

Bac Maths Classe:

Série: 15 (dérivabilités suites

isométries)

Nom du Prof: Mohamed Hedi Ghomriani

O Sousse (Khezama - Sahloul) Nabeul / Sfax / Bardo / Menzah El Aouina / Ezzahra / CUN / Bizerte / Gafsa / Kairouan / Medenine / Kébili / Monastir / Gabes / Djerba / Jendouba / Sidi Bouzid / Siliana / Béja / Zaghouan

Exercice 1

(S) 25 min

5 pts

1) Déterminer $\lim_{x\to 2^-} \frac{f(x-1)}{x-2}$ et $\lim_{x\to 2^+} \frac{f(x-1)}{x-2}$

2)

a) Justifier que fof est dérivable en o et calculer fof 0

b)

3) On donne la représentation graphique de la fonction dérivée d'une fonction f deux fois

dérivable sur [-5,5], A $0,1 \in C_f$

b) Justifier que les points de C_f d'absciisses1 et -1 sont des points d'inflexions

c) Déterminer le sens de variation de f

4)

 C_1 , C_2 et C_3 sont les courbes représentatives des fonctions dérivées des fonctions ${\bf f}$, ${\bf g}$ et ${\bf h}$ de représentations respectives C_f , C_g et C_h . Faire correspondre chaque fonction avec sa fonction dérivée

Exercice 2

(5) 25 min

5 pts

Soit f la fonction définie sur IR par : f x =
$$\begin{cases} \frac{x + \cos \pi x}{x - 1} + x - 1 & \text{si } x < 1 \\ \sqrt{x^2 + x + 2} - x & \text{si } x \ge 1 \end{cases}$$

On désigne par \mathscr{C}_{f} la courbe représentative de la fonction \mathbf{f} dans un repère O,i,j

- 1) Calculer $\lim_{x\to -\infty} f$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$. Interpréter graphiquement le résultat.
- 2) Montrer que ${\bf f}$ est continue sur ${\rm IR}.$

Maths

- **3) a)** Montrer que l'équation $\mathbf{f} \mathbf{x} = \mathbf{x} \mathbf{1}$ admet au moins une solution $\alpha \in \left[-\frac{1}{2}, 0 \right]$.
 - **b)** Vérifier que : $\tan \pi \alpha = \frac{\sqrt{1-\alpha^2}}{\alpha}$.
- **4)** Soit **g** la fonction définie sur $\left[0, \frac{\pi}{2}\right]$ par $g(x) = f\left(\frac{1}{\cos x}\right)$.
 - **a)** Montrer que \mathbf{g} est continue sur $\left[0, \frac{\pi}{2}\right]$.
 - **b)** Justifier que g est dérivable en $\frac{\pi}{3}$ et calculer g ' $\left(\frac{\pi}{3}\right)$

Exercice 3

- (\$\) 25 min
- 5 pts
- 1) Résoudre dans \mathbb{C} l'équation (E): $z^2 + z + 1 = 0$.

Mettre les solutions sous forme exponentielle

Soit $j = e^{i\frac{2\pi}{3}}$. Déterminer les racines cubiques de j et de \bar{j}

- 2) Montrer que pour tout $z \in \mathbb{C} \setminus \{j\}$ et $\theta \in \mathbb{R}$ on $a : \frac{j+z}{j-z} = e^{i\theta} \Leftrightarrow z = i \ j \ tg \frac{\theta}{2}$
- 3) En déduire les solutions de l'équation $(E'): (j+z)^6 + (j^2-z^2)^3 + (j-z)^6 = 0$

Exercice 4

(5) 20 min

5 pts

P étant le plan complexe muni d'un repère orthonormé (O, $\overrightarrow{e_1}$, $\overrightarrow{e_2}$). Soit m un paramètre complexe

- 1) Résoudre dans \mathbb{C} l'équation (E_m) : $z^2 2z + m^2 + 1 = 0$
- 2) On considère l'application : $f_m : P \rightarrow P$

$$N(z) \mapsto N'(z')$$
 tel que $z' = \frac{1-im}{1+im}z + m + i$

- a) Pour quelle valeur de m, f_m est une translation. Déterminer ainsi l'affixe de son vecteur
- b) Déterminer l'ensemble $R = \{M(m)/f_m \text{ est une rotation }\}$. Caractériser f_1
- c) Déterminer l'ensemble $H = \{M(m)/f_m \text{ est une hom othétie }\}$. Caractériser f_{2i}

Exercice 4

(S) 30 min

5 pts

A/ Soit la fonction f définie sur $]-\infty, \pi[$ par : $\begin{cases} f(x) = \sqrt{x^2 + 4} - x - 2 & si \ x < 0 \\ f(x) = \tan\left(\frac{x}{2}\right) & si \ 0 \le x < \pi \end{cases}$

- 1) Montrer que f est continue en 0.
- 2) Etudier la dérivabilité de f en 0.
- 3) Dresser le tableau de variation de $f \sup[0; \pi[$

B/ h est une fonction définie et dérivable $[0;+\infty[$ et tels que :

$$(h)'(x) = \frac{2}{1+x^2}$$
 $h(1) = \frac{\pi}{2}$ $\lim_{x \to +\infty} h(x) = \pi$.

Maths

Pour tout $x \in]0; +\infty[$, on pose $\varphi(x) = h(\sqrt{x}) + h(\frac{1}{\sqrt{x}})$.

- 1) Montrer que φ est dérivable sur $]0; +\infty[$ et calculer $\varphi'(x)$.
- 2) déduire que pour tout $x \in]0; +\infty[$, $h\left(\frac{1}{\sqrt{x}}\right) = \pi h\left(\sqrt{x}\right)$.
- D/ On considère les suites (U_n) et (V_n) définie sur \mathbb{N}^* par :

$$U_n = \frac{1}{n+1} \sum_{k=n}^{2n} h(\sqrt{k})$$
 et $V_n = \frac{1}{n+1} \sum_{k=n}^{2n} h(\frac{1}{\sqrt{k}})$.

- 1) Montrer que pour tout $n \in \mathbb{N}^+$: $h(\sqrt{n}) \le U_n \le h(\sqrt{2n})$.
- 2) En déduire que la suite (U_n) est convergente et déterminer sa limite.

3)

- a) Exprimer V_n en fonction de U_n .
- b) Déterminer alors $\lim_{n\to+\infty} V_n$.

Exercice 5

(\$ 30 min

5 pts

A/ Soit F la fonction définie sur \mathbb{R} par : $F(x) = \frac{3x}{\sqrt{1+x^2}} + 2$.

On désigne par (C) la courbe de F dans un R.O.N (O, \vec{i}, \vec{j}) .

1)

- a) Justifier que F est dérivable sur \mathbb{R} et que $F'(x) = \frac{3}{\left(\sqrt{1+x^2}\right)^3}$; pour tout $x \in \mathbb{R}$.
- b) Dresser le tableau de variation de F.
- c) Etudier la position de (C) par rapport à sa tangente T ou point A(0,2).
- d) Construire (C) et T.

2)

- a) Montrer que $|F'(x)| \le \frac{1}{\sqrt{3}}$, pour tout $x \ge \sqrt{2}$.
- b) Montrer que l'équation F(x) = x admet dans $\left[\sqrt{2}, +\infty\right]$ une solution unique α .

B/ Soit g la fonction définie sur $K = \left[0, \frac{\pi}{4}\right]$ par $\begin{cases} g(x) = F(\tan(2x)) & \text{si} \quad x \neq \frac{\pi}{4} \\ g\left(\frac{\pi}{4}\right) = 5 \end{cases}$

Maths

- 1) Montrer que g est continue sur l'intervalle K.
- 2) Montrer que g est dérivable sur $\left[0; \frac{\pi}{4}\right]$ et pour tout $x \in \left[0; \frac{\pi}{4}\right]$, on a : $g'(x) = 6.\cos(2x)$.
- 3) Montrer que pour tout $x \in k$, on a : $g(x) = 3.\sin(2x) + 2$.
- 4) Montrer que g est dérivable en $\frac{\pi}{4}$ à gauche.

Exercice 6

5 pts

Le plan P est

orienté dans le sens direct.

Soit ABCD un carré de centre O tel que : $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{2} [2\pi]$ on désigne par I, J et K les milieux respectifs des segments [BC], [CD] et [DA] et par E le symétrique de O par rapport à I.

- 1)
- a) Montrer que $S_{(DA)} o S_{(DB)} = S_{(DB)} o S_{(DC)} = R_{\left(D, -\frac{\pi}{2}\right)}$.
- b) Déterminer la droite Δ tel que : $T_{\overline{DC}} = S_{\Delta} o S_{(DA)}$.
- c) En déduire que $T_{\overline{DC}} \circ R_{\left(D, -\frac{\pi}{2}\right)}$ est une rotation dont on précisera le centre et l'angle.
- 2) Soit $g = T_{\overline{DC}} o S_{(DB)}$.

Déterminer les points g(I), g(C) et g(O). Les transformations g et $T_{\overline{OB}} \circ S_{(II)}$ sont-elles égales ?

- 3) Soit f une isométrie de P qui vérifie : f(D) = C et f(C) = B.
 - a) Déterminer f(J).
 - b) Montrer que : f(O) = O où f(O) = E.
 - c) En déduire que : $f = R_{\left(0, -\frac{\pi}{2}\right)}$ ou $f = T_{\overline{OB}} oS_{(U)}$.
- 4)
- a) Caractériser la transformation : $g^{-1}oR_{\left(0,-\frac{\pi}{2}\right)}$.
- b) Soit $M \in (CD)$ et soit N = g(M). Montrer que OMN est un triangle rectangle O.

Exercice 7

(S) 20 min

5 pts

Soit (u_n) la

suite réelle

définie sur IN par : $u_{_0}=\frac{1}{4}$ et $u_{_{n+1}}=u_{_n}$ $1-\sqrt{u_{_n}}$

- 1°) a) Montrer que pour tout $n \in IN$ on a : $0 < u_n < 1$.
 - b) Montrer que $(u_{_n})$ est décroissante.
 - c) En déduire que (u_n) est convergente et calculer sa limite.
- **2°)** Pour tout $n \in IN$; On pose $S_n = \sum_{k=0}^n u_k$.
 - a) Montrer que pour tout $k \in IN$, $u_k = \sqrt{u_k} \sqrt{u_{k+1}}$.
 - $\mathbf{b)} \text{ En déduire que pour tout } n \in IN \ ; \ S_{_n} = \frac{1}{2} \sqrt{u_{_{n+1}}} \ \text{ et calculer } \lim_{_{_{n \to +\infty}}} S_{_n} \, .$
- $\textbf{3°)} \text{ Soit } (v_{_{n}}) \text{ la suite réelle définie sur } IN \text{ par } v_{_{0}} = \sqrt{2} \text{ et } v_{_{n+1}} = \frac{v_{_{n}}}{\sqrt{1 + u_{_{n}}.v_{_{n}}^{2}}}.$
 - a) Montrer par récurrence que pour tout $n \in IN$; $v_{_n} = \frac{1}{\sqrt{1-\sqrt{u_{_n}}}}$.
 - **b)** En déduire $\lim_{n\to+\infty} v_n$.