2.7. Probability histograms

$$p(s) = egin{cases} (0.25)(0.75)^{s-1} & : s = 1, 2, \dots, \ 0 & : ext{ otherwise.} \end{cases}$$

$$p(s) = egin{cases} (0.25)(0.75)^{s-1} & : s = 1, 2, \ldots, \ 0 & : ext{ otherwise.} \end{cases}$$

$$ext{support} = \{1,2,3,4,5,6\} \quad ext{and} \quad p(s) = rac{1}{6}$$

2.8. Continuous probability measures

discrete probability measure S=IR probability here

continuous probability measure

$$S = R$$

probability everywhere!

Definition 2.9

Let P be a probability measure on $\mathbb R.$ We shall say P is continuous if there is a function $f:\mathbb R o\mathbb R$ such that

$$P(A) = \int_A f(s) \, \mathrm{d}s \tag{2.4}$$

for all events $A \subset \mathbb{R}$. In this case, the function f(s) is called the *probability* density function (PDF) of the probability measure P, and \mathbb{R} is called a continuous probability space (when equipped with P).

Definition 2.9

Let P be a probability measure on $\mathbb R.$ We shall say P is *continuous* if there is a function $f:\mathbb R\to\mathbb R$ such that

$$P(A) = \int_A f(s) \, \mathrm{d}s \tag{2.4}$$

for all events $A \subset \mathbb{R}$. In this case, the function f(s) is called the *probability* density function (PDF) of the probability measure P, and \mathbb{R} is called a continuous probability space (when equipped with P).

Definition 2.7

Let P be a probability measure on a sample space S. We shall say P is discrete if every subset $A\subset S$ is an event and there is a function $p:S\to\mathbb{R}$ with discrete support such that

$$P(A) = \sum_{s \in A} p(s), \tag{2.2}$$

for all events A. In this case, the function p is called the *probability mass* function (PMF) of the probability measure P (or sometimes just the *probability function*), and S is called a discrete probability space (when equipped with P).

Problem Prompt

Do problems 12 and 13 on the worksheet.

Theorem 2.3 (Properties of Probability Mass Functions)

Let p(s) be the probability mass function of a discrete probability measure P. Then:

1.
$$p(s) \geq 0$$
 for all $s \in S$, and 2. $\sum_{s \in S} p(s) = 1$.

2.
$$\sum_{s \in S} p(s) = 1$$

Theorem 2.4 (Discrete Probability Construction Lemma)

Let S be a set and $p:S o\mathbb{R}$ a function with discrete support. If

1.
$$p(s) \geq 0$$
 for all $s \in S$, and

2.
$$\sum_{s\in S} p(s) = 1$$
,

then there is a unique discrete probability measure P on S such that

$$P(A) = \sum_{s \in A} p(s)$$

for all $A \subset S$.

Theorem 2.5 (Properties of Probability Density Functions (univariate version))

Let f(s) be the probability density function of a continuous probability measure P on \mathbb{R} . Then:

- 1. $f(s) \geq 0$ for all $s \in \mathbb{R}$, and
- 2. $\int_{\mathbb{R}} f(s) \ \mathrm{d}s = 1$.

Theorem 2.6 (Continuous Probability Construction Lemma (univariate version))

Let $f:\mathbb{R} o\mathbb{R}$ be a function such that

- 1. $f(s) \geq 0$ for all $s \in \mathbb{R}$, and
- 2. $\int_{\mathbb{R}} f(s) \ \mathrm{d}s = 1$.

Then there is a unique continuous probability measure P on $\mathbb R$ such that

$$Pig(Aig) = \int_A f(s) \; \mathrm{d} s$$

for all events $A\subseteq \mathbb{R}$.

Problem Prompt

Do problem 14 on the worksheet.

2.9. Probability density graphs (univariate versions)

$$f(s) = egin{cases} rac{2}{9}s & : 0 \leq s \leq 3, \ 0 & : ext{otherwise.} \end{cases} \qquad Pig((1, 2.75)ig) = \int_1^{2.75} f(s) \; \mathrm{d} s pprox 0.73.$$

$$f(s) = egin{cases} rac{1}{s^2} &: s \geq 1, \ 0 &: ext{otherwise.} \end{cases} \quad Pig([2,4]ig) = \int_2^4 f(s) \; \mathrm{d}s = rac{1}{4}.$$