COL 774: Machine Learning Major Examination

Saturday May 6, 2017

Notes:

- Time: 10:30 pm to 12:35 pm. Total Questions: 9. Maximum Points: 40. No. of Pages: 3.
- Each question carries 5 points. Attempt any 8 questions.
- Clearly mark the question you do not want to be graded.
- Start each answer on a new page. This exam is closed books & notes.
- Some questions may be harder than others. Use your time wisely.
- You need to justify all your answers. Answers without justification may not get full/any points.
- 1. Consider a 3-d volume of size $w \times h \times d$ in a CNN layer (w:width,h:height, d:depth). Consider applying r convolutional kernels of size $k \times k$ to this volume. Let s denote the length of the stride i.e., the number of pixels by which the kernel window is moved (either horizontally or vertically) before next application. Answer the following.
 - (a) What is the number of parameters to required implement the above convolutional layer. Do not forget the bias term(s). Briefly justify your answer.
 - (b) What is the size of the resulting volume? You can assume that each of w, h, k is divisible by s. Briefly justify your answer.
 - (c) A convolutional layer such as above is typically followed by a pooling layer. Explain why.
- 2. In class, we defined the MAP estimator as $\theta_{MAP} = \arg \max_{\theta} P(\theta|D)$ i.e., the parameter vector θ whose probability is maximized given the data. Given a new instance x, the prediction probability is given by $P(y|x,\theta_{MAP})$, i.e. probability of label y given feature vector x and θ_{MAP} as the set of parameters. Now, consider the quantity, P(y|x,D) which directly tries to estimate the probability of y given x conditioned on the data.
 - (a) Show that P(y|x, D) can be written as $\int P(y|x, \theta)P(\theta|D)d\theta$. You need to justify every step in your derivation. This is called Bayesian Averaging.
 - (b) Consider a binary classification problem, i.e. $y \in \{0,1\}$. Let $y_{MAP} = \arg\max_y P(y|x, \theta_{MAP})$, and $y_{AVG} = \arg\max_y P(y|x, D)$. Note that in our setting, for every parameter vector θ , there is a corresponding (unique) hypothesis h_{θ} . Consider a finite-sized hypothesis class $\mathcal{H} = \{h_1, h_2, h_3\}$ such that $P(h_1|D) = 0.3$, $P(h_2|D) = 0.4$ and $P(h_3|D) = 0.3$. Further, given an input x, let $P(y = 1|x, h_1) = 0.4$, $P(y = 1|x, h_2) = 0.6$ and $P(y = 1|x, h_3) = 0.4$. Compute y_{MAP} and y_{AVG} . Are they equal? Explain. Note that since the hypothesis class is finite, in Bayesian averaging, you will have to perform a sum instead of an integral.

3. Recall that softmax regression is an extension of logistic regression for the case of a multi-class classification problem. Here is a quick recap. Assume that the target variable y takes the value in the set $\{1, 2, \dots, r\}$ (i.e., consisting of r different labels). Let the input vector be given as $x \in \mathbb{R}^n$. The problem is now characterized by a set of parameter vectors $\Theta = \{\theta_{(k)}\}_{k=1}^r$ where each $\theta_{(k)} \in \mathbb{R}^{n+1}$. The probability distribution of (y = k|x) is defined as:

$$P(y = k|x; \Theta) = \frac{1}{Z} * e^{(\theta_{(k)})^T x}$$

$$\tag{1}$$

Here, $Z = \sum_{k} e^{(\theta_{(k)})^T x}$ is the normalization constant. For the problem below, assume that r = 3.

- (a) How would you compute the decision boundary enforced by the above classifier? You should describe your answer in mathematical terms.
- (b) For this part only, assume that $x \in \mathbb{R}^2$ (and r = 3 as earlier). Pictorially depict the decision surface learnt by a softmax classifier. You should justify your drawing.
- 4. Recall the paper that we studied in class on use of PCA for building oil vulnerability index. Assume that each country in the dataset is described by a set of seven indicators $\{x_1, x_2, \dots, x_7\}$. Let $\{f_1, f_2, \dots, f_7\}$ denote the 7 (normalized) principal components and $\lambda_1, \lambda_2, \dots, \lambda_7$ be the corresponding eigenvalues (in decreasing order).
 - (a) Derive the expression for computing the oil vulnerability index OVI_k for a country k.
 - (b) How would you compute the contribution of each of the features x_i ($1 \le i \le 7$) in OVI_k ?
- 5. Consider the set of axis-perpendicular hypercubes in \mathbb{R}^n where each face of the hypercube is perpendicular to one of the axis. Given the dimension x_j ($1 \leq j \leq n$), the two faces of the cube lying perpendicular to the dimension x_j are given by the equations of the form $x_j = \alpha_j$ and $x_j = \alpha'_j$, where α_j and α'_j are some scalars. For example, in \mathbb{R}^2 , this is the set of rectangles each of whose sides are parallel to x_1 or x_2 axis (and perpendicular to the other). In \mathbb{R}^3 , this is the set of cubes each of whose face is parallel to x_2 - x_3 , x_3 - x_1 or x_1 - x_2 plane (and perpendicular to x_1 , x_2 , x_3 axis, respectively). Given an axis perpendicular hypercube in \mathbb{R}^n , we define a hypothesis h_C as $h_C(x) = \mathbb{1}\{x \in C\}$, i.e., $h_C(x)$ is 1 if x lies inside the corresponding hypercube C, and 0 otherwise. Consider the class \mathcal{H} consisting of hypothesis h_C 's as defined above. Show that VC-dimension of \mathcal{H} is 2n.
- 6. Consider training a linear SVM with the training set $\{(x^{(i)}, y^{(i)})\}_{i=1}^m$. Assume that the training data is linearly separable. Further, assume that data is noise free and we use the hard-margin SVM model without any slack variables (i.e. no penalty terms). Let |SV| be the number of support vectors obtained when training on the entire training set. Recall we say that $x^{(i)}$ is a support vector if and only if the correponding Langrange multiplier $\alpha_i > 0$. Let ϵ denote the m-fold cross-validation error (also called the leave-one-out error) of our SVM (i.e. the error obtained by training on a subset of m-1 points, testing on the remaining one and then averaging over all such m-1 sized subsets). Prove that $\epsilon \leq \frac{|SV|}{m}$. You need to justify every key step of your proof. Hint: Think about for which of the cross-validation folds the boundary learned on the n-1 points can be (potentially) different from the one learned for the entire training data (and why?). You may want to do this in the dual space.
- 7. Consider learning a perceptron with sigmoid as the activitation unit. Let the input to the network be specified as $x \in \mathcal{R}^n$. Let θ denote the weight vector. In the standard setting, $\theta \in \mathcal{R}^{n+1}$, i.e., we have a set of n+1 parameters (including the bias term). Recall that the error metric is given as $J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) y^{(i)})^2$ where $h_{\theta}(x)$ is as defined in class. Now, let us change the problem setting where the weights are tied to each other in groups of r where n is divisible by r. Let $k = \frac{n}{r}$. In other words, we enforce that $\theta_{l*r+1} = \theta_{l*r+2} = \cdots = \theta_{l*r+r}$, $\forall l, 0 \leq l \leq k-1$. Further note that we still have a separate θ_0 term for bias. Therefore, we can alternately formulate the problem using a parameter vector θ' where $\theta' \in \mathcal{R}^{k+1}$.

$x^{(i)}$	$P(z^{(i)} = 1)$	$P(z^{(i)} = 2)$
5	0.2	0.8
15	0.2	0.8
25	0.8	0.2
30	0.9	0.1
40	0.9	0.1

Table 1: E-step Probabilities

- (a) Formulate the perceptron objective using the new set of parameters θ' as described above. Derive the gradient update rule for θ' in this new setting.
- (b) Consider adding a regularizer term of the form $\lambda * \theta'^T \theta'$ to the above objective. How does the gradient change in this case?
- 8. Consider a learning problem with n features satisfying the Naïve Bayes assumption i.e. $P(x|y) = \prod_{j=1}^{n} P(x_j|y)$. Let the target variable be $y \in \{0,1\}$ with $P(y=1) = \phi$. Let each feature x_j be continuous valued with a Gaussian distribution conditioned on the class variable y. In particular, for the class y=0, $P(x_j|y=0) \sim \mathcal{N}(\mu_{j|0}, \sigma_{j|0}^2)$ where $\mu_{j|0}$ is the mean of the distribution and $\sigma_{j|0}^2$ is its variance. Note that each variable x_j has its own mean $\mu_{j|0}$ and variance $\sigma_{j|0}^2$. Similarly, for class y=1, we have $P(x_j|y=1) \sim \mathcal{N}(\mu_{j|1}, \sigma_{j|1}^2)$. Above model is called Gaussian Naïve Bayes model.
 - (a) Show that Gaussian Naïve Bayes is a special case of GDA. Clearly describe the relationship between the two sets of parameters.
 - (b) Describe the kind of boundary learned by the Gaussian Naive Bayes model based on the relationship between the parameters $\{\mu_{j|0}, \sigma_{j|0}^2\}$ and $\{\mu_{j|1}, \sigma_{j|1}^2\}$.

Recall: GDA parameters are given as $\Theta = (\phi, \mu_0, \mu_1, \Sigma_0, \Sigma_1)$ where the symbols are as defined in class. In GDA, we first sample $y \sim Bernoulli(\phi)$. Then, we sample $(x|y=k) \sim \mathcal{N}(u_k, \Sigma_k)$ $(k \in \{0, 1\})$. Also, if $x \sim \mathcal{N}(\mu, \Sigma)$, then $P(x) = \frac{1}{(2\pi)^{n/2}|\Sigma|^{1/2}} \exp(\frac{-1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu))$

- 9. Consider learning a GMM model with k = 2 components. Further, assume that each input point $x \in \mathcal{R}$. Let there be 5 data points given as $\{5, 15, 25, 30, 40\}$. We will make the assumption that both the mixtures have the same co-variance matrix. Consider running EM algorithm over these points to estimate the paramters of the model. Assume that after a certain E step run of the algorithm, the probabilities are given by Table 1.
 - (a) Compute the parameters learned in the next M step.
 - (b) Compute the new probabilities using the parameters obtained in the M step above.