Project Documentation Group 09

Daniel Satcs, Meriton Xhymshiti, Ruben Govers, and Sri Saai Akhheel Bandi

University of Twente

m.xhymshiti@student.utwente.nl, r.r.govers@student.utwente.nl, satcs@student.utwente.nl, s.s.a.bandi@student.utwe

April 12, 2019

According to the following documentation of computational results for the graph isomorphism project, we aim at a grade of 7.5.

1. Category 6: Basic Problem Instances

The basic problem instance have been solved correctly during the programming competition. The following table shows the computation times.

instance	correctly solved	comp. time (s)
basicGI1	/	2.1
basicGI2	✓	17.9
basicGI3	✓	1215.4
basicGIAut	✓	85.2
basicAut1	✓	13.7
basicAut2	✓	163.6

Table 1: *Computation times basic instances.*

2. Category +1: Additional Techniques for Faster Algorithms

Not implemented.

3. Category +1: Implementation of Fast Partition Refinement

We have implemented the fast partition refinement Algorithm based on Hopcroft's algorithm for DFA minimization of finite automata [1]. In oder to achieve a speedup with this algorithm, we had to use a doubly-linked-list implementation of the color classes of vertices of the graph. The speedup on some sample instances with this algorithm for computing a stable coloring is shown in the tables below.

4. Category +1: Using Generating Sets for Computing $|\operatorname{Aut}(G)|$

Not implemented.

5. Category +1: Additional and Genuinely New Ideas

Not implemented.

instance	instance size $ V $	fast part. ref. times
torus24.grl	24	1.9
trees36.grl	36	10.7
trees90.grl	90	9.6
bigtrees3.grl	227	60.1

Table 2: *Computation times for isomorphic pairs with fast partition refinement.*

instance	instance size $ V $	# autom.	fast part. ref.
cubes5.grl	32	3840, 24	206.1
trees36.grl	36	2, 6	5.8
torus24.grl	24	96	10.8

Table 3: Computation times for number of automorphisms with fast partition refinement.

6. BALANCE SHEET

The following is the estimated work distribution in the group for this implementation project.

	Meriton Xhymshiti	Daniel Satcs	Ruben Govers	Sri Saai Akhheel Bandi
Color Refinement	50%	_	_	50%
Branching Algorithm	25%	25%	25%	25%
Fast Part. Refinement	_	50%	50%	_

Table 4: Work Distribution Group 09.

REFERENCES

[1] Hopcroft J. (1971) An $n \log n$ algorithm for minimizing states in a finite automaton. In *Theory of machines and computations* (Proc. Internat. Sympos., Technion, Haifa, 1971), New York: Academic Press, 189-196.