## **Data Structures and Algorithms**

(ESO207)

#### Lecture 12:

- Queue : a new data Structure :
- Finding shortest route in a grid in presence of obstacles

## Queue: a new data structure

#### **Data Structure Queue:**

- Mathematical Modeling of Queue
- Implementation of Queue using arrays

#### **Stack**

A <u>special kind</u> of list where all operations (insertion, deletion, query) take place at <u>one end</u> only, called the **top**.



#### **Behavior of Stack:**

Last in (LIFO)

**First out** 

## Queue: a new data structure

A <u>special kind</u> of list based on (FIFO)

First in First Out



# **Operations on a Queue**

#### **Query Operations**

- IsEmpty(Q): determine if Q is an empty queue.
- Front(Q): returns the element at the front position of the queue.

**Example:** If **Q** is  $a_1$ ,  $a_2$ , ...,  $a_n$ , then Front(**Q**) returns  $a_1$ 

#### **Update Operations**

- CreateEmptyQueue(Q): Create an empty queue
- Enqueue(x,Q): insert x at the end of the queue Q

**Example:** If **Q** is  $a_1$ ,  $a_2$ ,...,  $a_n$ , then after **Enqueue**(**x**,**Q**), queue **Q** becomes

$$a_1$$
,  $a_2$ ,...,  $a_n$ ,  $\mathbf{x}$ 

• Dequeue(Q): return element from the front of the queue Q and delete it Example: If Q is  $a_1$ ,  $a_2$ ,...,  $a_n$ , then after Dequeue(Q), queue Q becomes

$$a_2$$
,...,  $a_n$ 

#### How to access ith element from the front?



• To access ith element, we **must** perform dequeue (hence delete) the first i-1 elements from the queue.

An Important point you must remember for every data structure

You can define any **new** operation only in terms of the <u>primitive operations</u> of the data structures defined during its modeling.

## Implementation of Queue using array

**Assumption:** At any moment of time, the number of elements in queue is n.

Keep an array of Q size n, and two variables front and rear.

- front: the position of the first element of the queue in the array.
- rear: the position of the last element of the queue in the array.

```
Enqueue(x,Q)
{    rear ← rear+1;
    Q[rear] ← x
}
Dequeue(Q)
{     x← Q[front];
    front← front+1;
    return x;}
```



## Implementation of Queue using array





## Implementation of Queue using array

```
Enqueue(x,Q)
     rear ←
               (rear+1) mod n;
 \mathbf{Q}[\mathbf{rear}] \leftarrow \mathbf{x}
Dequeue(Q)
        x \leftarrow Q[front];
   front←
                (front+1) mod n;
   return x;
IsEmpty(Q)
      Do it as an exercise
```

# **Shortest route** in a grid with obstacles

# Shortest route in a grid

From a cell in the grid, we can move to any of its <u>neighboring</u> cell in one <u>step</u>.

**Problem:** From top left corner, find shortest route to each cell avoiding obstacles.

**Input**: a Boolean matrix **G** representing the grid such that

G[i, j] = 0 if (i, j) is an obstacle, and 1 otherwise.



# Step 1:

Realizing the nontriviality of the problem

# Shortest route in a grid

#### nontriviality of the problem



**Definition:** Distance of a cell c from another cell c'

is the length (number of steps) of the shortest route between c and c'.

We shall design algorithm for computing distance of each cell from the start-cell.

As an exercise, you should extend it to a data structure for retrieving shortest route.

# **Get inspiration from nature**



# Shortest route in a grid

#### nontriviality of the problem

How to find the shortest route to ★ in the grid?



Create a ripple at the start cell and trace the path it takes to ★

## propagation of a ripple from the start cell



## ripple reaches cells at distance 1 in step 1



## ripple reaches cells at distance 2 in step 2



## ripple reaches cells at distance 3 in step 3



## ripple reaches cells at distance 8 in step 8



## ripple reaches cells at distance 9 in step 9



## ripple reaches cells at distance 10 in step 10



## ripple reaches cells at distance 11 in step 11



## ripple reaches cells at distance 12 in step 12



## ripple reaches cells at distance 13 in step 13



## ripple reaches cells at distance 14 in step 14



#### ripple reaches cells at distance 15 in step 15



Think for a few more minutes with a free mind  $\odot$ .

# Step 2: Designing algorithm for distances in grid

(using an insight into propagation of ripple)

## A snapshot of ripple after *i* steps

#### A snapshot of ripple after *i* steps



 $L_i$ : the cells of the grid at distance i from the starting cell.

#### A snapshot of the ripple after i + 1 steps

All the hardwork on the animation was done just to make you realize <u>this important</u> **Observation**. If you have got it, feel free to erase the animation from your mind  $\odot$ .





**Observation:** Each cell of  $L_{i+1}$  is a neighbor of a cell in  $L_i$ .

#### Distance from the start cell

It is worth spending some time on this matrix.

Does the matrix give some idea to answer the question?



How can we generate  $L_{i+1}$  from  $L_i$ ?

**Observation:** Each cell of  $L_{i+1}$  is a neighbor of a cell in  $L_i$ .

But every neighbor of  $L_i$  may be a cell of  $L_{i-1}$  or  $L_{i+1}$ .













So the algorithm should be:

Initialize the distance of all cells except start cell as ∞

First compute  $L_1$ .

Then using  $L_1$  compute  $L_2$ 

Then using  $L_2$  compute  $L_3$ 

• • •



## Algorithm to compute $L_{i+1}$ if we know $L_i$

```
Compute-next-layer(G, L_i)
  CreateEmptyList(L_{i+1});
  For each cell c in L<sub>i</sub>
       For each neighbor b of c which is <u>not</u> an obstacle
             if (Distance[b] = \infty)
                   Insert(b, L_{i+1});
                    Distance[b] \leftarrow i + 1;
  return L_{i+1};
```

## The first (not so elegant) algorithm

(to compute distance to all cells in the grid)

```
Distance-to-all-cells(G, c_0)
\{L_0 \leftarrow \{c_0\}; \\ For(i = 0 \text{ to } ??)\}
L_{i+1} \leftarrow Compute-next-layer(G, L_i);
```

#### The algorithm is not elegant because of

So many temporary lists that get created.

#### Towards an elegant algorithm ...

#### Key points we observed:

- We can compute cells at distance i + 1 if we know all cells up to distance i.
- Therefore, we need a mechanism
   to enumerate the cells in non-decreasing order of distances from the start cell.



# Keep a queue Q



Spend some time to see how seamlessly the queue ensured the requirement of visiting cells of the grid in non-decreasing order of distance.

#### An elegant algorithm

(to compute distance to all cells in the grid)

```
Distance-to-all-cells(G, c_0)
  CreateEmptyQueue(Q);
  Distance(\mathbf{c}_0) \leftarrow 0;
  Enqueue(c_0,Q);
  While(
             Not IsEmptyQueue(Q)
           c ← Dequeue(Q);
           For each neighbor b of c which is not an obstacle
                  if (Distance(b) = \infty)
                         Distance(b) ←
                                              Distance(c) +1
                         Enqueue(b, Q);
```

## Proof of correctness of algorithm

Question: What is to be proved?

**Answer:** At the end of the algorithm,

**Distance**[c]= the distance of cell c from the starting cell in the grid.

**Question:** How to prove?

**Answer:** By the principle of mathematical induction on

the distance from the starting cell.

#### Inductive assertion:

#### P(i):

The algorithm correctly computes distance to all cells at distance *i* from the starting cell.

As an exercise, try to prove P(i) by induction on i.