LUC Stim Project

Initial Data Exploration

Matt Kmiecik

2023-07-22

Introduction

This document performs some initial data visualization and analysis of the LUC stim project.

Center of Gravity Results

```
```{r}
these are actual subjects
this_ss <-
c(</pre>
```

```
"146183842001 1", "146183842003 1", "146183842004 1", "146183842006 1",
 "146183842007 1"
)
first collapse by block
cog_res_block <-
 cog_res %>%
 # filters out missing values; focuses on stim blocks
 filter(!is.na(cog), !task == "iaf", ss %in% this_ss) %>%
 group_by(ss, elec, eyes, task) %>%
 summarise(m = mean(cog), n = n()) \%
 ungroup() %>%
 mutate(task = fct_relevel(task, c("pre", "post")))
then collapse by subject for summary stats
cog_res_sum <-
 cog_res_block %>%
 group_by(elec, eyes, task) %>%
 summarise(
 M = mean(m),
 SD = sd(m),
 N = n(),
 SEM = SD/sqrt(N),
 MOE = qt(.975, df = N-1)*SEM
) %>%
 ungroup()
```{r}
# function to plot mean IAF filtered by eyes and elec
mean plot elec <-
  function(data_sum, data, eyes, elec){
  # filters data according to arguments
  this_data_sum <- data_sum %>% filter(eyes %in% {{eyes}}, elec %in% {{elec}})
  this_data <- data %>% filter(eyes %in% {{eyes}}, elec %in% {{elec}})
  # produces plot
  pn <- position_nudge(x = .2) # position nudge</pre>
```

```
pj <- position_jitter(width = .1, height = .1)</pre>
  ggplot(this_data_sum, aes(task, M)) +
  geom_point(data = this_data, aes(y = m), shape = 1, alpha = .5, position = pj) +
  geom_point(position = pn) +
  geom_errorbar(aes(ymin = M-MOE, ymax = M+MOE), width = .1, position = pn) +
  geom_line(aes(group = 1), linetype = 2, position = pn) +
  theme_bw() +
  coord_cartesian(ylim = c(8, 13)) +
  scale_y_continuous(breaks = seq(8, 13, 1), minor_breaks = NULL) +
 facet_wrap(~elec)
}
```{r}
#| label: eolh
#| fig-cap: Eyes Open - Left Hemisphere.
#| fig-width: 11
#| fig-height: 11
#| fig-column: page-right
eyes open - A electrodes
mean_plot_elec(
 cog_res_sum, cog_res_block, eyes = "open", elec = chan_locs$labels[1:32]
) +
 labs(
 x = "Task",
 y = "Center of Gravity (Hz)",
 caption = "95% CI error bars.",
 title = "Eyes Open - Left Hemisphere"
)
```



Figure 1: Eyes Open - Left Hemisphere.

```{r} #| label: eorh

```
#| fig-cap: Eyes Open - Right Hemisphere.
#| fig-width: 11
#| fig-height: 11
#| fig-column: page-right
#|
# eyes open - B electrodes
mean_plot_elec(
   cog_res_sum, cog_res_block, eyes = "open", elec = chan_locs$labels[33:64]
   ) +
   labs(
        x = "Task",
        y = "Center of Gravity (Hz)",
        caption = "95% CI error bars.",
        title = "Eyes Open - Right Hemisphere"
        )
}
```


Figure 2: Eyes Open - Right Hemisphere.

```
```{r}
#| label: eclh
```

```
#| fig-cap: Eyes Closed - Left Hemisphere.
#| fig-width: 11
#| fig-height: 11
#| fig-column: page-right
#|
eyes closed - A electrodes
mean_plot_elec(
 cog_res_sum, cog_res_block, eyes = "closed", elec = chan_locs$labels[1:32]
) +
 labs(
 x = "Task",
 y = "Center of Gravity (Hz)",
 caption = "95% CI error bars.",
 title = "Eyes Closed - Left Hemisphere"
)
}
```



Figure 3: Eyes Closed - Left Hemisphere.

```{r} #| label: ecrh

```
#| fig-cap: Eyes Closed - Right Hemisphere.
#| fig-width: 11
#| fig-height: 11
#| fig-column: page-right

# eyes closed - B electrodes
mean_plot_elec(
   cog_res_sum, cog_res_block, eyes = "open", elec = chan_locs$labels[33:64]
   ) +
   labs(
        x = "Task",
        y = "Center of Gravity (Hz)",
        caption = "95% CI error bars.",
        title = "Eyes Closed - Right Hemisphere"
        )
}
```


Figure 4: Eyes Closed - Right Hemisphere.

Mixed Linear Modeling

```
```{r}
these are actual ss
this_ss <-
 c(
 "146183842001_1", "146183842003_1", "146183842004_1", "146183842006_1",
 "146183842007 1"
prepares data for modeling
mod_data <-</pre>
 cog_res %>%
 filter(ss %in% this_ss, !task == "iaf") %>%
 mutate(
 block = block - 1,
 across(c(eyes, task), ~factor(.x))
sets contrasts
contrasts(mod_data$eyes) <- cbind(eyes = c(.5, -.5))</pre>
contrasts(mod_data\$task) \leftarrow cbind(task = c(.5, -.5))
computes models
mod <-
 mod data %>%
 nest_by(elec) %>%
 mutate(
 mod1 = list(lmer(cog ~ 1 + block + eyes*task + (1 | ss), data = data)),
 mod2 = list(lmer(cog ~ 1 + block + eyes*task + (1 + eyes | ss), data = data)),
 mod3 = list(lmer(cog \sim 1 + block + eyes*task + (1 + task | ss), data = data))
)
looking at improvements in model fit
elec_list <- as.list(1:64) # 64 electrodes</pre>
names(elec_list) <- chan_locs$labels # names list by electrode name</pre>
computes and extracts model comparison between model 1 and 2
i.e., whether adding a random slope of eyes improves model fit
```

```
mod_fit <-
 elec_list %>%
 map(~anova(mod$mod1[[.x]], mod$mod2[[.x]])) %>% # compares models
 map_dfr(~as_tibble(.x, rownames = "mod"), .id = "elec") %>% # extracts
 mutate(mod = regmatches(mod, regexpr("mod\\d", mod))) # cleans up this col
```