

The Foundations: Logic and Proofs

Chapter 1

Edited by: Dr. Meshal Alfarhood

Propositional Equivalences

Section 1.3

Section Summary

Tautology, Contradiction, and Contingency.

Logical Equivalence

- Important Logical Equivalences
- Showing Logical Equivalence

Satisfiability

Tautology, Contradiction, and Contingency

A tautology is a proposition which is always true.

• Example: $p \lor \neg p$

A *contradiction* is a proposition which is always **false**.

• Example: $p \land \neg p$

A *contingency* is a proposition which is neither a tautology nor a contradiction, such as *p*

P	$\neg p$	<i>p</i> ∨ ¬ <i>p</i>	<i>p</i> ∧ ¬ <i>p</i>
Т	F	Т	F
F	Т	Т	F

Logical Equivalence

- Two propositions p and q are logically equivalent if and only if the values of the columns in their truth table agree.
- We write this as $p \equiv q$
- **Example**: show that $\neg p \lor q$ is equivalent to $p \rightarrow q$.

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
Т	Т	F	T	T
Т	F	F	F	F
F	Т	Т	Т	T
F	F	Т	Т	Т

$$p \to q \equiv \neg p \lor q$$

• Two propositions p_1 and p_2 are **logically equivalent** if $p_1 \leftrightarrow p_2$ is a tautology.

De Morgan's Laws

$$\neg (p \land q) \equiv \neg p \lor \neg q$$
$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Example: Show that De Morgan's Second Law holds.

p	q	$\neg p$	$\neg q$	(<i>p</i> ∨ <i>q</i>)	$\neg (p \lor q)$	$\neg p \land \neg q$
Т	Т	F	F	Т	F	F
T	F	F	Т	Т	F	F
F	Т	Т	F	Т	F	F
F	F	Т	Т	F	Т	Т

Important Logical Equivalences 1

Identity Laws:

$$p \wedge T \equiv p$$
,

$$p \vee F \equiv p$$

Domination Laws:

$$p \vee T \equiv T$$
,

$$p \wedge F \equiv F$$

Idempotent laws:

$$p \lor p \equiv p$$
,

$$p \wedge p \equiv p$$

Double Negation Law:

$$\neg(\neg p) \equiv p$$

Negation Laws:

$$p \vee \neg p \equiv T$$
,

$$p \land \neg p \equiv F$$

Important Logical Equivalences 2

Commutative Laws: $p \lor q \equiv q \lor p$, $p \land q \equiv q \land p$

Associative Laws:

$$(p \land q) \land r \equiv p \land (q \land r)$$
$$(p \lor q) \lor r \equiv p \lor (q \lor r)$$

Distributive Laws:

$$(p \lor (q \land r)) \equiv (p \lor q) \land (p \lor r)$$
$$(p \land (q \lor r)) \equiv (p \land q) \lor (p \land r)$$

Absorption Laws:

$$p \lor (p \land q) \equiv p \quad p \land (p \lor q) \equiv p$$

Biconditional:

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$
$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

Showing Logical Equivalences

- We can show that two expressions are logically equivalent $(A \equiv B)$:
 - 1. By using truth tables.
 - 2. By developing a series of logically equivalent statements.
 - To prove that $A \equiv B$ we produce a series of equivalences beginning with A and ending with B.

$$A \equiv A_{1}$$

$$\vdots$$

$$A_{n} \equiv B$$

Equivalence Proofs₁

Example 1: Show that $\neg(p \rightarrow q) \equiv p \land \neg q$

Solution:

$$\neg(p \to q) \equiv \neg(\neg p \lor q)$$
$$\equiv p \land \neg q$$

Equivalence Proofs₂

Example 2: Show that $\neg (p \lor (\neg p \land q)) \equiv \neg p \land \neg q$

Solution:

$$\equiv \neg p \land \left[\neg (\neg p) \lor \neg q \right]$$

$$\equiv \neg p \land (p \lor \neg q)$$

$$\equiv (\neg p \land p) \lor (\neg p \land \neg q)$$

$$\equiv F \lor (\neg p \land \neg q)$$

$$\equiv (\neg p \land \neg q)$$

Equivalence Proofs₃

Example 3: Show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.

Solution:

$$(p \land q) \rightarrow (p \lor q) \equiv \neg (p \land q) \lor (p \lor q)$$

$$\equiv (\neg p \lor \neg q) \lor (p \lor q)$$

$$\equiv (\neg p \lor p) \lor (\neg q \lor q)$$

$$\equiv T \lor T$$

$$\equiv T$$

Propositional Satisfiability

- A compound proposition is satisfiable if there is an assignment of truth values to its variables that make it true.
- When no such assignments exist, the compound proposition is unsatisfiable.

Propositional Satisfiability

Example: Determine the satisfiability of the following compound propositions:

$$(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p)$$

Solution: Satisfiable. Assign **T** to *p*, *q*, and *r*.

$$(p \lor q \lor r) \land (\neg p \lor \neg q \lor \neg r)$$

Solution: Satisfiable. Assign **T** to *p* and *F* to *q*.

$$(p \vee \neg q) \wedge (q \vee \neg r) \wedge (r \vee \neg p) \wedge (p \vee q \vee r) \wedge (\neg p \vee \neg q \vee \neg r)$$

Solution: Unsatisfiable. Check each possible assignment of truth values to the propositional variables and none will make the proposition true.