RESUMEN ÁLGEBRA RELACIONAL

Operaciones

Operador	Notación		
Selección	σ		
Proyección	π		
Unión	U		
Intersección	n		
Diferencia	ı -		
Producto Cartesiano	×		
Θ-Reunión	\bowtie_{Θ}		
División	÷		

SELECCIÓN

El operador Θ-selección aplicado a R obtiene aquellas tuplas de r para las que Θ es cierta.

Notación:

σ_Θ(R)

Ejemplo:

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Luis Martínez Pérez	AS	TSEÑAL	TESE
242560	María Gómez Sánchez	CU	TSEÑAL	TESE

$\sigma_{categoria=AS}$ (profesores)

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Luis Martínez Pérez	AS	TSEÑAL	TESE

La condición no tiene por qué ser única: categoria= AS V area=ELECTR por ejemplo según la tabla inicial que teníamos.

PROYECCIÓN

Muestra los atributos que le indicamos como subíndice dentro de la tabla o relación que le pasamos como parámetro.

Ejemplo:

• $\pi_{NRP,nom_prof,categoria}$ (Profesores)

NRP	NOM_PROF	CATEGORIA	AREA	COD_DEP
2428456	Juan Sánchez Pérez	AS	COMPUT	CCIA
24283256	Antonia Pérez Rodríguez	CU	COMPUT	CCIA
242256	Luis Pérez Pérez	TE	LENGUA	LSI
84256	Carmen Pérez Sánchez	TU	LENGUA	LSI
324256	David Pérez Jiménez	CU	ARQUIT	ATC
24256	María López Ruiz	TU	ARQUIT	ATC
2842560	José Álvarez Pérez	CE	ELECTR	ELEC
842560	Adela Pérez Sánchez	AS	ELECTR	ELEC
84560	Luis Martínez Pérez	AS	TSEÑAL	TESE
242560	María Gómez Sánchez	CU	TSEÑAL	TESE

• $\pi_{\text{NRP,nom_prof,categoria}}$ (Profesores)

NRP	NOM_PROF	CATEGORIA
2428456	Juan Sánchez Pérez	AS
24283256	Antonia Pérez Rodríguez	CU
242256	Luis Pérez Pérez	TE
84256	Carmen Pérez Sánchez	TU
324256	David Pérez Jiménez	CU
24256	María López Ruiz	TU
2842560	José Álvarez Pérez	CE
842560	Adela Pérez Sánchez	AS
84560	Luis Martínez Pérez	AS
242560	María Gómez Sánchez	CU

Puede que al proyectar aparezcan tuplas repetidas, esto ocurre cuando en el conjunto de atributos que queremos mostrar no incluimos una clave candidata. Estas tuplas repetidas se eliminan.

PRODUCTO CARTESIANO

A	В	×	D	=	Α	В	D
a ₁	b ₁		d ₁		a_1	b_1	d_1
a ₂	b ₂		d ₂		a_1	b_1	d_2
a ₃	b ₃				a ₂	b ₂	d_1
					a_2	b_2	d_2
					a ₃	b ₃	d_1
					a_3	b_3	d_2

En la tabla generada, puede que haya ambigüedad a la hora de designar atributos en futuras operaciones (o cuando se realiza composición de operaciones). Es por ello que anteponemos un prefijo al nombre del atributo en cuestión para indicar a la tabla a la que nos estamos refiriendo. Ejemplo:

• $\Pi_{nom_asig}(\sigma_{matricula.cod_asig=asignaturas.cod_asig})$ (asignaturas x $\sigma_{alumnos.DNI=matricula.DNI}(matriculas \times \sigma_{nom_alum=Luis\ Martinez\ Perez}(alumnos)))))$

UNIÓN

	A	В	C
	a_1	b_1	c_1
D	a_2	b_2	c_2
R	<i>a</i> ₃	b_1	c_1
	<i>a</i> ₄	b_1	c_1
	<i>a</i> ₄	<i>b</i> ₂	c_2

A	В	C
a_1	b_1	c_1
<i>a</i> ₂	<i>b</i> ₂	c_2
a ₃	<i>b</i> ₂	c_2
<i>a</i> ₄	<i>b</i> ₂	c_2
a_1	<i>b</i> ₂	c_2

	A	В	C
	a_1	b_1	c_1
D 0	<i>a</i> ₂	<i>b</i> ₂	c_2
R ∪ S	a ₃	b_1	c_1
	<i>a</i> ₄	b_1	c_1
	<i>a</i> ₄	<i>b</i> ₂	c_2
	<i>a</i> ₃	<i>b</i> ₂	c_2
	a_1	<i>b</i> ₂	c_2

DIFERENCIA

A	В	C		A	В	C				
a_1	<i>b</i> ₁	c_1		a_1	b_1	c_1	i	A	В	C
<i>a</i> ₂	<i>b</i> ₂	c_2		a_2	<i>b</i> ₂	c_2	=	az	<i>b</i> ₁	c_1
<i>a</i> ₃	b_1	c_1	_	a ₃	<i>b</i> ₂	<i>c</i> ₂	_	a_{Δ}	<i>b</i> ₁	<i>c</i> ₁
<i>a</i> ₄	b_1	c_1		<i>a</i> ₄	<i>b</i> ₂	c_2		-	1	1
<i>a</i> ₄	<i>b</i> ₂	c_2		a_1	<i>b</i> ₂	c_2				

REUNIÓN NATURAL

Con condición

profesores $\bowtie_{director=NRP}$ departamentos = $\sigma_{director=NRP}$ (profesores × departamentos)

NRP	NOM_PROF	CATG.	AREA.	COD_DEP	COD_DEP	NOM_DEP	DIRECTOR
24283256	Antonia Perez Rodriguez	CU	COMPUT	CCIA	CCIA	Ciencias de la Computacion	24283256
84256	Carmen Perez Sanchez	TU	LENGUA	LSI	LSI	Lenguajes y Sistemas	84256
324256	David Perez Jimenez	CU	ARQUIT	ATC	ATC	Arquitectura de Computadores	324256
2842560	Jose Alvarez Perez	CE	ELECTR	ELEC	ELEC	Electronica	2842560
84560	Luis Martinez Perez	AS	TSECAL	TESE	TESE	Teoria de la Señal	84560

Sin condición

- Definición
 - Sea
 - R[A₁...A_n], y S[B₁...B_m] dos relaciones tales que existen $\{A_i,...,A_j\} \subseteq \{A_1,...,A_n\}$ y $\{B_i,...,B_j\} \subseteq \{B_1,...,B_m\}$ de forma que $\forall k \in \{i..j\}$, $A_k = B_k$
 - r y s dos instancias de las mismas
 - Entonces la Reunión Natural de R y S equivale a:
 - $\bullet \quad \pi_{\{A1\dots An\} \ \cup \ (\{B1\dots Bm\}-\{Bi\dots Bj\})}(\sigma_{R.Ai=S.Bi \ \Lambda \ \dots \ \Lambda \ R.Aj=S.Bj} \ (R\times S))$
 - · Notación:
 - R ⋈ S

Α	В	С
a ₁	b ₁	C ₁
a ₂	b ₂	C ₂
a ₃	b ₁	C ₁
a ₄	b ₁	С ₁
a ₄	b ₂	c ₂
		1000

В	С	D	E
b ₁	C ₁	d ₁	e ₁
b ₂	C ₂	d_2	e ₂
b ₁	C ₁	d ₁	e ₃
b ₁	C ₃	d ₃	e_1
b ₁	C ₂	d ₂	e ₁

A	В	C	D	E
a_1	b_1	C_1	d_1	e_1
a_1	b_1	C_1	d_1	e_3
a ₂	b_2	C ₂	d_2	e_2
a_3	b_1	C_1	d_1	e_1
a_3	b_1	C_1	d_1	e_3
a_4	b_1	C_1	d_1	e_1
a ₄	b_1	C_1	d_1	e_3
a_4	b_2	C_2	d_2	e_2

INTERSECCIÓN

A	В	C
a_1	b_1	c_1
<i>a</i> ₂	<i>b</i> ₂	c_2
аз	b_1	c_1
<i>a</i> ₄	b_1	c_1
<i>a</i> ₄	<i>b</i> ₂	c_2

 \cap

A	В	C
a_1	b_1	c_1
<i>a</i> ₂	<i>b</i> ₂	c_2
a ₃	<i>b</i> ₂	c_2
<i>a</i> ₄	<i>b</i> ₂	c_2
a_1	<i>b</i> ₂	c_2

A	B	C
a_1	b_1	c_1
a_2	<i>b</i> ₂	c_2
a_4	b_2	c_2

DIVISIÓN

A	В	С	D	÷	D	=	A	В	С
a_1	b ₁	C ₁	d_1		d_1		a_1	b_1	C ₁
a ₁	b ₁	C ₁	d ₂		d ₂		a ₃	b ₃	C ₃
a_1	b ₁	C ₃	d ₃						
a ₂	b ₂	C ₂	d ₂						
a ₂	b ₂	C ₂	d ₃						
a ₃	b ₃	C ₃	d ₁						
a ₃	b ₃	C ₃	d ₂						
a ₁	b ₁	C ₁	d ₅						

A	В	С	D
a_1	b_1	c_1	d_1
a_1	b_1	c_1	d_2
a_1	b_1	c_3	d_3
a_2	b_2	c_2	d_2
a_2	b_2	c_2	d_3
a_3	b_3	c_3	d_1
a_3	b_3	c_3	d_2

A	В	С	D
a_1	b_1	c_1	d_1
a_1	b_1	c_1	d_2
a_1	b_1	c_3	d_3
a_2	b_2	c_2	d_2
a_2	b_2	c_2	d_3
a_3	b_3	c_3	d_1
a_3	b_3	c_3	d_2

$$\begin{array}{c|cc} C & D \\ \hline c_2 & d_2 \\ \hline c_2 & d_3 \end{array} = \begin{array}{c|cc} A & B \\ \hline a_2 & b_2 \end{array}$$