Intro Formulation Results Work in progress

PPI Networks and Gene Expression

Adrin Jalali

July 8, 2013

Microarray Gene Expression

credit: en.wikipedia.org

Van't Veer breast-cancer data

Laura J. van 't Veer et.al. Nature, (2002)

Yeast Protein Interaction Network

credit:

Intro Formulation Results Work in progress

JOURNAL OF COMPUTATIONAL BIOLOGY Volume 19, Number 6, 2012 (5) Mary Ann Liebert, Inc. Pp. 694–709 DOI: 10.1089/cmb.2012.0065

Network-Induced Classification Kernels for Gene Expression Profile Analysis

OFER LAVI.1-3 GIDEON DROR.2 and RON SHAMIR

ABSTRACT

Computational classification of gene expression profiles into distinct disease phenotype has been highly succeeding to date. Sull, robustness, excurse, and biological interpretation of both highly succeeding to the sull support of the product in the succeeding the substantial product of the product of the substantial product of the product of the substantial product of the product of the substantial product of the substant

Key word: algorithms.

1. INTRODUCTION

It is not accused to the contract and th

We would like then to develop methods for detecting sets of biomarkers that (1) are more meaningful biologically and (2) are more stable across different studies. Such sets would be more useful for downstream biological research. The two goals do not always go hand in hand; for example, Hwang et al. (2008)

³IBM Haifa Research Lab, Haifa, Israel.

en.

³Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel.

²Yahayi Research Haifu Israel

NICK

1. SVM modified objective function

$$\min_{\mathbf{w}, w_0} \left\{ \frac{1}{2} \|\mathbf{w}\|^2 + \frac{1}{2} \beta \sum_{(j,k) \in E} (w_j - w_k)^2 \right\}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : (\mathbf{wx}_i + w_0)y_i \ge 1$$

3. Dual to Primal

$$\mathbf{w} = (\mathbf{I} + \beta \mathbf{B})^{-1} \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

2. Dual problem

$$\max_{\alpha} \left\{ \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j} (\mathbf{x}_{i}^{T} \mathbf{L}) (\mathbf{L}^{T} \mathbf{x}_{j}) \right\}$$

$$\mathsf{LL}^T = (\mathsf{I} + \beta \mathsf{B})^{-1}$$

s.t.:

$$\forall i \in \{1, \cdots, n\} : \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\forall i \in \{1, \cdots, n\} : \alpha_i \geq 0$$

Ofer Lavi, et.al., Journal of Computational Biology, (2012)

NICK Performance Summary

Ofer Lavi, et.al., Journal of Computational Biology, (2012)

Synthesize data

- A random graph
- Signal nodes:

$$f(n) = \begin{cases} N(-\mu, 1) & \text{if } n \text{ is in class } 1\\ N(\mu, 1) & \text{if } n \text{ is in class } 2 \end{cases}$$

Random nodes:

$$f(n)=N(0,1)$$

Pathway: 2, 3, or 4 connected signal nodes.

Synthesized data

Synthesized data

Synthesized data

Synthesized data easy scenario

AUC: X196 X233 X196 X133 X133 X116 X95 X240 X39 X240 X59 X106 X243 X106 X114 X168 X243 X56 X39 X298 X150 X247 X125 X83 X125 X82 X160 X195 62.4

X196

X233

X133

X133

X116

X116

X95

X240

X39

X243

X59

X106

X243

X168

X114

X168

X150

X56

X47

X298

X150

X247

X125

X83

X82

X82

X160

X195

X116

X113

X196

X82

Synthesized data medium scenario

AUC: X233 X190 X112 X240 X190 X240 X86 X243 X243 X190 X150 X272 X246 X298 X106 X125 X35 X125 X247 X272 X272 X82 X100 X257 X82 X28

X272

X131

X113

X246

61.5

X233

X190

X112

X240 X272

X243

X86

X243

X150

X127

X150

X272

X246

X298

X106

X125

X35

X82

X247

X69

X22 X82

X100

X257

X113

X28

X205

X131

X113

X161

Synthesized data hard scenario

	AUC:
	X233
	X190
	X112 X190
	X190
	X86 X190
	X190
	X272 X272 X205 X146
	X272
	X205
	X146
	X146
	X68
	X298
	X272
	X90
•	X127
	X100
	X272
	X297 X72
	X72
	X127
	X155
	X155 X247
	X155 X247 X196
	X155 X247 X196 X148
	X155 X247 X196 X148
	X155 X247 X196 X148
	X155 X247 X196

X297

ALIC:

62.5

X233

X190

X112

X272

X86

X127

X272

X205

X205

X146

X68

X68

X298

X22 X90

X127

X100

X69

X297 X72

X148 X155

X247

X196

X148

X101

X21

X106

X228

X251

Van't Veer

AUC:	72.9
X85453	X85453
X85453	X92140
X6605	X6605
X56886	X56886
X10640	X10640
X8817	X8817
X56894	X56894
X6605	X332
X5733	X5733
X57758	X57758
X7532	X7532
X51	X51
X7566	X7566
X3267	X3267
X89953	X89953
X5713	X5713
X5193	X5193
X5365	X5365
X10874	X10874
X5982	X5982

AUC:	73.6
X9917	X9917
X84279	X84279
X197370	X197370
X51143	X51143
X58475	X58475
X55585	X55585
X25949	X25949
X54892	X54892
X126695	X126695
X57168	X57168
X10456	X10456
X148223	X148223
X9742	X9742
X253558	X253558
X342527	X342527
X10175	X10175
X83930	X83930
X57035	X57035
X145482	X145482
X57465	X57465

Van't Veer

AUC:	72.9
X85453	X85453
X85453	X92140
X6605	X6605
X56886	X56886
X10640	X10640
X8817	X8817
X56894	X56894
X6605	X332
X5733	X5733
X57758	X57758
X7532	X7532
X51	X51
X7566	X7566
X3267	X3267
X89953	X89953
X5713	X5713
X5193	X5193
X5365	X5365
X10874	X10874
X5982	X5982

Node	Degree
X85453	12
X6605	98
X56886	26
X10640	16
X8817	152
X56894	28
X5733	150
X57758	8
X7532	86
X51	172
X7566	16
X3267	56
X89953	4
X5713	126
X5193	32
X5365	70
X10874	132
X5982	172
X92140	20

X332

328

Node	Degree
X9917	0
X84279	0
X197370	0
X51143	0
X58475	0
X55585	0
X25949	0
X54892	0
X126695	0
X57168	0
X10456	0
X148223	0
X9742	0
X253558	0
X342527	0
X10175	0
X83930	0
X57035	0
X145482	0
X57465	0

AUC:	73.6
X9917	X9917
X84279	X84279
X197370	X197370
X51143	X51143
X58475	X58475
X55585	X55585
X25949	X25949
X54892	X54892
X126695	X126695
X57168	X57168
X10456	X10456
X148223	X148223
X9742	X9742
X253558	X253558
X342527	X342527
X10175	X10175
X83930	X83930
X57035	X57035
X145482	X145482
X57465	X57465

 Estimate gene expression value probability distributions for samples of class A.

- Estimate gene expression value probability distributions for samples of class A.
- 2 For each sample in class A and B:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)

- Estimate gene expression value probability distributions for samples of class A.
- 2 For each sample in class A and B:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)
- **1** Use a graph kernel for labeled graphs to classify extracted graphs.

- Estimate gene expression value probability distributions for samples of class A.
- 2 For each sample in class A and B:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)
- 3 Use a graph kernel for labeled graphs to classify extracted graphs.
- Extract common sub-graphs from individual graphs that seem to be helping the classification.

- Estimate gene expression value probability distributions for samples of class A.
- 2 For each sample in class A and B:
 - Extract abnormal genes according to above estimated distributions.
 - Extract the part of PPI network induced by extracted genes (almost)
- 3 Use a graph kernel for labeled graphs to classify extracted graphs.
- 4 Extract common sub-graphs from individual graphs that seem to be helping the classification.

Weighted idea

Figure : Class A member

Weighted idea

Figure : Class B member

Thank You! Questions?