

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL MAR DEL PLATA

SISTEMAS DE PROCESAMIENTO DE DATOS

1er Año - 1er Cuatrimestre

PROFESORES: L. Chiessa - R. Soto - E. Monaco - G. Gimenez - V. Tomich

Trabajo Práctico

SISTEMAS NUMÉRICOS:
1) Convertir de decimal a binario, a octal y a hexadecimal los siguientes números:
a) 15 b) 8 c) 32 d) 240 e) 7 f) 163 g) 635 h) 24
2) Realizar la conversión inversa (de binario, de octal y de hexa a decimal) de los números anteriores.
3) Cuántos dígitos necesito para representar los números del ejercicio 1, en las distintas bases (2, 8, 16). Mostrar cómo realiza el cálculo.
4) Cuántos dígitos necesito para representar el número 25 en base 5. Realizar la comprobación.
5) Indicar cuál es el siguiente de cada uno de los números binarios que se indican:
a) 011 b) 111 c) 1011 d) 1 e) 1111 f) 00010 g) 1110 h) 10
6) Indicar cuál es el siguiente de cada uno de los números octales que se indican:
a) 101 b) 707 c) 277 d) 460 e) 777 f) 266 g) 267 h) 7
7) Indicar cuál es el siguiente de cada uno de los números hexadecimales que se indican:
a) FFF b) 2ABF c) 2B99 d) 1FF e) ABCD f) C0D0 g) A0F h) 999
8) Dado el número 10, convertirlo a base diez, suponiendo que esta:
a) en base 2 b) en base 4 c) en base 8 d) en base 16
9) Convertir a base 10 el número binario 11011,1011. Luego realizar la conversión inversa.
10) ¿Cuántos bytes necesito para representar el número 2A1F en binario?
11) Convertir los siguientes números binarios a hexadecimal y octal:
a) 10111 b) 101 c) 110011 d) 1100110 e) 11,111 f) 1010,0001
12) ¿Cuántos bytes ocupa el texto "240"? Cuantos bytes necesito para representar el entero 240 en Representación de Binario sin Signo (binario normal).

13) En Representación de Binario sin Signo, que rango de números represento si n (cantidad de dígitos binarios) es: 4, 8, 10, 16, 32.

米

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL MAR DEL PLATA

SISTEMAS DE PROCESAMIENTO DE DATOS

1er Año - 1er Cuatrimestre

PROFESORES: L. Chiessa - R. Soto - E. Monaco - G. Gimenez - V. Tomich

- 14) En Representación en Signo-Magnitud, que rango de números represento si n (cantidad de dígitos binarios) es: 4, 8, 10, 16, 32.
- 15) En Representación en Complemento a 2, que rango de números represento si n (cantidad de dígitos binarios) es: 4, 8, 10, 16, 32.
- 16) Dado el número 1011 en Representación en Signo-Magnitud, escribir el mismo en Complemento a 2.
- 17) Dado el número 1000 en Complemento a 2, escribir el mismo en Signo-Magnitud. Que nota con respecto a n (cantidad de dígitos binarios).
- 18) Cuál es mi n para representar el número 128 en Representación de Binario sin Signo y en Representación en Signo-Magnitud.
- 19) Cuál es mi n para representar el número 35620 en Representación de Binario sin Signo, en Representación en Signo-Magnitud y en Complemento a 2.
- 20) Qué número en decimal es el 10110001 en Representación en Signo-Magnitud y en Complemento a 2.
- 21) Representar los siguientes números decimales en binario (con n no mayor a lo necesario); primero en Representación en Signo-Magnitud y luego en Complemento a 2:

a) 45

b) -45

c) 8

d)-8

e) 127

f) -127

- 22) Representar en Complemento a 2, con una longitud de 2 bytes el número 45 y el -45.
- 23) Representar el número 10011110 en Complemento a dos en formato de 2 bytes.
- 24) Realizar las siguientes sumas algebraicas en base 10, en Representación en Complemento a 2:

a) 18 + 102

b) 18 + (-102)

c) -18 + 102

d) -18 + (-102)

25) Realizar las siguientes restas algebraicas en base 10, en Representación en Complemento a 2:

a) 15 – 99

b) 15 - (-99)

c) -15 - 99

d) -15 - (-99)

26) Calcule el opuesto del número 6 (el cual debe ser -6) en Representación en Signo-Magnitud y en Representación en Complemento a 2. Luego conviértalos a una longitud superior, por ejemplo, si utilizo 4 bits, pasarlo a 8 bits.