ЛЕКЦИЯ №3

7. Электрическое поле в веществе. Проводники и диэлектрики

Все вещества состоят из молекул, атомов, в которых находятся электрические заряды.

Вещества, в которых есть свободные заряженные частицы, образуют класс <u>про</u>водников.

Вещества, в которых нет свободных заряженных частиц (все заряды связаны), образуют класс *непроводников (диэлектриков)*.

Если на первоначально нейтральный проводник наносить электрический заряд, то свободные заряды внутри проводника будут двигаться до тех пор, пока электрическое поле внутри проводника не станет равным нулю.

На поверхности проводника $\Delta \varphi = 0$ (эквипотенциальная поверхность) и если поверхность не имеет выступов (ровная), то заряд равномерно растечется по всей площади проводника (причем заряд распределится на внешней поверхности проводника).

А если поверхность не ровная, с выступами, то поверхностная плотность заряда на остриях будет больше.

Если проводник поместить в электрическое поле, то свободные заряды внутри проводника будут двигаться до тех пор, пока электрическое поле внутри проводника не станет равным нулю.

В диэлектриках нет свободных зарядов, все заряды находятся в связанном состоянии.

Все молекулы делят на полярные и неполярные.

<u>Полярная молекула</u> — это молекула, в которой центры положительного и отрицательного зарядов не совпадают.

Систему из двух одинаковых по модулю, но противоположных по знаку электрических зарядов называют <u>электрическим диполем</u>.

$$\vec{\ell}$$
 — плечо диполя $\vec{\ell}$ — $\vec{\ell}$

– электрический дипольный момент молекулы, $[p_e] = \mathrm{Kn} \cdot \mathrm{M}$.

<u>**Неполярная молекула**</u> — это молекула, в которой центры положительного и отрицательного зарядов совпадают. Для таких молекул $\vec{p}_{a} = 0$.

Если диэлектрик поместить в электрическое поле, то он будет поляризоваться.

Неполярные молекулы в электрическом поле деформируются и становятся электрическими диполями (*деформационная поляризация*).

Полярные молекулы (электрические диполи) ориентируются в электрическом поле вдоль силовых линий (*ориентационная*, электронная поляризация).

Электрический диполь в электрическом поле — на него со стороны поля будет действовать момент пары сил:

Векторная сумма всех электрических дипольных моментов молекул единицы объема диэлектрика называется *вектором поляризованности вещества*:

$$\vec{P} = \frac{\sum \vec{p}_{e_i}}{V}, \quad [P] = \frac{\mathrm{K}\pi}{\mathrm{M}^2}$$
 (3-3)

В отсутствии внешнего электрического поля и у полярных и неполярных диэлектриков поляризованность P=0.

Диэлектрик в электрическом поле

 \tilde{E}_0 — напряженность внешнего электрического поля (поле свободных зарядов в вакууме);

 \vec{E}' — напряженность электрического поля связанных зарядов (внутреннее поле в диэлектрике).

Тогда напряженность результирующего поля

$$\begin{split} \vec{E} &= \vec{E}_0 + \vec{E}' \\ E' &= 4\pi k_e \left| \sigma \right| = 4\pi k_e \frac{Nq}{S} \cdot \frac{d}{d} = 4\pi k_e \frac{\sum p_{e_i}}{V} = 4\pi k_e P \,. \\ \vec{E}' &= -4\pi k_e \vec{P} = -\frac{\vec{P}}{\mathcal{E}_0} \end{split}$$

Тогда

$$\vec{E} = \vec{E}_0 - \frac{\vec{P}}{\varepsilon_0} \rightarrow \varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 \vec{E}_0 \tag{*}$$

Вектор электрической индукции (электрическое смещение):

$$\vec{D} = \varepsilon_0 \vec{E} + \vec{P} \qquad \left[D \right] = \frac{K\pi}{M^2} \tag{3-4}$$

Из уравнения $\varepsilon_0 \vec{E} + \vec{P} = \varepsilon_0 \vec{E}_0$ имеем:

$$\vec{P} = \varepsilon_0 \left(\vec{E}_0 - \vec{E} \right) = \varepsilon_0 \vec{E} \left(\frac{E_0}{E} - 1 \right) \qquad E < E_0!$$

Скалярная физическая величина, показывающая, во сколько раз ослабляется электрическое поле в данном диэлектрике по сравнению с вакуумом, называется <u>ди</u>электрической проницаемостью диэлектрика.

$$\varepsilon = \frac{E_0}{E} = \frac{F_{e_0}}{F_e} = \frac{\varphi_0}{\varphi}.$$
 (3-5)

 $\varepsilon-1=\chi_e$ — электрическая восприимчивость диэлектрика.

$$\vec{P} = \chi_e \varepsilon_0 \vec{E}$$

$$\vec{D} = \varepsilon_0 \vec{E} + \chi_e \varepsilon_0 \vec{E} = \varepsilon \varepsilon_0 \vec{E}$$

$$\vec{D} = \varepsilon \varepsilon_0 \vec{E}$$
(3-6)

Электрическая индукция — вспомогательная характеристика электрического поля, для вакуума $(\varepsilon=1)$ $\vec{D}_0=\varepsilon_0\vec{E}_0$.

Электрическое поле можно графически изобразить и с помощью линий вектора \vec{D} . При этом если линии вектора \vec{E} при переходе из вакуума в диэлектрик терпят разрыв (их количество уменьшается в ε раз), то линии вектора \vec{D} проходят через диэлектрик без разрыва ($\vec{D} = \vec{D}_0$).

Линии вектора \vec{E} (силовые линии) и линии вектора \vec{D}

Теорема Гаусса для напряженности электрического поля в диэлектрике утверждает:

$$\oint_{S} \vec{E} d\vec{S} = 4\pi k_e \left(\Sigma q_{\text{CBOO.}} + \Sigma q_{\text{CBS3.}} \right)$$

Поток вектора напряженности электрического поля через произвольную замкнутую поверхность пропорционален алгебраической сумме свободных и связанных зарядов, находящихся внутри этой поверхности.

Для электрической индукции теорема Гаусса будет формулироваться:

$$\oint_{S} \vec{D} d\vec{S} = \oint_{S} \varepsilon \varepsilon_{0} \vec{E} d\vec{S} = \oint_{S} \varepsilon_{0} \vec{E}_{0} d\vec{S} = \varepsilon_{0} \cdot 4\pi k_{e} \Sigma q_{\text{cb.}} = \Sigma q_{\text{cb.}}$$

$$\oint_{S} \vec{D} d\vec{S} = \Sigma q_{i \text{ cboof.}}$$
(3-7)

Поток вектора электрической индукции через произвольную замкнутую поверхность равен алгебраической сумме свободных электрических зарядов, находящихся внутри этой поверхности.

Большинство обычных диэлектриков имеет $\chi_e = const$ (а значит и $\varepsilon = const$).

Тогда

Однако существует целый класс диэлектриков, у которых $\chi_e \neq const$, т. е. и $\varepsilon = f(E)$, причем эта зависимость нелинейная. Эти диэлектрики называют сегнетоэлектриками. Для них характерен гистерезис – явление отставания поляризуемости ди-

электрика от изменения внешнего электрического

поля.

График зависимости D = f(E) за полный цикл переполяризации сегнетоэлектрика называется *nem*лей гистерезиса.

Сегнетоэлектрики ≡ ферромагнетики!

5