Intervals, Transformations, and Slope Solution (version 23)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(-7,2) \cup (5,9)$
Negative	$(-8, -7) \cup (2, 5)$
Increasing	$(-8,1) \cup (3,7)$
Decreasing	$(1,3) \cup (7,9)$
Domain	(-8,9)
Range	(-8,8)

Intervals, Transformations, and Slope Solution (version 23)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=55$ and $x_2=75$. Express your answer as a reduced fraction.

\overline{x}	g(x)
55	81
75	86
81	75
86	55

$$\frac{f(75) - f(55)}{75 - 55} = \frac{86 - 81}{75 - 55} = \frac{5}{20}$$

The greatest common factor of 5 and 20 is 5. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{1}{4}$$

2