

MACHINE LEARNING COMP8220

04 – Support Vector Machine

Acknowledgement

Some slides are from the S1 version designed by Rolf Schwitter (Rolf.Schwitter@mq.edu.au)

Some slides are also based on book of Christopher Bishop "Pattern Recognition and Machine Learning" Springer-Verlag New York (2006), and the slides made by Torsten Möller from this book.

Lecture Outline

- Linear Support Vector Machine
 - How SVM comes?
 - SVM learning problem formulation
 - Solving SVM optimization problem

- SVM for Non-linearity
 - SVM with soft margin
 - Kernel trick

Lecture Outline

- Linear Support Vector Machine
 - How SVM comes?
 - SVM learning problem formulation
 - Solving SVM optimization problem

Review Classification Models

Two methods for the discriminant function

$$y(x) = w^T x + w_0$$

Or more generally with feature map function,

$$y(\mathbf{x}) = \mathbf{w}^T \emptyset(\mathbf{x}) + w_0$$

- Least squares for classification
- Perceptron
- There are many possible optimal decision boundaries for perceptron
- O Which is the best?

Max Margin Criterion

Margin of a classification boundary (hyperplane): the minimum distance to any example

- Idea of Support Vector Machines (SVM)
 - Choose the decision boundary which maximizes the margin

Margin Calculation

- How to calculate the margin? (two-class case)
 - How to calculate distance between a point and a hyperplane?

• Signed distance of x to the decision surface (denoted as r)

$$r = \frac{y(x)}{\|w\|}$$

Margin Calculation

Then, we can get (unsigned) distance

$$t \frac{y(x)}{\|w\|}$$

- t takes values in $\{1, -1\}$
- The margin can be calculated by

$$\min_{n} \{t_n \frac{y(\boldsymbol{x}_n)}{\|\boldsymbol{w}\|}\}$$

$$= \frac{1}{\|\boldsymbol{w}\|} \min_{n} \{t_n (\boldsymbol{w}^T \boldsymbol{x}_n + w_0)\}$$

- ||w|| is independent of n
- The minimum distance to any example

SVM Learning Problem

* The learning problem is to choose w and w_0 to maximise the margin

$$\arg \max_{\boldsymbol{w}, w_0} \{ \frac{1}{\|\boldsymbol{w}\|} \min_{n} \{ t_n(\boldsymbol{w}^T \boldsymbol{x}_n + w_0) \} \}$$

Points with the min value are known as support vectors

Solving Learning Problem

The unconstrained optimization problem is complex

$$\arg \max_{w,w_0} \{ \frac{1}{\|w\|} \min_{n} \{ t_n(w^T x_n + w_0) \} \}$$

Let
$$C = \min_{n} \{t_n(\mathbf{w}^T \mathbf{x}_n + w_0)\}$$
, we can have
$$t_n(\mathbf{w}^T \mathbf{x}_n + w_0) \ge C$$

So, the optimization problem can be re-formulated as

$$\arg\max_{\boldsymbol{w},w_0} \{C \frac{1}{\|\boldsymbol{w}\|}\}$$

$$t_n(\mathbf{w}^T\mathbf{x}_n + w_0) \ge C$$

Solving Learning Problem

- An use property of a hyperplane
 - If $\mathbf{w} = \kappa \mathbf{v}$ and $w_0 = \kappa v_0$, the two hyperplanes are the same, where κ is a non-zero constant

$$\mathbf{w}^T \mathbf{x} + \mathbf{w}_0 = 0$$
 and $\mathbf{v}^T \mathbf{x} + \mathbf{v}_0 = 0$

• So, we can always find a κ to make

$$\min_{n} \{t_n(\boldsymbol{v}^T \boldsymbol{x}_n + \boldsymbol{v}_0)\} = 1$$

Then, we can have another optimization problem

$$\arg\max_{\boldsymbol{v},\boldsymbol{v}_0} \{\frac{1}{\|\boldsymbol{v}\|}\}$$

$$t_n(\boldsymbol{v}^T\boldsymbol{x}_n+v_0)\geq 1$$

Solving Learning Problem

- Observation
 - The two optimization problem will produce the same hyperplane (classification decision boundary)
 - Just denotation difference: \boldsymbol{w} vs \boldsymbol{v} , and w_0 vs v_0
 - But the second from is easier to solve!
- Then, we just need to solve the following constrained optimization problem

$$\arg\max_{\boldsymbol{w},w_0} \{\frac{1}{\|\boldsymbol{w}\|}\}$$

$$t_n(\mathbf{w}^T\mathbf{x}_n + w_0) \ge 1$$

Canonical Representation

- Further observations
 - Maximising $\frac{1}{\|w\|}$ is equivalent to minimizing $\|w\|$
 - Minimizing ||w|| is equivalent to minimizing $\frac{1}{2}||w||^2$
- So, we can have the canonical representation of the SVM learning problem

$$\mathbf{w}^*, \mathbf{w}_0^* = \arg\min_{\mathbf{w}, \mathbf{w}_0} \frac{1}{2} \|\mathbf{w}\|^2$$

$$t_n(\mathbf{w}^T\mathbf{x}_n + w_0) \ge 1$$

Lagrangian Multipliers

To solve the constrained optimization probelm, we need to use the Lagrangian Multipliers method to concert it to an unconstrained one

$$L(\mathbf{w}, w_0, \mathbf{a}) = \frac{\|\mathbf{w}\|^2}{2} - \sum_{n=1}^{N} a_n [t_n(\mathbf{w}^T \mathbf{x}_n + w_0) - 1]$$

 \bullet Set the derivatives of L w.r.t. w and w_0 to 0, we get

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$
$$0 = \sum_{n=1}^{N} a_n t_n$$

Dual Representation

* Plugging those equations into L removes w and w_0 , and results in a version of L where $\nabla_{w,w_0}L = 0$:

$$\tilde{L}(\boldsymbol{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \boldsymbol{x}_n^T \boldsymbol{x}_m$$

* This is the dual representation of the problem $\arg\max_{\boldsymbol{a}} \tilde{L}(\boldsymbol{a})$

$$\sum_{n=1}^{N} a_n t_n = 0$$

Solution

- The dual representation is easier to solve
 - Quadratic and convex in a
 - Kernelized with K positive semi-definite
- Results

$$\boldsymbol{w}^* = \sum_{n=1}^N a_n t_n \boldsymbol{x}_n$$

- Recall $a_n(t_n y(x_n) 1) = 0$ condition Lagrange. This makes either $a_n = 0$ or x_n is a support vector
- a_n will be sparse many zeros
- Another formula for computing w_0^*
- Generally, x_n can be replaced by $\emptyset(x_n)$

Example

Lecture Outline

- Linear Support Vector Machine
 - How SVM comes?
 - SVM learning problem formulation
 - Solving SVM optimization problem

- SVM for Non-linearity
 - SVM with soft margin
 - Kernel trick

Soft Margin

- * For most problems, data will not be linearly separable (even in feature space $\emptyset(x)$)
- * We can relax the constraints from $t_n y(x_n) \ge 1$ to $t_n y(x_n) \ge 1 \xi_n$
 - $\xi_n \ge 0$ are called slack variables
 - $\xi_n = 0$ satisfy original problem

Optimization Problem

Basic idea: non-zero slack variables are bad, penalize while maximizing the margin

$$\arg\min\{\frac{1}{2}\|\mathbf{w}\|^2 + C\sum_{n=1}^N \xi_n\}$$

- Optimization is same quadratic, different constraints, convex
- Constant C > 0 controls the importance of large margin versus violation (non-zero slack)
 - Set using cross-validation (hyperparameter)
- Also, C controls the complexity of the model
 - o If the SVM model is overfitting, then reduce C

Soft Margin Example

Nonlinear SVM classification

Many datasets are not linearly separable

- One solution is to add polynomial features
 - May work with all sorts of ML algorithms, not only SVMs
 - This can result in linearly separable datasets
- We can then use a linear SVM classifier (SVC) together

Separation in High Dimension

- Separation may be easier in a higher dimension
 - As we investigate more features
 - XOR data example: Mapping the data from a 2-D space to a
 3-D space allows us to find a separation hyperplane

Kernel Trick

- Mapping to high-dimensional feature space is promising
 - But the computation is usually expensive
- This is where the kernel trick comes in
 - The kernel trick allows us to operate in the original feature space without computing the coordinates of the data in a higher dimensional space
- * A kernel is a function $K(x_i, x_j)$ that can compute the dot (inner) product $\emptyset^T(x_i)\emptyset(x_j)$ based only on the original vector x_i and x_j
 - No need to know the transformation function $\emptyset(\cdot)$
 - E.g., $K(x_i, x_j) = (x_i^T x_j)^2$ is a 2nd-degree polynomial kernel

Kernel Trick Example

Given two points: x = (2, 3, 4) and y = (3, 4, 5).

We have $K(x, y) = \langle f(x), f(y) \rangle$.

f is a map from n-dimensional to m-dimensional space.

 $\langle x, y \rangle$ denotes the dot product.

Let us first calculate $\langle f(x), f(y) \rangle$.

$$f(x) = (x_1x_1, x_1x_2, x_1x_3, x_2x_1, x_2x_2, x_2x_3, x_3x_1, x_3x_2, x_3x_3)$$

$$f(y) = (y_1y_1, y_1y_2, y_1y_3, y_2y_1, y_2y_2, y_2y_3, y_3y_1, y_3y_2, y_3y_3)$$

In our case:

$$f(2, 3, 4) = (4, 6, 8, 6, 9, 12, 8, 12, 16)$$
 and

$$f(3, 4, 5) = (9, 12, 15, 12, 16, 20, 15, 20, 25)$$

Kernel Trick Example

So the dot product is:

$$f(x) \cdot f(y) = f(2, 3, 4) \cdot f(3, 4, 5) =$$

(36 + 72 + 120 + 72 + 144 + 240 + 120 + 240 + 400) = 1444
Now let us use the kernel instead:

$$K(x, y) = (2*3 + 3*4 + 4*5)^2 = (6 + 12 + 20)^2 = 38*38 = 1444$$

The first method requires a lot of calculations because of projecting 3 dimensions into 9 dimensions, while using the kernel is much easier

SVM with Kernel

As we already have

$$\mathbf{w}^* = \sum_{n=1}^N a_n t_n \emptyset(\mathbf{x}_n)$$

Then, the discriminant function from SVM

$$y(\mathbf{x}) = \mathbf{w}^{*T} \emptyset(\mathbf{x}) + w_0$$

$$= \sum_{n=1}^{N} a_n t_n \underbrace{\phi^T(\mathbf{x}_n) \emptyset(\mathbf{x})}_{K(\mathbf{x},\mathbf{x}_n)} + w_0$$

Some Kernels

Linear kernel $k(\boldsymbol{x}_1, \boldsymbol{x}_2) = \boldsymbol{x}_1^T \boldsymbol{x}_2$

ullet $\phi(oldsymbol{x}) = oldsymbol{x}$

Polynomial kernel $k(\boldsymbol{x}_1, \boldsymbol{x}_2) = (1 + \boldsymbol{x}_1^T \boldsymbol{x}_2)^d$

Contains all polynomial terms up to degree d

Gaussian kernel $k(\boldsymbol{x}_1, \boldsymbol{x}_2) = \exp(-||\boldsymbol{x}_1 - \boldsymbol{x}_2||^2/2\sigma^2)$

Infinite dimension feature space

Example

Output: SVC with Polynomial Kernel

Example

Output: Output: SVC with RBF Kernel

