ECON 7130 - MICROECONOMICS III

Spring 2015

Notes for Acemoglu and Linn (Quarterly Journal of Economics, 2004)

Question:

• Do increases in market size spur innovation in the pharmaceutical industry?

Tools:

- Continuous time dynamic programming
- Monopolistic competition
- Free entry
- Poisson model
- Quasi-maximum likelihood

Outline of Model

- 1. Specification of Environment
 - (a) Population of agents
 - Continuum of drug consumers
 - J groups defined by drug demanded
 - Continuum of firms who are monopolistically competitive
 - Free entry of new firms
 - Identify firms by the best quality drug they produce in each line $j \in J$
 - (b) Preferences
 - Consumers:
 - Forward looking with infinite time horizon
 - Consumers of group G_j get utility from basic good y and drug j
 - Specifically, agents choose the sequence of consumption of the basic good, $c_i(t)$, and drug j, $x_{ij}(t)$, to maximize:

$$\int_0^\infty exp(-rt)[c_i(t)^{1-\gamma}(q_j(t)x_{ij}(t))^{\gamma}]dt,\tag{1}$$

where r is the real interest rate and $q_i(t)$ is the time varying quality of drug j

- Consumers make these choices subject to their per period budget constraint:

$$c_i(t) + p_i(t)x_{ij}(t) = y_i(t),$$
 (2)

where $y_i(t)$ is the exogenous endowment to agent i at time t

- Note that the fact that there is no borrowing/saving really simplifies the consumer's problem.
- Producers:
 - Forward looking with infinite time horizon
 - Firms are monopolistically competitive
 - Set price to capture market

- Per period profit function: $\pi_j(p_j(t), q_j(t)) = p_j(t)X_j(t) mc_j(t)X_j(t)$ (big X denotes market demand)
- (c) Production technology
 - Use basic good y to produce drugs
 - Marginal cost of production = 1 unit of basic good
 - Can also spend money on R&D
 - Spending is targeted at drugs of type j
 - If spend $z_j(t)$ units of basic good on R&D, the flow rate of new drugs (innovations) is:

$$n_j(t) = \delta_j z_j(t) \tag{3}$$

- Innovation results in a drug with quality $\lambda q_j(t)$ where $\lambda > 1$ and $q_j(t)$ is highest quality existing drug in line j
- (d) Information technology
 - Full info in basic model
 - \bullet Extensions in other versions consider uncertainty in market size
- (e) Enforcement technology
 - N/A
- (f) Matching technology
 - Decentralized, competitive market where consumers and producers meet

2. Equilibrium

- Recursive monopolistically competitive eq'm
 - Firms compete on price for differentiated product
 - Free entry results in zero profits in equilibrium

Model outline:

- Consumers demand drugs corresponding to their type and income
- Firms compete to sell drugs, choosing price and investing in R&D to get leading technology/quality
- Firm's decision to invest in R&D will be a function of expected profits, which are a function of market size

Demand:

- Cobb-Douglas utility function (and no borrow/save) implies demand from consumer i of group G_j at time t is $x_{ij}(t) = \frac{\gamma y_i(t)}{p_j(t)}$
 - Note how quality falls out of this demand equation
 - Get this from FOC. Subbing in for $c_i(t) = y_i(t) p_j(t)x_{ij}(t)$ from BC, we have:

$$\frac{\partial U}{\partial x_{ij}(t)} = e^{-rt[\cdot]} \left[(1 - \gamma)(-p_j(t))(y_i(t) - p_j(t)x_{ij}(t))^{-\gamma}(q_j(t)x_{ij}(t))^{\gamma} + (y_i(t) - p_j(t)x_{ij}(t))^{1-\gamma}\gamma q_j(t)(q_j(t)x_{ij}(t))^{\gamma-1} \right] = 0$$
(4)

- Which means that:

$$[(1-\gamma)(-p_{j}(t))(y_{i}(t)-p_{j}(t)x_{ij}(t))^{-\gamma}(q_{j}(t)x_{ij}(t))^{\gamma}+(y_{i}(t)-p_{j}(t)x_{ij}(t))^{1-\gamma}\gamma q_{j}(t)(q_{j}(t)x_{ij}(t))^{\gamma-1}]=0$$

$$\iff (1-\gamma)(p_{j}(t))(y_{i}(t)-p_{j}(t)x_{ij}(t))^{-\gamma}(q_{j}(t)x_{ij}(t))^{\gamma}=(y_{i}(t)-p_{j}(t)x_{ij}(t))^{1-\gamma}\gamma q_{j}(t)(q_{j}(t)x_{ij}(t))^{\gamma-1}$$
(5)

- Solving the above for $x_{ij}(t)$ yields: $x_{ij}(t) = \frac{\gamma y_i(t)}{p_j(t)}$
- Market demand for drug j at time t is thus: $X_j(t) = \frac{\gamma Y_j(t)}{p_j(t)}$
 - Where $Y_j(t) = \sum_{i \in G_j} y_i(t)$
 - Thus, $Y_i(t)$ determines the size of the market for drug j

Supply:

- Monopolistic competition means that $p_j(t)$ for the highest quality drug is given by $p_j(t) = \lambda$
 - Where λ is the proportional increase in quality in the best quality drug resulting from a new innovation
 - This pricing rule is derived from the difference in consumer utility between the best quality drug and the next best quality drug
 - * Solve for this by using the individual demand above and solving for utility of best and next best quality. Solve for price that makes these two equal..
 - If the price is higher than this, the consumer will chose the next best quality drug no sales for best quality
- This implies that per period profits are given by:

$$- \pi_{i}(p_{i}(t), q_{i}(t)) = p_{i}(t)X_{i}(t) - mc_{i}(t)X_{i}(t)$$

$$-\pi_{i}(p_{i}(t), q_{i}(t)) = p_{i}(t)X_{i}(t) - X_{i}(t)$$

$$- \pi_i(q_i(t)) = \lambda X_i(t) - X_i(t)$$

$$- \pi_j(q_j(t)) = (\lambda - 1)X_j(t)$$

$$-\pi_i(q_i(t)) = (\lambda - 1)\frac{\gamma Y_i(t)}{\lambda}$$

- Note: I'm not sure how they get rid of the λ in the denominator

- A+L write:
$$\pi_i(q_i(t)) = (\lambda - 1)\gamma Y_i(t)$$

• Which means that the discounted present value of having the highest quality drug j at time t is given by:

$$rV_{j}(t|q_{j}) = \pi_{j}(q_{j}(t)) + \underbrace{\dot{V}_{j}(t|q_{j})}_{\text{Potential gain/loss in value}} - \underbrace{\delta_{j}z_{j}(t)}_{n_{j}(t)}V_{j}(t|q_{j})$$

Accounts for other firms investing in drug j and becoming leader in quality (6)

- Note that firm with highest quality drug won't innovate (This is a result of Arrow (1962), though
 my reading just says that they have less incentive to innovate)
- Free entry means that profits are zero
 - This means that $\pi_i(t) = z_i(t)$ all potential profits are spent on R&D
 - If $\pi_j(t) = z_j(t)$, then profits are zero and $\pi_j(t) = \delta_j z_j(t) V_j(t|q_j)$, which means $z_j(t) = \delta_j z_j(t) V_j(t|q_j)$, which means $1 = \delta_j V_j(t|q_j)$
 - Thus:

- * If $z_j(t) > 0$, then $\delta_j V_j(t|q_j) = 1$, $\forall j, t$
- * If $z_i(t) = 0$, then $\delta_i V_i(t|q_i) \leq 1$, $\forall j, t$ (no eq'm R&D no money spent because no expected profits)
- To find amount of R&D do:
 - * If $z_j(t) > 0$, then $\delta_j V_j(t|q_j) = 1$ and $\dot{V}_j(t|q_j) = 0$
 - $* \Rightarrow rV_i 0 = \pi_i(q_i(t)) z_i$
 - $* \Rightarrow z_j = \pi_j(q_j(t)) rV_j(t|q_j)$

$$\begin{array}{l} * \Rightarrow z_{j} = \kappa_{j}(q_{j}(t)) & \forall V_{j}(t|q_{j}) \\ * \Rightarrow z_{j} = \frac{\delta_{j}\pi_{j}(q_{j}(t))}{\delta_{j}} - \underbrace{r \delta_{j}V_{j}(t|q_{j})}_{\delta_{j}} \\ * \Rightarrow z_{j} = \frac{\delta_{j}\pi_{j}(q_{j}(t)) - r}{\delta_{j}} \\ * \Rightarrow z_{j} = \frac{\delta_{j}(\lambda - 1)\gamma Y_{j}(t) - r}{\delta_{j}} \\ * & \text{Thus, } z_{j} = \max\left\{\frac{\delta_{j}(\lambda - 1)\gamma Y_{j}(t) - r}{\delta_{j}}, 0\right\}, \ \forall j, t \end{array}$$

- This leads to some comparative statics that are of interest:
 - * $\frac{\partial z_j(t)}{\partial Y_i(t)} > 0$; Bigger market means more R&D
 - * $\frac{\partial z_j(t)}{\partial \lambda} > 0$; Larger innovations means more R&D
 - * $\frac{\partial z_j(t)}{\partial \delta_i} > 0;$ More productive R&D means more R&D
 - * $\frac{\partial z_j(t)}{\partial r}$ < 0; Higher interest rate means less R&D (b/c R&D pays off in future)
 - * $\frac{\partial z_j(t)}{\partial x} > 0$; Bigger market means more R&D
- Expend on R&D + technology $(\delta_i) \Rightarrow$ the rate of entry of new drugs: $n_i(t) = max \{\delta_i(\lambda 1)\gamma Y_i(t) r, 0\}$

Equilibrium:

- Defined by:
 - $-p_{i}(t)|j=1,...,J$
 - $-X_{i}(t)|j=1,...,J$
 - $-z_{i}(t)|i=1,...,J$
- That are consistent with individual utility maximization, firm profit maximization, and the market clearing conditions.

Identification:

- Not structural, but use model eq'm for innovation to generate empirical model
- Add to this some controls
- Use a Poisson model because distribution of arrival of new innovations
 - Poisson distribution is generally what you want to use to model arrival times
- Problem: can't observe the δ_i 's
- Model estimated using linear regressions as well as multinomial logit model estimates with quasimaximum likelihood (better properties if model misspecified)

Data:

- Need data on market size, innovations
- Market size:
 - Demographics from the CPS
 - Drug expenditures form MEPS (Medical Expenditures Panel Study)
- Innovations:
 - FDA drug approval data
 - Consider various measures of innovation: generics, non generics, new molecular entities

Results:

• Market size increases innovations using a number of measures

Strengths:

- Pretty clear model of innovation
- Not shown, but apparently they have one that allows for transitional dynamics so get innovation in anticipation of market size change
- Nice transition from theory to data
- Thorough robustness checks

Weaknesses:

• Still trouble with δ_j 's - even with all robustness checks. What if R&D productivity increasing as baby boomer's age? Spurious correlation...