Planarity

October 29, 2024

- Planar graphs are a major link between graph theory and geometry/-topology.
- There are three easily identifiable milestones in planar graph theory.
- **3** A formula of Euler that V E + F = 2 for any convex polyhedron with V vertices/corners, E edges and F faces
- A deep characterization of planar graphs due to Kuratowski.
- The 4-color-theorem of Appel, Haken and Koch.

- Planar graphs are a major link between graph theory and geometry/-topology.
- 2 There are three easily identifiable milestones in planar graph theory.
- 3 A formula of Euler that V E + F = 2 for any convex polyhedron with V vertices/corners, E edges and F faces.
- A deep characterization of planar graphs due to Kuratowski.
- The 4-color-theorem of Appel, Haken and Koch.

- Planar graphs are a major link between graph theory and geometry/-topology.
- There are three easily identifiable milestones in planar graph theory.
- 3 A formula of Euler that V E + F = 2 for any convex polyhedron with V vertices/corners, E edges and F faces.
- A deep characterization of planar graphs due to Kuratowski.
- The 4-color-theorem of Appel, Haken and Koch.

- Planar graphs are a major link between graph theory and geometry/-topology.
- 2 There are three easily identifiable milestones in planar graph theory.
- 3 A formula of Euler that V E + F = 2 for any convex polyhedron with V vertices/corners, E edges and F faces.
- A deep characterization of planar graphs due to Kuratowski.
- The 4-color-theorem of Appel, Haken and Koch.

- Planar graphs are a major link between graph theory and geometry/-topology.
- There are three easily identifiable milestones in planar graph theory.
- 3 A formula of Euler that V E + F = 2 for any convex polyhedron with V vertices/corners, E edges and F faces.
- A deep characterization of planar graphs due to Kuratowski.
- 5 The 4-color-theorem of Appel, Haken and Koch.

- Colorings of planar graphs made their first appearance in a problem of map coloring.
- Recent applications of planar graphs in the design of chips and VLSI have further boosted the current research on planar graphs.

- Colorings of planar graphs made their first appearance in a problem of map coloring.
- Recent applications of planar graphs in the design of chips and VLSI have further boosted the current research on planar graphs.

Planar graphs

Definition

- A graph G is said to be planar or embeddable in the plane if it can be drawn in the plane so that no two edges intersect except (possibly) at their end vertices; otherwise it is said to be a nonplanar graph.
- 2 A planar graph embedded in the plane is called a plane graph.

Planar graphs

Definition

- A graph *G* is said to be planar or embeddable in the plane if it can be drawn in the plane so that no two edges intersect except (possibly) at their end vertices; otherwise it is said to be a nonplanar graph.
- 2 A planar graph embedded in the plane is called a plane graph.

Example

Questions

- Find necessary and sufficient conditions for a graph to be planar.
- 2 How to test a given graph for planarity?
- Design a (polynomial time) algorithm to draw a given planar graph as a plane graph.

Questions

- Find necessary and sufficient conditions for a graph to be planar.
- 2 How to test a given graph for planarity?
- Design a (polynomial time) algorithm to draw a given planar graph as a plane graph.

Questions

- Find necessary and sufficient conditions for a graph to be planar.
- 2 How to test a given graph for planarity?
- Design a (polynomial time) algorithm to draw a given planar graph as a plane graph.

Possible Solutions

- The first problem was solved by Kuratowski in 1930.
- His characterization uses the hereditary nature of planar graphs.
- A graph theoretic property P is said to be hereditary if a graph has property P then all its subgraphs too have property P.
- Clearly, acyclicity, bipartiteness and planarity are hereditary properties.
- Kuratowski's characterization has lead to the design of many "good" (= polynomial time) algorithms to check whether a given graph is planar, and if it is planar to draw it as a plane graph.

Possible Solutions

- The first problem was solved by Kuratowski in 1930.
- His characterization uses the hereditary nature of planar graphs.
- A graph theoretic property P is said to be hereditary if a graph has property P then all its subgraphs too have property P.
- Clearly, acyclicity, bipartiteness and planarity are hereditary properties.
- 5 Kuratowski's characterization has lead to the design of many "good" (= polynomial time) algorithms to check whether a given graph is planar, and if it is planar to draw it as a plane graph.

Possible Solutions

- The first problem was solved by Kuratowski in 1930.
- His characterization uses the hereditary nature of planar graphs.
- 3 A graph theoretic property *P* is said to be hereditary if a graph has property *P* then all its subgraphs too have property *P*.
- Clearly, acyclicity, bipartiteness and planarity are hereditary properties.
- S Kuratowski's characterization has lead to the design of many "good" (= polynomial time) algorithms to check whether a given graph is planar, and if it is planar to draw it as a plane graph.

Jordan Curve

Definition

- Given any two points a and b in the plane, any non-self-intersecting continuous curve from a to b is called a Jordan curve and it is denoted by J[a, b].
- If a = b, then J is called a closed Jordan curve.

Jordan Curve

Definition

- Given any two points a and b in the plane, any non-self-intersecting continuous curve from a to b is called a Jordan curve and it is denoted by J[a, b].
- If a = b, then J is called a closed Jordan curve.

Jordan Curve Theorem

Theorem

- Any closed Jordan curve J partitions the plane into 3 parts namely, interior of J (int J), exterior of J (ext J) and J.
- If J is a closed Jordan curve, s ∈ int J and t ∈ ext J, then any Jordan curve J'[s, t] contains a point of J (that is, J' intersects J).

Jordan Curve Theorem

Theorem

- Any closed Jordan curve J partitions the plane into 3 parts namely, interior of J (int J), exterior of J (ext J) and J.
- If J is a closed Jordan curve, $s \in int J$ and $t \in ext J$, then any Jordan curve J'[s,t] contains a point of J (that is, J' intersects J).

Jordan curve and Plane graph

- If *G* is a plane graph, then any path in *G* is identified with a Jordan curve.
- 2 Similarly, any cycle is identified with a closed Jordan curve.
- In particular, an edge e(u, v) of G is a Jordan curve from u to v.

Jordan curve and Plane graph

- If *G* is a plane graph, then any path in *G* is identified with a Jordan curve.
- 2 Similarly, any cycle is identified with a closed Jordan curve.
- In particular, an edge e(u, v) of G is a Jordan curve from u to v.

Jordan curve and Plane graph

- If *G* is a plane graph, then any path in *G* is identified with a Jordan curve.
- 2 Similarly, any cycle is identified with a closed Jordan curve.
- In particular, an edge e(u, v) of G is a Jordan curve from u to v.

Definition

- **I** G partitions the plane into several regions. These regions are called the faces of G. The set of all faces of G is denoted by F(G).
- Except one face, every other face is a bounded region. The exceptional face is called the exterior face and other faces are called interior faces of G.
- The exterior face is unbounded and interior faces are bounded (:= area is finite).

Definition

- **I** G partitions the plane into several regions. These regions are called the faces of G. The set of all faces of G is denoted by F(G).
- Except one face, every other face is a bounded region. The exceptional face is called the exterior face and other faces are called interior faces of G.
- The exterior face is unbounded and interior faces are bounded (:= area is finite).

Definition

- **I** G partitions the plane into several regions. These regions are called the faces of G. The set of all faces of G is denoted by F(G).
- Except one face, every other face is a bounded region. The exceptional face is called the exterior face and other faces are called interior faces of G.
- The exterior face is unbounded and interior faces are bounded (:= area is finite).

Definition

- The boundary of a face f is the set of all edges of G which are incident with f. It is denoted by $b_G(f)$ or b(f).
- The degree of a face f in a plane graph G is the number of edges in the boundary of f with cut-edges counted twice.
- The degree of f is denoted by $deg_G(f)$ or deg(f) or d(f).

Definition

- The boundary of a face f is the set of all edges of G which are incident with f. It is denoted by $b_G(f)$ or b(f).
- The degree of a face f in a plane graph G is the number of edges in the boundary of f with cut-edges counted twice.
- **3** The degree of f is denoted by $deg_G(f)$ or deg(f) or d(f).

Definition

- The boundary of a face f is the set of all edges of G which are incident with f. It is denoted by $b_G(f)$ or b(f).
- 2 The degree of a face f in a plane graph G is the number of edges in the boundary of f with cut-edges counted twice.
- **3** The degree of f is denoted by $deg_G(f)$ or deg(f) or d(f).

Example

 f_1, f_2, f_3, f_4 - Faces of G $b(f_1) = \{12, 23, 13\}, d(f_1) = 3, b(f_1) \text{ is a cycle.}$ $b(f_2) = \{12, 23, 13, 34, 45, 55, 56, 67, 74\}, d(f_2) = 10.$ Note that 34 is counted twice and that $b(f_2)$ does not form a cycle.

Consequences of Jordan Curve Theorem

- A cyclic edge belongs to two faces.
- 2 A cut-edge belongs to only one face.
- A plane graph G is acyclic if and only if |F(G)| = 1

Consequences of Jordan Curve Theorem

- A cyclic edge belongs to two faces.
- 2 A cut-edge belongs to only one face.
- A plane graph G is acyclic if and only if |F(G)| = 1

Consequences of Jordan Curve Theorem

- A cyclic edge belongs to two faces.
- 2 A cut-edge belongs to only one face.
- 3 A plane graph G is acyclic if and only if |F(G)| = 1

Euler's Formula

Theorem

For a connected plane graph G,

$$V - E + F = 2$$

Proof

We discuss two possible cases:

- I G is acyclic.
- 2 G is cyclic.

Euler's Formula

Theorem

For a connected plane graph G,

$$V - E + F = 2$$

Proof.

We discuss two possible cases:

- I G is acyclic.
- 2 G is cyclic.

Euler's Formula

Theorem

For a connected plane graph G,

$$V - E + F = 2$$

Proof.

We discuss two possible cases:

- G is acyclic.
- 2 G is cyclic.

Euler's Formula

Theorem

For a connected plane graph G,

$$V - E + F = 2$$

Proof.

We discuss two possible cases:

- G is acyclic.
- 2 G is cyclic.

Proof.

- ☐ G is connected, acyclic and has n vertices.
- 2 G is a tree and has n-1 edges.
- **3** *G* has only one face (unbounded one).

$$V - E + F = n - (n - 1) + 1 = 2.$$

Proof.

- ☑ G is connected, acyclic and has n vertices.
- \bigcirc *G* is a tree and has n-1 edges.
- *G* has only one face (unbounded one).
- V E + F = n (n 1) + 1 = 2.

Proof.

- ☑ G is connected, acyclic and has n vertices.
- **2** G is a tree and has n-1 edges.
- *G* has only one face (unbounded one).
- 4 V E + F = n (n 1) + 1 = 2.

Proof.

- ☑ G is connected, acyclic and has n vertices.
- **2** G is a tree and has n-1 edges.
- **3** *G* has only one face (unbounded one).
- 4 V E + F = n (n 1) + 1 = 2.

Proof.

- **I** G is connected, acyclic and has n vertices.
- **2** G is a tree and has n-1 edges.
- **3** *G* has only one face (unbounded one).

$$V - E + F = n - (n - 1) + 1 = 2.$$

Proof.

- Proof by induction on the number of edges in the graph.
- 2 Base Case : $E = 3 (K_3)$.
- Then, v = 3 and F = 2.
- 4 Hence, V E + F = 2.
- Induction Hypothesis: Assume true for all connected graphs with *m* edges.
- Now consider a graph G with m + 1 edges.

Proof.

- Proof by induction on the number of edges in the graph.
- **2** Base Case : $E = 3 (K_3)$.
- Then, v = 3 and F = 2.
- 4 Hence, V E + F = 2.
- Induction Hypothesis: Assume true for all connected graphs with m edges.
- Now consider a graph G with m + 1 edges.

Proof.

- Proof by induction on the number of edges in the graph.
- **2** Base Case : $E = 3 (K_3)$.
- 3 Then, v = 3 and F = 2.
- 4 Hence, V E + F = 2.
- Induction Hypothesis: Assume true for all connected graphs with m edges.
- Now consider a graph G with m + 1 edges.

Proof.

- Proof by induction on the number of edges in the graph.
- **2** Base Case : $E = 3 (K_3)$.
- 3 Then, v = 3 and F = 2.
- 4 Hence, V E + F = 2.
- Induction Hypothesis: Assume true for all connected graphs with m edges.
- Now consider a graph G with m + 1 edges.

Proof.

- Proof by induction on the number of edges in the graph.
- **2** Base Case : $E = 3 (K_3)$.
- **3** Then, v = 3 and F = 2.
- **4** Hence, V E + F = 2.
- Induction Hypothesis: Assume true for all connected graphs with m edges.
- Now consider a graph G with m + 1 edges.

Proof.

- Proof by induction on the number of edges in the graph.
- **2** Base Case : $E = 3 (K_3)$.
- 3 Then, v = 3 and F = 2.
- **4** Hence, V E + F = 2.
- **5** Induction Hypothesis: Assume true for all connected graphs with *m* edges.
- Now consider a graph G with m + 1 edges.

Proof.

- Proof by induction on the number of edges in the graph.
- **2** Base Case : $E = 3 (K_3)$.
- Then, v = 3 and F = 2.
- Induction Hypothesis: Assume true for all connected graphs with *m* edges.
- Now consider a graph G with m + 1 edges.

Proof.

- Let G be a connected cyclic graph with m + 1 edges.
- 2 Let C be a cycle of G.
- 3 Let $e \in E(C)$.
- 4 Then, G e is connected.
- 5 V(G-e) = V(G), E(G-e) = E-1 and F(G-e) = F-1.
- Note that V(G e) E(G e) + F(G e) = 2 (By induction if G e is cyclic, and by Case 1 if G e is a tree).
- V(G) E(G) + F(G) = V(G e) E(G e) 1 + F(G e) + 1 = 2.

Proof.

- Let G be a connected cyclic graph with m + 1 edges.
- 2 Let C be a cycle of G.
- 3 Let $e \in E(C)$.
- \blacksquare Then, G e is connected.
- 5 V(G-e) = V(G), E(G-e) = E-1 and F(G-e) = F-1.
- Note that V(G e) E(G e) + F(G e) = 2 (By induction if G e is cyclic, and by Case 1 if G e is a tree).
- V(G) E(G) + F(G) = V(G e) E(G e) 1 + F(G e) + 1 = 2.

Proof.

- Let G be a connected cyclic graph with m + 1 edges.
- 2 Let C be a cycle of G.
- 3 Let $e \in E(C)$.
- 4 Then, G e is connected.
- 5 V(G-e) = V(G), E(G-e) = E-1 and F(G-e) = F-1.
- Note that V(G e) E(G e) + F(G e) = 2 (By induction if G e is cyclic, and by Case 1 if G e is a tree).
- V(G) E(G) + F(G) = V(G e) E(G e) 1 + F(G e) + 1 = 2

Proof.

- Let G be a connected cyclic graph with m + 1 edges.
- 2 Let C be a cycle of G.
- 3 Let $e \in E(C)$.
- \blacksquare Then, G e is connected.
- 5 V(G-e) = V(G), E(G-e) = E-1 and F(G-e) = F-1.
- Note that V(G e) E(G e) + F(G e) = 2 (By induction if G e is cyclic, and by Case 1 if G e is a tree).
- V(G) E(G) + F(G) = V(G e) E(G e) 1 + F(G e) + 1 = 2

Proof.

- Let G be a connected cyclic graph with m + 1 edges.
- 2 Let C be a cycle of G.
- **3** Let $e \in E(C)$.
- **1** Then, G e is connected.
- 5 V(G-e) = V(G), E(G-e) = E-1 and F(G-e) = F-1.
- Note that V(G e) E(G e) + F(G e) = 2 (By induction if G e is cyclic, and by Case 1 if G e is a tree).
- V(G) E(G) + F(G) = V(G e) E(G e) 1 + F(G e) + 1 = 2.

Proof.

- Let G be a connected cyclic graph with m + 1 edges.
- 2 Let C be a cycle of G.
- **3** Let $e \in E(C)$.
- **1** Then, G e is connected.
- 5 V(G-e) = V(G), E(G-e) = E-1 and F(G-e) = F-1.
- Note that V(G e) E(G e) + F(G e) = 2 (By induction if G e is cyclic, and by Case 1 if G e is a tree).
- V(G) E(G) + F(G) = V(G e) E(G e) 1 + F(G e) + 1 = 2

Proof.

- Let G be a connected cyclic graph with m + 1 edges.
- 2 Let C be a cycle of G.
- 3 Let $e \in E(C)$.
- **1** Then, G e is connected.
- 5 V(G-e) = V(G), E(G-e) = E-1 and F(G-e) = F-1.
- Note that V(G e) E(G e) + F(G e) = 2 (By induction if G e is cyclic, and by Case 1 if G e is a tree).
- V(G) E(G) + F(G) = V(G e) E(G e) 1 + F(G e) + 1 = 2.

Proof.

- Let G be a connected cyclic graph with m + 1 edges.
- 2 Let C be a cycle of G.
- **3** Let $e \in E(C)$.
- **1** Then, G e is connected.
- 5 V(G-e) = V(G), E(G-e) = E-1 and F(G-e) = F-1.
- Note that V(G e) E(G e) + F(G e) = 2 (By induction if G e is cyclic, and by Case 1 if G e is a tree).
- V(G) E(G) + F(G) = V(G e) E(G e) 1 + F(G e) + 1 = 2.

Theorem

If G is a simple connected planar graph with $|V| \ge 3$, then $\frac{3}{2}F \le E \le 3V - 6$.

Proof.

- **I** G has no bounded face.
- 2 G has a bounded face.

Theorem

If G is a simple connected planar graph with $|V| \ge 3$, then $\frac{3}{2}F \le E \le 3V - 6$.

Proof.

- G has no bounded face.
- 2 G has a bounded face.

Theorem

If G is a simple connected planar graph with $|V| \ge 3$, then $\frac{3}{2}F \le E \le 3V - 6$.

Proof.

- G has no bounded face.
- 2 G has a bounded face.

Theorem

If G is a simple connected planar graph with $|V| \ge 3$, then $\frac{3}{2}F \le E \le 3V - 6$.

Proof.

- **I** G has no bounded face.
- **2** *G* has a bounded face.

Proof.

- ✓ Since G is connected, G is a tree.
- 2 Then, |E| = |V| 1
- 3 Since $|V| \ge 3$, $|E| = |V| 1 \le 2|V| 4 \le 3|V| 6$.
- 4 Also, |F| = 1, $|E| \ge 2$.
- 5 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- Since G is connected, G is a tree.
- 2 Then, |E| = |V| 1
- 3 Since $|V| \ge 3$, $|E| = |V| 1 \le 2|V| 4 \le 3|V| 6$.
- 4 Also, |F| = 1, $|E| \ge 2$.
- 5 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- Since G is connected, G is a tree.
- 2 Then, |E| = |V| 1
- 3 Since $|V| \ge 3$, $|E| = |V| 1 \le 2|V| 4 \le 3|V| 6$.
- 4 Also, |F| = 1, $|E| \ge 2$.
- 5 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- Since G is connected, G is a tree.
- 2 Then, |E| = |V| 1
- 3 Since $|V| \ge 3$, $|E| = |V| 1 \le 2|V| 4 \le 3|V| 6$.
- 4 Also, |F| = 1, $|E| \ge 2$.
- 5 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- I Since G is connected, G is a tree.
- 2 Then, |E| = |V| 1
- 3 Since $|V| \ge 3$, $|E| = |V| 1 \le 2|V| 4 \le 3|V| 6$.
- 4 Also, |F| = 1, $|E| \ge 2$.
- 5 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- I Since G is connected, G is a tree.
- 2 Then, |E| = |V| 1
- 3 Since $|V| \ge 3$, $|E| = |V| 1 \le 2|V| 4 \le 3|V| 6$.
- 4 Also, |F| = 1, $|E| \ge 2$.
- 5 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- G contains a cycle.
- Then, $deg(f) \ge 3$ (Number of edges in the boundary of a face)
- **3** Each edge is in the boundary of two faces.
- Combining the above two, we have, Since $3|F| \le 2|E| \Rightarrow \frac{3}{2}F \le E$.
- By Euler's formula, $F = 2 - V + E \Rightarrow 3F = 6 - 3V + 3E \le 2E$
- 7 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- G contains a cycle.
- Then, $deg(f) \ge 3$ (Number of edges in the boundary of a face)
- **3** Each edge is in the boundary of two faces.
- Combining the above two, we have, Since $3|F| \le 2|E| \Rightarrow \frac{3}{2}F \le E$.
- By Euler's formula, $F = 2 - V + E \Rightarrow 3F = 6 - 3V + 3E \le 2E.$
- 7 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- G contains a cycle.
- Then, $deg(f) \ge 3$ (Number of edges in the boundary of a face)
- Each edge is in the boundary of two faces.
- Combining the above two, we have, Since $3|F| \le 2|E| \Rightarrow \frac{3}{2}F \le E$.
- By Euler's formula, $F = 2 - V + E \Rightarrow 3F = 6 - 3V + 3E \le 2E$
- 7 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- G contains a cycle.
- Then, $deg(f) \ge 3$ (Number of edges in the boundary of a face)
- 3 Each edge is in the boundary of two faces.
- Combining the above two, we have, Since $3|F| \le 2|E| \Rightarrow \frac{3}{2}F \le E$.
- By Euler's formula, $F = 2 - V + E \Rightarrow 3F = 6 - 3V + 3E \le 2E$
- 7 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- G contains a cycle.
- Then, $deg(f) \ge 3$ (Number of edges in the boundary of a face)
- 3 Each edge is in the boundary of two faces.
- Combining the above two, we have, Since $3|F| \le 2|E| \Rightarrow \frac{3}{2}F \le E$.
- By Euler's formula, $F = 2 - V + E \Rightarrow 3F = 6 - 3V + 3E \le 2E$
- 7 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- G contains a cycle.
- Then, $deg(f) \ge 3$ (Number of edges in the boundary of a face)
- 3 Each edge is in the boundary of two faces.
- 5 Combining the above two, we have, Since $3|F| \le 2|E| \Rightarrow \frac{3}{2}F \le E$.
- By Euler's formula, $F = 2 - V + E \Rightarrow 3F = 6 - 3V + 3E \le 2E$
- 7 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- G contains a cycle.
- Then, $deg(f) \ge 3$ (Number of edges in the boundary of a face)
- 3 Each edge is in the boundary of two faces.
- 5 Combining the above two, we have, Since $3|F| \le 2|E| \Rightarrow \frac{3}{2}F \le E$.
- 6 By Euler's formula, $F = 2 - V + E \Rightarrow 3F = 6 - 3V + 3E \le 2E.$
- 7 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Proof.

- G contains a cycle.
- Then, $deg(f) \ge 3$ (Number of edges in the boundary of a face)
- 3 Each edge is in the boundary of two faces.
- **5** Combining the above two, we have, Since $3|F| \le 2|E| \Rightarrow \frac{3}{2}F \le E$.
- 6 By Euler's formula, $F = 2 - V + E \Rightarrow 3F = 6 - 3V + 3E \le 2E.$
- 7 Hence, $\frac{3}{2}F \le E \le 3V 6$.

Corollary

If G is a connected planar graph, G has a vertex of degree less than six.

- This is clearly true if |V(G)| = 1 or 2.
- 2 Let $|V| \ge 3$.
- By contradiction, suppose $deg(v) \ge 6$ for all $v \in V(G)$.
- 4 6 $|V| \le \sum deg(v) = 2|E| \le 2(3v 6) = 6V 12$.
- A contradiction.
- Hence there is a vertex with degree less than six.

Corollary

If G is a connected planar graph, G has a vertex of degree less than six.

- This is clearly true if |V(G)| = 1 or 2.
- 2 Let $|V| \ge 3$.
- By contradiction, suppose $deg(v) \ge 6$ for all $v \in V(G)$.
- 4 6 $|V| \le \sum deg(v) = 2|E| \le 2(3v 6) = 6V 12$.
- 5 A contradiction.
- 6 Hence there is a vertex with degree less than six.

Corollary

If G is a connected planar graph, G has a vertex of degree less than six.

- This is clearly true if |V(G)| = 1 or 2.
- **2** Let $|V| \ge 3$.
- By contradiction, suppose $deg(v) \ge 6$ for all $v \in V(G)$.
- 4 6 $|V| \le \sum deg(v) = 2|E| \le 2(3v 6) = 6V 12$.
- 5 A contradiction.
- 6 Hence there is a vertex with degree less than six.

Corollary

If G is a connected planar graph, G has a vertex of degree less than six.

- This is clearly true if |V(G)| = 1 or 2.
- **2** Let $|V| \ge 3$.
- **3** By contradiction, suppose $deg(v) \ge 6$ for all $v \in V(G)$.
- 4 6 $|V| \le \sum deg(v) = 2|E| \le 2(3v 6) = 6V 12$.
- 5 A contradiction.
- 6 Hence there is a vertex with degree less than six.

Corollary

If G is a connected planar graph, G has a vertex of degree less than six.

- This is clearly true if |V(G)| = 1 or 2.
- **2** Let $|V| \ge 3$.
- **3** By contradiction, suppose $deg(v) \ge 6$ for all $v \in V(G)$.
- 4 6 $|V| \le \sum deg(v) = 2|E| \le 2(3v 6) = 6V 12$.
- 5 A contradiction.
- 6 Hence there is a vertex with degree less than six.

Corollary

If G is a connected planar graph, G has a vertex of degree less than six.

- This is clearly true if |V(G)| = 1 or 2.
- **2** Let $|V| \ge 3$.
- **3** By contradiction, suppose $deg(v) \ge 6$ for all $v \in V(G)$.
- 4 $6|V| \le \sum deg(v) = 2|E| \le 2(3v 6) = 6V 12$.
- 5 A contradiction.
- Hence there is a vertex with degree less than six.

Corollary

If G is a connected planar graph, G has a vertex of degree less than six.

- This is clearly true if |V(G)| = 1 or 2.
- **2** Let $|V| \ge 3$.
- **3** By contradiction, suppose $deg(v) \ge 6$ for all $v \in V(G)$.
- 4 $6|V| \le \sum deg(v) = 2|E| \le 2(3v 6) = 6V 12$.
- 5 A contradiction.
- Hence there is a vertex with degree less than six.

Corollary

Let G be a connected planar triangle-free graph with $|V| \ge 3$, then $|E| \le 2|V| - 4$.

- We have already proved the case when *G* has no bounded face earlier.
 - Let G be triangle-free and has atleast one bounded face.
- \Rightarrow deg(f) \geq 4.
- 5 $2|E| = \sum deg(f) \ge 4|F| \implies 2|F| \le |E|$.
- 6 |V| |E| + |F| = 2 (Euler's formula) \implies $2|E| 2|V| + 4 = 2|F| \le |E|$.
- 7 Hence, $|E| \le 2|V| 4$

Corollary

Let G be a connected planar triangle-free graph with $|V| \ge 3$, then $|E| \le 2|V| - 4$.

- We have already proved the case when *G* has no bounded face earlier.
- 2 Let *G* be triangle-free and has atleast one bounded face.
- \Rightarrow deg(f) \geq 4.
- 5 $2|E| = \sum deg(f) \ge 4|F| \Rightarrow 2|F| \le |E|$.
- 6 |V| |E| + |F| = 2 (Euler's formula) \implies $2|E| 2|V| + 4 = 2|F| \le |E|$.
- 7 Hence, $|E| \le 2|V| 4$

Corollary

Let G be a connected planar triangle-free graph with $|V| \ge 3$, then $|E| \le 2|V| - 4$.

- We have already proved the case when *G* has no bounded face earlier.
- 2 Let *G* be triangle-free and has atleast one bounded face.
- \Rightarrow deg $(f) \geq 4$.
- 5 $2|E| = \sum deg(f) \ge 4|F| \Rightarrow 2|F| \le |E|$.
- 6 |V| |E| + |F| = 2 (Euler's formula) \implies $2|E| 2|V| + 4 = 2|F| \le |E|$.
- 7 Hence, $|E| \le 2|V| 4$

Corollary

Let G be a connected planar triangle-free graph with $|V| \ge 3$, then $|E| \le 2|V| - 4$.

- We have already proved the case when *G* has no bounded face earlier.
- 2 Let *G* be triangle-free and has atleast one bounded face.
- \Rightarrow deg(f) \geq 4.
- 5 $2|E| = \sum deg(f) \ge 4|F| \Rightarrow 2|F| \le |E|$.
- 6 |V| |E| + |F| = 2 (Euler's formula) \implies $2|E| 2|V| + 4 = 2|F| \le |E|$.
- 7 Hence, $|E| \le 2|V| 4$

Corollary

Let G be a connected planar triangle-free graph with $|V| \ge 3$, then $|E| \le 2|V| - 4$.

- We have already proved the case when *G* has no bounded face earlier.
- 2 Let *G* be triangle-free and has atleast one bounded face.
- \Rightarrow deg(f) \geq 4.
- 5 $2|E| = \sum deg(f) \ge 4|F| \implies 2|F| \le |E|$.
- 6 |V| |E| + |F| = 2 (Euler's formula) \implies $2|E| 2|V| + 4 = 2|F| \le |E|$.
- 7 Hence, $|E| \le 2|V| 4$

Corollary

Let G be a connected planar triangle-free graph with $|V| \ge 3$, then $|E| \le 2|V| - 4$.

- We have already proved the case when *G* has no bounded face earlier.
- 2 Let *G* be triangle-free and has atleast one bounded face.
- \Rightarrow deg(f) \geq 4.
- 5 $2|E| = \sum deg(f) \ge 4|F| \Rightarrow 2|F| \le |E|$.
- 6 |V| |E| + |F| = 2 (Euler's formula) \implies $2|E| 2|V| + 4 = 2|F| \le |E|$.
- 7 Hence, $|E| \le 2|V| 4$

Corollary

Let G be a connected planar triangle-free graph with $|V| \ge 3$, then $|E| \le 2|V| - 4$.

- We have already proved the case when *G* has no bounded face earlier.
- 2 Let *G* be triangle-free and has atleast one bounded face.
- \Rightarrow deg(f) \geq 4.
- 5 $2|E| = \sum deg(f) \ge 4|F| \Rightarrow 2|F| \le |E|$.
- 6 |V| |E| + |F| = 2 (Euler's formula) \implies $2|E| 2|V| + 4 = 2|F| \le |E|$.
- 7 Hence, $|E| \le 2|V| 4$

Example

Figure: Kuratowski's graph

Theorem

K₅ and K_{3,3} are non-planar.

- $1 K_5$ has 5 vertices and 10 edges.
- | 3|V| 6 = 15 6 = 9 < 10 = |E|.
- \blacksquare Hence, K_5 in non-planar.
- $K_{3,3}$ has 6 vertices, 9 edges and triangle-free.
- 5 But, $|E| = 9 \le 2|V| 4 = 12 4 = 8$.
- **6** Hence, $K_{3,3}$ is non-planar.

Theorem

 K_5 and $K_{3,3}$ are non-planar.

- I K_5 has 5 vertices and 10 edges.
- | 3|V| 6 = 15 6 = 9 < 10 = |E|.
- 3 Hence, K_5 in non-planar.
- $K_{3,3}$ has 6 vertices, 9 edges and triangle-free.
- 5 But, $|E| = 9 \le 2|V| 4 = 12 4 = 8$.
- 6 Hence, $K_{3,3}$ is non-planar.

Theorem

 K_5 and $K_{3,3}$ are non-planar.

Proof.

I K_5 has 5 vertices and 10 edges.

2
$$3|V| - 6 = 15 - 6 = 9 < 10 = |E|$$
.

- 3 Hence, K_5 in non-planar.
- $K_{3,3}$ has 6 vertices, 9 edges and triangle-free.
- 5 But, $|E| = 9 \le 2|V| 4 = 12 4 = 8$.
- 6 Hence, $K_{3,3}$ is non-planar.

Theorem

 K_5 and $K_{3,3}$ are non-planar.

- K₅ has 5 vertices and 10 edges.
- 2 3|V|-6=15-6=9<10=|E|.
- \blacksquare Hence, K_5 in non-planar.
- $K_{3,3}$ has 6 vertices, 9 edges and triangle-free.
- 5 But, $|E| = 9 \le 2|V| 4 = 12 4 = 8$.
- 6 Hence, $K_{3,3}$ is non-planar.

Theorem

 K_5 and $K_{3,3}$ are non-planar.

Proof.

I K_5 has 5 vertices and 10 edges.

2
$$3|V| - 6 = 15 - 6 = 9 < 10 = |E|$$
.

- 3 Hence, K_5 in non-planar.

5 But,
$$|E| = 9 \le 2|V| - 4 = 12 - 4 = 8$$
.

6 Hence, $K_{3,3}$ is non-planar.

Theorem

 K_5 and $K_{3,3}$ are non-planar.

Proof.

I K_5 has 5 vertices and 10 edges.

2
$$3|V| - 6 = 15 - 6 = 9 < 10 = |E|$$
.

- \blacksquare Hence, K_5 in non-planar.
- 5 But, $|E| = 9 \le 2|V| 4 = 12 4 = 8$.
- 6 Hence, $K_{3,3}$ is non-planar.

Theorem

 K_5 and $K_{3,3}$ are non-planar.

Proof.

I K_5 has 5 vertices and 10 edges.

2
$$3|V|-6=15-6=9<10=|E|$$
.

- \blacksquare Hence, K_5 in non-planar.
- 5 But, $|E| = 9 \le 2|V| 4 = 12 4 = 8$.
- **6** Hence, $K_{3,3}$ is non-planar.

- Both are regular graphs.
- 2 Both are nonplanar.
- Removal of one edge or a vertex makes each a planar graph.
- Kuratowski's first graph is the nonplanar graph with the smallest number of vertices.
- 5 Kuratowski's second graph is the nonplanar graph with the smallest number of edges.
- Thus both are the simplest nonplanar graphs.
- 7 The letter *K* being for Kuratowski.

- Both are regular graphs.
- 2 Both are nonplanar.
- Removal of one edge or a vertex makes each a planar graph.
- Kuratowski's first graph is the nonplanar graph with the smallest number of vertices.
- Kuratowski's second graph is the nonplanar graph with the smallest number of edges.
- Thus both are the simplest nonplanar graphs.
- 7 The letter *K* being for Kuratowski.

- Both are regular graphs.
- 2 Both are nonplanar.
- Removal of one edge or a vertex makes each a planar graph.
- Kuratowski's first graph is the nonplanar graph with the smallest number of vertices.
- Kuratowski's second graph is the nonplanar graph with the smallest number of edges.
- Thus both are the simplest nonplanar graphs.
- 7 The letter *K* being for Kuratowski.

- Both are regular graphs.
- 2 Both are nonplanar.
- Removal of one edge or a vertex makes each a planar graph.
- Kuratowski's first graph is the nonplanar graph with the smallest number of vertices.
- Kuratowski's second graph is the nonplanar graph with the smallest number of edges.
- Thus both are the simplest nonplanar graphs.
- The letter K being for Kuratowski.

- Both are regular graphs.
- 2 Both are nonplanar.
- Removal of one edge or a vertex makes each a planar graph.
- Kuratowski's first graph is the nonplanar graph with the smallest number of vertices.
- Muratowski's second graph is the nonplanar graph with the smallest number of edges.
- Thus both are the simplest nonplanar graphs.
- The letter K being for Kuratowski.

- Both are regular graphs.
- 2 Both are nonplanar.
- Removal of one edge or a vertex makes each a planar graph.
- Kuratowski's first graph is the nonplanar graph with the smallest number of vertices.
- Muratowski's second graph is the nonplanar graph with the smallest number of edges.
- Thus both are the simplest nonplanar graphs.
- The letter *K* being for Kuratowski.

- Both are regular graphs.
- 2 Both are nonplanar.
- Removal of one edge or a vertex makes each a planar graph.
- Kuratowski's first graph is the nonplanar graph with the smallest number of vertices.
- Kuratowski's second graph is the nonplanar graph with the smallest number of edges.
- Thus both are the simplest nonplanar graphs.
- 7 The letter *K* being for Kuratowski.

Subdivision

Definition

- The subdivision of an edge $e(u, v) \in E(G)$ is the operation of replacing e by a path (u, w, v), where w is a new vertex.
- 2 So, to get a subdivision of *e* introduce a new vertex *w* on *e*.
- A graph *H* is said to be a subdivision of *G* if *H* can be obtained from *G* by a sequence of edge subdivisions. (By definition, *G* is a subdivision of *G*.)

Subdivision

Definition

- The subdivision of an edge $e(u, v) \in E(G)$ is the operation of replacing e by a path (u, w, v), where w is a new vertex.
- 2 So, to get a subdivision of *e* introduce a new vertex *w* on *e*.
- A graph *H* is said to be a subdivision of *G* if *H* can be obtained from *G* by a sequence of edge subdivisions. (By definition, *G* is a subdivision of *G*.)

Subdivision

Definition

- The subdivision of an edge $e(u, v) \in E(G)$ is the operation of replacing e by a path (u, w, v), where w is a new vertex.
- 2 So, to get a subdivision of *e* introduce a new vertex *w* on *e*.
- 3 A graph *H* is said to be a subdivision of *G* if *H* can be obtained from *G* by a sequence of edge subdivisions. (By definition, *G* is a subdivision of *G*.)

Subdivision

Definition

- The subdivision of an edge $e(u, v) \in E(G)$ is the operation of replacing e by a path (u, w, v), where w is a new vertex.
- 2 So, to get a subdivision of *e* introduce a new vertex *w* on *e*.
- 3 A graph *H* is said to be a subdivision of *G* if *H* can be obtained from *G* by a sequence of edge subdivisions. (By definition, *G* is a subdivision of *G*.)

Remarks

- **1** Any subdivision of G is denoted by S(G).
- 2 Note that S(G) is not unique.
- In fact, there are infinite number of subdivisions of any graph with at least one edge.

Remarks

- **1** Any subdivision of G is denoted by S(G).
- 2 Note that S(G) is not unique.
- In fact, there are infinite number of subdivisions of any graph with at least one edge.

Remarks

- **1** Any subdivision of G is denoted by S(G).
- 2 Note that S(G) is not unique.
- In fact, there are infinite number of subdivisions of any graph with at least one edge.

- **1** $H \subseteq G$; G is planar $\implies H$ is planar.
- $\supseteq H \subseteq G$; H is nonplanar $\implies G$ is nonplanar.
- G is planar $\Longrightarrow S(G)$ is planar.
- 4 G is nonplanar $\implies S(G)$ is nonplanar.
- $S(K_5)$ and $S(K_{3,3})$ are nonplanar.
- 6 G is planar $\implies S(K_5), S(K_{3,3}) \nsubseteq G$.

- **1** $H \subseteq G$; G is planar $\implies H$ is planar.
- **2** $H \subseteq G$; H is nonplanar $\implies G$ is nonplanar.
- G is planar $\Longrightarrow S(G)$ is planar.
- 4 G is nonplanar $\implies S(G)$ is nonplanar.
- $S(K_5)$ and $S(K_{3,3})$ are nonplanar.
- 6 G is planar $\implies S(K_5), S(K_{3,3}) \nsubseteq G$.

- **1** $H \subseteq G$; G is planar $\implies H$ is planar.
- **2** $H \subseteq G$; H is nonplanar $\implies G$ is nonplanar.
- **3** G is planar $\implies S(G)$ is planar.
- 4 G is nonplanar $\implies S(G)$ is nonplanar.
- $S(K_5)$ and $S(K_{3,3})$ are nonplanar.
- 6 G is planar $\implies S(K_5), S(K_{3,3}) \nsubseteq G$.

- **1** $H \subseteq G$; G is planar $\implies H$ is planar.
- **2** $H \subseteq G$; H is nonplanar $\implies G$ is nonplanar.
- G is planar $\implies S(G)$ is planar.
- G is nonplanar $\implies S(G)$ is nonplanar.
- $S(K_5)$ and $S(K_{3,3})$ are nonplanar.
- 6 G is planar $\implies S(K_5), S(K_{3,3}) \nsubseteq G$.

- **1** $H \subseteq G$; G is planar $\implies H$ is planar.
- **2** $H \subseteq G$; H is nonplanar $\implies G$ is nonplanar.
- G is planar $\implies S(G)$ is planar.
- $S(K_5)$ and $S(K_{3,3})$ are nonplanar.
- 6 G is planar $\implies S(K_5), S(K_{3,3}) \nsubseteq G$.

- **1** $H \subseteq G$; G is planar $\implies H$ is planar.
- **2** $H \subseteq G$; H is nonplanar $\implies G$ is nonplanar.
- G is planar $\implies S(G)$ is planar.
- **4** G is nonplanar $\implies S(G)$ is nonplanar.
- $S(K_5)$ and $S(K_{3,3})$ are nonplanar.
- 6 G is planar $\implies S(K_5), S(K_{3,3}) \nsubseteq G$.

- The two example non-planar graphs $K_{3,3}$ and K_5 weren't picked randomly.
- 2 Kuratowski proved that any non-planar graph must contain a subgraph closely related to one of these two graphs.

Theorem

Kuratowski's Theorem: A graph is nonplanar if and only if it contains a subgraph that is a subdivision of $K_{3,3}$ or K_5 .

Petersen graph non-planar.

- The two example non-planar graphs $K_{3,3}$ and K_5 weren't picked randomly.
- 2 Kuratowski proved that any non-planar graph must contain a subgraph closely related to one of these two graphs.

Theorem

Kuratowski's Theorem: A graph is nonplanar if and only if it contains a subgraph that is a subdivision of $K_{3,3}$ or K_5 .

Petersen graph non-planar.

- The two example non-planar graphs $K_{3,3}$ and K_5 weren't picked randomly.
- Kuratowski proved that any non-planar graph must contain a subgraph closely related to one of these two graphs.

Theorem

Kuratowski's Theorem: A graph is nonplanar if and only if it contains a subgraph that is a subdivision of $K_{3,3}$ or K_5 .

Petersen graph non-planar.

- The two example non-planar graphs $K_{3,3}$ and K_5 weren't picked randomly.
- 2 Kuratowski proved that any non-planar graph must contain a subgraph closely related to one of these two graphs.

Theorem

Kuratowski's Theorem: A graph is nonplanar if and only if it contains a subgraph that is a subdivision of $K_{3,3}$ or K_5 .

Petersen graph non-planar.

- The two example non-planar graphs $K_{3,3}$ and K_5 weren't picked randomly.
- 2 Kuratowski proved that any non-planar graph must contain a subgraph closely related to one of these two graphs.

Theorem

Kuratowski's Theorem: A graph is nonplanar if and only if it contains a subgraph that is a subdivision of $K_{3,3}$ or K_5 .

Petersen graph non-planar.

Planar maps and Planar graphs first appeared in a problem called the four color conjecture (1850).

Theorem

- solved by K. Appel, W. Haken and J. Koch (1977).
- Their proof techniques involved making of a large number of cases by a computer. (700 pages)
- A shorter, independent proof was constructed by Robertson et al. (1996) and Thomas (1998).(100 pages)

Planar maps and Planar graphs first appeared in a problem called the four color conjecture (1850).

Theorem

- solved by K. Appel, W. Haken and J. Koch (1977).
- Their proof techniques involved making of a large number of cases by a computer. (700 pages)
- A shorter, independent proof was constructed by Robertson et al. (1996) and Thomas (1998).(100 pages)

Planar maps and Planar graphs first appeared in a problem called the four color conjecture (1850).

Theorem

- solved by K. Appel, W. Haken and J. Koch (1977).
- Their proof techniques involved making of a large number of cases by a computer. (700 pages)
- A shorter, independent proof was constructed by Robertson et al. (1996) and Thomas (1998).(100 pages)

Planar maps and Planar graphs first appeared in a problem called the four color conjecture (1850).

Theorem

- solved by K. Appel, W. Haken and J. Koch (1977).
- Their proof techniques involved making of a large number of cases by a computer. (700 pages)
- A shorter, independent proof was constructed by Robertson et al. (1996) and Thomas (1998).(100 pages)

Planar maps and Planar graphs first appeared in a problem called the four color conjecture (1850).

Theorem

- solved by K. Appel, W. Haken and J. Koch (1977).
- Their proof techniques involved making of a large number of cases by a computer. (700 pages)
- A shorter, independent proof was constructed by Robertson et al. (1996) and Thomas (1998).(100 pages)