INTRODUCTION TO MACHINE LEARNING

BEYOND BINARY CLASSIFICATION

Elisa Ricci

Blackberries

Lime

Pitanga

Red Bananas

Chico fruit

Star apple

Carob

FROM BINARY TO MULTICLASS CLASSIFICATION

LINEAR MODEL

A **linear model** is a model assumes that the data are linearly separable

Assume a specific hypothesis space, i.e. linear functions

CLASSIFYING WITH A LINEAR MODEL

We can classify with a linear model by checking the sign:

$$f_{l},f_{2},...,f_{n}$$

$$b+\sum_{i=1}^{n}w_{i}f_{i}>0$$
 Positive example
$$b+\sum_{i=1}^{n}w_{i}f_{i}<0$$
 Negative example

$$b + \sum_{i=1}^{n} w_i f_i > 0$$

$$b + \sum_{i=1}^{n} w_i f_i < 0$$

PERCEPTRON LEARNING ALGORITHM

```
repeat until convergence (or for some # of iterations):
 for each training example (f_1, f_2, ..., f_n, label):
      prediction = b + \sum_{i=1}^{n} w_i f_i
    if prediction is different from label
      for each w;:
       w_i = w_i + f_i^* \text{label}
      b = b + label
```

PERCEPTRON IN ACTION

PERCEPTRON IN ACTION

WHICH LINE WILL THE PERCEPTRON FIND?

Only guaranteed to find some line that separates the data!

WHAT IS A LINEAR CLASSIFIER FOR?

How flexible is it? Can we apply it to other problems?

SO FAR...

K-NN

PERCEPTRON

BINARY CLASSIFICATION

Formally...

TASK: BINARY CLASSIFICATION

Given:

- 1. An input space \mathcal{X}
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times \{-1, +1\}$
- 3. A training set D sampled from D

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

MULTI-CLASS CLASSIFICATION

examples labels apple orange apple banana banana

pineapple

Multiclass classification is a natural extension of binary classification.

The goal is still to assign a **discrete** label to examples.

The difference is that you have K > 2 classes to choose from.

REAL WORLD MULTICLASS CLASSIFICATION

Most real-world applications involve multiclass predictions

handwriting recognition

face recognition

autonomous vehicles emo

emotion recognition

MULTI-CLASS CLASSIFICATION

Formally...

TASK: MULTICLASS CLASSIFICATION

Given:

- 1. An input space X and number of classes K
- 2. An unknown distribution \mathcal{D} over $\mathcal{X} \times [K]$
- 3. A training set D sampled from D

Compute: A function f minimizing: $\mathbb{E}_{(x,y)\sim\mathcal{D}}[f(x)\neq y]$

MULTICLASS: CURRENT CLASSIFIERS

Any of these work out of the box? With small modifications?

K-NEAREST NEIGHBOR (K-NN)

To classify an example d:

- Find k nearest neighbors of d
- Choose as the label the majority label
 within the k nearest neighbors

No algorithmic changes!

PERCEPTRON LEARNING

Hard to separate three classes with just one line

BLACK BOX APPROACH TO MULTICLASS

I give you a binary classifier and you have to use it to solve the multiclass classification problem.

BLACK BOX APPROACH TO MULTICLASS

Given a generic binary classifier, how can we use it to solve the new problem.

Can we solve our multiclass problem with this?

PERCEPTRON LEARNING

One line does not suffice but...

PERCEPTRON LEARNING

... we can combine more lines!!!

Binary classification:

x_2 x_1

Multi-class classification:

ONE VS ALL (OVA) & ALL VS ALL (AVA)

APPROACH 1: ONE VS ALL (OVA)

- Training: for each label L define a binary problem
 - all examples with label L are positive
 - o all other examples are negative
- In practice, learn L different classification models

APPROACH 1: ONE VS. ALL (OVA)

Training: for each label L define a binary problem

- o all examples with label L are positive
- all other examples are negative

RECAP: LEARNING A LINEAR CLASSIFIER

The classifier divide the plane in two half-planes:

$$1 * f_1 + 0 * f_2 =$$

$$1 * -1 + 0 * 1 = -1$$

Negative!

OVA: CLASSIFY

How do we classify?

- If classifier does not provide confidence and there is ambiguity, pick one of the ones in conflict
- In general classifiers provide confidence.
- O Then:
 - Pick the most confident positive
 - If none vote positive, pick least confident negative

OVA: CLASSIFY

How do we classify?

- If classifier does not provide confidence and there is ambiguity, pick one of the ones in conflict
- In general classifiers provide confidence.
- O Then:
 - Pick the most confident positive
 - If none vote positive, pick least confident negative

How do we calculate this for the perceptron?

OVA: CLASSIFY

How do we classify?

- If classifier does not provide confidence and there is ambiguity, pick one of the ones in conflict
- o In general classifiers provide confidence.
- Then:
 - Pick the most confident positive
 - If none vote positive, pick least confident negative

$$prediction = b + \sum_{i=1}^{n} w_i f_i$$

Distance from the hyperplane

OVA: SUMMARY

Algorithm 13 OneVersusAllTrain(D^{multiclass}, BinaryTrain)

```
for i = 1 to K do

\mathbf{D}^{bin} \leftarrow \text{relabel } \mathbf{D}^{multiclass} \text{ so class } i \text{ is positive and } \neg i \text{ is negative}

f_i \leftarrow \mathbf{BINARYTRAIN}(\mathbf{D}^{bin})

# end for

*return f_1, \ldots, f_K
```

Algorithm 14 ONEVERSUSALLTEST $(f_1, \ldots, f_K, \hat{x})$

```
score \leftarrow \langle o, o, \dots, o \rangle \qquad // \text{ initialize $K$-many scores to zero} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ do} 
for i = 1 \text{ to } K \text{ d
```

- An alternative approach is handling the multiclass classification problem decomposing it into binary classification problems like in sport tournaments.
- You have K teams entering a tournament, but unfortunately the sport they are playing only allows two to compete at a time.
- You want to set up a way of pairing the teams and having them compete so that you can figure out which team is best.
- In our analogy the teams are the classes and you want to know which class is best.
- In practice, every team compete against every other team.
- The team that wins the majority of its matches is the best.

- All versus All (or AVA) approach (sometimes called all pairs).
- We training K(K-1)/2 classifiers.
 - \circ $F_{ii'}$, $1 \le i \le j \le K$, is the classifier that discriminates class i against class j.
- This classifier receives all the examples of class i as "positive" and all the examples of class j as "negative."
- ullet When a test point arrives, we evaluate it on all the F_{ij} classifiers.
- Every time F_{ij} predicts positive, class i gets a vote; otherwise, class j gets a vote. After running all K(K-1)/2 classifiers, the class with the most votes wins.

orange vs banana +1 -1 -1

apple vs orange

apple vs banana

-

orange vs banana +1

-1

What class?

```
apple vs orange
                orange
                            orange vs banana
          -1
                                       +1
apple vs banana
                                            orange
                                                       What class?
          +1
              apple
         -1
```

AVA TRAINING

Training:

For each pair of labels, train a classifier to distinguish between them

for i = 1 to number of labels:

for j = i+1 to number of labels:

train a classifier F_{ij} to distinguish between $label_j$ and $label_i$:

- create a dataset with all examples with label $_j$ labeled positive and all examples with label $_i$ labeled negative
 - train classifier \boldsymbol{F}_{ij} on this subset of the data

AVA CLASSIFICATION

To classify example \emph{x} , classify with each classifier $F_{\it ij}$

We have a few options to choose the final class:

- Take a majority vote
- Take a weighted vote based on confidence

$$\circ \quad y = F_{ij}(x)$$

- \circ score += y
- \circ score_k -= y

AVA CLASSIFICATION

To classify example \emph{x} , classify with each classifier $F_{\it ij}$

We have a few options to choose the final class:

- Take a majority vote
- Take a weighted vote based on confidence

$$\circ \quad y = F_{ij}(x)$$

- \circ score_i += y
- \circ score, = y

If y is positive, classifier thought it was of type j:

- raise the score for j
- lower the score for i

if y is negative, classifier thought it was of type i:

- lower the score for j
- raise the score for i

AVA: SUMMARY

Algorithm 15 ALLVERSUSALLTRAIN(D^{multiclass}, BINARYTRAIN)

```
1: f_{ij} \leftarrow \emptyset, \forall 1 \leq i < j \leq K
2: for i = 1 to K-1 do
3: \mathbf{D}^{pos} \leftarrow \text{all } x \in \mathbf{D}^{multiclass} \text{ labeled } i
4: for j = i+1 to K do
5: \mathbf{D}^{neg} \leftarrow \text{all } x \in \mathbf{D}^{multiclass} \text{ labeled } j
6: \mathbf{D}^{bin} \leftarrow \{(x, +1) : x \in \mathbf{D}^{pos}\} \cup \{(x, -1) : x \in \mathbf{D}^{neg}\}
7: f_{ij} \leftarrow \text{BINARYTRAIN}(\mathbf{D}^{bin})
8: end for
9: end for
10: return all f_{ij}s
```

Algorithm 16 AllVersusAllTest(all f_{ij} , \hat{x})

```
1: score \leftarrow \langle o, o, \dots, o \rangle  // initialize K-many scores to zero
2: for i = 1 to K-1 do
3: for j = i+1 to K do
4: y \leftarrow f_{ij}(\hat{x})
5: score_i \leftarrow score_i + y
6: score_j \leftarrow score_j - y
7: end for
8: end for
9: return argmax_k score_k
```

OVA VS. AVA

Train/classify runtime?

Error Probability?

OVA VS. AVA

- Train time:
 - AVA learns more classifiers, however, they are trained on much smaller data this tends to make it faster if the labels are equally balanced
- Test time:
 - AVA has more classifiers, so often is slower
- Error:
 - AVA trains on more balanced data sets
 - AVA tests with more classifiers and therefore has more chances for errors

MULTICLASS SUMMARY

If using a binary classifier, the most common thing to do is OVA

Otherwise, use a classifier that allows for multiple labels:

- DT and k-NN work reasonably well
- Other more sophisticated methods work better (we will see them later in the course)

MORE IN THE NEXT LECTURES

Class	1	2	3	4	Total
1	70	10	15	5	100
2	8	67	20	5	100
3	0	11	88	1	100
4	4	10	14	72	100

EVALUATION

MULTICLASS EVALUATION

label prediction

apple orange

orange orange

apple apple

banana pineapple

banana banana

pineapple pineapple

How should we evaluate?

MULTICLASS EVALUATION

-

label prediction

apple orange

orange orange

apple apple

banana pineapple

banana banana

pineapple pineapple

How should we evaluate?

Accuracy: 4/6

MULTICLASS EVALUATION

label prediction

orange

• • • • •

apple

apple apple

banana pineapple

banana banana

pineapple pineapple

Problems?

Data Imbalance

Microaveraging: average over examples (this is the "normal" way of calculating)

Macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

Microaveraging: average over examples (this is the "normal" way of calculating)

Macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

- Puts more weight/emphasis on rarer labels
- Allows another dimension of analysis

label prediction
apple orange
orange orange

apple

banana

banana

pineapple

microaveraging: average over examples

pineapple

banana

pineapple

apple

macroaveraging: calculate evaluation score (e.g. accuracy) for each label, then average over labels

abel prediction

apple orange

orange orange

apple apple

anana pineapple

banana

pineapple

microaveraging: 4/6 macroaveraging: apple = 1/2orange = 1/1banana = 1/2pineapple = 1/1total = (1/2 + 1 + 1/2 + 1)/4

CONFUSION MATRIX

- Entry (i, j) represents the number of examples with label i that were predicted to have label j
- Often in percentage

USEFUL READINGS

Chapter 6

QUESTIONS?

Some slides are taken from David Kauchak