

TITLE OF THE INVENTION

A PROTEIN THAT HAS A FUNCTION OF MAINTAINING A MUTATION
WHEREBY LATERAL ROOT FORMATION IS BLOCKED AND A GENE
ENCODING THE PROTEIN

5 CROSS-REFERENCE TO RELATED APPLICATIONS

This application is based upon and claims the
benefit of priority from the prior Japanese Patent
Application No. 2003-147765, filed May 26, 2003, the
entire contents of which are incorporated herein by
10 reference.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a factor which
has an influence on the phenotype of plants that have
15 no lateral roots (hereinafter also referred to as
"lateral rootless phenotype"). The factor is expected
to be applicable to artificial control of lateral root
formation in plants. More specifically, the present
invention relates to a protein having a function of
20 maintaining the mutation whereby lateral root formation
is blocked and a gene encoding the protein.

2. Description of the Related Art

The root of dicotyledon plants consists of
a primary root which has grown from a radicle of
25 an embryo after germination and lateral roots which
have been branched from the primary root. It is known
that auxin as a plant hormone is involved in lateral

root formation. The SLR (solitary root) gene of *Arabidopsis thaliana* is also known as a gene encoding a protein which regulates the effect of auxin on lateral root formation. Further, the solitary-root dominant mutant (hereinafter also referred to as "slr dominant mutant") is known as *Arabidopsis thaliana* which has a mutation in the SLR gene and forms no lateral roots (Fukaki et al., Plant J. 2002, 29, 153-168). However, there has been no report of a factor which has an influence on the lateral rootless phenotype of the slr dominant mutant and which is expected to be applicable to artificial control of lateral root formation.

BRIEF SUMMARY OF THE INVENTION

An object of the present invention is to provide a factor which has an influence on the lateral rootless phenotype of a mutant and which is expected to be applicable to artificial control of lateral root formation in plants. More specifically, an object of the present invention is to provide a protein having a function of maintaining the mutation whereby lateral root formation is blocked and a gene encoding the protein.

The present invention may provide the following means for solving the above-mentioned objects.

(1) An *Arabidopsis thaliana* double mutant *ssl2 slr* having a mutation in at least one base of the SSL2 genomic gene shown in SEQ ID NO: 3, obtained by:

treating (mutagenizing) an *Arabidopsis thaliana* slr dominant mutant (FERM BP-8385), which has no lateral roots, with a mutagen; preparing plants of the next generation of the mutagen-treated slr dominant mutant; 5 and selecting a plant that basically preserves phenotypes of the slr dominant mutant but has lateral roots from the plants of the next generation.

(2) An *Arabidopsis thaliana* double mutant ssl2 slr, which has recovered the capability of lateral root formation in an *Arabidopsis thaliana* slr dominant mutant (FERM BP-8385) that has no lateral roots, due to 10 an additional mutation of at least one base of the SSL2 genomic gene shown in SEQ ID NO: 3 in the slr dominant mutant.

15 (3) An *Arabidopsis thaliana* double mutant ssl2 slr, which has recovered the capability of lateral root formation in an *Arabidopsis thaliana* slr dominant mutant (FERM BP-8385) that has no lateral roots, due to 20 an additional mutation of the SSL2 genomic gene shown in SEQ ID NO: 3 in the slr dominant mutant, wherein the additional mutation is selected from the group consisting of the following (A) to (D):

(A) a mutation in which the 852th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been 25 substituted with "A";

(B) a mutation in which the 4734th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been

substituted with "A";

(C) a mutation in which the 1757th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A"; and

5 (D) a mutation in which the 1546th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A".

10 (4) A mutant gene having a mutation in at least one base of the SSL2 gene (cDNA) shown in SEQ ID NO: 1, whose expression enables a phenotype of a mutant that has no lateral roots to be recovered.

15 (5) A mutant gene having a mutation in at least one base of the SSL2 genomic gene shown in SEQ ID NO: 3, whose expression enables a phenotype of a mutant that has no lateral roots to be recovered.

(6) A mutant gene of the SSL2 gene (cDNA) selected from the group consisting of the following (a) to (c):

20 (a) a mutant gene in which the 566th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A";

(b) a mutant gene in which the 1005th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A"; and

25 (c) a mutant gene in which the 901th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A".

(7) A mutant gene selected from the group

consisting of the following (d) to (g):

(d) a mutant gene in which the 852th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A";

5 (e) a mutant gene in which the 4734th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A";

10 (f) a mutant gene in which the 1757th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A"; and

15 (g) a mutant gene in which the 1546th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A".

(8) A protein selected from the group consisting
15 of the following (a) and (b):

(a) a protein comprising the amino acid sequence of SEQ ID NO: 2 and having a function of maintaining a mutation whereby lateral root formation is blocked; and

20 (b) a protein comprising an amino acid sequence of SEQ ID NO: 2, in which one or a few amino acids of the amino acid sequence have been deleted, substituted and/or added and which has a function of maintaining a mutation whereby lateral root formation is blocked.

(9) A gene encoding a protein selected from the
25 group consisting of the following (a) and (b):

(a) a protein comprising the amino acid sequence of SEQ ID NO: 2 and having a function of maintaining

a mutation whereby lateral root formation is blocked;
and

5 (b) a protein comprising an amino acid sequence of SEQ ID NO: 2, in which one or a few amino acids of the amino acid sequence have been deleted, substituted and/or added and which has a function of maintaining a mutation whereby lateral root formation is blocked.

(10) A gene selected from the group consisting of the following (c) or (d):

10 (c) a gene comprising the DNA sequence of SEQ ID NO: 1 and encoding a protein having a function of maintaining a mutation whereby lateral root formation is blocked; and

15 (d) a gene comprising a DNA sequence of SEQ ID NO: 1, in which one or a few bases of the DNA sequence have been deleted, substituted and/or added and which encodes a protein having a function of maintaining a mutation whereby lateral root formation is blocked.

As described above, the present invention provides
20 a protein having a function of maintaining a mutation whereby lateral root formation is blocked and the SSL2 gene encoding the protein. Further, the inventors of the present invention have found that, when the function of the SSL2 gene of the invention is lost in
25 the slr dominant mutant, the slr dominant mutant loses the lateral rootless phenotype and does form lateral roots. Accordingly, it is assumed that the protein

encoded by the SSL2 gene is a novel regulating factor of plant root formation, especially lateral root formation. Thus, it is expected that growth of plant roots can be artificially regulated by modifying the function of the aforementioned protein. Specifically, it is expected to facilitate root formation in an herbaceous or woody plant of various types in which lateral roots or adventitious roots are not formed, by modifying the function of an SSL2-homologous gene in the plant.

Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.

BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWING

FIG. 1 is a view showing a part of a nucleotide sequence of the SSL2 genomic gene (wild type);

FIG. 2 is a view showing a part of a nucleotide sequence (continued from FIG. 1) of the SSL2 genomic gene (wild type);

FIG. 3 is a view showing a part of a nucleotide sequence (continued from FIG. 2) of the SSL2 genomic gene (wild type);

FIG. 4 is a view showing a part of a nucleotide

sequence (continued from FIG. 3) of the SSL2 genomic gene (wild type);

FIG. 5 is a view showing a part of a nucleotide sequence (continued from FIG. 4) of the SSL2 genomic gene (wild type);

FIG. 6 is a view showing a part of a nucleotide sequence (continued from FIG. 5) of the SSL2 genomic gene (wild type);

FIG. 7 is a view showing a part of a nucleotide sequence (continued from FIG. 6) of the SSL2 genomic gene (wild type); and

FIG. 8 is a view showing a nucleotide sequence of a mutant IAA14 gene.

DETAILED DESCRIPTION OF THE INVENTION

The present invention will be described in detail hereinafter. It should be noted that descriptions below are provided only for illustrating the present invention and do not restrict the present invention.

[*Arabidopsis thaliana* double mutant *ssl2 slr*]

An *Arabidopsis thaliana* double mutant *ssl2 slr* of the present invention (which will be also referred to as "double mutant *ssl2 slr*" hereinafter) is a double mutant obtained by: treating (mutagenizing) an *Arabidopsis thaliana* *slr* dominant mutant, which has no lateral roots, with a mutagen; preparing plants of the next generation of the mutagen-treated *slr* dominant mutant; and selecting a plant that basically preserves

phenotypes of the slr dominant mutant but has lateral roots from the plants of the next generation; wherein the double mutant *ssl2 slr* has a mutation in at least one base (e.g., one or a few bases) of the *SSL2* genomic gene shown in SEQ ID NO: 3.

In another aspect of the present invention, the double mutant *ssl2 slr* of the present invention is a double mutant which has recovered the capability of lateral root formation in an *Arabidopsis thaliana* slr dominant mutant that has no lateral roots, due to an additional mutation in at least one base (e.g., one or a few bases) of the *SSL2* genomic gene shown in SEQ ID NO: 3 in the slr dominant mutant.

Specifically, the double mutant *ssl2 slr* of the present invention includes a double mutant which has recovered the capability of lateral root formation in an *Arabidopsis thaliana* slr dominant mutant that has no lateral roots, by having "a mutant gene of the *SSL2* genomic gene" described below in the slr dominant mutant.

In one example, the double mutant *ssl2 slr* of the present invention is a double mutant which has recovered the capability of lateral root formation in an *Arabidopsis thaliana* slr dominant mutant that has no lateral roots, by having an additional mutation in the *SSL2* genomic gene shown in SEQ ID NO: 3 in the slr dominant mutant, wherein the additional mutation is

selected from the group consisting of the following (A) to (D):

(A) a mutation in which the 852th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A";

(B) a mutation in which the 4734th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A";

(C) a mutation in which the 1757th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A"; and

(D) a mutation in which the 1546th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A".

The *Arabidopsis thaliana* slr dominant mutant (which will be also referred to as a "slr dominant mutant" hereinafter), which is used for producing the double mutant ssl2 slr of the present invention, shows a lateral rootless phenotype. The slr dominant mutant also exhibits additional phenotypes in which root hairs are hardly formed and the gravitropism of root and hypocotyl is aberrant. The gene which causes the aforementioned phenotypes including the lateral rootless phenotype in the slr dominant mutant, i.e., SLR mutant gene, will be referred to as "mutant IAA14 gene" hereinafter.

Seeds of the slr dominant mutant have been

deposited in the identification name of "solitary-root-1 (*Arabidopsis thaliana*)" on May 22, 2003, under the International Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology
5 (Tsukuba Central 6, 1-1, Higashi 1-chome, Tsukuba-shi, Ibaraki-ken 305-8566, Japan), pursuant to BUDAPEST TREATY ON THE INTERNATIONAL RECOGNITION OF THE DEPOSIT OF MICROORGANISMS FOR THE PURPOSES OF PATENT PROCEDURE.

The accession number "FERM BP-8385" was assigned
10 thereto. The slr dominant mutant can be reproduced by performing self-pollination of the slr dominant mutant, thereby preparing the next generation, and selecting plants that has no lateral roots from the next generation.

15 In the production of the double mutant *ssl2 slr* of the present invention, a slr dominant mutant is at first subjected to a mutagen treatment. As the slr dominant mutant to be subjected to the mutagen treatment, seed, plant body, callus and the like may
20 be used. With regard to the mutagen treatment, known techniques may be employed in the present invention. Specific examples of the mutagen include: a chemical mutagen such as an alkylating agent which alkylates bases of DNA; an electromagnetic wave which causes damage to DNA such as X-rays and ultraviolet rays; and a radioactive substance. Alternatively, the mutagen treatment may be effected according to the known
25

Agrobacterium infection method, in which a DNA region sandwiched between a pair of border sequences (25 base pairs) present at both ends of T-DNA region of Ti plasmid contained in Agrobacterium is inserted into
5 a random site of genome DNA of the slr dominant mutant. Preferably, the mutagen treatment is carried out by immersing seeds of the slr dominant mutant for 12 to 16 hours in a solution containing a chemical mutagen (e.g., ethylmethanesulfonic acid) at a concentration
10 of 0.2 to 0.3% by weight. In the case in which seeds are used as the slr dominant mutant, the slr dominant mutants (seeds) are each grown to plants.

Next, the slr dominant mutant (plant body) which has been subjected to the mutagen treatment is made
15 to perform self-pollination and the next generation thereof is produced. Among the thus produced next generation, plants which basically preserve the phenotypes of the slr dominant mutant but form lateral roots (i.e., plants having a mutation caused by the
20 mutagen treatment in a homozygous form) are selected. Here, to "basically preserve the phenotypes of the slr dominant mutant" means maintaining all the characteristics of the slr dominant mutant other than the characteristic of not forming lateral roots.
25 Specifically, "the phenotypes of the slr dominant mutant to be preserved" include a characteristic in which root hairs are hardly formed and a characteristic

in which the gravitropism of root and hypocotyl is aberrant.

The plants selected at this stage are new mutants which suppress the lateral rootless phenotype of the
5 slr dominant mutant. There is a possibility that these new mutants include two types of mutants: an "intragenic suppressor mutant" in which an additional mutation has occurred inside a region of the gene (mutant IAA14 gene) which causes the mutation of the
10 slr dominant mutant and an "extragenic suppressor mutant" in which an additional mutation has occurred outside the region of the gene (mutant IAA14 gene) which causes the mutation of the slr dominant mutant.
Therefore, it is preferable to confirm that the
15 selected plant does not have an additional mutation inside a region of the mutant IAA14 gene. In other words, it is preferable to confirm that the mutation of the mutant IAA14 gene dose not go back to the normal IAA14 gene in the selected plant. With regard to the
20 details of this confirmation, the descriptions of examples described below may be referred to. The information on the nucleotide sequence of the mutant IAA14 gene is available from SEQ ID NO: 4 and FIG. 8. In FIG. 8, the exon portions are indicated by capital
25 letters and the intron portions are indicated by small letters.

The plant selected as described above is the

"double mutant *ssl2 slr*" of the present invention.

The double mutant *ssl2 slr* of the present invention is a double mutant having two mutations: "a *slr* dominant mutation (originally contained in the *slr* dominant mutant)" and "a *ssl2* recessive mutation (newly caused by the mutagen treatment in the present invention)".

5 In the present invention, four types of lines (*ssl2-1*, *ssl2-2*, *ssl2-3* and *ssl2-4*) were selected as the double mutant *ssl2 slr*. It has been found that all of the
10 four types of lines have an additional mutation inside the region of the same gene (which will be referred to as "SSL2 genomic gene" hereinafter).

Accordingly, the production of the double mutant *ssl2 slr* of the present invention is reproducible as
15 described below. That is, plants which form lateral roots are selected from the next generation of the *slr* dominant mutants which have been subjected to a mutagen treatment; and it is confirmed that the selected plants do not have an additional mutation inside the region of
20 the mutant *IAA14* gene and that the selected plants have an additional mutation in the nucleotide sequence of the SSL2 genomic gene. With regard to the technique
25 by which the mutation in the SSL2 genomic gene is confirmed, the descriptions of examples described below may be referred to.

Any of the double mutants *ssl2 slr* of the present invention exhibit at least some recovery of the

phenotypes of the slr dominant mutant. That is, in any
of the double mutants *ssl2 slr*, the lateral rootless
phenotype are recovered to form lateral roots, but no
recovery is observed in the other phenotypes of the
5 slr dominant mutant (i.e., aberration of root hair
formation and aberration of gravitropism). From this
fact, it is assumed that the gene (SSL2 genomic gene)
which has been mutated in the double mutant *ssl2 slr* of
the present invention genetically interacts with the
10 mutant gene (mutant IAA14 gene) of the slr dominant
mutant.

The double mutant *ssl2 slr* can be reproduced by
performing self-pollination of the double mutant *ssl2 slr*, thereby preparing seeds of the next generation.
15 However, a large number of the seeds of the next
generation are not stably obtained, because of the
undesirable characteristics of the reproductive organs
of the double mutant.

[SSL2 gene and protein encoded by SSL2 gene]

20 The gene (SSL2 genomic gene) which has been
mutated in the double mutant *ssl2 slr* of the present
invention has been identified as At2g25170 gene,
according to the mutation map-based cloning for
Arabidopsis thaliana. The genetic information on
25 At2g25170 gene is available from the following web
page: [http://mips.gsf.de/cgi-bin/proj/thal/search_gene?
code=At2g25170](http://mips.gsf.de/cgi-bin/proj/thal/search_gene?code=At2g25170). It has been confirmed by the present

invention that the information on the nucleotide sequence, which was available from the aforementioned web page at the time of filing the present application, is correct but the information from the same source on exon and intron includes errors. Specifically, the inventors of the present invention isolated cDNA of the SSL2 gene which has been mutated in the double mutant ss12 slr, confirmed the nucleotide sequence thereof, and revealed the correct exon and intron structures of the SSL2 genomic gene (refer to FIGS. 1 to 7).

The nucleotide sequence of the SSL2 gene (cDNA) is shown in SEQ ID NO: 1 and the amino acid sequence of a protein encoded by the SSL2 gene (cDNA) is shown in SEQ ID NO: 2. The nucleotide sequence of the SSL2 genomic gene is shown SEQ ID NO: 3. Any nucleotide sequence indicates those not having mutation. The nucleotide sequence of the SSL2 genomic gene (SEQ ID NO: 3) is also shown in FIGS. 1 to 7. In FIGS. 1 to 7, the exon portions are indicated by capital letters and the intron portions are indicated by small letters.

As a result of a mutation of the SSL2 genomic gene, the slr dominant mutant becomes to form lateral roots. In other words, the normal SSL2 gene is essential for maintaining mutation whereby lateral root formation is blocked in the slr dominant mutant. Thus, it has been revealed for the first time, by the present invention, that the SSL2 gene encodes a protein having

a function of maintaining a mutation whereby lateral root formation is blocked.

Accordingly, the present invention provides a gene comprising the DNA sequence shown in SEQ ID NO: 1 and encoding a protein having a function of maintaining a mutation whereby lateral root formation is blocked.

5 In this gene, one base or a few bases in the DNA sequence shown in SEQ ID NO: 1 may be deleted, substituted and/or added, as long as the gene encodes 10 a protein having a function of maintaining a mutation whereby lateral root formation is blocked.

Further, the present invention provides a gene 15 encoding the following protein: a protein comprising the amino acid sequence shown in SEQ ID NO: 2 and having a function of maintaining a mutation whereby lateral root formation is blocked. Regarding this gene, one amino acid or a few amino acids in the amino acid sequence of the aforementioned protein may be deleted, substituted and/or added, as long as the gene 20 encodes a protein having a function of maintaining a mutation whereby lateral root formation is blocked.

Yet further, the present invention provides 25 a protein comprising the amino acid sequence shown in SEQ ID NO: 2 and having a function of maintaining a mutation whereby lateral root formation is blocked. Regarding this protein, one amino acid or a few amino acids in the amino acid sequence shown in SEQ ID NO: 2

may be deleted, substituted and/or added, as long as the protein has a function of maintaining a mutation whereby lateral root formation is blocked.

In addition, in the present invention, it has
5 been revealed that the SSL2 gene encodes a protein homologous with an animal protein "Chromodomain-helicase-DNA-binding 3 (CHD3)" which is involved in the conversion of chromatin structure of a chromosome. No study has been reported of the relationship between
10 lateral root formation and conversion of chromatin structure. It has been, for the first time in the present invention, suggested that the conversion of chromatin structure is involved in lateral root formation.

15 [Mutant gene of SSL2 gene]

The "mutant gene of the SSL2 gene (cDNA)" of the present invention is a mutant gene having a mutation in at least one base of the SSL2 gene (cDNA) shown in SEQ ID NO: 1, whose expression enables a phenotype of
20 a mutant that has no lateral roots to be recovered.

In the "mutant gene of the SSL2 gene (cDNA)", "mutation" represents, for example, substitution, deletion, or addition of at least one base, which mutation has an influence on the phenotype of a mutant
25 that has no lateral roots. In other words, the expression of the mutant gene having the above-described mutation enables the phenotype of a mutant

that has no lateral roots to be recovered.

Specifically, the "mutant gene of the SSL2 gene (cDNA)" of the present invention includes the following mutant genes. However, it should be noted that the
5 "mutant gene of the SSL2 gene (cDNA)" of the present invention is not limited to these specific examples:

10 1) a mutant gene in which at least one base (e.g., one base or a few bases) of the SSL2 gene (cDNA) has been substituted with base(s) of other type(s), whereby a codon designating an amino acid has been replaced with a termination codon; and

15 2) a mutant gene in which at least one base (e.g., one base or a few bases) of the SSL2 gene (cDNA) has been substituted with base(s) of other type(s), whereby a codon designating an amino acid of one type has been replaced with a codon designating an amino acid of another type.

More specifically, the "mutant gene of the SSL2 gene (cDNA)" possessed by the double mutant *ssl2 slr* selected in the present invention includes the following mutant genes. The mutant genes (a) to (c) are derived from the lines *ssl2-1*, *ssl2-3*, *ssl2-4* of the double mutant *ssl2 slr*, respectively:
20

25 a) a mutant gene in which the 566th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A". As a result of this mutation, tryptophan (TGG) as the 189th amino acid in SEQ ID NO:

2 has been replaced with the termination codon (TAG);

b) a mutant gene in which the 1005th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A". As a result of this mutation,

5 tryptophan (TGG) as the 335th amino acid in SEQ ID NO:

2 has been replaced with the termination codon (TAG);

c) a mutant gene in which the 901th base "G" of the SSL2 gene (cDNA) shown in SEQ ID NO: 1 has been substituted with "A". As a result of this mutation,

10 glycine (GGA) as the 301th amino acid in SEQ ID NO: 2

has been replaced with asparagine (AGA).

Further, the "mutant gene of the SSL2 genomic gene" of the present invention is a mutant gene having mutation in at least one base of the SSL2 genomic gene shown in SEQ ID NO: 3, whose expression enables a phenotype of a mutant that has no lateral roots to be recovered.

Specifically, the "mutant gene of the SSL2 genomic gene" of the present invention includes the following mutant genes. It should be noted that the "mutant gene of the SSL2 genomic gene" of the present invention is not limited to these specific examples:

3) a mutant gene in which at least one base (e.g., one base or a few bases) of the exon portion of the SSL2 genomic gene has been substituted with base(s) of other type(s), whereby a codon designating an amino acid has been replaced with a termination codon;

4) a mutant gene in which at least one base (e.g., one base or a few bases) of the exon portion of the SSL2 genomic gene has been substituted with base(s) of other type(s), whereby a codon designating an amino acid of one type has been replaced with a codon designating an amino acid of another type; and

5 5) a mutant gene in which at least one base (e.g., one base or a few bases) of a splice site of the SSL2 genomic gene has been substituted with base(s) of other type(s), whereby an intron of the SSL2 genomic gene has not been excised in the normal manner.

In the mutant gene, a "splice site" represents a boundary site between exon and intron, i.e., a site at which excision of an intron and recombination of the two exons adjacent to both ends of the intron are carried out during a splicing reaction, any substitution of a base at which splice site disturbs the splicing reaction. Specifically, a splice site includes the donor splice site located at the 5' end of an intron and the acceptor splice site located at the 3' end of an intron. Specific examples of the splice site include the conserved sequence "gt" located at the 5' end of an intron and the conserved sequence "ag" located at the 3' end of an intron.

20 More specifically, the "mutant gene of the SSL2 genomic gene" possessed by the double mutant ssl2 slr selected in the present invention includes the

following mutant genes. The mutant genes (d) to (g) are derived from the lines ssl2-1, ssl2-2, ssl2-3, ssl2-4 of the double mutant ssl2 slr, respectively:

5 d) a mutant gene in which the 852th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A". As a result of this mutation at the exon portion of the SSL2 genomic gene, tryptophan (TGG) as the 189th amino acid in SEQ ID NO: 2 has been replaced with the termination codon (TAG);

10 e) a mutant gene in which the 4734th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A". As a result of this mutation at the splice site of the SSL2 genomic gene, the intron of the SSL2 genomic gene has not been excised in the normal manner and thus a normal mRNA is not produced;

15 f) a mutant gene in which the 1757th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A". As a result of this mutation at the exon portion of the SSL2 genomic gene, tryptophan (TGG) as the 335th amino acid in SEQ ID NO: 2 has been replaced with the termination codon (TAG);

20 g) a mutant gene in which the 1546th base "G" of the SSL2 genomic gene shown in SEQ ID NO: 3 has been substituted with "A". As a result of this mutation at the exon portion of the SSL2 genomic gene, glycine (GGA) as the 301th amino acid in SEQ ID NO: 2 has been replaced with asparagine (AGA).

[Examples]

Hereinafter, the present invention will be described in detail by examples. It should be noted that the present invention is not limited to the descriptions of these examples.

Example 1: Production of a double mutant *ssl2 slr* having *ssl2* recessive mutation and *slr* dominant mutation

About 5000 seeds of the *slr* dominant mutant (FERM BP-8385), which forms no lateral roots, were subjected to a mutagen treatment in which the seeds were immersed in 0.2 % ethylmethanesulfonic acid (EMS) solution for 16 hours. The mutagen-treated seeds (M1 seeds) were each grown to plants, and self-pollination of the grown plants was performed, thereby preparing the next generation. Among the next generation (30,000 plants), plants which formed lateral roots although they basically maintained the phenotypes of the *slr* dominant mutant were selected. After confirming that the aforementioned phenotypes of the selected plants was reliably inherited to the next generation of the selected plants, the selected plants were identified as double mutant and named "double mutant *ssl2 slr*". In the present example, double mutants *ssl2 slr* of four lines (i.e., *ssl2-1*, *ssl2-2*, *ssl2-3* and *ssl2-4*) were obtained.

Further, it was confirmed on the basis of the

nucleotide sequence that the genome DNA of the double mutant *ssl2 slr* did not have any additional mutation in a region of the gene (*mutant IAA14 gene*) causing the *slr* dominant mutation. That is, it was confirmed that
5 the double mutant *ssl2 slr* did not correspond to an "intragenic suppressor mutant" in which an additional mutation has occurred inside a region of the mutant IAA14 gene. This confirmation was carried out by amplifying the genomic region including the mutant 10 IAA14 gene, by using the PCR primers shown below. The PCR primer sequences for amplifying the genomic region (1476 base pairs) including the mutant IAA14 gene will be described hereinbelow.

IAA14-F1: 5-CATATTCTGATTAAAGACATA-3 (SEQ ID NO: 5)
15 IAA14-R1: 5-AATCAATGCATATTGTCCCT-3 (SEQ ID NO: 6)

The following primers were used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

IAA14-F2: 5-TTATGGCTAACAGAAGAGCG-3 (SEQ ID NO: 7)
20 IAA14-F3: 5-TATTCTCTAAACAAAAAAAC-3 (SEQ ID NO: 8)

Further, it was confirmed from the nucleotide sequence that the genome DNA of the double mutant *ssl2 slr* had a mutation in a region of the *SSL2* gene. This confirmation was carried out by amplifying the 25 region of the *SSL2* gene, by using primers shown below. Specifically, the nucleotide sequence of the *SSL2* gene region was determined by: allotting the *SSL2* gene

region (9353 base pairs) into 7 sub-regions (A to G); effecting amplification by PCR in each of the sub-regions; determining the entire nucleotide sequence of each PCR product; and comparing the entire nucleotide sequence of each PCR product with the genome DNA sequence of the SSL2 gene of the wild type. If any mutation is found, the plant having the mutation is 5 an ssl2 mutant.

10 The PCR primer sequences for amplifying each sub-region (A to G) of the SSL2 gene region were as follows.

1) PCR primer sequences for amplifying the sub-region (A)

SSL2-F1: 5-aattcgacttctggtaactca-3 (SEQ ID NO: 9)

15 SSL2-R1: 5-AAATTAAGTCCCTCAAGCTGG-3 (SEQ ID NO: 10)

The following primers were used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

SSL2-F2: 5-actctgaatttgttagAAAGAA-3 (SEQ ID NO: 11)

20 SSL2-F3: 5-GAAGATGATTTGTTGCCATA-3 (SEQ ID NO: 12)

2) PCR primer sequences for amplifying the sub-region (B)

SSL2-F4: 5-AAGATGGGGAGCTGGAATATC-3 (SEQ ID NO: 13)

SSL2-R2: 5-GGCTAACACACCCTCTAGCATA-3 (SEQ ID NO: 14)

25 The following primers were used, in addition to the above-described two primers, in order to determine the entire nucleotide sequence of the PCR product.

SSL2-F5: 5-CATCCATACCAGCTTGAGGGA-3 (SEQ ID NO: 15)

SSL2-F6: 5-CAAGTTGATGTCCTCCTCAC-3 (SEQ ID NO: 16)

3) PCR primer sequences for amplifying the
sub-region (C)

5 SSL2-F7: 5-ACATGCCCCCCAAAAAGGAGC-3 (SEQ ID NO: 17)

SSL2-R3: 5-CCATCAATTGCGCTCGTACTGC-3 (SEQ ID NO: 18)

The following primer was used, in addition to the
above-described two primers, in order to determine the
entire nucleotide sequence of the PCR product.

10 SSL2-F8: 5-atgtgctgaaactgtgtgtac-3 (SEQ ID NO: 19)

4) PCR primer sequences for amplifying the
sub-region (D)

SSL2-F9: 5-ccattgctttgctgacgcatt-3 (SEQ ID NO: 20)

SSL2-R4: 5-ttcgatagccaccacagtct-3 (SEQ ID NO: 21)

15 The following primer was used, in addition to the
above-described two primers, in order to determine the
entire nucleotide sequence of the PCR product.

SSL2-F10: 5-ggcatttgcataatgggtggcgt-3 (SEQ ID NO: 22)

5) PCR primer sequences for amplifying the
sub-region (E)

20 SSL2-F11: 5-TCAGGTATGGATCAAAGGAGC-3 (SEQ ID NO: 23)

SSL2-R5: 5-CTCCCCTCACCTTCCATCAAC-3 (SEQ ID NO: 24)

The following primers were used, in addition to
the above-described two primers, in order to determine
25 the entire nucleotide sequence of the PCR product.

SSL2-F12: 5-gtgcacaatcttgtcaaatca-3 (SEQ ID NO: 25)

SSL2-F13: 5-GAGGCACAGAGAGTCGCTGCT-3 (SEQ ID NO: 26)

6) PCR primer sequences for amplifying the
sub-region (F)

SSL2-F14: 5-tatacattgggttggctgcc-3 (SEQ ID NO: 27)

SSL2-R6: 5-GTAGGGATAGATGATGAGCCA-3 (SEQ ID NO: 28)

5 The following primers were used, in addition to
the above-described two primers, in order to determine
the entire nucleotide sequence of the PCR product.

SSL2-F15: 5-cccgatgcatctaaattatc-3 (SEQ ID NO: 29)

SSL2-F16: 5-ACTAGTTCAGGAGAAGgtgag-3 (SEQ ID NO: 30)

10 7) PCR primer sequences for amplifying the
sub-region (G)

SSL2-F17: 5-ACATGCAGAGACGACTTGTG-3 (SEQ ID NO: 31)

SSL2-R7: 5-cggacttcatcgaacctattc-3 (SEQ ID NO: 32)

15 The above-described two primers were used in order
to determine the entire nucleotide sequence of the PCR
product.

Example 2: Isolation of SSL2 gene

The double mutant *ssl2 slr* (ecotype: Columbia)
having both *ssl2* recessive mutation and *slr* dominant
mutation, prepared in Example 1, was crossed with the
20 wild type (ecotype: Landsberg erecta), whereby F1
generation was obtained. Then, F2 generation as the
next generation of F1 generation was prepared by
performing self-pollination of the F1 generation.

25 By using the genomic DNA of the F2 generation, detailed
mapping of the SSL2 gene locus was carried out on
the basis of the genomic information of *Arabidopsis*

thaliana. From the result of the mapping, it was found out that the *ssl2* recessive mutation is located in a genomic region including 17 genes from gene At2g25140 to gene At2g25300 on the second chromosome.

5 Next, in the genomic DNA of the selected four lines (*ssl2-1*, *ssl2-2*, *ssl2-3* and *ssl2-4*) of the double mutant *ssl2 slr*, the nucleotide sequences of the above-described 17 candidate genes were examined. As a result, in all of the four lines of the double 10. mutant *ssl2 slr*, mutation which presumably causes, the protein encoded by At2g25170 gene, to lose the function thereof was found. On the basis of this discovery, the At2g25170 gene was identified as the SSL2 gene.
Example 3: Experiment in which it was confirmed that 15 the SSL2 gene is involved in the blocking of lateral root formation

The *slr* dominant mutant (FERM BP-8385) is a gain-of-function mutant of the IAA14 gene encoding an auxin-inducible protein, and lateral root formation 20 thereof is completely blocked under normal growth conditions on an agar medium. However, the double mutant *ssl2 slr* which has both *ssl2* recessive mutation and *slr* dominant mutation, newly prepared in the present invention, formed lateral roots under the 25 same normal conditions, although the formation of lateral roots was not so vigorous as in the wild type. From this result, it was proved that the normal SSL2

gene is essential for maintaining the lateral rootless phenotype (i.e., the blocking of lateral root formation) observed in the slr dominant mutant.

Additional advantages and modifications will
5 readily occur to those skilled in the art. Therefore,
the invention in its broader aspects is not limited to
the specific details and representative embodiments
shown and described herein. Accordingly, various
modifications may be made without departing from the
10 spirit or scope of the general inventive concept as
defined by the appended claims and their equivalents.

SEQUENCE LISTING

<110> Nara Institute of Science and Technology

<120> A protein that has a function of maintaining a mutation
whereby lateral root formation is blocked and a gene
encoding the protein

<130> 03S0267

<150> JP P2003-147765

<151> 2003-05-26

<160> 32

<170> PatentIn Ver. 2.0

<210> 1

<211> 4155

<212> DNA

<213> *Arabidopsis thaliana*

<220>

<221> CDS

<222> (1)..(4152)

<400> 1

atg agt agt ttg gtg gag agg ctt cgc ata cga tct gat agg aaa cca 48

Met Ser Ser Leu Val Glu Arg Leu Arg Ile Arg Ser Asp Arg Lys Pro

1

5

10

15

gtt tat aac cta gat gat tct gat gat gac gac ttc gtt cct aaa aaa 96

Val Tyr Asn Leu Asp Asp Ser Asp Asp Asp Phe Val Pro Lys Lys

20

25

30

gat cga acc ttt gag caa gtc gag gct att gtc aga act gat gcg aaa 144

Asp Arg Thr Phe Glu Gln Val Glu Ala Ile Val Arg Thr Asp Ala Lys			
35	40	45	
gaa aat gca tgt cag gct tgt ggg gaa agt act aat ctt gta agc tgc			192
Glu Asn Ala Cys Gln Ala Cys Gly Glu Ser Thr Asn Leu Val Ser Cys			
50	55	60	
aat aca tgc act tat gcg ttc cat gct aaa tgc tta gtt cca cct ctt			240
Asn Thr Cys Thr Tyr Ala Phe His Ala Lys Cys Leu Val Pro Pro Leu			
65	70	75	80
aaa gat gct tcc gtg gaa aat tgg aga tgc cct gaa tgt gtt agt cct			288
Lys Asp Ala Ser Val Glu Asn Trp Arg Cys Pro Glu Cys Val Ser Pro			
85	90	95	
ctt aac gag ata gat aag ata ttg gat tgt gaa atg cgt cct aca aaa			336
Leu Asn Glu Ile Asp Lys Ile Leu Asp Cys Glu Met Arg Pro Thr Lys			
100	105	110	
tct agt gaa caa ggt tcc tcc gat gcg gaa ccg aag cca att ttt gtg			384
Ser Ser Glu Gln Gly Ser Ser Asp Ala Glu Pro Lys Pro Ile Phe Val			
115	120	125	
aaa cag tat ctc gtg aag tgg aag gga tta tca tac ctt cac tgc tct			432
Lys Gln Tyr Leu Val Lys Trp Lys Gly Leu Ser Tyr Leu His Cys Ser			
130	135	140	
tgg gtg cct gag aag gag ttc cag aag gct tat aag tca aat cat cgt			480
Trp Val Pro Glu Lys Glu Phe Gln Lys Ala Tyr Lys Ser Asn His Arg			
145	150	155	160
tta aaa acc aga gtg aac aat ttt cac cgt caa atg gag tca ttc aat			528
Leu Lys Thr Arg Val Asn Asn Phe His Arg Gln Met Glu Ser Phe Asn			
165	170	175	
aac agc gaa gat gat ttt gtt gcc ata cgt cct gag tgg acc act gtt			576

Asn Ser Glu Asp Asp Phe Val Ala Ile Arg Pro Glu Trp Thr Thr Val			
180	185	190	
gat cgg att ctt gcc tgc aga gag gaa gat ggg gag ctg gaa tat ctt			624
Asp Arg Ile Leu Ala Cys Arg Glu Glu Asp Gly Glu Leu Glu Tyr Leu			
195	200	205	
gtc aaa tat aaa gag cta tcc tat gat gaa tgt tat tgg gag tca gaa			672
Val Lys Tyr Lys Glu Leu Ser Tyr Asp Glu Cys Tyr Trp Glu Ser Glu			
210	215	220	
tca gac atc tca acc ttc cag aat gaa att caa agg ttc aag gat gta			720
Ser Asp Ile Ser Thr Phe Gln Asn Glu Ile Gln Arg Phe Lys Asp Val			
225	230	235	240
aat tct aga act cgc aga agt aaa gat gtt gac cat aaa aga aat ccc			768
Asn Ser Arg Thr Arg Arg Ser Lys Asp Val Asp His Lys Arg Asn Pro			
245	250	255	
aga gac ttt caa cag ttt gat cat act cct gaa ttc ctc aaa ggc ttg			816
Arg Asp Phe Gln Gln Phe Asp His Thr Pro Glu Phe Leu Lys Gly Leu			
260	265	270	
tta cat cca tac cag ctt gag gga ctt aat ttt ttg cgg ttc tcg tgg			864
Leu His Pro Tyr Gln Leu Glu Gly Leu Asn Phe Leu Arg Phe Ser Trp			
275	280	285	
tca aaa cag acg cat gta atc ctt gct gat gaa atg gga cta ggc aag			912
Ser Lys Gln Thr His Val Ile Leu Ala Asp Glu Met Gly Leu Gly Lys			
290	295	300	
aca att caa agc att gcc ctt tta gct tca ctt ttt gag gag aac ctc			960
Thr Ile Gln Ser Ile Ala Leu Leu Ala Ser Leu Phe Glu Glu Asn Leu			
305	310	315	320
att ccg cat ttg gta att gct cct cta tcg act ctg cgt aac tgg gag			1008

Ile Pro His Leu Val Ile Ala Pro Leu Ser Thr Leu Arg Asn Trp Glu				
	325	330	335	
aga gag ttt gcc aca tgg gcc cca cag atg aac gtc gtt atg tat ttt				1056
Arg Glu Phe Ala Thr Trp Ala Pro Gln Met Asn Val Val Met Tyr Phe				
	340	345	350	
ggc act gcg caa gct cga gca gtt atc aga gaa cat gag ttt tac tta				1104
Gly Thr Ala Gln Ala Arg Ala Val Ile Arg Glu His Glu Phe Tyr Leu				
	355	360	365	
tgc aaa gat caa aaa aag atc aag aaa aag aaa tct gga caa ata agt				1152
Ser Lys Asp Gln Lys Lys Ile Lys Lys Lys Ser Gly Gln Ile Ser				
	370	375	380	
agc gaa agc aag caa aaa aga atc aag ttt gat gtc ctc ctc aca tcg				1200
Ser Glu Ser Lys Gln Lys Arg Ile Lys Phe Asp Val Leu Leu Thr Ser				
	385	390	395	400
tat gag atg atc aac cta gat tca gca gtt cta aaa cca att aag tgg				1248
Tyr Glu Met Ile Asn Leu Asp Ser Ala Val Leu Lys Pro Ile Lys Trp				
	405	410	415	
gag tgc atg att gtt gat gaa ggt cat cga ctg aaa aat aag gat tca				1296
Glu Cys Met Ile Val Asp Glu Gly His Arg Leu Lys Asn Lys Asp Ser				
	420	425	430	
aag ctg ttc tct tca ttg aca cag tat tca agt aac cac cgt att ctt				1344
Lys Leu Phe Ser Ser Leu Thr Gln Tyr Ser Ser Asn His Arg Ile Leu				
	435	440	445	
ctg aca gga aca cca ctt cag aac aac ttg gat gaa ctt ttc atg ctc				1392
Leu Thr Gly Thr Pro Leu Gln Asn Asn Leu Asp Glu Leu Phe Met Leu				
	450	455	460	
atg cat ttt ctt gat gcg ggg aag ttt gga agt ttg gag gag ttc cag				1440

Met His Phe Leu Asp Ala Gly Lys Phe Gly Ser Leu Glu Glu Phe Gln				
465	470	475	480	
gag gag ttc aaa gat att aat caa gag gag cag atc tca agg ttg cac				1488
Glu Glu Phe Lys Asp Ile Asn Gln Glu Glu Gln Ile Ser Arg Leu His				
485	490	495		
aaa atg ttg gct cca cat ttg ctc aga agg gta aaa aaa gac gta atg				1536
Lys Met Leu Ala Pro His Leu Leu Arg Arg Val Lys Lys Asp Val Met				
500	505	510		
aaa gac atg ccc ccc aaa aag gag ctc att ttg cgt gtt gat ctg agc				1584
Lys Asp Met Pro Pro Lys Lys Glu Leu Ile Leu Arg Val Asp Leu Ser				
515	520	525		
agt ctg cag aaa gaa tat tac aaa gct att ttt acc cgt aat tat caa				1632
Ser Leu Gln Lys Glu Tyr Tyr Lys Ala Ile Phe Thr Arg Asn Tyr Gln				
530	535	540		
gta ttg aca aaa aag gga ggt gct caa att tcc ctt aat aac att atg				1680
Val Leu Thr Lys Lys Gly Gly Ala Gln Ile Ser Leu Asn Asn Ile Met				
545	550	555	560	
atg gaa tta cga aaa gta tgc tgc cat cct tat atg cta gag ggt gtt				1728
Met Glu Leu Arg Lys Val Cys Cys His Pro Tyr Met Leu Glu Gly Val				
565	570	575		
gag cca gtt att cac gac gca aat gaa gct ttc aaa caa ctt ttg gag				1776
Glu Pro Val Ile His Asp Ala Asn Glu Ala Phe Lys Gln Leu Leu Glu				
580	585	590		
tct tgt gga aag ctg caa ctt cta gat aaa atg atg gtc aaa ctg aaa				1824
Ser Cys Gly Lys Leu Gln Leu Leu Asp Lys Met Met Val Lys Leu Lys				
595	600	605		
gag caa gga cac aga gtc cta ata tac aca cag ttt cag cat atg ctg				1872

Glu Gln Gly His Arg Val Leu Ile Tyr Thr Gln Phe Gln His Met Leu
610 615 620

gac tta ctt gaa gac tac tgt acc cat aag aaa tgg cag tac gag cga 1920
Asp Leu Leu Glu Asp Tyr Cys Thr His Lys Lys Trp Gln Tyr Glu Arg
625 630 635 640

att gat gga aag gtt ggc gga gct gag cgg caa ata cgc ata gat cgg 1968
Ile Asp Gly Lys Val Gly Gly Ala Glu Arg Gln Ile Arg Ile Asp Arg
645 650 655

ttc aat gcc aaa aat tct aac aag ttt tgt ttt ttg ctc tcc aca aga 2016
Phe Asn Ala Lys Asn Ser Asn Lys Phe Cys Phe Leu Leu Ser Thr Arg
660 665 670

gct ggt ggc tta gga ata aat ctt gca acg gct gat aca gta atc att 2064
Ala Gly Gly Leu Gly Ile Asn Leu Ala Thr Ala Asp Thr Val Ile Ile
675 680 685

tat gac agt gac tgg aat cct cat gct gat ctt caa gca atg gct aga 2112
Tyr Asp Ser Asp Trp Asn Pro His Ala Asp Leu Gln Ala Met Ala Arg
690 695 700

gct cat cga ctt ggc caa aca aat aag gtg atg att tat agg ctc ata 2160
Ala His Arg Leu Gly Gln Thr Asn Lys Val Met Ile Tyr Arg Leu Ile
705 710 715 720

aac cga ggc acc att gaa gaa agg atg atg caa ttg act aaa aag aaa 2208
Asn Arg Gly Thr Ile Glu Glu Arg Met Met Gln Leu Thr Lys Lys
725 730 735

atg gtt cta gag cat ctt gtt gtt ggg aaa ctc aaa aca caa aac att 2256
Met Val Leu Glu His Leu Val Val Gly Lys Leu Lys Thr Gln Asn Ile
740 745 750

aat cag gaa gag tta gat gac atc atc agg tat gga tca aag gag ctt 2304

Asn Gln Glu Glu Leu Asp Asp Ile Ile Arg Tyr Gly Ser Lys Glu Leu				
755	760	765		
ttt gct agt gaa gat gat gaa gca gga aag tct gga aaa att cat tat				2352
Phe Ala Ser Glu Asp Asp Glu Ala Gly Lys Ser Gly Lys Ile His Tyr				
770	775	780		
gat gat gcg gct ata gac aaa ttg ctt gat cgt gat ctc gtg gag gca				2400
Asp Asp Ala Ala Ile Asp Lys Leu Leu Asp Arg Asp Leu Val Glu Ala				
785	790	795	800	
gag gaa gtc tca gtg gat gat gaa gag gag aat gga ttc tta aag gct				2448
Glu Glu Val Ser Val Asp Asp Glu Glu Glu Asn Gly Phe Leu Lys Ala				
805	810	815		
tcc aag gtg gct aat ttt gaa tat ata gat gaa aat gag gca gca gca				2496
Phe Lys Val Ala Asn Phe Glu Tyr Ile Asp Glu Asn Glu Ala Ala Ala				
820	825	830		
tta gag gca cag aga gtc gct gct gaa agc aaa tct tca gca ggc aat				2544
Leu Glu Ala Gln Arg Val Ala Ala Glu Ser Lys Ser Ser Ala Gly Asn				
835	840	845		
tct gat aga gca agt tat tgg gaa gag ttg tta aaa gat aaa ttt gag				2592
Ser Asp Arg Ala Ser Tyr Trp Glu Glu Leu Leu Lys Asp Lys Phe Glu				
850	855	860		
ctg cac cag gct gag gag ctt aat gct ctt gga aaa agg aag aga agt				2640
Leu His Gln Ala Glu Glu Leu Asn Ala Leu Gly Lys Arg Lys Arg Ser				
865	870	875	880	
cgc aag cag ttg gta tcc att gaa gaa gat gat ctt gct ggt ttg gaa				2688
Arg Lys Gln Leu Val Ser Ile Glu Glu Asp Asp Leu Ala Gly Leu Glu				
885	890	895		
gat gtg agc tct gat gga gat gaa agt tat gaa gct gag tca aca gat				2736

Asp Val Ser Ser Asp Gly Asp Glu Ser Tyr Glu Ala Glu Ser Thr Asp				
900	905	910		
ggt gaa gca gca gga caa gga gtt cag acg ggt cga cgg ccg tac aga	2784			
Gly Glu Ala Ala Gly Gln Gly Val Gln Thr Gly Arg Arg Pro Tyr Arg				
915	920	925		
aga aag ggt cgc gat aat ttg gaa cca act ccg ttg atg gaa ggt gag	2832			
Arg Lys Gly Arg Asp Asn Leu Glu Pro Thr Pro Leu Met Glu Gly Glu				
930	935	940		
ggg aga tct ttc aga gta ctg ggt ttc aac cag agt caa agg gcc att	2880			
Gly Arg Ser Phe Arg Val Leu Gly Phe Asn Gln Ser Gln Arg Ala Ile				
945	950	955	960	
ttt gta cag act ttg atg agg tat gga gct ggc aat ttt gat tgg aag	2928			
Phe Val Gln Thr Leu Met Arg Tyr Gly Ala Gly Asn Phe Asp Trp Lys				
965	970	975		
gag ttt gtt cct cgc tta aag cag aag acc ttt gaa gaa ata aat gaa	2976			
Glu Phe Val Pro Arg Leu Lys Gln Lys Thr Phe Glu Glu Ile Asn Glu				
980	985	990		
tat gga ata ctc ttc ttg aag cac att gct gaa gaa ata gac gag aat	3024			
Tyr Gly Ile Leu Phe Leu Lys His Ile Ala Glu Glu Ile Asp Glu Asn				
995	1000	1005		
tct cca acc ttt tca gat ggt gtg ccc aag gaa gga ctt aga ata gaa	3072			
Ser Pro Thr Phe Ser Asp Gly Val Pro Lys Glu Gly Leu Arg Ile Glu				
1010	1015	1020		
gat gtt cta gtc aga att gct ctt ctg ata cta gtt cag gag aag gtg	3120			
Asp Val Leu Val Arg Ile Ala Leu Leu Ile Leu Val Gln Glu Lys Val				
1025	1030	1035	1040	
aaa ttt gta gaa gat cat cca ggg aaa cct gtt ttc ccc tct cgc att	3168			

Lys Phe Val Glu Asp His Pro Gly Lys Pro Val Phe Pro Ser Arg Ile				
1045	1050	1055		
ctt gaa aga ttc ccc gga ctg aga agt gga aaa att tgg aag gag gaa	3216			
Leu Glu Arg Phe Pro Gly Leu Arg Ser Gly Lys Ile Trp Lys Glu Glu				
1060	1065	1070		
cat gac aag ata atg ata cgt gct gtt tta aag cat ggg tac gga cgg	3264			
His Asp Lys Ile Met Ile Arg Ala Val Leu Lys His Gly Tyr Gly Arg				
1075	1080	1085		
tgg caa gct att gtt gat gac aaa gag ttg ggg atc caa gag ctt atc	3312			
Trp Gln Ala Ile Val Asp Asp Lys Glu Leu Gly Ile Gln Glu Leu Ile				
1090	1095	1100		
tgc aaa gaa ttg aat ttc cct cac ata agt ttg tct gct gct gaa caa	3360			
Cys Lys Glu Leu Asn Phe Pro His Ile Ser Leu Ser Ala Ala Glu Gln				
1105	1110	1115	1120	
gct ggt ttg cag ggg cag aat ggt agt ggg ggc tct aat ccg gga gca	3408			
Ala Gly Leu Gln Gly Gln Asn Gly Ser Gly Ser Asn Pro Gly Ala				
1125	1130	1135		
cag act aac cag aat cct gga agc gtt att act ggg aac aat aat gct	3456			
Gln Thr Asn Gln Asn Pro Gly Ser Val Ile Thr Gly Asn Asn Asn Ala				
1140	1145	1150		
tct gct gat ggg gct caa gta aac tcg atg ttc tat tat cgg gac atg	3504			
Ser Ala Asp Gly Ala Gln Val Asn Ser Met Phe Tyr Tyr Arg Asp Met				
1155	1160	1165		
cag aga cga ctt gtt gag ttt gtg aaa aag cga gtt ctg ctt ttg gag	3552			
Gln Arg Arg Leu Val Glu Phe Val Lys Lys Arg Val Leu Leu Glu				
1170	1175	1180		
aag gcg atg aat tat gaa tac gca gag gaa tat tat gga ctt ggt ggc	3600			

Lys Ala Met Asn Tyr Glu Tyr Ala Glu Glu Tyr Tyr Gly Leu Gly Gly				
1185	1190	1195	1200	
tca tca tct atc cct act gaa gaa cca gaa gct gaa cca aag atc gct	3648			
Ser Ser Ser Ile Pro Thr Glu Glu Pro Glu Ala Glu Pro Lys Ile Ala				
1205	1210	1215		
gac aca gtg gga gtg agc ttt att gag gtt gat gat gaa atg ctt gat	3696			
Asp Thr Val Gly Val Ser Phe Ile Glu Val Asp Asp Glu Met Leu Asp				
1220	1225	1230		
gga ctt cct aag act gat cct atc act tca gaa gaa att atg ggg gct	3744			
Gly Leu Pro Lys Thr Asp Pro Ile Thr Ser Glu Glu Ile Met Gly Ala				
1235	1240	1245		
gct gtt gac aac aac caa gcg cgg gtc gaa ata gct caa cat tat aac	3792			
Ala Val Asp Asn Asn Gln Ala Arg Val Glu Ile Ala Gln His Tyr Asn				
1250	1255	1260		
cag atg tgc aaa ctt ctt gat gag aac gct cgg gaa tca gtc caa gca	3840			
Gln Met Cys Lys Leu Leu Asp Glu Asn Ala Arg Glu Ser Val Gln Ala				
1265	1270	1275	1280	
tat gta aac aac caa cca ccg agt acc aag gtg aat gag agc ttc cgt	3888			
Tyr Val Asn Asn Gln Pro Pro Ser Thr Lys Val Asn Glu Ser Phe Arg				
1285	1290	1295		
gca ctc aaa tct atc aat ggt aac att aac aca atc ctt tcg att aca	3936			
Ala Leu Lys Ser Ile Asn Gln Asn Ile Asn Thr Ile Leu Ser Ile Thr				
1300	1305	1310		
tct gat caa tcc aag tca cat gaa gac gac acc aag cca gac cta aac	3984			
Ser Asp Gln Ser Lys Ser His Glu Asp Asp Thr Lys Pro Asp Leu Asn				
1315	1320	1325		
aat gtt gag atg aag gac acg gcc gaa gaa aca aaa ccg tta aga ggt	4032			

Asn Val Glu Met Lys Asp Thr Ala Glu Glu Thr Lys Pro Leu Arg Gly
1330 1335 1340

ggc gtc gtc gat ctg aat gtg gtg gag gga gag gag aac att gct gaa 4080
Gly Val Val Asp Leu Asn Val Val Glu Gly Glu Glu Asn Ile Ala Glu
1345 1350 1355 1360

gct agt gga agt gtt gat gta aaa atg gaa gaa gcc aaa gaa gaa gag 4128
Ala Ser Gly Ser Val Asp Val Lys Met Glu Glu Ala Lys Glu Glu Glu
1365 1370 1375

aag cca aag aac atg gtc gtt gat tga 4155
Lys Pro Lys Asn Met Val Val Asp
1380

<210> 2

<211> 1384

<212> PRT

<213> *Arabidopsis thaliana*

<400> 2

Met Ser Ser Leu Val Glu Arg Leu Arg Ile Arg Ser Asp Arg Lys Pro
1 5 10 15

Val Tyr Asn Leu Asp Asp Ser Asp Asp Asp Asp Phe Val Pro Lys Lys
20 25 30

Asp Arg Thr Phe Glu Gln Val Glu Ala Ile Val Arg Thr Asp Ala Lys
35 40 45

Glu Asn Ala Cys Gln Ala Cys Gly Glu Ser Thr Asn Leu Val Ser Cys
50 55 60

Asn Thr Cys Thr Tyr Ala Phe His Ala Lys Cys Leu Val Pro Pro Leu
65 70 75 80

Lys Asp Ala Ser Val Glu Asn Trp Arg Cys Pro Glu Cys Val Ser Pro
85 90 95

Leu Asn Glu Ile Asp Lys Ile Leu Asp Cys Glu Met Arg Pro Thr Lys
100 105 110

Ser Ser Glu Gln Gly Ser Ser Asp Ala Glu Pro Lys Pro Ile Phe Val
115 120 125

Lys Gln Tyr Leu Val Lys Trp Lys Gly Leu Ser Tyr Leu His Cys Ser
130 135 140

Trp Val Pro Glu Lys Glu Phe Gln Lys Ala Tyr Lys Ser Asn His Arg
145 150 155 160

Leu Lys Thr Arg Val Asn Asn Phe His Arg Gln Met Glu Ser Phe Asn
165 170 175

Asn Ser Glu Asp Asp Phe Val Ala Ile Arg Pro Glu Trp Thr Thr Val
180 185 190

Asp Arg Ile Leu Ala Cys Arg Glu Glu Asp Gly Glu Leu Glu Tyr Leu
195 200 205

Val Lys Tyr Lys Glu Leu Ser Tyr Asp Glu Cys Tyr Trp Glu Ser Glu
210 215 220

Ser Asp Ile Ser Thr Phe Gln Asn Glu Ile Gln Arg Phe Lys Asp Val
225 230 235 240

Asn Ser Arg Thr Arg Arg Ser Lys Asp Val Asp His Lys Arg Asn Pro
245 250 255

Arg Asp Phe Gln Gln Phe Asp His Thr Pro Glu Phe Leu Lys Gly Leu
260 265 270

Leu His Pro Tyr Gln Leu Glu Gly Leu Asn Phe Leu Arg Phe Ser Trp
275 280 285

Ser Lys Gln Thr His Val Ile Leu Ala Asp Glu Met Gly Leu Gly Lys
290 295 300

Thr Ile Gln Ser Ile Ala Leu Leu Ala Ser Leu Phe Glu Glu Asn Leu
305 310 315 320

Ile Pro His Leu Val Ile Ala Pro Leu Ser Thr Leu Arg Asn Trp Glu
325 330 335

Arg Glu Phe Ala Thr Trp Ala Pro Gln Met Asn Val Val Met Tyr Phe
340 345 350

Gly Thr Ala Gln Ala Arg Ala Val Ile Arg Glu His Glu Phe Tyr Leu
355 360 365

Ser Lys Asp Gln Lys Lys Ile Lys Lys Lys Ser Gly Gln Ile Ser
370 375 380

Ser Glu Ser Lys Gln Lys Arg Ile Lys Phe Asp Val Leu Leu Thr Ser
385 390 395 400

Tyr Glu Met Ile Asn Leu Asp Ser Ala Val Leu Lys Pro Ile Lys Trp
405 410 415

Glu Cys Met Ile Val Asp Glu Gly His Arg Leu Lys Asn Lys Asp Ser
420 425 430

Lys Leu Phe Ser Ser Leu Thr Gln Tyr Ser Ser Asn His Arg Ile Leu
435 440 445

Leu Thr Gly Thr Pro Leu Gln Asn Asn Leu Asp Glu Leu Phe Met Leu
450 455 460

Met His Phe Leu Asp Ala Gly Lys Phe Gly Ser Leu Glu Glu Phe Gln
465 470 475 480

Glu Glu Phe Lys Asp Ile Asn Gln Glu Glu Gln Ile Ser Arg Leu His
485 490 495

Lys Met Leu Ala Pro His Leu Leu Arg Arg Val Lys Lys Asp Val Met
500 505 510

Lys Asp Met Pro Pro Lys Lys Glu Leu Ile Leu Arg Val Asp Leu Ser
515 520 525

Ser Leu Gln Lys Glu Tyr Tyr Lys Ala Ile Phe Thr Arg Asn Tyr Gln
530 535 540

Val Leu Thr Lys Lys Gly Gly Ala Gln Ile Ser Leu Asn Asn Ile Met
545 550 555 560

Met Glu Leu Arg Lys Val Cys Cys His Pro Tyr Met Leu Glu Gly Val
565 570 575

Glu Pro Val Ile His Asp Ala Asn Glu Ala Phe Lys Gln Leu Leu Glu
580 585 590

Ser Cys Gly Lys Leu Gln Leu Leu Asp Lys Met Met Val Lys Leu Lys
595 600 605

Glu Gln Gly His Arg Val Leu Ile Tyr Thr Gln Phe Gln His Met Leu
610 615 620

Asp Leu Leu Glu Asp Tyr Cys Thr His Lys Lys Trp Gln Tyr Glu Arg
625 630 635 640

Ile Asp Gly Lys Val Gly Gly Ala Glu Arg Gln Ile Arg Ile Asp Arg
645 650 655

Phe Asn Ala Lys Asn Ser Asn Lys Phe Cys Phe Leu Leu Ser Thr Arg
660 665 670

Ala Gly Gly Leu Gly Ile Asn Leu Ala Thr Ala Asp Thr Val Ile Ile
675 680 685

Tyr Asp Ser Asp Trp Asn Pro His Ala Asp Leu Gln Ala Met Ala Arg
690 695 700

Ala His Arg Leu Gly Gln Thr Asn Lys Val Met Ile Tyr Arg Leu Ile
705 710 715 720

Asn Arg Gly Thr Ile Glu Glu Arg Met Met Gln Leu Thr Lys Lys Lys
725 730 735

Met Val Leu Glu His Leu Val Val Gly Lys Leu Lys Thr Gln Asn Ile
740 745 750

Asn Gln Glu Glu Leu Asp Asp Ile Ile Arg Tyr Gly Ser Lys Glu Leu
755 760 765

Phe Ala Ser Glu Asp Asp Glu Ala Gly Lys Ser Gly Lys Ile His Tyr
770 775 780

Asp Asp Ala Ala Ile Asp Lys Leu Leu Asp Arg Asp Leu Val Glu Ala
785 790 795 800

Glu Glu Val Ser Val Asp Asp Glu Glu Glu Asn Gly Phe Leu Lys Ala
805 810 815

Phe Lys Val Ala Asn Phe Glu Tyr Ile Asp Glu Asn Glu Ala Ala Ala
820 825 830

Leu Glu Ala Gln Arg Val Ala Ala Glu Ser Lys Ser Ser Ala Gly Asn
835 840 845

Ser Asp Arg Ala Ser Tyr Trp Glu Glu Leu Leu Lys Asp Lys Phe Glu
850 855 860

Leu His Gln Ala Glu Glu Leu Asn Ala Leu Gly Lys Arg Lys Arg Ser
865 870 875 880

Arg Lys Gln Leu Val Ser Ile Glu Glu Asp Asp Leu Ala Gly Leu Glu
885 890 895

Asp Val Ser Ser Asp Gly Asp Glu Ser Tyr Glu Ala Glu Ser Thr Asp
900 905 910

Gly Glu Ala Ala Gly Gln Gly Val Gln Thr Gly Arg Arg Pro Tyr Arg
915 920 925

Arg Lys Gly Arg Asp Asn Leu Glu Pro Thr Pro Leu Met Glu Gly Glu
930 935 940

Gly Arg Ser Phe Arg Val Leu Gly Phe Asn Gln Ser Gln Arg Ala Ile
945 950 955 960

Phe Val Gln Thr Leu Met Arg Tyr Gly Ala Gly Asn Phe Asp Trp Lys
965 970 975

Glu Phe Val Pro Arg Leu Lys Gln Lys Thr Phe Glu Glu Ile Asn Glu
980 985 990

Tyr Gly Ile Leu Phe Leu Lys His Ile Ala Glu Glu Ile Asp Glu Asn
995 1000 1005

Ser Pro Thr Phe Ser Asp Gly Val Pro Lys Glu Gly Leu Arg Ile Glu
1010 1015 1020

Asp Val Leu Val Arg Ile Ala Leu Leu Ile Leu Val Gln Glu Lys Val
1025 1030 1035 1040

Lys Phe Val Glu Asp His Pro Gly Lys Pro Val Phe Pro Ser Arg Ile
1045 1050 1055

Leu Glu Arg Phe Pro Gly Leu Arg Ser Gly Lys Ile Trp Lys Glu Glu
1060 1065 1070

His Asp Lys Ile Met Ile Arg Ala Val Leu Lys His Gly Tyr Gly Arg
1075 1080 1085

Trp Gln Ala Ile Val Asp Asp Lys Glu Leu Gly Ile Gln Glu Leu Ile
1090 1095 1100

Cys Lys Glu Leu Asn Phe Pro His Ile Ser Leu Ser Ala Ala Glu Gln
1105 1110 1115 1120

Ala Gly Leu Gln Gly Gln Asn Gly Ser Gly Gly Ser Asn Pro Gly Ala
1125 1130 1135

Gln Thr Asn Gln Asn Pro Gly Ser Val Ile Thr Gly Asn Asn Asn Ala
1140 1145 1150

Ser Ala Asp Gly Ala Gln Val Asn Ser Met Phe Tyr Tyr Arg Asp Met
1155 1160 1165

Gln Arg Arg Leu Val Glu Phe Val Lys Lys Arg Val Leu Leu Leu Glu
1170 1175 1180

Lys Ala Met Asn Tyr Glu Tyr Ala Glu Glu Tyr Tyr Gly Leu Gly Gly
1185 1190 1195 1200

Ser Ser Ser Ile Pro Thr Glu Glu Pro Glu Ala Glu Pro Lys Ile Ala
1205 1210 1215

Asp Thr Val Gly Val Ser Phe Ile Glu Val Asp Asp Glu Met Leu Asp
1220 1225 1230

Gly Leu Pro Lys Thr Asp Pro Ile Thr Ser Glu Glu Ile Met Gly Ala
1235 1240 1245

Ala Val Asp Asn Asn Gln Ala Arg Val Glu Ile Ala Gln His Tyr Asn
1250 1255 1260

Gln Met Cys Lys Leu Leu Asp Glu Asn Ala Arg Glu Ser Val Gln Ala
1265 1270 1275 1280

Tyr Val Asn Asn Gln Pro Pro Ser Thr Lys Val Asn Glu Ser Phe Arg
1285 1290 1295

Ala Leu Lys Ser Ile Asn Gly Asn Ile Asn Thr Ile Leu Ser Ile Thr
1300 1305 1310

Ser Asp Gln Ser Lys Ser His Glu Asp Asp Thr Lys Pro Asp Leu Asn
1315 1320 1325

Asn Val Glu Met Lys Asp Thr Ala Glu Glu Thr Lys Pro Leu Arg Gly
1330 1335 1340

Gly Val Val Asp Leu Asn Val Val Glu Gly Glu Glu Asn Ile Ala Glu
1345 1350 1355 1360

Ala Ser Gly Ser Val Asp Val Lys Met Glu Glu Ala Lys Glu Glu Glu
1365 1370 1375

Lys Pro Lys Asn Met Val Val Asp
1380

<210> 3

<211> 9353

<212> DNA

<213> *Arabidopsis thaliana*

<400> 3

atgagtagtt tggtagagag gcttcgcata cgatctgata ggaaaccagt ttataaccta 60
gatgattctg atgatgacga cttcgccct aaaaaagatc gaaccttga gcaagtcgag 120
gctattgtca gaactgatgc ggttgtttc tcctctcgag cttattgttc agctttact 180
gttttatgtt ttctatTTTA atcCTTTTT ttgtgtgtt actctgaatt tgttagaaaga 240
aaatgcgt caggcttgcg gggaaagtac taatcttgcg agctgcaata catgcactta 300
tgcgTTccat gctaaatgct tagtccacc tcttaaagat gctccgtgg aaaattggag 360
atgccctgaa tgtgtaagat tttagttacg gtccacaatt atgtttggg atgctacagg 420
ttccatTTT cttacatgga agaattgtt tttacatttgc caggttagtc ctcttaacga 480
gatagataag atattggatt gtgaaatgct tcctacaaaa tcttagtgc acgtttcc 540
cgatgcggaa ccgaagccaa tttttgtgaa acagtatctc gtgaagtggg agggattatc 600
ataccttcac tgctcttgcg agttactgctg tttttttt gctgtctggc cacgctaatt 660
atcaatgttt ctttctgtga acactataat atgtgatttta tttcTTTTTA ctaatcatag 720
ggtgccctgag aaggagttcc agaaggcttta taagtcaaat catcgTTTaa aaaccagagt 780
gaacaatTTT caccgtcaaa tggagtcatt caataacagc gaagatgattt ttgttgcct 840
acgtccctgag tggaccactg ttgatcggt tcttgccgc aggtcttagag aatggatttt 900
atccctttat ttatctatct gccaactttt ttttaatat cttgttttc agcataatcc 960
attctctaattt aaacacgtat ctttgataga gtgctgcttta acctaaattt actgttatca 1020

cgattttggg tctctgaaac atgataaatg acctgcttac ctttttttc ttcttttaa 1080
gttaccattt tccttagttgt ttcgtaaatc aggaattgtg acagttgcat tggtttctt 1140
tatgatatag agaggaagat ggggagctgg aatatcttgt caaatataaa gagctatcct 1200
atgatgaatg ttattgggag tcagaatcag acatctcaac cttccagaat gaaattcaaa 1260
ggttcaagga tgtaaattct agaactcgca gaagtaaaga tggaccat aaaagaaatc 1320
ccagagactt tcaacagttt gatcatactc ctgaattcct caaaggattt tggatcacct 1380
taaatcatat actataaatg tttcttatat ttggtaactta tagatgttat gatttatttg 1440
tttcctgcga ttgaaggctt gttacatcca taccagcttgggacttaa tttttgcgg 1500
ttctcggtt caaaacagac gcatgtatc ctgtgtatg aaatggact aggtatttt 1560
tcaattgtcc cacttgggtg gtcacataga tcttttcatc cattgttaagg ggcctttgtt 1620
ttctattcct gtaatgttgc gagattttc ctgttacagg caagacaatt caaagcattt 1680
cccttttagc ttcactttt gaggagaacc tcattccgca tttggtaatt gctccttotat 1740
cgactctgcg taactgggag agagagtttgc ccacatggc cccacagatg aacgtggat 1800
gtatgcagtt atacacgcaa tgatctgtgc catttgcattt tttttgttgc ttgttaatgg 1860
aatggtcattt gtggcattt gacgggtagg ttatgtatgg tggactgcg caagctcgag 1920
cagttatcag agaacatgag ttttacttat cgaaagatca aaaaaagatc aaaaaaaaaga 1980
aatctggaca aataagtgc gaaagcaagc aaaaaagaat caagtttgcg gtcctcctca 2040
catcgatga gatgatcaac ctatgttgc cagttctaaa accaattaag tgggagtgca 2100

tggtaactct tattctctaa tgagacttta ctttctctta gtcgtctctc tttctctctt 2160
acatgttgcc tagtaacaat tgaaaaaaa agattgtga tgaaggcat cgactgaaaa 2220
ataaggattc aaagctgttc tcttcattga cacagtattc aagtaaccac cgtattcttc 2280
tgacaggaac accacttcag gttcgctatt tgagtttgcatt ttctgaagtt tatactttca 2340
atagttgtat ctgagcatag tagctacgat ttgcaatgag aattgttata tattatcttg 2400
cactaatgtc ttacctgatt agttgcaata tgttactgat gattatgtgg tgcctttaca 2460
gaacaacttg gatgaacttt tcatgctcat gcattttctt gatgcgggaa aggtatcaca 2520
agaatagcaa agataaataa gttcgcatat ttaacagaat tttatgtgc taacatgtta 2580
tttgattgca caataactgc agtttggaaag tttggaggag ttccaggagg agttcaaaga 2640
tattaatcaa gaggagcaga tctcaagggtt gcacaaaatg ttggctccac atttgctcag 2700
aagtattaac caaaaactatt tggtcatctt ttttaattta tatgtgtttc aaaagttgg 2760
ttggagggaa tcttcatag taataatttt atgatctaa ccatgctgtc tcgtattttg 2820
attgctcttc cagggtaaa aaaagacgta atgaaagaca tgcccccaa aaaggagctc 2880
attttgcgtg ttgatctgag cagtctgcag aaagaatatt acaaagctat ttttacccgt 2940
aattatcaag tattgacaaa aaagggaggt gctcaagtaa gttttttta atttttgtt 3000
acacttttg gatcattaaa cctcataggt ggggtagaaa ccaggtcaac tgtaatgtc 3060
tagtgaatgt attggctat ttctgtttca gattttccctt aataacatta tgatggatt 3120
acgaaaaagta tgctgccatc ctttatgtct agaggggttt gagccagttt ttcacgacgc 3180

aatgaagct ttcaagtaat atctcatttc ccaaaaatgg ttatctgttt attactactt 3240
attaaagtgc tctgctaact tttgcgttga acgtttctt atatgtatca aagacaactt 3300
ttggagtctt gtggaaagct gcaacttcta gataaaatga tggtaactt gaaagagcaa 3360
ggacacagag tcctaatac cacacagttt cagcatatgc tggacttact tgaagactac 3420
tgtacccata aggtatttga acttcttata tgtacagtct gttcagtagt atttcattc 3480
ttgttgttt tgtagaatat cattttgaca ctgtagaatc aactctacca ttttctatgt 3540
ttagagtact taggcacaat tatggaaata caagcatgtg ctgaaattga gagtatatga 3600
gcattctgtg cccaaactgaa agagcaaaga cacaaagttt ctttataaac acagtacaaa 3660
tcacaagttt agccatcttc tatgtacagt agtttccaa tagtgcgac atgtgctgaa 3720
actgtgtgta cagagttctc ataaacacac agttttagca tatgctggat ctacttgaag 3780
actactgttc ttataaggta ctgaacttgt tatctgtact gcgtatatac gagatctctg 3840
tatttttgct cttttatgtt gacacttgt tctcatatac actcggtca gcacatgctc 3900
gacttactgc ctaaggatct tgaaaaaggt agagttgatt ctatgtctag gtgcaattac 3960
tttcttagaa tttttgtcat tacttactct gttggcaata taacttcttt attccctcaa 4020
agattacttt ttttggtttc ttgaaatgcc attatcaata ccattgcttt tgctgacgca 4080
tgcacttgag acaacttgtt tttatctctt tctagcacat tttttttaa catgcagtt 4140
aggaaaaattc tcatatgatt tacgctgttc attttcttgt ctttgcaga aatggcagta 4200
cgagcgaatt gatggaaagg ttggcggagc tgagcggcaa atacgcatac atcggttcaa 4260

tgccaaaaat tctaacaagt tttgttttt gctctccaca agagctggc gcttagaat 4320
aaatcttgc a cggctgata cagtaatcat ttatgacagg tttgaatttc agcttctt 4380
agtgtcatct gtactcttt catagttatt gtgtcaagct gtaagaggaa ctatggct 4440
tgatagcata atatttgga agttaatgt tgattttaa gtgaattggg ttgtgatgag 4500
tgataaaaag gcacttggct ttttccaaat aacagctatt tcttgaacat ggatgttcta 4560
agacagcagg aagatcagga aaattattaa ccgctatctt gctaataatt agatttgta 4620
ggcatgcaat atgggtggcg tccatggat cctgcttggta tggcagtttgg 4680
cgccctgttca cattttcata cgtacgattt aaactgtttt atctgttctt gtagtactg 4740
gaatcctcat gctgatctt aagcaatggc tagagctcat cgacttggcc aaacaataa 4800
ggttttaaat tttatctttt agtgctgtca acttgcaatt ttgtgttctt tttttagtt 4860
tccctaattt tccttatatt ttcctttagg tgatgattta taggctcata aaccgaggca 4920
ccattgaaga aaggatgatg caattgacta aaaagaaaat ggttcttagag catcttgg 4980
ttggaaact caaaacacaa aacattaatc aggttaactt ttattgcttgg aagcctttt 5040
acttgattac aaatttctca acggatttggc gctggaaagggt agaaattcca agaagaacac 5100
cttcggttat aacttataag tgtgaaattta aaagataaaa acttttagaga gaaggggtcc 5160
atatttggta attgtttgtc actaagtatg tggtttttt gttttcctga ctgcaattta 5220
ggaagagttt gatgacatca tcaggtatgg atcaaaggag cttttgctt gtaagatga 5280
tgaaggcaggaa aagtctggaa aaattcatta tgatgatgctt gctatagaca agtaatagac 5340

tccttactct tttcctcttg tttgtttt gattaacaag gataatctgat cttccgatt 5400
gctccttct tatgaaagct ttgcagtca attgcattggg cgtatttcat tatttgtctc 5460
tatcttctgt tctgcagatt gcttgcattgt gatctcggtt aggcagagga agtctcagg 5520
gatgatgaag aggagaatgg attcttaaag gctttcaagg ttttcttgc tcttactatt 5580
cttcctcttc tattagttt ctctgaatca gtgttactg atttcaatgc tccattggag 5640
tctatgctta attgtattct tatattccat gatattcaga ctgtgggttgg ctatcgaaat 5700
cccttctgct gtgcacaatc ttgtcaaatc attacgtgct aagttttagt gatcaataca 5760
ctttatgcca gttcgctttg atgcttatacg acagtctta gaaaagtgtct attgattgtt 5820
cgttccggct caatgtgaaa gccaaacttaa tgaaaattag tcatgtatgc ttaagttaga 5880
aatttatgct tgtggtgatg ttgattgagc caatttattt atttggttat atttctttg 5940
aacccctgatc atattgaatg cgttatatga gtggctttt gacttagctg gaacataagg 6000
ctgtgtcctg cattgtgct tgtcacctct taatattcga actccctaaa acattgtttg 6060
tctttgtgtg catatagaac tggcttgcgaa caaatagggt gtctggact gtttagtgtc 6120
attaactctg aaaatgattt cccttgcgaa attctgtgat cttcctgtat tgttaggtggc 6180
taatttgaa tatatagatg aaaatgaggc agcagcatta gaggcacaga gagtcgctgc 6240
tgaaagcaaa tcttcagcag gcaattctga tagagcaagt tattggaaag agttgttaaa 6300
agataaaattt gagctgcacc aggctgagga gcttaatgct cttggaaaaaa ggaagagaag 6360
tcgcaaggcag gtttggcttc ttcttgcattcc cccttatcca attgtggcat cataattgata 6420

actggatttt tcaccattta ttttctttct gattctgtcc tgtttcataat atttattcat 6480
gttgtctaac ttttccctttt gaattcctta ggttagctaaa ttccagaaagt aataatttag 6540
ttgactgtat ccttctaaat tgagaaagta taattttagtt gactgtatcc agtataaaac 6600
taaacgcctt tgcctcccta tcaactggtt tgacagatct tatgggttta catgttgat 6660
caagtaattt gggttggtag aggctcaatt aactatagtc ttctgttttc ctctgcaaga 6720
aatacgtttt gtttcaactct ctaacttgat atagctcaat tactgacaat atacatttgt 6780
ttggtctgcc atcatcgttt catgtctttc aataaaggct gttctaattc ttctatggga 6840
ttttttcat agttggtac cattgaagaa gatgatctt ctgggttgga agatgtgagc 6900
tctgatggag atgaaagtta tgaagctgag tcaacagatg gtgaagcagc aggacaagga 6960
gttcagacgg gtcgacggcc gtacagaaga aagggtcgcg gtattaccac gtttcggatt 7020
taatttaattt tgtaatggag ctgaaaatga ctgatatttag aagtgtgcgc agtttatttag 7080
atgagttttt tttctataga taatttgaa ccaactccgt tgatggaagg tgaggggaga 7140
tcttcagag tactgggtt caaccagatg caaaggccca ttttgtaca gactttgtatg 7200
aggttatctac tttccattaa ggcctttaga cgccagaagc tattctgtct aaattttaca 7260
gtttcatccc ccgatgcac taaattatca tcagtcttgtt ggtgctcaat atttacaagt 7320
ttttccgggtt ggacaaaata attgcaggta tggagctggc aattttgatt ggaaggagtt 7380
tggccctcgc ttaaaggcaga agacctttga agaaataaat gagtacgggc tcaacccttt 7440
aatgctcttc tcttctgtttt cttaaaaaa aacgcatcat tataaaaagg ctttctgggtt 7500

tattcttaa ctaattttt aatgactgtt tctcagatat ggaatactct tcttgaagca 7560
cattgctgaa gaaatagacg agaattctcc aacctttca ggtgatcgat aattgatatt 7620
ttcactgttt gctgctttc cctaaatgag atcattgctt ctccgttaa ccggtaaat 7680
gtattaat aatggtcgtt gtctatagat ggtgtgccca aggaaggact tagaatagaa 7740
gatgttctag tcagaattgc tcttctgata ctagttcagg agaaggtagt gctattgact 7800
ttaattcttc attaaggctt ctctttata tctgagttt ttttggtat atgttacttc 7860
tagtctatag tttagctctg tacataagtt ttaatacag taatgtatgt tcaaacctca 7920
ctaagatttg gatcccggt tacttatgtt ttttggtgc tctggccca caggtgaaat 7980
ttgtagaaga tcatccaggg aaacctgttt tcccctctcg cattctgaa agattccccg 8040
gactgagaag tgaaaaattt tggaggagg aacatgacaa gataatgata cgtgctgtt 8100
taaagtatga accctgcacc actgttctta ccgaatgggtt ttatTTCTC atcattctcc 8160
attacttgct cacattttct ttccttctc tggaaatttg aatctttagg catggtagc 8220
gacggtagca agctattgtt gatgacaaag agttgggat ccaagagctt atctgcaaag 8280
aattgaattt ccctcacata agtttgtctg ctgctgaaca agctggttt cagggcaga 8340
atggtagtgg gggctcta at ccgggagcac agactaacca gaatccgttga agcgtttata 8400
ctggaaacaa taatgcttct gctgatgggg ctcaagtaaa ctcgatgttc tattatcggtt 8460
acatgcagag acgacttggtt gagttgtga aaaagcgagt tctgctttt gagaaggcga 8520
tgaattatga atacgcagag gaatattatg tatgttgac catctgcagt gttggtagtt 8580

actcacatgt tttgcgctga attgttaac ttgttattaa tctctggttc cagggacttg 8640
gtggctcatc atctatccct actgaagaac cagaagctga accaaagatc gctgacacag 8700
tgggagttagt ctttatttagt gttgatgatg aaatgcttga tggacttcct aagactgatc 8760
ctatcagtaa gttccatcac aagtttcttt atttaacgag ttgttgattc taatgtgagc 8820
tctctgaatc tcgctgcagc ttcagaagaa attatgggg ctgctgttga caacaaccaa 8880
gcgcgggtcg aaatagctca acattataac caggttaagct atgctttttt cctttgggg 8940
taggctaattt tctagaacta gtatatcaca ctaatatctc tccggttattt cagatgtgca 9000
aacttcttga tgagaacgct cggaatcag tccaaggata tggtaaacaac caaccaccga 9060
gtaccaagggtt gaatgagagc ttccgtgcac tcaaatttat caatggtaac attaacacaa 9120
tcccttcgat tacatctgat caatccaagt cacatgaaga cgacaccaag ccagacactaa 9180
acaatgttga gatgaaggac acggccgaag aaacaaaacc gttaagaggt ggctcgctcg 9240
atctgaatgt ggtggaggga gaggagaaca ttgctgaagc tagtgaaatgtt gttgatgtaa 9300
aatggaaaga agccaaagaa gaagagaagc caaagaacat ggtcggttcat tga 9353

<210> 4

<211> 1403

<212> DNA

<213> *Arabidopsis thaliana*

<400> 4

atgaacctta aggagacgga gctttgtctt ggcctccccg gaggcactga aaccgttcaa 60

agtccggcca agtcgggtgt tggaaacaag agaggcttctt ccgagaccgt tgatctcaaa 120

cttaatcttc aatctaaca acaaggacat gtggatctca acactaatgg agctcccaag 180
gagaagacct tccttaaga cccttctaag cctcctgcta agtaagtctt atttacacaa 240
ttccttaaga agaagacctt ccttaaaaagg gaagactttt tttttttt tttgagataa 300
aaagactaat agttgatata aaagttctta aaatacatat atatgaaaga tgtaaggatg 360
cataagtaat aacgttattt aatgtgtgtg tgtgttgtt tattctatgc agagcacaag 420
tggtgggttg gccatcggtg aggaactacc ggaaaaatgt tatggctaat cagaagagcg 480
gcgaaggcaga ggaggcaatg agtagtggtg gaggaaccgt cgcctttgtg aaggttcca 540
tggatggagc tccttatctt cgaaagggtt acctcaagat gtacaccagc tacaaggatc 600
tctctgatgc cttggccaaa atgttcagct ccttaccat ggttatgcat ttccagacat 660
ataagtcgaa ttatcattat tattttgtt tttacttaca atttttctt tttaacgata 720
cagtttttc catatacgac taattaatat gataagttt gggatttga ttaattaagg 780
gagttatgga gcacaaggga tgatagattt catgaacgag agtaaagtga tggatctgtt 840
gaacagttct gagtatgttc caagctacga ggacaaagat ggtgactgga tgctcggttgg 900
tgatgtcccc tggccgtgag tttcctcatt cttcttgctt tcattattat gaccaaaatt 960
attctctaaa caaaaaaaaaac aatattctct aaagcattat tattgatatt acttatcaaa 1020
aaaatacaca aaatgataat caatatccat gtgttataaa cacgcacagc catctttgg 1080
ttggcatggg acagaactca gagacagaga agatgtttat atataaatac taactcatca 1140
atatgttacc tcattttagt ctggcacata ttcttcact ttcaatagat ttctaaattt 1200

agtccaccaac ccaaattcccg atttcaggat gtttgcgag tcatgcaaac gtttgcgcat 1260
aatgaaagga tccgaagcaa ttggacttgg taagtttct tttctgttgc tttctataag 1320
tggctcttt ctgttttcc aataatgctc gtgtttttt ttcaagctcca agagcaatgg 1380
agaagttcaa gaacagatca tga 1403

<210> 5

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
IAA14-F1 for IAA14 gene

<400> 5

catattctga tttaagacat a

21

<210> 6

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer
IAA14-R1 for IAA14 gene

<400> 6

aatcaatgca tattgtcctc t

21

<210> 7

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer

IAA14-F2 for IAA14 gene

<400> 7

ttatggctaa tcagaagagc g

21

<210> 8

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer

IAA14-F3 for IAA14 gene

<400> 8

tattctctaa aaaaaaaaaa c

21

<210> 9

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer

SSL2-F1 for SSL2 gene

<400> 9

aattcgactt ctgggtactc a

21

<210> 10

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer
SSL2-R1 for SSL2 gene

<400> 10

aaattaagtc cctcaagctg g

21

<210> 11

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F2 for SSL2 gene

<400> 11

actctgaatt tgtagaaaga a

21

<210> 12

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer

SSL2-F3 for SSL2 gene

<400> 12

gaagatgatt ttgttgccat a

21

<210> 13

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer

SSL2-F4 for SSL2 gene

<400> 13

aagatgggga gctggaatat c

21

<210> 14

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer

SSL2-R2 for SSL2 gene

<400> 14

ggctcaacac cctcttagcat a

21

<210> 15

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F5 for SSL2 gene

<400> 15

catccataacc agcttgaggg a

21

<210> 16

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F6 for SSL2 gene

<400> 16

caagttttagt gtcctcctca c

21

<210> 17

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F7 for SSL2 gene

<400> 17

acatgcccccc caaaaaggag c

21

<210> 18

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer

SSL2-R3 for SSL2 gene

<400> 18

ccatcaattc gctcgtaactg c

21

<210> 19

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer

SSL2-F8 for SSL2 gene

<400> 19

atgtgctgaa actgttgta c

21

<210> 20

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer

SSL2-F9 for SSL2 gene

<400> 20

ccattgcttt tgctgacgca t

21

<210> 21

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer
SSL2-R4 for SSL2 gene

<400> 21

ttcgatagcc aaccacagtc t

21

<210> 22

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F10 for SSL2 gene

<400> 22

ggcatgcaat atgggtggcg t

21

<210> 23

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F11 for SSL2 gene

<400> 23

tcaaggatgg atcaaaggag c

21

<210> 24

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer
SSL2-R5 for SSL2 gene

<400> 24

ctccccctcac cttccatcaa c

21

<210> 25

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F12 for SSL2 gene

<400> 25

gtgcacaatc ttgtcaaatc a

21

<210> 26

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F13 for SSL2 gene

<400> 26

gagggcacaga gagtcgctgc t

21

<210> 27

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F14 for SSL2 gene

<400> 27

tatacattgg tttggctcgc c

21

<210> 28

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer
SSL2-R6 for SSL2 gene

<400> 28

gttagggatag atgatgagcc a

21

<210> 29

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F15 for SSL2 gene

<400> 29

ccccgatgca tctaaattat c

21

<210> 30

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F16 for SSL2 gene

<400> 30

actagttcag gagaaggta g

21

<210> 31

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Forward primer
SSL2-F17 for SSL2 gene

<400> 31

acatgcagag acgacttgtt g

21

<210> 32

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Reverse primer
SSL2-R7 for SSL2 gene

<400> 32

cggacttcat cgaacctatt c

21