Σχεδιασμός Λογισμικού Τεχνολογία Λογισμικού

Βασικές Έννοιες Αντικειμενοστρεφούς Τεχνολογίας

- Συμπληρωματικό Εκπαιδευτικό Υλικό -

Ονομασία Κλάσης

- Πρέπει να γίνεται πάντα χρήση ουσιαστικού (ή φράσης που περιέχει ουσιαστικό) η χρήση ρήματος είναι ένδειξη ότι έχει γίνει κάποιο λάθος:
 - \rightarrow "Print" \rightarrow λάθος, αλλά "Report" \rightarrow σωστό.
 - > "Withdraw" → λάθος, αλλά "Withdrawal" ή "Withdraw Transaction" → σωστό.
- Πρέπει πάντα να γίνεται χρήση του ουσιαστικού σε **ενικό** αριθμό:
 - > "Messages" → λάθος, "Message" → σωστό.

Συσχετίσεις

- Συσχετίσεις (associations) είναι δυνατό να υπάρχουν ανάμεσα σε κλάσεις.
- Μπορούν να οριστούν ως μια εννοιολογική σύνδεση ή σχέση ανάμεσα σε δύο ή περισσότερες κλάσεις.

<u>Παράδειγμα:</u>

Η συσχέτιση ανάμεσα στην κλάση Εργοδότης (Employer) και στην κλάση Υπάλληλος (Employee) είναι ότι ο Εργοδότης "προσλαμβάνει" ("employs") τον Υπάλληλο, ή εναλλακτικά ότι ο Υπάλληλος έχει "προσληφθεί από" ("employed by") τον Εργοδότη.

Απεικόνιση Συσχετίσεων

- Οι δυαδικές (binary) συσχετίσεις απεικονίζονται με μια ευθεία γραμμή ανάμεσα σε δύο κλάσεις.
- Μια συσχέτιση είναι δυνατό να έχει όνομα (προαιρετικά).
- Αν προσδιοριστεί όνομα με μια ετικέτα, τότε είναι δυνατό να προστεθούν βέλη για να απεικονίσουν την κατευθυντικότητα (προαιρετικά).

Πολλαπλότητα

Η πολλαπλότητα (multiplicity) μιας συσχέτισης προσδιορίζει αν είναι 1 προς 1, 1 προς πολλά, κ.λπ.:

> Ένα και μόνο ένα	1
> Κανένα ή ένα	01
> Μηδέν ή οποιοσδήποτε αριθμός	0*
> Μηδέν ή οποιοσδήποτε αριθμός	*
> Ένα ή περισσότερα	1*
> Από ένα έως εννιά	19

Η πολλαπλότητα μπορεί επίσης να απεικονισθεί (σε αγκύλες) στις ιδιότητες, π.χ. middle_name[0..2] ή order_line[*].

3..5,8,12..20

> Μη συνεχόμενες σειρές τιμών

Παράδειγμα Συσχέτισης

Συναρμολόγηση

- Η συναρμολόγηση (aggregation) είναι μια ιδιαίτερη περίπτωση συσχέτισης.
- Απεικονίζει τη σχέση:
 - » "Αποτελείται-από" ("consists-of").
 - > "Περιέχει" ("contains").
 - "Εχει" ("has").
 - > "Είναι-ένα-άθροισμα-από" ("is-an-aggregation-of").
- Παραδείγματα:
 - > Αυτοκίνητο → μηχανή, κιβώτιο ταχυτήτων, ρόδες.
 - > Η/Υ → οθόνη, ποντίκι, κυρίως-κουτί, πληκτρολόγιο.

Απεικόνιση Συναρμολόγησης

- Για την απεικόνισή της χρησιμοποιείται το σύμβολο του ρόμβου.
- Ο ρόμβος είναι προσαρτημένος στην κλάση που απεικονίζει την οντότητα που είναι το αποτέλεσμα της συναρμολόγησης (aggregating entity).
- Είναι πιθανό να υπάρχει αναδρομή (π.χ. αρχεία και ευρετήρια σε συστήματα αρχείων).

Σύνθεση

- Ο όρος συναρμολόγηση (aggregation) χρησιμοποιείται όταν οι επιμέρους απλούστερες (συνιστώσες) κλάσεις έχουν διάρκεια ζωής ανεξάρτητη από αυτή της σύνθετης κλάσης.
 - > Π.χ. Μια μηχανή αυτοκινήτου είναι δυνατό να υπάρξει και έξω από ένα αυτοκίνητο.
- Αν οι επιμέρους απλούστερες κλάσεις έχουν διάρκεια ζωής που συμπίπτει με αυτή της σύνθετης κλάσης, τότε χρησιμοποιείται ο όρος σύνθεση (composition).
 - > Π.χ. Οι συνιστώσες που αποτελούν ένα αντικείμενο που παριστάνει ένα παράθυρο (Window) έχουν διάρκεια ζωής που συμπίπτει με αυτή του παραθύρου.

Απεικόνιση Σύνθεσης

Για το διαγραμματικό διαχωρισμό συναρμολόγησης και σύνθεσης χρησιμοποιείται το σύμβολο του ρόμβου γεμάτου (filled) για την απεικόνιση της σύνθεσης.

Ορισμός Κληρονομικότητας

Η κληρονομικότητα (inheritance) είναι μια ιδιαίτερη μορφή συσχέτισης, η οποία απεικονίζει και εκφράζει τη σχέση "είναι-ένα-είδος" ("is-a-kind-of", "AKO").

Παραδείγματα:

- Ο σκύλος, η γάτα, η φάλαινα είναι ένα είδος -> Θηλαστικού.
- > Ένα διθέσιο αυτοκίνητο, ένα φορτηγάκι είναι είδη → Αυτοκινήτου.

Αντιπαράδειγμα:

> Οποιαδήποτε συναρμολόγηση, π.χ.Αυτοκίνητο → μηχανή, κιβώτιο ταχυτήτων, ρόδες.

Απεικόνιση Κληρονομικότητας & Βασική Ορολογία

- Απεικονίζεται με ένα βέλος τριγωνικής μορφής.
- Χρησιμοποιούνται οι ακόλουθοι όροι:
 - > Κλάση βάσης (base class) και παραγόμενη κλάση (derived class).
 - Υπερκλάση (super class) και υποκλάση (sub class).
 - Κλάση γονέας (parent class) και κλάση παιδί (child class).

- Η κλάση Β μπορεί να είναι υποκλάση της κλάσης Α, αλλά υπερκλάση της κλάσης Γ.
- Το τριγωνικό βέλος που χρησιμοποιείται για την απεικόνιση της κληρονομικότητας δείχνει προς την υπερκλάση.

Τι Κληρονομείται;

- Σε μια ιεραρχία κληρονομικότητας, όλα τα ιδιοχαρακτηριστικά και οι μέθοδοι κληροδοτούνται από μια υπερκλάση σε όλες τις υποκλάσεις της.
- Στο διάγραμμα κλάσης, προσδιορίζονται μόνο οι *νέες* ιδιότητες και οι νέες μέθοδοι που έχουν *προστεθεί* σε αυτές που κληρονομούνται.

Παράδειγμα:

 Οι υπάλληλοι μπορεί να πληρώνονται με την ώρα ή να είναι μισθωτοί.

"Προστατευμένες" Ιδιότητες

- Συνήθως οι ιδιότητες προσδιορίζονται ως ιδιωτικές (private) για λόγους που επιβάλλει η ενθυλάκωση.
- Έτσι, οι ιδιότητες είναι ορατές στο εσωτερικό της κλάσης και όχι έξω από αυτή.
- Στα πλαίσια μιας ιεραρχίας κληρονομικότητας απαιτείται ασθενέστερος περιορισμός της ορατότητας.
- Για το λόγο αυτό οι ιδιότητες προσδιορίζονται ως "προστατευμένες" (protected), δηλαδή ως ορατές στο εσωτερικό της κλάσης και σε όλες τις υποκλάσεις της.

Λάθος Χρήση Κληρονομικότητας

Πρέπει πάντοτε να εφαρμόζεται και να ακολουθείται ο κανόνας "ΑΚΟ" για την κληρονομικότητα.

Τρία συνηθισμένα λάθη:

- > Το τρίγωνο που απεικονίζει την κληρονομικότητα δείχνει προς λάθος κατεύθυνση.
- Γίνεται χρήση κληρονομικότητας, ενώ θα έπρεπε να γίνει χρήση συναρμολόγησης.
- Χρήση κληρονομικότητας εκεί που δεν πρέπει, π.χ.
 κληρονομικότητα της κλάσης Άτομο (Person) από την κλάση Διεύθυνση (Address).

Συστατικά Στοιχεία Ανάλυσης και Σχεδίασης

- Υπάρχουν πολλές διαφορετικές μέθοδοι για αντικειμενοστρεφή ανάλυση και σχεδίαση.
- 🗊 Όλες οι μέθοδοι πρέπει να υποστηρίζουν τις πιο κάτω ενέργειες:
 - > Προσδιορισμός αντικειμένων.
 - > Προσδιορισμός κλάσεων (ταξινόμηση των αντικειμένων).
 - > Ορισμός της συμπεριφοράς των αντικειμένων (μέθοδοι).
 - > Αναπαράσταση της κατάστασης των αντικειμένων (ιδιότητες και γεγονότα που οδηγούν σε αλλαγή της κατάστασης).

Διαφορές Ανάλυσης και Σχεδίασης

- Η αντικειμενοστρεφής ανάλυση (OO analysis) επιδιώκει τη δημιουργία ενός μοντέλου του προβλήματος:
 - > Με τον προσδιορισμό / αναγνώριση των αντικειμένων, καθώς και των σχετικών κλάσεων.
 - > Τα αντικείμενα και οι κλάσεις προέρχονται από το πεδίο του προβλήματος.
- Η αντικειμενοστρεφής σχεδίαση (OO design) προσδιορίζει τον τρόπο με τον οποίο οι πιο πάνω αφηρημένες έννοιες:
 - > Είναι δυνατό να αναπαρασταθούν και να αλληλεπιδρούν μεταξύ τους σε επίπεδο λογισμικού.
 - > Είναι δυνατό να ενταχθούν σε ένα γενικότερο πλαίσιο που να μοντελοποιεί το υπό εξέταση σύστημα.
- Σε μικρού και μεσαίου μεγέθους έργα πολλές φορές γίνεται συνένωση της ανάλυσης και της σχεδίασης.

Προσδιορισμός Αντικειμένων

- Οποιαδήποτε οντότητα του πραγματικού κόσμου μπορεί να παρασταθεί ως αντικείμενο.
- Οτιδήποτε μπορεί να εκφραστεί με χρήση ουσιαστικού μπορεί να είναι αντικείμενο.
- Ένα αντικείμενο μπορεί να είναι:
 - > Κάτι χειροπιαστό, π.χ. ένα αυτοκίνητο.
 - Μια διεργασία, π.χ. ο έλεγχος μιας μηχανής (engine test).
 - > Μια σχέση, π.χ. ένα συμβόλαιο.
 - > Μια θεωρητική έννοια, π.χ. οι μιγαδικοί αριθμοί.

Ανάλυση Κειμένου (1)

- Απαιτεί τουλάχιστον μια αρχική περιγραφή του προβλήματος:
 - > Σε μια μόνο παράγραφο.
 - > Ως αποτέλεσμα συνεντεύξεων.
 - > Προερχόμενη από κάποιον ειδικό του πεδίου προβλήματος.
- Τα ουσιαστικά συνήθως αντιστοιχούν σε αντικείμενα και ιδιότητες:
 - > Στο κείμενο που προσδιορίζει τις απαιτήσεις και περιγράφει το σύστημα εντοπίζονται οι φράσεις που περιέχουν ουσιαστικά:
 - Κάποιες θα είναι ξεκάθαρο ότι αντιστοιχούν σε κλάσεις.
 - Κάποιες θα είναι ξεκάθαρο ότι δεν αντιστοιχούν σε τίποτα.
 - Κάποιες θα βρίσκονται κάπου ανάμεσα.

Ανάλυση Κειμένου (2)

- Τα ρήματα αντιστοιχούν σε συσχετίσεις ή σε μεθόδους.
- Αν περισσότερες από μία λέξεις ταιριάζουν σε μια έννοια θα πρέπει να επιλεγεί αυτή που έχει πιο πολύ νόημα.

