

Early experiment with lattice-based τ -state simulation: visualization of initial τ configurations with random fusion compliance.

Post-fusion evolution result showing emergent τ order—significant increase in fusion rule compliance, suggesting local energy minimization.

Smooth kink profile in θ_4 (top) and resulting refractive index modulation via $\sin^2(\theta_4(x))$ (bottom); demonstrates how scalar angular variation affects optical properties.

Theta_4 Kink and Induced Refractive Index Total Phase Shift $\Delta \phi \approx 0.1629$ radians

Screenshot from code cell predicting optical transmission through a θ_4 -domain wall: phase shift accumulation across the stack produces spectral filtering.

Clean, final output of predicted optical transmission as a function of wavelength, showing interference-like modulation through SAT-structured birefringent media.

 θ_4 -retardance modulation: nonlinear angular dependence of optical phase delay as a function of θ_4 ; τ -sector markers (τ_1 , τ_2) shown for interpretive context.

Full wordcount from SAT Theorizer Emeritus thread: over 155,000 words, marking the most extensive and exploratory phase of SAT development.

Wordcount snapshot from Active Edge vNext (current instance): 89,315 words and 10,574 paragraphs reflecting a highly distilled, framework-driven formulation.

Documents and interaction logs from the SAT Proto-BrainTrust: 106,065 words across technical assessments and version comparisons.

Sample (rounded for brevity): diff % Edit $x [\mu m] \mid \theta_4(x) [rad] \mid \Delta n(x)$ | Δφ(x) [rad] -10 0.004 2.3e-10 0.000 0.011 1.6e-09 0.000 -9 0.030 1.3e-08 -8 0.000 -7 0.081 7.8e-08 0.000 -6 0.215 6.3e-07 0.001 -5 0.512 3.6e-06 0.005 -4 0.951 1.2e-05 0.013 1.459 2.8e-05 0.027 -2 1.939 4.8e-05 0.049 -1 2.320 6.1e-05 0.077 6.8e-05 0 2.618 0.105 1 2.903 6.7e-05 0.132 2 3.165 6.1e-05 0.157 | 5.1e-05 3.387 0.179 4 3.551 4.0e-05 0.197 3.648 2.9e-05 5 0.212 6 3.685 2.0e-05 0.224 7 3.695 1.3e-05 0.232 8 3.698 7.5e-06 0.239 9 3.698 3.7e-06 0.243 10 3.698 1.5e-06 0.246 Total simulated $\Delta \phi \approx 0.246$ radians for full pass across the θ_4 kink. Note: this slightly exceeds prior estimate (0.125 rad) due to broader η spread in central region.

Energy density plot for θ_4 kink configuration ($\mu = 5 \ \mu m^{-1}$): sharply localized kinetic core with broad potential energy well.

Formatted version of above: high-resolution $T^{00}(x)$ kink visualization as final lab output. Confirms energy localization around kink center.

Summary table: Defect rate (τ violation) vs. x-region. Strong inverse correlation with θ_4 gradient $\lambda(x)$; validates spatially structured enforcement of topological rules.

Sampled simulation output: $\theta_4(x)$, $\Delta n(x)$, and accumulated phase shift $\Delta \phi(x)$ across space. Total $\Delta \phi \approx 0.246$ rad confirms enhanced phase modulation.