Computational Geometry

6. Polygon Triangulation

A museum shall be equipped with cameras, each can observe an angle of 360°, covering the whole area of an art gallery.

The Art-Gallery-Problem is, to determine

- the smallest number of cameras, and
- where these cameras should be placed.

- The area of the gallery is supposed to be a simple polygon P (i.e. a single component without holes) with n vertices, where adjacent vertices are not collinear.
- Determining the minimal number of cameras and their positions is NP-hard for arbitrary polygons.
- **But:** For P with n vertices there is an upper bound for the number of cameras: $\lfloor n/3 \rfloor$.

Partitioning the polygon into triangles (*triangulation*) can solve this problem efficiently.

Idea

- Triangulate the polygon.
- Construct a 3-coloring (red, green, blue) of the vertices, such that the vertices of a triangle have different colors.
- Place cameras at the vertices with the least frequent color.
 This color occurs in every triangle exactly once.

Questions

- Is it possible to partition every simple polygon without selfintersections into triangles?
- Is there always a 3-coloring of the vertices?
- Is both efficiently computable?

Proposition 1

Every simple polygon with n vertices has a triangulation and every triangulation has exactly n-2 triangles.

Proof (Induction on *n*)

- Start: n = 3.
- **Assumption:** Proposition 1 holds for all m < n, n > 3.
- **Step:** Let *P* be a polygon with *n* vertices, and *u*, *v*, *w* a sequence of adjacent vertices, where *v* has the smallest *x*-coordinate (and among those the smallest *y*-coordinate).

- 1. If the line segment \overline{uw} lies in the interior of P, the polygon can be subdivided along \overline{uw} .
- 2. Otherwise P has at least on vertex in interior of the triangle uvw.
 - Chose among those the vertex r with maximal distance to the edge \overline{uw} .
 - Then \overline{vr} is in the interior of P.
 - If \overline{vr} were intersected, there would be a vertex r' with larger distance to \overline{uw} .

- Subdivide the polygon along \overline{uw} or \overline{vr} into two polygons with m_1 und m_1 vertices $(m_1+m_2=n+2)$
- From the induction assumption both can be triangulated.
- The total number of triangles is

$$(m_1-2)+(m_2-2)=n-2.$$

Remark

- Placing the cameras at inner edges, every camera can observe two triangles.
- Placing the cameras at the vertices, every camera can observe at least two triangles.

Proposition 2 (Art-Gallery-Theorem)

For a simple polygon P with n vertices $\lfloor n/3 \rfloor$ cameras are sufficient and in some cases also necessary, such that every inner point is visible from at least one camera

Proof

- 1. First prove that a 3-coloring of the triangulation T_P of P always exists.
 - The dual graph $G(T_P)$ of T_P has one node for every triangle in T_P .
 - The nodes of edge-adjacent triangles are connected by an edge in $G(T_P)$.

• Each edge of $G(T_P)$ intersects one inner edge of T_P , which partitions the polygon P in two separate sub-polygons.

- Thus, $G(T_P)$ does not have cycles, i.e. it is a tree.
- For the 3-coloring start with an arbitrary triangle and follow recursively the edges of $G(T_P)$.
- For every triangle there remains exactly one vertex to color, so that its color is determined uniquely.

- 2. The number of vertices with the least frequent color is at most $\lfloor n/3 \rfloor$.
 - Because every triangle has one vertex of this color, $\lfloor n/3 \rfloor$ cameras are sufficient.
- 3. n/3 cameras are also necessary, because a polygon with k peaks (n=3k), each of which is completely visible from only one camera, can be constructed:

- The proof of Proposition 1 gives a recursive algorithm to construct a triangulation.
 - Searching for a diagonal to subdivide the polygon takes O(n), yielding a total run time of $O(n^2)$.
- Convex polygons can be triangulated in O(n).
 - But: Partitioning a polygon into convex regions is as complex as computing a triangulation.
- An efficient approach is the partitioning into monotone polygons.

Definition 1

A polygon P is called *monotone* with respect to a line g, if for **every** perpendicular line $g' \perp g$ the intersection is $P \cap g'$ connected.

A polygon monotone with respect to the *y*-axis is called *y*-monotone.

In other words, $P \cap g'$ is either a line segment, a point, or empty.

Approach: 1. Partition *P* in *y*-monotone pieces, which are triangulated top to bottom.

- For the monotone partitioning the corners are classified into five categories:
 - Start vertex
 - End vertex
 - Regular vertex
 - ▲ Split vertex
 - Merge vertex

Definition 2

A point u is **below** of v (u < v), if $u_y < v_y$ or $u_y = v_y$ and $u_x > v_x$. A point u is **above** of v, if v < u.

Definition 3

A vertex v of a polygon with inner angle a(v) and neighbors u, w is called

Split vertex, if
$$u < v$$
, $w < v$ and $a(v) > \pi$

▼ end vertex, if
$$u > v$$
, $w > v$ and $a(v) < \pi$

▼ merge vertex, if
$$u > v$$
, $w > v$ and $a(v) > π$

regular vertex, otherwise.

Lemma 3

A polygon *P* is *y*-monotone, if it has no split and merge vertices.

Proof

- Assume P is not y-monotone. Then P should have a split or merge vertex.
- If P is not y-monotone, there is a horizontal line g, that intersects or touches P in at least three points u, v, w (from left to right): w.l.o.g. a line segment \overline{uv} and a point w.

- Traversing the polygon chain starting in v in both directions, the next intersections with g are u and w.
- If the polygon chain u..v has an end (start) vertex, the polygon chain v..w must have a split (merge) vertex.
 - Analog if v..w has an end or start vertex.
- Thus, P has at least one split or merge vertex.

- The partitioning into y-monotone polygons can be computed by inserting suitable diagonals to get rid of the split and merge vertices.
 - These diagonals should go upward from a split vertex and downward from a merge vertex (without intersection).
 - This way they become regular vertices of the resulting subpolygons,
 - because in both sub-polygons the predecessor and successor vertices of the former split/merge vertex lie on different sides (above and below) of the former split/merge vertex.

- Use a horizontal sweep-line moving from top to bottom.
 - At every vertex an event is triggered and processed.
 - The vertices v_i of P are stored in a priority queue sorted from top to bottom, i.e. the priority is the y-coordinate.
 - Edges $e_i = \overline{v_i v_{i+1}}$ are stored in a doubly linked list, to compute neighbors and partitionings in constant time.

Goal: Add diagonal from a split vertex v_i to a vertex above.

- Let v_i be a split vertex on the sweep-line and e_j the edge left of it on the sweep-line.
- The vertex $helper(e_j)$ is the lowest vertex above the sweep-line, such that the horizontal line segment from e_j to $helper(e_i)$ lies completely in P.
- Note, that the upper end point of e_j is always a candidate for $helper(e_i)$.
- Insert diagonal from v_i to helper (e_i) .

Goal: Add diagonal from a merge vertex v_i to a vertex below.

- Difficult, because the area below a merge vertex has not been explored by the sweep line as it reaches the merge vertex.
- Merge vertices are stored initially as helper of the next left edge (here e_i).
- As soon as e_j gets a new helper, this is connected with the merge vertex v_i .

Diagonal is added when the sweep line reaches v_m .

- The edges and their helpers are stored efficiently in a search tree.
- The sweep-line algorithm operates directly on the doubly linked list of the edges $e_i = \overline{v_i v_{i+1}}$.

```
Algorithm 1: Partition in y-monotone polygons

Input: Simple polygon P in doubly linked edge list D.
Output: Partitioning of P in y-monotone pieces, stored in D.

1: Fill priority queue Q from top to bottom with vertices;
2: Initialize empty search tree T;
3: while (Q is not emmty) {
4: Take topmost vertex v_i from Q;
5: Process the event corresponding to the type of v_i;
6: }
```

Events are processed depending on the type of the vertex.

```
EndVertexEvent(v_i)
1: if (helper(e_{i-1}) is a merge vertex) then {
2: Add diagonal from v_i to helper(e_{i-1}) to D;
3: }
4: Remove e_{i-1} from T;
```

```
SplitVertexEvent(v_i)

1: Search in T for the edge e_j left of v_i;

2: Add diagonal from v_i to helper(e_j) to D;

3: helper(e_j):=v_i;

4: Add e_i with helper(e_i):=v_i to T;
```

MergeVertexEvent(v_i)

```
1: if (helper(e_{i-1}) is a merge vertex) then {
2: Add diagonal from v_i to helper(e_{i-1}) to D;
3: }
4: Remove e_{i-1} from T;
5: Search in T for the edge e_j left of v_i;
6: if (helper(e_j) is a merge vertex) then {
7: Add diagonal from v_i to helper(e_j) to D;
8: }
9: helper(e_j):=v_i;
```

```
RegularVertexEvent(v_i)
 1: if (the interior of P is right of v_i) then {
       if (helper(e_{i-1}) is a merge vertex) then {
 2:
          Add diagonal from v_i to helper(e_{i-1}) to D;
 4:
   Remove e_{i-1} from T;
    Add e_i with helper(e_i) := v_i to T;
 7: } else {
     Search in T for the edge e_i left of v_i;
       if (helper(e_i) is a merge vertex) then {
          Add diagonal from v_i to helper(e_i) to D;
10:
11:
12:
       helper(e_i) := v_i;
13: }
```

Example

event	content of T
v_1	e_1v_1
v_8	$e_1v_1 \ e_8v_8$
v_9	e_1v_9
v_2	e_2v_2
v_6	$e_2v_2 e_6v_6$
v_4	e_2v_4 e_4v_4 e_6v_6
v_7	$e_2v_4 \ e_4v_7$
v_3	e_4v_7
v_5	

- What is the content of the search tree T after each event?
- Which diagonals are added?

Lemma 4

Algorithm 1 partitions P into y-monotone sub-polygons by adding non-intersecting diagonals.

Proof

- All split vertices are removed by upward and all merge vertices by downward diagonals. Thus, by Lemma 3 all remaining sub-polygons are y-monotone.
- That there are no intersections is proved for the example of diagonals generated by SplitVertexEvent.

- Let $\overline{v_m v_i}$ be the new line segment in SplitVertexEvent, e_j and e_k are the edges left and right of v_i , and helper(e_i) = v_m .
- Consider the area Q between e_j and e_k , bounded from below and above by lines parallel to the x-axis though v_i und v_m .
- Because v_m is the last event before v_i relative to e_j , Q does not contain any further edges or vertices.
- Thus, the diagonal has no intersections.

The other events are treated analogously.

Proposition 5

A simple polygon with n vertices can be partitioned into y-monotone pieces in $O(n \log n)$.

Proof

- Constructing Q takes $O(n \log n)$, and T is initialized in O(1).
- Every event takes at most one operation at queue Q, two insertions on list D and one search, one insertion and one removal on tree T, which takes in total $O(\log n)$.
- Because there are n events, the total run time is $O(n \log n)$.

- To triangulate a *y*-monotone polygon the left and the right boundaries are processed top to bottom and the vertices a connected accordingly.
- Problems are caused by *reflex* vertices with an inner angle of $\alpha(v) > \pi$.
 - The vertices are stored in a stack, containing the not yet triangulated piece of the polygon above the sweep-line.
 - The lowest element of the stack belongs to the opposite side of the polygon.

- Process the points u_1, \dots, u_n of the y-monotone polygon from top to bottom.
- For a new point u_j , test if it lies on the opposite side of P as the top-most element on the stack.
- 1. In this case,
 - a) all points from the stack can be connected to u_j except for the last one.
 - b) Then push u_{j-1} and u_j back on the stack (u_i on top).

2. Otherwise,

- a) pop u_j from the stack and connect it to as many points on the stack as possible (i.e. the diagonal is inside P).
- b) The last of those and u_i are pushed back on the stack.


```
Algorithm 2: Triangulate y-monotone polygon
Input: A y-monotone polygon P in a doubly linked edge list D.
Output: Triangulation of P in D.
 1: Sort vertices top to bottom u_1, ..., u_n;
 2: Initialize empty stack S; S.push(u_1); S.push(u_2);
 3: for (j = 3, ..., n - 1) {
 4:
       if (u_i and S.top() are on different sides) then {
 5:
       Pop all vertices from S and add their diagonals to u_i
       to D, except for the last one;
 6:
    S.push(u_i); S.push(u_{i-1});
 7: } else {
    Pop one vertices from S;
 8:
 9:
     Pop the other vertices from S and add their diagonals
       to u_i to D, as long as this diagonal lies inside P_i
10: Push the last poped vertex back; S.push(u_i);
11: }
12: Pop all vertices from S and add their diagonals to u_n to D,
    except for the first and last one;
```

Example

	·
\overline{j}	stack S
	u_2u_1
3	$u_3 u_2 u_1$
4	$u_4u_3u_2u_1$
5	$u_5 u_2 u_1$
6	u_6u_5
7	u_7u_5
8	$u_8 u_7 u_5$
9	u_9u_8
10	

- What is the content of the stack after each iteration?
- Which vertices are connected?

Lemma 6

A *y*-monotone polygon with *n* vertices can be triangulated in linear run time.

Proposition 7

A polygon with n vertices can be triangulated in $O(n \log n)$ using O(n) of memory.

This follows from the combination of Algorithms 1 and 2.

Remarks

- Algorithm 1 is also correct for polygons with holes.
- For triangulation of arbitrary polygons $\Omega(n \log n)$ is a lower bound [1].
- Simple polygons can be triangulated in O(n).
 - A very complicated linear algorithm is due to Chazelle [2], 1991.
- The problem to triangulate (tetrahedralization) a 3d polytope is in general not solvable without auxiliary inner vertices.
 - There are efficient algorithms for such polytopes, but
 - to decide if auxiliary inner vertices are necessary is NP-complete.

6.4 Literature

- [1] Marc de Berg et al., Computational Geometry: Algorithms and Applications, 2nd Edition, Springer, 2000, Chapter 3.
- [2] B. Chazelle, *Triangulating a simple polygon in linear time*, Discrete Computational Geometry, 6:485-524, 1991.