Exercice 7

(a) on a $\tan x = \frac{\sin x}{\cos x}$, donc $\tan x$ est définie lorsque $\cos x \neq 0$, ou $x \neq \pi/2 + n\pi$.

$$tan^{2}x \leq 3$$

$$\sqrt{tan^{2}x} \leq \sqrt{3}$$

$$|tan x| \leq \sqrt{3}$$

$$tan x \leq \sqrt{3} \text{ and } -tan x \leq \sqrt{3}$$

$$x \leq \arctan \sqrt{3} \text{ and } x \geq -\arctan \sqrt{3}$$

$$x \leq 1.249 \text{ and } x \geq -1.249$$

Comme $\pi/2 > 1.249$ alors $x \in [-1.249, 1.249]$ et la fonction tan est de période π , l'inéquation est vraie pour $x \in [-1.249 + n.\pi, 1.249 + n.\pi]$.

(b) La function $\tan x$ est d'efini pour $x \neq \pi/2 + n\pi$. Faisons le changement de variable $y = \tan x$. L'inéquation devient $\frac{y^2-2}{y^2-1}$ avec $y \neq |1|$.

$$\frac{y^2 - 2}{y^2 - 1} \le \frac{1}{2}$$

$$2(y^2 - 2) \le y^2 - 1$$

$$y^2 \le 3$$

$$|y| \le \sqrt{3}$$

$$y \le \sqrt{3} \text{ and } y \ge -3$$

$$\tan x \le \sqrt{3} \text{ and } \tan x \ge -3$$

 $x \le 1.249 \ and \ x \ge -1.249 \ par$ (a) et $tan \ x \ne |1|$ (car $y \ne |1|$), donc $x \ne |0.7854|$. Par conséquent l'inéquation est vérifiée lorsque $x \in [-1.249, -0.7854[\cup] -0.7854, 0.7854[\cup]0.7854, 1.249]$ à la période de π .

Exercice 8

$$P(t) = (\lambda + 1)t^{2} + 2at + \lambda - 1$$

$$\Delta = (2a)^{2} - 4 \cdot (\lambda + 1)(\lambda - 1)$$

$$\Delta = (2a)^{2} - 4 \cdot (\lambda^{2} - 1)$$

$$\Delta = 4(a^{2} - \lambda^{2} + 1)$$

$$t = \frac{-2a \pm \sqrt{4(a^{2} - \lambda^{2} + 1)}}{2 \cdot (\lambda + 1)}$$

$$t = \frac{-a \pm \sqrt{a^{2} - \lambda^{2} + 1}}{(\lambda + 1)}$$

(a) $a^2 - \lambda^2 + 1 = 0$, 1 seule racine $t = \frac{-a}{\lambda+1}$ avec $\lambda + 1 \neq 0$. On a P(t) positif entre $]-\infty, \frac{-a}{\lambda+1}[$ et négatif entre $]\frac{-a}{\lambda+1}, +\infty]$ si $\frac{-a}{\lambda+1} > 0$ et l'inverse sinon.

(b) $a^2 - \lambda^2 + 1 > 0$, 2 seule racine $t = \frac{-a \pm \sqrt{a^2 - \lambda^2 + 1}}{(\lambda + 1)}$, avec $\lambda + 1 \neq 0$. On a P(t) positif entre $] - \infty$, $\frac{-a - \sqrt{a^2 - \lambda^2 + 1}}{(\lambda + 1)} [\cup] \frac{-a + \sqrt{a^2 - \lambda^2 + 1}}{(\lambda + 1)}$, $+\infty[$ et négatif entre $] \frac{-a - \sqrt{a^2 - \lambda^2 + 1}}{(\lambda + 1)}$, $\frac{-a + \sqrt{a^2 - \lambda^2 + 1}}{(\lambda + 1)} [$ si $\frac{-a}{\lambda + 1} > 0$ et l'inverse sinon.

Exercice 9

P1

$$acos(t+b) = a(cos(t)cos(b) - sin(t)sin(b))$$

$$a(cos(t)cos(b) - sin(t)sin(b)) = a.cos(b).cos(t) - a.sin(b).sin(t)$$

$$a.cos(b).cos(t) - a.sin(b).sin(t) = \alpha cos(t) + \beta sin(t)$$

donc $\alpha = a.cos(b)$ et $\beta = -a.sin(b)$.

(a)
$$\frac{\beta}{\alpha} = \frac{-a.\sin(b)}{a.\cos(b)} = -tan(b)$$
 donc $b = tan^{-1}(\frac{-\beta}{\alpha})$

(a)
$$\frac{\beta}{\alpha} = \frac{-a.\sin(b)}{a.\cos(b)} = -tan(b)$$
 donc $b = tan^{-1}(\frac{-\beta}{\alpha})$
(b) $\alpha^2 + \beta^2 = a^2.\cos^2(b) + a^2.\sin^2(b) = a^2.(\cos^2(b) + \sin^2(b)) = a^2$ donc $a = \sqrt{\alpha^2 + \beta^2}$.

P2

- (a) $cos(t) + sin(t) = \lambda$. Donc, $\alpha = \beta = 1$, ce qui fait $a = \sqrt{2}$ et $b = tan^{-1}(-1) = -\pi/4$. On a $cos(t - \pi/4) = cos(t) + sin(t) = \lambda$, donc $t = cos^{-1}(\lambda) + \pi/4$.
 - (b) idem avec $\alpha = 1$ et $\beta = \sqrt{3}$. Donc a = 2 et $b = tan^{-1}(-\sqrt{3})$.
- (c) idem avec $\alpha = 1$ et $\beta = -1$. $a = \sqrt{2}$ et $b = tan^{-1}(-1) = \pi/4$. On a $cos(t + \pi/4) = cos(t) + sin(t) = \lambda$, donc $t = cos^{-1}(\lambda) - \pi/4$.

QED