Phase field approximation

A phase field $u_{\varepsilon}: \mathbb{R}^d \to [0,1]$ is a smooth function which approximates the characteristic function $\mathbb{1}_E$ of a set E.

The area of ∂E is the perimeter of E.

Perimeter approximation

Thus,
$$\int \varepsilon |\nabla u_{\varepsilon}|^2 \mathrm{d}x pprox rac{1}{\varepsilon} Area pprox rac{1}{\varepsilon} P(E) = P(E)$$
 as $\varepsilon o 0$.

However, any constant function has zero energy! How to force u_{ε} to be close to a characteristic function, i.e. a binary function?

Perimeter approximation

Use a double-well potential, for instance $G(s) = \frac{1}{2}s^2(1-s)^2$.

If $\sup_{\varepsilon}\left(\int \frac{1}{\varepsilon}G(u_{\varepsilon})\mathrm{d}x\right)<+\infty$ then $u_{\varepsilon}\to 0$ or 1 a.e. as $\varepsilon\to 0$, i.e. u_{ε} approximates a characteristic function.

The Cahn-Hilliard functional

(Van der Waals)-Cahn-Hilliard energy

The phase-field approximation of perimeter is

$$P_{\varepsilon}(u) = \int \left(\frac{\varepsilon}{2} |\nabla u|^2 + \frac{1}{\varepsilon} G(u)\right) dx$$

where G is a double-well potential.

$$G(s) = \frac{1}{2}s^2(1-s)^2$$

Phase-field approximation of perimeter

Convergence of P_{ε} (Modica, Mortola - 1977)

 P_{ε} Γ -converges to

$$P(u) = \begin{cases} \lambda P(E) & \text{si } u = \mathbb{1}_E \in BV \\ +\infty & \text{otherwise} \end{cases}$$

where $\lambda = cst$ depends only on potential G.

Γ-convergence and minimizers

Let (F_n) equicoercive, Γ -converging to F. If, $\forall n$, u_n is a minimizer of F_n , then every cluster point u of (u_n) is a minimizer of F and $F(u) = \lim_{n \to \infty} F_n(u_n)$.