# LAPORAN PRAKTIKUM 3 ANALISIS ALGORITMA



Disusun oleh : Hafidh Akhdan Najib 140810180061

# PROGRAM STUDI S-1 INFORMATIKA FAKULTAS MATEMATIKA DAN ILMU PENGETAHUAN ALAM UNIVERSITAS PADJADJARAN

2020

#### Latihan Analisa

Minggu ini kegiatan praktikum difokuskan pada latihan menganalisa, sebagian besar tidak perlu

menggunakan komputer dan mengkoding program, gunakan pensil dan kertas untuk menjawab persoalan berikut!

1. Untuk  $T(n)=2+4+6+8+16+\cdots+n^2$ , tentukan nilai C, f(n),  $n_o$ , dan notasi Big-O sedemikian sehingga T(n)=O(f(n)) jika  $T(n)\leq C$  untuk semua  $n\geq n_0$ 

## Jawab:

1) 
$$T(n) = 2 + 4 + 6 + 16 + ... + 2^n$$
  
 $= 2 (2^{n-1}) = 2 (2^{n-1}) = 2^{n+1} - 2$   
 $T(n) = 2^{n+1} - 2 = 6(2^n)$   
 $T(n) \leq Cf(n)$   
 $2^{n+1} - 2 \leq C \cdot 2^n$   
 $2^{n+1} - 2 \leq C \cdot 2^n$ 

2. Buktikan bahwa untuk konstanta-konstanta positif p, q, dan r:  $T(n) = pn^2 + qn + r$  adalah  $O(n^2)$ ,  $\Omega(n^2)$ ,  $dan \Theta(n^2)$ 

```
2.) T (n). Pn +5n +1
              D(n2) → Big 0

+(n) ≤ C.f(n)

Pn2+4n+r ≤ C.n2

P+9+r ≤ C

P+9+r ≤ C
               -D (n2) -> Bis
                 T(n) 2 6. 9 (n)

Pratr 26

Prof + 9n+r 26

N Pratr 26
                Bis 0 (n2)
                    Known kedwarys berder get sams makes & (n2) berburbs benz

    Tentukan waktu kompleksitas asimptotik (Big-O, Big-Ω, dan Big-Θ) dari kode program berikut:

    <u>for</u> k ← 1 <u>to</u> n <u>do</u>
        for i ← 1 to n do
             for j \leftarrow to n do
                w_{ij} \leftarrow w_{ij} \text{ or } w_{ik} \text{ and } w_{kj}
             endfor
        endfor
    endfor
Jawab:
.3.) for K + 1 to n do
                for i to 1 to n do
                       for 3 to n do
                             erij z hij or max end mej -> n.g.n
for t(n)=h
                       end for
         endfor
     o) Big 0 m) Big 12 m) Big 18

No 1 4 c c 41 berdergor some more 10 (m)

1 4 c c 41 berdergor some more 10 (m)
```

4. Tulislah algoritma untuk menjumlahkan dua buah matriks yang masing-masing berukuran n x n. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big-Ω, dan Big-O?

## Jawab:

5. Tulislah algoritma untuk menyalin (copy) isi sebuah larik ke larik lain. Ukuran elemen larik adalah n elemen. Berapa kompleksitas waktunya T(n)? dan berapa kompleksitas waktu asimptotiknya yang dinyatakan dalam Big-O, Big-Ω, dan Big-Θ?

6. Diberikan algoritma Bubble Sort sebagai berikut:

```
procedure BubbleSort(input/output a_1, a_2, ..., a_n: integer)
(Mengurut tabel integer TabInt[1..n] dengan metode pengurutan bubble-
 sort
   Masukan: a1, a2, ..., an
   Keluaran: a1, a2, ..., an (terurut menaik)
 Deklarasi
     k : integer ( indeks untuk traversal tabel )
pass : integer ( tahapan pengurutan )
     temp : integer ( peubah bantu untuk pertukaran elemen tabel )
Algoritma
     for pass ← 1 to n - 1 do
        for k ← n downto pass + 1 do
           if a_k < a_{k-1} then
                ( pertukarkan a<sub>k</sub> dengan a<sub>k-1</sub> )
                temp \leftarrow a_x
                a_k \leftarrow a_{k-1}
                a<sub>k-1</sub>←temp
           endif
        endfor
     endfor
```

- (a) Hitung berapa jumlah operasi perbandingan elemen-elemen tabel!
- (b) Berapa kali maksimum pertukaran elemen-elemen tabel dilakukan?
- (c) Hitung kompleksitas waktu asimptotik (Big-O, Big-Ω, dan Big-Θ) dari algoritma Bubble Sort tersebut!

- 7. Untuk menyelesaikan problem X dengan ukuran N tersedia 3 macam algoritma:
  - (a) Algoritma A mempunyai kompleksitas waktu O(log N)
  - (b) Algoritma B mempunyai kompleksitas waktu O(N log N)
  - (c) Algoritma C mempunyai kompleksitas waktu O(N²) Untuk problem X dengan ukuran N=8, algoritma manakah yang paling cepat? Secara asimptotik, algoritma manakah yang paling cepat?

There algorithms

A. A -> O (lay &) = O(2 lay 2)

B. B -> O (2 lay 3) = O(2 lay 2)

C. C -> O(82) = O (64)

This Algorithms of polary occupies bearing bearing bearing bearing bearing bearing bearing digurasians.

8. Algoritma mengevaluasi polinom yang lebih baik dapat dibuat dengan metode Horner berikut:

$$p(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + ... + x(a_{n-1} + a_n x)))...))$$

function p2(input x : real) → real

( Mengembalikan nilai p(x) dengan metode Horner)

Deklarasi

k : integer

b<sub>1</sub>, b<sub>2</sub>, ..., b<sub>n</sub> : real

Algoritma

b<sub>n</sub> ← a<sub>n</sub>

for k ← n - 1 downto 0 do

b<sub>k</sub> ← a<sub>k</sub> + b<sub>k · 1</sub> \* x

endfor

return b<sub>0</sub>

Hitunglah berapa operasi perkalian dan penjumlahan yang dilakukan oleh algoritma diatas, Jumlahkan kedua hitungan tersebut, lalu tentukan kompleksitas waktu asimptotik (Big-O)nya. Manakah yang terbaik, algoritma p atau p2?

S) Operess Assignment

- In E an = 1 very

- In E an + In. 1 + x = h very

T (n) = h x1

O (n) untrue ph

Algorithm P

Perguntahan: h vay

Peruelian: n vay

T (n) = 2n

Algoram Palabin ban dar pop p