Daftar Isi

Daftar	Isi		i
Daftar '	Tabe	el	. ii
Daftar	Gam	bar	. ii
Bab I. l	Pend	ahuluan	. 1
1.1	Lata	ar Belakang	. 1
1.2	Run	nusan Masalah	. 2
1.3	Tuji	uan	. 2
1.4	Lua	ran yang Diharapkan	. 3
1.5	Keg	gunaan	. 3
Bab 2.	J	auan Pustaka	
2.1	-	uk	
2.2		nologi Haber Bosch dalam Produksi Pupuk Nitrat	
2.3	Tek	nologi CGD Electrolysis di Pembuatan Pupuk Nitrat	. 4
2.4	Para	ameter yang Mempengaruhi pada CGD Electrolysis	
2.	4.1	Laju Alir Udara	
2.	4.2	Suhu	
2.	4.3	Penambahan Ion Fe ²⁺	
2.	4.4	Daya dan Tegangan	. 5
2.5	Adi	karya Penelitian	. 5
Bab 3.	Meto	ode Penelitian	. 7
3.1	Tah	apan Penelitian	. 7
3.	1.1	Persiapan Alat dan Bahan	. 7
3.2	Tah	ap Analisis	. 8
3.3	Var	iabel Penelitian	. 8
3.4	Indi	kator Capaian	. 9
3.5		nik Pengambilan Data dan Analisis Data	
3.6		yimpulan Hasil Penelitian	
	•	a dan Jadwal Kegiatan	
4.1		ggaran Biaya	
4.2		wal Kegiatan	
		aka	
		N	
		1. Biodata Ketua, Anggota dan Dosen Pendamping	
		2. Justifikasi Anggaran Kegiatan	
-	_	3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas	
Lam	piran	4. Surat Penyataan Ketua Peneliti	20

Daftar Tabel

Tabel 2.1 Adikarya Penelitian	6
Tabel 3.1 Persiapan Alat dan Bahan	7
Tabel 3.2 Kondisi Operasi dan Variabel Proses yang akan Dilakukan	8
Tabel 3.3 Indikator Capaian	9
Tabel 3.4 Pengambilan Data dan Analisis Data	9
Tabel 4.1 Anggaran Biaya	9
Tabel 4.2 Jadwal Kegiatan	10
Daftar Gambar	
Gambar 3.1 Diagram Alir Penelitian	7
Gambar 3.2 Skema Reaktor Teknologi Contact Glow Discharge Elektro	olysis
untuk Sintesis Pupuk Nitrat Cair	8

Bab I. Pendahuluan

1.1 Latar Belakang

Bakteri memainkan peran penting dalam pertumbuhan tanaman, yaitu sebagai faktor pembentuk senyawa nitrogen sederhana (NO_x) dari gas N₂ yang ada di udara dalam siklus alami fiksasi nitrogen. Namun, jumlah bakteri bukanlah variabel yang dapat dikontrol dengan mudah oleh manusia. Maka dari itu, pupuk dikembangkan untuk menggantikan bakteri pada tanah yang kurang subur. Pupuk dapat dibedakan menjadi pupuk organik dan pupuk kimia, adapun keduanya memiliki kelebihan dan kekurangannya masing-masing. Pupuk organik lebih ramah lingkungan, namun kandungan unsur haranya tidak mudah dikontrol. Di sisi lain, komposisi dan konsentrasi per satuan volume dalam pupuk kimia lebih mudah diatur sehingga lebih mudah disesuaikan dengan kebutuhan tanaman pertanian. Oleh karena itu, petani cenderung memilih untuk menggunakan pupuk kimia seperti pupuk urea dan NPK untuk memenuhi kebutuhan unsur hara pada tanaman.

Pandemi COVID-19 yang melanda seluruh negara berdampak pula pada kinerja industri pupuk dalam negeri. PT. Pupuk Indonesia (Persero) menyebutkan industri pupuk dalam negeri mengalami kenaikan biaya produksi, sementara permintaan pupuk dalam negeri serta ekspor menurun. Imam Apriyanto Putro selaku Wakil Direktur Utama PT. Pupuk Indonesia menyebutkan pandemi COVID-19 menimbulkan terjadinya kenaikan biaya bahan baku serta biaya produksi yang meningkat akibat adanya kelangkaan suplai bahan baku. (SINDONEWS.com, 2020). Imbas dari pandemi ini adalah adanya kenaikan harga pupuk dalam negeri.

Dalam peraturan Kementerian Pertanian Permentan 49/200, harga pupuk urea yang semula Rp1800/kg, naik Rp450 menjadi Rp2.250/kg, lalu pupuk SP-36 dari HET Rp2.000/kg naik Rp400 sehingga menjadi Rp2.400/kg. Sementara itu, pupuk ZA mengalami kenaikan Rp300 menjadi Rp1.700/kg dan pupuk organik granul naik sebesar Rp300, dari yang semula Rp500/kg menjadi Rp800/kg. Hanya pupuk jenis NPK yang tidak mengalami kenaikan HET dan tetap Rp2.300/kg (Antaranews, 2021). Selain itu, berbagai daerah terpencil di Indonesia menyuarakan terjadinya kelangkaan dan kenaikan harga pupuk bersubsidi selama pandemi COVID-19 (Kompas.com, 2020).

Peningkatan harga pupuk akan menyebabkan harga produk pertanian juga ikut meningkat sehingga dapat berdampak pada inflasi ekonomi. Tidak hanya itu, peningkatan harga pupuk juga akan mengakibatkan petani Indonesia tidak lagi tertarik dengan sektor pertanian dan memberikan dampak negatif pada ketahanan pangan nasional (Asnawi, *et al.*, 2009). Oleh karena itu, diperlukan sebuah solusi baru yang dapat menyelesaikan permasalahan harga dan kelangkaan pupuk di berbagai daerah di Indonesia.

Teknologi *contact glow discharge electrolysis* memiliki metode yang lebih efektif dalam mengubah gas nitrogen menjadi pupuk nitrogen cair dibandingkan proses *Haber-Bosch*. Kekurangan dari proses *Haber-Bosch* adalah kondisi operasi

suhu dan tekanannya yang tinggi. Proses ini mengkonsumsi 1-2% dari total produksi energi di dunia dan menggunakan 2-3% dari total gas alam yang dihasilkan, serta menghasilkan polutan berupa karbon dioksida sebesar 300 juta ton (Wang, B, S, *et al.*, 2017). Sementara itu, teknologi baru *contact glow discharge electrolysis* lebih ramah lingkungan, sederhana, dan murah.

Teknologi baru contact glow discharge electrolysis merupakan pengembangan dari teknologi plasma yang tidak menghasilkan residu dan mengkonsumsi energi 2,5 kali lebih rendah dibandingkan proses Haber-Bosch (Wang, B, S, et al., 2017). Teknologi plasma yang menghasilkan produk berupa gas dianggap memproduksi *yield* yang lebih rendah dibanding teknologi baru *contact* glow discharge electrolysis yang hasil akhirnya sudah berupa fase cair. Dalam proses pembentukan nitrat cair, contact glow discharge electrolysis menggunakan suplai gas nitrogen dan oksigen yang dapat diperoleh secara langsung dari udara. Selain itu, kebutuhan energi listrik yang digunakan oleh teknologi contact glow discharge electrolysis dapat diperoleh menggunakan sel surya yang juga merupakan teknologi ramah lingkungan. Jadi, teknologi contact glow discharge electrolysis juga dapat diaplikasikan di wilayah terpencil seperti pedesaan sehingga mengurangi biaya distribusi. Dengan penerapan teknologi contact glow discharge electrolysis, petani di berbagai daerah dapat secara mandiri memproduksi pupuk nitrogennya masing-masing sehingga biaya produksi pupuk akan lebih rendah dan dapat mengatasi masalah kenaikan harga pupuk di pasar.

Pada penelitian ini akan dikaji bagaimana membuat pupuk nitrat cair menggunakan teknologi *contact glow discharge electrolysis* dengan cara yang efektif dan efisien melalui parameter optimum seperti laju alir udara, daya dan tegangan listrik, penambahan ion Fe²⁺ dan variasi suhu. Selanjutnya dapat dihitung *yield* dari senyawa nitrat yang dihasilkan, serta efisiensi energi.

1.2 Rumusan Masalah

- a. Bagaimana membentuk pupuk nitrat cair dengan menggunakan teknologi contact glow discharge electrolysis
- b. Bagaimana laju alir udara, variasi suhu, penambahan ion Fe²⁺, daya dan tegangan terhadap produksi nitrat serta konsumsi energi dalam teknologi *contact glow discharge electrolysis*

1.3 Tujuan

- a. Mendapatkan produk pupuk nitrat cair dengan menggunakan teknologi contact glow discharge electrolysis
- b. Mengetahui pengaruh laju alir udara, variasi suhu, penambahan ion Fe²⁺, daya dan tegangan terhadap produksi nitrat serta konsumsi energi dalam teknologi *contact glow discharge electrolysis*

1.4 Luaran yang Diharapkan

Melalui penelitian ini diharapkan mampu berkontribusi dalam upaya usaha menangani permasalahan pemenuhan kebutuhan pupuk nitrat di wilayah terpencil dengan konsumsi energi yang rendah, mudah didistribusikan, rendah biaya. serta ramah lingkungan menggunakan teknologi *contact glow discharge electrolysis*. Selain itu diharapkan penelitian ini dapat dipublikasikan di jurnal Internasional maupun Nasional atau mengikuti seminar skala Nasional.

1.5 Kegunaan

Manfaat dari penelitian ini yaitu dapat memenuhi kebutuhan pupuk nitrat sebagai solusi ketahanan pangan di Indonesia, mengatasi permasalahan penggunaan bahan bakar tak terbarukan, serta menciptakan teknologi sederhana dan murah yang dapat digunakan di wilayah terpencil untuk produksi pupuk nitrat sebagai upaya menjaga ketahanan pangan di Indonesia menggunakan teknologi *contact glow discharge electrolysis*. Apabila hasilnya memuaskan, maka proses yang efisien ini dapat dengan mudah diaplikasikan dimanapun. Dengan demikian, pengembangan teknologi tepat guna produksi pupuk nitrat cair dengan kandungan nitrat yang tinggi dapat diteliti lebih lanjut.

Bab 2. Tinjauan Pustaka

2.1 Pupuk

Pupuk menyediakan komponen penting yang dibutuhkan oleh tanaman seperti unsur hara nitrogen untuk keberlangsungan hidupnya. Pupuk terbagi atas pupuk organik dan anorganik. Pupuk organik berasal dari tumbuhan kering ataupun kotoran ternak, sedangkan pupuk anorganik berasal dari sintesis kimia yang diproduksi oleh pabrik kimia. Kelebihan pupuk organik adalah lebih ramah lingkungan dan memperbaiki sifat tanah, sedangkan kelemahannya adalah unsur hara lebih sedikit dan sulit untuk dikontrol. Adapun kelebihan pupuk anorganik adalah unsur hara mudah dikontrol, efisien dalam hal transportasi, tetapi energi dan emisi CO₂ sangat tinggi serta tidak dapat diproduksi dimanapun.

2.2 Teknologi Haber Bosch dalam Produksi Pupuk Nitrat

Haber Bosch merupakan fiksasi nitrogen secara buatan dengan mereaksikan gas nitrogen dari udara dengan gas hidrogen dari gas alam seperti reaksi:

$$N_2 + 3H_2 \leftrightarrow 2NH_3 \tag{1}$$

Proses ini berlangsung di tekanan tinggi sekitar 150-200 atm dengan temperatur tinggi sekitar 500°C, dimana reaksi berlangsung secara eksotermik dengan $\Delta H = -92.4$ kJ/mol (Modak, 2002). Hidrogen yang beperan secara reaktan diperoleh dari gas alam (CH₄) melalui proses *steam reforming* sebagai berikut:

$$CH_4 + H_2O \leftrightarrow CO + H_2$$
 (2)

Selanjutnya melalui proses water gas shift reaction berikut ini.

$$CO + H_2O \leftrightarrow CO + H_2$$
 (3)

Proses tersebut mengonsumsi 1-2% dari total produksi energi di dunia dan menggunakan 2-3% dari total gas alam yang dihasilkan, serta menghasilkan polutan berupa karbon dioksida sebesar 300 juta ton (Wang, *et al.*, 2018).

2.3 Teknologi CGD Electrolysis di Pembuatan Pupuk Nitrat

Contact Glow Discharge Electrolysis merupakan teknologi terbaru yang merupakan pengembangan dari Air Plasma dimana plasma terbentuk di fasa cair larutan elektrolit dengan bantuan energi listrik, sehingga senyawa nitrat yang dituju dapat langsung dalam bentuk cair. Metode ini memberikan yield yang jauh lebih tinggi dibandingkan Faraday Electrolysis dikarenakan kehadiran senyawa radikal yang berperan luar biasa pada reaksi kimia dalam larutan. Metode ini sangat efektif untuk mendorong pembentukan senyawa radikal yang membantu gas O₂ dan N₂ sebagai komponen penyusun udara untuk bereaksi dengan plasma membentuk senyawa nitrat dalam fasa cair. Prinsip kerja pembuatan pupuk cair nitrat dengan contact glow discharge electrolysis ialah udara dinjeksikan ke dalam larutan elektrolit dimana plasma terbentuk. Pada tahap ini O₂ dan N₂ dari udara akan bereaksi dengan plasma membentuk senyawa nitrat

Injeksi udara (O₂ dan N₂) pada proses *contact glow discharge electrolysis* dapat memicu terbentuknya gas NO dan NO₂ akibat adanya elektron energetik (e-) dalam larutan dengan mekanisme reaksi sebagai berikut (Burlica *et al.*, 2006).

$$N_2 + e^- \rightarrow 2N + e^- \tag{4}$$

$$O_2 + e^{-} \rightarrow 2O \bullet + e^{-} \tag{5}$$

$$N + O \bullet \rightarrow NO$$
 (6)

$$NO + O \bullet \to NO_2 \tag{7}$$

Selanjutnya akan terbentuk ion NO₃ sebagai hasil pelarutan gas NO dan NO₂ dalam fasa liquid dengan reaksi sebagai berikut.

$$NO_2 + H_2O \rightarrow 2H^+ + 2NO_3^- + NO$$
 (8)

$$2NO_{2(g)} \rightarrow 2N_2O_4 + H_2O_{(1)} \rightarrow HNO_3 + HNO_{2(1)}$$
 (9)

$$NO_{2(g)} + NO_{(g)} \rightarrow 2N_2O_{3(g)} + H_2O \rightarrow 2HNO_{2(l)}$$
 (10)

$$3HNO_{2(1)} \rightarrow HNO_3 + 2NO_{(g)} + H_2O_{(1)}$$
 (11)

Ion amonium dapat bereaksi kembali dengan OH untuk membentuk amonia.

$$NH_4^+ + OH^- \rightarrow NH_3$$
 (12)

Sedangkan, radikal •OH yang bersumber dari pemutusan ikatan H₂O dapat bereaksi dengan NO₂ sehingga dapat memproduksi ion nitrat dan amonia untuk membentuk spesi intermediet sehingga berakhir di pembentukan ion nitrat. Sehingga penelitian ini akan mengarahkan pada upaya peningkatan produksi •OH sebagai spesi yang paling berperan dalam pembentukan pupuk nitrat dari sisi posisi selubung plasma di anoda dan penambahan zat aditif seperti ion Fe²⁺ sehingga spesi •OH meningkat dan diharapkan nitrat yang terbentuk akan semakin tinggi.

2.4 Parameter yang Mempengaruhi pada CGD Electrolysis

2.4.1 Laju Alir Udara

Penginjeksian gas yaitu udara yang diarahkan langsung ke anoda dapat membantu menginisiasi proses pembentukan plasma, sehingga konsumsi energi untuk proses penguapan dapat berkurang. Akan tetapi energi yang semakin kecil dengan peningkatan laju alir udara dapat membuat plasma semakin kecil dan redup sehingga memengaruhi produksi nitrat yang terjadi. Sehingga dibutuhkan optimalisasi laju alir udara yang sesuai dengan pertimbangan konsumsi energi yang kecil dengan produksi nitrat yang besar.

2.4.2 Suhu

Suhu berpengaruh terhadap kebutuhan *breakdown voltage* (Vn), dimana semakin tinggi suhu maka kebutuhan voltage menurun karena semakin mudah terbentuknya selubung gas pada anoda, sehingga konsumsi energi menurun. Suhu yang tinggi membuat kinerja plasma meningkat. Akan tetapi, suhu yang tinggi membuat H₂O₂ yang terbentuk dari •OH dapat terdekomposisi menjadi H₂O dan O₂ sehingga produk nitrat yang dihasilkan semakin menurun. Sehingga diperlukan optimalisasi suhu agar kinerja plasma dan produk nitrat semakin tinggi.

2.4.3 Penambahan Ion Fe²⁺

Parameter yang belum pernah dilakukan dalam proses *contact glow discharge electrolysis* adalah penambahan ion Fe^{2+} yang merupakan komponen penting dalam proses dikarenakan kemampuan Fe^{2+} mengubah H_2O_2 yang terbentuk akibat rekombinasi sesama •OH kembali menjadi •OH (reaksi fenton) akan meningkatkan jumlah •OH di larutan sehingga produk nitrat yang dihasilkan akan semakin besar.

2.4.4 Daya dan Tegangan

Penelitian ini akan memisahkan efek daya dan tegangan dimana akan dibuktikan bahwa meningkatnya daya listrik pada tegangan konstan akan meningkatkan jumlah spesies reaktif (konversi) yang dihasilkan. Sementara kenaikan tegangan pada daya konstan akan merubah komposisi spesies reaktif (selektivitas) yang dihasilkan. Untuk itu akan dilakukan variasi konsentrasi elektrolit yang digunakan untuk mendapatkan konduktivitas yang berbeda. Selanjutnya pengamatan efektivitas proses berupa yield nitrat dan konsumsi energi proses akan diukur beberapa daya yang berbeda pada tegangan konstan dan beberapa tegangan yang berbeda dengan daya konstan

2.5 Adikarya Penelitian

Berikut adalah rangkaian penelitian terdahulu yang terkait dengan riset mengenai sintesis pupuk cair dengan *air plasma*.

Tabel 2.1 Adikarya Penelitian

No	Penulis, Tahun	Metode	Hasil	Catatan
1.	Liu, et al., 2010	Degradasi limbah fenol dengan metode CDG Electrolysis	 Degradasi limbah fenol menghasilkan by product yaitu senyawa nitrat. Hasil nitrat mencapai 400 ppm selama 2 jam. 	• Senyawa nitrat akan teroksidasi menjadi nitrat dengan oksidator H ₂ O ₂ . Oleh sebab itu, senyawa nitrat semakin meningkat.
2	Wang, et al., 2017	Gliding Arc Plasma	 Model studi kinetik optimum reaksi sebagai berikut: O₂ + e (plasma) → 2O• + e O• + N₂ → NO + N NO + O• → NO₂ 	• Reaksi diawali oleh tereksitasinya elektron pada plasma yang menyerang molekul O ₂ menjadi O• dan akhirnya membentuk senyawa nitrat.
3	Zainah, <i>et al.</i> , 2018	Plasma Electrolysis Method with The Addition of Microbubble and Fe ²⁺ Ion	 Kondisi optimum untuk degradasi limbah RBB adalah penambahan Fe²⁺: 40 ppm, dan waktu: 30 menit. Degradasi COD sebesar 62,21% dan degradasi limbah sebesar 99,63% 	Injeksi udara dengan bubbler pada larutan yang dikenai plasma dapat membentuk senyawa karbamat yang mengandung gugus nitrat sebagai produk samping.
4	Tri S. Budikania, et al., 2019	Contact Glow Discharge Electrolysis	 Produksi H₂O₂ yang optimum saat suhu 55°C dengan injeksi udara sebesar 3,9 mmol Degradasi limbah sebesar 99,75% 	 Semakin tinggi suhu proses, maka semakin mudah plasma terbentuk. Peningkatan suhu berdampak pada H₂O₂ yang menurun.
5	Ardiansyah., 2019	Elektrolisis Plasma	Nitrat yang dihasilkan sebesar 636,8 ppm dalam waktu 15 menit	 Nitrat optimum terjadi saat daya 600 watt, konsentrasi elektrolit 0,02 M, dan laju alir udara 0,8 lpm Laju alir dan konsentrasi elektrolit tinggi dapat meningkatkan produksi nitrat
6	Salsabila Puteri., 2019	Elektrolisis Plasma	Nitrat yang dihasilkan sebesar 1.242 ppm dalam waktu 20 menit	 Nitrat optimum terjadi saat kedalaman anoda 3,5 cm, konsentrasi elektrolit 0,02 M dan daya 800 watt. Peningkatan daya dan kedalaman anoda dapat meningkatkan produksi nitrat.

Bab 3. Metode Penelitian

3.1 Tahapan Penelitian

Gambar 3.1 Diagram Alir Penelitian

3.1.1 Persiapan Alat dan Bahan

Tabel 3.1 Persiapan Alat dan Bahan

No	Kegiatan	Alat	Bahan
1	Pembuatan Larutan	Gelas beaker	K ₂ SO ₄
	Elektrolit	Gelas ukur	FeSO ₄
		Labu Erlenmeyer	Akuades
		Timbangan digital	
2	Persiapan Reaktor	Termometer, Tungsten, Stainless Steel,	
		Multimeter, Dioda Bridge, Trafo, Slide	
		Regulator, MCB	
3	Karakterisasi Arus	Rangkaian Reaktor Contact Glow	K ₂ SO ₄
	Tegangan	Discharge Electrolysis dengan Arus DC	FeSO ₄
4	Uji Produksi Nitrat	Labu ukur	KNO ₃
		Pipet	Akuades

Reaktor *contact glow discharge electrolysis technology batch* pada penelitian ini dilengkapi jaket sebagai tempat sirkulasi air pendingin yang disirkulasikan menggunakan pompa. Skema reaktor yang digunakan seperti gambar berikut.

Gambar 3.2 Skema Reaktor Teknologi *Contact Glow Discharge Elektrolysis* untuk Sintesis Pupuk Nitrat Cair

Tabel 3.2 Kondisi Operasi dan Variabel Proses yang akan Dilakukan

Jenis	Konsentrasi	Jenis	Kondisi Operasi
elektrolit	elektrolit	Reaktor	
K ₂ SO ₄	0.02 M	Batch	Tegangan: 400 – 600 V; Anoda:Tungsteen selubung kaca Katoda: Stainless (D: 8 mm) Waktu proses: 0 – 60 min Kedalaman Anoda: 5-35 mm Injeksi Udara: 0-5 L/min Volum larutan elektrolit: 1.2 L Suhu reaktor: 50 – 70 °C

3.2 Tahap Analisis

a. Spektrofotemtri UV-visible untuk uji kandungan Nitrat

Senyawa nitrat direduksi menjadi nitrit oleh cadmium yang dilapisi tembaga dalam suatu kolom. Nitrat total yang terbentuk akan bereaksi dengan sulfanilamide dan menghasilkan diazonium yang selanjutnya bereaksi dengan *N-(1-naphthyl)-ethylenediamine dihydrochloride* menghasilkan warna merah. Senyawa tersebut ekivalen dengan total nitrit. Warna merah diukur absorbansinya dengan spektrofotometri UV-visible pada panjang gelombang 543 nm.

Kadar nitrat
$$\left(\text{mg NO}_3 - \frac{N}{L}\right) = A - B \left(\frac{\text{mg}}{L}\right)$$

A= kadar NO₂-N dari kolom reduksi

B= kadar NO₂-N tanpa melewati kolom reduksi

3.3 Variabel Penelitian

a. Variabel bebas : Konsentrasi ion Fe²⁺, laju alir udara, daya listrik, pH

larutan, suhu larutan elektrolit

b. Variabel terikat : Konsentrasi ion nitrat yang terbentuk.

3.4 Indikator Capaian

Tabel 3.3 Indikator Capaian

No	Tahapan	Indikator Capaian	Luaran
	Uji	Memperoleh titik terjadinya	Mendapatkan kondisi
1	karakteristik	CGDE dan konsumsi energi	operasi yang optimal
1	arus dan	kurang dari 1000 Watt	dalam proses contact glow
	tegangan		discharge electrolysis
2	Uji produksi	Pengujian sampel menggunakan	Diperoleh konsentrasi nitrat
2	nitrat	spektofotometri UV-Vis	yang optimum

3.5 Teknik Pengambilan Data dan Analisis Data

Tabel 3.4 Pengambilan Data dan Analisis Data

Data	Teknik	Analisis Data	Cara Penafsiran
Uji	Mendata arus	Nilai arus dirata-ratakan	Tegangan optimal
karakteristik	yang dihasilkan	pada titik tegangan yang	diketahui saat arus
arus dan	dengan	ditentukan dan	mulai naik kembali
tegangan	multitester	menghitung konsumsi	saat sebelumnya
		energi dengan rumus	terjadi penurunan
Uji	Uji sampel	Sampel diuji pada	Hasil analisis
produksi	dengan	panjang gelombang	dibuatkan kurva
nitrat	spektrofotometri	600nm dan dianalisis	kalibrasi dan
	UV-Vis	asorbansinya	didapatkan
			konsentrasi nitrat

3.6 Penyimpulan Hasil Penelitian

Hasil dari penelitian ini adalah didapatkan kondisi operasi yang optimal dan produksi pupuk nitrat cair yang maksimal menggunakan teknologi *contact glow discharge electrolysis*.

Bab 4. Biaya dan Jadwal Kegiatan

4.1 Anggaran Biaya

Tabel 4.1 Anggaran Biaya

No	Jenis Pengeluaran	Biaya (Rp)
1	Perlengkapan yang diperlukan	3.525.000
2	Bahan habis pakai	4.475.000
3	Perjalanan	1.000.000
4	Lain-lain	1.000.000
	Jumlah (Rp)	10.000.000

4.2 Jadwal Kegiatan

Tabel 4.2 Jadwal Kegiatan

No	Jenis Kegiatan	Bulan				Person Penanggung Jawab
NO		1	2	3	4	
1	Studi Literatur					Tiffany Liuvinia
2	Persiapan Alat dan Bahan					Rendy Hasiolan Nainggolan
3	Penelitian					Muhammad Fadhillah Ansyari
4	Pengolahan Data dan Analisis Hasil					Tiffany Liuvinia
5	Pembuatan Laporan Akhir					Muhammad Fadhillah Ansyari

Daftar Pustaka

- Ardiansyah. (2019). Sintesis Pupuk Cair Nitrat dengan Bahan Baku Udara Menggunakan Metode Elektrolisis Plasma. Depok: (Skripsi), Universitas Indonesia, Depok.
- Asnawi, R., Arief, R. W., & Rohayana, D. (2009). *Analisis Kelangkaan Pupuk dan Pengaruhnya terhadap Produktivitas Padi Swah Inbrida dan Hibrida di Lampung*. Lampung: Balai Pengkajian Teknologi Pertanian Lampung.
- Burlica, R., Kirkpatrick, M. J., & Locke, B. R. (2006). Formation of Reactive Species in Gliding Arc Discharges with Liquid Water. *Journal of Electrostatics*, 35-43.
- Firdaus, F. (2019, September 06). *Pupuk Subsidi Dikurangi pada 2020, Kementan Cari Solusi Terbaik*. Diambil kembali dari Okezone: https://news.okezone.com/read/2020/09/06/1/2101356/pupuk-subsidi-dikurangi-pada-2020-kementan-cari-solusi-terbaik
- Lindsay, A., Byrns, B., King, W., Andhvarapou, A., Fields, J., Knappe, D., Shannon, S. (2014). Fertilization of Radishes, Tomatoes, and Marigolds Using a Large-Volume Atmospheric Glow Discharge. *Plasma Chemistry and Plasma Processing*, 1271.
- Liu, Y., D. Wang, B. Sun and X. Zhu. (2010). Aqueous 4-Nitrophenol Decomposition and Hydrogen Peroxide Formation Induced by Contact Glow Discharge Electrolysis. *J. Hazardous Mater*, 1010-1015.
- Salsabila, P. (2019). Sintesis Nitrat Menggunakan Metode Elektrolisis Plasma dengan Elektrolit Na₂SO₄ untuk Pembuatan Pupuk Cair. (Skripsi), Universitas Indonesia, Depok.
- Suryana, A., Agustian, A., & Yofa, R. D. (2016). Alternatif Kebijakan Penyaluran Subsidi Pupuk bagi Petani Pangan. *Analisis Kebijakan Pertanian*, 35-54.
- Syarfina.2020. *Metode Elektrolisis Plasma untuk Sintesis Pupuk Nitrat Cair dengan Elektrolit K*₂*HPO*₄ *dan K*₂*SO*₄. (Skripsi), Universitas Indonesia, Depok.
- Wang, W., B, P., S, H., & H. V. (2017). Nitrogen Fixation by Gliding Arc Plasma: Better Insight by Chemical Kinetics Modelling. *ChemSusChem*, 2145-2157.
- Zhong, C. (2016). Nitrogen Fixation in Water Using Air Phase Gliding Arc Plasma. Journal of The Electrochemical Society, 288-292.

LAMPIRAN

Lampiran 1. Biodata Ketua, Anggota dan Dosen Pendamping

A. Biodata Ketua

A. Identitas Diri

1	Nama Lengkap	Tiffany Liuvinia
2	Jenis Kelamin	Perempuan
3	Program Studi	Teknik Kimia
4	NIM	2006575650
5	Tempat dan Tanggal Lahir	Sidikalang, 13 Desember 2002
6	E-mail	tiffanyliuvinia123@gmail.com
7	Nomer Telepon/HP	085262862890

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No .	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1			

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Riset Eksakta.

Depok, 14 Februari 2021

Ketua,

(Tiffany Liuvinia)

B. Biodata Anggota ke-1

A. Identitas Diri

1	Nama Lengkap	Muhammad Fadhillah Ansyari
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Kimia
4	NIM	1706985786
5	Tempat dan Tanggal Lahir	Jakarta, 22 Mei 1999
6	E-mail	m.fadhillahansyari@gmail.com
7	Nomer Telepon/HP	085711341455

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat	
1	PGD UI	Staff Event CPDC	2018, Indonesia	Universitas
2	SALAM UI	Fungsionaris Bidang Kajian dan Aksi Strategis	2019, Indonesia	Universitas
3	CHEM E-CAR	Ketua Bidang Riset dan Penelitian	2020, Indonesia	Universitas

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1		Departemen Teknik Kimia, Universitas Indonesia	2018

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Riset Eksakta.

Depok, 14 Februari 2021

Anggota,

(Muhammad Fadhillah Ansyari)

C. Biodata Anggota ke-2

A. Identitas Diri

1	Nama Lengkap	Rendy Hasiolan Nainggolan
2	Jenis Kelamin	Laki-laki
3	Program Studi	Teknik Kimia
4	NIM	2006579125
5	Tempat dan Tanggal Lahir	Klaten, 26 Februari 1995
6	E-mail	rendyhn@gmail.com
7	Nomer Telepon/HP	089667067821

B. Kegiatan Kemahasiswaan yang Sedang/Pernah Diikuti

No	Jenis Kegiatan	Status dalam Kegiatan	Waktu dan Tempat
1			

C. Penghargaan yang Pernah Diterima

No	Jenis Penghargaan	Pihak Pemberi Penghargaan	Tahun
1			
2			

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Riset Eksakta.

Depok, 14 Februari 2021

Anggota,

(Rendy Hasiolan Nainggolan)

D. Biodata Dosen Pendamping

A. Identitas diri

1.	Nama Lengkap (dengan gelar)	Prof. Dr. Ir. Nelson Saksono, M.T.
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	Teknik Kimia
4.	NIP/NIDN .	0008116702
5.	Tempat dan Tanggal Lahir	Jakarta, 8 November 1967
6.	Alamat E-mail	nelson@che.ui.ac.id
7.	No. Telepon/HP	085218464708

B. Riwayat Pendidikan

	S1	S2	S3
Nama Institusi	Universitas Indonesia	Universitas Indonesia	Universitas Indonesia
Jurusan / Prodi	Teknik Gas & Petrokimia	Teknologi Gas	Teknik Kimia
Tahun masuk- lulus	1987-1992	1993-1995	2005-2008

C. Rekam Jejak Tri Dharma PT

C.1. Pendidikan / Pengajaran

No	Nama Mata Kuliah	Wajib / Pilihan	SKS
1.	MPKT-A	Wajib	6
2.	Chemical Engineering Modeling	Wajib	3
3.	Pengolahan Minyak Bumi	Pilihan	3
4.	Mekanika Fluida	Wajib	3
5.	Kimia Dasar	Wajib	2
6.	MPKT-B	Wajib	6
7.	Teknologi Kriogenik	Pilihan ·	3
8.	Teknologi Plasma & Ozon	Pilihan	3

C.2. Penelitian

No	Judul Penelitian	Penyandang Dana	Tahun
1.	The Chlor-Alkali Production by Electrolysis Plasma Process in NaCl Electrolyte Solution	Osaka Gas Foundation	2011-2012
2.	Rancang Bangun Reaktor Elektrolisis Plasma untuk Pengolahan Limbah Air yang Mengandung Amonia	Riset Unggulan UI Utama, Peneliti Utama	2012-2013
3.	Peningkatan Efisiensi Produksi	Riset Unggulan UI	2013-2015

	Klor-Alkali dengan Kombinasi	Utama, Peneliti	
	Teknologi Elektrolisis Plasma dan	Utama	
	Membran Penukar Ion		
	Hydrogen Generation by Plasma	Osaka Cas Danaliti	
4.	Electrolysis Methad in Methanol-	Osaka Gas, Peneliti Utama	2015-2016
	NaOH Elctrolyte Solution	Otama	
	Rancang Bangun Generator	Libah Stratagis	
5.	Hidrogen dengan Metode	Hibah Strategis	2014-2015
٥.	Elektrolisis Plasma Menggunakan	Nasional, DIKTI, Peneliti Utama	2014-2013
	Larutan KOH-etanol	Penenu Otama	
	Degredasi Limbah Air yang		
6.	Mengandung Linear Alkylbenzene	Hibah Kompetensi	2015-2016
0.	Sulfonate dengan Teknologi	DIKTI	2013-2010
	Elektrolisis Plasma		
	Sintensi Biodiesel dari Minyak		
7.	Kelapa Sawit dengan Metode	Hibah PITTA UI	2017-2018
	Elektrolisis Plasma		
	Pengolahan Limbah Fenol dan		
8.	Chrom dengan Metode Elektrolisis	Hibah PITTA UI	2017
	Plasma		
	Pengolahan Limbah Pewarna	Hibah Kampatanai	
9.	Tekstil Dengan Teknologi	Hibah Kompetensi	2017-2019
	Elektrolisis Plasma	Kemenristek Dikti	
10.	Sintesis Lateks Hibrida Dengan	Hibah PITTA UI	2017-2019
10.	Metode Elektrolisis Plasma	I IIIUali FII IA UI	2017-2019

C.1. Pengabdian Kepada Masyarakat

No	Judul Pengabdian Kepada Masyarakat	Penyandang Dana	Tahun
	Pelatihan Intensifikasi Pembuatan		
	Abon Ikan Patin Berkualitas Tinggi		
1.	untuk Pemenuhan Gizi dan	Hibah Pengabdian	2010
1.	Peningkatan Perekonomian	Masyarakat UI	2010
	Masyarakat di Kecamatan Pancoran		
	Mas Kota Depok		
	Peningkatan Pendapatan Kelompok		
2.	Usaha Abon Ikan dengan Upaya	Program CEG'S UI	2013
۷.	Diversifikasi Produk Olahan Ikan dan	Flogram CEG 5 01	2013
	Perbaikan Metode Pemasaran		
		Pengabdian Masyarakat	
3.	IbiKK Biofarming Lebah Trigona	program IbiKK	2016
		Kemenristek-dikti	

Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum. Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima sanksi.

Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan PKM-Riset Eksakta.

Depok, 14 Februari 2021 Dosen Pembimbing,

(Prof. Dr. Ir. Nelson Saksono, M.T.)

Lampiran 2. Justifikasi Anggaran Kegiatan

1. Jenis Perlengkapan		Harga		
1. Jems i enengkapan	Volume	Satuan	Jumlah	
	Volume	(Rp)	Biaya (Rp)	
House Filter Acrylic	4	195.000	780.000	
-	-			
Diode bridge 1.000 V; 25 A	8	98.750	790.000	
Selang Silikon 1/4 in 1 meter	4	25.000	100.000	
Kabel Jepit Buaya	12	10.000	120.000	
Lem Araldite	5	45.000	225.000	
Nepple Selang 1/4 in	6	20.000	120.000	
Water Mur Drat Dalam 1/2 in	4	15.000	60.000	
Double Nepple 1/2 in	4	17.500	700.000	
SDL 1/2 in	8	12.500	100.000	
Sambungan kuning 1/2 in	15.000	60.000		
Elektroda SS 316	2	200.000	400.000	
Elektroda Tungsten	2	200.000	400.000	
Termometer	4	50.000	200.000	
Syringe	1	100.000	100.000	
SUBTOTAL (Rp)			3.525.000	
2. Barang Habis		Harga	Jumlah	
	Volume	Satuan		
		(Rp)	Biaya (Rp)	
Aquadest	6 drum	75.000	450.000	
K_2SO_4	500 g	920	460.000	
FeSO ₄ .7H ₂ O	500 g	2.310	1.155.000	
Larutan Standar KNO3	50 g	5.000	250.000	
Reagen	20 buah	108.000	2.160.000	
	SUBTO	TAL (Rp)	4.475.000	
3. Perjalanan		Harga	Jumlah	
	Volume	Satuan		
		(Rp)	Biaya (Rp)	
Perjalanan Pembelian alat ke Glodok,	3 kali	100.000	300.000	
Jakarta	perjalanan	100.000	300.000	
Biaya Transportasi ke Laboratorium DTK	20 kali	• 0 000	100.055	
selama penelitian	perjalanan	20.000	400.000	

Biaya pengiriman bahan kimia	3 kali perjalanan	100.000	300.000		
	SUBTO	1.000.000			
4. Lain-lain	Kuantitas	Harga Satuan (Rp)	Jumlah Biaya (Rp)		
Administrasi	1 kali	100.000	100.000		
Publikasi	2 publikasi	300.000	600.000		
Laporan	3 Laporan	100.000	300.000		
	1.000.000				
	10.000.000				
Sepuluh Juta Rupiah					

Lampiran 3. Susunan Organisasi Tim Peneliti dan Pembagian Tugas

No	Nama/NIM	Program Studi	Bidang Ilmu	Alokasi Waktu (jam/minggu)	Uraian Tugas
1	Tiffany Liuvinia/ 2006575650	Teknik Kimia	Teknik Kimia	20	 Melakukan koordinasi antar anggota Melakukan pembelian alat dan bahan Melakukan uji kinerja reaktor contact glow discharge electrolysis
2	Muhammad Fadhillah Ansyari/ 1706985786	Teknik Kimia	Teknik Kimia	20	 Mencatat seluruh hasil penelitian dalam buku penelitian Melakukan analisis kualitatif kandungan nitrat Analisis kuantitatif nitrat
3	Rendy Hasiolan Nainggolan/ 2006579125	Teknik Kimia	Teknik Kimia	20	 Membuat larutan elektrolisis Mengukur konsumsi energi

SURAT PERNYATAAN KETUA TIM PELAKSANA

Yang bertanda tangan di bawah ini:

Nama

: Tiffany Liuvinia

NIM

: 2006575650

Program Studi: Teknik Kimia

Fakultas

: Teknik

Dengan ini menyatakan bahwa proposal PKM-RE saya dengan judul Teknologi Tepat Guna Pembuatan Pupuk Nitrat Cair Untuk Wilayah Terpencil yang diusulkan untuk tahun anggaran 2021 adalah asli karya kami dan belum pernah dibiayai oleh lembaga atau sumber dana lain.

Bilamana di kemudian hari ditemukan ketidaksesuaian dengan pernyataan ini, maka saya bersedia dituntut dan diproses sesuai dengan ketentuan yang berlaku dan mengembalikan seluruh biaya penelitian yang sudah diterima ke kas negara.

Demikian pernyataan ini dibuat dengan sesungguhnya dan dengan sebenarbenamya.

> Depok, 14 Februari 2021 Yang menyatakan,

2ADA2AHF604708268 1AAHF604708267 (Tiffany Liuvinia)

NIM. 2006575650