Расстояние от точки до плоскости

Расстояние от точки до плоскости

Если точка не принадлежит плоскости, то расстояние от точки до плоскости — это длина перпендикуляра, проведённого из точки на данную плоскость. На рис. 1 показано расстояние d от точки M до плоскости π .

Рис. 1. Расстояние от точки до плоскости

Если точка принадлежит плоскости, то расстояние от точки до плоскости равно нулю.

Примеры решения задач

Разберём четыре задачи. В них мы проиллюстрируем основные идеи, встречающиеся на ЕГЭ по математике в задачах C2, где требуется найти расстояние от точки до плоскости.

Задача 1. Дан равносторонний треугольник ABC со стороной 2. В пространстве взята точка D такая, что AD = BD = 2, CD = 1. Найдите расстояние от точки D до плоскости ABC.

Peшение. Искомое расстояние — это высота пирамиды ABCD, проведённая из точки D.

Пусть M — середина AB. Проведём перпендикуляр DH на прямую CM (рис. 2). Покажем, что DH будет высотой нашей пирамиды.

Рис. 2. К задаче 1

Поскольку медиана CM является высотой треугольника ABC, имеем $AB \perp CM$. Точно так же $AB \perp DM$ (ведь треугольник ABD тоже равносторонний). По признаку перпендикулярности прямой и плоскости получаем, что AB перпендикулярна плоскости MDC. Значит, AB перпендикулярна любой прямой, лежащей в этой плоскости — в частности, прямой DH.

Итак, $DH \perp CM$ (по построению) и $DH \perp AB$. Отсюда получаем $DH \perp ABC$, что мы и хотели.

Из треугольников BCM и BDM легко находим: $CM = DM = \sqrt{3}$. Теперь запишем теорему косинусов для стороны DM треугольника DMC:

$$3 = 1 + 3 - 2 \cdot 1 \cdot \sqrt{3} \cos \varphi$$

(здесь $\varphi = \angle DCM$). Отсюда $\cos \varphi = \sqrt{3}/6$, $\sin \varphi = \sqrt{33}/6$ и

$$DH = 1 \cdot \sin \varphi = \frac{\sqrt{33}}{6} \,.$$

Ответ: $\frac{\sqrt{33}}{6}$.

Задача 2. В правильной треугольной призме $ABCA_1B_1C_1$ сторона основания равна 2, а боковое ребро равно 1. Найдите расстояние от точки B_1 до плоскости ABC_1 .

Решение. Поскольку $A_1B_1 \parallel AB$, прямая A_1B_1 параллельна плоскости ABC_1 . Следовательно, искомое расстояние d есть расстояние от *любой* точки прямой A_1B_1 до плоскости ABC_1 (ведь все эти расстояния равны друг другу). Поэтому мы можем выбрать наиболее удобную точку на прямой A_1B_1 . Это, несомненно, точка N — середина отрезка A_1B_1 (рис. 3).

Рис. 3. К задаче 2

Пусть M — середина AB. Проведём NH перпендикулярно C_1M . Покажем, что $NH \perp ABC_1$. В равнобедренном треугольнике ABC_1 медиана C_1M является одновременно высотой, так что $AB \perp C_1M$. Кроме того, $AB \perp MN$, так как призма прямая. Следовательно, прямая AB перпендикулярна плоскости C_1MN — и, в частности, прямой NH, лежащей в этой плоскости.

Итак, $NH \perp C_1M$ (по построению) и $NH \perp AB$. По признаку перпендикулярности прямой и плоскости прямая NH перпендикулярна плоскости ABC_1 , что мы и хотели показать. Стало быть, искомое расстояние d равно длине отрезка NH.

Дальше несложно. Имеем: $MN=1,\,C_1N=\sqrt{3}$ и

$$C_1 M = \sqrt{C_1 N^2 + M N^2} = 2,$$

откуда

$$d = \frac{C_1 N \cdot MN}{C_1 M} = \frac{\sqrt{3}}{2} \,.$$

Omeem: $\frac{\sqrt{3}}{2}$.

Повторим ключевую идею данной задачи: от исходной точки B_1 перейти к другой точке, находящейся на таком же расстоянии от плоскости ABC_1 , но более удобной для вычислений. В приведённом решении мы из точки B_1 сместились параллельно плоскости в точку N.

Возможен и другой вариант смещения, который также может оказаться полезным при решении задач. Он основан на следующем простом факте:

• если плоскость проходит через середину отрезка, то концы отрезка равноудалены от данной плоскости.

Так, на рис. 4 мы видим плоскость π , проходящую через середину K отрезка PQ. Проведём перпендикуляры PA и QB на данную плоскость.

Рис. 4. Концы отрезка равноудалены от плоскости

Прямоугольные треугольники PKA и QKB равны по гипотенузе и острому углу. Следовательно, PA=QB, что и требовалось.

Вернёмся к задаче 2. Заметим, что отрезок B_1C делится плоскостью ABC_1 пополам (рис. 5). Следовательно, расстояние от точки B_1 до плоскости ABC_1 равно расстоянию от точки C до этой плоскости.

Рис. 5. К задаче 2

Итак, из точки B_1 переходим в точку C. Аналогично доказываем, что расстояние от точки C до плоскости ABC_1 равно длине перпендикуляра CH, проведённого к C_1M , — и далее решение повторяется без каких-либо изменений.

Сформулированный выше факт о равноудалённости концов отрезка от плоскости, проходящей через его середину, является частным случаем следующей (тоже очень простой) теоремы.

Теорема. Пусть прямая пересекает плоскость π в точке O. Возьмём любые две точки X и Y на этой прямой (отличные от O), и пусть x и y — соответственно расстояния от данных точек до плоскости π . Тогда x:y=OX:OY.

Доказательство. Если прямая перпендикулярна плоскости π , то доказывать нечего. Пусть прямая является наклонной (рис. 6). Проведём перпендикуляры XA и YB к плоскости π .

Рис. 6. OX : OY = x : y

Из подобия треугольников OXA и OYB получаем OX:OY=XA:YB, а последнее отношение как раз и есть x:y. Теорема доказана.

Полезность этой теоремы состоит вот в чём. Предположим, что мы ищем расстояние от точки X до плоскости π . Тогда, взяв некоторую точку $O \in \pi$, можно сместиться вдоль прямой OX в более удобную точку Y с пропорциональным изменением расстояния до нашей плоскости.

Задача 3. В правильной четырёхугольной пирамиде SABCD (с вершиной S) сторона основания равна 2 и высота равна 1. Найдите расстояние от точки D до плоскости BCS.

Peшение. Пусть ST — высота пирамиды (рис. 7). Точка T является серединой отрезка DB. Тогда, согласно нашей теореме, искомое расстояние d от точки D до плоскости BCS равно удвоенному расстоянию от точки T до этой плоскости.

Рис. 7. К задаче 3

А расстояние от точки T до плоскости BCS равно высоте TH треугольника STM (точка M — середина BC). Действительно, TH перпендикулярна также прямой BC ($BC \perp TM$, $BC \perp SM \Rightarrow BC \perp STM \Rightarrow BC \perp TH$), и потому TH — перпендикуляр к плоскости BCS.

Из треугольника STM легко находим: $TH = \sqrt{2}/2$. Тогда $d = 2 \cdot TH = \sqrt{2}$.

Oтвет: $\sqrt{2}$.

Задача 4. Точка M — середина ребра DD_1 куба $ABCDA_1B_1C_1D_1$. Ребро куба равно 6. Найдите расстояние от точки M до плоскости BC_1D .

Решение. Здесь можно осуществить переход $M \to D_1 \to C$ (рис. 8).

Рис. 8. К задаче 4

Именно, пусть искомое расстояние от точки M до плоскости BC_1D равно d. Тогда расстояние от точки D_1 до этой плоскости равно 2d. Отрезок D_1C делится плоскостью BC_1D пополам, поэтому расстояние от точки C до данной плоскости также равно 2d.

С другой стороны, расстояние от точки C до плоскости BC_1D есть высота CH треугольной пирамиды BC_1DC . Основанием этой пирамиды служит равносторонний треугольник BC_1D со стороной $6\sqrt{2}$. Боковые рёбра пирамиды равны 6. Стало быть, данная пирамида является правильной, и точка H — центр треугольника BC_1D .

Отрезок C_1H есть радиус окружности, описанной вокруг треугольника BC_1D . Имеем:

$$C_1 H = \frac{6\sqrt{2}}{\sqrt{3}} = 2\sqrt{6}.$$

Тогда

$$CH = \sqrt{CC_1^2 - C_1H^2} = \sqrt{6^2 - (2\sqrt{6})^2} = 2\sqrt{3}.$$

Следовательно,

$$d = \frac{CH}{2} = \sqrt{3}.$$

Ответ: $\sqrt{3}$.