CORRIGÉ DM N°2 : MINES-PONTS PC 2014

1 - Traces et projecteurs

Cette partie est essentiellement constituée de questions de cours classiques.

1.
$$\operatorname{tr}(\mathbb{AB}) = \sum_{i=1}^{n} (\mathbb{AB})_{i,i} = \sum_{i=1}^{n} (\sum_{j=1}^{n} a_{i,j} b_{j,i}) = \sum_{j=1}^{n} \sum_{i=1}^{n} b_{j,i} a_{i,j} = \sum_{j=1}^{n} (\mathbb{BA})_{j,j} = \operatorname{tr}(\mathbb{BA}).$$

2. Soient \mathscr{B} et \mathscr{B}' deux bases de X. Soient Q la matrice de passage de \mathscr{B} à \mathscr{B}' . On a alors :

$$\mathbb{T}_{\mathscr{R}'} = Q^{-1} \mathbb{T}_{\mathscr{R}} Q.$$

En appliquant la question précédente avec $\mathbb{A}=Q^{-1}\mathbb{T}_\mathscr{B}$ et $\mathbb{B}=Q,$ on obtient :

$$\operatorname{tr}(\mathbb{T}_{\mathscr{B}'}) = \operatorname{tr}(QQ^{-1}\mathbb{T}_{\mathscr{B}}) = \operatorname{tr}(\mathbb{T}_{\mathscr{B}}).$$

3. Pour tout $x \in X$, on peut écrire : x = (x - P(x)) + P(x); or P(x - P(x)) = 0 puisque $P^2 = P$ ce qui prouve que $x - P(x) \in N(P)$. Comme P(x) est élément de R(P), on vient de vérifier que X = R(P) + N(P).

De plus, si $x \in R(P) \cap N(P)$ on a P(x) = 0 et $\exists y \in X$ tq x = P(y) d'où x = P(P(y)) = P(x) = 0. Ainsi $R(P) \cap N(P) = \{0\}$ donc

$$X = R(P) \oplus N(P).$$

(on pouvait aussi ici utiliser le théorème du rang puisque X est supposé de dimension finie, mais le résultat est en fait vrai en dimension quelconque).

4. Soit x appartenant à R(P). Il existe y tel que x = P(y) donc

$$P(x) = P(P(y)) = P^{2}(y) = P(y) = x$$

Ainsi la restriction de P à R(P) est l'application identique, donc si l'on note r le rang de P, dans une base \mathcal{B} adaptée à la décomposition en somme directe de la question précédente :

$$\mathbb{P}_{\mathscr{B}} = \begin{bmatrix} \mathbb{I}_r & 0 \\ 0 & 0 \end{bmatrix}$$

donc

$$\operatorname{tr} P = \operatorname{tr}(\mathbb{P}_{\mathscr{B}}) = r = \operatorname{rg} P.$$

5. On a vu précédemment que si $x \in R(P)$, P(x) = x donc P'(x) = 0 d'où $R(P) \subset N(P')$. Réciproquement, si x est élément de N(P'), P'(x) = 0 d'où P(x) = x puis $x \in R(P)$. Aussi

$$R(P) = N(P').$$

On vérifie que P' est aussi un projecteur : comme P et I commutent,

$$P'^2 = (I - P)^2 = I - 2P + P^2 = I - P = P'$$
.

En échangeant les rôles de P et de P' (puisque P = I - P'), on obtient aussi

$$R(P') = N(P) \,.$$

6. Si \mathscr{B}_F est une base de F et \mathscr{B}_G une base de G, alors la réunion de \mathscr{B}_F et \mathscr{B}_G est une famille génératrice de F+G.

Donc la dimension de F+G est inférieure ou égale à $\operatorname{card}(\mathscr{B}_F\cup\mathscr{B}_G)=\operatorname{card}\mathscr{B}_F+\operatorname{card}\mathscr{B}_G-\operatorname{card}(\mathscr{B}_F\cap\mathscr{B}_G)$ d'où

$$\dim(F+G) \leqslant \operatorname{card} \mathscr{B}_F + \operatorname{card} \mathscr{B}_G = \dim F + \dim G.$$

(on pouvait aussi utiliser directement la formule de Grassmann).

- 7. Procédons par récurrence sur le nombre de projecteurs m intervenant dans la somme.
 - Pour m = 1, $S = P_1$ donc $\operatorname{tr} S = \operatorname{rg} S$ d'où $\operatorname{tr} S \in \mathbb{N}$ et $\operatorname{tr} S \geqslant \operatorname{rg} S$.
 - Supposons la propriété vraie à l'ordre $m-1\geqslant 1$. Soit $S'=\sum_{i=1}^{m-1}P_i$ donc $S=S'+P_m$. Par hypothèse de récurrence $\operatorname{tr} S'\in \mathbb{N}$ et $\operatorname{tr} S'\geqslant \operatorname{rg} S'$. La trace étant linéaire, $\operatorname{tr} S=\operatorname{tr} S'+\operatorname{tr} P_m\in \mathbb{N}$ comme somme de deux entiers. De plus, pour tout x de $X:S(x)=S'(x)+P_m(x)$ donc $R(S)\subset R(S')+R(P_m)$. En utilisant la question précédente et $\operatorname{tr}(P_m)=\operatorname{rg}(P_m)$:

$$\operatorname{rg}(S) = \dim R(S) \leqslant \operatorname{rg}(S') + \operatorname{rg}(P_m) \leqslant \operatorname{tr}(S') + \operatorname{tr}(P_m) = \operatorname{tr}(S).$$

On a donc prouvé par récurrence que pour tout entier naturel m:

$$S = \sum_{i=1}^{m} P_i \Longrightarrow \operatorname{tr} S \in \mathbb{N} \text{ et } \operatorname{tr} S \geqslant \operatorname{rg} S.$$

2 - Projecteurs de rang 1

On suppose dans cette partie que le rang du projecteur P est égal à 1.

8. Soit f_1 un vecteur non nul dans R(P): c'est donc une base de R(P) puisque $\operatorname{rg} P = 1$. Comme $P \circ T(f_1) = P(T(f_1))$, $P \circ T(f_1)$ appartient à R(P). Donc:

$$\exists \mu \in \mathbb{R}, P \circ T(f_1) = \mu f_1$$

Or pour tout x de X, P(x) est colinéaire à $f_1: P(x) = \alpha f_1$ donc

$$P \circ T \circ P(x) = P \circ T(\alpha f_1) = \mu \alpha f_1 = \mu P(x)$$

ce qui prouve que :

$$P \circ T \circ P = \mu P.$$

- 9. Puisque $P(f_1) = f_1$ on a $P[T(f_1) \mu f_1] = PTP(f_1) \mu P(f_1) = 0$ d'après la question précédente donc $T(f_1) \mu f_1$ appartient à $N(P) = \text{Vect}\{f_2, \dots, f_n\}$ et cela justifie la forme de la première colonne de $\mathbb{T}_{\mathscr{C}}$, les autres colonnes étant quelconques.
- **10.** Par définition, la matrice de P' dans la base $\mathscr C$ est $\mathbb P'_{\mathscr C} = \begin{bmatrix} 0 & 0_{1,n-1} \\ 0_{n-1,1} & \mathbb I_{n-1} \end{bmatrix}$. Si on écrit par blocs $\mathbb T_{\mathscr C} = \begin{bmatrix} \mu & L \\ C & \mathbb B \end{bmatrix}$, un calcul en blocs donne alors :

$$\mathbb{P}_{\mathscr{C}}'\mathbb{T}_{\mathscr{C}} = \begin{bmatrix} 0 & 0_{1,n-1} \\ C & \mathbb{B} \end{bmatrix} \quad \text{d'où} \quad \mathbb{P}_{\mathscr{C}}'\mathbb{T}_{\mathscr{C}}\mathbb{P}_{\mathscr{C}}' = \begin{bmatrix} 0 & 0_{1,n-1} \\ 0_{n-1,1} & \mathbb{B} \end{bmatrix} \cdot$$

Ainsi

$$P' \circ T \circ P' = \alpha P' \Longleftrightarrow \mathbb{P}'_{\mathscr{C}} \mathbb{T}_{\mathscr{C}} \mathbb{P}'_{\mathscr{C}} = \alpha \mathbb{P}'_{\mathscr{C}} \Longleftrightarrow \mathbb{B} = \alpha \mathbb{I}_{n-1}.$$

On a ainsi vérifié par contraposition que :

 $\mathbb B$ n'est pas la matrice d'une homothétie si et seulement si $P'\circ T\circ P'$ n'est pas proportionnel à P' .

Rem : l'énoncé ne demandait qu'une implication.

3- Endomorphismes différents d'une homothétie

On suppose dans cette partie que l'endomorphisme T n'est pas une homothétie.

11. Prouvons le résultat demandé par contraposition. On suppose que pour tout x, $\{x, T(x)\}$ est une famille liée ce qui équivaut à dire que pour tout x non nul, il existe α_x réel tel que $T(x) = \alpha_x x$.

Soit u un vecteur non nul.

• Si x est colinéaire à u, il existe λ tel que $x = \lambda u$ et on a :

$$\alpha_x x = T(x) = \lambda T(u) = \lambda \alpha_u u = \alpha_u x$$

d'où $\alpha_x = \alpha_u$.

• Si x n'est pas colinéaire à u, u + x est non nul et on a alors :

$$T(x+u) = T(x) + T(u) = \alpha_x x + \alpha_u u = \alpha_{x+u}(u+x).$$

La famille $\{u, x\}$ étant libre : $\alpha_u = \alpha_{x+u} = \alpha_x$.

• Cela prouve qu'il existe α tel que pour tout x (l'égalité étant triviale pour le vecteur nul), $T(x) = \alpha x$ soit T est une homothétie.

On a donc montré par contraposition

Si T n'est pas une homothétie, il existe un vecteur $x \in X$ tel que x et T(x) ne soient pas liés.

- 12. Soit e_1 un élément tel que e_1 et $T(e_1)$ ne soient pas colinéaires (un tel vecteur existe par la question précédente). On peut compléter cette famille libre en une base $\mathscr{B} = \{e_1, T(e_1), e_3, \ldots, e_n\}$ de X et dans cette base la matrice de T a la forme recherchée.
- 13. Procédons par récurrence sur n.
 - Initialisation : n=2. On a trouvé dans la question précédente une base \mathcal{B} telle que :

$$\mathbb{T}_{\mathscr{B}} = \begin{pmatrix} 0 & b \\ 1 & a \end{pmatrix} \; ;$$

or $\operatorname{tr} T = a$ donc a = 0. La base \mathscr{B} convient.

• Supposons la propriété réalisée à l'ordre $n-1 \ge 1$.On a montré dans la question précédente l'existence d'une base $\mathscr{B} = \{e_1, e_2, \dots, e_n\}$ dans laquelle la matrice $\mathbb{T}_{\mathscr{B}}$ est de la forme suivante :

$$\mathbb{T}_{\mathscr{B}} = \begin{pmatrix} 0 & \mathbf{x} & \mathbf{x} & \cdots & \mathbf{x} \\ 1 & & & & \\ 0 & & & & \\ \vdots & & & \mathbb{A} & & \\ 0 & & & & \end{pmatrix}$$

où $\mathbb{A} \in \mathcal{M}_{n-1}$. Comme $\operatorname{tr}(T) = \operatorname{tr}(\mathbb{A}), \ \operatorname{tr}(\mathbb{A}) = 0$.

Si \mathbb{A} est de la forme $\alpha \mathbb{I}_{n-1}$, $\alpha = 0$ et la base \mathscr{B} convient.

Sinon soit T_1 l'endomorphisme de $X_1 = \text{Vect}\{e_2, \dots, e_n\}$ de matrice \mathbb{A} dans la base $\mathscr{B}_1 = \{e_2, \dots, e_n\}$. Cet endomorphisme n'est pas une homothétie et est de trace nulle.

Par hypothèse de récurrence, il existe une base $\mathscr{B}'_1 = \{e'_2, \dots, e'_n\}$ de X_1 dans laquelle A_1 , matrice de T_1 , a une diagonale principale formée de 0.

Soit alors $\mathscr{B}' = \{e_1, e'_2, \dots, e'_n\}$ base de X. Dans la base \mathscr{B}' , la matrice $\mathbb{T}_{\mathscr{B}'}$ de T n'a que des 0 sur la diagonale.

En effet :

- $T(e_1)$ ∈ X_1 ce qui justifie que dans $\mathbb{T}_{\mathscr{B}'}$ il y ait un 0 en ligne 1 colonne 1;
- et si $x \in X_1, T(x) = \alpha_x e_1 + T_1(x)$ d'après la forme de $\mathbb{T}_{\mathscr{B}}$; aussi, la composante de $T(e_i')$ sur e_i' est la même que celle de $T_1(e_i')$; elle est donc nulle.

Tous les termes diagonaux de $\mathbb{T}_{\mathscr{B}'}$ sont donc nuls et on a donc montré par récurrence que

il existe une base dans laquelle la matrice de T n'a que des 0 sur sa diagonale.

(Rem : pour montrer que $\mathbb{T}_{\mathscr{B}'}$ n'a que des zéros sur la diagonale, on pouvait aussi faire une démonstration matricielle en utilisant les formules de changement de base ; voir le principe dans la démonstration de la question 16).

14. Soit $T' = T - t_1 I$. Cet endomorphisme n'est pas une homothétie puisque T n'en est pas une. Par la question 12, il existe \mathscr{B} telle que

$$\mathbb{T}'_{\mathscr{B}} = \begin{pmatrix} 0 & b \\ 1 & a \end{pmatrix}$$

où $a=\operatorname{tr} T'=\operatorname{tr} T-t_1\operatorname{tr} I=(t_1+t_2)-2t_1=t_2-t_1$ d'où

$$\boxed{\mathbb{T}_{\mathscr{B}} = \begin{pmatrix} 0 & b \\ 1 & t_2 - t_1 \end{pmatrix} + t_1 \mathbb{I}_2 = \begin{pmatrix} t_1 & b \\ 1 & t_2 \end{pmatrix}}$$

15. D'après la propriété admise par l'énoncé, il existe un projecteur L de X de rang 1, tel que d'une part $LTL = t_1L$ et d'autre part L'TL' ne soit pas proportionnel à L' = I - L. Par la question 9, dans une base $\mathscr C$ adaptée à la décomposition $E = R(L) \oplus N(L)$, la matrice de T sera

$$\mathbb{T}_{\mathscr{C}} = \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{x} & & \\ \vdots & & \mathbb{B} \\ \mathbf{x} & & \end{pmatrix}.$$

et par la question 10 comme L'TL' n'est pas proportionnel à I, $\mathbb B$ n'est pas une matrice d'homothétie.

16. La récurrence a été initialisée pour n=2 en question 14.

Supposons la propriété réalisée à l'ordre $n-1 \ge 2$ et démontrons la à l'ordre n. Par la question précédente, il existe une base $\mathscr{C} = \{e_1, \cdots, e_n\}$ telle que :

$$\mathbb{T}_{\mathscr{C}} = \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{x} & & \\ \vdots & & \mathbb{B} \\ \mathbf{x} & & \end{pmatrix}.$$

où \mathbb{B} n'est pas une matrice d'homothétie. De plus $\operatorname{tr}(\mathbb{B}) = \operatorname{tr}(T) - t_1 = \sum_{i=2}^n t_i$.

Soit T_1 l'endomorphisme de $X_1 = \text{Vect}\{e_2, \cdots, e_n\}$ de matrice \mathbb{B} dans la base $\mathscr{C}_1 = \{e_2, \cdots, e_n\}$. T_1 n'est donc pas une homothétie et par hypothèse de récurrence, il existe une base \mathscr{C}'' de X_1 telle que la matrice \mathbb{B}' de T_1 dans \mathscr{C}'' ait pour termes diagonaux t_2, \cdots, t_n .

Soit $\mathscr{B}'' = \{e_1\} \cup \mathscr{C}''$. La matrice de passage de \mathscr{C} à \mathscr{B}'' est par blocs $\mathbb{Q} = \begin{bmatrix} 1 & 0 \\ 0 & \mathbb{Q}_1 \end{bmatrix}$ où \mathbb{Q}_1 est la matrice

de passage de \mathscr{C}_1 à \mathscr{C}'' , et $\mathbb{Q}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \mathbb{Q}_1^{-1} \end{bmatrix}$. Un calcul par blocs donne alors :

$$\mathbb{T}_{\mathscr{B}''} = \mathbb{Q}^{-1} \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{x} & & & \\ \vdots & & \mathbb{B} & \\ \mathbf{x} & & & \end{pmatrix} \mathbb{Q} = \begin{pmatrix} t_1 & \mathbf{x} & \cdots & \mathbf{x} \\ \mathbf{x} & & & \\ \vdots & & \mathbb{B} & , \\ \mathbf{x} & & & \end{pmatrix}$$

Cette dernière matrice a bien comme éléments diagonaux t_1, \cdots, t_n . Ainsi on a vérifié par récurrence que :

il existe une base \mathscr{B}'' dans laquelle la diagonale de $\mathbb{T}_{\mathscr{B}''}$ ait pour éléments diagonaux les t_i où $i \in [1; n]$.

4 -Décomposition en somme de projecteurs

On suppose désormais que T est un endomorphisme de X vérifiant $\operatorname{tr} T \in \mathbb{N}$ et $\operatorname{tr} T \geqslant \operatorname{rg} T$. On pose $\rho = \operatorname{rg} T$ et $\theta = \operatorname{tr} T$.

17. Par le théorème du rang, $\dim N(T) = n - \rho$. Soit X_1 un supplémentaire de N(T) et $\mathscr{B} = \{e_1, \dots, e_n\}$ une base adaptée à la décomposition $X = F \oplus N(T)$.

Dans cette base
$$\mathscr{B}$$
, $\mathbb{T}_{\mathscr{B}}$ est de la forme $\begin{bmatrix} \mathbb{T}_1 & \mathbb{O} \\ \mathbb{T}_2 & \mathbb{O} \end{bmatrix}$.

18. Soit T_1 l'endomorphisme de X_1 de matrice \mathbb{T}_1 dans la base $\mathscr{B}_1 = \{e_1, \cdots, e_\rho\}$. Comme $\operatorname{tr}(T) = \operatorname{tr}(\mathbb{T}_{\mathscr{B}}) = \operatorname{tr}(\mathbb{T}_1) = \operatorname{tr}(T_1)$, $\operatorname{tr}(T_1)$ est élément de \mathbb{N} et $\operatorname{tr}(T_1) \geqslant \rho$. Soient $t_i = 1$ pour $i \in [\![1\,; \rho - 1]\!]$ et $t_\rho = \operatorname{tr}(T) - (\rho - 1) \geqslant 1$. Ces ρ nombres sont des entiers naturels non nuls dont la somme est égale à $\operatorname{tr} T_1$. Par la question 16, T_1 n'étant pas une homothétie, il existe \mathscr{B}_1'' une base de X_1 où \mathbb{T}_1' , matrice de T' dans la base \mathscr{B}_1'' , admet comme éléments diagonaux t_1, \cdots, t_ρ . Soit $\mathscr{B}' = \mathscr{B}_1'' \cup \{e_{\rho+1}, \cdots, e_n\}$.

Dans cette nouvelle base \mathscr{B}' , la matrice de T a la forme $\begin{pmatrix} \mathbb{T}_1' & \mathbb{O} \\ \mathbb{T}_2' & \mathbb{O} \end{pmatrix}$ où \mathbb{T}_1' a comme éléments diagonaux des entiers non nuls.

19. Soient C_1, \dots, C_ρ les premières colonnes de $\mathbb{T}_{\mathscr{B}'}$. Soit P_i l'endomorphisme dont la matrice dans la base \mathscr{B}' est par blocs :

$$\mathbb{P}_{i\mathscr{B}'} = \begin{bmatrix} 0 & \cdots & 0 & \frac{1}{t_i} C_i & 0 & \cdots & 0 \end{bmatrix}$$

Cette matrice ayant un 1 en place (i,i), on a $\mathbb{P}_i^2 = \mathbb{P}_i$, ce qui prouve que les P_i sont des projecteurs.

$$T = \sum_{i=1}^{\rho} t_i P_i = \underbrace{P_1 + \cdots P_1}_{t_1 \text{ fois}} + \cdots + \underbrace{P_{\rho} + \cdots + P_{\rho}}_{t_{\rho} \text{ fois}} \quad \text{est une somme de projecteurs.}$$

20. Comme $\mathbb{T}_1 = \alpha \mathbb{I}_{\rho}$, $\operatorname{tr}(T) \geqslant \rho$ donne $\alpha \geqslant 1$. Si $\alpha = 1$, on peut utiliser la méthode précédente (on peut même l'utiliser si $\alpha \in \mathbb{N}$) en décomposant en somme de ρ projecteurs de rang 1.

Si
$$\alpha > 1$$
, soit P_0 de matrice $\mathbb{P}_0 = \begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & & & \\ \vdots & & 0 & \end{pmatrix}$ dans la base \mathscr{B} . Alors $T - P_0$ a dans cette base une matrice de la forme $(\mathbb{T} - \mathbb{P}_0)_{\mathscr{B}} = \begin{bmatrix} \mathbb{T}_2'' & 0 \\ \mathbb{T}_2' & 0 \end{bmatrix}$ où \mathbb{T}_1'' est une matrice ayant pour éléments diagonaux

 $(\alpha-1,\alpha,\cdots,\alpha)$: ce n'est donc pas une matrice d'homothétie. De plus, $T-P_0$ est de rang au plus ρ (sa matrice dans la base \mathscr{B} a $n-\rho$ colonnes nulles). Ainsi $T-P_0$ vérifie

$$\operatorname{tr}(T - P_0) = \rho \alpha - 1 > \rho - 1$$
 donc $\operatorname{tr}(T - P_0) \geqslant \rho \geqslant \operatorname{rg}(T - P_0)$

donc on peut appliquer la question précédente. $T'=T-P_0$ est une somme de projecteurs et comme $T = P_0 + (T - P_0)$:

$$T$$
 est une somme de projecteurs

On a ainsi prouvé que T est une somme de projecteurs si et seulement si sa trace est un entier naturel supérieur ou égal à son rang (c'est joli, non?).

