University of Leeds

DOCTORAL THESIS

Simulating the thermal conductivity of lower mantle minerals

Author:
Ben TODD

Supervisor:
Dr. Stephen STACKHOUSE
Dr. Andrew M. WALKER
Dr. Jon E. MOUND

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

in the

Institute of Geophysics and Tectonics School of Earth and Environment

Declaration of Authorship

I, Ben TODD, declare that this thesis titled, "Simulating the thermal conductivity of lower mantle minerals" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

Do it! Just do it!

Don't let your dreams be dreams. Yesterday you said tomorrow, so just do it! Make your dreams come true! Just do it!

> Some people dream of success, while you're gonna wake up, and work hard at it! Nothing is impossible!

You should get to the point, where anyone else would quit, and you're not going to stop there.

No, what are you waiting for?

Do it!
Just do it!
Yes you can!
Just do it!

If you're tired of starting over, stop giving up.

Shia LeBeouf

UNIVERSITY OF LEEDS

Abstract

Faculty of Environment School of Earth and Environment

Doctor of Philosophy

Simulating the thermal conductivity of lower mantle minerals

by Ben TODD

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

Everyone is smart, set yourself apart by being kind.

Contents

D	eclara	ation of Authorship	iii
A	bstra	ct	vii
A	cknov	wledgements	ix
1	Intr	roduction	1
	1.1	Why is thermal conductivity important?	1
		1.1.1 Man-made applications	1
		1.1.2 In the context of the Earth	1
	1.2	What is thermal conductivity?	1
		1.2.1 What affects it?	1
		1.2.2 Mechanisms of heat transport	1
	1.3	Previous work - geophysics	2
		1.3.1 Mantle/core dynamics	
		1.3.2 Thermal conductivity of the lower mantle	2
	1.4	Thesis outline	3
		1.4.1 Aims	3
		1.4.2 Objectives	3
2	Intr	ro/Background/Theory 2	5
	2.1	Main Section 1	5
		2.1.1 Subsection 1	5
3	Con	nstraining the finite-size effects of molecular dynamics methods to com-	_
	pute	e thermal coductivity	7
	3.1	Introduction	7
		3.1.1 Intro Intro (remove this subsection header later)	
4	Mo	delling the thermal conductivity of lower mantle minerals	9
	4.1	Adding iron	9
	4.2	Making the model	9
		4.2.1 Fitting the data	9
		Compositional dependence	10
		Temperature dependence	11
5	Mod	delling the lower mantle with variable thermal conductivity	13
	5.1	Main Section 1	13
		5.1.1 Subsection 1	13
6	Sun	nmary/Discussion/Conclusion	15
		Main Section 1	15
		6.1.1 Subsection 1	

A	Free	quently Asked Questions	17
	A.1	How do I change the colors of links?	17
Bi	bliog	graphy	19

List of Figures

List of Tables

xvii

List of Abbreviations

CMB Core-mantle boundary

LLSVP Large, low-shear-velocity province

ULVZ Ultra low velocity zone

DAC Diamond anvil cell

MgSiO₃ Magnesium Silicate

FeSiO₃ Iron Silicate
bdg bridgmanite
pv perovskite
ppv post-perovskite

LAMMPS Large-scale Atomic/Molecular Massively Parallel Simulator

DM Direct Method GK Green-Kubo

MD Molecular Dynamics

EMD Equilibrium Molecular Dynamics
NEMD Non-equilibrium Molecular Dynamics

MFP Mean free path

Physical Constants

Boltzmann constant $k_B = 1.380\,648\,528 \times 10^{-23}\,\mathrm{J\,K^{-1}}$ Boltzmann constant $k_B = 8.617\,330\,350 \times 10^{-5}\,\mathrm{eV/K}$

xxi

List of Symbols

a distance

P power $W(J s^{-1})$

 ω angular frequency rad

xxiii

For/Dedicated to/To my...

Introduction

1.1 Why is thermal conductivity important?

Knowledge of the thermal conductivity of solids is key in a wide range of technological applications and for our understanding of natural systems.

1.1.1 Man-made applications

Low thermal conductivities are required in thermoelectric materials, to maximise the efficiency of heat-electricity conversion (Snyder and Toberer, 2008).

1.1.2 In the context of the Earth

For example, in the Earth's lower mantle thermal conductivity controls the nature of planetary convection (Tosi et al., 2013), and the heat flux out of the core which powers the geotherm.

The lower mantle encompasses the region between the mantle transition zone (660 km deep, $\sim\!1900$ K, $\sim\!25$ GPa) and the CMB (2891 km deep, $\sim\!4000$ K, $\sim\!136$ GPa). The composition of this region can be approximated as 80% MgSiO₃/magnesium silicate perovskite (bridgmanite) and 20% MgO/magnesium oxide (periclase), both of which are insulators and past their Debye temperatures at lower mantle conditions.

1.2 What is thermal conductivity?

Thermal conductivity determines whether a material is a conductor or insulator of heat, both of which have many technological applications.

1.2.1 What affects it?

pressure, temperature, and composition

1.2.2 Mechanisms of heat transport

RADIATIVE AND ELECTRONIC TOO

Heat is transported as lattice virbrations, or phonons. The further phonons travel before scattering (mean free path, MFP) the more efficient the heat transport and thus higher the thermal condutivity. A number of effects (MENTION MATTHIESSEN'S RULE) cause phonons to scatter: (1) collisions with other phonons in the lattice, (2) boundaries or defects in the material, and (3) impurities in the atomic structure.

1.3 Previous work - geophysics

INSERT GEOPHYSICS INTRO HERE ASWELL

A range of atomic scale simulation methods are available to determine the lattice thermal conductivity of materials. These are invaluable for calculating thermal conductivity at conditions of which experiments are difficult, e.g. the extreme conditions found in the Earth's lower mantle (pressures and temperatures up to 136 GPa and 4000 K at the core-mantle boundary).

1.3.1 Mantle/core dynamics

Thermal conductivity in the deep Earth influences dynamic processes such as mantle convection and heat loss from the core (Lay, Hernlund, and Buffett, 2008).

1.3.2 Thermal conductivity of the lower mantle

Many studies assume lowermost mantle thermal conductivity to be $10 \, \mathrm{Wm^{-1}K^{-1}}$ (e.g. Lay, Hernlund, and Buffett, 2008), but uncertainty in the extrapolation of results made at low pressures and temperatures gives a range of 4 - 16 $\,\mathrm{Wm^{-1}K^{-1}}$ (Brown and McQueen, 1986; Osako and Ito, 1991; Hofmeister, 1999; Goncharov et al., 2009; Manthilake et al., 2011; Ohta et al., 2012).

There have been several computational studies to calculate the lattice thermal conductivity of bridgmanite at CMB conditions. Osako and Ito (1991) measured the lattice thermal conductivity of MgSiO₃ perovskite, using a modified Ångstrom method. They investigated a temperature range of 160 - 340 K at ambient pressure. At 300 K, a conductivity of 5.1 Wm $^{-1}$ K $^{-1}$ was obtained. This value is similar to that reported for chemical and structural analogues, MgSiO₃ enstatite (5.0 Wm $^{-1}$ K $^{-1}$ REF) and CaTiO₃ perovskite (4 Wm $^{-1}$ K $^{-1}$ REF). The authors extrapolated the value to mantle conditions, neglecting radiative thermal conductivity. They predicted a value of 3.0 Wm $^{-1}$ K $^{-1}$ just beneath the mantle transition zone at 1900 K, and 12.0 Wm $^{-1}$ K $^{-1}$ at the top of the D" layer at 2500 K, a four-fold increase. Thermal conductivity is highlighted as an important indictor of lowermost mantle structure, whether or not the D" layer can behave as a thermal boundary between core and mantle.

Manthilake et al. (2011) measured MgSiO₃ perovskite at 26 GPa and 473 - 1073 K, and periclase at 8 and 14 GPa between 373 - 1273 K. In order to estimate values of thermal conductivity at the top and bottom of D" for a lower mantle compositional model of 4 perovskite : 1 periclase, the authors extrapolated their measurements to high temperature and pressure. For an iron-free mantle, thermal conductivities of $18.9\pm1.6~\rm Wm^{-1}K^{-1}$ and $15.4\pm1.4~\rm Wm^{-1}K^{-1}$ are estimated for the top of D" and CMB respectively. Similarly, for a mantle composition with Fe, thermal conductivities of $9.1\pm1.2~\rm Wm^{-1}K^{-1}$ and $8.4\pm1.2~\rm Wm^{-1}K^{-1}$ are calculated. This highlights the importance of impurities in controlling thermal conductivity in the lower mantle.

Ohta et al. (2012) measured the lattice thermal diffusivity of MgSiO $_3$ perovskite and post-perovskite at room temperature and pressures up to 144 GPa (using a diamond-anvil cell (DAC) and light heating thermoreflectance). These results suggest a perovskite-dominant lowermost mantle would have conductivity of around $11 \, \mathrm{Wm^{-1}K^{-1}}$, and that parts of the lowermost mantle where post-perovskite is stable will have a conductivity approximately 60% higher. The authors suggest that these differences in conductivity between phases will not have a large effect on CMB heat flux, assuming the double-crossing perovskite phase model. The lattice conductivity

1.4. Thesis outline 3

of MgSiO₃ perovskite is shown to increase with pressure and decrease with temperature as expected. The inclusion of impurities is expected to decrease lattice thermal conductivity.

MANTHILAKE'S HIGH T RESULTS? CAN'T FIND REFERENCE?

My approach is similar to that of Ammann et al. (2014), who use the direct method and interatomic potentials reporting a value of $\sim 8.5 \, \mathrm{Wm^{-1}K^{-1}}$. Stackhouse, Stixrude, and Karki (2015) again use the direct method but with density functional theory, yielding conductivity of $6.8 \pm 0.9 \, \mathrm{Wm^{-1}K^{-1}}$. Using Green-Kubo, Haigis (2013) report a value of $12.4 \pm 2.0 \, \mathrm{Wm^{-1}K^{-1}}$ for conditions of 3000 K, 139 GPa. Tang et al. (2014) and Dekura, Tsuchiya, and Tsuchiya (2013) employed first principles, anharmonic lattice dynamics techniques, obtaining values of $\sim 1 \, \mathrm{Wm^{-1}K^{-1}}$ (CMB conditions) and $2.3 \, \mathrm{Wm^{-1}K^{-1}}$ (for 4000 K and 100 GPa) respectively. These results are much lower than other studies, and could be because of LD TRUNCATION OF CONDUCTIVITY [CRITICAL ANALYSIS].

1.4 Thesis outline

In Chapter 2 we provide an overview of the methods and expand on issues. I outline my computational approaches, for the non-equilibrium molecular dynamics direct method and equilibrium molecular dynamics Green-Kubo method. I show convergence of computed conductivity with respect to simulation cell size and shape

In Chapter 3, PRESSURE/TEMPERATURE EFFECTS. DISCUSS [P/T] SCALING LAW / THEORETICAL MODEL

- 1.4.1 Aims
- 1.4.2 Objectives

Intro/Background/Theory 2

2.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

2.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

Constraining the finite-size effects of molecular dynamics methods to compute thermal coductivity

3.1 Introduction

3.1.1 Intro Intro (remove this subsection header later)

Knowledge of the thermal conductivity of solids is key in a wide range of technological applications and for our understanding of natural systems. For example, in the Earth's lower mantle thermal conductivity controls the nature of planetary convection (Tosi et al. (2013)), and the heat flux out of the core which powers the geotherm. Low thermal conductivities are required in thermoelectric materials, to maximise the efficiency of heat-electricity conversion (Snyder and Toberer (2008)).

A range of atomic scale simulation methods are available to determine the lattice thermal conductivity of materials. These are invaluable for calculating thermal conductivity at conditions of which experiments are difficult, e.g. the extreme conditions found in the Earth's lower mantle (pressures and temperatures up to 136 GPa and 4000 K at the core-mantle boundary).

(MOVE - to where though?) Many studies assume lowermost mantle thermal conductivity to be $10~\rm Wm^{-1}K^{-1}$ (e.g. Lay, Hernlund, and Buffett (2008)), but uncertainty in the extrapolation of results made at low pressures and temperatures gives a range of 4 - 16 Wm⁻¹K⁻¹ (Brown and McQueen (1986), Osako and Ito (1991), Hofmeister (1999), Goncharov et al. (2009), Manthilake et al. (2011), and Ohta et al. (2012)).

Modelling the thermal conductivity of lower mantle minerals

4.1 Adding iron

insert text here...

4.2 Making the model

Due to uncertainty in the lower mantle's compositional distrubution, properties like thermal conductivity are averaged considering the relative abundance of each mineral component. There are also endmember relations to consider within each mineral, the concentration of impurities, and mineral phase transitions.

A simple weighted average can be taken to combine the contributions of individual minerals, whereas mixing between endmembers is not as linear. Ohta et al. (2017) provide an equation for interpolating conductivity between compositional endmembers, specifically (Mg,Fe)O (ferro)periclase. I apply it to (Mg,Fe)SiO₃ perovskite [[[PRESUMABLY ALSO WORKS FOR bdg<->p-Pv?]]].

Okuda et al. (2017) present a temperature scaling relation for bridgmanite, which I additionally apply to the Fe-endmember. By having temperature-dependent values I am able to obtain an equation that gives thermal conductivity as a function of both temperature and composition, for a given (studied/fit?) endmember pair.

4.2.1 Fitting the data

[Equations from Ohta et al., 2017 (eq. 7,8,9), and Okuda et al., 2017 (eq. 5)]

I want to determine lattice thermal conductivity as a function of temperature and composition, using calculated and fit constants. For the method I will use I need to know how the conductivity of endmember minerals changes with physical conditions. In order to keep temperature the only dependent variable, I will scale volume linerarly with temperature [FIGURE]. At this point I can scale the conductivity of an endmember with temperature within the fitted range (Okuda et al., 2017).

Considering Ohta et al. (2017) the linear interpolation between the conductivities two endmembers can be perturbed, forming the trough characteristic of varying composition. While FeSiO₃ generally has a lower thermal conductivity than MgSiO₃, the minimum is located at an intermediate composition. The effect of impurity scattering is larger than inherent changes due to chemistry.

Compositional dependence

Ohta et al., 2017

* = already cited somewhere above

Ohta eq. 7

$$\kappa_{latt} = \kappa_i \left(\frac{\omega_0}{\omega_M} \right) \arctan \left(\frac{\omega_M}{\omega_0} \right) \tag{4.1}$$

 κ_{latt} - output conductivity as function of t & x (Wm $^{-1}$ K $^{-1}$), considering mineral specific parameters

 κ_i - the composition-dependent conducitivity, if it were linearly interpolated between endmembers (Wm⁻¹K⁻¹)

 ω_0/ω_M - temperature-dependent parameter to perturb κ_i , to create the "trough" trend in composition-dependent conductivity

 ω_0 - "the phonon frequency where the intrinsic mean free path is equal to that due to solute atoms"

 ω_M - "the phonon frequency corresponding to the maximum of the acoustic branch of the phonon spectrum"

Ultimately this is the equation we are trying to solve. The two components κ_i and ω_0/ω_M , are both temperature and composition-dependent. κ_i gives the compositionally-weighted average conductivity, a linear interpolation between endmembers at a certain temperature. ω_0/ω_M controls the conductivity decrease due to the impurity effect, the magnitude of which depends on the temperature and composition of interest.

Ohta eq. 8

$$\left(\frac{\omega_0}{\omega_M}\right)^2 = \frac{\chi^T}{C(1-C)}\tag{4.2}$$

* ω_0/ω_M - temperature-dependent parameter to perturb κ_i , to create the "trough" trend in composition-dependent conductivity

 $^*\omega_0$ - "the phonon frequency where the intrinsic mean free path is equal to that due to solute atoms"

 $^*\omega_M$ - "the phonon frequency corresponding to the maximum of the acoustic branch of the phonon spectrum"

 χ^T -temperature-dependent parameter to ...???

 χ - "a constant"...

T - temperature of interest (K, default data fit between 1000 - 5000 K, but extrapolation should be reasonable)

C - composition mix of interest (dimensionless, values between 0 and 1)

The equation that splits ω_0/ω_M into its temperature and composition-dependent components, where χ is a temperature-dependent variable. C (1 – C) is largest when C = 0.5 or 50%, relating to the shape of the trough formed by this fit.

$$\chi^T$$
 scaling
$$\chi^T = A e^{BT} \tag{4.3}$$

* χ^T -temperature-dependent parameter to ...???

* χ - "a constant"...

 *T - temperature of interest (K, default data fit between 1000 - 5000 K, but extrapolation should be reasonable)

A - coefficient in χ^T variation with temperature

B - exponent in χ^T variation with temperature

 χ is a temperature-dependent variable, but a plot of χ against T has no obvious trend. A simple exponential can be fit to χ^T against T however, with a coefficient A and exponent B.

Ohta eq. 9
$$\kappa_i = (1 - C) \kappa_{M_SSiO_3} + C \kappa_{FeSiO_3}$$
 (4.4)

* κ_i - the composition-dependent conducitivity, if it were linearly interpolated between endmembers (Wm⁻¹K⁻¹)

*C - composition mix of interest (dimensionless, values between 0 and 1)

 κ_{MgSiO_3} - temperature and volume-dependent conductivity for Mg endmember (Wm⁻¹K⁻¹)

 κ_{FeSiO_3} - temperature and volume-dependent conductivity for Fe endmember (Wm⁻¹K⁻¹)

An equation that describes the conductivity of an endmember mix, assuming the relation is a simple weighted mean. *C*, in this case specifically, is the proportion of Fe atoms swapped into the system for Mg. The actually dependence of conductivity with composition is more complicated on the atomic scale, this intermediate average value adjusted in Eq. 4.1 (Ohta et al., 2017, Eq. 7).

Temperature dependence

Okuda et al., 2017

Okuda eq. 5

$$\kappa_{adj} = \kappa_{ref} \left(\frac{T_{ref}}{T}\right)^a \left(\frac{V_{ref}}{V}\right)^g \tag{4.5}$$

 κ_{adj} - temperature and volume-dependent conductivity of an endmember (Wm⁻¹K⁻¹)

 κ_{ref} - reference conducitivty of an endmember (Wm $^{-1}$ K $^{-1}$)

 T_{ref} - reference temperature at which above conductivities are calculated (K)

**T* - temperature of interest (K, default data fit between 1000 - 5000 K, but extrapolation should be reasonable)

a - exponent controlling temperature-dependent conducitvity of an endmember V_{ref} - reference volume of an endmember (E-30 m³)

V - temperature-dependent volume of an endmember (E-30 m³)

g - exponent controlling volume | density-dependent conducitvity of an endmember

Okuda et al. (2017) present a model for density and temperature-dependent conductivity (actually from Manthilake 2011, REF???), which utilises exponents obtained from fitted data. A reference value is scaled to infer conductivity at the conditions of interest.

Volume scaling (y = mx + c)

$$V = \frac{\partial V}{\partial T}T + V_{T_0} \tag{4.6}$$

*V - temperature-dependent volume of an endmember (E-30 m³)

 $\partial V/\partial T$ - fit gradient, change of volume with temperature (E-30 m³/K)

**T* - temperature of interest (K, default data fit between 1000 - 5000 K, but extrapolation should be reasonable)

 V_{T_0} - intercept volume for T=0 K (E-30 $\mathrm{m}^3)$

I take Eq. 4.5 (Okuda et al., 2017, Eq. 5) a step further, by obtaining V in terms of T. This dependence is effectively linear over the temperatures considered, meaning Eq. 4.1 (Ohta et al., 2017, Eq. 7) is dependent solely on temperature, composition, and fit or calculated constants.

Modelling the lower mantle with variable thermal conductivity

5.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

5.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

Summary/Discussion/Conclusion

6.1 Main Section 1

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aliquam ultricies lacinia euismod. Nam tempus risus in dolor rhoncus in interdum enim tincidunt. Donec vel nunc neque. In condimentum ullamcorper quam non consequat. Fusce sagittis tempor feugiat. Fusce magna erat, molestie eu convallis ut, tempus sed arcu. Quisque molestie, ante a tincidunt ullamcorper, sapien enim dignissim lacus, in semper nibh erat lobortis purus. Integer dapibus ligula ac risus convallis pellentesque.

6.1.1 Subsection 1

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

Appendix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

\hypersetup{urlcolor=red}, or

\hypersetup{citecolor=green}, or

\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.

Bibliography

- Ammann, M. W. et al. (2014). "Variation of thermal conductivity and heat flux at the Earth's core mantle boundary". In: *Earth and Planetary Science Letters* 390, pp. 175–185. ISSN: 0012821X. DOI: 10.1016/j.epsl.2014.01.009. URL: http://linkinghub.elsevier.com/retrieve/pii/S0012821X14000120.
- Brown, J. M. and R. G. McQueen (1986). "Phase Transitions, Grüneisen Parameter, and Elasticity for Shocked Iron Between 77 GPa and 400 GPa". In: *Journal of Geophysical Research* 91.B7, pp. 7485–7494.
- Dekura, H., T. Tsuchiya, and J. Tsuchiya (2013). "Ab initio Lattice Thermal Conductivity of MgSiO3 Perovskite as Found in Earth's Lower Mantle". In: *Physical Review Letters* 110, pp. 1–5. ISSN: 0031-9007. DOI: 10.1103/PhysRevLett.110.025904. URL: http://link.aps.org/doi/10.1103/PhysRevLett.110.025904.
- Goncharov, Alexander F. et al. (2009). "Thermal conductivity of lower-mantle minerals". In: *Physics of the Earth and Planetary Interiors* 174.1-4, pp. 24–32. ISSN: 00319201. DOI: 10.1016/j.pepi.2008.07.033. URL: http://linkinghub.elsevier.com/retrieve/pii/S0031920108001945.
- Haigis, Volker (2013). "Trace elements in silicate melts and the thermal conductivity of the earth's deep mantle: insights from atomistic modeling of geomaterials". PhD thesis. Freien Universität Berlin. URL: http://d-nb.info/1031915087/.
- Hofmeister, A. M. (1999). "Mantle Values of Thermal Conductivity and the Geotherm from Phonon Lifetimes". In: *Science* 283, pp. 1699–1706. ISSN: 00368075. DOI: 10. 1126/science.283.5408.1699. URL: http://www.sciencemag.org/cgi/doi/10. 1126/science.283.5408.1699.
- Lay, T., J. Hernlund, and B. A. Buffett (2008). "Core-mantle boundary heat flow". In: Nature Geoscience 1, pp. 25–32. ISSN: 1752-0894. DOI: 10.1038/ngeo.2007.44. URL: http://www.nature.com/doifinder/10.1038/ngeo.2007.44.
- Manthilake, G. M. et al. (2011). "Lattice thermal conductivity of lower mantle minerals and heat flux from Earth's core." In: *Proceedings of the National Academy of Sciences of the United States of America* 108, pp. 1–4. ISSN: 1091-6490. DOI: 10.1073/pnas.1110594108. URL: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3207700{\&}tool=pmcentrez{\&}rendertype=abstract.
- Ohta, K. et al. (2012). "Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite at the core-mantle boundary". In: *Earth and Planetary Science Letters* 349-350, pp. 109–115. ISSN: 0012821X. DOI: 10.1016/j.epsl.2012.06.043. URL: http://linkinghub.elsevier.com/retrieve/pii/S0012821X12003354.
- Ohta, Kenji et al. (2017). "Thermal conductivity of ferropericlase in the Earth's lower mantle". In: *Earth and Planetary Science Letters* 465, pp. 29–37. ISSN: 0012821X. DOI: 10.1016/j.epsl.2017.02.030. URL: http://dx.doi.org/10.1016/j.epsl.2017.02.030.
- Okuda, Yoshiyuki et al. (2017). "The effect of iron and aluminum incorporation on lattice thermal conductivity of bridgmanite at the Earth's lower mantle". In: *Earth and Planetary Science Letters* 474. September, pp. 25–31. ISSN: 0012821X. DOI: 10. 1016/j.epsl.2017.06.022. URL: http://dx.doi.org/10.1016/j.epsl.2017.06.022.

20 BIBLIOGRAPHY

Osako, M. and E. Ito (1991). "Thermal diffusivity of MgSiO3 perovskite". In: *Geophysical Research Letters* 18, pp. 239–242. URL: http://onlinelibrary.wiley.com/doi/10.1029/91GL00212/full.

- Snyder, G Jeffrey and Eric S Toberer (2008). "Complex thermoelectric materials". In: *Nature materials* 7.2, pp. 105–114. ISSN: 1476-1122. DOI: 10.1038/nmat2090. arXiv: 1512.00567.
- Stackhouse, Stephen, Lars Stixrude, and Bijaya B Karki (2015). "First-principles calculations of the lattice thermal conductivity of the lower mantle". In: *Earth And Planetary Science Letters* 427, pp. 11–17. ISSN: 0012821X. DOI: 10.1016/j.epsl. 2015.06.050. URL: http://dx.doi.org/10.1016/j.epsl.2015.06.050.
- Tang, X. et al. (2014). "The thermal conductivity of the Earth's lower mantle". In: Geophysical Research Letters 41, pp. 2746–2752. DOI: 10.1002/2014GL059385. Received. URL: http://onlinelibrary.wiley.com/doi/10.1002/2014GL059385/pdf.
- Tosi, Nicola et al. (2013). "Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity". In: *Physics of the Earth and Planetary Interiors* 217, pp. 48–58. ISSN: 00319201. DOI: 10.1016/j.pepi.2013.02.004. URL: http://dx.doi.org/10.1016/j.pepi.2013.02.004.