Week 7 meeting note

Problem

- 1. Strikes appear at the beginning and the end
- 2. The GAN model is unstable
 - The RMSE range can be 2 to 60
- 3. The losses of G and D seems not learning

To solve the problem

reduce the predict output steps

change discriminator to mlp

try batch normalization, dropout, initializer in CNN

adjust generator in GAN model

Change the output step (7 -> 3)

- We thought the <u>strikes</u> might come from too many output steps
 - -> tried to change the output steps from 7 to 3

Mode	١.	"Gener	rator_	I STM"
noue		Gener	atui –	LOTT

Layer (type)	Output Shape	Param #
bidirectional_5 (Bidirection	(None, 128)	51712
dense_20 (Dense)	(None, 3)	387

*Output: 3 days

Model: "Discriminator-CNN"

Layer (type)	Output Shape	Param #
conv1d_12 (Conv1D)	(None, 17, 32)	128
conv1d_13 (Conv1D)	(None, 9, 64)	6208
conv1d_14 (Conv1D)	(None, 5, 128)	41088
flatten_5 (Flatten)	(None, 640)	0
dense_21 (Dense)	(None, 128)	81920
leaky_re_lu_20 (LeakyReLU)	(None, 128)	0
dense_22 (Dense)	(None, 64)	8192
dense_23 (Dense)	(None, 1)	65

strikes phenomenon did not improve

RMSE: 5.56

RMSE did not reduce

Paper review - Set the MLP as Discriminator

CHCCDHCC

Procedia Computer Science 147 (2019) 400-406

2018 International Conference on Identification, Information and Knowledge in the Internet of Things, IIKI 2018

Stock Market Prediction Based on Generative Adversarial Network

Kang Zhang^a, Guoqiang Zhong^a,*, Junyu Dong^a, Shengke Wang^a, Yong Wang^a

"Department of Computer Science and Technology, Ocean University of China, Qingdao, 266100, China

- Input 5 days, output 1 day
- 7 features
- LSTM as Generator
- MLP as Discriminator
- Classic GAN

It looks normal that D loss is

through the process.

larger than G loss in this case,

but D loss is better to decrease

Fig. 4. Losses of the discriminator and generator during training.

Table 2. The average evaluation on five stock data sets.

Method	MAE	RMSE	MAPE	AR
Our GAN	3.0401	4.1026	0.0137	0.7554
LSTM	4.1228	5.4131	0.0145	0.6859
ANN	7.3029	9.1757	0.0808	0.5249
SVR	4.9285	8.2261	0.0452	0.7266

Reference:

Set the MLP as Discriminator (II)

Model: "My-MLP-model"			
Layer (type)	Output	 Shape 	 Param #
dense_14 (Dense)	(None,	1024)	34816
leaky_re_lu_16 (LeakyReLU)	(None,	1024)	0
dropout (Dropout)	(None,	1024)	0
dense_15 (Dense)	(None,	512)	524800
leaky_re_lu_17 (LeakyReLU)	(None,	512)	0
dropout_1 (Dropout)	(None,	512)	0
dense_16 (Dense)	(None,	256)	131328
leaky_re_lu_18 (LeakyReLU)	(None,	 256)	0
dense_17 (Dense)	(None,	1)	 257 =======

-> The result of MLP is even worse than any result of CNN

What we have tried on CNN model

- According to the trace of loss through the process, we thought the problem is on the <u>weak Discriminator</u>
- So we have tried adding some other layers to our CNN model:
 - Batchnorm()
 - Dropout()
 - Initializer()

-> The result did not improve

- Next:
 - Try to adjust the Generator

Adjust the Generator - LSTM model

*Basic GAN

Previous

New

Model: "Generator-LSTM"

Layer (type)	Output	Shape	Param #
bidirectional_5 (Bidirection	(None,	128)	51712
dense_20 (Dense)	(None,	3)	387

- Add one more layer
- Increase the number of neuron

Model: "Generator - new"

Layer (type)	Output Shape	Param #
bidirectional_10 (Bidirectio	(None, 512)	600064
dense_32 (Dense)	(None, 128)	65664
dense_33 (Dense)	(None, 3)	387

RMSE: 2.57

-> The result improves a lot, strikes disappear

Adjust the Generator - LSTM model

*WGAN-GP (Different loss function compare to GAN)

Previous

Model: "Generator-LSTM"

Layer (type)	Output	Shape	Param #
bidirectional_5 (Bidirection	(None,	128)	51712
dense_20 (Dense)	(None,	3)	387

- Add one more layer
- Increase the number of neuron

New

Model: "Generator - new"

Layer (type)	Output Shape	Param #
bidirectional_10 (Bidirectional_10)	io (None, 512)	600064
dense_32 (Dense)	(None, 128)	65664
dense_33 (Dense)	(None, 3)	387

RMSE: 1.80

-> The result improves a lot, strikes disappear

Basic LSTM(Baseline model)

Same LSTM structure with GAN

Layer (type)	Output	Shape	 Param #
bidirectional_11 (Bidirectio	(None,	512)	600064
dense_66 (Dense)	(None,	128)	65664
dense_67 (Dense)	(None,	3)	387 =======

RMSE: 3.51

Previous LSTM structure

Layer (type)	Output :	 Shape	Param #
=======================================	:======:	==============	========
bidirectional (Bidirectiona	il (None, :	128)	51712
dense (Dense)	(None, :		387 ========

RMSE: 2.67

Conclusion for new structure

- The strikes disappear
- The result is much more stable than previous version, the RMSE range is about 1.5 to 6
- more complicated LSTM in GAN help the model perform better.
- WGAN model can resolve the problem of D is not learning, and the result is better than basic LSTM and basic GAN

Future work

- Continue to improve the GAN model
- Find a way to make the model much more stable
- Try to predict different output days

Question??

 About the baseline: Basic LSTM, does this LSTM structure should be the same as the one we put in the GAN Generator?

- How to improve model stability?
 - We have tried Batchnorm and Initializer

Basic GAN

RMSE: 3.60

Layer (type)	Output	Shape	Param #
bidirectional_12 (Bidirectio	(None,	512)	600064
dense_68 (Dense)	(None,	128)	65664
dense_69 (Dense)	(None,	3)	387

Layer (type)	Output	Shape	Param #
conv1d_45 (Conv1D)	(None,	17, 16)	64
conv1d_46 (Conv1D)	(None,	9, 64)	3136
conv1d_47 (Conv1D)	(None,	5, 128)	41088
flatten_15 (Flatten)	(None,	640)	0
dense_70 (Dense)	(None,	220)	140800
leaky_re_lu_69 (LeakyReLU)	(None,	220)	0
dense_71 (Dense)	(None,	220)	48400
dense_72 (Dense)	(None,	1)	221

Comparison different model for the new structure

Change the output step (7 -> 3)

- We thought the <u>strikes</u> might come from too many output steps
 - -> tried to change the output steps from 7 to 3

It didn't improve the strikes phenomenon

 We set the output step as 3 for the following models (All the previous model versions have been repeated)