4. Time-varying Fields

4.1 Diffusion equation

A typical example of time-varying fields is the alternating fields in transformers. According to Faraday's Law:

$$\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t} \rightarrow \mathbf{Faraday's \ Law}$$
 (4.1)

i.e. a time-changing flux density B produces a space changing electric field E.

Maxwell hypothesised the converse, viz that a time-changing electric field produces a space changing magnetic field, i.e.

$$\nabla \times \vec{H} = \frac{\partial \vec{D}}{\partial t}$$

Vector form of Ampere's Law is

$$\nabla \times \vec{H} = \vec{J}$$

but

$$\nabla \cdot (\nabla \times \vec{H}) = 0$$

which implies that $\nabla \cdot \vec{J} = 0$

However, the current (or charge/sec) diverging from a unit volume equals the time rate of the charge per unit volume.

i.e.
$$\nabla \cdot \vec{J} = \frac{\partial \rho}{\partial t}$$

This can only be satisfied by adding an extra term to RHS of Ampere's Law.

$$i.e. \quad \nabla \times \vec{H} = \vec{J} + \frac{\partial \vec{D}}{\partial t}$$

$$\left(\nabla \cdot (\nabla \times \vec{H}) = \nabla \cdot \vec{J} + \nabla \cdot \left(\frac{\partial \vec{D}}{\partial t}\right) = \nabla \cdot \vec{J} + \frac{\partial \rho}{\partial t}\right)$$

$$\therefore \nabla \times \vec{H} = \sigma \vec{E} + \varepsilon_0 \varepsilon_r \frac{\partial \vec{E}}{\partial t}$$

$$\downarrow \qquad \qquad \downarrow$$
 Conduction Displacement Current current

NOTE: for sinusoidally time-varying fields at angular frequency ω (i.e. $E = E \sin \omega t$), the ratio

$$\frac{displacement\ current}{conduction\ current} = \frac{\varepsilon_0 \varepsilon_r \omega E}{\sigma E} = \varepsilon_0 \varepsilon_r \omega \rho$$

$$Conductivity Resistivity$$

Consider 50Hz currents flowing in a copper conductor, for which:

$$\varepsilon_r = 1$$
, $\rho = 1.7x10^{-8} \Omega m$, $\omega = 314rad / sec$

Ratio

$$\frac{displacement\ current}{conduction\ current} = 47.3 \times 10^{-8}$$

i.e. Displacement current is negligible at power frequencies

Since

$$\nabla \cdot \vec{H} = \frac{1}{\mu} \nabla \cdot \vec{B} = 0$$

Thus

$$\therefore \nabla^2 \vec{H} = \mu \sigma \frac{\partial \vec{H}}{\partial t}$$

Which is known as the diffusion equation

NOTE: For harmonically time-varying fields

i.e.

$$\vec{H} = \vec{H}e^{-j\omega t}$$
$$\frac{\partial}{\partial t} = j\omega$$

 $\therefore \nabla^2 \vec{H} = j\omega\mu\sigma\vec{H} \rightarrow \text{Complex Diffusion Equation}$

4.2 Solution of Complex Diffusion Equation

$$\nabla^2 \mathbf{H} = j\omega\mu\sigma\mathbf{H}$$

Example 1: One-dimensional eddy current flow in thick plate.

e.g. Simplified model of an induction heater.

Because depth of penetration of eddy currents (skin depth) is often small compared with other dimensions, many problems can be approximated as 1-dimensional

Since the only field component H_z is independent of x and z, and since

$$\nabla \times \vec{H} = \left(\frac{\partial H_z}{\partial y} - \frac{\partial H_y}{\partial z}\right) e_x + \left(\frac{\partial H_x}{\partial z} - \frac{\partial H_z}{\partial x}\right) e_y + \left(\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y}\right) e_z$$

$$\therefore \nabla \times \vec{H} = a_x \frac{\partial H_z}{\partial y} = J_x$$

ie. only J_x exists

$$\nabla^2 H = \sigma \mu \frac{\partial H}{\partial t}$$

$$\frac{\partial^2 H_z}{\partial v^2} = \sigma \mu \frac{\partial H_z}{\partial t}$$

But
$$H_z = H_z e^{j\omega t}$$

(ie. applied field is sinusoidally time-varying)

$$\therefore \frac{\partial^2 H_z}{\partial y^2} = j\omega \sigma \mu H = \alpha^2 H_z$$

where
$$\alpha^2 = j\omega\sigma\mu$$
, ie. $\alpha = \sqrt{j}\sqrt{\omega\sigma\mu}$

Note:
$$\sqrt{j} = \frac{1+j}{\sqrt{2}}$$

$$\therefore \alpha = \frac{(1+j)}{\sqrt{2}} \frac{\sqrt{\omega \sigma \mu}}{\sqrt{2}} = \frac{1+j}{\delta}$$

where
$$\delta = \sqrt{\frac{2}{\omega \sigma \mu}}$$

Note: δ is referred to as the skin depth.

$$\frac{\partial^2 H_z}{\partial y^2} = \alpha^2 H_z$$

General Solution: $H_z = K_1 e^{\alpha y} + K_2 e^{-\alpha y}$

Boundary Conditions:

(i) At
$$y = 0$$
, $H_z = H_s$

(ii) At
$$y = -\infty$$
, $H_z = 0$

$$K_1 = 0$$

$$K_1 = H_s$$

μ, σ

1-d model

$$\therefore H_z = H_s e^{\alpha y} e^{j\omega t}$$

From J = Curl H

$$J_{x} = \frac{\partial H_{z}}{\partial y} = \alpha H_{s} e^{\alpha y} e^{j\omega t} = J_{s} e^{\alpha y} e^{j\omega t}$$

 \therefore H_z and J_x decay exponentially with depth into the conducting material.

Total current
$$I = \int_{-\infty}^{0} J_x dy = \frac{J_s}{\alpha} e^{j\omega t} = \frac{J_s}{\sqrt{2}} \delta e^{-j\pi/4} e^{j\omega t}$$

Note: At 50Hz, skin depth $\delta = \sqrt{\frac{2}{\omega \sigma \mu}}$

= 10mm for copper = 2mm for mild steel (μ_r = 2000)

Total current
$$I = \frac{J_s}{\alpha} e^{j\omega t} = \frac{J_s}{\sqrt{2}} \delta e^{-j\pi/4} e^{j\omega t}$$

This is equivalent to an rms current density $\frac{J_s}{\sqrt{2}}$ flowing uniformly in skin depth δ

$$\therefore$$
 Eddy current loss = $I_{\text{rms}}^2 R = \frac{1}{2} I_{\text{max}}^2 R$

But
$$R = \frac{\rho \ell}{A} = \frac{\ell}{\sigma A} = \frac{1}{\sigma \delta}$$
 per unit of surface area

and
$$I_{\text{max}} = \frac{J_s}{\alpha}$$

∴ Eddy current loss
$$P_e = \frac{1}{2} \frac{J_s^2}{\alpha^2 \sigma \delta} = \frac{H_s^2}{2\sigma \delta} w/m^2$$
 of surface area

Example 2: One-dimensional eddy current flow in thin plate

e.g. Simplified model of a transformer lamination

1-d model

Lamination thickness = 2b

From the previous discussion, we have

$$\frac{\partial^2 H_z}{\partial v^2} = \alpha^2 H$$

$$\therefore H_z = K_1 e^{\alpha y} + K_2 e^{-\alpha y}$$

Boundary Conditions:

(i) At
$$y = b$$
, $H_z = H_s = K_1 e^{\alpha b} + K_2 e^{-\alpha b}$

(i) At
$$y = b$$
, $H_z = H_s = K_1 e^{\alpha b} + K_2 e^{-\alpha b}$
(ii) At $y = -b$, $H_z = H_s = K_1 e^{-\alpha b} + K_2 e^{\alpha b}$

$$K_1 = K_2$$

$$\therefore K_1 = K_2$$

\therefore H_s = K_1 \left(e^{\alpha b} + e^{-\alpha b} \right)

$$\therefore K_1 = \frac{H_s}{e^{\alpha b} + e^{-\alpha b}} = K_2$$

$$H_z = K_1 e^{\alpha y} + K_2 e^{-\alpha y}$$

$$\varphi = \varphi_m \sin \omega t$$

EEE345 Engineering Electromagnetics Department of Electronic & Electrical Engineering, University of Sheffield

$$\therefore H_z = H_s \frac{\left(e^{\alpha y} + e^{-\alpha y}\right)}{\left(e^{\alpha b} + e^{-\alpha b}\right)} e^{j\omega t} = H_s \frac{\cosh \alpha y}{\cosh \alpha b} e^{j\omega t}$$

Again, from Curl H = J

$$J_{x} = \frac{\partial H_{z}}{\partial y} = \alpha H_{s} \frac{\sinh \alpha y}{\cosh \alpha b} e^{j\omega t}$$

Note: $\int_{-b}^{b} J_x dy = 0$ ie. Induced eddy currents go and return inside the lamination

Note: When $2b \gg \delta$, ie. thick plate, the eddy current loss can be shown to be:

i.e. 2 x loss associated with one surface of plate

When $2b \ll \delta$, i.e. thin plate

$$P_e = \frac{1}{3}\omega^2 \sigma \mu_0^2 \mu_r^2 H_s^2 b^3 \quad w/m^2 \text{ of surface area}$$

The figure below shows the eddy current loss per surface area as a function of the ratio $(2b/\delta)$

To reduce eddy current loss, thickness of lamination 2b must be significantly less than skin depth $\delta = \sqrt{\frac{2}{\omega\mu\sigma}}$

Example 3: AC Resistance of Circular Conductor

- Consider conductor of radius 'a' carrying load current *I* cosωt.
- Assume $\delta << a$, i.e. there is a pronounced skin effect.

Cautionary note: This is not a good conductor design since interior of conductor will not carry current.

Since $\delta <<$ a, curvature of conductor can be neglected

Loss/unit of conductor surface area
$$= \frac{H_s^2}{2\sigma\delta} W/m^2$$
$$= \left(\frac{I}{2\pi a}\right)^2 \frac{1}{2\sigma\delta} W/m^2$$

$$\therefore \text{ Loss/m length of conductor} = \left(\frac{I}{2\pi a}\right)^2 \frac{1}{2\sigma\delta} 2\pi a \quad W / m$$

Loss/m length of conductor =
$$\frac{I^2}{4\pi a \sigma \delta} W/m$$

$$=\frac{1}{2}I^2\ R_{ac}$$

$$\therefore R_{ac} = \frac{1}{2\pi a \sigma \delta} \quad \Omega/m$$

But
$$R_{\rm dc} = \frac{1}{\sigma \pi a^2} \Omega/m$$

$$\therefore \frac{R_{ac}}{R_{dc}} \approx \frac{a}{2\delta}$$

ie. As skin depth δ gets smaller the ratio of the ac resistance to the dc resistance increases.

Note: More exact solution for a circular conductor can be derived in terms of Bessel Functions. It approximates to

$$\frac{R_{ac}}{R_{dc}} = \frac{a}{2\delta} - \frac{1}{4} + \frac{3\delta}{32a}$$

Tutorial Sheet 3

- 1. Calculate the skin depth for the following materials and excitation frequencies:
 - (i) Copper at 50 Hz ($\rho = 1.72 \times 10^{-8} \Omega m$)
 - (ii) Mild steel at 50 Hz ($\mu_r = 2000, \rho = 2.8 \times 10^{-7} \Omega m$)

(ans (i)
$$\delta = 9.34 \text{ mm}$$
 (ii) $\delta = 0.84 \text{ mm}$)

2. Starting from the expression for the current density induced in a semi-infinite plate when it is exposed to a sinusoidally time-varying magnetic field, calculate the approximate ac resistance of a copper conductor of diameter 4 mm when it carries a current of 10A at a frequency of 20kHz. The resistivity of copper is $1.72 \times 10^{-8} \Omega m$. Compare the ac resistance with the dc value.

$$\begin{pmatrix} \text{ans. } R_{ac} = 2.9 \times 10^{-3} \,\Omega / m \\ \frac{R_{ac}}{R_{dc}} = 2.11 \end{pmatrix}$$