# Machine Learning Based Low-Cost Multispectral Sensor for Leaf Nitrogen and Phosphorus Level Classification

Mohammad Habibullah

### **Overall setup of the System:**



#### **State-of-the-art Algorithms:**

- K- means clustering:
  - Used in preprocessing stage
  - Euclidean distance is used
  - The center of the cluster (centroid) was determined
- Ensemble Bagged Decision Tree (EBT):
  - Used to classify N and P levels in leaves

- Support Vector Machine (SVM):
  - Used to classify N and P levels in leaves
  - Radial basis function (RBF) is used as kernel
  - RBF kernel parameters are optimized using the Wang [66]
- K-Nearest Neighbor (KNN):
  - Used to classify N and P levels in leaves
- Decision Tree (DT):
  - Used to classify N and P levels in leaves
  - C4.5 decision tree is used

#### **Feature Engineering:**

- The features are normalized using z-score
- An independent-sample t-test is used to identify statistically discriminative features Also, embedded method is used, in which features are weighted based on the Particle Swarm Optimization (PSO) algorithm during learning
- Swarm size of the PSO is set to 200, and the maximum number of iterations is 500.
- Also, the range of the weights of the features is -5 to 5, and the tolerance limit is set to  $10^{-12}$ .
- Matthews Correlation Coefficient (MCC) is used as a cost function to optimize the feature weights



### **Model Validation:**

- Hold-out method: 75%-25% split
- <u>K-fold cross validation</u>: 5-fold cross validation

### **Model Validation:**

Classification metrics

| Parameter                                        | Evaluation focus                                                                                                 | Definition                                                                      |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Accuracy <sub>i</sub>                            | Effectiveness of a classifier for i-th class                                                                     | $\frac{TP_i + TN_i}{TP_i + TN_i + FN_i + FP_i}$                                 |
| Sensitivity <sub>i</sub><br>/Recall <sub>i</sub> | Effectiveness of a classifier to identify positive labels for i-th class                                         | $\frac{TP_i}{TP_i + FN_i}$                                                      |
| Specificity <sub>i</sub>                         | Effectiveness of a classifier to identify negative labels for i-th class                                         | $\frac{TN_i}{TN_i + FP_i}$                                                      |
| Precision <sub>i</sub>                           | Class agreement of the data labels with the positive labels for i-th class                                       | $\frac{TP_i}{TP_i + FP_i}$                                                      |
| F1 – Score <sub>i</sub>                          | Relations between positive labels and those given by a classifier for i-th class                                 | $\frac{2 \times Precision_i \times Sensitivity_i}{Precision_i + Sensitivity_i}$ |
| Accuracy <sub>m</sub>                            | The average per-class effectiveness of a classifier                                                              | $\frac{\sum_{i=1}^{l}(\frac{TP_i+TN_i}{TP_i+FN_i+FP_i})}{l}$                    |
| Sensitivity <sub>m</sub><br>/Recall <sub>m</sub> | Effectiveness of a classifier to identify class labels if calculated from sums of percategory decisions          | $\frac{\sum_{i=1}^{l} TP_i}{\sum_{i=1}^{l} (TP_i + FN_i)}$                      |
| $Specificity_{\mathbf{m}}$                       | The average per class effectiveness of a classifier to identify negative labels                                  | $\frac{\sum_{i=1}^{l} TN_i}{\sum_{i=1}^{l} (TN_i + FP_i)}$                      |
| Precision <sub>m</sub>                           | Agreement of the data class labels with those of a classifiers if calculated from sums of per-category decisions | $\frac{\sum_{i=1}^{l} TP_i}{\sum_{i=1}^{l} (TP_i + FP_i)}$                      |
| F1 – Score <sub>m</sub>                          | Relations between data's positive labels<br>and those given by a classifier based on a<br>per-class average      | $\frac{2 \times Precision_m \times Sensitivity_m}{Precision_m + Sensitivity_m}$ |

## N-Sensing

#### Accuracy of different category



- Category 1, Category 2, Category 3, and Category 4 represent four N treatments (0, 6, 12, and 20 g/L) in the greenhouse experiment.
- Binary category: (Category1+Category2) & (Category3+Category4)

# P-Sensing

### Accuracy of different species

