Universidad de las Américas Algebra II, MAT 141 Abril 26, 2019.

Introducción a la programación lineal Ejemplos Resueltos.

	Interior (I)	Exerior E)	Dispinateria prima
Materie prime A	2	1	6
Materia prima B /	1	2	8

Necesided diarie de muletias primas.

De la tabla:
$$\begin{cases} 2x + y \le 6 \\ x + 2y \le 8 \end{cases}$$

Ademais:
$$X \leq y + 1$$

 $X \leq 2$

Fo:
$$z = 2000 \times + 3000 \text{ y}$$

En resumm:

 $D: \begin{cases} -x = 0 \\ x + s \lambda = 8 \end{cases} \rightarrow \beta = A$

.. D = (0,4)

A:
$$\begin{cases} J = x - 1 \\ x = 2 \end{cases} \rightarrow y = 1$$
 ... $A = (2,1)$

B:
$$\begin{cases} 2x+y=6 \\ x=2 \end{cases} \rightarrow y=2 :: B=(2,2)$$

C:
$$\begin{cases} x+2y=8 \\ 2x+y=6 \end{cases} \Rightarrow x = \frac{-4}{-3} = \frac{4}{3}, \quad y = \frac{-10}{-3} = \frac{10}{3}$$

$$2\left(\frac{4}{3},\frac{10}{3}\right) = \frac{8000}{3} + 10000 = \frac{38000}{3} \approx 12667$$

Respusta: La funcion se maximita en x= \frac{4}{3}, y=\frac{10}{3}, \frac{2}{3}\frac{10}{3} \approx 12 667.

	1 Tienda A	Tienda B	Tienda C
Fabrica I	3	7	1
Fábrica T	2	2	6

$$X_1 + X_2 + X_3 = 800$$

 $X_3 = 800 - X_4 - X_2$

$$\begin{cases} x_1 + y_1 = 1000 \\ x_2 + y_2 = 700 \end{cases} \Rightarrow \text{equiv} : \begin{cases} y_1 = 1000 - x_1 \\ y_2 = 700 - x_2 \\ y_3 = 600 - x_3 \end{cases}$$

$$\frac{1}{3} = 600 - \frac{1}{3} = 600 - \frac{1}{3} = 600 + \frac{1}{3} = \frac{1}{3$$

	TA.	TB	TC	
F(I)	X	X ₂	(2×+4×-008	800
下(工)	1000-X,	700-X2	-200+(x1+x2)	1500
	(000)	700	600	

Célulo de la juncion de Costo (= C(x1,x2)

$$C(x_1,x_2) = 3x_1 + 7x_2 + 800 - (x_1 + x_2) + 2(1000 - x_1) + 2(700 - x_2) + 6(+200 + x_1 + x_2)$$

$$= 3x_1 + 7x_2 + 800 - x_1 - x_2 + 2000 - 2x_1 + 1400 - 2x_2 - 1200 + 6x_1 + 6x_2$$

$$= 6x_1 + 10x_2 + 3000$$

Restricciones:

$$\begin{array}{c} X_{1} \geqslant 0 \\ \times_{2} \geqslant 0 \\ & X_{2} \geqslant 0 \\ & 800 - (x_{1} + X_{2}) \geqslant 0 \\ & 1000 - X_{1} \geqslant 0 \\ & 900 - X_{2} \geqslant 0 \\ & -200 + X_{1} + X_{2} \geqslant 0 \end{array}$$

$$\begin{array}{c} X_{1} \geqslant 0 \\ & X_{2} \geqslant 0 \\ & X_{1} + X_{2} \leqslant 800 \\ & X_{2} \leqslant 700 \\ & X_{1} + X_{2} \geqslant 200 \end{array}$$

$$\begin{array}{c} X_{1} \Rightarrow 0 \\ & X_{1} + X_{2} \leqslant 800 \\ & X_{2} \leqslant 700 \\ & X_{1} + X_{2} \geqslant 200 \end{array}$$

$$\begin{array}{c} X_{1} \Rightarrow 0 \\ & X_{1} + X_{2} \leqslant 800 \\ & X_{2} \leqslant 700 \\ & X_{1} + X_{2} \approx 200 \end{array}$$

$$\begin{array}{c} X_{1} \Rightarrow 0 \\ & X_{1} + X_{2} \approx 800 \\ & X_{1} + X_{2} \approx 800 \end{array}$$

$$\begin{array}{c} X_{1} \Rightarrow 0 \\ & X_{1} + X_{2} \approx 800 \\ & X_{1} + X_{2} \approx 800 \end{array}$$

D:
$$\begin{cases} 0x_1 + x_2 = 700 \\ x_1 + x_2 = 800 \end{cases} \rightarrow (x_1, x_2) = (100, +00)$$

Psuscamos do'ude se reduce el costo de envio:

$$C(200,0) = 4000$$
 $C(0,700) = 7000$

El vosto se reduce mando X1 =0, X2 = 200.

. 4	А.Т	7.8	T.C	
F. Z.	200	0	600	800
F, 17	800	700	0	1500
	1000	700	600	

Man of A

From the

10x + 10x = 70 f.

da men i - Sa

the state of the second of their record

the second section and the first

	L. Carl
	17.7
	.12