Assignment Project Exam Help

Factor Ana https://powcoder.com Add WeChat powcoder

Ch.3 Multivariate Data Analysis. Joseph Hair et al. 2014. Pearson Avilash Navlani. 2019. Introduction to Factor Analysis in Python Jay Narayan. 2019. Multiple Linear Regression & Factor Analysis in R

Interdependence versus Dependence

a variable is identified as the dependent variable to be predicted or explained

Multiple relationships

of dependent and

independent variables

Structural

equation

modeling

defined as being independent or dependent What type of Dependence relationship is Interdependence • being examined? How many variables are Is the structure being of relationships predicted? among: Assignment Project Exam Help https://powcoder.com Cases/Respondents Objects One dependent variable in a single relationship What is the Add WeChat powcodery How are the measurement scale of the Cluster analysis attributes dependent measured? variable? Metric Nonmetric Metric Nonmetric Multiple Multiple regression - Nonmetric discriminant analysis Linear probability Conjoint analysis models Multidimensional Correspondence scaling analysis

no single variable is

(Hair et al., 2014. Ch1)

Dimensions

Data Matrix M

Each row - an observation in the space (the graph) also called sample Each column - an attribute, also called dimension

```
Assignment Projects Exam4 Help [4.7, 3.2, 1.3, 0.2], [4.6, 3.1, 1.5, 0.2], [4.6, 3.1, 1.5, 0.2], [5.4, 3.9, 1.7, 0.4], [5.4, 3.9, 1.7, 0.4], [4.6, 3.4, 1.4, 0.3], [4.6, 3.4, 1.4, 0.3], [4.6, 3.4, 1.4, 0.3], [4.6, 3.4, 1.5, 0.2], [4.9, 3.1, 1.5, 0.1], [5.4, 3.7, 1.5, 0.2],
```

Overfitting

Irrelevant and correlated attributes can even decrease the performance in some algorithms

Factor analysis and PCA play a role in the reduction of these dimensions

Principal Component and Factor Analysis

Statistical approaches to analyze interrelationships among a large number of variables and to explain these variables in terms of their common underlying dimensions (factors).

The same steps — extraction, interpretation roject Fair Fair Common version, and choosing the number of factors or components.

https://powcoder.com

- Factor analysis makes assumption is that there are implicit features responsible for the features of the dataset
- FA: we infer the existence of latent variables that explain the pattern of correlations among our observed variables

FA Example

"What underlying attitudes lead people to respond to the questions on a political survey?

Examining the correlations among the journey items. The pals that there is significant overlap among various subgroups of items. Questions about taxes tend to correlate with each other, painting and so on.

With factor analysis, you can investigate the number of underlying factors.

Additionally, you can compute factor scores for each respondent, which can then be used in subsequent analyses. For example, you might build a logistic regression model to predict voting behavior based on factor scores."

IBM Knowledge Center

Factor Analysis

Univariate Techniques a single variable

Multivariate Techniques a possible correlation between many variables

How to manage the ses want in the Project Exam Help

https://powcoder.com

Factor Analysis Add WeChat powcoder

- Examines the interrelationships among a large number of variables and attempts to explain them in terms of their **common underlying dimensions**

factors

- A data reduction technique that does not have dependent and independent variables.

Terminology

Variance

How far the data is spread out

Unique Variance

Variance of the variable is not associated with other variables

Shared Variance

Variance is shared with other variances, creating redundancy in the data

Variate

the linear composite of variables

Example

Original Correlation Matrix (no visible patterns)

	V ₁	V /2	V /3	V /4,	V /5	V /6	V ₇₇	W 8	W ₉		
V ₁ Price Level	1.00										
V₂ Store Personnel	.427	1.00					•			<u> </u>	,
V ₃ Return Policy	.302	.771	1.00		A	ASS	\$19	nn	ier	it P	rc
V ₄ Product Availability	.470	.497	.427	1.00			0				7.
V₅ Product Quality	.765	.406	.307	.472	1.00						
V ₆ Assortment Depth	.281	.445	.423	.713	.325	1.00	h	ttn	S:/	/n/	W
V ₇ Assortment Width	.354	.490	.471	.719	.378	.772244	11.00	T			* */
V ₈ In-Store Service	.242	.719	.733	.428	.240	.311	435	11.00		/	
V₃ Store Atmosphere	.372	.737	.7774	.479	.326	.429	.466	# G	11.00	Je(h

(Hair et al. 2015. Ch3)

Factor 1: in-store experience '

Factor 2: product offerings

Factor 3: Value

Correlation Matrix in Factor Analysis (three patterns)

1 /									
	V ₃	V ₈	V ₉	V ₂	V ₆	V ₇	V ₄	V ₁	V ₅
V₃ Return Policy	1.00								
V ₈ In-store Service	.733	1.00							
Va Store Atroosphere	774	17710	1.00						
V₂ Store Personnel	.741	719	.787	1.00					
V ₆ Assortment Depth	.423	.311	.429	.445	1.00				
V-Assortment Width	.471	.435	.468	.490	.724	1.00			
V₄ Product Availability	.427	.428	.479	.497	.713	.719	1.00		
V ₁ Price Level	.302	.242	.372	.427	.281	.354	.470	1. 00	
V. Product Quality	-307	.240	.326	.406	.325	.378	.472	.765	1.00

(Hair et al, 2014. Ch3)

Goal: **Grouping** highly **intercorrelated** variables into distinct sets (**factors**)

Usage: Market research, advertising, finance, operation research etc. (to identify brand features, channel selection criteria...)

Factor Analysis Outcomes

1. Data summarization = derives underlying dimensions that describe the data in a much smaller number of concepts than the original individual variables. Assignment Project Exam Help

https://powcoder.com

2. **Data reduction** = extends the process of datawcoder summarization by deriving an empirical value (factor score) for each dimension (factor) and then substituting this value for the original values.

The goal of data summarization is achieved by defining a small number of factors that adequately represent the original set of variables

The goal is to retain the **nature and character** of the original variables, but reduce their number to simplify the subsequent multivariate analysis

Types of Factor Analysis

1. Exploratory Factor Analysis EFA= is used to discover the factor structure of a construct and examine its reliability. It is data driven ment Project Exam Help

https://powcoder.com

2. Confirmatory Factor Analysis CFA = is used to confirm the fit of the hypothesized factor structure to the observed (sample) data. It is theory driven.

Factor Analysis is
interdependent
technique— no distinction
between dependent and
independent variables

Factor Analysis

Each observable variable is a linear function of independent factors and error term

The communality of the variable is the part that is explained by the common factors F1 and F2

The specific variance is the part of the variance of Yi that is not accounted by the common factors

Loadings are the weights that the variable has for constructing a factor. The higher the load is, the more relevant in defining the factor's dimensionality.

(Barbara Engelhart, 2013, Factor Analysis Lecture; Peter Tryfos, 1997, Chapter 14, Factor Ana; lysis)

Two Steps

Factor Extraction

Determine the number of factors: eigenvalue > 1 or "elbow" (Scree

plot)

Eigenvalue

1.2 2.3 3.5

1.2 2.5 3.5

1.2 2.5 3.5

1.2 2.5 3.5

1.2 3.5

1.2 3.5

1.2 3.5

Factor Rotation

Assignment Project Exam Help 11 12
The axes of the factors can be rotated within the multidimensional variable

Varimax Method minimizes the number of variables that have high loadings on each factor.

Step 1 Data

How many dimensions? What are the variables types? What are the variable names? Remove ID

library(readr) library(psych) library(tidyverse) library(Hmisc) library(car) data <- read_csv("Factor-Hair-Revised.csv")

100 x 13 dim(data) And site and the profession of names (data)

data_Xs<//select(datales(1))m

Step 2 Correlation Matrix

datamatrix <- cor(data_X) corrplot(datamatrix, order="hclust", type='upper', tl.srt = 45)

- 1. CompRes and Del Speed are highly correlated
 - 2. OrdBilling and CompRes are highly correlated
 - 3. WartyClaim and TechSupport are highly correlated
 - 4. OrdBilling and DelSpeed are highly correlated
 - 5. Ecom and SalesFI mage are highly correlated

Step 2 (cont.)

Recall Assumptions of Linear Regression: Linearity, Homoscedasticity, Residuals normality, No Multicollinearity

model <- Im(Satisfaction ~., data = data_X) vif(model)

VIF (High Variable Inflation Factor) > 2.5

CompRes Advertising ProdQual Ecom TechSup ProdLine 1.635797 2.756694 2.976796 4.730448 1.508933 3.488185 SalesFImage ComPricing WartyClaim OrdBilling DelSpeed 3,439420 1.635000 3.198337 6.516014 2.902999

Significant Pairs

Step 3 Testing for FA - Kaiser-Meyer-Olkin (KMO)

- Test measures the suitability of data for factor analysis
- KMO values range between 0 and 1
- Value of KMO less than 0.6 is considered inadequate

Assignment Project Exam Help

```
Remove Dependent variable -
data_fa <- data_X[,-12]
                                    https://powcoder.com
datamatrix <- cor(data_fa)
KMO(r=datamatrix)
                                   Add WeChat powcoder
                                         MSA > 0.5
                                         Factor Analysis is appropriate
Kaiser-Meyer-Olkin factor adequacy
Call: KMO(r = datamatrix)
                                         on this data
Overall MSA = 0.65
MSA for each item =
                                    CompRes Advertising
   ProdQual
                         TechSup
                                                        ProdLine
                 Ecom
      0.51
                 0.63
                            0.52
                                      0.79
                                                 0.78
                                                            0.62
SalesFImage ComPricing WartyClaim OrdBilling
                                              DelSpeed
      0.62
                 0.75
                            0.51
                                      0.76
                                                 0.67
```

Step 4 Number of Factors

- Calculate eigen values
- Plot eigen values in a scree plot
- Determine Number of factors

ev <- eigen(cor(data_fa)) ev\$values Assignment Project Exam Help

[1] 3.42697133 2.55089671 1.69097648 1.08655606 0.60942409 0.55188378 [7], 0.40151815 0, 24695154 0.20355327 0.13284158 0.09842702

https://powcoder.com

Factor

Step 5 Run Factor Analysis

nfactors <- 4
fit1 <-factanal(data_fa,nfactors,scores =
c("regression"),rotation = "varimax")
print(fit1)

Assignment Project

fa_var <- fa(r=data_fa, nfactors = 4, rotate="varimax",fm="pa")

fa.diagram(fanone)

Loadings:

			Factor1	Factor2	Factor3	Factor4
	Pro	odQual				0.557
	Eco	om		0.793		
	Te	chSup			0.872	0.102
	Cor	mpRes	0.884	0.142		0.135
s =	Adv	vertising	0.190	0.521		-0.110
	Pro	odLine	0.502		0.104	0.856
	ment Project 🗟	lesFImage	0.119	0.974		-0.130
ıgnı	nent Project &	mpatti rigle	ip .	0.225	-0.216	-0.514
	Wa	rtyClaim			0.894	0.158
htt	ps://powcoder.	<mark>Ϙlthi</mark> ng	0.794	0.101	0.105	
r Analysis		lSpeed	0.928	0.189		0.164

Add WeChat powcoder

DelSpeed 6.9	
CompRes 0.9	$\widehat{DA1}$
OrdBilling ← − 0.8	<u> </u>
SalesFImage	_
Ecom 6.8	PA2
Advertising -0.5	
WartyClaim ← 0.9	PA3
TechSup -0.9	
ProdLine 6.7	\odot
ProdQual 0.6	7A4)
ComPricing <0.6	

Factor Analysis

JW COUCI	Factor1	Factor2	Factor3	Factor4
SS loadings	2.592	1.977	1.638	1.423
Proportion Var	0.236	0.180	0.149	0.129
Cumulative Var	0.236	0.415	0.564	0.694

Step 6 Regression

- Extract scores from factor analysis
- Combine response and predictors
- Label factors

	PA1	PA2	PA3	PA4
[1,]	-0.1338871	0.9175166	-1.719604873	0.09135411
[2,]	1.6297604	-2.0090053	-0.596361722	0.65808192
[3,]	0.3637658	0.8361736	0.002979966	1.37548765
[4,]	-1.2225230	-0.5491336	1.245473305	-0.64421384
[5,]	-0.4854209	-0.4276223	-0.026980304	0.47360747
[6,]	-0.5950924	-1.3035333	-1.183019401	-0.95913571

Label

head(fa_var\$scores)

https://powcoder.complete.compRes, OrdBilling Purchase

regdata <- cbind(data_X[12], fa_var\$scores) #Labeling the data A

Add WeChat po

Assignment Project Exam Help

names(regdata) <- c("Satisfaction", "Purchase", "Marketing", "Post_purchase", "Prod_positioning")

	Satisfaction <dbl></dbl>	Purchase <dbl></dbl>	Marketing <dbl></dbl>	Post_purchase <dbl></dbl>	Prod_positioning <dbl></dbl>
1	8.2	-0.1338871	0.9175166	-1.719604873	0.09135411
2	5.7	1.6297604	-2.0090053	-0.596361722	0.65808192
3	8.9	0.3637658	0.8361736	0.002979966	1.37548765
4	4.8	-1.2225230	-0.5491336	1.245473305	-0.64421384
5	7.1	-0.4854209	-0.4276223	-0.026980304	0.47360747
6	4.7	-0.5950924	-1.3035333	-1.183019401	-0.95913571

)	weo(ersFlmage, Ecom, Advertising	Marketing
20	PA3	WartyClaim, TechSup	Post Purchase
	PA4	ProdLine, ProdQual, CompPricing	Product Position

Step 6 Regression (cont)

- Split data in train 0.7 and test 0.3
- Train model

```
set.seed(100)
indices= sample(1:nrow(regdata), 0.7* nrow(regdata))
train=regdata[indices,]
test = regdata[-indices,]
```

Assignment Project Exam Help

lm(formula = Satisfaction ~ ., data = train)

#Regression Model using train data model 1 = Im(Satisfaction~., train) summary(model 1)) https://powcoder.com.

Min 1Q Median 3Q Max -1.6857 -0.4018 0.1051 0.4027 1.2036

Add WeChat powcoder

```
Checking for multicollinearity VIF
```

vif(model 1)

Purchase Marketing Post_purchase Prod_positioning 1.012217 1.009683 1.009037 1.012533

Estimate Std. Error t value Pr(>|t|) 6.92625 0.08263 83.827 < 2e-16 *** (Intercept) 0.62022 Purchase 0.08408 7.377 3.73e-10 *** Marketina 0.57735 0.08047 7.175 8.50e-10 *** Post_purchase 0.09567 0.08667 1.104 0.274 Prod_positioning 0.66562 0.09374 7.101 1.15e-09 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6814 on 65 degrees of freedom Multiple R-squared: 0.7079, Adjusted R-squared: 0.69 F-statistic: 39.39 on 4 and 65 DF, p-value: < 2.2e-16

Step 7 Prediction

```
library(Metrics)
pred_test1 <- predict(model 1, newdata = test, type = "response")</pre>
```

test\$Satisfaction_Predicted <- predatestignment Project Exam Help head(test[c(1,6)], 10)

https://powc	oder.comfa	ction <dbl></dbl>	Satisfaction_Predicted <dbl></dbl>
	1	8.2	7.269232
Add WeCha	t powcode:	5.7	7.158146
	3	8.9	8.550469
	4	4.8	5.541333
	5	7.1	6.690958
	7	5.7	4.661277
	14	7.6	7.963941
	21	5.4	5.570249
	23	7.0	7.704405
	27	6.3	7.361437