Auswertung

Ergebnisse

Gesamtwiderstand $R_g = (84.6 \pm 0.09)$ 30hm

$\operatorname{Impedanz} Z_S$		
$(1.3423 \pm 0.0026) 1000$ ohm		
$(0.652 \pm 0.0009) 1000$ ohm		
$(0.3771 \pm 0.0005) 1000$ ohm		
$(0.24341 \pm 0.00029) 1000$ ohm		
$(0.14142 \pm 0.00017) 1000$ ohm		
$(0.10777 \pm 0.00013) 1000$ ohm		
$(0.0966 \pm 0.00012) 1000$ ohm		
$(0.09158 \pm 0.00011) 1000$ ohm		
$(0.09319 \pm 0.00012) 1000$ ohm		
$(0.10095 \pm 0.00012) 1000$ ohm		
$(0.12525 \pm 0.00015) 1000$ ohm		
$(0.19383 \pm 0.00023) 1000$ ohm		
$(0.3072 \pm 0.0004) 1000$ ohm		
$(0.4422 \pm 0.0006) 1000$ ohm		
$(0.6044 \pm 0.0008) 1000$ ohm		
$(0.7586 \pm 0.0011) 1000$ ohm		
$(0.9364 \pm 0.0015) 1000$ ohm		

Impedanz Z_I	quadrierte Kreisfrequenz ww	quadrierte Impedanz zz
$(168.88 \pm 0.17) \text{ohm}$	$(142100.0 \pm 2400.0) 4$ Hz ² π^2	$(28520.0 \pm 60.0) \text{ohm}^2$
(258.19 ± 0.27) ohm	$(395000.0 \pm 4000.0) 4\text{Hz}^2\pi^2$	$(66660.0 \pm 140.0) \text{ohm}^2$
$(351.6 \pm 0.4) \text{ohm}$	$(774000.0 \pm 6000.0) 4$ Hz ² π^2	$(123630.0 \pm 260.0) \mathrm{ohm^2}$
$(446.9 \pm 0.5) \text{ohm}$	$(1279000.0 \pm 8000.0) 4$ Hz ² π^2	$(199700.0 \pm 500.0) \text{ohm}^2$
$(543.4 \pm 0.7) \text{ohm}$	$(1911000.0 \pm 9000.0) 4$ Hz ² π^2	$(295300.0 \pm 700.0) \text{ohm}^2$
$(641.2 \pm 0.8) \text{ohm}$	$(2669000.0 \pm 11000.0) 4$ Hz ² π^2	$(411200.0 \pm 1000.0) \text{ohm}^2$
$(737.8 \pm 0.9) \text{ohm}$	$(3553000.0 \pm 12000.0) 4$ Hz ² π^2	$(544300.0 \pm 1400.0) \text{ohm}^2$
$(836.6 \pm 1.1) \text{ohm}$	$(4564000.0 \pm 14000.0) 4$ Hz ² π^2	$(699900.0 \pm 1800.0) \text{ohm}^2$
$(934.2 \pm 1.3) \text{ohm}$	$(5701000.0 \pm 16000.0) 4$ Hz ² π^2	$(872700.0 \pm 2400.0) \text{ohm}^2$
(1032.4 ± 1.5) ohm	$(6964000.0 \pm 17000.0) 4 \text{Hz}^2 \pi^2$	$(1066000.0 \pm 4000.0) \text{ohm}^2$
$(1133.3 \pm 1.7) \text{ohm}$	$(8354000.0 \pm 19000.0) 4$ Hz ² π^2	$(1284000.0 \pm 4000.0) \text{ohm}^2$

$$m = (1.4944 \pm 0.0024) \, 1$$

$$b = (6950.0 \pm 110.0)\,1$$

Fehlerformeln

$$\sigma_{R_g} = \sqrt{\sigma_{RA}^2 + \sigma_{RS}^2 + \sigma_{Ro}^2}$$

$$\sigma_{Z_{I}} = \sqrt{\frac{{\sigma_{UI}}^{2}}{{I_{I}}^{2}} + \frac{{U_{I}}^{2}}{{I_{I}}^{4}} {\sigma_{II}}^{2}}$$

$$\sigma_{Z_S} = \sqrt{\frac{\sigma_{US}^2}{{I_S}^2} + \frac{{U_S}^2}{{I_S}^4} \sigma_{IS}^2}$$

$$\sigma_{ww} = 8\pi^2 \sigma_{fI} \sqrt{{f_I}^2}$$

$$\sigma_{zz} = 2\sigma_{ZI}\sqrt{{Z_I}^2}$$