

SPECIFICATION

NOVEL POLYPEPTIDE HAVING WATER CHANNEL ACTIVITY AND DNA SEQUENCE

55

TECHNICAL FIELD

The present invention relates to a novel, human adipose tissue-derived polypeptide having water channel activity and to a DNA sequence encoding for the polypeptide.

10

15

20

25

30

BACKGROUND ART

The permeation of water through a cell membrane generally occurs slowly by way of diffusion into the lipid bilayer which is the main structure of the cell membrane. Recently, however, it was discovered that, in certain kinds of cells, water is transferred rapidly through the cell membrane, suggesting the involvement in the above phenomenon of some membrane protein selectively permeable to water. Thereafter, such membrane proteins of various kinds have actually been isolated. Such membrane proteins are designated as water channels. In this specification, the function of the above water channels which has selective permeation of water through the cell membrane is referred to as "water channel activity". The water channels may be permeable to water alone or permeable to not only water but also low-molecular-weight substances such as glycerol and urea.

As a membrane protein having such water channel activity, there have been isolated a group of membrane proteins known as aquapolins (AQPs). Furthermore, some aquapolin genes have so far been cloned, and aquapolins such as AQP1 through AQP5, FA-CHIP and AQP- γ TIP have been discovered in mammals, amphibians, plants, etc. [cf. e.g. Akira Sasaki, Igaku no Ayumi (Advances in Medicine), vol. 173, No. 9, 1995].

P. Agre et al. reported, in Science (vol. 256, pp. 385 35 to 387, 1992) that <u>Xenopus laevis</u> oocytes in which the <u>in vitro</u>

15

20

25

30

35

transcript RNA for CHIP28, the current designation of which is AQP1, had been introduced showed increased water permeability. In Science (vol. 264, pp. 92 to 95, 1994), B. A. van Oost et al. disclosed the amino acid sequence of human AQP2 and suggested that this should be involved in vasopressin-dependent urine concentration.

In Proc. Natl. Acad. Sci. USA (vol. 91, pp. 6269 to 6273, 1994), Ishibashi et al. disclosed the nucleotide sequence of the gene for renal collecting tubule-derived AQP3 and the amino acid sequence encoded thereof. Ishibashi et al. confirmed its water channel activity by injecting the AQP3 cRNA into Xenopus laevis oocytes and measuring the water permeability thereof. Ishibashi et al. reported that this AQP3 transported not only water but also nonionic small molecules such as urea and glycerol.

In Proc. Natl. Acad. Sci. USA (vol. 91, pp. 13052 to 13056, 1994), J. S. Jung et al. reported about the isolation of AQP4. This AQP4 is known to occur most abundantly in mammalian brains and have mercury resistance. In J. Biol. Chem. (vol. 270, pp. 1908 to 1912, 1995), S. Raina et al. who prepared rat salivary gland-derived AQP5 cDNA describe the nucleotide sequence of the cDNA and the amino acid sequence encoded thereby. S. Raina et al. cloned the cDNA by utilizing the occurrence of an NPA sequence and confirmed its function by observing that the cRNA enhances the water permeability of Xenopus laevis oocytes.

The aquapolin family mentioned above is considered to be involved in water metabolism in mammals and, for example, it has been confirmed that AQP2 is found only in the renal collecting tubule luminal membrane, which is indicative of its close association with the vasopressin-urea concentration system, and its involvement in renal diseases has become acknowledged. Therefore, such membrane proteins having water channel activity are of importance in any attempt to develop novel therapies for water-associated diseases.

Meanwhile, the expression of the aqupolin family

10

15

20

25

30

35

mentioned above has been confirmed in such organs as kidney, brain, gall bladder, eye, intestine, salivary gland and bronchus but there is no report as yet about the occurrence of membrane proteins having water channel activity in other organs or tissues, particularly in adipose tissue.

SUMMARY OF THE INVENTION

In view of the above-mentioned state of the art, the present invention has for its object to provide a novel membrane protein having water channel activity and a DNA sequence encoding for the polypeptide.

The present invention is related to a novel polypeptide having water channel activity which has the amino acid sequence, within the molecule thereof, shown in the sequence listing under SEQ ID NO:1.

The present invention is also related to a nucleotide sequence itself which codes for a polypeptide having, within the molecule thereof, the amino acid sequence shown in the sequence listing under SEQ ID NO:1 and having water channel activity.

The present invention is further related to the DNA sequence shown in the sequence listing under SEQ ID NO:2.

The present invention is still further related to a polypeptide having water channel activity which has the amino acid sequence, within the molecule thereof, encoded by the nucleotide No. 173 to No. 1198 of the nucleotide sequence shown in the sequence listing under SEQ ID NO:2.

DETAILED DESCRIPTION OF THE INVENTION

In the following, the present invention is described in detail.

The polypeptide of the present invention has the amino acid sequence shown in the sequence listing under SEQ ID NO:1. This polypeptide has a sequence composed of three amino acids, namely asparagine-proline-alanine, as the amino acid Nos. 195

15

20

25

30

35

•

to 197. However, the characteristic feature common to the so-far known AQPs, that said asparagine-proline-alanine sequence occurs twice, is not found in the polypeptide of the present invention. That this polypeptide has water channel activity can be confirmed from the fact that it enhances the water permeability of Xenopus laevis oocytes.

The above polypeptide may be generated by translation by a protein synthesis system constituted, in vivo or in vitro, based on the nucleotide sequence coding for the amino acid sequence of said polypeptide. The nucleotide sequence of the present invention substantially has a region coding for the amino acid sequence of said polypeptide and, where necessary, may contain one or more other regions such as a promoter region. In the protein synthesis based on genetic information, the information carried by the gene DNA is transcribed into mRNA as the result of DNA-dependent RNA synthesis aided by RNA polymerase. And, this mRNA is translated into the amino acid sequence in a tRNA-containing protein synthesis system. Therefore, the nucleotide sequence of the present invention includes not only the DNA sequence but also the RNA sequence. Furthermore, since it is generally known that, for an amino acid, there is one or a plurality of codons corresponding thereto, it is a matter of course that the above-mentioned nucleotide sequence is not limited to only one sequence but may include nucleotide sequences resulting from substitution of another synomyous codon coding for the same amino acid.

The above polypeptide can be formed based on the genetic information carried by the DNA sequence shown in the sequence listing under SEQ ID NO:2. This polypeptide is encoded by that portion of the nucleotide sequence shown in the sequence listing under SEQ ID NO:2 which ranges from the nucleotide No. 173 to No. 1198. Of the DNA sequence shown in the sequence listing under SEQ ID NO:2, the nucleotide sequences other than the portion of said nucleotide numbers are noncoding regions, among which the polyadenylation consensus sequence AATAAA occurs at

10

15

20

25

30

35

the nucleotide No.1234 to No.1239. Other possible reading frames of said DNA sequence shown under SEQ ID NO:2 can be excluded from consideration, since the polypeptides encoded are very small-sized, hence considered to be incapable of performing any water channel function.

It has been confirmed by the inventors that the fulllength sequence of the above nucleic acid bases has no counterpart sequence either in GenBank or in dbEST.

The polypeptide of the present invention has water channel activity in adipose tissue. While adipose tissue is distributed in various parts of the living organism, the polypeptide of the present invention has an action to control the transfer of water in such adipose tissue and is expected to be effective in upholding normal functions of adipose tissue at various sites.

BEST MODES FOR CARRYING OUT THE INVENTION

The above-mentioned DNA sequence given under SEQ ID NO: 2 corresponds to the nucleotide sequence of cDNA obtained from human adipose tissue by cloning. Human adipose tissue is a tissue which stores fat as energy reserves. It is known that various proteins are formed in this adipose tissue. A 3'directed DNA library is known as a cDNA library from which the genes actually expressed in this adipose tissue or, in other words, the mRNA composition in this adipose tissue can be copied faithfully. This 3'-directed DNA library contains only those specified 3'-terminal regions of mRNAs which range from poly(A) to the MboI site which is a restriction enzyme recognition site upstream of said poly(A) and, therefore, said library is suited for template preparation by the PCR technique. Therefore, by extracting a clone from this library and using it to determine a longer nucleotide sequence including the amino acid coding region from this complete adipose tissue cDNA library, it becomes possible to obtain the genetic information concerning the protein which is actually formed in adipose tissue.

10

15

20

25

30

35

DNA sequence of the present invention as shown under the above-mentioned SEQ ID NO: 2 is found by such cloning. A method of obtaining the cDNA by cloning from human adopose tissue is now described in detail.

Known as said method is, for example, the method described in Biochem. Biophys. Res. Commun., 221, 286 to 289 (1996). According to this method, the total RNA is first separated from adipose tissue and, when necessary, purified to give poly(A) For this purification, commercially available purification kits can be used. For example, Pharmacia's Quick prep mRNA purification kit or the like in which oligo(dT)cellulose and various buffers are used in combination can Then, a double-stranded cDNA is judiciously be employed. synthesized using a pUC19 system vector primer and the double-stranded cDNA so synthesized is selectively cleaved with the restriction enzyme MboI (which recognizes the nucleotide sequence GATC). On that occasion, the GATC sequence on the vector molecule side, which can be methylated to give GMATC when replication is effected in dam bacterial cells, is not cleaved with MboI. As the cleaved cDNA is subjected to self-cyclization using E. coli ligase, a plasmid containing a cDNA fragment extending from poly(A) to the nearest MboI site is completed. This plasmid is introduced into Escherichia coli, followed by cultivation and selection of a transformant E. coli colony. Then, the cDNA in said colony is amplified by the PCR technique using appropriate PCR primers.

On the other hand, the full-length double-stranded cDNA synthesized using the pUC19 system vector primer is cleaved at the 5' end using T4 polymerase and subjected to cyclization using T4 ligase and introduction into Escherichia coli for transformation. From among the thus-obtained transformant colonies, the desired colony is obtained by screening using, as a probe, a labeled form of the adipose tissue-specific cDNA obtained from said 3'-directed DNA library by the method mentioned above. The insert cDNA in this colony is amplified

10

15

20

25

30

35

by the PCR technique using appropriate PCR primers. The amplification product is purified and, after sonication, subcloned into the M13 phage.

The nucleotide sequence of the thus-cloned cDNA can be determined, for example, by reaction with a primer dye, purification and analysis using an automated sequencer or the like. In this manner, the DNA sequence of the present invention can be obtained.

The polypeptide of the present invention has water channel activity. This water channel activity can be confirmed by observing an enhancement of water permeability in Xenopus laevis oocytes. It is known that no AQP family gene has been expressed in Xenopus laevis oocytes and, therefore, any increase in water permeability as caused by the injected mRNA can be easily confirmed. For this reason, said oocytes are widely used in confirming water channel activity. For example, in Proc. Natl. Acad. Sci. USA, vol. 91, pp. 6269 to 6273 (1994), Ishibashi et al. confirmed the water channel activity by inserting the AQP3 cDNA into the pSP64T-derived BlueScript vector, synthesizing the cRNA using T7 RNA polymerase, injecting this cRNA into Xenopus laevis oocytes and, after 48 to 62 hours of incubation following injection, observing an increase in water permeability and in the volume of the oocyte.

The polypeptide encoded by the DNA sequence of the present invention can be identified by analyzing the amino acid sequence of the polypeptide synthesized in an Escherichia coli protein synthesis system constituted in vitro. In this case, the methods of identifying N-and C-terminal sequences of expression products as described in Shin Seikagaku Jikken Koza (Experiments in Biochemistry, A New Course) 1 (published by Tokyo Kagaku Dojin), pages 22 to 24 can be employed.

The following examples illustrate the present invention in further detail. These examples are, however, by no means limitative of the scope of the present invention.

Example 1

<u>Determination of DNA nucleotide sequence</u>

According to a recent report [Biochem. Biophys. Res. 5 Commun., 221, 286 to 289 (1996)], a DNA for an adipose tissue-specific collagen-like factor has been cloned using a 3'-directed DNA library containing only those specified 3'terminal regions of RNA molecules which range from poly(A) to the restriction enzyme MboI site upstream thereof [Nature Genet., 2, 173 to 179 (1992)], which library makes it possible 10 not only to identify the gene under expression but also to examine the frequency of expression or amount of expression. In accordance with the method described in the above report, the DNA nucleotide sequence of the present invention was determined using an adipose tissue-specific 3'-directed DNA 15 library.

Method

Reverse transcriptase was added to poly(A)* RNA separated and purified from human adipose tissue using a Quick prep mRNA 20 purification kit, followed by insertion into λ ZAP II containing the pUC19 system vector pBluescript and introduction into Escherichia coli. Screening carried out using an adipose tissue-specific partial DNA as a probe gave a colony of transformant Escherichia coli. Then, together with two 25 primers (SK: 5'CGCTCTAGAACTAGTGGATC3'; T7: 5'GTAATACGACTCACTATAGGGC3'), PCR [polymerase chain reaction; (30 seconds at 95° + 30 seconds at 50° + 60 seconds at 70°) x 15 cycles, followed by (30 seconds at 95 $^{\circ}$ + 60 seconds at 70°) x 15 cycles], was carried out and, after sonication, the 30 product was subcloned in M13. A primer dye was added thereto and, after purification, the nucleotide sequence of the DNA was analyzed using an automated sequencer. The nucleotide sequence obtained is shown in the sequence listing under SEQ ID NO: 2.

15

20

30

Example 2

Examination as to water permeability

As for the studies on the water permeability of the AQP family, there are reports about AQP1 [Science, 256, 385-387 (1992)] and AQP3 [Proc. Natl. Acad. Sci. USA, 91, 6269-6273 (1994)] in which RNA was introduced into Xenopus laevis oocytes, in which AQP family genes have not been expressed, and then the water permeability was calculated from changes in the surface area and volume of said oocytes in a hypotonic culture medium. Therefore, the membrane protein encoded by the DNA of the present invention was checked for water permeability according to the method described in the references cited above.

Test method

The RNA (10 ng) obtained in Example 1 from human adipose tissue was introduced into Xenopus laevis oocytes by microinjection and the oocytes were incubated at 20℃ for 3 days in an isotonic culture medium (about 200 mOsm). The cultured oocytes were transferred to a hypotonic culture medium (about 40 mOsm). Photograph was taken 20 seconds and 40 seconds after transfer, and the sectional area and volume of each oocyte were determined using an image analyzer. The water permeability of the membrane protein was calculated as follows:

Permeability (cm/sec) = $[(V_{40}-V_{20})/20]/[(A_{20}x_{10}-2x_4)x_{1.384}]$

where V_{20} denotes the oocyte volume (cm³) after 20 seconds, V_{40} denotes the oocyte volume (cm³) after 40 seconds, and A_{20} denotes the oocyte sectional area (mm²) after 20 seconds.

The result is shown in Table 1. The water permeability found when purified water was used for microinjection in lieu of the RNA is also shown.

Further, the expression of the polypeptide of the present

15

20

5 Table 1

	Water permeability (cm/sec)
Group in which RNA	30.0x10 ⁻⁴
introduction was not made	
Group in which RNA	292.5x10 ⁻⁴
introduction was made	

As is evident from Table 1, the polypeptide encoded by the DNA sequence of the present invention caused an increase in water permeability after introduction into the oocytes. This result indicate that the polypeptide of the present invention has water channel activity.

INDUSTRIAL UTILIZABILITY

The present invention provides a novel protein having water channel activity and a novel DNA sequence encoding the protein. Said protein is one found in human adipose tissue for which the occurrence of water channels has not been reported as yet. The present invention makes it possible to develop novel therapies for water or fat metabolism-associated diseases in which said tissue is involved.

[Sequence listings]

SEQ ID No.: 1 Length: 342

5 Type: amino acid Topology: linear Species: peptide

Sequence

		Seq	uenc	e													
	10	Met	Val	Gln	Ala	Ser	Gly	His	Arg	Arg	Ser	Thr	Arg	Gly	Ser	Lys	Met
						5		•			10					15	
7		Val	Ser	Trp	Ser	Val	Ile	Ala	Lys	Ile	Gln	Glu	Ile	Leu	Gln	Arg	Lys
j					20					25					30		•
		Met	Val	Arg	Glu	Phe	Leu	Ala	Glu	Phe	Met	Ser	Thr	Tyr	Val	Met	Met
j	15			35					40					45			
]		Val	Phe	Gly	Leu	Gly	Ser	Val	Ala	His	Met	Val	Leu	Asn	Lys	Lys	Tyr
1			50					55					60				
-		Gly	Ser	Tyr	Leu	Gly	Val	Asn	Leu	Gly	Phe	Gly	Phe	Gly	Val	Thr	Met
1		65					70					75					80
)	20	Gly	Val	His	Val	Ala	Gly	Arg	Ile	Ser	Gly	Ala	His	Met	Asn	Ala	Ala
						85					90					95	
		Val	Thr	Phe	Ala	Asn	Cys	Ala	Leu	Gly	Arg	Val	Pro	Trp	Arg	Lys	Phe
					100	•				105					110		
		Pro	Val	Tyr	Val	Leu	Gly	Gln	Phe	Leu	Gly	Ser	Phe	Leu	Ala	Ala	Ala
	25		-	115					120					125			
		Thr	Ile	Tyr	Ser	Leu	Phe	Týr	Thr	Ala	Ile	Leu	His	Phe	Ser	Gly	Gly
			130					135					140				
		Gln	Leu	Met	Val	Thr	Gly	Pro	Val	Ala	Thr	Ala	Gly	Ile	Phe	Ala	Thr
		145					150					155					160
	30	Tyr	Leu	Pro	Asp	His	Met	Thr	Leu	\mathtt{Trp}	Arg	Gly	Phe	Leu	Asn	Glu	Ala
						165					170					175	
		Trp	Leu	Thr	Gly	Met	Leu	Gln	Leu	Cys	Leu	Phe	Ala	Thr	Thr	Asp	Gln
					180					185					190		
		Glu	Asn	Asn	Pro	Ala	Leu	Pro	Gly	Thr	Glu	Ala	Leu	Val	Ile	Gly	Ile
	35			195					200					205			

	Leu	Val	Val	Ile	Ile	Gly	Val	Ser	Leu	Gly	Met	Asn	Thr	Gly	Tyr	Ala
		210					215					220				
	Ile	Asn	Pro	Ser	Arg	Asp	Leu	Pro	Pro	Arg	Ile	Phe	Thr	Phe	Ile	Ala
	225					230					235					240
5	Gly	Trp	Gly	Lys	Gln	Val	Phe	Ser	Asn	Gly	Glu	Asn	Trp	Trp	Trp	Val
	•				245					250					255	
	Pro	Val	Val	Ala	Pro	Leu	Leu	Gly	Ala	Tyr	Leu	Gly	Gly	Ile	Ile	Tyr
				260					265					270		
	Leu	Val	Phe	Ile	Gly	Ser	Thr	Ile	Pro	Arg	Glu	Pro	Leu	Lys	Leu	Glu
10			275					280					285			
	Asp	Ser	Val	Ala	Tyr	Glu	Asp	His	Gly	Ile	Thr	Val	Leu	Pro	Lys	Met
		290														
		290					295					300				
	Gly		His	Glu	Pro	Thr		Ser	Pro	Leu	Thr		Val	Ser	Val	Ser
	Gly 305		His	Glu	Pro	Thr 310		Ser	Pro	Leu	Thr 315		Val	Ser	Val	Ser 320
15	305	Ser				310	Ile				315	Pro			Val Glu	320
15	305	Ser				310	Ile				315	Pro				320
15	305 Pro	Ser Ala		Arg	Ser 325	310 Ser	Ile			Ala	315	Pro			Glu	320

SEQ ID No: 2 Length: 1258

	Type: nucleotide												
	Strandedness: double strand												
5	Topology: linear												
	Species: cDNA to mRNA												
	Original source												
	Organism: human												
	Tissue type: adipose tissue												
10	Feature Information												
	Name/Key: peptide												
	Location: 1731198												
	Identification method: E												
15	Sequence												
	GGCTCTGGAC TGGGGACACA GGGATAGCTG AGCCCCAGCT GGGGGTGGAA GCTGAGCCAG	60											
	GGACAGTCAC GGAGGAACAA GATCAAGATG CGCTGTAACT GAGAAGCCCC CAAGGCGGAG 1												
	GCTGAGAATC AGAGACATTT CAGCAGACAT CTACAAATCT GAAAGACAAA AC ATG GTT	178											
	Met Val												
20	1												
	CAA GCA TCC GGG CAC AGG CGG TCC ACC CGT GGC TCC AAA ATG GTC TCC	226											
	Gln Ala Ser Gly His Arg Arg Ser Thr Arg Gly Ser Lys Met Val Ser												
	5 10 15												
	TGG TCC GTG ATA GCA AAG ATC CAG GAA ATA CTG CAG AGG AAG ATG GTG	274											
25	Trp Ser Val Ile Ala Lys Ile Gln Glu Ile Leu Gln Arg Lys Met Val												
	20 25 30												
	CGA GAG TTC CTG GCC GAG TTC ATG AGC ACA TAT GTC ATG ATG GTA TTC	322											
	Arg Glu Phe Leu Ala Glu Phe Met Ser Thr Tyr Val Met Met Val Phe												
20	35 40 45 50												
30	GGC CTT GGT TCC GTG GCC CAT ATG GTT CTA AAT AAA AAA TAT GGG AGC	370											
	Gly Leu Gly Ser Val Ala His Met Val Leu Asn Lys Lys Tyr Gly Ser												
	55 60 65												
		418											
35	Tyr Leu Gly Val Asn Leu Gly Phe Gly Phe Gly Val Thr Met Gly Val												
J J	70 75 80												

	CAC	GTG	GCA	GGC	CGC	ATC	TCT	GGA	GCC	CAC	ATG	AAC	GCA	GC:	r GT	G ACC	466
	His	Val	Ala	Gly	Arg	, Ile	Ser	Gly	Ala	His	Met	Asn	Ala	Ala	a Va.	l Thr	
			85					90					95				
	TTT	GCT	AAC	TGI	GCG	CTG	GGC	CGC	GTG	ccc	TGG	AGG	AAG	TTT	CCC	GTC	514
5	Phe	Ala	Asn	Cys	Ala	Leu	Gly	Arg	Val	Pro	Trp	Arg	Lys	Phe	Pro	Val	
		100					105	;				110)				
	TAT	GTG	CTG	GGG	CAG	TTC	CTG	GGC	TCC	TTC	CTG	GCG	GCT	GCC	ACC	ATC	562
	Tyr	Val	Leu	Gly	Gln	Phe	Leu	Gly	Ser	Phe	Leu	Ala	Ala	Ala	Thr	·Ile	
	115					120					125					130	
10	TAC	AGT	CTC	TTC	TAC	ACG	GCC	ATT	CTC	CAC	TTT	TCG	GGT	GGA	CAG	CTG	610
	Tyr	Ser	Leu	Phe	Tyr	Thr	Ala	Ile	Leu	His	Phe	Ser	Gly	Gly	Gln	Leu	
					135	i				140)				145		
	ATG	GTG	ACC	GGT	CCC	GTC	GCT	ACA	GCT	GGC	ATT	TTT	GCC	ACC	TAC	CTT	658
	Met	Val	Thr	Gly	Pro	Val	Ala	Thr	Ala	Gly	Ile	Phe	Ala	Thr	Туг	Leu	
15			•	150					155					160			
	CCT	GAT	CAC	ATG	ACA	TTG	TGG	CGG	GGC	TTC	CTG	AAT	GAG	GCG	TGG	CTG	706
	Pro	Asp	His	Met	Thr	Leu	Trp	Arg	Gly	Phe	Leu	Asn	Glu	Ala	Trp	Leu	
		1	.65					170					175				
	ACC	GGG	ATG	CTC	CAG	CTG	TGT	CTC	TTC	GCC	ATC	ACG	GAC	CAG	GAG	AAC	754
20	Thr	Gly	Met	Leu	Gln	Leu	Cys	Leu	Phe	Ala	Thr	Thr	Asp	Gln	Glu	Asn	
		180					185					190					
	AAC	CCA	GCA	CTG	CCA	GGA	ACA	GAG	GCG	CTG	GTG	ATA	GGC	ATC	CTC	GTG	802
	Asn	Pro	Ala	Leu	Pro	Gly	Thr	Glu	Ala	Leu	Val	Ile	Gly	Ile	Leu	Val	
	195					200					205					210	
25		ĀŢC															850
	Val	Ile	Ile	Gly	Val	Ser	Leu	Gly	Met	Asn	Thr	Gly	Tyr	Ala	Ile	Asn	
					215					220				•	225		
		TCC															898
	Pro	Ser	Arg	Asp	Leu	Pro	Pro	Arg	Ile	Phe	Thr	Phe	Ile	Ala	Gly	Trp	
30				230					235				•	240			
		AAA															946
	Gly	Lys	Gln	Val	Phe	Ser	Asn	Gly	Glu	Asn	Trp	Trp	Trp	Val	Pro	Val	
			245					250					255				
	GTG	GCA	CCA	CTT	CTG	GGT	GCC	TAT	CTA	GGT	GGC	ATC	ATC	TAC	CTG	GTC	994
35	Val	Ala	Pro	Leu	Leu .	Gly	Ala	Tyr	Leu	Gly	Gly	Ile	Ile	Tyr	Leu	Va1	
		260					265					270					

	TTC	ATT	GGC	TCC	ACC	ATC	CCA	CGG	GAG	CCC	CTG	AAA	TTG	GAG	GAT	TCT	1042
	Phe	Ile	Gly	Ser	Thr	Ile	Pro	Arg	Glu	Pro	Leu	Lys	Leu	Glu	Asp	Ser	
•	275					280					285					290	
	GTG	GCG	TAT	GAA	GAC	CAC	GGG	ATA	ACC	GTA	TTG	CCC	AAG	ATG	GGA	TCT	1090
5	Val	Ala	Tyr	Glu	Asp	His	Gly	Ile	Thr	Val	Leu	Pro	Lys	Met	Gly	Ser	
		295 300 305															
	CAT	GAA	CCC	ACG	ATC	TCT	ccc	CTC	ACC	ccc	GTC	TCT	GTG	AGC	CCT	GCC	1138
	His	Glu	Pro	Thr	Ile	Ser	Pro	Leu	Thr	Pro	Val	Ser	Val	Ser	Pro	Ala	
				310					315					320			
10	AAC	AGA	TCT	TCA	GTC	CAC	CCT	GCC	CCA	CCC	TTA	CAT	GAA	TCC	ATG	GCC	1186
	Asn	Arg	Ser	Ser	Val	His	Pro	Ala	Pro	Pro	Leu	His	Glu	Ser	Met	Ala	
			325					330					335				
	CTA	GAG	CAC	TTC	TAAC	CAGA	GA T	ltati	TGTG	A TO	CCAT	CCAT	TCC	CCCAA	ĄATA		1238
	Leu	Glu	His	Phe													
15		340															
	ACC	ACCC	் முமு	יייכר	ממסמי	Δ											1259