MEEN 673

Assignment 2

Jicheng Lu 525004048

EX 5.2.1

Table 1.1 Finite element results for the transverse deflections, w(L/2), of a beam with both ends hinged and subjected to uniformly distributed load (half-beam model)

Load	DI		NI		DI-NI
q_0	(2×2 Gauss rule)		(2×2 Gau	(2×2 Gauss rule)	
	4 elements	8 elements	4 elements	8 elements	4&8 elements
1.0	0.51082	0.51815	0.51043	0.51774	0.52083
2.0	0.97381	1.0213	0.97321	1.0204	1.0417
3.0	1.3766	1.4987	1.3757	1.4974	1.5625
4.0	1.7261	1.9452	1.7257	1.9438	2.0833
5.0	2.0347	2.3604	2.0334	2.3589	2.6042
6.0	2.3109	2.7469	2.3098	2.7446	3.1250
7.0	2.5631	3.1056	2.5606	3.1037	3.6458
8.0	2.7916	3.4406	2.7909	3.4392	4.1667
9.0	3.0071	3.7569	3.0043	3.7538	4.6875
10.0	3.2063	4.0513	3.2034	4.0501	5.2083

EX 5.2.2

Table 2.1 The center transverse deflections, w(L/2), versus load q_0 for a beam with both ends pinned and subjected to uniformly distributed load (half-beam model)

Load	2×2 Gauss rule				2×1 Gauss rule	
q_0	4 elements		8 elements		8 elements	
	DI	NI	DI	NI	DI	NI
1	0.36695	0.36671	0.36793	0.36792	0.36842	0.36853
2	0.54211	0.54218	0.54486	0.54443E	0.54541	0.54567
3	-	0.65995	-	0.66282	-	0.66451
4	-	0.75095	-	0.75425	-	0.75637
5	-	0.82626	-	0.82986	-	0.83240
6	-	0.89112	-	0.89496	-	0.89791
7	-	0.94847	-	0.95249	-	0.95585
8	-	1.0001	-	1.0043	-	1.0080
9	-	1.0473	-	1.0516	-	1.0557
10	-	1.0908	-	1.0952	-	1.0997

Note: "-" means divergence for the current setting.

Table 2.2 The center transverse deflections, w(L/2), versus load q_0 for a beam with both ends clamped and subjected to uniformly distributed load (half-beam model)

Load	Direct iteration			Newton iteration		
q_0	4 elements	8 elements	4 elements	8 elements	8 elements	
	2×1	2×1	2×1	2×1	2×2	
1	0.10335	0.10336	0.10335	0.10336	0.10327	
2	0.20225	0.20228	0.20224	0.20228	0.20204	
3	0.29384	0.29393	0.29385	0.29394	0.29346	
4	0.37722	0.37737	0.37726	0.37741	0.37647	
5	0.45286	0.45305	0.45282	0.45301	0.45169	
6	0.52132	0.52152	0.52138	0.52157	0.51985	
7	0.58398	0.58414	0.58391	0.58407	0.58190	
8	0.64118	0.64158	0.64129	0.64137	0.63855	
9	0.69443	0.69439	0.69428	0.69425	0.69100	
10	0.74331	0.74313	0.74352	0.74333	0.73965	

Problem 5.11

Table 3.1 The center transverse deflections, w(L/2), versus load q_0 for a beam (clamped at one end and pinned at the other end) subjected to uniformly distributed load (half-beam model)

Load	EBT (8 elements)		
q_0	2×2		
	DI	NI	
0.25	0.051863	0.051863	
0.50	0.10247	0.10247	
0.75	0.15085	0.15084	
1	0.19642	0.19642	
2	0.34997	0.35000	
3	0.46777	0.46768	
4	0.56262	0.56244	
5	0.64239	0.64213	
6	0.71160	0.71130	
7	0.77234	0.77271	
8	0.82815	0.82815	
9	-	0.87886	
10	-	0.92571	

Note: "-" means divergence for the current setting.

Figure 3.1 The center transverse deflections, w(L/2), versus load q_0 for a beam (clamped at one end and pinned at the other end) subjected to uniformly distributed load

Problem 5.12

Table 4.1 The transverse deflections, w(L), versus load q_0 for a beam with one end fixed and the other end vertically supported by a linear spring and subjected to uniformly distributed load (horizontal movement of the free end is not restricted)

Load	EBT + NI			
q_0	(8 elements)			
	K=0	K=25	K=250	
0.5	2.5000	0.57692	0.072816	
1.0	5.0000	1.1538	0.14563	
1.5	7.5000	1.7308	0.21845	
2.0	10.000	2.3077	0.29126	
2.5	12.500	2.8846	0.36408	
3.0	15.000	3.4615	0.43689	
3.5	17.500	4.0385	0.50971	
4.0	20.000	4.6154	0.58252	
4.5	22.500	5.1923	0.65534	
5.0	25.000	5.7692	0.72816	
5.5	27.500	6.3462	0.80097	
6.0	30.000	6.9231	0.87379	
6.5	32.500	7.5000	0.94660	
7.0	35.000	8.0769	1.0194	
7.5	37.500	8.6538	1.0922	
8.0	40.000	9.2308	1.1650	
8.5	42.500	9.8077	1.2379	
9.0	45.000	10.385	1.3107	
9.5	47.500	10.962	1.3835	
10.0	50.000	11.538	1.4563	

Figure 4.1 The transverse deflections, w(L), versus load q_0 (K = 0, 25, 250) (horizontal movement of the free end is not restricted)

Table 4.2 The transverse deflections, w(L), versus load q_0 for a beam with one end fixed and the other end vertically supported by a linear spring and subjected to uniformly distributed load (horizontal movement of the free end is restricted to zero)

Load	EBT + NI			
q_0	(8 elements)			
	K=0	K=25	K=250	
0.5	0.88103	0.50803	0.072800	
1.0	1.1888	0.84289	0.14545	
1.5	1.4003	1.0804	0.21767	
2.0	1.5666	1.2661	0.28912	
2.5	1.7058	1.4202	0.35952	
3.0	1.8267	1.5529	0.42870	
3.5	1.9344	1.6704	0.49656	
4.0	2.0320	1.7762	0.56305	
4.5	2.1216	1.8729	0.62816	
5.0	2.2048	1.9622	0.69190	
5.5	2.2825	2.0454	0.75429	
6.0	2.3556	2.1235	0.81535	
6.5	2.4248	2.1971	0.87513	
7.0	2.4906	2.2669	0.93366	
7.5	2.5533	2.3334	0.99098	
8.0	2.6134	2.3969	1.0471	
8.5	2.6711	2.4578	1.1021	
9.0	2.7266	2.5163	1.1561	
9.5	2.7802	2.5726	1.2089	
10.0	2.8320	2.6270	1.2608	

Figure 4.2 The transverse deflections, w(L), versus load q_0 (K = 0, 25, 250) (horizontal movement of the free end is restricted to zero)