

# **OPEX & INDUSTRY 4.0**

# Part 1

Prof. Alberto PORTIOLI STAUDACHER
Dipartimento Ing. Gestionale
Politecnico di Milano
Dep. Management, Economics and Industrial Engineering
Direttore Lean Excellence Center
alberto.portioli@polimi.it

This material and what the Professors say in class are intended for didactical use only and cannot be used ouside such context, nor to imply professors' specific believes or opinion

### **Fourth Industrial Revolutions**



# Industry 4.0 ?

What does it mean?

What is it about?

Cloud

Autonomous robots

Big data and analytics

Industry

4.0

Additive manufacturing

Autonomous robots

Simulation

Augmented reality

Horizontal and vertical system integration

Industrial Internet of Things

Cybersecurity

The 9 technological drivers of Industry 4.0

Industry 4.0 consists in the industrial application of **9 main technological** drivers.

**None** of the 9 drivers is new for manufacturing world.

**Each** of these drivers carry significant benefits both in terms of productivity and of profitability.

Greater benefits can be achieved using them in an integrated way.

# Example of a possible use

|                                      | Engineering | Purchasin        | ng          | Logistics |       |          | Operations |            |             |                    |
|--------------------------------------|-------------|------------------|-------------|-----------|-------|----------|------------|------------|-------------|--------------------|
| Technology<br>Drivers/Value<br>Chain | Engineering | Supplier<br>mgmt | Procurement | Inbound   | Plant | Outbound | Planning   | Production | Maintenance | Quality<br>Control |
| Advanced Robotics                    |             |                  |             |           |       |          |            |            |             |                    |
| Additive<br>Manufacturing            |             |                  |             |           |       |          |            |            |             |                    |
| Augmented reality                    |             |                  |             |           |       |          |            |            |             |                    |
| Simulation                           |             |                  |             |           |       |          |            |            |             |                    |
| Vertical/Horizontal<br>Integration   |             |                  |             |           |       |          |            |            |             |                    |
| Industrial IoT                       |             |                  |             |           |       |          |            |            |             |                    |
| Cloud & cyber security               |             |                  |             |           |       |          |            |            |             |                    |
| Bid data and analytics               |             |                  |             |           |       |          |            |            |             |                    |

# Data flow: analogical



# **New Data flow**



# Rule changing: easier to modify



# Rule changing: inexpensive to duplicate



# Rule changing: inexpensive to move



### McKinsey – 2015

#### A number of disruptive technologies will enable digitization of the manufacturing sector

Digitization of the manufacturing sector – Industry 4.0









#### Big data/open data

Significantly reduced costs of computation, storage, and sensors

#### Internet of Things/M2M

Reduced cost of small-scale hardware and connectivity (e.g., through LPWA networks)

#### Cloud technology

Centralization of data and virtualization of storage

#### Digitization and automation of knowledge work

Breakthrough advances in artificial intelligence and machine learning

#### Advanced analytics

Improved algorithms and largely improved availability of data

#### Touch interfaces and nextlevel GUIs

Quick proliferation via consumer devices

#### Virtual and augmented reality

Breakthrough of optical head-mounted displays (e.g., Google Glass)

#### Additive manufacturing (i.e., 3D printing)

Expanding range of materials, rapidly declining prices for printers, increased precision/quality

physical

#### Advanced robotics (e.g., human-robot collaboration)

Advances in artificial intelligence, machine vision, M2M communication, and cheaper actuators

#### Energy storage and harvesting

Increasingly cost-effective options for storing energy and innovative ways of harvesting energy

Fil rouge of Industry 4.0 is represented by digital availability of information, as the main and fundamental enabling factor of the fourth industrial revolution

The four clusters can be seen as main directions that development should follow

SOURCE: McKinsey

# **Understanding Industry 4.0: Moore's Law**

Complexity for minimum component cost [computational power of printed circuits per dollar cost] has increased at a rate of roughly a factor of two per year..... There is no reason to beleave it will not remain constant for at least 10 years

(Gordon More, 1965)

Today it is common to take 18 months as doubling period for general computing power

### Our mind faces difficulties with non-linear relations

Viral videos

If everyone sends a message to 10 friends, always different... How many steps are required to reach the whole world population?

What if you send it to 100 friends?

# Our mind faces difficulties with non-linear relations The game of Chess and the Emperor



### 1996

Accelerated Strategic Computing Initiative (ASCI) Red First computer to exceed 1 teraflops \$55 million to be developed Big as a tennis court 800 Kw

### 2005

Cost of a 1 teraflop computer
Dimension
Energy consumption

# 2005

1 teraflops 0,1 mq 140 w

# **PLAYSTATION**

## Case study: AdEC advanced electronics company



Competence centers are identified by different colors

Long reponse time; unreliable due dates; no idea of the advancement staus of customer orders

Frequent delay in suppliers delivery of purchase orders

### **Assignment**

Which investiment in INDUSTRY 4.0 technologies would you do to improve AdEC performances. With particular focus on:

- Delivery speed
- Delivery reliability
- Supply Chain efficiency (coordination with the supplier)

Why?

