<u>Proof.</u> Let $u \in D(A)$ be strictly positive. Then there exists $\lambda \in \mathbb{R}$ such that $Au \le \lambda u$. The operator $B = A - \lambda$ satisfies (P) as well and $Bu \le 0$. Then by Prop. 1.10, B is p_u -dissipative. Hence B is closable and the closure \overline{B} of B is p_u -dissipative as well (by A-II Prop. 2.9). Then by Prop. 1.10 \overline{B} satisfies (P). Thus A is closable and its closure $\overline{A} = \overline{B} + \lambda$ satisfies (P) as well.

Corollary 1.12. Let A : C(K) \rightarrow C(K) be linear. If A satisfies (P) then A is bounded and A + $\|A\| \text{Id} \ge 0$.

<u>Proof.</u> It follows from Corollary 1.11 that A is closed. Hence A is bounded. Since A satisfies (P), it follows from Thm. 1.3 that A $+ \|A\| Id \ge 0$.

The next result is a strengthened form of Theorem 2.6. It is somewhat similar to the Lumer-Phillips theorem (A-II, Thm. 2.13). Note that, however, in contrast with the condition of dissipativity, A + w satisfies (P) for any w \in R whenever (P) holds for A . Thus (P) is not a "metric" condition; that is, it does not imply any norm estimate for the semigroup. We also point out that, if $(T(t))_{t\geq 0}$ is a positive semigroup on C(K), then in general none of the semigroups $(e^{-wt}T(t))_{t\geq 0}$ (w \in R) is contractive (see Batty-Davies (1983) or Derndinger (1983)).

Theorem 1.13. Let A be a densely defined operator on C(K) which satisfies (P). Then

 $\lambda_{o} := \inf \{ \lambda \in \mathbb{R} : Au \le \lambda u \text{ for some } 0 \lessdot u \in D(A) \} \lessdot \infty$.

- (a) If $(\lambda A)D(A)$ is dense for some $\lambda > \lambda_O$, then A is closable and the closure \overline{A} of A is the generator of a positive semigroup.
- (b) If λ A is surjective for some λ > λ , then A is the generator of a positive semigroup.

<u>Proof.</u> It follows from Prop.1.10 that $\lambda_{O} < \infty$. Assume that $(\lambda - A)D(A)$ is dense, where $\lambda > \lambda_{O}$. Let $\lambda_{O} < \mu < \lambda$ and $B = A - \mu$. Then B satisfies (P) and Bu ≤ 0 for some strictly positive $u \in D(B) = D(A)$. Thus B is p_{u} -dissipative by Prop.1.10. Moreover, $((\lambda - \mu) - B)D(B)$ is dense. Thus by A-II,Cor.2.12 the closure \bar{B} of B generates a p_{u} -contraction semigroup. Hence the