HO-

фн

the the term the the term the term that

Fig (cont.)

DMTO -C131 HN-R OMTO-W38 i Lj DMTO 1 · N 10 DMTO glen

Synthesis Scheme of Adenosine Ferrocene

F16.

Synthesis Scheme of Cytidine Ferrocene

F16.

Synthesis f Adenosine Ferrocene Triphosphate

F16.

F(G. 7

8 A

8B

Synthesis Scheme of C109

Synthesis Scheme f Ethylene Glycol Terminated Wires

n=4, W76

Synthesis Scheme of Branched Adenosine

FIG.

Synthesis Scheme of W90

Synthesis Scheme of N38

Fig 11C

Starndard DNA Synthesis Using W90

DMT off / Clevage and Deprotection

This process can be repeated until the desired # of Ferrocene is obtained, and then hydroxy groups on ferrocene are capped using the left phosphoramidite in order to increase the solubility of Ferrocene in water

nto DNA

Scheme finc rp rating Multiple ETMs Using Branching Ph sphoramidite

• .•

F16.14

= recruitment linker

(nucleic acid)

(nucleic acid)

A B C D E F

ETM ETM ETM Retallocene

(metallocene)

A = nucleoside replacement

B = attachment to a base

C = attachment to a ribosc

D = attachment to a phosphate

E = metallocene polymer, attached to a ribose, phosphate, or base

F = denarmer structure, attached via a vibose, phosphate or base

{ hudeic.

< B∼ETM }

c~eτm S

D~ETM

E ~ (metallocene)n

F (ETM),

--(ETm)n

G= affachment via a

"branching structure",

through ribose, phosphate

or base

F16,

Con

 \sqrt{n}

L

```
D179
 5' - A(C15)CCTGGTCTTGACATCCACGGAAGGCGTGGAAATACGTATTCGTGCCTA, - 3'
 D309 (Dendrimer)
 5' - (W38)(Branching)(Branching)CATGGTTAACGTCAATTGCTGCGGTTATTAA - 3'
 5' - (N6)G(N6)CT(N6)C(N6)C(N6)C(N6)CCCATGGTTAGACTGAATTGCTGCGGTTATTAA - 3'
 D297
 5'-(N6)G(N6)CT(N6)C(N6)G(N6)C(N6)TATGCTCTTGATGGTGCTGTGGAAATCTACTGG-3'
                                                                              15
D298
5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)ATGGTGCTGTGGAAATCTACTGG - 3'
D296
5' - (N6)G(N6)CT(N6)C(N6)G(N6)C(N6)TGACTGAATTGCTGCGGTTATTAA - 3'
D112
5' - CTTCCGTGGATGTCAAGACCAGGAU - 4 unit wire (C11) - 3'
D94
5' - ACCATGGACACAGAU - 4 unit wire (C11) - 3'
D109
5' - CTGCGGTTATTAACU - 4 unit wire (C11) - 3'
2Tar
5' – TAG GCA CGA ATA CGT ATT TCC ACG ATA AAT ATA ATT AAT AAC CGC AGC AAT TGA
CGT ATA AAG CTA TCC CAG TAG ATT TCC ACA GC - 3'
D349
5' - A(C15)C (C15)GT GTC CAT GGT AGT AGC TTA TCG TGG AAA TAC GTA TTC GTG
CCT A - 3'
D382
5' - (Y63)G(Y63) CT(Y63) C(Y63)G (Y63)C(Y63) CCC ATG GTT AGA CTG AAT TGC TGC GGT
TAT TAA - 3'
D383
5' - (Y63)G(Y63) CT(Y63) C(Y63)G (Y63)C(Y63) CCC ATG GTT AGA CTG GCT GTG GAA ATC
TAC TGG -3'
D468
5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) (glen)(glen)(glen) CTT TAC TCC CTT CCT CCC CGC TGA
AAG TAC - 3'
D449
5' - CGG AGT TAG CCG GTG CTT CTT CTG CGG G(C131)(C131) (C131)(N6) G(N6)C
T(N6)C(N6)G(N6)C(N6)T - 3
D417
5' - CTT TAC TCC CTT CCT CCC CGC TGA AAG TAC TTT ACA ACC C - 3'
```

F16.

A STATE OF THE STA

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) (C131)AT CTG TGT CCA TGG TAG TAG C - 3'

F16.

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Init E (V) = -0.11Final E (V) = 0.5Sample Period (s) = 1 Incr E(V) = 0.01Sensitivity (A/V) = 2e-7Quiet Time (s) = 2Frequency (Hz) = 10Amplitude (V) = 0.025Ep = 0.160VAp = 7.563e-10VAip = 1.092e-8A

Mar. 19, 1998 17:18:47

Electrode # 55, d179+2tar+309+10%ACN

PROPERTY OF Clinical Micro Sensors, Inc.

File: a292_019 Tech: ACV

17:00:25

Electrode # 44, d1/9+309+10%ACIV

electrode #25

Potential / V vs Ag/AgCl

electrode #37

Potential / V vs Ag/AgCl

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Init E (V) = -0.11Final E (V) = 0.5Sensitivity (AV) = 2e-7Quiet Time (s) = 2Sample Period (s) = 1 Frequency (Hz) = 10 Amplitude (V) = 0.025ncr = (V) = 0.01

Electrode 6

electrode #40

AC Current / 1e-

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Init E (V) = -0.11Final E (V) = 0.5ip = 2.992e-8A Ap = 2.709e-9VA Ep = 0.180VSensitivity (AV) = 2e-7Sample Period (s) = 1 Quiet Time (s) = 2 requency (Hz) = 10 Amplitude (V) = 0.025ncr E (V) = 0.01

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Init E (V) = -0.11Final E (V) = 0.5Ep = 0.150VSensitivity (AV) = 2e-7Quiet Time (s) = 2Sample Period (s) = 1 Frequency (Hz) = 10Amplitude (V) = 0.025Incr E (V) = 0.01Ap = 1.100e-8VAip = 1.494e-7A

Mar. 19, 1998 16:00:02 Tech: ACV

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Init E (V) = -0.11Final E (V) = 0.5File: v368_032 Ep = 0.160VSensitivity (AV) = 2e-7Quiet Time (s) = 2Sample Period (s) = 1 Frequency (Hz) = 10 Amplitude (V) = 0.025ncr = (V) = 0.01

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Init E (V) = -0.11Final E (V) = 0.5Frequency (Hz) = 10Sample Period (s) = 1ip = 8.031e-8AEp = 0.150VSensitivity (AVV) = 2e-7Quiet Time (s) = 2Amplitude (V) = 0.025Incr E(V) = 0.01

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Init E (V) = -0.11Final E (V) = 0.5Sample Period (s) = 1 Quiet Time (s) = 2Sensitivity (AV) = 2e-7Frequency (Hz) = 10 Amplitude (V) = 0.025Incr E (V) = 0.01

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

File: a371_008 Tech: ACV Electrode #22

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Ep = 0.140Vip = 2.449e-8AInit E (V) = -0.11Final E (V) = 0.5Ap = 1.706e-9VASensitivity (A/V) = 1e-6Sample Period (s) = 1Quiet Time (s) = 2Frequency (Hz) = 10Amplitude (V) = 0.025lncr E(V) = 0.01

Electrode #15

CONFIDENTIAL PROPERTY OF Clinical Micro Sensors, Inc.

Frequency (Hz) = 10 Sample Period (s) = 1 Quiet Time (s) = 2 Ep = 0.150Vip = 6.637e-8AInit E (V) = -0.11Final E (V) = 0.5Sensitivity (A/V) = 2e-7Amplitude (V) = 0.025lncr E (V) = 0.01

Electrode #63

Electrode #25

Potential / V vs Ag/AgCl

Sequences for Ligation Experiment

D456

5' - (N6)G(N6) CT(N6) C(N6)G (N6)C(N6) TTC TGC ACC GTA GCC ATG AAA GAT TGT ACT GAG - 3'

D368

5'-(H2)CC TTC CTT TCC ACA U-4 UNIT WIRE (C11)-3'

HIVCOMP

5' - ATG TGG AAA GGA AGG ACA CCA AAT GAA AGA TTG TAC TGA GAG ACA GGC TAA TTT TTT AGG GAA GAT CTG G - 3'

HIVLIG

5' - CCA GAT CTT CCC TAA AAA ATT AGC CTG TCT CTC AGT ACA ATC TTT CAT TTG GTG T - 3'

Γ					Τ				Τ		_						_	Τ		_		Γ				T			_	1			_		Г		۱,
6		œ	>	>	ă	; 0) (I	, ,	, 6	Ď (D	Φ.	A	JB	œ	8	>	æ)	>	≯	В	JB	>	> >	9	5 6	ָ ה	D	A	B	00	œ	>	Measurer		i
-		Ω		9	9	, 3	\ -		0	n -	7	თ ·	7	7	8	G	œ 	2	4	•	ω	6	4	o	, CI	_) -	٠.	-	2	ယ	4	ယ	_	File		O CIO O-FC,
2/	2 6	28	26 —	25	30	3	2 22	. 29	-		<u>ب</u>	6	18	21	24	23	22	9	12	;	<u> </u>	16	14	ชี	ಕೆ ಪ	_) -	-A .	Α (ω	თ	တ	8	7	#	Electrode	ZU-rc, and
system	Galleria a	EC ETMetron	rRNA+(2) 40-	4+	system	E I MS+reg	(2) 40-Fc	4	system	Barrellina	EC ETMe+rec	rRNA+ (2) 20-	4	system	ETMs+reg	(2) 20-Fc	(3-)	system	reg helpers+reg	rRNA EU2+EU1, 2	(2+)	system	reg nelpers+re	EU2+EU1, 2	(K)	system	Balasiadian	Polocitical	POND COLORS		system	helpers+reg	EU2+reg	(16)	Hybrid code		CIU 0-FC, ZU-FC, and 4U-FC signalling molecules
4.088			9 278	12.49	1.571	3.7	ω	1.426	2.448	-	7 .	0 77	756	7.376	1.2	0.9	2.661	1.6	-4	0.000	985 0	0.11	0	0.3441	0.3146	0.722	0.0047	0.180	0.7449	0 7440	1.42	0	O	0	ip (nA)	\ 	molecules
		7.46	_			į	242				2.99			,	3.03	3			6	` 				0 10				0.63			_	0.36)·)		(Au) di	AVIORAGE	
		4.16				:	<u>.</u>				2.76				2.99	3			0.51				-	0 17			ļ	0.29				0.71) !		(An)	CTDEV is	
150	130	2	8 8	180	170	150	150	180	160	150	200	3 6	3	150	160	60	160	150	160	2	3	160	:	170	160	160	160	140	160	8	3	:	1	1	(NV)	Batastia	
							•	0.1				0.4778			!	ک ه		2.4		0.05				0.8442	0.2506									1 593	ip (nA)	Care ip o	
								70				350			120	120		50		70				80	70								č	70	(mV)		

なられると

			Listia		2/π • i (nΔ)			2/# * 1	
Measurer	File	Electrode	Code	Raw Data	Average	STDEV	E _o (mV)	(An)	E _o (mV)
ZI	2	46		1.041			170	4.465	68
>	ယ	47	ų	2.811		1.20	170		
A	-1	41		5.7			170		
JZ	_	43	5+	1.862	3.39	2.03	170		
A	2	44		2.613			180	0.96	60
A	5	53		0.6566			170	2.1	60
JZ	Ŋ	55	တု	0.8548	2.23	2.55	170		
>	တ	56		5,167		•	180	1.64	60
JZ	3	49		5.799			170		
>	4	50	6+	8.468	5.82	2.64	180		
JZ	4	52		3.187			160		
JZ	7	61		0.1988			160	1.147	09
>	œ	62	7-	1.382	0.73	0.60	170	1.04	ري د
JZ	æ	64		0.6104			160	0.1958	စ္ခ
JZ	6	58	7+	1.459	1.25	0.29	160		
Α	7	59	•	1.042			160	2.38	8
JZ	10	70	ခု	0.3208	0.56	0 34	160	0.504	60
Α	11	71	،	0.7994	9.00	0.0	190	2.22	6
Α	9	65		3.297			170		
JZ	9	67	& +	1.492	2.54	0.94	160		
A	10	68		2.841			170	0.71	60
JZ	12	76	9-	1.215	1.22	#DIV/0!	170	4.414	5
ZL .	11	73	ο +	3.768	4 68	1 20	170	0.7741	05
Α	12	74		5.592	4.00	1.20	170	0.53	6
JZ	14	78	10-	2.842	5 12	3 22	170	2.319	09
P	14	80	-	7.4		7.5	170		
Þ	<u>1</u>	77	10+	5.582	4.96	0.88	170		
JZ	13	79		4.337	1.00	0.00	160	3.173	50

Peaks w/E₀ < 160 mV

225

F18 24

Fig 24 count

Bristle-Attached Fc's 、

 39); v = 10 Hz, $\epsilon = 25$ mV

measure	<u> </u>	file	electrode	surface	hybrid	2/π * i _p (nA)	E _o (mV)	average 2/π • i _p (nA)	STDEV 2/π ° i _o (πA
A	409	1 1	1 1			. 22.6	150		
Ž	409 73	17	17		D548	9.622	200	14.5	5.8
Z	73	8 22	8		(1x10)**	14.51	100	14.5	5.6
Ā	409	8	24 7			11.15	110		
Α.	409	22	23		7540	53.52	200		
Z	73	1	23	"+" surface	D549	71.13	220	60.6	12.9
Z	73	17	18	2:2:1	(2x10)	71.66	110		12.0
A	409	4	3	D94/H6/M44*,	 	45.9	120		
Α	409	18	19	total thio! =	D550	72.4	190	1	
Z	73	7	6	833 uM	(2x5)	30.67	210	45.5	18.9
Z Z	73	19	22		(223)	44.49 34.43	120		
Α	409	7	- 5			105.8	120		
Α	409	19	21		D551	48.66	210		
Z	73	4	4		(4x5)	70.42	230 130	74.9	23.5
_ Z	73	18	20		(1.1.0)	74.77	130		•
Ä	409	9	9			5.665	200		
Α	409	25	25		D548	0.6443	250	1	
Z	73	16	16		(1x10)	0.0864	120	1.6	2.7
Z	73	30	32		(/	0.0004	- 120	ſ	
A	409	16	15	i		10.24	230		
Α	409	30	31	" " au daa-	D549	14.57	260		
Z	73	9	10	"-" surface 2:2:1	(2x10)	7.881	130	8.3	5.9
Z	73	25	26	0109/H6/M44*,	_	0.5476	140		
A	409	12	71	total thiol =		4.513	230		
A	409	26	27	833 uM	D550	4.264	260		
Z Z	73	15	14	330 4	(2x5)	4.553	150	3.7	1.6
- 	73	27	30	Ĺ		1.314	140		
ا کیا	409	15	13	ſ		10.31	240		
S L	409 73	27	29	ĺ	D551	17.46	280	ا م	
7 7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	73	12	12		(4x5)	7.445	160	9.0	6.9
<u>- </u>		26 ote: M44 =	28	lso note: (n x m)		0.8812	90"		

S,

Base-Replacement Fc's (June 3, 1998); v = 10 Hz, $\epsilon = 25$ mV

measurer	expt	file	electrode	surface	hybrid	2/π * i _p (nA)	E ₀ (mV)	averag 2/π * i _p (nA)	STDEV 2/π * l _p (nA)
A A Z Z	52 52 384 384	1 4 1 4	1 3 2 4	"+" surface 2:2:1 D94/H6/M44", total thiol = 833 uM	10 uM D405 in 6x SSC w/50% FCS	4.81 20.63 37.42 9.31	170 180 170 160	18.04	14.53
A A Z Z	52 52 384 384	7 10 5 8	5 7 6 8	"-" surface 2:2:1 D109/H6/M44*, total thiol = 833 uM	10 uM D405 in 6x SSC w/50% FCS	0.1 9.97 0 2.425	160 160 180	3.12	4.70

* Note: M44 = M43

B

POY - FC-POY-FC-

F15 75

Plexiv.

p= pisitive

છ - જ ectgt ctg Thg Tct cht Thg & gcc * gTc * Tgg * T s' Ach gab Atc Ayhg TH ATC * gcc * gTc * Tgg * T

ļ

i.

* 9 * CT * C * 9 * C * C G TAT 9 TA CAT 9 CA.

Fig 27