```
import zipfile
In [1]:
          !unzip /content/diabetes_project.zip
         Archive: /content/diabetes_project.zip
           inflating: diabetes.csv
In [2]:
         import pandas as pd
         import numpy as np
         Diabetes_df = pd.read_csv("/content/diabetes.csv")
         Diabetes_df.head()
Out[2]:
            Diabetes_binary
                           HighBP
                                   HighChol
                                             CholCheck
                                                        BMI
                                                             Smoker
                                                                     Stroke
                                                                             HeartDiseaseorAttack PhysActivity
         0
                       0.0
                               1.0
                                         1.0
                                                    1.0
                                                        40.0
                                                                 1.0
                                                                        0.0
                                                                                            0.0
                                                                                                         0.0
         1
                       0.0
                               0.0
                                         0.0
                                                    0.0
                                                        25.0
                                                                 1.0
                                                                        0.0
                                                                                            0.0
                                                                                                         1.0
         2
                                                    1.0 28.0
                       0.0
                               1.0
                                         1.0
                                                                 0.0
                                                                        0.0
                                                                                            0.0
                                                                                                         0.0
         3
                       0.0
                               1.0
                                         0.0
                                                    1.0 27.0
                                                                 0.0
                                                                        0.0
                                                                                            0.0
                                                                                                         1.0
         4
                       0.0
                               1.0
                                         1.0
                                                    1.0 24.0
                                                                 0.0
                                                                        0.0
                                                                                            0.0
                                                                                                         1.0
        5 rows × 22 columns
In [3]:
         Diabetes_df.isnull().sum()
         Diabetes_binary
Out[3]:
         HighBP
                                    0
         HighChol
                                    0
         CholCheck
                                    0
         BMI
                                    0
                                    0
         Smoker
         Stroke
                                    0
         HeartDiseaseorAttack
                                    0
         PhysActivity
                                    0
         Fruits
                                    0
         Veggies
                                    0
         HvyAlcoholConsump
                                    0
         AnyHealthcare
                                    0
         NoDocbcCost
                                    0
         GenHlth
                                    0
         MentHlth
                                    0
         PhysHlth
                                    0
         DiffWalk
                                    0
         Sex
                                    0
         Age
                                    0
         Education
                                    0
         Income
                                    0
         dtype: int64
         print(Diabetes_df.shape)
In [4]:
         (253680, 22)
         display(Diabetes_df)
In [5]:
                 Diabetes binary HighBP
                                        HighChol CholCheck
                                                             BMI
                                                                  Smoker
                                                                          Stroke HeartDiseaseorAttack
                                                                                                     PhysActi
```

0

1

0.0

0.0

1.0

0.0

1.0

0.0

40.0

0.0 25.0

1.0

0.0

0.0

0.0

0.0

1.0

1.0

2	0.0	1.0	1.0	1.0 28.0	0.0	0.0	0.0
3	0.0	1.0	0.0	1.0 27.0	0.0	0.0	0.0
4	0.0	1.0	1.0	1.0 24.0	0.0	0.0	0.0
253675	0.0	1.0	1.0	1.0 45.0	0.0	0.0	0.0
253676	1.0	1.0	1.0	1.0 18.0	0.0	0.0	0.0
253677	0.0	0.0	0.0	1.0 28.0	0.0	0.0	0.0
253678	0.0	1.0	0.0	1.0 23.0	0.0	0.0	0.0
253679	1.0	1.0	1.0	1.0 25.0	0.0	0.0	1.0

253680 rows × 22 columns

plt.show()

```
In [6]: dbts = 'Diabetes_binary'
         yes = Diabetes_df[dbts].value_counts()
         no = Diabetes_df[dbts].value_counts()
         print(no[0], " people in this survey don't have diabetes")
         print(yes[1], " people in this survey have diabetes ")
         218334 people in this survey don't have diabetes
         35346 people in this survey have diabetes
         duplicateRows = Diabetes_df.duplicated()
In [7]:
         duplicatesTotal = duplicateRows.sum()
         print("There are ", duplicatesTotal, " duplicate rows")
         There are 24206 duplicate rows
         Diabetes_df = Diabetes_df.drop_duplicates()
In [8]:
In [9]: display(Diabetes_df.shape) # After removing duplicate rows,
                                    #the number of entries have decreased.
         (229474, 22)
         import seaborn as sn
In [10]:
         import matplotlib.pyplot as plt
         #Correlation matrix plotted
         Correlation = Diabetes_df.corr()
         plt.figure(figsize=(13, 9))
         sn.heatmap(Correlation, annot=True)
```


As we can see, after dropping the duplicate rows, we have a better ratio of yes and no diabetes.

```
dbts = 'Diabetes_binary'
In [11]:
         yes = Diabetes_df[dbts].value_counts()
         no = Diabetes_df[dbts].value_counts()
         print(no[0], " people in this survey don't have diabetes")
         print(yes[1], " people in this survey have diabetes ")
         194377 people in this survey don't have diabetes
         35097 people in this survey have diabetes
         #Boxplot to investigate the relationship between diabetes and age
In [12]:
         plt.figure(figsize=(7, 7))
         sn.boxplot(x='Diabetes_binary', y='Age', data=Diabetes_df, linewidth = 2)
         plt.title('Relationship between age and diabetes')
         plt.xlabel('Diabetes Diagnosis')
         plt.xticks(ticks=[0.0, 1.0], labels=['Negative', 'Positive'])
         plt.show()
         #Please note teh age values on the y axis here represent a category, not the actual age.
```

Relationship between age and diabetes


```
In [13]: #A scatter plot demonstrating the link between the prevalance of diabetes and BMI.
plt.figure(figsize=(12, 5))
sn.scatterplot(x='BMI', y='Diabetes_binary', data=Diabetes_df, hue='Diabetes_binary', al
plt.title('Scatter Plot of BMI vs. Diabetes')
plt.xlabel('BMI'),plt.ylabel('Diabetes', rotation =0)
plt.yticks(ticks=[0.0, 1.0], labels=['Negative', 'Positive'])
plt.show()
```



```
In [14]: # A graph to investigate the relationship between high cholesterol and the occurence of
    sn.countplot(x='HighChol', hue='Diabetes_binary', data=Diabetes_df)
    plt.title('Relationship between High Cholesterol and Diabetes')
    plt.xlabel('Cholesterol')
    plt.xticks(ticks=[0.0, 1.0], labels=['Low', 'High'])
    plt.ylabel('The number of People')
    plt.legend(labels=['No Diabetes', 'Diabetes'], title = 'Labels')
    plt.show()
```


Gender Distribution among Those without Diabetes

Gender Distribution among Those with Diabetes


```
plt.title('Relationship between Heavy Alcohol Consumption and Diabetes')
plt.xlabel('Heavy Alcohol Consumption')
plt.xticks(ticks=[1.0, 0.0], labels=['Yes', 'No'])
plt.ylabel('The Number of People')
plt.legend(labels=['No Diabetes', 'Diabetes'], title = 'Labels')
plt.show()
```

Relationship between Heavy Alcohol Consumption and Diabetes


```
In [18]: from sklearn.tree import DecisionTreeClassifier
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import confusion_matrix, accuracy_score, f1_score, precision_score, rec
    from sklearn.metrics import ConfusionMatrixDisplay

In [19]: #Decision Tree Classifier
    t = Diabetes_df['Diabetes_binary'] #Target Column/variable
    f = Diabetes_df.drop('Diabetes_binary', axis=1) #Feature variable
    F_train, F_test, T_train, T_test = train_test_split(f, t, test_size=0.25, random_state=
    DTmodel = DecisionTreeClassifier(random_state=22) #Model for decision tree initialised.
    DTmodel= DTmodel.fit(F_train,T_train) # Training the model on data.
```

Gini_pred = DTmodel.predict(F_test) #Prediction variable established.

Using multiple metrics for assessing the results.
DTaccuracy = accuracy_score(T_test, Gini_pred)
DTconfusion = confusion_matrix(T_test, Gini_pred)

DTrecall= recall_score(T_test, Gini_pred)

DTf1= f1_score(T_test, Gini_pred)

display(Diabetes_df.shape)

In [17]:

In [20]:

print(Gini_pred)

```
#Results are printed.
print('Accuracy score: ', DTaccuracy)
print('Confusion Matrix: ', DTconfusion)
print('Recall score: ', DTrecall)
print('F1 score score: ', DTf1)
print('Precision score: ', DTprecision)

plt.figure(figsize=(5, 4))
sn.heatmap(DTconfusion, annot=True, fmt="d",xticklabels=["No Diabetes", "Diabetes"],ytic
plt.title('Decision Tree Confusion Matrix with Gini Criterion') # Title defined
plt.xlabel('Decision Tree Model Predictions')
plt.ylabel('Actual values')
plt.show()
```

[0. 0. 0. ... 0. 0. 0.]

Accuracy score: 0.771740835642943 Confusion Matrix: [[41443 7181]

[5914 2831]]

Recall score: 0.3237278444825615 F1 score score: 0.3018606386948873 Precision score: 0.28276068717538955

Decision Tree Confusion Matrix with Gini Criterion


```
In [21]: # Decision Tree model, this time with entropy criterion to assess their difference.
DTmodel_entropy = DecisionTreeClassifier(criterion='entropy', random_state=22)

# Model is being trained
DTmodel_entropy.fit(F_train, T_train)

Entropy_pred = DTmodel_entropy.predict(F_test)
print(Entropy_pred)

# The results are evaluated using a variety of metrics.
DT_accuracy_entropy = accuracy_score(T_test, Entropy_pred)
DT_confusion_entropy = confusion_matrix(T_test, Entropy_pred)
DT_recall_entropy = recall_score(T_test, Entropy_pred)
DT_f1_entropy = f1_score(T_test, Entropy_pred)
DT_precision_entropy = precision_score(T_test, Entropy_pred)
```

```
print('Accuracy score:', DT_accuracy_entropy)
print('Confusion Matrix:\n', DT_confusion_entropy)
print('Recall score:', DT_recall_entropy)
print('F1 score:', DT_f1_entropy)
print('Precision score:', DT_precision_entropy)

plt.figure(figsize=(5, 4))
sn.heatmap(DT_confusion_entropy, annot=True, fmt="d", xticklabels=["No Diabetes", "Diabetes", "Diabetes, "Diabetes,
```

[0. 0. 0. ... 1. 0. 1.]

Accuracy score: 0.7773013299865781

Confusion Matrix: [[41877 6747] [6029 2716]]

Recall score: 0.3105774728416238 F1 score: 0.29833040421792617

Precision score: 0.28701257529324736

Decision Tree Confusion Matrix with Entropy Criterion


```
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
```

```
TFmodel.fit(F_train, T_train, validation_split=0.25, batch_size=128, epochs=25) # 25% of
metrics = TFmodel.evaluate(F_test, T_test) #The model is evaluated using the data availa
print("\n")
print("\n") #The results are printed.
print(f'The results representing loss, accuracy, recall, precision, and F1 values are as
Epoch 1/25
66 - recall: 0.0652 - precision: 0.4858 - f1 score: 0.2651 - val_loss: 0.3947 - val_accu
racy: 0.8474 - val_recall: 0.0143 - val_precision: 0.7308 - val_f1 score: 0.2669
Epoch 2/25
98 - recall: 0.0904 - precision: 0.5522 - f1 score: 0.2651 - val_loss: 0.3565 - val_accu
racy: 0.8494 - val_recall: 0.0714 - val_precision: 0.5935 - val_f1 score: 0.2669
03 - recall: 0.1003 - precision: 0.5564 - f1 score: 0.2651 - val_loss: 0.3543 - val_accu
racy: 0.8498 - val_recall: 0.2008 - val_precision: 0.5326 - val_f1 score: 0.2669
Epoch 4/25
10 - recall: 0.1108 - precision: 0.5630 - f1 score: 0.2651 - val_loss: 0.3498 - val_accu
racy: 0.8500 - val_recall: 0.0602 - val_precision: 0.6394 - val_f1 score: 0.2669
Epoch 5/25
14 - recall: 0.1175 - precision: 0.5658 - f1 score: 0.2651 - val_loss: 0.3454 - val_accu
racy: 0.8515 - val_recall: 0.0943 - val_precision: 0.6176 - val_f1 score: 0.2669
Epoch 6/25
12 - recall: 0.1198 - precision: 0.5614 - f1 score: 0.2651 - val_loss: 0.3759 - val_accu
racy: 0.8290 - val_recall: 0.4317 - val_precision: 0.4435 - val_f1 score: 0.2669
Epoch 7/25
13 - recall: 0.1264 - precision: 0.5604 - f1 score: 0.2651 - val_loss: 0.3478 - val_accu
racy: 0.8503 - val_recall: 0.2543 - val_precision: 0.5289 - val_f1 score: 0.2669
Epoch 8/25
18 - recall: 0.1294 - precision: 0.5665 - f1 score: 0.2651 - val_loss: 0.3436 - val_accu
racy: 0.8534 - val_recall: 0.1326 - val_precision: 0.6117 - val_f1 score: 0.2669
Epoch 9/25
18 - recall: 0.1307 - precision: 0.5652 - f1 score: 0.2651 - val_loss: 0.3439 - val_accu
racy: 0.8510 - val_recall: 0.0874 - val_precision: 0.6160 - val_f1 score: 0.2669
Epoch 10/25
21 - recall: 0.1314 - precision: 0.5691 - f1 score: 0.2651 - val_loss: 0.3423 - val_accu
racy: 0.8533 - val_recall: 0.1548 - val_precision: 0.5900 - val_f1 score: 0.2669
Epoch 11/25
20 - recall: 0.1357 - precision: 0.5654 - f1 score: 0.2651 - val_loss: 0.3443 - val_accu
racy: 0.8513 - val_recall: 0.0742 - val_precision: 0.6525 - val_f1 score: 0.2669
Epoch 12/25
19 - recall: 0.1318 - precision: 0.5666 - f1 score: 0.2651 - val_loss: 0.3632 - val_accu
racy: 0.8504 - val_recall: 0.0573 - val_precision: 0.6655 - val_f1 score: 0.2669
Epoch 13/25
27 - recall: 0.1362 - precision: 0.5759 - f1 score: 0.2651 - val_loss: 0.3469 - val_accu
racy: 0.8529 - val_recall: 0.2016 - val_precision: 0.5628 - val_f1 score: 0.2669
Epoch 14/25
18 - recall: 0.1330 - precision: 0.5645 - f1 score: 0.2651 - val_loss: 0.3484 - val_accu
racy: 0.8520 - val_recall: 0.2411 - val_precision: 0.5439 - val_f1 score: 0.2669
```

Epoch 15/25

```
23 - recall: 0.1369 - precision: 0.5702 - f1 score: 0.2651 - val_loss: 0.3467 - val_accu
racy: 0.8500 - val_recall: 0.0564 - val_precision: 0.6527 - val_f1 score: 0.2669
Epoch 16/25
25 - recall: 0.1367 - precision: 0.5730 - f1 score: 0.2651 - val_loss: 0.3447 - val_accu
racy: 0.8523 - val_recall: 0.2266 - val_precision: 0.5500 - val_f1 score: 0.2669
Epoch 17/25
25 - recall: 0.1385 - precision: 0.5713 - f1 score: 0.2651 - val_loss: 0.3449 - val_accu
racy: 0.8533 - val_recall: 0.1501 - val_precision: 0.5933 - val_f1 score: 0.2669
Epoch 18/25
25 - recall: 0.1403 - precision: 0.5713 - f1 score: 0.2651 - val_loss: 0.3416 - val_accu
racy: 0.8529 - val_recall: 0.1645 - val_precision: 0.5795 - val_f1 score: 0.2669
Epoch 19/25
22 - recall: 0.1417 - precision: 0.5658 - f1 score: 0.2651 - val_loss: 0.3455 - val_accu
racy: 0.8532 - val_recall: 0.1915 - val_precision: 0.5701 - val_f1 score: 0.2669
Epoch 20/25
25 - recall: 0.1422 - precision: 0.5701 - f1 score: 0.2651 - val_loss: 0.3421 - val_accu
racy: 0.8527 - val_recall: 0.1121 - val_precision: 0.6212 - val_f1 score: 0.2669
Epoch 21/25
30 - recall: 0.1435 - precision: 0.5760 - f1 score: 0.2651 - val_loss: 0.3703 - val_accu
racy: 0.8490 - val_recall: 0.0421 - val_precision: 0.6488 - val_f1 score: 0.2670
Epoch 22/25
34 - recall: 0.1440 - precision: 0.5815 - f1 score: 0.2651 - val_loss: 0.3414 - val_accu
racy: 0.8528 - val_recall: 0.1482 - val_precision: 0.5884 - val_f1 score: 0.2669
Epoch 23/25
25 - recall: 0.1440 - precision: 0.5688 - f1 score: 0.2651 - val_loss: 0.3451 - val_accu
racy: 0.8502 - val_recall: 0.2663 - val_precision: 0.5269 - val_f1 score: 0.2669
Epoch 24/25
27 - recall: 0.1413 - precision: 0.5732 - f1 score: 0.2651 - val_loss: 0.3426 - val_accu
racy: 0.8529 - val_recall: 0.1818 - val_precision: 0.5700 - val_f1 score: 0.2669
Epoch 25/25
33 - recall: 0.1468 - precision: 0.5791 - f1 score: 0.2651 - val_loss: 0.3437 - val_accu
racy: 0.8533 - val_recall: 0.1848 - val_precision: 0.5735 - val_f1 score: 0.2669
32 - recall: 0.1745 - precision: 0.5594 - f1 score: 0.2645
```

The results representing loss, accuracy, recall, precision, and F1 values are as follow s: [0.3428666293621063, 0.8532134294509888, 0.1744997203350067, 0.5593841671943665, array([0.26454306], dtype=float32)]

```
In [24]: from keras.utils import plot_model
              # The model is plotted.
              plot_model(TFmodel,show_shapes=True, show_layer_names=True, rankdir = 'LR')
               dense_input
                         InputLayer
                                         dense
                                                   Dense
                                                                 dense 1
                                                                           Dense
                                                                                         dense_2
                                                                                                   Dense
                                                                                                                dense_3
                                                                                                                          Dense
                                                                                                                                       dense 4
                                                                                                                                                Dense
Out[24]:
                          output:
                                         input:
                                                  output:
                                                                          output:
                                                                                         input:
                                                                                                  output:
                                                                                                                         output:
                                                                                                                                       input:
                                                                                                                                               output:
              [(None, 21)] [(None, 21)]
                                       (None, 21) (None, 256)
                                                               (None, 256) (None, 128)
                                                                                       (None, 128) (None, 64)
                                                                                                               (None, 64) (None, 32)
                                                                                                                                      (None, 32) (None, 1)
```

In [25]: **from** sklearn.naive_bayes **import** GaussianNB

In [26]: NBmodel = GaussianNB() #Naive Bayes model is initialised.

```
NBmodel.fit(F_train, T_train) # The model is trained.
         NBpred = NBmodel.predict(F_test)
         #The model is evaluated against a variety of metrics.
         NBaccuracy = accuracy_score(T_test, NBpred)
         NBprecision = precision_score(T_test, NBpred)
         NBrecall = recall_score(T_test, NBpred)
         NBf1_score = f1_score(T_test, NBpred)
         NBconfusion = confusion_matrix(T_test, NBpred)
         print("Naive Bayes Classifier:")
         print('Accuracy score: ', NBaccuracy)
         print('Confusion Matrix: ', NBconfusion)
         print('Recall score: ', NBrecall)
         print('F1 score score: ', NBf1_score)
         print('Precision score: ', NBprecision)
         Naive Bayes Classifier:
         Accuracy score: 0.7576565741079677
         Confusion Matrix: [[38501 10123]
          [ 3780 4965]]
         Recall score: 0.5677530017152659
         F1 score score: 0.41664918390467
         Precision score: 0.3290694591728526
In [27]: from sklearn.neighbors import KNeighborsClassifier
         from sklearn.preprocessing import StandardScaler #Standard Scaler imported to use on dat
In [28]:
         #K-Neighbours Classification
         SS = StandardScaler().fit(F_train) # Standard Scaler is initialsied and used for standar
         SS_F_train = SS_transform(F_train)
         SS_F_{test} = SS.transform(F_{test})
         KNNmodel = KNeighborsClassifier(n_neighbors=6) #Model is initialised, n_neighbours is 6,
                                                        #a range of values from 3 to 479 were eval
         #Standardised data is used to fit the model.
         KNNmodel.fit(SS_F_train, T_train)
         KNNpred = KNNmodel.predict(SS_F_test)
         #The model is evaluated.
         KNNaccuracy = accuracy_score(T_test, KNNpred)
         KNNprecision = precision_score(T_test, KNNpred)
         KNNrecall = recall_score(T_test, KNNpred)
         KNNf1_score = f1_score(T_test, KNNpred)
         KNNconfusion = confusion_matrix(T_test, KNNpred)
         #The results are printed.
         print("K-Neighbours Classifier with scaled data: ")
         print('Accuracy score:', KNNaccuracy)
         print('Confusion Matrix:', KNNconfusion)
         print('Recall score:', KNNrecall)
         print('F1 score:', KNNf1_score)
         print('Precision score:', KNNprecision)
         K-Neighbours Classifier with scaled data:
         Accuracy score: 0.842772228904112
         Confusion Matrix: [[47284 1340]
          [ 7680 1065]]
         Recall score: 0.12178387650085763
```

F1 score: 0.19103139013452916

Precision score: 0.44282744282744285

```
#K Neighbours, this time without standardisation of data.
         KNNmodel = KNeighborsClassifier(n_neighbors= 6)
         KNNmodel.fit(F_train, T_train) #Model is fitted.
         KNNpred = KNNmodel.predict(F_test)
         #Metrics used for evaluation
         KNNaccuracy = accuracy_score(T_test, KNNpred)
         KNNprecision = precision_score(T_test, KNNpred)
         KNNrecall = recall_score(T_test, KNNpred)
         KNNf1_score = f1_score(T_test, KNNpred)
         KNNconfusion = confusion_matrix(T_test, KNNpred)
         #Results Printed
         print("K-Neighbours Classifier without scaled data: ")
         print('Accuracy score:', KNNaccuracy)
         print('Confusion Matrix:', KNNconfusion)
         print('Recall score:', KNNrecall)
         print('F1 score:', KNNf1_score)
         print('Precision score:', KNNprecision)
         K-Neighbours Classifier without scaled data:
         Accuracy score: 0.8434171765239067
         Confusion Matrix: [[47411 1213]
          [ 7770
                   975]]
         Recall score: 0.11149228130360206
         F1 score: 0.17835909631391197
         Precision score: 0.44561243144424134
In [30]: from sklearn.ensemble import RandomForestClassifier
In [31]: #Random Forest Classification
         # The model is initialised
         RFmodel = RandomForestClassifier(random_state=22)
         RFmodel.fit(F_train, T_train)
         RFpred = RFmodel.predict(F_test)
         #The model is evaluated.
         RFaccuracy = accuracy_score(T_test, RFpred)
         RFprecision = precision_score(T_test, RFpred)
         RFrecall = recall_score(T_test, RFpred)
         RFf1_score = f1_score(T_test, RFpred)
         RFconfusion = confusion_matrix(T_test, RFpred)
         #The results printed.
         print("Random Forest with GINI criterion")
         print('Accuracy score:', RFaccuracy)
         print('Confusion Matrix:', RFconfusion)
         print('Recall score:', RFrecall)
         print('F1 score:', RFf1_score)
         print('Precision score:', RFprecision)
         Random Forest with GINI criterion
         Accuracy score: 0.8445850546462376
         Confusion Matrix: [[46950 1674]
          [ 7242 1503]]
```

Recall score: 0.17186963979416808 F1 score: 0.25213890286864615

Precision score: 0.4730878186968839

```
#Random Forest classification, this time with entropy criterion
In [32]:
         RFmodel_entropy = RandomForestClassifier(criterion='entropy', random_state=22)
         RFmodel_entropy.fit(F_train, T_train)
         RFentropy_pred = RFmodel_entropy.predict(F_test)
         RF_accuracy_entropy = accuracy_score(T_test, RFentropy_pred)
         RF_confusion_entropy = confusion_matrix(T_test, RFentropy_pred)
         RF_recall_entropy = recall_score(T_test, RFentropy_pred)
         RF_f1_entropy = f1_score(T_test, RFentropy_pred)
         RF_precision_entropy = precision_score(T_test, RFentropy_pred)
         print("Random Forest with Entropy Criterion: ")
         print('Accuracy score:', RF_accuracy_entropy)
         print('Confusion Matrix:\n', RF_confusion_entropy)
         print('Recall score:', RF_recall_entropy)
         print('F1 score:', RF_f1_entropy)
         print('Precision score:', RF_precision_entropy)
         Random Forest with Entropy Criterion:
         Accuracy score: 0.8443410204117207
         Confusion Matrix:
          [[46991 1633]
          [ 7297 1448]]
         Recall score: 0.16558033161806746
         F1 score: 0.24488415355995263
         Precision score: 0.46997728010386236
In [33]: | from imblearn.over_sampling import SMOTE
         oversample = SMOTE(random_state=22) #SMOTE is initialised to equalise the dsitribution o
In [34]:
         F_train_oversampled, T_train_oversampled = oversample.fit_resample(F_train, T_train)
         print("Class distribution before SMOTE:", T_train.value_counts()) #As you can see, the c
In [35]:
         print("Class distribution after SMOTE:", T_train_oversampled.value_counts())
         Class distribution before SMOTE: Diabetes_binary
         0.0
                145753
         1.0
                 26352
         Name: count, dtype: int64
         Class distribution after SMOTE: Diabetes_binary
         0.0
                145753
         1.0
                145753
         Name: count, dtype: int64
         # Decision Tree Classifier after Oversampling
In [36]:
         DTmodel_SMOTE = DecisionTreeClassifier(random_state=22) # Model for decision tree initial
         DTmodel_SMOTE = DTmodel_SMOTE.fit(F_train_oversampled, T_train_oversampled) # Training t
         DTpred\_SMOTE = DTmodel\_SMOTE.predict(F\_test) # Prediction variable established.
         print(DTpred_SMOTE)
         # Using multiple metrics for assessing the results.
         DTaccuracy_SMOTE = accuracy_score(T_test, DTpred_SMOTE)
         DTconfusion_SMOTE = confusion_matrix(T_test, DTpred_SMOTE)
         DTrecall_SMOTE = recall_score(T_test, DTpred_SMOTE)
         DTf1_SMOTE = f1_score(T_test, DTpred_SMOTE)
         DTprecision_SMOTE = precision_score(T_test, DTpred_SMOTE)
         # Results are printed.
```

```
print('Accuracy score after Oversampling: ', DTaccuracy_SMOTE)
print('Confusion Matrix after Oversampling: ', DTconfusion_SMOTE)
print('Recall score after Oversampling: ', DTrecall_SMOTE)
print('F1 score after Oversampling: ', DTf1_SMOTE)
print('Precision score after Oversampling: ', DTprecision_SMOTE)

plt.figure(figsize=(5, 4))
sn.heatmap(DTconfusion_SMOTE, annot=True, fmt="d", xticklabels=["No Diabetes", "Diabetes plt.title('Decision Tree Confusion Matrix after Oversampling') # Title defined plt.xlabel('Decision Tree Model Predictions')
plt.ylabel('Actual values')
plt.show()
```

[0. 0. 0. ... 1. 0. 0.]
Accuracy score after Oversampling: 0.7699803029510711
Confusion Matrix after Oversampling: [[41414 7210]
 [5986 2759]]
Recall score after Oversampling: 0.31549456832475703
F1 score after Oversampling: 0.2948594635032596
Precision score after Oversampling: 0.27675794964389605

Decision Tree Confusion Matrix after Oversampling


```
In [37]: # Deep learning model, this time with oversampled training data.
                                                             # The model is initialised, as the d
         TFmodel_SMOTE = keras.Sequential([
             keras.layers.Dense(units = 256, activation='relu'), #specifically 5 layers. Initial 1
             keras.layers.Dense(128, activation='relu'),
             keras.layers.Dense(64, activation='relu'),
             keras.layers.Dense(32, activation='relu'),
             keras.layers.Dense(units = 1, activation='sigmoid') #As this is a classification pro
         ])
           #The model is compiled.
         TFmodel_SMOTE.compile(loss='binary_crossentropy', # Binary_classification so binary_cros
                         metrics=[keras.metrics.BinaryAccuracy(name = "accuracy"), # Various m
                                  keras.metrics.Recall(name = "recall"),
                                  keras.metrics.Precision(name = "precision"),
                                  keras.metrics.F1Score(name = "f1 score" )])
         TFmodel_SMOTE.fit(F_train_oversampled, T_train_oversampled, validation_split=0.25, batch
```

```
metrics_oversampled = TFmodel_SMOTE.evaluate(F_test, T_test) #The model is evaluated usi
print("\n")
print("After Oversampling")
print("\n") #The results are printed.
print(f'The results representing loss, accuracy, recall, precision, and F1 values are as
Epoch 1/25
42 - recall: 0.5314 - precision: 0.6178 - f1 score: 0.5000 - val_loss: 0.6839 - val_accu
racy: 0.6837 - val_recall: 0.6837 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 2/25
53 - recall: 0.5843 - precision: 0.6474 - f1 score: 0.5000 - val_loss: 0.9094 - val_accu
racy: 0.6011 - val_recall: 0.6011 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 3/25
66 - recall: 0.6028 - precision: 0.6654 - f1 score: 0.5000 - val_loss: 0.8390 - val_accu
racy: 0.4818 - val_recall: 0.4818 - val_precision: 1.0000 - val_f1 score: 1.0000
09 - recall: 0.6175 - precision: 0.6919 - f1 score: 0.5000 - val_loss: 0.4277 - val_accu
racy: 0.8298 - val_recall: 0.8298 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 5/25
11 - recall: 0.6273 - precision: 0.7119 - f1 score: 0.5000 - val_loss: 0.9758 - val_accu
racy: 0.4277 - val_recall: 0.4277 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 6/25
84 - recall: 0.6235 - precision: 0.7319 - f1 score: 0.5000 - val_loss: 0.0652 - val_accu
racy: 0.9721 - val_recall: 0.9721 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 7/25
33 - recall: 0.6267 - precision: 0.7429 - f1 score: 0.5000 - val_loss: 0.1527 - val_accu
racy: 0.9424 - val_recall: 0.9424 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 8/25
57 - recall: 0.6260 - precision: 0.7498 - f1 score: 0.5000 - val_loss: 0.4965 - val_accu
racy: 0.7522 - val_recall: 0.7522 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 9/25
01 - recall: 0.6246 - precision: 0.7628 - f1 score: 0.5000 - val_loss: 0.8102 - val_accu
racy: 0.5428 - val_recall: 0.5428 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 10/25
20 - recall: 0.6321 - precision: 0.7632 - f1 score: 0.5000 - val_loss: 0.3035 - val_accu
racy: 0.8691 - val_recall: 0.8691 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 11/25
35 - recall: 0.6353 - precision: 0.7653 - f1 score: 0.5000 - val_loss: 0.0989 - val_accu
racy: 0.9580 - val_recall: 0.9580 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 12/25
59 - recall: 0.6320 - precision: 0.7744 - f1 score: 0.5000 - val_loss: 0.6352 - val_accu
racy: 0.6806 - val_recall: 0.6806 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 13/25
77 - recall: 0.6291 - precision: 0.7814 - f1 score: 0.5000 - val_loss: 0.5961 - val_accu
racy: 0.7166 - val_recall: 0.7166 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 14/25
77 - recall: 0.6246 - precision: 0.7846 - f1 score: 0.5000 - val_loss: 1.2497 - val_accu
racy: 0.3726 - val_recall: 0.3726 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 15/25
```

94 - recall: 0.6202 - precision: 0.7928 - f1 score: 0.5000 - val_loss: 0.3318 - val_accu

```
racy: 0.8194 - val_recall: 0.8194 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 16/25
06 - recall: 0.6177 - precision: 0.7984 - f1 score: 0.5000 - val_loss: 0.5133 - val_accu
racy: 0.6863 - val_recall: 0.6863 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 17/25
20 - recall: 0.6223 - precision: 0.7992 - f1 score: 0.5000 - val_loss: 0.2787 - val_accu
racy: 0.8629 - val_recall: 0.8629 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 18/25
26 - recall: 0.6180 - precision: 0.8045 - f1 score: 0.5000 - val_loss: 0.4220 - val_accu
racy: 0.7791 - val_recall: 0.7791 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 19/25
29 - recall: 0.6118 - precision: 0.8106 - f1 score: 0.5000 - val_loss: 0.5953 - val_accu
racy: 0.6609 - val_recall: 0.6609 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 20/25
43 - recall: 0.6157 - precision: 0.8117 - f1 score: 0.5000 - val_loss: 0.9035 - val_accu
racy: 0.4346 - val_recall: 0.4346 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 21/25
59 - recall: 0.6214 - precision: 0.8122 - f1 score: 0.5000 - val_loss: 0.4440 - val_accu
racy: 0.7233 - val_recall: 0.7233 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 22/25
64 - recall: 0.6222 - precision: 0.8130 - f1 score: 0.5000 - val_loss: 0.2747 - val_accu
racy: 0.8581 - val_recall: 0.8581 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 23/25
69 - recall: 0.6239 - precision: 0.8133 - f1 score: 0.5001 - val_loss: 0.4110 - val_accu
racy: 0.7788 - val_recall: 0.7788 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 24/25
80 - recall: 0.6294 - precision: 0.8124 - f1 score: 0.5002 - val_loss: 0.7294 - val_accu
racy: 0.5577 - val_recall: 0.5577 - val_precision: 1.0000 - val_f1 score: 1.0000
Epoch 25/25
85 - recall: 0.6281 - precision: 0.8151 - f1 score: 0.5002 - val_loss: 0.4056 - val_accu
racy: 0.7909 - val_recall: 0.7909 - val_precision: 1.0000 - val_f1 score: 1.0000
61 - recall: 0.2626 - precision: 0.4909 - f1 score: 0.2652
```

After Oversampling

The results representing loss, accuracy, recall, precision, and F1 values are as follow s: [0.3647759258747101, 0.8460841178894043, 0.26255002617836, 0.4909129738807678, array ([0.26524115], dtype=float32)]

```
In [38]: NBmodel_SMOTE = GaussianNB() #Naive Bayes this time with oversampling
    NBmodel_SMOTE.fit(F_train_oversampled, T_train_oversampled)

NBpred_SMOTE = NBmodel_SMOTE.predict(F_test)

# metrics for evaluation
    NBaccuracy_SMOTE = accuracy_score(T_test, NBpred_SMOTE)
    NBprecision_SMOTE = precision_score(T_test, NBpred_SMOTE)
    NBrecall_SMOTE = recall_score(T_test, NBpred_SMOTE)
    NBf1_score_SMOTE = f1_score(T_test, NBpred_SMOTE)
    NBconfusion_SMOTE = confusion_matrix(T_test, NBpred_SMOTE)
```

```
# Printing the metrics.
         print("Naive Bayes Classifier: ")
         print('Accuracy score after SMOTE: ', NBaccuracy_SMOTE)
         print('Confusion Matrix after SMOTE: ', NBconfusion_SMOTE)
         print('Recall score after SMOTE: ', NBrecall_SMOTE)
         print('F1 score after SMOTE: ', NBf1_score_SMOTE)
         print('Precision score after SMOTE: ', NBprecision_SMOTE)
         Naive Bayes Classifier:
         Accuracy score after SMOTE: 0.6464292562185152
         Confusion Matrix after SMOTE: [[30144 18480]
          [ 1804 6941]]
         Recall score after SMOTE: 0.7937106918238994
         F1 score after SMOTE: 0.4063103670315518
         Precision score after SMOTE: 0.2730419731717871
In [39]: # KNN with oversampled data
         KNNmodel_SMOTE = KNeighborsClassifier(n_neighbors=6)
         KNNmodel_SMOTE.fit(F_train_oversampled, T_train_oversampled)
         # from the test data the model is assessed.
         KNNpred_SMOTE = KNNmodel_SMOTE.predict(F_test)
         # Calculate evaluation metrics
         KNNaccuracy_SMOTE = accuracy_score(T_test, KNNpred_SMOTE)
         KNNprecision_SMOTE = precision_score(T_test, KNNpred_SMOTE)
         KNNrecall_SMOTE = recall_score(T_test, KNNpred_SMOTE)
         KNNf1_score_SMOTE = f1_score(T_test, KNNpred_SMOTE)
         KNNconfusion_SMOTE = confusion_matrix(T_test, KNNpred_SMOTE)
         # Print the evaluation metrics
         print("K-Neighbours Classifier: ")
         print('Accuracy score after SMOTE:', KNNaccuracy_SMOTE)
         print('Confusion Matrix after SMOTE:', KNNconfusion_SMOTE)
         print('Recall score after SMOTE:', KNNrecall_SMOTE)
         print('F1 score after SMOTE:', KNNf1_score_SMOTE)
         print('Precision score after SMOTE:', KNNprecision_SMOTE)
         K-Neighbours Classifier:
         Accuracy score after SMOTE: 0.6928654848437309
         Confusion Matrix after SMOTE: [[34518 14106]
          [ 3514 5231]]
         Recall score after SMOTE: 0.5981703830760434
         F1 score after SMOTE: 0.37255181254896375
         Precision score after SMOTE: 0.27051766044370895
In [40]: #Random Forest Classification with oversampling
         RFmodel_SMOTE = RandomForestClassifier(random_state=22)
         RFmodel_SMOTE.fit(F_train_oversampled, T_train_oversampled) # Oversampled data is used
         RFpred_SMOTE = RFmodel_SMOTE.predict(F_test)
         # Model evaluated
         RFaccuracy_SMOTE = accuracy_score(T_test, RFpred_SMOTE)
         RFprecision_SMOTE = precision_score(T_test, RFpred_SMOTE)
         RFrecall_SMOTE = recall_score(T_test, RFpred_SMOTE)
         RFf1_score_SMOTE = f1_score(T_test, RFpred_SMOTE)
         RFconfusion_SMOTE = confusion_matrix(T_test, RFpred_SMOTE)
         # Results
         print("Random Forest Classifier: ")
         print('Accuracy score after SMOTE:', RFaccuracy_SMOTE)
         print('Confusion Matrix after SMOTE:', RFconfusion_SMOTE)
         print('Recall score after SMOTE:', RFrecall_SMOTE)
```

```
print('Precision score after SMOTE:', RFprecision_SMOTE)
         Random Forest Classifier:
         Accuracy score after SMOTE: 0.8403493175756942
         Confusion Matrix after SMOTE: [[46513 2111]
          [ 7048 1697]]
         Recall score after SMOTE: 0.19405374499714123
         F1 score after SMOTE: 0.27037361586871667
         Precision score after SMOTE: 0.44564075630252103
In [41]: #This time the data will be oversampled before train test split to assess the changes in
         t = Diabetes_df['Diabetes_binary'] #Target Column/variable
         f = Diabetes_df.drop('Diabetes_binary', axis=1) #Feature variable
         oversample = SMOTE(random_state=22)
         F_train_oversampled_before, T_train_oversampled_before = oversample.fit_resample(f, t)
         F2_train, F2_test, T2_train, T2_test = train_test_split(F_train_oversampled_before, T_tr
In [42]: # Decision Tree Classifier after Oversampling before Train Test Split
         DTmodel_SMOTE_before = DecisionTreeClassifier(random_state=22) # Model for decision tree
         DTmodel_SMOTE_before = DTmodel_SMOTE_before.fit(F2_train, T2_train) # Training the model
         DTpred_SMOTE_before = DTmodel_SMOTE_before.predict(F2_test) # Prediction variable establ
         # Using multiple metrics for assessing the results.
         DTaccuracy_SMOTE_before = accuracy_score(T2_test, DTpred_SMOTE_before)
         DTconfusion_SMOTE_before = confusion_matrix(T2_test, DTpred_SMOTE_before)
         DTrecall_SMOTE_before = recall_score(T2_test, DTpred_SMOTE_before)
         DTf1_SMOTE_before = f1_score(T2_test, DTpred_SMOTE_before)
         DTprecision_SMOTE_before = precision_score(T2_test, DTpred_SMOTE_before)
         # Results are printed.
         print('Accuracy score after Oversampling Before Train-Test Split: ', DTaccuracy_SMOTE_be
         print('Confusion Matrix after Oversampling Before Train-Test Split: ', DTconfusion_SMOTE
         print('Recall score after Oversampling Before Train-Test Split: ', DTrecall_SMOTE_before
         print('F1 score after Oversampling Before Train-Test Split: ', DTf1_SMOTE_before)
         print('Precision score after Oversampling Before Train-Test Split: ', DTprecision_SMOTE_
         plt.figure(figsize=(5, 4))
         sn.heatmap(DTconfusion_SMOTE_before, annot=True, fmt="d", xticklabels=["No Diabetes", "D
         plt.title('Decision Tree Confusion Matrix after Oversampling Before Train-Test Split') #
         plt.xlabel('Decision Tree Model Predictions')
         plt.ylabel('Actual values')
         plt.show()
         Accuracy score after Oversampling Before Train-Test Split: 0.8607352683945714
         Confusion Matrix after Oversampling Before Train-Test Split: [[41357 7350]
          [ 6185 42297]]
         Recall score after Oversampling Before Train-Test Split: 0.8724268800792047
```

F1 score after Oversampling Before Train-Test Split: 0.862069316919565

Precision score after Oversampling Before Train-Test Split: 0.8519548008943139

print('F1 score after SMOTE:', RFf1_score_SMOTE)

Decision Tree Confusion Matrix after Oversampling Before Train-Test Split


```
In [43]:
        # Deep learning model, with oversampled training data BEFORE train test split.
        TFmodel_SMOTE_before = keras.Sequential([
           keras.layers.Dense(units=256, activation='relu'),
           keras.layers.Dense(128, activation='relu'),
           keras.layers.Dense(64, activation='relu'),
           keras.layers.Dense(32, activation='relu'),
           keras.layers.Dense(units=1, activation='sigmoid')
        ])
        # Compiling the model and incorporating metrics.
        TFmodel_SMOTE_before.compile(loss='binary_crossentropy',
                                 metrics=[keras.metrics.BinaryAccuracy(name="accuracy"),
                                         keras.metrics.Recall(name="recall"),
                                         keras.metrics.Precision(name="precision"),
                                         keras.metrics.F1Score(name="f1 score")])
        # Fitting the model
        TFmodel_SMOTE_before.fit(F2_train, T2_train, validation_split=0.25, batch_size=128, epoc
        # Evaluating the model on test data
        metrics_SMOTE_before = TFmodel_SMOTE_before.evaluate(F2_test, T2_test)
        # Printing the evaluation results
        print("\n")
        print("After Oversampling Before Train-Test Split: ")
        print(f'The results representing loss, accuracy, recall, precision, and F1 values are as
        Epoch 1/25
        25 - recall: 0.7958 - precision: 0.6939 - f1 score: 0.6666 - val_loss: 0.5289 - val_accu
        racy: 0.7394 - val_recall: 0.8359 - val_precision: 0.7017 - val_f1 score: 0.6683
        68 - recall: 0.8031 - precision: 0.7217 - f1 score: 0.6666 - val_loss: 0.4988 - val_accu
        racy: 0.7574 - val_recall: 0.8383 - val_precision: 0.7226 - val_f1 score: 0.6683
        Epoch 3/25
        43 - recall: 0.8061 - precision: 0.7438 - f1 score: 0.6666 - val_loss: 0.5276 - val_accu
```

```
racy: 0.7433 - val_recall: 0.9401 - val_precision: 0.6755 - val_f1 score: 0.6683
39 - recall: 0.8107 - precision: 0.7694 - f1 score: 0.6666 - val_loss: 0.4548 - val_accu
racy: 0.7822 - val_recall: 0.7244 - val_precision: 0.8205 - val_f1 score: 0.6683
Epoch 5/25
79 - recall: 0.8081 - precision: 0.7919 - f1 score: 0.6666 - val_loss: 0.4174 - val_accu
racy: 0.8083 - val_recall: 0.7968 - val_precision: 0.8166 - val_f1 score: 0.6683
Epoch 6/25
63 - recall: 0.8031 - precision: 0.8083 - f1 score: 0.6666 - val_loss: 0.3850 - val_accu
racy: 0.8165 - val_recall: 0.7730 - val_precision: 0.8479 - val_f1 score: 0.6683
14 - recall: 0.8005 - precision: 0.8182 - f1 score: 0.6666 - val_loss: 0.3893 - val_accu
racy: 0.8117 - val_recall: 0.9006 - val_precision: 0.7656 - val_f1 score: 0.6683
Epoch 8/25
54 - recall: 0.7984 - precision: 0.8265 - f1 score: 0.6666 - val_loss: 0.3905 - val_accu
racy: 0.8154 - val_recall: 0.8608 - val_precision: 0.7902 - val_f1 score: 0.6683
Epoch 9/25
86 - recall: 0.8001 - precision: 0.8308 - f1 score: 0.6666 - val_loss: 0.3738 - val_accu
racy: 0.8186 - val_recall: 0.7307 - val_precision: 0.8880 - val_f1 score: 0.6683
Epoch 10/25
04 - recall: 0.7970 - precision: 0.8360 - f1 score: 0.6666 - val_loss: 0.3504 - val_accu
racy: 0.8325 - val_recall: 0.8198 - val_precision: 0.8422 - val_f1 score: 0.6683
Epoch 11/25
47 - recall: 0.7961 - precision: 0.8443 - f1 score: 0.6666 - val_loss: 0.3664 - val_accu
racy: 0.8250 - val_recall: 0.7397 - val_precision: 0.8932 - val_f1 score: 0.6683
Epoch 12/25
39 - recall: 0.7899 - precision: 0.8475 - f1 score: 0.6666 - val_loss: 0.3769 - val_accu
racy: 0.8183 - val_recall: 0.7227 - val_precision: 0.8950 - val_f1 score: 0.6683
Epoch 13/25
64 - recall: 0.7986 - precision: 0.8456 - f1 score: 0.6666 - val_loss: 0.3680 - val_accu
racy: 0.8206 - val_recall: 0.7225 - val_precision: 0.9003 - val_f1 score: 0.6683
Epoch 14/25
77 - recall: 0.7964 - precision: 0.8494 - f1 score: 0.6666 - val_loss: 0.4835 - val_accu
racy: 0.7980 - val_recall: 0.9406 - val_precision: 0.7327 - val_f1 score: 0.6683
Epoch 15/25
96 - recall: 0.8022 - precision: 0.8487 - f1 score: 0.6666 - val_loss: 0.3764 - val_accu
racy: 0.8194 - val_recall: 0.7405 - val_precision: 0.8807 - val_f1 score: 0.6683
Epoch 16/25
08 - recall: 0.8043 - precision: 0.8493 - f1 score: 0.6666 - val_loss: 0.3449 - val_accu
racy: 0.8339 - val_recall: 0.7820 - val_precision: 0.8736 - val_f1 score: 0.6683
Epoch 17/25
32 - recall: 0.8068 - precision: 0.8518 - f1 score: 0.6666 - val_loss: 0.4535 - val_accu
racy: 0.7886 - val_recall: 0.9493 - val_precision: 0.7192 - val_f1 score: 0.6683
Epoch 18/25
42 - recall: 0.8068 - precision: 0.8536 - f1 score: 0.6666 - val_loss: 0.4763 - val_accu
racy: 0.7572 - val_recall: 0.5314 - val_precision: 0.9723 - val_f1 score: 0.6683
Epoch 19/25
45 - recall: 0.8021 - precision: 0.8576 - f1 score: 0.6666 - val_loss: 0.3332 - val_accu
racy: 0.8388 - val_recall: 0.8059 - val_precision: 0.8638 - val_f1 score: 0.6683
```

Epoch 20/25

```
46 - recall: 0.7970 - precision: 0.8618 - f1 score: 0.6667 - val_loss: 0.3437 - val_accu
racy: 0.8321 - val_recall: 0.7466 - val_precision: 0.9020 - val_f1 score: 0.6683
Epoch 21/25
66 - recall: 0.7966 - precision: 0.8659 - f1 score: 0.6666 - val_loss: 0.3571 - val_accu
racy: 0.8281 - val_recall: 0.7165 - val_precision: 0.9238 - val_f1 score: 0.6683
Epoch 22/25
65 - recall: 0.7966 - precision: 0.8656 - f1 score: 0.6666 - val_loss: 0.3351 - val_accu
racy: 0.8365 - val_recall: 0.8060 - val_precision: 0.8594 - val_f1 score: 0.6683
Epoch 23/25
90 - recall: 0.7974 - precision: 0.8697 - f1 score: 0.6666 - val_loss: 0.3458 - val_accu
racy: 0.8372 - val_recall: 0.8040 - val_precision: 0.8624 - val_f1 score: 0.6683
Epoch 24/25
92 - recall: 0.7988 - precision: 0.8689 - f1 score: 0.6666 - val_loss: 0.4953 - val_accu
racy: 0.7486 - val_recall: 0.5188 - val_precision: 0.9634 - val_f1 score: 0.6683
Epoch 25/25
10 - recall: 0.7997 - precision: 0.8716 - f1 score: 0.6666 - val_loss: 0.4032 - val_accu
racy: 0.8058 - val_recall: 0.9100 - val_precision: 0.7539 - val_f1 score: 0.6683
47 - recall: 0.9122 - precision: 0.7502 - f1 score: 0.6656
```

After Oversampling Before Train-Test Split:

The results representing loss, accuracy, recall, precision, and F1 values are as follow s: [0.4071742594242096, 0.8046589493751526, 0.9121941924095154, 0.7501738667488098, array([0.6656369], dtype=float32)]

```
In [44]: #Naive Bayes Classifier oversampled before train-test split
         NBmodel_SMOTE_Before = GaussianNB()
         NBmodel_SMOTE_Before.fit(F2_train, T2_train)
         NBpred_SMOTE_before = NBmodel_SMOTE_Before.predict(F2_test)
         # metrics for evaluation
         NBaccuracy_SMOTE_before = accuracy_score(T2_test, NBpred_SMOTE_before)
         NBprecision_SMOTE_before = precision_score(T2_test, NBpred_SMOTE_before)
         NBrecall_SMOTE_before = recall_score(T2_test, NBpred_SMOTE_before)
         NBf1_score_SMOTE_before = f1_score(T2_test, NBpred_SMOTE_before)
         NBconfusion_SMOTE_before = confusion_matrix(T2_test, NBpred_SMOTE_before)
         # Printing the metrics.
         print("Naive Bayes Classifier: ")
         print('Accuracy score after SMOTE before train-test split: ', NBaccuracy_SMOTE_before)
         print('Confusion Matrix after SMOTE before train-test split: ', NBconfusion_SMOTE_before
         print('Recall score after SMOTE before train-test split: ', NBrecall_SMOTE_before)
         print('F1 score after SMOTE before train-test split: ', NBf1_score_SMOTE_before)
         print('Precision score after SMOTE before train-test split: ', NBprecision_SMOTE_before)
         Naive Bayes Classifier:
         Accuracy score after SMOTE before train-test split: 0.7192069061313523
         Confusion Matrix after SMOTE before train-test split: [[30095 18612]
```

Recall score after SMOTE before train-test split: 0.8210057340868776 F1 score after SMOTE before train-test split: 0.7447099103818594

Precision score after SMOTE before train-test split: 0.6813886606409203

In [45]: # KNN with oversampled data before train test split

[8678 39804]]

```
KNNmodel_SMOTE_before = KNeighborsClassifier(n_neighbors=6)
         KNNmodel_SMOTE_before.fit(F2_train, T2_train)
         KNNpred_SMOTE_before = KNNmodel_SMOTE_before.predict(F2_test)
         # Metrics to assess performance initialised here
         KNNaccuracy_SMOTE_before = accuracy_score(T2_test, KNNpred_SMOTE_before)
         KNNprecision_SMOTE_before = precision_score(T2_test, KNNpred_SMOTE_before)
         KNNrecall_SMOTE_before = recall_score(T2_test, KNNpred_SMOTE_before)
         KNNf1_score_SMOTE_before = f1_score(T2_test, KNNpred_SMOTE_before)
         KNNconfusion_SMOTE_before = confusion_matrix(T2_test, KNNpred_SMOTE_before)
         # Print the evaluation metrics
         print("K-Neighbours Classifier: ")
         print('Accuracy score after SMOTE before train-test split:', KNNaccuracy_SMOTE_before)
         print('Confusion Matrix after SMOTE before train-test split:', KNNconfusion_SMOTE_before
         print('Recall score after SMOTE before train-test split:', KNNrecall_SMOTE_before)
         print('F1 score after SMOTE before train-test split:', KNNf1_score_SMOTE_before)
         print('Precision score after SMOTE before train-test split:', KNNprecision_SMOTE_before)
         K-Neighbours Classifier:
         Accuracy score after SMOTE before train-test split: 0.8304437745012295
         Confusion Matrix after SMOTE before train-test split: [[34035 14672]
          [ 1807 46675]]
         Recall score after SMOTE before train-test split: 0.9627284352955736
         F1 score after SMOTE before train-test split: 0.8499576614555354
         Precision score after SMOTE before train-test split: 0.7608359006960406
In [46]: #Random Forest Classification with oversampling before train test split
         RFmodel_SMOTE_before = RandomForestClassifier(random_state=22)
         RFmodel_SMOTE_before.fit(F2_train, T2_train)
         RFpred_SMOTE_before = RFmodel_SMOTE_before.predict(F2_test)
         # Model evaluated
         RFaccuracy_SMOTE_before = accuracy_score(T2_test, RFpred_SMOTE_before)
         RFprecision_SMOTE_before = precision_score(T2_test, RFpred_SMOTE_before)
         RFrecall_SMOTE_before = recall_score(T2_test, RFpred_SMOTE_before)
         RFf1_score_SMOTE_before = f1_score(T2_test, RFpred_SMOTE_before)
         RFconfusion_SMOTE_before = confusion_matrix(T2_test, RFpred_SMOTE_before)
         # Results
         print("Random Forest Classifier: ")
         print('Accuracy score after SMOTE before train-test split:', RFaccuracy_SMOTE_before)
         print('Confusion Matrix after SMOTE before train-test split:', RFconfusion_SMOTE_before)
         print('Recall score after SMOTE before train-test split:', RFrecall_SMOTE_before)
         print('F1 score after SMOTE before train-test split:', RFf1_score_SMOTE_before)
         print('Precision score after SMOTE before train-test split:', RFprecision_SMOTE_before)
         Random Forest Classifier:
         Accuracy score after SMOTE before train-test split: 0.9095062198396938
         Confusion Matrix after SMOTE before train-test split: [[46461 2246]
          [ 6549 41933]]
         Recall score after SMOTE before train-test split: 0.8649189389876655
         F1 score after SMOTE before train-test split: 0.9050841238493001
         Precision score after SMOTE before train-test split: 0.9491613662599878
In [47]: #Feature Selection
         from sklearn.feature_selection import SelectKBest, f_classif
```

In [48]: feature_selection = SelectKBest(k=5).fit(F_train, T_train) #Top 5 features are selected,

```
F_train_feature = feature_selection.transform(F_train)
F_test_feature = feature_selection.transform(F_test)
```

```
In [49]: # Decision Tree Classifier with feature selection
         DTmodel_feature = DecisionTreeClassifier(random_state=22) # Model for decision tree init
         DTmodel_feature = DTmodel_feature.fit(F_train_feature, T_train) # Training the model on
         DTpred_feature = DTmodel_feature.predict(F_test_feature)
         # Using multiple metrics for assessing the results
         DTaccuracy_feature = accuracy_score(T_test, DTpred_feature)
         DTconfusion_feature = confusion_matrix(T_test, DTpred_feature)
         DTrecall_feature = recall_score(T_test, DTpred_feature)
         DTf1_feature = f1_score(T_test, DTpred_feature)
         DTprecision_feature = precision_score(T_test, DTpred_feature)
         # Results are printed
         print('Accuracy score: ', DTaccuracy_feature)
         print('Confusion Matrix: ', DTconfusion_feature)
         print('Recall score: ', DTrecall_feature)
         print('F1 score: ', DTf1_feature)
         print('Precision score: ', DTprecision_feature)
         # Confusion matrix is plotted
         plt.figure(figsize=(5, 4))
         sn.heatmap(DTconfusion_feature, annot=True, fmt="d", xticklabels=["No Diabetes", "Diabet
         plt.title('Decision Tree Confusion Matrix with Feature Selection')
         plt.xlabel('Decision Tree Model Predictions')
         plt.ylabel('Actual values')
         plt.show()
```

Accuracy score: 0.8503198591573846 Confusion Matrix: [[47686 938]

[7649 1096]]

Recall score: 0.12532875929102344 F1 score: 0.2033583820391502

Precision score: 0.5388397246804326

Decision Tree Confusion Matrix with Feature Selection


```
In [50]: TFmodel_feature = tf.keras.Sequential([
          tf.keras.layers.Dense(units=256, activation='relu'),
          tf.keras.layers.Dense(128, activation='relu'),
          tf.keras.layers.Dense(64, activation='relu'),
          tf.keras.layers.Dense(32, activation='relu'),
          tf.keras.layers.Dense(units=1, activation='sigmoid')
       ])
       TFmodel_feature.compile(loss='binary_crossentropy',
                         metrics=[tf.keras.metrics.BinaryAccuracy(name='accuracy'),
                                tf.keras.metrics.Recall(name='recall'),
                                tf.keras.metrics.Precision(name='precision'),
                                tf.keras.metrics.F1Score(name='f1_score')])
       TFmodel_feature.fit(F_train_feature, T_train, validation_split=0.25, batch_size=128, epo
       metrics_feature = TFmodel_feature.evaluate(F_test_feature, T_test) #Testing data is used
       # Results are printed
       print("\n")
       print("For feature selection")
       print("\n")
       print(f'The results representing loss, accuracy, recall, precision, and F1 score values
       Epoch 1/25
       71 - recall: 0.0179 - precision: 0.4910 - f1_score: 0.2651 - val_loss: 0.3595 - val_accu
       racy: 0.8504 - val_recall: 0.1251 - val_precision: 0.5651 - val_f1_score: 0.2669
       Epoch 2/25
       91 - recall: 0.0717 - precision: 0.5478 - f1_score: 0.2651 - val_loss: 0.3568 - val_accu
       racy: 0.8489 - val_recall: 0.0448 - val_precision: 0.6346 - val_f1_score: 0.2669
       Epoch 3/25
       00 - recall: 0.0963 - precision: 0.5531 - f1_score: 0.2651 - val_loss: 0.3625 - val_accu
       racy: 0.8480 - val_recall: 0.0237 - val_precision: 0.6886 - val_f1_score: 0.2669
       07 - recall: 0.1037 - precision: 0.5621 - f1_score: 0.2651 - val_loss: 0.3569 - val_accu
       racy: 0.8496 - val_recall: 0.0569 - val_precision: 0.6315 - val_f1_score: 0.2669
       Epoch 5/25
       05 - recall: 0.1069 - precision: 0.5566 - f1_score: 0.2651 - val_loss: 0.3592 - val_accu
       racy: 0.8477 - val_recall: 0.0160 - val_precision: 0.7571 - val_f1_score: 0.2669
       Epoch 6/25
       13 - recall: 0.1110 - precision: 0.5699 - f1_score: 0.2651 - val_loss: 0.3612 - val_accu
       racy: 0.8520 - val_recall: 0.1338 - val_precision: 0.5859 - val_f1_score: 0.2669
       Epoch 7/25
       12 - recall: 0.1121 - precision: 0.5665 - f1_score: 0.2651 - val_loss: 0.3552 - val_accu
       racy: 0.8513 - val_recall: 0.1762 - val_precision: 0.5546 - val_f1_score: 0.2669
       Epoch 8/25
       12 - recall: 0.1071 - precision: 0.5702 - f1_score: 0.2651 - val_loss: 0.3555 - val_accu
       racy: 0.8501 - val_recall: 0.2233 - val_precision: 0.5318 - val_f1_score: 0.2669
       Epoch 9/25
       11 - recall: 0.1104 - precision: 0.5647 - f1_score: 0.2651 - val_loss: 0.3562 - val_accu
       racy: 0.8493 - val_recall: 0.0480 - val_precision: 0.6437 - val_f1_score: 0.2669
       Epoch 10/25
       18 - recall: 0.1097 - precision: 0.5802 - f1_score: 0.2651 - val_loss: 0.3571 - val_accu
       racy: 0.8520 - val_recall: 0.1427 - val_precision: 0.5800 - val_f1_score: 0.2669
```

```
Epoch 11/25
13 - recall: 0.1107 - precision: 0.5688 - f1_score: 0.2651 - val_loss: 0.3599 - val_accu
racy: 0.8494 - val_recall: 0.0471 - val_precision: 0.6541 - val_f1_score: 0.2669
Epoch 12/25
09 - recall: 0.1108 - precision: 0.5624 - f1_score: 0.2651 - val_loss: 0.3561 - val_accu
racy: 0.8515 - val_recall: 0.0937 - val_precision: 0.6185 - val_f1_score: 0.2669
Epoch 13/25
11 - recall: 0.1114 - precision: 0.5641 - f1_score: 0.2651 - val_loss: 0.3556 - val_accu
racy: 0.8514 - val_recall: 0.0880 - val_precision: 0.6262 - val_f1_score: 0.2669
Epoch 14/25
14 - recall: 0.1144 - precision: 0.5678 - f1_score: 0.2651 - val_loss: 0.3654 - val_accu
racy: 0.8483 - val_recall: 0.0276 - val_precision: 0.6906 - val_f1_score: 0.2669
Epoch 15/25
15 - recall: 0.1103 - precision: 0.5729 - f1_score: 0.2651 - val_loss: 0.3558 - val_accu
racy: 0.8505 - val_recall: 0.0706 - val_precision: 0.6324 - val_f1_score: 0.2669
15 - recall: 0.1110 - precision: 0.5724 - f1_score: 0.2651 - val_loss: 0.3546 - val_accu
racy: 0.8513 - val_recall: 0.1127 - val_precision: 0.5914 - val_f1_score: 0.2669
Epoch 17/25
12 - recall: 0.1152 - precision: 0.5639 - f1_score: 0.2651 - val_loss: 0.3534 - val_accu
racy: 0.8524 - val_recall: 0.1482 - val_precision: 0.5821 - val_f1_score: 0.2669
Epoch 18/25
12 - recall: 0.1142 - precision: 0.5643 - f1_score: 0.2651 - val_loss: 0.3553 - val_accu
racy: 0.8517 - val_recall: 0.1340 - val_precision: 0.5804 - val_f1_score: 0.2669
Epoch 19/25
15 - recall: 0.1139 - precision: 0.5703 - f1_score: 0.2651 - val_loss: 0.3567 - val_accu
racy: 0.8506 - val_recall: 0.0665 - val_precision: 0.6466 - val_f1_score: 0.2669
Epoch 20/25
14 - recall: 0.1150 - precision: 0.5674 - f1_score: 0.2651 - val_loss: 0.3538 - val_accu
racy: 0.8514 - val_recall: 0.0914 - val_precision: 0.6203 - val_f1_score: 0.2669
Epoch 21/25
15 - recall: 0.1158 - precision: 0.5688 - f1_score: 0.2651 - val_loss: 0.3595 - val_accu
racy: 0.8498 - val_recall: 0.2138 - val_precision: 0.5311 - val_f1_score: 0.2669
Epoch 22/25
13 - recall: 0.1126 - precision: 0.5679 - f1_score: 0.2651 - val_loss: 0.3565 - val_accu
racy: 0.8498 - val_recall: 0.2156 - val_precision: 0.5304 - val_f1_score: 0.2669
Epoch 23/25
13 - recall: 0.1145 - precision: 0.5663 - f1_score: 0.2651 - val_loss: 0.3571 - val_accu
racy: 0.8518 - val_recall: 0.1385 - val_precision: 0.5792 - val_f1_score: 0.2669
Epoch 24/25
12 - recall: 0.1137 - precision: 0.5657 - f1_score: 0.2651 - val_loss: 0.3593 - val_accu
racy: 0.8491 - val_recall: 0.2138 - val_precision: 0.5246 - val_f1_score: 0.2669
Epoch 25/25
15 - recall: 0.1126 - precision: 0.5718 - f1_score: 0.2651 - val_loss: 0.3618 - val_accu
racy: 0.8466 - val_recall: 0.2594 - val_precision: 0.5038 - val_f1_score: 0.2669
```

66 - recall: 0.2504 - precision: 0.4935 - f1_score: 0.2645

The results representing loss, accuracy, recall, precision, and F1 score values are as f ollows: [0.3600764274597168, 0.8465547561645508, 0.25042882561683655, 0.4934655129909515 4, array([0.26454306], dtype=float32)]

```
In [51]:
         NBmodel_feature = GaussianNB()
         NBmodel_feature.fit(F_train_feature, T_train)
         NBpred_feature = NBmodel_feature.predict(F_test_feature)
         NBaccuracy_feature = accuracy_score(T_test, NBpred_feature)
         NBconfusion_feature = confusion_matrix(T_test, NBpred_feature)
         NBrecall_feature = recall_score(T_test, NBpred_feature)
         NBf1_feature = f1_score(T_test, NBpred_feature)
         NBprecision_feature = precision_score(T_test, NBpred_feature)
         print("Naive Bayes Classifier after feature selection :")
         print('Accuracy score: ', NBaccuracy_feature)
         print('Confusion Matrix: ', NBconfusion_feature)
         print('Recall score: ', NBrecall_feature)
         print('F1 score: ', NBf1_feature)
         print('Precision score: ', NBprecision_feature)
         Naive Bayes Classifier after feature selection :
         Accuracy score: 0.8171486342798375
         Confusion Matrix: [[43497 5127]
          [ 5363 3382]]
         Recall score: 0.386735277301315
         F1 score: 0.39202503767242375
         Precision score: 0.3974615113409331
In [52]:
         KNNmodel_feature = KNeighborsClassifier(n_neighbors = 6)
         KNNmodel_feature.fit(F_train_feature, T_train)
         KNNpred_feature = KNNmodel_feature.predict(F_test_feature)
         KNNaccuracy_feature = accuracy_score(T_test, KNNpred_feature)
         KNNconfusion_feature = confusion_matrix(T_test, KNNpred_feature)
         KNNrecall_feature = recall_score(T_test, KNNpred_feature)
         KNNf1_feature = f1_score(T_test, KNNpred_feature)
         KNNprecision_feature = precision_score(T_test, KNNpred_feature)
         print("K-Nearest Neighbors Classifier after feature selection:")
         print('Accuracy score: ', KNNaccuracy_feature)
         print('Confusion Matrix: ', KNNconfusion_feature)
         print('Recall score: ', KNNrecall_feature)
         print('F1 score: ', KNNf1_feature)
         print('Precision score: ', KNNprecision_feature)
         K-Nearest Neighbors Classifier after feature selection:
         Accuracy score: 0.8433125904233993
         Confusion Matrix: [[47324 1300]
          [ 7689 1056]]
         Recall score: 0.12075471698113208
         F1 score: 0.19025313034861727
         Precision score: 0.44821731748726656
         RFmodel_feature = RandomForestClassifier(random_state=22)
In [53]:
         RFmodel_feature.fit(F_train_feature, T_train)
         RFpred_feature = RFmodel_feature.predict(F_test_feature)
         RFaccuracy_feature = accuracy_score(T_test, RFpred_feature)
         RFconfusion_feature = confusion_matrix(T_test, RFpred_feature)
```

```
RFrecall_feature = recall_score(T_test, RFpred_feature)
         RFf1_feature = f1_score(T_test, RFpred_feature)
         REprecision_feature = precision_score(T_test, REpred_feature)
         print("Random Forest Classifier after feature selection:")
         print('Accuracy score: ', RFaccuracy_feature)
         print('Confusion Matrix: ', RFconfusion_feature)
         print('Recall score: ', RFrecall_feature)
         print('F1 score: ', RFf1_feature)
         print('Precision score: ', RFprecision_feature)
         Random Forest Classifier after feature selection:
         Accuracy score: 0.8500409628893654
         Confusion Matrix: [[47637
          [ 7616 1129]]
         Recall score: 0.12910234419668382
         F1 score: 0.20789982506214894
         Precision score: 0.5335538752362949
In [54]: from sklearn.decomposition import PCA #Dimensinality Reduction
In [55]: pca = PCA(n_components=3).fit(SS_F_train) #Using the training data we standarised earlie
         F_train_3D = pca.transform(SS_F_train)
         F_{test_3D} = pca.transform(SS_F_{test_1})
         DTmodel_3D = DecisionTreeClassifier(random_state=22)
In [56]:
         DTmodel_3D.fit(F_train_3D, T_train)
         DTpred_3D = DTmodel_3D.predict(F_test_3D)
         DTaccuracy_3D = accuracy_score(T_test, DTpred_3D)
         DTconfusion_3D = confusion_matrix(T_test, DTpred_3D)
         DTrecall_3D = recall_score(T_test, DTpred_3D)
         DTf1_3D = f1_score(T_test, DTpred_3D)
         DTprecision_3D = precision_score(T_test, DTpred_3D)
         # Results are printed
         print('Accuracy score: ', DTaccuracy_3D)
print('Confusion Matrix: ', DTconfusion_3D)
         print('Recall score: ', DTrecall_3D)
         print('F1 score: ', DTf1_3D)
         print('Precision score: ', DTprecision_3D)
         # Confusion matrix plotted
         plt.figure(figsize=(5, 4))
         sn.heatmap(DTconfusion_3D, annot=True, fmt="d", xticklabels=["No Diabetes", "Diabetes"],
         plt.title('Decision Tree Confusion Matrix with PCA')
         plt.xlabel('Decision Tree Model Predictions')
         plt.ylabel('Actual values')
         plt.show()
         Accuracy score: 0.7729784378322787
         Confusion Matrix: [[42067 6557]
          [ 6467 2278]]
         Recall score: 0.2604917095483133
         F1 score: 0.25915813424345846
         Precision score: 0.2578381437464629
```

Decision Tree Confusion Matrix with PCA


```
#For Dimensionality Reduction
In [57]:
        TFmodel_3D = tf.keras.Sequential([
           tf.keras.layers.Dense(units=256, activation='relu'),
           tf.keras.layers.Dense(units=128, activation='relu'),
           tf.keras.layers.Dense(units=64, activation='relu'),
           tf.keras.layers.Dense(units=32, activation='relu'),
           tf.keras.layers.Dense(units=1, activation='sigmoid')
        ])
        TFmodel_3D.compile(loss='binary_crossentropy',
                            metrics=[tf.keras.metrics.BinaryAccuracy(name='accuracy'),
                                    tf.keras.metrics.Recall(name='recall'),
                                    tf.keras.metrics.Precision(name='precision'),
                                    tf.keras.metrics.F1Score(name='f1_score')])
        TFmodel_3D.fit(F_train_3D, T_train, validation_split=0.25, batch_size=128, epochs=25)
        metrics_3D = TFmodel_3D.evaluate(F_test_3D, T_test)
        print('\n')
        print ("For Dimensionality Reduction using PCA")
        print('\n')
        print(f'The results representing loss, accuracy, recall, precision, and F1 values are as
       Epoch 1/25
       65 - recall: 0.0262 - precision: 0.4599 - f1_score: 0.2651 - val_loss: 0.3672 - val_accu
       racy: 0.8386 - val_recall: 0.2019 - val_precision: 0.4467 - val_f1_score: 0.2669
       Epoch 2/25
       78 - recall: 0.0427 - precision: 0.5266 - f1_score: 0.2651 - val_loss: 0.3619 - val_accu
       racy: 0.8473 - val_recall: 0.0368 - val_precision: 0.5635 - val_f1_score: 0.2669
       81 - recall: 0.0424 - precision: 0.5372 - f1_score: 0.2651 - val_loss: 0.3618 - val_accu
       racy: 0.8473 - val_recall: 0.0324 - val_precision: 0.5733 - val_f1_score: 0.2669
       Epoch 4/25
```

```
77 - recall: 0.0454 - precision: 0.5194 - f1_score: 0.2651 - val_loss: 0.3613 - val_accu
racy: 0.8472 - val_recall: 0.0496 - val_precision: 0.5438 - val_f1_score: 0.2669
80 - recall: 0.0461 - precision: 0.5310 - f1_score: 0.2651 - val_loss: 0.3614 - val_accu
racy: 0.8471 - val_recall: 0.0332 - val_precision: 0.5641 - val_f1_score: 0.2669
Epoch 6/25
83 - recall: 0.0470 - precision: 0.5405 - f1_score: 0.2651 - val_loss: 0.3620 - val_accu
racy: 0.8470 - val_recall: 0.0217 - val_precision: 0.5926 - val_f1_score: 0.2669
Epoch 7/25
80 - recall: 0.0463 - precision: 0.5299 - f1_score: 0.2651 - val_loss: 0.3614 - val_accu
racy: 0.8468 - val_recall: 0.0647 - val_precision: 0.5206 - val_f1_score: 0.2669
80 - recall: 0.0480 - precision: 0.5306 - f1_score: 0.2651 - val_loss: 0.3614 - val_accu
racy: 0.8462 - val_recall: 0.0928 - val_precision: 0.5037 - val_f1_score: 0.2669
Epoch 9/25
80 - recall: 0.0492 - precision: 0.5292 - f1_score: 0.2651 - val_loss: 0.3621 - val_accu
racy: 0.8456 - val_recall: 0.0996 - val_precision: 0.4936 - val_f1_score: 0.2669
Epoch 10/25
80 - recall: 0.0499 - precision: 0.5293 - f1_score: 0.2651 - val_loss: 0.3613 - val_accu
racy: 0.8470 - val_recall: 0.0211 - val_precision: 0.5932 - val_f1_score: 0.2669
Epoch 11/25
82 - recall: 0.0481 - precision: 0.5356 - f1_score: 0.2651 - val_loss: 0.3617 - val_accu
racy: 0.8471 - val_recall: 0.0314 - val_precision: 0.5683 - val_f1_score: 0.2669
79 - recall: 0.0454 - precision: 0.5255 - f1_score: 0.2651 - val_loss: 0.3630 - val_accu
racy: 0.8468 - val_recall: 0.0166 - val_precision: 0.5914 - val_f1_score: 0.2669
Epoch 13/25
83 - recall: 0.0474 - precision: 0.5411 - f1_score: 0.2651 - val_loss: 0.3618 - val_accu
racy: 0.8467 - val_recall: 0.0661 - val_precision: 0.5196 - val_f1_score: 0.2669
Epoch 14/25
83 - recall: 0.0509 - precision: 0.5378 - f1_score: 0.2651 - val_loss: 0.3617 - val_accu
racy: 0.8467 - val_recall: 0.0582 - val_precision: 0.5202 - val_f1_score: 0.2669
Epoch 15/25
82 - recall: 0.0506 - precision: 0.5368 - f1_score: 0.2651 - val_loss: 0.3614 - val_accu
racy: 0.8473 - val_recall: 0.0380 - val_precision: 0.5625 - val_f1_score: 0.2669
Epoch 16/25
81 - recall: 0.0460 - precision: 0.5363 - f1_score: 0.2651 - val_loss: 0.3618 - val_accu
racy: 0.8467 - val_recall: 0.0736 - val_precision: 0.5159 - val_f1_score: 0.2669
Epoch 17/25
83 - recall: 0.0514 - precision: 0.5365 - f1_score: 0.2651 - val_loss: 0.3616 - val_accu
racy: 0.8471 - val_recall: 0.0373 - val_precision: 0.5538 - val_f1_score: 0.2669
Epoch 18/25
81 - recall: 0.0490 - precision: 0.5337 - f1_score: 0.2651 - val_loss: 0.3623 - val_accu
racy: 0.8472 - val_recall: 0.0412 - val_precision: 0.5515 - val_f1_score: 0.2669
Epoch 19/25
81 - recall: 0.0474 - precision: 0.5355 - f1_score: 0.2651 - val_loss: 0.3619 - val_accu
racy: 0.8466 - val_recall: 0.0118 - val_precision: 0.6000 - val_f1_score: 0.2669
Epoch 20/25
```

81 - recall: 0.0486 - precision: 0.5340 - f1_score: 0.2651 - val_loss: 0.3619 - val_accu

```
racy: 0.8466 - val_recall: 0.0750 - val_precision: 0.5134 - val_f1_score: 0.2669
Epoch 21/25
82 - recall: 0.0514 - precision: 0.5343 - f1_score: 0.2651 - val_loss: 0.3615 - val_accu
racy: 0.8467 - val_recall: 0.0653 - val_precision: 0.5179 - val_f1_score: 0.2669
Epoch 22/25
84 - recall: 0.0510 - precision: 0.5438 - f1_score: 0.2651 - val_loss: 0.3613 - val_accu
racy: 0.8472 - val_recall: 0.0358 - val_precision: 0.5616 - val_f1_score: 0.2669
Epoch 23/25
82 - recall: 0.0482 - precision: 0.5379 - f1_score: 0.2651 - val_loss: 0.3614 - val_accu
racy: 0.8468 - val_recall: 0.0616 - val_precision: 0.5217 - val_f1_score: 0.2669
Epoch 24/25
79 - recall: 0.0496 - precision: 0.5261 - f1_score: 0.2651 - val_loss: 0.3619 - val_accu
racy: 0.8472 - val_recall: 0.0418 - val_precision: 0.5518 - val_f1_score: 0.2669
Epoch 25/25
82 - recall: 0.0503 - precision: 0.5368 - f1_score: 0.2651 - val_loss: 0.3611 - val_accu
racy: 0.8472 - val_recall: 0.0333 - val_precision: 0.5667 - val_f1_score: 0.2669
82 - recall: 0.0310 - precision: 0.5366 - f1_score: 0.2645
For Dimensionality Reduction using PCA
The results representing loss, accuracy, recall, precision, and F1 values are as follow
s: [0.3573031723499298, 0.8482106924057007, 0.030989136546850204, 0.5366336703300476, ar
ray([0.26454306], dtype=float32)]
NBmodel_3D = GaussianNB()
NBmodel_3D.fit(F_train_3D, T_train)
NBpred_3D = NBmodel_3D.predict(F_test_3D)
```

```
NBmodel_3D = GaussianNB()

NBmodel_3D.fit(F_train_3D, T_train)

NBpred_3D = NBmodel_3D.predict(F_test_3D)

NBaccuracy_3D = accuracy_score(T_test, NBpred_3D)
NBconfusion_3D = confusion_matrix(T_test, NBpred_3D)
NBrecall_3D = recall_score(T_test, NBpred_3D)
NBf1_3D = f1_score(T_test, NBpred_3D)
NBprecision_3D = precision_score(T_test, NBpred_3D)

# Results are printed
print("Naive Bayes Classifier after dimensionality reduction")
print('Accuracy score: ', NBaccuracy_3D)
print('Confusion Matrix: ', NBconfusion_3D)
print('Recall score: ', NBrecall_3D)
print('F1 score: ', NBf1_3D)
print('Precision score: ', NBprecision_3D)

Naive Bayes Classifier after dimensionality reduction
Accuracy score: 0.8411162823127473
```

Confusion Matrix: [[46773 1851]

Recall score: 0.16935391652372783 F1 score: 0.24525958433385772

[7264 1481]]

```
Precision score: 0.4444777911164466

In [59]: KNNmodel_3D = KNeighborsClassifier(n_neighbors = 6 )

# Training the KNN classifier on the dimension reduced data
```

```
KNNmodel_3D.fit(F_train_3D, T_train)
         KNNpred_3D = KNNmodel_3D.predict(F_test_3D)
         # Assessing the model's performance using various metrics
         KNNaccuracy_3D = accuracy_score(T_test, KNNpred_3D)
         KNNconfusion_3D = confusion_matrix(T_test, KNNpred_3D)
         KNNrecall_3D = recall_score(T_test, KNNpred_3D)
         KNNf1_3D = f1_score(T_test, KNNpred_3D)
         KNNprecision_3D = precision_score(T_test, KNNpred_3D)
         # Results are printed
         print("K-Neighbours After Dimensionality Reduction")
         print('Accuracy score: ', KNNaccuracy_3D)
         print('Confusion Matrix: ', KNNconfusion_3D)
         print('Recall score: ', KNNrecall_3D)
         print('F1 score: ', KNNf1_3D)
         print('Precision score: ', KNNprecision_3D)
         K-Neighbours After Dimensionality Reduction
         Accuracy score: 0.839320887587373
         Confusion Matrix: [[47354 1270]
          [ 7948
                   797]]
         Recall score: 0.09113779302458548
         F1 score: 0.1474287828338883
         Precision score: 0.3855829704886309
         RFmodel_3D = RandomForestClassifier(random_state=22)
In [60]:
         # Training the Random Forest classifier on PCA data.
         RFmodel_3D.fit(F_train_3D, T_train)
         # The model is tested.
         RFpred_3D = RFmodel_3D.predict(F_test_3D)
         RFaccuracy_3D = accuracy_score(T_test, RFpred_3D)
         RFconfusion_3D = confusion_matrix(T_test, RFpred_3D)
         RFrecall_3D = recall_score(T_test, RFpred_3D)
         RFf1_3D = f1_score(T_test, RFpred_3D)
         RFprecision_3D = precision_score(T_test, RFpred_3D)
         # Results are printed
         print("Random Forest after dimensionality reduction: ")
         print('Accuracy score: ', RFaccuracy_3D)
         print('Confusion Matrix: ', RFconfusion_3D)
         print('Recall score: ', RFrecall_3D)
         print('F1 score: ', RFf1_3D)
         print('Precision score: ', RFprecision_3D)
         Random Forest after dimensionality reduction:
         Accuracy score: 0.8341613066290157
         Confusion Matrix: [[46877 1747]
          7767
                   978]]
         Recall score: 0.1118353344768439
         F1 score: 0.17053182214472537
         Precision score: 0.3588990825688073
```