2. (Qual Summer 2017 #1) Show that if $f : \mathbb{R} \to \mathbb{R}$ is measurable then the set $A = \{x \in \mathbb{R} : m(f^{-1}(x)) > 0\}$ has measure zero.

Let
$$A_{s,n} = \frac{2}{3} \times \epsilon \mathbb{R} \left[n \left(f^{-1}(x) \cap E_{s,s+1} \right) \right] \times \frac{1}{n} \frac{3}{s}$$
.
Let $\{x_1, \dots, x_K\}$ be K distinct members of $A_{s,n}$. As $f^{-1}(x_i)$ and $f^{-1}(x_i)$ are disjoint for $i \neq j$, each $f^{-1}(x_i) \cap [s,s+1]$ and $f^{-1}(x_i) \cap [s,s+1]$ are also disjoint for $i \neq j$. Thus we have:

This implies $|A_{5,n}| < \infty$. Let $A_5 = \{x \in \mathbb{R} \mid m(f^{-1}(x) \cap [5,5+1)) > 0\}$. Note that $A_5 = \bigcup_{n=1}^{\infty} E_{5,n}$, so A_5 is a countable union of finite sets and is thus countable.

Let $x \in A$. Then as $m(f^{-1}(x)) > 0$, there exists some $k \in \mathbb{Z}$ such that $m(f^{-1}(x) \cap [k, k+1]) > 0$, or else $f^{-1}(x)$ would be a countable infersection of sets of measure zero, implying $m(f^{-1}(x)) = 0$ $\not\subseteq$. So x belongs to A_k for some k, meaning $A \subseteq \bigcup_{s \in \mathbb{Z}} A_s$ and is a countable union of countable sets, which means A is countable $\implies m(A) = 0$