有三类资源A(17), B(5), C(20)。有五个进程 $P_1 - P_5$, T_0 时刻系统状态如下:

	最大需求	已分配
P_1	5 5 9	2 1 2
P_2	5 3 6	4 0 2
P_3	4 0 11	4 0 5
P_4	4 2 5	2 0 4
P_5	4 2 4	3 1 4

$1.T_0$ 时刻是否为安全状态,给出安全系列。

T_0 时刻资源分配如下所示

		Max			Allocatio	n	Need			
进程	А	В	С	А	В	С	Α	В	С	
P_1	5	5	9	2	1	2	3	4	7	
P_2	5	3	6	4	0	2	1	3	4	
P_3	4	0	11	4	0	5	0	0	6	
P_4	4	2	5	2	0	4	2	2	1	
P_5	4	2	4	3	1	4	1	1	0	

由题意,Available(A,B,C)=(2,3,3)

分析后可知, T_0 时刻为安全状态,存在安全序列 $(P_4, P_2, P_3, P_5, P_1)$

2. T_0 时刻, $P_2: Requests(0,3,4)$,能否分配,为什么?

计算可得

 $Request_2(0,3,4) \leq Need_2(1,3,4)$ 成立

 $Request_2(0,3,4) \leq Available(2,3,3)$ 不成立

所以请求需要等待,无法分配资源

3. 在(2)的基础上 $P_4: Requests(2,0,1)$,能否分配,为什么?

 $Request_4(2,0,1) \leq Need_4(2,2,1)$ 成立

 $Request_4(2,0,1) \leq Available(2,3,3)$ 成立

假定分配资源给 P_4

		Max			Allocatio	n	Need			
进程	А	В	С	А	В	С	А	В	С	
P_1	5	5	9	2	1	2	3	4	7	
P_2	5	3	6	4	0	2	1	3	4	
P_3	4	0	11	4	0	5	0	0	6	
P_4	4	2	5	4	0	5	0	2	0	
P_5	4	2	4	3	1	4	1	1	0	

此时可知Available(A,B,C)=(0,3,2)

利用安全性算法对资源进行分析:

	Max		Allocation		Need		Work+Allocation			Finish			
进程	А	В	С	Α	В	С	Α	В	С	А	В	С	-
P_4	0	3	2	0	2	0	4	0	5	4	3	7	TRUE
P_5	4	3	7	1	1	0	3	1	4	7	4	11	TRUE
P_3	7	4	11	0	0	6	4	0	5	11	4	16	TRUE
P_2	11	4	16	1	3	4	4	0	2	15	4	18	TRUE
P_1	15	4	18	3	4	7	2	1	2	17	5	20	TRUE

可知存在一个安全序列 $(P_4, P_5, P_3, P_2, P_1)$,系统安全,可以分配

4. 在(3)的基础上 $P_1: Requests(0, 2, 0)$,能否分配,为什么?

此时Available(A,B,C)=(0,3,2)

 $Request_1(0,2,0) \leq Need_1(3,4,7)$ 成立

 $Request_1(0,2,0) \leq Available(0,3,2)$ 成立

假定分配资源给 P_1

		Max			Allocatio	1	Need			
进程	А	В	С	А	В	С	А	В	С	
P_1	5	5	9	2	3	2	3	2	7	
P_2	5	3	6	4	0	2	1	3	4	
P_3	4	0	11	4	0	5	0	0	6	

		Max			Allocatio	n	Need			
P_4	4	2	5	4	0	5	0	2	0	
P_5	4	2	4	3	1	4	1	1	0	

此时可知Available(A,B,C)=(0,1,2)此时不存在安全序列,无法进行分配