INSTITUTO SUPERIOR TÉCNICO

Análise e Síntese de Algoritmos

Ano lectivo de 2018/2019

2º Teste - versão A

RESOLUÇÃO DO 2º TESTE

I. (2.0 + 4.0 + 2.0 = 8.0 val.)

I a)	i	1	2	3	4	5	6	7	8	9	10	11
I.a)	S/E	S	Е	S	S	S	Е	Е	S	S	Е	Е

	Primeira	Z = -15	$x_1 = 3$	$x_2 = 0$	$x_3 = 0$
I.b)	Ótima	Z = -5	$x_1 = 13$	$x_2 = 10$	$x_3 = 0$
	Dual Ótima	Z' = -5		$y_1 = 2$	$y_2 = 1$

I.c)		a	b	c	d	e	f
1.0)	Codificação	1	00	010	0111	01100	01101
ſ	Total Rite 1/	Q		•			

Total Bits 148

II. (2,0 + 2,0 = 4,0 val.)

II °/	c[2,9]	c[3,5]	c[3,6]	c[3,10]	c[4,8]	c[4,9]
II.a)	5	1	2	2	2	3

II.b) $\langle XXX \rangle$

III. (2,0 + 2,0 = 4,0 val.)

		t_1	t_2	<i>t</i> ₃	<i>t</i> ₄	<i>t</i> ₅	<i>t</i> ₆	<i>t</i> 7	<i>t</i> ₈	<i>t</i> 9	t ₁₀	<i>t</i> ₁₁	<i>t</i> ₁₂	<i>t</i> ₁₃	<i>t</i> ₁₄
III.a)		4	7	6	1	1	9	6	9	7	4	7	4	9	5
	T =	565	6	7	2	7	3	2	8	2	9	3	9	4	0

	i	1	2	3	4	5	6	7	8	9	10	11	
III.b)	π	0	0	1	2	0	1	2	3	4	3	4	
	P =	A	В	A	В	С	A	В	A	В	A	В	

IV. (2,0 + 2,0 = 4,0 val.)

IVa)		a)	b)	c)	d)	e)
IV.a)	Resposta	V	V	V	D	F

IV.b) $\langle XXX \rangle$

I.
$$(2.0 + 4.0 + 2.0 = 8.0 \text{ val.})$$

I.a) Nesta questão pretendemos utilizar o algoritmo greedy que maximiza o número de atividade compatíveis que podem ser selecionadas. Indique, para cada atividade, S se a respetiva atividade for selecionada ou E se for excluída.

A tabela seguinte descreve um sequência de atividades, em que o valor a_i representa o tempo de inicio e d_i a duração da atividade i.

I.b) Considere o seguinte programa linear:

Maximizar
$$-5x_1+6x_2+4x_3$$

Sujeito a $-x_1+x_2+x_3 \le -3$
 $-3x_1+4x_2+4x_3 \le 1$
 $x_1,x_2,x_3 \ge 0$

Indique o valor da função objectivo e o respectivo valor das variáveis x_1 , x_2 e x_3 na **primeira solução exequível** encontrada pelo algoritmo Simplex. Em caso de empate em algum critério de aplicação do algoritmo, aplique a regra de Bland. Ou seja, escolha a variável de menor índice.

Indique também o valor da função objectivo e o respectivo valor das variáveis para a solução ótima e para a solução do sistema dual, com a variável y_1 associada à primeira restrição e a variável y_2 associada à segunda restrição.

I.c) Considere o problema de compressão de dados de um ficheiro usando a codificação de Huffman. Indique o código livre de prefixo ótimo para cada caractere num ficheiro com 100 caracteres com o seguinte número de ocorrências: f(a) = 75, f(b) = 12, f(c) = 6, f(d) = 4, f(e) = 1, f(f) = 2. Quando constrói a árvore, considere o bit 0 para o nó com menor frequência.

Indique também o total de bits no ficheiro codificado.

II. (2.0 + 2.0 = 4.0 val.)

II.a) Considere o problema de realizar trocos minimizando o número de moedas necessário. Assuma que os valores v_i das moedas são 1 < 2 < 5 < 6 e que calcula uma tabela de programação dinâmica c[i,j], onde i indica que apenas podem ser utilizadas moedas com os primeiros i valores e j indica o valor que se pretende trocar. O valor guardado na tabela é o menor número de moedas necessárias para obter os valor j, assumindo que existe uma quantidade ilimitada de moedas de cada valor.

Indique os valores c[2, 9], c[3, 5], c[3, 6], c[3, 10], c[4, 8] e c[4, 9].

II.b) Nesta pergunta iremos calcular um caminho bitónico mais curto, utilizando a distância Euclidiana, i.e, $d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$ para os pontos $p_1 = (x_1, y_1)$ e $p_2 = (x_2, y_2)$. Vamos assumir que a sequência de pontos p_1, \ldots, p_n está ordenada de forma crescente na coordenada x, i.e., $x_1 < x_2 < \ldots < x_n$ e que as coordenadas x são distintas.

Os caminhos devem passar por todos os n pontos, pelo que, podem ser representados por uma permutação σ , em que o ponto $p_{\sigma(k)}$ liga ao ponto $p_{\sigma(k+1)}$, para todo $k \in \{1, \dots, n-1\}$. A seguinte tabela exemplifica cinco caminhos:

k	1	2	3	4	5	6	7
$\sigma(k)$	6	4	3	1	2	5	7
$\sigma'(k)$	6	5	2	1	3	4	7
$\sigma''(k)$	6	4	1	3	2	5	7
$\sigma^+(k)$	1	2	3	4	5	6	7
$\sigma^{-}(k)$	7	6	5	4	3	2	(1)

Os caminhos σ , σ' e σ'' estão representados gráficamente na figura seguinte.

Um caminho é bitónico se a respetiva permutação é descrescente até atingir o valor 1 e a partir desse valor é crescente até ao fim. No nosso exemplo apenas a permutação σ'' não corresponde a um caminho bitónico, porque $\sigma''(4) = 3 > 2 = \sigma''(5)$ e $\sigma''(3) = 1$. As restantes permutações correspondem a caminhos bitónicos.

Pretendemos determinar, utilizando programação dinâmica, o caminho bitónico mais curto que passa por todos os pontos. No nosso exemplo o caminho que corresponde à permutação σ é mais curto que o caminho que corresponde à permutação σ' . Note que tanto a distância Euclidiana como a definição de caminho bitónico são simétricas, pelo que, por exemplo, as permutações σ^+ e σ^- correspondem essencialmente ao mesmo caminho. Para evitar esta duplicação de representações vamos convencionar que o primeiro ponto do caminho, p_i , com $i = \sigma(1)$, deve ter um índice menor que o último ponto, p_j , com $j = \sigma(n)$, i.e., i < j. No caso particular de σ temos i = 6 < 7 = j. Das permutações acima que correspondem a caminhos bitónicos apenas σ^- não respeita esta propriedade, pelo que esse caminho deveria ser representado por σ^+

Definimos uma tabela B[i,j] em que i < j e que guarda o comprimento do menor caminho bitónico que começa no ponto p_i e termina no ponto p_j e inclui todos os pontos de p_1 a p_j . Complete a fórmula da recursão para a resolução deste problema.

As figuras abaixo ilustram os dois últimos casos a considerar.

Indique a complexidade temporal do algoritmo resultante. Caso não tenha preenchido a recursão assuma que as operações em falta requerem tempo O(1).

Solução:

$$\mathtt{B}[\mathtt{i},\mathtt{j}] = \left\{ \begin{array}{|c|c|} \hline d(p_1,p_2) & , \text{ se } i = 1 \text{ e } j = 2 \\ \hline B[i,j-1] + d(p_{j-1},p_j) & , \text{ se } i < j-1 \\ \hline \min_{1 \leq k < j-1} \left\{ \hline B[k,i] + d(p_k,p_j) & , \text{ se } i = j-1 \end{array} \right.$$

A complexidade do algoritmo é $O(n^2)$, porque há este numero de entradas com i < j-1, para as quais a computação demora O(1) para cada. Existem O(n) entradas com i = j-1, para as quais a computação demora O(n) para cada. Em ambos os casos a computação total é $O(n^2)$, pelo que esse é o tempo total.

III. (2,0 + 2,0 = 4,0 val.)

III.a) Considere o algoritmo de Rabin-Karp, com P = 146, T = 5656727328293940 e q = 11. Indique a sequência de valores t_i obtidos a processar T. Note que este números são um resto modulo q, pelo que são valores entre 0 e 10.

Recorde que é possível calcular o resto de uma divisão por 11 somando e subtraíndo os algorismos do número, por exemplo temos $146 \equiv 1-4+6 \equiv 3 \pmod{11}$. O que é uma consequência das seguintes relações:

$$1 \equiv 1 \pmod{11}$$
 $10 \equiv -1 \pmod{11}$
 $100 \equiv 1 \pmod{11}$

III.b) Calcule a função de prefixo do algoritmo de Knuth-Morris-Pratt para o padrão P = ABABCABABAB.

IV. (2,0 + 2,0 = 4,0 val.)

IV.a) O Professor Carlos é um investigador perspicaz, que estuda o problema 3CNF-SAT. Contudo até hoje não foi capaz de encontrar um algoritmo polinomial para resolver este problema. Considerando que o Professor Carlos é bastante competente classifique as seguintes afirmações como verdadeira (**V**), falsa (**F**) ou se não se sabe (**D**).

- a. $VERTEX-COVER \in NP$
- b. $2\text{-COLOR} \in NP$
- c. $P \subseteq NP$
- d. $HORN-SAT \notin NP-HARD$
- e. HORN-SAT ∉ P

IV.b) Nesta questão vamos considerar o problema da pavimentação com retângulos (R-TILING). Uma instância do problema consiste num saco *S* de retângulos e um retângulo *p* que representa o pavimento desejado. Recorde que um saco, ou *multiset*, pode conter repetições.

Considere por exemplo a instância com S = [(1,3),(2,2),(1,2),(1,2),(2,1),(1,1),(1,1)] e p = (3,3), onde cada retângulo é representado por um par de valores que correspondem à dimensão na coordenada x e à dimensão na coordenada y.

O problema em questão consiste em determinar se é possivel pavimentar p utilizando, alguns, dos retângulos de S. Por pavimentar entende-se cobrir toda a área de p sem que haja sobreposição de retângulos. Os retângulos **não** podem ser rodados, apenas podem ser posicionados.

Assuma que a representação de uma solução consiste em associar a cada retângulo de *S* as coordenadas do canto inferior esquerdo, ou a letra O, para omitido.

Para o exemplo dado a resposta é afirmativa. Uma possível pavimentação e respetiva representação são as seguintes:

Dado um conjunto de números inteiros S e um número inteiro t, o problema **SUBSET-SUM** consiste em verificar se existe um subconjunto S' tal que $S' \subseteq S$ e a soma dos elementos de S' seja t. Sabendo que o problema **SUBSET-SUM** é NP-Completo, prove que o problema **R-TILING** é NP-Completo. Prove primeiro que **R-TILING** \in NP.

Solução:

Em primeiro lugar é necessário provar que \mathbf{R} -TILING \in NP. Primeiro calculamos a área de p, representada por k. Seguidamente calculamos a soma t das áreas de todos os retângulos que não estão indicados como omissos na solução. Verificamos se t = k, caso contrário o algoritmo de verificação rejeita a solução.

Caso a solução passe neste primeiro teste é preciso verificar que não existe sobreposição de retângulos. Para tal consideram-se todos os pares de retângulos não omissos na solução. Por exemplo vamos considerar o retângulo $r_i = (d_x, d_y)$ com canto inferior esquerdo em (x_i, y_i) e o retângulo $r_j = (d'_x, d'_y)$ com canto inferior esquerdo em (x_j, y_j) . Há sobreposição de retângulos caso ambas as seguintes condições se verifiquem:

$$\max(x_i, x_j) < \min(x_i + d_x, x_j + d'_x)$$

 $\max(y_i, y_j) < \min(y_i + d_y, y_j + d'_y)$

Caso algum par de retângulos indique sobreposição o algoritmo verificação retorna falso, caso contrário a solução é aceite.

Caso o número de retângulos em S seja n o tempo que o algoritmo de verificação necessita é $O(n^2)$, pelo que é polinomial no tamanho do input.

Em segundo lugar vamos provar que **R-TILING** \in NP-HARD, fazendo uma redução a partir do **SUBSET-SUM**. Dado um conjunto C de números e um valor objetivo k construimos o pavimento p = (1, k) e o conjunto de retângulos com dimensões (1, c) para cada numero $c \in C$.

Para verificarmos que esta redução está correcta temos que provar que a instância do **SUBSET-SUM** tem solução se e só se a instância do **R-TILING** gerada tem solução.

Se a instância do **SUBSET-SUM** tem solução $C' \subseteq C$ então selecionamos os retângulos (1,c') com $c' \in C'$. As coordenada do vértice inferior esquerdo serão (0,a) onde a variável a é a soma dos valores de C' já processados, i.e., após atribuir um retângulo fazemos a=a+c'. No início temos a=0.

Queremos verificar que esta configuração é uma pavimentação de p. Note que a área de p é k e vamos utilizar t para representar a soma das áreas dos retângulos da pavimentação, que por construção é igual à soma dos elementos de C'. Para confirmar que é uma pavimentação de p basta notar que por construção os retângulos não tem sobreposição e que k=t porque C' era solução do **SUBSET-SUM** e portanto os retângulos selecionados cobrem toda a área de p.

No outro sentido queremos verificar que se a instância gerada do **R-TILING** tem solução então a instância do **SUBSET-SUM** original também tem solução. Escolhemos para C' os numeros c' tais que os respetivos retângulos (1,c') não estão omissos na pavimentação de p. Novamente temos que a área de p é k e iremos utilizar t para representar a soma da área dos retângulos da pavimentação, que devido á forma do retângulos é igual á soma dos números em C'. Como não há sobreposição de retângulos temos $t \le k$ e como os retângulos têm de cobrir a área de p temos t > k, pelo que t = k e C' é solução da instância do **SUBSET-SUM**.