Programmation Numérique

Polytech Lille — IS 3 — Cours 1

5 octobre 2023

Présentation

- Introduction à l'algorithmique numérique (interpolation polynomiale et intégration numérique)
- Complété par Algèbre Linéaire Numérique (S6) et Algorithmique Numérique pour l'Optimisation (S7)
- Trois CM, sept TP, un contrôle TP (une heure trente, sans document)
- L'essentiel se passe en TP: les questions de programmation en Python visent à vous faire acquérir, par vous même, des notions simples d'algorithmique numérique et un peu de familiarité avec la documentation scientifique Python

Calculer avec des flottants

Norme IEEE 754 : nombres à virgule flottante en 32 et 64 bits

$S(1) \mid E(8)$	M(23)
$S(1) \mid E(11)$	M(52)

- bit de signe, exposant, mantisse (plus un bit gratuit)
- valeur $1.M_{(2)} \times 2^{E-D}$ où D = 127 ou 1023
- flottants normaux vs flottants anormaux (nan, inf)

Python

- numpy (numerical Python)
- scipy (scientific Python) construit au-dessus de numpy
- les manipulations élémentaires de tableaux, matrices sont implantées numpy et les algorithmes scientifiques évolués en scipy
- un objectif pédagogique important : comprendre la documentation de ces bibliothèques
- En TP : Spyder (contrôle TP!)

Interpolation polynomiale

Thm Étant donnés n+1 points

$$\begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, \dots, \begin{pmatrix} x_n \\ y_n \end{pmatrix},$$

d'abscisses distinctes deux-à-deux, il existe un unique polynôme P(z) de degré au plus n, dont le graphe passe par chacun des points. Ce polynôme est appelé polynôme d'interpolation.

i	0	1	2	3
Xi	1	2	3	5
Уi	1	4	2	5

Le polynôme d'interpolation est

$$P(z) = -\frac{25}{2} + \frac{247}{12}z - 8z^2 + \frac{11}{12}z^3$$
.

Graphiquement

Résumé

- En algèbre, l'interpolation polynomiale est un non problème
- En algorithmique numérique, les algorithmes prennent des précautions pour éviter des propagations catastrophiques d'erreurs d'arrondis (non à la base des monômes!)
- Dans les applications, on a souvent besoin de propriétés supplémentaires (exemple d'une fonction de survie qui doit être décroissante et comprise entre 0 et 1). Besoin d'interpolation polynomiale mais faite de façon intelligente : les splines.

En algèbre, c'est un non problème

On attribue à P(z) des coefficients inconnus

$$P(z) = a_0 + a_1 z + \cdots + a_n z^n$$

On écrit les conditions que doivent vérifier les a_i

$$y_0 = a_0 + a_1 x_0 + \dots + a_n x_0^n,$$

 $y_1 = a_0 + a_1 x_1 + \dots + a_n x_1^n,$
 \vdots
 $y_n = a_0 + a_1 x_n + \dots + a_n x_n^n.$

En algèbre, c'est un non problème

On attribue à P(z) des coefficients inconnus

$$P(z) = a_0 + a_1 z + \cdots + a_n z^n$$

On écrit les conditions que doivent vérifier les a_i

$$\underbrace{\begin{pmatrix} 1 & x_0 & \dots & x_0^n \\ 1 & x_1 & \dots & x_1^n \\ \vdots & & \vdots & \vdots \\ 1 & x_n & \dots & x_n^n \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}}_{V} = \underbrace{\begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_n \end{pmatrix}}_{b}.$$

Thm La matrice de Vandermonde A est inversible si les x_i sont distincts deux-à-deux.

En algorithmique numérique, c'est moins simple

Idée La méthode par la matrice de Vandermonde cherche à décomposer P(z) dans la base des monômes. Ce n'est pas une bonne idée.

Les algorithmes numériques évaluent P(z) sans calculer ses coefficients :

- La formule de Lagrange (1800)
- L'algorithme de Neville (1900)
- Les différences divisées de Newton (1700)

L'algorithme de Neville (1900)

i	0	1	2	3	
Xi	1	2	3	5	(n=3)
Уi	1	4	2	5	

Idée 1 On définit $P_{i,j}$ comme le polynôme d'interpolation dont le graphe passe par les points d'indices $i, i-1, \ldots, i-j$.

				j	
i	Xi	0	1	2	3
0	1	1			
1	2	4	3z-2		
2	3	2	-2z + 8	$-\frac{5}{2}z^2 + \frac{21}{2}z - 7$	
3	5	5	$\frac{3}{2}z-\frac{5}{2}$	$\frac{7}{6}z^2 - \frac{47}{6}z + 15$	$\frac{11}{12}z^3 - 8z^2 + \frac{247}{12}z - \frac{25}{2}$

L'algorithme de Neville (1900)

i	0	1	2	3	
Xi	1	2	3	5	(n=3)
Уi	1	4	2	5	

Idée 1 On définit $P_{i,j}$ comme le polynôme d'interpolation dont le graphe passe par les points d'indices $i, i-1, \ldots, i-j$.

Idée 2 Il y a une formule pour construire le tableau de polynômes colonne par colonne

$$\begin{array}{lcl} P_{i,0} & = & y_i & (0 \le i \le n), \\ P_{i,j} & = & \frac{(x_i - z) P_{i-1,j-1} + (z - x_{i-j}) P_{i,j-1}}{x_i - x_{i-j}} & (1 \le j \le n, \quad j \le i \le n). \end{array}$$

L'algorithme de Neville (1900)

i	0	1	2	3	
Xi	1	2	3	5	(n=3)
Уi	1	4	2	5	

Idée 1 On définit $P_{i,j}$ comme le polynôme d'interpolation dont le graphe passe par les points d'indices $i, i-1, \ldots, i-j$.

Idée 2 Il y a une formule pour construire le tableau de polynômes colonne par colonne

$$\begin{array}{lcl} P_{i,0} & = & y_i & (0 \le i \le n), \\ P_{i,j} & = & \frac{(x_i - z) P_{i-1,j-1} + (z - x_{i-j}) P_{i,j-1}}{x_i - x_{i-j}} & (1 \le j \le n, \quad j \le i \le n). \end{array}$$

Idée 3 Si on donne une valeur numérique \bar{z} à z, la formule construit un tableau de nombres et on obtient la valeur numérique $P(\bar{z})$

Rappel Le tableau P de l'algorithme de Neville

				j	
i	Xi	0	1	2	3
0	1	1			
1	2	4	3z-2		
2	3	2	-2z + 8	$-\frac{5}{2}z^2 + \frac{21}{2}z - 7$	
3	5	5	$\frac{3}{2}z-\frac{5}{2}$	$\frac{7}{6}z^2 - \frac{47}{6}z + 15$	$\frac{11}{12}z^3 - 8z^2 + \frac{247}{12}z - \frac{25}{2}$

Idée 1 Ne calculer que les coefficients dominants $c_{i,j}$ des polynômes

				j	
i	Xi	0	1	2	3
0	1	1			
1			$\frac{3}{2}z - 2$		
2	3	2	-2z + 8	$-\frac{5}{2}z^2 + \frac{21}{2}z - 7$	
3	5	5	$\frac{3}{2}z - \frac{5}{2}$	$\frac{7}{6}z^2 - \frac{47}{6}z + 15$	$\frac{11}{12}z^3 - 8z^2 + \frac{247}{12}z - \frac{25}{2}$

i	0	1	2	3	
Xi	1	2	3	5	(n = 3)
Уi	1	4	2	5	

Idée 1 Ne calculer que les coefficients dominants $c_{i,j}$ des polynômes

				j	
i	Xi	0	1	2	3
0	1	1			
1	2	4	3		
2	3	2	-2	$-\frac{5}{2}$	
3	5	5	$\frac{3}{2}$	$\frac{7}{6}$	$\frac{11}{12}$

ldée 1 Ne calculer que les coefficients dominants $c_{i,j}$ des polynômes

$$\begin{array}{lcl} c_{i,0} & = & y_i & (0 \le i \le n), \\ c_{i,j} & = & \frac{c_{i,j-1} - c_{i-1,j-1}}{x_i - x_{i-j}} & (1 \le j \le n, \quad j \le i \le n). \end{array}$$

i	0	1	2	3	
Xi	1	2	3	5	(n = 3)
Уi	1	4	2	5	

Idée 1 Ne calculer que les coefficients dominants $c_{i,j}$ des polynômes

$$\begin{array}{lcl} c_{i,0} & = & y_i & (0 \leq i \leq n), \\ c_{i,j} & = & \frac{c_{i,j-1} - c_{i-1,j-1}}{x_i - x_{i-j}} & (1 \leq j \leq n, \quad j \leq i \leq n). \end{array}$$

Idée 2 Il existe une formule pour le polynôme d'interpolation

$$P_{n,n}(z) = c_{0,0} + c_{1,1}(z - x_0) + c_{2,2}(z - x_0)(z - x_1) + \cdots + c_{n,n}(z - x_0)(z - x_1) \cdots (z - x_{n-1}).$$

Idée 3 Le tableau des $c_{i,j}$ n'est calculé qu'une fois. Une variante du schéma de Horner-Ruffini permet d'évaluer $P_{n,n}(z)$

Les splines

Les splines

Les splines

Les splines lissantes

