DBSCAN Clustering

Aaryan CO21BTECH11001

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an unsupervised learning algorithm that will take a set of points and make clusters of points with similar properties. It is based on the density-based clustering, and it will mark the outliers also which do not lie in any of the cluster or set.

Input:

Set of data points: $X = \{x_1, x_2, ..., x_m\}$.

 ϵ : Specifies how close points should be to each other to be considered a part of a cluster.

minPts: Minimum number of points required to form a cluster.

Algorithm:

- 1. Start with an arbitrary starting point (say x_i) that has not been visited.
- 2. Determine the ε-neighborhood of x_i .

$$N_{\epsilon}(x_i) = \{x \in X; ||x_i - x|| \le \epsilon\}$$

- 3. If $|N_{\epsilon}(x_i)| \ge \min$ Pts i.e., if the number of points in $N_{\epsilon}(x_i)$ is more than minPts, then the clustering process starts, and x_i is marked as visited else x_i is labeled as noise.
- 4. If a point is found to be a part of the cluster, then its ε -neighborhood is also the part of the cluster and the above procedure from step 2 is repeated for all ε -neighborhood points. This is repeated until all

points in the cluster is determined.

- 5. A new unvisited point is retrieved and processed, leading to the discovery of a further cluster or noise.
- 6. This process continues until all points are marked as visited.

After applying DBSCAN on a dataset, we get three types of points:

- 1. **Core Point:** A data point is a core point if it has a minimum number of neighboring data points (minPts) at an epsilon distance from it.
- 2. **Border Point:** A data point that has less than the minimum number of data points needed but has at least one core point in the neighborhood.
- 3. **Noise Point:** A data point that is not a core point or a border point is considered noise or an outlier.

Border points are also included in the cluster corresponding to the Core point nearest to them.

Questions:

- **1.** Number of clusters to be formed are given as a parameter in DBSCAN.
 - (a) True
 - (b) False

Ans. False

- 2. k-Means doesn't work well for nested clusters while DBSCAN does.
 - (a) True
 - (b) False

Ans. True

3. What happens if inappropriate ϵ is taken?

Ans.

If too small epsilon is taken, then a large part of the data will not be clustered.

If too large epsilon is taken, then clusters will merge and the majority of objects will be in the same cluster.

- **4.** The worst case time complexity of DBSCAN is:
 - (N number of data points)
 - (a) O(NlogN)
 - (b) $O(N^2)$
 - (c) O(N)
 - (d) $O(N^{1.5})$
- **5.** What is the major disadvantage of using DBSCAN? **Ans.** It is sensitive to parameters (ϵ ,minPts) i.e., it's hard to determine the correct set of parameters.