min 1 2 1 1 1 2 + 2 1 w/ st r= xw-y Eagrangian is L(w, r, N)= 1 rTr+pTr+ Allwl, -pTXw+pTy Thus, reall that, g(x) = inf &(w, r, p) = inf h(r) - 1 sup (1(x /) w - | wlls) + p y We've shows: T*=- + for the 1st part FOR the 2rd part: sup 1 (XTV) W- || W|| = ||XTV|| When considering $\|\cdot\|_{*}^{*}$, $\forall x \in \mathbb{R}^{m}$ = I y . sgn (x;) |x;] - [n;] $= \frac{7}{12} |x_i| \left(y_i sgn(x_i) - 1 \right)$ This quantity explods whenever +y; > 1 or -y; < 1.

(if $y_1(x_i)=1$) So y needs to be s.t //y/los <1 · Then y'x-||x||, { Z | n; | (| y; |-1) & came y; sqn(x;) < | y; | Equality holds where tiE[1im], |n:|(|yi|-1) =0 in x;=0 or |y: |-1=0 · In our case, w" satisfies wi (xy*i-1)=0 HiE[1;d] w; *((xy*)-1) = 0 | ie ether w; =0 or (XM:- 1=0