Компютърно упражнение N 1 /по готова програма за явния метод на Ойлер/

Задача 1. По явния метод на Ойлер да се реши моделната задача

$$\begin{vmatrix} u' = \lambda u \\ u(0) = 1 \end{vmatrix}, \ 0 < x < 1$$

при $h=\frac{1}{4},\frac{1}{5},\frac{1}{6},\frac{1}{10},\frac{1}{20},\frac{1}{100}$ за $\lambda=-10$ и $\lambda=1$. За всяка от стойностите на λ да се изобразят графично точното и приближените решения (на един чертеж).

Задача 2. По явния метод на Ойлер да се намери приближеното решение на задачата

$$u' = x + 2u$$
, $0 < x \le 1$,
 $u(0) = 0.25$

при $h = \frac{1}{5}, \frac{1}{10}, \frac{1}{100}$ и да се сравни с точното решение $u(x) = \frac{1}{2} \left(e^{2x} - x - \frac{1}{2} \right)$.

Задача 3. Тяло с маса m и зададена начална скорост v_0 пада във въздушното пространство към земята. Ако предположим, че на тялото действат само земното привличане и съпротивлението на въздуха, което е обратно пропорционално на скоростта v(t) на падане, по закона на Нютон имаме

$$F = m\frac{dv}{dt} = mg - kv.$$

Следователно за скоростта v = v(t) получаваме задачата на Коши

$$\begin{vmatrix} \frac{dv}{dt} = g - \frac{k}{m}v \\ v(0) = v_0 \end{vmatrix}.$$

Пресметнете v(t) , $0 < t \le 5$, ако $g = 9.8 \ m/\sec^2$, $\frac{m}{k} = 0.5 \sec$, $v_0 > \frac{mg}{k}$ и $v_0 < \frac{mg}{k}$, където $v_0 = 0$; 3; 4.9; 6; 10.

Сравнете с точното решение $v(t)=\frac{mg}{k}+\left(v_0-\frac{mg}{k}\right)e^{-\frac{kt}{m}}\;,\left(v(t)->\frac{mg}{k}\;,\quad t->\infty\right).$