Approximation Basics

Milestones, Concepts, and Examples

Xiaofeng Gao

Department of Computer Science and Engineering Shanghai Jiao Tong University, P.R.China

Algorithm Course @ Shanghai Jiao Tong University

Algorithm Xiaofeng Gao Approximation Basics 1/54

Approximation Basics Greedy Algorithm Sequential Algorithm Definition of Approximation

Definition of Approximation

CS 351 Stanford Univ (1991-1992) Rajeev Motwani

Lecture Notes on Approximation Algorithms Volume I

(1997) Hochbaum (Editor)

Approximation Algorithms for NP-Hard Problems

(1999) Ausiello, Crescenzi, Gambosi, etc.

Complexity and Approximation: Combinatorial

Optimization Problems and Their Approximability Properties

Approximation Basics
Greedy Algorithm
Sequential Algorithm

NP Optimization

History of Approximation

1966 Graham: First analyzed algorithms by approximation ratio
 1971 Cook: Gave the concepts of NP-Completeness
 1972 Karp: Introduced plenty NP-Hard combinatorial optimization problems
 1970's Approximation became a popular research area
 1979 Garey & Johnson: Computers and Intractability: A guide to the Theory of NP-Completeness

Algorithm Xiaofeng Gao Approximation Basics 3/54

Approximation Basics Greedy Algorithm Sequential Algorithm Definition of Approximation

Books (2)

(2001) Vijay V. Vazirani **Approximation Algorithms**

(2010) D.P. Williamson & D.B. Shmoys **The Design of Approximation Algorithms**

Algorithm

(2012) D.Z Du, K-I. Ko & X.D. Hu **Design and Analysis of Approximation Algo- rithms**

NP Optimization Problem

An NP Optimization Problem *P* is a fourtuple (*I*, *sol*, *m*, *goal*) s.t.

- *I* is the set of the instances of *P* and is recognizable in polynomial time.
- Given an instance x of I, sol(x) is the set of short feasible solutions of x and $\forall x$ and $\forall y$ such that $|y| \le p(|x|)$, it is decidable in polynomial time whether $y \in sol(x)$.
- Given an instance x and a feasible solution y of x, m(x, y) is a polynomial time computable measure function providing a positive integer which is the value of y.
- $goal \in \{max, min\}$ denotes maximization or minimization.

Algorithm Xiaofeng Gao Approximation Basics 6/54

Approximation Basics History

NP Optimization

NPO Class

Definition: (NPO Class)

The class NPO is the set of all NP optimization problems.

Definition: (Goal of NPO Problem)

The goal of an NPO problem with respect to an instance x is to find an *optimum solution*, that is, a feasible solution y such that $m(x, y) = goal\{m(x, y') : y' \in sol(x)\}.$

An Example of NP Optimization Problem

Example: Minimum Vertex Cover

Given a graph G = (V, E), the Minimum Vertex Cover problem (MVC) is to find a vertex cover of minimum size, that is, a minimum node subset $U \subseteq V$ such that, for each edge $(v_i, v_i) \in E$, either $v_i \in U$ or $v_i \in U$.

$\textbf{Justification} \rightarrow \textbf{MVC} \text{ is an NP Optimization Problem}$

- $I = \{G = (V, E) \mid G \text{ is a graph}\}$; poly-time decidable
- $sol(G) = \{U \subseteq V \mid \forall (v_i, v_j) \in E[v_i \in U \lor v_j \in U]\};$ short feasible solution set and poly-time decidable
- m(G, U) = |U|; poly-time computable function
- goal = min.

Algorithm Xiaofeng Gao Approximation Basics 7/54

Approximation Basics Greedy Algorithm

History
NP Optimization
Definition of Approximation

What is Approximation Algorithm?

Definition: (Approximation Algorithm)

Given an NP optimization problem P = (I, sol, m, goal), an algorithm A is an approximation algorithm for P if, for any given instance $x \in I$, it returns an approximate solution, that is a feasible solution $A(x) \in sol(x)$ with guaranteed quality.

Note:

- Guaranteed quality is the difference between approximation and heuristics.
- Approximation for PO, NPO and NP-hard Optimization.
- Decision, Optimization, and Constructive Problems.

Algorithm Xiaofeng Gao Approximation Basics 8/54 Algorithm Xiaofeng Gao

Approximation Basics Greedy Algorithm Sequential Algorithm

NP Optimization

Definition of Approximation

r-Approximation

Definition: (Approximation Ratio)

Let P be an NPO problem. Given an instance x and a feasible solution y of x, we define the performance ratio of y with respect to x as

$$R(x,y) = \max \left\{ \frac{m(x,y)}{opt(x)}, \frac{opt(x)}{m(x,y)} \right\}.$$

Definition: (*r*-Approximation)

Given an optimization problem P and an approximation algorithm A for P, A is said to be an r-approximation for P if, given any input instance x of P, the performance ratio of the approximate solution A(x) is bounded by r, say, $R(x, A(x)) \le r$.

Algorithm Xiaofeng Gao

Approximation Basics

10/54

Approximation Basics
Greedy Algorithm
Sequential Algorithm

NP Optimization

Definition of Approximation

Special Case

Definition: (Polynomial Time Approximation Scheme \rightarrow PTAS)

An NPO problem P belongs to the class PTAS if an algorithm A exists such that, for any rational value $\epsilon > 0$, when applied A to input (x, ϵ) , it returns an $(1 + \epsilon)$ -approximate solution of x in time polynomial in |x|.

Definition: (Fully PTAS → FPTAS)

An NPO problem P belongs to the class FPTAS if an algorithm A exists such that, for any rational value $\epsilon > 0$, when applied A to input (x, ϵ) , it returns a $(1 + \epsilon)$ -approximate solution of x in time polynomial both in |x| and in $\frac{1}{\epsilon}$.

APX Class

Definition: (F-APX)

Given a class of functions F, an NPO problem P belongs to the class F-APX if an r-approximation polynomial time algorithm A for P exists, for some function $r \in F$.

Example:

- F is constant functions $\rightarrow P \in APX$.
- F is $O(\log n)$ functions $\rightarrow P \in \log$ -APX.
- F is $O(n^k)$ functions (polynomials) $\rightarrow p \in \text{poly-APX}$.
- F is $O(2^{n^k})$ functions $\rightarrow P \in \text{exp-APX}$.

Algorithm

Xiaofeng Gao

Approximation Basics

11/54

Approximation Basics
Greedy Algorithm
Sequential Algorithm

NP Optimization

Definition of Approximation

Approximation Class Inclusion

If $P \neq NP$, then FPTAS \subseteq PTAS \subseteq APX \subseteq Log-APX \subseteq Poly-APX \subseteq Exp-APX \subseteq NPO

- Constant-Factor Approximation (APX)
 - Reduce App. Ratio
 - Reduce Time Complexity
- PTAS $((1 + \epsilon)$ -Appx)
 - Test Existence
 - Reduce Time Complexity

gorithm Xiaofeng Gao Approximation Basics 12/54 Algorithm Xiaofeng Gao Approximation Basics 13/54

Procedure

Given:

An instance of the problem specifies a set of items

Goal:

- Determine a subset of the items that satisfies the problem constraints
- Maximize or minimize the measure function

Steps:

- Sort the items according to some criterion
- Incrementally build the solution starting from the empty set
- Consider items one at a time, and maintain a set of "selected" items
- Terminate when break the problem constraints

Algorithm Xiaofeng Gao Approximation Basics

Xiaofeng Gao

Approximation Basics
Greedy Algorithm
Sequential Algorithm

Set Cover Problem Knapsack Problem

An Example

$$U = \{1, 2, \cdots, 12\}$$

$$\boldsymbol{S} = \{S_1, S_2, \cdots, S_6\}$$

15/54

$$S_1 = \{1,2,3,4,5,6\}$$

$$S_2 = \{5,6,8,9\}$$

$$S_3 = \{1, 4, 7, 10\}$$

$$S_4 = \{2, 5, 7, 8, 11\}$$

$$S_5 = \{3, 6, 9, 12\}$$

$$S_6 = \{10, 11\}$$

Optimal Solution:

$$\bm{S}' = \{S_3, S_4, S_5\}$$

Approximation Basics

Set Cover Problem

Problem

Instance: Given a universe $U = \{e_1, \dots, e_n\}$ of n elements, a collection of subsets $\mathbf{S} = \{S_1, \dots, S_m\}$ of U, and a cost function $c : \mathbf{S} \to \mathbb{Q}^+$.

Solution: A subcollection $S' \subseteq S$ that covers all elements of U.

Measure: Total cost of the chosen subcollection, $\sum_{S_i \in S'} c(S)$.

Algorithm Xiaofeng Gao

Approximation Basics

16/54

18/54

oroximation Basics Set Cover Problem
Greedy Algorithm Knapsack Problem

Maximum Independent

Greedy Algorithm

Algorithm 1 Greedy Set Cover

Input: U with n item; **S** with m subsets; cost function $c(S_i)$. **Output:** Subset $S' \subseteq S$ such that $\bigcup_{e_i \in S_k \in S'} e_i = U$.

- 1: $\mathbf{C} \leftarrow \emptyset$
- 2: while $C \neq U$ do
- Find the most cost-effective set S.
- 4: $\forall e \in S \setminus C$, set $price(e) = \frac{c(S)}{|S C|}$. Set $C \leftarrow C \cup S$.
- 5: end while
- 6: Output selected S.

The cost-effectiveness of a set *S* is the average cost at which it covers new elements; The price of an element *e* is the average cost when *e* is covered.

Time Complexity

Theorem: Greedy Set Cover has time complexity O(mn).

Proof:

Algorithm

- (1). There are at most $O(\min\{m, n\})$ iterations to select the subcollection. Within each iteration to find the minimum cost-effectiveness, it requires O(m) times;
- (2). There are totally n elements, and each e_i , the price modification will perform at most O(m) times, each with linear operations. Totally the price updating procedure requires O(mn) time.

Thus the total running time is $O(\min\{m,n\}) \cdot O(m) + O(mn) = O(mn).$

Approximation Basics

19/54

Set Cover Problem

Greedy Algorithm

Set Cover Problem

Proof (Continued)

Since in any iteration, the optimal solution can cover the remaining elements \overline{C} with cost $m^*(U)$.

Xiaofeng Gao

Therefore, among the remaining sets, there must be one having cost-effectiveness of at most $m^*(U)/|\overline{C}|$.

In the iteration in which e_k was covered, $|\overline{C}| > n - k + 1$. Thus

$$price(e_k) \leq \frac{m^*(U)}{|\overline{C}|} \leq \frac{m^*(U)}{n-k+1}.$$

Approximation Ratio

Theorem: Greedy Set Cover is an H_n factor approximation algorithm for the minimum set cover problem, where $H_n = 1 + \frac{1}{2} + \cdots + \frac{1}{n}$. \leftarrow Harmonic Number (Log-APX)

Proof: Let $m_{\alpha}(U)$ be the cost of Greedy Set Cover, $m^*(U)$ be the cost of the optimal solution.

Number the elements of *U* in the order in which they were covered by the algorithm.

Let e_1, \ldots, e_n be this numbering (resolving ties arbitrarily).

Observation: For each $k \in \{1, ..., n\}$, $price(e_k) \le \frac{m^*(U)}{n - k - 1}$.

Greedy Algorithm

Proof (Continued)

Algorithm

The total cost of the sets picked by this algorithm is equal to $\sum_{k=1}^{n} price(e_k)$. Then

$$m_g(U) = \sum_{k=1}^n price(e_k)$$

$$\leq (1 + \frac{1}{2} + \dots + \frac{1}{n}) \cdot m^*(U)$$

$$= H_n \cdot m^*(U)$$

20/54

Maximum Knapsack Problem

The optimal cover has a cost of $1 + \epsilon$. While the greedy algorithm will output a cover of cost $\frac{1}{n} + \frac{1}{n-1} + \cdots + 1 = H_n$.

Problem

Instance: Given finite set X of items and a positive integer b,

for each $x_i \in X$, it has value $p_i \in Z^+$ and size $a_i \in Z^+$.

Solution: A set of items $Y \subseteq X$ such that $\sum_{x_i \in Y} a_i \leq b$.

Measure: Total value of the chosen items, $\sum_{\mathbf{x}_i \in \mathbf{Y}} p_i$.

Algorithm

Xiaofeng Gao

Approximation Basics

23/54

Approximation Basics

24/54

oroximation Basics Greedy Algorithm

Set Cover Problem

Knapsack Problem

laximum Independent Set

Greedy Algorithm

Algorithm 2 Greedy Knapsack

Input: X with *n* item and b; for each $x_i \in X$, value p_i , and a_i . **Output:** Subset $Y \subseteq X$ such that $\sum a_i \leq b$.

 $x_i \in Y$

1: Sort X in non-increasing order with respect to the ratio $\frac{p_i}{a_i}$ \triangleright Let x_1, \dots, x_n be the sorted sequence

2: $Y = \emptyset$;

3: **for** i = 1 to n **do**

4: if $b \ge a_i$ then

5: $Y = Y \cup \{x_i\};$

6: $b = b - a_i$;

7: end if

8: end for

9: Return Y

Algorithm

Algorithm

Xiaofeng Gao

• •

proximation Basics Greedy Algorithm

Knapsack Problem

Knapsack Problem

Time Complexity

Theorem: Greedy Knapsack has time complexity $O(n \log n)$.

Proof: Consider items in non-increasing order with respect to the profic/occupancy ratio.

(1). To sort the items, it requires $O(n \log n)$ times;

(2). and then the complexity of the algorithm is linear in their number.

Thus the total running time is $O(n \log n)$.

Approximation Ratio

Theorem: The solution of Greedy Knapsack can be arbitrarily far from the optimal value.

Proof: (A Worst Case Example)

- Consider an instance X of Maximum Knapsack with n items. $p_i = a_i = 1$ for $i = 1, \dots, n-1$. $p_n = b-1$ and $a_n = b = kn$ where k is an arbitrarily large number.
- Let $m^*(X)$ be the size of optimal solution, and $m_g(X)$ the size of Greedy Knapsack solution. Then, $m^*(X) = b 1$, while $m_g(X) = n 1$,
- $\bullet \ \frac{m^*(X)}{m_q(X)} > \frac{kn-1}{n-1} > k.$

Algorithm

Approximation Basics

27/54

Approximation Basics
Greedy Algorithm

Xiaofeng Gao

Set Cover Problem
Knapsack Problem
Maximum Independent Set

Proof (1)

Let *j* be the first index of an item in the order that cannot be included. The profit achieved so far (up to item *j*) is:

$$\overline{p_j} = \sum_{i=1}^{j-1} p_i \leq m_g(X).$$

The total occupancy (size) is

$$\overline{a_j} = \sum_{i=1}^{j-1} a_i \leq b.$$

Observation: $m^*(X) < \overline{p_i} + p_i$.

Improvement

The poor behavior of Greedy Knapsack if due to the fact that the algorithm does not include the element with highest profit in the solution while the optimal solution contains only this element.

Theorem

Given an instance X of the Maximum Knapsack problem, let $m_H(X) = \max\{p_{max}, m_g(X)\}$. where p_{max} is the maximum profit of an item in X. Then $m_H(X)$ satisfies the following inequality:

$$\frac{m^*(X)}{m_H(X)}$$
 < 2. (Constant-Factor Approximation)

Algorithm

Algorithm

Xiaofeng Gao

Approximation Basics

28/54

Approximation Basics
Greedy Algorithm
Seguential Algorithm

Knapsack Problem

Maximum Independent

Proof (2)

 x_i are ordered by $\frac{p_i}{a_i}$, so any exchange of any subset of the chosen items x_1, \dots, x_{j-1} with any subset of the unchosen items x_j, \dots, x_n that does not increase $\overline{a_j}$ will not increase the overall profit.

Thus $m^*(X)$ is bounded by $\overline{p_j}$ plus the maximum profit from filling the remaining space.

Since $\overline{a_i} + a_i > b$ (otherwise x_i will be selected), we obtain:

$$m^*(X) \leq \overline{p_j} + (b - \overline{a_j}) \cdot \frac{p_j}{a_j} < \overline{p_j} + p_j.$$

Algorithm Xiaofeng Gao Approximation Basics 29/54

Maximum Independent Set Problem

Approximation Basics

Maximum Independent Set

Proof (3)

To complete the proof we consider two possible cases.

• If $p_j \leq \overline{p_j}$, then

$$m^*(X) < \overline{p_j} + p_j \le 2\overline{p_j} \le 2m_g(X) \le 2m_H(X).$$

• If $p_j > \overline{p_j}$, then $p_{max} > \overline{p_j}$, and

$$m^*(X) < \overline{p_i} + p_{max} \le 2p_{max} \le 2m_H(X)$$

Thus Greedy Knapsack is 2-approximation.

Definition

Instance: Given a graph G = (V, E)

Solution: An independent set $V' \subseteq V$ on G, such that for any

 $(u, v) \in E$, either $u \notin V'$ or $v \notin V'$.

Measure: Cardinality of the independent set, |V'|.

Xiaofeng Gao

Greedy Algorithm

Algorithm

Xiaofeng Gao

Approximation Basics

04/54

Approximation Basics
Greedy Algorithm

Set Cover Problem
Knapsack Problem
Maximum Independent Set

An Example

The cube has 6 maximal independent sets (red nodes).

Greedy Algorithm

Algorithm

Algorithm 3 Greedy Independent Set

Input: Graph G = (V, E).

Output: Independent Node Subset $V' \subset V$ in G.

- 1: $V' = \emptyset$;
- 2: U = V;
- 3: while $U \neq \emptyset$ do
- 4: x = vertex of minimum degree in the graph induced by U.
- 5: $V' = V' \cup \{x\}.$
- 6: Eliminate x and all its neighbors from U.
- 7: end while
- 8: Return V'.

porithm Xiaofeng Gao Approximation Basics 33/54

32/54

Worst Case Example

Let K_4 be a clique with four nodes and I_4 an independent set of four nodes. v is the first to be chosen by algorithm, and the resulting solution contains this node and exactly one node of K_4 . The optimal solution contains I_4 . Thus $\frac{m^*(X)}{m_n(X)} \geq \frac{n}{2}$.

35/54

Approximation Basics

Maximum Independent Set

Proof (2)

Since algorithm stops when all vertices are eliminated,

Xiaofeng Gao

Greedy Algorithm

$$\sum_{i=1}^{m_g(G)} (d_i + 1) = n.$$
 (1)

 k_i represent distinct vertices set in V^* .

$$\sum_{i=1}^{m_g(G)} k_i = |V^*| = m^*(G).$$
 (2)

Each iteration the degree of the deleted vertices is at least $d_i(d_i+1)$ and an edge cannot have both its endpoints in V^* , the number of deleted edges is at least $\frac{d_i(d_i+1)+k_i(k_i-1)}{2}$,

$$\sum_{i=1}^{m_g(G)} \frac{d_i(d_i+1) + k_i(k_i-1)}{2} \le m = \delta n.$$
 (3)

Maximum Independent Set

Approximation Ratio

Theorem: Given a graph *G* with *n* vertices and *m* edges, let $\delta = \frac{m}{n}$. The approximation ratio of Greedy Independent Set is

$$\frac{m^*(X)}{m_o(X)} \le \delta + 1. \qquad (Poly-APX)$$

Proof:

- Define *V** the optimal independent set for *G*.
- x_i the vertex chosen at i^{th} iteration of Greedy Algorithm.
- d_i the degree of x_i , then each time remove $d_i + 1$ vertices.
- k_i the number of vertices in V^* that are among $d_i + 1$ vertices deleted in the *i*th iteration.

Algorithm

Xiaofeng Gao

Approximation Basics

36/54

Greedy Algorithm

Maximum Independent Set

Proof (3)

Algorithm

Notation: Define V_i^g as the deleted vertex set in the *i*th iteration, V^* as the vertices in V^* that are deleted in this iteration.

$$|V_i^g| = d_i + 1, \ |V_i^*| = k_i, \ V_i^* \subseteq V_i^g.$$

The number of deleted edges $\geq \frac{d_i(d_i+1)}{2}$. (this lower bound implies a virtual clique with $d_i + 1$ vertices)

However, vertices in V_i^g are independent to each other, so they cannot "contribute" to the above clique. Thus we need to repay the degrees back. Correspondingly,

no. of deleted edges > edges of clique with $d_i + 1$ vertices + repaid edges of a clique with k_i vertices $= \frac{d_i(d_i+1) + k_i(k_i-1)}{2}$

Approximation Basics Greedy Algorithm

Set Cover Problem Knapsack Problem

Maximum Independent Set

Proof (4)

Adding inequalities (1), (2), and (3) together, we have

$$\begin{split} \sum_{i=1}^{m_g(G)} \left(d_i(d_i+1) + k_i(k_i-1) + (d_i+1) + k_i \right) &\leq 2\delta n + n + m^*(G) \\ \Longrightarrow \sum_{i=1}^{m_g(G)} \left((d_i+1)^2 + k_i^2 \right) &\leq n(2\delta+1) + m^*(G). \end{split}$$

By applying the Cauchy-Schwarz Inequality, the left part is minimized when $d_i + 1 = \frac{n}{m_q(G)}$ and $k_i = \frac{m^*(G)}{m_q(G)}$, hence,

$$\frac{n^2+m^*(G)^2}{m_g(G)}\leq \sum_{i=1}^{m_g(G)}\left((d_i+1)^2+k_i^2\right)\leq n(2\delta+1)+m^*(G),$$

C-S: $\left(\sum_{i=1}^n x_i\right)^2 \le n \sum_{i=1}^n x_i^2$, equality holds when $x_1 = \cdots = x_n$. (run twice here)

Algorithm

Xiaofeng Gao

Approximation Basics

39/54

Approximation Basics
Greedy Algorithm
Sequential Algorithm

Set Cover Problem Knapsack Problem

Maximum Independent Set

Proof (6)

When $m^*(G) = n$, the right-hand inequality is maximized,

$$\frac{m^*(G)}{m_g(G)} \leq \frac{2\delta+1+1}{1+1} = \delta+1.$$

The Greedy Independent Set Algorithm yields an approximation ratio of $\delta + 1$.

Thus Maximum Indecent Set Problem is a Poly-APX.

Note: $\max(m) = \frac{n(n-1)}{2}$ when G is a K_n clique, and $\delta = \frac{n-1}{2}$.

Approximation Basics Greedy Algorithm Sequential Algorithm

Knapsack Problem

Maximum Independent Set

Proof (5)

Thus.

$$m_g(G) \geq rac{n^2 + m^*(G)^2}{n(2\delta + 1) + m^*(G)} = m^*(G) rac{rac{n^2}{m^*(G)} + m^*(G)}{n(2\delta + 1) + m^*(G)}$$

We have

$$\frac{m^*(G)}{m_g(G)} \leq \frac{2\delta + 1 + \frac{m^*(G)}{n}}{\frac{n}{m^*(G)} + \frac{m^*(G)}{n}}.$$

Easy to know that $m^*(G) \le n$.

Let $x = \frac{m^*(G)}{n} \le 1$. For any $x \in (0, 1]$, $x + \frac{1}{x}$ decreases when x increases, so $\frac{x+a}{x+\frac{1}{x}}$ is maximized when x = 1.

Algorithm

Xiaofeng Gao

Approximation Basics

40/54

Approximation Basics Greedy Algorithm Sequential Algorithm

Maximum Cut Proble Job Scheduling

Procedure

Given:

• An instance of the problem specifies a set of items $I = \{x_1, \dots, x_n\}$

Goal:

- Determine a suitable partition that satisfies the problem constraints
- Maximize or minimize the measure function

Steps:

Algorithm

- Sort the items according to some criterion.
- Build the output partition P sequentially.
- Note that when algorithm considers item x_i , it is not allowed to modify the partition of items x_j , for j < i (only assign once).

lgorithm Xiaofeng Gao Approximation Basics 41/54

Xiaofeng Gao Approximation Basics 43/

Maximum Cut Problem

Problem

Instance: Given a graph G = (V, E).

Solution: A partition of V into sets S and \overline{S} .

Measure: Maximize the number of edges running between S

and \overline{S} .

Algorithm

Xiaofeng Gao

Approximation Basics

44/54

Approximation Basics
Greedy Algorithm
Sequential Algorithm

Maximum Cut Problem Job Scheduling

Approximation Ratio

Theorem. Greedy Sequential has approximation ratio 2.

Proof. Consider each edge (v_i, v_j) . Whether it belongs to the cut is determined when v_i is fixed and at the moment when v_j is fixed. Thus we can partition the edge set by its "decision vertex".

At each iteration, by the algorithm strategy at least half of edges in each partition will be assigned to the cut, and will never change again.

Thus $|A_g| \ge \frac{|E|}{2}$. It is easy to see that $|OPT| \le |E|$. Hence

$$\frac{|\mathit{OPT}|}{|A_g|} \leq \frac{|E|}{|E|/2} = 2.$$

Sequential Algorithm

Algorithm 4 Sequential Maximum Cut

Input: G = (V, E); Output: Partition of $V = S \cup \overline{S}$.

1: Pick v_1 , v_2 from V arbitrarily. Set $A \leftarrow \{v_1\}$; $B \leftarrow \{v_2\}$

2: **for** $v \in V - \{v_1, v_2\}$ **do**

3: **if** $d(v, A) \ge d(v, B)$ **then**

4: $B \leftarrow B \cup \{v\}$

5: **else**

6: $A \leftarrow A \cup \{v\}$

7: **end if** 8: **end for**

9: Return A, B.

d(v, A) is the number of edges between v and A

Xiaofeng Gao

Approximation Basics ...

Greedy Algorithm Sequential Algorithm Maximum Cut Problem
Job Scheduling

Approximation Basics

Tight Example

Algorithm

45/54

Igorithm Xiaofeng Gao Approximation Basics 46/54

Minimum Scheduling on Identical Machines

Problem

Instance: Given set of jobs T, number p of machines, length l_j for executing job $t_i \in T$.

Solution: A p-machine schedule for T, i.e., a function $f: T \mapsto [1, \cdots, p]$.

Measure: Minimize the schedule's makespan, i.e.,

$$\min\Big(\max_{i\in[1,\cdots,p]}\sum_{t_j\in T: f(t_j)=i}I_j\Big).$$

Note: This problem is NP-Hard even in the case of p = 2.

Algorithm Xiaofeng Gao

Approximation Basics

48/54

Xiaofeng Gao

Approximation Basics

49/54

Approximation Basics
Greedy Algorithm
Sequential Algorithm

Maximum Cut Problem
Job Scheduling

Approximation Ratio

Theorem: Greedy Sequential has approximation ratio $\frac{4}{3} - \frac{1}{3p}$.

Proof: Let j be the job of T that is last considered by Greedy Sequential and let I_{min} be its length (the shortest one).

Consider two cases: $I_{min} > \frac{m^*(T)}{3}$ and $I_{min} \leq \frac{m^*(T)}{3}$.

Sequential Algorithm

Algorithm 5 Largest Processing Time Sequential Algorithm

Input: Set T with n jobs, each has length I_j , p machines; **Output:** Partition P of T.

1: Sort I in non-increasing order w.r.t. their processing time \triangleright Let t_1, \dots, t_n be the obtained sequence, $I_1 \ge \dots \ge I_n$.

- 2: $P = \{\{t_1\}, \emptyset, \cdots, \emptyset\}$
- 3: **for** i = 2 to n **do**
- 4: Find machine p_i with minimum finish time

$$A_j(i-1) = \min_{1 \le j \le p} \sum_{1 \le k \le i-1: f(t_k)=j} I_k$$

- 5: Append t_i into p_i .
- 6: end for
- 7: Return P.

Approximation Basics Greedy Algorithm Sequential Algorithm

Maximum Cut Proble
Job Scheduling

Proof (2)

Algorithm

If $I_{min} > \frac{m^*(T)}{3}$, then at most two jobs may have been assigned to any machine (otherwise it will violate the definition of $m^*(T)$). There are p machines in the system, so

$$p<|T|\leq 2p$$
.

Let $m_L(T)$ be the length of the Greedy Sequential solution. Next, we prove that

$$m_L(T) = m^*(T)$$
 for $|T| \leq 2p$.

We can setup 2p - |T| virtual jobs with length 0 such that |T| = 2p.

Easy to see, either greedy approach or optimal solution will divide those 2p jobs into p pairs.

Algorithm Xiaofeng Gao Approximation Basics 50/54

Proof (3)

Assume $m_L(T)$ is the length of the *i*th machine (obviously $i \le p$, and the *i*th machine is the makespan). Then

$$m_L(T) = I_i + I_{2p-i+1}.$$

If $I_{2p-i+1} = 0$, then it means I_i forms the makespan. Thus $m_L(T) = m^*(T) = I_i$.

If $l_{2p-i+1} > 0$, then it means that the *i*th machine has two jobs with length>0. Assume $m_L(T) > m^*(T)$ at this scenario.

Consider the new matching pair on the *i*th machine in an optimal solution. However, the pairs containing $\{l_1, \dots, l_{i-1}\}$ must match an l_j ($2p - i + 2 \le j \le 2p$), otherwise the new matching is greater than $m_l(T)$. Impossible to get one!

Approximation Rasic

Greedy Algorithm Sequential Algorithm

Xiaofeng Gao

Maximum Cut Problen
Job Scheduling

Approximation Basics

Proof (5)

Algorithm

Since t_j was assigned to the least loaded machine, then the finish time of any other machine is at least $A_h(|T|) - I_j$. Then $W \ge p(A_h(|T|) - I_j) + I_j$ and we obtain that

$$m_L(T) = A_h(|T|) \leq \frac{W}{\rho} + \frac{\rho - 1}{\rho}I_{min}$$

Since $m^*(T) \ge \frac{W}{p}$ and $I_{min} \le \frac{m^*(T)}{3}$, we have

$$m_L(T) \leq m^*(T) + \frac{p-1}{3p}m^*(T) = (\frac{4}{3} - \frac{1}{3p})m^*(T).$$

Thus, the contradiction cannot hold.

Proof (4)

If
$$I_{min} \leq \frac{m^*(T)}{3}$$
, let $W = \sum_{k=1}^{|T|} I_k$, then we have $m^*(T) \geq \frac{W}{\rho}$.

Use Contradiction. Assume theorem doesn't hold (i.e., the approximation ratio is larger than $\frac{4}{3} - \frac{1}{3p}$) and let T violates the claim having the minimum number of jobs.

Since T is a minimum counter-example, T' obtained from T by removing job t_i satisfies the claim $(m_L(T) > m_L(T'))$.

Thus Greedy Sequential assigns t_j to machine h that will have the largest processing time.

Algorithm Xiaofeng Gao Approximation Basics 53/54

52/54