Algoritmo de Planos de Corte, Cortes de Gomory e Cortes Disjuntivos

Eduardo Camponogara

Departamento de Automação e Sistemas Universidade Federal de Santa Catarina

DAS-9011: Métodos de Otimização

Algoritmo de planos de corte

Algoritmo de planos de corte com cortes de Gomory

Desigualdades disjuntivas

Sumário

Algoritmo de planos de corte

Algoritmo de planos de corte com cortes de Gomory

Desigualdades disjuntivas

Planos de Corte e Desigualdades Fortes

Princípios

- ▶ Suponha que $X = P \cap \mathbb{Z}^n$
- ▶ Seja \mathcal{F} uma família desigualdades válidas para X:

$$\pi^T x \leqslant \pi_0, \ (\pi, \pi_0) \in \mathcal{F},$$

- ▶ Tipicamente, \mathcal{F} pode conter um número muito grande de elementos (possivelmente exponencial).
- Logo não podemos introduzir todas as desigualdades na formulação a priori.
- ▶ Do ponto de vista prático, não queremos encontrar uma representação completa de conv(X), apenas uma aproximação em torno da solução ótima.

Algoritmo de Planos de Corte

Abaixo descreveremos o algoritmo básico de planos de corte para *IP*, $max\{c^Tx; x \in X\}$, que gera cortes "úteis" a partir de $\mathcal F$

Algoritmo de Planos de Corte

Algoritmo de planos de corte

```
Inicialização
  Defina t=0 e P^0=P
Iteração T
  Resolva o problema linear \overline{z}^t = Max\{c^Tx : x \in P^t\}
  Seja x<sup>t</sup> a solução ótima
  Se x^t \in \mathbb{Z}^n, pare pois x^t é uma solução ótima para IP
  Se x^t \notin \mathbb{Z}^n, encontre uma designaldade (\pi, \pi_0) \in \mathcal{F}
     tal que \pi^T x^t > \pi_0
  Se uma desigualdade (\pi, \pi_0) foi encontrada,
      então faça P^{t+1} = P^t \cap \{x : \pi^T x \leq \pi_0\},
      incremente t e repita
  Caso contrário, pare.
```

Planos de Corte e Desigualdades Fortes

Observações

- ▶ Se o algoritmo termina sem encontrar uma solução inteira, pelo menos $P^t = P \cap \{x : \pi_i^T \leq \pi_{i0}, i = 1, 2, ..., t\}$ é uma formulação mais "apertada" do que P.
- ▶ Podemos então proceder a partir de P^t com um algoritmo de branch-and-bound.

Sumário

Algoritmo de planos de corte

Algoritmo de planos de corte com cortes de Gomory

Desigualdades disjuntivas

Aqui consideraremos o problema inteiro:

$$Max \{c^Tx : Ax = b, x \ge 0 \text{ e inteiro}\}$$

- O princípio básico é resolver a relaxação linear e encontrar uma base ótima.
- a partir da base ótima, se escolhe uma variável básica que não seja inteira.
- Então geramos uma desigualdade Chvátal-Gomory associada a esta variável básica visando "cortá-la", ou seja, eleminá-la do poliedro de relaxação.

Dada uma base ótima, o problema pode ser reescrito na forma:

$$\begin{array}{ll} \textit{Max} & \overline{a}_{oo} + \sum\limits_{j \in NB} \overline{a}_{oj} x_j \\ \text{Sujeito a:} & x_{Bu} + \sum\limits_{j \in NB} \overline{a}_{uj} x_j = \overline{a}_{uo} \text{ para } u = 1, \dots, m \\ & x \geqslant 0 \text{ e inteiro} \end{array}$$

onde:

- i) $\overline{a}_{oj} \leq 0$ para $j \in NB$,
- ii) $\overline{a}_{uo} \geqslant 0$ para $u = 1, \ldots, m$, e
- iii) NB é o conjunto de variáveis não básicas, portanto $\{B_u: u=1,\ldots,m\} \cup NB = \{1,\ldots,n\}.$

- Se a solução básica ótima x^* não for inteira, então deve existir uma linha u tal que $\overline{a}_{uo} \notin \mathbb{Z}$.
- Escolhendo esta linha, o corte de Chvátal-Gomory para a linha u fica:

$$x_{Bu} + \sum_{j \in NB} \lfloor \overline{a}_{uj} \rfloor x_j \leqslant \lfloor \overline{a}_{uo} \rfloor \tag{1}$$

▶ Reescrevendo (1) de forma a eliminar x_{Bu} , obtemos:

$$x_{Bu} = \overline{a}_{uo} - \sum_{j \in NB} \overline{a}_{uj} x_j \tag{2}$$

A partir de (2), deduzimos:

$$\overline{a}_{uo} - \sum_{j \in NB} \overline{a}_{uj} x_j + \sum_{j \in NB} \lfloor \overline{a}_{uj} \rfloor x_j \leqslant \lfloor \overline{a}_{uo} \rfloor \quad \Rightarrow \quad (3)$$

$$\sum_{j \in NB} \left(\overline{a}_{uj} - \lfloor \overline{a}_{uj} \rfloor \right) x_j \geqslant \overline{a}_{uo} - \lfloor \overline{a}_{uo} \rfloor \tag{4}$$

De uma forma mais compacta, podemos reescrever o corte

$$\sum_{j \in NB} \left(\overline{a}_{uj} - \lfloor \overline{a}_{uj} \rfloor \right) x_j \geqslant \overline{a}_{uo} - \lfloor \overline{a}_{uo} \rfloor$$

como:

$$\sum_{j \in NB} f_{uj} x_j \geqslant f_{uo} \tag{5}$$

onde:

Observação

Uma vez que $0 \le f_{uj} < 1$ e $0 < f_{uo} < 1$, e $x_j^* = 0$ para toda a variável $j \in NB$ na solução x^* , a desigualdade

$$\sum_{j \in NB} f_{uj} x_j \geqslant f_{uo}$$

corta a solução corrente x^* .

Considere o problema inteiro:

$$z = Max$$
 $4x_1 - x_2$
 $s.a.: 7x_1 - 2x_2 \le 14$
 $x_2 \le 3$
 $2x_1 - 2x_2 \le 3$
 $x_1, x_2 \ge 0$, inteiros (6)

Após adicionarmos variáveis de folga x_3 , x_4 e x_5 , podemos aplicar o método simplex e obter a solução ótima

- A solução ótima da relaxação linear é $x^* = (\frac{20}{7}, 3, \frac{27}{7}, 0, 0) \notin \mathbb{Z}_+^5$.
- Portanto, usamos a primeira linha de (7), na qual a variável básica x_1 é fracionária.
- Isto gera o corte:

$$x_1 + \lfloor \frac{1}{7} \rfloor x_3 + \lfloor \frac{2}{7} \rfloor x_4 \leqslant \lfloor \frac{20}{7} \rfloor \ \Rightarrow \ x_1 \leqslant 2$$

Introduzindo uma variável de folga, obtemos:

Adicionando a variável s e o corte $s=-\frac{6}{7}+\frac{1}{7}x_3+\frac{2}{7}x_4$, podemos obter uma segunda formulação:

A solução ótima da relaxação linear para (8), produz $x = (2, \frac{1}{2}, 1, \frac{5}{2}, 0, 0)$.

A solução incumbente continua fracionária uma vez que x_2 e x_4 são fracionários.

A aplicação do corte de Gomory fracionário na segunda linha produz:

$$\begin{array}{lll} x_2 + \left\lfloor -\frac{1}{2} \right\rfloor x_5 + \left\lfloor 1 \right\rfloor s \leqslant \left\lfloor \frac{1}{2} \right\rfloor & \Rightarrow & x_2 - x_5 + s \leqslant 0 \\ & \Rightarrow & x_2 - x_5 + s + t = 0, \ t \geqslant 0 \\ & \Rightarrow & \left(\frac{1}{2} + \frac{1}{2} x_5 - s \right) - x_5 + s + t = 0 \\ & \Rightarrow & t - \frac{1}{2} x_5 = -\frac{1}{2}, \ t \geqslant 0 \end{array}$$

Após adicionarmos a variável $t\geqslant 0$ e o corte $t-\frac{1}{2}x_5=-\frac{1}{2}$, obtemos a solução abaixo para a relaxação linear:

A solução obtida é ótima pois os valores de todas as variáveis são inteiros. A solução ótima é $x^* = (2, 1, 2, 2, 1)$ cujo valor da função objetivo é $z^* = 7$.

Sumário

Algoritmo de planos de corte

Algoritmo de planos de corte com cortes de Gomory

Desigualdades disjuntivas

Desigualdades Disjuntivas

- ▶ Seja $X = X^1 \cup X^2$ com $X^i \subseteq \mathbb{R}^n_+$.
- ▶ Isto é, X é uma disjunção (união) de dois conjuntos X¹ e X².
- ▶ Alguns resultados importantes serão enunciados abaixo.

Desigualdades Disjuntivas

Proposição

Se $\sum_{j=1}^n \pi_j^i x_j \leqslant \pi_0^i$ é uma desigualdade válida para X^i , i=1,2, então a desigualdade

$$\sum_{j=1}^n \pi_j x_j \leqslant \pi_0$$

é válida para X se:

- $\blacktriangleright \pi_j \leqslant Min\{\pi_i^1, \pi_i^2\}$ para $j = 1, \ldots, n$; e
- $\blacktriangleright \ \pi_0 \geqslant Max\{\pi_0^1, \pi_0^2\}.$

Desigualdades Disjuntivas

Proposição

- ▶ Se $P^i = \{x \in \mathbb{R}^n_+ : A^i x \leq b^i\}$ para i = 1, 2 são poliedros não-vazios,
- ▶ então (π, π_0) é uma desigualdade válida para $conv(P^1 \cup P^2)$ se e somente se existem $u_1, u_2 \ge 0$ tal que:

$$\begin{array}{rcl} \boldsymbol{\pi}^T & \leqslant & \boldsymbol{u}_1^T \boldsymbol{A}^1 \\ \boldsymbol{\pi}^T & \leqslant & \boldsymbol{u}_2^T \boldsymbol{A}^2 \\ \boldsymbol{\pi}_0 & \geqslant & \boldsymbol{u}_1^T \boldsymbol{b}^1 \\ \boldsymbol{\pi}_0 & \geqslant & \boldsymbol{u}_2^T \boldsymbol{b}^2 \end{array}$$

Considere os poliedros:

$$P^{1} = \{x \in \mathbb{R}^{2} : -x_{1} + x_{2} \leq 1, \ x_{1} + x_{2} \leq 5\}$$

$$P^{2} = \{x \in \mathbb{R}^{2} : x_{2} \leq 4, -2x_{1} + x_{2} \leq -6,$$

$$x_{1} - 3x_{2} \leq -2\}$$

Fazendo $u_1=(2,1)$ e $u_2=(\frac{5}{2},\frac{1}{2},0)$ e depois aplicando a proposição acima obtemos:

$$u_1^T A^1 = \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 3 \end{bmatrix} \qquad u_1^T b^1 = 7$$

▶ Obtemos ainda:

$$u_2^T A^2 = \begin{bmatrix} \frac{5}{2} & \frac{1}{2} & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -2 & 1 \\ 1 & -3 \end{bmatrix} = \begin{bmatrix} -1 & 3 \end{bmatrix} \qquad u_2^T b^2 = 7$$

▶ Isto nos permite obter a desigualdade $-x_1 + 3x_2 \le 7$ válida para $P^1 \cup P^2$.

Figura: Desigualdades disjuntivas

- ► Especializando ainda mais, podemos nos restringir a problemas 0-1, onde:
 - $X = P \cap \mathbb{Z}^n \subseteq \{0,1\}^n$ e
 - $P = \{ x \in \mathbb{R}^n : Ax \leqslant b, 0 \leqslant x \leqslant 1 \}.$
- ▶ Seja $P^0 = P \cap \{x \in \mathbb{R}^n : x_i = 0\}.$
- ▶ Seja $P^1 = P \cap \{x \in \mathbb{R}^n : x_i = 1\}$ para algum $j \in \{1, \dots, n\}$.

Proposição

A designaldade (π, π_0) é válida para $conv(P^0 \cup P^1)$ se existe $u_i \in \mathbb{R}^m_+$, $v_i \in \mathbb{R}^n_+$, $w_i \in \mathbb{R}^1_+$ para i = 0, 1 tal que:

$$\begin{array}{rcl}
\pi^T & \leqslant & u_0^T A + v_0 + w_0 e_j \\
\pi^T & \leqslant & u_1^T A + v_1 - w_1 e_j \\
\pi_0 & \geqslant & u_0^T b + \mathbf{1}^T v_0 \\
\pi_0 & \geqslant & u_1^T b + \mathbf{1}^T v_1 - w_1
\end{array}$$

Prova

Aplique a proposição anterior com:

$$P^0 = \{ x \in \mathbb{R}^n_+ : Ax \leqslant b, x \leqslant 1, x_j \leqslant 0 \} e$$

▶
$$P^1 = \{x \in \mathbb{R}^n_+ : Ax \leq b, x \leq 1, -x_j \leq -1\}$$

Exemplo

Considere a seguinte instância do problema da mochila

Max
$$12x_1 + 14x_2 + 7x_3 + 12x_4$$

s.a: $4x_1 + 5x_2 + 3x_3 + 6x_4 \le 8$
 $x \in \mathbb{B}^4$

cuja solução linear ótima é $x^* = (1, 0.8, 0, 0)$.

- ▶ Uma vez que $x_2^* = 0.8$ é fracionário, escolhemos j = 2.
- ▶ Definimos P^0 e P^1 , e procuramos a desigualdade (π, π_0) que é violada conforme a proposição acima.
- ▶ Para isso, resolvemos um problema de programação linear maximizando $\pi^T x^* \pi_0$ sobre o poliedro que descreve os coeficientes das desigualdades válidas dadas pela proposição.

O problema de programação linear é dado por:

Max
$$1.0\pi_1 + 0.8\pi_2 - \pi_0$$

$$\begin{aligned} \textit{Max} \quad & 1.0\pi_1 + 0.8\pi_2 - \pi_0 \\ \textit{s.a} : \quad \left\{ \begin{array}{l} \pi_1 \leqslant 4u^0 + v_1^0 \\ \pi_1 \leqslant 4u^1 + v_1^1 \\ \end{array} \right. \\ \left\{ \begin{array}{l} \pi_2 \leqslant 5u^0 + v_2^0 + w^0 \\ \pi_2 \leqslant 5u^1 + v_2^1 - w^1 \\ \end{array} \right. \\ \left\{ \begin{array}{l} \pi_3 \leqslant 3u^0 + v_3^0 \\ \pi_3 \leqslant 3u^1 + v_3^1 \\ \end{array} \right. \\ \left\{ \begin{array}{l} \pi_4 \leqslant 6u^0 + v_4^0 \\ \pi_4 \leqslant 6u^1 + v_4^1 \\ \end{array} \right. \\ \left\{ \begin{array}{l} \pi_0 \geqslant 8u^0 + v_1^0 + v_2^0 + v_3^0 + v_4^0 \\ \pi_0 \geqslant 8u^1 + v_1^1 + v_2^1 + v_3^1 + v_4^1 - w^1 \\ \end{array} \right. \\ \left. \begin{array}{l} u^0, u^1, v^0, v^1, w^0, w^1 \geqslant 0 \end{array} \right. \end{aligned}$$

- Objetivando tornar o espaço de soluções factíveis limitado, devemos introduzir um critério de normalização.
- Duas possibilidades são:
 - a) $\sum_{i=1}^n \pi_i \leqslant 1$
 - b) $\pi_0 = 1$
- Obtemos então a seguinte desigualdade de corte:

$$x_1+\frac{1}{4}x_2\leqslant 1.$$

- ▶ Para P^0 , a desigualdade é uma combinação das restrições $x_1 \le 1$ e $x_2 \le 0$ com $v_1^0 = 1$ e $w^0 = \frac{1}{4}$ respectivamente.
- ▶ Para P^1 , ela é uma combinação da desigualdade $4x_1 + 5x_2 + 3x_3 + 6x_4 \le 8$ e $-x_2 \le -1$ com $u^1 = \frac{1}{4}$ e $w^1 = 1$, respectivamente.

Algoritmo de Planos de Corte, Cortes de Gomory e Cortes Disjuntivos

- ▶ Fim!
- Obrigado pela presença