

# LABORATÓRIO 6 – SOMADORES

EFRAIN MARCELO PULGAR PANTALEON<sup>1</sup>
FERNANDO LUCAS SOUSA SILVA<sup>2</sup>
MATHEUS GOMES DINIZ ANDRADE<sup>3</sup>
TEÓPHILO VITOR DE CARVALHO CLEMENTE<sup>4</sup>

Universidade Federal do Rio Grande do Norte, Departamento de Engenharia de Computação e Automação

### 1. INTRODUÇÃO

O presente relatório tem por objetivo consolidar os conhecimentos adquiridos a respeito dos Somadores e do seu funcionamento, dessa forma faremos o desenvolvimento e análise do comportamento dos circuitos digitais por eles compostos. Assim, apresentaremos os resultados obtidos de acordo com cada item esclarecido no roteiro, de modo a mostrar os códigos usados para a emulação dos projetos e respectivos resultados adquiridos via o software Quartus.

#### 2. METODOLOGIA

Para a realização deste laboratório foi necessário o conhecimento teórico a respeito do funcionamento dos Somadores como também o conhecimento de registradores para a sua construção, tanto os incrementadores como os decrementadores. Desse modo, para a experimentação prática foi utilizado o software Quartus II, ele possibilita a construção de diversos circuitos digitais a partir do uso de portas lógicas, Latches, Flip-Flops e outros componentes que podem ser simulados com seu uso, com isso foi possível a construção dos códigos em VHDL utilizando a lógica dos códigos vista nas aulas teóricas.

#### 3. RESULTADOS

Nesta seção serão apresentados os resultados obtidos nas simulações realizadas, como também os meios utilizados para as obter no software.

### 3.1. SOMADOR DE 2 BITS COM DESCRIÇÃO COMPORTAMENTAL

Para o primeiro tópico foi solicitado a implementação em código VHDL de um somador para entrada de 2 bits, que é um dispositivo capaz de somar dois números binários A e B de N bits. Como veremos na implementação a seguir do código para um somador de 2 bits e sua respectiva simulação.



```
LIBRARY ieee;
 2
      USE ieee.std logic 1164.all;
 3
      USE ieee.std logic unsigned.all;
    ENTITY somador2bits IS
 4
 5
    GENERIC (
       WIDTH : integer := 2
 7
     F);
 8
    PORT (
 9
       CIN : IN STD LOGIC;
10
       A : IN STD LOGIC VECTOR (WIDTH - 1 downto 0);
       B : IN STD LOGIC VECTOR (WIDTH - 1 downto 0);
11
       S : OUT STD LOGIC VECTOR (WIDTH - 1 downto 0);
12
13
        COUT : OUT STD LOGIC
14
     =);
     LEND somador2bits;
15
16
    ARCHITECTURE behavior OF somador2bits IS
     SIGNAL SUM: STD LOGIC VECTOR (WIDTH downto 0);
17
    BEGIN
18
19
       SUM \le ('0' \& A) + ('0' \& B) + CIN;
20
       S <= SUM(WIDTH - 1 downto 0);
21
       COUT <= SUM (WIDTH);
22
      END behavior;
```

Figura 1 - Código VHDL para o somador de 2 bits.

Como pode-se perceber na simulação, esse código não satisfaz completamente todas as somas possíveis para entrada de 2 bits, por causa do problema de overflow e a não contemplação do carryout no resultado final da soma. Assim, uma forma de resolver seria aplicando o somador do tipo carry-ripple.



Figura 2 - Resultado da simulação para o somador de 2 bits.

### 3.2. SOMADOR DE 2 BITS UTILIZANDO PORTAS LÓGICAS

Para o segundo tópico, foi solicitada a construção de um somador de 2 bits, utilizando portas lógicas, apresentando as equações e tabela verdade desenvolvidas no processo. A seguir será mostrada a tabela verdade, a partir dela foi possível obter as equações de S0, S1 e S2 e posteriormente a implementação em VHDL das portas lógicas e sua simulação.



| -0 | h0 | 0.1 | h1 | a0 | a1 | a2 |
|----|----|-----|----|----|----|----|
| a0 | b0 | a1  | b1 | s0 | s1 | s2 |
| 0  | 0  | 0   | 0  | 0  | 0  | 0  |
| 0  | 0  | 0   | 1  | 0  | 0  | 1  |
| 0  | 0  | 1   | 0  | 0  | 0  | 1  |
| 0  | 0  | 1   | 1  | 0  | 1  | 0  |
| 0  | 1  | 0   | 0  | 0  | 1  | 0  |
| 0  | 1  | 0   | 1  | 0  | 1  | 1  |
| 0  | 1  | 1   | 0  | 0  | 1  | 1  |
| 0  | 1  | 1   | 1  | 1  | 0  | 0  |
| 1  | 0  | 0   | 0  | 0  | 1  | 0  |
| 1  | 0  | 0   | 1  | 0  | 1  | 1  |
| 1  | 0  | 1   | 0  | 0  | 1  | 1  |
| 1  | 0  | 1   | 1  | 1  | 0  | 0  |
| 1  | 1  | 0   | 0  | 1  | 0  | 0  |
| 1  | 1  | 0   | 1  | 1  | 0  | 1  |
| 1  | 1  | 1   | 0  | 1  | 0  | 1  |
| 1  | 1  | 1   | 1  | 1  | 1  | 0  |

Tabela 1 - Tabela Verdade.

Com isso podemos obter as seguintes equações como veremos a seguir:

$$s0 = (a0 \oplus b0) a1 b1 + a0 b0$$

$$s1 = a0 \oplus b0 \oplus (a1 b1)$$

$$s2 = a1 \oplus b1$$





Figura 3 - Somador de 2 bits em portas lógicas.



Figura 4 - Simulação do somador de 2 bits.

#### 3.3. BLOCO MEIO SOMADOR EM ESTILO CARRY-RIPPLE

Para este tópico foi pedido a representação de um bloco meio somador em estilo carry-ripple, que consiste basicamente em um componente que recebe como entradas os bits 2 bits e gera como saída uma soma s e um carry (o "vai um") de saída.





Figura 5 - Bloco meio somador com carry-ripple.



Figura 6 – Simulação para o bloco meio somador.

Como visto no esquema do bloco e na simulação, quando somamos A e B sendo 1 com 0, temos a saída sum(s) que vale 1 e o CARRY-OUT que vale 0. Agora vamos somar 1 com 1, e quando fazemos isso, a soma sum vale 0 mas o carry vale 1, ou seja, se concatenarmos o carry e o sum, temos que 1+1=10, que era o resultado esperado da soma.

#### 3.4. BLOCO SOMADOR COMPLETO EM ESTILO CARRY-RIPPLE

Neste tópico foi pedida a construção de um somador completo, ele recebe como entradas os bits a e b, e também um carry in de entrada, com isso teremos como saída uma soma s e um carry de saída. Assim, logo abaixo está a montagem dos circuitos utilizando as portas lógicas.





Figura 7 - Bloco somador completo com carry-ripple.



Figura 8 - Simulação para o bloco somador completo.

#### 3.5. SOMADOR DE 3 BITS DO TIPO CARRY-RIPPLE

Neste penúltimo tópico foi pedida a implementação de um somador de 3 bits semelhante aos anteriores, porém para isso vamos utilizar de circuitos semelhantes aos usados nos itens anteriores e assim obter um somador que seja capaz de realizar as somas, como veremos na imagem da implementação do circuito e sua respectiva simulação.





Figura 9 - Somador 3 bits carry-ripple.



Figura 10 - Resultado da simulação somador 3 bits carry-ripple.

#### 3.6. SOMADOR DE 6 BITS

Na última questão, construímos um somador de 6 bits adicionando 3 somadores completos ao projeto de portas lógicas do somador de 3 bits. Sendo assim, as imagens a seguir mostram o resultado final da implementação em portas lógicas e da simulação.





Figura 11 - Somador de 6 bits.



Figura 12 - Resultado da simulação do somador de 6 bits.

#### 4. CONCLUSÕES

A realização deste laboratório permitiu o melhor entendimento a respeito dos assuntos vistos nas aulas teóricas, a partir do desenvolvimento dos Somadores, tanto através da descrição comportamental em linguagem VHDL, como também a montagem do circuito utilizando portas lógicas, foi possível observar de forma prática o funcionamento deles. Para tal, utilizamos da linguagem VHDL e simulações do ModelSim através do Quartus II e os conceitos adequados para obtermos os códigos necessários para a execução.

## 5. REFERÊNCIAS

- [1] QUARTUS II. Software de simulação.
- [2] Vahid, Frank. Digital Design with RTL Design, VHDL, and Verilog Solution Manual. 2° Edição.2010.