STATISTIKA

Program Studi Teknologi Rekayasa Perangkat Lunak by Dani Rofianto

Ukuran Simpangan & Dispersi

1. Ukuran Dispersi

Ukuran dispersi adalah ukuran keragaman data dari pusatnya (mean/median).

Tujuannya: untuk melihat seberapa jauh data menyebar (homogen atau heterogen).

Jenis-jenis ukuran dispersi:

- 1.Rentang (Range) → nilai terbesar nilai terkecil.
- 2.Jangkauan antar kuartil (Interquartile Range, IQR) → Q3 Q1.
- 3. Variansi (*Variance*) → rata-rata kuadrat selisih tiap data dengan rata-rata.
- 4. Simpangan baku (Standard Deviation, SD) → akar kuadrat dari variansi.
- 5.Koefisien variasi (Coefficient of Variation, CV) → perbandingan simpangan baku terhadap rata-rata (dalam persen).

2. Ukuran Simpangan

Ukuran simpangan = bagian dari ukuran dispersi yang khusus menghitung **simpangan (deviation)** data dari rata-rata.

Biasanya berupa rata-rata selisih absolut atau kuadrat selisih dari mean.

Contoh ukuran simpangan:

- 1. Simpangan rata-rata (Mean Deviation/MD)
- 2. Variansi (Variance)
- 3. Simpangan baku (Standard Deviation)

Kesimpulan

Ukuran Dispersi → konsep umum untuk mengukur penyebaran data.

Ukuran Simpangan → bagian dari ukuran dispersi yang lebih fokus pada jarak data terhadap pusat (mean).

Dispersi=Variansi data=keragaman data

Adalah data yang menggambarkan bagaimana suatu kelompok data menyebar terhadap pusatnya data atau ukuran penyebaran suatu kelompok data terhadap pusatnya data

Contoh: Ada 3 kelompok data

```
(a) 50, 50, 50, 50 \longrightarrow rata-rata hitung = 50 (homogen)
```

(b) 50, 40, 30, 60, 70
$$\longrightarrow$$
 rata-rata hitung = 50 (heterogen)

Tapi kelompok (c), lebih Heterogen dibandingkan (b)

Diagram Rata-rata hitung

Perbandingan Dispersi Kedua Dataset

- •Dataset 1 (tinggi keragaman): menunjukkan perbedaan kompetensi yang signifikan. Ada gap besar antar mahasiswa.
- •Dataset 2 (rendah keragaman): menunjukkan homogenitas. Mahasiswa hampir seragam nilainya, cenderung di level sangat baik (98).

Indikasi Homogenitas Nilai

Pada **dataset kedua**, sebagian besar mahasiswa mendapat nilai **98**, hanya beberapa yang berbeda (65, 90, 95, 100). Hal ini bisa menunjukkan dua hal:

- •Positif: mahasiswa memang menguasai materi dengan baik → hasil belajar seragam.
- •Negatif: adanya kemungkinan ketidaknormalan distribusi (misalnya mencontek, atau jawaban dibocorkan), karena pola nilai terlalu seragam dan mendekati sempurna.

Rentang

Ukuran variansi yang paling mudah adalah rentang. Rentang adalah selisih bilangan terbesar dengan bilangan terkecil.

Rentang = Data Terbesar-Data Terkecil Contoh:

Jika data hasil pengamatan adalah: 9,3,2,4,5,2,6,2,9,10,14,13, dan 4

Data terbesar = 14

Data terkecil = 2

Rentang = 14 - 2 = 12

Rentang Antar Kuartil

$$RAK = K_3 - K_1$$

dengan:

 $K_1 = \text{kuartil ke - 1}$

 $K_3 = \text{kuartil ke} - 3$

Contoh RAK

Interval	F
Kelas	
0.2 - 1.2	10
1.3 - 2.3	21
2.4 - 3.4	16
3.5 - 4.5	8
4.6 - 5.6	2
5.7 - 6.7	3

$$LK_{1} = \frac{1(60+1)}{4} = 15.25$$

$$LK_{3} = \frac{3(60+1)}{4} = 45.75$$

$$K_{1} = 1.25 + 1.1 \left(\frac{\frac{1 \cdot 60}{4} - 10}{21}\right) = 1.51$$

$$K_{3} = 2.35 + 1.1 \left(\frac{\frac{3 \cdot 60}{4} - 31}{16}\right) = 3.31$$

$$RAK = K_3 - K_1 = 1.80$$

Simpangan Antar Kuartil

$$SK = \frac{1}{2}(K_3 - K_1) = \frac{1}{2}RAK$$

Contoh:

Dengan RAK = 1.80

Maka SK = 0.90

Rata-rata Simpangan

Data tunggal

$$RS = \frac{\sum_{i=1}^{n} |x_i - \overline{x}|}{n}$$
 dengan:

$$x_i = \text{data ke-i}$$

$$\overline{x} = \text{rata-rata hitung}$$

$$n = \text{jumlah data}$$

Contoh:

Jika diperoleh hasil pengamatan 8,7,10,11. Tentukan rata-rata simpangannya!

$$\bar{x} = \frac{8+7+10+11}{4} = 9$$

$$RS = \frac{|8-9|+|7-9|+|10-9|+|11-9|}{4} = \frac{6}{4}$$

Rata-rata Simpangan

Data kelompok

$$RS = \frac{\sum_{i=1}^{n} f_i \left| x_i - \overline{x} \right|}{n}$$

dengan:

 f_i = frekuensi kelas ke - i

 x_i = nilai tengah kelas ke - i

 \bar{x} = rata - rata hitung

$$n = \sum_{i=1}^{n} f_i$$

Contoh

Interval Kelas	f	xi	$f_i \cdot x_i$	$ x_i - \overline{x} $	$f_i x_i - \overline{x} $
0.2 - 1.2	10	0.7	7	1.83	18.33
1.3 - 2.3	21	1.8	37.8	0.73	15.4
2.4 - 3.4	16	2.9	46.4	0.37	5.87
3.5 - 4.5	8	4.0	32	1.47	11.73
4.6 - 5.6	2	5.1	10.2	2.57	5.13
5.7 - 6.7	3	6.2	18.6	3.67	11
	60		152		67.47

$$\bar{x} = \frac{152}{60} = \frac{38}{15} = 2.53$$

$$RS = \frac{\sum_{i=1}^{n} f_i |x_i - \bar{x}|}{n}$$

$$= \frac{67.47}{60} = 1.12$$

Variansi

Untuk sampel berukuran n dan rata-ratanya 17 maka variansinya

Data tunggal

$$s^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n-1}$$

atau

$$s^{2} = \frac{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}{n(n-1)}$$

dengan:

 $x_i = data ke - i$

 \overline{x} = rata - rata hitung

n = jumlah data

Contoh variansi 1

Berapakah varians dari 5, 7, 2, 2, 4?

$$\overline{x} = \frac{5+7+2+2+4}{5} = 4$$

$$\sum_{i=1}^{n} (x_i - \overline{x})^2$$

$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}$$

$$s^2 = \frac{(5-4)^2 + (7-4)^2 + (2-4)^2 + (2-4)^2 + (4-4)^2}{5-1}$$

$$= 4.5$$

Variansi

Data kelompok

$$s^{2} = \frac{\sum_{i=1}^{n} f_{i} \left(x_{i} - \overline{x} \right)^{2}}{n}$$

dengan: -1

 x_i = nilai tengah ke - i

 \bar{x} = rata - rata hitung

$$n = \sum_{i=1}^{n} f_i$$

$$s^{2} = \frac{n \sum_{i=1}^{n} f_{i} x_{i}^{2} - \left(\sum_{i=1}^{n} f_{i} x_{i}\right)^{2}}{n(n-1)}$$

atau

Contoh

Tentukan Varians dari tabel berikut

Nilai	Frekuensi
63-67	3
68-72	2
73-77	7
78-82	3
83-87	4
88-92	1
Total	20

Penyelesaian

Nilai	Frekuensi	$x_{\mathbf{i}}$	$f_{i_{\perp}x_i}$	$x_i - \bar{x}$	$(x_i - \bar{x})^2$	$f_i(x_i - \bar{x})^2$
63-67	3	65	195	-11,5	132,25	396,75
68-72	2	70	140	-6,5	42,25	144,5
73-77	7	75	525	-1,5	2,25	15,75
78-82	3	80	240	3,5	12,25	36,75
83-87	4	85	340	8,5	72,25	289
88-92	1	90	90	13,5	182,25	182,25
Total	20		1.530			1.065

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{195 + 140 + 525 + 240 + 340 + 90}{20} = \frac{1530}{20} = 76, 5 \qquad S^2 = \frac{\sum f_i (x_i - \bar{x})^2}{n} = \frac{1065}{20} = 53, 25$$

Jadi, varians kelompok tersebut adalah 53,25

Simpangan Baku

Akar positif dari varians

Data Tunggal

$$S = \sqrt{\frac{\sum_{i=1}^{n} \left(x_i - \overline{x}\right)^2}{n-1}}$$

Data Kelompok

$$s = \sqrt{\frac{\sum_{i=1}^{n} f_i \left(x_i - \overline{x}\right)^2}{n-1}}$$

Contoh

Tentukan Variansi dan simpangan baku dari data berikut:

Skor	Frekuensi
40-49	1
50-59	4
60-69	8
70-79	14
80-89	10
90-99	3

Penyelesaian

Skor	fi	Xi	$f_i x_i$	$(x_i - \bar{x})$	$(x_i - \bar{x})^2$	$f_i(x_i - \bar{x})^2$
40-49	1	44,5	44,5	-29,25	855,56	855,56
50-59	4	54,5	218	-19,25	370,56	1. 482,25
60-69	8	64,5	516	-9,25	85,56	684,48
70-79	14	74,5	1083	0,75	0,56	7,88
80-89	10	84,5	845	10,75	115,56	1.155,63
90-99	3	94,5	283,5	20,75	430,56	1.291,69
Jumlah	40		2950			5.477,49

$$\bar{x} = \frac{\sum f_i x_i}{\sum f_i} = \frac{2950}{40} = 73,75$$

$$S^2 = \frac{1}{n} \sum_{i=1}^k f_i (x_i - \bar{x})^2$$

$$S^2 = \frac{1}{40} (5.477,49) = 136,94$$

$$S = \sqrt{S^2} = \sqrt{136,94} = 11,70$$

Jadi, nilai Variansinya adalah 136,94 dan nilai simpangan bakunya 11,70

Koefisien Variasi

Koefisien Variasi adalah perbandingan <u>Simpangan Baku (Standar Deviasi)</u> dengan <u>Rata-rata</u> <u>Hitung</u> dan dinyatakan dalam bentuk persentase.

Kegunaan koefisien variasi adalah untuk melihat sebaran/distribusi data dari rata-rata hitungnya. Semakin kecil koefisien variasi maka data semakin homogen (seragam), sedangkan semakin besar koefisien variasi maka data semakin heterogen (bervariasi).

$$KV = \frac{s}{\overline{x}} \times 100\%$$

Keterangan:

kv= koefisien variasi

s =standar deviasi

 $ar{x}=$ rata-rata hitung

Interpretasi KV

Kategori (%)	Interpretasi KV
45 atau lebih	Sangat heterogen
40 - 44	Heterogen
30 - 39	Normal
25 - 29	Homogen
Kurang dari 25	Sangat homogen

Contoh KV

Menurut sensus pendapatan perbulan di Malaysia setara dengan Rp. 5.000.000,00 dengan simpangan baku Rp. 3.000.000,00. Di Indonesia rata-rata Rp. 4.000.000,00 dengan simpangan baku Rp. 2.000.000,00. Tunjukkanlah secara statistik negara mana yang lebih merata pendapatannya.

Contoh

Rata-rata nilai ujian statistika mahasiswa jurusan ekonomi adalah 75 dengan standar deviasi 9. Berapakah koefisien variasi nilai ujian statistika mahasiswa tersebut.

Penyelesaian:

Diketahui $\bar{x}=75$ dan s=9, maka koefisien variasinya adalah:

$$kv = rac{s}{\overline{x}} \times 100\%$$

$$= rac{9}{75} \times 100\%$$

$$= 12\%$$

Contoh

Hasil ujicoba tes IQ kepada beberapa orang mahasiswa adalah sebagai berikut:

Hitunglah koefisien variasi hasil tes IQ mahasiswa tersebut!

Penyelesaian:

Nilai yang dibutuhkan untuk menghitung koefisien variasi adalah rata-rata hitung (\bar{x}) dan standar deviasi/simpangan baku (s). Langkah pertama yang harus kita lakukan adalah menghitung rata-rata hitung (\bar{x}) terlebih dahulu.

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$= \frac{1}{7} (135 + 110 + 140 + 100 + 115 + 110 + 130)$$

$$= \frac{1}{7} (840)$$

$$= 120$$

Lanjutan

Selanjutnya
hitung standar
deviasi dengan
memanfaatkan
tabel berikut.

x_i	$x_i - ar{x}$	$(x_i-ar{x})^2$
135	15	225
110	-10	100
140	20	400
100	-20	400
115	-5	25
110	-10	100
130	10	100
$\sum_{i=1}^{7}$	$(x_i-ar{x})^2=$	1350

Nilai standar deviasi dihitung menggunakan rumus:

$$s = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

$$= \sqrt{\frac{1}{7-1} 1350}$$

$$= \sqrt{225}$$

$$= 15$$

Selanjutnya koefisien korelasi dihitung dengan rumus:

$$kv = rac{s}{\bar{x}} \times 100\%$$
 $= rac{15}{120} \times 100\%$
 $= 12,5\%$

Koefisien variasi hasil tes IQ mahasiswa adalah 12,5.

Latihan

Perhatikan data berkelompok berikut:

Uang saku (M)	Nilai Tengah	Frekuensi (f)
118 - 126	122	3
127 - 135	131	5
136 - 144	140	9
145 - 153	149	12
154 - 162	158	5
163 - 171	167	4
172 - 180	176	2
Jumlah		40

Carilah:

- a. Rentang antar kuartil
- b. Rata-rata simpangan
- c. Variansi
- d. Simpangan baku