Lecture Notes

08/21/2020

1 **Functions and Limits**

1.1 **Definition of Limit**

Limit - $\lim_{x\to a} f(x) = L$ "The limit of f of x as x approaches a"

We are concerned about the points that are around a, not a itself. In other words: a can be undefined.

For a limit to exist, both left and right limits MUST converge on the SAME point. Mathematically: $\lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x)$ where a^- are numbers less than a and a^+ are numbers slightly larger than a.

Limits must also not approach infinity to exist.

1.1.1 Exambles of Solving Limits Numerically

$$\lim_{x\to 2}\frac{x^2+x+2}{x+1}$$

$$\frac{\lim_{x\rightarrow 2}x^2+x+2}{\lim_{x\rightarrow 2}x+1}\rightarrow \frac{2^2+2+2}{2+1}\rightarrow \frac{8}{3}$$

Evaluating Limits Numerically

 $\lim_{x\to -4}\frac{x^2-16}{x+4}$ To solve this numerically, you need to plug in numbers that are above and below -4.

You end up getting something like -8.

Limits can also be evaluated graphically.