Calculus I Miscellaneous problems, part 1

Todor Miley

2019

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

Find the value of x for which $f(x) = (x + 1)e^{-x^2}$

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = \frac{d}{dx} (x+1)e^{-x^2} + (x+1)\frac{d}{dx} \left(e^{-x^2} \right)$$

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$
$$= ? \cdot e^{-x^2} + (x+1)?$$

Find the value of x for which $f(x) = (x+1)e^{-x^2}$ attains its maximum in the interval

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$
$$= 1 \cdot e^{-x^2} + (x+1)?$$

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$
$$= 1 \cdot e^{-x^2} + (x+1)?$$

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$
$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}\left(-x^2\right)'$$

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$

$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}\left(-x^2\right)'$$

$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}(?)$$

Find the value of x for which $f(x) = (x + 1)e^{-x^2}$ attains its maximum in the interval

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$
$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}\left(-x^2\right)'$$
$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}(-2x)$$

Find the value of x for which $f(x) = (x + 1)e^{-x^2}$ attains its maximum in the interval

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$

$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}\left(-x^2\right)'$$

$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}(-2x)$$

$$= (1 + (x+1)(-2x))e^{-x^2}$$

Find the value of x for which $f(x) = (x + 1)e^{-x^2}$ attains its maximum in the interval

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)$$

$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}\left(-x^2\right)'$$

$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}\left(-2x\right)$$

$$= (1 + (x+1)(-2x))e^{-x^2}$$

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)
= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}\left(-x^2\right)'
= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}(-2x)
= (1 + (x+1)(-2x))e^{-x^2} = (-2x^2 - 2x + 1)e^{-x^2}$$

Find the value of x for which $f(x) = (x + 1)e^{-x^2}$

attains its maximum in the interval [-5.5]. Use the given plot.

$$\frac{d}{dx} ((x+1)e^{-x^2}) = \frac{d}{dx} (x+1)e^{-x^2} + (x+1)\frac{d}{dx} (e^{-x^2})$$

$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2} (-x^2)'$$

$$= 1 \cdot e^{-x^2} + (x+1)e^{-x^2} (-2x)$$

$$= (1 + (x+1)(-2x))e^{-x^2} = (-2x^2 - 2x + 1)e^{-x^2}$$

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = \frac{d}{dx}(x+1)e^{-x^2} + (x+1)\frac{d}{dx}\left(e^{-x^2}\right)
= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}\left(-x^2\right)'
= 1 \cdot e^{-x^2} + (x+1)e^{-x^2}(-2x)
= (1 + (x+1)(-2x))e^{-x^2} = (-2x^2 - 2x + 1)e^{-x^2}$$

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = (1+(x+1)(-2x))e^{-x^2} = (-2x^2-2x+1)e^{-x^2}$$

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$

Find the value of x for which $f(x) = (x + 1)e^{-x^2}$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2-2x+1)e^{-x^2}=0$$

Div. by e^{-x^2}

Find the value of x for which $f(x) = (x + 1)e^{-x^2}$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2-2x+1)e^{-x^2}=0$$

Div. by $e^{-x^2} \neq 0$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$
$$-2x^2 - 2x + 1 = 0$$

Div. by
$$e^{-x^2} \neq 0$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2-2x+1)e^{-x^2}=0$$

$$-2x + 1)e = 0$$

 $-2x^2 - 2x + 1 = 0$

$$X_1, X_2 = ?$$

Div. by
$$e^{-x^2} \neq 0$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = (1+(x+1)(-2x))e^{-x^2} = (-2x^2-2x+1)e^{-x^2}$$

Find critical points: set f'(x) = 0 and solve for x: $(-2x^2 - 2x + 1)e^{-x^2} = 0$

$$-2x^2 - 2x + 1 = 0$$

Div. by
$$e^{-x^2} \neq 0$$

$$x_1, x_2 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-2) \cdot 1}}{2(-2)}$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$

Div. by
$$e^{-x^2} \neq 0$$

$$-2x^2-2x+1=0$$

$$x_1, x_2 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-2) \cdot 1}}{2(-2)}$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = (1+(x+1)(-2x))e^{-x^2} = \left(-2x^2-2x+1\right)e^{-x^2}$$

Find critical points: set f'(x) = 0 and solve for x: $(-2x^2 - 2x + 1)e^{-x^2} = 0$

$$-2x^{2}-2x+1=0$$

$$x_{1},x_{2}=\frac{-(-2)\pm\sqrt{(-2)^{2}-4(-2)\cdot 1}}{2(-2)}$$

Miscellaneous problems, part 1

Div. by $e^{-x^2} \neq 0$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$

Div. by
$$e^{-x^2} \neq 0$$

$$-2x^2-2x+1=0$$

$$x_1, x_2 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-2) \cdot 1}}{2(-2)}$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

 $(-2x^2 - 2x + 1)e^{-x^2} = 0$

Div. by
$$e^{-x^2} \neq 0$$

$$-2x^2 - 2x + 1 = 0$$

$$x_1, x_2 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-2) \cdot 1}}{2(-2)}$$
$$= \frac{2 \pm \sqrt{12}}{-4}$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$

Div. by
$$e^{-x^2} \neq 0$$

$$-2x^2 - 2x + 1 = 0$$

$$x_1, x_2 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-2) \cdot 1}}{2(-2)}$$
$$= \frac{2 \pm \sqrt{12}}{-4}$$

Div. by $e^{-x^2} \neq 0$

Example

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = (1+(x+1)(-2x))e^{-x^2} = \left(-2x^2-2x+1\right)e^{-x^2}$$

Find critical points: set f'(x) = 0 and solve for x: $(-2x^2 - 2x + 1)e^{-x^2} = 0$

$$-2x^{2} - 2x + 1 = 0$$

$$x_{1}, x_{2} = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(-2) \cdot 1}}{2(-2)}$$

$$= \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4}$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$

Div. by
$$e^{-x^2} \neq 0$$

$$-2x^2 - 2x + 1 = 0$$

$$x_1, x_2 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-2) \cdot 1}}{2(-2)}$$
$$= \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4}$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$

Div. by
$$e^{-x^2} \neq 0$$

$$-2x^2 - 2x + 1 = 0$$

$$x_1, x_2 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-2) \cdot 1}}{2(-2)}$$
$$= \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$$

Div. by $e^{-x^2} \neq 0$

Example

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx}\left((x+1)e^{-x^2}\right) = (1+(x+1)(-2x))e^{-x^2} = \left(-2x^2-2x+1\right)e^{-x^2}$$

Find critical points: set f'(x) = 0 and solve for x: $(-2x^2 - 2x + 1)e^{-x^2} = 0$

$$(-2x^{2} - 2x + 1)e^{-x} = 0$$

$$-2x^{2} - 2x + 1 = 0$$

$$x_{1}, x_{2} = \frac{-(-2) \pm \sqrt{(-2)^{2} - 4(-2)}}{2(-2)}$$

$$x_1, x_2 = \frac{-(-2) \pm \sqrt{(-2)^2 - 4(-2) \cdot 1}}{2(-2)}$$
$$= \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^{2} - 2x + 1)e^{-x^{2}} = 0$$

$$x_{1}, x_{2} = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$$
Div. by $e^{-x^{2}} \neq 0$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$
 $x_1, x_2 = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$

X	f(x)
_ 	
$\frac{-1-\sqrt{3}}{2}$	
$ \begin{array}{r} -1 - \sqrt{3} \\ \hline 2 \\ -1 + \sqrt{3} \\ \hline 2 \end{array} $	
5	

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$
 Div. by $e^{-x^2} \neq 0$ $x_1, x_2 = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5,5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$

$$x_1, x_2 = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$$
Div. by $e^{-x^2} \neq 0$

$$\begin{array}{c|c}
x & f(x) \\
-5 \\
\frac{-1-\sqrt{3}}{2} \\
\frac{-1+\sqrt{3}}{2} \\
5
\end{array}$$

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$
 Div. by $e^{-x^2} \neq 0$ $x_1, x_2 = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$

X	f(x)
-5	close to 0 from plot
$\frac{-1-\sqrt{3}}{2}$	
$\frac{-1+\sqrt{3}}{2}$	
5	

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$
 Div. by $e^{-x^2} \neq 0$ $x_1, x_2 = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$

_	 		- -
		X	f(x)
		-5	close to 0 from plot
		$\frac{-1-\sqrt{3}}{2}$	negative, min from plot
		$\frac{-1+\sqrt{3}}{2}$	
		5	

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$
 Div. by $e^{-x^2} \neq 0$ $x_1, x_2 = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$

•	tho values of rat the c	maponito ana mo ontioan
	X	f(x)
	-5	close to 0 from plot
	$\frac{-1-\sqrt{3}}{2}$	negative, min from plot
	$\frac{-1+\sqrt{3}}{2}$	positive, max from plot
	5	

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$
 $x_1, x_2 = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$

X	f(x)
-5	close to 0 from plot
$\frac{-1-\sqrt{3}}{2}$	inganio, iiii noii piot
$\frac{-1+\sqrt{3}}{2}$	positive, max from plot
5	close to 0 from plot

Find the value of x for which

$$f(x) = (x+1)e^{-x^2}$$

attains its maximum in the interval [-5, 5]. Use the given plot.

$$\frac{d}{dx} \left((x+1)e^{-x^2} \right) = (1 + (x+1)(-2x)) e^{-x^2} = \left(-2x^2 - 2x + 1 \right) e^{-x^2}$$
Find critical points: set $f'(x) = 0$ and solve for x :

$$(-2x^2 - 2x + 1)e^{-x^2} = 0$$
 Div. by $e^{-x^2} \neq 0$ $x_1, x_2 = \frac{2 \pm \sqrt{12}}{-4} = \frac{-2 \mp 2\sqrt{3}}{4} = \frac{-1 \pm \sqrt{3}}{2}$

X	f(x)
-5	close to 0 from plot
$\frac{-1-\sqrt{3}}{2}$	nogativo, min nom plot
Final answer: $\frac{-1+\sqrt{3}}{2}$	positive, max from plot
_ 5	close to 0 from plot