Считающая мера и дискретная плотность

Для того, чтобы вся рассматриваемая теория работала как в непрерывном, так и в дискретном случае, введем понятие плотности дискретного распределения. Пусть $\mathscr{X} \subset \mathbb{R}$ — не более чем счетное множество и $\mathscr{B}_{\mathscr{X}}$ — сигма-алгебра на \mathscr{X} . Введем ряд понятий

- 1. Считающей мерой на $\mathscr X$ называется функция $\mu \colon \mathscr B_{\mathscr X} \to \mathbb N \cup \{+\infty\}$, определенная по правилу $\mu(B) = \sum_{k \in \mathscr X} I\{k \in B\}$ для $B \in \mathscr B_{\mathscr X}$, т.е. количество точек из $\mathscr X$ в множестве B;
- 2. Интеграл функции f по мере μ определяется как $\int_{\mathbb{R}} f(x)\mu(dx) = \sum_{k \in B \cap \mathscr{X}} f(k)$, если ряд в правой части сходится абсолютно;
- 3. Если ξ случайная величина со значениями из \mathscr{X} , то ее дискретной плотностью будем называть $p(x) = \mathsf{P}(\xi = x), \ x \in \mathscr{X};$
- 4. Если $\mathsf{E} g(\xi)$ конечно, то справедлива формула $\mathsf{E} g(\xi) = \int\limits_{\mathbb{R}} g(x) p(x) \mu(dx).$

Таким образом имеет место полная аналогия с непрерывным случаем. Семейство распределений \mathscr{P} будем называть доминируемым, если все распределения в нем непрерывны либо все дискретны. В дальнейшем для простоты вместо $\mu(dx)$ будем писать dx.

Условия регулярности

 $X=(X_1,...,X_n)$ — выборка из неизвестного распределения $\mathsf{P}_\theta\in\mathscr{P},$ где $\mathscr{P}=\{\mathsf{P}_\theta\mid\theta\in\Theta\}$ — доминируемое семейство с плотностью $p_\theta(x)$.

- **E1.** Θ открытый интервал в \mathbb{R} (возможно, бесконечный);
- **E2.** Носитель плотности $\{x \in \mathbb{R} \mid p_{\theta}(x) > 0\}$ не зависит от θ ;
- **Е3.** Для любой статистики S(X) с конечным вторым моментом выполнено свойство дифференцирования под знаком интеграла

$$\frac{\partial}{\partial \theta} \int_{\mathcal{X}} S(x) p_{\theta}(x) dx = \int_{\mathcal{X}} S(x) \frac{\partial}{\partial \theta} p_{\theta}(x) dx.$$

Е4. Для любого θ величина $\mathsf{E}_{\theta} \left(\frac{\partial}{\partial \theta} \ln p_{\theta}(X) \right)^2$ конечна и положительна.

Условия регулярности

- **L1.** Семейство $\mathscr{P} = \{ \mathsf{P}_{\theta} \mid \theta \in \Theta \}$ является доминируемым с плотностью $p_{\theta}(x)$, причем $\mathsf{P}_{\theta_1} \neq \mathsf{P}_{\theta_2}$, если $\theta_1 \neq \theta_2$;
- **L2.** Носитель плотности $A = \{x \in \mathbb{R} \mid p_{\theta}(x) > 0\}$ не зависит от θ ;
- **L3.** $X = (X_1, ..., X_n)$ выборка из неизвестного распределения $P \in \mathscr{P}$;
- **L4.** Θ открытый интервал в \mathbb{R} (возможно, бесконечный);
- **L5.** Плотность $p_{\theta}(x)$ дифферецируема по θ для любого $x \in A$;
- **L6.** Плотность $p_{\theta}(x)$ трижды непрерывно дифферецируема по θ для любого $x \in A$;
- **L7.** Интеграл $\int_A p_{\theta}(x) dx$ трижды дифферецируем по θ ;
- **L8.** $i(\theta) = \mathsf{E}_{\theta} \left(\frac{\partial}{\partial \theta} \ln p_{\theta}(X_1) \right)^2 \in (0, +\infty)$ информация Фишера одного наблюдения;
- **L9.** $\forall \theta_0 \in \Theta \ \exists c > 0 \ \exists H(x) \ \forall \theta \in (\theta_0 c, \theta_0 + c) : \ \left| \frac{\partial^3}{\partial \theta^3} \ln p_{\theta}(x) \right| < H(x) \ \text{if} \ \mathsf{E}_{\theta} H(X_1) < +\infty.$