假设检验入门 与实验数据处理

大纲

一、假设检验从何而来

二、假设检验与其P值

三、几种经典假设检验

四、所用数据从何而来

假设检验从何而来

背景补充

从抛硬币开始...

- 假设有一个硬币,记抛出正面为1,抛出反面为0,那么抛十次,我们就能得到一个类似于这样的序列:
- {1, 0, 1, 1, 0, 1, 0, 0, 0, 1}
- 我们可以把十次当中第i次的结果记为 x_i ,则对于任意 x_i , 其取值是不唯一、随机的,我们就可以将这样的一种有不 同可能的取值描述为一个"随机变量",记作

•
$$X = \begin{cases} 0 \\ 1 \end{cases}$$
 或 $X = \{0, 1\}$

从离散随机变量到连续随机变量

离散

- 抛硬币、年级等等
- 可能的取值"可数":从一个结果出发,可以不重复地遍历所有可能
- 任意两个值之间没有定义:
 - 处于正面和反面之间?
 - 大二点五?

连续

- 身高、绩点、气温等等
- 可能的取值"不可数": 没有一种 方法能够不重不漏地遍历所有可能
- 任意两个值之间可以无限细分:
 - 0到1之间的实数与-∞至+∞一样多
 - 不存在身高完全一样的人

如何描述随机变量

取值+概率

- 概率的总和为1
- 概率分布: 描述随机变量各个取值的概率

离散随机变量的概率分布看起来如下

如何描述随机变量

取值+概率

- 概率分布: 描述随机变量各个取值的概率
 - 但是对于连续型随机变量,由于其取值可以无限细分, 因此相当于有无穷多的值可取,每个值的概率就→0

连续随机变量的概率分布随着取值的细分趋向于0

如何描述随机变量

取值+概率

- 概率分布: 描述随机变量各个取值的概率
 - 但是对于连续型随机变量,由于其取值可以无限细分,因此相当于有无穷多的值可取,每个值的概率就→0
 - 因此我们采用<mark>概率密度分布</mark>来描述其概率分布

概率密度分布用**面积**来表示一段范围内 取值的概率大小

正态分布——最常见的分布类型

又称为高斯分布、正规分布

不管总体遵从什么类型的分布,依照中心极限定律,从中采样得到的样本均值依然服从正态分布

sampling distribution of the mean

为什么需要假设检验

描述一个正态分布只需要均值和标准误两个参数

- 但是我们没法直接知道总体分布的这两个参数,只能从抽样所得结果中去"猜"
 - 一个样本点什么都猜不了
 - 两个样本点只能猜均值
 - 所以至少需要三个样本点
- 依概率抽样意味着存在得出**完全相反**结论 的可能
 - 总体分布形如曲线,但是如果单从抽样结果出 发我们就会得到"蓝色均值大于红色"这样的 错误结论

假设检验中的P值

重要指标

假设检验怎么做——从最简单的开始

t-test (t-检验)

- 根本问题:抽样结果是否**有差异**,即是否 服从同一分布
- 我们的零假设:
 - 两组样本服从同一分布,没有差异(独立样本)
 - 样本服从均值为零的分布(单样本/成对样本)
 - 或者任何希望反驳的分布情况
- 我们的备选假设:
 - 两组样本服从不同分布,有差异(独立样本)
 - 样本服从均值非零的分布(单样本/成对样本)
 - 或者与零假设不同的、希望证明的分布情况

Figure 2. Three cases of t-tests

假设检验怎么做——怎么来"猜"

P值:在假定零假设成立的情况下,得到抽样结果的可能有多大

- 一个离散随机变量的例子:
- 一颗正六面体骰子,连续掷出了10个1,问其是均匀的可能性有多大?
 - 零假设: 骰子是均匀的,即掷出1-6的可能性都是1/6
 - 备选假设: 骰子不均匀,即掷出1-6的概率不相等
 - 计算: 连续十次掷出1的概率为

$$P(x_{1..10} = 1) = \prod_{i=1}^{10} P(x_i = 1) = \left(\frac{1}{6}\right)^{10} = \frac{1}{6^{10}}$$

- 因此在这种情况下P值就是 $\frac{1}{6^{10}}$,也就是说当我们拒绝零假设时,只有 $\frac{1}{6^{10}}$ 的概率犯错

假设检验怎么做——何时拒绝零假设

为了控制"误杀"零假设的犯错概率,我们需要决定显著性水平

- 显著性水平为预先决定的拒绝 零假设时的P值的阈值
- 低于显著性水平=拒绝零假设
- 显然所取**样本越多**, P**值越小**, 因此要选择合适的显著性水平
- 常见的几个显著性水平有:
 - -0.1
 - -0.05
 - -0.01

_ ...

Carsten Grube. Statistical Data Analysis. dataZ4s.com

几种经典假设检验

方法选择

选择合适的假设检验——单样本、双样本

t-test (t-检验)

• 单样本

- 生物化学课程成绩, etc. (标准误由样本方差估计)
- 零假设: 服从的分布均值为0, 与其没有差异
- 备选假设: 服从的分布均值不为0

• 成对样本

- 参加学业辅导前后的成绩变化, etc.
- 将成对的观测值通过相减/相除化为单样本, 假设也同单样本

• 独立样本

- 参加学业辅导与不参加学业辅导的人群成绩对比, etc. (参数由样本估计)
- 零假设: 两个变量服从同一个分布, 没有差异
- 备选假设:两个变量服从不同分布

选择合适的假设检验——多样本

ANOVA(Analysis of Variance,方差分析)

- 单因素方差分析 One-way ANOVA
 - 两个以上实验分组(pH,研磨方法,etc.)
 - 零假设: 所有分布的均值没有差异, 即实验分组对观测结果无影响
 - 备选假设: 至少有一个分组服从不同的分布
- 双因素方差分析 Two-way ANOVA
 - 有两组互相独立的实验分组(pH+研磨方法, etc.)
 - 零假设:任一分组对应分布均值无差异,且两个实验分组互不影响(2+1)
 - 备选假设: 有至少一个分组对结果造成影响,或两个分组间有关联
- 具体过程与t-检验不太相同,但结果显著性都以P值衡量

选择合适的假设检验——其他方法

方法很多,熟悉原理,仔细选择

- 卡方检验
 - 类似于ANOVA, 但是观测值不连续, 无法求方差, 只能依照其分类比例计算
- 回归分析
 - 探究两个连续随机变量之间是否有关联性
- 所有假设检验都有共同点,需要视具体情况分析!

有差异 = 显著 ≠ 差异大 不能反驳零假设 = 不显著 ≠ 接受零假设

所用数据从何而来

数据处理

要做分析先要找好对象

探究研磨方式/pH对酶活的影响

• 实验变量: 研磨方式或pH

• 研究对象: 单位酶活

• 原始数据: 吸光度值-时间曲线

- 首先从吸光度值-时间曲线计算出单 位酶活(假设所有人用量均为3μL)
- 所用模型为

$$Abs_{340} = (1 - e^{-K_{tot} \cdot t})S_0 \cdot \varepsilon \cdot L$$

- 推导过程可以参考提交数据的网页上侧边栏,待定项为总酶活 K_{tot} 与起始(有效)底物浓度 S_0 (可以自行比较如果固定 S_0 其拟合结果如何)

进一步处理——归一化

归一化前

不同组之间可能体系、样品量有差异

- 我们希望减少这部分差异带来的实验性因素的影响,同时也要去除重复数值的偏置影响(去重)
- 假设酶活只随处理的不同而变化
- 将不重复的每组结果取均值,计算 此均值与全班均值的偏差比例,再 将对应数据点除去此比例,使得组 间酶活的均值位于同一水平

给同学们的数据形式

- 每行对应一个数值
- 数值之后有相关分组信息
- 允许嵌套分组/任意增加记录字段

横表

- 每行有多个数值
- 一列为一组数值
- 较难嵌套分组

	Method	Enzyme_Activity_tot \$\\$	Enzyme_Activity_avg \$	Enzyme_Activity_avg_norm \(\)	S_estimate	R_squared ϕ	Method_Group	Day \$	Group	Name	Id
1	Electric homogenizer	0.111193709922668	0.0370645699742228	0.0317685672646368	0.262011043060187	0.999669189063822	0	Fri	1	8d51340a	2000012136
2	Glass homogenizer	0.145928928868958	0.0486429762896526	0.0416925831133258	0.23600097745046	0.998707113503391	0	Fri	1	8d51340a	2000012136
3	Bead mill homogenizer	0.0893881697813553	0.0297960565937851	0.0255386216211035	0.241228434356425	0.999878228596774	0	Fri	1	8d51340a	2000012136
4	рН6.0	0.076401538195408	0.0254671793984693	0.0218282797378607	0.205830670446861	0.999573448302901	1	Fri	1	8d51340a	2000012136
5	pH6.5	0.145928928868958	0.0486429762896526	0.0416925831133258	0.23600097745046	0.998707113503391	1	Fri	1	8d51340a	2000012136
6	pH7.0	0.120897518364911	0.0402991727883037	0.0345409910953997	0.276036913334945	0.99959597289406	1	Fri	1	8d51340a	2000012136
7	pH7.5	0.134105088978416	0.0447016963261388	0.0383144563006653	0.261370596085891	0.999888511431921	1	Fri	1	8d51340a	2000012136
8	Electric homogenizer	0.127905471598561	0.0426351571995202	0.0365431963806219	0.276173632063776	0.999874056650278	0	Fri	1	91093c91	2000012278
9	Glass homogenizer	0.117996361484802	0.0393321204949339	0.0337121168941961	0.234946210192544	0.999852897194734	0	Fri	1	91093c91	2000012278
10	Bead mill homogenizer	0.113581888950824	0.0378606296502746	0.0324508812745634	0.210053776627696	0.999859874365636	0	Fri	1	91093c91	2000012278
Chaving 1 to 10 of 96 entries			D		o Mt						

欢迎自行探索其他数据处理方法

	方法	总酶活	归一化前 单位酶活	归一化后 单位酶活	拟合底 物浓度	R^2	方法 分组	其他信息			
	Method \$	Enzyme_Activity_tot \$	Enzyme_Activity_avg	Enzyme_Activity_avg_norm \$	S_estimate \$	R_squared \(\psi	Method_Group \(\psi \)	Day \$	Group \$	Name	Id ∜
1	Electric homogenizer	0.111193709922668	0.0370645699742228	0.0317685672646368	0.262011043060187	0.999669189063822	0	Fri	1	8d51340a	2000012136
2	Glass homogenizer	0.145928928868958	0.0486429762896526	0.0416925831133258	0.23600097745046	0.998707113503391	0	Fri	1	8d51340a	2000012136
3	Bead mill homogenizer	0.0893881697813553	0.0297960565937851	0.0255386216211035	0.241228434356425	0.999878228596774	0	Fri	1	8d51340a	2000012136
4	рН6.0	0.076401538195408	0.0254671793984693	0.0218282797378607	0.205830670446861	0.999573448302901	1	Fri	1	8d51340a	2000012136
5	рН6.5	0.145928928868958	0.0486429762896526	0.0416925831133258	0.23600097745046	0.998707113503391	1	Fri	1	8d51340a	2000012136
6	рН7.0	0.120897518364911	0.0402991727883037	0.0345409910953997	0.276036913334945	0.99959597289406	1	Fri	1	8d51340a	2000012136
7	pH7.5	0.134105088978416	0.0447016963261388	0.0383144563006653	0.261370596085891	0.999888511431921	1	Fri	1	8d51340a	2000012136
8	Electric homogenizer	0.127905471598561	0.0426351571995202	0.0365431963806219	0.276173632063776	0.999874056650278	0	Fri	1	91093c91	2000012278
9	Glass homogenizer	0.117996361484802	0.0393321204949339	0.0337121168941961	0.234946210192544	0.999852897194734	0	Fri	1	91093c91	2000012278
10	Bead mill homogenizer	0.113581888950824	0.0378606296502746	0.0324508812745634	0.210053776627696	0.999859874365636	0	Fri	1	91093c91	2000012278

Showing 1 to 10 of 86 entries

23

