquerda e fechado à direita	$\{x \in \mathbb{R}/a < x \le b\}$	\overline{a} b
Intervalos infinitos:			
$(a, +\infty)$	aberto	$\{x \in \mathbb{R}/x > a\}$	$-\overset{\circ}{a}$
$[a, +\infty)$	fechado	$\{x \in \mathbb{R}/x \ge a\}$	a
$(-\infty,b)$	aberto	$\{x \in \mathbb{R}/x < b\}$	ob
$(-\infty, b]$	fechado	$\{x \in \mathbb{R}/x \le b\}$	b

1.3 Operações com conjuntos

Interseção: Dados dois conjuntos A e B, define-se a interseção de A com B ($A \cap B$), como o conjunto de todos os elementos x que pertencem simultaneamente a A e B, ou seja,

$$A\cap B=\{x/x\in A\ \mathrm{e}\ x\in B\}$$

Figura 1.2: Interseção dos conjuntos $A \in B$.

União: Dados dois conjuntos A e B, define-se a união de A com B ($A \cup B$), como o conjunto de todos os elementos x que pertencem a A ou B, ou seja,

$$A \cup B = \{x/x \in A \text{ ou } x \in B\}$$

Figura 1.3: União dos conjuntos $A \in B$.

Diferença: A diferença entre os conjuntos A e B é o conjunto de todos os elementos que pertencem ao conjunto A e não pertencem ao conjunto B, ou seja,

$$A - B = \{x/x \in A \in x \notin B\}$$

Figura 1.4: Diferença entre os conjuntos $A \in B$.

Definição de complementar de um conjunto: Dados dois conjuntos A e U, tais que $A \subset U$ (U é o conjunto universo), chama-se complementar de A ao conjunto formado pelos elementos de U que não estão em A, ou seja, U - A. **Notação:** A^c ou \bar{A} .

Figura 1.5: O complementar de A em U ($A^c = U - A$).

1.4 Exercícios resolvidos

1) Represente na reta real os intervalos e descreva-os usando a notação de conjuntos:

a)
$$(2,5] \cup (-1,1]$$

Solução:

Portanto, $(2,5] \cup (-1,1] = \{x \in \mathbb{R}/-1 < x \le 1 \text{ ou } 2 < x \le 5\}$

b)
$$[-2,3] \cap [\frac{1}{2},4]$$

Solução:

Portanto, $[-2,3] \cap [\frac{1}{2},4] = [\frac{1}{2},3] = \{x \in \mathbb{R}/\frac{1}{2} \le x \le 3\}$

c)
$$([0,1) \cup [1,2) \cup (2,3]) - ((-2,1] \cap (0,1])$$

Solução:

Portanto, $A - B = (1, 3] - \{2\} = \{x \in \mathbb{R}/1 < x \le 3 \text{ e } x \ne 2\}$

- 2) Dados os intervalos $A=(-1,3),\,B=[1,4],\,C=[2,3),\,D=(1,2]$ e E=(0,2], determine:
 - a) $(A \cap B \cap E) \cap (C \cup D)$ Solução:

b) $[(A \cup B) - (C \cap D)] - E$

$$A \cup B \qquad \begin{array}{c} -1 \\ \bigcirc \\ C \cap D \end{array} \qquad \begin{array}{c} 2 \\ \bigcirc \\ [(A \cup B) - (C \cap D)] \end{array} \qquad \begin{array}{c} -1 \\ \bigcirc \\ \bigcirc \end{array} \qquad \begin{array}{c} 2 \\ \bigcirc \\ \bigcirc \end{array} \qquad \begin{array}{c} 4 \\ \bigcirc \\ \bigcirc \end{array}$$
$$[(A \cup B) - (C \cap D)] - E \qquad \begin{array}{c} -1 \\ \bigcirc \\ \bigcirc \end{array} \qquad \begin{array}{c} 0 \\ \bigcirc \end{array} \qquad \begin{array}{c} 2 \\ \bigcirc \end{array} \qquad \begin{array}{c} 4 \\ \bigcirc \end{array}$$

Portanto, $[(A \cup B) - (C \cap D)] - E = (-1, 0] \cup (2, 4] = \{x \in \mathbb{R}/ - 1 < x \le 0 \text{ ou } 2 < x \le 4\}$

1.5 Exercícios propostos

Solução:

- 1) Seja $P=\{x\in\mathbb{R}/1\leq x<9\},\ Q=\{x\in\mathbb{R}/2< x<7\}$ e $R=\{x\in\mathbb{R}/1\leq x\leq 8\}.$ Determine o conjunto R-(P-Q).
- 2) Dados os conjuntos $A=\{x\in \mathbb{R}/-2\le x\le 2\},\, B=\{x\in \mathbb{R}/x<0\},\, C=[0,1),\, D=\{x\in \mathbb{R}/x^2+1\le 0\},\, E=[-1,3),\, \text{determine:}$
 - a) $[(B \cap D) \cup C] E$
 - b) $[(A-C)\cap \bar{B}]\cap E$
- 3) Considere os conjuntos $A = \{x \in \mathbb{R}/0 \le x < 1\}$, $B = \{x \in \mathbb{R}/x \le 2 \text{ ou } x > 3\}$, $C = [1, 2), D = \{x \in \mathbb{R}/-2 < x \le 1\}$, E = (0, 1], determine:
 - a) $(A \cup \bar{B} \cup C) (D \cap E)$
 - b) $(B-A)\cap D$

Algumas desigualdades importantes 1.6

Sejam $a \in b \in \mathbb{R}$.

- 1. Se a < b e $c \in \mathbb{R}$, então a + c < b + c.
- 2. Se a > b e $c \in \mathbb{R}$, então a + c > b + c.

Exemplos:

(i)
$$-2 < 3$$
 e $c = -2 \Longrightarrow -2 + (-2) < 3 + (-2)$, ou seja, $-4 < 1$.

(ii)
$$-2 > -3$$
 e $c = 2 \Longrightarrow -2 + (2) > -3 + (2)$, ou seja, $0 > -1$.

- 3. Se a < b e $c \in \mathbb{R}_+^*$, então a c < b c.
- 4. Se a > b e $c \in \mathbb{R}_+^*$, então a c > b c.

Exemplos:

(i)
$$-2 < 3$$
 e $c = 2 \Longrightarrow -2$ (2) < 3 (2), ou seja, $-4 < 6$.

(ii)
$$-2 > -3$$
 e $c = 2 \Longrightarrow -2$ (2) > -3 (2), ou seja, $-4 > -6$.

5. Se
$$a < b$$
 e $c \in \mathbb{R}_{+}^{*}$, então $ac > bc$.

6. Se
$$a > b$$
 e $c \in \mathbb{R}_{+}^{*}$, então $ac < bc$.

Exemplos:

(i)
$$-2 < 3$$
 e $c = -2 \Longrightarrow -2$ $(-2) > 3$ (-2) , ou seja, $4 > -6$.

(ii)
$$-2 > -3$$
 e $c = -2 \Longrightarrow -2 (-2) < -3 (-2)$, ou seja, $4 < 6$.

7. Se a < b, com ambos positivos (ou negativos), então $\frac{1}{a} > \frac{1}{b}$

Exemplos:

(i)
$$-3 < -2 \Longrightarrow -\frac{1}{3} > -\frac{1}{2}$$
.

(ii)
$$3 > 2 \Longrightarrow \frac{1}{3} < \frac{1}{2}$$
.

(iii) Atenção!
$$-3 < 2 \Longrightarrow -\frac{1}{3} < \frac{1}{2}$$
.

preserva o sinal

Exercícios resolvidos 1.7

Resolva as inequações abaixo usando as propriedades acima, se necessário:

1)
$$-3x+1 > 2x-5$$

Solução:

$$-3x - 2x + 1 - 1 > 2x - 2x - 5 - 1$$

$$-5x > -6$$

$$-5x(-\frac{1}{5}) > -6(-\frac{1}{5})$$

$$x < \frac{6}{5}$$

 $\begin{array}{l} -5x(-\frac{1}{5})>-6(-\frac{1}{5})\\ x<\frac{6}{5}\\ \text{Portanto, } S=\{x\in\mathbb{R}/x<\frac{6}{5}\}. \end{array}$

2)
$$-2 < 2x + 3 \le 4$$

Solução:

$$-2 - 3 < 2x + 3 - 3 \le 4 - 3$$

$$-5 < 2x \le 1$$

$$-5 \cdot \frac{1}{2} < 2x \cdot \frac{1}{2} \le 1 \cdot \frac{1}{2}$$

$$-\frac{5}{2} < x \le \frac{1}{2}$$

 $\begin{array}{l} 5 < 2x \le 1 \\ -5 \cdot \frac{1}{2} < 2x \cdot \frac{1}{2} \le 1 \cdot \frac{1}{2} \\ -\frac{5}{2} < x \le \frac{1}{2} \\ \text{Portanto, } S = \{x \in \mathbb{R}/-\frac{5}{2} < x \le \frac{1}{2}\}. \end{array}$

3)
$$-3 \le 3x - 2 \le x$$

Solução:

Temos que resolver duas inequações:

i)
$$-3 \le 3x - 2$$

$$-1 < 3x$$

$$-1 \le 3x$$

$$-\frac{1}{3} \le x, \text{ ou seja, } x \ge -\frac{1}{3}$$

ii)
$$3x - 2 \le x$$

$$2x \le 2$$

$$x \le 1$$

A interseção desses dois conjuntos é $S = \{x \in \mathbb{R}/ - \frac{1}{3} \le x \le 1\}.$

4)
$$\frac{-4}{x} > 0$$

Solução:

Como -4 < 0, então para obtermos um quociente positivo basta que x < 0.

Portanto, $S = \{x \in \mathbb{R}/x < 0\}.$

$$5) \ \frac{3x-1}{4x-5} \le \frac{1}{2}$$

Solução:

Condição de existência: $x \neq \frac{5}{4}$.

Vamos multiplicar ambos os membros da desigualdade por 4x - 5. Devemos então, considerar dois casos:

Caso 1: Se
$$4x - 5 > 0$$
 ou $x > \frac{5}{4}$.
 $\frac{3x-1}{4x-5} \cdot (4x-5) \le \frac{1}{2} \cdot (4x-5)$
 $3x - 1 \le 2x - \frac{5}{2}$
 $x \le -\frac{3}{2}$

Portanto $\{x \in \mathbb{R}/x > \frac{5}{4}\} \cap \{x \in \mathbb{R}/x \le -\frac{3}{2}\} = \emptyset$ (conjunto vazio) é a solução do caso 1.

Caso 2: Se
$$4x - 5 < 0$$
 ou $x < \frac{5}{4}$.
 $\frac{3x-1}{4x-5} \cdot (4x-5) \ge \frac{1}{2} \cdot (4x-5)$
 $3x - 1 \ge 2x - \frac{5}{2}$
 $x \ge -\frac{3}{2}$

Portanto $\{x\in\mathbb{R}/x<\frac{5}{4}\}\cap\{x\in\mathbb{R}/x\geq-\frac{3}{2}\}=[-\frac{3}{2},\frac{5}{4})$ é a solução do caso 2.

A solução final é a união de \emptyset e $[-\frac{3}{2},\frac{5}{4})$, ou seja, $[-\frac{3}{2},\frac{5}{4})$.

Vamos apresentar um método alternativo de resolução:

$$\frac{3x - 1}{4x - 5} - \frac{1}{2} \le 0$$

$$\frac{2x+3}{8x-10} \le 0$$

Para obtermos um quociente negativo, temos dois casos a considerar:

Caso 1:
$$2x + 3 \le 0$$
 e $8x - 10 > 0$
 $x \le -\frac{3}{2}$ e $x > \frac{5}{4}$

Portanto $\{x \in \mathbb{R}/x > \frac{5}{4}\} \cap \{x \in \mathbb{R}/x \le -\frac{3}{2}\} = \emptyset$ é a solução do caso 1.

Caso 2:
$$2x + 3 \ge 0$$
 e $8x - 10 < 0$
 $x \ge -\frac{3}{2}$ e $x < \frac{5}{4}$

Portanto $\{x \in \mathbb{R}/x < \frac{5}{4}\} \cap \{x \in \mathbb{R}/x \ge -\frac{3}{2}\} = [-\frac{3}{2}, \frac{5}{4})$ é a solução do caso 2.

A solução final é a união de \emptyset e $[-\frac{3}{2},\frac{5}{4})$, ou seja, $[-\frac{3}{2},\frac{5}{4})$.

1.8 Exercícios propostos

Resolva as inequações abaixo:

1)
$$2 - x < 3x + 2 < 4x + 1$$

$$2) \ \frac{2x-3}{x-1} \ge 0$$

3)
$$\frac{2x-5}{1-x} \le -2$$

4)
$$0 < \frac{x-1}{2x-1} \le 2$$

Expressões algébricas

As expressões algébricas são expressões matemáticas que apresentam letras e podem conter números. São também denominadas expressões literais. As letras nas expressões são chamadas variáveis, o que significa que o valor de cada letra pode ser substituído por um valor numérico.

Para resolver ou simplificar uma expressão algébrica devemos utilizar as propriedades da potenciação, radiciação, fatoração e produtos notáveis.

2.1 Expressões que envolvem expoentes e radicais

Propriedades da potenciação:

Sejam $x \in \mathbb{R}, y \in \mathbb{R}, m \in \mathbb{Z}$ e $n \in \mathbb{Z}$.

Propriedade	$\mathbf{Exemplo}$
$1. x^m x^n = x^{m+n}$	$5^3 \cdot 5^4 = 5^{3+4} = 5^7$
$2. \frac{x^m}{x^n} = x^{m-n}$	$\frac{x^9}{x^4} = x^{9-4} = x^5$
3. $x^0 = 1$	$3^0 = 1$
$4. x^{-n} = \frac{1}{x^n}$	$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$
$5. (xy)^m = x^m y^m$	$(2v)^5 = 2^5v^5 = 32v^5$
$6. (x^n)^m = x^{m \cdot n}$	$(x^2)^4 = x^{2 \cdot 4} = x^8$
$7. \left(\frac{x}{y}\right)^m = \frac{x^m}{y^m}$	$\left(\frac{a}{b}\right)^4 = \frac{a^4}{b^4}$
$8. x^m = \underbrace{x \cdot x \cdot x \cdot \dots \cdot x}_{}$	
$m ext{ fatores}$	

Propriedades da radiciação:

Sejam $x \in \mathbb{R}_+, y \in \mathbb{R}_+, m \in \mathbb{Z}$ e $n \in \mathbb{N}^*$.

	Propriedade	Exemplo
1.	$x^{\frac{1}{n}} = \sqrt[n]{x}$	$\sqrt[3]{x} = x^{\frac{1}{3}}$
2.	$x^{\frac{m}{n}} = (x^m)^{\frac{1}{n}} = \sqrt[n]{x^m}$	$x^{\frac{2}{3}} = \sqrt[3]{x^2}$
3.	$x^{-\frac{m}{n}} = \frac{1}{x^{\frac{m}{n}}} = \frac{1}{\sqrt[n]{x^m}}$	$x^{-\frac{2}{3}} = \frac{1}{\sqrt[3]{x^2}}$
4.	$\sqrt[n]{x \cdot y} = \sqrt[n]{x} \cdot \sqrt[n]{y}$	$\sqrt[4]{2\cdot 3} = \sqrt[4]{2} \cdot \sqrt[4]{3}$
5.	$\sqrt[n]{\frac{x}{y}} = \frac{\sqrt[n]{x}}{\sqrt[n]{y}}, \ y \neq 0$	$\sqrt[4]{\frac{2}{3}} = \frac{\sqrt[4]{2}}{\sqrt[4]{3}}$
6.	$(\sqrt[n]{x})^m = \sqrt[n]{x^m}$, para $x \neq 0$ ou $m \neq 0$	$\left(\sqrt[3]{4}\right)^2 = \sqrt[3]{4^2}$
7.	$\sqrt[m]{\sqrt[n]{x}} = \sqrt[mn]{x}$	$\sqrt[3]{\sqrt{5}} = \sqrt[3\cdot2]{5} = \sqrt[6]{5}$

2.2 Exercícios resolvidos

Simplifique as expressões:

1)
$$2x^2x^3$$

Solução:
$$2x^2x^3 = 2x^{2+3} = 2x^5$$

2)
$$(3x)^2 \sqrt[3]{x}$$

Solução:
$$(3x)^2 \sqrt[3]{x} = 9x^2 \cdot x^{\frac{1}{3}} = 9x^{2+\frac{1}{3}} = 9x^{\frac{7}{3}}$$

3)
$$\frac{3x^2}{\left(x^{\frac{1}{2}}\right)^3}$$

Solução:
$$\frac{3x^2}{\left(x^{\frac{1}{2}}\right)^3} = \frac{3x^2}{x^{3/2}} = 3x^{2-\frac{3}{2}} = 3x^{1/2}$$

4)
$$(a^{-2}b^3)^{-2} \cdot (a^3b^{-2})^3$$

$$Solução: (a^{-2}b^3)^{-2} \cdot (a^3b^{-2})^3 = a^4b^{-6}a^9b^{-6} = a^{4+9}b^{-6-6} = a^{13}b^{-12}$$

$$5) \left(\frac{a^3 b^{-4}}{a^{-2} b^2} \right)^3$$

Solução:
$$\left(\frac{a^3b^{-4}}{a^{-2}b^2}\right)^3 = \left(a^{3-(-2)} \cdot b^{-4-2}\right)^3 = \left(a^5b^{-6}\right)^3 = a^{15}b^{-18}$$

6)
$$\sqrt[5]{32x^5y^{10}}$$

Solução:
$$\sqrt[5]{32x^5y^{10}} = (32x^5y^{10})^{\frac{1}{5}} = (2^5)^{\frac{1}{5}}(x^5)^{\frac{1}{5}}(y^{10})^{\frac{1}{5}} = 2xy^2$$

7)
$$\sqrt{\frac{8x^2}{y^4z^6}}$$

Solução:
$$\sqrt{\frac{8x^2}{y^4z^6}} = \sqrt{2\left(\frac{2x}{y^2z^3}\right)^2} = \sqrt{2}\left(\frac{2x}{y^2z^3}\right)$$

8)
$$\frac{a^{2n+3}a^{n-1}}{a^{2(n-1)}}$$

$$Solução: \frac{a^{2n+3}a^{n-1}}{a^{2(n-1)}} = \frac{a^{2n+3+n-1}}{a^{2n-2}} = \frac{a^{3n+2}}{a^{2n-2}} = a^{(3n+2)-(2n-2)} = a^{n+4}$$

2.3 Fatoração

Dada uma expressão algébrica qualquer, podemos transformá-la, se possível, no produto de duas ou mais expressões algébricas. A este procedimento damos o nome de fatoração.

2.3.1 Fator comum

A expressão ax + bx tem como fator comum o x, neste caso podemos colocar o x em evidência e obter ax + bx = x(a + b).

2.3.2 Agrupamento

Podemos utilizar a fatoração diversas vezes na mesma expressão.

$$ax + bx + ay + by = (a + b)x + (a + b)y = (a + b)(x + y)$$

2.4 Exercícios resolvidos

Simplifique cada expressão utilizando a fatoração.

1)
$$2x^{\frac{1}{2}} + 4x^{\frac{5}{2}}$$

 $Soluc\tilde{a}o: 2x^{\frac{1}{2}} + 4x^{\frac{5}{2}} = 2^{\frac{1}{2}}(1 + 2x^2)$

2)
$$6xy^5 + 12x^2y^2$$

 $Solução: 6xy^5 + 12x^2y^2 = 6xy^2(y^3 + 2x)$

3)
$$\frac{\sqrt{x} + x^{\frac{3}{2}}}{x}$$

$$Solução: \frac{\sqrt{x} + x^{\frac{3}{2}}}{x} = \frac{x^{\frac{1}{2}} + x^{\frac{3}{2}}}{x} = \frac{x^{\frac{1}{2}}(1+x)}{x} = \frac{1+x}{\sqrt{x}}$$

4)
$$x^3 + x^2 + x + 1$$

 $Solução: x^3 + x^2 + x + 1 = x^2(x+1) + (x+1) = (x^2+1)(x+1)$

5)
$$\frac{6xy - 3x^2}{4y^2 - 2xy}$$

$$Solução: \frac{6xy - 3x^2}{4y^2 - 2xy} = \frac{3x(2y - x)}{2y(2y - x)} = \frac{3x}{2y}$$

2.5 Produtos Notáveis

Os produtos notáveis são aqueles produtos entre expressões algébricas que são frequentemente usados para evitar a multiplicação termo a termo.

- 1) Soma pela diferença: $(a+b)(a-b) = a^2 b^2$
- 2) Quadrado da soma: $(a+b)^2 = a^2 + 2ab + b^2$
- 3) Quadrado da diferença: $(a b)^2 = a^2 2ab + b^2$

Os produtos acima são facilmente obtidos usando a propriedade distributiva da multiplicação em relação à adição e à subtração. Vejamos:

i)
$$(a + b)(a - b) = a^2 - ab + ba - b^2 = a^2 - b^2$$

ii)
$$(a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = a^2 + 2ab + b^2$$

iii)
$$(a - b)^2 = (a - b)(a - b) = a^2 - ab - ba + b^2 = a^2 - 2ab + b^2$$

Da mesma forma, podemos obter os resultados abaixo:

$$(a+b)^3 = (a+b)(a+b)^2 = a^3 + 3a^2b + 3ab^2 + b^3$$
$$(a-b)^3 = (a-b)(a-b)^2 = a^3 - 3a^2b + 3ab^2 - b^3$$

$$(a+b)^4 = (a+b)^2(a+b)^2 = a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$$

Generalizando, obtém-se o binômio de Newton:

$$(a+b)^n = a^n + na^{n-1}b + \frac{n(n-1)}{2!}a^{n-2}b^2 + \frac{n(n-1)(n-2)}{3!}a^{n-3}b^3 + \dots + nab^{n-1} + b^n.$$

2.6 Exercícios resolvidos

1. Reescreva usando produtos notáveis:

$$a) (xy - 3z)(xy + 3z)$$

Solução:
$$(xy - 3z)(xy + 3z) = (xy)^2 - (3z)^2 = x^2y^2 - 9z^2$$

b)
$$(2x-5)^2$$

Solução:
$$(2x-5)^2 = (2x)^2 + 2(2x)(-5) + (-5)^2 = 4x^2 - 20x + 25$$

c)
$$\left(\frac{2x}{3} - 4y^2\right)^3$$

 $Solução$:
 $\left(\frac{2x}{3} - 4y^2\right)^3 = \left(\frac{2x}{3}\right)^3 + 3\left(\frac{2x}{3}\right)^2(-4y^2) + 3\left(\frac{2x}{3}\right)(-4y^2)^2 + (-4y^2)^3 = \frac{8}{3}x^3 - \frac{16}{3}x^2y^2 + 32xy^4 - 64y^6$

2. Simplifique as expressão algébrica: $\frac{ax^2 - ay^2}{x^2 - 2xy + y^2}$.

Solução:

$$\frac{ax^2 - ay^2}{x^2 - 2xy + y^2} = \frac{a(x^2 - y^2)}{(x - y)^2} = \frac{a(x - y)(x + y)}{(x - y)(x + y)} = \frac{a(x + y)}{x - y}$$

2.7 Operações com frações

1. Soma de frações:
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}, \ b \neq 0, \ d \neq 0$$

2. Subtração de frações:
$$\frac{a}{b} - \frac{c}{d} = \frac{ad - bc}{bd}, \ b \neq 0, \ d \neq 0$$

3. Multiplicação de frações:
$$\left(\frac{a}{b}\right)\cdot\left(\frac{c}{d}\right)=\frac{ac}{bd},\ b\neq 0,\ d\neq 0$$

4. Divisão de frações:
$$\frac{\frac{a}{b}}{\frac{c}{d}} = \left(\frac{a}{b}\right) \cdot \left(\frac{d}{c}\right) = \frac{ad}{bc}, \ b \neq 0, \ c \neq 0, \ d \neq 0$$

Observação: Para resolver, por exemplo, a soma $\frac{1}{2} + \frac{4}{3}$ não é necessário encontrar um mínimo múltiplo comum (m.m.c) para os denominadores. É suficiente multiplicar numerador e denominador por um valor adequado de forma que os denominadores das duas frações sejam iguais, como no exemplo $\frac{1}{2} + \frac{4}{3} = \frac{1}{2} \left(\frac{3}{3} \right) + \frac{4}{3} \left(\frac{2}{2} \right) = \frac{3}{6} + \frac{8}{6} = \frac{11}{6}$.

2.8 Exercícios resolvidos

Efetue as operações indicadas e simplifique:

1)
$$\frac{x}{x^2-4} + \frac{3}{x+2}$$

$$Solução \colon \tfrac{x}{x^2-4} + \tfrac{3}{x+2} = \tfrac{x}{(x-2)(x+2)} + \tfrac{3}{x+2} = \tfrac{x}{(x-2)(x+2)} + \tfrac{3(x-2)}{(x-2)(x+2)} = \tfrac{x+3x-6}{x^2-4} = \tfrac{4x-6}{x^2-4}$$

$$2) \frac{a^2 + 2ab + b^2}{a^2 - b^2} \div \frac{a - b}{a + b}$$

$$Solu\tilde{gao}: \frac{a^2 + 2ab + b^2}{a^2 - b^2} \div \frac{a - b}{a + b} = \frac{(a + b)^2}{(a + b)(a - b)} \cdot \frac{a + b}{a - b} = \frac{(a + b)(a + b)(a + b)}{(a + b)(a - b)(a - b)} = \left(\frac{a + b}{a - b}\right)^2$$

3)
$$\frac{\sqrt{x+1} - \frac{x}{2\sqrt{x+1}}}{x+1}$$

$$Solução: \frac{\sqrt{x+1} - \frac{x}{2\sqrt{x+1}}}{x+1} = \frac{\sqrt{x+1} \cdot \frac{2\sqrt{x+1}}{2\sqrt{x+1}} + \frac{x}{2\sqrt{x+1}}}{x+1} = \frac{\frac{3x+2}{2\sqrt{x+1}}}{x+1} = \frac{\frac{3x+2}{2\sqrt{x+1}}}{x+1} = \frac{3x+2}{2\sqrt{x+1}} \cdot \frac{1}{x+1} = \frac{$$

2.9 Técnicas de racionalização

Ao trabalhar com quocientes que envolvem radicais, costuma ser conveniente mover a expressão radical do denominador para o numerador e vice-versa. Por exemplo,

Radical no denominador Racionalização Radical no numerador $\frac{1}{\sqrt{2}} \implies \frac{1}{\sqrt{2}} \left(\frac{\sqrt{2}}{\sqrt{2}} \right) \implies \frac{\sqrt{2}}{2}$

Esse processo é chamado de racionalização do denominador.

- 1. Se o denominador é \sqrt{a} , multiplica-se por $\frac{\sqrt{a}}{\sqrt{a}}$.
- 2. Se o denominador é $\sqrt{a} \sqrt{b}$, multiplica-se por $\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} + \sqrt{b}}$.
- 3. Se o denominador é $\sqrt{a} + \sqrt{b}$, multiplica-se por $\frac{\sqrt{a} \sqrt{b}}{\sqrt{a} \sqrt{b}}$.

As mesmas instruções aplicam-se à racionalização dos numeradores.

2.10 Exercícios resolvidos

Racionalize o denominador ou o numerador.

 $1) \, \frac{\sqrt{x+1}}{2}$

Solução:
$$\frac{\sqrt{x+1}}{2} = \frac{\sqrt{x+1}}{2} \left(\frac{\sqrt{x+1}}{\sqrt{x+1}} \right) = \frac{x+1}{2\sqrt{x+1}}$$

2) $\frac{1}{3\sqrt{2}-\sqrt{3}}$

Solução:
$$\frac{1}{3\sqrt{2}-\sqrt{3}} = \frac{1}{3\sqrt{2}-\sqrt{3}} \left(\frac{3\sqrt{2}+\sqrt{3}}{3\sqrt{2}+\sqrt{3}}\right) = \frac{3\sqrt{2}+\sqrt{3}}{18-3} = \frac{3\sqrt{2}+\sqrt{3}}{15}$$

3) $\frac{10}{\sqrt{x} + \sqrt{x-2}}$

$$Solução: \ \frac{10}{\sqrt{x} + \sqrt{x - 2}} = \frac{10}{\sqrt{x} + \sqrt{x - 2}} \left(\frac{\sqrt{x} - \sqrt{x - 2}}{\sqrt{x} - \sqrt{x - 2}} \right) = \frac{10(\sqrt{x} - \sqrt{x - 2})}{x - (x - 2)} = 5(\sqrt{x} - \sqrt{x - 2})$$

2.11 Polinômios

Um polinômio é uma expressão algébrica da forma

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

onde $a_n, a_{n-1}, \ldots, a_1, a_0$ são números reais, chamados de coeficientes do polinômio de grau n.

Exemplos:

1. p(x) = 2 é um polinômio de grau zero

2. $p(x) = -2x + \frac{1}{2}$ é um polinômio de grau um

3. $p(x) = 5x^2 + 2x - 1$ é um polinômio de grau dois

4. $p(x) = -x^3 + \frac{3}{2}x + 2$ é um polinômio de grau três

2.11.1 O algorítmo da divisão

A divisão de polinômios é semelhante à divisão de números naturais. Ao dividirmos, por exemplo, o número 4123 por 2 obtemos 206 e resto 3. Escreve-se $4123 = 2 \times 206 + 3$.

Com polinômios reais a regra da divisão é a mesma. Dados dois polinômios p(x) e q(x) com coeficientes reais, $q(x) \neq 0$, então existem polinômios m(x) e r(x) tais que $p(x) = q(x) \times m(x) + r(x)$. Então, podemos escrever, $\frac{p(x)}{q(x)} = m(x) + \frac{r(x)}{m(x)}$. Representa-se como

$$\begin{array}{cc} p(x) & \underline{q(x)} \\ r(x) & m(x) \end{array}$$

Exemplos: Simplifique as expressões dadas.

1)
$$\frac{4x}{x^2-2} \frac{4+2x}{3-3x+1}$$

Solução:

$$\begin{array}{r}
4x^4 + 2x^3 + 0x^2 - 3x + 1 & x^2 - 2 \\
-4x^4 + 0x^3 + 8x^2 & 4x^2 + 2x + 8 \\
\hline
0 + 2x^3 + 8x^2 - 3x \\
-2x^3 + 0x^2 + 4x \\
\hline
0 + 8x^2 + x + 1 \\
-8x^2 + 0x + 16 \\
\hline
0 + x + 17
\end{array}$$

Portanto, $\frac{4x}{x^2-2} = 4x^2 + 2x + 8 + \frac{x+17}{x^2-2}$.

2)
$$\frac{x^3 - 7x + 6}{x + 3}$$

Solução:

$$\begin{array}{c|c}
x^3 + 0x^2 - 7x + 6 & x + 3 \\
-x^3 - 3x^2 & x^2 - 3x + 2 \\
\hline
0 - 3x^2 - 7x \\
3x^2 + 9x \\
0 + 2x + 6 \\
-2x - 6
\end{array}$$

Portanto, $\frac{x^3-7x+6}{x+3} = x^2 - 3x + 2$.

2.12Exercícios propostos

1. Reescreva usando produtos notáveis:

a)
$$(x^2 + 4y)(x^2 - 4y)$$

b)
$$(2a+b)^3$$

c)
$$\left(x^4 + \frac{1}{x^2}\right)^4$$

2. Simplifique as expressões algébricas:

a)
$$\frac{a^{n+4}-a^3a^n}{a^4a^n}$$

b) $\frac{2^{n+4}-2\cdot 2^n}{2\cdot 2^{n+3}}$
c) $2x^2x^3$

b)
$$\frac{2^{n+4}-2\cdot 2^n}{2\cdot 2^{n+3}}$$

c)
$$2x^2x^3$$

d)
$$abx^n + acx^{n+m}$$

e)
$$3(x+1)^{\frac{1}{2}}(2x-3)^{\frac{5}{2}}$$

f)
$$(x-1)^{-\frac{1}{2}}(2x-3)^{\frac{5}{2}}$$

g)
$$\frac{x^2-x}{x-1}$$

h)
$$\frac{3x^2+x^4}{2x}$$

d)
$$(x+2)(x-7) + (x-5)(x+3)$$

e)
$$(a-b)(a+b)(a^2+b^2)$$

f)
$$\left(\frac{1}{2} + x^2\right)^3 - \left(\frac{\sqrt{3}}{2}x - \frac{1}{2}\right)^2$$

i) $\frac{x+2}{x^2+4x+4}$ j) $\frac{a^2-9}{a+3}$

j)
$$\frac{a^2-9}{a+3}$$

k)
$$\frac{ax+ay}{x^2+2xy+y^2}$$

1)
$$\frac{(x+1)(x-1)^2-(x-1)}{(x+1)^2}$$

$$\mathrm{m)} \, \frac{xy^{-2}(x^{-1}y^2)^4(xy^{-1})^2}{x^{-2}y(x^2y^{-1})^3x^{-1}y}$$

1)
$$\frac{(x+1)^2}{(x+1)^2}$$
m)
$$\frac{xy^{-2}(x^{-1}y^2)^4(xy^{-1})^2}{x^{-2}y(x^2y^{-1})^3x^{-1}y}$$
n)
$$\frac{2x^5 - 3x^4 + 5x^3 - 6x + 2 + 2x + 12}{2x^2 - 3x + 1}$$
o)
$$\frac{-2x^3 + 13x^2 - 3x + 5}{-x^2 + 7x - 5}$$
p)
$$\frac{3x^3 + 3x^2 + x - 2}{3x^2 - 2}$$

o)
$$\frac{-2x^3+13x^2-3x+5}{-x^2+7x-5}$$

p)
$$\frac{3x^3+3x^2+x-2}{3x^2-2}$$

3. Efetue as operações indicadas e simplifique:

a)
$$\left(x^{\frac{2}{3}} + 2^{\frac{1}{3}}\right) \cdot \left(x\sqrt[3]{x} - \sqrt[3]{2x^2} + \sqrt[3]{4}\right)$$

e)
$$\left(\frac{2y}{y-2} - \frac{2y^2}{y^2-4} - \frac{4}{y+2}\right) \div \frac{8}{y+2}$$

b)
$$\frac{2}{x+1} - \frac{1}{2x+1}$$

c)
$$\frac{x^4-a^4}{x^2+a^2} \cdot \frac{x+a}{x^2+a^2}$$

c)
$$\frac{x^4 - a^4}{x - a} \cdot \frac{x + a}{x^2 + a^2}$$

d) $\frac{(a^2 - b^2)^2 (a^2 + b^2)^2 - (a^8 + b^8)}{a} - \frac{a^5 b^2}{\frac{a}{b}}$

f)
$$\frac{3}{5}(x+1)^{\frac{5}{3}} + \frac{3}{4}(x+1)^{\frac{8}{3}}$$

g)
$$\frac{y+z}{(x-y)(x-z)} + \frac{x+z}{(y-x)(y-z)} + \frac{x+y}{(z-x)(z-y)}$$

h)
$$\left(\frac{1}{x+\sqrt{x^2+1}}\right) \left(1 + \frac{2x}{2\sqrt{x^2+1}}\right)$$

4. Racionalize o denominador ou o numerador, conforme o caso.

a)
$$\frac{5}{\sqrt{8}}$$

b)
$$\frac{6}{5-3\sqrt{2}}$$

c)
$$\frac{\sqrt{x+1}-1}{x}$$

d)
$$\frac{3}{\sqrt{3}-\sqrt{2}+1}$$

5. Simplifique:

a)
$$\sqrt{\frac{2+\sqrt{3}}{2-\sqrt{3}}} + \sqrt{\frac{2-\sqrt{3}}{2+\sqrt{3}}}$$

b)
$$\left(125^{\frac{2}{3}} + 16^{\frac{1}{2}} + 343^{\frac{1}{3}}\right)^{\frac{1}{2}}$$

c)
$$\frac{5^{-\frac{1}{2}} \cdot 5^{\frac{1}{3}}}{5^{\frac{2}{5}} \cdot 5^{-\frac{3}{2}}}$$

d)
$$\sqrt[4]{375} - \sqrt[3]{24} + \sqrt[3]{81} - \sqrt[3]{192}$$

- 6. Mostre que a expressão $\frac{x}{x+\sqrt{y}\sqrt{2x-y}} + \frac{x}{x-\sqrt{y}\sqrt{2x-y}}$ é equivalente a $2\left(\frac{x}{x-y}\right)^2$.
- 7. (UDESC-SC) Se $p=2^{3^2}, q=(4^2)^3, r=8^{2^3}$ e $s=\left(\frac{pq}{r}\right)^{\frac{1}{3}}$, então se pode afirmar

a)
$$0 < s < \frac{1}{4}$$

c)
$$0 < s < 1$$

e)
$$2 < s < 4$$

b)
$$0 < s < \frac{1}{2}$$

d)
$$1 < s < 2$$

Introdução às funções

Encontramos o uso de função nas mais variadas situações de nosso dia a dia. Por exemplo, o preço a ser pago numa conta de água depende da quantidade de água consumida, conforme a quantidade consumida temos um preço definido. Ao abastecer o carro, o preço a ser pago depende da quantidade de combustível abastecida. Ao lermos uma revista ou jornal ou assitirmos um noticiário, muitas vezes nos deparamos com gráficos que nada mais são do que a comparação entre duas grandezas, sendo que é possível estabelecer qual a relação existente entre estas grandezas. Para resolver problemas análogos aos aqui propostos, precisamos sempre deduzir uma lei ou fórmula matemática que determine, precisamente, a relação entre as variáveis envolvidas em cada caso. Essa lei ou fórmula é o que chamamos, em matemática de função.

3.1 Definição de função

Uma função $f:A\to B$ é uma lei de correspondência entre dois conjuntos A e B tal que todo elemento $x\in A$ associa um único elemento $y\in B$.

Notação:
$$\begin{array}{ll} f:A \to B & \text{ou} & f:A \to B \\ y=f(x) & \text{ou} & x \to f(x) \end{array}$$
 .

Exemplos:

1. Sejam $A = \{-1, 0, 1, 2\}$ e $B = \{-1, 1, 3, 5\}$ e $f : A \to B$ tal que f(x) = 2x + 1.

Neste caso, f é uma função pois para todo $x \in A$ existe um único $x \in B$.

2. Sejam $A = \{-1, 0, 1, 2\}$ e $B = \{1, 0, 4, 5\}$ e $f : A \to B$ tal que $f(x) = x^2$.

Também neste caso f é uma função pois para todo $x \in A$ existe um único $x \in B$, embora y=1 esteja associado a dois valores distintos de x e y=5 não esteja associado a nenhum elemento $x \in A$.

Contra-exemplos:

1. Sejam $A = \{-1, 0, 1, 2, 3\}$ e $B = \{-1, 1, 3, 5\}$ e $f : A \to B$ tal que f(x) = 2x + 1.

Neste caso, f não é uma função pois existe um elemento $x \in A$ que não está associado a nenhum elemento $y \in B$.

2. Sejam $A=\{-1,0,1\}$ e $B=\{0,1,2,3\}$ e $f:A\to B$ tal que:

Também neste caso f não é uma função pois existe $x \in A$ que está associado a dois valores distintos de B.

3.2 Representação gráfica

Podemos verificar através da representação gráfica se $f:A\to B$ define ou não uma função. Considere os exemplos:

1. O gráfico da Figura 3.1 não representa uma função, pois todo $x \in (-2, 2)$ está associado a dois valores distintos de y. Note por exemplo que, para x = 0 temos y = 2 e y = -2.

Figura 3.1

2. O gráfico da Figura 3.2 também não representa uma função, pois todo $x \in (0, +\infty)$ está associado a dois valores distintos de y. Note por exemplo que, x = 1 está associado a y = 1 e y = -1.

Figura 3.2

3.3 Domínio e imagem de uma função:

Seja $f: A \to B$ uma função.

Domínio: Chamamos de domínio o conjunto de todos os elementos $x \in A$ para os quais existe $y \in B$ tal que $(x, y) \in f$.

Graficamente, o domínio é o conjunto formado por todas as abscissas dos pontos do gráfico de f.

Notação: D(f)

Contradomínio: Chamamos de contradomínio o conjunto de todos os elementos $y \in B$.

Imagem: Chamamos de imagem o conjunto de todos os elementos $y \in B$ que estão associados a $x \in A$ tal que $(x, y) \in f$.

Graficamente, a imagem é o conjunto formado por todas as ordenadas dos pontos do gráfico de f.

Notação: Im(f)

Observe que a imagem é um subconjunto do contradomínio, isto é, $\mathrm{Im}(f)\subset B.$

Exemplo:

1) Identifique o domínio e a imagem para cada uma das funções abaixo:

3.4 Operações com funções

Definição: Sejam f e g duas funções. Define-se as operações de soma, subtração, produto e quociente, respectivamente, por:

i)
$$(f+g)(x) = f(x) + g(x)$$

ii)
$$(f - g)(x) = f(x) - g(x)$$

iii)
$$(fg)(x) = f(x)g(x)$$

iv)
$$\left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

O domínio das funções f+g, f-g, fg é a interseção dos domínios de f e g. O domínio de f/g é a interseção dos domínios de f e g, excluindo os valores de g tais que g(x)=0.

Exemplo

1) Determine o domínio das funções abaixo:

a)
$$f(x) = \sqrt[3]{x^2 - 1}$$

Solução:

Como uma raiz cúbica é definida para todo $x \in \mathbb{R}$ então $D(f) = \mathbb{R}$.

b)
$$g(x) = \frac{x-3}{x^2 - 4x + 4}$$

Solução:

Neste caso, g está definida se $x^2-4x+4\neq 0$, ou seja, para $x\neq 2$. Portanto, $D(f)=\mathbb{R}-\{2\}.$

c)
$$h(x) = \sqrt{\frac{x+3}{1-2x}}$$

Solução:

Neste caso, $\sqrt{\frac{x+3}{1-2x}}$ só tem sentido se $\frac{x+3}{1-2x} \ge 0$. Para resolver esta inequação quociente consideremos os casos:

- i) Se 1-2x>0, ou seja, $x<\frac{1}{2}$ então devemos ter $x+3\geq 0 \Leftrightarrow x\geq -3$. Obtemos como solução: $\left[-3,+\infty\right)\cap\left(-\infty,\frac{1}{2}\right)=\left[-3,\frac{1}{2}\right)$.
- ii) Se 1-2x < 0, ou seja, $x > \frac{1}{2}$ então devemos ter $x+3 \le 0 \Leftrightarrow x \le -3$. Obtemos: $(-\infty, -3] \cap \left(\frac{1}{2}, +\infty\right) = \varnothing$.

Portanto $D(f) = \left[-3, \frac{1}{2}\right) \cup \varnothing = \left[-3, \frac{1}{2}\right)$.

d)
$$r(x) = \frac{x}{\sqrt{x^2 + \sqrt{x^2 + 1}}}$$

Solução:

Como $x^2 + 1 \ge 1$ então $x^2 + \sqrt{x^2 + 1} \ge 1$, $\forall x \in \mathbb{R}$. Portanto, $D(f) = \mathbb{R}$.

e)
$$t(x) = \sqrt{x-1} + \frac{x}{\sqrt{x-4}}$$

Solução:

A função t está definida se $x-1 \ge 0$ e x-4 > 0. Então $x \ge 1$ e x > 4, o que implica x > 4. Logo, $D(f) = (4, +\infty)$.

Composição de funções

Definição: Sejam as funções f e g. Define-se a função composta de g e f por

Note que o domínio de $g \circ f$ são todos os valores de $x \in D(f)$ tal que f(x) está no domínio de g. Portanto, $(g \circ f)(x)$ está definida sempre que f(x) e g(f(x)) estiverem definidas.

Exemplo:

1) Considere as funções $f(x) = x^2 + 2x$ e g(x) = 3x + 1, determine $f \circ g$ e $g \circ f$. Solução:

$$(f \circ g)(x) = f(g(x)) = f(3x+1) = (3x+1)^2 + 2(3x+1) = 9x^2 + 12x + 3.$$
$$(g \circ f)(x) = g(f(x)) = g(x^2 + 2x) = 3(x^2 + 2x) + 1 = 3x^2 + 6x + 1.$$

Observações:

- 1) Observe no exemplo acima que, em geral, $f \circ g \neq g \circ f$.
- 2) A composição de funções é associativa, isto é, $(f \circ g) \circ h = f \circ (g \circ h)$, sendo f, g e h funções de x.

Demonstração: Consideremos um elemento x pertencente ao domínio de h e escrevemos $y=h(x),\ z=g(y)$ e w=f(z). Então,

$$((f \circ g) \circ h)(x) = (f \circ g)(h(x)) = (f \circ g)(y) = f(g(y)) = f(z) = w.$$

Por outro lado,

$$(f \circ (g \circ h))(x) = f((g \circ h)(x)) = f(g(h(x))) = f(g(y)) = f(z) = w.$$

Como queríamos demonstrar.

3.5 Exercícios resolvidos

1) Considere as funções definidas por $f(x) = \frac{3x-3}{x}$ e $g(x) = \frac{x}{x-3} - 1$. Determine $f \circ g$ e $g \circ f$.

Solução:

$$(f \circ g)(x) = f(g(x)) = f\left(\frac{x}{x-3} - 1\right) = \frac{3\left(\frac{x}{x-3} - 1\right) - 3}{\frac{x}{x-3} - 1} = \frac{\frac{3x - 6x + 18}{x-3}}{\frac{3}{x-3}} = -x + 6$$
$$(g \circ f)(x) = g(f(x)) = g\left(\frac{3x - 3}{x}\right) = \frac{\frac{3x - 3}{x}}{\frac{3x - 3}{x} - 3} - 1 = -x$$

2) Considere as funções g(x) = 3x + 1 e $(g \circ f)(x) = 3x^2 + 6x + 1$. Determine f(x). Solução:

$$g(f(x)) = 3x^{2} + 6x + 1$$

$$3f(x) + 1 = 3x^{2} + 6x + 1$$

$$3f(x) = 3(x^{2} + 2x)$$

$$f(x) = x^{2} + 2x.$$

3) Considere as funções $f(x) = x^2 + 1$ e $(g \circ f)(x) = 2x^4 + 7x^2 + 4$. Determine g(x).

Solução:

$$(g \circ f)(x) = 2x^4 + 7x^2 + 4$$

$$g(f(x)) = 2x^4 + 7x^2 + 4$$

$$g(x^2 + 1) = 2x^4 + 7x^2 + 4.$$

Observe que o domínio de g é uma função do segundo grau enquanto que $g \circ f$ é função do quarto grau. Concluímos, então, que g tem que ser uma função do segundo grau. Neste caso, propomos $g(x) = ax^2 + bx + c$ e devemos determinar os coeficientes a, b e c. Portanto,

$$a(x^{2}+1)^{2} + b(x^{2}+1) + c = 2x^{4} + 7x^{2} + 4$$

$$a(x^{4}+2x^{2}+1) + b(x^{2}+1) + c = 2x^{4} + 7x^{2} + 4$$

$$ax^{4} + (2a+b)x^{2} + a + b + c = 2x^{4} + 7x^{2} + 4$$

Igualando os coeficientes, obtemos o sistema,

$$a+2$$

 $2a+b=7$
 $a+b+c=4$
resultando em $a=2, b=3$ e $c=-1$.
Logo, $g(x)=2x^2+3x-1$.

4) Dadas as funções $f(x) = \frac{x}{x-2}$, $g(x) = x^2$ e $h(x) = \sqrt{x^2 + 1}$, determine $f \circ g \circ h$. Solução:

$$(f \circ g \circ h)(x) = f \circ (g(h(x))) = f(g(h(x))) = f(g(\sqrt{x^2 + 1})) = f(x^2 + 1) = \frac{x^2 + 1}{(x^2 + 1) - 2} = \frac{x^2 + 1}{x^2 - 1}$$

5) Determine o domínio de $h(x) = (g \circ f)(x)$ sendo $f(x) = \sqrt{x+1}$ e $g(x) = \frac{x}{x^2-4}$. Solução:

Como

$$D(f) = [-1, +\infty) \longrightarrow \operatorname{Im}(f) = [0, +\infty)$$

$$D(g) = \mathbb{R} - \{-2, 2\} \longrightarrow \operatorname{Im}(g) = \mathbb{R},$$

e $g \circ f$ está definida para o conjunto de valores $x \in D(f)$ tal que Im(f) está no domínio de g.

Logo,
$$D(h) = D(g \circ f) = \mathbb{R}_{+} - \{3\}.$$

Note que
$$h(x) = g(f(x)) = g(\sqrt{x+1}) = \frac{\sqrt{x+1}}{x-3}$$

Observe que se determinarmos o domínio de h sem levar em consideração a composição, temos $D(h) = [-1, +\infty) - \{3\}$. Entretanto, o intervalo $[-1, 0) \subset D(h)$ não está contido na $\operatorname{Im}(f)$, contrariando a definição de composição de funções.

3.6 Exercícios propostos

- 1) (UDESC SC) Sejam f,g e h as funções cujos gráficos são ilustrados na figura abaixo: O intervalo que representa o conjunto $(\operatorname{Im}(f) \cap \operatorname{Im}(g)) (D(f) \cap \operatorname{Im}(h))$ é:
 - a) (-3, 2)
- b) $[-3, -2] \cup [0, 2]$
- c) [-2,0)
- d) [0, 2]
- e) $[2, +\infty)$

- 2) Determine o domínio das funções dadas.
 - a) $f(x) = x^2 3x + 1$
 - b) $g(x) = \sqrt{(x^2 + 1)(x + 2)}$
 - c) $h(x) = \sqrt{\frac{x}{3x-6}}$
 - d) $m(x) = \frac{2x+1}{x^2-4} + \frac{1}{x+3}$
 - e) $t(x) = \sqrt{4 \sqrt{2x 4}}$
- 3) Considere a função $f: \mathbb{R} \{-4\} \longrightarrow \mathbb{R}$ tal que $f(x) = \frac{2x+1}{x+4}$. Determine o valor do domínio de f cuja imagem é igual a 3.
- 4) Dadas as funções $f(x) = x^2$, $g(x) = \frac{3x-1}{x^2+1}$ e $h(x) = \sqrt{x^2+5}$, determine $h \circ h$, $f \circ g \circ f$ e $f \circ f \circ h$.

- 5) Considere as funções $f(x) = \frac{1}{x^2}$ e $g(x) = \sqrt{x+2}$. Determine o domínio de f+g, f-g, fg, $\frac{f}{g}$ e $g\circ f$.
- 6) Determine o domínio de $g \circ f$ e $f \circ g$ sendo $f(x) = \frac{x+2}{x}$ e $g(x) = 2x^2 10$.

4

Funções especiais

Neste capítulo estudaremos alguns tipos especiais de funções. A função f(x) = ax + b, $a, b \in \mathbb{R}$ é chamada de função afim. Destacamos em nosso estudo os seguintes casos particulares: função constante (quando a = 0), função do primeiro grau (quando $a \neq 0$) e função linear (quando $a \neq 0$ e b = 0).

4.1 Função constante

É a função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por f(x) = b, onde b é um número real. O gráfico da função constante é sempre paralelo ao eixo x e cruza o eixo y no ponto (0,b). Por exemplo,

Figura 4.1: Função constante.

4.2 Função do primeiro grau

É a função $f:\mathbb{R}\longrightarrow\mathbb{R}$ definida por f(x)=ax+b, onde a e b são números reais e $a\neq 0$.

4.2.1 Gráfico

O gráfico de uma função do 1^{o} grau é uma reta crescente ou decrescente. Considere a representação gráfica da função y = f(x), conforme Figura 4.2.

Figura 4.2

Da Figura 4.2 temos que $\tan\theta=\frac{y-y_0}{x-x_0},$ então $y-y_0=(\tan\theta)(x-x_0).$ Portanto,

$$y = (\tan \theta)x + y_0 - (\tan \theta)x_0$$

Consideremos $a = \tan \theta$ e $b = y_0 - (\tan \theta)x_0$. Logo, y = ax + b onde a é chamado de **coeficiente angular** da reta e b é chamado de **coeficiente linear**.

Note que b é a ordenada do ponto de interseção do gráfico de f com o eixo y. Para y=0 obtemos o ponto de interseção do gráfico de f com o eixo das abscissas $(-\frac{b}{a},0)$. Neste caso, $x=-\frac{b}{a}$ é chamado de **zero da função**. Veja Figura 4.3.

Figura 4.3

Observe que se f é crescente, ou seja, $x>x_0\Longrightarrow y>y_0$, então $a=\frac{y-y_0}{x-x_0}>0$, ilustrado na Figura 4.2. Se f é decrescente, ou seja, $x>x_0\Longrightarrow y< y_0$, então $a=\frac{y-y_0}{x-x_0}<0$, ilustrado na Figura 4.4.

Figura 4.4

Em particular, quando b = 0, a função do primeiro grau é chamada de **função** linear. Portanto, é a função definida por f(x) = ax, onde $a \neq 0$.

O gráfico de uma função linear sempre passa pela origem pois o coeficiente linear é nulo.

Figura 4.5: Função linear

Para valores diferentes de a, veja o link: Animação da função f(x) = ax

Exemplos:

1) A função f(x) = 2x - 1 é crescente pois a > 0.

2) A função $f(x) = -\frac{x}{2} - 3$ é decrescente pois a < 0.

4.3 Exercícios propostos

(1) Construir o gráfico das funções abaixo:

(a)
$$f(x) = 2 - 3x$$

(b)
$$g(x) = \frac{x}{2}$$

(c)
$$h(x) = -\frac{5}{3}$$

- (2) Seja f uma função do $1^{\underline{o}}$ grau tal que f(-2)=1 e f(3)=4. Determine $f(\frac{5}{2})$.
- (3) Considere dois motoqueiros que partem dos pontos A e B e suas trajetórias retilíneas se encontram no ponto C, conforme figura. Determine as funções que descrevem as trajetórias.

Função quadrática

A função do 2° grau ou função quadrática está presente em inúmeras aplicações. Na Física, por exemplo, o movimento retilínio uniforme é descrito pela função $S(t) = S_0 + v_0 t + \frac{at^2}{2}$, a qual descreve a posição S de um objeto em movimento em qualquer instante de tempo t. Nesse caso, S_0 representa a posição inicial do objeto, v_0 é a velocidade inicial e a é a aceleração. Neste capítulo faremos um estudo detalhado sobre as funções quadráticas.

5.1 Definição

A função quadrática é uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $f(x) = ax^2 + bx + c$, onde a, b, c são números reais dados e $a \neq 0$.

5.1.1 Gráfico

Vamos iniciar nosso estudo sobre funções quadráticas fazendo uma análise sobre gráfico de $f(x) = ax^2$, $a \neq 0$.

Figura 5.1: Função $f(x) = ax^2$, a > 0

Observe que o valor de "a" determina a abertura da parábola. Se -1 < a < 1, então mais aberta será a parábola. Se a < -1 ou a > 1 então mais fechada será a

parábola. Além disso, se a<0 há uma reflexão em torno do eixo x, conforme as Figuras 5.1 e 5.2.

Figura 5.2: Função $f(x) = ax^2$, a < 0

Para valores diferentes de a, veja o link: Animação da função $f(x) = ax^2$

Agora vamos comparar os gráficos de $f(x)=x^2$ e $g(x)=(x-k)^2, k\in\mathbb{R}$, conforme Figura 5.3 Qual a influência de k sobre o gráfico de f?

Figura 5.3: Translação horizontal da função $f(x) = x^2$

Quando k > 0 ocorre uma **translação horizontal** para a direita, no gráfico de f, de |k| unidades. Enquanto que se k < 0 a translação é para a esquerda, de |k| unidades. Neste caso, o vértice é o ponto (k,0).

Para valores diferentes de k, veja o link: Animação da função $f(x)=(x-k)^2$

No caso das funções $f(x)=x^2$ e $h(x)=x^2+p,\,p\in\mathbb{R},$ o que ocorre? (Veja Figura 5.4)

Figura 5.4: Translação vertical da função $f(x) = x^2$

Quando p > 0, ocorre uma **translação vertical** de |p| unidades para cima no gráfico de f. E se p < 0, a translação de |p| unidades é para baixo. Observe que o vértice é o ponto (0,p).

Para valores diferentes de p, veja o link: Animação da função $f(x) = x^2 + p$

Vamos construir o gráfico de $f(x) = -2(x+2)^2 + 3$ aplicando as técnicas abordadas acima.

Começamos representando o gráfico de $y=x^2$, em seguida o gráfico de $y=2x^2$, diminuindo assim a abertura da parábola. Refletindo o gráfico de $y=2x^2$ em torno do eixo x, obtemos o gráfico de $y=-2x^2$. Na sequência, transladamos horizontalmente o gráfico de $y=-2x^2$, de 2 unidades, para à esquerda, obtendo o gráfico de $y=-2(x+2)^2$. Finalmente, ao transladar verticalmente para cima o gráfico de $y=-2(x+2)^2$, de 3 unidades, obtemos o gráfico de $y=-2(x+2)^2+3$. A sequência descrita acima está representada na Figura 5.5.

Figura 5.5: Função $f(x) = -2(x+2)^2 + 3$

Neste exemplo, o vértice é o ponto (k, p) = (-2, 3).

O gráfico, por exemplo, da função $f(x) = x^2 - 6x + 7$ (veja Figura 5.6), também pode ser construído utilizando as técnicas descritas no exemplo acima, para isso basta utilizar a técnica de completar quadrados e reescrever a função da forma $f(x) = a(x-k)^2 + p$.

Assim, $f(x) = (x^2 - 6x) + 7 = (x^2 - 6x + 9) - 9 + 7 = (x - 3)^2 - 2$.

Figura 5.6: Função $f(x) = x^2 - 6x + 7$

Observe que o vértice da parábola é o ponto (k, p) = (3, -2).

Vamos generalizar o método para encontrar o vértice da parábola, discutido nos exemplos precedentes, utilizando a técnica de completar quadrados.

Consideremos a função $f(x)=ax^2+bx+c=a\left(x^2+\frac{b}{a}x+\frac{c}{a}\right),\ a\neq 0.$ Completando quadrados do termo $\left(x^2+\frac{b}{a}x\right)$, obtemos

$$\left(x^2 + \frac{b}{a}x + \frac{b^2}{4a^2}\right) - \frac{b^2}{4a^2} = \left(x + \frac{b}{2a}\right)^2 - \frac{b^2}{4a^2}$$

Assim,

$$f(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \right]$$

$$= a \left[\left(x + \frac{b}{2a} \right)^2 + \left(-\frac{b^2 - 4ac}{4a^2} \right) \right]$$

$$= a \left(x + \frac{b}{2a} \right)^2 + \left(-\frac{b^2 - 4ac}{4a} \right)$$
(5.1)

Observe que há uma translação horizontal de $\frac{b}{2a}$ unidades (para à direita ou esquerda, dependendo dos sinais de a e b) e uma translação vertical de $-\frac{b^2-4ac}{4a}$ unidades (para cima ou para baixo). Se a < 0, há uma reflexão do gráfico de f em torno do eixo x.

Graciela e Ligia

Comparando (5.1) com os exemplos precedentes, observamos que o vértice da parábola é dado por $(k, p) = \left(-\frac{b}{2a}, -\frac{b^2-4ac}{4a}\right)$. A partir daqui usaremos a notação x_v e y_v para k e p, respectivamente.

Vamos agora determinar os zeros (raízes) da função $f(x) = ax^2 + bx + c$. Queremos determinar os pontos onde o gráfico de f intercepta o eixo x, ou seja, os pontos tais que f(x) = 0.

$$y = f(x) = ax^2 + bx + c = 0$$

De acordo com (5.1), temos

$$a\left(x + \frac{b}{2a}\right)^2 + \left(-\frac{b^2 - 4ac}{4a}\right) = 0$$

e, portanto

$$a\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a}$$

$$\left(x + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$$

$$x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
(5.2)

Na Equação (5.2), seja $\Delta = b^2 - 4ac$. Temos então três casos para analisar.

- 1. Se $\Delta > 0$, as raízes $x_1 = \frac{-b + \sqrt{\Delta}}{2a}$ e $x_2 = \frac{-b \sqrt{\Delta}}{2a}$ são reais e distintas. Isso significa que o gráfico de f intercepta o eixo x em dois pontos, $(x_1, 0)$ e $(x_2, 0)$.
- 2. Se $\Delta = 0$, há duas raízes reais e iguais, a saber, $x_1 = x_2 = -\frac{b}{2a}$. Neste caso, o gráfico de f intercepta o eixo x em apenas um ponto, $(-\frac{b}{2a}, 0)$.
- 3. Se $\Delta < 0$, não há raízes reais, ou seja, o gráfico de f não intercepta o eixo x.

Resumimos na Tabela (5.1) todos os possíveis casos para o gráfico de f. Nos gráficos, a reta tracejada, cuja equação é $x = -\frac{b}{2a}$, é chamada de **eixo de simetria** da parábola. Observe que o ponto de interseção da parábola com o eixo de simetria é o vértice (x_v, y_v) .

a > 0 $x_1 = x_2 = \frac{-b}{2a} x$ $x_1 = x_2 = \frac{-b}{2a} x$

Tabela 5.1: Gráficos da função quadrádica

O vértice representa o ponto de máximo ou de mínimo da função quadrática, ilustrado na Figura 5.7. Portanto,

- $y_v \in \text{Im}(f)$ é o valor máximo da função somente se $y_v \ge y$, $\forall y \in \text{Im}(f)$;
- $y_v \in \text{Im}(f)$ é o valor mínimo da função somente se $y_v \leq y, \forall y \in \text{Im}(f)$.

Figura 5.7

O ponto de interseção do gráfico de $f(x) = ax^2 + bx + c$ com o eixo y é da forma (0, f(0)), ou seja, (0, c).

5.2 Exercícios resolvidos

1) Construir o gráfico das funções dadas identificando o vértice, o eixo de simetria e o conjunto imagem.

a)
$$f(x) = -x^2 - 3x + 10$$

Solução:

.) D <

i) Raízes
$$y=-x^2-3x+10=0\Longrightarrow x=\tfrac{3\pm\sqrt{9+40}}{-2}$$
 Então, $x_1=-5$ e $x_2=2$.

- ii) O gráfico intercepta o eixo y no ponto (0, c) = (0, 10).
- iii) Vértice

$$y = -x^{2} - 3x + 10$$

$$= -(x^{2} + 3x) + 10$$

$$= -(x^{2} + 3x + \frac{9}{4} - \frac{9}{4}) + 10$$

$$= -(x^{2} + 3x + \frac{9}{4}) + \frac{9}{4} + 10$$

$$= -(x + \frac{3}{2})^{2} + \frac{49}{4}$$

Comparando com a expressão $y = a(x-x_v)^2 + y_v$, temos que $x_v = -\frac{3}{2}$ e $y_v = \frac{49}{4}$.

- iv) O eixo de simetria é a reta de equação $x = x_v = -\frac{3}{2}$.
- v) Note que a=-1. Neste caso, a concavidade da parábola é voltada para baixo. Logo, esta função tem um valor máximo $y_v=\frac{49}{4}$. Assim, $\operatorname{Im}(f)=(-\infty,y_v)=(-\infty,\frac{49}{4}]$.

b)
$$g(x) = 4x^2 - 12x + 9$$

Solução:

i) Raízes
$$y = 4x^2 - 12x + 9 = 0 \Longrightarrow x = \frac{12 \pm \sqrt{144 - 144}}{8}$$
 Então, $x_1 = x_2 = \frac{3}{2}$.

ii) O gráfico intercepta o eixo y no ponto (0, c) = (0, 9).

iii) Vértice

$$y = 4x^{2} - 12x + 9$$

$$= 4(x^{2} - 3x) + 9$$

$$= 4(x^{2} - 3x + \frac{9}{4} - \frac{9}{4}) + 9$$

$$= 4(x^{2} - 3x + \frac{9}{4}) - 9 + 9$$

$$= 4(x - \frac{3}{2})^{2}$$

Comparando com a expressão $y = a(x-x_v)^2 + y_v$, temos que $x_v = -\frac{3}{2}$ e $y_v = 0$.

- iv) O eixo de simetria é a reta de equação $x = x_v = \frac{3}{2}$.
- v) Note que a=4. Neste caso, a concavidade da parábola é voltada para cima. Logo, esta função tem um valor mínimo $y_v = 0$. Assim, $Im(f) = [y_v, +\infty) = [0, +\infty).$

c) $h(x) = x^2 - x + 1$

Solução:

i) Raízes

$$y=x^2-x+1=0 \Longrightarrow x=rac{1\pm\sqrt{1-4}}{2}=rac{1\pm\sqrt{-3}}{2}$$

Como $\Delta=-3<0$, não existem raízes reais.

- ii) O gráfico intercepta o eixo y no ponto (0,c)=(0,1).
- iii) Vértice

$$y = x^{2} - x + 1$$

$$= (x^{2} - x) + 1$$

$$= (x^{2} - x + \frac{1}{4} - \frac{1}{4}) + 1$$

$$= (x^{2} - x + \frac{1}{4}) - \frac{9}{4} + 1$$

$$= (x - \frac{1}{2})^{2} + \frac{3}{4}$$

Comparando com a expressão $y = a(x - x_v)^2 + y_v$, temos que $x_v = \frac{1}{2}$ e $y_v = \frac{3}{4}$.

- iv) O eixo de simetria é a reta de equação $x = x_v = \frac{1}{2}$.
- v) Note que a=1. Neste caso, a concavidade da parábola é voltada para cima. Logo, esta função tem um valor mínimo $y_v=\frac{3}{4}$. Assim, $\mathrm{Im}(f)=[y_v,+\infty)=[\frac{3}{4},+\infty)$.

2) Determine a função quadrática cuja representação gráfica é

Solução:

Seja $f(x) = ax^2 + bx + c$, $a \neq 0$, a função procurada.

De acordo com o gráfico temos que $x_v = \frac{5}{4}$ e $y_v = -\frac{9}{8}$. Já vimos que f(x) pode ser reescrita na forma $y = f(x) = a(x - x_v + y_v)$, assim, $y = a(x - \frac{5}{4})^2 - \frac{9}{8}$. A parábola passa pelo ponto (0,2), então na expressãp acima $2 = a(x - \frac{5}{4})^2 - \frac{9}{8}$. Portanto, a = 2. Logo, $f(x) = 2(x - \frac{5}{4})^2 - \frac{9}{8} = 2x^2 - 5x + 2$.

Outra alternativa de resolução segue abaixo:

i)
$$f(0) = 2 \Longrightarrow 2 = a \cdot 0 + b \cdot 0 + c \Longrightarrow c = 2$$

ii)
$$x_v = \frac{5}{4} \Longrightarrow \frac{-b}{2a} = \frac{5}{4} \Longrightarrow b = \frac{-5a}{2}$$

iii)
$$y_v = \frac{-9}{8} \Longrightarrow \frac{-(b-4ac)}{4a} = \frac{-9}{8}$$

Como $b = \frac{-5a}{2}$ e c = 2, temos:

$$\frac{\frac{25}{4}a^2 - 4 \cdot a \cdot 2}{4a} = \frac{9}{8}$$

$$\frac{\frac{25}{4}a^2 - 8a = \frac{9a}{2}}{25a^2 - 32a = 18a}$$

$$25a^2 - 50a = 0$$

$$a(25a - 50) = 0$$

$$\text{Como } a \neq 0, \text{ resta}$$

$$25a - 50 = 0$$

$$a = 2.$$

Portanto,
$$b = \frac{-5a}{2} = \frac{-5}{2} \cdot 2 = -5$$
.
Logo, $f(x) = 2x^2 - 5x + 2$.

3) Determine o valor de $k \in \mathbb{R}$ para que a função $f(x) = kx^2 + (k+5)x + (k+1)$ tenha mínimo igual a -7.

Solução:

Seja $V(x_v, y_v)$ o vértice de f. A coordenada y_v é o máximo valor de f, portanto $y_v = -7$ onde

$$y_v = \frac{-(b^2 - 4ac)}{4a}$$

$$-7 = \frac{-[(k+5)^2 - 4k(k+1)]}{4k}$$

$$-7 = \frac{-[k^2 + 10k + 25 - 4k^2 - 4k]}{4k}$$

$$28k = k^2 + 10k + 25 - 4k^2 - 4k$$

$$3k^2 + 22k - 25 = 0.$$

As raízes são $k = \frac{-25}{3}$ e k = 1.

Como a função deve ter concavidade voltada para baixo para ter um valor mínimo, então k=1 e a função obtida é $f(x)=x^2+6x+2$.

5.3 Exercícios propostos

1) Construir o gráfico de $f(x) = x^2$, a seguir construir os gráficos das funções abaixo usando translações. Determine o vértice, a equação do eixo de simetria e o conjunto imagem.

a)
$$q(x) = -\frac{1}{2}(x+3)^2 - 4$$

b)
$$h(x) = 12x^2 - 3x$$

c)
$$g(x) = -4x^2 - 8x + 5$$

d)
$$f(x) = \frac{8}{9}x^2 + \frac{8}{3}x + 3$$

- 2) Determine o valor de $m \in \mathbb{R}$ para que a função $f(x) = mx^2 + (m-7)x + (m+1)$ tenha um valor máximo igual a 1.
- 3) (UDESC-SC) Seja f(x) uma função quadrática cujo gráfico passa pelos pontos $P(\frac{5}{2},\frac{9}{4})$ e Q(2,2) e pelo ponto de interseção da reta y=-x+4 com o eixo das abscissas.
 - a) Encontre a expressão de f(x).
 - b) A função f(x) admite um ponto de máximo ou um ponto de mínimo? Quais são as coordenadas desse ponto?
- 4) (UDESC-SC) Seja f(x) a função quadrática cujo gráfico passa pelo ponto P(1, -2) e pelo ponto de interseção da reta y = 4x + 2 com os eixos das ordenadas. Sabe-se ainda que uma de suas raízes é igual a 2.
 - a) Encontre a expressão de f(x).
 - b) A função f(x) admite um máximo ou um mínimo? Quais as coordenadas desse ponto?
- 5) (UDESC-SC) Seja f a função que descreve o perímetro do quadrado ACEG da figura abaixo.

O quadrado DEFI possui área igual a $9~cm^2$. A soma das áreas dos retângulos BCDI e FGHI é igual a $6x~cm^2$. Determine todos os valores reais de x que satisfazem a inequação $1 < f(x) \le 36$.

- 6) (UDESC-SC) Uma microempresa sabe que, se produzir e vender mensalmente x unidades de certo produto, terá um custo mensal unitário dado por $C(x) = x+10+\frac{1505}{x}$ reais e obterá uma receita mensal total dada por $R(x) = 500x-4x^2$ reais. Justificando e explicitando seus cálculos, determine:
 - a) a quantidade mensal a ser produzida e vendida para que a empresa obtenha lucro mensal máximo;
 - b) os valores de x para os quais a empresa possa obter pelo menos dez mil reais mensais de lucro.
- 7) Determine o domínio da função $f(x) = \sqrt{\frac{x^2 2x 1}{x^2 1}}$.

8) Determine o domínio das funções abaixo:

a)
$$f(x) = \frac{x+2}{x^2+5x+6}$$

a)
$$f(x) = \frac{x+2}{x^2+5x+6}$$

b) $f(x) = \sqrt{x^2 - 6x} + \sqrt{x-1}$

- 9) (UDESC-SC) Após ser arremessado, um projétil descreve uma trajetória parabólica permanecendo 12 minutos no ar. Sabendo-se que no instante inicial o projétil está situado no nível do solo e após 1 minuto ele está a 33 metros de altura, determine:
 - a) a equação da trajetória descrita pelo projétil;
 - b) o instante em que o projétil atinge a altura máxima;
 - c) a altura máxima obtida pelo projétil.

Inequações 5.4

As inequações são expressões matemáticas que utilizam, na sua formatação, os seguintes sinais de desigualdades: > (maior que), < (menor que), \ge (maior ou igual), < (menor ou igual) $e \neq$ (diferente).

Resolver uma inequação do segundo grau significa encontrar um conjunto de valores de x para os quais f(x) satisfaça a desigualdade desejada, por exemplo:

i)
$$x^2 - 2x + 1 \ge 0$$

$$ii) \frac{x^2+4}{x^2-5x+6} < 0$$

$$(x^2 - 2x)(-2x^2 + 1) \le 0$$

Vamos apresentar alguns exercícios resolvidos para exemplificar o método de resolução das inequações de segundo grau.

5.4.1Exercícios resolvidos

1) Determine os valores de $x \in \mathbb{R}$ tais que $x^2 - 5x + 6 \ge 0$.

Solução:

Vamos fazer um estudo do sinal da função $y = x^2 - 5x + 6$, para encontrar os valores de $x \in \mathbb{R}$ para os quais $y \geq 0$.

As raízes de $x^2 - 5x + 6 = 0$ são $x_1 = 2$ e $x_2 = 3$.

Estudo do sinal:

Através do gráfico da função observamos que $y \ge 0$ para $x \le 2$ ou $x \ge 3$ e $y \le 0$ para $2 \le x \le 3$. Portanto, a solução é $S = (-\infty, 2] \cup [3, +\infty)$.

2) Determine os valores de $x \in \mathbb{R}$ tais que $(4x^2 - 12x + 9)(-x^2 - 3x + 10) < 0$. Solução:

Temos dois casos a considerar:

Caso 1: Se $4x^2 - 12x + 9 > 0$ e $-x^2 - 3x + 10 < 0$.

Os valores de x tais que $4x^2-12x+9>0$ e $-x^2-3x+10<0$ são $\mathbb{R}-\left\{\frac{3}{2}\right\}$ e $(-\infty,-5)\cup(2,+\infty)$, respectivamente.

Portanto, a solução para o caso 1 é a interseção dos intervalos $\mathbb{R} - \{\frac{3}{2}\} \cap [(-\infty, -5) \cup (2, +\infty)]$, ou seja, $(-\infty, -5) \cup (2, +\infty)$.

<u>Caso 2</u>: Se $4x^2 - 12x + 9 < 0$ e $-x^2 - 3x + 10 > 0$ a solução é $\emptyset \cap (-5, 2) = \emptyset$, pois $\nexists x \in \mathbb{R}$ tais que $4x^2 - 12x + 9 < 0$.

Logo, os valores de x tais que $(4x^2 - 12x + 9)(-x^2 - 3x + 10) < 0$ consistem na união das soluções obtidas nos casos 1 e 2, ou seja, $[(-\infty, 5) \cup (2, +\infty)] \cup \emptyset = (-\infty, 5) \cup (2, +\infty)$.

3) Determine os valors de x tais que $\frac{x^2 + 2x - 3}{-2x^2 + 3x + 2} \le 0$.

Solução:

Temos dois casos a considerar:

<u>Caso 1</u>: Se $x^2 + 2x - 3 \ge 0$ e $-2x^2 + 3x + 2 < 0$.

Os valores de x tais $x^2+2x-3\geq 0$ e $-2x^2+3x+2<0$ são $(-\infty,-3]\cup [1,+\infty)$ e $(-\infty,-\frac{1}{2})\cup (2,+\infty)$, respectivamente.

Portanto, a solução para o caso 1 é a interseção destes intervalos, ou seja, $(-\infty, -3] \cap (2, +\infty)$.

<u>Caso 2</u>: Se $x^2+2x-3\leq 0$ e $-2x^2+3x+2>0$ a solução para a primeira inequação é [-3,1] e para a segunda inequação é $(-\frac{1}{2},2)$.

Portanto, a solução para o caso 2 é $[-3,1] \cap (-\frac{1}{2},2) = (-\frac{1}{2},1]$.

Logo, os valores de x tais que $\frac{x^2+2x-3}{-2x^2+3x+2} \leq 0$ consistem na união das soluções obtidas nos casos 1 e 2, ou seja, $(-\infty, -3] \cup (-\frac{1}{2}, 1] \cup (2, +\infty)$.

5.5 Exercícios propostos

1) Resolva as inequações abaixo:

a)
$$2x^2 + 4x + 3 \le 0$$

b)
$$(-x^2 + x - 1)(x^2 - 2x - 3) > 0$$

c)
$$x^4 + 4x^3 - 5x^2 < 0$$

$$d) \frac{-x^2 - 4x}{-x^2 + 6x - 5} \ge 0$$

e)
$$\frac{x^2-9}{x^2-4x+4} \le 0$$

6

Função modular

A função que associa a cada número real x o seu valor absoluto |x| é chamada de função modular. Iniciaremos este capítulo fazendo um estudo sobre módulo ou valor absoluto de um número real e suas propriedades.

6.1 Módulo ou valor absoluto

Definição: O módulo, ou valor absoluto, de um número real x é denotado por |x| e definido por

$$|x| = \begin{cases} x, & \text{se } x \ge 0 \\ -x, & \text{se } x < 0 \end{cases}$$

Exemplos:

- a) |2| = 2
- b) $\left| -\frac{1}{3} \right| = -\left(-\frac{1}{3} \right) = \frac{1}{3}$
- c) |0| = 0

Da definição de módulo podemos concluir que o módulo de um número é sempre um número não-negativo, ou seja, $|x| \ge 0$.

Interpretação Geométrica: Geometricamente, o módulo ou valor absoluto de x representa a distância entre x e 0. Escreve-se então $|x| = \sqrt{x^2}$.

Propriedades de módulo:

Sejam x e y números reais.

1.
$$|x| > 0$$

2.
$$|x| = |-x|$$

3.
$$|x| \ge x$$

4.
$$|x|^2 = x^2$$

5.
$$|x.y| = |x|.|y|$$

6.
$$\left| \frac{x}{y} \right| = \frac{|x|}{|y|}, \ y \in \mathbb{R}^*$$

7.
$$|x| = a \Leftrightarrow x = a \text{ ou } x = -a$$

8.
$$|x| = |y| \Leftrightarrow x = y \text{ ou } x = -y$$

9.
$$|x+y| \le |x| + |y|$$

10.
$$|x - y| \le |x| + |y|$$

11.
$$|x| - |y| \le |x - y|$$

12.
$$|x| - |y| \le |x + y|$$

Vamos demonstrar algumas das propriedades acima.

• Propriedade 3.

$$|x| \ge x$$
.

Se
$$x \ge 0$$
 então $|x| = x$.

Se
$$x < 0$$
 então $x < 0 \le |x|$ pela propriedade 1.

• Propriedade 4.

$$|x|^2 = x^2$$
.

Se
$$x \ge 0$$
 então $|x|^2 = |x| \cdot |x| = x \cdot x = x^2$.

Se
$$x \ge 0$$
 então $|x|^2 = |x| \cdot |x| = x \cdot x = x^2$.
Se $x < 0$ então $|x|^2 = |x| \cdot |x| = (-x)(-x) = x^2$.

• Propriedade 5.

$$|x.y| = |x|.|y|.$$

Temos três casos a considerar:

Se
$$x \ge 0$$
 e $y \ge 0$ então $|xy| = xy = |x| \cdot |y|$.

Se
$$x \ge 0$$
 e $y < 0$ então $|xy| = -(xy) = x(-y) = |x| \cdot |y|$.

Se
$$x < 0$$
 e $y < 0$ então $|xy| = +(xy) = (-x)(-y) = |x| \cdot |y|$.

• Propriedade 6.

$$\left|\frac{x}{y}\right| = \frac{|x|}{|y|}, \ y \in \mathbb{R}^*, y \neq 0$$

À demonstração é análoga à anterior.

• Propriedade 8.

$$|x| = |y| \Leftrightarrow x = y \text{ ou } x = -y.$$

Temos quatro casos a considerar:

Se
$$x \ge 0$$
 e $y \ge 0$ então $|x| = |y| \Rightarrow x = y$.

Se
$$x \ge 0$$
 e $y < 0$ então $|x| = |y| \Rightarrow x = -y$.

Se
$$x < 0$$
 e $y \ge 0$ então $|x| = |y| \Rightarrow -x = y$.

Se
$$x < 0$$
 e $y < 0$ então $|x| = |y| \Rightarrow -x = -y$.

Portanto,
$$|x| = |y| \Rightarrow x = \pm y$$
.

• Propriedade 9.

$$|x+y| \le |x| + |y|$$
. Designaldade triangular.

Pelas propriedades 4, 3 e 5 temos que:

$$|x+y|^2 \stackrel{prop.4}{=} (x+y)^2 = x^2 + 2xy + y^2 \stackrel{prop.3}{\leq} x^2 + 2|xy| + y^2 \stackrel{prop.4}{=} |x|^2 + 2|x| \cdot |y| + |y|^2.$$

Então
$$|x+y|^2 \le |x|^2 + 2|x| \cdot |y| + |y|^2 = (|x|+|y|)^2$$
.

$$Logo, |x+y| \le |x| + |y|.$$

• Propriedade 10.

$$|x - y| \le |x| + |y|.$$

 $|x - y| = |x + (-y)| \stackrel{prop.7}{\le} |x| + |-y| \stackrel{prop.2}{=} |x| + |y|.$

• Propriedade 11.

$$\bullet |x| - |y| \le |x - y|.$$

Note que
$$|x| = |x + y - y|$$
. Pela propriedade 7, temos que:

$$|x| = |(x - y) + y| \le |x - y| + |y|.$$

$$Logo, |x| - |y| \le |x - y|.$$

• Propriedade 12.

$$|x| - |y| \le |x + y|.$$

$$|x| = |(x+y) - y| \le |x+y| + |-y| = |x+y| + |y|.$$

Logo,
$$|x| - |y| < |x + y|$$
.

Exemplos:

1) Definir cada um dos módulos abaixo:

a)
$$|x+3|$$

Solução:

Se
$$x-3 \ge 0$$
 então $|x+3| = x+3$ e se $x-3 < 0$ então $|x+3| = -(x+3)$.

Portanto,
$$|x+3| = \begin{cases} x+3, & \text{se } x \ge 3\\ -x-3, & \text{se } x < 3 \end{cases}$$
.

b)
$$|5 - x|$$

Solução:

Se
$$5-x \ge 0$$
 então $|5-x| = 5-x$ e se $5-x < 0$ então $|5-x| = -(5-x)$.

Portanto,
$$|5-x| = \begin{cases} 5-x, & \text{se } x \le 5 \\ x-5, & \text{se } x > 5 \end{cases}$$
.

c)
$$|4 - x^2|$$

Solução:

Se
$$4 - x^2 \ge 0$$
 então $|4 - x^2| = 4 - x^2$ e se $4 - x^2 < 0$ então $|4 - x^2| = -(4 - x^2)$.

Portanto,
$$|4 - x^2| = \begin{cases} 4 - x^2, & \text{se } -2 \le x \le 2 \\ x^2 - 4, & \text{se } x < -2 \text{ ou } x > 2 \end{cases}$$
.

6.2 Função modular

A função modular, ou função módulo, é a função $f:\mathbb{R}\to\mathbb{R}$ definida por f(x)=|x|.

Da definição de módulo de x, temos que a função modular pode ser redefinida por $f(x) = |x| = \left\{ \begin{array}{l} x, \text{ se } x \geq 0 \\ -x, \text{ se } x < 0 \end{array} \right.$. O gráfico de f é apresentado na Figura 6.1.

Figura 6.1: Função f(x) = |x|

O domínio de f são todos os números reais $(D(f) = \mathbb{R})$ e sua imagem são todos os números reais não-negativos $(\operatorname{Im}(f) = \mathbb{R}_+)$.

Vamos fazer algumas considerações sobre as funções g(x) = |x + a| e h(x) = |x| + a, $a \in \mathbb{R}$. Queremos verificar que tipo de influência o número a exerce sobre o gráfico da função f(x) = |x|. Para isto, considere os exemplos:

1)
$$g(x) = |x - 1|$$

A função g pode ser reescrita por

$$g(x) = \begin{cases} x - 1, & x - 1 \ge 0 \\ -(x - 1), & x - 1 < 0 \end{cases}, \text{ ou seja, } g(x) = \begin{cases} x - 1, & x \ge 1 \\ -(x - 1), & x < 1 \end{cases}$$

2)
$$g(x) = |x+1|$$

A função g pode ser reescrita por

$$g(x) = \left\{ \begin{array}{ll} x+1, & x+1 \geq 0 \\ -(x+1), & x+1 < 0 \end{array} \right., \text{ ou seja}, \ g(x) = \left\{ \begin{array}{ll} x+1, & x \geq -1 \\ -(x+1), & x < -1 \end{array} \right.$$

Verificamos nos exemplos 1 e 2 que se a>0 ocorre uma translação horizontal de a unidades para à direita no gráfico de f e, se a<0 a translação de |a| unidades é para à esquerda.

3)
$$h(x) = |x| + 1$$

Reescrevendo a função h, tem-se

$$h(x) = \begin{cases} x+1, & x \ge 0 \\ -x+1, & x < 0 \end{cases}$$
, ou seja, $h(x) = \begin{cases} x+1, & x \ge 0 \\ -x+1, & x < 0 \end{cases}$

4)
$$h(x) = |x| - 1$$

Reescrevendo a função l, tem-se

$$h(x) = \begin{cases} x - 1, & x \ge 0 \\ -x - 1, & x < 0 \end{cases}, \text{ ou seja, } h(x) = \begin{cases} x - 1, & x \ge 0 \\ -x - 1, & x < 0 \end{cases}$$

Nos exemplos 3 e 4, observamos que se a>0 há uma translação vertical de a unidades para cima no gráfico de f e, se a<0 a translação de |a| unidades é para baixo.

5)
$$m(x) = |x - 2| + 1$$

Redefinindo a função m, tem-se

$$m(x) = \left\{ \begin{array}{ll} x-2+1, & x-2 \geq 0 \\ -(x-2)+1, & x-2 < 0 \end{array} \right., \text{ ou seja, } m(x) = \left\{ \begin{array}{ll} x-1, & x \geq 2 \\ -x+3, & x < 2 \end{array} \right.$$

Neste exemplo, ocorre uma translação horizontal de 2 unidades para à direita seguida de uma translação vertical de 1 unidades para cima no gráfico de f.

Para valores diferentes de a, veja os links: Animação da função f(x)=a|x|; Animação da função f(x)=|x|+a; Animação da função f(x)=|x+a|

Vamos fazer algumas considerações sobre as funções abaixo:

1.
$$g(x) = |f(x)|$$

2.
$$g(x) = f(|x|)$$

Exemplos: Construir o gráfico de cada uma das funções abaixo:

a)
$$g(x) = |x^2 - 5x + 6|$$

Consideremos g(x) = |f(x)|, onde $f(x) = x^2 - 5x + 6$

$$g(x) = \begin{cases} f(x) & \text{se } f(x) \ge 0\\ -f(x) & \text{se } f(x) < 0 \end{cases}.$$

A função g pode ser reescrita como

$$g(x) = \begin{cases} x^2 - 5x + 6 & \text{se } x^2 - 5x + 6 \ge 0 \\ -(x^2 - 5x + 6) & \text{se } x^2 - 5x + 6 < 0 \end{cases}.$$

Analisando o sinal de f(x) temos que

$$g(x) = \begin{cases} x^2 - 5x + 6 & \text{se } x \le 2 \text{ ou } x \ge 3 \\ -(x^2 - 5x + 6) & \text{se } 2 < x < 3 \end{cases}.$$

Os gráficos de f e g são apresentados nas Figura 6.2.

Figura 6.2

b)
$$g(x) = |x|^2 - 5|x| + 6$$

Consideremos
$$g(x) = f(|x|)$$
, onde $f(x) = x^2 - 5x + 6$

$$g(x) = f(|x|) = \begin{cases} f(x) & \text{se } x \ge 0\\ f(-x) & \text{se } x < 0 \end{cases}$$

A função g(x) pode ser reescrita como:

$$g(x) = \begin{cases} x^2 - 5x + 6 & \text{se } x \ge 0 \\ (-x)^2 - 5(-x) + 6 & \text{se } x < 0 \end{cases} = \begin{cases} x^2 - 5x + 6 & \text{se } x \ge 0 \\ x^2 + 5x + 6 & \text{se } x < 0 \end{cases}$$

cujo gráfico é dado na Figura 6.3.

Figura 6.3

Observações:

- i) No exemplo (a) o gráfico da função g pode ser obtido a partir do gráfico de f, bastando para isto efetuar uma reflexão em torno do eixo x, no intervalo em que f(x) < 0
- ii) No exemplo (b) o gráfico da função g pode ser obtido a partir do gráfico de f, bastando para isto que o gráfico de f, para $x \ge 0$, sofra uma reflexão em torno do eixo g.

As observações feitas para os exemplos (a) e (b) podem ser generalizadas. Dado um ponto P(x, y) no plano cartesiano, representado na Figura 6.4, temos que:

- o simétrico de P em relação ao eixo x é o ponto R(x, -y);
- o simétrico de P em relação ao eixo y é o ponto Q(-x,y).

Figura 6.4

Temos assim que:

- Dada a função y=f(x), o gráfico de y=f(-x) é o simétrico do gráfico de y=f(x) em relação ao eixo y.
- Dada a função y = f(x), o gráfico de y = -f(x) é o simétrico do gráfico de y = f(x) em relação ao eixo x.

6.3 Equações modulares

Vamos agora fazer um estudo sobre as equações modulares e, para isto, consideremos alguns exemplos.

1)
$$|2x - 3| = 1$$

Solução:

Lembrando da propriedade $|x| = a \iff x = a$ ou x = -a, temos:

$$|2x - 3| = 1 \Longleftrightarrow \begin{cases} 2x - 3 = 1 \Rightarrow x = 2 \\ \text{ou} \\ 2x - 3 = -1 \Rightarrow x = 1 \end{cases}.$$

Portanto, a solução é $S = \{1, 2\}.$

2)
$$|2 - 3x| = |7 - x|$$

Solução:

Pela propriedade $|x| = |y| \iff x = y$ ou x = -y, temos:

$$|2 - 3x| = |7 - x| \Longleftrightarrow \begin{cases} 2 - 3x = 7 - x \Rightarrow x = -\frac{5}{2} \\ \text{ou} \\ 2 - 3x = -7 + x \Rightarrow x = \frac{9}{4} \end{cases}.$$

Portanto, a solução é $S = \{-\frac{5}{2}, \frac{9}{4}\}.$

3)
$$\left| \frac{x+1}{2x-1} \right| = 2$$

Solução:

Lembrando da propriedade $\left|\frac{x}{y}\right| = \frac{|x|}{|y|}$, temos:

$$\left| \frac{x+1}{2x-1} \right| = 2 \iff |x+1| = 2|2x-1|.$$

Como $|\pm 2|=2$, reescrevendo a equação, temos $|x+1|=|\pm 2||2x-1|$.

Usando a propriedade |x|.|y| = |x.y| temos as possibilidades |x+1| = |4x-2| ou |x+1| = |-4x+2|.

Como |4x-2| = |-4x+2|, as duas equações acima levam no mesmo resultado. Então, vamos resolver a primeira equação.

$$|x+1| = |4x-2| \Longleftrightarrow \begin{cases} x+1 = 4x-2 \Rightarrow x = 1 \\ \text{ou} \\ x+1 = -4x+2 \Rightarrow x = \frac{1}{5} \end{cases}.$$

Portanto, a solução é $S = \{\frac{1}{5}, 1\}$.

4)
$$|3x - 2| + 4x - 3 = 0$$
.

Solução:

Se
$$3x - 2 \ge 0 \Longrightarrow x \ge \frac{2}{3}$$
, então

$$|3x - 2| + 4x - 3 = 0 \implies 3x - 2 + 4x - 3 = 0$$

 $7x - 5 = 0$
 $x = \frac{5}{7} \in [\frac{2}{3}, \infty)$

Se
$$3x - 2 < 0 \Longrightarrow x < \frac{2}{3}$$
, então

$$|3x - 2| + 4x - 3 = 0 \implies -3x + 2 + 4x - 3 = 0$$
 $x - 1 = 0$
 $x = 1 \notin (-\infty, \frac{2}{3})$

Portanto, a solução da equação dada é $S = \{\frac{5}{7}\}.$

5)
$$|x+4| + |2x-6| = 3x$$

Solução:

Aplicando a definição de valor absoluto, temos:

$$|x+4| = \begin{cases} x+4, & \text{se } x \ge -4 \\ -(x+4), & \text{se } x < -4 \end{cases}$$
 e $|2x-6| = \begin{cases} 2x-6, & \text{se } x \ge 3 \\ -(2x-6), & \text{se } x < 3 \end{cases}$.

Se x < -4 então a equação |x+4| + |2x-6| = 3x é representado por

$$-x - 4 - 2x + 6 = 3x$$

 $x = \frac{1}{3}$ $\notin (-\infty, -4).$

Se $-4 \le x < 3$, de forma similar, temos:

$$\begin{array}{c} x + 4 - 2x + 6 = 3x \\ x = \frac{5}{2} \end{array} \in [-4, 3).$$

Se $x \geq 3$, temos

$$x + 4 + 2x - 6 = 3x$$

-2 = 0 (absurdo).

Portanto, $S = \{\frac{5}{2}\}.$

6)
$$|x^2 - 1|^2 + 3|x^2 - 1| - 4 = 0$$

Solução:

Fazendo $|x^2-1|=y$, temos temos a equação do segundo grau $y^2+3y-4=0$, cujas raízes são $y_1=-1$ e $y_2=4$.

Como
$$y=|x^2-1|\geq 0$$
 então $|x^2-1|=4$. Da definição de módulo temos
$$\left\{\begin{array}{l} x^2-1=4\\ x^2-1=-4 \end{array}\right. \Longrightarrow \left\{\begin{array}{l} x^2-5=0\\ x^2+3=0 \end{array}\right..$$

A primeira equação tem por solução $x=\pm\sqrt{5}$ e não existem números reais que satisfaçam a segunda equação.

Portanto, a solução da equação $|x^2-1|^2+3|x^2-1|-4=0$ é $S=\{-\sqrt{5},\sqrt{5}\}.$

6.4 Inequações modulares

Vamos apresentar algumas propriedades com o objetivo de facilitar a resolução de inequações que envolvem módulo.

Propriedades:

Seja $a \in \mathbb{R}_+^*$, então:

$$i) |x| \le a \Leftrightarrow -a \le x \le a$$

$$|ii| |x| \ge a \Leftrightarrow x \le -a \text{ ou } x \ge a$$

Demostração:

$$|x| \le a \stackrel{\text{a>0}}{\Longleftrightarrow} x^2 \le a^2 \Longleftrightarrow x^2 - a^2 \le 0 \Longleftrightarrow (x-a)(x+a) \le 0 \Longleftrightarrow -a \le x \le a$$

$$ii) |x| \ge a \stackrel{\text{a>0}}{\Longleftrightarrow} x^2 \ge a^2 \iff x^2 - a^2 \ge 0 \iff (x-a)(x+a) \ge 0 \iff x \le -a \text{ ou } x \ge a$$

Exemplos: Resolver as inequações abaixo:

1.
$$|2x - 3| \ge 1$$

Solução:

$$|2x-3| \ge 1 \Longleftrightarrow \left\{ \begin{array}{l} 2x-3 \le -1 \\ \text{ou} \\ 2x-3 \ge 1 \end{array} \right. \left\{ \begin{array}{l} x \le 1 \\ \text{ou} \\ x \ge 2 \end{array} \right.$$

Logo,
$$S = \{x \in \mathbb{R}/x \le 1 \text{ ou } x \ge 2\}$$

2.
$$|2x+4| \le 3$$

 $Soluç\~ao.$

$$|2x+4| \leq 3 \Longleftrightarrow -3 \leq 2x+4 \leq 3 \Longleftrightarrow -7 \leq 2x \leq -1 \Longleftrightarrow -\frac{7}{2} \leq x \leq -\frac{1}{2}$$
 Logo, $S = \{x \in \mathbb{R}/-\frac{7}{2} \leq x \leq -\frac{1}{2}\}$

$$3. ||2x - 1| - 4| \le 3$$

Solução:

$$||2x - 1| - 4| \le 3 \iff -3 \le |2x - 1| - 4 \le 3 \iff 1 \le |2x - 1| \le 7.$$

Temos agora, dois casos a considerar:

$$i) |2x - 1| \ge 1$$

Assim,
$$\begin{cases} 2x - 1 \le -1 \\ \text{ou} \\ 2x - 1 \ge 1 \end{cases} \iff \begin{cases} x \le 0 \\ \text{ou} \\ x \ge 1 \end{cases}.$$

A solução do caso (i) é $\{x \in \mathbb{R}/x \le 0 \text{ ou } x \ge 1\}$

$$|ii| |2x - 1| \le 7$$

Assim,
$$-7 \le 2x - 1 \le 7 \iff -6 \le 2x \le 8 \iff -3 \le x \le 4$$
.

A solução do caso (ii) é $\{x \in \mathbb{R}/-3 \le x \le 4\}$

Logo, a solução da inequação dada é:

$$S = \{x \in \mathbb{R}/x \le 0 \text{ ou } x \ge 1\} \cap \{x \in \mathbb{R}/-3 \le x \le 4\} = \{x \in \mathbb{R}/-3 \le x \le 0 \text{ ou } 1 \le x \le 4\}.$$

4.
$$|x^2 - 4x| - 3x + 6 < 0$$

Sabendo que $|x^2 - 4x| = \begin{cases} x^2 - 4x, & \text{se } x \le 0 \text{ ou } x \ge 4 \\ -(x^2 - 4x), & \text{se } 0 \le x \le 4 \end{cases}$ devemos, então, considerar dois casos:

i) Se
$$x \le 0$$
 ou $x \ge 4$, temos:

$$|x^2-4x|-3x+6 \leq 0 \Longrightarrow x^2-4x-3x+6 \leq 0 \Longrightarrow x^2-7x+6 \leq 0 \Longrightarrow 1 < x < 6.$$

A solução S_1 é:

$$S_1=\{x\in\mathbb{R}/x\leq 0 \text{ ou } x\geq 4\}\cap \{x\in\mathbb{R}/1\leq x\leq 6\}=\{x\in\mathbb{R}/4\leq x\leq 6\}.$$

$$ii)$$
 Se $0 < x < 4$, temos:

$$|x^2 - 4x| - 3x + 6 \le 0 \Longrightarrow -x^2 + 4x - 3x + 6 \le 0 \Longrightarrow -x^2 + x + 6 \le 0 \Longrightarrow x \le -2 \text{ ou } x \ge 3.$$

A solução S_2 é:

$$S_2 = \{x \in \mathbb{R}/0 < x < 4\} \cap \{x \in \mathbb{R}/x \le -2 \text{ ou } x \ge 3\} = \{x \in \mathbb{R}/3 \le x < 4\}.$$

A solução da inequação é:

$$S = \{x \in \mathbb{R}/4 \le x \le 6\} \cup \{x \in \mathbb{R}/3 \le x < 4\} = \{x \in \mathbb{R}/3 \le x \le 6\}.$$

5.
$$|1 - 2x| - |3x - 4| \le 2x + 1$$

Sabemos que:

$$|1 - 2x| = \begin{cases} 1 - 2x, & \text{se } x \le \frac{1}{2} \\ -(1 - 2x), & \text{se } x > \frac{1}{2} \end{cases} \text{ e } |3x - 4| = \begin{cases} 3x - 4, & \text{se } x \ge \frac{4}{3} \\ -(3x - 4), & \text{se } x < \frac{4}{3} \end{cases}.$$

Então,

Assim, temos três casos a considerar:

	$(-\infty, \frac{1}{2}]$	$\frac{1}{2}$	$\left(\frac{1}{2}, \frac{4}{3}\right)$	<u>4</u> 3	$\left[\frac{4}{3},+\infty\right)$
1-2x	1-2x		-1 + 2x		-1 + 2x
3x - 4	-3x+4		-3x + 4		3x-4

i) Se $x \leq \frac{1}{2}$, temos:

$$|1 - 2x| - |3x - 4| \le 2x + 1 \Longrightarrow 1 - 2x - (-3x + 4) \le 2x + 1 \Longrightarrow 1 - 2x + 3x - 4 \le 2x + 1 \Longrightarrow x \ge -4.$$

Portanto, $S_1 = \{x \in \mathbb{R}/x \le \frac{1}{2}\} \cap \{x \in \mathbb{R}/x \ge -4\} = \{x \in \mathbb{R}/-4 \le x \le \frac{1}{2}\}.$

ii) Se $\frac{1}{2} < x < \frac{4}{3}$, então:

$$|1 - 2x| - |3x - 4| \le 2x + 1 \Longrightarrow -1 + 2x - (-3x + 4) \le 2x + 1 \Longrightarrow -1 + 2x + 3x - 4 \le 2x + 1 \Longrightarrow x \le 2.$$

Portanto, $S_2 = \{x \in \mathbb{R}/\frac{1}{2} < x < \frac{4}{3}\} \cap \{x \in \mathbb{R}/x \le 2\} = \{x \in \mathbb{R}/\frac{1}{2} < x < \frac{4}{3}\}.$

iii) Se $x \ge \frac{4}{3}$, temos:

$$|1 - 2x| - |3x - 4| \le 2x + 1 \Longrightarrow -1 + 2x - (3x - 4) \le 2x + 1 \Longrightarrow -1 + 2x - 3x + 4 \le 2x + 1 \Longrightarrow x \ge \frac{2}{3}.$$

Portanto, $S_3 = \{x \in \mathbb{R}/x \ge \frac{4}{3}\} \cap \{x \in \mathbb{R}/x \ge \frac{2}{3}\} = \{x \in \mathbb{R}/x \ge \frac{4}{3}\}.$

Logo, a solução da inequação proposta é $S = S_1 \cup S_2 \cup S_3 = \{x \in \mathbb{R}/x \ge -4\}$.

6.5 Exercícios propostos

- 1) Construir os gráficos das funções g(x) = |f(x)|, h(x) = f(|x|) e p(x) = |f(|x|)| a partir do gráfico de $f(x) = -3x^2 2x + 1$.
- 2) Construir o gráfico de cada uma das funções abaixo:

a)
$$f(x) = -2|x-3| + \frac{1}{2}$$

b)
$$p(x) = |x+1| + 7x - 3$$

c)
$$q(x) = |x+1| + |3x-6|$$

3) (UDESC-SC) Considere os gráficos ilustrados na figura abaixo

Classifique as sentenças abaixo como verdadeira (V) ou falsa (F).

- () O valor de $g\left(f\left(-1\right)\right)-f\left(g\left(-2\right)+2\right)$ é igual a 2.
- () O valor de f(g(-4) + 1) + 3 é igual a 1.
- () A lei de formação de y = f(x) é y = |x 1| 2.

Assinale a alternativa que contém a sequência correta, de cima para baixo:

- a) V-F-V
- b) V-V-V
- c) F-V-F
- d) F-V-V
- e) V-V-F
- 4) Reescreva a função $f(x) = x^2 1 + |x^2 1| + 1$ como uma função definida por partes. Represente geometricamente o gráfico de f e determine seu conjunto imagem.
- 5) Considere a funções:
 - a) $f(x) = \frac{|x^2 2x| |x^2 4|}{2}$;
 - b) h(x) = |3x + 6| |x + 2|;
 - c) $g(x) = |x^2 2x| + x + 2$.
 - i) Construir os gráficos das funções.
 - ii) Determinar os conjuntos imagem das funções.
- 6) Considere os conjuntos $A = \{x \in \mathbb{R}/|3x 2| + 2x 3 < 0\}, B = \{x \in \mathbb{R}/x^2 3x + 2 < 0\}, C = \{x \in \mathbb{R}/|x| < 3\} \in D = \{x \in \mathbb{R}/-1 \le x \le 3\}.$ Determine $(C \cup D) (C \cap B)$.
- 7) Resolva a equação |x+1|+3|x-2|=8.

8) Resolva as inequações abaixo:

a)
$$|4 - x^2| > 5$$

$$b) \left| \frac{x+1}{2x-1} \right| \le 2$$

c)
$$|2x - 4| - |x + 1| + 3x \ge 0$$

d)
$$\frac{|x|}{x-2} \ge 0$$

e)
$$7 + \frac{2}{|x|} \le 3|x|$$

- 9) Determine o domínio da função $f(x) = \sqrt{|3x+2| |1-2x| x 1}$
- 10) (UDESC-SC) Seja S_1 o conjunto solução da inequação $|x-\frac{1}{2}| \leq \frac{3}{2}$ e S_2 o conjunto solução da inequação $|x-1| > \frac{1}{2}$. Determine o conjunto S dado por $S = S_1 \cap S_2$.

Propriedades das Funções

Seja $f:A\to B$ uma função. A relação $g:B\to A$ define uma função? Quais as condições para que $g:B\to A$ defina uma função? Qual a relação entre f e g? Estas questões serão norteadoras do estudo deste capítulo.

7.1 Funções pares e impares

Definição: Uma função f é par se f(-x) = f(x) e impar se f(-x) = -f(x) para todo $x \in \mathbb{R}$.

Por exemplo,

- 1. Seja $f(x) = x^2$ então $f(-x) = (-x)^2 = x^2 = f(x)$. Logo, f é uma função par.
- 2. Seja $f(x)=x^3$ então $f(-x)=(-x)^3=-x^3=-f(x)$. Logo, f é uma função ímpar.
- 3. Seja $f(x)=x^2+x$ então $f(-x)=(-x)^2+(-x)=x^2-x$. Observe que $f(-x)\neq f(x)$ e $f(-x)\neq -f(x)$. Logo, f não é uma função par nem ímpar.

Obviamente, os gráficos de funções pares são simétricos em relação ao eixo y (Figura 7.1(a)) enquanto que os gráficos das funções ímpares são simétricos em relação à origem (Figura 7.1(b)). A Figura 7.1(c) mostra o gráfico de uma função que não é para nem ímpar (não há simetria em relação ao eixo y nem em relação à origem).

Figura 7.1

Propriedades:

- 1. A soma de duas funções pares é uma função par.
- 2. A soma de duas funções ímpares é uma função ímpar.
- 3. O produto de duas funções pares ou de duas funções ímpares é par.
- 4. O produto ou quociente de uma função par e uma função ímpar resulta numa função ímpar.

Demonstração: Vamos demonstrar a propriedade 4. As demais ficam a cargo do leitor.

Sejam fuma função par eguma função ímpar, ou seja, f(-x)=f(x) e g(-x)=-g(x).

$$(f \cdot g)(-x) = f(-x) \cdot g(-x) = (f(x)) \cdot (-g(x)) = -f(x)g(x) = -(f \cdot g)(x).$$

Portanto, $f \cdot g$ é uma função ímpar.

$$\left(\frac{f}{g}\right)(-x) = \frac{f(-x)}{g(-x)} = \frac{f(x)}{-g(x)} = -\left(\frac{f(x)}{g(x)}\right) = -\left(\frac{f}{g}\right)(x), g(x) \neq 0$$

Portanto, $\frac{f}{g}$ é uma função ímpar.

7.2 Funções injetoras e funções sobrejetoras

Definição: Uma função real f é uma função **injetora** se, e somente se, dados $x_1, x_2 \in D(f)$, se $x_1 \neq x_2$ então $f(x_1) \neq f(x_2)$.

Definição: Uma função real f é uma função **sobrejetora** se para todo $y \in CD(f)$ está associado algum $x \in D(f)$. Ou seja, f é sobrejetora se Im(f) = CD(f).

Definição: Se f é uma função injetora e sobrejetora então dizemos que f é **bijetora**.

Exemplos:

1. Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^2$.

Note por exemplo que dados $x_1 = -1$ e $x_1 = 1$ tem-se f(-1) = f(1) = 1. Logo f não é injetora. A função f também não é sobrejetora pois $CD(f) = \mathbb{R}$ e $Im(f) = \mathbb{R}_+$. Assim, $CD(f) \neq Im(f)$.

Figura 7.2: Função $f(x) = x^2$

No entanto, se redefinirmos a função de modo que $f: \mathbb{R}_+ \to \mathbb{R}_+$ então f é injetora e sobrejetora, ou seja, é bijetora.

Veja que dados $x_1, x_2 \in \mathbb{R}_+$ então $x_1^2 \neq x_2^2$, assim, Im(f) = CD(f)

Figura 7.3: Função $f(x) = x^2, x \ge 0$

2. Seja $f: \mathbb{R} \to \mathbb{R}$ tal que $f(x) = x^3$.

Figura 7.4: Função $f(x) = x^3$

f é injetora pois dados $x_1, x_2 \in \mathbb{R}$ com $x_1 \neq x_2$ então $x_1^3 \neq x_2^3$. f é sobrejetora pois $Im(f) = \mathbb{R} = CD(f)$. Logo, f é bijetora.

3. Seja $f: \mathbb{R} \to \mathbb{R}_+$ tal que f(x) = |x|.

f é sobrejetora pois $Im(f) = \mathbb{R}_+ = CD(f)$. No entanto, f não é injetora pois por exemplo, tomando $x_1 = -1$ e $x_2 = 1$ temos f(-1) = f(1) = 1. Portanto, f não é bijetora.

Figura 7.5: Função f(x) = |x|

7.3 Funções inversas

Seja y=f(x) uma função $f:A\to B$ bijetora. Definimos uma função $g:B\to A$ tal que x=g(y). A função g definida é a inversa da função f e denotamos por f^{-1} .

Exemplos:

1. Considere $f: \mathbb{R} \to \mathbb{R}$ tal que f(x) = 3x + 2. Então $f^{-1}: \Re \to \Re$, definida por $x = \frac{y-2}{3}$ é a inversa de f.

A fim de que possamos construir o gráfico da inversa de f, vamos fazer uma mudança de variáveis, trocar x por y e y por x, transformando algebricamente a expressão x = g(y) por $y = f^{-1}(x)$. Fazemos esta mudança de variáveis pois, por convenção, x está associado ao eixo das abscissas e y ao eixo das ordenadas. Assim, $f^{-1}(x) = \frac{x-2}{3}$.

Figura 7.6: Função $f^{-1}(x) = \frac{x-2}{3}$

2. Considere $f: [1, +\infty) \to \Re_+$ tal que $y = f(x) = \sqrt{x-1}$. Então, $y = \sqrt{x-1} \Leftrightarrow y^2 = x-1 \Leftrightarrow x = y^2+1$. Portanto, $f^{-1}(x) = x^2+1$. Observe que $D(f^{-1}) = \mathbb{R}_+$ e a $Im(f^{-1}) = [1, +\infty)$. Vamos representar graficamente f e f^{-1} no mesmo sistema cartesiano.

Figura 7.7

3. A função $f: \mathbb{R} \to \mathbb{R}$ definida por $f(x) = x^2$ não é inversível pois não é bijetora, ver Figura 7.2.

No entanto, f é bijetora se for definida por $f: \mathbb{R}_- \to \mathbb{R}_+$ tal que $f(x) = x^2$. Neste caso, $f^{-1}: \mathbb{R}_+ \to \mathbb{R}_-$ e $f^{-1}(x) = -\sqrt{x}$ (ver Figura 7.8).

Figura 7.8

Por outro lado, f é bijetora se for definida por $f: \mathbb{R}_+ \to \mathbb{R}_+$ tal que $f(x) = x^2$. Neste caso, $f^{-1}: \mathbb{R}_+ \to \mathbb{R}_+$ tal que $f^{-1}(x) = \sqrt{x}$ (Ver Figura 7.9)

Figura 7.9

Geometricamente, é fácil verificar se duas funções são inversas. Basta verificar se o gráfico de f é simétrico ao gráfico de f^{-1} em relação à reta y=x.

Figura 7.10

Propriedade:

Seja f uma função inversível.

i)
$$\left(f\circ f^{-1}\right)\left(x\right)=x$$
 para todo $x\in D(f^{-1})$

ii)
$$\left(f^{-1}\circ f\right)\left(x\right)=x$$
 para todo $x\in D(f)$

Demonstração:

i) Seja
$$y=f^{-1}(x)$$
. Então $(f\circ f^{-1})\,(x)=f\,(f^{-1}(x))=f(y)=x.$

ii)
Seja
$$y=f(x)$$
 inversível. Então $\left(f^{-1}\circ f\right)(x)=f^{-1}\left(f(x)\right)=f^{-1}(y)=x.$

7.4 Exercícios propostos

1) Verifique, usando a definição, se as funções dadas são pares, ímpares ou nem pares nem ímpares:

a)
$$f(x) = x^2 + 5$$

b)
$$g(x) = |x+2|$$

c)
$$h(t) = |t| - 4$$

d)
$$p(a) = a^3 + 2a$$

e)
$$q(y) = \sqrt{y^4 + 2y^2}$$

f)
$$r(\theta) = \frac{3\theta^2 - 5}{\theta|\theta|}$$

g)
$$S(t) = S_0 + v_0 t + 4,9t^2$$
 onde $S_0, v_0 \in \mathbb{R}$

h)
$$v(t) = 4,5t$$

i)
$$w(x) = 5$$

$$j) z(y) = y \cdot 2^y$$

2) Determine o domínio e a imagem para que f seja inversível e obtenha sua inversa.

a)
$$f(x) = \sqrt[3]{x+1}$$

b)
$$f(r) = r^2 + 2r$$

b)
$$f(x) = x^2 + 2x$$

c)
$$f(x) = \frac{2x+3}{x-4}$$

c)
$$f(x) = \frac{2x+3}{x-4}$$

d) $f(x) = \sqrt{x^3 - 1}$

- 3) Sabendo que a inversa de uma função f é do primeiro grau e que $f^{-1}(3) = \frac{5}{2}$ e f(2) = 4, determine a expressão de f.
- 4) Mostre que se f é inversível, então $(f^{-1})^{-1} = f$.
- 5) Considere as funções f(x) = 2x + 3 e $g(x) = \sqrt[3]{6-x}$, determine:

a)
$$(f^{-1})^{-1}$$

b)
$$f \circ f^{-1}$$

c)
$$g^{-1} \circ g^{-1}$$

$$d) (f \circ g)^{-1}$$

e)
$$f \circ f \circ g^{-1}$$

6) Considerando o gráfico da função f abaixo, construir o gráfico das funções que seguem:

a)
$$g(x) = -f(x) + 1$$

b)
$$h(x) = f(x+2)$$

b)
$$h(x) = f(x+2)$$
 c) $p(x) = f(-x) + 2$

7) Dado o gráfico de f, construir o gráfico de f^{-1} .

8) A figura abaixo mostra parte do gráfico de uma função f. Complete-o de forma que:

- a) f seja uma função par.
- b) f seja uma função ímpar.
- 9) Analise se as afirmativas abaixo são verdadeiras ou falsas e justifique sua resposta:
 - () A função $h(x)=\frac{2^x+2^{-x}}{2}$ é um a função ímpar.
 - () Considere as funções $f(x) = \frac{x+1}{x-2}$ e g(x) = 2x+3. Então $(g \circ f)^{-1}(x) = \frac{2x-4}{x-5}$.
 - () A função $f(x) = \sqrt{1-x^2}$ é injetora.
- 10) Considere a função $f(x) = \sqrt{x+4}$. Determine a função inversa de f, seu domínio e sua imagem. A seguir, construa num mesmo sistema de eixos os gráficos de f e de sua função inversa.
- 11) (UDESC-SC)A função definida por $f(x) = 1 + x^2$ é uma função bijetora, se os conjuntos que representam o domínio (D(f)) e imagm (Im(f)) são:

a)
$$D(f) = \mathbb{R} \text{ e } Im(f) = [1, +\infty)$$

b)
$$D(f) = (-\infty, 0] e Im(f) = \mathbb{R}$$

c)
$$D(f) = \mathbb{R} \in Im(f) = \mathbb{R}$$

d)
$$D(f) = [0, +\infty)$$
 e $Im(f) = [0, +\infty)$

e)
$$D(f) = [0, +\infty)$$
 e $Im(f) = [1, +\infty)$

Função exponencial

A função exponencial está associada a vários problemas do cotidiano como, por exemplo, crescimento ou decrescimento de populações, decaimento radioativo e juros compostos.

Vamos explorar um pouco essa idéia. Suponha que uma população de insetos em um meio duplica a cada hora e que, inicialmente, existam p_0 insetos. Neste caso, após uma hora o número de insetos é $2p_0$, após duas horas é $4p_0 = 2^2p_0$, após três horas é $8p_0 = 2^3p_0$, etc.... Portanto, após t horas teremos 2^tp_0 insetos.

De modo geral, o modelo matemático usado para descrever situações como essa é dado pela função exponencial $p(t)=p_0a^t$, objeto do nosso estudo nesse capítulo.

8.1 Definição

Dado um número real a (a > 0 e $a \neq 1$), denomina-se função exponencial de base a a uma função $f: \mathbb{R} \to \mathbb{R}_+^*$ definida por $f(x) = a^x$.

Exemplos:

- 1. $f(x) = 2^x$
- 2. $g(x) = (\frac{1}{2})^x$
- 3. $h(x) = (\sqrt{3})^x$
- 4. $p(x) = (0,03)^x$

Observações:

- 1. A restrição a > 0 é necessária pois:
 - (a) Se a = 0 e x < 0 então não existiria a^x (não teríamos uma função definida em \mathbb{R}).
 - (b) Se a < 0 e $x = \frac{1}{2}$, por exemplo, não existiria a^x (não teríamos uma função em \mathbb{R}).
- 2. Temos a restrição $a \neq 1$, caso contrário, a^x seria uma função constante.

8.2 Gráfico da função exponencial

Temos dois casos a considerar:

• Caso 1: a > 0

• Caso 2: 0 < a < 1

Temos as seguintes considerações a fazer quanto ao gráfico de $f(x) = a^x$:

- 1. o gráfico passa pelo ponto (0,1);
- 2. $D(f) = \mathbb{R}, CD(f) = \mathbb{R}_{+}^{*} \in Im(f) = \mathbb{R}_{+}^{*};$
- 3. o eixo x é uma assíntota horizontal para o gráfico de f (o gráfico não toca o eixo x);
- 4. f é uma função crescente para a > 1, pois se $x_2 > x_1$ então $a^{x_2} > a^{x_1}$;
- 5. f é uma função decrescente para 0 < a < 1, pois se $x_2 > x_1$ então $a^{x_2} < a^{x_1}$;
- 6. f é uma função sobrejetora pois $\text{Im}(f)=\text{CD}(f)=\mathbb{R}_+^*$, ou seja, para todo y>0 existe algum $x\in\mathbb{R}$ tal que $y=a^x$;
- 7. f é uma função injetora pois dados $x_1 \neq x_2$ tem-se $a^{x_1} \neq a^{x_2}$. Isso é evidente pois se a > 0, f é crescente e se 0 < a < 1, f é decrescente;
- 8. a função exponencial é bijetora, logo, admite função inversa.

Exemplos: Descreva como transformar o gráfico de $f(x) = 2^x$ no gráfico da função dada.

1. $g(x) = 2^{2x}$

Note que para x < 0, $2^x > e^{2x}$, enquanto que para x > 0, $2^x < 2^{2x}$. Ambas as funções passam por (0,1).

2. $h(x) = 2^{-x}$

Os gráficos de $f(x) = 2^x$ e $h(x) = 2^{-x} = f(-x)$ são simétricos em relação ao eixo y.

3. $p(x) = 3(2^x)$

Os valores de y no gráfico de f foram triplicados para obter o gráfico de p.

 $4. \ q(x) = -2^x$

Os gráficos de f e q são simétricos em relação ao eixo x.

Com base nos exemplos acima, se considerarmos as funções $f(x) = a^x$ e $g(x) = ba^{kx}$ onde a > 0, $a \neq 1$ e b, $k \in \mathbb{R}^*$, verificamos que

- (a) se k < 0, os gráficos de f e g são simétricos em relação ao eixo g e
- (b) se b < 0, os gráficos de f e g são simétricos em relação ao eixo x.

Para valores diferentes de a e k, veja os links: Animação da função $f(x)=a^x$; Animação da função $f(x)=2^x+k$; Animação da função $f(x)=2^{x+k}$

5.
$$r(x) = -2\left(\frac{1}{3}\right)^{x-1} + 4$$

Note que a assíntota horizontal é a reta y = 4.

8.3 Equações exponenciais

Equações exponenciais são equações com incógnita no expoente. Por exemplo,

i)
$$2^x = 32$$

ii)
$$0, 3^{x-1} = \frac{100}{9}$$

8.3.1 Método da redução a uma base comum

Este método consiste em reduzir a equação exponencial numa igualdade de potências de mesma base.

Para encontrar o conjunto solução das equações exponenciais usamos o fato de que a função exponencial é injetora, ou seja, para a>0 e $a\neq 1$, temos

$$a^{x_1} = a^{x_2} \Longleftrightarrow x_1 = x_2$$

Exemplos: Resolver as equações exponenciais dadas.

1)
$$2^x = 32$$

Solução:

$$2^x = 2^5 \iff x = 5$$

Logo,
$$S = \{5\}.$$

2)
$$0, 3^{x-1} = \frac{100}{9}$$

Solução:

$$\left(\frac{3}{100}\right)^{x-1} = \left(\frac{10}{3}\right)^2$$

$$\left(\frac{3}{100}\right)^{x-1} = \left(\frac{3}{10}\right)^{-2} \iff x - 1 = -2$$

$$x = -1$$

Logo,
$$S = \{-1\}$$

3)
$$27^{x^2-x} = 9^{x-1}$$

Solução:

$$(3^3)^{x^2-x} = (3^2)^{x-1}$$

$$3^{3x^2-3x} = 3^{2x-2} \iff 3x^2 - 3x = 2x - 2$$

$$3x^2 - 5x + 2 = 0$$

$$x_1 = \frac{2}{3} \text{ ou } x_2 = 1$$

Logo,
$$S = \{\frac{2}{3}, 1\}$$

4)
$$\frac{5^{x+2} \cdot 25^x}{3125^{5x+1}} - \frac{625^{2x}}{125^{3-4x}} = 0$$

Solução:

$$\frac{5^x 5^2 (5^2)^x}{(5^5)^{5x+1}} = \frac{(5^4)^{2x}}{(5^3)^{3-4x}}$$

$$\frac{5^{3x+2}}{5^{25x+5}} = \frac{5^{8x}}{5^{9-12x}}$$

$$5^{-22x-3} = 5^{20x-9}$$
 \iff $-22x - 3 = 20x - 9$
 $42x = 6$
 $x = \frac{1}{7}$

Logo,
$$S = \{\frac{1}{7}\}.$$

5)
$$\sqrt{\left(\frac{1}{8}\right)^{-x+1}} \sqrt[x+1]{\left(\frac{1}{4}\right)^{3-2x}} = \sqrt[6]{2^{5x+3}}$$

 $Solução:$

$$\left((2^{-3})^{-x+1} \right)^{\frac{1}{2}} \left((2^{-2})^{3-2x} \right)^{\frac{1}{x+1}} = (2^{5x+3})^{\frac{1}{6}}$$

$$2^{\frac{3x-3}{2}} 2^{\frac{-6+4x}{x+1}} = 2^{\frac{5x+3}{6}}$$

$$2^{(\frac{3x-3}{x+1} + \frac{4x-6}{x+1})} = 2^{\frac{5x+3}{6}}$$

$$2^{(\frac{3x-2+2x-9}{2(x+1)})} = 2^{\frac{5x+3}{6}}$$

$$2x^{2} - x - 15 = 0$$

$$x = -\frac{5}{2} \text{ ou } x = 3$$

Logo,
$$S = \{-\frac{5}{2}, 3\}.$$

6)
$$5^{x-1} - 5^x + 5^{x+1} + 5^{x+2} = 3650$$

Solução:

$$5^{x} 5^{-1} - 5^{x} + 5^{x} 5 + 5^{x} 5^{2} = 3650$$

$$5^{x} (\frac{1}{5} - 1 + 5 + 25) = 3650$$

$$5^{x} (\frac{146}{5}) = 3650$$

$$5^{x} = 125$$

$$5^{x} = 5^{3} \iff x = 3$$

Logo,
$$S = \{3\}$$
.

7)
$$4^x + 2^{x+1} = 8$$

Solução:

$$2^{2x} + 2^x 2 = 8$$
$$(2^x)^2 + 2(2^x) - 8 = 0$$

Neste caso podemos fazer uma mudança de variável para resolver a equação. Ou seja, tomamos $2^x = y$. Então, $y^2 + 2y - 8 = 0$. As raízes são y = -4 ou y = 2.

Para y=-4 temos $2^x=-4$. Neste caso não existe $x\in\mathbb{R}$ que satisfaça a equação pois $2^x\geq 0$ para todo $x\in\mathbb{R}$.

Para y = 2 temos $2^x = 2$. Portanto, x = 1.

Logo,
$$S = \{1\}.$$

8)
$$4^{2x} - 3^{2x + \frac{1}{2}} = 3^{2x - \frac{1}{2}} - 2^{4x - 1}$$

Solução:

$$4^{2x} - 3^{2x} 3^{\frac{1}{2}} = 3^{2x} 3^{-\frac{1}{2}} - 4^{2x} 2^{-1}$$

Dividindo ambos os lados da igualdade por 3^{2x} , obtemos

8.4 Exercícios propostos

1) Resolver as equações exponenciais dadas.

a)
$$\left(\frac{2}{5}\right)^{2x} = 6,25$$

b)
$$27^{2x+1} = \sqrt[3]{9^{5-2x}}$$

c)
$$(8^x)^{x-1} = 512$$

d)
$$\sqrt[3]{27^{x+5}} - \sqrt[x+4]{3^{3x-8}} = 0$$

e)
$$7^{2x+3} - 2 \cdot 49^{x+1} - 49^x - 5\left(\frac{1}{7}\right)^{-2x-1} = 1463$$

f)
$$2^{x+1} - \frac{4}{2^{x-1}} = 2^{3(x-1)}$$

g)
$$5 \cdot 2^{2x+1} + 10^x - 10 \cdot 5^{2x-1} = 0$$

2) Resolver os sistemas abaixo.

a)
$$\begin{cases} 3^x - 3^y = 24 \\ x + y = 4 \end{cases}$$

b)
$$\begin{cases} 3^{3x} = 27y \\ \sqrt{9^{x+1}} = 9y \end{cases}$$

c)
$$\begin{cases} 2^x \cdot 5^y = 100 \\ 2^{2x+y} = 64 \end{cases}$$

8.5 Inequações exponenciais

Inequações exponenciais são inequações com incógnita no expoente. Por exemplo,

i)
$$3^{\frac{1}{x}} < 27$$

ii)
$$2^{x^2+4} \ge 32$$

8.5.1 Método da redução a uma base comum

Este método consiste em reduzir ambos os lados da inequação em potências de mesma base.

Devemos lembrar que $f(x) = a^x$ é crescente se a > 1 e decrescente se 0 < a < 1. Portanto, temos dois casos a considerar:

- i) para 0 < a < 1 temos que $a^{x_1} > a^{x_2}$ se, e somente se, $x_1 < x_2$;
- ii) para a>1 temos que $a^{x_1}>a^{x_2}$ se, e somente se, $x_1>x_2$.

Podemos visualizar na Figura 8.1 os dois casos considerados.

Figura 8.1

Exemplos: Resolva as inequações dadas.

1)
$$3^{2x} \ge \frac{1}{81}$$

Solução:

$$3^{2x} \ge 3^{-4} \Longleftrightarrow 2x \ge -4 \Longleftrightarrow x \ge -2$$

Logo,
$$S = [-2, +\infty)$$

2)
$$(\frac{1}{5})^{x^2+3} \le (\frac{1}{25})^{x+1}$$

Solução:

$$\left(\frac{1}{5}\right)^{x^2+3} \le \left(\frac{1}{5}\right)^{2(x+1)} \iff x^2+3 \ge 2x+2$$
$$\iff x^2-2x+1 \ge 0$$
$$\iff (x-1)^2 \ge 0$$

Neste caso, qualquer $x \in \mathbb{R}$ satisfaz a desigualdade.

Logo,
$$S = (-\infty, +\infty)$$

3)
$$(0,01)^{-5x-8} \le 100^{2x^2+5x} < 1$$

Solução:

Podemos reescrever a inequação na base 100. Então,

$$100^{5x+8} \le 100^{2x^2+5x} < 100^0 \Longleftrightarrow 5x+8 \le 2x^2+5x < 0$$

Devemos separar a inequação em duas partes:

i)
$$5x + 8 \le 2x^2 + 5x \iff x^2 - 4 \ge 0 \iff x \le -2 \text{ ou } x \ge 2$$

ii)
$$2x^2 + 5x < 0 \iff -\frac{5}{2} < x < 0$$

A solução é a interseção dos intervalos acima. Logo, $S=(-\frac{5}{2},-2]$.

4)
$$3 \cdot 2^{x^2+3} - 4 \cdot 2^{x^2} + 10 \cdot 4^{\frac{x^2}{2}+1} > 240$$

Solução:

$$2^{x^2}(3 \cdot 2^3 - 4 + 10 \cdot 4) > 240$$

$$2^{x^2} \cdot 60 > 240$$

$$2^{x^2} \cdot 60 > 240$$

$$2^{x^2} \iff 2^{x^2} > 2^2 \iff x^2 > 2 \iff x < -\sqrt{2} \text{ ou } x > \sqrt{2}$$

Logo,
$$S = (-\infty, -\sqrt{2}) \cup (\sqrt{2}, +\infty)$$

5)
$$3 \cdot 27^x + 8 \cdot 9^x - 3 < 0$$

Solução:

$$3(9^x)^2 + 8(9^x) - 3 < 0$$

Fazendo a substituição $9^x = y$, temos

$$3y^2 + 8y - 3 < 0 \iff -3 < y < \frac{1}{3}$$

Como $y = 9^x > 0$ para todo $x \in \mathbb{R}$, então $0 < y < \frac{1}{3}$. Ou seja,

$$0 < 9^x < \frac{1}{3} \Longleftrightarrow 3^{2x} < 3^{-1} \Longleftrightarrow 2x < -1 \Longleftrightarrow x < -\frac{1}{2}$$

Logo,
$$S = (-\infty, -\frac{1}{2}).$$

Exercícios propostos 8.6

1) Resolver as inequações exponenciais dadas.

a)
$$\frac{1}{64} \le 2^{-x+3} < 8^{2x+5}$$

b)
$$(\frac{5}{2})^{2x+1} \div (\frac{4}{25})^{-x+3} \ge (\frac{8}{125})^{3x-4}$$

c)
$$(0,2)^{\frac{x}{x+1}} \cdot (0,2)^{-\frac{x}{x-1}} \le 1$$

d)
$$4 \cdot 5^{2x} - 8 \cdot 10^x - 5 \cdot 2^{2x} \le 0$$

3)
$$2 \cdot 7^{2x+1} - 49^{x+1} + 12(\frac{1}{\sqrt{7}})^{-4x-2} < 343$$

2) (UDESC) O conjunto solução da inequação $\left(\sqrt[3]{2^{(x-2)}}\right)^{x+3} > 4^x$ é:

a)
$$S = \{x \in \mathbb{R}/ -1 < x < 6\}$$

b)
$$S = \{x \in \mathbb{R}/x < -6 \text{ ou } x > 1\}$$

c)
$$S = \{x \in \mathbb{R}/x < -1 \text{ ou } x > 6\}$$

d)
$$S = \{x \in \mathbb{R}/ -6 < x < 1\}$$

e)
$$S = \{x \in \mathbb{R}/x < -\sqrt{6} \text{ ou } x > \sqrt{6} \}$$

Função logarítmica

A teoria dos logarítmos é usada em diversas áreas do conhecimento com o objetivo de facilitar cálculos, ampliar conhecimentos em assuntos específicos, etc. Vejamos algumas aplicações em algumas áreas de conhecimento:

• pH de uma solução líquida. O pH (potencial hidrogeniônico) indica a acidez, neutralidade ou alcalinidade de uma solução aquosa. O termo pH foi introduzido em 1909, pelo bioquímico dinamarquês Søren Peter Lauritz Sørensen (1868-1939) com o objetivo de facilitar seus trabalhos no controle de qualidade de cervejas.

A medida de acidez pH é o oposto do logarítmo na base 10 (log) da concentração de hidrogênio $[H^+]$:

$$pH = -\log[H^+]$$

Soluções mais ácidas têm concentrações de íons de hidrogênio mais altos e valores de pH mais baixos.

• *Terremotos*. A escala de Richter foi desenvolvida em 1935. É uma escala logarítmica usada para medir a magnitude (a quantidade de energia liberada), epicentro (origem do terremoto) e a amplitude de um terremoto.

A magnitude R de um terremoto é dada por $R = \log \frac{a}{T} + B$, onde a é a amplitude (em micrômetros, μm) do movimento vertical do solo que é informado num sismógrafo, T é o período do abalo sísmico (em segundos) e B é a amplitude do abalo sísmico com distância crescente partindo do epicentro do terremoto.

Iniciaremos este capítulo com uma revisão de logarítmos e, em seguida, um estudo de funções logarítmicas.

9.1 Logarítmos

Definição. Dados $a, b \in \mathbb{R}_+^*$ tal que $a \neq 1$, chama-se logarítmo de b na base a ao expoente ao qual devemos elevar o número a de modo que a potência obtida seja igual a b. Ou seja,

$$\log_a b = x \Leftrightarrow a^x = b \qquad (b > 0, \ 0 < a \neq 1)$$

Exemplos:

- 1) $\log_2 16 = 4$ pois $2^4 = 16$
- 2) $\log_{0.1} 100 = -2$ pois $(0,1)^{-2} = 100$
- 3) $\log_7 1 = 0$ pois $7^0 = 1$
- 4) $\log_{10} 0,01 = -2$ pois $10^{-2} = 0,01$

Propriedades:

Sejam $0 < a \neq 1, m \in \mathbb{R}$ e b e $c \in \mathbb{R}^*_{\perp}$.

- $i) \log_a 1 = 0$
- ii) $loq_a a = 1$
- iii) $a^{\log_a b} = b$
- iv) $\log_a b^m = m \log_a b$
- v) $\log_a(bc) = \log_a b + \log_a c$
- vi) $\log_a\left(\frac{b}{c}\right) = \log_a b \log_a c$
- vii) $\log_a b = \frac{\log_c b}{\log_a a}$, onde $\log_c a \neq 0$

Demonstração Vamos demonstrar a propriedade (v).

Sejam $x = \log_a bc, \ y = \log_a b$ e $z = \log_a c$, provemos que x = y + z. Então,

$$\begin{aligned} x &= \log_a bc &\Leftrightarrow a^x &= bc \\ y &= \log_a b &\Leftrightarrow a^y &= b \\ z &= \log_a c &\Leftrightarrow a^z &= c \end{aligned} \qquad \begin{array}{c} (i) \\ (ii) \\ (iii) \end{array}$$

$$y = \log_a b \quad \Leftrightarrow \quad a^y = b$$

$$z = \log_a c \Leftrightarrow a^z = c$$
 (iii)

Substituindo (ii) e (iii) em (i), temos

$$a^x = a^y \cdot a^z \Rightarrow a^x = a^{y+z} \Leftrightarrow x = y + z$$

Logarítmos com algumas bases especiais 9.1.1

1 - Logarítmos decimais

Os logarítmos decimais foram propostos por Henry Briggs, matemático inglês (1556-1630), com o propósito de adequar os logarítmos ao sistema de numeração decimal.

O logarítmo decimal $\log_{10} x$ pode ser denotado simplesmente por $\log x$.

Exemplos:

- $a) \log 1 = 0$
- b) $\log 10 = 1$
- c) $\log 100 = 2$

2 - Logarítmos neperianos

Os logarítmos neperianos são os logarítmos de base e (e = 2,71828... número irracional), também chamados de logarítmos naturais. O nome <u>neperiano</u> vem de John Napier, matemático escocês (1550-1617), autor do primeiro trabalho publicado sobre a teoria dos logarítmos. O nome <u>natural</u> se deve ao fato de que no estudo dos fenômenos naturais geralmente aparece uma lei exponencial de base e.

O logarítmo neperiano $\log_e x$ pode ser denotado por $\ln x$.

Exemplos:

- a) $\ln 1 = 0$ pois $\ln 1 = \log_e 1$
- b) $\ln e = 1$ pois $\ln e = \log_e e$
- c) $\ln(e^x) = x$ pois $\ln(e^x) = \log_e(e^x) = x \log_e e$
- d) $e^{\ln x} = x$ pois $e^{\ln x} = e^{\log_e x}$

9.2 Exercícios resolvidos

- 1. Calcule o valor de:
 - (a) $27^{\log_3 5}$ $Soluç\~ao$: $27^{\log_3 5} = (3^3)^{\log_3 5} = 3^{3\log_3 5} = 3^{\log_3 5^3} = 125$
 - (b) $2^{2+\log_4 3}$ Solução: $2^{2+\log_4 3} = 2^2 \cdot 2^{\log_4 3} = 4 \cdot 2^{\frac{\log_2 3}{\log_2 4}} = 4 \cdot 2^{\frac{1}{2}\log_2 3} = 4 \cdot 2^{\log_2 \sqrt{3}} = 4\sqrt{3}$
 - (c) $\log_2 7 \cdot \log_{49} 16$ Solução: $\log_2 7 \cdot \log_{49} 16 = \log_2 7 \cdot \frac{\log_2 16}{\log_2 49} = \log_2 7 \cdot \frac{4}{2\log_2 7} = 2$
 - (d) $e^{2+3\ln 2}$ Solução: $e^{2+3\ln 2}=e^2\cdot e^{3\ln 2}=e^2\cdot e^{\ln 2^3}=e^2\cdot 2^3=8e^2$
- 2. Desenvolva $\log_2 \sqrt[3]{\frac{a^3\sqrt{a+b}}{\sqrt{ab}\,c^2}}$, usando as propriedades de logarítmo (a,b,c>0).

Graciela e Ligia

Solução:

$$\begin{split} \log_2 \sqrt[3]{\frac{a^3\sqrt{a+b}}{\sqrt{ab}\,c^2}} &= \log_2 \left(\frac{a^3\sqrt{a+b}}{\sqrt{ab}\,c^2}\right)^{1/3} \\ &= \frac{1}{3} \left[\log_2 \left(a^3(a+b)^{1/2}\right) - \log_2 \left(a^{1/2}b^{1/2}c^2\right)\right] \\ &= \frac{1}{3} \left[\log_2 a^3 + \log_2 (a+b)^{1/2} - \left(\log_2 a^{1/2} + \log_2 b^{1/2} + \log_2 c^2\right)\right] \\ &= \frac{1}{3} \left[3\log_2 a + \frac{1}{2}\log_2 (a+b) - \frac{1}{2}\log_2 a - \frac{1}{2}\log_2 b - 2\log_2 c\right] \\ &= \frac{1}{3} \left[\frac{5}{2}\log_2 a + \frac{1}{2}\log_2 (a+b) - \frac{1}{2}\log_2 b - 2\log_2 c\right] \\ &= \frac{1}{6} \left[5\log_2 a + \log_2 (a+b) - \log_2 b - 4\log_2 c\right] \end{split}$$

9.3 Exercícios propostos

- 1) Demonstre as propriedades (i)-(iv) e (vi)-(vii).
- 2) Calcule o valor de:

a)
$$\log_{\sqrt{2}} \sqrt[3]{16} + \log_{0.01} 10 - \log_3 (\log_2 512 + 16^{\log_4 6})$$

b)
$$3^{2-\log_9 5}$$

c)
$$5^{\log_5 3 \cdot \log_3 2 \cdot \log_2 7}$$

- 3) Sabendo que $\log_3 2 = a,$ calcule $\log_3 2 \cdot \log_4 3 \cdot \log_5 4 \cdot \log_6 5.$
- 4) Dada a expressão $\frac{1}{6}\log_{10}a \frac{7}{2}\log_{10}(a^2+b) + \frac{1}{4}\log_{10}c \frac{1}{2}\log_{10}b$, onde a,b,c>0, escreva-a como um único logarítmo.
- 5) Desenvolva o logarítmo l
n $\left(\frac{ab^3}{c\sqrt[3]{a^2e}}\right)$, usando as propriedades de logarítmos
 (a,b,c>0ee=2,71828...).

9.4 Função logarítmica

Definição. Dado um número real a (a > 0 e $a \neq 1$), denomina-se função logarítmica de base a a uma função $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ definida por $f(x) = \log_a x$.

Da definição de logarítmos temos que

$$y = \log_a x \iff a^y = x$$

Portanto, as funções $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$, $f(x) = \log_a x$ e $g: \mathbb{R} \longrightarrow \mathbb{R}_+^*$, $g(x) = a^x$ são inversas uma da outra.

Consideremos os gráficos de f e g, conforme Figura 9.1.

Figura 9.1

Em relação ao gráfico de $f(x) = \log_a x$, convém destacar:

- 1. está todo à direita do eixo y ($D(f) = \mathbb{R}_+^*$);
- 2. corta o eixo das abscissas no ponto (1,0);
- 3. é decrescente se 0 < a < 1 e crescente se a > 1;
- 4. é simétrico ao gráfico de $g(x) = a^x$ em relação à reta y = x;
- 5. o eixo y é uma assíntota vertical ao gráfico de f (o gráfico se aproxima do eixo y mas não o toca).

Para valores diferentes de k, veja os links: Animação da função $f(x) = \log_2 x + k$; Animação da função $f(x) = \log_2(x+k)$

Exemplos:

- 1) Construir os gráficos da função dada e de sua inversa. Determinar o domínio e a imagem da função inversa e as equações das assíntotas.
 - a) $f(x) = \log_2 x$ $Soluç\~ao$: Cálculo da inversa: $y = \log_2 x \Leftrightarrow x = 2^y$ Portanto, $f^{-1}(x) = 2^x$

Então, $f: \mathbb{R}_+^* \longrightarrow \mathbb{R}$ tal que $f(x) = \log_2 x$ e $f^{-1}: \mathbb{R} \longrightarrow \mathbb{R}_+^*$ tal que $f^{-1}(x) = 2^x$.

Observe que para o gráfico de f existe uma assíntota vertical (x=0) e para o gráfico de f^{-1} há uma assínto
ta horizontal (y=0).

b)
$$f(x) = \log_2(x+1) + 3$$

Solução:

Cálculo da inversa:

$$y = \log_2(x+1) + 3$$

Cálculo da inversa:

$$y = \log_2(x+1) + 3$$

 $y-3 = \log_2(x+1) \iff (x+1) = 2^{y-3}$
 $x = -1 + 2^{y-3}$

$$x = -1 + 2^{y-3}$$

Portanto, $f^{-1}(x) = -1 + 2^{x-3}$.

Então, $f:(-1,+\infty)\longrightarrow \mathbb{R}$ tal que $f(x)=\log_2(x-1)+3$ e $f^{-1}:\mathbb{R}\longrightarrow (-1,+\infty)$ tal que $f^{-1}(x)=-1+e^{x-3}$.

Para o gráfico de f há uma assíntota vertical de equação x = -1, enquanto que para o gráfico de f^{-1} há uma assíntota horizontal de equação y = -1.

c)
$$f(x) = \log_3(2x - 1)$$

Solução:

Cálculo da inversa:

$$f(x) = \log_3(2x - 1) \iff 2x - 1 = 3^y$$
$$2x = 1 + 3^y$$

$$x = \frac{1}{2} + \frac{3^y}{2}$$

Portanto, $f^{-1}(x) = \frac{1}{2} + \frac{3^x}{2}$

Então
$$f: (\frac{1}{2}, +\infty) \longrightarrow \mathbb{R}$$
 tal que $f(x) = \log_3(2x - 1)$ e $f^{-1}: \mathbb{R} \longrightarrow (\frac{1}{2}, +\infty)$ tal que $f^{-1}(x) = \frac{1}{2} + \frac{3^x}{2}$.

Neste caso, $x = \frac{1}{2}$ é a assíntota vertical do gráfico de f e $y = \frac{1}{2}$ é a assíntota horizontal do gráfico de f^{-1} .

2) Determine o domínio das funções dadas.

a)
$$f(x) = \log_{\frac{1}{5}}(x^2 + x - 12)$$

Solução:

A condição de existência para esta função é $x^2 + x - 12 > 0$.

Logo, o domínio de f é $D(f)=(-\infty,-4)\cup(3,+\infty)$

b)
$$f(x) = \log_{(x-1)}(-x^2 + 3x)$$

Para esta função temos duas condições de existência:

i)
$$-x^2 + 3x > 0 \iff 0 < x < 3$$

ii)
$$x-1>0$$
 e $x-1\neq 1 \Longleftrightarrow x>1$ e $x\neq 2$
Portanto, o domínio da função é $D(f)=(0,3)\cap (1,+\infty)-\{2\}=(1,3)-\{2\}.$

9.5 Exercícios propostos

1) Construir o gráfico das funções abaixo.

$$a) f(x) = \log_{\frac{1}{2}} |x|$$

$$b) g(x) = \left| \log_{\frac{1}{2}} x \right|$$

c)
$$h(x) = \log_3(x^2 - 4)$$

d)
$$m(x) = \log_2 x - \log_{\frac{1}{2}}(x-4)$$

e)
$$p(x) = \ln x$$

2) Determine o domínio das funções dadas.

a)
$$f(x) = \log_{\frac{1}{2}}(4x + 3)$$

b)
$$g(x) = \log\left(\frac{x+1}{2x-1}\right)$$

c)
$$h(x) = \log_{(3-x)}(x^2 + x - 2)$$

d)
$$p(x) = \ln(-2x^3 - x^2 + 5x - 2)$$

3) Determine a inversa das funções dadas. Descreva o domínio e a imagem das funções inversas.

a)
$$f(x) = \ln(x - 4)$$

b)
$$g(x) = \log_{\frac{1}{2}} \left(\frac{2}{x-1} \right)$$

c)
$$h(x) = \log(2x+3) + 3$$

d)
$$p(x) = 2e^{3x-5}$$

e)
$$q(x) = \left(\frac{1}{5}\right)^{7x-1} - 4$$

Funções trigonométricas

Funções trigonométricas são funções angulares importantes no estudo dos triângulos e na modelagem de fenômenos periódicos. Elas aparecem, por exemplo, na solução de alguns problemas físicos, tais como, vibrações mecânicas, elétricas e acústicas. Para compreender o conceito das funções trigonométricas é necessário fazer um estudo sobre ângulos, arcos, o círculo trigonométrico, algumas identidades trigonométricas e, por último, estabelecer as relações existentes entre o círculo trigonométrico e tais funções..

10.1 Ângulos e arcos

Ângulo é o espaço contido entre dois segmentos de reta orientados a partir de um ponto comum. É comum escrevermos leras ou números para representar ângulos: $\widehat{AOB} = \alpha$.

10.1.1 Unidade de medida de ângulo

i) O grau

Define-se como um grau, denotado por 1°, o arco que equivale a $\frac{1}{360}$ da circunferência, isto é, em uma circunferência cabem 360° .

O grau comporta ainda os submúltiplos, minuto (') e segundo (''), de forma que 1° = 60′ e 1′ = 60″.

ii) O radiano (rad)

O radiano é um arco unitário cujo comprimento é igual ao raio da circunferência que contém o arco a ser medido, isto é,

$$\alpha$$
 em radianos $=\frac{s}{r}$

onde r é o raio da circunferência e s é a medida do arco \widehat{AB} , conforme Figura 10.1. O ângulo α é chamado de ângulo central. Portanto, O comprimento do arco \widehat{AB} é $s=\alpha r$.

Figura 10.1

10.1.2 Área do setor circular

A região sombreada na Figura 10.2 é chamada setor circular.

Figura 10.2

As razões das áreas do círculo (πr^2) e do setor circular (A) são as mesmas que as razões entre os respectivos ângulos centrais. Assim, se os ângulos centrais estiverem em radianos, temos

$$\frac{A}{\pi r^2} = \frac{\alpha}{2\pi} \implies A = \frac{r^2 \alpha}{2} \tag{10.1}$$

Em uma rotação completa ($\alpha=360^\circ$), a área do setor coincide com a área do círculo. Da equação (10.1) obtém-se que $360^\circ=2\pi$ rad ou $180^\circ=\pi$ rad.

Para converter, por exemplo, 30° em radianos basta usar a regra de três simples:

$$180^{\circ}$$
 — π rad 30° — α rad

$$180^{\circ} \cdot \alpha = 30^{\circ} \cdot \pi \text{ rad}$$

$$\alpha = \frac{30^{\circ} \cdot \pi \text{ rad}}{180^{\circ}}$$

$$= \frac{\pi}{6} \text{ rad}$$

Para converter $\frac{5\pi}{3}$ rad para graus usa-se a mesma regra.

$$\begin{array}{ccc}
180^{\circ} & ---- & \pi \text{ rad} \\
\alpha & ---- & \frac{5\pi}{3} \text{ rad}
\end{array}$$

$$\alpha \cdot \pi \text{ rad} = 180^{\circ} \cdot \frac{5\pi}{3} \text{ rad}$$

$$\alpha = \frac{180^{\circ} \cdot \frac{5\pi}{3} \text{ rad}}{\pi \text{ rad}}$$

$$= 300^{\circ}$$

10.2 O círculo trigonométrico

10.2.1 Seno e cosseno

Considere o círculo unitário $x^2+y^2=1$. Seja P(x,y) um ponto sobre a circunferência e θ o ângulo que o raio \overline{OP} forma com o eixo x, no sentido antihorário. Por convenção, considera-se $\theta>0$ no sentido anti-horário e $\theta<0$ no sentido horário.

Considere o triângulo retângulo AOP, conforme Figura 10.3. Temos que

$$\cos \theta = \frac{\text{cateto adjacente}}{\text{hipotenusa}} = \frac{\overline{OA}}{\overline{OP}} = \frac{x}{1} = x$$

$$\sin \theta = \frac{\text{cateto oposto}}{\text{hipotenusa}} = \frac{\overline{AP}}{\overline{OP}} = \frac{y}{1} = y$$

Figura 10.3

Até aqui localizamos o ponto P através das suas coordenadas cartesianas retangulares x e y. Agora podemos localizar o ponto P através do ângulo θ ,

 $P(\cos \theta, \sin \theta)$. Para todo θ , o ponto $P(\cos \theta, \sin \theta)$ pertence à circunferência e, portanto, satisfaz à equação $x^2 + y^2 = 1$, assim

$$\cos^2\theta + \sin^2\theta = 1$$

Esta relação trigonométrica é conhecida como a **relação fundamental da trigonometria**. Observe na Figura 10.4 que $-1 \le \sin \theta \le 1$ e $-1 \le \cos \theta \le 1$. O eixo x é conhecido como o eixo dos cossenos e o y como o eixo dos senos.

Figura 10.4

Como $\cos\theta=x$ e x é positivo nos 1^{o} e 4^{o} quadrantes e negativo nos 2^{o} e 3^{o} quadrantes então $\cos\theta$ é positivo nos 1^{o} e 4^{o} quadrantes e negativo nos 2^{o} e 3^{o} quadrantes, conforme Figura 10.5(a). E, $\sin\theta=y$ é positivo nos 1^{o} e 2^{o} quadrantes e negativo nos 3^{o} e 4^{o} quadrantes, conforme Figura 10.5(b).

Figura 10.5

Na Figura 10.6 pode-se ver uma representação geométrica no círculo trigonométrico do seno e do cosseno de alguns ângulos.

Figura 10.6

Observe, por exemplo, que:

10.2.2 Tangente

Na Figure 10.7, consideremos a reta que é tangente ao círculo trigonométrico no ponto Q. Os triângulos OQT e OAP são semelhantes. Então,

$$\frac{\overline{QT}}{\overline{OQ}} = \frac{\overline{AP}}{\overline{OA}}$$

Como $\overline{OA} = \cos \theta$, $\overline{AP} = \sin \theta$ e $\overline{OQ} = 1$,

$$\tan \theta = \overline{QT} = \frac{\sin \theta}{\cos \theta}$$

O eixo que contém ${\cal Q}{\cal T}$ é chamado de eixo das tangentes.

Figura 10.7

10.2.3 Cotangente

Na Figure 10.8, consideremos a reta que é tangente ao círculo trigonométrico no ponto R. Os triângulos ORS e OAP são semelhantes. Então,

$$\frac{\overline{RS}}{\overline{OR}} = \frac{\overline{OA}}{\overline{AP}}$$

Como $\overline{OA} = \cos \theta$, $\overline{AP} = \sin \theta$ e $\overline{OR} = 1$,

$$\cot \theta = \overline{RS} = \frac{\cos \theta}{\sin \theta}$$

O eixo que contém RS é chamado de eixo das cotangentes.

Figura 10.8

10.2.4 Secante e cossecante

Na Figure 10.9, os triângulos OPP' e OAP são semelhantes. Então,

$$\frac{\overline{OP'}}{\overline{OP}} = \frac{\overline{OP}}{\overline{OA}}$$

Como $\overline{OA} = \cos \theta \in \overline{OP} = 1$,

$$\sec \theta = \overline{OP'} = \frac{1}{\cos \theta}$$

Os triângulos OPP'' e OAP também são semelhantes. Então,

$$\frac{\overline{OP''}}{\overline{OP}} = \frac{\overline{OP}}{\overline{AP}}$$

Como $\overline{AP} = \operatorname{sen} \theta \in \overline{OP} = 1$,

$$\csc \theta = \overline{OP''} = \frac{1}{\sec \theta}$$

O eixo P'P'' é chamado o eixo das secantes e das cossecantes.

Figura 10.9

10.2.5 Outras relações trigonométricas importantes

Além das relações trigonométricas já vistas, existem outras que são importantes tanto para o estudo das funções trigonométricas quanto para o cálculo diferencial e integral.

- $1) 1 + \tan^2 \theta = \sec^2 \theta$
- 2) $1 + \cot^2 \theta = \csc^2 \theta$
- 3) $\cos(\alpha \pm \beta) = \cos \alpha \cos \beta \mp \sin \alpha \sin \beta$
- 4) $sen(\alpha \pm \beta) = sen \alpha cos \beta \pm sen \beta cos \alpha$
- 5) $\sin 2\theta = 2 \sin \theta \cos \theta$
- 6) $\cos 2\theta = \cos^2 \theta \sin^2 \theta$
- 7) $\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$
- 8) $\operatorname{sen}^2 \theta = \frac{1 \cos 2\theta}{2}$

Demonstração:

1) Vamos demonstrar a primeira relação trigonométrica.

$$1 + \tan^2 \theta = 1 + \frac{\sin^2 \theta}{\cos^2 \theta} = \frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta} = \sec^2 \theta$$

3) Sejam os pontos A, B e C no círculo associados aos números α , $\alpha + \beta$ e $-\beta$, respectivamente. No sistema UOV, as coordenadas desses pontos são:

$$A(\cos\alpha, \sin\alpha)$$

$$B(\cos(\alpha + \beta), \sin(\alpha + \beta))$$

$$C(\cos \beta, -\sin \beta)$$

Como os arcos \widehat{PB} e \widehat{CA} têm as mesmas medidas então as distâncias entre os pontos P e B e A e C são as mesmas. Assim, $d_{PB} = d_{AC}$ e,

$$d_{PB}^{2} = (x_{B} - x_{P})^{2} + (y_{B} - y_{P})^{2}$$

$$= [\cos(\alpha + \beta) - 1]^{2} + [\sin(\alpha + \beta) - 0]^{2}$$

$$= \cos^{2}(\alpha + \beta) - 2\cos(\alpha + \beta) + 1 + \sin^{2}(\alpha + \beta)$$

$$= 2 - 2\cos(\alpha + \beta)$$

$$d_{AC}^{2} = (x_{C} - x_{A})^{2} + (y_{C} - y_{A})^{2}$$

$$= [\cos \beta - \cos \alpha]^{2} + [-\sin \beta - \sin \alpha]^{2}$$

$$= \cos^{2} \beta - 2\cos \beta \cos \alpha + \cos^{2} \alpha + \sin^{2} \beta + 2\sin \beta \sin \alpha + \sin^{2} \alpha$$

$$= 2 + 2\sin \alpha \sin \beta - 2\cos \alpha \cos \beta$$

Como $d_{PB}^2 = d_{AC}^2$, temos que

$$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$$

Substituindo β por $-\beta$ na expressão acima, temos

$$\cos(\alpha + (-\beta)) = \cos\alpha\cos(-\beta) - \sin\alpha\sin(-\beta)$$

Como
$$\cos(-\beta) = \cos \beta$$
 e
 $\sin(-\beta) = -\sin \beta$, então
 $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$

Graciela e Ligia CAPÍTULO 10. FUNÇÕES TRIGONOMÉTRICAS $sen(\alpha + \beta) = cos \left[\frac{\pi}{2} - (\alpha + \beta) \right]$

4)
$$\operatorname{sen}(\alpha + \beta) = \cos\left[\frac{\pi}{2} - (\alpha + \beta)\right]$$
$$= \cos\left[\left(\frac{\pi}{2} - \alpha\right) - \beta\right]$$
$$= \cos\left(\frac{\pi}{2} - \alpha\right) \cos\beta + \sin\left(\frac{\pi}{2} - \alpha\right) \sin\beta$$

Substituindo β por $-\beta$ na expressão acima, temos

$$sen(\alpha + (-\beta)) = sen \alpha cos(-\beta) + cos \alpha sen(-\beta)$$
$$sen(\alpha - \beta) = sen \alpha cos \beta - cos \alpha sen \beta$$

5) Utilizando a relação trigonométrica (4), obtemos

$$sen 2\theta = sen(\theta + \theta)$$

$$= sen \theta cos \theta + cos \theta sen \theta$$

$$= 2 sen \theta cos \theta$$

7) Da relação (6) e da relação fundamental da trigonometria, $\cos^2\theta + \sin^2\theta = 1$, temos que

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$

$$= \cos^2 \theta - (1 - \cos^2 \theta)$$

$$= 2\cos^2 \theta - 1$$

$$2\cos^2 \theta = 1 + \cos 2\theta$$

$$\cos^2 \theta = \frac{1 + \cos 2\theta}{2}$$

As demonstrações das demais relações trigonométricas deixamos a cargo do leitor.

Funções trigonométricas 10.3

10.3.1Função seno

Definição. Dado um número real x, podemos associar a ele o valor do seno de um ângulo (ou arco) de x radianos. Assim, definimos a função seno como a função real

de variáveis reais que associa a cada número real x o valor real de sen x, ou seja,

$$f: \mathbb{R} \to [-1, 1]$$

 $x \to f(x) = \operatorname{sen} x$

Para construir o gráfico de $f(x) = \operatorname{sen} x$ vamos associar x ao eixo das abscissas e sen x ao eixo das ordenadas, conforme tabela 10.1.

Tabela 10.1

x	$y = \sin x$
0	0
$\frac{\pi}{6}$	$\frac{1}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{3}$ $\frac{\pi}{2}$	1

A função $f(x)=\sin x$ é crescente para $0< x<\frac{\pi}{2}$ e $\frac{3\pi}{2}< x<2\pi$ e decrescente para $\frac{\pi}{2}< x<\frac{3\pi}{2}$ e $x\neq \pi$. Como $-1\leq \sin x\leq 1$, o máximo da função é 1 e ocorre quando $x=\frac{\pi}{2}$ e o mínimo é -1 e ocorre quando $x=\frac{3\pi}{2}$.

Figura 10.10: $f(x) = \operatorname{sen} x$

Veja no link a seguir uma animação do gráfico de y = sen x: Animação do Seno

Os valores de senx repetem-se a cada volta percorrida no círculo. Para qualquer número real x, temos

$$\operatorname{sen} x = \operatorname{sen}(x + 2\pi) = \operatorname{sen}(x + 4\pi) = \cdots$$

e, também,

$$\operatorname{sen} x = \operatorname{sen}(x - 2\pi) = \operatorname{sen}(x - 4\pi) = \cdots$$

Podemos escrever, então, que sen $x = \text{sen}(x + 2k\pi)$, $k \in \mathbb{Z}$, e dizer que a função seno é uma função periódica de período 2π . O gráfico da função seno é conhecido como **senóide**.

Outra característica importante da função seno é que ela é uma função ímpar, ou seja, sen(-x) = -sen x. E como podemos verificar na Figura (10.10), seu gráfico é simétrico em relação à origem.

10.3.2 Função cosseno

Definição. Dado um número real x, podemos associar a ele o valor do cosseno de um ângulo (ou arco) de x radianos. Assim, definimos a função cosseno como a função real de variáveis reais que associa a cada número real x o valor real de $\cos x$, ou seja,

$$f: \mathbb{R} \to [-1, 1]$$

 $x \to f(x) = \cos x$

Para construir o gráfico de $f(x) = \cos x$ vamos associar x ao eixo das abscissas e $\cos x$ ao eixo das ordenadas, conforme tabela 10.2.

Tabela 10.2

x	$y = \cos x$
0	1
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{2}$
$\frac{\pi}{4}$	$\frac{\sqrt{2}}{2}$
$\frac{\pi}{3}$	$\frac{1}{2}$
$\frac{\pi}{2}$	0

A função $f(x)=\cos x$ é crescente para $\pi < x < 2\pi$ e $x \neq \frac{3\pi}{2}$ e decrescente para $0 < x < \pi$ e $x \neq \frac{\pi}{2}$. Como $-1 \leq \cos x \leq 1$, o máximo da função é 1 e ocorre quando x=0 e o mínimo é -1 e ocorre quando $x=\pi$.

Figura 10.11: $f(x) = \cos x$

Veja no link a seguir uma animação do gráfico de $y = \cos x$: Animação do Cosseno

Os valores de $\cos x$ repetem-se a cada volta percorrida no círculo. Para qualquer número real x, temos

$$\cos x = \cos(x + 2\pi) = \cos(x + 4\pi) = \cdots$$

e, também,

$$\cos x = \cos(x - 2\pi) = \cos(x - 4\pi) = \cdots$$

Podemos escrever, então, que $\cos x = \cos(x + 2k\pi)$, $k \in \mathbb{Z}$, e dizer que a função cosseno é uma função periódica de período 2π . O gráfico da função cosseno é conhecido como **cossenóide**.

A função cosseno é uma função par, ou seja, $\cos(-x) = \cos x$ e seu gráfico é simétrico em relação ao eixo y, conforme Figura 10.11.

10.3.3 Função tangente

Define-se a função tangente como a função real de variáveis reais que associa a cada número real $x, x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}$, o valor real de tan x, ou seja,

$$f: \mathbb{D} \to \mathbb{R}$$
$$x \to f(x) = \tan x$$

Para construir o gráfico de $f(x) = \tan x$ associa-se x ao eixo das abscissas e $\tan x$ ao eixo das ordenadas.

x	$y = \tan x$
0	0
$\frac{\pi}{6}$	$\frac{\sqrt{3}}{3}$
$ \frac{\pi}{6} $ $ \frac{\pi}{4} $ $ \frac{\pi}{3} $ $ \frac{\pi}{2} $	1
$\frac{\pi}{3}$	$\sqrt{3}$
$\frac{\pi}{2}$	∄
• • •	
π	0
:	
$\frac{3\pi}{2}$	∄
•	
2π	0

A função $f(x) = \tan x$ é crescente para todo x que pertence ao domínio $\mathbb{D} = \{x \in \mathbb{R}/x \neq \frac{\pi}{2} + k\pi, \ k \in \mathbb{Z}\}$. A imagem é o conjunto dos reais. A função $\tan x$ é positiva para todo x que pertence aos $1^{\underline{o}}$ e $3^{\underline{o}}$ quadrantes e negativa para todo x que pertence aos $2^{\underline{o}}$ e $4^{\underline{o}}$ quadrantes.

Veja no link a seguir uma animação do gráfico de $y = \tan x$: Animação da Tangente

Os valores da tan x repetem-se a cada meia volta percorrida no círculo. Para qualquer $x \in \mathbb{D}$, temos

$$\tan x = \tan(x + \pi) = \tan(x + 3\pi) = \cdots$$

e, também,

$$\tan x = \tan(x - \pi) = \tan(x - 3\pi) = \cdots$$

Podemos escrever, então, que $\tan x = \tan(x + k\pi)$, $k \in \mathbb{Z}$, e dizer que a função tangente é uma função periódica de período π . O gráfico da função tangente é denominado **tangentóide**.

A função tangente é uma função ímpar pois,

$$\tan(-x) = \frac{\sin(-x)}{\cos(-x)} = \frac{-\sin x}{\cos x} = -\tan x$$

Portanto, o seu gráfico é simétrico em relação à origem.

10.3.4 Função cotangente

Define-se a função cotangente como a função real de variáveis reais que associa a cada número real $x, x \neq k\pi, k \in \mathbb{Z}$, o valor real de cotan x, ou seja,

$$f: \mathbb{D} \to \mathbb{R}$$

 $x \to f(x) = \cot x$

Para construir o gráfico de $f(x) = \cot x$ associa-se x ao eixo das abscissas e $\cot x$ ao eixo das ordenadas.

Veja no link a seguir uma animação do gráfico de $y = \cot x$: Animação da Cotangente

A função $f(x) = \cot x$ tem as seguintes características:

- 1. é decrescente para todo x que pertence ao domínio $\mathbb{D}=\{x\in\mathbb{R}/x\neq k\pi,\,k\in\mathbb{Z}\};$
- 2. sua imagem é o conjunto dos reais;
- 3. é positiva para todo x que pertence aos 1^{o} e 3^{o} quadrantes e negativa para todo x que pertence aos 2^{o} e 4^{o} quadrantes;
- 4. é periódica de período π ;
- 5. é impar pois $\cot (-x) = \frac{\cos(-x)}{\sin(-x)} = \frac{\cos x}{-\sin x} = -\cot x$.

10.3.5 Função secante

Define-se a função secante como a função real de variáveis reais que associa a cada número real $x,\,x\neq\frac{\pi}{2}+k\pi,\,k\in\mathbb{Z}$, o valor real de sec x, ou seja,

$$f: \mathbb{D} \to \mathbb{R}$$

 $x \to f(x) = \sec x$

A função $f(x) = \sec x$ tem as seguintes características:

- 1. é crescente para todo x que pertence aos 1^o e 2^o quadrantes e decrescente para todo x que pertence aos 3^o e 4^o quadrantes;
- 2. sua imagem é $\mathbb{R} (-1, 1)$;
- 3. é positiva para todo x que pertence aos 1^o e 4^o quadrantes e negativa para todo x que pertence aos 2^o e 3^o quadrantes;
- 4. é periódica de período 2π ;
- 5. é par pois $\sec(-x) = \frac{1}{\cos(-x)} = \frac{1}{\cos x} = \sec x$.

Veja no link a seguir uma animação do gráfico de $y = \sec x$: Animação da Secante

10.3.6 Função cossecante

Define-se a função cossecante como a função real de variáveis reais que associa a cada número real $x, x \neq k\pi, k \in \mathbb{Z}$, o valor real de cossec x, ou seja,

$$f: \mathbb{D} \to \mathbb{R}$$

 $x \to f(x) = \csc x$

A função $f(x) = \csc x$ tem as seguintes características:

- 1. é crescente para todo x que pertence aos 2^o e 3^o quadrantes e decrescente para todo x que pertence aos 1^o e 4^o quadrantes;
- 2. sua imagem é $\mathbb{R} (-1, 1)$;
- 3. é positiva para todo x que pertence aos 1^o e 2^o quadrantes e negativa para todo x que pertence aos 3^o e 4^o quadrantes;
- 4. é periódica de período 2π ;
- 5. é impar pois $\operatorname{cossec}(-x) = \frac{1}{\operatorname{sen}(-x)} = \frac{1}{-\operatorname{sen} x} = -\operatorname{cossec} x$.

Veja no link a seguir uma animação do gráfico de $y = \csc x$: Animação da Cossecante

10.4 Funções trigonométricas inversas

Para uma função y = f(x) admitir inversa é necessário que para todo valor de y corresponda um e somente um valor de x. Isto não ocorre com as funções trigonométricas. É necessário, então, fazer restrições em seus domínios.

10.4.1 Função arco seno

A função $y=\operatorname{sen} x$ não é inversível pois para cada valor de y está associado uma infinidade de valores de x. Por exemplo, y=1 está associado a $x=\cdots,-\frac{3\pi}{2},\frac{\pi}{2},\frac{5\pi}{2},\cdots$. Assim, para definirmos uma inversa é necessário fazer restrições em seu domínio.

Seja $f:[-\frac{\pi}{2},\frac{\pi}{2}]\to[-1,1]$ tal que $f(x)=\sin x$, então a inversa da função seno é denominada função arco seno e definida por

$$f^{-1}: [-1,1] \to \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
$$f^{-1}(x) = \arcsin x$$

Os gráficos de f e f^{-1} são apresentados nas figuras abaixo.

$$f^{-1}(x) = \arcsin x$$

Para definir a função arco seno poderíamos ter restringido o domínio da função seno para qualquer um dos seguintes intervalos

$$\cdots, \left[-\frac{3\pi}{2}, -\frac{\pi}{2}\right], \left[-\frac{\pi}{2}, \frac{\pi}{2}\right], \left[\frac{\pi}{2}, \frac{3\pi}{2}\right], \cdots$$

10.4.2 Função arco cosseno

Seja $f:[0,\pi]\to[-1,1]$ tal que $f(x)=\cos x$, então a inversa da função cosseno é denominada função arco cosseno e definida por

$$f^{-1}: [-1,1] \to [0,\pi]$$

 $f^{-1}(x) = \arccos x$

Os gráficos de f e f^{-1} são apresentados nas figuras abaixo.

10.4.3 Função arco tangente

Seja $f:(-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}$ tal que $f(x)=\tan x$, então a inversa da função tangente é denominada função arco tangente e definida por

$$f^{-1}: \mathbb{R} \to \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

 $f^{-1}(x) = \arctan x$

Os gráficos de f e f^{-1} são apresentados nas figuras abaixo.

10.4.4 Função arco cotangente

Seja $f:(0,\pi)\to\mathbb{R}$ tal que $f(x)=\cot x$, então a inversa da função cotangente é denominada função arco cotangente e definida por

$$f^{-1}: \mathbb{R} \to (0, \pi)$$
$$f^{-1}(x) = arccotan x$$

Os gráficos de f e f^{-1} são apresentados nas figuras abaixo.

10.4.5 Função arco secante

Seja $f:[0,\frac{\pi}{2})\cup(\frac{\pi}{2},\pi]\to(-\infty,-1]\cup[1,+\infty)$ tal que $f(x)=\sec x$, então a inversa da função secante é denominada função arco secante e definida por

$$f^{-1}: (-\infty, -1] \cup [1, +\infty) \to \left[0, \frac{\pi}{2}\right) \cup \left(\frac{\pi}{2}, \pi\right]$$
$$f^{-1}(x) = \operatorname{arcsec} x$$

Os gráficos de f e f^{-1} são apresentados nas figuras abaixo.

10.4.6 Função arco cossecante

Seja $f:[-\frac{\pi}{2},0)\cup(0,\frac{\pi}{2}]\to(-\infty,-1]\cup[1,+\infty)$ tal que $f(x)=\mathrm{cossec}\,x,$ então a inversa da função cossecante é denominada função arco cossecante e definida por

$$f^{-1}: (-\infty, -1] \cup [1, +\infty) \to \left[-\frac{\pi}{2}, 0 \right) \cup \left(0, \frac{\pi}{2} \right]$$
$$f^{-1}(x) = \arccos x$$

Os gráficos de f e f^{-1} são apresentados nas figuras abaixo.

10.5 Exercícios propostos

- 1. Faça a transformação de graus para radianos.
 - (a) 279°
 - (b) 660°
 - (c) 405°
 - (d) 15°

- (e) 1800°
- 2. Faça a transformação de radianos para graus.
 - (a) $\frac{2\pi}{5}$
 - (b) $\frac{7\pi}{3}$
 - (c) $\frac{15\pi}{4}$
 - (d) $\frac{7\pi}{9}$
 - (e) $\frac{17\pi}{12}$
- 3. Se $\sec \alpha = -\frac{3}{2}$ e α pertence ao $2^{\underline{\alpha}}$ quadrante, determine: $\cos \alpha$, $\sin \alpha$, $\tan \alpha$, $\cot \alpha$ e $\csc \alpha$.
- 4. Se $\tan \alpha = \frac{\sqrt{7}}{3}$ e α pertence ao $3^{\underline{o}}$ quadrante, determine: $\cos \alpha$, $\sin \alpha$, $\cot \alpha$, $\sec \alpha$, $\csc \alpha$.
- 5. Dado cossec $\theta = -\frac{13}{12}$ com $\frac{3\pi}{2} < \theta < 2\pi$, determine:
 - (a) $\cot \theta$
 - (b) $\sec \theta$
 - (c) $\cos(\theta \frac{7\pi}{6}) + \sin(-\theta)$
 - (d) $\cos(3\theta)$
 - (e) $\tan^2(\frac{\theta}{2})$
- 6. Demonstre as relações trigonométricas:
 - (a) $1 + \cot^2 \theta = \csc^2 \theta$
 - (b) $\cos 2\theta = \cos^2 \theta \sin^2 \theta$
 - (c) $\sin^2 \theta = \frac{1-\cos 2\theta}{2}$
- 7. (UDESC-SC) A expressão $\cot an(2x) + \csc(2x)$ pode ser reescrita como:
 - (a) $\frac{\cos x + \sin x}{\cos x \sin x}$
 - (b) $\tan x$
 - (c) $\cot x$
 - (d) $\frac{2[\cot^2 2x + \sin 2x]}{\sin 4x}$
 - (e) $\frac{2[\cos 2x + \sin 2x]}{\sin 4x}$
- 8. Determine todos os valores de a para os quais exista x satisfazendo sen $x = \frac{3a-2}{2}$.
- 9. Mostre que $\frac{\tan^2 x \sin^2 x}{\sin^2 x \cos^2 x + \sin^4 x} = \tan^2 x.$
- 10. Construir os gráficos das funções dadas.
 - (a) $f(x) = 2 + \sin x$

(b)
$$g(x) = 1 - \cos 2x$$

(c)
$$h(x) = 2 \operatorname{sen}(x - \frac{\pi}{4})$$

(d)
$$k(x) = \tan(\frac{x}{2})$$

(e)
$$l(x) = |\sin x|$$

(f)
$$p(x) = \operatorname{sen} |x|$$

(g)
$$q(x) = e^{\sin x}$$

11. Verifique se as funções dadas são pares, impares ou nem pares nem impares.

(a)
$$f(x) = x \operatorname{sen} x$$

(b)
$$g(x) = \frac{\pi \sin^3 x \cos x \tan x}{\sin x + \sqrt{1 - \cos^2 x}}$$

(c) $h(x) = \frac{\tan^2 x - 1}{\sqrt{3} + 2 \sec x}$

(c)
$$h(x) = \frac{\tan^2 x - 1}{\sqrt{3} + 2 \sec x}$$

(d)
$$k(x) = \csc x \cot^2 x$$

12. Considere as funções $f(x) = \cos x$ e $g(x) = \sqrt{x+1}$. Classifique a função $h(x) = q^{-1}(x)(q \circ f)(x)$ como função par, ímpar ou nem para nem ímpar.

13. Determine o domínio das funções dadas para todos os reais.

(a)
$$f(x) = \frac{1-\sin^2 x}{1+2\cos x}$$

(b)
$$g(x) = \frac{x}{\sqrt{3} - \tan x}$$

(c)
$$h(x) = \frac{1}{2 + \csc x}$$

14. Considere o intervalo $[0, 2\pi)$ e resolva:

(b)
$$\arccos(\cos \pi)$$

(c)
$$\cos(\arcsin(\frac{1}{2}))$$

(d)
$$\operatorname{arcsec}(\cot a 315^{\circ}) + \operatorname{arccossec}(\tan 225^{\circ})$$

15. Sejam $a=\arccos(\frac{12}{13})$ um arco do 3º quadrante e $b=\arccos(-\frac{3}{4})$ um arco do $4^{\underline{o}}$ quadrante. Calcule $169 \operatorname{sen}(2a - b)$.

Funções hiperbólicas

Um importante uso das funções exponenciais de base e é na definição das funções hiperbólicas que são combinações de e^x e e^{-x} . As funções hiperbólicas são encontradas em aplicações em diversas áreas do conhecimento. Por exemplo, uma curva formada por um fio suspenso por dois pontos é descrita por uma função hiperbólica.

11.1 Funções seno hiperbólico e cosseno hiperbólico

Definição. As funções seno hiperbólico e cosseno hiperbólico são definidas respectivamente por $\operatorname{senh}(x) = \frac{e^x - e^{-x}}{2}$ e $\cosh(x) = \frac{e^x + e^{-x}}{2}$

• O Gráfico da função y = senh(x) é a soma das funções exponenciais $\frac{e^x}{2}$ e $-\frac{e^{-x}}{2}$, conforme Figura 11.1.

Figura 11.1: Gráfico da função seno hiperbólico

Observe por exemplo, em x = 0, $senh(0) = \frac{e^0}{2} - \frac{e^0}{2} = \frac{1}{2} - \frac{1}{2} = 0$, ou seja, a soma dos valores $\frac{e^x}{2}$ e $-\frac{e^{-x}}{2}$ para x = 0. Se x = 1 então $senh(1) = \frac{e^1}{2} - \frac{e^{-1}}{2} = 1,175$.

Se
$$x = -1$$
 então $\operatorname{senh}(-1) = \frac{e^{-1}}{2} - \frac{e^{1}}{2} = -1,175.$

Note ainda que para valores grandes de x a função $y=-\frac{e^{-x}}{2}$ assume valores próximos de zero, enquanto que $\frac{e^x}{2}$ assume valores muito grandes. Assim, para valores grandes de x o gráfico de senh(x) é muito próximo do gráfico de $\frac{e^x}{2}$. E para valores pequenos de x os valores de $\frac{e^x}{2}$ também são muito próximos de zero, enquanto que $-\frac{e^{-x}}{2}$ assumirá valores grandes em módulo porém com sinal negativo, então $\frac{e^x}{2}-\frac{e^{-x}}{2}\approx -\frac{e^{-x}}{2}$; assim para valores pequenos de x o gráfico do senh(x) é muito próximo do gráfico de $-\frac{e^{-x}}{2}$.

A função $y = \operatorname{senh}(x)$ é **impar** pois $\operatorname{senh}(-x) = \frac{e^{-x} - e^x}{2} = -\frac{e^x - e^{-x}}{2} = -\operatorname{senh}(x)$, portanto, seu gráfico é simétrico em relação à origem do sistema cartesiano.

O domínio da função $y = \operatorname{senh}(x)$ é determinado pelo domínio da função exponencial e, portanto, todo o conjunto \mathbb{R} e a **imagem** também é \mathbb{R} .

• O gráfico da função $y=\cosh(x)$ é a soma das funções $\frac{e^x}{2}$ e $\frac{e^{-x}}{2}$, conforme Figura 11.2.

Figura 11.2: Gráfico da função cosseno hiperbólico

Para x=0, $\cosh(0)=\frac{e^0}{2}+\frac{e^0}{2}=\frac{1}{2}+\frac{1}{2}=1$. Para valores grandes de x, $\frac{e^x}{2}+\frac{e^{-x}}{2}\approx\frac{e^x}{2}$ e portanto o gráfico de $\cosh(x)$ se aproxima do gráfico de $\frac{e^x}{2}$. E para valores pequenos de x, $\cosh(x)=\frac{e^x}{2}+\frac{e^{-x}}{2}\approx\frac{e^{-x}}{2}$.

A função $y = \cosh(x)$ é **par** pois, $\cosh(-x) = \frac{e^{-x} + e^x}{2} = \frac{e^x + e^{-x}}{2} = \cosh(x)$, portanto, seu gráfico é simétrico em relação ao eixo y.

O domínio da função $y = \cosh(x)$ é o conjunto \mathbb{R} enquanto que a imagem é $[1, +\infty)$.

11.1.1 Por que o nome "Funções Hiperbólicas"?

Quando estudamos funções trigonométricas vimos que há uma forte relação com o círculo trigonométrico $x^2 + y^2 = 1$, onde $x = \cos(t)$ e $y = \sin(t)$ são as coordenadas do ponto P(x, y) do círculo.

Figura 11.3: círculo unitário

Na Figura 11.3, representamos o círculo unitário, onde demarcamos o setor circular $Q\widehat{O}P$ cuja área é $A_s=\frac{t\cdot r^2}{2}=\frac{t\cdot 1^2}{2}=\frac{t}{2}$. O parâmetro t representa um ângulo e é determinado por $t=2A_s$.

No caso das funções hiperbólicas há uma forte relação com a hipérbole unitária de equação $x^2-y^2=1$, o que justifica o adjetivo "hiperbólico" nas definições.

Figura 11.4

Na Figura 11.4, o ponto $P(\cosh u, \sinh u)$ pertence a hipérbole se satisfazer a equação $x^2-y^2=1$, ou seja, se $\cosh^2 u-\sinh^2 u=1$. De fato, esta equação é satisfeita pois

$$\cosh^{2} u - \sinh^{2} u = \left(\frac{e^{u} + e^{-u}}{2}\right)^{2} - \left(\frac{e^{u} - e^{-u}}{2}\right)^{2} \\
= \frac{e^{2u} + 2e^{u}e^{-u} + e^{-2u} - e^{2u} + 2e^{u}e^{-u} - e^{-2u}}{4} = 1$$

Diferentemente das funções trigonométricas, u não representa um ângulo. Pode-se mostrar através do Cálculo Diferencial e Integral que a área do setor hiperbólico $Q\widehat{O}P$ é $A_h=\frac{1}{2}u$, e portanto $u=2A_h$.

Veja no link a seguir uma animação dos gráficos de $y = \operatorname{senh} x$ e $y = \cosh x$: Animação

11.2 Funções tangente, cotangente, secante e cossecante hiperbólicas

As funções tangente, cotangente, secante e cossecante hiperbólicas são definidas respectivamente por:

•
$$\tanh(x) = \frac{\operatorname{senh}(x)}{\cosh(x)} = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

•
$$\operatorname{cotanh}(x) = \frac{\cosh(x)}{\operatorname{senh}(x)} = \frac{e^x + e^{-x}}{e^x - e^{-x}}$$

•
$$\operatorname{cossech}(x) = \frac{1}{\operatorname{senh}(x)} = \frac{2}{e^x - e^{-x}}$$

•
$$\operatorname{sech}(x) = \frac{1}{\cosh(x)} = \frac{2}{e^x + e^{-x}}$$

11.3 Funções hiperbólicas inversas

Para definirmos as inversas das funções hiperbólicas vamos separá-las em dois grupos: o grupo das funções que são inversíveis para todo $x \in \mathbb{R}$, senh, tanh, cotanh, e cossech; o grupo das funções que admitem inversa apenas se fizermos restição de domínio, cosh e sech. As funções hiperbólicas inversas são definidas por:

$$y = \operatorname{arg senh}(x) \iff x = \operatorname{senh}(y)$$

 $y = \operatorname{arg tanh}(x) \iff x = \operatorname{tanh}(y)$
 $y = \operatorname{arg cotanh}(x) \iff x = \operatorname{cotanh}(y)$
 $y = \operatorname{arg cossech}(x) \iff x = \operatorname{cossech}(y)$
 $y = \operatorname{arg cosh}(x) \iff x = \operatorname{cosh}(y)$
 $y = \operatorname{arg sech}(x) \iff x = \operatorname{sech}(y)$

onde arg lê-se argumento.

As funções hiperbólicas inversas podem ser expressas em termos de logaritmos naturais pois as funções hiperbólicas são expressas em termos exponenciais. São dadas por

- $\operatorname{argsenh}(x) = \ln(x + \sqrt{x^2 + 1}); \quad x \in \mathbb{R}$
- $arg cosh(x) = ln(x + \sqrt{x^2 1}); x \ge 1$
- $\operatorname{arg} \tanh(x) = \frac{1}{2} \ln\left(\frac{1+x}{1-x}\right); -1 < x < 1$
- $\operatorname{arg cotanh}(x) = \frac{1}{2} \ln \left(\frac{x+1}{x-1} \right); |x| > 1$

- $\operatorname{arg} \operatorname{sech}(x) = \ln\left(\frac{1+\sqrt{1-x^2}}{x}\right); \quad 0 < x \le 1$
- $\operatorname{arg cossech}(x) = \ln\left(\frac{1}{x} + \frac{\sqrt{1+x^2}}{|x|}\right); \quad x \neq 0$

Exemplos:

1) Mostre que $\operatorname{arg\,cosh}(x) = \ln(x + \sqrt{x^2 - 1}); \quad x \ge 1$ Solução:

Seja $x \ge 1$ e $y = \operatorname{arg} \cosh(x)$.

Então $x = \cosh(y) = \frac{e^y + e^{-y}}{2}, y \ge 0$ e portanto,

$$2x = e^y + e^{-y}$$

$$e^y + e^{-y} - 2x = 0$$

Multiplicando por e^y ambos os lados obtemos

$$e^{2y} - 2xe^{y} + 1 = 0 \Leftrightarrow (e^{y})^{2} - 2xe^{y} + 1 = 0$$
$$e^{y} = \frac{2x \pm \sqrt{4x^{2} - 4}}{2} = x \pm \sqrt{x^{2} - 1}$$

Como $e^y \ge 0$ para qualquer y, então a solução negativa deve ser descartada e a solução positiva ocorre para $x \ge 1$. Assim,

$$e^y = x + \sqrt{x^2 - 1}$$

para $x \ge 1$. Tomando o logaritmo natural, temos

$$y = \ln(x + \sqrt{x^2 - 1}).$$

Portanto $\operatorname{arg} \cosh(x) = \ln(x + \sqrt{x^2 - 1}); x \ge 1.$

2) Mostre que $\operatorname{arg} \tanh(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right)$ para -1 < x < 1. Solução:

Seja -1 < x < 1 e $y = \operatorname{argtanh}(x)$. Então $x = \tanh(y) = \frac{e^y - e^{-y}}{e^y + e^{-y}}$ e portanto,

$$xe^y + xe^{-y} - e^y + e^{-y} = 0.$$

Multiplicando por e^y ambos os lados obtemos:

$$xe^{2y} + x - e^{2y} + 1 = 0$$

$$e^{2y}(x-1) + x + 1 = 0$$

$$e^{2y} = -\frac{x+1}{x-1} = \frac{x+1}{1-x}.$$

Tomando o logaritmo natural, temos

$$2y = \ln\left(\frac{1+x}{1-x}\right)$$

$$y = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right).$$

Assim,
$$\operatorname{arg} \tanh(x) = \frac{1}{2} \ln \left(\frac{1+x}{1-x} \right) \text{ para } -1 < x < 1.$$

Analogamente, podem ser demonstradas as inversas das demais funções hiperbólicas.

Exercícios propostos 11.4

1. Prove as seguintes identidades hiperbólicas:

(a)
$$\tanh x = \frac{1}{\coth x}$$

(b)
$$1 - \tanh^2 x = \operatorname{sech}^2 x$$

(c)
$$1 - \operatorname{cotanh}^2 x = -\operatorname{cossech}^2 x$$

(d)
$$senh 2x = 2 senh x cosh x$$

(e)
$$\cosh 2x = \cosh^2 x + \sinh^2 x$$

(f)
$$\cosh^2 x = \frac{\cosh 2x + 1}{2}$$

(g)
$$\operatorname{senh}^2 x = \frac{\cosh 2x - 1}{2}$$

(h)
$$senh(x \pm y) = sinh x cosh y \pm cosh x senh y$$

(i)
$$\cosh(x \pm y) = \cosh x \cosh y \pm \sinh x \sinh y$$

2. Sabendo que $\sinh x=-\frac{3}{4}$, determine as outras funções hiperbólicas. (Sugestão: use a identidade $\cosh^2 x-\sinh^2 x=1$)

3. Simplifique as expressões dadas:

(a)
$$5 \tanh(\ln x)^2$$
 (c)

(c)
$$\ln\left(\frac{1+\tanh x}{1-\tanh x}\right)$$
 (e) $\coth\left(\frac{1}{2}\ln(2x)\right)$

(e)
$$\coth\left(\frac{1}{2}\ln(2x)\right)$$

(b)
$$\ln(\cosh 4x - \sinh 4x)$$

(d)
$$senh(ln x)$$

4. Mostre que as funções $\tanh x$, $\coth x$ e $\operatorname{cossech} x$ são ímpares e que $\operatorname{sech} x$ é par.

5. Determine o domínio e a imagem de cada função dada:

(a)
$$f(x) = \tanh x$$

(c)
$$h(x) = \operatorname{sech} x$$

(b)
$$g(x) = \operatorname{cotanh} x$$

(d)
$$p(x) = \operatorname{cossech} x$$

6. Determine o domínio das funções dadas:

(a)
$$f(x) = \sqrt{\operatorname{senh} x}$$

(b)
$$g(x) = \sqrt{(x^2 - x - 2) \tanh x}$$

(c)
$$h(x) = \frac{e^{\sqrt{1-x}}}{\operatorname{senh}(1-2^x)}$$

Respostas dos exercícios propostos

Capítulo 1

Seção 1.5

1)
$$R - (P - Q) = (2,7) = \{x \in \mathbb{R}/2 < x < 7\}$$

2a)
$$[(B \cap D) \cup C] - E = \emptyset$$

2b)
$$[(A-C) \cap \bar{B}] \cap E = [1,2] = \{x \in \mathbb{R}/1 \le x \le 2\}$$

3a)
$$\{x \in \mathbb{R}/x = 0 \text{ ou } 1 < x \le 3 \text{ e } x \ne 2\} = \{0\} \cup ((1,3] - \{2\})$$

3b)
$$\{x \in \mathbb{R}/-2 < x < 0 \text{ ou } x = 1\} = (-2,0) \cup \{1\}$$

Seção 1.8

1)
$$S = \{x \in \mathbb{R}/x > 1\}$$

2)
$$S = \{x \in \mathbb{R}/x < 1 \text{ ou } x \ge \frac{3}{2}\}$$

3)
$$S = \{x \in \mathbb{R}/x < 1\}$$

4)
$$S = \{x \in \mathbb{R}/x \le \frac{1}{3} \text{ ou } x > 1\}$$

Seção 2.12

(1a)
$$x^4 - 16y^2$$

(1e)
$$a^4 - b^4$$

(2a) $1 - \frac{1}{a}$

$$(2c) 2x^{2+3} = 2x^5$$

(2d)
$$ax^n(b+cx^m)$$

(2e)
$$3(x+1)^{1/2} ((2x-3)^5)^{1/2} = 3((x+1)(2x-3)^5)^{1/2}$$

$$(2f) \left(\frac{(2x-3)^5}{x-1}\right)^{1/2}$$

(2h)
$$\frac{3x+x^3}{2}$$

$$(2i) \ \frac{1}{x+2}$$

(2j)
$$a - 3$$

(2k)
$$\frac{a}{x+y}$$

$$(2l) \ 2\left(\frac{x-1}{x+1}\right)^2$$

$$(2m) y^5/x^4$$

2n)
$$x^3 + 2x + \frac{12}{2x^2 - 3x + 1}$$

20)
$$2x + 1$$

2p)
$$x + 1 + \frac{3x}{3x^2 - 2}$$

Seção 3.6

2a)
$$D(f) = \mathbb{R}$$

2b)
$$D(g) = [-2, +\infty)$$

2c)
$$D(h) = (-\infty, 0] \cup (2, +\infty)$$

2d)
$$D(m) = \mathbb{R} - \{-3, -2, 2\}$$

2e)
$$D(t) = [2, 10]$$

$$3) -11$$

4)
$$(h \circ h)(x) = \sqrt{x^2 + 10}$$
; $(f \circ g \circ f)(x) = \left(\frac{3x^2 - 1}{x^4 + 1}\right)^2$; $(f \circ f \circ h)(x) = x^4 + 2x^2 + 25$

5)
$$D(f+g) = D(f-g) = D(fg) = [-2, +\infty) - \{0\}; D(\frac{f}{g}) = (-2, +\infty) - \{0\}; D(g \circ f) = (0, +\infty)$$

6)
$$D(g \circ f) = \mathbb{R} - \{\pm \sqrt{5}\}; D(f \circ g) = \mathbb{R} - \{0\}$$

(3a)
$$x^2 + 2$$

(3b)
$$\frac{3x+1}{2x^2+3x+1}$$

$$(3c) (x+a)^2$$

$$(3d) -a^3b^3(a+2b)$$

(3e)
$$\frac{1}{y+2}$$

$$(3f) \frac{3}{20}(x+1)^{5/3}(15x+19)$$

$$(3h) \frac{-1}{\sqrt{x^2+1}}$$

$$(4a) \frac{5\sqrt{8}}{8}$$

$$(4b) \frac{30+18\sqrt{2}}{7}$$

$$(4c) \ \frac{1}{\sqrt{x+1}+1}$$

$$(4d) \frac{-3\sqrt{2}+3\sqrt{6}+6}{4}$$

$$(5c) 5^{14/15}$$

$$(5d) \ 2\sqrt[3]{3}$$

Seção 4.3

- $(2) \frac{37}{10}$
- (3) A: $y = \frac{5}{6}t$; B: $y = \frac{1}{3}t + \frac{3}{2}$

Seção 5.3

- 1a) V(-3, -4); x = -3; $Im(q) = (-\infty, -4]$
- 1b) $V(\frac{1}{8}, -\frac{3}{16}); x = \frac{1}{8}; \text{Im}(h) = [\frac{3}{16}, +\infty)$
- 1c) V(-1,9); x = -1; $Im(g) = (-\infty, 9]$
- 1d) $V(-\frac{3}{2},1)$; $x=-\frac{3}{2}$; $Im(p)=[1,+\infty]$
- 2) m = 7
- 3a) $f(x) = -x^2 + 5x 4$
- 3b) Máximo; $V(\frac{5}{2}, \frac{41}{4})$
- 4a) $f(x) = 3x^2 7x + 2$
- 4b) Mínimo. $P\left(\frac{7}{6}, -\frac{25}{12}\right)$
- 5) $S = \{x \in \mathbb{R}/0 < x \le 6\}$
- 6a) 10500 unidades
- 6b) $39 \le x \le 59$
- 7) $(-\infty, -1) \cup [1 + \sqrt{2}, +\infty)$
- 8a) $D(f) = \mathbb{R} \{-3, -2\}$
- 8b) $D(f) = [6, +\infty)$
- 9a) $h(t) = -3t^2 + 36t$
- 9b) t = 6 minutos
- 9c) 108 metros

Seção 5.5

- 1a) $S = \emptyset$
- 1b) $S = (-\infty, -1) \cup (3, +\infty)$
- 1c) S = (-5, 1)
- 1d) $S = (-\infty, -4] \cup [0, 1) \cup (5, +\infty)$
- 1e) $S = [-3, 3] \{2\}$

Seção 6.5

3) b

4)
$$f(x) = \begin{cases} 2x^2 - 1 & \text{se } x \le -1 \text{ ou } x \ge 1\\ 1 & \text{se } -1 < x < 1 \end{cases}$$

5a)
$$\operatorname{Im}(f) = \mathbb{R}$$

5b)
$$Im(h) = [0, \infty)$$

5c)
$$Im(g) = [2, \infty)$$

$$6) (-3, -1)$$

7)
$$S = \{-\frac{1}{2}, \frac{13}{4}\}$$

8a)
$$(-\infty, -3) \cup (3, +\infty)$$

8b)
$$(-\infty, \frac{1}{5}] \cup [1, +\infty)$$

8c)
$$\left[-\frac{5}{2}, +\infty\right)$$

8d)
$$(2, +\infty)$$

8e)
$$\left(\frac{-7-\sqrt{73}}{6}, \frac{1}{3}\right] \cup [2, +\infty)$$

9)
$$D(f) = (-\infty, -2] \cup (0, +\infty)$$

10)
$$S = [-1, \frac{1}{2}) \cup (\frac{3}{2}, 2]$$

Seção 7.4

1) Pares (a, c, e, i) e Ímpares: (d, f, h)

2a)
$$f^{-1}: \mathbb{R} \to \mathbb{R}$$
 tal que $f^{-1}(x) = x^3 - 1$

2b)
$$f^{-1}:[-1,+\infty) \to (-\infty,-1]$$
 tal que $f^{-1}(x)=-1-\sqrt{x+1}$ ou $f^{-1}:[-1,+\infty) \to [-1,+\infty)$ tal que $f^{-1}(x)=-1+\sqrt{x+1}$

2c)
$$f^{-1}: \mathbb{R} - \{2\} \to \Re - \{4\}$$
 tal que $f^{-1}(x) = \frac{3+4x}{x-2}$

2d)
$$f^{-1}:[0,+\infty)\to[1,+\infty)$$
 tal que $f^{-1}(x)=\sqrt[3]{x^2+1}$

3)
$$f(x) = -2x + 8$$

5a)
$$(f^{-1})^{-1}(x) = 2x + 3$$

5b)
$$(f \circ f^{-1})(x) = x$$

5c)
$$(g^{-1} \circ g^{-1})(x) = x^9 - 18x^6 + 10x^3 - 210$$

5d)
$$(f \circ g)^{-1}(x) = -\frac{1}{8}(x^3 - 9x^2 + 27x - 75)$$

- 5e) $(f \circ f \circ g^{-1})(x) = -4x^3 + 33$
- 9) FVF
- 10) $f^{-1}:[0,+\infty)\to[-4,+\infty)$ tal que $f^{-1}(x)=x^2-4$
- 11) e

Seção 8.4

- 1a) $S = \{-1\}$
- 1b) $S = \{\frac{1}{22}\}$
- 1c) $S = \{-2, 2\}$
- 1d) $S = \{-2, 6\}$
- 1e) $S = \{\frac{1}{2}\}$
- 1f) $S = \{\frac{3}{2}\}$
- 1g) $S = \{\frac{1}{2}\}$
- 2a) $S = \{(3,1)\}$
- 2b) $S = \{(2,3)\}$
- 2c) $S = \{(2,2)\}$

Seção 8.6

- 1a) $S = \left(-\frac{12}{7}, 9\right]$
- 1b) $S = [\frac{5}{9}, +\infty)$
- 1c) $S = (-\infty, -1) \cup [0, 1)$
- 1d) $S = (-\infty, 1]$
- 1e) $S = (-\infty, \frac{1}{2})$
- 2) c

Seção 9.3

- $2a) \frac{217}{16}$
- 2b) $\frac{9\sqrt{5}}{5}$
- 2c) 7
- $3) \frac{a}{a+1}$

4)
$$\log \sqrt{\frac{\sqrt[3]{a}\sqrt{c}}{(a^2+b)^7 b}}$$

$$5) \, \frac{1}{3} \ln a + 3 \ln b - \ln c - \frac{1}{3}$$

Seção 9.5

2a)
$$D(f) = \left(-\frac{3}{4}, +\infty\right)$$

2b)
$$D(g) = (\frac{1}{2}, +\infty)$$

2c)
$$D(h) = (-\infty, -2) \cup (1, 3) - \{2\}$$

2d)
$$D(p) = (-\infty, -2) \cup (\frac{1}{2}, 1)$$

3a)
$$f^{-1}(x) = e^x + 4$$
; $D(f^{-1}) = \mathbb{R} \in \text{Im}(f^{-1}) = (4, +\infty)$

3b)
$$g^{-1}(x) = 2^{1+x} + 1$$
; $D(g^{-1}) = \mathbb{R}$ e $\operatorname{Im}(g^{-1}) = (1, +\infty)$

3c)
$$h^{-1}(x) = -\frac{3}{2} + \frac{10^{x-3}}{3}$$
; $D(h^{-1}) = \mathbb{R} \in \text{Im}(h^{-1}) = (-\frac{3}{2}, +\infty)$

3d)
$$p^{-1}(x) = \frac{1}{3} \ln \left(\frac{x}{2} \right) + \frac{5}{3}$$
; $D(p^{-1}) = (0, +\infty)$ e $\operatorname{Im}(p^{-1}) = \mathbb{R}$

3e)
$$q^{-1}(x) = \frac{1}{7} \log_{\frac{1}{5}}(x+4) + \frac{1}{7}$$
; $D(q^{-1}) = (-4, +\infty)$ e $\operatorname{Im}(q^{-1}) = \mathbb{R}$

Seção 10.5

- 1a) $\frac{31\pi}{20}$
- 1b) $\frac{11\pi}{3}$
- 1c) $\frac{9\pi}{4}$
- 1d) $\frac{\pi}{12}$
- 1e) 10π
- 2a) 72°
- 2b) 420°
- 2c) 675°
- 2d) 140°
- 2e) 255°
- 3) $\cos \alpha = -\frac{2}{3}$; $\sin \alpha = \frac{\sqrt{5}}{3}$; $\tan \alpha = -\frac{\sqrt{5}}{2}$; $\cot \alpha = -\frac{2\sqrt{5}}{5}$; $\operatorname{cossec} \alpha = \frac{3\sqrt{5}}{5}$
- 4) $\cos \alpha = -\frac{3}{4}$; $\sin \alpha = -\frac{\sqrt{7}}{4}$; $\cot \alpha = \frac{3\sqrt{7}}{7}$; $\sec \alpha = -\frac{4}{3}$; $\csc \alpha = -\frac{4\sqrt{7}}{7}$
- $5a) \frac{5}{12}$
- 5b) $\frac{13}{5}$

- $5c) \frac{36-5\sqrt{3}}{26}$
- 5d) $-\frac{2035}{2197}$
- 5e) $\frac{4}{9}$
- 7) c
- 8) $0 \le a \le \frac{4}{3}$
- 11a) Par
- 11b) Nem par nem ímpar
- 11c) Par
- 11d) Ímpar
- 12) Par
- 13a) $x \neq \frac{2\pi}{3} + 2k\pi$ e $x \neq \frac{4\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$
- 13b) $x \neq \frac{\pi}{3} + k\pi, k \in \mathbb{Z}$
- 13c) $x \neq \frac{7\pi}{6} + 2k\pi$ e $x \neq \frac{11\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$
- 14a) 1
- 14b) π
- 14c) $\pm \frac{\sqrt{3}}{2}$
- 14d) $\frac{3\pi}{2}$
- $15) \frac{116}{5}$

Seção 11.4

- 2) $\cosh x = \frac{5}{4}$, $\tanh x = -\frac{3}{5}$, $\coth x = -\frac{5}{3}$, $\operatorname{sech} x = \frac{4}{5}$, $\operatorname{cossech} x = -\frac{4}{3}$
- 3a) $5\left(\frac{x^4-1}{x^4+1}\right)$
- 3b) -4x
- 3c) 2x
- 3d) $\frac{x^2 1}{2x}$
- 3e) $\frac{2x+1}{2x-1}$
- 5a) $D(f) = \mathbb{R} \in Im(f) = (-1, 1)$

5b)
$$D(g)=\mathbb{R}^*$$
e $Im(g)=(-\infty,-1)\cup(1,+\infty)$

5c)
$$D(h) = \mathbb{R} \ e \ Im(h) = (0, 1]$$

5d)
$$D(p) = \mathbb{R}^* \in Im(p) = \mathbb{R}^*$$

6a)
$$D(f) = \mathbb{R}_+$$

6b)
$$[-1,0] \cup [2,+\infty)$$

6c)
$$(-\infty, 1] - \{0\}$$

Bibliografia

- DANTE, L. R. Matemática. Volume único. 1. ed. São Paulo: Ática, 2005.
- DEMANA, F.D. et al. **Pré-Cálculo**. Tradução técnica: Eliana Crepaldi Yazawa e Aldy Fernandes da Silva. São Paulo: Addison Wesley, 2009.
- DOERING, C.I.; DOERING, L.R. (Org.). **Pré-Cálculo**. Porto Alegre: Editora da UFRGS, 2008.
- FLEMMING, D.M.; GONÇALVES, M.B. Cálculo A: funções, limite, derivação, integração. São Paulo: Pearson Prentice Hall, 2007.
- IEZZI, G. et al. Fundamentos da Matemática Elementar, 1: Conjuntos e Funções. São Paulo: Atual, 2004.
- IEZZI, G. et al. **Fundamentos da Matemática Elementar, 2**: Logaritmos. São Paulo: Atual , 2004.
- IEZZI, G. et al. **Fundamentos da Matemática Elementar, 3**: Trigonometria. São Paulo: Atual, 2004.
- SCHWERTL, S.L. Matemática Básica. 2. ed. Blumenau: Edifurb, 2010.