TEMA 4: Derivació i integració numèriques.

Problema 21 Els temps i les velocitats corresponents a un mòbil vénen donats per la taula:

Calculeu valors aproximats de l'acceleració en els instants t=0, t=120 i t=300.

Problema 22 Considereu la taula següent corresponent a la funció $f(x) = xe^x$:

Aproximeu els valors de f'(1.0), f'(1.03) i f'(1.06) emprant fórmules progressives, centrades i regressives de 3 punts.

Problema 23 La taula següent es construeix a partir de la funció $f(x) = xe^x$:

Aproximeu f'(2) utilitzant diferències progressives, amb dos i tres punts, i fiteu els errors absoluts de les aproximacions obtingudes. Contrasteu les aproximacions amb el valor exacte.

Problema 24 Sigui $f(x) = x^2 - e^x + e^{-x}$, es vol aproximar f'(0.7).

- a) Treballant amb 8 decimals, useu la fórmula de les diferències finites centrada de primer ordre per aproximar f'(0.7) amb $h=10^{-i}$ per a $i=1,2,\ldots,5$.
- b) Si F(h) és la fórmula anterior, es pot veure que

$$F(h) = f'(a) + a_2h^2 + a_4h^4 + \dots + a_{2n}h^{2n} + \dots$$

Tenint en compte això i els resultats de l'apartat a), useu el mètode d'extrapolació de Richardson per obtenir una millor aproximació de f'(0.7). Doneu els errors absoluts comparant amb el valor exacte de la derivada.

Problema 25 Es disposa de la taula de la funció \sqrt{x} amb 5 xifres decimals correctes:

Utilitzeu aquesta informació per calcular $\int_{1.00}^{1.30} \sqrt{x} \, dx$ mitjançant les regles compostes dels trapezis i de Simpson. Constrasteu les aproximacions amb el valor exacte de la integral.

Problema 26 Mitjançant la fórmula composta dels trapezis T(h) volem calcular una aproximació de la integral

$$\int_{1.8}^{3.4} e^x \, dx$$

amb cinc xifres decimals correctes. Quin valor d'h triaríeu?