

Functional Programming

Week 7 – Higher-Order Functions

René Thiemann Philipp Anrain Marc Bußjäger Benedikt Dornauer Manuel Eberl Christina Kohl Sandra Reitinger Christian Sternagel

Department of Computer Science

Last Lecture

type class definitions

type class instantiations
 instance (...) => TCName (TConstr a1 .. aN) where

class (...) => TCName a where

```
... -- implementation of functions
• examples
```

- classes: Eq a, Num a, Integral a, RealFrac a, ...
- instances: Integral Int, Eq a => Eq (Maybe a), (Ord a, Ord b) => Ord (a,b), ...
- documentation:

http://hackage.haskell.org/package/base-4.16.0.0/docs/Prelude.html

switch between operators and function names: (+) and `div`

Higher-Order Functions

Functions and Values

- functions take values as input and produce output values
 - values so far: numbers, characters, pairs, lists, user defined datatypes, ...
 - examples
 - lookup :: Eq a => a -> [(a,b)] -> Maybe b
 - elem :: Eq a => [a] -> Bool
- important extension: functions are values
- result: higher-order functions
 - functions can take other functions as input, e.g.,

```
nTimes :: (a -> a) -> Int -> a -> a
-- nTimes f n x = f(...(f x))
```

• the result of a function can be a function, e.g.,

```
compose :: (b -> c) -> (a -> b) -> (a -> c)
```

- -- compose f g is the function that takes an x and results in f(g(x))
- observations
 - higher-order functions are quite natural to define, e.g., compose f g x = f (g x)
 - higher-order functions are useful to avoid code duplication

Partial Application

- question: how to construct values that are functions?
- possible answer: partial application

example with parentheses added

• average 3 5 :: Double

- note: type constructor for functions (->) associates to the right, cf. lecture 4, slide 10 $a \rightarrow b \rightarrow c \rightarrow d$ is identical to $a \rightarrow (b \rightarrow (c \rightarrow d))$
- note: function application associates to the left

```
f expr1 expr2 expr3 is identical to ((f expr1) expr2) expr3
```

average :: Double -> (Double -> Double)

```
(average x) v = (x + v) / 2
```

- example expressions

 - average :: Double -> (Double -> Double)

• partial application: average is applied on less than two arguments

- average 3 :: Double -> Double
- (average 3) 5 :: Double
 - first 1 argument applied, then another one same as above

no arguments applied

1 argument applied

Sections, flip

- sections are a special form of partial applications in combination with operators &
- (expr &) is the same as (&) expr
- (& expr) is a function that takes an x and returns x & expr
- (& expr) is the same as flip (&) expr
 - flip is a predefined function that swaps the arguments of a binary function

```
flip :: (a \rightarrow b \rightarrow c) \rightarrow (b \rightarrow a \rightarrow c)
-- same as (a \rightarrow b \rightarrow c) \rightarrow b \rightarrow a \rightarrow c
flip f y x = f x y
```

- exception: (- expr) is not flip (-) expr but just the negated value of expr
- examples
 - (> 3)
 - (3 >)
 - (3 -)
 - (- 3)

test whether a number is larger than 3 test whether 3 is larger than a number

subtract something from 3

the number -3

```
nTimes :: (a \rightarrow a) \rightarrow Int \rightarrow a \rightarrow a
nTimes f n x
  | n == 0 = x
  | otherwise = f(nTimes f(n-1)x)
  observations

    nTimes uses standard recursion on numbers

    in the last line f is used twice.

    once as parameter of nTimes, where in nTimes f no argument is applied to f

    once as the function which is applied to an argument: otherwise = f (...)

  • application: implement other functions in more concise way
    tower :: Integer -> Int -> Integer -- tower x n = x ^{(x^1, ..., (x^1))}
    replicate :: Int -> a -> [a] -- replicate n x = [x, ..., x]
    replicate n \times = nTimes \times (x :) n = -n insertions of x
```

Example: nTimes

Partial Application and Evaluation

- if defining equation of f is of shape f pat1 ... patN with N arguments, then evaluation of f expr1 ... exprM can only happen, if $M \ge N$
- example nTimes and tower

```
nTimes f n x
  | n == 0 = x
  | otherwise = f (nTimes f (n - 1) x)
tower x n = nTimes (x ^) n 1
 tower 4 2
= nTimes (4^{\circ}) 2 1 -- (4^{\circ}) cannot be evaluated!
= 4 ^ (nTimes (4 ^) 1 1) -- evaluate second argument of ^
= 4 ^ (4 ^ (nTimes (4 ^) 0 1)) -- again, argument evaluation
= 4 ^ (4 ^ 1)
= 4 ^ 4
= 256
```

Partial Application and Evaluation, Continued

- if defining equation of f is of shape f pat1 ... patN with N arguments, then evaluation of f expr1 ... exprM can only happen, if $M \ge N$
- example with M > N

```
selectFunction :: Bool -> (Int -> Int) -- same as Bool -> Int -> Int
selectFunction True = (* 3)
selectFunction False = abs
```

```
selectFunction False (-2) -- M > N = abs (-2) = 2
```

selectFunction' :: Bool -> Int -> Int

selectFunction' True = (* 3)
selectFunction' False x = 2 - x

- restriction: all defining equations of a function must have same number of arguments
- consequence: the following code is not allowed, although it would make sense

Currying

most of the time we defined functions in curried form (Haskell B. Curry, M. Schönfinkel)

alternative is tupled form

- observations
 - partial application is only possible with curried form
 - tupled form has advantage when passing logically connected values around

```
type Date = (Int, Int, Int)
differenceDate :: Date -> Date -> Int -- number of days between two dates
-- but not: Int -> Int -> Int -> Int -> Int -> Int
```

- argument order is relevant in curried form: partial application only possible from left to right
 - divide 1000 by something:

div 1000

• division by 1000:

- alternative using flip:
- rule of thumb: put arguments that are unlikely to change to the left

RT et al. (DCS @ UIBK) Week 7 10/24

Anonymous Functions: λ abstractions

- example: apply *n*-times the function that given an x computes $3 \cdot (x+1)$
- one possibility: local definition of a function example :: Num a => Int -> a -> a example = let f x = 3 * (x + 1) in nTimes f -- this is equivalent to example n y = let f x = 3 * (x + 1) in nTimes f n y
- annoying: creation of function names, here f
- alternative: creation of anonymous function via λ abstraction
 - syntax: \ pat1 ... patN -> expr λ is written as \ in Haskell
 equivalent to: let f pat1 ... patN = expr in f for some fresh name f

```
example = nTimes (\times -> 3 * (x + 1))
```

- difference between lambda abstractions and local function definitions
 - recursion not expressible via lambda abstractions
 - lambda abstractions do not require new function names

Example Higher-Order Functions and Applications

Generalize Common Programming Patterns

- consider the following tasks
 - multiply all list elements by 2
 - convert all characters in a string to upper case
 - compute a list of email addresses from a list of students
- possible implementationmultTwo [] = []

eMails [] = []

```
multTwo (x : xs) = 2 * x : multTwo xs

toUpperList [] = []

toUpperList (c : cs) = toUpper c : toUpperList cs
```

- eMails (s : ss) = getEmail s : eMails ss
- observation: all of these functions are similar
- abstract version: apply some function on each list element
- aim: program the abstract version only once (will be a higher-order function), and then just instantiate this function for each task

The map Function

• map applies a function on each list element

```
map :: (a -> b) -> [a] -> [b]
map f [] = []
map f (x : xs) = f x : map f xs
```

solve tasks from previous slide easily

```
multTwo = map (2 *)
toUpperList = map toUpper
eMails = map getEmail
```

toUpperList "Hi"

= 'H' · 'T' · ""

example evaluation

```
= map toUpper "Hi"
= toUpper 'H' : map toUpper "i"
= 'H' : toUpper 'i' : map toUpper ""
```

= "HT"

The filter Function

• filter selects all elements of a list that satisfy some condition filter :: (a -> Bool) -> [a] -> [a]

```
filter :: (a -> Bool) -> [a] -> [a]

filter f [] = []

filter f (x : xs)
```

- | f x = x : filter f xs | otherwise = filter f xs
- example applications
 - -- test whether some element is included in a list elem :: Eq a => a -> [a] -> Bool elem x xs = filter (== x) xs /= []
 - -- the well known lookup function
 - lookup :: Eq $a \Rightarrow a \Rightarrow [(a,b)] \Rightarrow Maybe b$ lookup $x \times xs = case$ filter $(\ (k,_) \Rightarrow x == k) \times s$ of
- [] -> Nothing ((.v) :) -> Just v

Application: Quicksort

- quicksort is an efficient sorting algorithm
- main idea: partition a non-empty list into small and large elements and sort recursively
- straight-forward implementation

```
qsort :: Ord a => [a] -> [a]
qsort [] = []
qsort (x : xs) = -- x is pivot element
  qsort (filter (<= x) xs) ++ [x] ++ qsort (filter (> x) xs)
```

- implementation might be tuned in several ways
 - use partition :: (a -> Bool) -> [a] -> ([a], [a]) once instead of filter twice
 - parametrize order
 - qsortBy :: (a -> a -> Bool) -> [a] -> [a]
 - qsort = qsortBy (<=)
 - take random pivot element, cf. lecture Algorithms and Data Structures

The Function Composition Operator (.)

- function composition is a higher-order function (in Haskell: (.))
 (.) :: (b -> c) -> (a -> b) -> (a -> c)
 (f . g) = \ x -> f (g x)
- it takes two functions as input and returns a function
- in Haskell, function composition is often used to chain several function applications without explicit arguments
- example: given a number, first add 5, then compute the absolute value, then multiply it by 7, and finally convert it into a string and determine its length
- without composition: many parenthesis, not very readable
 x -> length (show ((abs (x + 5)) * 7))
- written conveniently with function composition
 length . show . (* 7) . abs . (+ 5)

Collection View

- often lists are used to encode collections of elements
- then one can process the whole collection via map, filter, sum, ...
 without looking at the position of the list elements
- list index function (!!) is rarely used in these applications
- in particular: do not write the following kind of loop

```
for (int i = 0; i < length; i++) {
    xs[i] = someFun(xs[i]);
}</pre>
```

as functional program

```
map (\setminus i -> someFun (xs !! i)) [0 .. length xs - 1]
```

but instead just write

```
map someFun xs
```

• the bad program needs $\sim \frac{1}{2}n^2$ evaluation steps for a list of length n: lists \neq arrays!

Application: Names of Good Students

- given a list of students, compute a sorted list of all names of students whose average grade is 2 or better
- implementation

```
data Student = ...
avgGrade :: Student -> Double
...
getName :: Student -> String
...
goodStudents :: [Student] -> [String]
goodStudents = qsort . map getName . filter (\ s -> avgGrade s <= 2)</pre>
```

The foldr Function

```
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f e [] = e
foldr f e (x : xs) = x `f` (foldr f e xs)
```

- foldr f e captures structural recursion on lists
 - e is the result of the base case
 - f describes how to compute the result given the first list element and the recursive result
- foldr f e replaces : by f and [] by e

 $= x 1 f(x_2 f(x_3 f(x_4 f(e)))$

Expressiveness of foldr

- foldr f e replaces : by f and [] by e;
 foldr f e [x_1, x_2, x_3, x_4]
 = x_1 `f` (x_2 `f` (x_3 `f` (x_4 `f` e)))
- foldr f e captures structural recursion on lists
- consequence: all function definitions that use structural recursion on lists can be defined via foldr
- example definitions via foldr

```
sum = foldr (+) 0
product = foldr (*) 1
concat = foldr (++) []
xs ++ ys = foldr (:) ys xs
length = foldr (\\_ -> (+ 1)) 0
map f = foldr ((:) . f) []
all f = foldr ((&&) . f) True
```

```
map via foldr in Detail
foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f \in \Pi = e
foldr f e (x : xs) = f x (foldr f e xs)
map f = foldr ((:) . f) []
  map f [x_1, x_2, x_3]
= foldr ((:) . f) [] (x_1 : x_2 : x_3 : [])
= ((:) . f) x 1 (foldr ((:) . f) [] (x 2 : x 3 : []))
= (:) (f x 1) (foldr ((:) . f) [] (x 2 : x 3 : []))
= f \times 1 : foldr((:) . f) [] (x 2 : x 3 : [])
= \dots = f \times 1 : f \times 2 : foldr((:) . f) [] (\times 3 : [])
= ... = f x_1 : f x_2 : f x_3 : foldr((:) . f) [] []
= f \times 1 : f \times 2 : f \times 3 : \square
= [f \times 1, f \times 2, f \times 3]
```

Variants of foldr -- foldr from previous slide

- foldr :: $(a \rightarrow b \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$
- foldr f e $[x_1, x_2, x_3] = x_1$ 'f' $(x_2$ 'f' $(x_3$ 'f' e))
- -- foldr without starting element, only for non-empty lists foldr1 :: (a -> a -> a) -> [a] -> afoldr1 f $[x_1, x_2, x_3] = x_1 \hat{f} (x_2 \hat{f} x_3)$
- -- application: maximum of list elements maximum = foldr1 max
- -- foldl, apply function from left-to-right
- fold1 :: $(b \rightarrow a \rightarrow b) \rightarrow b \rightarrow [a] \rightarrow b$ foldl f e $[x_1, x_2, x_3] = ((e `f` x_1) `f` x_2) `f` x_3$
- -- application: reverse reverse = foldl (flip (:)) []

Summary

- higher-order functions
 - functions may have functions as input
 - functions may have functions as output
- partial application
 - *n*-ary function is value
 - applying n-ary function on 1 argument results in n-1-ary function
 - sections are special syntax for partially applied operators
- λ -abstraction is anonymous function
- process lists that encode a collection via map, filter, ...
- foldr captures structural recursion on lists, very expressive