

OPEN-SESAME

"Frame-Semantic Parsing with Softmax-Margin Segmental RNNs and a Syntactic Scaffold"

Swabha Swayamdipta et al. (arXiv, 2017)

EXAMPLE

Hoover Dar	n played a play.v	major role	in	preventing prevent.v	Las	Vegas	from	drying up)
Performer	PERFORMERS _AND_ROLES	Role			F	Performanc	е		
		IMPORT- Factor ANCE				Undertakin	g 		
Preventing_ cause				THWARTING	Pro	otagonist		Action	
					E	Entity	18.85	BECOMING_DRY	Y

PROBLEM

- Learning to identify exact boundaries of argument spans is hard.
- Current pruning heuristics (based on automatic dependency parses) bound recall below 72.6%.
- But without pruning, label imbalance (# of spans that are not args vs. # of spans that are args) is extreme!

PROPOSED SOLUTION

- Throw away rule-based syntactic pruning. Improve model to learn "soft" pruning instead.
 - Only hard pruning is based on length (spans > 20 tokens).
- Recall-oriented training.

IMPROVING MODEL

- SEMAFOR is a linear model over hand-engineered features
- How might we improve?

SEGMENTAL RNN

(Kong et al., ICLR 2016)

- Models probability of a labeled segmentation s, conditioned on a sequence x.
 - token BiLSTM encodes each token in context.
 - span BiLSTM encodes each candidate span (based on token BiLSTM).
 - A span's score is based on the span encoding, a frame encoding, and a role label encoding.
 - Globally normalized, using dynamic programming.

SEGMENTAL RNN

SOFTMAX-MARGIN

Incorporates a cost into the loss that heavily penalizes recall errors (α =2).

$$egin{aligned} & \operatorname{loss}(oldsymbol{x}, oldsymbol{s}^*) = -\log rac{\exp \phi(oldsymbol{s}^*, oldsymbol{x})}{Z} \ & Z = \sum_{oldsymbol{s}} \exp \left\{ \phi(oldsymbol{s}, oldsymbol{x}) + \operatorname{cost}(oldsymbol{s}, oldsymbol{s}^*)
ight\} \ & \operatorname{cost}(oldsymbol{s}, oldsymbol{s}^*) = lpha \operatorname{FN}(oldsymbol{s}, oldsymbol{s}^*) + \operatorname{FP}(oldsymbol{s}, oldsymbol{s}^*) \end{aligned}$$

RE-INCORPORATING SYNTAX

- Three approaches
 - Features from dependency parse
 - Features from phrase-based parse
 - "Scaffold" a multitask objective, used during training, then thrown away at test time

RE-INCORPORATING SYNTAX

- Syntax features are both:
 - hand-engineered (e.g. #incoming_deps, lca, ...), and
 - neural (path_1stm a la Roth & Lapata, arXiv 2016)

RE-INCORPORATING SYNTAX

- Scaffold task:
 - Learn to predict whether or not a span is a constituent in Penn TreeBank
 - Shares the BiLSTM encoder with the SegRNN
 - single hyperparameter determines how much to care about scaffold task vs. main task

EFFECT OF SYNTAX

	Arg Id (gold frames)					
	Р	R	F			
Kshirsagar 2015	66.0	60.4	63.1			
Yang 2017	70.2	60.2	65.5			
no syntax (ens)	69.5	63.6	66.4			
dep feats (ens)	70.2	65.6	67.8			
phrase feats (ens)	71.7	66.3	68.9			
scaffold (ens)	72.0	65.0	68.3			

USING PREDICTED FRAMES

	Frame+Arg Id (predicted frames)				
	Р	R	F		
Kshirsagar '15			67.9		
Roth '17 (ens)	74.8	65.5	69.9		
FitzGerald '15 (ens)	66.4	66.4	70.9		
Yang '17 (joint)	78.8	74.5	76.6		
no syntax (ens)	70.5	69.4	69.9		
dep feats (ens)	70.7	70.4	70.6		
phrase feats (ens)	71.2	70.5	70.9		
scaffold (ens)	71.5	69.9	70.7		

EFFECT OF RECALL-ORIENTED TRAINING

FUTURE WORK

- Multitask Learning, a la Peng et al, ACL 2017
- Joint Frame Id / Arg Id, a la Yang & Mitchell, EMNLP 2017
- Multilingual? (Please may we use your beautiful data?)

THANKS!

- Code available at:
 - https://github.com/Noahs-ARK/open-sesame
- TODO: Target identification
- TODO: update demo
 - http://demo.ark.cs.cmu.edu/parse/