Formulae

Discrete Distributions

Notation and Parameters	\mathbf{pmf}	Mean	Variance
	$f_X(x)$	$\mathbb{E}(X)$	Var(X)
Binomial			
$X \sim \text{Bin}(n, p)$	$\binom{n}{x}p^x(1-p)^{n-x}$	np	np(1-p)
0	$x = 0, 1, \dots, n$		
	$\mathtt{dbinom}(x,n,p)$		
Hypergeometric			
$X \sim \mathrm{Hyp}(n, M, N)$	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	$\frac{nM}{N}$	$n\frac{M}{N}\left(1-\frac{M}{N}\right)\frac{N-n}{N-1}$
$n = 1, 2, 3, \dots, N$	$x = \max(0, n - N + M) \dots,$		
$M = 0, 1, 2, \dots, N$	$\ldots, \min(n, M)$		
	$\mathtt{dhyper}(x,M,N-M,n)$		
Poisson			
$X \sim \text{Poi}(\lambda)$	$\frac{\lambda^x}{x!}e^{-\lambda}$	λ	λ
$\lambda > 0$	$x = 0, 1, 2, \dots$		
	$\mathtt{dpois}(x,\lambda)$		
Negative binomial			
$X \sim \text{NegBin}(k, p)$	$\binom{k+x-1}{x}p^k(1-p)^x$	$\frac{k(1-p)}{p}$	$\frac{k(1-p)}{p^2}$
0	$x = 0, 1, 2, \dots$		•
$k=1,2,\ldots$	${\tt dnbinom}(x,k,p)$		
<u>Geometric</u>			
$X \sim \mathrm{Geo}(p)$	$(1-p)^x p$	$\frac{1-p}{p}$	$\frac{1-p}{p^2}$
	$x = 0, 1, 2, 3 \dots$	_	-
	$\mathtt{dgeom}(x,p)$		

Continuous Distributions

Notation and Parameters	$\mathbf{pdf} \ f_X(x)$	\mathbf{Mean} $\mathbb{E}(X)$	Variance $Var(X)$
Uniform	JX(x)	112(21)	<u>var(21)</u>
$X \sim \text{Uniform}(a, b)$	$\frac{1}{b-a}$	$\frac{b-a}{2}$	$\frac{(b-a)^2}{12}$
$a \neq b$	a < x < b	_	12
$F_X(x) = \frac{x - a}{b - a}$	$F_X(x) = \mathtt{punif}(x, a, b)$		
Exponential			
$X \sim \text{Exponential}(\lambda)$	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$
$\lambda > 0$	x > 0	7	λ
$F_X(x) = 1 - e^{-\lambda x}$	$F_X(x) = \mathtt{pexp}(x,\lambda)$		
Gamma			
$X \sim \operatorname{Gamma}(k, \lambda)$	$\frac{\lambda^k}{\Gamma(k)} x^{k-1} e^{-\lambda x}$	$\frac{k}{\lambda}$	$\frac{k}{\lambda^2}$
$\lambda > 0$	x > 0		
	$F_X(x) = \mathtt{pgamma}(x,k,\lambda)$		
Chi-squared			
$X \sim \chi_{\nu}^2$	$\frac{(1/2)^{\nu/2}}{\Gamma(k)} x^{\nu/2 - 1} e^{-x/2}$	ν	2ν
$\nu=1,2,\dots$	x > 0		
	$F_X(x) = \mathtt{pchisq}(x,\nu)$		
Normal			
$X \sim \text{Normal}(\mu, \sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\{-(x-\mu)^2/2\sigma^2\}}$	μ	σ^2
$-\infty < x < \infty, \sigma^2 > 0$	$-\infty < x < \infty$		
	$F_X(x) {=} \mathtt{pnorm}(x, \mu, \sigma)$		

Connections between distributions

 $Z^2 \sim \chi^2$ (1 degree of freedom (df))

Joint distributions

Two continuous random variables

Joint cdf

$$F_{X,Y}(x,y) = \Pr(X \le x, Y \le y)$$

Joint pdf

$$f_{X,Y}(x,y) = \frac{\partial^2}{\partial x \partial y} F_{X,Y}(x,y)$$

$$\bullet f_{X,Y}(x,y) \ge 0$$

$$\bullet \int_{x} \int_{y} f_{X,Y}(x,y) \, dy dx = 1$$

Marginal pdf

$$f_X(x) = \int_y f_{X,Y}(x,y)$$
$$= \int_y f_{X|Y}(x|y) f_Y(y)$$

Conditional pdf

$$f_{Y|X}(y|x) = \frac{f_{X,Y}(x,y)}{f_X(x)}$$

Independence

$$\Pr(X \le x, Y \le y) = \Pr(X \le x) \Pr(Y \le y)$$

$$F_{X,Y}(x,y) = F_X(x)F_Y(y)$$

$$f_{X,Y}(x,y) = f_X(x)f_Y(y)$$
for all x and y

Expectation of a function

$$\mathbb{E}(g(X,Y)) = \int_{x} \int_{y} g(x,y) f_{X,Y}(x,y) \, dy dx$$

Covariance

$$Cov(X, Y) = \mathbb{E}(XY) - \mathbb{E}(X)\mathbb{E}(Y)$$

Correlation

$$\rho_{X,Y} = \frac{\text{Cov}(X, Y)}{\sqrt{\text{Var}(X) \text{Var}(Y)}}$$

Conditional

Expectation
$$\psi_Y(x) = \mathbb{E}(Y|X=x) = \int_{-\infty}^{\infty} y f_{Y|X}(y|x) dy.$$

All properties of expectation, variance and covariance are exactly the same for continuous and discrete random variables.

Properties of expectation and variance

For any random variables, X, Y, and for arbitrary constants a and b:

- $\mathbb{E}(aX + b) = a\mathbb{E}(X) + b$.
- $\mathbb{E}(ag(X) + b) = a\mathbb{E}(g(X)) + b$.
- $\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$.
- $Var(aX + b) = a^2 Var(X)$.
- $Var(ag(X) + b) = a^2 Var(g(X)).$

If X_1, \ldots, X_n are *INDEPENDENT* random variables, and if a_1, \ldots, a_n and b are arbitrary constants:

- $\mathbb{E}(XY) = \mathbb{E}(X)\mathbb{E}(Y)$.
- $Var(a_1X_1 + \dots a_nX_n + b) = a_1^2 Var(X_1) + \dots + a_n^2 Var(X_n).$

Covariance Properties

For any random variables X, Y and Z:

- Cov(X, X) = Var(X)
- Cov(aX + b, cY + d) = ac Cov(X, Y)
- Cov(X, Y) = Cov(Y, X)
- Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)
- Var(X Y) = Var(X) + Var(Y) 2 Cov(X, Y)
- Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

Properties of the Bivariate Normal distribution

If the pdf of (X, Y) is Bivariate Normal then we have:

- $(\mathrm{BV}_1) \ \mathbb{E}(X) = \mu_X, \ \mathbb{E}(Y) = \mu_Y, \ \mathrm{Var}(X) = \sigma_X^2, \ \mathrm{Var}(Y) = \sigma_Y^2 \ \text{and} \ \rho_{X,Y} = \rho.$
- (BV₂) The marginal distribution of X is Normal(μ_X, σ_X^2) and the marginal distribution of Y is Normal(μ_Y, σ_Y^2).
- (BV₃) The conditional distribution of Y given that X=x is the Normal distribution with mean

$$\mathbb{E}(Y|X=x) = \mu_Y + \rho\sigma_Y \frac{x - \mu_X}{\sigma_X}$$

and variance given by

$$Var(Y|X=x) = (1 - \rho^2)\sigma_Y^2.$$

A similar result holds for the conditional distribution of X given that Y = y.

- (BV₄) Let U = aX + bY, where $a, b \in \mathbb{R}$. Then the distribution of U is Normal, with mean $a\mu_X + b\mu_Y$ and variance $a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\rho\sigma_X\sigma_Y$.
- (BV₅) Let U = aX + bY and V = cX + dY, where $a, b, c, d \in \mathbb{R}$ and $ad bc \neq 0$. Then the joint distribution of U and V is Bivariate Normal and

$$\mathbb{E}(U) = a\mu_X + b\mu_Y,$$

$$\operatorname{Var}(U) = a^2\sigma_X^2 + b^2\sigma_Y^2 + 2ab\rho\sigma_X\sigma_Y,$$

$$\mathbb{E}(V) = c\mu_X + d\mu_Y,$$

$$\operatorname{Var}(V) = c^2\sigma_X^2 + d^2\sigma_Y^2 + 2cd\rho\sigma_X\sigma_Y,$$

$$\operatorname{Cov}(U, V) = ac\sigma_X^2 + bd\sigma_Y^2 + (ad + bc)\rho\sigma_X\sigma_Y.$$