1、实验名称及目的

log 数据记录与读取: 使用二进制日志记录模块: binary_logger, 完成飞行数据写入与读取。

2、实验效果

实现飞行日志的写入与读取。

3、文件目录

文件夹/文件名称	说明	
pixhawk_A.bin	飞控飞行日志文件。	
px4_read_binary_file.m	MATLAB飞行日志读取处理函数。	
px4demo_log.slx	Simulink 飞行日志写入模型文件。	

4、运行环境

序号	软件要求	硬件要求	
		名称	数量
1	Windows 10 及以上版本	笔记本/台式电脑 ^①	1
2	RflySim 平台免费版	卓翼 H7 飞控 ^②	1
3	MATLAB 2017B 及以上	数据线	1

①: 推荐配置请见: https://doc.rflysim.com/1.1InstallMethod.html

②: 须保证平台安装时的编译命令为: droneyee_zyfc-h7_default, 固件版本为: 1.12.1。其他配套飞控请见: http://doc.rflysim.com/hardware.html

5、实验步骤

Step 1:

打开 MATLAB 软件,在 MATLAB 中打开 px4demo_log.slx 文件,在 Simulink 中,点击编译命令。

Step 2:

在 Simulink 的下方点击 View diagnostics 指令,即可弹出诊断对话框,可查看编译过程。 在诊断框中弹出 Build process completed successfully,即可表示编译成功,左图为生成的编译报告。

Step 3:

用 USB 数据线链接飞控与电脑。在 MATLAB 命令行窗口输入: PX4Upload 并运行或 点击 PX4 PSP: Upload code to Px4FMU, 弹出 CMD 对话框,显示正在上传固件至飞控中,等待上传成功。

Step 4:

上传成功后,等待 20s 之后取出飞控中的 SD 卡,插入电脑后,在 SD 文件中找到 log 文件夹,复制 pixhawk_A.bin 文件,到实验的文件夹下,可修改文件名避免冲突!

Step 5:

在 MATLAB 命令行中输入如下程序:

clear;clc;

[datapts, numpts]=px4_read_binary_file('pixhawk_A.bin')

运行后,datapts 为记录的 4*5000 矩阵数据,同时也将全部打印命令行中,numpts 为采集到的数据点数量。

