Nome: _

```
2ª Prova (11/12/2023)
```

Responda a cada uma das questões de forma clara e organizada. Apresente todos os passos da solução.

Questão 01 (2,5 pontos, 30 min.) – Traduza os seguintes procedimentos em C, para o *assembly* do processador MIPS.

```
void p4(int* x)
    *x = *x + 1;
}
int p3(int x)
{
    return x + 2;
}
int p2(int* x, int y)
    int vetorA[3]; /* variáveis locais */
    int valor;
    p4(x);
    vetorA[0] = p3(*x);
    vetorA[1] = y;
            i = 1;
    if (vetorA[1] < 10) {
        vetorA[2] = 10;
    }else{
        vetorA[2] = p3(y);
        i = i + 1;
    valor = vetorA[i] + vetorA[0];
    return valor;
}
```

Listagem 1: Procedimento em C da questão 2.

Questão 02 (1,5 ponto, 15 min.) – (A) Qual o valor decimal do número 0xC240 0000, representado em ponto flutuante, precisão simples? (B) Represente o número decimal 25,25 em ponto flutuante, precisão simples.

Questão 03 (1,5 pontos, 15 min.) – Sejam os números $x=110_2$ (multiplicando) e $y=011_2$ (multiplicador). Faça a multiplicação $x\cdot y$, usando o segundo algoritmo da multiplicação. Apresente os resultados em cada um dos passos do algoritmo.

Questão 04 (2,5 pontos, 20 min.) – Seja a instrução sw \$t1, 24(\$t0) (sw rt, imm(rs), opcode 0x2B) no endereço 0x0040 001C. (A) Converta a instrução para linguagem de máquina, apresentando os campos. (B) Explique detalhadamente com esta instrução é executada pelo processador monociclo (use as tabelas 2 e 3 e o diagrama de blocos do processador na figura 2). Apresente na figura os sinais de controle. Escreva um texto explicando como a instrução é executada. (C) Qual os valores na saída do somador próximo ao sinal fontePC e da UAL? Considere que os registradores \$t0 e \$t1 possuem os valores 10 e 12, respectivamente. Considere que toda a memória de dados é preenchida com zeros.

(A)	(A) sw \$t1, 24(\$t0)																													
Insti	Instrução em linguagem de máquina:																													

(B) Use a folha de papel pautado e a figura 2.

(C)	Saída do somador (perto de fontePC):	
	Saída da UAL:	

Questão 05 (2,0 ponto, 15 min.) – Considere os seguintes estágios individuais de um caminho de dados:

	IF	ID	EX	MEM	WB
_	(ps)	(ps)	(ps)	(ps)	(ps)
_	200	150	300	250	100

- 1. Qual é o período mínimo do sinal de relógio para um processador monociclo e com pipeline?
- 2. Qual a latência esperada para a execução de uma instrução sw no processador monociclo e para o processador com pipeline?
- 3. Se você pudesse dividir um estágio do caminho de dados com pipeline em dois novos estágios, cada um com a metade da latência do estágio original, que estágio você dividiria e qual é o novo período do sinal de relógio do processador?
- 4. Qual a latência esperada para a execução de uma instrução lw no processador monociclo e no processador com pipeline com 6 estágios do item anterior?

Figura 1: Ilustração dos campos das instruções R, I e J de um processador MIPS.

Equação do valor de um número em ponto flutuante , normalizado. O peso P é igual a 127 para números em precisão simples e 1023 para números em precisão dupla.

$$N = (-1)^{S} \cdot (1+F) \cdot 2^{EP-P}$$

Tabela 1: Registradores.

Nome	Número	Nome	Número	Nome	Número
\$zero	0	\$t0 a \$t7	$8 \ \mathrm{a} \ 15$	\$gp	28
\$at	1	s0 a s7	$16~\mathrm{a}~23$	\$sp	29
\$v0 a \$v1	2 a 3	\$t8 a \$t9	$24~\mathrm{a}~25$	\$fp	30
\$a0 a \$a3	$4~\mathrm{a}~7$	\$k0 a \$k1	$26~\mathrm{a}~27$	\$ra	31

Tabela 2: Instruções e valores dos sinais na unidade de controle do processador monociclo.

Controle	Sinal	Formato R (0)	lw (35)	sw (43)	beq (4)	j (2)
	OP5	0	1	1	0	0
	OP4	0	0	0	0	0
Entradas	OP3	0	0	1	0	0
Emradas	OP2	0	0	0	1	0
	OP1	0	1	1	0	1
	OP0	0	1	1	0	0
	RegDst	1	0	X	X	X
	$_{ m Jump}$	0	0	0	0	1
	UALFonte	0	1	1	0	1
	${\bf MemParaReg}$	0	1	X	X	X
Saídas	EscReg	1	1	0	0	X
Saidas	LerMem	0	1	0	0	0
	EscMem	0	0	1	0	0
	DvC	0	0	0	1	0
	UALOp1	1	0	0	0	X
	UALOp0	0	0	0	1	X

Tabela 3: Operação da ULA para a combinação de UALOp e o campo de função.

UAl		Car	npo d						
UALOp1	F5	F4	F3	F2	F1	F0	Opera	ção da ULA	
0	0	X	X	X	X	X	X	0010	soma
X	1	X	X	X	X	X	X	0110	subtração
1	X	X	X	0	0	0	0	0010	soma
1	X	X	X	0	0	1	0	0110	subtração
1	X	X	X	0	1	0	0	0000	and
1	X	X	X	0	1	0	1	0001	or
1	X	X	X	1	0	1	0	0111	slt

Figura 2: Diagrama de blocos do processador monociclo