ST3236 Stochastic Processes 1 Cheat Sheet

Law of Total Probability:

Suppose that F_1, F_2, \dots, F_n are mutually exclusive events such that $\bigcup_{i=1}^{n} F_i = S(\text{Exactly 1 of } F_i \text{ will occur}). \text{ Then, } E = \bigcup_{i=1}^{n} E \cap F_i \&$ $P(E) = P(\bigcup_{i=1}^{n} E \cap F_i) = \sum_{i=1}^{n} P(EF_i) = cup_{i=1}^{n} E \cap F_i) = \sum_{i=1}^{n-1} P(E \mid F_i) P(F_i)$ **Boole's Inequality:** $P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$

Boole's Inequality:
$$P(\bigcup_{i=1}^{n} A_i) \le \sum_{i=1}^{n} P(A_i)$$

Tail-Sum Formula(Expectation):

$$\mathbb{E}[X] = \sum_{k=1}^{\infty} k P(X=k) = \sum_{k=1}^{\infty} \sum_{i=1}^{k} P(X=k) = \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} P(X=k) = \sum_{i=1}^{\infty} P(X \ge i)$$
Conditional Expectation:

$$\mathbb{E}[X] = \mathbb{E}_Y[\mathbb{E}[X \mid Y]] = \sum_{y} \mathbb{E}[X \mid Y = y] P(Y = y)$$

$$\mathbb{E}[\sum_{i=1}^N X_1] = \mathbb{E}[\mathbb{E}[\sum_{i=1}^N X_1 \,|\, N\,]] = N\,\mathbb{E}[X\,] \text{ (Expectation of Random Sum)}$$

$$\mathbb{E}[XY] = \mathbb{E}[X\mathbb{E}[Y|X]] \quad Cov(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Chapman-Kolmogorov Equation: Probability of getting from state *i* to state i, is equivalent to probability of going from state i to state kin n steps, and from state k to state j in m steps

$$p_{i,j}^{n+m} = \sum_{k=0}^{\infty} p_{i,k}^{n} p_{k,j}^{m} \ge p_{i,k}^{n} p_{k,j}^{m} \leftrightarrow P^{n+m} = P^{n} P^{m}$$

First Step Analysis:

We define the following:

- $u_{ik} = \Pr\{X_T = k \mid X_0 = i\}$ as the probability of **absorption** into state *k*, starting from state *k*
- $v_i = \mathbb{E}[T | X_0 = i]$ as the expected duration of the Markov Chain, starting from state i

Given a Markov Chain that contains first r non-absorbing states and next n - r absorbing states, we have that:

$$u_{ik} = \sum_{j=1}^{r} \Pr\{X_T = k \mid X_0 = i, X_1 = j\} = p_{i,k} + \sum_{j=1}^{r} p_{i,j} u_j$$
$$v_i = \sum_{j=1}^{r} p_{i,j} (1 + v_j) + \sum_{j=r+1}^{n} p_{i,j} (1) = 1 + \sum_{j=1}^{r} p_{i,j} v_j$$

Given the transition matrix P for the Markov Chain, we formulate the following:

$$P = \begin{bmatrix} Q & R \\ 0 & I \end{bmatrix}$$

- Q represents transition probabilities from non-absorbing state i to non-absorbing state *i*
- R represents transition probabilities from non-absorbing state i to absorbing state k

$$U = [u_{ik}] = R + QU \rightarrow U = [I - Q]^{-1}R$$

$$V = [v_i] = \overrightarrow{1} + QV \rightarrow V = [I - Q]^{-1}\overrightarrow{1}$$

Are matrices representing absorption probabilities of state i into state k, and the expected duration of the MC starting from state i**Classification of States:**

State *j* is said to be <u>accessible</u> from state *i* if $P_{i,j}^n > 0$ for $n \ge 0$

- Starting from state i, it is possible that the MC enters state i States i, j are said to communicate if state i is accessible from j, and state i is accessible from state i, denoted as $i \leftrightarrow i$. Then, the following properties hold:
- (Reflexivity) $i \leftrightarrow i$: State i communicates with itself $\rightarrow p_{i,i}^n > 0$
- (Symmetry) If $i \leftrightarrow j$, then $j \leftrightarrow i$
- (Transitivity) if for states $i, j, k, i \leftrightarrow j$ and $j \leftrightarrow k$, then $i \leftrightarrow k$ The **equivalence class** $[i] = \{j \in S : j \leftrightarrow i\}$ is the collection of states that communicate with i
- The equivalence relation partitions the Markov Chain into equivalence classes → Each equivalence class also a MC
- A Markov Chain is said to be *irreducible* if it consists of only one equivalence class → all states communicate

Denote $f_{i,i}^n = \Pr\{X_n = 1, X_v \neq i : i = 1, 2, ..., n - 1 \mid X_0 = 1\}$ as the probability that the *first return time* is n if the MC starts at i. Then, the probability that starting at i, the state ever returns is

$$f_i = \sum_{n=1}^{\infty} f_{i,i}^n = \lim_{N \to \infty} \sum_{n=1}^N f_{i,i}^n$$
• A state is said to be **recurrent** if the probability that it ever returns

to state $i \rightarrow f_i = 1$

Alternatively, the expected number of periods that the Markov Chain stays in state *i* is infinite:

$$\mathbb{E}[\sum_{n=1}^{\infty} I\{X_n = i \,|\, X_0 = i\}] = \sum_{n=1}^{n} P_{i,i}^n = \infty$$

- Let C be a communication class of recurrent states. Then, $p_{i,j}^n = 0, \forall n, i \in C, j \notin C \rightarrow \text{Once in } C$, stays inside C
- A recurrent class is also known as a *closed* class \rightarrow once the MC is in a recurrent class, it cannot leave the class
- Similarly, a state *i* is *transient* if the probability of return to the state is finite $\rightarrow f_i < \infty$ and:

$$\mathbb{E}[\sum_{n=1}^{\infty} I\{X_n = i \,|\, X_0 = i\}] = \sum_{n=1}^{n} P_{i,i}^n = \infty$$

• $1 - f_i$ is the positive probability of escape that the MC will never return to state i again. That is the probability that the MC will return to state *i* for exactly *n* times is $f_i^{n-1}(1-f_i)$ decays as n increases

Corollary: If for states $i \leftrightarrow j$ and state i is recurrent, then state j is also recurrent. Consequently, if state i is transient, so is state jThe *periodicity* of a state *i* is denoted by:

$$d(i) = GCD(\{n : p_{i,i}^n > 0, n \ge 1\})$$

Is the lowest common divisor interval of all periods n such that state *i* can return to $i \to \forall n, p_{i,i}^n > 0 \to n = \alpha d(i)$

- Periodicity is a class property \rightarrow For states i, j $i \leftrightarrow j \rightarrow d(i) = d(j)$
- If a state i has period d(i), there exists integer N such that $\forall n \geq N, p_{i,i}^{nd(\hat{i})} > 0$
- If state i has period d(i), and $p_{i,i}^m > 0$, then $p_{i,i}^{m+\alpha d(i)} > 0$
- A Markov Chain that has period 1 is known as aperiodic **Basic Limiting Theorem of Markov Chains:**

The *stationary distribution* $\overrightarrow{\pi} = \{\pi_1, \dots, \pi_n\}$ of a Markov Chain has the following properties:

$$\pi_{j} = \sum_{i} \pi_{i} p_{i,j} \to \overrightarrow{\pi} = \overrightarrow{\pi} P$$

$$\sum_{i} \pi_{i} = 1$$

And π_i represents the unconditional distribution of the Markov Chain being in state *i* at any given point in time:

$$\pi_{j} = \lim_{n \to \infty} \frac{1}{n} \sum_{m=1}^{n} I[X_{m} = j] = \lim_{n \to \infty} \frac{N_{n}(j)}{n} \to \lim_{n \to \infty} \Pr\{X_{m} = j\}$$

Denote $T_i = \min\{n \ge 1 : X_n = 1\}$ as the *first return time* of the MC to state i. Then,

$$f_{i,i}^n = \Pr\{T_i = n | X_0 = i\}$$
 and $m_i = \mathbb{E}[T_i | X_0 = i] = \sum_{n \to \infty} n f_{i,i}^n$

Where m_i denotes the mean duration between visits to state i. **Theorem 4.1** Consider an aperiodic, irreducible and recurrent Markov Chain. Then.

$$\lim_{n \to \infty} P_{j,i}^n = \lim_{n \to \infty} P_{i,i}^n = \frac{1}{m_i}$$

- In the long run, the probability of being in state i is independent of the starting state *i*
- Positive Recurrent: $m_i = \mathbb{E}[T_i | X_0 = i] < \infty \to \lim_{i \neq i} P_{i,i}^n > 0$
- Null Recurrent: $m_i = \mathbb{E}[T_i | X_0 = i] = \infty \to \lim_{i \neq i} P_{i,i}^n \to 0$
- Transient: $\lim_{n\to\infty} P_{i,i}^n = 0$

Theorem 4.2 In a positive recurrent, irreducible and aperiodic Markov Chain communication class,

$$\lim_{n \to \infty} P_{j,i}^n = \lim_{n \to \infty} P_{i,i}^n = \pi_i = \frac{1}{m_i} \text{ and}$$

$$\lim_{n \to \infty} P^n = \begin{bmatrix} \overrightarrow{\pi} \\ \overrightarrow{\pi} \\ \vdots \\ \overrightarrow{\pi} \end{bmatrix} \to \begin{bmatrix} \overrightarrow{\pi} \\ \overrightarrow{\pi} \\ \vdots \\ \overrightarrow{\pi} \end{bmatrix} = \lim_{n \to \infty} P^{n+1} = \lim_{n \to \infty} P^n P = \begin{bmatrix} \overrightarrow{\pi} \\ \overrightarrow{\pi} \\ \vdots \\ \overrightarrow{\pi} \end{bmatrix} P$$

- Hence, we can recover m_i from π_i
- Consequently, if a MC is $periodic(d_i > 1)$, then <u>the limiting</u> distribution does not exist for this equivalence class

Regular Transition Matrix:

A Markov Chain and it's transition matrix is called *regular* if there exists a $k \ge 1$ such that P^k have all positive entries.

- All states can communicate in *k* steps
- If a MC contains absorbing states, then it cannot be regular \rightarrow MC in absorbing states cannot reach any other states Every transition matrix that satisfies the following is regular:
- For every pair of states i, i, there is a path k_1, \ldots, k_r for which their probabilities are strictly positive
- There is at least one state where $P_{i,i} > 0$

Regular implies irreducibility and aperiodic → Markov Chain is positive recurrent

Doubly Stochastic Matrix:

A transition probability matrix is called *double stochastic* if the column entries sum to 1 in addition to the properties of stochastic matrices:

$$P_{i,j} \geq 0, ~ \sum_k P_{i,k} = \sum_k P_{k,j} = 1, \, \forall i,j \label{eq:problem}$$

• If an $N \times N$ double stochastic matrix is regular, then the unique limiting distribution is: $\pi_j = \{\frac{1}{N}, \dots, \frac{1}{N}\}^T \rightarrow \text{ equally likely to be}$ in any state after a long period of time

Let P, Q be double stochastic matrices, $0 \le \lambda \le 1$

- $A = \lambda P + (1 \lambda)Q$ is also a double stochastic matrix
- B = PO is also a double stochastic matrix

Reducible Markov Chains:

If the Markov Chain is reducible, we cannot directly determine the period, class type and limiting distribution(if any). To find $\lim P^n$, we need to decompose the MC into:

Absorbing States

• Once the MC is in an absorbing state i, the probability $p_{i,i}^{(n)}$ from transiting to another state is 0. As a result, row entries of absorbing states do not change as $n \to \infty$

Recurrent Classes

• If the class is positive recurrent and aperiodic, then the limiting distribution exists.

Transient Classes

- For states *i* that are in transient classes, we know that $\lim_{n\to\infty}P^n_{j,i}=\lim_{n\to\infty}P^n_{i,i}=0. \text{ Row entries in } \lim_{n\to\infty}P^n \text{ corresponding }$ to transient state classes = 0
- For stationary distribution probabilities to recurrent/absorbing states *j* from transient class states, we compute probability of absorption into class [j], then the probability that once in class [i], MC stays in state i:

$$u_{i,[j]} = \sum_{j' \in [j]} p_{i,j'} + p_{i,i} u_{i,[j]}$$

 $\pi_{i,j} = u_{i,\lceil j \rceil} \times \pi_i$

• This also means that the stationary distribution probabilities from a state *i* in one transient class to another *j* is:

$$\pi_{i,j} = u_{i,[j]} \times \pi_j = u_{i,[j]} \times \lim_{n \to \infty} P_{j,j}^n = 0$$

While limiting distributions do not always exists for all equivalence classes such as periodic recurrent classes, time average distribution

exists:
$$\lim_{n \to \infty} \left[\frac{1}{n} \sum_{k=1}^{n} P^k \right]$$

Time Reversible Markov Chains:

Let $Q_{i,j}$ denote the transition probabilities such that starting at time n_i , we trace the sequence of states going back in time X_n, X_{n-1}, \ldots Then, the transition probabilities $Q_{i,j}$ is defined by:

$$Q_{i,j} = P\{X_m = j \mid X_{m+1} = i\} = \frac{P\{X_m = j, X_{m+1} = i\}}{P\{X_{m+1} = i\}} = \frac{P\{X_m = j\}P\{X_{m+1} = i \mid X_m = j\}}{P\{X_{m+1} = i\}} = \frac{\pi_j P_{j,i}}{\pi_i}$$
A Markov Chain is said to be time reversible if $P_{m+1} = Q_{m+1}$. That is, if

A Markov Chain is said to be <u>time reversible</u> if $P_{i,j} = Q_{i,j}$. That is, it needs to satisfy the detailed-balance equation:

$$\pi_j P_{j,i} = \pi_i Q_{i,j} = \pi_i P_{i,j}$$

 $\pi_j P_{j,i} = \pi_i Q_{i,j} = \pi_i P_{i,j}$ • This means that the *rate* of forward chain is equals to the *rate* of the backward chain

Theorem 4.2(Kolmogorov's criteria for time reversibility): A regular/ergodic Markov Chain for which $P_{i,j} = 0$ whenever $P_{i,i} = 0$ is time reversible if and only if starting in state i, any path back to state i has the same probability as the reversed path.

 $P_{i,i_1}P_{i_1,i_2}\dots P_{i_k,i}=P_{i,i_k}P_{i_k,i_{k-1}}\dots P_{i_1,i}$ **Proposition 4.6:** Consider an irreducible Markov Chain with transition probabilities $P_{i,j}$. If we can find positive numbers $\pi_i, i \geq 0$, and a transition probability matrix $\mathbf{Q} = [Q_{i,j}]$ such that:

$$\pi_i P_{i,j} = \pi_j Q_{j,i} \qquad \sum_i \pi_i = 1$$

Then, $Q_{i,j}$ are the transition probabilities of the reversed chain, and π_i are stationary probabilities for both the forward and backwards chain.

Branching Processes:

Let ξ be a non-negative random variable denote the number of offspring that is produced by a single entity in a branching process. Denote the probability distribution of ξ as:

$$\Pr\{\xi = k\} = p_k \quad k = 0,1,...$$

Probability Generating Functions:

Using $s = e^t$, the <u>probability generating function</u> of ξ is given as:

$$\phi(s) = \mathbb{E}[e^{t\xi}] = \mathbb{E}[s^{\xi}] = \sum_{k=0}^{\infty} p_k s^k \quad 0 \le s \le 1$$

• Knowing the probability generating function allows us to derive the probability mass functions:

$$p_k = \frac{1}{k!} \frac{d^k \phi(s)}{ds^k} \bigg|_{s=}$$

• **Uniqueness of PGF:** if random variables *X* and *Y* have the same probability generating function, their probability mass functions are identical: P(X = k) = P(Y = k)

PGF of sum of Random Variables:

Let ξ and η be independent non-negative integer valued random variables having the PGFs

$$\phi(s) = \mathbb{E}[s^{\xi}] \qquad \varphi(s) = \mathbb{E}[s^{\eta}]$$

Then, the PGF of the sum of random variables $\xi + n$ is

$$\mathbb{E}[s^{\xi+\eta}] = \mathbb{E}[s^{\xi}s^{\eta}] = \mathbb{E}[s^{\xi}]\mathbb{E}[s^{\eta}] = \phi(s)\phi(s)$$

In general, let $\xi_1, \xi_2, \dots, \xi_m$ be independent random variables with PGF $\phi(s) = \mathbb{E}[s^{\xi_i}]$. Then, the PGF of the sum $\xi_1 + \xi_2 + \ldots + \xi_m$ is: $\mathbb{F}[s^{\xi_1+\xi_2+...+\xi_m}] = [\phi(s)]^m$

Let $X = \xi_1 + \xi_2 + \ldots + \xi_N$ be a random sum of independent variables of ξ_i with PGF $\phi(s)$. Then, the PGF of X is given by:

$$h_X(s) = \mathbb{E}[s^X] = \mathbb{E}_N[\phi(s)^N] = g_N(\phi(s))$$

Theorem: Let ϕ be the PGF of a non-negative integer-valued random variable X. Then $\mathbb{E}[X] = \phi'(1)$. More generally

$$\mathbb{E}[X(X-1)\dots(X-k+1)] = \phi^{(k)}(1), k \ge 1$$

Mean, Variance and Extinction Probability:

Let X_n denote the number of individuals in the population at time n, and $\xi_i^{(n)}$ with $\mathbb{E}[\xi] = \mu$, $\mathrm{Var}(\xi) = \sigma^2$ denote the number of offspring produced by individual i at time n. Then,

$$X_{n+1} = \xi_1^{(n)} + \xi_2^{(n)} + \dots + \xi_{X_n}^{(n)}$$

$$\mathbb{E}[X_{n+1}] = M(n+1) = M(n)\mu = \mu^{n+1}\mathbb{E}[X_0]$$

And variance:

$$Var(X_{n+1}) = V(n+1) = \sigma^2 M(n) + \mu^2 V(n)$$

$$V(n) = \sigma^2 \mu^{n-1} \times \begin{cases} n & \text{if } \mu = 1 \\ \frac{1-\mu^n}{1-\mu} & \text{if } \mu \neq 1 \end{cases}$$

• Variance of population increases linearly if $\mu = 1$, and geometrically if u > 1

Let $T = \{ \min n \ge 1 : X_n = 0 \}$ denote the time of extinction, when $X_0 = 1$. Then we denote:

$$u_n = \Pr\{T \le n\} = \Pr\{X_n = 0\}$$

As the probability of the first time of extinction of the branching process at time *n*. We have that:

$$u_n = \sum_{k=0}^{\infty} p_k(u_{n-1})^k = \mathbb{E}[(u_{n-1})^k] = \phi(u_{n-1})$$

- u_n is monotonically increasing $\rightarrow u_{n+1} \ge u_n$
- Probability of extinction exactly at the n^{th} generation is

$$u_n - u_{n-1}$$

Let the $u_{\infty} = \Pr\{T \leq \infty\}$ be the probability that the population ever dies out. Then, we have that u_{∞} fulfils:

$$u_{\infty} = \lim_{n \to \infty} u_n = \lim_{n \to \infty} \phi(u_{n-1}) = \phi(\lim_{n \to \infty} u_{n-1}) = \phi(u_{\infty})$$

And u_{∞} is the <u>smallest non-negative root to the equation $u = \phi(u)$ </u>

- If $\mathbb{E}[\xi] = \mu < 1$, then $u_{\infty} = 1$
- If $\mathbb{E}[\xi] = \mu = 1$, then $u_{\infty} = \begin{cases} 1 & \text{if } p_0 > 0 \\ 0 & \text{if } p_0 = 0 \end{cases}$
- If $\mathbb{E}[\xi] = \mu > 1$, then $0 < u_{\infty} < 1$