ПРОЕКТ ПРОГРАММЫ ДИСЦИПЛИНЫ

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «Новосибирский национальный исследовательский государственный университет»

Факультет информационных технологий

Ю	ТВЕРЖДАН			
Γ.	2	«»		
	ИНЫ	ГРАММА ДИСЦИП.	РАБОЧАЯ ПР	
	I »	в теорию кодировані	«Введение	

НАПРАВЛЕНИЕ ПОДГОТОВКИ 230100 «ИНФОРМАТИКА И ВЫЧИСЛИТЕЛЬНАЯ ТЕХНИКА»

Квалификация (степень) выпускника Бакалавр

Форма обучения очная

Новосибирск 2011

Аннотация курса «Введение в теорию кодирования», Лектор Соловьева Ф.И., д.ф.-м.н., доцент

Программа дисциплины «Введение в теорию кодирования» составлена в соответствии с требованиями к обязательному минимуму содержания и уровню подготовки бакалавра по циклу «Общих математических и естественнонаучных дисциплин» Федеральных государственных образовательных стандартов высшего профессионального образования по направлению 230100.62 «Информатика и вычислительная техника».

Дисциплина «Введение в теорию кодирования» предполагает ознакомление с основными понятиями и теоретическими основами теории защиты информации - методов передачи, хранения и защиты информации по различным каналам связи, а именно: теории кодов, исправляющих ошибки в каналах связи с шумами; криптологии, состоящей из криптографии и криптоанализа; а также сжатия данных (передачи информации по каналам связи без шума).

- 1. В части курса, посвященной теории кодирования, предлагается ознакомление с базовыми понятиями теории линейных кодов (основные понятия, кодирование и декодирование линейных кодов, границы объемов кодов, методы построения кодов), а также теории циклических кодов (кольцо многочленов над полем Галуа, определение циклического кода, необходимое и достаточное условие существования циклического кода с порождающим многочленом g(x), кодирование и декодирование циклических кодов, коды Хэмминга, коды Боуза-Чоудхури-Хоквингема (БЧХ-коды), коды Рида-Соломона). Эти классы кодов наиболее часто применяются на практике. Теория кодирования самым тесным образом связана с дискретным анализом, теорией групп, теорией Галуа, конечными геометриями, теорией графов, теорией блок-схем (design theory), криптографией.
- 2. Вторая часть курса посвящена введению в криптологию, здесь излагаются основные стандарты шифрования данных (DES, AES, российский стандарт шифрования данных ГОСТ 28147-89), теорема Шеннона о существовании совершенно секретных шифров, а также основные криптосистемы с открытыми ключами: криптосистема Диффи и Хэллмана и проблема вычисления дискретного логарифма, криптосистема Шамира, криптосистема, основанная на эллиптических кривых, цифровые подписи, базирующиеся на основных криптосистемах. Здесь же рассматриваются вопросы применения теории кодирования в криптографии (кодовые асимметричные криптосистемы, проблемы аутентификации, блоковые шифры, проблемы распределения секретов).
- 3. В третьей части курса, посвященной сжатию данных излагаются основные методы сжатия данных методы побуквенного кодирования (коды Фано, Хаффмена, Шеннона), критерий однозначности кодирования, теорема Шеннона; основные методы адаптивного кодирования (методы Лемпела-Зива, код "стопка книг", арифметический код).
- **2.** Компетенции обучающегося, формируемые в результате освоения дисциплины «Введение в теорию кодирования». Дисциплина направлена на выработку следующих компетенций:

Общекультурные компетенции:

ОК-1	владеет культурой мышления, способен к обобщению, анализу, восприятию
	информации, постановке цели и выбору путей ее достижения
ОК-2	умеет логически верно, аргументировано и ясно строить устную и письменную речь
OK-3	готов к кооперации с коллегами, работе в коллективе
OK-4	способен находить организационно-управленческие решения в
OR I	нестандартных ситуациях и готов нести за них ответственность
ОК-5	умеет использовать нормативные правовые документы в своей деятельности
ОК-6	стремится к саморазвитию, повышению своей квалификации и мастерства
ОК-7	умеет критически оценивать свои достоинства и недостатки, наметить пути и выбрать средства развития достоинств и устранения недостатков
ОК-8	осознает социальную значимость своей будущей профессии, обладает
	высокой мотивацией к выполнению профессиональной деятельности
ОК-9	способен анализировать социально значимые проблемы и процессы
OK-10	использует основные законы естественнонаучных дисциплин в
	профессиональной деятельности, применяет методы математического
	анализа и моделирования, теоретического и экспериментального
	исследования
ОК-11	осознает сущность и значение информации в развитии современного
	общества; владеет основными методами, способами и средствами получения,
	хранения, переработки информации
ОК-12	имеет навыки работы с компьютером как средством управления
077.10	информацией
OK-13	способен работать с информацией в глобальных компьютерных сетях
OK-14	владеет одним из иностранных языков на уровне не ниже разговорного
OK-15	владеет основными методами защиты производственного персонала и
	населения от возможных последствий аварий, катастроф, стихийных
ОК-16	бедствий
OK-10	владеет средствами самостоятельного, методически правильного использования методов физического воспитания и укрепления здоровья,
	готов к достижению должного уровня физической подготовленности для
	обеспечения полноценной социальной и профессиональной деятельности
	осене ини полноценной социальной и профессиональной деятельности
nr	рофессиональные компетенции
ПК-7	готовить презентации, научно-технические отчеты по результатам
	выполненной работы, оформлять результаты исследований в виде статей и
	докладов на научно-технических конференциях;
научно-н	педагогическая деятельность:
ПК-8	готовить конспекты и проводить занятия по обучению сотрудников
	применению программно-методических комплексов, используемых на
	предприятии
монтаж	сно-наладочная деятельность:
ПК-12	Владеет современными платформами и языками программирования (C++/JAVA/C#)
ПК-18	Владеет навыками решения типовых задач системного программирования современных ОС
ПК-19	Знает классические структуры данных и алгоритмов, умеет оценивать их
111(1)	вычислительную сложность

Знает современные методы анализа данных
Имеет представление об особенностях человеческого внимания,
возможностях восприятия и анализа информации человеком
Знает современные тенденции развития информационных технологий
Владеет теоретическими основами программирования, основами логического
и декларативного программирования
Готов к командному стилю работы - выполнять профессиональные функции
в составе коллектива исполнителей
Способен осваивать новые предметные области и применять для этого
соответствующие инструментальные средства
Способен составлять и использовать математические модели, как
непрерывные, так и дискретные различных процессов
Способен выполнять вычислительные эксперименты, вести расчеты,
связанные с математическим моделированием
Владеет основными методами и средствами разработки параллельных
программ для компьютеров с общей и распределенной памятью
Умеет анализировать предложенные алгоритмы над объектами дискретной
математики, логически верно доказывать корректность и вычислять
сложность комбинаторных алгоритмов
Знает основы комбинаторики, теории кодирования и теории графов, владеет
основными методами на профессиональном уровне, умеет применять методы
дискретного анализа в своей профессиональной деятельности
Умеет самостоятельно разрабатывать новые программы по темам
комбинаторного анализа и теории графов, профессионально использовать
современные компьютеры для создания методов защиты информации
Умеет использовать алгоритмы комбинаторики, теории графов и теории
кодирования для решения практических задач
Способен разрабатывать программы с использованием изучаемых
алгоритмов, обосновывать предлагаемые собственные алгоритмы в
дискретной математике, показывать качественную новизну и
вычислительную сложность этих алгоритмов
Способен применять современные методы передачи данных по открытым
каналам связи с шумами (методы теории кодирования) и каналам связи без
шума (методы сжатия данных)
Способен применять математические технологии и методы защиты
информации от несанкционированного доступа, для банковских целей
(владеет навыками создания цифровой подписи на основе известных шифров
RSA, Эль-Гамаля)
Способен организовывать и поддерживать выполнение комплекса мер по
информационной безопасности, управлять процессом их реализации с учетом
решаемых задач и организационной структуры объекта защиты, внешних
воздействий, вероятных угроз и уровня развития технологий защиты
информации
о-конструкторская деятельность:
Умеет применять методы теории информации и методы обработки
изображений и сигналов в различных областях
Знает основы организации параллельной/распределенной обработки
информации Знает основные практические подходы, обусловленные современными

безопасности различной степени сложности, в зависимости от характера объекта защиты

В результате освоения дисциплины студент должен:

Иметь представление об области применимости методов передачи, хранения и защиты информации для исследования различных явлений и процессов.

Знать методы теории кодирования для решения задач передачи информации по каналам связи с шумами;

знать криптографические методы защиты информации от несанкционированного доступа для передачи информации с использованием как криптосистем с секретными ключами, так и криптосистем с открытыми ключами; уметь создавать цифровые подписи, используя основные криптосистемы Эль-Гамаля, RSA, криптосистемы на эллиптических кривых;

знать методы теории информации для решения задач передачи информации по каналам связи без шума.

Уметь оценить возможности применения и применять методы передачи, хранения и защиты информации для решения конкретных прикладных задач (в частности создания цифровых подписей, защиты паролей в банках).

Владеть основными методами теории помехоустойчивого кодирования для передачи информации по каналам связи с помехами такими как методы кодирования и декодирования линейных кодов, методы кодирования и декодирования циклических кодов (кодов БЧХ, Рида-Соломона):

владеть основными методами теории сжатия данных — методы кодирования для стационарных источников, адаптивные методы кодирования, универсальные методы;

владеть основными методами теории защиты информации от несанкционированного доступа — владеть методами защиты информации как с помощью криптосистем с секретными ключами, так и с помощью криптосистем с открытыми ключами, владеть методами построения цифровых подпиисей на основе криптосистем Эль-Гамаля, RSA, криптосистем, основанных на эллиптических кривых.

3. Объем дисциплины и виды учебной работы –

4 зачетных единицы, 1 единица на семестровый курс лекций, 1 единица на семинарские занятия в течении семестра, 1 единица — на самостоятельную работу и 1 единица — на экзамен.

Вид учебной работы	Всего часов	Семестры
		2
Общая трудоемкость дисциплины	96	96
Аудиторные занятия, в том числе:	64	64
Лекции	32	32
Семинары	32	32
Лабораторные работы		
Самостоятельная работа, в том	32	32
числе:		
Курсовой проект		
Реферат		

Расчетные работы		
Другие виды самостоятельной	32	32
работы		
Вид текущего контроля	1 контрольная, 3 коллоквиума, 1 задание	1 контрольная, 3 коллоквиума, 1 задание
Вид промежуточного контроля	экзамен	экзамен

Общая трудоемкость дисциплины составляет ____4___ зачетных.

4. Содержание дисциплины

4.1. Новизна курса.

Курс «Введение в теорию кодирования» ежегодно перерабатывается, совершенствуется и дополняется вследствие поездок лектора курса Ф.И.Соловьевой и семинаристов курса на международные конференции теории кодирования, сжатию информации, ПО криптографии, а также поездок лектора в Испанию, Швецию, Германию в ведущие вузы этих стран для научного сотрудничества с коллегами по теории информации и обмена опытом преподавания теории кодирования и смежных дисциплин – теории сжатия данных и криптологии. При разработке курса используются программы подобных дисциплин в ведущих ВУЗах России (Москвы и С.-Петербурга) и за рубежом (Независимый университет Барселоны, Королевский технологический институт г. Стокгольма, Билефельдский университет Германии, Институт математики болгарской Академии наук). В программу курса регулярно включаются новые научные результаты теории корректирующих кодов, сжатия информации и криптологии. Более того, в рамках данной программы запланировано переиздание учебного пособия «Введение в теорию кодирования», вышедшего в 2005 году под грифом УМО и активно используемого для изложения теории кодов, исправляющих ошибки в открытых каналах связи с шумами.

4.2. Тематический план курса (распределение часов по видам учебной работы).

№ п/п	Наименование тем и разделов	ВСЕГО (часов)	Аудиторные занятия (часов), в том числе			Самостоятел ьная работа
			Лекции	Семинары	Лаб. работы	(часов)
1	Кодирование в	48	16	16		16
	двоичном симметричном канале					
2	Сжатие информации	24	8	8		8
3	Элементы	24	8	8		8
	криптологии					
	ИТОГО:	96	32	32		32

1.3. Содержание разделов и тем курса.

Кодирование в двоичном симметричном канале

- Модель канала связи, скорость кода, пропускная способность. Теорема Шеннона (без доказательства). Вероятность ошибки декодирования. Стандартное расположение. Синдром.
- Поле Галуа, его свойства, примеры полей Галуа.
- Линейные коды. Кодирование и декодирование. Общие свойства линейных кодов. Теорема о связи проверочной и порождающей матриц.
- Теорема Глаголева.
- Границы объема кода: граница Синглтона, граница Хэмминга, граница Варшамова-Гилберта. Методы построения новых кодов из заданных. Комбинирование кодов. Теорема Плоткина. Каскадная конструкция.
- Совершенные коды. Теорема о существовании совершенных кодов (без доказательства). Коды Хэмминга над GF(q), способы задания, кодирование, декодирование, единственность. Конструкция кодов Васильева, Оценки снизу и сверху числа совершенных кодов.
- Циклические коды. Кольцо многочленов над полем Галуа. Определение циклического кода. Теорема о необходимом и достаточном условии существования циклического кода с порождающим многочленом g(x). Кодирование и декодирование циклических кодов.
- Примеры циклических кодов: коды Хэмминга, коды Боуза-Чоудхури-Хоквингема (БЧХ-коды), коды Рида-Соломона.

Сжатие информации

- Разделимые и префиксные коды. Стоимость кодирования. Неравенство Крафта-Макмиллана. Теорема Крафта. Теорема МакМиллана.
- Оптимальное кодирование. Метод Хаффмена. Метод Фано.
- Энтропия. Метод Шеннона для бернуллиевских источников. Теорема Шеннона (с доказательством).
- Критерий разделимости побуквенного кодирования. Теоремы Маркова. Алгоритм распознавания разделимости кода.
- Универсальное кодирование, теорема Фитингофа.
- Код Левенштейна. Код "стопка книг".
- Адаптивные методы сжатия данных. Методы Лемпела-Зива и их модификации.
- Адаптивный метод Хаффмена.
- Арифметический код.

Элементы криптологии

- Введение в криптологию. Секретность и имитостойкость. Основные идеи. Криптография и криптоанализ.
- Криптографические системы с секретными ключами. Подстановки. Перестановки. Полиалфавитные шифры. Шифр с бегущим ключом. Криптографические системы коды.
- Теорема Шеннона о существовании совершенно секретных шифров.
- Стандарт шифрования данных (криптосистема AES, криптосистема ГОСТ, криптосистема DES).

- Криптографические системы с открытыми ключами. Односторонняя функция с лазейкой. "Шарады" Меркля.
- Криптосистема Диффи и Хэллмана и проблема вычисления дискретного логарифма.
- Криптосистема Шамира.
- Криптосистема RSA и проблема разложения числа на простые сомножители.
- Криптосистема Меркля-Хэллмана, основанная на задаче об укладке ранца.
- Кодирующие системы Мак Эллиса и Нидеррайтера. Цифровая подпись.
- 4.4. Перечень примерных контрольных вопросов и заданий для самостоятельной работы. Не предусмотрены.
- 4.5. Примерная тематика рефератов, курсовых работ Не предусмотрены.

5. Учебно-методическое и информационное обеспечение дисциплины (курса)

1.1. Примерный перечень вопросов к экзамену:

Кодирование в двоичном симметричном канале

- Модель канала связи, скорость кода, пропускная способность.
- Теорема Шеннона.
- Вероятность ошибки декодирования. Стандартное расположение. Синдром.
- Поле Галуа, его свойства.
- Линейные коды. Кодирование и декодирование.
- Общие свойства линейных кодов. Теорема о связи проверочной и порождающей матриц.
- Теорема Глаголева.
- Границы объема кода: граница Синглтона, граница Хэмминга, граница Варшамова-Гилберта.
- Методы построения новых кодов из заданных. Комбинирование кодов.
- Теорема Плоткина. Каскадная конструкция.
- Совершенные коды. Теорема о существовании совершенных кодов.
- Коды Хэмминга над GF(q), способы задания, кодирование, декодирование, единственность.
- Конструкция кодов Васильева, Оценки числа совершенных кодов
- Циклические коды. Кольцо многочленов над полем Галуа. Определение циклического кода.
- Теорема о необходимом и достаточном условии существования циклического кода с порождающим многочленом g(x).
- Кодирование циклических кодов.
- Декодирование циклических кодов.
- Существование циклического представления кода Хэмминга.
- Двоичные коды Боуза-Чоудхури-Хоквингема (БЧХ-коды).
- q-значные коды Боуза-Чоудхури-Хоквингема.
- колы Рила-Соломона.

Сжатие информации

- Разделимые и префиксные коды. Стоимость кодирования.
- Неравенство Крафта-Макмиллана. Теорема Крафта.

- Неравенство Крафта-Макмиллана. Теорема МакМиллана.
- Оптимальное кодирование. Метод Хаффмена.
- Метод Фано.
- Энтропия. Метод Шеннона для бернуллиевских источников.
- Теорема Шеннона.
- Критерий разделимости побуквенного кодирования. Теоремы Маркова. Алгоритм распознавания разделимости.
- Универсальное кодирование, теорема Фитингофа.
- Код Левенштейна.
- Код "стопка книг".
- Адаптивные методы сжатия данных.
- Методы Лемпела-Зива и их модификации.
- Адаптивный метод Хаффмена.
- Арифметический код.

Элементы криптологии

- Введение в криптологию. Секретность и имитостойкость. Основные идеи.
- Криптография и криптоанализ.
- Криптографические системы с секретными ключами. Подстановки.. Перестановки.
- Полиалфавитные шифры. Шифр с бегущим ключом. Криптографические системы колы
- Теорема Шеннона о существовании совершенно секретных шифров.
- Криптосистема AES (стандарт шифрования данных).
- Российский стандарт шифрования данных ГОСТ.
- Криптосистема DES, схема Фейстеля.
- Криптографические системы с открытыми ключами. Односторонняя функция с лазейкой.
- "Шарады" Меркля.
- Криптосистема Диффи и Хэллмана и проблема вычисления дискретного логарифма.
- Криптосистема Шамира.
- Криптосистема RSA и проблема разложения числа на простые сомножители.
- Криптосистема Меркля-Хэллмана, основанная на задаче об укладке ранца.
- Кодирующие системы Мак Эллиса и Нидеррайтера.
- Цифровая подпись.
- Криптосистемы, основанная на эллиптических кривых.

1.2. Основная литература.

- 1. Соловьева Ф.И. Введение в теорию кодирования. Изд. НГУ, 2005,126 с.
- 2. Мак-Вильямс Ф. Дж. А., Слоэн Н. Дж. А. Теория кодов, исправляющих ошибки. Пер. с англ. М.: Связь, 1979. 744 с.
- 3. Блейхут Р. Теория и практика кодов, контролирующих ошибки. Пер. с англ. М.: Мир. 1986. 576 с.
- 4. Берлекэмп. Алгебраическая теория кодирования. Пер. с англ. М.: Мир. 1971. 477 с.
- 5. Сидельников В.М., Теория кодирования, Физматлит, 2008, 324 с.
- 6. Кричевский Р.Е. Сжатие и поиск информации. Наука, 1986.
- 7. Питерсон У., Уэлдон Э. Коды, исправляющие ошибки. Пер. с англ. М.: Мир. 1976. 594 с.
- 8. Шеннон Л.А. Работы по теории информации и кибернетике. М.: ИЛ. 1963.

- 9. Шоломов Л.А. Основы теории дискретных логических и вычислительных устройств. М.: Наука. 1980. 399 с.
- 10. Б.Я. Рябко, А.Н.Фионов, Основы современной криптографии для специалистов в информационных технологиях, Изд-во "Научный Мир", М. 2004.
- 5.3. Дополнительная литература.
- 1. сайт по предмету "Введение в теорию кодирования" www.codingtheory.gorodok.net
- 2. Колесник В.Д., Полтырев Г.Ш. Курс теории информации М.: Наука. 1982. 416 с.
- 3. Нечаев В.И. элементы криптографии. Основы теории защиты информации. М.: Высшая школа. 1999. 109 с.
- 4. Дориченко С.А., Ященко В.В. 25 этюдов о шифрах. Москва, ТЕИС, 1994. 69 с.
- 5. Защита информации. ТИИЭР, т. 67, 3, 1979, С. 71-109.
- 6. Яглом А.М., Яглом И.М. Вероятность и информация. Москва, Наука, 1973, 511 с.
- 7. B. Ryabko, A. Fionov. BASICS OF CONTEMPORARY CRYPTOGRAPHY FOR IT PRACTITIONERS. World Scientific, 2005.

(подробная информация о книге м.б. найдена здесь:

- http://www.worldscibooks.com/compsci/5885.html)
- 8. Б.Я. Рябко, А.Н.Фионов, "Криптографические методы защиты информации", Издво «Телеком. Горячая линия, М., 2005.
- 9. Конвей Дж.Н., Слоэн Н.Дж.А. Упаковки шаров, решетки и группы. Пер. с англ. М.: Мир. 1990. –I, II т.
- 10. Solov'eva F.I., On perfect codes and related topics, Lecture Notes, Pohang University of Science and Technology (POSTECH), Republik of Korea, 2004, 80 pp.
- 5.4. Программное и коммуникационное обеспечение. Не используется.

6. Методические рекомендации по организации изучения дисциплины

При изучении теоретического материала рекомендуется строго придерживаться календарного плана. В ходе слушания лекции студенту рекомендуется самостоятельно воспроизводить ее содержание в виде конспекта, содержащего основные определения и пояснения. После каждой лекции студенту целесообразно самостоятельно изучить литературу по теме, рекомендуемую в программе курса.

Для получения положительной оценки за семестр студенту необходимо успешно пройти контрольную неделю, 3 коллоквиума, контрольные и задания, для чего необходимо: прослушать курс лекций, посещать и активно работать на семинарах, выполнять домашние и самостоятельные работы, успешно написать контрольные работы и 5-минутные опросники на каждом семинаре по определениям и формулировкам основных теорем, необходимых для работы на текущем семинаре.

Самостоятельная работа

Для подготовки коллоквиума или написания реферата студент должен обратиться к преподавателю. При написании реферата студент самостоятельно находит в библиотеке и интернете имеющиеся публикации по его теме, составляет их краткий обзор, проводит их

сравнительный анализ, формулирует и обосновывает выводы. Вместе с текстом реферата студент должен составить демонстрационную презентацию, используемую на защите реферата.

Примечание

Разработан и постоянно совершенствуется сайт www.codingtheory.gorodok.net с информацией по предмету, что представляется чрезвычайно удобным подспорьем для усвоения издагаемого материала на лекциях и семинарах. В частности, на сайте можно найти программу по дисциплине и программу по годовому курсу "Теория кодирования", преподаваемому на ММФ; разработки по семинарским занятиям на ФИТе. В начале страницы каждого семинара приведены основные определения, понятия и обозначения, необходимые для работы на этом семинаре, приведен перечень задач для этого семинара, в конце страницы каждого семинара приведен список основных теоретических вопросов, которые необходимо знать студенту для работы на следующем семинаре, что проверяется в течении 5-минутного письменного опроса по теории на следующем семинаре и во время работы семинара. Эти моменты позволяют стимулировать интерес студента к предмету, позволяют изучить предмет глубже и всесторонне, а также помогают проверять нарастание теоретических познаний по предмету от семинара к семинару. Там же приведены примерные перечни вопросов, которые следует знать для контрольных., а также основная и дополнительная литература, доступ к разным другим сайтам, имеющим отношение к предмету "Введение в теорию кодипрвания". На сайте студенты могут скопировать и прочитать книги по темам преподаваемого предмета, а также смежных Как правило, перечень вопросов для составления билетов на экзаменах совпадает с пунктами из приведенной выше программы, что также облегчает подготовку студентов к экзамену, поскольку объясняется на первой вводной лекции.

Для подготовки студентов предоставляются ресурсы институтов СО РАН. В том числе, Института математики им. ак. С.Л. Соболева СО РАН, Института вычислительных технологий СО РАН, а также ИНТЕЛ, где со студентами ФИТ занимаются семинаристы А.В.Лось и Е.В.Горкунов.

В конце курса, после сдачи экзамена (в условиях, когда студент уже не связан учебным процессом с преподавателями), студент пишет анонимный тест, высказывая свое мнение и пожелания по работе курса, чтению лекций, проведению семинаров, экзаменов, коллоквиумов, самостоятельных и контрольных работ и пр. Последнее также помогает совершенствовать преподавательский процесс.

8. Материально-техническое обеспечение дисциплины

персональные компьютеры

(Указывается материально-техническое обеспечение данной дисциплины (модуля)).

Реценз	вент (ы)
Програ	амма одобрена на заседании
	(Наименование уполномоченного органа вуза (УМК, НМС, Ученый совет)
ОТ	2011 года.