离散数学 (荣誉) Discrete Mathematics (Honor) 2023 Fall

殷翔

September 15, 2023

Instructor Information

- ▶ Name: 殷翔
- > Affiliation: 电院 自动化系
- > Title: 副教授, 博导, 国家青年千人
- Contact: <u>yinxiang@sjtu.edu.cn</u> Wechat!
- > Office: 电院2号楼 443
- Education:
 - ✓ Bachelor from the Zhejiang University (2012)
 - ✓ PhD from the University of Michigan (2017)
- Research: control theory, theoretical computer science

Course Information

- Credit: 3 credits / 48 hours
- Grading:
 - ✓ Homework Assignments: 25%
 - ✓ In Class Quiz: 15% (three times)
 - ✓ Final Exam: 60% (closed book)
- Textbooks:
 - My course notes!
 - ✓ 数理逻辑与集合论,石纯一等,清华大学出版社
 - ✓ 图论与代数结构, 戴一奇等, 清华大学出版社
 - ✓ Discrete Mathematics and Its Applications, K. H. Rosen, McGraw Hill.
- Working Language: English & Chinese
- Question after class or by Wechat or by appointment
- > Teaching Assistant: 陈煜

群聊: 2023秋-离散数学-致远学院

3/27

Syllabus

Part I: Mathematical Logics (数理逻辑)---Week 1-6

- Propositional Logics (命题逻辑)
- Predicate Logics (谓词逻辑)
- Axiomatic Systems (公理系统)

Part II: Set Theory (集合论)---Week 7-12

- Naïve Set Theory (朴素集合论)
- Axiomatic Set Theory (公理集合论)
- Relations and Functions (关系与函数)

Part III: Graph Theory (图论)---Week 13-16

Paths, Trees, Euler/Hamilton Graphs...

Main Purpose of This Course

- 离散数学的最大特点是"散":研究散的东西,覆盖面散。
- ▶ 推理过程、计算机执行都是一步一步的,不是连续的
- 技术目标: 熟悉各类逻辑运算、离散算法, 掌握严格的数学证明
- 思想目标:掌握形式化演绎的思想,构建抽象逻辑推理的能力
- Discrete Math is the foundation of EECS!
 - 数据结构、算法设计、操作系统、编程语言
 - 数字电路、电路拓扑、自动控制密码学
 - 信息论、通信理论
 - 专家系统、知识图谱、神经网络

How Do Humans Acquire Knowledge?

Approach 1: Inductive (归纳)

- Start from your observation and experiment
- Summarize and verify if it explains what you see
- Example: Newton discovered the laws of gravity

Approach 2: Deductive (演绎/推理)

- Start from some basic common knowledges
- Use some basic deduction rules to get new results
- > Example: Einstein discovered the theory of relativity

Xiang Yin Discrete Math September 15, 2023 6/27

Formal Reasonings

亚里士多德 Aristotle (384BC-322BC)

- The founder of formal logic, the first logician
- > Syllogism (三段论): first formal logic system

An Example of Syllogism

Major Premise: SJTUers are smart

+

Minor Premise: You are a SJTUer

Conclusion: You are smart!

Formal Reasonings

Reasoning has to start from some basic points you cannot prove

- ➤ 天亮←太阳发光←元素聚变←质子/中子重组←基本粒子/夸克←more?
- > How do you know what you believed is still correct tomorrow? Never!
- > But you can make conditional reasoning: if A holds, then we have B
- > Those you believe but cannot prove are called axioms (公理)

Otherwise you will fall into circular reasoning (循环论证)

- Example 1:
- □ 你为什么长得胖? 因为我吃得多
- □ 那你为什么吃得多? 因为我长得胖

- Example 2:
- □ 圣经说神 (一种永远正确的东西) 存在
- □ 由于圣经是神说的,所以必然正确无误

Axiomatic System

Axiomatic System = Basic Axioms + Derivation Rules

- > each axiom needs to be independent (独立的)
- an AS is said to be consistent (一致的) if has no contradiction
- > an AS is said to be complete (完备的) if every statement is capable of being proven true or false

What if an axiomatic system is NOT consistent

Then you can "prove" whatever you want!

The First Axiomatic System

欧几里得 Euclid (325BC-265BC)

- "Euclid's Elements" (几何原本)
- describes an axiomatic system based on definitions and five postulates (axioms)

欧氏几何的五条公理

- ① 过两点能作且只能作一直线
- ② 线段(有限直线)可以无限地延长
- ③ 以任一点为圆心,任意长为半径,可作一圆
- ④ 凡是直角都相等
- ⑤ 通过一个不在直线上的点,有且仅有一条不与该直线相交的直线

Other Axiomatic Systems

Peano Axioms 皮亚诺公理 (一阶算数系统)

- ① 0是自然数
- ② 任何自然数都有一个后继数,它也是个自然数
- ③ 任何自然数的后继数都不是0

⑤ 假设某命题对自然数0成立。且,当该命题对自然数n成立时,可以证明该命题对n的后继数也成立。由前两句话就可得出,该命题对所有自然数成立。

Axioms are What You Believe or Based On

Axiom is like your Girlfriend:

- either you accept that all she says are correct
- or you choose to have a new one...
- In any case, you cannot argue with the axioms

Sometimes you will find a new world by changing axioms

- ▶ 不接受平行公设: 罗巴切夫斯基→非欧几何
- ▶ 罗氏几何 (双曲几何): 可以引最少两条平行线→内角和小于180
- ▶ 黎曼几何 (椭圆几何): 一条平行线也不能引→内角和大于180
- ▶ 不接受牛顿定律:相对论...

The Powerfulness of Axiomatic Systems

▶ 正常人玩法:

> 大神的玩法:

简单造就复杂: 道生一, 一生二, 二生三, 三生万物

Logics are Just Symbols

莱布尼茨 Gottfried Leibniz (1646-1716)

- First time use "Mathematical Logic"
- ➤ Leibniz's Dream: Reasoning is essentially symbolic computation
- He proposed "universal characteristic" and said "Let us calculate"

布尔 George Boole (1815-1864)

- Boolean algebra (布尔逻辑): first time to use math to study logic
- Set algebra or switching algebra
- now is already the basis of computer science

Understanding Infinity

- First Mathematical Crisis: Greeks thought all number are rational q/p until found $\sqrt{2}$
- Second Mathematical Crisis: What is limit? Is infinitely small equals to zero?
- Are infinities the same?
 Which infinity is larger: even numbers/natural number, real number/rational number
- Surprisingly, these very fundamental questions are answer very late in 1800s based on the real number theory and the set theory

康托尔 Georg Cantor (1845-1918)

> Built the set theory as the foundation of mathematics

Be rational

- People realize infinities are actually different
- 庞加莱于1900年国际数学家会议上夸耀道:现在可以说(数学)绝对的严密性是已经达到了

Russell's Paradox

罗素 Bertrand Russell (1872-1970)

- ➤ naive set theory → axiomatic set theory
- He thinks all mathematics should be derived from logic!
- "Principia Mathematica"《数学原理》with Whitehead

理发师悖论

- 社区里有个理发师,制定了以下规矩: 他只给不给自己理发的人理发
- 问题:他给不给自己理发?
- 》如果他不给自己理, 那么他要给自己理
- 如果他给自己理,那么他不能给自己理

罗素悖论

- ▶ 所有不属于自身的元素构成的集合, i.e., $K = \{x \mid x \notin x\}$
- \triangleright Questions: $K \in K$ or $K \notin K$?
- ightharpoonup If $K \notin K$, then $K \in K$

Axiomatic Set Theory

Naïve Set Theory (朴素集合论)

- proposed by Cantor
- Basic Idea: anything you can describe is a set
- helped people to understand infinity
- > its logic foundation is questionable

Axiomatic Set Theory (公理集合论)

Basic Idea: you can only construct a new set based on some existing sets and some rules

Axiomatic set theory is now the foundation of the entire mathematics

Xiang Yin September 15, 2023 17/27

Hilbert's Dream

希尔伯特 David Hilbert (1862-1943)

- The founder of the proof theory
- He wanted mathematics to be formulated on a solid and complete logical foundation: both complete and consistent

Hilbert's Program

- all of mathematics follows from a correctly chosen finite axiom system
- ② such axiom system is provably consistent through some means

Gödel's Incompleteness Theorems

哥德尔 Kurt Gödel (1906-1978)

哥德尔第一不完备定理 (1931)

- Any powerful enough (supports Peano arithmetic) consistent axiom system must has a true proposition that cannot be proved
- 解读:不存在一个万能的公理系统,使得其既能够证明一切数学真理,又能证伪任何谬误

哥德尔第二不完备定理(1931)

- Any powerful enough consistent axiom system cannot prove its own consistency
- 解读:如果一个(强度足以证明基本算术公理的)公理系统可以用来证明它自身的一致性,那么它是不一致的。

Gödel's incompleteness theorems show Hilbert's Program is NOT POSSIBLE!

Xiang Yin September 15, 2023 19/27

About Gödel

Einstein: my own work no longer mean much.

I come to the Institute merely to have the privilege to be able to walk home with Gödel

Gödel, Escher, Bach: an Eternal Golden Braid

Douglas Hofstadter, 1979

Alan Turing and Computation

阿兰-图灵 Alan Turing (1912-1954)

- > The founder of Computer Science and Artificial Intelligence
- Turing Machine describes what is computation
- Proved that Halting Problem for Turing machines is undecidable

We hope to find a new program **H** to determine if **A** or **C** stuck

We build following new program X using machines P, H, N, where

- > P is just a copy machine and
- > N stuck if it receives "not stuck"

Program **H** does not exists!

- · What if we put X into itself
- If H says this "stuck", then
 N makes it "not stuck"
- If H says this "not stuck", then N makes it "stuck",

21/27

Xiang Yin September 15, 2023

A Road of Two Thousand Years

It takes us more than 2000 years to build our math system correctly

We finally realize that we can never really understand the real world!

Applications of Logics in EECS

迪杰斯特拉 Edsger Dijkstra (1930-2002)

- One of the greatest computer scientists
- ▶ 搞了这么多年软件,错误不知犯了多少,现在觉悟了。我想,假如我早年在数理逻辑上好好下点功夫的话,我就不会犯这么多的错误,不少东西逻辑学家早就说了,可我不知道。要是我能年轻二十岁的话,就要回去学逻辑。

Graph Theory

- Graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects
- A graph in this context is made up of vertices which are connected by edges.

More Applications of Graph Theory

Back to Syllabus

Part I: Mathematical Logics (数理逻辑)---Week 1-6

- Propositional Logics (命题逻辑)
- Predicate Logics (谓词逻辑)
- Axiomatic Systems (公理系统)

Part II: Set Theory (集合论)---Week 7-12

- Naïve Set Theory (朴素集合论)
- > Axiomatic Set Theory (公理集合论)
- Relations and Functions (关系与函数)

Part III: Graph Theory (图论)---Week 13-16

Paths, Trees, Euler/Hamilton Graphs...

Thank You!