MTH 201, Curves and surfaces

Practice problem set 7

- 1. Let $f(x,y) = x\sin(x+2y)$. Find f_x , f_y , f_{xy} , and f_{yx} .
- 2. Use the chain rule of partial derivatives to show that if $f: \mathbb{R} \to \mathbb{R}$ is a smooth function such that y = f(x) satisfies F(x,y) = 0, where $F:\mathbb{R}^2\to\mathbb{R}$ is also a smooth function, then $\frac{\mathrm{d}y}{\mathrm{d}x}=-\frac{\dot{F}_x}{F_x}$. This is called implicit differentiation.
- 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a smooth function and let (x_0, y_0) be a point in \mathbb{R}^2 and $\mathbf{v} = (v_1, v_2)$ a vector. Define $F = f(x_0 + v_1 t, y_0 + v_2 t)$. Use the chain rule for partial derivatives to show that F'(0) = $f_x(x_0, y_0)v_1 + f_y(x_0, y_0)v_2 = (f_x(x_0, y_0), f_y(x_0, y_0)) \cdot \mathbf{v}$. Note that $F'(0) = \lim_{t \to 0} \frac{f(x_0 + tv_1, y_0 + tv_2) - f(x_0, y_0)}{t}$; it is called the directional derivative of f in the direction of \mathbf{v} and is denoted by $f_{\mathbf{v}}$. This exercise shows that one can compute the directional derivative of f in the direction of any vector \mathbf{v} if one knows the partial derivatives of f.
- 4. Which of the following surface patches are regular?
 - a) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x,y) = (x, y, x + y)$ b) $\sigma: \mathbb{R}^2 \to \mathbb{R}^3$, $\sigma(x,y) = (x, x^2, y^3)$
- 5. Show that each of the following subsets of \mathbb{R}^3 are smooth surfaces by finding enough regular surface patches to cover each surface.

 - a) The cylinder, defined as $S:=\{(x,y,z)\mid x^2+y^2=1\}$ b) The sphere, defined as $S:=\{(x,y,z)\mid x^2+y^2+z^2=1\}$
- 6. Show that the surface patch, $\sigma(s,t) = ((a + b\cos(s))\cos(t), (a + b\cos(s))\cos(t))$ $b\cos(s)\sin(t), b\sin(s)$, where b < a, is regular. Can you imagine the surface that it is a surface patch of?
- 7. For an open subset U of \mathbb{R}^2 , and a smooth map $f:U\to\mathbb{R}^3$, show that the set $S := \{(x, y, f(x, y)) \mid (x, y) \in \mathbb{R}^2\}$ is a smooth surface.
- 8. If U is an open subset of \mathbb{R}^2 , then prove that the rank of the Jacobian of a map $f: U \to \mathbb{R}^3$ is 2 if and only if $\frac{\partial f}{\partial x} \times \frac{\partial f}{\partial y} \neq 0$
- 9. If $F: U \to \mathbb{R}$, where U an open subset of \mathbb{R}^3 , is smooth, what condition do you need to impose on it so that the Jacobian of the map $f: U \to \mathbb{R}^3$, defined by f(x, y, z) = (x, y, F(x, y, z)), has non-zero determinant?