Non-Interactive Batch Arguments and more

Zhengzhong Jin
Johns Hopkins University

Arka Rai Choudhuri

University of California, Berkeley

 \mathcal{M} , x

wants to delegate computation to

No PPT $\overline{\mathbb{S}}$ can produce accepting Π if

No PPT \searrow can produce accepting x, Π if $x \longrightarrow \mathcal{M} \longrightarrow$ accept

within T steps

What kind of computation can we hope to delegate based on standard assumptions?

What kind of computation can we hope to delegate based on standard assumptions?

- Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-Wichs'11]

What kind of computation can we hope to delegate based on standard assumptions?

- Nondeterministic polynomial-time computation (NP)? Unlikely! [Gentry-Wichs'11]
- Deterministic polynomial-time computation (P)?

Non-falsifiable assumptions/ Random oracle model

[Micali'94, Groth'10, Lipmaa'12, Damgård-Faust-Hazay'12, Gennaro-Gentry-Parno-Raykova'13, Bitansky-Chiesa-Ishai-Ostrovsky-Paneth'13, Bitansky-Canetti-Chiesa-Tromer'13, Bitansky-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'17]

Some works can delegate NP

Non-falsifiable assumptions/ Random oracle model

[Micali'94, Groth'10, Lipmaa'12, Damgård-Faust-Hazay'12, Gennaro-Gentry-Parno-Raykova'13, Bitansky-Chiesa-Ishai-Ostrovsky-Paneth'13, Bitansky-Canetti-Chiesa-Tromer'13, Bitansky-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'17]

"Less standard" assumptions

[Canetti-Holmgren-Jain-Vaikuntanathan'15, Koppula-Lewko-Waters'15, Bitansky-Garg-Lin-Pass-Telang'15, Canetti-Holmgren'16, Ananth-Chen-Chung-Lin-Lin'16, Chen-Chow-Chung-Lai-Lin-Zhou'16, Paneth-Rothblum'17, Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19, Kalai-Paneth-Yang'19]

Some works can delegate NP

Delegation for P

Non-falsifiable assumptions/ Random oracle model

[Micali'94, Groth'10, Lipmaa'12, Damgård-Faust-Hazay'12, Gennaro-Gentry-Parno-Raykova'13, Bitansky-Chiesa-Ishai-Ostrovsky-Paneth'13, Bitansky-Canetti-Chiesa-Tromer'13, Bitansky-Canetti-Chiesa-Tromer'14, Bitansky-Canetti-Chiesa-Tromer'14, Bitansky-Canetti-Chiesa-Tromer'14, Bitansky-Canetti-Chiesa

Goldwasser-Lin-Rubi

CRS

"Less standard" as:

[Canetti-Holmgren-J
Canetti-Holmgren'16
Rothblum'17, Canett

Verify(Π , CRS, sk)

Lin-Pass-Telang'15, , PanethSome works can delegate NP

Delegation for P

Designated Verifier (standard assumptions)

Non-falsifiable assumptions/ Random oracle model

[Micali'94, Groth'10, Lipmaa'12, Damgård-Faust-Hazay'12, Gennaro-Gentry-Parno-Raykova'13, Bitansky-Chiesa-Ishai-Ostrovsky-Paneth'13, Bitansky-Canetti-Chiesa-Tromer'13, Bitansky-Canetti-Chiesa

Goldwasser-Lin-Rubi

CRS

"Less standard" as:

[Canetti-Holmgren-J
Canetti-Holmgren'16
Rothblum'17, Canett

Verify(Π , CRS, sk)

rg-Lin-Pass-Telang'15, '16, Paneth-Paneth-Yang'19]

Designated Verifier (standard assumptions)

[Kalai-Raz-Rothblum'13, Kalai-Raz-Rothblum'14, Kalai-Paneth'16, Brakerski-Holgren-Kalai'17, Badrinarayanan-Kalai-Khurana-Sahai-Wichs'18, Holmgren-Rothblum'18, Brakerski-Kalai'20]

Some works can delegate NP

Delegation for P

Delegation for P

Do there exists SNARGs for P based on standard assumptions?

Previously best known: [Jawale-Kalai-Khurana-Zhang'21] for depth bounded computation based on sub-exponential hardness of LWE.

Builds on [Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19]

Our Result

Theorem

Assuming LWE there exists a SNARG for P where

$$|CRS|, |\Pi|, |_{\delta}| = polylog(T)$$

Our Result

Theorem

Assuming LWE there exists a SNARG for P where

$$|CRS|, |\Pi|, |_{\delta}| = polylog(T)$$

LWE – Learning with Errors

 β is a random string

 $\forall x \notin \mathcal{L}$ $BAD_{x,\alpha} = \{ \beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma) \}$

 β is a random string

$$\forall x \notin \mathcal{L}$$
 $BAD_{x,\alpha} = \{\beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma)\}$

If $x \notin \mathcal{L}$, no PPT $\overline{\mathbb{S}}$ can find α such that

$$h(x, \alpha) \in BAD_{x,\alpha}$$

Correlation Intractability [Canetti-Goldreich-Halevi'98]

 β is a random string

$$\forall x \notin \mathcal{L}$$
 $BAD_{x,\alpha} = \{\beta \mid \exists \gamma \text{ s.t. Verifier accepts } (\alpha, \beta, \gamma)\}$

If $x \notin \mathcal{L}$, no PPT $\overline{\mathbb{Z}}$ can find α such that

$$h(x, \alpha) \in BAD_{x,\alpha}$$

h is correlation intractable (CI) for $BAD_{x,\alpha}$

FS methodology is secure for certain protocols under a variety of assumptions (via

correlation intractable hash functions)

[Kalai-Rothblum-Rothblum'17, Canetti-Chen-Reyzin-Rothblum'18, Holmgren-Lombardi'18, Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19, Peikert-Sheihian'19, Brakerski-Koppula-Mour'20, Couteau-Katsumata-Ursu'20, Jain-Jin'21, Jawale-Kalai-Khurana-Zhang'21, Holmgren-Lombardi-Rothblum'21]

r(x)

secure

[Kilian'92]

Succinct interactive arguments for all polynomial time computation.

Succinct interactive arguments for all polynomial time computation.

[Bartusek-Bronfman-Holmgren-Ma-Rothblum'19]

Instantiating hash function for Fiat-Shamir transformation of Kilian's protocol is hard.

Succinct interactive arguments for all polynomial time computation.

Succinct interactive arguments for all polynomial time computation.

Known instantiations of CI Hash for Fiat-Shamir transform are for proofs.

[Canetti-Sarkar-Wang'20] instantiate Fiat-Shamir transform for specific Sigma protocol that is an argument.

[Goldwasser-Kalai-Rothblum'08]

Succinct interactive proof for depth bounded computation.

[Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19, Jawale-Kalai-Khurana-Zhang'21]

[Goldwasser-Kalai-Rothblum'08]

Succinct interactive proof for depth bounded computation.

[Canetti-Chen-Holmgren-Lombardi-Rothblum-Rothblum-Wichs'19, Jawale-Kalai-Khurana-Zhang'21]

Interactive proofs for all polynomial time computation unlikely to exist.

This talk: Bounded space computation

Prove for every $i \in [0, ..., T-1]$ $\operatorname{st}_i \to \operatorname{st}_{i+1}$ is the correct transition.

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

CRS \square C, x_1, \cdots, x_k C, x_1, \cdots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

 $\forall i \in [k], (C, x_i) \in SAT$

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

No PPT $\overline{\mathbb{Z}}$ can produce accepting Π if

$$\exists i^* \in [k], (C, x_{i^*}) \times SAT$$

CRS \square C, x_1, \cdots, x_k C, x_1, \cdots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

 $\forall i \in [k], (C, x_i) \in SAT$

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

 Π is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

 $\forall i \in [k], (C, x_i) \in SAT$

CRS

 C, x_1, \cdots, x_k

 C, x_1, \cdots, x_k

Verifier running time: $k \cdot |x| + |\Pi|$

 $\boldsymbol{\Pi}$ is publicly verifiable

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

UP – each statement has a unique witness.

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

Succinct Non-interactive Arguments (SNARGs) for NP

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

SNARGs

 $|\Pi| \ll |w|$

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

Succinct Non-interactive Arguments (SNARGs) for NP

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

$$SAT^{\otimes k} = \{ (C, x_1, \dots, x_k) \mid \forall i \in [k], (C, x_i) \in SAT \}$$

SNARGs

 $|\Pi| \ll |w|$

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

SNARGs for NP from Non-falsifiable assumptions/Random oracle model

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

$$SAT^{\otimes k} = \{ (C, x_1, \dots, x_k) \mid \forall i \in [k], (C, x_i) \in SAT \}$$

SNARGs

 $|\Pi| \ll |w|$

$$SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

SNARGs for NP from Non-falsifiable assumptions/Random oracle model

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

Designated Verifier SNARGs for Batch NP

[Brakerski-Holmgren-Kalai'17, Brakerski-Kalai'20]

Interactive batch proofs for UP

[Reingold-Rothblum'16, Reingold-Rothblum'18, Rothblum-Rothblum'20]

SNARGs for NP from Non-falsifiable assumptions/Random oracle model

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

Designated Verifier from standard assumptions

[Brakerski-Holmgren-Kalai'17, Brakerski-Kalai'20]

Interactive batch proofs for UP

[Reingold-Rothblum-Rothblum'16, Reingold-Rothblum-Rothblum'18, Rothblum-Rothblum'20]

SNARGs for NP from Non-falsifiable assumptions/Random oracle model

[Micali'94, Damgård-Faust-Hazay'12, Bitansky-Canetti-Chiesa-Tromer'13, Bitanksy-Canetti-Chiesa-Goldwasser-Lin-Rubinstein-Tromer'16]

Designated Verifier from standard assumptions

[Brakerski-Holmgren-Kalai'17, Brakerski-Kalai'20]

SNARGs for Batch NP from new non-standard assumption

[Kalai-Paneth-Yang'19]

Falsifiable assumption on groups with bilinear maps.

Do there exists SNARGs for Batch NP based on standard assumptions?

Our Result

Theorem

There exists SNARGs for Batch NP

Assuming QR + sub-exp DDH

$$|\Pi| = \tilde{O}(|C| + \sqrt{k|C|})$$

[C-Jain-Jin'21a]

Our Result

Theorem

There exists SNARGs for Batch NP

Assuming LWE

$$|\Pi| = \text{poly}(\log k, |C|)$$

[C-Jain-Jin'21b]

Assuming QR + sub-exp DDH

$$|\Pi| = \tilde{O}(|C| + \sqrt{k|C|})$$

[C-Jain-Jin'21a]

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

 $\forall i \in [k], (C, x_i) \in SAT$

Fiat-Shamir (FS) Methodology

Fiat-Shamir (FS) Methodology

A Different Starting Point for Fiat-Shamir Methodology

Security Intuition

Security Intuition

Security Intuition

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

SAT =
$$\{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

Protocol Template

$$SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

$$\forall i \in [k], (C, x_i) \in SAT$$

f determined by the information theoretic component.

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}$

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Somewhere Statistically
Binding (SSB) Commitment
Scheme [Hubáček -Wichs'15]

Protocol Template

SAT = $\{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Protocol Template


```
SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}
\forall i \in [k], (C, x_i) \in SAT
```

Protocol Template


```
SAT = \{(C, x) \mid \exists w \ s. \ t. \ C(x, w) = 1\}

\forall i \in [k], (C, x_i) \in SAT
```

Protocol Template

SAT =
$$\{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$$

 $\forall i \in [k], (C, x_i) \in SAT$

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Somewhere Statistically Binding (SSB) Commitment Scheme

Needs to be Fiat-Shamir friendly.

Based on LWE/sub-exp DDH

Protocol Template

 $SAT = \{(C, x) \mid \exists w \ s.t. \ C(x, w) = 1\}$ $\forall i \in [k], (C, x_i) \in SAT$

Somewhere Statistically Binding (SSB) Commitment Scheme

Needs to be Fiat-Shamir friendly.

Based on LWE/sub-exp DDH

Delegation via Batching [Reingold-Rothblum-Rothblum'16]

Prove for every $i \in [0, ..., T-1]$ $\operatorname{st}_i \to \operatorname{st}_{i+1}$ is the correct transition.

Delegation via Batching [Reingold-Rothblum-Rothblum'16]

Prove for every $i \in [0, ..., T-1]$ $\operatorname{st}_i \to \operatorname{st}_{i+1}$ is the correct transition.

SNARGs for Batch Index

$$L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

C, k

П

C, k

```
Verifier running time: poly(log k, |C|)
```


SNARGs for polynomial time computation.

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$

 $\forall i \in [k], i \in L_C$

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

Verify:

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

Verify:

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

Verify:

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

$$L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

[Holmgren-Lombardi-Rothblum'21]
Assuming LWE, the
transformation is sound.

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], \ i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on ${\it Q}$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], \ i \in L_C$

$$| \delta | = \Omega(k)$$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$

$$\forall i \in [k], i \in L_C$$

$$L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$$
 $\forall i \in [k], i \in L_C$

$$| \delta | = \Omega(k)$$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on ${\it Q}$

Verify

 W_k

$$|\widetilde{\mathsf{Verify}}| \ge 2|\mathsf{Verify}|$$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

$$|\widetilde{\mathsf{Verify}}| \ge 2|\mathsf{Verify}|$$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

$$|\widetilde{\mathsf{Verify}}| \ge 2|\mathsf{Verify}| \ge 2|C|$$

 $|\widetilde{\text{Verify}}| \ge 2|\text{Verify}| \ge 2|C|$

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

PCP Verify

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

Verify:

PCP OVerify

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q, st

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

Verify:

PCP OVerify

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q, st

 $|Verify| \approx polylog(k, |C|)$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

$$|\widetilde{\mathsf{Verify}}| \ge 2|\mathsf{Verify}| \ge 2\,\mathsf{polylog}(k, |\mathcal{C}|)$$

 $L_C = \{i \mid \exists w \ s. \ t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q, st

 $L_C = \{i \mid \exists w \ s.t. \ C(i, w) = 1\}$ $\forall i \in [k], i \in L_C$

Recurse $\log k$ times

Verify: c_1

- 1. Commitment openings are valid.
- 2. PCP responses verify on Q, st

Results Overview

SNARGs for polynomial time computation.

Results Overview

SNARGs for Batch Index → SNARGs for P

Delegation via Batching [Reingold-Rothblum-Rothblum'16]

Prove for every $i \in [0, ..., T-1]$ $\operatorname{st}_i \to \operatorname{st}_{i+1}$ is the correct transition.

SNARG for Batch Index

For every $i \in [0, ..., T-1]$

- 1. Commitment contains St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

SNARG for Batch Index

For every $i \in [0, ..., T-1]$

- 1. Commitment contains st_i and st_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

SNARG for Batch Index

For every $i \in [0, ..., T-1]$

- 1. Commitment opening to st_i and st_{i+1}
- 2. Valid transition $\operatorname{st}_i o \operatorname{st}_{i+1}$

SNARG for Batch Index

- 1. Commitment opening to st_i and st_{i+1}
- 2. Valid transition $\operatorname{St}_i \to \operatorname{St}_{i+1}$

Use SSB Commitments

SNARG for Batch Index

- 1. Commitment opening to St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

SNARG for Batch Index

- 1. Commitment opening to St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

SNARG for Batch Index

- 1. Commitment opening to St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

Local Soundness *i*-th state transition correct

SNARG for Batch Index

- 1. Commitment opening to St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

SNARG for Batch Index

- 1. Commitment opening to St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

No-Signaling SSB Commitment Scheme [González-Zacharakis'21]

Local Soundness i-th state transition correct

Global Soundness
Local soundness at all i

SNARG for Batch Index

- 1. Commitment opening to St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

No-Signaling SSB Commitment Scheme [González-Zacharakis'21]

Local Soundness *i*-th state transition correct

Global Soundness

Local soundness at all i

SNARG for Batch Index

- 1. Commitment opening to St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

No-Signaling SSB Commitment Scheme [González-Zacharakis'21]

Local Soundness i-th state transition correct

SNARG for Batch Index

- 1. Commitment opening to St_i and St_{i+1}
- 2. Valid transition $st_i \rightarrow st_{i+1}$

Results Overview

Results Overview

SNARGs for Batch Index → SNARGs for Batch NP

SNARGs for Batch NP

Use fixed randomness for the commitment (say 0)

SNARGs for Batch NP

Use fixed randomness for the commitment (say 0)

SNARGs for Batch NP

Use fixed randomness for the commitment (say 0)

Require SSB

Commitments to rely on SNARG soundness.

Recap

Open Questions

Achieving succinct delegation from DDH?

Incrementally verifiable computation from LWE?

Establishing hardness of complexity classes such as PPAD, PLS?

Thank you. Questions?

Arka Rai Choudhuri arkarc@berkeley.edu

ia.cr/2021/807, ia.cr/2021/808