

Projet 10 : Détectez des faux billets avec Python

Déployer l'application : https://dashboard.heroku.com/apps/oncfm/deploy/github

Projet 10 : Détectez des faux billets avec Python

Introduction

L'ONCFM a pour objectif de mettre en place des méthodes d'identification des contrefaçons des billets

- **Problématique :** mettre en place une modélisation qui serait capable d'identifier automatiquement les vrais des faux billets uniquement à partir simplement de certaines dimensions du billet et des éléments qui le compose
- Cahier des charges :
 - une analyse descriptive des données, notamment la répartition des dimensions des billets, le nombre de vrais / faux billets,
 - Nous avons à notre disposition six données géométriques pour chaque billet.
 - L'algorithme doit être capable de prendre en entrée un fichier contenant les dimensions de plusieurs billets, et de déterminer le type de chacun d'entre eux, à partir des seules dimensions.
 - Nous aimerions pouvoir mettre en concurrence deux méthodes de prédiction :
 - Une régression logistique classique ;
 - Un k-means, duquel seront utilisés les centroïdes pour réaliser la prédiction.
 - Pour une évaluation optimale des modèles, nous souhaitons avoir une analyse des nombres de faux positifs et faux négatifs via une matrice de confusion

SOMMAIRE

- Analyse descriptive
 - Imputation des données manquantes par Régression linéaire
 - Modèle de régression linéaire multiple
 - bilan
 - Description du jeu de donnée
 - Analyse univariée
 - Analyse bivariée
- Algorithmes
 - Comparaisons entre les algorithmes
 - Démonstration et test du modèle finale

Analyse descriptive

Les données:

Un dataset de travail avec 6 variables et une colonne étiquette

- > length: la longueur du billet (en mm);
- height_left : la hauteur du billet (mesurée sur le côté gauche, en mm);
- height_right : la hauteur du billet (mesurée sur le côté droit, en mm);
- margin_up : la marge entre le bord supérieur du billet et l'image de celui-ci (en mm);
- > margin_low: la marge entre le bord inférieur du billet et l'image de celui-ci (en mm);
- diagonal : la diagonale du billet (en mm).

Analyse descriptive

Première étape : traiter les valeurs manquantes

Imputation des données manquantes par Régression linéaire

On applique la fonction pour trouver le model optimal par algorithme "backward"

```
1 from functions RL import *
    columns = ['is_genuine','margin_low','diagonal','height_left','height_right','margin_up','length']
 3 reg backward = backward selected(df valide[columns], 'margin low')
margin low ~ height left + diagonal + height right + length + is genuine + margin up + 1
remove length (p-value : 0.868 )
margin_low ~ height_left + diagonal + height_right + is_genuine + margin_up + 1
remove diagonal (p-value : 0.719 )
margin low ~ height left + height right + is genuine + margin up + 1
remove height right (p-value : 0.496 )
margin low ~ height left + is genuine + margin up + 1
                                                                                 Le meilleur modele pour la régression Linéaire est : 'margin low ~ is genuine + margin up + 1'
remove height left (p-value : 0.454 )

    R<sup>2</sup>: 0.617

    AIC: 1555.

margin low ~ is genuine + margin up + 1

    BIC: 1571.

is the final model !
```


Modèle de régression linéaire multiple

Homoscédasticité :

- Le test de White:
 - La p-value est ici très inférieure au seuil : pvalue': 4.769905016347682e-35, L'hypothèse d'homoscédasticité de notre régression linéaire validée

 La normalité des résidus

Le qqplot et la répartition des résidus montre

Que les résidus suivent une loi normale (gaussienne)

1.5

1.0

Homoscédasticité

Bilan

Les hypothèses du modèle de régression linéaire sont confirmées par notre analyse:

- **Linéarité** : La relation entre les variables dépendantes et indépendantes est linéaire.
- **Homoscédasticité** : la variance constante des erreurs est maintenue.
- **Normalité multivariée** : les résidus sont distribués normalement.
- Manque de multicolinéarité : il y a pas de multicolinéarité dans les données.

Description du jeu de donnée - complet Comprendre les données

- Le dataset complet contient : 1500 billets
 - 1000 billets vrais
 - 500 faux

Corrélation et répartition

corrélée aux autres mais ne suffisent pas à séparer totalement les vrais des faux billets

« les différentes pistes explorées pour la construction de l'algorithme, ainsi que le modèle final retenu ». Les notebooks pour...

... visualiser les clusters :

- CAH
- ACP TSNE

... **explorer** les algorithmes :

- Kmeans
- Régression logistique et SVC
- Random Forest

... répondre aux demandes :

Livrable

Visualiser les clusters

ACP

Les deux premières composantes de l'ACP expliquent **60%** de la variance.

Explorer les algorithmes :

- Kmeans
- Régression logistique et SVC
- Random Forest

- Le modèle conforme aux demandes de Marie
 - <u>Livrable</u>

Régression logistique

Régression logistique

Comparaison entre Kmeans et Régression logistique

La régression logistique est plus Performante pour identifier les La validité des billets.

Le Kmeans :

• Precision : 99,3 %

Recall : 98,62 %

Accuracy : 98,67 %

• F1 score : 98,96 %

Regression logistique

Precision : 97,0 %

Recall: 100 %

• Accuracy : 98,0 %

• F1 score : 98,5 %

Régression logistique

Conclusion

La régression logistique est la plus pertinente parmi les demandes de Marie

Parmi tous les algorithmes testés : Le meilleur est celui du Random forest :

- Il ne laisse passer aucun faux billets du set (Faux Positif)
- Il minimise les erreurs de prédiction de billet identifié comme faux alors qu'ils sont vrais (Faux Positif)

Démonstrations et modèles

• Création d'une app python avec streamlit

• Déploiement de l'application avec heroku

https://oncfm.herokuapp.com/

