Topic: Isosceles triangle theorem

Question: Solve for *x*.

Answer choices:

A 49

B 52

C 55

D 58

Solution: C

We know that $\overline{AC} \cong \overline{AB}$, so $\angle B \cong \angle C$ and $m \angle C = (x+3)^\circ$. The measures of the interior angles of a triangle always sum to 180° , so

$$m \angle A + m \angle B + m \angle C = 180^{\circ}$$

$$64^{\circ} + (x+3)^{\circ} + (x+3)^{\circ} = 180^{\circ}$$

$$70^{\circ} + 2x^{\circ} = 180^{\circ}$$

$$2x^{\circ} = 110^{\circ}$$

$$x^{\circ} = 55^{\circ}$$

$$x = 55$$

Topic: Isosceles triangle theorem

Question: Find the measure of $\angle CDE$, given that $\overline{AB} \cong \overline{BC}$, $\overline{CD} \cong \overline{DE}$, and $m\angle BAC = 35^\circ$.

Answer choices:

- **A** 95°
- B 110°
- **C** 118°
- D 122°

Solution: B

Fill in the figure with the given information.

Because we know $\overline{AB} \cong \overline{BC}$, we can say $\angle BAC \cong \angle ACB$ and $m \angle ACB = 35^{\circ}$.

The angles $\angle ACB$ and $\angle ECD$ are a pair of vertical angles, so $m\angle ECD=35^\circ$, because vertical angles are congruent.

Then we can say $\overline{CD} \cong \overline{DE}$, so $\angle DEC \cong \angle ECD$ and $m \angle DEC = 35^\circ$.

The measures of the interior angles of a triangle always sum to 180° , so

$$m \angle ECD + m \angle DEC + m \angle CDE = 180^{\circ}$$

$$35^{\circ} + 35^{\circ} + m \angle CDE = 180^{\circ}$$

$$m \angle CDE = 110^{\circ}$$

Topic: Isosceles triangle theorem

Question: Find the length of \overline{AC} , given that $\angle C \cong \angle A$.

Answer choices:

A 1

B 2

C 5

D 6

Solution: D

With the given information, $\angle C \cong \angle A$, we can say that $\overline{BA} = \overline{BC}$.

Equate the given expressions for \overline{BA} and \overline{BC} , then solve for x.

$$x^2 + x - 14 = 8x + 4$$

$$x^2 - 7x - 18 = 0$$

$$(x-9)(x+2) = 0$$

$$x = 9 \text{ or } x = -2$$

Using x = -2 will lead to a negative value for \overline{BA} (because $(-2)^2 + (-2) - 14 = 4 - 2 - 14 = -12$) and \overline{BC} (because 8(-2) + 4 = -16 + 4 = -12), so rule out x = -2. That leaves x = 9.

$$\overline{AC} = x - 3$$

$$\overline{AC} = 9 - 3$$

$$\overline{AC} = 6$$