organic compounds

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

3-Bromo-6-nitro-1-(prop-2-ynyl)-1*H*-indazole

Nabil El Brahmi,^a Mohamed Benchidmi,^a El Mokhtar Essassi,^a Sonia Ladeira^b and Seik Weng Ng^{c,d}*

^aLaboratoire de Chimie Organique Hétérocyclique, Pôle de Compétences Pharmacochimie, Université Mohammed V-Agdal, BP 1014 Avenue Ibn Batout, Rabat, Morocco, ^bLaboratoire de Chimie de Coordination, route de Narbonne, 31077 Toulouse, France, ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^dChemistry Department, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia

Correspondence e-mail: seikweng@um.edu.my

Received 5 November 2011; accepted 7 November 2011

Key indicators: single-crystal X-ray study; T = 295 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.028; wR factor = 0.079; data-to-parameter ratio = 21.1.

In the title compound, $C_{10}H_6BrN_3O_2$, the indazole fused-ring system is nearly planar (r.m.s. deviation = 0.008 Å); its nitro substituent is nearly coplanar with the fused ring [dihedral angle = 4.5 (2)°]. In the crystal, adjacent molecules are linked by weak acetylene–nitro $C-H\cdots O$ hydrogen bonds, generating a helical chain running along the b axis.

Related literature

For a related compound, 1-allyl-3-chloro-6-nitro-1*H*-indazole, see: El Brahmi *et al.* (2009).

Experimental

Crystal data C₁₀H₆BrN₃O₂

 $M_r=280.09$

Monoclinic, $P2_1/n$ Z=4 Mo $K\alpha$ radiation b=4.1650 (1) Å $\mu=3.94~{\rm mm}^{-1}$ c=17.4566 (3) Å $T=295~{\rm K}$ $\beta=102.659$ (1)° $0.50\times0.10\times0.05~{\rm mm}$ V=1039.78 (4) Å³

Data collection

Bruker APEX DUO diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.243$, $T_{\max} = 0.827$

14908 measured reflections 3137 independent reflections 2236 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.023$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.079$ S = 1.033137 reflections 149 parameters H atoms treated by a mixture of independent and constrained refinement

 $\Delta \rho_{\text{max}} = 0.52 \text{ e Å}^{-3}$ $\Delta \rho_{\text{min}} = -0.76 \text{ e Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
C10-H1···O1 ⁱ	0.96 (3)	2.45 (3)	3.399 (3)	167 (3)

Symmetry code: (i) $-x + \frac{1}{2}$, $y + \frac{3}{2}$, $-z + \frac{1}{2}$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank Université MohammedV-Agdal and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5386).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

El Brahmi, N., Mohamed, B., Essassi, E. M., Zouihri, H. & Ng, S. W. (2009). Acta Cryst. E65, o2320.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3260 [doi:10.1107/S1600536811046927]

3-Bromo-6-nitro-1-(prop-2-ynyl)-1*H*-indazole

N. El Brahmi, M. Benchidmi, E. M. Essassi, S. Ladeira and S. W. Ng

Comment

We reported 1-allyl-3-chloro-6-nitro-1*H*-indazole, which exists as two independent molecules (El Brahmi *et al.*, 2009). The present 1-propynyl-3-bromo-6-nitro-1*H*-indazole (Scheme I) also has halogen substituent in the same position but the asymmetric unit consists of one molecule only. The indazole fused-ring is planar; its nitro substituent is nearly coplanar with the fused ring (Fig 1.). Adjacent molecules are linked by a C–H_{acetylene}···O_{nitro} hydrogen bond to generate a helical polymer running along the *b*-axis of the monoclinic unit cell (Fig. 2). Weak Br···Br contacts of 3.57 Å are present.

Experimental

3-Bromo-6-nitroindazole (1.2 g, 5 mmol) and propargyl bromide (1.2 g, 10 mmol) were reacted in THF (40 ml) in the presence of potassium carbonate (1.4 g, 10 mmol) and tetra-*n*-butylammonium bromide (0.5 mmol). The mixture was stirred for 24 h, filtered, and the THF removed under vacuum. The product was separated by chromatography on silica gel with a hexane:ethyl acetate (9:1) solvent system. The compound was obtained as yellow crystals.

Refinement

Carbon-bound H-atoms were placed in calculated positions (C-H 0.93 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2U(C). The acetylenic H-atom was located in a difference Fourier map and was refined. The 1 0 1 and -1 0 1 reflections were omitted owing to bad agreement.

Figures

Fig. 1. Thermal ellipsoid plot (Barbour, 2001) of $C_{10}H_6BrN_3O_2$ at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Fig. 2. Helical chain motif.

supplementary materials

3-Bromo-6-nitro-1-(prop-2-ynyl)-1*H*-indazole

Crystal data

 $C_{10}H_6BrN_3O_2$ F(000) = 552 $M_r = 280.09$ $D_{\rm x} = 1.789 \; {\rm Mg \; m}^{-3}$

Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2yn Cell parameters from 5822 reflections

a = 14.6573 (3) Å $\theta = 2.4-30.3^{\circ}$ b = 4.1650 (1) Å $\mu = 3.94 \text{ mm}^{-1}$ T = 295 Kc = 17.4566 (3) Å $\beta = 102.659 (1)^{\circ}$ Plate, yellow

 $0.50\times0.10\times0.05~mm$ $V = 1039.78 (4) \text{ Å}^3$

Z = 4

Data collection

Bruker APEX DUO 3137 independent reflections diffractometer

Radiation source: fine-focus sealed tube 2236 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.023$ graphite

 $\theta_{\text{max}} = 30.5^{\circ}, \, \theta_{\text{min}} = 2.9^{\circ}$ ω scans

Absorption correction: multi-scan $h = -15 \rightarrow 20$ (SADABS; Sheldrick, 1996) $k = -5 \rightarrow 5$ $T_{\min} = 0.243, T_{\max} = 0.827$ $l = -24 \rightarrow 24$ 14908 measured reflections

Refinement

Primary atom site location: structure-invariant direct Refinement on F^2 methods

Least-squares matrix: full Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring $R[F^2 > 2\sigma(F^2)] = 0.028$

sites

H atoms treated by a mixture of independent and $wR(F^2) = 0.079$

constrained refinement

 $w = 1/[\sigma^2(F_0^2) + (0.0381P)^2 + 0.4798P]$ S = 1.03

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\text{max}} = 0.001$ 3137 reflections $\Delta \rho_{\text{max}} = 0.52 \text{ e Å}^{-3}$ 149 parameters $\Delta \rho_{min} = -0.76 \text{ e Å}^{-3}$ 0 restraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

 $U_{\rm iso}*/U_{\rm eq}$ 0.03944 (9) Br1 0.234567 (17) 0.49344 (5) 0.664925 (11) 01 0.44171 (11) -0.5183(4)0.38032 (10) 0.0431 (4)

supplementary materials

O2	0.30475 (11)	-0.5312 (3)	0.	30395 (9)	0.0401 (4)	
N1	0.11630 (11)	0.3405 (4)	0.	52285 (9)	0.0296 (3)	
N2	0.11523 (10)	0.1781 (4)	0.	45461 (9)	0.0262(3)	
N3	0.35862 (11)	-0.4437 (4)	0.	36351 (10)	0.0278 (3)	
C1	0.20201 (14)	0.3105 (4)	0.	56494 (10)	0.0281 (4)	
C2	0.26030 (13)	0.1289 (4)	0.	52666 (10)	0.0250 (4)	
C3	0.35342 (14)	0.0226 (4)	0.	54510 (11)	0.0287 (4)	
НЗ	0.3930	0.0758	0.	5927	0.034*	
C4	0.38431 (13)	-0.1624 (4)) 0.	49070 (11)	0.0278 (4)	
H4	0.4456	-0.2367	0.	5011	0.033*	
C5	0.32278 (12)	-0.2386 (4)	0.	41932 (10)	0.0237 (3)	
C6	0.23102 (12)	-0.1400 (4)) 0.	39812 (10)	0.0231 (3)	
Н6	0.1923	-0.1923	0.	3501	0.028*	
C7	0.20061 (12)	0.0457 (4)	0.	45476 (11)	0.0226(3)	
C8	0.02773 (13)	0.1524 (5)	0.	39593 (11)	0.0288 (4)	
H8A	-0.0229	0.2344	0.	4179	0.035*	
H8B	0.0150	-0.0722	0.	3831	0.035*	
C9	0.03026 (13)	0.3299 (5)	0.	32386 (11)	0.0293 (4)	
C10	0.03171 (17)	0.4760 (5)		26605 (13)	0.0403 (5)	
H1	0.033 (2)	0.595 (7)		2189 (19)	0.069 (9)*	
		_				
Atomic displace	ement parameters	(\mathring{A}^2)				
	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.06481 (17)	0.03278 (12)	0.02030 (10	_	-	-0.00163 (7)
O1	0.0298 (8)	0.0620 (11)	0.02030 (10	0.0170 (7		-0.0001 (7)
O2	0.0352 (8)	0.0498 (9)	0.0340 (8)	0.0170 (7		-0.0132 (6)
N1	0.0398 (9)	0.0261 (8)	0.0257 (8)	0.0037 (0		0.0006 (6)
N2	0.0266 (8)	0.0284 (8)	0.0237 (8)	0.0012 (7		-0.0018 (6)
N3	0.0270 (8)	0.0301 (8)	0.0269 (8)	0.0018 (6	· · · · · ·	0.0046 (6)
C1	0.0415 (11)	0.0236 (8)	0.0199 (8)	-0.0026 (0.0014 (6)
C2	0.0319 (10)	0.0205 (8)	0.0133 (8)	-0.0023 (0.0034 (6)
C3	0.0319 (10)	0.0299 (9)	0.0220 (8)	-0.0045 (0.0034 (0)
C4	0.0310 (10)		0.0220 (8)	0.0043 (0.0053 (7)
C5	0.0227 (9)	0.0292 (9) 0.0228 (8)	0.0292 (9)	-0.0010 (0.0039 (6)
C6		* *	0.0241 (8)			* *
	0.0238 (9)	0.0232 (8)		-0.0023 (` '	0.0012 (6)
C7	0.0235 (8)	0.0204 (8)	0.0236 (8)	-0.0016 (0.0029 (6)
C8	0.0239 (9)	0.0292 (9)	0.0335 (10)			-0.0008 (7)
C9	0.0246 (9)	0.0323 (10)	0.0298 (9)	-0.0007 (-0.0060 (7)
C10	0.0429 (12)	0.0481 (13)	0.0283 (10)	-0.0086 ((10) 0.0042 (9)	-0.0021 (9)
Geometric para	imeters (Å, °)					
Br1—C1		1.8682 (17)	C	3—Н3	0	9300
O1—N3		1.228 (2)		3—113 4—C5		405 (2)
O1—N3 O2—N3		1.216 (2)		4—С3 4—Н4		9300
N1—C1		1.315 (2)		4—П4 5—С6		377 (2)
N1—C1		1.313 (2)	C	5—C0	1.	402 (2)

C6—C7

C6—H6

1.367 (2)

1.367 (2)

N1—N2

N2—C7

1.403 (2) 0.9300

supplementary materials

N2 C9	1 450 (2)	C9 C0		1 467 (2)
N2—C8	1.459 (2)	C8—C9		1.467 (3)
N3—C5	1.476 (2)	C8—H8A		0.9700
C1—C2	1.414 (3)	C8—H8B		0.9700
C2—C7	1.407 (2)	C9—C10		1.183 (3)
C2—C3	1.403 (3)	C10—H1		0.96 (3)
C3—C4	1.374 (3)			
C1—N1—N2	105.49 (15)	C5—C4—H4		120.2
N1—N2—C7	111.24 (15)	C6—C5—C4		124.76 (17)
N1—N2—C8	119.25 (15)	C6—C5—N3		117.59 (15)
C7—N2—C8	129.42 (15)	C4—C5—N3		117.65 (16)
O2—N3—O1	123.55 (17)	C5—C6—C7		114.68 (16)
O2—N3—C5	118.66 (15)	C5—C6—H6		122.7
O1—N3—C5	117.79 (16)	C7—C6—H6		122.7
N1—C1—C2	112.90 (15)	N2—C7—C6		130.79 (16)
N1—C1—Br1	120.03 (14)	N2—C7—C2		106.99 (16)
C2—C1—Br1	127.07 (14)	C6—C7—C2		122.22 (16)
C7—C2—C3	120.67 (17)	N2—C8—C9		112.42 (15)
C7—C2—C1	103.38 (16)	N2—C8—H8A		109.1
C3—C2—C1	135.92 (17)	C9—C8—H8A		109.1
C4—C3—C2	118.00 (17)	N2—C8—H8B		109.1
C4—C3—H3	121.0	C9—C8—H8B		109.1
C2—C3—H3	121.0	H8A—C8—H8B		107.9
C3—C4—C5	119.66 (17)	C10—C9—C8		179.2 (2)
C3—C4—H4	120.2	C9—C10—H1		180 (2)
C1—N1—N2—C7	0.35 (19)	O1—N3—C5—C4		-4.7 (2)
C1—N1—N2—C8	177.07 (15)	C4—C5—C6—C7		-0.9(3)
N2—N1—C1—C2	-0.1 (2)	N3—C5—C6—C7		178.09 (15)
N2—N1—C1—Br1	-179.08 (12)	N1—N2—C7—C6		179.58 (17)
N1—C1—C2—C7	-0.2 (2)	C8—N2—C7—C6		3.3 (3)
Br1—C1—C2—C7	178.71 (13)	N1—N2—C7—C2		-0.49 (19)
N1—C1—C2—C3	-178.39 (19)	C8—N2—C7—C2		-176.79 (17)
Br1—C1—C2—C3	0.5 (3)	C5—C6—C7—N2		-178.79 (17)
C7—C2—C3—C4	0.4(3)	C5—C6—C7—C2		1.3 (2)
C1—C2—C3—C4	178.4 (2)	C3—C2—C7—N2		178.93 (16)
C2—C3—C4—C5	0.0(3)	C1—C2—C7—N2		0.41 (18)
C3—C4—C5—C6	0.2 (3)	C3—C2—C7—C6		-1.1 (3)
C3—C4—C5—N3	-178.71 (16)	C1—C2—C7—C6		-179.65 (16)
O2—N3—C5—C6	-4.2 (2)	N1—N2—C8—C9		112.94 (18)
O1—N3—C5—C6	176.26 (16)	C7—N2—C8—C9		-71.0 (2)
O2—N3—C5—C4	174.85 (17)			()
Hydrogen-bond geometry (Å, °)				
<i>D</i> —H··· <i>A</i>	<i>D</i> —I	H H… <i>A</i>	D··· A	D— H ··· A
C10—H1···O1 ⁱ	0.96		3.399 (3)	167 (3)
Symmetry codes: (i) $-x+1/2$, $y+3/2$, $-z-1/2$		2.10(3)	3.377 (3)	107 (3)
Symmetry codes. (1) $-x+1/2$, $y+3/2$, -2 -	11/4.			

Fig. 1

Fig. 2

