2020 年春微积分 A2 期末考试样题

- 1. (10 分)设 $z = xf\left(x, \frac{x}{y}\right)$,其中 f 有二阶连续偏导数,求 $\frac{\partial^2 z}{\partial x \partial y}$ 。
- 2. (10 分)设方程 $xyz + \sqrt{x^2 + y^2 + z} = \sqrt{2}$ 确定的函数 z = z(x, y),求该函数在点 x = 1, y = 0 处的全微分 dz .
- 3. (10 分) 求曲线 $x^2 + 2xy + 3y^2 8y = 0$ 上的点与直线 x + y = 8 上的点之间的最短距离。
- 4. (10 分) 求二重积分 $\iint_D \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) dxdy$, 其中 $D = \{(x,y)|x^2 + y^2 \le R^2\}$ 。
- 5. (10 分) Ω 是由曲面 $z=x^2+y^2$ 和 $z=2-x^2-y^2$ 包围的空间区域,求 $\iiint_{\Omega} (x^2+y^2) \mathrm{d}x \mathrm{d}y \mathrm{d}z \, .$
- 6. (10 分)设L是由点A(1,1)出发,经过点B(0,1)到点C(0,-1)的有向折线,求 $\int_{L} (x+y) \mathrm{d}l \, \pi \int_{L^{+}} (x+y) \mathrm{d}x + (x+y) \mathrm{d}y \,.$
- 7. (10 分)计算曲面积分 $\iint_S (2y+z) dz \wedge dx + z dx \wedge dy$, 其中 S 为有向曲面 $z=x^2+y^2$ (0 $\leq z \leq 1$), 法向量与 z 轴正向夹角为锐角。
- 8. (10 分)设 $f(x) = \begin{cases} x & 0 < x \le 1 \\ 0 & 1 < x < 2 \end{cases}$,将 f(x) 展为周期为 2 的 Fourier 级数,求 Fourier 级数的和函数。
- 9. (12 分)设幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $(-\infty, +\infty)$ 上收敛,其和函数 S(x) 满足 S''(x) 2xS'(x) 4S(x) = 0, S(0) = 0, S'(0) = 1。
- (1) 证明: $a_{n+2} = \frac{2}{n+1} a_n, n = 1, 2, L$;
- (II) 求和函数 S(x) 的表达式。

10. (8 分)设 Ω 为由光滑圆锥面S: F(x, y, z) = 0及平面

Ax + By + Cz + D = 0 所围成的圆锥体,不妨假设此圆锥体的顶点在原点.

$$V = \frac{1}{3} \iint_{\partial \Omega} (\mathbf{r} \cdot \mathbf{n}^0) \mathrm{d}S$$

其中 $\partial\Omega$ 为 Ω 区域的边界面, \mathbf{n}^0 为其单位外法向量,

$$\mathbf{r} = (x, y, z) .$$

(2) 此圆锥体的体积V 也可以表示为

$$V = \frac{Ah}{3}$$

其中A为圆锥的底面积,h为圆锥的高.

