

Engenharia Elétrica / Engenharia da Computação - BH CEFET-MG

- Sistemas Digitais -

Prof.^a Mara C. S. Coelho / Prof. Júlio C. G. Justino

Estudo dirigido: Funções lógicas e representações

Representações:

- Tabela verdade (T.V.): lista-se todas as possibilidades de entradas e saídas.
- Expressão booleana ou lógica (E.B. ou E.L.): equação que representa as situações "verdade", nível lógico 1.
- Diagrama ou esquemático (circuito): representação visual para implementação do hardware.

Obs. É comum o uso de alguns termos (nós também usamos) que devem ser esclarecidos. Geralmente, utilizamos o termo "porta lógica", entretanto, sendo mais criterioso, "porta lógica" é o circuito (hardware) que executa uma função lógica. Função lógica é um termo mais genérico, podendo ser executada por um programa ou circuito. O mesmo para o termo "circuitos lógicos" (usado frequentemente). O termo mais adequado é "diagrama lógico", pois usamos uma representação em alto nível e não há detalhes de circuitos, como fontes e malhas fechadas.

- 1) Apresente a T.V, E.B. e simbologia para as três funções (portas) lógicas básicas (todas as demais são oriundas destas).
- 2) Apresente a T.V, E.B. e simbologia com lógicas inversas das citadas na questão 1)
- 3) Quais as funções lógicas apresentadas abaixo (nome)? Apresente a T.V, E.B. e a simbologia.

Entr	Saída	
Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

4) Obtenha a E.L. e a T.V dos diagramas abaixo. Na T.V, coloque uma coluna para cada saída de porta lógica: **Exemplo:**

Α	В	С	AB	ВС	BC	S	
0	0	0	0	0	1	1	l
0	0	1	0	0	1	1	l
0	1	0	0	0	1	1	l
0	1	1	0	1	0	0	l
1	0	0	0	0	1	1	l
1	0	1	0	0	1	1	l
1	1	0	1	0	1	1	
1	1	1	1	1	0	1	l

b)

- 5) Obtenha a E.L. e o diagrama das tabelas verdades abaixo:
- 6) Exemplo:

1140	110			٦	
A	B	С	у		A = 1
0 0	0	0	0		$\overline{A} = 0$
0	0	1	1 -	→ Ā.B.C	
0	1	0	0	+	
0	1	1	0		
1 0	0	0	1	→ A.B.C	y = ABC + ABC +ABC
1	0	1	0	+	
1	/1	0	0		(Soma de Produtos)
1	1	₀ 1	1	→ A.B.C	(Soliia de Flodutos)

a)

	E	ntrac	Saí	das		
Dec.	Α	В	С	S	Υ	
0	0	0	0	1	1	
1	0	0	1	0	1	
2	0	1	0	0	0	
3	0	1	1	1	0	
4	1	0	0	1	1	
5	1	0	1	0	1	
6	1	1	0	1	1	
7	1	1	1	0	0	

b)

		Entr	adas	Saídas		
Dec.	Α	В	С	D	S	Y
0	0	0	0	0	1	
1	0	0	0	1	0	
2	0	0	1	0	0	
3	0	0	1	1	1	
4	0	1	0	0	1	
5	0	1	0	1	0	
6	0	1	1	0	1	
7	0	1	1	1	0	
8	1	0	0	0	1	
9	1	0	0	1	1	
10	1	0	1	0	0	
11	1	0	1	1	0	
12	1	1	0	0	1	
13	1	1	0	1	1	
14	1	1	1	0	1	
15	1	1	1	1	0	

7) Demostre, por meio de tabelas verdades, se as relações abaixo estão corretas:

- a) $\overline{A} \cdot \overline{B} = \overline{A} \cdot \overline{B}$??
- **b)** $\overline{A} + \overline{B} = \overline{A+B}$??
- c) $\bar{A} \cdot \bar{B} = \overline{A+B}$??
- d) $\overline{A} + \overline{B} = \overline{A.B}$??
- 8) O que é o Teorema de DeMorgan?
- 9) Observe que os diagramas abaixo são compostos apenas por portas do tipo NAND. Estes circuitos executam outras funções lógicas (X=?), quais são?
 - a)

b)

c)

- 10) Baseado no exercício anterior, mostre que é possível fazer o mesmo com usando somente portas NOR.
- 11) Baseados nas questões 8) e 9), e a partir do o circuito abaixo:

- a) Substitua todas portas lógicas por NAND
- b) Substitua todas portas lógicas por NOR

Referências:

- Qualquer livro de Sistemas Digitais ou Eletrônica Digital
- Transparências do professor disponibilizadas
- vídeos gravados para o ERE:

ES (encontro síncrono): link a ser disponibilizado

- vídeos na internet.

Orientações Importantes: O exercício deve ser feito individualmente e a mão!

Para o envio da atividade, deve-se digitalizar as repostas (pode ser foto do celular) e adicioná-las em um documento Word de forma organizada e com a identificação do aluno.

Vídeo explicativo de uma das formas de fazer o procedimento: https://youtu.be/p3e5WjRsFn8 . Ou use um aplicativo tipo CanScaner, mas não se esqueça da identificação do aluno no documento.

O exercício não será aceito por e-mail, deve ser enviada pela plataforma (combinada) até a hora combinada.

O arquivo pode ser enviado em Word ou PDF.