N.B: Le barême est approximatif.

Il sera tenu compte de la présentation de la copie.

L'usage de la calculatrice et du mobile est interdit.

Exercice: (10 pts)

Soit l'application linéaire $f: \mathbb{R}_2[X] \to \mathbb{R}^2$ telle que la matrice associée à f relativement aux bases canoniques respectives $B = (1, X, X^2)$ et $C = (e_1 = (1, 0), e_2 = (0, 1))$ de $\mathbb{R}_2[X]$ et \mathbb{R}^2 est :

$$A = M(f, B, C) = \begin{pmatrix} 2 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}.$$

1/ Déterminer f.

$$\mathbf{2/a/Soit}$$
 le déterminant $\Delta = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$. Calculer Δ .

b/ En déduire que la famille de polynômes définie par :

$$B' = (P_1 = 1 + X^2, P_2 = -1 + X^2, P_3 = 1 + X + X^2)$$

est une base de $\mathbb{R}_2[X]$.

 \mathbf{c} / Déterminer la matrice de passage P de B vers B'.

 \mathbf{d} / Calculer P^{-1} .

3/ Soit $T \in \mathbb{R}_2[X]$ qui s'écrit :

 $T = a + bX + cX^2$ dans la base B, où a, b et c sont dans \mathbb{R} .

 $T = \alpha P_1 + \beta P_2 + \lambda P_3$ dans la base B', où α, β et λ sont dans \mathbb{R} .

Ecrire, en utilisant les résultats obtenus dans la question 2/, les formules qui donnent a, b et c en fonction de α, β et λ puis les formules inverses.

4/ Soit $C' = (v_1 = (1, 2), v_2 = (2, 1))$ une base de \mathbb{R}^2 .

 \mathbf{a} / Déterminer la matrice de passage Q de C vers C'.

b/ En déduire la matrice A' = M(f, B', C') (Utliser les résultats obtenus dans la question 2/).

Bon Courage