Departamento de Matemática e Aplicações

Análise

2018'19 ———

 \mathbb{R}^n : Generalidades & Noções Topológicas

- 1. Considere o espaço euclideano \mathbb{R}^n e, nele, dois vetores x e y. Usando as propriedades que definem um produto interno em \mathbb{R}^n e a definição $||x|| = +\sqrt{x\cdot x}$,
 - (a) verifique que

$$||x+y||^2 + ||x-y||^2 = 2(||x||^2 + ||y||^2)$$
 (lei do paralelogramo).

(b) com x e y vetores não nulos, verifique que existe um ângulo θ , compreendido entre 0 e π , tal que

$$\cos heta = rac{oldsymbol{x} \cdot oldsymbol{y}}{||oldsymbol{x}||\, ||oldsymbol{y}||}.$$

- 2. Verifique que a função $m{d}$ definida por $m{d}(m{x},m{y}) = \left\{egin{array}{ll} 1, & m{x}
 eq m{y} \\ 0, & m{x} = m{y} \end{array}
 ight.$, definida em $\mathbb{R}^2 imes \mathbb{R}^2$
 - (a) é uma distância.
 - (b) não permite definir, em \mathbb{R}^2 , uma norma tal que d(x,y)=||x-y||. Sugestão: Observe que teria de ser ||x||=d(x,0)=1, orall x
 eq 0.
- 3. Seja $\mathcal S$ um subconjunto de $\mathbb R^n$. Complete o seguinte quadro:

Conjunto ${\cal S}$	int ${\cal S}$	fr ${\cal S}$	$ \mathcal{S}' $
Qualquer conjunto finito			
Todos os pontos/vetores de coordenadas inteiras			
Todos os pontos/vetores de coordenadas racionais			
\mathbb{R}^n			
Ø			

- 4. Em cada alínea, determine o interior, a fronteira, a aderência e o derivado de \mathcal{A} . Pronuncie-se ainda sobre se ${\mathcal A}$ é um conjunto fechado ou aberto:
 - (a) $A = [0, 1] \times [2, 3]$
- (b) $A = [0, 1] \times [2, 3]$ (c) $A = [0, 1] \times [2, 3]$
- 5. Em cada alínea, determine o interior, a fronteira, a aderência e o derivado de $\mathcal B$. Pronuncie-se ainda sobre se ${\cal B}$ é um conjunto fechado ou aberto:
 - (a) $\mathcal{B} = \{-1\} \times [0,1]$

(c)
$$\mathcal{B} = ([0,1] \times [1,2]) \cup ([1,2] \times [2,3])$$

(b)
$$\mathcal{B} = ([-1,1] \times]0,3[) \cup \{(4,4)\}$$