L5: HPC for AI applications & Environmental impact of computation

P. de Oliveira Castro, M. Jam September 9, 2025

Master Calcul Haute Performance et Simulation - GLHPC | UVSQ

- 1. HPC for AI & Environmental impact of computation
- 2. Introduction to AI applications
- 3. Environmental impact of computation
- 4. Energy consumption of HPC
- 5. Al energy and computation costs
- 6. More frugal computing?

HPC for AI & Environmental

impact of computation

Introduction to AI applications

Environmental impact of

computation

Introduction

- Major ecological crisis: French roadmap targets carbon neutrality in 2050 (Stratégie Nationale Bas Carbone).
- Requires a 40% energy consumption reduction.
- HPC part of the solution: modeling and improving complex systems
- HPC part of the problem: Frontier system at ORNL
 - More than 10^{18} floating point operations per second
 - Consumes 21MW: the energy of a small town ($16\,000$ french houses)

Environmental impact of computation

- The ICT sector consumes pprox 5% of the energy wordwide
- It accounts for 1.8% 2.8% of emitted GHG [Freitag, 2021]:
 - · Accounts for embodied emissions.
 - Shadow energy during the whole life-cycle: mining, fabrication, transportation, recycling.
- GHG emmissions are only one of the sustainability issues
 - rare-earth mining and waste disposal (eg. Agbogbloshie).
 - human-right abuses, health issues, pollution.
- This presentation focus on energy consumption of HPC

What about renewable energies?

- Low-carbon electricity is a limited ressource
- Decarbonation ightarrow huge increase in electricity demand
 - Heating, Transportation, Industry
 - Computing will compete for low-carbon electricity.

Energy consumption of HPC

Evolution of processing units [Batten, 2023]

Dennard's scaling 1970-2005

$$\text{CMOS Power} \quad P = \underbrace{1/2.C.V^2.f}_{P_{\text{dynamic}}} + \underbrace{V.I_{\text{leak}}}_{P_{\text{static}}}$$

For each generation, transistors dimensions reduced by 30%,

- Voltage and capacitance reduced by 30%
- Frequency increases: $\times 1.4 \approx 1/0.7$
- Surface halved: $0.5 \approx 0.7 \times 0.7$
- Power halved: $\Delta P = 0.7 imes 0.7^2 imes 1/0.7 pprox 0.5$

Power per surface unit remains constant but manufacturers double number of transistors and frequency increases:

- Power efficiency doubles every 1.57 years
- Total power increases

Multicore 2005-2020

- At current scale, leak currents start increasing ($P_{\rm static}$ /). Power wall slows Dennard's scaling.
- Computing demand ightarrow parallelism and specialization.
- Number of cores increases exponentially since 2005.
- Power efficiency still improving:
 - · selectively turning-off inactive transistors;
 - · architecture design optimizations;
 - software optimizations.

Al Accelerators 2020-2024

- For domain specific applications, such as Al, specialized accelerators are used
 - Memory and compute units tuned for a specific problem (matrix multiplication);
 - Faster and better power efficiency: GPU, TPU, FPGA, ASIC.

Analysis of TOP-100 HPC systems

Figure 3: image

10/22

Rebound effects

- In 1865, Jevons shows that steam engine improvements translate into increased coal consumption.
- In HPC, efficiency gains contribute to the rising computation demand.
 - 1. net increase of the total power consumption.
- Rebound effects for data-centers [Masanet, 2020]
 - 6% increase in energy consumption from 2010 to 2018 (255 % increase in nodes).
- Indirect rebound effects: computation advances can contribute to the acceleration of other fields.

Al energy and computation costs

Artificial Intelligence

- 2012: Al renaissance brought by increased data availability and computation ressources
 - breakthroughs in multiple domains
 - many innovations: algorithms, specialized processors, optimizations
- Most systems use neural networks:
 - Training (stochastic gradient descent + backpropagation)
 - Inference (forward pass)
- For both, the bottleneck is matrix multiplication

Training cost doubles every 3.4 months [OpenAI, 2020]

Figure 4: image

Should we study training or inference?

- Training: huge cost but done once
 - GPT3, 175 billion parameters, pprox 314 ZettaFLOP
 - GPT4, 1.7 trillion parameters
- Inference: millions of users and requests
 - 80-90% cost of a deployed AI system is spend on inference [NVIDIA, 2019]

Inference cost - Diminishing returns for computer vision

More frugal computing?

Smaller precision / Smaller models for AI

Figure 5: image

Tradeoff: Model complexity - Cost - Explainability

- Inference cost grows with model complexity
- Simpler models are often more interpretable
 - Traditional science also prefers simpler models
- DNN not necessary for all tasks

DVFS study of LU decomposition

When accounting for the whole system

Need for an interdisciplinary discussion

- Al / HPC can contribute towards sustainability (eg. acceleration of weather forecast models) ... but its energy cost must be reduced
- · Efficiency:
 - Improve hardware and software
 - Use smaller models / smaller precision

... subject to rebound effects

- Frugality in computing:
 - Balance computation cost vs. outcomes for each task
 - · Choose the right sized model
 - Assess the environmental impact

Exemple: e-health solution in Tanzania [d'Acremont, 2021]

Treatment of febrile children illnesess in dispensaries.

- IMCI: Paper-based decision tree WHO
- e-POCT CART tree tailored to real data on a standalone tablet
 - Final CART tree easy to interpret and manually checked
 - Randomized-trial → better clinical outcomes and antibiotic prescription reduction
- Sophisticated AI that continuously collects patient data and adapts the algorithm?
 - Increase in hardware and computation costs.
 - Loss in explainability and verification of the algorithm.

References - Environmental impact of computation

- Jones, Nicola (2018) 'How to stop data centres from gobbling up the world's electricity'. Nature, 561(7722), pp. 163–167.
- Freitag, Charlotte, Berners-Lee, Mike, Widdicks, Kelly, Knowles, Bran, et al. (2021) 'The real climate and transformative impact of ICT: A critique of estimates, trends, and regulations'. Patterns, 2(9), p. 100340.
- Masanet, Eric, Shehabi, Arman, Lei, Nuoa, Smith, Sarah and Koomey, Jonathan (2020) 'Recalibrating global data center energy-use estimates'. Science, 367(6481), pp. 984–986.

https://www.sciencedirect.com/science/article/pii/S2666389921001884

- Schwartz, Roy, Dodge, Jesse, Smith, Noah A. and Etzioni, Oren (2019) 'Green Al'. arXiv:1907.10597
- Amodei, Dario, Hernandez, Danny, Sastry, Girish, Clark, Jack, et al. (2018) 'Al and compute. OpenAl'. https://openai.com/blog/ai-and-compute/
- D'Acremont presentation: https://youtu.be/oKcy_cY0QOw