

A Tour Through
The Visualization Zoo

Presented By:

- Dipkumar Patel
- Noopa Jagadeesh
- Prasanth Varma

Topics

- 1. Introduction
- 2. Time Series Data Visualization
- 3. Statistical Distributions
- 4. Maps
- 5. Hierarchies
- 6. Networks
- 7. Conclusion

Introduction

- What is Data Visualization and why is it important?
- The challenge is to create effective and engaging visualizations that are appropriate to the data.

Introduction (cont.)

- For creating an effective visualization one must determine which questions to ask, identify the appropriate data, and select effective visual encodings to map data values.
- By now, you might be wondering what is Visualization Zoo?

Circle Packing

Hierarchical Edge Bundling

Parallel Coordinates

Time-Series Data Visualization

- 1. Index Charts
- 2. Stacked Graphs
- 3. Small Multiples
- 4. Horizon Graphs

1. Index Charts

Source: Yahoo! Finance; http://hci.stanford.edu/jheer/files/zoo/ex/time/index-chart.html

2. Stacked Graphs

Source: U.S. Bureau of Labor Statistics; http://hci.stanford.edu/jheer/files/zoo/ex/time/stack.html

3.Small Multiples

4. Horizon Graphs

• The horizon graph is a technique for increasing the data density of a time-series view while preserving resolution.

Statistical Distributions Visualization

- 1. Stem-and-Leaf Plots
- 2. Q-Q Plots
- 3. SPLOM (Scatter Plot Matrix)
- 4. Parallel Coordinates

1. Stem-and-Leaf Plots

- A stem-and-leaf plot is a device for presenting quantitative data in a graphical format, similar to a histogram.
- The main advantage of this plot over histogram is that it can be easily built and is convenient to use in determining median or mode of a data set quickly.
- Sorting is performed before the plotting the numbers.

2.3, 2.5, 2.5, 2.7, 2.8 3.2, 3.6, 3.6, 4.5, 5.0

And here is the stem-and-leaf plot:

Stem	Leaf		
2	3 5 5 7 8		
3	266		
4	5		
5	0		

Stem "2" Leaf "3" means 2.3

2. Q-Q Plots

Source: Stanford Visualization Group; http://hci.stanford.edu/jheer/files/zoo/ex/stats/qqplot.html

3. SPLOM

4. Parallel Coordinates

Source: GGobi; http://hci.stanford.edu/jheer/files/zoo/ex/stats/parallel.html

Data				
	Variable A	Variable B	Variable C	
Item 1	50	100	2.0	
Item 2	30	115	0.5	

Maps Visualization

Cart-graphic projection: A mathematical function which maps the 3D geometry of earth to a 2D image.

These visualization uses distort or abstract geographic features to highlight the data.

1. Flow Maps

- Flow maps are a combination of maps and flowchart which indicates the movement of objects from one location to another.
- Lines are used to symbolize the flow. width represents differences in the quantity of the flow.
- Flow lines encode a large amount of multivariate information.
 - Path points
 - Direction
 - Line thickness
 - Color Present dimension of information to the viewer

Figure: Flow map of Napoleon's March on Moscow, based on the work of **Charles Minard** Initially - the Grand Army size was 422,000 as it progressed through Russia.

2. Choropleth Maps

Figure: the condition of obesity in each state in the U.S.

- They represent an aggregate summary of a geographic characteristic within each area.
- It uses a **color encoding** approach to represent data of the geographic area.

Problems:

- Raw data is used over normalized data for density map
- Perception of shaded value can be affected by underlying area of the geographic region

3. Graduated Symbol Maps

- An alternative to the choropleth map.
- Places symbols over an underlying map.
- More dimensions to be visualized i.e. symbol's size, shape and color
- Pie charts

Figure: State's population - Total circle size, Proportion of people with specific BMI rating - Each slice

4. Cartograms

- Area directly encodes a data variable
- The geometry or space of the map is **distorted** in order to convey the information

Hierarchies Visualization

- Data which is a flat collection of numbers, can be organized into natural hierarchies
- Data that can be represented:
 - Organizational Chart
 - Classifications
 - File structure
 - Decision Tree (Logical inference)

1. Node-link diagrams

- Orthogonal layout
 - Indented Layout
 - Dentrogram
 - Icicle
- Traditional Layout
 - 2D
 - 3D : Cone Trees
 - Radial layout
- Radial diagram
 - Sunburst diagram
 - Hyperbolic trees

Node-link diagrams: Traditional approach

- Allocate Space proportional to no. of Children at different Levels.
- Leaf nodes are not at same level
- Reingold-Tilford algorithm: Make smarter use of space maximize density space, maximize density and symmetry

Node-link diagrams: Dendrogram - Radial Layout

- Hierarchy of categories based on degree of similarity
- Leaf nodes of tree at same level
 - Uses space more efficiently

Node-link diagrams: Indented tree layout

Operating system to represent the directories

Features:

- Easy to implement
- Allows multivariate data(size, last modified)
- Good for Searching, Bad for Structure

Problems:

Requires excessive vertical space

Hierarchies Visualization: Adjacency Diagrams – icicle layout

Hierarchies Visualization: Adjacency Diagrams -

Sunburst layout

Figure: (a)Adjacency Diagrams- Icicle layout, (b)Adjacency Diagrams- Sunburst layout (c) Node Link diagram

Hierarchies Visualization: Enclosure Diagrams-Treemap layout

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/treemap.html

Figure: Treemap layout of the Flare package hierarchy[1].

Figure: (a) Node Link diagram (b) Tree map layout

Hierarchies Visualization: Enclosure Diagrams-circle packing

layout

http://hci.stanford.edu/jheer/files/zoo/ex/hierarchies/pack.html Source: The Flare Toolkit http://flare.prefuse.org

Figure: Nested circles layout of the Flare package hierarchy

Networks Visualization

- 1. Force-directed Layouts
- 2. Arc Diagrams
- 3. Matrix Views

Force-directed Layouts : Physical Model

Figure: Undirected graph

Force-directed Layouts : Physical Model

Figure: Undirected graph

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . .

Force-directed Layouts : Physical Model

Figure: Undirected graph

"To embed a graph we replace the vertices by steel rings and replace each edge with a spring to form a mechanical system . . . The vertices are placed in some initial layout and let go so that the spring forces on the rings move the system to a minimal energy state."

Force-directed Layouts : Physical Model

Figure: Force-directed layouts

Networks Visualization: Force-directed Layouts

Figure: Node-link diagram visualizing a graph structure and attributes[2].

Networks Visualization: Force-directed Layouts

Figure: Five links between 6 nodes are represented using a 2d network diagram (left) and an arc diagram (right)

Arc Diagrams

Figure: Arc Diagrams

Figure: Arc diagram of Les Misérables character co-occurrences[1].

Figure: Arc diagram of Les Misérables character co-occurrences

Networks Visualization: Matrix Views

http://hci.stanford.edu/jheer/files/zoo/ex/networks/matrix.html Source: http://www-personal.umich.edu/-mejn/netdata

Figure: Matrix view of Les Misérables character co-occurrences[1]

Figure: Matrix view of Les Misérables character co-occurrences[1]

Figure: Matrix view of Les Misérables character co-occurrences[1].

Conclusion and personal critics

 All visualizations share a common "DNA" - a set of mappings between data properties and visual attributes such as position, size, shape, and color - and customized species of visualization might always be constructed by varying these encodings.

Critics:

- Overall a well written paper with a good summarization of some of the visualization techniques.
- Paper provides a interactive webpage to all the visualization(But some of the URL is not working).
- Uses the same dataset to explain the visualization of the same category so hence comparison is possible.
- Paper sufferers from the limitations of any survey paper.

Reference

- [1]. Jeffrey Heer, Michael Bostock, and Vadim Ogievetsky, "A Tour Through the Visualization Zoo", ACM, 2010.
- [2]. Christian Tominski, Heidrun Schumann," Interactive visual data analysis, CRC Press.
- [3] https://mode.com/example-gallery/force-directed-graph/
- [4]. Martin Wattenberg, "Arc Diagrams: Visualizing Structure in Strings", IEEE, 2002
- [5] https://bost.ocks.org/mike/miserables/

Thank You!

Any Questions?

More examples:Force directed graph

Notation

$$\begin{array}{ll} \ell = \ell(e) & \text{ideal spring length for edge } e \\ p_v = (x_v, y_v) & \text{position of node } v \\ ||p_u - p_v|| & \text{Euclidean distance between } u \text{ and } v \\ \hline \overline{p_u p_v'} & \text{unit vector pointing from } u \text{ to } v \end{array}$$

Spring-Embedder (Eades, 1984)

Model:

ullet repulsive force between two non-adjacent nodes u and v

$$f_{\text{rep}}(p_u, p_v) = \frac{c_{\text{rep}}}{||p_v - p_u||^2} \cdot \overrightarrow{p_u p_v}$$

lacktriangle attractive force between adjacent vertices u and v

$$f_{\text{spring}}(p_u, p_v) = c_{\text{spring}} \cdot \log \frac{||p_u - p_v||}{\ell} \cdot \overrightarrow{p_v p_u}$$

resulting displacement vector for node v

$$F_v = \sum_{u:\{u,v\} \notin E} f_{\mathsf{rep}}(p_u, p_v) + \sum_{u:\{u,v\} \in E} f_{\mathsf{spring}}(p_u, p_v)$$

Bridges

