Analise II: Prova 2

25 de maio de 2017

Orientações gerais

- 1) As soluções devem conter o desenvolvimento e ou justificativa. Questões sem justificativa ou sem raciocínio lógico coerente não pontuam.
- 2) A interpretação das questões é parte importante do processo de avaliação. Organização e capricho também serão avaliados.
- 3) Não é permitido a consulta nem a comunicação entre alunos.

Questão 2
Considere
$$f(x):=\sum_{n=1}^{\infty}\frac{1}{n^x}$$
. Mostre que f é contínua em $X=[a,\infty)$ $(a>1)$. f é derivável?.

Solution: Já que $\frac{1}{n^x} \le \frac{1}{n^a}$ e $\sum_{n=1}^{\infty} \frac{1}{n^a} < \infty$, do teste de Weierstrass, temos que $\sum_{n=1}^{\infty} \frac{1}{n^x}$ converge uniformemente, além disso, dita função é continua já que cada somando é contínuo. Para verificar que é derivável basta ver se $\sum_{n=2}^{\infty} \frac{\ln(n)}{n^x}$ converge uniformente em X. Para isso, use de novo o teste

de Weierstrass junto com o critério do integral para $\sum_{n=2}^{\infty} \frac{\ln(n)}{n^a}$ (perceba que $\ln(x)/x$ é decrescente).

Prove que

- (a) (12 points) $\sin(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$, para todo $x \in \mathbb{R}$.
- (b) (8 points) $\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n+1} x^n$, para todo $x \in (-1,1]$.

Solution: Feito em aula. Usamos os resíduos que provêm da formula de Taylor para estimar as diferenças $|\log(1+x) - \sum_{k=1}^n \frac{(-1)^k}{k+1} x^k|$ e $|\sin(x) - \sum_{k=1}^n \frac{(-1)^k}{(2k+1)!} x^{2k+1}|$, respectivamente e logo tomando limites quando n vai para o infinito.

Solution: Por contradição, existe $\varepsilon > 0$ e uma sequência $x_n \in [a,b]$ tal que $|f_n(x_n)| \ge \varepsilon$ para todo $n \in \mathbb{N}$. Já que [a,b] é compacto, existe uma subsequência x_{n_k} convergente. Por hipótese, temos que $f_{n_k}(x_{n_k}) \to 0$, o que é uma contradição com $|f_n(x_n)| \ge \varepsilon$.

Questão 5

Calcule o intervalo de convergência da série

(a) (6 points)
$$\sum_{n=1}^{\infty} a_n x^n$$
, onde $a_n := \sum_{k=1}^{n} \frac{1}{k}$.

- (b) (6 points) $\sum_{n=1}^{\infty} \frac{n}{4^n} x^n$
- (c) (8 points) $\sum_{n=1}^{\infty} \frac{n!}{n^n} x^n$. Dica: Lembre que $(1+x^{-1}\alpha)^x \to e^{\alpha}$, quando $x \to \infty$.

Solution: Primeiro calculemos o raio de convergência para cada série de potência.

- (a) De fato, $R^{-1} = \limsup (a_{n+1}/a_n) = 1$. Logo, temos o intervalo (-1,1). Analisemos os extremos. Se x = 1, $a_n x^n = a_n = \sum_{k=1}^n \frac{1}{k} \to \infty$ similarmente quando x = -1, $a_n x^n$ não converge a zero. Portanto, o intervalo de convergência é (-1,1).
- (b) Como $R^{-1} = \limsup(a_n^{1/n}) = 1/4$. Logo, temos o intervalo (-4,4). Analisemos os extremos. Se x = 4, $a_n x^n = a_n = n \to \infty$ similarmente quando x = -1, $a_n x^n$ não converge a zero. Assim, o intervalo de convergência é (-4,4).
- (c) Como $R^{-1} = \limsup (a_{n+1}/a_n) = e^{-1}$. Logo, temos o intervalo (-e,e). Analisemos os extremos. Se x = e, $a_n x^n = a_n e^n = n! (e/n)^n \to \infty$. Para ver que $n! (e/n)^n \to \infty$, basta usar a formula de Stirling $\lim_{n\to\infty} \frac{n! e^n}{(\sqrt{2\pi n})n^n} = 1$. Analogamente, quando x = -e, $a_n x^n$ não converge a zero. Assim, o intervalo de convergência é (-e,e).

Uma função de classe \mathcal{C}^{∞} é analítica em um ponto x=a, se coincidir com sua série de Taylor ao redor de x=a num intervalo \mathcal{I} de a. Mostre que

- (a) (5 points) Se f é analítica no ponto x = a na vizinhança \mathcal{I} , então, f é analítica para todo $x \in \mathcal{I}$.
- (b) (5 points) Prove que não existe função analítica $f: \mathbb{R} \to \mathbb{R}$ tal que $\{a \in \mathbb{R}: f \text{ \'e analítica em } a\} = \mathbb{Q}$.

Solution: (a) Feito em aula; (b) Suponha que existe uma função f analitica tal que $\{a \in \mathbb{R} : f \text{ \'e anal\'etica em } a\} = \mathbb{Q}$. Pegue $c \in \mathbb{Q}$. Do item (a), existe um $\delta > 0$ tal que f é analítica em $(c - \delta, c + \delta)$. Por hipótese, concluímos que $(c - \delta, c + \delta) \in \mathbb{Q}$, o que é uma contradição já que $\mathbb{R} \setminus \mathbb{Q}$ é denso.