Trabalho II

Bruno lochins Grisci

Universidade Federal do Rio Grande do Sul bigrisci@inf.ufrgs.br

19 de junho de 2017

Questão 1

Sumário

Questão 1

Questão 2

Implementação

- Python;
- Numpy;
- Orientado a Objetos;
- Leitura do PDB: reaproveitada do Trabalho I

Formação de ligação peptídica

- Leitura dos arquivos .pdb dos aminoácidos;
- Tratar nomenclatura dos átomos;
- Atomos N dos aminoácidos são transladados para a origem;
- Para cada aminoácido:
 - Remove átomo H;
 - Move N para posição do átomo OC do aminoácido anterior*;
 - Salva posição do átomo OC atual;
 - Remove átomos OC e HOC atuais.
- Primeiro e último aminoácidos são casos especiais;
- Correção de índices.

^{*}Posição ajustada para que o comprimento da ligação peptídica seja de 1.32Å.

Estrutura resultante

Sequência: VSCEDCPEHCSTQKAQAKCDNDKCVCEPI

Cálculo dos ângulos

Átomos:

- ϕ (phi): $C_{n-1} N_n C_{\alpha n} C_n$
- ψ (psi): $N_n C_{\alpha n} C_n N_{n+1}$

Cálculo de ângulo diedro

$$\bullet$$
 P_1, P_2, P_3, P_4

•
$$\vec{b_1} = P_2 - P_1$$
, $\vec{b_2} = P_3 - P_2$, $\vec{b_3} = P_4 - P_3$

•
$$\vec{n_1} = \frac{\vec{b_1} \times \vec{b_2}}{\|\vec{b_1} \times \vec{b_2}\|}$$

•
$$\vec{n_2} = \frac{\vec{b_2} \times \vec{b_3}}{\|\vec{b_2} \times \vec{b_3}\|}$$

$$ullet$$
 $ec{m_1}=ec{n_1} imesrac{ec{b_2}}{\|ec{b_2}\|}$

$$\bullet \ \ x = \vec{n_1} \cdot \vec{n_2}$$

•
$$y = \vec{m_1} \cdot \vec{n_2}$$

•
$$\alpha = -\operatorname{atan2}(y, x)$$

Ângulos PHI - PSI (1ENY)

AMINO ACIDO	PHI	PSI
ALA	360.00	-112.08
GLY	121.15	89.96
LEU	-52.87	-30.57
LEU	-116.76	28.04
ASP	-50.50	122.54
GLY	62.56	31.90

Ramachandran Map

Fim