i_8

 i_9

Dallar: {1,3,4,5} Kirişler: {2,6,7,8,9}
$$Q = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & -1 & -1 & 0 \\ 0 & 0 & 1 & 0 & 0 & -1 & -1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_3 \\ i_4 \\ i_5 \\ i_2 \\ i_6 \\ i_7 \\ i_8 \\ i_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$Qi = 0 \quad Q^T v_t = v$$

$$Qi = 0 \quad Q^T v_t = v$$

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} i_1 \\ i_3 \\ i_4 \\ i_5 \\ i_6 \\ i_7 \\ i_8 \\ i_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$Bv = 0 \quad B^T i_l = i$$

Toplam Lineer Bağımsız Denklem Sayısı

$$Qi = 0$$
 n_d -1 denklem

$$Bv = 0$$
 $n_e - n_d + 1 denklem$

Toplam sayı n_e

Bilinmiyen sayısı kaç? 2n_e Eksik denklemleri nereden bulacağız?

Teorem: Bir birleşik G'ında seçilen T ağacı için Q ve B sırasıyla temel kesitleme ve temel çevre matrisi olsun $\longrightarrow QB^T=0$

$$\frac{\mathsf{Tanit:}}{Q^T v_t} = v$$

$$Bv = 0$$
 $BQ^T v_t = 0$ $\forall v_t \longrightarrow QB^T = 0$

KGY kapalı düğüm dizileri, düğüm gerilimleri cinsinden eleman gerilimleri, çevreler için yazılıyor

KAY Gauss yüzeyleri, kesitlemeler, düğümler için yazılıyor

KAY'na ilişkin bağımsız denklem takımı n_d -1 düğüm için yazılan denklemler

KAY'na ilişkin bağımsız denklem takımı temel kesitlemeler için yazılan denklemler

KGY'na ilişkin bağımsız denklem takımı temel çevreler için yazılan denklemler

- 1-a) 4 düğümünü referans alıp A matrisini yazınız.
 - b) 4 düğümü referans iken KGY'ye ilişkin denklemleri yazınız.
 - c) {2,4,6,7,8} ağacına ilişkin temel çevre ve temel kesitlemeleri belirleyiniz.
 - d) v_2 =2V, v_4 =4V, v_6 =6V, v_7 =7V, v_8 =8V ise diğer elemanlara ilişkin gerilimleri belirleyiniz.
 - e) i₁=1A, i₃=3A, i₅=5A, i₉=9A ise diğer elemanlara ilişkin akımları belirleyiniz.
 - f) Tellegen Teoreminin sağlandığını gösteriniz.

Eleman Tanım Bağıntıları

<u>Direnç Elemanı:</u> v ve i arasında cebrik bağıntı ile temsil edilen eleman <u>Endüktans Elemanı:</u> Ø ve i arasında cebrik bağıntı ile temsil edilen eleman <u>Kapasite Elemanı:</u> v ve q arasında cebrik bağıntı ile temsil edilen eleman <u>Memristor Elemanı:</u> Ø ve q arasında cebrik bağıntı ile temsil edilen eleman

2-Uçlu Direnç Elemanları

- lineer, lineer olmayan, zamanla değişen, değişmeyen, akım ve/veya gerilim kontrollü dirençlerin tanım bağıntıları,
- seri, parallel bağlı dirençlere ilişkin uç bağıntıları,
- lineer olmayan dirençlere ilişkin dc (doğru akım) çalışma noktasının belirlenmesi, küçük işaret analizi.

Lineer Direnç

Hatırlatma: Lineerlik

$$f(x_1) = y_1 \qquad f(x_2) = y_2 \xrightarrow{f(.) \text{ lineer}} f(\alpha x_1 + \beta x_2) = \alpha f(x_1) + \beta f(x_2)$$
$$= \alpha y_1 + \beta y_2$$

Özel Lineer Dirençler:

Açık devre elemanı f(i,v) = i = 0

Kısa devre elemanı f(i, v) = v = 0

Açık devre elemanı ve kısa devre elemanının i-v,v-i karakteristiklerine dikkat edelim !!!

Tanım: (Dual Dirençler)

A direncinin v-i karakteristiği B direncinin i-v karakteristiği ile aynıdır.

A direnci B direncinin dual'idir.

Ne diyebilirsiniz bu ani güç için?

Lineer direnç elemanına ilişkin ani güç $p(t) = v(t)i(t) = Ri^{2}(t)$

<u>Lineer Olmayan Direnç</u>

f(v,i) = 0

Bazı Özel Lineer Olmayan Dirençler

$$R_{ID} = \{(v, i) : vi = 0, i = 0, v < 0 \text{ ve } v = 0, i > 0\}$$

Diyot tıkamada
$$(v < 0)$$
, $i = 0$

Diyot iletimde
$$(i > 0)$$
, $v = 0$

Diyot tıkamada iken davranışı hangi eleman gibi?

Diyot iletimde iken davranışı hangi eleman gibi?

i-v düzlemi Diyot tıkamada iken davranışı hangi eleman gibi?

Diyot iletimde iken davranışı hangi eleman gibi?