LORA: LOW-RANK ADAPTATION OF LARGE LANGUAGE MODELS

Hu, Edward J., et al. "Lora: Low-rank adaptation of large language models." *arXiv preprint arXiv:2106.09685* (2021).

Background

다운스트림 태스크는 일반적으로 사전 학습된 모델의 모든 파라미터를 업데이트하는 fine-tuning을 통해 수행된다.

추가되는 어댑터에 대해서만 **학습**-> 어댑터 레이어들은 latency가 증가한다

prompt 최적화

adaptation을 위해 시퀀스 길이의 일부를 사용하면 다운스트림 task를 처리하는 데 사용할수 있는 시퀀스 길이가 필연적으로 줄어들어 다른 방법에 비해 프롬프트 튜닝 성능이 떨어진다.

LLM Tuning Methods

Prompt Engineering

PEFT

(Parameter Efficient Fine-Tuning)

RAG

(Retrieval Augmented Generation)

Cost ~ Complexity ~ Quality

1. Adapter Layers

pre-trained model 사이사이에 feed-forward networks(학습 가능한 작은 신경망 층)를 **삽입**

2. Prompt Tuning

프롬프트의 일부를 학습 가능한 매개변수로 변환하여 훈련할 수 있도록 한 것 (입력 프롬프트에 대하여)

Hard Prompt vs. Soft Prompt (Senadeera & Ive, 2022)

3. LoRA / QLoRA (Low-Rank Adaptation)

pre-trained model의 원래 가중치는 유지하면서 학습 가능한 저차원 행렬인 lank decomposition 행렬을 삽입하여 소수의 파라미터만 조 정하는 기법

Figure 1: Our reparametrization. We only train A and B.

LoRA

LoRA :Low-Rank Adaptation

Figure 1: Our reparametrization. We only train A and B.

사전 학습된 가중치를 고정된 상태로 유지하면서 추가적인 Low-Rank matrix를 학습하여 신경망의 일부 레이어를 간접적으로 학습

- 전체 fine-tuning을 일반화 할 수 있다.
 가중치 행렬에 대한 누적 기울기 업데이트가 필요하지 않다.
- 다른 다운스트림 task로 전환해야 하는 경우 BA를 뺀 다음 다른 BA을 추가하여 W를 복구할 수 있다.

$$h = W_0 x + \Delta W x = W_0 x + BAx$$

Applying LoRA to Transformer

학습 가능한 파라미터의 수를 줄이기 위해 신경망에서 가중치 행렬의 모든 부분집합에 LoRA를 적용할 수 있다.

	# of Trainable Parameters = 18M					1	
Weight Type Rank r	$\left \begin{array}{c}W_q\\8\end{array}\right $	W_k 8	$W_v 8$	$\frac{W_o}{8}$	W_q,W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)	1				71.4 91.3	73.7 91.3	73.7 91.7

LoRA 기법을 사용해 적은 수의 파라미터로도 높은 성능을 유지할 수 있음을 시사

Result

Model & Method	# Trainable Parameters	l	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
$RoB_{base} (Adpt^{D})^*$	0.3M	$87.1_{\pm .0}$	$94.2_{\pm .1}$	$88.5_{\pm 1.1}$	$60.8_{\pm.4}$	$93.1_{\pm.1}$	$90.2_{\pm.0}$	$71.5_{\pm 2.7}$	$89.7_{\pm .3}$	84.4
$RoB_{base} (Adpt^{D})^*$	0.9M	$87.3_{\pm .1}$	$94.7 \scriptstyle{\pm .3}$	$88.4_{\pm.1}$	$62.6_{\pm .9}$	$93.0_{\pm.2}$	$90.6 \scriptstyle{\pm .0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB_{base} (LoRA)	0.3M	$87.5_{\pm .3}$	$\textbf{95.1}_{\pm .2}$	$89.7_{\pm.7}$	$63.4_{\pm 1.2}$	$\textbf{93.3}_{\pm .3}$	$90.8 \scriptstyle{\pm .1}$	$\pmb{86.6} \scriptstyle{\pm .7}$	$\textbf{91.5}_{\pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	90.6 _{±.2}	$96.2 \scriptstyle{\pm .5}$	$\textbf{90.9}_{\pm 1.2}$	$\textbf{68.2}_{\pm 1.9}$	$\textbf{94.9}_{\pm.3}$	$91.6 \scriptstyle{\pm .1}$	87.4 ± 2.5	92.6 $_{\pm .2}$	89.0
$RoB_{large} (Adpt^P)^{\dagger}$	3.0M	90.2 _{±.3}	96.1 _{±.3}	90.2 _{±.7}	68.3 ±1.0	94.8 _{±.2}	91.9 _{±.1}	83.8 _{±2.9}	92.1 _{±.7}	88.4
RoB _{large} (Adpt ^P)†	0.8M	90.5 _{±.3}	96.6 \pm .2	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	94.8 ±.3	$91.7 \scriptstyle{\pm .2}$	$80.1_{\pm 2.9}$	$91.9_{\pm .4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	89.9 _{±.5}	$96.2 \scriptstyle{\pm .3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm .2}$	$92.1_{\pm .1}$	$83.4_{\pm 1.1}$	$91.0_{\pm 1.7}$	87.8
RoB _{large} (Adpt ^H)†	0.8M	$90.3_{\pm .3}$	$96.3_{\pm.5}$	$87.7_{\pm 1.7}$	$66.3_{\pm 2.0}$	$94.7_{\pm .2}$	$91.5_{\pm.1}$	$72.9_{\pm 2.9}$	$91.5_{\pm.5}$	86.4
RoB _{large} (LoRA)†	0.8M	90.6 _{±.2}	$96.2 \scriptstyle{\pm .5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2{\scriptstyle\pm1.9}$	$\textbf{94.8} \scriptstyle{\pm .3}$	$91.6 \scriptstyle{\pm .2}$	85.2 $_{\pm 1.1}$	92.3 $_{\pm .5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm.2}$	92.6 $_{\pm .6}$	72.4 $_{\pm 1.1}$	$\textbf{96.0}_{\pm.1}$	$\textbf{92.9}_{\pm.1}$	94.9 $_{\pm .4}$	93.0 $_{\pm .2}$	91.3

Model & Method	# Trainable Parameters	E2E NLG Challenge BLEU NIST MET ROUGE-L CID					
	Farameters	BLEU	14151	MILI	KOUGE-L	CIDEI	
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47	
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40	
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47	
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm .6}$	$8.50_{\pm .07}$	$46.0_{\pm.2}$	$70.7_{\pm .2}$	$2.44_{\pm .01}$	
GPT-2 M (FT ^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41	
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49	
GPT-2 M (LoRA)	0.35M	70.4 $_{\pm .1}$	$\pmb{8.85}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{71.8}_{\pm.1}$	$\pmb{2.53}_{\pm .02}$	
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45	
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm.1}$	$8.68_{\pm .03}$	$46.3_{\pm.0}$	$71.4_{\pm .2}$	$\pmb{2.49}_{\pm.0}$	
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm .3}$	$8.70_{\pm .04}$	$46.1_{\pm .1}$	$71.3_{\pm .2}$	$2.45_{\pm .02}$	
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47	
GPT-2 L (LoRA)	0.77M	70.4 $_{\pm .1}$	$\pmb{8.89}_{\pm .02}$	$\textbf{46.8}_{\pm .2}$	$\textbf{72.0}_{\pm.2}$	$2.47_{\pm.02}$	

이점

- 메모리와 스토리지 사용량 감소
- 모든 파라미터가 아닌 LoRA 가중치만 교환함으로써 훨씬 저렴한 비용으로 배포 중에 task 사이를 전환

8주차

P-Transformer 모델 구현

8주차: P-Transformer 모델 구현

- 목적: Transformer모델을 원하는 방식대로 변형 해서 쓸 수 있도록 구현 연습
- 내용:
 - Original Transformer를 P-Transformer
 로 변형

(왼쪽: Original Transformer; 오른쪽: Parallel Transformer (P-Transformer)

5주차와 동일한 데이터셋에 대해서도 BLEU 4 Score 0.15 이상 목표

P-Transformer

인코더와 디코더의 병렬학습 진행

인코더-〉디코더 -〉 인코더-〉디코더 .. 순으로 레이어들이 순차적으로 통과되도록 구성 기존 모델

P-Transformer

Teacher Forcing 추가

P-Transformer

return self.generator(output)

기존 모델

인코더와 디코더의 병렬학습 진행

인코더-〉디코더 -〉 인코더-〉디코더 .. 순으로 레이어들이 순차적으로 통과되도록 구성

P-Transformer

```
def forward(self, src, trg, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask, memory_key_padding_mask):
    src_emb = self.positional_encoding(self.src_tok_emb(src))
    tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))

#Encoder
memory = src_emb
for layer in self.enc_layers:
    memory = layer(memory, src_mask, src_padding_mask)
#Decoder
output = tgt_emb
for layer in self.dec_layers:
    output = layer(output, memory, tgt_mask, None, tgt_padding_mask, memory_key_padding_mask)

return self.generator(output)
```

```
def forward(self, src, trg, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask, memory_key_padding_mask):
    src_emb = self.positional_encoding(self.src_tok_emb(src))
    tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))

memory = src_emb
    output = tgt_emb

#인코더->디코더 순으로 레이어들을 순차적으로 통과
    for i in range(self.num_layers):
        #인코더
        memory = self.enc_layers[i](memory, src_mask, src_padding_mask)

#디코더
    output = self.dec_layers[i](output, memory, tgt_mask, None, tgt_padding_mask, memory_key_padding_mask)
```

P-Transformer

P-Transformer

```
def forward(self, src, trg, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask, memory_key_padding_mask):
    src_emb = self.positional_encoding(self.src_tok_emb(src))
    tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))

memory = src_emb
    output = tgt emb

#인코더->디코더 순으로 레이어들을 순차적으로 통과
    for i in range(self.num_layers):
        #인코더
        memory = self.enc_layers[i](memory, src_mask, src_padding_mask)

#디코더
    output = self.dec_layers[i](output, memory, tgt_mask, None, tgt_padding_mask, memory_key_padding_mask)
```

```
def forward(self, src, trg, src_mask, tgt_mask, src_padding_mask, tgt_padding_mask, memory_key_padding_mask, teacher_forcing_ratio=0.5):
    src_emb = self.positional_encoding(self.src_tok_emb(src))
    tgt_emb = self.positional_encoding(self.tgt_tok_emb(trg))

memory = src_emb
    output = tgt_emb

for i in range(self.num_layers):
    memory = self.enc_layers[i](memory, src_mask, src_padding_mask)

use_teacher_forcing = random.random() < teacher_forcing_ratio

#인코더->디코더
    if use_teacher_forcing:
    #Teacher Forcing
    output = self.dec_layers[i](tgt_emb, memory, tgt_mask, None, tgt_padding_mask, memory_key_padding_mask)
    else:
    output = self.dec_layers[i](output, memory, tgt_mask, None, tgt_padding_mask, memory_key_padding_mask)
    return self.generator_output.)
```

Teacher Forcing 추가

학습결과

Evaluating on Test dataset

EMB_SIZE = 512#512
NHEAD = 4#8
FFN_HID_DIM = 1024#2048
BATCH_SIZE = 8
NUM_ENCODER_LAYERS = 6 #6

	Base-Transformer	P-Transformer	P-Transformer with Teacher Forcing
loss	2.4953	2.056	2.5673
BLEU-4	0.1567	0.209	0.1584

결론

Evaluating on Test dataset

	Base-Transformer	P-Transformer	P-Transformer with Teacher Forcing
loss	2.4953	2.056	2.5673
BLEU-4	0.1567	0.209	0.1584

- 1. p-Transformer모델은 더 많은 상호작용과, 피드백이 지속적으로 이뤄져서 학습에 더 유리. 이에 가장 높은 성능을 보임
- 2. Teacher Forcing이 적용된 p-Transformer 모델은 훈련시점에는 빠르고 정확히 학습되지만, 예측 값에 의존하므로 추론 성능이 상대적으로 떨어진 것으로 추측됨.(추론단계에서 성능저하)

p-Transformer 모델은 인코더와 디코더가 지속적으로 상호작용하므로, 보다 즉각적으로 정보를 받아 이용할 수 있는 것으로 생각됨. 이에 복잡한 상호작용이 요구되는 QA 모델 등에서 사용되지 않을까 생각합니다.