```
In [ ]:
```

```
import pandas as pd
import matplotlib.pyplot as plt
import re
import time
import warnings
import sqlite3
from sqlalchemy import create engine # database connection
import csv
import os
warnings.filterwarnings("ignore")
import datetime as dt
import numpy as np
from nltk.corpus import stopwords
from sklearn.decomposition import TruncatedSVD
from sklearn.preprocessing import normalize
from sklearn.feature extraction.text import CountVectorizer
from sklearn.manifold import TSNE
import seaborn as sns
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import confusion matrix
from sklearn.metrics.classification import accuracy score, log loss
from sklearn.feature extraction.text import TfidfVectorizer
from collections import Counter
from scipy.sparse import hstack
from sklearn.multiclass import OneVsRestClassifier
from sklearn.svm import SVC
from sklearn.cross validation import StratifiedKFold
from collections import Counter, defaultdict
from sklearn.calibration import CalibratedClassifierCV
from sklearn.naive bayes import MultinomialNB
from sklearn.naive_bayes import GaussianNB
from sklearn.model_selection import train_test_split
from sklearn.model selection import GridSearchCV
import math
from sklearn.metrics import normalized mutual info score
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import cross val score
from sklearn.linear model import SGDClassifier
from mlxtend.classifier import StackingClassifier
from sklearn import model selection
from sklearn.linear model import LogisticRegression
from sklearn.metrics import precision recall curve, auc, roc curve
```

```
#Creating db file from csv
if not os.path.isfile('train.db'):
    disk engine = create engine('sqlite:///train.db')
    start = dt.datetime.now()
    chunksize = 180000
     j = 0
    index start = 1
     for df in pd.read csv('final features.csv', names=['Unnamed: 0','id','is duplicate',
'cwc_min','cwc_max','csc_min','csc_max','ctc_min','ctc_max','last word eq','first word eq
','abs_len_diff','mean_len','token_set_ratio','token_sort_ratio','fuzz_ratio','fuzz_partial_ratio','longest_substr_ratio','freq_qid1','freq_qid2','q1len','q2len','q1_n_words','q
2_n_words','word_Common','word_Total','word_share','freq_q1+q2','freq_q1-q2','0_x','1_x',
'2_x','3_x','4_x','5_x','6_x','7_x','8_x','9_x','10_x','11_x','12_x','13_x','14_x','15_x
','16_x','17_x','18_x','19_x','20_x','21_x','22_x','23_x','24_x','25_x','26_x','27_x','2
8_x', <sup>7</sup>29_x', <sup>7</sup>30_x', <sup>7</sup>31_x', <sup>7</sup>32_x', <sup>7</sup>33_x', <sup>7</sup>34_x', <sup>7</sup>35_x', <sup>7</sup>36_x', <sup>7</sup>37_x', <sup>7</sup>38_x', <sup>7</sup>39_x', <sup>7</sup>40_x'
,'41_x','42_x','43_x','44_x','45_x','46_x','47_x','48_x','49_x','50_x','51_x','52_x','53
x', '54 x', '55 x', '56 x', '57 x', '58 x', '59 x', '60 x', '61 x', '62 x', '63 x', '64 x', '65 x',
```

```
'66_x','67_x','68_x','69_x','70_x','71_x','72_x','73_x','74_x','75_x','76_x','77_x','78
x', '79_x', '80_x', '81_x', '82_x', '83_x', '84_x', '85_x', '86_x', '87_x', '88_x', '89_x', '90_x'
91 x', '92 x', '93 x', '94 x', '95 x', '96 x', '97 x', '98 x', '99 x', '100 x', '101 x', '102 x',
03_x','104_x','105_x','106_x','107_x','108_x','109_x','110_x','111_x','112_x','113_x',
14_x','115_x','116_x','117_x','118_x','119_x','120_x','121_x','122_x','123_x','124_x',
25_x','126_x','127_x','128_x','129_x','130_x','131_x','132_x','133_x','134_x','135_x',
36_x','137_x','138_x','139_x','140_x','141_x','142_x','143_x','144_x','145_x','146_x',
47_x','148_x','149_x','150_x','151_x','152_x','153_x','154_x','155_x','156_x','157_x',
58_x','159_x','160_x','161_x','162_x','163_x','164_x','165_x','166_x','167_x','168_x',
69_x','170_x','171_x','172_x','173_x','174_x','175_x','176_x','177_x','178_x','179
80 x','181 x','182 x','183 x','184 x','185 x','186 x','187 x','188 x','189 x','190
    _x','192_x','193_x','194_x','195_x','196_x','197_x','198_x','199_x','200]
    [x','203]x','204]x','205]x','206]x','207]x','208]x','209]x','210]x','211]
                                                                                                                       x','212
    [x','214]x','215]x','216]x','217]x','218]x','219]x','220]x','221]x','222]
                                                                                                                       x','223
24_x','225_x','226_x','227_x','228_x','229_x','230_x','231_x','232_x','233_x','234_
35_x','236_x','237_x','238_x','239_x','240_x','241_x','242_x','243_x','244_x','245_x',
46_x','247_x','248_x','249_x','250_x','251_x','252_x','253_x','254_x','255_x','256_x',
57_x','258_x','259_x','260_x','261_x','262_x','263_x','264_x','265_x','266_x','267_x',
68_x','269_x','270_x','271_x','272_x','273_x','274_x','275_x','276_x','277_x','278_x',
79_x','280_x','281_x','282_x','283_x','284_x','285_x','286_x','287_x','288_x','289_x',
90_x','291_x','292_x','293_x','294_x','295_x','296_x','297_x','298_x','299_x','300_x',
01_x','302_x','303_x','304_x','305_x','306_x','307_x','308_x','309_x','310_x','311_x',
12_x','313_x','314_x','315_x','316_x','317_x','318_x','319_x','320_x','321_x','322_x',
23_x','324_x','325_x','326_x','327_x','328_x','329_x','330_x','331_x','332_x','333_x',
34_x','335_x','336_x','337_x','338_x','339_x','340_x','341_x','342_x','343_x','344_x',
45_x','346_x','347_x','348_x','349_x','350_x','351_x','352_x','353_x','354_x','355
56 x','357 x','358 x','359 x','360 x','361 x','362 x','363 x','364 x','365 x','366
67_x','368_x','369_x','370_x','371_x','372_x','373_x','374_x','375_x','376_x','377
78_x','379_x','380_x','381_x','382_x','383_x','0_y\,'1_y',\,'2_y','3_y','4
             _y<sup>-</sup>,'9_y',<sup>-</sup>10_y','11_y','12_y','13_y','14_y','15_y',<sup>-</sup>16_y',<sup>-</sup>17_y<sup>-</sup>,'18_y',
'7g', '8g', '9g', '10g', '11g', '12g', '13g', '14g', '15g', '16g', '17g', '18g', '19g', '20g', '21g', '22g', '23g', '24g', '25g', '26g', '27g', '28g', '29g', '30g', '31g', '9g', '33g', '34g', '35g', '36g', '37g', '38g', '39g', '40g', '41g', '42g', '44g', '44g', '46g', '47g', '48g', '49g', '50g', '51g', '52g', '53g', '54g', '55g', '56g', '5g', '58g', '59g', '60g', '61g', '62g', '63g', '64g', '65g', '66g', '67g', '68g', '69g', '67g', '77g', 
'107_y','108_y','109_y','110_y','111_y','112_y','113_y','114_y','115_y','116_y','117
'118_y','119_y','120_y','121_y','122_y','123_y','124_y','125_y','126_y','127_y','128
'129_y','130_y','131_y','132_y','133_y','134_y','135_y','136_y','137_y','138_y','139
'140_y','141_y','142_y','143_y','144_y','145_y','146_y','147_y','148_y','149_y','150
'151_y','152_y','153_y','154_y','155_y','156_y','157_y','158_y','159_y','160_y','161
'162_y','163_y','164_y','165_y','166_y','167_y','168_y','169_y','170_y','171_y','172
'173_y','174_y','175_y','176_y','177_y','178_y','179_y','180_y','181_y','182_y','
'184_y','185_y','186_y','187_y','188_y','189_y','190_y','191_y','192_y','193_y',
'195_y','196_y','197_y','198_y','199_y','200_y','201_y','202_y','203_y','204_y',
'206_y','207_y','208_y','209_y','210_y','211_y','212_y','213_y','214_y','215_y','
'217_y','218_y','219_y','220_y','221_y','222_y','223_y','224_y','225_y','226_y','22
       __y','229_y','230_y','231_y','232_y','233_y','234_y','235_y','236_y','237_y','238
'239_y','240_y','241_y','242_y','243_y','244_y','245_y','246_y','247_y','248_y','249
'250_y','251_y','252_y','253_y','254_y','255_y','256_y','257_y','258_y','259_y','260
'261_y','262_y','263_y','264_y','265_y','266_y','267_y','268_y','269_y','270_y','271
'272_y','273_y','274_y','275_y','276_y','277_y','278_y','279_y','280_y','281_y','282
'283_y','284_y','285_y','286_y','287_y','288_y','289_y','290_y','291_y','292_y','293
'294_y','295_y','296_y','297_y','298_y','299_y','300_y','301_y','302_y','303_y','304
'305_y','306_y','307_y','308_y','309_y','310_y','311_y','312_y','313_y','314_y','315
'316_y','317_y','318_y','319_y','320_y','321_y','322_y','323_y','324_y','325_y','326
'327_y','328_y','329_y','330_y','331_y','332_y','333_y','334_y','335_y','336_y','337
'338_y','339_y','340_y','341_y','342_y','343_y','344_y','345_y','346_y','347_y','348
'349_y','350_y','351_y','352_y','353_y','354_y','355_y','356_y','357_y','358_y','359
'360_y','361_y','362_y','363_y','364_y','365_y','366_y','367_y','368_y','369_y','370
'371_y','372_y','373_y','374_y','375_y','376_y','377_y','378_y','379_y','380_y','381
'382 y','383 y'], chunksize=chunksize, iterator=True, encoding='utf-8', ):
             df.index += index start
            print('{} rows'.format(j*chunksize))
             df.to_sql('data', disk_engine, if_exists='append')
             index start = df.index[-1] + 1
```

```
""" create a database connection to the SQLite database
        specified by db file
    :param db file: database file
    :return: Connection object or None
    try:
        conn = sqlite3.connect(db file)
        return conn
    except Error as e:
       print(e)
    return None
def checkTableExists(dbcon):
   cursr = dbcon.cursor()
   str = "select name from sqlite master where type='table'"
   table names = cursr.execute(str)
   print("Tables in the databse:")
   tables =table names.fetchall()
    print(tables[0][0])
   return(len(tables))
In [ ]:
read db = 'train.db'
conn r = create connection (read db)
checkTableExists(conn_r)
conn r.close()
Tables in the databse:
data
In [ ]:
if os.path.isfile(read db):
   conn r = create connection(read db)
    if conn r is not None:
        data = pd.read sql query("SELECT * From data ORDER BY RANDOM() LIMIT 100001;", c
onn r)
        conn_r.commit()
        conn r.close()
In [ ]:
data.drop(data.index[0], inplace=True)
y true = data['is duplicate']
data.drop(['Unnamed: 0', 'id', 'index', 'is duplicate'], axis=1, inplace=True)
```

```
In [ ]:
```

Out[]:

data.head()

	cwc_min	cwc_max	csc_min	csc_max	ctc_min	ctc_max	la
1	0.199996000079998	0.166663888935184	0.0	0.0	0.14285510206997	0.099999000099999	
2	0.399992000159997	0.399992000159997	0.499987500312492	0.499987500312492	0.444439506227709	0.444439506227709	
3	0.833319444675922	0.714275510349852	0.999983333611106	0.857130612419823	0.687495703151855	0.687495703151855	
4	0.0	0.0	0.599988000239995	0.499991666805553	0.249997916684028	0.230767455634957	
5	0.749981250468738	0.749981250468738	0.499987500312492	0.499987500312492	0.624992187597655	0.624992187597655	

```
In [ ]:
cols = list(data.columns)
for i in cols:
    data[i] = data[i].apply(pd.to_numeric)
cwc min
cwc_max
csc_min
csc_max
ctc_min
ctc_max
last word eq
first_word_eq
abs len diff
mean len
token_set_ratio
token_sort_ratio
{\tt fuzz\_ratio}
fuzz_partial_ratio
longest substr ratio
freq qid1
freq qid2
q1len
q21en
q1_n_words
q2_n_words
word_Common
word_Total
word_share
freq q1+q2
freq_q1-q2
0_x
1_x
2_x
3_x
4_x
5_x
6_x
7 x
8_x
9 x
10_x
11_x
12_x
13_x
14_x
15_x
16_x
17 x
18_x
19 x
20 x
21_x
22_x
23_x
24 x
25 x
26 x
27_x
28_x
29_x
30_x
31_x
```

32_x 33_x 34_x 35_x 36_x 106_x 107_x 108 x

109_x 110_x 111_x 112_x 113 x 114 x 114_X 115_X 116_X 117_X 118_X 119_X 120_X 121_X 122_x 123_x 124_x 125_x 126 x 127 x 128_x 129_x 130_x 131_x 132 x 132_x 133_x 134_x 135_x 136_x 137_x 138_x 139_x 140_x 141_x 142 x 143_x 144_x 145 x 146_x 147 x 148_x 149_x 150 x 151 x 151_x 152_x 153_x 154_x 155_x 156_x 157_x 158_x 159_x 160_x 161_x 162_x 163 x 164 x 165_x 166_x 167_x 168 x 169 x 170_x 171_x 172_x 173_x 174_x 175_x 176_x 177_x 178_x 179 x 180 x

181_x 182_x 183_x 184_x 185 x 185_x 186_x 187_x 188_x 189_x 190_x 191_x 192_x 193_x 194_x 195_x 196 x 197_x 198 x 199 x 200_x 201_x 202_x 203_x 204 x 205_x 206_x 207_x 208_x 209_x 210_x 211_x 212_x 213_x 214 x 215_x 216_x 217 x 218_x 219_x 220_x 221_x 222 x 222_x 223_x 224_x 225_x 226_x 227_x 228_x 229_x 230_x 231_x 232_x 233 x 234_x 235 x 236 x 237_x 238_x 239_x 240_x 241 x 242_x 243_x 244_x 245_x 246_x 247_x 248_x 249_x 250_x 251 x 252 x

253_x 254_x 255_x 256_x 257 x 257_x 258_x 259_x 260_x 261_x 262_x 263_x 264_x 265_x 266_x 267_x 268 x 269_x 270_x 271_x 272_x 273_x 274_x 275_x 276 x 277_x 278_x 279_x 280_x 281_x 282_x 283_x 284_x 285_x 286 x 287_x 288_x 289 x 290_x 291_x 292_x 293_x 294 x 295_x 296_x 297_x 298_x 299_x 300_x 301_x 302_x 303_x 304_x 305 x 306_x 307 x 308 x 309_x 310_x 311_x 312 x 313 x 314_x 315_x 316_x 317_x 318_x 319_x 320_x 321_x 322_x 323 x 324 x

325_x 326_x 327_x 328_x 320_x 329_x 330_x 331_x 332_x 333_x 334_x 335_x 336_x 337_x 338_x 339_x 340_x 341_x 342 x 343 x 344_x 345_x 346_x 347_x 348_x 349_x 350_x 351_x 352_x 353_x 354_x 355_x 356_x 357_x 358 x 359_x 360_x 361 x 362_x 363_x 364_x 365_x 366 x 367_x 368_x 369_x 370_x 371_x 372_x 373_x 374_x 375_x 376_x 377_x 378_x 379 x 380_x 381_x 382_x 383_x 0_у 1_y 2_y 3_y 4_y 5_y 6_y 7_y 9_y 8_y 10_y 11_y 12 y

84 v

85_y 86_y 87_y 88_y 89_y 90_y 91_y 92_y 93_y 94_y 95_y 96_y 97_y 98_y 100_y 101_y 101_y 102_y 103_y 104_y 105_y 106_y 107_y 108_y 100_y 109_y 110_y 111_y 112_y 113_y 114_y 115_y 116_y 117_y 118_y 119_y 120_y 121_Y 122_Y 123_Y 124_Y 125_Y 126_Y 127_Y 128_Y 129_Y 130_Y 131_Y 132_Y 133_Y 134_Y 135_y 136_y 137_y 138_y 139_y 140_y 141_y 142_y 143_y 144_y 145 y 146_y 147_y 148_y 149_y 150_y 151_y 152_y 153_y 154_y 155_y 156 v

157_y 158_y 159<u>y</u> 160_y 161 y 162_y 163_y 164_y 165_y 166_y 167_y 168_y 169_y 170_y 171_y 172_y 173_y 174_y 175_y 176_y 177_y 178_y 176_y 179_y 180_y 181_y 182_y 183_y 184_y 185_y 186_y 187_y 188_y 189_y 190<u>y</u> 191_y 192_y 193_y 194_y 195_y 196<u>y</u> 197_y 198_y 199_y 200_y 201_y 202_y 203_y 204_y 205_y 206_y 207_y 208_y 209_y 210_y 211_y 212_y 213_y 214_y 215_y 216 y 210_y 217_y 218_y 219_y 220_y 221_y 222<u>y</u> 223_y 224_y 225_y 226_y 227_y 228 y

229_y 230_y 231_y 232_y 233 у 234_y 234_y 235_y 236_y 237_y 238_y 239_y 240_y 241_y 242_y 243_y 244_y 245_y 246_y 247_y 248_y 249_y 250_y 251_y 252 y 253_y 254_y 255_y 256_y 257_y 258_y 259_y 260_y 261_y 262<u>y</u> 263_y 264_y 265_y 266_y 267_y 268_y 269_y 270_y 271_y 272_y 273_y 274_y 275_y 276_y 277_y 278_y 279<u>y</u> 280_y 281_y 282_y 283_y 284_y 285_y 286_y 287_y 288 у 289 y 290_y 291_y 292_y 293_y 294_y 295_у 296<u>y</u> 297<u>y</u> 298_y 299<u>y</u> 300 y

301_y 302_y 303_y 304_y 305_y 306_y 307_y 308_y 309_y 310_y 311_y 312_y 313_y 314_y 315_y 316_y 317_y 318_y 319_y 320_y 321_y 322_y 323_y 324_y 325_y 326_y 327_y 328_y 329_y 330_y 331_y 332<u>y</u> 333_y 334_y 335_y 336_y 337_y 338_y 339<u>y</u> 340_y 341_y 342 y 343_y 344_y 345_y 346_y 347_y 348_y 349_y 350_y 351_y 352_y 353_y 354_y 355_y 356_y 357_y 358_y 359_y 360_y 361 y 362_y 363_y 364_y 365_y 366_y 367_y 368_y 369<u>y</u> 370_y 371_y 372 y

```
373 у
374 y
375 y
376 y
377 y
378 у
379 y
380 y
381 y
382 у
383 у
In [ ]:
y_true = list(map(int, y_true.values))
In [ ]:
X_train,X_test, y_train, y_test = train test split(data, y true, stratify=y true, test s
ize=0.3)
In [ ]:
print("Number of data points in train data:", X train.shape)
print("Number of data points in test data :", X test.shape)
Number of data points in train data: (70000, 794)
Number of data points in test data: (30000, 794)
In [ ]:
print("-"*10, "Distribution of output variable in train data", "-"*10)
train distr = Counter(y train)
train len = len(y train)
print("Class 0: ",int(train distr[0])/train len, "Class 1: ", int(train distr[1])/train l
en)
print("-"*10, "Distribution of output variable in train data", "-"*10)
test distr = Counter(y test)
test len = len(y test)
print("Class 0: ",int(test distr[1])/test len, "Class 1: ",int(test distr[1])/test len)
----- Distribution of output variable in train data -----
Class 0: 0.6324857142857143 Class 1: 0.36751428571428574
----- Distribution of output variable in train data -----
Class 0: 0.3675 Class 1: 0.3675
In [ ]:
# This function plots the confusion matrices given y i, y i hat.
def plot confusion matrix(test y, predict y):
   C = confusion matrix(test y, predict y)
    A = (((C.T) / (C.sum(axis=1))).T)
    B = (C/C.sum(axis=0))
    plt.figure(figsize=(20,4))
    labels = [1,2]
    cmap=sns.light palette("blue")
    plt.subplot(1, 3, 1)
    sns.heatmap(C, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=lab
els)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
    plt.title("Confusion matrix")
    plt.subplot(1, 3, 2)
    sns.heatmap(B, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=lab
els)
    plt.xlabel('Predicted Class')
    plt.ylabel('Original Class')
```

```
plt.title("Precision matrix")

plt.subplot(1, 3, 3)
  # representing B in heatmap format
  sns.heatmap(A, annot=True, cmap=cmap, fmt=".3f", xticklabels=labels, yticklabels=lab
els)

plt.xlabel('Predicted Class')
 plt.ylabel('Original Class')
 plt.title("Recall matrix")

plt.show()
```

In []:

```
predicted_y = np.zeros((test_len,2))
for i in range(test_len):
    rand_probs = np.random.rand(1,2)
    predicted_y[i] = ((rand_probs/sum(sum(rand_probs)))[0])
print("Log loss on Test Data using Random Model",log_loss(y_test, predicted_y, eps=1e-15)
)

predicted_y = np.argmax(predicted_y, axis=1)
plot_confusion_matrix(y_test, predicted_y)
```

Log loss on Test Data using Random Model 0.887242646958


```
alpha = [10 ** x for x in range(-5, 2)] # hyperparam for SGD classifier.
log error array=[]
for i in alpha:
    clf = SGDClassifier(alpha=i, penalty='12', loss='log', random state=42)
    clf.fit(X train, y train)
    sig clf = CalibratedClassifierCV(clf, method="sigmoid")
    sig clf.fit(X train, y train)
    predict y = sig clf.predict proba(X test)
    log_error_array.append(log_loss(y_test, predict_y, labels=clf.classes_, eps=1e-15))
    print('For values of alpha = ', i, "The log loss is:", log loss(y test, predict y, la
bels=clf.classes , eps=1e-15))
fig, ax = plt.subplots()
ax.plot(alpha, log_error_array,c='g')
for i, txt in enumerate(np.round(log error array, 3)):
    ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best alpha = np.argmin(log error array)
clf = SGDClassifier(alpha=alpha[best_alpha], penalty='12', loss='log', random_state=42)
clf.fit(X train, y train)
sig clf = CalibratedClassifierCV(clf, method="sigmoid")
sig clf.fit(X train, y train)
```

```
predict_y = sig_clf.predict_proba(X_train)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss
(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(X_test)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(
y_test, predict_y, labels=clf.classes_, eps=1e-15))
predicted_y =np.argmax(predict_y,axis=1)
print("Total number of data points :", len(predicted_y))
plot_confusion_matrix(y_test, predicted_y)
```

```
For values of alpha = 1e-05 The log loss is: 0.592800211149

For values of alpha = 0.0001 The log loss is: 0.532351700629

For values of alpha = 0.001 The log loss is: 0.527562275995

For values of alpha = 0.01 The log loss is: 0.534535408885

For values of alpha = 0.1 The log loss is: 0.525117052926

For values of alpha = 1 The log loss is: 0.520035530431

For values of alpha = 10 The log loss is: 0.521097925307
```


For values of best alpha = 1 The train log loss is: 0.513842874233 For values of best alpha = 1 The test log loss is: 0.520035530431 Total number of data points : 30000


```
alpha = [10 ** x for x in range(-5, 2)] # hyperparam for SGD classifier.

log_error_array=[]
for i in alpha:
    clf = SGDClassifier(alpha=i, penalty='l1', loss='hinge', random_state=42)
    clf.fit(X_train, y_train)
    sig_clf = CalibratedClassifierCV(clf, method="sigmoid")
    sig_clf.fit(X_train, y_train)
    predict_y = sig_clf.predict_proba(X_test)
    log_error_array.append(log_loss(y_test, predict_y, labels=clf.classes_, eps=le-15))
    print('For values of alpha = ', i, "The log loss is:",log_loss(y_test, predict_y, labels=clf.classes_, eps=le-15))

fig, ax = plt.subplots()
ax.plot(alpha, log_error_array,c='g')
for i, txt in enumerate(np.round(log_error_array,3)):
    ax.annotate((alpha[i],np.round(txt,3)), (alpha[i],log_error_array[i]))
```

```
plt.grid()
plt.title("Cross Validation Error for each alpha")
plt.xlabel("Alpha i's")
plt.ylabel("Error measure")
plt.show()
best alpha = np.argmin(log error array)
clf = SGDClassifier(alpha=alpha[best alpha], penalty='l1', loss='hinge', random state=42
clf.fit(X train, y train)
sig clf = CalibratedClassifierCV(clf, method="sigmoid")
sig clf.fit(X train, y train)
predict y = sig clf.predict proba(X train)
print('For values of best alpha = ', alpha[best_alpha], "The train log loss is:",log_loss
(y_train, predict_y, labels=clf.classes_, eps=1e-15))
predict_y = sig_clf.predict_proba(X_test)
print('For values of best alpha = ', alpha[best_alpha], "The test log loss is:",log_loss(
y_test, predict_y, labels=clf.classes_, eps=1e-15))
predicted y =np.argmax(predict y,axis=1)
print("Total number of data points :", len(predicted_y))
plot_confusion_matrix(y_test, predicted_y)
```

```
For values of alpha = 1e-05 The log loss is: 0.657611721261
For values of alpha = 0.0001 The log loss is: 0.489669093534
For values of alpha = 0.001 The log loss is: 0.521829068562
For values of alpha = 0.01 The log loss is: 0.566295616914
For values of alpha = 0.1 The log loss is: 0.599957866217
For values of alpha = 1 The log loss is: 0.635059427016
For values of alpha = 10 The log loss is: 0.654159467907
```


For values of best alpha = 0.0001 The train log loss is: 0.478054677285 For values of best alpha = 0.0001 The test log loss is: 0.489669093534 Total number of data points : 30000


```
import xgboost as xgb
params = {}
params['objective'] = 'binary:logistic'
params['eval_metric'] = 'logloss'
params['eta'] = 0.02
```

```
params['max_depth'] = 4
d train = xgb.DMatrix(X train, label=y train)
d test = xgb.DMatrix(X test, label=y test)
watchlist = [(d train, 'train'), (d test, 'valid')]
bst = xgb.train(params, d train, 400, watchlist, early stopping rounds=20, verbose eval=
xgdmat = xgb.DMatrix(X train,y train)
predict y = bst.predict(d_test)
print("The test log loss is:", log loss(y test, predict y, labels=clf.classes , eps=1e-15)
[0] train-logloss:0.684819 valid-logloss:0.684845
Multiple eval metrics have been passed: 'valid-logloss' will be used for early stopping.
Will train until valid-logloss hasn't improved in 20 rounds.
[10] train-logloss:0.61583 valid-logloss:0.616104
[20] train-logloss:0.564616 valid-logloss:0.565273
[30] train-logloss:0.525758 valid-logloss:0.52679
[40] train-logloss:0.496661 valid-logloss:0.498021
[50] train-logloss:0.473563 valid-logloss:0.475182
[60] train-logloss:0.455315 valid-logloss:0.457186
[70] train-logloss:0.440442 valid-logloss:0.442482
[80] train-logloss:0.428424 valid-logloss:0.430795
[90] train-logloss:0.418803 valid-logloss:0.421447
[100] train-logloss:0.41069 valid-logloss:0.413583
[110] train-logloss:0.403831 valid-logloss:0.40693
[120] train-logloss:0.398076 valid-logloss:0.401402
[130] train-logloss:0.393305 valid-logloss:0.396851
[140] train-logloss:0.38913 valid-logloss:0.392952
[150] train-logloss:0.385469 valid-logloss:0.389521
[160] train-logloss:0.382327 valid-logloss:0.386667
[170] train-logloss:0.379541 valid-logloss:0.384148
[180] train-logloss:0.377014 valid-logloss:0.381932
[190] train-logloss:0.374687 valid-logloss:0.379883
[200] train-logloss:0.372585 valid-logloss:0.378068
[210] train-logloss:0.370615 valid-logloss:0.376367
[220] train-logloss:0.368559 valid-logloss:0.374595
[230] train-logloss:0.366545 valid-logloss:0.372847
[240] train-logloss:0.364708 valid-logloss:0.371311
[250] train-logloss:0.363021 valid-logloss:0.369886
[260] train-logloss:0.36144 valid-logloss:0.368673
[270] train-logloss:0.359899 valid-logloss:0.367421
[280] train-logloss:0.358465 valid-logloss:0.366395
[290] train-logloss:0.357128 valid-logloss:0.365361
[300] train-logloss:0.355716 valid-logloss:0.364315
[310] train-logloss:0.354425 valid-logloss:0.363403
[320] train-logloss:0.353276 valid-logloss:0.362595
[330] train-logloss:0.352084 valid-logloss:0.361823
[340] train-logloss:0.351051 valid-logloss:0.361167
[350] train-logloss:0.349867 valid-logloss:0.36043
[360] train-logloss:0.348829 valid-logloss:0.359773
[370] train-logloss:0.347689 valid-logloss:0.359019
[380] train-logloss:0.346607 valid-logloss:0.358311
[390] train-logloss:0.345568 valid-logloss:0.357674
The test log loss is: 0.357054433715
In [ ]:
predicted y =np.array(predict y>0.5,dtype=int)
print("Total number of data points :", len(predicted y))
plot confusion matrix(y test, predicted y)
Total number of data points : 30000
```

```
Confusion matrix
                                                                  Precision matrix
                                                                                                                                      Recall matrix
                                                                                   0.199
```