Теория Графов. Теорема Кёнига

Д. В. Карпов

Extended edition

2023

В двудольном графе G=(L,R,E) : $\alpha'(G)=\beta(G)$.

Доказательство.

Будем доказывать теорему при помощи теоремы Холла.

- Рассмотрим наименьшее вершинное покрытие (обозначим $B, \beta(G) = |B|$). Перестроим двудольный граф следующим образом: $G' = (B, V(G) \backslash B, E')$ (в левую долу поместим выбранные в B вершины, остальные поместим в правую).
- ▶ В правой доле рёбер нет: иначе B не является вершинным покрытием. Удалим все рёбра между вершинами левой доли если мы докажем, что $\alpha'(G') \geqslant \beta(G)$, то и $\alpha'(G) \geqslant \alpha'(G') \geqslant \beta(G)$ (новых рёбер в граф не добавлялось)

Д. В. Карпов

Преобразование графа

lacktriangle Для того, чтобы доказать, что lpha'(G)=eta(G), достаточно доказать, что $lpha'(G)\geqslant eta(G)$ и $lpha'(G)\leqslant eta(G)$.

- $\alpha'(G) \geqslant \beta(G)$
 - ▶ Проверим наличие паросочетания размера $|B| = \beta(G)$. Достаточно проверить условие Холла для B.
 - ▶ Если это не так, то $\exists S \subset B : |N_{G'}(S)| < |S|$ и, заменив S на $N_G(S)$, мы получим, что множество рёбер, которое покрывается, остаётся прежним (\Rightarrow условие для покрытия сохраняется), а размер покрытия станет меньше, противоречие с минимальностью B.

 $\alpha'(G) \leqslant \beta(G)$

- lacktriangle Для каждого ребра из максимального паросочетания M при покрытии среди двух вершин ребра $e \in M$ нужно выбрать хотя бы одну.
- ightharpoonup В противном случае ребро e не будет покрыто.
- ► Таким образом, $\beta(G) \geqslant \alpha'(G)$.

Теория Графов. Теорема Кёнига

Д. В. Карпов