Algebraic Curves

David Wiedemann

Table des matières

1	Affi	ne algebraic sets	2
	1.1	Recollection on commutative algebra	2
	1.2	Polynomial rings	4
List of Theorems			
	1	Lemme	2
	2	Lemme	2
	3	Lemme	2
	4	Theorème	3
	5	Theorème	3
	6	Theorème (Gauss Lemma)	3
	7	Theorème (Euler's theorem)	4

Lecture 1: Introduction

Fri 25 Feb

Let K be a field, given a set of polynomials $S = \{f_1, \ldots\}$, we can consider $V(S) = \{(x_1, \ldots) \in K^n | f_i(x_1, \ldots) = 0 \forall i\}.$

Notice that if $a_1, \ldots \in K[x_1, \ldots]$ then also $\sum_i a_i(x) f_i(x) = 0$ only depends on the ideal generated by S.

If I(S) happens to be prime, we call V an algebraic variety.

1 Affine algebraic sets

1.1 Recollection on commutative algebra

All rings are commutative and with unit. Let R be a ring.

— R is an integral domain, or just domain if there are no zero divisors, ie, $\forall a,b \in R$ s.t.

$$a.b = 0 \implies a = 0 \text{ or } b = 0$$

- Any domain can be embedded into it's quotient ring.
- A proper ideal I is maximal if it's not contained in any other proper ideal
- A proper ideal *I* is prime if

$$\forall a, b \in R, ab \in I \implies a \in I \text{ or } b \in I$$

— A proper ideal *I* is radical if

$$a^n \in I \implies a \in I$$

— For any ideal $I \subset R$, the radical \sqrt{I} is the smallest radical ideal containing

Lemme 1 $I \subset R \text{ is maximal} \iff R/I \text{ is a field}$

Lemme 2 $I \subset R \text{ is prime } \iff R/I \text{ is a domain}$

Lemme 3 radical $\iff R/I$ has no nilpotent elements.

Given a subset $S \subset R$ we can consider the ideal generated by S

$$I(S) = \left\{ \sum_{i} a_i s_i \right\}$$

I is finitely generated if I = I(S) with S finite.

— We say that R is Noetherian $/\exists$ a chain of strictly increasing ideals. Equivalently, every ideal is finitely generated.

Theorème 4

In fact, hilbert's basis theorem says that, if R is Noetherian, then R[x] is noetherian.

In particular $K[x_1, \ldots, x_n]$ is Noetherian

- I is in principal if it is generated by one element.
- A domain is called a principal ideal domain (PID) if every ideal is principal.
- $a \in R$ is irreducible if a is not a unit, nor zero and if

$$a = b.c$$

then either b or c are units.

- A pid $(a) \subset R$ is prime $\iff a$ is irreducible.
- R is a UFD if R is a domain and elements in R can be factored uniquely up to units and reordering into irreducible elements.

Theorème 5

 $R \text{ is a } UFD \implies R[x] \text{ is a } UFD$

And, if R is a PID, then R is a UFD

Theorème 6 (Gauss Lemma)

- R is a UFD and $a \in R[X]$ irreducible, then also $a \in Q(R)[X]$ is irreducible.
- Localization

Let R be a domain, if $S \subset R$ is a multiplicative subset, then the localization of R at S is defined as

$$S^{-1}R = \left\{ x \in Q(R) | x = \frac{a}{b}, b \in S \right\}$$

If M is an R-module, we have similarly

$$S^{-1}M = \left\{\frac{m}{s}|m\in M, s\in M\right\}/\left\{\frac{m}{s} = \frac{m'}{s'}\iff ms' = sm'\right\}$$

If $p \subset R$ is a prime ideal, then it's complement is a multiplicative subset and we define

$$R_p = (R \setminus p)^{-1}R$$

- There is a 1-1 correspondence between $p \subset R$ prime and ideals of R_p , furthermore R_p is a local ring
- Localization is exact, in particular, given $I \subset p$ the short exact sequence

$$o \to I \to R \to R/I \to 0$$

gets sent to

$$0 \to I_p \to R_p \to (R/I)_p \to 0$$

ie. localization commutes with taking quotients.

1.2 Polynomial rings

For $a \in \mathbb{N}^n$, we set

$$X^a = X_1^{a_1} \dots \in k[X_1, \dots]$$

Thus for any $F \in k[X_1, \ldots, X_n]$, we can write it as

$$F = \sum_{a \in \mathbb{N}^n} \lambda_a X^a$$

F is homogeneous or a form of degree d if the coefficients $\lambda_a=0$ unless $a_1+\ldots+a_n=d$.

Any F can be written uniquely as $F = F_0 + \ldots + F_d$ where F_i is a form of degree i

The derivative of $F = \sum_{a \in \mathbb{N}^n} \lambda_a X^a$ with repsect to X_i is $F_{X_i} = \frac{\partial F}{\partial X_i}$. If F is a form of degree d we have

Theorème 7 (Euler's theorem)

$$\sum_{i=1}^{n} \frac{\partial F}{\partial X_i} X_i = dF$$