(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 15 July 2004 (15.07.2004)

PCT

(10) International Publication Number WO 2004/058988 A2

(51) International Patent Classification7:

C12Q

(21) International Application Number:

PCT/US2003/040781

(22) International Filing Date:

19 December 2003 (19.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/435,923

20 December 2002 (20.12.2002) U

- (71) Applicant (for all designated States except US): AMGEN, INC. [US/US]; Law Department, 51 University Street, Seattle, WA 98101 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): HAN, HQ [US/US];

3353 Crossland Street, Thousand Oaks, CA 91362 (US). MIN, Hosung [US/US]; 3875 Conner Court, Newbury Park, CA 91320 (US). BOONE, Thomas, Charles [US/US]; 2805 Michael Drive, Newbury Park, CA 91320 (US).

- (74) Agent: BELLAS, Christine, M.; AMGEN, Inc., Law Department, 1201 Amgen Court West, Seattle, WA 98119 (US)
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, II., IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW),

[Continued on next page]

(54) Title: BINDING AGENTS WHICH INHIBIT MYOSTATIN

(57) Abstract: The present invention provides binding agents comprising peptides capable of binding myostatin and inhibiting its activity. In one embodiment the binding agent comprises at least one myostatin-binding peptide attached directly or indirectly to at least one vehicle such as a polymer or an Fc domain. The binding agents of the present invention produced increased lean muscle mass when administered to animals and decreased fat to muscle ratios. Therepeutic compositions containing the binding agents of the present invention are useful for treating muscle-wasting disorders and other metabolic disorders including diabetes and obesity.

В

Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL., PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

Published:

 without international search report and to be republished upon receipt of that report

BINDING AGENTS WHICH INHIBIT MYOSTATIN

This application hereby claims benefit of United States provisional application serial number 60/435,923, filed December 20, 2002, the entire disclosure of which is relied upon and incorporated by reference.

FIELD OF THE INVENTION

The invention relates to growth factors and in particular to the growth factor myostatin and agents which bind myostatin and inhibit its activity.

10 <u>BACKGROUND</u>

5

15

20

25

30

Myostatin, also known as growth/differentiation factor 8 (GDF-8), is a transforming growth factor-B (TGF-B) family member known to be involved in regulation of skeletal muscle mass. Most members of the TGF-B-GDF family are expressed non-specifically in many tissue types and exert a variety of pleitrophic actions. However, myostatin is largely expressed in the cells of developing and adult skeletal muscle tissue and plays an essential role in negatively controlling skeletal muscle growth (McPherron et al. *Nature* (London) 387, 83-90 (1997)). Recent studies, however, indicate that low levels of myostatin expression can be measured in cardiac, adipose and pre-adipose tissues.

The myostatin protein has been highly conserved evolutionarily (McPherron et al. PNAS USA 94:12457-12461 (1997)). The biologically active C-terminal region of myostatin has 100 percent sequence identity between human, mouse, rat, cow, chicken, and turkey sequences. The function of myostatin also appears to be conserved across species as well. This is evident from the phenotypes of animals having a mutation in the myostatin gene. Two breeds of cattle, the Belgian Blue (Hanset R., Muscle Hypertrophy of Genetic Origin and its Use to Improve Beef Production, eds, King, J.W.G. & Menissier, F. (Nijhoff, The Hague, The Netherlands) pp. 437-449) and the Piedmontese (Masoero, G. & Poujardieu, B, Muscle Hypertrophy of Genetic Origin and its Use to Improve Beef Production., eds, King, J.W.G. & Menissier, F. (Nijhoff, The Hague, The Netherlands) pp. 450-459) are characterized by a "double muscling" phenotype and increase in muscle mass. These breeds were shown to contain mutations in the coding region of the myostatin gene (McPherron et al. (1997) supra). In addition, mice containing a targeted deletion of the gene encoding myostatin (Mstn) demonstrate a dramatic increase in muscle mass without a corresponding increase in fat. Individual muscles of Mstn - mice weigh approximately 100 to 200 percent more than those of control animals as a result of muscle fiber hypertrophy and hyperplasia (Zimmers et al. Science 296, 1486 (2002)).

Administration of myostatin to certain strains of mice has been shown to create a condition similar to muscle wasting disorders found associated with cancer, AIDS, and muscular dystrophy, for example. Myostatin administered as myostatin-producing CHO cells to athymic nude mice resulted in a wasting effect with a high degree of weight loss, a decrease of as much as 50% of skeletal muscle mass in addition to fat wasting, and severe hypoglycemia (Zimmers et al. supra).

Loss of myostatin appears to result in the retention of muscle mass and reduction in fat accumulation with aging. It has been shown that age-related increases in adipose tissue mass and decrease in muscle mass were proportional to myostatin levels, as determined by a comparison of fat and muscle mass in Mstn +/+ when compared with Mstn -/- adult knockout mice (McFerron et al. J. Clin. Invest 109, 595 (2002)). Mstn -/- mice showed decreased fat accumulation with age compared with Mstn +/+ mice.

10

15

20

25

30

35

In addition myostatin may play a role in maintaining blood glucose levels and may influence the development of diabetes in certain cases. It is known that, for example, skeletal muscle resistance to insulin-stimulated glucose uptake is the earliest known manifestation of non-insulin-dependent (type 2) diabetes mellitus (Corregan et al. *Endocrinology* 128:1682 (1991)). It has now been shown that the lack of myostatin partially attenuates the obese and diabetes phenotypes of two mouse models, the agouti lethal yellow (A^y) (Yen et al. *FASEB J.* 8:479 (1994)), and obese (Lep^{ob/ob}). Fat accumulation and total body weight of the A^{y/a}, Mstn ^{-/-} double mutant mouse was dramatically reduced compared with the A^{y/a} Mstn ^{-/-} mice was dramatically lower than in A^{y/a} Mstn ^{+/+} mice following exogenous glucose load, indicating that the lack of myostatin improved glucose metabolism. Similarly Lep^{ob/ob} Mstn ^{-/-} mice showed decreased fat accumulation when compared with the Lep^{ob/ob} Mstn ^{+/+} phenotype.

Therefore, there is considerable evidence from the phenotypes of over-expressing and knockout animals that myostatin may play a role in contributing to a number of metabolic disorders including disorders resulting in muscle wasting, diabetes, obesity and hyperglycemia.

SUMMARY OF THE INVENTION

The present invention is directed to binding agents which bind myostatin and inhibit its activity. The binding agents comprise at least one peptide capable of binding myostatin. The myostatin-binding peptides are preferably between about 5 and about 50 amino acids in length, more preferably between about 10 and 30 amino acids in length, and most preferably between about 10 and 25 amino acids in length. In one embodiment the myostatin-binding peptide comprises the amino acid sequence WMCPP (SEQ ID NO: 633). In another embodiment the

myostatin binding peptides comprise the amino acid sequence Ca₁a₂Wa₃WMCPP (SEQ ID NO: 352), wherein a₁, a₂ and a₃ are selected from a neutral hydrophobic, neutral polar, or basic amino acid. In another embodiment the myostatin binding peptide comprises the sequence Cb₁b₂Wb₃WMCPP_(SEQ ID NO: 353), wherein b₁ is selected from any one of the amino acids T, 5 L or R; b₂ is selected from any one of R, S, Q; b₃ is selected from any one of P, R and O, and wherein the peptide is beween 10 and 50 amino acids in length, and physiologically acceptable salts thereof. In another embodiment, the myostatin binding peptide comprises the formula: $c_1c_2c_3c_4c_5c_6Cc_7c_8Wc_9WMCPPc_{10}c_{11}c_{12}c_{13}$ (SEQ ID NO: 354), wherein: c1 is absent or any amino acid; 10 c₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; c₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid: c4 is absent or any amino acid; c₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; c₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid; 15 c₇ is a neutral hydrophobic, neutral polar, or basic amino acid; c₈ is a neutral hydrophobic, neutral polar, or basic amino acid; co is a neutral hydrophobic, neutral polar or basic amino acid; and c₁₀ to c₁₃ is any amino acid; and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof. 20 A related embodiment the myostatin binding peptide comprises the formula: $d_1d_2d_3d_4d_5d_6Cd_7d_8Wd_9WMCPP$ $d_{10}d_{11}d_{12}d_{13}$ (SEQ ID NO: 355), wherein d, is absent or any amino acid; d₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; 25 d₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; d_{λ} is absent or any amino acid: d₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid; d₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid; d_7 is selected from any one of the amino acids T, I, or R; 30 d₈ is selected from any one of R, S, Q; do is selected from any one of P, R and Q, and d₁₀ to d₁₃ is selected from any amino acid, and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof. 35 Additional embodiments of binding agents comprise at least one of the following peptides: (1) a peptide capable of binding myostatin, wherein the peptide comprises the sequence $\underline{WYe_1e_2Ye_3G}$, (SEQ ID NO: 356) wherein e₁ is P, S or Y, 40 e2 is C or Q, and

e₃ is G or H, wherein the peptide is between 7 and 50 amino acids in length, and physiologically acceptable salts thereof;

(2) a peptide capable of binding myostatin, wherein the peptide comprises the sequence f₁EMLf₂SLf₃f₄LL, (SEQ ID NO: 455),

5 wherein f_1 is M or I,

f₂ is any amino acid,

 f_3 is L or F,

 f_4 is E, Q or D;

and wherein the peptide is between 7 and 50 amino acids in length, and physiologically

- 10 acceptable salts thereof;
 - (3) a peptide capable of binding myostatin wherein the peptide comprises the sequence Lg₁g₂LLg₃g₄L, (SEQ ID NO: 456), wherein

g1 is Q, D or E,

g₂ is S, Q, D or E,

15 g₃ is any amino acid,

 g_4 is L, W, F, or Y, and wherein the peptide is between 8 and 50 amino acids in length, and physiologically acceptable salts thereof;

- (4) a peptide capable of binding myostatin, wherein the peptide comprises the sequence $h_1h_2h_3h_4h_5h_6h_7h_8h_9$ (SEQ ID NO: 457), wherein
- 20 h_1 is R or D,

h₂ is any amino acid,

h₃ is A, T S or Q,

h₄ is L or M,

h₅ is L or S,

 h_6 is any amino acid,

h₇ is F or E,

h₈ is W, F or C,

h₉ is L, F, M or K, and wherein the peptide is between 9 and 50 amino acids in length, and physiologically acceptable salts thereof.

In one embodiment, the binding agents of the present invention further comprise at least one vehicle such as a polymer or an Fc domain, and may further comprise at least one linker sequence. In this embodiment, the binding agents of the present invention are constructed so that at least one myostatin-binding peptide is attached to at least one vehicle. The peptide or peptides are attached directly or indirectly through a linker sequence, to the vehicle at the N-terminal, C-terminal or an amino acid sidechain of the peptide. In this embodiment, the binding agents of the present invention have the following generalized structure:

 $(X^1)_a - F^1 - (X^2)_b$ or multimers thereof;

wherein F¹ is a vehicle; and X¹ and X² are each independently selected from

$$-(L^{1})_{c}-P^{1};$$

40 $-(L^1)_c - P^1 - (L^2)_d - P^2;$

$$\begin{split} -(L^1)_c - P^1 - (L^2)_d - P^2 - (L^3)_e - P^3; \\ \text{and } -(L^1)_c - P^1 - (L^2)_d - P^2 - (L^3)_e - P^3 - (L^4)_f - P^4; \end{split}$$

5

10

15

20

25

30

35

wherein P^1 , P^2 , P^3 , and P^4 are peptides capable of binding myostatin; and L^1 , L^2 , L^3 , and L^4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.

In various embodiments of binding agents having this generalized structure, the peptides P¹, P², P³, and P⁴ can be independently selected from one or more of any of the peptides comprising the sequences provided above. P¹, P², P³, and P⁴ are independently selected from one or more peptides comprising any of the following sequences: SEQ ID NO: 633, SEQ ID NO: 352, SEQ ID NO: 353, SEQ ID NO: 354, SEQ ID NO: 355, SEQ ID NO: 356, SEQ ID NO: 455, SEQ ID NO: 456, or SEQ ID NO: 457.

In a further embodiment, the binding agents comprise peptides fused to an Fc domain, either directly or indirectly, thereby providing peptibodies. The peptibodies of the present invention display a high binding affinity for myostatin and can inhibit the activity of myostatin as demonstrated both *in vitro* using cell based assays and in animals.

The present invention also provides nucleic acid molecules comprising polynucleotides encoding the peptides, peptibodies, and peptide and peptibody variants and derivatives of the present invention.

The present invention provides pharmaceutically acceptable compositions comprising one or more binding agents of the present invention.

The binding agents of the present invention inhibit myostatin activity in vitro and in vivo. The binding agents of the present invention increase lean muscle mass in a treated animal and decreases fat mass as a percentage of body weight of the animal. The myostatin binding agents of the present invention increase muscular strength in treated animal models.

The present invention provides methods of inhibiting myostatin activity in animals including humans by administering an effective dosage of one or more binding agents to the subject. The present invention provides methods of increasing lean muscle mass in animals including humans by administering an effective dosage of one or more binding agents. The present invention further provides methods of treating myostatin-related disorders by administering an therapeutically effective dosage of one or more myostatin binding agents in a pharmaceutically acceptable composition to a subject. The present invention provides methods of treating muscle wasting disorders including muscular dystrophy, muscle wasting due to cancer, AIDS, rheumatoid arthritis, renal failure, uremia, chronic heart failure, age-related sarcopenia, prolonged bed-rest, spinal chord injury, stroke, bone fracture. The present invention also provides

methods of treating metabolic disorders including obesity, diabetes, hyperglycemia, and bone loss.

The present invention also provides a method of increasing muscle mass in food animals by administering an effective dosage of one or more myostatin binding agents to the animal.

The present invention provides assays utilizing one or more myostatin binding agents to identify and quantitate myostatin in a sample. The assays may be diagnotic assays for measuring or monitoring myostatin levels in individuals with a myostatin related disorder or disease.

BRIEF DESCRIPTION OF THE FIGURES

10 Figure 1 shows myostatin activity as measured by expressed luciferase activity (y-axis) vrs. concentration (x-axis) for the TN8-19 peptide QGHCTRWPWMCPPY (Seq ID No: 32) and the TN8-19 peptibody (pb) to determine the IC₅₀ for each using the C2C12 pMARE luciferase assay described in the Examples below. The peptibody has a lower IC₅₀ value compared with the peptide.

Figure 2 is a graph showing the increase in total body weight for CD1 nu/nu mice treated with increasing dosages of the 1x mTN8-19-21 peptibody over a fourteen day period compared with mice treated with a huFc control, as described in Example 8.

Figure 3A shows the increase in the mass of the gastrocnemius muscle mass at necropsy of the mice treated in Figure 2 (Example 8). Figure 3B shows the increase in lean mass as determined by NMR on day 0 compared with day 13 of the experiment described in Example 8.

Figure 4 shows the increase in lean body mass as for CD1 nu/nu mice treated with biweekly injections of increasing dosages of 1x mTN8-19-32 peptibody as determined by NMR on day 0 and day 13 of the experiment described in Example 8.

Figure 5A shows the increase in body weight for CD1 nu/nu mice treated with biweekly injections of 1x mTN8-19-7 compared with 2x mTN8-19-7 and the control animal for 35 days as described in Example 8. Figure 5B shows the increase in lean carcass weight at necropsy for the 1x and 2x versions at 1 mg/kg and 3 mg/kg compared with the animals receiving the vehicle (huFc) (controls).

Figure 6A shows the increase in lean muscle mass vrs. body weight for aged *mdx* mice treated with either affinity matured 1x mTN8-19-33 peptibody or huFc vehicle at 10 mg/kg subcutaneously every other day for three months. Figure 6B shows the change in fat mass compared to body weight as determined by NMR for the same mice after 3 months of treatment.

5

15

20

25

30

DETAILED DESCRIPTION OF THE INVENTION

The present invention provides binding agents capable of binding myostatin and inhibiting its activity. The myostatin binding agents can be used in assays, to identify, quantitate, or monitor the level of myostatin in an animal. The myostatin binding agents of the present invention reduce myostatin activity. The myostatin binding agents of the present invention increase lean muscle mass in animals, decrease fat mass as a percentage of body weight, and increase muscle strength. The myostatin binding agents of the present invention can be used to treat a variety of metabolic disorders in which myostatin plays a role, including muscle wasting disorders such as muscular dystrophies, muscle wasting due to cancer, AIDS, rheumatoid arthritis, renal failure, uremia, chronic heart failure, prolonged bed-rest, spinal chord injury, stroke, and age-related sarcopenia as well as other metabolic disorders including diabetes, obesity, hyperglycemia, and bone loss, by administering a therapeutic dosage of one or more binding agents in a pharmaceutically acceptable composition to a subject.

15 Myostatin

5

10

20

25

30

Myostatin, a growth factor also known as GDF-8, is known to be a negative regulator of skeletal muscle tissue. Myostatin is synthesized as an inactive preproprotein which is activated by proteolyic cleavage (Zimmers et al., *supra* (2002)). The precurser protein is cleaved to produce an NH₂-terminal inactive prodomain and an approximately 109 amino acid COOH-terminal protein in the form of a homodimer of about 25 kDa, which is the mature, active form (Zimmers et al, *supra* (2002)). It is now believed that the mature dimer circulates in the blood as an inactive latent complex bound to the propeptide (Zimmers et al, supra (2002).

As used herein the term "full-length myostatin" refers to the full-length human preproprotein sequence described in McPherron et al. *supra* (1997), as well as related full-length polypeptides including allelic variants and interspecies homologs which are also described in McPherron et al. (1997). As used herein, the term "prodomain" or "propeptide" refers to the inactive NH₂-terminal protein which is cleaved off to release the active COOH-terminal protein. As used herein the term "myostatin" or "mature myostatin" refers to the mature, biologically active COOH-terminal polypeptide, in monomer, dimer, multimeric form or other form. "Myostatin" or "mature myostatin" also refers to fragments of the biologically active mature myostatin, as well as related polypeptides including allelic variants, splice variants, and fusion peptides and polypeptides. The mature myostatin COOH-terminal protein has been reported to have 100% sequence identity among many species including human, mouse, chicken, porcine, turkey, and rat (Lee et al., *PNAS* 98, 9306 (2001)). Myostatin may or may not include additional

terminal residues such as targeting sequences, or methionine and lysine residues and /or tag or fusion protein sequences, depending on how it is prepared.

As used herein the term "capable of binding to myostatin" or "having a binding affinity for myostatin" refers to a binding agent or peptide which binds to myostatin as demonstrated by as the phage ELISA assay, the BIAcore® or KinExATM assays described in the Examples below.

5

10

15

20

25

As used herein, the term "capable of modifying myostatin activity" refers to the action of an agent as either an agonist or an antagonist with respect to at least one biological activity of myostatin. As used herein, "agonist" or "mimetic" activity refers an agent having biological activity comparable to a protein that interacts with the protein of interest, as described, for example, in International application WO 01/83525, filed May 2, 2001, which is incorporated herein by reference.

As used herein, the term "inhibiting myostatin activity" or "having antagonist activity" refers to the ability of a peptide or binding agent to reduce or block myostatin activity or signaling as demonstrated or *in vitro* assays such as, for example, the pMARE C2C12 cell-based myostatin activity assay or by *in vivo* animal testing as described below.

Structure of Myostatin Binding Agents

In one embodiment, the binding agents of the present invention comprise at least one myostatin binding peptide covalently attached to at least one vehicle such as a polymer or an Fc domain. The attachment of the myostatin-binding peptides to at least one vehicle is intended to increase the effectiveness of the binding agent as a therapeutic by increasing the biological activity of the agent and/or decreasing degradation in vivo, increasing half-life in vivo, reducing toxicity or immunogenicity in vivo. The binding agents of the present invention may further comprise a linker sequence connecting the peptide and the vehicle. The peptide or peptides are attached directly or indirectly through a linker sequence to the vehicle at the N-terminal, C-terminal or an amino acid sidechain of the peptide. In this embodiment, the binding agents of the present invention have the following structure:

(X¹)_a-F¹-(X²)_b, or multimers thereof; wherein F¹ is a vehicle; and X¹ and X² are each independently selected from -(L¹)_c-P¹; -(L¹)_c-P¹-(L²)_d-P²; -(L¹)_c-P¹-(L²)_d-P²-(L³)_c-P³; and -(L¹)_c-P¹-(L²)_d-P²-(L³)_e-P³-(L⁴)_r-P⁴; wherein P¹, P², P³, and P⁴ are peptides capable of binding myostatin; and

 L^1 , L^2 , L^3 , and L^4 are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1.

Any peptide containing a cysteinyl residue may be cross-linked with another Cyscontaining peptide, either or both of which may be linked to a vehicle. Any peptide having more than one Cys residue may form an intrapeptide disulfide bond, as well.

In one embodiment, the vehicle is an Fc domain, defined below. This embodiment is referred to as a "peptibody". As used herein, the term "peptibody" refers to a molecule comprising an antibody Fc domain attached to at least one peptide. The production of peptibodies is generally described in PCT publication WO 00/24782, published May 4, 2000, which is herein incorporated by reference. Exemplary peptibodies are provided as 1x and 2x configurations with one copy and two copies of the peptide (attached in tandem) respectively, as described in the Examples below.

15 Peptides

5

10

20

25

30

35

As used herein the term "peptide" refers to molecules of about 5 to about 90 amino acids linked by peptide bonds. The peptides of the present invention are preferably between about 5 to about 50 amino acids in length, more preferably between about 10 and 30 amino acids in length, and most preferably between about 10 and 25 amino acids in length, and are capable of binding to the myostatin protein.

The peptides of the present invention may comprise part of a sequence of naturally occuring proteins, may be randomized sequences derived from naturally occuring proteins, or may be entirely randomized sequences. The peptides of the present invention may be generated by any methods known in the art including chemical synthesis, digestion of proteins, or recombinant technology. Phage display and RNA-peptide screening, and other affinity screening techniques are particularly useful for generating peptides capable of binding myostatin.

Phage display technology is described, for example, in Scott et al. Science 249: 386 (1990); Devlin et al., Science 249: 404 (1990); U.S. Patent No. 5,223,409, issued June 29, 1993; U.S. Patent No. 5,733,731, issued March 31, 1998; U.S. Patent No. 5,498,530, issued March 12, 1996; U.S. Patent No. 5,432,018, issued July 11, 1995; U.S. Patent No. 5,338,665, issued August 16, 1994; U.S. Patent No. 5,922,545, issued July 13, 1999; WO 96/40987, published December 19, 1996; and WO 98/15833, published April 16, 1998, each of which is incorporated herein by reference. Using phage libraries, random peptide sequences are displayed by fusion with coat proteins of filamentous phage. Typically, the displayed peptides are affinity-eluted either specifically or non-specifically against the target molecule. The retained phages may be enriched

by successive rounds of affinity purification and repropagation. The best binding peptides are selected for further analysis, for example, by using phage ELISA, described below, and then sequenced. Optionally, mutagenesis libraries may be created and screened to further optimize the sequence of the best binders (Lowman, *Ann Rev Biophys Biomol Struct* 26:401-24 (1997)).

5

10

15

20

Other methods of generating the myostatin binding peptides include additional affinity selection techniques known in the art. A peptide library can be fused in the carboxyl terminus of the lac repressor and expressed in E.coli. Another E. coli-based method allows display on the cell's outer membrane by fusion with a peptidoglycan-associated lipoprotein (PAL). Hereinafter, these and related methods are collectively referred to as "E. coli display." In another method, translation of random RNA is halted prior to ribosome release, resulting in a library of polypeptides with their associated RNA still attached. Hereinafter, this and related methods are collectively referred to as "ribosome display." Other methods employ chemical linkage of peptides to RNA. See, for example, Roberts and Szostak, Proc Natl Acad Sci USA, 94: 12297-303 (1997). Hereinafter, this and related methods are collectively referred to as "RNA-peptide screening." Yeast two-hybrid screening methods also may be used to identify peptides of the invention that bind to myostatin. In addition, chemically derived peptide libraries have been developed in which peptides are immobilized on stable, non-biological materials, such as polyethylene rods or solvent-permeable resins. Another chemically derived peptide library uses photolithography to scan peptides immobilized on glass slides. Hereinafter, these and related methods are collectively referred to as "chemical-peptide screening." Chemical-peptide screening may be advantageous in that it allows use of D-amino acids and other analogues, as well as nonpeptide elements. Both biological and chemical methods are reviewed in Wells and Lowman, Curr Opin Biotechnol 3: 355-62 (1992).

25

30

35

Additionally, selected peptides capable of binding myostatin can be further improved through the use of "rational design". In this approach, stepwise changes are made to a peptide sequence and the effect of the substitution on the binding affinity or specificity of the peptide or some other property of the peptide is observed in an appropriate assay. One example of this technique is substituting a single residue at a time with alanine, referred to as an "alanine walk" or an "alanine scan". When two residues are replaced, it is referred to as a "double alanine walk". The resultant peptide containing amino acid substitutions are tested for enhanced activity or some additional advantageous property.

In addition, analysis of the structure of a protein-protein interaction may also be used to suggest peptides that mimic the interaction of a larger protein. In such an analysis, the crystal structure of a protein may suggest the identity and relative orientation of critical residues of the protein, from which a peptide may be designed. See, for example, Takasaki et al., *Nature Biotech*

15:1266 (1977). These methods may also be used to investigate the interaction between a targeted protein and peptides selected by phage display or other affinity selection processes, thereby suggesting further modifications of peptides to increase binding affinity and the ability of the peptide to inhibit the activity of the protein.

5

In one embodiment, the peptides of the present invention are generated as families of related peptides. Exemplary petides are represented by SEQ ID NO: 1 through 132. These exemplary peptides were derived through an selection process in which the best binders generated by phage display technology were further analyzed by phage ELISA to obtain candidate peptides by an affinity selection technique such as phage display technology as described herein. However, the peptides of the present invention may be produced by any number of known methods including chemical synthesis as described below.

10

15

20

The peptides of the present invention can be further improved by the process of "affinity maturation". This procedure is directed to increasing the affinity or the activity of the peptides and peptibodies of the present invention using phage display or other selection technologies.

Based on a consensus sequence, directed secondary phage display libraries, for example, can be generated in which the "core" amino acids (determined from the consensus sequence) are held constant or are biased in frequency of occurrence. Alternatively, an individual peptide sequence can be used to generate a biased, directed phage display library. Panning of such libraries under more stringent conditions can yield peptides with enhanced binding to myostatin, selective binding to myostatin, or with some additional desired property. However, peptides having the affinity matured sequences may then be produced by any number of known methods including chemical synthesis or recombinantly. These peptides are used to generate binding agents such as peptibodies of various configurations which exhibit greater inhibitory activity in cell-based assays and *in vivo* assays.

25

Example 6 below describes affinity maturation of the "first round" peptides described above to produce affinity matured peptides. Exemplary affinity matured peptibodies are presented in Tables IV and V. The resultant 1x and 2x peptibodies made from these peptides were then further characterized for binding affinity, ability to neutralize myostatin activity, specificity to myostatin as opposed to other TNF\$\beta\$ family members, and for additional in vitro and in vivo activity, as described below. Affinity-matured peptides and peptibodies are referred to by the prefix "m" before their family name to distinguish them from first round peptides of the same family.

35

30

Exemplary first round peptides chosen for further affinity maturation according to the present invention included the following peptides: TN8-19 QGHCTRWPWMCPPY (SEQ ID NO: 33), and the linear peptides Linear-2 MEMLDSLFELLKDMVPISKA (SEQ ID NO: 104).

Linear-15 HHGWNYLRKGSAPQWFEAWV (SEQ ID NO: 117), Linear-17, RATLLKDFWQLVEGYGDN (SEQ ID NO: 119), Linear-20 YREMSMLEGLLDVLERLQHY (SEQ ID NO: 122), Linear-21 HNSSQMLLSELIMLVGSMMQ (SEQ ID NO: 123), Linear-24 EFFHWLHNHRSEVNHWLDMN (SEQ ID NO: 126). The affinity matured families of each of these is presented below in Tables IV and V.

5

10

15

20

25

30

35

The peptides of the present invention also encompass variants and derivatives of the selected peptides which are capable of binding myostatin. As used herein the term "variant" refers to peptides having one or more amino acids inserted, deleted, or substituted into the original amino acid sequence, and which are still capable of binding to myostatin. Insertional and substitutional variants may contain natural amino acids as well as non-naturally occuring amino acids. As used herein the term "variant" includes fragments of the peptides which still retain the ability to bind to myostatin. As used herein, the term "derivative" refers to peptides which have been modified chemically in some manner distinct from insertion, deletion, and substitution variants. Variants and derivatives of the peptides and peptibodies of the present invention are described more fully below.

Vehicles

As used herein the term "vehicle" refers to a molecule that may be attached to one or more peptides of the present invention. Preferably, vehicles confer at least one desired property on the binding agents of the present invention. Peptides alone are likely to be removed *in vivo* either by renal filtration, by cellular clearance mechanisms in the reticuloendothelial system, or by proteolytic degradation. Attachment to a vehicle improves the therapeutic value of a binding agent by reducing degradation of the binding agent and/or increasing half-life, reducing toxicity, reducing immunogenicity, and/or increasing the biological activity of the binding agent.

Exemplary vehicles include Fc domains; linear polymers such as polyethylene glycol (PEG), polylysine, dextran; a branched chain polymer (see for example U.S. Patent No. 4,289,872 to Denkenwalter *et al.*, issued September 15, 1981; U. S. Patent No. 5,229,490 to Tam, issued July 20, 1993; WO 93/21259 by Frechet *et al.*, published 28 October 1993); a lipid; a cholesterol group (such as a steroid); a carbohydrate or oligosaccharide; or any natural or synthetic protein, polypeptide or peptide that binds to a salvage receptor.

In one embodiment, the myostatin binding agents of the present invention have at least one peptide attached to at least one vehicle (F¹, F²) through the N-terminus, C-terminus or a side chain of one of the amino acid residues of the peptide(s). Multiple vehicles may also be used; such as an Fc domain at each terminus or an Fc domain at a terminus and a PEG group at the other terminus or a side chain.

An Fc domain is one preferred vehicle. As used herein, the term "Fc domain" encompasses native Fc and Fc variant molecules and sequences as defined below. As used herein the term "native Fc" refers to a non-antigen binding fragment of an antibody or the amino acid sequence of that fragment which is produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies. A preferred Fc is a fully human Fc and may originate from any of the immunoglobulins, such as IgG1 and IgG2. However, Fc molecules that are partially human, or originate from non-human species are also included herein. Native Fc molecules are made up of monomeric polypeptides that may be linked into dimeric or multimeric forms by covalent (i.e., disulfide bonds) and non-covalent association. The number of intermolecular disulfide bonds between monomeric subunits of native Fc molecules ranges from 1 to 4 depending on class (e.g., IgG, IgA, IgE) or subclass (e.g., IgG1, IgG2, IgG3, IgA1, IgGA2). One example of a native Fc is a disulfide-bonded dimer resulting from papain digestion of an IgG (see Ellison et al. (1982), Nucl Acids Res 10: 4071-9). The term "native Fc" as used herein is used to refer to the monomeric, dimeric, and multimeric forms.

5

10

15

20

25

30

As used herein, the term "Fc variant" refers to a modified form of a native Fc sequence provided that binding to the salvage receptor is maintained, as described, for example, in WO 97/34631 and WO 96/32478, both of which are incorporated herein by reference. Fc variants may be constructed for example, by substituting or deleting residues, inserting residues or truncating portions containing the site. The inserted or substituted residues may also be altered amino acids, such as peptidomimetics or D-amino acids. Fc variants may be desirable for a number of reasons, several of which are described below. Exemplary Fc variants include molecules and sequences in which:

- 1. Sites involved in disulfide bond formation are removed. Such removal may avoid reaction with other cysteine-containing proteins present in the host cell used to produce the molecules of the invention. For this purpose, the cysteine-containing segment at the N-terminus may be truncated or cysteine residues may be deleted or substituted with other amino acids (e.g., alanyl, seryl). Even when cysteine residues are removed, the single chain Fc domains can still form a dimeric Fc domain that is held together non-covalently.
- 2. A native Fc is modified to make it more compatible with a selected host cell. For example, one may remove the PA sequence near the N-terminus of a typical native Fc, which may be recognized by a digestive enzyme in *E. coli* such as proline iminopeptidase. One may also add an N-terminal methionyl residue, especially when the molecule is expressed recombinantly in a bacterial cell such as *E. coli*.

3. A portion of the N-terminus of a native Fc is removed to prevent N-terminal heterogeneity when expressed in a selected host cell. For this purpose, one may delete any of the first 20 amino acid residues at the N-terminus, particularly those at positions 1, 2, 3, 4 and 5.

4. One or more glycosylation sites are removed. Residues that are typically glycosylated (e.g., asparagine) may confer cytolytic response. Such residues may be deleted or substituted with unglycosylated residues (e.g., alanine).

5

10

15

20

25

30

35

- 5. Sites involved in interaction with complement, such as the C1q binding site, are removed. For example, one may delete or substitute the EKK sequence of human IgG1. Complement recruitment may not be advantageous for the molecules of this invention and so may be avoided with such an Fc variant.
- 6. Sites are removed that affect binding to Fc receptors other than a salvage receptor. A native Fc may have sites for interaction with certain white blood cells that are not required for the fusion molecules of the present invention and so may be removed.
- 7. The ADCC site is removed. ADCC sites are known in the art. See, for example, *Molec Immunol* 29 (5):633-9 (1992) with regard to ADCC sites in IgG1. These sites, as well, are not required for the fusion molecules of the present invention and so may be removed.
- 8. When the native Fc is derived from a non-human antibody, the native Fc may be humanized. Typically, to humanize a native Fc, one will substitute selected residues in the non-human native Fc with residues that are normally found in human native Fc. Techniques for antibody humanization are well known in the art.

The term "Fc domain" includes molecules in monomeric or multimeric form, whether digested from whole antibody or produced by other means. As used herein the term "multimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two or more polypeptide chains associated covalently, noncovalently, or by both covalent and noncovalent interactions. IgG molecules typically form dimers; IgM, pentamers; IgD, dimers; and IgA, monomers, dimers, trimers, or tetramers. Multimers may be formed by exploiting the sequence and resulting activity of the native Ig source of the Fc or by derivatizing such a native Fc. The term "dimer" as applied to Fc domains or molecules comprising Fc domains refers to molecules having two polypeptide chains associated covalently or non-covalently.

Additionally, an alternative vehicle according to the present invention is a non-Fc domain protein, polypeptide, peptide, antibody, antibody fragment, or small molecule (e.g., a peptidomimetic compound) capable of binding to a salvage receptor. For example, one could use as a vehicle a polypeptide as described in U.S. Patent No. 5,739,277, issued April 14, 1998 to Presta et al. Peptides could also be selected by phage display for binding to the FcRn salvage receptor. Such salvage receptor-binding compounds are also included within the meaning of

"vehicle" and are within the scope of this invention. Such vehicles should be selected for increased half-life (e.g., by avoiding sequences recognized by proteases) and decreased immunogenicity (e.g., by favoring non-immunogenic sequences, as discovered in antibody humanization).

5

In addition, polymer vehicles may also be used to construct the binding agents of the present invention. Various means for attaching chemical moieties useful as vehicles are currently available, see, e.g., Patent Cooperation Treaty ("PCT") International Publication No. WO 96/11953, entitled "N-Terminally Chemically Modified Protein Compositions and Methods," herein incorporated by reference in its entirety. This PCT publication discloses, among other things, the selective attachment of water soluble polymers to the N-terminus of proteins.

10

15

20

A preferred polymer vehicle is polyethylene glycol (PEG). The PEG group may be of any convenient molecular weight and may be linear or branched. The average molecular weight of the PEG will preferably range from about 2 kDa to about 100 kDa, more preferably from about 5 kDa to about 50 kDa, most preferably from about 5 kDa to about 10 kDa. The PEG groups will generally be attached to the compounds of the invention via acylation or reductive alkylation through a reactive group on the PEG moiety (e.g., an aldehyde, amino, thiol, or ester group) to a reactive group on the inventive compound (e.g., an aldehyde, amino, or ester group). A useful strategy for the PEGylation of synthetic peptides consists of combining, through forming a conjugate linkage in solution, a peptide and a PEG moiety, each bearing a special functionality that is mutually reactive toward the other. The peptides can be easily prepared with conventional solid phase synthesis as known in the art. The peptides are "preactivated" with an appropriate functional group at a specific site. The precursors are purified and fully characterized prior to reacting with the PEG moiety. Ligation of the peptide with PEG usually takes place in aqueous phase and can be easily monitored by reverse phase analytical HPLC. The PEGylated peptides can be easily purified by preparative HPLC and characterized by analytical HPLC, amino acid analysis and laser desorption mass spectrometry.

30

25

Polysaccharide polymers are another type of water soluble polymer which may be used for protein modification. Dextrans are polysaccharide polymers comprised of individual subunits of glucose predominantly linked by a1-6 linkages. The dextran itself is available in many molecular weight ranges, and is readily available in molecular weights from about 1 kDa to about 70 kDa. Dextran is a suitable water-soluble polymer for use in the present invention as a vehicle by itself or in combination with another vehicle (e.g., Fc). See, for example, WO 96/11953 and WO 96/05309. The use of dextran conjugated to therapeutic or diagnostic immunoglobulins has been reported; see, for example, European Patent Publication No. 0 315 456, which is hereby

incorporated by reference. Dextran of about 1 kDa to about 20 kDa is preferred when dextran is used as a vehicle in accordance with the present invention.

Linkers

5

10

15

20

25

30

35

The binding agents of the present invention may optionally further comprise a "linker" group. Linkers serve primarily as a spacer between a peptide and a vehicles or between two peptides of the binding agents of the present invention. In one embodiment, the linker is made up of amino acids linked together by peptide bonds, preferably from 1 to 20 amino acids linked by peptide bonds, wherein the amino acids are selected from the 20 naturally occurring amino acids. One or more of these amino acids may be glycosylated, as is understood by those in the art. In one embodiment, the 1 to 20 amino acids are selected from glycine, alanine, proline, asparagine, glutamine, and lysine. Preferably, a linker is made up of a majority of amino acids that are sterically unhindered, such as glycine and alanine. Thus, exemplary linkers are polyglycines (particularly (Gly)₅, (Gly)₈), poly(Gly-Ala), and polyalanines. As used herein, the designation "g" refers to a glycine homopeptide linkers. As shown in Table II, "gn" refers to a 5x gly linker at the N terminus, while "gc" refers to 5x gly linker at the C terminus. Combinations of Gly and Ala are also preferred. One exemplary linker sequence useful for constructing the binding agents of the present invention is the following: gsgsatggsgstassgsgsatg (Seq ID No: 305). This linker sequence is referred to as the "k" or 1k sequence. The designations "kc", as found in Table II. refers to the k linker at the C-terminus, while the designation "kn", refers to the k linker at the Nterminus.

The linkers of the present invention may also be non-peptide linkers. For example, alkyl linkers such as -NH-(CH₂)s-C(O)-, wherein s = 2-20 can be used. These alkyl linkers may further be substituted by any non-sterically hindering group such as lower alkyl (e.g., C₁-C₆) lower acyl, halogen (e.g., Cl, Br), CN, NH₂, phenyl, etc. An exemplary non-peptide linker is a PEG linker, and has a molecular weight of 100 to 5000 kDa, preferably 100 to 500 kDa. The peptide linkers may be altered to form derivatives in the same manner as above.

Exemplary Binding Agents

The binding agents of the present invention comprise at least one peptide capable of binding myostatin. In one embodiment, the myostatin binding peptide is between about 5 and about 50 amino acids in length, in another, between about 10 and 30 amino acids in length, and in another, between about 10 and 25 amino acids in length. In one embodiment the myostatin binding peptide comprises the amino acid sequence WMCPP (SEQ ID NO: 633). In other embodiment, the myostatin binding peptide comprises the amino acid sequence

Ca₁a₂Wa₃WMCPP (SEQ ID NO: 352), wherein a₁, a₂ and a₃ are selected from a neutral hydrophobic, neutral polar, or basic amino acid. In another embodiment the myostatin binding peptide comprises the amino acid sequence Cb₁b₂Wb₃WMCPP (SEQ ID NO: 353), wherein b₁ is selected from any one of the amino acids T, I, or R; b₂ is selected from any one of R, S, Q; b₃ is selected from any one of P, R and Q, and wherein the peptide is beween 10 and 50 amino acids in length, and physiologically acceptable salts thereof.

In another embodiment, the myostatin binding peptide comprises the formula:

 $c_1c_2c_3c_4c_5c_6Cc_7c_8Wc_9WMCPPc_{10}c_{11}c_{12}c_{13}$ (SEQ ID NO: 354), wherein:

c₁ is absent or any amino acid;

10 c₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

c₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

c₄ is absent or any amino acid;

c₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

c₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid;

c₇ is a neutral hydrophobic, neutral polar, or basic amino acid;

c₈ is a neutral hydrophobic, neutral polar, or basic amino acid;

c9 is a neutral hydrophobic, neutral polar or basic amino acid; and

 c_{10} to c_{13} is any amino acid; and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof.

20

25

30

35

40

15

5

A related embodiment the myostatin binding peptide comprises the formula:

 $d_1 d_2 d_3 d_4 d_5 d_6 \underline{C} d_7 d_8 \underline{W} d_9 \underline{WMCPP} \ d_{10} d_{11} d_{12} d_{13} \ (SEQ \ ID \ NO: 355), \ wherein$

d₁ is absent or any amino acid;

d₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

d₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

d₄ is absent or any amino acid;

d₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

d₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid;

d₇ is selected from any one of the amino acids T, I, or R;

d₈ is selected from any one of R, S, O;

do is selected from any one of P, R and O, and

d₁₀ to d₁₃ is selected from any amino acid,

and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof.

Additional embodiments of binding agents comprise at least one of the following peptides:

(1) a peptide capable of binding myostatin, wherein the peptide comprises the sequence <u>WYe₁e₂Ye₃G</u>, (SEQ ID NO: 356)

```
wherein e<sub>1</sub> is P, S or Y,
e<sub>2</sub> is C or Q, and
```

e₃ is G or H, wherein the peptide is between 7 and 50 amino acids in length, and physiologically acceptable salts thereof.

(2) a peptide capable of binding myostatin, wherein the peptide comprises the sequence $f_1EMLf_2SLf_3f_4LL$, (SEQ ID NO: 455),

5 wherein f_1 is M or I,

f₂ is any amino acid.

f₃ is L or F,

f4 is E, Q or D;

and wherein the peptide is between 7 and 50 amino acids in length, and physiologically

10 acceptable salts thereof.

(3) a peptide capable of binding myostatin wherein the peptide comprises the sequence Lg₁g₂LL_{g₂}g₄L, (SEQ ID NO: 456), wherein

g₁ is Q, D or E,

g2 is S, Q, D or E,

g₃ is any amino acid,

g₄ is L, W, F, or Y, and wherein the peptide is between 8 and 50 amino acids in length, and physiologically acceptable salts thereof.

(4) a peptide capable of binding myostatin, wherein the peptide comprises the sequence $h_1h_2h_3h_4h_5h_6h_7h_8h_9$ (SEQ ID NO: 457), wherein

20 h_1 is R or D,

h₂ is any amino acid,

 h_3 is A, T S or Q,

h₄ is L or M,

h₅ is L or S,

25 h₆ is any amino acid,

h₇ is F or E,

h₈ is W, F or C,

h₉ is L, F, M or K, and wherein the peptide is between 9 and 50 amino acids in length, and physiologically acceptable salts thereof.

In one embodiment, the binding agents of the present invention further comprise at least one vehicle such as a polymer or an Fc domain, and may further comprise at least one linker sequence. In this embodiment, the binding agents of the present invention are constructed so that at least one myostatin-binding peptide is covalently attached to at least one vehicle. The peptide or peptides are attached directly or indirectly through a linker sequence, to the vehicle at the N-

terminal, C-terminal or an amino acid sidechain of the peptide. In this embodiment, the binding agents of the present invention have the following generalized structure:

$$(X^1)_a$$
- F^1 - $(X^2)_b$ or multimers thereof;

wherein F¹ is a vehicle; and X¹ and X² are each independently selected from

$$-(L^1)_c-P^1;$$

40 $-(L^1)_c - P^1 - (L^2)_d - P^2;$

35

-(L¹)_c-P¹-(L²)_d-P²-(L³)_e-P³; and -(L¹)_c-P¹-(L²)_d-P²-(L³)_e -P³-(L⁴)_f-P⁴; wherein P¹, P², P³, and P⁴ are peptides capable of binding myostatin; and L¹, L², L³, and L⁴ are each linkers; and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1.

In one embodiment of the binding agents having this generalized structure, the peptides P^1 , P^2 , P^3 , and P^4 can be selected from one or more of any of the peptides comprising the sequences provided above. Peptides P^1 , P^2 , P^3 , and P^4 can be selected from one or more peptides comprising any of the following sequences: SEQ ID NO: 633, SEQ ID NO: 352, SEQ ID NO: 353, SEQ ID NO: 354, SEQ ID NO: 355, SEQ ID NO: 356, SEQ ID NO: 455, SEQ ID NO: 456, or SEQ ID NO: 457.

5

10

15

20

25

30

35

In a further embodiment, the vehicles of binding agents having the general formula above are Fc domains. The peptides are therefore fused to an Fc domain, either directly or indirectly, thereby providing peptibodies. The peptibodies of the present invention display a high binding affinity for myostatin and can inhibit the activity of myostatin as demonstrated by *in vitro* assays and *in vivo* testing in animals provided herein.

The present invention also provides nucleic acid molecules comprising polynucleotides encoding the peptides, peptibodies, and peptide and peptibody variants and derivatives of the present invention. Exemplary nucleotides sequences are given below.

Variants and Derivatives of Peptides and Peptibodies

The binding agents of the present invention also encompass variants and derivatives of the peptides and peptibodies described herein. Since both the peptides and peptibodies of the present invention can be described in terms of their amino acid sequence, the terms "variants" and "derivatives" can be said to apply to a peptide alone, or a peptide as a component of a peptibody. As used herein, the term "peptide variants" refers to peptides or peptibodies having one or more amino acid residues inserted, deleted or substituted into the original amino acid sequence and which retain the ability to bind to myostatin and modify its activity. As used herein, fragments of the peptides or peptibodies are included within the definition of "variants".

It is understood that any given peptide or peptibody may contain one or two or all three types of variants. Insertional and substitutional variants may contain natural amino acids, as well as non-naturally occurring amino acids or both.

Peptide and peptibody variants also include mature peptides and peptibodies wherein leader or signal sequences are removed, and the resulting proteins having additional amino terminal residues, which amino acids may be natural or non-natural. Peptibodies with an

19

additional methionyl residue at amino acid position -1 (Met-1-peptibody) are contemplated, as are peptibodies with additional methionine and lysine residues at positions -2 and -1 (Met⁻²-Lys⁻¹-). Variants having additional Met, Met-Lys, Lys residues (or one or more basic residues, in general) are particularly useful for enhanced recombinant protein production in bacterial host cells.

5

Peptide or peptibody variants of the present invention also includes peptides having additional amino acid residues that arise from use of specific expression systems. For example, use of commercially available vectors that express a desired polypeptide as part of glutathione-Stransferase (GST) fusion product provides the desired polypeptide having an additional glycine residue at amino acid position-1 after cleavage of the GST component from the desired polypeptide. Variants which result from expression in other vector systems are also contemplated, including those wherein histidine tags are incorporated into the amino acid sequence, generally at the carboxy and/or amino terminus of the sequence.

15

10

In one example, insertional variants are provided wherein one or more amino acid residues, either naturally occurring or non-naturally occurring amino acids, are added to a peptide amino acid sequence. Insertions may be located at either or both termini of the protein, or may be positioned within internal regions of the peptibody amino acid sequence. Insertional variants with

additional residues at either or both termini can include, for example, fusion proteins and proteins including amino acid tags or labels. Insertional variants include peptides in which one or more

amino acid residues are added to the peptide amino acid sequence or fragment thereof.

20

Insertional variants also include fusion proteins wherein the amino and/or carboxy termini of the peptide or peptibody is fused to another polypeptide, a fragment thereof or amino acids which are not generally recognized to be part of any specific protein sequence. Examples of such fusion proteins are immunogenic polypeptides, proteins with long circulating half lives, such as immunoglobulin constant regions, marker proteins, proteins or polypeptides that facilitate purification of the desired peptide or peptibody, and polypeptide sequences that promote formation of multimeric proteins (such as leucine zipper motifs that are useful in dimer formation/stability).

30

25

This type of insertional variant generally has all or a substantial portion of the native molecule, linked at the N- or C-terminus, to all or a portion of a second polypeptide. For example, fusion proteins typically employ leader sequences from other species to permit the recombinant expression of a protein in a heterologous host. Another useful fusion protein includes the addition of an immunologically active domain, such as an antibody epitope, to facilitate purification of the fusion protein. Inclusion of a cleavage site at or near the fusion junction will facilitate removal of the extraneous polypeptide after purification. Other useful

fusions include linking of functional domains, such as active sites from enzymes, glycosylation domains, cellular targeting signals or transmembrane regions.

5

10

15

20

25

30

35

There are various commercially available fusion protein expression systems that may be used in the present invention. Particularly useful systems include but are not limited to the glutathione-S-transferase (GST) system (Pharmacia), the maltose binding protein system (NEB, Beverley, MA), the FLAG system (IBI, New Haven, CT), and the 6xHis system (Qiagen, Chatsworth, CA). These systems are capable of producing recombinant peptides and/or peptibodies bearing only a small number of additional amino acids, which are unlikely to significantly affect the activity of the peptide or peptibody. For example, both the FLAG system and the 6xHis system add only short sequences, both of which are known to be poorly antigenic and which do not adversely affect folding of a polypeptide to its native conformation. Another N-terminal fusion that is contemplated to be useful is the fusion of a Met-Lys dipeptide at the N-terminal region of the protein or peptides. Such a fusion may produce beneficial increases in protein expression or activity.

Other fusion systems produce polypeptide hybrids where it is desirable to excise the fusion partner from the desired peptide or peptibody. In one embodiment, the fusion partner is linked to the recombinant peptibody by a peptide sequence containing a specific recognition sequence for a protease. Examples of suitable sequences are those recognized by the Tobacco Etch Virus protease (Life Technologies, Gaithersburg, MD) or Factor Xa (New England Biolabs, Beverley, MA).

The invention also provides fusion polypeptides which comprise all or part of a peptide or peptibody of the present invention, in combination with truncated tissue factor (tTF). tTF is a vascular targeting agent consisting of a truncated form of a human coagulation-inducing protein that acts as a tumor blood vessel clotting agent, as described U.S. Patent Nos.: 5,877,289; 6,004,555; 6,132,729; 6,132,730; 6,156,321; and European Patent No. EP 0988056. The fusion of tTF to the anti-myostatin peptibody or peptide, or fragments thereof facilitates the delivery of anti-myostatin antagonists to target cells, for example, skeletal muscle cells, cardiac muscle cells, fibroblasts, pre-adipocytes, and possibly adipocytes.

In another aspect, the invention provides deletion variants wherein one or more amino acid residues in a peptide or peptibody are removed. Deletions can be effected at one or both termini of the peptibody, or from removal of one or more residues within the peptibody amino acid sequence. Deletion variants necessarily include all fragments of a peptide or peptibody.

In still another aspect, the invention provides substitution variants of peptides and peptibodies of the invention. Substitution variants include those peptides and peptibodies wherein one or more amino acid residues are removed and replaced with one or more alternative amino

acids, which amino acids may be naturally occurring or non-naturally occurring. Substitutional variants generate peptides or peptibodies that are "similar" to the original peptide or peptibody, in that the two molecules have a certain percentage of amino acids that are identical. Substitution variants include substitutions of 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, and 20 amino acids within a peptide or peptibody, wherein the number of substitutions may be up to ten percent of the amino acids of the peptide or peptibody. In one aspect, the substitutions are conservative in nature, however, the invention embraces substitutions that are also non-conservative and also includes unconventional amino acids.

5

10

15

20

25

30

Identity and similarity of related peptides and peptibodies can be readily calculated by known methods. Such methods include, but are not limited to, those described in Computational Molecular Biology, Lesk, A.M., ed., Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects, Smith, D.W., ed., Academic Press, New York (1993); Computer Analysis of Sequence Data, Part 1, Griffin, A.M., and Griffin, H.G., eds., Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology, von Heinje, G., Academic Press (1987); Sequence Analysis Primer, Gribskov, M. and Devereux, J., eds., M. Stockton Press, New York (1991); and Carillo et al., SIAM J. Applied Math., 48:1073 (1988).

Preferred methods to determine the relatedness or percent identity of two peptides or polypeptides, or a polypeptide and a peptide, are designed to give the largest match between the sequences tested. Methods to determine identity are described in publicly available computer programs. Preferred computer program methods to determine identity between two sequences include, but are not limited to, the GCG program package, including GAP (Devereux et al., Nucl. Acid. Res., 12:387 (1984); Genetics Computer Group, University of Wisconsin, Madison, WI, BLASTP, BLASTN, and FASTA (Altschul et al., J. Mol. Biol., 215:403-410 (1990)). The BLASTX program is publicly available from the National Center for Biotechnology Information (NCBI) and other sources (BLAST Manual, Altschul et al. NCB/NLM/NIH Bethesda, MD 20894; Altschul et al., supra (1990)). The well-known Smith Waterman algorithm may also be used to determine identity.

Certain alignment schemes for aligning two amino acid sequences may result in the matching of only a short region of the two sequences, and this small aligned region may have very high sequence identity even though there is no significant relationship between the two full-length sequences. Accordingly, in certain embodiments, the selected alignment method will result in an alignment that spans at least ten percent of the full length of the target polypeptide being compared, *i.e.*, at least 40 contiguous amino acids where sequences of at least 400 amino acids are being compared, 30 contiguous amino acids where sequences of at least 300 to about 400 amino

acids are being compared, at least 20 contiguous amino acids where sequences of 200 to about 300 amino acids are being compared, and at least 10 contiguous amino acids where sequences of about 100 to 200 amino acids are being compared. For example, using the computer algorithm GAP (Genetics Computer Group, University of Wisconsin, Madison, WI), two polypeptides for which the percent sequence identity is to be determined are aligned for optimal matching of their respective amino acids (the "matched span", as determined by the algorithm). In certain embodiments, a gap opening penalty (which is typically calculated as 3X the average diagonal; the "average diagonal" is the average of the diagonal of the comparison matrix being used; the "diagonal" is the score or number assigned to each perfect amino acid match by the particular comparison matrix) and a gap extension penalty (which is usually 1/10 times the gap opening penalty), as well as a comparison matrix such as PAM 250 or BLOSUM 62 are used in conjunction with the algorithm. In certain embodiments, a standard comparison matrix (see Dayhoff et al., Atlas of Protein Sequence and Structure, 5(3)(1978) for the PAM 250 comparison matrix; Henikoff et al., Proc. Natl. Acad. Sci USA, 89:10915-10919 (1992) for the BLOSUM 62 comparison matrix) is also used by the algorithm.

5

10

15

20

25

30

In certain embodiments, for example, the parameters for a polypeptide sequence comparison can be made with the following: Algorithm: Needleman et al., J. Mol. Biol., 48:443-453 (1970); Comparison matrix: BLOSUM 62 from Henikoff et al., supra (1992); Gap Penalty: 12; Gap Length Penalty: 4; Threshold of Similarity: 0, along with no penalty for end gaps.

In certain embodiments, the parameters for polynucleotide molecule sequence (as opposed to an amino acid sequence) comparisons can be made with the following: Algorithm: Needleman et al., supra (1970); Comparison matrix: matches = +10, mismatch = 0; Gap Penalty: 50: Gap Length Penalty: 3

Other exemplary algorithms, gap opening penalties, gap extension penalties, comparison matrices, thresholds of similarity, etc. may be used, including those set forth in the Program Manual, Wisconsin Package, Version 9, September, 1997. The particular choices to be made will be apparent to those of skill in the art and will depend on the specific comparison to be made, such as DNA-to-DNA, protein-to-protein, protein-to-DNA; and additionally, whether the comparison is between given pairs of sequences (in which case GAP or BestFit are generally preferred) or between one sequence and a large database of sequences (in which case FASTA or BLASTA are preferred).

Stereoisomers (e.g., D-amino acids) of the twenty conventional (naturally occurring) amino acids, non-naturally occurring amino acids such as α-, α-disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids may also be suitable components

for peptides of the present invention. Examples of non-naturally occuring amino acids include, for example: aminoadipic acid, beta-alanine, beta-aminopropionic acid, aminobutyric acid, piperidinic acid, aminocaprioic acid, aminoheptanoic acid, aminoisobutyric acid, aminopimelic acid, diaminobutyric acid, desmosine, diaminopimelic acid, diaminopropionic acid, Nethylglycine, N-ethylaspargine, hyroxylysine, allo-hydroxylysine, hydroxyproline, isodesmosine, allo-isoleucine, N-methylglycine, sarcosine, N-methylisoleucine, N-methylvaline, norvaline, norleucine, orithine, 4-hydroxyproline, γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, σ-N-methylarginine, and other similar amino acids and amino acids (e.g., 4-hydroxyproline).

Naturally occurring residues may be divided into (overlapping) classes based on common side chain properties:

- 1) neutral hydrophobic: Met, Ala, Val, Leu, Ile, Pro, Trp, Met, Phe;
- 2) neutral polar: Cys, Ser, Thr, Asn, Gln, Tyr, Gly;
- 15 3) acidic: Asp, Glu;

10

20

25

30

- 4) basic: His, Lys, Arg;
- 5) residues that influence chain orientation: Gly, Pro; and
- 6) aromatic: Trp, Tyr, Phe.

Substitutions of amino acids may be conservative, which produces peptides having functional and chemical characteristics similar to those of the original peptide. Conservative amino acid substitutions involve exchanging a member of one of the above classes for another member of the same class. Conservative changes may encompass unconventional amino acid residues, which are typically incorporated by chemical peptide synthesis rather than by synthesis in biological systems. These include peptidomimetics and other reversed or inverted forms of amino acid moieties.

Non-conservative substitutions may involve the exchange of a member of one of these classes for a member from another class. These changes can result in substantial modification in the functional and/or chemical characteristics of the peptides. In making such changes, according to certain embodiments, the hydropathic index of amino acids may be considered. Each amino acid has been assigned a hydropathic index on the basis of its hydrophobicity and charge characteristics. They are: isoleucine (+4.5); valine (+4.2); leucine (+3.8); phenylalanine (+2.8); cysteine/cystine (+2.5); methionine (+1.9); alanine (+1.8); glycine (-0.4); threonine (-0.7); serine

(-0.8); tryptophan (-0.9); tyrosine (-1.3); proline (-1.6); histidine (-3.2); glutamate (-3.5); glutamine (-3.5); asparagine (-3.5); lysine (-3.9); and arginine (-4.5).

5

10

15

20

25

The importance of the hydropathic amino acid index in conferring interactive biological function on a protein is understood in the art. Kyte et al., J. Mol. Biol., 157:105-131 (1982). It is known that certain amino acids may be substituted for other amino acids having a similar hydropathic index or score and still retain a similar biological activity. In making changes based upon the hydropathic index, in certain embodiments, the substitution of amino acids whose hydropathic indices are within ± 2 is included. In certain embodiments, those which are within ± 1 are included, and in certain embodiments, those within ± 0.5 are included.

It is also understood in the art that the substitution of like amino acids can be made effectively on the basis of hydrophilicity, particularly where the biologically functional peptibody or peptide thereby created is intended for use in immunological embodiments, as in the present case. In certain embodiments, the greatest local average hydrophilicity of a protein, as governed by the hydrophilicity of its adjacent amino acids, correlates with its immunogenicity and antigenicity, *i.e.*, with a biological property of the protein.

The following hydrophilicity values have been assigned to these amino acid residues: arginine (+3.0); lysine (+3.0); aspartate ($+3.0 \pm 1$); glutamate ($+3.0 \pm 1$); serine (+0.3); asparagine (+0.2); glutamine (+0.2); glycine (0); threonine (-0.4); proline (-0.5 ± 1); alanine (-0.5); histidine (-0.5); cysteine (-1.0); methionine (-1.3); valine (-1.5); leucine (-1.8); isoleucine (-1.8); tyrosine (-1.8); phenylalanine (-1.8) and tryptophan (-1.8). In making changes based upon similar hydrophilicity values, in certain embodiments, the substitution of amino acids whose hydrophilicity values are within ± 1 is included, in certain embodiments, those which are within ± 1 are included, and in certain embodiments, those within ± 1.5 are included. One may also identify epitopes from primary amino acid sequences on the basis of hydrophilicity. These regions are also referred to as "epitopic core regions."

Exemplary amino acid substitutions are set forth in Table 1 below.

Amino Acid Substitutions

Original Residues	Exemplary Substitutions	Preferred Substitutions
Ala	Val, Leu, Ile	Val
Arg	Lys, Gln, Asn	Lys
Asn	Gln, Glu, Asp	Gln
Asp	Glu, Gln, Asp	Glu
Cys	Ser, Ala	Ser

Gln	Asn, Glu, Asp	Asn
Glu	Asp, Gln, Asn	Asp
Gly	Pro, Ala	Ala
His	Asn, Gln, Lys, Arg	Arg
Ile	Leu, Val, Met, Ala, Phe, Norleucine	Leu
Leu	Norleucine, Ile, Val, Met, Ala, Phe	Ile ·
Lys	Arg, 1,4 Diamino-butyric Acid, Gln, Asn	Arg
Met	Leu, Phe, Ile	Leu
Phe	Leu, Val, Ile, Ala, Tyr	Leu
Pro	Ala	Gly
Ser	Thr, Ala, Cys	Thr
Thr	Ser	Ser
Trp	Tyr, Phe	Туг
Tyr	Trp, Phe, Thr, Ser	Phe
Val	Ile, Met, Leu, Phe, Ala, Norleucine	Leu

One skilled in the art will be able to produce variants of the peptides and peptibodies of the present invention by random substitution, for example, and testing the resulting peptide or peptibody for binding activity using the assays described herein.

5

10

15

Additionally, one skilled in the art can review structure-function studies or three-dimensional structural analysis in order to identify residues in similar polypeptides that are important for activity or structure. In view of such a comparison, one can predict the importance of amino acid residues in a protein that correspond to amino acid residues which are important for activity or structure in similar proteins. One skilled in the art may opt for chemically similar amino acid substitutions for such predicted important amino acid residues. The variants can then be screened using activity assays as described herein.

A number of scientific publications have been devoted to the prediction of secondary structure. See Moult J., Curr. Op. in Biotech., 7(4):422-427 (1996), Chou et al., Biochemistry, 13(2):222-245 (1974); Chou et al., Biochemistry, 113(2):211-222 (1974); Chou et al., Adv. Enzymol. Relat. Areas Mol. Biol., 47:45-148 (1978); Chou et al., Ann. Rev. Biochem., 47:251-276 and Chou et al., Biophys. J., 26:367-384 (1979). Moreover, computer programs are currently available to assist with predicting secondary structure. One method of predicting secondary structure is based upon homology modeling. For example, two polypeptides or proteins which

have a sequence identity of greater than 30%, or similarity greater than 40% often have similar structural topologies. The recent growth of the protein structural database (PDB) has provided enhanced predictability of secondary structure, including the potential number of folds within a protein's structure. See Holm et al., Nucl. Acid. Res., 27(1):244-247 (1999). It has been suggested (Brenner et al., Curr. Op. Struct. Biol., 7(3):369-376 (1997)) that there are a limited number of folds in a given protein and that once a critical number of structures have been resolved, structural prediction will become dramatically more accurate.

5

10

15

20

25

30

Additional methods of predicting secondary structure include "threading" (Jones, D., Curr. Opin. Struct. Biol., 7(3):377-87 (1997); Sippl et al., Structure, 4(1):15-19 (1996)), "profile analysis" (Bowie et al., Science, 253:164-170 (1991); Gribskov et al., Meth. Enzym., 183:146-159 (1990); Gribskov et al., Proc. Nat. Acad. Sci., 84(13):4355-4358 (1987)), and "evolutionary linkage" (See Holm, supra (1999), and Brenner, supra (1997)).

In certain embodiments, peptide or peptibody variants include glycosylation variants wherein one or more glycosylation sites such as a N-linked glycosylation site, has been added to the peptibody. An N-linked glycosylation site is characterized by the sequence: Asn-X-Ser or Asn-X-Thr, wherein the amino acid residue designated as X may be any amino acid residue except proline. The substitution or addition of amino acid residues to create this sequence provides a potential new site for the addition of an N-linked carbohydrate chain. Alternatively, substitutions which eliminate this sequence will remove an existing N-linked carbohydrate chain. Also provided is a rearrangement of N-linked carbohydrate chains wherein one or more N-linked glycosylation sites (typically those that are naturally occurring) are eliminated and one or more new N-linked sites are created.

The invention also provides "derivatives" of the peptides or peptibodies of the present invention. As used herein the term "derivative" refers to modifications other than, or in addition to, insertions, deletions, or substitutions of amino acid residues which retain the ability to bind to myostatin.

Preferably, the modifications made to the peptides of the present invention to produce derivatives are covalent in nature, and include for example, chemical bonding with polymers, lipids, other organic, and inorganic moieties. Derivatives of the invention may be prepared to increase circulating half-life of a peptibody, or may be designed to improve targeting capacity for the peptibody to desired cells, tissues, or organs.

The invention further embraces derivative binding agents covalently modified to include one or more water soluble polymer attachments, such as polyethylene glycol, polyoxyethylene

glycol, or polypropylene glycol, as described U.S. Patent Nos.: 4,640,835; 4,496,689; 4,301,144; 4,670,417; 4,791,192; and 4,179,337. Still other useful polymers known in the art include monomethoxy-polyethylene glycol, dextran, cellulose, or other carbohydrate based polymers, poly-(N-vinyl pyrrolidone)-polyethylene glycol, propylene glycol homopolymers, a polypropylene oxide/ethylene oxide co-polymer, polyoxyethylated polyols (e.g., glycerol) and polyvinyl alcohol, as well as mixtures of these polymers. Particularly preferred are peptibodies covalently modified with polyethylene glycol (PEG) subunits. Water-soluble polymers may be bonded at specific positions, for example at the amino terminus of the peptibodies, or randomly attached to one or more side chains of the polypeptide. The use of PEG for improving the therapeutic capacity for binding agents, e.g. peptibodies, and for humanized antibodies in particular, is described in US Patent No. 6, 133, 426 to Gonzales et al., issued October 17, 2000.

5

10

15

20

25

30

The invention also contemplates derivatizing the peptide and/or vehicle portion of the myostatin binding agents. Such derivatives may improve the solubility, absorption, biological half-life, and the like of the compounds. The moieties may alternatively eliminate or attenuate any undesirable side-effect of the compounds and the like. Exemplary derivatives include compounds in which:

- 1. The derivative or some portion thereof is cyclic. For example, the peptide portion may be modified to contain two or more Cys residues (e.g., in the linker), which could cyclize by disulfide bond formation.
- 2. The derivative is cross-linked or is rendered capable of cross-linking between molecules. For example, the peptide portion may be modified to contain one Cys residue and thereby be able to form an intermolecular disulfide bond with a like molecule. The derivative may also be cross-linked through its C-terminus.
- 3. One or more peptidyl [-C(O)NR-] linkages (bonds) is replaced by a non-peptidyl linkage. Exemplary non-peptidyl linkages are -CH₂-carbamate [-CH₂-OC(O)NR-], phosphonate, -CH₂-sulfonamide [-CH₂-S(O)₂NR-], urea [-NHC(O)NH-], -CH₂-secondary amine, and alkylated peptide [-C(O)NR₆- wherein R_6 is lower alkyl].
- 4. The N-terminus is derivatized. Typically, the N-terminus may be acylated or modified to a substituted amine. Exemplary N-terminal derivative groups include -NRR₁ (other than -NH₂), -NRC(O)R₁, -NRC(O)OR₁, -NRS(O)₂R₁, -NHC(O)NHR₁, succinimide, or benzyloxycarbonyl-NH- (CBZ-NH-), wherein R and R1 are each independently hydrogen or lower alkyl and wherein the phenyl ring may be substituted with 1 to 3 substituents selected from the group consisting of C_1 - C_4 alkyl, C_1 - C_4 alkoxy, chloro, and bromo.
- 5. The free C-terminus is derivatized. Typically, the C-terminus is esterified or amidated.

 For example, one may use methods described in the art to add (NH-CH₂-CH₂-NH₂)₂ to

compounds of this invention at the C-terminus. Likewise, one may use methods described in the art to add -NH₂, (or "capping" with an -NH₂ group) to compounds of this invention at the C-terminus. Exemplary C-terminal derivative groups include, for example, -C(O)R₂ wherein R₂ is lower alkoxy or -NR₃R₄ wherein R₃ and R₄ are independently hydrogen or C₁-C₈ alkyl (preferably C_1 -C₄ alkyl).

- 6. A disulfide bond is replaced with another, preferably more stable, cross-linking moiety (e.g., an alkylene). See, e.g., Bhatnagar et al., J Med Chem 39: 3814-9 (1996), Alberts et al., Thirteenth Am Pep Symp, 357-9 (1993).
- One or more individual amino acid residues is modified. Various derivatizing agents
 are known to react specifically with selected side chains or terminal residues, as described in detail below.

5

15

20

25

30

Lysinyl residues and amino terminal residues may be reacted with succinic or other carboxylic acid anhydrides, which reverse the charge of the lysinyl residues. Other suitable reagents for derivatizing alpha-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; O-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

Arginyl residues may be modified by reaction with any one or combination of several conventional reagents, including phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginyl residues requires that the reaction be performed in alkaline conditions because of the high pKa of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.

Specific modification of tyrosyl residues has been studied extensively, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizole and tetranitromethane are used to form O-acetyl tyrosyl species and 3-nitro derivatives, respectively.

Carboxyl side chain groups (aspartyl or glutamyl) may be selectively modified by reaction with carbodiimides (R'-N=C=N-R') such as 1-cyclohexyl-3-(2-morpholinyl-(4-ethyl) carbodiimide or 1-ethyl-3-(4-azonia-4,4-dimethylpentyl) carbodiimide. Furthermore, aspartyl and glutamyl residues may be converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

Glutaminyl and asparaginyl residues may be deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

Cysteinyl residues can be replaced by amino acid residues or other moieties either to eliminate disulfide bonding or, conversely, to stabilize cross-linking. See, e.g., Bhatnagar et al., (supra).

5

10

15

20

25

30

35

Derivatization with bifunctional agents is useful for cross-linking the peptides or their functional derivatives to a water-insoluble support matrix or to other macromolecular vehicles. Commonly used cross-linking agents include, e.g., 1,1-bis(diazoacetyl)-2-phenylethane, glutaraldehyde, N-hydroxysuccinimide esters, for example, esters with 4-azidosalicylic acid, homobifunctional imidoesters, including disuccinimidyl esters such as 3,3'-dithiobis(succinimidylpropionate), and bifunctional maleimides such as bis-N-maleimido-1,8-octane. Derivatizing agents such as methyl-3-[(p-azidophenyl)dithio]propioimidate yield photoactivatable intermediates that are capable of forming crosslinks in the presence of light. Alternatively, reactive water-insoluble matrices such as cyanogen bromide-activated carbohydrates and the reactive substrates described in U.S. Patent Nos. 3,969,287; 3,691,016; 4,195,128; 4,247,642; 4,229,537; and 4,330,440 are employed for protein immobilization.

Carbohydrate (oligosaccharide) groups may conveniently be attached to sites that are known to be glycosylation sites in proteins. Generally, O-linked oligosaccharides are attached to serine (Ser) or threonine (Thr) residues while N-linked oligosaccharides are attached to asparagine (Asn) residues when they are part of the sequence Asn-X-Ser/Thr, where X can be any amino acid except proline. X is preferably one of the 19 naturally occurring amino acids other than proline. The structures of N-linked and O-linked oligosaccharides and the sugar residues found in each type are different. One type of sugar that is commonly found on both is N-acetylneuraminic acid (referred to as sialic acid). Sialic acid is usually the terminal residue of both N-linked and O-linked oligosaccharides and, by virtue of its negative charge, may confer acidic properties to the glycosylated compound. Such site(s) may be incorporated in the linker of the compounds of this invention and are preferably glycosylated by a cell during recombinant production of the polypeptide compounds (e.g., in mammalian cells such as CHO, BHK, COS). However, such sites may further be glycosylated by synthetic or semi-synthetic procedures known in the art.

Other possible modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, oxidation of the sulfur atom in Cys, methylation of the alpha-amino groups of lysine, arginine, and histidine side chains [see, for example, Creighton, Proteins: Structure and Molecule Properties (W. H. Freeman & Co., San Francisco), pp. 79-86 (1983)].

Compounds of the present invention may be changed at the DNA level, as well. The DNA sequence of any portion of the compound may be changed to codons more compatible with the

chosen host cell. For *E. coli*, which is the preferred host cell, optimized codons are known in the art. Codons may be substituted to eliminate restriction sites or to include silent restriction sites, which may aid in processing of the DNA in the selected host cell. The vehicle, linker and peptide DNA sequences may be modified to include any of the foregoing sequence changes.

5

10

15

Additional derivatives include non-peptide analogs that provide a stabilized structure or lessened biodegradation, are also contemplated. Peptide mimetic analogs can be prepared based on a selected inhibitory peptide by replacement of one or more residues by nonpeptide moieties. Preferably, the nonpeptide moieties permit the peptide to retain its natural confirmation, or stabilize a preferred, e.g., bioactive, confirmation which retains the ability to recognize and bind myostatin. In one aspect, the resulting analog/mimetic exhibits increased binding affinity for myostatin. One example of methods for preparation of nonpeptide mimetic analogs from peptides is described in Nachman et al., Regul Pept 57:359-370 (1995). If desired, the peptides of the invention can be modified, for instance, by glycosylation, amidation, carboxylation, or phosphorylation, or by the creation of acid addition salts, amides, esters, in particular C-terminal esters, and N-acyl derivatives of the peptides of the invention. The peptibodies also can be modified to create peptide derivatives by forming covalent or noncovalent complexes with other moieties. Covalently-bound complexes can be prepared by linking the chemical moieties to functional groups on the side chains of amino acids comprising the peptibodies, or at the N- or C-terminus.

20

25

30

In particular, it is anticipated that the peptides can be conjugated to a reporter group, including, but not limited to a radiolabel, a fluorescent label, an enzyme (e.g., that catalyzes a colorimetric or fluorometric reaction), a substrate, a solid matrix, or a carrier (e.g., biotin or avidin). The invention accordingly provides a molecule comprising a peptibody molecule, wherein the molecule preferably further comprises a reporter group selected from the group consisting of a radiolabel, a fluorescent label, an enzyme, a substrate, a solid matrix, and a carrier. Such labels are well known to those of skill in the art, e.g., biotin labels are particularly contemplated. The use of such labels is well known to those of skill in the art and is described in, e.g., U.S. Patent Nos.3,817,837; 3,850,752; 3,996,345; and 4,277,437. Other labels that will be useful include but are not limited to radioactive labels, fluorescent labels and chemiluminescent labels. U.S. Patents concerning use of such labels include, for example, U.S. Patent Nos. 3,817,837; 3,850,752; 3,939,350; and 3,996,345. Any of the peptibodies of the present invention may comprise one, two, or more of any of these labels.

Methods of Making Peptides and Peptibodies

The peptides of the present invention can be generated using a wide variety of techniques known in the art. For example, such peptides can be synthesized in solution or on a solid support in accordance with conventional techniques. Various automatic synthesizers are commercially available and can be used in accordance with known protocols. See, for example, Stewart and Young (supra); Tam et al., J Am Chem Soc, 105:6442, (1983); Merrifield, Science 232:341-347 (1986); Barany and Merrifield, The Peptides, Gross and Meienhofer, eds, Academic Press, New York, 1-284; Barany et al., Int J Pep Protein Res, 30:705-739 (1987); and U.S. Patent No. 5,424,398, each incorporated herein by reference.

10

15

20

25

30

35

Solid phase peptide synthesis methods use a copoly(styrene-divinylbenzene) containing 0.1-1.0 mM amines/g polymer. These methods for peptide synthesis use butyloxycarbonyl (t-BOC) or 9-fluorenylmethyloxy-carbonyl(FMOC) protection of alpha-amino groups. Both methods involve stepwise syntheses whereby a single amino acid is added at each step starting from the C-terminus of the peptide (See, Coligan et al., Curr Prot Immunol, Wiley Interscience. 1991, Unit 9). On completion of chemical synthesis, the synthetic peptide can be deprotected to remove the t-BOC or FMOC amino acid blocking groups and cleaved from the polymer by treatment with acid at reduced temperature (e.g., liquid HF-10% anisole for about 0.25 to about 1 hours at 0°C). After evaporation of the reagents, the peptides are extracted from the polymer with 1% acetic acid solution that is then lyophilized to yield the crude material. This can normally be purified by such techniques as gel filtration on Sephadex G-15 using 5% acetic acid as a solvent. Lyophilization of appropriate fractions of the column will yield the homogeneous peptides or peptide derivatives, which can then be characterized by such standard techniques as amino acid analysis, thin layer chromatography, high performance liquid chromatography, ultraviolet absorption spectroscopy, molar rotation, solubility, and quantitated by the solid phase Edman degradation.

Phage display techniques can be particularly effective in identifying the peptides of the present invention as described above. Briefly, a phage library is prepared (using e.g. ml 13, fd, or lambda phage), displaying inserts from 4 to about 80 amino acid residues. The inserts may represent, for example, a completely degenerate or biased array. Phage-bearing inserts that bind to the desired antigen are selected and this process repeated through several cycles of reselection of phage that bind to the desired antigen. DNA sequencing is conducted to identify the sequences of the expressed peptides. The minimal linear portion of the sequence that binds to the desired antigen can be determined in this way. The procedure can be repeated using a biased library containing inserts containing part or all of the minimal linear portion plus one or more additional degenerate residues upstream or downstream thereof. These techniques may identify peptides of the invention with still greater binding affinity for myostatin than agents already identified herein.

Regardless of the manner in which the peptides are prepared, a nucleic acid molecule encoding each such peptide can be generated using standard recombinant DNA procedures. The nucleotide sequence of such molecules can be manipulated as appropriate without changing the amino acid sequence they encode to account for the degeneracy of the nucleic acid code as well as to account for codon preference in particular host cells.

The present invention also provides nucleic acid molecules comprising polynucleotide sequences encoding the peptides and peptibodies of the present invention. These nucleic acid molecules include vectors and constructs containing polynucleotides encoding the peptides and peptibodies of the present invention, as well as peptide and peptibody variants and derivatives. Exemplary nucleic acid molecules are provided in the Examples below.

5

10

15

20

25

30

Recombinant DNA techniques also provide a convenient method for preparing full length peptibodies and other large polypeptide binding agents of the present invention, or fragments thereof. A polynucleotide encoding the peptibody or fragment may be inserted into an expression vector, which can in turn be inserted into a host cell for production of the binding agents of the present invention. Preparation of exemplary peptibodies of the present invention are described in Example 2 below.

A variety of expression vector/host systems may be utilized to express the peptides and peptibodies of the invention. These systems include but are not limited to microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with virus expression vectors (e.g., baculovirus); plant cell systems transfected with virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with bacterial expression vectors (e.g., Ti or pBR322 plasmid); or animal cell systems. One preferred host cell line is E.coli strain 2596 (ATCC # 202174), used for expression of peptibodies as described below in Example 2. Mammalian cells that are useful in recombinant protein productions include but are not limited to VERO cells, HeLa cells, Chinese hamster ovary (CHO) cell lines, COS cells (such as COS-7), W138, BHK, HepG2, 3T3, RIN, MDCK, A549, PC12, K562 and 293 cells.

The term "expression vector" refers to a plasmid, phage, virus or vector, for expressing a polypeptide from a polynucleotide sequence. An expression vector can comprise a transcriptional unit comprising an assembly of (1) a genetic element or elements having a regulatory role in gene expression, for example, promoters or enhancers, (2) a structural or sequence that encodes the binding agent which is transcribed into mRNA and translated into protein, and (3) appropriate transcription initiation and termination sequences. Structural units intended for use in yeast or eukaryotic expression systems preferably include a leader sequence enabling extracellular

secretion of translated protein by a host cell. Alternatively, where recombinant protein is expressed without a leader or transport sequence, it may include an amino terminal methionyl residue. This residue may or may not be subsequently cleaved from the expressed recombinant protein to provide a final peptide product.

5

10

15

20

25

30

For example, the peptides and peptibodies may be recombinantly expressed in yeast using a commercially available expression system, e.g., the Pichia Expression System (Invitrogen, San Diego, CA), following the manufacturer's instructions. This system also relies on the pre-pro-alpha sequence to direct secretion, but transcription of the insert is driven by the alcohol oxidase (AOX1) promoter upon induction by methanol. The secreted peptide is purified from the yeast growth medium using the methods used to purify the peptide from bacterial and mammalian cell supernatants.

Alternatively, the cDNA encoding the peptide and peptibodies may be cloned into the baculovirus expression vector pVL1393 (PharMingen, San Diego, CA). This vector can be used according to the manufacturer's directions (PharMingen) to infect Spodoptera frugiperda cells in sF9 protein-free media and to produce recombinant protein. The recombinant protein can be purified and concentrated from the media using a heparin-Sepharose column (Pharmacia).

Alternatively, the peptide or peptibody may be expressed in an insect system. Insect systems for protein expression are well known to those of skill in the art. In one such system, Autographa californica nuclear polyhedrosis virus (AcNPV) can be used as a vector to express foreign genes in Spodoptera frugiperda cells or in Trichoplusia larvae. The peptide coding sequence can be cloned into a nonessential region of the virus, such as the polyhedrin gene, and placed under control of the polyhedrin promoter. Successful insertion of the peptide will render the polyhedrin gene inactive and produce recombinant virus lacking coat protein coat. The recombinant viruses can be used to infect S. frugiperda cells or Trichoplusia larvae in which the peptide is expressed (Smith et al., J Virol 46: 584 (1983); Engelhard et al., Proc Nat Acad Sci (USA) 91: 3224-7 (1994)).

In another example, the DNA sequence encoding the peptide can be amplified by PCR and cloned into an appropriate vector for example, pGEX-3X (Pharmacia). The pGEX vector is designed to produce a fusion protein comprising glutathione-S-transferase (GST), encoded by the vector, and a protein encoded by a DNA fragment inserted into the vector's cloning site. The primers for PCR can be generated to include for example, an appropriate cleavage site. Where the fusion moiety is used solely to facilitate expression or is otherwise not desirable as an attachment to the peptide of interest, the recombinant fusion protein may then be cleaved from the GST portion of the fusion protein. The pGEX-3X/specific binding agent peptide construct is transformed into *E. coli* XL-1 Blue cells (Stratagene, La Jolla CA), and individual transformants

isolated and grown. Plasmid DNA from individual transformants can be purified and partially sequenced using an automated sequencer to confirm the presence of the desired specific binding agent encoding nucleic acid insert in the proper orientation.

5

10

15

20

25

30

35

The fusion protein, which may be produced as an insoluble inclusion body in the bacteria, can be purified as follows. Host cells are collected by centrifugation; washed in 0.15 M NaCl, 10 mM Tris, pH 8, 1 mM EDTA; and treated with 0.1 mg/ml lysozyme (Sigma, St. Louis, MO) for 15 minutes at room temperature. The lysate can be cleared by sonication, and cell debris can be pelleted by centrifugation for 10 minutes at 12,000 X g. The fusion protein-containing pellet can be resuspended in 50 mM Tris, pH 8, and 10 mM EDTA, layered over 50% glycerol, and centrifuged for 30 min. at 6000 X g. The pellet can be resuspended in standard phosphate buffered saline solution (PBS) free of Mg++ and Ca++. The fusion protein can be further purified by fractionating the resuspended pellet in a denaturing SDS-PAGE (Sambrook *et al.*, *supra*). The gel can be soaked in 0.4 M KCl to visualize the protein, which can be excised and electroeluted in gel-running buffer lacking SDS. If the GST/fusion protein is produced in bacteria as a soluble protein, it can be purified using the GST Purification Module (Pharmacia).

The fusion protein may be subjected to digestion to cleave the GST from the peptide of the invention. The digestion reaction (20-40 mg fusion protein, 20-30 units human thrombin (4000 U/mg, Sigma) in 0.5 ml PBS can be incubated 16-48 hrs at room temperature and loaded on a denaturing SDS-PAGE gel to fractionate the reaction products. The gel can be soaked in 0.4 M KCl to visualize the protein bands. The identity of the protein band corresponding to the expected molecular weight of the peptide can be confirmed by amino acid sequence analysis using an automated sequencer (Applied Biosystems Model 473A, Foster City, CA). Alternatively, the identity can be confirmed by performing HPLC and/or mass spectometry of the peptides.

Alternatively, a DNA sequence encoding the peptide can be cloned into a plasmid containing a desired promoter and, optionally, a leader sequence (Better et al., Science 240:1041-43 (1988)). The sequence of this construct can be confirmed by automated sequencing. The plasmid can then be transformed into E. coli strain MC1061 using standard procedures employing CaCl2 incubation and heat shock treatment of the bacteria (Sambrook et al., supra). The transformed bacteria can be grown in LB medium supplemented with carbenicillin, and production of the expressed protein can be induced by growth in a suitable medium. If present, the leader sequence can effect secretion of the peptide and be cleaved during secretion.

Mammalian host systems for the expression of recombinant peptides and peptibodies are well known to those of skill in the art. Host cell strains can be chosen for a particular ability to process the expressed protein or produce certain post-translation modifications that will be useful in providing protein activity. Such modifications of the protein include, but are not limited to,

acetylation, carboxylation, glycosylation, phosphorylation, lipidation and acylation. Different host cells such as CHO, HeLa, MDCK, 293, WI38, and the like have specific cellular machinery and characteristic mechanisms for such post-translational activities and can be chosen to ensure the correct modification and processing of the introduced, foreign protein.

5

10

15

20

25

30

35

It is preferable that transformed cells be used for long-term, high-yield protein production. Once such cells are transformed with vectors that contain selectable markers as well as the desired expression cassette, the cells can be allowed to grow for 1-2 days in an enriched media before they are switched to selective media. The selectable marker is designed to allow growth and recovery of cells that successfully express the introduced sequences. Resistant clumps of stably transformed cells can be proliferated using tissue culture techniques appropriate to the cell line employed.

A number of selection systems can be used to recover the cells that have been transformed for recombinant protein production. Such selection systems include, but are not limited to, HSV thymidine kinase, hypoxanthine-guanine phosphoribosyltransferase and adenine phosphoribosyltransferase genes, in tk-, hgprt- or aprt- cells, respectively. Also, anti-metabolite resistance can be used as the basis of selection for dhfr which confers resistance to methotrexate; gpt which confers resistance to mycophenolic acid; neo which confers resistance to the aminoglycoside G418 and confers resistance to chlorsulfuron; and hygro which confers resistance to hygromycin. Additional selectable genes that may be useful include trpB, which allows cells to utilize indole in place of tryptophan, or hisD, which allows cells to utilize histinol in place of histidine. Markers that give a visual indication for identification of transformants include anthocyanins, β-glucuronidase and its substrate, GUS, and luciferase and its substrate, luciferin.

Purification and Refolding of Binding Agents

In some cases, the binding agents such as the peptides and/or peptibodies of this invention may need to be "refolded" and oxidized into a proper tertiary structure and disulfide linkages generated in order to be biologically active. Refolding can be accomplished using a number of procedures well known in the art. Such methods include, for example, exposing the solubilized polypeptide agent to a pH usually above 7 in the presence of a chaotropic agent. The selection of chaotrope is similar to the choices used for inclusion body solubilization, however a chaotrope is typically used at a lower concentration. Exemplary chaotropic agents are guanidine and urea. In most cases, the refolding/oxidation solution will also contain a reducing agent plus its oxidized form in a specific ratio to generate a particular redox potential which allows for disulfide shuffling to occur for the formation of cysteine bridges. Some commonly used redox couples include cysteine/cystamine, glutathione/dithiobisGSH, cupric chloride, dithiothreitol DTT/dithiane DTT,

and 2-mercaptoethanol (bME)/dithio-bME. In many instances, a co-solvent may be used to increase the efficiency of the refolding. Commonly used cosolvents include glycerol, polyethylene glycol of various molecular weights, and arginine.

5

10

15

20

. 25

30

35

It may be desirable to purify the peptides and peptibodies of the present invention. Protein purification techniques are well known to those of skill in the art. These techniques involve, at one level, the crude fractionation of the proteinaceous and non-proteinaceous fractions. Having separated the peptide and/or peptibody from other proteins, the peptide or polypeptide of interest can be further purified using chromatographic and electrophoretic techniques to achieve partial or complete purification (or purification to homogeneity). Analytical methods particularly suited to the preparation of peptibodies and peptides or the present invention are ion-exchange chromatography, exclusion chromatography; polyacrylamide gel electrophoresis; isoelectric focusing. A particularly efficient method of purifying peptides is fast protein liquid chromatography or even HPLC.

Certain aspects of the present invention concern the purification, and in particular embodiments, the substantial purification, of a peptibody or peptide of the present invention. The term "purified peptibody or peptide" as used herein, is intended to refer to a composition, isolatable from other components, wherein the peptibody or peptide is purified to any degree relative to its naturally-obtainable state. A purified peptide or peptibody therefore also refers to a peptibody or peptide that is free from the environment in which it may naturally occur.

Generally, "purified" will refer to a peptide or peptibody composition that has been subjected to fractionation to remove various other components, and which composition substantially retains its expressed biological activity. Where the term "substantially purified" is used, this designation will refer to a peptide or peptibody composition in which the peptibody or peptide forms the major component of the composition, such as constituting about 50%, about 60%, about 70%, about 80%, about 90%, about 95% or more of the proteins in the composition.

Various methods for quantifying the degree of purification of the peptide or peptibody will be known to those of skill in the art in light of the present disclosure. These include, for example, determining the specific binding activity of an active fraction, or assessing the amount of peptide or peptibody within a fraction by SDS/PAGE analysis. A preferred method for assessing the purity of a peptide or peptibody fraction is to calculate the binding activity of the fraction, to compare it to the binding activity of the initial extract, and to thus calculate the degree of purification, herein assessed by a "-fold purification number." The actual units used to represent the amount of binding activity will, of course, be dependent upon the particular assay technique chosen to follow the purification and whether or not the peptibody or peptide exhibits a detectable binding activity.

Various techniques suitable for use in purification will be well known to those of skill in the art. These include, for example, precipitation with ammonium sulphate, PEG, antibodies (immunoprecipitation) and the like or by heat denaturation, followed by centrifugation; chromatography steps such as affinity chromatography (e.g., Protein-A-Sepharose), ion exchange, gel filtration, reverse phase, hydroxylapatite and affinity chromatography; isoelectric focusing; gel electrophoresis; and combinations of such and other techniques. As is generally known in the art, it is believed that the order of conducting the various purification steps may be changed, or that certain steps may be omitted, and still result in a suitable method for the preparation of a substantially purified binding agent.

There is no general requirement that the binding agents of the present invention always be provided in their most purified state. Indeed, it is contemplated that less substantially purified binding agent products will have utility in certain embodiments. Partial purification may be accomplished by using fewer purification steps in combination, or by utilizing different forms of the same general purification scheme. For example, it is appreciated that a cation-exchange column chromatography performed utilizing an HPLC apparatus will generally result in a greater "-fold" purification than the same technique utilizing a low-pressure chromatography system. Methods exhibiting a lower degree of relative purification may have advantages in total recovery of the peptide or peptibody, or in maintaining binding activity of the peptide or peptibody.

It is known that the migration of a peptide or polypeptide can vary, sometimes significantly, with different conditions of SDS/PAGE (Capaldi *et al.*, *Biochem Biophys Res Comm*, 76: 425 (1977)). It will therefore be appreciated that under differing electrophoresis conditions, the apparent molecular weights of purified or partially purified binding agent expression products may vary.

Activity of Myostatin Binding Agents

10

15

20

25

30

35

After the construction of the binding agents of the present invention, they are tested for their ability to bind myostatin and inhibit or block myostatin activity. Any number of assays or animal tests may be used to determine the ability of the agent to inhibit or block myostatin activity. Several assays used for characterizing the peptides and peptibodies of the present invention are described in the Examples below. One assay is the C2C12 pMARE-luc assay which makes use of a myostatin-responsive cell line (C2C12 myoblasts) transfected with a luciferase reporter vector containing myostatin/activin response elements (MARE). Exemplary peptibodies are assayed by pre-incubating a series of peptibody dilutions with myostatin, and then exposing the cells to the incubation mixture. The resulting luciferase activity is determined, and a titration curve is generated from the series of peptibody dilutions. The IC₅₀ (the concentration of

peptibody to achieve 50% inhibition of myostatin activity as measured by luciferase activity) was then determined. A second assay described below is a BIAcore® assay to determine the kinetic parameters k_a (association rate constant), k_d (dissociation rate constant), and K_D (dissociation equilibrium constant) for the myostatin binding agents. Lower dissociation equilibrium constants (K_D , expressed in nM) indicated a greater affinity of the peptibody for myostatin. Additional assays include blocking assays, to determine whether a binding agent such as a peptibody is neutralizing (prevents binding of myostatin to its receptor), or non-neutralizing (does not prevent binding of myostatin to its receptor); selectivity assays, which determine if the binding agents of the present invention bind selectively to myostatin and not to other TGFB family members; and KinEx A^{TM} assays or solution-based equilibrium assays, which also determine K_D and are considered to be more sensitive in some circumstances. These assays are described in Example 3.

Figure 1 shows the IC₅₀ of a peptide compared with the IC₅₀ of the peptibody form of the peptide. This demonstrates that the peptibody is significantly more effective at inhibiting myostatin activity than the peptide alone. In addition, affinity-matured peptibodies generally exhibit improved IC₅₀ and K_D values compared with the parent peptides and peptibodies. The IC₅₀ values for a number of exemplary affinity matured peptibodies are shown in Table VII. Example 7 below. Additionally, in some instances, making a 2x version of a peptibody, where two peptides are attached in tandem, increase the activity of the peptibody both *in vitro* and *in vivo*.

In vivo activities are demonstrated in the Examples below. The activities of the binding agents include anabolic activity increasing lean muscle mass in animal models, as well as decreasing the fat mass with respect to total body weight in treated animal models, and increasing muscular strength in animal models.

25 Uses of the Myostatin Binding Agents

5

10

15

20

30

The myostatin binding agents of the present invention bind to myostatin and block or inhibit myostatin signaling within targeted cells. The present invention provides methods and reagents for reducing the amount or activity of myostatin in an animal by administering an effective dosage of one or more myostatin binding agents to the animal. In one aspect, the present invention provides methods and reagents for treating myostatin-related disorders in an animal comprising administering an effective dosage of one or more binding agents to the animal. These myostatin-related disorders include but are not limited to various forms of muscle wasting, as well as metabolic disorders such as diabetes and related disorders, and bone degenerative diseases such as osteoporosis.

As shown in the Example 8 below, exemplary peptibodies of the present invention dramatically increases lean muscle mass in the CD1 nu/nu mouse model. This *in vivo* activity correlates to the *in vitro* binding and inhibitory activity described below for the same peptibodies.

Muscle wasting disorders include dystrophies such as Duchenne's muscular dystrophy, progressive muscular dystrophy, Becker's type muscular dystrophy, Dejerine-Landouzy muscular dystrophy, Erb's muscular dystrophy, and infantile neuroaxonal muscular dystrophy. For example, blocking myostatin through use of antibodies *in vivo* improved the dystrophic phenotype of the *mdx* mouse model of Duchenne muscular dystrophy (Bogdanovich et al, *Nature* 420, 28 (2002)). The peptibodies of the present invention increase lean muscle mass as a percentage of body weight and decreases fat mass as percentage of body weight when administered to an aged *mdx* mouse model.

Additional muscle wasting disorders arise from chronic disease such as amyotrophic lateral sclerosis, congestive obstructive pulmonary disease, cancer, AIDS, renal failure, and rheumatoid arthritis. For example, cachexia or muscle wasting and loss of body weight was induced in athymic nude mice by a systemically administered myostatin (Zimmers et al., supra). In another example, serum and intramuscular concentrations of myostatin-immunoreactive protein was found to be increased in men exhibiting AIDS-related muscle wasting and was inversely related to fat-free mass (Gonzalez-Cadavid et al., PNAS USA 95: 14938-14943 (1998)). Additional conditions resulting in muscle wasting may arise from inactivity due to disability such as confinement in a wheelchair, prolonged bedrest due to stroke, illness, spinal chord injury, bone fracture or trauma, and muscular atrophy in a microgravity environment (space flight). For example, plasma myostatin immunoreactive protein was found to increase after prolonged bedrest (Zachwieja et al. J Gravit Physiol. 6(2):11(1999). It was also found that the muscles of rats exposed to a microgravity environment during a space shuttle flight expressed an increased amount of myostatin compared with the muscles of rats which were not exposed (Lalani et al., J.Endocrin 167 (3):417-28 (2000)).

In addition, age-related increases in fat to muscle ratios, and age-related muscular atrophy appear to be related to myostatin. For example, the average serum myostatin-immunoreactive protein increased with age in groups of young (19-35 yr old), middle-aged (36-75 yr old), and elderly (76-92 yr old) men and women, while the average muscle mass and fat-free mass declined with age in these groups (Yarasheski et al. *J Nutr Aging* 6(5):343-8 (2002)). It has also been shown that myostatin gene knockout in mice increased myogenesis and decreased adipogenesis (Lin et al., *Biochem Biophys Res Conunun* 291(3):701-6 (2002), resulting in adults with increased muscle mass and decreased fat accumulation and leptin secretion. Exemplary peptibodies improve the lean muscle mass to fat ratio in aged *mdx* mice as shown below.

In addition, myostatin has now been found to be expressed at low levels in heart muscle and expression is upregulated after cardiomyocytes after infarct (Sharma et al., *J Cell Physiol.* 180 (1):1-9 (1999)). Therefore, reducing myostatin levels in the heart muscle may improve recovery of heart muscle after infarct.

Myostatin also appears to influence metabolic disorders including type 2 diabetes, noninsulin-dependent diabetes mellitus, hyperglycemia, and obesity. For example, lack of myostatin has been shown to improve the obese and diabetic phenotypes of two mouse models (Yen et al. *supra*). It has been demonstrated in the Examples below that decreasing myostatin activity by administering the inhibitors of the present invention will decreases the fat to muscle ratio in an animal, including aged animal models. Therefore, decreasing fat composition by administering the inhibitors of the present invention will improve diabetes, obesity, and hyperglycemic conditions in animals.

5

10

15

25

30

35

In addition, increasing muscle mass by reducing myostatin levels may improve bone strength and reduce osteoporosis and other degenerative bone diseases. It has been found, for example, that myostatin-deficient mice showed increased mineral content and density of the mouse humerus and increased mineral content of both trabecular and cortical bone at the regions where the muscles attach, as well as increased muscle mass (Hamrick et al. *Calcif Tissue Int* 71(1):63-8 (2002)).

The present invention also provides methods and reagents for increasing muscle mass in food animals by administering an effective dosage of the myostatin binding agent to the animal. Since the mature C-terminal myostatin polypeptide is identical in all species tested, myostatin binding agents would be expected to be effective for increasing muscle mass and reducing fat in any agriculturally important species including cattle, chicken, turkeys, and pigs.

The binding agents of the present invention may be used alone or in combination with other therapeutic agents to enhance their therapeutic effects or decrease potential side effects. The binding agents of the present invention possess one or more desirable but unexpected combination of properties to improve the therapeutic value of the agents. These properties include increased activity, increased solubility, reduced degradation, increased half-life, reduced toxicity, and reduced immunogenicity. Thus the binding agents of the present invention are useful for extended treatment regimes. In addition, the properties of hydrophilicity and hydrophobicity of the compounds of the invention are well balanced, thereby enhancing their utility for both *in vitro* and especially *in vivo* uses. Specifically, compounds of the invention have an appropriate degree of solubility in aqueous media that permits absorption and bioavailability in the body, while also having a degree of solubility in lipids that permits the compounds to traverse the cell membrane to a putative site of action, such as a particular muscle mass.

The binding agents of the present invention are useful for treating a "subject" or any animal, including humans, when administered in an effective dosages in a suitable composition.

In addition, the mystatin binding agents of the present invention are useful for detecting and quantitating myostatin in a number of assays. These assays are described in more detail below.

In general, the binding agents of the present invention are useful as capture agents to bind and immobilize myostatin in a variety of assays, similar to those described, for example, in Asai, ed., Methods in Cell Biology, 37, Antibodies in Cell Biology, Academic Press, Inc., New York (1993). The binding agent may be labeled in some manner or may react with a third molecule such as an anti-binding agent antibody which is labeled to enable myostatin to be detected and quantitated. For example, a binding agent or a third molecule can be modified with a detectable moiety, such as biotin, which can then be bound by a fourth molecule, such as enzyme-labeled streptavidin, or other proteins. (Akerstrom, *J Immunol* 135:2589 (1985); Chaubert, *Mod Pathol* 10:585 (1997)).

Throughout any particular assay, incubation and/or washing steps may be required after each combination of reagents. Incubation steps can vary from about 5 seconds to several hours, preferably from about 5 minutes to about 24 hours. However, the incubation time will depend upon the assay format, volume of solution, concentrations, and the like. Usually, the assays will be carried out at ambient temperature, although they can be conducted over a range of temperatures.

Non-competitive binding assays:

5

10

15

20

25

30

Binding assays can be of the non-competitive type in which the amount of captured myostatin is directly measured. For example, in one preferred "sandwich" assay, the binding agent can be bound directly to a solid substrate where it is immobilized. These immobilized agents then bind to myostatin present in the test sample. The immobilized myostatin is then bound with a labeling agent, such as a labeled antibody against myostatin, which can be detected. In another preferred "sandwich" assay, a second agent specific for the binding agent can be added which contains a detectable moiety, such as biotin, to which a third labeled molecule can specifically bind, such as streptavidin. (See, Harlow and Lane, Antibodies, A Laboratory Manual, Ch 14, Cold Spring Harbor Laboratory, NY (1988), which is incorporated herein by reference).

Competitive Binding Assays:

Binding assays can be of the competitive type. The amount of myostatin present in the sample is measured indirectly by measuring the amount of myostatin displaced, or competed away, from a binding agent by the myostatin present in the sample. In one preferred competitive

binding assay, a known amount of myostastin, usually labeled, is added to the sample and the sample is then contacted with the binding agent. The amount of labeled myostastin bound to the binding agent is inversely proportional to the concentration of myostastin present in the sample. (following the protocols found in, for example Harlow and Lane, Antibodies, A Laboratory Manual, Ch 14, pp. 579-583, supra).

In another preferred competitive binding assay, the binding agent is immobilized on a solid substrate. The amount of myostastin bound to the binding agent may be determined either by measuring the amount of myostatin present in a myostatin/binding agent complex, or alternatively by measuring the amount of remaining uncomplexed myostatin.

10 Other Binding Assays

5

15

20

25

30

The present invention also provides Western blot methods to detect or quantify the presence of myostatin in a sample. The technique generally comprises separating sample proteins by gel electrophoresis on the basis of molecular weight and transferring the proteins to a suitable solid support, such as nitrocellulose filter, a nylon filter, or derivatized nylon filter. The sample is incubated with the binding agents or fragments thereof that bind myostatin and the resulting complex is detected. These binding agents may be directly labeled or alternatively may be subsequently detected using labeled antibodies that specifically bind to the binding agent.

Diagnostic Assays

The binding agents or fragments thereof of the present invention may be useful for the diagnosis of conditions or diseases characterized by increased amounts of myostatin. Diagnostic assays for high levels of myostatin include methods utilizing a binding agent and a label to detect myostatin in human body fluids, extracts of cells or specific tissue extracts. For example, serum levels of myostatin may be measured in an individual over time to determine the onset of muscle wasting associated with aging or inactivity, as described, for example, in Yarasheski et al., supra. Increased myostatin levels were shown to correlate with average decreased muscle mass and fatfree mass in groups of men and women of increasing ages (Yarasheski et al., supra). The binding agents of the present invention may be useful for monitoring increases or decreases in the levels of myostatin with a given individual over time, for example. The binding agents can be used in such assays with or without modification. In a preferred diagnostic assay, the binding agents will be labeled by attaching, e.g., a label or a reporter molecule. A wide variety of labels and reporter molecules are known, some of which have been already described herein. In particular, the present invention is useful for diagnosis of human disease.

A variety of protocols for measuring myostatin proteins using binding agents of myostatin are known in the art. Examples include enzyme-linked immunosorbent assay (ELISA), radioimmunoassay (RIA) and fluorescence activated cell sorting (FACS).

For diagnostic applications, in certain embodiments the binding agents of the present invention typically will be labeled with a detectable moiety. The detectable moiety can be any one that is capable of producing, either directly or indirectly, a detectable signal. For example, the detectable moiety may be a radioisotope, such as ³H, ¹⁴C, ³²P, ³⁵S, or ¹²⁵I, a fluorescent or chemiluminescent compound, such as fluorescein isothiocyanate, rhodamine, or luciferin; or an enzyme, such as alkaline phosphatase, βgalactosidase, or horseradish peroxidase (Bayer et al., *Meth Enz*, 184: 138 (1990)).

5

10

15

20

25

30

35

Pharmaceutical Compositions

Pharmaceutical compositions of myostatin binding agents such as peptibodies described herein are within the scope of the present invention. Such compositions comprise a therapeutically or prophylactically effective amount of a myostatin binding agent, fragment, variant, or derivative thereof as described herein, in admixture with a pharmaceutically acceptable agent. In a preferred embodiment, pharmaceutical compositions comprise antagonist binding agents that inhibit myostatin partially or completely in admixture with a pharmaceutically acceptable agent. Typically, the myostastin binding agents will be sufficiently purified for administration to an animal.

The pharmaceutical composition may contain formulation materials for modifying, maintaining or preserving, for example, the pH, osmolarity, viscosity, clarity, color, isotonicity, odor, sterility, stability, rate of dissolution or release, adsorption or penetration of the composition. Suitable formulation materials include, but are not limited to, amino acids (such as glycine, glutamine, asparagine, arginine or lysine); antimicrobials; antioxidants (such as ascorbic acid, sodium sulfite or sodium hydrogen-sulfite); buffers (such as borate, bicarbonate, Tris-HCl, citrates, phosphates, other organic acids); bulking agents (such as mannitol or glycine), chelating agents (such as ethylenediamine tetraacetic acid (EDTA)); complexing agents (such as caffeine, polyvinylpyrrolidone, beta-cyclodextrin or hydroxypropyl-beta-cyclodextrin); fillers; monosaccharides; disaccharides and other carbohydrates (such as glucose, mannose, or dextrins); proteins (such as serum albumin, gelatin or immunoglobulins); coloring; flavoring and diluting agents; emulsifying agents; hydrophilic polymers (such as polyvinylpyrrolidone); low molecular weight polypeptides; salt-forming counterions (such as sodium); preservatives (such as benzalkonium chloride, benzoic acid, salicylic acid, thimerosal, phenethyl alcohol, methylparaben, propylparaben, chlorhexidine, sorbic acid or hydrogen peroxide); solvents (such

as glycerin, propylene glycol or polyethylene glycol); sugar alcohols (such as mannitol or sorbitol); suspending agents; surfactants or wetting agents (such as pluronics, PEG, sorbitan esters, polysorbates such as polysorbate 20, polysorbate 80, triton, tromethamine, lecithin, cholesterol, tyloxapal); stability enhancing agents (sucrose or sorbitol); tonicity enhancing agents (such as alkali metal halides (preferably sodium or potassium chloride, mannitol sorbitol); delivery vehicles; diluents; excipients and/or pharmaceutical adjuvants. (Remington's Pharmaceutical Sciences, 18th Edition, A.R. Gennaro, ed., Mack Publishing Company, 1990).

5

10

15

20

25

30

35

The optimal pharmaceutical composition will be determined by one skilled in the art depending upon, for example, the intended route of administration, delivery format, and desired dosage. See for example, Remington's Pharmaceutical Sciences, supra. Such compositions may influence the physical state, stability, rate of in vivo release, and rate of in vivo clearance of the binding agent.

The primary vehicle or carrier in a pharmaceutical composition may be either aqueous or non-aqueous in nature. For example, a suitable vehicle or carrier may be water for injection, physiological saline solution or artificial cerebrospinal fluid, possibly supplemented with other materials common in compositions for parenteral administration. Neutral buffered saline or saline mixed with serum albumin are further exemplary vehicles. Other exemplary pharmaceutical compositions comprise Tris buffer of about pH 7.0-8.5, or acetate buffer of about pH 4.0-5.5, which may further include sorbitol or a suitable substitute therefore. In one embodiment of the present invention, binding agent compositions may be prepared for storage by mixing the selected composition having the desired degree of purity with optional formulation agents (Remington's Pharmaceutical Sciences, supra) in the form of a lyophilized cake or an aqueous solution. Further, the binding agent product may be formulated as a lyophilizate using appropriate excipients such as sucrose.

The pharmaceutical compositions can be selected for parenteral delivery. Alternatively, the compositions may be selected for inhalation or for enteral delivery such as orally, aurally, opthalmically, rectally, or vaginally. The preparation of such pharmaceutically acceptable compositions is within the skill of the art.

The formulation components are present in concentrations that are acceptable to the site of administration. For example, buffers are used to maintain the composition at physiological pH or at slightly lower pH, typically within a pH range of from about 5 to about 8.

When parenteral administration is contemplated, the therapeutic compositions for use in this invention may be in the form of a pyrogen-free, parenterally acceptable aqueous solution comprising the desired binding agent in a pharmaceutically acceptable vehicle. A particularly suitable vehicle for parenteral injection is sterile distilled water in which a binding agent is

formulated as a sterile, isotonic solution, properly preserved. Yet another preparation can involve the formulation of the desired molecule with an agent, such as injectable microspheres, bioerodible particles, polymeric compounds (polylactic acid, polyglycolic acid), beads, or liposomes, that provides for the controlled or sustained release of the product which may then be delivered via a depot injection. Hyaluronic acid may also be used, and this may have the effect of promoting sustained duration in the circulation. Other suitable means for the introduction of the desired molecule include implantable drug delivery devices.

In another aspect, pharmaceutical formulations suitable for parenteral administration may

5

10

15

20

25

30

be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hanks' solution, ringer's solution, or physiologically buffered saline. Aqueous injection suspensions may contain substances that increase the viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran. Additionally, suspensions of the active compounds may be prepared as appropriate oily injection suspensions. Suitable lipophilic solvents or vehicles include fatty oils, such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate, triglycerides, or liposomes. Non-lipid polycationic amino polymers may also be used for delivery. Optionally, the suspension may also contain suitable stabilizers or agents to increase the solubility of the ompounds and allow for the preparation of highly concentrated solutions. In another embodiment, a pharmaceutical composition may be formulated for inhalation. For example, a binding agent may be formulated as a dry powder for inhalation. Polypeptide or nucleic acid molecule inhalation solutions may also be formulated with a propellant for aerosol delivery. In yet another embodiment, solutions may be nebulized. Pulmonary administration is further described in PCT Application No. PCT/US94/001875, which describes pulmonary delivery of chemically modified proteins.

It is also contemplated that certain formulations may be administered orally. In one embodiment of the present invention, binding agent molecules that are administered in this fashion can be formulated with or without those carriers customarily used in the compounding of solid dosage forms such as tablets and capsules. For example, a capsule may be designed to release the active portion of the formulation at the point in the gastrointestinal tract when bioavailability is maximized and pre-systemic degradation is minimized. Additional agents can be included to facilitate absorption of the binding agent molecule. Diluents, flavorings, low melting point waxes, vegetable oils, lubricants, suspending agents, tablet disintegrating agents, and binders may also be employed.

Pharmaceutical compositions for oral administration can also be formulated using pharmaceutically acceptable carriers well known in the art in dosages suitable for oral

administration. Such carriers enable the pharmaceutical compositions to be formulated as tablets, pills, dragees, capsules, liquids, gels, syrups, slurries, suspensions, and the like, for ingestion by the patient.

5

10

15

20

25

30

35

Pharmaceutical preparations for oral use can be obtained through combining active compounds with solid excipient and processing the resultant mixture of granules (optionally, after grinding) to obtain tablets or dragee cores. Suitable auxiliaries can be added, if desired. Suitable excipients include carbohydrate or protein fillers, such as sugars, including lactose, sucrose, mannitol, and sorbitol; starch from corn, wheat, rice, potato, or other plants; cellulose, such as methyl cellulose, hydroxypropylmethyl-cellulose, or sodium carboxymethylcellulose; gums, including arabic and tragacanth; and proteins, such as gelatin and collagen. If desired, disintegrating or solubilizing agents may be added, such as the cross-linked polyvinyl pyrrolidone, agar, and alginic acid or a salt thereof, such as sodium alginate.

Dragee cores may be used in conjunction with suitable coatings, such as concentrated sugar solutions, which may also contain gum arabic, talc, polyvinylpyrrolidone, carbopol gel, polyethylene glycol, and/or titanium dioxide, lacquer solutions, and suitable organic solvents or solvent mixtures. Dyestuffs or pigments may be added to the tablets or dragee coatings for product identification or to characterize the quantity of active compound, i.e., dosage.

Pharmaceutical preparations that can be used orally also include push-fit capsules made of gelatin, as well as soft, sealed capsules made of gelatin and a coating, such as glycerol or sorbitol. Push-fit capsules can contain active ingredients mixed with fillers or binders, such as lactose or starches, lubricants, such as talc or magnesium stearate, and, optionally, stabilizers. In soft capsules, the active compounds may be dissolved or suspended in suitable liquids, such as fatty oils, liquid, or liquid polyethylene glycol with or without stabilizers.

Another pharmaceutical composition may involve an effective quantity of binding agent in a mixture with non-toxic excipients that are suitable for the manufacture of tablets. By dissolving the tablets in sterile water, or other appropriate vehicle, solutions can be prepared in unit dose form. Suitable excipients include, but are not limited to, inert diluents, such as calcium carbonate, sodium carbonate or bicarbonate, lactose, or calcium phosphate; or binding agents, such as starch, gelatin, or acacia; or lubricating agents such as magnesium stearate, stearic acid, or talc.

Additional pharmaceutical compositions will be evident to those skilled in the art, including formulations involving binding agent molecules in sustained- or controlled-delivery formulations. Techniques for formulating a variety of other sustained- or controlled-delivery means, such as liposome carriers, bio-erodible microparticles or porous beads and depot injections, are also known to those skilled in the art. See for example, PCT/US93/00829 that

describes controlled release of porous polymeric microparticles for the delivery of pharmaceutical compositions. Additional examples of sustained-release preparations include semipermeable polymer matrices in the form of shaped articles, e.g. films, or microcapsules. Sustained release matrices may include polyesters, hydrogels, polylactides (U.S. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma ethyl-L-glutamate (Sidman et al., Biopolymers, 22:547-556 (1983), poly (2-hydroxyethyl-methacrylate) (Langer-et al., *J. Biomed. Mater. Res.*, 15:167-277, (1981); Langer et al., *Chem. Tech.*, 12:98-105(1982)), ethylene vinyl acetate (Langer et al., *supra*) or poly-D(-)-3-hydroxybutyric acid (EP 133,988). Sustained-release compositions also include liposomes, which can be prepared by any of several methods known in the art. See e.g., Eppstein et al., *PNAS* (USA), 82:3688 (1985); EP 36,676; EP 88,046; EP 143,949.

10

15

20

30.

The pharmaceutical composition to be used for *in vivo* administration typically must be sterile. This may be accomplished by filtration through sterile filtration membranes. Where the composition is lyophilized, sterilization using this method may be conducted either prior to or following lyophilization and reconstitution. The composition for parenteral administration may be stored in lyophilized form or in solution. In addition, parenteral compositions generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.

Once the pharmaceutical composition has been formulated, it may be stored in sterile vials as a solution, suspension, gel, emulsion, solid, or a dehydrated or lyophilized powder. Such formulations may be stored either in a ready-to-use form or in a form (e.g., lyophilized) requiring reconstitution prior to administration.

In a specific embodiment, the present invention is directed to kits for producing a single-dose administration unit. The kits may each contain both a first container having a dried protein and a second container having an aqueous formulation. Also included within the scope of this invention are kits containing single and multi-chambered pre-filled syringes (e.g., liquid syringes and lyosyringes).

An effective amount of a pharmaceutical composition to be employed therapeutically will depend, for example, upon the therapeutic context and objectives. One skilled in the art will appreciate that the appropriate dosage levels for treatment will thus vary depending, in part, upon the molecule delivered, the indication for which the binding agent molecule is being used, the route of administration, and the size (body weight, body surface or organ size) and condition (the age and general health) of the patient. Accordingly, the clinician may titer the dosage and modify the route of administration to obtain the optimal therapeutic effect. A typical dosage may range from about 0.1 mg/kg to up to about 100 mg/kg or more, depending on the factors mentioned

above. In other embodiments, the dosage may range from 0.1 mg/kg up to about 100 mg/kg; or 1 mg/kg up to about 100 mg/kg; or 5 mg/kg up to about 100 mg/kg.

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays or in animal models such as mice, rats, rabbits, dogs, pigs, or monkeys. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

The exact dosage will be determined in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active compound or to maintain the desired effect. Factors that may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting pharmaceutical compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

10

15

20

25

30

The frequency of dosing will depend upon the pharmacokinetic parameters of the binding agent molecule in the formulation used. Typically, a composition is administered until a dosage is reached that achieves the desired effect. The composition may therefore be administered as a single dose, or as multiple doses (at the same or different concentrations/dosages) over time, or as a continuous infusion. Further refinement of the appropriate dosage is routinely made. Appropriate dosages may be ascertained through use of appropriate dose-response data.

The route of administration of the pharmaceutical composition is in accord with known methods, e.g. orally, through injection by intravenous, intraperitoneal, intracerebral (intraparenchymal), intracerebroventricular, intramuscular, intra-ocular, intraarterial, intraportal, intralesional routes, intramedullary, intrathecal, intraventricular, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, urethral, vaginal, or rectal means, by sustained release systems or by implantation devices. Where desired, the compositions may be administered by bolus injection or continuously by infusion, or by implantation device.

Alternatively or additionally, the composition may be administered locally via implantation of a membrane, sponge, or another appropriate material on to which the desired molecule has been absorbed or encapsulated. Where an implantation device is used, the device may be implanted into any suitable tissue or organ, and delivery of the desired molecule may be via diffusion, timed-release bolus, or continuous administration.

In some cases, it may be desirable to use pharmaceutical compositions in an ex vivo manner. In such instances, cells, tissues, or organs that have been removed from the patient are exposed to the pharmaceutical compositions after which the cells, tissues and/or organs are subsequently implanted back into the patient.

In other cases, a binding agent of the present invention such as a peptibody can be delivered by implanting certain cells that have been genetically engineered, using methods such as those described herein, to express and secrete the polypeptide. Such cells may be animal or human cells, and may be autologous, heterologous, or xenogeneic. Optionally, the cells may be immortalized. In order to decrease the chance of an immunological response, the cells may be encapsulated to avoid infiltration of surrounding tissues. The encapsulation materials are typically biocompatible, semi-permeable polymeric enclosures or membranes that allow the release of the protein product(s) but prevent the destruction of the cells by the patient's immune system or by other detrimental factors from the surrounding tissues.

Pharmaceutical compositions containing the binding agents of the present invention are administered to a subject to treat any myostatin-related disorders. These include muscle-wasting disorders including but not limited to muscular dystrophy, muscle wasting in cancer, AIDS, muscle atrophy, rheumatoid arthritis, renal failure/uremia, chronic heart failure, prolonged bedrest, spinal chord injury, stroke, and aging related sarcopenia. In addition these compositions are administed to treat obesity, diabetes, hyperglycemia, and increase bone density,

20

15

5

10

The invention having been described, the following examples are offered by way of illustration, and not limitation.

Example 1

25

30

Identification of myostatin -binding peptides

Three filamentous phage libraries, TN8-IX (5X10⁹ independent transformants), TN12-I (1.4X10⁹ independent transformants), and linear (2.3X10⁹ independent transformants) (Dyax Corp.) were used to select for myostatin binding phage. Each library was incubated on myostatin-coated surfaces and subjected to different panning conditions: non-specific elution, and specific elution using recombinant human activin receptor IIB/Fc chimera (R&D Systems, Inc., Minneapolis, Minnesota), or myostastin propeptide elution as described below. For all three libraries, the phages were eluted in a non-specific manner for the first round of selection, while the receptor and promyostatin was used in the second and third rounds of selection. The selection procedures were carried out as described below.

Preparation of myostatin

5

10

15

20

25

30

Myostatin protein was produced recombinantly in the *E.coli* K-12 strain 2596 (ATCC # 202174) as follows. Polynucleotides encoding the human promyostatin molecule were cloned into the pAMG21 expression vector (ATCC No. 98113), which was derived from expression vector pCFM1656 (ATCC No. 69576) and the expression vector system described in United States Patent No. 4,710,473, by following the procedure described in published International Patent Application WO 00/24782. The polynucleotides encoding promyostatin were obtained from a mammalian expression vector. The coding region was amplified using a standard PCR method and the following PCR primers to introduce the restriction site for *NdeI* and *BamHI*. 5' primer: 5'-GAGAGAGAGCATATGAATGAGAACAGTGAGCAAAAAG-3' (Seq ID No: 292)

3'primer: 5'-AGAGAGGGATCCATTATGAGCACCCACAGCGGTC-3' (Seq ID No: 293)

The PCR product and vector were digested with both enzymes, mixed and ligated. The product of the ligation was transformed into *E. coli* strain #2596. Single colonies were checked microscopically for recombinant protein expression in the form of inclusion bodies. The plasmid was isolated and sequenced through the coding region of the recombinant gene to verify genetic fidelity.

Bacterial paste was generated from a 10L fermentation using a batch method at 37°C. The culture was induced with HSL at a cell density of 9.6 OD₆₀₀ and harvested six hours later at a density of 104 OD₆₀₀. The paste was stored at -80°C. *E.coli* paste expressing promyostatin was lysed in a microfluidizer at 16,000psi, centrifuged to isolate the insoluble inclusion body fraction. Inclusion bodies were resuspended in guanidine hydrochloride containing dithiothreitol and solubilized at room temperature. This was then diluted 30 fold in an aqueous buffer. The refolded promyostatin was then concentrated and buffer exchanged into 20mM Tris pH 8.0, and applied to an anion exchange column. The anion exchange column was eluted with an increasing sodium chloride gradient. The fractions containing promyostatin were pooled. The promyostatin produced in *E.coli* is missing the first 23 amino acids and begins with a methionine before the residue 24 asparagine. To produce mature myostatin, the pooled promyostatin was enzymatically cleaved between the propeptide and mature myostatin C terminal. The resulting mixture was then applied to a C4-rpHPLC column using a increasing gradient of acetonitrile containing 0.1% trifluoroacetic acid. Fractions containing mature myostatin were pooled and dried in a speed-vac.

The recombinant mature myostatin produced from E. coli was tested in the myoblast C2C12 based assay described below and found to be fully active when compared with

recombinant murine myostatin commercially produced in a mammalian cell system (R&D Systems, Inc., Minneapolis, Minnesota). The *E.coli*-produced mature myostatin was used in the phage-display and screening assays described below.

Preparation of Myostatin-Coated Tubes

Myostatin was immobilized on 5 ml Immuno Tubes (NUNC) at a concentration of 8 ug of myostatin protein in 1 ml of 0.1M sodium carbonate buffer (pH 9.6). The myostatin-coated Immuno Tube was incubated with orbital shaking for 1 hour at room temperature. Myostatin-coated Immuno Tube was then blocked by adding 5 ml of 2% milk-PBS and incubating at room temperature for 1 hour with rotation. The resulting myostatin-coated Immuno Tube was then washed three times with PBS before being subjected to the selection procedures. Additional Immuno Tubes were also prepared for negative selections (no myostatin). For each panning condition, five to ten Immuno Tubes were subjected to the above procedure except that the Immuno Tubes were coated with 1ml of 2% BSA-PBS instead of myostatin protein.

Negative Selection

5

10

15

20

25

30

For each panning condition, about 100 random library equivalents for TN8-IX and TN12-I libraries (5X10¹¹ pfu for TN8-IX, and 1.4X10¹¹ pfu for TN12-I) and about 10 random library equivalents for the linear library (2.3X10¹⁰ pfu) were aliquoted from the library stock and diluted to 1 ml with PBST (PBS with 0.05% Tween-20). The 1 ml of diluted library stock was added to an ImmunoTM Tube prepared for the negative selection, and incubated for 10 minutes at room temperature with orbital shaking. The phage supernatant was drawn out and added to the second ImmunoTM Tube for another negative selection step. In this way, five to ten negative selection steps were performed.

Selection for Myostatin Binding

After the last negative selection step above, the phage supernatant was added to the prepared myostatin coated ImmunoTM Tubes. The ImmunoTM Tube was incubated with orbital shaking for one hour at room temperature, allowing specific phage to bind to myostatin. After the supernatant was discarded, the ImmunoTM Tube was washed about 15 times with 2% milk-PBS, 10 times with PBST and twice with PBS for the three rounds of selection with all three libraries (TN8-IX, TN12-I, and Linear libraries) except that for the second round of selections with TN8-IX and TN12-I libraries, the ImmunoTM Tube was washed about 14 times with 2% milk-PBS, twice with 2% BSA-PBS, 10 times with PBST and once with PBS.

Non-specific elution

After the last washing step, the bound phages were eluted from the Immuno TM Tube by adding 1 ml of 100 mM triethylamine solution (Sigma, St. Louis, Missouri) with 10-minute

incubation with orbital shaking. The pH of the phage containing solution was then neutralized with 0.5 ml of 1 M Tris-HCl (pH 7.5).

Receptor (Human Activin Receptor) elution of bound phage

For round 2 and 3, after the last washing step, the bound phages were eluted from the Immuno TM Tube by adding 1 ml of 1 µM of receptor protein (recombinant human activin receptor IIB/Fc chimera, R&D Systems, Inc., Minneapolis, Minnesota) with a 1-hour incubation for each condition.

Propeptide elution of bound phage

For round 2 and 3, after the last washing step, the bound phages were eluted from the Immuno TM Tube by adding 1 ml of 1 μ M propertide protein (made as described above) with a 1-hour incubation for each condition.

Phage Amplification

5

10

15

20

25

30

Fresh *E.coli*. (XL-1 Blue MRF') culture was grown to $OD_{600} = 0.5$ in LB media containing 12.5 ug/ml tetracycline. For each panning condition, 20 ml of this culture was chilled on ice and centrifuged. The bacteria pellet was resuspended in 1 ml of the min A salts solution.

Each mixture from different elution methods was added to a concentrated bacteria sample and incubated at 37°C for 15 minutes. 2 ml of NZCYM media (2x NZCYM, 50 ug/ml Ampicillin) was added to each mixture and incubated at 37°C for 15 minutes. The resulting 4 ml solution was plated on a large NZCYM agar plate containing 50 ug/ml ampicillin and incubated overnight at 37°C.

Each of the bacteria/phage mixture that was grown overnight on a large NZCYM agar plate was scraped off in 35 ml of LB media, and the agar plate was further rinsed with additional 35 ml of LB media. The resulting bacteria/phage mixture in LB media was centrifuged to pellet the bacteria away. 50 ul of the phage supernatant was transferred to a fresh tube, and 12.5 ml of PEG solution (20% PEG8000, 3.5M ammonium acetate) was added and incubated on ice for 2 hours to precipitate phages. The precipitated phages were centrifuged down and resuspended in 6 ml of the phage resuspension buffer (250 mM NaCl, 100 mM Tris pH8, 1 mM EDTA). This phage solution was further purified by centrifuging away the remaining bacteria and precipitating the phage for the second time by adding 1.5 ml of the PEG solution. After a centrifugation step, the phage pellet was resuspended in 400 ul of PBS. This solution was subjected to a final centrifugation to rid of remaining bacteria debris. The resulting phage preparation was titered by a standard plaque formation assay (Molecular Cloning, Maniatis et al., 3rd Edition).

Additional rounds of selection and amplification

In the second round, the amplified phage (10¹¹ pfu) from the first round was used as the input phage to perform the selection and amplification steps. The amplified phage (10¹¹ pfu) from the second round in turn was used as the input phage to perform third round of selection and amplification. After the elution steps of the third round, a small fraction of the eluted phage was plated out as in the plaque formation assay above. Individual plaques were picked and placed into 96 well microtiter plates containing 100 ul of TE buffer in each well. These master plates were incubated at 4°C overnight to allow phages to elute into the TE buffer.

Clonal Analysis

Phage ELISA

5

10

15

20

25

30

35

The phage clones were subjected to phage ELISA and then sequenced. The sequences were ranked as discussed below.

Phage ELISA was performed as follows. An *E. Coli* XL-1 Blue MRF'culture was grown until OD₆₀₀ reached 0.5. 30 ul of this culture was aliquoted into each well of a 96 well microtiter plate. 10 ul of eluted phage was added to each well and allowed to infect bacteria for 15 min at room temperature. About 120 ul of LB media containing 12.5 ug/ml of tetracycline and 50 ug/ml of ampicillin were added to each well. The microtiter plate was then incubated with shaking overnight at 37 °C. Myostatin protein (2 ug/ml in 0.1M sodium carbonate buffer, pH 9.6) was allowed to coat onto a 96 well MaxisorpTM plates (NUNC) overnight at 4°C. As a control, a separate MaxisorpTM plate was coated with 2% BSA prepared in PBS.

On the following day, liquid in the protein coated MaxisorpTM plates was discarded, washed three times with PBS and each well was blocked with 300 ul of 2% milk solution at room temperature for 1 hour. The milk solution was discarded, and the wells were washed three times with the PBS solution. After the last washing step, about 50 ul of PBST-4% milk was added to each well of the protein-coated MaxisorpTM plates. About 50 ul of overnight cultures from each well in the 96 well microtiter plate was transferred to the corresponding wells of the myostatin coated plates as well as the control 2% BSA coated plates. The 100 ul mixture in the two kinds of plates were incubated for 1 hour at room temperature. The liquid was discarded from the MaxisorpTM plates, and the wells were washed about three times with PBST followed by two times with PBS. The HRP-conjugated anti-M13 antibody (Amersham Pharmacia Biotech) was diluted to about 1:7,500, and 100 ul of the diluted solution was added to each well of the MaxisorpTM plates for 1 hour incubation at room temperature. The liquid was again discarded and the wells were washed about three times with PBST followed by two time with PBS. 100 ul of LumiGloTM Chemiluminescent substrate (KPL) was added to each well of the MaxisorpTM plates and incubated for about 5 minutes for reaction to occur. The chemiluminescent unit of the Maxisorp TM plates was read on a plate reader (Lab System).

Sequencing of the phage clones

For each phage clone, the sequencing template was prepared by a PCR method. The following oligonucleotide pair was used to amplify a 500 nucleotide fragment: primer #1: 5'
CGGCGCAACTATCGGTATCAAGCTG-3' (Seq ID No: 294) and primer #2: 5'
CATGTACCGTAACACTGAGTTTCGTC-3' (Seq ID No: 295). The following mixture was prepared for each clone.

Reagents	Volume (μL) / tube
distilled H ₂ O	26.25
50% glycerol	10
10X PCR Buffer (w/o MgCl ₂)	5
25 mM MgCl ₂	4
10 mM dNTP mix	1
100 μM primer 1	0.25
100 μM primer 2	0.25
Taq polymerase	0.25
Phage in TE (section 4)	3
Final reaction volume	50

A thermocycler (GeneAmp PCR System 9700, Applied Biosystem) was used to run the following program: [94°C for 5min; 94°C for 30 sec, 55°C for 30 sec, 72°C for 45 sec.] x30 cycles; 72°C for 7 min; cool to 4°C. The PCR product from each reaction was cleaned up using the QIAquick Multiwell PCR Purification kit (Qiagen), following the manufacturer's protocol. The PCR cleaned up product was checked by running 10 ul of each PCR reaction mixed with 1 ul of dye (10X BBXS agarose gel loading dye) on a 1% agarose gel. The remaining product was then sequenced using the ABI 377 Sequencer (Perkin Elmer) following the manufacturer recommended protocol.

Sequence Ranking and Analysis

10

15

20

The peptide sequences that were translated from the nucleotide sequences were correlated to ELISA data. The clones that showed high chemiluminescent units in the myostatin-coated wells and low chemiluminescent units in the 2% BSA-coated wells were identified. The sequences that occurred multiple times were identified. Candidate sequences chosen based on these criteria were subjected to further analysis as peptibodies. Approximately 1200 individual clones were analyzed. Of these approximately 132 peptides were chosen for generating the peptibodies of the present invention. These are shown in Table I below. The peptides having

SEQ ID NO: 1 to 129 were used to generate peptibodies of the same name. The peptides having SEQ ID NO: 130 to 141 shown in Table 1 comprise two or more peptides from SEQ ID NO: 1 to 132 attached by a linker sequence. SEQ ID NO: 130 to 141 were also used to generate peptibodies of the same name.

5 Consensus sequences were determined for the TN-8 derived group of peptides. These are as follows:

KDXCXXWHWMCKPX (Seq ID No: 142)

WXXCXXXGFWCXNX (Seq ID No: 143)

IXGCXWWDXXCYXX (Seq ID No: 144)

10 XX<u>WCVSP</u>X<u>WFC</u>XXX (Seq ID No: 145)

15

XXXCPWFAXXCVDW (Seq ID No: 146)

For all of the above consensus sequences, the underlined "core sequences" from each consensus sequence are the amino acid which always occur at that position. "X" refers to any naturally occurring or modified amino acid. The two cysteines contained with the core sequences were fixed amino acids in the TN8-IX library.

TABLE I

PEPTIBODY NAME	SEQ.II	No PEPTIDE SEQUENCE
Myostatin-TN8-Con1	1	KDKCKMWHWMCKPP
Myostatin-TN8-Con2	2	KDLCAMWHWMCKPP
Myostatin-TN8-Con3	3	KDLCKMWKWMCKPP
Myostatin-TN8-Con4	4	KDLCKMWHWMCKPK
Myostatin-TN8-Con5	5	WYPCYEFHFWCYDL
Myostatin-TN8-Con6	6	WYPCYEGHFWCYDL
Myostatin-TN8-Con7	7	IFGCKWWDVQCYQF
Myostatin-TN8-Con8	8	IFGCKWWDVDCYQF
Myostatin-TN8-Con9	9	ADWCVSPNWFCMVM
Myostatin-TN8-Con10	10	HKFCPWWALFCWDF
Myostatin-TN8-1	11	KDLCKMWHWMCKPP
Myostatin-TN8-2	12	IDKCAIWGWMCPPL
Myostatin-TN8-3	13	WYPCGEFGMWCLNV
Myostatin-TN8-4	14	WFTCLWNCDNE
Myostatin-TN8-5	15	HTPCPWFAPLCVEW
Myostatin-TN8-6	16	KEWCWRWKWMCKPE
Myostatin-TN8-7	17	FETCPSWAYFCLDI
Myostatin-TN8-8	18	AYKCEANDWGCWWL
Myostatin-TN8-9	19	NSWCEDQWHRCWWL
Myostatin-TN8-10	20	WSACYAGHFWCYDL
Myostatin-TN8-11	21	ANWCVSPNWFCMVM
Myostatin-TN8-12	22	WTECYQQEFWCWNL
Myostatin-TN8-13	23	ENTCERWKWMCPPK
Myostatin-TN8-14	24	WLPCHQEGFWCMNF
Myostatin-TN8-15	25	STMCSQWHWMCNPF

Myostatin-TN8-16	26	IFGCHWWDVDCYQF
Myostatin-TN8-17	27	IYGCKWWDIQCYDI
Myostatin-TN8-18	28	PDWCIDPDWWCKFW
Myostatin-TN8-19	29	QGHCTRWPWMCPPY
Myostatin-TN8-20	30	WQECYREGFWCLOT
Myostatin-TN8-21	31	WFDCYGPGFKCWSP
Myostatin-TN8-22	32	GVRCPKGHLWCLYP
Myostatin-TN8-23	33	HWACGYWPWSCKWV
Myostatin-TN8-24	34	GPACHSPWWWCVFG
Myostatin-TN8-25	35	TTWCISPMWFCSQQ
Myostatin-TN8-26	36	HKFCPPWAIFCWDF
Myostatin-TN8-27	37	PDWCVSPRWYCNMW
Myostatin-TN8-28	38	VWKCHWFGMDCEPT
Myostatin-TN8-29	39	KKHCQIWTWMCAPK
Myostatin-TN8-30	40	WFQCGSTLFWCYNL
Myostatin-TN8-31	41	WSPCYDHYFYCYTI
Myostatin-TN8-32	42	SWMCGFFKEVCMWV
Myostatin-TN8-33	43	EMLCMIHPVFCNPH
Myostatin-TN8-34	44	LKTCNLWPWMCPPL
Myostatin-TN8-35	45	VVGCKWYEAWCYNK
Myostatin-TN8-36	46	PIHCTQWAWMCPPT
Myostatin-TN8-37	47	DSNCPWYFLSCVIF
Myostatin-TN8-38	48	HIWCNLAMMKCVEM
Myostatin-TN8-39	49	NLQCIYFLGKCIYF
Myostatin-TN8-40	50	AWRCMWFSDVCTPG
Myostatin-TN8-41	51	WFRCFLDADWCTSV
Myostatin-TN8-42	52	EKICQMWSWMCAPP
Myostatin-TN8-43	53	WFYCHLNKSECTEP
Myostatin-TN8-44	54	FWRCAIGIDKCKRV
Myostatin-TN8-45	55	NLGCKWYEVWCFTY
Myostatin-TN8-46	56	IDLCNMWDGMCYPP
Myostatin-TN8-47	57	EMPCNIWGWMCPPV
Myostatin-TN12-1	58	WFRCVLTGIVDWSECFGL
Myostatin-TN12-2	59	GFSCTFGLDEFYVDCSPF
Myostatin-TN12-3	60	LPWCHDQVNADWGFCMLW
Myostatin-TN12-4	61	YPTCSEKFWIYGQTCVLW
Myostatin-TN12-5	62	LGPCPIHHGPWPQYCVYW
Myostatin-TN12-6	63	PFPCETHQISWLGHCLSF
Myostatin-TN12-7	64	HWGCEDLMWSWHPLCRRP
Myostatin-TN12-8	65	LPLCDADMMPTIGFCVAY
Myostatin-TN12-9	66	SHWCETTFWMNYAKCVHA
Myostatin-TN12-10	67	LPKCTHVPFDQGGFCLWY
Myostatin-TN12-11	68	FSSCWSPVSRQDMFCVFY
Myostatin-TN12-13	69	SHKCEYSGWLQPLCYRP
Myostatin-TN12-14	70	PWWCQDNYVQHMLHCDSP
Myostatin-TN12-15	71	WFRCMLMNSFDAFQCVSY
Myostatin-TN12-16	72	PDACRDQPWYMFMGCMLG
Myostatin-TN12-17	73	FLACFVEFELCFDS
Myostatin-TN12-18	74	SAYCIITESDPYVLCVPL

Myostatin-TN12-19	75	PSICESYSTMWLPMCQHN
Myostatin-TN12-20	76	WLDCHDDSWAWTKMCRSH
Myostatin-TN12-21	77	YLNCVMMNTSPFVECVFN
Myostatin-TN12-22	78	YPWCDGFMIQQGITCMFY
Myostatin-TN12-23	79	FDYCTWLNGFKDWKCWSR
Myostatin-TN12-24	80	LPLCNLKEISHVQACVLF
Myostatin-TN12-25	81	SPECAFARWLGIEQCQRD
Myostatin-TN12-26	82	YPQCFNLHLLEWTECDWF
Myostatin-TN12-27	83	RWRCEIYDSEFLPKCWFF
Myostatin-TN12-28	84	LVGCDNVWHRCKLF
Myostatin-TN12-29	85	AGWCHVWGEMFGMGCSAL
Myostatin-TN12-30	86	HHECEWMARWMSLDCVGL
Myostatin-TN12-31	87	FPMCGIAGMKDFDFCVWY
Myostatin-TN12-32	88	RDDCTFWPEWLWKLCERP
Myostatin-TN12-33	89	YNFCSYLFGVSKEACQLP
Myostatin-TN12-34	90	AHWCEQGPWRYGNICMAY
Myostatin-TN12-35	91	NLVCGKISAWGDEACARA
Myostatin-TN12-36	92	
Myostatin-TN12-37		HNVCTIMGPSMKWFCWND
	93	NDLCAMWGWRNTIWCQNS
Myostatin-TN12-38	94	PPFCQNDNDMLQSLCKLL
Myostatin-TN12-39	95	WYDCNVPNELLSGLCRLF
Myostatin-TN12-40	96	YGDCDQNHWMWPFTCLSL
Myostatin-TN12-41	97	GWMCHFDLHDWGATCQPD
Myostatin-TN12-42	98	YFHCMFGGHEFEVHCESF
Myostatin-TN12-43	99	AYWCWHGQCVRF
Myostatin-Linear-1	100	SEHWTFTDWDGNEWWVRPF
Myostatin-Linear-2	101	MEMLDSLFELLKDMVPISKA
Myostatin-Linear-3	102	SPPEEALMEWLGWQYGKFT
Myostatin-Linear-4	103	SPENLLNDLYILMTKQEWYG
Myostatin-Linear-5	104	FHWEEGIPFHVVTPYSYDRM
Myostatin-Linear-6	105	KRLLEQFMNDLAELVSGHS
Myostatin-Linear-7	106	DTRDALFQEFYEFVRSRLVI
Myostatin-Linear-8	107	RMSAAPRPLTYRDIMDQYWH
Myostatin-Linear-9	108	NDKAHFFEMFMFDVHNFVES
Myostatin-Linear-10	109	QTQAQKIDGLWELLQSIRNQ
Myostatin-Linear-11	110	MLSEFEEFLGNLVHRQEA
Myostatin-Linear-12	111	YTPKMGSEWTSFWHNRIHYL
Myostatin-Linear-13	112	LNDTLLRELKMVLNSLSDMK
Myostatin-Linear-14	113	FDVERDLMRWLEGFMQSAAT
Myostatin-Linear-15	114	HHGWNYLRKGSAPQWFEAWV
Myostatin-Linear-16	115	VESLHQLQMWLDQKLASGPH
Myostatin-Linear-17	116	RATLLKDFWQLVEGYGDN
Myostatin-Linear-18	117	EELLREFYRFVSAFDY
Myostatin-Linear-19	118	GLLDEFSHFIAEQFYQMPGG
Myostatin-Linear-20	119	YREMSMLEGLLDVLERLQHY
Myostatin-Linear-21	120	HNSSQMLLSELIMLVGSMMQ
Myostatin-Linear-22	121	WREHFLNSDYIRDKLIAIDG
Myostatin-Linear-23	122	QFPFYVFDDLPAQLEYWIA

Myostatin-Linear-24	123	EFFHWLHNHRSEVNHWLDMN
Myostatin-Linear-25	124	EALFQNFFRDVLTLSEREY
Myostatin-Linear-26	125	QYWEQQWMTYFRENGLHVQY
Myostatin-Linear-27	126	NQRMMLEDLWRIMTPMFGRS
Myostatin-Linear-29	127	FLDELKAELSRHYALDDLDE
Myostatin-Linear-30	128	GKLIEGLLNELMQLETFMPD
Myostatin-Linear-31	129	ILLLDEYKKDWKSWF
Myostatin-2xTN8-19 kc	130	QGHCTRWPWMCPPYGSGSATGGS
		GSTASSGSGSATGQGHCTRWPWM
		CPPY
Myostatin-2xTN8-con6	131	WYPCYEGHFWCYDLGSGSTASSG
		SGSATGWYPCYEGHFWCYDL
Myostatin-2xTN8-5 kc	132	HTPCPWFAPLCVEWGSGSATGGSG
		STASSGSGSATGHTPCPWFAPLCV
		EW
Myostatin-2xTN8-18 kc	133	PDWCIDPDWWCKFWGSGSATGGS
		GSTASSGSGSATGPDWCIDPDWW
		CKFW
Myostatin-2xTN8-11 kc	134	ANWCVSPNWFCMVMGSGSATGG
		SGSTASSGSGSATGANWCVSPNWF
		CMVM
Myostatin-2xTN8-25 kc	135	PDWCIDPDWWCKFWGSGSATGGS
		GSTASSGSGSATGPDWCIDPDWW
Marratain O. (TD) 10, 00 1	106	CKFW
Myostatin-2xTN8-23 kc	136	HWACGYWPWSCKWVGSGSATGG
		SGSTASSGSGSATGHWACGYWPW
Myostatin-TN8-29-19 kc	137	SCKWV
1V1 y OSIALIII- 11V0-29-19 KC	15/	KKHCQIWTWMCAPKGSGSATGGS
		GSTASSGSGSATGQGHCTRWPWM CPPY
Myostatin-TN8-19-29 kc	138	QGHCTRWPWMCPPYGSGSATGGS
	150	GSTASSGSGSATGKKHCQIWTWM
		CAPK
Myostatin-TN8-29-19 kn	139	KKHCQIWTWMCAPKGSGSATGGS
		GSTASSGSGSATGQGHCTRWPWM
·		СРРУ
Myostatin-TN8-29-19-8g	140	KKHCQIWTWMCAPKGGGGGGG
-		QGHCTRWPWMCPPY
Myostatin-TN8-19-29-6gc		QGHCTRWPWMCPPYGGGGGKK
		HCQIWTWMCAPK

Example 2

Generating peptibodies

5 Construction of DNA encoding peptide-Fc fusion proteins

Peptides capable of binding myostatin were used alone or in combination with each other to construct fusion proteins in which a peptide was fused to the Fc domain of human IgG1. The

amino acid sequence of the Fc portion of each peptibody is as follows (from amino terminus to carboxyl terminus):

DKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDV SHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVL HQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPS RDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVL DSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLS LSPGK (Seq ID No: 296)

The peptide was fused in the N configuration (peptide was attached to the N-terminus of the Fc region), the C configuration (peptide was attached to the C-terminus of the Fc region), or the N,C configuration (peptide attached both at the N and C terminus of the Fc region). Separate vectors were used to express N-terminal fusions and C-terminal fusions. Each peptibody was constructed by annealing pairs of oligonucleotides ("oligos") to the selected phage nucleic acid to generate a double stranded nucleotide sequence encoding the peptide. These polynucleotide molecules were constructed as ApaL to XhoI fragments. The fragments were ligated into either the pAMG21-Fc N-terminal vector for the N-terminal orientation, or the pAMG21-Fc-C-terminal vector for the C-terminal orientation which had been previously digested with ApaLI and XhoI. The resulting ligation mixtures were transformed by electroporation into E. coli strain 2596 or 4167 cells (a hsdR- variant of strain 2596 cells) using standard procedures. Clones were screened for the ability to produce the recombinant protein product and to possess the gene fusion having a correct nucleotide sequence. A single such clone was selected for each of the modified peptides.

Many of constructs were created using an alternative vector designated pAMG21-2xBs-N(ZeoR) Fc. This vector is simlar to the above-described vector except that the vector digestion was performed with BsmBI. Some constructs fused peptide sequences at both ends of the Fc. In those cases the vector was a composite of pAMG21-2xBs-N(ZeoR) Fc and pAMG21-2xBs-C-Fc. Construction of pAMG21

Expression plasmid pAMG21 (ATCC No. 98113) is derived from expression vector pCFM1656 (ATCC No. 69576) and the expression vector system described in United States Patent No. 4,710,473, by following the procedure described in published International Patent Application WO 00/24782, all of which are incorporated herein by reference.

Fc N-terminal Vector

5

10

15

20

25

30

35

The Fc N-terminal vector was constructed using the pAMG21 Fc_Gly5_ Tpo vector as a template. A 5' PCR primer (below) was designed to remove the Tpo peptide sequence in pAMG Tpo Gly5 and replace it with a polylinker containing ApaLI and XhoI sites. Using this vector as a template, PCR was performed with Expand Long Polymerase, using the following 5' primer and a universal 3' primer:

5'primer: 5'-ACAAACAAACATATGGGTGCACAGAAAGCGGCCGCAAAAAAA CTCGAGGGTGGAGGCGGTGGGGACA-3' (Seq ID No: 297)

3' primer: 5'-GGTCATTACTGGACCGGATC-3' (Seq ID No: 298)

The resulting PCR product was gel purified and digested with restriction enzymes *NdeI* and *BsrGI*. Both the plasmid and the polynucleotide encoding the peptide of interest together with its linker were gel purified using Qiagen (Chatsworth, CA) gel purification spin columns. The plasmid and insert were then ligated using standard ligation procedures, and the resulting ligation mixture was transformed into *E. coli* cells (strain 2596). Single clones were selected and DNA sequencing was performed. A correct clone was identified and this was used as a vector source for the modified peptides described herein.

Construction of Fc C-terminal Vector

5

10

15

20

25

30

35

The Fc C-terminal vector was constructed using pAMG21 Fc_Gly5_ Tpo vector as a template. A 3' PCR primer was designed to remove the Tpo peptide sequence and to replace it with a polylinker containing ApaLI and XhoI sites. PCR was performed with Expand Long Polymerase using a universal 5' primer and the 3' primer.

- 5' Primer: 5'-CGTACAGGTTTACGCAAGAAAATGG-3' (Seq ID No: 299)
 - 3' Primer: 5'-TTTGTTGGATCCATTACTCGAGTTTTTTTGCGGCCGCT TTCTGTGCACCACCACCTCCACCTTTAC-3' (Seq ID No: 300)

The resulting PCR product was gel purified and digested with restriction enzymes *BsrGI* and *BamHI*. Both the plasmid and the polynucleotide encoding each peptides of interest with its linker were gel purified via Qiagen gel purification spin columns. The plasmid and insert were then ligated using standard ligation procedures, and the resulting ligation mixture was transformed into E. coli (strain 2596) cells. Strain 2596 (ATCC # 202174) is a strain of *E. coli* K-12 modified to contain the lux promoter and two lambda temperature sensitive repressors, the cI857s7 and the lac I^Q repressor. Single clones were selected and DNA sequencing was performed. A correct clone was identified and used as a source of each peptibody described herein.

Expression in E. coli.

Cultures of each of the pAMG21-Fc fusion constructs in *E. coli* strain 2596 were grown at 37°C in Terrific Broth medium (See Tartof and Hobbs, "Improved media for growing plasmid and cosmid clones", Bethesda Research Labs Focus, Volume 9, page 12, 1987, cited in aforementioned Sambrook et al. reference). Induction of gene product expression from the luxPR promoter was achieved following the addition of the synthetic autoinducer, N-(3-oxohexanoyl)-DL-homoserine lactone, to the culture medium to a final concentration of 20 nanograms per milliliter (ng/ml). Cultures were incubated at 37°C for an additional six hours. The bacterial cultures were then examined by microscopy for the presence of inclusion bodies and collected by

centrifugation. Refractile inclusion bodies were observed in induced cultures, indicating that the Fc-fusions were most likely produced in the insoluble fraction in *E. coli*. Cell pellets were lysed directly by resuspension in Laemmli sample buffer containing 10% β-mercaptoethanol and then analyzed by SDS-PAGE. In most cases, an intense coomassie-stained band of the appropriate molecular weight was observed on an SDS-PAGE gel.

Folding and purifying peptibodies

5

10

15

20

25

30

35

Cells were broken in water (1/10 volume per volume) by high pressure homogenization (3 passes at 15,000 PSI) and inclusion bodies were harvested by centrifugation (4000 RPM in J-6B for 30 minutes). Inclusion bodies were solubilized in 6 M guanidine, 50 mM Tris, 8 mM DTT, pH 8.0 for 1 hour at a 1/10 ratio at ambient temperature. The solubilized mixture was diluted 25 times into 4 M urea, 20% glycerol, 50 mM Tris, 160 mM arginine, 3 mM cysteine, 1 mM cystamine, pH 8.5. The mixture was incubated overnight in the cold. The mixture was then dialyzed against 10 mM Tris pH 8.5, 50 mM NaCl, 1.5 M urea. After an overnight dialysis the pH of the dialysate was adjusted to pH 5 with acetic acid. The precipitate was removed by centrifugation and the supernatant was loaded onto a SP-Sepharose Fast Flow column equilibrated in 10 mM NaAc, 50 mM NaCl, pH 5, 4°C). After loading the column was washed to baseline with 10 mM NaAc, 50 mM NaCl, pH 5.2. The column was developed with a 20 column volume gradient from 50mM -500 mM NaCl in the acetate buffer. Alternatively, after the wash to baseline, the column was washed with 5 column volumes of 10 mM sodium phosphate pH 7.0 and the column developed with a 15 column volume gradient from 0-400 mM NaCl in phosphate buffer. Column fractions were analyzed by SDS-PAGE. Fractions containing dimeric peptibody were pooled. Fractions were also analyzed by gel filtration to determine if any aggregate was present.

A number of peptibodies were prepared from the peptides of Table I. The peptides were attached to the human IgG1 Fc molecule to form the peptibodies in Table II. Regarding the peptibodies in Table II, the C configuration indicates that the peptide named was attached at the C-termini of the Fc. The N configuration indicates that the peptide named was attached at the N-termini of the Fc. The N,C configuration indicates that one peptide was attached at the N-termini and one at the C-termini of each Fc molecule. The 2x designation indicates that the two peptides named were attached in tandem to each other and also attached at the N or the C termini, or both the N,C of the Fc, separated by the linker indicated. Two peptides attached in tandem separated by a linker, are indicated, for example, as Myostatin-TN8-29-19-8g, which indicates that TN8-29 peptide is attached via a (gly)₈ linker to TN8-19 peptide. The peptide(s) were attached to the Fc via a (gly)₅ linker sequence unless otherwise specified. In some instances the peptide(s) were attached via a k linker. The linker designated k or 1k refers to the gsgsatggsgstassgssatg (Seq ID

No: 301) linker sequence, with kc referring to the linker attached to the C-terminus of the Fc, and kn referring to the linker attached to the N-terminus of the Fc. In Table II below, column 4 refers to the linker sequence connecting the Fc to the first peptide and the fifth column refers to the configuration N or C or both.

Since the Fc molecule dimerizes in solution, a peptibody constructed so as to have one peptide will actually be a dimer with two copies of the peptide and two Fc molecules, and the 2X version having two peptides in tandem will actually be a dimer with four copies of the peptide and two Fc molecules.

Since the peptibodies given in Table II are expressed in *E. coli*, the first amino acid residue is Met (M). Therefore, the peptibodies in the N configuration are Met-peptide-linker-Fc, or Met-peptide-linker-peptide-linker-Fc, for example. Peptibodies in the C configuration are arranged as Met-Fc-linker-peptide or Met-Fc-linker-peptide-linker-peptide, for example. Peptibodies in the C,N configuration are a combination of both, for example, Met-peptide-linker-Fc-linker-peptide.

Nucleotide sequences encoding exemplary peptibodies are provided below in Table II.

The polynucleotide sequences encoding an exemplary peptibody of the present invention includes a nucleotide sequence encoding the Fc polypeptide sequence such as the following:

5'-GACAAAACTCACACATGTCCACCTTGCCCAGCACCTGAACTC CTGGGGGACCGTCAGTTTTCCTCTTCCCCCAAAACCCAAGGACACCCTCA 20 TGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACG AAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGCGTGGAGGTGCATA ATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTG GTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTAC AAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATC 25 TCCAAAGCCAAAGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCA GGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCG GAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCT TCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACG 30 TCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAA GAGCCTCTCCCTGTCTCCGGGTAAA-3' (Seq ID No: 301)

In addition, the polynucleotides encoding the ggggg linker such as the following are included:

35 5'-GGTGGAGGTGGTGGT-3' (Seq ID No: 302)

10

15

The polynucleotide encoding the peptibody also includes the codon encoding the methionine ATG and a stop codon such as TAA.

Therefore, the structure of the first peptibody in Table II is TN8-Con1 with a C configuration and a (gly)₅ linker is as follows: M-Fc-GGGGG-KDKCKMWHWMCKPP (Seq ID No: 303). Exemplary polynucleotides encoding this peptibody would be:

5'- ATGGACAAAACTCACACATGTCCACCTTGCCCAGCACCTGAA 5 CTCCTGGGGGACCGTCAGTTTTCCTCTTCCCCCCAAAACCCAAGGACACCC TCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCC ACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGC ATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGT GTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAG 10 TACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACC ATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCC AAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAG CCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCC 15 TTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGG AACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGC AGAAGAGCCTCTCCCTGTCTCCGGGTAAAGGTGGAGGTGGTGGTAAGACAA ATGCAAAATGTGGCACTGGATGTGCAAACCGCCG-3' (Seq ID No: 304)

20 -

TABLE II

Peptibody Name	Peptide	Nucleotide Sequence (Seq ID No)	Τ	Τ
Myostatin-TN8- con1	KDKCKMWHWMCKPP	AAAGACAAATGCAAAATGTGGCACTG GATGTGCAAACCGCCG (Seq. ID No: 147)	5 gly	С
Myostatin-TN8- con2	KDLCAMWHWMCKPP	AAAGACCTGTGCGCTATGTGGCACTG GATGTGCAAACCGCCG (Seq. ID No: 148)	5 gly	С
Myostatin-TN8- con3	KDLCKMWKWMCKPP	AAAGACCTGTGCAAAATGTGGAAATG GATGTGCAAACCGCCG (Seq ID No: 149)	5 gly	С
Myostatin-TN8- con4	KDLCKMWHWMCKPK	AAAGACCTGTGCAAAATGTGGCACTG GATGTGCAAACCGAAA (Seq ID No: 150)	5 gly	С
Myostatin-TN8- con5	WYPCYEFHFWCYDL	TGGTACCCGTGCTACGAATTCCACTTC TGGTGCTACGACCTG (Seq ID No: 151)	5 gly	c
Myostatin-TN8- con5	WYPCYEFHFWCYDL	TGGTACCCGTGCTACGAATTCCACTTC TGGTGCTACGACCTG (Seq ID No: 152)	5 gly	N
Myostatin-TN8- con6	WYPCYEGHFWCYDL	TGGTACCCGTGCTACGAAGGTCACTT CTGGTGCTACGACCTG (Seq ID No: 153)	5 gly	С
Myostatin-TN8- con6	WYPCYEGHFWCYDL	TGGTACCCGTGCTACGAAGGTCACTT CTGGTGCTACGACCTG (Seq ID No: 154)	5 gly	N
Myostatin-TN8- con7	IFGCKWWDVQCYQF	ATCTTCGGTTGCAAATGGTGGGACGT TCAGTGCTACCAGTTC (Seq ID No: 155)	5 gly	С
Myostatin-TN8- con8	IFGCKWWDVDCYQF	ATCTTCGGTTGCAAATGGTGGGACGT TGACTGCTACCAGTTC (Seq ID No: 156)	5 gly	C
Myostatin-TN8- con8	IFGCKWWDVDCYQF	ATCITCGGTTGCAAATGGTGGGACGT TGACTGCTACCAGTTC (Seq ID No: 157)	5 gly	N
Myostatin-TN8-	ADWCVSPNWFCMVM	GCTGACTGGTGCGTTTCCCCGAACTG	5 gly	c

con9		GTTCTGCATGGTTATG (Seq ID No: 158)	Т
Myostatin-TN8-	HKFCPWWALFCWDF	CACAAATTCTGCCCGTGGTGGGCTCT	5 91	v lo
con10		GTTCTGCTGGGACTTC (Seq ID No: 159)	Ή`
Myostatin-TN8-1	KDLCKMWHWMCKPP	AAAGACCTGTGCAAAATGTGGCACTG		vic
L		GATGTGCAAACCGCCG (Seq ID No: 160) J 61.	' `
Myostatin-TN8-2	IDKCAIWGWMCPPL	ATCGACAAATGCGCTATCTGGGGTTG	5 gly	y lo
		GATGTGCCCGCCGCTG (Seq ID No: 161)		' `
Myostatin-TN8-3	WYPCGEFGMWCLNV	TGGTACCCGTGCGGTGAATTCGGTAT	5 gly	y C
		GTGGTGCCTGAACGTT (Seq ID No: 162)) "	Ή
Myostatin-TN8-4	WFTCLWNCDNE	TGGTTCACCTGCCTGTGGAACTGCGA	5 gly	v lo
		CAACGAA (Seq ID No: 163)	"	
Myostatin-TN8-5	HTPCPWFAPLCVEW	CACACCCCGTGCCCGTGGTTCGCTCC	5 gly	y C
		GCTGTGCGTTGAATGG (Seq ID No:		
		164)		_L
Myostatin-TN8-6	KEWCWRWKWMCKPE		5 gly	y C
		GATGTGCAAACCGGAA (Seq ID No:		
) /		165)	<u> </u>	┸
Myostatin-TN8-7	FETCPSWAYFCLDI	TTCGAAACCTGCCCGTCCTGGGCTTA	5 gly	/ C
Manager Control	EETCDON! A VECT DY	CTTCTGCCTGGACATC (Seq ID No: 166)	<u> </u>	4
Myostatin-TN8-7	FETCPSWAYFCLDI	TTCGAAACCTGCCCGTCCTGGGCTTA	5 gly	/ N
Myostatin-TN8-8	AYKCEANDWGCWWL	CTTCTGCCTGGACATC (Seq ID No: 167)	1	4.
Myosiaiin-1 No-8	AIRCEANDWGCWWL	GCTTACAAATGCGAAGCTAACGACTG	5 gly	/ C
		GGGTTGCTGGTGGCTG (Seq ID No: 168)	1.	
Myostatin-TN8-9	NSWCEDQWHRCWWL		ļ. ;	+
1v1y05tatiii=11v0-9	I TO WCEDQWIECW WE	AACTCCTGGTGCGAAGACCAGTGGCA CCGTTGCTGGTGGCTG (Seq ID No:	o grà	' C
		[169]		1
Myostatin-TN8-10	WSACYAGHFWCYDL		5 gly	- -
	WOLLDE WOLDE	TGGTGCTACGACCTG (Seq ID No: 170)	S gry	٦٢
Myostatin-TN8-11	ANWCVSPNWFCMVM	GCTAACTGGTGCGTTTCCCCGAACTG	5 gly	+
,		GTTCTGCATGGTTATG (Seq ID No: 171)	J gry	1
Myostatin-TN8-12	WTECYQQEFWCWNL	TGGACCGAATGCTACCAGCAGGAATT	5 gly	10
,		CTGGTGCTGGAACCTG (Seq ID No:	5 617	
		172)		
Myostatin-TN8-13	ENTCERWKWMCPPK	GAAAACACCTGCGAACGTTGGAAATG	5 glv	c
		GATGTGCCCGCCGAAA (Seq ID No:	5-7	
		173)]	1
Myostatin-TN8-14	WLPCHQEGFWCMNF	TGGCTGCCGTGCCACCAGGAAGGTTT	5 gly	C
		CTGGTGCATGAACTTC (Seq ID No: 174)		
Myostatin-TN8-15	STMCSQWHWMCNPF	TCCACCATGTGCTCCCAGTGGCACTG	5 gly	С
		GATGTGCAACCCGTTC (Seq ID No:	İ	1
Africa de la Compto de la Compt	TOO THE WIND IN CLUB	175)		_
Myostatin-TN8-16		ATCTTCGGTTGCCACTGGTGGGACGT	5 gly	C
İ	:	TGACTGCTACCAGTTC (Seq ID No:		
Augustation TONIO 17	IVCCVIIIIMIOOVDI	176)		Ļ
viyostatin-1148-17	IYGCKWWDIQCYDI		5 gly	C
	·	CCAGTGCTACGACATC (Seq ID No:		
Avortatin TNIO 10	PDWCIDPDWWCKFW	177)		<u> </u>
ATAOSIGIIII-1140-10		CCGGACTGGTGCATCGATCCGGACTG	5 gly	
		GTGGTGCAAATTCTGG (Seq ID No: 178)		Н
/Ivostatin_TNR_10			5 -1	늣
		GATGTGCCCGCCGTAC (Seq ID No:	5 gly	
		179)		
		<u> </u>		ш
Avostatin-TN8-20		TGGCAGGAATGCTACCGTGAAGGTTT	5 gly	

Myostatin-TN8-2	WFDCYGPGFKCWSP	TGGTTCGACTGCTACGGTCCGGGTTTC	5 gl	y C
37		AAATGCTGGTCCCCG (Seq ID No: 181)	"	
Myostatin-TN8-22	GVRCPKGHLWCLYP	GGTGTTCGTTGCCCGAAAGGTCACCT	5 gl	y C
3.5		GTGGTGCCTGTACCCG (Seq ID No: 182)		
Myostatin-TN8-23	HWACGYWPWSCKWV		5 gl	y C
		GTCCTGCAAATGGGTT (Seq ID No: 183)	1 .	
Myostatin-TN8-24	GPACHSPWWWCVFG	GGTCCGGCTTGCCACTCCCCGTGGTG	5 01	y C
		GTGGTGCGTTTTCGGT (Seq ID No: 184))	
Myostatin-TN8-25	TTWCISPMWFCSQQ	ACCACCTGGTGCATCTCCCCGATGTG	5 gly	y C
	1	GTTCTGCTCCCAGCAG (Seq ID No:	"	
3.6		185)		-
Myostatin-TN8-26	HKFCPPWAIFCWDF	CACAAATTCTGCCCGCCGTGGGCTAT	5 gly	N
) /		CTTCTGCTGGGACTTC (Seq ID No: 186)		
Myostatin-TN8-27	PDWCVSPRWYCNMW	CCGGACTGGTGCGTTTCCCCGCGTTG	5 gly	N
		GTACTGCAACATGTGG (Seq ID No:		
) /		187)		\perp
Myostatin-TN8-28	VWKCHWFGMDCEPT	GTTTGGAAATGCCACTGGTTCGGTAT	5 gly	N
		GGACTGCGAACCGACC (Seq ID No:		
26		188)		1
Myostatin-TN8-29	KKHCQIWTWMCAPK	AAAAAACACTGCCAGATCTGGACCTG	5 gly	N
		GATGTGCGCTCCGAAA (Seq ID No:		
) (W. TO COOK THE STATE OF THE STA	189)		
wyostatin-1708 - 30	WFQCGSTLFWCYNL	TGGTTCCAGTGCGGTTCCACCCTGTTC	5 gly	N
M	THOUSAND THE THE STATE OF THE S	TGGTGCTACAACCTG (Seq ID No: 190)		
Myostatin-1108-31	WSPCYDHYFYCYTI	TGGTCCCCGTGCTACGACCACTACTTC	5 gly	N
M	CVVD COCKETONICS	TACTGCTACACCATC (Seq ID No: 191)		
Myostatin-1188-32	SWMCGFFKEVCMWV	TCCTGGATGTGCGGTTTCTTCAAAGA	5 gly	N
		AGTTTGCATGTGGGTT (Seq ID No:		
Mucatatia TNO 22	EVAL CIVATION TO COMPANY	192)		Ш
Myostatin-1148-33	EMLCMIHPVFCNPH	GAAATGCTGTGCATGATCCACCCGGT	5 gly	N
		TTTCTGCAACCCGCAC (Seq ID No:		11
Mucatatin TNIO 24	LKTCNLWPWMCPPL	193)	<u> </u>	Ш
Myostaun-1116-34	LKICNLWPWMCPPL	CTGAAAACCTGCAACCTGTGGCCGTG	5 gly	N
		GATGTGCCCGCCGCTG (Seq ID No:		
Myoctatin TNI 25	VVGCKWYEAWCYNK	194)		Ш
141yUStatili-1110-33	VOCKWIEAWCINK	GTTGTTGGTTGCAAATGGTACGAAGC	5 gly	N
		TTGGTGCTACAACAAA (Seq ID No: 195)		П
Myostatin_TNR_36	PIHCTQWAWMCPPT			Ш
1/1/05tatini-11/10-50	I III CI QWAWMCI I I	CCGATCCACTGCACCCAGTGGGCTTG	5 gly	N
		GATGTGCCCGCCGACC (Seq ID No: 196)		11
Myostatin-TN8-37	DSNCPWYFLSCVIF	CACTOCA A CTOCOCCOCO		H
1.13 obtain 1110-57		GTCCTCCGTTATCTTC (P ID N - 107)	5 gly	N
Myostatin-TN8-38	HIWCNLAMMKCVEM	GTCCTGCGTTATCTTC (Seq ID No: 197) CACATCTGGTGCAACCTGGCTATGAT		H
			5 gly	N
		GAAATGCGTTGAAATG (Seq ID No: 198)		
Myostatin-TN8-30				Ш
1110-57	,	AACCTGCAGTGCATCTACTTCCTGGG	gly	N
Myostatin_TN8_40	AWRCMWFSDVCTPG	TAAATGCATCTACTTC (Seq ID No: 199)		Ц
12 y OSIULIII - 1110 - 40		GCTTGGCGTTGCATGTGGTTCTCCGAC	gly	N.
Myostatin_TN8_41	WFRCFLDADWCTSV	GTTTGCACCCGGGT (Seq ID No: 200)		Ц
,		TGGTTTCTTGTT (See ID No. 201)	gly	N
Vostatin-TNR_42	EKICQMWSWMCAPP	TGGTGTACTTCTGTT (Seq ID No: 201)		Ų.
, Journ - 1110-12		GAAAAAATTTGTCAAATGTGGTCTTG 5	gly	N
ĺ	[,	GATGTGTGCTCCACCA (Seq ID No: 202)	ĺ	
Myostatin-TNR-42				\Box
, 001111-1110-43	*** - CALLA *********************************	GGTTTTATTGTCATCTTAATAAATCT 5	gly	N

	<u> </u>	GAATGTACTGAACCA (Seq ID No: 203)	т	т-
Manageria TNIO 44	FWRCAIGIDKCKRV	TTTTGGCGTTGTGCTATTGGTATTGAT	5 gly	L
Miyostatiii-1140-44	I WRCAIOIDRCIA(V	AAATGTAAACGTGTT (Seq ID No: 204)	իշ բրչ	N
Myostotin TNR 45	NLGCKWYEVWCFTY	AATCTTGGTTGTAAATGGTATGAAGT	5 gly	╁
Miyostatiii-1140-43	INEGER WILL WEITT	TTGGTGTTTTACTTAT (Seq ID No: 205)	la già	114
Musetatin TNO 46	IDLCNMWDGMCYPP	ATTGATCTTTGTAATATGTGGGATGGT	5 0100	\.
Myostatin-1146-40	IDLENW WDGMC IFF		o gry	ľ
Managaria TNIO 47	EMPCNIWGWMCPPV	ATGTGTTATCCACCA (Seq ID No: 206) GAAATGCCATGTAATATTTGGGGTTG	5 gly	Ļ
Myostatin-1198-47	EMPCNIWGWMCPPV		o grà	IN
		GATGTGTCCACCAGTT (Seq ID No: 207)		1
Moreone TNI10 1	WFRCVLTGIVDWSECF		6 .1	ļ.,
Myostatin-1N12-1		TGGTTCCGTTGCGTTCTGACCGGTATC	o grà	IN
	GL	GTTGACTGGTCCGAATGCTTCGGTCT		
) (CECCARCI PERMINACED	G (Seq ID No: 208)	ļ	ļ.,
Myostatin-1N12-2	GFSCTFGLDEFY VDCSP		5 gly	N
	F	GAATTCTACGTTGACTGCTCCCCGTTC		
7.4	I DWGITTOURI I DWGTG	(Seq ID No: 209)	ļ	Ļ
Myostatin-TN12-3	LPWCHDQVNADWGFC	CTGCCGTGGTGCCACGACCAGGTTAA	5 gly	N
·	MLW	CGCTGACTGGGGTTTCTGCATGCTGT		
36 53740.4	I DO CONTINUE COMO	GG (Seq ID No: 210)		Ļ.
Myostatin-TN12-4	YPTCSEKFWIYGQTCV	TACCCGACCTGCTCCGAAAAATTCTG	5 gly	N
	LW .	GATCTACGGTCAGACCTGCGTTCTGT		ŀ
3.5	, cocountant more	GG (Seq ID No: 211)		
Myostatin-TN12-5	LGPCPIHHGPWPQYCV	CTGGGTCCGTGCCCGATCCACCACGG	5 gly	N
	YW	TCCGTGGCCGCAGTACTGCGTTTACT	·	1
		GG (Seq ID No: 212)		┺
Myostatin-TN12-6	PFPCETHQISWLGHCLS	CCGTTCCCGTGCGAAACCCACCAGAT	5 gly	N
	F	CTCCTGGCTGGGTCACTGCCTGTCCTT		l
		C (Seq ID No: 213)	L	$oldsymbol{ol}}}}}}}}}}}}}}}}}}}$
Myostatin-TN12-7		CACTGGGGTTGCGAAGACCTGATGTG	5 gly	N
,	RRP	GTCCTGGCACCCGCTGTGCCGTCGTC		ı
•	<u></u>	CG (Seq ID No: 214)	<u> </u>	L
Myostatin-TN12-8	LPLCDADMMPTIGFCV	CTGCCGCTGTGCGACGCTGACATGAT	5 gly	N
•	AY	GCCGACCATCGGTTTCTGCGTTGCTTA		
	l	C (Seq ID No: 215)	L	L
Myostatin-TN12-9		TCCCACTGGTGCGAAACCACCTTCTG	5 gly	N
,	VHA	GATGAACTACGCTAAATGCGTTCACG		1
		CT (Seq ID No: 216)		上
Myostatin-TN12-	LPKCTHVPFDQGGFCL	CTGCCGAAATGCACCCACGTTCCGTT	5 gly	N
10	WY	CGACCAGGGTGGTTTCTGCCTGTGGT		l
		AC (Seq ID No: 217)		L
Myostatin-TN12-	FSSCWSPVSRQDMFCV	TTCTCCTCCTGCTGGTCCCCGGTTTCC	5 gly	N
11	FY	CGTCAGGACATGTTCTGCGTTTTCTAC	i	
		(Seq ID No: 218)		
Myostatin-TN12-	SHKCEYSGWLQPLCYR	TCCCACAAATGCGAATACTCCGGTTG	5 gly	N
13	P ·	GCTGCAGCCGCTGTGCTACCGTCCG		
		(Seq ID No: 219)		1
Myostatin-TN12-	PWWCQDNYVQHMLH	CCGTGGTGGTGCCAGGACAACTACGT	5 gly	N
14	CDSP	TCAGCACATGCTGCACTGCGACTCCC		
		CG (Seq ID No: 220)		L
Myostatin-TN12-	WFRCMLMNSFDAFQC	TGGTTCCGTTGCATGCTGATGAACTCC	5 gly	N
15	VSY	TTCGACGCTTTCCAGTGCGTTTCCTAC		
		(Seq ID No: 221)		
Myostatin-TN12-	PDACRDQPWYMFMGC		5 gly	N
	MLG	GTACATGTTCATGGGTTGCATGCTGG	-	
		GT (Seq ID No: 222)		

17		CTGTGCTTCGACTCC (Seq ID No: 223)	T -	$\overline{}$
NA				
Myostatin-TN12-	SAYCIITESDPYVLCVP	TCCGCTTACTGCATCATCACCGAATCC		N
18	L	GACCCGTACGTTCTGTGCGTTCCGCTG		
		(Seq ID No: 224)		
Myostatin-TN12-	PSICESYSTMWLPMCQ	CCGTCCATCTGCGAATCCTACTCCACC	5 gly	N
19	HN	ATGTGGCTGCCGATGTGCCAGCACAA		
[~		C (Seq ID No: 225)		Н
Myostatin-TN12-	WLDCHDDSWAWTKM		5 gly	N
20	CRSH	GGCTTGGACCAAAATGTGCCGTTCCC	8.7	
20		AC (Seq ID No: 226)		
Myostatin-TN12-	YLNCVMMNTSPFVEC		5 gly	N
1 *	VFN	CTCCCCGTTCGTTGAATGCGTTTTCAA	2 8.7	ויו
21	1111	C (Seq ID No: 227)	1	
Managaria TNI12	VPWCDGEMIOOGITCM	TACCCGTGGTGCGACGGTTTCATGAT	5 gly	N
	FY		2 gry	14
22	FI	CCAGCAGGGTATCACCTGCATGTTCT		
26	EDVOTE NOTEDING	AC (Seq ID No: 228)	<i>-</i> 1	1.7
		TTCGACTACTGCACCTGGCTGAACGG	5 gly	N
23	WSR	TTTCAAAGACTGGAAATGCTGGTCCC		
		GT (Seq ID No: 229)	<u> </u>	1
,	LPLCNLKEISHVQACVL		5 gly	N
24	F	CTCCCACGTTCAGGCTTGCGTTCTGTT		$ \cdot $
		C (Seq ID No: 230)		Ш
Myostatin-TN12-	SPECAFARWLGIEQCQ	TCCCCGGAATGCGCTTTCGCTCGTTGG	5 gly	N
25	RD	CTGGGTATCGAACAGTGCCAGCGTGA		
		C (Seq ID No: 231)		
Myostatin-TN12-	YPQCFNLHLLEWTECD	TACCCGCAGTGCTTCAACCTGCACCT	5 gly	N
26	WF	GCTGGAATGGACCGAATGCGACTGGT	"	
		TC (Seq ID No: 232)		$ \cdot $
Myostatin-TN12-	RWRCEIYDSEFLPKCW	CGTTGGCGTTGCGAAATCTACGACTC	5 gly	N
	FF	CGAATTCCTGCCGAAATGCTGGTTCTT	"	1
 -'		C (Seq ID No: 233)		
Myostatin-TN12-	LVGCDNVWHRCKLF	CTGGTTGGTTGCGACAACGTTTGGCA	5 gly	N
28		CCGTTGCAAACTGTTC (Seq ID No:	6-7	
20 .		234)		
Myostatin-TN12-	AGWCHVWGEMEGMG	GCTGGTTGGTGCCACGTTTGGGGTGA	5 gly	N
	CSAL	AATGTTCGGTATGGGTTGCTCCGCTCT	5 619	"
29	CSAL	G (Seq ID No: 235)	1	1
Myostatin-TN12-	HHECEWMARWMSLD	CACCACGAATGCGAATGGATGCTCG	5 also	k
[]	CVGL	TTGGATGTCCCTGGACTGCGTTGGTCT	J gry	
30	CVGL	G (Seq ID No: 236)	İ	1
) (EDMCCIA CMICDEDECM		5 -1	1
			5 gly	اتا
31	WY	GAAAGACTTCGACTTCTGCGTTTGGT		П
		AC (Seq ID No: 237)	e 1	IJ
	RDDCTFWPEWLWKLC	CGTGATGATTGTACTTTTTGGCCAGAA	5 gly	
32	ERP	TGGCTTTGGAACTTTGTGAACGTCC		Н
		A (Seq ID No: 238)		Ш
Myostatin-TN12-	YNFCSYLFGVSKEACQ	TATAATTTTTGTTCTTATCTTTTTGGTG	5 gly	N
33	LP	TTTCTAAAGAAGCTTGTCAACTTCCA		
		(Seq ID No: 239)		Ш
Myostatin-TN12-	AHWCEQGPWRYGNIC	GCTCATTGGTGTGAACAAGGTCCATG	5 gly	N
	MAY	GCGTTATGGTAATATTTGTATGGCTTA		
-		T (Seq ID No: 240)		∐ I
Myostatin-TN12-	NLVCGKISAWGDEACA	AATCTTGTTTGTGGTAAAATTTCTGCT	5 gly	N
	RA	TGGGGTGATGAAGCTTGTGCTCGTGC		
35	IVA			
35	KA	T (Seq ID No: 241)		

36	WND	TCTATGAAATGGTTTTGTTGGAATGAT	т —	7
30		(Seq ID No: 242)		C
Myostatin-TN12-	NDLCAMWGWRNTIWO	AATGATCTTTGTGCTATGTGGGGTTGC	5 014	N
37	QNS	CGTAATACTATTTGGTGTCAAAATTCT	y Ery	C
,		(Seq ID No: 243)		ľ
Myostatin-TN12-	PPFCQNDNDMLQSLCK	CCACCATTTTGTCAAAATGATAATGA	5 gly	N
38	LL .	TATGCTTCAATCTCTTTGTAAACTTCT	6.7	'
		T (Seq ID No: 244)		ł
Myostatin-TN12-	WYDCNVPNELLSGLCR	TGGTATGATTGTAATGTTCCAAATGA	5 gly	N
39	LF	ACTTCTTTCTGGTCTTTTTT	67	
		(Seq ID No: 245)		
Myostatin-TN12-	YGDCDQNHWMWPFTC	TATGGTGATTGTGATCAAAATCATTG	5 gly	N
40	LSL	GATGTGGCCATTTACTTGTCTTTCTCT	"	lc
		T (Seq ID No: 246)	L.	
Myostatin-TN12-	GWMCHFDLHDWGAT	GGTTGGATGTCATTTTGATCTTCAT	5 gly	N
41	CQPD	GATTGGGGTGCTACTTGTCAACCAGA		
		T (Seq ID No: 247)		L
Myostatin-TN12-		TATTTCATTGTATGTTTGGTGGTCAT	5 gly	N
42	SF	GAATTTGAAGTTCATTGTGAATCTTTT		C
) (AMMONITOR	(Seq ID No: 248)	ļ	L
Myostatin-TN12-	AYWCWHGQCVRF	GCTTATTGGTGTTGGCATGGTCAATGT	5 gly	N
43		GTTCGTTTT (Seq ID No: 249)	<u> </u>	
Myostatin-Linear-	SEHWTFTDWDGNEW		5 gly	N
1	WVRPF	GGACGGTAACGAATGGTGGGTTCGTC		Н
		CGTTC (Seq ID No: 250)		Ш
Myostatin-Linear-		ATGGAAATGCTGGACTCCCTGTTCGA	5 gly	N
2	ISKA	ACTGCTGAAAGACATGGTTCCGATCT		Ш
		CCAAAGCT (Seq ID No: 251)		Ш
•	SPPEEALMEWLGWQY	TCCCCGCCGGAAGAAGCTCTGATGGA	5 gly	N
3	GKFT	ATGGCTGGGTTGGCAGTACGGTAAAT	•	П
Manager T.	CDCAR I ADALAGA AMAGA	TCACC (Seq ID No: 252)		Ш
•	SPENLLNDLYILMTKQ EWYG	TCCCCGGAAAACCTGCTGAACGACCT	5 gly	N
4	EWIG	GTACATCCTGATGACCAAACAGGAAT		İΙ
Muostatin Lincon	FHWEEGIPFHVVTPYS	GGTACGGT (Seq ID No: 253)	-	
riyosiaiiii-Linear-	YDRM	TTCCACTGGGAAGAAGGTATCCCGTT CCACGTTGTTACCCCGTACTCCTACGA	5 gly	M
J	1 DKW	CCGTATG (Seq ID No: 254)		H
Myostatin-Linear-	KRI I FOEMNDI AFI VS		5 gly	H
6	GHS	CGACCTGGCTGAACTGGTTTCCGGTC	o giy	12
U		ACTCC (Seq ID No: 255)		
Myostatin-Linear-	DTRDALFQEFYEFVRS	GACACCCGTGACGCTCTGTTCCAGGA	5 clu	N
	RLVI	ATTCTACGAATTCGTTCGTTCCCGTCT	2 gry	
•		GGTTATC (Seq ID No: 256)		
Myostatin-Linear-	RMSAAPRPLTYRDIMD	CGTATGTCCGCTGCTCCGCGTCCGCTG	5 olv	N
8	OYWH	ACCTACCGTGACATCATGGACCAGTA	2 513	ויו
		CTGGCAC (Seq ID No: 257)		l
Myostatin-Linear-	NDKAHFFEMFMFDVH		5 gly	N
	NFVES	GTTCATGTTCGACGTTCACAACTTCGT	ر.ع د	ľ
		TGAATCC (Seq Id No: 258)		
Myostatin-Linear-	QTQAQKIDGLWELLQS	CAGACCCAGGCTCAGAAAATCGACGG	5 glv	N
		TCTGTGGGAACTGCTGCAGTCCATCC	ر.و	
· -		GTAACCAG (Seq ID No: 259)	-	
Myostatin-Linear-			5 gly	N
		GGGTAACCTGGTTCACCGTCAGGAAG	- 6-,	-
i		CT (Seq ID No: 260)		
		<u>01</u> (00q 10 110. 200)		

12	RIHYL	GACCTCCTTCTCCCAGAACCCTATTCC		_
12	KIIIL	GACCTCCTTCTGGCACAACCGTATCC ACTACCTG (Seq ID No: 261)		
Myoctatin Linear	LNDTLLRELKMVLNSL	CTGAACGACACCCTGCTGCGTGAACT	 	٠,
13	SDMK	GAAAATGGTTCTGAACTCCCTGTCCG	5 gly	/ IN
113	SDIMK			
Myostotia I incom	FDVERDLMRWLEGFM	ACATGAAA (Seq ID No: 262)	ــــــــــــــــــــــــــــــــــــــ	4.
	QSAAT		5 gly	' N
14	QSAAI	TTGGCTGGAAGGTTTCATGCAGTCCG		
No. of the Transport	THICHARD BY CO A DOWN	CTGCTACC (Seq ID No: 263)	 	┸
	HHGWNYLRKGSAPQW		5 gly	' N
15	FEAWV	AGGTTCCGCTCCGCAGTGGTTCGAAG		
		CTTGGGTT (Seq ID No: 264)		丄
	VESLHQLQMWLDQKL	GTTGAATCCCTGCACCAGCTGCAGAT	5 gly	N
16	ASGPH	GTGGCTGGACCAGAAACTGGCTTCCG		
		GTCCGCAC (Seq ID No: 265)		L
	RATLLKDFWQLVEGY	CGTGCTACCCTGCTGAAAGACTTCTG	5 gly	N
17	GDN	GCAGCTGGTTGAAGGTTACGGTGACA		
		AC (Seq ID No: 266)		1
	EELLREFYRFVSAFDY	GAAGAACTGCTGCGTGAATTCTACCG	5 gly	N
18		TTTCGTTTCCGCTTTCGACTAC (Seq ID		
		No: 267)		
Myostatin-Linear-	GLLDEFSHFIAEQFYQ	GGTCTGCTGGACGAATTCTCCCACTTC	5 gly	N
19	MPGG	ATCGCTGAACAGTTCTACCAGATGCC	"	1
		GGGTGGT (Seq ID No: 268)		
Myostatin-Linear-	YREMSMLEGLLDVLER	TACCGTGAAATGTCCATGCTGGAAGG	5 glv	N
20	LQHY	TCTGCTGGACGTTCTGGAACGTCTGC	6.7	
		AGCACTAC (Seq ID No: 269)		
Myostatin-Linear-	HNSSQMLLSELIMLVG	CACAACTCCTCCCAGATGCTGCTGTC	5 gly	N
21	SMMQ	CGAACTGATCATGCTGGTTGGTTCCA	6.7	 ``
		TGATGCAG (Seq ID No: 270)		11
Myostatin-Linear-	WREHFLNSDYIRDKLI		5 gly	闂
22	AIDG	CTACATCCGTGACAAACTGATCGCTA	2 6.7	ויו
		TCGACGGT (Seq ID No: 271)		
Myostatin-Linear-	QFPFYVFDDLPAQLEY	CAGTTCCCGTTCTACGTTTTCGACGAC	5 alv	N
23	WIA	CTGCCGGCTCAGCTGGAATACTGGAT	2 613	[`]
		CGCT (Seq ID No: 272)		
Myostatin-Linear-	EFFHWLHNHRSEVNH		5 gly	N
24	WLDMN	CCGTTCCGAAGTTAACCACTGGCTGG	J giy	'`
- '		ACATGAAC (Seq ID No: 273)		П
Myostatin-Linear-	EALFONFFRDVI.TI.SER		5 gly	ᆔ
25	EY	GATGTTCTTACTCTTTCTGAACGTGAA	o giy	
		TAT (Seq ID No: 274)		М
Myostatin-Linear	OYWEOOWMTYFRENG	CAATATTGGGAACAACAATGGATGAC	5 0111	N
-26	LHVOY	TTATTTTCGTGAAAATGGTCTTCATGT	2 gry	ויין
20		TCAATAT (Seq ID No: 275)		П
Myostatin-Linear	NQRMMLEDLWRIMTP		F . 1	H
	MFGRS	TTGGCGTATTATGACTCCAATGTTTGG	5 gly	
²¹	WI OKS	TOCTTOT (See ID No. 276)	,	
Muoctatin Linear	FLDELKAELSRHYALD	TCGTTCT (Seq ID No: 276)		
	DLDE	TTTCTTGATGAACTTAAAGCTGAACTT	o gly	N
29	DLDE	TCTCGTCATTATGCTCTTGATGATCTT		
Managaria Timo	CKI IECI I MEL MOLEME	GATGAA (Seq ID No: 277)		Ц
Myostatin-Linear-		GGTAAACTTATTGAAGGTCTTCTTAAT	5 gly	N
30		GAACTTATGCAACTTGAAACTTTATG		C
		CCAGAT (Seq ID No: 278)		Ц
	ILLLDEYKKDWKSWF	ATTCTTCTTGATGAATATAAAAAA	5 gly	N
31	.	GATTGGAAATCTTGGTTT (Seq ID No:	ŀ	
1		279)	ı	

Myostatin-	i -	S .	lk	N
2XTN8-19 kc		GATGTGCCCGCCGTACGGTTCTGGTT		1
	PPY PPY	CCGCTACCGGTGGTTCTGGTTCCACTG		
	FFI	CTTCTTCTGGTTCCGGTTCTGCTACTG GTCAGGGTCACTGCACTCGTTGGCCA	1	
	1			
		TGGATGTGTCCACCGTAT (Seq ID No:	l	
\	WYDOVECHENCYDI C	280) TGGTATCCGTGTTATGAGGGTCACTTC	5 -10.	닖
Myostatin-			D gry	C
2XTN8-CON6	,	TGGTGCTACGATCTGGGTTCTGGTTCC	1	
	PCYEGHFWCYDL	ACTGCTTCTTCTGGTTCCGGTTCCGCT	1	
		ACTGGTTGGTACCCGTGCTACGAAGG	[
	}	TCACTTTTGGTGTTATGATCTG (Seq ID	}	
<u></u>	HTPCPWFAPLCVEWGS	No: 281) CACACTCCGTGTCCGTGGTTTGCTCCG	 	c
Myostatin-	,		1K	14
2XTN8-5 kc		CTGTGCGTTGAATGGGGTTCTGGTTCC	•	
	ATGHTPCPWFAPLCVE	GCTACTGGTGGTTCCGGTTCCACTGCT		11
	W	TCTTCTGGTTCCGGTTCTGCAACTGGT	l	11
		CACACCCGTGCCGTGGTTTGCACC	1	11
	}	GCTGTGTGTAGAGTGG (Seq ID No:	1	11
	- Included the second	[282)		닖
Myostatin-	1	CCGGATTGGTGTATCGACCCGGACTG	1k	14
2XTN8-18 kc		GTGGTGCAAATTCTGGGGTTCTGGTTC	1	
	SATGPDWCIDPDWWC	CGCTACCGGTGGTTCCGGTTCCACTG	ł	11
· ·	KFW	CTTCTTCTGGTTCCGGTTCTGCAACTG		1 1
	1	GTCCGGACTGGTGCATCGACCCGGAT	{	Н
,	}	TGGTGGTGTAAATTTTGG (Seq ID No:	j]]
	<u> </u>	283)	ļ	Ш
Myostatin-	ANWCVSPNWFCMVM	CCGGATTGGTGTATCGACCCGGACTG	1k	
2XTN8-11 kc	ı	GTGGTGCAAATTCTGGGGTTCTGGTTC	}	1 1
ĺ	GSATGANWCVSPNWF	CGCTACCGGTGGTTCCGGTTCCACTG	1	11
	CMVM	CTTCTTCTGGTTCCGGTTCTGCAACTG	1	1
}	1	GTCCGGACTGGTGCATCGACCCGGAT	}	1
	}	TGGTGGTGTAAATTTTGG (Seq ID No;	1	1 1
<u> </u>		284)	ļ	
Myostatin-		ACCACTTGGTGCATCTCTCCGATGTG	1k	C
2XTN8-25 kc		GTTCTGCTCTCAGCAGGGTTCTGGTTC	1	1 1
}	SATGPDWCIDPDWWC	CACTGCTTCTTCTGGTTCCGGTTCTGC	1	11
	KFW	AACTGGTACTACTTGGTGTATCTCTCC	l	1
		AATGTGGTTTTGTTCTCAGCAA (Seq	ł	11
	1	ID No: 285)	ļ.,	닜
Myostatin-	1	CACTGGGCATGTGGCTATTGGCCGTG	lk	10
2XTN8-23 kc		GTCCTGCAAATGGGTTGGTTCTGGTTC	Í	11
	}	CGCTACCGGTGGTTCCACTG		
	CKWV	CTTCTTCTGGTTCCGGTTCTGCAACTG	ļ	1
		GTCACTGGGCTTGCGGTTACTGGCCG		[]
		TGGTCTTGTAAATGGGTT (Seq ID No:	}	
		286)		니
Myostatin-TN8-		AAAAAACACTGTCAGATCTGGACTTG	1k	C
29-19 kc		GATGTGCGCTCCGAAAGGTTCTGGTT		1
	1 -	CCGCTACCGGTGGTTCTGGTTCCACTG		
	PPY	CTTCTTCTGGTTCCGGTTCCGCTACTG	}	11
		GTCAGGGTCACTGCACTCGTTGGCCA		11
		TGGATGTGTCCGCCGTAT (Seq ID No:		11
		287)		Ш
Myostatin-TN8-		CAGGGTCACTGCACCCGTTGGCCGTG	lk	C
19-29 kc		GATGTGCCCGCCGTACGGTTCTGGTT	}	11
	ISATGKKHCOIWTWMC	CCGCTACCGGTGGTTCTGGTTCCACTG	l	H

	APK	OTTO TO COMPANY OF THE PARTY OF		
	ALK	CTTCTTCTGGTTCCGGTTCTGCTACTG	1	
	ļ	GTAAAAAACACTGCCAGATCTGGACT		
]		TGGATGTGCGCTCCGAAA (Seq ID No:	1	1
		[288]		
Myostatin-TN8-	KKHCQIWTWMCAPKG	AAAAAACACTGTCAGATCTGGACTTG	1k	N
29-19 kn	SGSATGGSGSTASSGSG	GATGTGCGCTCCGAAAGGTTCTGGTT		
	SATGQGHCTRWPWMC	CCGCTACCGGTGGTTCTGGTTCCACTG	İ	
	PPY	CTTCTTCTGGTTCCGGTTCCGCTACTG	ł	
	1	GTCAGGGTCACTGCACTCGTTGGCCA		П
	` 	TGGATGTCCCCCCGTAT (Seq ID No:		П
		(289)		П
Myostatin-TN8-	KKHCQIWTWMCAPKG	AAAAAACACTGCCAGATCTGGACTTG	8 glv	c
29-19 - 8g	GGGGGGGGGHCTRWP	GATGTGCGCTCCGAAAGGTGGTGGTG	6.7.	
	WMCPPY	GTGGTGGCGGTGGCCAGGGTCACTGC		Ш
		ACCCGTTGGCCGTGGATGTGTCCGCC	ĺ	H
		GTAT (Seq ID No: 290)		
Myostatin-TN8-	QGHCTRWPWMCPPYG	CAGGGTCACTGCACCCGTTGGCCGTG	6 gly	c
19-29-6gc	GGGGKKHCQIWTWM	GATGTGCCCGCCGTACGGTGGTGGTG	- 6-7	
•	CAPK	GTGGTGGCAAAAAACACTGCCAGATC		П
l '		TGGACTTGGATGTGCGCTCCGAAA		li
<u> </u>		(Seq ID No: 291)		ΙÌ

Example 3

In vitro Assays

5 C2C12 Cell Based Myostatin Activity Assay

10

15

This assay demonstrates the myostatin neutralizing capability of the inhibitor being tested by measuring the extent that binding of myostatin to its receptor is inhibited.

A myostatin-responsive reporter cell line was generated by transfection of C2C12 myoblast cells (ATCC No: CRL-1772) with a pMARE-luc construct. The pMARE-luc construct was made by cloning twelve repeats of the CAGA sequence, representing the myostatin/activin response elements (Dennler et al. EMBO 17: 3091-3100 (1998)) into a pLuc-MCS reporter vector (Stratagene cat # 219087) upstream of the TATA box. The myoblast C2C12 cells naturally express myostatin/activin receptors on its cell surface. When myostatin binds the cell receptors, the Smad pathway is activated, and phosphorylated Smad binds to the response element (Macias-Silva et al. Cell 87:1215 (1996)), resulting in the expression of the lucerase gene. Luciferase activity is then measured using a commercial luciferase reporter assay kit (cat # E4550, Promega, Madison, WI) according to manufacturer's protocol. A stable line of C2C12 cells that had been transfected with pMARE-luc (C2C12/pMARE clone #44) was used to measure myostatin activity according to the following procedure.

Equal numbers of the reporter cells (C2C12/pMARE clone #44) were plated into 96 well cultures. A first round screening using two dilutions of peptibodies was performed with the myostatin concentration fixed at 4 nM. Recombinant mature myostatin was pre-incubated for 2

hours at room temperature with peptibodies at 40 nM and 400 nM respectively. The reporter cell culture was treated with the myostatin with or without peptibodies for six hours. Myostatin activity was measured by determining the luciferase activity in the treated cultures. This assay was used to initially identify peptibody hits that inhibited the myostatin signaling activity in the reporter assay. Subsequently, a nine point titration curve was generated with the myostatin concentration fixed at 4 nM. The myostatin was preincubated with each of the following nine concentrations of peptibodies: 0.04 mM, 0.4 nM, 4 nM, 20 nM, 40 nM, 200 nM, 400 nM, 2 uM and 4 uM for two hours before adding the mixture to the reporter cell culture. The IC₅₀ values were for a number of examplary peptibodies are provided in Tables III and for affinity matured peptibodies, in Table VIII.

BIAcore® assay

10

15

20

25

An affinity analysis of each candidate myostatin peptibody was performed on a BIAcore®3000 (Biacore, Inc., Piscataway, NJ), apparatus using sensor chip CM5, and 0.005 percent P20 surfactant (Biacore, Inc.) as running buffer. Recombinant mature myostatin protein was immobilized to a research grade CM5 sensor chip (Biacore, Inc.) via primary amine groups using the Amine Coupling Kit (Biacore, Inc.) according to the manufacturer's suggested protocol.

Direct binding assays were used to screen and rank the peptibodies in order of their ability to bind to immobilized myostatin. Binding assays were carried by injection of two concentrations (40 and 400 nM) of each candidate myostatin-binding peptibody to the immobilized myostatin surface at a flow rate of 50 μ l/min for 3 minutes. After a dissociation time of 3 minutes, the surface was regenerated. Binding curves were compared qualitatively for binding signal intensity, as well as for dissociation rates. Peptibody binding kinetic parameters including k_a (association rate constant), k_d (dissociation rate constant) and K_D (dissociation equilibrium constant) were determined using the BIA evaluation 3.1 computer program (Biacore, Inc.). The lower the dissociation equilibrium constants (expressed in nM), the greater the affinity of the peptibody for myostatin. Examples of peptibody K_D values are shown in Table III and Table VI for affinity-matured peptibodies below.

30 Blocking assay on ActRIB/Fc surface

Blocking assays were carried out using immobilized ActRIIB/Fc (R&D Systems, Minneapolis, MN) and myostatin in the presence and absence of peptibodies with the BIAcore® assay system. Assays were used to classify peptibodies as non-neutralizing (those which did not prevent myostatin binding to ActRIIB/Fc) or neutralizing (those that prevented myostatin binding

to ActRIIB/Fc). Baseline myostatin-ActRIIB/Fc binding was first determined in the absence of any peptibody.

For early screening studies, peptibodies were diluted to 4 nM, 40 nM, and 400 nM in sample buffer and incubated with 4 nM myostatin (also diluted in sample buffer). The peptibody: ligand mixtures were allowed to reach equilibrium at room temperature (at least 5 hours) and then were injected over the immobilized ActRIIB/Fc surface for 20 to 30 minutes at a flow rate of 10 uL/min. An increased binding response (over control binding with no peptibody) indicated that peptibody binding to myostatin was non-neutralizing. A decreased binding response (compared to the control) indicated that peptibody binding to myostatin blocked the binding of myostatin to ActRIIB/Fc. Selected peptibodies were further characterized using the blocking assay of a full concentration series in order to derive IC₅₀ values (for neutralizing peptibodies) or EC₅₀ (for non-neutralizing peptibodies). The peptibody samples were serially diluted from 200 nM to 0.05 mM in sample buffer and incubated with 4 mM myostatin at room temperature to reach equilibrium (minimum of five hours) before injected over the immobilized ActRIIB/Fc surface for 20 to 30 minutes at a flow rate of 10 uL/min. Following the sample injection, bound ligand was allowed to dissociate from the receptor for 3 minutes. Plotting the binding signal vrs. peptibody concentration, the IC50 values for each peptibody in the presence of 4 nM myostatin were calculated. It was found, for example, that the peptibodies TN8-19, L2 and L17 inhibit myostatin activity in cell-based assay, but binding of TN-8-19 does not block myostatin/ActRIIB/Fc interactions, indicating that TN-8-19 binds to a different epitope than that observed for the other two peptibodies.

Epitope binning for peptibodies

A purified peptibody was immobilized on a BIAcore chip to capture myostatin before injection of a second peptibody, and the amount of secondary peptibody bound to the captured myostatin was determined. Only peptibodies with distinct epitopes will bind to the captured myostatin, thus enabling the binning of peptibodies with similar or distinct epitope binding properties. For example, it was shown that peptibodies TN8-19 and L23 bind to different epitopes on myostatin.

Selectivity Assays

10

15

20

25

30

35

These assays were performed using BIAcore® technology, to determine the selectivity of binding of the peptibodies to other TGF\$ family members. ActRIB/Fc, TGF\$RII/Fc and BMPR-1A/Fc (all obtained from R & D Systems, Minneapolis, MN) were covalently coupled to research grade sensor chips according to manufacturer's suggested protocol. Because BIAcore assays

detects changes in the refractive index, the difference between the response detected with injection over the immobilized receptor surfaces compared with the response detected with injection over the control surface in the absence of any peptibody represents the actual binding of Activin A, TGF\$1, TGF\$3, and BMP4 to the receptors, respectively. With pre-incubation of peptibodies and TGFβ molecules, a change (increase or decrease) in binding response indicates peptibody binding to the TGF\$\beta\$ family of molecules. The peptibodies of the present invention all bind to myostatin but not to Activin A, TGF\$1, TGF\$3, or BMP4.

KinEx A™ Equilibrium Assays

10

5

15

20

25

30

Solution-based equilibrium-binding assays using KinExA™ technology (Sapidyne Instruments, Inc.) were used to determine the dissociation equilibrium (KD) of myostatin binding to peptibody molecules. This solution-based assay is considered to be more sensitive than the BIAcore assay in some instances. Reacti-Gel™ 6X was pre-coated with about 50 ug/ml myostatin for over-night, and then blocked with BSA. 30pM and 100pM of peptibody samples were incubated with various concentrations (0.5 pM to 5 nM) of myostatin in sample buffer at room temperature for 8 hours before being run through the myostatin-coated beads. The amount of the bead-bound peptibody was quantified by fluorescent (Cy5) labeled goat anti-human-Fc antibody at 1 mg/ml in superblock. The binding signal is proportional to the concentration of free peptibody at equilibrium with a given myostatin concentration. K_D was obtained from the nonlinear regression of the competition curves using a dual-curve one-site homogeneous binding model provided in the KinEx ATM software (Sapidyne Instruments, Inc.).

Example 4 **Comparison of Myostatin Inhibitors**

The ability of three exemplary first-round peptibodies to bind to (KD) and inhibit (IC50) were compared with the K_D and IC₅₀ values obtained for the soluble receptor fusion protein actRIB/Fc (R &D Systems, Inc., Minneapolis, Minn.). The IC₅₀ values were determined using the pMARE luc cell-based assay described in Example 3 and the K_D values were determined using the Biacore® assay described in Example 3.

TABLE III

Inhibitor IC_{50} (nM) $K_D(nM)$ ActRIIB/Fc ~83 ~7 2xTN8-19-kc ~9 ~2 TN8-19 ~23 ~2

TN8-29	~26	~60
TN12-34	~30	*****
Linear-20	~11	*****

The peptibodies have an IC_{50} that is improved over the receptor/Fc inhibitor and binding affinities which are comparable in two peptibodies with the receptor/Fc.

5

Example 5

Comparison of Ability of Peptide and Peptibody to Inhibit Myostatin

The following peptide sequence: QGHCTRWPWMCPPY (TN8-19) (SEQ ID NO: 33) was used to construct the corresponding peptibody TN8-19(pb) according to the procedure described in Example 2 above. Both the peptide alone and the peptibody were screened for myostatin inhibiting activity using the C2C12 based assay described in Example 3 above. It can be seen from Figure 1 the IC₅₀ (effective concentration for fifty percent inhibition of myostatin) for the peptibody is significantly less than that of the peptide, and thus the ability of the peptide to inhibit myostatin activity has been substantially improved by placing it in the peptibody configuration.

15

10

Example 6

Generation of Affinity-Matured Peptides and Peptibodies

Several of the first round peptides used for peptibody generation were chosen for affinity maturation. The selected peptides included the following: the cysteine constrained TN8-19, QGHCTRWPWMCPPY (SEQ ID NO: 33), and the linear peptides Linear-2

MEMLDSLFELLKDMVPISKA (SEQ ID NO: 104); Linear-15
 HHGWNYLRKGSAPQWFEAWV (SEQ. ID NO: 117); Linear-17

 RATLLKDFWQLVEGYGDN (SEQ ID NO: 119); Linear-20 YREMSMLEGLLDVLERLQHY (SEQ ID NO: 122), Linear-21 HNSSQMLLSELIMLVGSMMQ (SEQ ID NO: 123), Linear-24
 EFFFHWLHNHRSEVNHWLDMN (SEQ ID NO: 126). Based on a consensus sequence, directed secondary phage display libraries were generated in which the "core"amino acids (determined from the consensus sequence) were either held constant or biased in frequency of occurrence. Alternatively, an individual peptide sequence could be used to generate a biased, directed phage display library. Panning of such libraries under more stringent conditions can yield peptides with enhanced binding to myostatin, selective binding to myostatin, or with some additional desired

Production of doped oligos for libraries

Oligonucleotides were synthesized in a DNA synthesizer which were 91% "doped" at the core sequences, that is, each solution was 91% of the represented base (A, G, C, or T), and 3% of each of the other 3 nucleotides. For the TN8-19 family, for example, a 91% doped oligo used for the construction of a secondary phage library was the following:

- 5 5'-CAC AGT GCA CAG GGT NNK NNK NNK caK ggK caK tgK acK cgK tgK
 ccK tgK atK tgK ccK ccK taK NNK NNK NNK CAT TCT CTC GAG ATC A-3' (SEQ ID
 NO: 634)
- wherein "N" indicates that each of the four nucleotides A, T, C, and G were equally represented, K indicates that G and T were equally represented, and the lower case letter represents a mixture of 91% of the indicated base and 3% of each of the other bases. The family of oligonucleotides prepared in this manner were PCR amplified as described above, ligated into a phagemid vectors, for example, a modified pCES1 plasmid (Dyax), or any available phagemid vector according to the protocol described above. The secondary phage libraries generated were all 91% doped and had between 1 and 6.5x 10° independent transformants. The libraries were panned as described above, but with the following conditions:

Round 1 Panning:

20

Input phage number: 10^{12} - 10^{13} cfu of phagemid

Selection method: Nunc Immuno Tube selection
Negative selection: 2 X with Nunc Immuno Tubes coated with 2% BSA at 10 min. each
Panning coating: Coat with 1 µg of Myostatin protein in 1 ml of 0.1M Sodium carbonate buffer
(pH 9.6)

Binding time: 3 hours

Washing conditions: 6 X 2%-Milk-PBST; 6 X PBST; 2 X PBS Elution condition: 100 mM TEA elution

Round 2 Panning:

Input phage number: 10¹¹ cfu of phagemid

30 Selection method: Nunc Immuno Tube selection

Negative selection: 2 X with Nunc Immuno Tubes coated with 2% BSA at 30 min. each Panning coating: Coat with 1 µg of Myostatin protein in 1 ml of 0.1M Sodium carbonate buffer (pH 9.6)

Binding time: 1 hour

Washing conditions: 15 X 2%-Milk-PBST, 1 X 2%-Milk-PBST for 1 hr., 10 X 2%-BSA-PBST, 1 X 2%-BSA-PBST for 1 hr., 10 X PBST and 3 X PBS

Elution condition: 100 mM TEA elution

Round 3 Panning:

40 Input phage number: 10¹⁰ cfu of phagemid

Selection method: Nunc Immuno Tube selection

Negative selection: 6 X with Nunc Immuno Tubes coated with 2% BSA at 10 min. each Panning coating: Coat with 0.1 µg of Myostatin protein in 1 ml of 0.1M Sodium carbonate buffer (pH 9.6)

45 Binding time: 1 hour

Washing conditions: 15 X 2%-Milk-PBST, 1 X 2%-Milk-PBST for 1 hr., 10 X 2%-BSA-PBST,

1 X 2%-BSA-PBST for 1 hr., 10 X PBST and 3 X PBS

Elution condition: 100 mM TEA elution

Panning of the secondary libraries yielded peptides with enhanced binding to myostatin. Individual selected clones were subjected phage ELISA, as described above, and sequenced.

The following affinity matured TN8-19 family of peptides are shown in Table IV below.

	TABLE IV	
Affinity- matured	SEQ ID	Peptide sequence
peptibody	NO:	
mTN8-19-1	305	VALHGQCTRWPWMCPPQREG
mTN8-19-2	306	YPEQGLCTRWPWMCPPQTLA
mTN8-19-3	307	GLNQGHCTRWPWMCPPQDSN
mTN8-19-4	308	MITQGQCTRWPWMCPPQPSG
mTN8-19-5	309	AGAQEHCTRWPWMCAPNDWI
mTN8-19-6	310	GVNQGQCTRWRWMCPPNGWE
mTN8-19-7	311 -	LADHGQCIRWPWMCPPEGWE
mTN8-19-8	312	ILEQAQCTRWPWMCPPQRGG
mTN8-19-9	313	TQTHAQCTRWPWMCPPQWEG
mTN8-19-10	314	VVTQGHCTLWPWMCPPQRWR
mTN8-19-11	315	IYPHDQCTRWPWMCPPQPYP
mTN8-19-12	316	SYWQGQCTRWPWMCPPQWRG
mTN8-19-13	317	MWQQGHCTRWPWMCPPQGWG
mTN8-19-14	318	EFTQWHCTRWPWMCPPQRSQ
mTN8-19-15	319	LDDQWQCTRWPWMCPPQGFS
mTN8-19-16	320	YQTQGLCTRWPWMCPPQSQR
mTN8-19-17	321	ESNQGQCTRWPWMCPPQGGW
mTN8-19-18	322	WTDRGPCTRWPWMCPPQANG
mTN8-19-19	323	VGTQGQCTRWPWMCPPYETG
mTN8-19-20	324	PYEQGKCTRWPWMCPPYEVE
mTN8-19-21	325	SEYQGLCTRWPWMCPPQGWK
mTN8-19-22	326	TFSQGHCTRWPWMCPPQGWG
mTN8-19-23	327	PGAHDHCTRWPWMCPPQSRY
mTN8-19-24	328	VAEEWHCRRWPWMCPPQDWR
mTN8-19-25	329	VGTQGHCTRWPWMCPPQPAG
mTN8-19-26	330	EEDQAHCRSWPWMCPPQGWV
mTN8-19-27	331	ADTQGHCTRWPWMCPPQHWF
mTN8-19-28	332	SGPQGHCTRWPWMCAPQGWF
mTN8-19-29	333	TLVQGHCTRWPWMCPPQRWV
mTN8-19-30 .	334	GMAHGKCTRWAWMCPPQSWK
mTN8-19-31	335	ELYHGQCTRWPWMCPPQSWA
mTN8-19-32	336	VADHGHCTRWPWMCPPQGWG
mTN8-19-33	337	PESQGHCTRWPWMCPPQGWG
mTN8-19-34	338	IPAHGHCTRWPWMCPPQRWR
mTN8-19-35	339	FTVHGHCTRWPWMCPPYGWV
mTN8-19-36	340	PDFPGHCTRWRWMCPPQGWE
mTN8-19-37	341	QLWQGPCTQWPWMCPPKGRY
mTN8-19-38	342	HANDGHCTRWQWMCPPQWGG
mTN8-19-39	343	ETDHGLCTRWPWMCPPYGAR .
mTN8-19-40	344	GTWQGLCTRWPWMCPPQGWQ
mTN8-19 con1	345	VATQGQCTRWPWMCPPQGWG
mTN8-19 con2	346	VATQGQCTRWPWMCPPQRWG

mTN8 con6-1 mTN8 con6-2	347 348	QREWYPCYGGHLWCYDLHKA
mTN8 con6-3	349	ISAWYSCYAGHFWCWDLKQK WTGWYQCYGGHLWCYDLRRK
mTN8 con6-4 mTN8 con6-5	350 351	KTFWYPCYDGHFWCYNLKSS ESRWYPCYEGHLWCFDLTET

5

10

15

20

25

30

The consensus sequence derived from the affinity- matured TN-8-19- 1 through Con2 (excluding the mTN8 con6 sequences) shown above is: Ca1a2Wa3WMCPP (SEQ ID NO: 352). All of these peptide comprise the sequence WMCPP (SEQ ID NO: 633). The underlined amino acids represent the core amino acids present in all embodiments, and a1, a2 and a3 are selected from a neutral hydrophobic, neutral polar, or basic amino acid. In one embodiment of this consensus sequence, Cb1b2Wb3WMCPP (SEQ ID NO: 353), b1 is selected from any one of the amino acids T, I, or R; b2 is selected from any one of R, S, Q; and b3 is selected from any one of P, R and Q. All of the peptides comprise the sequence WMCPP (SEQ ID NO: 633). A more detailed analysis of the affinity matured TN8 sequences comprising SEQ ID NO: 352 provides the following formula:

 $c_{1}c_{2}c_{3}c_{4}c_{5}c_{6}\underline{C}c_{7}c_{8}\underline{W}c_{9}\underline{WMCPP}c_{10}c_{11}c_{12}c_{13} \text{ (SEQ ID NO: 354), wherein: }$

c₁ is absent or any amino acid;

c₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

c₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

c4 is absent or any amino acid;

c₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

c₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid;

c7 is a neutral hydrophobic, neutral polar, or basic amino acid;

c₈ is a neutral hydrophobic, neutral polar, or basic amino acid;

c9 is a neutral hydrophobic, neutral polar or basic amino acid; and wherein

c₁₀ to c₁₃ is any amino acid.

In one embodiment of the above formulation, b_7 is selected from any one of the amino acids T, I, or R; b_8 is selected from any one of R, S, Q; and b_9 is selected from any one of P, R and Q. This provides the following sequence:

 $d_1 d_2 d_3 d_4 d_5 d_6 \underline{C} d_7 d_8 \underline{W} d_9 \underline{WMCPP} \ d_{10} d_{11} d_{12} d_{13} \ (SEQ \ ID \ NO: 355).$

d₁ is absent or any amino acid:

 d_2 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

d₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

35 d₄ is absent or any amino acid:

d₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

d₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid;

 d_7 is selected from any one of the amino acids T, I, or R;

d₈ is selected from any one of R, S, Q;

d₉ is selected from any one of P, R and Q

and d_{10} through d_{13} are selected from any amino acid.

The consensus sequence of the mTN8 con6 series is $\underline{WY}e_1e_2\underline{Y}e_3\underline{G}$, (SEQ ID NO: 356) wherein e_1 is P, S or Y; e_2 is C or Q, and e_3 is G or H.

5

In addition to the TN-19 affinity matured family, additional affinity matured peptides were produced from the linear L-2, L-15, L-17, L-20, L-21, and L-24 first round peptides. These families are presented in Table V below.

	Affinity	TABLE V	
	matured	SEQ ID	
	peptibody	NO:	Peptide Sequence
	L2	104	MEMLDSLFELLKDMVPISKA
	mL2-Con1	357	RMEMLESLLELLKEIVPMSKAG
	mL2-Con2	358	RMEMLESLLELLKEIVPMSKAR
	mL2-1	359	RMEMLESLLELLKDIVPMSKPS
	mL2-2	360	GMEMLESLFELLQEIVPMSKAP
	mL2-3	361	RMEMLESLLELLKDIVPISNPP
	mL2-4	362	RIEMLESLLELLQEIVPISKAE
	mL2-5	363	RMEMLQSLLELLKDIVPMSNAR
	mL2-6	364	RMEMLESLLELLKEIVPTSNGT
ı	mL2-7	365	RMEMLESLFELLKEIVPMSKAG
ı	mL2-8	366	RMEMLGSLLELLKEIVPMSKAR
ı	mL2-9	367	QMELLDSLFELLKEIVPKSQPA
ı	mL2-10	368	RMEMLDSLLELLKEIVPMSNAR
١	mL2-11	369	RMEMLESLLELLHEIVPMSQAG
١	mL2-12	370	QMEMLESLLQLLKEIVPMSKAS
l	mL2-13	371	RMEMLDSLLELLKDMVPMTTGA
١	mL2-14	372	RIEMLESLLELLKDMVPMANAS
ĺ	mL2-15	373	RMEMLESLLQLLNEIVPMSRAR
l	mL2-16	374	RMEMLESLFDLLKELVPMSKGV
l	mL2-17	375	RIEMLESLLELLKDIVPIQKAR
ĺ	mL2-18	376	RMELLESLFELLKDMVPMSDSS
l	mL2-19	377	RMEMLESLLEVLQEIVPRAKGA
l	mL2-20		RMEMLDSLLQLLNEIVPMSHAR
ĺ	mL2-21	379	RMEMLESLLELLKDIVPMSNAG
	mL2-22		RMEMLQSLFELLKGMVPISKAG
l	mL2-23		RMEMLESLLELLKEIVPNSTAA
	mL2-24	382	RMEMLQSLLELLKEIVPISKAG
_	mL2-25	383	RIEMLDSLLELLNELVPMSKAR
	L-15	117	HHGWNYLRKGSAPQWFEAWV
	mL15-con1		
	mL15-1		QVESLQQLLMWLDQKLASGPQG
	mL15-2	111. P	RMELLESLFELLKEMVPRSKAV
	1111-13-2	- IC	QAVSLQHLLMWLDQKLASGPQH

mL15-3	387	DEDSLQQLLMWLDQKLASGPQL
mL15-4	388	PVASLQQLLIWLDQKLAQGPHA
mL15-5	389	EVDELQQLLNWLDHKLASGPLO
mL15-6	390	DVESLEQLLMWLDHQLASGPHG
mL15-7	391	QVDSLQQVLLWLEHKLALGPQV
mL15-8	392	GDESLQHLLMWLEQKLALGPHG
mL15-9	393	QIEMLESLLDLLRDMVPMSNAF
mL15-10	394	EVDSLQQLLMWLDQKLASGPQA
mL15-11	395	EDESLQQLLIYLDKMLSSGPQV
mL15-12	396	AMDQLHQLLIWLDHKLASGPQA
mL15-13	397	RIEMLESLLELLDEIALIPKAW
mL15-14	398	EVVSLQHLLMWLEHKLASGPDG
mL15-15	399	GGESLQQLLMWLDQQLASGPQR
mL15-16	400	GVESLQQLLIFLDHMLVSGPHD
mL15-17	401	NVESLEHLMMWLERLLASGPYA
mL15-18	402	QVDSLQQLLIWLDHQLASGPKR
mL15-19	403	EVESLQQLLMWLEHKLAQGPQG
mL15-20	404	EVDSLQQLLMWLDQKLASGPHA
mL15-21	405	EVDSLQQLLMWLDQQLASGPQK
mL15-22	406	GVEQLPQLLMWLEQKLASGPQR
mL15-23	407	GEDSLQQLLMWLDQQLAAGPQV
mL15-24	408	ADDSLQQLLMWLDRKLASGPHV
mL15-25	409	PVDSLQQLLIWLDQKLASGPQG
L-17	119	RATLLKDFWQLVEGYGDN
L-17 mL17-con1	410	
mL17-con1 mL17-con2	410 411	RATLLKDFWQLVEGYGDN
mL17-con1 mL17-con2 mL17-1	410 411 412	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV
mL17-con1 mL17-con2 mL17-1 mL17-2	410 411 412 413	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3	410 411 412 413 414	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4	410 411 412 413 414 415	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5	410 411 412 413 414 415 416	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6	410 411 412 413 414 415 416 417	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7	410 411 412 413 414 415 416 417 418	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8	410 411 412 413 414 415 416 417 418 419	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFCQLVGCQGDKLS QERATLLKEFWQLVAGLGQNMR
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9	410 411 412 413 414 415 416 417 418 419 420	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFWQLVGCQGDKLS QERATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10	410 411 412 413 414 415 416 417 418 419 420 421	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFCQLVGCQGDKLS QERATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW TMRATLLKEFWLFVDGQREMQW
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10 mL17-11	410 411 412 413 414 415 416 417 418 419 420 421 422	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFWQLVGCQGDKLS QERATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10 mL17-11	410 411 412 413 414 415 416 417 418 419 420 421 422 423	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFCQLVGCQGDKLS QERATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW TMRATLLKEFWLFVDGQREMQW GERATLLKEFWQLVDGQGDNTG DERETLLKEFWQLVHGWGDNVA
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10 mL17-11 mL17-12	410 411 412 413 414 415 416 417 418 419 420 421 422 423 424	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW TMRATLLKEFWQLVQGLGEYRW TMRATLLKEFWLFVDGQREMQW GERATLLKEFWQLVDGQGDNTG DERETLLKEFWQLVHGWGDNVA
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10 mL17-11 mL17-12	410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFCQLVGCQGDKLS QERATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW TMRATLLKEFWLFVDGQREMQW GERATLLKEFWQLVDGQGDNTG DERETLLKEFWQLVHGWGDNVA GGRATLLKELWQLLEGQGANLV TARATLLNELVQLVKGYGDKLV
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10 mL17-11 mL17-12 mL17-13 mL17-13	410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFWQLVGCQGDKLS QERATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW TMRATLLKEFWLFVDGQREMQW GERATLLNDFWQLVDGQGDNTG DERETLLKEFWQLVHGWGDNVA GGRATLLKELWQLVEGQGANLV TARATLLNELVQLVKGYGDKLV GMRATLLQEFWQLVGGQGDNWM
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10 mL17-11 mL17-12 mL17-13 mL17-14 mL17-15	410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW TMRATLLKEFWQLVQGLGEYRW TMRATLLKEFWLFVDGQREMQW GERATLLKEFWQLVDGQGDNTG DERETLLKEFWQLVHGWGDNVA GGRATLLKELWQLLEGQGANLV TARATLLNELVQLVKGYGDKLV GMRATLLQEFWQLVGGQGDNWM STRATLLNDLWQLMKGWAEDRG
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10 mL17-11 mL17-12 mL17-13 mL17-14 mL17-15 mL17-16 mL17-17	410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVUGLGDMQT DARATLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW TMRATLLKEFWLFVDGQREMQW GERATLLKEFWQLVHGWGDNVA GGRATLLKEFWQLVHGWGDNVA GGRATLLKELWQLVGGQGDNLV TARATLLNELVQLVKGYGDKLV GMRATLLQEFWQLVGGQGDNWM STRATLLNDLWQLMKGWAEDRG SERATLLKELWQLVGGWGDNFG
mL17-con1 mL17-con2 mL17-1 mL17-2 mL17-3 mL17-4 mL17-5 mL17-6 mL17-7 mL17-8 mL17-9 mL17-10 mL17-11 mL17-12 mL17-13 mL17-14 mL17-15	410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427	RATLLKDFWQLVEGYGDN DWRATLLKEFWQLVEGLGDNLV QSRATLLKEFWQLVEGLGDKQA DGRATLLTEFWQLVQGLGQKEA LARATLLKEFWQLVEGLGEKVV GSRDTLLKEFWQLVVGLGDMQT DARATLLKEFWQLVDAYGDRMV NDRAQLLRDFWQLVDGLGVKSW GVRETLLYELWYLLKGLGANQG QARATLLKEFWQLVAGLGQNMR SGRATLLKEFWQLVQGLGEYRW TMRATLLKEFWQLVQGLGEYRW TMRATLLKEFWLFVDGQREMQW GERATLLKEFWQLVDGQGDNTG DERETLLKEFWQLVHGWGDNVA GGRATLLKELWQLLEGQGANLV TARATLLNELVQLVKGYGDKLV GMRATLLQEFWQLVGGQGDNWM STRATLLNDLWQLMKGWAEDRG

		_
mL17-20	431	QLRATLLKEFLQLVHGLGETDS
mL17-21	432	TQRATLLKEFWQLIEGLGGKHV
mL17-22	433	HYRATLLKEFWQLVDGLREQGV
mL17-23	434	QSRVTLLREFWQLVESYRPIVN
mL17-24	435	LSRATLLNEFWQFVDGQRDKRM
mL17-25	436	WDRATLLNDFWHLMEELSQKPG
mL17-26	437	QERATLLKEFWRMVEGLGKNRG
mL17-27	438	NERATLLREFWQLVGGYGVNQR
L-20	122	YREMSMLEGLLDVLERLOHY
mL20-1	439	HQRDMSMLWELLDVLDGLRQYS
mL20-2	440	TQRDMSMLDGLLEVLDQLRQQR
mL20-3	441	TSRDMSLLWELLEELDRLGHQR
mL20-4	442	MQHDMSMLYGLVELLESLGHQI
mL20-5	443	WNRDMRMLESLFEVLDGLRQQV
mL20-6	444	GYRDMSMLEGLLAVLDRLGPQL
mL20 con1	445	TQRDMSMLEGLLEVLDRLGQQR
mL20 con2	446	WYRDMSMLEGLLEVLDRLGQQR
L-21	123	HNSSQMLLSELIMLVGSMMQ
mL21-1	447	TQNSRQMLLSDFMMLVGSMIQG
mL21-2	448	MQTSRHILLSEFMMLVGSIMHG
mL21-3	449	HDNSRQMLLSDLLHLVGTMIQG
mL21-4	450	MENSRQNLLRELIMLVGNMSHQ
mL21-5	451	QDTSRHMLLREFMMLVGEMIQG
mL21 con1	452	DQNSRQMLLSDLMILVGSMIQG
L-24	126	EFFHWLHNHRSEVNHWLDMN
mL24-1	453	NVFFQWVQKHGRVVYQWLDINV
mL24-2	454	FDFLQWLQNHRSEVEHWLVMDV

The affinity matured peptides provided in Tables IV and V are then assembed into peptibodies as described above and assayed using the in vivo assays.

The affinity matured L2 peptides comprise a consensus sequence of f₁EMLf₂SLf₃f₄LL, (SEQ ID NO: 455), wherein f₁ is M or I; f₂ is any amino acid; f₃ is L or F; and f₄ is E, Q or D.

The affinity matured L15 peptide family comprise the sequence $\underline{Lg_1g_2LLg_3g_4L}$, (SEQ ID NO: 456), wherein g_1 is Q, D or E, g_2 is S, Q, D or E, g_3 is any amino acid, and g_4 is L, W, F, or Y. The affinity matured L17 family comprises the sequence: $h_1h_2h_3h_4h_5h_6h_7h_8h_9$ (SEQ ID NO: 457) wherein h_1 is R or D; h_2 is any amino acid; h_3 is A, T S or Q; h_4 is L or M; h_5 is L or S; h_6 is any amino acid; h_7 is F or E; h_8 is W, F or C; and h_9 is L, F, M or K. Consensus sequences may also be determined for the mL20, mL21 and mL24 families of peptides shown above.

10

Peptibodies were constructed from these affinity matured peptides as described above,
using a linker attached to the Fc domain of human IgG1, having SEQ ID NO: 296, at the N-

terminus (N configuration), at the C terminus (C configuration) of the Fc, or at both the N and C terminals (N,C configurations), as described in Example 2 above. The peptides named were attached to the C or N terminals via a 5 glycine (5G), 8 glycine or k linker sequence. In the 2X peptibody version the peptides were linked with linkers such as 5 gly, 8 gly or k. Affinity matured peptides and peptibodies are designated with a small "m" such as mTN8-19-22 for example. Peptibodies of the present invention further contain two splice sites where the peptides were spliced into the phagemid vectors. The position of these splice sites are AQ—peptide—LE. The peptibodies generally include these additional amino acids (although they are not included in the peptide sequences listed in the tables). In some peptibodies the LE amino acids were removed from the peptides sequences. These peptibodies are designated –LE.

Exemplary peptibodies, and exemplary polynucleotide sequences encoding them, are provided in Table VI below. This table includes examples of peptibody sequences (as opposed to peptide only), such as the 2x mTN8-19-7 (SEQ ID NO: 615) and the peptibody with the LE sequences deleted (SEQ ID NO: 617). By way of explanation, the linker sequences in the 2x versions refers to the linker between the tandem peptides. These peptibody sequences contain the Fc, linkers, AQ and LE sequences. The accompanying nucleotide sequence encodes the peptide sequence in addition to the AQ/LE linker sequences, if present, but does not encode the designated linker.

20

5

10

15

TABLE VI

Peptibody Name	Peptide	Nucleotide Sequence (SEQ ID No)	Linker	Term -inus
mL2-Con1	RMEMLESLLELL KEIVPMSKAG	CGTATGGAAATGCTTGAATCTCTTC TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAAAGCTGGT (SEQ ID NO: 458)	5 gly	N
mL2–Con2	RMEMLESLLELL KEIVPMSKAR	CGTATGGAAATGCTTGAATCTCTTC TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAAAGCTCGT (SEQ ID NO: 459)	5 gly	N
mL2-1	RMEMLESLLELL KDIVPMSKPS	CGTATGGAAATGCTTGAATCTCTTC TTGAACTTCTTAAAGATATTGTTCC AATGTCTAAACCATCT (SEQ ID NO: 460)	5 gly	N
mL2-2	QEIVPMSKAP	GGTATGGAAATGCTTGAATCTCTTT TTGAACTTCTTCAAGAAATTGTTCC AATGTCTAAAGCTCCA (SEQ ID NO: 461)	5 gly	N
	KDIVPISNPP	CGTATGGAAATGCTTGAATCTCTTC TTGAACTTCTTAAAGATATTGTTCC AATTTCTAATCCACCA (SEQ ID NO: 462)	5 gly	N

mL2-4	RIEMLESLLELLO EIVPISKAE	CGTATTGAAATGCTTGAATCTCTTC	5 gly	N
	LIVIIONAL	AATTTCTAAAGCTGAA (SEQ ID NO: 463)		
mL.2-5	RMEMLQSLLELI KDIVPMSNAR	CGTATGGAAATGCTTCAATCTCTTC S TTGAACTTCTTAAAGATATTGTTCC AATGTCTAATGCTCGT (SEQ ID NO: 464)	gly	N
mL2-6	RMEMLESLLELL KEIVPTSNGT	CGTATGGAAATGCTTGAATCTCTTC 5 TTGAACTTCTTAAAGAAATTGTTCC AACTTCTAATGGTACT (SEQ ID NO: 465)	gly	N
mL2-7	RMEMLESLFELL KEIVPMSKAG	CGTATGGAAATGCTTGAATCTCTTT 5 TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAAAGCTGGT (SEQ ID NO: 466)	gly	N
mL2-8	RMEMLGSLLELL KEIVPMSKAR	CGTATGGAAATGCTTGGTTCTCTC 5 TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAAAGCTCGT(SEQ ID NO: 467)	gly	N
mL2–9	QMELLDSLFELL KEIVPKSQPA	CAAATGGAACTTCTTGATTCTCTTT 5 TTGAACTTCTTAAAGAAATTGTTCC AAAATCTCAACCAGCT (SEQ ID NO: 468)	gly	N
mL2-10	RMEMLDSLLELL KEIVPMSNAR	CGTATGGAAATGCTTGATTCTCTTC 5 TTGAACTTCTTAAAGAAATTGTTCC AATGTCTAATGCTCGT (SEQ ID NO: 469)	gly	N
mL2-11	RMEMLESLLELL HEIVPMSQAG	CGTATGGAAATGCTTGAATCTCTTC 5 TTGAACTTCTTCATGAAATTGTTCC AATGTCTCAAGCTGGT (SEQ ID NO: 470)	gly	N
nL2–12	QMEMLESLLQLL KEIVPMSKAS	CAAATGGAAATGCTTGAATCTCTTC 5 TTCAACTTCTTAAAGAAATTGTTCC AATGTCTAAAGCTTCT (SEQ ID NO: 471)	gly	N
nL2-13	RMEMLDSLLELL KDMVPMTTGA	CGTATGGAAATGCTTGATTCTCTTC 5 TTGAACTTCTTAAAGATATGGTTCC AATGACTACTGGTGCT (SEQ ID NO: 472)	gly	N
nL2–14	RIEMLESLLELLK DMVPMANAS	CGTATTGAAATGCTTGAATCTCTTC 5 TTGAACTTCTTAAAGATATGGTTCC AATGGCTAATGCTTCT (SEQ ID NO: 473)	gly	N
nL2-15	NEIVPMSRAR	CGTATGGAAATGCTTGAATCTCTTC 5 (TCAACTTCTTAATGAAATTGTTCCAATGTCTCGTGCTCGT (SEQ ID NO: 474)	gly	N
nL2-16	KELVPMSKGV	CGTATGGAAATGCTTGAATCTCTTT 5 E TTGATCTTCTTAAAGAACTTGTTCC AATGTCTAAAGGTGTT (SEQ ID NO: 475)	gly	N
L2-17	RIEMLESLLELLK DIVPIQKAR	CGTATTGAAATGCTTGAATCTCTTC 5 E TTGAACTTCTTAAAGATATTGTTCC AATTCAAAAAGCTCGT (SEQ ID NO: 476)	gly	N

mL2-18	RMELLESLFELLI DMVPMSDSS	CCGTATGGAACTTCTTGAATCTCTTT 5 gly	N
: 		AATGTCTGATTCTTCT (SEQ ID NO: 477)	
mL2-19	QEIVPRAKGA	CGTATGGAAATGCTTGAATCTCTTC 5 gly TTGAAGTTCTTCAAGAAATTGTTCC ACGTGCTAAAGGTGCT (SEQ ID NO: 478)	N
mL220	RMEMLDSLLQLI NEIVPMSHAR	CGTATGGAAATGCTTGATTCTCTTC 5 gly TTCAACTTCTTAATGAAATTGTTCC AATGTCTCATGCTCGT (SEQ ID NO: 479)	N
mL2-21	RMEMLESLLELL KDIVPMSNAG	CGTATGGAAATGCTTGAATCTCTTC 5 gly TTGAACTTCTTAAAGATATTGTTCC AATGTCTAATGCTGGT (SEQ ID NO: 480)	N
mL2-22	RMEMLQSLFELL KGMVPISKAG	CGTATGGAAATGCTTCAATCTCTTT 5 gly TTGAACTTCTTAAAGGTATGGTTCC AATTTCTAAAGCTGGT (SEQ ID NO: 481)	N
mL2-23	RMEMLESLLELL KEIVPNSTAA	CGTATGGAAATGCTTGAATCTCTTC 5 gly TTGAACTTCTTAAAGAAATTGTTCC AAATTCTACTGCTGCT (SEQ ID NO: 482)	N
mL2–24	RMEMLQSLLELL KEIVPISKAG	CGTATGGAAATGCTTCAATCTCTTC 5 gly TTGAACTTCTTAAAGAAATTGTTCC AATTTCTAAAGCTGGT (SEQ ID NO: 483)	N
mL2-25	RIEMLDSLLELLN ELVPMSKAR	CGTATTGAAATGCTTGATTCTCTTC 5 gly TTGAACTTCTTAATGAACTTGTTCC AATGTCTAAAGCTCGT (SEQ ID NO: 484)	N
mL17-Con1	DWRATLLKEFW QLVEGLGDNLV	GATTGGCGTGCTACTCTTCTTAAAG 5 gly AATTTTGGCAACTTGTTGAAGGTCT TGGTGATAATCTTGTT (SEQ ID NO: 485)	N
mL17-1	DGRATLLTEFWQ LVQGLGQKEA	GATGGTCGTGCTACTCTTCTTACTG 5 gly AATTTTGGCAACTTGTTCAAGGTCT TGGTCAAAAAAGAAGCT (SEQ ID NO: 486)	N
mL17–2	LARATLLKEFWQ LVEGLGEKVV	CTTGCTCGTGCTACTCTTCTTAAAG 5 gly AATTTTGGCAACTTGTTGAAGGTCT TGGTGAAAAAGTTGTT (SEQ ID NO: 487)	N
nL17–3		GGTTCTCGTGATACTCTTCTTAAAG 5 gly AATTTTGGCAACTTGTTGTTGGTCT TGGTGATATGCAAACT (SEQ ID NO: 488)	N
nL17–4	LVDAYGDRMV	GATGCTCGTGCTACTCTTCTTAAAG 5 gly AATTTTGGCAACTTGTTGATGCTTA TGGTGATCGTATGGTT (SEQ ID NO: 489)	N
nL17–5	NDRAQLLRDFWQ LVDGLGVKSW	AATGATCGTGCTCAACTTCTTCGTG 5 gly ATTTTTGGCAACTTGTTGATGGTCT TGGTGTTAAATCTTGG (SEQ ID NO: 490)	N

mL17-6	GVRETLLYELWY	GGTGTTCGTGAAACTCTTCTTTATC	2 5 a1v	N
	LLKGLGANQG	AACTTTGGTATCTTCTTAAAGGTCT	r l gry	۳
		TGGTGCTAATCAAGGT (SEQ ID NO 491)): 	
mL17-7	QARATLLKEFCQ	CAAGCTCGTGCTACTCTTCTTAAAC	35 gly	N
	LVGCQGDKLS	AATTTTGTCAACTTGTTGGTTGTCA		Ι,
		AGGTGATAAACTTTCT (SEQ ID NO):	
		492)]	- 1
mL17-8	QERATLLKEFWQ		5 gly	N
	LVAGLGQNMR	GAATTTTGGCAACTTGTTGCTGGTC		
		TTGGTCAAAATATGCGT (SEQ ID	İ	1
		NO: 493)		_L_
mL17-9	SGRATLLKEFWQ	TCTGGTCGTGCTACTCTTCTTAAAG	5 gly	N
	LVQGLGEYRW	AATTITGGCAACTTGTTCAAGGTCT	1	1
		TGGTGAATATCGTTGG (SEQ ID NO	:	
7.07.10		494)		
mL17-10	TMRATLLKEFWL	ACTATGCGTGCTACTCTTCTTAAAG	5 gly	N
	FVDGQREMQW	AATTITGGCTTTTTGTTGATGGTCA		ı
		ACGTGAAATGCAATGG (SEQ ID NO	:	
T 107 11	CTD 4 CT T 1 CT	495)		
mL17-11	GERATLLNDFWQ	GGTGAACGTGCTACTCTTCTTAATG	5 gly	N
	LVDGQGDNTG	ATTTTTGGCAACTTGTTGATGGTCA		1
		AGGTGATAATACTGGT (SEQ ID	1	
mL17–12	DEDENIA MONTHO	NO: 496)	ļ	
ML1/-12	DERETLLKEFWQ	GATGAACGTGAAACTCTTCTTAAA	5 gly	N
	LVHGWGDNVA	GAATTTTGGCAACTTGTTCATGGTT] .
		GGGGTGATAATGTTGCT (SEQ ID	}	1
mL17–13	CCD ATT I VET TWO	NO: 497)	ļ	
IIIC17-13	LLEGQGANLV	GGTGGTCGTGCTACTCTTAAAG	5 gly	N
	LLEGQGANLV	AACTTTGGCAACTTCTTGAAGGTCA		ļ
		AGGTGCTAATCTTGTT (SEQ ID NO: 498)	ļ	
mL17-14	TARATLLNELVQ		<u> </u>	
MB17-14	LVKGYGDKLV	ACTGCTCGTGCTACTCTTCTTAATG AACTTGTTCAACTTGTTAAAGGTTA) gly	N
	LVKOIODKLV	TGGTGATAAACTTGTT (SEQ ID NO:		1
		499)	i	
mL17-15	GMRATLLOEFWO	GGTATGCGTGCTACTCTTCTTCAAG	5 -1	N
	LVGGQGDNWM	AATTTTGGCAACTTGTTGGTGGTCA	D giy	IN
		AGGTGATAATTGGATG (SEQ ID]	
	<u> </u>	NO: 500)	ì	1
nL17-16	STRATLLNDLWQ	TCTACTCGTGCTACTCTTCTTAATG	5 alv	N
	TAMONYATORO	ATCTTTGGCAACTTATGAAAGGTTG		1
		GGCTGAAGATCGTGGT (SEQ ID		
		NO: 501)		
nL17-17		TCTGAACGTGCTACTCTTCTTAAAG	5 olv	N
	1 - 1	AACTTTGGCAACTTGTTGGTGGTTG	~ 6·J	 '`
	F I	GGGTGATAATTTTGGT (SEQ ID NO:		
		502)		
nL17–18		GTTGGTCGTGCTACTCTTCTTAAAG	5 glv	N
1117-16	LVEGLVGQSR	AATTTTGGCAACTTGTTGAAGGTCT	~ 5.7	1
				1
	I	TGTTGGTCAATCTCGT (SEQ ID NO:		.

2x mTN8–Con6 (N)–1K	WYPCYEGHFWC	TTCCACTGCTTCTTCTGGTTCCGGT	3	N
	GSGSATGGSGST ASSGSGSATG- WYPCYEGHFWC YDL-LE-5G-FC (SEQ ID NO: 504)	ACGAAGGTCACTTTTGGTGTTATG	T A	
2x mTN8–Con6- (C)–1K	WYPCYEGHFWC YDL- GSGSATGGSGST ASSGSGSATG- WYPCYEGHFWC YDL-LE (SEQ ID NO: 506)	TTCCACTGCTTCTTCTGGTTCCGGT TCCGCTACTGGTTGGTACCCGTGCT ACGAAGGTCACTTTTGGTGTTATGA TCTG (SEQ ID NO: 507)	3	c
2x mTN8-Con7- (N)-1K 2x mTN8-Con7-	IFGCKWWDVQC YQF- GSGSATGGSGST ASSGSGSATG- IFGCKWWDVQC YQF-LE-5G-FC (SEQ ID NO: 508)	ATCTITGGCTGTAAATGGTGGGAC GTTCAGTGCTACCAGTTCGGTTCTG GTTCCACTGCTTCTTCTGGTTCCGG TTCCGCTACTGGTATCTTCGGTTGC AAGTGGTGGGATGTACAGTGTTAT CAGTTT (SEQ ID NO: 509)		N
(C)-1K	IFGCKWWDVQC YQF- GSGSATGGSGST ASSGSGSATG- IFGCKWWDVQC YQF-LE (SEQ ID NO: 510)	ATCTTTGGCTGTAAATGGTGGGAC GTTCAGTGCTACCAGTTCGGTTCTG GTTCCACTGCTTCTTCTGGTTCCGG TTCCGCTACTGGTATCTTCGGTTGC AAGTGGTGGGATGTACAGTGTTAT CAGTTT (SEQ ID NO: 511)	1K	C
2x mTN8-Con8- (N)-1K	IFGCKWWDVDC YQF- GSGSATGGSGST ASSGSGSATG- IFGCKWWDVDC YQF-LE-5G-FC (SEQ ID NO: 512)	ATCTTTGGCTGTAAGTGGTGGGAC GTTGACTGCTACCAGTTCGGTTCTG GTTCCACTGCTTCTTCTGGTTCCGG TTCCGCTACTGGTATCTTCGGTTGC AAATGGTGGGACGTTGATTGTTAT CAGTTT (SEQ ID NO: 513)	1K	N
2x mTN8–Con8– (C)–1K	IFGCKWWDVDC YQF- GSGSATGGSGST ASSGSGSATG- IFGCKWWDVDC YQF-LE (SEQ ID NO: 514)	GTTGACTGCTACCAGTTCGGTTCTG GTTCCACTGCTTCTTCTGGTTCCGG TTCCGCTACTGGTATCTTCGGTTGC AAATGGTGGGACGTTGATTGTTAT CAGTTT (SEQ ID NO: 515)	1K	С
ML15-Con1	DQKLASGPQG	CAGGTTGAATCCCTGCAGCAGCTG CTGATGTGGCTGGACCAGAAACTG GCTTCCGGTCCGCAGGGT (SEQ ID NO: 516)	5 gly	С
ML15-1	RMELLESLFELLK EMVPRSKAV		5 gly	С

mL15-2	lo a transcription			
mL15-2	QAVSLQHLLMW LDQKLASGPQH	CAGGCTGTTTCCCTGCAGCACCTC TGATGTGGCTGGACCAGAAACTG	C 5 gly	С
		CTTCCGGTCCGCAGCAC (SEQ ID NO: 518)		
mL15-3	DEDSLQQLLMWI DQKLASGPQL	L GACGAAGACTCCCTGCAGCAGCTCCTGATGTGGCTGGACCAGAAACTCGCTTCCGGTCCGCAGCTG (SEQ ID NO: 519)	3	С
mL15-4	PVASLQQLLIWL DQKLAQGPHA	CCGGTTGCTTCCCTGCAGCAGCTG TGATCTGGCTGGACCAGAAACTGC CTCAGGGTCCGCACGCT (SEQ ID NO: 520)	3	С
mL15-5	EVDELQQLLNWI DHKLASGPLQ	GAAGTTGACGAACTGCAGCAGCTC CTGAACTGGCTGGACCACAAACTC GCTTCCGGTCCGCTGCAG (SEQ ID NO: 521)	3	Ċ.
mL15-6	DHQLASGPHG	GACGTTGAATCCCTGGAACAGCTC CTGATGTGGCTGGACCACCAGCTG GCTTCCGGTCCGCACGGT (SEQ ID NO: 522)	5 gly	С
mL15–7	EHKLALGPQV	CAGGTTGACTCCCTGCAGCAGGTT CTGCTGTGGCTGGAACACAAACTG GCTCTGGGTCCGCAGGTT (SEQ ID NO: 523)	5 gly	С
mL15-8	GDESLQHLLMWL EQKLALGPHG	GGTGACGAATCCCTGCAGCACCTG CTGATGTGGCTGGAACAGAAACTG GCTCTGGGTCCGCACGGT (SEQ ID NO: 524)	5 gIy	С
mL15–9	QIEMLESLLDLLR DMVPMSNAF	CAGATCGAAATGCTGGAATCCCTG CTGGACCTGCTGCGTGACATGGTT(CGATGTCCAACGCTTTC (SEQ ID NO: 525)	5 gly	С
mL15-10	EVDSLQQLLMWL DQKLASGPQA	GAAGTTGACTCCCTGCAGCAGCTG CTGATGTGGCTGGACCAGAAACTG GCTTCCGGTCCGCAGGCT (SEQ ID NO: 526)	5 gly	С
nL15-11	KMLSSGPQV	GAAGACGAATCCCTGCAGCAGCTG CTGATCTACCTGGACAAAATGCTG TCCTCCGGTCCGCAGGTT (SEQ ID NO: 527)		С
nL15-12	DHKLASGPQA	GCTATGGACCAGCTGCACCAGCTGCTGATCTGGCTGGACCACAAACTGGCTTCCGGTCCGCAGGCT(SEQ IDNO: 528)	5 gly	С
nL15–13	EIALIPKAW	CTGGAACTGCTGGACGAAATCGCT CTGATCCCGAAAGCTTGG (SEQ ID NO: 529)	5 gly	С
nL15–14	EHKLASGPDG	GAAGTTGTTTCCCTGCAGCACCTGC TGATGTGGCTGGAACACAAACTGG CTTCCGGTCCGG	5 gly	С
ıL15–15	GGESLQQLLMWL DQQLASGPQR		5 gly	С

mL15-16	GVESLQQLLIFLE HMLVSGPHD	GGTGTTGAATCCCTGCAGCAGCTG CTGATCTTCCTGGACCACATGCTGC TTTCCGGTCCGCACGAC (SEQ ID	5 gly	C
mL15-17	NVESLEHLMMW LERLLASGPYA	NO: 532) AACGTTGAATCCCTGGAACACCTG ATGATGTGGCTGGAACGTCTGCTG GCTTCCGGTCCGTACGCT (SEQ ID NO: 533)	5 gly	С
mL15-18	QVDSLQQLLIWL DHQLASGPKR		5 gly	С
mL15-19 •	EVESLQQLLMWI EHKLAQGPQG	GAAGTTGAATCCCTGCAGCAGCTG CTGATGTGGCTGGAACACAAACTG GCTCAGGGTCCGCAGGGT (SEQ ID NO: 535)	5 gly	С
mL15-20	DQKLASGPHA	GAAGTTGACTCCCTGCAGCAGCTG CTGATGTGGCTGGACCAGAAACTG GCTTCCGGTCCGCACGCT (SEQ ID NO: 536)	5 gly	С
mL15–21	DQQLASGPQK	GAAGTTGACTCCCTGCAGCAGCTG CTGATGTGGCTGGACCAGCAGCTG GCTTCCGGTCCGCAGAAA (SEQ ID NO: 537)	5 gly	С
mL15-22	GVEQLPQLLMWL EQKLASGPQR	GGTGTTGAACAGCTGCCGCAGCTG CTGATGTGGCTGGAACAGAAACTG GCTTCCGGTCCGCAGCGT (SEQ ID NO: 538)	5 gly	С
mL15–23	GEDSLQQLLMWL DQQLAAGPQV		5 gly	С
nL1524	ADDSLQQLLMW LDRKLASGPHV		5 gly	С
nL15-25	PVDSLQQLLIWL DQKLASGPQG		5 gly	С
nL17-Con2	LVEGLGDKQA		5 gly	С
nL17–19	EIRATLLKEFWQL VDEWREQPN		5 gly	С
nL17–20	QLRATLLKEFLQL VHGLGETDS	CAGCTGCGTGCTACCCTGCTGAAA : GAATTCCTGCAGCTGGTTCACGGTC TGGGTGAAACCGACTCC (SEQ ID NO: 544)	S gly	С
ıL17–21	TQRATLLKEFWQ LIEGLGGKHV		gly	С

mL17-22	HYRATLLKEFW	Q CACTACCGTGCTACCCTGCTGAAA	s 5 gly	lc
	LVDGLREQGV	GAATTCTGGCAGCTGGTTGACGGT CTGCGTGAACAGGGTGTT (SEQ II NO: 546)	5	
mL17-23	QSRVTLLREFW(LVESYRPIVN	CAGTCCCGTGTTACCCTGCTGCGT AATTCTGGCAGCTGGTTGAATCCT CCGTCCGATCGTTAAC (SEQ ID NO 547)	A D:	С
mL17–24	LSRATLLNEFWQ FVDGQRDKRM	CTGTCCCGTGCTACCCTGCTGAAC AATTCTGGCAGTTCGTTGACGGTC GCGTGACAAACGTATG (SEQ ID NO: 548)	G 5 gly A	С
mL17–25	WDRATLLNDFW HLMEELSQKPG	TGGGACCGTGCTACCCTGCTGAAC GACTTCTGGCACCTGATGGAAGAA CTGTCCCAGAAACCGGGT (SEQ ID NO: 549)		С
mL17–26	MVEGLGKNRG	CAGGAACGTGCTACCCTGCTGAAA GAATTCTGGCGTATGGTTGAAGGT CTGGGTAAAAAACCGTGGT (SEQ ID NO: 550)		С
mL17–27	NERATLLREFWQ LVGGYGVNQR	GAATTCTGGCAGCTGGTTGGTGGT ACGGTGTTAACCAGCGT (SEQ ID NO: 551)		С
nTN8Con6-1	QREWYPCYGGHI WCYDLHKA	CAGCGTGAATGGTACCCGTGCTAC GGTGGTCACCTGTGGTGCTACGAC CTGCACAAAGCT (SEQ ID NO: 552)	5 gly	С
nTN8Con6-2	ISAWYSCYAGHF WCWDLKQK	ATCTCCGCTTGGTACTCCTGCTACG CTGGTCACTTCTGGTGCTGGGACCT GAAACAGAAA (SEQ ID NO: 553)	5 gly	С
nTN8Con6-3	WTGWYQCYGGH LWCYDLRRK	TGGACCGGTTGGTACCAGTGCTAC GGTGGTCACCTGTGGTGCTACGAC CTGCGTCGTAAA (SEQ ID NO: 554)	5 gly	С
nTN8Con6-4	KTFWYPCYDGHF WCYNLKSS	AAAACCTTCTGGTACCCGTGCTAC GACGGTCACTTCTGGTGCTACAAC CTGAAATCCTCC (SEQ ID NO: 545)	5 gly	С
nTN8Con6-5	ESRWYPCYEGHL WCFDLTET	GAATCCCGTTGGTACCCGTGCTAC GAAGGTCACCTGTGGTGCTTCGAC CTGACCGAAACC (SEQ ID NO: 546)	5 gly	С
IL24-1	RVVIQWEDINV	AATGTTTTTTTTCAATGGGTTCAAA AACATGGTCGTGTTGTTTATCAATG GCTTGATATTAATGTT (SEQ ID NO: 557)	5 gly	c
L24–2	FDFLQWLQNHRS EVEHWLVMDV		5 gly	С
L20-1	HQRDMSMLWEL LDVLDGLRQYS	CATCAACGTGATATGTCTATGCTTT GGGAACTTCTTGATGTTCTTGATGG TCTTCGTCAATATTCT (SEQ ID NO: 559)	5 gly	С
L20–2	TQRDMSMLDGLL EVLDQLRQQR	ACTCAACGTGATATGTCTATGCTTG ATGGTCTTCTTGAAGTTCTTGATCA ACTTCGTCAACAACGT (SEQ ID	5 gly	С

		NO: 560)		
7000				
mL20-3	TSRDMSLLWELL EELDRLGHQR	GGGAACTGCTGGAAGAACTGGACGGTCTGGGTCACCAGCGT (SEQ ID NO: 561)	5 gly	С
mL20-4	MQHDMSMLYGL VELLESLGHQI	ATGCAACATGATATGTCTATGCTTT ATGGTCTTGTTGAACTTCTTGAATC TCTTGGTCATCAAATT (SEQ ID NO 562)	:	С
mL20-5	WNRDMRMLESL FEVLDGLRQQV	TGGAATCGTGATATGCGTATGCTTC AATCTCTTTTTGAAGTTCTTGATGG TCTTCGTCAACAAGTT (SEQ ID NO 563)		C
mL20-6	GYRDMSMLEGLI AVLDRLGPQL	GGTTATCGTGATATGTCTATGCTTC AAGGTCTTCTTGCTGTTCTTGATCG TCTTGGTCCACAACTT (SEQ ID NO: 564)		С
mL20 Con1	TQRDMSMLEGLL EVLDRLGQQR	ACTCAACGTGATATGTCTATGCTTC AAGGTCTTCTTGAAGTTCTTGATCG TCTTGGTCAACAACGT (SEQ ID NO 565)	H	С
mL20 Con2	WYRDMSMLEGL LEVLDRLGQQR	TGGTACCGTGACATGTCCATGCTG GAAGGTCTGCTGGAAGTTCTGGAC CGTCTGGGTCAGCAGCGT (SEQ ID NO: 566)	5 gly	С
mL21-1	TQNSRQMLLSDF MMLVGSMIQG	ACTCAAAATTCTCGTCAAATGCTTC TTTCTGATTTTATGATGCTTGTTGG TTCTATGATTCAAGGT (SEQ ID NO: 567)	"	С
mL21-2	MQTSRHILLSEFM MLVGSIMHG	ATGCAAACTTCTCGTCATATTCTTC TTTCTGAATTTATGATGCTTGTTGG TTCTATTATGCATGGT (SEQ ID NO: 568)	5 gly	С
mL21-3	HDNSRQMLLSDL LHLVGTMIQG	CACGACAACTCCCGTCAGATGCTG CTGTCCGACCTGCTGCACCTGGTTG GTACCATGATCCAGGGT (SEQ ID NO: 569)		С
mL21-4	MLVGNMSHQ	ATGGAAAACTCCCGTCAGAACCTG CTGCGTGAACTGATCATGCTGGTTG GTAACATGTCCCACCAG (SEQ ID NO: 570)	5 gly	С
nL21–5	MMLVGEMIQG	CAGGACACCTCCCGTCACATGCTG CTGCGTGAATTCATGATGCTGGTTG GTGAAATGATCCAGGGT (SEQ ID NO: 571)	5 gly	С
nL21 Con1	DQNSRQMLLSDL MILVGSMIQG		5 gly	С
nTN8-19-1	VALHGQCTRWP WMCPPQREG	GTTGCTCTTCATGGTCAATGTACTC GTTGGCCATGGATGTGTCCACCAC AACGTGAAGGT (SEQ ID NO: 573)	5 gly	С

mTN8-19-2	YPEQGLCTRWP\ MCPPQTLA	W TATCCAGAACAAGGTCTTTGTACTC 5 gly GTTGGCCATGGATGTGTCCACCAC AAACTCTTGCT (SEQ ID N: 574)	C
mTN8-19-3	GLNQGHCTRWP WMCPPQDSN	GGTCTGAACCAGGGTCACTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGGACTCCAAC (SEQ ID NO: 575)	
mTN8-19-4	MITQGQCTRWPV MCPPQPSG	W ATGATTACTCAAGGTCAATGTACTC 5 gly GTTGGCCATGGATGTGTCCACCAC AACCATCTGGT (SEQ ID NO: 576)	C
mTN8-19-5	AGAQEHCTRWP WMCAPNDWI	GCTGGTGCTCAGGAACACTGCACC 5 gly CGTTGGCCGTGGATGTGCGCTCCG AACGACTGGATC (SEQ ID NO: 577)	C
mTN8-19-6	GVNQGQCTRWR WMCPPNGWE	GGTGTTAACCAGGGTCAGTGCACC 5 gly CGTTGGCGTTGGATGTGCCCGCCG AACGGTTGGGAA (SEQ ID NO: 578)	С
mTN8-19-7	LADHGQCIRWPW MCPPEGWE	CTGGCTGACCACGGTCAGTGCATC CGTTGGCCGTGGATGTGCCCGCCG GAAGGTTGGGAA (SEQ ID NO: 579)	С
mTN8-19-8	ILEQAQCTRWPW MCPPQRGG	ATCCTGGAACAGGCTCAGTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGCGTGGTGGT (SEQ ID NO: 580)	С
mTN8-19-9	TQTHAQCTRWP WMCPPQWEG	ACTCAAACTCATGCTCAATGTACTC 5 gly GTTGGCCATGGATGTGTCCACCAC AATGGGAAGGT (SEQ ID NO: 581)	С
mTN81910	VVTQGHCTLWP WMCPPQRWR	GTTGTTACTCAAGGTCATTGTACTC 5 gly TTTGGCCATGGATGTGTCCACCACA ACGTTGGCGT (SEQ ID NO: 582)	С
mTN8-19-11	IYPHDQCTRWPW MCPPQPYP	ATTTATCCACATGATCAATGTACTC 5 gly GTTGGCCATGGATGTGTCCACCAC AACCATATCCA (SEQ ID NO: 583)	С
mTN8-19-12	SYWQGQCTRWP WMCPPQWRG	TCTTATTGGCAAGGTCAATGTACTC 5 gly GTTGGCCATGGATGTGTCCACCAC AATGGCGTGGT (SEQ ID NO: 584)	С
mTN8-19-13	MWQQGHCTRWP WMCPPQGWG	ATGTGGCAACAAGGTCATTGTACT 5 gly CGTTGGCCATGGATGTGTCCACCA CAAGGTTGGGGT (SEQ ID NO: 585)	С
mTN8-19-14	WMCPPQRSQ	GAATTCACCCAGTGGCACTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGCGTTCCCAG (SEQ ID NO: 586)	С
mTN8–19–15	WMCPPQGFS	CTGGACGACCAGTGGCAGTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTTCTCC (SEQ ID NO: 587)	С
nTN8-19-16	WMCPPQSQR	TATCAAACTCAAGGTCTTTGTACTC 5 gly GTTGGCCATGGATGTGTCCACCAC AATCTCAACGT (SEQ ID NO: 588)	С
nTN8-19-17	WMCPPQGGW (GAATCTAATCAAGGTCAATGTACT 5 gly CGTTGGCCATGGATGTGTCCACCA CAAGGTGGTTGG (SEQ ID NO: 589)	С

mTN8-19-18	WTDRGPCTRWP WMCPPQANG	TGGACCGACCGTGGTCCGTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGGCTAACGGT (SEQ ID NO: 590)	, C
mTN8-19-19	VGTQGQCTRWP WMCPPYETG	GTTGGTACCCAGGGTCAGTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG TACGAAACCGGT (SEQ ID NO: 591)	C
mTN8-19-20	PYEQGKCTRWP WMCPPYEVE	CCGTACGAACAGGGTAAATGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG TACGAAGTTGAA (SEQ ID NO: 592)	С
mTN8-19-21	MCPPQGWK	VTCCGAATACCAGGGTCTGTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGAAA (SEQ ID NO: 593)	
mTN8-19-22	TFSQGHCTRWPW MCPPQGWG	ACCTTCTCCCAGGGTCACTGCACCC 5 gly GTTGGCCGTGGATGTGCCCGCCGC AGGGTTGGGGT (SEQ ID NO: 594)	С
mTN8-19-23	PGAHDHCTRWP WMCPPQSRY	CCGGGTGCTCACGACCACTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGTCCCGTTAC (SEQ ID NO: 595)	С
mTN8-19-24	VAEEWHCRRWP WMCPPQDWR	GTTGCTGAAGAATGGCACTGCCGT 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGGACTGGCGT (SEQ ID NO: 596)	С
mTN81925	VGTQGHCTRWP WMCPPQPAG	GTTGGTACCCAGGGTCACTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGCCGGCTGGT (SEQ ID NO: 597)	С
mTN8-19-26	EEDQAHCRSWP WMCPPQGWV	GAAGAAGACCAGGCTCACTGCCGT 5 gly TCCTGGCCGTGGATGTGCCCGCCG CAGGGTTGGGTT (SEQ ID NO: 598)	С
mTN8-19-27	ADTQGHCTRWP WMCPPQHWF	GCTGACACCCAGGGTCACTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGCACTGGTTC (SEQ ID NO: 599)	С
mTN8-19-28	SGPQGHCTRWPW MCAPQGWF	TCCGGTCCGCAGGGTCACTGCACC 5 gly CGTTGGCCGTGGATGTGCGCTCCG CAGGGTTGGTTC (SEQ ID NO: 600)	С
mTN8-19-29	TLVQGHCTRWP WMCPPQRWV	ACCCTGGTTCAGGGTCACTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGCGTTGGGTT (SEQ ID NO: 601)	С
mTN8-19-30	WMCPPQSWK	GGTATGGCTCACGGTAAATGCACC 5 gly CGTTGGGCTTGGATGTGCCCGCCG CAGTCCTGGAAA (SEQ ID NO: 602)	С
mTN8-19-31	WMCPPQSWA	GAACTGTACCACGGTCAGTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGTCCTGGGCT (SEQ ID NO: 603)	С
mTN8-19-32	VADHGHCTRWP WMCPPQGWG	GTTGCTGACCACGGTCACTGCACC CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGGGT (SEQ ID NO: 604	С
nTN8-19-33	MCPPQGWG	CCGGAATCCCAGGGTCACTGCACC 5 gly CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGGGT (SEQ ID NO: 605)	С

mTN8-19-34	IPAHGHCTRWPW MCPPQRWR	ATCCCGGCTCACGGTCACTGCACC CGTTGGCCGTGGATGTGCCCGCCG CAGCGTTGGCGT (SEQ ID NO: 606)	5 gly	С
mTN8-19-35	FTVHGHCTRWP WMCPPYGWV	TTCACCGTTCACGGTCACTGCACCC GTTGGCCGTGGATGTGCCCGCCGT ACGGTTGGGTT (SEQ ID NO: 607)	5 gly	С
mTN8-19-36	PDFPGHCTRWRW MCPPQGWE	CCAGATTTTCCAGGTCATTGTACTC GTTGGCGTTGGATGTGTCCACCAC AAGGTTGGGAA (SEQ ID NO: 608)	5 gly	С
mTN8-19-37	QLWQGPCTQWP WMCPPKGRY	CAGCTGTGGCAGGGTCCGTGCACC CAGTGGCCGTGGATGTGCCCGCCG AAAGGTCGTTAC (SEQ ID NO: 609)	5 gly	С
mTN8-19-38	HANDGHCTRWQ WMCPPQWGG	CACGCTAACGACGGTCACTGCACC CGTTGGCAGTGGATGTGCCCGCCG CAGTGGGGTGGT (SEQ ID NO: 610)	5 gly	С
mTN8-19-39	ETDHGLCTRWPW MCPPYGAR	GAAACCGACCACGGTCTGTGCACC CGTTGGCCGTGGATGTGCCCGCCG TACGGTGCTCGT (SEQ ID NO: 611)	5 gly	С
mTN8-19-40	GTWQGLCTRWP WMCPPQGWQ	GGTACCTGGCAGGGTCTGTGCACC CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGCAG (SEQ ID NO: 612)	5 gly	С
mTN8-19 Con1	VATQGQCTRWP WMCPPQGWG	GTTGCTACCCAGGGTCAGTGCACC CGTTGGCCGTGGATGTGCCCGCCG CAGGGTTGGGGT (SEQ ID NO: 613)	5 gly	С
mTN8-19 Con2	VATQGQCTRWP WMCPPQRWG	GTTGCTACCCAGGGTCAGTGCACC CGTTGGCCGTGGATGTGCCCGCCG CAGCGTTGGGGT (SEQ ID NO: 614)	5 gly	С
2X mTN8-19-7	MCPPEGWELEGS GSATGGSGSTASS GSGSATGLADHG QCIRWPWMCPPE	CTTGCTGATCATGGTCAATGTATTC GTTGGCCATGGATGTGTCCACCAG AAGGTTGGGAACTCGAGGGTTCCG GTTCCGCTACCGGCGGCTCTGGCTC CACTGCTTCTTCCGGTTCCGGTTCT GCTACTGGTCTGGCTGACCACGGT CAGTGCATCCGTTGGCCGTGGATG TGCCCGCCGGAAGGTTGGGAACTG GAA (SEQ ID NO: 616)	1K	С
2X mTN8-19-7 STGG del2x LE	LADHGQCIRWPW MCPPEGWEGSGS ATGGSGGGASSG SGSATGLADHGQ CIRWPWMCPPEG WE (SEQ ID NO: 617)	CTTGCTGATCATGGTCAATGTATTC GTTGGCCATGGATGTGTCCACCAG AAGGTTGGGAAGGTTCCGGTTCCG CTACCGGCGGCTCTGGCGGTGGCG CTTCTTCCGGTTCCGGTTCTGCTAC TGGTCTGGCTGACCACGGTCAGTG CATCCGTTGGCCGTGGATGTCCA CCAGAAGGTTGGGAA (SEQ ID NO: 618)	1K	С

2X mTN8-19-21		TCTGAATATCAAGGTCTTTGTACTC	1K	С
	SEYQGLCTRWPW	GTTGGCCATGGATGTGTCCACCAC		ľ
	MCPPQGWKLEGS	AAGGTTGGAAACTCGAGGGTTCCG	ł	
	GSATGGSGSTASS	GTTCCGCTACCGGCGGCTCTGGCTC		
] .	GSGSATGSEYQG	CACTGCTTCTTCCGGTTCCGGTTCT	1	i
İ	LCTRWPWMCPPC	GCTACTGGTTCTGAGTATCAAGGC		
	GWK -LE (SEQ	CTCTGTACTCGCTGGCCATGGATGT	1	i
	ID NO: 619)	GTCCACCACAAGGCTGGAAGCTGG		1
	1	AA (SEQ ID NO: 620)	İ	ŀ
		,	1	
2X mTN8-19-21		TCTGAATATCAAGGTCTTTGTACTC	1K	С
STGG del2x	SEYQGLCTRWPW	GTTGGCCATGGATGTGTCCACCAC		1
LE	MCPPQGWKGSGS	AAGGTTGGAAAGGTTCCGGTTCCG	i	1
	ATGGSGGGASSG	CTACCGGCGGCTCTGGCGGTGGCG	l	
	SGSATGSEYQGL	CTTCTTCCGGTTCCGGTTCTGCTAC		1
	CTRWPWMCPPQ	TGGTTCTGAGTATCAAGGCCTCTGT		
•	GWK (SEQ ID NO	ACTCGCTGGCCATGGATGTGTCCA		1
	621)	CCACAAGGTTGGAAA (SEQ ID NO:		ì
		622)		1
2X mTN8-19-22		ACTTTTTCTCAAGGTCATTGTACTC	1K	C
	TFSQGHCTRWPW	GTTGGCCATGGATGTGTCCACCAC		
ĺ	MCPPQGWGLEGS	AAGGTTGGGGTCTCGAGGGTTCCG		}
	GSATGGSGSTASS	GTTCCGCTACCGGCGGCTCTGGCTC		i
	GSGSATGTFSQG	CACTGCTTCTTCCGGTTCCGGTTCT		ł
	HCTRWPWMCPP	GCTACTGGTACTTTTTCTCAAGGCC		ì
1	QGWG-LE (SEQ	ATTGTACTCGCTGGCCATGGATGTG		ł
	ID NO: 623)	TCCACCACAAGGCTGGGGCCTGGA		1
		A (SEQ ID NO: 624)		
2X mTN8-19-32		GTTGCTGATCATGGTCATTGTACTC	1K	С
	VADHGHCTRWP	GTTGGCCATGGATGTGTCCACCAC		[]
	WMCPPQGWGLE	AAGGTTGGGGTCTCGAGGGTTCCG		
	GSGSATGGSGST	GTTCCGCAACCGGCGGCTCTGGCT		
	ASSGSGSATGVA	CCACTGCTTCTTCCGGTTCCGGTTC		
	DHGHCTRWPWM	TGCTACTGGTGTTGCTGACCACGGT		
	CPPQGWG-LE	CACTGCACCCGTTGGCCGTGGATG	İ	
	(SEQ ID NO: 625)	TGCCCGCCGCAGGGTTGGGGTCTG		
		GAA (SEQ ID NO: 626)		
2X mTN8-19-32	EC SC AC	CTTCCTC A TIC A TIC CTC A TIC CTC		
		GTTGCTGATCATGGTCATTGTACTC	IK	C
LE	VADHGHCTRWP	GTTGGCCATGGATGTCCACCAC		
-	COATCCCCCCAC	AAGGTTGGGGTGGTTCCG		
	CONTROPOGRA	CTACCGGCGGCTCTGGCGGTGGTG		
	OUSUSAIGVADH	CTTCTTCCGGTTCCGGTTCTGCTAC	}	
į	OHCIKWYW VCPP	TGGTGTTGCTGACCACGGTCACTGC		1
	QGWG (SEQ ID	ACCCGTTGGCCGTGGGTGTCCA	ĺ	1
ŀ		CCACAAGGTTGGGGT (SEQ ID NO:		
		628)		

2X mTN8-19-33	PESQGHCTRWPW MCPPQGWGLEGS GSATGGSGSTASS GSGSATGPESQG HCTRWPWMCPP QGWGLE (SEQ ID NO: 629)	CCAGAATCTCAAGGTCATTGTACTC GTTGGCCATGGATGTGTCCACCAC AAGGTTGGGGTCTCGAGGGTTCCG GTTCCGCTACCGGCGCTCTCGCTC CACTGCTTCTTCCGGTTCCGGTTCT GCTACTGGTCCGGAATCCCAGGGT CACTGCACCCGTTGGCCGTGGATG TGCCCGCCGCAGGGTTGGGGTCTG GAA (SEQ ID NO: 630)	1K	С
2X mTN8-19-33 ST-GG del2x LE	PESQGHCTRWPW MCPPQGWGGSGS ATGGSGGGASSG SGSATGPESQGH CTRWPWMCP PQGWG (SEQ ID NO: 631)	CCAGAATCTCAAGGTCATTGTACTC GTTGGCCATGGATGTGTCCACCAC AAGGTTGGGGTGGTTCCGGTTCCG CTACCGGCGGCTCTGGCGGTGGTG CTTCTTCCGGTTCCGGTTCTGCTAC TGGTCCGGAATCCCAGGGTCACTG CACCCGTTGGCCGTGGATGTCCC ACCACAAGGTTGGGGT (SEQ ID NO: 632)	1K	C

Example 7 In vitro screening of affinity matured peptibodies

The following exemplary peptibodies were screened according to the protocols set forth above to obtain the following K_D and IC₅₀ values. Table VII shows the range of K_D values for selected affinity matured peptibodies compared with the parent peptibodies, as determined by KinExATM solution based assays or BIAcore® assays. These values demonstrate increased binding affinity of the affinity matured peptibodies for myostatin compared with the parent peptibodies. Table VIII shows IC₅₀ values for a number of affinity matured peptibodies. A range of values is given in this table.

TABLE VII

peptibodies	K _D
TN8-19 (parent)	> 1 nM
2xmTN8-19 (parent)	> 1 nM
1x mTN8-19-7	10 pM
2x mTN8-19-7	12 pM
1x mTN8-19-21	6 pM
2x mTN8-19-21	6 pM
1x mTN8-19-32	9 pM
1x mTN8-19-33	21 pM
2x mTN8-19-33	3 pM
1x mTN8-19-22	4 pM
1x mTN8-19-con1	20 pM

TABLE VIII

A CCC M. D.C.	
Affinity Matured Pepti	body IC ₅₀ (nM)
mTN8-19 Con1	1.0 – 4.4
mTN8-19-2	7.508-34.39
mTN8-19-4	16.74
mTN8-19-5	7.743 - 3.495
mTN8-19-6	17.26
mTN8-19-7	1.778
mTN8-19-9	22.96-18.77
mTN8-19-10	5.252 - 7.4
mTN8-19-11	28.66
mTN8-19-12	980.4
mTN8-19-13	20.04
mTN8-19-14	4.065 - 6.556
mTN8-19-16	4.654
mTN8-19-21	2.767-3.602
mTN8-19-22	1.927-3.258
mTN8-19-23	6.584
mTN8-19-24	1.673-2.927
mTN8-19-27	4.837-4.925
mTN8-19-28	4.387
mTN8-19-29	6.358
mTN8-19-32	1.842-3.348
mTN8-19-33	2.146-2.745
mTN8-19-34	5.028 - 5.069
mTN8Con6-3	86.81
mTN8Con6-5	2385
mTN8-19-7(-LE)	1.75-2.677
mTN8-19-21(-LE)	2.49
mTN8-19-33(-LE)	1.808
2xmTN8-19-7	0.8572 -2.649
2xmTN8-19-9	1.316-1.228
2xmTN8-19-14	1.18-1.322
2xmTN8-19-16	0.9903 -1.451
2xmTN8-19-21	0.828 -1.434
2xmTN8-19-22	0.9937-1.22
2xmTN8-19-27	1.601-3.931
2xmTN8-19-7(-LE)	1.077-1.219
2xmTN8-19-21(-LE)	0.8827-1.254
2xmTN8-19-33(-LE)	1.12-1.033
nL2-7	90.24
nL2-9	105.5
nL15-7	32.75
nL15-9	354.2
nL20-2	122.6
nL20-3	157.9
nL20-4	160

Example 8

In vivo Anabolic Activity of Exemplary Peptibodies

The CD1 nu/nu mouse model (Charles River Laboratories, Massachusettes) was used to determine the *in vivo* efficacy of the peptibodies of the present invention which included the human Fc region (huFc). This model responded to the inhibitors of the present invention with a rapid anabolic response which was associated with increased dry muscle mass and an increase in myofibrillar proteins but was not associated with accumulation in body water content.

In one example, the efficacy of 1x peptibody mTN8-19-21 in vivo was demonstrated by the following experiment. A group of 10 8 week old CD1 nu/nu mice were treated twice weekly or once weekly with dosages of 1mg/kg, 3 mg/kg and 10 mg/kg (subcutaneous injection). The control group of 10 8 week old CD1 nu/nu mice received a twice weekly (subcutaneous) injection of huFc (vehicle) at 10 mg/kg. The animals were weighed every other day and lean body mass determined by NMR on day 0 and day 13. The animals are then sacrified at day 14 and the size of the gastrocnemius muscle determined. The results are shown in Figures 2 and 3. Figure 2 shows the increase in total body weight of the mice over 14 days for the various dosages of peptibody compared with the control. As can be seen from Figure 2 all of the dosages have show an increase in body weight compared with the control, with all of the dosages showing statistically significant increases over the control by day 14. Figure 3 shows the change in lean body mass on day 0 and day 13 as determined by NMR, as well as the change in weight of the gastrocnemius muscle dissected from the animals at day 14.

In another example, the 1x mTN8-19-32 peptibody was administered to CD1 nu/nu mice in a biweekly injection of 1 mg/kg, 3 mg/kg, 10 mg/kg, and 30 mg/kg compared with the huFc control (vehicle). The peptibody- treated animals show an increase in total body weight (not shown) as well as lean body mass on day 13 compared with day 0 as determined by NMR measurement. The increase in lean body mass is shown in Figure 4.

In another example, a 1x affinity-matured peptibody was compared with a 2x affinity-matured peptibody for *in vivo* anabolic efficacy. CD1 nu/nu male mice (10 animals per group) were treated with twice weekly injections of 1 mg/kg and 3 mg/kg of 1x mTN8-19-7 and 2x mTN8-19-7 for 35 days, while the control group (10 animals) received twice weekly injections of huFc (3 mg/kg). As shown in Figure 5, treatment with the 2x peptibody resulted in a greater body weight gain and leans carcass weight at necropsy compared with the 1x peptibody or control.

30

5

10

15

20

25

Example 9

Increase in muscular strength

Normal age-matched male 4 month old male C57B/6 mice were treated for 30 days with 2 injections per week subcutaneous injections 5 mg/kg per week of 2x mTN8-19-33, 2x mTN8-19-7, and huFc vehicle control group (10 animals/group). The animals were allowed to recover without any further injections. Gripping strength was measured on day 18 of the recovery period. Griping strength was measured using a Columbia Instruments meter, model 1027 dsm (Columbus, Ohio). Peptibody treatment resulted in significant increase in gripping strength, with 2x mTN8-19-33 pretreated animals showing a 14 % increase in gripping strength compared with the control-treated mice, while 2x mTN8-19-7 showed a 15% increase in gripping strength compared with the control treated mice.

Example 10

Pharmacokinetics

In vivo phamacokinetics experiments were performed using representative peptibodies without the LE sequences. 10 mg/kg and 5mg/kg dosages were administered to CD1 nu/nu mice and the following parameters determined: Cmax (ug/mL), area under the curve (AUC) (ug-hr/mL), and half-life (hr). It was found that the 2x versions of the affinity matured peptibodies have a significantly longer half-life than the 1x versions. For example 1x affinity matured mTN8-19-22 has a half-life in the animals of about 50.2 hours, whereas 2x mTN8-19-22 has a half-life of about 85.2 hours. Affinity matured 1x mTN8-7 has a half-life of about 65 hours, whereas 2x mTN8-19-7 has a half-life of about 106 hours.

Example 11

25 Treatment of mdx Mice

5

10

15

20

30

35

The peptibodies of the present invention have been shown to increase lean muscle mass in an animal and are useful for the treatment of a variety of disorders which involve muscle wasting. Muscular dystrophy is one of those disorders. The mouse model for Duchenne's muscular dystrophy is the Duchenne mdx mouse (Jackson Laboratories, Bar Harbor, Maine). Aged (10 month old) mdx mice were injected with either the peptibody 1x mTN8-19-33 (n=8/group) or with the vehicle huFc protein (N=6/group) for a three month period of time. The dosing schedule was every other day, 10 mg/kg, by subcutaneous injection. The peptibody treatment had a positive effect on increasing and maintaining body mass for the aged mdx mice. Significant increases in body weight were observed in the peptibody-treated group compared to the hu-Fc-treated control group, as shown in Figure 6A. In addition, NMR analysis revealed that the lean body mass to fat

mass ratio was also significantly increased in the aged mdx mice as a result of the peptibody treatment compared with the control group, and that the fat percentage of body weight decreased in the peptibody treated mice compared with the control group, as shown in Figure 6B.

5

10

The present invention is not to be limited in scope by the specific embodiments described herein, which are intended as single illustrations of individual aspects of the invention, and functionally equivalent methods and components are invention. Indeed, various modifications of the invention, in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

CLAIMS

What is claimed is:

- 1. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the amino acid sequence WMCPP (SEQ ID NO: 633), and physiologically acceptable salts thereof.
- 2. The binding agent of claim 1, wherein the peptide is between 5 and 50 amino acids in length.
- 3. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the amino acid sequence Ca₁a₂Wa₃WMCPP (SEQ ID NO: 352), wherein a₁, a₂ and a₃ are selected from a neutral hydrophobic, neutral polar, or basic amino acid, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
- 4. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence <u>Cb₁b₂Wb₃WMCPP</u> (SEQ ID NO: 353), wherein

b₁ is selected from any one of the amino acids T, I, or R;

b₂ is selected from any one of R, S, Q;

b₃ is selected from any one of P, R and Q, and wherein the peptide is beween 10 and 50 amino acids in length, and physiologically acceptable salts thereof.

- 5. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence $c_1c_2c_3c_4c_5c_6Cc_7c_8Wc_9WMCPPc_{10}c_{11}c_{12}c_{13}$ (SEQ ID NO: 354), wherein:
 - c₁ is absent or any amino acid;
 - c₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - c₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - c4 is absent or any amino acid;
 - c₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - c₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid;
 - c₇ is a neutral hydrophobic, neutral polar, or basic amino acid;
 - c₈ is a neutral hydrophobic, neutral polar, or basic amino acid;
 - co is a neutral hydrophobic, neutral polar or basic amino acid; and
- c₁₀ to c₁₃ is any amino acid; and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof.

6. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence

 $d_1d_2d_3d_4d_5d_6\underline{C}d_7d_8\underline{W}d_9\underline{WMCPP}\ d_{10}d_{11}d_{12}d_{13}$ (SEQ ID NO: 355), wherein

d, is absent or any amino acid;

d₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

d₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

d4 is absent or any amino acid;

d₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;

d₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid;

d₇ is selected from any one of the amino acids T, I, or R;

d₈ is selected from any one of R, S, Q;

d₉ is selected from any one of P, R and Q, and

d₁₀ to d₁₃ is selected from any amino acid,

and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof.

7. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence <u>WYe1e2Ye3G</u>, (SEQ ID NO: 356)

wherein e₁ is P, S or Y,

e2 is C or O, and

e₃ is G or H, and wherein the peptide is between 7 and 50 amino acids in length, and . physiologically acceptable salts thereof.

8. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence $f_1EMLf_2SLf_3f_4LL$, (SEQ ID NO: 455), wherein f_1 is M or I,

f₂ is any amino acid,

f₃ is L or F,

f4 is E, Q or D;

and wherein the peptide is between 7 and 50 amino acids in length, and physiologically acceptable salts thereof.

9. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence $\underline{Lg_1g_2LLg_3g_4L}$, (SEQ ID NO: 456), wherein

g1 is Q, D or E,

g2 is S, Q, D or E,

g₃ is any amino acid,

g₄ is L, W, F, or Y, and wherein the peptide is between 8 and 50 amino acids in length, and physiologically acceptable salts thereof.

10. A binding agent comprising at least one peptide capable of binding myostatin, wherein the peptide comprises the sequence h₁h₂h₃h₄h₅h₆h₇h₈h₉ (SEQ ID NO: 457), wherein

h₁ is R or D, h₂ is any amino acid, h₃ is A, T S or Q, h₄ is L or M, h₅ is L or S, h₆ is any amino acid, h₇ is F or E,

h₈ is W, F or C,

h₉ is L, F, M or K, and wherein the peptide is between 9 and 50 amino acids in length, and physiologically acceptable salts thereof.

11. A binding agent wherein said agent has the structure:

 $(X^1)_a$ - F^1 - $(X^2)_b$, or multimers thereof;

wherein F¹ is a vehicle; and X¹ and X² are each independently selected from

-(
$$L^1$$
)_c- P^1 ;
-(L^1)_c- P^1 -(L^2)_d- P^2 ;
-(L^1)_c- P^1 -(L^2)_d- P^2 -(L^3)_c- P^3 ;
and -(L^1)_c- P^1 -(L^2)_d- P^2 -(L^3)_e- P^3 -(L^4)_F- P^4 ;

wherein P¹, P², P³, and P⁴ are peptides capable of binding myostatin, and each independently comprise the amino acid sequence WMCPP (SEQ ID NO: 633);

wherein L¹, L², L³, and L⁴ are each linkers;

and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.

- 12. The binding agent of claim 11 wherein one or more of the myostatin binding peptides comprise the amino acid sequence Ca₁a₂Wa₃WMCPP (SEQ ID NO: 352), wherein a₁, a₂ and a₃ are selected from a neutral hydrophobic, neutral polar, or basic amino acid, and wherein the peptide is between 10 and 50 amino acids in length, and physiologically acceptable salts thereof.
- 13. The binding agent of claim 11, wherein one or more of the myostatin binding peptides each independently comprise the amino acid sequence <u>Cb₁b₂Wb₃WMCPP</u> (SEQ ID NO: 353), wherein

b₁ is selected from any one of the amino acids T, I, or R; b₂ is selected from any one of R, S, O;

b₃ is selected from any one of P, R and Q,

and wherein the peptide is beween 10 and 50 amino acids in length, and physiologically acceptable salts thereof.

- 14. The binding agent of claim 11, wherein one or more of the myostatin binding peptides each independently comprise the sequence $c_1c_2c_3c_4c_5c_6Cc_7c_8Wc_9WMCPPc_{10}c_{11}c_{12}c_{13}$ (SEQ ID NO: 354), wherein:
 - c₁ is absent or any amino acid;
 - c₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - c₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - c4 is absent or any amino acid;
 - c5 is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - c₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid;
 - c₇ is a neutral hydrophobic, neutral polar, or basic amino acid;
 - c₈ is a neutral hydrophobic, neutral polar, or basic amino acid;
 - c9 is a neutral hydrophobic, neutral polar or basic amino acid; and
- c₁₀ to c₁₃ is any amino acid; and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof..
- . 15. The binding agent of claim 11, wherein one or more of the myostatin binding peptides each independently comprise the sequence d₁d₂d₃d₄d₅d₆Cd₇d₈Wd₉WMCPP d₁₀d₁₁d₁₂d₁₃ (SEQ ID NO: 355), wherein
 - d₁ is absent or any amino acid;
 - d₂ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - d₃ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - d4 is absent or any amino acid;
 - d₅ is absent or a neutral hydrophobic, neutral polar, or acidic amino acid;
 - d₆ is absent or a neutral hydrophobic, neutral polar, or basic amino acid;
 - d₇ is selected from any one of the amino acids T, I, or R;
 - d₈ is selected from any one of R, S, Q;
 - do is selected from any one of P, R and Q, and
 - d₁₀ to d₁₃ is selected from any amino acid,

and wherein the peptide is between 20 and 50 amino acids in length, and physiologically acceptable salts thereof.

- 16. A binding agent wherein said agent has the structure:
- $(X^{1})_{a}$ - F^{1} - $(X^{2})_{b}$ or multimers thereof;

wherein F¹ is a vehicle; and X¹ and X² are each independently selected from

$$-(L^1)_{c}-P^1;$$

$$-(L^1)_c-P^1-(L^2)_d-P^2$$
;

$$-(L^{1})_{c}-P^{1}-(L^{2})_{d}-P^{2}-(L^{3})_{e}-P^{3};$$

and
$$-(L_1^1)_c - P^1 - (L^2)_d - P^2 - (L^3)_e - P^3 - (L^4)_c - P^4$$
;

wherein P^1 , P^2 , P^3 , and P^4 are peptides capable of binding myostatin, and wherein one or more of P^1 , P^2 , P^3 , and P^4 each independently are selected from the group consisting of:

- (a) a peptide comprising the amino acid sequence <u>WYe₁e₂Ye₃G</u>, (SEQ ID NO: 356), wherein e₁ is P, S or Y, e₂ is C or Q, and e₃ is G or H;
- (b) a peptide comprising the amino acid sequence $f_1EMLf_2SLf_3f_4LL$, (SEQ ID NO: 455), wherein f_1 is M or I, f_2 is any amino acid, f_3 is L or F, and f_4 is E, Q or D;
- (c) a peptide comprising the amino acid sequence <u>Lg₁g₂LLg₃g₄L</u>, (SEQ ID NO: 456), wherein g₁ is Q, D or E, g₂ is S, Q, D or E, g₃ is any amino acid, and g₄ is L, W, F, or Y; and
- (d) a peptide comprising the amino acid sequence $h_1h_2h_3h_4h_5h_6h_7h_8h_9$ (SEQ ID NO: 457), wherein h_1 is R or D, h_2 is any amino acid, h_3 is A, T S or Q, h_4 is L or M, h_5 is L or S, h_6 is any amino acid, h_7 is F or E, h_8 is W, F or C, and h_9 is L, F, M or K;

wherein the peptide is between 9 and 50 amino acids in length,

wherein L¹, L², L³, and L⁴ are each linkers;

and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.

- 17. A binding agent wherein said agent has the structure:
- $(X^1)_a$ - F^1 - $(X^2)_b$ or multimers thereof;

wherein F¹ is a vehicle; and X¹ and X² are each independently selected from

-(
$$L^{1}$$
)_c- P^{1} ;
-(L^{1})_c- P^{1} -(L^{2})_d- P^{2} ;
-(L^{1})_c- P^{1} -(L^{2})_d- P^{2} -(L^{3})_e- P^{3} ;
and -(L^{1})_c- P^{1} -(L^{2})_d- P^{2} -(L^{3})_e- P^{3} -(L^{4})_r- P^{4} ;

wherein P^1 , P^2 , P^3 , and P^4 are peptides capable of binding myostatin, and are independently selected from SEQ ID NO: 305 through 351 and SEQ ID NO: 357 through 454; wherein L^1 , L^2 , L^3 , and L^4 are each linkers:

and a, b, c, d, e, and f are each independently 0 or 1, provided that at least one of a and b is 1, and physiologically acceptable salts thereof.

- 18. The binding agent of any one of claims 11 through 17, wherein the vehicle is an Fc domain.
 - 19. A polynucleotide sequence encoding the binding agent of claim 18.

- 20. An expression vector comprising the polynucleotide of claim 19.
 - 21. A host cell comprising the expression vector of claim 20.
 - 22. The host cell of claim 21, wherein the cell is a procaryotic cell.
 - 23. The host cell of claim 21, wherein the cell is a eucaryotic cell.
- 24. A pharmaceutical composition comprising an effective amount of the binding agent of any one of claims 1 or 11 in admixture with a pharmaceutically acceptable carrier thereof.
 - 25. The pharmaceutical composition of claim 24, wherein the vehicle is an Fc domain.
- 26. A method of inhibiting myostatin activity in a subject comprising administering an effective amount of the binding agent of any one of claims 1, 3 or 11 to the subject.
 - 27. A method of increasing lean muscle mass in a subject comprising administering the composition of claim 24 to the subject.
 - 28. The method of claim 27, wherein the subject is a food animal.
 - 29. A method of increasing the ratio of lean muscle mass to fat in a subject comprising administering a therapeutically effective amount of the composition of claim 24 to the subject.
- 30. A method of treating a muscle-wasting disease in a subject comprising administering a therapeutically effective amount of the composition of claim 24 to the subject.
 - 31. The method of claim 30, wherein the disease is selected from muscular dystrophy, amyotrophic lateral sclerosis, congestive obstructive pulmonary disease, chronic heart failure, cancer, AIDs, renal failure, uremia, rheumatoid arthritis, age-related sarcopenia, and musclewasting due to prolonged bedrest, spinal chord injury, stroke, bone fracture, and aging.
 - 32. A method of treating a myostatin-related metabolic disorder in a subject comprising administering a therapeutically effective amount of the composition of claim 24 to the subject.

33. The method of claim 32 wherein the metabolic disorder is selected from diabetes, obesity, hyperglycemia, and bone loss.

- 34. A method of detecting myostatin in a sample comprising contacting the sample with a binding agent of claims 1 or 11, and detecting the bound complex.
- 35. A method of measuring myostatin in a sample comprising contacting the sample with a binding agent of claims 1 or 11, and measuring the bound complex.
- 36. A method of diagnosing a myostatin related disorder in a subject comprising contacting a sample taken from the subject with a binding agent of claims 1 or 11, and detecting the bound complex.

FIGURE 1

FIGURE 2

FIGURE 3A

☐ HuFc
☐ 1mpk
☐ 3mpk
☐ 10mpk(2/wk)
☐ 10mpk(1/wk)

FIGURE 3B

FIGURE 4

FIGURE 5A

FIGURE 6A

FIGURE 6B

SEQUENCE LISTING

```
<110> AMGEN, INC.
       Han, HQ
       Min, Hosung
       Boone, Thomas Charles
<120> BINDING AGENTS WHICH INHIBIT MYOSTATIN
<130> A-828 (WO)
<140> to-be-assigned
<141> 2003-12-19
<150> US 60/435,923
<151> 2002-12-20
<160> 634
<170> PatentIn version 3.2
<210> 1
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 1
Lys Asp Lys Cys Lys Met Trp His Trp Met Cys Lys Pro Pro
                5
<210> 2
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 2
Lys Asp Leu Cys Ala Met Trp His Trp Met Cys Lys Pro Pro
<210> 3
<211> 13
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 3
Asp Leu Cys Lys Met Trp Lys Trp Met Cys Lys Pro Pro
                                   10
```

```
<210> 4
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 4
Lys Asp Leu Cys Lys Met Trp His Trp Met Cys Lys Pro Lys
<210> 5
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 5
Trp Tyr Pro Cys Tyr Glu Phe His Phe Trp Cys Tyr Asp Leu
<210> 6
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 6
Trp Tyr Pro Cys Tyr Glu Gly His Phe Trp Cys Tyr Asp Leu
<210> 7
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 7
Ile Phe Gly Cys Lys Trp Trp Asp Val Gln Cys Tyr Gln Phe
<210> 8
<211> 14
<212> PRT
```

```
<213> Artificial Sequence
   <220>
   <223> Myostatin Binding Peptide
   <400> 8
   Ile Phe Gly Cys Lys Trp Trp Asp Val Asp Cys Tyr Gln Phe
                  5
   <210> 9
   <211> 14
<212> PRT
   <213> Artificial Sequence
   <223> Myostatin Binding Peptide
   <400> 9
  Ala Asp Trp Cys Val Ser Pro Asn Trp Phe Cys Met Val Met
  <210> 10
   <211> 14
   <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 10
  His Lys Phe Cys Pro Trp Trp Ala Leu Phe Cys Trp Asp Phe
  <210> 11
  <211> 14
  <212> PRT
  <213> Artificial Sequence
  <223> Myostatin Binding Peptide
  <400> 11
  Lys Asp Leu Cys Lys Met Trp His Trp Met Cys Lys Pro Pro
  <210> 12
  <211> 14
  <212> PRT
  <213> Artificial Sequence
 <220>
<223> Myostatin Binding Peptide
```

```
<400> 12
 Ile Asp Lys Cys Ala Ile Trp Gly Trp Met Cys Pro Pro Leu
 <210> 13
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 13
 Trp Tyr Pro Cys Gly Glu Phe Gly Met Trp Cys Leu Asn Val
                                  10
 <210> 14
 <211> 11
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 14
Trp Phe Thr Cys Leu Trp Asn Cys Asp Asn Glu
 1 5
<210> 15
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 15
His Thr Pro Cys Pro Trp Phe Ala Pro Leu Cys Val Glu Trp
               5
<210> 16
<211> 14
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 16
Lys Glu Trp Cys Trp Arg Trp Lys Trp Met Cys Lys Pro Glu
1 5
                                10
```

```
<210> 17
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 17
 Phe Glu Thr Cys Pro Ser Trp Ala Tyr Phe Cys Leu Asp Ile
                5
<210> 18
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 18
Ala Tyr Lys Cys Glu Ala Asn Asp Trp Gly Cys Trp Trp Leu
               5
                                 10
<210> 19
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 19
Asn Ser Trp Cys Glu Asp Gln Trp His Arg Cys Trp Trp Leu
              5
                                 10
<210> 20
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 20
Trp Ser Ala Cys Tyr Ala Gly His Phe Trp Cys Tyr Asp Leu
<210> 21
<211> 14
<212> PRT
<213> Artificial Sequence
```

```
<220>
 <223> Myostatin Binding Peptide
 <400> 21
 Ala Asn Trp Cys Val Ser Pro Asn Trp Phe Cys Met Val Met
 <210> 22
<211> 14
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
<400> 22
Trp Thr Glu Cys Tyr Gln Glu Phe Trp Cys Trp Asn Leu
<210> 23
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 23
Glu Asn Thr Cys Glu Arg Trp Lys Trp Met Cys Pro Pro Lys
<210> 24
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 24
Trp Leu Pro Cys His Gln Glu Gly Phe Trp Cys Met Asn Phe
      5
<210> 25
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 25
```

```
Ser Thr Met Cys Ser Gln Trp His Trp Met Cys Asn Pro Phe
                 5
 <210> 26
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 26
 Ile Phe Gly Cys His Trp Trp Asp Val Asp Cys Tyr Gln Phe
                 5
 <210> 27
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 27
Ile Tyr Gly Cys Lys Trp Trp Asp Ile Gln Cys Tyr Asp Ile
<210> 28
 <211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 28
Pro Asp Trp Cys Ile Asp Pro Asp Trp Trp Cys Lys Phe Trp
              5
<210> 29
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 29
Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro Tyr
```

```
<210> 30
 <211> 14
 <212> PRT
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 30
 Trp Gln Glu Cys Tyr Arg Glu Gly Phe Trp Cys Leu Gln Thr
 <210> 31
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 31
 Trp Phe Asp Cys Tyr Gly Pro Gly Phe Lys Cys Trp Ser Pro
 <210> 32
 <211> 14
 <212> PRT
 <213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 32
Gly Val Arg Cys Pro Lys Gly His Leu Trp Cys Leu Tyr Pro
<210> 33
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 33
His Trp Ala Cys Gly Tyr Trp Pro Trp Ser Cys Lys Trp Val
                5
<210> 34
<211> 14
<212> PRT
<213> Artificial Sequence
```

```
<220>
 <223> Myostatin Binding Peptide
 <400> 34
 Gly Pro Ala Cys His Ser Pro Trp Trp Trp Cys Val Phe Gly
                 5
 <210> 35
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 35
 Thr Thr Trp Cys Ile Ser Pro Met Trp Phe Cys Ser Gln Gln
                5
 <210> 36
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
<400> 36
His Lys Phe Cys Pro Pro Trp Ala Ile Phe Cys Trp Asp Phe
<210> 37
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 37
Pro Asp Trp Cys Val Ser Pro Arg Trp Tyr Cys Asn Met Trp
               5
<210> 38
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 38
```

```
Val Trp Lys Cys His Trp Phe Gly Met Asp Cys Glu Pro Thr
  <210> 39
  <210> 35
<211> 14
<212> PRT
<213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 39
  Lys Lys His Cys Gln Ile Trp Thr Trp Met Cys Ala Pro Lys
  <210> 40
  <211> 14
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 40
  Trp Phe Gln Cys Gly Ser Thr Leu Phe Trp Cys Tyr Asn Leu
                                   10
  <210> 41
  <211> 14
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 41
  Trp Ser Pro Cys Tyr Asp His Tyr Phe Tyr Cys Tyr Thr Ile
  <210> 42
· <211> 14
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 42
  Ser Trp Met Cys Gly Phe Phe Lys Glu Val Cys Met Trp Val
                  5
  <210> 43
```

```
<211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 43
 Glu Met Leu Cys Met Ile His Pro Val Phe Cys Asn Pro His
 1 5
 <210> 44
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 44
 Leu Lys Thr Cys Asn Leu Trp Pro Trp Met Cys Pro Pro Leu
 <210> 45
 <211> 14
 <212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 45
Val Val Gly Cys Lys Trp Tyr Glu Ala Trp Cys Tyr Asn Lys
<210> 46
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 46
Pro Ile His Cys Thr Gln Trp Ala Trp Met Cys Pro Pro Thr
                5
<210> 47
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
```

11

```
<223> Myostatin Binding Peptide
 <400> 47
 Asp Ser Asn Cys Pro Trp Tyr Phe Leu Ser Cys Val Ile Phe
 <210> 48
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
<223> Myostatin Binding Peptide
<400> 48
His Ile Trp Cys Asn Leu Ala Met Met Lys Cys Val Glu Met
<210> 49
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 49
Asn Leu Gln Cys Ile Tyr Phe Leu Gly Lys Cys Ile Tyr Phe
                                  10
<210> 50
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 50
Ala Trp Arg Cys Met Trp Phe Ser Asp Val Cys Thr Pro Gly
1 . 5
<210> 51
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 51
```

```
Trp Phe Arg Cys Phe Leu Asp Ala Asp Trp Cys Thr Ser Val
 <210> 52
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 52
 Glu Lys Ile Cys Gln Met Trp Ser Trp Met Cys Ala Pro Pro
                                     10
 <210> 53
 <211> 14
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 53
Trp Phe Tyr Cys His Leu Asn Lys Ser Glu Cys Thr Glu Pro
      5
 <210> 54
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
Phe Trp Arg Cys Ala Ile Gly Ile Asp Lys Cys Lys Arg Val
                5
                                    10
<210> 55
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 55
Asn Leu Gly Cys Lys Trp Tyr Glu Val Trp Cys Phe Thr Tyr
             5
                                   10
```

<210> 56

```
<211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 56
 Ile Asp Leu Cys Asn Met Trp Asp Gly Met Cys Tyr Pro Pro
                 5
 <210> 57
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
<400> 57
Glu Met Pro Cys Asn Ile Trp Gly Trp Met Cys Pro Pro Val
             . 5
                                    10
<210> 58
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 58
Trp Phe Arg Cys Val Leu Thr Gly Ile Val Asp Trp Ser Glu Cys Phe
             5
Gly Leu
<210> 59
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 59
Trp Phe Arg Cys Val Leu Thr Gly Ile Val Asp Trp Ser Glu Cys Phe
                5
Gly Leu
```

14

```
<210> 60
 <211> 18
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 60
 Leu Pro Trp Cys His Asp Gln Val Asn Ala Asp Trp Gly Phe Cys Met
 Leu Trp
 <210> 61
 <211> 18
 <212> PRT
 <213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 61
Tyr Pro Thr Cys Ser Glu Lys Phe Trp Ile Tyr Gly Gln Thr Cys Val
                                    10
Leu Trp
<210> 62
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 62
Leu Gly Pro Cys Pro Ile His His Gly Pro Trp Pro Gln Tyr Cys Val
Tyr Trp
<210> 63
<211> 18
<212> PRT
<213> Artificial Sequence
```

```
<220>
  <223> Myostatin Binding Peptide
  <400> 63
  Pro Phe Pro Cys Glu Thr His Gln Ile Ser Trp Leu Gly His Cys Leu
  Ser Phe
 <210> 64
 <211> 18
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 64
 His Trp Gly Cys Glu Asp Leu Met Trp Ser Trp His Pro Leu Cys Arg
                 5
                                                         15
 Arg Pro
 <210> 65
 <211> 18
 <212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
<400> 65
Leu Pro Leu Cys Asp Ala Asp Met Met Pro Thr Ile Gly Phe Cys Val
Ala Tyr
<210> 66
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 66
Ser His Trp Cys Glu Thr Thr Phe Trp Met Asn Tyr Ala Lys Cys Val
                                    10
```

```
His Ala
 <210> 67
 <211> 18
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 67
Leu Pro Lys Cys Thr His Val Pro Phe Asp Gln Gly Gly Phe Cys Leu
                                    10
Trp Tyr
<210> 68
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 68
Phe Ser Ser Cys Trp Ser Pro Val Ser Arg Gln Asp Met Phe Cys Val
                            10
Phe Tyr
<210> 69
<211> 17
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 69
Ser His Lys Cys Glu Tyr Ser Gly Trp Leu Gln Pro Leu Cys Tyr Arg
               5 .
                                   10
Pro
<210> 70
```

17

```
<211> 18
  <212> PRT
  <213> Artificial Sequence
  <220>
 <223> Myostatin Binding Peptide
 <400> 70
 Pro Trp Trp Cys Gln Asp Asn Tyr Val Gln His Met Leu His Cys Asp
               5
 Ser Pro
 <210> 71
<211> 18
<212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
 <400> 71
 Trp Phe Arg Cys Met Leu Met Asn Ser Phe Asp Ala Phe Gln Cys Val
                                        10
 Ser Tyr
<210> 72
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 72
Pro Asp Ala Cys Arg Asp Gln Pro Trp Tyr Met Phe Met Gly Cys Met
                                       10
Leu Gly
<210> 73
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

```
<400> 73
  Phe Leu Ala Cys Phe Val Glu Phe Glu Leu Cys Phe Asp Ser
                 5
  <210> 74
  <211> 18
  <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 74
 Ser Ala Tyr Cys Ile Ile Thr Glu Ser Asp Pro Tyr Val Leu Cys Val
                                     10
 Pro Leu
 <210> 75
 <211> 18
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 75
Pro Ser Ile Cys Glu Ser Tyr Ser Thr Met Trp Leu Pro Met Cys Gln
His Asn
<210> 76
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 76
Trp Leu Asp Cys His Asp Asp Ser Trp Ala Trp Thr Lys Met Cys Arg
```

Ser His

5

<210> 77

```
<211> 18
  <212> PRT
  <213> Artificial Sequence
  <223> Myostatin Binding Peptide
  <400> 77
 Tyr Leu Asn Cys Val Met Met Asn Thr Ser Pro Phe Val Glu Cys Val
                  5
                                        10
 Phe Asn
 <210> 78
<211> 18
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 78
 Tyr Pro Trp Cys Asp Gly Phe Met Ile Gln Gln Gly Ile Thr Cys Met
 Phe Tyr
 <210> 79
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 79
Phe Asp Tyr Cys Thr Trp Leu Asn Gly Phe Lys Asp Trp Lys Cys Trp
Ser Arg
<210> 80
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

```
<400> 80
 Leu Pro Leu Cys Asn Leu Lys Glu Ile Ser His Val Gln Ala Cys Val
 Leu Phe
 <210> 81
 <211> 18
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 81
 Ser Pro Glu Cys Ala Phe Ala Arg Trp Leu Gly Ile Glu Gln Cys Gln
                                      10
 Arg Asp
<210> 82
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 82
Tyr Pro Gln Cys Phe Asn Leu His Leu Leu Glu Trp Thr Glu Cys Asp
     5
Trp Phe
<210> 83
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 83
Arg Trp Arg Cys Glu Ile Tyr Asp Ser Glu Phe Leu Pro Lys Cys Trp
                5
```

21

Phe Phe

```
<210> 84
  <211> 14
  <212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
 <400> 84
 Leu Val Gly Cys Asp Asn Val Trp His Arg Cys Lys Leu Phe
                 5
 <210> 85
<211> 18
<212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
 <400> 85
 Ala Gly Trp Cys His Val Trp Gly Glu Met Phe Gly Met Gly Cys Ser
               5
                                                         15
 Ala Leu
<210> 86
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 86
His His Glu Cys Glu Trp Met Ala Arg Trp Met Ser Leu Asp Cys Val
Gly Leu
<210> 87
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

PCT/US2003/040781

```
WO 2004/058988
 <400> 87
 Phe Pro Met Cys Gly Ile Ala Gly Met Lys Asp Phe Asp Phe Cys Val
             ~ 5
                               10
 Trp Tyr
 <210> 88
 <211> 18
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 88
Arg Asp Asp Cys Thr Phe Trp Pro Glu Trp Leu Trp Lys Leu Cys Glu
                                   10
Arg Pro
<210> 89
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 89
Tyr Asn Phe Cys Ser Tyr Leu Phe Gly Val Ser Lys Glu Ala Cys Gln
      5
                                  10
Leu Pro
<210> 90
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

Ala Tyr

<400> 90

1 5

10

15

Ala His Trp Cys Glu Gln Gly Pro Trp Arg Tyr Gly Asn Ile Cys Met

```
<210> 91
  <211> 18
  <212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
 <400> 91
 Asn Leu Val Cys Gly Lys Ile Ser Ala Trp Gly Asp Glu Ala Cys Ala
                                       10
 Arg Ala
 <210> 92
<211> 18
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 92
His Asn Val Cys Thr Ile Met Gly Pro Ser Met Lys Trp Phe Cys Trp
                 5
Asn Asp
<210> 93
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 93
Asn Asp Leu Cys Ala Met Trp Gly Trp Arg Asn Thr Ile Trp Cys Gln
               5
                               10
Asn Ser
<210> 94
<211> 18
<212> PRT
<213> Artificial Sequence
```

```
<220>
  <223> Myostatin Binding Peptide
  <400> 94
  Pro Pro Phe Cys Gln Asn Asp Asn Asp Met Leu Gln Ser Leu Cys Lys
                                  · 10
  Leu Leu
  <210> 95
  <211> 18
<212> PRT
  <213> Artificial Sequence
  <220>
 <223> Myostatin Binding Peptide
 <400> 95
 Trp Tyr Asp Cys Asn Val Pro Asn Glu Leu Leu Ser Gly Leu Cys Arg
                                     10
                                                          15
 Leu Phe
 <210> 96
 <211> 18
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 96
 Tyr Gly Asp Cys Asp Gln Asn His Trp Met Trp Pro Phe Thr Cys Leu
                5
Ser Leu
<210> 97
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 97
Gly Trp Met Cys His Phe Asp Leu His Asp Trp Gly Ala Thr Cys Gln
```

10 15 Pro Asp <210> 98 <211> 18 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 98 Tyr Phe His Cys Met Phe Gly Gly His Glu Phe Glu Val His Cys Glu . 10 Ser Phe <210> 99 <211> 12 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 99 Ala Tyr Trp Cys Trp His Gly Gln Cys Val Arg Phe <210> 100 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 100 Ser Glu His Trp Thr Phe Thr Asp Trp Asp Gly Asn Glu Trp Trp Val 5 10 Arg Pro Phe <210> 101 <211> 20 <212> PRT <213> Artificial Sequence

```
<220>
 <223> Myostatin Binding Peptide
 <400> 101
 Met Glu Met Leu Asp Ser Leu Phe Glu Leu Leu Lys Asp Met Val Pro
                                   10
 Ile Ser Lys Ala
            20
 <210> 102
 <211> 19
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 102
Ser Pro Pro Glu Glu Ala Leu Met Glu Trp Leu Gly Trp Gln Tyr Gly
                                    10
                                                       1.5
Lys Phe Thr
<210> 103
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 103
Ser Pro Glu Asn Leu Leu Asn Asp Leu Tyr Ile Leu Met Thr Lys Gln
Glu Trp Tyr Gly
            20
<210> 104
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 104
Phe His Trp Glu Glu Gly Ile Pro Phe His Val Val Thr Pro Tyr Ser
```

1 10 15 Tyr Asp Arg Met 20 <210> 105 <211> 19 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 105 Lys Arg Leu Leu Glu Gln Phe Met Asn Asp Leu Ala Glu Leu Val Ser Gly His Ser <210> 106 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 106 Asp Thr Arg Asp Ala Leu Phe Gln Glu Phe Tyr Glu Phe Val Arg Ser Arg Leu Val Ile <210> 107 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 107 Arg Met Ser Ala Ala Pro Arg Pro Leu Thr Tyr Arg Asp Ile Met Asp 10 Gln Tyr Trp His 20

```
<210> 108
 <211> 20
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 108
 Asn Asp Lys Ala His Phe Phe Glu Met Phe Met Phe Asp Val His Asn
                5
                                    10
 Phe Val Glu Ser
            20
 <210> 109
<211> 20
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 109
Gln Thr Gln Ala Gln Lys Ile Asp Gly Leu Trp Glu Leu Leu Gln Ser
                                    10
 Ile Arg Asn Gln
        20
 <210> 110
<211> 18
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 110
Met Leu Ser Glu Phe Glu Glu Phe Leu Gly Asn Leu Val His Arg Gln
               5
                                  10
Glu Ala
<210> 111
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

```
<400> 111
 Tyr Thr Pro Lys Met Gly Ser Glu Trp Thr Ser Phe Trp His Asn Arg
 Ile His Tyr Leu
      · 20
 <210> 112
 <211> 20
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 112
Leu Asn Asp Thr Leu Leu Arg Glu Leu Lys Met Val Leu Asn Ser Leu
 1 5
                         10
 Ser Asp Met Lys
 <210> 113
 <211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 113
Phe Asp Val Glu Arg Asp Leu Met Arg Trp Leu Glu Gly Phe Met Gln
                                 10
Ser Ala Ala Thr
           20
<210> 114
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 114
His His Gly Trp Asn Tyr Leu Arg Lys Gly Ser Ala Pro Gln Trp Phe
             5
                                 10
```

```
Glu Ala Trp Val
             20
 <210> 115
 <211> 20
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 115
 Val Glu Ser Leu His Gln Leu Gln Met Trp Leu Asp Gln Lys Leu Ala
                                    10
 Ser Gly Pro His
 <210> 116
 <211> 18
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 116
Arg Ala Thr Leu Leu Lys Asp Phe Trp Gln Leu Val Glu Gly Tyr Gly
Asp Asn
<210> 117
<211> 16
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 117
Glu Glu Leu Leu Arg Glu Phe Tyr Arg Phe Val Ser Ala Phe Asp Tyr
            5
<210> 118
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

```
<400> 118
 Gly Leu Leu Asp Glu Phe Ser His Phe Ile Ala Glu Gln Phe Tyr Gln
 Met Pro Gly Gly
   20
 <210> 119
 <211> 20
 <212> PRT
 <213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 119
Tyr Arg Glu Met Ser Met Leu Glu Gly Leu Leu Asp Val Leu Glu Arg
               5
                       10
Leu Gln His Tyr
           20
<210> 120
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 120
His Asn Ser Ser Gln Met Leu Leu Ser Glu Leu Ile Met Leu Val Gly
           5
                                 10
Ser Met Met Gln
<210> 121
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 121
Trp Arg Glu His Phe Leu Asn Ser Asp Tyr Ile Arg Asp Lys Leu Ile
               5
                                 10
```

```
Ala Ile Asp Gly
 <210> 122
<211> 19 .
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 122
 Gln Phe Pro Phe Tyr Val Phe Asp Asp Leu Pro Ala Gln Leu Glu Tyr
 Trp Ile Ala
<210> 123
<211> 20
 <212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 123
Glu Phe Phe His Trp Leu His Asn His Arg Ser Glu Val Asn His Trp
Leu Asp Met Asn
<210> 124
<211> 19
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 124
Glu Ala Leu Phe Gln Asn Phe Phe Arg Asp Val Leu Thr Leu Ser Glu
                5
                                     10
Arg Glu Tyr
<210> 125
<211> 20
<212> PRT
                                              .
```

. 33

```
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 Gln Tyr Trp Glu Gln Gln Trp Met Thr Tyr Phe Arg Glu Asn Gly Leu
                                    10
 His Val Gln Tyr
            20
<210> 126
 <211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 126
Asn Gln Arg Met Met Leu Glu Asp Leu Trp Arg Ile Met Thr Pro Met
                5
                                    10
Phe Gly Arg Ser
<210> 127
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 127
Phe Leu Asp Glu Leu Lys Ala Glu Leu Ser Arg His Tyr Ala Leu Asp
              5
Asp Leu Asp Glu
<210> 128
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 128
```

```
Gly Lys Leu Ile Glu Gly Leu Leu Asn Glu Leu Met Gln Leu Glu Thr
  Phe Met Pro Asp
  <210> 129
  <211> 15
  <212> PRT
  <213> Artificial Sequence
. <220>
  <223> Myostatin Binding Peptide
  <400> 129
  Ile Leu Leu Leu Asp Glu Tyr Lys Lys Asp Trp Lys Ser Trp Phe
                                     10
  <210> 130
  <211> 50
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 130
 Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro Tyr Gly Ser
 Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly
                                25
 Ser Ala Thr Gly Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro
 Pro Tyr
     50
 <210> 131
 <211> 43
 <212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
Trp Tyr Pro Cys Tyr Glu Gly His Phe Trp Cys Tyr Asp Leu Gly Ser
                5
                                    10
```

```
Gly Ser Thr Ala Ser Ser Gly Ser Gly Ser Ala Thr Gly Trp Tyr Pro
             20
                                25
 Cys Tyr Glu Gly His Phe Trp Cys Tyr Asp Leu
                            40
 <210> 132
 <211> 50
 <212> PRT
 <213> Artificial Sequence
 <220>
<223> Myostatin Binding Peptide
<400> 132
His Thr Pro Cys Pro Trp Phe Ala Pro Leu Cys Val Glu Trp Gly Ser
                                                        15
Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly
Ser Ala Thr Gly His Thr Pro Cys Pro Trp Phe Ala Pro Leu Cys Val
Glu Trp
    50
<210> 133
<211> 50
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 133
Pro Asp Trp Cys Ile Asp Pro Asp Trp Trp Cys Lys Phe Trp Gly Ser
Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly
           20
Ser Ala Thr Gly Pro Asp Trp Cys Ile Asp Pro Asp Trp Trp Cys Lys
                      . 40
Phe Trp
```

50

```
<210> 134
 <211> 50
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 134
 Ala Asn Trp Cys Val Ser Pro Asn Trp Phe Cys Met Val Met Gly Ser
 Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly
             20
                                 25
 Ser Ala Thr Gly Ala Asn Trp Cys Val Ser Pro Asn Trp Phe Cys Met
                            40
Val Met
    50
<210> 135
<211> 50
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 135
Pro Asp Trp Cys Ile Asp Pro Asp Trp Trp Cys Lys Phe Trp Gly Ser
                                   10
Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly
Ser Ala Thr Gly Pro Asp Trp Cys Ile Asp Pro Asp Trp Trp Cys Lys
                            40
Phe Trp
   50
<210> 136
<211> 50
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 136
```

His Trp Ala Cys Gly Tyr Trp Pro Trp Ser Cys Lys Trp Val Gly Ser 10 Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly 25 Ser Ala Thr Gly His Trp Ala Cys Gly Tyr Trp Pro Trp Ser Cys Lys 40 Trp Val 50 <210> 137 <211> 50 <212> PRT <213> Artificial Sequence <223> Myostatin Binding Peptide <400> 137 Lys Lys His Cys Gln Ile Trp Thr Trp Met Cys Ala Pro Lys Gly Ser 5 Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly Ser Ala Thr Gly Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro 40 Pro Tyr 50 <210> 138 <211> 50 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 138 Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro Tyr Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly 20 25 30

```
Ser Ala Thr Gly Lys Lys His Cys Gln Ile Trp Thr Trp Met Cys Ala
                             40
 Pro Lys
50
 <210> 139
<211> 50
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 139
Lys Lys His Cys Gln Ile Trp Thr Trp Met Cys Ala Pro Lys Gly Ser
                                     10
Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly
                                 25
Ser Ala Thr Gly Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro
                             40
Pro Tyr
  50
<210> 140
<211> 36
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 140
Lys Lys His Cys Gln Ile Trp Thr Trp Met Cys Ala Pro Lys Gly Gly
Gly Gly Gly Gly Gly Gln Gly His Cys Thr Arg Trp Pro Trp Met
Cys Pro Pro Tyr
        35
<210> 141
<211> 34
<212> PRT
<213> Artificial Sequence
```

```
<220>
 <223> Myostatin Binding Peptide
 <400> 141
 Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro Tyr Gly Gly
                5
                     10 15
 Gly Gly Gly Lys Lys His Cys Gln Ile Trp Thr Trp Met Cys Ala
                   25
            20
 Pro Lys
<210> 142
<211> 14
 <212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa = any amino acid
<220>
<221> MISC_FEATURE <222> (5)..(6)
<223> Xaa = any amino acid
<220>
<221> MISC_FEATURE
<222> (14)..(14)
<223> Xaa = any amino acid
<400> 142
Lys Asp Xaa Cys Xaa Xaa Trp His Trp Met Cys Lys Pro Xaa
<210> 143
<211> 14
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<220>
<221> MISC_FEATURE
<222> (2)..(3)
<223> Xaa = any amino acid
```

```
<220>
   <221> MISC_FEATURE
   <222> (5)..(7)
<223> Xaa = any amino acid
   <400> 143
   Trp Xaa Xaa Cys Xaa Xaa Xaa Gly Phe Trp Cys Leu Asn Val
                    5
                                         10
   <210> 144
   <211> 14
   <212> PRT
   <213> Artificial Sequence
 <220>
  <223> Myostatin Binding Peptide
   <220>
  <221> MISC_FEATURE
  <222> (2)..(2)
  <223> Xaa = any amino acid
  <220>
  <221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa = any amino acid
  <220>
  <221> MISC_FEATURE
  <222> (9)..(10)
  <223> Xaa = any amino acid
<220>
  <221> MISC_FEATURE
  <222> (13)..(14)
  <223> Xaa = any amino acid
  <400> 144
  Ile Xaa Gly Cys Xaa Trp Trp Asp Xaa Xaa Cys Tyr Xaa Xaa
              5
                                     10
  <210> 145
<211> 14
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
 <220>
 <221> MISC_FEATURE
 <222> (1)..(2)
 <223> Xaa = any amino acid
 <220>
```

```
<221> MISC_FEATURE
  <222> (8)..(8)
<223> Xaa = any amino acid
  <220>
  <221> MISC_FEATURE
  <222> (12)..(14)
  <223> Xaa = any amino acid
  <400> 145
 Xaa Xaa Trp Cys Val Ser Pro Xaa Trp Phe Cys Xaa Xaa Xaa
 1 5 .
 <210> 146
 <211> 14
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <220>
 <221> MISC_FEATURE
 <222> (1)..(3)
 <223> Xaa = any amino acid
 <220>
 <221> MISC_FEATURE
 <222> (9)..(10)
 <223> Xaa = any amino acid
 <400> 146
 Xaa Xaa Xaa Cys Pro Trp Phe Ala Xaa Xaa Cys Val Asp Trp
 <210> 147
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 aaagacaaat gcaaaatgtg gcactggatg tgcaaaccgc cg
                                                                      42
<210> 148
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 148
```

aaaga	cctgt gcgctatgtg gcactggatg tgcaaaccgc cg	42
<210><211><211><212>	42 .	
<213>	•	
<220> <223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
aaagad	cctgt gcaaaatgtg gaaatggatg tgcaaaccgc cg	42
<210>	150	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	150	
aaagac	ctgt gcaaaatgtg gcactggatg tgcaaaccga aa	42
<210>		
<211>	42	
<212>	DNA	
\213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	151	
tggtac	ccgt gctacgaatt ccacttctgg tgctacgacc tg	42
<210>	152	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	152	
tggtaco	ccgt gctacgaatt ccacttctgg tgctacgacc tg	42
<210>	153	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	153	
ggtacc	egt gctacgaagg tcacttctgg tgctacgacc tg	42

```
<210> '154
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 154
 tggtacccgt gctacgaagg tcacttctgg tgctacgacc tg
                                                                      42
 <210> 155
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 155
atcttcggtt gcaaatggtg ggacgttcag tgctaccagt tc
                                                                      42
 <210> 156
 <211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 156
atcttcggtt gcaaatggtg ggacgttgac tgctaccagt tc
                                                                      42
<210> 157
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
atcttcggtt gcaaatggtg ggacgttgac tgctaccagt tc
                                                                     42
<210> 158
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 158
gctgactggt gcgtttcccc gaactggttc tgcatggtta tg
                                                                     42
```

```
<210> 159
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 159
 cacaaattet geeegtggtg ggetetgtte tgetgggaet te
                                                                      42
 <210> 160
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 160
 aaagacctgt gcaaaatgtg gcactggatg tgcaaaccgc cg
                                                                      42
 <210> 161
 <211> 42
 <212> DNA
 <213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 161
atcgacaaat gcgctatctg gggttggatg tgcccgccgc tg
                                                                     42
<210> 162
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 162
tggtacccgt gcggtgaatt cggtatgtgg tgcctgaacg tt
                                                                     42
<210> 163
<211> 33
<212> DNA
<213> . Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 163
tggttcacct gcctgtggaa ctgcgacaac gaa
                                                                    33
```

```
<210> 164
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 164
 cacaccccgt gcccgtggtt cgctccgctg tgcgttgaat gg
                                                                      42
 <210> 165
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 165
aaagaatggt gctggcgttg gaaatggatg tgcaaaccgg aa
                                                                      42
<210> 166
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 166
ttcgaaacct gcccgtcctg ggcttacttc tgcctggaca tc
                                                                      42
<210> 167
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 167
ttcgaaacct gcccgtcctg ggcttacttc tgcctggaca tc
                                                                      42
<210> 168
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 168
gcttacaaat gcgaagctaa cgactggggt tgctggtggc tg
                                                                     42
<210> 169
```

```
<211> 42
 <212> DNA
· <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 169
 aactcctggt gcgaagacca gtggcaccgt tgctggtggc tg
                                                                      42
 <210> 170
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 170
 tggtccgctt gctacgctgg tcacttctgg tgctacgacc tg
                                                                     42
<210> 171
<211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
gctaactggt gcgtttcccc gaactggttc tgcatggtta tg
                                                                   42
<210> 172
<211> 42
<212> DNA
<213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 172
tggaccgaat gctaccagca ggaattctgg tgctggaacc tg
                                                                     42
<210> 173
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 173
gaaaacacct gcgaacgttg gaaatggatg tgcccgccga aa
                                                                     42
<210> 174
<211> 42
```

```
<212> DNA
  <213> Artificial Sequence
  <220>
  <223> Nucleotide sequence encoding Myostatin Binding Peptide
  <400> 174
  tggctgccgt gccaccagga aggtttctgg tgcatgaact tc
                                                                       42
  <210> 175
  <211> 42
  <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 tccaccatgt gctcccagtg gcactggatg tgcaacccgt tc
                                                                       42
 <210> 176
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 176
atcttcggtt gccactggtg ggacgttgac tgctaccagt tc
                                                                      42
 <210> 177
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 177
atctacggtt gcaaatggtg ggacatccag tgctacgaca tc
                                                                      42
<210> 178
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 178
ccggactggt gcatcgatcc ggactggtgg tgcaaattct gg
                                                                     42
<210> 179
<211> 42
<212> DNA
```

<213>	Artificial Sequence	
<220>		
<223>		
<400>	179	
caggg	tcact gcaccegttg gccgtggatg tgcccgccgt ac	42
		4.0
-010-	100	
<210><211>		
<212>		
<213>		
	• • • •	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	180	
	ggaat gctaccgtga aggtttctgg tgcctgcaga cc	42
55	same geodesgaa aggeeeeegg egeeegeaga ee	42
<210>		
<211>		
<212>	DNA Artificial Sequence	
~213/	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
.400		
<400>	181	
rggccc	gact gctacggtcc gggtttcaaa tgctggtccc cg	42
<210>	182	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
		,
<400>	182	
ggtgtt	cgtt gcccgaaagg tcacctgtgg tgcctgtacc cg	42
	•	
<210>	183	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
:220>		
223>	Nucleotide sequence encoding Myostatin Binding Peptide	
-	and and an analysis of the state of the stat	
:400>	183	
actgg	gett geggttaetg geegtggtee tgeaaatggg tt	42
:210>	184	
211>	42	
212>	DNA	
213>	Artificial Sequence	

```
<220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 184 -
 ggtccggctt gccactcccc gtggtggtgg tgcgttttcg gt
                                                                       42
 <210> 185
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 185
accacctggt gcatctcccc gatgtggttc tgctcccagc ag
                                                                      42
<210> 186
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 186
cacaaattct gcccgccgtg ggctatcttc tgctgggact tc
                                                                      42
<210> 187
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 187
ccggactggt gcgtttcccc gcgttggtac tgcaacatgt gg
                                                                     42
<210> 188
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 188
gtttggaaat gccactggtt cggtatggac tgcgaaccga cc
                                                                     42
<210> 189
<211> 42
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 189
 aaaaaacact gccagatctg gacctggatg tgcgctccga aa
                                                                       42
<210> 190
 <211> 42
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 190
tggttccagt gcggttccac cctgttctgg tgctacaacc tg
                                                                       42
<210> 191
<211> 42
<212> . DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 191
tggtccccgt gctacgacca ctacttctac tgctacacca tc
                                                                      42
<210> 192
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 192
tcctggatgt gcggtttctt caaagaagtt tgcatgtggg tt
                                                                      42
<210> 193
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 193
gaaatgctgt gcatgatcca cccggttttc tgcaacccgc ac
                                                                      42
<210> 194
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 194
 ctgaaaacct gcaacctgtg gccgtggatg tgcccgccgc tg
                                                                      42
 <210> 195
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 195
gttgttggtt gcaaatggta cgaagcttgg tgctacaaca aa
                                                                      42
<210> 196
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
ccgatccact gcacccagtg ggcttggatg tgcccgccga cc
                                                                     42
<210> 197
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 197
gactccaact gcccgtggta cttcctgtcc tgcgttatct tc
                                                                     42
<210> 198
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 198
gactccaact gcccgtggta cttcctgtcc tgcgttatct tc
                                                                     42
<210> 199
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
```

<400>	199 gcagt gcatctactt cctgggtaaa tgcatctact tc	
aacce	graye grateracti conggitada ngodiciaci ic	42
	•	
<210>	200	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	200	
gcttgg	gcgtt gcatgtggtt ctccgacgtt tgcaccccgg gt	42
<210>	201	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	201	
taattt	cgtt gttttcttga tgctgattgg tgtacttctg tt	42
-55		42
	· ·	
<210>	202	
<211>	42	
<212>		
	Artificial Sequence	
-213	Artificial Sequence	
<220>		
	Musicotide company angular Manufactic pt. 21 p. 412	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
-400-	202	
<400>	202	
gaaaaa	attt gtcaaatgtg gtcttggatg tgtgctccac ca	42
<210>	202	
	203	
<211>	42	
<212>	DNA	
<213>	Artificial Sequence	
.000		
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
tggttt	tatt gtcatcttaa taaatctgaa tgtactgaac ca	42
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Rinding Pentide	

```
<400> 204
 ttttggcgtt gtgctattgg tattgataaa tgtaaacgtg tt
                                                                     42
 <210> 205
 <211> 42
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 205
 ttttggcgtt gtgctattgg tattgataaa tgtaaacgtg tt
                                                                     42
 <210> 206
 <211> 42
 <212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 206
attgatcttt gtaatatgtg ggatggtatg tgttatccac ca
                                                                   42
<210> 207
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 207
gaaatgccat gtaatatttg gggttggatg tgtccaccag tt
                                                                     42
<210> 208
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 208
tggttccgtt gcgttctgac cggtatcgtt gactggtccg aatgcttcgg tctg
                                                                    54
<210> 209
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 209
```

ggttt	ctcct gcaccttcgg tctggacgaa ttctacgttg actgctcccc gttc	54
<210><211><211><212>	. 54	
<213>	Artificial Sequence	
<220> <223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	210	
ctgccq	gtggt gccacgacca ggttaacgct gactggggtt tetgcatget gtgg	54
<210>	211	
<211>		
<212> <213>		
.000		
<220> <223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
cacccg	racct gctccgaaaa attctggatc tacggtcaga cctgcgttct gtgg	54
<210>		
<211>	54	
<212> <213>	DNA Artificial Sequence	
	' '	•
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	212	
ctgggt	ccgt gcccgatcca ccacggtccg tggccgcagt actgcgttta ctgg	54
<210>	213	
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	213	
ccgttc	cegt gegaaaceca ecagatetee tggetgggte actgeetgte ette	54
<210>	214	
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	214	
cactggg	ggtt gcgaagacet gatgtggtee tggcaceege tgtgeegteg teeg	54

```
<210> 215
 <211> 54
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 215
 ctgccgctgt gcgacgctga catgatgccg accatcggtt tctgcgttgc ttac
                                                                      54
<210> 216
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 216
tcccactggt gcgaaaccac cttctggatg aactacgcta aatgcgttca cgct
                                                                     54
<210> 217
<211>
       54
<212>
       DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 217
ctgccgaaat gcacccacgt tccgttcgac cagggtggtt tctgcctgtg gtac
                                                                     54
<210> 218
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
ttctcctcct gctggtcccc ggtttcccgt caggacatgt tctgcgtttt ctac
                                                                     54
<210> 219
<211> 51
<212> DNA
<213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 219
tcccacaaat gcgaatactc cggttggctg cagccgctgt gctaccgtcc g
                                                                     51
```

```
<210> 220
  <211> 54
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Nucleotide sequence encoding Myostatin Binding Peptide
  <400> 220
  ccgtggtggt gccaggacaa ctacgttcag cacatgctgc actgcgactc cccg
                                                                      54
 <210> 221
  <211> 54
  <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 221
 tggttccgtt gcatgctgat gaactccttc gacgctttcc agtgcgtttc ctac
                                                                     54
 <210> 222
 <211> 54
 <212> DNA
 <213> Artificial Sequence
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 222
ccggacgctt gccgtgacca gccgtggtac atgttcatgg gttgcatgct gggt
                                                                     54
<210> 223
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 223
ttcctggctt gcttcgttga attcgaactg tgcttcgact cc
                                                                     42
<210> 224
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 224
tecgettact geateateae egaateegae eegtaegtte tgtgegttee getg
                                                               54
```

```
<210> 225
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 225
ccgtccatct gcgaatccta ctccaccatg tggctgccga tgtgccagca caac
                                                               54
<210> 226
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 226
                                                                  54
tggctggact gccacgacga ctcctgggct tggaccaaaa tgtgccgttc ccac
<210> 227
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
tacctgaact gcgttatgat gaacacctcc ccgttcgttg aatgcgtttt caac
                                                                    54
<210> 228
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 228
tacccgtggt gcgacggttt catgatccag cagggtatca cctgcatgtt ctac
                                                                    54
<210> 229
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
ttcgactact gcacctggct gaacggtttc aaagactgga aatgctggtc ccgt
                                                                    54
<210> 230
```

```
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
ctgccgctgt gcaacctgaa agaaatctcc cacgttcagg cttgcgttct gttc
                                                            54
<210> 231
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
tccccggaat gcgctttcgc tcgttggctg ggtatcgaac agtgccagcg tgac
                                                              54
<210> 232
<211> 54
<212> DNA
<213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 232
tacccgcagt gcttcaacct gcacctgctg gaatggaccg aatgcgactg gttc
                                                                  54
<210> 233
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 233
cgttggcgtt gcgaaatcta cgactccgaa ttcctgccga aatgctggtt cttc
                                                                   54
<210> 234
<211> 42
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 234
ctggttggtt gcgacaacgt ttggcaccgt tgcaaactgt tc
                                                                   42
<210> 235
<211> 54
```

```
<212> DNA
<213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 235
gctggttggt gccacgtttg gggtgaaatg ttcggtatgg gttgctccgc tctg
                                                               54
<210> 236
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 236
caccacgaat gcgaatggat ggctcgttgg atgtccctgg actgcgttgg tctg
                                                                    54
<210> 237
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
ttcccgatgt gcggtatcgc tggtatgaaa gacttcgact tctgcgtttg gtac
                                                                   54
<210> 238
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 238
cgtgatgatt gtactttttg gccagaatgg ctttggaaac tttgtgaacg tcca
                                                                    54
<210> 239
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
tataattttt gttcttatct ttttggtgtt tctaaagaag cttgtcaact tcca
                                                                    54
<210> 240
<211> 54
<212> DNA
```

<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	240	
gctca	ttggt gtgaacaagg tccatggcgt tatggtaata tttgtatggc ttat	54
<210>	241	
<211>	54	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
aatct	gttt gtggtaaaat ttctgcttgg ggtgatgaag cttgtgctcg tgct	54
<210>	242	
<211>	54	
<212>		
<213>		
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
، <400>	242	
	242 gttt gtactattat gggtccatct atgaaatggt tttgttggaa tgat	- 4
cacaac		54
<210>	243	
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
<220>	W-2	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	243	
aatgat	cttt gtgctatgtg gggttggcgt aatactattt ggtgtcaaaa ttct	54
<210>	244	
211>	54	
:212>	DNA	
213>	Artificial Sequence	
:220>		
:223>	Nucleotide sequence encoding Myostatin Binding Peptide	
:400>	244	
	tttt gtcaaaatga taatgatatg cttcaatctc tttgtaaact tctt	54
210>	245	
211>	54 DNA	
	DNA Artificial Sequence	

<220> <223>	Nucleotide sequence encoding Myostatin Binding Peptide	
12232	material begains encouring infortactin binding reputite	
<400>		
tggtat	gatt gtaatgttcc aaatgaactt ctttctggtc tttgtcgtct tttt	54
<210>	246	
<211>		
<212>	•	
	Artificial Sequence	
	•	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
.400-	246	
<400>		- 4
tatggt	gatt gtgatcaaaa tcattggatg tggccattta cttgtctttc tctt	54
<210>	247	
<211>	54	
<212>	DNA	
<213>	Artificial Sequence	
	·	
<220>	27 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	247	
	atgt gtcattttga tetteatgat tggggtgeta ettgtcaace agat	54
3555-		34
_		
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>	•	
	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	248	
tattttc	att gtatgtttgg tggtcatgaa tttgaagttc attgtgaatc tttt	54
-210-	240	
<210> <211>	249 36	
	DNA	
	Artificial Sequence	
<220>		•
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	249	
gcttatt	ggt gttggcatgg tcaatgtgtt cgtttt	36
<210>	250	
	57	
	DNA	
-213-	Artificial Semience	•

```
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 250
tccgaacact ggaccttcac cgactgggac ggtaacgaat ggtgggttcg tccgttc
                                                                     57
<210> 251
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
atggaaatgc tggactccct gttcgaactg ctgaaagaca tggttccgat ctccaaagct
                                                                     60
<210> 252
<211> 57
<212> DNA
<213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 252
tccccgccgg aagaagctct gatggaatgg ctgggttggc agtacggtaa attcacc
                                                                   57
<210> 253
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 253
tccccggaaa acctgctgaa cgacctgtac atcctgatga ccaaacagga atggtacggt
                                                                     60
<210> 254
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 254
ttccactggg aagaaggtat cccgttccac gttgttaccc cgtactccta cgaccgtatg
<210> 255
<211> 57
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 255
aaacgtctgc tggaacagtt catgaacgac ctggctgaac tggtttccgg tcactcc
                                                                      57
<210> 256
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 256
gacacccgtg acgctctgtt ccaggaattc tacgaattcg ttcgttcccg tctggttatc
<210> 257
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
cgtatgtccg ctgctccgcg tccgctgacc taccgtgaca tcatggacca gtactggcac
                                                                      60
<210> 258
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 258
aacgacaaag ctcacttctt cgaaatgttc atgttcgacg ttcacaactt cgttgaatcc
                                                                      60
<210> 259
<211> 60
<212> DNA
<213> Artificial Sequence ·
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
cagacccagg ctcagaaaat cgacggtctg tgggaactgc tgcagtccat ccgtaaccag
                                                                      60
<210> 260
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
```

```
<400> 260
atgctgtccg aattcgaaga attcctgggt aacctggttc accgtcagga agct
                                                                54
<210> 261
<211> 60
<212> DNA
<213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 261
tacaccccga aaatgggttc cgaatggacc tccttctggc acaaccgtat ccactacctg
                                                               60
<210> 262
<211> 60
<212> DNA
<213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 262
ctgaacgaca ccctgctgcg tgaactgaaa atggttctga actccctgtc cgacatgaaa
                                                                60
<210> 263
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 263
ttcgacgttg aacgtgacct gatgcgttgg ctggaaggtt tcatgcagtc cgctgctacc
<210> 264
<211> .60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 264
60
<210> 265
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
```

```
<400> 265
gttgaatccc tgcaccagct gcagatgtgg ctggaccaga aactggcttc cggtccgcac
                                                                     60
<210> 266
<211> 54
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 266 ·
cgtgctaccc tgctgaaaga cttctggcag ctggttgaag gttacggtga caac
                                                                   54
<210> 267
<211> 48
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 267
                                                                48
gaagaactgc tgcgtgaatt ctaccgtttc gtttccgctt tcgactac
<210> 268
<211>
      60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 268
ggtctgctgg acgaattctc ccacttcatc gctgaacagt tctaccagat gccgggtggt
                                                                    60
<210> 269
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
taccgtgaaa tgtccatgct ggaaggtctg ctggacgttc tggaacgtct gcagcactac
<210> 270
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 270
```

cacaac	tect eccagatget getgteegaa etgateatge tggttggtte catgatgeag	60
<210> <211>	271 60	
<212> <213>	DNA Artificial Sequence	
<220> <223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400> tggcgt	271 gaac actteetgaa eteegaetae ateegtgaea aaetgatege tategaeggt	60
<210>	272	
<211> <212>	57	
<213>	DNA Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	272	
cagttc	ccgt tctacgtttt cgacgacctg ccggctcagc tggaatactg gatcgct	57
<210>	273	
<211> <212>	60 Data	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	273	
gaattc	ttcc actggctgca caaccaccgt tccgaagtta accactggct ggacatgaac	60
<210> <211>	274	
<211>	57 DNA	
	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	274	
gaagct	ottt ttcaaaattt ttttcgtgat gttcttactc tttctgaacg tgaatat	57
<210>	275	
<211> <212>	60	
<212> <213>	DNA Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400> caatatt	275 ggg aacaacaatg gatgacttat tttcgtgaaa atggtcttca tgttcaatat	60

.1

```
<210> 276
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 276
 aatcaacgta tgatgcttga agatctttgg cgtattatga ctccaatgtt tggtcgttct 60
<210> 277
 <211> 60
 <212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 277
tttcttgatg aacttaaagc tgaactttct cgtcattatg ctcttgatga tcttgatgaa
                                                                     60
<210> 278
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 278
ggtaaactta tigaaggtct tcttaatgaa cttatgcaac ttgaaacttt tatgccagat
                                                                     60
<210> 279
<211> 45
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
attettette ttgatgaata taaaaaagat tggaaatett ggttt
                                                                    45
<210> 280
<211> 150
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
cagggccact gtactcgctg gccgtggatg tgcccgccgt acggttctgg ttccgctacc
                                                                    60
```

ggtggttctg gttccactgc ttcttctggt tccggttctg ctactggtca gggtcactgc	120
actcgttggc catggatgtg tccaccgtat	150
<210> 281 <211> 129 <212> DNA <213> Artificial Sequence	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 281 tggtatccgt gttatgaggg tcacttctgg tgctacgatc tgggttctgg ttccactgct	60
tcttctggtt ccggttccgc tactggttgg tacccgtgct acgaaggtca cttttggtgt	120
tatgatctg	129
<210> 282 <211> 150 <212> DNA <213> Artificial Sequence	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 282 cacactccgt gtccgtggtt tgctccgctg tgcgttgaat ggggttctgg ttccgctact	60
ggtggttccg gttccactgc ttcttctggt tccggttctg caactggtca caccccgtgc	120
ccgtggtttg caccgctgtg tgtagagtgg	150
<210> 283 <211> 150 <212> DNA <213> Artificial Sequence	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide .	
<400> 283 ccggattggt gtatcgaccc ggactggtgg tgcaaattct ggggttctgg ttccgctacc	60
ggtggttccg gttccactgc ttcttctggt tccggttctg caactggtcc ggactggtgc	120
atcgacccgg attggtggtg taaattttgg	150
<210> 284 <211> 150 <212> DNA <213> Artificial Sequence	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	

<400> 284	
ccggattggt gtatcgaccc ggactggtgg tgcaaattct ggggttctgg ttccgctacc	60
ggtggttccg gttccactgc ttcttctggt tccggttctg caactggtcc ggactggtgc	120
atcgacccgg attggtggtg taaattttgg	150
<210> 285	
<211> 129	
<212> DNA	
<213> Artificial Sequence .	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 285	
accacttggt gcatctctcc gatgtggttc tgctctcagc agggttctgg ttccactgct	60
tottotott cognitictes androstad achterials beleficied about the	100
tettetggtt eeggttetge aactggtact acttggtgta teteteeaat gtggttttgt	120
tctcagcaa	129
<210> 286	
<211> 150	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 286	
cactgggcat gtggctattg gccgtggtcc tgcaaatggg ttggttctgg ttccgctacc	60
ggtggttccg gttccactgc ttcttctggt tccggttctg caactggtca ctgggcttgc	120
ggttactggc cgtggtcttg taaatgggtt	150
<210> 287	
<211> 150	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 287	
aaaaaacact gtcagatctg gacttggatg tgcgctccga aaggttctgg ttccgctacc	60
ggtggttctg gttccactgc ttcttctggt tccggttccg ctactggtca gggtcactgc	120
actogttggc catggatgtg toogoogtat	150
<210> 288	
<211> 150	
<212> DNA	
<213> Artificial Sequence	

<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 288	
cagggtcact gcacccgttg gccgtggatg tgcccgccgt acggttctgg ttccgct	tacc 60
ggtggttctg gttccactgc ttcttctggt tccggttctg ctactggtaa aaaacac	ctgc 120
cagatetgga ettggatgtg egeteegaaa	150
<210> 289	
<211> 150	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 289	
aaaaaacact gtcagatctg gacttggatg tgcgctccga aaggttctgg ttccgct	acc 60
ggtggttctg gttccactgc ttcttctggt tccggttccg ctactggtca gggtcac	tgc 120
actcgttggc catggatgtg tccgccgtat	150
<210> 290	
<211> 108	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 290	
aaaaaacact gccagatctg gacttggatg tgcgctccga aaggtggtgg tggtggt	ggc 60
ggtggccagg gtcactgcac ccgttggccg tggatgtgtc cgccgtat	108
<210> 291	
<211> 102	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 291	
cagggtcact gcacccgttg gccgtggatg tgcccgccgt acggtggtgg tggtggt	ggc 60
aaaaaacact gccagatctg gacttggatg tgcgctccga aa	102
<210> 292	
<211> 37	
<212> DNA	
<213> Artificial Sequence	
<220>	

```
<223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 292
 gagagagagc atatgaatga gaacagtgag caaaaag
                                                                      37
 <210> 293
 <211> 34
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 293
agagaggat ccattatgag cacccacagc ggtc
                                                                     34
<210> 294
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 294
cggcgcaact atcggtatca agctg
                                                                     25
<210> 295
<211> 26
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 295
catgtaccgt aacactgagt ttcgtc
                                                                     26
<210> 296
<211> 227
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 296
Asp Lys Thr His Thr Cys Pro Pro Cys Pro Ala Pro Glu Leu Leu Gly
               5
                                   10
Gly Pro Ser Val Phe Leu Phe Pro Pro Lys Pro Lys Asp Thr Leu Met
           20
                               25
                                               . 30
Ile Ser Arg Thr Pro Glu Val Thr Cys Val Val Val Asp Val Ser His
```

35 40 45

Glu Asp Pro Glu Val Lys Phe Asn Trp Tyr Val Asp Gly Val Glu Val 50 55 60

His Asn Ala Lys Thr Lys Pro Arg Glu Glu Gln Tyr Asn Ser Thr Tyr 65 70 75 80

Arg Val Val Ser Val Leu Thr Val Leu His Gln Asp Trp Leu Asn Gly 85 90 95

Lys Glu Tyr Lys Cys Lys Val Ser Asn Lys Ala Leu Pro Ala Pro Ile 100 105 110

Glu Lys Thr Ile Ser Lys Ala Lys Gly Gln Pro Arg Glu Pro Gln Val 115 120 125

Tyr Thr Leu Pro Pro Ser Arg Asp Glu Leu Thr Lys Asn Gln Val Ser 130 135

Trp Glu Ser Asn Gly Gln Pro Glu Asn Asn Tyr Lys Thr Thr Pro Pro 165 170 175

Val Leu Asp Ser Asp Gly Ser Phe Phe Leu Tyr Ser Lys Leu Thr Val 180 185 190

Asp Lys Ser Arg Trp Gln Gln Gly Asn Val Phe Ser Cys Ser Val Met 195 200 205

His Glu Ala Leu His Asn His Tyr Thr Gln Lys Ser Leu Ser Leu Ser 210 215 220

Pro Gly Lys 225

<210> 297

<211> 67

<212> DNA

<213> Artificial Sequence

<220>

<223> Nucleotide sequence encoding Myostatin Binding Peptide

<400> 297

acaaacaaac atatgggtgc acagaaagcg gccgcaaaaa aactcgaggg tggaggcggt

ggggaca	
<210> 298	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 298 ggtcattact ggaccggatc	20
<210> 299 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 299 cgtacaggtt tacgcaagaa aatgg	. 25
<210> 300 <211> 66 <212> DNA <213> Artificial Sequence	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 300 tttgttggat ccattactcg agtttttttg cggccgcttt ctgtgcacca ccacctccac	60 ·
ctttac	66
<210> 301 <211> 681 <212> DNA <213> Artificial Sequence	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 301 gacaaaactc acacatgtcc accttgccca gcacctgaac tcctgggggg accgtcagtt	60
ttcctcttcc ccccaaaacc caaggacacc ctcatgatct cccggacccc tgaggtcaca	120
tgcgtggtgg tggacgtgag ccacgaagac cctgaggtca agttcaactg gtacgtggac	180
ggcgtggagg tgcataatgc caagacaaag ccgcgggagg agcagtacaa cagcacgtac	240
cgtgtggtca gcgtcctcac cgtcctgcac caggactggc tgaatggcaa ggagtacaag	300

tgcaaggtct ccaacaaagc cctcccagcc cccatcgaga aaaccatctc caaagccaaa	360
gggcagcccc gagaaccaca ggtgtacacc ctgcccccat cccgggatga gctgaccaag	420
aaccaggtca gcctgacctg cctggtcaaa ggcttctatc ccagcgacat cgccgtggag	480
tgggagagca atgggcagcc ggagaacaac tacaagacca cgcctcccgt gctggactcc	540
gacggeteet tetteeteta cagcaagete accgtggaca agagcaggtg gcagcagggg	600
aacgtettet catgeteegt gatgeatgag getetgeaca accaetacae geagaagage	660
ctctccctgt ctccgggtaa a	681
<pre><210> 302 <211> 15 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence encoding Myostatin Binding Peptide <400> 302 ggtggaggtg gtggt </pre> <pre><210> 303 <211> 22 <212> PRT</pre>	15
<213> Artificial Sequence <220>	
<223> Peptibody	
<400> 303	
Met Phe Cys Gly Gly Gly Gly Lys Asp Lys Cys Lys Met Trp His 1 5 10 15	
Trp Met Cys Lys Pro Pro 20	
<210> 304 <211> 740 <212> DNA <213> Artificial Sequence	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 304 atggacaaaa ctcacatg tccaccttgc ccagcacctg aactcctggg gggaccgtca	60
gttttcctct tccccccaaa acccaaggac accctcatga tctcccggac ccctgaggtc	120
acatgcgtgg tggtggacgt gagccacgaa gaccctgagg tcaagttcaa ctggtacgtg	180
gacggcgtgg aggtgcataa tgccaagaca aagccgcggg aggagcagta caacagcacg	240

```
taccgtgtgg tcagcgtcct caccgtcctg caccaggact ggctgaatgg caaggagtac
                                                                     300
aagtgcaagg totocaacaa agcootocca gooccoatog agaaaaccat otocaaagco
                                                                     360
aaagggcagc cccgagaacc acaggtgtac accctgcccc catcccggga tgagctgacc
                                                                     420
aagaaccagg tcagcctgac ctgcctggtc aaaggcttct atcccagcga catcgccgtg
                                                                     480
gagtgggaga gcaatgggca gccggagaac aactacaaga ccacgcctcc cgtgctggac
                                                                     540
tccgacggct ccttcttcct ctacagcaag ctcaccgtgg acaagagcag gtggcagcag
                                                                     600
gggaacgtct tctcatgctc cgtgatgcat gaggctctgc acaaccacta cacgcagaag
                                                                     660
agectetece tgteteeggg taaaggtgga ggtggtggta agacaaatge aaaatgtgge
                                                                     720
actggatgtg caaaccgccg
                                                                     740
<210> 305
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 305
Val Ala Leu His Gly Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
Gln Arg Glu Gly
<210> 306
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 306
Tyr Pro Glu Gln Gly Leu Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
1
                                   10
Gln Thr Leu Ala
            20
<210> 307
<211> 20
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Myostatin Binding Peptide
<400> 307
Gly Leu Asn Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                 5
                                      10
Gln Asp Ser Asn
            20
<210> 308
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 308
Met Ile Thr Gln Gly Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
              - 5
                                     10
Gln Pro Ser Gly
 20
<210> 309
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 309
Ala Gly Ala Gln Glu His Cys Thr Arg Trp Pro Trp Met Cys Ala Pro
                5
Asn Asp Trp Ile
<210> 310
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 310
Gly Val Asn Gln Gly Gln Cys Thr Arg Trp Arg Trp Met Cys Pro Pro
                5 .
                                     10
                                                          15
```

```
Asn Gly Trp Glu
<210> 311
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 311
Leu Ala Asp His Gly Gln Cys Ile Arg Trp Pro Trp Met Cys Pro Pro
                                   10
Glu Gly Trp Glu
<210> 312
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 312
Ile Leu Glu Gln Ala Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                   10
Gln Arg Gly Gly
<210> 313
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
Thr Gln Thr His Ala Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
               5
                                   10
Gln Trp Glu Gly
           20
<210> 314
```

78

```
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 314
Val Val Thr Gln Gly His Cys Thr Leu Trp Pro Trp Met Cys Pro Pro
                5
Gln Arg Trp Arg
            20
<210> 315
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 315
Ile Tyr Pro His Asp Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                   10
Gln Pro Tyr Pro
           20
<210> 316
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 316
Ser Tyr Trp Gln Gly Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                  10
Gln Trp Arg Gly
           20
<210> 317
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
```

```
<400> 317
Met Trp Gln Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                      10
Gln Gly Trp Gly
             20
<210> 318
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 318
Glu Phe Thr Gln Trp His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                5
                                      10
Gln Arg Ser Gln
<210> 319
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 319
Leu Asp Asp Gln Trp Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                     10
Gln Gly Phe Ser
<210> 320
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 320
Tyr Gln Thr Gln Gly: Leu Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                     10
```

Gln Ser Gln Arg

20

```
<210> 321
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 321
Glu Ser Asn Gln Gly Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
               5
                                   10
Gln Gly Gly Trp
<210> 322
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 322
Trp Thr Asp Arg Gly Pro Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
               5
Gln Ala Asn Gly
           20
<210> 323
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 323
Val Gly Thr Gln Gly Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
Tyr Glu Thr Gly
           20
<210> 324
<211> 20
<212> PRT
<213> Artificial Sequence
```

```
<220>
<223> Myostatin Binding Peptide
<400> 324
Pro Tyr Glu Gln Gly Lys Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                   10
Tyr Glu Val Glu
            20
<210> 325
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 325
Ser Glu Tyr Gln Gly Leu Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                   10
Gln Gly Trp Lys
<210> 326
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 326
Thr Phe Ser Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                   10
Gln Gly Trp Gly
<210> 327
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 327
Pro Gly Ala His Asp His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
```

15

10

1

Gln Ser Arg Tyr <210> 328 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 328 Val Ala Glu Glu Trp His Cys Arg Arg Trp Pro Trp Met Cys Pro Pro 5 10 Gln Asp Trp Arg 20 <210> 329 <211> 20 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 329 Val Gly Thr Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro Gln Pro Ala Gly <210> 330 <211> 20 <212> PRT <213> Artificial Sequence <223> Myostatin Binding Peptide <400> 330 Glu Glu Asp Gln Ala His Cys Arg Ser Trp Pro Trp Met Cys Pro Pro 5 10 Gln Gly Trp Val . 20

```
<210> 331
<211> 20
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 331
 Ala Asp Thr Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                5
                                    10
 Gln His Trp Phe
            20
 <210> 332
 <211> 20
 <212> PRT
<213> Artificial Sequence
 <220>
<223> Myostatin Binding Peptide
 <400> 332
Ser Gly Pro Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Ala Pro
                                    10
                                                       15
Gln Gly Trp Phe
<210> 333
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 333
Thr Leu Val Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
             5
                                                      15
Gln Arg Trp Val
           20
<210> 334
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

```
<400> 334
 Gly Met Ala His Gly Lys Cys Thr Arg Trp Ala Trp Met Cys Pro Pro
                5
                     10
 Gln Ser Trp Lys
            20
<210> 335
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 335
Glu Leu Tyr His Gly Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                5
                                    10
Gln Ser Trp Ala
            20
<210> 336
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 336
Val Ala Asp His Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                   10
Gln Gly Trp Gly
<210> 337
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 337
Pro Glu Ser Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
1
               5
                                   10
```

```
Gln Gly Trp Gly
             20
 <210> 338
 <211> 20
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 338
 Ile Pro Ala His Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                5
                                    10
 Gln Arg Trp Arg
            20
<210> 339
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 339
Phe Thr Val His Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                   10
Tyr Gly Trp Val
        20
<210> 340
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 340
Pro Asp Phe Pro Gly His Cys Thr Arg Trp Arg Trp Met Cys Pro Pro
               5
                                   10
Gln Gly Trp Glu
           20
<210> 341
<211> 20
<212> PRT
```

```
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 341
 Gln Leu Trp Gln Gly Pro Cys Thr Gln Trp Pro Trp Met Cys Pro Pro
                5
                                    10
 Lys Gly Arg Tyr
            20
<210> 342
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 342
His Ala Asn Asp Gly His Cys Thr Arg Trp Gln Trp Met Cys Pro Pro
                5
                                   10
Gln Trp Gly Gly
<210> 343
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 343
Glu Thr Asp His Gly Leu Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
Tyr Gly Ala Arg
<210> 344
<211> 20
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 344
```

```
Gly Thr Trp Gln Gly Leu Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                    10
 Gln Gly Trp Gln
 <210> 345
 <211> 20
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 345
 Val Ala Thr Gln Gly Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                                    10
 Gln Gly Trp Gly
  . 20
<210> 346
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 346
Val Ala Thr Gln Gly Gln Cys Thr Arg Trp Pro Trp Met Cys Pro Pro
                        10
Gln Arg Trp Gly
  20
<210> 347
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 347
Gln Arg Glu Trp Tyr Pro Cys Tyr Gly Gly His Leu Trp Cys Tyr Asp
               5
                                   10
Leu His Lys Ala
           20
```

88

```
<210> 348
 <211> 20
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 348
 Ile Ser Ala Trp Tyr Ser Cys Tyr Ala Gly His Phe Trp Cys Trp Asp
 Leu Lys Gln Lys
            20
 <210> 349
 <211> 20
 <212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 349
Trp Thr Gly Trp Tyr Gln Cys Tyr Gly Gly His Leu Trp Cys Tyr Asp
                                   10
                                                       15
Leu Arg Arg Lys
            20
<210> 350
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 350
Lys Thr Phe Trp Tyr Pro Cys Tyr Asp Gly His Phe Trp Cys Tyr Asn
Leu Lys Ser Ser
           20
<210> 351
<211> 20
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Myostatin Binding Peptide
  <400> 351
  Glu Ser Arg Trp Tyr Pro Cys Tyr Glu Gly His Leu Trp Cys Phe Asp
 Leu Thr Glu Thr
 <210> 352
 <211> 10
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <220>
 <221> MISC_FEATURE
 <222> (2)..(3)
 <223> Xaa is selected from a neutral hydrophobic, neutral polar, or
       basic amino acid
 <220>
 <221> MISC_FEATURE
 <222> (5)..(5)
 <223> Xaa is selected from a neutral hydrophobic, neutral polar, or
       basic amino acid
 <400> 352
Cys Xaa Xaa Trp Xaa Trp Met Cys Pro Pro
              5
<210> 353
<211> 10
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<220>
<221> MISC_FEATURE
<222> (2)..(2)
<223> Xaa is selected from any one of the amino acids T, I, or R.
<220>
<221> MISC_FEATURE
<222> (3)..(3)
<223> Xaa is selected from any one of R, S, Q.
<220>
<221> MISC_FEATURE
<222> (5)..(5)
```

```
<223> Xaa is selected from any one of P, R, and Q.
  <400> 353
  Cys Xaa Xaa Trp Xaa Trp Met Cys Pro Pro
                 5
  <210> 354
  <211> 20
  <212> PRT
  <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <220>
 <221> MISC_FEATURE
 <222>
        (1)..(1)
 <223> Xaa is absent or any amino acid
 <220>
 <221> MISC_FEATURE
 <222> (2)..(3)
 <223> Xaa is absent or a neutral hydrophobic, neutral polar, or acidic
        amino acid
 <220>
 <221> MISC_FEATURE
 <222> (4)..(4)
 <223> Xaa is absent or any amino acid
 <220>
 <221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is absent or a neutral hydrophobic, neutral polar, or acidic
       amino acid
                         . .
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa is absent or a neutral hydrophobic, neutral polar, or basic
       amino acid
<220>
<221> MISC_FEATURE
<222> (8)..(9)
<223> Xaa is a neutral hydrophobic, neutral polar, or basic amino acid
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Xaa is a neutral hydrophobic, neutral polar, or basic amino acid
<220>
<221> MISC_FEATURE
<222> .(17)..(20)
<223> Xaa is any amino acid
<400> 354
```

```
Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Trp Xaa Trp Met Cys Pro Pro
                5
                                    10
 Xaa Xaa Xaa Xaa
            20
 <210> 355
 <211> 20
<212> PRT
 <213> Artificial Sequence
 <220>
<223> Myostatin Binding Peptide
<220>
<221> MISC_FEATURE
 <222> (1)..(1)
<223> Xaa is absent or any amino acid
<220>
<221> MISC_FEATURE
<222> (2)..(3)
<223> Xaa is absent or a neutral hydrophobic, neutral polar, or acidic
       amino acid
<220>
<221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa is absent or any amino acid
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is absent or a neutral hydrophobic, neutral polar, or acidic
       amino acid
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa is absent or a neutral hydrophobic, neutral polar, or basic
       amino acid
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Xaa is selected from any one of the amino acids T, I, or R
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Xaa is selected from any one of R, S, Q
<220>
<221> MISC_FEATURE
<222> (11)..(11)
<223> Xaa is selected from any one of P, R and Q
```

```
<220>
   <221> MISC_FEATURE
   <222> (17)..(20)
<223> Xaa is any amino acid
   <400> 355
   Xaa Xaa Xaa Xaa Xaa Cys Xaa Xaa Trp Xaa Trp Met Cys Pro Pro
                    5 . 10
   Xaa Xaa Xaa Xaa
                20
   <210> 356
   <211> 7
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> Myostatin Binding Peptide
   <220>
   <221> MISC_FEATURE
  <222> (3)..(3)
<223> Xaa is P,S or Y
   <220>
  <221> MISC_FEATURE
<222> (4)..(4)
<223> Xaa is C or Q
  <220>
<221> MISC_FEATURE
  <222> (6)..(6)
  <223> Xaa is G or H
  <400> 356
  Trp Tyr Xaa Xaa Tyr Xaa Gly
  <210> 357
  <211> 22
<212> PRT
<213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 357
  Arg Met Glu Met Leu Glu Ser Leu Leu Glu Leu Leu Lys Glu Ile Val
                   5
                                        10
  Pro Met Ser Lys Ala Gly
```

93

20

```
<210> 358
<211> 22
<212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
 <400> 358
 Arg Met Glu Met Leu Glu Ser Leu Leu Glu Leu Lys Glu Ile Val
                             10
 Pro Met Ser Lys Ala Arg
            20
 <210> 359
<211> 22
 <212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 359
Arg Met Glu Met Leu Glu Ser Leu Leu Glu Leu Leu Lys Asp Ile Val
Pro Met Ser Lys Pro Ser
  20
<210> 360
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 360
Gly Met Glu Met Leu Glu Ser Leu Phe Glu Leu Leu Gln Glu Ile Val
     5
Pro Met Ser Lys Ala Pro
           20
<210> 361
<211> 22
<212> PRT
<213> Artificial Sequence
```

```
<220>
 <223> Myostatin Binding Peptide
 <400> 361
 Arg Met Glu Met Leu Glu Ser Leu Leu Glu Leu Leu Lys Asp Ile Val
                 5
 Pro Ile Ser Asn Pro Pro
 <210> 362
<211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 362
Arg Ile Glu Met Leu Glu Ser Leu Leu Glu Leu Gln Glu Ile Val
                 5
                                      10
Pro Ile Ser Lys Ala Glu
            20
<210> 363
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 363
Arg Met Glu Met Leu Gln Ser Leu Leu Glu Leu Leu Lys Asp Ile Val
                                    10
Pro Met Ser Asn Ala Arg
            20
<210> 364
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 364
Arg Met Glu Met Leu Glu Ser Leu Leu Glu Leu Leu Lys Glu Ile Val
                5
```

```
Pro Thr Ser Asn Gly Thr
 <210> 365
<211> 22
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 365
 Arg Met Glu Met Leu Glu Ser Leu Phe Glu Leu Leu Lys Glu Ile Val
                                     10
 Pro Met Ser Lys Ala Gly
            20
 <210> 366
 <211> 22
 <212> PRT
 <213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 366
Arg Met Glu Met Leu Gly Ser Leu Leu Glu Leu Leu Lys Glu Ile Val
Pro Met Ser Lys Ala Arg
   20
<210> 367
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 367
Gln Met Glu Leu Leu Asp Ser Leu Phe Glu Leu Leu Lys Glu Ile Val
                5
Pro Lys Ser Gln Pro Ala
            20
<210> 368
```

96

```
<211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 368
Arg Met Glu Met Leu Asp Ser Leu Leu Glu Leu Leu Lys Glu Ile Val
                 5
Pro Met Ser Asn Ala Arg
    20
<210> 369
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
Arg Met Glu Met Leu Glu Ser Leu Leu Glu Leu Leu His Glu Ile Val
                 5
                             10
Pro Met Ser Gln Ala Gly
            20
<210> 370
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 370
Gln Met Glu Met Leu Glu Ser Leu Leu Gln Leu Leu Lys Glu Ile Val
                                 10
Pro Met Ser Lys Ala Ser
            20
<210> 371
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

<400> 371

Arg Met Glu Met Leu Asp Ser Leu Leu Glu Leu Leu Lys Asp Met Val

Pro Met Thr Thr Gly Ala 20

<210> 372 <211> 22 <212> PRT <213> Artificial Sequence

<220>

<223> Myostatin Binding Peptide

<400> 372

Arg Ile Glu Met Leu Glu Ser Leu Leu Glu Leu Lys Asp Met Val 10

Pro Met Ala Asn Ala Ser 20

<210> 373 <211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> Myostatin Binding Peptide

<400> 373

Arg Met Glu Met Leu Glu Ser Leu Leu Gln Leu Leu Asn Glu Ile Val 10

Pro Met Ser Arg Ala Arg 20

<210> 374

<211> 22

<212> PRT

<213> Artificial Sequence

<220>

<223> Myostatin Binding Peptide

<400> 374

Arg Met Glu Met Leu Glu Ser Leu Phe Asp Leu Leu Lys Glu Leu Val 5

Pro Met Ser Lys Gly Val

20

```
<210> 375
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 Arg Ile Glu Met Leu Glu Ser Leu Leu Glu Leu Leu Lys Asp Ile Val
 1
               5
                   10
 Pro Ile Gln Lys Ala Arg
           20
<210> 376
 <211> 22
 <212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 376
Arg Met Glu Leu Leu Glu Ser Leu Phe Glu Leu Leu Lys Asp Met Val
1 5 10
Pro Met Ser Asp Ser Ser
           20
<210> 377
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 377
Arg Met Glu Met Leu Glu Ser Leu Leu Glu Val Leu Gln Glu Ile Val
       5
Pro Arg Ala Lys Gly Ala
<210> 378
<211> 22
<212> PRT
<213> Artificial Sequence
```

```
<220>
 <223> Myostatin Binding Peptide
 <400> 378
 Arg Met Glu Met Leu Asp Ser Leu Leu Gln Leu Leu Asn Glu Ile Val
                5
                                   10
 Pro Met Ser His Ala Arg
            20
 <210> 379
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 379
Arg Met Glu Met Leu Glu Ser Leu Leu Glu Leu Leu Lys Asp Ile Val
                                  10
 Pro Met Ser Asn Ala Gly
    20 ·
<210> 380
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 380
Arg Met Glu Met Leu Gln Ser Leu Phe Glu Leu Leu Lys Gly Met Val
     5
                     10
Pro Ile Ser Lys Ala Gly
           20
<210> 381
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 381
Arg Met Glu Met Leu Glu Ser Leu Leu Glu Leu Leu Lys Glu Ile Val
```

15,

10

5

1

Pro Asn Ser Thr Ala Ala 20 <210> 382
<211> 22
<212> PRT
<213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 382 Arg Met Glu Met Leu Gln Ser Leu Leu Glu Leu Leu Lys Glu Ile Val 5 10 Pro Ile Ser Lys Ala Gly 20 <210> 383 <211> 22 <212> PRT <213> Artificial Sequence <223> Myostatin Binding Peptide <400> 383 Arg Ile Glu Met Leu Asp Ser Leu Leu Glu Leu Leu Asn Glu Leu Val 5 Pro Met Ser Lys Ala Arg 20 <210> 384 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 384 Gln Val Glu Ser Leu Gln Gln Leu Leu Met Trp Leu Asp Gln Lys Leu 5 10 Ala Ser Gly Pro Gln Gly 20

```
<210> 385
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 385
 Arg Met Glu Leu Leu Glu Ser Leu Phe Glu Leu Leu Lys Glu Met Val
                               10
 Pro Arg Ser Lys Ala Val
            20
 <210> 386
<211> 22
 <212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 386
Gln Ala Val Ser Leu Gln His Leu Leu Met Trp Leu Asp Gln Lys Leu
                         10
Ala Ser Gly Pro Gln His
           20
<210> 387
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 387
Asp Glu Asp Ser Leu Gln Gln Leu Leu Met Trp Leu Asp Gln Lys Leu
               5
Ala Ser Gly Pro Gln Leu
           20 .
<210> 388
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

```
<400> 388
 Pro Val Ala Ser Leu Gln Gln Leu Leu Ile Trp Leu Asp Gln Lys Leu
                 5
                           10
Ala Gln Gly Pro His Ala
             20
<210> 389
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 389
Glu Val Asp Glu Leu Gln Gln Leu Leu Asn Trp Leu Asp His Lys Leu
                5
                                                         15
Ala Ser Gly Pro Leu Gln
            20
<210> 390
<211> 22
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 390
Asp Val Glu Ser Leu Glu Gln Leu Leu Met Trp Leu Asp His Gln Leu
Ala Ser Gly Pro His Gly
            20
<210> 391
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 391
Gln Val Asp Ser Leu Gln Gln Val Leu Leu Trp Leu Glu His Lys Leu
                                    10
```

```
Ala Leu Gly Pro Gln Val
             20
 <210> 392
<211> 22
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 392
 Gly Asp Glu Ser Leu Gln His Leu Leu Met Trp Leu Glu Gln Lys Leu
 Ala Leu Gly Pro His Gly
<210> 393
 <211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 393
Gln Ile Glu Met Leu Glu Ser Leu Leu Asp Leu Leu Arg Asp Met Val
Pro Met Ser Asn Ala Phe
    20
<210> 394
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 394
Glu Val Asp Ser Leu Gln Gln Leu Leu Met Trp Leu Asp Gln Lys Leu
                5
Ala Ser Gly Pro Gln Ala
           20
<210> 395
<211> 22
<212> PRT
```

```
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 395
 Glu Asp Glu Ser Leu Gln Ġln Leu Leu Ile Tyr Leu Asp Lys Met Leu
                      10
 Ser Ser Gly Pro Gln Val
             20
<210> 396
<211> 22
<212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
<400> 396
Ala Met Asp Gln Leu His Gln Leu Leu Ile Trp Leu Asp His Lys Leu
                5
                                   10
                                                        15
Ala Ser Gly Pro Gln Ala
            20
<210> 397
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 397
Arg Ile Glu Met Leu Glu Ser Leu Leu Glu Leu Leu Asp Glu Ile Ala
                                  10
Leu Ile Pro Lys Ala Trp
            20
<210> 398
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 398
```

```
Glu Val Val Ser Leu Gln His Leu Leu Met Trp Leu Glu His Lys Leu
         5
 Ala Ser Gly Pro Asp Gly
            20
<210> 399
<211> 22
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 399
Gly Glu Ser Leu Gln Gln Leu Leu Met Trp Leu Asp Gln Gln Leu
              5
                                   10
Ala Ser Gly Pro Gln Arg
            20
<210> 400
<211> 22
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 400
Gly Val Glu Ser Leu Gln Gln Leu Leu Ile Phe Leu Asp His Met Leu
Val Ser Gly Pro His Asp
          20
<210> 401
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 401
Asn Val Glu Ser Leu Glu His Leu Met Met Trp Leu Glu Arg Leu Leu
                        10
Ala Ser Gly Pro Tyr Ala
           20
```

```
<210> 402
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 402
 Gln Val Asp Ser Leu Gln Gln Leu Leu Ile Trp Leu Asp His Gln Leu
               5
                  10
 Ala Ser Gly Pro Lys Arg
            20
<210> 403
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 403
Glu Val Glu Ser Leu Gln Gln Leu Leu Met Trp Leu Glu His Lys Leu
1 5
                                                    15
Ala Gln Gly Pro Gln Gly
<210> 404
<211> 22
<212> PRT
<213> Artificial Sequence
<223> Myostatin Binding Peptide
<400> 404
Glu Val Asp Ser Leu Gln Gln Leu Leu Met Trp Leu Asp Gln Lys Leu
                                 10
Ala Ser Gly Pro His Ala
           20
<210> 405
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Myostatin Binding Peptide
 <400> 405
 Glu Val Asp Ser Leu Gln Gln Leu Leu Met Trp Leu Asp Gln Gln Leu
                                    10
 Ala Ser Gly Pro Gln Lys
             20
 <210> 406
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 406
 Gly Val Glu Gln Leu Pro Gln Leu Leu Met Trp Leu Glu Gln Lys Leu
                                     10
 Ala Ser Gly Pro Gln Arg
             20
<210> 407
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
 <400> 407
Gly Glu Asp Ser Leu Gln Gln Leu Leu Met Trp Leu Asp Gln Gln Leu
                                    10
Ala Ala Gly Pro Gln Val
           20
<210> 408
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 408
Ala Asp Asp Ser Leu Gln Gln Leu Leu Met Trp Leu Asp Arg Lys Leu
                5
```

```
Ala Ser Gly Pro His Val
              20
 <210> 409
  <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 409
 Pro Val Asp Ser Leu Gln Gln Leu Leu Ile Trp Leu Asp Gln Lys Leu
                 5
                                     10
 Ala Ser Gly Pro Gln Gly
   . 20
 <210> 410
<211> 22
<212> PRT
<213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 410
Asp Trp Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Glu Gly
Leu Gly Asp Asn Leu Val
<210> 411
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 411
Gln Ser Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Glu Gly
                                  10
Leu Gly Asp Lys Gln Ala
            20
<210> 412
<211> 22
```

```
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 412
 Asp Gly Arg Ala Thr Leu Leu Thr Glu Phe Trp Gln Leu Val Gln Gly
 Leu Gly Gln Lys Glu Ala
 <210> 413
 <211> 22
 <212> PRT
 <213> Artificial Sequence
<223> Myostatin Binding Peptide
 <400> 413
Leu Ala Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Glu Gly
                                    10
Leu Gly Glu Lys Val Val
          20
<210> 414
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 414
Gly Ser Arg Asp Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Val Gly
              5
                            10
Leu Gly Asp Met Gln Thr
       20
<210> 415
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 415
```

```
Asp Ala Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Asp Ala
 Tyr Gly Asp Arg Met Val
             20
 <210> 416
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 Asn Asp Arg Ala Gln Leu Leu Arg Asp Phe Trp Gln Leu Val Asp Gly
                 5
                                      10
 Leu Gly Val Lys Ser Trp
             20 .
<210> 417
<211> 22
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 417
Gly Val Arg Glu Thr Leu Leu Tyr Glu Leu Trp Tyr Leu Leu Lys Gly
                 5
                                     10
Leu Gly Ala Asn Gln Gly
            20
<210> 418
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 418
Gln Ala Arg Ala Thr Leu Leu Lys Glu Phe Cys Gln Leu Val Gly Cys
Gln Gly Asp Lys Leu Ser
            20
```

```
<210> 419
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 419
 Gln Glu Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Ala Gly
Leu Gly Gln Asn Met Arg
            20
<210> 420
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 420
Ser Gly Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Gln Gly
Leu Gly Glu Tyr Arg Trp
<210> 421
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 421
Thr Met Arg Ala Thr Leu Leu Lys Glu Phe Trp Leu Phe Val Asp Gly
Gln Arg Glu Met Gln Trp
<210> 422
<211> 22
<212> PRT
<213> Artificial Sequence
```

```
<220>
 <223> Myostatin Binding Peptide
 Gly Glu Arg Ala Thr Leu Leu Asn Asp Phe Trp Gln Leu Val Asp Gly
                 5
                      10
 Gln Gly Asp Asn Thr Gly
             20
 <210> 423
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 423
 Asp Glu Arg Glu Thr Leu Leu Lys Glu Phe Trp Gln Leu Val His Gly
                 5
                                    10
 Trp Gly Asp Asn Val Ala
            20
<210> 424
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 424
Gly Gly Arg Ala Thr Leu Leu Lys Glu Leu Trp Gln Leu Leu Glu Gly
                                10
Gln Gly Ala Asn Leu Val
            20
<210> 425
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 425
Thr Ala Arg Ala Thr Leu Leu Asn Glu Leu Val Gln Leu Val Lys Gly
                                    10
                5
```

```
Tyr Gly Asp Lys Leu Val
            20
 <210> 426
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
<400> 426
Gly Met Arg Ala Thr Leu Leu Gln Glu Phe Trp Gln Leu Val Gly Gly
Gln Gly Asp Asn Trp Met
<210> 427
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 427
Ser Thr Arg Ala Thr Leu Leu Asn Asp Leu Trp Gln Leu Met Lys Gly
                                  10
Trp Ala Glu Asp Arg Gly
          20
<210> 428
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 428
Ser Glu Arg Ala Thr Leu Leu Lys Glu Leu Trp Gln Leu Val Gly Gly
               5
                      10
Trp Gly Asp Asn Phe Gly
           20
<210> 429
```

```
<211> 22
   <212> PRT
   <213> Artificial Sequence
   <220>
   <223> Myostatin Binding Peptide
   <400> 429
  Val Gly Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Glu Gly
                       10
  Leu Val Gly Gln Ser Arg
              20
  <210> 430
  <211> 22
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 430
  Glu Ile Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Asp Glu
  Trp Arg Glu Gln Pro Asn
             20
<210> 431
  <211> 22
  <212> PRT
  <213> Artificial Sequence .
  <220>
  <223> Myostatin Binding Peptide
  <400> 431
 Gln Leu Arg Ala Thr Leu Leu Lys Glu Phe Leu Gln Leu Val His Gly
                5
 Leu Gly Glu Thr Asp Ser
             20
 <210> 432
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
```

<400> 432 Thr Gln Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Ile Glu Gly Leu Gly Gly Lys His Val 20 <210> 433 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 433 His Tyr Arg Ala Thr Leu Leu Lys Glu Phe Trp Gln Leu Val Asp Gly 10 Leu Arg Glu Gln Gly Val 20 <210> 434 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 434 Gln Ser Arg Val Thr Leu Leu Arg Glu Phe Trp Gln Leu Val Glu Ser 10 Tyr Arg Pro Ile Val Asn 20 <210> 435 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 435

Gln Arg Asp Lys Arg Met

5

Leu Ser Arg Ala Thr Leu Leu Asn Glu Phe Trp Gln Phe Val Asp Gly

20

```
<210> 436
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 Trp Asp Arg Ala Thr Leu Leu Asn Asp Phe Trp His Leu Met Glu Glu
                5
                     10
 Leu Ser Gln Lys Pro Gly
            20
 <210> 437
 <211> 22
<212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 437
Gln Glu Arg Ala Thr Leu Leu Lys Glu Phe Trp Arg Met Val Glu Gly
    5
Leu Gly Lys Asn Arg Gly
           20
<210> 438
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 438
Asn Glu Arg Ala Thr Leu Leu Arg Glu Phe Trp Gln Leu Val Gly Gly
               5
Tyr Gly Val Asn Gln Arg
           20
<210> 439
<211> 22
<212> PRT
<213> Artificial Sequence
```

```
<220>
  <223> Myostatin Binding Peptide
 <400> 439
 His Gln Arg Asp Met Ser Met Leu Trp Glu Leu Leu Asp Val Leu Asp
 Gly Leu Arg Gln Tyr Ser
              20
 <210> 440
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 440
 Thr Gln Arg Asp Met Ser Met Leu Asp Gly Leu Leu Glu Val Leu Asp
                                  10
 Gln Leu Arg Gln Gln Arg
             20
<210> 441
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 441
Thr Ser Arg Asp Met Ser Leu Leu Trp Glu Leu Leu Glu Glu Leu Asp
                                    10
Arg Leu Gly His Gln Arg
            20
<210> 442
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 442
Met Gln His Asp Met Ser Met Leu Tyr Gly Leu Val Glu Leu Leu Glu
```

1 5 10 15 Ser Leu Gly His Gln Ile 20 <210> 443 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 443 Trp Asn Arg Asp Met Arg Met Leu Glu Ser Leu Phe Glu Val Leu Asp 5 10 Gly Leu Arg Gln Gln Val 20 <210> 444 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 444 Gly Tyr Arg Asp Met Ser Met Leu Glu Gly Leu Leu Ala Val Leu Asp Arg Leu Gly Pro Gln Leu <210> 445 <211> 22 <212> PRT <213> Artificial Sequence <220> <223> Myostatin Binding Peptide <400> 445 Thr Gln Arg Asp Met Ser Met Leu Glu Gly Leu Leu Glu Val Leu Asp 5 10 Arg Leu Gly Gln Gln Arg ` 20

```
<210> 446
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 446
 Trp Tyr Arg Asp Met Ser Met Leu Glu Gly Leu Leu Glu Val Leu Asp
                5
                     . 10
 Arg Leu Gly Gln Gln Arg
            20
 <210> 447
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 447
Thr Gln Asn Ser Arg Gln Met Leu Leu Ser Asp Phe Met Met Leu Val
                                  10
Gly Ser Met Ile Gln Gly
           20
<210> 448
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<400> 448
Met Gln Thr Ser Arg His Ile Leu Leu Ser Glu Phe Met Met Leu Val
     5
Gly Ser Ile Met His Gly
<210> 449
<211> 22
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
```

```
<400> 449
   His Asp Asn Ser Arg Gln Met Leu Leu Ser Asp Leu Leu His Leu Val
                             10
   Gly Thr Met Ile Gln Gly
               20
   <210> 450
   <211> 22
   <212> PRT
   <213> Artificial Sequence
   <223> Myostatin Binding Peptide
   <400> 450
   Met Glu Asn Ser Arg Gln Asn Leu Leu Arg Glu Leu Ile Met Leu Val
                   5
                                       10
   Gly Asn Met Ser His Gln
              20
   <210> 451
   <211> 22
   <212> PRT
   <213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 451
  Gln Asp Thr Ser Arg His Met Leu Leu Arg Glu Phe Met Met Leu Val
                                      10
  Gly Glu Met Ile Gln Gly
       20
<210> 452
<211> 22
<212> PRT
<213> Artificial Sequence
  <220>
  <223> Myostatin Binding Peptide
  <400> 452
  Asp Gln Asn Ser Arg Gln Met Leu Leu Ser Asp Leu Met Ile Leu Val
```

```
Gly Ser Met Ile Gln Gly
 <210> 453
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Myostatin Binding Peptide
 <400> 453
 Asn Val Phe Phe Gln Trp Val Gln Lys His Gly Arg Val Val Tyr Gln
 Trp Leu Asp Ile Asn Val
             20
 <210> 454
 <211> 22
 <212> PRT
 <213> Artificial Sequence
 <220>
<223> Myostatin Binding Peptide
 <400> 454
Phe Asp Phe Leu Gln Trp Leu Gln Asn His Arg Ser Glu Val Glu His
                                     10
Trp Leu Val Met Asp Val
            20
<210> 455
<211> 11
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa is M or I
<220>
<221> MISC_FEATURE
<222> (5)..(5)
<223> Xaa is any amino acid
<220>
<221> MISC_FEATURE
```

```
<222> (8)..(8)
<223> Xaa is L or F
 <220>
 <221> MISC_FEATURE
 <222> (9)..(9)
<223> Xaa is E, Q or D
 <400> 455
 Xaa Glu Met Leu Xaa Ser Leu Xaa Xaa Leu Leu
 <210> 456
 <211> 8
 <212> PRT
 <213> Artificial Sequence
 <223> Myostatin Binding Peptide
 <220>
 <221> MISC_FEATURE
 <222> (2)..(2)
 <223> Xaa is Q, D or E
<220>
 <221> MİSC_FEATURE
<222> (3)..(3)
<223> Xaa is S, Q, D or E
<220>
<221> MISC_FEATURE
<222> (6)..(6)
<223> Xaa is any amino acid
<220>
<221> MISC_FEATURE
<222> (7)..(7)
<223> Xaa is L, W, F or Y
<400> 456
Leu Xaa Xaa Leu Leu Xaa Xaa Leu
                5
<210> 457
<211> 9
<212> PRT
<213> Artificial Sequence
<220>
<223> Myostatin Binding Peptide
<220>
<221> MISC_FEATURE
<222> (1)..(1)
```

```
<223> Xaa is R or D
 <220>
 <221> MISC_FEATURE
 <222> (2)..(2)
<223> Xaa is any amino acid
 <220>
 <221> MISC_FEATURE
 <222> (3)..(3)
<223> Xaa is A, T, S or Q
 <220>
 <221> MISC_FEATURE
 <222> (4)..(4)
 <223> Xaa is L or M
 <220>
 <221> MISC_FEATURE
 <222> (5)..(5)
 <223> Xaa is L or S
 <220>
 <221> MISC_FEATURE
 <222> (6)..(6)
 <223> Xaa is any amino acid
 <220>
 <221> MISC_FEATURE
 <222> (7)..(7)
<223> Xaa is F or E
<220>
<221> MISC_FEATURE
<222> (8)..(8)
<223> Xaa is W, F or C
<220>
<221> MISC_FEATURE
<222> (9)..(9)
<223> Xaa is L, F, M or K
<400> 457
Xaa Xaa Xaa Xaa Xaa Xaa Xaa
     5
<210> 458
<211> 66
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
cgtatggaaa tgcttgaatc tcttcttgaa cttcttaaag aaattgttcc aatgtctaaa
                                                                     60
gctggt
                                                                     66
```

<210>	459	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
	<u>-</u>	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	material bedachee encoding Myoscatin Binding Peptide	
<400>	459	
cytati	ggaaa tgcttgaatc tcttcttgaa cttcttaaag aaattgttcc aatgtctaaa	60
gctcgt	•	66
<210>		
<211>	66	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	manager and another my obtaclin binding reputae	
<400>	460	
cgcacg	gaaa tgcttgaatc tcttcttgaa cttcttaaag atattgttcc aatgtctaaa	60
ccatat		
ccatct	•	66
		•
<210>	461	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	a seed the seed of	
<400>	461	
	gaaa tgcttgaatc tctttttgaa cttcttcaag aaattgttcc aatgtctaaa	
33 - 449	gada egotegade ecetetigaa ettetteaag aaattgttee aatgtetaaa	60
gctcca		
gutuda		66
-010:	460	
<210>	462	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	and the second of the second second second second	
<400>	462	
_		
-g ca cgs	gaaa tgcttgaatc tcttcttgaa cttcttaaag atattgttcc aatttctaat	60
cacca		66
:210>	463	
:211>	66	
212>	DNA	
.213~	Artificial Company	

<220	>	
<223	Nucleotide sequence encoding Myostatin Binding Peptide	
	1 - Joseph Binding Peptide	
<400	> 463	
cgtai	tgaaa tgcttgaatc tcttcttgaa cttcttcaag aaattgttcc aatttctaaa	۲۵
		60
gctga	aa	
		66
<210>	· 464	
<211>	• 66	
<212>		
<213>	Artificial Sequence	
<220>	· · · · · · · · · · · · · · · · · · ·	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
400	•	
<400>		
cgtat	ggaaa tgcttcaatc tcttcttgaa cttcttaaag atattgttcc aatgtctaat	60
gctcg	τ	66
<210>	ACE	
<211>		
<211>		
<213>		
72132	Artificial Sequence	
<220>		
<223>		
	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	465	
	ggaaa tgcttgaatc tcttcttgaa cttcttaaag aaattgttcc aacttctaat	
•	osama osama de cercergaa errettaaag aaattgitee aacttetaat	60
ggtact		
		66
<210>	466	,
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	•	
<400>	466	
cgtatg	gaaa tgcttgaatc tctttttgaa cttcttaaag aaattgttcc aatgtctaaa	60
gctggt		66
-210-	467	
<210> <211>	467	
<211>	66 DNA	
<212>	DNA Artificial Company	
~4137	Artificial Sequence	
<220>		
<223>	Nucleotido comongo oncesto	
- 62 43 -	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	467	
	,	

cgtat	ggaaa tgcttggttc tcttcttgaa cttcttaaag aaattgttcc aatgtctaaa	60
gctcg	t	66
		00
<210>	468	
<211>	66	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	468	
caaat	ggaac ttcttgattc tctttttgaa cttcttaaag aaattgttcc aaaatctcaa	60
ccagct	•	
		66
<210>	460	
<211>		
<212>	- 	
<213>		
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	made bequence encoding Myostatin Binding Peptide	
<400>	469	
cgtatg	gaaa tgcttgattc tcttcttgaa cttcttaaag aaattgttcc aatgtctaat	60
gctcgt		66
<210>	470	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>	•	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	470	
	gaaa tgcttgaatc tcttcttgaa cttcttcatg aaattgttcc aatgtctcaa	60
gctggt		66
<210>	471	
<211> <212>	66 Data	
<213>	DNA Artificial Sequence	
-0.20	-morriotar pedacucs	
<220>		•
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	471	
caaatg	gaaa tgcttgaatc tcttcttcaa cttcttaaag aaattgttcc aatgtctaaa	60
gcttct		~~
,		66

<210>	472	
<211>	· 66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	1	
<400>	472	•
cgtat	ggaaa tgcttgattc tcttcttgaa cttcttaaag atatggttcc aatgactact	60
	5	00
ggtgc	t	66
		00
<210>		
<211>		
<212>	= - 	
<213>	Artificial Sequence	
-200-		
<220>	17	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	472	
	473	
cytati	gaaa tgcttgaatc tcttcttgaa cttcttaaag atatggttcc aatggctaat	60
acttat		
gcttct	•	- 66
<210>	47.4	
<211>		
<212>		
<213>		
-225-	ratificial pedreuce	
<220>	·	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	bounds bounded encouring myostatin Binding Peptide	
<400>	474	
cgtatg	gaaa tgcttgaatc tcttcttcaa cttcttaatg aaattgttcc aatgtctcgt	
•	saving to to to to to to to to to to to to to	60
gctcgt		
		66
	475	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
.466		
<400>	475	
cgtatgo	gaaa tgcttgaatc tctttttgat cttcttaaag aacttgttcc aatgtctaaa	60
	·	
ggtgtt		66
	·	
.010		
(210>	476	
(211>	66	
:212>	DNA	
213>	Artificial Sequence	

<220>	••	
<223>		
	5 1	
<400>		
cgtat	tgaaa tgcttgaatc tcttcttgaa cttcttaaag atattgttcc aattcaaaaa	60
	- Janes Gudanu	00
gctcg	t	66
<210>	477	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	477	
cgtate	ggaac ttettgaate tetttttgaa ettettaaag atatggttee aatgtetgat	60
		00
tcttct		66
		00
<210>	478	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
		•
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	478	
cgtatg	gaaa tgcttgaatc tcttcttgaa gttcttcaag aaattgttcc acgtgctaaa	60
ggtgct		66
	•	
<210>	479	
<211>`	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	479	
cgtatg	gaaa tgcttgattc tcttcttcaa cttcttaatg aaattgttcc aatgtctcat	60
gctcgt		66
-010-	400	
<210>	480	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
-000-		
:220>		
:223>	Nucleotide sequence encoding Myostatin Binding Peptide	
.400-	400	
400>	480	
gtatgo	gaaa tgcttgaatc tcttcttgaa cttcttaaag atattgttcc aatgtctaat	60

gctg	gt .	66
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
cgtat	ggaaa tgcttcaatc tctttttgaa cttcttaaag gtatggttcc aatttctaaa	60
gctgg	t .	66
	·	
<210>		
<211> <212>		
<213>		
\213 /	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
cgtate	ggaaa tgcttgaatc tcttcttgaa cttcttaaag aaattgttcc aaattctact	60
gctgc	=	66
	•	•••
<210>		
<211>		
<212> <213>		
~2132	Artificial Sequence	
<220>	·	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	483	
cgtatg	gaaa tgcttcaatc tcttcttgaa cttcttaaag aaattgttcc aatttctaaa	60
gctggt		66
		00
<210>	484	
<211>		
<212>	-	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
cgtatt	gaaa tgcttgattc tcttcttgaa cttcttaatg aacttgttcc aatgtctaaa	60
gctcgt		
- -		66
<210>	485	

<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
gattg	gcgtg ctactcttct taaagaattt tggcaacttg ttgaaggtct tggtgataat	60
cttgt	• · · · · · · · · · · · · · · · · · · ·	
occas		66
<210>	486	
<211>		
<212>		
<213>	· · · · · ·	
-010-	THE CALL OF A PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF THE PERSON OF T	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	massociate bequence encoding Myostatin Binding Peptide	
<400>	486	
gatggt	egtg ctactcttct tactgaattt tggcaacttg ttcaaggtct tggtcaaaaa	60
		60
gaagct	·	66
		00
<210>	487	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	server bequested shoulding hybriden binding repute	
<400>	487	
cttgct	cgtg ctactcttct taaagaattt tggcaacttg ttgaaggtct tggtgaaaaa	60
	5	80
gttgtt		66
		00
<210>	488	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
	• • • • • • • • • • • • • • • • • • • •	
<220>	·	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	" pringing reptide	
<400>	488	
gttct	egtg atactettet taaagaattt tggeaaettg ttgttggtet tggtgatatg	60
	o ver eggendoug degeleggeel lyglydlalg	90
aaact		66
		00
210>	489	
211>	66	
212>	DNA	
	Artificial Sequence	
-	,	
220>		

<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
gatgo	togtg ctactcttct taaagaattt tggcaacttg ttgatgctta tggtgatcgt	60
atggt	t	66
<210>	490	
<211>	66	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	·	
aatga	tcgtg ctcaacttct tcgtgatttt tggcaacttg ttgatggtct tggtgttaaa	60
tcttg	σ	
	•	66
4010-	401	
<210><211>		
<212>		
<213>		
4000		
<220> <223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	491	
	togtg aaactettet ttatgaactt tggtatette ttaaaggtet tggtgetaat	60
		00
caaggt		66
<210>	492	
<211> <212>	66 DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	492	
	cgtg ctactcttct taaagaattt tgtcaacttg ttggttgtca aggtgataaa	60
		00
ctttct		66
<210>	493	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
223>	Nucleotide sequence encoding Myostatin Binding Peptide	
. 4 0 0		
:400>	493	
.aayad	cgtg ctactcttct taaagaattt tggcaacttg ttgctggtct tggtcaaaat	60

. atgcg	rt	66
<210>	494	
<211>	66	
<212>		
<213>		
<220>		
<223>	see sequence shoulding hybride binding repulde	
<400>		
tctgg	tcgtg ctactcttct taaagaattt tggcaacttg ttcaaggtct tggtgaatat	60
cgttg	g	66
<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>	•	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	495	
	gegtg ctactettet taaagaattt tggetttttg ttgatggtea aegtgaaatg	60
caatg		66
<210>	496	
<211>		
<212>	= - 14 -	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	496	
ggtgaa	cgtg ctactcttct taatgatttt tggcaacttg ttgatggtca aggtgataat	60
actggt		66
~21A\	497	
<210> <211>	497	
<211> <212>	66 DNA	
<212>	DNA	
	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	497	
gatgaa	cgtg aaactcttct taaagaattt tggcaacttg ttcatggttg gggtgataat	60
gttgct		66
		90
<210>	498	
<211>		

<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	498	
ggtggt	regtg ctactettet taaagaactt tggcaactte ttgaaggtea aggtgetaat	60
		•
cttgtt		66
<210>	499	
<211>	66	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	499	
actgct	cgtg ctactcttct taatgaactt gttcaacttg ttaaaggtta tggtgataaa	60
cttgtt		66
<210>	500	
<211>	66	
<211>	DNA	
<213>		
' 213/	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	made bequence encouring myostatin binding reptide	
<400>	500	
ggtatg	cgtg ctactcttct tcaagaattt tggcaacttg ttggtggtca aggtgataat	60
-	5	00
tggatg		66
		00
<210>	501	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	501	
ctact	cgtg ctactcttct taatgatctt tggcaactta tgaaaggttg ggctgaagat	60
.~+~~+		
gtggt		66
210-	502	
(210>	502	
:211> :212>	66	
213>	DNA Artificial Company	
.213>	Artificial Sequence	
:220>		
	Nucleotide sequence encoding Myostatin Binding Peptide	
	macrootide sequence encouring myostatin Binding Peptide	

```
<400> 502
   totgaacgtg ctactcttct taaagaactt tggcaacttg ttggtggttg gggtgataat
                                                                        60
   tttggt
                                                                        66
   <210> 503
   <211> 66
   <212> DNA
   <213> Artificial Sequence
   <220>
   <223> Nucleotide sequence encoding Myostatin Binding Peptide
   <400> 503
  gttggtcgtg ctactcttct taaagaattt tggcaacttg ttgaaggtct tgttggtcaa
                                                                        60
   tctcgt
                                                                        66
  <210> 504
   <211> 62
  <212> PRT
  <213> Artificial Sequence
  <220>
  <223> Peptibody
  <220>
  <221> MISC_FEATURE
  <222> (62)..(62)
  <223> Xaa = Fc
<400> 504
  Met Gly Ala Gln Trp Tyr Pro Cys Tyr Glu Gly His Phe Trp Cys Tyr
                                     10
  Asp Leu Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser
              20
                                 25
 Ser Gly Ser Gly Ser Ala Thr Gly Trp Tyr Pro Cys Tyr Glu Gly His
                             40
  Phe Trp Cys Tyr Asp Leu Leu Glu Gly Gly Gly Gly Xaa
      50
 <210> 505
 <211> 129
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
```

```
<400> 505
 tggtatccgt gttatgaggg tcacttctgg tgctacgatc tgggttctgg ttccactgct
                                                                      60
 tettetggtt eeggtteege tactggttgg taccegtget acgaaggtea ettttggtgt
                                                                     120
 tatgatctg
                                                                     129
 <210> 506
 <211> 60
 <212> PRT
 <213> Artificial Sequence
<220>
<223> Peptibody
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa = Fc
<400> 506
Xaa Gly Gly Gly Gly Ala Gln Trp Tyr Pro Cys Tyr Glu Gly His
                                    10
                                                        15
Phe Trp Cys Tyr Asp Leu Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly
            20
                                25
Ser Thr Ala Ser Ser Gly Ser Gly Ser Ala Thr Gly Trp Tyr Pro Cys
                            40
Tyr Glu Gly His Phe Trp Cys Tyr Asp Leu Leu Glu
   50
                      55
<210> 507
<211> 129
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 507
tggtatccgt gttatgaggg tcacttctgg tgctacgatc tgggttctgg ttccactgct
                                                                     60
tettetggtt ceggtteege tactggttgg taccegtget acgaaggtea ettttggtgt
                                                                    120
tatgatctg
                                                                    129
<210> 508
<211> 62
<212> PRT
<213> Artificial Sequence
```

```
<220>
  <223> Peptibody
 <220>
 <221> MISC_FEATURE
 <222> (62)..(62)
 <223> Xaa = Fc
 <400> 508
 Met Gly Ala Gln Ile Phe Gly Cys Lys Trp Trp Asp Val Gln Cys Tyr
                5
                                     10
 Gln Phe Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser
                                25
 Ser Gly Ser Gly Ser Ala Thr Gly Ile Phe Gly Cys Lys Trp Trp Asp
        35
                            40
                                                45
 Val Gln Cys Tyr Gln Phe Leu Glu Gly Gly Gly Gly Xaa
                                            60
 <210> 509
 <211> 129
 <212> DNA
 <213> Artificial Sequence
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 509
atctttggct gtaaatggtg ggacgttcag tgctaccagt tcggttctgg ttccactgct
tcttctggtt ccggttccgc tactggtatc ttcggttgca agtggtggga tgtacagtgt
                                                                    120
tatcagttt
                                                                    129
<210> 510
<211> 60
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptibody
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa = Fc
<400> 510
Xaa Gly Gly Gly Gly Ala Gln Ile Phe Gly Cys Lys Trp Trp Asp
               5
                                   10
```

```
Val Gln Cys Tyr Gln Phe Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly
                                 25
 Ser Thr Ala Ser Ser Gly Ser Gly Ser Ala Thr Gly Ile Phe Gly Cys
Lys Trp Trp Asp Val Gln Cys Tyr Gln Phe Leu Glu
<210> 511
<211> 129
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 511
atctttggct gtaaatggtg ggacgttcag tgctaccagt tcggttctgg ttccactgct
                                                                      60
tcttctggtt ccggttccgc tactggtatc ttcggttgca agtggtggga tgtacagtgt
tatcagttt
                                                                     129
<210> 512
<211> 62
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptibody
<220>
<221> MISC_FEATURE
<222> (62)..(62)
<223> Xaa = Fc
<400> 512
Met Gly Ala Gln Ile Phe Gly Cys Lys Trp Trp Asp Val Asp Cys Tyr
                5
                               10
Gln Phe Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser
            20
                               25
Ser Gly Ser Gly Ser Ala Thr Gly Ile Phe Gly Cys Lys Trp Trp Asp
       35
                           40
Val Asp Cys Tyr Gln Phe Leu Glu Gly Gly Gly Gly Xaa
                       55
```

```
<210> 513
 <211> 129
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 513
 atctttggct gtaagtggtg ggacgttgac tgctaccagt tcggttctgg ttccactgct
                                                                       60
 tcttctggtt ccggttccgc tactggtatc ttcggttgca aatggtggga cgttgattgt
                                                                       120
 tatcagttt
                                                                       129
 <210> 514
 <211> 60
 <212> PRT
<213> Artificial Sequence
<220>
<223> Peptibody
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa = Fc
<400> 514
Xaa Gly Gly Gly Gly Ala Gln Ile Phe Gly Cys Lys Trp Trp Asp
Val Asp Cys Tyr Gln Phe Gly Ser Gly Ser Ala Thr Gly Gly Ser Gly
            20
                                25
Ser Thr Ala Ser Ser Gly Ser Gly Ser Ala Thr Gly Ile Phe Gly Cys
        35
Lys Trp Trp Asp Val Asp Cys Tyr Gln Phe Leu Glu
    50 ..
                 55
<210> 515
<211> 129
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 515
atctttggct gtaagtggtg ggacgttgac tgctaccagt tcggttctgg ttccactgct
                                                                       60
tcttctggtt ccggttccgc tactggtatc ttcggttgca aatggtggga cgttgattgt
                                                                     120
```

tatca	gttt .	129
<210>	516	
<211>	66	
<212>		
<213>		
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
caggt	tgaat ccctgcagca gctgctgatg tggctggacc agaaactggc ttccggtccg	60
caggg	E .	66
	,	
<210>	517	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	517	
cgtate	gaac tgctggaatc cctgttcgaa ctgctgaaag aaatggttcc gcgttccaaa	60
gctgtt		66
<210>	518	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	518	
caggct	gttt ccctgcagca cctgctgatg tggctggacc agaaactggc ttccggtccg	60
cagcac		66
<210>	519	
<211>	66	
<212>		
<213>		
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
-400-		
<400>	519	
gacgaa	gact ccctgcagca gctgctgatg tggctggacc agaaactggc ttccggtccg	60
cagctg		66
		00
<210>	520	

<211> <212> <213>	DNA Artificial Sequence	
<220> <223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	520	
ccggtt	gett ceetgeagea getgetgate tggetggace agaaactgge teagggteeg	60
cacgct		66
		00
<210>	521	
<211>		
<212>	•	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	521	
gaagtt	gacg aactgcagca gctgctgaac tggctggacc acaaactggc ttccggtccg	60
ctgcag		66
<210>	522	
<211>	66	
	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	522	
	gaat coctggaaca getgetgatg tggetggace accagetgge tteeggteeg	60
cacggt		
cacgge		66
<210>	523	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	523	
	pact cootgoagea ggttotgotg tggotggaac acaaactggo totgggtoog	60
aggtt	33	
-ugg L L		66
:210>	524	
	524 66	
	DNA	
	Artificial Sequence	
:220>		

<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	524	
ggtga	cgaat ceetgeagea eetgetgatg tggetggaae agaaaetgge tetgggteeg	60
cacggt		66
<210>	525	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	525	
cagato	gaaa tgctggaatc cctgctggac ctgctgcgtg acatggttcc gatgtccaac	60
gctttc	:	66
<210>	526	
<211>	66	
<212> <213>		
\213 >	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	526	
gaagtt	gact ccctgcagca gctgctgatg tggctggacc agaaactggc ttccggtccg	60
caggct		66
<210>	527	
<211>	66	
<212> <213>	DNA Artificial Company	
\213 >	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
gaagac	gaat coctgcagca gotgetgato tacotggaca aaatgotgto otooggtoog	60
caggtt		66
<210>	528	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
:220>		
:223>	Nucleotide sequence encoding Myostatin Binding Peptide	
:400>	528	
rctatgg	acc agctgcacca gctgctgatc tggctggacc acaaactggc ttccggtccg	60

caggc	t	66
<210>	529	
<211>		
<212>		
<213>	Artificial Sequence	
<220>	•	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	529	
cgtate	egaaa tgetggaate eetgetggaa etgetggaeg aaategetet gateeegaaa	60
gcttgg	J	66
<210>	530	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	530	
	gttt ccctgcagca cctgctgatg tggctggaac acaaactggc ttccggtccg	60
gacggt		66
<210>	531	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
.000-		
<220>	Your Track 2.	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	531	
ggtggt	gaat ccctgcagca gctgctgatg tggctggacc agcagctggc ttccggtccg	60
cagcgt		
ougogo		66
<210>	532	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
000		
<220>	37	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	532	
ggtgtt	gaat ccctgcagca gctgctgatc ttcctggacc acatgctggt ttccggtccg	60
cacgac		66
<210>	533	
<211>		

<212> <213>	DNA Artificial Sequence	
<220> <223>		
-400-		
<400> aacqt	533 tgaat ccctggaaca cctgatgatg tggctggaac gtctgctggc ttccggtccg	
		60
tacgo	t	66
<210>		
<211> <212>		
	Artificial Sequence	
<220> <223>		
<400>	534	
	tgact ccctgcagca gctgctgatc tggctggacc accagctggc ttccggtccg	60
		•
aaacg		66
<210> <211>		
<211>		
	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
	gaat ceetgeagea getgetgatg tggetggaae acaaactgge teagggteeg	C 0
	5 5 m 5 m 5 m 5 m 5 m 5 m 5 m 5 m 5 m 5	60
cagggt		66
<210>	536	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	536	
gaagtt	gact ccctgcagca gctgctgatg tggctggacc agaaactggc ttccggtccg	60
cacgct		66
		- •
<210>	537	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	

gaagttgact ccctgcagca gctgctgatg tggctggacc agcagctggc ttccggtccg	
	60
-	00
cagaaa	66
.010.	
<210> 538	
<211> 66	
<212> DNA	
<213> Artificial Sequence .	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 538	
ggtgttgaac agctgccgca gctgctgatg tggctggaac agaaactggc ttccggtccg	٠.
22-224 42-03-03-04 Accaccagned cadecadage adagaecrade freedateca	60
cagcgt	~~
	66
<210> 539	
<211> 66	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 539	
ggtgaagact ccctgcagca gctgctgatg tggctggacc agcagctggc tgctggtccg	60
caggtt	66
.010. 540	
<210> 540	
<211> 66 <212> DNA	
<213> Artificial Sequence	
<220>	
\220 <i>></i>	
<223> Muslootide company and district the state of the st	
<223> Nucleotide sequence encoding Myostatin Binding Peptide	
months repelide	
<400> 540	
months repelide	60
<400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg	
<400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg	60 66
<400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg	
<400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541</pre>	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541</pre>	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541 <211> 66 <212> DNA</pre>	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541 <211> 66 <212> DNA</pre>	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541 <211> 66 <212> DNA</pre>	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541 <211> 66 <212> DNA <213> Artificial Sequence <220></pre>	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541 <211> 66 <212> DNA <213> Artificial Sequence <220></pre>	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence encoding Myostatin Binding Peptide <400> 541</pre>	
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence encoding Myostatin Binding Peptide <400> 541</pre>	66
<pre><400> 540 gctgacgact ccctgcagca gctgctgatg tggctggacc gtaaactggc ttccggtccg cacgtt <210> 541 <211> 66 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence encoding Myostatin Binding Peptide <400> 541</pre>	

<210> <211>	66	
<212> <213>		
<220> <223>		
<400>		•
	ccgtg ctaccctgct gaaagaattc tggcagctgg ttgaaggtct gggtgacaaa	60
caggc	t ·	66
<210>		
<211><212>		
<213>		
<220> <223>	Nucleotide sequence encoding Myostatin Binding Peptide	
•	sequence encoding Myostatin Binding Peptide	
<400> gaaato	543 ccgtg ctaccctgct gaaagaattc tggcagctgg ttgacgaatg gcgtgaacag	- 60
ccgaac		, 00
cogaac		66
<210>	544	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	544	
	cgtg ctaccctgct gaaagaattc ctgcagctgg ttcacggtct gggtgaaacc	60
gactcc		66
<210>	545	
<211>	66	
212>	DNA	
213>	Artificial Sequence	
:220>		
:223>	Nucleotide sequence encoding Myostatin Binding Peptide	
400>	545	
cccago	gtg ctaccctgct gaaagaattc tggcagctga tcgaaggtct gggtggtaaa	60
acgtt		66
210	F.16	
210> 211>	546 66	
	מזמת	

<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
-100-	546	
<400>	546 Cogtg ctaccotgot gaaagaatto tggcagotgg ttgaoggtot gogtgaacag	6
ggtgt		
		6
<210>	547	
<211>	66	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	547	
cagtco	egtg ttaccetget gegtgaatte tggcagetgg ttgaateeta cegteegate	60
gttaac		66
<210>	548	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>	Word - 111	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	548	
ctgtcc	cgtg ctaccctgct gaacgaattc tggcagttcg ttgacggtca gcgtgacaaa	60
gtatg		
-50009		66
<210>	549	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	549	
	cgtg ctaccctgct gaacgacttc tggcacctga tggaagaact gtcccagaaa	60
cgggt		66
210>	550	
211>	66	
212>	DNA	
213>	Artificial Sequence	
220>		
223>	Nucleotide sequence encoding Myostatin Binding Peptide	

<400>	550	
cagga	acgtg ctaccctgct gaaagaattc tggcgtatgg ttgaaggtct gggtaaaaac	60
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	00
cgtgg	t	66
		00
	·	
<210>	551	
<211>	66	
<212>		
<213>	Artificial Sequence	
	errerat poducijos	
<220>		
<223>	Nucleotide compares encoding Manageria at the action	
12252	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	551	
aacya	acgtg ctaccctgct gcgtgaattc tggcagctgg ttggtggtta cggtgttaac	60
caccat		
cagcgt	•	66
<210>	552	
<211>		
<211>	60	
<213>	DNA	
<213>	Artificial Sequence	
.000		
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	552	
cagcgt	gaat ggtacccgtg ctacggtggt cacctgtggt gctacgacct gcacaaagct	60
<210>	553	
<211>	60	
<212>	DNA	
<213>	Artificial Sequence	
	•	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	553	
atctcc	gett ggtacteetg etaegetggt eacttetggt getgggaeet gaaacagaaa	60
<210>	554	
<211>	60	
<212>	DNA	
<213>	Artificial Sequence	
	·	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	554	
tggaccg	ggtt ggtaccagtg ctacggtggt cacctgtggt gctacgacct gegtcgtaaa	60
-	,	00
<210>	555	
<211>	60	
<212>	DNA	
	Artificial Sequence	

<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	555	
aaaact	cttet ggtacccgtg ctacgacggt cacttctggt gctacaacct gaaatcctcc	60
<210>	556	
<211>	60	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	myoscatin binding Peptide	
<400>	556	
gaatco	egtt ggtacccgtg ctacgaaggt cacctgtggt gcttcgacct gaccgaaacc	60
<210>	557	
<211>	66	
<212>		
	Artificial Sequence	
12132	Actificial Sequence	
<220>	•	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	557	
	tttt ttcaatgggt tcaaaaacat ggtcgtgttg tttatcaatg gcttgatatt	60
aatgtt		66
<210>	558	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
-2137	.morriciar bequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	558	
tttgati	tttc ttcaatggct tcaaaatcat cgttctgaag ttgaacattg gcttgttatg	60
gatgtt		
		66
-010:	550	
<210>	559	
<211>	66	
:212>	DNA	
213>	Artificial Sequence	
:220>		
	Mucleotide company engading March 1 - 1	
	Nucleotide sequence encoding Myostatin Binding Peptide	
:400>	559	
atcaac	gtg atatgtctat gctttgggaa cttcttgatg ttcttgatgg tcttcgtcaa	60
		•
attct		66

<210>	560	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	1000000	
<400>	560	•
actcaa	acgtg atatgtctat gcttgatggt cttcttgaag ttcttgatca acttcgtcaa	60
		00
caacgt		66
		00
<210>	561	
<211>	66	
<212>	DNA	
<213>		
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
	manufacture of the second of t	
<400>	561	
acctcc	egtg acatgtccct gctgtgggaa ctgctggaag aactggaccg tctgggtcac	۲۵
	-ses wears seed sees assault cogeryady aderogaced teraggreat	60
cagcgt		~~
• •	,	66
<210>	562	
<211>	66	1
<212>	DNA	
<213>	Artificial Sequence	
-220-	intificial bequence	
<220>		
<223>	Nucleatide company encoding Manatati at at	
12232	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	562	
acycaa	catg atatgtctat gctttatggt cttgttgaac ttcttgaatc tcttggtcat	60
+		
caaatt		66
<210>	562	
	563	
<211>		
<212>	DNA	
<213>	Artificial Sequence	•
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
400		
400>	563	
ggaato	gtg atatgcgtat gcttgaatct ctttttgaag ttcttgatgg tcttcgtcaa	60
	2 22	
aagtt		66
		- •
210>	564	
211>	66	
	DNA	
213>	Artificial Sequence	

<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
ggtta	stogtg atatgtctat gettgaaggt ettettgetg ttettgateg tettggteea	60
caact		66
<210>	- 565	
<211>	- · ·	
<212>		
<213>		
	valabada boquence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
actca	acgtg atatgtctat gcttgaaggt cttcttgaag ttcttgatcg tcttggtcaa	60
	•	
caacg	t	66
<210>	566	
<211>		
<212>		
<213>		
	orrange poducine	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	566	
tggtac	ccgtg acatgtccat gctggaaggt ctgctggaag ttctggaccg tctgggtcag	60
cagcgt		
ougogo	•	66
<210>	567	
<211>	66	
<212>		
<213>	Artificial Sequence	
.000		
<220>	Year and the	
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	567	
	aatt ctcgtcaaat gcttctttct gattttatga tgcttgttgg ttctatgatt	
	and the general general galling the same and	60
caaggt		
		66
<210>	568	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<220> <223>	Nucleotide company and discount	
-663/	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	568	
	actt ctcgtcatat tcttctttct gaatttatga tgcttgttgg ttctattatg	
	Jimme gaattatya tyottyttyy ttotattaty	60

catgg	t	66
<210>	569	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		
cacga	caact cccgtcagat gctgctgtcc gacctgctgc acctggttgg taccatgatc	60
caggg		66
<210>	570	
<211>	66	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>		•
atggaa	aact cccgtcagaa cctgctgcgt gaactgatca tgctggttgg taacatgtcc	60
caccag		66
<210>	571	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	571	
caggac	acct cccgtcacat gctgctgcgt gaattcatga tgctggttgg tgaaatgatc	60
cagggt		66
<210>	572	
<211>	66	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Nucleotide sequence encoding Myostatin Binding Peptide	
<400>	572	
gaccag	aact cccgtcagat gctgctgtcc gacctgatga tcctggttgg ttccatgatc	60
cagggt		66
		55
<210>	573	

```
<211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 gttgctcttc atggtcaatg tactcgttgg ccatggatgt gtccaccaca acgtgaaggt
                                                                     60
 <210> 574
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
tatccagaac aaggtetttg tactcgttgg ccatggatgt gtccaccaca aactettget 60
<210> 575
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 575
ggtctgaacc agggtcactg cacccgttgg ccgtggatgt gcccgccgca ggactccaac
                                                                   60
<210> 576
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 576
atgattactc aaggtcaatg tactcgttgg ccatggatgt gtccaccaca accatctggt
                                                                    60
<210> 577
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 577
gctggtgctc aggaacactg cacccgttgg ccgtggatgt gcgctccgaa cgactggatc
                                                                    60
<210> 578
<211> 60
```

```
<212> DNA
 <213> Artificial Sequence
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 578
 ggtgttaacc agggtcagtg cacccgttgg cgttggatgt gcccgccgaa cggttgggaa
                                                                      60
 <210> 579
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 579
ctggctgacc acggtcagtg catccgttgg ccgtggatgt gcccgccgga aggttgggaa
                                                                      60
<210> 580
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 580
atcctggaac aggctcagtg cacccgttgg ccgtggatgt gcccgccgca gcgtggtggt
                                                                     -60
<210> 581
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 581
actcaaactc atgctcaatg tactcgttgg ccatggatgt gtccaccaca atgggaaggt
                                                                     60
<210> 582
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
gttgttactc aaggtcattg tactctttgg ccatggatgt gtccaccaca acgttggcgt
                                                                     60
<210> 583
<211> 60
<212> DNA
```

```
<213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 atttatccac atgatcaatg tactcgttgg ccatggatgt gtccaccaca accatatcca
                                                                      60
 <210> 584
 <211>
        60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 584
 tcttattggc aaggtcaatg tactcgttgg ccatggatgt gtccaccaca atggcgtggt
                                                                      60
 <210> 585
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 585
atgtggcaac aaggtcattg tactcgttgg ccatggatgt gtccaccaca aggttggggt · · · 60
<210> 586
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 586
gaattcaccc agtggcactg cacccgttgg ccgtggatgt gcccgccgca gcgttcccag
                                                                     60
<210> 587
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 587
ctggacgacc agtggcagtg cacccgttgg ccgtggatgt gcccgccgca gggtttctcc
                                                                     60
<210> 588
<211> 60
<212> DNA
<213> Artificial Sequence
```

```
<220>
  <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 588
 tatcaaactc aaggtetttg tactcgttgg ccatggatgt gtccaccaca atctcaacgt
                                                                      60
 <210> 589
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 589
 gaatctaatc aaggtcaatg tactcgttgg ccatggatgt gtccaccaca aggtggttgg
                                                                      60
 <210> 590
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 590
 tggaccgacc gtggtccgtg cacccgttgg ccgtggatgt gcccgccgca ggctaacggt
 <210> 591
 <211> 60
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 591
gttggtaccc agggtcagtg cacccgttgg ccgtggatgt gcccgccgta cgaaaccggt
                                                                     60
<210> 592
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
ccgtacgaac agggtaaatg cacccgttgg ccgtggatgt gcccgccgta cgaagttgaa
                                                                     60
<210> 593
<211> 60
<212> DNA
<213> Artificial Sequence
```

```
<220>
  <223> Nucleotide sequence encoding Myostatin Binding Peptide
  <400> 593
  tecgaatace agggtetgtg caccegttgg cegtggatgt geeegeegea gggttggaaa
                                                                       60
 <210> 594
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 594
 accttctccc agggtcactg cacccgttgg ccgtggatgt gcccgccgca gggttggggt
                                                                       60
 <210> 595
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 595
 ccgggtgctc acgaccactg cacccgttgg ccgtggatgt gcccgccgca gtcccgttac
                                                                      60
 <210> 596
 <211> 60
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 596
gttgctgaag aatggcactg ccgtcgttgg ccgtggatgt gcccgccgca ggactggcgt
                                                                      60
<210> 597
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 597
gttggtaccc agggtcactg cacccgttgg ccgtggatgt gcccgccgca gccggctggt
                                                                     60
<210> 598
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
```

```
<223> Mucleotide sequence encoding Myostatin Binding Peptide
 <400> 598
 <210> 599
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 599
 gctgacaccc agggtcactg cacccgttgg ccgtggatgt gcccgccgca gcactggttc
 <210> 600
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 tccggtccgc agggtcactg cacccgttgg ccgtggatgt gcgctccgca gggttggttc
                                                                 60
 <210> 601
 <211> 60
 <212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 601
accetggtte agggteactg caccegttgg cegtggatgt geeegeegea gegttgggtt
                                                                 60
<210> 602
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
ggtatggctc acggtaaatg cacccgttgg gcttggatgt gcccgccgca gtcctggaaa
                                                                60
<210> 603
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
```

```
<400> 603
   gaactgtacc acggtcagtg cacccgttgg ccgtggatgt gcccgccgca gtcctgggct
                                                                        60
   <210> 604
   <211> 60
   <212> DNA
   <213> Artificial Sequence
   <220>
  <223> Nucleotide sequence encoding Myostatin Binding Peptide
  <400> 604
  gttgctgacc acggtcactg cacccgttgg ccgtggatgt gcccgccgca gggttggggt
                                                                       60
  <210> 605
  <211> 60
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Nucleotide sequence encoding Myostatin Binding Peptide
  <400> 605
  ccggaatccc agggtcactg cacccgttgg ccgtggatgt gcccgccgca gggttggggt
  <210> 606
  <211> 60
  <212> DNA
  <213> Artificial Sequence
  <220>
  <223> Nucleotide sequence encoding Myostatin Binding Peptide
  <400> 606
. atcccggctc acggtcactg cacccgttgg ccgtggatgt gcccgccgca gcgttggcgt
                                                                      60
 <210> 607
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 607
 ttcaccgttc acggtcactg cacccgttgg ccgtggatgt gcccgccgta cggttgggtt . 60
 <210> 608
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
```

```
<400> 608
 ccagattttc caggtcattg tactcgttgg cgttggatgt gtccaccaca aggttgggaa
 <210> 609
 <211>
        60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 609
 cagctgtggc agggtccgtg cacccagtgg ccgtggatgt gcccgccgaa aggtcgttac
                                                                      60
 <210> 610
 <211> 60
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 610
 cacgctaacg acggtcactg cacccgttgg cagtggatgt gcccgccgca gtggggtggt 60
 <210> 611
 <211> 60
 <212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 611
gaaaccgacc acggtctgtg cacccgttgg ccgtggatgt gcccgccgta cggtgctcgt
                                                                     60
<210> 612
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 612
ggtacctggc agggtctgtg cacccgttgg ccgtggatgt gcccgccgca gggttggcag
                                                                     60
<210> 613
<211> 60
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 613
```

```
gttgctaccc agggtcagtg cacccgttgg ccgtggatgt gcccgccgca gggttggggt
                                                                       60
  <210> 614
  <211> 60
  <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 614
 gttgctaccc agggtcagtg cacccgttgg ccgtggatgt gcccgccgca gcgttggggt
                                                                      60
 <210> 615
 <211> 74
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Peptibody
 <220>
 <221> MISC_FEATURE
 <222> (1)..(1)
 <223> Xaa = Fc
 <400> 615
 Xaa Gly Gly Gly Gly Ala Gln Leu Ala Asp His Gly Gln Cys Ile
                                                        15
Arg Trp Pro Trp Met Cys Pro Pro Glu Gly Trp Glu Leu Glu Gly Ser
Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly
Ser Ala Thr Gly Leu Ala Asp His Gly Gln Cys Ile Arg Trp Pro Trp
 - 50
Met Cys Pro Pro Glu Gly Trp Glu Leu Glu
                    70
<210> 616
<211> 198
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 616
cttgctgatc atggtcaatg tattcgttgg ccatggatgt gtccaccaga aggttgggaa
                                                                     60
```

designation of the control of the co	120
tetgetactg gtetggetga ccaeggteag tgeateegtt ggeegtggat gtgeeegeeg	180
gaaggttggg aactggaa	198
<210> 617 <211> 70 <212> PRT <213> Artificial Sequence	
<220> <223> Peptibody	
<220> <221> MISC_FEATURE <222> (1)(1) <223> Xaa = Fc	
<400> 617	
Xaa Gly Gly Gly Gly Ala Gln Leu Ala Asp His Gly Gln Cys Ile 1 5 10 15	
Arg Trp Pro Trp Met Cys Pro Pro Glu Gly Trp Glu Gly Ser Gly Ser 20 25 30	
Ala Thr Gly Gly Ser Gly Gly Ala Ser Ser Gly Ser Gly Ser Ala 35 40 45	
Thr Gly Leu Ala Asp His Gly Gln Cys Ile Arg Trp Pro Trp Met Cys 50 55 60	٠.
Pro Pro Glu Gly Trp Glu 65 70	
<210> 618 <211> 186 <212> DNA <213> Artificial Sequence	
<220> <223> Nucleotide sequence encoding Myostatin Binding Peptide	
<400> 618	
cttgctgatc atggtcaatg tattcgttgg ccatggatgt gtccaccaga aggttgggaa	60
ggttccggtt ccgctaccgg cggctctggc ggtggcgctt cttccggttc cggttctgct	120
actggtctgg ctgaccacgg tcagtgcatc cgttggccgt ggatgtgtcc accagaaggt	180
tgggaa	186

```
<210> 619
 <211>
        74
 <212> PRT
 <213> Artificial Sequence
 <220>
 <223> Peptibody
 <220>
 <221> MISC_FEATURE
 <222> (1)..(1)
 <223> Xaa = Fc
 <400> 619
 Xaa Gly Gly Gly Gly Ala Gln Ser Glu Tyr Gln Gly Leu Cys Thr
                5
                                    10
Arg Trp Pro Trp Met Cys Pro Pro Gln Gly Trp Lys Leu Glu Gly Ser
             20
                                25
Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly
        35
                            40
Ser Ala Thr Gly Ser Glu Tyr Gln Gly Leu Cys Thr Arg Trp Pro Trp
    50
                        55
Met Cys Pro Pro Gln Gly Trp Lys Leu Glu
                    70
<210> 620
<211> 198
<212> DNA
<213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 620
tctgaatatc aaggtctttg tactcgttgg ccatggatgt gtccaccaca aggttggaaa
                                                                    60
ctcgagggtt ccggttccgc taccggcggc tctggctcca ctgcttcttc cggttccggt
tetgetactg gttetgagta teaaggeete tgtacteget ggeeatggat gtgteeacea
                                                                    180
caaggctgga agctggaa
                                                                    198
<210> 621
<211> 70
<212> PRT
<213> Artificial Sequence
<220>
```

```
<223> Peptibody
 <220>
 <221> MISC_FEATURE
 <222> (1)..(1)
 <223> Xaa = Fc
 <400> 621
 Xaa Gly Gly Gly Gly Ala Gln Ser Glu Tyr Gln Gly Leu Cys Thr
                                    10
 Arg Trp Pro Trp Met Cys Pro Pro Gln Gly Trp Lys Gly Ser Gly Ser
                                25
 Ala Thr Gly Gly Ser Gly Gly Ala Ser Ser Gly Ser Ala
 Thr Gly Ser Glu Tyr Gln Gly Leu Cys Thr Arg Trp Pro Trp Met Cys
    50
                       55
                                            60
 Pro Pro Gln Gly Trp Lys
 <210> 622
 <211> 186
 <212> DNA
 <213> Artificial Sequence
<220>
<223> Nucleotide sequence encoding Myostatin Binding Peptide
<400> 622
tctgaatatc aaggtctttg tactcgttgg ccatggatgt gtccaccaca aggttggaaa
                                                                   60
ggttccggtt ccgctaccgg cggctctggc ggtggcgctt cttccggttc cggttctgct
                                                                   120
actggttctg agtatcaagg cctctgtact cgctggccat ggatgtgtcc accacaaggt
                                                                   180
tggaaa
                                                                   186
<210> 623
<211> 74
<212> PRT
<213> Artificial Sequence
<220>
<223> Peptibody
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa = Fc
```

<400> 623 Xaa Gly Gly Gly Gly Ala Gln Thr Phe Ser Gln Gly His Cys Thr 5 Arg Trp Pro Trp Met Cys Pro Pro Gln Gly Trp Gly Leu Glu Gly Ser 20 25 Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly 35 40 Ser Ala Thr Gly Thr Phe Ser Gln Gly His Cys Thr Arg Trp Pro Trp 50 55 Met Cys Pro Pro Gln Gly Trp Gly Leu Glu 70 <210> 624 <211> 198 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence encoding Myostatin Binding Peptide <400> 624 acttlttctc aaggtcattg tactcgttgg ccatggatgt gtccaccaca aggttggggt 60 ctcgagggtt ccggttccgc taccggcggc tctggctcca ctgcttcttc cggttccggt 120 tetgetactg gtacttttte teaaggeeat tgtacteget ggeeatggat gtgteeacea 180 caaggctggg gcctggaa 198 <210> 625 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Peptibody <220> <221> MISC_FEATURE <222> (1)..(1) <223> Xaa = Fc <400> 625 Xaa Gly Gly Gly Gly Ala Gln Val Ala Asp His Gly His Cys Thr

Arg Trp Pro Trp Met Cys Pro Pro Gln Gly Trp Gly Leu Glu Gly Ser 25 Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly 40 Ser Ala Thr Gly Val Ala Asp His Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro Gln Gly Trp Gly Leu Glu 70 <210> 626 <211> 198 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence encoding Myostatin Binding Peptide <400> 626 gttgctgatc atggtcattg tactcgttgg ccatggatgt gtccaccaca aggttggggt ctcgagggtt ccggttccgc aaccggcggc tctggctcca ctgcttcttc cggttccggt tctgctactg gtgttgctga ccacggtcac tgcacccgtt ggccgtggat gtgcccgccg 180 cagggttggg gtctggaa 198 <210> 627 <211> 70 <212> PRT <213> Artificial Sequence <220> <223> Peptibody <220> <221> MISC_FEATURE <222> (1)..(1) <223> Xaa = Fc <400> 627 Xaa Gly Gly Gly Gly Ala Gln Val Ala Asp His Gly His Cys Thr Arg Trp Pro Trp Met Cys Pro Pro Gln Gly Trp Gly Gly Ser Gly Ser 20 Ala Thr Gly Gly Ser Gly Gly Gly Ala Ser Ser Gly Ser Ala

Thr Gly Val Ala Asp His Gly His Cys Thr Arg Trp Pro Trp Val Cys 50 55 60 Pro Pro Gln Gly Trp Gly <210> 628 <211> 186 <212> DNA <213> Artificial Sequence <220> <223> Nucleotide sequence encoding Myostatin Binding Peptide gttgctgatc atggtcattg tactcgttgg ccatggatgt gtccaccaca aggttggggt 60 ggttccggtt ccgctaccgg cggctctggc ggtggtgctt cttccggttc cggttctgct 120 actggtgttg ctgaccacgg tcactgcacc cgttggccgt gggtgtgtcc accacaaggt 180 tggggt 186 <210> 629 <211> 74 <212> PRT <213> Artificial Sequence <220> <223> Peptibody <220> <221> MISC_FEATURE <222> (1)..(1) <223> Xaa = Fc <400> 629 Xaa Gly Gly Gly Gly Ala Gln Pro Glu Ser Gln Gly His Cys Thr 15 Arg Trp Pro Trp Met Cys Pro Pro Gln Gly Trp Gly Leu Glu Gly Ser 20 Gly Ser Ala Thr Gly Gly Ser Gly Ser Thr Ala Ser Ser Gly Ser Gly 35 40 Ser Ala Thr Gly Pro Glu Ser Gln Gly His Cys Thr Arg Trp Pro Trp 50 55 60 Met Cys Pro Pro Gln Gly Trp Gly Leu Glu

```
<210> 630
 <211> 198
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 630
 ccagaatctc aaggtcattg tactcgttgg ccatggatgt gtccaccaca aggttggggt
                                                                      60
 ctcgagggtt ccggttccgc taccggcggc tctggctcca ctgcttcttc cggttccggt
                                                                     120
 tetgetactg gteeggaate ceagggteac tgeaccegtt ggeegtggat gtgeegeeg
                                                                     180
 cagggttggg gtctggaa
                                                                     198
 <210> 631
 <211> 70
 <212> PRT
<213> Artificial Sequence
 <220>
<223> Peptibody
<220>
<221> MISC_FEATURE
<222> (1)..(1)
<223> Xaa= Fc
<400> 631
Xaa Gly Gly Gly Gly Ala Gln Pro Glu Ser Gln Gly His Cys Thr
                                   10
Arg Trp Pro Trp Met Cys Pro Pro Gln Gly Trp Gly Gly Ser Gly Ser
            20
Ala Thr Gly Gly Ser Gly Gly Gly Ala Ser Ser Gly Ser Ala
        35
                           40
Thr Gly Pro Glu Ser Gln Gly His Cys Thr Arg Trp Pro Trp Met Cys
    50
                       55
Pro Pro Gln Gly Trp Gly
                   70
<210> 632
<211> 186
<212> DNA
<213> Artificial Sequence
```

```
<220>
 <223> Nucleotide sequence encoding Myostatin Binding Peptide
 <400> 632
 ccagaatctc aaggtcattg tactcgttgg ccatggatgt gtccaccaca aggttggggt
                                                                      60
 ggttccggtt ccgctaccgg cggctctggc ggtggtgctt cttccggttc cggttctgct
                                                                     120
 actggtccgg aatcccaggg tcactgcacc cgttggccgt ggatgtgtcc accacaaggt
                                                                     180
 tggggt
                                                                     186
 <210> 633
 <211> 5
 <212> PRT
 <213> Artificial Sequence
 <220>
<223> Myostatin Binding Peptide
<400> 633
Trp Met Cys Pro Pro
1
                5
<210> 634
<211> 90
<212> DNA
<213> Artificial Sequence
<223> Randomly generated nucleotide sequence
<220>
<221> misc_feature
<222> (16)..(17)
<223> N = A, T, C, or G are equally represented
<220>
<221> misc_feature
<222> (18)..(18)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (19)..(20)
<223> N = A, T, C, or G are equally represented
<220>
<221> misc_feature
<222> (21)..(21)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (22)..(23)
<223> N = A, T, C, or G are equally represented
```

```
<220>
 <221> misc_feature
 <222> (27)..(27)
 <223> K = G and T are equally represented
 <220>
 <221> misc_feature
 <222> (30)..(30)
 <223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (33)..(33)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (36)..(36)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (39)..(39)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (42)..(42)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (45)..(45)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (48)..(48)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (51)..(51)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (54)..(54)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (57)..(57)
<223> K = G and T are equally represented
<220>
<221> misc_feature
<222> (60)..(60)
<223> K = G and T are equally represented
<220>
```

```
<221> misc_feature
  <222> (63)..(63)
  <223> K = G and T are equally represented
  <220>
  <221> misc_feature
  <222> (66)..(66)
  <223> K = G and T are equally represented
  <220>
  <221> misc_feature
  <222> (67)..(68)
<223> N = A, T, C, or G are equally represented
 <220>
 <221> misc_feature
 <222> (69)..(69)
 <223> K = G and T are equally represented
 <220>
 <221> misc_feature
 <222> (70)..(71)
 <223> N = A, T, C, or G are equally represented
 <220>
 <221> misc_feature
 <222> (72)..(72)
 <223> K = G and T are equally represented
 <220>
 <221> misc_feature
 <222> (73)..(74)
 <223> N = A, T, C, or G are equally represented
 <220>
 <221> misc_feature
 <222> (75)..(75)
 <223> K = G and T are equally represented
 <400> 634
 cacagtgcac agggtnnknn knnkcakggk caktgkackc gktgkccktg katktgkcck
                                                                      60
 ccktaknnkn nknnkcattc tctcgagatc
                                                                      90
```

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
OTHER:

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.