9.8)

Create a graph based on the cards. Each vertex is a packet of cards and the edges are cards that are in the same pack. Attempt to find a minimum cover of the graph, which will result in the minimum k value. If the vertex cover problem is NP hard then this problem is NP hard since it utilizes vertex cover.

9.10)

If an algorithm can be written to solve the problem and give an output with k vertices and y edges, then the problem is NP. To prove that it is complete, we can assume that the graph is a clique (maximal complete subgraph). To prove that the graph is a clique we can iterate through all values of k and create a subgraph of all of a subset of k vertices by choosing from all of the vertices. If that subgraph is a clique then the graph contains a clique of k vertices. Then we can check that subgraph to see if it contains y edges. To determine this, y = (k(k-1))/2. If the graph is a clique with k vertices (as we determined before) then it is also one with k vertices and y edges.