OPERATING SYSTEM

Solutions

1. A system has a resource 'Z' w	rith 20 instances; each process needs 5 instances to complete	its
execution. What is the minimum	process in the system that may cause deadlock?	
(a) 4	(b) 5	

Solution: Option (b)

(c) 10

- **2.** A system has 'n' processes and each process need 2 instances of a resource. There are n+1 instances of resource provided. This could:
- (a) lead to deadlock

(b) lead to starvation & the deadlock

(c) never leads to deadlock

(d) none

(d) 6

Solution: Option (c)

3. There are 'm' processes and 'n' instances of a Resource provided. Each process needs 'P' instances of the resource. In which case deadlock will never occur?

(a)
$$(P - 1) m + 1 \le n$$

(b)
$$(P - 1) m \le n + 1$$

(c) (P - 1)
$$m + 1 < n$$

(d)
$$(P - 1) m \le n + 1$$

Solution: Option (a)

4. There are 5 processes and 10 instances of a Resource. If each process needs 'P' instances which is the minimum value of 'P' for the deadlock to occur?

(a) 1

(b) 2

(c) 3

(d) 4

Solution: Option (c)

- **5.** There are 10 processes and 31 instances of a Resource. If each process needs '4' instances of the resource, this could:
- (a) Lead to deadlock

(b) Deadlock will never occur

(c) Deadlock might occur	(d) None		
Solution: Option (b)			
6. If a process is in safe state, then:			
(a) It will never go to deadlock(c) It will definitely lead to deadlock	(b) It might lead to deadlock (d) None		
Solution: Option (a)			
7. If a process is in unsafe state, then:			
(a) It is in deadlock(c) It will lead to deadlock	(b) It might successfully complete(d) None of the above		
Solution: Option (b)			
8. In a single instance Resource allocation graph (Wait for graph) cycle is a:			
(a) Necessary condition for deadlock(c) Unpredictable situation for deadlock	(b) Sufficient condition for deadlock(d) None of the above		
Solution: Option (b)			
9. In a Multiple instance Resource allocation graph, cycle is a:			
(a) Necessary condition for deadlock(c) Unpredictable situation for deadlock	(b) Sufficient condition for deadlock(d) None of the above		
Solution: Option (a)			
10 . Consider 3 Processes P ₁ , P ₂ and P ₃ and 3 Reso instances of all the resources. This could:	purces R_1 , R_2 and R_3 and each process needs 2		
(a) lead to deadlock(c) can't say due to insufficient data	(b) deadlock will never occur(d) none		
Solution: Option (c)			