

THEORETICAL PART:

Definitions:

• The natural numbers set: $\mathbb{N} = \{1, 2, 3, 4, 5, \cdots\}$

• The whole numbers set: $\{0, 1, 2, 3, 4, \cdots\}$

• The integers numbers set: $\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3, \cdots\}$

• The rational numbers set: $\mathbb{Q} = \left\{ \frac{p}{q} \mid p \in \mathbb{Z}, \ q \in \mathbb{Z}, \ q \neq 0 \right\}$

• The irrational numbers set: $\mathbb{I} = \mathbb{R} \setminus \mathbb{Q}$

ullet The real numbers set: $\mathbb R$

• Empty set or the null set notation: \emptyset , {}

• The notation $\{x \mid x \text{ has property } P\}$ is used to describe a set of real numbers, all of which have the property P

Basic Set Operations and Venn Diagrams:

• The **union** of two sets *A* and *B*:

$$A \cup B = \{x \mid x \in A \text{ or } x \in B\}$$

• The **intersection** of two sets *A* and *B*:

$$A \cap B = \{x \mid x \in A \text{ and } x \in B\}$$

• The **difference** of two sets *A* and *B*:

$$A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$$

Definitions:

• The absolute value of a real number a''|a|'' is

$$|a| = \begin{cases} a, & a \ge 0 \\ -a, & a < 0 \end{cases}$$

• Properties of Absolute Value:

$$|a| \ge 0$$

$$|-a| = a$$

$$a \le |a|$$

$$|ab| = |a||b|$$

$$\left|\frac{a}{b}\right| = \frac{|a|}{|b|}, b \ne 0$$

$$|a+b| \le |a| + |b| \text{ (triangle inequality)}$$

• The given two real numbers a and b, the **distance** between them is defined to be |a - b|.

• Field Properties:

Closure:

additive: a + b is a real number multiplicative: ab is a real number

Commutative:

additive: a + b = b + amultiplicative: ab = ba

Associative:

additive: a + (b + c) = (a + b) + cmultiplicative: a(bc) = (ab)c

Identity:

additive: a + 0 = 0 + a = amultiplicative: $a \cdot 1 = 1 \cdot a = a$

Inverse:

additive: a + (-a) = 0multiplicative: $a \cdot \frac{1}{a} = 1, a \neq 0$

Distributive:

$$a(b+c) = ab + ac$$

• Cancellation Properties: Let A, B and C be algebraic expressions. We have

$$A = B \Leftrightarrow A + C = B + C$$
 (Additive cancellation)

$$A = C \Leftrightarrow A \cdot C = B \cdot C$$
, where $C \neq 0$ (Multiplicative cancellation)

• **Zero-Factor Property:** Let A, B be algebraic expressions. Then we have

$$AB = 0 \Rightarrow A = 0$$
 or $B = 0$.

PRACTICAL PART:

- 1. Which elements of the following set $\left\{5\sqrt{7}, 4\pi, -1, \frac{22}{7}, |-8|, 3.\overline{3}\right\}$ are
 - natural numbers (W): 1-31
 - whole numbers : \-\ 8\

 - integers ($\frac{7}{2}$): -1, 1-8|
 rational numbers ($\frac{1}{2}$): $\frac{22}{3}$, $\frac{3}{3}$, -1, 1-8|
 irrational numbers ($\frac{1}{1}$): $\frac{5}{3}$, $\frac{1}{4}$, $\frac{1}{7}$, $\frac{22}{7}$, $\frac{1}{7}$,
- 2. Which set the following intervals do represent?

(a)
$$(2,8) = \{ x \mid 2 < x < 8 \}$$

(b)
$$[-3,10) = \{ x \mid -3 \le x \le 10 \}$$

(a)
$$(2,8) = \{ x \mid 2 < x < 8 \}$$

(b) $[-3,10) = \{ x \mid -3 \le x < 10 \}$
(c) $(-\infty,\infty) = \{ x \mid x \text{ is a real number} \}$

3. Write the following sets as an interval using interval notation:

(a)
$$A = \{x \mid -3 \le x < 19\}$$

(b)
$$B = \{ \text{The nonnegative real numbers} \}$$

4. Using absolute value properties simplify the following expressions:

(a)
$$|(-3)(5)| = ||-3|| \cdot ||5|| = ||3 \cdot 5|| = ||15||$$

(b)
$$\left| \frac{-3}{7} \right| = \frac{1-31}{171} = \frac{3}{7}$$

- 5. Simplify the following set expressions:
 - (a) $\mathbb{N} \cap \mathbb{Z} \cap \mathbb{Q} \cong \mathcal{N}$
 - (b) (5,10) ∪ Z = (5,10) ∪ 2
 - [0,4] (c) $(-2,4] \cap [0,9]$

- 6. Evaluate the following algebraic expressions for the given values of the variables:
 - (a) for x = 8

$$\sqrt{2x} + \frac{3x}{4}$$

(b) for x = 2, y = -1, z = 3

$$\frac{x^2y^3}{87} - \frac{|2xy|}{87}$$

(a)
$$x=8$$
: $\sqrt{2.8} + \frac{3.8^2}{10} = \sqrt{16} + 6 = 4+6 = 10$

(b)
$$x=2,y=-1,2=3:$$
 $\frac{2^{2}\cdot(-1)^{3}}{8\cdot 3}-\frac{12\cdot 2\cdot(-1)}{8\cdot 3}=\frac{-4}{24}-\frac{4}{24}=\frac{-8}{24}=$

- 7. Identify the property that justifies each of the following statements.
 - (a)

$$4(y-3) = 4y - 12$$
, **Distributive**

(b)

$$25x^3 = 10y \Leftrightarrow 5x^3 = 2y$$
, Multiplicative cancellation

(c)

$$x^2z = 0 \Rightarrow x^2 = 0$$
 or $z = 0$. Zero-factor property
$$y + 12 = 18$$
 Additive concellation

(d)

(a): Distributive: a(b+c)=ab+ac

(b): Multiplicative cancellation:

AB = A.C (=> B=C, A = 0

(c): Zero-factor property:

A.B = 0 = 1 A=0 or B=0

(d): Additive cancellation:

A+B = A+C 2=5 B=C

" L= " means " if and only if"

"=5" meoms "implies"