Михаил Катунькин, БПМИ-192 https://arxiv.org/abs/2106.08254 https://arxiv.org/pdf/2112.10740.pdf

Are Large-scale Datasets Necessary for Self-Supervised Pre-training?

Нужны ли большие датасеты для предобучения моделей обработки изображений?

Что делают, если данных мало?

- Обучают модель на большом датасете типа ImageNet
- Используют веса этой модели для решения целевой задачи с небольшим числом данных

Supervised pre-training

- Берем сеть, которая обучалась классифицировать картинки из ImageNet
- Отрываем голову, дообучаем на нашей задаче

Проблемы supervised pre-training

- 1. Данные целевой задачи из другого распределения нежели при предобучении (Domain Shift)
- 2. Модель учится соответствовать меткам и отбрасывает важную информацию (Supervision Collapse)

Self-supervised pre-training

Contrastive learning

 Pretext task – получить близкие эмбеддинги для аугментаций картинки и далекие для разных картинок

Anchor

Negative

SimCLR Framework Representation hi z_i Encoder Dense Relu Dense Maximize Data similarity Augmentation Encoder Dense Relu Dense Original Image hj z_j Т Transformed Base Encoder **Projection Head** Images **Downstream** tasks

LEARNING

Positive

Anchor

Positive

Negative

Self-supervised pre-training

Joint embeddings

- Есть сети ученик и учитель
- Веса ученика обновляют веса учителя с моментом
- Ученику на вход подается деталь изображения, учителю все изображение
- Ученик должен выдать эмбеддинг похожий на учителя
- Т.е. по локальному куску восстановить глобальный контекст

$$\theta_t \leftarrow \lambda \theta_t + (1 - \lambda) \theta_s$$

Проблемы классического self-supervised

- 1. Данные целевой задачи из другого распределения нежели при предобучении (Domain Shift)
- 2. Аугментации типа random-crop подразумевают, что объект в центре
- 3. Нужны большие датасеты
- 4. Подходы подгоняются под ImageNet

Хочется

Уметь обучать модель на данных из целевого распределения (или хотя бы похожих)

Но тогда нужно обучаться на датасетах:

- небольшого размера
- с неотцентрованными объектами

Видели такое в NLP

- Берут трансформеры
- Обучают на задаче Masked-Language-Modelling
- Тексты для pre-train какие дадите

Vision Transformers (ViT)

- Изображение бьется на патчи 16х16
- Патчу сопоставляется некий токен
- Добавляется позиционный эмбеддинг
- Последовательность подается на вход трансформеру

Как сопоставлять токен?

- Патч вытягивается в вектор
- В пространстве R^d задается алфавит (d = 192) из 8192 токенов
- Патчу сопоставляется токен с которым у него максимальное косинусное расстояние в пиксельном пространстве

$$t = \operatorname{argmax}_{i \in \{1, \dots, V\}} \mathbf{x}^{\top} \mathbf{e}_i.$$

Как задавать алфавит?

- Обучить модель-токенайзер
- Сгенерировать вектора, где каждая координата из равномерного распределения
- Выбрать случайные вектора из патчей в датасете
- Кластеризовать патчи при помощи k-means, выбрать центроиды

Vision Transformers (ViT)

- Изображение бьется на патчи 16х16
- Патчу сопоставляется некий токен
- Добавляется позиционный эмбеддинг
- Последовательность подается на вход трансформеру

Masked Image Modelling

- Очень похоже на обучение BERT в NLP
- Некоторые токены закрываются маской, пропускаются через энкодер
- Слой-пресказатель про представлениям угадывает скрытые токены
- По предсказанным токенам считается loss
- В дискретном случае кросс-энтропия

SplitMask

- На уровне батча картинок хотим что-то вроде SimCLR
- Берем картинку, получаем две ее аугментации
- По аугментациям получаем два эмбеддинга
- Эмбеддинги аугментаций считаются одним классом
- Эмбеддинги остальных картинок из батча разными
- В качестве лосса InfoNCE

$$\ell(\mathbf{x}_a) = \frac{\exp(\mathbf{x}_a^{\top} \mathbf{x}_b / \tau)}{\sum_{\mathbf{y} \in \{\mathbf{x}_b\} \cup \mathcal{N}} \exp(\mathbf{x}_a^{\top} \mathbf{y} / \tau)},$$

SplitMask

- На уровне работы с отдельной картинкой ViT + MIM
- Открытые токены пропускаются через энкодер ViT
- На место скрытых токенов добавляется эмбеддингмаска
- Эмбеддинги пропускаются через неглубокий декодер ViT
- К эмбеддингам на выходе из декодера применяется софтмакс-классификатор, чтобы предсказать пропущенные токены
- По предсказанным пропускам считается Masked Image Modelling loss (кросс-энтропия)

Visual Transformer (ViT) + Masked Image Modelling (MIM) + contrastive learning

SplitMask

- На самом деле разделяем патчи (16х16) на две группы
- Получаем два изображения в одном скрыты патчи одной группы, в другом другой
- Пропускаем их через два МІМ-пайплайна с разделяемыми весами
- Усредняем представления на выходе из декодера – это глобальный дескриптор изображения, по которому считаем InfoNCE
- Добавляем MIM loss к InfoNCE

$$\ell(\mathbf{x}_a) = \frac{\exp(\mathbf{x}_a^{\top} \mathbf{x}_b / \tau)}{\sum_{\mathbf{y} \in \{\mathbf{x}_b\} \cup \mathcal{N}} \exp(\mathbf{x}_a^{\top} \mathbf{y} / \tau)},$$

Как это потом применять?

Классификация:

- берем выходы энкодера
- усредняем
- применяем софтмакс-классификатор $\operatorname{softmax}(\operatorname{avg}(\{m{h}_i^Lar{\}}_{i=1}^Nm{W}_c))$

Сегментация:

• к выходам энкодера применяется несколько deconvolution-слоев, генерирующих сегментацию

Зачем так?

- МІМ локальные признаки
- Contrastive loss глобальные
- Неглубокий декодер нужен, чтобы сэкономить на прогонянии токенов-масок через глубокий энкодер
- Благодаря декодеру из энкодера убирается функция специфичная для pretext-task — более общие признаки
- Маскирование общий случай random crop. Поэтому хорошо работает на объектах в произвольном месте кадра

А оно работает вообще?

Ha ImageNet paботает!

Method	Backbone	Epochs	Top-1	
MocoV3 [68]		300	81.4	
DINO [18]	VETC	300	81.5	
BEiT [24]	ViT-S	300	81.3	
SplitMask		300	81.5	
MocoV3 [68]		300	83.2	
DINO [18]	ViT-B	400	83.6	
BEiT [24]	V11-D	300	82.8	
BEiT [24]		800	83.2	
SplitMask		300	83.6	

- На классификации картинок из ImageNet SplitMask показал State-Of-The-Art результат
- Хотя SplitMask гораздо легковеснее DINO

Хотели

Уметь обучать модель на данных из целевого распределения (или хотя бы похожих)

Но тогда нужно обучаться на датасетах:

- небольшого размера
- с неотцентрованными объектами

Sample Efficiency

- Пробовали обучать на какой-то доле ImageNet для предсказания на датасете iNaturalist-2019
- При этом, увеличивали число эпох, чтобы число итераций не менялось
- Качество Supervised/DINO падает
- Качество denoising autoencoders (BEiT, SplitMask) почти неизменно
- На СОСО (маленький, объекты не в центре) выбили лучший результат

Method	IMNet 1% epochs: 30k	IMNet 10% epochs: 3k	IMNet Full epochs: 300	COCO epochs: 3k
Supervised	71.6	75.0	75.8	-
DINO [18]	70.1	73.1	78.4	71.9
BEiT [24]	74.1	74.5	75.2	74.4
SplitMask	74.8	75.4	75.4	76.3

BEiT – SplitMask без contrastive loss

Sample Efficiency

- Обучались на доле ImageNet
- Применяли к датасету iNaturalist- 2019
- Уже на 5% выжали максимум
- Даже по 1 картинке на класс (0.1%) дало +4% по сравнению со случайной инициализацией

Можно ли использовать целевой датасет для предобучения?

- SplitMask либо выбивает лучший результат, либо дает качество, сравнимое с предобучением на ImageNet
- Там, где SplitMask проигрывает, датасеты очень малы

Method	Backbone	Supervised	Data	Used	iNat-18	iNat-19	Food 101	Cars	Clipart	Painting	Sketch
		pre-training	IMNet	Target	437k	265k	75k	8k	34k	52k	49k
Liu et al. $[67]^{\mp}$	CVT-13	X	X	1	_	-	-		60.6	55.2	57.6
Liu et al. [07]	ResNet-50	X	X	✓	-	-	-	-	63.9	53.5	59.6
Random Init.		X	Х	1	59.6	67.5	84.7	35.3	41.0	38.4	37.2
DeiT [50]		/	1	✓	<u>69.9</u>	75.8	91.5	92.2	79.6	74.2	72.5
BEiT [24]	ViT-S	X	1	1	68.1	75.2	90.5	92.4	75.3	68.7	68.5
BEiT		X	X	1	68.8	<u>76.1</u>	90.7	92.7	_	69.0	-
SplitMask		X	X	1	70.1	76.3	91.5	92.8	<u>78.3</u>	<u>69.2</u>	<u>70.7</u>
Random Init.		Х	Х	1	59.6	68.1	83.3	36.9	41.9	37.6	34.9
DeiT [50]		/	1	1	<u>73.2</u>	77.7	91.9	92.1	80.0	73.8	72.6
BEiT [24]	ViT-B	X	1	1	71.6	78.6	91.0	93.9	78.0	71.5	71.4
BEiT		X	X	1	72.4	<u>79.3</u>	<u>91.7</u>	92.7	-	70.7	-
SplitMask		X	X	✓	74.6	80.4	91.2	<u>93.1</u>	<u>79.3</u>	<u>72.0</u>	<u>72.1</u>

Сегментация на датасете СОСО

- Использовался пайплайн Mask R-CNN
- BEiT, предобученный на COCO, показал результат лучше предобучения на ImageNet
- SplitMask превзошел BEiT

Method	Backbone	Pre-training			AP^b	AP^b_{50}	AP^b_{75}	AP^m	AP^m_{50}	AP^m_{75}
		Supervised	IMNet	COCO]					
Random Initialization		X	X	X	38.3	60.1	41.4	35.6	57.1	37.7
Random Initialization†		X	Х	X	42.8	64.5	45.6	39.1	61.5	41.7
DeiT [50]	ViT-S	✓	✓	X	44.2	66.6	47.9	40.1	63.2	42.7
BEiT [24]	V11-3	X	1	X	44.5	66.2	48.8	40.3	63.2	43.1
DINO [18]		X	X	✓	43.7	65.5	47.7	39.6	62.3	42.3
BEiT		X	X	✓	44.7	66.3	48.8	40.2	63.1	43.2
SplitMask		X	Х	✓	45.3	66.9	49.4	40.6	63.6	43.5
Random Initialization		Х	Х	Х	40.7	62.7	44.2	37.1	59.1	39.4
Random Initialization†		X	X	X	43.0	64.2	46.9	38.8	61.3	41.6
DeiT [50]	V.T.D	1	1	X	45.5	67.9	49.2	41.0	64.6	43.8
BEiT [24]	ViT-B	X	✓	X	46.3	67.6	50.6	41.6	64.5	44.9
DINO [18]		X	Х	✓	43.1	64.4	46.9	38.9	61.4	41.4
BEiT		X	X	✓	46.7	67.7	51.2	41.8	65.0	44.6
SplitMask		X	Х	✓	46.8	67.9	51.5	42.1	65.3	45.1

Влияние компонент на ошибку

- Смотрели на качество классификации на ImageNet
- Только contrastive loss не дает достаточно информации, чтобы хорошо обучить модель
- Но становится хорошим дополнением к МІМ

Method	Split	Inpaint	Match	Finetune	Lin.	Hours
BEiT [24]	Х	✓	X	82.8	41.0	32.5
	1	✓	X	83.3	46.4	31.0
SplitMask	1	X	✓	79.3	4.0	32.5
	✓	✓	✓	83.6	46.5	34.0

Выводы

Можно предобучать модель:

- на датасетах небольшого размера
- с объектами не по центру
- на целевом датасете

Датасеты, вроде ImageNet, не обязательны для предобучения!