Neutron Star Pulsars and Polarization

Kartik Tiwari, Ashoka University (India)

Exotic Astrophysical Laboratories:

Densities ~10¹⁷ kg/m³ Magnetic Fields ~10⁸-10¹⁴ G

Drivers for multi-physics developments

Polarization carries information about mechanisms of radiation but

what is emitted is not exactly what we see

Artist's Impression

Calvera Observations (Mereghetti et al 2021)

QUESTION

Given a pulsar configuration, what polarization data should we expect (and vice versa)?

Neutron Star attributes affect pulse profiles

Dependency **Simulations** + Bayesian **Inference** extracts Neutron Star attributes from pulse profiles

Gravitational lensing affects observed surface projection and morphs polarization.

Photon propagation in Schwarzschild is well understood.

Explicit ray-tracing is very slow with horrible scaling.

Belobordov's approximation (2003) relates location on the surface with the angle from the normal required to reach observer.

Ray-tracing not required.

With an additional improvement, errors remain under 1%.

 $R = 3R_g$

Neutron Star Object

Mass
Radius
Magnetic Pole Strength
Angle between magnetic and spin axis
Angle between Spin Axis and LoS

Given a pulsar configuration, what polarization data to expect?

Polarization Transport Code github.com/krtktwri/comp-astro-asp

Neutron Star Object

Mass Radius Magnetic Pole Strength Angle between magnetic and spin axis Angle between Spin Axis and LoS

Physics Module

Gravitational Lensing
Gravitational Redshift
Magnetic Field Variation
Stokes Parameter Transfer
Surface Integration

Polarization Transport Code github.com/krtktwri/comp-astro-asp

Given a pulsar configuration, what polarization data to expect?

Given a pulsar configuration, what polarization data to expect?

$$Q = (I_o - I_e) p_L \cos 2\chi_o$$

$$Q = (I_o - I_e) p_L \cos 2\chi_o$$

Normal Modes Polarization

$$p_L = \frac{|q|\sin^2\theta_B}{\sqrt{4\cos^2\theta_B + q^2\sin^4\theta_B}}$$

$$Q = (I_o - I_e) p_L \cos 2\chi_o$$

Normal Modes Polarization

$$p_L = \frac{|q|\sin^2\theta_B}{\sqrt{4\cos^2\theta_B + q^2\sin^4\theta_B}}$$

Dipole in Schwarzschild

$$\vec{B} = \frac{B_P}{2} \left((2+f)(\hat{r}.\hat{m})\hat{r} - f\,\hat{m} \right)$$

$$f = 2\frac{u^2 - 2u - 2(1 - u)\ln(1 - u)}{(u^2 + 2u + 2\ln(1 - u))\sqrt{1 - u}}$$

$$Q = (I_o - I_e) p_L \cos 2\chi_o$$

Normal Modes Polarization

$$p_L = \frac{|q|\sin^2\theta_B}{\sqrt{4\cos^2\theta_B + q^2\sin^4\theta_B}}$$

Dipole in Schwarzschild

$$\vec{B} = \frac{B_P}{2} \left((2+f)(\hat{r}.\hat{m})\hat{r} - f\,\hat{m} \right)$$

$$f = 2\frac{u^2 - 2u - 2(1 - u)\ln(1 - u)}{(u^2 + 2u + 2\ln(1 - u))\sqrt{1 - u}}$$

Gravitational Lensing

$$\left(\frac{dr}{d\phi}\right)^2 = \frac{r^4}{l^2} \left(1 - \frac{l^2}{r^2} + r_G \frac{l^2}{r^3}\right)$$

$$Q = (I_o - I_e) p_L \cos 2\chi_o$$

Normal Modes Polarization

$$p_L = \frac{|q|\sin^2\theta_B}{\sqrt{4\cos^2\theta_B + q^2\sin^4\theta_B}}$$

Dipole in Schwarzschild

$$\vec{B} = \frac{B_P}{2} \left((2+f)(\hat{r}.\hat{m})\hat{r} - f\hat{m} \right)$$

$$f = 2\frac{u^2 - 2u - 2(1 - u)\ln(1 - u)}{(u^2 + 2u + 2\ln(1 - u))\sqrt{1 - u}}$$

Gravitational Lensing

$$\left(\frac{dr}{d\phi}\right)^2 = \frac{r^4}{l^2} \left(1 - \frac{l^2}{r^2} + r_G \frac{l^2}{r^3}\right)$$

Polarization Rotation

$$\chi_o^{obs} = \xi' + \theta$$

 $\xi' = \tan^{-1}(B_{y'}/B_{x'})$

Coordinate Transform

$$Q = (I_o - I_e) p_L \cos 2\chi_o$$

Normal Modes Polarization

$$p_L = \frac{|q|\sin^2\theta_B}{\sqrt{4\cos^2\theta_B + q^2\sin^4\theta_B}}$$

Dipole in Schwarzschild

$$\vec{B} = \frac{B_P}{2} \left((2+f)(\hat{r}.\hat{m})\hat{r} - f\,\hat{m} \right)$$

$$f = 2\frac{u^2 - 2u - 2(1 - u)\ln(1 - u)}{(u^2 + 2u + 2\ln(1 - u))\sqrt{1 - u}}$$

Gravitational Lensing

$$\left(\frac{dr}{d\phi}\right)^2 = \frac{r^4}{l^2} \left(1 - \frac{l^2}{r^2} + r_G \frac{l^2}{r^3}\right)$$

Polarization Rotation

$$\chi_o^{obs} = \xi' + \theta$$

 $\xi' = \tan^{-1}(B_{y'}/B_{x'})$

Coordinate Transform

Surface Integration

$$F_{Q} = R^{2} g_{r} \int_{-\pi/2}^{\pi/2} d\alpha \cos \alpha \int_{0}^{2\pi} d\theta (I_{o} - I_{e}) p_{L} \cos(2(\xi' + \theta))$$

$$Q = (I_o - I_e) p_L \cos 2\chi_o$$

Normal Modes Polarization

$$p_L = \frac{|q|\sin^2\theta_B}{\sqrt{4\cos^2\theta_B + q^2\sin^4\theta_B}}$$

Dipole in Schwarzschild

$$\vec{B} = \frac{B_P}{2} \left((2+f)(\hat{r}.\hat{m})\hat{r} - f\,\hat{m} \right)$$

$$f = 2\frac{u^2 - 2u - 2(1 - u)\ln(1 - u)}{(u^2 + 2u + 2\ln(1 - u))\sqrt{1 - u}}$$

Gravitational Lensing

$$\left(\frac{dr}{d\phi}\right)^2 = \frac{r^4}{l^2} \left(1 - \frac{l^2}{r^2} + r_G \frac{l^2}{r^3}\right)$$

Polarization Rotation

$$\chi_o^{obs} = \xi' + \theta$$

 $\xi' = \tan^{-1}(B_{y'}/B_{x'})$

Coordinate Transform

Surface Integration

$$F_{Q} = R^{2} g_{r} \int_{-\pi/2}^{\pi/2} d\alpha \cos \alpha \int_{0}^{2\pi} d\theta (I_{o} - I_{e}) p_{L} \cos(2(\xi' + \theta))$$

Projection Rotation

 $\cos \eta = \cos \zeta \cos \nu + \sin \zeta \sin \nu \cos \Phi$

Physics Module | Polarization Transport Code

Pulse Profiles [Radius = $3R_G$] at E = 1 MeV

Compactness affects degree of linear polarization.

Compactness is an important piece of **Equation of State** puzzle.

Magnetic Pole Field Strength $[\eta = 45^{\circ}, i = 60^{\circ}, R = 3R_G]$

Observation Energy Spectra $[\eta = 45^{\circ}, i = 60^{\circ}, R = 3R_G]$

IXPE and XPoSat data forthcoming.

In the meantime, using mock polarization data for inverse problem.

Thank You

