Homework 1: Stochastic learning: Stochastic Gradient Descent

Lecturer: Georgios P. Karagiannis georgios.karagiannis@durham.ac.uk

This formative assessment assesses both the theoretical and the practical component of the course. Instructions: For Formative assessment, submit the solutions to Exercise 1.

Exercise 1. $(\star\star\star)$ Consider the binary classification problem with inputs $x\in\mathcal{X}$ where $\mathcal{X}:=\{x\in\mathbb{R}^d:\|x\|_2\leq L\}$ for some given value $\lambda>0$, target $y\in\mathcal{Y}$ where $\mathcal{Y}:=\{-1,+1\}$, and prediction rule $h_w:\mathbb{R}^d\to\{-1,+1\}$ with

$$h_w(x) = \operatorname{sign}\left(1 - w^{\mathsf{T}}x\right) \tag{1}$$

$$= \operatorname{sign}\left(1 - \sum_{j=1}^{d} w_j x_j\right) \tag{2}$$

with

$$\mathcal{W} = \left\{ w \in \mathbb{R}^d \right\}$$

Let the hypothesis class of prediction rules be

$$\mathcal{H} = \left\{ x \to w^\top x : \forall w \in \mathcal{W} \right\}$$

for some pre-specified constant L > 0. In other words, the hypothesis $h_w \in \mathcal{H}$ is parametrized by $w \in \mathbb{R}^d$ upon receiving an input vector $x \in \mathcal{X} := \mathbb{R}^d$ and it returns the label $y = \text{sign}(w^\top x) \in \mathcal{Y} := \{\pm 1\}$.

Consider a loss function $\ell: \mathbb{R}^d \to \mathbb{R}_+$ with

$$\ell(w, z = (x, y)) = \max(0, 1 - yw^{\top}x) + \lambda ||x||_{2}^{2}$$
(3)

for some given value $\lambda > 0$.

Assume there is available a dataset of observed examples $S_n = \{z_i = (x_i, y_i); i = 1, ..., n\}$ of size n; the data-generation probability g is assumed unknown.

The goal is to design a machine by learning w^* such that

$$w^* = \arg\min_{\forall w: h_w \in \mathcal{H}} \left(\mathcal{E}_{z \sim g} \left(\ell \left(w, z = (x, y) \right) \right) \right)$$
 (4)

from S_n which can classify a new example with features x_{new} either as $y_{\text{new}} = -1$ or as $y_{\text{new}} = +1$. Do the following tasks.

Hint-1: We denote

$$\operatorname{sign}(\xi) = \begin{cases} -1, & \text{if } \xi \le 0 \\ +1, & \text{if } \xi > 0 \end{cases}$$

Hint-2: The notation ± 1 means either -1 or +1.

HInt-3: We define $\mathbb{R}_+ := (0, +\infty)$

Hint-4: We denote $||x||_2 := \sqrt{\sum_{\forall j} (x_j)^2}$ the Euclidean distance.

1. Show that the function $f : \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1 - x)$ is convex in \mathbb{R} ; and show that the loss (3) is convex.

Hint: You may use Example 13 from Handout 1.

2. Show that the loss (3) is L-Lipchitz when $x \in \mathcal{X}$ where $\mathcal{X} := \{x \in \mathbb{R}^d : ||x||_2 \leq L\}$

Hint: You may use the definition. Without loss of generality, you can consider any w_1 and w_2 such that $1 - yw_2^\top x \le 1 - yw_1^\top x$, and then take cases $yw_2^\top x > \text{or} < 1$ and $yw_1^\top x > \text{or} < 1$ to deal with the max.

3. Construct the set of sub-gradients $\partial f(x)$ for $x \in \mathbb{R}$ of the function $f: \mathbb{R} \to \mathbb{R}_+$ with $f(x) = \max(0, 1-x)$. Show that vector v with

$$v = \begin{cases} 2\lambda x & yw^{\top}x < 1\\ 2\lambda x & yw^{\top}x = 1\\ -yx^{\top} + 2\lambda x & yw^{\top}x > 1 \end{cases}$$

is $v \in \partial_w \ell(w, z = (x, y))$, aka a sub-gradient of $\ell(w, z = (x, y))$ at w, for any $w \in \mathbb{R}^d$.

4. Write down the algorithm of online AdaGrad (Adaptive Stochastic Gradient Descent) with learning rate $\eta_t > 0$, batch size m, and termination criterion $t > T_{\text{max}}$ for some $T_{\text{max}} > 0$ in order to discover w^* in (4). The formulas in your algorithm have to be tailored to 3.

- 5. Use the R code given below in order to generate the dataset of observed examples $S_n = \{z_i = (x_i, y_i)\}_{i=1}^n$ that contains $n = 10^6$ examples with inputs x of dimension d = 2. Consider $\lambda = 0$. Use a seed $w^{(0)} = (0, 0)^{\top}$.
 - (a) By using suitable values for m, η_t and T_{max} , code the algorithm you designed in part 4, and run it.
 - (b) Plot the trace of the generated chain $\{w^{(t)}\}$ with respect to the iteration t for each dimension of w.
 - (c) Report the value of the output w_{adaGrad}^* of the algorithm where w_{adaGrad}^* is the arithmetic average of the end tail of the generated chain $\{w^{(t)}\}$ that can give you the solution to (4).
 - (d) To which cluster y (i.e., -1 or 1) the example with feature $x = (1,0)^{\top}$ belongs?

```
# R code. Run it before you run anything else
#
data_generating_model <- function(n,w) {</pre>
z <- rep( NaN, times=n*3 )</pre>
z <- matrix(z, nrow = n, ncol = 3)</pre>
z[,1] \leftarrow rep(1,times=n)
z[,2] <- runif(n, min = -10, max = 10)
p \leftarrow w[1]*z[,1] + w[2]*z[,2] p \leftarrow exp(p) / (1+exp(p))
z[,3] \leftarrow rbinom(n, size = 1, prob = p)
ind <-(z[,3]==0)
z[ind,3] < -1
x < z[,1:2]
y < -z[,3]
return(list(z=z, x=x, y=y))
n_obs <- 1000000
w_{true} <- c(-3,4)
set.seed(2023)
out <- data_generating_model(n = n_obs, w = w_true)</pre>
set.seed(0)
z_{obs} \leftarrow out$z #z=(x,y)
x \leftarrow \text{out}
y <- out$y
#z_obs2=z_obs
\#z_obs2[z_obs[,3]==-1,3]=0
\#w\_true \leftarrow as.numeric(glm(z\_obs2[,3]^ 1+ z\_obs2[,2],family = "binomial"
)$coefficients)
```