考试科目名称 离散数学 (A 卷评分标准)

2020	一2021 学	年第 _		学期	教师			考	试方式_	闭	卷	
系(专业) <u>计</u>	上算机和	学与技	术系	年级_	_	_	班	级			
学号	学号					姓名			_ 成绩			
											=	
	题 号	_	_	=	四	五	六	七	八	九		
	但 厶											

得分 一、(本题满分12分)

设P,Q,R为命题,命题联结词IF...THEN...ELSE...的真值表定义如下.证明:

- (1) IF A THEN B ELSE $C \Leftrightarrow IF \neg A$ THEN C ELSE B;
- (2) 命题联结词¬、Λ、V均可通过命题联结词IF…THEN…ELSE…等效表达.

P	Q	R	IF P THEN Q ELSE R
Т	Т	T	Т
Т	Т	F	Т
T	F	Т	F
T	F	F	F
F	Т	Т	Т
F	Т	F	F
F	F	Т	Т
F	F	F	F

【参考解答与评分标准】

- (1) 证明:根据真值表, IF P THEN Q ELSE $R \Leftrightarrow (P \to Q) \land (\neg P \to R)$ 【3分】,因此IF A THEN B ELSE $C \Leftrightarrow$ IF $\neg A$ THEN C ELSE $B \Leftrightarrow (A \to B) \land (\neg A \to C)$. 【3分,直接证明相等也可得 6分】 \Box 注:用真值表证明也可给 6分
- (2) 证明:将每个基本联结词构成的基本命题表达式写为 $IF\cdots THEN\cdots ELSE\cdots$ 的命题形式即可.如: $\neg P \Leftrightarrow$ $IF P THEN F ELSE T 【2分】; <math>P \land Q \Leftrightarrow IF P THEN Q ELSE P 【2分】; <math>P \lor Q \Leftrightarrow IF P THEN P ELSE Q$ 【2分】; 注:用真值表证明也可给6分

得分 二、(本题满分10分)

证明:对集合A,B若 $\mathcal{P}(A) \in \mathcal{P}(B)$,则 $A \in B$. (注: $\mathcal{P}(A)$, $\mathcal{P}(B)$ 分别表示集合A,B的幂集)

【参考解答与评分标准】

 $\mathcal{P}(A) \in \mathcal{P}(B) \Longrightarrow \mathcal{P}(A) \subseteq B \Longrightarrow \forall X \in \mathcal{P}(A) \to X \in B \Longrightarrow obviously \ A \in \mathcal{P}(A) \to A \in B$

【3分】

【3分】

【2分】

【2分】

其它证明方式也可给分,注意若混淆 "E"和 "⊑",全题最多给 3 分。

得分 三、(本题满分10分)

【参考解答与评分标准】

|x|=3 【3分】若无过程仅给3分;

证明: 首先, 由于 y 是二阶元, 所以有 $y^{-1} = y$ 。同时:

$$yxy^{-1} = x^2$$

$$\iff yx = x^2y$$
 (右乘 y)

$$\iff x = y^{-1}x^2y \tag{Ex. } y^{-1})$$

$$\Longrightarrow x^2 = (y^{-1}x^2y)(y^{-1}x^2y) \tag{两边取平方}$$

$$\iff x^2 = y^{-1}x^4y \tag{} yy^{-1} = e)$$

$$\iff x^2 = yx^4y^{-1} \tag{y = y^{-1}}$$

从而有 $yx^4y^{-1}=x^2=yxy^{-1}$ 。由消去律知 $x^3=e$ 。从而 $|x|\mid 3$ 。因为 x 不是单位元,所以 $|x|\neq 1$,因此只能有 |x|=3。

【证明过程7分,不一定每一步都要写,大体思路正确即可给7分;从 $x^3 = e$ 直接得到|x| = 3酌情扣1—2分。】

得分

四、(本题满分10分)

证明:不大于自然数n且与n互素的自然数的计数为: $\varphi(n) = n \cdot \prod_{p|n} \left(1 - \frac{1}{n}\right)$.

(注:p|n指素数p可被n整除,即 $\{p\}$ 为n的全体素因子.提示:可考虑用容斥原理技术)

【参考解答与评分标准】

设 $n(n \ge 2)$ 为自然数, p_1, p_2, \dots, p_m 是n 的全部质因数,r 是任一不大于n 的自然数。r 与n 互质当且近当r 不能被 p_1, p_2, \dots, p_m 中的任一个整除。因此, $\varphi(n)$ 等于由 1 到 n 的 n 个整数中不能被 p_1, p_2, \dots, p_m 中的任一个整除的整数个数。由容斥原理可直接得到

$$\begin{split} \varphi(n) &= n + \sum_{k=1}^{m} (-1)^{k} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq m} \left[\frac{n}{\text{lcm}(p_{i_{1}}, p_{i_{2}}, \dots, p_{i_{k}})} \right] \\ &= n + \sum_{k=1}^{m} (-1)^{k} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{k} \leq m} \left[\frac{n}{p_{i_{1}}, p_{i_{2}}, \dots, p_{i_{k}}} \right] \\ &= n - \left(\frac{n}{p_{1}} + \frac{n}{p_{2}} + \dots + \frac{n}{p_{m}} \right) + \left(\frac{n}{p_{1} p_{2}} + \frac{n}{p_{1} p_{3}} + \dots + \frac{n}{p_{m-1} p_{m}} \right) + \dots + (-1)^{m} \frac{n}{p_{1} p_{2} \dots p_{m}} \\ &= n \left(1 - \frac{1}{p_{1}} \right) \left(1 - \frac{1}{p_{2}} \right) \dots \left(1 - \frac{1}{p_{m}} \right) \end{split}$$

【只要能说明用容斥原理并写出容斥原理基本交替式给4分,述文字说明2分,过程4分】

得分 五、(本题满分12分)

(1)请给出在通信中以对应频率出现的下列字符的最优二元前缀编码树(即 Huffman 树),给出各字符对应的最优二元前缀编码码字(例如 01011 为一个码字),并求出按所求得的码字传输 100 个按给定频率出现的字符所需要的总比特数(二进制位数);

a(25%), b(25%), c(12.5%), d(12.5%), e(12.5%), f(6.25%), g(6.25%)

(2) 若某 Huffman 树共有 215 个顶点,则其最优二元前缀编码共应包含多少个不同的码字?

【参考解答与评分标准】

(1)按照 Huffman 编码算法构造最优二叉树如下图所示【5分】。

传输 100 个字符的总码长为: 100*(0.25*2+0.25*2+0.125*3+0.125*3+0.125*3+0.0625*4+0.0625*4) = 262.5 (bits) 0.50 0.25 0.25 0.25 0.125 0.125 0.125 0.0625

【2分】只要数对上述树即为正确【直接给7分】。

(2) 根据 Huffman 树的构造算法,Huffman 树必为满二叉树(即除叶顶点外无 1 度分支点)【2 分】,而每个码字必被编码在叶顶点上,因此所求即为此 Huffman 树的也顶点计数。设此 Huffman 树中的叶顶点数、分支顶点数分别为 n_1 和 n_2 ,则有 $n_1 = n_2 + 1$ 【2 分】。因此叶顶点数为 (215 + 1)/2 = 108 个【1 分】,因此共有 108 种不同的码字。注:只要数对即可给 5 分。

- (1) 证明:一个非平凡图是二部图当且仅当其无奇圈(即长度为奇数的初级回路).
- (2) 下图中是否存在仅通过水平、垂直的笔画(不可斜向行走)不重复地经过所有白色圆且不经过灰色圆的一笔画法?若存在请给出具体方案,若不存在请证明原因.

第六(2)题图

【参考解答与评分标准】

(1)

证明:必要性是显然的,因为如果存在奇圈就不可能完成上述染色。充分性:不妨设图是连通图,否则对每个连通分支分别考虑即可。 设 u 是图中任意一点,设 $S=\{v\in V|d(u,v)$ 为 奇数 $\}$, $T=\{v\in V|d(u,v)$ 为 偶数 $\}$,其中 d(u,v) 是从 u 到 v 的最短路径的长度。现在证明S和T即为该二分图的划分,即证明不存在这样的边:它的端点都在 S 内或者 T 内。假设存在这样的边 e ,设其端点为 m,n ,那么图中就存在这样一个圈: $u->\ldots->m->n->\ldots->u$,并且 u 到 m 和 n 到 u 的距离同为奇数或者偶数,因此这是一个奇圈,从而矛盾。证毕。

【基本思路对即可给6分,一般用反证法,直接证明能说清楚也可以】

(2)

不存在所要求的一笔画画法【2分】。

七、(本题满分10分)

教育超市举行投球游戏促销活动,如右图所示:一个小球从M处投入,通过管道必然自上而下落在A或B或C三处之一;若小球落在A处,则获得 50%折扣率,即只要付款实际货品价格的 50%;若落B处,付款 70%(折扣率为 70%);落C处付款 90%(折扣率为 90%).假设小球从每个交叉口落入左右两个管道的可能性均等,同学甲购物后投球一次,求甲预期获得的购物折扣率。

第七题图

【参考解答与评分标准】

首先设置获得 $(k_1 = 50\%, k_2 = 70\%, k_3 = 90\%)$ 折扣率的离散随机变量为K 【2 分】,则根据图易见 $p(k_1) = \frac{3}{16}, p(k_2) = \frac{3}{8}, p(k_3) = \frac{7}{16},$ 【4 分】 因此可以求出:

$$E(K) = \frac{3}{16} \times \frac{1}{2} + \frac{3}{8} \times \frac{7}{10} + \frac{7}{16} \times \frac{9}{10} = \frac{3}{4}$$

【4分、答案正确即可给10分】

得分

八、(本题满分12分)

给定由集合 $S = \{1, 2, 3, 4, 6, 9, 12, 18, 36\}$ 及整除关系"|"构成的偏序集(S, |),

- (1) 画出(S, 1)的哈斯图, 并判定集合A = {2,3,4,6}的上确界、下确界是否存在, 如存在请给出;
- (2) 判定该偏序集(S,I)是否构成格;若是格,是否构成分配格、有补格;
- (3) 若(S, |) 为格,请判定 $(\{1, 2, 4, 36\}, |)$ 和 $(\{3, 6, 9, 36\}, |)$ 是否为(S, |)的子格.

【参考解答与评分标准】

(1) 如图右,集合A的上下确界均存在。

 $\sup(A) = 12$, $\inf(A) = 1$ 【图 2 分, 上下确界各 1 分】

(2) 偏序集(S,|)构成偏序格,(可通过格公理说明,也可说明每两个因子都存在上下确界,无需严格证明)【2分】;不是有补格:如2没有补元【1分】;是分配格,因为上下确界运算(Icm, gcd)相互满足分配律,或者说明不含有与 M_3 与 N_5 同构的子格均可。【1分,或者说明如果S为有补格,则其为布尔代数,但不符合布尔代数的基数特性,因此非有补格亦可】(3)($\{1,2,4,36\}$, $\{1,2,4$

九、 (本题满分12分)

n维超立方体图 (Q_n) 的顶点是长度为n的0-1序列,两个顶点之间有边当且仅当0-1序列之间恰好只有一位不同。如下图所示。

- (1) 具有 $k(k \ge 1)$ 个原子的布尔代数 B_k 的 Hasse 图若视为无向图是否与超立方体图 Q_k 同构?
- (2) 证明: $Q_k(k \ge 1)$ 的点连通度等于k.

得分

第九题图

【参考解答与评分标准】

- (1) $B_k \simeq Q_k \left[3 \, \mathcal{H} \right]$
- (2) 证明: <u>证法一:</u> 对维度k进行归纳【2分】:

Basis: 对k = 1, $Q_1 = L_2$,显然 $\kappa(Q_1) = 1$;

I.H.:对 $k \geq 2$,假设 $\kappa(Q_k) = k$;

I.S.: 对 Q_{k+1} ,因为 $\delta(Q_{k+1}) = k+1$,故显然有 $\kappa(Q_{k+1}) \le k+1$ (Whitney)【2分】,根据超立方体图的结构, Q_{k+1} 即为 $2 \land Q_k$ 中的顶点通过一个完美匹配M中的边相邻【1分】,如右图所示。假设 $S \land Q_{k+1}$ 的一个点割集,根据超立方体图的结构,假设 $V(Q_{k+1}) - S$ 至少在 Q_k 和 Q'_k 中各留有一个顶点(否则 $|S| \ge 2^{k+1} \ge k+1$),那么:

综合以上两种情况, $\kappa(Q_{k+1}) \geq k+1$,又由 Whitney 定理 $\kappa(Q_{k+1}) \leq k+1$,因此 $\kappa(Q_{k+1}) = k+1$,由归纳法得证. <u>证法二:</u> 直接证明法(证明梗概):只需证明对于 $|S| \leq k$, $Q_{k+1} - S$ 均连通即可【2分】。也是分两种情形:1)S是其中一个 Q_k 的割集【证法与上述类似,2分】 2)证明两个 $Q_k - S$ 都连通。注意 Q_{k+1} 中两个 Q_k 之间的边有 Q_k 2)1)。【2分】