Math 1152 Lecture Notes

June 3, 2022

1 Sequences

Sequences are

- \bullet Functions from $\mathbb R$ to $\mathbb R$ (or to other spaces ...)
- ullet Conceptually simpler than functions on ${\mathbb R}$
- The best way to think about limits in general.

Definition 1. Given an infinite subset $S \subset \mathbb{N}$, a sequence $(a_n)_{n \in S}$ or $\{a_n\}_{n \in S}$, sometimes written $\{a_n\}_{n=1}^{\infty}$ or just (a_n) if $S = \mathbb{N}$ or the set S is either understood from context or irrelevant, is a function from S to \mathbb{R} , whose value at n is a_n .

Exercise 1. Let $f(x) = x^2$. Define a sequence (a_n) by the formula

$$a_n = f(n)$$
.

What are the first few terms of (a_n) ?

Sequences may be given by explicit formulas or *implicitly* via recursive formulas. In the example above, the formula was explicit.

Explicit Implicit

Exercise 3. Let (a_n) be a sequence and suppose that $a_0 = 0$ and $a_{n+1} = a_n + 1$. Find an explicit formula for a_n .

Exercise 4. Let (b_m) be a sequence and suppose that $b_0 = 1$ and $b_{m+1} = 2*b_m$. Find an explicit formula for b_m .

Exercise 5. Let (c_p) be a sequence and suppose that $c_0 = 1$ and $c_{p+1} = c_{p-1}c_p$. Find an explicit formula for c_p .

2 Sequences and Sums

We can add together sequences:

$${a_n}_{n \in S} + {b_n}_{n \in S} = {(a+b)_n}_{n \in S}.$$

And we can perform other binary operations on sequences, just like we do with functions.

More interestingly, we can form new sequences via partial sums:

Exercise 6. Let $a_k = \frac{1}{k^2}$ for $k \in \mathbb{N}$. Define

$$s_n = \sum_{k=1}^n a_k.$$

What are the first few terms of (s_n) ? If we graph them, do we notice anything?

Sums like the above, called **series**, are a significant topic which we will talk more about next time.

3 Sequences and limits

We saw in the above example that it appeared that the sequence s_n was converging towards some value.

Definition 2. The **limit** of a sequence (a_n) is a number L, if it exists, such that for any number $\epsilon > 0$, there is an N in \mathbb{N} such that

$$|a_n - L| < \epsilon$$

for ann n > N.

Informally,

Definition 3. The **limit** of a sequence (a_n) is a number L, if it exists, such a_n will be as close as we want to L provided that n is large enough.

Exercise 7. Let $a_n = \frac{1}{n^2}$. What is $\lim_{n\to\infty} a_n$?

Remark 1. This is the same definition as that given for the limit at infinity of a function $f: \mathbb{R} \to \mathbb{R}$. If we think of sequences as special cases of real functions, then everything we know about limits of functions applies to limits of sequences.

What's the *difference* between a limit of a sequence and the limit of a function?

Exercise 8. Let $f(x) = \cos(\pi x)$ and $a_n = f(n)$. Compare

$$\lim_{x \to \infty} f(x)$$

and

$$\lim_{n\to\infty}a_n.$$

Subsequences

Definition 4. If S is an infinite subset of $T \subset \mathbb{N}$, then the sequence $(a_n)_{n \in S}$ is a subsequence of the sequence $(a_n)_{n \in T}$.

Exercise 9. Let $f(x) = \cos(\pi x)$ and $a_n = f(n)$. We saw that $a_n = (-1)^n$. We can think of (a_n) as built out of two interleaving subsequences:

 $(a_n)_{n \in Evens}$

and

 $(a_n)_{n \in Odds}$.

What's the limit of the first sequence? What's the limit of the second?

Theorem 1. A bounded, monotonic sequence always has a limit.

Theorem 2. Every bounded sequence has a bounded, monotonic subsequence.

Remark 2. If a sequence is not bounded, it either converges to $+\infty$, to $-\infty$, or decomposes into two or three subsequences, one of which converges to $\pm \infty$, one of which is bounded, and possibly one of which converges to $\mp\infty$.

Exercise 10. Write down some monotonic sequences. Which are bounded and which aren't? can you think of an unbounded sequence which decomposes into a part which converges to ∞ and a part which is bounded?

4 Tools for limits

We can completely understand limits of functions via sequences

Suppose that $\lim_{x\to a} f(x) = L$. Let (a_n) be a sequence with $a_n \to a$. Then $f(a_n) \to L$.

Conversely, suppose that $f(a_n) \to L$ for every sequence (a_n) with $a_n \to a$. Then $f(x) \to L$. Why?

Growth Rates

Definition 5. Given two sequences (a_n) and (b_n) , we say that a_n grows more slowly than b_n , written $a_n \ll b_n$, if

$$\lim_{n \to \infty} \frac{a_n}{b_n} = 0.$$

Equivalently, we say that b_n grows more quickly than a_n and that $b_n \gg a_n$. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c$$

for a non-zero constant c, then we say that a_n and b_n have **comparable growth** rates.

Theorem 3. For any p, q > 0 and b > 1,

$$\ln^p(n) \ll n^p \ll b^n \ll n! \ll n^n.$$

Exercise 11. Find $\lim_{n\to\infty} \frac{2^n}{n!}$.

Dominant Term Analysis

Definition 6. Given a limit of the form

$$\lim_{n \to \infty} \frac{p_1(n) + \dots + p_m(n)}{q_1(n) + \dots + q_k(n)}$$

the **dominant terms** are the terms in the numerator and denominator with the greatest growth rates.

If the dominant terms are p(n) and q(n), then the limit is equal to

$$\lim_{n\to\infty}\frac{p(n)}{q(n)}.$$

Exercise 12. Find

$$\lim_{n \to \infty} \frac{n^2 + 3n + 1}{\sqrt{n} + n!}.$$

Squeeze Theorem

Theorem 4. If $a_n < b_n < c_n$ for all n, and

$$\lim_{n \to \infty} a_n = L = \lim_{n \to \infty} c_n,$$

then

$$\lim_{n\to\infty}b_n=L.$$

Exercise 13. Find

$$\lim_{n\to\infty}\frac{n^2+\cos(n)}{\sqrt{n^2+\sin(n)}}.$$