EE20N Fall 2013 Discussion Questions

- 1. Plot the following signals
 - (a) $y(t) = cos(2\pi t)$
 - (b) $y(t) = cos(2\pi t + \pi)$
 - (c) $y(t) = -2\cos(4\pi t)$
 - (d) $y(t) = 1 + 2\cos(4\pi t \pi)$

2. Determine whether the following systems are linear

- 3. Given $z_1 = e^{i\frac{2}{3}\pi}$ and $z_2 = \frac{1}{2} \frac{1}{2}i$,
 - (a) Plot on the complex plane z_1, z_2, z_1^* , and z_2^* $z_1 = e^{i\frac{2\pi}{3}} = \cos(\frac{2\pi}{3}) + i\sin(\frac{2\pi}{3}) = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$ $z_2 = \frac{1}{2} \frac{1}{2}i = \sqrt{(\frac{1}{2})^2 + (\frac{-1}{2})^2}e^{i(tan^{-1}(\frac{-1/2}{1/2}))} = \frac{\sqrt{2}}{2}e^{-i\frac{\pi}{4}}$

(b) Determine $z_1 + z_2$ in polar form as well as Cartesian form. Is polar form easier or Cartesian form easier?

$$z_1 + z_2 = -\frac{1}{2} + i\frac{\sqrt{3}}{2} + \frac{1}{2} - i\frac{1}{2} = 0 + i\frac{\sqrt{3}-1}{2} = \frac{\sqrt{3}-1}{2}e^{i\frac{\pi}{2}}$$

(c) Determine z_1z_2 in polar form as well as Cartesian form. Is polar form easier or Cartesian form easier?

easier:
$$z_1 z_2 = e^{i\frac{2\pi}{3}} \frac{\sqrt{2}}{2} e^{-i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} e^{i\frac{5\pi}{12}} = \frac{\sqrt{2}}{2} cos(\frac{5}{12}\pi) + i\frac{\sqrt{2}}{2} sin(\frac{5}{12}\pi)$$

(d) Find the 4th roots of 1.

We want to solve $x^4=1$. Since x is complex, we have $x=ae^{i\phi}$ for some real numbers a and ϕ . Then $(ae^{i\phi})^4=1\to a^4e^{i4\phi}=1\cdot e^{i2k\pi}$ for some integer k. This means that a=1, and $4\phi=2k\pi$. Thus we have $\phi=\frac{k\pi}{2}$. So the 4th roots of 1 are $\{1,e^{i\pi/2},e^{i\pi},e^{i3\pi/2}\}$.

(e) Find the 6th roots of 1 + 2i.

Same thought process as above. The magnitude is $a = (\sqrt{5})^{1/6} = 5^{1/12}$, and the phase is $(\arctan(2/1) + 2\pi k)/6$ for $k = \{0, 1, 2, 3, 4, 5\}$.