

1. Basis

Exercise 1 Finding the parametric and implicit equations, the basis, and the dimension:

a)
$$U_1 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y + z = 0\}$$

b)
$$U_2 = \{(x, y, z) \in \mathbb{R}^3 \mid x = y, x - y - z = 0\}$$

c)
$$U_3 = \{p(x) = ax^2 + bx + c \in \mathbb{R}_2[x] \mid a - 2b + c = 0\}$$

d)
$$U_4 = \{(x, y, z) \in \mathbb{R}^3 \mid x + y - z = 0, \quad x^2 + y^2 = 0\}$$

e)
$$U_5 = \{(x, y, z) \in \mathbb{R}^3 \mid 2x + 3y + z = 0, 3y + z = 0\}$$

f)
$$U_6 = \{(x, y, z) \in \mathbb{R}^3 \mid x - 2y + z = 0, x - y - z = 0\}$$

g)
$$U_7 = \langle \vec{v}_1 = (1, 1, 1, 0, 0), \vec{v}_2 = (2, -1, 0, 1, 3), \vec{v}_3 = (3, 0, 1, -1, 2), \vec{v}_4 = (2, 2, 2, -2, -1) \rangle$$

Exercise 2 Considering the following linear subspaces in \mathbb{R}^4 :

a)
$$V_1 = \{(x, y, z, t) \mid x + y + z = 0\}$$

b)
$$V_2 = \langle (1,1,1,1), (1,2,3,4) \rangle$$

c)
$$V_3 = \{(x, y, z, t) \mid x = \alpha + \beta, y = \alpha + \gamma, z = \gamma + \delta, t = \alpha + \delta\}$$

Check if the vector vector $\vec{v} = (1,0,-1,-2)$ belongs to any of them. Compute the coordinates of \vec{v} in a basis set of the subspace where it belongs to.

Exercise 3 *Finding the coordinates of the vectors:*

a)
$$\vec{w} = (1,0,-1)$$
 in the basis set of \mathbb{R}^3 , $\mathscr{B} = {\vec{u}_1 = (1,1,0), \vec{u}_2 = (1,1,1), \vec{u}_3 = (0,1,1)}$

b)
$$p(x) = 2 - x + 3x^2$$
 in the basis $\mathcal{B} = \{1 + x, 1 - x, x^2\}$

c)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 in the basis set $\mathscr{B} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}$

Exercise 4 Show that the vector system $S = \{(1,1,1), (1,3,1), (-2,1,3)\}$ is a basis set of \mathbb{R}^3 . Find the coordinates of the vector $\vec{v} = (1,1,2)$ in the basis S.