उपसहसंयोजक यौगिक

पाठ्यपुस्तक के अभ्यास प्रश्न

बहुचयनात्मक प्रश्न

	प्रश्न 1.	K ₃ [Fe(CN) ₆]	में Fe की	'ऑक्सीकरण	' अवस्था है –
--	-----------	---------------------------------------	-----------	-----------	---------------

- **(अ**) 2
- **(ब)** 3
- **(स)** 0
- (द) उपर्युक्त में से कोई नहीं।

प्रश्न 2. समचतुष्फलकीय ज्यामिति वाला यौगिक है -

- (**अ**) [Ni(CN)₂]²⁻
- (ব) [NiCl₄]²⁻
- (स) [PdCl₄]²⁻
- (द) [Ni(CN)₂]²⁻

प्रश्न 3. (EDTA)-4 की समन्वयन संख्या है -

- **(अ)** 3
- (ৰ) 6
- (स) 4
- **(द)** 5

प्रश्न 4. [Pt(NH3)2Cl2] के ज्यामितीय समावयवियों की संख्या है -

- **(अ)** 3
- (ৰ) 2
- (स) 4
- (द) 1

प्रश्न 5. एक संकुल यौगिक जो नाइट्रेट व क्लोराइड लिगैण्ड से बना है। AgNO3 के साथ दो मोल AgCI अवक्षेप देता है। इसका सूत्र होगा —

- (31) $[Co(NH_3)_5NO_3]Cl_2$
- (ব) [Co(NH₃)₅Cl]NO₃Cl
- (स) [Co(NH₃)₅cl]NO₃
- (द) उपर्युक्त में कोई नहीं

प्रश्न 6. निम्नलिखित में से कौन-सा यौगिक प्रकाशिक समावयवता प्रदर्शित करता है?

- (**3**) [Co(CN)₆]³⁺
- (ব) [ZnCl₄]²⁻
- (स) [Co(en)₂ Cl₂]
- (द) [Cu(NH₃)₄]2+

प्रश्न 7. [Ni(CO)4) में पाया जाने वाला संकरण है –

- **(अ)** sp
- **(ৰ)** sp²
- **(स)** dsp²
- **(द)** sp³

प्रश्न 8. क्लोरोफिल में है -

- (अ) कोबाल्ट
- (ब) मैग्नीशियम
- (स) आयरन
- (द) निकिल

उत्तरमालाः

- 1. (ৰ)
- 2. (ৰ)
- **3.** (**a**)
- 4. (ৰ)
- 5. (왕)
- 6. (₹)
- **7.** (द)
- **8.** (ब)

अति लघूत्रात्मक प्रश्न

प्रश्न 1. संकुल यौगिक K₃[Fe(C₂O₄)₃] में केन्द्रीय धातु परमाणु की ऑक्सीकरण संख्या एवं उपसहसंयोजन संख्या लिखिए।

उत्तर: $K_3Fe(C_2O_4)_3$] में Fe की ऑक्सीकरण अवस्था – $K_3[Fe(C_2O_4)_3] \rightarrow 3K^+ + [Fe(C_2O_4)_3]^{-3}$ Fe का ऑक्सीकरण अंक x मान लेते हैं – x + 3 (-2) = -3 X - 6 = -3 x = + 6 - 3 = + 3 उपसहसंयोजन संख्या = 6 क्योंकि यहाँ तीन द्विदंतुक लिगैण्ड $C_2O_4^{2-}$ हैं।

प्रश्न 2. जल की कठोरता के निर्धारण के लिए आवश्यक लिगैण्ड का नाम लिखिए।

उत्तर: EDTA-4

प्रश्न 3. Li[AIH₄] का IUPAC नाम लिखिए।

उत्तरः लिथियम ट्रेटाहाइड्रिडो एल्यूमिनेट (॥।).

प्रश्न 4. सिस (समपक्ष) [Co(en)2Cl2] के दोनों प्रतिबिम्बी रूप दर्शाइए।

उत्तर:

प्रश्न 5. Ni+2 आयन को चुम्बकीय आघूर्ण ज्ञात कीजिए।

उत्तर:

$$_{28}$$
Ni — $3d^8 4s^2$ — Ni⁺² — $3d^8 4s^0$ अयुग्मित e^- की संख्या $(n) = 1 \ 1 \ 1 \ 1 \ 1 \ 1$ $n=2$ चुम्बकीय आधूर्ण $(\mu) = \sqrt{n(n+2)} = \sqrt{2(2+2)} = \sqrt{8}$ $\mu = 2.83$ BM

प्रश्न 6. [Mn2(CO)12] का IUPAC नाम लिखिए।

उत्तर: डोडिकार्बीनिल डाइ मैंगनीज (0).

प्रश्न 7. उभयदंती लिगैण्ड का एक उदाहरण लेकर बताइए कि यह क्यों उभयदंती लिगैण्ड कहलाता है?

उत्तर: एकदंतुक लिगैण्ड जिनमें एक अधिक दाता परमाणु केन्द्रीय आयन से उपसहसंयोजक बन्धों द्वारा बन्धित हो उभयदंती लिगैण्ड कहलाते हैं।

उदाहरण:CN- इसमें C व N दोनों परमाणु के एकांकी e-युग्म होता है। इसलिए दोनों दाता परमाणु की तरह व्यवहार कर सकते हैं।

 $M \leftarrow CN M \leftarrow NC$

प्रश्न 8. निम्नलिखित लिगैंडों को एकदंतुक, द्विदंतुक..... आदि में वर्गीकरण कीजिए।

- (i) en
- (ii) CN⁻
- (iii) acac
- (iv) dmg

उत्तर: (i) द्विदंतुक

- (ii) एकदंतुक
- (iii) द्विदंतुक
- (iv) द्विदंतुक।

लघूत्तरात्मक प्रश्न

प्रश्न 1. कीलेट प्रभाव से आप आप समझते हैं? एक उदाहरण दीजिए।

उत्तर: कीलेट प्रभाव – जब एक द्विदंतुक या बहुदंतुक लिगैण्ड धातु आयन/परमाणु से दाता परमाणुओं द्वारा जुड़ता है तो केन्द्रीय धातु व लिगैण्डों के मध्य एक वलय जैसी संरचना बनती है जो कि संकुल के स्थायित्व को बढ़ा देती है।

द्विदंतुक या बहुदंतुक लिगैण्डों का संकुलों का स्थायित्व को बढ़ा देने का प्रभाव कीलेट प्रभाव (Chelate effect) कहलाता है।

$$\begin{bmatrix} H_{2}C - H_{2}N & CO & NH_{2} - CH_{2} \\ | & | & | \\ H_{2}C - H_{2}N & NH_{2} - CH_{2} \end{bmatrix}^{3-}$$

प्रश्न 2. अणु सूत्र Co(NH₃)₅SO₄ Br वाले दो संकुलों को बोतल A व B में भरा गया है। इनमें से एक संकुल BaCl₂ के साथ श्वेत अवक्षेप जबकि दूसरा AgNO₃ के साथ हल्का पीला अवक्षेप देता है, तो बोतल A व B में उपस्थित संकुलों के सूत्र लिखिए।

उत्तर: $[CO(NH_3)_5Br]SO_4 + BaCl_2 \rightarrow [Co(NH_3)_5Br] CI + BaSO_4(\downarrow)$ श्वेत अवक्षेप अर्थात् बोतल A में $[Co(NH_3)_5Br]SO_4$ संकुल उपस्थित है। $[Co(NH_3)_5SO_4]Br + AgNO_3 \rightarrow [Co(NH_3)_5SO_4]NO_3 + AgBr (\downarrow)$ हल्का पीला अर्थात् बोतल B में $[Co(NH_3)_5SO_4]Br$ उपस्थित है।

प्रश्न 3. निम्नलिखित संकुलों में केन्द्रीय धातु परमाणु की ऑक्सीकरण अवस्था ज्ञात कीजिए -

- (i) $K_3[Fe(C_2O_4)_3]$
- (ii) [Fe(CN)₆]³⁺

उत्तर: (i) K₃[Fe(C₂O₄)₃] → 3K⁺ [Fe(C₂O₄)3]⁻³ संकुल आयन [Fe(C₂O₄)₃]⁻³ में Fe की ऑक्सीकरण अवस्था x मान लेते हैं – x + 3 (-2) = -3 x - 6 = -3 x = + 6 - 3 x = + 3 अतः इस संकुल में Fe की ऑक्सीकरण अवस्था + 3 है।

(ii)
$$[Fe(CN_6)]^{-3}$$

x + 6 (-1) = -3
x = 6 - 3

x = + 3 इसमें Fe की ऑक्सीकरण अवस्था + 3 है।

प्रश्न 4. sp³, dsp² कक्षक प्रयुक्त करने वाले संकुलों की ज्यामितीय आकृति क्या होगी, प्रत्येक का एक उदाहरण दीजिए?

उत्तर: sp³ कक्षक प्रयुक्त करने वाले संकुलों की ज्यामिति चतुष्फलकीय होती है।

dsp2 कक्षक प्रयुक्त करने वाले संकुलों की ज्यामिति वर्ग समतलीय होती है –

उदाहरण-[Ni(CN)₄]²⁻

प्रश्न 5. धातुओं के निष्कर्षण में उपसहसंयोजक यौगिकों के महत्व को समझाइए।

उत्तर: कृपया अनुच्छेद 9.26 का बिन्दु 3 देखें।

निबन्धात्मक प्रश्न

प्रश्न 1. [Ni(CN₄)]²- आयन का स्वच्छ आकृति चित्र बनाते हुए इसके केन्द्रीय परमाणु की संकरण अवस्था को समझाइए।

उत्तर: ये संकरित कक्षक लिगैण्डों के कक्षकों के साथ अतिव्यापन कर लेते हैं। यहाँ लिगैण्डों के कक्षक बन्धन बनाने के लिए इलेक्ट्रॉन युग्म प्रदान करते हैं। अतः बन्धों की ऊर्जा समान होती है तथा ये बन्ध दिशात्मक होते हैं।

प्रश्न 2. क्रिस्टल क्षेत्र सिद्धान्त की सहायता से [Fe(H₂O₆)²+ एवं [Fe(CN)₆]-⁴ की तुलनात्मक विवेचना कीजिए।

उत्तर: क्रिस्टल क्षेत्र सिद्धान्त के अनुसार $[Fe(H_2O)_6]^{+2}$ एवं $[Fe(CN)_6]^{4-}$ दोनों संकुल अष्टफलकीय संकुल है।

अष्टफलकीय संकुलों में d – कक्षकों का लिगैण्डों की उपस्थिति में विपाटन t2g व t2g में होता है। जिसमें 12 की ऊर्जा घट जाती है व eg की ऊर्जा बढ़ जाती है।

यहाँ पर CN- एक प्रबल लिगैण्ड है जबिक H₂O दुर्बल लिगैण्ड है। इस कारण CN- की उपस्थिति में e-का युग्मन हो जाता है लेकिन H₂O की उपस्थिति में नहीं होता है। Fe⁺² का इलेक्ट्रॉनिक विन्यास 3d⁶ 4s⁰ होता है –

अर्थात् H₂O की उपस्थिति में Fe⁺² का इलेक्ट्रॉनिक विन्यास (f_{2g})⁴, (eg)² होता है जो उच्च चक्रण, बाह्य कक्षक संकुल बनाता है।

जबिक CN^- की उपस्थिति में Fe^{+2} का इलेक्ट्रॉनिक विन्यास $(t_{2g})^6$, $(eg)^0$ होता है जो निम्न चक्रण, आन्तरिक कक्षक संकुल बनाता है।

प्रश्न 3. आयनन समावयवता को परिभाषित कीजिए। [CO(NH₃)₅CI]SO₄ एवं [CO(NH₃)₅SO₄]CI के IUPAC नाम लिखिए। इसका प्रमाण दीजिए कि उपर्युक्त दोनों संकुल आयनन समावयव है। उत्तर: IUPAC नाम-[CO(NH₃)₅Cl]SO₄: पेन्टाऐम्मीन क्लोरो कोबाल्ट (III) सल्फेट [Co(NH₃) SO₄]CI — पेन्टाऐम्मीन सल्फेटो कोबाल्ट (III) क्लोराइड। दोनों संकुल आयनन समावयव हैं क्योंकि दोनों संकुल जलीय विलयन अलग-अलग आयन देते हैं। जिसका प्रमाण निम्न संकुलों की क्रमश: BaCl₂ एवं AgNO₃ से क्रिया द्वारा दिया जा सकता है — [CO(NH₃)₅Cl]SO₄ + BaCl₂ \rightarrow [Co(NH₃)₅Cl] Cl₂ + BaSO₄ (\downarrow) श्वेत अवक्षेप [Co(NH₃)₅SO₄]Cl + AgNO₃ \rightarrow [Co(NH₃)₅SO₄]NO₃ + AgCl(\downarrow) हल्का पीला अवक्षेप दोनों संकुल अलग-अलग प्रकार के अवक्षेप देते हैं।

प्रश्न 4. निम्नलिखित उपसहसंयोजक यौगिकों के IUPAC नाम लिखिए।

- (अ) $[Pt(NH_3)_2CI(NO_2)]$
- (ৰ) Na[BH₄]
- (衹) [Co(NH₃)₅(CO₂)]Cl
- (द) Zn₂[Fe(CN)₆]

उत्तर: (अ) [Pt(NH₃)₂Cl(NO₂)] – डाइऐम्मीनक्लोरिडोनाइट्रो प्लेटिनम (॥)

- (ब) Na[BH4] सोडियम टेट्राहाइड्रिडो बोरेट (III)
- (स) [Co(NH₃) (CO₃)]CI पेन्टाऐम्मीनकार्बोनेटोंकोबाल्ट (III) क्लोराइड
- (द) Zn₂[Fe(CN)₆] जिंक हेक्सासायनो फेरेट (II)