

2005 NDIA Combat Vehicles Conference

Shepherdsville, KY

20-22 September 2005

Revised Agenda

Wednesday, 21 September 2005

SESSION I - Requirements and Warfighting

Keynote Address: Balanced Modernization, by LTG Mark Curran, USA, Deputy Commanding General, Futures and Director, Futures Center, US Army Training and Doctrine Command

War Panel: Operation Iraqi Freedom

Moderator:

- MG J. B. Burns, USA (Ret)

Panelists:

- Key Points, by COL James B. Hickey, USA, Director, JAWP APO
- Fighting the Guerilla in Iraq: Tactical Insights from the 4th Infantry Division, by LTC Steven D. Russell, USA, Chief of Tactics, USAIS
- Assault Amphibian Vehicles (AAVs) in 1st Marine Division for Operation Iraqi Freedom, by Col Robert S. Abbott, USMC, Chief National Plans Branch (PLN), Plans Polices and Operations, HQMC
- Operation Al Fajr - The Battle for Fallujah, by Col Mike Shupp, USMC, Commanding Officer of the 1st Marine Regiment 1st Marine Division (Rein), FMF Camp Pendleton

Ogden Ops-Sequence (*Video*)

SESSION II: U.S. Marine Corps Session

USMC Agenda

Maintaining the Corps Today While Preparing for Tomorrow, by Col Michael J. Mulligan, USMC, Director, Infantry Weapons Systems, Marine Corps Systems Command

Today's Combat Vehicles:

- PM AAVS Program Brief
- USMC LAV Modernization Plan, by Col John J. Bryant, USMC, Program Manager, Light Armored Vehicles, USA TACOM

Expeditionary Fighting Vehicle (EFV), by Col Mike Brogan, USMC, DRPM Expeditionary Fighting Vehicle, Worth Avenue Technology Center

EFV OPM (*Video*)

Thursday, 22 September 2005

SESSION III: Future to Current

Combat Systems - Where We Are... Where We're Going... and Like a Rock (*Video*), COL Larry D. Hollingsworth, USA, Project Manager, Combat Systems (Tank: Abrams/Bradley)

Stryker 'Move' (*Video*)

Shoot MGS (*Video*)

Communicate (*Video*)

Army Racing (*Video*)

Panel: Future Combat System/Unit of Action Panel Update

Update (*Presentation*)

Tiger Short (*Video*)

Surv2 (*Video*)

Surv3 (*Video*)

Moderator:

- COL Charles Coutreau, USA, Program Manager Manned Ground Vehicle (MGV)

Panelists:

- Mr. Tom Hartigan, Program Manager, US - Reliability
- Mr. Dan Holtz and Mr. Dick Williams, Boeing
- Mr. Dean Vanderstelt, General Dynamics Land Systems (GDLS)
- Mr. Mike Zoltoski, TARDEC
- Mr. Peter DeMasi, Program Manager, US/Lethality Systems

Thank You! (*Video*)

Revised Agenda

Tuesday, September 20, 2005

- 1:00 p.m. - 6:00 p.m. Golf Tournament
(Shotgun start/tee times)
Lindsey Golf Course, Ft. Knox
- 5:00 p.m. - 7:00 p.m. *Welcome Reception and Registration / Security Check-in*
Country Inn & Suites, Shepherdsville

Wednesday, September 21, 2005

- 7:00 a.m. - 7:30 a.m. Shuttle Busses depart from individual hotel parking lots for
Gaffey Hall, Fort Knox
To assist in our planning purposes, please indicate on the registration form or
online if you plan on using this service.
- 7:30 a.m. - 4:30 p.m. Registration & Security Check-in
- 7:30 a.m. - 8:15 a.m. Continental Breakfast

Session I - Requirements and Warfighting
Session Chair - *LTG John S. Caldwell USA (Ret.)*
QSS Group
and
Chairman, Combat Vehicles Division, NDIA

- 8:15 a.m. - 8:25 a.m. Administrative Announcements
- 8:25 a.m. - 8:45 a.m. *Welcome to Fort Knox - Transformation Update*
MG Terry L. Tucker, USA
Commanding General (CG)
U.S. Army Armor Center and Fort Knox
- 8:45 a.m. - 9:30 a.m. ***Keynote Address***
Lieutenant General John M. Curran, USA
Director, Futures Center
United States Army Training and Doctrine Command
- 9:30 a.m. - 9:50 a.m. Coffee Break
- 9:50 a.m. - 12:15 p.m. ***War Panel: "Operation Iraqi Freedom"***
Moderator: *MG J. B. Burns, USA (Ret.)*
Panel Members:
LTC Jim Mingo, USA
Commander, 3rd Battalion, 8th Cavalry
COL James B. Hickey, USA
Director, JAWP APO
LTC Steven D. Russell, USA
Chief of Tactics, USAIS
Col Robert S. Abbott, USMC
Chief, National Plans Branch (PLN)
Plans, Policies and Operations, HQMC
Col Mike Shupp, USMC
Commanding Officer of the 1st Marine Regiment
1st Marine Division (Rein), FMF Camp Pendleton

Revised Agenda (continued)

Wednesday, September 21, 2005 (continued)

- 12:15 p.m. - 12:30 p.m. Busses shuttle attendees to the *Leader's Club* for lunch
- 12:30 p.m. - 1:30 p.m. Lunch with Speaker
Mr. Richard B. Ladd
President, Robinson, International
- 1:30 p.m. - 1:45 p.m. Busses shuttle attendees back to *Gaffey Hall* for *Session II*
- Session II: U.S. Marine Corps Session**
- Session Chair - *Col Reed Bolick, USMC (Ret.)*
Cypress International
- 1:45 p.m. - 1:55 p.m. **Introductions**
Col Reed Bolick, USMC (Ret.)
- 1:55 p.m. - 2:35 p.m. **Maintaining the Corps Today While Preparing for Tomorrow**
Col Michael Mulligan, USMC
Director, Infantry Weapons Systems
Marine Corps Systems Command
- 2:35 p.m. - 3:35 p.m. **Today's Combat Vehicles**
 - *Mr. Bryan Prosser*
AAV Program Manager, MARCORSYSCOM (PMM-143)
 - *Col John Bryant, USMC*
Program Manager, Light Armored Vehicles, USA TACOM
 - *LtCol John D. Swift, USMC*
Tank Program Manager, MARCORSYSCOM (PMM-142)
- 3:35 p.m. - 4:05 p.m. Coffee Break
- 4:05 p.m. - 4:45 p.m. **Tomorrow's Expeditionary Fighting Vehicles (EFV)**
Col Michael M. Brogan, USMC
DRPM Expeditionary Fighting Vehicle
Worth Avenue Technology Center
- 4:45 p.m. - 5:00 p.m. **Marine Corps Q&A**
- 5:00 p.m. Adjourn for the day
- 5:15 p.m. - 5:30 p.m. Busses shuttle attendees to *The Patton Museum* for the
Annual Reception
- 5:30 p.m. - 7:00 p.m. **Annual Reception at The Patton Museum**
- 7:15 p.m. - 7:45 p.m. Shuttle Busses depart *The Patton Museum* for individual hotel
parking lots

Revised Agenda (continued)

Thursday, September 22, 2005

7:00 a.m. - 7:30 a.m.	Shuttle Busses depart from individual hotel parking lots for <i>Gaffey Hall, Fort Knox</i>
7:30 a.m. - 11:45 a.m.	Registration & Security Check-in Continues
7:30 a.m. - 8:00 a.m.	Continental Breakfast
	<p style="text-align: center;"><u>Session III: Future to Current</u></p> <p style="text-align: center;">Session Chair - <i>Dave Longley</i> <i>BAE Systems</i></p>
8:00 a.m. - 8:30 a.m.	<i>COL Larry D. Hollingsworth, USA</i> Project Manager, Combat Systems (Tank: Abrams/Bradley)
8:30 a.m. - 9:00 a.m.	<i>PM Stryker</i> <i>COL Peter Fuller, USA</i> Program Manager, Stryker
9:00 a.m. - 9:30 a.m.	<i>Armored Security Vehicle (ASV)</i> <i>LTC Steven Herold, USA</i> Chief Military Police <i>Fort Leonard Wood</i> <i>MAJ Stanley Scott, USA</i> Program Manager, Armored Security Vehicle (ASV)
9:30 a.m. - 10:00 a.m.	<i>Coffee Break</i>
10:00 a.m. - 12:00 noon	<i>Future Combat System/Unit of Action Panel Update:</i> Moderator: <i>COL Charles Couteau, USA</i> , Program Manager, Manned Ground Vehicle (MGV) Panel Members: <i>COL Charles Couteau, USA</i> , Program Manager, Manned Ground Vehicle (MGV) FCS & Manned Ground Vehicle (MGV) Overview <i>Mr. Tom Hartigan</i> , Program Manager, UA - Reliability Reliability, Availability and Maintainability / Reliability Improvement Program (RAM/RIP) <i>Mr. Dan Holtz and</i> <i>Mr. Dick Williams</i> , <i>Boeing</i> MGV Best Technical Approach <i>Mr. Dean Vanderstelt</i> , <i>General Dynamics Land Systems (GDLS)</i> Power & Energy <i>Mr. Mike Zoltoski</i> , <i>TARDEC</i> Survivability Technology Efforts <i>Mr. Peter DeMasi</i> , <i>Program Manager, UA/Lethality Systems</i> Lethality

Revised Agenda (continued)

Thursday, September 22, 2005 (continued)

12:00 noon - 12:15 p.m.

Closing Remarks

LTG John S. Caldwell, USA (Ret.)

Chairman, Combat Vehicles Division, NDIA

12:15 p.m.

Conference Adjourns

12:15 p.m. -12:45 p.m.

Shuttle Busses depart *Gaffey Hall* for individual hotel parking lots

*The Combat Vehicles Section of the
Tank, Automotive, and Armaments Division of NDIA thanks you for attending
& we look forward to seeing you again next year.*

*The National Defense Industrial Association (NDIA) thanks you
for your participation in this year's conference,
and wishes you a safe trip home.*

Please visit our website:

<http://www.ndia.org>

2005 NDIA Combat Vehicles Conference

Attendee Information:

Message Center

For your convenience, a message board will be located at the the *2005 NDIA Combat Vehicles Conference* (in the Rivers Auditorium at Gaffey). Attendees should have faxes sent to their individual hotels, "Attn: your room#".

NDIA Registration Desk - ph#'s to be provided on-site

Country Inn & Suites by Carlson - Shepherdsville
400 Paroquet Springs Drive
Shepherdsville, KY 40165
Telephone: (502) 543-8400
FAX: (502) 543-8469

Hampton Inn Louisville I-65 @ Brooks Rd.
I-65, Exit 121 (Brook Hill Road)
180 Willabrook Drive
Shepherdsville, KY 40109-5254
Telephone: (502) 957-5050
FAX: (502) 957-3315

Fairfield Inn - Louisville South
I-65, exit 121
362 Brenton Way
Shepherdsville, KY 40165
Telephone: (502) 955-5533
FAX: (502) 955-5547

Baymont Inn
191 Brenton Way
Shepherdsville, KY 40165
Telephone: (502) 955-9550
FAX: (502) 955-9867

Proceedings & Point of Contact Information ("List of Attendees" Corrections)

The proceedings for this meeting will be posted through a link on the NDIA web site after the conference. The link will be emailed to the conference attendees 2-3 weeks after the conference. To ensure you receive email link, please make sure the your email address that is published in the attendee list included in this revised agenda hand-out is correct.

If any part of your contact information is incorrect on the "List of Attendees" included in this "Revised Agenda" hand-out, please stop by the Conference Registration desk to make note of the corrections on the "Master Copy", so we can update our database. We appreciate you're letting us know of any errors.

Attendee Information (continued)

Surveys

We appreciate any comments or suggestions you may have regarding this event. Please return the *2005 NDIA Combat Vehicles Conference Meeting Survey* to the conference registration desk located in Gaffey Hall. If you don't have the time to fill-out the survey now, you can fax it to 703-522-1885 at your convenience.

Miscellaneous:

Gaffey Hall, Leader's Club & Patton Museum

Please note: there is no-smoking in Gaffey Hall, the Leader's Club, or the Patton Museum facilities.

Security –

****Before and while you are on base: You must carry all forms of ID, e.g. Driver's License, passport, foreign visitors, Visit Request Form, Corporate contact letter, etc., at all times during the conference.****

**** Please note: if you are a Foreign National/Resident Alien, and will be riding the shuttle bus, AND HAVE NOT submitted all the necessary paperwork, you will be removed from the bus, and may encounter a lengthy clearance process that averages 3 hours. ****

Upon entering Gaffey Hall, any items you are carrying - e.g. briefcases, etc., are subject to searched again.

For security reasons & to help save time, we respectfully ask that you check any personal items (luggage, computer bags, coats, etc.) with the front desk at your hotel. You will need to present your room key and/or photo I.D. The NDIA staff will not accept any of the above.

Cell Phones/Beeper Usage –

We respectfully ask that you turn-off your cell phones, beepers, etc. (or, turn them to "vibrate"), out of courtesy to the conference speakers and your fellow attendees.

Revised Agenda Hand-out –

Please write your name at the top of your "Revised Agenda" handout. A limited number of the handouts were made to have one (1) for each registered attendee, and last minute registrants. If you lose your handout, the registration desk will not be able to give you a replacement until the conclusion of the conference.

Please mark your calendars for the 2005 TACOM APBI, to be held October 26 - 28, in Dearborn, Michigan. To get the current details: conference agenda (featured speakers & break-out session information) conference registration fee information, etc., please link to our NDIA web page at:

<http://register.ndia.org/interview/register.ndia?~Brochure~6520>

Combat Systems

Where We Are... Where We're Going...

22 Sep 2005

Larry D. Hollingsworth
Colonel, Infantry
Project Manager

Make A Difference Everyday!

Combat Systems

Purpose

Orient you on the Ground Combat Component of the HBCT

HBCT Fleet Strategy

**Modularize
Sustain
Modernize**

The Future

Program Executive Office Ground Combat Systems

Stryker
Brigade
Combat
Team

Combat
Systems

- Abrams Tank
- Bradley Fighting Vehicle
- Paladin / FAASV
- M113

Joint Robotics
Systems
(Army & Marine)

Joint
Lightweight
Howitzer
155mm
(Army & Marine)

Modular
Brigade
Enhancements

PEO GCS maintains a total Army perspective in managing the development, acquisition, testing, systems integration, product improvement, and fielding that places the best ground combat systems in the hands of our soldiers

Mission

Deliver, Sustain and modernize combat power for the Army's Heavy Brigade Combat Team formations

Army's Executive Agent for Life Cycle Management of the **Abrams, Bradley, M113, M109, and Knight** family of vehicles.

Our fleet management responsibilities include the design, development, production and fielding of safe, reliable, and lethal ground combat systems

*Our current focus **Supports Deployed Forces, Modularity, Reset, Recapitalization, Leave Behind Maintenance and Spin-Out Technology Insertion***

Support the Fight ** Sustain the Fleet ** Build the Future

PM Combat Systems Leadership

Abrams
PM LTC Michael Flanagan
DPM Mr. Michael Martell

Combat Systems
PM COL Larry Hollingsworth
DPM Mr. Michael Asada

Bradley / M113
PM LTC Andres Contreras
DPM Mr. Ed Lewis

Fire Support
PM LTC Pete Reyneirse
DPM Mr. Marlin Carlsen

Current Priorities

Execute Reset for HBCT Platforms

Execute Modularity

**Bradley-Abrams-Paladin Durability - Reliability
(Bradley Transmission and Abrams Engine)**

Process Improvement

Right-size the Organization

**Our #1 Priority is to Support Units Engaged in
GWOT and those Units Preparing to Deploy**

Combat Systems

The Systems We Manage

**6,046
Abrams
FoV**

M1A1
M1A1 AIM

M104 Wolverine

M1A2 SEP

M2/3A2
M2/3A2 ODS

M2/3A3

**6,659
Bradley
FoV**

BCV ODS
BCV A3

C2V2

**1,895
Paladins/
FAASVs**

M109A6
Paladin

M992A2
(FAASV)

M7 BFIST

M3A3 BFIST

M1068A3

M113A3

**13,693
M113
FoV**

M577A3

Transformation

Legacy Force

Objective Force

Interim Force

FCS

IBCT

Transformation

HBCT

SBCT

- Integrates Heavy, Light, Stryker BCTs and FCS
- Delivers Complimentary War Fighting Capability

CURRENT

2005

20XX

FUTURE

20XX

20XX

Life Cycle Management within the Heavy Brigade Combat Team

Make A Difference Everyday!

Life Cycle Management Command

One Team One Vision

Army Forces Generation Model ARFORGEN

**Synchronizes the Right Force Mix with the Right Equipment
Mix at the Right Time**

PM Objective is to “ONLY TOUCH THE UNIT ONCE”

HBCT Fleet Strategy

OPTEMPO

Modernize

Commonality
Power Management
Tiger Engine
Bradley Transmission
Digital Fire Control
Lethality
FCS Spin Outs

Sustain

STRESS
STUDY

Heavy Brigade
Combat Team

Modularize

ARMY CAMPAIGN PLAN

AGING
FLEET

RESET
RECAP
Leave Behind Equip
Stay Behind Maintenance

	FY04	FY05	FY06	FY07	FY08	FY09	FY10
UEx	■	■	■	■	■		
BCT (UA)	■	■	■	■	■		
UEX		●					
UAs	■	■	■	■	■	■	■
RESERVE	■	■	■	■	■	■	■
STRYKER	■ SECT2	■ SECT3	■ SECTA 172nd Round-Cut	■ SECTS	■ SECT5G		
Aviation	■	■	■	■	■		
FCS					Spin Out		Spin Out

Synchronized Through 2050

- Requires Partnerships with Industry, FORSCOM and AMC
- Requires Centralized Management and Oversight
- Leverages Centralized Funds Management (OMA and PAA)
- Requires Balance between Current and Future Forces

Modularity

Make A Difference Everyday!

From My Foxhole. . .

Army of Excellence - Division Focused
Large, powerful, fixed organizations

Modularity – Brigade Combat Team Focused
Modular, more deployable, more lethal, self-contained organizations

Build a campaign-quality Army with joint and expeditionary capabilities now to provide relevant and ready landpower. . .

Planning for a Heavy BCT

Type Location	BCT / ORF	In the Motor Pool	TRADOC	Battle Losses Test Facility Veh	Total Per BCT
Abrams	58 / 2	60	7	3	70
Bradley FoV	120 / 5	125	8	7	140
M113 FoV	119 / 4	123	7	4	134
Paladin / FAASV	16 / 1	17	1	1	19

Army of Excellence vs Modular

Mechanized Infantry Brigade

BDE

Div

Abrams	45	252
Bradley IFV	90	254
BFIST	9	
M113 FOV	165	522
Paladin/FAASV	19	57

Heavy Brigade Combat Team

BCT

UEx
Equiv

Abrams	60	240
Bradley IFV	64	
Bradley CFV	30	500
BFIST	12	
ODS-E	19	
M113 FOV	123	492
Paladin/FAASV	17	68

Projected Distribution of HBCT Combat Power

Current Program of Record

13-15-7

BASED ON CURRENT FUNDING EXECUTABLE

Moving Towards...

18-17

BASED ON ARFORGEN MODEL SUPPORTS PURE FLEET GOAL

Goal: Two Variant Mixes
M1A2 SEP & M2A3
M1A1 AIM & M2A2 ODS

Sustainment

Make A Difference Everyday!

Sustainment Goals

1. Improve Operational Readiness
 2. Reduce O and S Costs
- X. Manage Obsolescence
- X. Provide Base for Modernization
- X. Tech Insertion (Align with FCS)
- X. Maintain Fleet Age

Sustainment

Reconstitution:

- Restores vehicles to 10/20 status within specified period
- Conducted in Unit Motor Pool with Soldier Labor

RESET (Motor Pool):

- Restores vehicles w/in Reset period (180 Days and 90%)
- Includes Delayed Desert Damage
- Includes some Lessons Learned
- Contract labor (QA/QC)

National Level RESET:

- Includes Depot and OEM partnership
- Includes Turret – Hull separation
- Overhaul Engine, Transmission and Final Drives

Recapitalization:

- Restores service life to 0 hours and 0 miles
- Improves Reliability and Maintainability

Modernization

Make A Difference Everyday!

March 11, 2003

DEPARTMENT OF DEFENSE
DEPARTMENT OF THE ARMY
OFFICE OF THE ASSISTANT SECRETARY OF THE ARMY
ACQUISITION LOGISTICS AND TECHNOLOGY
103 ARMY PENTAGON
WASHINGTON DC 20310-0103

11 MAR 2003

SAAL-RI

MEMORANDUM FOR PROGRAM EXECUTIVE OFFICE, GROUND COMBAT SYSTEMS, ATTN: SFAE-GCS, WARREN, MI 48397-5000

SUBJECT: Fiscal Year 2003 (FY03) Termination Plans for Abrams SEP and Bradley A3 Programs

As stated in the enclosed Deputy Assistant Secretary for Plans, Programs, and Resources memorandum subject: Fiscal Year (FY) 2003 Funding Guidance, dated September 10, 2002, fiscal pressures and the Army's transformation plan resulted in multiple terminations during the Program Objective Memorandum (POM) FY04-09, including the Abrams SEP and Bradley A3 Programs. Accordingly, please prepare and submit individual termination plans by April 15, 2003. Do not terminate contracts until I have approved your submitted termination plans. You will have provided an official termination notice.

You are directed to provide the program manager with a copy of your termination plan by April 15, 2003. As part of each termination plan, you will identify:

- a. Contract status. Open contracts/amount(s)/type dollars. Also include descriptions of contracts, and contract related responsibilities / obligations. Address termination and/or modification of existing and unliquidated obligations. Identify the final date to terminate the program.
- b. Sustainment requirements. If the terminated sustainment activities (SSTS) and funding, ensure the proper coordination with the gaining organization to which management transferred.
- c. Personnel. Include proposed disposition of all military and civilian) and personnel involved in the termination, including the completion of closeout activities and those available for reassignment.
- d. Funding. Provide a lay-out of RDTE, Procurement, and other costs (if applicable) as submitted in the FY04 President's Budget. Portray how funds will be executed for terminating the program. Identify the obligation timeline and the associated activities/decisions required to execute the funds. Identify the total funding required, in FY03 dollars, to terminate this program.

e. Other significant events/activities, which must be completed prior to program termination (i.e. fielding, safety issues, material release, etc.) If the termination requires transition of technology and/or responsibilities, please incorporate these activities and ensure the termination plan has been appropriately coordinated.

f. A termination schedule identifying significant activities and events.

Additionally, you should be prepared to consolidate and archive relevant programmatic documentation, and determine the actions and requirements necessary to restart the program in the event this becomes necessary. Submit your termination plans to my Deputy Assistant Secretary for Plans, Programs and Resources.

Please accept and extend my appreciation to the Program Managers, and the staff, for their continued hard work and commitment to excellence. The Army's finest, the warfighters, have been, and will continue to be, equipped with state of the art equipment due to the technical expertise and professionalism your staff repeatedly displays.

**“SUBJECT: Fiscal Year 2003 (FY03)
Termination Plans for Abrams SEP and Bradley
A3 Programs**

**..... Please prepare and submit individual
termination plans for approval.”**

Modernization

TUSK
TIGER Engine (AGT 1500)
2nd Gen FLIR
FBCB2
Digital Architecture

Maintain Combat Overmatch

Urban Combat Kit
Improved Transmission
2nd Gen FLIR
FBCB2
Digital Architecture

Improve Survivability

Improve Lethality

Improve Power Management

Upgrade Electronics

Upgrade Power Train
T-150 Track
AoA Provisions
Transmission
Vehicle Intercom System

Integrate SoS Common Operating Environment (SOSCOE)

Implement Common Logistic Operating Environment (CLOE)

Digital Fire Control
Modular Charge System
Excalibur
Auxiliary Power Unit
FS3 Sensor Integration

Long Term Modernization Objectives

- Compliment, Enable and Leverage FCS Spinouts
 - Reduce O&S Costs
 - Vehicle Electronics
 - Improved Crew Survivability
 - Manage Obsolescence
 - Common Logistics Operating Environment
 - Unit Identification Device

Current Force Requirements

Sustain

Modernize

Synchronize with FCS

Summary

PM Combat Systems is the LCM for HBCT

**The HBCT is an integral part of Transformation both
Near and Long Term**

**M2A3 and M1A2 Represent the EBCT Platforms for FCS
Spinouts 1-4**

**Transformation must include a Current Force
Modernization Strategy that Compliments FCS**

Combat Systems

FOUO

ASV Program Overview

*MAJ Stanley Scott
APM, Armored Security Vehicle*

Phone: 586-574-8981

DSN: 786-8981

Cell: 586-764-5382

Email: stanley.scott@us.army.mil

22 September, 2005

FOUO

FOUO

Agenda

- ◆ ASV Introduction
- ◆ System Description
- ◆ ASV Capabilities
- ◆ ASV Fielding Plan
- ◆ Production Facts
- ◆ Challenges
- ◆ Performance in OIF

FOUO

FOUO

Armor Security Vehicle (ASV)

The ASV is a wheeled vehicle that carries a MK-19 (40mm grenade launcher) and a M48 (.50-caliber machine gun). It is transportable aboard a C-130 and offers good protection against an array of threat.

Missions: local area security, mounted patrols, check points operations, convoy security, and response force operations.

*Greatly enhances the lethality, mobility,
and survivability of units
engaged in their security missions*

FOUO

ASV Capabilities

Lethal

- M48 .50 CAL MG
- MK19 40mm grenade launcher
- Dual mounted weapons station
- SAW

Survivable

- Heavy MG
- Anti-personnel Mine

Mobility

- 63 mph/range 440 mile
- 60% slope
- 60" fording
- 24" step
- 18" ground clearance
- CTIS

Deployable

- C-130 RO/RO; C-5 five ASVs
 - < 15 tons combat loaded

Sustainable

- High MTBF (2410 hrs)
- 65% common with NSN Items

Other

Superior ride quality from independent suspension

FOUO

Armor Security Vehicle Fielding

◆ Fielding Team:

- PM Representative
- KoR Support
- MP School Representative
- Textron FSR

◆ Operator/Crew Training

- 40 hour OPNET/Range Training

◆ Maintenance Training

- 80 hour class

◆ Training Location:

- Camp Anaconda (Balad), Iraq

◆ 155 in theater

FOUO

FOUO

Production Facts

- ◆ Total on Contract thru Jul 05 – 1,118
- ◆ Production ramp up 2005 include:
 - New Blast and Paint Facility built at Main Shipyard Facility
 - Expanded ASV Structural Production
 - Final Assembly moved to Slidell
- ◆ Production Rate Objectives
 - 36/month by Nov 05
 - 48/month by Mar 06

Pre-Katrina

FOUO

Challenges

- ◆ Slidell Facility – Final assembly sustained minimal damage.
 - Power restored.
 - Cleaned and operational
 - Workforce being re-established
- ◆ New Orleans Main Shipyard Facility – sustained damage, but ramping up quickly
 - Generators on site to support power restoration
 - Cleaning underway
 - Access between facilities is available

FOUO

MANSCEN FUTURES CENTER MILITARY POLICE DIVISION OPERATIONAL EMPLOYMENT

LTC Steve M. Herold
Director Combat Develop

FOUO

MANSCEN FUTURES CENTER

MILITARY POLICE DIVISION

OPERATIONAL EMPLOYMENT

- FORCE PROTECTION (VIP ESCORT)
- INCREASE PROTECTION, PROVIDES TACTICAL OVER WATCH FOR CIVILIAN AND MILITARY POLICE OPERATION(SECURITY OF IRAQI POLICE STATIONS)
- COMBAT RAIDS AND RECON/SURVEILLANCE
- QUICK REACTION FORCE AND SUPPORT BY FIRE
- CORDON AND SEARCH OPERATIONS
- CONVOY SECURITY KEEPING MSR'S OPEN
- FORWARD OPERATING BASE SECURITY
- CHECK POINT SECURITY
- CRITICAL SITE SECURITY

FOUO

Manned Ground Vehicles (MGV) NDIA Combat Vehicle Symposium

COL Chuck Couteau and Dick Williams

22 September 2005

Purpose

The purpose is to provide an overview of the FCS Program and information on the current Manned Ground Vehicle design concepts and key design challenges

Agenda

- Manned Ground Vehicles Overview
- Best Technical Approach
- Survivability
- Lethality
- Propulsion
- Component Maturation/Reliability Availability Maintainability (RAM)

Leading Transformation

- The US Army “At War and Transforming”
 - 781,000 to 480,000 active duty since 1990
 - Forces currently deployed in 120 countries
 - Simultaneous current and future “needs”
 - A campaign-quality Army with Joint and expeditionary capabilities
 - Joint *Interdependence* not just Interoperable
 - Expeditionary operations will be the norm
- FCS: Transformation in Multiple Dimensions
 - Warfighting, logistics, technology, business

General Peter J. Schoomaker
 Chief of Staff, U.S. Army

*General Schoomaker
 Congressional Testimony
 21 July 2004

“The best way to anticipate the future is to create it!”

*

Objective Tiger Video

Historical Perspective of Development Schedules

FCS Development Schedule is Consistent with Past Single Platform Development Programs

FCS MGV Technology Leveraging FSCS Crusader

- Hybrid Electric Drive
 - Band Track
 - Active Suspension
 - Sensor Mast
 - Active Track Tensioner
 - Lithium-Ion Batteries
 - Crew Station
 - Propulsion Control Algorithms
 - High-power generator, motor and inverters
 - Modular Armor
 - Structures & Composites
 - Dynamic Physics Models

Infantry Carrier Vehicle

Reconnaissance and Surveillance Vehicle

NLOS – Mortar
Vehicle

Mounted Combat System

NLOS – Cannon
Vehicle

Recovery and
Maintenance Vehicle

Command and Control Vehicle

Medical Treatment/ Evacuation Vehicle

- Auto Ammo Handling
 - Auto Cannon Cooling/Cleaning
 - Laser Ignition
 - Projectile Tracking System
 - Signature Management
 - Drive-by-Wire
 - Bore Hazard Sensor
 - Structures & Composites
 - Dynamic Physics Models
 - Virtual Integration Lab
 - Application Software
 - Real-Time Common Operating Environment
 - IFTM Authoring System

- Composites
 - Titanium Heat Exchangers
 - Production Processes & Materials
 - Warfighter Machine Interface
 - 3rd GenFLIR
 - Performance Based Logistics

Top Level Schedule (PM UA & MGV Extract)

Common Systems

70-80% Commonality Reduces O&M Cost
70% of MGV AUPC on average are common sub-systems

MGVs Provide Networked Lethality and Survivability Within the UA

Networked Survivability

Even if all else fails, the FCS platforms are more survivable than current armored vehicles

Networked Lethality

Networked Training

Objective: Train all individual, crew, collective and leader tasks using embedded training on their **assigned** (go to war) **vehicle.... Enroute Mission Rehearsal / Planning...**

"Approved for Public Release, Distribution Unlimited, TACOM 13 Jan 2005, FCS Case 04-150"

Networked Supportability

Logistics Concept

- ✓ Network Enabled
- ✓ Performance Based (PBL)
- ✓ Distribution Based
- ✓ Common Operating Picture
- ✓ Anticipatory / Predictive / Reduced Footprint

Maintenance

- Substantially Increased Reliability and Availability
- Maximum Commonality of Components
- Common Electrical Connectors
- Prognostic / Diagnostic Sensors Integral to Platforms and Soldiers
- Immediate Access to Remove / Replace Modular Components
- Interactive Electronic Technical Manuals Embedded on Platforms

Water

- UA Generates its own Water

Fuel

- Lighter Vehicles
- Energy Efficient Drive Train

Munitions

- Networked Lethality - Targeting and Firing
- Smart Munitions

"Approved for Public Release, Distribution Unlimited, TACOM 13 Jan 2005, FCS Case 04-150"

MGV is the Host and Point of Presence for Majority of UA Capabilities

Balancing Capabilities

Mobility

Deployability

Lethality

Survivability

C4ISR

Sustainment

- Integrate:
- Soldier
- C4ISR
- UAV
- UGV

- Training
- Lethality
- MANPRINT
- Comp Prog
- Supportability

Space/Weight/Power

Convergence of BTA with Requirements will yield Performance Baseline at SFR

FCS MGV Current Procurements

- Band Track
- Engine
- Traction Drive System
- Environmental Control System
- Energy Storage
- Generator
- Active Protection System
- Energy Dissipater

- High Power Distribution Bus
- Road Arm Assembly
- DC-DC Converter Power Stage
- Crewman Remote Interface System
- Servo Motor Controllers
- MCS 120mm Gun and Ammo Handling System

MGV Commercial Off The Shelf (COTS)

Servo Motors

Oxygen Concentrator

Gear Boxes

MV-T External Shelter

Cooling Fluid Elect. Valves

Blood Refrigerator – 10 Unit Storage Cap.

Bearings

Nickel Metal Hydride Battery

Solenoids

Electrical Connectors

Mission Electronic Motors

Proximity Sensors

Cooling Fluid Manifolds

This represents some of the COTS products that are being considered

Complementary Programs with MGV Relationships

CPs with Other Relationships

SecureEnrouteCommsPkg (SECOMP-I)
Soldier as a System
OneTESS
JTRS Cluster 5
NDL (JTRS waveform)
WNW (JTRS waveform)
SRW (JTRS CL5 waveform)

CPs as Munitions Fired

Med Range Mun(MRM) 120mm BLOS
Excalibur 155mm
Non-lethal 155mm
PrecGuided MortarMun (PGMM 120mm)
Course Correcting Fuse (CCF)

JTRS Cluster 1
Warfighter Information Network -Tactical (WIN)
LtwtLaserDesig/Rng(LLDR)
Medical Communications (MC4)
AN-PSS-14 (HSTAMIDS)
Combat ID
Joint Bio PointDet Sys (JBPDs)
Joint Chemical Agent Detector (JCAD)
Jnt Serv Ltwt Standoff ChemAgt Det(JSLSCAD)

CPs as Installed/Carried Components

Dist Common Ground Sys-Army (DCGS-A)
One Semi-Auto Forces(OneSAF)
Common Training Inst Arch (CTIA)
Army Training Info Arch (ATIA)
Synthetic Envir Core-(SECore)
Live Virtual Const Integrating Arch (LVC-IA)
JointWarning+ReportingNetwork(JWARN)
Battle Command SustSys (BCS3)
Common Embed Diagnostic (CED)
Global C2 Sys Army (GCSS-A)

CPs as Weapons Mounted

ACSW XM307 25mm Cannon
MK44 30/40mm Cannon

MGV Summary

IAAPS

BAND TRACK

HYBRID ELECTRIC TESTING

- Design Processes On track for MGV SFR (March 06)
- Optimizing Current Concepts to achieve a Balanced Set of Capabilities
- Actively managing our program challenges

SIKA MAST TESTING

NLOS CANNON

120MM CANNON

FUTURE COMBAT SYSTEMS

One Team-The Army/Defense/Industry

MGV

Best Technical Approach

Dan Holtz
Lead System Integrator
MGV Lead Engineer

- BTA Objectives

- Conduct trades/analyses to identify system solutions/options that meet SoSS Rev E (ORD 1.2) changes
 - Update Common/Variant system concepts and SWAP-C data with possible solutions for customer input
 - Develop subsystem solutions/options using system guidance
 - Prepare solutions for MGV SFR

- BTA Assumptions

- QFR 11/04 is baseline configuration at 24T DTW
 - SoSS Rev E is document used for identification of PIDS gaps

- BTA Approach

- ✓ Identify PID gaps
 - ✓ Establish BTA guidance
 - Identify system solutions/options
 - Identify subsystem solutions/options
 - Communicate solutions/options to user for input

TRADOC Priorities

- Initial MGV Efforts utilized ORD Banding as the primary criteria for prioritization
- When GEN Byrnes issued the TRADOC Priorities, MGV used them within ORD bands as an additional criteria
- TRADOC Priorities
 - C-130 Transportable
 - Crew Survivability
 - Auto Cannon, HMG, HE Frag, AP
 - Lethality/Mission Equipment
 - Sustainment
 - Ao, Reliability, Resupply
 - Mobility

Manned Ground Vehicles Family

Historical Chronology of FCS Vehicle Design

Force Effectiveness Analysis Methodology

Post SoSFR Focus Areas

- Analysis

- SA/SU on Enemy in Difficult Postures and Hide
- Mine Detection
- Unmanned Vehicle Employment
- Network Capability
- Logistics Footprint and Re-Supply Concept

Exploring full use of SoS, TTPs, and our analysis tools to ensure full understanding of DCB capabilities and potential performance improvements

Funding

- Lethal and Non-Lethal Munitions

Some specified lethal and non-lethal munitions included in the DCB and related analyses are not funded

IPTs evaluating design alternatives

Materiel

- AT Mine Protection
- Gap Crossing

To meet System SFR and SoSIPDR needs

Manned Ground Vehicles

Best Technical Approach Objectives

Objectives

- Move variant baseline toward compliance with Jan. '05 ORD
- Resolve inter-related competing space claims
- Establish Variant Zones
- Obtain Customer Concurrence for Variant Concept changes

Objectives

- Obtain balanced approach at sub-system
- Establish SWAP-C and Design to cost targets

High Priority Analysis

- Engine compartment
- Low-Profile Crew Station
- AT Mine Protection
- A&B Armor Solution
- Mission Critical Ballistic Protection
- Engine Exhaust/ Cooling
- Crew hatches

Second Group of Analysis

- Internal Fuel Volume
- Suspension (12" – 8" of request)
- Spall Protection
- Split NBC Solution
- Sub-System SWAP-C
- Hull Structure (Alum. vs. Ti)

Balance

Communicate

Iterate

One Team-The Army/Defense/Industry

Survivability Technologies

Integrated Survivability: Active and Passive Protection

**Mike Zoltoski
Technical Director
US Army RDECOM-TARDEC**

Baselines: Abrams / Bradley Fighting Vehicle

Kill Enemy
Before
Detected

Abrams: 120mm Tank Cannon
 Bradley: ATGM
 25mm Automatic Cannon

Don't Be
Detected
Don't Be
Acquired

Don't Be
Hit

Don't Be
Penetrated

Abrams: Advanced Armors
 Bradley: Reactive Armor/Metallic Armors

Survive
the Hit

Abrams: Ammunition Compartmentation
 Bradley: Ammunition Stowage

An Integrated Protection Scheme

Future Integrated Survability

Kill Enemy
Before
Detected

Local
Situational
Awareness

Lethality Suite
Sensors
C4ISR

Don't Be
Detected
Don't Be
Acquired

Signature
Management

Signature Treatments
Multi-Spectral Obscurants

Don't Be
Hit

Electronic
Warfare/Active
Protection
Systems

Electronic Warfare
Active Protection System (Long Range)
APS (Close-in)

Don't Be
Penetrated

Advanced
Armors

Passive Armor
Electromagnetic Armor

Survive
the Hit

Crew
Protection
Systems

Fire Suppression
Shock Mounting, Mine Protection

Detection Avoidance – Signature Management

Kill Enemy
Before
Detected

Local
Situational
Awareness

Don't Be
Detected
Don't Be
Acquired

Signature
Management

Don't Be
Hit

Electronic
Warfare/Active
Protection
Systems

Don't Be
Penetrated

Advanced
Armors

Survive
the Hit

Crew
Protection
Systems

- Shaping
- Materials
- Coatings
- Deception
- Modeling and Simulation Development Tools

Active Protection/Electronic Warfare

Kill Enemy Before Detected

Local Situational Awareness

Don't Be
Detected
Don't Be
Acquired

Signature Management

Don't *Be Hit*

Electronic Warfare/Active Protection Systems

Don't Be *Penetrated*

Advanced Armors

Survive the Hit

Crew Protection Systems

Survivability Test Setup

*2 simultaneous threats - 2 countermeasures = 2 defeats
vehicle & troops survive*

Residual Hits on the Silhouette

Tank Fired KE Defeat

Survivability 2

Advanced Armors

Kill Enemy
Before
Detected

Local
Situational
Awareness

Don't Be
Detected
Don't Be
Acquired

Signature
Management

Don't Be
Hit

Electronic
Warfare/Active
Protection
Systems

Don't Be
Penetrated

Advanced
Armors

Survive
the Hit

Crew
Protection
Systems

Electro-Magnetic Armor

Ceramic Armor

Advanced Composite
Structural Armor

Crew, Component, and Structure Survivability

Kill Enemy Before Detected

Local
Situational Awareness

Don't Be Detected
Don't Be Acquired

Signature Management

Don't Be Hit

Electronic
Warfare/Active Protection Systems

Don't Be Penetrated

Advanced Armors

Survive the Hit

Crew Protection Systems

- Mine Protection
- Fire Protection
 - Ammunition (Completed in FY02)
 - Petroleum, Oil, Lubricants
 - Advanced mobility components
- Ballistic Shock
 - Structure, Substructure, Components

Summary

Critical Survivability Technologies

- Signature Management
- Hard and Soft Kill
- Armor
- Crew/Component Technologies

FCS manned ground combat vehicle
survivable on the modern battlefield

FUTURE COMBAT SYSTEMS

One Team-The Army/Defense/Industry

PM Lethality Systems' Integration

Pete DeMasi
Deputy Project Manager
Lethality Systems' Integration

Purpose

**To Present Lethal and Non-Lethal
Opportunities to Industry**

Agenda

- Key Decisions/Recommendations
- Potential Opportunities
 - NL Ammo
 - Non-Lethal Trade Results
 - 30mm Ammunition
 - 120mm Ammo
 - AKE
 - LOS-MP
 - MRM
 - 120mm Mortar Tube and Breech

FCS Increment 1, Lethality Recommendations

Key Lethality Decisions

Non-Line of Sight Cannon (NLOS-C)

Excalibur

- 155mm, 38 Caliber Cannon
- Excalibur

Non-Line of Sight Mortar (NLOS-M)

PGMM

- 120mm Turreted, Breech-loaded Mortar
- Precision Guided Mortar Munition (PGMM)

Mounted Combat System (MCS)

MRM

- 120mm Caliber
- Mid-Range Munition (MRM)

Infantry Fighting Vehicle (ICV)

- MK44 (30mm system, growth to 40mm)
- M240 7.62mm MG

Common Close Support Weapon (CCSW)

- XM307 25mm (Defensive armament for C2V, RSV, MCS, NLOS-C, NLOS-M, FRMV, ARV(A)-L and ARV-RSTA)

Non-Lethal Trade Background/Objectives

- Background
 - FCS ORD contains requirements for Non-Lethal Weapons (NLW) capabilities for FCS MGVs, UGVs and IMS
 - A study is on-going to determine how these ORD requirements can be met across FCS FoS
- Objectives
 - Determine the best NLW for the FCS FoS consistent with meeting the ORD requirements, integration, cost and risk
 - Determine a strategy for implementing these NLW on the FCS FoS
 - Develop a NLW roadmap including technology, integration, cost and schedule for implementing the strategy
 - Focus development of technology to feed NLW into the FCS FoS
 - Determine appropriate SoS Specs for each non-lethal ORD reqt

FoS Non-Lethality Requirements

- The FCS FoS must be capable of Joint networked lethal and non-lethal effects that achieve overmatch – out of contact and in contact, at tactical standoff and in close combat.
- The FCS FoS must employ non-lethal effects in a complementary manner (lethal effects combined with non-lethal effects) to enhance combined-arms effectiveness across the spectrum of conflicts, day or night.
- Delivery means will include Soldier emplaced, LOS, BLOS, NLOS, and UMS.

MGV Non-Lethality Requirements

- FCS Manned Systems (with the exception of MV-E & MV-T, ICV & R&SV) must conduct day/night and adverse weather engagements while stationary or on the move with a common close support weapon.
- Effects are scalable from lethal to **non-lethal**. This weapon system will be capable of firing multiple types of ammunition: anti-personnel, armor piercing, area effects, incendiary, **non-lethal**, and tracer from a common dual-fed magazine (selectable by the crew) with a selectable default setting.

UGV Non-Lethality Requirements

The FCS ARV (all) must be able to employ modular non-lethal capabilities to:

- (1) confuse and deceive the enemy as to our intentions by obscuring our force and intentions, screening friendly force movements, and illuminating and exposing target areas hidden by darkness
- (2) flush out the enemy
- (3) deny people access to or movement through a particular area/point/facility
- (4) deny vehicles access to or movement through a particular area/point/facility.

The SUGV must be able to employ non-lethal projectiles, obscurants and distraction devices, malodorants, riot control agents, electricals and markers specific to the MOUT environment.

Non-Lethal Trade Interim Results

FCS Vehicles	ORD Non-Lethal Requirement	SDD-168 Recommended Non-lethal Solution
All MGVs with CCSW	CCSW non-lethal munition	XM307 25mm non-lethal airburst munition
ARV-As, ARV-RSTAs	Capability to: (1) obscure own force, (2) illuminate the enemy, (3) flush out the enemy, (4) deny people access, (5) deny vehicle access	Modified LVOSS Launch System
ICVs and R&SVs	ORD implies a non-lethal munition for MK44	Modified LVOSS Launch System
IMS	Array of non-lethal capabilities	Non-lethal omni-directional munitions: flash bang, RCA, and blunt trauma
SUGVs	Non-lethal projectiles, obscurants and distraction devices	Two modules: (1) non-lethal munitions module, (2) strobe light distraction module
NLOS-Ms	Special fires that provide non-lethal effects	Non-lethal 120mm Mortar Munition
NLOS-Cs	NLOS non-lethal delivery means	Non-lethal 155mm Artillery Munition
ARV-As BLOS	BLOS non-lethal delivery means	Non-lethal BLOS Round

**Opportunities Exist for Non-Lethal Development in 25mm,
LVOSS, 155mm Cannon and 120mm Mortar Systems**

Advanced Crew Served Weapon System Description

Defensive Armament for:

- C2V
- MCS
- FRMV
- NLOS-M
- NLOS-C
- ARV-RSTA
- ARV-A(L)

Supports FCS Defensive Armaments

- ✓ Minimal Interior Space Claim
- ✓ Light Weight / Low Recoil
Minimizes Mount Weight and Stabilization Requirements
- ✓ Dual Feed Capable
- ✓ Lethal 25mm Munitions
 - Air Burst Defeats Defilade Targets to 1,000m
 - Suppress and Defeat Area Targets to 2,000m
 - Armor Piercing Defeats Light Armor
- ✓ Muzzle Velocity Correction for Improved Accuracy
- ✓ Capable of Remote Operations
- ✓ Day/Night/All Weather Capable
- ✓ Fire on the Move Capable

Grenade Launcher Performance in a Light Machine Gun Package!

Advanced Crew Served Weapon System Description (Cont'd.)

HEAB Cartridge

- HEAB Defeats Exposed and Defilade Targets
 - Precision Air-Bursting
 - Controlled Fragmentation Warhead

AP Cartridge

- AP Defeats Light Armor
 - Armor Piercing Shaped Charge Round

TP-S Cartridge

- TP-S Flash Bang Training

TP Cartridge

- TP Simple Two-Piece Projectile for Training

Potential Joint Non-Lethal Options for UGV's

66mm Non-Lethal
Munitions / Dischargers

*Existing Non-Lethal
Capabilities w/ Conceptual
Integration Locations on UGV*

Long Range Acoustic Device
(Hailing & Warning)

Applicable to Other Platforms

FN303

M5, Modular
Crowd Control
Munition on
VMS

XM1063 Non-Lethal 155mm Projectile

30mm Ammunition Requirements

- **Anti-Material**
 - Defeat Threat LAVs (Light Armored Vehicle) with a single three round burst.
- **Anti-Personnel**
 - Defeat Individual and Groups of Threat Soldiers with a single three round burst per soldier ,
 - Group Targets include 2-man and 8 Man Squads.

30mm Gun and Ammunition Solutions

- 30mm Mk 44 Gun with AP (Armor Piercing) & AB (Air Burst) Rounds Meet FCS Requirements for Three Vehicles
 - Infantry Carrier Vehicle (ICV)
 - Armed Robotic Vehicle - Assault (ARV (A))
 - Recon & Surveillance Vehicle (RSV)
- Training Ammo for AP & AB Rounds also Required
- Marine Corps Qualified 30mm Rounds for EFV

30mm Acquisition Approach

- **Qualify Marine Corps AP Rounds (FY04-FY06) to Meet FCS Anti-Material Requirements**
- Develop AB to Meet FCS Anti-Personnel Requirements (FY07–FY12)
 - Jointly Evaluate Industry Developed AB Round as a Possible Lower Cost NDI Alternative (FY05–FY06)
 - Pursue Best Solution
- **Qualify Marine Corp HE Trainer (FY04 - FY06) and NDI AP Trainer (FY09-FY12)**
- **Procure Beginning FY12:**
 - AP and AB Service Rounds
 - HE Trainer and AP Trainer

Opportunities Exist for 30mm AB Development, NDI AP Trainer Qualification, and Production of All Tactical and Training Rounds

120mm AKE Ammo

- Advanced Kinetic Energy (AKE)
 - There is a need for an MCS to be capable of firing unguided direct fire LOS munitions to defeat current and projected threat MBTs with Explosive Reactive Armor (ERA) and Active Protection Systems (APS)

Opportunities Exist for Development (FY12- FY15) and Production (FY13-FY16) of an AKE 120mm Round

120mm LOS-MP Ammo

- **LOS (Line Of Sight) – MP (Multi-Purpose)**

- A moving or stationary MCS must be capable of firing munitions to defeat massed infantry or ATGM crews
- An MCS must fire munitions capable of breaching a 30" x 50" hole in bunkers and reinforced concrete walls

Opportunities Exist for Development (FY12- FY15) and Production (FY13-FY16) of an AKE 120mm Round

120mm Ammo

- Mid-Range Munition (MRM)
 - An moving MCS must be capable of firing guided Beyond Line-of-Sight (BLOS) munitions.
 - Draft RFP planned for FY07.

Opportunities Exist for Development (FY08- FY13) and Production (FY11-FY23) of a MRM 120mm Round

NLOS-Lethality Requirements

- FCS NLOS Mortar must be capable of LOS engagements for self-defense to destroy moving or stationary light armored vehicles.
- FCS NLOS Mortar must be capable of firing a 6 round Multiple Round Simultaneous Impact (MRSI) mission.
- FCS NLOS Mortar must be able to engage targets at ranges out to 8 to 12km.
- FCS NLOS Mortar must be capable of firing developmental munitions.

120mm Mortar Description

- Tube and Breech
 - NLOS-M cannon and breech subsystem
 - Fires current smoothbore/development
 - 120mm Mortar Ammunition/Propellant
 - Three meter tube (8 KM range)
 - Integrated with In Bore Air Regulation (IBAR) design
 - Automatic ammo handling system
 - Projectile retention system (low angle fire)
 - Breech automatic cooling system (high RoF)

120mm Mortar Acquisition Approach

- FCS is procuring goods and services related to the engineering development of the NLOS-M Tube and Breech (**Best Value Assessment**):
 - Engineering Development of Tube and Breech Assembly Integrated w/ ASD IBAR Sub-System
 - Test and CMP support
 - 4 Prototypes (Firing Platform, MEITS, & 2 Vehicles)
- We are not procuring:
 - Gun Drives
 - Gun Mounts
 - Recoil Mechanisms
- *These are common components with the NLOS-C.*
- RFP release in Nov 2005

Opportunities Exist for 120mm Mortar Tube and Breech

120mm Mortar Ammunition

Family of Extended Range Ammunition (FERA)

- The XM984 is a 120mm extended range mortar cartridge that provides extended range through the application of lightweight composite structural elements and post launch rocket motor impulse.
- PGMM Increment II currently has a requirement for extended range that would benefit from the application of lighter airframe components, rocket motor impulse and airframe shaping developed during the XM984 STO.
- PGMM Increment II can immediately leverage XM984 as a proven design.
- Range requirement for PGMM Increment II can be met through minor airframe drag reduction and higher impulse aluminized rocket motor.

Opportunities Exist for 120mm Extended Range Ammo

Summary

- Key Decisions/Recommendations
- Potential Opportunities
 - NL Ammo
 - Non-Lethal Trade Results
 - 30mm Ammunition
 - 120mm Ammo
 - AKE
 - LOS-MP
 - MRM
 - 120mm Mortar Tube and Breech

FUTURE COMBAT SYSTEMS

One Team-The Army/Defense/Industry

Propulsion

**Dean Vanderstelt
Director, Project Engineering
GDLS**

Many Capabilities Demand Greater Electrical Power

Fire Control System & Turret Drives

NBC / ECS Systems

Electrically Enhanced Armors

Crew Displays and Controls

Active Protection Systems

Radios & Sensors

Autoloader & Ammo Handling

Cooling Fan

Active Track Tensioner

Semi-Active Suspension with Height Control

Future Potential Capabilities

- Directed Energy Weapons
- Missile Loading and Launching
- More Advanced Electronic Warfare Systems
- EM Rail/Coil Gun
- Extended Duration Engine Off Silent Watch

A Robust Power & Energy Architecture is required to enable an all-electric vehicle with intelligent power management for greater mission effectiveness

Smart Hybrid Electric Architecture Provides Power for All

System Architecture Tenets

- Develop a dynamically responsive system architecture for Manned Ground Vehicles that stresses the following:
 - Smaller Weight and Space/Volume than Current Force Vehicles
 - Commonality
 - Maximize software reuse / achieve resource optimization
 - Reduce hardware duplication among subsystems
 - Graceful System Degradation (Survivability/Reliability)
 - System/Subsystem Redundancy
 - Flexible and Adaptable Architecture
 - Implementation of Standard and Open Architecture Interfaces
 - Improved Performance

MGV Power & Energy Management Architecture

MGV Power and Energy Management Examples

- Examples of applied power and energy management:
 - Load prioritization and shedding directed through established protocol with Vehicle Management System
 - Battery power and cooling fan modulation during acceleration to minimize Power Generation and Thermal Management system size
 - Automatic Override of Component Protection Algorithms in Critical Combat Mode (Max Power even though Component temps are high)
 - Instantaneous power output plus power reserve will be managed to maximize responsiveness to changing loads (mode dependent)
 - Stored energy will be managed to maximize transient power needs (such as vehicle dash/survivability move) and braking energy recovery to improve fuel economy and minimize cooling loads

Mapping Mission Needs to Power and Energy Management

Mapping Vehicle Mission Needs to P&E Management Implementation

Notional Power and Energy Management Modes Example

- Within Vehicle's Normal Operation/Combat mode
 - Power and Energy Management has three basic modes

Stressing Power Analysis Goals based on Mission Needs

- Develop a set of stressing power curves for each MGV Vehicle based on Vehicle Integrator generated [Design Reference Mission Profiles \(DRMP\)](#)
- Define the worst case scenarios and determine what it takes to satisfy the Requirements in terms of -
 - Power Generation and Energy Storage system rating (size)
 - Cooling System capability and size
 - Define the limits of up-powering to meet the mission profiles within the air transport envelope
- Determine if loading from Vehicle Mission events can be accommodated within acceptable degradation limits
 - Mission degradation will be assessed based on the ability to provide power based on the following priorities:
 - Survivability -> Communications -> Lethality (Or Unique Mission Need) -> Mobility -> Remaining loads
- Identification of acceptable power allocation and load shedding solutions for the highest total load scenarios to minimize overloading

MGV Stressing Power Scenario Example

Summary

- Mission equipment loads now represent a significant portion of the overall power loads for MGVs. → It's NOT just about Propulsion loads anymore!
- Transient power demands will be met by energy storage in order to reduce installed engine power, system volume and weight
- Addressing mobility demands, as well as other platform and mission demands, must be managed interactively to balance and prioritize all loads based on system and user defined priorities.
- Intelligent control of power sources relative to major loads maximizes mission effectiveness with minimum installed power
- MGV Power and Energy Management Architecture:
 - Modular, Robust
 - Flexibility - can implement wide range of techniques and strategies
 - Uses databus communication interfaces for real-time control
 - Accommodates future growth and development of both hardware and software

The FCS UA MGV Power and Energy Architecture is the Core Combat Vehicle Power and Energy Design that meets the Army's needs for the 21st Century

**Dean M. Vanderstelt
Director, Project Engineering**

**General Dynamics Land Systems
38500 Mound Road
Sterling Heights, Michigan USA 48310
586.825.7600 (Voice)
586.939.2655 (FAX)
vanderst@gdls.com**

MGV Technology Maturation/Reliability Availability and Maintainability (RAM) Overview

**Tom Hartigan
PM UA, MGV RAM-T Engineer**

MGV Program Risk Assessment – Case For Tech Maturation (TM)

TM = Component Maturation Program (CMP) and Reliability Investment Program (RIP)

Component Maturation Projects

- Band Track Survivability, Performance, Durability and Sustainability
- Mine Resistant Structures
- Add-on Armor Recipes and Integration Approach
- Hi-Power Li-Ion Platform Energy Approach
- Generator/Inverter Power Stage Reliability
- Traction Drive Maturation
- Short Range Counter Measure Common Radar Integration
- Multimedia Slip Ring
- Rooftop Deconfliction/Integration (C2V and RSV)
- MCS Firing Test Rig
- MCS Ammunition Handling System (AHS)
- MCS High Voltage Electric Drives
- MCS Automated Fire Inhibit System (AFIS)
- MCS Dynamic Muzzle Reference Sensor System
- MCS Ammunition Data Link (ADL)
- MCS Ammunition Sympathetic Detonation
- FRMV Towing Capacity
- FRMV Tactical Crane System
- NLOS-M In-Bore Round Retention
- NLOS-M Propellant Storage and Handling
- MV MC4 Software

MGV Common Suspension Component Maturation Project

Title: Track Survivability, Performance, Durability, and Sustainability

Maturation Effort Description:

Conduct engineering and maintenance studies/demonstrations to develop improved track compositions which will ensure increased survivability, mobility, sustainability and operational availability (A_0).

Consequence Of Not Funding Maturation Effort:

Current reduced durability causes degraded mobility performance, operational availability (A_0), and increases the logistics burden. Without enhanced mine blast resistance crew survivability will be diminished. Lack of track segmentation leads to increased utilization of the Combat Repair Team (CRT) which increases the Logistics burden.

Rationale:

- Enhanced durability is needed to meet FCS-MGV requirements and will reduce the track Life Cycle Cost.
- Increased mine blast resistance is needed to meet FCS – MGV requirements
- Increased mobility is required for FRMV.
- Track segmentation is required to meet reduced Logistical burden through less frequent use of the Combat Repair Team.

Performance Improvement:

- In terms of mileage, the plan establishes a 2000 – 3000 mile goal for the track vs. the 400-500 miles demonstrated during the CTD phase on 22 ton platform.
- Reduce the installation time for the track by segmentation. This also reduces the equipment needed for installation. Installation time should be reduced to below 30 minutes.
- A 25-50% improvement in mine blast resistance compared to the CTD phase track.

MGV Common Suspension Component Maturation Project

Title: Track Survivability, Performance, Durability, and Sustainability

Risks: MGV 323 – Band Track

Driving Requirements:

- 3.1.2.2.13.1.0-5 Mine Blast AT mine
- 3.1.2.2.1.3.4.0-1 & 0-2 Mine Blast AP mine
- 3.1.17.1.8.0-7 & 0-8 Wear Replacement

Mitigation Steps and Schedule:

1. Design, analyze, simulate, and select survivable, durable, sustainable segmented track configurations.
2. Develop processes / tooling for high quality manufacturing.
3. Manufacture prototypes for tests: mine blast / KE, mobility/ traction, durability, joint tests, and sustainability demonstrations
4. Maturation T&E: survivability, performance, durability, mobility, sustainability tests & demonstrations.

Contingency Plan:

- Failure to successfully mitigate this risk will:
 - Cause there to be inadequate survivability in the band track
 - Not address the current maintenance issues raised by the RAM team
 - Not incorporate necessary improvements needed to increase durability, survivability and maintainability.
- Fallback is to
 - Accept current survivability and maintenance of existing band track configuration or
 - Use heavier weight metallic track, but be faced with needing to accept the system weight impact and reduced mission capability

Total Approved Funding Allocation = \$10.5M

Funding Allocation By FY (\$M):

FY05 FY06 FY07 FY08 FY09

0.71 2.41 6.66 0.72 0

Related Gov't Work: TARDEC program to develop segmented rubber track.

FCS Sustainment/Reliability

The FCS Family of Systems (FoS) is required to have a reduction in maintenance and supply functions and a reduced logistics' burden for the Unit of Action (UA)

- Rationale:
 - FCS-equipped Unit of Action characteristics of tactical dispersion and rapid offensive maneuver over tactical and operational distances demand superior FCS FoS reliability, availability, and maintainability (RAM) and reduced external resupply of the UA.
 - Cornerstone enabling capabilities include increased operational availability [measured by mission defined critical systems, greater than 85% (Ao) threshold, 99% (Ao) objective], reduced maintenance ratios [less than 0.10 threshold, 0.025 objective] maintenance man hours to operating hours (MMH/OH) and an objective of reduced fuel consumption, and on-board water generation.
 - Supporting enablers include component commonality, embedded diagnostic and prognostic systems, and rapid component replacement.

The FCS program will exceed RAM-T thresholds

FCS Calls for Quantum RAM Improvements

Lessons Learned

MGV Reliability Performance (MTBSA) Will Be 2 to 8 Times Better Than Previous Platforms Examined

Key Enablers:
The RAM-T Case Approach
Physics of Failure (PoF)
Reliability Enhancement Testing (RET)
Prognostics
Probabilistic Design Analysis
Integrated Design Process for Maint.

Early Design Influence

MGV MR Performance Will Be 2 to 4 Times Better Than Previous Platforms Examined.

Early Program Resource Commitment is the Key!

FCS Contracting Approach to RAM-T

- The RAM-T Case Plan and Report contains the evidence to establish confidence in achieving the stated R/M requirements.
- Evidence that the three objectives have been met from all suppliers
 - Understanding the Requirements
 - Planning & Implementing a Program of Activities to Satisfy the Requirements
 - Assurances that the Requirements are being/have been met – Progressive Assurance
- RAM-T CASE Management Plan and RAM-T CASE Report
 - Key Supplier Deliverables
 - Case Report submission varies by supplier
 - Regular discussions through RAM Meetings/TIMs

RAM-T CASE PLAN specifies a number of tools and methodologies to use and rationale as whether they will or will not be used.

- Some of the techniques called out in the SDRL:
- Dynamic/static design modeling, simulation, or probabilistic analysis
- RAM-T Modeling, Optimization and Component/System Testing
- Environmental stress (operate and storage)
- Physics-of-Failure (PoF)
- Structural finite-element stress analysis
- Fatigue analysis
- Wear-out/service life analysis
- Prognostics analysis
- Fault detection/isolation analysis
- Availability Analysis
- Reliability Enhancement Testing (RET)
- Pit Stop Engineering
- Software Reliability

Physics of Failure (PoF)

Physics of Failure

- Early Design Influence through Physics-based Modeling of Critical Component Designs
 - Model the root causes of Failure
- Probabilistic approach to Modeling - Address Uncertainty
 - Allows for Design Optimization
- Modeling builds up to a Vehicle-Level Dynamic Simulation.
- Feeds directly into a Virtual Development Approach
- Robust Failure Models & CAD Tools

Stress (e.g., vibration) is propagated from system level to failure site

Benefits

- Increased Fielded Reliability
- Reduced Log Footprint
- Reduced Maintenance Ratio
- Improved Prognostics
- Decreased O&S costs

Key Contributor to Increased Ao

- Reliability Enhancement Testing
- RET = Accelerated Life Testing (ALT); Highly Accelerated Life Testing (HALT); Highly Accelerated Stress Screening (HASS) - component/subsystem testing in highly accelerated environments to shake out additional failure modes
- Destructive test which incrementally increases environmental stresses to determine Failure Modes - Find Design Faults
- Test, fail, and corrective action prior to prototype integration, to prevent possible field failures
- Not a compliance test, and is not limited by component or product specifications
- Applied at multiple levels - Components, LRU, Subsystems

Benefits

Rapid design and process maturation

Higher MTBF

Reduced total engineering time and cost

Minimize costly failures during system testing

Greatly reduced manufacturing screening costs

Reduced production and warranty costs

The New RAM Design Paradigm

Legacy Approach

MGV Approach

Emphasize: Early identification and elimination of failure modes
Achieve: Higher Initial Reliability (Mi) on prototype delivery

Reliability Investment Plan (RIP)

- Background

- Baseline Contract - Dec 2003 based on MTBSA of 350-500 hours per variant, excluding GFE/CFE
 - Constrained by schedule and budget
 - Estimated platform Ao of 86-90%
 - Increased Log Footprint burden on UA
 - Unacceptable to User
- When FCS Transition came about the TRB saw a need for increased reliability investment
 - A Wedge of Money was fenced for Technology Maturation (TM)
 - TM = Component Maturation + Reliability Investment Plan (RIP)
 - MGV Reliability Investment Review Board of Govt/LSI SMEs evaluated VI RIP and provided recommendations to TRB for Approval
 - Program Approved \$208M for RIP from FY05 to FY12

**RIP Investment supports achievement of 95% Ao for MGV
 And enormous LCC savings for the Army (~\$21B)**

RIP Analysis Approach

- Focused on Failure Mode Mitigation Prior to Integration Test
 - PoF- Physics-based modeling and simulation on all critical components and components which drive essential functions and log burden, to include FEA, fatigue, thermal, shock, vibrational analysis, dynamic modeling
 - RET - Reliability Enhancement Testing is conducted at component, LRU and subsystem levels to drive out additional failure modes and push the performance envelopes of the hardware.
 - Prognostics for Failure Avoidance through investments in establishing key performance characteristics, developing algorithms, testing to collect data points, and building sensors.
 - Probabilistic Design Analysis to model the probabilistic variability of design characteristics
 - Benchmarking to evaluate existing Army and industry data on like systems components and functions.
 - Consulting from industry experts in PoF, RET and PDA, including outsourcing of selected analyses.

**Most Funding available for execution
 prior to MGV CDR (for design influence)**

**Early work will focus on Common subsystems and NLOS-C for Increment 0
 \$50M Award Fee available for exceeding requirements**

FCS MGV Maintainability Design Influence

- Concurrent Engineering through Integrated Design Teams
 - Process has been documented as a System Engineering process
 - Multi disciplined walk-through of focus areas with designers
 - Based on Carlson's Pit-Stop Principles
 - Begins with sub-allocation of requirements
 - Identification of worst case access problems
 - Maintenance task analysis (using motion analysis)
 - Challenge the designers with time allocations (for MTTR)
 - 10 minutes to access
 - 15 minutes to remove/replace
 - Assess Crew repair capability with questionnaire to address MaxTTR and 80% Crew Chief requirement
 - Is a lift required?
 - Is task described in IETM?
 - Can it be done with the 10 on-board tools?
 - How often will it fail?
 - Etc.
 - Reevaluate metrics (TTR) after redesign

Summary

- FCS Requirements have converged based on need and capability
- FCS MGV RAM requirements are challenging but achievable given our present cost and schedule
- Primary emphasis in early design influence for little “m”, big “R”.
- FCS did it right!...and committed the resources to design influence
 - *Implementing the RAM-T Case Approach*
 - *Component Maturation focuses on high risk technologies*
 - *Focus is on failure mode mitigation through PoF and RET*
- This investment will yield a highly force effective and lower logistic footprint fleet through high Ao, low MR and plug and play maintainability

Early Program Resource Commitment => \$21B in LCC Savings