

Librerías y funciones de análisis estadístico

Tema: Estadística inferencial

Guía de referencia Estadística Inferencial

Importar las librerías

from scipy import stats import statsmodels.api as sm

Funciones básicas - SciPv

stats	sem			
Error	estándar	de	la	muestra
stats	levene			
D - I				

Prueba de Levene stats.probplot

Cuantiles de gráfica P-P

Funciones básicas - statsmodels

<pre>sm.stats.proportion_confint</pre>	Intervalo de confianza de una proporción			
<pre>sm.stats.DescrStatsW(s).zconfint_me</pre>	ean() Intervalo de confianza de una media			
sm.stats.binom_test	Test de un experimento de Bernoulli			
sm.stats.proportions_ztest	z-test de una proporción			
sm.stats.ztest z-test de una media				
sm.stats.ttest_ind	t-test de muestras independientes			
<pre>sm.stats.CompareMeans(x,y).ztest_in</pre>	nd() z-test de muestras independientes			
sm.graphics.gofplots.qqplot	Gráfica q-q			

Distribuciones de probabilidad

D:	istri	huci	ón I	T de	Stud	lont

stats.distributions.t.cdf	Función de densidad acumulada
stats.distributions.t.ppf	Función de punto porcentual

Distribución normal

stats.distributions.norm.cdf	Función de densidad acumulada
stats.distributions.norm.ppf	Función de punto porcentual

Tests paramétricos

stats.ttest_1samp	t-test de la media de 1 muestra
stats.ttest_ind	t-test de 2 muestras independientes
stats.ttest_rel	t-test de 2 muestras emparejadas
stats.f_oneway	ANOVA unidireccional

Tests no paramétricos

stats.mannwhitneyu	Test de Mann-Whitney
stats.wilcoxon	Test de Wilcoxon
stats.kruskal	Test de Kuskal-Wallis
stats.friedmanchisquare	Test de Friedman

Tema: Modelado estadístico

Guía de referencia: Correlación y regresión

Importar las librerías

import pandas as pd
import numpy as np
from scipy import stats
import statsmodels.api as sm
<pre>import statsmodels.formula.api as smf</pre>
from sklearn.linear_model import
LinearRegression

Correlación básica

```
np.corrcoef
pd.DataFrame.corr
pd.Series.corr
pd.DataFrame.corrwith
```

Correlación con significancia

Correlaciones con p-valor

stats.pearsonr	r	de	Pearson
stats.spearmanr	ρ	de	Spearman
stats.kendalltau	τ	de	Kendall

Regresión lineal simple

```
Regresión lineal simple con SciPy
pend, interc, corr, p_valor,
error_std = stats.linregress(x, y)
```

Modelo usando el método mínimos cuadrados ordinarios (OLS) model = sm.OLS(y, x)

Regresión con statsmodels formula

Ejecución del modelo de regresión

Calcula los parámetros del modelo	Muestra los datos del modelo
<pre>model.fit()</pre>	<pre>model.summary()</pre>
Hacer predicciones usando datos puevos	nredictions = model predict(v puevos

Regresión lineal múltiple

Regresión lineal con scikit-learn

lm= LinearRegression()

Calcular los parámetros del modelo

outoutur too pur	anoti oo aot moaoto
lm.fit(x, y)	Ajustar el modelo
lm.coef_	Coeficientes
<pre>lm.intercept_</pre>	Intercepto
<pre>lm.score(x, y)</pre>	Coeficiente
, , ,	de determinación

Regresión logística

Regresión logística model = sm.GLM.from_formula ("V_DEP ~ V_IND1", family=sm.families.Binomial(), data=da)

```
Regresión logística con 2
variables independientes
model = sm.GLM.from_formula
( "V_DEP ~ V_IND1 + V_IND2",
family = sm.families.Binomial(),
data = da)
```

Regresión lineal con scikit-learn

Hacer predicciones usando nuevos datos
y_pred = lm.predict(X_nuevos)