有限オートマトンと正規表現

離散数学・オートマトン 2022 年後期 佐賀大学理工学部 只木進一

- ① 正規表現: Regular expression
- ② 正規表現と有限オートマトン: Regex and FA
- ③ 正規表現から DFA へ: From Regex to DFA
- 有限オートマトンの受理言語を正規表現で構成: From FA to Regex

正規表現: Regular expression

- 文字列の探索や置換で利用
- 柔軟にパターンを記述できる
- 例
 - "000"の繰り返しを含む
 - 数字が偶数個連続する
 - 指定した文字列の後ろに数字が付いているファイル名
- 多くのプログラミング言語やテキストエディタで利用できる

離散数学・オートマトン 3/31

例 1.1: ファイル名から日付部分を除く

```
1
     import re
     fileList=[
          '1.1 Introduction_20201010.txt',
          '1.2 SetAndMappings_20211013.txt',
5
          '1.3 Relations_20100401.txt'
6
     #日付以外の部分を取り出す
     p = re.compile(r'(.*)_d{8}(\cdot.txt)')
     for f in fileList:
9
         m = p.match(f)
10
         if m:
11
             filename = m.group(1)+m.group(2)
12
             print(filename)
13
```

- 1.1 Introduction.txt
- 1.2 SetAndMappings.txt
- 1.3 Relations.txt

Python での正規表現: ごく一部

- 任意の文字と一致
- \d 数字と一致
- \D 数字以外と一致
- \s スペースやタブ、改行などの空白文字と一致
- \S 空白文字以外と一致
 - * 0回以上の繰り返し
- + 1回以上の繰り返し

正規表現の定義: 基礎

- $a \in \Sigma$ に対して a は正規表現であり、その言語は $\{a\}$ である
 - 一文字からなる言語
- ullet ϵ は正規表現であり、その言語は $\{\epsilon\}$ である
 - 長さゼロの文字列からなる言語

正規表現の定義: 再帰

- ullet α と β が、言語 L_{α} 及び L_{β} をそれぞれ表す正規表現のとき
 - $\alpha + \beta$ は $L_{\alpha} \cup L_{\beta}$ を表す正規表現
 - ullet lphaeta は $L_lpha L_eta$ (連接) を表す正規表現

$$L_{\alpha}L_{\beta} = \{uv | u \in L_{\alpha}, v \in L_{\beta}\}$$
(1.1)

 $oldsymbol{lpha}^*$ は Kleene 閉包: $L^*_lpha = igcup_{k=0}^\infty L^k_lpha$

$$L_{\alpha}^{0} = \{\epsilon\}, L_{\alpha}^{1} = L_{\alpha}, L_{\alpha}^{k+1} = L_{\alpha}L_{\alpha}^{k}$$
 (1.2)

 $oldsymbol{lpha}^+$ は正閉包: $L_lpha^+ = igcup_{k=1}^\infty L_lpha^k$

例 1.2:

- $a, b \in \Sigma$
- a は言語 {a} を表す
- b は言語 {b} を表す
- a + b は言語 {a,b} を表す
- ab は言語 {ab} を表す
- a (a + b) b は言語 {aab, abb} を表す
- (a + b)* は、a と b からなる、長さゼロ以上の文字列全体からなる言語を表す

例 1.3:

$$(0+1)1(0+1)$$

$$0(0+1)^*0$$

正規表現と有限オートマトン Regular Expressions and Finite State Automata

- 任意の正規表現を受理言語とする有限オートマトンを構成することができる
- 任意の有限オートマトンの受理言語を表す正規表現を構成することができる
- つまり、有限オートマトンの受理言語は正規表現で表される。

基礎的表現

- 正規表現の構成を順を追って FA で表現
- 基礎: $a, b \in \Sigma$

和、連接、Kleene 閉包

 $\alpha + \beta$

例 3.1: $0+1(0+1)^*$

DFA へ変換

DFA を最小化

例 3.2: $(ab)^*$ aa $(a+b)^*$

 $(\mathbf{a} + \mathbf{b})^*$

a,b

有限オートマトンの受理言語を 正規表現で構成

ullet Step1: 新たに一つの終状態 q_f を追加し、それのみが終状態とする

- step2: rule1,2,3 の順に適用する
- rule1: 同じ状態遷移を引き起こす入力に対して、正規表現の 和を対応つける

• rule2: ループの遷移を次の遷移の前に連接する

• rule3: 連続する遷移を、途中の状態を削除して連接とする

例 4.1:

同じ遷移を起こす入力を正規表現の和に変換

- rule 2 に相当するループが
- ullet q_0 から q_1 を経て、 q_0 へ戻る経路をループに
- 0
- ullet q_0 から q_2 を経て、 q_0 へ戻る経路をループにするとともに、 a_f への遷移を残す

rule 1: 2回目

q₀ の2つのループの表現の和を作る

 \bullet q_0 の 2 つのループの表現の和を作る

例 4.2:

q_f を追加し、rule1 を適用

