Anotações – FMC I

Sérgio Dantas

21 de agosto de 2025 - 5 de outubro de 2025

Exercícios

x1.1

Faz sentido que, em uma equivalência, ' \Longrightarrow ' corresponda a "somente se", enquanto ' \Longleftarrow ' a "se".

x1.2

' \Longrightarrow ' pode ser lido como "é suficiente", ao passo que ' \Longleftarrow ', como "é necessário".

x1.3

- (1) $(x+y)^2 = x^2 + 2xy + y^2$.
- (2) $x(a (b+c)) = xa x(b+c) \implies x(a (b+c)) = xa xb xc$.
- (3) Concluímos que $(A \subseteq B) \iff (B \subseteq A)$.
- (4) Suponha que n é um número inteiro. Vamos demonstrar que n+1 é maior que n.

x1.4

O problema da definição está no fato dela não restringir quais valores de k são válidos no lado direito da proposição (foi dito "para qualquer inteiro k").

A solução seria substituir "para qualquer inteiro k" por "existe pelo menos um k". Simbologicamente, teremos:

$$n \in \operatorname{par} \stackrel{\operatorname{def}}{\iff} (\exists k : int)[n = 2k]$$

Note que foi utilizado não o símbolo de equivalência comum, mas o de equivalência intensional com definição.

x1.5

- (i) Sim. Mesma coisa que entre proposições, mas com objetos e igualdades.
- (ii) Acredito que sim, proposições intensionalmente iguais também são extensionalmente iguais.

Quando afirmamos que duas proposições são extensionalmente equivalentes, dizemos que apenas o significado "externo" de ambas são idênticos. Por outro lado, quando se trata de uma equivalência intensional, tanto o significado quanto as suas partes mais internas (e aqui me refiro principalmente ao algoritmo necessário para alcançar cada prop) são as mesmas.

Resumidamente, pelo que entendi, seria como dizer que a intensão abrange a extensão, mas o contrário não é verdadeiro.

Dessa forma, se duas props são equivalentes em intensão, creio que é totalmente válido que elas também sejam equivalentes em extensão.

- $(1) \ 2 \cdot 3 = 6$
- (2) $2 \cdot 3 = 3 \cdot 2$
- (3) x ama $y \iff y$ é amado por x
- (4) $n \in \text{par} \iff \text{existe } k \in \mathbb{Z} \text{ tal que } n = 2k$
- (5) Matheus mora na capital do RN \iff Matheus mora na maior cidade do RN
- (6) a capital da Grécia = Atenas
- (7) o vocalista da banda Sarcófago é professor da UFMG \iff Wagner Moura é professor da
- (8) Aristoteles foi professor de Alexandre o Grande \iff Aristoteles ensinou Alexandre o Gra
- (9) A terra é plana ← A lua é feita de queijo

- (10) $x^2 + y^2 \le 0 \iff x = y = 0$
- $(11) x^2 + y^2 \le 0 \iff 0 \ge x \cdot x + y \cdot y$
- (12) $(x^2 + y^2)^2 = (x \cdot x + y^2)(x^2 + y \cdot y)$

- (a) Proposição
- (b) Objeto
- (c) Objeto
- (d) Proposição
- (e) Objeto
- (f) Proposição

x1.8

- (1) Proposição
- (2) Proposição
- (3) Objeto
- (4) Objeto
- (5) Proposição

- (1) Existe um número inteiro tal que o seu dobro somado a 1 é igual a 13.
- (2) Existem dois números tais que o quadrado da sua soma é igual ao quadrado do primeiro número somado ao dobro do produto entre o primeiro e o segundo número.
- (3) Aquela função que dado um número qualquer retorna esse número somado a 1.
- (4) O conjunto de todos os livros cujo título tem o mesmo número de letras que alguma palavra.

- (1) Existem duas pessoas que se amam.
- (2) Existe uma pessoa tal que ela ama q e q ama ela.
- (3) x + y = z
- (4) Existe um número que quando somando a y resulta em z.
- (5) Existem dois números tais que o primeiro somado a y é igual ao segundo.
- (6) Para qualquer número, existe outro número que quando ambos são somados resultam em z.
- (7) Para quaisquer dois números, existe outro número que quando somado ao primeiro resulta no segundo.

x1.11

- (3) existe n tal que n d e n + d são primos.
- (5) existe N tal que para todo n, se $n \ge N$ então existe d tal que n d e n + d são primos.

x1.12

- "qualquer que seja ____, ..."
- let ____ (JavaScript)
- for ____ in ___ (Python/JavaScript)

- (i) Sim, pois n é uma variável ligada.
- (ii) Não, pois já existe uma variável de nome d. Supondo que fizessemos a renomeação de n para d, a variável d original seria sombreada e capturada e, consequentemente, não poderia ser referida no escopo.
- (iii) Não, pois d é uma variável livre e, caso a renomeação fosse feita, a proposição mudaria de significado.

- (i) Não, pois iria sombrear a variável n original.
- (ii) Sim, pois as variáveis N e d originais estão em escopos distintos, logo não haveria sombreamento de d.
- (iii) Não, pois a variável N original seria sombreada.
- (iv) Não, pois a variável d original iria ser sombreada.
- (v) Não, pois a variável n original seria sombreada.
- (vi) Sim, pois as variáveis d e N estão em escopos distintos, logo não haveria sombreamento de N.

x1.15

sister(x) não é determinado para todos os valores de $x \in P$ tais que x não tem nenhuma sister ou x tem mais de uma sister.

x1.16

Duas retas são paralelas se elas não possuem nenhum ponto em comum.

- (i) Falsa
- (ii) Verdadeira
- (iii) Verdadeira
- (iv) Verdadeira
- (v) Verdadeira
- (vi) Falsa
- (vii) Verdadeira
- (viii) Falsa
 - (ix) Falsa
 - (x) Falsa
 - (xi) Verdadeira
- (xii) Falsa

Acredito que sim. Se dois objetos são definidas exatamente da mesma forma, com a mesma intensionalidade e o mesmo significado lógico, então eles também possuem o mesmo resultado (valor/significado externo), isto é, são extensionalmente iguais.

x1.19

SKIP

x1.20

TO DO

x2.1

TO DO

x2.2

O problema está em usar a própria definição de (|) para "justificar" $8 \nmid 12$. Isso constitui uma prova por repetição da definição.

x2.3

A demonstração está errada porque ela afirma que a = mu e b = mv, quando na verdade o correto (pela proposição) é m = au e m = bv, respectivamente; tal afirmação faz com que ela chegue a uma conclusão diferente da definição.

Para demonstrar que a proposição é falsa, tome, para contra exemplo, a:=3, b:=9 e m:=9. Veja que $3\mid 9$ e $9\mid 9$ são amb as proposições válidas, pois obtemos u=3 e v=1, respectivamente, com $u,v\in\mathbb{Z}$. Todavia, $3\cdot 9\nmid 9$, uma vez que não existe inteiro k que satisfaça $9=3\cdot 9\cdot k$. Portanto, a proposição é falsa.

x2.4

TO DO

x2.5

"Se ___A___, (então) ___B___" é uma afirmação que promete que, dada A, nos entrega B, sem verificar a veracidade de ambas.

"Como $__A__$, (logo) $__B__$ ", por outro lado, é uma argumentação que leva em conta se A é verdadeira ou não, e, assim, infere B.

x3.1

NO ARQUIVO COM DEMONSTRAÇÕES

x3.2

NO ARQUIVO COM DEMONSTRAÇÕES

x3.3

NO ARQUIVO COM DEMONSTRAÇÕES

x3.4

Creio que não. Se for uma soma, basta aplicar (+(-x)) em ambos os lados da igualdade. Mas se for uma multiplicação, como faríamos para "dividir" (o que é isso?) ambos os lados por x? Ainda não temos isso em nossa especificação. A única exceção seria para o caso onde x := 1, onde poderíamos aplicar 1-idR- (\cdot) .

x3.5

NO ARQUIVO COM DEMONSTRAÇÕES

x3.7
TO DO
x3.8
NO ARQUIVO COM DEMONSTRAÇÕES
x3.9
TO DO
x3.10
NO ARQUIVO COM DEMONSTRAÇÕES
x3.11
NO ARQUIVO COM DEMONSTRAÇÕES
x3.12
x3.12
x3.12 NO ARQUIVO COM DEMONSTRAÇÕES $x3.13$
x3.12 NO ARQUIVO COM DEMONSTRAÇÕES
x3.12 NO ARQUIVO COM DEMONSTRAÇÕES $x3.13$
x3.12 NO ARQUIVO COM DEMONSTRAÇÕES x3.13 NO ARQUIVO COM DEMONSTRAÇÕES

x3.6

x3.15NO ARQUIVO COM DEMONSTRAÇÕES x3.16NO ARQUIVO COM DEMONSTRAÇÕES x3.17NO ARQUIVO COM DEMONSTRAÇÕES x3.18NO ARQUIVO COM DEMONSTRAÇÕES x3.19TO DO x4.1TO DO x4.2TO DO x4.3TO DO

x4.4

x4.5

$$\begin{aligned} & \mathsf{double} : \mathsf{Nat} \to \mathsf{Nat} \\ & \mathsf{double} \ \mathsf{O} = \mathsf{O} \\ & \mathsf{double} \ (\mathsf{S} \ \mathsf{n}) = \mathsf{S}(\mathsf{S}(\mathsf{double} \ \mathsf{n})) \end{aligned}$$

x4.6

$$\begin{aligned} &(\times): \mathsf{Nat} \to \mathsf{Nat} \\ &\mathsf{n} \times \mathsf{O} = \mathsf{O} \\ &\mathsf{n} \times (\mathsf{S} \; \mathsf{m}) = (\mathsf{n} \times \mathsf{m}) + \mathsf{n} \end{aligned}$$

x4.7

$$2 \cdot (0+1) \equiv SS0 \cdot (0+S0)$$

$$= SS0 \cdot (S(0+0)) \qquad (por (+).2)$$

$$= SS0 \cdot S0 \qquad (por (+).1)$$

$$= SS0 \cdot 0 + SS0 \qquad (por (\times).2)$$

$$= 0 + SS0 \qquad (por (\times).1)$$

$$= S(0+S0) \qquad (por (+).2)$$

$$= S(S(0+0)) \qquad (por (+).2)$$

$$= SS0 \qquad (por (+).1)$$

$$\equiv 2$$

x4.8

TO DO

x4.9

$$\label{eq:continuous_section} \begin{split} (\,\,\hat{}\,\,) : \mathsf{Nat} &\to \mathsf{Nat} \\ \mathsf{n} \,\,\,\hat{}\,\, \mathsf{O} &= \mathsf{S} \,\, \mathsf{O} \\ \mathsf{n} \,\,\,\hat{}\,\, (\mathsf{S} \,\,\mathsf{m}) &= (\mathsf{n} \,\,\,\hat{}\,\,\mathsf{m}) \times \mathsf{n} \end{split}$$

x4.10

TO DO

x4.11

$$\mathsf{fib}:\mathsf{Nat}\to\mathsf{Nat}$$

$$\mathsf{fib}\ \mathsf{O} = \mathsf{O}$$

$$fib (S O) = S O$$

$$\mathsf{fib}\;(\mathsf{S}\;(\mathsf{S}\;\mathsf{n})) = \mathsf{fib}\;(\mathsf{S}\;\mathsf{n}) + \mathsf{fib}\;\mathsf{n}$$

x4.12

TO DO

x4.13

TO DO

x4.14

Pela hipótese indutiva.

x4.15

Em uma parte da demonstração temos o seguinte passo de cálculo:

$$Sk + m = S(k+m) \qquad ((+).2)$$

Isso claramente é uma aplicação errada de (+).2, pois ela não possui essa forma.

x4.16

NO ARQUIVO COM DEMONSTRAÇÕES

x4.17

NO ARQUIVO COM DEMONSTRAÇÕES

x4.18

NO ARQUIVO COM DEMONSTRAÇÕES

x4.19

NO ARQUIVO COM DEMONSTRAÇÕES

x4.20

NO ARQUIVO COM DEMONSTRAÇÕES

x4.21

NO ARQUIVO COM DEMONSTRAÇÕES

Questões

Q1.50

- (1) Nesta frase há uma colocação redundante da variável x. Perceba que a frase poderia ser simplesmente "todo inteiro divide ele mesmo", sem alteração no seu significado.
- (2) Mesmo caso do item (1), mas com a variável n. Poderia ser apenas "existe número tal que ele é primo e par".
- (3) Novamente o caso do item (1); poderia ser "qualquer conjunto é determinado por seus membros".
- (4) Mesma coisa do item (1). Podemos omitir a variável ligada P (é redundante): "existe pessoa p tal que p viajou para todos os países".

(5) Mais uma vez o que ocorreu no item (1). Aqui podemos omitir a variável f, teríamos "existe pessoa p tal que p assistiu a todos os filmes da lista F".

Q1.81

É uma árvore "de derivação" porque, partindo de um objeto final, o destrinchamos em objetos "menores" até alcançar as *folhas*, que são a menor unidade possível da árvore de derivação.

Q1.84

Não, pois ela infere que toda árvore que possui azeitonas é uma oliveira; embora seja válida (por coincidência), esse processo de inferência poderia facilmente dar errado com outras proposições.

Q2.28

Para que seja possível ganhar mais dados e, assim, se torne mais fácil atacar o alvo.

Q4.5

Podemos representar assim:

$$\frac{n:\mathsf{Nat}}{\mathsf{Sn}:\mathsf{Na}}\;\mathrm{Succ}$$

Q4.32

Sim, podemos separar em casos de acordo com as formas possíveis dos Nats.

Q4.42

Problemas

 $\Pi 2.1$

TO DO

 Π **2.2**

TO DO

 $\Pi 2.3$

TO DO

 Π **2.4**