Ques 1. Propose a gray-level slicing transformation capable of producing an output image that contains the information carried by the 5th and 6th bit-planes of a 10-bit input image. (0th bit is the LSB). (5)

Ques 2. Approximate the log transform using a piecewise linear transform (assume 4 equal linear components, and assume that the bit depth is 10 bits).

(3)

Ques 3. Given that the reflectance along a line is given by f(x) = A, and the illumination along the same line is 0 for $x < T_1$, B for $T_1 < x < T_2$, and 0 for $x > T_2$. Show how one can use Homomorphic filtering to reduce the effect of illumination. Clearly illustrate the procedure using figures and mathematical calculations. (8)

Ques 4. Given that white noise with exponential pdf is processed using the following spatial domain filter:

 $\begin{bmatrix} 1/3 & 0 & 0 \\ 0 & 1/3 & 0 \\ 0 & 0 & 1/3 \end{bmatrix}$

Obtain the pdf of the output. Compute its mean and variance.

(2+2)

Ques 5. Assuming that the acquired image contains blurring due to uniform linear motion between scene and camera. Assume that the shutter stays open for a time period T (displacement along x-axis during that period is a and along y-axis is b). White Gaussian noise with PSD = $N_0/2$ gets added to this image. Obtain the Weiner filter to restore this image. Assume that the PSD of the image is I_0 .

Ques 6. Show that the parallel projections converted from fan-beam projections are not sampled uniformly. Obtain this non-uniform sampling. Show that this can lead to blurring, ringing and aliasing. How can one minimize these effects?

(2+4+3+1)