Assignment 4

Group 4:

Group names:

- 1. Amira Abu Issa
- 2. Aya Metwally
- 3. Heba Mostafa

Part 1: Numerical Questions

(a) Please build a decision tree by using Gini Children (i.e., Gini = Pk i=1 ni n GINI(i), where NC is the number of classes).

weather

a

our Disition is "Hiking"

First we calculate Gini of "weather"

Gini (HIKing, weather = cloudy)

5 4 5

- Gini (Hiking, weather = Sunny)

- GINI (HIKNS, wenther=Rainy)

= 4

Gini children (weather)

= Gini (cloudy) * Pcloudy + Gini (sunny) * Psunny + Gini (Ramy) * Prainy

Gini (Hot) =
$$1 - \left[\left(\frac{3}{4} \right)^2 + \left(\frac{1}{4} \right)^2 \right] = 0.375$$

Gini (Mild) = $1 - \left[\left(\frac{2}{4} \right)^2 + \left(\frac{2}{4} \right)^2 \right] = 0.5$
Gini (col) = $1 - \left(\frac{1}{4} \right)^2 = 0$
Gini (Cold) = $1 - \left(\frac{1}{4} \right)^2 = 0$

= 0.35

-we concurate Gini of Humidty

Gini (High) =
$$1 - [(\frac{2}{5})^2 + (\frac{1}{5})^2] = \frac{5}{18}$$

Gini (Normal) = $1 - [(\frac{2}{5})^2 + (\frac{1}{5})^2] = \frac{3}{8}$

Gini (high) = $1 - [(\frac{2}{5})^2 + (\frac{1}{5})^2] = \frac{3}{8}$

Gini (high) = $1 - [(\frac{2}{5})^2 + (\frac{1}{5})^2] = \frac{3}{8}$

Gini (high) = $(\frac{2}{8} * \frac{1}{10}) + (\frac{3}{8} * \frac{1}{10}) = 0.316$
 $= (\frac{5}{18} * \frac{1}{10}) + (\frac{3}{8} * \frac{1}{10}) = 0.316$

Humidty < & High < 19es

Yound > 39es

INO

We calculate "wind" $1 = 1 - \left[\left(\frac{2}{3} \right)^2 + \left(\frac{1}{3} \right)^2 \right] = \frac{29}{5}$ Wind $1 = 1 - \left[\left(\frac{2}{3} \right)^2 + \left(\frac{1}{3} \right)^2 \right] = \frac{20}{49}$ Gin; (weak) $= 1 - \left[\left(\frac{2}{3} \right)^2 + \left(\frac{1}{3} \right)^2 \right] = \frac{4}{9}$

Gini Children (wind).
= (29 * 75) + (4 * 8)

= 0.419

The minumum Gini Children of "weather"

So the Root is "weather"

We must repeat this again to get new node

When cloudy weather = wind Hiking weather Temperature Humidty cloudy Hot 1419h Strong NO cloudy mild Normal strong yes. dondy mild weak yes H19h

Gini of "Temperature

Gini (Hot) = $1 - [(+)^2] = 0$ Gini (mild) = $1 - [\frac{2}{2}]^2 = 0$ Gini Charh Histen of Temperature) = $(0 \neq \frac{1}{3}) + (0 \neq \frac{3}{3})$

Gini of "Humidty"

Gini (Hi9h) = 1- [($\frac{1}{2}$)² + ($\frac{1}{2}$)²] = 0.5

Gini (Normal) = 1 - [(1)²] = 0

Gini Children (Humidty) = (0.5 * $\frac{2}{3}$) + (0* $\frac{1}{3}$)

= 0.33

Gini of "wind"

Gini (Strong) = $1 - \left[\left(\frac{2}{2} \right)^2 + \left(\frac{1}{2} \right)^2 \right] = 0.5$ Gini (Weak) = $1 - \left[\left(1 \right)^2 \right] = 0$ ani Children (wind) = $\left(0.5 * \frac{2}{3} \right) + \left(0 * \frac{1}{3} \right)$ = 0.33

The minumum & ini Children of "Temperature"
so the new node is "Temperature"
when (weather = cloudy)

when weather = Rainy we will get Gini ("Temperature"), ("Humidty") and ("wind") First we write our new Duta when weather = Rainy

Rainy Cold Normal Strong Ges
Rainy Cool Normal Strong No.
Rainy tot Normal Strong No.
Rainy tot Normal Weak yes

Gini of "Temperature"

Gini (Cold) = 1 - $(1)^2 = 0$ Gini (Cool) = 1 - $(1)^2 = 0$ Gini (Hot) = 1- $(1)^2 = 0$

Gini children (Temperature) s (0 * \$) + (0 * \$) + (0 * \$)

Gini Of "Humidty"

Gini (Normal) =
$$1 - ((\frac{2}{3})^2 + (\frac{1}{3})^2)$$

= $\frac{4}{9}$

The minumum Gini Bhildren 15 Gini of "Temperature" When (weather = "Rainy")

This the disition tree when we use SIAI method

(b) Please build a decision tree by using Information Gain (i.e., IG(T, a) = Entropy(T) – Entropy(T|a), More information about IG).

6)

$$EntroPy(S) = -Pyes(S)_2 Pyes - PNO(S)_2 PNO$$

= $-\frac{4}{10} Log_2 \frac{4}{10} - \frac{6}{10} Log_2 \frac{6}{10}$

= 0.971

= 0-747

GAIN (S, Woodher = Entropy(s) - Paloudy [- Entropycholy]

-to [-6921] -totLag21]

GAIN (s, weather) = 0.42

GAIN (S, Humdity) = PHIGH [- Entropy (S)

+ Entropy (S)

= 0.971 - 16 [-5 Log2 5 - 6 Log2 6]

- 4 [-3 Log2 3 - 4 Log2 4]

= 0.257

GAIN (S, WIND) = Entropy (S) - Parang [- Entropy strong]
- Pweek [-Entropy stateouk]

= 0.971 - 石[字 692 辛-亨山2等]
-- 高[字 692 - 景 692 3]
= 0-6913

The maximum information Gain is the Root so the the Root is

Cloudy mild High weaks yes

Entropy (S. weather = cloudy) = - Pyes tong yes - Pho Englishes = - 2 Log2 2 - 1 Log2 13

= 0.918

GAIN (5, Temperature) = Entropy (5) $-\frac{1}{2} \frac{h_1}{h_1}$ Entropy is $= 0.918 - \frac{3}{3} \left[-\frac{2}{2} Log_2 \frac{3}{2} \right]$ $-\frac{1}{3} \left[1Log_2 \right]$ = 0.918

GAIN (S, Humidty) EntroPy (S) - 2 = 0.918 - = [-1/2 log2] -1/2 Log2] -3[-Log2]

With You Step By Step GALA (S, Humidty) = 0.251 GAIN (S, WIND) = Entropy (S) - 2 ni Entropy (i) = 0.918 - = [= 10]2 = - = 10]2 = - 1 [- Lo921] = 0.251 new node For (weather = cloudy) 15 "Temperature" Weather doudy Reany Temperature

our new Data I wenther - Rouny)

Temperature Humidry weather wind HIKING cold Normal Rainy STrong ses Ramy Cool Normal Strong No Rainy Hot week Normal yes

(worther = Ramy)

Entropy (s) = - Pyes Log_ Pyes - Pho Log_ Pho

 $= -\frac{2}{3} Lo92 \frac{2}{3} - \frac{1}{3} Lo92 \frac{1}{3}$

= 0.918

G'AIN (S. Temperature) = Entropy(S) - 2 ni Extrapy()

$$= 0.918 - \frac{1}{3} [-6921] - \frac{1}{3} [-6921] - \frac{1}{3} [-6921]$$

= 10.918

GAIN (S, Humidty) = 0.918 - 3 [-2 6923 - 16023]

= - 0.0003 16

GAIN (S, WIND) = Entropy (S) - 5 1/2 Entropy i) = 0.918 - 3 [-120921] -3[Log21]

GAIN (S, WIND) = 0.251

The new node For (weather = Ramy)

15 " Temperature"

This is the decition tree when we calculte by information Gain

- (red hale

which have

(c) Comparison of Gini Index and Information Gain:

Both Gini index and information gain are commonly used metrics for building decision trees.

Advantages of Gini Index:

- Gini index is computationally faster than information gain, especially when dealing with large datasets.
- Gini index is less prone to overfitting than information gain, since it does not rely on the number of instances in each class.

Disadvantages of Gini Index:

- Gini index is not as informative as information gain, since it only considers the impurity of the current node and not the potential future nodes.
- Gini index is biased towards features with many categories, since they tend to have lower Gini index values.

Advantages of Information Gain:

- Information gain provides more information about the relationship between the features and the label, since it considers the entropy of both the current node and the potential future nodes.
- Information gain is less biased towards features with many categories, since it takes into account the number of instances in each category.

Disadvantages of Information Gain:

- Information gain is computationally more expensive than Gini index, especially when dealing with large datasets.
- Information gain is more prone to overfitting than Gini index, especially when dealing with noisy or irrelevant features.

Part 2: Programming Questions

(a)

Load dataset pd.read_scv('/content/KDD.csz') ## prints hape of dataset: pd.read_scv('/content/KDD.cs') ## prints hape of dataset: pd.read_scv('/content/KDD.cs') ## prints hape of d

Function to preprocess the dataset:

```
def preprocess_data(df):
   X = df.iloc[:, :-1]
   Y = df.iloc[:, -1]
   # view 38 input feature variables and 1 target
   print("The feature variables:",X.shape[1])
   print("The shape of target:",Y.shape)
   scaler = MinMaxScaler()
   X_normalized = scaler.fit_transform(X)
   # Select top 9 features
   selector = SelectKBest(mutual_info_classif, k=9)
   X_selected = selector.fit_transform(X_normalized, Y)
   # Create a new DataFrame with selected feature
   selected_features = selector.get_support(indices=True)
   selected_columns = df.columns[selected_features].tolist()
   my_data = pd.DataFrame(X_selected, columns=selected_columns)
   my_data['target'] = Y
   return my_data, X_selected, Y, selected_columns
my_data, X_selected, Y,selected_columns = preprocess_data(dataset)
```

Display shape of train dataset (features) and tests dataset (target):

```
The feature variables: 38
The shape of target: (494021,)
```

Display first 5 rows after preprocessing, normalization & feature selection:

```
        src_bytes
        ds_bytes
        logged_in
        count
        srv_count
        ds_host_srv_count
        dst_host_same_src_port_rate
        dst_host_srv_diff_host_rate
        target

        0
        2.610418e-07
        0.001057
        1.0
        0.015656
        0.015656
        0.035294
        0.035294
        0.11
        0.01
        0.0
        0

        1
        3.46905e-07
        0.000094
        1.0
        0.015656
        0.015656
        0.013725
        0.013725
        0.03
        0.00
        0

        2
        3.389216e-07
        0.000259
        1.0
        0.015656
        0.015656
        0.113725
        0.113725
        0.03
        0.00
        0

        3
        3.158461e-07
        0.000259
        1.0
        0.011742
        0.011742
        0.152941
        0.152941
        0.05294
        0.03
        0.00
        0

        4
        3.129617e-07
        0.000394
        1.0
        0.011742
        0.011742
        0.192157
        0.192157
        0.02
        0.00
        0
        0
```

(b)

Function to train DT and compute performance for 3 different subsets:

```
rmance of DT in terms of Classification report using 3 subsets
def compute_DT_performance():
 train ratios = [0.7, 0.6, 0.5]
 test_ratios = [0.3, 0.4, 0.5]
 for train_ratio, test_ratio in zip(train_ratios, test_ratios):
     X_train, X_test, Y_train, Y_test = split_data(X_selected,Y,train_ratio, test_ratio)
     # Perform further operations with the subsets, such as training and evaluating the decision tree
     clf = DecisionTreeClassifier()
     clf.fit(X_train, Y_train)
     Y_pred = clf.predict(X_test)
     report, accuracy, confusion = evaluate_classification(clf, X_test, Y_test)
     print(f"my_data_{i}")
     print(f"Train Ratio: {train_ratio}, Test Ratio: {test_ratio}")
     print("Classification Report:")
     print(report)
     print()
compute_DT_performance()
```

Display classification report for 3 different subsets:

my_data_1 Train Ratio: 0.7, Test Ratio: 0.3 Classification Report:						
F	recision	recall	f1-score	support		
0	1.00	1.00				
1	1.00	1.00	1.00	119044		
accuracy			1.00			
macro avg	1.00	1.00				
weighted avg	1.00	1.00	1.00	148207		
my_data_2 Train Ratio: 0.	6 Test Rat	tio· 0 4				
Classification						
F	recision	recall	f1-score	support		
0	1.00	1.00	1.00	38962		
1	1.00	1.00	1.00	158647		
accuracy			1.00	197609		
macro avg	1.00	1.00				
weighted avg	1.00	1.00	1.00	197609		
my_data_3						
Train Ratio: 0.		tio: 0.5				
Classification		11	C4			
F	recision	recall	f1-score	support		
Ø	1.00	1.00		48796		
1	1.00	1.00	1.00	198215		
accuracy			1.00	247011		
macro avg	1.00	1.00	1.00	247011		
weighted avg	1.00	1.00	1.00	247011		

Function to visualize the best split of the Decision tree:

```
def train_decision_tree():
   train_ratios = [0.7, 0.6, 0.5]
   test_ratios = [0.3, 0.4, 0.5]
   max_depths = [4, 6, 8]
    for max depth in max depths:
       for j in range(3):
           train_ratio = train_ratios[j]
           test_ratio = test_ratios[j]
           # Split the data into training and testing subsets
           X_train, X_test, Y_train, Y_test = split_data(X_selected,Y,train_ratio, test_ratio)
           clf = DecisionTreeClassifier(max_depth=max_depth, criterion='entropy|',max_leaf_nodes=ceil((2**max_depth)*0.1+1))
           clf.fit(X_train, Y_train)
           plt.figure(figsize=(10, 6))
           plot_tree(clf, filled=True, feature_names=my_data.columns[:-1], class_names=['normal', 'attack'])
           plt.title(f"my_data_{n}, Max Depth: {max_depth}, Train Ratio: {train_ratio}, Test Ratio: {test_ratio}")
           plt.show()
           i += 1
train_decision_tree()
```

my data 1, Max Depth: 4, Train Ratio: 0.7, Test Ratio: 0.3

```
count <= 0.15
                           entropy = 0.716
                          samples = 345814
                       value = [68115, 277699]
                            class = attack
              dst bytes <= 0.0
                                        entropy = 0.019
              entropy = 0.447
                                       samples = 271250
              samples = 74564
                                     value = [500, 270750]
            value = [67615, 6949]
                                         class = attack
               class = normal
  entropy = 0.92
                           entropy = 0.205
 samples = 15034
                           samples = 59530
value = [9995, 5039]
                        value = [57620, 1910]
   class = normal
                            class = normal
```

my_data_1, Max Depth: 6, Train Ratio: 0.7, Test Ratio: 0.3

my_data_1, Max Depth: 8, Train Ratio: 0.7, Test Ratio: 0.3

my data 2, Max Depth: 4, Train Ratio: 0.6, Test Ratio: 0.4 count <= 0.15entropy = 0.715samples = 296412value = [58316, 238096] class = attackdst bytes <= 0.0entropy = 0.019entropy = 0.447samples = 232581samples = 63831value = [430, 232151]value = [57886, 5945] class = attackclass = normalentropy = 0.92entropy = 0.202samples = 12938samples = 50893value = [8597, 4341] value = [49289, 1604]class = normalclass = normal

my_data_2, Max Depth: 6, Train Ratio: 0.6, Test Ratio: 0.4

my data 2, Max Depth: 8, Train Ratio: 0.6, Test Ratio: 0.4

my_data_3, Max Depth: 6, Train Ratio: 0.5, Test Ratio: 0.5

my_data_3, Max Depth: 8, Train Ratio: 0.5, Test Ratio: 0.5

Function to compute performance of tuned DT:

```
def compare_tuned_decision_tree_performance(train_ratio, test_ratio):
   X_train, X_test, Y_train, Y_test = split_data(X_selected,Y, train_ratio, test_ratio)
   max_depths = [4, 6, 8]
data_labels = {0.3: "my_data_1", 0.4: "my_data_2", 0.5: "my_data_3"}
   data_label = data_labels[test_ratio]
   for max_depth in max_depths:
       clf = DecisionTreeClassifier(max_depth=max_depth, criterion='entropy',max_leaf_nodes=ceil((2**max_depth)*0.1+1))
       clf.fit(X_train, Y_train)
       Y_pred = clf.predict(X_test)
       report, accuracy, confusion = evaluate_classification(clf, X_test, Y_test)
       print(f"{data_label}, Max Depth: {max_depth}, Test Ratio: {test_ratio}")
       print("Accuracy:", accuracy)
       print("Classification Report:")
       print(report)
       print(f"Confusion Matrix with: Max Depth: {max_depth}, {test_ratio} test data")
       plot_confusion_matrix(confusion)
       print()
```

Display the accuracy scores, classification report, and confusion matrix of tuned classifier for each subset:

my_data_1, Max Depth: 6, Test Ratio: 0.3

Classification Report:

core support	f1-score	recall	precision	
0.98 29163	0.98	0.98	0.98	0
0.99 119044	0.99	0.99	0.99	1
0.99 148207	0.99			accuracy
0.99 148207	0.99	0.99	0.99	macro avg
0.99 148207	0.99	0.99	0.99	weighted avg

Confusion Matrix with: Max Depth: 6, 0.3 test data

my_data_1, Max Depth: 8, Test Ratio: 0.3

Classification Report:

	precision	recall	f1-score	support
0	0.99	0.99	0.99	29163
1	1.00	1.00	1.00	119044
accuracy			1.00	148207
macro avg	0.99	1.00	0.99	148207
weighted avg	1.00	1.00	1.00	148207

Confusion Matrix with: Max Depth: 8, 0.3 test data

my_data_2, Max Depth: 4, Test Ratio: 0.4

Classification Report:

classificación Report.					
support	f1-score	recall	precision		
38962	0.95	0.99	0.91	0	
158647	0.99	0.98	1.00	1	
197609	a 09				
19/609	0.98			accuracy	
197609	0.97	0.98	0.95	macro avg	
197609	0.98	0.98	0.98	weighted avg	

Confusion Matrix with: Max Depth: 4, 0.4 test data

my_data_2, Max Depth: 6, Test Ratio: 0.4
Accuracy: 0.9913364269846009
Classification Report:
 precision recall f1-score support

0 0.98 0.98 0.98 38962

1 0.99 0.99 0.99 158647 0.99 accuracy 197609 macro avg 0.99 0.99 0.99 197609 weighted avg 0.99 0.99 0.99 197609

Confusion Matrix with: Max Depth: 6, 0.4 test data

my_data_2, Max Depth: 8, Test Ratio: 0.4 Accuracy: 0.9971661209762713

Classification Report:

	precision	recall	f1-score	support
е	0.99	0.99	0.99	38962
1	1.00	1.00	1.00	158647
255117251			1.00	197609
accuracy				
macro avg	0.99	1.00	1.00	197609
weighted avg	1.00	1.00	1.00	197609

Confusion Matrix with: Max Depth: 8, 0.4 test data

my_data_3, Max Depth: 4, Test Ratio: 0.5 Accuracy: 0.9785596592864285 Classification Report: precision recall f1-score support 0.91 0.99 0.95 48796 0 1 1.00 0.98 0.99 198215 0.98 247011 accuracy 0.97 macro avg 0.95 0.98 247011

0.98

247011

0.98

Confusion Matrix with: Max Depth: 4, 0.5 test data

0.98

weighted avg

my_data_3, Max Depth: 6, Test Ratio: 0.5

Classification Report:

	precision	recall	f1-score	support
0	0.98	0.98	0.98	48796
1	0.99	0.99	0.99	198215
accuracy			0.99	247011
macro avg	0.99	0.99	0.99	247011
weighted avg	0.99	0.99	0.99	247011

Confusion Matrix with: Max Depth: 6, 0.5 test data

my_data_3, Max Depth: 8, Test Ratio: 0.5 Accuracy: 0.9975102323378311

Classification Report:

	precision	recall	f1-score	support
9	0.99	1.00	0.99	48796
1	1.00	1.00	1.00	198215
accuracy			1.00	247011
macro avg	0.99	1.00	1.00	247011
weighted avg	1.00	1.00	1.00	247011

Confusion Matrix with: Max Depth: 8, 0.5 test data

(d) Before mitigation, I didn't find overfitting problem although I tried several parameters for Decision Tree algorithm. But I had do the task as explained and perform the 3 mitigation strategies as asked.

