- Since DTs split the data space s.t. classes are well separated, an impurity measure is needed
- Entropy and Gini Impurity are two usual choices, but much more measures were developed
- Direct reduction of the classification error is not used

Use this split?

Use this split?

 After splitting the data space, the impurity measure is caluclated for all resulting partitions

$$H = -\sum_{i} p(c_i) \log_2 p(c_i)$$

 $p(c_i)$: relative frequency of class c_i inside the partition

Using split X1 > 4.4, we have 21 class1 and 50 class2 data points p(c1) = 0.296, p(c2) = 0.704H = -1*((0.296)*log2(0.296) + (0.704)*log2(0.704)) = 0.876

- Entropy is maximal when uncertainty is maximal
- For a 2-class problem max(H) = 1 (in general H not bounded!)
- Maximum uncertainty is given, when classes are evenly distributed

- Entropy gives us the impurity of each data space partition
- When comparing two or more possible splits, it does not tell us which one is better
- For split comparison information gain is used

$$\Delta H = H_p - \left[\frac{n_1}{n} H_1 + \frac{n_2}{n} H_2 \right]$$

 H_p : Entropy of parent node, H_1/H_2 : Entropy of partition 1/2;

 n_1/n_2 : number of samples in partition 1/2, n: number of samples in the parent partition

Decision/Split: X1 <= 4.4

Parent partition

Decision = True (partition1):

Decision = False (partition2)

Information Gain

n1/n = 0.297
n2/n = 0.703

$$\Delta$$
H = 1 - (0.297*0 + 0.703*0.876)
 Δ H = 0.384

- Balancing by relative partition size prevents extreme splits at the end of the value spectrum
- Information gain calculations continue for each path down the tree
- For every split, the node that is currently worked on is used as a reference node (= the parent node)

Decision/Split: X1 <= 4.4 ΔH = 0.384

Decision/Split: $X2 \le 1.6$ $\Delta H = 0.7$

Parent Node = whole data space H = 1

Gini Impurity/Index

- Gini Impurity/Index is an alternative to entropy
- Slightly faster to compute, isolates most frequent class in ist own branch, entropy produces more balanced trees buit there's no big difference
- Tree building/comparing splits with gini works similar to entropy

$$G = 1 - \sum_{i} p(c_i)^2$$

 $p(c_i)$: relative frequency of class i inside a partition

