Université Abdelmalek Éssaadi Ecole Nationale des Sciences Appliquées Al Hoceima

AP1: Analyse 2

Année: 2019/2020

TD:Suites et Séries de Fonctions

séries N°3 (Partie 1)

Professeur A. MOUSSAID

EXERCICE 1

Etudier la convergence simple des suites de fonctions $(f_n)_{n\in\mathbb{N}^*}$ et déterminer, dans chaque cas la fonction, limite simple de ces suites:

1.
$$\forall x \in \mathbb{R}$$
 $f_n(x) = \frac{x}{x^2 + n^2}$

2.
$$\forall x \in \mathbb{R}$$
 $f_n(x) = \frac{nx+2}{1+nx^2}$

3.
$$\forall x \in \mathbb{R}_+^*$$
 $f_n(x) = n \ln(1 + \frac{x}{n})$

4.
$$\forall x \in \mathbb{R}^+$$
 $f_n(x) = (1 + \frac{x}{n})^n$

5.
$$\forall x \in [0,2]$$
 $f_n(x) = \frac{x^n}{1+x^n}$

EXERCICE 2

Soit $(f_n)_{n\in\mathbb{N}}$ la suite de fonctions définies par:

$$\forall x \in [0, 1] \qquad f_n(x) = \frac{n^2 x^3}{1 + n^2 x^7}$$

Montrer que $(f_n)_{n\in\mathbb{N}}$ ne converge pas Uniformément sur [0,1]

EXERCICE 3

Soit α un réel.

Discuter suivant les valeurs de α la convergence uniforme sur \mathbb{R} de la suite de fonctions $(f_n)_{n\in\mathbb{N}^*}$ définies par:

$$f_n(x) = 0$$
 si $x \neq 0$, $f_n(n) = n^{\alpha}$

EXERCICE 4

Étudier la convergence uniforme sur [0,1] de la suite de fonction $(f_n)_{n\in\mathbb{N}^*}$ définies sur [0,1] par:

$$f_n(x) = x^n \sqrt{1 - x^2}$$

EXERCICE 5

Soit $(f_n)_{n\in\mathbb{N}^*}$ la suite de fonction définies sur [0,1] par:

$$f_n(x) = x^n$$

- 1. Montrer que cette suite converge uniformément sur tout segment [0,a] avec a<1
- 2. Étudier la convergence uniforme de ctte suite sur [0,1]

EXERCICE 6

Pour tout réel x et pour tout entier n de \mathbb{N} , on pose

$$f_n(x) = \frac{1}{1 + (x+n)^2}$$

1. Montrer que la suite $(f_n)_{n\in\mathbb{N}}$ converge simplement sur \mathbb{R} vers la fonction nulle, mais ne convege pas uniformément.

2. Soit g_n le restriction de f_n à l'intervalle $[0, +\infty[$. Étudier la convergence uniforme de la suite $(g_n)_{n\in\mathbb{N}}$ sur $[0,+\infty[$.

EXERCICE 7

On considère la suite de fonctin définies sur [0,1] par:

$$f_n(x) = n^2 x (1-x)^n$$

- 1. Etudier la convegence simple de (f_n) sur [0,1]
- 2. Montrer de (f_n) converge uniformément sur [a,1] où $a \in]0,1[$.
- 3. Montrer de (f_n) ne converge pas uniformément sur [0,1] d'abord en calculant $\lim_{n\to+\infty} \sup_{x\in[0,1]} f_n(x)$, ensuite en comparant

$$\int_0^1 \lim_{n \to +\infty} f_n(x) dx \qquad et \qquad \lim_{n \to +\infty} \int_0^1 f_n(x) dx$$

EXERCICE 8

Pour $x \ge 0$ on pose que $f_n(x) = \frac{x}{n^2 + x^2}$

- 1. Montrer que la série $\sum_{n=1}^{+\infty} f_n(x)$ converge simplement sur \mathbb{R}^+
- 2. Montrer que la série $\sum_{i=1}^{+\infty} f_n(x)$ converge uniformémement sur tout intervalle [0,a] avec a>0
- 3. Vérifier que, pour tout $n \in \mathbb{N}$ $\sum_{k=n+1}^{2n} \frac{n}{k^2 + n^2} \ge \frac{1}{5}$
- 4. En déduire que la série $\sum_{n=0}^{+\infty} f_n(x)$ ne converge pas uniformément sur \mathbb{R}^+
- 5. Montrer que la série $\sum_{n=0}^{+\infty} (-1)^n f_n(x)$ converge uniformément sur \mathbb{R}^+
- 6. Montrer que la série $\sum_{i=1}^{+\infty} (-1)^n f_n(x)$ converge normalement sur tout intervalle [0,a] avec a>0
- 7. Montrer que la série $\sum_{n=1}^{+\infty} (-1)^n f_n(x)$ ne convergence pas normalement sur \mathbb{R}^+

EXERCICE 9

Étudier la convergence normale des séries de fonctions de terme général:

1.
$$f_n(x) = \frac{x}{n^{\alpha}(1+x^2)}, \quad \alpha > 1, \quad et \quad x \in [a,b] \subset \mathbb{R}_+^*$$

2.
$$g_n(x) = \frac{(-1)^n e^{-nx^2}}{x^2 + n^2}, \quad x \in \mathbb{R}$$

2.
$$g_n(x) = \frac{(-1)^n e^{-nx^2}}{x^2 + n^2}, \qquad x \in \mathbb{R}$$

3. $h_n(x) = \frac{1}{n^2 + \cos(nx)}, \qquad n \ge 2 \qquad et \qquad x \in \mathbb{R}$