Curso de Macroeconometria

Resolução da Lista 10

Rodney N Silva

22 de Dezembro de 2017

Resolução dos Exercícios

```
library(forecast)
library(urca)
library(stargazer)
library(png)
library(xtable)
library(mFilter)
library(ggplot2)
library(xtable)
#1.
pi.mens <- 0
pi.inter <- 0
pi.an2 <- 0
setwd( "C:/Users/rodney/Documents/Macroeconometria/Aula10")
data <- ts(read.csv('data.csv', header=T, sep=';', dec=',',</pre>
skip=4)[-183,-1], start=c(2002,01), freq=12)
colnames(data) <- c('pim', 'pim_sa')</pre>
# Variação mensal
for (x in 2:length(data[,1])){
pi.mens[x] \leftarrow 100*(data[x,1]-data[x-1,1])/data[x-1,1]
pi.mens <- ts(pi.mens, start=c(2002,02), freq=12)</pre>
# Variação Interanual
for (x in 12:length(data[,1])){
pi.inter[x-11] \leftarrow 100*(data[x,1]-data[x-11,1])/data[x-11,1]
}
pi.inter <- ts(pi.inter,start=c(2003,01), freq=12)</pre>
# Variação Anual
pi.an <- aggregate.ts(data[,1],by= 12,FUN=sum)</pre>
for (x in 2:(length(pi.an))){
pi.an2[x-1] \leftarrow 100*(pi.an[x]-pi.an[x-1])/pi.an[x-1]
pi.an2 <- ts(pi.an2, start=c(2003), freq=1)</pre>
# Modelo Arima
mpim <- auto.arima(data[,1])</pre>
mpimsa <- auto.arima(data[,2])</pre>
data.model <- window(data,start=c(2002,07),end=c(2012,01))</pre>
```

```
data.forecast <- window(data, start=c(2012,02))
modelo <- Arima(data.model[,1], order=c(1,1,0), seasonal=c(2,0,0))
fmodelo <- forecast(modelo, h=nrow(data.forecast),
level=c(50,75,95))
accuracy1 <- accuracy(fmodelo, data.forecast[,1])
stargazer(accuracy1)</pre>
```

Tabela 1

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.009	3.206	2.502	-0.077	2.694	0.460	-0.011	
Test set	2.608	6.067	4.773	2.224	4.940	0.878	0.683	0.966

```
fmodelo <- forecast(modelo,h=10,level=c(50,75,95))
autoplot(fmodelo,main='Previsão da Prod. Industrial 10 Períodos à frente',ylab='Número Indice',</pre>
```



```
# Modelo Arimax
# Variáveis Exógenas
data2 <- ts(read.csv2('data2.csv', header=T, sep=';', dec=',')[,-1],</pre>
start=c(2002,07),end=c(2017,02), freq=12)
dates <- seq(as.Date('2002-01-01'),
              as.Date('2017-02-01'),by='1 month')
cambio <- data2[,4]-lag(data2[,4],-6)</pre>
commod <- data2[,6]-lag(data2[,6],-6)</pre>
amostra <- cbind(data2[,1:2], cambio, commod,data2[,8:9])</pre>
amostraf <- window(amostra, start=c(2012,02), end=c(2017,02))
amostra \leftarrow window(amostra, start=c(2002,07), end=c(2012,01))
data.forecast <- ts.intersect(data.forecast,amostraf)</pre>
# Modelo Arimax
modelo2 <- Arima(data.model[,1], order=c(1,1,0),</pre>
                    seasonal=c(2,0,0), xreg =amostra[,1:6])
#3.
# Previsão 10 passos à frente com cenários
amostraf1 \leftarrow window(amostraf, start=c(2012,02), end=c(2012,12))
fmodelo2 <- forecast(modelo2, xreg=amostraf1,</pre>
```

```
h=10,level=c(50,75,95))
autoplot(fmodelo2,main='Previsão da Prod. Industrial 10 Períodos à frente',ylab='Número Indice';
```


	Modelo Arima	Modelo Arimax
ME	2.61	1.33
RMSE	6.07	5.56
MAE	4.77	4.44
MPE	2.22	0.86
MAPE	4.94	4.70
MASE	0.88	0.82
ACF1	0.68	0.67
Theil's U	0.97	0.92

O modelo com variáveis exógenas obteve alguma melhora nos erros