TP 4 Réseaux causaux Bayésiens

ETAPE1:

Installer une toolbox des Réseaux Bayésiens telles que :

- **BNT** (Bayes Net Toolbox for Matlab): https://code.google.com/p/bnt/
- JavaBayes: https://www.cs.cmu.edu/~javabayes
- **BNJ:** https://bnj.sourceforge.net/
 - Python Bayesian Network Toolbox (PBNT): https://github.com/achille/pbnt
 - PNL, C++: http://sourceforge.net/projects/openpnl/

ETAPE2:

- Générez:
 - o un polyarbre,
 - o une (ou plusieurs) variable(s) d'évidence (avec son (leurs instance(s)),
 - o une variable d'intérêt (avec son instance),
 - o des distributions a priori pour les nœuds racine
 - o des distributions conditionnelles pour les autres nœuds
- Calculez P(variable d'intérêt | évidence(s))

_

ETAPE3:

- Générez:
 - o un graphe à connexions multiples,
 - o Une (ou plusieurs) variable(s) d'évidence (avec son (leurs) instance(s)),
 - o une variable d'intérêt (avec son instance),
 - o des distributions a priori pour les nœuds racine
 - o des distributions conditionnelles pour les autres nœuds
- Calculez P(variable d'intérêt | évidence(s))

ETAPE 4:

- Formalisez un problème réel sous forme d'un réseau Bayésien, modélisable sous forme d'un graphe à connexions multiples.
- Utiliser la toolbox afin de simuler son fonctionnement sur un cas en spécifiant les évidences et la variable d'intérêt.