

Project Overview

The Problem Area:

► How might we enhance the efficiency and accessibility of the bike share system in the SF Bay Area?

Approach

Building a machine learning model to predict usage patterns, so that we can optimize bike availability through strategic redistribution, ensuring they are accessible where and when they are most needed.

Potential Impacts

- ▶ We aim to enhance user experience and achieve a 3% increase in usage.
- ► Cost savings on transportation by \$0.3 (Car) \$0.6 (Bus) per mile.
- ▶ Reduction in CO2 emissions by 160 g/mile (Bus).- 400 g/mile (Car).

Dataset Overview

Original Datasets:

- ▶ Station, Status, and Weather datasets
- > 71,984,434 rows; 7 columns, 4 columns, and 24 columns respectively

Merged, Filtered, and Cleaned Dataset:

- > 7,337,194 rows; 15 columns (13 numerical and 2 datetime)
- ▶ Station ID, Date/Time, Available Bikes, Available Docks, Total Docks, and Weather Info

Percentage of Different Bike Station Usage Status

► Target Variable - Bike Usage Rate

Median: 67%

► High: 20%

Low: 13%

- The lower the dock number of the station, the more likely it is to have either a higher or lower usage rate.
- This is expected, as smaller bike stations' usage rates are more sensitive to the available bike and dock numbers.

- High usage rates:
 - > 21% to 17%
- Low usage rates:
 - > 13% to 11%
- Median usage rates:
 - 65% to 70%

- 7 9 AM and 5 7 PM have the highest high bike usage rates during the day.
- 8 AM and 5PM have the lowest low bike usage rates during the day.
- ► This could be commuter influence.

Model	Train Score (%)	Test Score (%)	Elapsed Time (seconds)
Logistic Regression	40.03%	39.87%	11.38
Decision Tree	82.72%	81.20%	21.60
Random Forest	84.50%	83.31%	753.97
XGBoost	87.31%	86.33%	65.50

Product - Web App Concept

Interactive Map

- A map that shows live bike availability and station status across the city.
- Users can click on stations to see real-time data such as the number of bikes available, and the station's popularity.

Predictive Insights

- Display predictions on the best time to ride based on past usage patterns and weather data.
- Offer personalized recommendations for routes that optimize for scenery, speed, or minimal traffic.

Thank you