IMPERIAL

Dyn-HaMR: Recovering 4D Interacting Hand Motion from a Dynamic Camera

Zhengdi Yu (z.yu23@imperial.ac.uk) Stefanos Zafeiriou (s.zafeiriou@Imperial.ac.uk) Tolga Birdal (tbirdal@imperial.ac.uk)

Motivation

Dyn-HaMR (Ours) can disentangle the camera and object poses to recover the 4D global hand motion in the real world whilst state-of-the-art 3D hand reconstruction methods like HaMeR [1] fail to do so.

Global Hand Motion

Our main contributions include:

- · Introducing the first optimization-based approach capable of disentangling and reconstructing global 4D pose and shape of two hands, and camera trajectory.
- · Proposing a data-driven hand motion prior combined with biomechanical constraints, allowing realistic and complex hand interactions to guide the optimization.
- Conducting comprehensive experiments on challenging inthe-wild videos and benchmarks, demonstrating substantial performance improvements over state-of-the-art methods in 4D global motion recovery.

 $E_{II}(^{\mathbf{w}}\mathbf{q}^{h}, \omega, \mathbf{R}_{t}, \boldsymbol{\tau}^{\mathbf{c}}_{t}) = \mathcal{L}_{prior} + \mathcal{L}_{pen} + \mathcal{L}_{bio}$ $+ \lambda_{2d} \mathcal{L}_{2d} + \lambda_s \mathcal{L}_{smooth}$ $+ \lambda_{cam} \mathcal{L}_{cam} + \lambda_{J} \mathcal{L}_{J} + \lambda_{B} \mathcal{L}_{B}$

Qualitative Results

Fig 3, Qualitative evaluation on InterHand2.6M [5]. reconstruction from different views

Fig 4. Comparison with state-of-the-art hand reconstruction approach [1] (static camera) on InterHand2.6M dataset [5].

Fig5. Qualitative comparison with state-of-the-art method HaMeR [1]. It can be seen that our method recovers significantly more plausible global hand motion, first row is from H2O dataset [19], while second & third rows are from HOI4D dataset [28].

Quantitative Results

Method	MPJPE ↓	MPVPE ↓	Acc Err↓
InterWild [30]	12.35	13.45	6.68
DIR [40]	9.09	9.43	8.92
ACR [52]	8.75	9.01	3.99
IntagHand [23]	9.26	9.71	4.41
HaMeR [36]	9.84	10.13	5.13
Ours (w/o III)	8.98	9.25	4.72
Ours (Dyn-HaMR)	7.94	8.15	2.76

Tab 1. Quantitative evaluation results for InterHand2.6M [5] 30 fps dataset. We compare our method with the state-of-the-art hand reconstruction methods on local hand poses.

Method	G-MPJPE ↓	GA-MPJPE ↓	MPJPE ↓	Acc Err↓	
ACR [52]	113.6	88.5	46.8	14.3	
IntagHand [23]	105.5	81.5	45.6	13.5	
HaMeR [36]	96.9	75.7	32.9	9.21	
Ours (w/o III)	51.9	41.2	24.9	9.5	
Ours (Dyn-HaMR)	45.6	34.2	22.5	4.2	

Tab 2. Quantitative evaluation results for H2O [4] dataset. Our method demonstrates significant improvements over state-of-the-art approaches in recovering both local and global 4D hand motion, with additional gains achieved when incorporating Stage III.

Method	H2O			InterHand2.6M				
	Jerk↓	Pen ↓	Trans Err ↓	FID ↓	Jerk ↓	Pen ↓	Trans Err ↓	FID ↓
ACR [52]	149.43	0.07	10.89	1.95 / 4.45	153.62	5.05	8.65	2.51 / 5.36
IntagHand [23]	166.38	0.06	11.15	2.14 / 4.12	165.31	4.82	9.19	2.69 / 5.07
HaMeR [58]	195.77	0.06	10.43	1.76 / 4.78	183.45	5.17	8.43	2.45 / 5.45
Ours (w/o bio. const.)	2.65	0.04	4.71	1.89 / 2.78	4.57	2.67	4.41	1.89 / 4.12
Ours (w/o pen. const.)	2.36	0.02	4.13	1.38 / 2.12	4.03	4.23	4.93	1.53 / 4.64
Ours (w/o III)	2.98	0.02	4.21	2.01 / 2.93	4.81	4.49	4.96	2.89 / 4.87
Ours (Dvn-HaMR)	2.34	0.009	5.67	1.34 / 1.98	4.26	2.46	4.35	1.49 / 3.56

Tab3. Plausibility evaluation on multiple datasets. Results are reported on the H2O [4] and InterHand2.6M [5] to analyze the jitter, penetration, translation, and plausibility. FID is reported for both single hand (left) and two hands (right).

Method	G-MPJPE↓	GA-MPJPE↓	MPJPE ↓	Acc Err↓
Stage I	84.5	72.5	25.6	8.8
Stage I+II	51.9	41.2	24.9	9.5
w/o bio. const.	49.6	43.1	24.5	4.3
w/o pen. const.	46.3	34.7	23.6	4.1
w/o gen. infill.	48.9	37.8	24.1	5.6
Ours (Dyn-HaMR)	45.6	34.2	22.5	4.2

Tab 4. Ablation of pipeline components on H2O [4] dataset. It shows the impact of

Fig 4. Comparison of global trajectory on HOI4D [6].

References

- [1] G. P et al., Recon structing hands in 3d with transformers. CVPR2024
- 21 Ye. V., et al., Decoupling human and camera motion from videos in the wild, CVPR 2023
- [3] Duran, E., et al., Hmp; Hand motion priors for pose and shape estimation from video, WACV 2024
- [5] Dufair, E., et al., Finitip. Train intoxion priors not pose affix shape estimation from wise. The V 2021 [4] T. Kwon et al., IACo: Two hands manipulating objects for first person interaction recognition. ICCV 2021 [5] G. Moon et al., Interhand 2 firm: A dataset and baseline for 3d interacting hand pose estimation from a single rgb im age.. ECCV 2020 [5] Y. Liut et al., Indeh Ad 4d agoonthic dataset for category-level human object interaction. CVPR 2022