2. Množiny

1 Zadání množiny, inkluze, rovnost

- 1. Vysvětlete pojem množiny a jejího prvku.
- 2. Určete všechny pomnožiny množiny:
 - (a) $\{a; b\}$
 - (b) $\{+; *; \square\}$
- 3. Zapište množiny charakteristickou vlastností a určete počty jejich prvků:
 - (a) $\{3; 6; 9; \dots 333\}$
 - (b) {1001; 1004; 1009; 1016; ... 1196}
 - (c) $\{42; 38; 34; \ldots -10\}$
 - (d) {1; 21; 321; 4321 ...}
- 4. Jsou dány následující množiny. Určete, které z nich jsou podmnožinami jiných a které z nich se rovnají:

$$\Omega = \{ n \in \mathbb{N}; \, n \le 12 \}$$

$$K = \{ n \in \Omega; \, 3|n \}$$

 $L = \{n \in \Omega; n \text{ není prvočíslo}\}$

$$M = \{ n \in \Omega; \, 2n + 1 \ge 30 \}$$

$$N = \{n \in \Omega; \, 9|n\}$$

$$O = \{n \in \Omega; n \text{ je složené číslo}\}$$

$$P = \{ n \in \Omega; \, n^2 - 7n - 18 = 0 \}$$

- 5. Zapište pomocí intervalů nebo výčtů prvků a zakreslete je na číselnou osu:
 - (a) $\{x \in \mathbb{R}; x \leq 4\}$
 - (b) $\{x \in \mathbb{R}; |x| < 3\}$
 - (c) $\{x \in \mathbb{Z}; |x 3| \ge 5\}$

2 Operace s množinami

- 1. Zapište výčtem nebo charakteristickou vlastností:
 - (a) doplněk množiny všech přirozených čísel v množině celých čísel;
 - (b) průnik množiny všech jednociferných přirozených čísel a doplňku množiny celých čísel větších než 5 v množině reálných čísel.

2. Jsou dány množiny:

$$S = \{a; b; c; d\}$$

 $T = \{b; c; e\}$
 $U = \{c; d; e; f\}$

Určete:

- (a) $S \cap T$
- (b) $S \cup U$
- (c) $S \cup (U \cap T)$
- (d) $(S \cup U) \cap T$
- 3. Zapište následující množiny výčtem prvků:
 - (a) $\mathbb{N} \{1; 2; 3; 4\}$
 - (b) $\mathbb{N} \{n \in \mathbb{N}; n | 6\}$
 - (c) $\{x \in \mathbb{N}; n|400\} \cap \{y \in \mathbb{N}; 8|n\}$
 - (d) $\left\{\frac{\pi}{4} + \frac{k\pi}{2}; k \in \mathbb{Z}\right\} \cup \left\{\frac{k\pi}{2}; k \in \mathbb{Z}\right\}$
- 4. Zjednodušte zápisy:
 - (a) $(-3; 4) \cap (3; 8) =$
 - (b) $(-3; 4) \cup (3; 8) =$
 - (c) $\langle -3; 4 \rangle \langle 3; 8 \rangle =$
 - (d) $\langle 5; 10 \rangle \cap \langle -2; -1 \rangle =$
 - (e) $\langle 5; 10 \rangle (7; 10) =$

Které z výsledných množin jsou disjuktní?

- 5. Rozhodněte podmínky platnosti násedujících vztahů:
 - (a) $A \cup B = A$
 - (b) $A \cap B = A$
 - (c) A B = B A
 - (d) $A'_B = \emptyset$

3 Vennovy diagramy a jejich užití

- 1. Zakreslete Vennův diagram pro množiny:
 - (a) $A = \{4; 8; 12; 16\}, B = \{6; 9; 12; 15\}$
 - (b) $U = \{n \in \mathbb{N}; n < 15\}, A = \{n \in U; 3 | n\}, B = \{n \in U; 4 | n\}, C = \{n \in U; n \text{ je dvojciferné}\}$
- 2. Mezi třiceti žáky jedné třídy proběhl výzkum o používání tabletů a slunečních hodin. Sluneční hodiny nepoužívá 12 žáků. Právě jeden z těchto přístrojů používá 8 žáků. Oba přístroje pak používá 13 žáků. Kolik žáků používá pouze sluneční hodiny? Kolik žáků používá tablety?

4 Kartézský součin, relace

- 1. Zapište výčtem prvků:
 - (a) $\{2; 5; 6\} \times \{1; 3; 4; 9\};$
 - (b) M^2 , kde $M = \{a; b; c\}$;
 - (c) $\{a\} \times \{b; c\} \times \{c\}$.
- 2. Zakreslete v souřadné soustavě následující množiny:
 - (a) $\{2; 3; 4\} \times \{-1; 2; 3\};$
 - (b) \mathbb{N}^2 ;
 - (c) $\mathbb{N} \times \mathbb{R}$;
 - (d) $\mathbb{R} \times \mathbb{N}$;
 - (e) $\langle -2; 4 \rangle \times \langle 1; 3 \rangle$;
 - (f) $\langle 2; \infty \rangle \times (-3; \infty)$.
- 3. Zapište jako kartézský součin množin:
 - (a) $\{[a; 3], [a; 4], [a; 5], [b; 3], [b; 4], [b; 5]\}$
 - (b) $\{ [\heartsuit; p], [*; p], [\square; p], [\triangle; p], [\heartsuit; s], [*; s], [\square; s], [\triangle; s] \}$
- 4. Vysvětlete pojem relace.
- 5. Určete, které z následujících množin jsou relacemi v množině (1; 5)²:
 - (a) $(3;4) \times \langle 2;3 \rangle$;
 - (b) $\{2; 3; 4\} \times (4; 5);$
 - (c) $(1;2) \times \{3\}$.

5 Zobrazení

- 1. Definujte zobrazení jako typ (binární) relace. Definujte reálnou funkci reálné proměnné jako zobrazení.
- 2. Určete, zda následující relace na A^2 , kde $A = \{0; 1; 2; 3; 4; 5; 6\}$, jsou zobrazení:
 - (a) {[1; 2], [2; 3]; [3; 4]; [4; 3]};
 - (b) {[0; 1], [0; 2], [0; 3], [0; 4], [0; 5], [0; 6]};
 - (c) $\{[x; y] \in A^2; x = 6 y\};$
 - (d) $\{[x; y] \in A^2; y = x^2 1\}.$
- 3. U následujících zobrazení určete definiční obory, obory hodnot a zda jsou prostá. Pokud jsou prostá, najdětei k nim inverzní zobrazení:
 - (a) $\{[a; d], [b; c], [c; b], [d; f], [e; e], [f; a]\};$
 - (b) $\{[1; t], [4; s], [3; r], [-1; 0]\};$
 - (c) $\{[x; y] \in \mathbb{N}; y = x^2\};$
 - (d) $\{[x; y] \in \mathbb{N}; x = y^2\};$
 - (e) $\{[x; y] \in \mathbb{R}; y = 2x 3\}.$
- 4. Napište složené zobrazení $f \circ q$, kde

$$f = \{[1; 4], [2; 2], [3; 6], [4; 3], [5; 1]\}$$

$$g = \{[1; 5], [2; 3], [3; 1], [4; 2], [6; 4]\}$$