ASSIGNMENT 2: LINEAR REGRESSION AND RIDGE REGRESSION

Lab report

Gohil Happy

Roll No: 21IM30006

Contents

1	Experiment 1: EDA (Exploratory Data Analysis)	1
	1.1 Plots	1
	1.2 Procedure to EDA	2
2	Experiment 2	4
3	Experiment 3	4
	3.1 Observations	4
4	Experiment 4	5
5	Experiment 5	6

ABSTRACT

This is report

1 Experiment 1: EDA (Exploratory Data Analysis)

1.1 Plots

1.2 Procedure to EDA

1. First, dropped the User_ID and "Product_ID" because IDs do not make any sense in the model.

2. Handling the NaN values

- In Product_category_3, we had 69.67% NaN values, so we dropped it.
- In Product_category_2, I used a **forward fill**. From the plot of **"count distribution product_category_2 wise"**, it is evident that using a mode fill would make our model more biased towards one category of product.

Figure 1: heat map for correlation for diffetent features

	Age	Occupation	Stay_In_Current_City_Years	Marital_Status	Product_Category_1	Product_Category_2	Purchase	City_Category_B	City_Category_C	Gender_M
0	17	10	2	0	3	6.0	8370	0	0	0
1	17	10	2	0	1	6.0	15200	0	0	0
2	17	10	2	0	12	6.0	1422	0	0	0
3	17	10	2	0	12	14.0	1057	0	0	0
4	56	16	4	0	8	14.0	7969	0	1	1
5	35	15	3	0	1	2.0	15227	0	0	1
6	50	7	2	1	1	8.0	19215	1	0	1
7	50	7	2	1	1	15.0	15854	1	0	1
8	50	7	2	1	1	16.0	15686	1	0	1
9	35	20	1	1	8	16.0	7871	0	0	1
10	35	20	1	1	5	11.0	5254	0	0	1
11	35	20	1	1	8	11.0	3957	0	0	1
12	35	20	1	1	8	11.0	6073	0	0	1

Figure 2: Data after EDA

- 3. Used one-hot encoding for gender and city_category.
- 4. Replaced the values for stay_in_city_years using the following code: df['Stay_In_Current_City_Years'].replace('2':2, '4+':4, '3':3, '1':1, '0':0, inplace=True)
- 5. For Age, replaced using the following code:

 df ['Age'].replace('0-17':17, '55+':56, '26-35':35, '46-50':50,
 '51-55':55, '36-45':45, '18-25':25, inplace=True) because this
 features have **ordinal nature** so there wights matter in model
- 6. and Occupation, Product category 1 & 2 should remain as it is to avoid feature complexity

2 Experiment 2

- With out feature scaling: The value of Mean squared error (MSE) with out feature scaling came out 22081144.710634716
- With feature scaling: The value of Mean squared error (MSE) with out feature scaling came out 22081144.71063472
- we observe no difference in the value of MSE

3 Experiment 3

Table 1: MSE values for different learning rates for scaled data

sr. no.	lr	MSE
0	0.00001	2.884403×10^{7}
1	0.00010	2.517077×10^7
2	0.00100	2.209787×10^7
3	0.01000	2.208141e+07
4	0.10000	2.208752×10^7
5	0.50000	2.215061×10^7

Table 2: MSE values for different learning rates for unscaled data

sr. no.	lr	MSE		
0	0.00001	2.707129e+07		
1	0.00010	2.433942e+07		
2	0.00100	2.213294e+07		
3	0.01000	NaN		
4	0.10000	NaN		
5	0.50000	NaN		

3.1 Observations

- For lr = 0.01 the MSE is minimum that means lr = 0.01 is optimal hyper-parameter
- On unscaled data it is observed that for higher value of learning rate algorithm is not converging

Figure 3: lr vs mse

4 Experiment 4

Applying ridge regression with learning rate = 0.01 on different value of alpha from 0 to 1 with increment of 0.1 we get below table

Table 3: MSE values for different alpha values

Sr. No	Alpha	MSE
0	0.0	3.165392×10^7
1	0.1	3.274766×10^7
2	0.2	3.390877×10^7
3	0.3	3.512085×10^7
4	0.4	3.636997×10^7
5	0.5	3.764433×10^7
6	0.6	3.893397×10^7
7	0.7	4.023053×10^7
8	0.8	4.152699×10^7
9	0.9	4.281752×10^7
10	1.0	4.409729×10^7

From plot we can observe the increase in MSE as we increase the value of alpha for ridge regression This happens due to

Figure 4: alpha vs mse

5 Experiment 5

Optimal hyper-parameter

$$lr = 0.01$$

$$\alpha = 0$$

Table 4: MSE values for different models

Sr. No	model	MSE
1	LIN_MODEL_CLOSED	2.2081144×10^7
2	LIN_MODEL_GRAD	2.208141×10^{7}
3	LIN_MODEL_RIDGE	3.165392×10^7

- We observed a increase in MSE as we increase alpha this is due to less number of epochs where wights are updating slowly due to penalization.
- For closed model and gradient decent we observe no difference with respect to grad model