Fundamentos de Cálculo

EXAMEN FINAL SEMESTRE ACADÉMICO 2019-2

Horario: Todos.

Duración: 180 minutos.

Elaborado por todos los profesores.

ADVERTENCIAS:

- Todo dispositivo electrónico (teléfono, tableta, computadora u otro) deberá permanecer apagado durante la evaluación.
- Coloque todo aquello que no sean útiles de uso autorizado durante la evaluación en la parte delantera del aula, por ejemplo, mochila, maletín, cartera o similar, y procure que contenga todas sus propiedades. La apropiada identificación de las pertenencias es su
- Si se detecta omisión a los dos puntos anteriores, la evaluación será considerada nula y podrá conllevar el inicio de un procedimiento disciplinario en determinados casos.
- Es su responsabilidad tomar las precauciones necesarias para no requerir la utilización de servicios higiénicos: durante la evaluación, no podrá acceder a ellos, de tener alguna emergencia comunicárselo a su jefe de práctica.
- En caso de que el tipo de evaluación permita el uso de calculadoras, estas no podrán ser programables.
- Quienes deseen retirarse del aula y dar por concluida su evaluación no lo podrán hacer dentro de la primera mitad del tiempo de duración destinado a ella.

Considere la función

$$f(x) = \begin{cases} \ln(kx) + 1, & \text{si } x < k; \\ \\ \frac{2}{\pi} \arccos(x - 1), & \text{si } 0 \le x \le 2. \end{cases}$$

Donde k es una constante real.

Para k = -2, halle f^{-1} y esboce su gráfica.

 \not Halle el conjunto de valores de k para los cuales f es inyectiva.

(2 pt)

(1 pt)

$$\mathcal{L}$$
. Sea $f: \mathbb{R} \to \mathbb{R}$ una función que satisface las siguientes condiciones:

f es una función impar.

Para $x \in (0,1)$, f(x) es de la forma $f(x) = a + 5b^x$, donde $a \in (0,1)$, son constantes positivas.

Para $x \in [1, +\infty[$, f(x) es de la forma $f(x) = 2\arctan(1-x)$.

► El rango de f es $]-6,-4[\cup]-\pi,\pi[\cup]4,6[$.

Calcule los valores de a, b y esboce la gráfica de f.

 $\lim_{x \to +\infty} 2^{-\sqrt[3]{x}} \qquad y \qquad \lim_{x \to 1^+} \ln \left(\frac{1}{x-1} \right)$

(2 pt)

Página 1 de 2

4. a) Calcule la siguiente suma en términos de n.

$$\sum_{k=2}^{n} \left[(-2)^{k-1} \binom{n+1}{k+1} + \ln\left(\frac{k+1}{k+2}\right) \right].$$

b) Demuestre que

$$\sqrt{1} + \sqrt{2} + \sqrt{3} + \dots + \sqrt{n} > \frac{2}{3} n \sqrt{n}$$
 para todo entero positivo n .

Sugerencia. Use inducción matemática.

5. Justifique la veracidad o falsedad de las siguientes proposiciones.

a) La función
$$f(x) = \operatorname{sen}\left(\frac{x}{2}\right)$$
, $\frac{3\pi}{2} \le x < \frac{7\pi}{2}$, posee valor máximo pero no valor mínimo. (1 pt)

Si
$$\lim_{x\to 0} xf(x) = 0$$
 entonces el límite $\lim_{x\to 0} f(x)$ existe. (F)

La función
$$g(x) = \cos\left(\pi x + \frac{3\pi}{2}\right), x \in \mathbb{R}$$
, es impar. (V)

d) Sea
$$f: \mathbb{R} \to \mathbb{R}$$
. Si la función $g(x) = [f(x)]^2$, $x \in \mathbb{R}$, es inyectiva entonces f es inyectiva. (1 pt)

f(x) x f(x) = g(x)

San Miguel, 02 de diciembre de 2019.

