3 БИПОЛЯРНЫЕ ТРАНЗИСТОРЫ

3.1 Структура и основные режимы работы

Биполярный транзистор (обычно его называют просто транзистором) — это полупроводниковый прибор с двумя или более взаимодействующими выпрямляющими электрическими переходами, предназначенный для усиления и генерирования электрических сигналов.

Рисунок 3.1 – Структура биполярного транзистора

Транзистор (полупроводниковый триод) был создан американскими учеными Дж. Бардином, У. Браттейном и У. Шокли в 1948 году. Это событие имело громадное значение для полупроводниковой электроники. Транзисторы могут работать при значительно меньших напряжениях, чем ламповые триоды, и не являются простыми заменителями последних, а их можно использовать помимо усиления и генерирования сигналов переменного тока в качестве ключевых элементов. Определение «биполярный» указывает на то, что работа транзистора связана с процессами, в которых принимают участие носители заряда, как электроны, так и дырки.

Структура биполярного транзистора изображена на рисунке 3.1. Он представляет собой монокристалл полупроводника, в котором созданы три области с чередующимися типами электропроводности. На границах этих областей возникают электронно-дырочные переходы. От каждой области полупроводника сделаны токоотводы (омические контакты). Среднюю область транзистора, расположенную между электронно-дырочными переходами, называют базой (Б). Примыкающие к базе области обычно делают неодинаковыми. Одну из областей делают так, чтобы из неё наиболее эффективно проходила инжекция носителей заряда в базу, а другую — так, чтобы *p-n*-переход между базой и этой областью наилучшим образом собирал инжектированные в базу носители заряда, то есть осуществлял экстракцию носителей заряда из базы.

Область транзистора, основным назначением которой является инжекция носителей заряда в базу, называют эмиттером (Э), а *p-n*-переход между базой и эмиттером — эмиттером — эмиттером (ЭП). Область транзистора, основным назначением которой является собирание, экстракция носителей заряда из базы, называют коллектором (К), а *p-n*-переход между базой и коллектором — коллекторным (КП). В зависимости от типа электропроводности крайних слоев (эмиттера и коллектора) различают транзисторы *p-n-p* и *n-p-n* типа. В обоих типах транзисторов физические процессы аналогичны, они различаются только типом инжектируемых и экстрагируемых носителей и имеют одинаково широкое применение.

Рисунок 3.2 — Условное обозначение транзисторов: a — транзистор p-n-p типа; б — транзистор n-p-n типа

На принципиальных электрических схемах транзисторы изображают условными графическими обозначениями, представленными на рисунке 3.2.

Конструктивно биполярные транзисторы оформляются в металлических, пластмассовых или керамических корпусах (рисунок 3.3, а).

При работе транзистора к его электродам прикладываются напряжения от внешних источников питания. В зависимости от полярности напряжений, приложенных к электродам транзистора, каждый из p-n-переходов может быть смещен в прямом или в обратном направлении, исходя из этого, возможны четыре режима работы транзистора (таблица 3.1).

Таблица 3.1 – Режимы работы биполярного транзистора

Эмиттерный переход	Коллекторный переход	Режим работы	
Эмиттерный переход		транзистора	
прямое	обратное	Активный (усилительный)	
прямое	прямое	насыщения	
обратное	обратное	отсечки	
обратное	прямое	инверсный	

Если на эмиттерном переходе напряжение прямое, и он инжектирует носители в базу, а на коллекторном переходе напряжение обратное, и он собирает носители из базы, то такое включение транзистора называют *нормальным*, а транзистор работает в *активном* (усилительном) режиме.

Рисунок 3.3 – Общий вид (а) и конструктивное оформление биполярных транзисторов (б)

В режиме насыщения оба *p-n*-перехода включены в прямом направлении, переходы насыщены подвижными носителями заряда, их сопротивления малы.

Если же на коллекторном переходе напряжение прямое, и он инжектирует носители в базу, а на эмиттерном переходе напряжение обратное, и он осуществляет экстракцию носителей из базы, то такое включение транзистора называют *инверсным*, а транзистор работает в *инверсном режиме*.

При инверсном включении транзистора необходимо учитывать следующие особенности:

- 1. Поскольку эмиттерный переход по площади меньше, чем коллекторный, то из того количества носителей, которые инжектируются коллекторным переходом, меньшее количество собирается эмиттерным переходом, что снижает величину тока этого перехода.
- 2. Это приводит к изменению заряда носителей в базе и, следовательно, к изменению барьерной ёмкости переходов, т. е. к изменению частотных свойств транзистора.

3. При меньшей площади эмиттерного перехода необходимо снижать величину его тока, чтобы оставить прежней температуру нагрева полупроводниковой структуры.

3.2 Физические процессы в биполярном транзисторе

Рисунок 3.4 – Движение носителей заряда и токи в биполярном транзисторе при активном режиме работы

Физические процессы в биполярном транзисторе при усилении электрических сигналов рассмотрим на примере рисунка 3.4. К транзистору подключают два источника ЭДС: $E_{\scriptscriptstyle 1}$ – ЭДС источника входного сигнала, и $E_{\scriptscriptstyle 2}$ – ЭДС источника питания (мощного источника). ЭДС E_1 подключается так, чтобы эмиттерный переход был смещен в прямом направлении, а ЭДС E_2 должна смещать коллекторный переход в обратном направлении. Тогда при отсутствии тока в цепи источника входного сигнала (во входной цепи транзистора) нет тока и в цепи источника питания (в выходной цепи). Строго говоря, в выходной цепи будет протекать очень маленький ток – обратный ток закрытого коллекторного перехода $I_{\kappa\delta\sigma}$, но им ввиду его малости можно пренебречь. Если же во входной цепи транзистора создать под действием источника E_1 какой-то ток I_2 , то дырки, являющиеся основными носителями в р-области эмиттера, будут инжектироваться в область базы, где они становятся уже неосновными носителями. Те из них, которые попадают в зону действия электрического поля коллекторного перехода, будут испытывать со стороны этого поля ускоряющее, притягивающее действие и будут переброшены через границу раздела в область коллектора (область р-типа), где дырки уже являются основными носителями.

Таким образом, в цепи источника питания появится ток — ток коллектора I_{κ} , который, протекая по сопротивлению нагрузки R_{κ} , создает там падение напряжения:

$$U = I_{r} \cdot R_{r}, \tag{3.1}$$

которое является выходным сигналом усилителя и в точности повторяет все изменения входного сигнала.

Отметим, что не все носители, инжектированные из эмиттера в базу, достигают коллекторного перехода; часть из них рекомбинирует в базе по пути движения от эмиттерного перехода к коллекторному — ток $I_{\delta \ pek}$. Поэтому ток коллектора I_{κ} принципиально меньше тока эмиттера $I_{\mathfrak{g}}$.

Отношение этих токов характеризует коэффициент передачи по току:

$$\alpha = \frac{I_{\kappa}}{I_{\alpha}}.$$
 (3.2)

Чтобы увеличить коэффициент передачи по току область базы делают тонкой, чтобы меньшее количество носителей рекомбинировало в ней, и, кроме того, площадь коллекторного перехода делают больше площади эмиттерного перехода, чтобы улучшить процесс экстракции носителей из базы. Таким образом, удается достичь величины коэффициента передачи по току $\alpha = 0.95...0.99$ и более.

Несмотря на то, что в рассмотренной схеме усиления по току нет $(\alpha < 1)$, все же коэффициент передачи по мощности может быть значительно больше единицы за счет большого усиления по напряжению. Ведь даже при малой величине коллекторного тока I_{κ} падение напряжения на сопротивлении нагрузки $I_{\kappa} \cdot R_{\kappa}$ может быть значительным, за счет большой величины напряжения источника питания.

Отметим, что в транзисторах n-p-n-типа все описанные процессы протекают точно так же, но полярность источников E_1 и E_2 должна быть противоположной, а из эмиттера в базу будут инжектироваться электроны, и электроны же будут образовывать коллекторный ток в цепи источника E_2 .

Следует отметить, что в процессе усиления электрического сигнала в транзисторе происходит изменение ширины базового слоя W, так как под дей-

ствием внешних источников E_1 и E_2 толщина p-n-переходов изменяется, что в условиях малой ширины базового слоя происходит ее модуляция (данное явление получило название эффект Эрли). Это приводит к ряду особенностей:

- 1. Чем уже становится база, тем меньшее количество инжектированных носителей будет рекомбинировать в ней и, следовательно, большее количество их достигнет коллекторного перехода и будет участвовать в образовании тока коллектора I_{κ} . Это приведет к изменению коэффициента передачи по току α .
- 2. Изменение тока I_{κ} при $I_{\beta} = const$ приводит к зависимости I_{κ} от E_{2} , т. е. к изменению сопротивления коллекторного перехода.
- 3. Поскольку при этом меняется заряд носителей в базе, то это приводит к изменению ёмкости p-n-перехода.
- 4. Изменение ширины базового слоя приводит к изменению времени прохождения зарядами базовой области, т. е. к изменению частотных свойств транзистора.
- 5. Изменение ширины базы влияет на величину тока $I_{_{3}}$ при неизменном значении $E_{_{1}}$.

Как крайнюю степень проявления модуляции ширины базы следует рассматривать явление, называемое *проколом базы*. Прокол базы наступает тогда, когда под действием большого значения ЭДС источника питания E_2 ширина коллекторного перехода возрастает настолько, что происходит его смыкание с эмиттерным переходом, что весьма вероятно в условиях малой толщины базовой области. При этом $\alpha = 1$, а транзистор пробивается.

Основные параметры биполярных транзисторов:

1. Коэффициенты передачи эмиттерного и базового тока:

$$h_{219} = \frac{dI_{\kappa}}{dI_{\delta}} \Big|_{U_{\kappa9} = const};$$
 $h_{21\delta} = \frac{dI_{\kappa}}{dI_{\delta}} \Big|_{U_{\kappa\delta} = const}.$

2. Дифференциальное сопротивление эмиттерного перехода (единицы – десятки Ом)

$$r_{\vartheta \partial u\phi} = \frac{dU_{\vartheta \delta}}{dI_{\delta}} \Big|_{U_{\kappa \vartheta}} = const.$$

3. Обратный ток коллекторного перехода при заданном обратном напряжении (единицы наноампер – десятки миллиампер)

$$I_{\kappa\delta\sigma} = I_{\kappa} \mid_{I_{\kappa}=const}; U_{\kappa\delta} < 0.$$

- 4. Объемное сопротивление базы r_{δ} (десятки сотни Ом).
- 5. Выходная проводимость h_{22} или дифференциальное сопротивление коллекторного перехода (от долей до сотен мкСм)

$$r_{\kappa \partial u\phi} = \frac{1}{h_{229}} = \frac{dU_{\kappa\delta}}{dI_{\kappa}} \Big|_{I_{\delta} = const};$$

$$r_{\kappa \partial u\phi} = \frac{1}{h_{22\delta}} = \frac{dU_{\kappa\delta}}{dI_{\kappa}} \Big|_{I_{9} = const}.$$

- 6. Максимально допустимый ток коллектора $I_{\kappa \max}$ (сотни миллиампер десятки ампер).
- 7. Напряжение насыщения коллектор эмиттер $U_{\kappa_{2} \; \text{нас}}$ (десятые доли один вольт).
- 8. Наибольшая мощность рассеяния коллектором $P_{\kappa \max}$ (милливатт десятки ватт).
- 9. Ёмкость коллекторного перехода C_{κ} (единицы десятки пикофарад).

Выводы:

- 1. При прямом напряжении, приложенном к эмиттерному переходу, потенциальный барьер понижается, и в базу инжектируются носители заряда.
- 2. Инжектированные в базу неосновные носители заряда диффундируют в сторону коллекторного перехода.
- 3. Вследствие того, что ширина базы транзистора мала и концентрация основных носителей заряда в ней низкая, почти все инжектированные в базу неосновные носители заряда достигают коллекторного перехода и перебрасываются полем потенциального барьера в коллектор, образуя управляемый ток коллектора.
- 4. Небольшая часть инжектированных носителей заряда успевает рекомбинировать в базе, образуя рекомбинированную составляющую тока эмиттера, которая замыкается через цепь базы.
- 5. Через цепь базы замыкается также небольшая составляющая тока эмиттера, образованная диффузией неосновных носителей заряда из базы в эмиттер, и обратный ток коллекторного перехода.

3.3 Схемы включения транзистора

Как было рассмотрено на примере, для усиления электрического сигнала в цепь транзистора необходимо включить два источника — входного сигнала E_1 и питания E_2 . Поскольку транзистор имеет три вывода (эмиттер, база, коллектор), а два источника питания имеют четыре вывода, то обязательно один из выводов транзистора будет общим для обоих источников, т. е. одновременно будет принадлежать и входной цепи и выходной. По этому признаку различают три возможных схемы включения: c общей базой, c общим эмиттером u c общим коллектором.

3.3.1 Схема с общей базой

Рисунок 3.5 – Включение транзистора по общей схеме с общей базой

Рассмотренный выше пример построения усилителя электрических сигналов с помощью транзистора является схемой включения с общей базой. На рисунке 3.5 приведена электрическая принципиальная схема включения транзистора с общей базой.

Основные параметры, характеризующие эту схему включения, получим следующим образом:

1. Коэффициент усиления по току:

$$k_{I_{\delta}} = \alpha = \frac{I_{\kappa}}{I_{_{9}}} \approx 0.95 \div 0.99.$$
 (3.3)

Индекс «б» в (3.3) указывает на отношение этого параметра к схеме с общей базой.

2. Входное сопротивление:

$$R_{\alpha \delta} = \frac{E_1}{I}. \tag{3.4}$$

Из (3.4) следует, что входное сопротивление транзистора, включенного в схему с общей базой, очень невелико и определяется, в основном, сопротивлением эмиттерного *p-n*-перехода в прямом направлении. На практике оно составляет единицы – десятки Ом. Это следует отнести к недостаткам усилительного каскада, так как приводит к нагружению источника входного сигнала.

3. Коэффициент усиления по напряжению:

$$k_{U \delta} = \frac{U_{\delta b X}}{U_{ex}} = \frac{I_{\kappa} \cdot R_{H}}{E_{1}} = \frac{I_{\kappa} \cdot R_{H}}{I_{3} \cdot R_{ex \delta}} = \alpha \cdot \frac{R_{H}}{R_{ex \delta}}.$$
 (3.5)

Коэффициент усиления по напряжению может быть достаточно большим (десятки — сотни единиц), так как определяется, в основном, соотношением между сопротивлением нагрузки $R_{_{\scriptscriptstyle H}}$ и входным сопротивлением.

4. Коэффициент усиления по мощности:

$$k_{P \delta} = K_{I \delta} \cdot K_{U \delta} = \alpha^2 \cdot \frac{R_{H}}{R_{C \delta}}.$$
 (3.6)

Для реальных схем коэффициент усиления по мощности равняется десяткам – сотням единиц.

3.3.2 Схема с общим эмиттером

В этой схеме (рисунок 3.6) по-прежнему источник входного сигнала E_1 включен в прямом направлении по отношению к эмиттерному переходу, а источник питания E_2 включен в обратном направлении по отношению к коллекторному переходу и в прямом по отношению к эмиттерному. Под действием источника входного сигнала E_1 в базовой цепи протекает ток I_{δ} ; происходит инжекция носителей из эмиттерной области в базовую; часть из них под действием поля коллекторного перехода перебрасывается в коллекторную область, образуя, таким образом, ток в цепи коллектора I_{κ} , который протекает под действием источника питания E_2 через эмиттер и базу. Поэтому:

$$I_{9} = I_{6} + I_{\kappa}. \tag{3.7}$$

Входным током является ток базы $I_{\scriptscriptstyle \delta}$, а выходным — ток коллектора $I_{\scriptscriptstyle \kappa}$. Выходным напряжением является падение напряжения на сопротивлении нагрузки $R_{\scriptscriptstyle \mu}$.

Рисунок 3.6 – Включние транзистора по общей схеме с общим эммитером

Основные параметры, характеризующие эту схему включения, определим из выражений:

1. Коэффициент усиления по току:

$$k_{I_{3}} = \beta = \frac{I_{\kappa}}{I_{\delta}} = \frac{I_{\kappa}}{I_{2} - I_{\kappa}}, \qquad (3.8)$$

поделив в этом выражении числитель и знаменатель дроби на ток эмиттера $I_{_{2}}$, получим:

$$k_{I_{\circ}} = \frac{\frac{I_{\kappa}}{I_{\circ}}}{\frac{I_{\circ} - I_{\kappa}}{I_{\circ}}} = \frac{\alpha}{1 - \alpha}.$$
 (3.9)

Из (3.9) видно, что в схеме с общим эмиттером коэффициент усиления по току достаточно большой, так как α – величина, близкая к единице, и составляет десятки – сотни единиц.

2. Входное сопротивление транзистора в схеме с общим эмиттером:

$$R_{\alpha \beta} = \frac{E_1}{I_0} = \frac{E_1}{I_2 - I_{\alpha}}.$$
 (3.10)

Поделив в этом выражении числитель и знаменатель на ток эмиттера $I_{_{\mathfrak{I}}}$, получим:

$$R_{\alpha \beta} = \frac{\frac{E_1}{I_{\beta}}}{\frac{I_{\beta} - I_{\kappa}}{I_{\beta}}} = \frac{R_{\alpha \beta}}{1 - \alpha}.$$
(3.11)

Отсюда следует, что $R_{\alpha\beta} >> R_{\alpha\beta}$, т. е. по этому параметру схема с общим эмиттером значительно превосходит схему с общей базой. Для схемы с общим эмиттером входное сопротивление лежит в диапазоне сотни Ом — единицы кОм.

3. Коэффициент усиления по напряжению:

$$k_{U_{3}} = \frac{U_{\text{\tiny GMX}}}{U_{\text{\tiny GY}}} = \frac{I_{\kappa} \cdot R_{\text{\tiny H}}}{E_{1}} = \frac{I_{\kappa} \cdot R_{\text{\tiny H}}}{I_{3} \cdot R_{\text{\tiny GY},3}} = \frac{\alpha}{1 - \alpha} \cdot \frac{R_{\text{\tiny H}}}{R_{\text{\tiny GY},3}}.$$
(3.12)

Подставляя сюда $R_{\alpha 3}$ из (3.10), получим:

$$k_{U_{3}} = \frac{\alpha}{1 - \alpha} \cdot \frac{R_{H}}{R_{\text{ex},3}} = \alpha \cdot \frac{R_{H}}{R_{\text{ex},6}}, \qquad (3.13)$$

т. е. коэффициент усиления по напряжению в этой схеме точно такой же, как и в схеме с общей базой – $k_{_{U,0}}=k_{_{U,0}}$, и составляет десятки – сотни единиц.

4. Коэффициент усиления по мощности:

$$k_{P_{\vartheta}} = K_{I_{\vartheta}} \cdot K_{U_{\vartheta}} = \frac{\alpha^2}{1 - \alpha} \cdot \frac{R_{u}}{R_{\alpha \circ \beta}}, \tag{3.14}$$

что значительно больше, чем в схеме с общей базой (сотни – десятки тысяч единиц).

3.3.3 Схема с общим коллектором

Исходя из принятых отличительных признаков схема включения транзистора с общим коллектором должна иметь вид (рисунок 3.7, а). Однако в этом случае транзистор оказывается в инверсном включении, что нежелательно из-за ряда особенностей, отмеченных выше. Поэтому в схеме (рисунок 3.7, а) просто механически меняют местами выводы эмиттера и коллектора и получают нормальное включение транзистора (рисунок 3.7, б).

В этой схеме сопротивление нагрузки $R_{_{\scriptscriptstyle H}}$ включено во входную цепь; входным током является ток базы $I_{_{\scriptscriptstyle \delta}}$; выходным током является ток эмиттера $I_{_{\scriptscriptstyle 3}}=I_{_{\scriptscriptstyle \delta}}+I_{_{\scriptscriptstyle K}}$.

Рисунок 3.7 – Включение транзистора по схеме с общим коллектором

Основные параметры этой схемы следующие:

1 Коэффициент усиления по току:

$$k_{I_{\kappa}} = \gamma = \frac{I_{_{9}}}{I_{_{6}}} = \frac{I_{_{9}}}{I_{_{9}} - I_{_{\kappa}}}.$$
 (3.15)

Поделив числитель и знаменатель этой дроби на ток эмиттера $I_{\mathfrak{z}}$, получим:

$$\gamma = \frac{\frac{I_{\circ}}{I_{\circ}}}{\frac{I_{\circ} - I_{\kappa}}{I_{\circ}}} = \frac{1}{1 - \alpha},$$
(3.16)

т. е. коэффициент усиления по току в схеме с общим коллектором почти такой же, как в схеме с общим эмиттером: $\gamma = \beta$.

2 Входное сопротивление:

$$R_{\alpha\kappa} = \frac{E_1 + R_{\mu}}{I_{\delta}}, \qquad (3.17)$$

Преобразуя это выражение, получим:

$$R_{\alpha \kappa} = \frac{I_{s} \cdot \left(\frac{E_{1}}{I_{s}} + R_{n}\right)}{I_{s} \cdot (1 - \alpha)} = \frac{R_{\alpha \kappa \delta} + R_{n}}{1 - \alpha},$$
(3.18)

Из (3.18) следует, что входное сопротивление в этой схеме включения оказывается наибольшим из всех рассмотренных схем (десятки – сотни кОм).

3. Коэффициент усиления по напряжению:

$$k_{U_K} = \frac{I_{\circ} \cdot R_{\scriptscriptstyle n}}{I_{\circ} \cdot R_{\scriptscriptstyle ev,K}}, \tag{3.19}$$

Преобразуем это выражение с учетом выражений (3.16) и (3.18):

$$k_{U_{\kappa}} = \frac{R_{\kappa}}{(1-\alpha) \cdot R_{\alpha\kappa}} = \frac{R_{\kappa}}{R_{\alpha\kappa} + R_{\kappa}},$$
 (3.20)

Поскольку $R_{_{e\!x}\,\delta}$ представляет собой очень малую величину, то можно считать, что $k_{_{U_{\,\kappa}}} \approx 1$, т. е. усиления по напряжению в этой схеме нет.

4. Коэффициент усиления по мощности:

$$k_{P_{\kappa}} = K_{I_{\kappa}} \cdot K_{U_{\kappa}} = \frac{1}{1 - \alpha} \cdot \frac{R_{\kappa}}{R_{\alpha\kappa} + R_{\kappa}}, \qquad (3.21)$$

на практике он составляет десятки – сотни единиц.

Схему с общим коллектором часто называют эмиттерным повторителем, потому что, во-первых, нагрузка включена здесь в цепь эмиттера, а вовторых, выходное напряжение в точности повторяет входное и по величине $(k_{U_K} \approx 1)$ и по фазе.

В таблице 3.1 приведены диапазоны значений параметров схем включения биполярного транзистора.

Таблица 3.1 – Параметры схем включения биполярного транзистора

Параметр	Схема с ОБ	Схема с ОЭ	Схема с ОК
Коэффициент усиления по	Немного меньше	Десятки-сотни	Десятки-сотни
току k_{I}	единицы	единиц	единиц
Коэффициент усиления по	Десятки-сотни	Десятки-сотни	Немного мень-
напряжению $k_{\scriptscriptstyle U}$	единиц	единиц	ше единицы
Коэффициент усиления по	Десятки-сотни	Сотни-десятки	Десятки-сотни
мощности k_{P}	единиц	тысяч единиц	единиц
Входное сопротивление R_{xx}	Единицы-	Сотни Ом-	Десятки-сотни
BROTHER R	десятки Ом	единицы кОм	кОМ
Выходное сопротивление	Сотни кОм-	Единицы-	Сотни Ом-
$R_{\scriptscriptstyle coux}$	единицы МОм	десятки кОм	единицы кОм
Фазовый сдвиг между $U_{_{\scriptscriptstyle \it GMX}}$ и	0°	190°	0°
$U_{\scriptscriptstyle\mathrm{ex}}$	U	180°	U

Выводы:

- 1. В отличие от схемы с общей базой схема с общим эмиттером наряду с усилением по напряжению даёт также усиление по току. Транзистор, включенный по схеме с общим эмиттером, усиливает ток базы в десятки сотни раз. Усиление по напряжению в данной схеме остается таким же, как в схеме с общей базой. Поэтому усиление по мощности в схеме с общим эмиттером значительно больше, чем в схеме с общей базой.
- 2. Схема с общим эмиттером имеет более приемлемые значения входного и выходного сопротивлений входное больше, а выходное сопротивление меньше, чем в схеме с общей базой.
- 3. Благодаря указанным преимуществам схема с общим эмиттером находит наибольшее применение на практике.
- 4. Схема с общей базой хоть и имеет меньшее усиление по мощности и имеет меньшее входное сопротивление, все же ее иногда применяют на практике, т.к. она имеет лучшие температурные свойства.
- 5. Схема с общим коллектором дает усиление по току и по мощности, но не дает усиления по напряжению.
- 6. Схему с общим коллектором очень часто применяют в качестве входного каскада усиления из-за его высокого входного сопротивления и способности не нагружать источник входного сигнала, а также данная схема имеет наименьшее выходное сопротивление.

3.4 Статические характеристики биполярного транзистора

Статическими характеристиками называются зависимости между входными и выходными токами и напряжениями транзистора при отсутствии нагрузки. Каждая из схем включения транзистора характеризуется четырьмя семействами статических характеристик:

1. *Входные характеристики* — это зависимость входного тока от входного напряжения при постоянстве напряжения на выходе:

$$I_{\text{ex}} = f(U_{\text{ex}})_{U_{\text{estx}}=const}. {(3.22)}$$

2. *Выходные характеристики* — это зависимость выходного тока от выходного напряжения при фиксированном значении входного тока:

$$I_{\text{\tiny obst}} = f(U_{\text{\tiny obst}})|_{I_{\text{\tiny ex}} = const} . \tag{3.23}$$