

Flexural Design Example

Table of contents

putation - Cover Sheet
exural Example Problem
exural Example Problem
Section Properties of W10X12
etermine if Section is Compact
etermine the limiting ratios (AISC Table B4.1b)
Check Flange
Check Web
etermine Flexural Capacity based on Chapter F, Section 3
Calculate Miscellaneous Variables
1. Lateral Torsional Buckling
2. Compression Flange Local Buckling
Flexure Capacity

${\bf Computation\ \textbf{-}\ Cover\ Sheet}$

Structures Calculations

Project: Subject: Task:	Project Nu Page 2/6	mber:	
Preliminary Calculation: Final Calculation:			
Description:			
Design Methodology:			
Allowable Stress Design: Load Factor Design: Load & Resistance Factor Design: N/A			
Combination of Methodologies (describe)			
Codes/References:			
AASHTO	AREMA		
Edition: Interims Through:	Chapter: Last Update:		
Applicable Sections:	Applicable Sections:		
Other Title: Year/Edition: Applicable Sections:			
Original Designer:			
Name:	Initials:	Date:	
Checker: Name:	Initials:	Date:	
Check Method: For Hand Calculations: Backchecked original calculation	s: Independent calc	ulations:	
For Computer Calculations: Checked input & output: Does this calculation supersede a previous calculation?	Reran same software:	Ran different software:	
Checker's Comments: No Changes: Minor Corrections: original design sat Revise desgin as shown on Sheets: Other comments/conclusions:	tisfactory: of		

Project: Your Project Name

Calc by: Cole Miller Date: 2024-10-26

Task: Task of Project

Check by: John Doe Date: 2024-10-28

Flexural Example Problem

Flexural Example Problem

Determine the LRFD flexural design strength for a W10x12 beam with an unbraced length of 10 ft.

Section Properties of W10X12

$$h=8.85$$
inch $t_f=0.21$ inch $b_f=3.96$ inch $t_w=0.19$ inch
$$E=29000~{\rm ksi}~~F_y=50~{\rm ksi}~~S_x=10.9~{\rm inch}^3~~Z_x=12.6~{\rm inch}^3$$

$$L_b=10~{\rm ft}$$

W10X12 Moment Capacity (F3)

Figure 1: W-Shape: Flexural Strength

Project: Your Project Name Task: Task of Project

Calc by: Cole Miller Date: 2024-10-26 Check by: John Doe Date: 2024-10-28

Determine if Section is Compact

Determine the limiting ratios (AISC Table B4.1b)

Check Flange

$$b = \frac{b_f}{2} = \frac{3.96 \text{ inch}}{2} = 1.98 \text{ inch}$$

$$t = t_f = 0.21$$
 inch

$$\lambda = \frac{b}{t} = \frac{1.98 \text{ inch}}{0.21 \text{ inch}} = 9.43$$

$$\lambda_p = 0.38 \cdot \sqrt{\frac{E}{F_y}} = 0.38 \cdot \sqrt{\frac{29000 \text{ ksi}}{50 \text{ ksi}}} = 9.15$$

$$\lambda_r = 1 \cdot \sqrt{\frac{E}{F_y}} = 1 \cdot \sqrt{\frac{29000 \text{ ksi}}{50 \text{ ksi}}} = 24.08$$

$$class = \begin{cases} compact & \text{if } \lambda \leq \lambda_p \\ noncompact & \text{if } \lambda_p < \lambda \leq \lambda_r = \\ slender & \text{otherwise} \end{cases} \begin{cases} compact & \text{if } 9.43 \leq 9.15 \\ noncompact & \text{if } 9.15 < 9.43 \leq 24.08 = noncompact \\ slender & \text{otherwise} \end{cases}$$

Flange is noncompact

Check Web

$$h = h = 8.85 \text{ inch}$$

$$t_w=t_w=0.19\;\mathrm{inch}$$

$$\lambda = \frac{h}{t_w} = \frac{8.85 \text{ inch}}{0.19 \text{ inch}} = 46.6$$

$$\lambda_p = 3.76 \cdot \sqrt{\frac{E}{F_y}} = 3.76 \cdot \sqrt{\frac{29000 \text{ ksi}}{50 \text{ ksi}}} = 90.55$$

$$\lambda_r = 5.7 \cdot \sqrt{\frac{E}{F_y}} = 5.7 \cdot \sqrt{\frac{29000 \text{ ksi}}{50 \text{ ksi}}} = 137.27$$

$$class = \begin{cases} compact & \text{if } \lambda \leq \lambda_p \\ noncompact & \text{if } \lambda_p < \lambda \leq \lambda_r \\ slender & \text{otherwise} \end{cases} = \begin{cases} compact & \text{if } 46.6 \leq 90.55 \\ noncompact & \text{if } 90.55 < 46.6 \leq 137.27 = compact \\ slender & \text{otherwise} \end{cases}$$

Web is compact

W-Shape is classified as F3

Determine Flexural Capacity based on Chapter F, Section 3

Calculate Miscellaneous Variables

$$c = 1$$

$$M_p = F_y \cdot Z_x$$

$$=50~\mathrm{ksi}\cdot12.6~\mathrm{inch}^3$$

$$=52.5 \text{ ft kip}$$

$$L_p = 1.76 \cdot r_y \cdot \sqrt{\frac{E}{F_y}}$$

$$= 1.76 \cdot 0.78 \; \text{inch} \cdot \sqrt{\frac{29000 \; \text{ksi}}{50 \; \text{ksi}}}$$

$$=2.77$$
 ft

$$L_r = 1.95 \cdot r_{ts} \cdot \frac{E}{0.7 \cdot F_y} \cdot \sqrt{\frac{J \cdot c}{S_x \cdot h_0} + \sqrt{\left(\frac{J \cdot c}{S_x \cdot h_0}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot F_y}{E}\right)^2}}$$

$$=1.95 \cdot 0.98 \; \text{inch} \cdot \frac{29000 \; \text{ksi}}{0.7 \cdot 50 \; \text{ksi}} \cdot \sqrt{\frac{0.05 \; \text{inch}^4 \cdot 1}{10.9 \; \text{inch}^3 \cdot 9.66 \; \text{inch}} + \sqrt{\left(\frac{0.05 \; \text{inch}^4 \cdot 1}{10.9 \; \text{inch}^3 \cdot 9.66 \; \text{inch}}\right)^2 + 6.76 \cdot \left(\frac{0.7 \cdot 50 \; \text{ksi}}{29000 \; \text{ksi}}\right)^2}$$

$$= 8.05 \text{ ft}$$

$$F_{cr} = \frac{C_b \cdot \pi^2 \cdot E}{\left(\frac{L_b}{r_{ts}}\right)^2} \cdot \sqrt{1 + 0.08 \cdot \frac{J \cdot c}{S_x \cdot h_0} \cdot \left(\frac{L_b}{r_{ts}}\right)^2}$$

$$=\frac{1\cdot 3.14^2\cdot 29000 \text{ ksi}}{\left(\frac{10 \text{ ft}}{0.98 \text{ inch}}\right)^2} \cdot \sqrt{1+0.08\cdot \frac{0.05 \text{ inch}^4 \cdot 1}{10.9 \text{ inch}^3 \cdot 9.66 \text{ inch}} \cdot \left(\frac{10 \text{ ft}}{0.98 \text{ inch}}\right)^2}$$

$$=24.32 \text{ ksi}$$

$$k_c = \frac{4}{\sqrt{\frac{h}{t_w}}}$$

$$= \frac{4}{\sqrt{\frac{8.85 \text{ inch}}{0.19 \text{ inch}}}}$$

$$= 0.59$$

$$k_c = \max \left(\min \left(k_c, 0.76 \right), 0.35 \right)$$

$$= \max(\min(0.59, 0.76), 0.35)$$

$$= 0.59$$

Project: Your Project Name Task: Task of Project

Calc by: Cole Miller Date: 2024-10-26 Check by: John Doe Date: 2024-10-28

1. Lateral Torsional Buckling

$$\begin{split} M_{nLTB} &= \begin{cases} M_p & \text{if } L_b \leq L_p \\ C_b \cdot \left(M_p - \left(M_p - 0.7 \cdot F_y \cdot S_x \right) \cdot \frac{L_b - L_p}{L_r - L_p} \right) & \text{if } L_p < L_b \leq L_r \\ F_{cr} \cdot S_x & \text{otherwise} \end{cases} \\ &= \begin{cases} 52.5 \text{ ft kip} & \text{if } 10 \text{ ft} \leq 2.77 \text{ ft} \\ 1 \cdot \left(52.5 \text{ ft kip} - \left(52.5 \text{ ft kip} - 0.7 \cdot 50 \text{ ksi} \cdot 10.9 \text{ inch}^3 \right) \cdot \frac{10 \text{ ft} - 2.77 \text{ ft}}{8.05 \text{ ft} - 2.77 \text{ ft}} \right) & \text{if } 2.77 \text{ ft} < 10 \text{ ft} \leq 8.05 \text{ ft} \\ 24.32 \text{ ksi} \cdot 10.9 \text{ inch}^3 & \text{otherwise} \end{cases} \\ &= 22.09 \text{ ft kip} \end{split}$$

2. Compression Flange Local Buckling

$$\begin{split} M_{nCFLB} &= \begin{cases} M_p - \left(M_p - 0.7 \cdot F_y \cdot S_x\right) \cdot \frac{\lambda_f - \lambda_{pf}}{\lambda_{rf} - \lambda_{pf}} & \text{if } \lambda_{fclass} = noncompact \\ \frac{0.9 \cdot E \cdot k_c \cdot S_x}{\lambda_f^2} & \text{if } \lambda_{fclass} = slender \\ M_p & \text{otherwise} \end{cases} \\ &= \begin{cases} 52.5 \text{ ft kip} - \left(52.5 \text{ ft kip} - 0.7 \cdot 50 \text{ ksi} \cdot 10.9 \text{ inch}^3\right) \cdot \frac{9.43 - 9.15}{24.08 - 9.15} & \text{if } noncompact = noncompact } \\ \frac{0.9 \cdot 29000 \text{ ksi} \cdot 0.59 \cdot 10.9 \text{ inch}^3}{9.43^2} & \text{if } noncompact = slender } \\ 52.5 \text{ ft kip} & \text{otherwise} \end{cases} \\ &= 52.12 \text{ ft kip} \end{cases} \end{split}$$

Flexure Capacity

$$\phi M_n = \phi_b \cdot \min{(M_{n1}, M_{n2})} = 0.9 \cdot \min{(22.09 \text{ ft kip}, 52.12 \text{ ft kip})} = 19.88 \text{ ft kip}$$