Survival Analysis

Liam Murphy

2024-11-23

```
library(survival)
library(ranger)
library(ggplot2)
library(dplyr)
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
      filter, lag
##
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggfortify)
library(broom)
library(gtsummary)
data(cancer, package="survival")
myeloid <- na.omit(myeloid)</pre>
# Create kaplan meier curve variable
km <- with(myeloid, Surv(futime, death ))</pre>
# Produce kaplan meier survival estimates of the probability of survival over time
km_fit <- survfit(Surv(futime, death) ~ 1, data = myeloid )</pre>
summary(km_fit, death = c(1,30,60,90*(1:10)))
## Call: survfit(formula = Surv(futime, death) ~ 1, data = myeloid)
  time n.risk n.event survival std.err lower 95% CI upper 95% CI
##
##
    140
         136 1
                         0.993 0.00733
                                              0.978
                                                            1.000
           135
                                               0.965
                                                            1.000
##
    181
                    1 0.985 0.01032
##
    191
         134
                    2 0.971 0.01449
                                               0.943
                                                            0.999
##
     237
           132
                    1 0.963 0.01614
                                               0.932
                                                            0.995
##
    245
           131
                    1 0.956 0.01761
                                               0.922
                                                            0.991
##
     255
           130
                    1 0.949 0.01895
                                               0.912
                                                            0.986
```

##	OE0	129	2	0 024 0 02122	0 903	0 077
##	258		2	0.934 0.02132	0.893	0.977
##	261	127	1	0.926 0.02238	0.884	0.971
##	275	126	2	0.912 0.02432	0.865	0.961
##	278	124	1	0.904 0.02521	0.856	0.955
##	284	123	1	0.897 0.02606	0.847	0.950
##	286	122	1	0.890 0.02686	0.839	0.944
##	293	121	1	0.882 0.02763	0.830	0.938
##	295	120	1	0.875 0.02836	0.821	0.932
##	307	119	1	0.868 0.02906	0.813	0.927
##	318	118	1	0.860 0.02973	0.804	0.921
##	322	117	1	0.853 0.03037	0.795	0.915
##	326	116	2	0.838 0.03158	0.779	0.902
##	332	114	1	0.831 0.03214	0.770	0.896
##	337	113	2	0.816 0.03321	0.754	0.884
##	344	111	1	0.809 0.03372	0.745	0.878
##	355	110	1	0.801 0.03420	0.737	0.871
##	365	109	1	0.794 0.03467	0.729	0.865
##	372	108	1	0.787 0.03512	0.721	0.859
##	388	107	1	0.779 0.03556	0.713	0.852
##	396	106	1	0.779 0.03530	0.715	0.846
##	400	105	1	0.765 0.03637	0.697	0.839
##	403	104	1	0.757 0.03676	0.689	0.833
##	408	103	1	0.750 0.03713	0.681	0.826
##	409	102	1	0.743 0.03749	0.673	0.820
##	411	101	1	0.735 0.03783	0.665	0.813
##	432	100	1	0.728 0.03816	0.657	0.807
##	446	98	1	0.721 0.03849	0.649	0.800
##	458	97	1	0.713 0.03880	0.641	0.793
##	465	96	1	0.706 0.03910	0.633	0.787
##	476	95	1	0.698 0.03939	0.625	0.780
##	486	94	1	0.691 0.03966	0.617	0.773
##	499	93	1	0.683 0.03993	0.609	0.766
##	517	91	1	0.676 0.04019	0.602	0.759
##	518	90	1	0.668 0.04044	0.594	0.752
##	531	89	1	0.661 0.04067	0.586	0.746
##	539	88	1	0.653 0.04090	0.578	0.739
##	575	87	1	0.646 0.04111	0.570	0.732
##	603	85	1	0.638 0.04132	0.562	0.725
##	609	84	1	0.631 0.04153	0.554	0.718
##	614	83	1	0.623 0.04171	0.546	0.710
##	651	82	1	0.615 0.04189	0.539	0.703
##	658	81	1	0.608 0.04206	0.531	0.696
##	664	80	1	0.600 0.04221	0.523	0.689
##	670	79	1	0.593 0.04236	0.515	0.682
##	671	78	1	0.585 0.04249	0.507	0.675
##	692	77	1	0.577 0.04261	0.500	0.667
##	696	76	1	0.570 0.04272	0.492	0.660
##	697	75	1	0.562 0.04282	0.484	0.653
##	707	74	2	0.547 0.04299	0.469	0.638
##	727	72	1	0.539 0.04306	0.461	0.631
##	736	71	1	0.532 0.04312	0.454	0.623
##	743	70	1	0.524 0.04317	0.446	0.616
##	759	69	1	0.517 0.04321	0.439	0.609
##	762	68	1	0.509 0.04323	0.431	0.601
ir m	, 02	00	_	J.000 U.UT020	0.401	0.001

```
##
     774
                           0.494 0.04326
                                                              0.586
             66
                      1
                                                0.416
                           0.486 0.04326
##
     805
                                                0.408
                                                              0.579
##
     829
                           0.479 0.04324
                                                0.401
             64
                      1
                                                              0.571
##
     834
             63
                      1
                           0.471 0.04322
                                                0.394
                                                              0.564
##
     874
                      2
                           0.456 0.04314
             62
                                                0.379
                                                              0.549
##
                           0.448 0.04308
     892
             60
                      1
                                                0.371
                                                              0.541
##
     907
             59
                      1
                           0.441 0.04302
                                                0.364
                                                              0.534
##
     963
             57
                      1
                           0.433 0.04295
                                                0.356
                                                              0.526
##
     964
             56
                      1
                           0.425 0.04288
                                                0.349
                                                              0.518
##
   1007
             55
                      1
                           0.417 0.04279
                                                0.342
                                                              0.510
   1020
                           0.410 0.04269
##
             54
                      1
                                                0.334
                                                              0.503
## 1021
             53
                      1
                           0.402 0.04258
                                                0.327
                                                              0.495
## 1034
            52
                      1
                           0.394 0.04245
                                                0.319
                                                              0.487
## 1102
                           0.387 0.04232
                                                              0.479
            51
                      1
                                                0.312
## 1164
            50
                      1
                           0.379 0.04217
                                                0.305
                                                              0.471
## 1241
            49
                           0.371 0.04202
                      1
                                                0.297
                                                              0.463
## 1305
            48
                           0.363 0.04185
                                                0.290
                                                              0.455
                      1
## 1370
                           0.355 0.04172
            43
                                                0.282
                                                              0.447
                      1
## 1409
             39
                      1
                           0.346 0.04163
                                                0.273
                                                              0.438
## 1621
             33
                      1
                           0.335 0.04166
                                                0.263
                                                              0.428
## 2283
                           0.252 0.07904
                                                0.136
                                                              0.466
summary(survfit(Surv(futime,death) ~ 1, data = myeloid), times = 365.25)
## Call: survfit(formula = Surv(futime, death) ~ 1, data = myeloid)
## time n.risk n.event survival std.err lower 95% CI upper 95% CI
                           0.794 0.0347
##
     365
            108
                     28
                                                0.729
                                                              0.865
myeloid %>%
 filter(death==1) %>%
  summarize(median_surv =median(futime))
##
    median_surv
## 1
# Create for loop to conduct between group significance test using a log rank test. The log-rank test w
for (i in colnames(myeloid)) {
  if (i != "futime" && i != "death" && i != "id" && i != "txtime" && i!="crtime" && i!="rltime") { # Ex
    formula <- as.formula(paste("Surv(futime, death) ~", i))</pre>
    result <- survdiff(formula, data = myeloid)
    print(result) # Display the results
  }
}
## Call:
## survdiff(formula = formula, data = myeloid)
##
          N Observed Expected (O-E)^2/E (O-E)^2/V
## trt=A 60
                  43
                         34.2
                                   2.27
                                             3.71
```

0.423

0.594

##

768

0.501 0.04325

1

```
## trt=B 76 46 54.8 1.42 3.71
##
## Chisq= 3.7 on 1 degrees of freedom, p= 0.05
## survdiff(formula = formula, data = myeloid)
##
         N Observed Expected (0-E)^2/E (0-E)^2/V
                        52.4
## sex=f 79
                 50
                                 0.111
                                           0.27
                        36.6
## sex=m 57
                 39
                                 0.158
                                           0.27
##
## Chisq= 0.3 on 1 degrees of freedom, p= 0.6
## survdiff(formula = formula, data = myeloid)
##
##
          N Observed Expected (0-E)^2/E (0-E)^2/V
## flt3=A 21
                  14
                         14.9
                                 0.0518
## flt3=B 69
                  41
                         49.8
                                 1.5497
                                           3.5451
## flt3=C 46
                  34
                         24.3
                                 3.8353
                                          5.3245
## Chisq= 5.5 on 2 degrees of freedom, p= 0.06
```

autoplot(km_fit)

Looking at survival times stratified by treatment
km_trt_fit <- survfit(Surv(futime, death) ~ trt, data=myeloid)</pre>

autoplot(km_trt_fit)

Fitting a cox proportional hazards model (semi-parametric multiplicative model) making use of covaira
cox <- coxph(Surv(futime, death) ~ trt + sex + flt3 + txtime + crtime +rltime , data = myeloid)
summary(cox)</pre>

```
## Call:
## coxph(formula = Surv(futime, death) ~ trt + sex + flt3 + txtime +
      crtime + rltime, data = myeloid)
##
##
##
    n= 136, number of events= 89
##
               coef exp(coef)
##
                                 se(coef)
                                               z Pr(>|z|)
## trtB
         -0.2922871
                     0.7465541
                                0.2314302 -1.263 0.20660
## sexm
          0.2554729 1.2910720
                                0.2295895 1.113
                                                 0.26582
## flt3B
        -0.1508864 0.8599454
                                0.3163588 -0.477
## flt3C
          0.1486204 1.1602325
                                0.3319984 0.448
                                                 0.65440
## txtime -0.0001530 0.9998470
                                0.0006649 -0.230
                                                  0.81799
## crtime -0.0021755 0.9978268
                                0.0036357 -0.598
                                                 0.54959
## rltime -0.0020069 0.9979952
                               0.0006936 -2.893 0.00381 **
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
##
         exp(coef) exp(-coef) lower .95 upper .95
```

```
## trtB
             0.7466
                        1.3395
                                   0.4743
                                             1.1750
             1.2911
                        0.7746
                                   0.8232
                                             2.0248
## sexm
             0.8599
## flt3B
                        1.1629
                                   0.4626
                                             1.5987
## flt3C
                                   0.6053
                                             2.2240
             1.1602
                        0.8619
## txtime
             0.9998
                        1.0002
                                   0.9985
                                             1.0012
             0.9978
                        1.0022
                                   0.9907
                                             1.0050
## crtime
## rltime
             0.9980
                        1.0020
                                   0.9966
                                             0.9994
##
## Concordance= 0.708 (se = 0.028)
## Likelihood ratio test= 27.53 on 7 df,
                                             p=3e-04
## Wald test
                        = 23.05 on 7 df,
                                             p=0.002
## Score (logrank) test = 23.23 on 7 df,
                                             p=0.002
cox_fit <- survfit(cox)</pre>
#plot(cox_fit, main = "cph model", xlab="Days")
```

autoplot(cox_fit)

The only significant covariate is rltime (time to relapse of disease) with a p-value > .01.

```
# The Aalen model(non-parametric additive model) assumes that the cumulative hazard H(t) for a subject aa_fit <-aareg(Surv(futime, death) ~ trt + sex + flt3 + txtime + crtime +rltime , data = myeloid) aa_fit
```

```
## Call:
## aareg(formula = Surv(futime, death) ~ trt + sex + flt3 + txtime +
##
       crtime + rltime, data = myeloid)
##
##
    n = 136
##
      81 out of 82 unique event times used
##
                            coef se(coef)
##
                 slope
## Intercept 2.55e-03 2.13e-02 4.35e-03 4.890 9.94e-07
             -4.39e-04 -3.32e-03 2.79e-03 -1.190 2.34e-01
## trtB
## sexm
              2.24e-04 2.69e-03 2.69e-03 0.998 3.18e-01
             -1.09e-04 -1.03e-03 3.22e-03 -0.319 7.50e-01
## flt3B
              3.67e-04 2.50e-03 3.88e-03 0.645 5.19e-01
## flt3C
             -7.59e-07 -3.70e-06 3.62e-06 -1.020 3.06e-01
## txtime
## crtime
             -4.02e-06 -3.19e-05 2.99e-05 -1.070 2.85e-01
             -1.41e-06 -1.41e-05 2.90e-06 -4.870 1.11e-06
## rltime
##
## Chisq=40.71 on 7 df, p=9.21e-07; test weights=aalen
```

autoplot(aa_fit)


```
# Ranger builds a model for each obs in the dataset
# Model using the same variables as the cox model
```

```
r_fit <- ranger(Surv(futime, death) ~ trt + sex + flt3 + txtime + crtime +rltime , data = myeloid, mtr
                     importance = "permutation",
                     splitrule = "extratrees",
                     verbose = TRUE)
death_times <- r_fit$unique.death.times</pre>
surv_prob <- data.frame(r_fit$survival)</pre>
avg_prob <- sapply(surv_prob, mean)</pre>
# Plot the survival models for each patient
plot(r_fit$unique.death.times,r_fit$survival[1,],
     type = "1",
     ylim = c(0,1),
     col = "red",
     xlab = "Days",
     ylab = "survival",
     main = "Patient Survival Curves")
cols <- colors()</pre>
for (n in sample(c(2:dim(myeloid)[1]), 20)) {
 lines(r_fit$unique.death.times, r_fit$survival[n,], type = "l", col = cols[n])
lines(death_times, avg_prob, lwd = 2)
legend(500, 0.2, legend = c('Average = black'))
```

Patient Survival Curves


```
# Ranking importance of each variable from the RF model
vi <- data.frame(sort(round(r_fit$variable.importance, 4), decreasing = TRUE))</pre>
names(vi) <- "importance"</pre>
head(vi)
##
          importance
              0.0464
## rltime
              0.0230
## txtime
              0.0222
## sex
              0.0175
## trt
## crtime
             -0.0014
## flt3
             -0.0022
# The Harrell's c-index is similar to the concordance statistic
# This is a generalization of the ROC curve which reduces the Wilcoxon-Mann-Whitney statistic for binar
cat("Prediction Error = 1 - Harrell's c-index = ", r_fit$prediction.error)
## Prediction Error = 1 - Harrell's c-index = 0.3207212
# Set up for ggplot
```

kmi <- rep("KM",length(km_fit\$time))</pre>

names(km_df) <- c("Time", "Surv", "Model")</pre>

km_df <- data.frame(km_fit\$time,km_fit\$surv,kmi)</pre>

```
coxi <- rep("Cox",length(cox_fit$time))
cox_df <- data.frame(cox_fit$time,cox_fit$surv,coxi)
names(cox_df) <- c("Time","Surv","Model")

rfi <- rep("RF",length(r_fit$unique.death.times))
rf_df <- data.frame(r_fit$unique.death.times,avg_prob,rfi)
names(rf_df) <- c("Time","Surv","Model")

plot_df <- rbind(km_df,cox_df,rf_df)

p <- ggplot(plot_df, aes(x = Time, y = Surv, color = Model))
p + geom_line()</pre>
```

