

tecnologia e inovação

Uma escola do grupo **CNA**®

## Para o Professor

https://www.loom.com/share/0a42a4dad8a

4456a8ceae59a0cedba93

# **Objetivos:**

- Ensinar técnicas fundamentais de limpeza de dados usando um dataset de rede social, abordando tipos de dados, tratamento de valores nulos e codificação de categorias.

# Todos com Logados no Portal do Aluno?



# Mineração de Dados





## Para o Professor

O conteúdo dos slides que se seguem (até a parte do primeiro dataframe) está presente na leitura obrigatória pré-aula. Por isso não gaste mais do que 5 minutos em todos estes tópicos, apenas para refrescar a memória da turma.



## Data Frame de Rede Social

Nessa primeira parte do projeto, você irá aprender a fazer a limpeza de dados de um arquivo csv.

#### **CHECKLIST DA AULA** - Acompanhe seu progresso [imprimir]





### Dados de Rede Social

Relembrando a leitura pré-aula... Análise de Dados de Redes Sociais

- O que são redes
- Qual a importânce da análise de dados de reses ser les?
- O que são Dados an e Qualitativo xemplos.





## Professor

Incentive seus alunos a irem marcando o Checklist conforme você avança na aula. Faça isso junto com a turma



# Introdução à Limpeza de Dados

Dados brutos geralmente possuem inconsistências, valores nulos e formatos variados.

Limpeza de dados é um dos processos mais importantes da Ciência de Dados e Inteligência Artificial.

#### **Curiosidade:**

 Em projetos de IA, cerca de 80% do tempo é gasto na limpeza e preparação dos dados, e apenas 20% na modelagem!

## Data Frame de Rede Social

Nesse projeto os dados foram coletados através de Web Scraping

e **APIs**:

Primeiro, voc isará im o arquivo "<u>Rede Social Ctrlpla sv</u> m Data Fra Pandas.

```
import pandas as
df = pd.read_csv
#pd.read_csv():
df
céLULA

import pandas as
df = pd.read_csv
#pd.read_csv():
df
céLULA

amport pandas as
de_Social_Ctrlplay.csv'
ame do Pandas.
df
```



## Data Frame de Rede Social

```
import pandas as pd
df = pd.read_csv('Rede_Social_Ctrlplay.csv')
#pd.read_csv(): Carrega o dataset em um DataFrame do Pandas.
df
```

- Carregamos o dataset Rede\_Social\_Ctrlplay.csv em um DataFrame Pandas.
- Exibimos os primeiros registros para entender a estrutura.

#### Contexto:

Antes de qualquer análise, é essencial visualizar os dados para identificar padrões e possíveis problemas.

# Inspecionando os Dados

```
●●● CÉLULA 02 DE CÓDIGO COLAB

df.info()
# Usamos a função ".info" para vizualizarmos as colunas disponiveis
no dataframe e o tipo delas
```

#### Explicação:

- Exibe informações como tipos de dados e quantidade de valores nulos.
- Ajuda a entender a estrutura da base.

#### Curiosidade:

O tipo de dado influencia nas análises! Exemplo: Modelos de Ma
 Learning não lidam bem com strings e preferem números.

Professor, os slides que se seguem é apenas uma revisão da leitura pré-aula. Não gaste mais do que 5 minutos apenas repassando os tópicos.



# Tipos de Colunas dataframe

Assim como variáveis em Python, um dataframe pode ter vários tipos de colunas, desde valores numéricos e textos a listas e dicionários. Revisando... Introdução ao conceito de Bits.





Um bit é a menor unidade de informação no mundo dos computadores, e ele pode ter apenas dois valores: 0 ou 1. Pense em um interruptor de luz que pode estar apenas em duas posições, ligado (1) ou desligado (0). Esse é o conceito básico de um bit.





Agora, imagine que você tem quatro interruptores juntos, ou seja, 4 bits. Com esses quatro interruptores, você pode criar diferentes combinações de "ligado" e "desligado", dando a você 16 possibilidades (24 = 16). É como ter 16 diferentes sinais de luz que você pode usar para transmitir mensagens.











Se aumentarmos para 8 bits (ou um byte), já temos 256 combinações possíveis (2<sup>8</sup> = 256). É como se você tivesse 256 diferentes cores de luz para escolher. Nos videogames antigos, por exemplo, gráficos de 8 bits eram usados, permitindo a criação de personagens e cenários com uma quantidade limitada de detalhes.



















Agora, com 16 bits, as combinações saltam para 65.536 (2<sup>16</sup> = 65.536). Aqui, as possibilidades de informação e detalhes crescem muito mais.

Um exemplo de **16 bits** no dia a dia pode ser encontrado em **impressoras domésticas**, especialmente ao lidar com a **impressão de cores**. Impressoras que trabalham com 16 bits por cor (RGB) podem representar até 65.536 tonalidades diferentes para cada cor (vermelho, verde e azul), resultando em impressões com graduações de cor muito mais suaves e precisas.



Cada vez que dobramos o número de bits, dobramos também a quantidade de informações que podemos representar e processar, permitindo que nossos dispositivos digitais façam coisas cada vez mais complexas!





# Tipos de Colunas em um Dataframe

**Numérico:** como o próprio nome sugere, contém números que seguem a mesma lógica de valores inteiros (int) e flutuantes(float).

**Texto:** String (*object* ou str), tipos de dados que armazenam sequências de caracteres. Utilizados para representar texto ou dados alfanuméricos.

**Booleano:** tipo de dado que armazena apenas dois valores possíveis: True (verdadeiro) ou False (falso). Usado para representar estados binários ou condições lógicas.

Categorical: Tipo de dado que representa categorias ou grupos fixos e limitados. Economiza memória ao armazenar categorias como indices em vez de strings completas. Funciona semelhante categorias dicionário em Python.

# Tipos de Colunas em um Dataframe

Na base de dados que será usada no projeto, você consegue visualizar três tipos de colunas:

| #    | Column              | Non-Null Count   | Dtype   |
|------|---------------------|------------------|---------|
|      |                     |                  |         |
| 0    | usuario id          | 300 non-null     | int64   |
| 1    | publicacao_id       | 300 non-null     | int64   |
| 2    | data hora           | 300 non-null     | object  |
| 3    | curtidas            | 268 non-null     | float64 |
| 4    | comentarios         | 263 non-null     | float64 |
| 5    | compartilhamentos   | 277 non-null     | float64 |
| 6    | categoria           | 300 non-null     | object  |
| 7    | estado              | 300 non-null     | object  |
| dtvp | es: float64(3), int | 64(2), object(3) |         |

Lembra dos Bits? Olha ali no int64 e float64.
Será que esses números são aleatórios ou tem um motivo?



## Identificando valores nulos

```
df.isnull().sum():
#Retorna a soma dos valores ausentes em cada coluna do DataFrame. Em
dados de redes sociais, isso pode incluir campos como curtidas,
comentários, compartilhamentos, etc.
```

#### 📌 Explicação:

- Conta quantos valores nulos existem em cada coluna.
- Passo essencial para evitar erros em análises futuras.

#### **Contexto:**

Valores nulos podem indicar erros no sistema, problemas de coleta ou dados ausentes propositalmente.





## Preenchendo Valores Nulos

#### ★ Explicação:

- Preenche valores nulos coma média
- Essa estratégia é útil para unas numéricas.

#### Contexto:

Em IA, escolher a melhor estratégia para valores ausentes pode afetar drastir resultado do modelo!



#### Tratamento de Dados

```
for column in df.columns:
   if df[column].isnull().any():
       mean_value = df[column].mean()
       df[column].fillna(mean_value, inplace=True)
```

Esse laço for percorre todas as colunas do DataFrame df (df.columns) e retorna uma lista dos nomes das colunas no DataFrame.

Para cada coluna, o método df[column].isnull() retorna uma Série booleana onde cada valor indica se o valor correspondente na coluna é nulo (True) ou não (False). O método any() verifica se há pelo menos um valor True na Série, ou seja, se existe pelo menos um valor nulo na coluna.

Se existirem valores nulos na coluna, a média dos valores não nulos é calculada e armazenada em mean\_value. O método mean() calcula a média dos valores na coluna.

O método fillna(mean\_value) substitui todos os valores nulos na coluna pelo valor di média calculada. O parâmetro inplace=True faz com que a modificação seja feita diretamente no DataFrame original df, sem a necessidade de criar uma cópia.

# Separando Dados

```
# Separando dados
df_object = df.select_dtypes(include=['object'])
```

#### 📌 Explicação:

- Separamos colunas do tipo texto (categóricas) e numéricas.
- Necessário porque o tratamento é diferente para cada tipo.



## Atividade 01

Crie um df chamado df\_sem\_object e nela armazene os dados do seu df excluindo os tipos 'object' (ou seja, mantendo apenas colunas numéricas). Depois imprima o df com object e o sem object, qual a diferença entre eles?





# Mapeando Estados e Categorias

```
...
                        CÉLULA 07 DE CÓDIGO COLAB
estado_map = {estado: i+1 for i, estado i
enumerate(df_object['estado'].uniqu
categoria_map = {categoria: i+1 fo
                                        categoria in
enumerate(df_object['categoria'].u
df_object['estado_num'] = df_object
                                         ado'
df_object['categoria_num'] =
df_object['categoria'].map(categor
df_object = df_object.drop('data_ht
                                         axis=1)
df_object = df_object[['estado', 'e
                                         _num', 'categoria',
'categoria_num']]
df_object
```

#### 📌 Explicação:

onverten categorias em

um dicionário de eamento para ansformar texto em valores américos.

#### ntexto:

m Machine Learning, essa conversão é chamada de Label Encoding.

# Mapeando Estados e Categorias

#### 📌 Explicação:

- Juntamos os dados categóricos (agora numéricos) com os dados numéricos.
- Esse passo prepara os dados para serem utilizados em modelos de IA!

```
# Concatena os DataFrames df_object e df_sem_object
df_concatenado = pd.concat([df_object, df_sem_object], axis=1)

# Exibe o DataFrame concatenado
df_concatenado
```

# Para o professor

- df\_object['estado'].unique(): Obtém todos os valores únicos na coluna estado do DataFrame df\_object.
- enumerate(...): Cria uma sequência de pares (índice, valor) para cada valor único.
- {estado: i+1 for i, estado in ...}: Cria um dicionário onde a chave(key) é o valor do estado e o valor(value) é um número inteiro (começando de 1) que corresponde à posição do estado na lista de valores únicos. Isso resulta em um mapeamento de estados para números.

# Para o professor

Similar ao passo anterior, mas para a coluna categoria. Cria um dicionário onde cada categoria é mapeada para um número inteiro.

- df\_object['estado'].map(estado\_map): Substitui cada valor na coluna estado pelo número correspondente no dicionário estado\_map, criando uma nova coluna estado num com esses valores numéricos.
- df\_object['categoria'].map(categoria\_map): Faz o mesmo para a coluna categoria,
   criando a coluna categoria\_num.
- df\_object.drop('data\_hora', axis=1): Remove a coluna data\_hora do DataFrame. O parâmetro axis=1 indica que a operação deve ser realizada ao longo das colunas.
- df\_object[['estado', 'estado\_num', 'categoria', 'categoria\_num']]. Reordena as colunas do DataFrame para que as colunas originais estado e categoria\_num seguidas pelas novas colunas numéricas estado\_num e categoria\_num.

# Mapeando Estados e Categorias

```
célula 09 DE CÓDIGO COLAB

df_concatenado.info()

# vizualizamos a informação do novo dataframe

célula 10 DE CÓDIGO COLAB

df_concatenado.isnull().sum()

#Verificamos se não há nenhum valor nan ainda
```

estado 0
estado\_num 0
categoria 0
categoria\_num 0
usuario\_id 0
publicacao\_id 0
curtidas 0
comentarios 0
compartilhamentos 0
dtype: int64

#### Explicação:

- Inspecionamos o DataFrame final para garantir que todos os dados foram limpos corretamente.
- Um dataset bem estruturado reduz o tempo de treino de um modelo de IA em até 50%!

## Removendo colunas não necessárias

#### 📌 Explicação:

 Excluímos as colunas que não são mais necessárias, pois já temos as versões numéricas.

● Em projetos de Ciêr de Dados, o excesso coluna de gerar **"ruído"**, atrapalhando análises odelos

```
# Exclui as coluna df_concatenado = concatenado = concatenado id'], axis esultante df_concatenado
```

## Para o professor

df\_concatenado.drop(['estado', 'categoria', 'usuario\_id'], axis=1): Este comando remove as colunas especificadas (estado, categoria, e usuario\_id) do DataFrame df\_concatenado. O parâmetro axis=1 indica que a operação deve ser aplicada às colunas.



## Motivo para Excluir essas Colunas

- estado e categoria: Essas colunas foram substituídas por colunas numéricas (estado\_num e categoria\_num) durante o processo de transformação. Agora que você obteve as representações numéricas, as colunas originais (estado e categoria) são redundantes e podem ser removidas para evitar duplicação, mantendo o DataFrame mais limpo e fácil de usar.
- usuario\_id: Embora não tenha sido mencionado explicitamente, a coluna usuario\_id pode ser uma identificador único para os usuários.
   Geralmente, identificadores únicos são removidos durante a análise ou modelagem de dados, pois não fornecem informações úteis modelo e podem até introduzir viés ou overfitting.

## Motivo para Excluir essas Colunas

**Obs**: O termo *overfitting*, usado num contexto de *machine learning*, refere-se a um modelo que está viciado em seus dados, como por exemplo uma IA de reconhecimento facial que foi alimentada apenas com rostos de uma etnia e só reconhece faces com um tom de pele específico.



## Conclusão do Tratamento de Dados

A organização dos dados dessa maneira visa:

- **Simplificação**: Remover colunas desnecessárias ou redundantes simplifica o DataFrame e facilita a análise.
- Preparação para Modelagem: Em muitos casos, para modelos de machine learning, apenas os dados numéricos ou de interesse são usados. Colunas categóricas são transformadas em numéricas e as colunas não informativas, como IDs ou categorias originais já transformadas, são removidas.
  - Redução de Ruído: A remoção de identificadores e dados originais não necessários ajuda a evitar a introdução de ruído no processo analíticay garantindo que apenas informações relevantes estejam presentes.

## Para o Professor

Professor, evite leitura de textão em aula. Discuta com os alunos oralmente os passos a seguir



## Conclusão

Transformação de Dados Categóricos:

- Criação de Mapeamentos: Convertimos categorias textuais em números usando dicionários de mapeamento, facilitando a inclusão desses dados em modelos de machine learning que exigem entradas numéricas.
- Aplicação de Mapeamentos: Utilizamos o método map para transformar valores categóricos em suas representações numéricas correspondentes, preparando o DataFrame para análises quantitativas.

## Conclusão

#### Concatenação e Organização dos Dados:

- Concatenação de DataFrames: Combinamos diferentes partes do DataFrame para integrar colunas numéricas e categóricas transformadas com as demais informações do DataFrame original.
- Reordenação e Limpeza: Após a concatenação, reorganizamos e limpamos o DataFrame para manter apenas as colunas necessárias e eliminar redundâncias.

## Conclusão

e análises subsequentes.

O processo que vimos é crucial para a preparação adequada de dados para análise e modelagem. Ao:

- Transformar Dados Categóricos: Convertendo categorias para números, facilitamos a integração desses dados em análises quantitativas e modelos preditivos.
- Excluir Colunas Redundantes: Garantimos que o DataFrame esteja livre de informações desnecessárias que possam atrapalhar a análise.
- Concatenar e Organizar Dados: Preparamos um conjunto de dados coeso e limpo, pronto para análises mais avançadas ou construção de modelos de machine learning.

Este trabalho de preparação é um passo fundamental na análise de dados, poistos assegura que os dados estejam em um formato que maximize a eficácia dos modelos

# Tarefas

Tarefas do Astro

Avaliação da Aula



## Materiais

**Colab Professor** 

#### **Colab Aluno**

