

Ensemble Learning - QRT Challenge

Presented by:

Ayush Tankha

Jatin Singh

Hugo Thevenet

Duoer Gu

WORKFLOW DISTRIBUTION

Hugo	Ayush	Jatin Duoei	
Initial Analysis	Data Preprocessing + Feature Engineering	Modelling + Hypertuning	Presentation
 Conceptualized inital analysis for scope of project. Performed benchmarking modelling using LR, RF and Grad Boosting. 	 Analyzed feature importance and mutual information between features. Created new features to improve baseline. 	 Implemented machine learning models like RF and XGBoost while hypertuning them. Used ensemble methods like stacking on hypertuned models to improve score. 	Developed the inital and final presentation.

Challenges

- **Develop a model** to estimate daily electricity futures price variation in France and Germany.
- Utilize simultaneous weather, energy, and trade data for explanatory variables.
- Aim for a high Spearman's correlation score between model predictions and actual price variations.

Objectives

- Training and testing datasets with weather, commodity prices, and electricity usage variables.
- Data **includes daily metrics** for two European countries across multiple energy-related dimensions.
- Output model should **predict daily futures price** variation, matched by ID to test dataset.

Baseline Benchmarking

Baseline Models

- The initial baseline model employed was a linear regression, which provided a straightforward, easy-to-interpret model to start the analytical process.
- The linear regression model's performance was evaluated using the Spearman correlation coefficient, which is a non-parametric measure that can capture any monotonic relationship between the features and the target variable.

Objectives

- Training and testing datasets with weather, commodity prices, and electricity usage variables.
- Data **includes daily metrics** for two European countries across multiple energy-related dimensions.
- Output model should **predict daily futures price** variation, matched by ID to test dataset.

Simple Model Benchmarking

Baseline Models

- The initial baseline model employed was a linear regression, which provided a straightforward, easy-to-interpret model to start the analytical process.
- The linear regression model's performance was evaluated using the Spearman correlation coefficient, which is a non-parametric measure that can capture any monotonic relationship between the features and the target variable.

	Model	MSE	MAE	R-squared	Training Time (s)
0	linear_regression	1.005881	0.571140	0.059612	0.010603
1	random_forest	0.172495	0.244220	0.838737	6.371138
2	gradient_boosting	0.563034	0.458647	0.473624	1.277884

Feature Importance

Feature importance based on feature permutation

Data Preprocessing

Categorical Variables

- Since we have a small amount of data we try to convert categorical variables into numerical data for modelling.
- We used **One Hot Encoding** for encoding the countries France and Germany.

Numerical Variables

 We observe for feature importance of variables by finding out mutual information shared between feature variables and target variable

SINCE NO FEATURES CAPTURES A MAJORITY OF INFORMATION OF THE PREDICTOR VARIBALE WE ARE FREE TO CHOOSE AMONG FEATURE VARIABLES FOR CREATING NEW FEATURES

7				
	FEATURE ENGINEERING	Description	Operation / Formula	
7	Energy Production Efficiency	capture how much of the consumption is covered by renewable sources.	DE_WIND / DE_CONSUMPTION	
	Weather Impact on Energy	to see if rain has a direct impact on hydroelectric power production	FR_RAIN * FR_HYDRO	
	Net Exchange Ratios:	Net Exchange Ratios: contribution of cross-border exchanges		
	Cross-Feature Interactions	capture the proportion of renewable energy in total consumption.	(FR_WIND + FR_SOLAR) / FR_CONSUMPTION	
	Temperature Effect on Consumption	Capture the effect of changing temperature on consumption	FR_TEMP * FR_CONSUMPTION and DE_TEMP * DE_CONSUMPTION	
	Renewable vs. Non-renewable Ratios Calculate the ratio of renewable to non-renewable energy production for each country		(FR_WINDPOW + FR_SOLAR) / (FR_COAL + FR_GAS)	
	Carbon Intensity	Create a feature representing the carbon intensity of electricity generation	(COAL_RET + GAS_RET) / (DE_CONSUMPTION + FR_CONSUMPTION)	

New Baseline Models

(Post Feature Engineering)

Now that we have a lot new features, it may help us in better capturing information for our baseline models as we can see below -

	Model	MSE	MAE	R-squared	Spearman Correlation	Training Time	(s)
0	linear_regression	1.007896	0.570350	0.057728	0.282749	0.00	8636
1	random_forest	0.460711	0.410996	0.569285	0.705836	7.01	6092
2	gradient_boosting	0.632364	0.485608	0.408809	0.527472	1.70	3051
3	catboost	0.467540	0.426235	0.562901	0.666339	0.62	24797
4	adaboost	1.058812	0.767298	0.010127	0.206557	0.46	8092
5	lightgbm	0.517071	0.430942	0.516595	0.678818	0.50	0108
6	xgboost	0.448704	0.409082	0.580511	0.697189	0.90	8484

NOW WE WILL LOOK BRIEFLY AT FEATURE IMPORTANCE OF THE NEW BASELINE MODELS POST FEATURE ENGINEERING AND SEE THE IMPACT OF OUR NEW FEATURES

NOW THAT WE WILL PICK PROCEED WITH A SIMPLE WEIGHTED AVERAGE TECHNIQUE OF OUR MOST EFFECTIVE BASELINE MODELS THAT INCLUDE RANDOM FOREST, XGBOOST AND CATBOOST

Weighted Average


```
weights = {
    "random_forest": 0.4,
    "xgboost": 0.35,
    "catboost": 0.25
}
```


IMPLEMENTING NEW STATEGY USING ENSEMBLE METHODS AND HYPERTUNING

Hypertuned Models + Stacking

Tuned XGBoost Parameters

Best hyperparameters: {'n_estimators': 958, 'max_depth': 3, 'learning_rate': 0.012983502840524876, 'subsample': 0.8613472551443894, 'colsample_bytree': 0.8592122590269452, 'gamma': 6.265636328745365e-08, 'reg_lambda': 32.19471816344407. 'reg_alpha': 42.70703483364794}

Tuned Random Forest Parameters

hyperparameters: {'n_estimators': 352, 'max_depth': 14, 'min_samples_split': 5, 'min_samples_leaf': 13

Best Score!

All submission results

Ranking	Date	Method	Parameters	Public score	Selection
1	Feb. 15, 2024, 6:48 p.m.	rf+hypertuning	rf	0.19228844668280182	Select
2	Feb. 12, 2024, 9:57 p.m.	Baseline	LR	0.18594542447369478	Select
3	Feb. 15, 2024, 7:17 p.m.	XGB	hypertuned	0.1808433026736426	Select
4	Feb. 12, 2024, 10:04 p.m.	New_Baseline_28.5	LR	0.15908193724817526	Select

Merci!