Inter (Part-II) 2018

Mathematics	Group-l	PAPER: II	
Time: 30 Minutes	(OBJECTIVE TYPE)	Marks: 20	

Note: Four possible answers, A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.

1-1-
$$\frac{d}{dx} \sin^{-1} x = :$$

(a)
$$\frac{1}{\sqrt{1+x^2}}$$
 (b) $\cos^{-1} x$

(c)
$$\frac{1}{\sqrt{1-x^2}} \sqrt{(d)} \frac{1}{\sqrt{1-x}}$$

(d)
$$\frac{1}{\sqrt{1-x}}$$

The order of the differential equation $\frac{d^2y}{dx^2} - \frac{dy}{dx} + 2x = 0$ is: 2-

 $\cos h^2 x - \sin h^2 x =$: 3-

(a)
$$1\sqrt{}$$

4-
$$\int \frac{1}{f(x)} \times f(x) dx = :$$

(a)
$$ln x + c$$

(b)
$$\ln [f'(x) + c]$$

(c)
$$\frac{1}{f(x)} + c$$

Let $f(x) = x^2 + \cos x$, then f(x) is:

- (a) Odd function
- (b) Constant function
- (c) Even function √ (d) Neither even nor odd

6-
$$\int 3^x dx = :$$

(a)
$$3^{x} + c$$

(c)
$$\frac{3^x}{\ln 3} + c \sqrt{\frac{3^x}{\ln 3^x} + c}$$

7-	If $f(x)$ has second derivative at "c" such that $f'(c) = 0$
	and $f''(c) < 0$ then "c" is a point of:
	(a) Maxima √ (b) Minima
	(c) Zero point (d) Point of inflection
8-	If $y = \sqrt{1 - x^2}$, $0 < x < 1$ then $\frac{dy}{dx} = :$
	(a) $\sqrt{x^2 - 1}$ (b) $\frac{1}{\sqrt{1 - x^2}}$
	(c) $\frac{x}{\sqrt{1-x^2}}$ (d) $\frac{-x}{\sqrt{1-x^2}} \sqrt{x}$
9-	$\int_0^{\pi/2} \cos x dx = :$
	(a) 0 (b) 1 √
	(a) 0 (b) 1 √ (c) 2 (d) 3
10-	If $y = e^{\sin x}$, then $\frac{dy}{dx} = :$
	(a) e ^{sin x} (b) e ^{sin x} cos x √
•	(c) $e^{\sin x} + \cos x$ (d) $-e^{\sin x} \cos x$
11-	The equation $x^2 + y^2 + 2gx + 2fy + c = 0$ represents a circle with centre:
•	(a) $(-g, -f) \sqrt{(b) (-f, +g)}$
	(c) (f, g) (d) (0, 0)
	$x-x_1$ $y-y_1$
12-	If α is the inclination of the line l , then $\frac{1}{\cos \alpha} = \sin \alpha = r$
•	(say) is called:
	(a) Point slope form (b) Normal form
	(c) Symmetric form √ (d) Intercept form
13-	The direction cosines of y-axis are:
	(a) $(0, 1, 0) \sqrt{}$ (b) $(1, 0, 0)$
	(c) (0, 0, 1) (d) (0, 0, 0)
14-	The feasible solution which maximizes or minimizes the objective function is called:
	(a) Exact solution (b) Optimal solution √
	(c) Final solution (d) Objective solution

15-	Length of the vector $2\underline{i} - \underline{i} - 2\underline{k}$ is:			
	(a) 2	(b) 4.		
	(c) 3 1/	(d) 5	4 4 1	
16-	The centroid of a ratio:	triangle divides each n	nedian in	
	- (a) 2:1 √	(b) 1:2		
	(c) 2:3	(d) 1:1		
17-	The perpendicular from the origin is:	distance of line 3x + 4y	_ 10 = 0	
	(a) 0	(b) 1	or the first	
	(c) $\frac{1}{2}$	(d) 2 √		
18-	The straight line y $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ if:}$	= mx + c is tangent to the	e ellipse	
		(b) $c^2 = b^2 m^2 + a^2$		
		(d) $c^2 = a^2 m^2 + b^2 $		
19-		ion of a line "/", then it	must be	
	(a) $0 \le \alpha < \frac{\pi}{2}$	(b) $\frac{\pi}{2} \le \alpha < \pi$		
	(c) $0 \le \alpha < \pi \sqrt{}$	(d) $0 \le \alpha < 2\pi$		
20-	Axis of the parabol			
	(a) y = 0	(b) $x = 0 $		
21.12	(c) x = y	(d) $\hat{x} = 1$	t labit	
2. 4.	Jane - Francisco	gr te april bear the year	The Santa	