Business Problem/ Statement:

Loan approval is a critical process for financial institutions, and it often involves evaluating various factors such as credit history, income, employment status, and more. Building a predictive model for loan approval can help streamline this process, reduce manual effort, and make it more efficient while maintaining fairness and accuracy.

Scope of Work:

This project involves the development of a machine learning model with the objective of predicting the probability of loan approval. The model will be built using applicant information and historical loan data, aiming to deliver a solution that optimally benefits both lending institutions and loan applicants.

Project Overview:

This project endeavors to predict individual loan approval based on key features such as CIBIL Score, Education Level, and Annual Income.

Outline:

- 1. Data Collection
- 2. Feature Engineering
- 3. Data Cleaning
- 4. Exploratory Data Analysis
- 5. Data Preprocessing
- 6. Machine Learning Modeling with Hyperparameter Tuning
- 7. Model Evaluation

Dataset Features

Importing Packages

```
import pandas as pd
import numpy as np
import pickle
```

1. Data Collection

```
df = pd.read_csv("loan_approval_dataset.csv")
```

Get 5 rows of samples of the dataframe

```
df.sample(5)
```

loa income ar	an_id	no_	of_dependen	ts	€	educati	Lon	self_empl	oyed
593	594	•		4		Gradua	ate		No
600000 1502	1503			2		Gradua	1+0		Yes
4800000	1303			2		di auuc	ice		163
1174	1175			4		Gradua	ate		Yes
9800000 4098	4099			0	No+	Gradua	ate		Yes
7300000									
2833	2834			0		Gradua	ite		Yes
7500000									
lo residenti	oan_am ial as		loan_term value \		cibil_	score			
593	180	0000	6			851			
100000 1502	1320	0000	20			310			
11800000									
1174 18700000	2700	00000	2			395			
4098	2400	0000	18			651			
16600000 2833	2000	0000	10			632			
21700000	2090		10			032			
66	ommo ro	sial a	ssets value		1	⁄ asset	· C . V	alua	
bank asse					cuxury	_asset	.5_v	atue	
593	_		1100000				210	9000	
800000 1502			4600000			1	L290(0000	
4200000									
1174 9700000			3000000			2	23000	9000	
4098 4500000			100000			1	L960	9000	
2833			10700000			2	2470	9000	
9900000									
loa	an_sta	atus							
593	Appro								
1502 1174	Rejec Rejec								
4098	Appro	ved							
2833	Appro	oved							

2. Feature Engineering

Drop irrelavant columns

```
columns to remove = ['loan id']
# Remove the specified columns
df.drop(columns=columns_to_remove, inplace=True)
# No. of rows & Columns in the dataframe (shape)
print("Dataset Shape:", df.shape)
Dataset Shape: (4269, 12)
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4269 entries, 0 to 4268
Data columns (total 12 columns):
#
     Column
                                 Non-Null Count
                                                 Dtype
_ _ _
 0
      no of dependents
                                 4269 non-null
                                                 int64
      education
 1
                                 4269 non-null
                                                 object
 2
      self employed
                                 4269 non-null
                                                 object
 3
      income annum
                                4269 non-null
                                                 int64
 4
      loan amount
                                 4269 non-null
                                                 int64
 5
      loan term
                                 4269 non-null
                                                 int64
 6
      cibil score
                                4269 non-null
                                                 int64
 7
      residential assets value 4269 non-null
                                                 int64
 8
      commercial assets value
                                 4269 non-null
                                                 int64
 9
      luxury assets value
                                 4269 non-null
                                                 int64
 10
      bank_asset_value
                                4269 non-null
                                                 int64
11
                                4269 non-null
                                                 object
      loan status
dtypes: int64(9), object(3)
memory usage: 400.3+ KB
```

As we can see in the output.

- The dataset consists of 4269 records
- There are a total of 12 features (0 to 11)
- There are three types of datatype dtypes: int64(9), object(3)
- It's Memory usage that is, memory usage: 400.3+ KB
- Also, We can check how many missing values available in the Non-Null Count column

```
# Descriptive statistics of the DataFrame
df.describe()
        no_of_dependents
                           income annum
                                           loan amount
                                                          loan_term \
             4269.000000
                           4.269000e+03
                                         4.269000e+03
                                                        4269.000000
count
                           5.059124e+06
                                         1.513345e+07
                2,498712
                                                          10.900445
mean
```

```
2.806840e+06
                                          9.043363e+06
std
                1.695910
                                                            5.709187
                0.000000
                            2.000000e+05
                                           3.000000e+05
                                                            2.000000
min
25%
                1.000000
                            2.700000e+06
                                          7.700000e+06
                                                            6.000000
50%
                3.000000
                            5.100000e+06
                                           1.450000e+07
                                                           10,000000
75%
                4.000000
                            7.500000e+06
                                           2.150000e+07
                                                           16.000000
                5.000000
                            9.90000e+06
                                          3.950000e+07
                                                           20.000000
max
        cibil score
                       residential assets value
commercial assets value \
        4269.000000
                                   4.269000e+03
count
4.269000e+03
         599.936051
                                   7.472617e+06
mean
4.973155e+06
         172.430401
                                   6.503637e+06
std
4.388966e+06
                                  -1.000000e+05
min
         300,000000
0.000000e+00
25%
         453.000000
                                   2,200000e+06
1.300000e+06
                                   5.600000e+06
50%
         600.000000
3.700000e+06
75%
         748.000000
                                   1.130000e+07
7.600000e+06
         900.000000
                                   2.910000e+07
max
1.940000e+07
                               bank asset_value
        luxury assets value
count
               4.269000e+03
                                   4.269000e+03
               1.512631e+07
                                   4.976692e+06
mean
std
               9.103754e+06
                                   3.250185e+06
               3.000000e+05
                                   0.000000e+00
min
25%
               7.500000e+06
                                   2.300000e+06
50%
               1.460000e+07
                                   4.600000e+06
75%
               2.170000e+07
                                   7.100000e+06
               3.920000e+07
                                   1.470000e+07
max
```

Finding the unique values

```
def uniquevals(col):
    print(f'Unique Values in {col} is : {df[col].unique()}')

for col in df.columns:
    uniquevals(col)
    print("-"*75)

Unique Values in no_of_dependents is : [2 0 3 5 4 1]
------
Unique Values in education is : [' Graduate' ' Not Graduate']
```

```
Unique Values in self employed is : [' No' ' Yes']
Unique Values in income annum is : [9600000 4100000 9100000 8200000
9800000 4800000 8700000 5700000 800000
 1100000 2900000 6700000 5000000 1900000 4700000 500000 2700000
6300000
 5800000 6500000 4900000 3100000 2400000 7000000 9000000 8400000
1700000
 1600000 8000000 3600000 1500000 7800000 1400000 4200000 5500000
9500000
7300000 3800000 5100000 4300000 9300000 7400000 8500000 8800000
3300000
3900000 8300000 5600000 5300000 2600000 700000 3500000 9900000
3000000
 6800000 2000000 1000000 300000 6600000 9400000 4400000 400000
6200000
9700000 7100000 600000 7200000 900000 200000 1800000 4600000
2200000
 2500000 8600000 4000000 5200000 8900000 1300000 4500000 8100000
9200000
2800000 7500000 6400000 6900000 7700000 3200000 7900000 5900000
3400000
2100000 3700000 5400000 2300000 7600000 6000000 6100000 1200000]
Unique Values in loan amount is: [29900000 12200000 29700000
30700000 24200000 13500000 33000000 15000000
           4300000 11200000 22700000 11600000 31500000 7400000
  2200000
10700000
           9400000 10300000 14600000 19400000 14000000 25700000
  1600000
1400000
           9500000 28100000 5600000 24000000 25300000 12000000
  9800000
22000000
 11900000 3400000 6200000 27200000 7700000 5100000 18100000
24900000
  2300000 13400000 27800000 19100000 20500000 25400000 24700000
7600000
 23000000 19700000 24500000 10600000 30500000 18400000 18200000
18900000
          7500000 12300000 29100000 10100000 12400000 5000000
 28900000
1500000
                                     6500000 14800000 33500000
 18600000 18300000 16700000
                            8400000
29400000
  8900000 31200000 21200000
                            8600000
                                     8200000 3800000 28300000
8000000
 37600000 21100000 20700000
                            6400000 2000000 1100000 25000000
```

10800000						
900000	12900000	4500000	23600000	9700000	35900000	6800000
22100000	2220000	1500000	2200000	220000	1070000	1050000
23400000	23200000	15800000	32900000	3200000	18700000	19500000
600000	252222	100000	2000000	2262222	260000	1200000
800000	2600000	1200000	20800000	22600000	3600000	13900000
5500000						
6700000	8500000	700000	17400000	32100000	11100000	19300000
28800000						
20600000	35000000	33300000	1300000	9600000	15100000	5300000
22300000						
15900000	12800000	35200000	17500000	10500000	4100000	28200000
14300000				212222		
13300000	17900000	9900000	23100000	3100000	10900000	30400000
23300000			.=			
19800000	2900000	13200000	27100000	6000000	16400000	15600000
30100000						
20900000	15400000	3300000	32700000	15200000	7800000	17000000
11300000						
10400000	11000000	1700000	27000000	3500000	32400000	34600000
15500000						
22500000	16200000	29300000	9100000	30900000	4700000	2400000
35400000						
20000000	38800000	8100000	19600000	34300000	22200000	14400000
16800000						
27900000	20400000	4900000	4000000	19900000	1800000	11800000
25500000						
9300000	20200000	1000000	38200000	6600000	33200000	24400000
14100000	2250000	17100000	- 700000	700000	16000000	2122222
28700000	23500000	17100000	5700000	7000000	16900000	21000000
12600000	1720000	24100000	26200000	2040000	2220000	26000000
28000000	17200000	24100000	26300000	38400000	32200000	26900000
21900000	2000000	1760000	2000000	2522222	1.4500000	2242222
12500000	29800000	17600000	29000000	35300000	14500000	22400000
8700000	F20000	270000	2500000	21500000	1570000	7200000
6300000	5200000	2700000	25900000	21500000	15700000	7300000
7200000	2100000	4600000	F 400000	15200000	200000	26400000
18800000	2100000	4600000	5400000	15300000	2800000	36400000
27500000	1050000	2670000	500000	21.400000	2500000	1.4700000
11400000	18500000	26700000	5800000	21400000	2500000	14700000
17300000	21000000	000000	2020000	24000000	1020000	2050000
28600000	31900000	8800000	30300000	24800000	19200000	39500000
9000000	2200000	2100000	1000000	1.4200000	2200000	2220000
19000000	23900000	31800000	10000000	14200000	22800000	32300000
500000	F000000	24600000	16000000	1270000	12100000	600000
6100000	5900000	24600000	16000000	12700000	13100000	6900000
27700000	1200000	1000000	27400000	1700000	2010202	2260222
29200000	13800000	18000000	27400000	17800000	20100000	32600000
4800000						

```
11500000 22900000 1900000
                            300000 16600000 28500000 25100000
25800000
 21800000 30000000 10200000 31700000 26000000 8300000 35500000
33900000
17700000 4200000 9200000 20300000 400000 34700000 26500000
16500000
14900000 37000000 27300000 26200000 25600000 16300000 24300000
21600000
 11700000 34200000 34500000 13000000 23700000 30800000 3900000
13600000
38700000 26600000 37900000 21700000 29600000 23800000 34000000
25200000
35700000 26100000 16100000 13700000 38000000 37500000 7900000
34400000
37300000 21300000 28400000 35800000 38500000 34900000 33600000
36800000
31400000 3000000 4400000 26400000 37800000 7100000 34100000
30200000
32000000 31300000 12100000 36700000 30600000 3700000 31600000
29500000
31000000 34800000 36500000 36000000 36300000 31100000 26800000
35100000
32800000 33100000 32500000 33400000 27600000 33700000 36600000
33800000
37700000 361000001
_____
Unique Values in loan term is : [12  8 20 10  4  2 18 16 14  6]
______
Unique Values in cibil_score is : [778 417 506 467 382 319 678 782
388 547 538 311 679 469 794 663 780 736
652 315 530 551 324 514 696 662 336 850 313 363 436 830 612 691 636
348
352 712 822 540 342 787 331 677 634 502 435 689 657 590 818 431 841
421
797 478 669 365 586 784 364 715 693 777 312 340 386 418 735 494 671
801 576 639 470 826 613 713 439 387 402 837 641 489 844 452 366 300
562 463 702 618 633 764 591 719 317 302 879 437 456 647 379 717 545
570
865 821 859 395 429 565 357 465 479 425 786 564 501 727 894 829 802
543
772 572 709 481 306 415 548 701 890 704 318 761 524 681 737 638 656
341
371 886 748 376 873 309 869 534 566 742 824 575 766 888 622 458 327
682
583 816 455 355 389 870 827 768 707 665 420 471 819 809 744 484 673
```

```
695
473 491 733 434 774 503 598 796 632 770 667 585 851 378 807 831 674
725
600 536 477 560 539 852 853 729 546 789 325 716 523 345 649 666 813
513 483 308 651 433 403 405 516 468 672 549 450 320 476 573 877 531
474
499 726 485 708 404 512 441 555 466 427 593 731 451 628 424 381 449
781 721 563 419 372 885 596 349 685 377 620 611 767 592 900 814 755
584
380 655 833 658 648 730 621 610 339 650 367 847 360 880 608 760 385
711 855 771 338 769 629 699 391 891 775 897 839 868 353 792 635 457
350
874 411 482 396 303 728 698 490 504 790 860 492 834 443 329 739 867
307
375 601 756 838 442 808 597 373 552 607 823 328 580 559 587 817 765
843 783 409 625 645 887 791 686 722 407 895 453 627 889 684 578 369
557
519 741 508 493 664 362 703 758 828 528 623 579 846 589 845 401 522
588
863 798 668 881 406 799 743 734 812 459 448 517 426 785 472 683 803
464 747 335 394 848 788 509 899 595 322 631 330 567 323 670 609 354
746
857 556 393 688 384 414 815 854 849 346 856 440 616 461 866 820 544
561
614 351 399 344 301 763 624 644 642 423 724 706 811 326 488 475 337
511
810 428 356 594 480 757 321 368 806 832 571 527 333 532 754 835 553
558 515 740 447 745 495 660 883 795 762 462 779 752 305 310 525 661
800 568 842 653 617 460 804 358 836 554 840 430 347 550 878 603 444
343 714 529 446 705 898 487 615 676 605 569 410 753 454 619 858 392
637
359 723 304 690 862 496 659 542 749 694 574 692 521 541 640 630 535
422
606 370 700 751 896 577 537 316 412 793 390 397 876 498 872 871 497
759
413 602 720 505 582 416 510 500 626 654 892 680 750 314 520 776 825
518 805 332 882 604 507 408 374 687 533 581 675 773 718 432 526 398
893 438 486 732 334 738 864]
```

	22400000	12500000	2200000	17200000	1020000	1040000
22100000	23400000	13500000	23900000	1/300000	18300000	19400000
	24000000	6700000	13900000	20600000	25400000	7500000
10100000						
17700000	28300000	11200000	18800000	14500000	24900000	26300000
13300000						
22400000	2/600000	21400000	28/00000	25300000	25800000	18600000
19100000	28200000	1970000	25200000	24700000	16700000	17000000
16300000	20200000	13700000	23200000	24700000	1070000	1700000
15000000	21300000	12800000	20300000	12300000	19900000	16200000
19000000						
16400000	8900000	22700000	25700000	21200000	27000000	21600000
17800000						
28500000	14900000	17900000	28400000	23700000	20500000	24600000
20100000	20900000	21000000	26600000	26200000	10200000	17500000
28000000	20900000	21000000	20000000	2020000	19600000	1/300000
	26900000	26100000	20700000	29100000	18900000	25100000
23500000	2030000	2010000	20,0000	2310000	1030000	23100000
	27500000	25000000	23100000	27400000	27300000]	
Unique Va					_	00 2200000
		3200000 8			5700000	100000
800000	1400000	4700000	5800000	9600000	16600000	1200000
3900000 100000	200000					
100000	7200000	0	3500000	1600000	11300000	170000
600000	2800000	0	3500000	1600000	11300000	1700000
600000 8700000						
600000 8700000 7400000		10600000			11300000 12400000	1700000 5200000
8700000			4200000		12400000	
8700000 740000	3100000	10600000	4200000	11900000	12400000	5200000
8700000 7400000 200000 6300000 6900000	3100000	10600000	4200000	11900000 11200000	12400000	5200000
8700000 7400000 200000 6300000 6900000 10300000	3100000 700000 9100000	10600000 300000 8600000	4200000 1300000 10500000	11900000 11200000 1800000	12400000 12100000 9300000	5200000 1500000 5600000
8700000 7400000 200000 6300000 6900000 10300000 4900000	3100000 700000	10600000	4200000 1300000	11900000 11200000 1800000	12400000 12100000	5200000 1500000
8700000 7400000 200000 6300000 6900000 10300000 4900000 3800000	3100000 700000 9100000 16300000	10600000 300000 8600000 1900000	4200000 1300000 10500000 6100000	11900000 11200000 1800000 9700000	12400000 12100000 9300000 11700000	5200000 1500000 5600000 9400000
8700000 7400000 200000 6300000 6900000 10300000 4900000 3800000 2500000	3100000 700000 9100000	10600000 300000 8600000	4200000 1300000 10500000	11900000 11200000 1800000	12400000 12100000 9300000	5200000 1500000 5600000
8700000 7400000 200000 6300000 6900000 10300000 4900000 3800000 2500000 4300000	3100000 700000 9100000 16300000 7800000	10600000 300000 8600000 1900000 8900000	4200000 1300000 10500000 6100000 500000	11900000 11200000 1800000 9700000 11400000	12400000 12100000 9300000 11700000 13600000	5200000 1500000 5600000 9400000 2600000
8700000 7400000 200000 6300000 6900000 10300000 4900000 3800000 2500000	3100000 700000 9100000 16300000	10600000 300000 8600000 1900000	4200000 1300000 10500000 6100000	11900000 11200000 1800000 9700000	12400000 12100000 9300000 11700000	5200000 1500000 5600000 9400000
8700000 7400000 200000 6300000 6900000 10300000 4900000 3800000 2500000 4300000 3200000	3100000 700000 9100000 16300000 7800000	10600000 300000 8600000 1900000 8900000	4200000 1300000 10500000 6100000 500000	11900000 11200000 1800000 9700000 11400000	12400000 12100000 9300000 11700000 13600000	5200000 1500000 5600000 9400000 2600000
8700000 7400000 200000 6300000 6900000 10300000 4900000 3800000 2500000 4300000 3200000 16500000 2700000 8000000	3100000 700000 9100000 16300000 7800000 1100000 7600000	10600000 300000 8600000 1900000 8900000 400000 6000000	4200000 1300000 10500000 6100000 500000 4800000 12200000	11900000 11200000 1800000 9700000 11400000 8500000 2000000	12400000 12100000 9300000 11700000 13600000 15200000 1000000	5200000 1500000 5600000 9400000 2600000 3600000 6200000
8700000 7400000 200000 6300000 6900000 10300000 4900000 3800000 2500000 4300000 3200000 16500000 2700000 8000000 5900000	3100000 700000 9100000 16300000 7800000 1100000	10600000 300000 8600000 1900000 8900000 400000	4200000 1300000 10500000 6100000 500000 4800000	11900000 11200000 1800000 9700000 11400000 8500000	12400000 12100000 9300000 11700000 13600000 15200000	5200000 1500000 5600000 9400000 2600000 3600000
8700000 7400000 200000 6300000 6900000 10300000 4900000 3800000 2500000 4300000 2700000 8000000 5900000	3100000 700000 9100000 16300000 7800000 1100000 7600000 4100000	10600000 300000 8600000 1900000 8900000 400000 6000000 6500000	4200000 1300000 10500000 6100000 500000 4800000 12200000 100000000	11900000 11200000 1800000 9700000 11400000 8500000 2000000 167000000	12400000 12100000 9300000 11700000 13600000 15200000 1000000 900000	5200000 1500000 5600000 9400000 2600000 3600000 6200000 2100000
8700000 7400000 200000 6300000 6900000 10300000 4900000 2500000 4300000 3200000 2700000 8000000 5900000 9500000	3100000 700000 9100000 16300000 7800000 1100000 7600000	10600000 300000 8600000 1900000 8900000 400000 6000000	4200000 1300000 10500000 6100000 500000 4800000 12200000 100000000	11900000 11200000 1800000 9700000 11400000 8500000 2000000	12400000 12100000 9300000 11700000 13600000 15200000 1000000	5200000 1500000 5600000 9400000 2600000 3600000 6200000
8700000 7400000 200000 6300000 6900000 10300000 4900000 2500000 3200000 16500000 2700000 800000 5900000 9500000 6800000	3100000 700000 9100000 16300000 7800000 1100000 7600000 4100000 4400000	10600000 300000 8600000 1900000 400000 6000000 6500000 18700000	4200000 1300000 10500000 6100000 500000 4800000 12200000 10000000 5100000	11900000 11200000 1800000 9700000 11400000 2000000 16700000 11100000	12400000 12100000 9300000 11700000 13600000 1000000 900000 12600000	5200000 1500000 5600000 9400000 2600000 3600000 6200000 2100000 5000000
8700000 7400000 200000 6300000 6900000 10300000 4900000 2500000 4300000 3200000 2700000 8000000 5900000 9500000	3100000 700000 9100000 16300000 7800000 1100000 7600000 4100000	10600000 300000 8600000 1900000 8900000 400000 6000000 6500000	4200000 1300000 10500000 6100000 500000 4800000 12200000 10000000 5100000	11900000 11200000 1800000 9700000 11400000 8500000 2000000 167000000	12400000 12100000 9300000 11700000 13600000 15200000 1000000 900000	5200000 1500000 5600000 9400000 2600000 3600000 6200000 2100000

```
6700000 10200000 10800000
 11500000
           8100000
                    5300000
                                                        4000000
4600000
  7000000
           6600000 17500000 16200000 12300000 12800000 13200000
16400000
 19000000 16100000
                    8800000
                             3700000
                                      5400000 8400000 12000000
15000000
  9200000 17200000 11800000 14900000 13800000 7900000 10400000
18500000
                  9900000 12700000 15400000 14700000 15600000
 12500000 13400000
14000000
16000000 13000000 14300000
                            9800000 18800000 13900000
                                                        7200000
7100000
 15100000 15500000 13300000
                             3000000 13700000
                                               7300000 17800000
6400000
17900000 12900000 14600000 10100000 18300000
                                              9000000 14500000
14200000
 17300000 13100000 10700000 16800000 18900000 18400000 18200000
14100000
          7700000 17000000 15900000 15300000 19400000 16900000
 14400000
13500000
17400000 15700000 15800000 17700000]
Unique Values in luxury assets value is : [22700000 8800000 33300000
23300000 29400000 13700000 29200000 11800000
  2800000
           3300000 9500000 20400000 14600000 20900000
                                                        5900000
16400000
  1300000
           6700000 6200000 23500000 18000000 22200000 19500000
1100000
10000000
           6600000 25300000
                            5400000 27500000 33700000 25500000
21700000
  2200000 19900000 19000000
                             6000000
                                      5300000 16700000
                                                        5600000
31000000
  3900000
           1800000 16200000 21400000 8700000 17700000 18500000
37700000
 20500000 21800000 9300000 31900000 19400000 16300000 34600000
17500000
 18600000 25900000 26500000 27400000 10500000 13100000 14900000
24100000
           1900000 11900000 21500000 12600000
  4900000
                                              4800000 12900000
35400000
                                                        3800000
 25200000
           2400000 12300000 26600000 10300000 11000000
27900000
23400000 12500000 22400000 3200000
                                     700000 18200000 23200000
36400000
 13800000
                                      4100000 23800000 20800000
           1200000
                     500000 11400000
9900000
            900000 17900000 19300000 33400000 7700000 22600000
11700000
1500000
```

23600000 4400000	2700000	2000000	800000	15500000	33900000	25700000
13900000	8600000	7500000	7400000	12800000	24500000	2100000
5100000 7200000	18800000	18100000	2900000	36100000	14000000	8400000
27800000						
8000000 23100000	10400000	17800000	4300000	27000000	16000000	5000000
18700000	9700000	17400000	6500000	33800000	5700000	20000000
8200000 14300000	26300000	26900000	26400000	27700000	24000000	22500000
28000000	20300000	20300000	20400000	27700000	24000000	22300000
31800000 27200000	12200000	38200000	38600000	19600000	21900000	3500000
3700000	15000000	34700000	23700000	8500000	10600000	16100000
21200000						
13600000	7000000	18400000	7100000	14700000	9600000	11200000
24300000	6400000	2222222	2500000	620000	2200000	21600000
20300000 29700000	6400000	23000000	25000000	6300000	22800000	31600000
29100000	30800000	13000000	26000000	14500000	16800000	29500000
28200000						
19100000	26700000	5200000	4600000	7900000	16900000	9800000
15600000	20200000	12400000	2000000	20100000	000000	10000000
30500000 35500000	30200000	12400000	3000000	20100000	8900000	19800000
28500000	25400000	16500000	17200000	4700000	28800000	3600000
400000	23400000	10300000	17200000	4700000	20000000	300000
14200000	14800000	14100000	22900000	26100000	36500000	28600000
34500000						
30900000	6900000	2300000	25100000	28900000	14400000	29900000
7600000 37000000	15000000	1400000	22500000	12500000	200000	13200000
1600000	15800000	1400000	33500000	13500000	300000	13200000
8100000	5800000	10900000	11300000	10200000	13300000	34900000
17300000						
22000000	32100000	20700000	26800000	27100000	10100000	21000000
19700000	720000	2222222	2212222	252222	010000	21100000
600000 32700000	7300000	32000000	22100000	2600000	9100000	31100000
32800000	24900000	5500000	32600000	3400000	9000000	12700000
6800000	21300000	3300000	32000000	3100000	3000000	1270000
17100000	20200000	10800000	34100000	26200000	29000000	11600000
31300000			1010000			
28400000	11100000	12000000	12100000	17000000	15100000	28300000
16600000 15300000	18900000	23900000	24400000	17600000	11500000	21100000
3000000	10300000	23300000	21100000	1700000	11300000	2110000
29600000	15200000	27600000	20600000	30400000	9400000	7800000

1830000 420000	920000	30100000	25900000	1700000	21600000	20200000	
35700000	6300000	30100000	25600000	1700000	21000000	29300000	
4500000	30300000	10700000	24800000	31500000	24700000	19200000	
13400000 35100000 15400000	35600000	15900000	33000000	31700000	9200000	6100000	
	24600000	35800000	22300000	34300000	36600000	3100000	
36900000 27300000	28100000	32500000	38100000	39200000	15700000	37800000	
31200000 33600000	39100000	21300000	24200000	37200000	37900000	25600000	
30600000	32900000	37400000	34000000	1000000	37600000	35900000	
32300000 32400000 33200000	31400000	30700000	34400000	4000000	32200000	29800000	
	36000000	36200000	36800000	35300000	38000000	33100000	
	35000000	36700000					
Llaigue Va	luga in l	ank accet	t valua da	[000(2000 2200	0000 12000	0000
Unique Va 7900000		5100000 4		5 : [8000 5000000	3300	9000 12800	0000
600000		3100000	6400000	1900000	4400000	700000	
5900000	1000000	3100000	0400000	1300000	4400000	700000	
6100000	5400000	8500000	300000	2600000	7200000	2500000	
9700000 9300000	1000000	5800000	900000	1400000	7100000	2900000	
9000000	1000000	3000000	300000	1400000	7100000	2300000	
5200000 10500000	800000	10900000	4900000	6500000	8200000	11700000	
11300000	3400000	6200000	8700000	4100000	4800000	11400000	
4700000							
	11900000	5500000	2400000	4200000	7600000	5600000	
2000000	620000	11100000	060000	500000	2600000	1000000	
1100000 12700000	6300000	11100000	8600000	6800000	3600000	10200000	
2100000	1300000	400000	7000000	7300000	100000	200000	
11600000	1500000	100000	700000	7500000	100000	200000	
1800000	9800000	8100000	7500000	13400000	9600000	3800000	
8400000 3200000	1200000	4600000	8300000	4500000	3500000	2300000	
7400000							
1700000 500000	9500000	3000000	2200000	9200000	4000000	11200000	
9400000	14400000	10000000	6600000	12500000	1500000	9100000	
7700000 7800000	10300000	9900000	8800000	5700000	10400000	11800000	

```
5300000
12400000 2700000 11500000 3900000 0 10800000 6700000
12900000
12300000 6900000 12200000 13500000 8900000 3700000 12100000
13600000
13100000 10600000 13900000 12000000 13000000 10100000 10700000
13200000 14700000 14000000 13300000 13800000 14600000 14300000
13700000 14100000]
-----
Unique Values in loan_status is : [' Approved' ' Rejected']
```

Checking categorical and numerical features

3. Data Cleaning

Checking for duplicate rows

```
# Check for duplicates based on all columns
duplicates_all = df[df.duplicated()]

# Print the results
print("Duplicates based on all columns:")
print(duplicates_all)

Duplicates based on all columns:
Empty DataFrame
```

```
Columns: [ no_of_dependents, education, self_employed, income_annum, loan_amount, loan_term, cibil_score, residential_assets_value, commercial_assets_value, luxury_assets_value, bank_asset_value, loan_status]
Index: []
```

It is clear that there are no duplicates

Handling null values

```
df.isna().sum()
 no of dependents
                              0
 education
                              0
 self employed
                              0
 income annum
                              0
 loan amount
                              0
                              0
 loan term
 cibil_score
                              0
 residential assets value
                              0
 commercial assets value
                              0
                              0
 luxury assets value
 bank_asset_value
                              0
                              0
 loan status
dtype: int64
```

Counting zeros of each column

```
# Count zeros in each column
zero counts = (df == 0).sum()
print(zero counts)
                              712
 no of dependents
 education
                                0
 self_employed
                                0
 income annum
                                0
 loan_amount
                                0
                                0
 loan term
 cibil score
                                0
 residential assets value
                               45
 commercial assets value
                              107
 luxury assets value
                                0
 bank asset value
                                8
 loan_status
                                0
dtype: int64
```

We are assuming residential_assets_value, commercial_assets_value and bank_asset_value to be non zero therefore replacing zeros with mean. But we do not consider no of dependents

```
# Calculate means for the columns
mean_residential_assets = df[' residential_assets_value'].mean()
mean_commercial_assets = df[' commercial_assets_value'].mean()
mean_bank_assets = df[' bank_asset_value'].mean()

# Replace zeros with means in the specified columns
df[' residential_assets_value'].replace(0, mean_residential_assets,
inplace=True)
df[' commercial_assets_value'].replace(0, mean_commercial_assets,
inplace=True)
df[' bank_asset_value'].replace(0, mean_bank_assets, inplace=True)
```

Now, 'df' contains the zeros in the specified columns replaced with their means

```
(df == 0).sum()
no_of_dependents
                               712
education
                                 0
self employed
                                 0
                                 0
income annum
loan amount
                                 0
loan term
                                 0
cibil score
                                 0
 residential_assets_value
                                 0
commercial assets value
                                 0
                                 0
luxury assets value
bank asset value
                                 0
                                 0
loan status
dtype: int64
```

4. Exploratory Data Analysis

```
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import warnings
# Ignore FutureWarnings
warnings.simplefilter(action='ignore', category=FutureWarning)
plot = df.hist(figsize=(12,10))
```


Loan Status Distribution

sns.countplot(x = ' loan_status', data = df).set_title('loan_status')
Text(0.5, 1.0, 'loan_status')

Dataset is clearly unbalanced (Approved > Rejected)

Number Of Dependents Distribution

```
sns.countplot(x = ' no_of_dependents', data = df).set_title('Number of Dependents')
Text(0.5, 1.0, 'Number of Dependents')
```


The graph illustrates the number of dependent individuals associated with loan applicants, revealing a stark contrast in living arrangements. There is not much difference in the number of dependents, Since the number of dependents increases the disposable income of the applicant decreases. So I assume that that the number of applicants with 0 or 1 dependent will have higher chances of loan approval.

Number of Dependants Vs Loan Status

```
sns.countplot(x = ' no_of_dependents', data = df, hue = '
loan_status')
<Axes: xlabel=' no_of_dependents', ylabel='count'>
```


The graph tells us that when someone has more family members they take care of, their chances of loan rejection go up. But what's interesting is that the number of people who get loans approved doesn't change much, even if they have more family members. This means my guess that loans might be approved less often for people with more family members isn't really right, based on this graph. It shows that sometimes what we think might not match what actually happens.

Education and Self Employed

```
sns.countplot(x=' self_employed', data = df, hue = '
education').set_title('Self Employed')
Text(0.5, 1.0, 'Self Employed')
```


The graph depicting the relationship between the employment status of applicants and their education levels highlights important trends for loan approval considerations. It reveals that a majority of non-graduate applicants are self-employed, while most graduate applicants are not self-employed. This indicates that graduates are more likely to be employed in salaried positions, whereas non-graduates tend to be self-employed.

Education and Income

```
fig, ax = plt.subplots(1,2,figsize=(10, 5))
sns.boxplot(x = ' education', y = ' income_annum', data = df,
ax=ax[0])
sns.violinplot(x = ' education', y = ' income_annum', data = df,
ax=ax[1])

<Axes: xlabel=' education', ylabel=' income_annum'>
```


The combination of boxplot and violinplot visualizations provides insights into the relationship between education levels of loan applicants and their annual incomes. The boxplot reveals that both graduates and non-graduates have similar median incomes, indicating that having a degree doesn't necessarily lead to a significant income advantage.

Moreover the violinplot shows the distribution of income among the graduates and non graduate applicants, where we can see that non graduate applicants have a even distribution between income 2000000 and 8000000, whereas there is a uneven distribution among the graduates with more applicants having income between 6000000 and 8000000 Since there is not much change in annual income of graduates and non graduates, I assume that education does not play a major role in the approval of loan.**

Education Vs Loan Status

```
sns.countplot(x = ' education', hue = ' loan_status', data =
df).set_title('Loan Status by Education')
Text(0.5, 1.0, 'Loan Status by Education')
```


The graph indicates that there's only a small difference between the number of loans approved and rejected for both graduate and non-graduate applicants. This difference is so small that it doesn't seem to be significant.

Loan Amount vs Terms

```
sns.lineplot(x = ' loan_term', y = ' loan_amount', data =
df).set_title('Loan Amount vs. Loan Term')
Text(0.5, 1.0, 'Loan Amount vs. Loan Term')
```


<pre>df.head()</pre>							
0 1 2 3 4	no_of_depende	2 G 0 Not G 3 G	ucation raduate raduate raduate raduate raduate	self_employed No Yes No No Yes	$9\overline{6}00000$ 4100000		
res 0	loan_amount idential_asse [.] 29900000	_	cibil_	score 778	2400000.0		
1	12200000	8		417	2700000.0		
2	29700000	20		506	7100000.0		
3	30700000	8		467	18200000.0		
4	24200000	20		382	12400000.0		
ban	<pre>commercial_assets_value luxury_assets_value bank_asset_value \</pre>						

1760	00000.0	22700000	8000000.0
220	00000.0	8800000	3300000.0
450	0000.0	33300000	12800000.0
330	00000.0	23300000	7900000.0
820	00000.0	29400000	5000000.0
ejected			
	226 456 336	_ pproved ejected ejected ejected	2200000.0 8800000 4500000.0 33300000 3300000.0 23300000 8200000.0 29400000 _status pproved ejected ejected ejected ejected

This line plot shows the trend between the loan amount and the loan tenure. Between the loan tenure of $2.5\,$ - 7.5 years the loan amount is between $1400000\,$ - 15500000.

However the loan amount is significantly higher for the loan tenure of 10 years. There is a huge difference

Loan Amount vs Loan Status

```
sns.violinplot(x=' loan_status', y=' loan_amount', data=df)
<Axes: xlabel=' loan_status', ylabel=' loan_amount'>
```


Loan Amount & Tenure vs Loan Status

```
sns.lineplot(x=' loan_term', y=' loan_amount', data=df, hue='
loan_status')
```

<Axes: xlabel=' loan_term', ylabel=' loan_amount'>

The graph shows how loan amount, the time to repay, and loan approval are connected. It's clear that loans that are accepted often have higher amounts and shorter repayment times. On the other hand, loans that are rejected are usually for lower amounts and longer repayment periods. This could be because the bank prefers to approve loans that are easier to pay back quickly and that bring in more profit. They might not want to deal with very small loans due to the costs involved. However, other things like how reliable the person borrowing is with money also matter in these decisions. The graph gives us a glimpse into how banks think when they decide to approve or reject loans.

CIBIL Score Distribution

CIBIL Score ranges and their meaning.

```
# Viewing the distribution of the cibil_score column
sns.histplot(df[" cibil_score"], bins=30, kde=True, color='green')
<Axes: xlabel=' cibil_score', ylabel='Count'>
```


Looking at the table, most customers have low CIBIL scores (below 649), which could make it hard for them to get loans approved. But there's a good number of customers with high scores (above 649), which is positive for the bank. The bank can give these high-score customers special treatment like good deals and offers to get them interested in taking loans from the bank. Based on this, we can guess that people with high CIBIL scores are more likely to get their loans approved. This is because higher scores usually mean they are better with money. Overall, the bank can use this information to make decisions that help both the bank and its customers.

CIBIL Score Vs Loan Status

```
sns.violinplot(x=' loan_status', y=' cibil_score', data=df)
<Axes: xlabel=' loan_status', ylabel=' cibil_score'>
```


The graph with the shapes (violinplot) clearly shows that people who got their loans approved tend to have higher CIBIL scores, mostly above 600. But for those whose loans weren't approved, the scores are more spread out and usually lower than 550. This means having a higher CIBIL score, especially over 600, really boosts the chances of getting a loan approved. It is very clear that a good CIBIL score is important for loan approval.

Asset Distribution

```
fig, ax = plt.subplots(2, 2, figsize=(10, 8))
plt.subplot(2, 2, 1)
sns.histplot(df[' luxury_assets_value'], color='red')
plt.title("Luxury Assets")

plt.subplot(2, 2, 2)
sns.histplot(df[' bank_asset_value'], color='blue')
plt.title("Bank Assets")

plt.subplot(2, 2, 3)
sns.histplot(df[' residential_assets_value'], color='green')
plt.title("Residential Assets")

plt.subplot(2, 2, 4)
sns.histplot(df[' commercial_assets_value'], color='black')
```

```
plt.title("Commercial Assets")
plt.tight_layout()
plt.show()
```


These graphs tell us that most people have lower-valued assets, and the number of people with more valuable assets decreases. It helps us understand how assets affect loan decisions.

Assets vs Loan Status

```
fig, ax = plt.subplots(1, 4, figsize=(20, 5))
sns.histplot(x=' luxury_assets_value', data=df, ax=ax[0], hue='
loan_status', multiple='stack')
ax[0].set_title("Luxury Assets")
sns.histplot(x=' bank_asset_value', data=df, ax=ax[1], hue='
loan_status', multiple='stack')
ax[1].set_title("Bank Assets")
```

```
sns.histplot(x=' residential_assets_value', data=df, ax=ax[2], hue='
loan_status', multiple='stack')
ax[2].set_title("Residential Assets")
sns.histplot(x=' commercial_assets_value', data=df, ax=ax[3], hue='
loan_status', multiple='stack')
ax[3].set_title("Commercial Assets")
plt.show()
```


Assets offer a safety net for the bank when giving out loans. Both graphs indicate that as assets increase, the likelihood of loan approval slightly goes up, and the chances of rejection decrease

Loan Amount vs Income

```
sns.scatterplot(x=' income_annum', y = ' loan_amount', data = df)
<Axes: xlabel=' income_annum', ylabel=' loan_amount'>
```


The loan amount and the applicant's annual income share a straightforward connection. When the income is higher, the loan amount tends to be higher as well. This is because the applicant's income plays a major role in determining the appropriate loan amount they can afford to repay.

Assets vs Loan Amount

```
fig, ax = plt.subplots(1,4,figsize=(20, 8))
sns.scatterplot(x=' luxury_assets_value', y = ' loan_amount', data =
df, ax=ax[0]).set_title('Luxury_assets vs loan_amount')
sns.scatterplot(x=' bank_asset_value', y = ' loan_amount', data = df,
ax=ax[1]).set_title('Bank_asset_assets vs loan_amount')
sns.scatterplot(x=' residential_assets_value', y = ' loan_amount',
data = df, ax=ax[2]).set_title('Residential_assets vs loan_amount')
sns.scatterplot(x=' commercial_assets_value', y = ' loan_amount', data
= df, ax=ax[3]).set_title('Commercial_assets vs loan_amount')
Text(0.5, 1.0, 'Commercial_assets vs loan_amount')
```


It is showing that having more assets increases the likelihood of getting a larger loan from the bank. There are some outliers as well

Label Encoding the categorical variables

```
# Label Encoding
df[' education'] = df[' education'].map({' Not Graduate':0, '
Graduate':1})
df[' self_employed'] = df[' self_employed'].map({' No':0, ' Yes':1})
df[' loan_status'] = df[' loan_status'].map({' Rejected':0, '
Approved':1})
```

Now all features are numerical

df.head()				
	ependents edu	cation sel	.f_employed in	ncome_annum
loan_amount			•	050000
0	2	1	0	9600000
29900000	0	0	1	4100000
1220000	0	0	1	4100000
12200000 2	3	1	0	9100000
29700000	3	1	U	910000
3	3	1	0	8200000
30700000	3	-	V	020000
4	5	0	1	9800000
24200000	_	-		
loan_ter	—		ial_assets_valu	
-	12 77	-	2400000	
1	8 41		2700000	
	20 50		7100000	
3	8 46	1	18200000	. 0

4	20	382	12400000.0	
banl	commercial_a k_asset_value		luxury_assets_value	
0		17600000.0	22700000	8000000.0
1		2200000.0	8800000	3300000.0
2		4500000.0	33300000	12800000.0
3		3300000.0	23300000	7900000.0
4		8200000.0	29400000	5000000.0
0	loan_status			
1 2	0 0			
3 4	0 0			

Histograms for each feature

```
fig, axes = plt.subplots(nrows = 5, ncols = 2)
axes = axes.flatten()
fig.set_size_inches(30,50)

for ax, col in zip(axes, df.columns):
    sns.histplot(df[col],kde=True, color='red', ax = ax)
```


Boxplot for each feature

```
fig, axes = plt.subplots(nrows = 5, ncols = 2)
axes = axes.flatten()
fig.set_size_inches(30,50)

for ax, col in zip(axes, df.columns):
    sns.boxplot(x=' loan_status',y=df[col], ax = ax , data=df)
```


Correlation Matrix

```
plt.figure(figsize=(12,8))
sns.heatmap(df.corr(), cmap='coolwarm', annot=True, fmt='.1f',
linewidths=.1)
plt.show()
```


The heatmap of correlation values shows several strong connections:

- 1. Movable Assets and Immovable Assets
- 2. Income and Movable Assets
- 3. Income and Immovable Assets
- 4. Movable Assets and Loan Amount
- 5. Immovable Assets and Loan Amount
- 6. Loan Status and Cibil Score
- 7. Loan Amount and Income

It makes sense that movable and immovable assets are related since they're both types of assets. Similarly, income is linked to both movable and immovable assets, as those with higher income tend to have more assets.

Now, let's look at how assets relate to the loan amount, as well as how income connects to the loan amount. We've already discussed the connection between loan status and CIBIL score in the previous part.

```
df.corr()[' loan_status']
 no of dependents
                             -0.018114
 education
                              0.004918
 self employed
                              0.000345
 income annum
                             -0.015189
 loan amount
                              0.016150
 loan term
                             -0.113036
 cibil_score
                              0.770518
 residential assets value
                             -0.014467
 commercial_assets_value
                              0.007511
 luxury assets value
                             -0.015465
 bank_asset_value
                             -0.006777
 loan_status
                              1.000000
Name: loan_status, dtype: float64
```

5. Data Preprocessing

	cp. cc.						
df							
no. 0 1 2 3 4	_of_depend	ents 6 2 0 3 3 5	education 1 0 1 1 0	self_em	ployed 0 1 0 0	income_annum 9600000 4100000 9100000 8200000 9800000	\
4264 4265 4266 4267 4268		5 0 2 1	1 0 0 0		 1 1 0 0	1000000 3300000 6500000 4100000 9200000	
	an_amount al_assets_ 29900000		cerm cib	il_score 778			
1 2700000.0	12200000		8	417			
2 7100000.0 3	30700000		20 8	506 467			
18200000. 4	0 24200000		20	382			

12400000			
12400000.0			
4264	2300000	12	317
2800000.0			
	11300000	20	559
4200000.0	2200000	10	457
4266 1200000.0	23900000	18	457
	12800000	8	780
8200000.0	1200000	U	700
	29700000	10	607
17800000.0		-	
		_	_
	mercial_asse	ts_value	luxury_assets_value
bank_asset		600000	2270000
0 8000000.0	17	600000.0	22700000
1	2	200000.0	8800000
3300000.0	2		000000
2	4	500000.0	3330000
12800000.0			
3	3	300000.0	23300000
7900000.0 4	0	200000.0	29400000
5000000.0	O	200000.0	2940000
4264		500000.0	330000
800000.0	•		1100000
4265	2	900000.0	11000000
1900000.0 4266	12	400000.0	18100000
7300000.0	12	.000010	1010000
4267		700000.0	14100000
5800000.0			
4268	11	800000.0	35700000
12000000.0			
102	n_status		
0	1		
1	0		
1 2 3 4	0		
3	0		
4	0		
 4264	0		
4265	1		
4266	0		
	-		

```
4267 1
4268 1
[4269 rows x 12 columns]
```

Outlier Detection

Using zscore

```
from scipy.stats import zscore
# Create a copy of the DataFrame to avoid modifying the original
df copy = df.copy()
# Calculate Z-scores for each numeric column
numeric columns = df_copy.select_dtypes(include=[np.number]).columns
df copy[numeric columns] = df copy[numeric columns].apply(zscore)
# Set a threshold for Z-score (e.g., 3)
threshold = 3
# Identify outliers based on Z-score
outliers = df_copy[(np.abs(df_copy[numeric columns]) >
threshold).any(axis=1)]
print(outliers.count())
 no of dependents
                             33
 education
                             33
 self employed
                             33
 income annum
                             33
 loan amount
                             33
 loan term
                             33
 cibil score
                             33
                             33
 residential assets value
                             33
 commercial assets value
                             33
 luxury assets value
 bank asset value
                             33
 loan status
                             33
dtype: int64
```

Using IsolationForest

```
from sklearn.ensemble import IsolationForest

# Create an Isolation Forest model
clf = IsolationForest(contamination='auto', random_state=42) # Adjust
contamination based on your data

# Fit the model and predict outliers
```

It is clearly unbalanced data, so we need to oversample the minority class

Oversampling the minority class

```
from imblearn.over_sampling import RandomOverSampler

rs = RandomOverSampler()

X, y = rs.fit_resample(X,y)

y.value_counts()

1     2656
0     2656
Name: loan_status, dtype: int64
import warnings

# Suppress warnings within this code block
with warnings.catch_warnings():
    warnings.simplefilter("ignore")
```

6. ML Modelling with Hyperparameter Tuning

```
from sklearn.model_selection import train_test_split
from sklearn.pipeline import Pipeline
from sklearn.metrics import accuracy_score
from sklearn.compose import ColumnTransformer
from sklearn import tree
```

```
from sklearn.model_selection import GridSearchCV
from sklearn.linear_model import LogisticRegression
```

Train Test Split

```
X_train, X_test, y_train, y_test = train_test_split(X, y,
test_size=0.2, random_state=42)
```

Feature Scaling

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

# Save the fitted scaler to a file using pickle
scaler_filename = 'standard_scaler.pkl'
with open(scaler_filename, 'wb') as scaler_file:
    pickle.dump(sc, scaler_file)
```

1. Random Forest Classifier

```
from sklearn.ensemble import RandomForestClassifier
# Define the model
rf model = RandomForestClassifier()
# Define hyperparameters for tuning
param grid = {
    'n estimators': [10, 50, 100],
    'max depth': [None, 10, 15, 20],
    'min samples split': [2, 5, 10]
}
# Perform GridSearchCV
grid search rf = GridSearchCV(rf model, param grid, cv=5)
grid search rf.fit(X train, y train)
# Print the best hyperparameters
best hyperparameters = grid search rf.best params
print("Best Hyperparameters (Random Forest):", best_hyperparameters)
# Evaluate the model
train accuracy = accuracy score(y train,
grid search rf.predict(X train))
test accuracy = accuracy score(y test, grid search rf.predict(X test))
print("Random Forest Classifier:")
print("Training Accuracy:", train_accuracy)
print("Testing Accuracy:", test_accuracy)
```

```
Best Hyperparameters (Random Forest): {'max_depth': 15, 'min_samples_split': 2, 'n_estimators': 100}
Random Forest Classifier:
Training Accuracy: 1.0
Testing Accuracy: 0.9811853245531514
```

2. Support Vector Classification (SVC)

```
from sklearn.svm import SVC
# Define the model
svm model = SVC()
# Define hyperparameters for tuning
param grid = {
    \overline{C}: [0.1, 1, 10],
    'kernel': ['linear', 'rbf'],
}
# Perform GridSearchCV
grid_search_svm = GridSearchCV(svm_model, param_grid, cv=5)
grid search svm.fit(X train, y train)
# Print the best hyperparameters
best_hyperparameters = grid_search_svm.best_params_
print("Best Hyperparameters (SVM):", best hyperparameters)
# Evaluate the model
train_accuracy = accuracy_score(y_train,
grid search svm.predict(X train))
test accuracy = accuracy score(y test,
grid search svm.predict(X test))
print("SVM Classifier:")
print("Training Accuracy:", train_accuracy)
print("Testing Accuracy:", test_accuracy)
Best Hyperparameters (SVM): {'C': 10, 'kernel': 'rbf'}
SVM Classifier:
Training Accuracy: 0.9809366909861144
Testing Accuracy: 0.9567262464722484
```

3. Naive Bayes

```
from sklearn.naive_bayes import GaussianNB

# Define the model
nb_model = GaussianNB()

# No hyperparameters to tune for Gaussian Naive Bayes
```

```
# Fit the model
nb_model.fit(X_train, y_train)

# Evaluate the model
train_accuracy = accuracy_score(y_train, nb_model.predict(X_train))
test_accuracy = accuracy_score(y_test, nb_model.predict(X_test))

print("Naive Bayes Classifier:")
print("Training Accuracy:", train_accuracy)
print("Testing Accuracy:", test_accuracy)

Naive Bayes Classifier:
Training Accuracy: 0.9512826547422923
Testing Accuracy: 0.9529633113828786
```

4. Gradient Boosting Classifier

```
from sklearn.ensemble import GradientBoostingClassifier
# Define the model
gb model = GradientBoostingClassifier()
# Define hyperparameters for tuning
param grid = {
    'n estimators': [10, 50, 100],
    'learning_rate': [0.01, 0.1, 0.2],
    'max depth': [3, 4, 5]
}
# Perform GridSearchCV
grid search gb = GridSearchCV(gb model, param grid, cv=5)
grid search gb.fit(X train, y train)
# Print the best hyperparameters
best hyperparameters = grid search gb.best params
print("Best Hyperparameters (GradientBoostingClassifier):",
best hyperparameters)
# Evaluate the model
train accuracy = accuracy score(y train,
grid search gb.predict(X train))
test_accuracy = accuracy_score(y_test, grid_search_gb.predict(X test))
print("Gradient Boosting Classifier:")
print("Training Accuracy:", train_accuracy)
print("Testing Accuracy:", test_accuracy)
Best Hyperparameters (GradientBoostingClassifier): {'learning_rate':
0.1, 'max depth': 5, 'n estimators': 100}
```

```
Gradient Boosting Classifier:
Training Accuracy: 1.0
Testing Accuracy: 0.9915333960489181
```

5. Decision Tree Classifier

```
from sklearn.tree import DecisionTreeClassifier, plot tree
from sklearn.model selection import GridSearchCV
# Define the model
dt model = DecisionTreeClassifier()
# Define hyperparameters for tuning
param grid = {
    'criterion': ['gini', 'entropy'],
    'max depth': [None, 10, 20, 30],
    'min_samples_split': [2, 5, 10],
    'min samples leaf': [1, 2, 4]
}
# Perform GridSearchCV
grid search dc = GridSearchCV(dt model, param grid, cv=5)
grid search dc.fit(X train, y train)
# Print the best hyperparameters
best hyperparameters = grid search dc.best params
print("Best Hyperparameters (Decision Tree):", best hyperparameters)
# Get the best model
best dt model = grid search dc.best estimator
# Evaluate the model
train accuracy = accuracy score(y train,
best dt model.predict(X train))
test_accuracy = accuracy_score(y_test, best_dt_model.predict(X_test))
print("Decision Tree Classifier:")
print("Training Accuracy:", train_accuracy)
print("Testing Accuracy:", test_accuracy)
Best Hyperparameters (Decision Tree): {'criterion': 'gini',
'max depth': 30, 'min samples leaf': 4, 'min samples split': 2}
Decision Tree Classifier:
Training Accuracy: 0.9922334666980466
Testing Accuracy: 0.9774223894637818
```

8. Model Evalution (Confusion Matrix and Classification Report)

```
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.metrics import confusion matrix, classification report
from sklearn.preprocessing import StandardScaler
# Standardize features
scaler = StandardScaler()
X train = scaler.fit transform(X train)
X test = scaler.transform(X test)
# Define a list of models
models = [
    ("Random Forest", grid search rf),
    ("SVM", grid_search_svm),
    ("Naive Bayes", nb model),
    ("Gradient Boosting", grid search gb),
    ("Decision Tree", grid search dc),
]
# Loop through each model
for model name, model in models:
    # Get model predictions
    predictions = model.predict(X test)
    # Calculate confusion matrix
    cm = confusion matrix(y test, predictions)
    # Create a confusion matrix heatmap
    plt.figure(figsize=(8, 6))
    sns.set(font_scale=1.2) # Adjust font size
    sns.heatmap(cm, annot=True, fmt='d', cmap='Blues', cbar=False,
                annot_kws={"size": 16}, square=True,
                xticklabels=['Predicted Negative', 'Predicted
Positive'l,
                yticklabels=['Actual Negative', 'Actual Positive'])
    plt.xlabel("Predicted")
    plt.ylabel("Actual")
    plt.title(f"Confusion Matrix - {model name}")
    plt.show()
    # Display classification report
    print(f"Classification Report - {model_name}:\n")
    print(classification report(y test, predictions))
```


Classificatio	n Report - I	Random For	est:	
	precision	recall	f1-score	support
0 1	0.98 0.98	0.98 0.98	0.98 0.98	561 502
accuracy macro avg weighted avg	0.98 0.98	0.98 0.98	0.98 0.98 0.98	1063 1063 1063

Classificatio	n Report - 9	SVM:		
	precision	recall	f1-score	support
9 1	0.96 0.96	0.96 0.95	0.96 0.95	561 502
accuracy macro avg weighted avg	0.96 0.96	0.96 0.96	0.96 0.96 0.96	1063 1063 1063

Classification Report - Naive Bayes:					
	precision	recall	f1-score	support	
0 1	0.94 0.97	0.97 0.93	0.96 0.95	561 502	
accuracy macro avg weighted avg	0.95 0.95	0.95 0.95	0.95 0.95 0.95	1063 1063 1063	

Actual Positive Actual Positiv

Predicted Negative Predicted Positive Predicted

Classification Report - Gradient Boosting:						
		precision	recall	fl-score	support	
	0 1	0.99 0.98	0.98 0.99	0.99 0.99	561 502	
\	accuracy macro avg weighted avg	0.99 0.99	0.99 0.99	0.99 0.99 0.99	1063 1063 1063	

Summary of Model Performance for Loan Approval Prediction

When looking at different ways to predict if loans will be approved or not, we found that the Random Forest and Gradient Boosting performedworked really well. It was

accurate and could predict outcomes quite accurately. Decision tree model also did a good job.

However, Support Vector Machine (SVM) and Naive Bayes didn't work well like the above models. They didn't predict as accurately as the Decision Tree and Random Forest models.

Saving the Gradient Boosting model

```
# Save the grid_search_rf model to a file using pickle
model_filename = 'grid_search_gb_model.pkl'
with open(model_filename, 'wb') as model_file:
    pickle.dump(grid_search_gb, model_file)
```

Loading the saved model

ROC curve for Gradient Boosting model

```
from sklearn.metrics import roc curve, auc
# Get predicted probabilities for the positive class
y probabilities = loaded model.predict proba(X test)[:, 1]
# Compute ROC curve and AUC
fpr, tpr, thresholds = roc_curve(y_test, y_probabilities)
roc auc = auc(fpr, tpr)
# Plot the ROC curve
plt.figure(figsize=(5, 5))
plt.plot(fpr, tpr, color='darkorange', lw=2, label=f'ROC curve (AUC =
{roc auc:.2f})')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc='lower right')
plt.show()
```

