確率過程

.....

 $X = \{X_t \mid t \in \mathbb{Z}\}$: 時系列

 $\forall n \in \mathbb{N} , \ \forall t_i \in \mathbb{Z} \ (1 \le i \le n) , \ \forall k \in \mathbb{Z}$

強定常性

 (X_{t_1},\ldots,X_{t_n}) と $(X_{t_1+k},\ldots,X_{t_n+k})$ が同じ分布を持つ時、時系列 X は強定常性を持つという。

弱定常性

- $\forall X_i \in X$ に対して期待値 $E[X_i]$ が一定である。 $E[X_i] = \mu$
- $\forall X_i, X_{i+k} \in X$ に対して共分散 $Cov(X_i, X_{i+k})$ は k についてのみ依存する。 $Cov(X_i, X_{i+k}) = \sigma_k$

上記の2つを満たす時、時系列Xは弱定常性を持つという。

任意の確率過程 $\forall X_i, X_j \in X$ に対して共分散 $Cov[X_i, X_j]$ が存在する場合、時系列 X が強定常性を持つのなら弱定常性も持つ。

...

X が強定常性を持つので、 $\forall n \in \mathbb{N}$ に対して (X_{t_1},\ldots,X_{t_n}) と $(X_{t_1+k},\ldots,X_{t_n+k})$ が同じ分布である。

この為、n=1 の場合、 (X_{t_1}) と (X_{t_1+k}) が同じ分布である。これにより $E[X_{t_1}]=E[X_{t_1+k}]$ であるが、 $\forall k\in\mathbb{Z}$ であるので全ての期待値が一致する。

n=2 の場合、 (X_{t_1},X_{t_2}) と (X_{t_1+k},X_{t_2+k}) が同じ分布である。この為、 $Cov(X_{t_1},X_{t_2})=Cov(X_{t_1+k},X_{t_2+k})$ である。これにより X_{α},X_{β} の共分散はこれを k だけスライドさせた $X_{\alpha+k},X_{\beta+k}$ の共分散と一致する。つまり、確率過程 X_{α},X_{β} の添字の差 $\beta-\alpha$ の値に対して共分散が定まる。

これにより、期待値と共分散の条件が弱定常性を満たす。