Algorithmique numérique Méthodes numériques de base(niveau L1/L2)

François Cuvelier

Laboratoire d'Analyse Géométrie et Applications Institut Galilée Université Paris XIII.

25 septembre 2013

Plan

- Introduction
- Pseudo-langage algorithmique
 - Les bases
 - Les instructions structurées
- Méthodologie de construction d'un algoritme
 - Exercices
- Pseudo-langage algorithmique (suite)
 - Les fonctions
 - Exemple : résolution d'une équation du premier degré
 - Exemple : résolution d'une équation du second degré

Définition

Définition (Petit Robert 97)

Algorithmique : Enchaînement d'actions nécessaires à l'accomplissement d'une tâche.

Exemple 1: permutation

Nous voulons permutter deux voitures sur un parking de trois places numérotées de 1 à 3 et ceci sans géner la circulation.

La première voiture, une Saxo, est sur l'emplacement 2, la seconde, une Clio, est sur l'emplacement 3.

Donner un algorithme permettant de résoudre cette tâche.

Exemple 2 : équation du premier degré

Donner un algorithme permettant de résoudre

$$ax = b$$

Caractéristiques d'un bon algorithme

- Il ne souffre d'aucune ambiguité ⇒ très clair.
- Combinaison d'opérations (actions) élémentaires.
- Pour toutes les données d'entrée, l'algorithme doit fournir un résultat en un nombre fini d'opérations.

Première approche méthodologique

Etape 1 : Définir clairement le problème.

Première approche méthodologique

Etape 1 : Définir clairement le problème.

Etape 2 : Rechercher une méthode de résolution (formules, ...)

Première approche méthodologique

- Etape 1 : Définir clairement le problème.
- Etape 2 : Rechercher une méthode de résolution (formules, ...)
- Etape 3 : Ecrire l'algorithme (par raffinement successif pour des algorithmes compliqués).

Plan

- Introduction
- Pseudo-langage algorithmique
 - Les bases
 - Les instructions structurées
- Méthodologie de construction d'un algoritme
 - Exercices
- Pseudo-langage algorithmique (suite)
 - Les fonctions
 - Exemple : résolution d'une équation du premier degré
 - Exemple : résolution d'une équation du second degré

Vocabulaire de base

- constantes, variables,
- opérateurs (arithmétiques, relationnels, logiques),
- expressions,
- instructions (simples et composées),
- fonctions.

Données et constantes

- Donnée ⇒ introduite par l'utilisateur
- Constante ⇒ symbole, identificateur non modifiable

Variables

Définition

Une variable est un objet dont la valeur est modifiable, qui possède un nom et un type (entier, caractère, réel, complexe, tableau, matrice, vecteur...).

Opérateurs arithmétiques

Nom	Symbole	Exemple
addition	+	a + b
soustraction	_	a-b
opposé	_	-a
produit	*	a∗b
division	/	a/b

Opérateurs relationnels

Nom	Symbole	Exemple
identique	==	a == b
différent	~=	$a\sim=b$
inférieur	<	a < b
supérieur	>	a > b
inférieur ou égal	<=	a <= b
supérieur ou égal	>=	a >= b

Opérateurs logiques

Nom	Symbole	Exemple
négation	~	~ a
ou		a b
et	&	a&b

Opérateur d'affectation

Nom	Symbole	Exemple
affectation	←	a

Définition

Une expression est un groupe d'opérandes (i.e. nombres, constantes, variables, ...) liées par certains opérateurs pour former un terme algébrique qui représente une valeur (i.e. un élément de donnée simple)

Définition

Une expression est un groupe d'opérandes (i.e. nombres, constantes, variables, ...) liées par certains opérateurs pour former un terme algébrique qui représente une valeur (i.e. un élément de donnée simple)

Exemple d'expression numérique

$$(b*b-4*a*c)/(2*a)$$

Définition

Une expression est un groupe d'opérandes (i.e. nombres, constantes, variables, ...) liées par certains opérateurs pour former un terme algébrique qui représente une valeur (i.e. un élément de donnée simple)

Exemple d'expression numérique

$$(b*b-4*a*c)/(2*a)$$

Opérandes \Rightarrow identifiants a, b, c, constantes 4 et 2.

Définition

Une expression est un groupe d'opérandes (i.e. nombres, constantes, variables, ...) liées par certains opérateurs pour former un terme algébrique qui représente une valeur (i.e. un élément de donnée simple)

Exemple d'expression numérique

$$(b*b-4*a*c)/(2*a)$$

Opérandes \Rightarrow identifiants a, b, c, constantes 4 et 2

Opérateurs \Rightarrow symboles *, - et /

Définition

Une expression est un groupe d'opérandes (i.e. nombres, constantes, variables, ...) liées par certains opérateurs pour former un terme algébrique qui représente une valeur (i.e. un élément de donnée simple)

Exemple d'expression booléenne

Définition

Une expression est un groupe d'opérandes (i.e. nombres, constantes, variables, ...) liées par certains opérateurs pour former un terme algébrique qui représente une valeur (i.e. un élément de donnée simple)

Exemple d'expression booléenne

Opérandes \Rightarrow identifiants x et contantes 3.14

Définition

Une expression est un groupe d'opérandes (i.e. nombres, constantes, variables, ...) liées par certains opérateurs pour former un terme algébrique qui représente une valeur (i.e. un élément de donnée simple)

Exemple d'expression booléenne

Opérandes \Rightarrow identifiants x et contantes 3.14

Opérateurs ⇒ symboles <

Instructions

Définition

Une **instruction** est un ordre ou un groupe d'ordres qui déclenche l'exécution de certaines actions par l'ordinateur. Il y a deux types d'instructions : simple et structuré.

Instructions simples

- affectation d'une valeur a une variable.
- appel d'une fonction (procedure, subroutine, ... suivant les langages).

Instructions structurées

- les instructions composées, groupe de pulsieurs instructions simples,
- les instructions répétitives, permettant l'exécution répétée d'instructions simples, (i.e. boucles «pour», «tant que»)
- les instructions conditionnelles, lesquels ne sont exécutées que si une certaine condition est respectée (i.e. «si»)

Exemple: boucle «pour»

Données: n

- 1: S ← 0
- 2: Pour $i \leftarrow 1$ à n faire
- 3: $S \leftarrow S + \cos(i^2)$
- 4: Fin Pour

Exemple: boucle «pour»

Données: n

- 1: *S* ← 0
- 2: Pour $i \leftarrow 1$ à n faire
- 3: $S \leftarrow S + \cos(i^2)$
- 4: Fin Pour

Calcul de
$$S = \sum_{i=1}^{n} \cos(i^2)$$

Exemple: boucle «tant que»

1:
$$i \leftarrow 0, x \leftarrow 1$$

2: Tantque i < 1000 faire

3:
$$X \leftarrow X + i * i$$

4:
$$i \leftarrow i + 1$$

5: Fin Tantque

Exemple: boucle «tant que»

1:
$$i \leftarrow 0, x \leftarrow 1$$

2: Tantque i < 1000 faire

3:
$$X \leftarrow X + i * i$$

4:
$$i \leftarrow i + 1$$

5: Fin Tantque

Calcul de
$$x = 1 + \sum_{i=0}^{999} i^2$$

Exemple: instructions conditionnelles «si»

Données:

note : un réel.

1: **Si** *note* > 12 **alors**

2: affiche('gagne')

3: Sinon Si $note \ge 8$ alors

4: affiche('oral')

5: Sinon

6: affiche('perdu')

7: **Fin Si**

Plan

- Introduction
- Pseudo-langage algorithmique
 - Les bases
 - Les instructions structurées
- Méthodologie de construction d'un algoritme
 - Exercices
- Pseudo-langage algorithmique (suite)
 - Les fonctions
 - Exemple : résolution d'une équation du premier degré
 - Exemple : résolution d'une équation du second degré

Description du problème

- Spécification d'un ensemble de données
 Origine : énoncé, hypothèses, sources externes, ...
- Spécification d'un ensemble de buts à atteindre Origine : résultats, opérations à effectuer, ...
- Spécification des contraintes

Recherche d'une méthode de résolution

- Clarifier l'énoncé.
- Simplifier le problème.
- Ne pas chercher à le traiter directement dans sa globalité.
- S'assurer que le problème est soluble (sinon problème d'indécidabilité!)
- Recherche d'une stratégie de construction de l'algorithme
- Décomposer le problème en sous problèmes partiels plus simples : raffinement.
- Effectuer des raffinements successifs.
- Le niveau de raffinement le plus élémentaire est celui des instructions.

Réalisation d'un algorithme

- Le type des données et des résultats doivent être précisés.
- · L'algorithme doit fournir au moins un résultat.
- L'algorithme doit être exécuté en un nombre fini d'opérations.
- L'algorithme doit être spécifié clairement, sans la moindre ambiguïté.

On cherche les solutions réelles de l'équation

$$ax^2 + bx + c = 0, (1)$$

en supposant que $a \in \mathbb{R}^*$, $b \in \mathbb{R}$ et $c \in \mathbb{R}$ sont donnés. Ecrire un algorithme permettant de résoudre cette équation.

Ecrire un algorithme permettant de calculer

$$S(x) = \sum_{k=1}^{n} k \sin(2 * k * x)$$

Ecrire un algorithme permettant de calculer

$$P(z) = \prod_{n=1}^{k} \sin(2 * k * z/n)^{k}$$

Soit la série de Fourier

$$x(t) = \frac{4A}{\pi} \left\{ \cos \omega t - \frac{1}{3} \cos 3\omega t + \frac{1}{5} \cos 5\omega t - \frac{1}{7} \cos 7\omega t + \cdots \right\}.$$

- Ecrire un algorithme permettant de calculer x(t) tronquée au trois premiers termes, avec $\omega = 2\pi$ et A = 1.
- Même question avec une troncature au n-ième terme.

Reprendre les quatre exercices précédants en utilisant les boucles «tant que».

Plan

- Introduction
- Pseudo-langage algorithmique
 - Les bases
 - Les instructions structurées
- Méthodologie de construction d'un algoritme
 - Exercices
- Pseudo-langage algorithmique (suite)
 - Les fonctions
 - Exemple : résolution d'une équation du premier degré
 - Exemple : résolution d'une équation du second degré

Les fonctions

Les fonctions permettent

- d'automatiser certaines tâches répétitives au sein d'un même algorithme,
- d'ajouter à la clarté de la l'algorithme,
- l'utilisation de portion de code dans un autre algorithme,
- ...

Les fonctions prédéfinies

les fonctions d'affichage et de lecture : Affiche, Lit

Les fonctions prédéfinies

- les fonctions d'affichage et de lecture : Affiche, Lit
- les fonctions mathématiques :

sin, cos, exp, ···

Les fonctions prédéfinies

- les fonctions d'affichage et de lecture : Affiche, Lit
- les fonctions mathématiques :

- les fonctions de gestion de fichiers
- ...

Ecrire ses propres fonctions

- Que doit-on calculer/réaliser précisement (but)?
- Quelles sont les données (avec leurs limitations)?

Syntaxe

Fonction $[args_1, ..., args_n] \leftarrow NomFonction(arge_1, ..., arge_m)$ instructions

Fin Fonction

Fonction $args \leftarrow NomFonction(arge_1, ..., arge_m)$ instructions

Fin Fonction

$$ax + b = 0$$

- But:
- Données :
- Résultats :

$$ax + b = 0$$

- But : trouver $x \in \mathbb{R}$ solution de ax + b = 0.
- Données :
- Résultats :

$$ax + b = 0$$

- But : trouver $x \in \mathbb{R}$ solution de ax + b = 0.
- Données :
 a ∈ ℝ* et b ∈ ℝ.
- Résultats :

$$ax + b = 0$$

- But : trouver $x \in \mathbb{R}$ solution de ax + b = 0.
- Données : $a \in \mathbb{R}^*$ et $b \in \mathbb{R}$.
- Résultats : x ∈ ℝ.

Algorithme 1 Exemple de fonction : Résolution de l'équation du premier degré ax + b = 0.

Données : a : nombre réel différent de 0

b : nombre réel.

Résultat : x : un réel.

1: **Fonction** $x \leftarrow \mathsf{REPD}(a, b)$

2: $x \leftarrow -b/a$

3: Fin Fonction

équation du second degré

On cherche les solutions réelles de l'équation

$$ax^2 + bx + c = 0, (2)$$

Pour celà, on pose $\Delta = b^2 - 4ac$

- si Δ < 0 alors les deux solutions sont complexes,
- si $\Delta = 0$ alors la solution est $x = -\frac{b}{2a}$,
- si $\Delta > 0$ alors les deux solutions sont $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b \sqrt{\Delta}}{2a}$.

Exercice

- Ecrire la fonction discriminant permettant de calculer le discriminant de l'équation (2).
- Ecrire la fonction RESD permettant de résoudre l'équation (2) en utilisant la fonction discriminant.
- Ecrire un programme permettant de valider ces deux fonctions.