FE535: Introduction to Financial Risk Management Session 4

Majeed Simaan¹

¹Assistant Professor of Finance School of Business Stevens Institute of Technology

1/33

Agenda

- Bond Fundamentals
 - Compounding and Discounting (Time Value of Money)
 - Fixed Coupon Bonds
- Interest Rate Risk
 - Duration
 - Convexity
- Introduction to Bond Portfolio Management

Asset Pricing - The Basic Case

- Risk management starts with asset pricing
- The simplest asset to price is a fixed income security, such as a zerocoupon bond
- Nonetheless, to price this, we need to think about the time value of money
 - This requires discounting and compounding interest
- In this case, the price is determined by one factor, interest rate

Asset Pricing - The Basic Case

- Risk management starts with asset pricing
- The simplest asset to price is a fixed income security, such as a zerocoupon bond
- Nonetheless, to price this, we need to think about the time value of money
 - This requires discounting and compounding interest
- In this case, the price is determined by one factor, interest rate
- After evaluating the asset, risk management tries to investigate the impact of the factor on the price
 - What is the impact of change of interest on the price of the bond?
 - As a result, what is the associated loss?

What is a Bond?

What is a Bond?

- A bond is a legal debt/loan agreement
- When you buy a bond, you lend your money to the issuer, such as corporation or government
- The borrowers routinely issue bonds to raise capital ranging between a few days up to 40 years

What is a Bond?

- A bond is a legal debt/loan agreement
- When you buy a bond, you lend your money to the issuer, such as corporation or government
- The borrowers routinely issue bonds to raise capital ranging between a few days up to 40 years
- The distinguishing character of a bond is that the issuer (government) enters a legal agreement to compensate the lender (you) through
 - periodic interest payments in the form of a coupon
 - repay the original sum (face value or par value) at end of the period (maturity)

4/33

Discounting, Present Value, and Future Value

- In Session 2, we talked about fair value of games (security)
- The fair price should take into account
 - the likelihood of the payment (riskiness)
 - ▶ the time value of money
- Previously, we mainly focused on the former since it was an immediate game example
- Nonetheless, one should also consider the time-value of money when anticipating future cash flows

Discounting, Present Value, and Future Value

- In Session 2, we talked about fair value of games (security)
- The fair price should take into account
 - the likelihood of the payment (riskiness)
 - ▶ the time value of money
- Previously, we mainly focused on the former since it was an immediate game example
- Nonetheless, one should also consider the time-value of money when anticipating future cash flows
- Assuming discrete time cash flows over T future periods, the fair price, P_0 , should be

$$P_0 = \sum_{t=1}^{I} CF_{s,t} \times \mathbb{P}(s_t) \times \frac{1}{(1+y)^t}$$
 (1)

where y denotes a fixed rate of return (yield)

• If the security pays a CF_t with 100% certainty at each t, then (1) becomes

$$P_0 = \sum_{t=1}^{T} \frac{CF_t}{(1+y)^t}$$
 (2)

Simple Case

- The simplest case is to consider a zero-coupon bond guaranteed by the U.S. government
 - ▶ A bond purchased today at t = 0 for a price of P_0
 - ▶ In T periods, it pays back the **face value**, CF_T , with 100% certainty (why?)
 - The one period yield on the bond is constant and equal to y
- By discounting the future cash flows at the rate of y, the fair price of the bond is equal to

$$P_0 = \frac{CF_T}{(1+y)^T} \tag{3}$$

• The main pricing Equation (1) assumes that discounting is constant over time $y_t = y$, $\forall t = 1, ..., T$

Simple Case

- The simplest case is to consider a zero-coupon bond guaranteed by the U.S. government
 - ▶ A bond purchased today at t = 0 for a price of P_0
 - ▶ In T periods, it pays back the **face value**, CF_T , with 100% certainty (why?)
 - The one period yield on the bond is constant and equal to y
- By discounting the future cash flows at the rate of y, the fair price of the bond is equal to

$$P_0 = \frac{CF_T}{(1+y)^T} \tag{3}$$

- The main pricing Equation (1) assumes that discounting is constant over time $y_t = y$, $\forall t = 1, ..., T$
- ullet Since the future cash flow is 100% certain, y denotes the rate of return that an investor reaps on an investment today for T periods
- Put differently,

$$CF_T = P_0 \times (1+y)^T \tag{4}$$

or

$$y = \sqrt[7]{\frac{CF_T}{P_0}} - 1 \tag{5}$$

- When compared with other assets, it is easier to evaluate different assets using rates than prices
 - ▶ For instance, how much return the equity market gives over a T-bond?
- If T refers to units of years, then y denotes an annual rate
- The rate y is also known as
 - ► The Effective Annual Rate (EAR)
 - Internal Rate of Return (IRR)

- When compared with other assets, it is easier to evaluate different assets using rates than prices
 - ▶ For instance, how much return the equity market gives over a T-bond?
- If T refers to units of years, then y denotes an annual rate
- The rate y is also known as
 - ► The Effective Annual Rate (EAR)
 - ▶ Internal Rate of Return (IRR)
- Compounding could also take place on a more frequent basis for instance, semiannual
- If we consider a semi-annual rate of y(2), then we have 2T compounding periods (i.e. 2T half years)

$$P_0 = \frac{CF_T}{(1 + \frac{y(2)}{2})^{2T}} \tag{6}$$

• From (3) and (6), it follows that

$$\left(1 + \frac{y(2)}{2}\right)^2 = 1 + y \tag{7}$$

• We can generalize the result from (7) to d increments over the year, i.e.

$$\left(1 + \frac{y(d)}{d}\right)^d = 1 + y \tag{8}$$

In fact, if we think about continuous compounding, i.e. $d \to \infty$, then it follows that

$$\lim_{d\to\infty} \left(1 + \frac{y(d)}{d}\right)^d \to e^{y(c)} \tag{9}$$

8/33

• We can generalize the result from (7) to d increments over the year, i.e.

$$\left(1 + \frac{y(d)}{d}\right)^d = 1 + y \tag{8}$$

• In fact, if we think about continuous compounding, i.e. $d \to \infty$, then it follows that

$$\lim_{d \to \infty} \left(1 + \frac{y(d)}{d} \right)^d \to e^{y(c)} \tag{9}$$

- ullet Put differently, consider an asset that pays a continuous annual rate of t over time, which we denote by B_t
- If this asset obeys to GBM, we know that

$$\frac{\partial B_t}{B_t} = rdt + \sigma dZ_t \tag{10}$$

• However, for a risk-less asset, we have $\sigma = 0$, i.e.

$$\frac{\partial B_t}{B_t} = rdt \tag{11}$$

• If we know B_0 , then the future prices is determined by the solution to the ordinary differential equation (ODE) from (11), such that

$$B_t = B_0 e^{r\tau} \tag{12}_{8/33}$$

Simaan (Stevens)

Example 1 - Exam Question

You have \$1 million to invest for one year in a certified deposit account. You have 4 options among which you need to choose the one that returns the highest EAR:

- monthly compounding, i.e. y(12) = 7.82%
- ② quarterly compounding, i.e. y(4) = 8.00%
- **3** semi-annually compounding, i.e. y(2) = 8.05%
- continuous compounding, i.e. y(c) = 7.95%

Example 1 - Exam Question (solution)

To answer this question, we need to compute the EAR for each alternative, i.e. find the corresponding y from Equation (8)

1 For the first one, we have d = 12 and y(12) = 7.82, such that

$$\left(1 + \frac{7.82/100}{12}\right)^{12} = 1.0811 \Rightarrow y = 8.11\%$$
 (13)

- ② Solving the same for alternative 2, we get y = 8.24%
- 3 For alternative 3, we have y = 8.21%
- Finally, for the continuous compounding alternative, it follows that $e^{7.95/100} = 1.0827$, i.e. y = 8.27%

Example 1 - Exam Question (solution)

To answer this question, we need to compute the EAR for each alternative, i.e. find the corresponding y from Equation (8)

1 For the first one, we have d = 12 and y(12) = 7.82, such that

$$\left(1 + \frac{7.82/100}{12}\right)^{12} = 1.0811 \Rightarrow y = 8.11\%$$
 (13)

- ② Solving the same for alternative 2, we get y = 8.24%
- 3 For alternative 3, we have y = 8.21%
- **③** Finally, for the continuous compounding alternative, it follows that $e^{7.95/100}=1.0827$, i.e. y=8.27%

Note: in fact, if one computes the EAR for a large d for the continuous compounding alternative, the answer should converge to 1.0827. To see this, consider the following

```
> d_seq <- 12:1000
> y_d <- sapply(d_seq, function(d) y(7.95,d))
> plot(y_d^d_seq, type = "1", ylab = "EAR",xlab = "d")
> abline(h = exp(7.95/100),lty = 2)
```

> y <- function(y_d,d) (1+((y_d/100)/d))^d</pre>

Example 2 - Exam Question

Consider a saving account that pays 8% annual interest rate. How many years it would take to double your wealth by investing in such an account?

Example 2 - Exam Question

Consider a saving account that pays 8% annual interest rate. How many years it would take to double your wealth by investing in such an account?

Example 2 - Exam Question (solution)

In this case, the annual rate is y=8%, where today's price is $P_0=1$. The future cash flow is $CF_T=2$. Hence, we need to find the value T for which Equation (4) holds, i.e.

$$1 \times (1.08^T) = 2 \tag{14}$$

In other words,

$$1.08^{T} = \frac{2}{1} \tag{15}$$

$$\log\left(1.08^{T}\right) = \log\left(\frac{2}{1}\right) \tag{16}$$

$$T \times \log(1.08) = \log(2) \tag{17}$$

$$T = \frac{\log(2)}{\log(1.08)} \approx 9 \tag{18}$$

(19)

 4 □ → 4 ₱ → 4 ₱ → 4 ₱ → 11/33

- How would your answer change if the saving account in Example 2 would use compounding with
 - semi-annual with y(2) = 8%
 - 2 monthly-annual with y(12) = 8%
 - **3** continuous with y(c) = 8%
- If you had the option, which one would you choose?

- How would your answer change if the saving account in Example 2 would use compounding with
 - semi-annual with y(2) = 8%
 - 2 monthly-annual with y(12) = 8%
 - **3** continuous with y(c) = 8%
- If you had the option, which one would you choose?
- Clearly, the more frequent the compounding the higher the return is
- The higher the return is the faster the wealth accumulates

- How would your answer change if the saving account in Example 2 would use compounding with
 - semi-annual with y(2) = 8%
 - 2 monthly-annual with y(12) = 8%
 - **3** continuous with y(c) = 8%
- If you had the option, which one would you choose?
- Clearly, the more frequent the compounding the higher the return is
- The higher the return is the faster the wealth accumulates
- To see this, let's find the solution for different values of d, i.e. what is the corresponding T value for a given d that solves the following

$$\left(\left(1 + \frac{y(d)}{d}\right)^{d}\right)^{T} = 2 \Rightarrow T = \frac{\log(2)}{d \times \log\left(1 + \frac{0.08}{d}\right)}$$
 (20)

- How would your answer change if the saving account in Example 2 would use compounding with
 - semi-annual with y(2) = 8%
 - 2 monthly-annual with y(12) = 8%
 - **3** continuous with y(c) = 8%
- If you had the option, which one would you choose?
- Clearly, the more frequent the compounding the higher the return is
- The higher the return is the faster the wealth accumulates
- To see this, let's find the solution for different values of d, i.e. what is the corresponding T value for a given d that solves the following

$$\left(\left(1 + \frac{y(d)}{d}\right)^{d}\right)^{T} = 2 \Rightarrow T = \frac{\log(2)}{d \times \log\left(1 + \frac{0.08}{d}\right)}$$
 (20)

d	1.00	3.00	6.00	12.00	50.00	100.00
T	9.01	8.78	8.72	8.69	8.67	8.67

Fixed-Coupon Bond

- Bonds usually pay fixed coupons on a semi-annual basis
 - ▶ the case for U.S. Treasury and corporate bonds
- ullet The face value of the bond is standardized to F=100, which is known as the par value
- The coupon is written in percentage, such that c denotes a CF of $c \times F$

Fixed-Coupon Bond

- Bonds usually pay fixed coupons on a semi-annual basis
 - ▶ the case for U.S. Treasury and corporate bonds
- ullet The face value of the bond is standardized to F=100, which is known as the par value
- The coupon is written in percentage, such that c denotes a CF of $c \times F$
- According to (2), the price of a fixed annual coupon bond is

$$P_0 = \frac{c \times F}{(1+y)} + \frac{c \times F}{(1+y)^2} + \dots + \frac{c \times F}{(1+y)^{T-1}} + \frac{(1+c) \times F}{(1+y)^T}$$
(21)

which can simplified to

$$P_0 = c \times F \sum_{t=1}^{T} \frac{1}{(1+y)^t} + \frac{F}{(1+y)^T}$$
 (22)

and, hence, to

$$P_0 = \frac{c}{y} \times F \left[1 - \frac{1}{(1+y)^T} \right] + \frac{F}{(1+y)^T}$$
 (23)

At Par

A bond is called selling at par, if the current price is equal to the face value.

- A special case for a fixed-coupon bond is when the yield is equal to the coupon, c = y
- If c = y, then it follows from (23) that

$$P_0 = F \left[1 - \frac{1}{(1+y)^T} + \frac{1}{(1+y)^T} \right] = F$$
 (24)

- For instance, if c > y, then bond investors are willing to pay a premium, i.e. $P_0 > F$
- On the other hand, if c < y, then the bond should be sell than par, $P_0 < F$, to encourage investors

□ ▶ ◆□ ▶ ◆ ≧ ▶ ◆ ≧ ▶ ◆ ○ ○ 14/33

Example 3 - Sensitivity to Yield

Consider a bond that pays 100 in 10 years with 6% annual coupon. What is the price of the bond if y = 6%, y = 7%, y = 5%?

- If c = y, then the price should be equal to the face value, $P_0 = 100$
- What about y = 7%? According to (23), the price is

$$P_0 = \frac{0.06}{0.07} \times 100 \left[1 - \frac{1}{(1 + 0.07)^{10}} \right] + \frac{100}{(1 + 0.07)^{10}} = 92.98$$
 (25)

• On the other hand, if y = 0.05, then $P_0 = 107.72$

Example 3 - Sensitivity to Yield

Consider a bond that pays 100 in 10 years with 6% annual coupon. What is the price of the bond if y = 6%, y = 7%, y = 5%?

- If c = y, then the price should be equal to the face value, $P_0 = 100$
- What about y = 7%? According to (23), the price is

$$P_0 = \frac{0.06}{0.07} \times 100 \left[1 - \frac{1}{(1 + 0.07)^{10}} \right] + \frac{100}{(1 + 0.07)^{10}} = 92.98$$
 (25)

• On the other hand, if v = 0.05, then $P_0 = 107.72$

```
> P < -function(y,c,FV,T_{end}) (c/y)*FV*(1 - 1/(1+y)^T_{end}) + FV/(1+y)^T_{end}
```

- > P_v <- function(v) P(v, 0.06, 100, 10)
- > plot(P_y, 0.01, 0.2, ylab = expression(P[0]), xlab = "v") $> points(0.06, P_y(0.06), pch = 20)$
- > segments(0.06,0,0.06,P_v(0.06), 1tv =2)

- > segments(0.P v(0.06),0.06.P v(0.06), 1tv =2)

Example 4 - FRM Exam 2009 Question

A five year corporate bond is paying an annual coupon of 8% is sold a price reflecting a yield to maturity of 6%. One year passes and the interest rate remains unchanged. Assuming a flat term structure and holding all other factors constant, the bond's price during this period will have

- Increased
- ② Decreased
- Remains constant
- Cannot be determined with the data given

Example 4 - FRM Exam 2009 Question

A five year corporate bond is paying an annual coupon of 8% is sold a price reflecting a yield to maturity of 6%. One year passes and the interest rate remains unchanged. Assuming a flat term structure and holding all other factors constant, the bond's price during this period will have

- Increased
- Opening
 Decreased
- Remains constant
- Cannot be determined with the data given
 - To answer this we need to consider two things
 - the yield relative to coupon is the bond selling at, above, or below par?
 - what happens to the price of the bond as the time to maturity shortens?

Case Study - Long-Term Capital Management's Big Loss

- Long-Term Capital Management (LTCM), was a hedge fund formed in the mid-1990s
- The fund's strategy was known as a convergence arbitrage
 - Find bonds by the same issuer with same payoffs
 - ▶ However, one was more liquid than the other
 - Buy a discount bond (underpriced) X
 - ► Short a premium bond (overpriced) Y

Case Study - Long-Term Capital Management's Big Loss

- Long-Term Capital Management (LTCM), was a hedge fund formed in the mid-1990s
- The fund's strategy was known as a convergence arbitrage
 - Find bonds by the same issuer with same payoffs
 - ▶ However, one was more liquid than the other
 - Buy a discount bond (underpriced) X
 - Short a premium bond (overpriced) Y
- The main assumption behind the above is that the prices of each will eventually converge to par
 - i.e. $Y X \rightarrow 0$
- If interest rate would increase, then both prices would change in the same fashion

- In Aug 1998, however, Russia defaulted on its debt and investors valued more safe and liquid assets
 - ▶ a phenomenon known as Flight to Quality during market panics
- This created more (less) demand for liquid (illiquid) assets
 - ▶ The price of Y went up, while X went down
 - ▶ The spread, hence, $Y X \rightarrow 0$ started to diverge rather converge
- Given this divergence, LTCM had to liquidate its position at large losses
- These losses were mainly amplified by high leverage of the fund
 - LTCM held huge positions, totaling roughly 5% of the total global fixedincome market
 - ▶ Borrowed massive amounts of money to finance these leveraged trades
- Eventually the fund was bailed out with the help of the Federal Reserve
- Then its creditors took over, and a systematic meltdown of the market was prevented

Interest Rate Risk

- In Example 3, we illustrated how sensitive the bond price is to the yield
- In particular, bond holders are concerned with a number of risk factors
 - interest rate risk: change in interest rate
 - credit risk: credit worthiness of issuers
 - liquidity risk: bonds tend to be less liquid that stocks
- Nonetheless, all bonds subject to interest rate risk
- For instance, if you are holding a \$1 million portfolio of T-bonds, what would happen if the interest rate go up/down?

Price Sensitivity

- We saw in Equation (23) that there is an inverse relation between P_0 and y
- In particular, the price of P_0 can be described as a function of y, all else equal

$$P_0 = f(y) \tag{26}$$

- One can investigate the sensitivity of the price given yield, y_0 , i.e. what's the price of the bond if the yield changes from y_0 to y_1 , where $y_1 = y_0 + \Delta y$
- ullet Using Taylor Expansion, it can be shown for a small Δy that

$$P_1 = P_0 + f'(y_0) \times (\Delta y) + \frac{1}{2} f''(y_0) \times (\Delta y)^2$$
 (27)

Price Sensitivity - Duration

- The first order change in the bond price is known as duration
- In particular, the first derivative is described by

$$f'(y_0) = -DD = -D^*P_0 = -\frac{D}{1+y}P_0$$
 (28)

where

- DD is the dollar duration
- ▶ D* is called the modified duration
- ► D is the Macaulay duration

Price Sensitivity - Duration

- The first order change in the bond price is known as duration
- In particular, the first derivative is described by

$$f'(y_0) = -DD = -D^*P_0 = -\frac{D}{1+y}P_0$$
 (28)

where

- DD is the dollar duration
- D* is called the modified duration
- D is the Macaulay duration
- According first order approximation (27), we get

$$P_1 = P_0 - \Delta y \times D^* \times P_0 \Rightarrow \frac{P_1 - P_0}{P_0} = -\Delta y \times D^*$$
 (29)

Calculating Duration

The Macaulay duration is the more intuitive one, which can be computed as

$$D = \sum_{t=1}^{T} w_t t \tag{30}$$

where

$$w_t = \frac{CF_t/(1+y)^t}{\sum_{t=1}^T CF_t/(1+y)^t} = \frac{CF_t/(1+y)^t}{P_0}$$
(31)

- The above computation can be generalized to any debt instrument
- Hence, if we know D, then we know $D^* = D/(1+y)$ and $DD = D^*P_0$
 - ▶ and hence the sensitivity of the debt instrument to y, i.e. $f'(y_0) = -DD$

- In economic sense, Macaulay duration denotes the average time needed to fully recover the price paid today
 - ▶ i.e., the average time to wait for all cash flows

- In economic sense, Macaulay duration denotes the average time needed to fully recover the price paid today
 - ▶ i.e., the average time to wait for all cash flows
- To see this, let's consider the case for the zero-coupon bond that matures in T
 years, its price today is given by

$$P_0 = \frac{100}{(1+y)^T} = 100 \times (1+y)^{-T}$$
 (32)

Simaan (Stevens) Financial Risk Management FE535 23 / 33

- In economic sense, Macaulay duration denotes the average time needed to fully recover the price paid today
 - ▶ i.e., the average time to wait for all cash flows
- To see this, let's consider the case for the zero-coupon bond that matures in T
 years, its price today is given by

$$P_0 = \frac{100}{(1+y)^T} = 100 \times (1+y)^{-T}$$
 (32)

• Taking the derivative w.r.t y, we have

$$f'(y_0) = \frac{\partial P_0}{\partial y} = 100 \times -T \times (1+y)^{-T-1}$$
(33)

$$= -100 \times (1+y)^{-T} \times \frac{T}{1+y} = -P_0 \times \frac{T}{1+y}$$
 (34)

• According to (28), it is clear that the Macaulay duration is T

□ → ← □ → ← □ → ← □ → ○ ○ ○ 23/33

- In economic sense, Macaulay duration denotes the average time needed to fully recover the price paid today
 - ▶ i.e., the average time to wait for all cash flows
- To see this, let's consider the case for the zero-coupon bond that matures in T
 years, its price today is given by

$$P_0 = \frac{100}{(1+y)^T} = 100 \times (1+y)^{-T}$$
 (32)

• Taking the derivative w.r.t y, we have

$$f'(y_0) = \frac{\partial P_0}{\partial y} = 100 \times -T \times (1+y)^{-T-1}$$
(33)

$$= -100 \times (1+y)^{-T} \times \frac{T}{1+y} = -P_0 \times \frac{T}{1+y}$$
 (34)

- According to (28), it is clear that the Macaulay duration is T
- Alternatively, according to (30), we see that there is one payment at time T, such that $w_T = 1$, and, therefore, the Macaulay duration is T

Duration Summary

- For bonds with coupons duration should be less than T, since the bonds holder receives payment before maturity
 - the higher the coupon the lower the duration is
- Moreover, the higher the yield is the lower duration is
 - higher yield means lower price paid for the bond
 - ▶ lower price means less time takes to recover the down payment
 - less weights assigned to the distant future recall Equation (31)
- The longer the maturity the higher the duration is
 - regardless of the coupons, the face value is the major cash flow
 - the later it is received the higher the duration is

EXAMPLE 6.13: FRM EXAM 2000 - QUESTION 106

• How would you rank the following from shortest to longest duration?

Bond Number	Maturity	Coupon Rate	Frequency	Yield
1	10	6.00%	1	6.00%
2	10	6.00%	2	6.00%
3	10	0.00%	1	6.00%
4	10	6.00%	1	5.00%
5	9	6.00%	1	6.00%

- **1** 5-2-1-4-3
- **2** 1-2-3-4-5
- **5-4-3-1-2**
- **2**-4-5-1-3

Price Sensitivity - Convexity

- Convexity refers to the second order change in the bond price with respect to yield,
 y
- In particular, the second derivative can be described as

$$f''(y_0) = C \times P_0 \tag{35}$$

• In Taylor's expansion (27), it follows that

$$P_1 = P_0 - \Delta y \times D^* \times P_0 + (\Delta y)^2 \times \frac{C \times P_0}{2}$$
 (36)

$$\frac{P_1 - P_0}{P_0} = -\Delta y \times D^* + (\Delta y)^2 \times \frac{C}{2}$$
(37)

In economic intuition, C is given by

$$C = \sum_{t=1}^{T} \frac{t(t+1)}{(1+y)^2} \times w_t \tag{38}$$

where w_t is given by (31)

Like duration, convexity computes the weighted-average of the squared time periods
of cash flows

Simaan (Stevens) Financial Risk Management FE535 26 / 33

Approximating Price Change using Duration and Convexity

- ullet If you know the duration and convexity of a bond, then you can approximate the change to its price if the yield goes up by Δy
- According to (27), Equation (36) indicates that

$$P_1 = P_0 \left[1 - \frac{D}{1+y} \times \Delta y + \frac{1}{2} \times C \times (\Delta y)^2 \right]$$
 (39)

where D and C follow from (30) and (38), respectively

- One can see that the first order change is always negative
 - negative relation between price and yield
- Convexity serves as a correction to provide a better approximation price sensitivity
 - which captures the non-linearity in the price change

Basis Points (bps)

In the bond market, it is common talk in basis points (bps)

• 1% is equal to 100 bps - or x bps are equal to $x/100^2$

Example 5 - Exam Question

A portfolio manager has a bond position worth \$100 million. The position has a modified duration of 8 years and convexity of 150 years. By how much the position would change if interest rates increase by 25bps?

Basis Points (bps)

In the bond market, it is common talk in basis points (bps)

• 1% is equal to 100 bps - or x bps are equal to $x/100^2$

Example 5 - Exam Question

A portfolio manager has a bond position worth \$100 million. The position has a modified duration of 8 years and convexity of 150 years. By how much the position would change if interest rates increase by 25bps?

Example 5 - Exam Question Solution

- First, note that the question provides info about D^* , which is D/(1+y), hence D/(1+y) = 8 and C = 150
- Second, $\Delta y = 25/100^2$
- Third, according to (30) and (39), it follows that

$$P_1 = 100 \left[1 - 8 \times \frac{25}{100^2} + \frac{1}{2} \times 150 \times \left(\frac{25}{100^2} \right)^2 \right] = 98.05 \tag{40}$$

• Finally, the change in the position is $P_1 - P_0 = 98.05 - 100 = -1.95$

28 / 33

Portfolio Duration and Convexity

- Fixed income portfolios involve large number of securities
- It is more practical to assess the sensitivity of the portfolio rather than each asset
- For instance, consider the case where a bond fund is compared to Tbond with a duration of 5 years
- The manager may wish her portfolio duration to, let's say, 1 year
- \bullet If interest rates increase by 1% then the benchmark would suffer approximately 5%
- \bullet Whereas, the bond fund would only suffer 1%, hence outperforming the benchmark by 4%

Since portfolio is a linear combination of bond prices, it holds true that

$$D_p^* = \sum_{i=1}^N D_i^* x_i \tag{41}$$

and

$$C_p = \sum_{i=1}^{N} C_i x_i \tag{42}$$

where

- \triangleright D_p^* (C_p) is the modified duration (convexity) of the portfolio
- ▶ D_i^* (C_i) is the modified duration (convexity) of bond i, for i = 1,...,N
- \triangleright x_i is the weight allocated to bond i, for i = 1, ..., N

$$x_{i} = \frac{n_{i} \times P_{i,0}}{\sum_{j=1}^{N} n_{j} \times P_{j,0}}$$
 (43)

with n_i the number of bond i held, $P_{i,0}$ denoting the price of which today

• Note that the portfolio weights should sum to 1, i.e. $\sum_{i=1}^{N} x_i = 1$

□ → ←□ → ← ■ → ← ■ → ○ ○ 30/33

Bond Portfolio Problem

 Put formally, let x denote the vector of weights allocated to bond 1 and 2, i.e.

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \tag{44}$$

• At the same time, define the 2 \times 2 **A** matrix and the 2 \times 1 column vector **b** as

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ D_1^* & D_2^* \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ D_p^* \end{bmatrix}$$
 (45)

Then, the portfolio weights must satisfy the following condition

$$\mathbf{A}\mathbf{x} = \mathbf{b} \tag{46}$$

and, as a result:

$$\mathbf{x} = \mathbf{A}^{-1}\mathbf{b} \tag{47}$$

Bond Portfolio Problem - Example

- Suppose you have two bonds trading at par one with duration of 3 years and the other with duration of 6 years
- In total, you need to invest \$100K between the two, but, at the same time you need to ensure the duration is no more than 5 years
- How many bonds you should buy from each?

Bond Portfolio Problem - Example

- Suppose you have two bonds trading at par one with duration of 3 years and the other with duration of 6 years
- In total, you need to invest \$100K between the two, but, at the same time you need to ensure the duration is no more than 5 years
- How many bonds you should buy from each?
- Using the former notation, we have

$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 3 & 6 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 1 \\ 5 \end{bmatrix} \tag{48}$$

Therefore, the weights should are given by

$$\mathbf{x} = \begin{bmatrix} 1 & 1 \\ 3 & 6 \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 2 & -\frac{1}{3} \\ -1 & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} = \begin{bmatrix} 1/3 \\ 2/3 \end{bmatrix}$$
(49)

• Finally, we need to purchase $N_1 = \frac{\$100,000}{1000} \times \frac{1}{3} \approx 34$ and $N_2 = \frac{\$100,000}{1000} \times \frac{2}{3} \approx 66$

□ ▶ ◀∰ ▶ ◀ 분 ▶ ◀ 분 ▶ □ ♥ ♀♡ 32/33

32/33

Summary

- Interest rate risk is the most common risk factor in bond valuations
- Duration and convexity provide first and second order sensitivity approximation to changes in bond prices
- Both provide risk metrics to measure portfolio risk exposure
 - Allowing bond portfolio managers to track/outperform a benchmark
- For those interested in further reading on bonds, I recommend The Bond Book by Annette Thau (see link)