Trait Sexual Desire-Linked Subjective Sexual Arousal to Erotic and Non-Erotic Stimuli: Gender, Relationship Status, and Gender-Specificity

Code and analyses

Milena Vásquez-Amézquita ${}^{\odot}$ 1,2,3,4,* Juan David Leongómez ${}^{\odot}$ 2,4 Marina Begoña Martínez-González ${}^{\odot}$ 1 Meredith L. Chivers ${}^{\odot}$ 5

20 February, 2025

Description

This document contains all code, and step by step explanations for all analyses, figures and tables (including supplementary figures and tables) for:

Vásquez-Amézquita, M., Leongómez, J. D., Martínez-González, M. B., & Chivers, M. L. (in prep). Trait Sexual Desire-Linked Subjective Sexual Arousal to Erotic and Non-Erotic Stimuli: Gender, Relationship Status, and Gender-Specificity

Data available from the Open Science Framework (OSF): https://doi.org/10.17605/OSF.IO/3V2E7. All analyses were planned by Milena Vásquez-Amézquita and Juan David Leongómez. This document and its underlying code were created in R Markdown by Juan David Leongómez using LATEX.

Contents

1	Pre	liminaries	4
	1.1	Load packages	4
	1.2	Define color palettes	ļ
	1.3	Custom functions	ļ
		1.3.1 pval.lev and pe2.lev	ļ
		1.3.2 pval.stars	(
		1.3.3 corr.stars	(
		1.3.4 anova.sig.lm and anova.sig.lmer	-
		1.3.5 emms.sig	
		1.3.6 contr.stars	11
		1.3.7 prob.dist.tab	12
	1.4	Load and wrangle data	1:

¹ Departamento de Ciencias Sociales, Universidad de la Costa, Barranquilla 080002, Colombia.

² Facultad de Psicología, Universidad El Bosque, Bogotá 110121, Colombia.

³ Grupo de Investigación en Cultura, Educación y Sociedad, Universidad de la Costa, Barranquilla 080002, Colombia.

⁴ CODEC: Ciencias Cognitivas y del Comportamiento, Universidad El Bosque, Bogotá 110121, Colombia.

⁵ Department of Psychology, Queen's University, Kingston ON K7L 3N6, Canada.

^{*} Correspondence: mvasquezam@unbosque.edu.co

2.0.1 Figure S1. Demographic chacarteristics of the sample 2.1.2 Figure S2. Distribution of participants' measured variables by gender 2.1.2 Figure S2. Distribution of participants' measured variables by gender 2.2.2 Correlations between measured variables 2.2.1 Table S2. Correlations between measured variables 2.2.1 Table S2. Correlations between measured variables 2.2.1 Table S3. Internal consistency 2.3.1 Table S3. Internal consistency 2.3.1 Table S3. Internal consistency of construct variables 2.4 Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions Hypothesis tests 3.1 Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3.1 Figure S5. Posterior predictive checks (PPCs) for Hypothesis 1s. 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between relationship tratus. 3.1.3.1 Figure S5. Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.1 Model the effects of relationship type on solitary sexual desire 3.1.3.1 Figure S5. Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.1 Figure S5. Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.1 Figure S5. Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.3 Table S9. Effects of gender and relationship type on Dyadic TSD. Attractive person 3.1.3.1.3 Figure S5. Posterior predictive checks (PPCs) for Hypothesi	2	Des	criptiv	ves .	
2.1.1 Table S1. Descriptive statistics of the participants by gender 2.1.2 Correlations between measured variables 2.2.1 Itable S2. Correlations between measured variables 2.2.1 Internal consistency 2.3.1 Table S3. Internal consistency 2.3.1 Table S3. Internal consistency 2.4 Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.1 Figure S3. Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3.1 Fable S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1.1 Figure S5. Posterior predictive checks (PPCs) for Hypothesis 1b: 0.3.1.3.1 Table S9. NoVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Table S8. Estimated marginal means and contrasts between relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Figure S5. Posterior predictive checks (PPCs) for Hypothesis 1b: 0.3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.4.1 Model the effects of relat					
2.12 Figure S2. Distribution of participants' measured variables yender 2.2.1 Table S2. Correlations between measured variables 2.2.1 Table S3. Internal consistency 2.3.1 Table S3. Internal consistency 2.3.1 Table S3. Internal consistency of construct variables 2.4 Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Hypothesis 1: Solitary TSD 3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1 Figure S3. Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.1 Table S5. ANOVA-type table for the interaction between Relationahip type, and Gender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5. Posterior predictive checks (PPCs) for Hypothesis Ib. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Post-hoc comparisons 3.1.3.1.1 Figure S7. Posterior predictive checks (PPCs) for Hypothesis Ib. 3.1.3.3 Table S11. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Table S12. Estimated marginal means and contrasts between relationship status. 3.1.3.1 Table S11. Estimated marginal means and contrasts between participants' gender. 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partne		2.1	Descri		
2.2.1 Table S2. Correlations between measured variables 2.3.1 Internal consistency 2.3.1 Table S3. Internal consistency 2.4. Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 I Data 3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.1 Figure S3. Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.1 Table S8. Estimated marginal means and contrasts between relationship status. 3.1.2.3.1 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between gender by relationship is status. 3.1.2.3.1 Table S7. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.3.1 Table S8. Estimated marginal means and contrasts between participants' gender. 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S6. Posterior predictive checks (PPCs) for Hypothesis Ib. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table S12. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table S17. Posterior predictive checks (PPCs) for Hypothesis Ic. 3.1.4.1 Model the effects of relationship type and gender on Dyadic Sexual desire: Attractive person. 3.1.3.3.1 Table S15. Posterior predictive checks (PPCs) for Hypothesis Ic. 3.1.4.1 Hypot			2.1.1		
2.2.1 Table \$2. Correlations between measured variables 2.3 Internal consistency 2.3.1 Table \$3. Internal consistency of construct variables 2.4 Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Nodel the effects of relationship type and gender on Solitary TSD 3.1.2.1 Figure \$3. Post-tope predictive checks (PPCS) for Hypothesis 1a. 3.1.2.2 Table \$5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3.1 Table \$6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table \$8. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table \$8. Estimated marginal means and contrasts between gender by relationship is status. 3.1.2.4 Figure \$4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure \$5. Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table \$9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table \$10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table \$11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table \$12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.3.1 Table \$13. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table \$14. Estimated marginal means and contrasts between gender by relationship is table \$15. Estimated marginal means and contrasts between relationship type, and Gender 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1 Figure \$5. Effects of gender and relationship type on					
2.3.1 Table S3. Internal consistency 2.3.1 Table S3. Internal consistency of construct variables 2.4 Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Post-luce comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.1 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.3 Table S9. ANOVA-type table for the interaction between Relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1 Table S10. Estimated marginal means and contrasts between participants' gender 3.1.3.3 Post-luc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Sable S12. Estimated marginal means and contrasts between participants' gender 3.1.4.1 Model the effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic sexual desire: Partner 3.1.4.1 Figur		2.2	Correl	ations between	measured variables
2.4 Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between relationship status. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.1 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.3 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.4.1 Figure S6: Effects of relationship type and gender on Dyadic Sexual desire: Attractive person. 3.1.4.1 Model the effects of relationship type and gender on Dyadic result desire: Attractive person. 3.1.4.1 Figure S7: Posterior predictive checks (PPCs)			2.2.1	Table S2. Cor	relations between measured variables
2.4 Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between relationship status. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.1 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.3 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.4.1 Figure S6: Effects of relationship type and gender on Dyadic Sexual desire: Attractive person. 3.1.4.1 Model the effects of relationship type and gender on Dyadic result desire: Attractive person. 3.1.4.1 Figure S7: Posterior predictive checks (PPCs)		2.3	Intern		
Dimensions Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person a.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S11. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.3 Figure S6. Effects of gender and relationship type on Dyadic Sexual desire: Attractive person. 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3 Figure S6. Effects of gender and relationship type on Dyadic Sexual desire: Attractive person. 3.1.4.3 Fagure S6. Effects of gender and relationshi					
Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Hypothesis Ia: Solitary TSD 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis Ia. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.1 Table S8. Estimated marginal means and contrasts between gender by relationship in the production of the produc		2.4	-		
Hypothesis tests 3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.1 Data 3.1.2 Hypothesis Ia: Solitary TSD 3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis Ia. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and dender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.1 Figure S6: Effects of relationship type and gender on Dyadic sexual desire: Attractive person 3.1.4.3 Figure S6: Effects of relationship type and gender on Dyadic sexual desire partner gender. 3.1.4.3 Post-ho					
3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Hypothesis 1a: Solitary TSD 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Table S12. Estimated marginal means and contrasts between relationship status. 3.1.3.4 Figure S6: Effects of gender and relationship type on Dyadic sexual desire: Attractive person . 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.1 Table S15. Estimated marginal means and contrasts between participants' gender. 3.1.4.1 Table S15. Estimated marginal means and contrasts between participants' gender. 3.1.4.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Table S16			Dimoi		
3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Hypothesis 1a: Solitary TSD 3.1.2.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Table S12. Estimated marginal means and contrasts between relationship status. 3.1.3.4 Figure S6: Effects of gender and relationship type on Dyadic sexual desire: Attractive person . 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.1 Table S15. Estimated marginal means and contrasts between participants' gender. 3.1.4.1 Table S15. Estimated marginal means and contrasts between participants' gender. 3.1.4.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Table S16	3	Hvi	othes	is tests	
3.1.1 Data 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Table S10. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S10. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S10. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4.1 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.1.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Figure S2. Effects of gender and relations					pensions of trait sexual desire (TSD) will be higher in men than in women, and
3.1.1 Data 3.1.2 Hypothesis 1a: Solitary TSD 3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Table S16. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Post-hoc comparisons 3.1.4.3 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner 3.1.4.3 Fost-hoc comparisons 3.1.4.3 Fost-hoc comparisons 3.1.4.3 Falee S16. Estimated marginal means and contrasts between relationsh		3.1			
3.1.2 Ilypothesis 1a: Solitary TSD 3.1.2.1.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Table S13. NOVA-type table for the interaction between Relationship type, and Gender 3.1.4.1 Table S13. Estimated marginal means and contrasts between participants' gender. 3.1.4.1 Table S15. Estimated marginal means and contrasts between participants' gender. 3.1.4.1 Table S16. Estimated marginal means and contrasts between relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S16. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Fable S16. Estimated marginal means and contrasts between relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire:					
3.1.2.1 Model the effects of relationship type and gender on Solitary TSD 3.1.2.1.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis la. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.1 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.1 Table S12. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Post-hoc comparisons 3.1.4.3 Table S15. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Post-hoc comparisons 3.1.4.3 Table S16. Estimated marginal means and contrasts between gender by relationship status.			-		
3.1.2.1.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. 3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire . 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person . 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender . 3.1.4.3 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Table S15. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Table S15. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Table S16. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Table S16. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Table S16. Estimated marginal means and contrasts between relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner			3.1.2		
3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.2.3 Post-hoc comparisons 3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire. 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and gender. 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Post-hoc comparisons 3.1.4.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.3 Table S16. Estimated marginal means and contrasts between gender by relationship status.					
3.1.2.3.					
3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire. 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person a.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b					
3.1.2.3.1 Table S6. Estimated marginal means and contrasts between participants' gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire . Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person a.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6: Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c 3.1.4.1 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3 Table S14. Estimated marginal means and contrasts between relationship status. 3.1.4.3.1 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between gender by relationship status.					
gender. 3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire. 3.1.3 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					*
3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. 3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire. 3.1.3.1 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.1 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.1 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner				3.1.2.3.	
status. 3.1.2.3. Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person a.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender 3.1.4.3 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Table S16. Estimated marginal means and contrasts between relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					9
3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4 Hypothesis 1c: Dyadic TSD (Partner) 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between relationship status. 3.1.4.3.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner				3.1.2.3.	2 Table S7. Estimated marginal means and contrasts between relationship
relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					status.
relationship status. 3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire 3.1.3 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.3 Table S16. Estimated marginal means and contrasts between gender by relationship status.				3.1.2.3.	3 Table S8. Estimated marginal means and contrasts between gender by
3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire					
3.1.3.1 Hypothesis 1b: Dyadic TSD (Attractive person) 3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. 3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.2.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner				3 1 2 4 Figu	•
3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person 3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b			2 1 2		
3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b			5.1.5		
3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
3.1.3.3 Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
3.1.3.3. Post-hoc comparisons 3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person 3.1.4 Hypothesis 1c: Dyadic TSD (Partner) 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4 Hypothesis 1c: Dyadic TSD (Partner) 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
gender. 3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner. 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender. 3.1.4.3 Post-hoc comparisons. 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner				3.1.3.3.	1 Table S10. Estimated marginal means and contrasts between participants'
status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4 Hypothesis 1c: Dyadic TSD (Partner) 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status.					
status. 3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4 Hypothesis 1c: Dyadic TSD (Partner) 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status.				3.1.3.3.	2 Table S11. Estimated marginal means and contrasts between relationship
3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. 3.1.4 Hypothesis 1c: Dyadic TSD (Partner). 3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner. 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender. 3.1.4.3 Post-hoc comparisons. 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
relationship status. 3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person				3.1.3.3.	
3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person					· · · · · · · · · · · · · · · · · · ·
ive person				3.1.3.4 Figu	•
3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner 3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. 3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner			3 1 1		
3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c			0.1.4		
3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender					
Gender 3.1.4.3 Post-hoc comparisons 3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender. 3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
3.1.4.3 Post-hoc comparisons					
3.1.4.3.1 Table S14. Estimated marginal means and contrasts between participants' gender					
gender				3.1.4.3 Post	
gender				3.1.4.3.	1 Table S14. Estimated marginal means and contrasts between participants'
3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. 3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. 3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner					
status				3.1.4 3	9
3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status				0.1.1.0.	-
relationship status				9149	
3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner				5.1.4.5.	· · · · · · · · · · · · · · · · · · ·
				0.1.4.	•

	3.2.1	Table S17. ANOVA-type table for the effects of stimuli content, gender and stimuli content	
		on Subjective sexual arousal	54
	3.2.2	Table S18. Estimated marginal means and contrasts between subjective sexual arousal de-	
		pending on stimuli sex, by stimuli content and participant gender	55
	3.2.3	Figure S9. Effects of stimuli content (erotic, non-erotic) on subjective sexual arousal	57
3.3	Hypot	hesis 2: The association between trait sexual desire (TSD) and subjective sexual arousal (SSA)	
	will va	ry by TSD dimension, with these associations being gender-specific in men and gender-non-	
	specifi	c in women	59
	3.3.1	Modeling Approach	59
	3.3.2	Data	60
	3.3.3	Hypothesis 2a: Solitary TSD	60
		3.3.3.1 Model Robustness: Examining the Effects of Solitary TSD on SSA Across Gender and Stimuli Sex	60
		3.3.3.1.1 Table S19. ANOVA-type table of fixed effects (main effects and interac-	00
		tions) across the three fitted models	61
		3.3.3.1.2 Figure S10: Model-based predictions for Hypothesis 2a	62
		3.3.3.2 Final Model: Effects of Solitary TSD on SSA Across Gender and Stimuli Sex	64
		3.3.3.2.1 Table S20. ANOVA-type table for the interaction between Relationship	0-1
		type, and Gender	64
		3.3.3.2.2 Post-hoc tests	65
			66
	3.3.4	Hypothesis 2b: Attractive person TSD	67
	0.0.1	3.3.4.1 Model Robustness: Examining the Effects of Attractive person TSD on SSA Across	٠.
			67
		3.3.4.1.1 Table S22. ANOVA-type table of fixed effects (main effects and interac-	٠.
		tions) across the three fitted models	68
		3.3.4.1.2 Figure S12: Model-based predictions for Hypothesis 2b	69
		3.3.4.2 Final Model: Effects of Attractive person TSD on SSA Across Gender and Stimuli	00
		Sex	71
		3.3.4.2.1 Table S23. ANOVA-type table for the interaction between Relationship	
		type, and Gender	71
		3.3.4.2.2 <i>Post-hoc</i> tests	72
			73
	3.3.5	Hypothesis 2c: Partner TSD	74
		3.3.5.1 Model Robustness: Examining the Effects of Partner TSD on SSA Across Gender	
		and Stimuli Sex	74
		3.3.5.1.1 Table S25. ANOVA-type table of fixed effects (main effects and interac-	
		tions) across the three fitted models	75
		3.3.5.1.2 Figure S14: Model-based predictions for Hypothesis 2c	76
		3.3.5.2 Final Model: Effects of Partner TSD on SSA Across Gender and Stimuli Sex	78
		3.3.5.2.1 Table S26. ANOVA-type table for the interaction between Relationship	
		type, and Gender	78
		3.3.5.2.2 <i>Post-hoc</i> tests	79
		3.3.5.3 Figure S15. Subjective sexual arousal to erotic stimuli: Main effects and interactions	80
3.4	Hypot	hesis 3: The associations between TSD dimensions and SSA toward stimuli of self-reported	
	preferi	red gender will be moderated by gender and relationship status	81
	3.4.1	Modeling Approach	81
	3.4.2	Data	82
	3.4.3	Hypothesis 3a: Solitary TSD	82
		3.4.3.1 Model Robustness: Examining the Effects of Solitary TSD on SSA Across Gender	
		and Stimuli Sex	82
		3.4.3.1.1 Table S28. ANOVA-type table of fixed effects (main effects and interac-	
		tions) across the three fitted models	83
		3.4.3.1.2 Figure S16: Model-based predictions for Hypothesis 3a	84
		3.4.3.2 Final Model: Effects of Solitary TSD on SSA Across Gender and Stimuli Sex	86

5	Suppleme	ntary references	10 4
4	Session in	fo (for reproducibility)	103
		3.4.5.3 Figure S21. Subjective sexual arousal to erotic stimuli: Main effects and interactions	102
		3.4.5.2.2 <i>Post-hoc</i> tests	
		type, and Gender	100
		3.4.5.2.1 Table S35. ANOVA-type table for the interaction between Relationship	_00
		3.4.5.2 Final Model: Effects of Partner TSD on SSA Across Gender and Stimuli Sex	
		3.4.5.1.2 Figure S20: Model-based predictions for Hypothesis 3c	
		3.4.5.1.1 Table S34. ANOVA-type table of fixed effects (main effects and interactions) across the three fitted models	07
		and Stimuli Sex	96
		3.4.5.1 Model Robustness: Examining the Effects of Partner TSD on SSA Across Gender	
	3.4.5	Hypothesis 3c: Partner TSD	96
		3.4.4.3 Figure S19. Subjective sexual arousal to erotic stimuli: Main effects and interactions	95
		3.4.4.2.2 <i>Post-hoc</i> tests	94
		type, and Gender	93
		3.4.4.2.1 Table S32. ANOVA-type table for the interaction between Relationship	90
		3.4.4.2 Final Model: Effects of Attractive person TSD on SSA Across Gender and Stimuli Sex	93
		3.4.4.1.2 Figure S18: Model-based predictions for Hypothesis 3b	91
		tions) across the three fitted models	90
		3.4.4.1.1 Table S31. ANOVA-type table of fixed effects (main effects and interac-	
		Gender and Stimuli Sex	89
	0.1.1	3.4.4.1 Model Robustness: Examining the Effects of Attractive person TSD on SSA Across	
	3.4.4	Hypothesis 3b: Attractive person TSD	89
		3.4.3.2.2 Post-hoc tests	88
		type, and Gender	86 87
		3.4.3.2.1 Table S29. ANOVA-type table for the interaction between Relationship	0.0

1 Preliminaries

1.1 Load packages

This file was created using knitr (Xie, 2014), mostly using tidyverse (Wickham et al., 2019) syntax. As such, data wrangling was mainly done using packages such as dplyr (Wickham et al., 2023), and most figures were created or modified using ggplot2 (Wickham, 2016). Tables were created using knitr::kable and kableExtra (Zhu, 2021).

Linear mixed models were fitted using lmerTest (Kuznetsova et al., 2017), assumptions were performed using performance (Lüdecke et al., 2021), contrasts and interactions were explored using emmeans (Lenth, 2023), and interactions were investigated using the package interactions (Long, 2019).

All packages used in this file can be directly installed from the Comprehensive R Archive Network (CRAN). For a complete list of packages used to create this file, and their versions, see section 4, at the end of the document.

```
library(readx1)
library(lme4)
library(ordinal)
library(lmerTest)
library(ltm)
library(car)
library(tidyquant)
library(performance)
library(kableExtra)
```

```
library(psych)
library(scales)
library(emmeans)
library(bestNormalize)
library(rstatix)
library(effectsize)
library(ggpubr)
library(interactions)
library(tidyverse)
# library(ggeffects)
# library(gtsummary)
# library(metBrewer)
# library(ggpmisc)
```

1.2 Define color palettes

Individual color palettes for figures by gender, stimuli sex, or relationship type.

```
# Palette to color figures by gender
color.Gender <- c("red", "black")
# Palette to color figures by stimuli sex
color.StimuliSex <- c("#54278F", "#FC4E2A")
# Palette to color figures by relationship type
color.Relationship <- c("#2171B5", "#DD3497")
# Palette to color figures by stimuli content
color.Content <- c("#41AB5D", "navyblue")</pre>
```

1.3 Custom functions

1.3.1 pval.lev and pe2.lev

This functions take p-values and epsilon squared effect sizes and formats them in LATEX, highlighting significant p-values in bold and representing all in an appropriate level.

}

1.3.2 pval.stars

This function takes p-values and adds starts to represent significance levels.

```
pval.stars <- function(pvals) {
  ifelse(pvals < 0.0001, "****",
    ifelse(pvals < 0.01, "**",
        ifelse(pvals < 0.05, "*", NA)
    )
    )
  )
}</pre>
```

1.3.3 corr.stars

This function creates a correlation matrix, and displays significance (function corr.stars modified from http://myowelt.blogspot.com/2008/04/beautiful-correlation-tables-in-r.html).

```
corr.stars <- function(x) {</pre>
  require(Hmisc)
  x <- as.matrix(x)
  R <- rcorr(x)$r</pre>
  p <- rcorr(x)$P</pre>
  mystars <- ifelse(p < .001,</pre>
    paste0("\\textbf{", round(R, 2), "***}"),
    ifelse(p < .01,
      paste0("\\textbf{", round(R, 2), "**}"),
      ifelse(p < .05,
        paste0("\\textbf{", round(R, 2), "*}"),
        ifelse(p < .10,
           paste0(round(R, 2), "$^{\\dagger}$"),
           format(round(R, 2), nsmall = 2)
  # build a new matrix that includes the correlations with their appropriate stars
  Rnew <- matrix(mystars,</pre>
    ncol = ncol(x)
  diag(Rnew) <- paste(diag(R), " ",</pre>
    sep = ""
  rownames(Rnew) <- colnames(x)</pre>
  colnames(Rnew) <- paste(colnames(x), "",</pre>
    sep = ""
  Rnew <- as.matrix(Rnew)</pre>
  Rnew[upper.tri(Rnew, diag = TRUE)] <- ""</pre>
  Rnew <- as.data.frame(Rnew)</pre>
  Rnew <- cbind(Rnew[1:length(Rnew) - 1])</pre>
```

```
return(Rnew)
}
```

1.3.4 anova.sig.lm and anova.sig.lmer

Functions to bold significant p values from summary model tables. It highlights significant p values, and formats the output in \LaTeX , ready to be used with kable.

```
anova.sig.lm <- function(model, custom_caption) {</pre>
 aovTab <- bind_cols(</pre>
   anova_summary(Anova(model, type = 3)),
    epsilon_squared(model)
   unite(col = "df", DFn:DFd, sep = ", ") |>
   select(Effect, df, F, p, Epsilon2_partial) |>
   mutate(
      p = pval.lev(p),
      Epsilon2_partial = pe2.lev(Epsilon2_partial)
   mutate_at("Effect", str_replace_all, ":", " x ") |>
   kable(
     digits = 2,
     booktabs = TRUE,
     align = c("l", rep("c", 4)),
     linesep = "",
     caption = custom_caption,
     col.names = c("Effect", "$df$", "$F$", "$p$", "$\\epsilon^2_p$"),
      escape = FALSE
   kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
   footnote(
      general = paste0(
        "Sexual desire was transformed using an ordered quantile
                              normalization
                              (\\\cite{petersonOrderedQuantileNormalization2020a}).
                              Results are type III ANOVA.
                              R^2 = ",
        round(r2(model)$R2, 3),
        ", R^2_{adjusted} = ",
        round(r2(model)$R2_adjusted, 3),
        ". Gender = participants gender (women, men);
                              Relationship = relationship type (stable, single).
                              As effect size, we report partial epsilon squared
                              ($\\\epsilon^2_p$), which provides a less biases
                              estimate than $\\\eta^2$ (see
                              \\\cite{albersWhenPowerAnalyses2018}).
      escape = FALSE,
      threeparttable = TRUE,
      footnote_as_chunk = TRUE
  return(aovTab)
 Version 2 for linear mixed models (lmer)
```

```
anova.sig.lmer <- function(model, custom caption) {</pre>
 aovTab <- bind cols(</pre>
    anova(model),
    epsilon_squared(model)
   mutate(DenDF = round(DenDF, 2)) |>
   unite(col = "df", NumDF:DenDF, sep = ", ") |>
   rownames_to_column(var = "Effect") |>
    rename(
      "F" = "F value",
     "p" = "Pr(>F)"
    select(Effect, df, F, p, Epsilon2_partial) |>
   mutate(
     p = \overline{pval.lev(p)},
      Epsilon2_partial = pe2.lev(Epsilon2_partial)
   mutate(Effect = str_replace_all(Effect, "\\.", " ")) |> # Replace dots with spaces
   mutate(Effect = str_replace_all(Effect, ":", " × ")) |> # Replace colons with ×
   kable(
     digits = 2,
     booktabs = TRUE,
     align = c("l", rep("c", 4)),
     linesep = "",
     caption = custom_caption,
     col.names = c("Effect", "$df$", "$F$", "$p$", "$\\epsilon^2_p$"),
     escape = FALSE
    kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
    footnote(
     general = paste0(
        "Results are type III ANOVA.
                              $R^2_{conditional}$ = ",
        round(r2_nakagawa(model)$R2_conditional, 3),
        ", $R^2_{marginal}$ = ",
        round(r2_nakagawa(model)$R2_marginal, 3),
        ". As effect size, we report partial epsilon squared
        ($\\\epsilon^2_p$), which provides a less biases
        estimate than $\\\eta^2$ (see
        \\\cite{albersWhenPowerAnalyses2018}).
        Significant effects are in bold."
      escape = FALSE,
      threeparttable = TRUE,
      footnote_as_chunk = TRUE
  return(aovTab)
```

1.3.5 emms.sig

Function to create a table of estimated marginal means and contrasts at three levels of a covariate, representing significance levels from emmeans::emmeans outputs. The function highlights significant p values, and formats the output in \LaTeX , ready to be used with kable.

```
emms.sig <- function(low.i, mid.i, hi.i) {</pre>
  emm.low <- data.frame(low.i[[1]])</pre>
  emm.mid <- data.frame(mid.i[[1]])</pre>
  emm.hi <- data.frame(hi.i[[1]])</pre>
  con.low <- data.frame(low.i[[2]])</pre>
  con.mid <- data.frame(mid.i[[2]])</pre>
  con.hi <- data.frame(hi.i[[2]])</pre>
 low.tab <- merge(emm.low, con.low, by = 0, all = TRUE)</pre>
 mid.tab <- merge(emm.mid, con.mid, by = 0, all = TRUE)
 hi.tab <- merge(emm.hi, con.hi, by = 0, all = TRUE)
 tab <- bind_rows(low.tab, mid.tab, hi.tab) |>
   select(-c(1, 3, 6, 10:13)) |>
   mutate(p.value = pval.lev(p.value)) |>
   kable(
      digits = 2,
      booktabs = TRUE,
      align = c("l", rep("c", 4), "l", rep("c", 2)),
      linesep = "",
      caption = pasteO(
        "Estimated marginal means and contrasts for ",
        low.i[[1]]@misc$pri.vars[1],
        low.i[[1]]@misc$by.vars
      col.names = c(
        low.i[[1]]@misc$pri.vars[1],
        "EMM", "$SE$", "$2.5\\% CI$", "$97.5\\% CI$", "Contrast", "$z$", "$p$"
      escape = FALSE
      group_label = pasteO(low.i[[1]]@misc$by.vars, " = Mean - SD"),
      start row = 1,
      end_row = 2,
      bold = FALSE,
      background = "lightgray"
    pack_rows(
      group_label = pasteO(low.i[[1]]@misc$by.vars, " = Mean"),
      start_row = 3,
      end row = 4,
      bold = FALSE,
      background = "lightgray"
    pack rows(
      group_label = pasteO(low.i[[1]]@misc$by.vars, " = Mean + SD"),
      start_row = 5,
      end_row = 6,
      bold = FALSE,
      background = "lightgray"
    add_header_above(c(" " = 5, "Contrasts" = 3)) |>
    kable_styling(latex_options = "HOLD_position") |>
```

```
footnote(
      general = paste0(
           Continuous variables were centered and scaled (in this case, ",
        low.i[[1]]@misc$by.vars, ").
           An asymptotic method was used to avoid extreme computation
           times (hence, no degrees of freedom are included, and
           $z$ rather than $t$ statistics are reported).
      threeparttable = TRUE,
      footnote_as_chunk = TRUE,
      escape = FALSE
  return(tab)
emms.sig2 <- function(low.i, mid.i, hi.i) {</pre>
 emm.low <- data.frame(low.i[[1]])</pre>
 emm.mid <- data.frame(mid.i[[1]])</pre>
 emm.hi <- data.frame(hi.i[[1]])</pre>
 con.low <- data.frame(low.i[[2]])</pre>
  con.mid <- data.frame(mid.i[[2]])</pre>
  con.hi <- data.frame(hi.i[[2]])</pre>
 low.tab <- merge(emm.low, con.low, by = 0, all = TRUE)</pre>
 mid.tab <- merge(emm.mid, con.mid, by = 0, all = TRUE)
 hi.tab <- merge(emm.hi, con.hi, by = 0, all = TRUE)
 tab <- bind_rows(low.tab, mid.tab, hi.tab) |>
    select(-c(1, 4, 7, 11:14)) |>
   mutate(p.value = pval.lev(p.value)) |>
   kable(
      digits = 2,
      booktabs = TRUE,
      align = c("l", "l", rep("c", 4), "l", rep("c", 2)),
      linesep = "",
      caption = paste0(
        low.i[[1]]@misc$pri.vars[1], " and ",
        low.i[[1]]@misc$pri.vars[2],
        " at different levels of ",
        low.i[[1]]@misc$by.vars
      col.names = c(
        low.i[[1]]@misc$pri.vars[1],
        low.i[[1]]@misc$pri.vars[2],
        "EMM", "$SE$", "$2.5\\% CI$", "$97.5\\% CI$", "Contrast", "$z$", "$p$"
      escape = FALSE
    pack rows(
      group_label = pasteO(low.i[[1]]@misc$by.vars, " = Mean - SD"),
```

```
start_row = 1,
    end row = 6,
   bold = FALSE,
   background = "lightgray"
  pack_rows(
    group_label = pasteO(low.i[[1]]@misc$by.vars, " = Mean"),
   start_row = 7,
   end_row = 12,
   bold = FALSE,
   background = "lightgray"
 pack_rows(
   group_label = pasteO(low.i[[1]]@misc$by.vars, " = Mean + SD"),
   start_row = 13,
   end_row = 18,
   bold = FALSE,
   background = "lightgray"
 add_header_above(c(" " = 6, "Contrasts" = 3)) |>
  kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
  footnote(
   general = paste0(
         Significant effects are in bold.
      low.i[[1]]@misc$by.vars, ")
         An asymptotic method was used to avoid extreme computation
         times (hence, no degrees of freedom are included, and
         $z$ rather than $t$ statistics are reported).
   threeparttable = TRUE,
   footnote_as_chunk = TRUE,
   escape = FALSE
return(tab)
```

1.3.6 contr.stars

Function to create a data frame of model contrasts, representing significance levels from an emmeans::emmeans output. These data frames are formatted to be called by the ggpubr::stat_pvalue_manual function used in model figures.

```
contr.stars <- function(emms) {
  require(emmeans)
  x <- as.data.frame(contrast(emms, interaction = "pairwise"))
  x <- separate(x,
    col = 1,
    into = c("group1", "group2"),
    sep = " - ",
    remove = TRUE
)
  x$p.signif <- ifelse(x$p.value < 0.0001, "****",
  ifelse(x$p.value < 0.001, "****",</pre>
```

1.3.7 prob.dist.tab

Function to create a table of the probability of a model for each distribution family, using the check_distribution function, from the performance package (Lüdecke et al., 2021). Values are sorted descending, first for probabilities according to the residual distribution, and then for probabilities according to the response variable. While 18 distribution families are tested, only families with at least one probability (either residual or response variable) higher than 10% are shown in the table.

```
prob.dist.tab <- function(mod) {</pre>
 tibble(check_distribution(mod)) |>
   arrange(desc(p_Response)) |>
    arrange(desc(p_Residuals)) |>
    filter(p_Residuals > 0.1 | p_Response > 0.1) |>
   mutate(p_Residuals = paste0(round(p_Residuals * 100, 2), "\\")) |>
   mutate(p_Response = paste0(round(p_Response * 100, 2), "\\\")) |>
   mutate(Distribution = sub("(.)", "\\U\\1", Distribution, perl = TRUE)) |>
    # Create table
   kable(
      booktabs = TRUE,
      align = c("l", "c", "c"),
      row.names = FALSE,
      caption = "Distributional family for the model",
      col.names = c(
        "Family",
        "Residuals",
        "Response"
      escape = FALSE
   kable styling(latex options = "HOLD position") |>
   row_spec(1, background = "#c4c4c4") |>
    footnote(
      general = "Only families with at least one probability higher than
  10\\\\ are shown, but a total of 18 distribution families were tested.
  The most likely distribution is highlighted.",
      threeparttable = TRUE,
      footnote_as_chunk = TRUE,
      escape = FALSE
```

1.4 Load and wrangle data

Change necessary variables to factor, sort levels, and rename variables

```
# Load data
dat <- read.csv("Data/BD_Heterosexuales_Vertical_BIG.csv") |>
 drop_na(SD_solitario) |>
 # Change variables to factor and sort their levels
 mutate_at(c(
    "Contenido_Estimulo", "Sexo", "Sexo_Estimulo", "PrefSex", "EstRel", "Escolaridad",
    "Religion", "TiempoRP"
 ), as.factor) |>
  # Rename variables to English
 rename(
   Participant = Participante,
   Age = EdadParticipante,
    `Preferred sex` = PrefSex,
   Gender = Sexo,
    `Contraceptive uso` = Anticoncep,
    `Last period` = UltimoPer,
    `Period day` = Dia_ciclo,
   Education = Escolaridad,
   Location = Residencia,
    `Location (other)` = Residencia_3_TEXT,
    `Medical history` = AntMed,
    `Sexual orientation` = OS,
    `Relationship status` = EstRel,
    `Relationship duration` = TiempoRP,
    `Partner gender` = SexPareja,
    `Relationship type` = TipoRel,
    `Age at first intercourse` = Primera.ExpSex,
    `Consented to first intercourse` = ConExpSex,
    `Number of sexual partners` = Numero.Parejas,
    `Pornography consumed last month` = Pornografia_ultimo_mes,
   Relationship = TieneRelacion,
    `MGH-SFQ (total) = MGH.SFQ_Total,
    `Dyadic sexual desire (Partner)` = SD_Diadico_pareja,
    `Solitary sexual desire` = SD_solitario,
    `Dyadic sexual desire (Attractive person)` = SD_Diadico_p_atractiva,
    `MGSS sexual satisfaction (General)` = Satisfaccion.Sexual..MGSS_general.,
    `MGSS sexual satisfaction (Partner)` = Satisfaccion.Sexual..MGSS_Pareja.,
   `Stimuli code` = Codigo Estimulo,
    `Stimuli sex` = Sexo_Estimulo,
    `Stimuli content` = Contenido_Estimulo,
    `Subjective sexual attractiveness` = Atractivo,
    `Subjective sexual arousal` = Excitacion
 mutate(`Stimuli content` = recode_factor(`Stimuli content`,
   Erotico = "Erotic",
   No_erotico = "Non-erotic"
 mutate(Gender = recode_factor(Gender,
   Femenino = "Women",
   Masculino = "Men"
  )) |>
```

```
mutate(`Stimuli sex` = recode_factor(`Stimuli sex`,
  Femenino = "Female",
 Masculino = "Male"
mutate(`Preferred sex` = recode_factor(`Preferred sex`,
  Hombre = "Male",
 Mujer = "Female"
mutate(Education = recode(Education,
  "Universitario" = "University",
  "Postgrado" = "Postgraduate"
mutate(Religion = recode(Religion,
  "1" = "Religious",
mutate(`Pornography consumed last month` = recode(`Pornography consumed last month`,
  "Nunca" = "None",
mutate(
  `Relationship duration` = recode(`Relationship duration`,
    "Sin pareja actual" = "Single",
    "Menor a 6 meses" = "Less that 6 months",
    "Entre 6 meses y 2 anos" = "Between 6 months and 2 years",
    "Entre 2 y 5 anos" = "Between 2 and 5 years",
    "MÃ;s de 5 anos" = "More than 5 years"
  `Relationship duration` = replace_na(`Relationship duration`, "Single")
mutate(Relationship = recode(`Relationship status`,
  "Exclusiva/No viven juntos" = "Stable",
  "Exclusiva/Matrimonio" = "Stable",
  "Soltero/sin contactos sexuales en un ano" = "Single",
  "Soltero/contactos sexuales en un ano" = "Single"
mutate(
  Education = fct_relevel(
    Education,
   c("High school", "University", "Postgraduate")
  `Pornography consumed last month` = fct_relevel(
    `Pornography consumed last month`,
     "None", "1-2 times",
```

2 Descriptives

2.0.1 Figure S1. Demographic chacarteristics of the sample

Number of participants by demographic category.

```
# Get number of participant for each combination of demographic chacarteristic
dat.demog <- dat |>
 select(
    Participant, Gender, Relationship, Education, Religion,
    `Pornography consumed last month`
 group_by(Participant) |>
  filter(row_number() == 1) |>
 ungroup() |>
 group_by(
   Gender, Relationship, Education, Religion,
    `Pornography consumed last month`
 rename(Porn = `Pornography consumed last month`) |>
 tally() |>
 drop_na(Religion) |>
 ungroup()
dat.demog.W <- filter(dat.demog, Gender == "Women")</pre>
dat.demog.M <- filter(dat.demog, Gender == "Men")</pre>
samp.w <- ggballoonplot(dat.demog.W,</pre>
 x = "Education", y = "Porn", size = "n",
 fill = "n",
 facet.by = c("Relationship", "Religion")
  scale_fill_viridis_c(option = "C", limits = c(1, max(dat.demog$n))) +
  scale_size_continuous(range = c(1, 7), limits = c(1, max(dat.demog$n))) +
 guides(
```

```
fill = guide_legend(face = "italic"),
   size = guide_legend(face = "italic")
 labs(title = "Women", y = "Pornography consumed last month") +
  geom_text(aes(label = n),
   size = 3, nudge_x = 0.3, nudge_y = 0.1
 geom_text(
   aes(label = paste0(
     percent(n / sum(dat.demog$n), accuracy = 0.1),
   size = 2.5, nudge_x = 0.3, nudge_y = -0.05
 theme_tq() +
 theme(
   axis.text.x = element_text(angle = 45, hjust = 1),
   axis.text.y = element_text(angle = 45, vjust = 0.5)
samp.m <- ggballoonplot(dat.demog.M,</pre>
 x = "Education", y = "Porn", size = "n",
 fill = "n",
 facet.by = c("Relationship", "Religion")
  scale_fill_viridis_c(option = "C", limits = c(1, max(dat.demog$n))) +
 scale_size_continuous(range = c(1, 7), limits = c(1, max(dat.demog$n))) +
   fill = guide_legend(face = "italic"),
   size = guide_legend(face = "italic")
 labs(title = "Men", y = NULL) +
 geom_text(aes(label = n),
   size = 3, nudge_x = 0.3, nudge_y = 0.1
 geom_text(
   aes(label = paste0(
     percent(n / sum(dat.demog$n), accuracy = 0.1),
   )),
   size = 2.5, nudge_x = 0.3, nudge_y = -0.05
 theme_tq() +
 theme(
   axis.text.x = element_text(angle = 45, hjust = 1),
   axis.text.y = element_text(angle = 45, vjust = 0.5)
ggarrange(samp.w, samp.m,
 common.legend = TRUE,
 legend = "bottom"
```


Figure S1. Number of participants by gender (left = women, rigth = men), Relationship (stable = top panels, single = bottom panels), Religion (non-religious = left panels by gender, religious = right panels by gender), Education (X axis), and pornography consumed during the last month (Y axis). The number of participants for each combination of these five variables is displayed as numbers (percentage in brackets), as well as by the color and size of the bubbles.

2.1 Descriptive statistics of the participants by gender

Calculate mean values per participant for relevant, numeric variables.

```
# Summarize relevant variables by participant
dat.desc <- dat |>
select(
   Participant, Gender, Age, Relationship, `Number of sexual partners`,
   `MGH-SFQ (total)`,
   `MGSS sexual satisfaction (General)`, `MGSS sexual satisfaction (Partner)`,
   `Subjective sexual attractiveness`, `Subjective sexual arousal`,
   `Solitary sexual desire`,
   `Dyadic sexual desire (Attractive person)`, `Dyadic sexual desire (Partner)`
) |>
group_by(Participant, Gender, Relationship) |>
summarize_if(is.numeric, mean, na.rm = TRUE)
```

2.1.1 Table S1. Descriptive statistics of the participants by gender

Table of descriptives by gender.

```
# Table of descriptives by gender and relationship status
describeBy(dat.desc ~ Relationship + Gender,
  mat = TRUE,
```

```
digits = 2
rownames_to_column("Measured characteristic") |>
select(1, 3:4, 6:9, 12:13) |>
slice(-(1:12)) |>
select(1, 3, 2, 4:9) |>
mutate("Measured characteristic" = str_replace_all(
  `Measured characteristic`,
kable(
  digits = 2,
 booktabs = TRUE,
 align = c("l", "l", rep("c", 7)),
  linesep = "",
  caption = "Descriptive statistics the participants by gender
  col.names = c(
    "$n$", "Mean", "$SD$", "Median", "Min", "Max"
 longtable = TRUE,
  escape = FALSE
kable_styling(
 latex_options = c("HOLD_position"),
 font_size = 8.2
collapse_rows(columns = 1:3, valign = "middle") |>
footnote(
  general = "Because for \\\\textit{Subjective sexual attractiveness} and
         \\\\textit{Subjective sexual arousal} there are multiple within-subject
         observations, descriptives are calculated from mean values per participant.",
  threeparttable = TRUE,
  footnote_as_chunk = TRUE,
  escape = FALSE
```

Table S1. Descriptive statistics the participants by gender and relationship status

Measured characteristic	Gender	Relationship status	n	Mean	SD	Median	Min	Max
	117	Stable	105	24.51	5.58	23.00	18.00	40.00
A	Women	Single	79	22.27	3.84	21.00	18.00	36.00
Age		Stable	72	26.72	5.64	25.00	19.00	40.00
	Men	Single	67	24.24	4.58	23.00	18.00	39.00
	337	Stable	103	4.41	3.77	3.00	1.00	22.00
NI	Women	Single	76	5.74	8.85	3.00	0.00	63.00
Number of sexual partners	M	Stable	72	8.72	11.36	5.00	1.00	70.00
	Men	Single	66	7.30	8.06	4.00	0.00	40.00
	337	Stable	104	3.31	0.96	3.75	0.00	4.00
	Women	Single	79	2.80	1.23	3.50	0.00	4.00
		Stable	72	3.59	0.62	3.90	0.60	4.00

MGH-SFQ (total)								
	Men —	Single	67	3.38	0.83	3.80	0.60	4.00
		Stable	100	25.88	5.67	28.00	6.00	30.00
	Women —	Single	10	26.90	3.11	27.00	22.00	30.00
MGSS sexual satisfaction (General)		Stable	70	26.43	4.54	29.00	12.00	30.00
	Men —	Single	12	23.58	5.14	24.50	14.00	29.00
		Stable	100	28.13	4.20	30.00	8.00	30.00
Maga la de la Company	Women —	Single	10	28.10	2.13	29.00	25.00	30.00
MGSS sexual satisfaction (Partner)		Stable	70	28.49	3.48	30.00	6.00	30.00
	Men —	Single	12	26.08	4.85	27.50	15.00	30.00
	117	Stable	105	2.94	1.11	2.78	1.00	5.49
0.1.	Women —	Single	79	3.19	1.06	3.11	1.44	6.77
Subjective sexual attractiveness		Stable	72	3.27	0.94	3.24	1.11	6.20
	Men —	Single	67	3.20	0.90	3.18	1.09	5.72
	117	Stable	105	1.59	0.68	1.39	1.00	4.21
0.1. (Women —	Single	79	1.75	0.71	1.52	1.00	4.39
Subjective sexual arousal	M	Stable	72	2.24	0.83	2.07	1.00	4.57
	Men —	Single	67	2.16	0.78	2.05	1.00	4.09
	Waraan	Stable	105	11.53	8.59	12.00	0.00	29.00
Calitany garrel degine	Women —	Single	79	16.03	8.35	17.00	0.00	31.00
Solitary sexual desire	Man	Stable	72	17.47	7.51	17.50	0.00	31.00
	Men —	Single	67	18.25	7.10	19.00	1.00	31.00
	Women —	Stable	105	10.55	7.64	10.00	0.00	30.00
Dyadic sexual desire (Attractive person)	women —	Single	79	14.06	7.39	15.00	0.00	32.00
Dyadic sexual desire (Attractive person)	Men —	Stable	72	16.21	7.44	15.50	0.00	32.00
	Men —	Single	67	17.57	6.66	17.00	2.00	30.00
	Women —	Stable	105	27.53	8.50	30.00	0.00	38.00
	women —	Single	76	21.33	10.91	23.00	0.00	38.00
Dradia corruel decire (Partner)								
Dyadic sexual desire (Partner)	Men —	Stable	72	31.35	5.33	32.00	15.00	38.00

Note: Because for Subjective sexual attractiveness and Subjective sexual arousal there are multiple within-subject observations, descriptives are calculated from mean values per participant.

2.1.2 Figure S2. Distribution of participants' measured variables by gender

Kernel density distributions by gender.

```
# Convert dat.desc to long format
datp <- dat.desc |>
  pivot_longer(
    cols = Age:`Dyadic sexual desire (Partner)`,
    names_to = "Variable",
    values_to = "Value"
  ) |>
    mutate(Variable = str_wrap(Variable, width = 30))

# Figure created as 3 separate panels (to use a different number of panels per row)
fs2a <- ggplot(
    datp |>
        filter(Variable %in% c(
```

```
"Number of sexual partners",
      "Subjective sexual arousal"
  aes(Value,
   fill = Gender,
   colour = Gender
  geom_density(alpha = 0.3) +
 geom_vline(
   data = datp |>
     filter(Variable %in% c(
        "Number of sexual partners",
        "Subjective sexual\nattractiveness",
      group_by(Variable, Gender) |>
      summarise(mean = mean(Value, na.rm = TRUE)),
   aes(xintercept = mean, color = Gender, linetype = Gender)
 scale_color_manual(values = color.Gender) +
 scale_fill_manual(values = color.Gender) +
 facet_wrap(~Variable,
   scales = "free",
   ncol = 4
 labs(
   x = NULL
 theme_tq()
fs2b <- ggplot(
 datp |>
   filter(Variable %in% c(
     "MGH-SFQ (total)",
      "MGSS sexual satisfaction\n(General)",
     "MGSS sexual satisfaction\n(Partner)"
  aes(Value,
   fill = Gender,
    colour = Gender
 geom_density(alpha = 0.3) +
 geom_vline(
   data = datp |>
     filter(Variable %in% c(
        "MGH-SFQ (total)",
        "MGSS sexual satisfaction\n(General)",
        "MGSS sexual satisfaction\n(Partner)"
```

```
group_by(Variable, Gender) |>
      summarise(mean = mean(Value, na.rm = TRUE)),
   size = 1,
   aes(xintercept = mean, color = Gender, linetype = Gender)
 scale_color_manual(values = color.Gender) +
 scale fill manual(values = color.Gender) +
 facet_wrap(~Variable,
   scales = "free",
 labs(
   x = NULL
  theme_tq()
fs2c <- ggplot(</pre>
 datp |>
   filter(Variable %in% c(
     "Dyadic sexual desire\n(Attractive person)",
      "Dyadic sexual desire (Partner)"
 aes(Value,
   fill = Gender,
   colour = Gender
  geom_density(alpha = 0.3) +
 geom_vline(
   data = datp |>
     filter(Variable %in% c(
        "Dyadic sexual desire\n(Attractive person)",
        "Dyadic sexual desire (Partner)"
      group_by(Variable, Gender) |>
     summarise(mean = mean(Value, na.rm = TRUE)),
   aes(xintercept = mean, color = Gender, linetype = Gender)
 scale_color_manual(values = color.Gender) +
 scale_fill_manual(values = color.Gender) +
 facet_wrap(~Variable,
   scales = "free",
   ncol = 3
 labs(
   x = NULL
  theme_tq()
ggarrange(fs2a, fs2b, fs2c,
```


Figure S2. Distribution of measured variables by gender. Coloured vertical lines represent mean values by gender. Detailed descriptives are found in Table S1. Because for *Subjective sexual attractiveness* and *Subjective sexual arousal* there are are multiple within-subject observations, densities calculated from mean values per participant.

2.2 Correlations between measured variables

Correlation between numeric variables for women, men, and all participants combined, are reported in Table S2.

2.2.1 Table S2. Correlations between measured variables

Correlation matrix table.

```
# Correlations for women
dat.corr.W <- dat.desc |>
  ungroup() |>
  filter(Gender == "Women") |>
  select(Age:`Dyadic sexual desire (Partner)`) |>
  corr.stars() |>
  rownames_to_column(var = " ")
```

```
dat.corr.M <- dat.desc |>
  ungroup() |>
  filter(Gender == "Men") |>
  select(Age:`Dyadic sexual desire (Partner)`) |>
  corr.stars() |>
  rownames_to_column(var = " ")
dat.corr.All <- dat.desc |>
  ungroup() |>
  select(Age:`Dyadic sexual desire (Partner)`) |>
  corr.stars() |>
  rownames to column(var = " ")
# Full formated table
bind_rows(dat.corr.W, dat.corr.M, dat.corr.All) |>
  kable(
   digits = 2,
   booktabs = TRUE,
    align = c("l", rep("c", 9)),
   linesep = "",
    caption = "Correlations between measured variables",
    escape = FALSE
  pack_rows(
   group_label = "Women",
    start_row = 1, end_row = 10,
   bold = FALSE,
   background = "lightgray"
  pack_rows(
   group_label = "Men",
   start_row = 11, end_row = 20,
   bold = FALSE,
   background = "lightgray"
  pack_rows(
    group_label = "All participants",
    start_row = 21, end_row = 30,
   bold = FALSE,
   background = "lightgray"
  kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
  column_spec(2:10, width = "2.2cm") |>
  footnote(
    general = paste0(
      "Values represent Pearson correlation coefficients ($r$). ",
     "For significance, $^{\\\dagger}p$ < 0.1, *$p$ < 0.05, ",
      "**$p$ < 0.01, ***$p$ < 0.001. ",
    threeparttable = TRUE,
    footnote_as_chunk = TRUE,
    escape = FALSE
```

landscape()

Table S2. Correlations between measured variables

	Age	Number of sexual partners	MGH-SFQ (total)	MGSS sexual satisfaction (General)	MGSS sexual satisfaction (Partner)	Subjective sexual attractiveness	Subjective sexual arousal	Solitary sexual desire	Dyadic sexual desire (Attractive person)
Women									
Age									
Number of sexual partners	0.24**								
MGH-SFQ (total)	-0.05	-0.07							
MGSS sexual satisfaction (General)	-0.21*	0.02	0.46***						
MGSS sexual satisfaction (Partner)	-0.16^{\dagger}	-0.14	0.32***	0.73***					
Subjective sexual attractiveness	0.11	0.18*	-0.04	-0.22*	-0.18^{\dagger}				
Subjective sexual arousal	0.00	0.17*	-0.13^{\dagger}	-0.18^{\dagger}	-0.16^{\dagger}	0.54***			
Solitary sexual desire	-0.14^{\dagger}	0.28***	0.05	-0.06	-0.18^{\dagger}	0.31***	0.33***		
Dyadic sexual desire (Attractive person)	0.06	0.32***	-0.17*	-0.04	-0.17^{\dagger}	0.34***	0.36***	0.44***	
Dyadic sexual desire (Partner)	0.00	0.21**	0.43***	0.44***	0.27**	0.13^{\dagger}	0.04	0.31***	0.13^{\dagger}
Men									
Age									
Number of sexual partners	0.23**								
MGH-SFQ (total)	0.04	0.02							
MGSS sexual satisfaction (General)	-0.24*	-0.08	0.36***						
MGSS sexual satisfaction (Partner)	-0.13	-0.01	0.10	0.63***					
Subjective sexual attractiveness	0.10	-0.05	-0.08	-0.10	-0.02				
Subjective sexual arousal	0.2*	0.07	0.05	-0.14	-0.09	0.46***			
Solitary sexual desire	-0.16^{\dagger}	0.00	0.09	0.10	0.17	0.26**	0.11		
Dyadic sexual desire (Attractive person)	0.12	0.29***	0.03	-0.13	-0.08	0.25**	0.43***	0.25**	
Dyadic sexual desire (Partner)	0.11	0.07	0.36***	0.55***	0.22*	0.14	0.24**	0.17*	0.2*
All participants									
Age									
Number of sexual partners	0.26***								
MGH-SFQ (total)	0.02	0.01							
MGSS sexual satisfaction (General)	-0.22**	-0.03	0.42***						
MGSS sexual satisfaction (Partner)	-0.14*	-0.07	0.24***	0.69***					
Subjective sexual attractiveness	0.12*	0.08	-0.03	-0.18*	-0.12				
Subjective sexual arousal	0.15**	0.17**	0.01	-0.15*	-0.12^{\dagger}	0.5***			
Solitary sexual desire	-0.09	0.17**	0.11^{\dagger}	0.00	-0.05	0.31***	0.3***		
Dyadic sexual desire (Attractive person)	0.14*	0.33***	-0.04	-0.07	-0.12^{\dagger}	0.32***	0.45***	0.42***	
Dyadic sexual desire (Partner)	0.08	0.16**	0.43***	0.46***	0.25***	0.15**	0.18**	0.3***	0.21***

Note: Values represent Pearson correlation coefficients (r). For significance, $^{\dagger}p < 0.1$, $^{*}p < 0.05$, $^{**}p < 0.01$, $^{***}p < 0.001$. Significant correlations are in bold.

2.3 Internal consistency

Six variables were calculated from multiple items (1. MGH-SFQ, 2. Dyadic sexual desire (Partner), 3. Solitary sexual desire, 4. Dyadic sexual desire (Attractive person), 5. MGSS sexual satisfaction (General) and 6. MGSS sexual satisfaction (Partner)).

Data by item, for each participant, is included in the following data base, loaded as dat.reli:

```
dat.reli <- read_excel("Data/BD_ConsistenciaInterna.xlsx") |>
  mutate(Sex = recode_factor(Sex,
     "2" = "Women",
     "1" = "Men"
)) |>
  rename(Gender = Sex) |>
  filter(Participante != 122)
```

Participant 122 was excluded because they did not respond the psychological scales.

To measure the internal consistency of these tests, we used standardized Cronbach's alpha (α or Tau-equivalent reliability: ρ_T) coefficients, using the function cronbach.alpha from the package ltm (Rizopoulos, 2006).

Importantly, given that for MGH-SFQ one item was answered only by men, the internal consistency of this variable was measured independently for each gender.

```
# MGH-SFQ for men
MGH.m <- dat.reli |>
  filter(Gender == "Men") |>
  select(3:7) |>
  drop_na() |>
  cronbach.alpha(CI = TRUE, standardized = TRUE)
# MGH-SFQ for women
MGH.w <- dat.reli |>
  filter(Gender == "Women") |>
 select(3:5, 7) |>
 drop_na() |>
  cronbach.alpha(CI = TRUE, standardized = TRUE)
# Dyadic sexual desire (Partner)
DSD.p <- dat.reli |>
 select(9:13) |>
 drop_na() |>
  cronbach.alpha(CI = TRUE, standardized = TRUE)
SSD.p <- dat.reli |>
  select(15:18) |>
 drop na() |>
  cronbach.alpha(CI = TRUE, standardized = TRUE)
DSD.a <- dat.reli |>
 select(20:23) |>
 drop_na() |>
  cronbach.alpha(CI = TRUE, standardized = TRUE)
MGSS.g <- dat.reli |>
 select(26:30) |>
 drop_na() |>
```

```
cronbach.alpha(CI = TRUE, standardized = TRUE)

# MGSS sexual satisfaction (Partner)

MGSS.p <- dat.reli |>
    select(32:36) |>
    drop_na() |>
    cronbach.alpha(CI = TRUE, standardized = TRUE)
```

2.3.1 Table S3. Internal consistency of construct variables

Table of Cronbach's α for construct variables.

```
tibble(
 Variable = c(
    "MGH-SFQ", "MGH-SFQ",
    "Dyadic sexual desire (Partner)",
    "Solitary sexual desire",
    "Dyadic sexual desire (Attractive person)"
 Gender = c("Men", "Women", rep(" ", 5)),
   MGH.m$p,
   MGH.w$p,
   MGSS.g$p,
   MGSS.p$p,
   DSD.p$p,
   SSD.p$p,
   DSD.a$p
  ),
   MGH.m$n,
   MGH.w$n,
   MGSS.g$n,
   MGSS.p$n,
   DSD.p$n,
   SSD.p$n,
   DSD.a$n
 alpha = c(
   MGH.m$alpha,
   MGH.w$alpha,
   MGSS.g$alpha,
   MGSS.p$alpha,
   DSD.p$alpha,
   SSD.p$alpha,
   DSD.a$alpha
 ci2.5 = c(
   MGH.m$ci[1],
   MGH.w$ci[1],
   MGSS.g$ci[1],
   MGSS.p$ci[1],
    DSD.p$ci[1],
    SSD.p$ci[1],
```

```
DSD.a$ci[1]
ci97.5 = c(
 MGH.m$ci[2],
 MGH.w$ci[2],
 MGSS.g$ci[2],
 MGSS.p$ci[2],
 DSD.p$ci[2],
  SSD.p$ci[2],
  DSD.a$ci[2]
kable(
  digits = 2,
 booktabs = TRUE,
  align = c("l", "l", rep("c", 5)),
  caption = "Internal consistency of measured variables",
  escape = FALSE,
  col.names = c(
    "Items",
    "$n$",
    "$\\alpha$",
    "$2.5\\% CI$",
    "$97.5\\% CI$"
collapse_rows(columns = 1, valign = "middle") |>
kable_styling(latex_options = "HOLD_position") |>
footnote(
  general = "95\\\% confidence intervals were calculated with 1,000 bootstrap samples.
         Standardized Cronbach's alpha ($\\\alpha$) coefficients were computed.
        MGH-SFQ is reported by gender, because one item was answered only by men.",
  threeparttable = TRUE,
  footnote_as_chunk = TRUE,
  escape = FALSE
```

Table S3. Internal consistency of measured variables

Variable	Gender	Items	n	α	2.5%CI	97.5%CI
21071 0710	Men	5	139	0.82	0.72	0.89
MGH-SFQ	Women	4	181	0.86	0.82	0.90
MGSS sexual satisfaction (General)		5	188	0.92	0.89	0.94
MGSS sexual satisfaction (Partner)		5	187	0.91	0.85	0.94
Dyadic sexual desire (Partner)		5	309	0.90	0.87	0.92
Solitary sexual desire		4	314	0.91	0.89	0.93
Dyadic sexual desire (Attractive person)		4	320	0.89	0.87	0.91

Note: 95% confidence intervals were calculated with 1,000 bootstrap samples. Standardized Cronbach's alpha (α) coefficients were computed. MGH-SFQ is reported by gender, because one item was answered only by men.

2.4 Controlling for Relationship Duration and MGSS Sexual Satisfaction (Partner) in Sexual Desire Dimensions

To ensure that the three sexual desire dimensions were not influenced by Relationship Duration or MGSS sexual satisfaction (Partner), we applied a three-step adjustment process:

1. Estimating the effects:

- We performed separate linear regressions where each sexual desire dimension was predicted by Relationship Duration and MGSS sexual satisfaction (Partner).
- This allowed us to quantify how much these external factors influence each dimension.

2. Evaluating statistical significance:

- We conducted **Type III ANOVA** to determine which predictors had a significant effect on each sexual desire dimension.
- Only MGSS sexual satisfaction (Partner) significantly predicted Dyadic Sexual Desire (Partner).

3. Removing the effects:

- We adjusted only Dyadic Sexual Desire (Partner) by extracting the residuals from the regression model.
- These residuals represent the variation independent of MGSS sexual satisfaction (Partner) and were then standardized for comparability.

Additionally, MGSS sexual satisfaction (Partner) was mean-centered before analysis.

Step 1: Estimating the Effects of Relationship Duration & Partner Satisfaction

```
dat ctl <- dat |>
 group_by(Participant) |>
 slice_head() |>
 filter(Relationship == "Stable") |>
 ungroup()
ctl_SSD <- lm(
  `Solitary sexual desire` ~
    `Relationship duration` + `MGSS sexual satisfaction (Partner)`,
 data = dat_ctl
ctl PD <- lm(
  Dyadic sexual desire (Partner) ~~
    Relationship duration` + `MGSS sexual satisfaction (Partner)`,
 data = dat ctl
ctl APD <- lm(
  Dyadic sexual desire (Attractive person) ~
    `Relationship duration` + `MGSS sexual satisfaction (Partner)`,
  data = dat_ctl
```

Step 2: Displaying ANOVA Results for Each Model

The table below presents Type III ANOVA results for each model. Significant effects indicate that Relationship Duration or Partner Satisfaction meaningfully predict the corresponding sexual desire dimension.

```
# Combine ANOVA results for all models
anova_results <- bind_cols(
   bind_cols(
   anova_summary(Anova(ctl_SSD, type = 3)),</pre>
```

```
epsilon_squared(ctl_SSD)
   unite(col = "df", DFn:DFd, sep = ", "),
 bind cols(
   anova_summary(Anova(ctl_PD, type = 3)),
   epsilon_squared(ctl_PD)
   unite(col = "df", DFn:DFd, sep = ", "),
 bind_cols(
   anova_summary(Anova(ctl_APD, type = 3)),
   epsilon_squared(ctl_APD)
   unite(col = "df", DFn:DFd, sep = ", ")
 select(-starts_with(c("p<.05", "ges...", "Parameter...", "CI"))) |> # Remove Sum of Squares columns
 mutate(across(starts_with("p..."), pval.lev)) |> # Format p-values
 rename(Effect = Effect...1) |>
 select(-starts with("Effect...")) |>
 mutate_at("Effect", str_replace_all, "`", "")
anova_results |>
 kable(
   booktabs = TRUE,
   align = c("1", rep("c", 9)), # Align columns (left for first, center for the rest)
   digits = 3,
   caption = "Effects of relationship duration and MGSS sexual satisfaction (Partner) in
   col.names = c("Effect", rep(c("$df$", "$F$", "$p$", "$\\epsilon^2 p$"), times = 3)),
   escape = FALSE
 kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
 add_header_above(c(
   " " = 1,
   "Dyadic sexual desire\n(Partner)" = 4,
   "Dyadic sexual desire\n(Attractive person)" = 4
 footnote(
   general = "As effect size, we report partial epsilon squared
                     ($\\\epsilon^2_p$), which provides a less biases
                     estimate than $\\\eta^2$ (see
                     \\\cite{albersWhenPowerAnalyses2018}).
   threeparttable = TRUE,
   footnote_as_chunk = TRUE,
   escape = FALSE
```

Table S4. Effects of relationship duration and MGSS sexual satisfaction (Partner) in sexual desire dimensions

	Solita	ary sexu	al desi	re	Dyadic sexual desire (Partner)				Dyadic sexual desire (Attractive person)			
Effect	df	F	p	ϵ_p^2	\overline{df}	F	p	ϵ_p^2	df	F	p	ϵ_p^2
Relationship duration	3, 165	0.482	0.70	0	3, 165	2.081	0.1	0.041	3, 165	0.095	0.96	0
MGSS sexual satisfaction (Partner)	1, 165	0.029	0.86	0	1, 165	8.875	0.003	0.045	1, 165	0.884	0.35	0

Note: As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

Step 3: Controlling Scores Based on ANOVA Results

From the ANOVA results, only the effect of MGSS sexual satisfaction (Partner) on Dyadic sexual desire (Partner) was significant. Thus, only Dyadic Sexual Desire (Partner) scores were adjusted, while the other dimensions remained unchanged.

```
dat tl PD fin <- dat ctl |>
  select(
   Participant, 'Dyadic sexual desire (Partner)',
    MGSS sexual satisfaction (Partner)
  drop_na()
ctl_PD_fin <- lm(`Dyadic sexual desire (Partner)` ~ `MGSS sexual satisfaction (Partner)`,
  data = dat_tl_PD_fin
# Adjust the Dyadic Sexual Desire (Partner) scores by replacing them with their residuals
dat_ctl <- dat_tl_PD_fin |>
 mutate(
    Dyadic sexual desire (Partner) =
     mean(`Dyadic sexual desire (Partner)`) + resid(ctl_PD_fin)
  )
 mutate(`Dyadic sexual desire (Partner)` = as.numeric(`Dyadic sexual desire (Partner)`)) |>
 rows_update(dat_ctl |> select(-`MGSS sexual satisfaction (Partner)`),
    by = "Participant", unmatched = "ignore"
```

3 Hypothesis tests

3.1 Hypothesis 1: All dimensions of trait sexual desire (TSD) will be higher in men than in women, and the differences will be stronger or weaker according to relationship status

We tested whether relationship type and gender interact as predictors of sexual desire (H1a: Solitary TSD; H1b: Dyadic TSD toward an attractive person; H1c: Dyadic TSD toward a partner). To examine this hypothesis, we modeled the effects of relationship type and gender on each of the three TSD scores.

However, models using the original TSD scores did not meet the assumption of normally distributed residuals. To address this, we applied an ordered normalization transformation to each TSD variable. We then fitted and

compared models predicting both the original (as a proportion, to make scores comparable) and transformed (normalized) TSD dimensions. In all three cases, models using the normalized variables provided a better fit, so all inferences are based on these models.

3.1.1 Data

A data frame was created with one row per participant, where sexual desire variables were normalized as proportions. An ordered quantile normalization transformation (Peterson & Cavanaugh, 2020) was then applied using the orderNorm function from the bestNormalize package (Peterson, 2021), and the transformed values were added as new variables.

```
dat_m1 <- dat |>
 group_by(Participant) |>
 ungroup() |>
      `Solitary sexual desire` / 31,
    "Dyadic sexual desire: Attractive person (proportion)" =
      Dyadic sexual desire (Attractive person) / 32,
    "Dyadic sexual desire: Partner (proportion)" =
      Dyadic sexual desire (Partner) / 38
trs_SSD <- orderNorm(dat_m1$`Solitary sexual desire (proportion)`)</pre>
trs_DSDat <- orderNorm(dat_m1$`Dyadic sexual desire: Attractive person (proportion)`)
trs_DSDpt <- orderNorm(dat_m1$`Dyadic sexual desire: Partner (proportion)`)
dat m1 <- dat m1 |>
 mutate(
    "Solitary sexual desire (normalized)" =
      predict(trs_SSD), # Transformed solitary sexual desire
      predict(trs DSDat), # Transformed dyadic sexual desire (attractive person)
    "Dyadic sexual desire: Partner (normalized)" =
      predict(trs_DSDpt)
```

3.1.2 Hypothesis 1a: Solitary TSD

3.1.2.1 Model the effects of relationship type and gender on Solitary TSD We fitted models with both the original (proportion; m1a_prop) and transformed (normalized; m1a_norm) TSD scores, and performed posterior predictive checks (PPCs). As shown elsewhere (e.g., Gabry et al., 2019), if simulated data from one model are more similar to the observed outcome, that model is likely to be preferred.

```
m1a_prop <- lm(`Solitary sexual desire (proportion)` ~ Gender * Relationship,
    data = dat_m1
)

m1a_norm <- lm(`Solitary sexual desire (normalized)` ~ Gender * Relationship,
    data = dat_m1</pre>
```

3.1.2.1.1 Figure S3: Posterior predictive checks (PPCs) for Hypothesis 1a. PPCs were performed using the check_model function from the performance package (Lüdecke et al., 2021), and reported in Fig. S3. Simulated data from the normalized Solitary TSD model (Fig. S3b) are more similar to the observed outcome, so this model is preferred.

```
ppc_m1a <- ggarrange(</pre>
  plot(
    check_model(m1a_prop,
      panel = FALSE,
      check = "pp_check"
    ) $PP_CHECK,
    colors = c("red", "grey30")
    labs(title = NULL, subtitle = NULL) +
    theme_tq() +
    facet_wrap(~1, labeller = as_labeller(c(
      "1" = "Original (proportion) Solitary TSD"
    ))),
  plot(
    check model (m1a norm,
      panel = FALSE,
      check = "pp_check"
    ) $PP_CHECK,
    colors = c("red", "grey30")
    labs(title = NULL, subtitle = NULL) +
    theme_tq() +
    facet_wrap(~1, labeller = as_labeller(c(
    ))),
  labels = "auto",
  common.legend = TRUE,
  legend = "bottom"
ppc_m1a
```


Figure S3. Posterior predictive check. (a) Original (proportion) Solitary TSD; (b) Transformed (normalized) Solitary TSD. In both panels, red lines represent the observed data, and thin black lines represent 50 iterations of simulated data from each model.

3.1.2.2 Table S5. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

Table S5. Effects of relationship type and gender on solitary sexual desire

Effect	df	F	p	ϵ_p^2
Gender	1, 319	22.42	< 0.0001	0.06
Relationship	1,319	14.07	< 0.001	0.03
Gender \times Relationship	1, 319	4.23	0.04	0.01

Note:

Sexual desire was transformed using an ordered quantile normalization (Peterson and Cavanaugh, 2020). Results are type III ANOVA. $R^2 = 0.103$, $R^2_{adjusted} = 0.095$. Gender = participants gender (women, men); Relationship = relationship type (stable, single). As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

- **3.1.2.3** *Post-hoc* comparisons Because the main effects of gender, relationship type, and their interaction are significant, we explored these effects using estimated marginal means.
- **3.1.2.3.1** Table S6. Estimated marginal means and contrasts between participants' gender. Table of estimated marginal means and contrasts between genders. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1a1 <- emmeans(m1a_norm, ~Gender)</pre>
emms.m1a1.tab <- tibble(data.frame(emms.m1a1))</pre>
t.m1a1 <- contr.stars(emms.m1a1) |>
 mutate(p.value = pval.lev(p.value))
merge(emms.m1a1.tab, t.m1a1, by = 0, all = TRUE) |>
  select(-c(1, 15)) |>
 unite(Contrast, group1, group2, sep = " - ") |>
 mutate_at("Contrast", str_replace_all, "NA - NA", " ") |>
 kable(
    digits = 2,
    booktabs = TRUE,
    align = c("l", rep("c", 5), "l", rep("c", 5)),
    linesep = "",
    caption = "Estimated marginal means and contrasts between participants' gender",
    col.names = c(
      "Gender",
      "EMM",
      "$SE$",
      "$df$",
      "$97.5\\% CI$",
      "Contrast",
      "Difference",
      "$SE$",
```

```
"$df$",
    "$p$"
),
    escape = FALSE
) |>
add_header_above(c(" " = 6, "Contrasts" = 6)) |>
kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
footnote(
    general = "Significant effects are in bold.",
    threeparttable = TRUE,
    footnote_as_chunk = TRUE,
    escape = FALSE
)
```

Table S6. Estimated marginal means and contrasts between participants' gender

						Contrasts									
Gender	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p				
Women Men	-0.17 0.29	0.07 0.08		-0.30 0.13	-0.03 0.44	Women - Men	-0.46	0.1	319	-4.36	< 0.0001				

Note: Significant effects are in bold.

3.1.2.3.2 Table S7. Estimated marginal means and contrasts between relationship status. Table of estimated marginal means and contrasts between relationship status. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1a2 <- emmeans(m1a_norm, ~Relationship)</pre>
emms.m1a2.tab <- tibble(data.frame(emms.m1a2))</pre>
t.m1a2 <- contr.stars(emms.m1a2) |>
 mutate(p.value = pval.lev(p.value))
merge(emms.m1a2.tab, t.m1a2, by = 0, all = TRUE) |>
  select(-c(1, 15)) |>
 unite(Contrast, group1, group2, sep = " - ") |>
 mutate_at("Contrast", str_replace_all, "NA - NA", " ") |>
 kable(
    digits = 2,
    booktabs = TRUE,
    align = c("l", rep("c", 5), "l", rep("c", 5)),
    linesep = "",
    caption = "Estimated marginal means and contrasts between relationship status",
    col.names = c(
      "Relationship type",
      "$SE$",
      "$df$",
      "$97.5\\% CI$",
      "$SE$",
      "$df$",
```

```
"$t$",
    "$p$"
),
    escape = FALSE
) |>
add_header_above(c(" " = 6, "Contrasts" = 6)) |>
kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
footnote(
    general = "Significant effects are in bold.",
    threeparttable = TRUE,
    footnote_as_chunk = TRUE,
    escape = FALSE
)
```

Table S7. Estimated marginal means and contrasts between relationship status

						Contrasts								
Relationship type	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p			
Stable Single	-0.09 0.21	0.07 0.08	319 319	-0.23 0.06	0.05 0.36	Stable - Single	-0.3	0.1	319	-2.89	0.0041			

Note: Significant effects are in bold.

3.1.2.3.3 Table S8. Estimated marginal means and contrasts between gender by relationship status. Table of estimated marginal means and contrasts between gender by relationship status. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1a3 <- emmeans(m1a norm, ~ Gender | Relationship)
emms.m1a3.tab <- tibble(data.frame(emms.m1a3))</pre>
t.m1a3 <- contr.stars(emms.m1a3) |>
  mutate(p.value = pval.lev(p.value))
t.m1a3.f <- t.m1a3 |>
  insertRows(2, new = NA) |>
  insertRows(4, new = NA)
merge(emms.m1a3.tab, t.m1a3.f, by = 0, all = TRUE) |>
  select(-c(1, 3, 11, 17)) |>
  drop_na(Gender) |>
  unite(Contrast, group1, group2, sep = " - ") |>
  mutate_at("Contrast", str_replace_all, "NA - NA", "") |>
  kable(
    digits = 2,
   booktabs = TRUE,
    align = c("1", "1", rep("c", 5), "1", rep("c", 5)),
    linesep = "",
    caption = "Estimated marginal means and contrasts between gender by
                    relationship status",
    col.names = c(
      "EMM",
      "$2.5\\% CI$",
```

```
"$97.5\\% CI$",
    "Difference",
    "$SE$",
    "$df$",
    "$q$"
  escape = FALSE
pack_rows(
  group_label = "Relationship status: Stable",
  start_row = 1,
 end_row = 2,
 bold = FALSE,
  background = "lightgray"
pack_rows(
  group_label = "Relationship status: Single",
  start_row = 3,
 end_row = 4,
 bold = FALSE,
 background = "lightgray"
add_header_above(c(" " = 6, "Contrasts" = 6)) |>
kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
footnote(
  general = "Significant effects are in bold.",
  threeparttable = TRUE,
  footnote_as_chunk = TRUE,
  escape = FALSE
```

Table S8. Estimated marginal means and contrasts between gender by relationship status

						Contrasts						
Gender	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p	
Relationshi	p status:	Stable	е									
Women	-0.43	0.09	319	-0.61	-0.25	Women - Men	-0.67	0.14	319	-4.74	< 0.0001	
Men	0.24	0.11	319	0.03	0.46							
Relationshi	p status:	Single	9									
Women	0.09	0.10	319	-0.11	0.30	Women - Men	-0.24	0.15	319	-1.57	0.12	
Men	0.33	0.11	319	0.11	0.55							

3.1.2.4 Figure S4. Effects of gender and relationship type on solitary sexual desire This figure summarizes the results of hypothesis 1a.

```
# Gender main effect
h1a1 <- ggplot(dat_m1, aes(
    x = Gender, y = `Solitary sexual desire (normalized)`,
    color = Gender
)) +
    scale_color_manual(values = color.Gender) +
    scale_fill_manual(values = color.Gender) +</pre>
```

```
geom_linerange(
   data = emms.m1a1.tab |>
      rename("Solitary sexual desire (normalized)" = emmean),
   mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom_point(
   data = emms.m1a1.tab |>
      rename("Solitary sexual desire (normalized)" = emmean),
    position = position_dodge(0.1),
  stat_pvalue_manual(t.m1a1,
   label = "p.signif",
   y.position = 0.55,
   tip.length = 0
  guides(color = "none") +
  theme_tq()
h1a2 <- ggplot(dat_m1, aes(</pre>
  x = Relationship, y = `Solitary sexual desire (normalized)`,
  color = Relationship
  scale_color_manual(values = color.Relationship) +
  scale_fill_manual(values = color.Relationship) +
  geom_linerange(
   data = emms.m1a2.tab |>
      rename("Solitary sexual desire (normalized)" = emmean),
   mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom_point(
   data = emms.m1a2.tab |>
      rename("Solitary sexual desire (normalized)" = emmean),
   position = position_dodge(0.1),
   size = 3
  stat_pvalue_manual(t.m1a2,
   label = "p.signif",
   y.position = 0.45,
   tip.length = 0
  guides(color = "none") +
  theme_tq()
h1a3 <- ggplot(dat_m1, aes(</pre>
  x = Gender, y = `Solitary sexual desire (normalized)`,
  color = Gender
  scale_color_manual(values = color.Gender) +
  scale_fill_manual(values = color.Gender) +
  facet_wrap(~Relationship) +
  geom_linerange(
    data = emms.m1a3.tab |>
      rename("Solitary sexual desire (normalized)" = emmean),
```

```
mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom_point(
    data = emms.m1a3.tab |>
      rename("Solitary sexual desire (normalized)" = emmean),
    position = position_dodge(0.1),
    size = 3
  stat_pvalue_manual(t.m1a3,
    label = "p.signif",
    y.position = 0.7,
    tip.length = 0
  guides(color = "none") +
  theme_tq()
pla <- ggarrange(hla1, hla2, hla3,
  ncol = 3,
  labels = "auto",
  widths = c(1, 1, 1.5)
p1a
```


Figure S4. Effects of gender and relationship type on solitary sexual desire. Solitary sexual desire was transformed using ordered quantile normalization (Peterson & Cavanaugh, 2020). (a) Simple comparison between sexual desire by gender (for detailed results, see Table S6); (b) Simple comparison between relationship status levels (for detailed results, see Table S7); (c) Interaction between relationship type and relationship status (see Table S5; for detailed results, see Table S8). Dots and bars represent estimated marginal means and 95% CI. In all cases, significant effects are represented with lines and stars: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

3.1.3 Hypothesis 1b: Dyadic TSD (Attractive person)

3.1.3.1 Model the effects of relationship type and gender on Dyadic TSD: Attractive person We fitted models with both the original (proportion; m1b_prop) and transformed (normalized; m1b_norm) TSD scores, and performed posterior predictive checks (PPCs). As shown elsewhere (e.g., Gabry et al., 2019), if simulated data from one model are more similar to the observed outcome, that model is likely to be preferred.

```
options(contrasts = c("contr.sum", "contr.poly"))
m1b_prop <- lm(`Dyadic sexual desire: Attractive person (proportion)` ~ Gender * Relationship,
   data = dat_m1
)</pre>
```

```
m1b_norm <- lm(`Dyadic sexual desire: Attractive person (normalized)` ~ Gender * Relationship,
  data = dat_m1
)</pre>
```

3.1.3.1.1 Figure S5: Posterior predictive checks (PPCs) for Hypothesis 1b. PPCs were performed using the check_model function from the performance package (Lüdecke et al., 2021), and reported in Fig. S5. Simulated data from the normalized Solitary TSD model (Fig. S5b) are more similar to the observed outcome, so this model is preferred.

```
ppc_m1b <- ggarrange(</pre>
 plot(
    check_model(m1b_prop,
     panel = FALSE,
     check = "pp_check"
    ) $PP CHECK,
    colors = c("red", "grey30")
   labs(title = NULL, subtitle = NULL) +
    theme_tq() +
    facet_wrap(~1, labeller = as_labeller(c(
      "1" = "Original (proportion) Dyadic TSD: Attractive person"
    ))),
 plot(
    check_model(m1b_norm,
      panel = FALSE,
      check = "pp_check"
    ) $PP_CHECK,
    colors = c("red", "grey30")
    labs(title = NULL, subtitle = NULL) +
    theme_tq() +
    facet_wrap(~1, labeller = as_labeller(c(
      "1" = "Transformed (normalized) Dyadic TSD: Attractive person"
    ))),
 labels = "auto",
  common.legend = TRUE,
  legend = "bottom"
ppc_m1b
```


Figure S5. Posterior predictive check. (a) Original (proportion) Solitary TSD; (b) Transformed (normalized) Solitary TSD. In both panels, red lines represent the observed data, and thin black lines represent 50 iterations of simulated data from each model.

3.1.3.2 Table S9. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

Table S9. Effects of relationship type and gender on Dyadic sexual desire: Attractive person

Effect	df	F	p	ϵ_p^2
Gender	1, 319	29.85	< 0.0001	0.09
Relationship	1,319	8.20	0.004	0.03
$Gender \times Relationship$	1,319	1.73	0.19	0.00

Note:

Sexual desire was transformed using an ordered quantile normalization (Peterson and Cavanaugh, 2020). Results are type III ANOVA. $R^2 = 0.122$, $R^2_{adjusted} = 0.114$. Gender = participants gender (women, men); Relationship = relationship type (stable, single). As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

3.1.3.3 *Post-hoc* comparisons Because the main effects of gender and relationship type, but not their interaction, are significant, we explored these effects using estimated marginal means.

3.1.3.3.1 Table S10. Estimated marginal means and contrasts between participants' gender. Table of estimated marginal means and contrasts between genders. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1b1 <- emmeans(m1b_norm, ~Gender)

emms.m1b1.tab <- tibble(data.frame(emms.m1b1))

t.m1b1 <- contr.stars(emms.m1b1) |>
  mutate(p.value = pval.lev(p.value))

merge(emms.m1b1.tab, t.m1b1, by = 0, all = TRUE) |>
```

```
select(-c(1, 15)) |>
unite(Contrast, group1, group2, sep = " - ") |>
mutate_at("Contrast", str_replace_all, "NA - NA", " ") |>
kable(
  digits = 2,
  booktabs = TRUE,
  align = c("l", rep("c", 5), "l", rep("c", 5)),
  caption = "Estimated marginal means and contrasts between participants' gender",
  col.names = c(
    "$SE$",
    "$df$",
    "$2.5\\% CI$",
    "Contrast",
    "Difference",
    "$SE$",
    "$df$",
    "$t$",
    "$p$"
  escape = FALSE
add_header_above(c(" " = 6, "Contrasts" = 6)) |>
kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
footnote(
  general = "Significant effects are in bold.",
  threeparttable = TRUE,
  footnote_as_chunk = TRUE,
  escape = FALSE
```

Table S10. Estimated marginal means and contrasts between participants' gender

						Contrasts							
Gender	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p		
Women Men	-0.22 0.35	0.07 0.08	0-0	-0.36 0.19	-0.09 0.50	Women - Men	-0.57	0.1	319	-5.46	< 0.0001		

3.1.3.3.2 Table S11. Estimated marginal means and contrasts between relationship status. Table of estimated marginal means and contrasts between relationship status. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1b2 <- emmeans(m1b_norm, ~Relationship)

emms.m1b2.tab <- tibble(data.frame(emms.m1b2))

t.m1b2 <- contr.stars(emms.m1b2) |>
    mutate(p.value = pval.lev(p.value))

merge(emms.m1b2.tab, t.m1b2, by = 0, all = TRUE) |>
    select(-c(1, 15)) |>
```

```
unite(Contrast, group1, group2, sep = " - ") |>
mutate_at("Contrast", str_replace_all, "NA - NA", " ") |>
kable(
  digits = 2,
  booktabs = TRUE,
  align = c("l", rep("c", 5), "l", rep("c", 5)),
  linesep = "",
  caption = "Estimated marginal means and contrasts between relationship status",
  col.names = c(
    "Relationship type",
    "EMM",
    "$SE$",
    "$97.5\\% CI$",
    "Difference",
    "$df$",
    "$t$",
    "$p$"
  escape = FALSE
add_header_above(c(" " = 6, "Contrasts" = 6)) |>
kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
footnote(
  general = "Significant effects are in bold.",
  threeparttable = TRUE,
  footnote_as_chunk = TRUE,
  escape = FALSE
```

Table S11. Estimated marginal means and contrasts between relationship status

						Contrasts					
Relationship type	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p
Stable	-0.09	0.07	319	-0.22	0.05	Stable - Single	-0.3	0.1	319	-2.86	0.0045
Single	0.21	0.08	319	0.06	0.36						

3.1.3.3.3 Table S12. Estimated marginal means and contrasts between gender by relationship status. Table of estimated marginal means and contrasts between gender by relationship status. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1b3 <- emmeans(m1b_norm, ~ Gender | Relationship)

emms.m1b3.tab <- tibble(data.frame(emms.m1b3))

t.m1b3 <- contr.stars(emms.m1b3) |>
    mutate(p.value = pval.lev(p.value))

t.m1b3.f <- t.m1b3 |>
    insertRows(2, new = NA) |>
    insertRows(4, new = NA)
```

```
merge(emms.m1b3.tab, t.m1b3.f, by = 0, all = TRUE) |>
  select(-c(1, 3, 11, 17)) |>
  drop_na(Gender) |>
  unite(Contrast, group1, group2, sep = " - ") |>
  mutate_at("Contrast", str_replace_all, "NA - NA", "") |>
  kable(
   digits = 2,
   booktabs = TRUE,
    align = c("l", "l", rep("c", 5), "l", rep("c", 5)),
   linesep = "",
    caption = "Estimated marginal means and contrasts between gender by
    col.names = c(
      "$SE$",
      "$df$",
      "$97.5\\% CI$",
      "Contrast",
      "$SE$",
      "$df$",
      "$t$",
     "$p$"
    escape = FALSE
  pack_rows(
    group_label = "Relationship status: Stable",
   start_row = 1,
   end_row = 2,
   bold = FALSE,
   background = "lightgray"
  pack_rows(
    group_label = "Relationship status: Single",
   start_row = 3,
   end_row = 4,
   bold = FALSE,
   background = "lightgray"
  add_header_above(c(" " = 6, "Contrasts" = 6)) |>
  kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
  footnote(
    general = "Significant effects are in bold.",
   threeparttable = TRUE,
    footnote_as_chunk = TRUE,
    escape = FALSE
```

Table S12. Estimated marginal means and contrasts between gender by relationship status

						Contrasts						
Gender	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p	
Relationshi	p status:	Stable	е									
Women	-0.44	0.09	319	-0.62	-0.26	Women - Men	-0.71	0.14	319	-5.00	< 0.0001	
Men	0.27	0.11	319	0.05	0.48							
Relationshi	p status:	Single	е									
Women	0.00	0.10	319	-0.21	0.20	Women - Men	-0.43	0.15	319	-2.82	0.0051	
Men	0.43	0.11	319	0.21	0.65							

3.1.3.4 Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person This figure summarizes the results of hypothesis 1b.

```
# Gender main effect
h1b1 <- ggplot(dat_m1, aes(
  x = Gender, y = `Dyadic sexual desire: Attractive person (normalized)`,
  color = Gender
  scale_color_manual(values = color.Gender) +
  scale_fill_manual(values = color.Gender) +
  geom_linerange(
   data = emms.m1b1.tab |>
      rename("Dyadic sexual desire: Attractive person (normalized)" = emmean),
   mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom_point(
   data = emms.m1b1.tab |>
      rename("Dyadic sexual desire: Attractive person (normalized)" = emmean),
   position = position_dodge(0.1),
   size = 3
  stat pvalue manual(t.m1b1,
   label = "p.signif",
   y.position = 0.6,
    tip.length = 0
  guides(color = "none") +
  theme_tq()
h1b2 <- ggplot(dat_m1, aes(
  x = Relationship, y = `Dyadic sexual desire: Attractive person (normalized)`,
  color = Relationship
  scale_color_manual(values = color.Relationship) +
  scale_fill_manual(values = color.Relationship) +
  geom_linerange(
   data = emms.m1b2.tab |>
      rename("Dyadic sexual desire: Attractive person (normalized)" = emmean),
   mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom_point(
    data = emms.m1b2.tab |>
      rename("Dyadic sexual desire: Attractive person (normalized)" = emmean),
```

```
position = position_dodge(0.1),
   size = 3
  stat_pvalue_manual(t.m1b2,
   label = "p.signif",
   y.position = 0.45,
   tip.length = 0
  guides(color = "none") +
  theme_tq()
h1b3 <- ggplot(dat_m1, aes(
 x = Gender, y = `Dyadic sexual desire: Attractive person (normalized)`,
  color = Gender
  scale_color_manual(values = color.Gender) +
  scale_fill_manual(values = color.Gender) +
  facet_wrap(~Relationship) +
  geom_linerange(
   data = emms.m1b3.tab |>
      rename("Dyadic sexual desire: Attractive person (normalized)" = emmean),
   mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom_point(
   data = emms.m1b3.tab |>
      rename("Dyadic sexual desire: Attractive person (normalized)" = emmean),
   position = position_dodge(0.1),
  stat_pvalue_manual(t.m1b3,
   label = "p.signif",
   y.position = c(0.6, 0.7),
   tip.length = 0
  guides(color = "none") +
  theme_tq()
p1b <- ggarrange(h1b1, h1b2, h1b3,</pre>
  ncol = 3,
  labels = "auto",
  widths = c(1, 1, 1.5)
p1b
```


Figure S6. Effects of gender and relationship type on Dyadic sexual desire: Attractive person. Dyadic sexual desire: Attractive person was transformed using ordered quantile normalization (Peterson & Cavanaugh, 2020). (a) Simple comparison between sexual desire by gender (for detailed results, see Table S10); (b) Simple comparison between relationship status levels (for detailed results, see Table S11); (c) Interaction between relationship type and relationship status (see Table S9; for detailed results, see Table S12). Dots and bars represent estimated marginal means and 95% CI. In all cases, significant effects are represented with lines and stars: *p < 0.05, **p < 0.01, ***p < 0.001.

3.1.4 Hypothesis 1c: Dyadic TSD (Partner)

3.1.4.1 Model the effects of relationship type and gender on Dyadic TSD: Partner We fitted models with both the original (proportion; m1c_prop) and transformed (normalized; m1c_norm) TSD scores, and performed posterior predictive checks (PPCs). As shown elsewhere (e.g., Gabry et al., 2019), if simulated data from one model are more similar to the observed outcome, that model is likely to be preferred.

```
options(contrasts = c("contr.sum", "contr.poly"))
m1c_prop <- lm(`Dyadic sexual desire: Partner (proportion)` ~ Gender * Relationship,
    data = dat_m1
)
m1c_norm <- lm(`Dyadic sexual desire: Partner (normalized)` ~ Gender * Relationship,
    data = dat_m1
)</pre>
```

3.1.4.1.1 Figure S7: Posterior predictive checks (PPCs) for Hypothesis 1c. PPCs were performed using the check_model function from the performance package (Lüdecke et al., 2021), and reported in Fig. S7. Simulated data from the normalized Solitary TSD model (Fig. S7b) are more similar to the observed outcome, so this model is preferred.

```
ppc_m1c <- ggarrange(
    plot(
        check_model(m1c_prop,
            panel = FALSE,
            check = "pp_check"
    )$PP_CHECK,
    colors = c("red", "grey30")
) +
    labs(title = NULL, subtitle = NULL) +
    theme_tq() +
    facet_wrap(~1, labeller = as_labeller(c(
        "1" = "Original (proportion) Dyadic TSD: Partner"
    ))),
    plot(</pre>
```


Figure S7. Posterior predictive check. (a) Original (proportion) Solitary TSD; (b) Transformed (normalized) Solitary TSD. In both panels, red lines represent the observed data, and thin black lines represent 50 iterations of simulated data from each model.

3.1.4.2 Table S13. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

Table S13. Effects of relationship type and gender on Dyadic sexual desire: Partner

Effect	df	F	p	ϵ_p^2
Gender	1, 316	15.49	< 0.001	0.0365
Relationship	1, 316	31.60	< 0.0001	0.09
$\operatorname{Gender} \times \operatorname{Relationship}$	1, 316	0.00	0.98	< 0.0001

Note: Sexual desire was transformed using an ordered quantile normalization (Peterson and Cavanaugh, 2020). Results are type III ANOVA. $R^2=0.125,~R^2_{adjusted}=0.117$. Gender = participants gender (women, men); Relationship = relationship type (stable, single). As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

- **3.1.4.3** *Post-hoc* comparisons Because the main effects of gender and relationship type, but not their interaction, are significant, we explored these effects using estimated marginal means.
- **3.1.4.3.1** Table S14. Estimated marginal means and contrasts between participants' gender. Table of estimated marginal means and contrasts between genders. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1c1 <- emmeans(m1c_norm, ~Gender)</pre>
emms.m1c1.tab <- tibble(data.frame(emms.m1c1))</pre>
t.m1c1 <- contr.stars(emms.m1c1) |>
  mutate(p.value = pval.lev(p.value))
merge(emms.m1c1.tab, t.m1c1, by = 0, all = TRUE) |>
  select(-c(1, 15)) |>
  unite(Contrast, group1, group2, sep = " - ") |>
  mutate_at("Contrast", str_replace_all, "NA - NA", " ") |>
  kable(
    digits = 2,
    booktabs = TRUE,
    align = c("l", rep("c", 5), "l", rep("c", 5)),
    linesep = "",
    caption = "Estimated marginal means and contrasts between participants' gender",
    col.names = c(
      "EMM",
      "$SE$",
      "$df$",
      "$97.5\\% CI$",
      "Contrast",
      "$SE$",
      "$df$",
      "$p$"
    escape = FALSE
  add_header_above(c(" " = 6, "Contrasts" = 6)) |>
  kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
  footnote(
    general = "Significant effects are in bold.",
    threeparttable = TRUE,
    footnote_as_chunk = TRUE,
    escape = FALSE
```

Table S14. Estimated marginal means and contrasts between participants' gender

						Contrasts						
Gender	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p	
Women Men	-0.21 0.20	0.07 0.08		-0.35 0.05	-0.07 0.36	Women - Men	-0.42	0.11	316	-3.94	< 0.001	

3.1.4.3.2 Table S15. Estimated marginal means and contrasts between relationship status. Table of estimated marginal means and contrasts between relationship status. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1c2 <- emmeans(m1c_norm, ~Relationship)</pre>
emms.m1c2.tab <- tibble(data.frame(emms.m1c2))</pre>
t.m1c2 <- contr.stars(emms.m1c2) |>
  mutate(p.value = pval.lev(p.value))
merge(emms.m1c2.tab, t.m1c2, by = 0, all = TRUE) |>
  select(-c(1, 15)) |>
  unite(Contrast, group1, group2, sep = " - ") |>
  mutate_at("Contrast", str_replace_all, "NA - NA", " ") |>
  kable(
    digits = 2,
    booktabs = TRUE,
    align = c("l", rep("c", 5), "l", rep("c", 5)),
    caption = "Estimated marginal means and contrasts between relationship status",
    col.names = c(
      "Relationship type",
      "$SE$",
      "$df$",
      "$2.5\\% CI$",
      "Contrast",
      "Difference",
      "$SE$",
      "$df$",
      "$p$"
    escape = FALSE
  add_header_above(c(" " = 6, "Contrasts" = 6)) |>
  kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
  footnote(
    general = "Significant effects are in bold.",
    threeparttable = TRUE,
    footnote_as_chunk = TRUE,
    escape = FALSE
```

Table S15. Estimated marginal means and contrasts between relationship status

						Contrasts						
Relationship type	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p	
Stable	0.29	0.07	316	0.15	0.43	Stable - Single	0.6	0.11	316	5.62	< 0.0001	
Single	-0.30	0.08	316	-0.46	-0.15							

Note: Significant effects are in bold.

3.1.4.3.3 Table S16. Estimated marginal means and contrasts between gender by relationship status. Table of estimated marginal means and contrasts between gender by relationship status. All estimated

marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.m1c3 <- emmeans(m1c_norm, ~ Gender | Relationship)</pre>
emms.m1c3.tab <- tibble(data.frame(emms.m1c3))</pre>
t.m1c3 <- contr.stars(emms.m1c3) |>
  mutate(p.value = pval.lev(p.value))
t.m1c3.f <- t.m1c3 |>
  insertRows(2, new = NA) |>
  insertRows(4, new = NA)
merge(emms.m1c3.tab, t.m1c3.f, by = 0, all = TRUE) |>
  select(-c(1, 3, 11, 17)) |>
  drop_na(Gender) |>
  unite(Contrast, group1, group2, sep = " - ") |>
  mutate_at("Contrast", str_replace_all, "NA - NA", "") |>
  kable(
   digits = 2,
    booktabs = TRUE,
    align = c("1", "1", rep("c", 5), "1", rep("c", 5)),
   linesep = "",
    caption = "Estimated marginal means and contrasts between gender by
                    relationship status",
    col.names = c(
      "Gender",
      "$df$",
      "$2.5\\% CI$",
      "$97.5\\% CI$",
      "$SE$",
      "$df$",
      "$t$",
      "$p$"
    escape = FALSE
  pack_rows(
    group_label = "Relationship status: Stable",
   start_row = 1,
   end_row = 2,
   bold = FALSE,
    background = "lightgray"
  pack_rows(
    group_label = "Relationship status: Single",
    start_row = 3,
   end_row = 4,
   bold = FALSE,
    background = "lightgray"
  add_header_above(c(" " = 6, "Contrasts" = 6)) |>
```

```
kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
footnote(
  general = "Significant effects are in bold.",
  threeparttable = TRUE,
  footnote_as_chunk = TRUE,
  escape = FALSE
)
```

Table S16. Estimated marginal means and contrasts between gender by relationship status

							Con	trasts			
Gender	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	t	p
Relationshi	ip status:	: Stable	е								
Women	0.09	0.09	316	-0.09	0.27	Women - Men	-0.41	0.14	316	-2.90	0.004
Men	0.50	0.11	316	0.28	0.72						
Relationshi	ip status:	: Single)								
Women	-0.51	0.11	316	-0.72	-0.30	Women - Men	-0.42	0.16	316	-2.68	0.0077
Men	-0.09	0.11	316	-0.32	0.13						

3.1.4.4 Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner This figure summarizes the results of hypothesis 1c.

```
# Gender main effect
h1c1 <- ggplot(dat_m1, aes(</pre>
  x = Gender, y = `Dyadic sexual desire: Partner (normalized)`,
  color = Gender
  scale_color_manual(values = color.Gender) +
  scale_fill_manual(values = color.Gender) +
  geom_linerange(
   data = emms.m1c1.tab |>
      rename("Dyadic sexual desire: Partner (normalized)" = emmean),
   mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom_point(
   data = emms.m1c1.tab |>
      rename("Dyadic sexual desire: Partner (normalized)" = emmean),
   position = position_dodge(0.1),
   size = 3
  stat_pvalue_manual(t.m1c1,
   label = "p.signif",
   y.position = 0.4,
    tip.length = 0
  guides(color = "none") +
  theme_tq()
h1c2 <- ggplot(dat_m1, aes(</pre>
  x = Relationship, y = `Dyadic sexual desire: Partner (normalized)`,
  color = Relationship
  scale_color_manual(values = color.Relationship) +
```

```
scale_fill_manual(values = color.Relationship) +
  geom_linerange(
   data = emms.m1c2.tab |>
      rename("Dyadic sexual desire: Partner (normalized)" = emmean),
   mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom point(
   data = emms.m1c2.tab |>
      rename("Dyadic sexual desire: Partner (normalized)" = emmean),
   position = position_dodge(0.1),
  stat_pvalue_manual(t.m1c2,
   label = "p.signif",
   y.position = 0.5,
    tip.length = 0
  guides(color = "none") +
  theme_tq()
h1c3 <- ggplot(dat_m1, aes(</pre>
  x = Gender, y = `Dyadic sexual desire: Partner (normalized)`,
  color = Gender
  scale_color_manual(values = color.Gender) +
  scale_fill_manual(values = color.Gender) +
  facet_wrap(~Relationship) +
  geom_linerange(
   data = emms.m1c3.tab |>
      rename("Dyadic sexual desire: Partner (normalized)" = emmean),
    mapping = aes(ymin = lower.CL, ymax = upper.CL)
  geom_point(
   data = emms.m1c3.tab |>
      rename("Dyadic sexual desire: Partner (normalized)" = emmean),
   position = position_dodge(0.1),
   size = 3
  stat_pvalue_manual(t.m1c3,
   label = "p.signif",
    y.position = c(0.8, 0.2),
    tip.length = 0
  guides(color = "none") +
  theme_tq()
# Full figure for hypothesis 1 (a, b and c)
p1c <- ggarrange(h1c1, h1c2, h1c3,
  labels = "auto",
  widths = c(1, 1, 1.5)
p1c
```


Figure S8. Effects of gender and relationship type on Dyadic sexual desire: Partner. Dyadic sexual desire: Partner was transformed using ordered quantile normalization (Peterson & Cavanaugh, 2020). (a) Simple comparison between sexual desire by gender (for detailed results, see Table S14); (b) Simple comparison between relationship status levels (for detailed results, see Table S15); (c) Interaction between relationship type and relationship status (see Table S13; for detailed results, see Table S16). Dots and bars represent estimated marginal means and 95% CI. In all cases, significant effects are represented with lines and stars: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

3.2 Data filtering for hypotheses 2 and 3.

To avoid over-complicating the models, first we tested whether the effects of stimuli on sexual arousal were stronger depending on the content of the stimuli (erotic versus non-erotic). This was, in fact, the case.

3.2.1 Table S17. ANOVA-type table for the effects of stimuli content, gender and stimuli content on Subjective sexual arousal

We fitted a linear mixed model with Gender, Stimuli sex, Stimuli content, and their interactions, as fixed effects for Subjective sexual arousal and including, as random effects, random intercepts per stimulus, as well as random intercepts and slopes for the effect of stimuli content.

Table S17. Effects of relationship type and gender on Dyadic sexual desire: Partner

Effect	df	F	p	ϵ_p^2
Gender	1, 321	42.47	< 0.0001	0.11
'Stimuli sex'	1, 447	96.15	< 0.0001	0.18
'Stimuli content'	1, 363.12	86.50	< 0.0001	0.19
$Gender \times 'Stimuli sex'$	1, 321	471.68	< 0.0001	0.59
$Gender \times 'Stimuli content'$	1, 321	5.02	0.0257	0.01
'Stimuli sex' \times 'Stimuli content'	1, 286.22	21.51	< 0.0001	0.07
Gender \times 'Stimuli sex' \times 'Stimuli content'	1, 321	116.42	< 0.0001	0.26

Note: Results are type III ANOVA. $R_{conditional}^2 = 0.734$, $R_{marginal}^2 = 0.314$. As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

The effects of stimuli on sexual arousal were stronger for erotic compared to non-erotic stimuli; to illustrate this, we compared the (within-subject) difference in reported sexual arousal between stimuli sexes, for women and men. This difference was larger when viewing erotic than non-erotic stimuli in both women (erotic: 0.77, non-erotic: 0.57) but especially in men (erotic: 2.75, non-erotic: 1.60; see Table S18 and Fig. S9). Considering this, we tested all predictions of hypotheses 2 and 3 only on responses to erotic stimuli.

3.2.2 Table S18. Estimated marginal means and contrasts between subjective sexual arousal depending on stimuli sex, by stimuli content and participant gender.

Table of estimated marginal means and contrasts between between subjective sexual arousal depending on stimuli sex, by stimuli content and participant gender. All estimated marginal means and contrasts were calculated using the emmeans function from the emmeans package (Lenth, 2023).

```
emms.stim_cont <- emmeans(m_stim_cont, pairwise ~ `Stimuli sex` | `Stimuli content` + Gender,
  adjust = "bonferroni",
  lmer.df = "satterthwaite"
emms.stim_cont.tab <- tibble(data.frame(emms.stim_cont$emmeans)) |>
 rename(
    "Subjective sexual arousal" = emmean,
    "Stimuli content" = Stimuli.content,
    "Stimuli sex" = Stimuli.sex
t.stim_cont <- contr.stars(emms.stim_cont) |>
 mutate(p.value = pval.lev(p.value))
t.stim_cont.f <- t.stim_cont |>
  insertRows(2, new = NA) |>
  insertRows(4, new = NA) |>
  insertRows(6, new = NA) |>
  insertRows(8, new = NA)
merge(emms.stim_cont.tab, t.stim_cont.f, by = 0, all = TRUE) |>
  select(-c(1, 3, 4, 12, 13, 19)) |>
  drop_na("Stimuli sex") |>
 unite(Contrast, group1, group2, sep = " - ") |>
 mutate_at("Contrast", str_replace_all, "NA - NA", " ") |>
 mutate(across(c(df.x, df.y), as.character)) |>
 mutate(across(c(df.x, df.y), str_replace_all, "Inf", "$\\\infty$")) |>
  kable(
```

```
digits = 2,
  booktabs = TRUE,
  align = c("l", "l", rep("c", 5), "l", rep("c", 5)),
  linesep = "",
  caption = "Estimated marginal means for the three dimensions of sexual desire by
  col.names = c(
    "Stimuli sex",
    "$SE$",
    "$df$",
    "Contrast",
    "$df$",
    "$z$",
   "$q$"
  escape = FALSE
pack_rows(
  group_label = "Gender: Women - Stimuli content: Erotic",
 start_row = 1,
 end_row = 2,
 bold = FALSE,
 background = "lightgray"
pack_rows(
 group_label = "Gender: Women - Stimuli content: Non-erotic",
 start_row = 3,
 end_row = 4,
 bold = FALSE,
 background = "lightgray"
pack_rows(
 group_label = "Gender: Men - Stimuli content: Erotic",
 start_row = 5,
 end_row = 6,
 bold = FALSE,
 background = "lightgray"
pack_rows(
 group_label = "Gender: Men - Stimuli content: Non-erotic",
 start_row = 7,
 end_row = 8,
 bold = FALSE,
 background = "lightgray"
add_header_above(c(" " = 6, "Contrasts" = 6)) |>
kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
footnote(
  general = "EMM = estimated marginal mean.
         Degrees of freedom ($df$) are asymptotic.
```

```
threeparttable = TRUE,
  footnote_as_chunk = TRUE,
  escape = FALSE
)
```

Table S18. Estimated marginal means for the three dimensions of sexual desire by relationship status

							Cor	ntrasts			
Stimuli sex	EMM	SE	df	2.5%CI	97.5%CI	Contrast	Difference	SE	df	z	p
Gender: Wo	men - St	imuli c	onter	t: Erotic							
Female	1.46	0.10	∞	1.25	1.66	Female - Male	-0.77	0.11	∞	-6.80	< 0.0001
Male	2.23	0.08	∞	2.08	2.38						
Gender: Wo	men - St	imuli c	onter	nt: Non-ero	otic						
Female	1.12	0.09	∞	0.94	1.30	Female - Male	-0.57	0.11	∞	-5.27	< 0.0001
Male	1.69	0.07	∞	1.56	1.82						
Gender: Men	n - Stimı	ıli cont	ent:	Erotic							
Female	3.84	0.12	∞	3.61	4.07	Female - Male	2.75	0.13	∞	21.60	< 0.0001
Male	1.09	0.09	∞	0.92	1.26						
Gender: Men	n - Stimı	ıli cont	ent:	Non-erotic							
Female	2.65	0.10	∞	2.45	2.85	Female - Male	1.60	0.12	∞	13.44	< 0.0001
Male	1.05	0.07	∞	0.91	1.19						

Note: EMM = estimated marginal mean. Degrees of freedom (df) are asymptotic. Bonferroni adjustment was used.

3.2.3 Figure S9. Effects of stimuli content (erotic, non-erotic) on subjective sexual arousal

This figure summarizes the results of the model to determine whether the effects of stimuli on sexual arousal were stronger depending on the content of the stimuli (erotic versus non-erotic).

```
diff_data <- emms.stim_cont.tab |>
  select(`Stimuli sex`, Gender, `Stimuli content`, `Subjective sexual arousal`) |>
 pivot_wider(names_from = `Stimuli sex`, values_from = `Subjective sexual arousal`) |>
 mutate(
   ymin = Male, # Start of line at Male's mean arousal
   ymax = Female # End of line at Female's mean arousal
 mutate(
   x_{pos} = rep(c(
     as.numeric(as.factor(`Stimuli content`[1])) - 0.25,
     as.numeric(as.factor(`Stimuli content`[2])) + 0.25
ggplot(emms.stim_cont.tab, aes(
 x = `Stimuli sex`, y = `Subjective sexual arousal`,
  color = `Stimuli content`
  # Separate plots for each Gender
 facet_wrap(~Gender) +
 scale_color_manual(values = color.Content) +
  scale_fill_manual(values = color.Content) +
```

```
geom_linerange(
  data = emms.stim_cont.tab,
 mapping = aes(ymin = asymp.LCL, ymax = asymp.UCL),
 position = position_dodge(0.5)
geom point(
 data = emms.stim_cont.tab,
  position = position_dodge(0.5),
 size = 3
stat_pvalue_manual(t.stim_cont,
 label = "p.signif",
 y.position = c(2.7, 3, 4.2, 3), # Adjusted y positions for clarity
 tip.length = 0,
 color = "Stimuli content",
 position = position_dodge(0.5)
# Add vertical dotted lines WITHOUT arrows
geom_segment(
 data = diff_data,
 aes(
   x = x_{pos}, xend = x_{pos},
   y = ymin, yend = ymax,
   color = `Stimuli content`
 linewidth = 0.5,
 linetype = "dotted"
) + # Dotted lines
# Add SOLID arrows separately, with NO line
geom_segment(
 data = diff_data,
 aes(
   x = x_{pos}, xend = x_{pos},
   y = ymin, yend = ymax,
   color = `Stimuli content`
 ),
 linetype = "solid", # Make sure arrows are solid
 linewidth = 0, # Hide the line itself
 arrow = arrow(length = unit(0.3, "cm"), type = "closed", ends = "both")
geom_text(
 data = diff_data,
  aes(
   x = x_{pos} - 0.06, y = (ymin + ymax) / 2,
   label = abs(round(ymax - ymin, 2)),
   color = `Stimuli content`
 ),
 angle = 90, # Rotate text vertically
 hjust = 0.5, # Center horizontally
 vjust = 0.5, # Center vertically on the line
  size = 2.5
theme_tq()
```


Figure S9. Effects of stimuli content (erotic, non-erotic) on subjective sexual arousal for women's (left panel) and men's (right panel) scores of male and female stimuli (see Table S17; for detailed results, see Table S18). Dots and bars represent estimated marginal means and 95% CI. Vertical lines with arrow heads represent the (absolute) difference in reported subjective sexual arousal for male and female stimuli, by stimuli content and gender. In all cases, significant effects are represented with lines and stars: *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.

3.3 Hypothesis 2: The association between trait sexual desire (TSD) and subjective sexual arousal (SSA) will vary by TSD dimension, with these associations being gender-specific in men and gender-non-specific in women.

We tested whether the relationship between SSA and TSD varies across the three dimensions of TSD and whether these associations differ between men and women. Specifically, we examined:

- H2a: A significant association between solitary TSD and SSA toward erotic stimuli (section 3.3.3)
- H2b: A significant association between dyadic TSD toward an attractive person and SSA toward erotic stimuli
- H2c: No significant association between dyadic TSD toward a partner and SSA toward erotic stimuli.

To examine this hypothesis, we modeled the effects of each of the three TSD dimension scores, gender, stimulus sex, and their interactions, on SSA. We included random intercepts for each stimulus, as well as random intercepts and slopes between stimuli sex for each participant.

3.3.1 Modeling Approach

Since SSA is an ordinal variable with seven ordered levels, we fitted the models using three different approaches to ensure the robustness of our results:

- 1. Cumulative Link Mixed Model (CLMM), using the clmm function from the package ordinal (Christensen, 2023)
- 2. Generalized Mixed Model (GLMM) with a Poisson family, using the glmer function from the package lme4 (Bates et al., 2015)
- 3. Linear mixed model (LMM), using the lmer function from the package lmerTest (Kuznetsova et al., 2017)

The results across these models were largely consistent, indicating robustness in our findings. For clarity and interpretability, we primarily base our inferences on the LMM, as it provides the most straightforward interpretation and has a wider range of available functions in R for extracting model information.

3.3.2 Data

We created a new dataset by selecting only responses to erotic stimuli, renaming key variables to remove spaces for compatibility with certain functions, and converting relevant variables to factors. Specifically, the Gender and Stimuli sex variables are transformed into factors, and a factor version of Subjective sexual arousal is created for use in the CLMM model.

```
# Filter dataset to include only responses to erotic stimuli
dat_m2 <- dat |>
  filter(`Stimuli content` == "Erotic") |> # Select only erotic stimuli responses
# Rename variables to remove spaces (improves function compatibility)
rename(
  Subjective.sexual.arousal = `Subjective sexual arousal`,
  Solitary.sexual.desire = `Solitary sexual desire`,
  Attractive.person.DSD = `Dyadic sexual desire (Attractive person)`,
  Partner.DSD = `Dyadic sexual desire (Partner)`,
  Stimuli.sex = `Stimuli sex`,
  Stimuli.code = `Stimuli code`
) |>
  # Convert categorical variables to factors
mutate(
  Gender = as.factor(Gender),
  Stimuli.sex = as.factor(Stimuli.sex),
  # Create a factor version of SSA for use in the CLMM model
  Subjective.sexual.arousal.factor = as.factor(Subjective.sexual.arousal)
)
```

3.3.3 Hypothesis 2a: Solitary TSD

3.3.3.1 Model Robustness: Examining the Effects of Solitary TSD on SSA Across Gender and Stimuli Sex To assess the robustness of our findings, we fitted three different models examining how Solitary TSD predicts SSA, considering variations by gender and stimuli sex:

- 1. Cumulative Link Mixed Model (CLMM) m2a_clmm (for ordinal outcomes, using a probit link).
- 2. Generalized Linear Mixed Model (GLMM) with Poisson family m2a_poisson (treating SSA as a count variable).
- 3. Linear Mixed Model (LMM) m2a_lmer (treating SSA as a continuous variable).

```
Subjective.sexual.arousal ~ Solitary.sexual.desire * Gender * Stimuli.sex +
    (1 | Stimuli.code) + # Random intercept for Stimuli
    (1 + Stimuli.sex | Participant), # Random intercept & slope for Stimuli sex
    data = dat_m2,
    control = lmerControl(optimizer = "bobyqa") # Use 'bobyqa' optimizer for stability
)
```

3.3.3.1.1 Table S19. ANOVA-type table of fixed effects (main effects and interactions) across the three fitted models As shown in the table below, the pattern of significant effects remains consistent across all three models, except for the main effect of gender, which is not significant in the CLMM.

```
# Create ANOVA-style table summarizing model results
reduce(
 list(
    Anova(m2a_clmm, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect"),
   Anova(m2a_poisson, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect") |>
     select(Effect, Df, Chisq, `Pr(>Chisq)`) |>
     slice_tail(n = -1),
   # and formatting the df column
   anova(m2a_lmer, type = 3) |>
     as.data.frame() |>
     rownames_to_column("Effect") |>
     mutate(DenDF = round(DenDF, 2),
             `Pr(>F)` = pval.lev(`Pr(>F)`)) |>
     unite(col = "df", NumDF:DenDF, sep = ", ") |>
     select(Effect, df, `F value`, `Pr(>F)`)
  full_join,
  by = "Effect"
  # Improve readability of effect names
  mutate(Effect = str_replace_all(Effect, "\\.", " ")) |> # Replace dots with spaces
 mutate(Effect = str_replace_all(Effect, ":", " × ")) |> # Replace colons with ×
 kable(
    booktabs = TRUE,
   align = c("1", rep("c", 9)), # Align first column left, others center
   digits = 3,
   linesep = "",
    caption = "Comparison of fixed effects across the three models for Hypothesis 2a:
   col.names = c(
     "Effect", rep(c("$df$", "$\\chi^2$", "$p$"), times = 2),
      "$df$", "$F$", "$p$"
    escape = FALSE
```

Table S19. Comparison of fixed effects across the three models for Hypothesis 2a: CLMM, GLMM (Poisson), and LMM.

		CLM	IM		GLMER (Poisson)	LMM			
Effect	df	χ^2	p	\overline{df}	χ^2	p	\overline{df}	F	p	
Solitary sexual desire	1	27.377	< 0.0001	1	24.430	< 0.0001	1, 319	17.464	< 0.0001	
Gender	1	0.015	0.9	1	7.086	0.0078	1, 319	8.838	0.0032	
Stimuli sex	1	43.812	< 0.0001	1	31.553	< 0.0001	1, 369.21	24.715	< 0.0001	
Solitary sexual desire × Gender	1	2.409	0.12	1	2.795	0.09	1, 319	0.852	0.36	
Solitary sexual desire × Stimuli sex	1	0.137	0.71	1	0.321	0.57	1, 319	0.024	0.88	
Gender × Stimuli sex	1	181.478	< 0.0001	1	127.568	< 0.0001	1, 319	74.790	< 0.0001	
Solitary sexual desire \times Gender \times Stimuli sex	1	2.959	0.09	1	0.605	0.44	1, 319	1.778	0.18	

Note: For CLMM and GLMER (Poisson) models, results are Analysis of Deviance (Type III Wald chi-square tests), while for LMM, results are from an Analysis of Variance (Type III ANOVA with Satterthwaite's method). Significant effects are in bold.

3.3.3.1.2 Figure S10: Model-based predictions for Hypothesis 2a. This figure presents model-based predictions of subjective sexual arousal as a function of solitary sexual desire, across different stimulus sexes and participant genders. The three subplots correspond to the three statistical models used for analysis: (a) Cumulative Link Mixed Model (CLMM), (b) Generalized Linear Mixed Model (GLMM, Poisson), and (c) Linear Mixed Model (LMM). Shaded areas represent 95% confidence intervals.

```
# CLMM Predictions
p_m2a_clmm <- emmeans(m2a_clmm, ~ Solitary.sexual.desire | Gender * Stimuli.sex,
    at = list(Solitary.sexual.desire = seq(0, 31, length.out = 100)),
    mode = "mean.class"
) |> # Compute predicted mean response categories
    as.data.frame() |> # Convert to dataframe for ggplot
    ggplot(aes(
        x = Solitary.sexual.desire, y = mean.class,
        color = Stimuli.sex, fill = Stimuli.sex
)) +
    geom_line(size = 1) + # Add predicted response line
    geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
        alpha = 0.2, color = NA
) + # Add confidence interval as shaded ribbon
    scale_color_manual(values = color.StimuliSex) + # Apply custom colors
    scale_fill_manual(values = color.StimuliSex) +
    facet_wrap(~Gender, ncol = 1) + # Create separate plots for each gender
```

```
labs(
    title = "CLMM",
    color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() + # Apply custom theme
  theme(legend.position = "bottom") +
  ylim(c(0.3, 5.3)) # Set Y-axis limits
# Poisson GLMM Predictions
p_m2a_poisson <- emmeans(m2a_poisson, ~ Solitary.sexual.desire | Gender * Stimuli.sex,
  at = list(Solitary.sexual.desire = seq(0, 31, length.out = 100)),
  type = "response"
  as.data.frame() |>
  ggplot(aes(
    x = Solitary.sexual.desire, y = rate,
    color = Stimuli.sex, fill = Stimuli.sex
  geom_line(size = 1) +
  geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.StimuliSex) +
  scale_fill_manual(values = color.StimuliSex) +
  facet_wrap(~Gender, ncol = 1) +
  labs(
   title = "GLMER (Poisson)",
    color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() +
  theme(legend.position = "bottom") +
  ylim(c(0.3, 5.3))
p_m2a_lmer <- emmeans(m2a_lmer, ~ Solitary.sexual.desire | Gender * Stimuli.sex,</pre>
  at = list(Solitary.sexual.desire = seq(0, 31, length.out = 100)),
  type = "response"
  as.data.frame() |>
  ggplot(aes(
    x = Solitary.sexual.desire, y = emmean,
   color = Stimuli.sex, fill = Stimuli.sex
  geom_line(size = 1) +
  geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.StimuliSex) +
  scale_fill_manual(values = color.StimuliSex) +
  facet_wrap(~Gender, ncol = 1) +
    title = "LMM",
    color = "Stimuli Sex", fill = "Stimuli Sex"
```

```
theme_tq() +
  theme(legend.position = "bottom") +
  ylim(c(0.3, 5.3))

# Arrange Plots into a Single Figure
p_robu_m2a <- ggarrange(p_m2a_clmm, p_m2a_poisson, p_m2a_lmer, # Combine plots side by side
  common.legend = TRUE, # Share legend across plots
  labels = "auto", # Automatically label subfigures (a, b, c)
  legend = "bottom",
  nrow = 1
) # Arrange in a single row

# Display the combined figure
p_robu_m2a</pre>
```


Figure S10. Predicted subjective sexual arousal as a function of solitary sexual desire, modeled using three statistical approaches: (a) Cumulative Link Mixed Model (CLMM); (b) Generalized Linear Mixed Model (GLMM) with a Poisson family; (c) Linear Mixed Model (LMM). Lines represent predicted values, and shaded areas indicate 95% confidence intervals. The models include participant gender and stimulus sex as key factors.

3.3.3.2 Final Model: Effects of Solitary TSD on SSA Across Gender and Stimuli Sex Given the aparent robustness of most results across models (CLMM, GLMER and LMM; Table S19, Fig. S10), we test the predictions of the hypothesis from the LMM (m2a_lmer).

3.3.3.2.1 Table S20. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

0.0024

Effect	df	F	p	ϵ_p^2
Solitary sexual desire	1, 319	17.46	< 0.0001	0.0489
Gender	1, 319	8.84	$\boldsymbol{0.0032}$	0.0239
Stimuli sex	1, 369.21	24.71	< 0.0001	0.06
Solitary sexual desire \times Gender	1, 319	0.85	0.36	< 0.0001
Solitary sexual desire \times Stimuli sex	1, 319	0.02	0.88	< 0.0001
$Gender \times Stimuli sex$	1, 319	74.79	< 0.0001	0.19

Table S20. Effects of Solitary TSD on SSA Across Gender and Stimuli Sex

Note: Results are type III ANOVA. $R_{conditional}^2 = 0.745$, $R_{marginal}^2 = 0.335$. As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

1, 319

1.78

0.18

3.3.3.2.2 *Post-hoc* tests To test the hypothesis, which predicted that there would be different relationship between SSA and solitary TSD, and that this association differ between men and women depending on the sex of stimuli, we used simple slope analysis.

Slope for solitary TSD on SSA by stimuli sex and participant gender

Solitary sexual desire \times Gender \times Stimuli sex

```
slop.m2a_lmer <- sim_slopes(m2a_lmer,</pre>
                            pred = Solitary.sexual.desire,
                            modx = Stimuli.sex,
                            mod2 = Gender,
                            confint = TRUE)
slop.m2a_lmer.tab <- bind_rows(slop.m2a_lmer$slopes[[1]] |>
                                  mutate(Gender = "Women"),
                                slop.m2a_lmer$slopes[[2]] |>
                                  mutate(Gender = "Men")) |>
 mutate(Gender = recode factor(Gender,
    Femenino = "Women",
   Masculino = "Men"
  select(8, 1:2, 4:7) |>
 mutate(across(3:7, as.numeric)) |>
 mutate(across(3:6, round, 2)) |>
 mutate(sig = pval.stars(p)) |>
  rename("Stimuli.sex" = "Value of Stimuli.sex") |>
  rename(Coefficient = Est.)
slop.m2a_lmer.tab[,-c(1,8)] |>
 mutate(p = pval.lev(p)) |>
 kable(booktabs = TRUE,
        align = c("l", rep("c", 5)),
        caption = "Slope for Solitary TSD on
        Subjective sexual arousal by stimuli sex and gender",
        linesep = "",
        col.names = c("Stimuli sex",
                      "$B$".
                      "$2.5\\% CI$",
                      "$97.5\\% CI$",
                      "$t$",
                      "$p$"),
        escape = FALSE) |>
  kable_styling(latex_options = c("HOLD_position")) |>
```

```
pack_rows(
    group_label = "Gender: Women",
    start_row = 1,
    end_row = 2,
    bold = FALSE,
    background = "lightgray"
pack_rows(
    group_label = "Gender: Men",
    start_row = 3,
    end_row = 4,
    bold = FALSE,
    background = "lightgray"
footnote(general = "$B$ are unstandardized coefficient.
         No intercept is reported as continuous predictors were centered
         and are dependent on this specific sample.",
         threeparttable = TRUE,
         footnote_as_chunk = TRUE,
         escape = FALSE)
```

Table S21. Slope for Solitary TSD on Subjective sexual arousal by stimuli sex and gender

Stimuli sex	В	2.5%CI	97.5%CI	t	p		
Gender: Women							
Female	0.03	0.01	0.05	2.42	0.0162		
Male	0.04	0.02	0.05	5.07	< 0.0001		
Gender: Men							
Female	0.03	0.00	0.06	1.84	0.07		
Male	0.01	-0.01	0.03	1.28	0.2		

Note: B are unstandardized coefficient. No intercept is reported as continuous predictors were centered and are dependent on this specific sample.

3.3.3.3 Figure S11. Subjective sexual arousal to erotic stimuli: Main effects and interactions This figure summarizes the results of hypothesis 2a.

Figure S11. XXXXXX

3.3.4 Hypothesis 2b: Attractive person TSD

3.3.4.1 Model Robustness: Examining the Effects of Attractive person TSD on SSA Across Gender and Stimuli Sex To assess the robustness of our findings, we fitted three different models examining how Attractive person TSD predicts SSA, considering variations by gender and stimuli sex:

- 1. Cumulative Link Mixed Model (CLMM) m2b_clmm (for ordinal outcomes, using a probit link).
- 2. Generalized Linear Mixed Model (GLMM) with Poisson family m2b_poisson (treating SSA as a count variable).
- 3. Linear Mixed Model (LMM) m2b_lmer (treating SSA as a continuous variable).

```
# Linear Mixed Model (LMM) - Continuous approximation
m2b_lmer <- lmer(
  Subjective.sexual.arousal ~ Attractive.person.DSD * Gender * Stimuli.sex +
        (1 | Stimuli.code) + # Random intercept for Stimuli
        (1 + Stimuli.sex | Participant), # Random intercept & slope for Stimuli sex
    data = dat_m2,
    control = lmerControl(optimizer = "bobyqa") # Use 'bobyqa' optimizer for stability
)</pre>
```

3.3.4.1.1 Table S22. ANOVA-type table of fixed effects (main effects and interactions) across the three fitted models As shown in the table below, the pattern of significant effects remains consistent across all three models, except for the main effect of gender, which is not significant in the CLMM.

```
reduce(
 list(
    # ANOVA results for the Cumulative Link Mixed Model (CLMM)
    Anova(m2b_clmm, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect"),
    # ANOVA results for the Generalized Linear Mixed Model (GLMM, Poisson),
   Anova(m2b_poisson, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect") |>
     select(Effect, Df, Chisq, `Pr(>Chisq)`) |>
     slice_tail(n = -1),
   anova(m2b_lmer, type = 3) |>
     as.data.frame() |>
     rownames to column("Effect") |>
     mutate(DenDF = round(DenDF, 2),
             `Pr(>F)` = pval.lev(`Pr(>F)`)) |>
     unite(col = "df", NumDF:DenDF, sep = ", ") |>
     select(Effect, df, `F value`, `Pr(>F)`)
  full_join,
  by = "Effect"
 mutate(Effect = str_replace_all(Effect, "\\.", " ")) |> # Replace dots with spaces
 mutate(Effect = str_replace_all(Effect, ":", " × ")) |> # Replace colons with ×
 kable(
   booktabs = TRUE,
   align = c("l", rep("c", 9)), # Align first column left, others center
   digits = 3,
   linesep = "",
    caption = "Comparison of fixed effects across the three models for Hypothesis 2b:
               CLMM, GLMM (Poisson), and LMM.",
   col.names = c(
     "Effect", rep(c("$df$", "$\\chi^2$", "$p$"), times = 2),
      "$df$", "$F$", "$p$"
```

Table S22. Comparison of fixed effects across the three models for Hypothesis 2b: CLMM, GLMM (Poisson), and LMM.

	CLMM		GLMER (Poisson)			LMM			
Effect	\overline{df}	χ^2	p	df	χ^2	p	df	F	p
Attractive person DSD	1	36.545	< 0.0001	1	45.711	< 0.0001	1, 319	48.490	< 0.0001
Gender	1	0.031	0.86	1	3.059	0.08	1, 319	1.446	0.23
Stimuli sex	1	18.293	< 0.0001	1	7.365	0.0067	1, 373.93	2.689	0.1
Attractive person DSD \times Gender	1	3.774	0.05	1	0.940	0.33	1, 319	0.530	0.47
Attractive person DSD \times Stimuli sex	1	7.654	0.0057	1	7.507	0.0061	1, 319	15.428	< 0.001
$Gender \times Stimuli sex$	1	124.186	< 0.0001	1	67.054	< 0.0001	1, 319	27.444	< 0.0001
Attractive person DSD \times Gender \times Stimuli sex	1	3.833	0.05	1	20.127	< 0.0001	1, 319	29.689	< 0.0001

Note: For CLMM and GLMER (Poisson) models, results are Analysis of Deviance (Type III Wald chi-square tests), while for LMM, results are from an Analysis of Variance (Type III ANOVA with Satterthwaite's method). Significant effects are in bold.

3.3.4.1.2 Figure S12: Model-based predictions for Hypothesis 2b. This figure presents model-based predictions of subjective sexual arousal as a function of attractive person sexual desire, across different stimulus sexes and participant genders. The three subplots correspond to the three statistical models used for analysis: (a) Cumulative Link Mixed Model (CLMM), (b) Generalized Linear Mixed Model (GLMM, Poisson), and (c) Linear Mixed Model (LMM). Shaded areas represent 95% confidence intervals.

```
# CLMM Predictions
p_m2b_clmm <- emmeans(m2b_clmm, ~ Attractive.person.DSD | Gender * Stimuli.sex,
    at = list(Attractive.person.DSD = seq(0, 31, length.out = 100)),
    mode = "mean.class"
) |> # Compute predicted mean response categories
    as.data.frame() |> # Convert to dataframe for ggplot
    ggplot(aes(
        x = Attractive.person.DSD, y = mean.class,
        color = Stimuli.sex, fill = Stimuli.sex
)) +
    geom_line(size = 1) + # Add predicted response line
    geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
        alpha = 0.2, color = NA
) + # Add confidence interval as shaded ribbon
    scale_color_manual(values = color.StimuliSex) + # Apply custom colors
```

```
scale fill manual(values = color.StimuliSex) +
  facet_wrap(~Gender, ncol = 1) + # Create separate plots for each gender
 labs(
   title = "CLMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() + # Apply custom theme
  theme(legend.position = "bottom") +
 ylim(c(0.3, 6.5)) # Set Y-axis limits
p_m2b_poisson <- emmeans(m2b_poisson, ~ Attractive.person.DSD | Gender * Stimuli.sex,
 at = list(Attractive.person.DSD = seq(0, 31, length.out = 100)),
  type = "response"
  as.data.frame() |>
 ggplot(aes(
   x = Attractive.person.DSD, y = rate,
   color = Stimuli.sex, fill = Stimuli.sex
 geom_line(size = 1) +
  geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.StimuliSex) +
 scale_fill_manual(values = color.StimuliSex) +
  facet_wrap(~Gender, ncol = 1) +
 labs(
   y = "", x = "Attractive Person Sexual Desire",
   title = "GLMER (Poisson)",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() +
  theme(legend.position = "bottom") +
 ylim(c(0.3, 6.5))
p_m2b_lmer <- emmeans(m2b_lmer, ~ Attractive.person.DSD | Gender * Stimuli.sex,
  at = list(Attractive.person.DSD = seq(0, 31, length.out = 100)),
  type = "response"
 as.data.frame() |>
 ggplot(aes(
   x = Attractive.person.DSD, y = emmean,
   color = Stimuli.sex, fill = Stimuli.sex
 geom_line(size = 1) +
 geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.StimuliSex) +
 scale fill manual(values = color.StimuliSex) +
  facet_wrap(~Gender, ncol = 1) +
 labs(
```

```
title = "LMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
) +
theme_tq() +
theme(legend.position = "bottom") +
ylim(c(0.3, 6.5))

# Arrange Plots into a Single Figure
p_robu_m2b <- ggarrange(p_m2b_clmm, p_m2b_poisson, p_m2b_lmer, # Combine plots side by side
   common.legend = TRUE, # Share legend across plots
   labels = "auto", # Automatically label subfigures (a, b, c)
   legend = "bottom",
   nrow = 1
) # Arrange in a single row

# Display the combined figure
p_robu_m2b</pre>
```


Figure S12. Predicted subjective sexual arousal as a function of attractive person sexual desire, modeled using three statistical approaches: (a) Cumulative Link Mixed Model (CLMM); (b) Generalized Linear Mixed Model (GLMM) with a Poisson family; (c) Linear Mixed Model (LMM). Lines represent predicted values, and shaded areas indicate 95% confidence intervals. The models include participant gender and stimulus sex as key factors.

3.3.4.2 Final Model: Effects of Attractive person TSD on SSA Across Gender and Stimuli Sex Given the aparent robustness of most results across models (CLMM, GLMER and LMM; Table S22, Fig. S12), we test the predictions of the hypothesis from the LMM (m2b_lmer).

3.3.4.2.1 Table S23. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

Table S23. Effects of Attractive person TSD on SSA Across Gender and Stimuli Sex

Effect	df	F	p	ϵ_p^2
Attractive person DSD	1, 319	48.49	< 0.0001	0.13
Gender	1, 319	1.45	0.23	0.0014
Stimuli sex	1,373.93	2.69	0.1	0.0045
Attractive person DSD \times Gender	1, 319	0.53	0.47	< 0.0001
Attractive person DSD \times Stimuli sex	1, 319	15.43	< 0.001	0.0431
$Gender \times Stimuli sex$	1, 319	27.44	< 0.0001	0.08
Attractive person DSD \times Gender \times Stimuli sex	1, 319	29.69	< 0.0001	0.08

Note: Results are type III ANOVA. $R_{conditional}^2 = 0.745$, $R_{marginal}^2 = 0.367$. As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

3.3.4.2.2 *Post-hoc* tests To test the hypothesis, which predicted that there would be different relationship between SSA and attractive person TSD, and that this association differ between men and women depending on the sex of stimuli, we used simple slope analysis.

Slope for attractive person TSD on SSA by stimuli sex and participant gender

```
slop.m2b_lmer <- sim_slopes(m2b_lmer,</pre>
                            pred = Attractive.person.DSD,
                            modx = Stimuli.sex,
                            mod2 = Gender,
                            confint = TRUE)
slop.m2b_lmer.tab <- bind_rows(slop.m2b_lmer$slopes[[1]] |>
                                  mutate(Gender = "Women"),
                                slop.m2b_lmer$slopes[[2]] |>
                                  mutate(Gender = "Men")) |>
 mutate(Gender = recode_factor(Gender,
    Femenino = "Women",
   Masculino = "Men"
  select(8, 1:2, 4:7) |>
 mutate(across(3:7, as.numeric)) |>
 mutate(across(3:6, round, 2)) |>
 mutate(sig = pval.stars(p)) |>
  rename("Stimuli.sex" = "Value of Stimuli.sex") |>
  rename(Coefficient = Est.)
slop.m2b_lmer.tab[,-c(1,8)] |>
 mutate(p = pval.lev(p)) |>
 kable(booktabs = TRUE,
        align = c("l", rep("c", 5)),
        caption = "Slope for Attractive person TSD on
        Subjective sexual arousal by stimuli sex and gender",
        linesep = "",
        col.names = c("Stimuli sex",
                      "$B$".
                      "$2.5\\% CI$",
                      "$97.5\\% CI$",
                      "$t$",
                      "$p$"),
        escape = FALSE) |>
  kable_styling(latex_options = c("HOLD_position")) |>
```

```
pack_rows(
    group_label = "Gender: Women",
    start_row = 1,
    end_row = 2,
    bold = FALSE,
    background = "lightgray"
pack_rows(
    group_label = "Gender: Men",
    start_row = 3,
    end_row = 4,
    bold = FALSE,
    background = "lightgray"
footnote(general = "$B$ are unstandardized coefficient.
         No intercept is reported as continuous predictors were centered
         and are dependent on this specific sample.",
         threeparttable = TRUE,
         footnote_as_chunk = TRUE,
         escape = FALSE)
```

Table S24. Slope for Attractive person TSD on Subjective sexual arousal by stimuli sex and gender

Stimuli sex	В	2.5%CI	97.5%CI	t	p
Gender: Wo					
Female	0.03	0.01	0.06	2.82	0.0051
Male	0.05	0.03	0.06	5.70	< 0.0001
Gender: Me	n				
Female	0.10	0.07	0.13	6.58	< 0.0001
Male	0.00	-0.02	0.02	0.32	0.75

Note: B are unstandardized coefficient. No intercept is reported as continuous predictors were centered and are dependent on this specific sample.

3.3.4.3 Figure S13. Subjective sexual arousal to erotic stimuli: Main effects and interactions This figure summarizes the results of hypothesis 2b.

```
#size = 3,
show.legend = FALSE) +
theme(legend.position = "bottom")
```


Figure S13. XXXXXX

3.3.5 Hypothesis 2c: Partner TSD

3.3.5.1 Model Robustness: Examining the Effects of Partner TSD on SSA Across Gender and Stimuli Sex To assess the robustness of our findings, we fitted three different models examining how Partner TSD predicts SSA, considering variations by gender and stimuli sex:

- 1. Cumulative Link Mixed Model (CLMM) m2c_clmm (for ordinal outcomes, using a probit link).
- 2. Generalized Linear Mixed Model (GLMM) with Poisson family m2c_poisson (treating SSA as a count variable).
- 3. Linear Mixed Model (LMM) m2c_lmer (treating SSA as a continuous variable).

```
# Linear Mixed Model (LMM) - Continuous approximation
m2c_lmer <- lmer(
   Subjective.sexual.arousal ~ Partner.DSD * Gender * Stimuli.sex +
        (1 | Stimuli.code) + # Random intercept for Stimuli
        (1 + Stimuli.sex | Participant), # Random intercept & slope for Stimuli sex
   data = dat_m2,
   control = lmerControl(optimizer = "bobyqa") # Use 'bobyqa' optimizer for stability
)</pre>
```

3.3.5.1.1 Table S25. ANOVA-type table of fixed effects (main effects and interactions) across the three fitted models As shown in the table below, the pattern of significant effects remains consistent across all three models, except for the main effect of gender, which is not significant in the CLMM.

```
reduce(
 list(
    # ANOVA results for the Cumulative Link Mixed Model (CLMM)
    Anova(m2c_clmm, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect"),
    # ANOVA results for the Generalized Linear Mixed Model (GLMM, Poisson),
   Anova(m2c_poisson, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect") |>
     select(Effect, Df, Chisq, `Pr(>Chisq)`) |>
     slice_tail(n = -1),
   anova(m2c_lmer, type = 3) |>
     as.data.frame() |>
     rownames to column("Effect") |>
     mutate(DenDF = round(DenDF, 2),
             `Pr(>F)` = pval.lev(`Pr(>F)`)) |>
     unite(col = "df", NumDF:DenDF, sep = ", ") |>
     select(Effect, df, `F value`, `Pr(>F)`)
  full_join,
  by = "Effect"
 mutate(Effect = str_replace_all(Effect, "\\.", " ")) |> # Replace dots with spaces
 mutate(Effect = str_replace_all(Effect, ":", " × ")) |> # Replace colons with ×
 kable(
   booktabs = TRUE,
   align = c("l", rep("c", 9)), # Align first column left, others center
   digits = 3,
   linesep = "",
    caption = "Comparison of fixed effects across the three models for Hypothesis 2c:
               CLMM, GLMM (Poisson), and LMM.",
   col.names = c(
     "Effect", rep(c("$df$", "$\\chi^2$", "$p$"), times = 2),
      "$df$", "$F$", "$p$"
```

Table S25. Comparison of fixed effects across the three models for Hypothesis 2c: CLMM, GLMM (Poisson), and LMM.

	CLMM			(GLMER	(Poisson)	LMM		
Effect	df	χ^2	p	\overline{df}	χ^2	p	df	F	p
Partner DSD	1	0.642	0.42	1	5.150	0.0232	1, 316	6.589	0.0107
Gender	1	0.743	0.39	1	0.078	0.78	1, 316	0.034	0.85
Stimuli sex	1	10.881	< 0.001	1	2.688	0.1	1,344.42	0.991	0.32
Partner DSD \times Gender	1	0.310	0.58	1	2.111	0.15	1, 316	3.967	0.0472
Partner DSD \times Stimuli sex	1	2.366	0.12	1	5.423	0.0199	1, 316	8.458	0.0039
$Gender \times Stimuli sex$	1	61.739	< 0.0001	1	45.783	< 0.0001	1, 316	20.549	< 0.0001
Partner DSD \times Gender \times Stimuli sex	1	1.254	0.26	1	2.461	0.12	1, 316	5.700	0.0176

Note: For CLMM and GLMER (Poisson) models, results are Analysis of Deviance (Type III Wald chi-square tests), while for LMM, results are from an Analysis of Variance (Type III ANOVA with Satterthwaite's method). Significant effects are in bold.

3.3.5.1.2 Figure S14: Model-based predictions for Hypothesis 2c. This figure presents model-based predictions of subjective sexual arousal as a function of partner sexual desire, across different stimulus sexes and participant genders. The three subplots correspond to the three statistical models used for analysis: (a) Cumulative Link Mixed Model (CLMM), (b) Generalized Linear Mixed Model (GLMM, Poisson), and (c) Linear Mixed Model (LMM). Shaded areas represent 95% confidence intervals.

```
# CLMM Predictions
p_m2c_clmm <- emmeans(m2c_clmm, ~ Partner.DSD | Gender * Stimuli.sex,
    at = list(Partner.DSD = seq(0, 31, length.out = 100)),
    mode = "mean.class"
) |> # Compute predicted mean response categories
    as.data.frame() |> # Convert to dataframe for ggplot
    ggplot(aes(
        x = Partner.DSD, y = mean.class,
        color = Stimuli.sex, fill = Stimuli.sex
)) +
    geom_line(size = 1) + # Add predicted response line
    geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
        alpha = 0.2, color = NA
) + # Add confidence interval as shaded ribbon
```

```
scale color manual(values = color.StimuliSex) + # Apply custom colors
  scale_fill_manual(values = color.StimuliSex) +
  facet_wrap(~Gender, ncol = 1) + # Create separate plots for each gender
   title = "CLMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() + # Apply custom theme
  theme(legend.position = "bottom") +
 ylim(c(0.3, 5.3)) # Set Y-axis limits
# Poisson GLMM Predictions
p_m2c_poisson <- emmeans(m2c_poisson, ~ Partner.DSD | Gender * Stimuli.sex,
  at = list(Partner.DSD = seq(0, 31, length.out = 100)),
  type = "response"
 as.data.frame() |>
 ggplot(aes(
   x = Partner.DSD, y = rate,
   color = Stimuli.sex, fill = Stimuli.sex
  geom_line(size = 1) +
  geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
   alpha = 0.2, color = NA
 scale_color_manual(values = color.StimuliSex) +
  scale_fill_manual(values = color.StimuliSex) +
  facet_wrap(~Gender, ncol = 1) +
   y = "", x = "Partner Sexual Desire",
   title = "GLMER (Poisson)",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() +
  theme(legend.position = "bottom") +
 ylim(c(0.3, 5.3))
p_m2c_lmer <- emmeans(m2c_lmer, ~ Partner.DSD | Gender * Stimuli.sex,
  at = list(Partner.DSD = seq(0, 31, length.out = 100)),
  type = "response"
 as.data.frame() |>
 ggplot(aes(
   x = Partner.DSD, y = emmean,
   color = Stimuli.sex, fill = Stimuli.sex
 geom_line(size = 1) +
  geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Stimuli.sex),
   alpha = 0.2, color = NA
 scale color manual(values = color.StimuliSex) +
  scale_fill_manual(values = color.StimuliSex) +
  facet_wrap(~Gender, ncol = 1) +
  labs(
```

```
y = "", x = "Partner Sexual Desire",
title = "LMM",
color = "Stimuli Sex", fill = "Stimuli Sex"
) +
theme_tq() +
theme(legend.position = "bottom") +
ylim(c(0.3, 5.3))

# Arrange Plots into a Single Figure
p_robu_m2c <- ggarrange(p_m2c_clmm, p_m2c_poisson, p_m2c_lmer, # Combine plots side by side
common.legend = TRUE, # Share legend across plots
labels = "auto", # Automatically label subfigures (a, b, c)
legend = "bottom",
nrow = 1
) # Arrange in a single row

# Display the combined figure
p_robu_m2c</pre>
```


Figure S14. Predicted subjective sexual arousal as a function of partner sexual desire, modeled using three statistical approaches: (a) Cumulative Link Mixed Model (CLMM); (b) Generalized Linear Mixed Model (GLMM) with a Poisson family; (c) Linear Mixed Model (LMM). Lines represent predicted values, and shaded areas indicate 95% confidence intervals. The models include participant gender and stimulus sex as key factors.

3.3.5.2 Final Model: Effects of Partner TSD on SSA Across Gender and Stimuli Sex Given the aparent robustness of most results across models (CLMM, GLMER and LMM; Table S25, Fig. S14), we test the predictions of the hypothesis from the LMM (m2c_lmer).

3.3.5.2.1 Table S26. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

Table S26. Effects of Partner TSD on SSA Across Gender and Stimuli Sex

Effect	df	F	p	ϵ_p^2
Partner DSD	1, 316	6.59	0.0107	0.0173
Gender	1, 316	0.03	0.85	< 0.0001
Stimuli sex	1, 344.42	0.99	0.32	< 0.0001
Partner DSD \times Gender	1, 316	3.97	0.0472	0.0093
Partner DSD \times Stimuli sex	1, 316	8.46	0.0039	0.023
$Gender \times Stimuli sex$	1, 316	20.55	< 0.0001	0.06
Partner DSD \times Gender \times Stimuli sex	1, 316	5.70	0.0176	0.0146

Note: Results are type III ANOVA. $R_{conditional}^2 = 0.745$, $R_{marginal}^2 = 0.329$. As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

3.3.5.2.2 *Post-hoc* tests To test the hypothesis, which predicted that there would be different relationship between SSA and partner TSD, and that this association differ between men and women depending on the sex of stimuli, we used simple slope analysis.

Slope for partner TSD on SSA by stimuli sex and participant gender

```
slop.m2c_lmer <- sim_slopes(m2c_lmer,</pre>
                            pred = Partner.DSD,
                            modx = Stimuli.sex,
                            mod2 = Gender,
                            confint = TRUE)
slop.m2c_lmer.tab <- bind_rows(slop.m2c_lmer$slopes[[1]] |>
                                  mutate(Gender = "Women"),
                                slop.m2c_lmer$slopes[[2]] |>
                                  mutate(Gender = "Men")) |>
 mutate(Gender = recode_factor(Gender,
    Femenino = "Women",
   Masculino = "Men"
  select(8, 1:2, 4:7) |>
 mutate(across(3:7, as.numeric)) |>
 mutate(across(3:6, round, 2)) |>
 mutate(sig = pval.stars(p)) |>
  rename("Stimuli.sex" = "Value of Stimuli.sex") |>
  rename(Coefficient = Est.)
slop.m2c_lmer.tab[,-c(1,8)] |>
 mutate(p = pval.lev(p)) |>
 kable(booktabs = TRUE,
        align = c("l", rep("c", 5)),
        caption = "Slope for Partner TSD on
        Subjective sexual arousal by stimuli sex and gender",
        linesep = "",
        col.names = c("Stimuli sex",
                      "$B$".
                      "$2.5\\% CI$",
                      "$97.5\\% CI$",
                      "$t$",
                      "$p$"),
        escape = FALSE) |>
  kable_styling(latex_options = c("HOLD_position")) |>
```

```
pack_rows(
    group_label = "Gender: Women",
    start_row = 1,
    end_row = 2,
    bold = FALSE,
    background = "lightgray"
pack_rows(
    group_label = "Gender: Men",
    start_row = 3,
    end_row = 4,
    bold = FALSE,
    background = "lightgray"
footnote(general = "$B$ are unstandardized coefficient.
         No intercept is reported as continuous predictors were centered
         and are dependent on this specific sample.",
         threeparttable = TRUE,
         footnote_as_chunk = TRUE,
         escape = FALSE)
```

Table S27. Slope for Partner TSD on Subjective sexual arousal by stimuli sex and gender

Stimuli sex	В	2.5%CI	97.5%CI	t	p					
Gender: Women										
Female	0.01	-0.01	0.02	0.58	0.56					
Male	0.00	-0.01	0.01	0.15	0.88					
Gender: Me	n									
Female	0.05	0.02	0.08	3.63	< 0.001					
Male	0.00	-0.02	0.02	0.34	0.73					

Note: B are unstandardized coefficient. No intercept is reported as continuous predictors were centered and are dependent on this specific sample.

3.3.5.3 Figure S15. Subjective sexual arousal to erotic stimuli: Main effects and interactions This figure summarizes the results of hypothesis 2c.

```
#size = 3,
     show.legend = FALSE) +
theme(legend.position = "bottom")
```


Figure S15. XXXXXX

3.4 Hypothesis 3: The associations between TSD dimensions and SSA toward stimuli of self-reported preferred gender will be moderated by gender and relationship status.

We tested whether the relationship between SSA and TSD varies across the three dimensions of TSD and whether these associations differ between men and women depending on whether they were single or not, but only in responses toward stimuli of the preferred sex. This is a fully exploratory hypothesis, for which no directional predictions were made, beyond an interaction between the TSD dimension, gender, and relationship status. As with the case of Hypothesys 2 (section 3.3), fitted separate models for each TSD dimension:

- H3a: Solitary TSD and SSA
- H3b: Dyadic TSD toward an attractive person
- **H3c**: Dyadic TSD toward a partner

To examine this hypothesis, we modeled the effects of each of the three TSD dimension scores, gender, relationship status, and their interactions, on SSA towars stimuli of the self-reported preferred sex. We included random intercepts for each stimulus, as well as random intercepts for each participant.

3.4.1 Modeling Approach

Following the strategy employed for Hypothesys 2 (section 3.3), and given that SSA is an ordinal variable with seven ordered levels, we fitted different models using three different approaches to ensure the robustness of our results:

- 1. Cumulative Link Mixed Model (CLMM), using the clmm function from the package ordinal (Christensen, 2023)
- 2. Generalized Mixed Model (GLMM) with a Poisson family, using the glmer function from the package lme4 (Bates et al., 2015)
- 3. Linear mixed model (LMM), using the lmer function from the package lmerTest (Kuznetsova et al., 2017)

The results across these models were largely consistent, indicating robustness in our findings. For clarity and

interpretability, we primarily base our inferences on the LMM, as it provides the most straightforward interpretation and has a wider range of available functions in R for extracting model information.

3.4.2 Data

We created a new dataset by selecting, once again, only responses to erotic stimuli but this time also filtering only responses to stimuli of the peferred sex. We also renamed key variables to remove spaces for compatibility with certain functions, and created a factor version of Subjective sexual arousal for use in the CLMM model.

```
# Filter dataset to include only responses to erotic stimuli
dat_m3 <- dat |>
    filter(`Stimuli content` == "Erotic" &
        `Stimuli sex` == `Preferred sex`)|>
    rename(Subjective.sexual.arousal = `Subjective sexual arousal`,
        Solitary.sexual.desire = `Solitary sexual desire`,
        Attractive.person.DSD = `Dyadic sexual desire (Attractive person)`,
        Partner.DSD = `Dyadic sexual desire (Partner)`,
        Stimuli.code = `Stimuli code`) |>
    mutate(Subjective.sexual.arousal.factor = as.factor(Subjective.sexual.arousal))
```

3.4.3 Hypothesis 3a: Solitary TSD

3.4.3.1 Model Robustness: Examining the Effects of Solitary TSD on SSA Across Gender and Stimuli Sex To assess the robustness of our findings, we fitted three different models examining how Solitary TSD predicts SSA, considering variations by gender and stimuli sex:

- 1. Cumulative Link Mixed Model (CLMM) m3a_clmm (for ordinal outcomes, using a probit link).
- 2. Generalized Linear Mixed Model (GLMM) with Poisson family m3a_poisson (treating SSA as a count variable).
- 3. Linear Mixed Model (LMM) m3a_lmer (treating SSA as a continuous variable).

```
# Cumulative Link Mixed Model (CLMM) - Ordinal model with probit link
m3a_clmm <- clmm(
  Subjective.sexual.arousal.factor ~ Solitary.sexual.desire * Gender * Relationship +
    (1 | Stimuli.code) + # Random intercept for Stimuli
    (1 | Participant), # Random intercept & slope for Relationship status
  data = dat_m3,
 link = "probit",
  control = list(method = "nlminb") # Use 'nlminb' optimizer for better convergence
m3a poisson <- glmer(
 Subjective.sexual.arousal ~ Solitary.sexual.desire * Gender * Relationship +
    (1 | Stimuli.code) + # Random intercept for Stimuli
    (1 | Participant), # Random intercept & slope for Relationship status
  data = dat_m3,
  family = poisson # Poisson distribution for count data
m3a_lmer <- lmer(
  Subjective.sexual.arousal ~ Solitary.sexual.desire * Gender * Relationship +
    (1 | Stimuli.code) + # Random intercept for Stimuli
    (1 | Participant), # Random intercept & slope for Relationship status
 data = dat_m3,
  control = lmerControl(optimizer = "bobyqa") # Use 'bobyqa' optimizer for stability
```

3.4.3.1.1 Table S28. ANOVA-type table of fixed effects (main effects and interactions) across the three fitted models As shown in the table below, the pattern of significant effects remains consistent across all three models, except for the main effect of gender, which is not significant in the CLMM.

```
# Create ANOVA-style table summarizing model results
reduce(
  list(
   # ANOVA results for the Cumulative Link Mixed Model (CLMM)
    Anova(m3a_clmm, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect"),
    Anova(m3a_poisson, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect") |>
     select(Effect, Df, Chisq, `Pr(>Chisq)`) |>
     slice tail(n = -1),
   anova(m3a_lmer, type = 3) |>
     as.data.frame() |>
     rownames_to_column("Effect") |>
     mutate(DenDF = round(DenDF, 2),
             `Pr(>F)` = pval.lev(`Pr(>F)`)) |>
     unite(col = "df", NumDF:DenDF, sep = ", ") |>
     select(Effect, df, `F value`, `Pr(>F)`)
  full_join,
 mutate(Effect = str_replace_all(Effect, "\\.", " ")) |> # Replace dots with spaces
 mutate(Effect = str_replace_all(Effect, ":", " × ")) |> # Replace colons with ×
 kable(
    booktabs = TRUE,
   align = c("1", rep("c", 9)), # Align first column left, others center
   digits = 3,
   linesep = "",
    caption = "Comparison of fixed effects across the three models for Hypothesis 3a:
               CLMM, GLMM (Poisson), and LMM.",
   col.names = c(
     "Effect", rep(c("$df$", "$\\chi^2$", "$p$"), times = 2),
     "$df$", "$F$", "$p$"
   escape = FALSE
 kable_styling(latex_options = c("HOLD_position", "scale_down")) |>
  add_header_above(c(
   " " = 1, "CLMM" = 3, "GLMER (Poisson)" = 3, "LMM" = 3
```

Table S28. Comparison of fixed effects across the three models for Hypothesis 3a: CLMM, GLMM (Poisson), and LMM.

		CLMM			GLMER	(Poisson)	$_{ m LMM}$		
Effect	df	χ^2	p	df	χ^2	p	df	F	p
Solitary sexual desire	1	10.107	0.0015	1	9.473	0.0021	1, 315	6.881	0.0091
Gender	1	16.166	< 0.0001	1	17.941	< 0.0001	1, 355.34	14.100	< 0.001
Relationship	1	0.002	0.97	1	0.018	0.89	1, 314.95	0.337	0.56
Solitary sexual desire × Gender	1	1.632	0.2	1	1.291	0.26	1, 315.23	0.071	0.79
Solitary sexual desire × Relationship	1	0.070	0.79	1	0.180	0.67	1, 314.95	0.531	0.47
$Gender \times Relationship$	1	3.001	0.08	1	2.152	0.14	1, 314.95	2.953	0.09
Solitary sexual desire \times Gender \times Relationship	1	2.262	0.13	1	1.443	0.23	1, 315.08	2.023	0.16

Note: For CLMM and GLMER (Poisson) models, results are Analysis of Deviance (Type III Wald chi-square tests), while for LMM, results are from an Analysis of Variance (Type III ANOVA with Satterthwaite's method). Significant effects are in bold.

3.4.3.1.2 Figure S16: Model-based predictions for Hypothesis 3a. This figure presents model-based predictions of subjective sexual arousal as a function of solitary sexual desire, across different relationship status and participant genders. The three subplots correspond to the three statistical models used for analysis: (a) Cumulative Link Mixed Model (CLMM), (b) Generalized Linear Mixed Model (GLMM, Poisson), and (c) Linear Mixed Model (LMM). Shaded areas represent 95% confidence intervals.

```
# CLMM Predictions
p_m3a_clmm <- emmeans(m3a_clmm, ~ Solitary.sexual.desire | Gender * Relationship,
  at = list(Solitary.sexual.desire = seq(0, 31, length.out = 100)),
 mode = "mean.class"
  as.data.frame() |> # Convert to dataframe for ggplot
  ggplot(aes(
   x = Solitary.sexual.desire, y = mean.class,
   color = Relationship, fill = Relationship
  geom_line(size = 1) + # Add predicted response line
  geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.Relationship) + # Apply custom colors
  scale_fill_manual(values = color.Relationship) +
  facet_wrap(~Gender, ncol = 1) + # Create separate plots for each gender
    title = "CLMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() + # Apply custom theme
  theme(legend.position = "bottom") +
  ylim(c(0.3, 6)) # Set Y-axis limits
```

```
# Poisson GLMM Predictions
p_m3a_poisson <- emmeans(m3a_poisson, ~ Solitary.sexual.desire | Gender * Relationship,
  at = list(Solitary.sexual.desire = seq(0, 31, length.out = 100)),
  type = "response"
 as.data.frame() |>
 ggplot(aes(
   x = Solitary.sexual.desire, y = rate,
   color = Relationship, fill = Relationship
 geom_line(size = 1) +
  geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
   alpha = 0.2, color = NA
 scale_color_manual(values = color.Relationship) +
  scale_fill_manual(values = color.Relationship) +
  facet_wrap(~Gender, ncol = 1) +
 labs(
   title = "GLMER (Poisson)",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() +
  theme(legend.position = "bottom") +
 ylim(c(0.3, 6))
p_m3a_lmer <- emmeans(m3a_lmer, ~ Solitary.sexual.desire | Gender * Relationship,
  at = list(Solitary.sexual.desire = seq(0, 31, length.out = 100)),
  type = "response"
 as.data.frame() |>
 ggplot(aes(
   x = Solitary.sexual.desire, y = emmean,
   color = Relationship, fill = Relationship
  geom_line(size = 1) +
 geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.Relationship) +
 scale_fill_manual(values = color.Relationship) +
 facet_wrap(~Gender, ncol = 1) +
 labs(
   title = "LMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme tq() +
  theme(legend.position = "bottom") +
 ylim(c(0.3, 6))
p_robu_m3a <- ggarrange(p_m3a_clmm, p_m3a_poisson, p_m3a_lmer, # Combine plots side by side
  common.legend = TRUE, # Share legend across plots
```

```
labels = "auto", # Automatically label subfigures (a, b, c)
legend = "bottom",
nrow = 1
) # Arrange in a single row

# Display the combined figure
p_robu_m3a
```


Figure S16. Predicted subjective sexual arousal as a function of solitary sexual desire, modeled using three statistical approaches: (a) Cumulative Link Mixed Model (CLMM); (b) Generalized Linear Mixed Model (GLMM) with a Poisson family; (c) Linear Mixed Model (LMM). Lines represent predicted values, and shaded areas indicate 95% confidence intervals. The models include participant gender and relationship status as key factors.

3.4.3.2 Final Model: Effects of Solitary TSD on SSA Across Gender and Stimuli Sex Given the aparent robustness of most results across models (CLMM, GLMER and LMM; Table S28, Fig. S16), we test the predictions of the hypothesis from the LMM (m3a_lmer).

3.4.3.2.1 Table S29. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

Table S29. Effects of Solitary TSD on SS	A Across	Gender	and Stimuli	Sex
t	df	F	p	ϵ_p^2
ary sexual desire	1, 315	6.88	0.0091	0.0183

Effect	df	F	p	ϵ_p^2
Solitary sexual desire	1, 315	6.88	0.0091	0.0183
Gender	1, 355.34	14.10	< 0.001	0.0355
Relationship	1, 314.95	0.34	0.56	< 0.0001
Solitary sexual desire \times Gender	1, 315.23	0.07	0.79	< 0.0001
Solitary sexual desire \times Relationship	1, 314.95	0.53	0.47	< 0.0001
$Gender \times Relationship$	1, 314.95	2.95	0.09	0.0061
Solitary sexual desire \times Gender \times Relationship	1, 315.08	2.02	0.16	0.0032
_				

Results are type III ANOVA. $R_{conditional}^2 = 0.72, R_{marginal}^2 = 0.171.$ As effect *Note:* size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

3.4.3.2.2 Post-hoc tests To test the hypothesis, which predicted that there would be different relationship between SSA and solitary TSD, and that this association differ between men and women depending on the sex of stimuli, we used simple slope analysis.

Slope for solitary TSD on SSA by stimuli sex and participant gender

```
slop.m3a_lmer <- sim_slopes(m3a_lmer,</pre>
                            pred = Solitary.sexual.desire,
                            modx = Relationship,
                            mod2 = Gender,
                            confint = TRUE)
slop.m3a_lmer.tab <- bind_rows(slop.m3a_lmer$slopes[[1]] |>
                                  mutate(Gender = "Women"),
                                slop.m3a_lmer$slopes[[2]] |>
                                  mutate(Gender = "Men")) |>
 mutate(Gender = recode_factor(Gender,
    Femenino = "Women",
   Masculino = "Men"
  select(8, 1:2, 4:7) |>
 mutate(across(3:7, as.numeric)) |>
 mutate(across(3:6, round, 2)) |>
 mutate(sig = pval.stars(p)) |>
  rename("Relationship" = "Value of Relationship") |>
  rename(Coefficient = Est.)
slop.m3a_lmer.tab[,-c(1,8)] |>
 mutate(p = pval.lev(p)) |>
 kable(booktabs = TRUE,
        align = c("l", rep("c", 5)),
        caption = "Slope for Solitary TSD on
        Subjective sexual arousal by stimuli sex and gender",
        linesep = "",
        col.names = c("Relationship status",
                      "$B$".
                      "$2.5\\% CI$",
                      "$97.5\\% CI$",
                      "$t$",
                      "$p$"),
        escape = FALSE) |>
  kable_styling(latex_options = c("HOLD_position")) |>
```

```
pack_rows(
    group_label = "Gender: Women",
    start_row = 1,
    end_row = 2,
    bold = FALSE,
    background = "lightgray"
pack_rows(
    group_label = "Gender: Men",
    start_row = 3,
    end_row = 4,
    bold = FALSE,
    background = "lightgray"
footnote(general = "$B$ are unstandardized coefficient.
         No intercept is reported as continuous predictors were centered
         and are dependent on this specific sample.",
         threeparttable = TRUE,
         footnote_as_chunk = TRUE,
         escape = FALSE)
```

Table S30. Slope for Solitary TSD on Subjective sexual arousal by stimuli sex and gender

Relationship status	В	2.5%CI	97.5%CI	t	p
Gender: Women					
Stable	0.04	0.01	0.07	2.31	0.0217
Single	0.02	-0.01	0.06	1.19	0.23
Gender: Men					
Stable	0.00	-0.04	0.05	0.10	0.92
Single	0.05	0.00	0.10	1.91	0.06

Note: B are unstandardized coefficient. No intercept is reported as continuous predictors were centered and are dependent on this specific sample.

3.4.3.3 Figure S17. Subjective sexual arousal to erotic stimuli: Main effects and interactions This figure summarizes the results of hypothesis 3a.

```
#size = 3,
show.legend = FALSE) +
theme(legend.position = "bottom")
```


Figure S17. XXXXXX

3.4.4 Hypothesis 3b: Attractive person TSD

3.4.4.1 Model Robustness: Examining the Effects of Attractive person TSD on SSA Across Gender and Stimuli Sex To assess the robustness of our findings, we fitted three different models examining how Attractive person TSD predicts SSA, considering variations by gender and stimuli sex:

- 1. Cumulative Link Mixed Model (CLMM) m3b_clmm (for ordinal outcomes, using a probit link).
- 2. Generalized Linear Mixed Model (GLMM) with Poisson family m3b_poisson (treating SSA as a count variable).
- 3. Linear Mixed Model (LMM) m3b_lmer (treating SSA as a continuous variable).

```
# Cumulative Link Mixed Model (CLMM) - Ordinal model with probit link
m3b_clmm <- clmm(
   Subjective.sexual.arousal.factor ~ Attractive.person.DSD * Gender * Relationship +
        (1 | Stimuli.code) + # Random intercept for Stimuli
        (1 | Participant), # Random intercept & slope for Relationship status
   data = dat_m3,
   link = "probit",
   control = list(method = "nlminb") # Use 'nlminb' optimizer for better convergence
)

# Generalized Linear Mixed Model (GLMM) - Poisson regression for count data
m3b_poisson <- glmer(
   Subjective.sexual.arousal ~ Attractive.person.DSD * Gender * Relationship +
        (1 | Stimuli.code) + # Random intercept for Stimuli
        (1 | Participant), # Random intercept & slope for Relationship status
   data = dat_m3,
   family = poisson # Poisson distribution for count data
)</pre>
```

```
# Linear Mixed Model (LMM) - Continuous approximation
m3b_lmer <- lmer(
   Subjective.sexual.arousal ~ Attractive.person.DSD * Gender * Relationship +
        (1 | Stimuli.code) + # Random intercept for Stimuli
        (1 | Participant), # Random intercept & slope for Relationship status
   data = dat_m3,
   control = lmerControl(optimizer = "bobyqa") # Use 'bobyqa' optimizer for stability
)</pre>
```

3.4.4.1.1 Table S31. ANOVA-type table of fixed effects (main effects and interactions) across the three fitted models As shown in the table below, the pattern of significant effects remains consistent across all three models, except for the main effect of gender, which is not significant in the CLMM.

```
reduce(
 list(
    # ANOVA results for the Cumulative Link Mixed Model (CLMM)
    Anova(m3b_clmm, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect"),
    # ANOVA results for the Generalized Linear Mixed Model (GLMM, Poisson),
   Anova(m3b_poisson, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect") |>
     select(Effect, Df, Chisq, `Pr(>Chisq)`) |>
     slice_tail(n = -1),
   anova(m3b_lmer, type = 3) |>
     as.data.frame() |>
     rownames to column("Effect") |>
     mutate(DenDF = round(DenDF, 2),
             `Pr(>F)` = pval.lev(`Pr(>F)`)) |>
     unite(col = "df", NumDF:DenDF, sep = ", ") |>
     select(Effect, df, `F value`, `Pr(>F)`)
   ),
  full_join,
  by = "Effect"
 mutate(Effect = str_replace_all(Effect, "\\.", " ")) |> # Replace dots with spaces
 mutate(Effect = str_replace_all(Effect, ":", " × ")) |> # Replace colons with ×
 kable(
   booktabs = TRUE,
   align = c("1", rep("c", 9)), # Align first column left, others center
   digits = 3,
   linesep = "",
    caption = "Comparison of fixed effects across the three models for Hypothesis 3b:
               CLMM, GLMM (Poisson), and LMM.",
   col.names = c(
     "Effect", rep(c("$df$", "$\\chi^2$", "$p$"), times = 2),
      "$df$", "$F$", "$p$"
```

Table S31. Comparison of fixed effects across the three models for Hypothesis 3b: CLMM, GLMM (Poisson), and LMM.

	CLMM		GLMER (Poisson)			$_{ m LMM}$			
Effect	df	χ^2	p	df	χ^2	p	df	F	p
Attractive person DSD	1	47.486	< 0.0001	1	47.634	< 0.0001	1, 315.21	46.796	< 0.0001
Gender	1	4.636	0.0313	1	4.229	0.0397	1,354.77	1.207	0.27
Relationship	1	0.928	0.34	1	0.353	0.55	1, 315.16	0.126	0.72
Attractive person DSD \times Gender	1	0.452	0.5	1	1.391	0.24	1, 314.97	7.064	0.0083
Attractive person DSD \times Relationship	1	0.525	0.47	1	0.130	0.72	1, 315.21	0.084	0.77
$Gender \times Relationship$	1	0.000	0.99	1	0.005	0.94	1, 315.06	0.001	0.97
Attractive person DSD \times Gender \times Relationship	1	0.215	0.64	1	0.213	0.64	1, 314.97	0.339	0.56

Note: For CLMM and GLMER (Poisson) models, results are Analysis of Deviance (Type III Wald chi-square tests), while for LMM, results are from an Analysis of Variance (Type III ANOVA with Satterthwaite's method). Significant effects are in bold.

3.4.4.1.2 Figure S18: Model-based predictions for Hypothesis 3b. This figure presents model-based predictions of subjective sexual arousal as a function of attractive person sexual desire, across different relationship status and participant genders. The three subplots correspond to the three statistical models used for analysis: (a) Cumulative Link Mixed Model (CLMM), (b) Generalized Linear Mixed Model (GLMM, Poisson), and (c) Linear Mixed Model (LMM). Shaded areas represent 95% confidence intervals.

```
# CLMM Predictions
p_m3b_clmm <- emmeans(m3b_clmm, ~ Attractive.person.DSD | Gender * Relationship,
    at = list(Attractive.person.DSD = seq(0, 31, length.out = 100)),
    mode = "mean.class"
) |> # Compute predicted mean response categories
    as.data.frame() |> # Convert to dataframe for ggplot
    ggplot(aes(
        x = Attractive.person.DSD, y = mean.class,
        color = Relationship, fill = Relationship
)) +
    geom_line(size = 1) + # Add predicted response line
    geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
        alpha = 0.2, color = NA
    ) + # Add confidence interval as shaded ribbon
    scale_color_manual(values = color.Relationship) + # Apply custom colors
```

```
scale fill manual(values = color.Relationship) +
  facet_wrap(~Gender, ncol = 1) + # Create separate plots for each gender
 labs(
   title = "CLMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() + # Apply custom theme
  theme(legend.position = "bottom") +
 ylim(c(0.3, 7)) # Set Y-axis limits
# Poisson GLMM Predictions
p_m3b_poisson <- emmeans(m3b_poisson, ~ Attractive.person.DSD | Gender * Relationship,
 at = list(Attractive.person.DSD = seq(0, 31, length.out = 100)),
  type = "response"
  as.data.frame() |>
 ggplot(aes(
   x = Attractive.person.DSD, y = rate,
   color = Relationship, fill = Relationship
 geom_line(size = 1) +
 geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.Relationship) +
  scale_fill_manual(values = color.Relationship) +
  facet_wrap(~Gender, ncol = 1) +
 labs(
   y = "", x = "Attractive Person Sexual Desire",
   title = "GLMER (Poisson)",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() +
  theme(legend.position = "bottom") +
 ylim(c(0.3, 7))
p_m3b_lmer <- emmeans(m3b_lmer, ~ Attractive.person.DSD | Gender * Relationship,
  at = list(Attractive.person.DSD = seq(0, 31, length.out = 100)),
  type = "response"
 as.data.frame() |>
 ggplot(aes(
   x = Attractive.person.DSD, y = emmean,
   color = Relationship, fill = Relationship
 geom_line(size = 1) +
 geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.Relationship) +
 scale fill manual(values = color.Relationship) +
  facet_wrap(~Gender, ncol = 1) +
 labs(
```

```
title = "LMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
) +
theme_tq() +
theme(legend.position = "bottom") +
ylim(c(0.3, 7))

# Arrange Plots into a Single Figure
p_robu_m3b <- ggarrange(p_m3b_clmm, p_m3b_poisson, p_m3b_lmer, # Combine plots side by side
   common.legend = TRUE, # Share legend across plots
   labels = "auto", # Automatically label subfigures (a, b, c)
   legend = "bottom",
   nrow = 1
) # Arrange in a single row

# Display the combined figure
p_robu_m3b</pre>
```


Figure S18. Predicted subjective sexual arousal as a function of attractive person sexual desire, modeled using three statistical approaches: (a) Cumulative Link Mixed Model (CLMM); (b) Generalized Linear Mixed Model (GLMM) with a Poisson family; (c) Linear Mixed Model (LMM). Lines represent predicted values, and shaded areas indicate 95% confidence intervals. The models include participant gender and relationship status as key factors.

3.4.4.2 Final Model: Effects of Attractive person TSD on SSA Across Gender and Stimuli Sex Given the aparent robustness of most results across models (CLMM, GLMER and LMM; Table S31, Fig. S18), we test the predictions of the hypothesis from the LMM (m3b_lmer).

3.4.4.2.1 Table S32. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

Table S32. Effects of Attractive person TSD on SSA Across Gender and Stimuli Sex

Effect	df	F	p	ϵ_p^2
Attractive person DSD	1, 315.21	46.80	< 0.0001	0.13
Gender	1, 354.77	1.21	0.27	< 0.001
Relationship	1, 315.16	0.13	0.72	< 0.0001
Attractive person DSD \times Gender	1, 314.97	7.06	0.0083	0.0188
Attractive person DSD \times Relationship	1, 315.21	0.08	0.77	< 0.0001
$Gender \times Relationship$	1, 315.06	0.00	0.97	< 0.0001
Attractive person DSD \times Gender \times Relationship	1, 314.97	0.34	0.56	< 0.0001

Note: Results are type III ANOVA. $R_{conditional}^2 = 0.719$, $R_{marginal}^2 = 0.225$. As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

3.4.4.2.2 *Post-hoc* tests To test the hypothesis, which predicted that there would be different relationship between SSA and attractive person TSD, and that this association differ between men and women depending on the sex of stimuli, we used simple slope analysis.

Slope for attractive person TSD on SSA by stimuli sex and participant gender

```
slop.m3b_lmer <- sim_slopes(m3b_lmer,</pre>
                            pred = Attractive.person.DSD,
                            modx = Relationship,
                            mod2 = Gender,
                            confint = TRUE)
slop.m3b_lmer.tab <- bind_rows(slop.m3b_lmer$slopes[[1]] |>
                                 mutate(Gender = "Women"),
                                slop.m3b_lmer$slopes[[2]] |>
                                 mutate(Gender = "Men")) |>
 mutate(Gender = recode_factor(Gender,
    Femenino = "Women",
   Masculino = "Men"
  select(8, 1:2, 4:7) |>
 mutate(across(3:7, as.numeric)) |>
 mutate(across(3:6, round, 2)) |>
 mutate(sig = pval.stars(p)) |>
  rename("Relationship" = "Value of Relationship") |>
  rename(Coefficient = Est.)
slop.m3b_lmer.tab[,-c(1,8)] |>
 mutate(p = pval.lev(p)) |>
 kable(booktabs = TRUE,
        align = c("l", rep("c", 5)),
        caption = "Slope for Attractive person TSD on
        Subjective sexual arousal by stimuli sex and gender",
        linesep = "",
        col.names = c("Relationship status",
                      "$B$".
                      "$2.5\\% CI$",
                      "$97.5\\% CI$",
                      "$t$",
                      "$p$"),
        escape = FALSE) |>
  kable_styling(latex_options = c("HOLD_position")) |>
```

```
pack_rows(
    group_label = "Gender: Women",
    start_row = 1,
    end_row = 2,
    bold = FALSE,
    background = "lightgray"
pack_rows(
    group_label = "Gender: Men",
    start_row = 3,
    end_row = 4,
    bold = FALSE,
    background = "lightgray"
footnote(general = "$B$ are unstandardized coefficient.
         No intercept is reported as continuous predictors were centered
         and are dependent on this specific sample.",
         threeparttable = TRUE,
         footnote_as_chunk = TRUE,
         escape = FALSE)
```

Table S33. Slope for Attractive person TSD on Subjective sexual arousal by stimuli sex and gender

Relationship status	В	2.5%CI	97.5%CI	t	p
Gender: Women					
Stable	0.04	0.01	0.08	2.39	0.0174
Single	0.05	0.01	0.09	2.31	0.0218
Gender: Men					
Stable	0.11	0.07	0.15	5.13	< 0.0001
Single	0.09	0.04	0.14	3.68	< 0.001

Note: B are unstandardized coefficient. No intercept is reported as continuous predictors were centered and are dependent on this specific sample.

3.4.4.3 Figure S19. Subjective sexual arousal to erotic stimuli: Main effects and interactions This figure summarizes the results of hypothesis 3b.

Figure S19. XXXXXX

3.4.5 Hypothesis 3c: Partner TSD

3.4.5.1 Model Robustness: Examining the Effects of Partner TSD on SSA Across Gender and Stimuli Sex To assess the robustness of our findings, we fitted three different models examining how Partner TSD predicts SSA, considering variations by gender and stimuli sex:

- 1. Cumulative Link Mixed Model (CLMM) m3c_clmm (for ordinal outcomes, using a probit link).
- 2. Generalized Linear Mixed Model (GLMM) with Poisson family m3c_poisson (treating SSA as a count variable).
- 3. Linear Mixed Model (LMM) m3c_lmer (treating SSA as a continuous variable).

```
# Linear Mixed Model (LMM) - Continuous approximation
m3c_lmer <- lmer(
   Subjective.sexual.arousal ~ Partner.DSD * Gender * Relationship +
        (1 | Stimuli.code) + # Random intercept for Stimuli
        (1 | Participant), # Random intercept & slope for Relationship status
   data = dat_m3,
   control = lmerControl(optimizer = "bobyqa") # Use 'bobyqa' optimizer for stability
)</pre>
```

3.4.5.1.1 Table S34. ANOVA-type table of fixed effects (main effects and interactions) across the three fitted models As shown in the table below, the pattern of significant effects remains consistent across all three models, except for the main effect of gender, which is not significant in the CLMM.

```
reduce(
 list(
    # ANOVA results for the Cumulative Link Mixed Model (CLMM)
    Anova(m3c_clmm, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect"),
    # ANOVA results for the Generalized Linear Mixed Model (GLMM, Poisson),
   Anova(m3c_poisson, type = 3) |>
     as.data.frame() |>
     mutate(`Pr(>Chisq)` = pval.lev(`Pr(>Chisq)`)) |>
     rownames_to_column("Effect") |>
     select(Effect, Df, Chisq, `Pr(>Chisq)`) |>
     slice_tail(n = -1),
   anova(m3c_lmer, type = 3) |>
     as.data.frame() |>
     rownames to column("Effect") |>
     mutate(DenDF = round(DenDF, 2),
             `Pr(>F)` = pval.lev(`Pr(>F)`)) |>
     unite(col = "df", NumDF:DenDF, sep = ", ") |>
     select(Effect, df, `F value`, `Pr(>F)`)
   ),
  full_join,
  by = "Effect"
 mutate(Effect = str_replace_all(Effect, "\\.", " ")) |> # Replace dots with spaces
 mutate(Effect = str_replace_all(Effect, ":", " × ")) |> # Replace colons with ×
 kable(
   booktabs = TRUE,
   align = c("l", rep("c", 9)), # Align first column left, others center
   digits = 3,
   linesep = "",
    caption = "Comparison of fixed effects across the three models for Hypothesis 3c:
               CLMM, GLMM (Poisson), and LMM.",
   col.names = c(
     "Effect", rep(c("$df$", "$\\chi^2$", "$p$"), times = 2),
      "$df$", "$F$", "$p$"
```

Table S34. Comparison of fixed effects across the three models for Hypothesis 3c: CLMM, GLMM (Poisson), and LMM.

	CLMM		GLMER (Poisson)			LMM			
Effect	\overline{df}	χ^2	p	\overline{df}	χ^2	p	\overline{df}	F	p
Partner DSD	1	0.039	0.84	1	2.932	0.09	1, 311.9	3.163	0.08
Gender	1	2.276	0.13	1	2.719	0.1	1, 328.45	2.500	0.11
Relationship	1	0.080	0.78	1	0.062	0.8	1, 311.9	0.670	0.41
Partner DSD \times Gender	1	0.645	0.42	1	0.651	0.42	1, 311.98	1.153	0.28
Partner DSD \times Relationship	1	0.471	0.49	1	0.501	0.48	1, 311.9	1.374	0.24
$Gender \times Relationship$	1	4.340	0.0372	1	7.102	0.0077	1, 311.9	8.505	0.0038
Partner DSD \times Gender \times Relationship	1	3.905	0.0481	1	6.593	0.0102	1, 311.94	8.308	0.0042

Note: For CLMM and GLMER (Poisson) models, results are Analysis of Deviance (Type III Wald chi-square tests), while for LMM, results are from an Analysis of Variance (Type III ANOVA with Satterthwaite's method). Significant effects are in bold.

3.4.5.1.2 Figure S20: Model-based predictions for Hypothesis 3c. This figure presents model-based predictions of subjective sexual arousal as a function of partner sexual desire, across different relationship status and participant genders. The three subplots correspond to the three statistical models used for analysis: (a) Cumulative Link Mixed Model (CLMM), (b) Generalized Linear Mixed Model (GLMM, Poisson), and (c) Linear Mixed Model (LMM). Shaded areas represent 95% confidence intervals.

```
# CLMM Predictions
p_m3c_clmm <- emmeans(m3c_clmm, ~ Partner.DSD | Gender * Relationship,
    at = list(Partner.DSD = seq(0, 31, length.out = 100)),
    mode = "mean.class"
) |> # Compute predicted mean response categories
    as.data.frame() |> # Convert to dataframe for ggplot
    ggplot(aes(
        x = Partner.DSD, y = mean.class,
        color = Relationship, fill = Relationship
    )) +
    geom_line(size = 1) + # Add predicted response line
    geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
    alpha = 0.2, color = NA
```

```
) + # Add confidence interval as shaded ribbon
  scale_color_manual(values = color.Relationship) + # Apply custom colors
  scale_fill_manual(values = color.Relationship) +
  facet_wrap(~Gender, ncol = 1) + # Create separate plots for each gender
  labs(
   title = "CLMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() + # Apply custom theme
  theme(legend.position = "bottom") +
  ylim(c(0.3, 8)) # Set Y-axis limits
# Poisson GLMM Predictions
p_m3c_poisson <- emmeans(m3c_poisson, ~ Partner.DSD | Gender * Relationship,
  at = list(Partner.DSD = seq(0, 31, length.out = 100)),
  type = "response"
 as.data.frame() |>
  ggplot(aes(
   x = Partner.DSD, y = rate,
   color = Relationship, fill = Relationship
  geom_line(size = 1) +
 geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
   alpha = 0.2, color = NA
 scale_color_manual(values = color.Relationship) +
 scale_fill_manual(values = color.Relationship) +
 facet_wrap(~Gender, ncol = 1) +
 labs(
   title = "GLMER (Poisson)",
   color = "Stimuli Sex", fill = "Stimuli Sex"
  theme_tq() +
  theme(legend.position = "bottom") +
 ylim(c(0.3, 8))
p_m3c_lmer <- emmeans(m3c_lmer, ~ Partner.DSD | Gender * Relationship,
  at = list(Partner.DSD = seq(0, 31, length.out = 100)),
  type = "response"
 as.data.frame() |>
  ggplot(aes(
   x = Partner.DSD, y = emmean,
   color = Relationship, fill = Relationship
  geom_line(size = 1) +
 geom_ribbon(aes(ymin = asymp.LCL, ymax = asymp.UCL, fill = Relationship),
   alpha = 0.2, color = NA
  scale_color_manual(values = color.Relationship) +
  scale_fill_manual(values = color.Relationship) +
  facet_wrap(~Gender, ncol = 1) +
```

```
labs(
   y = "", x = "partner sexual desire",
   title = "LMM",
   color = "Stimuli Sex", fill = "Stimuli Sex"
) +
   theme_tq() +
   theme(legend.position = "bottom") +
   ylim(c(0.3, 8))

# Arrange Plots into a Single Figure
p_robu_m3c <- ggarrange(p_m3c_clmm, p_m3c_poisson, p_m3c_lmer, # Combine plots side by side
   common.legend = TRUE, # Share legend across plots
   labels = "auto", # Automatically label subfigures (a, b, c)
   legend = "bottom",
   nrow = 1
) # Arrange in a single row

# Display the combined figure
p_robu_m3c</pre>
```


Figure S20. Predicted subjective sexual arousal as a function of partner sexual desire, modeled using three statistical approaches: (a) Cumulative Link Mixed Model (CLMM); (b) Generalized Linear Mixed Model (GLMM) with a Poisson family; (c) Linear Mixed Model (LMM). Lines represent predicted values, and shaded areas indicate 95% confidence intervals. The models include participant gender and relationship status as key factors.

3.4.5.2 Final Model: Effects of Partner TSD on SSA Across Gender and Stimuli Sex Given the aparent robustness of most results across models (CLMM, GLMER and LMM; Table S34, Fig. S20), we test the predictions of the hypothesis from the LMM (m3c_lmer).

3.4.5.2.1 Table S35. ANOVA-type table for the interaction between Relationship type, and Gender This tables summarizes the results of the model.

Table S35. Effects of Partner TSD on SSA Across Gender and Stimuli Sex

Effect	df	F	p	ϵ_p^2
Partner DSD	1, 311.9	3.16	0.08	0.0069
Gender	1, 328.45	2.50	0.11	0.0045
Relationship	1, 311.9	0.67	0.41	< 0.0001
Partner DSD \times Gender	1, 311.98	1.15	0.28	< 0.001
Partner DSD \times Relationship	1, 311.9	1.37	0.24	0.0012
$Gender \times Relationship$	1, 311.9	8.51	0.0038	0.0234
Partner DSD \times Gender \times Relationship	1, 311.94	8.31	0.0042	0.0228

Note: Results are type III ANOVA. $R_{conditional}^2 = 0.719$, $R_{marginal}^2 = 0.182$. As effect size, we report partial epsilon squared (ϵ_p^2) , which provides a less biases estimate than η^2 (see Albers and Lakens, 2018). Significant effects are in bold.

3.4.5.2.2 *Post-hoc* tests To test the hypothesis, which predicted that there would be different relationship between SSA and Partner TSD, and that this association differ between men and women depending on the sex of stimuli, we used simple slope analysis.

Slope for Partner TSD on SSA by stimuli sex and participant gender

```
slop.m3c_lmer <- sim_slopes(m3c_lmer,</pre>
                            pred = Partner.DSD,
                            modx = Relationship,
                            mod2 = Gender,
                            confint = TRUE)
slop.m3c_lmer.tab <- bind_rows(slop.m3c_lmer$slopes[[1]] |>
                                  mutate(Gender = "Women"),
                                slop.m3c_lmer$slopes[[2]] |>
                                  mutate(Gender = "Men")) |>
 mutate(Gender = recode_factor(Gender,
    Femenino = "Women",
   Masculino = "Men"
  select(8, 1:2, 4:7) |>
 mutate(across(3:7, as.numeric)) |>
 mutate(across(3:6, round, 2)) |>
 mutate(sig = pval.stars(p)) |>
  rename("Relationship" = "Value of Relationship") |>
  rename(Coefficient = Est.)
slop.m3c_lmer.tab[,-c(1,8)] |>
 mutate(p = pval.lev(p)) |>
 kable(booktabs = TRUE,
        align = c("l", rep("c", 5)),
        caption = "Slope for Partner TSD on
        Subjective sexual arousal by stimuli sex and gender",
        linesep = "",
        col.names = c("Relationship status",
                      "$B$".
                      "$2.5\\% CI$",
                      "$97.5\\% CI$",
                      "$t$",
                      "$p$"),
        escape = FALSE) |>
  kable_styling(latex_options = c("HOLD_position")) |>
```

```
pack_rows(
    group_label = "Gender: Women",
    start_row = 1,
    end_row = 2,
    bold = FALSE,
    background = "lightgray"
pack_rows(
    group_label = "Gender: Men",
    start_row = 3,
    end_row = 4,
    bold = FALSE,
    background = "lightgray"
footnote(general = "$B$ are unstandardized coefficient.
         No intercept is reported as continuous predictors were centered
         and are dependent on this specific sample.",
         threeparttable = TRUE,
         footnote_as_chunk = TRUE,
         escape = FALSE)
```

Table S36. Slope for Partner TSD on Subjective sexual arousal by stimuli sex and gender

Relationship status	В	2.5%CI	97.5%CI	t	p
Gender: Women					
Stable	0.03	-0.01	0.06	1.54	0.12
Single	-0.01	-0.04	0.02	-0.73	0.47
Gender: Men					
Stable	-0.01	-0.07	0.05	-0.41	0.68
Single	0.07	0.04	0.11	4.02	< 0.0001

Note: B are unstandardized coefficient. No intercept is reported as continuous predictors were centered and are dependent on this specific sample.

3.4.5.3 Figure S21. Subjective sexual arousal to erotic stimuli: Main effects and interactions This figure summarizes the results of hypothesis 3c.

```
#size = 3,
show.legend = FALSE) +
theme(legend.position = "bottom")
```


Figure S21. XXXXXX

4 Session info (for reproducibility)

```
library(pander)
pander(sessionInfo(), locale = FALSE)
```

R version 4.4.2 (2024-10-31)

Platform: x86_64-pc-linux-gnu

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: pander(v.0.6.5), Hmisc(v.5.2-2), lubridate(v.1.9.4), forcats(v.1.0.0), stringr(v.1.5.1), dplyr(v.1.1.4), purrr(v.1.0.4), readr(v.2.1.5), tidyr(v.1.3.1), tibble(v.3.2.1), tidyverse(v.2.0.0), interactions(v.1.2.0), ggpubr(v.0.6.0), ggplot2(v.3.5.1), effectsize(v.1.0.0), rstatix(v.0.7.2), bestNormalize(v.1.9.1), berryFunctions(v.1.22.5), emmeans(v.1.10.7), scales(v.1.3.0), psych(v.2.4.12), kableExtra(v.1.4.0), performance(v.0.13.0), PerformanceAnalytics(v.2.0.8), quantmod(v.0.4.26), TTR(v.0.24.4), xts(v.0.14.1), zoo(v.1.8-12), tidyquant(v.1.0.10), car(v.3.1-3), carData(v.3.0-5), ltm(v.1.2-0), polycor(v.0.8-1), msm(v.1.8.2), MASS(v.7.3-64), lmerTest(v.3.1-3), ordinal(v.2023.12-4.1), lme4(v.1.1-36), Matrix(v.1.7-2), readxl(v.1.4.3) and knitr(v.1.49)

loaded via a namespace (and not attached): rstudioapi(v.0.17.1), datawizard(v.1.0.0), magrittr(v.2.0.3), TH.data(v.1.1-3), estimability(v.1.5.1), farver(v.2.1.2), nloptr(v.2.1.1), rmarkdown(v.2.29), vctrs(v.0.6.5), minqa(v.1.2.8), base64enc(v.0.1-3), butcher(v.0.3.4), htmltools(v.0.5.8.1), curl(v.6.2.0), broom(v.1.0.7), cellranger(v.1.1.0), Formula(v.1.2-5), parallelly(v.1.41.0), htmlwidgets(v.1.6.4), sandwich(v.3.1-1), admisc(v.0.37), lifecycle(v.1.0.4), iterators(v.1.0.14), pkgconfig(v.2.0.3), R6(v.2.5.1), fastmap(v.1.2.0), rbibutils(v.2.3), future(v.1.34.0), digest(v.0.6.37), numDeriv(v.2016.8-1.1), colorspace(v.2.1-1), furrr(v.0.3.1), labeling(v.0.4.3), timechange(v.0.3.0), abind(v.1.4-8), compiler(v.4.4.2), rngtools(v.1.5.2), withr(v.3.0.2), doParallel(v.1.0.17), htmlTable(v.2.4.3), backports(v.1.5.0), broom.mixed(v.0.2.9.6), ggsignif(v.0.6.4), lava(v.1.8.1), ucminf(v.1.2.2), tools(v.4.4.2), foreign(v.0.8-88), RobStatTM(v.1.0.11), future.apply(v.1.11.3), nnet(v.7.3-20), glue(v.1.8.0), quadprog(v.1.5-8), nlme(v.3.1-167),

 $grid(v.4.4.2),\ checkmate(v.2.3.2),\ cluster(v.2.1.8),\ see(v.0.10.0),\ generics(v.0.1.3),\ recipes(v.1.1.0),\ gtable(v.0.3.6),\ nortest(v.1.0-4),\ tzdb(v.0.4.0),\ class(v.7.3-23),\ hms(v.1.1.3),\ data.table(v.1.16.4),\ xml2(v.1.3.6),\ foreach(v.1.5.2),\ pillar(v.1.10.1),\ splines(v.4.4.2),\ lattice(v.0.22-6),\ survival(v.3.8-3),\ tidyselect(v.1.2.1),\ gridExtra(v.2.3),\ reformulas(v.0.4.0),\ bookdown(v.0.42),\ svglite(v.2.1.3),\ xfun(v.0.50),\ expm(v.1.0-0),\ hardhat(v.1.4.0),\ timeDate(v.4.04.1.110),\ stringi(v.1.8.4),\ yaml(v.2.3.10),\ boot(v.1.3-31),\ evaluate(v.1.0.3),\ codetools(v.0.2-20),\ cli(v.3.6.3),\ rpart(v.4.1.24),\ xtable(v.1.8-4),\ parameters(v.0.24.1),\ systemfonts(v.1.2.1),\ Rdpack(v.2.6.2),\ munsell(v.0.5.1),\ Rcpp(v.1.0.14),\ globals(v.0.16.3),\ coda(v.0.19-4.1),\ parallel(v.4.4.2),\ gower(v.1.0.2),\ bayestestR(v.0.15.1),\ doRNG(v.1.8.6.1),\ listenv(v.0.9.1),\ viridisLite(v.0.4.2),\ mvtnorm(v.1.3-3),\ ipred(v.0.9-15),\ prodlim(v.2024.06.25),\ insight(v.1.0.1),\ rlang(v.1.1.5),\ cowplot(v.1.1.3),\ multcomp(v.1.4-28),\ mnormt(v.2.1.1)\ and\ jtools(v.2.3.0)$

5 Supplementary references

- Albers, C., & Lakens, D. (2018). When power analyses based on pilot data are biased: Inaccurate effect size estimators and follow-up bias. *Journal of Experimental Social Psychology*, 74, 187–195. https://doi.org/10.1016/j.jesp.2017.09.004
- Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. *Journal of Statistical Software*, 67(1), 1–48. https://doi.org/10.18637/jssy067.j01
- Christensen, R. H. B. (2023). Ordinal—regression models for ordinal data [R package version 2023.12-4.1]. https://CR AN.R-project.org/package=ordinal
- Gabry, J., Simpson, D., Vehtari, A., Betancourt, M., & Gelman, A. (2019). Visualization in Bayesian Workflow. *Journal* of the Royal Statistical Society Series A: Statistics in Society, 182(2), 389–402. https://doi.org/10.1111/rssa.12 378
- Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 1–26. https://doi.org/10.18637/jss.v082.i13
- Lenth, R. V. (2023). Emmeans: Estimated marginal means, aka least-squares means [R package version 1.8.9]. https://C RAN.R-project.org/package=emmeans
- Long, J. A. (2019). Interactions: Comprehensive, user-friendly toolkit for probing interactions [R package version 1.1.0]. https://cran.r-project.org/package=interactions
- Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Makowski, D. (2021). performance: An R package for assessment, comparison and testing of statistical models. Journal of Open Source Software, 6(60), 3139. https://doi.org/10.21105/joss.03139

- Peterson, R., A. (2021). Finding Optimal Normalizing Transformations via best Normalize. The R Journal, 13(1), 310. ht tps://doi.org/10.32614/RJ-2021-041
- Peterson, R. A., & Cavanaugh, J. E. (2020). Ordered quantile normalization: A semiparametric transformation built for the cross-validation era. *Journal of Applied Statistics*, 47(13–15), 2312–2327. https://doi.org/10.1080/02664763.2019.1630372
- Rizopoulos, D. (2006). ltm: An R package for latent variable modeling and item response theory analyses. *Journal of Statistical Software*, 17(5), 1–25. https://doi.org/10.18637/jss.v017.i05
- Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis.

 Springer-Verlag New York. https://ggplot2.tidyverse.org
- Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D., François, R., Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T. L., Miller, E., Bache, S. M., Müller, K., Ooms, J., Robinson, D., Seidel, D. P., Spinu, V., ... Yutani, H. (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686. ht tps://doi.org/10.21105/joss.01686
- Wickham, H., François, R., Henry, L., Müller, K., & Vaughan, D. (2023). Dplyr: A grammar of data manipulation [R package version 1.1.3]. https://CRAN.R-project.org/package=dplyr
- Xie, Y. (2014). Knitr: A comprehensive tool for reproducible research in R [ISBN 978-1466561595]. In V. Stodden, F. Leisch & R. D. Peng (Eds.), Implementing reproducible computational research. Chapman and Hall/CRC. https://doi.org/10.1201/9781315373461-1
- Zhu, H. (2021). Kableextra: Construct complex table with 'kable' and pipe syntax [R package version 1.3.4]. https://CRA N.R-project.org/package=kableExtra