Лекция 6. Итерационные методы решения СЛАУ

Панкратов Владимир Александрович

Московский Государственный Технический Университет имени Н.Э.Баумана

Москва, 2022

Итерационные методы решения СЛАУ Ключевые слова

Общий вид итерационного процесса. Метод последовательных приближений. Метод простой итерации. Метод Якоби. Метод Зейделя.

Постановка задачи

Рассмотрим СЛАУ

$$Ax = b$$
,

где

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}, \quad x = \begin{pmatrix} x_1 \\ x_2 \\ \cdots \\ x_n \end{pmatrix}, \quad b = \begin{pmatrix} b_1 \\ b_2 \\ \cdots \\ b_n \end{pmatrix}.$$

Требуется построить последовательность $x^{(k)}$ такую, что

$$\lim_{k \to +\infty} x^{(k)} = x^*,$$

где x^* — точное решение.

Общий вид итерационного процесса

Рассмотрим итерационный процесс, с неподвижной точкой x^* , в котором состояние на k-м шаге линейно зависит от k-1-го шага:

$$x^{(k)} = B^{(k)}x^{(k-1)} + c^{(k)},$$

где

- $ightharpoonup B^{(k)}$ некоторая последовательность матриц;
- $ightharpoonup c^{(k)}$ некоторая последовательность векторов;
- $x^{(0)}$ начальное приближение, в общем случае произвольное.

Последовательности $B^{(k)}$ и $c^{(k)}$ определяют вид итерационного процесса.

if за начальное приближение взять $x^{(0)} = x^* \Rightarrow$ все последующие приближения будут также равны x^* .

Общий вид итерационного процесса

Теорема

Итерационный процесс $x^{(k)} = B^{(k)} x^{(k-1)} + c^{(k)}$ сходится к решению x^* при любом начальном приближении \Leftrightarrow

$$\lim_{k \to \infty} T^{(k)} = 0 \,,$$

где
$$T^{(k)} = B^{(k)} \cdot \ldots \cdot B^{(1)}$$
.

Общий вид итерационного процесса

riangle Рассмотрим погрешность между точным решением и его приближением на k-й итерации

$$\left. \begin{array}{l} x^{(k)} = B^{(k)} x^{(k-1)} + c^{(k)} \\ x^* = B^{(k)} x^* + c^{(k)} \end{array} \right\} \Rightarrow x^* - x^{(k)} = B^{(k)} (x^* - x^{(k-1)}) \Rightarrow \\ x^* - x^{(k)} = B^{(k)} (x^* - x^{(k-1)}) = \ldots = \\ = B^{(k)} \cdot \ldots \cdot B^{(1)} (x^* - x^{(0)}) \,. \\ \forall x^{(0)} \colon x^* - x^{(k)} \to 0 \text{ при } k \to \infty \Leftrightarrow T^{(k)} = B^{(k)} \cdot \ldots \cdot B^{(1)} \underset{k \to \infty}{\to} 0 \\ \Leftrightarrow \lim_{k \to \infty} T^{(k)} = 0. \quad \rhd$$

Итерационные методы решения СЛАУ Общий вид итерационного процесса

$$x^{(k)} = B^{(k)}x^{(k-1)} + c^{(k)}$$

Стационарные итерационные процессы

Итерационные процессы, в которых матрица $B=B^{(k)}$ и вектор $c=c^{(k)}$ не зависит от номера шага k.

Циклические итерационные процессы

Если матрица $B=B^{(k)}$ и вектор $c=c^{(k)}$ повторяется через некоторое число p шагов, то такие итерационные процессы называются *циклическими*.

Замечание

Из каждого циклического процесса можно получить равносильный ему стационарный процесс, принимая за один шаг результат применения полного цикла из p шагов.

Итерационные методы решения СЛАУ Общий вид итерационного процесса

$$x^{(k)} = B^{(k)}x^{(k-1)} + c^{(k)}$$

Нестационарные итерационные процессы

Итерационные процессы, в которых матрица $B=B^{(k)}$ и вектор $c=c^{(k)}$ меняются в зависимости от номера шага k.

Замечание

Зачастую итерационный процесс строится для ускорения сходимости стационарного процесса. Для этого на некоторых шагах матрицу B заменяют на подобранную специальным образом матрицу $B^{(k)}$.

Метод последовательных приближений

$$Ax = b \Leftrightarrow x = Bx + c$$
,

где где B=E-A, c=b. Зададим произвольным образом $x^{(0)}$ и построим последовательность $x^{(k)}$, $k=1,2,\ldots$, по реккурентной формуле

$$x^{(k)} = Bx^{(k-1)} + c.$$

Если $\exists x^* = \lim_{k \to \infty} x^{(k)}$, то при переходе к пределу: $x^* = Bx^* + c$, а значит сходится к решению Ax = b.

Метод последовательных приближений

Лемма

$$\lim_{m \to \infty} B^m = 0 \Leftrightarrow E + B + B^2 + \dots + B^m + \dots = (E + B)^{-1}$$

 Фиевидно: чтобы ряд из матриц сошелся, должны сойтись ряды из элементов матриц, а значит для каждого из элементов должно быть выполнено необходимое условие сходимости.

Метод последовательных приближений

 $\Longrightarrow \lim_{m \to \infty} B^m = 0 \Rightarrow$ все собственные значения матрицы B по модулю меньше единицы $\Rightarrow |E-B| \neq 0 \Rightarrow \exists (E-B)^{-1}.$ Рассмотрим равенство:

$$(E + B + B^2 + \dots + B^m)(E - B) = E - B^{m+1}.$$

и умножим его справа на $(E-B)^{-1}$

$$E + B + B^{2} + \ldots + B^{m} = (E - B)^{-1} - B^{m+1}(E - B)^{-1} \Rightarrow$$

$$\sum_{m=0}^{\infty} B^m = E + B + B^2 + \dots + B^m =$$

$$= (E - B)^{-1} - \lim_{m \to \infty} B^{m+1} (E - B)^{-1} = (E - B)^{-1}. \quad \triangleright$$

Небходимое и достаточное условие метода последовательных приближений

Теорема

Для сходимости метода последовательных приближений $x^{(k+1)} = Bx^{(k)} + c$ при произвольном начальном условии $x^{(0)}$ необходимо и достаточно, чтобы все собственные значения матрицы B были по модулю меньше единицы.

$$\vartriangleleft \implies \det \lim_{k \to \infty} x^{(k)} = x^*$$
, где x^* — решение системы \Rightarrow

$$\forall x^{(0)}: \ x^* - x^{(k)} = B\left(x^* - x^{(k-1)}\right) = \dots = B^m\left(x^* - x^{(0)}\right) \to 0 \Leftrightarrow B^k \to 0$$

Для этого необходимо и достаточно, чтобы все собственные значения матрицы B были по модулю меньше единицы.

Небходимое и достаточное условие метода последовательных приближений

$$= x^{(k)} = Bx^{(k-1)} + c =$$

$$= B(Bx^{(k-2)} + c) + c = B^2x^{(k-2)} + (E+B)c = \dots =$$

$$= B^kx^{(0)} + (E+B+B^2 + \dots + B^{k-1})c$$

Все собственные значения матрицы B по модулю меньше единицы \Rightarrow

$$\lim_{k \to \infty} x^{(k)} = \lim_{k \to \infty} \left(B^k x^{(0)} + \left(E + B + B^2 + \dots + B^{k-1} \right) c \right) =$$

$$= \lim_{k \to \infty} \left(E + B + B^2 + \dots + B^{k-1} \right) c =$$

$$= \left\{ \sum_{m=0}^{\infty} B^m = (E - B)^{-1} \\ B = E - A, c = b \right\} = A^{-1} b = x^* \quad \triangleright$$

Небходимое и достаточное условие метода последовательных приближений

$$x^{(k)} = Bx^{(k-1)} + b$$

$$x^* = Bx^* + b$$

$$\Rightarrow x^* - x^{(k)} = B(x^* - x^{(k-1)}) \Rightarrow$$

$$\parallel x^* - x^{(k)} \parallel \leq \parallel B \parallel \parallel x^* - x^{(k-1)} \parallel \leq \parallel B \parallel^k \parallel x^* - x^{(0)} \parallel .$$

let
$$x^* = (x_1, x_2, \dots, x_n)^T$$
, $x^{(k)} = (x_1^{(k)}, x_2^{(k)}, \dots, x_n^{(k)})^T$,
$$B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{pmatrix}.$$

Метод последовательных приближений

$$||x^* - x^{(k)}|| \le ||B||^k ||x^* - x^{(0)}||$$

Октаэдрическая норма

$$||x||_1 = \sum_{i=1}^n |x_i|, ||B||_1 = \max_{j=1,n} \sum_{i=1}^n |b_{ij}| \Rightarrow$$

 $\sum_{i=1}^{m} |b_{ij}| \leqslant
u < 1$ при любом $orall j = 1, 2, \dots, n$, то процесс

последовательных приближений сходится, причем

$$\sum_{j=1}^{n} \left| x_j - x_j^{(k)} \right| \leqslant \nu \sum_{j=1}^{n} \left| x_j - x_j^{(k-1)} \right|.$$

Метод последовательных приближений

$$||x^* - x^{(k)}|| \le ||B||^k ||x^* - x^{(0)}||$$

Кубическая норма

$$||x||_{\infty} = \max_{i=\overline{1,n}} |x_i|, ||B||_{\infty} = \max_{i=\overline{1,n}} \sum_{j=1}^{n} |b_{ij}| \Rightarrow$$

$$\sum_{j=1}^{n} |b_{ij}| \leqslant \mu < 1$$
 при любом $orall i = 1, 2, \dots, n$, то процесс

последовательных приближений сходится, причем

$$\max_{j} \left| x_j - x_j^{(k)} \right| \leqslant \mu \max_{j} \left| x_j - x_j^{(k-1)} \right| .$$

Апостериорная оценка погрешности

Теорема

$$\begin{aligned} & | \text{let } \| B \| < 1 \Rightarrow \| x^{(k)} - x^* \| \leqslant \frac{\| B \|}{1 - \| B \|} \| x^{(k)} - x^{(k-1)} \|. \\ & < x^* - x^{(k)} = B \left(x^* - x^{(k-1)} \right) \Rightarrow \\ & x^* - x^{(k)} = B \left(x^* - x^{(k)} \right) + B \left(x^{(k)} - x^{k-1} \right) \Rightarrow \\ & \| x^* - x^{(k)} \| = \| B \left(x^* - x^{(k)} \right) + B \left(x^{(k)} - x^{k-1} \right) \| \leqslant \\ & \leqslant \| B \| \| x^* - x^{(k)} \| + \| B \| \| x^{(k)} - x^{k-1} \| \Leftrightarrow \\ & \| x^* - x^{(k)} \| \leqslant \frac{\| B \|}{1 - \| B \|} \| x^{(k)} - x^{k-1} \|. \end{aligned}$$

Апостериорная оценка погрешности

Критерий остановки

if требуется найти решение с точностью ε , то следует вести итерации до выполнения неравенства:

$$\frac{\|B\|}{1 - \|B\|} \|x^{(k)} - x^{(k-1)}\| < \varepsilon \Rightarrow$$

$$\|x^{(k)}-x^{(k-1)}\|, где $arepsilon_1=rac{1-\|B\|}{\|B\|}arepsilon.$$$

Подготовка СЛАУ для применения метода последовательных приближений

Для сходимости метода последовательных приближений необходимо и достаточно, чтобы все собственные значения матрицы B=E-A были по модулю меньше единицы \Rightarrow если они не таковы, то необходимо провести подготовку СЛАУ. Подготовка подразумевает, что нужно перейти от системы Ax=b к эквивалентной системе $\widetilde{A}x=\widetilde{b}$, для которой условие будет выполняться

Задача

$$\widetilde{A}x = \widetilde{b}, \ \widetilde{A} = HA, \ \widetilde{b} = Hb.$$

Требуется найти невырожденную H: собственные числа матрицы \widetilde{B} системы $x=\widetilde{B}x+\widetilde{c},\ \widetilde{B}=E-\widetilde{A},\ \widetilde{c}=\widetilde{b}$ меньше единицы.

Подготовка СЛАУ для применения метода последовательных приближений

Вектор v будет собственным и для матрицы \widetilde{B} :

$$\widetilde{B}v=(E-\widetilde{A})v=v-\mu v=(1-\mu)v$$
, значит $|1-\mu|<1\Leftrightarrow 0<\mu<2$.

let $\lambda \in \mathbb{R}$ u $u \in \mathbb{R}^n \setminus \{0\}$: $Au = \lambda u$.

$$\|\lambda u\| = \|Au\| \leqslant \|A\| \|u\| \Rightarrow |\lambda| < \|A\| \Rightarrow$$

Значит, if A>0, то достаточно выбрать $H=\frac{2}{\|A\|}E$, тогда собственные числа \widetilde{A} будут принадлежать (0,2). ightharpoonup

Метод простой итерации или метод Якоби

Запишем СЛАУ в координатной форме:

Для $k=\overline{1,n}$ из k-го уравнения исключаем x_k :

$$\begin{cases} x_1 &= & b_{12}x_2 + \dots + b_{1n}x_n + c_1 \\ x_2 &= b_{21}x_1 + \dots + a_{2n}x_n + c_2 \\ \dots & \dots & \dots & \dots & \dots & \dots \\ x_n &= b_{n1}x_1 + b_{n2}x_2 + \dots + c_n \end{cases}.$$

Метод простой итерации или метод Якоби

$$\begin{cases} x_1 &= & b_{12}x_2 + \dots + b_{1n}x_n + c_1 \\ x_2 &= b_{21}x_1 + \dots + a_{2n}x_n + c_2 \\ \dots & \dots & \dots & \dots & \dots \\ x_n &= b_{n1}x_1 + b_{n2}x_2 + \dots + c_n \end{cases}.$$

В матричной форме x=Bx+c, в которой на главной диагонали матрицы B стоят нулевые элементы. Для возможности проведения данного преобразования необходимо, чтобы $a_{kk}\neq 0$ для $k=\overline{1,n}$.

Метод простой итерации или метод Якоби

Выберем начальное приближение $x^{(0)} = \left(x_1^{(0)}, x_2^{(0)}, \dots, x_m^{(0)}\right)^T$.

Подставляя его в x = Bx + c, находим первое приближение: $x^{(1)} = Bx^{(0)} + c$.

Продолжая этот процесс далее получим последовательность приближений $x^{(0)},\,x^{(1)},\,\ldots,\,x^{(n)},\,\ldots$, вычисляемых по формуле:

$$x^{(k)} = Bx^{(k-1)} + c, \quad k = 0, 1, 2, \dots$$

Или в координатной форме:

$$\begin{cases} x_1^{(k)} = b_{12}x_2^{(k-1)} + \dots + b_{1n}x_n^{(k-1)} + c_1 \\ x_2^{(k)} = b_{21}x_1^{(k-1)} + \dots + a_{2n}x_n^{(k-1)} + c_2 \\ \dots \\ x_n^{(k)} = b_{n1}x_1^{(k-1)} + b_{n2}x_2^{(k-1)} + \dots + c_n \end{cases}$$

Метод простой итерации или метод Якоби

Преобразование системы Ax=b для метода простой итерации можно сформулировать в матричной форме.

let $H = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$:

$$\widetilde{A}x=\widetilde{b},\ \widetilde{A}=H^{-1}A,\ \widetilde{b}=H^{-1}b\Leftrightarrow x=\widetilde{B}x+\widetilde{c},\ \widetilde{B}=E-\widetilde{A},\ \widetilde{c}=\widetilde{b}\,.$$

Необходимое и достаточное условием сходимости: все собственные значения матрицы $B=E-H^{-1}A$ по модулю меньше единицы:

$$\det(\widetilde{B} - \lambda E) = |E - H^{-1}A - \lambda E| = |H^{-1}| \cdot |H - A - \lambda H| =$$

$$= (-1)^n |H^{-1}| |A - H + \lambda H| =$$

$$= (-1)^n |H^{-1}| \begin{vmatrix} \lambda a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & \lambda a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & \lambda a_{nn} \end{vmatrix} = 0.$$

Метод простой итерации или метод Якоби

Рецепт

let в Ax=b для матрицы A не выполнены достаточные условия сходимости метода Якоби. Зачастую, оказывается целесообразным, в качестве матрицы H взять матрицу, обратную к матрице

$$\begin{bmatrix} a_{11} & a_{12} & 0 & 0 & \dots & 0 \\ a_{21} & a_{22} & 0 & 0 & \dots & 0 \\ 0 & 0 & a_{33} & a_{34} & \dots & 0 \\ 0 & 0 & a_{43} & a_{44} & \dots & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots \end{bmatrix}.$$

Метод простой итерации или метод Якоби

$$\Rightarrow H = \begin{bmatrix} \frac{a_{22}}{\Delta_1} & -\frac{a_{12}}{\Delta_1} & 0 & 0 & \dots & 0 \\ -\frac{a_{21}}{\Delta_1} & \frac{a_{11}}{\Delta_1} & 0 & 0 & \dots & 0 \\ 0 & 0 & \frac{a_{44}}{\Delta_2} & -\frac{a_{34}}{\Delta_2} & \dots & 0 \\ 0 & 0 & -\frac{a_{43}}{\Delta_2} & \frac{a_{33}}{\Delta_2} & \dots & 0 \\ 0 & 0 & 0 & 0 & \ddots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \dots & \vdots \end{bmatrix},$$

где $\Delta_1 = a_{11}a_{22} - a_{12}a_{21}$ и $\Delta_2 = a_{33}a_{44} - a_{34}a_{43}$.

Итерационные методы решения СЛАУ Метод Зейделя

let СЛАУ Ax=b представлена в виде x=Bx+c, где $B=E-A,\ c=b.$

Метод Зейделя напоминает метод Якоби с той разницей, что при вычислении k-го приближения для i-ой компоненты учитываются вычисленные уже ранее k-е компоненты $x_1^{(k)}$, $x_2^{(k)}$, ..., $x_{i-1}^{(k)}$, т. е.

$$\begin{cases} x_1^{(n)} = b_{12}x_2^{(n-1)} & +b_{13}x_3^{(n-1)} & +\dots +b_{1n}x_n^{(n-1)} & +c_1 \\ x_2^{(n)} = b_{21}x_1^{(n)} & +b_{23}x_3^{(n-1)} & +\dots +b_{2n}x_n^{(n-1)} & +c_2 \\ x_3^{(n)} = b_{31}x_1^{(n)} & +b_{32}x_2^{(n)} & +\dots +b_{1n}x_n^{(n-1)} & +c_3 \\ \dots & \dots & \dots & \dots & \dots \\ x_n^{(n)} = b_{n1}x_1^{(n)} & +b_{n2}x_2^{(n)} & +\dots +b_{n,n-1}x_{n-1}^{(n)} & +c_n \end{cases}$$

Итерационные методы решения СЛАУ Метод Зейделя

$$\det B_1 = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 \\ b_{21} & 0 & 0 & \dots & 0 \\ b_{31} & b_{32} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ b_{n1} & b_{n2} & b_{n3} & \dots & 0 \end{bmatrix},$$

$$B_2 = \begin{bmatrix} 0 & b_{12} & b_{13} & \dots & b_{1n} \\ 0 & 0 & b_{23} & \dots & b_{2n} \\ 0 & 0 & 0 & \dots & b_{3n} \\ \dots & \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & 0 \end{bmatrix} \Rightarrow B = B_1 + B_2$$

Расчетные формулы метода Зейделя в матричном виде:

$$x^{(n)} = B_1 x^{(n)} + B_2 x^{(n-1)} + c.$$

if x^* неподвижная точка отображения $x^* = Bx^* + c \Leftrightarrow x^* = Bx^* + c = B_1x^* + B_2x^* + c$.

Достаточное условие сходимости метода Зейделя

Теорема

let выполнено условие $\|B_1\|+\|B_2\|<1\Rightarrow \forall x^{(0)}\in\mathbb{R}^n$ метод Зейделя сходится и верна оценка погрешности

$$\left| \left| x^{(n)} - x^* \right| \right| \leqslant q^n \left| \left| x^{(0)} - x^* \right| \right| , \tag{1}$$

где
$$q = \frac{\|B_2\|}{1 - \|B_1\|} < 1.$$

Достаточное условие сходимости метода Зейделя

$$\begin{vmatrix}
x^{(n)} &= B_1 x^{(n)} + B_2 x^{(n-1)} + c \\
x^* &= B_1 x^* + B_2 x^* + c
\end{vmatrix} \Rightarrow \\
x^{(n)} - x^* &= B_1 (x^{(n-1)} - x^*) + B_2 (x^{(n-1)} - x^*) \Rightarrow \\
\|x^{(n)} - x^*\| &\leq \|B_1\| \|x^{(n-1)} - x^*\| + \|B_2\| \|x^{(n-1)} - x^*\| \Rightarrow \\
\|x^{(n)} - x^*\| &\leq \frac{\|B_2\|}{1 - \|B_1\|} \|x^{(n-1)} - x^*\| \leq \\
&\leq \left\{ q = \frac{\|B_2\|}{1 - \|B_1\|} \right\} \leq \dots \leq \\
&\leq q^n \|x^{(0)} - x^*\|$$

и, т. к.
$$\|B_1\| + \|B_2\| < 1$$
, то $0 < q < 1$ и $\lim_{n \to \infty} x^{(n)} = x^*$. \triangleright

Апостериорная оценка погрешности метод Зейделя

Теорема

получим оценку $\left\|x^{(n)}-x^*\right\|\leqslant \frac{\|B_2\|}{1-\|B\|}\left\|x^{(n)}-x^{(n-1)}\right\|$.

Итерационные методы решения СЛАУ Метод Зейделя

Критерий остановки

if требуется найти решение с точностью $\varepsilon>0$, то итерационный процесс следует вести до выполнения неравенства:

$$\frac{\|B_2\|}{1-\|B\|} \|x^{(n)}-x^{(n-1)}\| < \varepsilon \Leftrightarrow \|x^{(n)}-x^{(n-1)}\| < \varepsilon_1,$$

где
$$arepsilon_1 = rac{1 - \|B\|}{\|B_2\|} arepsilon.$$

Геометрическая интерпретация метода Зейделя

Рассмотрим СЛАУ из 2-х уравнений с 2-мя неизвестными:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 = b_1 \\ a_{21}x_1 + a_{22}x_2 = b_2. \end{cases}$$

Уравнения задают на плоскости Ox_1x_2 прямые. let 1-е уравнение задает прямую l_1 , а второе — $l_2 \Rightarrow$

$$\begin{cases} x_1^{(k+1)} &= b_{12}x_2^{(k)} + c_1 \\ x_2^{(k+1)} &= b_{21}x_1^{(k+1)} + c_2 \end{cases}$$

Геометрическая интерпретация метода Зейделя

let 1-е уравнение задает прямую l_1 , а второе — $l_2 \Rightarrow$

$$\begin{cases} x_1^{(k+1)} = b_{12}x_2^{(k)} + c_1 \\ x_2^{(k+1)} = b_{21}x_1^{(k+1)} + c_2 \end{cases}$$

Рисунок

