Tugas 2 — Analisis dan Visualisasi Data-MSIM4310		
Nama	Pepy Ilhadi Beltra (048347842)	
Prodi	Sistem Informasi	

1. Dalam konsep transformasi data menggunakan bahasa R, paket `dplyr` adalah salah satu alat yang sangat populer karena menyediakan fungsi-fungsi yang efisien dan intuitif untuk manipulasi data, terutama pada data frame. Berikut adalah beberapa fungsi transformasi utama dalam `dplyr` beserta penjelasannya:

1. mutate()

Fungsi ini digunakan untuk menambahkan kolom baru atau memodifikasi kolom yang sudah ada dalam data frame berdasarkan operasi pada kolom lain. Ideal digunakan untuk perhitungan baru atau transformasi data.

Contoh: `mutate(data, total = price quantity)` menambahkan kolom `total` yang merupakan hasil perkalian kolom `price` dan `quantity`.

Ideal digunakan untuk perhitungan baru atau transformasi data.

2. select()

Fungsi ini memungkinkan pemilihan kolom tertentu dari data frame untuk dipertahankan, atau membuang kolom yang tidak diinginkan.

Contoh: `select(data, name, age)` hanya menyimpan kolom `name` dan `age`.

Kegunaan dalam Membantu menyederhanakan data dengan memfilter kolom yang relevan.

3. filter()

Digunakan untuk menyaring baris dalam data frame berdasarkan kondisi tertentu.

Contoh: `filter(data, age > 18)` menyimpan hanya baris di mana nilai `age` lebih dari 18. Fungsi ini berguna untuk subset data berdasarkan kriteria spesifik.

4. arrange()

Mengurutkan baris dalam data frame berdasarkan satu atau lebih kolom, baik secara ascending (meningkat) maupun descending (menurun).

Contoh: `arrange(data, desc(age))` mengurutkan data berdasarkan kolom `age` dari terbesar ke terkecil.

Fungsi ini digunakan unyuk Membantu mengorganisasi data untuk analisis atau presentasi.

5. summarise() / summarize()

Mengaggregasi data dengan menghitung ringkasan statistik (misalnya, rata-rata, jumlah, maksimum) berdasarkan kelompok atau keseluruhan data.

Contoh: `summarise(data, avg_price = mean(price))` menghitung rata-rata nilai kolom `price`.

Fungsi ini Digunakan untuk analisis data agregat, sering dikombinasikan dengan `group_by()`.

6. group_by()

Membagi data menjadi kelompok berdasarkan satu atau lebih variabel, biasanya digunakan bersama `summarise()` untuk analisis per kelompok.

Contoh: `group_by(data, category) %>% summarise(avg_price = mean(price))` menghitung rata-rata harga per kategori.

7. transmute()

Mirip dengan `mutate()`, tetapi hanya menyimpan kolom-kolom baru yang dihasilkan, membuang kolom asli yang tidak dimodifikasi.

Contoh: `transmute(data, total = price quantity)` hanya menyimpan kolom `total`.

Berguna untuk mengurangi ukuran data frame dengan fokus pada hasil transformasi.

2. Data Kunjungan Perpustakaan

NO	Bulan	Jumlah Pengunjung
1	January	90
2	February	86
3	Maret	97
4	April	83
5	Mei	85
6	Juni	85
7	Juli	65
8	Agustus	58
9	September	60
10	Oktober	93
11	Nopember	94
12	Desember	54

a. Transformasi akar dan transformasi logaritma pada data tersebut menggunakan boxplot dan konsep transformasi tukey

- Source code pada R

```
Tugas 2_Visualisasi Data_Pepy Ilhadi B.R ×
     时 Run | 🛂 🕜 🖯 | 📑 Source 🗸 🗏
  1 + # --
  2 # TRANSFORMAST DATA KUNJUNGAN PERPUSTAKAAN DAERAH
     # 1. Input Data
    6
  9
 10
 11
     # 2. <u>Transformasi Tukey</u>
# a. <u>Transformasi akar</u> (<u>sqrt</u>)
data_kunjungan$Akar <- sqrt(data_kunjungan$Jumlah)
 12
 13
 14
 15
     # b. Transformasi logaritma natural (ln)
data_kunjungan$Jumlah)
 16
 17
 18
 19
     # 3. Visualisasi Boxplot
     par(mfrow = c(1, 3), mar = c(4, 4, 2, 1)) # Atur layout plot
 20
 21
 22
      # Boxplot data asli
 23
     boxplot(data_kunjungan$Jumlah,
              main = "Data Asli",
ylab = "Jumlah Pengunjung",
 24
 25
               col = "#FFCCCB")
 26
 27
 28
     # Boxplot transformasi akar
 boxplot(data_kunjungan$Akar,

main = "Transformasi Akar",

ylab = "sqrt(Jumlah Pengunjung)",

col = "#90EE90")
 33
 34
     # Boxplot transformasi logaritma
     boxplot(data_kunjungan$Logaritma,
 35
              main = "Transformasi Logaritma",
ylab = "ln(Jumlah Pengunjung)",
col = "#ADD8E6")
 36
 38
 39
 40 # Reset layout plot
 41 par(mfrow = c(1, 1))
 42
 43 # 4. Tampilkan data hasil transformasi
 44 print(data_kunjungan)
 45
```

```
> print(data_kunjungan)
                             Akar Logaritma
         Bulan Jumlah
                     90 9.486833 4.499810
       Januari
      Februari
                     86 9.273618 4.454347
       Maret
                     97 9.848858 4.574711
 3
                     83 9.110434 4.418841
         April
 4
           Mei
                     85 9.219544 4.442651
         Juni
                     85 9.219544 4.442651
65 8.062258 4.174387
 6
7
          nuli
                     58 7.615773 4.060443
60 7.745967 4.094345
 8
      Aqustus
   September
                    93 9.643651 4.532599
94 9.695360 4.543295
54 7.348469 3.988984
 10 Oktober
    November
 11
     Desember
```


b) Langkah-langkah dalam melakukan Transformasi Data

- 1. Memasukkan Data
 - Input data ke dalam data frame di R sesuai tabel.
- 2. Mengecek Distribusi Awal
 - Gunakan boxplot untuk melihat sebaran data asli, outlier, dan skewness.
- 3. Melakukan Transformasi
 - Terapkan transformasi akar (sqrt()) pada kolom jumlah pengunjung.

_

- Terapkan transformasi logaritma (log()) pada kolom jumlah pengunjung.
- Pastikan semua data bernilai positif sebelum menggunakan log.
- 4. Membandingkan Hasil
 - Visualisasikan data hasil transformasi dengan boxplot.
 - Bandingkan bentuk sebaran, outlier, dan simetri data sebelum dan sesudah transformasi.
- 5. Interpretasi
 - Pilih hasil transformasi yang membuat data lebih simetris dan variansi lebih stabil.
 - Transformasi yang tepat akan memudahkan analisis statistik lanjutan.

Sumber Referensi:

BMP MSIM4310

https://rpubs.com/ismailakbar/data-transformasi