

CSC10004: Data Structure and Algorithms

Lecture 0: Introduction

Lecturer: Bùi Văn Thạch

TA: Ngô Đình Hy/Lê Thị Thu Hiền

{bvthach,ndhy}@fit.hcmus.edu.vn, lththien@hcmus.edu.vn

Education – Employment history

- Course information
- Course topics
- Grading
- Course requirements
- References

- Course information
- Course topics
- Grading
- Course requirements
- References

Objectives

- Equip yourself with introductory knowledge and essential skills regarding data structures and algorithms.
- Learn methods to evaluate and estimate the complexity of common algorithms.
- Use data structures well in applications

- Course information
- Course topics
- Grading
- Course requirements
- References

Course topics

- 0. Introduction
- 1. Algorithm complexity analysis
- 2. Recurrences
- 3. Search
- 4. Sorting
- 5. Linked list
- 6. Stack, and Queue, Priority queue

- 7. Tree
 - 1. Binary search tree (BST)
 - 2. AVL tree
- 8. Graph
 - 1. Graph representation
 - 2. Graph search
- 9. Hashing
- 10. Algorithm designs
 - 1. Greedy algorithm
 - 2. Divide-and-Conquer
 - 3. Dynamic programming

- Course information
- Course topics
- Grading
- Course requirements
- References

- Participation: 10%. Quizzes will be given randomly during the lectures.
- Mid-term test: 10%
- Lab: 40%
- Final test: 40%
- Bonus: 10%. Activities in class and disciplines.

Cheating: getting 0 for the final result.

- Course information
- Course topics
- Grading
- Course requirements
- References

General rules (1/2)

- Do not disturb others in class.
- To be on time and actively participate in class activities.
- There are some quizzes during the course.
- Keep your phone in silent mode.

General rules (2/2)

- Students must strictly adhere to the regulations and rules of the Faculty and the University.
- Students will be barred from taking the final exam if they were absent more than 3 times in total for theoretical classes.
- In cases of dishonesty during assignments or exams, students will face all disciplinary actions from the Faculty/University and will receive a score of 0 for THE COURSE.

Chatbot policy

- With the advent of Al-driven chatbots like ChatGPT, Gemini, and others, there's a new dimension to the academic resources available to students. These tools can be instrumental in fostering understanding, but they come with their own set of guidelines for responsible use:
 - Using chatbots for enhancing clarity on a topic or concept is acceptable.
 - Directly copying and pasting responses or solutions from these chatbots without a genuine understanding is deemed a severe breach of academic integrity.
 - Should you take assistance from chatbots, it is imperative to explicitly acknowledge it in your submission.
- Non-compliance with the above directives, akin to other forms of academic misconduct, will be treated with utmost seriousness, resulting in consequences as outlined above.

Lab Sessions

Follow the guidance of the teachers.

Do not hesitate to ask questions.

Try your best to get as much experience as you can.

• Language: C++.

IDE: Visual Studio.

Other notes

Use official email always.

Read textbooks more than the requirements.

Get the knowledge from the videos suggested by the instructors.

- Course objectives
- Course content
- Student duties
- Grade evaluation
- References

References

- Knuth, Donald Ervin. *The art of computer programming*. Vol. 3. Pearson Education, 1997.
- Cormen, Thomas H., Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduction to algorithms. MIT press, 2022.
- Weiss, Mark A. Data structures & algorithm analysis in C++. Pearson Education, 2012.
- Motwani, Rajeev. Randomized Algorithms. Cambridge University Press, 1995.
- Jon Kleinberg and Eva Tardos. Algorithm Design. 1st Edition, 2005, Pearson.