Lung Cancer Risk Prediction

Fabienne Greier, Julian Link and Prasanga Dhungel,

Supervisor: Johannes Brandt

Background and Motivation Lung cancer is the leading cause of cancer-related mortality worldwide 5-Year Survival Rate Deep Learning approaches that Non-Small Cell Lung Cancer only consider imaging are 100% fundamentally limited [1]. 80% 60% Lung cancer is heavily contextualized through nonimaging risk factors. 20% Multimodal models Stage II Stage III Stage IV Stage V

Method

Preprocessing

In our preprocessing phase, we employ nnDetection [2], utilizing a pretrained model on the Luna16 dataset to identify the five most confidently detected nodules within a scan.

Multimodal Model Architecture

- Integrate nodule-level data with lung-level and clinical metadata, to enhance predictive accuracy
- Feature extraction from nodules and lung images using MedicalNet
 [3], a 3D-ResNet pre-trained on medical imagery
- Dataset's higher proportion of negative cases: weighted crossentropy loss to prioritize mitigating false negatives during network training

	Accuracy	Precision	Recall	F1
Nodules (ACSConv [4])	0.71	0.54	0.60	0.56
Nodules (Maxpool)	0.73	0.57	0.62	0.59
Nodules (MedicalNet [3])	0.78	0.63	0.68	0.65
Nodules (Leaky Noisy-OR [5])	0.75	0.40	0.75	0.52
Tabular Data/Metadata	0.61	0.59	0.65	0.61
Multimodal Approach	0.82	0.69	0.79	0.71
DeepCAD [6]	0.85	0.84	0.87	0.85
70% 60% Tabular 40% 30% 20% 10%	Medicalnet Maxpool Co Tabular	DeepCAD Multimodal	Multimodal Leaky-Noisy-OR Medicalnet Maxpool	DeepCAD
0% Accuracy	Recall		F1 Score	

Conclusion / Main Findings

- The combination of different levels of features, including clinical metadata and imaging data at the lung and nodule level, provides a good estimation of malignancy
- The predictive capability of our **multimodal approach** is superior compared to utilizing the data sources independently
- Our analysis reveals superior performance when employing a feature extractor pre-trained specifically on lung CTs compared to one pre-trained on alternative domains.

References

- [1] D. Ardila, et al. "End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography." (2019).
- [2] M. Baumgartner, et al. "nnDetection: a self-configuring method for medical object detection." (2021).
- [3] S. Chen, et al. "Med3d: Transfer learning for 3d medical image analysis." (2019).
- [4] J. Yang, et al. "Reinventing 2d convolutions for 3d images." (2021).
- [5] F. Liao, et al. "Evaluate the malignancy of pulmonary nodules using the 3-d deep leaky noisy-or network." (2019).
- [6] S. Aslani, et al. "Enhancing cancer prediction in challenging screen-detected incident lung nodules using time-series deep learning." (2022).