Elastic Constitutive relations

· Objectivity

rigid means
$$x_1^{\dagger} - x_2^{\dagger} = \mathbb{Q} \left[x_1 - x_2 \right]$$

$$\Rightarrow \|x_1^{\dagger} - x_2^{\dagger}\| = \|x_1 - x_2\| \quad \text{Euclidean distance}$$

$$\| \cdot \| := (\cdot)^{\top}(\cdot)$$

$$F := \frac{\partial x}{\partial x} \quad F^{\dagger} = \frac{\partial x}{\partial x} \quad x_1^{\dagger} = \frac{\partial x}{\partial x} \quad x_2^{\dagger} = \frac{\partial x}{\partial x} \quad x_3^{\dagger} = \frac{\partial x}{\partial x} \quad x_4^{\dagger} = \frac{\partial x}$$

$$F := \frac{\partial x}{\partial x} \qquad F^{\dagger} := \frac{\partial x^{\dagger}}{\partial x} = \frac{\partial x^{\dagger}}{\partial x} = \frac{\partial x}{\partial x} = QF.$$

$$F = \frac{\partial x}{\partial x} = \frac{\partial x}{\partial x} = QF.$$

A spatial tensor / vector / scalar is said to transform objectively if they transform under standard rules of tensor analysis:

$$A^{\dagger}(x^{\dagger}, t^{\dagger}) = Q(t) A(x, t) Q^{\dagger}(t)$$

vector
$$u^{+}(x^{+}, t^{+}) = Q(t) u(x, t)$$

$$p(x^{\dagger}, t^{\dagger}) = p(x, t)$$
scalar.

examples: $J = \det F$. $J' = \det F' = \det Q \det F = J$ > scalar field J is objective = (QF)(QF) I is not suitable for A constitutive relations. = QQ + QFFQT I does NoT = = QQ + QIQT transform objectively.

Skew tensor · l= d+ w () $d^{+} = Q d Q^{T} \Rightarrow rate-of-strain is objective.$ y wt = awat + aa t = 6n $t' = 6^{\dagger}n^{\dagger}$ $t^{+}=Qt$ $n^{+}=Qn$ ⇒ Q6n = 6[†]Qn 6 = Q6Q+ Cauchy stress is objective.

Remark: the material time derivative of 6 is NOT objective.

$$\frac{\partial}{\partial t} 6 = \left\{ \frac{\partial}{\partial t} 6 (\varphi(x, t)_t) \right\} \circ \varphi_t^{-1}$$

$$= \frac{\partial}{\partial t} (\mathcal{E}_t \circ \varphi_t) \circ \varphi_t^{-1}$$

$$= \frac{\partial}{\partial t} \mathcal{E}_t + \nabla \mathcal{E}_t V_t$$

$$G_{t}^{t} = Q(t) G_{t} Q_{t}^{T} + Q_{t} G_{t} Q_{t}^{T} + Q_{t} G_{t} Q_{t}^{T} + Q_{t} G_{t} Q_{t}^{T}$$

$$= Q(t) G_{t} Q_{t}^{T} + [OO^{T}] G^{t}$$

$$= Q(t) G_{t} Q_{t}^{T} + [OO^{T}] G^{t}$$

=
$$Q(t)$$
 G_t $Q(t)$ + $[QQ^T]G_t^T$ + $G_t^T[QQ^T]$

are several ways (

There are several ways for modifying the stress rate definition, and they are known as the objective stress rates.

Frame indifference.

$$P(X,t) = \frac{\partial \overline{D}(X,F(X,t))}{\partial F}$$
elastic material stress depends on the current def. state the potential energy to

(85

Recall that
$$F = RU$$
, picking $Q = R^T$.

$$\oint (X, F) = \oint (X, U) = \oint (X, C)$$

$$C = U^2$$
for elastic materials, the energy depends on the deformation state through U , or equivalently, C .

$$\oint (X, C) \text{ is objective since } C^+ = C.$$

In your material model routine, it is a good option by writing functions with C as an infent, rather than F.

· Isotropy

Let X be a material point in the referential configuration: If a rigid deformation is imposed on the referential configuration, $Y(X) = X^{+} = QX + C$. $Q \in SO(3)$

186

$$F_{\epsilon} = \frac{\partial \mathcal{L}}{\partial x} = \frac{\partial \mathcal{L}}{\partial x^{+}} \frac{\partial x^{+}}{\partial x} = F_{\epsilon} Q \Rightarrow F_{\epsilon}^{+} = F_{\epsilon} Q^{T}$$

$$\Rightarrow$$
 $C^t = Q C Q^T$

In general $\phi(c) \neq \phi(c^{\dagger})$

$$G_{x} := \left\{ Q \in SO(3) : \vec{\varphi}(x, QCQ^T) = \vec{\varphi}(x, c) \right\}$$

is a subgroup of SO(3) at point X, and if Gx = SO(3)

the material is isotropic; otherwise it is anisotropic.

Representation theorem: A function f of symmetric tensors is isotropic if and only if $f(H) = f(QHQ^{T}) \quad \text{for all } Q \in SO(3).$

An isotropic function depends on H through its principal invariants: I, = tr H

$$I_2 = \frac{1}{2}(I_1^2 - trH^2)$$

 $I_3 = detH$.

For isotropic elastic materials, one may write the stored energy as $\phi(c) = \tilde{\phi}(I_1(c), I_2(c), I_3(c))$.

Remark:
$$\vec{\Phi}(RCR^T) = \vec{\Phi}(C)$$

$$\vec{\Phi}(RUU^TR^T) = \vec{\Phi}(FF^T) = \vec{\Phi}(b)$$

Only for isotropic elastic response, the stored energy depends on the motion through b.

· Coleman - Noll procedure.

Let Dio be an arbitrarily chosen region in the ref. Configuration; and Dat = 9t (Do).

((vx, t) internal energy per unit volume

pull the above back to Do:

$$p(x,t)J(X,t) = P_0(x)$$
. $V_{\pm} \circ Y_{\pm} = V_{\pm}$.

introduce ((x, t)J(x, t) = I(x, t)

toda = TodA > Solat towda = Sola TovolA

We introduce nominal heat flux (or Piola-Kirchhoff heat thex) as Q

Jano Q. NdA := Jane 2. nda

Jan. 2. JFNLA

We may conclude that Q=JF2 $4 J \chi_{\times}^{-1}(2)$ piola transformation.

r(x,t) J(x,t) = R(x,t)

$$\frac{D}{D\epsilon} \int_{\Omega_{t_0}} \frac{1}{2} |\mathcal{E}| |V|^2 + |\mathcal{I}| dx = \int_{\partial \Omega_{t_0}} T \cdot V - |\mathcal{Q}| \cdot N dA$$

$$+ \int_{\Omega_{t_0}} |\mathcal{E}| B \cdot V + |\mathcal{R}| dx.$$

Ω40 is arbitrary, we may localize the above to PDE form:

Recall that the momentum egn: is DIVP + 10B = 0

D'Alembert principle:
$$b \leftarrow b-a$$
 $B \leftarrow B-A$

Balance of mechanical energy in material description

Plug into the balance of total energy:

Remark: It is often to see people use the internal energy per mass, and there will be 'p' on the left hand side of the above egn.

Remark: The stress power term can be expressed in various different forms:

Mandel stress: Z := CS (used in plastic materials) S: E = S: ± c = Z: ± c c Co-Rotated Cauchy stress: on : = JUSU Green & Nagholi = RTGR J6:d = JRTGR: R'dRT = J6n: DR DR. rotated rate of deformation. Biot Stress: $T_B := R^T P = R^T F S = US$ P: F = P: [R(RTR)U+ RÚ] = PFT : RRT + RTP : U = T: RRT + TB : U = Symm (TB): U. Work conjugate pairs: JE PS E JEW SYMMTB d É É ÉCC DR i.

(91

and law: $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} \int_{\Omega_{t_0}} \mathcal{Q} \, dx + \int_{\partial \Omega_{t_0}} \frac{\partial}{\partial x} \cdot \mathcal{N} \, dx - \int_{\Omega_{t_0}} \frac{\mathcal{R}}{\partial x} \, dx \geq 0$ $\begin{cases}
& \text{Positive.} & \text{Clausius-Duhem} \\
& \text{localization} & \text{absolute temperature.} & \text{inequality}
\end{cases}$ $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} - \frac{\mathcal{R}}{\partial x} + \mathcal{D}_{t_0} \frac{\partial}{\partial x} \geq 0$

Dt B DIVQ #- Q. GRADO 12

Q. GRALO = JF'2. GRADO = J2. grado × 0

Physical obervation:

heat flux points from

high to low temperature.

 $\Rightarrow \frac{\partial D1}{\partial t} + DIVQ - R \ge 0$ $P: \dot{F} - \frac{D}{Dt} I$

 $\Rightarrow P: F - \frac{D}{D_t}I + \frac{D}{D_t}I \ge 0$ Clausius - Plank inequality

Helmholtz free energy
$$\vec{D} := \vec{I}_i - \Theta \eta$$

$$\Rightarrow \frac{D}{Dt} \vec{D} = \frac{D}{Dt} \vec{I}_i - \eta \frac{D}{Dt} \Theta - \Theta \frac{D}{Dt} \eta.$$

if we are working on a pure mechanical process:
$$P: \dot{F} - \vec{\Phi} \geqslant 0$$

If
$$\Phi = \Phi(F)$$
, then $P: \dot{F} - \frac{\partial \Phi}{\partial F}: \dot{F} \geq 0$

or $\left(P - \frac{\partial \Phi}{\partial F}\right): \dot{F} \geq 0$

We choose
$$P = \frac{\partial \Phi}{\partial F}$$
.

perfectly elastic material:

no dissipation / entropy produ

no dissipation entropy production

93

Remark: We assume $\Phi(I) = 0$ s i.e., Strain energy vanishes in the ref. Config. This is known as the normalization condition.

 $\Phi(F)\geqslant 0$: the storeol energy increases with deformation

If the above two assumptions ensures the stress vanishes in the ref. configuration.

For isotropic materials, due to the representation theorem $\phi = \phi(I_1(c), I_2(c), I_3(c))$

Recall P: F = S: E = 25: c

 $\frac{1}{2}S: \dot{C} - \frac{\partial \phi}{\partial C}: \dot{C} \geq 0$ implies $S = 2\frac{\partial \phi}{\partial C}$

 $S = 2 \frac{\partial \phi}{\partial I_1} \frac{\partial I_2}{\partial C} + 2 \frac{\partial \phi}{\partial I_2} \frac{\partial I_3}{\partial C} + 2 \frac{\partial \phi}{\partial I_3} \frac{\partial I_3}{\partial C}$ I I = I = I = I

 $=2\left[\left(\frac{\partial \phi}{\partial I_{i}}+I_{i}\frac{\partial \phi}{\partial I_{2}}\right)I-\frac{\partial \phi}{\partial I_{3}}C+I_{3}\frac{\partial \phi}{\partial I_{3}}C^{-1}\right]$ Constitutive egn. in principal invariants

(S= \(\frac{3}{\pa_a} \frac{1}{\pa_a} \frac{\pa_b}{\pa_a} \Na \(\text{Na} \)

constitutive egn. in principal stretches

See Holzapfel. PP. 219-221.

$$\bar{C} := 4\bar{J}^{\frac{1}{3}} \frac{\partial \bar{\phi}_{ich}}{\partial \bar{c} \partial \bar{c}} \qquad Tr(\cdot) := (\cdot) : C$$

Remark: Refer to Holzaptel book example 6.8 for the derivation of Cich. Note, the author uses iso for isochoric quantities.

Remark: The formula of C for stretch based models can be found on Holzapfel book, PP. 257-260.

Example: neo-Hookean
$$\forall ich(\overline{c}) = C_i(\widetilde{I}_i - 3)$$

$$\bar{S} = G_{1}$$
 \Rightarrow $S_{ich} = \bar{J}^{3/3}(I - \frac{1}{3}\bar{C}\otimes C)$. G_{1}

$$= G_{1}^{3/3}(I - \frac{1}{3} \text{ trc } C^{-1})$$

$$= 2 \frac{1}{3} \text{ frc } C^{-1}$$

Ogden model.
$$fich(\bar{\lambda}_1, \bar{\lambda}_2, \bar{\lambda}_3) = \sum_{i} \bar{\omega}(\bar{\lambda}_a) \bar{\omega}(\bar{\lambda}_a) = \sum_{i=1}^{N} \frac{1}{\alpha_i} (\bar{\lambda}_a)$$

bulk modulus
$$\chi_{-2}(\beta \ln J + J^{\beta}_{-1})$$

$$= 9$$

$$fvoi(J) = \beta(\beta \ln J + J^{\beta}_{-1})$$
(96