Linear Programming

Integer Linear Programming

Recall Example: Cutting Paper Rolls

What's the fewest number of rolls need to satisfy an order of:

- 97 rolls width 135cm
- 610 rolls width 108cm
- 395 rolls width 93cm
- 211 rolls width 42cm

Possible ways to cut roll with <42cm wasted:

P7:
$$108 + 93 + 2 \cdot 42$$

P2:
$$135 + 108 + 42$$

P8:
$$108 + 4 \cdot 42$$

P3:
$$135 + 93 + 42$$

P4:
$$135 + 3 \cdot 42$$

P10:
$$2 \cdot 93 + 2 \cdot 42$$

P5:
$$2 \cdot 108 + 2 \cdot 42$$

P11:
$$93 + 4 \cdot 42$$

P6:
$$108 + 2 \cdot 93$$

P12:
$$7 \cdot 42$$

For each possibility P_j , add a variable $x_j \geq 0$ representing # rolls cut that way.

minimize
$$\sum_{j=1}^{12} x_j$$
 (total # of rolls cut) subject to $2x_1+x_2+x_3+x_4\geq 97$
$$x_2+2x_5+x_6+x_7+x_8\geq 610$$

$$x_3+2x_6+x_7+3x_9+2x_{10}+x_{11}\geq 395$$

$$x_2+x_3+3x_4+2x_5+2x_7+4x_8+2x_{10}+4x_{11}+7x_{12}\geq 211$$

For each possibility P_j , add a variable $x_j \geq 0$ representing # rolls cut that way.

minimize
$$\sum_{j=1}^{12} x_j$$
 (total # of rolls cut) subject to $2x_1+x_2+x_3+x_4\geq 97$ $x_2+2x_5+x_6+x_7+x_8\geq 610$ $x_3+2x_6+x_7+3x_9+2x_{10}+x_{11}\geq 395$ $x_2+x_3+3x_4+2x_5+2x_7+4x_8+2x_{10}+4x_{11}+7x_{12}\geq 211$

Optimal solution: $x_1 = 48.5$, $x_5 = 206.25$, $x_6 = 197.5$, all others zero.

For each possibility P_j , add a variable $x_j \geq 0$ representing # rolls cut that way.

minimize
$$\sum_{j=1}^{12} x_j$$
 (total # of rolls cut) subject to $2x_1+x_2+x_3+x_4\geq 97$ $x_2+2x_5+x_6+x_7+x_8\geq 610$ $x_3+2x_6+x_7+3x_9+2x_{10}+x_{11}\geq 395$ $x_2+x_3+3x_4+2x_5+2x_7+4x_8+2x_{10}+4x_{11}+7x_{12}\geq 211$

Optimal solution: $x_1 = 48.5$, $x_5 = 206.25$, $x_6 = 197.5$, all others zero.

What if we want an integer solution?

We can round up to 49,207,198, i.e. a total of 454.

For each possibility P_j , add a variable $x_j \geq 0$ representing # rolls cut that way.

minimize
$$\sum_{j=1}^{12} x_j$$
 (total # of rolls cut) subject to $2x_1+x_2+x_3+x_4\geq 97$ $x_2+2x_5+x_6+x_7+x_8\geq 610$ $x_3+2x_6+x_7+3x_9+2x_{10}+x_{11}\geq 395$ $x_2+x_3+3x_4+2x_5+2x_7+4x_8+2x_{10}+4x_{11}+7x_{12}\geq 211$

Optimal solution: $x_1 = 48.5$, $x_5 = 206.25$, $x_6 = 197.5$, all others zero.

What if we want an integer solution?

We can round up to 49,207,198, i.e. a total of 454.

Not bad, since an optimal integral solution is at least 453.

For each possibility P_j , add a variable $x_j \geq 0$ representing # rolls cut that way.

minimize
$$\sum_{j=1}^{12} x_j$$
 (total # of rolls cut) subject to $2x_1+x_2+x_3+x_4\geq 97$ $x_2+2x_5+x_6+x_7+x_8\geq 610$ $x_3+2x_6+x_7+3x_9+2x_{10}+x_{11}\geq 395$ $x_2+x_3+3x_4+2x_5+2x_7+4x_8+2x_{10}+4x_{11}+7x_{12}\geq 211$

Optimal solution: $x_1 = 48.5$, $x_5 = 206.25$, $x_6 = 197.5$, all others zero.

What if we want an integer solution?

We can round up to 49,207,198, i.e. a total of 454.

Not bad, since an optimal integral solution is at least 453.

Here, 48, 206, 197, 1 (for x_9) is an optimal integral solution.

 $\begin{aligned} & \text{maximize } c^T x \\ & \text{subject to } Ax \leq b \\ & x \in \mathbb{Z}^n \end{aligned}$

 $\begin{array}{c} \text{maximize } c^T x \\ \text{subject to } Ax \leq b \\ \hline x \in \mathbb{Z}^n \end{array}$

Integer Linear Programming (ILP) is NP-hard.

 $\begin{aligned} & \text{maximize } c^T x \\ & \text{subject to } Ax \leq b \\ & x \in \mathbb{Z}^n \end{aligned}$

Integer Linear Programming (ILP) is NP-hard.

Variants:

0/1-Linear Programming: $x \in \{0,1\}^n$,

Mixed Integer Linear Programming: some variables in \mathbb{Z} , some in \mathbb{R} .

 $\begin{aligned} & \text{maximize } c^T x \\ & \text{subject to } Ax \leq b \\ & x \in \mathbb{Z}^n \end{aligned}$

Integer Linear Programming (ILP) is NP-hard.

Variants:

0/1-Linear Programming: $x \in \{0,1\}^n$,

Mixed Integer Linear Programming: some variables in \mathbb{Z} , some in \mathbb{R} .

ILP and variants most wide-spread use of LPs.

maximize c^Tx subject to $Ax \leq b$ $x \in \mathbb{Z}^n$

Next: Example "easy, medium, hard" integer programs.

- Maximum weight matching
- Minimum vertex cover
- Maximum independent set

A company is assigning workers to jobs. In the bipartite graph an edge connects a worker to a job they are willing to take, weighted by their suitability for the job.

A company is assigning workers to jobs. In the bipartite graph an edge connects a worker to a job they are willing to take, weighted by their suitability for the job.

How to find an optimal assigment?

Greedy approach

Greedy approach

Greedy approach

Greedy approach

Greedy approach

Greedy approach

Greedy approach

Greedy approach

always assign largest possible score

total score:

$$95 + 87 + 96 + 90 + 0 + 26 + 64 = 458$$

Eleanor is not assigned to any job!

Greedy approach

always assign largest possible score

total score:

$$95 + 87 + 96 + 90 + 0 + 26 + 64 = 458$$

Eleanor is not assigned to any job!

Optimal solution

total score:

$$95 + 87 + 60 + 81 + 75 + 85 + 64 = 547$$

Greedy approach

always assign largest possible score

total score:

$$95 + 87 + 96 + 90 + 0 + 26 + 64 = 458$$

Eleanor is not assigned to any job!

Optimal solution

total score:

$$95 + 87 + 60 + 81 + 75 + 85 + 64 = 547$$

How to model this as an ILP?

Integer program

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $x_e\in\{0,1\}$ for each edge $e\in E$.

variable x_e encodes whether edge e is contained in the matching

Integer program

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $x_e\in\{0,1\}$ for each edge $e\in E$.

variable x_e encodes whether edge e is contained in the matching

if we "relax" the requirement that the x_e are integral we get \dots

Integer program

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $x_e\in\{0,1\}$ for each edge $e\in E$.

variable x_e encodes whether edge e is contained in the matching

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $0\le x_e\le 1$ for each edge $e\in E$.

Integer program

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $x_e\in\{0,1\}$ for each edge $e\in E$.

What do we learn from solving the LP-relaxation?

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $0\le x_e\le 1$ for each edge $e\in E$.

Integer program

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $x_e\in\{0,1\}$ for each edge $e\in E$.

What do we learn from solving the LP-relaxation?

If the LP is infeasible so is the IP.

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $0\le x_e\le 1$ for each edge $e\in E$.

Integer program

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $x_e\in\{0,1\}$ for each edge $e\in E$.

What do we learn from solving the LP-relaxation?

An optimal solution to the LP relaxation is a bound on an optimal solution to the IP.

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $0\le x_e\le 1$ for each edge $e\in E$.

Integer program

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $x_e\in\{0,1\}$ for each edge $e\in E$.

LP relaxation

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $0\le x_e\le 1$ for each edge $e\in E$.

What do we learn from solving the LP-relaxation?

An optimal solution to the LP relaxation is a bound on an optimal solution to the IP.

(How) can we get an optimal integral solution from a fractional one?

Integer program

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $x_e\in\{0,1\}$ for each edge $e\in E$.

LP relaxation

maximize
$$\sum_{e\in E}w_ex_e$$
 subject to $\sum_{e\in E:v\in e}x_e=1$ for each vertex $v\in V$, and $0\le x_e\le 1$ for each edge $e\in E$.

What do we learn from solving the LP-relaxation?

An optimal solution to the LP relaxation is a bound on an optimal solution to the IP.

(How) can we get an optimal integral solution from a fractional one?

Here this works out nicely.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

If $k(x^*) = 0$, then we are done.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

If $k(x^*) > 0$, we find an optimal solution \tilde{x} with $k(x^*) > k(\tilde{x}^*)$.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

If $k(x^*) > 0$, we find an optimal solution \tilde{x} with $k(x^*) > k(\tilde{x}^*)$.

Let $x_{e_1}^*$ be a non-integral component of x for edge $e_1 = (a_1, b_1)$.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

If $k(x^*) > 0$, we find an optimal solution \tilde{x} with $k(x^*) > k(\tilde{x}^*)$.

Let $x_{e_1}^*$ be a non-integral component of x for edge $e_1=(a_1,b_1)$.

Since $0 < x_{e_1}^* < 1$ and $\sum_{b_1 \in e} x_e^* = 1$ there exists $e_2 = (a_2, b_1) \neq e_1$ s.t. $x_{e_2}^*$ non-integral.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

If $k(x^*) > 0$, we find an optimal solution \tilde{x} with $k(x^*) > k(\tilde{x}^*)$.

Let $x_{e_1}^*$ be a non-integral component of x for edge $e_1 = (a_1, b_1)$.

Since $0 < x_{e_1}^* < 1$ and $\sum_{b_1 \in e} x_e^* = 1$ there exists $e_2 = (a_2, b_1) \neq e_1$ s.t. $x_{e_2}^*$ non-integral.

Similarly, there exists edge e_3 and so on, until we find a cycle.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

If $k(x^*) > 0$, we find an optimal solution \tilde{x} with $k(x^*) > k(\tilde{x}^*)$.

Let $x_{e_1}^*$ be a non-integral component of x for edge $e_1 = (a_1, b_1)$.

Since $0 < x_{e_1}^* < 1$ and $\sum_{b_1 \in e} x_e^* = 1$ there exists $e_2 = (a_2, b_1) \neq e_1$ s.t. $x_{e_2}^*$ non-integral.

Similarly, there exists edge e_3 and so on, until we find a cycle.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

If $k(x^*) > 0$, we find an optimal solution \tilde{x} with $k(x^*) > k(\tilde{x}^*)$.

Let $x_{e_1}^*$ be a non-integral component of x for edge $e_1 = (a_1, b_1)$.

Since $0 < x_{e_1}^* < 1$ and $\sum_{b_1 \in e} x_e^* = 1$ there exists $e_2 = (a_2, b_1) \neq e_1$ s.t. $x_{e_2}^*$ non-integral.

Similarly, there exists edge e_3 and so on, until we find a cycle.

Since G is bipartite, the cycle – say e_1, \ldots, e_t – has even length t.

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof: Let x^* be an optimal solution of the LP relaxation.

Let $w(x^*) = \sum_{e \in E} w_e x_e^*$ its value and $k(x^*)$ its number of non-integral components.

If $k(x^*) > 0$, we find an optimal solution \tilde{x} with $k(x^*) > k(\tilde{x}^*)$.

Let $x_{e_1}^*$ be a non-integral component of x for edge $e_1 = (a_1, b_1)$.

Since $0 < x_{e_1}^* < 1$ and $\sum_{b_1 \in e} x_e^* = 1$ there exists $e_2 = (a_2, b_1) \neq e_1$ s.t. $x_{e_2}^*$ non-integral.

Similarly, there exists edge e_3 and so on, until we find a cycle.

Since G is bipartite, the cycle – say e_1, \ldots, e_t – has even length t.

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases} x_e^*-\varepsilon & \text{for }e\in\{e_1,\ldots,e_{t-1}\}\\ x_e^*+\varepsilon & \text{for }e\in\{e_2,\ldots,e_t\}\\ x_e^* & \text{else} \end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e} \tilde{x}_e = 1$ for all $v\in V$.

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases}x_e^*-\varepsilon&\text{for }e\in\{e_1,\ldots,e_{t-1}\}\\x_e^*+\varepsilon&\text{for }e\in\{e_2,\ldots,e_t\}\\x_e^*&\text{else}\end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e} \tilde{x}_e = 1$ for all $v\in V$.

For sufficiently small ε also $0 \le \tilde{x}_e \le 1$ for all $e \in E$, hence \tilde{x} is feasible.

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases}x_e^*-\varepsilon&\text{for }e\in\{e_1,\ldots,e_{t-1}\}\\x_e^*+\varepsilon&\text{for }e\in\{e_2,\ldots,e_t\}\\x_e^*&\text{else}\end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e} \tilde{x}_e = 1$ for all $v\in V$.

For sufficiently small ε also $0 \le \tilde{x}_e \le 1$ for all $e \in E$, hence \tilde{x} is feasible.

What about $w(\tilde{x})$?

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases}x_e^*-\varepsilon&\text{for }e\in\{e_1,\ldots,e_{t-1}\}\\x_e^*+\varepsilon&\text{for }e\in\{e_2,\ldots,e_t\}\\x_e^*&\text{else}\end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e}\tilde{x}_e=1$ for all $v\in V$.

For sufficiently small ε also $0 \le \tilde{x}_e \le 1$ for all $e \in E$, hence \tilde{x} is feasible.

We have
$$w(\tilde{x}) = \sum_{e \in E} w_e \tilde{x}_e = w(x^*) + \varepsilon \underbrace{\sum_{i=1}^t (-1)^i w_{e_i}}_{=: \Delta} = w(x^*) + \varepsilon \Delta$$

$$\tilde{x}_e = \begin{cases} x_e^* - \varepsilon & \text{for } e \in \{e_1, \dots, e_{t-1}\} \\ x_e^* + \varepsilon & \text{for } e \in \{e_2, \dots, e_t\} \\ x_e^* & \text{else} \end{cases} \quad \overset{\bullet}{\sim}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e}\tilde{x}_e=1$ for all $v\in V$.

For sufficiently small ε also $0 \le \tilde{x}_e \le 1$ for all $e \in E$, hence \tilde{x} is feasible.

We have
$$w(\tilde{x})=\sum_{e\in E}w_e\tilde{x}_e=w(x^*)+\varepsilon\sum_{i=1}^t(-1)^iw_{e_i}=w(x^*)+\varepsilon\Delta$$

 $=: \Delta = 0$, else optimality of x^* violated

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases} x_e^*-\varepsilon & \text{for }e\in\{e_1,\ldots,e_{t-1}\}\\ x_e^*+\varepsilon & \text{for }e\in\{e_2,\ldots,e_t\}\\ x_e^* & \text{else} \end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e}\tilde{x}_e=1$ for all $v\in V$.

For sufficiently small ε also $0 \le \tilde{x}_e \le 1$ for all $e \in E$, hence \tilde{x} is feasible.

We have
$$w(\tilde{x}) = \sum_{e \in E} w_e \tilde{x}_e = w(x^*) + \varepsilon \sum_{i=1}^t (-1)^i w_{e_i} = w(x^*) + \varepsilon \Delta = w(x^*)$$

$$=: \Delta = 0, \text{ else optimality of } x^* \text{ violated}$$

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases} x_e^*-\varepsilon & \text{for }e\in\{e_1,\ldots,e_{t-1}\}\\ x_e^*+\varepsilon & \text{for }e\in\{e_2,\ldots,e_t\}\\ x_e^* & \text{else} \end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e}\tilde{x}_e=1$ for all $v\in V$.

For sufficiently small ε also $0 \le \tilde{x}_e \le 1$ for all $e \in E$, hence \tilde{x} is feasible.

We have
$$w(\tilde{x})=\sum_{e\in E}w_e\tilde{x}_e=w(x^*)+\varepsilon\sum_{i=1}^t(-1)^iw_{e_i}=w(x^*)+\varepsilon\Delta=w(x^*)$$

How do we choose ε ?

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases} x_e^*-\varepsilon & \text{for }e\in\{e_1,\ldots,e_{t-1}\}\\ x_e^*+\varepsilon & \text{for }e\in\{e_2,\ldots,e_t\}\\ x_e^* & \text{else} \end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e}\tilde{x}_e=1$ for all $v\in V$.

For sufficiently small ε also $0 \le \tilde{x}_e \le 1$ for all $e \in E$, hence \tilde{x} is feasible.

We have
$$w(\tilde{x}) = \sum_{e \in E} w_e \tilde{x}_e = w(x^*) + \varepsilon \sum_{i=1}^t (-1)^i w_{e_i} = w(x^*) + \varepsilon \Delta = w(x^*)$$

We choose ε largest s.t. \tilde{x} is still feasible. Then $k(\tilde{x}) < k(x^*)$.

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases} x_e^*-\varepsilon & \text{for }e\in\{e_1,\ldots,e_{t-1}\}\\ x_e^*+\varepsilon & \text{for }e\in\{e_2,\ldots,e_t\}\\ x_e^* & \text{else} \end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Proof:

It is easy to see that \tilde{x} still satisfies $\sum_{e:v\in e}\tilde{x}_e=1$ for all $v\in V$.

For sufficiently small ε also $0 \le \tilde{x}_e \le 1$ for all $e \in E$, hence \tilde{x} is feasible.

We have
$$w(\tilde{x})=\sum_{e\in E}w_e\tilde{x}_e=w(x^*)+\varepsilon\sum_{i=1}^t(-1)^iw_{e_i}=w(x^*)+\varepsilon\Delta=w(x^*)$$

We choose ε largest s.t. \tilde{x} is still feasible. Then $k(\tilde{x}) < k(x^*)$.

We continue this procedure until all components are integral.

For small
$$\varepsilon>0$$
 we define
$$\tilde{x}_e=\begin{cases} x_e^*-\varepsilon & \text{for }e\in\{e_1,\ldots,e_{t-1}\}\\ x_e^*+\varepsilon & \text{for }e\in\{e_2,\ldots,e_t\}\\ x_e^* & \text{else} \end{cases}$$

Theorem 3.2.1

Let G be an arbitrary weighted bipartite graph. The LP relaxation from before has an integer optimal solution (which also solves the integer program).

Moral: Sometimes solving an integer program is no harder than solving a linear program.

Recall: a minimum vertex cover, is a smallest possible subset $V' \subseteq V$ such that for every edge $uv \in E$, it holds that $u \in V'$ or $v \in V'$.

Recall: a minimum vertex cover, is a smallest possible subset $V' \subseteq V$ such that for every edge $uv \in E$, it holds that $u \in V'$ or $v \in V'$.

Recall: a minimum vertex cover, is a smallest possible subset $V' \subseteq V$ such that for every edge $uv \in E$, it holds that $u \in V'$ or $v \in V'$.

How can we formulate this as an ILP?

minimize
$$\sum_{v \in V} x_v$$

subject to $x_u+x_v\geq 1$ for every edge $\{u,v\}\in E$ $x_v\in\{0,1\}$ for all $v\in V$.

variable x_v encodes whether vertex v is contained in the cover

minimize
$$\sum_{v \in V} x_v$$

subject to $x_u+x_v\geq 1$ for every edge $\{u,v\}\in E$ $x_v\in \{0,1\} \text{ for all } v\in V.$

variable x_v encodes whether vertex v is contained in the cover

LP relaxation: $0 \le x_v \le 1$

minimize
$$\sum_{v \in V} x_v$$

subject to $x_u+x_v\geq 1$ for every edge $\{u,v\}\in E$ $x_v\in \{0,1\} \text{ for all } v\in V.$

variable x_v encodes whether vertex v is contained in the cover

LP relaxation: $0 \le x_v \le 1$ How does this help?

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\text{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{\text{LP}} = \{v \in V \mid x_v \geq \frac{1}{2}\}$.

minimize
$$\sum_{v \in V} x_v$$
 subject to $x_u + x_v \geq 1$ for all $\{u,v\} \in E$

 $x_v \in [0,1]$ for all $v \in V$.

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\text{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{\text{LP}} = \{v \in V \mid x_v \geq \frac{1}{2}\}$.

What solution do we get here?

minimize
$$\sum_{v \in V} x_v$$
 subject to $x + x > 1$ for all $\int u \, dx$

subject to
$$x_u+x_v\geq 1$$
 for all $\{u,v\}\in E$
$$x_v\in [0,1] \text{ for all } v\in V.$$

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\text{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{\text{LP}} = \{v \in V \mid x_v \geq \frac{1}{2}\}$.

$$\underset{v \in V}{\mathsf{minimize}} \ \sum_{v \in V} x_v$$

subject to $x_u + x_v \ge 1$ for all $\{u,v\} \in E$ $x_v \in [0,1]$ for all $v \in V$.

What solution do we get here?

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\text{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{\text{LP}} = \{v \in V \mid x_v \geq \frac{1}{2}\}$.

subject to $x_u+x_v\geq 1$ for all $\{u,v\}\in E$ $x_v\in [0,1] \text{ for all } v\in V.$

What solution do we get here?

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\text{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{\text{LP}} = \{v \in V \mid x_v \geq \frac{1}{2}\}$.

What solution do we get here?

minimize
$$\sum_{v \in V} x_v$$

subject to $x_u + x_v \ge 1$ for all $\{u,v\} \in E$ $x_v \in [0,1]$ for all $v \in V$.

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\text{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{\text{LP}} = \{v \in V \mid x_v \geq \frac{1}{2}\}$.

What solution do we get here?

solution to LP also to IP, with cost 1

subject to $x_u+x_v\geq 1$ for all $\{u,v\}\in E$ $x_v\in [0,1] \text{ for all } v\in V.$

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\text{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{\text{LP}} = \{v \in V \mid x_v \geq \frac{1}{2}\}$.

Fact:
$$|S_{\text{IP}}| \leq |S_{\text{LP}}| \leq 2|S_{\text{IP}}|$$

minimize
$$\sum_{v \in V} x_v$$
 subject to $x_u + x_v \geq 1$ for all $\{u,v\} \in E$ $x_v \in [0,1]$ for all $v \in V$.

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\mathsf{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{LP} = \{v \in V \mid x_v \geq \frac{1}{2}\}.$

Fact:
$$|S_{IP}| \le |S_{LP}| \le 2|S_{IP}|$$

Proof of second inequality

$$|S_{LP}| \le 2 \sum_{v \in V} x_v^* \le 2 \sum_{v \in V} \tilde{x}_v = 2 \cdot |S_{IP}|$$

by definition of S_{LP} since any solution to IP is also a feasible solution for the LP relaxation.

subject to $x_u + x_v \ge 1$ for all $\{u, v\} \in E$ $x_v \in [0,1]$ for all $v \in V$.

 x_v^* : optimal LP solution,

 \tilde{x}_v : optimal ILP solution

Rounding:

Let $S_{\text{IP}} \subseteq V$ be a vertex cover solving IP. Let $S_{\mathsf{LP}} \subseteq V$ be a vertex cover solving LP, obtained by $S_{LP} = \{v \in V \mid x_v \geq \frac{1}{2}\}.$

Fact:
$$|S_{\rm IP}| \le |S_{\rm LP}| \le 2|S_{\rm IP}|$$

Proof of second inequality

$$|S_{LP}| \le 2 \sum_{v \in V} x_v^* \le 2 \sum_{v \in V} \tilde{x}_v = 2 \cdot |S_{IP}|$$

by definition of S_{LP} since any solution to IP is also a feasible solution for the LP relaxation.

minimize
$$\sum_{v \in V} x_v$$
 subject to $x_u + x_v \geq 1$ for all $\{u,v\} \in E$ $x_v \in [0,1]$ for all $v \in V$.

 x_v^* : optimal LP solution,

 \tilde{x}_v : optimal ILP solution

Moral: Sometimes solving an LP relaxation gives an approximate solution to an **NP**-hard integer program.

Recall: a maximum independent, is a largest possible subset $V' \subseteq V$ such that for any $u, v \in V'$, it holds that $(u, v) \notin E$.

How can we formulate this as an ILP?

maximize
$$\sum_{v \in V} x_v$$

subject to $x_u+x_v\leq 1$ for each edge $\{u,v\}\in E$ $x_v\in\{0,1\}$ for all $v\in V$.

variable x_v encodes whether vertex v is contained in the set

maximize
$$\sum_{v \in V} x_v$$

subject to $x_u + x_v \le 1$ for each edge $\{u,v\} \in E$ $x_v \in \{0,1\} \text{ for all } v \in V.$

variable x_v encodes whether vertex v is contained in the set

LP relaxation: $0 \le x_v \le 1$

In the LP relaxation ($0 \le x_v \le 1$) we always have the feasible solution $x_v = \frac{1}{2}$ for all v, meaning the optimum is at least $\frac{1}{2}|V|$.

In the LP relaxation ($0 \le x_v \le 1$) we always have the feasible solution $x_v = \frac{1}{2}$ for all v, meaning the optimum is at least $\frac{1}{2}|V|$.

In the LP relaxation ($0 \le x_v \le 1$) we always have the feasible solution $x_v = \frac{1}{2}$ for all v, meaning the optimum is at least $\frac{1}{2}|V|$.

In a complete graph, what are the optimum LP and IP solution?

In the LP relaxation ($0 \le x_v \le 1$) we always have the feasible solution $x_v = \frac{1}{2}$ for all v, meaning the optimum is at least $\frac{1}{2}|V|$.

In a complete graph, the LP has optimum n/2, and the IP optimum 1.

In the LP relaxation ($0 \le x_v \le 1$) we always have the feasible solution $x_v = \frac{1}{2}$ for all v, meaning the optimum is at least $\frac{1}{2}|V|$.

In a complete graph, the LP has optimum n/2, and the IP optimum 1.

Moral: Sometimes an LP relaxation tells us next to nothing about the integer program.

In the LP relaxation ($0 \le x_v \le 1$) we always have the feasible solution $x_v = \frac{1}{2}$ for all v, meaning the optimum is at least $\frac{1}{2}|V|$.

In a complete graph, the LP has optimum n/2, and the IP optimum 1.

Moral: Sometimes an LP relaxation tells us next to nothing about the integer program.

Approximation for this problem is known to be hard:

J. Håstad: Clique is hard to approximate within $n^{1-\epsilon}$, Acta Math. 182(1999): 105-142

Bonus Examples

Shortest Path and TSP

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP?

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 1: use variable x_{uv} for whether edge (u, v) is used.

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 1: use variable x_{uv} for whether edge (u, v) is used.

minimize
$$\sum_{(u,v)\in E} w(u,v)x_{uv}$$
 subject to $\sum_{(u,v)\in E} x_{uv} = \sum_{(v,w)\in E} x_{vw}$ for each vertex $v\in V\setminus\{s,t\}$, and $\sum_{(u,t)\in E} x_{ut} = 1.$ $x_{uv}\in\{0,1\}$ for each edge $(u,v)\in E$.

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 1: use variable x_{uv} for whether edge (u, v) is used.

minimize
$$\sum_{(u,v)\in E} w(u,v)x_{uv}$$
 subject to $\sum_{(u,v)\in E} x_{uv} = \sum_{(v,w)\in E} x_{vw}$ for each vertex $v\in V\setminus\{s,t\}$, and $\sum_{(u,t)\in E} x_{ut} = 1.$ LP-relaxation has $\{0,1\}$ -solution, like MinWeight Perfect Matching $x_{uv}\in\{0,1\}$ for each edge $(u,v)\in E$.

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u, v)$ for all edges (u, v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Why do we maximize?

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Why do we maximize?

otherwise we could set all d_v to zero

Given a directed graph G=(V,E) with edge weights w, we are looking for a shortest path from s to t.

Can we also model this as ILP? Yes! How?

Idea 2: use variable d_v for distance from s to v. Then we want that $d_v \leq d_u + w(u,v)$ for all edges (u,v).

maximize d_t

subject to

$$d_v - d_u \le w(u, v) \ \forall (u, v) \in E$$

$$d_s = 0$$

Why do we maximize?

otherwise we could set all d_v to zero

simulating a $min(\cdot)$ by \leq and maximize

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP?

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

Idea: use variable x_{ij} for edge from city i to city j.

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

Idea: use variable x_{ij} for edge from city i to city j.

minimize
$$\sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} x_{ij} c(i,j)$$
 subject to $\sum_{1 \leq j \leq n} x_{ij} = 1$ for $i = 1, \ldots, n$ $\sum_{1 \leq i \leq n} x_{ij} = 1$ for $j = 1, \ldots, n$ $x_{ij} \in \{0,1\}$ for $i,j = 1, \ldots, n$

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

Idea: use variable x_{ij} for edge from city i to city j.

minimize
$$\sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} x_{ij} c(i,j)$$
 subject to $\sum_{1 \leq j \leq n} x_{ij} = 1$ for $i = 1, \ldots, n$ $\sum_{1 \leq i \leq n} x_{ij} = 1$ for $j = 1, \ldots, n$ $x_{ij} \in \{0,1\}$ for $i,j = 1, \ldots, n$

Does this correctly solve TSP?

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

minimize
$$\sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} x_{ij} c(i,j)$$
 subject to $\sum_{1 \leq j \leq n} x_{ij} = 1$ for $i = 1, \ldots, n$ $\sum_{1 \leq i \leq n} x_{ij} = 1$ for $j = 1, \ldots, n$ $x_{ij} \in \{0, 1\}$ for $i, j = 1, \ldots, n$

Does this correctly solve TSP? No!

A tour can "decompose" into many smaller tours.

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

minimize
$$\sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} x_{ij} c(i,j)$$
 subject to $\sum_{1 \leq j \leq n} x_{ij} = 1$ for $i = 1, \ldots, n$ $\sum_{1 \leq i \leq n} x_{ij} = 1$ for $j = 1, \ldots, n$ $x_{ij} \in \{0, 1\}$ for $i, j = 1, \ldots, n$

Does this correctly solve TSP? No!

A tour can "decompose" into many smaller tours.

How to avoid this?

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

minimize
$$\sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} x_{ij} c(i,j)$$
 subject to $\sum_{1 \leq j \leq n} x_{ij} = 1$ for $i = 1, \ldots, n$ $\sum_{1 \leq i \leq n} x_{ij} = 1$ for $j = 1, \ldots, n$ $x_{ij} \in \{0, 1\}$ for $i, j = 1, \ldots, n$

Does this correctly solve TSP? No!

A tour can "decompose" into many smaller tours.

How to avoid this?

Use variables $u_j \widehat{=}$ position of city j on tour

Require: $u_j \ge u_i + 1$ if $x_{ij} = 1$

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

minimize
$$\sum_{1 \leq i \leq n} \sum_{1 \leq j \leq n} x_{ij} c(i,j)$$
 subject to $\sum_{1 \leq j \leq n} x_{ij} = 1$ for $i = 1, \ldots, n$ $\sum_{1 \leq i \leq n} x_{ij} = 1$ for $j = 1, \ldots, n$ $x_{ij} \in \{0, 1\}$ for $i, j = 1, \ldots, n$

Does this correctly solve TSP? No!

A tour can "decompose" into many smaller tours.

How to avoid this?

Use variables $u_j \widehat{=}$ position of city j on tour

Require:
$$u_j \ge u_i + 1$$
 if $x_{ij} = 1$

by
$$u_j + (n-1) \ge u_i + nx_{ij}$$
 for all $i \ne j, j > 1$

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

Idea: use variable x_{ij} for edge from city i to city j.

Miller-Tucker-Zemlin formulation

Given an undirected complete graph G=(V,E) with edge weights $c\colon E\to \mathbb{R}$, find a shortest Hamilton circuit in G.

Can we also model this as ILP? Yes! How?

Idea: use variable x_{ij} for edge from city i to city j.

Miller-Tucker-Zemlin formulation

alternative:

Dantzig–Fulkerson–Johnson formulation with subtour-elimination constraint

Solving Integer Linear Programs

How can we solve an ILP?

Solving Integer Linear Programs

How can we solve an ILP?

Optimal integer solutions may be arbitrary far from relaxed LP solutions

Solving Integer Linear Programs

How can we solve an ILP?

Optimal integer solutions may be arbitrary far from relaxed LP solutions

Techniques

- Branch-and-Bound
- Cutting Planes
- Branch-and-Cut

Idea: branch: decompose in two subproblems

bound: discard if possible subproblems

Idea: branch: decompose in two subproblems bound: discard if possible subproblems

Sketch

- solve relaxed problem
- if solution non integer, choose variable x_i with non-integer value α_i and split into problem P_1 :

P with $x_i \leq \lfloor \alpha_i \rfloor$

problem P_2 :

P with $x_i \geq \lceil \alpha_i \rceil$

Idea: branch: decompose in two subproblems bound: discard if possible subproblems

Sketch

solve relaxed problem

P with $x_i \leq |\alpha_i|$

• if solution non integer, choose variable x_i with non-integer value α_i and split into problem P_1 :

P with $x_i \geq \lceil \alpha_i \rceil$

Idea: branch: decompose in two subproblems bound: discard if possible subproblems

Sketch

- solve relaxed problem
- if solution non integer, choose variable x_i with non-integer value α_i and split into problem P_1 : \blacktriangleright problem P_2 :

P with $x_i \leq \lfloor \alpha_i \rfloor$

P with $x_i \geq \lceil \alpha_i \rceil$

Idea: branch: decompose in two subproblems bound: discard if possible subproblems

Sketch

- solve relaxed problem
- if solution non integer, choose variable x_i with non-integer value α_i and split into problem P_1 : P with $x_i \leq |\alpha_i|$ P with $x_i \geq \lceil \alpha_i \rceil$

three possibilities for subproblems:

- LP infeasible \rightarrow discard branch
- solution integer \rightarrow update OPT and discard branch
- solution non integer \rightarrow stop if solution worse than OPT, else continue branching

Idea: solve relaxed LP and cut off non-integer solutions found

Idea: solve relaxed LP and cut off non-integer solutions found

Sketch

- solve relaxed problem
- if solution integer, return with this
- find a cut, which seperates the found solution from all integer solutions
- add the cut as constraint and restart

Idea: solve relaxed LP and cut off non-integer solutions found

Sketch

- solve relaxed problem
- if solution integer, return with this
- find a cut, which seperates the found solution from all integer solutions
- add the cut as constraint and restart

How to find a cut?

Idea: solve relaxed LP and cut off non-integer solutions found

Sketch

- solve relaxed problem
- if solution integer, return with this
- find a cut, which seperates the found solution from all integer solutions
- add the cut as constraint and restart

How to find a cut?

general-purpose cuts, e.g. Gomory Cuts problem-specific cuts

Idea: solve relaxed LP and cut off non-integer solutions found

Sketch

- solve relaxed problem
- if solution integer, return with this
- find a cut, which seperates the found solution from all integer solutions
- add the cut as constraint and restart

How to find a cut?

general-purpose cuts, e.g. Gomory Cuts problem-specific cuts

Even better is to combine both techniques:

Branch & Cut

Summary

An integer linear programm (IP) is of the form Solving IPs in general is NP-hard

We formulated as IP

- Maximum weight matching
- Minimum vertex cover
- Maximum independent set
- Shortest path
- Traveling Salesperson Tour

Techniques: branch&bound, cutting planes, branch&cut

maximize c^Tx subject to $Ax \leq b$ $x \in \mathbb{Z}^n$

Summary

An integer linear programm (IP) is of the form Solving IPs in general is NP-hard

We formulated as IP

- Maximum weight matching
- Minimum vertex cover
- Maximum independent set
- Shortest path
- Traveling Salesperson Tour

Techniques: branch&bound, cutting planes, branch&cut

Next steps:

- basics for solving LPs
- simplex algorithm

maximize c^Tx subject to $Ax \leq b$ $x \in \mathbb{Z}^n$