#### Bevezetés a Bioinformatikába

Kozlovszky Miklós
kozlovszky.miklos@nik.uni-obuda.hu

1. Előadás

#### A Bioinformatika meghatározása



#### Szűkebb értelemben:

Számítógépes módszerek kifejlesztése alkalmazása a biológiai információ kezelésére és elemzésére. (80-as évek)

#### Tágabb értelemben:

Minden olyan része a biológiának ami információelmélettel elemezhető, és/vagy számítógép alkalmazható a vizsgálatához.

#### Főbb témák

- Biokémiai/biológiai alapok
  - Fehérjék, gének, kutatási módszerek
- Matematika: Statisztika
- Informatika
  - Algoritmuselmélet, adatbázis használat
  - Szoftver eszközök: pl.:Bioperl, BioPython,
     R,...

# Tárgykövetelmények

- A félév során 1db zárthelyi dolgozat írása (a félév közepe táján)
- Egy darab önálló feladat beadása
- Pótzh, illetve elővizsga az utolsó órán
  - Vizsga, illetve elővizsga előfeltétele:(önálló feladat elkészítése, legalább elégséges zh.)
- Ezeket a járványhelyzet módosíthatja, az önálló feladat biztos

#### Féléves feladat

- Alkalmazás fejlesztés
- Irodalomkutatás (akik igazoltan nem tudnak programozni)

Féléves feladat hiánya esetén a tárgy nem teljesíthető... Féléves feladattípusok

- Bioinformatikai adatok vizualizáció és feldolgozása (SW)
  - Szerver oldal, kliens oldal
  - Vizualizáció 2D-ben
- Mindenhez:
  - dokumentáció(+forrás) + bemutató/előadás tartás

#### Irodalom

- Előadásanyag (ez képezi a számonkérés alapját)
- A slide-ok, illetve egyéb anyagok a WEB-en lesznek
- Könyvek:
  - Developing Bioinformatics Computer Skills, Cynthia Gibas, Per Jambeck, O'Reilly & Associates, Inc.,ISBN 3-89721-289-7 (Caenorhabditis Elegans-al a boritóján)
  - Bioinformatik, Ein Leitfaden fuer Naturwissenschaftler, Andrea Hansen, BirkHaesuer Verlag, ISBN 3-7643-6512-9
  - Bevezetés a Humángenetikába Mendeltől Hugoig, Dr. Tóth Sára, Dr. Hegyesi Hargita, Bp, 1999, Semmelweiss Orvostudományi Egyetem
  - Sejtbiológia, Dr. Darvas Zsuzsanna, Dr. László Valéria, Semmelweiss Orvostudományi egyetem, Bp. 1999
  - Sejtbiológia, Dr. Csaba György, Medicina, Bp. 1990, ISBN 9632419502
- Újságok:
  - Bioinformatics, Science, Nature

## Előadók

- OE
- Plusz több meghívott előadóra számíthatunk
  - SE: II. Bel, ...

#### Miért fontos?

- A technológia készen áll és sokan sokfélére használják…
- Dinamikusan változó terület, rengeteg kihívással és lehetőséggel
- Jó anyagi támogatás
  - Nemzetközi / EU-s projektek
  - Hazai projektek
- Kutatói oldal:
  - Segíthetjük az élő rendszerek működésének megismerését
- Emberi aspektusok
  - Gyógyíthatunk?
  - Módosíthatunk/javíthatunk?
  - Létrehozhatunk?
  - A COVID19 miatt erősen előtérbe került

### Nagyobb bioinformatikai központok

- EMBL (European Molecular Laboratory) (Európa- Anglia)
- Genbank (USA)
- DDBJ (Japán)
- EBI (European Bioinformatics Institute)
- EMBnet
- Sanger Institute
- NCBI (National Center of Biotechnology information)
- TrEMBL (DNS adatbázis transzláció)
- PUBMED
- Magyarországon:
  - ELTE, PTE, SOTE, SzBK
  - Enzimológiai Intézet
  - Magyar Biokémiai Társaság
  - Magyar Bioinformatikai Társaság

# Múlt és jelen

- HUGO Human Genom project
- Génchip-ek
  - https://www.youtube.com/watch?v=V8uNJCO7Qqo
- Next generation sequencing
  - https://www.youtube.com/watch?v=CZeN-IgjYCo
- Single cell 10x genomics
  - https://www.youtube.com/watch?v=yTl1Q0D7aZ0

# Jelenlegi kutatási projekt

- 3D adatvizualizáció a rákkutatásban
- Adatvizualizáció a bioinformatikában
  - Nanome (3D)
    - https://www.youtube.com/watch?v=beYyi0p0L5Y
- Alkalmazott eszközök (VIVE, Hololens, Oculus)
  - AR, VR, XR
    - https://www.youtube.com/watch?v=uIHPPtPBgHk
  - BioTech XR csoport saját vizualizációs megoldás

#### Bevezetés

- Mi az hogy élő?
- Élőlényeket felépítik:
  - Fehérjék -> "protosz"
  - Nukleinsavak
  - Lipidek
  - Poliszacharidok

# Fehérjék szerepe az élőlényekben

- Enzimek (katalitikus folyamatok)
- Transzportfehérjék (pl. sejthártyáknál)
- Védőfehérjék
- Toxinok
- Hormonok
- Kontraktilis fehérjék
- Struktúrafehérjék
- Tartalékfehérjék (pl. tojás, növények magvai)
- stb.

# Fehérjék

 Makromolekulák => egymáshoz kapcsolódó aminosavak

- Aminosavak:
  - COOH karboxil-csoport
  - NH<sub>2</sub> amino-csoport
  - Szénatom (alfa helyzetű)
  - R = valamilyen gyök
  - Általános képlet(képen):
  - (Prolin ettől kicsit eltér)



#### Aminosavak



- Szerkezetük az R csoportban különbözik
- 20 természetes aminosavból építkezünk (fehérjeépítők)
  - Egyeseket (esszenciális aminosavakat) a táplálékkal veszünk magunkhoz
  - A többit képesek vagyunk szintetizálni
- Az egyes R-el jelzett gyökök kiemelkednek mint oldalláncok, és ezek lesznek a biológiailag aktív hatócsoportok

## Aminosavak csoportosítása



#### Aminosavak kötődése

Az aminosavak egymással való összekapcsolódása: peptidkötéssel

Peptid = molekulasúly < 10.000 (10-100 aminosav)

Proteinek = peptideknél nagyobbak, 100 aminosav felett

Dipeptid = két összekapcsolódott aminosav, tripeptid...

Polipeptid = több összekapcsolódott aminosav 10-100

# Fehérjék

- Proteinek = Egyszerű fehérjék csak aminosavakból épülnek fel (pl.: albumin, miozin)
- Proteidek = Összetett fehérjék aminosavakon kívül, más nem fehérje alkotórészt is tartalmaznak (pl.: kromoproteidek – hemoglobin, glükoproteidek – mucin)

### Néhány fontos fogalom

- Fil=> "filia" = szeretet, bölcsesség
  - hidrofil
- Fób => "fóbia" = undor, taszítás, gyűlölet
  - hidrofób

# Fehérjék alakja

A makromolekula alakja szerint megkülönbözetünk:

- Globuláris (gömbszerű) fehérjék
  - Gomolyagforma (pl.: mioglobin)



- Fibrilláris (fonalszerű) fehérjék (pl.: vázfehérjék)
  - Nagy szilárdság, viszonylagos oldhatatlanság
  - Pl.:tollak, szőrszálak, inak,stb.

# A fehérjék térszerkezetének szintjei

- Elsődleges szerkezet
- Másodlagos szerkezet
- Harmadlagos szerkezet
- Negyedleges szerkezet

# Elsődleges szerkezet

- A peptid láncot alkotó aminosavak minősége és sorrendje határozza meg
- 100 aminosavból álló fehérje esetén 20<sup>100</sup> számú egymástól eltérő kombináció létezhetne!

# Másodlagos szerkezet

- Másodlagos szerkezet: a lánc gerincének rövid távú szerkezete
- Szakaszokat különböztethetünk meg:
  - Periódikus szakasz (pl. hélix, ill béta-redő):
    - Homokonformációk: a (fi, pszi) pár ismétlődik.
  - Aperiódikus szakasz (pl.:prolinban gazdag részek)
    - Heterokonformációk: a (fi, pszi) változik
  - Kanyarok (angolul: turn)
    - Béta kanyar
    - Gamma kanyar

Ramachandran plot





#### Hélixek

- 3<sub>10</sub> hélix, Alfa-hélix, Pi-hélix
  - Az oldalláncok kifelé állnak.
  - Jobbkezes hélixek.
  - A balkezes energetikailag kedvezőtlen az oldalláncok ütközései miatt, ezért nem fordul elő.
- Amfipatikus alfa-hélix
  - A hélixnek a fehérje belseje felé eső oldalán elsősorban apoláros, a víz felé eső oldalán poláros oldalláncok vannak
- Egyéb
  - Poliprolin hélix, stb.







#### Béta-redő

- Parallel vagy antiparallel módon futó szálak, közöttük H-kötések. (mint a csúcsos háztetők)
- Az oldalláncok váltakozva lefelé és fölfelé állnak
- A legtöbb béta-lemezben balkezes csavar van.

# Béta redő topológiák

Antiparallel béta lemez

Béta-alfa-béta

Vegyes béta lemez



# Harmadlagos szerkezet

- A teljes polipeptidlánc térbeli szerkezete, a másodlagos szerkezeti elemek térbeli elrendeződése
- A stabilitást jelentősen meghatározzák a feltekeredés miatt egymáshoz került oldalláncok között kialakuló kötések:
  - Diszulfidhidak
  - Ionkötések
  - Hidrogénkötések
  - Apoláris kötések



Az egymáshoz nagyjából hasonló térszerkezetű fehérjék általában egy szerkezeti családba tartoznak.





# Negyedleges szerkezet

A több polipeptid láncból álló fehérjék alegységszerkezete



#### Ismétlés

- Mi a tárgya a bioinformatikának?
- Mi az hogy aminósav?
- Mi az hogy peptidkötés?
- Mi az hogy fehérje?
- Hol találkozunk fehérjékkel az emberi szervezetben?
- Milyen szerkezeti szintjei vannak a fehérjéknek?

# Szorgalmi Feladat

- Nézzünk utána néhány fontosabb fehérjének, amikről a COVID19 járványban sokszor beszélnek (Milyen információkat lehet róluk összegyűjteni?):
  - Nucleocapsid Protein (N-Protein)
  - Spike Protein (S-Protein)
  - ACE2
- Mi a szerepük?
- Milyen tulajdonságaik vannak?