Lecture 7

Avi Herman

9/24/2024

Table of Contents

- Forces as a Gradient of Potential Energy
 - Half Pipe Example
- Elastic Potential Energy and Restoring Force
 - Hooke's Law
 - Example Diagram of a Spring
 - Harmonic Oscillators
- Pendulum and Clocks
- PollEV Answers

Forces as a Gradient of Potential Energy

This entire section seems to not be tested

- $E = K + U_{\text{gravity}} + \dots$
 - $\circ~E$ is the total energy
 - $\circ \; K$ is the kinetic energy
 - $\circ~U_{
 m gravity}$ is the gravitational potential energy
 - $U_{
 m gravity} = mgh$
 - m is the mass
 - g is the acceleration due to gravity (9.81 $\frac{\mathrm{m}}{\mathrm{s}^2}$)
 - h is the height
 - ullet For a ramp, $h=x\sin heta$
 - ullet heta is the angle of the ramp
 - ullet x is the distance along the ramp
- $\bullet \ \vec{F} = -\nabla U$
 - $\circ \; ec{F}$ is the force
 - $\circ~U$ is the potential energy
 - $\circ~
 abla$ is the gradient operator

- ullet The gradient gives the rate of change of U in each spatial direction
- o The negative sign indicates the force points in the direction of decreasing potential energy

Half Pipe Example

ullet Consider a ramp shaped like a half pipe where z is the height, x is the horizontal distance, and the slope is

$$\circ \; z = rac{c}{2} x^2$$

lacksquare c is a constant

$$\circ~U_{
m gravity} = mgz = rac{1}{2} mgcx^2$$

• The force is:

$$ec{F} = -
abla U_{ ext{gravity}} = -rac{U_{ ext{gravity}}}{dx} \hat{x} = -mgcx\hat{x}$$

ullet Here, mgc acts as the spring constant k in Hooke's Law

Elastic Potential Energy and Restoring Force

Hooke's Law

• Hook's Law states that the force exerted by a spring (or something elastic) is proportional to the displacement from equilibrium

$$\circ \; ec{F}_{
m restoring} = - k ec{x}$$

- ullet $ec{F}_{
 m restoring}$ is the restoring force
- ullet k is the spring constant
- $ec{x}$ is the displacement from equilibrium

$$\circ~U_{
m spring}=rac{1}{2}kx^2$$

- ullet $U_{
 m spring}$ is the spring potential energy
- ullet x is the displacement from equilibrium

$$\circ \ \vec{a} = -rac{k}{m} \vec{x}$$

- ullet $ec{a}$ is the acceleration
- lacksquare m is the mass
- ullet $ec{x}$ is the displacement from equilibrium

Example Diagram of a Spring

Harmonic Oscillators

- Harmonic oscillators are systems that oscillate about an equilibrium point
 - o Examples include springs, pendulums, and electric circuits
 - o The period of oscillation does not depend on the amplitude of the oscillation

$$ullet T=2\pi\sqrt{rac{m}{k}}$$

- $\circ \ T$ is the period of the oscillation (time for one complete cycle)
- $\circ \ m$ is the mass
- \circ k is the spring constant

Pendulum and Clocks

- A pendulum is a mass on a string that oscillates back and forth
 - \circ The period of a pendulum is given by $T=2\pi\sqrt{rac{L}{g}}$
 - lacksquare T is the period
 - ullet L is the length of the pendulum
 - g is the acceleration due to gravity
 - The period of a pendulum is independent of the mass of the pendulum
 - $\circ~U_{
 m gravity}=rac{mg}{2L}x^2$
 - ullet $U_{
 m gravity}$ is the gravitational potential energy
 - ullet m is the mass of the pendulum
 - ullet x is the displacement from equilibrium
 - $\circ k_{
 m pendulum} = rac{mg}{L}$
 - ullet $k_{
 m pendulum}$ is the spring constant of the pendulum
- Clocks use pendulums to keep time
 - The period of a pendulum is constant, so the clock will keep time accurately

Pendulum Diagram

• massless rod = L

PollEV Answers

- D All of the above are correct we will all get full credit for this question
 - What are the units of the spring constant "k" in Hooke's law? [J = Joule, kg = kilogram, m = meter, s = second, N = Newton.]

1. Hooke's Law:

 \circ Hooke's law is given by F=kx, where F is the force applied to the spring, k is the spring constant, and x is the displacement of the spring.

2. Units of Force (F):

 \circ The unit of force F is the Newton (N).

3. Units of Displacement (x):

 \circ The unit of displacement x is the meter (m).

4. Units of Spring Constant (k):

- \circ Rearranging Hooke's law to solve for $k\!\!: k = rac{F}{x}.$
- \circ Therefore, the units of k are $rac{
 m N}{
 m m}$.

5. Dimensional Analysis:

- $\circ\,$ Newton (N) can be expressed in terms of base units: $1~N=1~kg\cdot m/s^2.$
- $\circ\,$ Substituting this into the units of \emph{k} : $\emph{k}=\frac{\rm kg\cdot m/s^2}{\rm m}=\rm kg/s^2.$

6. Energy Perspective:

- \circ The potential energy stored in a spring is given by $U=rac{1}{2}kx^2$.
- \circ The unit of energy U is the Joule (J).
- Rearranging to solve for k: $k = \frac{2U}{r^2}$.
- \circ Therefore, k can also be expressed in terms of energy per unit displacement squared: $rac{\mathrm{J}}{\mathrm{m}^2}$.

Given these analyses, the spring constant k can be expressed in multiple units:

- $\frac{N}{m}$
- kg/s^2
- $\bullet \ \frac{J}{m^2}$

Thus, the answer "all of the above" is correct because the spring constant k can be represented in terms of Joules (J), kilograms (kg), meters (m), seconds (s), and Newtons (N).