Data Mining

Locality Sensitive Hashing

Dr. Hanna Köpcke Wintersemester 2020

Abteilung Datenbanken, Universität Leipzig http://dbs.uni-leipzig.de

Übersicht

Inhaltsverzeichnis

- Einleitung
- One-Hot-Kodierung
- Min-Hash Signaturen
- Locality Sensitive Hashing

Pinterest Visual Search

Finde ähnliche Bilder für einen gegebenen Bildbereich

Funktionsweise

- Sammlung aus Milliarden von Bildern
- Berechne Repräsentation für jedes Bild (z.B. 4000 Dimensionen)

Finde die ähnlichsten Bilder für ein gegebenes Bild

Anwendungen

Viele Probleme können als folgendes Suchproblem formuliert werden:

Finde die nächsten Nachbarn in einem hochdimensionalen Raum

- Beispiele:
 - Dokumente mit ähnlichen Wörtern
 - Klassifikation
 - Duplikateleminierung, z.B. in der Webseiten-/Nachrichtensuche
 - Plagiaterkennung
 - Kunden mit ähnlichem Kaufverhalten
 - Empfehlungen: Musik, Filme, ...
 - Bilder mit ähnlichen Merkmalen, z.B. Bildkomplettierung

Bildkomplettierung

[Hays and Efros, SIGGRAPH 2007,

http://graphics.cs.cmu.edu/projects/scenecompletion/scene-completion.pdf]

Allgemeine Beschreibung des Problems

Gegeben einer Menge von N hochdimensionalen Datenpunkten

$$x_1, x_2, ..., x_N$$

- Distanzfunktion $d(x_i, x_j)$
- Ziel: Finde alle Paare (x_i, x_i) innerhalb einer Ähnlichkeitsgrenze s:

$$d(x_i, x_i) \leq s$$

- Naive Lösung: Vergleich aller Paare benötigt $o(N^2)$ Berechnungszeit
 - Bei $N=10^6$ Punkten bedeutet dies $\frac{N(N-1)}{2}\approx 5\cdot 10^{11}$ Vergleiche
 - Mit 10⁶ Vergleichen pro Sekunde, benötigt man dazu etwa 5 Tage
 - Über 1 Jahr bei $N = 10^7$ Punkten
- Mit Locality Sensitive Hashing: O(N) Berechnungszeit möglich

Beispiel: Ähnliche Textdokumente

Finde ähnliche Paare in einer *riesigen* Menge von Textdokumenten

Probleme:

- Repräsentation als (hochdimensionaler) Datenpunkt
- Gleiche Teile der Dokumente werden in unterschiedlichen Reihenfolgen angezeigt
- Dokumente sind so groß/zahlreich, dass sie nicht in den Hauptspeicher passen

Zu viele Dokumente zum Vergleichen aller Paare

3 Schritte zum Finden ähnlicher Dokumente

- One-Hot-Kodierung: Konvertierung der Dokumente in numerische Repräsentationen
- 2. Min-Hashing: Konvertierung langer (hochdimensionaler) Repräsentationen in kurze *ähnlichkeitserhaltende* Signaturen
- 3. Locality-Sensitive Hashing: Bestimmen von Paaren an Signaturen, die mit hoher Wahrscheinlichkeit sehr ähnlich sind

Inhaltsverzeichnis

- Einleitung
- One-Hot-Kodierung
- Min-Hash Signaturen
- Locality Sensitive Hashing

Schritt 1: One-Hot-Kodierung

- Darstellung eines Textdokuments als 0-1-Array
- Jedes Element des Arrays steht für ein Merkmal
 - 0 bedeutet, dass Merkmal nicht vorhanden ist
 - 1 bedeutet, dass Merkmal vorhanden ist
- Mehrere Möglichkeiten, Merkmale aus Textdokumenten zu extrahieren
- Beispiel: Merkmal = Wort (Bag-Of-Words)

John ist häufig übermüdet.		John	ist	ständig	übermüdet	lieber	häufig	als	überwacht
Lieber böyfir übermüdet ele	1	1	1	0	1	0	1	0	0
Lieber häufig übermüdet als ständig überwacht.	 	0	0	1	1	1	1	1	1

N-Gramme und K-Shingles

 Menge aller Wörter (Bag-Of-Words) berücksichtigt nicht die Anordnung der Wörter (zu Sätzen)

- N-Gramm: Folge von Wörtern
 - 2-Gramme: "lieber häufig", "häufig übermüdet", "übermüdet als", "als ständig", "ständig überwacht"
 - 3-Gramme: "lieber häufig übermüdet", "häufig übermüdet als", "übermüdet als ständig", "als ständig überwacht"
- K-Shingle: Teil einer Zeichenkette der Länge k
 - 2-Shingles: "li", "ie", "eb", "be", "er", "r ", " h", "hä", "äu", "uf", "fi", "ig", "g ", " ü", "üb", ...
 - 3-Shingles: "lie", "ieb", "ebe", "ber", "er ", "r h", " hä", "häu", "äuf", "ufi", "fig", "ig ", ...

Distanzmaß

Distanz zwischen zwei Mengen X₁ und X₂: Jaccarddistanz

$$d(X_1, X_2) = 1 - \frac{|X_1 \cap X_2|}{|X_1 \cup X_2|}$$

 Jaccarddistanz beschreibt den Anteil der Elemente, welche nicht in beiden Mengen vorkommen

Jaccarddistanz

- Berechnung über One-Hot-Kodierung
- Seien C_1 und C_2 die Kodierungen zweier Mengen
- Dann kann die Jaccarddistanz berechnet werden, indem die Elemente beider Kodierungen an jeder Position vergleicht:

$$d(C_1, C_2) = \frac{\text{Anzahl der Positionen mit genauer einer Eins}}{\text{Anzahl der Positionen mit mind. einer Eins}}$$

C_1	1	1	0	0	1	1
C_2	1	1	0	0	1	0
C_3	0	1	1	1	0	0

$$d(C_1, C_2) = \frac{1}{4}$$
 $d(C_1, C_3) = \frac{5}{6}$ $d(C_2, C_3) = \frac{4}{5}$

Inhaltsverzeichnis

- Einleitung
- One-Hot-Kodierung
- Min-Hash Signaturen
- Locality Sensitive Hashing

Schritt 2: Min-Hashing

- Min-Hashing: Konvertierung der Kodierungen in kurze ähnlichkeitserhaltende Signaturen
 - Signaturen sind kürzere Repräsentationen
 - Vergleich über Signaturen anstatt über Kodierungen
- Idee: "Hash" die Kodierungen in Buckets, so dass die meisten ähnlichen Paare in dem gleichen Bucket landen
- Formal: Finde eine Hash-Funktion h(·), so dass:
 - Falls $d(C_1,C_2)$ klein, dann $h(C_1) = h(C_2)$ mit hoher Wahrscheinlichkeit.
 - Falls $d(C_1,C_2)$ groß, dann $h(C_1) = h(C_2)$ mit niedriger Wahrscheinlichkeit.

Hash-Funktion hängt vom Distanzmaß ab: Min-Hashing für Jaccard

Min-Hashing

• Anwenden einer **Permutation** π_1 auf die Elemente der Kodierung

• Min-Hash-Funktion h_1 auf Kodierung C:

$$h_1(C) := \min_{i:C_i=1} \pi_1(i),$$

d.h. der Index der ersten Position der permutierten Kodierung mit einer 1

• **Signatur** einer Kodierung besteht aus den Min-Hash-Werten $h_1, h_2, ..., h_n$ mehrerer unabhängiger Permutationen $\pi_1, \pi_2, ..., \pi_n$

Min-Hashing: Beispiel

Permutation π

Matrix (Shingles x Dokumenten)

		_
2	4	3
3	2	4
0	1	0
6	3	2
1	6	1
5	0	6
4	5	5

1	0	0	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signaturen

Min-Hash: Zentrale Eigenschaft

Für zwei Mengen mit One-Hot-Kodierung C und D bezeichne d(C,D) deren Jaccarddistanz. Für jede Permutation π gilt:

$$Pr[h_{\pi}(C) \neq h_{\pi}(D)] = d(C, D)$$

Begründung:

- Wir betrachten die kleinste Zahl aus π , die nicht auf eine Zeile (0,0) verweist
- Die Wahrscheinlichkeit $Pr[h_{\pi}(C) \neq h_{\pi}(D)]$ bezieht sich auf das Ereignis, dass diese Zahl auf eine Zeile mit nur einer Eins verweist: (0,1) oder (1,0)
- Da die Permutation zufällig, entspricht dies:

$$Pr[h_{\pi}(C) \neq h_{\pi}(D)] =$$

Anzahl der Positionen mit genauer einer Eins Anzahl der Positionen mit mind. einer Eins = d(C, D)

π	<i>C</i>	D
2	0	0
3	1	1
0	0	0
1	0	1
6	1	1
5	1	0
4	0	1

Data Mining

Ähnlichkeit der Signaturen

- Für jede Permutation π gilt $Pr[h_{\pi}(C) \neq h_{\pi}(D)] = d(C, D)$
- Bei mehreren unabhängigen Permutationen $\pi_1, \pi_2, ..., \pi_n$, kann der Wert für d(C,D) über die relative Häufigkeit von

$$h_{\pi_i}(C) \neq h_{\pi_i}(D)$$

geschätzt werden

Je länger die Signatur, desto genauer die Schätzung

Min-Hashing: Beispiel

Permutation π

Matrix (Shingles x Dokumenten)

Signaturen

2	4	3
3	2	4
0	1	0
6	3	2
1	6	1
5	0	6
4	5	5

1	0	0	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Paar	Spalte	Signatur
1-2	1	1
1-3	0.5	2/3
1-4	6/7	1
2-3	1	1
2-4	0.25	0
3-4	1	1

Permutation π

Matrix (Shingles x Dokumenten)

2	4	3			
3	2	4			
0	1	0			
6	3	2			
1	6	1			
5	0	6			
4	5	5			

1	0	0	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signaturen

Permutation π

Matrix (Shingles x Dokumenten)

2	4	3		
3	2	4		
O	1	0		
6	3	2		
1	6	1		
5	0	6		
4	5	5		

1	0	0	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signaturen

2		
4		
3		

Permutation π

Matrix (Shingles x Dokumenten)

2	4	3	
3	2	4	
0	1	0	
6	3	2	
1	6	1	
5	0	6	
4	5	5	

	, ,			
1	0	0	0	
1	0	0	1	
0	1	0	1	
0	1	0	1	
0	1	0	1	
1	0	1	0	
1	0	1	0	

Signaturen

2		3
2		2
3		4

Permutation π

Matrix (Shingles x Dokumenten)

2	4	3	
3	2	4	
0	1	0	
6	3	2	
1	6	1	
5	0	6	
4	5	5	

1	0	0	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signaturen

2	0	0
2	1	1
3	0	0

Permutation π

Matrix (Shingles x Dokumenten)

2	4	3	
3	2	4	
0	1	0	
6	3	2	
1	6	1	
5	0	6	
4	5	5	

1	0	0	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signaturen

2	0	0
2	1	1
3	0	0

Permutation π

Matrix (Shingles x Dokumenten)

——————————————————————————————————————		
2	4	3
3	2	4
0	1	O
6	3	2
1	6	1
5	0	6
4	5	5

1	0	0	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

2	0	5	0
0	1	0	1
3	0	6	0

Signaturen

Permutation π

Matrix (Shingles x Dokumenten)

		οπ <i>π</i>
2	4	3
3	2	4
0	1	0
6	3	2
1	6	1
5	0	6
4	5	5

1	0	0	0
1	0	0	1
0	1	0	1
0	1	0	1
0	1	0	1
1	0	1	0
1	0	1	0

Signaturen

2	0	4	0
0	1	0	1
3	0	5	0

Min-Hash: Implementierung

- Tatsächliche Permutationen wären zu umfangreich (Speicherplatz)
- Simulation einer Permutation über Zufallshashfunktionen
 - Zufällige Abbildung der Zahlen 1, ..., N auf Zahlen 1, ..., N
 - z.B. $h(x) = ((a \cdot x + b) \mod p) \mod N$, wobei a, b Zufallszahlen und p eine Primzahl mit p > N
- Zufallshashfunktionen h_1 , h_2 , ..., h_n
- Initiale Signaturmatrix: $SIG(i, c) = \infty$ für alle i, c
- Algorithmus: Für jede Zeile r der Dokumentenmatrix
 - Berechne $h_1(r)$, $h_2(r)$, ..., $h_n(r)$
 - Für jede Spalte c mit 1: $SIG(i,c) \leftarrow \min(SIG(i,c), h_i(r))$ für alle i=1,...,n

Implementierung: Beispiel

$$SIG(i, C_1)$$
 $SIG(i, C_2)$

 ∞

Zeile	C_1 C_2

$$\infty$$
 ∞

 ∞

 $h(x) = x \mod 5$

 $g(x) = (2x+1) \mod 5$

$$h(1) = 1$$

$$g(1) = 3$$

$$h(2) = 2$$

$$g(2) = 0$$

$$h(3) = 3$$

$$g(3) = 2$$

$$h(4) = 4$$

$$g(4) = 4$$

$$h(5) = 0$$

$$g(5) = 1$$

Signaturmatrix

Inhaltsverzeichnis

- Einleitung
- One-Hot-Kodierung
- Min-Hash Signaturen
- Locality Sensitive Hashing

Schritt 3: Locality Sensitive Hashing

Locality Sensitive Hashing (LSH): Beschränkung auf Paare von Signaturen, die höchst wahrscheinlich ähnlich sind

- Nur die Paare von Signaturen, die über LSH ausgewählt wurden, werden auf Ähnlichkeit untersucht (Schätzung der Jaccarddistanz)
- Vorteil: Im Idealfall wird nur ein kleiner Bruchteil von Paaren untersucht
- Nachteil: Es gibt False Negatives
 - Ähnliche Paare, die nicht entdeckt wurden
 - Die Rate der False Negatives gilt es, so klein wie möglich zu halten

LSH

- **Ziel**: Dokumentenpaare mit Jaccarddistanz kleiner als ein *Schwellenwert s* (z.B. s = 0.2)
- Idee: Verwende Hash-Funktion, die ähnliche Dokumente in gleiche Buckets sortiert und unähnliche Dokumente in unterschiedliche Buckets
- **Effektive Methode** (zum Beispiel):
 - Teilung der Signaturmatrix in b Bänder mit jeweils r Reihen
 - Eine Hash-Funktion für jedes
 Band, welche einen Vektor aus
 r Zahlen auf eine große Anzahl an
 Buckets verteilt
 - Kandidaten sind zwei Signaturen, die mind. einmal in den gleichen Bucket sortiert wurden
 - Einstellung von b und r zur Optimierung

Hashing der Bänder

Spalten 2 und 6 sind in diesem Band wahrscheinlich gleich

Spalten 6 und 7 sind hier garantiert unterschiedlich

Annahme: Es gibt genügend Buckets, so dass zwei Spalten mit hoher Wahrscheinlichkeit nur dann in den gleichen Bucket sortiert werden, wenn sie in einem Band identisch sind

Hash-Funktion: Beispiel

- Man benötigt eine Hash-Funktion pro Band
- Wie findet man genügend Hash-Funktionen?
- 1. MurmurHash mit verschiedenen Seeds
 - Original in C++: https://github.com/aappleby/smhasher/wiki
 - Java Implementierung: z.B. in Guava (https://github.com/google/guava)
- 2. Beliebige Hash-Funktion und XOR mit Zufallszahl
 - Liste mit Hash-Funktionen: https://en.wikipedia.org/wiki/List_of_hash_functions
 - Auch unsichere Hash-Funktionen wie MD5 k\u00f6nnen verwendet werden.
 - Java Implementierung: z.B. in Guava
 (https://github.com/google/guava/wiki/HashingExplained)
 - XOR in Java:

```
int a = 60; /* 60 = 0011 1100 */
int b = 13; /* 13 = 0000 1101 */
int c = a ^ b; /* 49 = 0011 0001 */
```

Beispiel

- Signaturmatrix mit 100 Zeilen
- Setze b = 20 und r = 5

Fall 1: 2 Dokumente mit d(C, D) = 0.2

- Wahrscheinlichkeit, dass C und D in einem bestimmten Band identisch: $(1-0.2)^5 = 0.328$
- Wahrscheinlichkeit, dass C und D in keinem Band identisch: $(1 0.328)^{20} = 0.00035$
- d.h. einer von 3000 Paaren mit 80%-Ähnlichkeit werden nicht entdeckt (False Negative)

Fall 2: 2 Dokumente mit d(C, D) = 0.7

- Wahrscheinlichkeit, dass C und D in einem bestimmten Band identisch:
 (0.3)⁵ = 0.00243
- Wahrscheinlichkeit, dass C und D in mind. einem Band identisch:
 1 (1 0.00243)²⁰ = 0.0474
- d.h. 4.74% der Paaren mit 30%-Ähnlichkeit werden zu Kandidaten (False Positives)

- Angenommen t = 1 d(C, D), b Bänder mit jeweils r Zeilen
- Wahrscheinlichkeit, dass C und D in mind. einem Band identisch:

$$1 - (1 - t^r)^b$$

- Wähle (2 aus 3):
 - Die Anzahl der Min-Hashes (Zeilen der Signatur-Matrix)
 - Die Anzahl der Bänder b
 - $-\,$ Die Anzahl der Reihen pro Band r um die Raten der False Positives und False Negatives anzugleichen
- **Beispiel:** Bei b = 10 und r = 10 anstatt b = 20 und r = 5 würde es weniger False Positives aber mehr False Negatives geben

Idealfall

1 Zeile und 1 Band:
$$1 - (1 - t^r)^b = t$$

r Zeilen und b Bänder

Data Mining