Unit 2: Multivariate Calculus Solutions

Question 1

Find the partial derivatives if the following functions:

A)
$$f(x,y) = x^4y + 2x$$

B)
$$f(x,y) = 2y + 3x^2$$

$$\frac{\frac{df(x,y)}{dx}}{\frac{df(x,y)}{dy}} = 4x^3y + 2$$

$$\frac{df(x,y)}{dx} = 6x$$

$$\frac{df(x,y)}{dy} = 2$$

Question 2

The direction of maximum <u>decrease</u> for an objective function $f(\mathbf{x})$ is given by the:

A. Gradient (∇)

B. Negative Gradient $(-\nabla)$

C. Jacobian Matrix (**J**)

D. Laplacian (∇^2)

Question 3

Fill in the blank: The <u>definite</u> integral of f(x) is a number and represents the area under the curve from x = a to x = b. The <u>indefinite</u> integral of f(x) has no limits and returns a function.

Question 4

The critical point of a convex function is guaranteed to be a **global** minimum.

Question 5

Find the global minimum for the objective function, $f(x) = 2x^2 - 3$.

$$\frac{df(x)}{dx} = 2(2)x^1 = 4x$$

Set 1st derivative equal to 0

$$0 = 4x$$

 $x = 0$ is a critical point

2nd derivative test

$$\frac{d^2f(x)}{dx} = 4$$

Since the 2nd derivative is positive and there are no other critical points, x=0 is a global minimum.