INJEÇÃO ELETRÔNICA SISTEMA SPI G7

CIP 0010XA0107402

Trabalho elaborado pela Diretoria de Educação e Tecnologia do Departamento Regional do SENAI - PR , através do *LABTEC* - Laboratório de Tecnologia Educacional.

Coordenação geral Marco Antonio Areias Secco Elaboração técnica Nivaldo de Paula Barbosa

Equipe de editoração

Ilustração

Coordenação Márcia Donegá Ferreira Leandro

Diagramação Celso Valério de Farias

Elaine Przybycien

Celso Valério de Farias

Elaine Przybycien

Revisão técnica Nivaldo de Paula Barbosa

Capa Ricardo Mueller de Oliveira

Referência Bibliográfica. NIT - Núcleo de Informação Tecnológica SENAI - DET - DR/PR

S474i SENAI - PR. DET Injeção eletrônica - sistema SPI G7 Curitiba, 2002, 98p

1. Automóvel 2. Injeção Eletrônica

CDU - 621.43.038

Direitos reservados ao

SENAI — Serviço Nacional de Aprendizagem Industrial Departamento Regional do Paraná

Avenida Cândido de Abreu, 200 - Centro Cívico

Telefone: (41) 350-7000
Telefax: (41) 350-7101
E-mail: senaidr@pr.senai.br
CEP 80530-902 — Curitiba - PR

SUMÁRIO

1 MANUAL DE REPAROS G7/G7.11	05
1.1 INTRODUÇÃO	05
1.2 DESCRIÇÃO DO SISTEMA SPIG6/G7	06
1.2.1 Subsistema de Combustível	08
1.2.2 Subsistema de Ar	09
1.2.3 Subsistema de Ignição	11
1.2.4 Subsistema Elétrico e de Controle	12
1.2.5 Subsistema de Controle de Emissão Evaporativas	13
1.2.6 Subsistema de Partida a Frio (só para Motores a Álcool)	13
1.3 ESQUEMAS ELÉTRICOS	13
1.3.1 Tabela de Terminais da UC	13
1.3.2 Relés do Sistema de Injeção/Ignição	13
1.3.3 Massas do Sistema de Injeção/Ignição	15
1.4 ROTEIROS DE REVISÃO DE SUBSISTEMAS	20
1.4.1 Subsistema de Combustível (Para SPI)	20
1.4.2 Subsistema Elétrico	22
1.5 SISTEMA DE DIAGNÓSTICO DE FALHAS	23
1.5.1 Códigos de Falhas-Fluxogramas	27
1.5.2 Parâmetros do Modo Contínuo	54
ANEXO	55
2 MANUAL DE REPARO - 1G7	67
2.1 INTRODUÇÃO	67
2.1.1 Características	67
2.2 DESCRIÇÃO DO SISTEMA	69
2.2.1 Subsistema de Combustível	69
2.2.2 Subsistema de Ar	70
2.2.3 Subsistema Elétrico de Controle	72
2.2.4 Sistema Anti-Furto FIAT CODE	74
2.2.5 Sistema de Ignição	74
2.2.6 Sistema de Controle das Emissões Evaporativas (Gasolina)	76
2.2.7 Sistema de Partida a Frio (Álcool)	76
2.3 SISTEMA ELÉTRICO	77
2.3.1 Localização de Fusíveis e Relés	77
2.4 SISTEMA DE DIAGNÓSTICO	82
2.4.1 Teste Estático (Atuadores)	82
2.4.2 Teste Dinâmico	83
2.4.3 Modo Teste Contínuo	92
2.4.4 Modo Unidade de Comando	97
Ribliografia	98

1 MANUAL DE REPAROS G7/G7.11 1.1 INTRODUÇÃO O sistema G7 de injeção de combustível se apresenta nas configurações single point (motorizações 1.0 IE / 1.5 IE / 1.6 IE / 2.0 IE) ou multipoint (G7. 25 motor 2.0 16V). O sistema consta de: a) unidade de comando eletrônico, UC, do sistema de injeção/ignição (controlador, central eletrônica, centralina). Suas funções são: Determinar a quantidade correta de combustível para cada condição de funcionamento do motor. • Determinar o momento apropriado (avanço) para energizar as bobinas de ignição. Controlar a marcha lenta do motor. Determinar, através das rotinas de autodiagnóstico, eventuais falhas nos elementos do sistema; sob certas condições de falha a UC passa a funcionar com parâmetros pré - estabelecidos e desconsiderando as informações recebidas do elemento defeituoso; consequentemente a luz do painel se acende. Executar as rotinas de diagnóstico sob controle do KAPTOR 2000, o qual é conectado à UC através de um conector de diagnóstico instalado no compartimento do motor. b) sensores que enviam informações à UC sobre o estado das diferentes variáveis do sistema e que são necessárias para o controle correto do motor. Os sensores do sistema são: sensor de rotação e PMS (ponto morto superior); sensor de temperatura do ar, ACT;

.....

- sensor de temperatura do líquido arrefecedor, ECT;
- sensor de pressão absoluta do coletor de admissão,

MAP:

- sensor de posição da borboleta de aceleração, TPS;
- sensor de concentração de oxigênio, HEGO (sonda Lambda);
- sensor de detonação, KS (só presente no sistema G7.25);

c) atuadores que, sob comando da UC, permitem a esta controlar o sistema.

São eles:

- válvula de injeção (injetor);
- bomba elétrica de combustível;
- bobinas de ignição;
- motor de passo para controle de marcha lenta;
- luz indicadora de falha do painel de instrumentos;
- relé de potência.

Composição Geral do Sistema diglplex SPI G6/G7.

1.2 DESCRIÇÃO DO SISTEMA SPI G6/G7

Para fins de análise dividimos o sistema de injeção/	
ignição SPI G6/G7 nos seguintes subsistemas:	
 de combustível; 	
• de ar;	
• de ignição;	
de controle e elétrico;	
 auxiliar de controle de emissões evaporativas. 	
1.2.1 Subsistema de Combustível	
a) Bomba Elétrica de Combustível	
É do tipo de roletes, com pré-filtro, instalada no	
reservatório de combustível. A alimentação é controlada pela	
UC através da energização do relé de potência.	
Sua pressão máxima (de segurança) é de aprox. 5 bar.	
Pressão de trabalho para motores a gasolina = 1 bar.	
Pressão de trabalho para motores a álcool = 1,5 bar.	
Quando a ignição é ligada a bomba é energizada por	
aproximadamente 1 segundo.	
Nota: No caso do sistema G7 ser do tipo multipoint, a pressão	
de combustível é:	
com motor desligado e linha pressurizada: 3.0 bar aprox.	
com motor funcionando na marcha lenta: 2.5 bar aprox.	
b) Filtro de Combustível	
É do tipo de papel com sentido de circulação de	
combustível indicado por uma seta no invólucro. Localizado	
no cofre do motor.	
c) Válvula Injetora	
O sistema SPI é do tipo monoinjetor com um único injetor	
instalado na tampa do corpo de borboleta.	
No sistema G7.25 (multipoint), os injetores estão	

instalados no coletor.

Resistência (SPI) = 2 ohms, aprox.	
Resistência (mult) = 15 ohms, aprox.	
d) Regulador de Pressão	
É do tipo de diafragma único, sem compensação de	
vácuo (não necessário por estar o injetor instalado antes da	
borboleta de aceleração).	
O regulador está instalado na tampa do corpo de	
borboleta no SPI e fica após a válvula de injeção, a fim de	
manter a pressão de 1 bar na linha de combustível.	
Regulagem de pressão para motores a gasolina = 1 bar.	
Regulagem de pressão para motores a álcool = 1,5 bar.	
No sistema G7 multipoint, a pressão é regulada em 2,5	
bar na marcha lenta.	
1.2.2 Subsistema de Ar	
a) Corpo de Borboleta	
No sistema SPI:	
Constituído de uma tampa e corpo, está instalado sobre	
o coletor de admissão, no lugar que ocuparia o carburador.	
A tampa aloja o sensor de temperatura de ar (ACT), o	
regulador de pressão de combustível e o injetor.	
O corpo aloja a borboleta de aceleração, o sensor de	
posição da borboleta (TPS) e o motor de passo (IAC) de	
controle da marcha lenta.	
No sistema G7.25 (multipoint):	
Está localizada entre o filtro de ar e o coletor de admissão.	

Aloja o sensor de posição da borboleta (TPS) e o motor de	
passo (IAC).	
b) Sensor de Posição da Borboleta – TPS	
É do tipo potonojomátrico circular o do característico	
É do tipo potenciométrico circular e de característica	
resistiva linear.	
4	
É solidário ao eixo da borboleta de aceleração.	
c) Sensor de Temperatura do Ar – ACT	
É do tipo NTC (termistor) de corpo plástico e alojado na	
tampa do corpo de borboleta (no sistema SPI).	
No sistema G7 multipoint está na tubulação de admissão	
de ar.	
do di.	
d) Sensor de Pressão Absoluta do Coletor – MAP	
d) Selisol de Pressao Absoluta do Coletol – MAP	
<u> </u>	
É do tipo piezo – resistivo. Está instalada no cofre do	
motor ao lado dos relés do sistema de injeção/ignição (nos	
veículo em que os relés estão instalados na parede corta fogo).	
A tomada de depressão é feita no corpo de borboleta abaixo	
da borboleta de aceleração.	
e) Motor de Passo de Controle da Marcha Lenta – IAC	
Instalado no corpo de borboleta. Sua rotação aciona o	
parafuso de ajuste da quantidade de ar que passa pelo desvio	
(by-pass) do corpo de borboleta.	
(by pass) do corpo de borboleta.	
O surre complete de perstuse é de Omer. A cada passe	
O curso completo do parafuso é de 8mm. A cada passo	
do motor o parafuso se desloca 0.04 mm precisando, portanto,	
de 200 passos para efetuar o curso completo.	
f) Sensor de Temperatura do Motor – ECT	
Está instalado no corpo do termostato. É constituído de	
um elemento resistivo semicondutor do tipo NTC, similar ao	
utilizado no sensor de temperatura do ar.	

No caso do ECI, o elemento resistivo NIC, esta	•••••
encapsulado num corpo de latão que o protege da ação	
corrosiva do líquido arrefecedor. Mede a temperatura efetiva	
do motor, independentemente da temperatura do radiador.	
1.2.3 Subsistema de Ignição	
O subsistema de ignição é do tipo eletrônico mapeado	
estático e está integrado ao sistema de injeção de combustível.	
estatico e esta integrado do sistema de injeção de combustivoi.	
Condo do tino estático dispenso o uso do distribuidor	
Sendo do tipo estático, dispensa o uso do distribuidor	
convencional.	
Utiliza-se de duas bobinas de alta tensão; o módulo de	
potência que as controla está integrado a UC.	
a) Sensor de Rotação e PMS – ESS	
É do tipo de relutância magnética (detecta variação de	
fluxo magnético).	
Está instalado num suporte localizado na tampa dianteira	
da árvore de manivelas e posicionado radialmente a uma roda	
dentada de material ferromagnético, solidária à árvore.	
-	
O fio de ligação com a UC está protegido por malha	
metálica das pertubações eletromagnéticas.	
· · · · · · · · · · · · · · · · · · ·	
b) Bobinas de Alta Tensão	
by Bobinao ao Ana Torioao	
São duas bobinas instaladas na tampa do comando de	
válvulas. Uma gera alta tensão para os cilindros 1 e 4; a outra,	
para os cilindros 2 e 3.	
As características elétricas típicas são:	
 Resistência do primário: 0.5 ohms; 	
 Resistência do secundário: 7500 ohms; 	
 Alta tensão gerada: 15 Kvolts a 20 Kvolts; 	

1.2.4 Subsistema Elétrico e de Controle	
a) Unidade de Comando Eletrônico – UC	
Constituída de um microcomputador que efetua um	
controle mapeado tanto da injeção como da ignição.	
A partir dos dados recebidos dos diversos sensores	
calcula:	
 Quantidade de combustível a ser injetada; 	
 Ponto (avanço) da ignição. 	
A UC é alimentada diretamente da bateria para manter	
os valores dos parâmetros adaptivos e códigos de falha	
armazenados na memória RAM.	
Para atender as demais funções a UC recebe	
alimentação quando é ligada a ignição, através do relé de stand-	
by.	
b) Relés do Sistema	
b) Relés do Sistema	
b) Relés do Sistema O sistema G7 possui dois relés:	
O sistema G7 possui dois relés:	
O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando	
O sistema G7 possui dois relés:	
O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; 	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os 	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; 	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; válvula de injeção (injetor); 	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; válvula de injeção (injetor); bobinas de ignição; 	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; válvula de injeção (injetor); bobinas de ignição; válvula solenóide de controle da purga do canister 	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; válvula de injeção (injetor); bobinas de ignição; 	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; válvula de injeção (injetor); bobinas de ignição; válvula solenóide de controle da purga do canister 	
 O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; válvula de injeção (injetor); bobinas de ignição; válvula solenóide de controle da purga do canister (válvula canister). 	
O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; válvula de injeção (injetor); bobinas de ignição; válvula solenóide de controle da purga do canister (válvula canister). c) Sensor de Concentração de Oxigênio – HEGO (sonda	
O sistema G7 possui dois relés: Relé de alimentação (stand-by): alimenta a UC quando é ligada a chave de ignição; Relé de potência: é controlada pela UC e alimenta os seguintes dispositivos do sistema: bomba de combustível; resistência de aquecimento da sonda Lambda; válvula de injeção (injetor); bobinas de ignição; válvula solenóide de controle da purga do canister (válvula canister). c) Sensor de Concentração de Oxigênio – HEGO (sonda	

É do tipo de óxido de zircônio, com aquecimento por elemento resistivo.	
O sensor está instalado na tubulação de escapamento,	
antes do catalizador.	
O aquecedor é energizado assim que o relé de potência	
é ativado.	
1.2.5 Subsistema de Controle de Emissão Evaporativa	
Tana na filipa a santas la nasa santas da nasa santas da	
Tem por função controlar as emissões provenientes da	
evaporação de combustível no reservatório de combustível.	
a) Válvula Solenóide de Purga do Filtro de Vapores – CANP	
 a) Válvula Solenóide de Purga do Filtro de Vapores – CANP (canister; só para motores a gasolina) 	
(Cariister, so para motores a gasolina)	
É o único dispositivo do subsistema comandado pela	
UC. A válvula permite controlar a quantidade de vapores	
provenientes do filtro (canister) que são enviados ao corpo de	
borboleta para serem incorporados à mistura.	
1.2.6 Subsistema de Partida a Frio (só para Motores a álcool)	
, ,	
É composto de um interruptor térmico, de uma	
eletrobomba auxiliar e de um relé de acionamento.	
A informação recebida do interruptor térmico é utilizada	
pela UC para acionar o relé da eletrobomba auxiliar de injeção	
de gasolina para pertida a frio.	
1.3 ESQUEMAS ELÉTRICOS	
1.3.1 Tabela de Terminais da UC	
1.3.2 Relés do Sistema de Injeção/Ignição	
O sistema G7 possui 2 relés e um fusível. Estes podem	
estar localizados no cofre do motor (na parede corta fogo) ou	
no lado esquerdo do painel de instrumentos (na central de	
distribuição elétrica).	

.....

• Relé de alimentação da UC (relé de stand-by): fornece à UC a tensão de bateria para seu funcionamento. É ativado ao se ligar a ignição.

PINO DESCRIÇÃO 1 PRIMÁRIO DA BOBINA 1 2 FASE 1 DO MOTOR DE PASSO 3 FASE 4 DO MOTOR DE PASSO 4 LINHA DE DIAGNOSE 5 SENSOR DE ROTAÇÃO
1 PRIMÁRIO DA BOBINA 1 2 FASE 1 DO MOTOR DE PASSO 3 FASE 4 DO MOTOR DE PASSO 4 LINHA DE DIAGNOSE
2 FASE 1 DO MOTOR DE PASSO 3 FASE 4 DO MOTOR DE PASSO 4 LINHA DE DIAGNOSE
3 FASE 4 DO MOTOR DE PASSO 4 LINHA DE DIAGNOSE
4 LINHA DE DIAGNOSE
5 SENSOR DE ROTAÇÃO
3 SENSON DE NOTAÇÃO
6 CONTAGIRO
7 LÂMPADA DE ADVERTÊNCIA
10 SENSOR DE PRESSÃO
11 POTENCIÔMETRO DE POSIÇÃO DA BORBOLETA
13 MASSA DO MOTOR
14 SENSOR DE TEMPERATURA DO AR
15 (+) DO SENSOR DE PRESSÃO
16 MASSA DO MOTOR
17 MASSA DO MOTOR
18 INJETOR (ES)
19 PRIMÁRIO DA BOBINA 2
20 FASE 2 DO MOTOR DE PASSO
21 FASE 3 DO MOTOR DE PASSO
MEDIDOR DE CONSUMO
24 SENSOR DE ROTAÇÃO DO MOTOR
25 COMANDO DO RELÉ DE POTÊNCIA
28 LINHA DE DIAGNOSE
29 (+) 12 VCC
30 SONDA LÂMBDA
31 MASSA DOS SENSORES
32 SENSOR DE DETONAÇÃO
(+) POTENCIÔMETRO DE POSIÇÃO DA
BORBOLETA 34 SENSOR DE TEMPERATURA DA ÁGUA
52 SENSON DE TEMI ENATORA DA AGOA

Nota: A alimentação da UC, serve diretamente para	
alimentar a memória permanente que contém os	
parâmetros autoadaptativos.	
 Relé de potência quando ativado, sob controle da UC, 	
fornece alimentação às cargas:	
- bomba de combustível;	
- resistência de aquecimento da sonda 8;	
 válvula de injeção (injetor); 	
- bobinas de ignição;	
- eletroválvula interceptadora dos vapores de gasolina	
(válvula canister).	
1.3.3 Massas do Sistema de Injeção/Ignição	
Terminal 16: massa da UC e do relé de alimentação.	
Terminal 17: massa da UC.	
Terminal 13: massa da UC e da sonda 8.	
Terminal 31: massa dos sensores.	
 Pressão absoluta do coletor; 	
 Posição da borboleta 	
 Temperatura da água; 	
Temperatura do ar;	
 Blindagem da sonda 8. 	
Terminal 24: massa do sensor de rotação e da blindagem	
do sensor de rotação.	
Nota: os terminais 13, 16, 17 estão conectados à massa	
em dois pontos diferentes do motor.	
~	
1.4 ROTEIROS DE REVISÃO DE SUBSISTEMAS	
1.4.1 Subsistema de Combustível (para SPI)	
Medição de pressão:	
 O fabricante n\u00e3o fornece nenhum m\u00e9todo para 	
despressurizar a linha de combustível, já que a pressão cai	
alguns segundos.	

- Deve-se ter portanto a preocupação de isolar o local a fim de se evitar o derramamento de combustível, durante a abertura da linha, sob pressão residual.
- Instalar o manômetro na entrada de combustível ao corpo de borboleta.
 - Ligar o KAPTOR 2000.
- Selecionar o teste estático da bomba de combustível (a bomba funciona durante 30 segundos).
 - Anotar a pressão indicada no manômetro:
 - pressão correta para motores a álcool: 1,5 bar ± 10%;

......

.....

.....

......

......

.....

.....

.....

.....

......

......

.....

......

......

......

.....

......

- pressão correta para motores a gasolina: 1,0 bar ± 10%.

Medição de vazão

- Desligar a linha de retorno de combustível do corpo de borboleta.
- Instalar uma mangueira auxiliar que despeje o combustível na proveta graduada.
 - Acionar a bomba (sem ligar o motor por 30 segundos).
- A quantidade de combustível coletada deverá ser superior a 0,7 litros.

Diagnóstico do Subsistema de Combustível (para SPI).

 Verificar funcionamento da bomba de combustível, selecionando o teste estático da bomba de combustível no **KAPTOR 2000**;

20	
ΔΨ	
SENAI-F	PR

 Verificar pressão do sistema; 	
Se não houver pressão de combustível: - Verificar obstruções na linha de combustível, filtro;	
vermear essentiques na mina de comsuctivos, mino,	
Se a pressão de combustível for menor que 0,9 bar (1,4	
bar para álcool):	
 Verificar obstruções na linha de combustível, filtro; 	
- Acionar o teste de bomba de combustível no KAPTOR 2000 e comprimir gradualmente a magueira na saída	
do regulador de pressão; acionar o teste mais uma vez se for necessário;	
se for necessario,	
Se a pressão for acima de 1,1 bar (1,6 bar para álcool):	
regulador de pressão defeituoso;	
Se a pressão ainda for abaixo de 0,9 bar (1,4 bar para	
álcool): bomba de combustível defeituosa ou restrição no filtro	
de combustível;	
Se a pressão for maior que 1,1 bar (1,6 bar para álcool):	
- Medir vazão da linha de combustível mantendo o	
manômetro instalado;	
 Anotar pressão obtida durante a medição de vazão; 	
Se a pressão for entre 0,9 bar e 1,1 bar (1,4 e 1,6 bar para	
álcool): há restrição na linha de retorno de combustível ao tanque;	
Se a pressão for acima de 1,1 bar (1,6 bar para álcool):	
se a linha de retorno no corpo de borboleta está desobstruída,	
então regulador de pressão defeituoso;	
Se a pressão for entre 0,9 bar e 1,1 bar (1,4 e 1,6 bar	
para álcool), mas a partida for demorada:	
 Verificar estanqueidade da linha de combustível: Acionar o teste da bomba de combustível no KAPTOR 	
2000 para pressurizar a linha;	
- Pressionar a mangueira da linha de retorno ao tanque:	
- A pressão deverá persistir durante pelo menos 30	
segundos após a bomba parar de funcionar;	
Se a pressão cair: bomba defeituosa;	
Se a pressão for entre 0,9 bar e 1,1 bar (1,4 e 1,6 bar	
para álcool) e motor com partida normal:	
- Sistema de combustível normal.	

1.4.2 Subsistema Elétrico Verificação de relés Verificação da resistência da bobina Notar que, pelo fato de possuir um diodo em série, a medição de resistência apresentará valor infinito numa das duas posições das pontas de prova do multímetro. Na outra posição (ponta vermelha no terminal 86 e ponta preta no terminal 85) o valor de resistência pode variar entre 50Ω e 300Ω Resistência = 0Ω indica bobina em curto – circuito. verm. Vista Inferior do Relé Resistência > 500Ω indica bobina aberta. Qualquer uma destas condições indica relé defeituoso. Resistência $< 2\Omega$ é indicação de curto – circuito. Resistência > $2K\Omega$ é indicação de bobina aberta. Verificação do funcionamento. Ligar uma bateria de 12 volts como indicado na figura (entre terminais 86 e 85 do relé; + no 86). O multímetro deverá indicar resistência menor que 2 ohms entre os terminais 30 e 87.

Caso contrário o relé está defeituoso.	
Desligando a bateria o multímetro deverá indicar	
resistência infinita.	
Caso contrário o relé está defeituoso.	
Notar que o acima indicado para relés "normalmente	
abertos" (só fecham contato quando energizados).	
verm.	
\[\begin{picture}(30 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	
$\Omega / \mathcal{L} = \frac{30}{87} 87 \mathcal{L} $	
preta Vista interior do Relé	
1.5 SISTEMA DE DIAGNÓSTICO DE FALHAS	
O sistema de diagnóstico oferece as seguintes opções	
de teste:	
 Teste Estático: permite acionar, com motor desligado, 	
os seguinte atuadores:	
Bomba de combustível;	
– Injetor;	
Bobinas de ignição;	
 Válvula de purga do canister; 	
Conta – giros;	
 Relé do ar condicionado; 	
 Lâmpada de advertência; 	
Consumômetro.	
 Teste Dinâmico: com o motor em funcionamento, são 	
avaraitados as divarsos funcios do controlo do motor. No fim	
exercitadas as diversas funções de controle do motor. No fim,	
fornece os códigos das falhas detectadas.	
-	

 Modo Contínuo: são apresentados os parâmetros de 	
funcionamento do motor, como temperatura do ar admitido e	
do motor, pressão do coletor, posição da borboleta,	
funcionamento da sonda lambda e as palavras de estado do	
sistema (com informações sobre o estado de funcionamento	
ou falha dos diversos componentes do sistema).	
Palavras de estado:	
O sistema de autodiagnóstico da unidade de comando	
fornece os códigos de serviço (códigos de folha) num formato	
particular (forma binária); este formato apresenta no KAPTOR	
2000 as "palavras de estado" que especificam o dispositivo	
com falha e o tipo de falha (circuito aberto ou curto – circuito).	
com rama o o tipo do rama (onocino aborto ou carto concento).	
Estas "palavras de estado" estão compostas por 8	
posições cada uma deve ser lida da esquerda para a direita	
como mostra a figura.	
oomo moona a ngara.	
O KAPTOR 2000 oferece, além deste formato, a	
possibilidade de realizar os códigos de serviço com códigos	
simplificados, como os utilizados nos fluxogramas de reparo.	
simplificados, como os dilizados nos naxogramas de reparo.	
Estes códigos simplificados possibilitam uma	
identificação mais fácil do elemento com falha.	
identinoação maio raon de ciemente com rama.	
TABELA DOS ERROS DE FUNÇÃO DO SISTEMA	
(falhas da unidade de comando; UC).	
(
posição 1 – Parâmetros Auto – adaptativos;	
posição 2 – Memória RAM;	
posição 3 – Memória ROM;	
posição 4 – EEPROM;	
,	
0 0 0 0 0 0 0 0	
nosinão 8 nosinão 1	
posição 8 posição 1	

posição 5 – Microprocessador;	
posição 6 – Sensor de rotação fora dos limites;	
posição 7 – Não utilizada (desprezar);	
posição 8 - Não utilizada (desprezar).	
TABELA DOS ERROS DE ENTRADA	
(falhas de Sensores)	
posição 1 – Sensor de posição da borboleta;	
posição 2 – Sensor de pressão;	
posição 3 – Sonda lambda;	
posição 4 – Sensor de temperatura da água;	
posição 5 – Sensor de temperatura do ar;	
posição 6 – Tensão da bateria;	
posição 7 – Valor de marcha lenta;	
posição 8 – Sensor de detonação (G7).	
TABELA DOS ERROS DE SAÍDA	
(falhas de Atuadores)	
posição 1 – Comando injetor;	
posição 2 – Comando bobina 1;	
posição 3 – Comando bobina 2;	
posição 4 – Comando motor de passo;	
posição 5 – Não utilizada (desprezar);	
posição 6 – Não utilizada (desprezar);	
posição 7 – Não utilizada (desprezar);	
posição 8 – Não utilizada (desprezar).	
A informação de cada posição das palavras de Estado é	
confirmada através do número "1", ou seja, ao ocorrer alguma	
falha o número "0" é substituído pelo número "1". Se estiver	
tudo em ordem, aparecerá o número "0" em todas as posições.	
TABELA DE ESPECIFICAÇÃO DOS ERROS DE ENTRADA	
posição 1 – Não utilizada (desprezar);	
posição 2 - Não utilizada (desprezar);	
posição 3 - Não utilizada (desprezar);	
posição 4 – Sensor de temperatura do ar;	
posição 5 – Sensor de temperatura da água;	

posição 6 – Sensor de posição da borboleta;	
posição 7 – Não utilizada (desprezar);	
posição 8 – Sensor de pressão.	
Onde: "0" indica circuito aberto	
"1" indica curto – circuito	
TABELA DE ESPECIFICAÇÃO DOS ERROS DE SAÍDA	
posição 1 – Bico injetor ("!" indica curto – circuito);	
posição 2 – Bobina 1 ("!" indica curto – circuito);	
posição 3 – Bobina 2 ("!" indica curto – circuito);	
posição 4 – Não utilizada (desprezar);	
posição 5 – Não utilizada (desprezar);	
posição 6 – Não utilizada (desprezar);	
posição 7 – Não utilizada (desprezar); posição 8 – Lâmpada de advertência ("0" indica curto	
à massa).	
a massay.	
TABELA DE ESTADO 1 DO SISTEMA	
posição 1 – Diagnose do motor de passo habilitada = "1";	
posição 2 – Motor funcionando = "1";	
posição 3 – Quadro de sinais sincronizados = "1";	
posição 4 – Posição da borboleta em mínimo ou WOT = "1";	
posição 5 – Sonda lambda (closed loop = "1", open loop = "0");	
posição 6 – Não utilizada (desprezar);	
posição 7 – Não utilizada (desprezar);	
posição 8 – Teste do motor de passo em curso = "1".	
poorşalo o nooto do motor do paloco em estilo	
Nota: "closed loop" significa funcionamento em circuito	
(ou malha) aberto.	
,	
TABELA DE ESTADO 2 DO SISTEMA	
posição 1 – Não utilizada (desprezar);	
posição 2 – Não utilizada (desprezar);	
posição 3 – Não utilizada (desprezar);	
posição 4 – Detonação ativa = "1" (versão G7);	
posição 5 – Não utilizada (desprezar);	
posição 6 – Não utilizada (desprezar);	
posição 7 – Não utilizada (desprezar);	
posição 8 – Não utilizada (desprezar).	

1.5.1 Códigos de Falhas - FLUXOGRAMAS

Código	DESCRIÇÃO	Teste Estát.	Teste Dinâ.	Mem.
1	Sistema OK	Х	Х	Х
12	Falha na bomba de combustível	Х		Х
15	Falha no acionamento do injetor	Х	Х	Х
16	Falha no injetor (curto-circuito)		Х	Х
18	Falha no acionamento da bobina 1	Х	Х	Х
19	Falha na bobina 1 (curto-circuito)		Х	Х
21	Falha no acionamento da bobina 2	Х	Х	Х
22	Falha na Bobina 2		X	Х
24	Falha no sistema canister	Х		Х
26	Falha no contagiros (opcional)	X		X
28	Falha no ar condicionado	Х		Х
30	Falha na lâmpada de advertência	X		X
31	Curto à terra na lâmpada de advertência		X	Х
33	Falha no consumômetro (opcional)	Х		Х
35	Falha no motor de passo		X	Х
38	Sensor da Borboleta (circuito aberto)		X	Х
39	Sensor da Borboleta (curto-circuito)		X	Х
42	Sensor de pressão - MAP (circuito aberto)		X	Х
43	Sensor de pressão - MAP (curto-circuito)		X	Х
46	Falha na sonda Lâmbda		Х	Х
49	Sensor de temp. água (circuito aberto)		Х	Х
50	Sensor de temp. água (curto-circuito)		Х	Х
53	Sensor de temp. ar (circuito aberto)		Х	Х
54	Sensor de temp. ar (curto-circuito)		Χ	Х
57	Tensão da bateria fora da faixa		X	Х
60	Valor de marcha lenta fora da faixa		X	Х
63	Falha no sensor de detonação		Х	Х
67	Sensor de rotação fora da faixa		Х	Х
91	Erro nos parâmetros autoadaptativos		Х	Х
93	Falha na memória RAM		Х	Х
95	Falha na memória ROM		Х	Х
97	Falha na memória EPROM		Х	Х
99	Falha no microprocessador		Х	Х

Notas:

• Verificar pontos de massa da UC quanto a limpeza e aperto apropriado; Verificar contatos do conector da UC.

Muitos defeitos intermitentes ou comportamento instável dos sensores são devidos a contatos defeituosos nos conectores e pontos de massa.

 A verificação de continuidade de um fio do chicote 	
consiste em:	
 colocar o multímetro na escala de detecção de 	
continuidade.	
 colocar cada ponta de prova do multímetro em cada 	
um dos extremos do fio.	
 o alarme sonoro indica continuidade; caso contrário 	
existe circuito aberto ou alta resistência entre os	
pontos testados.	
 A verificação de curto – circuito a massa de um fio do 	
chicote consiste em:	
 colocar o multímetro na escala de detecção de 	
continuidade;	
 colocar uma das pontas no extremo do fio e a outra 	
num bom ponto de massa do motor;	
• o alarme sonoro indica curto - circuito entre o fio e	
massa;	
 notar que todo fio do chicote conectado à massa 	
acusará curto.	
 A verificação de curto – circuito entre dois fios do 	
chicote consiste em:	
 colocar o multímetro na escala de detecção de 	
continuidade;	
 colocar as pontas de prova cada uma num fio; 	
• o alarme sonoro indica a existência de curto – circuito	
(ou continuidade) entre os fios.	
 notar que esta verificação permite descobrir quando 	
dois fios estão conectados no mesmo ponto.	
 Em alguns roteiros de diagnóstico é solicitado acionar 	
o teste de bomba de combustível no KAPTOR 2000. Este	
teste liga a bomba durante 30 segundos; juntamente com a	
bomba são alimentados:	
 a válvula de injeção; 	
 a eletroválvula canister; 	
 as bobinas de ignição; 	
 a resistência de aquecimento da sonda 8. 	

Portanto, quando há necessidade de verificar se algum destes dispositivos recebe a tensão de alimentação, o acionamento do teste fornece um tempo de 30 segundos para a verificação.

O teste pode ser ativado sucessivas vezes se o tempo de 30 segundos não for suficiente.

Falha no acionamento do injetor

estático dinâmico memória

15 cod. sev.

DESCRIÇÃO: Ao se ligar a ignição, o relé de potência comandado pela UC fornece tensão de bateria para a válvula de injeção.

A UC espera medir a tensão de bateria no terminal. Neste caso a UC detectou circuito aberto.

Falha na válvula injetora (curto-circuito)

dinâmico memória 16 cod. sev.

DESCRIÇÃO: Ao se ligar a ignição, o relé de potência comandado pela UC fornece tensão de bateria para válvula de injeção.

A UC espera medir a tensão de bateria no terminal. Neste caso a UC detectou 0 volts.

Falha no acionamento da bobina 1

е

estático dinâmico memória

18 cod. sev.

DESCRIÇÃO: As bobinas recebem alimentação através do relé de potência. No terminal 1 do conector da UC, a UC deve ler a tensão de bateria quando é ligada a ignição. Se assim não acontecer, a UC determina que a ligação ou as bobinas estão com defeito. Notar que o sistema de diagnose da UC só verifica o circuito primário das bobinas.

NOTA: Para este roteiro de diagnóstico parte-se do pressuposto que a bomba de combustível funciona corretamente.

Isto é necessário, já que as bobinas recebem alimentação juntamente com a bomba de combustível e o correto funcionamento desta última assegura que os relés e fusível do sistema de injeção estão em ordem.

Falha na bobina 1 (curto-circuito)

dinâmico memória 19 cod. sev.

DESCRIÇÃO: As bobinas recebem alimentação através do relé de potência. No terminal 1 do conector da UC, a UC deve ler a tensão de bateria quando é ligada a ignição. Se assim não acontecer, a UC determina que a ligação ou as bobinas estão com defeito. Notar que o sistema de diagnose da UC só verifica o circuito primário das bobinas.

NOTA: (ver nota do código 18)

Falha no acionamento da bobina 2

estático dinâmico memória **21**

DESCRIÇÃO: As bobinas recebem alimentação através do relé de potência. No terminal 19 do conector da UC deve ser lida uma tensão de bateria quando é ligada a ignição. Se assim não acontecer, a UC determina que a ligação ou as bobinas estão com defeito. Notar que o sistema de diagnose da UC só verifica o circuito primário.

NOTA: Para este roteiro de diagnóstico parte-se do pressuposto que a bomba de combustível funciona corretamente.

Isto é necessário já que as bobinas recebem alimentação juntamente com a bomba de combustível, e o correto funcionamento desta última assegura que os relés e fusível do sistema de injeção estejam em ordem.

Falha na bobina 2 (curto-circuito)

dinâmico memória **22** cod. sev.

DESCRIÇÃO: As bobinas recebem alimentação através do relé de potência. No terminal 19 do conector da UC, deve ser lida uma tensão de bateria, quando é ligado a ignição. Se assim não acontecer, a UC determina que a ligação ou as bobinas estejam com defeito. Notar que o sistema de diagnose da UC só verifica o circuito primário das bobinas.

NOTA: (ver o código 18).

Falha no circuito da válvula canister

estático memória **24** cod. sev.

DESCRIÇÃO: A válvula de controle de purga do filtro de vapores de combustível (canister) recebe alimentação (juntamente com a bomba de combustível) através do terminal 87 do relé de potência. Quando é ligada a ignição, portanto, a UC deve ler a tensão de bateria no terminal 22 do conector.

Quando a válvula é acionada (através do aterramento do terminal 22), a UC deve ler 0 volts ou um valor próximo, no terminal 22.

Quando alguma das condições não é atendida, a UC indica falha.

NOTA: Este roteiro de diagnóstico parte do pressuposto que a bomba de combustível funciona corretamente.

Isto é necessário já que a válvula Canister recebe alimentação juntamente com a bomba e o correto funcionamento desta última assegura que os relés e o fusível do sistema de injeção estejam em ordem.

Falha no contagiros (opcional)

estático memória **26** cod. sev.

Falha no ar condicionado (opcional)

estático memória **28** cod. sev.

Falha no consumômetro (opcional)

estático memória **33** cod. sev.

NOTA: Para os defeitos correspondentes a estes códigos de serviço o roteiro de diagnóstico é o mesmo.

- verificar, segundo o esquema elétrico, a continuidade das ligações entre os dispositivos e os terminais correspondentes do conector da UC.
- verificar possíveis curtos-circuitos entre os terminais dos conectores dos dispositivos e massa.

Se for verificada alguma das condições acima, reparar e repetir o teste.

Caso contrário trocar o dispositivo.

Falha na lâmpada de advertência

estático memória **30** cod. sev.

DESCRIÇÃO: Quando é ligada a ignição, a lâmpada de advertência recebe a tensão de bateria; a UC deve medir esta tensão no terminal 7 do conector. Neste caso a UC detectou circuito aberto.

Curto na massa na lâmpada de advertência

dinâmico memória **31** cod. sev.

DESCRIÇÃO: Quando é ligada a ignição, a lâmpada de advertência recebe a tensão da bateria; a UC deve medir esta tensão no terminal 7 do conector. Neste caso a UC detectou 0 volts.

-desligar ignição.

- -verificar possível curto-circuito na massa do fio de ligação entre terminal 7 do conector de UC e soquete da lâmpada.
- -verificar possível curto-circuito da massa da fiação que liga.
- -soquete de lampada, chave de ignição, terminal 86 do relé de potência, e terminal 86 do relé de stand-by.
- -reparar e repetir o teste.

Falha no motor de passo

dinâmico memória **35** cod. sev.

DESCRIÇÃO: A falha indicada pelo sistema de diagnóstico da UC pode ser devida a defeito no dispositivo (motor de passo) ou na fiação que o liga à UC.

NOTA: A resistência das bobinas do motor de passo não é divulgada pelo fabricante; em função dos valores obtidos de dispositivos similares, considera-se que tal resistência pode variar entre 50Ω e 70Ω . O importante na verificação aqui realizada é determinar se as bobinas estão em curto-circuito ou em circuito aberto.

Circ. aberto no sensor de pos. de borboleta

dinâmico memória **38** cod. sev.

DESCRIÇÃO: A UC alimenta o potenciômetro do sensor com 5 volts, e espera receber no terminal 11 uma tensão entre 1 volt e 4,5 volts.

Neste caso não é detectado nenhum nível de tensão no terminal 11 o que indica circuito aberto na ligação ou no dispositivo.

Curto circ. no Sensor de Pos. de Borboleta

dinâmico memória **39** cod. sev.

DESCRIÇÃO: A UC alimenta o potenciômetro do sensor com 5 volts e espera receber no terminal 11 uma tensão entre 1 volt e 4,5 volts.

Neste caso a UC mede 0 volts.

Falha no sensor de pressão (circuito aberto)

dinâmico memória

42 cod. sev.

DESCRIÇÃO: A UC fornece tensão de referência de 5 volts; e espera receber uma tensão entre 1,5 volts e 4,5 volts no terminal 10 do conector.

Neste caso não detecta nenhum nível de tensão que indica circuito aberto na fiação ou no dispositivo.

Falha no sensor de pressão absoluta (curto-circuito)

dinâmico memória **43** cod. sev.

DESCRIÇÃO: A UC fornece tensão de referência de 5 volts e espera receber uma tensão entre 1,5 volts e 4,5 volts no terminal 10 do conector.

Neste caso a UC detectou um nível de 0 volts que indica curto-circuito.

Falha na Sonda Lambda

dinâmico memória 46

DESCRIÇÃO: Durante os períodos de funcionamento em malha fechada, a UC utiliza a informação recebida da sonda lambda para determinar as correções a serem aplicadas para manter a mistura em torno de Lambda= 1 (estequiométrica).

Se as correções aplicadas não produzem as mudanças esperadas nos valores de tensão enviados pela sonda Lambda, a UC sinaliza a falha.

O defeito pode ser devido a falhas na fiação ou falha no sensor; neste a causa pode ser a resistência de aquecimento em curto-circuito ou circuito aberto; ou o elemento sensor inoperante.

NOTA: (ver nota do Cód. Serv. 18)

Sensor de temp. água (circuito aberto)

dinâmico memória 49

cod. sev.

DESCRIÇÃO: A UC fornece tensão de referência de 5 volts ao sensor, através de uma resistência interna, e espera medir uma tensão entre 1,5 volts e 4,5 volts aproximadamente.

Neste caso a tensão recebida é de 5 volts, que indica circuito aberto na ligação ou no sensor.

NOTA: Os sensores de temperatura de água (ECT) e do ar (ACT) apresentam a mesma curva de resistência em função da temperatura.

Para fins práticos a resitência dos sensores varia entre 500Ω e 5000Ω na faixa de temperatura de 20° a 40° C.

Sensor de temp. água (curto-circuito)

dinâmico memória **50** cod. sev.

DESCRIÇÃO: A UC fornece tensão de referência de 5 volts ao sensor, através de uma resistência interna, e espera medir uma tensão entre 1,5 volts e 4,5 volts aproximadamente.

Neste caso a tensão recebida é de 0 volts, que indica curto-circuito na ligação ou no sensor.

NOTA: Os sensores de temperatura de água (ECT) e do ar (ACT) apresentam a mesma curva de resistência em função da temperatura.

Para fins práticos a resistência dos sensores varia entre 500Ω e 5000Ω na faixa de temperatura de 20° C a 40° C.

Sensor de temp. ar (circuito aberto)

dinâmico memória **53**

cod. sev.

DESCRIÇÃO: A UC fornece tensão de referência de 5 volts ao sensor, através de uma resistência interna e espera medir uma tensão entre 1,5 volts e 4,5 volts aproximadamente.

Neste caso a tensão recebida é de 5 volts, que indica circuito aberto na ligação ou no sensor.

NOTA: Os sensores de temperatura de água (ECT) e do ar (ACT) apresentam a mesma curva de resistência em função da temperatura.

Para fins práticos a resistência dos sensores varia entre 500Ω e 5000Ω na faixa de temperatura de 20° C a 40° C.

Sensor de temp. ar (curto-circuito)

dinâmico memória **54** cod. sev.

DESCRIÇÃO: A UC fornece tensão de referência de 5 volts ao sensor, através de uma resistência interna e espera medir uma tensão entre 1,5 volts e 4,5 volts aproximadamente.

Neste caso a tensão recebida é de 0 volts, que indica curto-circuito na ligação ou no sensor.

NOTA: Os sensores de temperatura de água (ECT) e do ar (ACT) apresentam a mesma curva de resistência em função da temperatura.

Para fins práticos a resistência dos sensores varia entre 500Ω e 5000Ω na faixa de temperatura de 20°C a 40°C .

Tensão de bateria fora da faixa

teste estático **57**

DESCRIÇÃO: A unidade de controle não funciona com tensão de bateria inferior a 8 volts.

Portanto quando a tensão de bateria é inferior a 10 volts a UC coloca esta falha.

Valor de marcha lenta fora da faixa

dinâmico memória **60** cod. sev.

DESCRIÇÃO: A UC não consegue manter a marcha lenta no valor nominal de aproximadamente 900rpm. O problema não necessariamente é devido ao motor de passo de controle da marcha lenta.

- -verificar sensor de posição da borboleta (TPS) quanto à tensão de saída; deve estar entre 0,5 volts e 1,5 volts para borboleta totalmente fechada.
- -verificar se a borboleta gira livremente.
- -verificar sensor de temperatura de água (ECT) quanto à resistência elevada com o motor à temperatura ambiente.

-verificar sensor de pressão absoluta (MAP) quanto à pressão enviada à UC e quanto à variação de pressão lida com a variação da rotação do motor. Com motor funcionando e borboleta fechada a pressão deve ser aproximadamente 300mmHg.

- -verificar vazamento de vácuo que pode causar uma rotação de marcha lenta mais alta que o normal.
- -verificar funcionamento do motor de passo (IAC) (pode ser usado o roteiro do código de serviço35).
- -verificar o subsistema de combustível quanto à pressão, vazão, vazamento no injetor, funcionamento da válvula canister (CAMP).

Falha no sensor de detonação

dinâmico memória 63

cod. sev.

Sensor de rotação fora da faixa

dinâmico memória **67**

cod. sev.

DESCRIÇÃO: Esta falha pode ser provocada por desajuste no conjunto sensor-roda dentada; ou por defeito na fiação ou no próprio sensor.

Erro nos parâmetros adaptativos

dinâmico memória

91

cod. sev.

- Falhas mecânicas (entrada de ar falso no coletor de admissão; vedação no escapamento, carbonização, etc.) podem provocar a gravação desta falha.
 - Contatos defeituosos nos conectores da UC e sensores.
 - Possível falha na UC.

Falha na memória RAM

dinâmico memória

93

cod. sev.

Falha na memória ROM

dinâmico memória

95

cod. sev.

Falha na memória EEPROM

dinâmico memória

97

cod. sev.

Falha no microprocessador

dinâmico memória

99

cod. sev.

DESCRIÇÃO: São erros internos à unidade de comando e portanto implicam na troca da mesma.

1.5.2 Parâmetros do Modo Contínuo

obs: Valores para motor em marcha lenta e temperatura normal de funcionamento.

Parâmetros	Valor	Observações
Pressão na linha de combustível	Gasolina: 1,0 ± 0,2 bar Álcool: 1,5 ± 0,2bar	
Rotação do motor	900 ± 50rpm	
Tempo de injeção	750 ± 80 microsegundos	
Avanço	10 ± 4 graus	
Depressão no coletor	300 ± 40mmHg	
Temperatura de ar	35 ± 10°C	
Temperatura de água	Uno: 89 ± 3°C Tempra: 104 ± 3°C	
Posição da borboleta	40 ± 3 graus	p/ 1.5ie; 1.6ie
Fosição da porboleta	40 ± 3 graus	p/Tempra 2.0ie
Tensão de bateria	14 ± 2 volts	
Sonda Lambda	-64 à + 127	funcionamento correto: valores oscilando em torno de 0 (p/ exem.: -4 à + 15)
Motor de passo	35 ± 5 passos	

ANEXO Manual de Reparos FIAT – Sistema G&.11 Linha FIAT 1.0 IE (Mille IE/EP/SX) 1 INTRODUÇÃO Se comparado ao sistema G7 aplicado nas motorizações 1.5 IE/1.6 IE/2.0 IE, podem ser verificadas as seguintes diferenças: • ausência do sensor de oxigênio (sonda Lambda), do sensor de temperatura do ar, do motor de passo e do sensor de posição de borboleta. • presença de um interruptor de marcha lenta e plena carga. presença de duas eletroválvulas para o controle da rotação de marcha (mínimo acelerado) com motor frio e função dash - pot (desaceleração). No que segue serão descritos os dispositivos e funções que diferem daquelas presentes no sistema G7 aplicado às motorizações 1.5/1.6/2.0. 1.1 INTERRUPTOR DE MARCHA LENTA E PLENA CARGA De certa forma, substitui a função do sensor de posição de borboleta. Detecta a condição de marcha lenta quando o batente da borboleta aciona o interruptor. Na condição de plena carga, o batente de abertura máxima encosta numa chapa metálica que efetua um contato elétrico. Este sinal é recebido pela unidade de comando. 1.2 ELETROVÁLVULA 1 (2VIAS) E 2 (3 VIAS) São comandadas pela UC, que as utiliza para controlar a rotação de marcha lenta com motor frio e para ajustar a rotação do motor durante as desacelerações. As válvulas estão localizadas no compartimento do

.....

motor perto do farol direito.

COMPOSIÇÃO GERAL DO SISTEMA MAREIII G7.11

1.3 CORREÇÃO DA ROTAÇÃO DA MARCHA LENTA

O sistema G7.11 possui duas funções:

- função mínimo acelerado, na fase fria;
- função dash pot, nas desacelerações.

Para tais funções, a abertura da borboleta é controlada através de uma cápsula acionada por vácuo (dash – pot). Dependendo do vácuo aplicado, a haste de acionamento, solidária a um diafragma (interno à cápsula), produz a maior ou menor abertura da borboleta.

O vácuo que atua sobre o diafragma da cápsula é controlado por duas válvulas eletromagnéticas, comandadas pela unidade de comando.

Função mínimo acelerado e dash - pot

Com temperatura do motor até 10°C a haste de cápsula fica totalmente estendida, proporcionando uma rotação de aproximadamente 1600 RPM.

......

......

......

......

Para obter este resultado, a UC comanda;	
eletroválvula 1 energizada (permite a entrada de ar na	
cápsula);	
 eletroválvula 2 desenergizada. 	
Isto faz com que a haste se estenda, abrindo a borboleta.	
,	
Com temperatura entre 10°C e 40°C a cápsula apresenta	
um recolhimento parcial que produz uma rotação de	
aproximadamente 1300 RPM.	
Este resultado se consegue com:	
 eletroválvula 1 desenergizada; 	
 eletroválvula 2 desenergizada. 	
Com temperatura entre 40°C e 70°C a cápsula apresenta	
um recolhimento parcial maior que no caso anterior, o que	
proporciona uma rotação de 1100 RPM aproximadamente.	
F	
Este resultado se consegue com:	
eletroválvula 1 energizada;eletroválvula 2 energizada.	
Cicilovalvula 2 chorgizada.	
Com temperatura maior que 70°C o sistema funciona	
com rotação normal de marcha lenta (± 900 RPM). Fica	
preparado para acionar a estratégia de dash – pot	
(desaceleração controlada).	
(desaceleração controlada).	
Necto face a eletroválvula 1 permanaca deceneraizada	
Nesta fase a eletroválvula 1 permanece desenergizada.	
A eletroválvula 2 pemanece energizada, o que provoca	
a retração total da haste.	
a retração total da riaste.	
0 110 17 11 1 1 7	
Quando a UC verifica a necessidade de ativar a função	
dash – pot, desenergiza a eletroválvula 2 o que provoca a	
entrada de ar na cápsula e a conseqüente extensão da haste.	
Quando é reconhecida uma rotação menor que 1900 RPM,	
a UC energiza a eletroválvula 2, o que provoca a retração gradual	

da haste.

1.4 EMISSÕES EVAPORATIVAS	
Composto de um filtro canister de válvulas de segurança	
e anticapotamento.	
O sistema dispensa o uso de válvula de purga do canister	
(válvula CANP).	
O recorreveitamente des vaneres de conister é faite de	
O reaproveitamento dos vapores do canister é feito de	
forma contínua através de um furo calibrado de 0,9 mm aprox.	
Localizado abaixo da borboleta.	
1.6 SISTEMA ELÉTRICO	
1.0 SISTEMA ELETRICO	
O sistema possui os seguintes relés e fusíveis:	
 Relé alimentação: alimenta a UC através do teminal 	
35. É acionado ao se ligar a ignição.	
 Relé de potência: alimenta a bomba de combustível, o 	
injetor, as duas bobinas de ignição, a eletroválvula 1 e a bobina	
do relé do A/C. Este relé é controlado pela UC através do	
terminal 25.	
 Relé da eletroválvula 2: controlado pela UC através do 	
terminal 23.	
 Relé do ar condicionado (opcional): controlado pela 	
UC através do terminal 26.	
 Fusível do sistema: 20A. 	
L	
Localização:	
 O relé de alimentação, relé de potência e o fusível do 	
sistema, estão localizados atrás da UC, (abaixo do porta –	
luvas).	
Para ter acesso aos relés e fusível deve ser retirada a	
UC (quatro parafusos).	
O relé da eletroválvula 2 está localizado atrás da caixa	
porta – fusível.	
Veículos com opcional alarme possuem o relé do alarme	
localizado ao lado do relé da eletroválvula 2 (para distinguir,	
verificar as cores dos fios).	
O relé da eletroválvula 2 tem fios AM/VE; VM/PR; AZ e VM.	
 A UC se localiza abaixo do porta – luvas e o conector 	
de diagnóstico se encontra no compartimento do motor, na	
parede corta – fogo.	

1.7 SISTEMA DE DIAGNÓSTICO G7.11	
As diferenças com relação ao sistema de diagnóstico	
do sistema G7 (motores 1.5 ie/ 2.0 ie) são:	
Não existe teste estático para válvula do CANISTER	
(CANP) e do consumômetro, eles foram substituídos pelos	
testes da eletroválvula 1 e eletroválvula 2.	
 O teste dinâmico tem, como opção, o ajuste eletrônico 	
do nível de CO.	

.....

SISTEMA G7

1.8 AJUSTE E VERIFICAÇÕES	
1.8.1 Regulagem da Rotação de Marcha Lenta e da Cápsula	
(Dash – Pot)	
O motor deve estar na temperatura de trabalho (2	
acionamento do ventilador).	
Ajustar a marcha lenta utilizando o parafuso	
correspondente (chave fixa de 6mm) localizado no corpo de	
borboleta.	
 Com ar condicionado: 950 a 1000 RPM. 	
 Sem ar condicionado: 900 a 950 RPM. 	
Após a regulagem da marcha lenta, aplicar uma	
depressão de aprox. 450 mmHg na mangueira da cápsula	
(dash - pot). Verificar que a distância entre o batente da	
alavanca de aceleração e a ponta da cápsula seja de 2 a 4mm.	
Para o ajuste da cápsula, caso seja necessário, atuar	
sobre as porcas de fixação.	
1.8.2 Sensor de Rotação	
Com os pistões 1 e 4 no ponto morto superior, o centro	
do sensor deverá coincidir com o 20º dente da roda fônica.	
A folga entre o sensor e os dentes deve estar 0,4 e 1,0	
mm.	
Resistência da bobina do sensor: 500 a 800Ω .	
1.8.3 Sensor de Temperatura do Motor	
Para temperatura entre 80°C e 90°C (motor quente) a	
resistência deve estar entre 180 e 415 Ω .	
,	
É possível que uma interrupção do circuito do sensor	
não provoque a iluminação imediata da lâmpada de	
advertência.	

1.8.4 Injetor de Combustível	
Executar o teste estático correspondente (teste do	
injetor).	
Resistência: 1,6 a 2.0 ohms.	
Durante o teste deve ser verificado o acionamento, com	
caneta ou auditivamente.	
É possível que o injetor defeituoso não provoque a	
gravação de falha.	
1.8.5 Bomba de Combustível	
É interna ao tanque. O sensor de nível está integrado ao	
corpo da bomba.	
Conectar o manômetro entre a linha de combustível e o	
corpo de borboleta.	
Executar o teste estático correspondente (bomba de	
combustível).	
Pressão de combustível: 1 bar ± 0,2.	
Vazão de combustível: 90 litros/hora (na linha de retorno	
com pressão de linha de 1 bar).	
1.8.6 Bobinas de Ignição	
Instalar uma vela de teste ou centelhador no cabo da	
vela 1.	
Executar o teste estático correspondente (teste bobina 1).	
Para a verificação da bobina 2, instalar a vela no cabo	
da vela 2. Executar o teste estático correspondente à bobina 2.	
É possível que uma bobina defeituosa não provoque a	
gravação de falha.	

1.8.7 Eletroválvula 1	
No sistema G7.11 deve ser executado o teste estático	
da Eletroválvula 1. A válvula será acionada 5 vezes.	
Relé da eletroválvula 2.	
Reie da eletrovalvula 2.	
No sistema G7.11 deve ser executado o teste estático	
do relé da eletroválvula 2.	
1.8.8 Sensor de Detonação	
Torque de aperto 20 ± 5 Nm.	
1.8.9 Fasagem do Motor de Reposicionamento do Sensor de	
Rotação	
Decisionar on mistãos dos silindos 4 a 4 no DM C	
Posicionar os pistões dos cilindros 1 e 4 no P.M.S.	
A roda fônica deve estar posicionada com suas 2 marcas,	
coincidentes com as correspondentes, existentes na capa de	
proteção do motor.	
F. 2.2 \$ 2.2	
O sensor deve estar posicionado na frente do 20º dente,	
contado a partir do espaço correspondente aos 2 dentes	
faltantes.	
1.8.10 Verificação do Interruptor de Mínima e Plena Carga	
Com a ponta da haste da cápsula de marcha lenta (dash	
 pot) totalmente retraída, e a alavanca de aceleração em 	
contato com o parafuso de regulagem da marcha lenta, medir a resistência entre o terminal do conector do interruptor e a	
extremidade da mola de retorno da alavanca do acelerador.	
Resistência: 1 ohm máx.	
Acionar o acelerador até que a mola de torção da	
alavanca encoste no contato metálico do interruptor. Medir a	
resistência entre o terminal do conector e a extremidade da	
mola de torção da alavanca do acelerador.	
Decision de la chemica	
Resistência: 1 ohm máx.	

1.8.11 Regulagem Eletrônica de CO	
É feita com motor aquecido e utilizando o modo	
·	
"Correção de CO" do teste dinâmico.	
Instalar o analisador de gases na tubulação de escape.	
Selecionar no Kaptor, o modo Correção de Co do teste	
dinâmico.	
No tala correspondente são enrecentados es valeros de	
Na tela correspondente são apresentados os valores de	
rotação do motor e o fator de correção atual.	
Com as setas "para cima" e "para baixo" é possível	
modificar o fator de correção, afim de ajustar o nível de CO no	
escape.	
Ajustar o nível de CO para obter no analisador de gases	
uma leitura de 0,9% máx.	
uma leitura de 0,5 % max.	
Verificar o valor de correção apresentado no Kaptor, no	
sentido que não ultrapasse os valores – 126 ou + 127.	
Caso isto ocorra proceder da seguinte forma:	
 Instalar um manômetro na linha de combustível. 	
 Iniciar o procedimento de ajuste do CO (aquecer o 	
motor e ajustar a rotação de marcha lenta se necessário).	
 Iniciar a rotina de ajuste de CO, e no Kaptor, ajustar o 	
valor de correção em zero.	
 Ajustar a pressão de combustível atuando no parafuso 	
do regulador de pressão.	
 Regular a pressão para obter um nível de CO o mais 	
próximo de 0,9% respeitando os limites de pressão de	
combustível de 0,8 a 1,2 bar (gasolina).	
· ·	
Com o Kaptor fazer o ajuste fino do nível de CO, conforme presedimente avalianda na inícia desta item	
o procedimento explicado no início deste item.	

.....

1.9 PARÂMETROS DO MODO CONTÍNUO	
1.5 17WWIETHOODS WODS CONTINUE	
Pressão de combustível 1,0 ± 02 bar	
Marcha lenta ± 1.050 RPM	
Vácuo no coletor ± 380 mmHg	
Tempo de injeção ± 1.100 micro Seg.	
Temp. da água ± 92°C	
Ponto de ignição ± 0,5°C	
Nota: Os valores aqui apresentados são orientativos.	
Foram obtidos de amostragens feitas em veículos funcionando	
corretamente.	

2 MANUAL DE REPAROS - 1G7	
2.1 INTRODUÇÃO	
•	
O presente manual aborda o sistema Marelli IAW – 1G7,	
segundo a sua aplicação nos veículos Fiat Palio com	
motorização 1.0 e 1.5, nas versões álcool e gasolina, assim	
como na Fiorino 1.5 MPI.	
Neste manual, assim como no manual de operação, as	
denominações "UC", "E.C.U." ou "ECM" são utilizadas,	
indistintamente, para identificar a unidade de comando	
•	
(centralina) do sistema de injeção/ignição.	
Neta: Este manual não aubetitui ao informação	
Nota: Este manual não substitui as informações	
atualizadas e completas constantes nos manuais dos	
fabricantes dos veículos e dos módulos de injeção.	
Considerando a complexidade e quantidade de	
informações envolvidas, a Alfatest não garante que as	
informações aqui contidas abranjam todas as possíveis	
aplicações e nem que estejam elas livres de erros.	
A aplicação dos roteiros de diagnóstico e reparos	
somente deve ser feita por profissionais qualificados. Em	
função da falta de informações do fabricante, no momento da	
confecção deste manual, as informações nele contidas são	
somente orientativas.	
2.1.1 Características:	
 É um sistema multi – pont semi seqüêncial onde os 	
injetores são comandados 2 a 2, de forma alternada.	
 Possui catalisador e sensor de oxigênio (sonda 	
Lambda), dispensando, portanto, a regulagem manual do nível	
de CO.	
 O método empregado para a medição da massa de ar 	
admitida é o de "Velocidade/Densidade", baseado nas	
informações dos sensores MAP (pressão de coletor), ACT	
(temperatura do ar admitido) e ESS (rotação do motor).	

- O sistema de ignição é do tipo estático (sem distribuidor), com sensor de detonação (KS) e roda fônica de (60-2) dentes.
 - Possui o sistema imobilizador anti-furto (Fiat Code)

COMPOSIÇÃO GERAL DO SISTEMA 1G7

2.2 DESCRIÇÃO DO SISTEMA	
2.2.1 Subsistema de Combustível	
Bomba de combustível, filtro e interruptor de inércia	
A bomba de combustível é interna ao tanque, e está	
alojada dentro de um recipiente onde está fixado, também, o	
dispositivo indicador de nível de combustível. No lado da	
admissão da bomba existe um pré-filtro.	
A bomba possui uma válvula de segurança que limita a	
pressão da linha em 5 bar. Na saída da bomba uma válvula de	
retenção (anti-retorno) evita o esvaziamento da linha de	
combustível quando a bomba não está em funcionamento. A	
vazão da bomba com 12 volts de alimentação é de	
aproximadamente 120 litros por hora.	
A UC desliga a bomba se:	
 Não é dada a partida após um certo tempo da ignição 	
ter sido ligada (1 a 2 segundos).	
 O motor deixa de funcionar. 	
 A rotação do motor desce abaixo do limite mínimo. 	
 A chave de ignição não é reconhecida pelo sistema 	
Fiat CODE	
A bomba de combustível é alimentada através de um	
relé duplo. No circuito elétrico de alimentação existe um	
interruptor de inércia. Este está normalmente fechado	
assegurando a alimentação da bomba. Em caso de colisão	
ou de impacto violento do veículo, o interruptor abre,	
interrompendo a ligação de massa, desativando assim a	
bomba.	
Para restabelecer a ligação é necessário apertar o	
botão do interruptor.	
O interruptor de inércia está localizado debaixo do	
painel, lado do motorista.	

.....

O filtro de combustível está localizado debaixo da	
carroceria, perto do tanque. O filtro deve ser instalado respeitando o sentido da seta gravada no invólucro.	
Conjunto distribuidor de combustível	
Está formado pelo tubo distribuidor de combustível ao	
qual estão fixados os injetores e o regulador de pressão.	
Regulador de pressão	
É um regulador de pressão diferencial. Mantém constante	
a diferença de pressão existente entre o combustível na linha	
e a pressão do ambiente onde se encontram os injetores	
(pressão do coletor).	
Pressão da linha sem compensação de vácuo: 3,0 ±	
0,05 bar.	
Pressão na marcha lenta: 2,4 a 2,6 bar	
Injetores	
São do tipo "alimentação por cima" de jato duplo.	
Resistência da bobina: 15 a 17 ohms aprox.	
2.2.2 Subsistema de Ar	
Corpo de Borboleta	
Nele estão instalados o motor de passo de controle da	
marcha lenta, o sensor de posição de borboleta e o aquecedor	
do corpo de borboleta.	
Aquecedor do Corpo de borboleta	
Este atuador pode não estar disponível em alguns	
modelos.	
Quando instalado, está localizado na parte superior do	
corpo. É um resistor do tipo PTC (coeficiente positivo de	
temperatura) alimentado com tensão de bateria, através de	

um fusível de 10 A, quando é ligada a ignição.

Sua função é evitar eventuais fenômenos de	
condensação e formação de gelo em condições de baixa	
temperatura externa ou alta umidade.	
Sensor de Posição da borboleta – TPS	
consor do rocigao da porponeda en c	
É um potenciômetro de uma pista, cuja resistência varia	
de forma linear com o ângulo de abertura da borboleta. É	
alimentado pela UC, com tensão de referência de 5 volts.	
aimentado pela do, com tendad de referencia de divolto.	
O sensor possui dois furos de fixação sem regulagem.	
Não é necessário realizar nenhum ajuste angular, já que a	
própria unidade de comando reconhece as condições de	
borboleta totalmente fechada ou aberta.	
borboleta totalinente rechada od aberta.	
Com a barbalata fachada a LIC racenhaca as condiçãos	
Com a borboleta fechada a UC reconhece as condições	
de marcha lenta e freio motor (cut – off) com base no número	
de rotações do motor.	
As características elétricas do potenciômetro são:	
• ângulo olátrico útil: 000 + 20:	
 ângulo elétrico útil: 90° ± 2°; curso mecânico total: 110° ± 8°; 	
 resistência entre o cursor e um extremo; 	
borboleta fechada: 1350 ohms	
borboleta aberta: 2250 ohms	
 resistência entre cursor e outro extremo; 	
borboleta fechada: 2300 ohms	
borboleta aberta: 1200 ohms	
 resistência entre os extremos fixos: 1300 ohms 	
Nota: Os valores de resistência são aproximados.	
No caso de falha no sensor a UC adota um valor de	
substituição com base da pressão do coletor e do número de	
rotação do motor.	
Sensor de temperatura do Ar – ACT	
Está instalado no tubo de admissão do ar, antes do corpo	
da borboleta. É alimentado pela UC, com tensão de referência	
de 5 volts, através de um resistor interno.	

Quando é det	ectado falha no sensor a UC assume uma	
temperatura do ar i		
defeito simultâneo d		
pré-estabelecido.		
Resistência a 40°C: 1200 ohms aproximadamente.		
Motor de Controle		
Motor de Controle da Marcha Lenta – IAC		
É um motor	de passo que transforma os impulsos	
recebidos da UC er		
de aproximadamen		
ac aproximadamen	te 0,04 mm/pa330.	
Ainda com a	passagem de ar totalmente fechada pela	
haste do motor de p		
	vida a abertura mínima da borboleta. Esta	
regulagem e lella na	a fábrica, e garantida por um lacre.	
A vozão mávi	ma sem a herbeleta feshada á função de	
	ma, com a borboleta fechada, é função da	
retração máxima da haste (aproximadamente 200 passos,		
equivalente a 8 mm	1.)	
0 1 1 1		
	ectada alguma falha no controle da marcha	
lenta, a UC desativa		
~		
Sensor de Pressa	o Absoluta do Coletor – MAP	
_ •	dentro do compartimento do motor (parede	
	o analógico (piezoresistivo) e é alimentado	
pela UC, com tensã		
	o sinal enviado pelo sensor são:	
787 mmHg	4,75 V	
475 mmHg	2,50 V	
127 mmHg	0,25 V	
2.2.3 Subsistema Elétrico de Controle		
Unidade de Comando – UC		
Está localizad		
corta-fogo. Está liga		

35 terminais.

Identificação da unidade de comando		
994 c.c/gasolina	IAW - 1G7 SD10	
994 c.c/álcool	IAW-1G7 SA30	
1497 c.c/gasolina	IAW - 1G7 SD40	
1497 c.c/álcool	IAW - 1G7 SA50	
Sensor de Temperatura do Motor – ECT		
Está instalado no corpo da válvula termostática. É		
alimentado com tensão de re		
um resistor interno à UC.		
Resistência a 50°C 1000 ohms aproximadamente.		
Sensor de Oxigênio – HEG	iO	
É do tipo aquecido.		
Localização no motor 994: após o coletor de escape		
Localização no motor 1497: após o coletor de escape		
ou perto da flange do catalisa	dor.	
Relés e fusíveis		
• Relé Duplo		
O relé duplo é responsável pela alimentação dos diversos		
·	njeção/ignição. Está fixado a um	
suporte metálico preso à parede corta-fogo, no compartimento		
do motor. Possui uma cobertura de proteção.		
- Frank sal manal da musta a		
• , ,	ção do sistema de injeção/ignição	
(30 A). É um MAXI – fusível alojado dentro da caixa de fusível de potência, localizado ao lado da bateria.		
• Fusíveis aloiados nur	m suporte localizado ao lado da	
 Fusíveis alojados num suporte localizado ao lado da bateria. 		
- Fusível da unidade de comando 5 A		
- Fusível do relé duplo 15 A		
- Fusível do aquecedor		
(quando instalado o ad		

2.2.4 Sistema Anti-Furto FiatCODE	
O sistema possui a função de bloqueio da partida do	
motor. Esta função é realizada pela central FiatCODE, a qual	
mantém comunicação com a unidade de comando IAW – 1G7.	
Neste sistema a chave de ignição (eletrônica) é provida	
de um transmissor próprio, capaz de emitir um código de	
reconhecimento.	
Quando a chave de ignição está na posição STOP, o	
FiatCODE desativa a unidade de comando IAW.	
Girando a chave para a posição MAR acontecem os	
seguintes eventos:	
 a UC (com código secreto na memória) envia uma 	
solicitação à central FiatCODE para que esta retorne o código	
secreto para desativar o bloqueio das funções;	
• a central FiatCODE responde com o código secreto	
após receber o código de reconhecimento transmitido pela	
chave de ignição;	
• se a UC reconhece o código secreto da central	
• se a UC reconhece o código secreto da central	
• se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de	
• se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de	
• se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição.	
 se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para 	
 se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador 	
 se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para 	
 se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para fins de teste ou verificação. 	
 se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para 	
• se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para fins de teste ou verificação. 2.2.5 Sistema de Ignição	
 se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para fins de teste ou verificação. 2.2.5 Sistema de Ignição É do tipo estático com duas bobinas de ignição. O 	
• se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para fins de teste ou verificação. 2.2.5 Sistema de Ignição É do tipo estático com duas bobinas de ignição. O módulo de potência, de acionamento das bobinas, está	
 se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para fins de teste ou verificação. 2.2.5 Sistema de Ignição É do tipo estático com duas bobinas de ignição. O 	
• se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para fins de teste ou verificação. 2.2.5 Sistema de Ignição É do tipo estático com duas bobinas de ignição. O módulo de potência, de acionamento das bobinas, está integrado na unidade de comando (UC).	
• se a UC reconhece o código secreto da central FiatCODE, são desbloqueadas as funções do sistema de injeção/ignição. Nota: Em função da existência do sistema imobilizador FiatCODE, não trocar a UC do veículo por uma outra, para fins de teste ou verificação. 2.2.5 Sistema de Ignição É do tipo estático com duas bobinas de ignição. O módulo de potência, de acionamento das bobinas, está	

O avanço é corrigido em função de:	
temperatura do motor;	
 temperatura do ar admitido; 	
 pressão absoluta do coletor; 	
 posição da borboleta; 	
• detonação.	
•	
A referência para a determinação do avanço é fornecida	
pelo conjunto sensor de rotação/roda fônica.	
,	
Bobinas de Ignição	
Estão fixadas na tampa do cabeçote.	
Estas fixadas fla tampa do caseçote.	
O positivo das bobinas estão ligados ao relé duplo. Os	
negativos das bobinas estão ligados aos terminais 19 (bobina	
2; cil, 2 e 3) e 1 (bobina 1; cil. 1 e 4) da UC.	
Os terminais de alta tenaño passuam a gravação de	
Os terminais de alta tensão possuem a gravação do número do cilindro correspondente.	
numero do cilinaro correspondente.	
Resistência do primário: 0,5 a 0,6 ohms	
Resistencia do primario. 0,5 a 0,6 orims	
Resistência do secundário: 6600 a 8100 ohms	
Resistencia do secundano, 6000 a 6100 onins	
Sensor de Rotação e Fase – ESS	
Selisor de Rotação e Fase – ESS	
É de tipe de relutêncie veriéval. Esté posicione de frante	
É do tipo de relutância variável. Está posicionado frente	
à roda fônica (roda dentada) de 58 dentes (60 – 2 dentes)	
com um espaço vazio correspondente à falta de 2 dentes.	
O sensor está fixado no suporte do tensionador da correia	
dentada, e fica de frente à roda fônica. Esta, por sua vez, está	
fixada na polia do virabrequím.	
A passagem do primeiro dente na frente do sensor	
acontece 114º antes do PMS dos cilindros 1 e 4. O sensor	
não admite ajuste da posição angular.	
Folga entre o sensor e a roda dentada: 0,4 a 1,0 mm.	
Resistência da bobina do sensor: 575 a 780 ohms.	

Sensor de Detonação – KS (só gasolina)	
Está localizada no lado dianteiro inferior do bloco do	
motor.	
Possui uma bucha passante para evitar um aperto não	
apropriado do sensor. Não devem ser interpostas arruelas ou	
espaçadores entre as superfícies de contato do sensor e o	
bloco do motor.	
2.2.6 Sistema de Controle das Emissões Evaporativas	
(Gasolina)	
É composto de:	
 duas válvulas flutuantes na parte superior do tanque; 	
- separador de vapores com válvula multifuncional	
para controle do fluxo dos vapores, instalado ao lado	
do bocal do tanque;	
 válvula de duas vias de segurança e ventilação ligada 	
ao bocal do tanque de combustível;	
 filtro de carvão ativado (canister); 	
 válvula interceptadora (CANP). 	
Filtro de Carvão Ativado (Canister)	
Está localizado no vão da caixa da roda dianteira,	
protegido pelo revestimento do vão da caixa.	
Válvula de Purga do Canister – CANP	
É controlada pela UC. Está localizada próxima ao	
cabeçote, do lado esquerdo do motor.	
,	
2.2.7 Sistema de Partida a Frio (Álcool)	
Injeção de Gasolina	
As versões a álcool estão equipadas com um sistema	
de alimentação de gasolina para auxiliar na partida a frio.	

Está constituído de um reservatório su gasolina, com bobina interna e uma válvula soler	•	
e a válvula são comandadas pela UC, através		
e a valvula sau comanuadas pela OC, aliaves	de diff fele.	
Em agga de partido e frio e IIC	nom hoso no	
Em caso de partida a frio, a UC, o		
temperatura do motor, aciona a bomba de injeç	_	
e a válvula solenóide. A bomba principal do siste		
não é acionada nesse caso. Uma vez o motor		
UC aciona a bomba principal e desativa a bom	nba e a valvula	
do sistema de injeção de gasolina.		
Admissão de Ar		
Nos motores a álcool a admissão de ar é	feita de forma	
diferente àquela utilizada nos motores a gasoli	na.	
Nos motores a álcool a admissão de ar é	feita utilizando	
um sistema termostático que admite ar "quent	te", que circula	
em torno do coletor de escapamento, quando	o o motor está	
frio. Com motor quente o ar admitido pela to	mada de ar é	
similar àquela utilizada nos motores a gasolina	a.	
Esta modificação do fluxo de ar é feita p	oor um defletor	
comandado pelo vácuo do coletor, controlando	este vácuo por	
uma válvula termostática.	•	
2.3 SISTEMA ELÉTRICO		
2.3.1 Localização de Fusíveis e Relés		
2.0.1 Localização do Facilito o Ficilio		
Relé Duplo: fixado a um suporte metálico	nreso à narede	
corta–fogo no compartimento do motor. Possui		
	uma cobertura	
de proteção.	:n:no20/:nn:020	
Fusível geral de proteção do sistema de		
(30 A). É um MAXI – fusível alojado dentro da ca	aixa de fusiveis	
de potência, localizada ao lado da bateria.	ada a di U	
 Fusíveis alojados num suporte localizados 	ado ao lado da	
bateria:		
 Fusível da unidade de comando 	5 A	

• Fusível do relé duplo

- 15 A
- Fusível do aquecedor do corpo de borboleta (quando instalado o aquecedor)

10A

PALIO 1.0/1.5 1/4

.....

.....

.....

.....

.....

2.4 SISA DE DIAGNÓSTICOS

O sistema IAW – 1G7 oferece as seguintes opções de teste:

Teste Estático (atuadores)

- Teste Dinâmico
- Teste Contínuo

2.4.1 Teste Estático (Atuadores)

Deve ser efetuado com a ignição ligada e o motor não funcionando. Através desta opção é possível acionar diversos atuadores:

bomba combustível;	
• injetores;	
• bobina 1;	
• bobina 2;	
 válvula CANP (eletroválvula do canister); p/gasolina; 	
• bomba/válvula do sistema de partida a frio; p/álcool;	
hodômetro (contagiros);	
 relé do ar condicionado; 	
 lâmpada de advertência (pisca 5 vezes); 	
consumômetro.	
O teste pode ser executado passo a passo (escolhendo	
o atuador a ser testado), ou de forma automática, onde todos	
os atuadores são acionados em seqüência. No fim do teste	
(no automático) são apresentados os códigos das falhas	
detectadas.	
Notas:	
- O teste do relé do ar condicionado dará "falha" se o	
veículo não está equipado com A/C.	
- O teste do consumômetro dará "falha" se o veículo	
não está equipado com tal dispositivo.	
- As falhas presentes no momento do teste são	
apresentadas com o prefixo"COD".	
- Falhas gravadas na memória são apresentadas copm	
o prefixo "MEM".	
2.4.2 Teste Dinâmico	
Permite verificar o funcionamento do motor de passo e	
verificar os sensores e parâmetros internos à unidade de	
comando.	
É executado com o motor funcionando. No fim do teste	
são apresentados os códigos das falhas detectadas.	
Nota: antes de iniciar o teste desligar a ignição quando	
solicitado, aguardar alguns segundos (± 5 Seg.)	
e ligar novamente	

a)	Tabela de Falhas	
	015 – FALHA NO ACIONAMENTO BICO INJETOR 1 E 4	
	016 - FALHA NO ACIONAMENTO BICO INJETOR 2 E 3	
	018 – FALHA NO ACIONAMENTO DA BOBINA 1	
	021 – FALHA NO ACIONAMENTO DA BOBINA 2	
	031 – CURTO À TERRA NA LÂMPADA DE ADVERTÊNCIA	
	033 – FALHA NO RELÉ DUPLO	
	035 – FALHA NO MOTOR DE PASSO	
	038 – FALHA NO SENSOR DA BORBOLETA	
	042 – FALHA NO SENSOR DE PRESSÃO	
	046 – FALHA NA SONDA LAMBDA	
	049 – FALHA NO SENSOR DE TEMPERATURA DA ÁGUA	
	053 – FALHA NO SENSOR DE TEMPERATURA DO AR	
	057 – TENSÃO DA BATERIA FORA DA FAIXA	
	063 – FALHA NO SENSOR DE DETONAÇÃO	
	067 – SENSOR DE ROTAÇÃO FORA DA FAIXA	
	091 – ERRO NOS PARÂMETROS AUTO – ADAPTATIVOS	
	093 – FALHA NA MEMÓRIA RAM	
	095 – FALHA NA MEMÓRIA ROM	
	097 – FALHA NA MEMÓRIA EEPROM	
	099 – FALHA NO MICROPROCESSADOR	
b)	Diagnóstico de Falhas	
	Neste item são apresentadas, para os diversos códigos	
de	falhas, verificações orientativas para o diagnóstico.	
	Quando todas as verificações se apresentarem corretas,	
e a	falha persistir, existe a possibilidade de defeito na unidade	
de	comando.	
	Nota: As falhas apresentadas no Kaptor podem estar	
	presentes no momento do teste ou podem ser	
	intermitentes (não estão presentes, mas foram	
	armazenadas na memória).	
	As falhas presentes são identificadas com o	
	prefixo "COD" que acompanha o código	
	apresentado no fim do teste dinâmico.	

As falhas armazenadas na memória são identificadas	
pelo prefixo "MEM", que acompanha o código	
apresentado no fim do teste dinâmico.	
Uma falha que está gravada na memória, mas que não	
está presente no momento do teste dinâmico, pode	
ser considerada intermitente. No entanto, algumas	
falhas relacionadas com o sensor de oxigênio,	
resultantes de anomalias mecânicas, podem demorar	
horas ou até dias para se apresentarem novamente,	
após ter trocado ou limpado o sensor.	
Código 015 – Falha no acionamento dos injetores 1 – 4	
Código 016 – Falha no acionamento dos injetores 2 – 3	
A Unidade de Comando detectou uma condição curto –	
circuito aberto no circuito elétrico de acionamento dos injetores.	
O sistema de diagnóstico não detecta injetores entupidos	
ou com vazamento.	
Verificações:	
• Executar o teste dos injetores no modo Teste de	
Atuadores do Kaptor,	
 Durante o teste verificar, com ponta de provas: 	
 A correta alimentação dos injetores (fio do terminal 4 	
do relé duplo).	
 Verificar a presença de tensão de bateria no terminal 	
4 do relé duplo.	
 A presença de pulsor de acionamento nos injetores e 	
nos terminais 18 e 25 da unidade de comando.	
	 1
Nota: No teste de atuadores pode acontecer de só	
apresentar falha quando os quatro injetores estão com	
problemas elétricos.	
Código 018 – Falha no acionamento da bobina 1	
Código 021 – Falha no acionamento da bobina 2	

Estas falhas refletem, basicamente, anomalias no	
circuito primário da ignição.	
No entanto, algumas falhas no circuito secundário	
poderão provocar a gravação destes códigos.	
Portanto, é necessário verificar que a parte de alta tensão	
(cabos, velas, secundário) esteja em ordem.	
Verificar:	
 Circuito elétrico primário (terminais 1 e 19) quanto 	
a curto-circuito ou circuito aberto.	
Bobina de ignição:	
 Resistência primária: 0,5 a 0,6 ohms. (20°C): 	
 Resistência secundária: 6600 a 8100 ohms. (20°C). 	
Código 031 – Curto a massa na lâmpada de advertência	
Verificar:	
- Alimentação da lâmpada; com a ignição ligada deve	
haver tensão de bateria.	
- Fiação entre a lâmpada e terminal 6 da unidade de	
comando, quanto a curto-circuito ou circuito aberto.	
- Estado da lâmpada.	
Código 033 – Falha no relé duplo	
Verificar:	
- Fusíveis do sistema de injeção (5 A) e da bomba (15 A).	
 Verificar alimentação contínua da bateria nos terms. 	
11 e 8 do relé.	
- Verificar fiação dos terms. 35,4 e 23 da UC, quanto	
a curto ou interrupção.	
- Verificar tensão de bateria, no term. 12 do relé, ao	
ligar a ignição.	
- Verificar funcionamento do relé, alimentando com	
12 V os terms. 3 (+) e 10 (-) do relé, e verificando o	
fechamento dos contatos entre terms. 11 e 1.	

- Verificar o funcionamento do relé da bomba,	
alimentando com 12 Volts os terms. 12 (+) e 7 (-) do	
relé duplo, e verificando o fechamento dos contatos	
entre terms. 8 e 5 do relé.	
Código 035 – Falha no motor de passo	
Esta falha é gravada quando a UC detecta anomalia no	
circuito elétrico de acionamento do motor de passo.	
Também pode ser gravada quando a unidade de	
comando não consegue controlar a marcha lenta.	
Verificar:	
- O motor de passo quanto ao engripamento.	
- O assento da válvula do motor de passo, quanto a	
obstruções.	
- As bobinas do motor de passo.	
• Resistência: 40 a 60 ohms.	
- O circuito elétrico, quanto ao curto circuito ou circuito	
aberto.	
Defeitos em outros componentes que possam afetar o	
controle da marcha lenta podem provocar a gravação da falha.	
Portanto, quando as verificações acima estiverem	
corretas, e a falha persistir, verificar:	
•	
- possíveis entrada de vazamento na admissão de ar;	
- obstruções no escapamento;	
- sincronismo do comando e válvulas.	
Código 038 – Falha no sensor de posição de borboleta	
Esta falha é gerada quando é detectado algum problema	
de curto-circuito ou circuito aberto.	

Verificar:	
• A existência de 5 volts (tensão de referência) no terminal	
B do conector do sensor (com a ignição ligada).	
 Ligação da massa do sensor. 	
 Continuidade do fio de sinal (terminal 30 da UC). 	
 Resistência do sensor (valores aproximados). 	
 Entre o cursor e um extremo. 	
 Borboleta fechada: 1350 ohms. 	
 Borboleta aberta: 2250 ohms. 	
 Entre o cursor e o outro extremo. 	
 Borboleta fechada: 2300 ohms. 	
 Borboleta aberta: 1250 ohms. 	
 Entre os extremos fixos 1300 ohms. 	
Abrir lentamente a borboleta. O valor medido entre o	
cursor e quaisquer dos extremos, deve variar continuamente;	
sem saltos.	
Código 042 – Falha no sensor de pressão do coletor	
Esta falha é gravada quando é detectada algum problema	
no circuito elétrico do sensor MAP.	
Defeitos decorrentes de entupimento ou vazamento na	
mangueira de vácuo do sensor, em alguns casos podem	
provocar a gravação da falha.	
Verificar:	
 Existência de 5 volts (tensão de referência) no terminal 	
de alimentação do sensor, com a ignição ligada.	
 Correta conexão à massa. 	
 Fio do sinal (terminal 32) quanto ao curto circuito ou 	
circuito aberto.	
Funcionamento do sensor:	
 Ligar uma bomba de vácuo na mangueira do sensor. 	
 Visualizar no Kaptor o parâmetro "Depressão de 	
coletor" do modo Teste Contínuo.	
 Aplicar vácuo e verificar os valores da tabela (valores 	
aproximados).	

760 mmHg – 4,60 V	
475 mmHg – 2,50 V	
127 mmHg – 0,25 V	
Aplicar vácuo para obter na tela do Kaptor os valores de	
pressão da tabela.	
Com multímetro medir a tensão do sinal. Comparar com	
a tabela.	
Na maior parte dos casos é suficiente aplicar vácuo e	
observar que varia o valor de pressão apresentado no Kaptor.	
Manter o vácuo por alguns segundos; o valor apresentado no	
Kaptor deve permanecer constante. Isto é indicação de	
estanqueidade correta do sensor e mangueira.	
Código 046 – Falha na Sonda Lambda	
Indica anomalia no circuito elétrico da sonda.	
Atenção: Esta falha pode ser provocada também por	
falhas mecânicas. Entre outras:	
- Injetores obstruídos ou com vazamento.	
- Regulador de pressão defeituoso.	
- Entrada de ar falso no coletor de admissão ou de escape.	
- Queima de óleo do motor.	
- Componente do circuito de alta tensão (velas, cabos, bobina).	
Verificar o funcionamento da sonda visualizando o	
parâmetro "sonda lambda" do modo Teste Contínuo, com o	
motor funcionando na marcha lenta.	
Caso a sonda esteja operando, a falha apresentada é	
intermitente.	
Caso não esteja funcionando, uma primeira providência	
pode ser limpar a sonda no ultra-som (só da rosca para baixo)	
e reinstalar.	

Apagar a memoria de falhas e fazer funcionar o motor.	
0 (
Se a falha aparece imediatamente (questão de alguns	
segundos ou minutos) prosseguir com as verificações abaixo.	
Verificar:	
• Resistência de aquecimento da sonda: 4,3 a 4,7 ohms	
(com a sonda fria) entre os terminais dos fios brancos.	
 Resistência da sonda: 5000 ohms (máximo) entre 	
terminais dos fios cinza e preto.	
 Conexão elétrica com a UC (terminais 29 e 12) quanto 	
a curto-circuito ou circuito aberto.	
 Fiação de alimentação (do terminal 6 do relé duplo) e 	
massa (terminal 17) do aquecedor da sonda.	
Durante o funcionamento do motor, com a sonda	
conectada, deve haver tensão de bateria entre os fios brancos	
(alimentação do aquecedor).	
Código 049 – Falha no sensor de temperatura do motor	
Esta falha indica a existência de defeito no circuito elétrico	
Esta falha indica a existência de defeito no circuito elétrico do sensor.	
do sensor.	
do sensor.	
do sensor. Verificar:	
do sensor. Verificar:	
do sensor. Verificar: Resistência do sensor	
do sensor. Verificar: Resistência do sensor 30°C 1700 ohms aprox.	
do sensor. Verificar: Resistência do sensor 30°C 1700 ohms aprox.	
do sensor. Verificar: Resistência do sensor 30°C 1700 ohms aprox.	
do sensor. Verificar: Resistência do sensor 30°C 1700 ohms aprox. 50°C 1000 ohms aprox.	
do sensor. Verificar: Resistência do sensor 30°C 1700 ohms aprox. 50°C 1000 ohms aprox.	

Código 053 – Falha no sensor de temperatura do ar	
Indica resistência de defeito no circuito elétrico do sensor.	
Vovificar	
Verificar:	
• Resistência do sensor:	
30°C 1700 ohms aprox.	
40°C 1200 ohms zprox.	
 Fio do sinal (terminal 31) quanto a curto-circuito aberto. Conexão a massa (terminal 16). 	
 Conector e contatos, quanto a oxidação. 	
Código 063 – Falha no sensor de detonação	
Verificar:	
Correto aterramento da malha de blindagem (term 3 do conector do sensor). A ficação dos terminais 22 a 46 do unidade do comendo.	
A fiação dos terminais 33 e 16 da unidade de comando, quanto a circuito aberto ou curto-circuito. Varificar o terruo do aporto do aporto do aporto por la companya para de comando.	
 Verificar o torque de aperto do sensor; não deve haver nenhum tipo de arruela entre o bloco do motor e o sensor. 	
Torque de aperto: 20 Nm aproximadamente.	
Código 067 – Sensor de rotação fora da faixa	
Esta falha é gravada quando a unidade de comando recebe um número de pulsos diferente de 58, a cada volta da roda fônica.	
Nota: O sensor não permite ajuste da posição angular.	
Verificar:	
 Correto aterramento da malha de blindagem. Bobina do sensor. Resistência: 580 a 780 ohms a 20°C. 	
1 1001010110101 000 0 1 1 00 0111110 0 Z0 01	

 Entreferro, entre o sensor e os dentes da roda fônica: 	
0,4 a 1mm.	
• Fiação entre o conector do sensor e os terminais 28 e	
11 da unidade de comando, quanto a curto-circuito ou circuito	
aberto.	
Código 091 – Erro nos parâmetros autoadaptativos	
Esta falha é gravada em função de informações	
conflitantes de alguns sensores. Um funcionamento anômalo	
da sonda lambda, entre outros, pode ser a causa deste defeito.	
Falhas mecânicas (desincronismo de comando,	
carbonização dos cilindros, etc.), podem, também, provocar	
a gravação desta falha.	
Código 093 - Falha na memória RAM	
Código 095 - Falha na memória ROM	
Código 097 - Falha na memória EEPROM	
Código 099 - Falha no microprocessador	
São falhas internas à unidade de comando.	
2.4.3 Modo Teste Contínuo	
Permite visualizar os parâmetros de funcionamento do	
motor. Esta opção pode ser acessada com o motor em	
funcionamento ou não.	
Parâmetros do Modo Contínuo	
 Rotação do Motor (rpm) 	
800 a 950 rpm	
Legendas VisualGraph: RPM	
 Depressão do coletor (mmHg) 	
Este parâmetro apresenta a pressão absoluta do coletor	
de admissão.	
Motor 1 0:300 mmHg a 500 mmHg	

Motor 1.5:230 mmHg a 450 mmHg	
Legendas VisualGraph: DEP. COL.	
• Avanço (graus)	
Motor 1.0:3 graus aprox. a 850 rpm (0 a 9 graus)	
Motor 1.5:10 graus aprox. a 850 rpm (0 a 12 graus)	
Legendas VisualGraph: AVANÇO	
• <u>Tempo de Injeção (uS)</u>	
Motor 1.0:0,65 ms a 1,0 ms	
Motor 1.5:0,4 ms a 1,0 ms	
Legendas VisualGraph: TEMPO INJ	
• Temperatura do Ar (°C)	
10°C a 70°C	
Legendas VisualGraph: TEMP. AR	
• Temperatura da água (°C)	
Motor 1.0: 90°C a 97°C	
Motor 1.5: 90°C a 95°C	
Legendas VisualGraph: TEMP. ÁGUA	
 Posição da Borboleta (graus) 	
Motor 1.0: 13 a 16 graus	
Motor 1.5: 13 a 15 graus	
Legendas VisualGraph: BORBOLETA	
• Tensão da Bateria (volts)	
13 V a 15 V	
Legendas VisualGraph: BATERIA	

 Sonda Lambda 	
Na tela é apresentado o valor de correção da sonda	
Lambda. Este valor deve oscilar entre valores negativos	
e positivos, em torno do valor 0, quando o sistema está	
funcionamento em malha fechada (circuito fechado). A	
faixa de variação pode ser entre – 25 e + 25. Quando o	
sistema está funcionando em malha aberta (circuito	
aberto) o valor fica fixo em 0.	
Legenda VisualGraph: S. LAMBDA	
Motor de Passo Atual	
Apresenta a posição do motor de passo em pontos.	
Os valores "Correção Integral" e "Correção	
Proporcional" não são relevantes (em função da falta	
de informação) e podem ser ignorados.	
Motor 1.0: 73 a 94 passos	
Motor 1.5: 65 a 82 passos	
 Palavras de Estado 	
Cada palavra de estado é composta de 8 posições,	
que devem ser lidas da direita para a esquerda (posição	
1: extrema direita).	
Primeira tela de palavras de estado: apresenta os	
erros de função, os erros de entrada, os erros de saída	
b1 (primeira palavra de erros de saída) e os erros de	
saída b2 (segunda palavra de erros de saída).	
Tabela dos erros de função do sistema	
posição 1 – Parâmetro Auto–adaptativo	
posição 2 – Memória RAM	
posição 3 – Memória ROM	
posição 4 – EEPROM	

posição 5 – Microprocessador	
posição 6 – Sensor de rotação fora dos limites	
posição 7 – Não utilizada (desprezar)	
posição 8 – Não utilizada (desprezar)	
Tabela dos erros de entrada	
posição 1 – Sensor de posição da borboleta	
posição 2 – Sensor de pressão	
posição 3 – Sonda Lambda	
posição 4 – Sensor de temperatura da água	
posição 5 – Sensor de temperatura do ar	
posição 6 – Tensão da bateria	
posição 7 – Valor de marcha lenta	
posição 8 – Sensor de detonação	
Tabela dos erros de saída b1	
posição 1 – Comando dos injetores 1 e 4	
posição 2 – Comando bobina 1	
posição 3 – Comando bobina 2	
posição 4 – Comando motor de passo	
posição 5 – Eletroválvula Camister	
posição 6 – Relé Ar Condicionado	
posição 7 – Relé Atuadores	
posição 8 – Lâmpada Advertência	
Tabela dos erros de saída b2	
posição 1 – Não utilizado (desprezar)	
posição 2 – Não utilizado (desprezar)	
posição 3 – Não utilizado (desprezar)	
posição 4 – Comando dos Injetores 2 e 3	
posição 5 – Não utilizado (desprezar)	
posição 6 - Não utilizado (desprezar)	
posição 7 – Não utilizado (desprezar)	
posição 8 – Não utilizado (desprezar)	

.....

 Auto adaptação (ON/OFF) 	
Auto adaptagao (OTV/OTT)	
Quando ON (ativo), este parâmetro indica que o sistema	
está "aprendendo" ou adaptando-se às condições de	
funcionamento do motor. O sistema não está em situação de	
emergência. OFF significa auto adaptação desativada.	
emergencia. Or i signinoa auto adaptação desativada.	
 Ar condicionado (ON/OFF) 	
Ar condicionado (On/OTT)	
Apresenta o estado do relé do ar condicionado (ON:	
ligado; OFF: desligado).	
iligado, Ol 1 : desiligado).	
 Chave eletrônica (permitida/não permitida) 	
Chave eletionica (permitida/hao permitida)	
 Estado da chave eletrônica (programada/não 	
programada)	
Indicam o estado do sistema FiatCode (imobilizador).	
indicam o estado do sistema i lateode (imobilizador).	
 Código universal (não habilitado/habilitado). 	
Codigo di liversal (nao nabilitado/nabilitado).	
Palavras de Estado	
Falavias de Estado	
Cada naloura da estada á composta da 9 paciaños	
Cada palavra de estado é composta de 8 posições,	
que devem ser lidas da direita para a esquerda (posição 1:	
extrema direita).	
Comundo talo de valeymas de estado, envecento e	
Segunda tela de palavras de estado: apresenta a	
palavra de erros de função, de erros de entrada e de erros de	
saída presentes na memória.	
A cotton colleges de cotto de clavere con estimate es	
A estas palavras de estado devem ser aplicadas as	
tabelas de erros de função, de erros de entrada, de erros de	
saída b1 e de erros de saída b2, correspondentes à primeira	
tela de palavras de estado.	
RPM nominal (rpm)	
Antoconta a rotação do marcha lonto coloulado	
Apresenta a rotação de marcha lenta calculada	
pela unidade de comando.	

2.4.4 Modo Unidade de Comando	
Esta opção permite:	
 Verificar a identificação da UC (código ISO da unidade 	
de comando).	
 Apagar a memória de falhas. 	

BIBLIOGRAFIA

Manual de Reparação - Alfatest.

Material Didático Impresso-FIAT.