35.3 - Part II

· The method we used before involved choosing a power. $y = \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n (x-0)^n$

Centened at X=0.

. This only addition has the chance of working if 0 is an ordinary pt of the ODE.

Def: xo is an ordinary point of Pary"+ Q(x)y"+R(x)y=0 if the functions P= P and q= P are "analytic" at Ko, i.e. if both have taylor series which converged in some

interval about oco.

Ex: Is 0 an ordinary point of (1+x2)-1? $f'' = -2(1+x^2)^{\frac{3}{2}} + 2(1+x^2)^{\frac{3}{2}}$ Ex: Is 0 an ordinary point of $(1+x^2)^{-\frac{1}{2}}$?

Fact: Taylor series of f(x)//is $\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x-x_0)^n$, so:

$$(1+x^2)^{-1} = 1 - 0 - x^2 + 0 + x^4 - 0 - x^6 + \cdots$$

$$= \sum_{n=1}^{\infty} (-1)^n x^{2n}.$$

using Ratio test: Radius of convergence is 1. about xo=0.

Ex. If \$\frac{1}{p}\$ has a Taylor series which converges on \$\int_{1.4}\$]

and \$\frac{R}{p}\$ has a Taylor series which converges on \$\int_{8.3}\$],

which points are ordinary pts for

\$P(x)y" + Q(x)y' + R(x)y = 0.

Ans: Intersect (-1,4] w/ E8,3]: [(-1,3].

Ex 2: WI P. Q. R es above: The or False: X=2 is an ordinary point? The

Ex 3: As above: X=-Z is an ordinary pt? False.

Thm (Existence of Power Series Solutions about ord. pts.)

If xo is an ordinary point of the differential equation.

P(x) y" + Q(x)y' + R(x)y=0, GH

There is a 1 series solution $y = \sum_{n=0}^{\infty} a_n (x-x_0)^n$ to the ODE. (Ar).

① The solution from ① can be written as $y = a_0 y_1 + a_1 y_2$ where y_1 and y_2 are two powers series solutions to the ODE (AP) about x_0 .

(3) y_1 and y_2 one a F.s.s. (i.e. $W(y_1,y_2) \neq 0$ for some value x).

(4) Radius of convergence for both y_1 and y_2 are \geq the minimum of the radii of convergence for $\frac{Q}{P}$ & $\frac{R}{P}$.

Ex: From before, $y^{2l} + y = 0$ has a series solution $y = a_0 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}$

By this theorem, we know:

(a) $w(y_1,y_2) \neq 0$ everywhere (actually: $|-\sin x| = 1 \neq 0$ every where)

(b) y_1, y_2 each solve the ODE

(c) R.C.(y_1), R.C.(y_2) > min (R.C.($\frac{q}{r}$), R.C.($\frac{R}{p}$)) where P, G, R as above

Ex: Find a lower bound for R.C. of series solutions about X0=0 for the Legendre Equation (1-x2)y"- 2xy'+ a(a+1)y=0.

Note: . P(x) = 1-x2, Q(x) = -2x, R(x) = a(a+1) all polys.

$$y'' - \frac{2x}{1-x^2}y'' + \frac{\alpha(\alpha+1)}{1-x^2}y = 0$$
undefined
at $x = \pm 1$

· ZX has power series about 0 for -1< x<1 ~> 1x1<1

=> => => anx" which converges AT LEAST on |X|<1.

There is a solution

any IVP w/ this obE Ex: $(1+x^2)y'' + 2xy' + 4x^2y = 0$ Solution on - $\infty < x < \infty$ blc pighth both continuous everywhere! $\Rightarrow y'' + \frac{2x}{1+x^2}y' + \frac{4x^2}{1+x^2}y = 0$

Consider Xo=0: 7, q have power series except at ± i, and d(o, ±i)=1 [& Fact I'll give!]. Hence, this obe has power series solvi y= 2 anx for |x|<| AT LEAST!