Защита программного обеспечения

Защита OC Windows

1. Защита паролем

Windows в базе SAM (Security Account 3 – если ID и пароль не найдены, т 4 – устанавливаются

1 – прием си

5 – разрешение в

Рис.1. Процедура идентификации, аутентификации

и установления полномочий пользователя

Эффективность использования пароля

- A = {a_i} алфавит, состоящий из фиксированного набора символов,
 i ∈ [1, N], N мощность алфавита
- **s** длина пароля **H**; при **H** = 12AAa!!* **s** = 8
- Кол-во комбинаций пароля при фиксир **N** : **I**_H = **N**s;

Пример 1.
$$A = \{a,b,c,d,...,z\}$$
, $N = 26$; при $s = 8$ $N = 26 = 208827064576$

• Безопасное время использования пароля

$$t_{H} = \frac{1}{2} (I_{H} \cdot t),$$
 (1)
 $t=E/R, E=S+S_{sI};$

<u>Пример2.</u> **N** = 5 симв, S = 6 симв, скорость передачи **R** = 3 [Кбит/с]; принимаем \mathbf{S}_{sl} =4 симв, тогда \mathbf{E} = 6+4=10 симв (либо 80 бит) и

$$t_H = \frac{1}{2} (I_H \cdot t) = \frac{1}{2} (5^6 * 80/(3*1024)) = 203 \text{ c}$$

<u>Пример3.</u> N = 26 симв, S = 6 симв, скорость передачи R = 32 [Кбит/с]; принимаем $S_{si} = 14$ симв, тогда E = 6 + 14 = 20 симв (либо 160 бит) и

$$t_H = \frac{1}{2} (I_H \cdot t) = \frac{1}{2} (266 * 160/(32*1024)) = 7.5* 10^5 \text{ C} = 3.5 \text{ 4}$$

Безопасное время использования пароля

- Принимаем **P** это вероятность того, что пароль будет сломан за **M** мес,
- P_0 нижняя граница P; P_0 = n1/n2; n1 число попыток взлома пароля за M мес; n2 число всех возможных паролей при определенных N и s;
- n1 = n11/ n12; n11 число символов, которые можно передать по сети за М мес, n12 число символов, передаваемых в одной попытке;
- n1= (R*M*24(ч/д)*60(мин/ч)*30(д/мес))/E, (2) n2=Ns,
- тогда $P_0 = (R*M*24*60*30)/(E*Ns)$. (3)
- Так как **P**> **P**₀, **P** > (**R*****M***24*60*30)/(**E*****N**₅) или иначе
- $N_s >= (4.32 * 104 *R*M)/(E *P) ф-ла Андерсена (4)$

- Пример. $P = 10^{-3}$, M = 3; R = 10 (сим/сек); E = 20 (сим); N = 26 (сим); S = 6 (сим);
- (4.32 * 104 *R*M)/(E *P) = (4.32 * 104 * 10 * 3)/(20* 10-3) = 3.9 * 109;
- $Ns = 266 \approx 3.089 \cdot 108 \leq 3.9 \cdot 109$.
- Это означает, что при выбранном размере алфавита и длине пароля, необходимое условие неравенства не выполняется.
- При s = 7 (сим):
- 26⁷ ≈ 8.03 · 10⁹ ≥ 3.9 · 10⁹ . Выполнение условия означает, что для выбранного алфавита, с вероятностью Р = 10⁻³ пароль с длиной 7 символов не будет сломан за 3 месяца.

Протокол Kerberos

- Назначение для пересылки зашифрованного сообщения (A → B) по открытым каналам на платформе ОС
 Windows при взаимод с T;
- Опирается на протокол Нидхэма-Шрёдера (R. Needham-M. Schröder) и базируется на симметричном шифровании данных

<u>Протокол Нидхэма-Шрёдера</u>

- Обозначения: **А, В, Т** имена участников**, Е_д -** ключ, общий для **А и Т, Е**_в ключ, общий для **В и Т**
- 1. $A \longrightarrow T$: A, B, R_A ; R_A случ число, сгенерир-е A
- 2. Т генерир-т случ сеансовый ключ К; затем щифрует:
- $C = E_A(R_A, B, K; E_B(K, A)); T: C \longrightarrow A$
- 3. А извлекает из С: К и убеждается, что R_A равно R_A для 1-го этапа;
- извлекает E_B (K,A) = C_3 ; A: $C_3 \longrightarrow B$
- **4. B**, используя E_B , извлекает **K** из C_3 ; **B** генерирует случ число R_B , создает шифртекст $C_4 = K(R_B)$ и **B**: $C_4 \longrightarrow A$
- А расш-т С₄ ключом К, создает шифртекст С₅ = К(Rв -1); А:
 С₅ В
- 6. В расш-т С₅ ключом К и убеждается, что известное ему Rв уменьшено на 1; Т. о. создан секретный сеансовый ключ К для А и В

- Установленная в сети TCP/IP служба Kerberos, является доверенной стороной (T)
- Основой Kerberos является БД Клиентов и их секретных ключей
- Сетевые службы, которые требуют аутентификацию, должны зарегистрировать в Kerberos свои секретные ключи
- Так как Kerberos знает все секретные ключи, он может убеждать одни объекты в подлинности других. Керберос создает сеансовые ключи, которые выдаются Клиенту и Серверу, и никому больше
- Для шифрования используется алгоритм DES
- Для организации канала связи Клиент запрашивает у
 Кеrberos разрешение на обращение к службе организации
 таких сообщений, эта служба называется Ticket Grating
 Service (TGS) служба выделения мандата

Протокол Kerberos

Рис.2. Общая схема взаимодействия компонент в протоколе Kerberos

- 1 Клиент запрашивает Керберос разрешение на обращение к службе TGS.
- 2 После анализа предоставленных документов о возможности организации сообщения между Кл и Серв Керберос выдает Кл-ту соответствующее разрешен
- 3 Пользуясь разрешением службы Керберос, Кл запрашивает TGS о выделенему мандата на организацию канала между Клиентом и Сервером.
- 4 Получение такого мандата.
- 5 Клиент пересылает соответствующее сообщение серверу

С— Клиент (Client), Операции (стрелки 1-5 на рис.2) **S** – Сервер (Server), <u>могут быть записаны в</u> формализованном виде: A — Сетевой адрес Клиента (Address) — имя Клиента, 1 — Клиент-Kerberos: **С**, **v** — Временная метка, содержащая **TGS** начальное и конечное время действия 2 — Kerberos-Клиенту: {**Kc**, мандата, **t** — просто метка времени, TGS₁K_c; {Tc, TGS₁K_{rgs} соответствующая периоду времени, в 3 — Клиент-TGS:{**Ac**,**s**}**K**_c, течение которого действует сеансовый ключ, TGS, **Кх** — секретный ключ объекта **X**, {Tc,TGS}K_{TGS} **Кх,у** — сеансовый ключ для организации сеанса между Х и Ү, 4 — TGS-Клиенту: $\{m\}K_{\star}$ — сообщение m, $\{\mathbf{K}_{c.s}\}\mathbf{K}_{c,TGS};$ зашифрованное ключом **Кх**, **Тх,у** — мандат, выданный **X** на {Tc,s}K_s использование \mathbf{Y} , 5 — Клиент-Серверу: **Ах,у** — аутентификатор, выданный **X** для Y, то есть информация, с помощью $\{Ac,s\}K_{c.s};$ которой **Y** аутентифицирует **X**. {Tc,s}K_s

Kerberos использует 2 типа удостоверений:

 Мандаты (для безопасной передачи Серверу данных о личности Клиента):

$$Tc,s = S, \{C, A, v, K_{c,s}\}K_{s}$$

Клиент не может расшифровать мандат, поскольку он не знает секретный ключ Ks, но он может предъявить его Ce-ру, как док-во его аутентичности, те. прочитать либо изменить мандат ни Клиент, ни кто-либо иной не может.

• Аутентификаторы (это дополнительная информация, предъявляемая вместе с мандатом):

$Ac,s = \{C, t, Kлюч\} K_{c,s}$

Клиент создает аутентификатор на каждый сеанс, Ключ - является просто ключом и необязательным дополнительным элементом сеанса и все эти данные шифруются общим ключом, известным Клиенту и Серверу: К_{с,s}. В отличие от мандата, аутентификатор используется только один раз