Aprendizaje no supervisado

Pablo Chehade

pablo.chehade@ib.edu.ar

Redes Neuronales, Instituto Balseiro, CNEA-UNCuyo, Bariloche, Argentina, 2023

EJERCICIO 1

Se calculó la dinámica de una red de Hopfield sin ruido con regla de actualización secuencial y paralela para tamaños de red N=500,1000,2000,4000 y para valores de $\alpha=\frac{p}{N}=0,12,0,14,0,16,0,18$. En cada red, se realizaron p simulaciones donde se tomó como condición inicial cada uno de los patrones aleatorios y se iteró la dinámica hasta converger a un punto fijo s_i^t . La convergencia fue evaluada mediante la comparación de la configuración de la red en un tiempo grande t con su estado en t+1.

En base a los resultados, se calculó la fracción de simulaciones convergidas (f_{conv}) para la iteración secuencial y paralela variando N y α . Los resultados se resumen en las tablas I y II.

Cuadro I: Fracción de simulaciones convergidas (f_{conv}) para iteración secuencial

N	α	0.12	0.14	0.16	0.18
500	0	1.0000	1.0000	1.0000	1.0000
100	00	1.0000	1.0000	1.0000	1.0000
200	00	1.0000	1.0000	1.0000	1.0000
400	00	1.0000	1.0000	1.0000	1.0000

Cuadro II: Fracción de simulaciones convergidas (f_{conv}) para iteración paralela

N	α	0.12	0.14	0.16	0.18
500		0.9667	0.9143	0.7125	0.5000
10	00	0.9333	0.8643	0.4062	0.1111
20	00	0.9625	0.7071	0.2437	0.0306
40	00	0.8875	0.5250	0.0688	0.0000

Se observó una completa convergencia $f_{conv}=1$ en la dinámica secuencial para todos los valores de N y α . En contraste, la dinámica paralela mostró una disminución progresiva en la convergencia con el aumento de α y el tamaño de la red N.

Además, para la dinámica secuencial, se calculó el overlap m^{μ} definido como

$$m^\mu = \frac{1}{N} \sum_{i=1}^N s_i^\mu \xi_i^\mu$$

Este overlap mide la similitud entre el punto fijo s_i^{μ} y el patrón original ξ_i^{μ} . Teóricamente, se espera que para

 $\alpha=0$, el overlap inicie en 1 y decrezca lentamente con el incremento de α , alcanzando un valor de aproximadamente 0,97 para $\alpha=0,14$. A partir de este punto, se espera una caída abrupta del overlap.

Los histogramas de overlap para diferentes condiciones iniciales confirmaron parcialmente las expectativas teóricas, como se observa en la figura 1

- Para α < 0,14, el overlap es cercano a 1, indicando que la red es capaz de recordar de manera correcta los patrones.
- Para $\alpha = 0.14$, el overlap es menor pero cercano a 1.
- Para $\alpha > 0.14$, el overlap disminuye significativamente.

Sin embargo, no se observó una caída abrupta a cero después de $\alpha=0.14$, sino a valores alrededor de 0,3, lo cual puede atribuirse a la presencia de estados metaestables en la red.

Figura 1

EJERCICIO 2

Se simuló la dinámica de una red de Hopfield en presencia de ruido, utilizando la regla de actualización estocástica:

$$Pr(s_i(t+1) = \pm 1) = \frac{\exp(\pm \beta h_i(t))}{\exp(\beta h_i(t)) + \exp(-\beta h_i(t))}$$

donde $h_i(t) = \sum_{j=1}^N w_{ij} s_j(t)$. Para esta simulación, se empleó dimensión N=4000 y p=40 patrones, resultando en un valor de $\alpha=p/N=0.01$, cercano a cero. Se

exploraron temperaturas $T = \frac{1}{\beta}$ variando desde 0,1 hasta 2 en incrementos de 0,1.

Se realizaron p simulaciones empleando como condición inicial cada uno de los patrones ξ_i^{μ} . La regla de actualización se aplicó iterativamente diez veces en cada sitio de la red. A partir de estas iteraciones, se calculó el overlap medio, definido como:

$$m^{\mu} = \frac{1}{N} \sum_{j=1}^{N} \langle S_j(t) \rangle \xi_j^{\mu},$$

donde el promedio $\langle \ldots \rangle$ se calculó sobre la dinámica.

En la figura 2 se graficó el overlap medio en función de la temperatura. Los resultados muestran el comportamiento esperado con un overlap medio m^{μ} igual a 1 para T=0, de acuerdo con los resultados del ejercicio previo. A medida que la temperatura aumenta, el overlap medio disminuye progresivamente, lo cual está de acuerdo con la teoría. No obstante, en lugar de anularse completamente a T=1, el overlap medio mantuvo un valor residual y continuó disminuyendo para temperaturas superiores.

Esto puede deberse al tamaño finito del sistema.

Figura 2

APÉNDICE

A continuación se desarrolla el código empleado durante este trabajo implementado en Python.

```
### Ejercicio 1
#Import libraries
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
```