Solution: Problem B

Given Problem: Find all $x \in \mathbb{R}$ that solve the equation:

$$x^4 + x^2 - x - 1 = 1 - x - x^2 - x^4$$
.

Deatiled solution for Problem B...

1. We start with the given equation:

$$x^4 + x^2 - x - 1 = 1 - x - x^2 - x^4$$
.

2. Bringing all the terms to one side: Subtract $(1-x-x^2-x^4)$ from both sides:

$$x^4 + x^2 - x - 1 - (1 - x - x^2 - x^4) = 0.$$

Distributing the minus sign:

$$x^4 + x^2 - x - 1 - 1 + x + x^2 + x^4 = 0.$$

3. We then combine like terms: $-x^4$ terms: $x^4 + x^4 = 2x^4$. $-x^2$ terms: $x^2 + x^2 = 2x^2$. -x terms: -x + x = 0. - Constants: -1 - 1 = -2.

So we have:

$$2x^4 + 2x^2 - 2 = 0.$$

4. Factoring out the common factor: Divide through by 2:

$$x^4 + x^2 - 1 = 0.$$

5. We then use a substitution to solve the quartic: Let $y = x^2$. Then $y \ge 0$ for real x. Substitute:

$$y^2 + y - 1 = 0.$$

We have reduced to a quadratic equation in y.

6. Now, we solve the quadratic equation in y:

Using the quadratic formula for $ay^2 + by + c = 0$: $y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Here, a = 1, b = 1, c = -1. Thus:

$$y = \frac{-1 \pm \sqrt{1^2 - 4(1)(-1)}}{2} = \frac{-1 \pm \sqrt{1+4}}{2} = \frac{-1 \pm \sqrt{5}}{2}.$$

So:

$$y_1 = \frac{-1 + \sqrt{5}}{2}, \quad y_2 = \frac{-1 - \sqrt{5}}{2}.$$

7. We now need to check which y is valid: Since $y = x^2 \ge 0$, discard negative solutions.

Evaluate sign: $-\sqrt{5} \approx 2.236$, $-1 + \sqrt{5} > 0$, so $y_1 = \frac{-1 + \sqrt{5}}{2} > 0$. $-1 - \sqrt{5} < 0$, so y_2 is negative.

Discard y_2 . Thus:

$$y = \frac{-1 + \sqrt{5}}{2}.$$

8. Find x: Since $y = x^2$, we have:

$$x^2 = \frac{-1 + \sqrt{5}}{2}.$$

Take the square root (considering both positive and negative roots):

$$x = \pm \sqrt{\frac{-1 + \sqrt{5}}{2}}.$$

9. Final Solution:

$$x = \pm \sqrt{\frac{-1 + \sqrt{5}}{2}}$$

These are all the real solutions to the given equation.

Mathematical concepts involved in Problem B

- Combining and rearranging polynomial equations: Moving all terms to one side to combine like terms and reduce the equation to a simpler form.
- Factorization and simplification: Factoring out common factors to simplify the polynomial.
- Substitution method for quartic equations: Using $y = x^2$ to convert a quartic equation in x into a quadratic equation in y.
- Quadratic formula: Applying the formula $y = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$ to solve for y.
- Checking validity of roots: Ensuring that the solutions for $y = x^2$ are non-negative before taking the square root, which is crucial for identifying valid real solutions.
- Recognizing extraneous or invalid solutions: Discarding negative results for y since $y = x^2 \ge 0$.