

Ferienkurs

${\bf Experimental physik} \ {\bf 2}$

SS 2018

Lösung Aufgabenblatt 3

Hagen Übele Maximilian Ries

Aufgabe 1 (Leiterrahmen in Feld)

Eine kreisförmige Leiterschleife mit der Radius r wird mit der Geschwindigkeit v in ein Magnetfeld mit der Flussdichte B eingetaucht. Bestimmen sie die induzierte Spannung U in Abhängigkeit von der Zeit t, wenn diese zum Zeitpunkt t=0 in das B Feld eintaucht.

Lösung

Wir betrachten die Lage der Leiterschleife in einem beliebig angenommenen Zeitpunkt t. In diesem Zeitpunkt hat die Leiterschleife den $v \cdot t$ zurückgelegt. Für die Höhe der induzierten Spannung u ist die im Magnetfeld wirksame Leiterlänge (l) maßgebend. Das ist der Abstand derjenigen Punkte der Leiterschleife, die gerade in das Magnetfeld eintauchen. Die induzierte Spannung beträgt dabei nach dem Induktionsgesetz

$$U = Blv \tag{1}$$

Aus der Abbildung erhalten wir durch Anwendung des Satzes von Pythagoras

$$r^{2} = (r - vt)^{2} + \left(\frac{l}{2}\right)^{2} \tag{2}$$

Stellen wir diese Gleichung nach l um, und setzen wir dann das Ergebnis oben ein, so erhalten wir die gesuchte Spannung als

$$U = 2Bv\sqrt{r^2 - (r - vt)^2}$$
 (3)

Im Zeitpunkt t=2r/v befindet sich die gesamte Leiterschleife im Magnetfeld. Das angegebene Ergebnis gilt somit nur im Zeitbereich $0 \le t \le 2r/v$.

Aufgabe 2 (Tiefpass)

Der in der Abbildung dargestellte Tiefpass enthält den Wirkwiderstand $R = 10 \text{k}\Omega$ und einen Kondensator mit der Kapazität C = 120 nF. Bei welcher Frequenz f ist die Ausgangspannung U_2 um den Faktor 10 kleiner als die Eingangsspannung U_1 ?

Lösung

In der Schaltung gilt nach der Spannungsteilerregel

$$\frac{U_2}{U_1} = \frac{1/(\mathrm{i}\omega C)}{R + 1(\mathrm{i}\omega C)} = \frac{1}{1 + \mathrm{Ri}\omega C}.$$
 (4)

Für den Betrag dieses Quotienten ergibt sich

$$\frac{U_2}{U_1} = \frac{1}{\sqrt{1 + (R\omega C)^2}} \tag{5}$$

Wir lösen diese Gleichung nach ω auf und erhalten mit $U_1/U_2=10$

$$\omega = \frac{\sqrt{(U_1/U_2)^2 - 1}}{RC} = \frac{\sqrt{10^2 - 1}}{10 \cdot 10^3 \Omega \cdot 120 \cdot 10^{-9} F} = 8,29 \cdot 10^3 \frac{1}{s}.$$
 (6)

Damit beträgt die gesuchte Frequenz

$$f = \frac{\omega}{2\pi} = \frac{8,29 \cdot 10^3 \text{s}^{-1}}{2 \cdot \pi} = 1,32 \text{ kHz}.$$
 (7)

Aufgabe 3 (Schwingkreis)

Der in der Abbildung dargestellte Schwingkreis liegt an einer Spannung U_1 mit veränderbarer Frequenz. Die mit L_1 gekennzeichnete Spule hat die Induktivität L_1 = 15 mH. Die Kapazität C und die Induktivität L_2 sollen gewählt werden, dass bei der Frequenz $f_1 = 3.5$ kHz das Spannungsverhältnis $U_2/U_1 = 0$ sein.

Geben sie L_2 in Abhängigkeit von C an.

Lösung

Soll im Schwingkreis ein Spannungsverhältnis von $U_2/U_1=0$ auftreten, so muss die Admittanz der aus L_1 , C und L_2 bestehenden Schaltung (Y) Null sein.

$$U_1 = (Z + R)I \quad U_2 = R \cdot I \tag{8}$$

$$\frac{U_2}{U_1} = \frac{R}{Z+R} = 0 (9)$$

$$\Rightarrow Z \to \infty \Rightarrow Y = 0 \tag{10}$$

(11)

Diese Aussage führt zu der Gleichung

$$Y = \frac{1}{j\omega_2^2 L_1 + \frac{1}{j\omega_2 C}} + \frac{1}{j\omega_2 L_2} = 0$$
 (12)

Wir stellen sie nach L_2 um und erhalten die gesuchte Beziehung.

$$L_2 = \frac{1}{\omega_2^2 C} - L_1 \tag{13}$$

Aufgabe 4 (Mehrfachfilter)

Berechnen Sie für die abgebildete Schaltung die Transmission $|U_2|/|U_1|$ und $|I_2|/|I_1|$ bei einer Eingangsspannung $U_1=U_0\cos\omega t$ für L=0,1 H, $C=100\mu\mathrm{F}$, R= 50 Ω , $\omega=300~\mathrm{s}^{-1}$.

Lösung

Das Schaltbild lässt sich durch eine Umzeichnung vereinfachen.

Dieser Abbildung entnimmt man folgende Größen:

$$Z_D = \frac{1}{i\omega C} + \frac{1}{\frac{1}{i\omega L} + \frac{1}{R}} \tag{14}$$

$$Z_B = \frac{1}{i\omega C} + \frac{1}{\frac{1}{i\omega L} + \frac{1}{Z_P}} \tag{15}$$

$$Z = \frac{1}{\frac{1}{i\omega L} + \frac{1}{Z_B}} \tag{16}$$

$$= \frac{1}{\frac{1}{i\omega L} + \frac{1}{\frac{1}{i\omega C} + \frac{1}{2}}}}}}$$

$$(17)$$

$$U_A = U_1, \quad I_A = U_1/(i\omega L), \quad I_B = I_1 - I_A, \qquad U_B = I_B \cdot Z_B$$
 (18)

$$I_C = U_B/(i\omega L), \quad I_D = I_B - I_C, \quad U_D = I_D \cdot Z_D = U_2.$$
 (19)

$$I_2 = U_D/R$$
, $I_1 = U_1/Z$. Einsetzen ergibt: (20)

$$Z = (37, 6+38, 9i)\Omega, |Z| = 54, 1\Omega,$$
 (21)

$$Z_B = (22, 7 - 35, 4i)\Omega, |Z_B| = 42, 0\Omega,$$
 (22)

$$Z_D = (13, 2 - 11, 3i)\Omega, |Z_D| = 17, 4\Omega,$$
 (23)

$$Z_D = (13, 2 - 11, 3i)\Omega, |Z_D| = 17, 4\Omega, (23)$$

$$\frac{|U_2|}{|U_1|} = 0,414 \frac{|I_2|}{|I_1|} = 0,448 (24)$$

(25)

Aufgabe 5 (Selbstinduktion)

Berechnen Sie die Selbstinduktion pro Meter eines Kabels aus zwei konzentrischen Leiterrohren für Hin und Rückfluss des Stromes, wenn die Rohrradien R_1 und R_2 sind. Wie groß ist die magnetische Energiedichte zwischen den Rohren, wenn der Strom I fließt?

$$R_1 = 1 \text{mm}$$
 $R_2 = 5 \text{mm}$ $I = 10 \text{ A}$

Lösung

Wir nehmen zuerst an, dass der Abstand $R_2 - R_1$ zwischen den konzentrischen Rohren groß ist gegen die Wanddicke der Rohre. Dann gilt für das Magnetfeld

$$B = \frac{\mu_0 I}{2\pi r} \qquad \text{für} \qquad R_1 \le r \le R_2. \tag{26}$$

Durch eine Rechteckfläche $F=a\cdot b$ mit $a=R_2-R_14$ und b=l parallel zur Rohrachse geht der Fluss

$$\phi = \frac{\mu_0 I \cdot L}{2\pi} \int_{R_1}^{R_2} B \cdot dr = \frac{\mu_0 I \cdot l}{2\pi} \ln \frac{R_2}{R_1}$$
 (27)

a) Die Induktivität pro m Kabellänge ist daher

$$\hat{L} = \frac{\mu_0}{2\pi} \ln \frac{R_2}{R_1} \tag{28}$$

$$\Rightarrow \hat{L} = \frac{1,26 \cdot 10^{-6}}{2\pi} \ln 5 \text{ H/m} = 0,32 \cdot 10^{-6} \text{ H/m}$$
 (29)

b) Die Energiedichte beträgt

$$\omega(r) = \frac{1}{2} \frac{B^2}{\mu_0} = \frac{\mu_0 I^2}{8\pi^2 r^2} \tag{30}$$

Die Energie beträgt dann:

$$W = \int \omega dv = 2\pi l \int_{R_1}^{R_2} \omega(r) dr \tag{31}$$

$$=\frac{\mu_0 I^2 l}{4\pi} \ln \frac{R_2}{R_1} = \frac{1}{2} L I^2 \tag{32}$$

Die Energie pro Längeneinheit beträgt

$$\hat{W} = \frac{1}{2}\hat{L}I^2 = \frac{\mu_0 I^2}{4\pi} \ln \frac{R_2}{R_1}$$
 (33)

$$\Rightarrow \hat{W} = 1, 6 \cdot 10^{-5} \text{ J/m} \tag{34}$$

c) Wenn die Dicke der Wände nicht vernachlässigbar ist, muss man für das Magnetfeld im Innenleiter

$$B(r) = \frac{1}{2}\mu_0 j \cdot r = \frac{\mu_0 I}{2\pi r_0^2} r \tag{35}$$

verwenden. Man erhält dann als zusätzlichen Beitrag zur Induktivität pro m Kabellänge:

$$L_2 = \frac{\mu\mu_0}{8\pi} \tag{36}$$

und für die Energie pro Länge:

$$\hat{W} = \frac{\mu\mu_0 I^2}{16\pi} \tag{37}$$

Der Beitrag des Außenleiters führt auf ein Integral das durch Reihenentwicklung lösbar ist.

Aufgabe 6 (Zuggleis)

Die beiden Schienen eines Eisenbahngleises mit der Spurweite $l=1435\,\mathrm{mm}$ seien voneinander isoliert und mit einem Spannungsmesser verbunden. Welche Spannung U_i zeigt das Instrument an, wenn ein Zug mit der Geschwindigkeit $v=100\,\mathrm{\frac{km}{h}}$ über die Strecke fährt?

Verwenden Sie $B_v=45\,\mu\mathrm{T}$ als den Betrag der magnetischen Flussdichte der Vertikalkomponente des Erdmagnetfelds.

Lösung

$$U_i = vB_v l = 1.8 \,\mathrm{mV} \tag{38}$$

Aufgabe 7 (Wechselstromkreis)

Abbildung 1: Schaltplan zur Aufgabe "Wechselstromkreis"

- a) Für den in Abbildung 1 gezeigten Wechselstromkreis ist die Stromstärke $I_{\rm eff}$, die durch den Strommesser fließt, zu berechnen. Der geringe Innenwiderstand des Messgeräts soll vernachlässigt werden.
- b) Wie groß ist die Wirkleistung P_W ?
- c) Welche Wärme Q wird in einer Minute von diesem Stromkreis an seine Umgebung abgegeben?

Lösung

a) Wir benutzen $\omega = 2\pi f$.

$$I_{\text{eff}} = \frac{U_{\text{eff}}}{\sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}}$$
 (39)

$$= 0.88 \,\mathrm{A}$$
 (40)

$$P_W = U_{\text{eff}} I_{\text{eff}} \sqrt{\frac{1}{1 + \left(\frac{\omega L - \frac{1}{\omega C}}{R}\right)^2}}$$
(41)

$$= 70 \,\mathrm{W} \tag{42}$$

$$Q = P_W t = 4.2 \,\mathrm{kJ} \tag{43}$$

Aufgabe 8 (Rotierende Leiterschleife)

Eine rechteckförmige Spule mit der Länge $l=52\mathrm{mm}$, der Höhe (dem Durchmesser) $d=55\mathrm{mm}$ und N=100 Windungen wird von der dargestellten Lage aus ($\alpha=35^\circ$) in einem homogenen Magnetfeld gedreht. Die Drehzahl beträgt $n=50\,\mathrm{1/s}$. Die Drehung erfolgt wie in der Abbildung dargestellt - entgegengesetzt dem Uhrzeigersinn. Das Magnetfeld hat die Flussdichte $B=0.12\,\mathrm{T}$. Es ist die in der Spule induzierte Spannung U in Abhängigkeit von der Zeit t zu ermitteln.

Lösung

Bei der Drehzahl $n = 50 \, 1/\mathrm{s}$ beträgt die Winkelgeschwindigkeit der Spule

$$\omega = 2\pi n = 2 \cdot \pi \cdot 50 \frac{1}{s} = 314 \frac{1}{s}.$$
 (44)

Betrachtn wir die Spule in einem beiliebigen Zeitpunkt t, so hat sie nach der Abbildung den Winkel ωt zurückgelegt. In diesem Zeitpunkt verläuft durch die Spule bei der dann wirksamen Spulenfläche $A = dl \cos(\omega t + \alpha)$ der magnetische Fluss.

$$\Phi = BA = Bdl\cos(\omega t + \alpha). \tag{45}$$

Damit beträgt die in die Spule induzierte Spannung nach dem Induktionsgesetz

$$U = -N\frac{d\Phi}{dt} = -NBdl\omega[-\sin(\omega t + \alpha)]$$
(46)

Das in dieser Gleichung bei dem Ausdruck $Nd\Phi/dt$ enthaltene negative Vorzeichen rührt daher, dass in der Abbildung die für die Spannung U eingetragene Pfeilrichtung so gewählt wurde, dass sie der Magnetfeldrichtung nach der Rechtsschraubenregel zugeordnet ist.

Durch einsetzen der Werte erhält man

$$U = 100 \cdot 0, 12 \text{T} \cdot 55 \cdot 10^{-3} \text{m} \cdot 314 \frac{1}{\text{s}} \cdot \sin(314 \frac{1}{\text{s}} \cdot +35^{\circ}); \tag{47}$$

$$U = 10,8V \cdot \sin(314\frac{1}{s} \cdot +35^{\circ})$$
 (48)

(49)

Die induzierte Spannung halt also einen zeitlich sinusförmigen Verlauf.

Aufgabe 9 (Kupfer Kreisscheibe)

In einem homogenen Magnetfeld (Flussdichte B) rotiert eine Kupferscheibe (Radius r_0) mit der Winkelgeschwindigkeit ω . Wie groß ist die zwischen den Schleifkontakten gemessene Spannung?

Abbildung 2: Schematische Zeichnung der Kreisscheibe und der relevanten Größen

Lösung

Abbildung 3: Verdeutlichung der von r_0 überstrichenen Fläche

Lösung 1 Geht man vom Induktionsgesetz

$$U_i = \frac{\mathrm{d}\Phi}{\mathrm{d}t} \tag{50}$$

aus, so erklärt sich das Auftreten der induzierten Spannung durch die Änderung der Fläche der Leiterschleife. Diese Fläche vergrößert sich um den Kreissektor, den der auf der Scheibe mitrotierende Radius r_0 überstreicht- Für eine volle Drehung der Scheibe, die in der Umlaufzeit

$$T = \frac{2\pi}{\omega} \tag{51}$$

stattfindet, hat die Änderung des magnetischen Flusses den Betrag

$$\Delta \Phi = BA \tag{52}$$

mit $A=\pi r_0^2$ der Kreisfläche. Wegen der konstanten Umlauffrequenz gilt

$$U_i = \frac{\Delta\Phi}{T} = \frac{B\pi r_0^2 \omega}{2\pi} = \frac{B\omega r_0^2}{2} \tag{53}$$

Das negative Vorzeichen spielt hierbei keine Rolle für die Rechnung.

Lösung 2 Die Beziehung für die im bewegten Leiterstück induzierte Feldstärke $E_i = |\vec{v} \times \vec{B}|$ liefert mit $v = \omega r$ zunächst eine von r abhängige Feldstärke

$$E_i = B\omega r \tag{54}$$

Mit $U_i = \int_0^{r_0} E_i(r) dr$ erhalten wir

$$U_i = \frac{B\omega r_0^2}{2} \tag{55}$$