

Chapter 4: Network Access

Introduction to Networks

Cisco Networking Academy® Mind Wide Open™

Purpose of the Physical Layer

The Physical Layer

Purpose of the Physical Layer

Physical Layer Media

Electrical Signals - Copper cable

Light Pulse -Fiber-optic cable

Microwave Signals -Wireless

Fundamental Principles of Layer 1

Types of Physical Media

Copper Cabling Copper Media

Copper Cabling UTP Cable

STP Cable

Copper Cabling Coaxial Cable

UTP Cabling

Properties of UTP Cabling

UTP cable does not use shielding to counter the effects of EMI and RFI. Instead, cable designers have discovered that they can limit the negative effect of crosstalk by:

- Cancellation
- Varying the number of twists per wire pair

UTP Cabling UTP Cabling Standards

Types of UTP Cable

Cable Type	Standard	Application
Ethernet Straight- through	Both ends T568A or both ends T568B	Connects a network host to a network device such as a switch or hub.
Ethernet Crossover	One end T568A, other end T568B	 Connects two network hosts Connects two network intermediary devices (switch to switch, or router to router)
Rollover	Cisco proprietary	Connects a workstation serial port to a router console port, using an adapter.

Types of Fiber Media

Single Mode

- Small core
- · Less dispersion
- Suited for long distance applications
- Uses lasers as the light source
- Commonly used with campus backbones for distances of several thousand meters

Multimode

- Larger core than single mode cable
- Allows greater dispersion and therefore, loss of signal
- · Suited for long distance applications, but shorter than single mode
- · Uses LEDs as the light source
- Commonly used with LANs or distances of a couple hundred meters within a campus network

Fiber Optic Cabling

Network Fiber Connectors

ST Connectors

SC Connectors

LC Connector

Duplex Multimode LC Connectors

Wireless Media 802.11 Wi-Fi Standards

Standard	Maximum Speed	Frequency	Backwards Compatible	
802.11a	54 Mbps	5 GHz	No	
802.11b	11 Mbps	2.4 GHz	No	
802.11g	54 Mbps	2.4 GHz	802.11b	
802.11n	600 Mbps	2.4 GHz or 5 GHz	802.11b/g	
802.11ac	1.3 Gbps (1300 Mbps)	2.4 GHz and 5.5 GHz	802.11b/g/n	
802.11ad	7 Gbps (7000 Mbps)	2.4 GHz, 5 GHz and 60 GHz	802.11b/g/n/ac	

Presentation_ID © 2008 Cisco Systems, Inc. All rights reserved. Cisco Confidential

14

Purpose of the Data Link Layer

The Data Link Layer

Purpose of the Data Link Layer

Data Link Sublayers

Network				
Data Link	LLC Sublayer			
	MAC Sublayer	802.3 Ethernet)2.11 Vi-Fi	802.15 Bluetooth
Physical		80, Ethe	802.11 Wi-Fi	805 Blue

WAN Topologies

Half- and Full-Duplex

Half-Duplex

Full-Duplex

LAN Topologies

Contention-Based Access

Characteristics	Contention-Based Technologies			
Stations can transmit at any timeCollision exist	 CSMA/CD for 802.3 Ethernet networks CSMA/CA for 802.11 wireless networks 			
 There are mechanisms to resolve contention for the media 				

Data Link Frame

Ethernet Frame

Ethernet Protocol

A Common Data Link Layer Protocol for LANs

	Frame —					
Field name	Preamble	Destination	Source	Туре	Data	Frame Check Sequence
Size	8 bytes	6 bytes	6 bytes	2 bytes	46 - 1500 bytes	4 bytes

Preamble - Used for synchronization; also contains a delimiter to mark the end of the timing information

Destination Address - 48-bit MAC address for the destination node

Source Address - 48-bit MAC address for the source node

Type - Value to indicate which upper layer protocol will receive the data after the Ethernet process is complete

Data or payload - This is the PDU, typically an IPv4 packet, that is to be transported over the media.

Frame Check Sequence (FCS) - A value used to check for damaged frames

Point-to-Point Protocol Frame

Point-to-Point Protocol

A Common Data Link Protocol for WANs

	Frame —					
Field name	Flag	Address	Control	Protocol	Data	FCS
Size	1 byte	1 byte	1 byte	2 bytes	variable	2 or 4 bytes

Flag - A single byte that indicates the beginning or end of a frame. The flag field consists of the binary sequence 01111110.

Address - A single byte that contains the standard PPP broadcast address. PPP does not assign individual station addresses.

Control - A single byte that contains the binary sequence 00000011, which calls for transmission of user data in an unsequenced frame.

Protocol - Two bytes that identify the protocol encapsulated in the data field of the frame. The most up-to-date values of the protocol field are specified in the most recent Assigned Numbers Request For Comments (RFC).

Data - Zero or more bytes that contain the datagram for the protocol specified in the protocol field.

Frame Check Sequence (FCS) - Normally 16 bits (2 bytes). By prior agreement, consenting PPP implementations can use a 32-bit (4-byte) FCS for improved error detection.

Cisco | Networking Academy[®] | Mind Wide Open™