Diskrete Strukturen (WS 2023-24) - Halbserie 3

Bitte nur Probleme 3.1, 3.2 und 3.3 einreichen.

$$3.1 [2]$$

Sei I eine Menge, und seien A_i und B_i Mengen für jedes $i \in I$.

(a) Zeigen Sie, dass

$$\bigcap_{i \in I} A_i \cup \bigcap_{i \in I} B_i \subset \bigcap_{i \in I} (A_i \cup B_i)$$

(b) Geben Sie ein Beispiel, dass zeigt, dass die andere Teilmengerelation kann falsch sein.

$$3.2 ag{4}$$

Zeigen Sie durch vollständige Induktion, dass für jede natürliche Zahl $n \ge 1$ gilt:

$$\sum_{i=1}^{n} \frac{1}{(2i-1)(2i+1)} = \frac{n}{2n+1}.$$

Schreiben Sie explizit was sind Induktionsanfang, Induktionshypothese und Induktionsbehauptung. Markieren Sie, wo im Beweis die Induktionshypothese verwendet wird.

Seien A_1, \ldots, A_n Mengen. Zeigen Sie durch vollständige Induktion, dass für jede natürliche Zahl $n \geq 1$ gilt:

$$A_1 \cup A_2 \cup \ldots \cup A_n =$$

$$= (A_1 \cap A_2 \cap \ldots \cap A_n) \cup (A_1 \setminus A_2) \cup (A_2 \setminus A_3) \cup \ldots \cup (A_{n-1} \setminus A_n) \cup (A_n \setminus A_1).$$

Schreiben Sie explizit was sind Induktionsanfang, Induktionshypothese und Induktionsbehauptung. Markieren Sie, wo im Beweis die Induktionshypothese verwendet wird.

3.4 Zeigen Sie durch die vollständige Induktion, dass für jede natürliche Zahl $n \geq 0$ gilt:

$$\sum_{i=1}^{n} (2 \cdot i - 1) = n^2.$$

Schreiben Sie explizit was sind Induktionsanfang, Induktionshypothese und Induktionsbehauptung. Markieren Sie, wo im Beweis die Induktionshypothese verwendet wird.

 ${\bf 3.5}~$ Sei Meine Menge mit n Elementen. Beweisen Sie mittels vollständiger Induktion, dass die Potenzmenge von Mdann

$$\frac{n \cdot (n-1) \cdot (n-2)}{6}$$

Teilmengen mit genau drei Elementen enthält.

Schreiben Sie explizit was sind Induktionsanfang, Induktionshypothese und Induktionsbehauptung. Markieren Sie, wo im Beweis die Induktionshypothese verwendet wird.

3.6 Gegeben sei die folgende mathematische Aussage:

Für jede natürliche Zahl x, die eine Primzahl ist, gilt x=2 oder x ist ungerade.

- 1. Formalisieren Sie die obige Aussage mit Hilfe der Prädikatenlogik. Das Universum seien genau die natürlichen Zahlen und Sie können die üblichen mathematischen Symbole (\leq , <, =, etc.) sowie die Prädikate teilt(x, y) und prim(x) verwenden.
- 2. Negieren Sie die formalisierte Aussage aus (a) und formen Sie sie so um, dass Negationen nur noch vor Atomen stehen.
- 3. Beweisen Sie die obige Aussage mittels Widerspruchsbeweis.
- ${\bf 3.7}~$ Sei Meine Menge mit n Elementen. Beweisen Sie mittels vollständiger Induktion, dass die Potenzmenge von M dann

$$\frac{n\cdot(n-1)}{2}$$

Teilmengen mit genau zwei Elementen enthält.

3.8 Gegeben sei die Menge $M=\{0,5,7\}$ und die Äquivalenzrelation $R\subseteq\mathbb{N}\times\mathbb{N}$ definiert durch

 $(x,y) \in R$ genau dann, wenn für alle $m \in M$ die folgenden Bedingungen gelten:

- (i) x = m genau dann, wenn y = m,
- (ii) x < m genau dann, wenn y < m,
- (iii) x > m genau dann, wenn y > m.

Geben Sie alle Äquivalenzklassen von R an.

3.10 Seien A, B, C Mengen.

Sind die folgenden Aussagen über das kartesische Produkt wahr? Beweisen Sie Ihre Antwort.

1.
$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

2.
$$A \cap (B \times C) = (A \cap B) \times (A \cap C)$$

3.11 Sei $M = \{a, b, c\}$ und die **Relation** $R \subseteq M \times M$ definiert durch

$$R = \{(a, a), (b, b), (c, c), (a, b), (b, a), (a, c), (c, b)\}.$$

Welche der folgenden **Eigenschaften** besitzt R? Beweisen Sie Ihre Antwort.

1. reflexiv

4. antisymmetrisch

2. irreflexiv

5. transitiv

3. symmetrisch

6. vollständig

3.12 Sei M eine Menge und $R \subseteq M \times M$ eine **Relation** auf M. Beweisen Sie die folgende Aussage durch einen **direkten Beweis**:

Falls R symmetrisch und vollständig ist, so ist R auch reflexiv und transitiv.