Particle spectrograph

Wave operator and propagator

Ī											$\alpha eta \chi$	$\frac{a}{a_0}$	XdX		
${\mathcal T}_{1^{\bar{-}}}^{\#1}$	0	0	0	$-\frac{2i\sqrt{2}k}{a_0(2+k^2)}$	$-\frac{ik(4+k^2)}{a_0(2+k^2)^2}$	$\frac{i k (6+5 k^2)}{\sqrt{6} a_0 (2+k^2)^2}$	$-\frac{i\sqrt{\frac{5}{6}}k}{a_0(2+k^2)}$	$\frac{2 i k (3 + k^2)}{\sqrt{3} a_0 (2 + k^2)^2}$	$-\frac{i\sqrt{\frac{2}{3}}k}{a_0(2+k^2)}$	$\frac{2k^2}{a_0(2+k^2)^2}$	$\Delta_{3}^{#1}$	$\Delta_{3}^{\#1} + ^{\alpha\beta\chi} \boxed{-\frac{2}{a_0}}$	$\begin{bmatrix} f_{3}^{*1} + \alpha \beta \chi & -\frac{a0}{2} \\ \frac{a}{2} & \frac{a}{2} \end{bmatrix}$		
$\Delta_{1^{-}}^{\#6}{}_{\alpha}$	0	0	0	0	$\frac{k^2}{\sqrt{6} \ a_0 \left(2 + k^2\right)}$	$\frac{1}{-2 a_0 - \frac{8 a_0}{2 + 3 k^2}}$	$-\frac{\sqrt{5}}{6a_0}$	$\frac{\sqrt{2} (7+3k^2)}{3a_0(2+k^2)}$	340	$i\sqrt{\frac{2}{3}}k$ $2a_0+a_0k^2$		0	0	0	²) 0
$\Delta_{1^{\bar{-}}\alpha}^{\#5}$	0	0	0	$\frac{\sqrt{\frac{2}{3}} k^2}{a_0 (2+k^2)}$	$\frac{k^2 (5+2k^2)}{\sqrt{3} a_0 (2+k^2)^2}$	$\frac{-2+k^2}{3\sqrt{2} a_0 (2+k^2)^2}$	$\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2}$	$\frac{2(17+14k^2+3k^4)}{3a_0(2+k^2)^2}$	$-\frac{\sqrt{2} (7+3 k^2)}{3 a_0 (2+k^2)}$	$\frac{2 i k (3 + k^2)}{\sqrt{3} a_0 (2 + k^2)^2}$	${\mathcal T}^{\#2}_{0^+}$	$-\frac{2i\sqrt{6}k}{16a_0+3a_0k^2}$	$\frac{72ik}{a_0(16+3k^2)^2}$	$\begin{bmatrix} -\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2} \end{bmatrix}$	$\frac{4 i \sqrt{2} k(10 + 3 k^2)}{2 \cdot 2 \cdot 16 \cdot 15 \cdot 12 \cdot 2}$
$\Delta_{1^{-}\alpha}^{\#4}$	0	0	0	0	$\sqrt{\frac{5}{6}} \frac{k^2}{4a_0 + 2a_0 k^2} - \frac{1}{\sqrt{\frac{5}{6}}}$	_	$\frac{1}{12 a_0}$	$\frac{\sqrt{\frac{5}{2}}}{6a_0+3a_0k^2} \boxed{\frac{2(}{}$		$i \sqrt{\frac{5}{6}} k$ $2a_0 + a_0 k^2$	${\mathcal T}^{\#1}_0$	$-\frac{2\bar{b}\sqrt{2}}{a_0k}$	$-\frac{8i\sqrt{3}}{16a_0k+3a_0k^3}$	$\frac{8i}{\sqrt{3}(16a_0k+3a_0k^3)}$	8 i $\sqrt{\frac{2}{3}}$
$\Delta_{1^{-}\alpha}^{\#3}$	0	0	0	$-\frac{2k^2}{\sqrt{3}a_0(2+k^2)}$	$\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2} \ .$	$\frac{76+52k^2+3k^4}{12a_0(2+k^2)^2}$	$\frac{\sqrt{5} (10+3k^2)}{12 a_0 (2+k^2)}$	$\frac{-2+k^2}{3\sqrt{2} \ a_0 \ (2+k^2)^2} \ .$	$\frac{1}{-2 a_0 - \frac{8 a_0}{2 + 3 k^2}}$	$-\frac{ik(6+5k^2)}{\sqrt{6}a_0(2+k^2)^2}$	$\Delta_{0}^{\#4}$	$\frac{8}{\sqrt{3}(16a_0+3a_0k^2)}$	$\frac{8\sqrt{2}(10+3k^2)}{a_0(16+3k^2)^2}$	$\frac{8\sqrt{2}(22+3k^2)}{3a_0(16+3k^2)^2}$	32 (13+3 k ²)
$\Delta_{1^{-}\alpha}^{\#2}$	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{(4+k^2)^2}{2 a_0 (2+k^2)^2}$	$\frac{k^2 (-2+k^2)}{2 \sqrt{6} a_0 (2+k^2)^2}$	$-\frac{\sqrt{\frac{5}{6}} k^2}{4 a_0 + 2 a_0 k^2}$		$\frac{k^2}{\sqrt{6} (2 a_0 + a_0 k^2)}$	$\frac{i k (4+k^2)}{a_0 (2+k^2)^2}$	$\Delta_{0}^{\#3}$		'	· ·	$\frac{8\sqrt{2}(22+3k^2)}{2\sqrt{2}(16+3)^2(2^2)} = \frac{3}{2\sqrt{2}}$
$\Delta_{1^{^{-}}\alpha}^{\#1}$	0	0	0	0	$\frac{\sqrt{2} (4+k^2)}{a_0 (2+k^2)}$	$\frac{2k^2}{\sqrt{3}(2a_0+a_0k^2)}$	0	$\sqrt{\frac{2}{3}} k^2$ $2 a_0 + a_0 k^2$	0	$\frac{2i\sqrt{2}k}{2a_0+a_0k^2}$	Q			1	'
	0	0	$\frac{4}{a_0}$	0	$0 \qquad \frac{}{a_{l}}$	0 - 1	0	0	0	0	$\Delta_{0}^{\#2}$	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{144}{a_0(16+3k^2)^2}$	$\frac{16(19+3k^2)}{a_0(16+3k^2)^2}$	$-\frac{8\sqrt{2}(10+3k^2)}{22\sqrt{2}}$
$\Delta_{1}^{\#2}_{+} \alpha_{\beta}$ 4	$\frac{2\sqrt{2}}{a_0}$	2 a ₀	0	0	0	0	0	0	0	0			10 k ²	$\frac{2}{3}$	340 1/2)
$\Delta_{1}^{\#1}_{\alpha\beta} \; \Delta_{1}^{\#2}_{\alpha\beta} \; \Delta_{1}^{\#3}_{\alpha\beta}$	0	$\frac{3}{a_0}$	3 0	0 ,	0 ,	0 1	0	0	0 ,	0 ,	$\Delta_{0}^{\#1}$	0	$\frac{4\sqrt{6}}{16a_0 + 3a_0 k^2}$	$-\frac{4\sqrt{\frac{2}{3}}}{16a_0+3a_0k^2}$	ح
	$\Delta_1^{\#1} + ^{lphaeta}$	$\Delta_{1+}^{#2} + \alpha \beta$	$\Delta_{1}^{\#3} + ^{lphaeta}$	$\Delta_{1^{-}}^{\#1} +^{\alpha}$	$\Delta_{1}^{\#2} +^{\alpha}$	$\Delta_{1}^{\#3} \dagger^{\alpha}$	$\Delta_{1}^{\#4} \dotplus^{\alpha}$	$\Delta_{1}^{\#5} \dagger^{\alpha}$	$\Delta_{1}^{\#6} \dagger^{\alpha}$	${\mathcal T}_{1^{\text{-}}}^{\#1} {\dagger}^{\alpha}$		$\Delta_{0}^{\#1}$ †	$\Delta_{0}^{#2} +$	Δ ^{#3} ₀ +	Δ#4 0+ +

	$\int_{2}^{\pi_{1}} \alpha \beta$	$\Gamma_{2}^{\#2} \alpha \beta$	$\Gamma_{2}^{+3} \alpha \beta$	$h_2^{++} \alpha \beta$	$\Gamma_2^{\#_1}\alpha\beta\chi$	$\Gamma_2^{+2}_{\alpha\beta\chi}$
$\Gamma_{2}^{\#1} \dagger^{lphaeta}$	<u>a₀</u> 4	0	0	$\frac{i a_0 k}{4 \sqrt{2}}$	0	0
$\Gamma_{2}^{\#2} \dagger^{\alpha\beta}$	0	$-\frac{a_0}{2}$	0	$\frac{i a_0 k}{4 \sqrt{3}}$	0	0
$\Gamma_2^{#3} \dagger^{\alpha\beta}$		0	<u>a₀</u> 4	$-\frac{i a_0 k}{4 \sqrt{6}}$	0	0
$h_2^{\#1} \dagger^{\alpha\beta}$	$-\frac{i a_0 k}{4 \sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
$\Gamma_2^{\#1} \dagger^{\alpha\beta\chi}$		0	0	0	<u>a₀</u> 4	0
$\Gamma_{2}^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	0	<u>a₀</u> 4

 $-\frac{ia_0k}{4\sqrt{2}}$

 $\Gamma_{1}^{\#1} +^{\alpha}$

 $\Gamma_{1}^{\#2} +^{\alpha}$

 $\Gamma_1^{\#3} +^{\alpha}$

 $\Gamma_{1}^{\#4} + ^{lpha}$

 $\Gamma_{1}^{\#5} +^{\alpha}$

 $\Gamma_1^{\#6} +^{\alpha}$

 $-\frac{ia_0k}{4\sqrt{6}}$

 $\frac{i a_0 k}{4 \sqrt{2}}$

0 0 4

 $\Gamma_1^{#2} + \alpha \beta$ $\Gamma_1^{#3} + \alpha \beta$

 $\frac{8ik(19+3k^2)}{a_0(16+3k^2)^2}$

 $\mathcal{T}_{0}^{\#2} +$

Quadratic (free) action
$S == \iiint (\frac{1}{4} (2 a_0 \Gamma_{\alpha}^{\alpha \beta} \Gamma_{\beta \chi}^{\chi} + 4 h^{\alpha \beta} \mathcal{T}_{\alpha \beta} + \Gamma^{\alpha \beta \chi} (-2 a_0 \Gamma_{\beta \chi \alpha} + 4 \Delta_{\alpha \beta \chi}) -$
$a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} + a_0 h_{\chi}^{\chi} \partial_{\beta} \Gamma_{\alpha}^{\alpha\beta} - 2 a_0 h_{\alpha\chi} \partial_{\beta} \Gamma^{\alpha\beta\chi} +$
$2a_0 h_{\beta\chi} \partial^{\chi} \Gamma^{\alpha}_{\alpha}^{\beta})(t, x, y, z] dz dy dx dt$

	$a_0 k$					$\Gamma_0^{\#1}$	$\Gamma_{0}^{\#2}$	Γ ₀ ^{#3}	$\Gamma_{0}^{\#4}$	$h_0^{\#1}$	$h_{0}^{\#2}$	$\Gamma_0^{\#1}$
$\frac{i a_0 k}{4 \sqrt{6}}$	$\sqrt{\frac{5}{6}}$	$\frac{ia_0k}{4\sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	Γ ₀ ^{#1} †	$-\frac{a_0}{2}$	0	0	0	$-\frac{i a_0 k}{2 \sqrt{2}}$	0	0
	$-rac{1}{4}$ \tilde{I}				Γ ₀ ^{#2} †	0	0	<u>a₀</u> 2	$-\frac{a_0}{2\sqrt{2}}$	0	0	0
$\frac{a_0}{6}$	$\frac{\sqrt{5} \ a_0}{6}$	$\frac{a_0}{6\sqrt{2}}$	$\frac{5a_0}{12}$	$\frac{i a_0 k}{4 \sqrt{6}}$	Γ ₀ ^{#3} †	0	<u>a₀</u> 2	0	$-\frac{a_0}{2\sqrt{2}}$	$\frac{i a_0 k}{4 \sqrt{3}}$	$-\frac{1}{4}ia_0k$	0
<u>2</u>	$\frac{5}{2} a_0$		<u> </u>	3 <u>3</u> k	Γ ₀ ^{#4} †	0	$-\frac{a_0}{2\sqrt{2}}$	$-\frac{a_0}{2\sqrt{2}}$	<u>a₀</u> 2	$-\frac{i a_0 k}{4 \sqrt{6}}$	$\frac{i a_0 k}{4 \sqrt{2}}$	0
$-\frac{a_0}{6\sqrt{2}}$	$-\frac{1}{6}\sqrt{\frac{1}{3}}$	3 3	$\frac{a_0}{6\sqrt{2}}$	$-\frac{i a_0 k}{4 \sqrt{3}}$	$h_{0}^{\#1}$ †	$\frac{i a_0 k}{2 \sqrt{2}}$	0	$-\frac{i a_0 k}{4 \sqrt{3}}$	$\frac{i a_0 k}{4 \sqrt{6}}$	0	0	0
<u>0,</u>		$\frac{1}{2}a_0$	<u>a0</u>	- a ₀ k	$h_{0}^{\#2}$ †	0	0	<u>i a o k</u> 4	$-\frac{ia_0k}{4\sqrt{2}}$	0	0	0
$\frac{\sqrt{5} a_0}{6}$	3	$-\frac{1}{6}\sqrt{\frac{5}{2}}$	$-\frac{\sqrt{5}}{6}$	$\frac{1}{4}$ \tilde{l} $\sqrt{\frac{5}{6}}$	Γ ₀ -1 †	0	0	0	0	0	0	$-\frac{a_0}{2}$

	$\Delta_{2}^{\#1}{}_{\alpha\beta}$	$\Delta_{2}^{\#2}{}_{\alpha\beta}$	$\Delta_{2}^{\#3}_{\alpha\beta}$	${\cal T}^{\#1}_{2^+lphaeta}$	$\Delta_{2-\alpha\beta\chi}^{\#1}$	$\Delta_{2}^{\#2}_{\alpha\beta\chi}$
$\Delta_{2}^{#1} \dagger^{lphaeta}$	0	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$\frac{4}{\sqrt{3} a_0}$	$\frac{4i\sqrt{2}}{a_0k}$	0	0
$\Delta_{2}^{\#2} \dagger^{\alpha\beta}$	$\frac{2\sqrt{\frac{2}{3}}}{a_0}$	$-\frac{8}{3a_0}$	$-\frac{2\sqrt{2}}{3a_0}$	$-\frac{4i}{\sqrt{3} a_0 k}$	0	0
$\Delta_{2}^{\#3} \dagger^{\alpha\beta}$	$\frac{4}{\sqrt{3} a_0}$	$-\frac{2\sqrt{2}}{3a_0}$	8 3 a ₀	$-\frac{4i\sqrt{\frac{2}{3}}}{a_0k}$	0	0
${\mathcal T}_2^{\sharp 1}\dagger^{lphaeta}$	$-\frac{4i\sqrt{2}}{a_0k}$	$\frac{4i}{\sqrt{3} a_0 k}$	$\frac{4i\sqrt{\frac{2}{3}}}{a_0k}$	$-\frac{8}{a_0 k^2}$	0	0
$\Delta_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	0	0	$\frac{4}{a_0}$	0
$\Delta_2^{\#2} \dagger^{\alpha\beta\chi}$	0	0	0	0	0	$\frac{4}{a_0}$

SO(3) Irreps	rundamental lields
$2\mathcal{T}_{0+}^{\#2} - i k \Delta_{0+}^{\#2} == 0$	$2 \partial_{\beta} \partial_{\alpha} \mathcal{T}^{\alpha\beta} == \partial_{\chi} \partial_{\beta} \partial_{\alpha} \Delta^{\alpha\beta\chi}$
$\Delta_{0+}^{\#3} + 2 \Delta_{0+}^{\#4} + 3 \Delta_{0+}^{\#2} = 0$	$\partial_{\alpha}\Delta^{\alpha\beta}_{\beta} == 0$
$6 \mathcal{T}_{1}^{\#1}^{\sigma}$ - $ik(3 \Delta_{1}^{\#2}^{\sigma}$ -	$2\partial_{\chi}\partial_{\beta}\partial^{\alpha}\mathcal{T}^{\beta\chi} + \partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\Delta^{\beta\alpha}$
$\Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha}) == 0$	$2 \partial_{\chi} \partial^{\chi} \partial_{\beta} \mathcal{T}^{\alpha\beta} + \partial_{\delta} \partial_{\chi} \partial_{\beta} \partial^{\alpha} \Delta$
$2 \Delta_{1}^{\#6} \alpha + \Delta_{1}^{\#4} \alpha +$	$\partial_{\beta} \partial_{\alpha} \nabla_{\lambda} \partial_{\alpha} = \partial_{\lambda} \partial_{\lambda} \nabla_{\alpha} \partial_{\beta} \partial_{\alpha}$
$2 \Delta_{1}^{\#5\alpha} + \Delta_{1}^{\#3\alpha} = 0$	
Total constraints/gauge generators:	ators:

Multiplicities 1

Massive and massless spectra

(No massive particles)

Unitarity conditions