Greedy Algorithms

Arnav Gupta

April 9, 2024

Contents

1	Overview			
	1.1	Strategy	2	
2	Interval Scheduling			
	2.1	Problem	2	
	2.2	Algorithm	2	
	2.3	Correctness	2	
		2.3.1 The Greedy Algorithm Stays Ahead	2	
			3	
			3	
3	Interval Colouring			
	3.1	Problem	4	
	3.2		4	
	3.3		4	
		3.3.1 Proof	4	
4	Minimizing Total Completion Time			
	4.1	Problem	5	
	4.2	Algorithm	5	
	4.3		5	

1 Overview

For trying to solve a combinatorial optimization problem:

ullet have a large, but finite domain $\mathcal D$

• want to find an element E in $\mathcal D$ that minimizes/maximizes a cost function

1.1 Strategy

- build E step by step
- don't think ahead, just try to improve as much as possible at every step
- simple algorithms, but usually no guarantee to get the optimal
- hard to prove correctness, easy to prove incorrectness

2 Interval Scheduling

2.1 Problem

- input: n intervals $[s_1, f_1], [s_2, f_2], \dots, [s_n, f_n]$
- output: a maximal subset of disjoint intervals

2.2 Algorithm

- 1. Let S be the empty set
- 2. Sort the intervals such that $f_1 \leq f_2 \leq \cdots \leq f_n$
- 3. For i from 1 to n do
 - (a) if interval i, $[s_i, f_i]$ has no conflicts with intervals in S i. add i to S
- 4. Return S

2.3 Correctness

2.3.1 The Greedy Algorithm Stays Ahead

Assume O is an optimal solution, the goal is to show |S| = |O|.

- Suppose i_1, i_2, \ldots, i_k are the intervals in S in the order they were added to S by the greedy algorithm
- Similarly, the intervals in O are denoted by j_1, \ldots, j_m

- assume that the intervals in O are ordered in the order of the start and finish times
- Prove that k = m

2.3.2 Lemma

First consider the lemma: For all indices $r \leq k$ we have $f(i_r) \leq f(j_r)$.

By induction:

- for r = 1, the statement is true
- suppose r > 1 and the statement is true for r 1
 - we show that the statement is true for r
- by induction hypothesis, $f(i_{r-1}) \leq f(j_{r-1})$
- by the order on O, $f(j_{r-1}) < s(j_r)$
- hence $f(i_{r-1}) < s(j_r)$
- thus, at the time the greedy algorithm chose i_r , the interval j_r was a possible choice
- the greedy algorithm chooses an interval with the smallest finish time

$$-$$
 so $f(i_r) \leq f(j_r)$

2.3.3 Proof

Theorem: The greedy algorithm returns an optimal solution

Prove by contradiction:

- if the output S is not optimal, then |S| < |O|
- i_k is the last interval in S and O must have an interval j_{k+1}
- apply the previous lemma with r = k and we get $f(i_k) \le f(j_k)$
- we have $f(i_k) \le f(j_k) < s(j_{k+1})$
- ullet so j_{k+1} was a possible choice to add to S by the greedy algorithm
 - this is a contradiction by how the greedy algorithm works

3 Interval Colouring

3.1 Problem

- input: n intervals $[s_1, f_1], [s_2, f_2], \dots, [s_n, f_n]$
- output: use the minimum number of colours to colour the intervals so that each interval gets one colour and two overlapping intervals get two different colours

3.2 Algorithm

- 1. Sort the intervals by starting time: $s_1 \leq s_2 \leq \cdots \leq s_n$
- 2. For i from 1 to n do
 - (a) use the minimum available colour c_i to colour the interval i (one that doesn't conflict with the colours of intervals already coloured)

3.3 Correctness

Assume the greedy algorithm uses k colours. To prove correctness, the goal is to show that there are no other ways to solve the problem using at most k-1 colours.

3.3.1 Proof

Suppose interval ℓ is the first interval to use the colour k:

- interval ℓ overlaps with intervals with colours $1, \ldots, k-1$
- call these intervals $[s_{i_1}, f_{i_1}], [s_{i_2}, f_{i_2}], \dots, [s_{i_{k-1}}, f_{i_{k-1}}]$
- for $1 \le j \le k 1$, $s_{i_j} \le s_{\ell}$
- all the intervals overlap with $[s_{\ell}, f_{\ell}]$
- since all these intervals overlap with $[s_{\ell}, f_{\ell}], s_{\ell} \leq f_{i_j}$ for $1 \leq j \leq k-1$
- hence s_{ℓ} is a time contained in k intervals
- so, there is no k-1 colouring

4 Minimizing Total Completion Time

4.1 Problem

- input: n jobs, each requiring processing time p_i
- output: an ordering of the jobs such that the total completion time is minimized

4.2 Algorithm

• order the jobs in non-decreasing processing times

4.3 Correctness

- let $L = [e_1, \dots, e_n]$ be an optimal solution (as a permutation of $[1, \dots, n]$)
- suppose that L is not in non-decreasing order of processing times
 - so there exists i such that $t(e_i) > t(e_{i+1})$
- sum of the completion times of L is $nt(e_1) + (n-1)t(e_2) + \cdots + t(e_n)$
- contribution of e_i and e_{i+1} is $(n-i+1)t(e_i)+(n-i)t(e_{i+1})$
- let L' be the permutation with e_i and e_{i+1} switched
- their contribution becomes $(n-i+1)t(e_{i+1})+(n-i)t(e_i)$
- nothing else changes so $T(L') T(L) = t(e_{i+1}) t(e_i) < 0$ which is a contradiction