FLST 两路直流有刷电机控制器 MODBUS-RTU 寄存器 参考手册 V1.0

版权所有: 天津飞普达能科技有限公司

文档版本: Version 1.0

作者: Eric Xia

联系方式: 13512829427(微信同步)

撰写日期: 2019年2月

V1.0 文档初版

目 录

	关于	MODBUS-RTU 在本产品中的特别说明	5
	1 ì	卖操作	5
	2 -	写操作	5
<u> </u>	寄存	器列表	6
三	寄存	器结构及操作说明	8
	1	设备地址 0x0000	8
	2	通讯设置 0x0001	
	3	开机参数 0x0010	.10
	4	当前 PWM 频率 1 0x0014	.11
	5	当前 PWM 频率 2 0x0015	.12
	6	当前加减速系数 0x0016	.12
	7	电机 1 当前电流百分比 0x0017	.13
	8	电机 2 当前电流百分比 0x0018	.14
	9	电机 1 当前运行状态 0x0019	.14
	10	电机 2 当前运行状态 0x001A	.15
四	事项	说明	.16
	1 3	当前运行参数与开机参数	.16
	2	加减速功能	.16
	3	电机启动	.17

	4	电机	机停止	17
五.	缺省	参数	汝	17

一 关于 MODBUS-RTU 在本产品中的特别说明

本产品使用 MODBUS-RTU 协议进行读写控制,遵循 MODBUS-RTU 协议通讯标准。但本产品仅使用 MODBUS-RTU 中的功能码 0x03 进行读操作,使用功能码 0x06 和 0x10 进行写操作。功能码 0x06 仅用于写单个 16 位的寄存器;功能码 0x10 可用于写 1 个或多个 16 位寄存器。读写操作使用固定的模式:读写时寄存器地址和寄存器数量根据不同情况有固定的组合值,不能随意变化,否则读写操作失败。

1 读操作

主设备对该从设备控制器的所有读操作必须以 MODUBS-RTU 的 0x03 功能码完成。 MODBUS-RTU 协议中功能码 0x03 对应的数据包格式如下(以地址 0x0C 寄存器 0x0001 开始访问为例说明):

地址	功能码	起始高	起始低	数量高	数量低	CRC 低	CRC 高
0x0C	0x03	0x00	0x01	0x00	0хНН	0xHH	0xHH

功能码 0x03 所对应的从机回应数据据包格式如下表所示:

地址	功能码	字节数	数据1高	数据1低	数据2高	数据2低	 CRC 低	CRC 高
0x0C	0x03	0xHH	0хНН	0xHH	0xHH	0xHH	 0xHH	0xHH

2 写操作

主设备对该从设备控制器的所有写操作必须以 MODBUS RTU 的 0x06 及 0x10 功能码完成。

MODBUS RTU 协议中功能码 0x06 对应的数据包格式如下(以地址 0x0C 寄存器 0x0001 开始访问为例说明):

地址	功能码	起始高	起始低	数据高	数据低	CRC 低	CRC 高
----	-----	-----	-----	-----	-----	-------	-------

0x0C 0x06	0x00	0x01	0xHH	0xHH	0xHH	0xHH
-----------	------	------	------	------	------	------

功能码 0x06 的回应数据与主机发送的数据相同。

MODBUS RTU 协议中功能码 0x10 对应的数据包格式如下(以地址 0x0C 寄存器 0x0001 开始访问为例说明):

地址	功能码	起始高	起始低	数量高	数量低	字节数	数据高	数据低	 CRC 低	CRC 高
0x0C	0x10	0x00	0x01	0x00	0xHH	0xHH	0xHH	0xHH	 0xHH	0xHH

功能码 0x10 所对应的从机回应数据据包格式如下表所示:

地址	功能码	起始高	起始低	数量高	数量低	CRC 低	CRC 高
0xC0	0x10	0x00	0x01	0x00	0xHH	0xHH	0xHH

- 注: 1. 前述示例表中,数量是指读写 16 位寄存器的个数值。
- 2. MODBUS RTU 协议中寄存器是 16 位,占两个字节,因此字节数总是偶数个。
- 3. MODBUS RTU 数据传输过程中,除 16 位的 CRC 使用小端模式外,其它超过 8 位的数据都使用大端模式。

二 寄存器列表

关于控制器的寄存器读写的名词解释。

1 长度

以16位字为单位的寄存器个数。

2 读写权限

分为三种类型:可读可写、只读、只写。对于只写的寄存器不能读操作,只读的寄存器不能写进行写操作。

3 广播操作

以广播地址 0x00 来请求对寄存器进行的读写操作。

有写权限寄存器一般都可以广播写入。

有读权限的寄存器除设备地址寄存器 0x0000 外,其它都不能广播读取。

4 读写模式

固定读写:必须以指定的寄存器地址和寄存器数量组合对其进行读写操作,否则不能访问。

组合读写:可以在一定范围内以地址+长度的组合值来读写寄存器。

在本产品中,所有的寄存器都以固定读写模式进行。

关于本控制器另外两个重要名词解释

1 当前运行参数

控制器控制电机运行的当前参数环境,如步进频率,指当前使用的设定给电机的脉冲步进频率值,这些值在上电开机后可以随时通过写入操作来改变,但改变后的值不会记忆保存。

2 开机参数

开机参数保存于控制器的一段 ROM 中,掉电后不会消失改变,上电开机后,这些值全部赋给运行参数,可以把开机参数理解为上电开机时运行参数的缺省值。开机参数中还包括设备地址和波特率索引,只是这些参数没有当前值可以改变。

地址	长度	功能作用	读写权限	广播操作	读写模式	备注说明
0x0000	1	设备地址	可读可写	读写	固定读写	查询或修改设备地址
0x0001	1	通讯设置	可读可写	写	固定读写	修改波特率和校验位
0x0010	D 4 开机参数		可读可写	写	固定读写	查询或修改开机参数
0x0014	1	电机 1 当前 PWM 频率	可读可写	写	固定读写	写入时立即影响运行

0x0015	1	电机 2 当前 PWM 频率	可读可写	写	固定读写	写入时立即影响运行
0x0016	Dx0016 1 当前加减速系数		可读可写	写	固定读写	写入时立即影响运行
0x0017	1	电机1当前电流百分比	可读可写	写	固定读写	写入时立即影响运行
0x0018	1	电机 2 当前电流百分比	可读可写	写	固定读写	写入时立即影响运行
0x0019	1	电机1当前运行状态	可读可写	写	固定读写	写入时立即影响运行
0x001A	1	电机 2 当前运行状态	可读可写	写	固定读写	写入时立即影响运行

三 寄存器结构及操作说明

1 设备地址 0x0000

寄存器结构:

0x0000					
高8位	低 8 位				
保留为0	设备地址				

地址有效值范围为: 1~254。

读操作:

读操作为查询设备地址。如下面示例操作读取并取得设备地址。

主: 00 03 00 00 00 01 85 DB

从: 0C 03 02 00 0C 95 80

写操作:

写操作为修改设备地址,写操作成功后,新的设备地址立即生效,下一次通讯使用新的地址,并且掉电保存。如下面示例将原设备地址由 0x0C 更改为 0x08。

主: 0C 10 00 00 00 01 02 00 08 FF 06

从: 0C 10 00 00 00 01 00 D4

2 通讯设置 0x0001

寄存器结构:

0x0001					
高 8 位	低8位				
奇偶校验	波特率索引值				

索引值的有效范围为0~7, 其对应表如下:

索引值	波特率
0	2400
1	4800
2	9600
3	19200
4	38400
5	57600
6	76800
7	115200

奇偶校验设置值如下:

- 0、1: 不使用校验。
- 2: 偶校验
- 3: 奇校验

串口通讯的其它参数设置为: 1 位起始位、8 位数据位、1 位停止位,这些参数暂时不能修改。

读操作:

读操作为查询波特率及奇偶校验设置。

写操作:

写操作修改通读波特率,在发送完回应后,控制器的通讯立即更改为新的波特率,并且掉电保存。如下面示例将通讯波特率修改为 115200。

主: 0C 10 00 01 00 01 02 00 07 BE D3

从: 0C 10 00 01 00 01 51 14

3 开机参数 0x0010

寄存器结构:

0x0010	0x0011	0x0012				
		高8位			低8位	
PWM 频率 2	PWM 频率 1	电机 2 电	流百分比		电机1电流百	分比
0x0013						
b15:b11		b10:b6		b4	b3:b2	b1:b0
加减速系数 2	加	咸速系数 1	0	回应关闭	开机运行 2	开机运行 1

PWM 频率: 设定控制器上电开机后的缺省 PWM 频率,16 位无符号数,有效值范围为1~65535Hz,频率1对应电机1,频率2对应电机2。

电流百分比: 设定控制器上电开机后缺省的电流百分比,8位无符号数,有效值范围 0~100。

加减速系数:设定控制器上电开机后的缺省加减速系数,5 位无符号数,有效值范围 0~31。值越大加减速越快。

回应关闭:该位设为1时,主机写寄存器后,控制器不返回回应数据。该功能为 MODBUS-RTU 非标准内容,请谨慎使用。

开机运行:设定控制器上电开机后自行控制电机开启运行。值 0 为电机不启动,值 1 设定电机正向运行,值 2 设定电机反向运行。

开机参数保存于控制器的 ROM 中,掉电保存。

开机参数中除回应关闭没有运行参数外,其它都有运行参数可以运行过程中随时 修改而不影响开机设定值。

读操作:

读操作为读取控制器的开机参数,如下例所示:

主: 0C 03 00 10 00 04 44 D1

从: OC 03 08 1F 40 1F 40 32 32 52 80 3E E4

读取到的值如下:

电机 1 和电机 2 的 PWM 频率: 8000Hz; 电机 1 和电机 2 的电流百分比: 50%; 电机 1 和电机 2 的加减速系数: 10; 回应关闭功能未开启,电机 1 和电机 2 开机不运行。

写操作:

写操作修改开机参数,写入控制器的 ROM 中掉电保存。写入各值必须在其有效值范围内,否则写入操作失败。成功写入开机参数后,所有的当前运行参数也将被刷新为新的开机参数值,并且会立即影响电机的运行状态。如下面的示例修改控制器的开机参数。

主: 0C 10 00 10 00 04 08 1F 40 1F 40 32 32 52 80 2A 1F

从: 0C 10 00 10 00 04 C1 12

4 当前 PWM 频率 1 0x0014

寄存器结构:

0x0014

16 位无符频率值

频率有效值范围 1~65535, 单位 Hz。

读操作:

读取电机1的当前 PWM 频率。

写操作:

修改电机 1 的当前 PWM 频率。修改成功能立即影响电机运行,但该值不影响开机参数,掉电不保存。

5 当前 PWM 频率 2 0x0015

寄存器结构:

0x0015	
16 位无符号频率值	

频率有效值范围为 1~65535,单位 Hz。

读操作:

读取电机 2 的当前 PWM 频率。

写操作:

修改电机 2 的当前 PWM 频率。修改成功能立即影响电机运行,但该值不影响开机参数,掉电不保存。

6 当前加减速系数 0x0016

寄存器结构:

0x0016		
高 8 位	低 8 位	

电机 2 加减速系数	电机 2 加减速系数

加减速系数有效值范围 0~31, 值越大电机加减速越快。

读操作:

读取电机1和电机2的当前加减速系数。

写操作:

修改电机 1 和电机 2 的当前加减速系数。修改成功后立即影响电机启动和停止时的加减速过程。修改该寄存器不影响开机参数,掉电不保存。

7 电机 1 当前电流百分比 0x0017

寄存器结构:

0x0017		
高 8 位	低 8 位	
保留为0	电流百分比	

电流百分比有效值范围为 1~100, 代表控制器当前以最大电流的多大百分比输出驱动电机 1。

读操作:

读操作查询电机1的当前电流百分数,如下示例:

主: 0C 03 00 17 00 01 35 13

从: 0C 03 02 00 60 95 AD

写操作:

写操作仅修改电机1的当前驱动电流百分比,修改成功后立即影响电机运行状态, 无效的参数使写操作失败。修改该寄存器不影响开机参数,掉电不保存。如下示 例将驱动电流修改为80%: 主: 0C 10 00 17 00 01 02 00 50 FD DB

从: 0C 10 00 17 00 01 B0 D0

8 电机 2 当前电流百分比 0x0018

寄存器结构:

0x0018		
高 8 位	低8位	
保留为0	电流百分比	

电流百分比有效值范围为 1~100, 代表控制器当前以最大电流的多大百分比输出驱动电机 2。

读操作:

读操作查询电机 2 的当前电流百分数,如下示例:

主: 0C 03 00 18 00 01 05 10

从: 0C 03 02 00 60 95 AD

写操作:

写操作仅修改电机 2 的当前驱动电流百分比,修改成功后立即影响电机运行状态, 无效的参数使写操作失败。修改该寄存器不影响开机参数,掉电不保存。如下示 例将驱动电流修改为 80%:

主: 0C 10 00 18 00 01 02 00 50 FD 24

从: 0C 10 00 18 00 01 80 D3

9 电机 1 当前运行状态 0x0019

寄存器结构:

0x0019		
高 16 位	b1:b0	
0	运行状态	

运行状态: 0 电机停止, 1 电机正转, 2 电机反转。其它值无效。

读操作:

读操作查询电机1的当前运行状态,如下示例:

主: 0C 03 00 19 00 01 54 D0

从: 0C 03 02 00 01 54 45

写操作:

写操作启动或停止电机 1,如下示例启动电机 1 反转:

主: 0C 06 00 19 00 02 D8 D1

从: 0C 06 00 19 00 02 D8 D1

10 电机 2 当前运行状态 0x001A

寄存器结构:

0x0019		
高 16 位	b1:b0	
0	运行状态	

运行状态: 0 电机停止, 1 电机正转, 2 电机反转。其它值无效。

读操作:

读操作查询电机 2 的当前运行状态,如下示例:

主: 0C 03 00 1A 00 01 A4 D0

从: 0C 03 02 00 01 54 45

写操作:

写操作启动或停止电机 2,如下示例启动电机 1 反转:

主: 0C 06 00 1A 00 02 28 D1

从: 0C 06 00 1A 00 02 28 D1

四 事项说明

1 当前运行参数与开机参数

当前运行参数存在于控制器的 RAM 中,是当前直接影响电机运行状态的参数,可以随时修改,修改后即时影响运行状态,但修改后的值在掉电后丢失。当前运行参数的初始值来源于开机参数,当上电开机时,当前参数的初始值全部拷贝自开机参数。开机参数保存在控制器 ROM 中,掉电不消失。因此可以理解为修改开机参数即是修改当前参数上电时的缺省值。

成功修改开机参数时,也会用新的开机参数刷新一次所有当前参数,但修改当前参数不会影响开机参数。

开机参数有一组出厂缺省设置值,是固定不变的。当开机参数修改后或通讯波特率不可知时,可以通过控制器上的开机参数恢复接口先短接再上电的方式,将开机参数恢复为出厂值。

2 加减速功能

启动电机时,电机的输出电流百分比会从当前值(一般是0)开始逐渐增加到

当前设定的电流百分比;停止电机时则相反,电机的电流输出百分比会逐渐减小到 0;在电机已经处于运行状态时,如果修改电机的电流百分比,也存在这种逐渐增加或减小的过程。

加减速系数从 0 至 31, 0 并不是无加减速,而是最慢的加减速过程; 31 为最快的加减速过程。

3 电机启动

电机 1 的启动通过写入寄存器 0x0019 完成,写 1 正向启动,写 2 反向启动。 电机 2 的启动通过写入寄存器 0x0019 完成,写 1 正向启动,写 2 反向启动。

4 电机停止

电机 1 电机 2 的停止除分别向寄存器 0x0019 和 0x001A 定 0 值外,在电机处于运行状态时,通过向电流百分比寄存器写 0 值也可以使电机停止运行。

五 缺省参数

以下列表为开机参数出厂时的缺省值。

参数项	参数值
设备地址	0x0C
通讯波特率	9600(1-8-1 无校验)
电机 1PWM 频率	8000Hz
电机 2PWM 频率	8000Hz
电机1电流百分比	50%
电机 2 电流百分比	50%
电机1加减速系数	10

电机 2 加减速系数	10
电机1开机运行	不启动
电机 2 开机运行	不启动
回应关闭	关闭 (打开需谨慎)