Optimal Control for Autonomous Drone Racing

Aleix Paris¹

Abstract—This paper studies the problem of optimal control of a quadrotor to minimize the time it takes it to pass trough several waypoints, that is, to finish a race.

I. INTRODUCTION

Optimal control problems have been widely studied... The Red Bull Air Race, where airplanes cross gates to end a circuit as fast as possible is an example of a similar problem that has been studied... Nowadays, every team has the role of a 'tactician', which is in charge of...

MENTION PARKER AND AUTONOMOUS DRONE RACING COMPETITIONS...

The paper is structured as follows: Section II presents the formulation of this problem, Section...

II. PROBLEM FORMULATION

Several authors have studied quadrotor dynamics [1]. This section presents the geometry of a quadrotor, its dynamics and the mathematical formulation of the problem in hand.

A. Assumptions

The formulation that follows considers the following assumptions:

- The maximum and minimum altitudes of the quadrotor are similar and thus the air density and gravity are constants.
- 2) The vehicle is flying in zero-wind conditions.
- 3) No ground effect is considered.
- 4) The angular velocities of the rotors are similar, and the rotors' inertia is small.
- 5) The quadrotor is symmetrical with its four arms aligned with the body x- and y-axes.
- 6) The propellers are rigid and thus blade flapping does not occur.

B. Quadrotor Geometry and Notation

The quadrotor's absolute linear position is defined in the inertial frame with the vector $\boldsymbol{\xi}$. Similarly, the attitude (angular position of the drone with respect to the inertial frame) is defined with the vector $\boldsymbol{\eta}$. Roll angle ϕ determines the rotation of the vehicle around the x-axis, pitch angle θ defines a rotation around the y-axis, and yaw angle ψ determines the quadrotor's rotation around the z-axis:

$$\boldsymbol{\xi} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \quad \boldsymbol{\eta} = \begin{bmatrix} \phi \\ \theta \\ \psi \end{bmatrix}$$

¹Graduate Research Assistant at the Aerospace Controls Laboratory, MIT, 77 Massachusetts Ave., Cambridge, MA, USA aleix@mit.edu

The origin of the body frame, indicated with a B, is the center of mass of the quadrotor. In this frame, the vehicle's linear velocities V_B and angular velocities ν are:

$$oldsymbol{V}_B = \left[egin{array}{c} v_{x,B} \ v_{y,B} \ v_{z,B} \end{array}
ight], \quad oldsymbol{
u} = \left[egin{array}{c} p \ q \ r \end{array}
ight]$$

Figure 1 shows the inertial and body frame, as well as the Euler and angular velocity angles defined previously.

Fig. 1. Inertial and body-fixed frame of the quadrotor, showing the Euler and angular velocity angles [?]

The rotation from the body frame to the inertial frame can be defined with the matrix

$$\boldsymbol{R} = \begin{bmatrix} C_{\psi}C_{\theta} & C_{\psi}S_{\theta}S_{\phi} - S_{\psi}C_{\phi} & C_{\psi}S_{\theta}C_{\phi} + S_{\psi}S_{\phi} \\ S_{\psi}C_{\theta} & S_{\psi}S_{\theta}S_{\phi} + C_{\psi}C_{\phi} & S_{\psi}S_{\theta}C_{\phi} - C_{\psi}S_{\phi} \\ -S_{\theta} & C_{\theta}S_{\phi} & C_{\theta}C_{\phi} \end{bmatrix}$$

in which $S_x = \sin(x)$ and $C_x = \cos(x)$. Note that this rotation matrix is orthogonal and thus the rotation matrix from the inertial frame to the body frame is $R^{-1} = R^T$.

To obtain the angular velocities in the body frame from the angular velocities in the inertial frame, the matrix W_{η} should be used:

$$oldsymbol{
u} = oldsymbol{W}_{\eta} \dot{oldsymbol{\eta}}, \qquad \left[egin{array}{c} p \\ q \\ r \end{array}
ight] = \left[egin{array}{ccc} 1 & 0 & -S_{ heta} \\ 0 & C_{\phi} & C_{ heta}S_{\phi} \\ 0 & -S_{\phi} & C_{ heta}C_{\phi} \end{array}
ight] \left[egin{array}{c} \dot{\phi} \\ \dot{ heta} \\ \dot{\psi} \end{array}
ight]$$

Its inverse is the transformation matrix from the body frame to the inertial frame, which will be used later to assemble the quadrotor dynamics:

$$\dot{\boldsymbol{\eta}} = \boldsymbol{W}_{\eta}^{-1} \boldsymbol{\nu}, \; \left[egin{array}{ccc} \dot{\phi} \\ \dot{\theta} \\ \dot{\psi} \end{array}
ight] = \left[egin{array}{ccc} 1 & S_{\phi} T_{\theta} & C_{\phi} T_{\theta} \\ 0 & C_{\phi} & -S_{\phi} \\ 0 & S_{\phi}/C_{\theta} & C_{\phi}/C_{\theta} \end{array}
ight] \left[egin{array}{ccc} p \\ q \\ r \end{array}
ight]$$

As shown in Figure 1 and stated in assumption 5, the drone is symmetric with the arms aligned with the body axes. Therefore, the inertia matrix \mathbf{I} is diagonal, and $I_{xx} = I_{yy}$:

$$m{I} = \left[egin{array}{ccc} I_{xx} & 0 & 0 \ 0 & I_{yy} & 0 \ 0 & 0 & I_{zz} \end{array}
ight]$$

C. Quadrotor Dynamics

The force f_i created by the angular velocity of rotor i, denoted with ω_i , in the direction of the rotor axis is:

$$f_i = k\omega_i^2$$

Additionally, torque τ_{M_i} is created around the rotor axis:

$$\tau_{M_i} = b\omega_i^2 + I_r \dot{\omega}_i$$

where the lift constant is k, the drag constant is b and the inertia moment of the rotor is I_r . As assumption 4 considered, the rotor's inertia is small, and $\dot{\omega}_i$ is also usually small. Therefore, this term can be omitted.

The rotors create thrust T in the direction of the body z-axis, and torque τ_B consists of torques $\tau_{\phi}, \tau_{\theta}, \tau_{\psi}$ in the direction of the corresponding body frame angles:

$$T = \sum_{i=1}^4 f_i = k \sum_{i=1}^4 \omega_i^2, \qquad oldsymbol{T}^B = \left[egin{array}{c} 0 \ 0 \ T \end{array}
ight]$$

$$oldsymbol{ au}_B = \left[egin{array}{c} au_\phi \ au_ heta \ au_\psi \end{array}
ight] = \left[egin{array}{c} lk \left(-\omega_2^2 + \omega_4^2
ight) \ lk \left(-\omega_1^2 + \omega_3^2
ight) \ \sum_{i=1}^4 au_{M_i} \end{array}
ight]$$

in which I is the distance between the rotor and the center of mass of the quadcopter.

The Newton-Euler equations for the quadrotor are:

$$m\ddot{\boldsymbol{\xi}} = \boldsymbol{G} + \boldsymbol{R}\boldsymbol{T}_{B}$$

$$\begin{bmatrix} \ddot{x} \\ \ddot{y} \\ \ddot{z} \end{bmatrix} = -g \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + \frac{T}{m} \begin{bmatrix} C_{\psi} S_{\theta} C_{\phi} + S_{\psi} S_{\phi} \\ S_{\psi} S_{\theta} C_{\phi} - C_{\psi} S_{\phi} \\ C_{\theta} C_{\phi} \end{bmatrix}$$

where g is Earth's gravity, 9.81 m/s^2 .

III. RESULTS

Explain solved using GPOPS.

IV. CONCLUSIONS

Conclusions

APPENDIX

Nothing... Citation: [1].

REFERENCES

 S. Zhang, C. Zhu, J. K. O. Sin, and P. K. T. Mok. A novel ultrathin elevated channel low-temperature poly-Si TFT. 20:569–571, November 1999.