01RAD - přednáška 6, 15.10.2024

VĚTA 3.5

Nechť $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$ je LM (**), kde $h(\mathbf{X}) = m+1$ a $\mathbf{e} \sim N_n(\mathbf{0}, \sigma^2 \mathbf{I}_n)$. Potom

- 1) $\hat{\beta}$ a s_n^2 jsou nezávislé náhodné veličiny,
- 2) $(n-m-1)\frac{s_n^2}{\sigma^2} \sim \chi^2(n-m-1)$,
- 3) jestliže $v_i = (\boldsymbol{X}^T \boldsymbol{X})_{ii}^{-1}$, potom $T_i = \frac{\widehat{\beta}_i \beta_i}{s_n \sqrt{v_i}} \sim t(n-m-1)$.
- 4) Nechť ${m C} \in \mathbb{R}^{r,m+1}$ takové, že $h({m C}) = r$. Potom kvadratická forma

$$\frac{q}{\sigma^2} = \frac{(\widehat{\beta} - \beta)^T \mathbf{C}^T \left[\mathbf{C} (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{C}^T \right]^{-1} \mathbf{C} (\widehat{\beta} - \beta)}{\sigma^2} \sim \chi^2(r).$$

Důkaz.

Výsledky z LA:

• Spektrální rozklad matice:

 $\mathbf{A}_{n \times n}$ symetrická matice \Rightarrow existuje ortogonální matice \mathbf{Q} a diagonální matice $\mathbf{\Lambda}$ tak, že $\mathbf{A} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^T$, sloupce \mathbf{Q} jsou ON vlastní vektory matice \mathbf{A} a diagonální prvky matice $\mathbf{\Lambda}$ jsou jim odpovídající vlastní čísla.

• $A_{n \times n}$ idempotentní matice \Rightarrow vlastní čísla jsou pouze 0 nebo 1 a h(A) = tr(A)

Vlastnosti vektoru reziduí $\hat{m{e}}$

VĚTA 3.6

Uvažujme model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \mathbf{e}$, kde e_1, \dots, e_n jsou nekorelované a $e_i \sim (0, \sigma^2)$. Nechť $\widehat{\boldsymbol{\beta}}$ je OLS $\boldsymbol{\beta}$ a $\widehat{\boldsymbol{e}} = \mathbf{Y} - \widehat{\mathbf{Y}}$ je vektor reziduí. Potom platí:

- 1) $E \hat{\boldsymbol{e}} = 0$, $Cov(\hat{\boldsymbol{e}}) = \sigma^2 (\boldsymbol{I}_n \boldsymbol{H})$,
- 2) pokud navíc $\mathbf{e} \sim N_n(0, \sigma^2 \mathbf{I}_n)$, potom $\hat{\mathbf{e}} \sim N_n(\mathbf{0}, \sigma^2(\mathbf{I}_n \mathbf{H}))$,
- 3) jestliže má model intercept, tj. $\beta_0 \neq 0$, potom $\sum_{i=1}^n \widehat{e}_i = 0$,
- 4) $\sum_{i=1}^{n} \widehat{e}_i \widehat{y}_i = 0.$

DůSLEDEK: Použitím bodů 3) a 4) dostaneme (stejně jako u jednorozměrné regrese)

$$\sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} (\widehat{y}_i - \overline{y})^2 + \sum_{i=1}^{n} (y_i - \widehat{y}_i)^2$$

tedy

SST = SSR + SSE

(v modelu s interceptem)

3.2 Gauss-Markov theorem

- e_i i.i.d $N(0, \sigma^2) \Rightarrow \text{OLS } \widehat{\beta}$ je MLE, tzn. je eficientní (MVUE par. β)
- nenormální chyby:
 - ukážeme, že OLS $\widehat{\beta}$ je BLUE (best linear unbiased estimator) par. β (za jistých podmínek)
 - mohou ale existovat lepší lineární vychýlené odhady nebo nelineární odhady

Definice 3.1

Nechť β je vektor regresních parametrů v LM. Řekneme, že $\widehat{\beta}$ je lineární odhad β , jestliže každé $\widehat{\beta}_j$ je LK pozorování Y_i , $i=1,\ldots,n$, tedy

$$\widehat{\beta}_j = \sum_{i=1}^n a_{ij} Y_i, \quad j = 0, \ldots, m.$$

V maticovém zápisu $\widehat{\beta} = \mathbf{AY}$, kde $\mathbf{A}^T = (a_{ii}), i = 1, ..., n, j = 0, ..., m$.

Poznámka: Pokud v modelu (**) platí $h(\mathbf{X}) = m + 1$, potom je OLS $\widehat{\boldsymbol{\beta}}$ lineární, neboť $\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$.

$V \check{\mathrm{E}} \mathrm{TA} \ 3.7 \ (\mathsf{Gauss\text{-}Markov})$

Uvažujme model $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{e}$, kde matice \boldsymbol{X} má plnou hodnost, e_1, \ldots, e_n jsou nekorelované a $e_i \sim (0, \sigma^2)$. Potom OLS odhad $\widehat{\boldsymbol{\beta}}$ je BLUE parametru $\boldsymbol{\beta}$.

Důkaz.

3.3 Testování modelu - tabulka ANOVA

Celkový F-test (overall F-test)

- Je model statisticky signifikantní? Tj. je alespoň jeden z koeficientů β_1, \ldots, β_m nenulový?
- Mohli bychom testovat jednotlivé koeficienty $H_0: \beta_i = 0$ pomocí alternativy t-testu.
- ullet Celková chyba I. druhu by takto ale mohla být velká, pokud máme hodně proměnných. Museli bychom hodně snížit lpha pro jednotlivé testy, což zvýší pravděpodobnost chyby II. druhu
- Navíc je zde problém multikolinearity, jejíž jedním efektem jsou velké stand. chyby odhadů. To může vést k akceptování všech koeficientů jeho 0, i když je model celkově významný.

Bylo by dobré mít jednu statistiku pro test

$$H_0: \beta_1 = \beta_2 = \cdots = \beta_m = 0 \times H_1: \exists i \in \widehat{m}, \beta_i \neq 0$$

ANOVA přístup pro jedn. regresi naznačuje, že statistika

$$F = \frac{\frac{SSR}{m}}{s_n^2}$$

by mohla být užitečná (vyplyne i z obecnějších přístupů k testování později)

Označení: $\overline{x}_j = \frac{1}{n} \sum_{i=1}^{n} x_{ij}$ – průměr j-tého sloupce matice \boldsymbol{X} ,

$$\overline{\boldsymbol{X}} = \begin{pmatrix} \overline{x}_0 & \overline{x}_1 & \cdots & \overline{x}_m \\ \vdots & \vdots & & \vdots \\ \overline{x}_0 & \overline{x}_1 & \cdots & \overline{x}_m \end{pmatrix}_{n \times m+1} (\boldsymbol{X}_c)_{ij} = x_{ij} - \overline{x}_j, \quad i = 1, \dots, n, \ j = 1, \dots, m$$

VĚTA 3.8

V modelu $m{Y} = m{X}m{eta} + m{e}$ tvaru (**), kde $h(m{X}) = m+1$, e_i jsou nekorelované a $e_i \sim (0, \sigma^2)$, $i=1,\ldots,n$, platí $\mathsf{E}\left[\frac{\mathit{SSR}}{\mathit{m}}\right] = \sigma^2 + \frac{\beta^T(\mathit{X} - \overline{\mathit{X}})^T(\mathit{X} - \overline{\mathit{X}})\beta}{\mathit{m}} = \sigma^2 + \frac{\beta_s^T \mathit{X}_c^T \mathit{X}_c \beta_s}{\mathit{m}},$

Věta z PRA: Nechť
$$Z = \mathbf{Y}^T \mathbf{A} \mathbf{Y}$$
 je kvadratická forma a nechť $\mathbf{E} \mathbf{Y} = \mu$ a Cov $\mathbf{Y} = \Sigma$. Potom platí:

$$\mathsf{E} Z = \mathsf{tr}(\mathbf{A} \Sigma) + \mathbf{\mu}^{\mathsf{T}} \mathbf{A} \mathbf{\mu}.$$

Poznámka 3.5

- pokud $\beta_s = 0$, potom $\mathsf{E}\left(\frac{\mathit{SSR}}{\mathit{m}}\right) = \sigma^2 = \mathsf{E} s_n^2$, $\beta_s \neq 0$ implikuje, že $\mathsf{E}\left(\frac{\mathit{SSR}}{\mathit{m}}\right) > \sigma^2$
- ullet tedy velké hodnoty $F=rac{SSR/m}{s^2}$ budou znamenat zamítnutí $H_0:eta_s=0$