

JET 101

石油工程数值分析及数据可视化方法 **王斌**

石油工程学院 水射流实验室

□ 学习目标

学习目标	学习成果	效果考察	课程活动
应该掌握哪些知识?	应该能够做哪些事情?	怎么考察学生?	应该怎么学习?
 1. 实战线性方程组解法 少学算法回顾 Scipy库的使用 2. 中期Project答疑 3. 期末Project的Proposal 	1. 能够针对数学算法自行 编程求解 2. 可以找到对应的库进行 求解计算	1. 测试学生是否能编程二分 法解非线性方程 2. 测试学生能否寻找并使用 scipy 3. 课堂测验简单问题 • 期末Proposal	1. 完成期中Project 2. 完成作业11, 14 3. 完成期末Project (下学期)

$$Ax = b$$

em

3D Possion Problem

3D Stokes Problem

□ 线性方程组解法

$$Ax = b$$

Direct methods / Direct solver

- Cholesky factorization (LLT)
- Bunch-Kaufman factorization (LDLT)
- LU factorization (LU)

矩阵类型	解法
Symmetric positive definite	LLT 分解
Symmetric indefinite system	LDLT 分解
Unsymmetric	LU 分解

Iterative methods / Iterative solver

- Conjugate gradient
- GMRES
- BiCGStab
- Bi-Conjugate gradient
- IDR(s)

□ 线性方程组解法

Ax = b

Direct methods / Direct solver

PARDISO

MUMPS: MUltifrontal Massively

Parallel sparse direct Solver

SPOOLES 2.2 : SParse Object Oriented

Linear Equations Solver

SuperLU

Iterative methods / Iterative solver

□ 线性方程组解法

Cells	DOFs	CSR memory	
9487	238 810	176.87 Mb	
19 373	483 509	397.01 Mb	
36 430	896 257	687.07 Mb	
63 382	1 537 891	1.18 Gb	
100 255	2 405 788	1.87 Gb	
259 009	6 089 212	4.90 Gb	
404 019	9 420 534	7.96 Gb	

□ 线性方程组解法

迭代求解器

直接求解器

□ 线性方程组解法

Direct methods / Direct solver

- 百万自由度以下问题(2D,简单物理问题)
- 不需要调整参数
- 内存要求高(10GB/MDOFs)

Iterative methods / Iterative solver

- 大规模问题(3D,多物理场)
- 不同问题需要研究针对性的求解器
- 收敛性不能够保证

□ 线性方程组解法 – 高斯消元

$$A \mathbf{x} = LU \mathbf{x} = L(U \mathbf{x}) = \mathbf{b}$$
 $L \mathbf{y} = \mathbf{b}$, $U \mathbf{x} = \mathbf{y}$

$$A = egin{bmatrix} 1 & 1 & 0 \ 2 & 1 & -1 \ 3 & -1 & -1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 3 & 4 & 1 \end{bmatrix} egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & -1 \ 0 & 0 & 3 \end{bmatrix}$$

$$A = egin{bmatrix} 1 & 1 & 0 \ 2 & 1 & -1 \ 3 & -1 & -1 \end{bmatrix} \stackrel{E_2 - 2E_1}{\longrightarrow} egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & -1 \ 3 & -1 & -1 \end{bmatrix} \stackrel{E_3 - 3E_1}{\longrightarrow} egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & -1 \ 0 & -4 & -1 \end{bmatrix} \stackrel{E_3 - 4E_2}{\longrightarrow} egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & -1 \ 0 & 0 & 3 \end{bmatrix} = U$$

$$I = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_3 + 4E_2} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 4 & 1 \end{bmatrix} \xrightarrow{E_3 + 3E_1} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 3 & 4 & 1 \end{bmatrix} \xrightarrow{E_2 + 2E_1} egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 3 & 4 & 1 \end{bmatrix} = L$$

□ 线性方程组解法 – 高斯消元

$$A = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 1 & 1 & 1 & 0 \\ 2 & -2 & 3 & -3 \\ 1 & -1 & 4 & 3 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -8 \\ -2 \\ -20 \\ 4 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & -1 & 2 & -1 \\ 0 & 2 & -1 & 1 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 2 & 4 \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} -8 \\ 6 \\ -4 \\ 12 \end{bmatrix}$$
$$\mathbf{x} = \begin{bmatrix} -7 & 3 & 2 & 2 \end{bmatrix}$$

• 运算中, 共计算了多少次乘法和加法?

Steps		
1	For $i=1$,, n do Step 4	
4	For $j=i+1,,n$ do Steps 5-6	
5	set $m_{ji}=a_{ji}/a_{ii}$	
6	Perform $E_j = (E_j - m_{ji} E_i)$	
7	Set $x_n=a_{n,n+1}/a_{nn}$	
8	For $i=n-1,,1$ do Step 9	
9	$x_i = \left(a_{i,n+1} - \sum_{j=i+1} a_{ij} x_j ight) \bigg/ a_{ii}$	

□ 线性方程组解法 – 高斯消元

$$A = egin{bmatrix} 1 & -1 & 2 & -1 \ 2 & -2 & 3 & -3 \ 1 & 1 & 1 & 0 \ 1 & -1 & 4 & 3 \end{bmatrix} \quad \mathbf{b} = egin{bmatrix} -8 \ -20 \ -2 \ 4 \end{bmatrix}$$

Steps	
1	For $i=1$,, n do Steps 2-4
2	Find p , where p is the largest number with $i \leq p \leq n$
3	If $p eq i$, then exchange row i with row p
4	For $j=i+1,,n$ do Steps 5-6
5	set $m_{ji}=a_{ji}/a_{ii}$
6	Perform $E_j = (E_j - m_{ji} E_i)$
7	Set $x_n=a_{n,n+1}/a_{nn}$
8	For $i=n-1,,1$ do Step 9
9	$x_i = \left. \left(a_{i,n+1} - \sum_{j=i+1} a_{ij} x_j ight) \middle/ a_{ii} ight.$

课程大作业

□ 期中大作业

- ▶ 组队或者单人(不超过3人)
- ➤ OnePetro阅读文献,从一个角度
- xlwings读单井数据Excel
- ➤ Matplotlib画2D井眼轨迹
- ➤ Matplotlib微地震散点图
- ➤ PyVista三维画图(奖励任务)

课程大作业

□ 期末大作业选题

- > QEMSCAN数字岩心矿物分割与分析
- ➤ 3D裂缝地层COMSOL网格转换
- > 3D井眼轨迹与微地震数据可视化
- ▶ 3D微地震点云裂缝网重构*
- ➤ 超临界CO2状态SW方程求解
-

□ 学习目标

学习目标	学习成果	效果考察	课程活动
应该掌握哪些知识?	应该能够做哪些事情?	怎么考察学生?	应该怎么学习?
 1. 实战线性方程组解法 少学算法回顾 Scipy库的使用 2. 中期Project答疑 3. 期末Project的Proposal 	1. 能够针对数学算法自行 编程求解 2. 可以找到对应的库进行 求解计算	1. 测试学生是否能编程二分 法解非线性方程 2. 测试学生能否寻找并使用 scipy 3. 课堂测验简单问题 • 期末Proposal	1. 完成期中Project 2. 完成作业11, 14 3. 完成期末Project (下学期)

□ 线性方程组解法 – 高斯消元

$$A \mathbf{x} = LU \mathbf{x} = L(U \mathbf{x}) = \mathbf{b}$$
 $L \mathbf{y} = \mathbf{b}$, $U \mathbf{x} = \mathbf{y}$

$$A = egin{bmatrix} 1 & 1 & 0 \ 2 & 1 & -1 \ 3 & -1 & -1 \end{bmatrix} = egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 3 & 4 & 1 \end{bmatrix} egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & -1 \ 0 & 0 & 3 \end{bmatrix}$$

$$A = egin{bmatrix} 1 & 1 & 0 \ 2 & 1 & -1 \ 3 & -1 & -1 \end{bmatrix} \stackrel{E_2 - 2E_1}{\longrightarrow} egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & -1 \ 3 & -1 & -1 \end{bmatrix} \stackrel{E_3 - 3E_1}{\longrightarrow} egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & -1 \ 0 & -4 & -1 \end{bmatrix} \stackrel{E_3 - 4E_2}{\longrightarrow} egin{bmatrix} 1 & 1 & 0 \ 0 & -1 & -1 \ 0 & 0 & 3 \end{bmatrix} = U$$

$$I = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} \xrightarrow{E_3 + 4E_2} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 4 & 1 \end{bmatrix} \xrightarrow{E_3 + 3E_1} egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 3 & 4 & 1 \end{bmatrix} \xrightarrow{E_2 + 2E_1} egin{bmatrix} 1 & 0 & 0 \ 2 & 1 & 0 \ 3 & 4 & 1 \end{bmatrix} = L$$

