Problème. Équations du second degré dans $\mathscr{L}(E)$

Dans ce problème, E désignera un \mathbb{K} -espace vectoriel, dont le neutre est noté 0.

On note $\mathscr{L}(E)$ l'ensemble des endomorphismes de E. On rappelle que $\mathscr{L}(E)$ a été muni d'une structure de \mathbb{K} -espace vectoriel avec une addition + et une loi de composition externe \cdot . On rappelle aussi que $(\mathscr{L}(E),+,\circ)$ est un anneau. En particulier, l'écriture f^2 désigne l'endomorphisme $f\circ f$. Parmi les endomorphismes de E, distinguons l'identité, notée id, et l'endomorphisme nul noté 0.

Le groupe des inversibles de $\mathscr{L}(E)$ est noté $\mathrm{GL}(E)$: c'est l'ensemble des automorphismes de E, c'est-à-dire celui des endomorphismes bijectifs.

Nous rappelons que si F est un sous-espace vectoriel de E et $f\in \mathscr{L}(E),$ on dit que F est stable par f si

$$\forall x \in F \quad f(x) \in F.$$

Nous allons considérer dans ce problème des endomorphismes f dans $\mathscr{L}(E)$ annulés par un polynôme

$$P = X^2 + \alpha X + \beta,$$

où α et β sont des scalaires de \mathbb{K} . Plus précisément, on supposera que

$$f^2 + \alpha f + \beta id = 0.$$

Partie 1. Le cas où P est scindé à racines simples : lemme des noyaux.

Dans cette partie, nous supposons que P possède deux racines distinctes λ et μ dans $\mathbb{K}: P = (X - \lambda)(X - \mu)$. On note

$$E_{\lambda} = \operatorname{Ker}(f - \lambda \operatorname{id})$$
 et $E_{\mu} = \operatorname{Ker}(f - \mu \operatorname{id}).$

- 0. Soit $x \in E_{\lambda}$. Que vaut f(x)?
- 1. Vérifier que

$$(f - \mu \mathrm{id}) \circ (f - \lambda \mathrm{id}) = 0 = (f - \lambda \mathrm{id}) \circ (f - \mu \mathrm{id}).$$

2. Vérifier que

$$\operatorname{Im}(f - \lambda \operatorname{id}) \subset \operatorname{Ker}(f - \mu \operatorname{id})$$
 et $\operatorname{Im}(f - \mu \operatorname{id}) \subset \operatorname{Ker}(f - \lambda \operatorname{id})$.

- 3. <u>Lemme des noyaux</u> (1): une preuve en dimension finie. Dans cette question, on suppose que E est de dimension finie égale à n.
 - (a) En utilisant le théorème du rang, démontrer que

$$n \leq \dim E_{\lambda} + \dim E_{\mu}$$
.

(b) Démontrer que E_{λ} et E_{μ} sont en somme directe, et en déduire

$$n \ge \dim E_{\lambda} + \dim E_{\mu}$$
.

(c) Justifier que

$$E = E_{\lambda} \oplus E_{\mu}$$

(d) Le temps du dessin

On considère $E = \mathbb{R}^3$, $\lambda = 2$, $\mu = 1$, dim $E_{\lambda} = 2$, dim $E_{\mu} = 1$.

Faire un dessin représentant E_{λ} et E_{μ} .

Représenter aussi un un vecteur x n'appartenant ni à E_{λ} ni à E_{μ} . Enfin, représenter f(x).

Un peu de couleur sera appréciée.

4. Lemme des noyaux (2) : une preuve en dimension quelconque. On ne fait plus d'hypothèse de dimension finie pour E. Démontrer à nouveau que $E = E_{\lambda} \oplus E_{\mu}$.

Partie 2. Cas où $P = X^2 - \lambda X$.

Dans cette partie λ est un réel <u>non nul</u> et f un endomorphisme de E tel que

$$f^2 = \lambda f$$
.

- 5. Comment appelle-t-on l'endomorphisme f dans le cas particulier où $\lambda = 1$?
- 6. Que dire de f si on suppose qu'il s'agit d'un automorphisme de E?
- 7. Justifier que

$$E = \operatorname{Ker}(f) \oplus \operatorname{Ker}(f - \lambda \operatorname{id}).$$

- 8. Montrer qu'il existe une homothétie h et un projecteur p tels que $f = h \circ p$.
- 9. Un exemple.
 - (a) Résoudre l'équation différentielle $y'' \lambda y' = 0$. On précisera une base et la dimension de cet espace vectoriel.
 - (b) Donner un exemple d'espace vectoriel E et un exemple d'endomorphisme f tel que $f^2 = \lambda f$ et tel que f ne soit pas une homothétie.

Partie 3. Cas où $P = X^2 - \gamma$.

Dans cette partie γ est un réel <u>non nul</u> et f un endomorphisme de E tel que

$$f^2 = \gamma id.$$

- 10. Comment appelle-t-on l'endomorphisme f dans le cas particulier où $\gamma=1$?
- 11. Montrer que f est un automorphisme de E et préciser f^{-1} .
- 12. Supposons que γ possède une racine carrée ρ dans \mathbb{K} . Justifier que

$$E = \operatorname{Ker}(f - \rho \operatorname{id}) \oplus \operatorname{Ker}(f + \rho \operatorname{id}).$$

Montrer qu'il existe une homothétie h et une symétrie s tels que $f = h \circ s$.

- 13. Un exemple. Dans cette question, $\mathbb{K} = \mathbb{R}$.
 - (a) Résoudre l'équation différentielle $y'' \gamma y = 0$. On discutera suivant le signe de γ , on précisera une base et la dimension.
 - (b) Donner un exemple d'espace vectoriel E et un exemple d'endomorphisme f tel que $f^2 = \gamma$ id et tel que f ne soit pas une homothétie.

Partie 4. Cas où $P = X^2 + 1$ avec $\mathbb{K} = \mathbb{R}$ et en dimension finie.

Dans cette partie du problème, on suppose que E est un \mathbb{R} -espace vectoriel de dimension finie et non réduit à $\{0\}$.

On suppose qu'il existe un endomorphisme f dans $\mathcal{L}(E)$ tel que

$$f^2 = -\mathrm{id}$$
.

Pour faire le lien avec la partie 3, on fait remarquer que ce problème correspond au cas où $\alpha = -1$, mais ici, α n'a pas de racine carrée dans \mathbb{R} .

- 14. Soit $u \in E$ un vecteur non nul. Montrer que (u, f(u)) est libre.
- 15. On note $V_u = \text{Vect}(u, f(u))$. Montrer que V_u est le plus petit sous-espace vectoriel de E contenant u et stable par f.
- 16. Soit $a \in V_u$ un vecteur non nul. Montrer que $V_u = V_a$.
- 17. Soit F un sous-espace vectoriel de E stable par f et ne contenant pas u. Montrer que V_u et F sont en somme directe et que $V_u \oplus F$ est stable par f.
- 18. En déduire qu'il existe des vecteurs u_1, \ldots, u_n tels que

$$(u_1, f(u_1), u_2, f(u_2), \cdots, u_p, f(u_p))$$

soit une base de E. En déduire que la dimension de E est paire.

- 19. Soit $g \in \mathcal{L}(E)$ tel que $g^2 = -\mathrm{id}$. Montrer qu'il existe un automorphisme $\theta \in \mathrm{GL}(E)$ tel que $g = \theta^{-1} \circ f \circ \theta$.
- 20. Réciproquement, on suppose que E est de dimension paire. Montrer qu'il existe un endomorphisme f dans $\mathcal{L}(E)$ tel que $f^2 = -\mathrm{id}$.

Petit problème supplémentaire. Quelques résultats de dualité.

On considère un \mathbb{K} -espace vectoriel de dimension finie, et on notera n sa dimension.

L'espace vectoriel $\mathcal{L}(E, \mathbb{K})$ des formes linéaires sur E est appelé dual de E et note E^* . On l'appelle **dual** de E, noté E^* .

On rappelle que si (e_1, \ldots, e_n) est une base de E, alors pour $i \in [1, n]$, on note e_i^* la forme linéaire qui à un vecteur x de E associe sa coordonnée sur e_i .

Si $A \subset E$, on note

$$A^{\perp} = \{ \varphi \in E^* \mid \forall x \in A \ \varphi(x) = 0. \},$$

appelé **orthogonal** de A dans E^* .

Si $B \subset E^*$, on note

$$B^{\circ} = \{ x \in E \mid \forall \varphi \in B \ \varphi(x) = 0. \},$$

appelé **orthogonal** de B dans E.

- 1. Base duale. Soit (e_1, \ldots, e_n) une base de E. Montrer que (e_1^*, \ldots, e_n^*) est une base de E^* .
- 2. Base antéduale. Soit (f_1, \ldots, f_n) une base de E^* . Montrer qu'il existe une unique base (e_1, \ldots, e_n) telle

$$\forall i \in [1, n] \quad e_i^* = f_i.$$

- 3. Soit $A \subset E$. Montrer que A^{\perp} est un sous-espace vectoriel de E^* .
- 4. Soit $B \subset E^*$. Montrer que B° est un sous-espace vectoriel de E.

5. (*) Soit F un sous-espace vectoriel de E. Démontrer que

$$\dim F + \dim F^{\perp} = \dim E \quad \text{et} \quad (F^{\perp})^{\circ} = F.$$

6. (*) Soit G un sous-espace vectoriel de E^* . Démontrer que

$$\dim G + \dim F^{\circ} = \dim E \quad \text{ et } \quad \left(G^{\circ}\right)^{\perp} = G.$$

7. Soient p formes linéaires $\varphi_1, \ldots, \varphi_p$ de E^* telles que $\operatorname{rg}(\varphi_1, \ldots, \varphi_p) = r$. On considère le sous-espace

$$F = \{x \in E \mid \forall i \in [1, p] \mid \varphi_i(x) = 0\}$$

Démontrer que sa dimension est n-r.