

Carlos Alexandre Mello

Pós-Graduação em Ciência da Computação

- Morfologia = Forma e estrutura de um objeto
 - Inter-relações entre as partes de um objeto
- Base na Teoria dos Conjuntos
- Algumas operações matemáticas podem ser aplicadas a conjuntos de pixels a fim de intensificar aspectos das formas tal que eles possam ser contados ou reconhecidos

Morfologia Operações de Conjuntos em Imagens

3

Morfologia Operações de Conjuntos em Imagens

 $A \cap B$

Morfologia Operações de Conjuntos em Imagens

Dilatação

 Se qualquer pixel na vizinhança do pixel de entrada estiver ativo, o pixel de saída fica ativo; caso contrário, o pixel fica inativo

Erosão

- Se todos os pixels na vizinhança do pixel de entrada estiver ativo, o pixel de saída fica ativo; caso contrário, o pixel fica inativo
- A vizinhança pode ter qualquer forma ou tamanho

- O 'elemento central' pode ser qualquer ponto do elemento estruturante
- Não necessariamente o elemento estruturante é uma matriz retangular ou quadrada...
 - Elementos chamados 'don't care' podem mudar a forma do elemento

- Operação
 - A operação deve casar o pixel central do elemento estruturante com o pixel analisado na imagem
 - No caso de pixels na borda da imagem, considera-se que os elementos estruturantes que não estão sobre elementos da imagem cobrem podem cobrir elementos off ou don't care
 - É como se a imagem sofresse uma extensão nula ou com elementos don't care

- Operações morfológicas binárias são definidas em imagens de duas cores
- Observe a imagem abaixo....

Vamos pintar de branco todos os vizinhos de um pixel branco....

Imagem A

O mesmo quadrado, mas um pixel mais largo que o anterior... *Dilatação*

- De forma simples, a dilatação faz com que os objetos tornam-se mais largos
- Esse é um exemplo de uma operação de morfologia que pode ser facilmente implementado

Dilatação: Exemplo 1

Dilatação: Exemplo 1

Região ativa

Dilatação: Exemplo 1

O pixel central do elemento casa com o pixel a ser processado; se qualquer pixel sob a região ativa estiver ativo, então o pixel correspondente na imagem final fica ativo (1); se todos forem inativos, o pixel na imagem final fica inativo (0).

Dilatação: Exemplo 1

14

Dilatação: Exemplo 2

18

1	1	1
1	1	1
1	1	1

- Dilatação: Observe que o "objeto" são os pixels com tom 1 (brancos)
 - Logo, a dilatação faz com que as áreas de branco aumentem em uma imagem
 - Às vezes, é interessante ter o complemento da imagem para aplicar uma dilatação
 - Depois, calcula-se o complemento novamente

- Dilatação
 - Exemplo: Observe o resultado da dilatação da imagem abaixo pelo elemento estruturante do Exemplo 1 anterior

Imagem original

Imagem dilatada

Dilatação

 Exemplo: Enquanto que o resultado à aplicação na imagem não complementar seria.....

Imagem original

Imagem dilatada

- Dilatação
 - Assim, a dilatação pode ser considerada como a união de todas as translações especificadas pelo elemento estrutural B
 - Como a união é comutativa, a dilatação também será a mesma se trocarmos a imagem com o elemento estrutural

Aplicação de Dilatação (sobre imagem complementar)

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Aplicação de Dilatação

```
Meu caro Barão,
Acabo de recel Acabo de recelerei sobre o Barral mando-lierei sobre o larral mando-l
il-o:
```

```
Am Jare Harffe,
"Cortes ce n'est pas de "Cortes ce n'est par in
```

Imagem original

Imagem dilatada

4

Morfologia Matemática

Aplicação de Dilatação

Meu caro Barão,

Acabo de recelerei sobre o Barral mando-li
il-o:

"Certes ce n'est pas de

Kou caro Barão,

Acabo de recelerei sobre o Barral mando-11
il-o:

"Certes ce n'est pas de

Imagem original negativada

Imagem complementar dilatada

Aplicação de Dilatação

Meu caro Barão,

Acabo de recel erei sobre o Barral mando-11 il-o:

"Certes ce n'est pas de

Kev caro Barão,

Acabo de recei erei sobre o Barral mando-li il-o:

"Certes ce n'est pas de

Imagem original

Resultado final após novo complemento

- Erosão
 - Se a dilatação deixa um objeto mais largo, a erosão o estreita
 - De forma simples, a erosão remove os pixels da camada externa de um objeto

Erosão: Exemplo 1

im =

Erosão: Exemplo 1

O pixel central do elemento casa com o pixel a ser processado; se todos os pixels da região ativa estiverem ativos, o resultado final fica ativo

Erosão: Exemplo 1

O pixel central do elemento casa com o pixel a ser processado; se todos os pixels da região ativa estiverem ativos, o resultado final fica ativo

Erosão: Exemplo 3

1	1	1
1	1	1
1	1	1

- Exemplo 4
 - Elemento estruturante

Exemplo 4: Imagem original

Exemplo 4: Dilatação

(lembre que crescem as áreas de branco)

Exemplo 4: Erosão

- Exemplo 5: Erosão
 - Elemento estruturante

Imagem Original

Imagem Filtrada

- Erosão e dilatação não são operações inversas
- Em algumas situações, uma erosão pode desfazer o resultado de uma dilatação, mas isso não é sempre...

Aplicação de Erosão em Cascata

Imagem original

Erosão

Segunda Erosão

- Relações entre Erosão e Dilatação
 - erode(dilate(S)) ≠ S
 - dilate(erode(S)) ≠ S
 - erode(dilate(S)) \supseteq S
 - $dilate(erode(S)) \subseteq S$

- Mais do que mudar as características da imagem, a morfologia trabalha com a forma de objetos presentes (ou não) na imagem
- Assim, podemos usar essas operações para tentar encontrar determinados objetos ou, mais ainda, determinadas formas em uma imagem

 Suponha, por exemplo, que queremos saber se uma imagem tem algum objeto na forma de um L, como no elemento abaixo:

 Se essa matriz for usada como elemento estruturante, podemos usar a operação de erosão para identificar se o elemento existe em uma imagem ou não

Considere a imagem a seguir:

Podemos negar a imagem

 e aplicar uma erosão com o elemento estruturante da forma do objeto que procuramos

O resultado será:

 Ou seja, mais do que uma erosão, o retorno de um valor verdade indica que o objeto está presente na imagem

Morfologia Matemática Outras Operações Derivadas

- Abertura e Fechamento
 - Abertura = Aplicação de uma erosão seguida por uma dilatação com o mesmo elemento estruturante
 - Fechamento = Aplicação de uma dilatação seguida por uma erosão com o mesmo elemento estruturante

Abertura:

- Suavização de contornos
- Remoção de ramificações
- Aumenta as áreas de preto (expande)
- Fechamento:
 - Preenchimento de falhas em contornos
 - Diminui as áreas de preto (contrai)

- Por que os termos Abertura e Fechamento?
 - O nome abertura descreve uma operação que tende a 'abrir' pequenos espaços entre objetos em uma imagem
 - Por outro lado, um fechamento preenche esses espaços entre objetos

Exemplo de Abertura:

Elemento Estrutural: Matriz identidade 5x5 (diagonal)

Exemplo de Abertura:

Imagem original

4

Morfologia Matemática

Exemplo de Abertura:

Exemplo de Abertura (detalhes)

Exemplo de Abertura:

Elemento estruturante: uma matriz 11x11 na forma de um círculo

Exemplo de Fechamento:

Exemplo de Fechamento:

Exemplo de Fechamento:

Imagem original

Exemplo de Fechamento:

Exemplo de Fechamento: Granulometria

Elemento estruturante: uma matriz 30x30 na forma de um círculo

- Extração de Fronteiras
 - $\beta(A) = A (A\Theta B)$
 - Ou seja, a diferença de conjuntos entre A e sua erosão pelo elemento B
 - Exemplo: Considere o elemento estrutural B

Extração de Fronteiras

Imagem original

Extração de Fronteiras

Imagem original

Extração de Fronteiras

Imagem original

- Outras operações
 - Watershed
 - Esqueletização
 - Afinamento
 - Hit-and-Miss
 - Operações aplicadas a imagens em tons de cinza

- Watershed
 - Método de segmentação
 - Pode provocar sobre-segmentação

Watershed

Watershed

Watershed

- Esqueletização
 - O esqueleto é o centro de círculos que tangenciam a região sendo considerada

- Esqueletização
 - Alcançado por sucessivas erosões
 - >> im = imread('numeros.bmp');
 - >> BW2 = bwmorph(im,'skel',Inf);
 - 'Inf" provoca a aplicação do algoritmo infinitas vezes até que a imagem não mude

- Esqueletização
 - Aplicação na imagem negativada

Imagem original

Esqueletização

Esqueleto

Esqueletização

Sobreposição

- Afinamento (Thinning)
 - Diversos algoritmos
 - Exemplo:
 - >> im = imread('numeros.bmp');
 - >> BW2 = bwmorph(im, 'thin', Inf);

Afinamento

Sobreposição

Afinamento

Afinamento

Afinamento

Sobreposição

- Esqueletização x Afinamento
 - Observe a diferença

Esqueleto

Afinamento

Operações em Imagens em Tons de Cinza Dilatação

0	1	0
1	1	1
0	1	0

Elemento Estruturante

O resultado é o maior tom sob o elemento estruturante...

10	23	16	19	111
42	19	255	198	111
76	11	32	56	16
16	54	123	78	61
169	49	23	19	139

10	23	16	19	111
42	255	255	255	111
76	76	255	198	16
16	123	123	123	61
169	49	23	19	139

Imagem de entrada

Imagem Final

Operações em Imagens em Tons de Cinza Dilatação

Operações em Imagens em Tons de Cinza Erosão

0	1	0
1	1	1
0	1	0

Elemento Estruturante

O resultado é o menor tom sob o elemento estruturante...

10	23	16	19	111
42	19	255	198	111
76	11	32	56	16
16	54	123	78	61
169	49	23	19	139

10	23	16	19	111
42	11	16	19	111
76	11	11	16	16
16	11	23	19	61
169	49	23	19	139

Imagem de entrada

Imagem Final

Operações em Imagens em Tons de Cinza Erosão

- No MatLab:
 - imerode
 - imdilate
 - bwmorph
 - thin, skel, etc...
 - watershed

