编译原理第五次作业

201300035 方盛俊

Ex. 5.1.2

	产生式	语义规则
(1)	L o En	L.val=E.val
(2)	E o TE'	$E'.inh = T.val \ E.val = E'.syn$
(3)	$E' ightarrow + TE'_1$	$E_1'.inh = E'.inh + T.val \ E'.syn = E_1'.syn$
(4)	$E' ightarrow \epsilon$	E'.syn = E'.inh
(5)	T o FT'	$T'.inh = F.val \ T.val = T'.syn$
(6)	$T' o *FT_1'$	$T_1'.inh = T'.inh * F.val \ T'.syn = T_1'.syn$
(7)	$T' o \epsilon$	T'.syn = T'.inh
(8)	F o(E)	F.val = E.val
(9)	$F o \mathbf{digit}$	$F.val = \mathbf{digit}.lexval$

Ex. 5.1.3 (1)

(1)

Ex. 5.2.3 (2)

(2)

- (i) 由于 SDD 存在继承属性 A.i, B.i, D.i, 因此它不符合 S 属性定义的要求.
- (ii) 由于 A.s=B.i+C.s 的左侧是综合属性 A.s, 而 D.i=A.i+B.s 中的 D.i 依赖于 A 的继承属性 A.i 和左边符号 B 的属性 B.s 且不依赖于自身的其他属性, 因此满足 L 属性定义的要求.
- (iii) 由于其满足 L 属性定义的要求, 因此存在和这些规则一致的求值过程.

Ex. 5.2.4

	产生式	语义规则
(1)	$S ightarrow L_1.L_2$	$egin{aligned} L_1.side &= ext{Left} \ L_2.side &= ext{Right} \ S.val &= L_1.val + L_2.val \end{aligned}$
(2)	S o L	$egin{aligned} L.side &= ext{Left} \ S.val &= L.val \end{aligned}$

	产生式	语义规则
(3)	$L ightarrow L_1 B$	$egin{aligned} L_1.side &= L.side \ L.len &= L_1.len + 1 \ L.val &= (L.side == ext{Left})?(2*L_1.val + B.val): \ (L_1.val + B.val * 2^{-L.len}) \end{aligned}$
(4)	L o B	$egin{aligned} L.len &= 1 \ L.val &= (L.side == ext{Left})?B.val : B.val/2 \end{aligned}$
(5)	B o 0	B.val=0
(6)	B o 1	B.val=1

Ex. 5.3.1 (1)

(1)

	产生式	语义规则
(1)	$E o E_1 + T$	$E.type = (E_1.type == ext{float} T.type == ext{float})$?float : int
(2)	E o T	E.type = T.type
(3)	$T ightarrow ext{num.num}$	$T.type = { m float}$
(4)	$T o ext{num}$	$T.type = \mathrm{int}$

Ex. 5.4.3

原来的 SDT 为:

```
B -> B_1 0 { B.val = 2 x B_1.val }
| B_1 1 { B.val = 2 x B_1.val + 1 }
| 1 { B.val = 1 }
```

提取左公因子得

消除左递归后得

化简得