On Using Social Signals to Enable Flexible Error-Aware HRI: Supplementary Materials

Maia Stiber mstiber@jhu.edu Johns Hopkins University Baltimore, Maryland, USA Russell H. Taylor rht@jhu.edu Johns Hopkins University Baltimore, Maryland, USA

Chien-Ming Huang chienming.huang@jhu.edu Johns Hopkins University Baltimore, Maryland, USA

A SIGNIFICANT AU PREDICTOR WELCH'S T-TESTS

In order to determine the *Significant AU Predictors*, we evaluated the data set using Welch's t-tests. Table 1 displays the numerical values of the Welch's t-tests ran to evaluate the *Significant AU Predictors* metric for the complete dataset, as described in Section 4.4.1. Table 2 displays the numerical values of the Welch's t-tests ran to evaluate the *Significant AU Predictors* metric for the HRC-A data collection scenario. Table 3 displays the numerical values of the Welch's t-tests ran to evaluate the *Significant AU Predictors* metric for the HRC-C data collection scenario. Table 4 displays the numerical values of the Welch's t-tests ran to evaluate the *Significant AU Predictors* metric for the PbD data collection scenario.

Table 1: Welch's t-test values used to evaluate the Significant AU Predictors metric over the entire dataset. The t-tests were run on the AU intensities exhibited during error and no error timesteps. The bolded AUs are the statistically significant ones.

	Complete Dataset			
	Error Timestep	No Error Timestep	Welch's t-test	
	AU Mean	AU Mean	weich's t-test	
AU_01	0.41 ± 0.66	0.58 ± 0.93	t(1087.40) = -1.22, p = .22	
AU_02	0.46 ± 0.81	0.59 ± 0.95	t(2721.40) = -7.67, p < .001	
AU_04	0.45 ± 0.61	0.40 ± 0.58	t(2642.55) = 4.32, p < .001	
AU_05	0.13 ± 0.33	0.15 ± 0.38	t(2709.39) = -0.75, p = .08	
AU_06	0.42 ± 0.59	0.18 ± 0.39	t(2568.20) = 20.22, p < .001	
AU_07	0.39 ± 0.58	0.37 ± 0.64	t(2693.89) = 1.99, p = .047	
AU_09	0.34 ± 0.52	0.25 ± 0.50	t(2646.65) = 7.57, p < .001	
AU_10	0.58 ± 0.71	0.42 ± 0.63	t(2624.82) = 1.57, p < .001	
AU_12	0.57 ± 0.71	0.17 ± 0.35	t(2539.51) = 27.27, p < .001	
AU_14	0.80 ± 0.78	0.39 ± 0.63	t(2603.79) = 25.82, p < .001	
AU_15	1.40 ± 0.89	0.63 ± 1.22	t(2799.72) = -12.91, p <.001	
AU_17	0.57 ± 0.85	0.73 ± 1.00	t(2819.04) = -9.09, p < .001	
AU_20	0.43 ± 0.67	0.36 ± 0.73	t(2690.10) = 4.94, p < .001	
AU_23	0.19 ± 0.50	0.30 ± 0.72	t(2820.94) = -10.30, p < .001	
AU_25	0.34 ± 0.65	0.33 ± 0.69	t(2681.68) = 0.48, p = .63	
AU_26	0.25 ± 0.48	0.32 ± 0.63	t(2767.09) = -7.16, p < .001	
AU_45	0.43 ± 0.55	0.25 ± 0.47	t(2614.21) = 16.24, p <.001	

Table 2: Welch's t-test values for the HRC-A scenario to evaluate the Significant AU Predictors metric for the open-source dataset analysis. The t-tests were run on the AU intensities exhibited during error and no error timesteps. The bolded AUs are the statistically significant ones.

		HRC-A	
	Error Timestep	No Error Timestep	Welch's t-test
	AU Mean	AU Mean	weich s t-test
AU_01	0.89 ± 1.06	1.10 ± 1.20	t(204.86) = -2.81, p = .005
AU_02	1.16 ± 1.04	1.29 ± 1.13	t(204.55) = -1.82, p = .07
AU_04	0.33 ± 0.56	0.45 ± 0.63	t(204.77) = -3.23, p = .002
AU_05	0.28 ± 0.48	0.25 ± 0.49	t(204.23) = 0.83, p = .41
AU_06	0.22 ± 0.37	0.21 ± 0.41	t(204.89) = 0.58, p = .57
AU_07	0.40 ± 0.61	0.45 ± 0.68	t(204.84) = -1.14, p = .25
AU_09	0.66 ± 0.72	0.52 ± 0.67	t(203.57) = 2.77, p = .006
AU_10	0.62 ± 0.74	0.54 ± 0.65	t(203.37) = 1.57, p = .12
AU_12	0.20 ± 0.34	0.16 ± 0.30	t(203.35) = 1.50, p = .14
AU_14	0.35 ± 0.61	0.48 ± 0.69	t(204.86) = -2.83, p = .005
AU_15	1.25 ± 1.63	0.97 ± 1.45	t(203.38) = 2.39, p = .018
AU_17	1.11 ± 1.25	0.98 ± 1.24	t(203.46) = 1.47, p = .14
AU_20	0.42 ± 0.69	0.53 ± 0.81	t(205.16) = -2.37, p = .012
AU_23	0.73 ± 1.04	0.50 ± 0.95	t(203.53) = 3.06, p = .003
AU_25	0.088 ± 0.29	0.043 ± 0.23	t(202.91) = 2.23, p = .027
AU_26	0.13 ± 0.44	0.17 ± 0.50	t(204.90) = -1.35, p = .18
AU_45	0.19 ± 0.36	0.34 ± 0.56	t(208.25) = -5.61, p <.001

Table 3: Welch's t-test values for the HRC-C scenarios to evaluate the *Significant AU Predictors* metric for the open-source dataset analysis. The t-tests were run on the AU intensities exhibited during error and no error timesteps. The bolded AUs are the statistically significant ones.

	HRC-C		
	Error Timestep	No Error Timestep	Welch's t-test
	AU Mean	AU Mean	weich's t-test
AU_01	0.13 ± 0.33	0.17 ± 0.38	t(1088.44) = -3.72, p <.001
AU_02	0.24 ± 0.42	0.17 ± 0.38	t(1066.10) = 4.56, p < .001
AU_04	0.35 ± 0.47	0.30 ± 0.46	t(1073.37) = 3.35, p < .001
AU_05	0.20 ± 0.39	0.24 ± 0.43	t(1084.44) = -3.28, p = .001
AU_06	0.22 ± 0.41	0.072 ± 0.25	t(1045.88) = 11.19, p <.001
AU_07	0.43 ± 0.50	0.32 ± 0.48	t(1072.76) = 7.03, p < .001
AU_09	0.16 ± 0.37	0.063 ± 0.24	t(1048.12) = 8.61, p < .001
AU_10	0.29 ± 0.45	0.12 ± 45	t(1053.53) = 11.76, p < .001
AU_12	0.25 ± 0.43	$0.010 \pm .43$	t(1050.34) = 11.61, p < .001
AU_14	0.59 ± 0.50	$0.25 \pm .44$	t(106.75) = 12.40, p < .001
AU_15	0.23 ± 42	$0.25 \pm .47$	t(1087.40) = -1.22, p = .22
AU_17	0.37 ± 0.48	0.33 ± 0.51	t(1082.23) = 2.83, p = .0048
AU_20	0.24 ± 0.42	0.18 ± 0.39	t(1068.08) = 4.71, p < .001
AU_23	0.22 ± 0.41	0.16 ± 0.37	t(1065.52) = 5.12, p < .001
AU_25	0.34 ± 0.47	0.18 ± 0.41	t(1063.52) = 10.65, p <.001
AU_26	0.24 ± 0.42	0.12 ± 0.34	t(1059.06) = 9.53, p <.001
AU_45	0.30 ± 0.45	0.21 ± 0.40	t(1065.28) = 6.34, p <.001

Table 4: Welch's t-test values for the PbD scenarios to evaluate the Significant AU Predictors metric for the open-source dataset analysis. The t-tests were run on the AU intensities exhibited during error and no error timesteps. The bolded AUs are the statistically significant ones.

		PbD	
	Error Timestep	No Error Timestep	Welch's t-test
	AU Mean	AU Mean	weich's t-test
AU_01	0.74 ± 0.78	0.98 ± 1.02	t(847.96) = -6.51, p <.001
AU_02	0.93 ± 1.06	1.03 ± 1.12	t(737.24) = -2.28, p = .023
AU_04	0.50 ± 0.67	0.52 ± 0.68	t(721.86) = -0.41, p = .68
AU_05	0.15 ± 0.32	0.21 ± 0.40	t(829.21) = -4.11, p < .001
AU_06	0.47 ± 0.56	0.14 ± 0.30	t(594.00) = 13.38, p <.001
AU_07	0.39 ± 0.49	0.30 ± 0.52	t(739.73) = 3.46, p = .001
AU_09	0.66 ± 0.63	0.41 ± 0.49	t(647.53) = 8.84, p < .001
AU_10	0.47 ± 0.50	0.38 ± 0.57	t(766.56) = 4.05, p < .001
AU_12	0.75 ± 0.66	0.19 ± 0.33	t(586.28) = 19.57, p <.001
AU_14	1.16 ± 0.75	0.50 ± 0.69	t(688.95) = 19.53, p <.001
AU_15	0.28 ± 0.56	0.58 ± 0.91	t(1023.25) = -10.54, p < .001
AU_17	0.30 ± 0.55	0.46 ± 0.81	t(931.05) = -6.03, p < .001
AU_20	0.55 ± 0.58	0.43 ± 0.58	t(721.58) = 4.27, p < .001
AU_23	0.07 ± 0.28	0.12 ± 0.42	t(950.60) = -3.54, p < .001
AU_25	0.15 ± 0.43	0.06 ± 0.21	t(583.40) = 4.95 p < .001
AU_26	0.05 ± 0.21	0.14 ± 0.43	t(1325.30) = -8.04, p < .001
AU 45	0.81 ± 0.67	0.50 ± 0.67	t(696.22) = 10.04, p < .001