```
Notation: |X| = \# elements in set X.
```

Lemma 3.2: Y |X| = |Y| = n. Then the number of all bijutions $X \rightarrow Y$ is n!

· Joan 9

$$\frac{1}{2}$$
 $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}$

In total $n(n-1)(n-2)\cdots 2\cdot 1=n!$ possibilities.

4 Pennutation and Symmetric Groups

Definition 4.1: Let $X = \{1, 2, 3, ..., n\}$. Then any bijedien $X \longrightarrow X$ is called a permutation of X The symmetric group S_n is the set of all permutations of $\{1, 2, 3, ..., n\}$: $S_n = \{\text{ all bijections } \{1, 2, 3, ..., n\} \longrightarrow \{1, 2, 3, ..., n\}\}$ with spection compositions of maps

wan operation compositions of major

(2) I will we quak letters for elements of Sn: $\alpha, \beta, \lambda, \delta, ..., \sigma$

Now to represent elements of Sn?

We have 3 main ways to discribe $\sigma: (1)$ as a map $X \longrightarrow X = \{1,2,3,4\}$: $X = \{1,2,3,4\}$:

(2) (array notation):
$$\sigma = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{bmatrix} \leftarrow \infty$$

(3) (cycle notation):
$$T = (1 2 3)$$
 (see lotu)

Consider array notation: note $\sigma^{-1} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 1 & 2 & 4 \end{bmatrix}$ (check $\sigma \sigma^{-1} = \sigma^{-1} \sigma^{-1} = 1$) suppose $\mu = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix}$.

$$\sigma M = \sigma \circ M = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 4 \end{bmatrix} \cdot \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{bmatrix} ((\sigma \circ M)(\kappa) = \sigma(M(\kappa)) \forall k \in X)$$

Note: To find ou, we do , first and then o.

Note: So has a distinguished element, the identity map $1 = 1_x = \begin{bmatrix} 1 & 2 & 3 & \cdots & n \\ 1 & 2 & 3 & \cdots & n \end{bmatrix}$

Powers $\alpha \in S_n$ then $\alpha^2 = \alpha \cdot \alpha = \alpha \cdot \alpha$. Define $\alpha^0 = 1 (= |_x), \alpha^k = \underbrace{\alpha \cdots \alpha}_k$ $(k \ge 1)$

$$\alpha^{-k} = \underbrace{\alpha^{-1} \cdots \alpha^{-1}}_{k} \quad (k \gg 1)$$

Then α^n is defined $\forall n \in \mathbb{Z}$, $\alpha^{-k} = (\alpha^{-1})^k = (\alpha^k)^{-1}$, $\alpha^m \cdot \alpha^n = \alpha^{m+n} \quad \forall m, n \in \mathbb{Z}$

Note: (x B) m ≠ x m pm in grund

dβ aβ... aβ ≠ a... x β... β

as $\alpha \beta \neq \beta \alpha$ in general (as $\alpha \circ \beta \neq \beta \circ \alpha$ composition of maps not commutative)

However note: $(\alpha \beta)^{-1} = \alpha^{-1} \beta^{-1}$ (as $\alpha \beta \cdot \beta^{-1} \alpha^{-1} = 1$) $(\alpha \beta \gamma)^{-1} = \gamma^{-1} \beta^{-1} \alpha^{-1}$

<u>Definition 4.3:</u> Let $\alpha \in S_n$. The <u>order</u> of α is the smallert integer $m \ge 1$ s.t. $\alpha^m = 1$

Example: Let $\alpha = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 4 & 1 \end{bmatrix}$. Then $\alpha^2 = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 4 & 2 & 1 & 3 \end{bmatrix}^{\frac{1}{2}}$, $\alpha^3 = 1$. So $O(\alpha) = 3$ (order)

We will see $O(\propto)$ must divide the order (size) of the group. Here $|S_n| = n!$

Definition 4.4: Let $k \le n$. For k different integers $a_1, ..., a_k$ with $1 \le a_i \le n$ we denote by $(a_1, ..., a_k)$ the permutation which maps $a_1 \rightarrow a_2$, $a_2 \rightarrow a_3$, ..., $a_k \rightarrow a_1$, and doesn't move other numbers. Such permutations are k-cycle (= cycles of length k).

 $a_1 \leftarrow a_k$ $a_2 \qquad a_k$ \vdots

Example: (134) is a 3-cycle in S_5 is (134) = $\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 2 & 4 & 1 & 5 \end{bmatrix}$

Definition 4.5: Cycles are disjoint if they have no common elements.

- Essentible: (1) (256) and (1437) are disjoint.
 - (2) (23) and (1437) not disjoint.

Remark 4.6: note (1437) = (4371) = (3714) = (7143) the same permutation. We the cycle with smallest number first (1437).