Modul 114

Thema 1/11

Einführung ins Modul

Die Zahlensysteme Binär - Dezimal - Hexadezimal

Kompetenz (gem. ICT-Berufsbildung Schweiz)

Codierungs-, Kompressions- und Verschlüsselungsverfahren einsetzen

Aufgabe

Besprechen Sie in der Pultgruppe die Kompetenz des Moduls

Versuchen Sie, Definitionen für die Begriffe

- Codierung
- Kompression
- Verschlüsselung

zu formulieren.

Wo haben Sie bereits solche Verfahren angetroffen?

Ziel: Sie verstehen den Sinn der Hauptkompetenz von Modul 114

SF: Gruppenarbeit

Zeit: 10 Minuten

Handlungsziele (gem. ICT-Berufsbildung Schweiz)

- 1 Codierungen von Daten situationsbezogen auswählen und einsetzen. Aufzeigen, welche Auswirkung die Codierung auf die Darstellung von Daten hat.
- 2 Kompressionsverfahren gemäss Vorgaben für die Aufbewahrung, Wiederherstellung und Übertragung von Daten auswählen und einsetzen.

Handlungsziele (gem. ICT-Berufsbildung Schweiz)

- Verschlüsselungsverfahren zur Sicherung von Daten gemäss Vorgaben gegen unbefugten Zugriff auf Datenspeicher und Übertragungswegen auswählen und einsetzen.
- Gesicherte Übertragungsverfahren für Dateien mit asymmetrischen und symmetrischen Verschlüsselungsverfahren nutzen. Dabei Aspekte wie Public/Private Key, Zertifikate, Protokolle und Standards berücksichtigen.

Beurteilung

> Die Beurteilung von Modul 114 erfolgt in drei Stufen:

- LB 1 Teil 1	Schriftliche Einzelarbeit	40%
- LB 1 Teil 2	Schriftliche Einzelarbeit	40%
- LB 2	Partnerarbeit	20%

Agenda

Thema	Inhalte
1	Zahlensysteme BIN - DEZ - HEX
2	Arithmetische und logische Grundoperationen im Binärsystem
3	Die Logik und den Prozessor verstehen
4	Grosse Zahlen in kleinen Variablen ablegen
5	Fehler in der Datenübertragung finden und korrigieren
6	Speicherplatz als rares Gut - Dateien und ihr Platzbedarf
7	Speicherplatz als rares Gut - Kompression
8	Speicherplatz als rares Gut - Reduktion
9	Vektorgrafiken - Eine Alternative zu den Pixeln
10	Verschlüsselung - Geschichte und Grundsätzliches
11	Verschlüsselung – Moderne Verfahren

Tagesziele

Ich kann...

- den Unterschied zwischen Binär-, Hexadezimal- und Dezimalsystem erklären.
- einfache Zahlen vom einen System ins andere transformieren.

9

Zahlensysteme

Das Dezimal-System

4157₍₁₀₎

Hundert- tausender	Zehn- tausender	Tausender	Hunderter	Zehner	Einer
105	10^{4}	103	10 ²	10^{1}	100
0	0	4	1	5	7

Die mathematisch Korrekte Schreibweise würde also so lauten:

$$4 \cdot 10^3 + 1 \cdot 10^2 + 5 \cdot 10^1 + 7 \cdot 10^0$$

Feststellungen

- Das Zehner-System nutzt die 10 Ziffern 0 9
- Jede Stelle entspricht einer Potenz zur Basis 10
- Beim Zählen über 9 erfolgt ein Übertrag auf die nächst höhere Zehnerpotenz

0	10	20
1	11	21
2	12	22
3	13	23
4	14	24
5	15	25
6	16	26
7	17	27
8	18	28
9	19	29

Das Binär-System

- Das Zweier-System nutzt die 2 Ziffern 0 und 1
- Jede Stelle entspricht einer Potenz zur Basis 2
- Beim Zählen über 1 erfolgt ein Übertrag auf die nächst höhere Zweierpotenz

0	10	100	1000	10000
1	11	101	1001	10001
		110	1010	10010
		111	1011	10011
			1100	10100
			1101	10101
			1111	10111
				11000
				11001
				11010
				usw.

Das Binär-System

Aufgabe: Welchen dezimalen Wert hat die Binärzahl

10010111

Lösung:

128er	64er	32er	16er	8er	4er	2er	1er
27	26	2 ⁵	24	23	22	21	20
1	0	0	1	0	1	1	1

Analog zum Zehnersystem hat die Zahl den Wert

$$1 \cdot 2^7 + 1 \cdot 2^4 + 1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0$$

Also
$$128 + 16 + 4 + 2 + 1 = 151$$

Das Binär-System

Das Zweiersystem (auch Dual- oder Binärsystem) hat eine enorme Bedeutung – insbesondere in der Informatik:

Sämtliche Daten, jede Form von Datenübertragung und jeder Arbeitsschritt eines Computers: Alles besteht **nur aus Nullen oder Einsen**, respektive auf Spannung/keine Spannung oder magnetisch/nicht magnetisch.

```
7010 0011 7707

7010 0011 1000

0010 0011 1100

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011 11001

1000 0011
```


Zählen im Binär-System

10er	2er	10er	2er	10er	2er	10er	2er	10er	2er
0	0	10	1010	20	10100	30	11110	40	101000
1	1	11	1011	21	10101	31	11111	41	101001
2	10	12	1100	22	10110	32	100000	42	101010
3	11	13	1101	23	10111	33	100001	43	101011
4	100	14	1110	24	11000	34	100010	44	101100
5	101	15	1111	25	11001	35	100011	45	101101
6	110	16	10000	26	11010	36	100100	46	101110
7	111	17	10001	27	11011	37	100101	47	101111
8	1000	18	10010	28	11100	38	100110	48	110000
9	1001	19	10011	29	11101	39	100111	49	110001

Das Hexadezimal-System

Problem:

Versuchen Sie, einem Kollegen eine MAC-Adresse (in ihrer ursprünglichen binären Form) zu diktieren:

Lösung:

Realtek PCIe GBE Family Controller C8-60-00-9D-38-0C

Darstellung im Sechzehner-System (meistens Hexadezimalsystem genannt)

Das Hexadezimal-System

Wie funktioniert die Übersetzung vom Binär- ins Hexadezimalsystem?

Schritt 1: Die Binärzahl wird von rechts nach links in 4er-Blöcke zerteilt

Schritt 2: Jeder Block ergibt genau eine Stelle im Hexadezimalsystem

1100 1000 0110 0000 0000 0000 1001 1101 0011 1000 0000 1100

C 8 6 0 0 0 9 D 3 8 0 C

Da das Hexadezimalsystem 16 Zeichen benötigt, werden für die Werte von (dezimal) 10 bis 15 einfach die Buchstaben A, B, C, D, E, F verwendet.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	1	2	3	4	5	6	7	8	9	Α	В	C	D	Ε	F

Zusammenfassung

- Die Informatik beruht auf dem Binärsystem
- Der Mensch funktioniert heute auf dem Dezimalsystem
- Die optimale Schnittstelle bietet das Hexadezimalsystem, da es mit beiden anderen Systemen «verwandt» ist.

Merke: Damit es zu keinen Verwechslungen kommen kann, werden die

Zahlen mit einem Index versehen, der angibt, um welches

Zahlensystem es sich handelt:

Mathematik: 1001₂ 1001₁₀ 1001₁₆

Informatik: **0b**1001 **0d**1001 **0x**1001

Werte umrechnen

Jonglieren mit Zahlensystemen

Als Informatiker müssen wir mindesten im Bereich von dezimal 0 bis 255 Zahlenwerte zwischen den drei Zahlensystemen umrechnen können.

Für höhere Werte gibt es Hilfsmittel, z.B:

- Windows-Calculator (Ansicht → Programmierer)
- Excel (Funktionen dezinbin, binindez, dezinhex, ...)

Jonglieren mit Zahlensystemen

Diese Tabelle zeigt, mit welchen Techniken, Sie Werte von einem Zahlensystem (waagrecht) in ein anderes (senkrecht) umwandeln können. Auf den nachfolgenden Folien werden diese Techniken erläutert.

Umrechnen von	Binär	Dezimal	Hexadezimal
Binär		Binär-Geld oder Algorithmus	4er-Blöcke machen
Dezimal	Stellenwerte aufaddieren		Stellenwerte aufaddieren
Hexadezimal	4er-Blöcke zusammenfassen	Hexa-Geld oder Algorithmus	

Umrechnen DEZ-BIN und DEZ-HEX

Im Binär-Land gibt es folgende Banknoten:

- 1
- 2
- 4
- 8
- 16

USW.

- Wie bezahlen Sie einen Betrag von 1'000.- mit möglichst wenig Banknoten?
- Können Sie jetzt eine Regel für die Umrechnung DEC → BIN ableiten?

Im **Hexa-Land** gibt es andere Banknoten:

- 1
- 16
- 256
- 4096

USW.

- Wie bezahlen Sie einen Betrag von 10'000.- mit möglichst wenig Banknoten?
- Können Sie jetzt eine Regel für die Umrechnung DEC → HEX ableiten?

Umrechnen DEZ-BIN und DEZ-HEX

Beispiel: 234
$$_{(10)} \rightarrow x_{(2)}$$

```
117 \div 2 = 58 \text{ Rest } 1
 58 ÷ 2 = 29 Rest 0
 29 \div 2 = 14 \text{ Rest } 1
 14 \div 2 = 7 \text{ Rest } 0
  7 \div 2 = 3 \text{ Rest } 1
  3 \div 2 = 1 \text{ Rest } 1
  1 \div 2 = \emptyset \text{ Rest } 1
```


Umrechnen BIN-DEZ und HEX-DEZ

BIN in DEZ: Notiere den Stellenwert jedes gesetzten Bits und addiere die Werte auf.

$$11001000_2 = 128 + 64 + 8 = 200_{10}$$

HEX in DEZ: Notiere den Stellenwert jeder Stelle und multipliziere ihn mit der jeweiligen Ziffer. Addiere alles auf.

$$4DE_{16} = 4*256 + 13*16 + 14*1 = 1246_{10}$$

Umrechnen BIN-HEX und HEX-BIN

Von rechts nach links entsprechen immer vier binäre Stellen einer hexadezimalen Stelle:

Diese Anleitung gilt auch umgekehrt.

Übungsaufgaben

> Das Gelernte können Sie mit Hilfe von AB 114-01 üben

Ziel: Repetition und Vertiefung des Stoffes

SF: Einzelarbeit/Partnerarbeit

Zeit: 45 Minuten

Abschluss

- > Offene Punkte / Fragen
- > Feedback
- > Hausaufgaben
 - AB114-01 fertig lösen

