Théorie des Langages 1

Cours 4: minimisation

L. Rieg

Grenoble INP - Ensimag, 1re année

Année 2022-2023

L. Rieg (Ensimag 1A)

Théorie des Langages 1

Année 2022-2023

1 / 21

De la déterminisation à la minimisation : exercice

On considère le langage

 $L = \{w \in V^* \mid w \text{ contient le motif } abba\}$

Voici un automate non-déterministe qui le reconnaît :

Construire un AFD (complet) équivalent.

L. Rieg (Ensimag 1A)

Théorie des Langages

nnée 2022-2023

0 / 01

Solution

Autre illustration de la minimisation

Construire un AFD complet pour $L = (\{0\}^* \{1\}^*)^* \{0,01\}^* \{0\}^+$.

L. Rieg (Ensimag 1A)

L. Rieg (Ensimag 1A) Théorie des Langages 1 Année 2022-2023 3 / 21

Théorie des Langages 1

Année 2022-2023

Illustration (suite)

Exercice: On peut montrer que $L = \{0,1\}^* \{0\}$.

Les deux automates déterministes construits sont équivalents.

Définition (Minimalité)

Un AFD complet A est minimal si tout AFD complet équivalent à A a au moins autant d'états que A.

Cet automate minimal est unique au renommage des états près.

Question : comment construire de façon systématique un AFD minimal?

L. Rieg (Ensimag 1A)

Théorie des Langages

Année 2022-2023

5 / 21

Principe de construction

On peut facilement « fusionner » certains états.

Exemple : $L = \{ab, ba\} \{a, b\}^*$

L. Rieg (Ensimag 1A)

héorie des Langages 1

Année 2022-2023

6/2

Généralisation

Définition (Équivalence de Nerode)

Soit $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ un AFD complet.

Deux états $p, q \in Q$ sont équivalents dans A si et seulement si

$$\forall w \in V^*$$
,

On note alors $p \equiv_A q$, ou simplement $p \equiv q$.

Proposition

 $\textit{Posons } A_p \stackrel{\textit{def}}{=} \langle Q, V, \delta, \{p\} \,, F \rangle \,\, \text{et } A_q \stackrel{\textit{def}}{=} \langle Q, V, \delta, \{q\} \,, F \rangle.$

On a alors : $p \equiv_A q$ si et seulement si A_p et A_q sont équivalents.

Exemple

L. Rieg (Ensimag 1A)

Théorie des Langages

Année 2022-2023

7 / 21

L. Rieg (Ensimag 1A)

Théorie des Langages

Année 2022-2023

8/2

Définition de l'automate minimal

Proposition

- 1. \equiv_A est une relation d'équivalence. On note [p] (ou $[p]_A$) la classe d'équivalence de p.
- 2. Si $p \equiv_A q$, alors $\forall w \in V^*$, $\delta^*(p,w) \equiv_A \delta^*(q,w)$. Si $[p]_A = [q]_A$ alors $\forall w \in V^*$, $[\delta^*(p,w)]_A = [\delta^*(q,w)]_A$.

Preuve: exercice.

Définition

Soit $A=\langle Q,V,\delta,\{q_0\}\,,F\rangle$ un AFD complet et initialement connecté. On définit $\mu(A)=\langle Q_\mu,V,\delta_\mu,\{[q_0]\}\,,F_\mu\rangle$, où :

- ullet Q_{μ} est l'ensemble des classes d'équivalence des états de Q;
- ullet F_{μ} est l'ensemble des classes d'équivalence des états de F ;
- $\forall [p] \in Q_{\mu}$, $\forall a \in V$, $\delta_{\mu}([p], a) = [\delta(p, a)]$.

L. Rieg (Ensimag 1A)

Théorie des Langages

Année 2022-2023

9 / 21

Exemple

L. Rieg (Ensimag 1A)

héorie des Langages 1

Année 2022-2023

.

Construction d'un automate minimal

Soit un AFD complet $A = \langle Q, V, \delta, \{q_0\}, F \rangle$ qu'on souhaite minimiser.

- 1. Supprimer les états inaccessibles de A
- 2. Déterminer efficacement la relation \equiv Par approximations successives (cf. $Acc_{\varepsilon}(p)$)
- 3. Construire l'automate minimal : $\langle Q_{\mu}, V, \delta_{\mu}, \{ [q_0] \}, F_{\mu} \rangle$

Définition

Pour $k \ge 0$, on définit la relation $\equiv_k \operatorname{sur} Q$ par : $p \equiv_k q$ si et seulement si p et q sont équivalents pour tous les mots de longueur au plus k.

Formellement:

 $\forall w \in V^*, \text{ si } |w| \leq k, \text{ alors } (\delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F)$

Si $p \equiv_k q$, alors les automates A_p et A_q reconnaissent exactement les mêmes mots de longueur au plus k.

Calcul de ≡

Proposition

On a les propriétés suivantes :

L. Rieg (Ensimag 1A)

$$\equiv_{k+1} \subseteq \equiv_k \equiv \bigoplus_{k>0} \equiv_k$$

Proposition (Stabilisation de la suite \equiv_k)

Si A est un AFD à n états, alors il existe $k \le n$ tel que les relations \equiv_k , \equiv_{k+1} et \equiv sont identiques.

Donc, si on sait calculer les relations \equiv_k efficacement, on saura en déduire la relation \equiv .

L. Rieg (Ensimag 1A) Théorie des Langages 1 Année 2022-2023 11/21

héorie des Langages 1

Année 2022-2023

Calcul de \equiv (suite)

Proposition

On a les propriétés suivantes :

- 1. $p \equiv_0 q$ si et seulement si $p \in F \Leftrightarrow q \in F$
- 2. $\forall k \geq 0$, $p \equiv_{k+1} q$ si et seulement si

 $p \equiv_k q$ et $\forall a \in V, \ \delta(p, a) \equiv_k \delta(q, a)$

Preuve : exercice

Conséquences

L. Rieg (Ensimag 1A)

Exemple

Automate de la diapo 4

Exemple 2

Exercice

Minimiser l'automate suivant :

L. Rieg (Ensimag 1A)

Année 2022-2023

17 / 21

Exercice (suite)

L. Rieg (Ensimag 1A)

Théorie des Langages :

Année 2022-2023

18 / 21

Récapitulatif

1. Suppression des ε -transitions

2. Déterminisation

3. Minimisation

Bonus : exercice de déterminisation

On considère le langage

 $L = \{w \in \{a,b\}^* \mid \text{le 3e symbole en partant de la fin est un } b\}$

Un automate non-déterministe qui le reconnaît est :

Construire un AFD (complet) équivalent.

Solution

L. Rieg (Ensimag 1A) Théorie des Langages 1 Année 2022-2023 20 / 21 L. Rieg (Ensimag 1A) Théorie des Langages 1 Année 2022-2023 21 / 21