Contents

1	Introduzione	1
2	Ricavare k	2
3	Ricavare K_e e stimare γ	3
4	Ricavare i parametri del motore	4

1 Introduzione

Rotazione del disco attaccato al motore: θ_m . Raggio del disco attaccato al motore: R_d .

Posizione del carretto : x.

Tensione in ingresso al motore: V

Stiffness molla: K

Resistenza e induttanza del motore: R, L

Massa carretto+peso: M Costante torque/backemf: K_e

Essendo il gearbox fissato al carretto abbiamo:

$$\theta_m = \frac{x}{R_d} \Rightarrow \dot{\theta}_m = \frac{\ddot{x}}{R_d}$$

Funzione di trasferimento tra forza erogata e posizione del carretto:

$$\frac{X}{F}(s) = \frac{1}{M} \frac{1}{s^2 + \frac{K}{M}}$$

Funzione di trasferimento tra Tensione e corrente:

$$\frac{I}{V}(s) = \frac{s^2 + \frac{K}{M}}{(s^2 + \frac{K}{M})(2R + 2sL) + \gamma s}$$
$$\gamma = \frac{4K_e^2}{R_d^2 M}$$

Per $\gamma \ll 1$:

$$\frac{I}{V} \approx \frac{1}{2R + 2sL}$$

$\mathbf{2}$ Ricavare k

Per ricavare le k delle molle l'idea generale è di guardare il displacement x del carretto applicando la stessa forza F(t).

Per $F(t) = F_0$ abbiamo $x(t) \to kF_0$.

Chiamiamo le due molle k_1, k_2 . Noi non conosciamo F_0 , ma è costante per entrambi e cambia solo il k. Quindi:

$$F_0 = k_1 x_1$$

$$F_0 = k_2 x_2$$

Quindi prendendo il rapporto:

$$\frac{x_1}{x_2} = \frac{k_2}{k_1}$$

Se $x_2 < x_1$ allora $k_2 > k_1$, e viceversa. Da questa formula possiamo ricavare il rapporto fra le due k e verificare con quelle scritte nel manuale.

Quindi:

- 1. Aprire il file simulink test1 nella cartella tests/15March.
- 2. Caricare lo schema sulla scheda
- 3. Attaccare la prima molla
- 4. Far andare la scheda, calcolare x_1 quando il carretto è fermo
- 5. Spegnere la scheda, staccare la molla e attaccare l'altra molla
- 6. Far andare la scheda, calcolare x_2 e prendere il rapporto

3 Ricavare K_e e stimare γ

Conoscendo ora la forza, e sapendo R_d , sappiamo che il torque è dato da:

$$T = FR_d = 2K_e i$$

Possiamo misurare la corrente del motore attraverso l'output current del blocco del motore su simulink.

Rieseguiamo l'esperimento test
1, e salviamo l'output della corrente in una variabile di matla
b $i.\,$

A regime $F=F_0$. Prendiamo l'ultimo sample della corrente, che sarà i(N). Quindi:

$$K_e = \frac{FR_d}{2i_N}$$

Per stimare γ sappiamo che vale:

$$\gamma = \frac{4K_e^2}{R_d^2 M}$$

 R_d è dato dal manuale, in pollici. Inoltre sappiamo che M>0.5Kg Di conseguenza dobbiamo vedere quando:

$$\gamma \ll 1 \approx \gamma < 0.1$$

Sia $x = \frac{4K_e^2}{R_d^2}$, quindi maggiorando:

$$\frac{x}{M} < \frac{x}{0.5}$$

e imponiamo ora la condizione

$$\frac{x}{0.5} < 0.1 \Rightarrow x < 0.05$$

Quindi calcola $x=\frac{4K_e^2}{R_d^2}$ e vedi se vale meno di 0.05.

4 Ricavare i parametri del motore

Per ricavare i parametri del motore conviene sfruttare il fatto che possiamo misurare la corrente del motore attraverso l'output current del blocco del motore su simulink.

Considerando la back-emf la funzione di trasferimento è data da:

$$\frac{I}{V}(s) = \frac{s^2 + \frac{K}{M}}{(s^2 + \frac{K}{M})(2R + 2sL) + \gamma s}$$

$$\gamma = \frac{4K_e^2}{R_d^2 M}$$

Per V=1 costante otteniamo:

$$\lim_{t\to\infty}i(t)=\lim_{s\to 0}sI(s)\frac{1}{s}=\frac{1}{2R}$$

Quindi prendiamo l'ultimo campione della corrente (che chiamo i_N), e di conseguenza:

$$R = \frac{1}{2i_N}$$