Social Media & Text Analysis

lecture 8 - Paraphrase Identification and Logistic Regression

CSE 5539-0010 Ohio State University

Instructor: Alan Ritter

Website: socialmedia-class.org

(Recap) Classification Method:

Supervised Machine Learning

- Input:
 - a sentence pair x (represented by features)
 - a fixed set of binary classes $Y = \{0, 1\}$
 - a training set of *m* hand-labeled sentence pairs $(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)})$

- Output:
 - a learned classifier $\gamma: X \to Y \in Y \ (y = 0 \text{ or } y = 1)$

(Recap)

Linear Regression

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x$$

Parameters:

 θ_0, θ_1

 $J(\theta_1, \theta_2)$

Cost Function:

$$J(\theta_0, \theta_1) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x_i) - y_i)^2$$

• Goal: $\min_{\theta_0, \theta_1} \text{minimize } J(\theta_0, \theta_1)$

(Recap)

Gradient Descent

repeat until convergence {

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta_{0}, \theta_{1})$$

simultaneous update for j=0 and j=1

learning rate

(Recap) Linear Regression w/ one variable:

Gradient Descent

repeat until convergence {

$$\theta_0 \coloneqq \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x_i) - y_i)$$

$$\theta_1 \coloneqq \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x_i) - y_i) \cdot x_i$$

simultaneous update θ_0 , θ_1

Model Representation

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

(for convenience, define $x_0 = 1$)

Model Representation

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

(for convenience, define $x_0 = 1$)

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

Alan Ritter o socialmedia-class.org

Model Representation

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$
 (for convenience, define $x_0 = 1$)
$$\begin{bmatrix} x_0 \end{bmatrix} \begin{bmatrix} \theta_0 \end{bmatrix}$$

$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in R^{n+1} \quad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix} \in R^{n+1}$$

$$h_{\theta}(x) = \theta^T x$$

Alan Ritter ∘ <u>socialmedia-class.org</u>

Model Representation

Hypothesis:

$$h_{\theta}(x) = \theta^T x$$

Cost function: # training examples

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}$$

(Recap)

Paraphrase Identification

obtain sentential paraphrases automatically

Mancini has been sacked by Manchester City

Yes!

Mancini gets the boot from Man City

WORLD OF JENKS IS ON AT 11

World of Jenks is my favorite show on tv

(Recap)

- also supervised learning (learn from annotated data)
- but for Regression: predict real-valued output (Classification: predict discrete-valued output)

Linear Regression classification error

In practice, do not use linear regression for classification.

(Recap)

Logistic Regression

- One of the most useful supervised machine learning algorithm for classification!
- Generally high performance for a lot of problems.
- Much more robust than Naïve Bayes (better performance on various datasets).

Linear → Logistic Regression

Classification: y = 0 or y = 1

• Linear Regression: $h_{\theta}(x)$ can be > 1 or < 0

Linear → Logistic Regression

Classification: y = 0 or y = 1

• Linear Regression: $h_{\theta}(x)$ can be > 1 or < 0

Linear → Logistic Regression

- Linear Regression: $h_{\theta}(x) = \theta^T x$
- Logistic Regression: want $0 \le h_{\theta}(x) \le 1$

Linear → Logistic Regression

- Linear Regression: $h_{\theta}(x) = \theta^T x$
- Logistic Regression: want $0 \le h_{\theta}(x) \le 1$

sigmoid (logistic) function

Linear → Logistic Regression

- Linear Regression: $h_{\theta}(x) = \theta^T x$
- Logistic Regression: want $0 \le h_{\theta}(x) \le 1$

sigmoid (logistic) function

$$h_{\theta}(x) = \sigma(\theta^T x)$$

(Recap) Classification Method:

Supervised Machine Learning

- Input:
 - a sentence pair x (represented by features)
 - a fixed set of binary classes $Y = \{0, 1\}$
 - a training set of m hand-labeled sentence pairs $(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})$

- Output:
 - a learned classifier $\gamma: X \to Y \in Y \ (y = 0 \text{ or } y = 1)$

Interpretation of Hypothesis

• $h_{\theta}(x)$ = estimated probability that y = 1 on input

Interpretation of Hypothesis

• $h_{\theta}(x)$ = estimated probability that y = 1 on input

If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{#words_in_common} \end{bmatrix}$$
, $h_{\theta}(x) = 0.7$

70% chance of the sentence pair being paraphrases

Interpretation of Hypothesis

• $h_{\theta}(x)$ = estimated probability that y = 1 on input

If
$$x = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} 1 \\ \text{#words_in_common} \end{bmatrix}$$
, $h_{\theta}(x) = 0.7$

70% chance of the sentence pair being paraphrases

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

probability that y = 1, given x, parameterized by θ

Interpretation of Hypothesis

• $h_{\theta}(x)$ = estimated probability that y = 1 on input

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

probability that y = 1, given x, parameterized by θ

Interpretation of Hypothesis

• $h_{\theta}(x)$ = estimated probability that y = 1 on input

$$P(y = 1 | x; \theta) + P(y = 0 | x; \theta) = 1$$

$$h_{\theta}(x) = P(y = 1 \mid x; \theta)$$

probability that y = 1, given x, parameterized by θ

Decision Boundary

• Logistic Regression: sigmoid (logistic) function

$$h_{\theta}(x) = \sigma\left(\theta^{T} x\right)$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

$$\frac{1}{0.9}$$

$$\frac{0.9}{0.8}$$

$$\frac{0.8}{0.7}$$

$$\frac{0.9}{0.8}$$

$$\frac{0.9}{0.7}$$

$$\frac{0.9}{0.1}$$

$$\frac{0.9}{0.1}$$

$$\frac{0.9}{0.1}$$

Decision Boundary

Logistic Regression: sigmoid (logistic) function

$$h_{\theta}(x) = \sigma\left(\theta^{T} x\right)$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

$$1 + e^{-\theta^{T} x}$$

$$0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.3 \\ 0.2 \\ 0.3$$

predict
$$y = 1$$
 if $h_{\theta}(x) \ge 0.5$

predict
$$y = 0$$
 if $h_{\theta}(x) < 0.5$

Decision Boundary

Logistic Regression: sigmoid (logistic) function

$$h_{\theta}(x) = \sigma\left(\theta^{T} x\right)$$

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T} x}}$$

$$1 + e^{-\theta^{T} x}$$

$$0.9 \\ 0.8 \\ 0.7 \\ 0.6 \\ 0.5 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.2 \\ 0.1 \\ 0.3 \\ 0.3$$

predict
$$y = 0$$
 if $h_{\theta}(x) < 0.5 \leftarrow$ when $\theta^{T}x < 0$

Decision Boundary

Decision Boundary

$$h_{\theta}(x) = \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

What if
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$
?

predict y = 1 if $\theta^T x \ge 0$

Decision Boundary

decision boundary

$$h_{\theta}(x) = \sigma(\theta_0 + \theta_1 x_1 + \theta_2 x_2)$$

What if
$$\theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \end{bmatrix} = \begin{bmatrix} -3 \\ 1 \\ 1 \end{bmatrix}$$
?

predict y = 1 if $\theta^T x \ge 0$

- a training set of *m* hand-labeled sentence pairs

$$(x^{(1)}, y^{(1)}), \ldots, (x^{(m)}, y^{(m)}) \qquad (y \in \{0, 1\})$$

_

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^{T}x}}$$

$$x = \begin{bmatrix} x_{0} \\ x_{1} \\ \vdots \\ x_{n} \end{bmatrix} \in R^{n+1} \quad \theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{n} \end{bmatrix} \in R^{n+1}$$

Cost function:

Linear → Logistic Regression

• Linear Regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

squared error function

Cost function:

Linear → Logistic Regression

• Linear Regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

squared error function

• Logistic Regression: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

this cost function is non-convex for logistic regression

Cost function:

Linear → Logistic Regression

• Linear Regression: $J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \frac{1}{2} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right)^2$

 $Cost(h_{\theta}(x), y)$

• Logistic Regression: $h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$

this cost function is non-convex for logistic regression

we want convex! easy gradient descent!

J(θ₁.

Cost Function

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

remember that

$$0 \le h_{\theta}(x) \le 1$$

Cost Function

Cost Function

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}\left(h_{\theta}(x^{(i)}) - y^{(i)}\right)$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

remember that y = 0 or 1 always

Cost Function

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \operatorname{Cost}(h_{\theta}(x^{(i)}) - y^{(i)})$$

$$\operatorname{Cost}(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)) & \text{if } y = 1\\ -\log(1 - h_{\theta}(x)) & \text{if } y = 0 \end{cases}$$

remember that y = 0 or 1 always

the same

cross entropy loss:

$$Cost(h_{\theta}(x), y) = -y\log(h_{\theta}(x)) - (1-y)\log(1-h_{\theta}(x))$$

Cost Function:

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \text{Cost}(h_{\theta}(x^{(i)}) - y^{(i)})$$

$$= -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \log(h_{\theta}(x^{(i)})) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Goal:

learn parameters $\, heta\,$ to $\, ext{minimize}\,J(heta)\,$

• Hypothesis (to make a prediction):
$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

P(y=1|x;\theta)

Gradient Descent

repeat until convergence {

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

learning rate

simultaneous update for all $\boldsymbol{\theta}_j$

Gradient Descent

repeat until convergence {

$$\theta_{j} \coloneqq \theta_{j} - \alpha \frac{\partial}{\partial \theta_{j}} J(\theta)$$

simultaneous update for all $\boldsymbol{\theta}_{j}$

learning rate

training examples

$$\frac{\partial}{\partial \theta_{i}} J(\theta) = \frac{1}{m} \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

Gradient Descent

repeat until convergence {

simultaneous update for all θ .

$$\theta_{j} \coloneqq \theta_{j} - \alpha \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \vdots \\ \theta_n \end{bmatrix}$$

Gradient Descent

repeat until convergence {

simultaneous update for all θ .

$$\theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)} \right) x_{j}^{(i)}$$

$$\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta \end{bmatrix}$$

This look the same as linear regression!!???

Gradient Descent

repeat until convergence {

simultaneous update for all θ .

$$\theta_{j} := \theta_{j} - \alpha \sum_{i=1}^{m} \left(h_{\theta}(x^{(i)}) - y^{(i)}\right) x_{j}^{(i)}$$

$$\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \theta_{2} \\ \vdots \\ \theta_{n} \end{bmatrix}$$

$$\theta = \begin{bmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \\ \theta_{n} \end{bmatrix}$$

using different hypothesis from linear regression

Classification Evaluation

relevant elements true negatives false negatives true positives false positives selected elements

How many selected items are relevant?

How many relevant items are selected?

Recall =

F-measure:

$$F_{1} = \frac{2 \cdot precision \cdot recall}{precision + recall}$$

Alan Ritter o socialmedia-class.org

Classification Method:

Supervised Machine Learning

- Naïve Bayes
- Logistic Regression
- Support Vector Machines (SVM)
- •
- Hidden Markov Model (HMM)
- Conditional Random Fields (CRF)

•

sequential models

Classification Method:

Sequential Supervised Learning

- Input:
 - rather than just individual examples (w1 = the, c1 = DT)
 - a training set consists of *m* sequences of labeled examples (X1, Y1), ..., (Xm, Ym)

x₁ = <the back door> and y₁= <DT JJ NN>

- Output:
 - a learned classifier to predict label sequences $\gamma: x \to y$

Features for Sequential Tagging

- Words:
 - current words
 - previous/next word(s) context
- Other linguistic information:
 - word substrings
 - word shapes
 - POS tags
- Contextual Labels
 - previous (and perhaps next) labels

word shapes

Varicella-zoster	Xx-xxx
mRNA	xxxx
CPA1	XXXd

Probabilistic Graphical Models

Probabilistic Graphical Models

Hidden Markov Model

$$p(\mathbf{Y},\mathbf{X}) = \prod_{n=1}^{N} p(y_n | y_{n-1}) p(\mathbf{x}_n | y_n)$$

Conditional Random Field

GENERATIVE

Next Time

- Word2vec
- HW2 will be posted on Piazza soon.