INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT86 Quad 2-input EXCLUSIVE-OR gate

Product specification
File under Integrated Circuits, IC06

December 1990

Philips Semiconductors

Quad 2-input EXCLUSIVE-OR gate

74HC/HCT86

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT86 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT86 provide the EXCLUSIVE-OR function.

QUICK REFERENCE DATA

GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STIVEOL	PARAIVIETER	CONDITIONS	нс	нст	ONII	
t _{PHL} /t _{PLH}	propagation delay nA, nB to nY	C _L = 15 pF; V _{CC} = 5 V	11	14	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	30	30	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μ W):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_0)$$
 where:

f_i = input frequency in MHz

fo = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC}

For HCT the condition is V_I = GND to V_{CC} - 1.5 V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

December 1990

Quad 2-input EXCLUSIVE-OR gate

74HC/HCT86

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 4, 9, 12	1A to 4A	data inputs
2, 5, 10, 13	1B to 4B	data inputs
3, 6, 8, 11	1Y to 4Y	data outputs
7	GND	ground (0 V)
14	V _{CC}	positive supply voltage

December 1990

Philips Semiconductors Product specification

Quad 2-input EXCLUSIVE-OR gate

74HC/HCT86

FUNCTION TABLE

INP	UTS	OUTPUTS				
nA	nB	nY				
L	L	L				
L	н	н				
н	L	н				
Н	Н	L				

Notes

H = HIGH voltage level
 L = LOW voltage level

December 1990

Quad 2-input EXCLUSIVE-OR gate

74HC/HCT86

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: SSI

AC CHARACTERISTICS FOR 74HC

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)						UNIT	TEST CONDITIONS		
		74HC									
		+25			−40 to +85		-40 to +125		ONII	(V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(7)	
t _{PHL} / t _{PLH}	propagation delay		39	120		150		180	ns	2.0	Fig.6
	nA, nB to nY		14	24		30		36		4.5	
			11	20		26		31		6.0	
t _{THL} /t _{TLH}	output transition time		19	75		95		110	ns	2.0	Fig.6
			7	15		19		22		4.5	
			6	13		16		19		6.0	

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

 I_{CC} category: SSI

Notes to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT					
nA, nB	1.0					

AC CHARACTERISTICS FOR 74HCT

GND = 0 V; $t_r = t_f = 6 \text{ ns}$; $C_L = 50 \text{ pF}$

SYMBOL	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS	
		74HCT									
		+25		-40 to +85		-40 to +125		ONIT	V _{cc} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(',	
t _{PHL} /t _{PLH}	propagation delay nA, nB to nY		17	32		40		48	ns	4.5	Fig.6
t _{THL} /t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6

December 1990

5

Philips Semiconductors Product specification

Quad 2-input EXCLUSIVE-OR gate

74HC/HCT86

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".

December 1990

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.