Devoir maison 6.

À rendre le jeudi 12 décembre 2024

Exercice 1

Soit p et q deux entiers naturels non nuls tels que $q \ge 2$.

On suppose p et q premiers entre eux, ce qui signifie qu'ils n'ont pas de facteur en commun. Cela peut aussi s'écrire pgcd(p,q) = 1.

On souhaite prouver dans cet exercice que :

$$\sum_{k=1}^{q-1} \left\lfloor \frac{kp}{q} \right\rfloor = \frac{(p-1)(q-1)}{2}.$$

On admettra le résultat suivant, appelé lemme de Gauss :

si a, b, c sont des entiers tels que a divise bc et a et b sont premiers entre eux, alors a divise c.

- **1°)** Montrer que : $\forall x \in \mathbb{R} \setminus \mathbb{Z}, |x| + |-x| = -1.$
- $\mathbf{2}^{\circ}) \text{ On pose } S = \sum_{k=1}^{q-1} \left\lfloor \frac{kp}{q} \right\rfloor \text{ et } T = \sum_{k=1}^{q-1} \left\lfloor -\frac{kp}{q} \right\rfloor.$
 - a) Calculer S + T.
 - b) Effectuer le changement de variables j=q-k dans la somme T. En déduire S-T.
 - c) Conclure.

Exercice 2

On note S l'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \ u_{n+2} - 5u_{n+1} + 6u_n = 5^n$$

et on note S_H l'ensemble des suites réelles $(u_n)_{n\in\mathbb{N}}$ telles que :

$$\forall n \in \mathbb{N}, \ u_{n+2} - 5u_{n+1} + 6u_n = 0.$$

- 1°) Déterminer l'ensemble S_H .
- 2°) Déterminer une suite particulière de l'ensemble S, en la cherchant sous une forme bien choisie. On la notera $(v_n)_{n\in\mathbb{N}}$.
- 3°) En déduire, en justifiant soigneusement, l'ensemble S. Quel point commun observe-t-on avec les équations différentielles linéaires?

Exercice 3

On note $(u_n)_{n\in\mathbb{N}}$ la suite définie par : $\begin{cases} u_0 = 1 \\ \forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n}{1 + nu_n}. \end{cases}$

- 1°) Justifier que la suite (u_n) existe et que, pour tout $n \in \mathbb{N}, u_n > 0$.
- **2°**) Calculer, pour tout $n \in \mathbb{N}$, $\frac{1}{u_{n+1}} \frac{1}{u_n}$.
- **3**°) En déduire u_n pour tout $n \in \mathbb{N}^*$. Quelle est la limite de (u_n) ?