Wage Estimation

Kai-Jyun Wang* Spring 2025

1. Model Specification

Let y_t^* be the latent log wage at time t and a_t be the age at time t. d_t is the dummy for working. The specification of the model is as follows:

$$y_t^* = f(a_t; \beta) + \epsilon_t, \quad \epsilon_t \sim N(0, \sigma_t^2)$$

$$\epsilon_t = \rho \epsilon_{t-1} + \nu_t, \quad \nu_t \sim N(0, \sigma_v^2)$$

$$d_t = \mathbb{1} \left\{ y_t^* \ge g(a_t, z_t; \gamma) + \eta_t \right\}, \quad \eta_t \sim N(0, \sigma_\eta^2)$$

$$y_t = y_t^* \times d_t.$$

We take the assumption that η and ϵ are independent. The σ_t^2 must obey that $\sigma_t^2 = \rho^2 \sigma_{t-1}^2 + \sigma_v^2$ for t > 1. Suppose a_1 is the first age that enters the labor market. We need to estimate the variance of the first period in the data, σ_1^2 . z_t indicates whether or not the individual has a child at time t.

2. Estimation Procedure

2.1. A Less Efficient Method

1. For t = 1, consider the contemporary log likelihood

$$\begin{split} L_c(\beta_t, \gamma_t, \sigma_t, \sigma_{\eta, t}) &= \sum_{i=1}^N d_i \left[\log \Phi \left(\frac{y_t - g(a_t, z_t; \gamma_t)}{\sigma_{\eta}} \right) + \log \phi \left(\frac{y_t - f(a_t; \beta_t)}{\sigma_t} \right) - \log \sigma_t \right] \\ &+ (1 - d_i) \log \left(1 - \Phi \left(\frac{f(a_t; \beta_t) - g(a_t, z_t; \gamma_t)}{\sqrt{\sigma_t^2 + \sigma_{\eta}^2}} \right) \right), \end{split}$$

where Φ and ϕ are the cumulative distribution function and the probability density function of the standard normal distribution, respectively. Estimate the β for period t=1 by maximizing the contemporary log likelihood with the first period data.

2. Using the estimated β in first step, compute the residuals $y_t^* - f(a_t; \beta)$. Regress the residuals on the lagged residuals without intercept to estimate ρ and σ_v .

Estimate the β , γ , σ_1 , σ_η for male and female separately.

^{*}National Taiwan University, Department of Economics. Student ID: B11303072.

3. Some Notes

- The specification of g is non-parametric. $g(a_t, z_t; \gamma) = \gamma_{a_t, z_t}$. Each possible combination of a_t and z_t corresponds to a γ_{a_t, z_t} .
- ullet Try different specifications of f, for instance, quadratic, cubic, or quartic.
- Estimate the naive model first, i.e., regress y_t on $f(a_t; \beta)$ and use the coefficients as initial values for the β and γ .