1.
$$1.1 \ \overline{z_1} = 3 - 4i$$

1.2
$$|z_1| = 5$$

1.3
$$z_1 + 3z_2 = -18 + 37i$$

1.4
$$z_1 - i \cdot z_2 = 14 + 11i$$

1.5
$$z_1z_2 = -65 + 5i$$

$$1.6 \ \frac{z_2}{z_1} = \frac{23}{25} + \frac{61}{25}i$$

2. -

(Hint: Use the fact that cosine and sine are even and odd functions, respectively; see SSS exercise 6 of week 2.)

3. 3.1 $\theta = k \cdot 2\pi$, $k \in \mathbb{Z}$ (that is, θ is any integer multiple of 2π)

3.2
$$\theta = \frac{5\pi}{4} + k \cdot 2\pi$$
, $k \in \mathbb{Z}$ (or $\theta = -\frac{3\pi}{4} + k \cdot 2\pi$, $k \in \mathbb{Z}$)

Note: The answer $\theta = \frac{\pi}{4} + k \cdot 2\pi$, $k \in \mathbb{Z}$ is **not** correct!*

If both $\cos\theta$ and $\sin\theta$ are negative, we know that we're looking at the third quadrant, so $\pi \leq \theta \leq \frac{3\pi}{2}$ (or, equivalently, $-\pi \leq \theta \leq -\frac{\pi}{2}$). As we explain in Exercise 1 in the second lecture video for week 3 ('Representation of complex numbers'): draw an Argand diagram to avoid mistakes!

UNIVERSITY OF TWENTE.

^{*}Remember that $\cos\theta=-\frac{\sqrt{2}}{2}$ and $\sin\theta=-\frac{\sqrt{2}}{2}$ imply that $\tan\theta=1$, but this does **not** imply that $\theta=\arctan(1)=\frac{\pi}{4}!!$

4. -

(Hint: Apply the same approach as in Example 4 on p. 1072 or AP-32 of Thomas' Calculus, but with n=2 instead of n=3.)

5. 5.1
$$z = -1 - 3i$$
 or $z = -1 + 3i$
5.2 $z_0 = \sqrt{2}e^{i\frac{\pi}{12}}$, $z_1 = \sqrt{2}e^{i\frac{7\pi}{12}}$, $z_2 = \sqrt{2}e^{i\frac{13\pi}{12}}$, $z_3 = \sqrt{2}e^{i\frac{19\pi}{12}}$