The Theoretical Minimum

Quantum Mechanics - Solutions

L05E02

M. Bivert

April 20, 2023

Exercise 1. 1) Show that $\Delta A^2 = \langle \bar{A}^2 \rangle$ and $\Delta B^2 = \langle \bar{B}^2 \rangle$

- 2) Show that $[\bar{A}, \bar{B}] = [A, B]$
- 3) Using these relations, show that

$$\Delta A \ \Delta B \ge \frac{1}{2} \langle \Psi | [A, B] | \Psi \rangle$$

OK, let's as usual recall the context: A and B are two observables. We defined the expectation value of an observable C with eigenvalues labelled as c to be:

$$\langle C \rangle := \langle \Psi | C | \Psi \rangle = \sum_c c P(c)$$

We construct from C a new observable \bar{C} :

$$\bar{C} := C - \langle C \rangle I$$

Where the identity I is sometimes implicit. The eigenvalues of \bar{C} are denoted \bar{c} and can be expressed in terms of C's eigenvalues, denoted c:

$$\bar{c} = c - \langle C \rangle$$

From there, we defined the $standard\ deviation$, or the square of the uncertainty of C, assuming a "well-behaved" probability distribution P, by:

$$(\Delta C)^2 := \sum_c \bar{c}^2 P(c)$$

Let's first quickly prove that $\bar{c} = c - \langle C \rangle$ are indeed the eigenvalues of $\bar{C} = C - \langle C \rangle I$. Consider an eigenvalue c of C, with associated eigenvector $|c\rangle$. It follows that:

$$C|c\rangle = c|c\rangle$$

$$\Leftrightarrow C|c\rangle - \langle C\rangle |c\rangle = c|c\rangle - \langle C\rangle |c\rangle$$

$$\Leftrightarrow (C - \langle C\rangle I)|c\rangle = (c - \langle C\rangle)|c\rangle$$

$$\Leftrightarrow \bar{C}|c\rangle = (c - \langle C\rangle)|c\rangle$$

Meaning, $|c\rangle$ is still an eigenvector of \bar{C} , but now associated to the eigenvalue $c - \langle C \rangle$. The $|c\rangle$ still make an orthonormal basis of the state space, so there are no other eigenvectors (there can't be more eigenvectors than the dimension of the surrounding state-space).

Similarly, we can prove that c^2 are the eigenvalues associated to C^2 , for an observable C: again start from an eigenvalue c of C, associated to an eigenvector $|C\rangle$:

$$C|c\rangle = c|c\rangle \Leftrightarrow C(C|c\rangle) = C(c|c\rangle) \Leftrightarrow C^2|c\rangle = c(\underbrace{C|c\rangle}_{c|c\rangle}) \Leftrightarrow C^2|c\rangle = c^2|c\rangle) \quad \Box$$

1) We'll prove the fact for an arbitrary observable C: it'll naturally hold for both A and B.

$$\begin{split} (\Delta C)^2 &:= & \sum_c \bar{c}^2 P(c) \\ &= & \sum_c (c - \langle c \rangle)^2 P(c) \quad \text{(definition of } \bar{c}\text{)} \\ &= & \langle \Psi | \bar{C}^2 | \Psi \rangle =: \langle \bar{C}^2 \rangle \quad \text{(two previous properties)} \quad \Box \end{split}$$

2) This is an elementary calculation:

$$\begin{split} [\bar{A},\bar{B}] &:= \bar{A}\bar{B} - \bar{B}\bar{A} & \text{(commutator's definition)} \\ &= (A - \langle A \rangle I)(B - \langle B \rangle I) - (B - \langle B \rangle I)(A - \langle A \rangle I) & \text{(definition of } \bar{C}) \\ &= \left(AB - \langle A \rangle B - \langle B \rangle A + \langle A \rangle \langle B \rangle I\right) - \left(BA - \langle B \rangle A - \langle A \rangle B + \langle B \rangle \langle A \rangle I\right) \\ &= AB - BA \\ &=: [A,B] & \text{(commutator's definition)} \quad \Box \end{split}$$

Remember, $\langle A \rangle$ and $\langle B \rangle$ are real numbers (their multiplication is then commutative).

3) This is now just about following the reasoning preceding the exercise in the book, as suggested by the authors, by replacing A and B with \bar{A} and \bar{B} .

So let:

$$|X\rangle = \bar{A}|\Psi\rangle = (A - \langle A\rangle\,I)|\Psi\rangle; \qquad |Y\rangle = i\bar{B}|\Psi\rangle = i(B - \langle B\rangle\,I)|\Psi\rangle$$

Recall the general form of Cauchy-Schwarz for a complex vector space¹:

$$2|X||Y| \ge |\langle X|Y\rangle + \langle Y|X\rangle|$$

Where the norm is defined from the inner-product:

$$|X| = \sqrt{\langle X|X\rangle}$$

Injecting our two vectors in such a Cauchy-Schwarz equation yields:

$$\begin{split} 2\sqrt{\left\langle \bar{A}^2\right\rangle \left\langle \bar{B}^2\right\rangle} &\geq & |i(\langle\Psi|\bar{A}\bar{B}|\Psi\rangle - \langle\Psi|\bar{B}\bar{A}|\Psi\rangle)| \\ &\geq & |\langle\Psi|[\bar{A},\bar{B}]|\Psi\rangle| & \text{(commutator definition)} \\ &\geq & |\langle\Psi|[A,B]|\Psi\rangle| & \text{(from 2), } [\bar{A},\bar{B}] = [A,B]) \end{split}$$

But from 1), we know that

$$2\sqrt{\left\langle \bar{A}^{2}\right\rangle \left\langle \bar{B}^{2}\right\rangle }=2\sqrt{(\Delta A)^{2}(\Delta B)^{2}}=2\Delta A\Delta B$$

Note that the $\sqrt{.}$ can be removed "safely" as the ΔC^2 are defined as a sum of positive terms (no absolute values necessary).

Putting the two together yields the expected, general uncertainty principle:

$$\boxed{\Delta A \Delta B \ge |\langle \Psi | [A,B] | \Psi \rangle|} \quad \Box$$

¹I'm sticking to the authors' terminology and notations.