Auction Matching Algorithm

Anna Bachstein and Benjamin Case

Auction Matching Algorithm

Anna Bachstein and Benjamin Case

Clemson University

Algorithm

Auction Matching Algorithm

Anna
Bachstein and
Benjamin
Case

Input Weighted bipartite graph with non negative integer weights.

Output Maximum weight matching such that no bidder and no item appear more than once.

Algorithm

```
Initialization: For each good j set p_i \leftarrow 0 and owner<sub>i</sub> \leftarrow null
Set queue Q for all bidders i
Fix \delta = \frac{1}{n_g + 1} where n_g is the number of goods
algorithm: While Q is not empty do:
i \leftarrow Q.deque()
Find j that maximizes w_{ii} - p_i
If w_{ii} - p_i \ge 0 then:
        Enque current owner; into Q
        owner<sub>i</sub> \leftarrow i
       p_i \leftarrow p_i + \delta
end
```

Auction Matching Algorithm

Bachstein and Benjamin Case

Correctness

Auction Matching Algorithm

Anna Bachstein and Benjamin Case

Defintion We say the bidder i is δ -happy if one of the following is true

- 1. For some good j, owner $_j=i$ and for all good j' we have $\delta+w_{ij}-p_j\geq w_{ij}-p_{j'}$
- 2. For no good j does it hold that owner $_j = i$ and for all goods j we have $w_{ij} \le p_j$

Correctness

Matching Algorithm Anna Bachstein and

Auction

- Anna Bachstein and Benjamin
- The key loop invariant is that all bidders, except that are in Q are δ happy. This is true since Q is initialized to all bidders.
- For the bidder i dequeued in an iteration, the loop exactly chooses the j that makes them happy, if one exists, and the δ -error is due to the final increase in p_j .
- In other words any increase in p_j for j that is not owned by by i' does not hurt the inequality while an increase for the j that was owned by i' immediately enqueues i'

Lemma: If all bidders are δ -happy then every matching M' we have that $n\delta + \sum_{i=owner_i} w_{ij} \geq \sum_{(i,j)\in M'} w_{ij}$

- Fix bidder i, let j denote the good that they got from the algorithm and j' be what he got from the matching M'
- Since i is happy we have that $\delta + w_{ij} p_j \ge w_{ij'} p_{j'}$ (case 2 in definition). Thus over all i we get $\sum_{i=owner_j} (\delta + w_{ij} p_j) \ge \sum_{(ij') \in M'} (w_{ij'} p_{j'})$

Lemma

Auction Matching Algorithm

Anna Bachstein and Benjamin

- If some j does not appear of the left-hand side then it was never picked by the algorithm so $p_j = 0$.
- So when we subtract $\sum_j p_j$ from both sides, the left sides becomes the lefthand side of the inequality in the lemma and same with right-hand side.

Auction

- For each main loop execution: either p_j is increased or the number of bidders in Q is decreased by one (and never increased)
- No p_j can increase above $C = \max_{i,j} w_{i,j}$
- Thus total number of main loop executions is $Cn/\delta = O(Cn^2)$
- Each loop takes O(n) time (trivially)
- Thus $O(Cn^3)$, which matches best known on dense graphs. For sparse graphs, heaps can be used to keep track of the max and achieve a speedup

- nodes 12, edges 14, max cost 20 3.95 ms \pm 734 μ s per loop (mean \pm std. dev. of 7 runs, 100 loops each)
- (asymmetric) nodes 12, edges 14, max cost 20, source 4, sink 6 2.06 ms \pm 402 μ s per loop (mean \pm std. dev. of 7 runs, 1000 loops each)
- nodes 200, edges 1400, max cost 10000 5min 19s $3.66 \pm \mu$ s per loop (mean \pm std. dev. of 7 runs, 1 loop each)

References

Auction Matching Algorithm

Anna Bachstein and Benjamin

- Demange, G., Gale, D., and Sotomayor, M. (1986). Multi-Item Auctions. Journal of Political Economy, 94(4), 863-872.
- Auction Algorithm for Bipartite Matching, 07.13.2009,
 Word Press