# 물리 1 및 실험 보고서 [결과보고서]

역학적 에너지 보존 실험

| 소속      | 학번             | 이름   | 실험 조           |
|---------|----------------|------|----------------|
| AI 융합학부 | 20243265       | 김수현  | 6              |
| 실험날짜    | 2024.05.16.목요일 | 제출날짜 | 2024.05.23.목요일 |
| 담당교수    | 이동재            | 담당조교 | -              |



## 1. 실험제목

역학적 에너지 보존 실험

# 2. 실험목적

실에 매달린 추의 위치에너지와 운동에너지의 변화를 측정하여 추가 가지는 역학적 에너지가 보존됨을 확인한다.

### 3. 실험이론

역학적 에너지 보존 법칙에 따르면, 외력이 하는 일이 0인 물체는 위치에너지와 운동에너지가 시간에 따라 변할지라도 그들의 합인 역학적 에너지는 시간에 관계없이 일정하다.



<그림 1>은 역학적 에너지가 보존됨을 확인하기 위한 이번 실험의 모형도이다. 이 상황에서 한쪽이 고정된 가벼운 실의 반대쪽 끝에 매달려있는 질량이 m인 추가 실이 끊어지지 않은 채로 왕복운동을 한다면, 추가 도달하는 가장 낮은 지점(끊어지기 전 기준)을 기준점으로 잡았을 때, 최고점에서 추의 위치에너지 U는 U=mgh이고 최저점(기준점)에서 추의 위치에너지는 0일 것이다. 하지만 추는 최고점에서 속도가 0이고, 최저점에서 속도가 가장 빠르므로 운동에너지 K는 추가 최고점일 때 0이고, 최저점일 때속력  $v_b$ 를 가진다고 하면  $K=\frac{1}{2}mv_b^2$ 이다. 공기의 마찰을 배제한다면 역학적 에너지는 보존될 것이므로  $mgh=\frac{1}{2}mv_b^2$ 의 등식이 성립할 것이다. 이를 변형하면  $v_b=\sqrt{2gh}-----(1)$ , 즉 최저점에서 추의 속력  $v_b$ 를 구할 수 있다.

최저점에서 추의 속도를 측정하기 위해 또 다른 방법을 이용할 수 있다. <그림 1>처럼 추가 최저점에 도달할 때 실이 끊어진다면, 이후부터 추는 포물선 운동을 할 것이다. 수직 방향으로는 중력만을 받는 등가속도 운동을 하고, 수평 방향으로는 등속도 운동을 하므로, 시간 t가 지나 지면에 도달했다고 한다면 수직 방향으로  $H=\frac{1}{2}gt^2$  만큼 떨어지고, 수평 방향으로  $D=V_bt$  만큼 이동할 것이다. 이때  $V_b$ 는 실이 끊어질 때의 추의 속력이다. 따라서 두 식을 연립하면  $V_b=\sqrt{\frac{g}{2}}\frac{D}{\sqrt{H}}$ ----(2), 즉 최저점에서 추의 속력을 또 다른 방법으로 구할 수 있다.

## 4. 관찰 및 결과

## (1) 추의 질량과 위치 측정

• 추의 질량 m = 0.675kg

<표 1> 추의 최고점 높이, 수직 낙하 거리, 수평 이동 거리 측정값

| 실험 차수 | 추의 최고점 높이 h (m) | 추의 낙하 거리 <i>H</i> (m) | 추의 수평이동 거리 <i>D</i> (m) |
|-------|-----------------|-----------------------|-------------------------|
| 1     | 0.200           | 0.535                 | 0.660                   |
| 2     | 0.300           | 0.535                 | 0.795                   |
| 3     | 0.400           | 0.535                 | 0.920                   |

## 5. 분석 및 토의

#### ■ 최저점에서 속도 비교

### <표 2> 식(1)과 식(2)를 사용하여 계산한 최저점에서 추의 속도

| 실험 차수 | $v_b = \sqrt{2gh}$ (m/s) | $V_b = \sqrt{rac{g}{2}}  rac{D}{\sqrt{H}} \; \; 	ext{(m/s)}$ | $(v_b-V_b)/v_b$ (%) |
|-------|--------------------------|----------------------------------------------------------------|---------------------|
| 1     | 1.98                     | 2.00                                                           | -0.884              |
| 2     | 2.43                     | 2.41                                                           | 0.780               |
| 3     | 2.80                     | 2.79                                                           | 0.562               |

#### ■ 역학적 에너지 보존 확인

## <표 3> 최고점에서 에너지와 식 (2)를 사용하여 계산한 최저점에서 추의 에너지

| 실험 차수 | 최고점에서 에너지 $E_{\!\scriptscriptstyle t}=mgh$ (J) | 최저점에서 에너지 $E_b=rac{1}{2}mV_b^2$ (J) | 에너지 변화율 $(E_{t}-E_{b})/E_{t}$ (%) |
|-------|------------------------------------------------|--------------------------------------|-----------------------------------|
| 1     | 1.32                                           | 1.35                                 | -1.78                             |
| 2     | 1.99                                           | 1.96                                 | 1.55                              |
| 3     | 2.65                                           | 2.62                                 | 1.12                              |

### [질문 1] <표 2>에서 속도의 차이가 발생하는 요인을 분석해 보자.

: 공기저항이 속도에 영향을 주었을 수 있고, 추를 h만큼 들어 올리는 과정에서 장치를 이용하여 정확하게 할 수 없었으므로 그 부분에서 오차가 발생했을 수 있다. 또한 여러 길이들을 측정하는 과정에서 오차가 발생한 것이 속도의 차이에 영향을 미쳤을 수 있다.

## [질문 2] <표 3>에서 에너지의 차이가 발생하는 요인을 분석해 보자

: 실험 2, 3처럼, 이론대로라면 공기와의 마찰로 인한 열에너지 발생으로 최고점에서 에너지가 최저점

에서 에너지보다 약간 더 커야 한다고 생각했는데, 실험 1에서는 질문 1에서 제시했던 여러 가지 이유 때문에 값에 오류가 생겨 최고점에서의 에너지가 최저점에서의 에너지보다 더 크게 나오는 문제가 발생한 것 같다. 또한 실이 끊어지는 과정에서 추에 영향을 줘 에너지를 추가로 손실시켰을 가능성도 있다.

[생각해보기] 스윙하고 있는 추가 최고점에서 가지고 있는 위치에너지는 어떻게 되는가? 다른 형태의 에너지로 변환되는가? 이 과정에서 에너지는 보존되는가?

: 스윙하고 있는 추가 최고점에서 가지고 있는 위치에너지는 추가 최저점으로 내려오면서 운동에너지로 전환된다. 이 과정에서 공기와의 마찰로 인한 에너지 손실이 있을 수 있지만. 공기와의 마찰을 배제한 다면 에너지는 보존된다.

## 6. 결론

실에 매달린 추가 중력을 받으면서 운동하는 동안, 위치에너지가 운동에너지로 전환되면서 추가 가지는 역학적 에너지가 거의 보존됨을 확인할 수 있었다. 또한, 에너지의 차이가 발생하는 것을 통해 실제로는 공기와의 마찰로 인해 약간의 에너지 손실이 발생함도 추측할 수 있었다. 하지만 여러 길이들을 측정하는 과정, 특히 h값을 측정하는 과정이 사람의 눈에 의존해야 하는 약간은 불확실한 과정인 것 같아 이 부분을 보완하여 실험한다면 더 좋은 결과를 얻을 수 있을 것이라고 생각한다.

### 7. 참고문헌

- -김창배 외 8명, (2022), 대학물리학실험, 북스힐.
- -Raymond A. Serway 외 1명, (2017), 이재희 외 1명 편역(9판), 북스힐.