$\frac{4.1.4}{1.4}$: Hitta en bas till egennumet $\frac{d^2}{dt^2}$ på $C^{\infty}(\mathbb{R})$.

<u>hösn:</u> Om $\frac{d^2}{dt^2}(f) = 0$ so är f = ax + b för några a, be R och därfor är ξ_1, t_3 en bas för ξ_0 .

 $\frac{4.1.7}{1}$: På R₂t7 Låt L(p)(t) = p(t) + p(-t).Hitta en bas för E_2 .

<u>Lösn</u>: Om $p \in \mathbb{R}_2(t)$ sù kan p skrivas son $p = at^2 + bt + c$ bir nêgra a, b, c $\in \mathbb{R}$ och $p(t) + p(-t) = 2(at^2 + c)$ vilket är lika med 2p(t) om och endest om b = 0. Dus, en bas för E_2 är E_1, t^2 3.

4.2.6: Antag att vi har en bas $b_1, -, b_n$ av egenvelborer bill en operator A med motsvarande egenvärden $\lambda_1, -, \lambda_n$. Visa att $L = (A - \lambda_1 I) \circ (A - \lambda_2 I) \circ - \circ (A - \lambda_n I)$ är holltransformationen (Här är $(\lambda_i I)(v) = \lambda_i v$)

Lösn:
$$V$$
: how att $(A-\lambda_i T)A = A^2-\lambda_i A = A(A-\lambda_i T)$
och $(A-\lambda_i T)\lambda_i T = \lambda_i A - \lambda_i \lambda_i T = \lambda_i T(A-\lambda_i T)$
Sw

$$T_{n}\lambda(T_{n}-A-A) = (T_{n}-A) - A(T_{n}-A-A) = (T_{n}-A-A) = (T_{n}-A-$$

och på liknande sätt kan vi flytta
villen laktor $(A-\lambda_i I)$ som ledst. Detta bebyder
att ordningen på faktorerna kan väljas hur
som helst. Detta ger att $L(b_i) = 0$ $\forall i$ eftersom $(A-\lambda_i^* I)b_i = 0$. Varje vektor kan
skrivas som $v = a_1b_1 + \cdots + a_nb_n$ och $L(v) = a_1L(b_1) + \cdots + a_nL(b_n) = 0$,

dus L=0.

 $\frac{4.3.12}{\text{L(p)(t)}} = -p(0) + 3p(1)t + p(2)t^{2}$

Lösn: Bus veliborerne aubildus som
$$L(1) = -1 + 3t + t^{2}$$

$$L(t) = -0 + 3t + 2t^{2}$$

$$L(t^{2}) = -0 + 3t + 4t^{2}$$

$$M = \begin{pmatrix} -1 & 0 & 0 \\ 3 & 3 & 3 \\ 1 & 2 & 4 \end{pmatrix}.$$

Det kanaletäristristeiste polynonet ges av
$$\det (M - xI) = \begin{vmatrix} -1-x & 0 & 0 \\ 3 & 3-x & 3 \\ 1 & 2 & 4-x \end{vmatrix}$$

$$= (-1-x)((x-3)(x-4)-6)$$

$$= (-1-x)(x^2-7x+6)$$

$$= -(x+1)(x-1)(x-6)$$

Sû egenvärdena till L är -1,1,6. Mobsvarande egenvektorer für vi dû som bas för kärnan $\begin{bmatrix} 0 & 0 & 0 \\ 3 & 4 & 3 \\ 1 & 2 & 5 \end{bmatrix}$ $\begin{pmatrix} -2 & 0 & 0 \\ 3 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$, resp. $\begin{pmatrix} -7 & 0 & 0 \\ 3 & -3 & 3 \\ 1 & 2 & -2 \end{pmatrix}$.

Grans elim: $\begin{pmatrix}
0 & 0 & 0 \\
3 & 4 & 3 \\
1 & 2 & 5
\end{pmatrix}
\sim
\begin{pmatrix}
0 & 0 & 0 \\
0 & -2 & -12 \\
1 & 0 & -2
\end{pmatrix}
\sim
\begin{pmatrix}
0 & 0 & 0 \\
0 & -2 & -12 \\
1 & 0 & -2
\end{pmatrix}
\sim
\begin{pmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & -2
\end{pmatrix}$ $val_{1}^{1} = \begin{pmatrix} 1 \\ -6 \\ 1 \end{pmatrix}$ $oh val_{1}^{1} \qquad v_{2} = \begin{pmatrix} 0 \\ 3 \\ -2 \end{pmatrix} \qquad v_{3} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}.$

 $\frac{4.3.14}{3.14}$: Visa att om A är dvagonalvserbar 8û är $p_A(A) = 0$.

<u>Lösn:</u> Detta följer av 4.2.6: Om A är duagonalikerbar och $\lambda_1, \ldots, \lambda_n$ är notev. egen värden sin har vi $P_A(A) = \pm (A - \lambda_1)(A - \lambda_2) \ldots (A - \lambda_n) = 0$.

 $\frac{4.4.8}{1.8}$: Firms det en reell matrix som är konjugat bill $D = \begin{pmatrix} 3+2i & 0 \\ 0 & 3+2i \end{pmatrix}$?

<u>hösn</u>: Nej: Om en ræll matris har komplexa egenvärder så har dess kæraktäristriska polynom $P_A(x) = x^2 + ax + b$

där $a^2-4b<0$ <=> $a^2<4b$. Då har $p_A(x)$ rötter $x_1=-\frac{a}{2}+i\frac{\sqrt{4b-a^2}}{2}$ och $x_2=-\frac{a}{2}-i\frac{\sqrt{4b-a^2}}{2}$ vilka är komplexkonjugat. Dis egenvärdena mäste vora reella eller komplexkonjugat. Så sværet är nej.

(*) $\pm n$ $\pm n$

 $\frac{4.4.9}{1.4.9}$: Firms deb en reell matrix som är honjugat bill $D = \begin{pmatrix} 3+2i & 0 \\ 0 & 3-2i \end{pmatrix}$?

Lisn: Ja, matrisen 3I har egenvärde 3
och matrisen $2\binom{0-1}{10}$ har egenvärden $2i_1-2i_2$ sû $3I + 2\binom{0-1}{10} = \binom{3-2}{2}$ har døg matris D.

 $\frac{4.6.11}{1.6.11}$ Hitta egenvärden plus egenveld. Gill $\frac{1.6.11}{1.6.11}$

Lösn: Använd brick 4 sida 78 & bohen.