

planetmath.org

Math for the people, by the people.

proof of convergence theorem

Canonical name ProofOfConvergenceTheorem

Date of creation 2013-03-22 13:44:36 Last modified on 2013-03-22 13:44:36

Owner matte (1858) Last modified by matte (1858)

Numerical id 10

Author matte (1858)

Entry type Proof Classification msc 46-00 Classification msc 46F05 Let us show the equivalence of (2) and (3). First, the proof that (3) implies (2) is a direct calculation. Next, let us show that (2) implies (3): Suppose $Tu_i \to 0$ in \mathbb{C} , and if K is a compact set in U, and $\{u_i\}_{i=1}^{\infty}$ is a sequence in \mathcal{D}_K such that for any multi-index α , we have

$$D^{\alpha}u_i \to 0$$

in the supremum norm $\|\cdot\|_{\infty}$ as $i \to \infty$. For a contradiction, suppose there is a compact set K in U such that for all constants C > 0 and $k \in \{0, 1, 2, \ldots\}$ there exists a function $u \in \mathcal{D}_K$ such that

$$|T(u)| > C \sum_{|\alpha| \le k} ||D^{\alpha}u||_{\infty}.$$

Then, for C = k = 1, 2, ... we obtain functions $u_1, u_2, ...$ in $\mathcal{D}(K)$ such that $|T(u_i)| > i \sum_{|\alpha| \le i} ||D^{\alpha}u_i||_{\infty}$. Thus $|T(u_i)| > 0$ for all i, so for $v_i = u_i/|T(u_i)|$, we have

$$1 > i \sum_{|\alpha| \le i} ||D^{\alpha} v_i||_{\infty}.$$

It follows that $||D^{\alpha}u_i||_{\infty} < 1/i$ for any multi-index α with $|\alpha| \leq i$. Thus $\{v_i\}_{i=1}^{\infty}$ satisfies our assumption, whence $T(v_i)$ should tend to 0. However, for all i, we have $T(v_i) = 1$. This contradiction completes the proof.