Dynamical Stability despite Time-Varying Network Structure

David Reber and Benjamin Webb

Brigham Young University

A Trip Through the City

Vehicular Traffic Network¹

¹ Lay, David C., et al. Linear Algebra and Its Applications. 5th ed., Pearson, 2016. « 🗇 » « 🛢 » « 📱 » 🧸 🧇 🦠

Outline

- Networks: Structure and Dynamics
- 2 Time-Delayed Dynamical Networks
- Intrinsic Stability
- Time-Varying Time Delays
- 6 Applications

Networks

What is a network?

Basic Definition: A network is a collection of elements that interact in some way.

Structure of a Network

The structure of a network is represented by a graph G = (V, E) with vertices V and edges E where

- (i) V represent the network elements; and
- (ii) E represent the interactions between network elements.

Types of Network Dynamics

Most real networks are dynamic in two distinct ways:

Dynamics between the Network Elements:
 Each network element has a state that depends on its interactions with other network elements. The collective behavior that emerges from these interactions is the network's dynamics.

Types of Network Dynamics

Most real networks are dynamic in two distinct ways:

- Dynamics between the Network Elements:
 Each network element has a state that depends on its interactions with other network elements. The collective behavior that emerges from these interactions is the network's dynamics.
- Dynamics of the Network Structure:
 The network's graph structure evolves as new elements and interactions are added or removed over time.

Example: Biological Networks

Neural Network²

Network Dynamics

Traffic Network

What type of questions can we ask about a network's dynamics?

Dynamic Stability

When is a dynamical network (F, X) stable?

Definition: Stability

The dynamical system $F: X \to X$ has a globally attracting fixed point $\mathbf{y} \in X$ if for all $\mathbf{x} \in X$,

$$\lim_{k\to\infty}F^k(\mathbf{x})=\mathbf{y}.$$

If this is the case we call (F, X) stable.

Dynamical Stability

Stability of Dynamical Networks

Definition: Stability Matrix

If the function $F: X \to X$ is differentiable with $X = \mathbb{R}^n$, then let $S_F \in \mathbb{R}^{n \times n}$ be the matrix given by

$$(S_F)_{ij} = \sup_{\mathbf{x} \in X} \left| \frac{\partial F_i}{\partial x_j}(\mathbf{x}) \right|.$$

We call S_F is called the stability matrix of (F, X).

Stability of Dynamical Networks

Definition: Stability Matrix

If the function $F: X \to X$ is differentiable with $X = \mathbb{R}^n$, then let $S_F \in \mathbb{R}^{n \times n}$ be the matrix given by

$$(S_F)_{ij} = \sup_{\mathbf{x} \in X} \left| \frac{\partial F_i}{\partial x_j}(\mathbf{x}) \right|.$$

We call S_F is called the stability matrix of (F, X).

Remark: S_F is a constant square matrix representing the worst-case linear approximation to F.

What is the underlying structure of a dynamical network?

Definition: Graph of Interactions

The graph of interactions of the dynamical network (F, X) is the graph G = (V, E) on n vertices, where the edge e_{ij} is given weight $(S_F)_{ij}$.

Intuitively, G is the directed graph for which S_F is the adjacency matrix.

$$F(\mathbf{x}) = \begin{bmatrix} (1-\epsilon)x_1 + a\tanh(x_2) + c_1 \\ (1-\epsilon)x_2 + a\tanh(x_1) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

$$F(\mathbf{x}) = \begin{bmatrix} (1 - \epsilon)x_1 + a \tanh(x_2) + c_1 \\ (1 - \epsilon)x_2 + a \tanh(x_1) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

Stability Matrix:
$$S_F = \begin{bmatrix} |1 - \epsilon| & |a| \\ |a| & |1 - \epsilon| \end{bmatrix}$$

$$F(\mathbf{x}) = \begin{bmatrix} (1-\epsilon)x_1 + a \tanh(x_2) + c_1 \\ (1-\epsilon)x_2 + a \tanh(x_1) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

Stability Matrix:
$$S_F = \begin{bmatrix} |1 - \epsilon| & |a| \\ |a| & |1 - \epsilon| \end{bmatrix}$$

Graph of Interactions:
$$|1-\epsilon|$$
 $|a|$ $|a|$ $|a|$ $|a|$ $|a|$ $|a|$ $|a|$ $|a|$ $|a|$

Outline

- Networks: Structure and Dynamics
- Time-Delayed Dynamical Networks
- Intrinsic Stability
- Time-Varying Time Delays
- 6 Applications

$$F(\mathbf{x}) = \begin{bmatrix} (1 - \epsilon)x_1 + a \tanh(x_2) + c_1 \\ (1 - \epsilon)x_2 + a \tanh(x_1) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

Example: Cohen-Grossberg Neural Network

$$F(\mathbf{x}) = \begin{bmatrix} (1-\epsilon)x_1 + a \tanh(x_2) + c_1 \\ (1-\epsilon)x_2 + a \tanh(x_1) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

$$F(\mathbf{x}^{(t)}, \mathbf{x}^{(t-1)}) = \begin{bmatrix} (1 - \epsilon)x_1^{(t)} + a \tanh(x_2^{(t-1)}) + c_1 \\ (1 - \epsilon)x_2^{(t)} + a \tanh(x_1^{(t)}) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

Example: Cohen-Grossberg Neural Network

$$F(\mathbf{x}) = \begin{bmatrix} (1 - \epsilon)x_1 + a \tanh(x_2) + c_1 \\ (1 - \epsilon)x_2 + a \tanh(x_1) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

Example: Delayed Cohen-Grossberg Neural Network

$$F(\mathbf{x}^{(t)}, \mathbf{x}^{(t-1)}) = \begin{bmatrix} (1-\epsilon)x_1^{(t)} + a\tanh(x_2^{(t-1)}) + c_1 \\ (1-\epsilon)x_2^{(t)} + a\tanh(x_1^{(t)}) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

which can be rewritten as:

Example: Cohen-Grossberg Neural Network

$$F(\mathbf{x}) = \begin{bmatrix} (1-\epsilon)x_1 + a \tanh(x_2) + c_1 \\ (1-\epsilon)x_2 + a \tanh(x_1) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

Example: Delayed Cohen-Grossberg Neural Network

$$F(\mathbf{x}^{(t)}, \mathbf{x}^{(t-1)}) = \begin{bmatrix} (1-\epsilon)x_1^{(t)} + a\tanh(x_2^{(t-1)}) + c_1 \\ (1-\epsilon)x_2^{(t)} + a\tanh(x_1^{(t)}) + c_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

which can be rewritten as:

$$F(\mathbf{x}^{(t)}) = \begin{bmatrix} (1 - \epsilon)x_1^{(t)} + a \tanh(x_3^{(t)}) + c_1 \\ (1 - \epsilon)x_2^{(t)} + a \tanh(x_1^{(t)}) + c_2 \\ x_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^3.$$

$$F(\mathbf{x}^{(t)}) = \begin{bmatrix} (1 - \epsilon)x_1^{(t)} + a \tanh(x_3^{(t)}) + c_1 \\ (1 - \epsilon)x_2^{(t)} + a \tanh(x_1^{(t)}) + c_2 \\ x_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^3.$$

$$F(\mathbf{x}^{(t)}) = \begin{bmatrix} (1 - \epsilon)x_1^{(t)} + a \tanh(x_3^{(t)}) + c_1 \\ (1 - \epsilon)x_2^{(t)} + a \tanh(x_1^{(t)}) + c_2 \\ x_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^3.$$

Stability Matrix:
$$S_F = \begin{bmatrix} |1-\epsilon| & 0 & |a| \\ |a| & |1-\epsilon| & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Example: Delayed Cohen-Grossberg Neural Network

$$F(\mathbf{x}^{(t)}) = \begin{bmatrix} (1 - \epsilon)x_1^{(t)} + a \tanh(x_3^{(t)}) + c_1 \\ (1 - \epsilon)x_2^{(t)} + a \tanh(x_1^{(t)}) + c_2 \\ x_2 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^3.$$

Stability Matrix:
$$S_F = \begin{bmatrix} |1-\epsilon| & 0 & |a| \\ |a| & |1-\epsilon| & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Graph of Interactions:

$$\begin{vmatrix} |a| & 1 \\ |1-\epsilon| & v_1 & v_2 \\ |a| & |1-\epsilon| \end{vmatrix}$$

Simpler Example: Delayed Linear Dynamical System

$$F(\mathbf{x}^{(t)}, \mathbf{x}^{(t-1)}) = \begin{bmatrix} -0.5x_1^{(t)} - 0.9x_2^{(t-1)} \\ 0.7x_1^{(t)} \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^2.$$

can be rewritten as

$$F(\mathbf{x}^{(t)}) = \begin{bmatrix} -0.9x_2^{(t)} - 0.5x_3^{(t)} \\ 0.7x_1^{(t)} \\ x_1 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^3.$$

Simpler Example: Delayed Linear Dynamical System

$$F(\mathbf{x}^{(t)}) = \begin{bmatrix} -0.9x_2^{(t)} - 0.5x_3^{(t)} \\ 0.7x_1^{(t)} \\ x_1 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^3.$$

Simpler Example: Delayed Linear Dynamical System

$$F(\mathbf{x}^{(t)}) = \begin{bmatrix} -0.9x_2^{(t)} - 0.5x_3^{(t)} \\ 0.7x_1^{(t)} \\ x_1 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^3.$$

Stability Matrix:
$$S_F = \begin{bmatrix} 0 & -0.9 & -0.5 \\ 0.7 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Simpler Example: Delayed Linear Dynamical System

$$F(\mathbf{x}^{(t)}) = \begin{bmatrix} -0.9x_2^{(t)} - 0.5x_3^{(t)} \\ 0.7x_1^{(t)} \\ x_1 \end{bmatrix}, \ \mathbf{x} \in \mathbb{R}^3.$$

Stability Matrix:
$$S_F = \begin{bmatrix} 0 & -0.9 & -0.5 \\ 0.7 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

Graph of Interactions: v_2 v_1 v_1 v_2 v_3 v_4 v_4 v_5

Time-Delayed Dynamical Networks

Outline

- Networks: Structure and Dynamics
- 2 Time-Delayed Dynamical Networks
- Intrinsic Stability
- Time-Varying Time Delays
- 6 Applications

Definition: Intrinsic Stability

• The dynamical network (F, X) is intrinsically stable if $\rho(S_F) < 1$.

Definition: Intrinsic Stability

• The dynamical network (F, X) is intrinsically stable if $\rho(S_F) < 1$.

Theorem: B. Webb, et al.

• If (F, X) is intrinsically stable, then (F, X) is also stable.

Definition: Intrinsic Stability

• The dynamical network (F, X) is intrinsically stable if $\rho(S_F) < 1$.

Theorem: B. Webb, et al.

- If (F, X) is intrinsically stable, then (F, X) is also stable.
- If (F, X) is intrinsically stable, then any constantly-time-delayed version of (F, X) is also stable.

Outline

- Networks: Structure and Dynamics
- 2 Time-Delayed Dynamical Networks
- Intrinsic Stability
- Time-Varying Time Delays
- 6 Applications

Theorem: D. Reber and B. Webb

Let (F, X) be intrinsically stable. Let $\{F_t\}$ be a sequence of time-delayed versions of F. Then if the time delays of $\{F_t\}$ are bounded, then (F_t, X) is also stable.

Theorem: D. Reber and B. Webb

Let (F, X) be intrinsically stable. Let $\{F_t\}$ be a sequence of time-delayed versions of F. Then if the time delays of $\{F_t\}$ are bounded, then (F_t, X) is also stable.

Remark: Since the sequence $\{F_t\}$ is arbitrary, *intrinsic stability* ensures stability not just for constant time-delays, but also for periodic, stochastic, or any other form of time-varying time delay.

Theorem: D. Reber and B. Webb

Let (F, X) be intrinsically stable. Let $\{F_t\}$ be a sequence of time-delayed versions of F. Then if the time delays of $\{F_t\}$ are bounded, then (F_t, X) is also stable.

Remark: Since the sequence $\{F_t\}$ is arbitrary, *intrinsic stability* ensures stability not just for constant time-delays, but also for periodic, stochastic, or any other form of time-varying time delay.

Hence, *intrinsic stability* is a much stronger condition than previously believed, and provides insights into the dynamical behavior of certain adaptive networks.

Outline

- Networks: Structure and Dynamics
- 2 Time-Delayed Dynamical Networks
- Intrinsic Stability
- Time-Varying Time Delays
- 6 Applications

Dynamics both on and of Networks

Future Questions

 How does adding new cycles to a network affect the state dynamics? (World Wide Web)

Dynamics both on and of Networks

Future Questions

- How does adding new cycles to a network affect the state dynamics? (World Wide Web)
- How does changing the weights of a network affect the state dynamics? (Machine Learning, Deep Learning)

References

Thank You

References

- L. Bunimovich and B. Webb, Restrictions and Stability of Time-Delayed Dynamical Networks. Nonlinearity 26, 2013. 2131-2156.
- [2] L. Bunimovich and B. Webb, Isospectral graph transformations, spectral equivalence, and global stability of dynamical networks. *Nonlinearity* **25** (2012) 211-254.
- [3] M. Cohen and S. Grossberg, Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE *Transactions on Systems, Man, and Cybernetics* SMC-13 (1983) 815821.
- [4] Lay, David C., et al. Linear Algebra and Its Applications. 5th ed., Pearson, 2016.