

B41 Oct 18 Lec 1 Notes

The ovem:

Let $f:U \subset \mathbb{R}^n \to \mathbb{R}^m$. Suppose that the partial derivatives $\frac{\partial f_i}{\partial x_j}$ of f all exist and are continuous in a neighbour hood a e U. Then f is differentiable at $a \in U$.

Ex 13

Let f be a differentiable function. Verify that $w = f(x^2 - y^2, y^2 - x^2)$ is a solution to the differential equation

$$y = \frac{\partial w}{\partial x} + x \frac{\partial w}{\partial y} = 0$$

Let u=x2-y2, v=y2-x2

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial x} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial y} \frac{\partial v}{\partial x} = \frac{\partial w}{\partial x} (2x) + \frac{\partial w}{\partial y} (-2x)$$

$$\frac{\partial w}{\partial y} = \frac{\partial w}{\partial x} \frac{\partial u}{\partial y} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial y} = \frac{\partial w}{\partial x} \left(-2y\right) + \frac{\partial w}{\partial y} \left(2y\right)$$

Thus
$$y \frac{\partial w}{\partial x} + x \frac{\partial w}{\partial y} = 0$$

The ovem:

Let $f: \mathbb{R}^3 \to \mathbb{R}$ have continuous partial derivatives and let $x_0 = (x_0, y_0, Z_0)$ lie on the level surface S defined by $f(x_1y_1Z) = K$, for K a constant. Then $\nabla f(x_0)$ is normal to the level surface S.

Proof:

Let c(t) = (x(t), y(t), z(t)) be any differential curve pass through xo. at t = to on the level surface S. Then

f(x(t), y(t), =(e)) = k

Differentiating both sides of the equation, by the chain rule,

$$\frac{df}{dt}\Big|_{t=t_0} = \left(\frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt}\right)_{t=t_0} = \frac{d(k)}{dt}\Big|_{t=t_0} = 0$$

That is \\\ \(\(\(\tau_{\color} \) \\ \(\(\tau_{\color} \) \\ \(\(\tau_{\color} \) \\ \(\tau_{\color} \) \\ \(\(\tau_{\color} \) \\ \(\tau_{\color} \) \\ \(\(\tau_{\color} \) \\ \(\tau_{\color} \) \\ \(\(\tau_{\color} \) \\ \(\tau_{\color} \) \\ \(\(\tau_{\color} \) \\ \(\tau_{

Definition:

Let S be the surface consisting of those (x,y,z) s.t. f(x,y,z)=k, for k a constant. Let f be differentiable at $x_0=(x_0,y_0,z_0)$. The tangent plane of S at x_0 in \mathbb{R}^3 is defined by the equation . . .

That is, \(\nabla f(x_0, y_0, z_0) \cdot (x-x_0, y-y_0, z-z_0) = 0

Ex 2:

Find the tangent plane of the graph ex+2 siny = 2 at the point (0, 7/2, 1)

Let f(x,y,z)=k, where $f(x,y,z)=e^x+z$ sing and k=2.

$$\nabla f = \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right) = \left(e^{x}, z \cos y, \sin y\right)$$

Tangent plane : (1,0,1) - (x-0, y-1/2, 2-1) = 0

The ovem:

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differential function at (x_0, y_0) . Then the tangent plane of the graph of f at the point $(x_0, y_0, f(x_0, y_0))$ is given by

OR

Ex 3:

Find the points on the surface defined by $x^2+2y^2+3z^2=1$ where the tangent plane is parallel to the plane defined by 3x-y+3z=1.

Let $f = x^2 + 2y^2 + 3z^2$

Then $\nabla f = (2x, 4y, 6z)$

(Continued in next (esture)