

Open-Source Thermal Modeling Tools

Ayse K. Coskun (Boston University) and Sherief Reda (Brown University)

Z. Yuan, P. Shukla, S. Chetoui, S. Nemtzow, S. Reda and A. K. Coskun, "PACT: An Extensible Parallel Thermal Simulator for Emerging Integration and Cooling Technologies," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, no. 4, pp. 1048-1061, April 2022.

TCAD Donald O. Pederson Best Paper Award 2024

University Demonstration at DAC 2024!

PACT: A Parallel Compact Thermal Simulator

- Fast and accurate
- Standard-cell level to architecture-level
- Interface to OpenROAD
- High extensibility
- Open-source: https://github.com/peaclab/PACT
- VisualPACT

PACT Simulation Flow

User inputs

- Chip stack descriptions (e.g., floorplan, # of layers, power traces)
- # of grids and heat sink type
- Material properties and cooling method

Calculate netlist components

SPICE Engine

Outputs

Parallel configuration (OpenMPI)

- # of Node, # of Cores
- Parallel Option (e.g., -bind-to none)
- Job mapping option (e.g., -cpu-set)

Thermal netlist generator

Simulation type and solver selection

- Steady-state simulation (e.g., KLU, KSparse)
- Transient simulation (e.g., Backward Euler, Trapezoidal)
- Other simulation options (e.g., time period, step size)

Extensibility of PACT

Heat sink and heat spreader 76 um Handle Bulk Bottom tier 500 nm Field base dielectric 200 nm Polysilicon, Metal 1-10 13.89 um (Bottom tier) Bonding Layer (BCB) 2.5 um 30 um **Bulk Silicon** Upper tier 500 nm Polysilicon, Metal 1-10 13.89 um

Monolithic 3D design test case

(upper tier)

(a)

(b)

Liquid cooling via microchannel

Two-Phase Vapor Chambers (VCs) with Micropillar Wick Evaporators

PACT Speed Analysis against HotSpot

Validation with OpenROAD Benchmarks

Steady-State vs. HotSpot

PACT vs. COMSOL (Max Steady-State Diff: 2.77%)

Transient vs. HotSpot

PACT vs. COMSOL (Max Transient Diff: 3.28%)

OpenROAD Interface

Containerized PACT

VisualPACT

VisualPACT

- Generating thermal videos for transient thermal simulations
- O Visualizing transient thermal behaviors of architectural simulations

VisualPACT (Intel i7 6950X)

PACT

- Fast and accurate parallel thermal simulator
- Architecture level & standard-cell level
- High extensibility for emerging cooling methods
- Various numerical solvers
- OpenROAD interface
- VisualPACT
- Containerized version

- User inputs
 Chip stack descriptions (e.g., floorplan, # of layers, power traces)
- # of grids and heat sink type
- Material properties and cooling method

Parallel configuration (OpenMPI)

- # of Node, # of Cores
- Parallel Option (e.g., -bind-to none)
- Job mapping option (e.g., -cpu-set)

Simulation type and solver selection

- Steady-state simulation (e.g., KLU, KSparse)
- Transient simulation (e.g., Backward Euler, Trapezoidal)
- Other simulation options (e.g., time period, step size)

PACT user group: https://groups.google.com/g/pact-simulator

More info at: https://github.com/peaclab/PACT