# HOS 6236 Molecular Marker Assisted Plant Breeding Fall 2017

Last Section:

QTL Mapping and Linkage mapping

**Next Section:** 

Genome Wide Association Studies (GWAS)

**Todays Class:** 

Linkage Disequilibrium

### Quantitative trait loci analysis:

- create a recombining population from two or more parents
- build a genetic map
- contrast the value of individuals in different marker allele classes
- significantly different phenotypic values identify markers linked to QTN



Distance between marker and QTN?

Unknown (~10-20 cM or 5-10 Mb)

### Quantitative trait loci analysis

#### Genetic map:



- Based on frequency of recombination between genetic markers inherited from the two parents (**Parent 1** and **Parent 2**), build genetic map
- distance between genetic markers is generally in the order of 1-20 cM

### Quantitative trait loci analysis

QTL identification:



- Phenotype the progeny for trait(s) of interest
- Compare phenotypic means between allelic classes
- If statistically significant, there is evidence for a QTL





Phenotype measurement

TRAIT
B
QTL
Present



- There is evidence that a QTL exists in a well defined genetic region
- The genetic region is broad, and most likely contains hundreds or thousands of genes
- Unless more laborious approaches are taken i.e. fine-mapping and positional cloning there is not obvious indication of what genes are in the interval, or are associated with the variation at the quantitative trait

#### Marker Assisted Selection

Inference on markers based on linkage disequilibrium:



### Linkage Disequilibrium

- Two loci are in linkage equilibrium, if they are completely independently in each generation.
- If two genes are in linkage disequilibrium, it means that certain alleles of each gene are inherited together more often that would be expected by chance.

Allele Freq: p(A) p(B)

Allele Freq: p(a) p(b)

<u>Independently segregating SNPs:</u>

Haplotype Frequency  $p(ab) = p(a) \times p(b)$ 

LINKAGE DISEQUILIBRIUM

Haplotype Frequency  $p(ab) \neq p(a) \times p(b)$ 



#### LINKAGE DISEQUILIBRIUM

Haplotype Frequency p(ab) = p(a) p(b) + D

(sign of D is generally arbitrary, unless comparing D values between populations or studies)

D: Lewontin's LD Parameter (Lewontin 1960)

### D' (Lewontin, 1964)

$$D = P(A1B1) \times P(A2B2) - P(A1B2) \times P(A2B1)$$

- D is not commonly used due to its difficult interpretation
- Quantifies disequilibrium as the difference between the observed frequency of a haplotype relative to the frequency expected if segregating was random

### LD Parameter: r<sup>2</sup> (Hill & Robertson, 1968)

$$r^{2} = D^{2}$$

$$p(a)p(b)p(A)p(B)$$

- Squared correlation coefficient varies 0 1
- Frequency dependent
- Better LD measure for allele correlation between markers
- Used extensively in disease gene or phenotype mapping through association testing

### Complete Linkage Disequilibrium



### **Linkage Disequilibrium**



### **Linkage Equilibrium**



### Why is LD relevant

### Why is LD relevant

- Measuring the extent of LD helps determine the number of markers needed for QTL mapping, association mapping and Genomic Selection
- When measuring LD we are measuring what would be the expected association between alleles at a marker locus (SNP, microsatellite) and alleles at a QTL
- The measure of LD, r2, corresponds to the proportion of the QTL variance that the marker can explain
- Key parameter determining the power of association mapping to detect a QTL

### Creation of LD

- Easiest to understand when markers are physically linked
- Creation of LD
  - Mutation
  - Admixture
  - Inbreeding / non-random mating
  - Selection
  - Population bottleneck or stratification
  - Epistatic interaction
- LD can occur between unlinked markers
- LD decays over time (generations of interbreeding)
- LD decay is a function of recombination frequency

#### Linkage Disequilibrium (D)



### Visualizing LD



### Visualizing LD



## Population Effect on Linkage Disequilibrium in Maize

| Investigator | Population<br>Studied | Extent of LD |
|--------------|-----------------------|--------------|
| Gaut         | Landraces             | <1000 bp     |
|              |                       |              |

Buckler Diverse Inbreds 2000 bp

Rafalski Elite Lines 100 kb

Reviewed in Flint-Garcia, S. A. et al. 2003. Annual Review of Plant Biology 54:357-374.

#### Most significant issue in QTL and association genetics:



### Dissecting A Quantitative Trait: Time Versus Resolution



### **Resolution Versus Allelic Range**



#### Most significant issue in QTL and association genetics:



Effective population size (Ne): the number of breeding individuals in an idealized population showing similar properties as the population under consideration.

> $E(r^2) = 1/(4N_eL + 1)$ (Sved equation 1971)