

Winning Space Race with Data Science

Cooper Heaton 12/20/2023

Outline

- Executive Summary
- Introduction
- Methodology
- Results
- Conclusion
- Appendix

Executive Summary

- Summary of methodologies
 - Data Collection with API
 - Data Collection with Web Scraping
 - Data Wrangling
 - Exploratory Data Analysis with SQL
 - Exploratory Data Analysis with Data Visualization
 - Interactive Visual Analytics with Folium
 - Machine Learning Prediction
- Summary of all results
 - Exploratory Data Analysis result
 - Interactive Analytics with Screenshots
 - Predictive Analytics Result

Introduction

- Project background and context
- Problems you want to find answers
 - What factors will determine if the rocket can land successfully?

Methodology

Executive Summary

- Data collection methodology:
 - Data was collected using SpaceX API and web scraping from Wikipedia.
- Perform data wrangling
 - One-hot encoding was applied to categorical features.
- Perform exploratory data analysis (EDA) using visualization and SQL
- Perform interactive visual analytics using Folium and Plotly Dash
- Perform predictive analysis using classification models
 - How to build, tune, evaluate classification models

Data Collection

- A get request to the SpaceX API was used to collect the data.
- Next, decode the response using .json() function and turn it into a pandas dataframe with .json_normalize().
- Then, clean the data and fill in missing values when necessary.
- To get the Falcon 9 launch records we must perform web scraping with BeautifulSoup.
- Once we have the launch records we need to parse the data and convert it to a pandas dataframe for future analysis.

Data Collection - SpaceX API

 We called a get request to the SpaceX API to collect data and then clean the data

 https://github.com/cheaton 622/IBMDataScienceCapston e/blob/main/jupyter-labsspacex-data-collectionapi.ipynb

```
Get request for rocket launch data with API
spacex url="https://api.spacexdata.com/v4/launches/past"
     response = requests.get(spacex url)
     convert ison to pandas dataframe
: static json df = res.json()
     data = pd.json normalize(static json df)
     Data cleanse and fill in missing values
[]: rows = data falcon9['PayloadMass'].values.tolist()[0]
     df rows = pd.DataFrame(rows)
     df_rows = df_rows.replace(np.nan, PayloadMass)
     data falcon9['PayloadMass'][0] = df rows.values
     data falcon9
```

Data Collection - Scraping

- Use BeautifulSoup to webscrape Falcon 9 launch records then parse the data and convert it to a pandas dataframe
- https://github.com/cheaton6
 22/IBMDataScienceCapston
 e/blob/main/jupyter-labswebscraping.ipynb

```
Apply HTTP Get method to request the Falcon 9 rocket launch page
  static url = "https://en.wikipedia.org/w/index.php?title=List of Falcon 9 and Falcon Heavy launches&oldid=1027686922"
  # use requests.get() method with the provided static url
  # assign the response to a object
   html data = requests.get(static url)
   html data.status code
   Create a BeautifulSoup object from the HTML response
  # Use BeautifulSoup() to create a BeautifulSoup object from a response text content
   soup = BeautifulSoup(html_data.text, 'html.parser')
  # Use soup.title attribute
   soup.title
   Extract all column names from the HTML table header
]: column_names = []
  # Apply find_all() function with `th` element on first_launch_table
   # Iterate each th element and apply the provided extract_column_from_header() to_get_a_column_name
   # Append the Non-empty column name (`if name is not None and len(name) > 0`) into a list called column names
   element = soup.find all('th')
   for row in range(len(element)):
          name = extract column from header(element[row])
          if (name is not None and len(name) > 0):
              column names.append(name)
      except:
```

Data Wrangling

- I explored the data to determine training labels
- Then calculated the number of launches at each site and the count of occurrences for each orbit
- Lastly, I used the outcome column to create a landing outcome column and exported the results to a csv file.
- https://github.com/cheaton622/IBMD ataScienceCapstone/blob/main/labsjupyter-spacex-Data%20wrangling.ipynb

EDA with Data Visualization

 I explored the data by visualizing the relationship between flight number/launch site, payload/launch site, success of each orbit type, flight number/orbit type and a yearly trend of launch success

https://github.com/cheaton622/IB
 MDataScienceCapstone/blob/main/
 jupyter-labs-eda dataviz.ipynb.jupyterlite.ipynb

EDA with SQL

- I used a sqlite to store the SpaceX dataset
- I used queries to EDA within the sqlite database such as:
 - Display the unique launch sites
 - Total payload mass carried by boosters launched by NASA
 - Average payload mass carried by booster version F9 v1.1
 - List boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000
- https://github.com/cheaton622/IBMDataScienceCapstone/blob/main/jupyter
 -labs-eda-sql-coursera_sqllite.ipynb

Build an Interactive Map with Folium

- First, I marked all launch sites and used map objects to specify the success/failure of launches for each site on the folium map
- Assign the launch outcomes to 0 for failure and 1 for success
- Identify the launch sites with a high success rate using color-labeled n=marker clusters
- Calculate the distances between launch sites to see if they are near major structures such as cities, railways, highways, and oceans
- https://github.com/cheaton622/IBMDataScienceCapstone/blob/main/lab_jupyter_l aunch_site_location.ipynb

Build a Dashboard with Plotly Dash

- On the dashboard there is a pie char that show the total launches by certain launch sites, as well as a scatter plot showing the relationship between outcome/payload mass for different booster versions
- https://github.com/cheaton622/IBMDataScienceCapstone/blob/main/app.py

Predictive Analysis (Classification)

- Load, transform, and split the data into training/testing sets with numpy and pandas
- Build machine learning models and tune different hyperparameters with GridSearchCV
- Improve the accuracy of the model with feature engineering and tuning the algorithm to find the best performing classification model
- https://github.com/cheaton622/IBMDataScienceCapstone/blob/main/Space
 X_Machine_Learning_Prediction_Part_5.jupyterlite.ipynb

Results

- Exploratory data analysis results
- Interactive analytics demo in screenshots
- Predictive analysis results

Flight Number vs. Launch Site

 The findings of this comparison is that the larger the flight amount at a launch site equals a greater success rate

Payload vs. Launch Site

 The greater the payload mass typically means there will be a higher success rate for that launch site

Success Rate vs. Orbit Type

 From the graph, we can see that ESL-1, GEO, HEO, and SSO had the highest success rate of each orbit

Flight Number vs. Orbit Type

• This plot shows that the more flights will yield a higher success rate for each orbit

Payload vs. Orbit Type

 Most orbit sites use a smaller payload to yield a high success rate except for PO, YLEO, and ISS

Launch Success Yearly Trend

 The line chart shows that launch success has increased significantly since 2013

All Launch Site Names

• In this query 'DISTINCT' is used to show only unique launch site names

Display the names of the unique launch sites in the space mission

Launch_Site

- 0 CCAFS LC-40
- 1 VAFB SLC-4E
- 2 KSC LC-39A
- 3 CCAFS SLC-40

Launch Site Names Begin with 'CCA'

 LIMIT 5 is used to select only the first 5 rows

Total Payload Mass

- Display the sum of payload mass by using the SUM() function
- Specify the customer using a WHERE statement

Display the total payload mass carried by boosters launched by NASA (CRS)

Total_PayloadMass

0 45596

Average Payload Mass by F9 v1.1

 The average payload mass carried by booster version F9 v1.1 is 2,928.4 kg

```
Display average payload mass carried by booster version F9 v1.1
```

Avg_PayloadMass

0 2928.4

First Successful Ground Landing Date

 The date of the first successful ground landing date is December 22, 2015

```
List the date when the first succesful landing outcome in ground pad was acheived.

Hint:Use min function

task_5 = '''

SELECT MIN(Date) AS FirstSuccessfull_landing_date
FROM SPACEXTBL
WHERE Landing_Outcome LIKE 'Success (ground pad)'

'''

df = pd.read_sql(task_5, con)
df

FirstSuccessfull_landing_date

0 2015-12-22
```

Successful Drone Ship Landing with Payload between 4000 and 6000

3 F9 FT B1031.2

 There have been 4 different booster versions to land successfully with a payload between 4,000 and 6,000 List the names of the boosters which have success in drone ship and have payload mass greater than 4000 but less than 6000 task 6 = ''' SELECT Booster Version FROM SPACEXTBL WHERE Landing Outcome = 'Success (drone ship)' AND PAYLOAD MASS KG > 4000 AND PAYLOAD_MASS__KG_ < 6000 df = pd.read_sql(task_6, con) Booster_Version F9 FT B1022 F9 FT B1026 **2** F9 FT B1021.2

Total Number of Successful and Failure Mission Outcomes

 We used the wildcard feature "%" to find that there were 100 successful outcomes and 1 failure List the total number of successful and failure mission outcomes

```
task 7a = '''
          SELECT COUNT(Mission Outcome) AS SuccessOutcome
          FROM SPACEXTBL
          WHERE Mission_Outcome LIKE 'Success%'
  task 7b = '''
          SELECT COUNT(Mission Outcome) AS FailureOutcome
          FROM SPACEXTBL
          WHERE Mission Outcome LIKE 'Failure%'
  print('The total number of successful mission outcome is:')
  df = pd.read_sql(task_7a, con)
  print(df)
  print()
  print('The total number of failed mission outcome is:')
  df1 = pd.read_sql(task_7b, con)
  print(df1)
The total number of successful mission outcome is:
  SuccessOutcome
3
             100
The total number of failed mission outcome is:
    FailureOutcome
 0
```

Boosters Carried Maximum Payload

 In this query there is a subquery that has a WHERE clause using the MAX() function to determine which booster versions have used the maximum payload mass List the names of the booster_versions which have carried the maximum payload mass. Use a subquery

	Booster_Version	PAYLOAD_MASSKG_
0	F9 B5 B1048.4	15600
1	F9 B5 B1048.5	15600
2	F9 B5 B1049.4	15600
3	F9 B5 B1049.5	15600
4	F9 B5 B1049.7	15600
5	F9 B5 B1051.3	15600
6	F9 B5 B1051.4	15600
7	F9 B5 B1051.6	15600
8	F9 B5 B1056.4	15600
9	F9 B5 B1058.3	15600
10	F9 B5 B1060.2	15600
11	F9 B5 B1060.3	15600

2015 Launch Records

 This query uses a WHERE clause to specify that landing outcome equals failure and it is in the year 2015 List the records which will display the month names, failure landing_outcomes in drone ship ,booster versions, launch_site for the months in year 2015.

Note: SQLLite does not support monthnames. So you need to use substr(Date, 6,2) as month to get the months and substr(Date, 0,5)='2015' for year.

```
task_9 = '''
    SELECT Booster_Version, Launch_Site, Landing_Outcome
    FROM SPACEXTBL
    WHERE Landing_Outcome LIKE 'Failure (drone ship)'
         AND Date BETWEEN '2015-01-01' AND '2015-12-31'

df = pd.read_sql(task_9, con)
df
```

Booster_Version Launch_Site Landing_Outcome

- 0 F9 v1.1 B1012 CCAFS LC-40 Failure (drone ship)
- 1 F9 v1.1 B1015 CCAFS LC-40 Failure (drone ship)

Rank Landing Outcomes Between 2010-06-04 and 2017-03-20

- This query shows the landing outcomes in the dates between 2010-06-04 and 2017-03-20.
- The outcomes are sorted by count in descending order using the ORDER BY clause

SpaceX Launch Sites

 SpaceX launch sites are on the coasts of Florida and California

Launch Sites with Color Labels

- These are the Florida launch sites
- The green indicate successful launches and red are unsuccessful

Launch Sites Proximity to Major Landmarks

- Launch sites are not close to railways, highways, or cities
- Launch sites are close to coastlines

Success Percentage by Launch Site

 KSC LC-39A has the highest success rate

Total Success Launches By all sites

Launch Site with the Highest Success Ratio

 KSC LC-39A achieved a 76.9% success percentage

Payload vs Launch Outcome for Each Site

 The success rate for lower weighted payloads is higher than the heavy weighted payloads

Classification Accuracy

 The decision tree classifier model has the highest accuracy

Confusion Matrix

- The confusion matrix for the decision tree classification model shows how well the model can distinguish between the different classes.
- It also shows that the classifier could have been more accurate if it did not mark unsuccessful landings as successful

Conclusions

- Launch sites had greater success rates when they had a higher number of flights.
- Launch success rate has increased dramatically over time.
- The orbits with the highest success rates were ES-L 1, GEO, HEO, SSO, and VLEO.
- The launch site with the highest success rate was KSC LC-39A.
- The decision tree classifier was the most successful algorithm to predict if the first stage would land.

Appendix

All of my relevant assets are on my GitHub repository:

https://github.com/cheaton622/IBMDataScienceCapstone/tree/main

