Big O

O: f grows no faster than g if there is a constant c>0 st $f(n)\leq cg(n)$

	$\lim_{n \to \infty} \frac{f(n)}{g(n)} \neq$	Meaning
f = O(g)	∞	$f \leq g$
$f=\Omega(g)$	0	g = O(f)
$f=\Theta(g)$	$0,\infty$	$f=O(g), f=\Omega(g)$

Common Sense Rules

- 1. Omit mult constants
- 2. n^a dominates n^b if a > b
- 3. Any exp dominates any poly (ex. 3^n dominates n^5)
- 4. Any poly dominates any log (ex. n dominates $(\log n)^3$)

Examples

ex1.
$$f_1(n) = n^2, f_2(n) = 2n + 20$$

$$2n+20 \leq 22n \leq 22n^2$$

ex2.
$$f_2(n), f_3(n) = n + 1$$

$$2n + 20 \le 22n \le 22(n+1)$$

$$n+1 \leq 2(n+1) \leq 2n+20$$

Exercises

1. Indicate $f=O,\Omega,\Theta(g)$

Part	f(n)	g(n)	
а	n - 100	n - 200	Θ
b	$n^{rac{1}{2}}$	$n^{\frac{2}{3}}$	0
С	$100n + \log n$	$n + (\log n)^2$	Θ
d	$n \log n$	$10n \log 10n$	Θ
е	$\log 2n$	$\log 3n$	Θ
f	$10\log n$	$\log(n^2)$	Θ
g	$n^{1.01}$	$n\log^2 n$	Ω
h	$n^2/\log n$	$n(\log n)^2$	Ω
i	$n^{0.1}$	$(\log n)^{10}$	Ω
j	$(\log n)^{\log n}$	$n/\log n$	Ω
k	\sqrt{n}	$(\log n)^3$	Ω
1	$n^{rac{1}{2}}$	$5^{\log_2 n}$	0
m	$n2^n$	3^n	Ω
n	2^n	2^{n+1}	Θ
0	n!	2^n	Ω
р	$(\log n)^{\log n}$	$2^{(\log_2 n)^2}$	0
q	$\sum_{i=1}^n i^k$	n^{k+1}	0

$$\text{c. } \lim_{n \to \infty} \frac{f(n)}{g(n)} = \lim_{n \to \infty} \frac{100n + \log n}{n + (\log n)^2} = \lim_{n \to \infty} \frac{100n + \frac{\log n}{n}}{n + \frac{(\log n)^2}{n}} = 100$$

h.
$$\lim_{n \to \infty} rac{f(n)}{g(n)} = rac{n^2/\log n}{n(\log n)^2} = rac{n}{(\log n)^3} = \infty$$
 (continuously apply L'Hoptial's Rule)

j.
$$\lim_{n o \infty} rac{f(m)}{g(m)}$$
 where $m = \log n$, $n = 2^m$

$$rac{{{\left(m
ight)}^m}}{{2^m/m}} = m(rac{m}{2})^m = \infty$$

I.
$$5^{\log_2 n} = (2^{\log_2 5})^{\log_2 n} = 2^{(\log_2 n)(\log_2 5)} = n^{log_2 5}$$

$$rac{n^{0.5}}{n^{\log_2 5}} = n^{0.5 - \log_2 5} = n^{-1.82}$$

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$

p.
$$g(n) = 2^{(\log_2 n)(\log_2 n)} = n^{\log_2 n}$$

$$f(n) = (2^{\log_2 \log n})^{\log n} = (2^{\log_2 n})^{\log(\log(n))} = n^{\log \log(n)}$$

2. If
$$c > 0$$
, $g(n) = 1 + c + c^2 + \ldots + c^n$ is:

a)
$$\Theta(1)$$
 if $c < 1$

infinite geometric series with r < 1 will converge to constant, so must a finite geometric series

b)
$$\Theta(n)$$
 if $c=1$

if
$$c = 1$$
, $g(n) = 1$ for all n

c)
$$\Theta(c^n)$$
 if $c>1$

$$arac{1-r^n}{1-r}$$
 where $a=1$ and $r=c$

$$rac{r^n-1}{r-1}=\Theta(r^n)$$

- 3. Confirm Fibonacci sequence grows exp
 - a) Use induction to prove $F_n \geq 2^{0.5n}$ for $n \geq 6$

Base case:
$$n=6$$

$$F_6 = 8$$

$$2^{0.5\cdot 6} = 2^3 = 8$$

Inductive Hypothesis: For $k \geq 6$, if $F_k \geq 2^{0.5 \cdot k}$ then $F_{k+1} \geq 2^{0.5 \cdot (k+1)}$

Inductive Step:
$$F_{k+1} = F_k + F_{k-1} \geq 2^{0.5 \cdot k} + 2^{0.5 \cdot (k-1)}$$

$$=2^{0.5\cdot(k-1)}2^{0.5}+2^{0.5\cdot(k-1)}=(2^{0.5}+1)2^{0.5\cdot(k-1)}$$

$$=rac{2^{0.5}+1}{2^{0.5}}2^{0.5\cdot k}$$

$$> 2^{0.5}2^{0.5k} = 2^{0.5\cdot(k+1)}$$

b) Find constant c<1 st $F_n\leq 2^{cn}$ for all $n\geq 0$

$$2^{c \cdot (n-1)} + 2^{c \cdot (n-2)} \le 2^{cn}$$

$$2^{cn-c} + 2^{cn-2c} \le 2^{cn}$$

$$2^{-c} + 2^{-2c} \le 1$$

$$2^c+1 \leq 2^{2c}$$

$$-x^2 + x + 1 \le 0$$

$$x^2 - x - 1 \ge 0$$

$$x \geq rac{1+\sqrt{5}}{2}$$

$$\frac{1-\sqrt{5}}{2} \leq x < 0$$
 (no solutions)

$$2^{c+1} \geq 1+\sqrt{5}$$

$$\log(2^c \dot{2}) \ge \log(1 + \sqrt{5})$$

$$c \ge \log(1 + \sqrt{5}) - 1$$

c) What is the largest c you can find for which $F_n=\Omega(2^{cn})$

Take
$$c = \log(1+\sqrt{5}) - 1$$

4. Compute Fibonacci in a way even faster than O(n)

$$\begin{pmatrix} F_n \\ F_{n+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}^n \cdot \begin{pmatrix} F_0 \\ F_1 \end{pmatrix}.$$

- a) Two 2 x 2 matrices are by def done with 8 multiplications and 4 additions.
- b) $O(\log n)$ matrix mults needed to compute X^n

As suggested, F_8 requires a power of 8 on the constant matrix. This can be broken down into 4 x 4, then 2 x 2, then 1 x 1. Taking $3 = \log(8)$ steps.

c) Prove intermediate results are O(n) bits long.

For odd k,
$$F_k = [[0,1],[1,1]] \cdot F_{\lfloor k/2 \rfloor} \cdot F_{\lfloor k/2 \rfloor}$$

For even k,
$$F_k = F_{\lfloor k/2
floor} \cdot F_{\lfloor k/2
floor}$$

Base Cases: F_0, F_1 O(1) bits long

Inductive Hypothesis: Assume F_i are O(n) bits long for $1 \leq i < k$

Inductive Step:

odd: mult O(1) numbers w/ O(k/2) bit numbers then again => O(k) even: mult O(k/2) bit numbers twice => O(k)

d) M(n): run time of algo mult n-bit numbers

Assume $M(n) = O(n^2)$. Prove running time is $O(M(n) \log n)$.

Needs $O(\log n)$ mults, each taking O(M(n)) time

e) Prove running time of algo is O(M(n)).

For odd k,
$$F_k = [[0,1],[1,1]] \cdot F_{\lfloor k/2 \rfloor} \cdot F_{\lfloor k/2 \rfloor}$$

For even k,
$$F_k = F_{\lfloor k/2
floor} \cdot F_{\lfloor k/2
floor}$$

Base Cases: F_0, F_1 runtime O(1)

Inductive Hypothesis: Assume F_i takes O(M(n)) for $1 \leq i < k$

Inductive Step: $F_{\lfloor k/2 \rfloor} \Rightarrow O(M(k/2))$

Overall mult requires O(M(k)) time