Coordinate Detector for the SBS Project

Peter Monaghan
Christopher Newport University

on behalf of M. Khandakar, Idaho State

SBS – DOE Review Meeting
7th November 2016

Acknowledgements

- Many people & institutions taking part:
 - CNU: Peter Monaghan, Ralph Marinaro, T. Miller
 - Idaho State: M. Khandakar, Vitali Baturin
 - Yerevan: A. Shahinyan, G. Sargsyan
 - St. Mary's: A. Sarty, Abbie Salyzyn, Parker Reid, N. Murtha, J. Campbell, J. Sharpe
 - Glasgow: J. Annand, R. Montgomery, K. Hamilton
 - INFN: Francesco Tortorici, E. Bellini, C. Sutera
 - Kharkov PhI: R. Pomatsalyuk
 - JLab: B. Wojtsekhowski, M. Jones, Chuck Long, L. Pentchev, A. Gavalya & the Electronics Group

Project Milestones

Level	Milestone	Scheduled Date	Status	
3	Finish testing of module prototype	8/30/2014	Completed	
3	Scintillator ordered	9/30/2014	Completed	
2	CDet module design completed	11/30/2014	Completed	
3	WLS fibers ordered	1/15/2015	Completed	
3	Scintillator shipped for machining	4/30/2015	Completed	
3	Begin preparation of WLS fibers	6/15/2015	Completed	
3	Begin construction of CDet module	9/01/2015	Completed	
3	Assembled one CDet module	10/15/2015	Completed	
3	Assembled one CDet plane	3/15/2016	Completed	
2	Coordinate Detector Assembled	8/15/2016	Completed	
1	Project completion	1/29/2017	Completed	

Key Performance Parameters

CDet coordinate resolution	< 3.0 mm
Time Resolution	≈ 1.0 ns
Efficiency per plane	> 95 %
Electronic dead time, given data rate of 0.5 MHz per bar	≈ 2.5 %

SBS 2015 DOE Review

- 1) "The CDet has made great progress and is on schedule for August 2016 delivery."
 - Assembly completed on 15th August 2016
- 2) "A slow controls system should be developed."
 - Slow controls development started in June 2016

Coordinate Detector (CDet)

- A scintillator detector for charged particle detection.
- GEp: placed in front of the electromagnetic calorimeter (ECAL) to measure electron track vertical coordinate
- GEn/GMn: placed in front of hadron calorimeter (HCAL) to tag protons.

Functions of CDet

- GEp: use angular correlation between the scattered electron and the recoil proton to determine the correct proton track.
- CDet will measure electron vertical coordinate to reconstruct electron scattering angle
 - Aid in reconstruction of proton track with efficiencies > 95%
- Apply angular e-p correlation cut factor of two tighter due to smaller coordinate resolution.

Layout of GEp Experiment

Proton form factors ratio, GEp (E12-07-109)

 Placed in front of ECAL in electron arm, CDet is a vertical coordinate detector the GEp experiment

Coordinate Detector Configuration

- Detector has two planes each with an active area of (102 x 294) cm²
- 6 modules; 3 per plane; 28 scintillator groups in each module.
- Each group consists of 14 scintillator paddles.
- Total of 2352 channels.
- Each paddle has a wavelength shifting fiber (WLS) along its center for light collection.
- Each group of WLS connected to 16-channel maPMT

CDet Module Layout

- Center mirror for left/right divide
- Allows cone acceptance matching
- Scintillator paddles angled to point shortest side directly at the target.

Group Construction

- Each scintillator paddle individually wrapped in aluminized mylar.
- Fourteen paddles combined in each group.
- Used custom jig to assemble each group with the correct angular spread (0.86°)

Quality Control Checks

- Kept records for each scintillator group from construction and single-group cosmic testing.
- Keep track of bars ready for assembly
- Plan our work to accumulate the groups required for each module in sequence.
- Visual inspection; cleanout of extrusions; cosmic test

 determine number of photoelectrons; wrap for final assembly.
- Any required repairs found early.

Record Keeping

Group Label	Visual Inspection	Cleaned	Cosmic Test Date	Run #	Data analyzed?	Average Mu	Std. Dev.	Ready to assemble
M5-8UL	Yes	Yes	07/10/16	4343	Yes	4.46	1.12	PM
M5-9UL	No	No	xx/xx/xx	XXXX	xx/xx/xx	x.xx		"Name"
M5-10UL	Yes	Yes	07/18/16	4344	Yes	4.51	1.13	PM
M5-11UL	Yes	Yes	07/18/16	4349	Yes	4.32	1.02	PM
M5-12UL	Yes	Yes	07/18/16	4346	xx/xx/xx	x.xx		"Name"
M5-13UL	Yes	Yes	07/19/16	4347	Yes	4.46	1.12	PM
M5-14UL	Yes	Yes	07/20/16	4348	Yes	4.39	1.05	PM
M5-15UL	No	No	xx/xx/xx	XXXX	xx/xx/xx	x.xx		"Name"
M5-16UL	No	No	xx/xx/xx	XXXX	xx/xx/xx	x.xx		"Name"
M5-17UL	No	No	xx/xx/xx	XXXX	xx/xx/xx	x.xx		"Name"
M5-18UL	No	No	xx/xx/xx	xxxx	xx/xx/xx	x.xx		"Name"
M5-19UL	No	No	xx/xx/xx	XXXX	xx/xx/xx	x.xx		"Name"
M5-20UL	No	No	xx/xx/xx	XXXX	xx/xx/xx	x.xx		"Name"
M5-21UL	No	No	xx/xx/xx	xxxx	xx/xx/xx	x.xx		"Name"
M5-8UR	Yes	Yes	06/24/16	4327	Yes	4.65	1.17	RM
M5-9UR	Yes	Yes	06/27/16	4328	Yes	4.73	1.2	RM
M5-10UR	Yes	Yes	06/28/16	4329	Yes	4.6	1.15	RM
M5-11UR	Yes	Yes	06/29/16	4330	Yes	4.7	1.16	RM
M5-12UR	Yes	Yes	06/30/16	4331	Yes	4.63	1.17	RM
M5-13UR	Yes	Yes	07/01/16	4332	Yes	4.5	1.12	RM
M5-14UR	Yes	Yes	07/05/16	4333	Yes	4.54	1.15	RM
M5-15UR	Yes	Yes	07/06/16	4334	Yes	4.6	1.16	RM
M5-16UR	Yes	Yes	07/07/16	4335	Yes	4.52	1.14	RM
M5-17UR	Yes	Yes	07/08/16	4337	Yes	4.49	1.12	PM
M5-18UR	Yes	Yes	07/08/16	4338	Yes	4.64	1.19	PM
M5-19UR	Yes	Yes	07/09/16	4339	Yes	4.43	1.09	PM
M5-20UR	Yes	Yes	07/09/16	4340	Yes	4.41	1.11	PM
M5-21UR	Yes	Yes	07/10/16	4341	Yes	4.46	1.11	PM

Single Bar Cosmic Testing

- Test each bar with cosmics
- Determine μ for each bar
- μ is a measure of number photoelectrons produced

Single Bar Mu-graph

Module Assembly

Module Assembly

- Note the staggered mirrors
 - required new set of clamping plates made

Module Assembly Completed!

All six modules assembled; awaiting testing.

Module 1

- One half fully instrumented ADC & TDC
- All NINO cards installed.
- Commissioning in progress.

Equipment Status

HV control and modules

HV cables

9 Fastbus crates

9 SFI Fastbus

9 VME CPU

9 JLab TI

1877 TDCs

Multi-Anode PMTs & bases

WLS Fibers

Scintillators

Module Frames

NINO amplifier/discriminator cards

Cables (ribbon, PMT-NINO)

CDet Frame

CDet Absorber

Using existing

WBS 2.1 purchased

Using existing

Using existing

WBS 2.1 purchased

WBS 2.1 purchased

Using existing

Using existing

WBS 2.1 purchased

WBS 2.1 purchased

WBS 2.1 purchased

Glasgow Univ. purchased

INFN-Catania purchased

WBS 2.1 purchased

WBS 2.1 purchased

Summary

- CDet part of SBS (WBS 2.1) completed on time.
- Collaboration formed and moving ahead with detector commissioning.
- CDet commissioning in progress.

Extra Slides

Software Development

- Remote high voltage control established for CAEN crates.
- Software decoder for DAQ written and working.
 - DAQ has been tested and run for a single group+NINO output.
- Still have to develop the online analyzer software for the detector.
 - Expect this to evolve as the commissioning testing is worked through.
 - CNU committed effort and students to this.

Commissioning Plans

- Install all NINO cards throughout all modules as they become available.
- Install and test the charge equalization cards for PMT output into NINO cards.
- Tune the charge equalization for whole detector.
- Checkout of all channels in detector.
- Test the analysis software by taking data during the commissioning phase.

