Combining Wasserstein-1 and Wasserstein-2 proximals: robust manifold learning via well-posed generative flows

Hyemin Gu¹, Markos A. Katsoulakis¹ and Luc Rey-Bellet¹, Benjamin J. Zhang²

¹ University of Massachusetts Amherst, ² Brown university

Objective

► To formulate well-posed continuous-time generative flows through MFG for learning distributions that are supported on low-dimensional manifolds

Generative flows as Mean Field Games (MFG)

 $\mathcal{F}: \mathcal{P}(\mathbb{R}^d) \to \mathbb{R}$: terminal cost (ex. f-divergence $D_f(\rho(\cdot, T) || \pi)$ between target distribution π and approximating distribution $\rho(\cdot, T)$)

 $L(x, v) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$: convex running cost (ex. OT cost with $L = \frac{1}{2}|v|^2$)

▶ MFG that learns the velocity v(x, t) and measure $\rho(x, t)$ is defined as

$$\min_{v,\rho} \mathcal{F}(\rho(\cdot,T)) + \int_0^T \int_{\mathbb{R}^d} L(x,v(x,t))\rho(x,t)dxdt$$
s.t. $\partial_t \rho + \nabla \cdot (v\rho) = 0 \quad \rho(x,0) = \rho_0(x).$ (1)

 $H(x,p) = \sup_{v} \{-p^{T}v - L(x,v)\}$: Hamiltonian of (1)

► Optimality conditions for the optimizers of (1) are

$$-\frac{\partial U}{\partial t} + H(x, \nabla U) = 0, \quad U(x, T) = \frac{\delta \mathcal{F}(\rho(\cdot, T))}{\delta \rho(\cdot, T)}(x), \tag{2}$$

$$\frac{\partial \rho}{\partial t} - \nabla \cdot (\nabla_{\rho} H(x, \nabla U)\rho) = 0, \quad \rho(x, 0) = \rho_0(x). \tag{3}$$

Wasserstein W proximal regularization

 $\mathcal{P}_p(\mathbb{R}^d)$: the Wasserstein-p space

► Wasserstein-p proximal regularized cost function is written as

$$\inf_{R \in \mathcal{P}_p(\mathbb{R}^d)} \left\{ \mathcal{F}(R) + \theta \cdot \mathcal{W}_p^p(P, R) \right\} \tag{4}$$

where $\theta > 0$ is a weighting parameter.

W_1 proximal of D_f

 $D_f^{\Gamma_L}(\rho \| \pi)$: \mathcal{W}_1 proximal regularized f-divergence in dual formulation (6) as terminal cost $\mathcal{F}(\rho)$

$$\inf_{\nu \in \mathcal{P}_1(\mathbb{R}^d)} \left\{ D_f(\nu || \pi) + L \cdot \mathcal{W}_1(\rho, \nu) \right\} \tag{5}$$

$$= \sup_{\phi \in \Gamma_L} \{ \mathbb{E}_{\rho}[\phi] - \mathbb{E}_{\pi}[f^*(\phi)] \}$$
 (6)

\mathcal{W}_2 proximal of D_f^{IL}

Running cost $L(x, v) = \frac{1}{2}|v|^2$ results in \mathcal{W}_2 proximal of $D_f^{\Gamma_L}$ using Bernamou-Brenier dynamic OT formulation (7)

$$\inf_{\rho_T, V} \int_0^T \int_{\mathbb{R}^d} \frac{1}{2} |v(x, t)|^2 \rho(x, t) dx dt$$
s.t. $\partial_t \rho + \nabla \cdot (V \rho) = 0$, $\rho(x, 0) = \rho_0(x)$

Combination of Wasserstein proximals $\mathcal{W}_1 \oplus \mathcal{W}_2$

We combine $D_f^{\Gamma_L} = \mathcal{W}_1$ proximal of D_f and \mathcal{W}_2 proximal of $D_f^{\Gamma_L}$

$$\inf_{\rho_T} \left\{ D_f^{\Gamma_L}(\rho_T \| \pi) + \frac{\lambda}{2T} \cdot \mathcal{W}_2^2(\rho_0, \rho_T) \right\}$$
 (8)

$$=\inf_{\rho_{\mathcal{T}}}\left\{\inf_{\sigma}\left\{D_{f}(\sigma\|\pi)+L\cdot\mathcal{W}_{1}(\rho_{\mathcal{T}},\sigma)\right\}+\frac{\lambda}{2T}\cdot\mathcal{W}_{2}^{2}(\rho_{0},\rho_{\mathcal{T}})\right\}.$$
 (9)

Our learning objective is of the form

$$\inf_{v,\rho} \left\{ \sup_{\phi \in \Gamma_L} \left\{ \mathbb{E}_{\rho(\cdot,T)}[\phi] - \mathbb{E}_{\pi}[f^{\star}(\phi)] \right\} + \lambda \int_0^T \int_{\mathbb{R}^d} \frac{1}{2} |v(x,t)|^2 \rho(x,t) dx dt \right\}$$

$$\frac{dx}{dt} = v(x(t),t), \ x(0) \sim \rho_0, \ t \in [0,T].$$

$$(10)$$

MFG analysis

- $\triangleright W_2$ proximal yields a well-posed Hamilton-Jacobi dynamics in (2).
- $\triangleright W_1$ proximal provides a well-defined terminal condition in (2).
- Optimal trajectories are linear.
- ► The solution for (10) is unique.

Implementation

- The generative flows are learned through **adversarial training** of continuous-time flows.
- We monitor optimality indicators from (2) while training.

Result

Fig. 1: Stable manifold learning via W_1 proximal. $W_1 \oplus W_2$ flow (top), W_2 flow (bottom).

	$\mathcal{W}_1 \oplus$	Potential	OT flow
	\mathcal{W}_2	Flow	
	flow	GAN	
2D	8.0e-03	1.3e-02	1.9e-01
7D	1.0e-02	1.6e+01	4.5e+09
12D	1.6e-02	3.7e+00	7.9e+26

Table 1: Comparison with Potential Flow GAN (Yang et al.) and OT flow (Onken et al.). W_2 distance between original and generated data manifolds.

Fig. 2: Discretization-invariant flow learning via W_2 proximal. $W_1 \oplus W_2$ flow (top), W_1 flow (bottom) with different time step sizes $h = 2^0$ (left), $h = 2^{-6}$ (right).

Acknowledgement

The research was partially supported by AFOSR grant FA9550-21-1-0354, NSF DMS-2307115 and NSF TRIPODS CISE-1934846.

