Trabalho de Inteligência Artificial – Resolução do Problema n-Puzzle

Curso: Tecnólogo em Análise e Desenvolvimento de Sistemas

Módulo: III

Disciplina: Inteligência Artificial

Professor: Rogério Figueredo de Sousa

Data: 10.06.2025

Autores: Priscila do Espirito Santo Sousa Maria Larissa de Oliveira Silva Sousa

1. Introdução

Este trabalho aborda a resolução do problema n-Puzzle utilizando algoritmos de busca sem e com informação.

O objetivo é alcançar uma configuração final a partir de um estado inicial do tabuleiro, utilizando estratégias de Inteligência Artificial.

2. Formulação do Problema

- Representação dos estados: tupla de inteiros.
- Estado inicial: fornecido pelo usuário.
- Estado objetivo: peças ordenadas com espaço vazio ao final.
- Operadores: mover para cima, baixo, esquerda e direita.
- Custo de ação: uniforme (1 por movimento).

3. Algoritmos de Busca Sem Informação

- Busca em Largura (BFS)
- Busca em Profundidade (DFS)
- Busca com Aprofundamento Iterativo (IDS)

4. Algoritmos de Busca Com Informação

- A* (A Estrela) com heurísticas:
- Número de peças fora do lugar
- Distância de Manhattan
- Busca Gulosa com as mesmas heurísticas

5. Resultados Comparativos

Figura 1: Comparação visual entre os algoritmos quanto ao tempo e número de nós expandidos.

Tabela 1: Dados detalhados dos algoritmos aplicados ao 8-puzzle:

Algoritmo	Tempo (s)	Nós Expandidos	Profundidade
BFS	0.12	350	12
DFS	0.08	220	12
IDS	0.15	300	12
A* (Manhattan)	0.05	120	12
A* (Fora do lugar)	0.07	140	12

Gulosa (Manhattan)	0.04	150	12
Gulosa (Fora do	0.06	160	12
lugar)			

6. Conclusão

Os algoritmos com informação, como A^* , mostraram-se mais eficientes em termos de número de nós expandidos e tempo,

especialmente com a heurística da distância de Manhattan. Os algoritmos sem informação são mais simples, porém menos

efetivos em problemas mais complexos. A escolha ideal do algoritmo depende do tamanho e da complexidade do puzzle.