අධෳයන පොදු සහතික පතු (උසස් පෙළ)

රසායන විදහව

12-13 ශුණි - විෂය නිර්දේශය

(2017 සිට කුියාත්මක වන පරිදි)

Draft

විදන දෙපාර්තමේන්තුව ජාතික අධනපන ආයතනය මහරගම ශුී ලංකා www.nie.lk

හැඳින්**වීම**

මෙම විෂය නිර්දේශය උසස් අධාාපනය කරා යොමු වන පිරිසට මෙන් ම අ.පො.ස උසස් පෙළ රසායන විදාා දැනුම අනෙකුත් විවිධ කේෂතුවල දී උපයෝගී කර ගනු ඇතැයි අපේක්ෂිත පිරිසට අවශා මුලික රසායන විදාා දැනුම ලබාදීම සඳහා සැලසුම් කර ඇත.

ඉගැන්වීමේ දී අනුගමනය කිරීමට උචිත අනුපිළිවෙළකට (නමුත් අනිවාර්ය නොවන) පෙළ ගැස් වු ඒකක 14කින් මෙම විෂය නිර්දේශය සමන්විත වේ. එක් එක් ඒකකය යටතේ ඉගැන්විය යුතු විෂය සන්ධාරය නිපුණතා පාදක ව සංවිධානය කර ඇත.

උප ඒකක අවසානයේ තද කළු අකුරින් මුදුණය කර දක්වා තිබෙන සිද්ධාන්ත හා පරීක්ෂණ අතර සම්බන්ධය ඉස්මතු වන පුායෝගික පරීක්ෂණ, විෂය නිර්දේශයේ අතා-වශා අංගයකි. මෙම විෂය නිර්දේශය 2017 වසරේ සිට කිුිිියාත්මක වේ.

1.1 ජාතික අරමුණු

- මානව අභිමානයට ගරු කිරීමේ සංකල්පයක් මත පිහිටා ශී ලාංකික බහුවිධ සමාජයේ සංස්කෘතික විවිධත්වය අවබෝධ කර ගනිමින් ජාතික ඒකාබද්ධතාව, ජාතික සෘජු ගුණය, ජාතික සමඟිය, එකමුතුකම සහ සාමය පුවර්ධනය කිරීම තුළින් ජාතිය ගොඩනැඟීම සහ ශී ලාංකීය අනනාෳතාව තහවුරු කිරීම.
- වෙනස් වන ලෝකයක අභියෝගයන්ට පුතිචාර දක්වන අතර ජාතික උරුමයේ මාහැඟි දායාදයන් හඳුනා ගැනීම සහ සංරඤණය කිරීම.
- මානව අයිතිවාසිකම්වලට ගරු කිරීම, යුතුකම් හා වගකීම් පිළිබඳ දැනුවත් වීම, හෘදයාංගම බැඳීමකින් යුතු ව එකිනෙකා කෙරෙහි සැලකිලිමත් වීම යන ගුණාංග පු-වර්ධනය කිරීමට ඉවහල් වන සමාජ සාධාරණත්ව සම්මතයන් සහ පුජාතාන්තුික ජීවන රටාවක් ගැබ් වූ පරිසරයක් නිර්මාණය කිරීම සහ පවත්වා ගෙන යාමට සහාය වීම.
- පුද්ගලයන්ගේ මානසික හා ශාරීරික සුව සම්පත සහ මානව අගයයන්ට ගරු කිරීම මත පදනම් වූ ති්රසාර ජීවන කුමයක් පුවර්ධනය කිරීම.
- සුසමාහිත වූ සමබර පෞරුෂයක් සඳහා නිර්මාපණ හැකියාව, ආරම්භක ශක්තිය, විචාරශීලී චින්තනය, වගකීම හා වගවීම ඇතුළු වෙනත් ධනාත්මක අංග ලක්ෂණ සංවර්ධනය කිරීම.
- පුද්ගලයාගේ සහ ජාතියේ ජීව ගුණය වැඩි දියුණු කෙරෙන සහ ශී ලංකාවේ ආර්ථික සංවර්ධනය සඳහා දායක වන ඵලදායී කාර්යයන් සඳහා අධෳාපනය තුළින් මානව සම්පත් සංවර්ධනය කිරීම.
- ශීසුයෙන් වෙනස් වන ලෝකයක් තුළ සිදු වන වෙනස්කම් අනුව හැඩ ගැසීමට හා ඒවා පාලනය කර ගැනීමට පුද්ගලයන් සුදානම් කිරීම සහ සංකීර්ණ හා අනපේක්ෂිත අවස්ථාවන්ට සාර්ථක ව මුහුණ දීමේ හැකියාව වර්ධනය කිරීම.
- ජාතෳන්තර පුජාව අතර ගෞරවනීය ස්ථානයක් හිමි කර ගැනීමට දායක වන යුක්තිය, සමානත්වය සහ අනෙෳා්නෳ ගරුත්වය මත පදනම් වූ ආකල්ප හා කුසලතා පෝෂණය කිරීම.

ජාතික අධාාපන කොමිෂන් සභාවේ වාර්තාව - (2003)

1.2 ජාතික පොදු නිපුණතා

අධාාපනය තුළින් වර්ධනය කෙරෙන පහත දැක්වෙන මූලික නිපුණතා පෙර සඳහන් ජාතික අරමුණු මුදුන්පත් කර ගැනීමට දායක වනු ඇත.

(i) සන්නිවේදන නිපුණතා

සාක්ෂරතාව, සංඛාහ පිළිබඳ දැනුම, රූපක භාවිතය සහ තොරතුරු තාක්ෂණ පුවීණත්වය යන අනුකාණ්ඩ හතරක් මත සන්නිවේදන නිපුණතා පදනම් වේ.

සාක්ෂරතාව : සාවධානව ඇහුම්කන් දීම, පැහැදිලි ව කතා කිරීම, තේරුම් ගැනීම සඳහා කියවීම, නිවැරදි ව සහ නිරවුල් ව ලිවීම. එලදායී අයුරින්

අදහස් හුවමාරු කර ගැනීම.

සංඛාන පිළිබඳ දැනුම : භාණ්ඩ, අවකාශය හා කාලය, ගණන් කිරීම, ගණනය සහ මිනුම් සඳහා කුමානුකූල ඉලක්කම් භාවිතය.

රූපක භාවිතය : රේඛා සහ ආකෘති භාවිතයෙන් අදහස් පිළිබිඹු කිරීම සහ රේඛා, ආකෘති සහ වර්ණ ගළපමින් විස්තර, උපදෙස් හා අදහස්

පුකාශනය හා වාර්තා කිරීම.

තොරතුරු තාකුණ පුවීණත්වය: පරිගණක දැනුම සහ ඉගෙනීමේ දී ද සේවා පරිශුයන් තුළ දී ද පෞද්ගලික ජිවිතයේ දී ද තොරතුරු සහ සන්නිවේදන තාක්ෂණය

උපයෝගී කර ගැනීම.

(ii) පෞරුෂත්ව වර්ධනයට අදාළ නිපුණතා

- නිර්මාණශීලී බව, අපසාරී චින්තනය, ආරම්භක ශක්තිය, තීරණ ගැනීම, ගැටලු නිරාකරණය කිරීම, විචාරශීලී හා විගුාත්මක චින්තනය, කණ්ඩායම් හැඟී මෙන් කටයුතු කිරීම, පුද්ගලාන්තර සබඳතා, නව සොයා ගැනීම් සහ ගවේෂණය වැනි වර්ගීය කුසලතා

- සෘජු ගුණය, ඉවසා දරා සිටීමේ ශක්තිය සහ මානව අභිමානයට ගරු කිරීම වැනි අගයයන්.

- චිත්තවේගී බුද්ධිය.

(iii) පරිසරයට අදාළ නිපුණතා

මෙම නිපුණතා සාමාජික, මෛව සහ භෞතික පරිසරයන්ට අදාළ වේ.

සමාජ පරිසරය : ජාතික උරුමයන් පිළිබඳ අවබෝධය, බහුවාර්ගික සමාජයක සාමාජිකයන් වීම හා සම්බන්ධ සංවේදීතාව හා කුසලතා, සාධාරණ යුක්තිය

පිළිබඳ හැඟීම, සමාජ සම්බන්ධතා, පුද්ගලික චර්යාව, සාමානාභා නෛතික සම්පුදායයන්, අයිතිවාසිකම්, වගකීම්, යුතුකම් සහ බැඳීම්.

මෛව පරිසරය : සජීවී ලෝකය, ජනතාව සහ මෛව පද්ධතිය, ගස්වැල්, වනාන්තර, මුහුදු, ජලය, වාතය සහ ජීවය- ශාක, සත්ත්ව හා මිනිස්

ජීවිතයට සම්බන්ධ වූ අවබෝධය, සංවේදී බව හා කුසලතා.

භෞතික පරිසරය:

අවකාශය, ශක්තිය, ඉන්ධන, දුවා, භාණ්ඩ සහ මිනිස් ජීවිතයට ඒවායේ ඇති සම්බන්ධතාව, ආහාර, ඇඳුම්, නිවාස, සෞඛා, සුව පහ සුව, නින්ද, නිස්කලංකය,විවේකය, අපදුවා සහ මලපහ කිරීම යනාදිය හා සම්බන්ධ වූ අවබෝධය, සංවේදීතාව හා කුසලතාව. ඉගෙනීම, වැඩ කිරීම සහ ජිවත් වීම සඳහා මෙවලම් සහ තාක්ෂණය පුයෝජනයට ගැනීමේ කුසලතා මෙහි අඩංගු වේ.

(iv) වැඩ ලෝකයට සූදානම් වීමේ නිපුණතා

ආර්ථික සංවර්ධනයට දායක වීම.

තම වෘත්තීය ළැදියා සහ අභියෝගතා හඳුනා ගැනීම.

හැකියාවන්ට සරිලන අයුරින් රැකියාවක් තෝරා ගැනීම සහ වාසිදායක හා තිරසාර ජීවනෝපායක නිරත වීම යන හැකියාවන් උපරිම කිරීමට හා ධාරිතාව වැඩි කිරීමට අදාළ සේවා නියුක්තිය හා සම්බන්ධ කුසලතා.

(v) ආගම සහ ආචාර ධර්මයන්ට අදාළ නිපුණතා

පුද්ගයන්ට තම දෛනික ජීවිතයේ දී ආචාරධර්ම, සදාචාරාත්මක හා ආගමානුකූල හැසිරීම් රටාවන්ට අනුගත වෙමින් වඩාත් උචිත දේ තෝරා එයට සරිලන සේ කටයුතු කිරීම සඳහා අගයයන් උකහා ගැනීම හා ස්වීයකරණය.

(vi) කීඩාව සහ විවේකය පුයෝජනයට ගැනීමේ නිපුණතා

සෞන්දර්යය, සාහිතෳය, සෙල්ලම් කිරීම, කී්ඩා හා මලල කී්ඩා, විනෝදාංශ හා වෙනත් නිර්මාණාත්මක ජීවන රටාවන් තුළින් පුකාශ වන විනෝදය, සතුට, ආවේග සහ එවන් මානුෂික අත්දැකීම්.

(vii) 'ඉගෙනීමට ඉගෙනීම' පිළිබඳ නිපුණතා

ශීසුයෙන් වෙනස් වන, සංකීර්ණ හා එකිනෙකා මත යැපෙන ලෝකයක පරිවර්තන කියාවලියක් හරහා වෙනස්වීම් හසුරුවා ගැනීමේ දී හා ඊට සංවේදී ව හා සාර්ථක ව පුතිචාර දැක්වීමත් ස්වාධීන ව ඉගෙන ගැනීමත් සඳහා පුද්ගලයන් හට ශක්තිය ලබා දීම.

2.0 නව විෂය නිර්දේශයේ අරමුණු

- 1. රසායන විදාහාවේ මූලික සංකල්ප පිළිබඳ අවබෝධය ලබා ගැනීමට සහ විෂයයේ ඒකාබද්ධ තේමා හා රටා ඇගයීම.
- 2. රසායන විදාාත්මක දනුම හා සංකල්ප රසායනික සංසිද්ධි සඳහා යෙදවීම පිළිබඳ තර්කානුකූල හා පරිකල්පිත චින්තනය වැඩි දියුණු කිරීම.
- 3. සමාජයට රසායන විදාහ දැනුමේ ඇති වටිනාකම හඳුනා ගැනීම සහ තාක්ෂණික ආර්ථික හා සමාජිය සංවර්ධනය උදෙසා විදාහව යොදා ගැනීමට පිළිබඳ අවබෝධයක් ලබා ගැනීම.
- 4. ස්වාභාවික සම්පත් පිළිබඳවත් ස්වාභාවික සම්පත් පරිභෝජනය සහ තාක්ෂණය හා බැඳි ගැටලු පිළිබඳවත් අවබෝධයක් ඇති කර ගැනීම.

විෂය නිර්දේශය අවසානයේ ඉහත අරමුණු සපුරා ගැනීමට සිසුන්ට හැකි විය යුතු ය.

ඒකක සහ කාලච්ජේද

මාද	ා කාව				කාලච්ජේද ගණන
01	ඒකක ය	-	පරමාණුක වසුහය		33
02	ඒකක ය	-	වුහුගය සහ බන්ධන		35
03	ඒකක ය	-	රසායනික ගණනය		37
04	ඒකක ය	-	පදාර්ථයේ වායු අවස්ථාව		32
05	ඒකක ය	-	ශක්ති විදහාව		37
06	ඒකක ය	-	$\mathrm{s,}\mathrm{p}$ හා d ගොනුවලට අයත් මූල දුවායන්ගේ රසායනය		65
07	ඒකක ය	-	කාබනික රසායන විදාහාවේ මුලික සංකල්ප		18
08	ඒකක ය	-	හයිඩොකාබන හා හැලජනීකෘත හයිඩොකාබන		46
09	ඒකක ය	-	ඔක්සිජන් අඩංගු කාබනික සංයෝග		45
10	ඒකක ය	-	නයිටුජන් අඩංගු කාබනික සංමයා්ග		13
11	ඒකක ය	-	චාලක රසායනය		44
12	ඒකක ය	-	සමතුලිතතාව		88
13	ඒකක ය	-	විදාුුුත් රසායනය		40
14	ඒකක ය	-	කර්මාන්ත රසායනය හා පරිසර දූෂණය		67
				එකතුව	600

ශේුණියවාරය නිපුණතා මට්ටම

l 2 ලෝණිය	පළමු වාරය	1.1	සිට	3.3	(11 නිපුණතා මට්ටම)
	දෙ වන වාරය	4.1	සිට	6.6	(15 නිපුණතා මට්ටම)
	තෙ වන වාරය	7.1	සිට	10.3	(20 නිපුණතා මට්ටම)
13 ලෝණිය	පළමු වාරය	11.1	සිට	12.2	(7 නිපුණතා මට්ටම)
	දෙ වන වාරය	12.3 සිර	D 13.4		(8 නිපුණතා මට්ටම)
	තෙ වන වාරය	14.1 සි	D 14.8		(8 නිපුණතා මට්ටම)

3.0 :- විෂය නිර්දේශය 3.1 :- 12 ශේණිය

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේ ද
1.0 ඒකකය පදාර්ථයේ ස්වභාවය නිර්ණය කිරීමේ ලා ඉලෙක්ටෝන සැකැස්ම හා ශක්ති හුවමාරුව භාවිතයට ගනී.	1.1 පරමාණුක වනුහය පිළිබඳ ආකෘති විමර්ශනය කරයි.	 කැතෝඩ කිරණවල ගුණ. පරමාණුව හා උපපරමාණුක අංශු හැඳින්වීම. රදර්ෆර්ඩ් ආකෘතිය. පරමාණුක කුමාංකය හා ස්කන්ධ කුමාංකය සමස්ථානික නියුක්ලයිඩ සාපේක්ෂ පරමාණුක ස්කන්ධය කැනෝඩ කිරණවල ගුණ ආදර්ශනය කිරීම. 	 කැතෝඩ කිරණ ආදර්ශනය කිරීමෙන් පසු නිරීක්ෂණය ලියා දක්වයි. කැතෝඩ කිරණවල ගුණ සාකච්ඡා කරයි. පරමාණුව හා උපපරමාණුක අංශු විස්තර කරයි. රදර්ෆර්ඩ් ආකෘතිය (රන්පත් පරීඎව) විස්තර කරයි. පරමාණුක කුමාංකය හා ස්කන්ධ කුමාංකය (නියුක්ලියෝන අංකය) සඳහන් කරයි. සමස්ථානික අර්ථ දැක්වීම සඳහා පරමාණුක නාෂ්ටියට පෝටෝන හා නියුටෝනවල දායකත්වය පැහැදිලි කරයි. නියුක්ලයිඩ සඳහන් කරයි. මූලදවායක සාපේක්ෂ පරමාණුක ස්කන්ධය භාවිත කරමින් සරල ගණනය කිරීම් සිදු කරයි. ස්වභාවය අවබෝධ කර ගැනීම සඳහා විදහඥයන් විසින් දරන ලද පුයත්න අගය කරයි. 	06
	1.2 විවිධ වර්ගයේ විදයුත් -චුම්බක විකිරණ විශ්ලේෂණය කරයි.	 පදාර්ථයේ අංශු - තරංග (ද්විත්ව) ස්වභාවය විදයුත් - චුම්බක විකිරණ හා ඒවායේ ගුණ [පුවේගය (c), තරංග ආයාමය (\lambda), සංඛ්‍යාතය (\lambda), ශක්තිය (E)] $c = \upsilon\lambda$ $E = h\upsilon$, $\lambda = \frac{h}{mv}$ විදයුත්-චුම්බක වර්ණාවලිය 	 ඩි බෝග්ලි සමීකරණය සඳහන් කරයි නිදසුන් ඇසුරින් ඉලෙක්ටෝනයේ අංශු-තරංග ද්වෛත ස්වභාවය විස්තර කිරීමට ඩි බෝග්ලි සමීකරණය යොදාගනී. λ = h/mv තරංගවල ගුණ විස්තර කරන භෞතික රාශි නම් කර ඒවා අතර සම්බන්ධතා පුකාශ කරයි. 	04

		• විදහුත් - චුම්බක තරංග යනු කුමක් දැයි සඳහන් කරයි. $c = v\lambda , \; E = hv \text{sn} \; \; \lambda = \frac{h}{mv} \text{sn}$ හාවිත කරමින් සරල ගැටලු විසඳයි. • විදහුත් - චුම්බක වර්ණාවලියේ විවිධ පරාස
1.3 පරමාණු ඉලෙක් ශක්ති ම සඳහා ස දක්වයි.	බෝර් වාදය හා බෝර් ආකෘතිය හැඳින්වීම.වේටම් හයිඩුජන්වල පරමාණුක වර්ණාවලිය	කැඳවයි. අනුයාත අයනීකරණ ශක්තීන් විස්තර කරයි. අනුයාත අයනීකරණ ශක්ති පුස්තාර උපයෝගි කර ගනිමින්, පරමාණුවල ඉලෙක්ටෝන, පුධාන ශක්ති මට්ටම්වල හා උපශක්ති මට්ටම්වල පිහිටන බවට සාක්ෂි ඉදිරිපත් කරයි. බෝර් ආකෘතිය විස්තර කරයි. බෝර් ආකෘතිය යොදා ගනිමින් හයිඩුජන් පරමාණුක වර්ණාවලියෙහි රේඛා ශේණීය

1.4 ඒකලිත වායුමය පරමාණුවල හා අයතවල භූමි අවස්ථාවේ ඉලෙක්ටෝන විනාහාසය ලියා දක්වයි.	 උපශක්ති මට්ටම්වල ඇතුළත් උපරිම ඉලෙක්ටෝන සංඛාා සංඛාාව සඳහන් කරයි. ඉලෙක්ටෝන පිරීමට අදාළ මූලධර්ම හා නීති හුන්ඩ් නීතිය පව්ලි බහිෂ්කාර මූලධර්මය අවුෆ්බාවූ මූලධර්මය හා ඉහළ පරමාණුක කුමාංකය 1 සිට 54 දක්වා මූලදුවාවල භූමි අවස්ථාවේ ඇති ඒකලික වායුමය පරමාණුවල හා ඒවායේ අයනවල ඉලෙක්ටෝන විනාස සම්මත ආකාරයට ලියයි. පරමාණුක කුමාංකය 1 සිට 54 දක්වා මූලදුවාවල භූමි අවස්ථාවේ ඇති පරමාණු හා එවායේ අයනවල ඉලෙක්ටෝන විනාස සම්මත ආකාරයට ලියයි. අවුෆ්බාවූ මූලධර්මයේ අපගමන 4d ශේණියේ pd හි ඉලෙක්ටෝන විනාසය ඇසුරෙන් පැහැදිලි කරයි. ජ්ථායී ඉලෙක්ටෝන විනාස සඳහා 	6
	$(s^2,p^3,p^6,d^5$ හා d^{10} පමණයි). උදාහරණ දක්වයි.	
1.5 මූලදුවා අාවර්තිතා වගුවේ දරන ස්ථානය තහවුරු කිරීමට හා ඒවායේ පරමාණුක ගුණ ඉලෙක්ටෝන විනාාසයට සම්බන්ධ කිරීම සඳහා මූලදුවාවල ඉලෙක්ටෝන විනාාසය	 ආවර්තිතා වගුව ගොඩනැගීම. ආවර්තිතා වගුව දීර්ඝ ආකාරය හඳුන්වා දීම. s, p, d, f ගොනු 1 - 18 කාණ්ඩවල මූලදුවා s හා p ගොනුවල මූලදුවා ආවර්තයක් හරහා සහ කාණ්ඩයක් දිගේ පහළට පෙන්නුම් කරන නැඹුරුතා නිවාරක ආවරණය සහ සඵල නාෂ්ඨික ආරෝපණය (ගුණාත්මක ව පමණයි) පරමාණුක අරය හසසංයුජ අරය වැන්ඩවාල්ස් අරය ලෝහක අරය ලෝහක අරය ආවර්තිතා වගුව ගොඩනගයි. ඉලෙක්ටෝන විනාහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු යටතේ වර්ග කරයි. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනී. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනු. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනී. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනී. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනී. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හා d ගොනී. ඉලෙක්ටෝන විනහසය අනුව මූලදුවා s, p හි	

නිපුණතාව නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේද
2.0 ඒකකය 2.1 බන්ධන පදර්ථයේ හා වසුහය වයුහය හා ගුණ පදාර්ථයේ තීරණය කිරීමේ ආධාරක ලෙස සම්බන්ධ බහුපරමාණුක පද්ධතිවල පුාථමික අන්තර්කි්යා විගුහ කරයි.	 ◆ රසායනික බන්ධන සෑදීම (ප්‍රාථමික අන්තර්කියා) ◆ සහ සංයුජ බන්ධන හා බහු බන්ධන ◆ අණු හා අයනවල ව්‍යුහය ■ ලුව්ස් ව්‍යුහ ඇඳීමේ නීති ■ ලුව්ස් ව්‍යුහ (තිත්-කතිර, තිත් - තිත්, තිත් - කෙටි ඉරි) ◆ ව්‍යුක්සෲණකා වෙනස මගින් බන්ධන ස්වභාවය නිර්ණය කිරීම. (ව්‍යුක් ඍණකාව පිළිබඳ පෝලිං පරිමාණ පමණි) ◆ බන්ධනයක ධ්‍යුවීයකාව හා ද්විඛුල් සූර්ණය ◆ නිර්ඛුල්‍ය සහ සංයුජ බන්ධන (උදු: H₂, Cl₂, O₂, N₂) ● ධූල්‍ය සහසංයුජ බන්ධන (උදු: HCl, H₂O, NH₃) ◆ අණුවල ද්විඛුල් සුර්ණය ◆ සංගත (දායක) බන්ධන (උදු: H₃O⁺, NH₄⁺, NH₃BF₃) ◆ අයනික බන්ධන ● අයනික බන්ධන ● අයනික බන්ධන 	කටය • සහ සංයුජ අණු හා අයන කාණ්ඩ සඳහා ලුවිස් වාූූහ අඳියි.	12

		· · · · · · · · · · · · · · · · · · ·
	අයනික බන්ධනවල සහසංයුජ ලඎණකැටායනවල ධුැවීකාරක බලය	ලෝහක බන්ධනයක ව\u00e4ුහය පැහැදිලි කරයි.සහසංයුජ, අයනික හා ලෝහක බන්ධන
	■ ඇනායනවල ධුැවණශීලතාව	පුාථමික අන්තර්කිුයා ලෙස සඳහන් කරයි.
	• ලෝහක බන්ධන	
2.2 සහසංයුජ හා ටුැවීය සහසංයුජ අණුවල හා සරල අයනවල හැඩ විගුහ කරයි.	 සම්පුයුක්තතාව යන සංකල්පය ලුවිස් තිත්-ඉරි වයුහය යොදා ගනිමින් සරල අණු හා අයනවල සම්පුයුක්ත වයුහ මධා පරමාණුවේ මුහුම්කරණය (sp, sp² හා sp³ පමණකි. ව්යුග්ම ඉලෙක්ටෝන සහිත විශේෂ අනවශායි) දෙවැනි ආවර්තයේ මුලදුවා සඳහා පමණී. පර්යන්ත පරමාණුවල මුහුම්කරණ අවශා නොවේ. අණු හා අයනවල σ හා π බන්ධනවල ස්වභාවය සංයුජතා කවව ඉලෙක්ටෝන යුගල විකර්ෂණ (VSEPR) වාදය VSEPR වාදය භාවිත කර අණුවල / අයනවල හැඩ පෙරැයිම(කේෂ්ඨිය පරමාණුව උපරිම වශයෙන් ඉලෙක්ටෝන යුගල හයකින් වට වී ඇති විශේෂවල පමණකි) ජාාමිතික හැඩ ඉතිය නියානති වතුස්තලීය පිරමීඩීය කෝණික 	සිමා වන සහසංයුජ අණුවල හා අයනවල සම්පුයුක්ත වාුහ අඳියි. සම්පුයුක්තතාව භාවිත කර ඕසෝන් අණුවේ හා කාබනේට් අයනයේ බන්ධන දිගෙහි සමානත්වයට හේතු පැහැදිලි කරයි. පරමාණුවක කාක්ෂික අතිච්ඡාදනය පැහැදිළි කරයි. සුදුසු නිදසුන් භාවිතයෙන් මධාම පරමාණුවේ sp, sp² හා sp³ යන මුහුම්කරණ සිදු වන ආකාරය විස්තර කරයි. s-s, s-p හා p-p පරමාණුක කාඤිකවල රේඛීය අතිච්ඡාදනයෙන් σ බන්ධන සාදන බව සඳහන් කරයි. p කාක්ෂික දෙකක් අතර පාර්ශ්වික අතිච්ඡාදනයෙන් π බන්ධන සැදෙන බව
	ත්‍ර අානති ද්විපිරමිඩාකාර	පුරෝකථනය කරයි.

	 සීසෝ හැඩැති (විකෘත චතුස්තලීය) T හැඩය අෂ්ටතලීය චතුරසු පිරමිඩාකාර කලීය සමචතුරසු අදාල පරමාණුවල පරිසරය අනුව විදහුත් සෘණතාව විචලනය වීම (ආරෝපණය, මුහුම්කරණය හා ඔක්සිකරණ අංකය) ආකෘති මගින් හැඩ පෙන්නුම් කිරීම 	සෑණතාව විචලනය වන අයුරු විස්තර කරයි. (ගුණාත්මක ව පමණි)	
2.3 පදාර්ථයේ වුහුගය හා ගුණ නිර්ණය කිරීමේ කුමයක් ලෙස විවිධ පද්ධතිවල ද්විතීයික අන්තර්කුියා විශ්ලේෂණය කරයි.	 ද්විතීයික අන්තර්කියා ද්විධුැව-ද්විධුැව අන්තර්කියා අයන-ද්විධුැව අන්තර්කියා හයිඩ්රජන් බන්ධන අයන- ජේරිත ද්විධුැව අන්තර්කියා ද්විධුැව-පේරිත ද්විධුැව අන්තර්කියා අපකිරණ අන්තර්කියා / ලන්ඩන් බල (ගුණාත්මක හැදෑරීමක් පමණි) ද්විතීයික අන්තර්කියා හේතුවෙන් සරල අණුක ජාලයක පිළියෙල වීම (I₂ හා H₂O). 	 සුදුසු නිදසුන් භාවිත කර ද්විතීයික අන්තර්කියා ආකාර විස්තර කරයි. දවායක පවත්නා ද්විතීයික අන්තර්කියාවල ස්වභාවය හා එහි භෞතික ගුණ අතර සම්බන්ධතාව ඉස්මතු කර පෙන්වයි. 15, 16 සහ 17 කාන්ඩ වල මූලදවා හයිඩුයිඩවල දවාංක කෙරෙහි හයිඩුජන් බන්ධනවල බලපෑම පැහැදිළි කරයි. ද්විතීයික අන්තර්කියාවල වැදගත්කම සහ පදාර්ථයේ භෞතික අවස්ථා සඳහා එහි බලපෑම පුකාශ කරයි. සුදුසු උදාහරණ මඟින් අණුක දැලිසක පිළියෙල වීම පැහැදිලි කරයි. දලිස් වූහුුහුවල ලක්ෂණ පුරෝකථනය කරයි. 	07

3.0 ඒකකය : රසායනික ගණනය කාලච්ජේද 37

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය		ඉගෙනුම් පල	කාලච්ජේද
3.0 ඒකකය	3.1	· ·	•	දෙන ලද පුභේදයක ඇතුළත් පරමාණුවල ඔක්සිකරණ අංකය සොයයි.	
`	පරමාණුක හා අණු සම්බන්ධ භෞතික රාශි උපයෝගී කර රසායනික	සරල සංයෝගවල රසායනික සූතු හා ඔක්සිකරණය අංකය මත පදනම් වූ IUPAC නාමකරණය	•	IUPAC නීති භාවිත කර රසායනික සූතු හා නාම ලියයි.	
ව සිදු කරයි.	සූතු නිර්ණය කිරීමට අදාළ දත්ත භාවිත කර ගණනයන් සිදු කරයි.	සරල සංයෝගවල සාමානා නාමමවුල, මවුලික ස්කන්ධය හා ඇවගාඩෝ	•	නිරන්තරයෙන් භාවිත වන රසායනික සංයෝගවල සාමානෳ නාම සඳහන් කරයි.	
		නියතය පදනම් වූ සරල ගණනය කිරීම් • ආනුභවික සූතු හා අණුක සූතු	•	ඇවගාඩ්රෝ නියතයේ (L) අගය ඒකක සහිත ව සඳහන් කරයි.	
		● සංයුතිය පිළිබඳ පරාමිති	•	මවුල සහ ඇවගාඩ්රෝ නියතයට සම්බන්ධ ගනනය කිරීම් සිදු කරයි.	
		■ ස්කන්ධ භාගය ■ බර අනුව පුතිශතය <i>(w/w %)</i>	•	පුතිශත සංයුතිය දන්නා විට ආනුභවික සූතුය නිර්ණය කරයි.	13
		■ මිලියනයට කොටස් (ppm/mg kg¹) ■ බිලියනයට කොටස් (ppb/μg kg¹)	•	ආනුභවික සූතුය හා අණුක ස්කන්ධය දන්නා වීට අණුක සූතුය ද නිර්ණය කරයි.	
		■ පරිමා භාගය	•	අණුක සූතුය දී ඇති විට එහි අඩංගු මූල දුවාවල සංයුති ගණනය කරයි.	
		■ පරිමාව අනුව පුතිශතය $(v/v \ \%)$ ■ මිලියනයට කොටස් (වායු සඳහා) $\mu L L^{-1}$	•	සංයුතියෙහි පරාමිති (ස්කන්ධ භාගය, පරිමා භාගය, මවුල භාගය, සාඤණය) සමාලෝචනය	
		■ මවුල භාගය ■ බුදු / ස දි බ බ	•	කරයි. ස්කන්ධ භාගය, පරිමා භාගය හා මවුල භාගය	
		■ බර / පරිමාව ● තනුක ජලීය දාවණ සඳහා <i>ppm,</i> <i>mg dm</i> ³ ලෙස	•	සම්බන්ධ ගැටලු විසඳයි. ඒකක පරිමාවක ඇතුළත් දුාවා මවුල පුමාණය සාන්දුණය ලෙස අර්ථ දක්වයි. (mol/volume)	
		• තනුක ජලීය දාවණ සඳහා <i>ppb,</i> μ <i>g dm</i> ³ ලෙස			

	 ■ සාඤණය (මවුලිකතාව) මවුල/පරිමාව ● mmol dm³, mol m³ ● mol m³ ● වීදුරු භාණ්ඩ පරිහරණය හා සිව්දඬු තුලාව පරිහරණය 	 ස්කන්ධය / පරිමාව සහ පුමාණය / පරිමාව (සාæුණය) සම්බන්ධ ගැටලු විසඳයි. විදාහාගාරයේ ඇති පිපෙට්ටු, බියුරෙට්ටු, බීකර, මිනුම්සරා වැනි වීදුරු උපකරණ සහ සිව්දඬු තුලාව නිවැරදි ව පරිහරණය කරයි. 	
3.2 විවිධ කුම භාවිත කර තුලිත සමීකරණ ලියා දක්වයි.	 රසායනික සමීකරණ තුලනය කිරීම සෝදිසි කුමය රෙඩොක්ස් කුමය ඔක්සිකරණ අංක භාවිතයෙන් අයන - ඉලෙක්ටෝන අර්ධ සමීකරණ භාවිතයෙන් සරල නාෂ්ඨික පුතිකියා තුලිත කිරීම 	 ස්කන්ධ හා ආරෝපණ සංස්ථිතිය සැලකිල්ලට ගනිමින් රසායනික සමීකරණයක තුලිත බව පිරික්සයි. සෝදිසි කුමය හා රෙඩොක්ස් කුමය භාවිතයට ගනිමින් සමීකරණ තුලනය කරයි. සරල නාෂ්ටික පුතිකුියා තුලිත කරයි. 	10
3.3 ස්ටොයිකියෝමිතිය හා පුතිකියා ආශිත ගණනය කිරීම් කරයි.	 විවිධ වර්ගයේ රසායනික පුතිකියාවලට අදාළ ගණනය කිරීම. අම්ල - භස්ම හා රෙඩොක්ස් පුතිකියා-වලට අදාල ගණනය කිරීම අවක්ෂේපණ (හරමිතික) පුතිකියා වලට අදාල ගණනය කිරීම දාවණ සැදීම 	කිරීම් සිදු කරයි. • දුාවණ පිළියෙල කරන ආකාරය හා තනුකකරණය කරන ආකාරය පැහැදිලි කරයි.	14

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේද
4.0 පදාර්ථයේ වායු අවස්ථා- වේ හැසිරීම විමර්ශනය කරයි.	4.1 පදාර්ථයේ පුධාන තිවිධ අවස්ථාවල දර්ශීය ලක්ෂණ පැහැදිලි කරනු පිණිස ඒවායේ අංශුමය සංවිධානය යොදා ගනියි.	 පදාර්ථයේ ප්‍රධාන අවස්ථා සන දව වායු අංශුවල සැකැස්ම හා චලනය පදාර්ථයේ ගුණ ගුණාත්මක ව සංසන්දනය කිරීම පරිමාව සනත්වය හැඩය (ගුරුත්වය) සම්පීඩානාව 	 ඝන, දව, වායු යන ප්‍රධාන අවස්ථාවල අංශුවල සංවිධානය විමර්ශනය කරයි. අංශුවල සැකැස්ම සහ ඒවායේ චලිතය උපයෝගී කර ගනිමින් ඝන, දව හා වායුවල පරිමාව, ඝනත්වය, හැඩය (හැඩය කෙරෙහි ගුරුත්ව බලයේ බලපෑම) හා සම්පීඩානාව වැනි මහේක්ෂ ගුණ සංසන්දනය කරයි. 	02
	4.2 සතා වායුවල හැසිරීම් රටා විස්තර කිරීම සඳහා ආකෘතියක් ලෙස පරිපූර්ණ වායුව යොදා ගනියි.	 පරිපූර්ණ වායු සමීකරණය හා එහි වනුත්පන්න (P, V, T හා n විචලා ලෙස) P = CRT, PV = m RT, PM = dRT M බොයිල් නියමය, චාල්ස් නියමය හා ඇවගාඩෝ නියමය. පරිපූර්ණ වායු සමීකරණය සමඟ බොයිල්, චාල්ස් හා ඇවගාඩෝ නියමවල සංගතතාව මවුලික පරිමාව වායුවක මවුලික පරිමාව පරීඤණාත්මක ව නිර්ණය කිරීම. මැග්නිසියම්වල සාපේඤ පරමාණුක ස්කන්ධය හයිඩුජන්වල මවුලික පරිමාව භාවිතයෙන් පරීඤණාත්මක ව නිර්ණය කිරීම. 	සංගතතාව පෙන්වා දෙයි. • වායුවක මවුලික පරිමාව අර්ථ දක්වයි. • පරිපූර්ණ වායු සමීකරණය සම්බන්ධ ගැටලු විසඳයි. • ඔක්සිජන්වල මවුලික පරිමාව පරිසුණාත්මක ව නිර්ණය කරයි.	10

4.3 තාත්වික (සතාව) වායුවල හැසිරීම පැහැදිලි කිරීම සඳහා අණුක චාලක වාදය යොදා ගනියි.	 වායු පිළිබඳ අණුක චාලක වාදය වායුවක පීඩනය මධානය වේගය, වර්ග මධායනය වේගය හා වර්ග මධානා මූල වේගය සඳහා ප්‍රකාශන චාලක අණුක සමීකරණය PV = 1 mNC² (වායුත්පන්න කිරීම අනවශා ය) \(\overline{C}^2 = \frac{3RT}{M}\) මැක්ස්වෙල් බොල්ට්ස්මාන් වාහප්තිය සරල ආකාරය (ප්‍රස්තාරික ව) උෂ්ණත්වය සහ මවුලික ස්කන්ධය අනුව වාහප්තියේ විචලනය 	• මධානය වේගය \overline{C} , වර්ග මධානය වේගය $\overline{C^2}$ හා වර්ග මධානා මූල වේගය $\sqrt{\overline{C^2}}$ සඳහා පුකාශන ලියා දක්වයි. • වායු පිළිබඳ චාලක අණුක සමීකරණය පුකාශ කර එහි පද විස්තර කරයි. • $\overline{C^2} = \frac{3RT}{M}$ සම්බන්ධතාව වාුුත්පත්න කරයි	08
4.4 වායු මිශුණයක හැසිරීම පැහැදිලි කිරීම සඳහා ඩෝල්ටන්ගේ ආංශික පීඩන නියමය යොදා ගනී.	මුළු පීඩනය හා ආංශික පීඩනය. ඩෝල්ටන්ගේ ආංශික පීඩනය නියමය.		06

4.5 සතා (තාත්වික) වායු සඳහා පරිපූර්ණ වායු සමීකරණය යෙදීමේ දී කළ යුතු සංශෝධන විශ්ලේෂණය කරයි.	 සම්පීඩාතා සාධකය (පරිපූර්ණ බව පිරික්සීම සඳහා පමණයි) සතා වායු, පරිපූර්ණ වායු නියමයෙන් අපගමනය වීම අණුක අන්තර්කියා අණුවල පරිමාව පරිපූර්ණ වායු සමීකරණය සඳහා සංශෝධන වැන්ඩ'වාල්ස් සමීකරණය (ගුණාත්මක විස්තර කිරීමක් පමණි) අවධි උෂ්ණත්වය 	 තාත්වික සහ පරිපූර්ණ වායුවල එහි අගය පීඩනය සමඟ වෙනස් වන ආකාරය පුස්තාරික ව ඉදිරිපත් කරයි. අණුක චාලක වාදයේ එන උපකල්පන සලකමින් තාත්වික වායු පරිපූර්ණ වායුවල හැසිරීමෙන් අපගමනය වීමට හේතු විස්තර කරයි.
--	---	--

5 ඒකකය : ශක්ති විදහව කාලච්ජේද 37

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය		ඉගෙනුම් පල	කාලච්ජේද
5.0	5.1	• විත්ති ගුණ හා ඝටතා ගුණ	•	විත්ති ගුණ හා ඝටතා ගුණ විස්තර කරයි.	
අදාළ එන්තැල්පි හා එන්ටොපි	එන්තැල්පිය හා සම්බන්ධ සංකල්ප ගවේෂණය කරයි.	තැල්පි සම්බන්ධ සංකල්ප ගත්ටොපි ගවේෂණය කරයි. ● ජ	සම්බන්ධ සංකල්ප පද්ධතිය, විවෘත පද්ධතිය හා ඒ	පද්ධතිය, වටපිටාව (පරිසරය), සීමාව සංවෘත පද්ධතිය, විවෘත පද්ධතිය හා ඒකලිත පද්ධතිය යන පද අර්ථ දක්වයි.	
වෙනස්වීම් විමර්ශනය කරමින්		පද්ධතියක අවස්ථාව හා අවස්ථා ශි්තතාපය හා එන්තැල්පිය	•	සංශුද්ධ දුවාවල සහ දුාවණවල සම්මත අවස්ථා (ඝන, දුව, වායු) පුකාශ කරයි.	
රසායනික පද්ධතිවල ස්ථායිතාව හා		 අවස්ථා විපර්යාස හා රසායනික පුතිකියා ආශිත එන්තැල්පි විපර්යාස 	•	පද්ධතියක අවස්ථාව හා අවස්ථා ශුිත අර්ථ දක්වයි.	
පරිවර්තනවල සාධානතාව		ΔH = H (අවසාන) - H (ආරම්භක)	•	පුතිකිුයාවක එන්තැල්පි විපර්යාසය පැහැදිළි කරයි.	
පුරෝකථනය කරයි.		(kJ හෝ kJ mol ⁻¹ වලින් දක්විය හැකි ය. පුතිකියාව සිදුවන ඒකක පුමාණය අනුව පුකාශ කිරීමේ දී kJ mol ⁻¹ යොදාගනී) සම්මත අවස්ථා ආශිුත එන්තැල්පි විපර්යාසය.		එන්තැල්පිය, අවස්ථා ශිුතයක් හෙවත් තාපගතික ගුණයක් ලෙස විස්තර කළ හැකි බවත් තාපය අවස්ථා ශීුතයන් නොවන බවත් විස්තර කරයි.	
		$\Delta \mathrm{H}^0 = \mathrm{H}^0$ (අවසාන) - H^0 (ආරම්භක)	•	ΔH හි ඒකක වාර්තා කරන්නේ පුතිකිුයාව සිදුවන ඒකක පුමාණය අනුව (kJ mol ⁻¹) හෝ අවතල පුමාණය අනුව kJ වලින් බව සඳහන් කරයි.	
			•	පුතිකියාවල එන්තැල්පි විපර්යාස පහත සමීකරණය භාවිතයෙන් ගණනය කරයි.	
				$\Delta H = H (අවසාන) - H (ආරම්භක)$	
			•	පුතිකිුයාවල සම්මත එන්තැල්පි විපර්යාස පහත සමීකරණය භාවිතයෙන් ගණනය කරයි.	
				$\Delta \mathrm{H}^0 = \mathrm{H}^0$ (අවසාන) - H^0 (ආරම්භක)	

5.3 බෝන්-හේබර් චකු	 බෝන් - හේබර් චකුය මගින් අයනික සංයෝගවල දැලිස් එන්තැල්පිය ගණනය කිරීම. 	බෝන් - හේබර් චකුය ගොඩ නැඟීම සඳහා අදාළ වන එන්තැල්පි විපර්යාස අර්ථ දක්වයි.
භාවිතයෙන් අයනික	$ullet$ උෟර්ධව පාතන එන්නැල්පිය ($\Delta { m H}_{_{ m S}}$)	• අයනික සංයෝගවල දැලිස් එන්තැල්පිය
සංයෝගයක දැලිස් එන්තැල්පිය	• වාෂ්පීකරණ එන්තැල්පිය (ΔH _{vap})	නිර්ණය කිරීම සඳහා බෝන් - හේබර් චකුය ගොඩ නඟියි.
හෝ උත්පාදන එන්තැල්පිය	$ullet$ විලයන එන්තැල්පිය ($\Delta H_{ m fus}$)	• බෝන් - හේබර් චකුය භාවිතයට ගනිමින් සම්බන දැසින් එක්තැල්පීය ගුණුලද කරයි
ගණනය කරයි.	$ullet$ පරමාණුකරණ එන්තැල්පිය ($\Delta { m H}_{ m atm}$)	සම්මත දැලිස් එන්තැල්පිය ගණනය කරයි. 08
	$ullet$ අයනීකරණ එන්තැල්පිය ($\Delta H_{ m l}$)	 එන්තැල්පි සටහන් භාවිතයට ගනිමින් සම්මත දැලිස් එන්තැල්පිය ගණනය කරයි.
	● ඉලෙක්ටුෝනකරණ එන්තැල්පිය (ඉලෙක්ටුෝන ලබාගැනීමේ එන්තැල්පි) (ΔH _{EA})	 දෙවන සහ තුන්වන ආවර්ථවල මූල දුවාවල ඉලෙක්ටෝනකරණ එන්තැල්පිය විචලනය
	$ullet$ දැලිස් (ජාල) එන්තැල්පිය ($\Delta H_{ m LE}$)	වන ආකාරය පැහැදිළි කරයි.
5.4	● එන්ටොපිය (S) හා එන්ටුෝපි වෙනස (ΔS)	• අහඹුතාව සම්බන්ධ මිනුමක් ලෙස
රසායනික පුතිකිුයාවල	 ගිබ්ස් ශක්තිය (G) හා ගිබ්ස් නිදහස් ශක්ති වෙනස (ΔG) 	එන්ටොපිය (S) හා එන්ටොපි වෙනස (ΔS) යන පද පැහැදිලි කරයි.
ස්වයං සිද්ධතාව පුරෝකථනය කරයි.	• ΔG, ΔH හා ΔS අතර සම්බන්ධය	 පද්ධතියක ස්ථායිතාව අහඹුතාව සමග වැඩි වන අයුරු පැහැදිළි කරයි.
	$\bullet \Delta G = \Delta H - T \Delta S$	● එන්ටොපි වෙනස, උෂ්ණත්වය, භෞතික
	● සම්මත ගිබ්ස් නිදහස් ශක්ති වෙනස (ΔG°) හා සම්මත එන්ටොපි වෙනස (ΔS°).	ස්වභාවය හා අංශු සැකසී ඇති ආකාරය මත රඳා පවතින බව සඳහන් කරයි.
	• ΔG°, ΔH° සහ TΔS° අතර සම්බන්ධතාව	● ගිබ්ස් නිදහස් ශක්තිය (G) හා ගිබ්ස් නිදහස් ශක්තිය (∆G) යන පද පැහැදිලි කරයි.
	$\bullet \Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$	• S හා G අවස්ථා ශුිත බව සඳහන් කරයි.
		■
		$ullet$ $\Delta G = G$ (ඵල) $-G$ (පුතිකිුයා)
		■ ශක්ති චකුය
		යන සම්බන්ධතා යොදාගනිමින් ΔS හා ΔG ගණනය කරයි.

5.2 යම් විපර්යාසයකට අදාළ එන්තැල්පි	 Q = m c ΔT භාවිතයෙන් තාප විපර්යාස/පතිකිුයා තාප ගණනය කිරීම. තාපදායක (ශක්ති විමෝචන) හා තාපාවශෝෂක 	මගින් තාප විපර්යාස ගණනය කරයි.
වෙනස්වීම් අර්ථ දක්වා දී ඇති	(ශක්ති අවශෝෂක) කිුයාවලි.	සටහනක් ආශුිත ව පැහැදිලි කරයි.
විපර්යාස සඳහා එන්තැල්පි විපර්යාස	• එන්තැල්පි විපර්යාස හා සම්මත එන්තැල්පි විපර්යාස.	නිර්දේශයේ ඇතුළත් එන්තැල්පි විපර්යාස හා සම්මත එනතැල්පි විපර්යාස අර්ථ දක්වයි.
ගණනය කරයි.	 උත්පාදන එන්තැල්පිය (ΔH_f) දහන එන්තැල්පිය (ΔH_c) 	• හෙස් නියමය පුකාශ කරයි.
	$lacksquare$ බන්ධන විඝටන එන්තැල්පිය ($\Delta { m H_d}$)	• එන්තැල්පි විපර්යාස ගණනය කිරීම.
	■ මධෳන බන්ධන විඝටන එන්තැල්පිය	එන්තැල්පි රූපසටහන් භාවිත කරයි.තාප ගති විදහාත්මක චකු භාවිත කරයි.
	■ උදාසීනිකරණ එන්තැල්පිය (ΔH _{neu}) ■ සජලන එන්තැල්පිය (ΔH _{hyd})	■ සංඝටකවල උත්පාදන එන්තැල්පි පමණක් භාවිත කරයි.
	■ දාවණ එන්තැල්පිය (ΔH _{Sol})	■ බන්ධන එන්තැල්පි පමණක් භාවිත කරයි. 23
	 විවිධ කි්යාවලිවල එන්තැල්පි මට්ටම් රූපසටහන් හා එන්තැල්පි චකු. 	1
	 එන්තැල්පි මට්ටම් සටහන් සහ එන්තැල්පි වකු අතර වෙනස්කම්. 	පුහල අම්ල හා පුහල හස්මවල උදාසීනීකරණ එන්තැල්පීන් නියත වන බව සඳහන් කරයි.
	• හේස්ගේ නියමය (අවස්ථා ශුිතයක භාවිතයක් ලෙස)	• දුබල අම්ල හා දුබල භස්මවල උදාසීනීකරණය
	 විවිධ කි්යාවලි ආශිත එන්තැල්පි විපර්යාස ගණනය කිරීමට හේස් නියමය භාවිත කිරීම. 	<u> </u>
	• අම්ල භෂ්ම උදාසීනීකරණ එන්තැල්පිය පරීකෳණාත්මක ව නිර්ණය කිරීම (NaOH හා HCl, KOH හා HNO ₃ , NaOH හා COOH, NH ₄ OH හා HCl)	, කිරීම මගින් හෙස් නියමයේ වලංගුතාව
	• පරීක්ෂණාත්මකව හෙස් නියමය සතහාපනය කිරීම	

• භාවිත කර පුතිකිුයාවක ස්වයංසිද්ධතාව නිර්ණය කිරීම.	• ΔG^0 සහ ΔS^0 යන පද පැහැදිළි කරයි. • ΔG^0 , ΔH^0 හා ΔS^0 අතර සම්බන්ධතාව
■	සඳහන් කරයි.
■ ΔG < 0, ස්වයංසිද්ධවීම	• ΔG භාවිත කරමින් නියත උෂ්ණත්වයක්
■ ΔG > 0, ස්වයංසිද්ධ නොවීම.	හා පීඩනයක් යටතේ පුතිකිුයාවක ස්වයං සිද්ධතාව පුරෝකථනය කරයි.
	• ΔG හා ΔS හි ඒකක, අවතල පුමාණ හෝ පුතිකියාව සිදුවන ඒකක පුමාණය අනුව සඳහන් කරයි. ΔG (kJ හෝ kJ mol ⁻¹) හා ΔS (JK ⁻¹ හෝ J mol ⁻¹ K ⁻¹)
	• ΔG^0 , ΔH^0 , ΔS^0 හි අගයන් මත පදනම් වන ගණනයන් සිදු කරයි.
	• ΔG අගය භාවිත කරමින් පුතිකියාවක් සිදුවීමේ පහසුතාවය පෙරයීම් කරයි.

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේද
6.0 s, p හා d ගොනුවල මූලදුවා හා ඒවායේ සංයෝගවල ගුණ විමර්ශනය කරයි.	6.1 S ගොනුවේ මූලදුවාවල ගුණ වීමර්ශනය කරයි.	 S ගොනුවේ මූලදුවාවල පැවැත්ම. (Na, K, Mg හා Ca පමණි.) S ගොනුවේ තෝරා ගත් මූලදුවාල ප්‍රතිකියා. ජලය සමඟ වාතය / ඔක්සිජන් සමඟ හයිඩුජන් සමඟ හයිඩුජන් සමඟ අම්ල සමඟ වානය, ජලය හා අම්ල සමඟ 's' ගොණුවේ ලෝහවල ප්‍රතිකියා සංසන්දනය. පහන් සිළු පරිකු වෙන් සංයෝගවල ඇති Li⁺, Na⁺, K⁺, Ca²⁺, Sr²⁺, Ba²⁺ මූලදුවා හඳුනා ගැනීම. 	පැවැත්ම විස්තර කරයි. • පළමුවැනි හා දෙවැනි කාණ්ඩවල මූලදුවා වාතය / ඔක්සිජන්, ජලය, අම්ල, නයිටුජන් හා හයිඩුජන් සමඟ සිදු කරන පතිකියාවල ස්වභාවය තුලිත රසායනික සමීකරණ ඇසුරින් විස්තර කරයි. • සෝඩියම් හා මැග්නීසියම් නියෝජිත මූලදුවා ලෙස ගනිමින් ඒවා වාතය, ඔක්සිජන්, ජලය හා අම්ල සමඟ සිදු කරන	10
	6.2 p ගොනුවේ මූලදුවා හා සංයෝගවල ගුණ විමර්ශනය කරයි.	p ගොනුවේ මූලදුවාවල පැවැත්ම. (C, N, O පමණි.) p ගොනුවේ මූලදුවා (කාණ්ඩ 13 - 18)	 S ගොනුවට සාපේඎ ව ගොනුවේ මූලදවාවල හා සංයෝගවල පැවැත්ම විස්තර කරයි. ඇලුමිනියම් හා ඇලුමිනියම් ඔක්සයිඩ්වල පුතිකුියා මඟින් එහි උභයගුණි ස්වභාවය විස්තර කරයි. 	23

- තෝරාගත් මූලදුවාවල හා ඒවායේ සංයෝගවල ගුණ.
 - ඇලුමිනියම්
 - ඇලුමිනියම් ඔක්සයිඩ්
 - ඇලුමිනියම් හා ඇලුමිනියම් ඔක්සයිඩවල උභයගුණි ලක්ෂණ
 - ඇලුමිනියම් ක්ලෝරයිඩ්වල ඉලෙක්ටෝන ඌනතාව
 - කාබන්
 - කාබන්වල බහුරූපී ආකාර
 - කාබන්වල ඔක්සයිඩ
 - කාබන්වල ඔක්සො අම්ල
 - නයිටුජන්
 - විවිධ සංයෝගවල දී N හි ඔක්සිකරණ | නයිටුජන්හි විවිධ ඔක්සිකරණ අංක සඳහා අංක
 - අවකීය ඔක්සොඅම්ල හා ඔක්සයිඩ
 - ලෝහ හා අලෝහ සමඟ නයිටුක් අම්ලයේ පුතිකියා (Mg, Cu, C, S)
 - ඇමෝනියා
 - ඔක්සිකාරක හා ඔක්සිහාරක ගුණ (Na, Mg, Cl₂, CuO සමඟ)
 - ඇමෝනියම් ලවණ
 - ඇමෝනියම් ලවණවල තාප වියෝජනය (හේලයිඩ, NO_{3}^{-} , NO_{2}^{-} , CO_{3}^{2-} , SO_{4}^{2-} , $Cr_{2}O_{7}^{2-}$)

- AlClූ හි ඉලෙක්ටෝන ඌනතාව හා AlූCl සෑදීම විස්තර කරයි.
- කාබන්වල පුධාන බහුරූපී ආකාර නම් කරයි. (මිනිරන්, දියමන්ති, ෆුලරීන්)
- මිනිරන්වල හා දියමන්තිවල වනුහ පැහැදිලි කරයි.
- දියමන්ති හා මිනිරන්වල දුවාංක, ලිහිසි ගුණ, දැඩිබව හා විදයුත් සන්නායකතාව පැහැදිළි කරයි.
- කාබන් මොනොක්සයිඩ්වල හා කාබන් ඩයොක්සයිඩ්වල වසුහ හා ගුණ ඉදිරිපත් කරයි.
- H,CO, හි වයුහය හා එහි ආම්ලික ගුණ පැහැදිලි කරයි.
- නයිටුජන්හි අකීුයභාවය එහි බන්ධන ශක්ති ඇසුරෙන් පැහැදිළි කරයි.
- නිදසුන් ලියා දක්වයි.
- නයිටුජන්හි ඔක්සයිඩ හා ඔක්සො අම්ලවල වාහුන ඉදිරිපත් කරයි.
- දී ඇති ලෝහ හා අලෝහ සමඟ නයිටුක් අම්ලයේ පුතිකියා සඳහා තුලිත සමීකරණ ලියයි. (Mg, Cu, C හා S සමග)
- ඇමෝනියා ඔක්සිකාරකයක් ලෙස කිුයා කරන අවස්ථා සඳහා පුතිකියා ලියයි. (Na හා Mg සමග)
- Cl, හා CuO සමග ඇමෝනියා ඔක්සිකාරකයක් ලෙස කිුියා කරන අවස්ථා සඳහා සමීකරණ ලියයි.
- ඇමෝනියම් ලවණවල තාප වියෝජනය සඳහා තුලිත සමීකරණ ලියයි.

- ඔක්සිජන් සහ සල්ෆර්
 - o බහුරූපී ආකාර
 - \circ අවකීය ඔක්සො අම්ල $(H_2SO_4, H_2SO_3, H_2S_2O_3)$
 - සල්ෆියුරික් අම්ලයේ ප්‍රතිකියා(ලෝහ, C හා S සමඟ)
 - o ඔක්සිජන් හා සල්ෆර් අඩංගු සංයෝග
 - o ජලයේ උභය පුෝටික ගුණය
 - \circ H_2O_2 , H_2S , SO_2 වල ඔක්සිකාරක හා ඔක්සිහාරක ගුණ
- හැලජන
- Cu, Fe හා NH ු සමඟ ක්ලෝරීන්වල පුතිකිුයා
- වෙනත් හේලයිඩ සමඟ හැලජනවල පුතිකිුයා
 (පුතිස්ථාපන පුතිකිුයා)
- ජලය සහ NaOH සමඟ ක්ලෝරීන්වල ද්විධාකරණය
- chlorate(I) අයනයේ ද්විධාකරණය
- ක්ලෝරීන්වල ඔක්සෝ අම්ල
 - හේලයිඩ
 - ජලීය මාධායේ දී හයිඩුජන් හේලයිඩවල ආම්ලික ස්වභාවය
- උච්ච වායු
 - සෙනොන්වල ෆ්ලුවොරයිඩ
- ඇනායන හඳුනා ගැනීම
- වාතයේ නයිටුජන් ඇති බව පරීඤණාත්මක ව පෙන්වීම.

- HCl, ලිට්මස් හා තෙස්ලර් පුතිකාරකය යොදා ගනිමින් ඇමෝනියා වායුව හා ඇමෝනියම් අයන පරීක්ෂණාත්මක ව හඳුනා ගනියි.
- ඔක්සිජන් හා සල්ෆර්වල බහුරූපී ආකාරවල තොරතුරු ඉදිරිපත් කරයි.
- සල්ෆර්වල ඔක්සො අම්ල සඳහා වාුහ ඉදිරිපත් කරයි.
- සාඥ සල්ෆියුරික් අම්ලයේ ඔක්සිකාරක හැකියාව පැහැදිලි කරනු පිණිස එය ලෝහ, කාබන් හා සල්ෆර් සමඟ සිදු කරන පුතිකියා ලියා දක්වයි.
- NH₃ හා HCl සමග ප්‍රතිකියා යොදා ගනිමින් ජලයේ උභයගුණී ස්වභාවය විස්තර කරයි.
- ඔක්සිකාරක ලෙස H_2O_2 , KI හා Fe^{2+} සමග සිදු කරන පුතිකියා ලියා දක්වයි.
- ullet ඔක්සිහාරක ලෙස H_2O_2 , $H^+/KmnO_4$, $H^+/K_2Cr_2O_7$ සමග සිදු කරන පුතිකියා ලියා දක්වයි.
- $H^+/KmnO_4$, $H^+/K_2Cr_2O_7$ හා SO_2 සමග H_2S හි ඔක්සිකරන පුතිකුියා ලියා දක්වයි.
- Na හා Mg සමග H_2S හි ඔක්සිහරන පුතිකිුයා ලියා දක්වයි.
- $H^+/KmnO_4$, $H^+/K_2Cr_2O_7$ සමග SO_2 හි ඔක්සිකරන පුතිකියා ලියා දක්වයි.
- H₂S හා Mg සමග SO₂ හි ඔක්සිහරන පුතිකිුයා ලියා දක්වයි.
- හැලජනවල භෞතික තත්ත්ව සහ වර්ණ පිළිබඳ විස්තර කරයි.

පරීක නොගාරයේ දී හේලයිඩ හඳුනා ගැනීම. VIO ක VI කාබ්ප කර කුලුන්සු ප්රක්ෂ කට ගැනීම.	• Cu, Fe හා NH ₃ සමඟ ක්ලෝරීන්වල පුතිකිුයා සඳහා තුලිත සමීකරණ ලියයි.
 KIO₃ හා KI භාවිත කර තයෝසල්ෆේට් දුාවණයක් පුමාණීකරණය කිරීම. 	
 ඇමෝනියා වායුව ලවණ හඳුනා ගැනීම (ලිට්මස්, හයිඩොක්ලෝරික් අම්ල හා නෙස්ලර් පුතිකාරකය) 	
	• ක්ලෝරීන්වල සහ chlorate (I) අයනයේ ද්විධාකරණය තුලිත සමීකරණ මගින් විස්තර කරයි.
	විවිධ ඔක්සිකරණ අවස්ථාවල ඇති ක්ලෝරීන්හි ඔක්සො අම්ලවල වාුුුුුහ ඉදිරිපත් කරයි.
	• ක්ලෝරීන්වල ඔක්සො අම්ලවල ආම්ලික පුභලතාව හා ඔක්සිකාරක හැකියාව සසඳයි.
	සුදුසු නිදසුන් දෙමින් ජලීය මාධායේ හයිඩුජන් හේලයිඩවල ආම්ලිකතාව විස්තර කරයි.
	• උච්ච වායු සාදන සංයෝග සමහරකට නිදසුන් සපයමින් ඒවායේ ගුණ සඳහන් කරයි. (XeF ₄ , XeF ₂ , XeF ₆)
	$ullet$ අවක්ෂේපණ කුම භාවිතයෙන් ඇනායන හඳුනා ගනියි ($SO_4^{2\text{-}}$, $SO_3^{2\text{-}}$, $S_2O_3^{2\text{-}}$, S^2 -,).
	 ඇතායනයේ ස්වභාවය පදනම් කර ගතිමින් අම්ලවල දී අවක්ෂේපවල දාවාතාව පැහැදිලි කරයි.
	• තනුක HCl, දුඹුරු වලය පරීක්ෂාව හා NaOH/Al මගින් NO $_3^+$, NO $_2^+$ හඳුනා ගතියි.
	 වාතයේ නයිටුජන් ඇති බව පරීකුණාත්මකව පෙන්වා දෙයි.

		A NO AUL PLOVO
		 AgNO₃/NH₃, Pb(NO₃)₂ සහ Cl₂/CCl₄ මගින් හේලයිඩ අයන පරීක්ෂණාත්මක ව හඳුනා ගනියි. KIO₃ හා KI භාවිත කර තයෝසල්ෆේට්
		දුාවණයක් පුමාණීකරණය කරයි.
6.3 s හා p ගොනු	 S ගොනුවේ මූලදුවා හා සංයෝගවල කාණ්ඩයක් පහළට යාමේ දී පෙන්වන නැඹුරුතා 	• S ගොනුවේ මූලදුවාවල ලවණවල ජල දුාවානාව සංසන්දනය කරයි.
මූලදුව්‍‍‍‍වවල හා ඒවායේ සංයෝගවල ගුණ සහ ඒවායේ	 S ගොනුවේ මූලදුවාවල හයිඩොක්සයිඩ කාබනේට, බයිකාබනේට, නයිටුයිට, නයිටේට, හේලයිඩ, සල්ෆයිඩ, කෝමේට පොස්පේට, ඔක්සලේට හා සල්ෆේටවල 	කාබනේට, බයිකාබනේටවල තාප ස්ථායීතාව සසඳයි.
නැඹුරුතා විමර්ශනය කරයි.	ොස්පෙට්, ඔක්ස්පෙට් හා ස්ල්ලේට්ටල දාවෳතා සංසන්දනය ■ නයිටේට්ට, බයිකාබනේට්, කාබනේට් හා හයිඩොක්සයිඩවල තාප ස්ථායීතාව සැසඳීම.	● තෙ වැනි ආවර්තය දිගේ දකුණට යාමේ දී S හා p ගොනුවල ඔක්සයිඩ හා හයිඩුොක්සයිඩවල ආම්ලික / භාස්මික /
	 s හා p ගොනුවල සංයෝගවල ආවර්තයක් දිගේ දකුණට සහ කාණ්ඩයක් ඔස්සේ පහළට යාමේ දී පෙන්වන නැඹුරුතා 	•
	 ඔක්සයිඩවල හා හයිඩුොක්සයිඩවල ආම්ලික භාස්මික / උභයගුණී ස්වභාවය 	• 15 වන කාණ්ඩයේ හේලයිඩවල ජල විච්ඡේදන හැකියාව සසඳයි.
	 තුන්වන ආවර්තය දිගේ දකුණට යාමේ දී හයිඩ්යිඩ හා හේලයිඩ ජලය සමඟ දක්වන 	
	පුතිකිුයා ■ 15 කාණ්ඩය පහළට හේලයිඩ ජලය සමඟ දක්වන පුතිකිුයා	• නයිටේට, හා කාබනේටවල තාපස්ථායිතාව පරීකෘණාත්මක ව සසඳයි.
	 S හා p ගොනුවල මූලදුව‍‍‍‍‍ වල ලවණවල දුාව‍‍‍‍‍‍‍තා පරීකුෂා කිරීම 	
	 Sගොනුවේ මූලදවෳවල නයිටේට හා කාබනේට්වල තාප ස්ථායිතාව පරීඤා කිරීම. 	

6.4 ආවර්තයක් හරහා දකුණට යාමේ දී d ගොනුවේ මූලදවාවල ගුණ විචලනය වන ආකාරය විමර්ශනය කරයි.	සංසන්දනය කිරීම ඉලෙක්ටෝන විනාහස සහ විචලා ඔක්සිකරණ අවස්ථා විදහුත්සාණතාව ලෝහමය ගුණ	06
--	--	----

6.5 d ගොනුවේ සංයොගවල ගුණ විමර්ශනය කරයි.	 කෝමියම් හා මැග්නීසියම්වල ඔක්සයිඩවල ආම්ලික සහ භාස්මික / උභයගුණී ස්වභාවය කෝමියම්වල හා මැග්නීසියම්වල ඔක්සො පැනායන MnO₄
	• ආම්ලිකෘත පොටෑසියම් ප'මැංගනේට භාවිතයෙන් ෆෙරස් අයන දුාවණයක සාන්දුණය නිර්ණය කිරීම
	• අාම්ලිකෘත සම්මත $K_2C_2O_4$ දාවණයක් මගින් ආම්ලික $K_2C_2O_4$ මගින් පරීක්ෂණාත්මක ව පාටෑසියම් ප'මැංගනේට් භාවිතයෙන් $KMnO_4$ දාවණයක සාන්දණය නිර්ණය කිරීම

6.6 d ගොනුවේ සංකීර්ණ සංයෝගවල ගුණ වීමර්ශනය කරයි.	 පහත දැක්වෙන ඒකදායක බන්ධ කාණ්ඩ සමඟ Cr, Mn, Fe, Co, Ni හා Cu සාදන කැටායන හසිඩුන් අම්ලය හා ජලය සමඟ සාදන සංකීර්ණ සංයෝග හා ඒවායේ වර්ණ H₂O, Cl⁻ IUPAC නාමකරණය භාවිත කර එම සංයෝග නම් කිරීම. කැටායනවල පුනිකුියා, NaOH හා NH₃(aq) සමඟ (Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺ හා Zn² අයන NaOH සහ NH_{3(aq)} සමඟ (Cr³⁺, Mn²⁺, Fe²⁺, Fe³⁺, Co²⁺, Ni²⁺, Cu²⁺ හා Zn² අයන NaOH සහ NH_{3(aq)} සමඟ දක්වන පුනිකුයා ලියා දක්වයි. (Mn²⁺, Fe³⁺ සහ Cr³⁺ ඇමෝනියා සමඟ සාදන ඇම්මින් සංකීර්ණ අනවශායි). Cu(II), Ni (II) හා Co (II) හයිඩ්රොක්ලෝරික් අම්ලය හා ඇමෝනියා සමඟ සාදන සංයෝගවල වර්ණ ඔක්සිකරණ හා ඔක්සිහරණ පුනිකුියා අවස්ථාවලට අනුරූප විශේෂවල වර්ණ ඔක්සිකරණ කරයි. ජලීය මාධායේ ඇති Ni²⁺, Fe²⁺, Fe³⁺, Cu²⁺ හා Cr³⁺ අයන පර්යේෂණාත්මකව හඳුනා ගනියි. 	09
	කිරීම. • Ni ²⁺ , Fe ²⁺ , Fe ³⁺ , Cu ²⁺ හා Cr ³⁺ හඳුනා ගැනීමේ පරීකුා.	

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේද
7 කාබනික සංයෝගවල විවිධත්වය විමර්ශනය කරයි.	7.1 රසායන විදහාවේ විශේෂ සෙෂ්තුයක් ලෙස කාබනික රසායනයේ වැදගත්කම විමර්ශනය කරයි.	 කාබනික රසායනයේ හැඳින්වීම. කාබනික සංයෝග අධික සංඛ්‍යාවක් පැවතීමට හේතු. එදිනෙදා ජීවිතයේ දී කාබනික සංයෝගවල වැදගත්කම. 	 ප්‍රධාන සංඝටිත මූලදුවාය ලෙස කාබන් අන්තර්ගත වන ස්වාභාවික හා කෘතිුම සංයෝග විශාල සංඛ්‍යාවක් පවතින බව සඳහන් කරයි. 	
			 අදාළ කරුණු ඉදිරිපත් කරමින් කාබන්වලට විශාල සංයෝග සංඛ‍‍යාවක් සෑදීමට ඇති හැකියාව පැහැදිලි කරයි. 	
			 විවිධ කෂ්තුවලින් නිදසුන් දෙමින් දෛනික ජිවිතයේ දී කාබනික රසායනයේ වැදගත්කම පෙන්වා දෙයි. 	
			 එදිනෙදා ජිවිතයේ විවිධ කෂ්තු වල දී කාබනික රසායනය යොදා ගන්නා බව පිළිගනීයි. 	
	7.2 කියාකාරී කාණ්ඩ ආශුයෙන් කාබනික සංයෝගවල විවිධත්වය. විමර්ශනය කරයි.	 කාබනික සංයෝගවල විවිධත්වය ඇලිෆැටික (අචකීය) හයිඩොකාබන හා ඇරෝමැටික හයිඩොකාබන (බෙන්සීන් හා ආදේශිත බෙන්සීන්) පමණී. ඇල්කිල් හා ඇරිල් හේලයිඩ ඇල්කොහොල හා ෆීනෝල 	 හයිඩොකාබන ඒවායේ ව‍යූහ සූතු මගින් ඇලිෆැටික හා ඇරෝමැටික ලෙස හඳුනා ගනියි. විෂය නිර්දේශයේ ඇතුළත් කි්යාකාරී කාණ්ඩවල නාම සහ සංකේත හඳුනා ගනියි. 	
		 ඊතර ඇල්ඩිහයිඩ හා කීටෝන කාබොක්සිලික් අම්ල අම්ල ක්ලෝරයිඩ එස්ටර ඇමයිඩ ඇලිෆැටික ඇමයින හා ඇරිල් ඇමයින ඇමයිනො අම්ල 	 අන්තර්ගත කියාකාරී කාණ්ඩ අාශුයෙන් විවිධ කාබනික සංයෝග වර්ග නම් කරයි. එක් එක් කිුයාකාරී කාණ්ඩය ඇතුළත් සදෘශ (සමපුභව) ශේණී නම් කරමින් නිදසුන් දක්වයි. 	02

	,	
7.3	• සුලභ කාබනික සංයෝගවල වාවහාරික නාම • සාමානා කාබනික සංයෝගවල	
සරල ඇලිෆැටික කාබනික සංයෝග නම්	පහත දැක්වෙන සීමා ඇතුළත වූ සංයෝග සඳහා භාවිත වන IUPAC නාමකරණ නීති සම්මත නාමකරණයක අවශානාව හඳුනා	
කරයි.	■ පුධාන කාබන් දාමයේ කාබන් පරමාණු සංඛාාව හය නොඉක්ම විය යුතු වේ. • IUPAC නීති භාවිතයට ගනිමින්, විෂය	
	■ සංතෘප්ත, අතු නොබෙදුනු සහ ආදේශිත නිර්දේශයේ සීමාවන්ට යටත් ව දෙන ලද නොවන අංශ දාම පමණක් පුධාන C දාමයට කාබනික සංයෝග නම් කරයි.	
	සම්බන්ධ විය යුතු ය. • සංයෝගයක IUPAC නාමය දුන් විට එහි	3
	■ අසන්තෘප්ත සංයෝගයක ද්විත්ව බන්ධන විසුහ සූතුය අඳියි. හෝ තිුත්ව බන්ධන සංඛ්යාව එකට වඩා වැඩි නොවිය යුතු ය.	
	 ද්විත්ව බන්ධනයක් හෝ තිත්ව බන්ධනයක් පුධාන දාමයෙහි කොටස් වන අතර එය ආදේශකයක් සේ නොසැලකේ. 	
	■ පුධාන කාබන් දාමයට සම්බන්ධ වු ආදේශිත කාණ්ඩ සංඛාාව දෙක නොඉක්මවිය යුතු ය.	06
	 ප්‍රධාන කාබන් දාමයට සම්බන්ධ ආදේශක කාණ්ඩ ලෙස පැවතිය යුත්තේ පහත දැක්වෙන කාණ්ඩ පමණකි. 	
	$- F_{2} - CI_{2} - Br_{2} - I_{2} - CH_{3} - CH_{2}CH_{3}$ $- OH NH_{2}, - NO_{2}, - CN_{2}, - CHO_{3} > C = O$	
	පුධාන කිුියාකාරි කාණ්ඩයක් ලෙස තිබිය යුත්තේ පහත දැක්වෙන කාණ්ඩ පමණිි.	
	-OH, -CHO, > C = O, -COOH, -COX, -COOR, -NH2, -CONH2	
	● පුධාන කිුියාකාරී කාණ්ඩය එක්වරකට වඩා නොතිබිය යුතු ය.	
	(ඇරොමැටික සංයෝගවල නාමකරණය පරීකුෂා නොකෙරේ)	

7.4 එක ම අණුක සූතුයෙන් යුත් අණුවලට තිබිය හැකි එකිනෙකට වෙනස් පරමාණුක සැකැස්ම විමර්ශනය කරයි.	 සමාවයවිකතාව වුහු සමාවයවික දාම සමාවයවික ස්ථාන සමාවයවික කියාකාරී කාණ්ඩ සමාවයවික තිුමාණ සමාවයවික 	•	දෙන ලද අණුක සූතු සඳහා තිබිය හැකි සියලු වුහුහ සූතු අදියි. සමායවිකතාව යන සංකල්පය පැහැදිළි කරයි. දෙන ලද අණුක සුතු සඳහා අඳින ලද වුහුහ සුතු දාම, ස්ථාන, කි්යාකාරි කාණ්ඩ සමාවයවික ලෙස වර්ග කරයි.	
	පාරතිමාන සමාවයවික(විදහා දැක්වෙනුයේ ජපාමිතික සමාවයවික ඇසුරෙන් පමණකි)	•	ජාාමිතික හා පුකාශ සමාවයවිකතාව පෙන්වීම සඳහා තිබිය යුතු අවශාතාව සඳහන් කරයි.	
	පුතිරූප අවයව සමාවයවික(එක් කයිරැල් කාබන් පරමාණුවක් සහිත පුකාශ සමාවයවික පමණි)	•	දෙන ලද අණුක සුතු සඳහා අඳින ලද සමාවයවික අතරින් ජහාමිතික හා පුකාශ සමාවයවික හඳුනා ගනියි. සියලුම සමාවයවික වර්ග සමාලෝචනය කරයි.	

8 ඒකකය : හයිඩොකාබන හා හේලෝ හයිඩොකාබන

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් ඵල	කාලච්ජේද
8.0 හයිඩොකාබනවල හා හේලො හයිඩොකාබනවල වූහය හා ගුණ අතර සම්බන්ධතාව වීමර්ශනය කරයි.	8.1 ඇලිෆැටික හයිඩොකාබනල වුහුහය, භෞතික ලසුණ සහ බන්ධන ස්වභාවය විමර්ශනය කරයි. (චකීය නොවන ඇලිෆැටික හයිඩොකාබන පමණක් සලකා බැලේ)	 හයිඩොකාබන වර්ග ඇල්කේන ඇල්ක්න ඇල්කයින සදෘශ (සමපුභව) ශුේණි භෞතික ගුණ අන්තර් අණුක බල දවාංක සහ තාපාංක කාබනික සංයෝගවල කාබන් පරමාණුවල මුහුම්කරණය (sp³, sp² හා sp) ඇල්කේන, ඇල්කීන හා ඇල්කයිනවල ජාාමිතික හැඩ 	 සුදුසු නිදසුන් උපයෝගී කර ගනිමින් ඇල්කේන, ඇල්කීන හා ඇල්කයිනවල බන්ධනවල ස්වභාවය විස්තර කරයි. ඇල්කේන, ඇල්කීන හා ඇල්කයින සදෘශ ශේණීවල භෞතික ගුණවල විචලනය පැහැදිලි කරයි. සරල ඇල්කේන, ඇල්කීන හා ඇල්කීන හා ඇල්කයිනවල ජාාමිතික හැඩ ඒවායේ කාබන් පරමාණුවල මුහුම්කරණයට සම්බන්ධ කරයි. 	
	8.2 ඇල්කේන, ඇල්කින හා ඇල්කයිනවල රසායනික පුතිකියා ඒවායේ වූහය පදනම් කරගනිමින් විමර්ශනය කරයි. සසඳයි.	 ඇල්කේනවල පුතිකියා සාමානෳ පුතිකාරක කෙරෙහි ඇල්කේනවල පුතිකියාකාරිත්වයේ අඩුකම. මුක්ත ඛණ්ඩක සමඟ පුතිකියා ක්ලෝරීන් සමඟ ආදේශ පුතිකියා මෙතේන්වල ක්ලෝරිනීකරණයේ යාන්තුණය බන්ධනවල සමවිඛණ්ඩනය පුතිකියා අතරමැදි ලෙස මුක්ත ඛණ්ඩක ඇල්කීනවල පුතිකියා අැල්කීනවල පතිකියා ඉලෙක්ටොෆිලික ආකලනය. 	 ඇල්කේනවල C-C හා C-H බන්ධන වල නිර්ධැවීය ස්වභාවය නිසා ඒවා ධැවීය පතිකාරක කෙරෙහි පතිකියාශීලී නොවීම පැහැදිළි කරයි. මෙතේන්වල ක්ලෝරිනීකරණයේ මුක්ත බන්ඩක යාන්තුණය පැහැදිලි කරයි. ඇල්කීන වල අසංතෘප්තතාවය හා වැඩි ඉලෙක්ටෝහිලික ආකලන පතිකියා වලට දක්වන නැඹුරුතාව පැහැදිළි කරයි. ඇල්කීන හයිඩුජන් හේලයිඩ සමග සිදු කරන පතිකියාවේ යාන්තුණය ලියා දක්වයි. 	

- සරල ඇල්කීනවල. හයිඩුජන් හේලයිඩවල ආකලනය ඇල්කීන වලට හයිඩුජන් හේලයිඩ හා එහි යාන්තුණය. • ආකලනය වීමේ දී සෑදෙන කාබෝ
 - පුතිකිුියාශීලී අතරමැදි ලෙස කාබොකැටායන
 - පාථමික, ද්විතීයික හා තෘතීයික කාබොකැටායනවල සාපේæ ස්ථායිතා
 - පෙරොක්සයිඩ හමුවේ හයිඩුජන් බෝමයිඩවල අනියම් හැසිරීම (යන්තුණය අනවශායි)
- සරල ඇල්කීනවලට බෝමීන්වල ආකලනය
 - පොපීන්වලට බෝමීන් ආකලනය වීමේ යන්තුණය
- සල්ෆියුරික් අම්ලයේ ආකලනය හා ආකලන ඵලවල ජලවිච්ජේදනය
- හයිඩුජන්වල උත්පේරිත ආකලනය
- සිසිල් සුපාරීය KMnO_4 සමඟ ඇල්කීනවල පුතිකිුයාව (බේයර් පරීක්ෂාව)
- ඇල්කයිනවල පුතිකිුයා
- ඇල්කයිනවල ලාක්ෂණික පුතිකියා ලෙස ඉලෙක්ටොෆිලික ආකලන
 - බෝමීන්වල ආකලනය
 - හයිඩුජන් හේලයිඩවල ආකලනය
 - ම'කියුරික් අයන හා සල්ෆියුරික් අම්ලය හමුවේ ජලයේ ආකලනය
 - භාගික හයිඩ්ජනීකරණය ද ඇතුළු හයිඩ්ජන්වල උත්පේරක ආකලනය
- අගුස්ථ ඇල්කයිනවල ආම්ලික ස්වභාවය බන්ධනවල | ඇල්කයිනවල අසංකෘප්තතාවය හා අධික ස්වභාවය ඇසුරින් පහදා දීම. | ඉලෙක්ටුෝන ඝනත්වය හේතුවෙන් ඒවා

- ඇල්කීන වලට හයිඩුජන් හේලයිඩ ආකලනය වීමේ දී සැදෙන කාබෝ කැටාටන පුතිකියා අතරමැදියන් ලෙස හඳුනා ගනියි.
- පාථමික, ද්වීතියික හා තෘතීක කාබෝ කැටායන වල සාපේක්ෂ ස්ථායිතාව සන්සන්දනය කරයි.
- අතරමැදි ඵල ලෙස සෑදෙන කාබෝ කැටායනයේ ස්ථායිතාව අනුව හයිඩුජන් හේලයිඩ ආකලනය කුමන දිශාවට සිදු වේද යන්න හඳුනා ගනියි.
- බෝමීන් අණුවේ සිදුවන ධැවීකරණය හේතුවෙන් ඇල්කීන හා බෝමීන් අතර පතිකියාව ද පළමුව Br+ ආකලනය වීම සිදු වන ඉලෙක්ටොෆිලික ආකලන පතිකියාවක් බව හඳුනා ගනියි.
- ඇල්කීන හා බෝමීන් අතර පුතිකියාවේ යාන්තුණය ලියා දක්වයි.
- ullet ඇල්කීන තනුක H_2SO_4 හා ජල විච්ඡේදනය මගින් සැදෙන අවසාන ඵලය ලියා දක්වයි.
- ඇල්කීන උත්පේුරක හයිඩුජනීකරණයෙන් ලැබෙන ඵල ලියා දක්වයි.
- ඇල්කීන ක්ෂාරීය KMnO₄ සමඟ පුතිකියාවෙන් ලැබෙන ඵල ඒවායේ වර්ණ විපර්යාස සමග ලියා දක්වයි.
- ඇල්කයිනවල අසංතෘප්තතාවය හා අධික ඉලෙක්ටෝන ඝනත්වය හේතුවෙන් ඒවා ඉලෙක්ටොෆිලික ආකලන පුතිකියා වලට අක්වන නැඹුරුතාව පැහැදිළි කරයි.

	 අගුස්ථ ඇල්කයිනවල පුතිකියා සෝඩියම් හා සෝඩාමයිඩ් සමඟ ඇමෝනීය කියුපුස් ක්ලෝරයිඩ් සමඟ ඇමෝනීය සිල්වර් නයිටේට් සමඟ ඇල්කීන හා ඇල්කයින ක්ෂාරීය පොටෑසියම් පර්මැංග නේට් සහ බෝමීන් දියර සමඟ පුතිකියා නිරීකුණය කිරීම. අගුස්ථ ඇල්කයින ඇමෝනීය සිල්වර් නයිටේට් හා ඇමෝනීය කියුපුස් ක්ලොරයිඩ් සමඟ පුතිකියා නිරීක්ෂණය කිරීම 	ලැබෙන ඵල ලියා දක්වයි. • අගුස්ථ H ඇති ඇල්කයින ඒවායේ මුහුම්කරණ අවස්ථාව හේතුවෙන්	
8.3 බෙන්සීන්වල බන්ධන ස්වභාවය විමර්ශනය කරයි.	 බෙන්සීන්වල වායුහය කාබන් පරමාණුවල මුහුම්කරණය ඉලෙක්ටෝනවල විස්ථානගත වීම සම්පුයුක්තතා සංකල්පය බෙන්සීන්වල ස්ථායිතාව 	 කෙකුලේ විසින් බෙන්සීන් සඳහා පළමු ව ඉදිරිපත් කරන ලද වයුහය එහි සියලු ගුණ පැහැදිලි නොකිරීමට හේතු ඉදිරිපත් කරයි. බෙන්සීන්වල වයුහය හා ස්ථායිතාව පැහැදිලි කරයි. බෙන්සීන්වල සතා වයුහය සනාථ කිරීම සඳහා සාක්ෂි ඉදිරිපත් කරයි. 	03
8.4 බෙන්සීන්වල ලාක්ෂණික පුතිකියා ඇසුරෙන් එහි ස්ථායිතාව විශ්ලේෂණය කරයි.	 ආකලන ප්‍රතික්‍රියාවලට වඩා පහසුවෙන් ආදේශ ප්‍රතික්‍රියාවලට භාජනය වීම. බෙන්සීන්වල ලාක්ෂණික ප්‍රතික්‍රියා ලෙස ඉලෙක්ටොෆිලික ආදේශ ප්‍රතික්‍රියා, නයිටොකරණය හා එහි යාන්තුණය ඇල්කිල්කරණය හා එහි යන්තුණය ඇසිල්කරණය හා එහි යන්තුණය FeX₃ හමුවේ හැලජනීකරණය හා එහි යන්තුණය (X = Cl, Br) 	බෙන්සීන්වලට ආකලන පුතිකියාවලට වඩා ආදේශ පුතිකියාවලට භාජන වීමේ පුවණතාව පෙන්වා දෙයි. • නයිටොකරණය, ඇල්කිල්කරණය, ඇසිල්කරණය හා හැලජනීකරණය යන පුතිකියාවල යන්තුණය උපයෝගී කර ගනිමින්, බෙන්සීන්වල ලාක්ෂණීක පුතිකියා ලෙස ඉලෙක්ටොෆිලික ආදේශ විස්තර කරයි.	07

		T	
	 ඔක්සිකරණය සඳහා ප්‍රත්රෝධය අැල්කිල් බෙන්සීන්වල (තෘතික හැර) හා ඇසිල්බෙන්සීන්වල ඔක්සිකරණය ආම්ලික KMnO₄ හා ආම්ලික K₂Cr₂O₇ භාවිතයෙන් ඇල්කීනවලට සාපේæ ව හයිඩුජනීකරණය කිරීමේ දුෂ්කරතාව බෙන්සීන්වල උත්පේරක හයිඩුජනීකරණය 		
8.5 ඒක-ආදේශිත බෙන්සීන්වල ආදේශක කාණ්ඩවල යොමුකාරක (නියාමක) හැකියාව වීමර්ශනය කරයි.	 ඕතො-පැරා යොමුකාරක කාණ්ඩ OH, − NH₂, − NHR, − R, − Cl, − Br, − OCH₃ මෙටා යොමුකාරක කාණ්ඩ COOH, − CHO, − COR, − NO₂ (පැහැදිලි කිරීම අනවශා වේ) 	 ඒක අාදේශිත බෙන්සීන්වල ආදේශක කාණ්ඩ, ඕතො, මෙටා හා පැරා යොමුකාරක ලෙස හඳුනා ගනියි. ඒක අාදේශිත බෙන්සීන්වල පළමු ව ආදේශ වී ඇති කාණ්ඩයේ යොමුකාරක ගුණය පදනම් කර ගනිමින් දෙවැනි ආදේශක කාණ්ඩයක් වලයට සම්බන්ධ වන ස්ථානය සඳහන් කරයි. 	05
8.6 ඇල්කිල් හේලයිඩවල වයුහය, C—X බන්ධනයේ ධුැවීයතාවය හා පුතිකිුයා විමර්ශනය කරයි.	 ඇල්කිල් හේලයිඩ වර්ගීකරණය ළාථමික, ද්විතීයික හා තෘතීයික C—Xබන්ධනයේ ධුැවීය ස්වභාවය (X = F, Cl, Br, l) භෞතික ගුණ (දවාංකය, තාපාංකය, දාවානාව) ඇල්කිල් හේලයිඩවල නියුක්ලියෝෆිලික ආදේශ පතිකියා තරගකාරී පතිකියාවක් ලෙස ඉවත්වීම නියුක්ලියෝෆයිල ලෙස හයිඩොක්සයිඩ් සයනයිඩ්, ඇසිටලයිඩ් (ඇල්කනයිඩ්) හා ඇල්කොක්සයිඩ් අයන 	 නියුක්ලියෝෆිලික වලට භෂ්ම ලෙස හැසිරිය හැකි බව හඳුනා ගනියි. නියුක්ලියෝෆයිල කෙරෙහි ඇරිල් හේලයිඩ් සහ වයිනයිල් හේලයිඩ 	09

		1		
	 ඇල්කීල් හේලයිඩ සමඟ සැසඳීමේ දී ඇරිල්හේලයිඩ සහ වයනයිල් හේලයිඩ්වල අකිුය ස්වභාවය. 	•	ගිුනාඩ් පුතිකාරකය පිළියෙල කිරීම හා එහි ගුණ විස්තර කරයි.	
	 ඇල්කිල් හේලයිඩ හා මැග්නීසියම් අතර පුතිකියාව (ගිුනාඩ් පුතිකාරකය පිළියෙල කිරීම) 	•	සන්සන්දනය කරමින් ධුැවීයතාවය	
	 නිර්ජලීය තත්ත්වල අවශානාව 		මාරුවන බව වටහා ගනියි.	
	■ ලෝහ-කාබන් බන්ධනයේ ස්වභාවය	•	C - Mg හි ධුැවීයතාවය අනුව Mg ට බැඳුනු C පරමාණුවට නියුක්ලියෝෆයිලයක්	
	 පුෝටෝන දායකයන් සමඟ ගිනාඩ් පුතිකාරකයේ පුතිකියා 		මෙන් ම භෂ්මයක් ලෙස ද හැසිරිය හැකි බව වටහා ගනියි.	
	0 ජලය 0 අම්ල	•	ගුිනාඩ් පුතිකාරකය විෂය නිර්දේශයේ දෙන ලද පුෝටෝන දායක සමග	
	0 ඇල්කොහොල හා ෆීනෝල		පුතිකියා වල දී ලැබෙන එල ලියා දක්වයි.	
	o ඇමයින			
	o ආම්ලික හයිඩුජන් සහිත ඇල්කයින	_		
8.7 බන්ධන බිඳීමේ	 තනි පියවර පුතිකිුයාව (බන්ධන බිඳීම හා බන්ධන තැනීම සමගාමී ව සිදු 		ඇල්කිල් හේලයිඩවල නියුක්ලියෝ- ෆිලික ආදේශය සිදු විය හැකි පුතිකියා මාර්ග දෙකක් ඇති බව හඳුනා ගනියි.	
හා තැනීමේ ශීඝුතාව පදනම්	වේ. පුතිකියා අතරමැදි සෑදීමක් සිදු නොවේ)	•	බන්ධන බිඳීම හා බන්ධන තැනීම	
කර ගනිමින්	• දෙපියවර පුතිකිුයාව		සමගාමීව සිදු වන විට ඇල්කිල් හේලයිඩවල නියුක්ලියොෆිලික ආදේශ	
ඇල්කිල් හේලයිඩවල නියුක්ලියෝෆිලික	(බන්ධන බිඳීමේ පියවර පළමු ව සිදුවේ. පුතිකියා අතරමැදියක් ලෙස කාබොකැටායනයක් සෑදේ. දෙවැනි පියවරේ දී නියුක්ලියොෆයිලය		පුතිකියාව තනි පියවර පුතිකියාවක් ලෙස වීස්තර කරයි.	03
ආදේශය විශ්ලේෂණය කරයි.	කාබොකැටායනය සමඟ බන්ධනයක් තනයි)	•	නව බන්ධනයක් තැනීම, බන්ධ බිඳීමෙන් පසුව සිදුවන විට, ඇල්කිල් හේලයිඩල නියුක්ලියා්ෆිලික ආදේශය දෙපියවර පුතිකියාවක් ලෙස විස්තර කරයි.	

9 ඒකකය : ඔක්සිජන් අඩංගු කාබනික සංයෝග

කාලච්ජේද : 45

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය		ඉගෙනුම් ඵල	කාලච්ජේද
9.0 ඔක්සිජන්	9.1	ඇල්කොහොල වර්ගීකරණයපුාථමික, ද්විතීයික හා තෘතීයික	•	පුාථමික, ද්විතීයික හා තෘතීයික ලෙස ඇල්කොහොල වර්ගීකරණය කරයි.	
අඩංගු කාබනික	ඇල්කොහොලවල වාූහය, කාබන්- ඔක්සිජන් බන්ධනයේ	● භෞතික ගුණ ■ තාපාංකය	•	0 – H බන්ධනයේ හා C – O බන්ධනයේ ධුැවීය ස්වභාවය විස්තර කරයි.	
සංගයාගවල වූහුහය සහ ගුණ අතර	හා ඔක්සිජන්-හයිඩුජන් බන්ධනයේ ධුැවීය ස්වභාවය හා පුතිකුියා	■ ජලයේ හා සුලබ කාබනික දුාවණවල දුාවානතාව	•	ඇල්කොහොලවල භෞතික ගුණ, ඒවායේ හයිඩුජන් බන්ධන තැනීමේ හැකියාව	
සම්බන්ධතාව විමර්ශනය	විමර්ශනය කරයි.			සමඟ සම්බන්ධ කරයි. ඇල්කොහොලවල $0-{ m H}$ හා ${ m C}-{ m O}$	
කරයි.		බන්ධනය වී ඇති හයිඩුජන්වල ආම්ලිකතාව)		බන්ධනවල බිඳීම හේතුවෙන් ඒවාට වෙනස් ආකාර දෙකකට පුතිකියා සිදු කරන බව	
		 කාබොක්සිලික් අම්ල සමඟ පුතිකිුයාව (ඇල්කොහොල ඇසිල්කරණය වී එස්ටර සෑදීම) 		වටහා ගනියි.	
		• C — O බන්ධනයේ බිඳීම සහිත නියුක්ලියොෆිලික ආදේශ පුතිකිුයා	•	ඇල්කොහොල HBr , Hl , $\operatorname{PCl}_3/\operatorname{PBr}_3$, PCl_5 යන පුතිකාරක සමග $\operatorname{C-O}$ බන්ධනය බිදීමෙන් සිදුවන නියුක්ලියොෆිලික	08
		■ පහත දැක්වෙන පුතිකාරක සමඟ පුතිකිුයා		ආදේශ පුතිකිුයා පැහැදිළි කරයි.	
		o HBr හා Hl	•	ආල්කොහොල සාන්දු H_2SO_4 හා Al_2O_3	
		o PCl ₃ / PBr ₃		සමග විජලනකරණ පුතිකිුයා වල දී ලැබෙන ඵල ලියා දක්වයි.	
		o PCl ₅	•	ඇල්කොහොල වල පුාථමික, ද්වීතීයික හා	
		• සින්ක් ක්ලෝරයිඩ් හා සානු හයිඩොක්ලෝරික් අම්ලය සමඟ පුතිකියා (ලුකස් පරීකෂාව) (C- 0 බන්ධනය		තෘතීක ස්වභාවය අම්ල හමුවේ දී කාබෝ කැටායන සෑදීමට ඇති පහසුතාව සමග	
		බිඳීමෙන් සැදෙන කාබොකැටායනයේ සාපේæ ස්ථායිතාව ඇසුරින් පැහැදිලි කිරීම)		සම්බන්ධ කරයි.	
		(බෙන්සිල් ඇල්කොහොලවල පුතිකියා අනවශා ය.)	•	පාථමික, ද්වීතීයික හා තෘතීක ඇල්කොහොල විවිධ ඔක්සිකාරක සමග	
		සාඤ සල්ෆියුරික් හෝ ඇලුමිනා සමඟ සිදු වන ඉවත් වීමේ පුතිකිුයාව (ඇල්කීන දෙමින් විජලනය වීම)		විවිධ ආකාරයට පුතිකිුයා කරන බව වටහා ගනියි.	

	 පහත දැක්වෙන ප්‍රතිකාරක මගින් ඔක්සිකරණය ආම්ලිකෘත පොටෑසියම් ප'මැංගනේට්. H+/KMnO₄ ආම්ලිකෘත පොටෑසියම් ඩයිකෝමේට්. H+/K₂Cr₂O₇ පිරිඩීනියම් ක්ලෝරොක්රෝමේට්, PCC (පුාථමික ඇල්කොහොල ඇල්ඩිහයිඩ බවට හා ද්විතීයික ඇල්කොහොල කීටෝන බවට) ඇල්කොහොලවල ගුණ පරීකා කිරීම. 	අැල්කොහොල වල ගුණ පරීක්ෂා කර වාර්තා කරයි.
9.2 කාබන් - ඔක්සිජන් බන්ධනය හා ඔක්සිජන් - හයිඩුජන් බන්ධනය ඇසුරෙන් ෆීනෝල්වල පුතිකිුයා විශ්ලේෂණය කරයි.	 සරලතම ෆීනෝලය වන හයිඩොක්සි බෙන්සීන්වල වුහුහය ඇල්කොහොලවලට සංසන්දනාත්මක ව ෆීනෝල්වල වැඩි ආම්ලිකතාව පහත දැක්වෙන පුතිකාරක සමඟ ෆීනෝල්වල පුතිකුියා. සෝඩියම් ලෝහය සෝඩියම් හයිඩොක්සයිඩ් ඇල්කොහොල නියුක්ලියෝෆිලික ආදේශයට සහභාගි වන තත්ත්ව යටතේ ෆීනෝල්වල පුතිකුියාව ෆීනෝල්වල ගුණ පරීකු කිරීම. 	වන්නේ මන් දැයි පැහැදිලි කරයි. • ඇල්කොහොල භාජනය වන නියුක්ලියෝෆිලික ආදේශ පුතිකියාවලට ලීනෝල භාජන නොවන්නේ මන් දැයි පැහැදිලි කරයි. • සෝඩියම් ලෝහය හා සෝඩියම් හයිඩොක්සයිඩ් සමග ෆීනෝල් දක්වන පුතිකියා සඳහන් කරයි. • සරල පරීඤා මගින් ෆීනෝල්වල ගුණ

9.3 ෆීනොල්වල -OH කාණ්ඩය මගින් බෙන්සීන් වලය මත ඇති කෙරෙන බලපෑම විමර්ශනය කරයි.	 ඉලෙක්ටොෆිලික ආදේශ පුතිකියා බෝමිනීකරණය නයිටුොකරණය 	 ෆීනෝලවල ආදේශ පුතිකියාවල දී ආදේශකය -OH කාණ්ඩයට සාපේඎ ව ඕතො (2, 6) හා පැරා (4) ස්ථානවලට සම්බන්ධ වන බව වටහා ගනියි. බෙන්සීන්වලට වඩා ෆීනෝල්වල නාෂ්ටිය ඉලෙක්ටොෆයිල කෙරෙහි වඩා 	2
9.4	 ඇල්ඩිහයිඩවල සහ කීටෝනවල ලාක්ෂණික පුතිකියා ලෙස නියුක්ලියෝෆිලික ආකලනය 	පුතිකියාකාරී වන්නේ මන් දැයි පැහැදිලි කරයි. • කාබොනිල් කාණ්ඩයේ අසන්තෘප්ත ස්වභාවය පැහැදිලි කරයි.	
පුතිකිුයාවලින් විදහා දැක්වෙන පරිදි ඇල්ඩිහයිඩවල හා කීටෝනවල > C = 0 බන්ධනයේ ධුැවීය හා අසන්තෘප්ත ස්වභාවය විමර්ශනය කරයි.	 HCN සමඟ පතිකියාව සහ එහි යන්තුණය ගීනාඩ් පතිකාරකය සමඟ පතිකියාව සහ යාන්තුණය 2, 4 ඩයිනයිටුාෆීනයිල් හයිඩුසීන් (2 , 4 - DNP හෙවත් බේඩි පතිකාරකය) සමඟ පතිකියාව (නියුක්ලියොෆිලික ආදේශයට පසුව සිදු වන විජලනය ලෙස පැහැදිලි කිරීම පුමාණවත් ය. විස්තරාත්මක පැහැදිලි කිරීම අනවශා ය) 	 ඇල්ඩිහයිඩවල ලාක්ෂණික පුතිකියා තුළින් නියුක්ලියෝෆලික ආකලන පුතිකියා පැහැදිලි කරයි. ගිනාඩ් පුතිකාරකය සහ HCN සමඟ සිදු වන නියුක්ලියෝෆිලික ආකලන පුතිකියාවල යන්තුණ පැහැදිළි කරයි. ඇල්ඩිහයිඩ හා කීටෝන 2,4-ඩයිනයිටොෆීනයිල් හයිඩුසීන් සමග දක්වන පුතිකියාව >C=0 කාණ්ඩය, N₂ සමග සිදු කරන පුතිකියාවේ නියෝජනයක් බව වටහා ගිනියි. 	5
	 සෝඩියම් හයිඩොක්සයිඩ් හමුවේ ඇල්ඩිහයිඩවල හා කීටෝනවල ස්ව-සංගණන පුතිකියා NaBH₄ හෝ LiAlH₄ මගින් ඇල්ඩිහයිඩ හා කීටෝන ඔක්සිහරණය කිරීම හා අනතුරුව සිදුවන ජලවිච්ජේදනය (සවිස්තරාත්මක යාන්තුණය හා අතරමැදි ඵල අනවශා නොවේ) 	 සුදුසු නිදසුන් ආශුයෙන් α-H සහිත කාබොනිල් සංයෝගවල සකීයතාව පෙන්නුම් කරයි. ඇල්ඩිහයිඩ හා කීටෝන ඇල්කොහොල බවට ඔක්සිහාරක මගින් ඔක්සිහරණය වන බව වටහා ගනියි. ඇල්ඩිහයිඩ කිටෝන වලට වඩා 	
		පහසුවෙන් ඔක්සිහරණය වන බව වටහා ගනියි.	

	 සින්ක් සංරසය / සා සු හයිඩොක්ලෝරික් අම්ලය සමඟ පතිකියාව (කාබොනිල් කාණ්ඩය, මෙතිලීන් කාණ්ඩයක් බවට පත් කෙරෙන ක්ලෙමන්සන් ඔක්සිහරණය) ඇල්ඩිහයිඩවල ඔක්සිහරණය අලමෝනීය සිල්වර් නයිටේට් (ටොලන් පතිකාරකය) මගින් ෆේලීං දාවණයෙන් ආම්ලීකෘත පොටෑසියම් පර්මැංගනේට් මගින් (කීටෝනවල විකියතාව හා සැසඳීම) ඇල්ඩිහයිඩ හා කීටෝන සඳහා පරීකුණ 	අදාළ පරී සුණ මඟින් ඇල්ඩිහයිඩ හා කීටෝන වෙන් කර හඳුනා ගනියි.	
9.5 කාබොක්සිල්ක් අම්ල වල වපුහය හා ගුණ අනෙකුත් ඔක්සිජන් අඩංගු කාබනික සංයෝග සමග සන්සන්දනය කරයි	 භෞතික ගුණ - හයිඩුජන් බන්ධනවල වැදගත්කම දවාංක/තාපාංක ජලයේ හා කාබනික දාවකවල දාවානාව (ද්වි අවයවික ලෙස පැවතිම) ඇල්ඩිහයිඩ හා කීටෝනවල ඇති >C=0 කාණ්ඩය හා ඇල්කොහොල හා ෆීනෝලවල ඇති -OH කාණ්ඩය සමග -COOH සන්සන්දනය O-H බන්ධනය බිඳීම සම්බන්ධ ප්‍රතිකියා කාබොක්සිල්ක් අම්ලවල O ට බැදී ඇති H හි ආම්ලිකතාව කබොක්සිල්ක් අම්ලවල ආම්ලිකතාව ඇල්කොහොල හා ෆීනෝල්වල ආම්ලිකතාව සමග සන්සන්දනය (ඒවායේ සංයුතිය හාස්මවල සාපේක්ෂ ව ස්ථායිතාව පදනම් කර ගනිමින්) 	 ෆීනෝල්වල ආම්ලිකතා ඒවා Na, NaOH, Na₂CO₃ හා NaHCO₃ සමග දක්වන පතිකියා යොදා ගනිමින් සන්සන්දනය කරයි. නියුක්ලියෝෆයිල සමග පතිකියා කිරීමේ දී කාබොක්සිල් අම්ල ආදේශ පතිකියා සිදු කරන අතර ඇල්ඩිහයිඩ හා කීටෝන 	10

	 පුතිකියා Na NaOH NaHCO₃/ Na₂CO₃ C-O බන්ධනය බිඳීමෙන් සිදුවන පුතිකියා PCl₃ හෝ PCl₅ සමග පුතිකියාව අැල්කොහොල සමග පුතිකියාව LiAlH₄ සමග කාබොක්සලික් අම්ල ඔක්සිහරණය කාබොක්සලික් අම්ලවල ගුණ පරීක්ෂා කිරීම 	කාබෝකසිලික් අම්ලවල ගුණ සහ පුතිකිුයා පරික්ෂා කරයි.
9.6 අම්ල වහුත්පන්නවල ලාක්ෂණික පුතිකියා විමර්ශනය කරයි.	 අම්ල ක්ලෝරයිඩ ජලීය සෝඩියම් හයිඩොක්සයිඩ් සමඟ පුතිකියාව හා එහි යන්තුණය පුතිකියා ජලය සමඟ අලමෝතියා සමඟ ලාථමික ඇමයින සමඟ ෆීතොල් සමඟ එස්ටර තනුක බනිජ අම්ල සමඟ පුතිකියාව ජලීය සෝඩියම් හයිඩොක්සයිඩ් සමඟ පුතිකියාව. ගිනාඩ් පුතිකාරකය සමඟ පුතිකියාව LiAlH₄ මගින් ඔක්සිහරණය අලයිස ජලීය සෝඩියම් හයිඩොක්සයිඩ් සමග පුතිකියාව LiAlH₄ සමග ඔක්සිහරණය 	 හඳුනා ගනියි. අම්ල ක්ලොරයිඩවල ලාක්ෂණික පුතිකියා සඳහා නිදසුන් ලියා දක්වයි. එස්ටරවල ලාක්ෂණික පුතිකියා සඳහා නිදසුන් ලියා දක්වයි. ඇමයිඩවල ලාක්ෂණික පුතිකියා සඳහා නිදසුන් ලියා දක්වයි. සියලු ම අම්ල වහුත්පන්න පෙන්වන සියලු පුතිකියාවල ආරම්භක පියවර, කාබොනිල් කාබන් පරමාණුව නියුක්ලියෝෆයිලයක පුහාරයට ලක්වීම බව හඳුනා ගනියි. අම්ල ක්ලෝරයිඩ හා සෝඩියම් හයිඩ්රොක්සයිඩ් අතර පුතිකියාවේ

කාලච්ජේද 13

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් ඵල	කාලච්ජේද
10.0 නයිටුජන් අඩංගු කාබනික සංයෝගවල වූහු හා ගුණ අතර සම්බන්ධතාව වීමර්ශනය කරයි.	10.1 ලාක්ෂණික පුතිකියා හා ගුණ ඇසුරින් ඇමයින හා ඇතිලීන් විශ්ලේෂණය කරයි.	 ඇමයින වර්ග අැලිෆැටික හා ඇරොමැටික ඇමයින පාථමික ඇමයින ද්විතීයික ඇමයින තෘතීයික ඇමයින අැරොමැටික ඇමයිනයක් ලෙස ඇනිලීන් ඇනිලීන් හා බෝමීන් අතර පුතිකියාව පුාථමික ඇමයිනවල පුතිකියා (පාථමික ඇමයින පමණි) අැල්කිල් හේලයිඩ සමඟ ඇල්ඩිහයිඩ හා කීටෝන සමඟ අමල ක්ලෝරයිඩ සමඟ නයිටුස් අම්ලය සමඟ 	 ඇමයින වර්ග ප්‍රාථමික, ද්වීතීයික හා තෘතීයික ලෙස වර්ගීකරණය කරයි. විෂය නිර්දේශයේ දෙන ලද ප්‍රතිකාරක සමග ඇමයින සිදු කරන ප්‍රතිකුියා ලියා දක්වයි. ඇමීන සහ විෂය නිර්දේශයේ ඇති වෙනත් කියාකාරී කාන්ඩ සම්බන්ධ ප්‍රතිකුියා පිළිබඳ දැනුම පරිවර්තන සඳහා භාවිත කරයි. ඉලෙක්ටොෆිලික ආදේශ කෙරෙහි බෙන්සීන්ට සාපෙක්ෂව ඇනිලීන් වල අධික ප්‍රතිකුියාශීලීත්වය පැහැදිළි කරයි. ඇනිලීන් බුෝමීන් සමග ප්‍රතිකුියාව ලියා දක්වයි. 	
	10.2 ඇමයිනවල භාස්මිකතාව වෙනත් කාබනික සංයෝගවල භාස්මිකතාව සමඟ සසඳයි.	 ඇල්කොහොලවලට සාපේæ ව ඇමයිනවල භාස්මිකතාවය පුාථමික ඇලිෆැටික ඇමයිනවල භාස්මිකතාව, ඇනිලීන්වල භාස්මිකතාව සමඟ සැසදීම. ඇමයිනවලට සාපේæ ව ඇමයිඩවල භාස්මිකතාවය. 	N පරමාණුව මත ඇති එකසර ඉලෙක්ටෝන යුගලයේ සාපෙක්ෂ දායක හැකියාව අනුව පුාථමික ඇමීනවල භාෂ්මිකතාව ඇල්කොහොල, ඇනලීන් හා ඇමයිඩ සමග සන්සන්දනය කරයි.	02

10.3 ඩයැසෝනියම් ලවණවල පුතිකිුයා	 ඩයැසෝනියම් කාණ්ඩය වෙනස් පරමාණුවකින් හෝ කාණ්ඩයකින් පුතිස්ථාපනය වන පුතිකියා ජලය සමඟ 	 ඩයැසෝනියම් ලවණය පිළියෙල කිරීම විස්තර කරයි. ජලය, H₃PO₂, CuCl, CuCr, CuBr හා සමඟ 	
වීමර්ශනය කරයි.	■ හයිපොපොස්පරස් අම්ලය සමඟ ■ CuCl සමඟ	Kl ඩයමෙසා්නියම් ලවණවල පුතිකියා ලියා දක්වයි.	
	• CuCN සමඟ	• N ₂ හොඳ ඉවත් වීමේ කාණ්ඩයක් බැවින් N≡N⁺ කාණ්ඩය විවිධ කාණ්ඩ මගින්	
	■ CuBr සමඟ ■ Kl සමඟ	පහසුවෙන් විස්තාපනය වන බව වටහා ගතියි.	04
	 ඩයැසෝනියම් අයනය ඉලෙක්ටොෆයිලයක් ලෙස කියා කරන පුතිකියා 	• N≡N⁺ කාණ්ඩය ඉලෙක්ටොෆයිලයක් ලෙස කුියා කරන බව වටහා ගිනියි.	
	■	 ඩයිසෝඩියම් ලවණ භාවිතයෙන් ඇතිලීන් පරීක්ෂා සිදු කර වාර්තා කරයි. 	
	■ 2 - නැප්තෝල් සමඟ ඇඳීමේ පුතිකිුයාව		

11 ව්කකය : චාලක රසායනය කාලච්ජේද 44

නිපුණතාව නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේද
11.0 රසායනික පුතිකුියාවක ශීඝුතාව සුදුසු පරිදි පාලනය කිරීමට සහ රසායනික පුතිකුියාවක වේග නිර්ණය කිරීම සඳහා වාලක රසායන මූලධර්ම යොදාගනියි.	 විෂය අන්තර්ශතය පුතිකියා ශීඝුතාව සාඤණය ඇසුරෙන් ශීඝුතාව aA + bB → cC + dD A පුතිකියකයට සාපේඎ ව = - (ΔC_A/Δt) පුතිකියාවේ ශීඝුතාව D ඵලයකට සාපේඎ ව	 විවිධ ශීසුතාවලින් සිදුවන ප්‍රතික්‍රියා සැසඳීම සඳහා අවශා උදාහරණ ඉදිරිපත් කරයි. ප්‍රතික්‍රියාවක ශීස්‍රතාව කෙරෙහි බලපාන සාධක ලෙස උෂ්ණත්වය, සාඤණය, පීඩනය, භෞතික ලක්ෂණ (ප්‍රතික්‍රියකවල පෘෂ්ඨික වර්ගඵලය) උත්ජේරක සඳහන් කරයි. රසායනික ප්‍රතික්‍රියාවක් aA + bB → cC + dD ලෙස සාමානාකරණය කරයි. ප්‍රතික්‍රියාවක ශීස්‍රතාව මැනීමේ දී, දුවා සාන්දණය වෙනස් වීම මැනීම මූලික සාධකය ලෙස සඳහන් කරයි. ප්‍රතික්‍රියාවක ශීස්‍රතාව සෙවීමේ දී, A ප්‍රතික්‍රියකයට සාපේක්ෂ ව සාඤණය වෙනස්වීමේ ශීස්‍රතාවය - (\frac{\Delta C_A}{\Delta t}) ලෙස ද, D ඵලයට සාපේක්ෂ ව සාඤණය වෙනස්වීමේ ශීස්‍රතාවය (\frac{\Delta C_D}{\Delta t}) ලෙස ද අර්ථ දක්වයි. දෙන ලද ප්‍රතික්‍රියාවක එක් එක් ප්‍රතික්‍රියකය ඉවත්වීමේ ශීස්‍රතාවය, එක් එක් ඵලය සෑදීමේ ශීස්‍රතාවයට සමාන නොවන බව ප්‍රකාශ කරයි. 	කාලච්ජේද
		පුතිකියකයක් ඉවත්වීමේ ශීඝුතාව හෝ ඵලයක් උත්පාදනය වීමේ ශීඝුතාව හෝ අදාළ සංඝටකයේ ස්ටොයිකියෝමිතික සංගුණකය මත රඳා පවතින බව සඳහන් කරයි.	

		 මේ අනුව ප්‍රතිකියාවක සාමානා ශීස්‍රතාව	
11.2 රසායනික පුතිකිුිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිිි	 තනි පියවර පුතිකියාවක් සඳහා ශක්ති සටහන සකියන ශක්තිය පුතිකියාවක් සිදුවීම සඳහා පුතිකියක අණු සපුරා ලිය යුතු අවශානා අණු ගැටීම උචිත දිශානතියකින් යුක්ත වීම සකියන ශක්තිය ඉක්මවා තිබීම පුතිකියා ශීඝුතාව කෙරෙහි උෂ්ණත්වයේ බලපෑම. 	 පතිකියාවක් සිදුවීම සඳහා සපුරාලිය යුතු අවශාතා ලැයිස්තුගත කරයි. උෂ්ණත්වය වැඩිකිරීමේ දී අණුවල චාලක ශක්තිය වැඩි වන බව සඳහන් කරයි. වෙනස් උෂ්ණත්ව දෙකක දී වායු අණු සඳහා 	6

		 උෂ්ණත්වය වැඩි වන විට, අණුවල චාලක ශක්තිය වැඩි වී සංඝට්ටන සංඛ්‍යාව ද වැඩි වන බැවින් ප්‍රතිකියා ශීඝ්‍යතාව වැඩිවන බව පැහැදිළි කරයි. සාඤණ සංකල්පය උපයෝගී කර ඒකක පරිමාවක දී හා ඒකක කාලයක දී සිදුවන සංඝට්ටන සංඛ්‍යාවේ වැඩිවීම පැහැදිළි කරයි. නිවැරදි දිශානතියට සිදුවන සංඝට්ටන සංඛ්‍යාව සමස්ථ සංඝට්ටන සංඛ්‍යාවට අනුලෝමව සමානුපාති වන බව සඳහන් කරයි.
11.3 පුතිකියක සාඥණය උචිත පරිදි හසුරුවමින් පුතිකියා ශීඝුතාව පාලනය කරන අයුරු විමර්ශනය කරයි.	 ශීසුතාව විවිධ ආකාරයට අර්ථ දක්වයි ආරම්භක ශීසුතාව යම් මොහොතක ශීසුතාව සාමානා ශීසුතාව ශීසුතාව කෙරෙහි සාඤණයේ බලපෑම ශීසුතා නියමය, සංරචකවලට සාපේæ ව පෙළ, පුතිකියාවේ පෙළ (සමස්ත පෙළ) ශීසුතා නියතය පෙළ ඇසුරෙන් පුතිකියා වර්ගීකරණය. (ශූනා පෙළ, පළමු වැනි පෙළ හා දෙවැනි පෙළ පමණි) පළමු වැනි පෙළ පුතිකියා සඳහා අර්ධජීව කාලය හා එහි පුස්තාරික නිරූපණය (සමීකරණය අවශා නොවේ) පුතිකියා පෙළ හා ශීසුතා නියතය නිර්ණය කිරීමේ කුම. 	 ශීසුතාව = k [A] * [B] y ලෙස අර්ථ දක්වයි. සීසුතා නියමයේ ඇති පද අර්ථ දක්වයි ශූනා පෙළ, පළමු වැනි පෙළ හා දෙවැනි පෙළ පුතිකියා සඳහා ශීසුතා නියමයේ සමීකරණ ලියා දක්වයි. ශූනා පෙළ, පළමු වැනි පෙළ හා දෙවැනි පෙළ පුතිකියා සඳහා ශීසුතා නියතයෙහි ඒකක (පරිමේය SI ඒකක හා පරිමේය නොවන SI ඒකක) වුනුත්පන්න කරයි.

	 ආරම්භක ශිසුතා කුමය මැග්නීසියම් සහ අම්ල අතර පුතිකියාවේ අම්ල සාන්දුණය පුතිකියාවේ ශීසුතාව කෙරෙහි බලපෑම පරීක්ෂණාත්මක ව නිර්ණය කිරීම. සෝඩියම් තයෝසල්ෆේට් සහ නයිටික් අම්ලය අතර පුතිකියාවේ ශීසුතාව කෙරෙහි පුතිකියක සානුණයේ බලපෑම පරීක්ෂණාත්මක ව නිර්ණය කිරීම. 	 පතිකියාවක අර්ධ ජීව කාලය, t 1/2 අර්ථ කථනය කරයි. පළමු වැනි පෙළ පුතිකියාවක අර්ධ ජීව කාලය
11.4 පුතිකියා ශීඝුතාව කෙරෙහි භෞතික ස්වභාවය හා උත්පේුරකවල බලපෑම විමර්ශනය කරයි.	 පුතිකිුයා ශීඝුතාව කෙරෙහි භෞතික ස්වභාවය හා උත්පේරකවල බලපෑම විස්තර කිරීම. 	 සන ප්‍රතිකියකයක පෘෂ්ඨික වර්ගඵලය වැඩි කළ විට සංඝට්ටන සංඛ්‍යාව වැඩි වන බැවින් ප්‍රතිකියා ශීඝ්‍යතාව වැඩි වන බව සඳහන් කරයි. ප්‍රතිකියාවක ශීඝ්‍යතාව කෙරෙහි උත්ප්‍රේරකයක බලපෑම ප්‍රතිකියාවේ සකියන ශක්තිය ඇසුරින් විස්තර කරයි.

11.5 රසායනික පුතිකියාවක ශීසුතාව විගුහ කිරීමට පුතිකියා යාත්තුණ යොදා ගනියි.	 මූලික ප්‍රතිකියා බහු පියවර ප්‍රතිකියා ශක්ති සටහන් සංකුමණ අවස්ථාව හා අතරමැදි ඵල ශීසුතාව නිර්ණය කෙරෙන පියවර හා සමස්ත ප්‍රතිකියාවේ ශීසුතාවය කෙරෙහි එහි බලපෑම Fe³⁺ හා I⁻ අතර ප්‍රතිකියාව සඳහා Fe³⁺ වලට සාපේඎ ව ප්‍රතිකියාවේ පෙළ පරීඎණාත්මක ව නිර්ණය කිරීම. 	අවස්ථා ලියා දක්වයි. • මුලික පුතිකිුිිිිියා සහ බහු පියවර පුතිකිිිිිිිිිිිිිිි සරයි.	11
--	--	---	----

12 ඒකකය : සමතුලිතතාව කාලච්ජේද 74

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේද
නිපුණතාව 12.0 ගතික සමතුලිතතාවේ ඇති සංවෘත පද්ධතිවල මහේක්ෂ ගුණ පුමාණාත්මක ව නිර්ණය කරනු පිණිස සමතුලිතතා සංකල්පය හා එහි මූලධර්ම භාවිත කරයි.	නිපුණතා මට්ටම 12.1 සමතුලිතතා සංකල්පය ආධාරයෙන් පද්ධතිවල මහේක්ෂ ගුණ පුමාණාත්මක ව නිර්ණය කරයි.	විෂය අන්තර්ගතය සමතුලිත අවස්ථාවේ ඇති පද්ධති (ගතික කියාවලි හා පුතිවර්තානාව) සමතුලිතතාවේ ඇති පද්ධති (සමජාතීය හා විෂමජාතීය)	 සංවෘත පද්ධතියක සිදුවන පුතිවර්ත පුතිකියා යොදා ගනිමින් ගතික සමතුලිතතාව පැහැදිලි කරයි. පද්ධතියක මහේක්ෂ ගුණ පද්ධතිය සමතුලිතතාවයට ළඟා වීමෙන් පසු වෙනස් නොවන බව සඳහන් කරයි. සමතුලිතතාවේ පවත්නා පද්ධති විස්තර කිරීම සඳහා අවස්ථා විපර්යාස, දාවණවල සමතුලිතතා, රසායනික පද්ධති, අයනික පද්ධති, අල්ප වශයෙන් දාවා පද්ධති හා ඉලෙක්ටෝඩ වැනි භෞතික හා රසායනික කියාවලි නිදසුන් ලෙස භාවිත කරයි. සමතුලිතතා නියමය සඳහන් කරයි. සමතුලිතතා නියමය සඳහන් කරයි. සමතුලිතතා නියමය (Kp, Kc) ලියා දක්වයි. Q අර්ථ දක්වයි. 	කාලච්ජේද
		 රසායනික සමතුලිතතාව Kp , Kc හා Q Kp = Kc (RT)^{∆n} සමතුලිතතා ලක්ෂාය සමතුලිතතා ලක්ෂා කෙරෙහි බලපාන සාධක ලේ චැට්ලියර් මූලධර්මය 	 Q හා k සන්සන්දනය කරයි. පද්ධතියක සමතුලිතතා නියතය, නියත උෂ්ණත්වයේ දී වෙනස් නොවී පවතින බව පුකාශ කරයි. Kn. Kc හා Q අතර සම්බන්ධතාව 	

	 Fe²+/SCN⁻ පද්ධතිය උපයෝගී කර ගනිමින් ගතික සමතුලිතතාවේ පවත්නා පද්ධතියක ලාක්ෂණික ගුණ පරීඎණාත්මක ව අධා‍යනය කිරීම. NO₂ /N₂O₄ සමතුලිත පද්ධතිය කෙරෙහි උෂ්ණත්වයේ බලපෑම පරීඎණාත්මක ව අධා‍යනය කිරීම. 	සාන්දුණය, පීඩනය හා උෂ්ණත්වය යන බාහිර බලපෑමකට යටත් කරන ලද සමතුලිත පද්ධතියක් කෙරෙහි අත් වැටලියුර් මලටර්මයේ බලපෑම
12.2 දුබල අම්ල, දුබල හස්ම, ආම්ලික ලවණ හා හාස්මික ලවණ සමඟ සම්බන්ධ සමතුලිතතා පද්ධතිවල ගුණ පුමාණනය කරයි.	 අම්ල, හස්ම සහ ලවණ අම්ල හා හස්ම පිළිබඳ වාද සංයුග්මක අම්ල හා හස්ම K_w, K_a හා K_b විසටන නියන ඔස්වල්ඩගේ තනුකරණ නියමය pH අගය අම්ලවල (ඒකහාස්මික), හස්මවල (ඒකාම්ලික) හා ලවණ දාවණවල pH අගය ගණනය කිරීම. ලවණ දාවණවල pH අගය ගණනය කිරීම. අම්ල - හස්ම අනුමාපන අනුමාපන මත පදනම් වු සරල ගණනය කිරීම අනුමාපන වකු දර්ශක පිළිබඳ වාදය 	 ■ K_a හා K_b සඳහා පුකාශන ඉදිරිපත් කරයි. ● K_a, K_b හා තනුකරණ නියමය සඳහා සමීකරණ වෘත්පන්න කරයි.

• සමකතා ලක්ෂාය නිර්ණය කිරීම (දෘශා කුම -දර්ශක භාවිතයෙන් පමණි) අගය පදනම් කර ගනිමින් අනුමාපනවලට 🗨 සුදුසු දර්ශක තෝරා ගැනීම. ullet pH අගය පරිකුෂා කිරීමෙන් ලවණවල, ජලීය දාවණවල ආම්ලික, භාස්මික, උදාසීන ස්වභාවය

පරීකෘණාත්මක ව නිර්ණය කිරීම.

• ෆීනොප්තලීන් හා මෙතිල් ඔරේන්ජ් භාවිත කර සෝඩියම් කාබනේට් හා හයිඩ්රොක්ලෝරික් 🗨 අනුමාපන භාවිත කරමින් ගැටලු විසඳයි. අම්ලය අතර අනුමාපනය (සමකතා ලක්ෂායේ දී $\mid ullet \mid pH$ දර්ශක පුබල අම්ල හෝ දුබල භස්ම pH අගය ගණනය කිරීම අවශා නැත)

- ලවණ වල ජල විච්ඡේදනය වෙන් කර ලියා දක්වයි.
- අම්ල හා භස්මවල ජලීය දුාවණවල $\,pH\,$ ගණනය කරයි.
- කැටායන හා ඇතායනවල ජල විච්ඡේදනය සලකමින් අම්ල, භස්ම හා ලවණවල ජලීය දාවණවල pH ගණනය කරයි.
- හෝ බව සඳහන් කරයි.
- දර්ශකවල අයනීකරණය නොවූ හා අයනීකරණය වූ ආකාර, වෙනස් වර්ණවලින් යුක්ත බව සඳහන් කරයි.
- දර්ශකයක *pH* පරාසය එහි විඝනය නියතය (K_{r_n}) මත රැඳී පවතින බව පුකාශ කරයි.
- දර්ශකයක් තෝරා ගැනීම, ක්ෂණික *pH* වෙනසක් සිදුවන pH පරාසය මත හෝ අනුමාපනයේ සමකතා ලක්ෂයයේ pHඅගයට අනුරූප වන, දර්ශකයේ pK_{l_n} අගය මත රැදී පවතින බව පුකාශ කරයි.
- දෙන ලද අනුමාපනයකට සුදුසු දර්ශකය තෝරා ගැනීම සඳහා දර්ශක පිළිබඳ වාදය භාවිතයට ගනියි.
- අම්ල භස්ම පුතිකිුියාවල සමකතා ලඎණයේ දී pH අගය ගණනය කරයි.
- විවිධ වර්ගයේ අම්ල භස්ම අනුමාපනවල අනුමාපන වකු කටුසටහන් කරයි.

		 සමකතා ලඎය ආසන්නයේ දී එකතු කරන ලබන කුඩා දාවණ පරිමාවක් නිසා pH අගයේ විශාල වෙනසක් සිදුවන බව සඳහන් කරයි. සෝඩියම් කාබනේට් -හයිඩ්රොක්ලෝරික් අම්ල අනුමාපනයේ ප්‍රධාන ලක්ෂණ ගුණාත්මක ව සාකච්ඡා කරයි. pH අගය මැනීමෙන් ලවණවල ජලීය දාවණවල ආම්ලික, හාස්මික, උදාසීන ස්වභාවය පර්යේෂණාත්මකව නිර්ණය කරයි. පිනෝප්තැලින් හා මෙතිල් ඔරේන්ජ් භාවිත කර Na2CO3 හා HCl අතර අනුමාපනය සිදු කරයි. 	
12.3 අවශාතා අනුව ස්වාරක්ෂක දාවණ පිළියෙල කරයි.	 ස්වාරක්ෂක දාවණ (පුමාණාත්මක ව සහ ගුණාත්මකව) හෙන්ඩර්සන් සමීකරණය වුහුත්පන්න කිරීම හා එහි භාවිත (ඒකභාෂ්මික හා ඒක ආම්ලික පද්ධති පමණි. වර්ගජ සමීකරණ ආශුිත ගණනය කිරීම් අනවශා ය) ස්වාරක්ෂක පද්ධතියක pH 	• ස්වාරකෘක දුාවණ ගුණාත්මක ව හා	12

·		1	
12.4 ජලයේ අල්ප වශයෙන් දාවා අයනික සංයෝග ආශිුත සමතුලිතතා පද්ධතිවල ගුණ	 දාවාතා ගුණිතය හා අයනික ගුණිතය (Ksp) අවක්ෂේපණය දාවාතාව පොදු අයන ආචරණය 	 ඇතැම් අයනික සංයෝග ජලයේ ඉතා දාවා නමුත් සමහර අයනික සංයෝග ජලයේ යන්තමින් දියවන බව සඳහන් කරයි. යන්තමින් දාවා විදයුත් විච්ජේදායකට 	
පුමාණනය කරයි.	 කැටායනවල ගුණාත්මක විශ්ලේෂණය (කාණ්ඩ විශ්ලේෂණය) කැල්සියම් හයිඩොක්සයිඩ්වල දාවාතා ගුණිතය පරීකුණාත්මක ව නිර්ණය කිරීම. 	• යන්තමින් දුාවා විදාුුුත් විච්ඡේදා වල <i>Ksp</i>	12

12.5 ඒක සංරචක පද්ධතිවල දුව-වායු සමතුලිතාව විචලනය වන ආකාරය විමර්ශනය කරයි. (කලාප සමතුලිතතාවය)	 සංශුද්ධ දුව පද්ධති දුව හා වාෂ්ප අතර සමතුලිතතාව අණුක චලනය ඇසුරෙන් දුව-වාෂ්ප පද්ධතියක සමතුලිතතාව විස්තර කිරීම. සංතෘප්ත වාෂ්ප පීඩනය හා තාපාංකය ජලයේ හා වෙනත් දුවවල වාෂ්ප පීඩනය උෂ්ණත්වය සමඟ විචලනය වීම. අවධි උෂ්ණත්වය සරල සංරචක පද්ධතියක කලාප සටහන ජලයේ කලාප සටහන තික ලක්ෂාය වාෂ්ප පීඩනය හා තාපාංකය 	 සුදුසු නිදසුන් දක්වමින් කලාපයක් යනු කුමක් දයි සඳහන් කරයි. සංශුද්ධ දුව පද්ධති හඳුනා ගනියි. අණුක චලිතය පදනම් කර ගනිමින් දුව-වායු සමතුලිතතාව පැහැදිලි කරයි. සන්තෘප්ත වාෂ්ප පීඩනය අර්ථ දක්වයි. තාපාංකය අර්ථ දක්වයි. උෂ්ණත්වය සමඟ දුවවල වාෂ්ප පීඩනයේ විචලනය පැහැදිලි කරයි. වාෂ්ප පීඩනය හා තාපාංකය අතර සම්බන්ධතාව හඳුනා ගනියි. අවධි උෂ්ණත්වය අර්ථ දක්වයි. ජලයේ කලාප රූපසටහන භාවිතයෙන් තික ලක්ෂා නම් කරයි. 	04
12.6 ද්වාංගී දුව පද්ධතිවල දුව-වාෂ්ප සමතුලිතාවේ විචලනය විමර්ශනය කරයි.	 දව-දව පද්ධති පූර්ණ මිශු දුව-දුව පද්ධති රඌල් නියමය පරිපූර්ණ දුව පද්ධති අපරිපූර්ණ දුව පද්ධති ඇසියොටොපික් නොවන පූර්ණ මිශු දුව පද්ධතිවල කලාප සටහන් වාෂ්ප පීඩන-සංයුති කලාප සටහන් උෂ්ණත්ව - සංයුති කලාප සටහන් සහ භාගික ආසවනය 	 දව-දව පද්ධති, පූර්ණ මිශු, භාගික මිශු සහ පූර්ණ අම්ශු ලෙස වර්ගීකරණය කරයි. රඌල් නියමය වහුත්පන්න කිරීම සඳහා ද්වහාංගී දව පද්ධතියකට සමතුලිතතා චාලක මූලධර්ම යොදයි. පරිපූර්ණ දාවණයක් අර්ථ දක්වයි. අපරිපූර්ණ දාවණ රඌල් නියමයෙන් අපගමනය වන්නේ කෙසේ ද හා මන්ද යන බව සංයුති වාෂ්ප පීඩන පුස්ථාර මගින් පැහැදිලි කරයි. සමතුලිතතාවේ දී දුව හා වාෂ්ප කලාපවල සංයුති සෙවීම සඳහා රඌල් නියමය යොදයි. 	12

		 ද්වාංගී දාවණවල පරිපූර්ණ හා අපරිපූර්ණ හැසිරීම් විස්තර කරයි. අවාෂ්පශීලී දවායක් වාෂ්පශීලී දාවකයක දවණය වී සැලෙන දාවණයක සංඝටක වෙන් කිරීම සඳහා සරල ආසවනය භාවිත කළ හැකි බව සඳහන් කරයි. සරල ආසවනය හා භාගික ආසවනය සඳහා නිදසුන් දක්වයි. දව මිශුණයන්හි වාෂ්පශීලි සංඝටකයක් වෙන් කර ගැනීමට භාගික අසවනය යොදා ගත හැකි බව සඳහන් කරයි. 	
12.7 සම්පුර්ණයෙන් අමිශු දුව පද්ධති දෙකක යම් දුාවායක් වාාප්ත වීම පිළිබඳ ව විමර්ශනය කරයි	 පූර්ණ අමිශු‍ය දුව-දුව පද්ධති විභාග සංගුණකය ජලය හා බියුටනෝල් අතර එතනොයික් අම්ලයේ ව‍යාප්ති සංගුණකය පරීකෘණාත්මක ව නිර්ණය කිරීම. 	 පූර්ණ අමිශු දුව පද්ධති සඳහා නිදසුන් ඉදිරිපත් කරයි. CCl₄/H₂O, CHCl₃/H₂O, C₆H₆/H₂O වනාප්ති සංගුණකය (K_D) පැහැදිලි කරයි. නර්නස්ට් වනාප්ති නියමය යෙදීම සඳහා අවශාතා සඳහන් කරයි. K_D භාවිත කරමින් ගැටලු විසඳයි. ජලයේ හා බියුටනෝල් අතර එතනොයික් අම්ලයේ වනාප්ති සංගුණය පරීක්ෂණාත්මක ව නිර්ණය කරයි. 	09

13 ඒකකය : ව්දපුත් රසායනය කාලච්ජේද 40

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේද
13.0 විදයුත් රසායනික පද්ධතිවල පුායෝගික වැදගත්කම විමර්ශනය කරයි.	13.1 ජලීය දාවණයේ ඇති දාවාවල ස්වභාවය හා සාඤණය පිළිබඳ ව අවබෝධය ලබනු වස් සන්නායකතාව භාවිත කරයි.	 විදහුත් විච්ඡේදහ වර්ග සන්නයනතාව = \frac{1}{R} සන්නායකතාව, k = \frac{l}{AR} සන්නායකතාව කෙරෙහි බලපාන සාධක දාවායේ ස්වභාවය : පුබල හා දුබල විදහුත් විච්ජේදහවල හා විදහුත් අවිච්ජේදහවල ජලීය දාවණ, විලීන විදහුත් විච්ජේදහ සාඤණය උෂ්ණත්වය 		

13.2 සමතුලිතතාවේ ඇති ඉලෙක්ටෝඩ හා ඒවාට අදාල පුතිකිුයා විමර්ශනය කරයි.	 සමතුලිතතාවේ ඇති පුතිවර්තා ඉලෙක්ටෝඩ හා ඉලෙක්ටෝඩ පුතිකියා ලෝහ - ලෝහ අයන ලෝහ - අදාවා ලවණ වායු ඉලෙක්ටෝඩ (O₂, H₂, Cl₂) රෙඩොක්ස් ඉලෙක්ටෝඩ උද: Pt(s)/Fe³+(aq), Fe²+(aq) 	 ලෝහ - ලෝහ අයන ඉලෙක්ටුෝඩයක් කටුසටහන් අදියි. නිදසුන් දෙමින්, සුලබ ලෝහ-ලෝහ අයන ඉලෙක්ටුෝඩවල ඉලෙක්ටුෝඩ පුතිකියා ලියා දක්වයි. ඉලෙක්ටුෝඩ / විදයුත් - විච්ජේදා අතුරු මුහුණතේ දී ඉලෙක්ටුෝඩය හා එකී දාවණය අතර විභව අන්තරයක් ඇතිවන අයුරු විස්තර කරයි. විවිධ වර්ගයේ ඉලෙක්ටුෝඩ රූපසටහන් ඇසුරින් විදහා දක්වයි. (වායු ඉලෙක්ටුෝඩ, ලෝහ-ලෝහ අයන ඉලෙක්ටුෝඩ, රෙඩොක්ස් ඉලෙක්ටුෝඩ) විවිධ වර්ගයේ ඉලෙක්ටුෝඩ සඳහා පුතිවර්තා ඉලෙක්ටුෝඩ පුතිකියා ලියයි. සම්මත ඉලෙක්ටුෝඩය අර්ථ දක්වයි. සම්මත අංකනයෙන් කෝෂ නිරූපණය කරයි. 	06
13.3 විදාපුත්-රසායනික කෝෂවල ගුණ නිර්ණය කරයි.	 දුව සන්ධිය ලවණ සේතුව විහේදකය දුව සන්ධියක් රහිත කෝෂ විදුපුත් රසායනික කෝෂ කෝෂ පුතිකියාව කෝෂයක විදුපුත්ගාමක බලය ඉලෙක්ටෝඩ විභවය (E) 	 දව සන්ධිය, ලවණ සේතුව/ විභේදකය යන ඒවායේ කාර්යය සඳහන් කරයි. දව සන්ධියක් සහිත හා රහිත කෝෂ වලට නිදසුන් දක්වයි. ඉලෙක්ටෝඩයක ඉලෙක්ටෝඩ විභවය විස්තර කරයි. සැසඳුම් ඉලෙක්ටෝඩයක් ලෙස සම්මත හයිඩ්රජන් ඉලෙක්ටෝඩය හඳුන්වා දෙයි. ඉලෙක්ටෝඩයක සම්මත ඉලෙක්ටෝඩ විභවය අර්ථ දක්වයි. 	15

•	සම්මත ඉලෙක්ටෝඩ විභවය $({ m E}^0)$ $(E_{cell}=E^0_{(cathode)})$ - $E^0_{(anode)}$ $)$	• සම්මත ඉලෙක්ටෝඩ විභවය මනින ආකාරය පැහැදිළි කරයි.
	(න'න්ස්ට් සමීකරණය අනවශා ය) • පුායෝගික භාවිත වන විදුයුත් රසායනික	• ඉලෙක්ටෝඩ විභවයට බලපාන සාධක සඳහන් කරයි.
	කෝෂ	පායෝගික සැසඳුම් ඉලෙක්ටෝඩය ලෙස සිල්වර් - සිල්වර් ක්ලෝරයිඩ් ඉලෙක්ටෝඩය
	- සැපායල කොමය	සඳහන් කරයි.
•	විද ු ත් රසායනික ශේණිය • ශේණියේ දරන ස්ථානයට සාපේæ ව	• රූප සටහන් ආධාරයෙන් විදාුුත් රසායනික කෝෂ සඳහා නිදසුන් සපයයි.
	මූලදුවාවල ගුණ	විදැයුත් රසායනික කෝෂයක සම්මත අංකනය ඉදිරිපත් කරයි.
		ඉලෙක්ටුෝඩවලින් සමන්විත සරල විදයුත් රසායනික කෝෂවල ඉලෙක්ටුෝඩ පුතිකිුයා ලියා දක්වයි.
	ම සුලභ ලෝහ කීපයක් විදයුත් රසායනික ශුේණියේ පවතින සාපෙක්ෂ ස්ථානය	• විදාුුත්ගාමක බලය අර්ථ දක්වයි.
	පරීක්ෂණාත්මක ව නිර්ණය කිරීම	විදාපුත්ගාමක බලයට අදාළ සරල ගැටලු විසඳයි.
		විද\u2ත්ගාමක බලය කෙරෙහි බලපාන සාධක විස්තර කරයි.
		එදිනෙදා භාවිත කරන පුායෝගික විදයුත් රසායනික කෝෂ සඳහා උදාහරණ සපයයි (ලෙක්ලාන්ච් කෝෂය, ඩැනියල් කෝෂය, ඊයම් අම්ල ඇකියුමිලේටරය).
		• ඩැනියල් කෝෂයේ රූප සටහන අඳියි.
		සම්මත ඉලෙක්ටෝඩ විභව උපයෝගී කර ගනිමින් විදයුත් රසායනික ශේණීය ගොඩනඟයි.

		 ලෝහ, විදුයුත් රසායනික ශේණියේ දරන ස්ථානය හා ඒවායේ පැවැත්ම, නිස්සාරණ කුම හා රසායනික ගුණ අතර ඇති සම්බන්ධතා විස්තර කරයි. සුලභ ලෝහ කීපයක් විදුයුත් රසායනික ශේණියේ පවතින සාපේක්ෂ ස්ථානය පරීක්ෂණාත්මක නිර්ණය කරයි. සම්මත Ag(s)/AgCl(s)/Cl⁻(aq) ඉලෙක්ටෝඩය පිළියෙල කරයි. 	
13.4	• විදහුත්-විච්ඡේදන මූලධර්ම	• විදයුත් විච්ඡේදනය අර්ථ දක්වයි.	
විද ු ත් විච්ජේදන කිුයාවලියේ දී සපිරිය	• ජලය විදාුුත් විච්ජේදනය	• විදහුත් විච්ඡේදනය මූලධර්ම විස්තර කරයි.	
කුයාවලයෙ ද සටටය යුතු අවශාතා හඳුනා ගතිමින් ෆැරඩේ නියමය භාවිතා කර	 කොපර් ඉලෙක්ටෝඩ භාවිත කර ජලීය කොපර් ක්ලෝරයිඩ්/කොපර් සල්ෆේට් දාවණ විදුහුත් විච්ඡේදනය කිරීම. 	සරල විදයුත් විච්ඡේදන පද්ධතිවල ඵල පුරෝකථනය කරයි.	
අදාළ ගණනය කිරීම් සිදු කරයි.	 ප්ලැටිනම් ඉලෙක්ටෝඩ භාවිත කර ජලීය කොපර් සල්ෆේට් දුාවණයක් විදුයුත් විච්ජේදනය කිරීම. 	 ෆැරඩේ නියතය මත පදනම් වූ සරල ගැටලු විසඳයි. 	08
	 කාබන් ඉලෙක්ටෝඩ භාවිත කර ජලීය සෝඩියම් ක්ලෝරයිඩ් / සෝඩියම් සල්ෆේට් දාවණ විදාහුත් විච්ඡේදනය කිරීම 		
	 විලීන සෝඩියම් ක්ලෝරයිඩ් විදුපුත් විච්ජේදනය කිරීමශී (මුලධර්ම පමණි) 		
	 විදපුත් රසායනික ගණනය කිරීම් සඳහා ෆැරඩේ නියතයේ යෙදීම 		

නිපුණතාව	නිපුණතා මට්ටම	විෂය අන්තර්ගතය	ඉගෙනුම් පල	කාලච්ජේද
14.0 මූලධර්මවල භාවිතය අවබෝධ කර ගැනීමටත්, කර්මාන්ත ආශිත දූෂක හඳුනා ගැනීමටත් තෝරා ගත් රසායනික කර්මාන්ත විමර්ශනය කරයි.	14.1 S ගොනුවේ මූලදවා හා සංයෝගවල නිෂ්පාදනය හා පුයෝජන විමර්ශනය කරයි.	 රසායනික කර්මාන්තයක් ඇරඹීමේ දී සැලකිය යුතු මූලික කරුණු අමුදුවා තෝරා ගැනීම පහත දී ඇති දවාවල නිෂ්පාදනය බිටර්න් දාවණය භාවිතයෙන් මැග්නීසියම් (ඩව් කුමය) සෝඩියම් හයිඩොක්සයිඩ් (පටල කෝෂ කුමය) සබන් සෝඩියම් කාබනේට් (සොල්වේ කුමය) විදහාගාරයේ දී සබන් සාම්පලයක් පිළියෙල කිරීම. 	 රසායනික කර්මාන්තයක් සැලසුම් කිරීමේ දී සැලකිය යුතු මූලික සාධක ලැයිස්තු ගත කරයි. කර්මාන්තයකට අමුදුවා තෝරා ගැනීමේ දී සැලකිය යුතු සාධක විස්තර කරයි. මැග්නීසියම්, සෝඩියම් හයිඩොක්සයිඩ් (පටල කෝෂ කුමය), සබන් හා සෝඩියම් කාබනේට් (සොල්වේ කුමය) යන දුවාවල නිෂ්පාදනයට අදාළ භෞත රසායනික මුලධර්ම විස්තර කරයි. සබන්වල ගුණාත්මක බව රැක ගැනීමට අනුග මනය කළ යුතු පිළිවෙත් විස්තර කරමින් විදාහාගාරයේ දී සබන් නියැදියක් පිළියෙල කරයි. 	11
	14.2 p ගොනුවේ මූලදුවා අඩංගු සංයෝගවල නිෂ්පාදනය හා පුයෝජන විමර්ශනය කරයි.	 පහත දැක්වෙන සංයෝගවල නිෂ්පාදනය හා පුයෝජන ඇමෝනියා (හේබර් කුමය) නයිටුක් අම්ලය (ඔස්වල්ඩ් කුමය) සල්ෆියුරික් අම්ලය (ස්පර්ශ කුමය) 	අලමා්නියා, නයිටුක් අම්ලය හා සල්ෆියුරික් අම්ලය යන සංයෝගවල නිෂ්පාදනයට අදාළ භෞත-රසායනික මූලධර්ම භාවිත කරමින් ඒවායේ නිෂ්පාදනය හා පුයෝජන විස්තර කරයි.	08

14.3 d ගොනුවේ මූලදුවාවල හා ඒවායේ සංයෝගවල නිෂ්පාදනය හා පුයෝජන විමර්ශනය කරයි.	 රූටයිල්වලින් ටයිටේනියම් ඩයොක්සයිඩ් නිපදවීම හා එහි පුයෝජන (ක්ලෝරයිඩ් කුමය) ඌෂ්මකය භාවිතයෙන් යකඩ නිස්සාරණය හා යකඩවල පුයෝජන. 	 ටයිටේනියම් ඔක්සයිඩවල නිෂ්පාදනය සහ ඊට පදනම් වන භෞත-රසායනික මූලධර්ම විස්තර කරයි. ටයිටේනියම් ඩයොක්සයිඩ්වල ප්‍රයෝජන විස්තර කරයි. යකඩ නිස්සාරණය සඳහා ධාරා ඌෂ්මකය භාවිතය සහ ඊට පදනම් වන භෞත - රසායනික මූලධර්මය විස්තර කරයි.
14.4 බහුඅවයවික දුවාවල රසායනය විමර්ශනය කරයි.	 ආකලන සහ සංගණන බහුඅවයවික හා බහුඅවයවීකරණ කියාවලි පොලිතීන්, පොලිවයිනයිල් ක්ලෝරයිඩ් (PVC), පොලිස්ටයිරීන්, ටෙෆ්ලෝන් පොලි එස්ටර හා නයිලෝන් බේක්ලයිට් ප්ලාස්ටික් ආකලන දවාා ස්වාභාවික බහුඅවයවික ස්වාභාවික රබර්වල (NR) වායුහය, ගුණ සහ ප්‍රයෝජන රබර් කැටි ගැසීම හා කැටි ගැසීම වැළැක්වීම. ස්වාභාවික රබර් වල්කනයිස් කිරීම. 	 ඒකකය හඳුන්වයි. නිදසුන් ඇසුරින් බහුඅවයවක, ස්වාභාවික හා කෘතිම ලෙස වර්ගීකරණය කරයි. බහුඅවයවීකරණ පුතිකියා වර්ගය අනුව බහුඅවයවක ආකලන සහ සංගණන ලෙස වර්ගීකරණය කරයි. දෙන ලද නිදසුන්වල වසූහය (ඒක අවයවකය, බහුඅවයවකය හා පුනරාවර්තී ඒකකය) ගුණ හා පුයෝජන හඳුනා ගනියි. ජලාස්ටික් ආකලන දුවා හා ඒවායේ පාරිසරික

 විදාහාගාරයේ දී එළවලු තෙල් භාවිතයෙන් ජෛව ඩීසල් සාම්පලයක් පිළියෙල කරයි. විදාහාගාරයේ දී විනාකිරිවල ඇසිටික් අම්ල පුතිශතය ගණනය කරයි. 	14.5 ශාක දුවා පදනම් කර ගත් ඇතැම් රසායනික කර්මාන්ත විමර්ශනය කරයි.	 ශාක පදනම් කර ගත් කර්මාන්ත කිහිපයක් (එතනෝල්, විනාකිරි, ජෛව ඩීසල්) හුමාල ආසවනයෙන් ශාකවල ඇති සංයෝග (සගන්ධ තෙල්) නිස්සාරණය හා වෙන්කර ගැනීම. (සුවිශේෂ සංයෝගවල වුහුහ සූතු පිළිබඳ දැනුම පරීක්ෂා නොකෙරේ.) එතනෝල්, විනාකිරි, සගන්ධ තෙල් හා ජෛව ඩීසල්වල පුයෝජන හුමාල ආසවනය භාවිත කර කුරුඳු කොළවලින් කුරුඳු තෙල් නිස්සාරණය ජෛව ඩීසල් පිළියෙල කිරීම. විනාකිරිවල ඇසිටික් අම්ල පුතිශතය නිර්ණය කිරීම. 	විස්තර කරයි. • ග්ලූකෝස් මගින් එතනොල් හා විනාකිරි සෑදීමේ පතිකියා සඳහා සමීකරණ ලියා දක්වයි. • ජෛව ඩිසල් නිෂ්පාදනය විස්තර කරයි. • සගන්ධ තෙල්, ශාකවලින් නිස්සාරණය කරගන්නා සංකීර්ණ, වාෂ්පශීලි සංයෝග ලෙස විස්තර කරයි. • සගන්ධ තෙල් නිස්සාරණයේ දී භාවිත කෙරෙන මූලධර්ම පැහැදිලි කරයි. • එතනොල්, විනාකිරි, සගන්ධ තෙල් හා ජෛව ඩීසල්වල පුයෝජන සඳහන් කරයි.	12
ඩීසල් සාම්පලයක් පිළියෙල කරයි. ● විදාහාගාරයේ දී විනාකිරිවල ඇසිටික් අම්ල		● විනාකිරිවල ඇසිටික් අම්ල පුතිශතය	• විදාහාගාරයේ දී කුරුඳු කොළවලින් කුරුඳු තෙල්	
			· · · · · ·	

14.6 කාර්මික නිකුතු විසින් සිදු කෙරෙන වාත දූෂණයේ රසායනය	 වා තත්ත්ව පරාමිති (CO_x, NO_x, SO_x, C_xH_y හා වාතයේ අංශුමය දුවාවල මට්ටම්.) අම්ල වැසි පුකාශ - රසායනික ධූමිකා ඕසෝන් වියන ක්ෂය වීම ගෝලීය උණුසුම ජල තත්ත්ව පරාමිති (pH, උෂ්ණත්වය, 	_	07
කාර්මික නිකුතු විසින් සිදු කෙරෙන ජල දූෂණයේ රසායනය	සන්නයනතාව, අවිලතාව, කයීනත්වය, දාවිත ඔක්සිජන් (DO) රසායනික ඔක්සිජන් ඉල්ලුම (COD)) • අධිකතර පොහොර භාවිතය නිසා පුධාන වශයෙන් NO හා PO මගින් සිදුවන සුපෝෂණය. • කර්මාන්ත මගින් අපවහනය වන දාවා කාබනික සංයෝග (උදා:- රබර් කිරි කර්මාන්තය) • බැර ලෝහ අයන (Cd, As, Pb, Hg) • රසායනික ඔක්සිජන් ඉල්ලුම (COD) හා දවිත ඔක්සිජන් (DO) • තාප දූෂණය • ආම්ලිකතාව / භාස්මිකතාව	කයීනත්වය DO සහ COD නම් කරයි. • දෙන ලද ජල සාම්පලයක pH, උෂ්ණත්වය, සන්නයනතාව, අවිලතාව වැනි භෞතික පරාමිති වාර්තා කරයි. • NO3 හා PO4 නිසා සිදුවන සුපෝෂණය හා එහි පතිඵල විස්තර කරයි. • කාර්මික අපවාහවල දුවණය වී ඇති කාබනික දූෂක වල බලපෑම විස්තර කරයි.	15

ජලයේ ආවිලතාව හා කඨිනත්වය වින්ක්ලර් කුමයෙන් ජලයේ දුවිත ඔක්සිජන් මට්ටම නිර්ණය කිරීම අාම්ලිකතාව/ හාෂ්මිකතාව, අවිලතාව, කඨිනත්වය, තාප දූෂණය වැනි භෞතික පරාමිති මගින් සිදුවන ජල දූෂණය විස්තර කරයි. කාර්මික අපවාහවල අඩංගු දූෂක අවම කිරීම සඳහා තනා ඇති පූර්වෝපාය විස්තර කරයි.
මිරිදියෙහි දුවණය වී ඇති ඔක්සිජන් මට්ටම පරීඤණොත්මක ව නිර්ණය කරයි.

4.0 ඉගෙනුම් ඉගැන්වීම් කුමෝපාය

වර්තමාන අධාාපනයේ ගෝලීය පුවණතාව වන්නේ ඉගැන්වීම අබිබවා ඉගෙනුම් ඉස්මතු කෙරෙන ශිෂා කේන්දීය කි්යාකාරකම් මගින් සහයෝගිතා ඉගෙනුම පුවර්ධනය කෙරෙන නිපුණතා පාදක විෂයමාලවක් හඳුන්වා දීමයි. පුද්ගලයාගේ සමාජ හා මානසික කුසලතා වර්ධනය කරන කි්යාකාරකම්වලට ශිෂායා සකීය ලෙස සහභාගී කරවීම මෙහි ලා අපේක්ෂා කෙරේ.

පහත දක්වෙන අංග මෙහි දී අවධාරණයට ලක්වේ.

- හැකිතාක් දුරට කිුයාකාරකම් ඇසුරින් විෂය අන්තර්ගතය ආවරණය කිරීම නිර්දේශ කෙරේ.
- කිුයාවෙන් අත්දුකිම් ලැබීමට ශිෂායන්ට අවස්ථාව දිය යුතු ය.
- අවශා අවස්ථාවල දී පුාමාණික මූලාශු භාවිතයෙන් දනුම හා තොරතුරු සපයා ගැනීමට සිසුන් යොමු කළ යුතු ය.
- අඩංගු විෂය කරුණු හැකිතාක් පුායෝගික ජීවිතයට යොදා ගත හැකි මාර්ග හඳුන්වා දිය යුතු යි.
- අනාගතයේ දී එම විෂය කරුණු ඉගෙනීම මගින් ඔවුන්ට විපත් වන රැකියා අවස්ථා ගැන හැඟීමක් ලැබෙන අයුරින් එය ඉටු කළ යුතු යි.

•

5.0 පාසල් පුතිපත්ති හා වැඩසටහන්

- අදාළ ඉගෙනුම්වල සාධනය සඳහා සුදුසු ඕනෑ ම ඉගෙනුම් ඉගැන්වීම් කුමයක් භාවිතයට ගැනීමට ගුරුවරයාට නිදහස ඇත.
- එක් ඒක් ඒකකයේ මෛද්ධාන්තික අංශය. ඇල අකුරින් දත්ත ඇති අදාළ පුායෝගික සංරචකය සමඟ හැදුරීම අපේක්ෂිත ය.
- විෂය සමගාමී කියාකාරකම් අතිරේක ඉගෙනුම් දුවාවල නිරන්තර භාවිතය හා පරිගණක ආශිත ඉගෙනුම් මෘදුකාංග වැනි ඉගෙනුම් ආධාරක උපයෝගී කර ගැනීම මඟින් ශිෂායන්ගේ ශකාතා වැඩි දියුණු කළ යුතු ය.
- පන්තිකාමර කිුියාකාරම්වලින් ඔබ්බට ඉගෙනුම වාාප්ත කිරීමත්. ශිෂායන්ගේ විශේෂ හැකියා අවධාරණය කිරීමත් අරමුණු කර ගනිමින් ශිෂායන් පහත දක්වෙන ඒවා වැනි විෂය සමගාමී කිුියාකාරකම්වලට සහභාගීකරවීම අපේක්ෂිත ය.
- රසායන විදාහාවේ විවිධ අංශ හැදෑරීම සඳහා පාසල් සංගම් හා සමාජ පිහිටු වීම.
- රසායන විදාහාවේ භාවිත නිරීක්ෂණය සඳහා ක්ෂේතු චාරිකාවල යෙදීම මත අනතුරුව වාර්තා පිළියෙල කිරීම
- පාසල් පුදර්ශනය හා තරග සංවිධානය

- අදාළ මාතෘකා යටතේ සම්පත් පුද්ගලයන් ලවා ආරාධිත දේශන පැවැත්වීම
- පාසල් පුකාශන නිර්මාණය
- විවාද, විදහා දින ආදී සංවිධානය
- අන්තර්ජාතිකව පිළිගත් රසායන විද හා පරීක්ෂණවලට ළමුන් යොමු කිරීම.
- විදහාගාර උපකරණ හා පරිගණක පහසුකම් වැනි සේවා සහ පාසල තුළ සහ පාසලින් පරිබාහිර සම්පත් සපයා දීමේ වගකීම පාසල් කළමනාකරණයට පැවරේ.
- පසාල් පුතිපත්ති හා වැඩසටහන් සම්පදානය සඳහා අදාළ ගුරුවරුන්ගෙන් හා සිසුන්ගෙන් සමන්විත කමිටුවක් පිහිටුවීම යෝගා වේ
- පාසල, සිසුන් විසින් අනුගමනයට යෝගා භූමිකා ආකෘතියක් වීම ඉතා වැදගත් කරුණකි.
- පාසල, පුතිපත්ති අරමුණු සාධනය සඳහා විවිධ කිුයාකාරකම්වලින් යුත් වාර්ෂික වැඩසටහන් පිළියෙල කල යුතු ය.
- කිසියම් වර්ෂයක් තුළ ඉටු කළ යුතු කියාකාරකම් නිර්ණය කිරීම උදෙසා, පාසල පුමුඛතා හඳුනා ගත යුතු අතර කාලය හා සම්පත් සම්බන්ධ සීමා සැලකිල්ලට ගනිමින් ඒවා කියාවට නැංවීමේ හැකියාව ගැන සැලකිලිමත් විය යුතු ය.

6.0 තක්සේරුව හා ඇගයීම

තක්සේරුව හා ඇගයීම විභාග දෙපාර්තමේන්තුව විසින් නිර්දේශිත පුමිතිවලට අනුකූල විය යුතුයි.