ON LINEARITY OF THE PERIODS OF SUBTRACTION GAMES

SHENXING ZHANG

ABSTRACT. The subtraction game is an impartial combinatorial games involving a finite set S of positive integers. The nim-sequence \mathcal{G}_S associated to this game is ultimately periodic. In this paper, we study the nim-sequence $\mathcal{G}_{S \cup \{c\}}$ where S is fixed and c varies. We conjecture that there is a multiplier q of the period of \mathcal{G}_S , such that for sufficiently large c, the pre-period and period of $\mathcal{G}_{S \cup \{c\}}$ are linear on c, if c modulo q is fixed. We prove it in several cases.

We also give new examples with period 2 inspired by this conjecture.

Contents

1.	Introduction	1
2.	The case $S = \{1, b, c\}$	6
3.	The case $S = \{a, 2a, c\}$	Ţ
4.	The case S contains successive numbers	(
5.	Linearity on pre-periods and periods	(
6.	Ultimately bipartite nim-sequences	8
Re	eferences	10

1. Introduction

Let S be a finite set of positive integers. The *(finite)* subtraction game SUB(S) is a two-player game involving a heap of $n \geq 0$ counters. The two players move alternately, subtracting some $s \in S$ counters. The player who cannot make a move loses.

We always write the subtraction set as $S = \{s_1, \ldots, s_k\}$ with an order $s_1 < s_2 < \cdots < s_k$. Denote by $\mathcal{G}(n) = \mathcal{G}_S(n)$ the *nim-value* (or *Grundy-value*), i.e.,

$$\mathcal{G}(n) = \max{\{\mathcal{G}(n-s) : s \in S, s \le n\}}, \quad \forall n \ge 0,$$

where mex means the minimal non-negative integer not in the set. The sequence $\mathcal{G} = \mathcal{G}_S = \{\mathcal{G}(n)\}_{n>0}$ is called the *nim-sequence*.

If $d = \gcd(S) = \gcd\{s : s \in S\} > 1$ and $S' = \{s/d : s \in S\}$, then $\mathcal{G}_S(n) = \mathcal{G}_{S'}(m)$, where $md \leq n < (m+1)d$. Hence we may assume that $\gcd(S) = 1$ if necessary.

Date: October 8, 2021.

²⁰²⁰ Mathematics Subject Classification. 91A46, 91A05.

Key words and phrases. periodic sequence; subtraction games; combinatorial games; nim-sequence.

Definition 1.1. A subtraction game SUB(S) (or its nim-sequence \mathcal{G}) is called *ultimately periodic*, if there exist integers $p \geq 1$ and $\ell \geq 0$ such that $\mathcal{G}(n+p) = \mathcal{G}(n)$ for all $n \geq \ell$. The minimal p is called the *period* and the minimal ℓ is called the *pre-period*.

Since $\mathcal{G}(n) \leq k$, one can show that \mathcal{G} is ultimately periodic by the pigeonhole principle, see [ANW07, Theorem 7.22]. We have the following lemma to determine the period and pre-period.

Lemma 1.2 ([ANW07, Corollary 7.34]). The minimal integers $\ell \geq 0, p \geq 1$ such that $\mathcal{G}(n) = \mathcal{G}(n+p)$ for $\ell \leq n < \ell + s_k$ are the pre-periodic and period of \mathcal{G} respectively.

In this paper, we will propose a conjecture (Conjecture 5.5) on $SUB(S \cup \{c\})$ where S is fixed and c varies. More precisely, there is a positive integer q which is a multiplier of the period of SUB(S), such that for each $0 \le r < q-1$, the pre-period and period of $SUB(S \cup \{c\})$ are linear on c = qt + r, while t is large enough. We will prove it in several cases. We also give new nim-sequences with period 2 inspired by this conjecture.

Let t, a be a non-negative integer and $\mathcal{H} = (h_1 \cdots h_k)$ a sequence of integers with finite length. As usual, we denote by a^t the sequence $\underbrace{a \cdots a}_{t \text{ copies}}$ and \mathcal{H}^t the sequence

 $\underbrace{\mathcal{H}\cdots\mathcal{H}}_{t \text{ copies}}$. Denote by $\underline{\mathcal{H}}$ the infinite-length sequence with periodic sequence \mathcal{H} , i.e.,

 $\underline{\mathcal{H}} = \mathcal{HH} \cdots$. For example, if ℓ and p is the pre-period and period of a nim-sequence \mathcal{G} respectively, then we can write

$$\mathcal{G} = \mathcal{G}(0)\mathcal{G}(1)\mathcal{G}(2)\cdots = \mathcal{G}(0)\cdots\mathcal{G}(\ell-1)\mathcal{G}(\ell)\cdots\mathcal{G}(\ell+p-1).$$

We will not give the detailed proof of each nim-sequence, since the proof is by a lengthy and tedious induction.

2. The case
$$S = \{1, b, c\}$$

In this section, we will consider nim-sequence when $S = \{1, b, c\}$. Let's recall some classical cases firstly.

Lemma 2.1. Denote by p the period of SUB(S). If the pre-period of SUB(S) is zero, then $\mathcal{G}_{S\cup\{x+pt\}} = \mathcal{G}_S$ for any $x \in S$ and $t \geq 1$.

Proof. Certainly $\mathcal{G}_{S'}(0) = \mathcal{G}_S(0) = 0$ where $S' = S \cup \{x + pt\}$. Suppose that $\mathcal{G}_{S'}(i) = \mathcal{G}_S(i)$ for $0 \le i \le n - 1$. If n < x + pt, then

$$\mathcal{G}_{S'}(n) = \max\{\mathcal{G}(n-s) : s \in S, s < n\} = \mathcal{G}(n).$$

If $n \ge x + pt$, then

$$\mathcal{G}_{S'}(n) = \max\{\mathcal{G}(n-x-pt), \mathcal{G}(n-s) : s \in S, s \leq n\}$$

= \text{mex}\{\mathcal{G}(n-x), \mathcal{G}(n-s) : s \in S, s \le n\} = \mathcal{G}(n).

The lemma then follows by induction.

Example 2.2. The nim-sequence of SUB(1) is $\underline{01}$. If $1 \in S$ and the elements of S are all odd, then the nim-sequence $\mathcal{G}_S = \underline{01}$ by applying Lemma 2.1 several times. In fact, this condition is also necessary, see [CH10].

Example 2.3. Let $S = \{a, c\}$ with a > 1. Write $c = at + r, 0 \le r < a$. Then

$$\mathcal{G} = \begin{cases} \frac{(0^a 1^a)^{t/2} 0^r 2^{a-r} 1^r}{(0^a 1^a)^{(t+1)/2} 2^r}, & t \text{ is even;} \\ t \text{ is odd,} \end{cases}$$

 $\ell = 0$ and p = c + a or 2a. See [BCG03].

Example 2.4. Let $S = \{1, b, c\}$ with odd b. Then

$$G = (01)^{c/2} (23)^{(b-1)/2} 2,$$

 $\ell = 0$ and p = c + b.

Example 2.5. Let $S = \{1, 2, c\}$. Note that $\mathcal{G}_{\{1,2\}} = \underline{012}$ with period 3. Write $c = 3t + r, 0 \le r < 3.$

- (1) If r=1,2, then $\mathcal{G}=\mathcal{G}_{\{1,2\}},$ $\ell=0$ and p=3 by Lemma 2.1.
- (2) If r = 0, then $\mathcal{G} = (012)^t 3$, $\ell = 0$ and p = c + 1.

Example 2.6. Let $S = \{1, 4, c\}$. Denote by $\mathcal{H} = 01012$, then $\mathcal{G}_{\{1,4\}} = \underline{\mathcal{H}}$ with period 5. Write $c = 5t + r, 0 \le r < 5$.

- (1) If r = 1, 4, then $\mathcal{G} = \mathcal{G}_{\{1,4\}}$, $\ell = 0$ and p = 5 by Lemma 2.1.
- (2) If r = 2, then $\mathcal{G} = \mathcal{H}^t 012$, $\ell = 0$ and p = c + 1.
- (3) If r = 3, then $\mathcal{G} = \mathcal{H}^{t+1} 32$, $\ell = 0$ and p = c + 4.
- (4) If r = 0, c = 5, then $\mathcal{G} = \mathcal{H} 323$, $\ell = 0$ and p = 8.
- (5) If r = 0, c > 5, then $\mathcal{G} = \mathcal{H}^t 323013\mathcal{H}^{t-1}012012$, $\ell = c + 6$ and p = c + 1.

Theorem 2.7. Let $S = \{1, b, c\}$, where $b = 2k \ge 6$ is even. Write c = t(b+1) + rwith $0 \le r \le b$.

- (1) If r = 1, b, then $\ell = 0$ and p = b + 1.
- (2) If $3 \le r \le b-1$ is odd, then $\ell = 0$ and p = c+b.
- (3) If r = b 2, then $\ell = 0$ and p = c + 1.
- (4) If c = b + 1, then $\ell = 0$, p = 2b = c + b 1;
- (5) If c > b+1, $0 \le r \le b-4$ is even and $t+r/2 \ge k$, then $\ell = (\frac{b-r}{2}-1)(c+1)$ (b+2) - b and p = c + 1.
- $(6) \ \ \textit{If} \ c > b+1, \ 0 \leq r \leq b-4 \ \textit{is even and} \ t+r/2 \leq k-1, \ then \ \ell = t(c+b+2)-b.$ If t + r/2 < k - 1, then p = c + b; if t + r/2 = k - 1, then p = b - 1.

Proof. Denote by $\mathcal{H} = (01)^k 2$, then $\mathcal{G}_{\{1,b\}} = \underline{\mathcal{H}}$ with period b+1.

- (1) In this case, $\mathcal{G} = \mathcal{G}_{\{1,b\}}$, $\ell = 0$ and p = b + 1 by Lemma 2.1. (2) In this case, $\mathcal{G} = \mathcal{H}^{t+1}(32)^{(r-1)/2}$, $\ell = 0$ and p = c + b.
- (3) In this case, $\mathcal{G} = \overline{\mathcal{H}^t(01)^{k-1}}$, $\ell = 0$ and p = c + 1.
- (4) In this case, $\mathcal{G} = \overline{(01)^k(23)^k} = \mathcal{H}3(23)^{k-1}$, $\ell = 0$ and p = 2b = b + c 1.

(5) Write r = 2v. When $1 \le v \le k - 2$, the first (c+1)(k-v+1) terms of \mathcal{G} are (the bold part is the first periodic nim-sequence)

i	$\mathcal{G}((c+1)i+j), \ 0 \le j \le c$
0	$\mathcal{H}^t, (01)^v 2$
1	$(32)^{k-v-1}(01)^{v+1}2, \mathcal{H}^{t-1}, (01)^v0$
2	$1(01)^{k-v-2}2(01)^{v+1}2, (32)^{k-v-2}(01)^{v+2}2, \mathcal{H}^{t-2}, (01)^{v}0$
i	$1(01)^{k-v-2}2(01)^{v+1}0,\ldots,1(01)^{k-v-i+1}2(01)^{v+i-2}0,$
	$1(01)^{k-v-i}2(01)^{v+i-1}2, (32)^{k-v-i}(01)^{v+i}2, \mathcal{H}^{t-i}, (01)^{v}0$
k-v-1	$1(01)^{k-v-2}2(01)^{v+1}0, \dots, 1(01)^22(01)^{k-3}0, 1(01)2(01)^{k-2}2,$
$\kappa - v - 1$	$(32)^{1}(01)^{k-1}2, \mathcal{H}^{t-k+v+1}, (01)^{v}0$
k = x	$1(01)^{k-v-2}2(01)^{v+1}0, \dots, 1(01)2(01)^{k-2}0, 12(01)^{k-1}2,$
$\kappa - v$	$\mathcal{H}^{t-k+v-1}$, (01) v 0.

When v = 0, the first (c+1)(k+1) terms of \mathcal{G} are

i	$\mathcal{G}((c+1)i+j), \ 0 \le j \le c$
0	$\mathcal{H}^t 3$
1	$(23)^{k-1}013, \mathcal{H}^{t-1}0$
2	$1(01)^{k-2}2(01)2, (32)^{k-2}(01)^22, \mathcal{H}^{t-2}0$
i	$1(01)^{k-2}2(01)0, \cdots, 1(01)^{k-i+1}2(01)^{i-2}0, 1(01)^{k-i}2(01)^{i-1}2,$
ı	$(32)^{k-i}(01)^i 2, \mathcal{H}^{t-i} 0$
k-1	$1(01)^{k-2}2(01)0, \cdots, 1(01)^22(01)^{k-3}0, 1(01)^12(01)^{k-2}2,$
h - 1	$(32)^{1}(01)^{k-1}2, \mathcal{H}^{t-k+1}0$
k	$1(01)^{k-2}2(01)0, \cdots, 1(01)^{1}2(01)^{k-2}0, 12(01)^{k-1}2, \mathcal{H}^{t-k+1}0.$

In both cases, we have $\ell = \left(\frac{b-r}{2} - 1\right)(c+b+2) - b$, p = c+1 and

$$\mathcal{G} = \cdots \underline{2(01)^{k-1} (2(01)^k)^{t-k+v+1} (2(01)^{k-1})^{k-v-1}}.$$

(6) When $1 \le v \le k-2$, the first (c+1)(t+2) terms of \mathcal{G} are

We have $\ell = t(c+b+2) - b$. If t+v < k-1, we have p = c+b and

$$\mathcal{G} = \cdots \underline{2(32)^{k-v-t-1}(01)^{v+t}2[(01)^{k-1}2]^t(01)^{v+t}}.$$

If t + v = k - 1, we have p = b - 1 and $G = \cdots 2(01)^{k-1}$.

When v = 0, the first (c+1)(t+2) terms of \mathcal{G} are

i	$G((c+1)i+j), 0 \le j \le c$
0	\mathcal{H}^{t} 3
1	$(23)^{k-1}013, \mathcal{H}^{t-1}0$
2	$1(01)^{k-2}2(01)2, (32)^{k-2}(01)^22, \mathcal{H}^{t-2}0$
i	$1(01)^{k-2}2(01)0, \cdots, 1(01)^{k-i+1}2(01)^{i-2}0, 1(01)^{k-i}2(01)^{i-1}2,$
	$(32)^{k-i}(01)^i 2, \mathcal{H}^{t-i} 0$
t-1	$1(01)^{k-2}2(01)0, \cdots, 1(01)^{k-t+2}2(01)^{t-3}0, 1(01)^{k-t+1}2(01)^{t-2}2,$
" 1	$(32)^{k-t+1}(01)^{t-1}2, \mathcal{H}^10$
t	$1(01)^{k-2}2(01)0, \cdots, 1(01)^{k-t+1}2(01)^{t-2}0, 1(01)^{k-t}2(01)^{t-1}2,$
	$(32)^{k-t}(01)^t20$
t+1	$1(01)^{k-2}2(01)0, \cdots, 1(01)^{k-t}2(01)^{t-1}0, 1(01)^{k-t-1}2(01)^{t}0,$
0 1	$1(01)^{\mathbf{k-t-1}}2(01)^{\mathbf{t}}2, (32)^{k-t-1}01\cdots$

We have $\ell = t(c+b+2) - b$. If t < k-1, we have p = c+b and

$$\mathcal{G} = \cdots 2(32)^{k-t-1} (01)^t 2[(01)^{k-1}2]^t (01)^t.$$

If
$$t = k - 1$$
, we have $p = b - 1$ and $\mathcal{G} = \cdots 2(01)^{k-1}$.

Remark 2.8. The case c < 4b is studied in [Ho15], but there are some incorrect data. In Table 1, p = a - 1 if $r = a - 3 \ge 3$. In Table B.11, $n_0 = a + 2b + 4$ if $2 \le r \le a - 4$. In Table B.12, $n_0 = 2a + 3b + 6$ if $3 \le r \le a - 5$. The corresponding pre-period nim-values also need to be modified.

3. The case
$$S = \{a, 2a, c\}$$

Theorem 3.1. Let $S = \{a, 2a, c\}$. Write c = 3ta + r with $0 \le r < 3a$. Then

$$\ell = \begin{cases} 3ta + a = c + a - r, & 0 < r < a; \\ 0, & otherwise. \end{cases}, \quad p = \begin{cases} 3a/2, & r = a/2; \\ 3a, & a/2 < r \le 2a; \\ c + a, & otherwise. \end{cases}$$

Proof. Denote by $\mathcal{H}=0^a1^a2^a$, then $\mathcal{G}_{\{a,2a\}}=\underline{\mathcal{H}}$ with period q=3a. Write a=2k-1 if a is odd; a=2k if a is even.

- (1) If $a \le r \le 2a$, then $\mathcal{G} = \mathcal{H}$, $\ell = 0$ and p = 3a.
- (2) If r = 0, then $\mathcal{G} = \mathcal{H}^t 3^a$, $\ell = 0$ and p = c + a.
- (3) If 0 < r < k, then

$$\mathcal{G} = \mathcal{H}^t 0^r 3^{a-r} \underbrace{(1^r 0^{a-r} 2^r 1^{a-r} 0^r 2^{a-r})^t 1^r 0^r 3^{a-2r} 2^r}_{,}$$

 $\ell = 3at + a$ and p = c + a.

(4) If $k \leq r < a$, then

$$\mathcal{G} = \mathcal{H}^t 0^r 3^{a-r} \underline{1^r 0^{a-r} 2^r 1^{a-r} 0^r 2^{a-r}},$$

 $\ell = 3at + a$ and p = 3a or 3a/2.

(5) If r > 2a, then

$$\mathcal{G} = \underline{\mathcal{H}^{t+1} 3^{r-2a}}.$$

$$\ell = 0$$
 and $p = c + a$.

4. The case S contains successive numbers

Theorem 4.1. Let $S = \{a, a+1, ..., b-1, b, c\}$. Write c = t(a+b) + r with $0 \le r \le a+b$. Then

$$\ell = 0, \quad p = \begin{cases} a + b, & a \le r \le b; \\ c + a, & r = 0 \text{ or } r > b; \\ c + b, & 0 < r < a. \end{cases}$$

Proof. Write b = ak + s, $0 \le s \le a - 1$ and denote by $\mathcal{H} = 0^a 1^a \cdots k^a (k+1)^s$, then $\mathcal{G}_{\{a,a+1,\dots,b\}} = \underline{\mathcal{H}}$ with period q = a + b = a(k+1) + s.

- (1) If $a \le r \le b$, then $\mathcal{G} = \underline{\mathcal{H}}$, $\ell = 0$ and p = a + b by Lemma 2.1.
- (2) If r = 0, then

$$\mathcal{G} = \mathcal{H}^t(k+1)^{a-s}(k+2)^s.$$

If r > b and r + s > q, then

$$G = \frac{\mathcal{H}^{t+1}(k+1)^{a-s}(k+2)^{r+s-q}}{\text{hen}}.$$

If r > b and $r + s \leq q$, then

$$\mathcal{G} = \mathcal{H}^{t+1}(k+1)^{a+r-q}.$$

In all cases, we have $\ell = 0$ and p = c + a.

(3) If 0 < r < a - 2s, then

$$\mathcal{G} = \underbrace{\mathcal{H}^t, 0^r (k+1)^{a-s-r} (k+2)^s, 1^r (k+2)^{a-s-r} (k+3)^s, \cdots}_{(k-1)^r (2k)^{a-s-r} (2k+1)^s, k^r (2k+1)^s}.$$

If $a - 2s \le r < a - s$, then

$$\mathcal{G} = \underbrace{\mathcal{H}^t, 0^r (k+1)^{a-s-r} (k+2)^s, 1^r (k+2)^{a-s-r} (k+3)^s, \cdots,}_{(k-1)^r (2k)^{a-s-r} (2k+1)^s, k^r (2k+1)^{a-s-r} (2k+2)^{2s+r-a}}.$$

If $a - s \le r < a$, then

$$\mathcal{G} = \underbrace{\frac{\mathcal{H}^t, 0^r (k+2)^{a-r}, 1^r (k+3)^{a-r}, \cdots,}{(k-1)^r (2k+1)^{a-r}, k^r (k+1)^s},}_{}$$

In all cases, we have $\ell = 0$ and p = c + b.

5. Linearity on pre-periods and periods

Let S be a fixed subtraction set. We denote by ℓ_p the pre-period and p_c the period of $\text{SUB}(S \cup \{c\})$.

Example 5.1. Let $S = \{6,17\}$. Then $\mathcal{G} = \underline{0^6 1^6 0^5 21^5}$ with period 23. Write $c = 23t + r, 0 \le r \le 23$. For $116 \le c \le 500$, we have

$$\ell_c = \begin{cases} 9c + 147, & r = 0, 12; \\ 7c + 112, & r = 1, 13; \\ 5c + 77, & r = 2, 14; \\ 3c + 42, & r = 3, 15; \\ c + 7, & r = 4, 16; \\ 0, & \text{otherwise}, \end{cases} p_c = \begin{cases} c + 6, & 0 \le r \le 5 \text{ or } 12 \le r \le 16; \\ c + 17, & 7 \le r \le 11 \text{ or } 18 \le r \le 22; \\ 23, & \text{otherwise.} \end{cases}$$

Example 5.2. Let $S = \{3, 5, 8\}$. Then $\mathcal{G} = 0^3 1^3 2^3 3^2$ with period 11. Write $c = 11t + r, 0 \le r < 11$. For $c \le 500$, we have

$$\ell_c = \begin{cases} d+18, & r=1,2; \\ 0, & \text{otherwise,} \end{cases} \quad p_c = \begin{cases} d+3, & r=0,1,9,10; \\ d+25, & r=2; \\ 11, & \text{otherwise.} \end{cases}$$

Example 5.3. Let $S = \{2, 3, 5, 7\}$. Then $\mathcal{G} = \underline{0^2 1^2 2^2 3^2 4}$ with period 9. Write $c = 18t + r, 0 \le r < 18$. For $c \le 500$, we have

$$\ell_c = \begin{cases} 2d - 4, & r = 1; \\ d + 5, & r = 10; \\ 0, & \text{otherwise,} \end{cases} \quad p_c = \begin{cases} d + 2, & r = 0, 8, 9, 10, 17; \\ 4, & r = 1; \\ 9, & \text{otherwise.} \end{cases}$$

Example 5.4. Let $S = \{4, 11, 12, 14\}$. Then $\mathcal{G} = \cdots 20^4 1^4 0^3 31^3 2^3 03^3 12$ with preperiod 24 and period 25. Write $c = 25t + r, 0 \le r < 25$. For $101 \le c \le 500$, we have

$$\ell_c = \left\{ \begin{array}{llll} 4c + 91, & r = 0; & 2c + 34, & r = 2; & c + 14, & r = 19; \\ 3c + 4, & r = 6; & 2c + 36, & r = 5; & c + 26, & r = 9; \\ 3c + 5, & r = 22; & 2c + 37, & r = 18; & c + 52, & r = 23; \\ 2c + 8, & r = 1; & c - 6, & r = 3; & 0, & r = 13; \\ 2c + 16, & r = 4; & c + 2, & r = 20; & 12, & r = 21; \\ 2c + 33, & r = 24; & c + 12, & r = 12; & 24, & \text{otherwise,} \end{array} \right.$$

$$p_c = \begin{cases} 2c + 41, & r = 19; & c + 14, & r = 2, 10; \\ c + 4, & r = 21; & c + 28, & r = 22; \\ c + 11, & r = 6, 7, 8, 15, 16, 17; & c + 37, & r = 0, 1, 9, 18; \\ c + 12, & r = 13; & 25, & \text{otherwise.} \end{cases}$$

Based on these observations, we propose the following conjecture:

Conjecture 5.5. Fix a subtraction set S. There is

- a positive integer q, which is a multiplier of the period of SUB(S);
- positive integers $\alpha_r, \beta_r, \lambda_r, \mu_r$ for each $0 \le r < q$,

such that for sufficiently large c = tq + r,

- the pre-period of SUB($S \cup \{c\}$) is $\ell_c = \alpha_r d + \beta_r$;
- the period of SUB($S \cup \{c\}$) is $p_c = \lambda_r d + \mu_r$.

Theorem 5.6. Conjecture 5.5 holds in the following cases:

- (1) $1 \in S$ and the element of S are all odd;
- (2) $S = \{1, b\};$
- (3) $S = \{a, 2a\};$
- (4) $S = \{a, a+1, \dots, b-1, b\}.$

Proof. (1) The period of \mathcal{G}_S is q=2. If c is odd, then $\mathcal{G}_{S\cup\{c\}}=\mathcal{G}_S$. If c is even, denote by s the maximal number in S. Then

$$\mathcal{G}_{S \cup \{c\}} = (01)^{c/2} (23)^{s-1/2} 2,$$

 $\ell = 0$ and p = d + c.

(2) Let $S = \{1, b\}$. If b is odd, then q = 2,

$$\ell = 0, \quad p = \begin{cases} c + b, & r = 0; \\ 2, & r = 1 \end{cases}$$

by Examples 2.2 and 2.4. If b is even, then it follows from Examples 2.5, 2.6 and Theorem 2.7.

- (3) follows from Theorem 3.1.
- (4) follows from Theorem 4.1.

6. Ultimately bipartite nim-sequences

A subtraction game (or its nim-sequence) is said to be *ultimately bipartite* if the period is 2. We know that \mathcal{G}_S is ultimately bipartite with pre-period 0 if and only if $1 \in S$ and all elements in S are odd, see Example 2.2.

Example 6.1. Let $a \ge 3$ be an odd integer. If S is in one of the following cases:

- $S = \{3, 5, 9, \dots, 2^a + 1\};$
- $S = \{3, 5, 2^a + 1\};$
- $S = \{a, a+2, 2a+3\};$
- $S = \{a, 2a + 1, 3a\};$

then SUB(S) is ultimately bipartite. See [CH10, Theorem 2] and [Ho15, Theorem 5].

Lemma 6.2. If \mathcal{G}_S is ultimately bipartite, then all elements in S are odd.

Proof. As shown in [CH10, Theorem 3], there exists an integer n_0 such that for $n \geq n_0$, $\mathcal{G}(n) = 0$ if n is even; $\mathcal{G}(n) = 1$ if n is odd. Take an even number $n \geq n_0 + s_k$. Then

$$0 = \mathcal{G}(n) = \max\{\mathcal{G}(n-s) : s \in S\},\$$

which implies that $\mathcal{G}(n-s)=1$ for all $s\in S$. Hence all $s\in S$ are odd.

We have the following new ultimately bipartite subtraction sets inspired by our conjecture.

Theorem 6.3. Let $a \geq 3$ be an odd integer and $t \geq 1$. The subtraction game SUB(S) is ultimately bipartite in the following cases:

- (1) $S = \{a, a+2, (2a+2)t+1\};$
- (2) $S = \{a, 2a + 1, (3a + 1)t 1\};$
- (3) $S = \{a, 2a 1, (3a 1)t + a 2\}.$

Proof. Write a = 2k + 1 and $c = \max S$.

(1) When $a \geq 5, k \geq 2$, the first (k+1)(a+1)(2t+1) terms of \mathcal{G} are

i	$\mathcal{G}((a+1)(2t+1)i+j), 0 \le j < (a+1)(2t+1) = c+a$
	$0^{a}1, [1^{a-1}22, 0^{a}1]^{t-1}, 1^{a-1}22, 02^{a-3}331$
1	$030^{a-2}1, [01^{a-2}21, 020^{a-2}1]^{t-1}, 01^{a-2}21, 0202^{a-5}321$
i	$[(01)^{i-1}030^{a-2i}1, [(01)^{i-1}01^{a-2i}21, (01)^{i-1}020^{a-2i}1]^{t-1},$
	$(01)^{i-1}01^{a-2i}21, (01)^{i-1}0202^{a-2i-3}321$
k-1	$(01)^{k-2}030^31, [(01)^{k-2}01^321, (01)^{k-2}020^31]^{t-1},$
<i>n</i> 1	$(01)^{k-2}01^321, (01)^{k-2}020321$
l.	$[(01)^{k-1}0301, (01)^{k-1}0121]^{t-1}, (01)^{k-1}0301,$
, n	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Hence the pre-period is

$$\ell = (k+1)(c+a) - 2a - 4 = (k+1)c + 2k^2 - k - 5$$

and the period is p = 2. The case a = 3 will be shown in (3).

(2) The first (k+1)((3a+1)t+a-1) terms of \mathcal{G} are

i	$\mathcal{G}(((3a+1)t+a-1)i+j), 0 \le j < (3a+1)t+a-1 = c+a$
0	$[0^a, 1^a, 02^{a-1}, 1]^t, 3^{a-1}$
1	$[020^{a-2}, 101^{a-2}, (01)32^{a-3}, 1]^{t-1},$
1	$020^{a-2}, 101^{a-2}, (01)02^{a-3}, 1, (01)3^{a-3}$
i	$[(01)^{i-1}020^{a-2i}, 1(01)^{i-1}01^{a-2i}, (01)^{i}32^{a-2i-1}, 1]^{t-1},$
	$(01)^{i-1}020^{a-2i}, 1(01)^{i-1}01^{a-2i}, (01)^{i}02^{a-2i-1}, 1, (01)^{i}3^{a-2i-1}$
k-1	$[(01)^{k-2}020^3, 1(01)^{k-2}01^3, (01)^{k-1}32^2, 1]^{t-1},$
n I	$(01)^{k-2}020^3, 1(01)^{k-2}01^3, (01)^{k-1}02^2, 1, (01)^{k-1}3^2$
h	$[(01)^{k-1}020, 1(01)^{k-1}01, (01)^k3, 1]^{t-1},$
n	$(01)^{k-1}020, 1(01)^{k-1}01, (01)^k0, 1, (01)^k$

Hence the pre-period is

$$\ell = (k+1)(c+a) - 3a - 1 = (k+1)c + 2k^2 - 3k - 3$$

and the period is p = 2.

(3) The first (k+1)(3a-1)(t+1) terms of \mathcal{G} are

i	$\mathcal{G}((3a-1)(t+1)i+j), 0 \le j < (3a-1)(t+1) = c+2a+1$
0	$\begin{bmatrix} 0^a 1^a 2^{a-1} \end{bmatrix}^t, \\ 0^{a-2} 33 1^{a-3} (10)^1 2^{a-2} (01)^1$
1	$ \begin{bmatrix} 0^{a-3}(01)^1 31^{a-3}(10)^1 2^{a-2}(01)^1 \end{bmatrix}^t, 0^{a-4} 3(01)^1 31^{a-5}(10)^2 2^{a-4}(01)^2 $
i	$ \begin{bmatrix} [0^{a-2i-1}(01)^{i}31^{a-2i-1}(10)^{i}2^{a-2i}(01)^{i}]^{t}, \\ 0^{a-2i-2}3(01)^{i}31^{a-2i-3}(10)^{i+1}2^{a-2i-2}(01)^{i+1} \end{bmatrix} $
k-1	$ [0^{2}(01)^{k-1}31^{2}(10)^{k-1}2^{3}(01)^{k-1}]^{t}, 0^{1}3(01)^{k-1}3(10)^{k}2^{1}(01)^{k}, $
k	$ [(01)^k 3(10)^k 2(01)^k]^{t-1}, (01)^{3k+1}, (01)^{3k+1} $

Hence the pre-period is

$$\ell = (k+1)(c+2a+1) - 2(7k+2) = (k+1)c + 4k^2 - 7k - 1$$

and the period is p=2.

Remark 6.4. One may expect that if $\mathrm{SUB}(a,b,c)$ is ultimately bipartite, then so is $\mathrm{SUB}(a,b,d)$ for sufficient large d with $d\equiv c \mod (a+b)$. This is not true in general. For example, $\mathrm{SUB}(3,11,13)$ is ultimately bipartite but $\mathrm{SUB}(3,11,14t+13)$ has period 14t+16, $t\geq 1$.

Remark 6.5. Write a=2k+1. Consider the four-elements subtraction set $S=\{a,2a+1,3a,c\},\ c>3a$ is odd. For $3\leq a\leq 25,c<500$, we find the following phenomenon.

- If c = 4a + 1, then $\ell = 0$ and p = 5a + 1.
- If c = (4i + 2)a 1 with $1 \le i < k$, then $\ell = (8i 1)a + 2i 1$ and p = 4a.
- Otherwise, SUB(S) is ultimately bipartite.

Acknowledgments. This work is partially supported by NSFC (Grant No. 12001510), the Fundamental Research Funds for the Central Universities (No. WK0010000061) and Anhui Initiative in Quantum Information Technologies (Grant No. AHY150200).

References

- [ANW07] Michael Albert, Richard Joseph Nowakowski, and David Wolfe. Non-triviality of CM points in ring class field towers. A K Peters Ltd., Wellesley, MA, second edition, 2007.
- [BCG03] Elwyn R. Berlekamp, John H. Conway, and Richard K. Guy. Winning ways for your mathematical plays. Vol. 3. A K Peters, Ltd., Natick, MA, second edition, 2003.
- [CH10] Grant Cairns and Nhan Bao Ho. Ultimately bipartite subtraction games. Australas. J. Combin., 48:213–220, 2010.
- [Ho15] Nhan Bao Ho. On the expansion of three-element subtraction sets. Theoret. Comput. Sci., 582:35–47, 2015.

School of Mathematics, Hefei University of Technology, Hefei, Anhui 230009, China Email address: zsxqq@mail.ustc.edu.cn