#### ГУАП

### КАФЕДРА № 42

| ОТЧЕТ             |
|-------------------|
| ЗАЩИЩЕН С ОЦЕНКОЙ |
| ПРЕПОДАВАТЕЛЬ     |

Старший преподаватель должность, уч. степень, звание

подпись, дата

Т. А. Суетина инициалы, фамилия

# ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ №3

«Алгоритм сжатия изображения JPEG 2000»

по курсу: Техника аудиовизуальных средств информации

| РАБОТУ ВЫПОЛНИЛ | I    |               |                   |
|-----------------|------|---------------|-------------------|
| СТУДЕНТ гр. №   | 4128 |               | В.А. Воробьев     |
|                 |      | подпись, дата | инициалы, фамилия |

## 1. Цель работы

Получить теоретические знания по работе с цветным изображением, изучить этапы классического алгоритма JPEG 2000 для сжатия цветного изображения и практически реализовать поученные знания.

### 2. Задание

Для цветного изображения размерностью 16x16 пикселей выполнить сжатие изображения на основе алгоритма JPEG2000. Вычислить поученный коэффициент сжатия.

### 3. Ход работы

Цветное изображение для сжатия размерностью 16х16 пикселей представлено на рисунке 1.



Рисунок 1 - Исходное изображение

Реализован сдвиг по яркости всех значений пикселей изображения. Изображение переведено в цветовое пространство YUV. Матрица Y разделена на четыре блока 8x8, а матрицы U (Cr) и V (Cb) прорежены. В итоге получено шесть матриц: четыре матрицы света и две цветоразностных.

Полученные матрицы представлены на рисунках 2-4.

В алгоритме используется сдвиг по яркости на 31 единиц для каждого пикселя изображения перед его дальнейшей обработкой.

```
Luminance values (Y) before shift:
[255 255 113 113 113 113 113 255 255 113 113 113 113 113 255 255]
                    32 255 255
 [255 255
        32 255 255 255
                              32 255 255 255
                                           32 255 255]
                    32 255 255
 [255 255
        32 255 113 255
                              32 255 113 255
                                           32 255 255]
 [255 255
        32 255 113 255
                    32 255 255
                              32 255 113 255
                                           32 255 255]
        32 255 113 255
 [113 255
                    32 255 255
                              32 255 113 255
                                           32 255 2551
 [255 255
        32 255 113 255
                     32 255 255
                              32 255 113 255
                                           32 255 255]
 [255 255
        32 255 255 255
                     32 255 255
                              32 255 255 255
                                           32 255 255]
 [255 255
        32
           32
              32
                 32
                     32
                       32
                          32
                              32
                                 32
                                    32
                                        32
                                           32 255 255]
 [255 255 255 255 255 107 107 107 107 107 255 255 255 255 255]
 [255 255 255 255 255 107
                      0 107 107
                               0 107 255 255 255 255 2551
 [255
     70 255
           70 255 107 107 107 107 107 107 255
                                       70 255
                                              70 255]
 [255 255 255 255 255
                 70
                     70
                       70
                          70
                                 70 255 255 255 255 255]
                              70
 Luminance values (Y) after shift:
           82
             82
                  82
                     82
                       82
                                 82
                                           82
[[ 82 82
        82
                           82
                              82
                                     82
                                        82
                                              82
                                                 821
 82
 [224 224
        82
           82
              82
                     82 224 224
                                82
                                    82
                 82
                                       82
                                           82 224 224]
 [224 224
         1 224 224 224
                     1 224 224
                               1 224 224 224
                                           1 224 224]
 [224 224
              82 224
                     1 224 224
                               1 224
         1 224
                                     82 224
                                            1 224 224]
                     1 224 224
 [224 224
         1 224
              82 224
                               1 224
                                            1 224 224]
                                     82 224
 [ 82 224
         1 224
              82 224
                     1 224 224
                               1 224
                                     82 224
                                           1 224 224]
 [224 224
                               1 224
         1 224
              82 224
                     1 224 224
                                    82 224
                                            1 224 224]
 [224 224
                     1 224 224
         1 224 224 224
                               1 224 224 224
                                            1 224 224]
 [224 224
         1
            1
               1
                  1
                     1
                        1
                           1
                              1
                                  1
                                     1
                                        1
                                            1 224 2241
                        76
                           76
                                 76 224 224 224 224 224]
 [224 224 224 224 224
                  76
                    76
                              76
 [224 224 224 224 224
                  76 225
                        76
                           76 225
                                 76 224 224 224 224 224]
                           76
    39 224
           39 224
                 76
                    76
                       76
                              76
                                 76 224
                                       39 224
                                             39 2241
[224 224 224 224 39 39
                       39
                           39
                             39
                                 39 224 224 224 224 224]
 Luminance matrix (Y):
```

Рисунок 1 – матрицы до и после сдвига

```
[[785.75 899.25 903.50 904.25 2.75 3.75 -15.00 2.75]
[898.00 873.50 900.25 902.00 6.00 -7.00 3.25 -2.50]
[791.00 684.50 691.50 795.00 106.00 209.00 210.50 111.00]
[711.75 537.25 533.75 707.50 -178.25 -330.25 -328.25 -177.00]
[6.75 2.25 -11.00 -0.25 -107.25 4.75 7.50 -2.75]
[-0.50 1.50 0.25 0.50 6.50 -9.00 -1.75 -4.00]
[88.00 -3.00 -3.50 -91.50 -100.00 -4.50 -5.50 101.50]
[188.25 0.75 3.25 -178.00 157.25 -1.75 3.25 -167.50]]
```

Рисунок 2.1 - Матрица У после преобразования

```
[[511.25 513.25 515.00 511.75 -0.25 -0.75 -1.00 -0.25]
[512.25 511.00 511.25 512.00 1.25 -1.00 -0.75 1.00]
[499.75 485.75 486.00 500.25 10.25 25.75 26.50 10.25]
[487.25 456.75 456.25 489.75 -17.75 -40.25 -39.75 -17.25]
[-1.25 0.25 -1.50 2.25 -0.75 0.25 -0.50 0.25]
[2.25 -1.00 1.25 -1.00 -0.75 1.00 -0.75 0.00]
[9.25 0.25 3.00 -9.25 -5.25 -0.75 0.50 4.75]
[16.25 -1.25 1.75 -15.75 9.25 2.75 -3.25 -10.75]]
```

Рисунок 2.2 - Матрица У после преобразования

```
[[509.50 511.75 511.75 509.50 1.50 2.25 2.75 0.50]
[512.75 512.50 512.50 513.25 2.75 0.00 -1.00 2.75]
[567.50 621.25 624.00 567.75 -41.50 -94.25 -92.50 -39.75]
[614.00 738.00 741.00 610.00 73.50 174.50 171.00 75.50]
[3.00 -1.25 1.75 -3.50 0.00 -0.75 -0.25 -0.50]
[-1.75 -0.50 1.50 2.75 -0.75 5.00 -4.00 1.25]
[-35.50 -5.25 -3.50 36.25 32.50 -2.75 8.00 -30.25]
[-75.00 -2.00 2.00 71.00 -47.50 0.50 -0.00 51.50]]
```

Рисунок 2.3 - Матрица У после преобразования

Матрица, полученная в результате квантования, значения представлены на рисунке ниже.



Рисунок 3 - Взятая мертвая зона

Рисунок 4.1 – Квантованные коэффиценты

Рисунок 4.2 – Квантованные коэффиценты

Рисунок 4.3 – Квантованные коэффиценты

К полученным последовательностям применено сжатие алгоритмом арифметического кодирования (часть результата представлена на рисунках 5-7).

```
Luminance matrix (Y):
79.0: [0, 0.25]
79.0: low = 0, high = 0.25
90.0: [0.0625, 0.09375]
90.0: low = 0.0625, high = 0.09375
79.0: [0.06250, 0.0703125]
79.0: low = 0.06250, high = 0.0703125
71.0: [0.0654296875, 0.0664062500]
71.0: low = 0.0654296875, high = 0.0664062500
0.0: [0.0659179687500, 0.0661621093750]
0.0: low = 0.0659179687500, high = 0.0661621093750
0.0: [0.0660400390625000, 0.0661010742187500]
0.0: low = 0.0660400390625000, high = 0.0661010742187500
9.0: [0.0660858154296875000, 0.0660934448242187500]
9.0: low = 0.0660858154296875000, high = 0.0660934448242187500
19.0: [0.0660924911499023437500, 0.0660934448242187500000]
19.0: low = 0.0660924911499023437500, high = 0.0660934448242187500000
l0 = 0.0660924911499023437500
h0 = 0.0660934448242187500000
```

Рисунок 5 - Результаты арифметического кодирования

```
U matrix:
51.0: [0, 0.25]
51.0: low = 0, high = 0.25
51.0: [0.00, 0.0625]
51.0: low = 0.00, high = 0.0625
50.0: [0.015625, 0.0234375]
50.0: low = 0.015625, high = 0.0234375
49.0: [0.0185546875, 0.0195312500]
49.0: low = 0.0185546875, high = 0.0195312500
0.0: [0.0190429687500, 0.0194091796875]
0.0: low = 0.0190429687500, high = 0.0194091796875
0.0: [0.0192260742187500, 0.0193634033203125]
0.0: low = 0.0192260742187500, high = 0.0193634033203125
0.0: [0.0192947387695312500, 0.0193462371826171875]
0.0: low = 0.0192947387695312500, high = 0.0193462371826171875
2.0: [0.0193397998809814453125, 0.0193462371826171875000]
2.0: low = 0.0193397998809814453125, high = 0.0193462371826171875000
l0 = 0.0193397998809814453125
h0 = 0.0193462371826171875000
```

Рисунок 6 - Результаты арифметического кодирования

Total file size: 43.58781487706386 EC: 140.95682514318938

Рисунок 7 - Результаты сжатия

#### Вывод

В ходе выполнения лабораторной работы проведено сжатия изображения в цветовом пространстве RGB размером 16х16 пикселей алгоритмом JPEG2000. Получены теоретические знания по работе с цветным изображением, изучены этапы алгоритма JPEG2000 для сжатия цветного изображения и практически реализованы поученные знания.

Проведены следующие операции: сдвиг по яркости, перевод изображения в цветовое пространство YUV, прореживание цветоразностных компонентов, вейвлет-преобразование, квантование, сжатие алгоритмом арифметического кодирования

Полученный коэффициент сжатия равен примерно 140.

Работа выполнена с использованием написанной на языке Python программы. Исходный код программы представлен в приложении А.

## приложение а

# ИСХОДНЫЙ КОД JPEG2000.PY

```
import cv2
import pywt
import numpy as np
from decimal import Decimal, getcontext
def pixel(rgb):
  yuv = cv2.cvtColor(rgb, cv2.COLOR BGR2YUV)
  print('Luminance matrix (Y):')
  print(yuv[:, :, 0])
  print('U matrix:')
  print(yuv[:, :, 1])
  print('V matrix:')
  print(yuv[:, :, 2])
  return yuv
```

```
def wavelet(yuv, n, need print = False):
  wave = np.empty((n, n, 3))
  for i in range(3):
     coeffs = pywt.dwt2(yuv[:, :, i], 'haar')
     a, (h, v, d) = coeffs
     wave[:, :, i] = np.vstack((np.hstack((a, h)), np.hstack((v, d))))
  a = np.empty((int(n/2), int(n/2), 3))
  for i in range(3):
     for x in range(int(n / 2)):
       for y in range(int(n / 2)):
          a[x, y, i] = wave[x, y, i]
```

np.set printoptions(precision=2, suppress=True, formatter={'all': lambda

```
x: f'(x:0.2f)')
         if need_print:
            print('Luminance matrix after wavelet transformation (Y):')
            print(wave[:, :, 0])
            print('U matrix after wavelet transformation:')
            print(wave[:, :, 1])
            print('V matrix after wavelet transformation:')
            print(wave[:, :, 2])
         return wave, a
      def quant(yuv, q, n):
         for i in range(3):
            for x in range(n):
              for y in range(n):
                 if np.abs(yuv[x, y, i]) \leq q:
                   yuv[x, y, i] = 0
```

```
yuv[x, y, i] = (np.round(yuv[x, y, i] / q))
  print('Luminance matrix after quantization (Y):')
  print(yuv[:, :, 0])
  print('U matrix after quantization:')
  print(yuv[:, :, 1].astype(int))
  print('V matrix after quantization:')
  print(yuv[:, :, 2].astype(int))
  return yuv
def bypass(yuv, n):
  item = ["Luminance matrix (Y):", "U matrix:", "V matrix:"]
  V = 0
  for i in range(3):
```

else:

print(item[i])

```
for y in range(n):
        l, h, v = arithmetic(yuv[:, y, i])
        V += v
        print(f'1\{y\} = \{1\} \setminus h\{y\} = \{h\} \setminus n')
  print(f'Total file size: {V}')
  print(f'EC: {6144 / V}')
def arithmetic(input_string):
  symbol_freq = {}
  for char in input_string:
     if char in symbol_freq:
        symbol_freq[char] += 1
     else:
        symbol freq[char] = 1
```

v = 0

```
interval start = Decimal(0.0)
        interval end = Decimal(1.0)
        for char, freq in symbol freq.items():
           v += -np.log2(freq / len(input_string)) * freq / len(input_string)
           symbol freq[char] = [interval start, interval start + Decimal(freq /
len(input string))]
           interval start = interval start + Decimal(freq / len(input string))
        symbol freq['EOF'] = [interval start, interval end - interval start]
        low = Decimal(0.0)
        high = Decimal(1.0)
        for char in input string:
           range size = Decimal(high - low)
           high = Decimal(low + range size * symbol freq[char][1])
           low = Decimal(low + range size * symbol freq[char][0])
           print(f'{char}: [{low}, {high}]')
```

```
print(f'{char}: low = {low}, high = {high}')
        return low, high, v
import cv2
import pywt
import numpy as np
from decimal import Decimal, getcontext
from math_helper import *
def shift(ST):
  rgb =
cv2.imread('/Users/razrab-ytka/Documents/Projects/suai-labs/6_semester/ТАСИ/2
_fix/image.jpg')
  yuv = cv2.cvtColor(rgb, cv2.COLOR_BGR2YUV)
  print("Luminance values (Y) before shift:")
  print(yuv[:, :, 0])
```

```
for x in range(16):
     for y in range(16):
       yuv[x, y, 0] -= 2 ** (ST[0]) - 1
  print("Luminance values (Y) after shift:")
  print(yuv[:, :, 0])
  rgb_shifted = cv2.cvtColor(yuv, cv2.COLOR_YUV2BGR)
  return rgb_shifted
ST = [5, 5, 5]
q = 10
rgb = shift(ST)
```

yuv = pixel(rgb)

```
print(yuv)
```

yuv, a = wavelet(yuv, 16)

yuv, a = wavelet(a, 8, need\_print=True)

yuv = quant(yuv, q, 8)

getcontext().prec = 38

bypass(yuv, 8)