RPN Calculator

Geoffrey Matthews

Department of Computer Science Western Washington University

November 16, 2018

Expressing arithmetic trees

$$((2 + 3) * 5)$$

$$(2 + (3 * 5))$$

<= Infix

Expressing arithmetic trees

Parsing postfix arithmetic expressions

► Postfix grammar is LL(1):

$$D \to 0 \mid 1 \mid 2 \mid 3 \mid ...$$

 $N \to DN \mid D$
 $O \to + \mid - \mid * \mid /$
 $E \to N \mid E \mid E \mid O$

Evaluating arithmetic trees

- Postfix makes it easy to build an interpreter.
- We assume we have a stack for numbers.
- ▶ If it's a number, push onto a stack.
- If it's an operator:
 - Pop the top two elements of the stack
 - Apply the operator to the two numbers
 - ▶ Push the result onto the stack
- ▶ The answer will be on top of the stack.

Evaluating arithmetic trees

- ▶ Note that we can also evaluate numbers while parsing:
 - Initialize an accumulator variable with 0.
 - For each digit:
 - Multiply the accumulator by 10
 - ▶ Add the digit

$$6253 = (((6 \times 10) + 2) \times 10) + 5) \times 10) + 3$$

Evaluating arithmetic trees

- ▶ Note that we can also evaluate numbers while parsing:
 - Initialize an accumulator variable with 0.
 - For each digit:
 - Multiply the accumulator by 10
 - ▶ Add the digit

$$6253 = (((6 \times 10) + 2) \times 10) + 5) \times 10) + 3$$

▶ We ignore real numbers, negative numbers, etc.

