## Default-all is dangerous!

## Wolfgang Gatterbauer Alexandra Meliou Dan Suciu

3rd USENIX Workshop on the Theory and Praxis of Provenance (Tapp'11)



## **Overview Provenance Definitions**

ramifications of the proposed semantics.

Why? Where? Naive "SQL interpretation" Witness Why-provenance = Where-provenance = **Provenance** witness basis ( $\alpha_w$ ) <u>propagation</u>  $(\alpha_p)$ definition Buneman et al. [PODS'02] Buneman et al. [ICDT'01] **Default-all Minimal** QRI definition <u>w</u>itness basis  $(\alpha_w^m)$ <u>propagation</u>  $(\alpha_p^d)$ (Query-Rewrite-*Insensitive)* Buneman et al. [ICDT'01] Bhagwat et al. [VLDB'04] **Minimal** Has problems if We do not discuss here whether QRI is one interprets <u>p</u>ropagation  $(\alpha_p^m)$ annotations on desirable (see also Glavic, Miller [Tapp'11] , Proposed in this paper! attribute values but merely point out that, if aiming for QRI, care has to be taken about the

Independent work presented at this WS

## **Overview Provenance Definitions**



## **Example 1: Query-Rewrite-Insensitivity (QRI)**





# Real example: Why Default-all is dangerous Hanako queries a community DB for contents of LF-milk\*:



## Default-all propagation makes her drink the milk:



<sup>\*</sup> Note the one-to-one correspondence of this example with example 1

## Definition Minimal propagation ( $\alpha_p^m$ )

$$\alpha_p^m(t,A,Q) := \bigcup_{\substack{t' \in \uplus \alpha_w^m(t,Q) \\ A' \in \text{attributes of } t' \text{ propagating to cell}(t,A)}} \alpha_p(t',A')$$
 
$$\text{$ \text{$U$ transforms 'sets of sets' into 'sets', hence something like QRI lineage}$$

#### Intuition:

Return the intersection between:

- query-specific where-provenanc  $(\alpha_n)$
- and QRI minimal witness basis  $(\alpha_w^{\dot{m}})$

"all relevant ... and only relevant"

## **Example 1**





## **Example 1: Illustration of "minimal" versus "all"**

#### Why-provenance

Why-provenance  $(\alpha_w)$ 

Minimal witness basis  $(\alpha_w^m)$ 



## Where-provenance

Where-provenance  $(\alpha_p)$ 

Default-all propagation  $(\alpha_p^d)$ 

Minimal propagation  $(\alpha_p^m)$ 

$$\alpha_p^d(t_4, A, Q_1) = \alpha_p^d(t_4, A, Q_2)$$

$$\alpha_p^m(t_4, A, Q_1) = \alpha_p^m(t_4, A, Q_2)$$

$$\alpha_p(Q_1)$$

$$\alpha_p(Q_2)$$

## Interpretation of Annotations 1: Attribute Value\*



<sup>\*</sup> Interpretation of annotations on entity attribute values favored by us and underlying our model

## Interpretation of Annotations 1: Attribute Value\*



<sup>\*</sup> Interpretation of annotations on entity attribute values favored by us and underlying our model

## Interpretation of Annotations 2: Domain Value\*

#### **Domain value annotations**\*

#### *Input Ra:*



#### *Input Sa:*



Argument for default-all: If annotations are on domain values, then retrieving all annotations are relevant.

## **Alternative representation**

*Annotation table Sa:* 

| В | annotation                                                                   |
|---|------------------------------------------------------------------------------|
| 2 | b: Bob, March 18, 2011<br>This number is a prime number.                     |
| 2 | f: Fuyumi, March 19, 2011<br>Two is not a prime number<br>because it is even |

#### Annotation table Sa:

| Date   | annotation         |
|--------|--------------------|
| Dec 25 | This is a holiday. |

Counter-Argument: But then these annotations can be modeled in a separate table as normalized tables.

<sup>\*</sup> Alternative interpretation suggested by Wang-Chiew Tan (example created after conversation at Sigmod 2011)

## **Backup: Detailed Example 2**



#### Default-all propagation $(\alpha_p^d)$



$$\alpha_p^{\ d}(t_4, B, Q_5) = \alpha_p(t_4, B, Q_6)$$
 with  $Q_6(x, y):-R^a(x, y), R^a(y, _), R^a(x, _), S^a(_, y)$ 

Note minimal propagation is not equivalent to just evaluating the where-provenance for the query:

$$Q_7(x,y)$$
:- $R^a(x,y), R^a(y,\_)$ . E.g.  $\alpha_p(t_5,B,Q_7) = \{e,f,g\}$ 

#### Minimal propagation $(\alpha_p^m)$

$$\begin{array}{c|cccc} & A & B \\ t_4 & 1^a & 2^{b,e,g} \\ t_5 & 2^e & 2^{e,f} \end{array}$$

$$lpha_p^m(t_4, A, Q_5) = \bigcup_{\substack{t' \in \{t_1, t_3, t_4\}, A' \\ = lpha_p(t_1, A) = \{a\}}} lpha_p(t', A')$$

$$\alpha_p^m(t_5, B, Q_5) = \bigcup_{t' \in \{t_3\}, A'} \alpha_p(t', A')$$

$$= \alpha_p(t_3, B) \cup \alpha_p(t_3, A) = \{e, f\}$$