

Taller "Protocolo MQTT para Internet de las Cosas con ESP8266 y Node-RED"

Ing. Kevin Medrano Ayala Arduino Enthusiast ARDUINO DAY 2021

Temario

Introducción

Integración del protocolo MQTT para entrada y salida de elementos (Sensores-Actuadores), configuración de MQTT Servidor y Cliente, Interface Web para control y supervisión.

Consideraciones

- Condiciones eléctricas,
 consumo de energía.
- Buenas practicas de programación
- Aislamiento eléctrico

Condiciones Eléctricas

Fuente de Alimentación

Datasheet ESP8266 - 5.1

Table 5-1. Electrical Characteristics

Parameters		Conditions	Min	Typical	Max	Unit
Operating Temperature Range		-	-40	Normal	125	°C
Maximum Soldering Temperature		IPC/JEDEC J- STD-020	-	-	260	°C
Working Voltage Value		-	2.5	3.3	3.6	V
l/O	V _{IL}	-	-0.3	-	0.25 V _{IO}	- V
	VIH		0.75 V _{IO}		3.6	
	VoL	-	-	-	0.1 V _{IO}	
	VoH		0.8 V _{IO}		-	
	I _{MAX}	-	-	-	12	mA
Electrostatic Discharge (HBM)		TAMB = 25 °C	-	-	2	KV
Electrostatic Discharge (CDM)		TAMB = 25 °C	-	-	0.5	KV

Buenas Practicas de Programación

Metodología Orientada a Objetos (POO)

Control de Versiones del Proyecto (GitHub)

Comentar el Código (Solo para documentación)

No Repetir Código (DRY)

Documentación (Fallas, Pruebas, etc.)

Facilitar la corrección y escalabilidad Facilitar el testeo, localización y resolución de problemas

Aislamiento Eléctrico

Aislamiento óptico

Relé Comercial sin Aislamiento

Relé Comercial con Aislamiento

Relé Industrial con Aislamiento

Protocolo MQTT

Protocolo MQTT

Protocolo de comunicación M2M

Basado en TCP/IP

Calidad de servicio (QoS)

Seguridad SST/TLS y autentificación usuario y contraseña

Sencillo y ligero

Herramientas

Hardware

- ➤ Módulo ESP8266 o equivalente
- Sensor DHT11 o equivalente (DHT22)
- 1 Pulsador NO
- 1 Resistencia 220 Ohm
- 1 Led de 2-3 V
- Fuente de Alimentación de 5V o 3.3V
- Protoboard y cables de conexión

Software

Desarrollo

www.linkedin.com/in/kmedrano101/

https://github.com/Kmedrano101/Arduino/tree/main/Taller

Kevin.ejem18@gmail.com

day.arduino.cc #ArduinoD21

