

SMO - Finalrunde

1. Prüfung - 11. März 2016

Zeit: 4 Stunden

Jede Aufgabe ist 7 Punkte wert.

- 1. Sei ABC ein Dreieck mit $\angle BAC = 60^{\circ}$. Sei E der Punkt auf der Seite BC, sodass $2\angle BAE = \angle ACB$ gilt. Sei D der zweite Schnittpunkt von AB und dem Umkreis des Dreiecks AEC und sei P der zweite Schnittpunkt von CD und dem Umkreis des Dreiecks DBE. Berechne den Winkel $\angle BAP$.
- **2.** Seien a, b und c die Seiten eines Dreiecks, das heisst: a + b > c, b + c > a und c + a > b. Zeige, dass gilt:

$$\frac{ab+1}{a^2+ca+1}+\frac{bc+1}{b^2+ab+1}+\frac{ca+1}{c^2+bc+1}>\frac{3}{2}.$$

3. Finde alle natürlichen Zahlen n, für welche Primzahlen p,q existieren, sodass gilt:

$$p(p+1) + q(q+1) = n(n+1).$$

- 4. In der Ebene liegen 2016 verschiedene Punkte. Zeige, dass zwischen diesen Punkten mindestens 45 verschiedene Distanzen auftreten.
- 5. Sei ABC ein rechtwinkliges Dreieck mit $\angle ACB = 90^{\circ}$ und M der Mittelpunkt von AB. Sei G ein beliebiger Punkt auf der Strecke MC und P ein Punkt auf der Geraden AG, sodass $\angle CPA = \angle BAC$ gilt. Weiter sei Q ein Punkt auf der Geraden BG, sodass $\angle BQC = \angle CBA$ gilt. Zeige, dass sich die Umkreise der Dreiecke AQG und BPG auf der Strecke AB schneiden.

Viel Glück!