SERIAL ROUTINES FOR THE TEC

RECEIVER

This is the routine I use when I wish to down-load a file from the IBM. It's a simple routine that converts a serial stream into bytes and stores them in RAM starting at the address provided at 0898. The routine also has an end address to allow a maxi-

SERIAL INPUT ROUTINE

0900	2A 98 08	LD HL,(0898)	START ADDRESS IN HL
0903	CD 12 09	CALL 0912	GET BYTE
0906	ED 4B 9A 08	LD BC,(089A)	PUT END ADDR IN BC
090A		OR A	CLEAR CARRY FLAG
090A	E5	PUSH HIL	
090C	ED 42	SBC HL,BC	SUB CURRENT ADDR FROM END
	E1 42	POP HL	RECOVER HL
090F	38 F2	JR C 0903	JUMP IF NOT DONE
0911	C9	RET	ELSE RETURN TO JMON
	DB 03	IN A,03	LOOK FOR START BIT
0914	07	RLCA	PUT IN CARRY
0915	30 FB	JR NC 0912	LOOP UNTIL START BIT FOUND
0917	06 40	LD B.40	DELAY TO HALF WAY IN
0919		DJNZ 0919	FIRST CELL
091B	1E 00	LD E,00	E IS RECEIVER BYTE
091D		LD C.08	C IS COUNT SET FOR 8 BITS
091F		IN A,07	INPUT BIT
0921	07	RLCA	INTO CARRY FLAG
0922	CB 1B	RR E	THEN STORE IN E
0924		LD B,39	B=HALF CELL DELAY
0926	10 FE	DJNZ 0926	LOOP TO NEXT CELL ARRIVES
0928	0D	DEC C	DEC LOOP COUNTER
0929		JR NZ 091F	JUMP IF 8 BITS NOT DONE
092B	7B	LD A,E	PUT INPUTTED BYTE IN A
092C	2F	CPL	AND INVERT TO TRUE FORM
	77	LD (HL),A	STORE IN MEMORY
092E	23	INC HL	INCREASE MEMORY POINTERS
092F	C9	RET	RETURN FROM SUBROUTINE
J			

SERIAL OUTPUT ROUTINE

UL!	SEMIAL COM OF MOOTHILE				
0A00	2A 98 08	LD HL,(0898)	PUT START IN HL		
0A03	CD 12 0A	CALL 0A12	OUTPUT BYTE		
0A06	ED 4B 9A 08	LD BC (089A)	END IN BC		
0A0A	B7	OR A	CLEAR CARRY		
0A0B	E5	PUSH HL	SAVE START		
0A0C	ED 42	SBC HL,BC	SUB END FROM START		
0A0E	E1	POP HL	RECOVER START		
0A0F	38 F2	JR C,0A03	JUMP IF END << THAN		
0A11	C9	RET	START ELSE RETURN		
0A12	3E 80	LD A,80	SET START BIT		
0A14	D3 01	OUT (01),A	OUT START BIT		
0A16	CD 2D 0A	CALL 0A2D	CALL DELAY		
0A19	7E	LD A,(HL)	GET BYTE TO OUTPUT		
0A1A	23	INC HL	POINT TO NEXT BYTE		
	06 08	LD B,08	SET COUNT FOR 8 BITS		
0A1D		RRCA	PUT BIT INTO BIT 7		
	EE 80	XOR 80	COMPLEMENT BIT		
	D3 01	OUT (01),A	OUTPUT IT		
	CD 2D 0A	CALL 0A2D	CALL DELAY		
	10 F 6	DJNZ,0A1D	DO FOR 8 BITS		
0A27		XOR A	CLEAR FOR STOP BIT		
	D3 01	OUT (01),A	OUT STOP BIT x2		
	CD 2D 0A	CALL 0A2D	FIRST STOP DELAY		
0A2D		PUSH BC	SAVE BIT COUNT		
	06 36	LD B,36	LOAD B WITH DELAY		
	10 FE	DJNZ,0A30	DO DELAY		
0A32		POP BC	RECOVER BIT COUNT		
0A33	C9	RET	DONE		

mum file length. This is in case something goes wrong with the data transfer. Anything important can be protected by placing it above the end address.

No hand-shaking is needed as the TEC can cope with the speed of the data stream. It is up to you to ensure the TEC is ready before you send the data. The serial input is bit 0 of PORT 3. The DAT BOARD has provision for 2 diodes and a resistor at this input to clip an incoming RS232 signal. In the RS232 format, a logic 1 is represented by a negative voltage while a logic 0 is a positive voltage. The clipper on the DAT BOARD

changes an RS232 logic 0 (positive voltage) into a digital logic 1 while an RS232 logic 1 is clipped to zero volts and becomes a digital logic 0.

This means that the inputted data must be inverted back into its true form. This is done with the CPL instruction at 092C. The format of the data is as follows: 2400 BAUD, NO PARITY, 8 BITS, STOP BITS OPTIONAL, TEC SPEED: 3.58/2

SERIAL OUTPUT ROUTINE

This is the complement routine of the serial receiver. It will send serial data through the TEC speaker bit. The data is taken from the latch side of the base resistor of the transistor inverter and inputted directly to an RS232 Rx input or the DAT BOARD serial input.

Strictly speaking the data stream is not RS232 compatible but in practice it works ok, although the occasional error may creep in.

Oh yes, before sending data, the key press beep must be turned off. To do this, place FF at 0822 and put AA at 08FF.

The serial sender uses the same start and end buffers as the receive described above with the same speed etc. Two stop bits are sent as this provides compatibility with all serial systems.

IBM SOFTWARE

The software I used for receiving the serial is PROCOMM. It is a public domain program and can be purchased from the Talking Electronics Shop. Cat S-449.

The protocol to use is ASCII.

The sending software poses a few difficulties. One big problem is that some packages won't send the 1A character. Actually, I believe the problem is in the DOS serial interrupt and if the software uses it then it won't send the 1A character.

It is rare that I send anything back to the TEC and when I do, it's with a serial routine Craig wrote and probably won't work with all computers as it directly manipulates the hardware; not a recommended practice.

It is up to you to experiment around and find something that works.

I would like to hear from anyone who has found or written a good sending routine that doesn't have the 1A character problem.

Hardware wise, the CTS must be taken high before the IBM will send the data. This means that the IBM to TEC link consists of three wires: the ground, the serial data line and +5v.

Only ground and the serial data are required for the TEC to IBM link.