BSc Computer Science CS1541 Computer Graphics

MODULE I

BRESENHAM'S LINE DRAWING

Prepared by
Sobha P K
SAC

Introduction

- ☐ Another incremental scan conversion algorithm.
- Uses only integer calculations.
- Moving across the x axis in unit intervals and at each step choose between two different y coordinates.(or vise versa)
- Close approximation to a straight line between two end points

Algorithm

```
Algorithm BresenhamsLine(X1,Y1,X2,Y2)
[This algorithm draws a line from (X1,Y1) to (X2,Y2)]
Step 1: [Initialize and plot the first point]
       X \leftarrow X1
       Y \leftarrow Y1
       PLOT(X,Y)
Step 2: [Compute the displacement in X axis and Y
  axis]
        DX \leftarrow ABS(X2-X1)
         DY←ABS(Y2-Y1)
Step 3:[Compute the axis of greatest displacement]
       If(DX >= DY)
               goto Step 4
        else goto Step 5
       End if
```

Algorithm

```
Step 4: [Draw the line]
         P←2*DY-DX
        Repeat while (X <= X2)
          X \leftarrow X+1
           If (P >= 0)
              Y← Y+1
               P \leftarrow P+2*DY -2*DX
             else
                P \leftarrow P+2*DY
              End if
            PLOT(X, Y)
            Return
```

```
Step 5: [Draw the line]
         P←2*DX-DY
        Repeat while (Y <= Y2)
          Y \leftarrow Y+1
           If (P >= 0)
             X \leftarrow X+1
             P ← P+2*DX -2*DY
            else
                 P \leftarrow P + 2*DX
            End if
            PLOT(X,Y)
            Return
```

Example (10,10) to (20,17) DX=20-10=10 DY=17-10=7 P=4

Step	X	Y	Р	
1	10	10	4	Plot(10,10)
2	11	11	-2	Plot(11,11)
3	12	11	12	Plot(12,11)
4	13	12	6	Plot(13,12)
5	14	13	0	Plot(14,13)
6	15	14	-6	Plot(15,14)
7	16	14	8	Plot(16,14)
8	17	15	2	Plot(17,15)
9	18	16	-4	Plot(18,16)
10	19	16	10	Plot(19,16)
11	20	17	4	Plot(20,17)

Example

(10,10) to (15,20) DX=15-10=5 DY=20-10=10 P=15

Step	X	Y	Р	
1	10	10	0	Plot(10,10)
2	11	11	-10	Plot(11,11)
3	11	12	0	Plot(11,12)
4	12	13	-10	Plot(12,13)
5	12	14	0	Plot(12,14)
6	13	15	-10	Plot(13,15)
7	13	16	0	Plot(13,16)
8	14	17	-10	Plot(14,17)
9	14	18	0	Plot(14,18)
10	15	19	-10	Plot(15,19)
11	15	20	0	Plot(15,20)

Advantages and Disadvantages

Advantage:

- 1. It involves only integer arithmetic, so it is simple.
- 2. It avoids the generation of duplicate points.
- 3. Operations are done rapidly and lines can be generated quickly
- 4. It is faster as compared to DDA (Digital Differential Analyzer) because it does not involve floating point calculations like DDA Algorithm.

Disadvantage:

1. This algorithm is meant for basic line drawing only. Initializing is not a part of Bresenham's line algorithm. So to draw smooth lines, you should want to look into a different algorithm.

Thank You