Random Forest how it works

The traditional decision tree is good at dealing with the data used to create it, but not good for any new data. The good thing is that "random forest" is as easy as the traditional decision tree, and has a vast improvement in terms of accuracy

So how can we create a "random forest"

Step 1 create a bootstrap dataset

First step is that we need to create an bootstrapped dataset from the original dataset

Original dataset

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Step 1 create a bootstrap dataset

First step is that we need to create an bootstrapped dataset from the original dataset

Original dataset

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

Low pressure	High Temperature	High humidity	Wind Speed	Rain
Yes	Yes	Yes	30.0	Yes
Yes	No	Yes	50.0	No
No	No	No	10.0	No
No	No	No	10.0	No

To create a bootstrap dataset with the same predictors as the original dataset, we just randomly select samples here

For example in this case, the first row gets selected twice, while the 3rd and last row are not selected at all

Step 1 create a bootstrap dataset

First step is that we need to create an bootstrapped dataset from the original dataset

Original dataset

Low pressur	e High Temperature	High humidity	Wind Speed	Rain
No	No	No	10.0	No
Yes	Yes	Yes	30.0	Yes
Yes	Yes	No	20.0	No
Yes	No	Yes	50.0	No
No	No	Yes	70.0	Yes

To create a bootstrap dataset with the same predictors as the original dataset, we just randomly select samples here

For example in this case, the first row gets selected twice, while the 3rd and last row are not selected at all (we are allowed to pick the same sample more than once ...)

Step 2 create decision tree using the bootstrapped dataset with only subset of predictors

Bootstrapped dataset

Low pressure	High Temperature	High humidity	Wind Speed	Rain
Yes	Yes	Yes	30.0	Yes
Yes	No	Yes	50.0	No
No	No	No	10.0	No
No	No	No	10.0	No

For example, instead of considering all four predictors to figure out which one should be the "root" node, we only consider two here ~ "high temp" and "wind speed" (these are selected randomly)

High Temperature	Wind Speed	Rain
Yes	30.0	Yes
No	50.0	No
No	10.0	No
No	10.0	No

Step 2 create decision tree using the bootstrapped dataset with only subset of predictors

Bootstrapped dataset

Low pressure	High Temperature	High humidity	Wind Speed	Rain
Yes	Yes	Yes	30.0	Yes
Yes	No	Yes	50.0	No
No	No	No	10.0	No
No	No	No	10.0	No

For example, instead of considering all four predictors to figure out which one should be the "root" node, we only consider two here ~ "high temp" and "wind speed" (these are selected randomly)

High Temperature	Wind Speed	Rain
Yes	30.0	Yes
No	50.0	No
No	10.0	No
No	10.0	No

If "Wind Speed > 25" has the smallest Gini and is selected as the root node, we can construct the tree as

Step 2 create decision tree using the bootstrapped dataset with only subset of predictors

Bootstrapped dataset

Low pressure	High Temperature	High humidity	Wind Speed	Rain
Yes	Yes	Yes	30.0	Yes
Yes	No	Yes	50.0	No
No	No	No	10.0	No
No	No	No	10.0	No

For example, instead of considering all four predictors to figure out which one should be the "root" node, we only consider two here ~ "high temp" and "wind speed" (these are selected randomly)

High Temperature	Wind Speed	Rain
Yes	30.0	Yes
No	50.0	No
No	10.0	No
No	10.0	No

If "Wind Speed > 25" has the smallest Gini and is selected as the root node, we can construct the tree as

Next step we need to figure out which predictor is to be used for the next level of tree

Step 2 create decision tree using the bootstrapped dataset with only subset of predictors

Next step we need to figure out which predictor is to be used for the next level of tree

Low pressure	High Temperature	High humidity	Wind Speed	Rain
Yes	Yes	Yes	30.0	Yes
Yes	No	Yes	50.0	No
No	No	No	10.0	No
No	No	No	10.0	No
140	NO	NO	10.0	INU

Since the wind speed is chose, so we have 3 remaining predictors can be considered

Low pressure	High Temperature	High humidity		Rain
Yes	Yes	Yes	used	Yes
Yes	No	Yes		No
No	No	No		No
No	No	No		No

Step 2 create decision tree using the bootstrapped dataset with only subset of predictors

Low pressure	High Temperature	High humidity		Rain
Yes	Yes	Yes		Yes
Yes	No	Yes	used	No
No	No	No		No
No	No	No		No

Then we randomly select two predictors from the remaining predictors, and build the tree as usual

Step 2 create decision tree using the bootstrapped dataset with only subset of predictors

Then we randomly select two predictors from the remaining predictors, and build the tree as usual

For example, we if we randomly select low pressure and high temp, and high temp has a smaller Gini, then the next level of leaf will be built based on "high temp"

Step 2 create decision tree using the bootstrapped dataset with only subset of predictors

Low pressure	High Temperature	High humidity		Rain
Yes	Yes	Yes		Yes
Yes	No	Yes	used	No
No	No	No		No
No	No	No		No

Then we randomly select two predictors from the remaining predictors, and build the tree as usual

For example, we if we randomly select low pressure and high temp, and high temp has a smaller Gini, then the next level of leaf will be built based on "high temp"

So we just build the tree iteratively like this, until we are not able to split the tree anymore!

Step 2 create decision tree using the bootstrapped dataset with only subset of predictors

Then we just use the same technology to build many independent/random trees

Ideally, you do this 100's times

Step 1: Making a new bootstrapped dataset
Step 2: select random predictors from the bootstrapped data and make trees

Step 3 Create many "random" trees

Step 1: Making a new bootstrapped dataset
Step 2: select random predictors from the bootstrapped data and make trees

- Ideally, you do this 100's times
- By doing this we will have a variety of trees, and the variety is what makes RF so robust

Step 4 How we use RF

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	Yes	No	40.0	?

Assuming that this is the dataset for testing, we want to know whether it will rain or not

Step 4 How we use RF

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	Yes	No	40.0	?

Assuming that this is the dataset for testing, we want to know whether it will rain or not

• So we take the test data, run it through the first tree we made

Step 4 How we use RF

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	Yes	No	40.0	?

Assuming that this is the dataset for testing, we want to know whether it will rain or not

• So we take the test data, run it through the first tree we made \Rightarrow The first tree says "YES" (It will rain)

Step 4 How we use RF

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	Yes	No	40.0	?

Assuming that this is the dataset for testing, we want to know whether it will rain or not

- So we take the test data, run it through the first tree we made
 The first tree says "YES" (It will rain)
- So we take the test data, run it through the **second** tree we made → The second tree says "YES"

Step 4 How we use RF

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	Yes	No	40.0	?

Assuming that this is the dataset for testing, we want to know whether it will rain or not

- So we take the test data, run it through the first tree we made \Rightarrow The first tree says "YES" (It will rain)
- So we take the test data, run it through the **second** tree we made → The second tree says "YES"
- So we take the test data, run it through the 3rd tree we made \Rightarrow The 3rd tree says "YES"

Step 4 How we use RF

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	Yes	No	40.0	?

Assuming that this is the dataset for testing, we want to know whether it will rain or not

- So we take the test data, run it through the first tree we made \Rightarrow The first tree says "YES" (It will rain)
- So we take the test data, run it through the second tree we made
 The second tree says "YES"
- So we take the test data, run it through the 3rd tree we made → The 3rd tree says "NO"

•••••

So we take the test data, run it through the n'rd tree we made

The n'rd tree says "NO"

Step 4 How we use RF

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	Yes	No	40.0	?

Assuming that this is the dataset for testing, we want to know whether it will rain or not

- So we take the test data, run it through the first tree we made \Rightarrow The first tree says "YES" (It will rain)
- So we take the test data, run it through the **second** tree we made → The second tree says "YES"
- So we take the test data, run it through the 3rd tree we made → The 3rd tree says "NO"

•••••

• So we take the test data, run it through the n'rd tree we made → The n'rd tree says "NO"

After running the dataset through all the "random" trees, we see which option gets more votes, e.g.,

Rain: YES	Rain: NO
15	3

Step 4 How we use RF

Low pressure	High Temperature	High humidity	Wind Speed	Rain
No	Yes	No	40.0	?

Assuming that this is the dataset for testing, we want to know whether it will rain or not

- So we take the test data, run it through the first tree we made \Rightarrow The first tree says "YES" (It will rain)
- So we take the test data, run it through the second tree we made
 The second tree says "YES"
- So we take the test data, run it through the 3rd tree we made → The 3rd tree says "NO"

•••••

So we take the test data, run it through the n'rd tree we made

The n'rd tree says "NO"

After running the dataset through all the "random" trees, we see which option gets more votes, e.g.,

Rain: YES	Rain: NO
15	3

In this case, Rain: YES gets more votes, so the prediction will be "YES"

Using aggregation to get the decision

Bootstrapping the data

Bootstrapping the data + Using $\underline{\mathsf{AGG}}$ regation to get the decision = $\underline{\mathsf{BAGGING}}$

Decision Tree

Random forest: how to evaluate RF