

Lista de ejercicios de la lección 1.4.3

Hallar el volumen del sólido generado al rotar la región acotada por las rectas y las curvas dadas alrededor del eje indicado (discos):

1.
$$y = 9 - x^2$$
, $y = 0$; eje x

1.
$$y = 9 - x^2$$
, $y = 0$; $eje x$ 4. $y = -\sqrt{x}$, $y = -2$, $x = 0$; $eje y$

2.
$$y = x^3$$
, $y = 0$, $x = 2$; eje x

2.
$$y = x^3$$
, $y = 0$, $x = 2$; $eje x$ 5. $y = \cos x$, $0 \le x \le \frac{\pi}{2}$; $eje y$

3.
$$y = \sqrt{9 - x^2}$$
, $y = 0$; $eje x$

3.
$$y = \sqrt{9 - x^2}$$
, $y = 0$; eje x 6. $x = \frac{2}{y+1}$, $x = 0$, $y = 0$, $y = 3$; eje y

Hallar el volumen del sólido generado al rotar la región acotada por las rectas y las curvas dadas alrededor del eje indicado (arandelas).

7.
$$y = x$$
, $y = 1$, $x = 0$; eje x

7.
$$y = x$$
, $y = 1$, $x = 0$; $eje x$ 11. $y = \sec x$, $y = \tan x$, $x = 0$, $x = 1$; $eje x$

8.
$$y = 2x$$
, $y = x$, $x = 1$; eje x

8.
$$y = 2x$$
, $y = x$, $x = 1$; $eje x$ 12. $y = \sec x$, $y = 0$, $x = \frac{\pi}{4}$, $x = 0$; $eje y$

9.
$$y = 4 - x^2$$
, $y = 2 - x$; eje x

9.
$$y = 4 - x^2$$
, $y = 2 - x$; eje x 13. 1er cuadrante $x^2 + y^2 = 3$, $y = \sqrt{3}$, $x = \sqrt{3}$; eje y

10.
$$y = x^2 + 1$$
, $y = x + 3$; eje x

10.
$$y = x^2 + 1$$
, $y = x + 3$; $eje x$ 14. $ler cuadrante $y = x^2$, $y = 0$, $x = 2$; $eje y$$

Representar la región R acotada por las gráficas de las ecuaciones para calcular el volumen del sólido generado al girar R alrededor del eje indicado. Trace un rectángulo típico junto con la envolvente cilíndrica que genera.

15.
$$y = \frac{1}{x}$$
, $x = 1$, $x = 2$, $y = 0$; eje y 19. $y = 9 - x^2$, $y = 0$; eje x

19.
$$y = 9 - x^2$$
, $y = 0$; $ejex$

16.
$$y = x^2 - 5x$$
, $y = 0$; $ejey$

16.
$$y = x^2 - 5x$$
, $y = 0$; $eje y$ 20. $y = \sqrt{\cos x}$, $0 \le x \le \frac{\pi}{2}$; $eje x$

17.
$$y = x^3 + 1$$
, $x + 2y = 2$, $x = 1$; $eje y$ 21. $2y = x$, $y = 4$, $x = 1$; $eje x$

21.
$$2y = x$$
, $y = 4$, $x = 1$; $eje x$

18.
$$y^3 = x$$
, $y = 3$, $x = 0$; eje x

Hallar los volúmenes de los sólidos generados al girar las regiones acotadas por las curvas y las rectas dadas alrededor del eje x.

22.
$$x + y = 3$$
, $x^2 + y = 3$

25.
$$y = \sqrt{x}$$
, $y = 0$, $y = x - 2$

22.
$$x + y = 3$$
, $x^2 + y = 3$ 25. $y = \sqrt{x}$, $y = 0$, $y = x - 2$ 28. $y = \sec x$, $y = \sqrt{2}$ en $\left[-\frac{\pi}{4}, \frac{\pi}{4} \right]$

23.
$$x = 2y - y^2$$
. $x = y$

23.
$$x = 2y - y^2$$
, $x = y$ 26. $x = 1 + y^2$, $x = 0$, $y = 1$, $y = 2$

24.
$$y = x$$
, $y = 2x$, $y = 3$

24.
$$y = x$$
, $y = 2x$, $y = 2$ 27. $x + y = 3$, $x = 4 - (y - 1)^2$

Hallar el volumen del sólido generado al girar cada región alrededor del eje y.

29.
$$y = x^2$$
, $x = 2$, el eje x 32. $x = y^2$, $y = x - 6$

30.
$$y = \sqrt{x}$$
, $y = x$ 33. $y = x^3 + 1$, $x = 0$, $y = 9$

31.
$$y = \sqrt{x}, y = 0, x = 4$$

Obtener el volumen del sólido de revolución que se forma haciendo rotar la región limitada por las graficas de las ecuaciones dadas, en torno del eje indicado.

34.
$$y = x^2 + 1$$
, $x = 0$, $y = 5$; eje y

35.
$$y = (x-2)^2$$
, $x = 0$, $y = 0$; eje x

$$36.\ 2x - y - 12 = 0,\ x - 2y - 3 = 0,\ x = 4;\ eje\ y$$

$$37. x^2 = 4y, y = 4; eje x$$

38.
$$y = 4 - x^2$$
, $y = 1 - \frac{1}{4}x^2$; eje x

39.
$$y = 1 - x^2$$
, $y = x^2 - 1$; $eje y$

40.
$$y = x^3$$
, $x = -2$, $y = 0$; eje x

41.
$$y = 2x$$
, $y = 4x^2$; eje y

42.
$$x = y^3$$
, $x^2 + y = 0$; $eje x$

43.
$$x = y^2$$
, $y - x + 2 = 0$; $eje y$

44.
$$x + y = 1$$
, $y = x + 1$, $x = 2$; $eje y$

45.
$$y = \frac{1}{x}$$
, $y = 0$, $x = \frac{1}{2}$, $x = 2$; $eje y$

46.
$$y = \frac{1}{x}$$
, $x = 1$, $y = 2$, $y = 0$, $x = 0$; eje y

47.
$$y = x^4$$
, $y = 1$, gira alrededor de $x = 2$, $y = 1$

48. 1er cuadrante
$$y = \sqrt{2}$$
; $y = \sec x \tan x$, $x = 0$

49.
$$1er\ cuadrante\ y=2;\ y=2\sin x,\ x=0;\ recta\ y=2$$
 68. $2y=x+4,\ y=x,\ x=0;\ eje\ x$

50. 1er cuadrante
$$y = x^2$$
; $y = 0$, $x = 1$; recta $x = -1$

53.
$$y = x^2$$
, $y = 4$; $recta y = 5$

54.
$$y = x^2$$
, $y = 4$; $recta \ x = 2$

55.
$$y = \sqrt{x}$$
, $y = 0$, $x = 4$; $recta \ x = 4$

56.
$$y = \sqrt{x}$$
, $y = 0$, $x = 4$; $recta \ x = 6$

57.
$$y = \sqrt{x}, y = 0, x = 4; recta y = 2$$

58.
$$y = 4x^2$$
, $4x + y - 8 = 0$; $recta x = 1$

59.
$$y = 4x^2$$
, $4x + y - 8 = 0$; $recta y = 0$

60.
$$y = 4x^2$$
, $4x + y - 8 = 0$; recta $y = 16$

61.
$$y = x^3$$
, $x = 2$, $y = 0$; $recta x = 2$

62.
$$y = x^3$$
, $x = 2$, $y = 0$; $recta x = 3$

63.
$$y = x^3$$
, $x = 2$, $y = 0$; $recta y = -1$

64.
$$y = x^2 + 1$$
, $x = 0$, $x = 2$, $y = 0$

65.
$$x = y - y^3$$
, el eje y; recta $y = 1$

66.
$$y = 2x - x^2$$
, $y = x$; $recta \ x = 1$

67.
$$x = 4 + 6y - 2y^2$$
, $x = -4$; $recta\ x = -4$

68.
$$2y = x + 4$$
, $y = x$, $x = 0$; $eje x$

69.
$$2y = x + 4$$
, $y = x$, $x = 0$; $eje y$

- 51. $2do\ cuadrante\ y=-x^3;\ y=0,\ x=-1;\ recta\ x=-2$ 70. $2y=x+4,\ y=x,\ x=0;\ recta\ x=4$
- 52. $y = x^2$, y = 4; recta y = 4

71.
$$2y = x + 4$$
, $y = x$, $x = 0$; $recta y = 8$

Nota. El ejercicio 48 es con la recta $y = \sqrt{2}$, y el ejercicio 64 es con la recta x = -1.

- 72. Al girar alrededor del eje x la región limitada por la curva $y = \sqrt{2x+4}$, el eje x, el eje y, y la recta x = c con c > 0, se generó un sólido de revolución. ¿Para qué valor de c el volumen del sólido será de 12π unidades cúbicas?
- 73. Obtener el volumen del sólido de revolución generado cuando la región acotada por la curva $y=1-\frac{3}{x}$, el eje x y la recta x=1 se gira alrededor del eje x.
- 74. Calcular el volumen del sólido de revolución generado cuando la región limitada por el eje x, la curva $y = 1 + \frac{2}{\sqrt{x}}$ y las rectas x = 1 y x = 4 se gira alrededor del eje x.
- 75. Calcular el volumen del sólido generado al girar la región limitada por las gráficas de las curvas $y = e^x$ y $y = 2^x$, y la recta x = 2, alrededor del eje x.
- 76. Calcular el volumen del sólido generado al girar la región limitada por las gráficas de $y = \log_{10} x$, $y = \ln x$ y la recta x = 3.
- 77. Calcular el volumen del sólido de revolución generado si la región determinada por la catenaria $y = 6 \cosh\left(\frac{x}{6}\right)$, el eje x, el eje y y la recta $x = 6 \ln 6$, gira alrededor del eje x.
- 78. Obtener el volumen del sólido de revolución generado cuando la región limitada por la curva $y = \sqrt{\sinh x}$, el eje x y las rectas x = 0 y $x = \ln 2$, se gira alrededor del eje x.
- 79. Hallar el volumen del sólido generado al girar la región acotada por $yx^2=1,\,y=1$ y y=4, alrededor de la recta y=5
- 80. Hallar el volumen del sólido generado al girar la región acotada por las graficas de $y^2 = x$, x = 0, y = -1 y y = 1, gira alrededor de la recta y = 2.
- 81. Hallar el volumen del sólido obtenido al girar la región limitada por $y = 4x x^2$, $y = 8x 2x^2$; en torno de x = -2.
- 82. Hallar el volumen del sólido obtenido al girar la región limitada por $y=x^2$, $x=y^2$; en torno de y=-1.
- 83. Hallar el volumen del sólido obtenido al girar la región acotada por $y = x^2 + 1$, x = 0, x = 2 y y = 0;
 - a) Alrededor de la recta x=3

- b) Alrededor de la recta x = -1
- 84. Hallar el volumen del sólido obtenido al girar la región acotada por $y=4-x^2$ y y=0;
 - a) Alrededor de la recta x=2
 - b) Alrededor de la recta x = -2
- 85. Hallar el volumen del sólido generado al girar la región acotada por $y = \sqrt{x}$ y las rectas y = 2 y x = 0;
 - a) Alrededor de la recta y = 2
 - b) Alrededor de la recta x=4
- 86. Hallar el volumen del sólido generado al girar la región acotada por las rectas y = 2x, y = 0 y x = 1;
 - a) Alrededor de la recta x = 1
 - b) Alrededor de la recta x=2
- 87. Hallar el volumen del sólido generado al girar la región acotada por $x=y^3$, x=8 y y=0, alrededor de la recta x=8.
- 88. Hallar el volumen del sólido generado al girar la región acotada por $x = y y^3$ y el eje y, alrededor de la recta y = 1.
- 89. Hallar el volumen del sólido generado al girar la región acotada por $y = 2x x^2$ y y = x, alrededor de la recta x = 1.
- 90. Hallar el volumen del sólido generado al girar la región $y=x^4$ y y=1, alrededor de y=1.
- 91. Hallar el volumen del sólido generado al girar la región $y=x^2$ y y=4, alrededor de:
 - a) y = 4
 - b) y = 5
 - c) x = 2
- 92. Obtener el volumen del sólido obtenido al girar la región triangular acotada por las rectas 2y = x + 4, y = x y x = 0, alrededor de:
 - a) el eje x

- b) el eje y
- c) la recta x=4
- d) la recta y = 8
- 93. Obtener el volumen del sólido obtenido al girar la región en el primer cuadrante acotada por $y = x^3$ y y = 4x, alrededor de:
 - a) el eje x
 - b) la recta x = 8

En los siguientes ejercicios obtener una fórmula para el volumen del sólido inclinado usando una integral definida.

- 94. Un cono circular recto de altura h y radio de la base r.
- 95. Una esfera de radio r.
- 96. Un cono circular recto truncado de altura h, radio de la base inferior R y radio de la base superior r.
- 97. Un segmento esférico de altura h y radio de la esfera r.

Representar la región R acotada por las gráficas de las ecuaciones dadas y luego plantee la integral o las integrales que se necesitan para calcular el volumen del sólido que se obtiene al girar R alrededor de la recta indicada. Use todos los métodos posibles en cada ejercicio.

98.
$$y = x^3$$
, $y = 4x$; $recta y = 8$ 102. $x^2 + y^2 = 1$; $recta x = 5$

102.
$$x^2 + y^2 = 1$$
; recta $x = 5$

99.
$$y = x^3$$
, $y = 4x$; $recta \ x = 4$

99.
$$y = x^3$$
, $y = 4x$; $recta \ x = 4$ 103. $y = x^{\frac{2}{3}}$, $y = x^2$; $recta \ y = -1$

100.
$$x + y = 3$$
, $y + x^2 = 3$; $recta \ x = 2$ 104. $y = 4 - x^2$, $y = 0$; $recta \ x = -3$

104.
$$y = 4 - x^2$$
, $y = 0$; $recta \ x = -3$

101.
$$y = 1 - x^2$$
, $x - y = 1$; recta $y = 3$