CS 2340 - Computer Architecture

13 Floating Point Arithmetic Dr. Alice Wang

A programmer walks into a bar and orders 1.000000119 root beers. The bartender says, "I'm gonna have to charge you extra; that's a root beer float". And the programmer says, "Well in that case make it a double".

Term Project - Grading

Sign up for a 12-minute interview slot with a grader during the week of Mon Oct 27- Fri Oct 31 by signing up for one slot in this <u>Sign-up Genius</u>.

During this interview, you will be asked to download and run your game as submitted, explain its functionality, and answer questions related to it. Your grade will be based on

- 20% documentation
- 20% demonstration
- 60% functionality (determined during the interview)

Review

Last Lecture

- Binary Arithmetic: Add, Sub, Mult, Division
- Fixed point

Today

Floating Point

Pros/Cons with Fixed-point

Pros:

- Simple to understand
- Simple to implement in circuits fast, low power, low cost

Cons:

- Limited in bit precision
- Limited in range

Floating point standard

- We demand more precision and range! Floating point standard emerged
- Defined by IEEE Std 754-1985
 - Developed in response to divergence of representations
 - Now almost universally adopted
- Two representations
 - Single precision (32-bit) "float" in C
 - Double precision (64-bit) "double" in C and "float" in Python

Floating point Numbers - Decimal

- Floating point is similar to decimal scientific notation
- For example, write 273₁₀ in scientific notation:

$$273 = 2.73 \times 10^{2}$$

• In general, a number is written in scientific notation as:

$$\pm M \times B^{E}$$

- M = mantissa (decimal point is always after the first non-zero digit)
- o B = base
- E = exponent
- \circ In the decimal example, M = 2.73, B = 10, and E = 2

Floating point Numbers - Binary

For binary floating point numbers, the Base is 2

$$\pm M \times B^{E}$$

- M = mantissa (binary point is always after the first non-zero digit)
- B = base = 2
- o E = exponent
- Examples of binary scientific notation
 - o 1.01101110001 x 2²³
 - \circ -1.01 x 2³

Single-precision Floating point Numbers

Single-precision is 32-bit

We will use this example to explain three floating point versions

- Version 3 is called the IEEE 754 floating-point standard

Example: represent the value 228₁₀ using a 32-bit floating point representation

Floating point Representation - Version 1

1. Convert decimal to binary:

2. Write the number in "binary scientific notation":

$$11100100_2 = 1.11001_2 \times 2^7$$

- 3. Fill in each field of the 32-bit floating point number:
 - The sign bit is positive (0)
 - The 8 exponent bits represent the value 7
 - The remaining 23 bits are the mantissa

Sign	Exponent	Mantissa
0	00000111	11 1001 0000 0000 0000 0000
1 bit	8 bits	23 bits

Floating point Representation - Version 2

Because the first bit of the mantissa is always 1:

$$228_{10} = 11100100_2 = 1.11001 \times 2^7$$

There is no need to store it \Rightarrow implicit leading 1

Store only the fraction bits in 23-bit field & get 1 extra bit of precision

Sign	Exponent	Fraction
0	00000111	110 0100 0000 0000 0000 0000
1 bit	8 bits	23 bits

Floating point Representation - Version 3

Biased exponent: bias = $127 (011111111_2)$

- Biased exponent = bias + exponent → Gives us the ability to store both pos and neg exponents
- Exponent of 7 is stored as:

$$127 + 7 = 134 = 0 \times 10000110_{2}$$

This is the IEEE 754 32-bit floating-point representation of 228_{10} in hexadecimal: 0x43640000

1 bit	8 bits	23 bits
0	10000110	110 0100 0000 0000 0000 0000
Sign	Biased Exponent	Fraction

Example (Decimal to Float) - My Turn

Write decimal -18.125 in single-precision floating point (IEEE 754)

1hit

Sign

8hits

1. Convert decimal to binary:

2. Write in binary scientific notation:

3. Fill in fields:

Sign	bit:				

Exponent: ______

Biased exponent (8 bits): _____

Mantissa: _____

Fraction (23 bits): _____

 0.0110	

Biased Exp Fraction

in hex: _____

23hits

Example (Decimal to Float) - Your Turn

Write decimal 14.5625 in single-precision floating point (IEEE 754)

1hit

8hits

1. Convert decimal to binary:

2. Write in binary scientific notation:

3. Fill in fields:

Sign	bit:	
- 3		

Exponent: _____

Biased exponent (8 bits): _____

Mantissa: _____

Fraction (23 bits): _____

 32.0	

23hits

Sign Biased Exp Fraction

in hex: _____

Example (Float pt to Dec) - My Turn

What is IEEE 754 flooting point 0x44050000 in desimal?

VVI	What is iEEE 754 hoating point 0x44050000 in declinar?					
1.	Convert hexadecimal to binary:	1bit	8bits	23bits		
2.	Fill in fields:					
Sign bit:			Biased Exp	Fraction		
Biased exponent bits:						
Fraction bits:						

Exponent: _____

Mantissa: _____

Binary Scientific Notation: _____

Binary: _____ Decimal : _____

Example (Float pt to Dec) - Your Turn

Binary: _____ Decimal : ____

what is iEEE 754 floating point 0x4 (340000 in decimal?							
1.	Convert hexadecimal to binary:	1bit	8bits	23bits			
2.	Fill in fields:						
Sig	n bit:	Sign	Biased Exp	Fraction			
Bia	sed exponent bits:						
Fra	Fraction bits:						
Exp	Exponent:						
Ma	Mantissa:						
Bin	Binary Scientific Notation:						

A. Wang, 2340

Floating Point Special Cases

Number	Sign	Exponent	Fraction
0	X	00000000	000000000000000000000000000000000000000
∞	0	11111111	000000000000000000000000000000000000000
- ∞	1	11111111	000000000000000000000000000000000000000
NaN	X	11111111	non-zero

Single vs Double precision

	Single	Double
# of bits	32	64
# Exponent bits	8	11
# of Fractional bits	23	52
Reserved Exponents	0000_0000 1111_1111	000_0000_0000 111_1111_1111
Smallest Value	Exponent: 0000_0001 Fraction: 00000⇒ Mantissa 1.0 ±1.0 × 2 ⁻¹²⁶ ≈ ±1.2 × 10 ⁻³⁸	Exponent: 000_0000_0001 Fraction: 00000⇒ Mantissa 1.0 ±1.0 × 2 ⁻¹⁰²² ≈ ±2.2 × 10 ⁻³⁰⁸
Largest Value	Exponent: 1111_{1110} Fraction: $111_{111} \Rightarrow \text{Mantissa}$ 2.0 $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$	Exponent: 111_1111_1110 Fraction: 11111⇒ Mantissa 2.0 ±2.0 × 2 ⁺¹⁰²³ ≈ ±1.8 × 10 ^{A±3Mang, 2340}

Floating point Arithmetic - Addition

- Floating point addition is more complex than fixed-point and integer addition!
- Show floating point addition in decimal first, then in floating point
- Key point: You can only add in scientific notation if the exponents are the same

Example in decimal:

Add 3.5×10^2 by 5.5×10^4

- Adjust one of the addends so that the exponents are the same: 550 x 10²
- Add 3.5 and 550 = 553.5
- Exponent : 2
- Adjust the decimal point of the result (if needed) → 5.535 x 10⁴

Floating point Arithmetic - Addition

- Floating point addition is more complex than fixed-point and integer addition!
- Show floating point addition in decimal first, then in floating point
- Key point: You can only add in scientific notation if the exponents are the same

Example in decimal:

Add 3.5×10^2 by 5.5×10^4

- Adjust one of the addends so that the exponents are the same: 550 x 10²
- Add 3.5 and 550 = 553.5
- Exponent : 2
- Adjust the decimal point of the result (if needed) $\rightarrow 5.535 \times 10^4$

Translate to binary:

Add 1.1 x 2² by 1.101 x 2⁴

- Adjust one of the addends so that the exponents are the same: 110.1 x 2²
- Add 1.1and 110.1 = 1000.0
- Exponent: 2
- Adjust the binary point (if needed) \rightarrow 1.0 x 2⁵

A. Wang, 2340

Floating point Addition Example

Add the two floating-point numbers and give the result in IEEE 754 floating-point

0x3fc00000 + 0x41200000 [1.5 + 10 = 11.5]

1. Extract exponent and fraction bits. Get into binary	0x3FC00000:	0x41200000:
scientific notation	Sign = Biased Exponent = Exponent = Fraction = Mantissa = Binary Scientific =	Sign = Biased Exponent = Exponent = Fraction = Mantissa = Binary Scientific =

Floating point Addition Example

Add 2 binary scientific numbers: $(1.1 \times 2^0) + (1.01 \times 2^3)$

Sign	Mantissa	Exponents
Check the sign to determine if you need to apply 2's complement before adding	Shift Mantissa of the larger Exponent so that the Exponents are the same before applying binary addition.	Larger Exponent shifted so that Exponents of both numbers are the same.
Sign1 = + Sign2 = + Apply 2's complement?	Mantissa1 = 1.1 Mantissa2 = 1.01 → Shift Mantissa1 = Apply binary addition +	Exponent1 = 0 Exponent2 = 3 →

Floating point Addition Example

Adjust the binary point (if needed)	
Assemble exponent and fraction back into IEEE 754 floating point format	Sign = Exponent = Biased Exponent = Mantissa = Fraction =

1bit	8bits	23bits
Sign	Bias Exp	Fraction
Hex	•	

Fixed-point vs Floating-point addition

$$1.5 + 10 = 11.5$$

Fixed-point vs Floating-point

Fixed point

- Very fast
- No complex logic, reuse integer logic
- Fixed accuracy
- Can only represent small number set

Floating point

- Slower
- Dedicated complex logic required
- Accuracy varies
- Represent large data sets

Summary

- How do we represent Fractions: Fixed point and Floating point
- Fixed-point unsigned, signed, arithmetic
- Floating-point: IEEE 754 32-bit floating-point representation

Next time: MIPS floating-point instructions

Next lecture

Floating point instructions

