P8108 Survival Analysis Presentation (Title TBD)

Yiming Zhao (yz3955), Wenshan Qu (wq2160) Tucker Morgan (tlm2152), Junzhe Shao (js5959), and Benjamin Goebel (bpg2118)

Presentation Outline

- ► Background / Research question of interest
- Exploratory Analysis
- Methods
 - Cox Proportional Hazard with Elastic Net
 - Survival Random Forest
 - Conformalized Analysis
- Results
- Discussion

Background

- We analyzed the Rotterdam data set from the survival package in R. This data includes 2982 breast cancer patients from the Rotterdam tumor bank.
- Notable measurements include age, menopausal status, tumor size, number of effected lymph nodes, and other baseline variables.
- Interventions were hormone treatment and chemotherapy.
- Subjects were followed until death or loss to follow up with occurrences of remission and death being recorded.

year	age	meno	size	grade	nodes	pgr	er	hormon	chemo	rtime	recur	dtime	death
1992	74	1	<=20	3	0	35	291	0	0	1799	0	1799	0
1984	79	1	20-50	3	0	36	611	0	0	2828	0	2828	0
1983	44	0	<=20	2	0	138	0	0	0	6012	0	6012	0
1985	70	1	20-50	3	0	0	12	0	0	2624	0	2624	0
1983	75	1	<=20	3	0	260	409	0	0	4915	0	4915	0

Exploratory Analysis

► Example: You can add arrows ">-"

	Overall (N=2982
age	
Mean (SD)	55.058 (12.953)
Range	24.000 - 90.000
meno	
Mean (SD)	0.560 (0.496)
Range	0.000 - 1.000
size	
<=20	1387 (46.5%)
20-50	1291 (43.3%)
>50	304 (10.2%)
grade	
Mean (SD)	2.734 (0.442)
Range	2.000 - 3.000
nodes	
Mean (SD)	2.712 (4.384)

Methods

▶ We can use code chunks to illustrate plots

Methods

➤ Or you can also insert images like this (but the image dimensions have to be correct):

Log-rank Test - Hormon

- Hypothesis
 - $ightharpoonup H_0: S_{hormon}(t) = S_{control}(t); H_a: S_{hormon}(t) \neq S_{control}(t).$
- ► Log-rank test
 - ► The test statistic is 23.7, and corresponding p-value is 1.13⁻⁶ < 0.05, reject H₀ and conclude: we are 95% confident that the survival probability function of hormon group and control group are significantly different;
 - ► The test statistic is positive, thus conclude that hormon treatment is effective to the survival of patients with breast cancer.

Log-rank Test - Hormon (Continued)

The above and the bound of the control

Log-rank Test - Chemotherapy

- Hypothesis
 - $ightharpoonup H_0: S_{chemo}(t) = S_{control}(t); \ H_a: S_{chemo}(t)
 eq S_{control}(t).$
- ► Log-rank test
 - The test statistic is 0.495, and corresponding p-value is 0.48 > 0.05, fail to reject H_0 and conclude that there are no difference between the survival probability function of chemotherapy group and control group;
 - Chemotherapy is not effective to breast cancer.

Log-rank Test - Chemotherapy (Continued)

Log-rank Test - Hormon + Chemotherapy

- Regroup
 - ▶ 4 groups: hormon+chemo, hormon only, chemo only and none.
- Hypothesis
 - $ightharpoonup H_0: S_{hormon+chemo}(t) = S_{hormon}(t) = S_{chemo}(t) = S_{none}(t);$
 - $ightharpoonup H_a$: at least two survival functions are not equal.
- Log-rank test
 - The test statistic is 40.4, and corresponding p-value is $9^{-9} < 0.05$, reject H_0 .

Log-rank Test - Hormon + Chemotherapy (Continued)

- Chemotherapy or Hormon alone does not have treatment effect on breast cancer?
- ► Hormon combining with chemotherapy can improve the survival of breast cancer?

Log-rank Test - Hormon + Chemotherapy (Discussion)

Var1	Freq
chemo	552
hormon	311
hormon+chemo	28
none	2091

- Discussion
 - ► The sample size of hormon+chemo group is 28;
 - ▶ Within hormon treatment group, only 8% people receive chemotherapy at the same time.
- Conclusion
 - Reserve the results of the two previous separate log-ranks tests.

Prediction

- Random Survival Forest
- ► Cox/Cox with Elastic Net
- ► Comparison with Brier Score

Random Survival Forest

- For a single survival tree:
 - Assign subjects to groups based on certain splitting rules regarding their covariates;
 - ► The subjects in each group will share a similar survival behavior;
 - Estimate survival probability of a given data point based on its "neighbors".
- Assemble trees: Random Survival Forest (RSF)
 - use ranger package to train RSF;
 - non-parametric approach, no interpretable parameters;
 - prediction result for a single subject:
 - ▶ 7th subject in test data set, with pid = 58.

Random Survival Forest - Example

Survival Prediction for Patient 7

Estimated median survival time: 1217 days.