universitätfreiburg

Measure theory for probabilists

Winter semester 2024

Lecture: Prof. Dr. Peter Pfaffelhuber

Assistance: Samuel Adeosun

https://pfaffelh.github.io/hp/2024WS_measure_theory.html

https://www.stochastik.uni-freiburg.de/

Tutorial 11 - Theorem of Radon-Nikodym

Exercise 1 (4 Points).

Give an example of two measures μ,ν with $\nu \ll \mu$ for which there is no density $f: \Omega \to \mathbb{R}$ with $d\nu = f d\mu$.

Exercise 2 (4 Points).

Let $(\Omega, \mathcal{B}, \nu)$ be a measure space, and let $\Omega = \bigcup_{n=1}^{\infty} E_n$, where $\{E_n\}$ is a collection of pairwise disjoint measurable sets such that $\nu(E_n) < \infty$ for all $n \ge 1$. Define μ on \mathcal{B} by $\mu(B) = \sum_{n=1}^{\infty} 2^{-n} \nu(B \cap E_n) / (\nu(E_n) + 1)$.

- (a) Prove that μ is a finite measure on (Ω, \mathcal{B})
- (b) Let $B \in \mathcal{B}$. Prove that $\mu(B) = 0$ if and only if $\nu(B) = 0$.

Exercise 3 (4 Points).

Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = |x|. Determine all functions $g: \mathbb{R} \to \mathbb{R}$ that are measurable with respect to the σ -algebra generated by f, denoted as $\sigma(f)$, and the Borel σ -algebra $\mathcal{B}(\mathbb{R})$. Provide justification for your answer.

Exercise 4 (4 Points).

Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and $(f_n)_{n \in \mathbb{N}}$ a sequence of non-negative, measurable, real functions on Ω , which converges pointwise to a function $f : \Omega \to [0, \infty]$.

- (a) Show that in the case $\lim_{n\to\infty} \int f_n d\mu = c < \infty$ f is also μ -integrable with $\int f d\mu \le c$.
- (b) Furthermore, by means of an example, show that $\int f d\mu$ can take any value in [0,c].

Hint: For example, $(\Omega, \mathcal{F}, \mu) = (\mathbb{R}, \mathcal{B}(\mathbb{R}), \mathbb{1}_{[0,1]} \cdot \lambda)$ and $f := a \cdot \mathbb{1}_{(0,1]}$ for given $a \in [0,c]$.

Figure 1: Merry Christmas!