Recognition

Lu Peng School of Computer Science, Beijing University of Posts and Telecommunications

Machine Vision Technology							
Semantic information				Metric 3D information			
Pixels	Segments	Images	Videos	Camera		Multi-view Geometry	
Convolutions Edges & Fitting Local features Texture	Segmentation Clustering	Recognition Detection	Motion Tracking	Camera Model	Camera Calibration	Epipolar Geometry	SFM
10	4	4	2	2	2	2	2

What we will learn today?

- Introduction to object recognition
 - Representation
 - Learning
 - Recognition
- Bag of Words models
 - Basic representation
 - Different learning and recognition algorithms

2020/4/26

Beijing University of Posts and Telecommunications

2

What are the different visual recognition tasks?

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Classification

Does this image contain a building? [yes/no]

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Classification

Is this an beach?

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Image Search & Organizing photo collections

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Detection

Does this image contain a car? [where?]

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Detection

Which object does this image contain? [where?]

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Q

Detection

Accurate localization (segmentation)

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Detection

Estimating object semantic & geometric attributes

2020/4/26

Beijing University of Posts and Telecommunications

Source: Fei-Fei Li

Applications of computer vision

Assistive technologies

Surveillance

Assistive driving

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Categorization vs Single instance recognition

Does this image contain the Chicago Macy building's?

2020/4/26

Beijing University of Posts and Telecommunications

12

Categorization vs Single instance recognition

Where is the crunchy nut?

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Categorization vs Single instance recognition

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

14

Activity or Event recognition

What are these people doing?

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Visual Recognition

- Design algorithms that are capable to
 - > Classify images or videos
 - > Detect and localize objects
 - > Estimate semantic and geometrical attributes
 - > Classify human activities and events

Why is this challenging?

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

16

How many object categories are there?

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Challenges: viewpoint variation

Michelangelo 1475-1564

2020/4/26

Beijing University of Posts and Telecommunications

Source: Fei-Fei Li
18

Challenges: illumination

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Challenges: scale

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

20

Challenges: deformation

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Challenges: occlusion

Magritte, 1957

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

22

Challenges: background clutter

Kilmeny Niland. 1995

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Challenges: intra-class variation

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

24

Basic issues

- Representation
 - How to represent an object category; which classification scheme?
- Learning
 - How to learn the classifier, given training data
- Recognition
 - How the classifier is to be used on novel data

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Representation

- Building blocks: Sampling strategies

Interest operators

Dense, uniformly

Multiple interest operators

Randomly

2020/4/26

Beijing University of Posts and Telecommunications

Source: Fei-Fei Li 26

Representation

- Appearance only or location and appearance

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Representation

Invariances

- View point
- > Illumination
- ➤ Occlusion
- > Scale
- Deformation
- ➤ Clutter
- > etc.

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

28

Representation

- To handle intra-class variability, it is convenient to describe an object categories using probabilistic models
- Object models: Generative vs Discriminative vs hybrid

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Object categorization: the statistical viewpoint

• Bayes rule:
$$P(A|B) = \frac{P(B|A)P(A)}{P(B)}$$

$$\frac{p(zebra | image)}{p(no \ zebra | image)} = \frac{p(image | zebra)}{p(image | no \ zebra)} \frac{p(zebra)}{p(no \ zebra)}$$
posterior ratio prior ratio

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

30

Object categorization: the statistical viewpoint

- Discriminative methods model posterior
- Generative methods model likelihood and prior

$$\frac{p(zebra | image)}{p(no \ zebra | image)} = \frac{p(image | zebra)}{p(image | no \ zebra)} \frac{p(zebra)}{p(no \ zebra)}$$
posterior ratio

likelihood ratio

prior ratio

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Discriminative models

Discriminative models

Source: VittorioFerrari, Kristen Grauman, AntonioTorralba

2020/4/26

2020/4/26

Beijing University of Posts and Telecommunications

Generative models

• Modeling the likelihood ratio:

 $\frac{p(image \mid zebra)}{p(image \mid no zebra)}$

2020/4/26 Beijing University of Posts and Telecommunications

Source: Fei-Fei Li

34

Generative models

P(image zebra)	P(image no zebra)
High	Low
Low	High

2020/4/26

Beijing University of Posts and Telecommunications

Generative models

- Naïve Bayes classifier
 - Csurka Bray, Dance & Fan, 2004
- Hierarchical Bayesian topic models (e.g. pLSAand LDA)
 - Object categorization: Sivic et al. 2005, Sudderth et al. 2005
 - Natural scene categorization: Fei-Fei et al. 2005
- 2D Part based models
 - Constellation models: Weber et al 2000; Fergus et al 200
 - > Star models: ISM (Leibe et al 05)
- 3D part based models:
 - multi-aspects: Sun, et al, 2009

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

36

Basic issues

- Representation
 - How to represent an object category; which classification scheme?
- Learning
 - How to learn the classifier, given training data
- Recognition
 - How the classifier is to be used on novel data

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Learning

- Learning parameters: What are you maximizing?
 - Likelihood (Gen.) or performances on train/validation set (Disc.)
- Level of supervision
 - Manual segmentation; bounding box; image labels; noisy labels
- Batch/incremental
- Priors
- Training images:
 - Issue of overfitting
 - Negative images for discriminative methods

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

38

Basic issues

- Representation
 - How to represent an object category; which classification scheme?
- Learning
 - How to learn the classifier, given training data
- Recognition
 - How the classifier is to be used on novel data

Recognition

• Recognition task: classification, detection, etc. .

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

40

Recognition

- Recognition task: classification, detection, etc. .
- · Search strategy: Sliding Windows
 - > Simple
 - \triangleright Computational complexity (x, y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Recognition

- Recognition task: classification, detection, etc. .
- · Search strategy: Sliding Windows
 - > Simple
 - \triangleright Computational complexity (x, y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10
 - ➤ Localization
 - · Objects are not boxes
 - Prone to false positive

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

42

Recognition

- Recognition task: classification, detection, etc. .
- · Search strategy: Sliding Windows
 - > Simple
 - \triangleright Computational complexity (x, y, S, θ , N of classes)
 - BSW by Lampert et al 08
 - Also, Alexe, et al 10
 - ➤ Localization
 - Objects are not boxes
 - Prone to false positive

Non max suppression:

Canny '86

....

Desai et al, 2009

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Basic issues

- Representation
 - How to represent an object category; which classification scheme?
- Learning
 - How to learn the classifier, given training data
- Recognition
 - How the classifier is to be used on novel data

2020/4/26

Beijing University of Posts and Telecommunications

44

Bag-of-features models

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

Origin 1: Texture recognition

Texture is characterized by the repetition of basic elements or *textons*For stochastic textures, it is the identity of the textons, not their spatial arrangement, that matters

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

46

Origin 1: Texture recognition

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

2020/4/26

Beijing University of Posts and Telecommunications

48

Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

50

Origin 2: Bag-of-words models

Orderless document representation: frequencies of words from a dictionary Salton & McGill (1983)

US Presidential Speeches Tag Cloud http://chir.ag/phernalia/preztags/

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

Bag-of-features steps

- Extract features
- 2. Learn "visual vocabulary"
- 3. Represent images by frequencies of "visual words"

2020/4/26

Beijing University of Posts and Telecommunications

52

1. Feature extraction

Regular grid or interest regions

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

1. Feature extraction

Detect patches

Source: Josef Sivic

2020/4/26

Beijing University of Posts and Telecommunications

54

1. Feature extraction

Source: Josef Sivic

2020/4/26

Beijing University of Posts and Telecommunications

2. Learning the visual vocabulary

Source: Josef Sivic

2020/4/26

Beijing University of Posts and Telecommunications

56

2. Learning the visual vocabulary

2020/4/26

Beijing University of Posts and Telecommunications

2. Learning the visual vocabulary

2020/4/26

Beijing University of Posts and Telecommunications

58

K-means clustering

Want to minimize sum of squared Euclidean distances between points x_i and their nearest cluster centers m_k

$$D(X, M) = \sum_{\text{cluster } k} \sum_{\substack{\text{point } i \text{in obsers } k}} (x_i - m_k)^2$$

Algorithm:

- Randomly initialize K cluster centers
- Iterate until convergence:
 - Assign each data point to the nearest center
 - · Recompute each cluster center as the mean of all points assigned to it

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

Clustering and vector quantization

- Clustering is a common method for learning a visual vocabulary or codebook
 - Unsupervised learning process
 - Each cluster center produced by k-means becomes a codevector
 - · Codebook can be learned on separate training set
 - Provided the training set is sufficiently representative, the codebook will be "universal"
- The codebook is used for quantizing features
 - A vector quantizer takes a feature vector and maps it to the index of the nearest codevector in a codebook
 - Codebook = visual vocabulary
 - Codevector = visual word

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

60

Example codebook

Source: B. Leibe

2020/4/26

Beijing University of Posts and Telecommunications

Another codebook

Appearance codebook

Source: B. Leibe

2020/4/26

Beijing University of Posts and Telecommunications

62

Yet another codebook

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

Visual vocabularies: Issues

- How to choose vocabulary size?
 - Too small: visual words not representative of all patches
 - Too large: quantization artifacts, overfitting
- Computational efficiency
 - Vocabulary trees (Nister & Stewenius, 2006)

Source: Lazebnik

2020/4/26

Beijing University of Posts and Telecommunications

64

3. Bag of word representation

2020/4/26

Beijing University of Posts and Telecommunications

3. Bag of word representation

Source: Fei-Fei Li

2020/4/26

Beijing University of Posts and Telecommunications

66

Spatial pyramid representation

Lazebnik, Schmid & Ponce (CVPR 2006)

Extension of a bag of features

Locally orderless representation at several levels of resolution

2020/4/26

Beijing University of Posts and Telecommunications

Spatial pyramid representation

Lazebnik, Schmid & Ponce (CVPR 2006)

Extension of a bag of features

2020/4/26

Beijing University of Posts and Telecommunications

68

Spatial pyramid representation

Lazebnik, Schmid & Ponce (CVPR 2006)

Extension of a bag of features

Locally orderless representation at several levels of resolution

2020/4/26

Beijing University of Posts and Telecommunications

Scene category dataset

Lazebnik, Schmid & Ponce (CVPR 2006)

Multi-class classification results (100 training images per class)

	Weak fe	eatures	Strong features		
	(vocabulary	/ size: 16)	(vocabulary size: 200)		
Level	Single-level	Pyramid	Single-level	Pyramid	
$0(1 \times 1)$	45.3 ± 0.5		72.2 ± 0.6		
$1(2 \times 2)$	53.6 ± 0.3	56.2 ± 0.6	77.9 ± 0.6	79.0 ± 0.5	
$2(4 \times 4)$	61.7 ± 0.6	64.7 ± 0.7	79.4 ± 0.3	81.1 ± 0.3	
$3(8 \times 8)$	63.3 ± 0.8	66.8 ± 0.6	77.2 ± 0.4	80.7 ± 0.3	

2020/4/26

Beijing University of Posts and Telecommunications

70

Caltech101 dataset

Lazebnik, Schmid & Ponce (CVPR 2006)

Multi-class classification results (30 training images per class)

	Weak feat	ures (16)	Strong features (200)		
Level	Single-level	Pyramid	Single-level	Pyramid	
0	15.5 ± 0.9		41.2 ± 1.2		
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8	
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	64.6 ± 0.8	
3	52.2 ± 0.8	54.0 ± 1.1	60.3 ± 0.9	64.6 ± 0.7	

http://www.vision.caltech.edu/Image_Datasets/Caltech101/Caltech101.html

2020/4/26

Beijing University of Posts and Telecommunications