1 Last class

 (X_n) sub-MG wrt (\mathcal{F}_n) , i.e. $\mathbb{E}[X_n \mid \mathcal{F}_{n-1}] \geq X_{n-1}$. (H_n) predictable process, bounded. Interpret $H_n = \#$ shares held on day n. Define $Y = H \cdot X$ by $Y_0 = 0$, $\Delta_n^Y = H_n \Delta_n^X$ Then (Y_n) is a sub-MG provided $H_n \geq 0$

Remark 1.1. If $\mathbb{E}[Z1_A] \geq 0$ for all $A \in \mathcal{G}$, then $\mathbb{E}[Z \mid \mathcal{G}] \geq 0$ a.s.

2 Today

Corollary 2.1. (X_n) a sub-MG. $0 \le T_1 \le T_2 \le t_0$ stopping times. Then $\mathbb{E}[X_{T_2} \mid \mathcal{F}_{T_1}] \ge X_{T_1}$ *Proof.* Fix event $A \in \mathcal{F}_{T_1}$. Strategy:

If A happens, buy 1 share at T_1 , sell at T_2 .

If A doesn't happen, do nothing.

In math: $H_n = 1_A 1_{T_1 < n \le T_2}$. Want to check H is predictable, that is

$$A \cap \{T_1 < n \le T_2\} \in \mathcal{F}_{n-1} \tag{2.1}$$

$$= A \cap \underbrace{\{T_1 \le n-1\}}_{\substack{\in \mathcal{F}_{n-1} \\ \text{def of } A \in \mathcal{F}_{T_1}}} \setminus A \cap \underbrace{\{T_2 \le n-1\}}_{\substack{\in \mathcal{F}_{n-1}}} \text{ because } T_2 \ge T_1$$
 (2.2)

So *H* is predictable.

So (\hat{Y}_n) is a sub-MG, $Y_n = (X_{T_2 \wedge n} - X_{T_1 \wedge n})1_A$

$$\implies \mathbb{E}Y_{t_0} \ge \mathbb{E}Y_0 = 0 \tag{2.3}$$

$$\implies \mathbb{E}[(X_{T_2} - X_{T_1})1_A] \ge 0 \qquad \forall A \in \mathcal{F}_{T_1}$$
 (2.4)

$$\implies \mathbb{E}[X_{T_2} - X_{T_1} \mid \mathcal{F}_{T_1}] \ge 0 \text{ a.s.}$$
 ?? (2.5)

3 Optional Sampling Theorem (OST)

Theorem 3.1 (Basic version). If (X_n) is a (sub-)MG, $0 = T_0 \le T_1 \le T_2 \le \cdots$ are stopping times, $T_i \le t_i$ (constant) for every i, then $(X_{T_i}, i = 0, 1, 2, \ldots)$ is a (sub-)MG wrt $(\mathcal{F}_{T_i}, i = 0, 1, 2, \ldots)$.

In particular, $\mathbb{E}X_T \ge \mathbb{E}X_0$ for sub-MG, $= \mathbb{E}X_0$ for MG. Many other versions without restriction $T \le t_0$ exist.

4 Maximal inequalities

$$X_N^* = \max(X_0, X_1, \dots, X_N)$$

always
$$P(X_N^* \ge x) \le \sum_{n=0}^N P(X_n \ge x)$$

MG get better than above

if independent
$$P(X_N^* \ge x) = 1 - \prod_{n=0}^N P(X_n \le x)$$

Lemma 4.1. (X_n) a super-MG, $X_n \ge 0$ a.s. Write $X^* = \sup_n X_n$, so $X_N^* \uparrow X^*$ as $N \to \infty$. Then $P(X^* \ge \lambda) \le \frac{\mathbb{E} X_0}{\lambda}$, all $\lambda > 0$

Proof. Define $T = \min\{n : X_n \ge \lambda\}$. Apply OST to 0 and $T \land N$.

$$\implies \mathbb{E}X_0 \ge \mathbb{E}X_{T \wedge N} = \mathbb{E}X_T 1_{T \le N} + \mathbb{E}X_n 1_{T > N}$$
 (4.1)

$$\geq \lambda P(T \leq N) + 0 \tag{4.2}$$

$$\implies P(T < N) < \lambda^{-1} \mathbb{E} X_0 \tag{4.3}$$

$$\implies P(X_N^* \ge \lambda) \le \lambda^{-1} \mathbb{E} X_0$$
 (4.4)

$$N \to \infty \implies P(X^* > \lambda) \le \lambda^{-1} \mathbb{E} X_0$$
 (4.5)

Apply to
$$\lambda_j \uparrow \lambda$$
 (check) $\Longrightarrow P(X^* \ge \lambda) \le \lambda^{-1} \mathbb{E} X_0$ (4.6)

Lemma 4.2 (Doob's L_1 maximal inequality). (X_n) sub-MG. For $\lambda > 0$

$$\lambda P(X_N^* \lambda) \le \mathbb{E}[X_n 1_{X_N^* > \lambda}] \le \mathbb{E}X_N^+ = \mathbb{E}\max(X, 0) \tag{4.7}$$

Proof. $T = \min\{n : X_n \ge \lambda\}.$

Apply OST to $T \wedge N$ and $N \implies \mathbb{E} X_{T \wedge N} \leq \mathbb{E} X_N$.

$$\Longrightarrow \mathbb{E} X_T 1_{T \leq N} + \mathbb{E} X_n 1_{T > N} \leq \mathbb{E} X_N 1_{TN} + \mathbb{E} X_N 1_{T > N}$$

$$X_T \geq \lambda \implies \lambda P(T \leq N) \leq \mathbb{E} X_N 1_{T \leq N} = \mathbb{E} X_n 1_{X_N^* \geq \lambda}$$

Corollary 4.3. If (X_n) is a MG then (because $Y_n = |X_n|$ is a sub-MG)

$$\lambda P(\max_{0 \le n \le N} |X_n| \ge) \le \mathbb{E}|X_n|/\lambda \tag{4.8}$$

Also, $Z_n = X_n^2$ is a sub-MG (provided $\mathbb{E}X_n^2 < \infty$). Apply Lemma to (Z_n)

$$\lambda P(\max_{0 \le n \le N} X_n^2 \ge \lambda) \le \mathbb{E} X_N^2 \tag{4.9}$$

$$\lambda^2 P(\max_{0 \le n \le N} X_n^2 \ge \lambda^2) \le \mathbb{E} X_N^2 \tag{4.10}$$

$$P(\max_{0 \le n \le N} |X_n| \ge \lambda) \le \lambda^{-2} \mathbb{E} X_N^2 \tag{4.11}$$

Different bounds for same quantity (c.f. Markov/Chebyshev)

Lemma 4.4 (Doob's L_2 maximal inequality). (X_n) *sub-MG*.

$$\mathbb{E}(0 \vee X_N^*)^2 \le 4\mathbb{E}(X_N^+)^2 \tag{4.12}$$

Proof.

$$\underbrace{\mathbb{E}(0 \vee Z)^2}_{q} = 2 \int_0^\infty \lambda P(Z \ge \lambda) d\lambda \tag{4.13}$$

$$\implies \mathbb{E}(0 \vee X_N^*)^2 = 2 \int_0^\infty \lambda P(X_N^* \ge \lambda) d\lambda \tag{4.14}$$

$$\leq 2 \int_0^\infty \mathbb{E}[X_N 1_{X_N^* \ge \lambda}] d\lambda \tag{4.15}$$

$$\leq 2 \int_0^\infty \mathbb{E}[X_N^+ 1_{X_N^* \ge \lambda}] d\lambda \tag{4.16}$$

$$=2\mathbb{E}\left[X_{N}^{+}\int_{0}^{\infty}1_{X_{N}^{*}\geq\lambda}d\lambda\right]\tag{4.17}$$

$$= 2\mathbb{E}[X_N^+(0 \vee X_N^*)] \tag{4.18}$$

Cauchy-Schwarz
$$\leq 2\sqrt{\underbrace{\mathbb{E}[(X_N^+)^2]}_b \times \underbrace{\mathbb{E}[(0 \vee X_N^*)^2]}_a}$$
 (4.19)

$$a < 2\sqrt{ba} \implies a < 4b$$
.

If we use Hölder instead of Cauchy-Schwarz

$$\mathbb{E}[(0 \vee X_N^*)^p] \le \left(\frac{p}{p-1}\right)^p \mathbb{E}[(X_N^+)p] \quad 1$$

Example 4.5 (*not* true for p = 1). $X_0 = 1$, simple symmetric random walk on \mathbb{Z} , stop at $T=\min\{n\geq 1: X_n=0\}.$

 (X_n) is a MG. $\mathbb{E}X_n = 1 \ \forall n$.

 $X_N^* \uparrow X^* = \sup_n X_n$. Elementary $P(X^* \ge m) = m^{-1}$. $\Longrightarrow \mathbb{E}X^+ = \infty \implies \mathbb{E}X_N^* \uparrow \infty$.

 \therefore $\mathbb{E}X_n = 1 \ \forall N$, so cannot bound the ratio for p = 1.