Esvaziamento de tanques

Luiz Augusto Dembicki Fernandes 24 de janeiro de 2023

Resumo

1 Montagem Experimental

Foi mensurado o tempo(em triplicas) para dadas alturas em um tanque, utilizando diferentes bocais na saída do tanque, assim possibilitando avaliar seus efeitos no esvaziamento de um tanque.

2 Dados

Diametro do tanque: $D_1 = 0,252m$

Gravidade local: $9,78m/s^2$

2.1 Bocal 10mm

k = 0,78

h(cm)	tempo			Media de tempo
40	-	-	-	-
35	13,92	14,05	13,83	00:00:13,93
30	29,32	29,60	29,47	00:00:29,46
25	46,03	47,55	46,51	00:00:46,70
20	1:04,98	1:04,94	-	00:01:04,96
15	1:26,15	1:26,10	-	00:01:26,13
10	1:52,25	1:51,23	-	00:01:51,74
5	2:10,85	2:23,05	-	00:02:16,95

Tabela 1: Bocal 10mm

2.2 Bocal 7mm

k = 0,78

h(cm)	tempo			Media de tempo
40	_	_	_	-
35	00:00:26,72	00:00:27,62	00:00:27,62	00:00:27,32
30	00:00:57,49	00:00:57,74	00:00:57	00:00:57,42
25	00:01:30,51	00:01:31,71	00:01:30	00:01:31,06
20	02:07,94	02:09,38	00:02:08,19	00:02:08,50
15	02:49,32	02:49,83	00:02:49	00:02:49,47
10	03:41,29	03:42,05	00:03:41	00:03:41,46
5	04:47,85	04:49,06	00:04:47,70	00:04:48,20

Tabela 2: Bocal 7mm

2.3 Bocal 4mm

k = 0,78

h(cm)	tempo			Media de tempo
40	_	-	_	-
35	00:01:35,93	00:01:35,59	00:01:35,66	00:01:35,73
30	00:03:24,13	00:03:23,63	00:03:23,89	00:03:23,88
25	05:20,92	00:05:20,54	-	00:05:20,73
20	07:52,35	00:07:32,69	-	00:07:42,52
15	10:00,06	00:09:58,89	00:10:01,26	00:10:00,07
10	12:53,53	00:12:52,48	-	00:12:53,01
5	16:30,53	00:16:30,15	00:16:30,80	00:16:30,49

Tabela 3: Bocal 4mm

2.4 Sem Bocal 21mm

k=0,5

h(cm)	tempo			Media de tempo
40	_	-	_	-
35	00:00:03,88	00:00:03,88	00:00:03,90	00:00:03,89
30	00:00:07,78	00:00:07,82	00:00:07,79	00:00:07,80
25	00:00:12,01	00:00:12,08	00:00:12	00:00:12,01
20	00:00:16,55	00:00:16,65	00:00:17	00:00:16,68
15	00:00:22,05	00:00:22,15	00:00:22	00:00:22,10
10	00:00:27,94	00:00:28,02	00:00:28	00:00:27,99
5	00:00:35,77	00:00:35,89	00:00:36	00:00:35,87

Tabela 4: Sem Bocal 21mm

3 Análise de dados

Here you discuss your observations and results.

3.1 Solução téorica

A solução téorica é resolvida utilizando o PVI:

$$\frac{dh(t)}{dt} = -(\frac{r_2^2}{r_1^2} \cdot \sqrt{\frac{2g}{1+k}}) \sqrt{h(t)} ; h(0) = h_0$$

Utilizando h(0)=0,4me que o termo $(\frac{r_2^2}{r_1^2}\cdot\sqrt{\frac{2g}{1+k}})=c,$ temos que:

$$h(t) = 0,25 \cdot c^2 \cdot t^2 - (\frac{1}{2} \cdot 0, 4m \cdot \sqrt{10}) \cdot c \cdot t + 0, 4m$$

Para cada diametro de bocal temos os seguintes valores de C:

Bocal	$C(m^2/s)$
10mm	$5,220 \cdot 10^{-3}$
7mm	$2,558 \cdot 10^{-3}$
4mm	$8,352 \cdot 10^{-4}$
21mm	0,0251

3.2 Experimental

Foram então relacionados os respectivos tempos e alturas, teóricos e experimentais. Resultando nos seguintes gráficos:

Bocal 10mm

Bocal 7mm

Bocal 4mm

Bocal 21mm

4 Conclusão

O resultado final está dentro do esperado para a prática. Os devios são mínimos o suficiente para se atribuir a algumas tomadas de tempo faltando.