IB IL AI 8/SF...

Inline Terminal With Eight Analog Input Channels

4x

AUTOMATIONWORX

Data Sheet 6226_en_02

© PHOENIX CONTACT - 10/2006

1 Description

The terminal is designed for use within an Inline station. It is used to acquire analog voltage or current signals.

Features

- Eight analog single-ended signal inputs for the connection of either voltage or current signals
- Connection of sensors in 2-wire technology
- Various current and voltage measuring ranges
- Channels are configured independently of one another using the bus system
- Measured values can be represented in five different formats
- 16-bit analog/digital converter
- Process data multiplex mode
- Diagnostic indicators

This data sheet is only valid in association with the IB IL SYS PRO UM E user manual or the Inline system manual for your bus system.

Make sure you always use the latest documentation. It can be downloaded at www.download.phoenixcontact.com.

A conversion table is available on the Internet at www.download.phoenixcontact.com/general/7000 en 00.pdf.

This data sheet is valid for all products listed on the following page:

Table of Contents

1	Description			
2	Ordering Data			
3	Technical Data			
4				
5	Installation Instructions	7		
6	Internal Circuit Diagram	8		
7	Electrical Isolation			
8	Connection Notes	Ç		
9	Connection Examples 9.1 Connection of Active Sensors 9.2 Connection of Passive Sensors			
10	Programming Data/Configuration Data	10		
11	Process Data	11		
12	Process Data Output Words OUT[0] and OUT[1]	13		
13	Process Data Input Words IN[0] and IN[1]	15		
14	14.1 "IB IL" Format			
	14.5 Examples of Measured Value Representation in Various Data Formats			
15		00		

16	Startu	p Options	31
	16.1	Standard Method 1	
	16.2	Standard Method 2	34
	16.3	Special Methods	37
	16.4	Advantages of Standard Methods Over Special Methods	
17	Applic	ation Notes	38
	17.1	Precision DC Measurements	38
	17.2	Closed-Loop Control Tasks	38
	17.3	Signal Scanning or Fast, Sudden Signals	39
	17.4	Linked Voltages	39
	17.5	Current Loops	40
	17.6	Passive Sensors	40
18	Tolera	nce and Temperature Response	41

2 Ordering Data

Products

Description	Туре	Order No.	Pcs./Pck.
Inline terminal with eight analog input channels; transmission speed of 500 kbps; complete with accessories (connectors and labeling fields)	IB IL AI 8/SF-PAC	2861412	1
Inline terminal with eight analog input channels; transmission speed of 500 kbps; without accessories	IB IL AI 8/SF	2727831	1
Inline terminal with eight analog input channels; transmission speed of 2 Mbps; complete with accessories (connectors and labeling fields)	IB IL AI 8/SF-2MBD-PAC	2862042	1
Inline terminal with eight analog input channels; transmission speed of 2 Mbps; without accessories	IB IL AI 8/SF-2MBD	2855648	1

Four of the listed connectors are needed for the complete fitting of the IB IL AI 8/SF and IB IL AI 8/SF-2MBD terminals.

Accessories

user manual

Description	Туре	Order No.	Pcs./Pck.
Connector with shield connection for the connection of two cables	IB IL SCN 6-SHIELD-TWIN	2740245	5
Documentation			
Description	Туре	Order No.	Pcs./Pck.
"Configuring and Installing the INTERBUS Inline Product Range" user manual	IB IL SYS PRO UM E	2743048	1

IB IL SYS INST UM E

DB GB IBS SYS ADDRESS

2698737

9000990

3 Technical Data

"INTERBUS Addressing" data sheet

"Automation Terminals of the Inline Product Range"

General Data	
Housing dimensions (width x height x depth)	48.8 mm x 120 mm x 71.5 mm
Weight	213 g (with connectors), 125 g (without connectors)
Operating mode	Process data mode with 2 words
Connection method for sensors	2-wire technology
Ambient temperature (operation)	-25°C to +55°C
Ambient temperature (storage/transport)	-25°C to +85°C
Permissible humidity (operation/storage/transport)	10% to 95%, according to DIN EN 61131-2
Permissible air pressure (operation/storage/transport)	70 kPa to 106 kPa (up to 3000 m above sea level)
Degree of protection	IP20 according to IEC 60529
Protection class	Class 3 according to VDE 0106, IEC 60536
Connection data for Inline connector	
Connection method	Spring-cage terminals
Conductor cross section	0.2 mm ² to 1.5 mm ² (solid or stranded), 24 - 16 AWG
Interface	
Local bus	Data routing
Transmission Speed	
IB IL AI 8/SF, IB IL AI 8/SF-PAC	500 kbps
IB IL AI 8/SF-2MBD, IB IL AI 8/SF-2MBD-PAC	2 Mbps

Power Consumption	(500 kbps)
--------------------------	------------

Communications power U_L 7.5 V DC

Current consumption from $\rm U_L$ 48 mA (typical)/55 mA (maximum)

I/O supply voltage U_{ANA} 24 V DC

Current consumption at U_{ANA} 30 mA (typical)/35 mA (maximum)

Total power consumption 1500 mW (typical)

Power Consumption (2 Mbps)

Communications power U₁ 7.5 V DC

Current consumption from U_L 68 mA (typical)/85 mA (maximum)

I/O supply voltage U_{ANA} 24 V DO

Current consumption at U_{ANA} 24 mA (typical)/38 mA (maximum)

Total power consumption 1086 mW (typical)

Supply of the Module Electronics and I/O Through the Bus Terminal/Power Terminal

Connection method Potential routing

Analog Inputs

Measured value representation

Number 8 analog single-ended inputs

See tables in Section "Formats for the Representation of Measured Values"

on page 18

In the following formats:

IB IL (15 bits with sign bit)
IB ST (12 bits with sign bit)
IB RT (15 bits with sign bit)
Standardized representation (15 bits with sign bit)

PIO (16 bits)

Please read the notes on page 19 and page 26 on measured value representation in "IB IL" and "standardized representation" format.

Digital filtering (mean-value generation)

None or over 4, 16 or 32 measured values

Default setting: over 16 measured values

Conversion time of the A/D converter 10 µs, maximum Process data update of the channels Bus synchronous

Firmware runtime depending on the command

Signals/resolution in the process data word (quantization)

The firmware runtime contains the times for the signal acquisition, signal conditioning, mean-value generation, standardization, and transfer of measured values to the process data register.

– 0x00 _{hex}	< 800 μs
- 5x00 _{hex}	< 850 μs
- 7000 _{hex} /7100 _{hex}	< 1500 μs
- 7400 _{hex} /7500 _{hex} /7600 _{hex} /7700 _{hex}	< 1300 μs

Analog Input Stages

Voltage Inputs

Input resistance	240 kΩ, minimum
Characteristics of the input filters (input stage)	1st order
Limit frequency (-3 dB) of the input filters	3.5 kHz
Behavior on sensor failure	Goes to 0 V
Maximum permissible voltage between analog voltage inputs and an analog reference potential or between two voltage inputs	50 V

Analog Input Stages (Continued)

Current Inputs

•	
Input resistance	25 Ω (shunt)
Limit frequency (-3 dB) of the input filters	3.5 kHz
Behavior on sensor failure	Goes to 0 mA or 4 mA
Maximum permissible voltage between analog current inputs and an analog reference potential or between two current inputs	±2.5 V (corresponds to 100 mA via the shunts)
Maximum permissible current in every input	+100 mA

Safety equipment

Surge voltage and overcurrents 100% overload, maximum

Electrical Isolation/Isolation of the Voltage Areas

To provide electrical isolation between the logic level and the I/O area, it is necessary to supply the station bus coupler and the sensors connected to the analog input terminal described here from separate power supply units. Interconnection of the power supply units in the 24 V area is not permitted.

Common Potentials

The 24 V main voltage, 24 V segment voltage, and GND have the same potential. FE is a separate potential area.

Separate Potentials in the System Consisting of Bus Terminal/Power Terminal and I/O Terminal

,	
- Test Distance	- Test Voltage
5 V supply incoming remote bus/7.5 V supply (bus logic)	500 V AC, 50 Hz, 1 min.
5 V supply outgoing remote bus/7.5 V supply (bus logic)	500 V AC, 50 Hz, 1 min.
7.5 V supply (bus logic)/24 V supply U _{ANA} /I/O	500 V AC, 50 Hz, 1 min.
7.5 V supply (bus logic), 24 V supply U _{ANA} /functional earth ground	500 V AC, 50 Hz, 1 min.
I/O/functional earth ground	500 V AC, 50 Hz, 1 min.

Error Messages to the Higher-Level Control or Computer System

Failure of the voltage supply U_{ANA}

Yes

Peripheral fault/user error

Yes, error message via the process data input words (see page 30)

Approvals

For the latest approvals, please visit www.download.phoenixcontact.com.

4 Local Diagnostic and Status Indicators and Terminal Point Assignment

Figure 1 IB IL AI 8/SF terminal with one of the appropriate connectors

4.1 Local Diagnostic Indicators

Des.	Color	Meaning	
D	Green	Diagnostics	

4.2 Function Identification

Green

2 Mbps: White stripe in the vicinity of the D LED

4.3 Terminal Point Assignment for Each Connector

Terminal Points	Signal	Assignment
1.1	+U1	Voltage input channel 1
2.1	+U2	Voltage input channel 2
1.2	+11	Current input channel 1
2.2	+12	Current input channel 2
1.3, 2.3	-1, -2	Minus input (for both current and voltage)
1.4, 2.4	Shield	Shield connection

5 Installation Instructions

High current flowing through potential jumpers U_M and U_S leads to a temperature rise in the potential jumpers and inside the terminal. Observe the following instructions to keep the current flowing through the potential jumpers of the analog terminals as low as possible:

Create a separate main circuit for the analog terminals

If this is not possible in your application and if you are using analog terminals in a main circuit together with other terminals, place the analog terminals after all the other terminals at the end of the main circuit.

6 Internal Circuit Diagram

Figure 2 Internal wiring of the terminal points

Key:

7 Electrical Isolation

Figure 3 Electrical isolation of the individual function areas

8 Connection Notes

Do not simultaneously apply current and voltage signals to **one** input channel as you will not receive valid measured values.

Do not connect voltages above ± 2.5 V to a current input. The module electronics will be damaged, as the maximum permissible current of ± 100 mA will be exceeded.

Always connect the analog sensors using shielded, twisted pair cables.

Connect the shielding to the Inline terminal using the shield connection clamp. The clamp connects the shield directly to FE on the terminal side. Additional wiring is not required.

Isolate the shielding at the sensor or connect it with a high resistance and a capacitor to the PE potential.

9 Connection Examples

Observe the connection notes on page 9.

Figure 4 shows the connection schematically (without shield connector).

9.1 Connection of Active Sensors

Figure 4 Connection of active sensors using 2-wire technology with shield connection

The sensors have the same reference potential.

9.2 Connection of Passive Sensors

The IB IL AI 8/IS terminal (Order No. 2742748) is used to connect passive current sensors.

10 Programming Data/Configuration Data

10.1 INTERBUS

ID code	5F _{hex} (95 _{dec})
Length code	02 _{hex}
Process data channel	32 bits
Input address area	4 bytes
Output address area	4 bytes
Parameter channel (PCP)	0 bytes
Register length (bus)	4 bytes

10.2 Other Bus Systems

For the configuration data of other bus systems, please refer to the corresponding electronic device data sheet (e.g., GSD, EDS).

11 Process Data

11.1 Process Data Output Words for Configuring the Terminal (See page 12)

Process data outp	ut word 0 (OUT[0])	Process data outp	ut word 1 (OUT[1])
Byte 0	Byte 1	Byte 2	Byte 3

									OU	T[0]							
(Byte.bit) view	Byte		Byte 0 Byte 1														
	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Assignment	0			Co	mma	nd			0	0	0	0	0	0	0	0

									OU	T[1]							
(Byte.bit) view	Byte				Byt	e 2							Byt	e 3			
	Bit	7	6	5	4	3	2	1	0	7	6	5	4	თ	2	1	0
	Assignment	0	0	0	0	0	0	Fil	ter	0	F	orma	ıt	Me	asurii	ng rai	nge

11.2 Process Data Input Words (See page 15)

Process data inp	out word 0 (IN[0])	Process data inp	out word 1 (IN[1])
Byte 0	Byte 1	Byte 2	Byte 3

									IN	[0]							
(Byte.bit) view	Byte				Byt	te 0							Byt	te 1			
	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Assignment	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							De	pend	s on t	the co	omma	and					

									IN	[1]							
(Byte.bit) view	Byte				Byt	e 2							Byt	te 3			
	Bit	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
	Assignment	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							De	pend	s on t	he co	omma	and					

For the assignment of the illustrated (byte.bit) view to your **INTERBUS** control or computer system, please refer to the DB GB IBS SYS ADDRESS data sheet.

12 Process Data Output Words OUT[0] and OUT[1]

The terminal must be configured using the two process data output words. Word OUT[0] contains the command and word OUT[1] contains the parameters for this command.

The following configurations are possible:

- Selecting a measuring range according to the input signal
- Selecting mean-value generation (filtering)
- Changing the formats for the representation of measured values

After applying voltage (power up) to the Inline station, the message "Measured value invalid" (diagnostic code 8004_{hex}) appears in the process data input words for every channel requested. The message is displayed until the corresponding channel has been configured.

If the configuration is changed, the message "Measured value invalid" (diagnostic code 8004_{hex}) appears for a maximum of 100 ms.

Current or voltage measurement is selected by applying the measured signal to the current or voltage input and then configuring the measuring range.

Please note the extended runtime when a channel is configured for the first time and every time a channel is reconfigured.

Figure 5 Process data output words

MSB Most significant bit

LSB Least significant bit

Set all reserved bits to 0.

12.1 OUT[0] (Command Code)

Bit Assignment

							OU.	T[0]							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0			Co	ommai	nd			0	0	0	0	0	0	0	0

Bit 15 to bit 8 (command):

		Bit	15 t	o Bi	t 8			OUT[0]	Command Function
0	0	0	0	0	Z ₂	Z ₁	Z ₀	0x00 _{hex}	Read measured value of channel x
0	0	0	1	0	Z ₂	Z ₁	Z ₀	1x00 _{hex}	Read configuration of channel x
0	0	1	1	1	1	0	0	3C00 _{hex}	Read firmware version and module ID
0	1	0	0	0	Z ₂	Z ₁	Z ₀	4x00 _{hex}	Configure channel x
0	1	0	1	0	Z ₂	Z ₁	Z ₀	5x00 _{hex}	Configure channel x and read measured value of channel x
0	1	1	0	0	0	0	0	6000 _{hex}	Configure entire terminal (all channels)
0	1	1	1	0	Y ₂	Y ₁	Y ₀	7x00 _{hex}	Commands for groups without mirroring

Bit Assignment Channel/group

							OU ⁻	T[0]							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0			Co	ommai	nd			0	0	0	0	0	0	0	0
0	Х	Χ	Χ	Χ	Χ	Χ	Χ	0	0	0	0	0	0	0	0

Bit 10 to bit 8 (channel number $Z_2Z_1Z_0$ or group number $Y_2Y_1Y_0$):

Co	de	Channel
bin	dec	
000	0	1
001	1	2
010	2	3
011	3	4
100	4	5
101	5	6
110	6	7
111	7	8

Co	de	Group
bin	dec	
000	0	4 x 8-bit group A (channel 1, 2, 3, and 4)
001	1	4 x 8-bit group B (channel 5, 6, 7, and 8)
010	2	Reserved
011	3	Reserved
100	4	2 x 16-bit group A (channel 1 and 2)
101	5	2 x 16-bit group B (channel 3 and 4)
110	6	2 x 16-bit group C (channel 5 and 6)
111	7	2 x 16-bit group D (channel 7 and 8)

12.2 OUT[1] (Parameter Word)

The parameters for commands $4x00_{hex}$, $5x00_{hex}$, and 6000_{hex} must be specified in OUT[1]. This parameter word is only evaluated for these commands.

Bit Assignment

	OUT[1]														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	0	0	0	0	0	Fil	Filter		Format		Measuring range				

If invalid parameters are specified in the parameter word, the command will not be executed. The command is acknowledged in the input words with the set error bit.

Bit 9 and bit 8:

Co	ode	Filter (Filtering by Mean-Value Generation)				
bin	dec					
00	0	16-sample average value (default)				
01	1	No mean-value generation				
10	2	4-sample average value				
11	3	32-sample average value				

Bit 6 to bit 4:

Co	ode	Format						
bin	dec							
000	0	IB IL (15 bits) (default)						
001	1	IB ST (12 bits)						
010	2	IB RT (15 bits)						
011	3	Standardized representation						
100	4	PIO (for the 4 mA to 20 mA range only)						
101	5							
110	6	Reserved						
111	7							

Bit 3 to bit 0:

Co	de	Measuring Range (Voltage)					
bin	dec						
0000	0	0 V to 10 V (default)					
0001	1	±10 V					
0010	2	0 V to 5 V					
0011	3	±5 V					
0100	4	0 V to 25 V					
0101	5	±25 V					
0110	6	0 V to 50 V					
0111	7	Reserved					

Co	de	Measuring Range (Current)
bin	dec	
1000	8	0 mA to 20 mA
1001	9	±20 mA
1010	10	4 mA to 20 mA
1011	11	Reserved
1100	12	0 mA to 40 mA
1101	13	±40 mA
1110	14	Reserved
1111	15	Reserved

The differential voltage between different terminal inputs must not exceed 50 V.

If, for example, the 0 V to 50 V range is used on one channel, the use of bipolar ranges is **not permitted** on any other channel.

13 Process Data Input Words IN[0] and IN[1]

The measured values and diagnostic messages (diagnostic codes) are transmitted to the controller board or computer using the two process data input words. The contents of the words vary according to the command.

13.1 IN[0] and IN[1] for Commands 0x00_{hex} to 6000_{hex}

Figure 6 Process data input words

IN[0]

Output word OUT[0], which contains the command code, is mirrored in input word IN[0]. This confirms that the command has been executed correctly. If the command was not executed correctly, the error bit is set in bit 15 of input word IN[0].

The error bit is set for one of the following reasons (see also page 30):

- There is no valid configuration for the requested channel
- There was an invalid parameter during configuration
- A reserved bit was set

The command is only mirrored if it has been executed completely. This means, for example, that command $5x00_{hex}$ is only mirrored after the value has been read and not following reconfiguration.

IN[1]

Input word IN[1] varies depending on the command.

IN[1] contains the firmware version and module ID for command 3C00_{hex}.

Bit Assignment

For commands $1 \times 00_{hex}$, $4 \times 00_{hex}$, and 6000_{hex} , IN[1] contains the mirroring of the specified configuration.

IN[1] Bit Assignment Filter **Format** Measuring range

For commands $0x00_{\text{hex}}$ and $5x00_{\text{hex}}$, IN[1] contains the analog measured value.

IN[1] Bit Assignment Measured value in the corresponding format

Figure 7 Representation of the measured values in the different formats

SB Sign bit OC Open circuit
AV Analog value OR Overrange

0/4 Measuring range 4 to 20 mA

MSB Most significant bit LSB Least significant bit

The individual formats are explained in Section "Formats for the Representation of Measured Values" on page 18.

13.2 IN[0] and IN[1] for Group Commands 7x00_{hex}

Figure 8 Process data input words

For group commands 7x00_{hex}, both input words contain the measured values of the channels that correspond to the group command.

Group Commands for Two 16-Bit Channels: 7400_{hex}, 7500_{hex}, 7600_{hex}, and 7700_{hex}

With commands for two 16-bit channels, the analog value of one channel is mapped to every input word. The representation corresponds to the representation in input word IN[1] for commands $0x00_{hex}$ and $5x00_{hex}$.

Example 2 x 16-Bit Group A (Channels 1 and 2): Command 7400_{hex}

Group Commands for Four 8-Bit Channels: 7000_{hex}, 7100_{hex}

With commands for four channels, the analog values for two channels are mapped to every input word. The measured value for each channel is represented in eight bits. This measured value corresponds to bits 15 to 8 in the format representations of a 16-bit value.

Example 4 x 8-Bit Group A (Channels 1, 2, 3, and 4): Command 7000_{hex}

IN[0] Bit 15 14 13 12 11 10 9 8 7 6 5 3 2 0 Assignment 8-bit measured value channel 1 8-bit measured value channel 2 in the corresponding format in the corresponding format IN[0] Bit 15 14 13 12 10 9 8 5 4 2 0 11 6 3 1 8-bit measured value channel 3 Assignment 8-bit measured value channel 4 in the corresponding format in the corresponding format

The status bits in "IB ST" format and the diagnostic messages in "IB IL" and "standardized representation" format are not displayed in this configuration.

14 Formats for the Representation of Measured Values

To ensure that the terminal can be operated in previously used data formats, the measured value representation can be switched to different formats. "IB IL" format is the default.

Abbreviations used in the following tables:

OR Overrange UR Underrange

14.1 "IB IL" Format

The measured value is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit.

This format supports extended diagnostics. Values $> 8000_{hex}$ and $< 8100_{hex}$ indicate an error.

The following diagnostic codes are possible:

Code (hex)	Error
8001	Overrange
8002	Open circuit
8004	Measured value invalid/no valid measured value available (e.g., because the channel has not been configured)
8010	Invalid configuration
8020	I/O supply voltage faulty
8040	Module faulty
8080	Underrange

Measured value representation in "IB IL" format (15 bits):

SB Sign bit

Significant Measured Values Voltage Ranges

	ut Data Word s Complement)	0 V to 5 V U _{IN}	0 V to 10 V U _{IN}	0 V to 25 V U _{IN}	0 V to 50 V U _{IN}	
hex	dec	V	V	V	V	
8001	OR	> +5.419	> +10.837	> +27.093	> +54.187	
7F00	32512	+5.419	+10.837	+27.093	+54.187	
7530	30000	+5.0	+10.0	+25.0	+50.0	
0001	1	+166.67 μV	+333.33 μV	+833.33 μV	+1.6667 mV	
0000	0	0	0	0	0	
0000	0	< 0	< 0	< 0	< 0	

	ut Data Word s Complement)	±5 V U _{IN}	±10 V U _{IN}	±25 V U _{IN}	
hex	dec	V	V	V	
8001	OR	> +5.419	> +10.837	> +27.093	
7F00	32512	+5.419	+10.837	+27.093	
7530	30000	+5.0	+10.0	+25.0	
0001	1	+166.67 μV	+333.33 μV	+833.33 μV	
0000	0	0	0	0	
FFFF	0	-166.67 μV	-333.33 μV	-833.33 μV	
8AD0	-30000	-5.0	-10.0	-25.0	
8100	-32512	-5.419	-10.837	-27.093	
8080	UR	< -5.419	< -10.837	< -27.093	

Current Ranges:

	ut Data Word s Complement)	0 mA to 20 mA I _{IN}	0 mA to 40 mA I _{IN}			
hex	dec	mA	mA			
8001	OR	> +21.6746	> +43.3493			
7F00	32512	+21.6746	+43.3493			
7530	30000	+20.0	+40.0			
0001	1	+0.66667 μΑ	+1.3333 μA			
0000	0	0	0			
0000	0	< 0	< 0			

Inpi	ut Data Word	±20 mA	±40 mA
	s Complement)	I _{IN}	I _{IN}
hex	dec	mA	mA
8001	OR	> +21.6746	> +43.3493
7F00	32512	+21.6746	+43.3493
7530	30000	+20.0	+40.0
0001	1	+0.6667 μΑ	+1.3333 μA
0000	0	0	0
FFFF	-1	-0.6667 μA	-1.3333 μA
8AD0	-30000	-20.0	-40.0
8100	-32512	-21.6746	-43.3493
8080	UR	< -21.6746	< -43.3493

	ut Data Word Complement)	4 mA to 20 mA I _{IN}				
hex	dec	mA				
8001	OR	> +21.339733				
7F00	32512	+21.339733				
7530	30000	+20.0				
0001	1	+4.00053333				
0000	0	+4.0 to 3.2				
8002	Open circuit	< +3.2				

14.2 "IB ST" Format

The measured value is represented in bits 14 to 3. The remaining 4 bits are sign, measuring range, and error bits. This format corresponds to the data format used on INTERBUS ST modules.

Measured value representation in "IB ST" format (12 bits):

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB		Analog value										0/4	ОС	OR	

SB Sign bit OC Open circuit
0/4 Measuring range 4 to 20 mA OR Over/underrange

Significant Measured Values Voltage Ranges

Input Data Word		0 V to 5 V	0 V to 10 V	0 V to 25 V	0 V to 50 V
(Two's	s Complement)	U _{IN}	U _{IN}	U _{IN}	U _{IN}
hex	dec	V	V	V	V
7FF9	32761	> +5.375	> +10.75	> +26.875	> +53.75
7FF8	32760	+4.9988 to	+9.9975 to	+24.9939 to	+49.9878 to
		+5.375	+10.75	+26.875	+53.75
4000	16384	+2.5	+5.0	+12.5	+25.0
8000	8	1.221 mV	+2.441 mV	6.1025 mV	+12.205 mV
0000	0	< 0	< 0	< 0	< 0

Input Data Word (Two's Complement)		±5 V U _{IN}	±10 V U _{IN}	±25 V U _{IN}
hex	dec	V	V	V
7FF9	32761	> +5.375	> +10.75	> +26.875
7FF8	32760	+4.9988 to	+9.9975 to	+24.9939 to
		+5.375	+10.75	+26.875
4000	16384	+2.5	+5.0	+12.5
8000	8	+1.221 mV	+2.441 mV	+6.104 mV
0000	0	0	0	0
FFF8	-8	-1.221 mV	-2.441 mV	-6.104 mV
C000	-16384	-2.5	-5.0	-12.5
8000	-32768	-5.0 to -5.375	-10.00 to -10.75	-25.0 to -26.875
8001	-32767	-5.375	< -10.75	-26.875

Current Ranges:

	ut Data Word s Complement)	0 mA to 20 mA I _{IN}	0 mA to 40 mA I _{IN}
hex dec		mA	mA
7FF9	32761	> +21.5	> +43.0
7FF8	32760	+19.9951 to +21.5	+39.9902 to +43.0
4000	16384	+10.0	+20.0
0008	8	+4.8828 μΑ	+9.7656 μΑ
0000	0	< 0	< 0

	ut Data Word s Complement)	±20 mA I _{IN}	±40 mA I _{IN}
hex	dec	mA	mA
7FF9	32761	> +21.5	> +43.0
7FF8	32760	+19.9951 to +21.5	+39.9902 to +43.0
4000	16384	+10.0	+20.0
0008	8	+4.8828 μΑ	+9.7656 μΑ
0000	0	0	0
FFF8	-8	-4.8828 μA	-9.7656 μA
C000	-16384	-10.0	-20.0
8000	-32768	-20.0 to -21.5	-40.0 to -43.0
8001	-32767	< -21.5	< -43.0

	ut Data Word Complement)	4 mA to 20 mA I _{IN}
hex	dec	mA
7FFD	32765	> +21.5
7FFC	32764	+19.9961 to +21.5
4000	16384	+10
000C	12	+4.003906
0004	4	+3.2 to +4.0
0006	6	< 3.2

14.3 "IB RT" Format

The measured value is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit.

This format corresponds to the data format used on INTERBUS RT modules.

Diagnostic codes and error bits are not defined in this data format. An open circuit is indicated by the positive final value 7FFF_{hex}.

Measured value representation in "IB RT" format (15 bits):

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB	Analog value														

SB Sign bit

Significant Measured Values Voltage Ranges

Input Data Word (Two's Complement)		0 V to 5 V U _{IN}	0 V to 10 V U _{IN}	0 V to 25 V U _{IN}	0 V to 50 V U _{IN}
hex	dec	V	V	V	V
7FFF	32767	≥ +4.999847	≥ +9.999695	≥ +24.999237	≥ +49.998474
7FFE	32766	+4.999695	+9.999390	+24.998474	+49.996948
4000	16384	+2.5	+5	+12.5	+25.0
0001	1	+152.6 μV	+305.2 μV	+762.9 μV	+1.5259 mV
0000	0	0	0	0	0

Input Data Word (Two's Complement)		±5 V U _{IN}	±10 V U _{IN}	±25 V U _{IN}
hex dec		V	V	V
7FFF	32767	≥ +4.999847	≥ +9.999695	≥ +24.999237
7FFE	32766	+4.999695	+9.999390	+24.998474
4000	16384	+2.5	+5.0	+12.5
0001	1	+152.6 μV	+305.2 μV	+762.9 μV
0000	0	0	0	0
FFFF	-1	-152.6 μV	-305.2 μV	-762.9 μV
C000	-16384	-2.5	-5.0	-12.5
8001	-32767	-4.999847	-9.999695	-24.999237
8000	-32768	≤ -5.0	≤ -10.0	≤ -25.0

Current Ranges:

	ut Data Word s Complement)	0 mA to 20 mA I _{IN}	0 mA to 40 mA I _{IN}
hex dec		mA	mA
7FFF	32767	≥ +19.9993896	≥ +39.9987793
7FFE	32766	+19.9987793	+39.9975586
4000	16384	+10	+20
0001	1	+0.6104 μΑ	+1.2207 μA
0000	0	0	0

	ut Data Word s Complement)	±20 mA I _{IN}	±40 mA I _{IN}
hex dec		mA	mA
7FFF	32767	≥ +19.999385	≥ +39.9987739
7FFE	32766	+19.998779	+39.9975586
4000	16384	+10.0	+20.0
0001	1	+0.6104 μΑ	+1.2207 μA
0000	0	0	0
FFFF	-1	-0.0006105	-0.0012207
C000	-16384	-10.0	-20.0
8001	-32770	-19.999385	-39.9987793
8000	-32768	≤ -20.0	≤ -40.0

-	ut Data Word Complement)	4 mA to 20 mA I _{IN}
hex	dec	mA
7FFF	32767	≥ +19.9995117
7FFE	32766	+19.9990234
4000	16384	+12
0001	1	+0.4884 μΑ
0000	0	+4.0
0000	0	+3.2 to +4.0
7FFF	32767	< +3.2

14.4 "Standardized Representation" Format

The data is represented in bits 14 to 0. An additional bit (bit 15) is available as a sign bit.

In this format, data is standardized to the measuring range and represented in such a way that it indicates the corresponding value without conversion.

In this format, one bit has the following validity for the measuring ranges stated:

Measuring Range	Validity of One Bit
0 V to 5 V; ±5 V	1 mV
0 V to 10 V; ±10 V	1 mV
0 V to 25 V; ±25 V	1 mV
0 V to 50 V	10 mV
0 mA to 20 mA; 4 mA to 20 mA	1 μΑ
0 mA to 40 mA	10 μΑ

This format supports extended diagnostics. Values $> 8000_{hex}$ and $< 8100_{hex}$ indicate an error.

The following diagnostic codes are possible:

Code (hex)	Error
8001	Overrange
8002	Open circuit
8004	Measured value invalid/no valid measured value available (e.g., because the channel has not been configured)
8010	Invalid configuration
8020	I/O supply voltage faulty
8040	Module faulty
8080	Underrange

Measured value representation in "standardized representation" format (15 bits):

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
SB							An	alog val	lue						

SB Sign bit

Significant Measured Values Voltage Ranges

Input Data Word (Two's Complement)		0 V to 5 V U _{IN}	0 V to 50 V U _{IN}	±5 V U _{IN}
hex	dec	V	V	V
8001	OR	> +5.419	> +54.187	> +5.419
152B	5419	+5.419	+54.187	+5.419
1388	5000	+5.0	+50.0	+5.0
0001	1	+1.0 mV	+10.0 mV	+1.0 mV
0000	0	0	0	0
0000	-1	< 0	< 0	-1.0 mV
EC78	-5000	_	_	-5.0
EAD5	-5419	_	_	-5.419
8080	UR	_	_	< -5.419

Input Data Word (Two's Complement)		0 V to 10 V U _{IN}	±10 V U _{IN}
hex	dec	V	V
8001	OR	> +10.837	> +10.837
2A55	10837	+10.837	+10.837
2710	10000	+10.0	+10.0
0001	1	+1.0 mV	+1.0 mV
0000	0	0	0
0000	0	< 0	_
FFFF	-1	_	-1.0 mV
D8F0	-10000	_	-10.0
D5AB	-10837	_	-10.837
8080	UR	_	< -10.837

Input Data Word (Two's Complement)		0 V to 25 V U _{IN}	±25 V U _{IN}
hex	dec	V	V
8001	OR	> +27.093	> +27.093
69D5	27093	+27.093	+27.093
61A8	25000	+25.0	+25.0
0001	1	+1.0 mV	+1.0 mV
0000	0	0	0
0000	0	< 0	_
FFFF	-1	_	-1.0 mV
9E58	-25000	_	-25.0
962B	-27093	_	-27.093
8080	UR	_	< -27.093

Current Ranges:

-	ut Data Word Complement)	0 mA to 20 mA I _{IN}
hex dec		mA
8001	OR	> +21.6747
54AA	21674	+21.6747
4E20	20000	+20.0
0001	1	+1.0 μA
0000	0	0
0000	0	< 0

Input Data Word (Two's Complement)		0 mA to 40 mA I _{IN}
hex dec		mA
8001	OR	> +43.3493
10EE	4334	+43.3493
0FA0	4000	+40.0
0001	1	+10.0 μΑ
0000	0	0
0000	0	< 0

Input Data Word (Two's Complement)		±20 mA I _{IN}
hex	dec	mA
8001	OR	≥ +21.6747
54AA	21674	+21.6747
4E20	20000	+20.0
0001	1	+1.0 μΑ
0000	0	0
FFFF	-1	-0.001
B1E0	-20000	-20.0
AB56	-21674	-21.6747
8080	UR	< -21.6747

Input Data Word (Two's Complement)		±40 mA I _{IN}
hex	dec	mA
8001	OR	> +43.349
10EE	4334	+43.349
0FA0	4000	+40.0
0001	1	+10.0 μΑ
0000	0	0
FFFF	-1	-10.0 μA
F060	-4000	-40.0
EF12	-4334	-43.349
8080	UR	< -43.349

Input Data Word (Two's Complement)		4 mA to 20 mA I _{IN}
hex	dec	mA
8001	OR	> +21.339
43BB	17339	+21.339
3E80	16000	+20.0
0001	1	+4.001
0000	0	+4.0 to +3.2
8002	Open circuit	< +3.2

14.5 Examples of Measured Value Representation in Various Data Formats

Measuring range: 0 mA to 20 mA

Measured value: 10 mA

Input data word:

Format	hex Value	dec Value	Measured Value
IB IL	3A98	15 000	10 mA
IB ST	4000	16 384	10 mA
IB RT	4000	16 384	10 mA
Standardized representation	2710	10 000	10 mA

Measuring range: $\pm 10 \text{ V}$ Measured value: +5 V

Input data word:

Format	hex Value	dec Value	Measured value
IB IL	3A98	15 000	5 V
IB ST	4000	16 384	5 V
IB RT	4000	16 384	5 V
Standardized representation	2710	5 000	5 V

"PIO" Format 14.6

PIO format enables high-resolution representation of measured values in the 4 mA to 20 mA current measuring range. In this format, a hypothetical measuring range of 0 mA to 25 mA is divided into 2¹⁶ quantization steps (65,536 steps). Thus, unipolar measured currents with a resolution of 0.38 µA/LSB can be represented. Although this format is designed for the 4 mA to 20 mA range, signals between 0 mA and 24 mA can be acquired so the overrange limits and the open circuit threshold in the higher-level control system can be freely defined.

Measured value representation in "PIO" format (16 bits):

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							Analog	y value							

Example of Parameterization Using PIO Format

Channel:

Filtering:

16-sample average value

Format:

PIO

Measuring

4 mA to 20 mA (PIO format is only supported in this measuring range)

range:

Option 1:

1 Configure channel 1

OUT[0] 4000_{hex} OUT[1] 004A_{hex}

2 Read the measured value

OUT[0] 0000_{hex} OUT[1] 0000_{hex}

Option 2:

Configure channel 1 and read the measured value

OUT[0] 5000_{hex} OUT[1] 004A_{hex}

Significant Measured Values

	Data Word Complement)	PIO I _{IN}
hex	dec	mA
F5C2	62914	+24.0
CCCD	52429	+20.0
6666	26214	+10.0
0A3D	2621	+1.0
0001	1	+0.3815 μΑ
0000	0	+0

PHOENIX CONTACT 29 6226_en_02

15 Process Data Input Words in the Event of an Error

In the event of an error, the command is mirrored in input word IN[0] and displayed with the set error bit. Input word IN[1] indicates the error cause.

The following diagnostic codes are valid for configuration or hardware errors in all data formats:

Command (hex)	Code (hex)	PF	Meaning/Note	Remedy
	8020	Х	I/O supply voltage faulty.	 Check the supply voltage of the station head (e.g., U_{BC}). Check the potential jumper connection.
After module start	8040	Х	Module faulty.	Replace module.
0x00	8004		There is no valid configuration for the requested channel.	Configure channel.
5x00	8004		The configuration just specified is invalid.	Check and correct configuration.
1x00	8010		There is no valid configuration for the requested channel.	Configure channel.
4x00 and 6000			The parameters are mirrored. This is usually caused by invalid parameters.	Check and correct parameters.
3C00			No diagnostic code.	

PF A peripheral fault is reported to the higher-level control system

In addition to the indicator in the input words, for diagnostic codes 8040_{hex} (module faulty) and 8020_{hex} (I/O supply voltage faulty), a peripheral fault is reported to the higher-level control system.

The "IB IL" and "standardized representation" formats offer additional diagnostic functions. These are specified on page 18 and page 25.

16 Startup Options

The following startup options illustrate how to use the IB IL AI 8/SF terminal.

16.1 Standard Method 1

Task:

- All input channels are to be operated in the same configuration (6000_{hex})
- Filtering by mean-value generation: 32-sample average value (11_{bin}, 3_{dec})
- Format: IB IL (000_{bin}, 0_{dec})
- Measuring range: ±10 V (0001_{bin}, 1_{dec})

Procedure:

- 1 Install the terminal.
- 2 Connect the voltage (power up).
- 3 Configure the terminal (initialization phase, e.g., in the initialization phase of the application program).
- 4 Read the measured value for each channel in turn.

Initialization Phase:

According to the task, the process data output words appear as follows:

		OUT[0]														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	0			Co	ommai	nd			0	0	0	0	0	0	0	0
bin	0	1	1	0	0 0 0 0			0	0	0	0	0	0	0	0	0
hex		6	3			C)			C)			()	
		OUT[1]														

								OU.	T[1]							
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	0	0	0	0	0	0	Filt	ter	0	ı	orma	t	Measuring ran			ge
bin	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	1
hex		()			3	3			()		1			

With the command in OUT[0], the configuration according to OUT[1] is sent to the module electronics. After configuration is complete, the command and the configuration are mirrored in the process data input words.

Configure terminal:	OUT[0]:	6000 _{hex}	OUT[1]:	0301 _{hex}
Configuration completed successfully:	IN[0]	6000 _{hex}	IN[1]:	0301 _{hex}
Error during configuration:	IN[0]	F000 _{box}	IN[1]:	0301 _{hov}

A cyclic program sequence, which reads the measured values of the individual channels, takes place after configuration has been successfully completed.

Process data output word OUT[0] appears as follows:

Bit Assignment bin hex

							OU.	Τ[0]							
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0			Co	ommai	nd			0	0	0	0	0	0	0	0
0	0	0	0	0	Z ₂	Z ₁	Z ₀	0	0	0	0	0	0	0	0
	()			>	(C)			()	

 $Command\ 0x00_{hex}\ does\ not\ require\ any\ parameters\ and\ the\ value\ of\ parameter\ word\ OUT[1]\ is\ 0000_{hex}.$

With the command in OUT[0], the read request is sent to the module electronics. After the command has been executed, it is mirrored in process data input word IN[0] and the analog value ($xxxx_{hex}$) or a diagnostic message ($yyyy_{hex}$) is displayed in process data input word IN[1].

Read measured value for channel 1: Command executed successfully: Error during execution:	OUT[0]:	0000 _{hex}	OUT[1]:	0000 _{hex}
	IN[0]	0000 _{hex}	IN[1]:	xxxx _{hex}
	IN[0]	8000 _{hex}	IN[1]:	yyyy _{hex}
Read measured value for channel 2: Command executed successfully: Error during execution: And so on until:	OUT[0]:	0100 _{hex}	OUT[1]:	0000 _{hex}
	IN[0]	0100 _{hex}	IN[1]:	xxxx _{hex}
	IN[0]	8100 _{hex}	IN[1]:	yyyy _{hex}
Read measured value for channel 8: Command executed successfully: Error during execution:	OUT[0]:	0700 _{hex}	OUT[1]:	0000 _{hex}
	IN[0]	0700 _{hex}	IN[1]:	xxxx _{hex}
	IN[0]	8700 _{hex}	IN[1]:	yyyy _{hex}

Figure 9 Schematic initialization and cyclic program sequence when configuring the entire terminal

16.2 Standard Method 2

Task:

The input channels are to be operated in different configurations.

The channels are to be configured first $(4x00_{hex})$.

After configuration, the measured values are to be read (0x00_{hex}).

Configuration of the channels:

Parameter	Channel 1	Channel 2	Channel 3	
Filtering by mean-value	No filtering	16-sample average	4-sample average	
generation:	(01 _{bin} , 1 _{dec})	value	value	
		(00 _{bin} , 0 _{dec})	(10 _{bin} , 2 _{dec})	
Format:	IB IL	IB IL	IB IL	
	(000 _{bin} , 0 _{dec})	(000 _{bin} , 0 _{dec})	(000 _{bin} , 0 _{dec})	***
Measuring range:	0 V to 50 V	0 V to 5 V	4 mA to 20 mA	
	(0110 _{bin} , 6 _{dec})	(0010 _{bin} , 2 _{dec})	(1010 _{bin} , 10 _{dec})	

Procedure:

- 1 Install the terminal.
- 2 Connect the voltage (power up).
- 3 Configure each individual channel in the terminal in turn (initialization phase, e.g., in the initialization phase of the application program).
- 4 Read the measured value for each channel in turn.

Initialization Phase:

Process data output word OUT[0] appears as follows for all channels:

		OUT[0]														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	0			Co	omma	nd			0	0	0	0	0	0	0	0
bin	0	1	0	0	0	Z ₂	Z ₁	Z ₀	0	0	0	0	0	0	0	0
hex		4	ļ			>	(C)			()	

Process data output word OUT[1] indicates the parameters for each channel according to the task. For **channel 1**, it looks like this:

		OUT[1]														
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Assignment	0	0	0	0	0	0	Filt	ter	0	ı	ormat	t	Measuring ran			ge
bin	0	0	0	0	0	0	0	1	0	0	0	0	0	1	1	0
hex		C)			1				()			6	3	

With the command in OUT[0], the configuration according to OUT[1] is sent to the module electronics for each channel. After configuration of a channel is complete, the command and the configuration are mirrored in the process data input words.

Configure channel 1:	OUT[0]:	4000 _{hex}	OUT[1]:	0106 _{hex}
Configuration completed successfully:	IN[0]	4000 _{hex}	IN[1]:	0106 _{hex}
Error during configuration:	IN[0]	C000 _{hex}	IN[1]:	0106 _{hex}
Configure channel 2:	OUT[0]:	4100 _{hex}	OUT[1]:	0002 _{hex}
Configuration completed successfully:	IN[0]	4100 _{hex}	IN[1]:	0002 _{hex}
Error during configuration:	IN[0]	C100 _{hex}	IN[1]:	0002 _{hex}
Configure channel 3:	OUT[0]:	4200 _{hex}	OUT[1]:	020A _{hex}
Configuration completed successfully:	IN[0]	4200 _{hex}	IN[1]:	020A _{hex}
Error during configuration:	IN[0]	C200 _{hex}	IN[1]:	020A _{hex}

Configure channels 4 to 8 according to the example configurations shown.

A cyclic program sequence, which reads the measured values of the individual channels, takes place after the configuration for each individual channel has been completed successfully.

Process data output word OUT[0] appears as follows:

Bit Assignment bin hex

	OUT[0]											
15	14 13 12 11 10 9 8 7 6 5 4 3 2 1 0											
0	Command				0	0	0	0	0	0	0	0
0	0 0 0 0 Z ₂ Z ₁ Z ₀ 0 0 0 0 0 0 0					0						
	0 X 0 0											

 $Command\ 0x00_{hex}\ does\ not\ require\ any\ parameters\ and\ the\ value\ of\ parameter\ word\ OUT[1]\ is\ 0000_{hex}.$

With the command in OUT[0], the read request is sent to the module electronics. After the command has been executed, it is mirrored in process data input word IN[0] and the analog value $(xxxx_{hex})$ or a diagnostic message $(yyyy_{hex})$ is displayed in process data input word IN[1]. The appearance of the process data input and output words is the same as in example 1.

Figure 10 Schematic initialization and cyclic program sequence when configuring channels with different parameters

16.3 Special Methods

The group commands are regarded as special methods.

Task:

- The measured values of channels 1 to 4 (group A) are to be read in one cycle and the measured values of channels 5 to 8 (group B) in another cycle (7000_{hex} for group A; 7100_{hex} for group B).
- The input channels are to be operated in different configurations (e.g., as in example 2).

Procedure:

- 1 Install the terminal.
- 2 Connect the voltage (power up).
- Configure each individual channel in the terminal in turn
 (initialization phase, e.g., in the initialization phase of the application program).
 As the channels are to have different configurations, they must be configured using command 4x00_{hex}.
- 4 Use group command 7000_{hex} to read the measured values for channels 1 to 4 simultaneously. Then use group command 7100_{hex} to read the measured values for channels 5 to 8.
 Both groups can be reread cyclically.

16.4 Advantages of Standard Methods Over Special Methods

- Standard methods read the measured values with greater reliability because the command is mirrored for every measured value. Thus, it is possible to detect precisely which channel supplied the measured value.
- Standard methods enable more accurate error diagnostics than special methods.
- If you switch the group command for reading the channels (e.g., between 7000_{hex} and 7100_{hex} when reading two
 groups of four channels each), you must allow sufficient time to do so. It must be ensured that the received measured
 values belong to the requested group. This can only be ensured using waiting times.

17 Application Notes

Notes on typical applications are provided here in order to facilitate optimum use of the terminal in different operating modes.

17.1 Precision DC Measurements

Precision DC measurements constitute an optimum area of application for the terminal. The high-resolution analog/digital converter and excellent instrumentation amplifier technology achieve a very high level of accuracy (typically 0.02% in the voltage range).

In order to take full advantage of these features, the following configurations are recommended:

- Measured value acquisition: According to standard method 1 or 2
- Format: IB IL (high-resolution)
- Filtering: 32-sample average value

This suppresses undesirable interference signals and provides a low-noise, accurate measured result. Non-time-critical, i.e., slow, processes are a prerequisite for this configuration.

17.2 Closed-Loop Control Tasks

The terminal makes closed-loop control tasks particularly easy to implement. In INTERBUS networks, the terminal supports the advantages with regard to time equidistance. As the terminal scans input signals synchronously with the bus clock and the bus runtime has a very small jitter, the input signals can be scanned equidistantly. Thus, the measured results are particularly suitable for use in closed-loop control.

The following configurations and measures are recommended:

- Measured value acquisition: According to standard method 1 or 2
 In special cases, group commands (7x00_{hex}) can be an exception.
- Filtering: No mean-value generation
 As total accuracy is often irrelevant in closed-loop control tasks, filtering is not necessary. This increases the dynamic response of the terminal and speeds up the closed-loop control circuit.
- Adjust the local bus cycle time to the firmware runtime.
 Example for INTERBUS: In standard method 1, the firmware runtime is < 800 µs, i.e., the INTERBUS cycle time should be set to 800 µs.

In applications in which an 8-bit resolution is sufficient, group commands 7000_{hex} and 7100_{hex} can be used to read four channels simultaneously. Scanning is synchronous with the bus clock here too. Four channels require $<1500\ \mu s.$

17.3 Signal Scanning or Fast, Sudden Signals

The terminal is ideal for scanning signals. As a result of the high input limit frequency (3.5 kHz), there are no limiting elements in the analog stage. The maximum signal frequency that can be scanned depends on the firmware runtime and the INTERBUS cycle time.

The terminal measuring device can measure signals with a frequency of 1/800 $\mu s=1.25$ kHz. According to Shannon's sampling theorem, therefore, the signal frequency that can be scanned is 1.25 kHz/2 = 0.625 kHz.

This signal frequency can only be achieved if sufficiently fast bus operation can be ensured.

The following configurations and measures are recommended:

- Measured value acquisition: According to standard method 1 or 2
- Filtering: No mean-value generation
 This increases the dynamic response of the terminal.
- Adjust the local bus cycle time to the firmware runtime.
 This achieves discrete periods of scanning.
 Example for INTERBUS: In standard method 1, the firmware runtime is < 800 µs, i.e., the INTERBUS cycle time should be set to 800 µs.</p>

17.4 Linked Voltages

When using linked voltages, ensure that the terminal has eight single-ended inputs. A common ground potential should be used with linked voltages. As the terminal has many measuring ranges, for example the 0 V to 50 V range, and the resolution is high enough, applications with several linked voltages can also be implemented without any problems.

Figure 11 Measuring linked voltages

17.5 Current Loops

If the terminal is used to measure currents in current loops, make sure that the eight current inputs operate on a common ground potential (single-ended). Thus, the measuring input should always be on the GND potential with the minus input.

Figure 12 Measuring currents

17.6 Passive Sensors

When using passive sensors, please use the IB IL Al 8/IS terminal.

18 Tolerance and Temperature Response

Voltage Inputs

 $T_A = 25^{\circ}C$

Measuring Range	Absolute (Typical)	Absolute (Maximum)	Relative (Typical)	Relative (Maximum)
0 V to 5 V; ±5 V	±1.0 mV	±5.0 mV	± 0.02%	± 0.10%
0 V to 10 V; ±10 V	±2.0 mV	±10.0 mV	± 0.02%	± 0.10%
0 V to 25 V; ±25 V	±5.0 mV	±25.0 mV	± 0.02%	± 0.10%
0 V to 50 V	±10.0 mV	±50.0 mV	± 0.02%	± 0.10%

T_A = -25°C ... +55°C

Measuring Range	Absolute (Typical)	Absolute (Maximum)	Relative (Typical)	Relative (Maximum)
0 V to 5 V; ±5 V	±5.0 mV	±15.0 mV	± 0.10%	± 0.30%
0 V to 10 V; ±10 V	±10.0 mV	±30.0 mV	± 0.10%	± 0.30%
0 V to 25 V; ±25 V	±25.0 mV	±75.0 mV	± 0.10%	± 0.30%
0 V to 50 V	±50.0 mV	±150.0 mV	± 0.10%	± 0.30%

Current Inputs

 $T_A = 25^{\circ}C$

Measuring Range	Absolute (Typical)	Absolute (Maximum)	Relative (Typical)	Relative (Maximum)
0 mA to 20 mA; 4 mA to 20 mA; ±20 mA	±8.0 μA	±40.0 μA	± 0.04%	± 0.20%
,				
0 mA to 40 mA; ±40 mA	±16.0 µA	±80.0 μA	± 0.04%	± 0.20%

T_A = -25°C ... +55°C

Measuring Range	Absolute (Typical)	Absolute (Maximum)	Relative (Typical)	Relative (Maximum)
0 mA to 20 mA;	±28.0 μA	±80.0 μA	± 0.14%	± 0.40%
4 mA to 20 mA; ±20 mA				
0 mA to 40 mA; ±40 mA	±56.0 μA	±160 μA	± 0.14%	± 0.40%

Additional Tolerances Influenced by Electromagnetic Fields

Type of Electromagnetic Interference	Typical Deviation of the Measuring Range Final Value (Voltage Input)	Typical Deviation of the Measuring Range Final Value (Current Input)		
	Relative	Relative		
Electromagnetic fields; field strength 10 V/m according to EN 61000-4-3/IEC 61000-4-3	< ±2%	< ±2%		
Conducted interference Class 3 (test voltage 10 V) according to EN 61000-4-6/IEC 61000-4-6	< ±1%	< ±1%		
Fast transients (burst) 4 kV supply, 2 kV input according to EN 61000-4-4/IEC 61000-4-4	< ±1%	< ±1%		

The values refer to nominal operation in the recommended mounting position.

© PHOENIX CONTACT 10/2006