Final Exam for Math5281

Yan Bokai 20909484

Problem 1

Suppose $u \in L^1_{loc}(\Omega)$ is a very weak solution of the Laplacian equation in the sense that

$$\int_{\Omega} u(x)\Delta\varphi(x)\mathrm{d}x = 0 \text{ for all } \varphi \in C_c^{\infty}(\Omega).$$

Prove that (up to redefinition on a set of measure zero) u is smooth in Ω and satisfies $\Delta u = 0$ pointwisely in Ω .

Proof. Let u_{ε} denote the standard mollification of u defined on the dialated domain Ω_{ε} , and $u_{\varepsilon} \to u$ a.e. as $\varepsilon \to 0$. For each $\varepsilon > 0$ and each multiindex α , we have $u_{\varepsilon} \in C^{\infty}(\Omega_{\varepsilon})$ and

$$D^{\alpha}\left(u_{\varepsilon}\right)=D^{\alpha}\left(\eta_{\varepsilon}\ast u\right)=D^{\alpha}\eta_{\varepsilon}\ast u.$$

Then we have

$$\Delta u_{\varepsilon} = \Delta \eta_{\varepsilon} * u = \int_{\Omega} \Delta \eta_{\varepsilon}(x - y) u(y) \, dy.$$

For any fixed $x \in \Omega_{\varepsilon}$, let $\varphi_{x}(y) = \eta_{\varepsilon}(x - y)$, then φ_{x} is bounded support on $B(x, \varepsilon)$ in Ω as a function of y, and $\varphi_{x} \in C_{c}^{\infty}(\Omega)$. Since u is a very weak solution and by definition, we have

$$\varDelta u_\varepsilon(x) = \int_{\varOmega} \varDelta \varphi_x(y) u(y) \, dy = 0$$

for $x \in \Omega_{\varepsilon}$. Now choose $\varepsilon' > 0$ and define

$$u_{\varepsilon\varepsilon'} := \eta_{\varepsilon'} * u_{\varepsilon}.$$

Note that $\eta_{\varepsilon'}(x-y)$ is supported on Ω_{ε} whenever $x \in \Omega_{\varepsilon+\varepsilon'}$; in particular, for a fixed $x \in \Omega_{\varepsilon+\varepsilon'}$, $\eta_{\varepsilon'}(x-y)$ is supported on $B(x,\varepsilon')$. Since $\eta_{\varepsilon'}$ is radial and u_{ε} is harmonic in $\Omega_{\varepsilon+\varepsilon'}$ and hence satisfies the mean value properties there, for such x

fixed we compute in polar coordinates

$$\begin{split} u_{\varepsilon\varepsilon'}(x) &= \int_{\Omega_{\varepsilon}} \eta_{\varepsilon'}(x-y) u_{\varepsilon}(y) dy \\ &= \frac{1}{\varepsilon'^n} \int_{B(x,\varepsilon')} \eta\left(\frac{|x-y|}{\varepsilon'}\right) u_{\varepsilon}(y) dy \\ &= \frac{1}{\varepsilon'^n} \int_0^{\varepsilon'} \eta\left(\frac{r}{\varepsilon'}\right) \left(\int_{\partial B(x,r)} u_{\varepsilon}(y) dS(y)\right) dr \\ &= \frac{u_{\varepsilon}(x) n\alpha(n)}{\varepsilon'^n} \int_0^{\varepsilon'} r^{n-1} \eta\left(\frac{r}{\varepsilon'}\right) dr \\ &= \frac{u_{\varepsilon}(x)}{\varepsilon'^n} \int_{B(x,\varepsilon)} \eta\left(\frac{x-y}{\varepsilon'}\right) dy \\ &= u_{\varepsilon}(x) \int_{B(0,\varepsilon)} \eta_{\varepsilon}(y) dy \\ &= u_{\varepsilon}(x). \end{split}$$

Since convolution is associative, we find that for $x \in \Omega_{\varepsilon+\varepsilon'}$,

$$u_{\varepsilon'\varepsilon}(x)=u_{\varepsilon\varepsilon'}(x)=u_\varepsilon(x)\to u(x) \text{ a.e. as } \varepsilon\to 0$$

and

$$u_{\varepsilon'\varepsilon}(x) \to u_{\varepsilon'}(x)$$
 a.e. as $\varepsilon \to 0$,

hence

$$u(x) = u_{\varepsilon'}(x)$$
 a.e.

Since $u_{\varepsilon'}$ is smooth and harmonic in Ω_{ε} , so is u. Sending $\varepsilon' \to 0$, up to redefinition on a set of zero, u is smooth in Ω and satisfies $\Delta u = 0$ pointwisely in Ω .

Problem 2

Let $B_1 \subset \mathbb{R}^n$ with $n \geq 3$, and $u \in C^2\left(\overline{B_1}\setminus\{0\}\right)$ be a bounded harmonic function in $B_1\setminus\{0\}$. Prove that there exists a harmonic function v in B_1 such that

$$v \equiv u \quad \text{in } B_1 \setminus \{0\}.$$

Proof. Let v be the solution of the Dirichlet problem

$$\begin{cases} -\Delta v = 0 & \text{in } B_1 \\ v(x) = u(x) & \text{on } \partial B_1. \end{cases}$$

Such a function v exists as it's given by the Poisson's formula. Then v is bounded in B_1 (since by maximum principle $|v| \leq \max_{|x|=1} u(x)$) and harmonic in B_1 . Our goal is to show that v = u in $B_1 \setminus \{0\}$.

Let w = u - v, then w is harmonic in $B_1 \setminus \{0\}$. Moreover, since w is bounded and $|x|^{2-n} \to \infty$ as $x \to 0$, we have

$$\lim_{x\rightarrow 0}\frac{w(x)}{\left|x\right|^{2-n}-1}=0.$$

So for fixed $x_* \in B_1 \setminus \{0\}$ and every $\varepsilon > 0$, there exists δ such that $0 < \delta < |x_*|$, and for all x satisfying $|x| \le \delta$,

$$|w(x)| \le \varepsilon \left(\left| x \right|^{2-n} - 1 \right).$$

Note that $\varepsilon(|x|^{2-n}-1)$ is a harmonic function and takes a value of 0 on ∂B_1 , $|w(x)| \le \varepsilon(|x|^{2-n}-1)$ on ∂B_1 and ∂B_δ . Again, weak maximum principle applied in the set $\delta \le |x| \le 1$ gives that

$$|w(x)| \le \varepsilon \left(\left|x\right|^{2-n} - 1\right)$$

for all $\delta \leq |x| \leq 1$. This is also true for x_* , *i.e.*

$$|w(x_*)| \le \varepsilon \left(\left| x_* \right|^{2-n} - 1 \right).$$

We conclude by the arbitrariness of ε that $w(x_*) = 0$. And then by the arbitrariness of $x_* \in B_1 \setminus \{0\}$, we have w = 0 in $B_1 \setminus \{0\}$, or equivalently, v = u in $B_1 \setminus \{0\}$.

Problem 3

Let $u \in H^1(\mathbb{R}^n)$ have compact support and be a weak solution of the semilinear PDE

$$-\Delta u + c(u) = f \quad \text{in } \mathbb{R}^n$$

where $f \in L^2(\mathbb{R}^n)$ and $c : \mathbb{R} \to \mathbb{R}$ is smooth, with c(0) = 0 and $c' \geq 0$. Prove $u \in H^2(\mathbb{R}^n)$.

Proof. Let R > 0 be such that

$$supp(u) \subset B_R(0).$$

Define weak solution as following: $u \in H^1(\mathbb{R}^n)$ is a weak solution if

$$\int_{\mathbb{R}^n} Du \cdot Dv + c(u)v \, dx = \int_{\mathbb{R}^n} fv \, dx \tag{1}$$

for all $v \in H^1(\mathbb{R}^n)$. We choose $h \neq 0$ with $|h| \leq 1, k \in \{1, \dots, n\}$ and define

$$v = -D_k^{-h} D_k^h u.$$

Then $v \in H^1(\mathbb{R}^n)$ and has compact support. Using this v in (1), using integration by parts and the difference quotients integration by parts formula, and using that u has compact support, we get

$$\int_{\mathbb{R}^n} \left(\left| D^h_k D u \right|^2 + D^h_k(c(u)) D^h_k u \right) \, dx = - \int_{\mathbb{R}^n} f\left(D^{-h}_k D^h_k u \right) \, dx.$$

By direct calculation,

$$\left(D_k^h(c(u))\right)(x) = \frac{c\left(u\left(x+he_k\right)\right) - c(u(x))}{h} = \eta_h(x)\frac{u\left(x+he_k\right) - u(x)}{h} = \eta_h(x)D_k^hu(x),$$

where

$$\eta_h(x) = \int_0^1 c'(ta + (1-t)b) dt,$$

and $a = u(x + he_k)$, b = u(x). Thus $c' \ge 0$ implies $\eta_h(x) \ge 0$, and we get

$$D_k^h(c(u))D_k^h u = \eta_h(x) (D_k^h u(x))^2 \ge 0.$$

Also, using that $0 < |h| \le 1$ and applying Theorem 3 in §5.8.2 in the region $B_{R+1}(0)$, we get

$$\left|\int_{\mathbb{R}^n} f\left(D_k^{-h} D_k^h u\right) dx\right| = \left|\int_{B_{R+1}(0)} f\left(D_k^{-h} D_k^h u\right) dx\right| \leq \varepsilon \int_{\mathbb{R}^n} \left|D D_k^h u\right|^2 dx + \frac{C}{\varepsilon} \int_{\mathbb{R}^n} f^2 dx.$$

From these inequalities, we obtain

$$\int_{\mathbb{R}^n} \left| D_k^h Du \right|^2 dx \le \varepsilon \int_{\mathbb{R}^n} \left| D_k^h Du \right|^2 dx + \frac{C}{\varepsilon} \int_{\mathbb{R}^n} f^2 dx.$$

Choosing $\varepsilon = \frac{1}{2}$,

$$\int_{\mathbb{R}^n} \left| D_k^h D u \right|^2 dx \le C \int_{\mathbb{R}^n} f^2 dx.$$

This is true for each $k \in \{1, \dots, n\}, 0 < |h| < 1$. Thus, applying Theorem 3 in §5.8.2 again in the region $B_{R+1}(0)$, we get

$$\int_{B_{R+1}(0)} \left|D^2 u\right|^2 dx \leq C \int_{\mathbb{R}^n} f^2 dx,$$

thus

$$\int_{\mathbb{R}^n} \left|D^2 u\right|^2 dx = \int_{B_{R+1}(0)} \left|D^2 u\right|^2 dx \leq C \int_{\mathbb{R}^n} f^2 dx.$$

Combining this with $u \in H^1(\mathbb{R}^n)$, we obtain $u \in H^2(\mathbb{R}^n)$.