MIT 6.875

Foundations of Cryptography Lecture 10

Lectures 8-10

- Constructions of Public-key Encryption
 - ☑ Diffie-Hellman/El Gamal
 - 2: Trapdoor Permutations (RSA)
 - 3: Quadratic Residuosity/Goldwasser-Micali
 - 4: Learning with Errors/Regev

The Multiplicative Group \mathbb{Z}_N^*

$$= \{1 \le x < N : gcd(x, N) = 1\}$$

Theorem: \mathbb{Z}_N^* is a group under multiplication mod N.

Inverses exist: since gcd(x, N) = 1, there exist integers a and b s.t.

$$ax + bN = 1$$
 (Bezout's identity)

Thus, $ax = 1 \pmod{N}$ or $a = x^{-1} \pmod{N}$.

Trapadole Wenya Revial tellometadions

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i : \{0,1\}^n \to \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

• Easy to sample function index with a trapdoor: There is a PPT algorithm $Gen(1^n)$ that outputs a function index $i \in I_n$ together with a trapdoor t_i .

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i : \{0,1\}^n \to \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given i and x.

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i : \{0,1\}^n \to \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given i and x.
- Easy to compute an inverse of $F_i(x)$ given t_i .

A function (family) $\mathcal{F} = \{\mathcal{F}_n\}_{n \in \mathbb{N}}$ where each \mathcal{F}_n is itself a collection of functions $\mathcal{F}_n = \{F_i : \{0,1\}^n \to \{0,1\}^{m(n)}\}_{i \in I_n}$ is a trapdoor one-way function family if:

- Easy to sample function index with a trapdoor.
- Easy to compute $F_i(x)$ given i and x.
- Easy to compute an inverse of $F_i(x)$ given t_i .
- It is one-way: that is, for every p.p.t. A, there is a negligible function μ s.t.

$$\Pr\left[\begin{array}{c} (\textbf{i}, \textbf{t}) \leftarrow \textbf{Gen}(\textbf{1}^n); \ x \leftarrow \{0,1\}^n; y = F_i(x); \\ A(1^n, i, y) = x'; y = F_i(x') \end{array} \right] \le \mu(n)$$

From Trapdoor Permutations to IND-Secure Public-key Encryption

- $Gen(1^n)$: Sample function index i with a trapdoor t_i . The public key is i and the private key is t_i .
- Enc(pk = i, m): Output $c = F_i(m)$ as the ciphertext.
- $Dec(sk = t_i, c)$: Output $F_i^{-1}(c)$ computed using the private key t_i .

Could reveal partial info about m! So, not IND-secure!

From Trapdoor Permutations to IND-Secure Public-key Encryption

- $Gen(1^n)$: Sample function index i with a trapdoor t_i . The public key is i and the private key is t_i .
- Enc(pk = i, m) where m is a bit: Pick a random r. Output $c = (F_i(r), HCB(r) \oplus m)$.
- $Dec(sk = t_i, c)$: Recover r using the private key t_i , and using it m.

This is IND-secure: Proof by Hybrid argument (exercise).

Trapdoor Permutations: Candidates

Trapdoor Permutations are exceedingly rare.

Two candidates (both need factoring to be hard):

- The RSA (Rivestt-Shamir-Addernam) Feunction
- The Rabin/Blum-Williams Function

Review: Number Theory

Let's review some number theory from L5-7.

Let N = pq be a product of two large primes.

Fact: $Z_N^* = \{a \in Z_N : \gcd(a, N) = 1\}$ is a group.

- group operation is multiplication mod N.
- inverses exist and are easy to compute (how so?)
- the order of the group is $\phi(N) = (p-1)(q-1)$

The RSA Trapdoor Permutation

<u>Today</u>: Let e be an integer with $gcd(e, \varphi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Key Fact: Given d such that $ed = 1 \mod \phi(N)$, it is easy to compute x given x^e .

Proof: $(x^e)^d$

This gives us the RSA trapdoor permutation collection.

$$\{F_{N,e}: \gcd(e,N)=1\}$$

Trapdoor for inversion: $d = e^{-1} \mod \Phi(N)$.

The RSA Trapdoor Permutation

<u>Today</u>: Let e be an integer with $gcd(e, \varphi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Hardness of inversion without trapdoor = RSA assumption

given N, e (as above) and $x^e \mod N$, hard to compute x.

We know that if factoring is easy, RSA is broken (and that's the only *known* way to break RSA)

Major Open Problem: Are factoring and RSA equivalent?

The RSA Trapdoor Permutation

<u>Today</u>: Let e be an integer with $gcd(e, \varphi(N)) = 1$. Then, the map $F_{N,e}(x) = x^e \mod N$ is a trapdoor permutation.

Hardcore bits (galore) for the RSA trapdoor one-way perm:

- The Goldreich-Levin bit $GL(r; r') = \langle r, r' \rangle \mod 2$
- The least significant bit LSB(r)
- The "most significant bit" $HALF_N(r) = 1$ iff r < N/2
- In fact, any single bit of r is hardcore.

RSA Encryption

• $Gen(1^n)$: Let N=pq and (e,d) be such that $ed=1\ mod\ \phi(N)$.

Let pk = (N, e) and let sk = d.

- Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^e \mod N$ and $LSB(r) \oplus m$.
- Dec(sk, c): Recover r via RSA inversion.

IND-secure under the RSA assumption: given N, e (as above) and r^e mod N, hard to compute r.

Lectures 8-10

- Constructions of Public-key Encryption
 - ☑ Diffie-Hellman/El Gamal
 - ✓ Trapdoor Permutations (RSA)
 - 3: Quadratic Residuosity/Goldwasser-Micali
 - 4: Learning with Errors/Regev

Quadratic Residues mod P

Let P be prime. We saw that exactly half of Z_P^* are squares.

Define the Legendre Symbol $\frac{x}{P} = 1$ if x is a square, -1 if x is not a square, and 0 if x = 0 mod P.

So:
$$\binom{x}{p} = x^{(P-1)/2}$$

$$Z_P^* \qquad \underbrace{Leg_{-1}}_{\{x: \left(\frac{x}{P}\right) = -1\}} \qquad \underbrace{Leg_{+1}}_{\{x: \left(\frac{x}{P}\right) = +1\}}$$

Quadratic Residues mod P

Let P be prime. We saw that exactly half of \mathbb{Z}_P^* are squares.

It is easy to compute square roots mod P. We will show it for the case where $P = 3 \pmod{4}$.

Claim: The square roots of x mod P are $\pm x^{(P+1)/4}$

Proof: $(\pm x^{(P+1)/4})^2 = x^{(P+1)/2} = x \cdot x^{(P-1)/2} = x \mod P$

Quadratic Residues mod N

Now, let N = PQ be a product of two primes and look at Z_N^*

Define the Jacobi symbol $\binom{x}{N} = \binom{x}{P} \binom{x}{Q}$ to be +1 if x is a square mod both P and Q or a non-square mod both P and Q.

$$Z_{N}^{*}$$

$$\int ac_{-1} \qquad \int ac_{+1}$$

$$\{x: {x \choose N} = -1\} \qquad \{x: {x \choose N} = +1\}$$

Quadratic Residues mod N

Let N = PQ be a product of two large primes.

$$Z_{N}^{*}$$

$$Jac_{-1}$$

$$\{x: {x \choose N} = -1\}$$

$$\{x: {x \choose N} = +1\}$$

Surprising fact: Jacobi symbol $\binom{x}{N} = \binom{x}{P} \binom{x}{Q}$ is computable in poly time without knowing P and Q.

Quadratic Residues mod N

x is square mod N iff x is square mod P and it is a square mod Q.

So:
$$QR_N = \{x: {x \choose P} = {x \choose Q} = +1\}$$

$$QNR_N = \{x: \binom{x}{P} = \binom{x}{Q} = -1\}$$

 QR_N is the set of squares mod N and QNR_N is the set of non-squares mod N with Jacobi symbol +1.

Finding Square Roots Mod N

... is as hard as factoring N

Find the square roots of y mod P and mod Q.

$$x = y_P^2 \mod P$$
 $x = y_Q^2 \mod Q$

Let $y = c_P y_P + c_Q y_Q$ where the CRT coefficients $c_P = 1 \bmod P$ and $0 \bmod Q$ $c_Q = 0 \bmod P$ and $1 \bmod Q$

Then y is a square root of x mod N.

Finding Square Roots Mod N

... is as hard as factoring N

Suppose you know P and Q and you want to find the square root of x mod N.

Find the square roots of y mod P and mod Q.

$$x = y_P^2 \mod P$$
 $x = y_Q^2 \mod Q$

Let
$$y = c_P y_P + c_Q y_Q$$
 where the CRT coefficients $c_P = 1 \bmod P$ and $0 \bmod Q$ $c_Q = 0 \bmod P$ and $1 \bmod Q$

So, if x is a square, it has 4 distinct square roots mod N.

Finding Square Roots Mod N

... is as hard as factoring N

⇒ Suppose you have a box that computes square roots mod N. Can we use it to factor N?

Feed the box $x = z^2 \mod N$ for a random z.

Claim (Pf on the board): with probability 1/2, gcd(z + y, N) is a non-trivial factor of N.

Recognizing Squares mod N

... also seems hard

Let N = PQ be a product of two large primes.

Quadratic Residuosity Assumption (QRA)

Let N=PQ be a product of two large primes. No PPT algorithm can distinguish between a random element of QR_N from a random element of QNR_N given only N.

Goldwasser-Micali (GM) Encryption

 $Gen(1^n)$: Generate random n-bit primes p and q and let N = pq. Let $y \in QNR_N$ be some quadratic non-residue with Jacobi symbol +1.

Let pk = (N, y) and let sk = (p, q).

Enc(pk,b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2 \mod N$ if b=0 and $r^2y \mod N$ if b=1.

Dec(sk, c): Check if $c \in Z_N^*$ is a quadratic residue using p and q. If yes, output 0 else 1.

Goldwasser-Micali (GM) Encryption

Enc(pk, b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2 \mod N$ if b = 0 and $r^2y \mod N$ if b = 1.

IND-security follows directly from the quadratic residuosity assumption.

GM is a Homomorphic Encryption

Given a GM-ciphertext of b and a GM-ciphertext of b', I can compute a GM-ciphertext of b + b' mod 2. without knowing anything about b or b'!

Enc(pk,b) where b is a bit: Generate random $r \in Z_N^*$ and output $r^2y^b \mod N$.

Claim: $Enc(pk,b) \cdot Enc(pk,b')$ is an encryption of $b \oplus b' = b + b' \mod 2$.

Lectures 8-10

- Constructions of Public-key Encryption
 - ☑ Diffie-Hellman/El Gamal
 - ✓ Trapdoor Permutations (RSA)
 - ✓ Quadratic Residuosity/Goldwasser-Micali
 - 4: Learning with Errors/Regev

Practical Considerations

I want to encrypt to Bob. How do I know his public key?

Public-key Infrastructure: a directory of identities together with their public keys.

Needs to be "authenticated":

otherwise Eve could replace Bob's pk with her own.

Practical Considerations

Public-key encryption is orders of magnitude slower than secret-key encryption.

- 1. We mostly showed how to encrypt bit-by-bit! Super-duper inefficient.
- 2. Exponentiation takes $O(n^2)$ time as opposed to typically linear time for secret key encryption (AES).
- 3. The n itself is large for PKE (RSA: $n \ge 2048$) compared to SKE (AES: n = 128).

(For Elliptic Curve El-Gamal, it's 320 bits)

Can solve problem 1 and minimize problems 2&3 using **hybrid encryption**.

Hybrid Encryption

To encrypt a long message m (think 1 GB):

<u>Pick a random key K</u> (think 128 bits) for a secretkey encryption

Encrypt K with the PKE: PKE.Enc(pk, K)

Encrypt m with the SKE: SKE. Enc(K, m)

To decrypt: recover K using Sk. Then using K, recover m