|                    | $\sigma_1^{\#1}{}_+\alpha\beta$               | $\sigma_{1}^{\#2}{}_{\alpha\beta}$          | $\tau_1^{\#1}{}_+\alpha\beta$                | $\sigma_{1^{-}\alpha}^{\#1}$                | $\sigma_{1^{-}\alpha}^{\#2}$                | $\tau_{1^{-}\alpha}^{\#1}$ | $	au_1^{\#2}$                                    |
|--------------------|-----------------------------------------------|---------------------------------------------|----------------------------------------------|---------------------------------------------|---------------------------------------------|----------------------------|--------------------------------------------------|
| $+^{\alpha \beta}$ | 0                                             | $\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$ | $\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0k^2}$ | 0                                           | 0                                           | 0                          | 0                                                |
| $+^{\alpha\beta}$  | $\frac{2\sqrt{2}}{\alpha_0 + \alpha_0 k^2}$   | $-\frac{2}{\alpha_0 (1+k^2)^2}$             | $-\frac{2ik}{\alpha_0(1+k^2)^2}$             | 0                                           | 0                                           | 0                          | 0                                                |
| $+^{\alpha eta}$   | $-\frac{2i\sqrt{2}k}{\alpha_0 + \alpha_0k^2}$ | $\frac{2ik}{\alpha_0 (1+k^2)^2}$            | $-\frac{2k^2}{\alpha_0(1+k^2)^2}$            | 0                                           | 0                                           | 0                          | 0                                                |
| ı †α               | 0                                             | 0                                           | 0                                            | 0                                           | $-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$ | 0                          | $-\frac{4ik}{\alpha_0+2\alpha_0k^2}$             |
| - + <sub>α</sub>   | 0                                             | 0                                           | 0                                            | $-\frac{2\sqrt{2}}{\alpha_0+2\alpha_0 k^2}$ | $-\frac{2}{\alpha_0 (1+2 k^2)^2}$           | 0                          | $-\frac{2 i \sqrt{2} k}{\alpha_0 (1 + 2 k^2)^2}$ |
| . † <sup>α</sup>   | 0                                             | 0                                           | 0                                            | 0                                           | 0                                           | 0                          | 0                                                |
| + <sub>α</sub>     | 0                                             | 0                                           | 0                                            | $\frac{4ik}{\alpha_0 + 2\alpha_0k^2}$       | $\frac{2i\sqrt{2}k}{\alpha_0(1+2k^2)^2}$    | 0                          | $-\frac{4k^2}{\alpha_0(1+2k^2)^2}$               |
|                    |                                               |                                             |                                              |                                             |                                             |                            |                                                  |

## Lagrangian density

 $\frac{1}{2} \alpha_0 \omega_{\alpha\zeta\beta} \omega^{\alpha\beta\zeta} - \frac{1}{2} \alpha_0 \omega^{\alpha\beta}_{\alpha} \omega_{\beta\zeta}^{\zeta} + f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} - \alpha_0 f^{\alpha\beta} \partial_{\beta}\omega_{\alpha\zeta}^{\zeta} + \alpha_0 \partial_{\beta}\omega^{\alpha\beta}_{\alpha} + \alpha_0 f^{\alpha\beta} \partial_{\zeta}\omega_{\alpha\beta}^{\zeta} - \alpha_0 f^{\alpha}_{\alpha} \partial_{\zeta}\omega^{\beta\zeta}_{\beta}$ 

| $f_{1^{	ext{-}}lpha}^{\#2}$              | 0                               | 0                                 | 0                               | $-\frac{1}{2}$ i $\alpha_0$ k | 0                             | 0                               | 0                       |
|------------------------------------------|---------------------------------|-----------------------------------|---------------------------------|-------------------------------|-------------------------------|---------------------------------|-------------------------|
| $f_{1^-}^{\#1} \alpha$                   | 0                               | 0                                 | 0                               | 0                             | 0                             | 0                               | 0                       |
| $\omega_{1}^{\#2}{}_{\alpha}$            | 0                               | 0                                 | 0                               | $-\frac{\alpha_0}{2\sqrt{2}}$ | 0                             | 0                               | 0                       |
| $\omega_{1^{-}\alpha}^{\#1}$             | 0                               | 0                                 | 0                               | $\frac{\alpha_0}{4}$          | $-\frac{\alpha_0}{2\sqrt{2}}$ | 0                               | $\frac{i\alpha_0 k}{2}$ |
| $f_{1}^{\#1}_{\alpha\beta}$              | $\frac{i\alpha_0 k}{2\sqrt{2}}$ | 0                                 | 0                               | 0                             | 0                             | 0                               | 0                       |
| $\omega_1^{\#2}{}_+\alpha\beta$          | $\frac{\alpha_0}{2\sqrt{2}}$    | 0                                 | 0                               | 0                             | 0                             | 0                               | 0                       |
| $\omega_1^{\#1}{}_+ \alpha_eta \; \iota$ | $\frac{\alpha_0}{4}$            | $\frac{\alpha_0}{2\sqrt{2}}$      | $-\frac{i\alpha_0k}{2\sqrt{2}}$ | 0                             | 0                             | 0                               | 0                       |
|                                          | $\omega_1^{\#1} + ^{lphaeta}$   | $\omega_1^{\#2} + \alpha^{\beta}$ | $a_1^{*1} + \alpha \beta$       | $\omega_1^{\#_1} +^{lpha}$    | $\omega_1^{\#2} +^{lpha}$     | $\epsilon_{1}^{\#1} +^{\alpha}$ | $f_{1}^{#2} +^{\alpha}$ |

| $\omega_{0^{\text{-}}}^{\#1}$ | 0                              | 0                               | 0            | $\frac{\alpha_0}{2}$         |
|-------------------------------|--------------------------------|---------------------------------|--------------|------------------------------|
| $f_{0}^{\#2}$                 | 0                              | 0                               | 0            | 0                            |
| $f_0^{\#1}$                   | $-\frac{i\alpha_0k}{\sqrt{2}}$ | 0                               | 0            | 0                            |
| $\omega_{0}^{\#1}$            | $\frac{\alpha_0}{2}$           | $\frac{i \alpha_0 k}{\sqrt{2}}$ | 0            | 0                            |
|                               | $\omega_{0}^{\#1}$ $\dagger$   | $f_{0}^{\#1}$ †                 | $f_0^{#2} +$ | $\omega_{0}^{\#1}$ $\dagger$ |

 $\sigma_2^{\#1} \dagger^{\alpha\beta\chi}$ 

|                                          | $\omega_{2^{+}\alpha\beta}^{\#1}$ | $f_{2+\alpha\beta}^{\#1}$         | $\omega_{2}^{\#1}{}_{\alpha\beta\chi}$ |
|------------------------------------------|-----------------------------------|-----------------------------------|----------------------------------------|
| $\omega_{2}^{\#1}\dagger^{lphaeta}$      | $-\frac{\alpha_0}{4}$             | $\frac{i \alpha_0 k}{2 \sqrt{2}}$ | 0                                      |
| $f_{2+}^{\#1}\dagger^{\alpha\beta}$      | $-\frac{i\alpha_0 k}{2\sqrt{2}}$  | 0                                 | 0                                      |
| $\omega_{2}^{#1}$ † $^{\alpha\beta\chi}$ | 0                                 | 0                                 | $-\frac{\alpha_0}{4}$                  |

| $\sigma_0^{\#1}$               | $\tau_{0}^{\#1}$                       | $	au_{0}^{\#2}$                                                                                     | $\sigma_{0}^{\#1}$                                                                                                                                  |
|--------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                              | $-\frac{i\sqrt{2}}{\alpha_0 k}$        | 0                                                                                                   | 0                                                                                                                                                   |
| $\frac{i\sqrt{2}}{\alpha_0 k}$ | $-\frac{1}{\alpha_0 k^2}$              | 0                                                                                                   | 0                                                                                                                                                   |
| 0                              | 0                                      | 0                                                                                                   | 0                                                                                                                                                   |
| 0                              | 0                                      | 0                                                                                                   | $\frac{2}{\alpha_0}$                                                                                                                                |
|                                | $0$ $\frac{i\sqrt{2}}{\alpha_0 k}$ $0$ | $0  -\frac{i \sqrt{2}}{\alpha_0 k}$ $\frac{i \sqrt{2}}{\alpha_0 k}  -\frac{1}{\alpha_0 k^2}$ $0  0$ | $ \begin{array}{c c} 0 & -\frac{i\sqrt{2}}{\alpha_0 k} & 0 \\ \frac{i\sqrt{2}}{\alpha_0 k} & -\frac{1}{\alpha_0 k^2} & 0 \\ 0 & 0 & 0 \end{array} $ |

|                    | #            | 1                     | 3                                                                       | 3                                | 3                                                                   | 10       |
|--------------------|--------------|-----------------------|-------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|----------|
| Source constraints | SO(3) irreps | $\tau_{0+}^{#2} == 0$ | $\tau_{1}^{\#2}{}^{\alpha} + 2  i  k  \sigma_{1}^{\#2}{}^{\alpha} == 0$ | $\tau_{1}^{\#1}{}^{\alpha} == 0$ | $\tau_{1+}^{\#1}\alpha\beta + ik \sigma_{1+}^{\#2}\alpha\beta == 0$ | Total #: |

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$ 

0

0



(No massive particles)

## Unitarity conditions