Uma Análise da Co-Evolução de Teste em Projetos de Software no GitHub

Aluno: Charles José Lima de Miranda:

Introdução

O software evolui (LEHMAN, 1979) e essa evolução envolve alterações no código de produção para atividades de correções e evolução do software.

O software evolui (LEHMAN, 1979) e essa evolução envolve alterações no código de produção para atividades de correções e evolução do software.

Como reduzir riscos?

Como garantir as funcionalidades?

Como garantir a confiabilidade?

Teste de software

- Visa a identificação e correção de bugs;
- Aumenta a satisfação do usuário final;
- Garante a qualidade do Software;

Teste de software

- Visa a identificação e correção de bugs;
- Aumenta a satisfação do usuário final;
- Garante a qualidade do Software;

Como o teste é realizado no desenvolvimento de software?

Teste de unidade

- É o teste de componentes de forma isolada ou agrupamentos coerentes de funções ou classes;
- Feito pelo desenvolvedor;
- Existem diversos frameworks que facilitam a automatização de testes de unidade.

Visto que **mudanças no código de produção** são necessárias;

Visto que **mudanças no código de teste** são necessárias;

Visto que **mudanças no código de produção** são necessárias;

Visto que **mudanças no código de teste** são necessárias;

Para um processo de desenvolvimento visando qualidade o **código de teste também deve evoluir** junto com o código de produção (ZAIDMAN et al., 2011)

Algumas pesquisas dessa área abordam o problema com foco somente em Java, e em datasets muito pequenos.

(ZAIDMAN et al., 2011)

(ROMANO; ZAIDMAN, 2014)

(LEVIN; YEHUDAI, 2017)

(VIDÁCS; PINZGER, 2018)

Definição do problema

Como **investigar os impactos** da co-evolução de teste no desenvolvimento de projetos de software?

QP1 - Como testes evoluem em projetos de software?

QP1 - Como testes evoluem em projetos de software?

Motivação:

- Como evoluem?
 - Investigamos a adoção de testes;
 - Identificamos a existência de padrões de evolução de testes.

QP2 - Com que frequência o código-fonte e testes co-evoluem em projetos de software?

QP2 - Com que frequência o código-fonte e testes co-evoluem em projetos de software?

Motivação:

- Ocorre co-evolução?
 - Investigamos indícios de co-evolução.

QP3 - Que características distinguem projetos onde há co-evolução de código de teste de projetos onde essa prática não é comum?

QP3 - Que características distinguem projetos onde há co-evolução de código de teste de projetos onde essa prática não é comum?

Motivação:

- São diferenças significativas?
 - Investigamos se existem diferenças

Visão geral da proposta

Utilizamos conceitos relacionados a mineração de repositórios de software, busca de arquivos de teste através de expressão regular e realizamos a clusterização de dados para descoberta de padrões de crescimento.

Autor	Foco da pesquisa
(MARSAVINA; ROMANO; ZAIDMAN, 2014)	Identificação de padrões de co-evolução de teste
(VIDÁCS; PINZGER, 2018)	Identificação de padrões de co-evolução de teste
(ZAIDMAN et al., 2011)	Visualização da co-evolução de teste
(LEVIN; YEHUDAI, 2017)	Co-evolução de teste e mudanças semânticas
(GONZALEZ et al., 2017)	Manutenção de software e teste de unidade

Autor	Foco da pesquisa
(MARSAVINA; ROMANO; ZAIDMAN, 2014)	Identificação de padrões de co-evolução de teste
(VIDÁCS; PINZGER, 2018)	Identificação de padrões de co-evolução de teste
(ZAIDMAN et al., 2011)	Visualização da co-evolução de teste
(LEVIN; YEHUDAI, 2017)	Co-evolução de teste e mudanças semânticas
(GONZALEZ et al., 2017)	Manutenção de software e teste de unidade

Amostra de frameworks encontrados (Gonzalez et al., 2017)

between	NUnit	443
C#	Moq	164
	Rhino Mocks	30
Java	JUnit	3841
	Mockito	573
	TestNG	303
JavaScript	Mocha	6714
	JSUnit	758
	Enhance JS	737
Perl	Test::More	49
Peri	Test::Builder	2
PHP	PHPUnit	1000
	PHP Unit Testing Framework	867
	Simple Test	348

L-1993	NUnit	443
C#	Moq	164
	Rhino Mocks	30
Java	JUnit	3841
	Mockito	573
	TestNG	303
JavaScript	Mocha	6714
	JSUnit	758
	Enhance JS	737
Perl	Test::More	49
Реп	Test::Builder	2
PHP	PHPUnit	1000
	PHP Unit Testing Framework	867
	Simple Test	348

Gonzalez et al. (2017)

- A abordagem utiliza mineração de repositório de software, identificação de arquivos de teste e detecção de padrões de teste.
 - Os resultados obtidos mostram que os projetos open source não adotam padrões de teste que podem ajudar com atributos de manutenibilidade. Foi verificado que projetos menores aplicam padrões com mais frequência e que a adoção de padrões é uma decisão individual do desenvolvedor.

Fig. 5 Checkstyle Growth History View

Visualização do Histórico de crescimento (Zaidman et al., 2011)

Fig. 5 Checkstyle Growth History View

Zaidman et al (2011)

- Apresenta três visões para o estudo da co-evolução: i)
 Histórico de Mudanças, ii)
 Histórico de crescimento, iii)
 Evolução da Cobertura de Teste.
- Os resultados obtidos mostram que embora o código de teste e produção possam ser commitados em momentos diferentes (faseado) ou juntos (síncrono), o padrão de desenvolvimento síncrono foi encontrado com maior frequência.

Metodologia

Abordagem

Seleção e extração

600 de cada linguagem 3.000 repositórios públicos

Seleção e extração

Dados dos repositórios (K = milhares, M = milhões)

Linguagem	Commits	Devs	Forks	Issues	Size	Stars
Javascript	1.74M	52.62K	1.67M	141.69K	28.35GB	10.79M
Java	2.00M	37.95K	1.35M	101.22K	51.89GB	4.77M
Python	1.96M	61.67K	1.20M	135.67K	27.78GB	5.51M
PHP	2.11M	47.37K	461.74K	63.76K	17.81GB	2.46M
Ruby	2.11M	64.34K	392.38K	42.56K	14.22GB	2.12M
Todos	9.95M	$263.97\mathrm{K}$	5.08M	484.92K	140.08 GB	25.68M

Seleção e extração

Amostra de dados extraídos

Hash	68c3d2***c12fe5	4a19e4c***99bdb
Autor	Mon***9	Ky***ch
E-mail	Mon***9@users.noreply.github.com	kr***rk@gmail.com
Data	Thu Feb 23 23:00:50 2017 -0800	Mon Oct 14 00:45:03 2019 -0400
Situacao	ADDED	MODIFIED
Caminho	src/avatar/Avatar.js	src/avatar/Avatar.js

Abordagem

Classificação de teste

Expressões regulares do Catálogo de Framework (Gonzales et al., 2017)

Tipo	Expressão regular
Import Javascript	JS.Test $[\.[\w]^*]^*$, jsUnity $[\.[\w]^*]^*$,
Função Javascript	$test\(, describe\($
Import Java	import $+[\w\.]*JUnit$, import $+[\w\.]*jmock$,
Função Java	@Test, @Before, @After, @RunWidth, assert.*,
Import Python	((from) (import)) + unittest,
Função Python	$def test_, testmod \setminus ($
Import PHP	extends PHPUnit_Framework_TestCase,
Função PHP	test, assert, @test, CLEAN, EXPECT
Import Ruby	$(" ')[\w]*test[\w]*(" '), (" ')[\w]*spec[\w]*(" ')$
Função Ruby	assert\(, assert_, describe

Classificação de teste

Fluxo da classificação de teste (Gonzales et al., 2017)

Abordagem

Proporção de Teste

$$\label{eq:proporcaoTeste} \begin{aligned} \text{proporcaoTeste} &= \frac{totalLinhasCodigoTeste}{totalLinhasCodigoTeste + totalLinhasCodigoProducao} \end{aligned}$$

Proporção de teste

Proporção de teste Repositório

Proporção de teste Lista de recortes

Proporção de teste Recorte

Proporção de teste Checkout

Proporção de teste Classificação de teste

Proporção de teste Coleta de LOC

Proporção de teste Salvar logs

Proporção de teste Nova iteração

Proporção de teste Resultado

 a) Proporção de teste do hashie/hashie

b) Proporção de teste do ircmaxell/password

Abordagem

1) Seleção dos 3) Extração do 2) Classificação de histórico da repositórios e arquivos de teste extração dos dados proporção de teste 6) Análise do 5) Identificação de 4) Identificação impacto da repositórios com de padrões de co-evolução co-evolução crescimento

Identificando Padrões

Funcionamento do Algoritmo KSC

Abordagem

Identificando co-evolução

a) 4ºquartil (Forte co-evolução) p de person é 0.98

b) 1ºquartil (Fraca co-evolução) p de pearson é 0.73

Abordagem

Impactos da co-evolução

Comparando os repositórios com forte e fraca co-evolução através de quatro características, são elas:

- Número de Commits;
- Número de Colaboradores;
- Número de Forks;
- Número de Issues.

Resultados

1.914 (63,8%) possuem teste.

- Identificados os projetos que possuem teste
- Realizamos filtros para remover os repositórios menos significantes e que poderiam representar ruídos na clusterização

Melhor k igual a 5

Cluster	Característica	Total(%)	Javascript(%)	Java(%)	Python(%)	PHP(%)	Ruby(%)
I	Testes estáveis desde o início	35	38	52	24	30	29
II	Testes estáveis	26	23	30	31	25	20
III	Crescimento contínuo dos testes	20	23	11	26	18	25
IV	Testes tardios e em crescimento	12	10	5	15	12	18
V	Testes tardios e em crescimento intensivo	7	6	3	4	15	8

Resumo da QP1:

- Foram identificados 5 padrões de evolução de teste.
- Os dois padrões mais comuns (clusters I e II).
- Os demais (clusters IV e V) representam uma adoção tardia de testes.

QP2) Com que frequência o código-fonte e testes co-evoluem em projetos de software?

- p > 0.96 = forte co-evolução;
- 0.82
 co-evolução;
- p <= 0.82 = fracaco-evolução;

Foram identificados **289 repositórios com fortes indícios de co-evolução**, 602 com
moderada e 312 com fraca.

QP2) Com que frequência o código-fonte e testes co-evoluem em projetos de software?

 Encontramos repositórios com fortes indícios de co-evolução em todas as linguagens, com destaque para a linguagem Java;

QP3) Que características distinguem projetos onde há co-evolução de código de teste de projetos onde essa prática não é comum?

Commits

Pode-se afirmar que para **todas as linguagens**, os repositórios com **forte co-evolução** possuem **mais commits**.

Colaboradores

Diferença média

- Javascript, Java e Ruby

Diferença pequena

- Python

Diferença não é estatisticamente diferente

- PHP

Forks

Diferença média

- Javascript

Diferença não é estatisticamente diferente

- Java, Python, PHP e Ruby

Issues

Diferença média

- Java

Diferença pequena

- Javascript e Python

Diferença não é estatisticamente diferente

- PHP e Ruby

Todos

Resumo da QP3:

De modo geral, os repositórios com forte co-evolução de teste **possuem mais commits, mais colaboradores, mais forks e mais issues**.

Conclusão e trabalhos futuros

4. Conclusões

As principais contribuições deste trabalho são:

- A construção e disponibilização pública de um grande dataset;
- A identificação de padrões comportamentais comuns no desenvolvimento de testes;

4. Conclusões

As principais contribuições deste trabalho são:

 Definição de uma metodologia para identificação de co-evolução de testes em projetos de desenvolvimento de software;

 Provendo indícios da influência da co-evolução em aspectos diversos do projeto.

4. Conclusões

Trabalhos futuros:

- Comparar ou realizar outras abordagens para identificação da co-evolução de teste;
- Realizar um survey com os desenvolvedores;
- Verificar os defeitos pós-release dos projetos;

Obrigado!

Aluno: Charles José Lima de Miranda; Orientador: Guilherme Amaral Avelino

Co-orientador: Pedro de Alcântara dos S Neto