1 Análisis Multivariado I - Práctica 1 - Parte 2

Los ejercicios marcados en rojo no son para elegir para exponer, aunque deben hacerse.

1.1 Distribución Wishart

En los ejercicios siguientes supondremos que $\mathbf{W} \sim \mathcal{W}_d(m, \Sigma) = \mathcal{W}(\Sigma, d, m)$.

- 1. Probar que $\mathbb{E}(\mathbf{W}) = m\Sigma$.
 - (a) Si **b** de $d \times 1$ es un vector de constantes, $(\mathbf{b}^{\mathrm{T}}\mathbf{W}\mathbf{b}) / (\mathbf{b}^{\mathrm{T}}\boldsymbol{\Sigma}\mathbf{b}) \sim \chi_{m}^{2}$.
 - (b) En particular, si $\mathbf{b} = \mathbf{e}_j$ el j-ésimo vector de la base canónica, resulta $w_{jj}/\sigma_{jj} \sim \chi_m^2$.
- 2. Si $\mathbf{C} \in \mathbb{R}^{q \times d}$ es una matriz no aleatoria de rango q, entonces $\mathbf{C} \mathbf{W} \mathbf{C}^{\mathrm{T}} \sim \mathcal{W}_q (m, \mathbf{C} \mathbf{\Sigma} \mathbf{C}^{\mathrm{T}})$.
- 3. Realicemos la siguiente partición de las matrices \mathbf{W} y Σ :

$$\mathbf{W} = \left(egin{array}{cc} \mathbf{W}_{11} & \mathbf{W}_{12} \ \mathbf{W}_{21} & \mathbf{W}_{22} \end{array}
ight) \ \mathrm{y} \ \mathbf{\Sigma} = \left(egin{array}{cc} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{array}
ight)$$

con \mathbf{W}_{11} y $\mathbf{\Sigma}_{11}$ cuadradas y de la misma dimensión.

Si $\Sigma_{12} = \mathbf{0}$, entonces \mathbf{W}_{11} y \mathbf{W}_{22} tienen distribución Wishart y son independientes. Hallar los parámetros correspondientes.

- 4. Si $m \geq p$ y $\det(\Sigma) \neq 0$ entonces $\mathbb{P}(\det(\mathbf{W}) \neq 0) = 1$.
- 5. Si \mathbf{W}_1 y \mathbf{W}_2 son independientes y $\mathbf{W}_i \sim \mathcal{W}_d\left(m_i, \mathbf{\Sigma}\right)$, entonces $\mathbf{W}_1 + \mathbf{W}_2 \sim \mathcal{W}_d\left(m_1 + m_2, \mathbf{\Sigma}\right)$.
- 6. (a) En R, fijar la semilla y generar una matriz aleatoria W con distribución $W_3(20, \mathbf{I}_3)$.
 - (b) Fijada la semilla, generar 100 matrices aleatorias $\mathbf{W}_1, \dots, \mathbf{W}_{100}$ y calcularles el promedio $\overline{\mathbf{W}}_{100}$. ¿A qué matriz debería parecerse $\overline{\mathbf{W}}_{100}$?

1.2 Distribución Hotelling

1. Sea $\mathbf{x} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ independiente de $\mathbf{W} \sim \mathcal{W}_p(m, \boldsymbol{\Sigma})$, indiquemos por $\mathcal{H}(p, m, \lambda^2)$ la distribución de

$$n \mathbf{x}^{\mathrm{T}} \mathbf{W}^{-1} \mathbf{x}$$
.

donde
$$\lambda^2 = \boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}$$
.

Armar en R una función que calcule el valor de la densidad de una Hotelling no central $\mathcal{H}(p,m,\lambda^2)$ en función de la densidad de una distribución $\mathcal{F}_{p,m-p+1}(\lambda^2)$.

- 2. En lo que sigue realizaremos un pequeño estudio de simulación para aproximar las distribuciones Hotelling central y Hotelling no central.
 - (a) i. Fijar la semilla.
 - ii. Generar NITER = 1000 variables aleatorias con distribución Hotelling central $\mathcal{H}(3,20)$ a partir de $\mathbf{x} \sim N_3(\mathbf{0}, \mathbf{\Sigma})$ y $\mathbf{W} \sim \mathcal{W}_3(20, \mathbf{\Sigma})$ independientes con

$$\Sigma = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 5 & 1 \\ 2 & 1 & 2 \end{pmatrix} \tag{1}$$

- iii. Realizar un histograma de los valores observados y superponerle un estimador de la función de densidad. Utilizar la instrucción density para obtener un estimador de la densidad basado en núcleos.
- iv. En otro gráfico, comparar el estimador de basado en núcleos con la verdadera función de densidad utilizando la función del Ejercicio 1.
- (b) Repetir (i)-(iv) para generar una Hotelling no central a partir de $\mathbf{x} \sim N_3(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ y $\mathbf{W} \sim \mathcal{W}_3(20, \boldsymbol{\Sigma})$ independientes con
 - $\mu = (-1, 2, -3)^{\mathrm{T}} \mathrm{y}$
 - Σ la matriz dada en (1).