

Calculation of nymemory cell retention characteristics

			Seconds —	Time Period
q0, C m0, kg	kb, J/K h, J	-s hb, J-s	31536000	1 year
1.6022E-019 9.10	95E-031 1.38062E-023 6.	62617E-034 1.054588E-034	94608000	3 years
			1.89E+008	6 years
b0, eV (barrier) εl	mr, effective mass	ratio T, K degree	2.84E+017	9 years
2.9	3.9 0.5	300	3.78E+008	12 years
			4.73E+008	15 years
С			9.08E+009	18 years
1.0630E-006 2.385	54E+008		6.62E+008	21 years
			7.57E+008	24 years
			8.51E+008	27 years
			9.46E+008	30 years

Lfg um	0.6000	Channel length of floating gate device
Wfg um	1000.0000	Channel width of floating gate device.
Hfg um	0.0900	Thickness of floating gate polysilicon conductor
Wrx um	0.5000	Width of floating gate overlapping shallow trench isolation
Ttunox A	80	Tunnel oxide thickness
Tono A	190	Thickness of Oxide-Nitride-Oxide dielectric between floating gate and control gate for capacitive coupling
Tswox A	300	Thickness of sidewall oxide between floating gate and control gate for sidewall coupling
Xfd um	0.0500	Length of floating gate overlapping drain region of the floating gate MOSFET
Xfs um	0.3500	Length of floating gate overlapping source region of the floating gate MOSFET
Ainj um2	0.0438	Area of the electron tunneling region between the floating gate and the source for resetting the floating gate charge
Cfc fF	1089.5358	Capacitance between the floating gate and the control gate
Cfsx fF	0.4313	Capacitance between the floating gate and the silicon substrate
Cfd fF	0.1078	Capacitance between the floating gate and the drain
Cfs fF	0.7547	Capacitance between the floating gate and the source
Cfg fF	1090.8295	Total floating gate capacitance
Cr,wl	0.9988	Control gate to floating gate coupling ratio
Cr,src	0.0007	Source junction to floating gate coupling ratio
Vt,fg V	0.90	Threshold voltage of floating gate MOSFET
Verase	0.00	Erase voltage applied to the source(not used here, set to zero)
Vfg,ini	-5.00	Initial floating chaged voltage
Va	0.00	Actual erase volatge (equal to applied + charge stored on the floating)
S	3.76E+016	Derived parameter in the floating gate "erase" equation
X	1.27E+011	Derived parameter in the floating gate "erase" equation

Figures 1E-1F

Calculation of namemory cell retention charactaistics

				Seconds	Time Period
q0, C m0, kg	kb, J/K	h, J-s	hb, J-s	60	1 minute
1.6022E-019 9.109	95E-031 1.38062E	3600	1 hour		
				86400	1 day
b0, eV (barrier) ε1	mr, effective	ve mass ratio	T, K degree	604800	1 week
2.9	3.9	0.5	300	2592000	1 month
				***********	1 year
С Ь				**********	4 years
1.0630E-006 2.3854E+008			**********	16 years	
				***********	32 years

```
Lfg um
                  0.6000 Channel length of floating gate device
Wfg um
              1000.0000 Channel width of floating gate device.
                  0.0900 Thickness of floating gate polysilicon conductor
Hfg um
Wrx um
                  0.5000 Width of floating gate overlapping shallow trench isolation
Ttunox A
                      80 Tunnel oxide thickness
                     190 Thickness of Oxide-Nitride-Oxide dielectric between floating gate and control gate for capacitive coupling
Tono A
                     300 Thickness of sidewall oxide between floating gate and control gate for sidewall coupling
Tswox A
                  0.0500 Length of floating gate overlapping drain region of the floating gate MOSFET
Xfd um
Xfs um
                  0.3500 Length of floating gate overlapping source region of the floating gate MOSFET
Ainj um2
                  0.0438 Area of the electron tunneling region between the floating gate and the source for resetting the floating gate charge
              1089.5358 Capacitance between the floating gate and the control gate
Cfc fF
Cfsx fF
                  0.4313 Capacitance between the floating gate and the silicon substrate
                  0.1078 Capacitance between the floating gate and the drain
Cfd fF
Cfs fF
                  0.7547 Capacitance between the floating gate and the source
Cfg fF
               1090.8295 Total floating gate capacitance
                  0.9988 Control gate to floating gate coupling ratio
Cr,wl
Cr,src
                  0.0007 Source junction to floating gate coupling ratio
Vt,fg V
                     0.90 Threshold voltage of floating gate MOSFET
                    0.00 Erase voltage applied to the source(not used here, set to zero)
Verase
Vfg,ini
                    -5.00 Initial floating chaged voltage
Va
                     0.00 Actual erase volatge (equal to applied + charge stored on the floating)
              3.76E+016 Derived parameter in the floating gate "erase" equation
              1.27E+011 Derived parameter in the floating gate "erase" equation
```


5.718

Calculation of nemory cell retention characteristics

```
Seconds Time Period
                                                                                     60 1 minute
            m0, kg
                          kb, J/K
                                                     hb, J-s
 1.6022E-019 9.1095E-031 1.38062E-023 6.62617E-03年
                                                                                   3600 1 hour
                                                                                  86400 1 day
b0, eV (barrier)ε1
                          mr, effective mass ratio
                                                     T, K degree
                                                                                 604800 1 week
                                                                                2592000 1 month
         2.9
                                                                             ******* 1 year
                                                                             ****** 4 years
                                                                             ******* 16 years
 1.0630E-006 2.3854E+008
                                                                             ******* 32 years
```

```
Lfg um
                 0.6000 Channel length of floating gate device
Wfg um
              1000.0000 Channel width of floating gate device.
                 0.0900 Thickness of floating gate polysilicon conductor
Hfg um
Wrx um
                 0.5000 Width of floating gate overlapping shallow trench isolation
                     85 Tunnel oxide thickness
Ttunox A
                     190 Thickness of Oxide-Nitride-Oxide dielectric between floating gate and control gate for capacitive coupling
Tono A
Tswox A
                    300 Thickness of sidewall oxide between floating gate and control gate for sidewall coupling
                 0.0500 Length of floating gate overlapping drain region of the floating gate MOSFET
Xfd um
                 0.3500 Length of floating gate overlapping source region of the floating gate MOSFET
Xfs um
                 0.0438 Area of the electron tunneling region between the floating gate and the source for resetting the floating gate c
Ainj um2
              1089.5358 Capacitance between the floating gate and the control gate
Cfc fF
                 0.4059 Capacitance between the floating gate and the silicon substrate
Cfsx fF
Cfd fF
                 0.1015 Capacitance between the floating gate and the drain
                 0.7103 Capacitance between the floating gate and the source
Cfs fF
Cfg fF
              1090.7534 Total floating gate capacitance
                 0.9989 Control gate to floating gate coupling ratio
Cr,wl
Cr,src
                 0.0007 Source junction to floating gate coupling ratio
                    0.90 Threshold voltage of floating gate MOSFET
Vt,fg V
                    0.00 Erase voltage applied to the source(not used here, set to zero)
Verase
                   -5.00 Initial floating chaged voltage
Vfg,ini
                   0.00 Actual erase volatge (equal to applied + charge stored on the floating)
Va
s
              4.09E+017 Derived parameter in the floating gate "erase" equation
X
             1.20E+011 Derived parameter in the floating gate "erase" equation
```

t, sec. Vt,fg 0.00001 5.907 5.907 4 5.907 5.907 8 5.907 16 32 5.907 64 5.907 128 5.907 256 5.907 512 5.907 1024 5.907 2048 5.907 5.907 4096 8192 5.907 5.907 16384 5.907 32768 65536 5.907 131072 5.907 262144 5.907 524288 5.907 1000000 5.907 2000000 5.907 4000000 5.906 5.906 8000000 1.6E+007 5.906 3.2E+007 5.905 5.904 6.4E+007 5.902

5.898

5.889

5.874

Figures 1I-1J

Figure 1K

Calculation of the cell retention characteristics

Figures 1L-1M

Calculation of tile cell retention characteristics

Figures 1N-10

7127 Aus91999 0268451

Calculation of the cell retention characteristics

Figures 1P-1Q

Figure 3A

Figure 3B

Figure 3C

Figure 3D

Figure 3E

Figure 3F

Voltages during programming operation

Figure 4C

Voltages during sensing operation

Figure 4D

Figure 4E

Figure 4F

Figure 4J

19/22 L ') 0773-LS1 Aus 9 (919076 8 US/

Device

Figure 4L

<u>454</u>

Sensing Device

456

20/22 NJ JN-2733-US1 A KS 9/5 97 026 8KSL

Initializing Device

<u>452</u>

Figure 4M

Figure 4N

Figure 40

11.05

Figure 4P