COM3110/4115/6115: Text Processing

Information Extraction: Named Entity Recognition

Rob Gaizauskas

Department of Computer Science University of Sheffield

Overview of Lectures on IE

- Introduction to Information Extraction
 - Definition + Contrast with IR
 - Example Applications
 - Overview of Tasks and Approaches
 - Evaluation + Shared Task Challenges
 - A Brief History of IE
- Named Entity Recognition
 - ♦ Task
 - Approaches to NER
 - Entity Linking
- Relation Extraction
 - Task
 - Approaches: Rule-based; Supervised learning; Bootstrapping; Distant Supervision

Named Entity Recognition: Outline

- Named Entity Recognition Task
- Approaches to NER
 - Knowledge-engineering approaches to NER
 - Supervised learning approaches to NER
- Entity Linking

Named Entity Recognition Task: Recap

 Task: for each textual mention of an entity of one of a fixed set of types identify its extent and its type

```
Cable and Wireless today announced ... Extent: 0-3; Type = ORG

IBM and Microsoft today announced ... Extent: 0-1; Type = ORG

Extent: 2-3 Type = ORG

John Lewis hired ... Extent: 0-2; Type = ORG

Theresa May hired ... Extent: 0-2; Type = PER
```

- Types of entities which have been addressed by IE systems include:
 - Named individuals
 - Organisations, persons, locations, books, films, ships, restaurants . . .
 - Named Kinds
 - Proteins, chemical compounds/drugs, diseases, aircraft components . . .
 - Times
 - temporal expressions dates, times of day
 - Measures
 - monetary expressions, distances/sizes, weights . . .

Entity Extraction – Coreference: Recap

- Multiple references to the same entity in a text are rarely made using the same string:
 - ♦ Pronouns Tony Blair ...he
 - ♦ Names/definite descriptions Tony Blair . . . the Prime Minister
 - ♦ Abbreviated forms Theresa May ... May; United Nations ... UN
 - \diamond Orthographic variants alpha helix ... alpha-helix ... α -helix ... a-helix
- Different textual expressions that refer to the same real world entity are said to corefer.
- Clearly IE systems are more useful if they can recognise which text mentions are coreferential.
- Coreference Task: link together all textual references to the same real world entity, regardless of whether the surface form is a name or not
- Detecting which entity mentions corefer may or may not be treated as a task separate to that of recognising entity mentions

Named Entity Recognition: Outline

- Named Entity Recognition Task
- Approaches
 - Knowledge-engineering approaches to NER
 - Supervised learning approaches to NER
- Entity Linking

Overview of Approaches to NER

As with IE in general approaches to NER may be placed into four categories:

- Knowledge Engineering Approaches
- Supervised Learning Approaches
- Bootstrapping Approaches
- Distant Supervision Approaches

For reasons of time, we will consider the first two only.

Knowledge Engineering Approaches to NER

- Such systems typically use
 - named entity lexicons and
 - manually authored pattern/action rules or regular expression/FST recognisers
- Dominant approach in the 1990s and still in use in many IE systems today.
- One such NER system, developed for participation in MUC-6, is described in Wakao et al. (1996) – will use as an example.
- The Wakao et al. system recognizes organisation, person and location names and time expressions in newswire texts
- System has three main stages:
 - Lexical processing
 - NE parsing
 - Discourse interpretation

Knowledge Engineering Approaches to NER Step 1: Lexical Processing

- Many rule-based NER systems made extensive use of specialised lexicons of proper names, such as gazetteers – lists of place names
- The Wakao et al. system has specialised lexicons for
 - Organisations (2600 entries)
 - ♦ Locations (2200 entries)
 - Person names (500 entries)
 - ♦ Company designators (e.g. Plc,Corp, Ltd 94 entries)
 - ♦ Person titles (e.g. Mr, Dr, Reverend 160 titles)
- Why not use even larger gazetteers?
 - e.g. Gazetteer of British Place Names claims it "provides an exhaustive Place Name Index to Great Britain, containing over 50,000 entries"
- Reasons:
 - Many NEs occur in multiple categories the larger the lexicons the greater ambiguity, e.g.,
 - Ford company vs Ford person vs Ford place
 - the listing of names is never complete, so need some mechanism to type unseen NEs in any case

Knowledge Engineering Approaches to NER Step 1: Lexical Processing (cont)

Principal lexical processing sub-steps in the Wakao et al. system are:

- Tokenisation, sentence splitting, morphological analysis
- Part-of-speech tagging tags known proper name words and unknown uppercase-initial words as proper names (NNP, NNPS)
- Name List/Gazetter Lookup and Tagging (organisations, locations, persons, company designators, person titles)
- Trigger Word Tagging certain words in multi-word names function as trigger words, permitting classification of the name
 - e.g. Airlines in Wing and Prayer Airlines
 - system has trigger words for various orgs, govt institutions, locations

Example:

Norwich Investment Bank plc. today announced ... \longrightarrow Norwich_{NNP/LOC} Investment_{NNP} Bank_{NNP/ORG-TRIGGER} plc._{NN/CDG} today_{RB} announced_{VBD} ...

Knowledge Engineering Approaches to NER Step 2: NE Parsing

- After lexical processing the next step in the Wakao et al. system is NE parsing.
- The system has 177 hand-produced rules for proper names: 94 for organisation; 54 for person; 11 for location; 18 for time expressions.
- A fragment of the proper name grammar:

```
NP--> ORGAN_NP
ORGAN_NP --> LIST_LOC_NP NAMES_NP CDG_NP
ORGAN_NP --> LIST_ORGAN_NP NAMES_NP CDG_NP
ORGAN_NP --> NAMES_NP '& NAMES_NP
NAMES_NP --> NNP NAMES_NP
NAMES_NP --> NNP
```

- The rule ORGAN NP --> NAMES_NP '&', NAMES_NP means:
 If an unclassified proper name (NAMES_NP) is followed by '& and another unclassified proper name, then it is an organisation name.
 - E.g. Marks & Spencer and American Telephone & Telegraph

Knowledge Engineering Approaches to NER Step 3: Discourse Interpretation – Coreference Resolution

- When the name class of an antecedent (anaphor) is known then establishing coreference allows the name class of the anaphor (antecedent) to be established.
- An unclassified PN may be co-referential with a variant form of a classified PN, e.g.
 - ♦ Ford Ford Motor Co.
 - ♦ CAA Creative Artists Agency

In such cases the unclassified PN may be inferred to have the same class as the classified PN.

- Wakao et al. use 45 heuristics of this type for organisation, location, and person names.
- An unclassified PN may be co-referential with a definite NP which permits the PNs class to be inferred
 - ♦ E.g. Kellogg ... the breakfast cereal manufacturer

Knowledge Engineering Approaches to NER Step 3: Discourse Interpretation – Semantic Type Inference

Semantic type information about the arguments in certain syntactic relations is used to make inferences permitting the classification of PNs:

- noun-noun qualification: when an unclassified PN qualifies an organisation-related object then the PN is classified as an organisation; e.g. Erickson stocks
- possessives: when an unclassified PN stands in a possessive relation to an organisation post, then the PN is classified as an organisation; e.g. vice president of ABC, ABCs vice president
- apposition: when an unclassified PN is apposed with a known orgnisation post, the former name is classified as a person name; e.g. Miodrag Jones, president of XYZ
- verbal arguments: when an unclassified PN names an entity playing a role in a verbal frame where the semantic type of the argument position is known, then the name is classified accordingly; e.g. Smith retired from his position as . . . (subject type of retire is PERSON)

Knowledge Engineering Approaches to NER: Evaluation of Wakao et al.

- Evaluated on MUC-6 NE evaluation set a blind test set of 30 Wall Street Journal Articles containing:
 - 449 organisation names
 - 373 person names
 - 110 location names
 - 111 time expressions
- Results were:

Proper Name Class	Recall	Precision
Organisation	91%	91%
Person	90%	95%
Location	88%	89%
Time	94%	97%
Overall	91%	93%

- Best system results on this evaluation were F-measure = 96.42%
 - Human results were 96.68%

Knowledge Engineering Approaches to NER: Strengths and Weaknesses

Strengths

- High performance only several points behind human annotators
- Transparent easy to understand what system is doing/why

Weaknesses

- Porting to another domain requires substantial rule re-engineering
- Acquisition of domain-specific lexicons
- Rule writing requires high levels of expertise

Named Entity Recognition: Outline

- Named Entity Recognition Task
- Approaches
 - Knowledge-engineering approaches to NER
 - Supervised learning approaches to NER
- Entity Linking

Supervised learning approaches to NER

- Supervised learning approaches aim to address the portability problems inherent in knowledge engineering NER
 - Instead of manually authoring rules, systems learn from annotated examples
 - Moving to new domain requires only annotated data in the domain can be supplied by domain expert without need for expert computational linguist
- A wide variety of supervised learning techniques have been tried, including
 - Hidden Markov models
 - Decision Trees
 - Maximum Entropy
 - Support Vector Machines
 - Conditional Random Fields
 - AdaBoost
 - Deep Learning

Supervised learning approaches to NER: Sequence Labelling

- Systems may learn
 - patterns that match extraction targets
 - classifiers that label tokens as beginning/inside/outside a tag type
- Most work in recent years has followed the latter approach called sequence labelling.
- In sequence labelling for NER, each token is given one of three label types:
 - ♦ B_{Type} if the token is at the beginning of a named entity of type = Type (here, e.g., $Type \in \{ORG, PER, LOC\}$).
 - \Diamond I_{Type} if the token is inside a named entity of type = Type
 - O if the token is outside any named entity

For obvious reasons this scheme is called BIO or sometimes IOB sequence labelling

Supervised learning approaches to NER: Sequence Labelling – Example

• Suppose we have the sentence

[ORG American Airlines], a unit of [ORG AMR Corp.], immediately matched the move, spokesman [PER Tim Wagner] said.

(Jurafsky and Martin, 2nd ed., p. 730)

- ullet In BIO encoding this example looks like this \longrightarrow
- Given labelled sequences like this example sentence as training data, the task of the supervised learner to learn to predict the labelling of a new, unlabelled example.

Words	Label
American	B_{ORG}
Airlines	I_{ORG}
,	O
a	O
unit	O
of	O
AMR	\mathbf{B}_{ORG}
Corp.	I_{ORG}
,	O
immediately	O
matched	O
the	O
move	О
,	O
spokesman	О
Tim	\mathbf{B}_{PERS}
Wagner	IPERS
said	O
•	O

Supervised learning approaches to NER: Features for Sequence Labelling

- Given a BIO-type encoding, each training instance (token) is typically represented as a set of features.
- Features can be not only characteristics of the token itself but of neighbouring tokens as well
 - \diamond usually consider tokens in a window of e.g. \pm 2 or 3 tokens either side of the training instance
- Features commonly used for NER sequence labelling include:

Feature	Explanation
Lexical items	The token to be labeled
Stemmed lexical items	Stemmed version of the target token
Shape	The orthographic pattern of the target word
Character affixes	Character-level affixes of the target and surrounding words
Part of speech	Part of speech of the word
Syntactic chunk labels	Base-phrase chunk label
Gazetteer or name list	Presence of the word in one or more named entity lists
Predictive token(s)	Presence of predictive words in surrounding text
Bag of words/Bag of N-grams	Words and/or N-grams occurring in the surrounding context

(Jurafsky and Martin, 2nd ed., p. 731)

Supervised learning approaches to NER: Features for Sequence Labelling (cont)

- For case sensitive languages like English the orthographic pattern of a token carries significant information.
- Commonly used "shape" features include:

Shape	Example
Lower	cummings
Capitalized	Washington
All caps	IRA
Mixed case	eBay
Capitalized character with period	H.
Ends in digit	A9
Contains hyphen	H-P

(Jurafsky and Martin, 2nd ed., p. 731)

Supervised learning approaches to NER: Features for Sequence Labelling (cont)

- After a model has been learned, then at classification time the classifier extracts features from
 - the input string
 - its left predictions

The available features for classification are those shown in the shaded area in the following figure:

(Jurafsky and Martin, 2nd ed., p. 733)

Supervised learning approaches to NER: Sequence Labelling Overview

 The following diagram recaps the main steps in the sequence labelling approach to NER.

Supervised learning approaches to NER: Carreras et al. (2003)

- One implementation of the BIO-based sequence labelling for NER is described by Carreras et al. (2003)
 - ♦ Achieved highest score in the CONLL 2003 NER shared task challenge.
- Notable aspects of their approach include:
 - ♦ They divided the problem into two parts
 - NE detection: in a first pass over the text BIO tags are assigned without regard to type – i.e. boundaries are found for all NE's regardless of whether they are organisations, persons, locations, etc.
 - NE classification: in a second pass the NE's detected in the first pass are assigned a class (organisation, person, location, etc.)
 - Two pass approach has the advantage that training data for all NE classes can be used for the NE detection task
 - They used the Adaboost classifier
 - ♦ They used all features mentioned above plus some additional ones, e.g.
 - Type pattern of consecutive words in context functional (f), capitalized (C), lowercased (I), punctuation mark (.), quote (), other (x) e.g. word type pattern for the phrase John Smith payed 3 euros is CCIxI.

Supervised learning approaches to NER: Carreras et al. (2003)

- Overall performance on NE Detection:
 - ◆ 91.93% precision/94.02% recall on English test set
 - ♦ 85.85% precision/72.61% recall on German test set
 - Note: all common nouns are capitalised in German
- Overall best performance on NE Classification, assuming perfect Detection:
 - ♦ 95.14% accuracy for English
 - 85.14% accuracy for German
- Overall performance for NE Detection + Classification:
 - ♦ 84.05% precision/85.96% recall on English test set
 - ♦ 75.47% precision/63.82% recall on German test set
- Looking at different entity classes, LOC and PER score consistently higher than ORG and MISC

Named Entity Recognition: Outline

- Named Entity Recognition Task
- Approaches
 - Knowledge-engineering approaches to NER
 - Supervised learning approaches to NER
- Entity Linking

Entity Linking

- One important application of IE is knowlege base population (KBP) facts are gathered from open access web sources and used to build a structuted information repository.
- For KBP to work, not only must entities be detected, they must be linked to the appropriate entry in the KB, if facts are to be correctly assembled.
- This leads to the Entity Linking Task: Given a text with a recognised NE mention in that text and a knowledge base (KB), such as Wikipedia, link the NEs to the matching entry in the KB if there is one, else create an entry.
- Is this task difficult? yes!!
 - Wikipedia contains over 200 entries for John Smith
 - ♦ There are at least 1,716 places called San José (or San Jose); 41 Springfield's in the US
 - ♦ Ashoka Restaurant, ABC Taxis, . . .

Entity Linking (cont)

- Many approaches have been developed.
- Simple approach: given a text T containing an NE mention m and using Wikipedia as a KB
 - 1 index all pages in the KB using an information retrieval system
 - 2 build a query from T (e.g. use the sentence/paragraph/whole text) containing m and search the KB
 - 3 from the ranked list of KB pages returned by step 2 pick the high ranked page whose name matches *m* and return it

Problem: doesm't work very well

- More successful approaches consider disambiguating all NEs jointly
 - ♦ Intuition: in disambiguating a text mentioning Ashoka and Sheffield, the Ashoka mentioned is likely to be in Sheffield, while the Sheffield is likely to be one containing an Ashoka restaurant.
 - See, e.g., Alhelbawy and Gaizauskas (2014)

Conclusion

- Named Entity Recognition (NER) is a core IE technology that is now relatively mature and at "usable" performance levels
- NER aims to detect and classify all mentions of named entities of a given set of entity types within a given text
- Techniques used have included:
 - knowledge engineering approaches
 - supervised learning approaches
 - a common approach here is to use BIO sequence labelling
- Open challenges include:
 - reducing the amount of training data needed via, e.g. bootstrapping techniques
 - exploiting existing structured data sources to generate "weakly labelled" training data (aka distant supervision)
 - expanding the classes of entities addressed
 - developing NERs for languages other than English

References

- Alhelbawy, A. and Gaizauskas, R. Collective Named Entity Disambiguation using Graph Ranking and Clique Partitioning Approaches. In Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, 1544–1555, 2014.
- Carreras, X., Marquez, L. and Padro, L. A Simple Named Entity Extractor using AdaBoost. Proceedings of CoNLL-2003, 152–155, 2003.
- Jurafsky, D and Martin, J. H. Speech and Language Processing: An Introduction to Natural Language Processing, Comp2nutational Linguistics and Speech Recognition. 2nd ed. Pearson Inc. 2009. See Chapter 22.1 "Named Entity Recognition".
- Wakao, T., Gaizauskas, R. and Wilks, Y. Evaluation of an Algorithm for the Recognition and Classification of Proper Names. In Proceedings of the 16th International Conference on Computational Linguistics (COLING96), 418-423, 1996.