0 0

3D Printing

소프트웨어와 미래사회 2019

3D Printer

- 일반적인 프린터

→ 텍스트나 이미지로 구성된 문서 데이터를 이용

3D Printer

→ 3차원 도면 데이터를 이용하여 입체적인 물품을 생성

4차 산업혁명이 요구하는 다품종 소량 생산을 가능하게 하는 생산기술 중 하나

• 3D 프린터의 시작

- 1980년대 미국의 3D 시스템즈社에서 플라스틱 액체를 굳혀 입체 물품을 만들어내는 프린터를 개발한 것이 그 시초
- 높은 생산 비용 및 지적재산권 등의 이유로 항공이나 자동차 산업 등에서 시제품을 만드는 용도로 제한적으로 사용

온도와 압력에 따른 변화

액체상태로 만든 재료를 틀에 붇거나 굳히면 정교한 모양도 쉽게 만들 수 있음

3D 프린터 모델링과 종류

• 3D 프린팅 과정

디자인 → 프린트 → 후가공

■ 적층형

- 2차원 면을 층층이 쌓아 올리는 방식
- 재료의 손실이 없음

- 절삭형

- 커다란 덩어리를 조각하듯이 깎아서 인쇄물 만듬

3D Printer 와 대중화

최근에 3D 프린터가 이슈가 되기 시작한 이유는
 2014년 2월경에 특허가 만료되어 오픈소스로 전환되었기 때문

* RepRap : Replicatiing Rapid prototyping

- 렙랩 프로젝트 (RepRap Project)
 - 지금과 같이 보급형 3D 프린터가 확산되는데 공헌
 - 3D 프린터로 3D 프린터를 만들자는 비영리 오픈소스 운동
 - 영국 바스 대학의 아드리안 보이어(Adrian Bowyer) 주도
 - 이 프로젝트의 모든 디자인들은 자유 소프트웨어 사용권인 GNU GPL로 배포
 - 많은 부품들이 플라스틱으로 만들어져 부품을 인쇄해 자가 보수 가능

블렌더 (Blanther)

- 시트 분할 방법으로 3D 지도 모형 제작 주장
- 높이에 따라 다르게 한층 한층 쌓아 올려 지도 만드는 방법

- 고다마 히데오 (小玉秀男)

- 1981년 일본 나고야 시 공업 연구소의 고다마 히데오가 처음 이론화
- 특허 출원을 했지만 1년안에 설명서 기재를 못해 무산

· 척 헐 (Charles W. Hull)

- 1986년 입체 인쇄술 이라는 이름으로 특허 출원에 성공
- 2년 후 캐나다의 투자를 받아 '3D 시스템즈' 설립
- 세계 최초의 SLA 방식 3D 프린터기 상용화

^{*} SLA: stereolithography apparatus

* FDM: Fused Deposition Modeling

스캇크럼프 (Scott Crump)

- 스트라타시스社 (Stratasys) 설립자
- 1991년 FDM 방식 3D 프린터 생산

• DTM社

- 1992년 SLS 방식 3D 프린터 생산
- 3D 시스템즈에 인수

[주요 3D 프린팅 방식]

- SLS (Selective Laser Sintering) 방식
 - 분말 기반의 재료를 레이저로 녹인 뒤 응고 시켜서 프린트하는 방식
 - 출력속도가 가장 빠르고, 사용할 수 있는 재료가 광범위
 - 출력크기가 제한적이고, 가격이 비쌈

[주요 3D 프린팅 방식]

- SLA (StereoLithography) 방식
 - 액체기반의 재료를 강한 자외선 혹은 레이저로 순간적으로 굳혀서 프린트
 - 표면이 매끄럽고 정교한 출력물
 - 내구성과 내열성이 약하고, 비싸다는 단점

Formlabs x Rhett Price

An original track performed on a 3D-printed acoustic violin

[주요 3D 프린팅 방식]

- FDM (Fused Deposition Modeling) 방식
 - 고체기반의 재료를 열을 가해서 녹인 뒤 쌓아올려 상온에서 굳힘
 - 다른 출력물에 비해 내구성이 강하고 개인용으로도 사용하기 편함
 - 표면이 거칠고, 출력속도가 느림

Your Printing Solution Send us your .STL file, We will advise you accordingly!

[기타 3D 프린팅 방식]

- DLP (Digital Light Processing) 방식
 - SLS 방식과 비슷하지만 사용되는 재료와 도구가 다름
 - 표면의 정밀도가 뛰어나고 소음이 적음
 - 출력물 크기에 제한이 있고, DLP 전용의 재료 사용, 원료 고가

• 기타 PJM, MJP, LOM 등 다양한 3D 프린팅 방식이 존재함

0

[주요 3D 프린팅 방식 비교]

구분	SLA	SLS	FDM
원료	액체	분말	고체
장점	정밀. 매끄러운 출력 표면.	금속류 출력 가능 출력물 열에 강함	내구성. 강도. 저렴함. 원료 수급 쉬움.
단점	비쌈. 크기 제한. 내구성 약함.	비쌈. 전문 교육 필요. 원료 색상 제한적.	거친 출력표면. 원료 제한. 서포트 제거 불편

구분	SLA	SLS	FDM
정교함	A	В	С
표면마감	A	А	С
재료강도	В	A+	А

참고 [3D Pen]

o C

- 3차원의 입체 도형을 그릴 수 있는 펜모양의 장치
- 일반적으로 플라스틱 심(필라멘트)를 녹여 제품을 만듬
- 상온에서 짧은 시간에 굳는 성질이 있어 높이 쌓아 올려 입체를 만듬

처음 상용화된 3D펜 '쓰리두들러'(3Doodler)

광경화성 수지를 이용한 3D 펜

- 상온에서는 액체나 젤 상태. 빛을 받으면 굳는 성질의 플라스틱
- 열을 가할 필요가 없이 램프만 밝히면 되기 때문에 전기 소모가 적음
- 타는 냄새 없으며, 화상의 위험도 없음

Movie & Film

3D 프린터로 제작된 아이언맨 슈트

3D 프린터로 제작된 "리얼 스틸 " (2011)

The Boxtrolls by Laika - stop-motion film using 3D printing

Nano sculpture

3 D 프린터를 활용한 머리카락보다 가는 나노크기의 조각품

존티 허위츠(Jonty Hurwitz)

- 3D 프린팅을 활용한 20x80x100 마이크론 조각
- 전자현미경을 통해서만 볼 수 있음
- 머리카락위에 포즈를 취한 여인상과 바늘구멍위에 서 있는 여인 등을 작업

Exhibition

박물관의 소장품을 3D 모델로 만들어 공개하는 '스미소니언 x 3D 프로젝트'

시각장애인을 위한 야후 재팬의 '만지는 검색'

Architecture

- WASP (World's Advanced Saving Project)
 - 12m급 대형 프린터 빅델타
 - 빅델타를 이용하여 유럽으로 몰려드는 난민들을 위한 주거 공간을 만들 계획

[대형 3D 프린터 '빅델타']

Architecture

3D 프린팅된 자연냉각 벽돌 '쿨브릭 '

- 스타트업 아피스코어(Apis Cor)

Food

3D-Chef

- 3D 프린팅 기술을 이용한 피자
- NASA와 함께 미국의 스타트업 BeeHex에서 개발
- 어플리케이션을 통해 반족, 소스, 치즈 등 선택 가능

Food Ink

- 3D 프린팅 팝업 레스토랑 시연
- 피자, 초콜릿, 사탕, 팬케이크 등

Fashion

Nike Flyprint

- 나이키의 Flyknit 소재로 만들어진 운동화
- 3D 프린팅을 통해 빠르게 제작

3D 프린팅 패션

- 스스로 디자인한 옷을 집에서 출력해 입을 수 있음
- 일반적인 의류 생산에서는 옷감을 잘라 사용하므로버려지는 옷감이 많으나, 3D 프린팅을 이용하면 쓰레기 발생이 적어지는 장점이 있음

Medical & Health

2016년 척색종 환자에게 3D 프린터로 출력한 척추뼈 이식 수술 성공

- Prince of Wales Hospital
- 호주 의료장비업체인 Anatomics와 협력
- 환자를 위한 완벽한 모양의 티타늄 재질 척추뼈를 출력

3D 프린팅 의족, 의수

- 비싼 가격의 의족, 의수 등을 저렴하게 제공 가능
- 의족, 의수 설계도 제공시 직접 프린트 가능
- 다양한 동물과 사람들에게 제공되어지는 사례가 늘어나고 있음

4D Printing

- 다중적 3D프린팅을 통해 복합물질을 형성하고, 자가변환(self transformation)이라는 새로운 기능을 삽입한 기술
- 2013년 미국 MIT 자가조립연구소 스카일라 티비츠(Skylar Tibbits) 교수가 '4D 프린팅의 출현(The emergence of '4D printing')'이라는 제목의 TED267 강연을 하면서 세상에 처음 소개

[4D Printing in Action]

[3D 프린팅 문제점]

대규모 생산에서 에너지 낭비

- 대규모 생산에서는 일반 제조업 보다 시간과 비용이 많이 든다.

- 유해한 공기 배출

- 플라스틱등이 녹을 때 발생하는 유해 물질이 공기를 오염시킬 수 있다.

• 저작권문제 및 규제 제품의 복제 가능

- 불법 복제하듯 공개되지 않은 3D 모델링 파일을 복제할 수 있다.
- 총기류나 마약류 등을 만드는 데 사용될 수 있다.

• 안전사고 책임

- 사용자가 출력한 제품이 오작동 할 경우 책임소재가 불분명하다.

• 일자리 문제

- 제조, 운송, 서비스 업등 당양한 분야에서의 일자리가 줄어들 수 있다.

3D 프린팅 오픈소스

- 구글 3D <u>sketchup.google.com/3Dwarehouse</u>
- 싱기버스 <u>www.thingiverse.com</u>
- 터보스퀴드 <u>www.turbosquid.com</u>
- 다즈3D샵 <u>www.daz3D.com/utilities-resource/tutorials</u>
- 포노코 <u>www.ponoko.com/showroom/product-plans</u>
- 3DVia <u>www.3Dvia.com</u>
- GrabCAD www.grabcad.com/library

THANK YOU FOR LISTENING!