

HA NOI UNIVERSITY OF SCIENCE AND TECHNOLOGY SCHOOL OF INFORMATION AND COMMUNICATION TECHNOLOGY

DATA STRUCTURES AND ALGORITHMS

Algorithmic paradigms

CONTENT

- Recursion
- Recursion with memoization
- Backtracking
- Branch and Bound
- Greedy
- Divide and conquer
- Dynamic Programming

Recursion

- A code in which the name of a function (procedure) appears in the function itself
- Base case
 - Input parameter of the function is small enough so that the result of the function can be computed directly without calling the function recursively

```
Example: S = 1 + 2 + ... + n

int sum(int n) {
   if (n <= 1) return 1;
   int s = sum(n-1);
   return n + s;
}</pre>
```


Recursion

Example

$$C(k, n) = \frac{n!}{k!(n-k)!}$$

- Recurrent relation
 - C(k, n) = C(k-1, n-1) + C(k, n-1)
- Base case:

$$C(0, n) = C(n, n) = 1$$

```
int C(int k, int n) {
  if (k == 0 || k == n)
    return 1;
  int C1 = C(k-1,n-1);
  int C2 = C(k,n-1);
  return C1 + C2;
}
```

- There are n disks with different sizes and 3 rods A, B, C
- Initialization: n disks are in the rod A such that larger disks are below smaller ones

6

- There are n disks with different sizes and 3 rods A, B, C
- Initialization: n disks are in the rod A such that larger disks are below smaller ones
- Goal: Move n disks from A to B such that
 - Only one disk can be moved at a time
 - Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod
 - No larger disk may be placed on top of a smaller disk

- There are n disks with different sizes and 3 rods A, B, C
- Initialization: n disks are in the rod A such that larger disks are below smaller ones
- Goal: Move n disks from A to B such that
 - Only one disk can be moved at a time
 - Each move consists of taking the upper disk from one of the stacks and placing it on top of another stack or on an empty rod
 - No larger disk may be placed on top of a smaller disk

Lời giải
B1: A → B
B2: A → C
B3: B → C
B4: A → B
B5: C → A
B6: C → B
B7: A → B


```
move(n, A, B, C) {
   if(n == 1) {
     print("Move 1 disk from A to B")
   }else{
     move(n-1, A, C, B);
     move(1, A, B, C);
     move(n-1, C, B, A);
   }
}
```

Recursion with memoization

Recursion with memoization

- Use memory (table) to store results of subproblems
- Map each subproblem with a specified parameter to an element of the table
- Initialize the table with special values indicating that no results of any subproblem are available

```
int m[MAX][MAX];
int C(int k, int n) {
  if (k == 0 | | k == n)
    m[k][n] = 1;
  else {
    if(m[k][n] < 0){
      m[k][n] = C(k-1,n-1) +
              C(k,n-1);
  return m[k][n];
int main() {
  for(int i = 0; i < MAX; i++)
    for(int j = 0; j < MAX; j++)
       m[i][i] = -1;
  printf("%d\n",C(16,32));
}
```


- Application: solve combinatorial enumeration/optimization problems
- $A = \{(x_1, x_2, \ldots, x_n) \mid x_i \in A_i, \forall i = 1, \ldots, n\}$
- Generate all configurations x∈ A satisfying some property P
- Recursive procedure Try(k):
 - Try all values v that can be assigned to x_k without violating P
 - For each feasible value v:
 - Assign v to x_k
 - If k < n: call recursively Try(k+1) to try values for x_{k+1}
 - If k = n: get a solution


```
Try(k){
  foreach \nu of A_k
     if check(v,k) /* check feasibility of v */
       {
         X_k = V;
         [Update a data structure D]
         if(k = n) solution();
         else Try(k+1);
         [Recover D when backtracking]
}
Main(){
  Try(1);
```


- Example: generate all binary sequences of length n
- Modelling:
 - Array x[n] where x[i] ∈{0,1}
 is the ith bit of the sequence

```
(i=0, ..., n-1)
```

```
void solution(){
  for(int k = 0; k < n; k++)
    printf("%d",x[k]);
  printf("\n");
}
int TRY(int k) {
  for(int v = 0; v <= 1; v++){
    x[k] = v;
    if(k == n-1) solution();
    else TRY(k+1);
}
int main() {
  TRY(0);
```


- Example: generate all binary sequences of length n containing no 2 consecutive bit 1
- Modelling: Array x[n] where x[i] ∈{0,1} is the ith bit of the sequence (i= 0, . . ., n-1)

```
void solution(){
   for(int k = 0; k < n; k++)
      printf("%d",x[k]);
   printf("\n");
}
int check(int v, int k){
   if(k == 0) return 1;
   return v + x[k-1] <= 1;
}</pre>
```

```
int TRY(int k) {
  for(int v = 0; v <= 1; v++){
    if(check(v,k)){
      x[k] = v;
      if(k == n-1) solution();
      else TRY(k+1);
int main() {
  TRY(0);
```


- Generate all k-subsets (sets having k elements) of 1, 2, ..., n
- Modelling: Array x[k] where $x[i] \in \{1, ..., n\}$ is the i^{th} of the configuration (i = 1, ..., k)
- Constraint P: x[i] < x[i+1], for all i = 1, 2, ..., k-1

```
int TRY(int i) {
  for(int v = x[i-1]+1; v \le n-k+i;
          v++){
     x[i] = v;
     if(i == k)
        printSolution();
      else TRY(i+1);
     }
int main() {
  x[0] = 0;
  TRY(1);
```


- Generate all permutations of 1, 2, ..., n
- Modelling: Array x[1,...,n] where $x[i] \in \{1,...,n\}$ is the i^{th} element of the permutation (i = 1,...,n)
- Property P: x[i] ≠ x[j], với mọi 1 ≤ i
 i < j ≤ n
- Makring: m[v] = true (false) if v has been appeared (not appeared) in the partial solution, for all v = 1, ..., n

```
void TRY(int i) {
  for(int v = 1; v <= n; v++){
    if(!m[v]) {
      x[i] = v;
      m[v] = true; // mark v as appeared
      if(i == n)
        solution();
      else TRY(i+1);
      m[v] = false;// recover status of v
void main() {
  for(int v = 1; v <= n; v++)
     m[v] = false;
  TRY(1);
```


Backtracking: queen

- Place n queens on a chees board such that no two queens attach each other
- Modelling: x[1, ..., n] where x[i] is the row index of the queen on column i, i = 1, ..., n
- Property P
 - $x[i] \neq x[j], 1 \le i < j \le n$
 - $x[i] + i \neq x[j] + j$, $1 \le i < j \le n$
 - $x[i] i \neq x[j] j, 1 \le i < j \le n$

solution x = (3, 1, 4, 2)

Backtracking: queen

```
int check(int v, int k) {
   for(int i = 1; i <= k-1; i++) {
      if(x[i] == v) return 0;
      if(x[i] + i == v + k) return 0;
      if(x[i] - i == v - k) return 0;
   }
   return 1;
}</pre>
```

```
void TRY(int k) {
 for(int v = 1; v <= n; v++) {
    if(check(v,k)) {
      x[k] = v;
      if(k == n) solution();
      else TRY(k+1);
void main() {
   TRY(1);
```


- Generate all the ways to fill numbers 1, ..., 9 to cells of a grid 9x9 such that
 - Numbers of each row are different
 - Numbers of each column are different
 - Numbers of each sub-grid (3x3) are different

1	2	3	4	5	6	7	8	9
4	5	6	7	8	9	1	2	3
7	8	9	1	2	3	4	5	6
2	1	4	3	6	5	8	9	7
3	6	5	8	9	7	2	1	4
8	9	7	2	1	4	3	6	5
5	3	1	6	4	2	9	7	8
6	4	2	9	7	8	5	3	1
9	7	8	5	3	1	6	4	2

- Modelling: Array x[0..8, 0..8]
- Property P
 - $x[i, j_2] \neq x[i, j_1]$, with i = 0,...,8, và $0 \le j_1 < j_2 \le 8$
 - $x[i_1, j] \neq x[i_2, j]$, with j = 0,...,8, và $0 \le i_1 < i_2 \le 8$
 - $x[3I+i_1, 3J+j_1] \neq x[3I+i_2, 3J+j_2]$, with I, J = 0,..., 2, and $i_1, j_1, i_2, j_2 \in \{0,1, 2\}$ such that $i_1 \neq i_2$ or $j_1 \neq j_2$

1	2	3	4	5	6	7	8	9
4	5	6	7	8	9	1	2	3
7	8	9	1	2	3	4	5	6
2	1	4	3	6	5	8	9	7
3	6	5	8	9	7	2	1	4
8	9	7	2	1	4	3	6	5
5	3	1	6	4	2	9	7	8
6	4	2	9	7	8	5	3	1
9	7	8	5	3	1	6	4	2

- Order of variables to be considered: from up to down, and from left to right
- First tried variable is x[0,0]

1	2	3	4	5	6	7	8	9
4	5	6	7	8	9	1	2	3
7	8	9	1	2	3	4	5	6
2	1	4	3	6	5	8	9	7
3	6	5	8	9	*			


```
bool check(int v, int r, int c){
  for(int i = 0; i <= r-1; i++)
    if(x[i][c] == v) return false;
  for(int j = 0; j <= c-1; j++)
    if(x[r][i] == v) return false;
  int I = r/3; int J = c/3;
  int i = r - 3*I; int j = c - 3*J;
  for(int i1 = 0; i1 \leftarrow i-1; i1++)
    for(int j1 = 0; j1 <= 2; j1++)
      if(x[3*I+i1][3*J+i1] == v)
        return false;
  for(int j1 = 0; j1 <= j-1; j1++)
    if(x[3*I+i][3*J+i1] == v)
       return false;
  return true;
```

```
void TRY(int r, int c){
  for(int v = 1; v \le 9; v++){
    if(check(v,r,c)){
      x[r][c] = v;
      if(r == 8 \&\& c == 8){
        solution();
      }else{
        if(c == 8) TRY(r+1,0);
        else TRY(r,c+1);
void main(){
  TRY(0,0);
```


Branch and Bound

- Solve combinatorial optimization problems: find a solution that minimizes or maximizes an objective function
- Base on exhaustive search
- Each node of the search tree corresponds to a partial solution
- Evaluate the lower/upper bound of the objective function of solutions developed from a current partial solution
 - For minimization problem: if the lower bound is greater than or equal to the value of the objective function of the best solution found so far, then *cut-off* (do not expand from the current partial solution to compete solutions)
 - For maximization problem: if the upper bound is less than or equal to the value of the objective function of the best solution found so far, then cutoff

Branch and Bound

- Travelling Salesman Problem (TSP)
 - There are *n* cities 1, 2, ..., *n*. The cost for travelling from city *i* to *j* is c(i, j). Find a closed tour starting from city 1, visiting other cities exactly once and coming back to 1 having minimal total cost
- Modelling: Solution $x = (x_1, x_2, ..., x_n)$ where $x_i \in \{1, 2, ..., n\}$
 - Constraint: $x_i \neq x_j$, $\forall 1 \leq i < j \leq n$
 - Objective function

$$f(x) = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_n, x_1) \rightarrow \min$$

Branch and Bound: TSP

- c_m : minimum cost among the cost between two cities
- Partial solution $(x_1, ..., x_k)$
 - Cost of the partial solution $f = c(x_1, x_2) + c(x_2, x_3) + ... + c(x_{k-1}, x_k)$
 - Lower bound

$$g(x_1,...,x_k) = f + c_m \times (n-k+1)$$

Branch and Bound: TSP

```
void TRY(int k){
  for(int v = 1; v <= n; v++){
    if(marked[v] == false){
      a[k] = v;
      f = f + c[a[k-1]][a[k]];
      marked[v] = true;
      if(k == n){
        solution();
      }else{
        int g = f + cmin*(n-k+1);
        if(g < f_min)</pre>
          TRY(k+1);
      marked[v] = false;
      f = f - c[a[k-1]][a[k]];
```

```
void solution() {
  if(f + c[x[n]][x[1]] < f_min){
    f_{min} = f + c[x[n]][x[1]];
void main() {
  f min = 99999999999;
  for(int v = 1; v <= n; v++)
    marked[v] = false;
  x[1] = 1; marked[1] = true;
  TRY(2);
```


Greedy algorithms

- Problem-based heuristics
- Each step, choose the best decision based on local information, do not take into account negative impacts of that decision in the future
- Not sure to find global optimal solutions

Greedy algorithms

- S: solution under construction (set of components)
- C: set of candidates
- select(C): select the most promising component to add to S
- solution(S): return true if S is a solution to the problem
- feasible(S): return true if S does not violate any constraints

```
Greedy() {
  S = \{\};
  while C \neq \emptyset and
          not solution(S){
     x = select(C);
     C = C \setminus \{x\};
     if feasible(S \cup {x}) {
       S = S \cup \{x\};
  return S;
```

- Given a set of segments $X = \{(a_1, b_1), \ldots, (a_n, b_n)\}$ in which $a_i < b_i$ are coordinates of the segment i on a line, $i = 1, \ldots, n$.
- Goal: Find a subset of X having largest cardinality in which no two segments of the subset intersect

Optimal solution: $S = \{(3,7), (9,11), (12,15), (17,19)\}$


```
Greedy1() {
  S = \{\};
  L = sort segments of X in a non-decreasing order of a_i;
  while (X \neq \emptyset) {
    (a_c,b_c) = select first segment of L;
    remove (a_c,b_c) from L;
    if feasible(S \cup {(a_c,b_c)}) {
      S = S \cup \{(a_c,b_c)\};
  return S;
```


Greedy 1 cannot ensure to find optimal solutions, example

$$X = \{(1,11), (2,5), (6,10)\}$$

 \rightarrow Greedy 1 returns solutions $\{(1,11)\}$, however, optimal solution is $\{(2,5), (6,10)\}$


```
Greedy2() {
  S = \{\};
  L = sort segments of X in a non-decreasing order of b_i-a_i;
  while (X \neq \emptyset) {
    (a_c,b_c) = select first segment of L;
    remove (a_c,b_c) from L;
    if feasible(S \cup {(a_c,b_c)}) {
      S = S \cup \{(a_c,b_c)\};
  return S;
```


Greedy 2 cannot ensure to find optimal solutions, example

$$X = \{(1,5), (4,7), (6,11)\}$$

 \rightarrow Greedy 2 returns solution $\{(4,7)\}$, however, optimal solution is $\{(1,5), (6,11)\}$

```
Greedy3() {
  S = \{\};
  L = sort segments of X in a non-decreasing order of b_i;
  while (X \neq \emptyset) {
    (a_c,b_c) = select first segment of L;
    remove (a_c, b_c) from L;
    if feasible(S \cup {(a_c,b_c)}) {
       S = S \cup \{(a_c,b_c)\};
  return S;
```


Greedy algorithms: exercise

• Given a set of jobs 1, 2, ..., *n* where each job *i* has a deadline *d(i)* and associated profit *p(i)* if the job is finished before the deadline. It is assumed that every job takes the single unit of time and each job is executed at a time. Compute a subset of jobs to be scheduled such that each job is not finished after the deadline and total profits of jobs is maximal.

Greedy algorithms: exercise

- Example: there are 4 jobs with deadline d[i] and profit p[i] are given as follows:
 - Job 1: 4 20
 - Job 2: 1 10
 - Job 3: 1 40
 - Job 4: 1 30
- Optimal solution consists of jobs 1 and 3 with the following schedule:
 - Job 3 starts at time-point 0 and finishes at time-point 1
 - Job 1 starts at time-point 1 and finishes at time-point 2
- Total profit is 20 + 40 = 60

Divide and conquer

- Divide the original problem into independent subproblems
- Solve recursively subproblems
- Combine the results of subproblems to establish the solution to the original problem

Divide and conquer: binary search

 Given a sequence x[1..n] which is sorted in an increasing order and a value y. Find the index i such that x[i] = y

```
bSearch(x, start, finish, y) {
  if(start == finish) {
    if(x[start] == y)
      return start;
    else return -1;
  }else{
    m = (start + finish)/2;
    if(x[m] == y) return m;
    if(x[m] < y)
      return bSearch(x, m+1,finish,y);
    else
      return bSearch(x,start,m-1,y);
```


Divide and conquer: largest subsequence

- Given a sequence of numbers $a = a_1, a_2, ..., a_n$. Find a subsequence (consecutive elements) such that the sum of its elements is maximal
- Division: P(i, j) is the sum of elements of the largest subsequence of a_i,
 a_{i+1},..., a_j
- Combination
 - Denote PL(i, j) the sum of elements of the largest subsequence of a_i , a_{i+1} ,..., a_j such that the last element of that largest subsequence is a_j
 - Denote PR(i, j) the sum of elements of the largest subsequence of $a_i, a_{i+1}, \ldots, a_j$ such that the first element of that largest subsequence is a_i

Divide and conquer: largest subsequence

- Consider the interval [I,I+1,...,r]. Denote m = (I+r)/2
- $P(I,r) = MAX\{P(I, m), P(m+1,r), PL(I,m) + PR(m+1,r)\}$

Divide and conquer: largest subsequence

```
maxLeft(a, 1, r){
  \max = -\infty; s = 0;
  for i = r downto l do{
    s += a[i];
    if(s > max) max = s;
  return max;
}
maxRight(a, 1, r){
  \max = -\infty; s = 0;
  for i = 1 to r do{
    s += a[i];
    if(s > max) max = s;
  return max;
}
```

```
maxSeq(a[...], 1, r){
  if 1 = r then return a[r];
  m = (1+r)/2;
  ml = maxSeq(a,l,m);
  mr = maxSeq(a,m+1,r);
  mlr = maxLeft(a,l,m) +
                maxRight(a,m+1,r);
  return max(ml,mr,mlr);
main() {
  input a[1..n]
  result = maxSeq(a,1,n);
```

Divide and conquer: running time analysis

- Divide the original problem into a subproblems of size n/b
- T(n): running time of the problem of size n
- Division time (line 4): D(n)
- Combination time (line 6): C(n)
- Recurrence relation:

```
T(n) = \begin{cases} \Theta(1), & n \leq n0 \\ aT\left(\frac{n}{b}\right) + C(n) + D(n), & n > n0 \end{cases}
```

```
procedure D-and-C(n) {
    if(n \leq n0)
      Process directly
    else{
      Divide original problem
4.
           into a subproblems of size n/b
      Solve a subproblems recursively
5.
      Combination of solutions
7.
}
```


Master theorem

Recurrence relation:

$$T(n) = aT(n/b) + cn^k$$
, with constants $a \ge 1$, $b > 1$, $c > 0$

- If $a > b^k$ then $T(n) = \Theta(n^{\log_b a})$
- If $a = b^k$ then $T(n) = \Theta(n^k \log n)$ with $\log n = \log_2 n$
- If a < b^k then $T(n) = \Theta(n^k)$

- Break the given problem down into a set of simpler subproblems
- Solve these subproblems once and store solutions in memory (e.g., tables)
 in a bottom-up fashion
- Smallest subproblems can be solved trivially
- Recurrence relation: solutions to a subproblem can be computed based on solutions (solved and stored in memory) to smaller subproblems

• Given an integers sequence $a = (a_1, a_2, ..., a_n)$. A subsequence of a is defined to be $a_i, a_{i+1}, ..., a_j$. The weight of a subsequence is the sum of it s elements. Find the subsequence having the highest weight

- Subproblem definition
 - S_i : weight of the highest subsequence of $a_1, ..., a_i$ in which the last element of the subsequence is a_i , i = 1, ..., n
 - Smallest problem can be solved directly: $S_1 = a_1$
 - Recurrence relation

$$S_i = S_{i-1} + a_i$$
, if $S_{i-1} > 0$
 a_i , otherwise

• Longest increasing subsequence: given a sequence $a = a_1, a_2, ..., a_n$. A subsequence of a is created by removing some elements of a. Find a subsequence of a which is an increasing sequence and the length is longest

Division

- Denote P_i the problem of finding the longest increasing subsequence of a_1, \ldots, a_i such that the last element is a_i , for all $i = 1, \ldots, n$
- Denote S_i the number of element of the solution to P_i , $\forall i = 1,..., n$

Division

- Denote P_i the problem of finding the longest increasing subsequence of a_1, \ldots, a_i such that the last element is a_i , for all $i = 1, \ldots, n$
- Denote S_i the number of element of the solution to P_i , $\forall i = 1,..., n$
- $S_1 = 1$
- $S_i = \max\{1, \max\{S_i + 1 | j < i \land a_i < a_i\}\}$
- Solution to the original problem is $\max\{S_1, S_2, ..., S_n\}$

Division

- Denote P_i the problem of finding the longest increasing subsequence of a_1, \ldots, a_i such that the last element is a_i , for all $i = 1, \ldots, n$
- Denote S_i the number of element of the solution to P_i , $\forall i = 1,..., n$
- $S_1 = 1$
- $S_i = \max\{1, \max\{S_j + 1 | j < i \land a_j < a_i\}\}$
- Solution to the original problem is $\max\{S_1, S_2, ..., S_n\}$

```
void solve(a[1...n]){
  S[1] = 1;
  rs = S[1];
  for i = 2 to n do{
    S[i] = 1;
    for j = i-1 downto 1 do{
      if(a[i] > a[j]){
        if(S[j] + 1 > S[i])
          S[i] = S[i] + 1;
    rs = max(S[i], rs);
  return rs
```


- Longest common subsequence
 - Denote $X = \langle X_1, X_2, ..., X_n \rangle$, a subsequence of X is created by removing some element from X
 - Input: Given two sequences $X = \langle X_1, X_2, ..., X_n \rangle$ and $Y = \langle Y_1, Y_2, ..., Y_m \rangle$
 - Output: Find a common subsequence of X and Y such that the length is longest

- Longest common subsequence
 - Division
 - Denote S(i, j) the length of the longest common subsequence of $\langle X_1, ..., X_i \rangle$ and $\langle Y_1, ..., Y_i \rangle$, $\forall i = 1, ..., n$ and j = 1, ..., m
 - Base case

•
$$\forall j = 1,..., m$$
: $S(1, j) = \begin{cases} 1, & \text{if } X_1 \text{ appears in } Y_1, & \dots, & Y_j \\ 0, & \text{otherwise} \end{cases}$
• $\forall i = 1,..., n$: $S(i, 1) = \begin{cases} 1, & \text{if } X_1 \text{ appears in } X_1, & \dots, & X_j \\ 0, & \text{otherwise} \end{cases}$

Aggregation

$$S(i, j) =$$

$$\begin{cases} S(i-1, j-1) + 1, & \text{n\'eu } X_i = Y_j \\ \max\{S(i-1, j), S(i, j-1)\} \end{cases}$$

Υ	4	3	2	3	6	1	5	4	9	7

S(i,j)	1	2	3	4	5	6	7	8	9	10
1	0	1	1	1	1	1	1	1	1	1
2	0	1	1	1	1	1	1	1	1	2
3	0	1	2	2	2	2	2	2	2	2
4	0	1	2	2	2	2	3	3	3	3
5	0	1	2	2	2	3	3	3	3	3
6	1	1	2	2	2	3	3	4	4	4
7	1	1	2	2	2	3	3	4	5	5


```
solve(X[1..n], Y[1..m]){
 rs = 0;
 for i = 0 to n do S[i][0] = 0;
 for j = 0 to m do S[0][j] = 0;
 for i = 1 to n do{
   for j = 1 to m do{
      if(X[i] == Y[j]) S[i][j] = S[i-1][j-1] + 1;
      else{
        S[i][j] = max(S[i-1][j], S[i][j-1]);
      rs = max(S[i][j], rs);
 return rs;
```

