EE150 - Homework 6

Problem 1

(20 points)

(a) (10 points) Given a band-limited input x(t), and the frequency response of two ideal low-pass filters $H_1(j\omega)$ (zero-phase) and $H_2(j\omega)$ with cut-off frequency ω_c , plot the output signal $y_1(t)$ and $y_2(t)$ filtered by $H_1(j\omega)$ and $H_2(j\omega)$, respectively. Note that the maximum frequency of x(t) is lower than ω_c .

Figure 1: $\mathbf{x(t)}$, $H_1(jw)$ and $H_2(jw)$

(b) (10 points) For the continuous ideal low-pass filter, with the following frequency response, calculate the impulse response h(t). When the ω_c increases, is the main lobe of the impulse response more narrow or wider? When $\omega_c \to \infty$, what function will h(t) be approximating to?

$$H(j\omega) = \begin{cases} 1 & |\omega| \le \omega_c \\ 0 & \omega_c < |\omega| < \pi \end{cases}$$

(20 points) Figure 2 shows the frequency response $H(j\omega)$ of a continuous-time filter referred to as a lowpass differentiator. For the input signal $x(t) = \cos(\pi t + \phi) + \sin(2\pi t + \phi) + \sin(4\pi t + \phi)$, determine the filtered output signal y(t).

Figure 2: The magnitude and phase spectrum of H(jw)

(20 points) Given the following properties of a causal LTI system of first-order:

A.If the input signal is $x(t) = a[e^{-(\omega_0 - 1)t}u(t) - e^{-(\omega_0 + 1)t}u(t)]$, the output will be $y(t) = be^{-(\omega_0 - 1)t}u(t) - e^{-(\omega_0)t}u(t) + be^{-(\omega_0 + 1)t}u(t)$, where $a, b, \omega_0 \neq 0$, and they are real numbers.

B.The group delay imposed by the system to the input signal is $\tau(\omega)=\frac{5}{25+\omega^2}$. (Hint: $\frac{\mathrm{darctan}x}{\mathrm{d}x}=\frac{1}{1+x^2}$)
C.The total energy of the input signal x(t) specified in property(A) is $E_x=\frac{1}{1+x^2}$

 $\frac{1}{120}$.

please answer the following questions:

1. Find the value of a, b, ω_0 .

2. Write out the differential equation of the system in terms of y(t), x(t). And find the frequency response $H(j\omega)$, sketch its Bode plot (use the asymptotic approximation). Note: the lateral axis of the Bode plot should be $\log_{10}(\omega)$.

(20 points) In many practical situations a signal is recorded in the presence of an echo, which we would like to remove by appropriate processing. For example, in Figure 4, we illustrate a system in which a receiver simultaneously receives a signal x(t) and an echo represented by an attenuated delayed replication of x(t). Thus, the receiver output is $s(t) = x(t) + \alpha x(t - T_0)$, where $|\alpha| < 1$. This output is to be processed to recover x(t) by first converting to a sequence and then downsampled by N, and then using an appropriate digital filter h[n], as indicated in Figure 4(b).

Assume that x(t) is band limited [i.e., $X(j\omega)=0$ for $|\omega|>\omega_M$] and that $|\alpha|<1$.

- (a) If $T_0 < \frac{\pi}{\omega_M}$, and the sampling period is taken to be equal to T_0 (i.e., $NT = T_0$), determine the difference equation for the digital filter h[n] such that $y_c(t)$ equals x(t). (note: for the filter h[n], $s_2[n]$ is the input, y[n] is the output)
- (b) Now suppose that $\frac{\pi}{\omega_M} < T_0 < \frac{2\pi}{\omega_M}$. Determine a choice for the sampling period T, the lowpass filter gain A, and the frequency response for the digital filter h[n] such that $y_c(t)$ equals x(t).

Figure 4.Problem 4

(20 points)

In Figure 5, we have an input signal $x_c(t) = \frac{\sin(0.5t)}{\pi t} + \sin(0.75t)$, sampling function $p(t) = \sum_{n=-\infty}^{\infty} \delta(t-nT)$, given that $T = \frac{\pi}{2}$. After converting $x_p(t)$ to discrete time,, we obtain the sequence $x_d[n]$. We then down sampling the sequence $x_d[n]$ with M = 2 to obtain $x_{d2}[n]$. Please plot the spectrum $X_c(j\omega)$, $X_p(j\omega)$, $X_d(e^{j\Omega})$, $X_d(e^{j\Omega})$, $Y_d(e^{j\Omega})$ and $Y_p(j\omega)$. Then write the expression of $y_c(t)$. $H(e^{j\Omega})$ in one period is given below:

$$H(e^{j\Omega}) = \begin{cases} 1, & -\frac{5\pi}{8} \le \Omega \le \frac{5\pi}{8} \\ 0, & \text{otherwise} \end{cases}$$

Figure 5. Problem 5