Problema 1

Considere um sistema na vertical formado por um objecto de massa m preso a uma mola de constante k. O objecto é sujeito a uma força de amortecimento dada por $-m\Gamma v$, onde v é a velocidade.

- a) Escreva a equação diferencial que descreve o movimento de oscilações livres do sistema.
- b) Mostre que a solução $y = Ae^{-\alpha t}\cos(\omega t)$ é solução deste sistema. Determine $\alpha \in \omega$.
- c) Assumindo que a frequência (com amortecimento) é um factor 0.995 da frequência de oscilação própria do sistema (sem amortecimento), determine o valor de Γ .
- d) Determine o valor da amplitude após a execução de 4 ciclos completos.
- e) Calcule a percentagem da energia inicial que resta no sistema após a execução de 4 oscilações.

Problema 2

Considere um sistema com a seguinte equação do movimento:

$$\frac{d^2x(t)}{dt^2} + \omega_0^2x(t) = \frac{f_0}{m}\cos(\omega_0 t)\cos(\delta t),$$

onde $\delta \ll \omega_0$. No limite $\delta \to 0$, o sistema vai para a ressonância.

a) Qual é o deslocamento do sistema para $\delta \neq 0$ em primeira ordem de δ/ω_0 ? Escreva o resultado na forma:

$$\alpha(t)\cos(\omega_0 t) + \beta(t)\sin(\omega_0 t)$$

- e determine os valores de $\alpha(t)$ e $\beta(t)$.
- b) Determine a potência média realizado por este sistema durante meio período, T/2.
- c) Discuta o resultado obtido.

Problema 3

Considere um bloco de massa m imerso num fluido que actua como uma força de atrito proportional a $-m\Gamma v$. O bloco está ligado a uma mola, de constante k, tal como ilustrado na figura. A mola desloca-se na horizontal ao longo do tempo de acordo com: $d_0 \cos \omega_d t$.

- a) Escreva a equação do movimento.
- b) Considere a solução em steady-state da forma:

$$z(t) = \mathcal{A}e^{-i\omega_d t},$$

onde $A = a + ib = Re^{i\theta}$. Discuta o movimento do sistema (em particular a fase) para:

- (a) $\omega_d \ll \omega_0, \Gamma$
- (b) $\omega_d \gg \omega_0, \Gamma$

