Topic 12

- 12 Light emitting diodes (LEDs) -1
 - 12.1 Introduction
 - 12.2 Basic Concepts
 - 12.3 LED Structures
 - 12.4 Characteristic of LEDs
 - 12.5 Modulation dynamics

Introduction (i)

Flashlights

Accent Lighting

Mini Projection Displays

LEDs

Coupling

Screen

18" LCD monitor with LED backlight

Introduction (ii)

End Use Applications*

Motor Control 32%

Lighting 29%

Heating & Cooling 24%

Information Technology 15%

- U.S. DOE has chosen, energy efficient LED lighting to play the key role in reducing our electric light consumption by 50% by 2025
- Over the next 20 years, rapid adoption of LED lighting in the U.S. can:
 - Reduce electricity demands from lighting by 62%/year
 - Eliminate 300 million metric tons of carbon emissions/year
 - Avoid building 133 new power plants
 - Anticipate financial savings that could exceed \$200 billion/year

Light Type	lm/W	CRI	CCT	Life (hrs)
White LEDs	60-130	60-90	2.5K – 6K	50k-70K
Metal halide	60-120	70 - 85	4K-6K	5k-20k
High-pressure sodium	70-140	22	2.5K	16k-24k
Low-pressure sodium	68-173	5	2500	16k-18k
Induction	60 – 80	65	5K	50K

Basic concepts (i)

What is LED?
 Semiconductor (inorganic semiconductor)
 p-doing, n-doping
 Fermi-level
 Depletion region
 Forward Bias
 Reverse Bias
 minority carrier
 majority carrier

- How does LED work?
 - Recombination of minority carriers with majority carriers

Homojunction LED

Zero biased p-n junction

 n_0 , p_0 = free carrier densities

Forward biased p-n junction

 Δn , Δp injected carrier densities

Review of p-n Junction

Review what we have learnt previously in p-n junction:

Excess minority charge (electrons and holes)

Contribution to currents: minority diffusion

Equilibrium:
$$V_0 = \frac{kT}{q} \ln \frac{p_p}{p_n} = \frac{kT}{q} \ln \frac{N_a}{n_i^2/N_d} = \frac{kT}{q} \ln \frac{N_a N_d}{n_i^2}$$

$$J_n(x) = q \mu_n n(x) \mathcal{E}(x) + q D_n \frac{an(x)}{dx}$$

$$J_n(x) = q\mu_n n(x) \mathcal{E}(x) + qD_n \frac{dn(x)}{dx}$$

$$\frac{p_p}{p_n} = \frac{n_n}{n_p} = e^{qV_0/kT} \qquad (5-10) \qquad W = \left[\frac{2\epsilon(V_0 - V)}{q} \left(\frac{N_a + N_d}{N_a N_d}\right)\right]^{1/2} \quad (5-57)$$

One-sided abrupt
$$p^+$$
- n : $x_{n0} = \frac{WN_a}{N_a + N_d} \simeq W$ (5-23) $V_0 = \frac{qN_dW^2}{2\epsilon}$

$$\Delta p_n = p(x_{n0}) - p_n = p_n(e^{qV/kT} - 1)$$
 (5-29)

$$\delta p(x_n) = \Delta p_n e^{-x_n/L_p} = p_n (e^{qV/kT} - 1)e^{-x_n/L_p}$$
 (5-31b)

Ideal diode:
$$I = qA \left(\frac{D_p}{L_p} p_n + \frac{D_n}{L_n} n_p \right) (e^{qV/kT} - 1) = I_0(e^{qV/kT} - 1)$$
 (5-36)

Electron-hole recombination

E-h recombination: radiative or non-radiative

- •Non-radiative recombination: recombination at (i) defects; (ii) Auger recombination, etc
- •Radiative recombination: intersubband transition, excitonic recombination, recombination through impurity center (InGaN:Zn, GaP:N)
- Very important issue: Internal quantum efficiency (IQE)

Choice of materials for LEDs

Direct bandgap:

Electrons in conduction band minima Holes in valence band maxima Both have the same momentum

Indirect bandgap:

Electron and hole have different momentum

Phonon is required to participate to allow the recombination

due to momentum conservation

SiC LED: 0.02% quantum efficiency (first LED)

GaN LED: >20 % quantum efficiency

GaP, GaAs, GaP (N)

LED: Bandgap determines the emission wavelength (colour)

Band structure: direct bandgap

UV: III-nitrides, ZnO, II-VI groups

Visible: III-nitrides, GaNP, AlGaInP

Infrared: III-nitrides, InAs, InSb, InGaAs, etc

Basic parameters to describe LEDs

How to characterise LED?

Radiative recombination lifetime, Non-radiative recombination lifetime

Internal quantum efficiency

Extraction efficiency

External quantum efficiency

Characteristics of LED performance (i)

(i) Internal quantum efficiency; (ii) Extraction efficiency; (iii) Injection efficiency; (iv) External quantum efficiency; (v) Luminous efficiency; (iii) wall plug efficiency;

IQE:

 η_{int} = photons internally generated/electrons in

Extraction efficiency:

 η_{ex} = photons out/photon generated

Injection efficiency:

fraction of the total diode current due to injection of electrons into p-side of junction

External quantum efficiency:

$$\eta_{tot} = \eta_{inj} \bullet \eta_{int} \bullet \eta_{ex}$$
 (photons out/electrons)

Luminous efficiency:

 η_{lum} = lumen out/electric power in

Characteristics of LED performance (ii)

IQE:

Ratio of radiative recombination rate to total recombination rate

Electrons in Radiative
$$(\frac{\Delta n}{\tau_{rad}})$$
+ non-radiative $(\frac{\Delta n}{\tau_{non}})$

Radiative $(\frac{\Delta n}{\tau_{rad}})$

$$\eta = \frac{\frac{\Delta n}{\tau_{rad}}}{\frac{\Delta n}{\tau_{rad}} + \frac{\Delta n}{\tau_{non}}} = \frac{\frac{1}{\tau_{rad}}}{\frac{1}{\tau_{rad}} + \frac{1}{\tau_{non}}}$$

Characteristics of LED performance (iii)

$$\eta = \frac{\frac{1}{\tau_{rad}}}{\frac{1}{\tau_{rad}} + \frac{1}{\tau_{non}}} = \frac{1}{1 + \frac{\tau_{rad}}{\tau_{non}}}$$

Make τ_{non} long compared to τ_{rad} :

Growing materials with low defect densities Eliminating non-radiative impurities

To achieve reasonable IQE: GaP and GaAs-based LED Defect density<10⁴/cm²

However: GaN-based LED with high IQE defect density> 108/cm²

Optical Output Power

Extraction efficiency (next)

Several factors determine η_{ext} :

- 1. Absorption: $I=I_0 \exp(-\alpha d)$
- Homojunction LED:
- d decreases, surface states destroy IQE
- d increases, absorption is enhanced
- DH-LED: absorption will be significantly reduced

- 3 Transmission losses
- 4 Reflection at top contact
- **5 Absorption from top-contact**

Transmission losses (i)

When light passes through from one material with n_1 to another one with n_2 . The angle will be changed, and obeys: $n_1 \sin \theta_1 = n_2 \sin \theta_2$

When $n_1 > n_2$, $\theta_2 > \theta_1$. At a critical angle of $\theta_1(\theta_c)$, $\theta_2 = 90^0$

 $\theta_c = \sin^{-1}(\frac{n_2}{n_1})$

- $\theta_1 > \theta_c$: total internal reflection will take place
- $\theta_1 < \theta_c$: there is still loss of light due to reflection For normal incident, i.e., $\theta_1 = 0^0$

$$R = \left(\frac{\boldsymbol{n}_2 - \boldsymbol{n}_1}{\boldsymbol{n}_2 + \boldsymbol{n}_1}\right)^2$$

$$T = 1 - (\frac{n_2 - n_1}{n_2 + n_1})^2$$

Transmission losses (ii)

Only emitted light with a cone of $2\theta_c$ can be extracted

Extraction efficiency

Assume the emitted light is constant in all directions, we can calculate how much the emitted light can be extracted, i.e., **Extraction efficiency**.

The distance from the original emitted point to the surface is R

$$F = \frac{\pi (R \sin(\theta_c))^2}{4\pi R^2} = \frac{\sin^2(\theta_c)}{4} = \frac{(\frac{n_2}{n_1})^2}{4}$$

Extraction efficiency

$$I = FT = \frac{1}{4} \left(\frac{n_2}{n_1} \right)^2 \left[\left(1 - \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 \right) \right]$$

For example: GaAs: n_1 =3.45,

only 1.5% generated light can be extracted!!!

Solution to improve extraction efficiency (i)

$$I = FT = \frac{1}{4} \left(\frac{n_2}{n_1} \right)^2 \left[\left(1 - \left(\frac{n_1 - n_2}{n_1 + n_2} \right)^2 \right) \right]$$

- •Polish the LED and make its surface as a hemisphere to avoid θ_c issue
- Depositing a material with an intermediate refractive index n₂ increases, transmission increases
- •Depositing a layer which is an anti-reflection coating to make R $\,
 ightarrow\,$ 0

$$d = \frac{\lambda}{4n} (2L - 1)$$

Solution to improve extraction efficiency (ii)

Combination of above the three methods

- •Make the intermediate layer shaped as a hemisphere to avoid θc issue, and then coat an anti-reflection layer to maximise efficiency
- •The method of using a hemispheric intermediate layer using epoxy has been generally used in the LED industry.

Commercial LEDs

General use in the opto-electronics industry

LED Modulation (i)

Forward Bias

Continuity equation:

J = injected current density q = electron charge

$$\frac{d\Delta n}{dt} = \frac{J}{qd} - \frac{\Delta n}{\tau}$$

LED Modulation (ii)

τ:

recombination lifetime -

$$f_{\rm m}^{\sim} \frac{1}{2\pi\tau}$$

The ultimate limit to modulation bandwidth ~ns

I_{out}: detector current

Optical bandwidth:
$$\left[\frac{I_{out}(f)}{I_{out}(dc)}\right]^2 = 1/2$$

Electrical bandwidth:
$$\frac{I_{out}(f)}{I_{out}(dc)} = \sqrt{\frac{1}{2}}$$

LED Modulation (iii)

Limits:

- LED structure is similar to a capacitor
- changing J instantaneously RC time constant of device
 - junction capacitance
- Maximum frequency for a capacitor should be less than 1/RC

LED Modulation (iv) – Current Peaking

Double Heterostructure LED (i)

Double Heterostructure LED (ii)

- •DH LED: a layer with a lower bandgap material sandwiched between two layers with higher bandgaps.
- •DH LED: consists of two heterojunctions.
- •Recombination of carriers: restricted to the low bandgap region, i.e., "the active region" of the diode.

Summary – LED (i)

- Diode formed of p and n doped semiconductors
- In forward bias electrons and holes occupy the same region of the LED
- Light emission via spontaneous recombination
- ~ns carrier lifetime of carriers for highly pure semiconductors
- The "i" region is often lightly p-doped to reduce lifetime of electrons – increasing internal efficiency
- Light emitted at a range of wavelengths (governed by bandgap and temperature) in all possible directions
- Due to reflection at semiconductor/air interface, external efficiency of an LED is low (hence low launch power)

Summary - LED (ii)

- Modulation rate is governed by the carrier lifetime
- Can be engineered by clever biasing arrangement (expensive)
 or introduction of non-radiative defects, decreasing carrier
 lifetime but reducing internal efficiency and hence launch
 power

Tutorial Questions

- T 12.1 Draw and label an InP based LED operating at 1.55 μ m. Indicate materials, doping, and the direction from which light is collected.
- T12.2 Sketch the band structure for the diode drawn in T13.1 under zero bias and at the operating voltage.
- T12.4 Describe the limits to the modulation speed of an LED.