

TPE AUTOMATIQUE ET VISION

Asservissement visuel et commande

Rapport

JONATHAN PLASSE

VENDREDI 15 MARS

PROGRAMMATION

Update_aoi

Rôle

Cette fonction met à jour la position de l'imagette sur l'image afin de suivre l'objet.

Implantation

Tout d'abord, l'objet est approximé à une ellipse (en rouge) puis l'ellipse est considérée comme un rectangle (en bleu), on obtient finalement le rectangle (en noir) auquel est ajouté une marge de quelque pixels. L'imagette est ainsi obtenu.

FIGURE 1 – Représentation de l'imagette

Si l'imagette dépasse de l'image elle est rogné pour tenir sur l'image.

Moment

Rôle

Cette fonction calcul les moments de l'imagette, avec ceux-ci l'objet contenu dans l'imagette peut être approximé par une ellipse.

Implantation

Les moments sont calculés avec cette formule.

$$m_{ij} = \iint_{D(t)} f(u, v) u^i v^i du dv$$

On approxime cette double intégrale par une double somme.

$$m_{ij} = \sum_{i,j} f(u,v)u^i v^i$$

Update mesure

Rôle

Cette fonction calcul les translations et rotation que le robot doit éxécuter pour passer de l'image courante à l'image désiré.

Impantation

Pour faire ce calcul nous considérons deux points caractéristique de l'ellipse qui approxime l'objet. Ces points sont le centre (cx, cy) et un sommet (u, v) de l'ellipse.

D'après les calculs fait en préparation le système suivant est obtenu.

$$AX = B$$

$$\begin{pmatrix} cx_{ref} - u_0 & -(cy_{ref} - v_0) * \frac{\alpha_u}{\alpha_v} & \alpha_u & 0.0 \\ cy_{ref} - v_0 & (cx_{ref} - u_0) * \frac{\alpha_v}{\alpha_u} & 0.0 & \alpha_v \\ u_{ref} - u_0 & -(v_{ref} - v_0) * \frac{\alpha_u}{\alpha_v} & \alpha_u & 0.0 \\ v_{ref} - v_0 & (u_{ref} - u_0) * \frac{\alpha_v}{\alpha_u} & 0.0 & \alpha_v \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix} = \begin{pmatrix} cx_{cur} - u_0 \\ cy_{cur} - v_0 \\ u_{cur} - u_0 \\ v_{cur} - v_0 \end{pmatrix}$$

mathlib est utilisé pour résoudre le système en faisant le calcul suivant.

$$X = A^{-1}B$$

Les translations et rotation sont ensuite obtenu comme ceci.

$$t_{x} = \frac{a_{3}z^{*}}{\sqrt{a_{1}^{2} + a_{2}^{2}}}$$

$$t_{y} = \frac{a_{4}z^{*}}{\sqrt{a_{1}^{2} + a_{2}^{2}}}$$

$$t_{z} = z^{*}(1 - \frac{1}{\sqrt{a_{1}^{2} + a_{2}^{2}}})$$

$$\alpha = \operatorname{atan2}(a_{2}, a_{1})$$

Commande

Rôle

Cette fonction calcul la commande à envoyer au robot pour obtenir la position voulue.

Implantation

La commande à envoyer au robot est l'erreur entre la consigne et la mesure multipliée par un gain. Ici, nous avons les translations et rotation comme variables.

La consigne est 0 pour les translations et rotation car nous voulons placer le robot de manière à obtenir l'image final.

La mesure est les transalations et rotation calculées dans $pdate_mesure(t_x,t_y,t_z,\alpha)$. La commande donne.

$$\begin{array}{rcl} control_0 &=& -gain_t*t_x\\ control_1 &=& -gain_t*t_y\\ control_2 &=& -gain_t*t_z\\ control_3 &=& -gain_r*\alpha \end{array}$$