資訊114 Huyo91196 洪茂菘

1.24 If x(t) is the signal shown in Figure 1.58, sketch (a) x(t-2), (b) x(3t), and (c) y(t) = 1 + 2x(t).

$$\gamma(t) = \begin{cases}
-\frac{\nu}{3} & \text{if } v \in \mathcal{I} \\
0 & \text{otherwise}
\end{cases}$$

FIGURE 1.58 For Problem 1.24.

- **1.29** Given x(t) in Figure 1.59, sketch
 - (a) y(t) = -x(t-1)
 - (b) z(t) = 4x(t/2)
 - (c) h(t) = x(2-t)

FIGURE 1.59 For Problem 1.29.

$$\chi(t-1) =
 \begin{cases}
 -4, & 0 < (t-1) < \nu \\
 -\nu(t-1), & -\nu(t-1) < \nu
 \end{cases}$$

$$y(t) = -\gamma(t-1) = \begin{cases} 4, |(t,3)| \\ 2t-\gamma, -(c+1) \end{cases}$$

$$\gamma(\frac{t}{2}) = \begin{cases} -4, 0(\frac{t}{2}) \\ -4, 0(\frac{t}{2}) \end{cases}$$

$$y(t) = -\gamma(t-1) = \begin{cases} 4, |\ell t, 3| \\ 1t - \nu, -|\ell t| \end{cases} Z(t) = 4\gamma(\frac{t}{\nu}) = \begin{cases} -1b, 0 < t < 4 \\ -4t, -4 < t < 0 \end{cases} = \begin{cases} -4, 0 < t < \nu \\ t - \psi, \nu < t < 4 \end{cases}$$

$$\chi(t-1) = \begin{cases}
-4, & 0 < (t-1) < \nu \\
-\nu(t-1), & -\nu(t-1) < 0
\end{cases}$$

$$\chi(\frac{t}{\tau}) = \begin{cases}
-4, & 0 < \frac{t}{\tau} < \nu \\
-\nu(\frac{t}{\tau}), & -\nu(\frac{t}{\tau}) < 0
\end{cases}$$

$$h(t) = \chi(\nu t) = \begin{cases}
-4, & 0 < (\nu t) < \nu \\
-\nu(\frac{t}{\tau}), & -\nu(\frac{t}{\tau}) < 0
\end{cases}$$

$$h(t) = \chi(\nu t) = \begin{cases}
-4, & 0 < (\nu t) < \nu \\
-\nu(\nu t), & \nu(\nu t) < 0
\end{cases}$$

- (a) x[n]u[2-n]
- (b) $x[n][u[\underline{n+1}]-u[n]]$
- (c) $x[n]\delta[n-2]$

$$||(v)|| = \begin{cases} 0 & 1 \\ 0 & 1 \end{cases} = \begin{cases} 0 & 1 \\ 0 & 1 \end{cases}$$

所求以[n] u[2-n]:

1.36 Determine which of the following systems is linear:

(a)
$$y(t) = \exp[x(t)]$$

(b) $y(t) = \cos x(t)$

9=Tx, T{k1x1+Kxxx1= K1/1+Kx/1~

(c) $y(t) = t^2 x(t)$

(a)
$$y(t) = \exp \left[k_1 \chi_1(t) + k_2 \chi_2(t) \right] = \exp \left[k_1 \chi_1(t) \right] \cdot \exp \left[k_2 \chi_2(t) \right]$$

$$= k_1 y_1(t) + k_2 y_2(t)$$

4 nonlinear

(b) cos [x1(t) + xv(t)] = cos x1(t) + cos x1(t) 4 hon inear

- **1.39** Determine whether the following systems are causal or noncausal, memoryless or with memory.
 - (a) $y(t) = e^{x(t)} \sin t$

(b)
$$y(t) = \int_0^t x(\tau)\tau d\tau$$

(A) 只和當下t有關 = causa Dutput X for current input有關 → memoryless

1.49 Use MATLAB to plot these discrete-time signals:

(a)
$$x[n] = 10(0.7)^n, n \ge 0$$

(b)
$$y[n] = 10(1.2)^n, n \ge 0$$

1.50 Use MATLAB to plot the following signals over $-2 \le t \le 4$ s:

(a)
$$x(t) = 2 r(t)$$

(b)
$$y(t) = 5e^{-2t} u(t)$$

(c)
$$z(t) = 4\cos 4t + 2\sin(2t - \pi/4)$$

