

GBI Tutorium Nr. 41

Foliensatz 5

Vincent Hahn – vincent.hahn@student.kit.edu | 15. November 2012

Outline/Gliederung

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

1 Kontextfreie Grammatiken

Relationen

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

2 Relationen

Definition

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Die Menge G = G(N, T, S, P) nennen wir **Kontextfreie Grammatik**.

Definition

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Die Menge G = G(N, T, S, P) nennen wir **Kontextfreie Grammatik**.

Was ist was?

- N: Nichtterminalsymbol
- T: Terminalsymbol
- S: Startsymbol
- P: Produktionsmenge

Ableitung

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Als Ableitung wird in der theoretischen Informatik der Vorgang bezeichnet, ein Wort nach den Regeln einer formalen Grammatik zu erzeugen.

Wir schreiben: $w \Rightarrow^i v$, wenn von der Ableitung von v aus w i Ableitungsschritte liegen ($i \in \mathbb{N}$).

Ableitung

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Als Ableitung wird in der theoretischen Informatik der Vorgang bezeichnet, ein Wort nach den Regeln einer formalen Grammatik zu erzeugen.

Wir schreiben: $w \Rightarrow^i v$, wenn von der Ableitung von v aus w i Ableitungsschritte liegen ($i \in \mathbb{N}$).

Vorsicht

$$\Rightarrow \neq \rightarrow$$

- ⇒ ist die Relation der Ableitung
- $lue{}$ \rightarrow ist die Relation der Produktion ($\in P$)

Ableitung

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Frage

Was stimmt? Es ist $w_1, w_2 \in N \cup P$.

- $w_1 \rightarrow w_2$, daraus folt $w_1 \Rightarrow w_2$
- $w_1 \Rightarrow w_2$, daraus folgt $w_1 \rightarrow w_2$

Sprache der kontextfreien Grammatik

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Sei G eine kontextfreie Grammatik. Dann bezeichnen wir die Sprache $L=L\left(G\right)$ mit

$$L = \{ w \in T^* | S \Rightarrow^* w \}$$

Sprache der kontextfreien Grammatik

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Sei G eine kontextfreie Grammatik. Dann bezeichnen wir die Sprache $L=L\left(G\right)$ mit

$$L = \{ w \in T^* | S \Rightarrow^* w \}$$

Was ist \Rightarrow *?

Mit \Rightarrow^* ist die *reflexiv-transitive Hülle* der Ableitungsrelation gemeint.

Vincent Hahn - vincent.hahn@student.kit.edu

Musikgrammatik (by Nils Braun und Philipp Basler)

Kontextfreie Grammatiken

Relationen
$$G = \left(\left\{ X \right\}, \left\{ A,B,C,D \right\}, X, \left\{ X \to \epsilon \middle| AX\middle| BX\middle| CX\middle| DX \right\} \right) A$$

8/11

Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Musikgrammatik (by Nils Braun und Philipp Basler)

Kontextfreie Grammatiken

Gegeben ist die Grammatik

$$G = (\{X\}, \{A, B, C, D\}, X, \{X \to \epsilon |AX|BX|CX|DX\}) A$$

Leite A ab!

8/11

Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Musikgrammatik (by Nils Braun und Philipp Basler)

Kontextfreie Grammatiken

Gegeben ist die Grammatik

$$G = (\{X\}, \{A, B, C, D\}, X, \{X \to \epsilon |AX|BX|CX|DX\}) A$$

Vincent Hahn - vincent.hahn@student.kit.edu

Musikgrammatik (by Nils Braun und Philipp Basler)

Kontextfreie Grammatiken

Relationen

Gegeben ist die Grammatik

$$G = (\{X\}, \{A, B, C, D\}, X, \{X \to \epsilon |AX|BX|CX|DX\}) A$$

Vincent Hahn - vincent.hahn@student.kit.edu

Musikgrammatik (by Nils Braun und Philipp Basler)

Kontextfreie Grammatiken

Relationen

Gegeben ist die Grammatik

$$G = (\{X\}, \{A, B, C, D\}, X, \{X \to \epsilon |AX|BX|CX|DX\}) A$$

Vincent Hahn - vincent.hahn@student.kit.edu

Musikgrammatik (by Nils Braun und Philipp Basler)

Kontextfreie Grammatiken

Relationen

Gegeben ist die Grammatik

$$G = (\{X\}, \{A, B, C, D\}, X, \{X \to \epsilon |AX|BX|CX|DX\}) A$$

Vincent Hahn - vincent.hahn@student.kit.edu

Musikgrammatik (by Nils Braun und Philipp Basler)

Kontextfreie Grammatiken

Relationen

Gegeben ist die Grammatik

$$G = (\{X\}, \{A, B, C, D\}, X, \{X \to \epsilon |AX|BX|CX|DX\}) A$$

Leite A ab! Leite ABC ab! Finde weitere Wörter.

 $L(G) = \{A, B, C, D\}^*, \text{ oder?}$

Überblick

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

- 1 Kontextfreie Grammatiken
- 2 Relationen

Eigenschaften von Relationen

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Sei $R \subset A \times A$ eine (binäre) Relation auf der Menge A. Wir nennen R

reflexiv falls gilt:

$$\forall x \in A : (x, x) \in R$$

• transitiv falls gilt:

$$\forall x, y, z \in A : (x, y) \in R \land (y, z) \in R \Rightarrow (x, z) \in R$$

symmetrisch falls gilt:

$$\forall x, y \in A : (x, y) \in R \Rightarrow (y, x) \in R$$

Verknüpfung

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Zwei Relationen $R \subseteq M \times N$, $S \subseteq N \times L$ definieren die Relation des Produktes von R und S als

$$R \circ S = \{(x, z) \in M \times L | \exists y \in N : (x, y) \in R \text{ und } (y, z) \in S\}$$

11/11

Verknüpfung

Vincent Hahn - vincent.hahn@student.kit.edu

Kontextfreie Grammatiken

Relationen

Definition

Zwei Relationen $R \subseteq M \times N$, $S \subseteq N \times L$ definieren die Relation des Produktes von R und S als

$$R \circ S = \{(x, z) \in M \times L | \exists y \in N : (x, y) \in R \text{ und } (y, z) \in S\}$$

Potenzschreibweise

$$R^{0} = I_{M} = \{(x, x) | x \in M\} \text{ und } R^{i+1} = R^{i} \circ R$$

Reflexiv-Transitive-Hülle

$$R^* = \bigcup_{i=0}^{\infty} R^i$$

11/11