Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně

FYZIKÁLNÍ PRAKTIKUM

Fyzikální praktikum 3

Zpracoval: Tomáš Plšek **Naměřeno:** 27. dubna 2018

Obor: Astrofyzika Ročník: II Semestr: IV Testováno:

Úloha č. 5: Šířka pásu zakázaných energií

Úkoly:

1. Pomocí fotoelektrického jevu určete šířku zakázaného pásu energií v křemíku a germaniu.

1. Úvod

Pevné látky dělíme na vodiče a izolanty a vodiče dále dělíme na kovy a polovodiče. Na to, do jaké skupiny bude daný materiál patřit, má vliv šířka pásu zakázaných energií tj. vzdálenost mezi valenčním pásem a pásem vodivostním. V případě kovů se valenční a vodivostní pás překrývají, elektrony tak mohou snadno měnit hladiny a materiál tedy může vést elektrický proud. Polovodiče mají šířku zakázaného pásu relativně malou a díky tepelné aktivaci mají elektrony reálnou šanci tuto bariéru přeskočit. Izolanty mají naopak šířku zakázaného pásu širokou a k tepelné aktivaci tedy nedochází.

V našem případě tedy jako polovodič použijeme germaniový a křemíkový PN přechod, který převádí světelný signál na elektrický, přičemž využívá vnitřního fotoelektrického jevu. Při vnitřním fotoelektrickém jevu dochází k excitaci valenčních elektronů do vodivostního pásu. Záření o různé vlnové délce je absorbováno ve vrstvě o různé tloušťce. Průběh intenzity světelného signálu v materiálu je popsán vztahem:

$$I(x) = I_0 R e^{-\alpha x},\tag{1}$$

kde x je hloubka pod povrchem, R je odrazivost materiálu, I_0 je původní intenzita světla a α je koeficient absorpce. Z tohoto vztahu je tedy vidět, že pokud použijeme fotony s příliš velkou vlnovou délkou, nemají dostatečnou energii na excitaci atomů. Při zvětšující se energii fotonů začne již k excitaci atomů docházet a na fotodiodě vzniká fotonapětí. Se zkracující se vlnovou délkou fotonapětí roste, od určité hodnoty však začne znovu klesat. Je to způsobeno tím, že fotony mají příliš velkou energii a k excitaci atomů dochází až příliš hluboko pod povrchem fotodiody a tedy mimo oblast PN přechodu.

Obrázek 1: Závislost fotonapětí na energii fotonů.

Pro určení šířky zakázaného pásu potřebujeme získat závislost fotonapětí na jeden foton $S(\lambda)$ na energii fotonů E_f (obrázek 1), kde:

$$S(\lambda) = \frac{U(\lambda)}{N(\lambda)} \approx \frac{U(\lambda)}{D(\lambda)},$$
 (2)

kde počet fotonů N je přímo úměrný relativní intenzitě signálu fotodetektoru D.

2. Měření

V první řadě nalezneme nejvhodnější konfiguraci nastavení vstupní a výstupní štěrbiny - hledáme vhodný poměr intenzity a rozlišení (monochromatičnosti) světla.

Následně proměříme závislost fotonapětí na vlnové délce dopadajícího světla. Pomocí mikrometrického šroubu budeme nastavovat polohu hranolu v optické soustavě. Polohy hranolu přepočítáme interpolací (po proložení vhodným polynomem) hodnot z tabulky 2. Z tabulky 3 následně opět pomocí interpolace získáme hodnoty relativní intenzity signálu fotodiody $D(\lambda)$ a ze vzorce (2) určíme hodnoty fotonapětí připadajícího na jeden foton $S(\lambda)$. Závislost $S = f(E_f)$ vyneseme graficky a pro poloviční výšku křivky odečteme danou energii fotonů tedy šířku zakázaného pásu polovodiče E_g .

Konfigurace pro měření šířky zakázaného pásu germania: šířka obou štěrbin = 0.17 mm.

OD 1 11 4	77/ 1 /	× . /	1	1 1		
Tabulka 1a:	Závislost	napéti na	noloze	hranolii	pro	germaniiim
rabana ra.	200 V 101000	mapout ma	POIOZC	manora	$\rho_{\rm L}$	Sormaniani.

1 [1	77 [37]	\ []	D(1)	T. [.37]	C(1) [10-6]
d [mm]	U [mV]	λ [nm]	$D(\lambda)$	E_f [eV]	$S(\lambda) [10^{-6} \text{ a.u.}]$
10.0	0.054	1907	11.2	0.65	1.10
10.1	0.069	1807	46.8	0.69	1.48
10.2	0.114	1713	71.9	0.72	1.58
10.3	0.159	1622	89.5	0.76	1.78
10.4	0.222	1536	101.7	0.81	2.18
10.5	0.237	1455	110.4	0.85	2.15
10.6	0.258	1378	117.0	0.90	2.21
10.7	0.246	1304	122.6	0.95	2.01
10.8	0.213	1235	128.0	1.00	1.66
10.9	0.207	1170	133.8	1.06	1.55
11.0	0.183	1109	140.4	1.12	1.30
11.1	0.156	1052	147.9	1.18	1.05
11.2	0.132	999	156.5	1.24	0.84
11.3	0.108	950	166.0	1.31	0.65
11.4	0.087	904	176.4	1.37	0.49
11.5	0.072	862	187.5	1.44	0.38
11.6	0.060	823	199.0	1.51	0.30
11.7	0.054	788	210.8	1.57	0.26
11.8	0.048	756	222.5	1.64	0.22
11.9	0.042	728	233.9	1.70	0.18
12.0	0.039	703	244.8	1.76	0.16

V grafu 1a vidíme závislost fotonapětí připadajícího na jeden foton na energii fotonu, z níž jsme polynomiálním fitem určili hodnotu energie fotonu pro poloviční výšku křivky, tedy šířku zakázaného pásu germania $E_g = (0.65 \pm 0.04) \text{ eV}$.

Graf 1a: Určení šířky zakázaného pásu germania.

Konfigurace pro měření šířky zakázaného pásu křemíku: šířka obou štěrbin = 0.18 mm.

Tabulka 1b: Závislost napětí na poloze hranolu pro křemík.

d [mm]	U [mV]	$\lambda \text{ [nm]}$	$D(\lambda)$	$E_f [eV]$	$S(\lambda) \ [10^{-6} \ \text{a.u.}]$
10.85	0.018	1202	130.8	1.03	0.14
10.90	0.039	1170	133.8	1.06	0.29
10.95	0.066	1139	137.0	1.09	0.48
11.00	0.108	1109	140.4	1.12	0.77
11.05	0.159	1080	144.0	1.15	1.10
11.10	0.216	1052	147.9	1.18	1.46
11.15	0.243	1025	152.1	1.21	1.60
11.20	0.246	999	156.5	1.24	1.57
11.25	0.228	974	161.1	1.27	1.42
11.30	0.210	950	166.0	1.31	1.27
11.35	0.198	926	171.1	1.34	1.16
11.40	0.186	904	176.4	1.37	1.05
11.45	0.165	882	181.9	1.41	0.91
11.50	0.150	862	187.5	1.44	0.80
11.55	0.135	842	193.2	1.47	0.70
11.60	0.123	823	199.0	1.51	0.62
11.65	0.114	805	204.9	1.54	0.56
11.70	0.105	788	210.8	1.57	0.50
11.75	0.099	771	216.7	1.61	0.46

Graf 1b: Určení šířky zakázaného pásu křemíku.

Ze závislosti fotonapětí na jeden foton na energii fotonu (graf 1b) jsme určili šířku zakázaného pásu i pro křemíku $E_g = (1.12 \pm 0.04) \text{ eV}.$

3. Závěr

Pro polovodiče germanium a křemík jsem naměřil závislost fotonapětí na vlnové délce světla. Tuto závislost jsem převedl na závislost fotonapětí připadajícího na jeden foton na energii fotonu a z energie pro poloviční výšku křivky jsem stanovil hodnotu šířky zakázaného pásu energií.

Pro germanium jsem získal šířku zakázaného pásu energií $E_g=(0.65\pm0.04)$ eV. Tabulková hodnota^[1] pro germanium je $E_g=0.65$ eV. V případě křemíku je naměřená hodnota zakázaného pásu $E_g=(1.12\pm0.04)$ eV a tabulková hodnota $E_g=1.10$ eV. Obě hodnoty v rámci chyby měření dobře odpovídají hodnotám tabulkovým.

4. Zdroje

Pedagogická fakulta Jihočeské univerzity - Pedagogická fakulta JU [online]. Dostupné z: http://www.pf.jcu.cz/stru/katedry/fyzika/laborky/atom/4/uloha4.html.

5. Přílohy

Tabulka 2: Cejchování monochromátoru.

d [mm]	$\lambda \text{ [nm]}$	d [mm]	$\lambda \text{ [nm]}$
10.08	1800	11.09	1050
10.21	1700	11.19	1000
10.35	1600	11.31	940
10.41	1550	11.39	900
10.51	1450	11.50	850
10.59	1400	11.66	800
10.71	1300	11.85	750
10.85	1200	12.08	700
10.92	1150	12.37	650
11.00	1100	12.74	600

Tabulka 3: Cejchování halogenové žárovky.

$\lambda \text{ [nm]}$	D	$\lambda \text{ [nm]}$	D
1000	158	1500	110
1100	140	1600	95
1150	135	1700	70
1250	125	1800	46
1350	120	1850	35
1400	115	1900	15