GEOMETRÍA Y TOPOLOGÍA DE SUPERFICIES 2016/17. RELACIÓN 1.

Ejercicio 1. En un espacio X definimos la relación $x\mathcal{R}y$ si existe un subespacio conexo por caminos $C \subseteq X$ con $x, y \in C$. ¿Cuáles son las clases de equivalencia?

Ejercicio 2. Probar que si \mathcal{R} es una relación de equivalencia sobre un espacio X, las siguientes condiciones son equivalentes:

- a) La aplicación $p: X \longrightarrow X/\mathcal{R}$ es cerrada (abierta).
- b) Para todo cerrado (abierto) $A \subseteq X$, la unión de todas las clases de equivalencia que cortan a A es cerrado (abierto) de X.
- c) Para todo abierto (cerrado) $A \subseteq X$, la unión de todas las clases de equivalencia contenidas en A es abierto (cerrado) de X.

Ejercicio 3. Sean A y B subconjuntos de X tales que A es cerrado y $A \subseteq B$. Probar que existe una inmersión de B/A en X/A.

Ejercicio 4. Sea X un espacio T_2 y $K \subseteq X$ compacto. Probar que X/K es un espacio T_2 .

Ejercicio 5. Indíquense cuáles de los siguientes espacios son homeomorfos entre sí:

- a) \mathbb{R}/\mathbb{Z} ;
- b) el subespacio $K \subseteq \mathbb{R}^2$ formado por la unión de las circunferencias C_k con centro $(\pm \frac{1}{k}, 0)$ y radio $\frac{1}{k}$, con $k \ge 1$;
- c) [-1, 1]/A, con $A = \{\pm \frac{1}{k} ; k \ge 1\}$.

Ejercicio 6. Probar que \mathbb{R}/\mathbb{Q} no es T_2 y por tanto no puede ser metrizable.

Ejercicio 7. Indíquense subespacios de \mathbb{R}^3 homeomorfos a los siguientes espacios cocientes:

- a) \mathbb{R}^2/D^2 , donde D^2 es la bola unidad cerrada;
- b) \mathbb{R}^2/S^1 ;
- c) $\mathbb{R}^2/(\mathbb{R}^2 B^2)$, donde B^2 es la bola abierta unidad.

Ejercicio 8. Sean \mathcal{R}_1 y \mathcal{R}_2 dos relaciones de equivalencia sobre X. Si $x\mathcal{R}_1y$ implica que $x\mathcal{R}_2y$, probar que si \mathcal{R} es la relación en X/\mathcal{R}_1 dada por $[x]\mathcal{R}[y]$ si $x\mathcal{R}_2y$, entonces $(X/\mathcal{R}_1)/\mathcal{R}$ es homeomorfo a X/\mathcal{R}_2 .

Ejercicio 9. Sea \mathcal{R} una relación de equivalencia sobre X tal que para todo $x \in X$, [x] está contenida en alguna componente conexa de X. Probar que las componentes conexas de X/\mathcal{R} son las imágenes por la proyección canónica de las componentes conexas de X.

Ejercicio 10. Sea $f: B^n \longrightarrow S^n$ la función continua dada por:

$$f(x_1, \dots, x_n) = (2\sqrt{1 - \|x\|^2}x_1, \dots, 2\sqrt{1 - \|x\|^2}x_n, 2\|x\|^2 - 1).$$

Sea \mathcal{R}_f la relación de equivalencia generada por $x\mathcal{R}_f y$ si f(x) = f(y). Probar que B^n/\mathcal{R}_f es B^n/S^{n-1} y deducir que este espacio cociente es homeomorfo a S^n .

Ejercicio 11. En \mathbb{R}^2 se define la relación $(x, y)\mathcal{R}(u, v)$ si $y+x^2=v+u^2$. ¿A qué subespacio euclídeo es homeomorfo \mathbb{R}^2/\mathcal{R} ?

Ejercicio 12. Sea \mathcal{R} una relación de equivalencia sobre (X, \mathcal{T}) . Probar que si X/\mathcal{R} es T_2 , entonces \mathcal{R} es cerrado en $X \times X$.

Ejercicio 13. Sea $X = \{x \in \mathbb{R} : x \geq 0\}$. Se considera sobre X la relación de equivalencia \mathcal{R} definida por la partición $\{\{a, \frac{1}{a}\}\}_{a>0} \cup \{0\}$. Demostrar que $p: X \longrightarrow X/\mathcal{R}$ es abierta, pero que \mathcal{R} no es abierto en $X \times X$.

Ejercicio 14. Sea \mathcal{R} una relación de equivalencia sobre (X, \mathcal{T}) tal que $p: X \longrightarrow X/\mathcal{R}$ es abierta. Entonces X/\mathcal{R} es T_2 si y sólo si \mathcal{R} es cerrado en $X \times X$. Deducir de este resultado que el espacio proyectivo $P_2(\mathbb{R})$ es un espacio T_2 .

Ejercicio 15. Probar que para todo espacio topológico X el cono CX y la suspensión ΣX son conexos por caminos.

Ejercicio 16.

- a) Probar que CS^{n-1} es homeomorfo a B^n , con $n \ge 1$ (B^n es la bola cerrada con centro el origen y radio 1).
- b) Dado $X \subseteq \mathbb{R}^{n-1} \times \{0\} \subseteq \mathbb{R}^n$ y $v \in \mathbb{R}^n \mathbb{R}^{n-1} \times \{0\}$ se considera el conjunto $vX = \{tv + (1-t)x \; ; \; x \in X, t \in [0,1]\}$. Probar que si X es compacto, entonces CX es homeomorfo a vX.
- c) Considérese $X = \mathbb{Z} \subseteq \mathbb{R}$ y demuéstrese que CX no tiene en el vértice una base numerable de abiertos. Concluir que el resultado del apartado anterior no es cierto en general.

Ejercicio 17.

- a) Probar que para todo espacio X existe una inmersión cerrada de X en CX.
- b) Probar que la aplicación $\phi: X \longrightarrow \sum X$ dada por $\phi(x) = [x, \frac{1}{2}]$ es una inmersión cerrada.
- c) Probar que existen inmersiones cerradas $\phi_1, \phi_2 : CX \longrightarrow \sum X$ cuyas imágenes son los subespacios $C_1X = \{[x,t] \in \sum X ; -1 \le t \le 0\}, C_2X = \{[x,t] \in \sum X ; 0 \le t \le 1\}.$

Ejercicio 18. Probar que $\sum S^{n-1}$ es homeomorfo a S^n , $n \ge 1$. Indicación: Considérese la aplicación $f: S^{n-1} \times [0,1] \longrightarrow S^n$ dada por:

$$f(x,t) = (\sqrt{1 - (2t-1)^2}x, 2t - 1).$$

1. 0

Ejercicio 19. Pruébese que S^2 es homeomorfo a $(S^1 \times S^1)/(S^1 \vee S^1)$.

Ejercicio 20. Probar que si X e Y son conexos por caminos o compactos, $X \cup_f Y$ también lo es.

Ejercicio 21. Sean X,Y y W espacios topológicos, $A\subseteq X$ cerrado y $f:A\longrightarrow Y,\ g:Y\longrightarrow W$ aplicaciones continuas. Probar que los espacios $(X\cup_f Y)\cup_g W$ y $X\cup_{g\circ f} W$ son homeomorfos.