Constant delay enumeration for FO queries and nowhere dense graphs PART 1

Alexandre Vigny¹

Join work with: Nicole Schweikardt² and Luc Segoufin³

¹Université Paris Diderot, Paris

²Humboldt-Universität zu Berlin

³ENS Ulm, Paris

March 15, 2018

Introduction

Modelization

- Query q
- Database D
- Compute q(D)

small

huge

gigantic

Examples :

query *q* first order logic

$$q(x,y) := \exists z (B(x) \land E(x,z) \land \neg E(y,z))$$

database *D* relational structure

solutions q(D)

set of tuples

$$\{(1,2)\ (1,3)\ (1,4)\ (1.6)\ (1.7)\ \cdots$$

$$(1,6) (1,7) \cdots$$

 $(3,1) (3,2) (3,4)$

$$(3,6) (3,7) \cdots$$

Too many solutions!

Database: A given store that contains 50 items for less than 1€

Query: What can I buy with 10€?

• For practical reasons:

 50^{10} solutions is not easy to store / display !

For theoretical reasons:

The time needed to compute the answer does not reflect the hardness of the problem !

Enumeration

Input : ||D|| := n & ||q|| := k (computation with RAM)

Goal: output solutions one by one (no repetition)

Enumeration

Input : ||D|| := n & ||q|| := k (computation with RAM)

Goal: output solutions one by one (no repetition)

• STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(k) \cdot n \rightsquigarrow O(n)$

Enumeration

Input : ||D|| := n & ||q|| := k (computation with RAM)

Goal: output solutions one by one (no repetition)

• STEP 1: Preprocessing

Prepare the enumeration : Database $D \longrightarrow \operatorname{Index} I$

Preprocessing time : $f(k) \cdot n \rightsquigarrow O(n)$

• STEP 2 : Enumeration

Enumerate the solutions : Index $I \longrightarrow \overline{x_1}$, $\overline{x_2}$, $\overline{x_3}$, $\overline{x_4}$, \cdots

Delay: $O(f(k)) \rightsquigarrow O(1)$

Constant delay enumeration after linear preprocessing

Input:

```
- Database D := \langle \{1, \dots, n\}; E \rangle ||D|| = |E| \quad (E \subseteq D \times D)
- Query q(x,y) := \neg E(x,y)
          (1,1)
          (1,2)
          (1,6)
          (i,j)
        (i, j+1)
        (i,j+3)
```

(n,n)

Input:

- Database
$$D := \langle \{1, \dots, n\}; E \rangle$$
 $||D|| = |E| \quad (E \subseteq D \times D)$

- Query $q(x,y) := \neg E(x,y)$

Input:

- Database $D := \langle \{1, \dots, n\}; E \rangle$ $||D|| = |E| \quad (E \subseteq D \times D)$
- Query $q(x,y) := \neg E(x,y)$

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

Input:

- Database $D := \{\{1, \dots, n\}; E_1; E_2\} \quad ||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

$$B$$
: Adjacency matrix of E_2

A : Adjacency matrix of \mathcal{E}_1

C : Result matrix

Input:

- Database
$$D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$$
 $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$

- Query
$$q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$$

$$B$$
: Adjacency matrix of E_2

$$E_2(1,1)$$
 ... $E_2(1,y)$... $E_2(1,n)$
 \vdots \ddots \vdots
 $E_2(z,1)$... $E_2(z,y)$... $E_2(z,n)$
 \vdots \ddots \vdots
 $E_2(n,1)$... $E_2(n,y)$... $E_2(n,n)$

Compute the set of solutions

=

boolean matrix multiplication

A : Adjacency matrix of \mathcal{E}_1

C : Result matrix

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

- ▶ Linear preprocessing: $O(n^2)$
- ▶ Number of solutions: $O(n^2)$
- Algorithm for the boolean matrix multiplication in O(n²)
- Conjecture: "There are no algorithm for the boolean matrix multiplication working in time O(n²)."

C: Result matrix

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $\|D\|=|E_1|+|E_2|$ $\big(E_i\subseteq D\times D\big)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

This query cannot be enumerated with constant delay¹

 $^{^{1}}$ Unless there is a breakthrough with the boolean matrix multiplication.

Input:

- Database $D:=\langle\{1,\cdots,n\};E_1;E_2\rangle$ $||D||=|E_1|+|E_2|$ $(E_i\subseteq D\times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

This query cannot be enumerated with constant delay¹

We need to put restrictions on queries and/or databases.

¹Unless there is a breakthrough with the boolean matrix multiplication.

Example 2 bis

Input:

- Database $D:=\langle\{1,\cdots,n\}; \textbf{\textit{E}}_1; \textbf{\textit{E}}_2\rangle \quad \|D\|=|E_1|+|E_2| \quad \big(E_i\subseteq D\times D\big)$
- Query $q(x,y) := \exists z, \ E_1(x,z) \land E_2(z,y)$

And D is a tree!

Example 2 bis

Input:

- Database $D := \langle \{1, \dots, n\}; E_1; E_2 \rangle$ $||D|| = |E_1| + |E_2| \quad (E_i \subseteq D \times D)$
- Query $q(x,y) := \exists z, E_1(x,z) \land E_2(z,y)$

And D is a tree!

Given a node x, every solutions y must be amongst:

It's "grandfather" It's "grandsons"

It's "siblings"

Which restrictions?

No restriction on the database part

Highly expressive queries (MSO queries)

Little bit of both

Which restrictions?

No restriction on the database part

Only works for queries are conjunctive, acyclic and free-connex

Bagan, Durand, Grandjean Highly expressive queries (MSO queries)

Only works for trees (Graphs with bounded tree width)

Courcelle, Bagan, Segoufin, Kazana Little bit of both

This talk !

(answer in two slides !)

Other problems

For FO queries over a class $\mathscr C$ of databases.

Model-Checking : Is this true ? O(n)

Enumeration : Enumerate the solutions $O(1) \circ O(n)$

Counting : How many solutions ? O(n)

Evaluation : Compute the entire set O(n+m)

Other problems

For FO queries over a class $\mathscr C$ of databases.

Model-Checking : Is this true ? O(n)

Enumeration : Enumerate the solutions $O(1) \circ O(n)$

Counting : How many solutions ? O(n)

Evaluation : Compute the entire set O(n+m)

Our results

Theorem (Segoufin, V. 17')

Over classes of graphs with *local bounded expansion*, for every FO query, after a pseudo-linear preprocessing, we can:

- enumerate with constant delay every solutions.
- test in constant time whether a given tuple is a solution.
- compute in constant time the number of solutions.

Our results

Theorem (Segoufin, V. 17')

Over classes of graphs with *local bounded expansion*, for every FO query, after a pseudo-linear preprocessing, we can:

- enumerate with constant delay every solutions.
- test in constant time whether a given tuple is a solution.
- compute in constant time the number of solutions.

Theorem (Schweikardt, Segoufin, V. 18')

Over *nowhere dense* classes of graphs, for every FO query, after a pseudo-linear preprocessing, we can:

- enumerate with constant delay every solutions.
- test in constant time whether a given tuple is a solution.

Pseudo-linear?

A function *f* is pseudo linear if and only if:

$$\forall \epsilon > 0, \quad \exists N_{\epsilon} \in \mathbb{N}, \quad \forall \, n \in \mathbb{N}, \quad n > N_{\epsilon} \implies f(n) \leq n^{1+\epsilon}$$

$$n \ll n \log^i(n) \ll \text{pseudo-linear} \ll n^{1,0001} \ll n \sqrt{n}$$

"Pseudo-linear
$$\approx n \log^i(n)$$
"

"Pseudo-constant $\approx \log^i(n)$ "

Future work

- Classes of graphs that are not closed under subgraphs
- Enumeration with update:
 What happens if a small change occurs after the preprocessing?

 Existing results for: words, graphs with bounded tree-width or bounded degree.

Future work

- Classes of graphs that are not closed under subgraphs
- Enumeration with update:
 What happens if a small change occurs after the preprocessing?

 Existing results for: words, graphs with bounded tree-width or bounded degree.

Thank you!

Questions?