If there is a total of W weights and biases in the network, then \mathbf{w} and \mathbf{b} have length W and \mathbf{H} has dimensionality $W \times W$. From (7.3), the corresponding local approximation to the gradient is given by

$$\nabla E(\mathbf{w}) = \mathbf{b} + \mathbf{H}(\mathbf{w} - \widehat{\mathbf{w}}). \tag{7.6}$$

For points \mathbf{w} that are sufficiently close to $\widehat{\mathbf{w}}$, these expressions will give reasonable approximations for the error and its gradient.

Consider the particular case of a local quadratic approximation around a point \mathbf{w}^* that is a minimum of the error function. In this case there is no linear term, because $\nabla E = 0$ at \mathbf{w}^* , and (7.3) becomes

$$E(\mathbf{w}) = E(\mathbf{w}^{\star}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}^{\star})^{\mathrm{T}}\mathbf{H}(\mathbf{w} - \mathbf{w}^{\star})$$
(7.7)

where the Hessian ${\bf H}$ is evaluated at ${\bf w}^{\star}$. To interpret this geometrically, consider the eigenvalue equation for the Hessian matrix:

$$\mathbf{H}\mathbf{u}_i = \lambda_i \mathbf{u}_i \tag{7.8}$$

Appendix A

where the eigenvectors \mathbf{u}_i form a complete orthonormal set so that

$$\mathbf{u}_i^{\mathrm{T}} \mathbf{u}_j = \delta_{ij}. \tag{7.9}$$

We now expand $(\mathbf{w} - \mathbf{w}^*)$ as a linear combination of the eigenvectors in the form

$$\mathbf{w} - \mathbf{w}^* = \sum_i \alpha_i \mathbf{u}_i. \tag{7.10}$$

Appendix A

Exercise 7.1

This can be regarded as a transformation of the coordinate system in which the origin is translated to the point \mathbf{w}^* and the axes are rotated to align with the eigenvectors through the orthogonal matrix whose columns are $\{\mathbf{u}_1,\ldots,\mathbf{u}_W\}$. By substituting (7.10) into (7.7) and using (7.8) and (7.9), the error function can be written in the form

$$E(\mathbf{w}) = E(\mathbf{w}^*) + \frac{1}{2} \sum_{i} \lambda_i \alpha_i^2.$$
 (7.11)

Suppose we set all $\alpha_i=0$ for $i\neq j$ and then vary α_j , corresponding to moving ${\bf w}$ away from ${\bf w}^\star$ in the direction of ${\bf u}_j$. We see from (7.11) that the error function will increase if the corresponding eigenvalue λ_j is positive and will decrease if it is negative. If all eigenvalues are positive then ${\bf w}^\star$ corresponds to a local minimum of the error function, whereas if they are all negative then ${\bf w}^\star$ corresponds to a local maximum. If we have a mix of positive and negative eigenvalues then ${\bf w}^\star$ represents a saddle point.

A matrix **H** is said to be *positive definite* if, and only if,

$$\mathbf{v}^{\mathrm{T}}\mathbf{H}\mathbf{v} > 0, \quad \text{for all } \mathbf{v}.$$
 (7.12)