Machine Learning Foundations

(機器學習基石)

Lecture 2: Learning to Answer Yes/No

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

1 When Can Machines Learn?

Lecture 1: The Learning Problem

 ${\mathcal A}$ takes ${\mathcal D}$ and ${\mathcal H}$ to get g

Lecture 2: Learning to Answer Yes/No

- Perceptron Hypothesis Set
- Perceptron Learning Algorithm (PLA)
- Guarantee of PLA
- Non-Separable Data
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Credit Approval Problem Revisited

what hypothesis set can we use?

A Simple Hypothesis Set: the 'Perceptron'

23 years
· · · · · · · · · · · · · · · · · ·
NTD 1,000,000
0.5 year
0.5 year
200,000
200,000

• For $\mathbf{x} = (x_1, x_2, \dots, x_d)$ 'features of customer', compute a weighted 'score' and

d 'score' and approve credit if
$$\sum_{i=1}^{d} w_i x_i > \text{threshold}$$
 deny credit if $\sum_{i=1}^{d} w_i x_i < \text{threshold}$

• \mathcal{Y} : $\underbrace{+1(\mathbf{good})}_{h(\mathbf{x})}$, 0 ignored—linear formula $h \in \mathcal{H}$ are $\underbrace{h(\mathbf{x})}_{i=1} = \mathrm{sign}\left(\left(\sum_{i=1}^d w_i x_i\right) - \mathrm{threshold}\right)$

called 'perceptron' hypothesis historically

Vector Form of Perceptron Hypothesis

$$\begin{array}{ll} \textit{h}(\mathbf{x}) & = & \text{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) - \text{threshold}\right) \\ \\ & = & \text{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w}_{i} x_{i}\right) + \underbrace{\left(-\text{threshold}\right) \cdot \left(+1\right)}_{w_{0}}\right) \\ \\ & = & \text{sign}\left(\sum_{i=0}^{d} \mathbf{w}_{i} x_{i}\right) \\ \\ & = & \text{sign}\left(\mathbf{w}^{\mathsf{T}} \mathbf{x}\right) \end{array}$$

 each 'tall' w represents a hypothesis h & is multiplied with 'tall' x —will use tall versions to simplify notation

what do perceptrons h 'look like'?

Perceptrons in \mathbb{R}^2

$$h(\mathbf{x}) = \text{sign}(w_0 + w_1x_1 + w_2x_2)$$

- customer features **x**: points on the plane (or points in \mathbb{R}^d)
- labels y: \circ (+1), \times (-1)
- hypothesis h: lines (or hyperplanes in \mathbb{R}^d)

 —positive on one side of a line, negative on the other side
- · different line classifies customers differently

perceptrons ⇔ linear (binary) classifiers

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a **good perceptron** for the task?

- offee, tea, hamburger, steak
- 2 free, drug, fantastic, deal
- 3 machine, learning, statistics, textbook
- 4 national, Taiwan, university, coursera

Consider using a perceptron to detect spam messages.

Assume that each email is represented by the frequency of keyword occurrence, and output +1 indicates a spam. Which keywords below shall have large positive weights in a **good perceptron** for the task?

- 1 coffee, tea, hamburger, steak
- 2 free, drug, fantastic, deal
- 3 machine, learning, statistics, textbook
- 4 national, Taiwan, university, coursera

Reference Answer: (2)

The occurrence of keywords with positive weights increase the 'spam score', and hence those keywords should often appear in spams.

Select g from \mathcal{H}

 $\mathcal{H} = \text{all possible perceptrons}, g = ?$

- want: $g \approx f$ (hard when f unknown)
- almost necessary: $g \approx f$ on \mathcal{D} , ideally $g(\mathbf{x}_n) = f(\mathbf{x}_n) = y_n$
- difficult: H is of infinite size
- idea: start from some g_0 , and 'correct' its mistakes on \mathcal{D}

will represent g_0 by its weight vector \mathbf{w}_0

Perceptron Learning Algorithm

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

For t = 0, 1, ...

1) find a mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$\mathsf{sign}\left(\mathbf{w}_t^\mathsf{T}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

(try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

... until no more mistakes return last \mathbf{w} (called \mathbf{w}_{PLA}) as g

That's it!

知错能改,善莫大焉

—A fault confessed is half redressed. :-)

Practical Implementation of PLA

start from some \mathbf{w}_0 (say, $\mathbf{0}$), and 'correct' its mistakes on \mathcal{D}

Cyclic PLA

For t = 0, 1, ...

1 find the next mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$

$$sign\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n(t)}\right) \neq y_{n(t)}$$

2 correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

... until a full cycle of not encountering mistakes

next can follow naïve cycle $(1, \dots, N)$ or precomputed random cycle

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

worked like a charm with < 20 lines!!

Some Remaining Issues of PLA

'correct' mistakes on \mathcal{D} until no mistakes

Algorithmic: halt (with no mistake)?

- naïve cyclic: ??
- random cyclic: ??
- other variant: ??

Learning: $g \approx f$?

- on \mathcal{D} , if halt, yes (no mistake)
- outside D: ??
- if not halting: ??

[to be shown] if (...), after 'enough' corrections, any PLA variant halts

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

$$sign\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n}\right) \neq y_{n}, \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + y_{n}\mathbf{x}_{n}$$

Let's try to think about why PLA may work.

Let n = n(t), according to the rule of PLA below, which formula is true?

$$sign\left(\mathbf{w}_{t}^{T}\mathbf{x}_{n}\right) \neq y_{n}, \quad \mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t} + y_{n}\mathbf{x}_{n}$$

Reference Answer: (3)

Simply multiply the second part of the rule by $y_n \mathbf{x}_n$. The result shows that **the rule** somewhat 'tries to correct the mistake.'

Linear Separability

- if PLA halts (i.e. no more mistakes), (necessary condition) \mathcal{D} allows some w to make no mistake
- call such \mathcal{D} linear separable

assume linear separable \mathcal{D} , does PLA always halt?

PLA Fact: w_t Gets More Aligned with w_f

linear separable $\mathcal{D} \Leftrightarrow$ exists perfect \mathbf{w}_f such that $y_n = \text{sign}(\mathbf{w}_f^T \mathbf{x}_n)$

• \mathbf{w}_f perfect hence every \mathbf{x}_n correctly away from line:

$$y_{n(t)}\mathbf{w}_{f}^{T}\mathbf{x}_{n(t)} \geq \min_{n} y_{n}\mathbf{w}_{f}^{T}\mathbf{x}_{n} > 0$$

• $\mathbf{w}_{t}^{\mathsf{T}}\mathbf{w}_{t}\uparrow$ by updating with any $(\mathbf{x}_{n(t)},y_{n(t)})$

$$\mathbf{w}_{f}^{T}\mathbf{w}_{t+1} = \mathbf{w}_{f}^{T}(\mathbf{w}_{t} + y_{n(t)}\mathbf{x}_{n(t)})$$

$$\geq \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \min_{n} y_{n}\mathbf{w}_{f}^{T}\mathbf{x}_{n}$$

$$> \mathbf{w}_{f}^{T}\mathbf{w}_{t} + \mathbf{0}.$$

 \mathbf{w}_t appears more aligned with \mathbf{w}_t after update (really?)

PLA Fact: w_t Does Not Grow Too Fast

w_t changed only when mistake

$$\Leftrightarrow \operatorname{sign}\left(\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n(t)}\right) \neq y_{n(t)} \Leftrightarrow y_{n(t)}\mathbf{w}_{t}^{\mathsf{T}}\mathbf{x}_{n(t)} \leq 0$$

• mistake 'limits' $\|\mathbf{w}_t\|^2$ growth, even when updating with 'longest' \mathbf{x}_n

$$\|\mathbf{w}_{t+1}\|^{2} = \|\mathbf{w}_{t} + y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$= \|\mathbf{w}_{t}\|^{2} + 2y_{n(t)}\mathbf{w}_{t}^{T}\mathbf{x}_{n(t)} + \|y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + 0 + \|y_{n(t)}\mathbf{x}_{n(t)}\|^{2}$$

$$\leq \|\mathbf{w}_{t}\|^{2} + \max_{n} \|y_{n}\mathbf{x}_{n}\|^{2}$$

start from $\mathbf{w}_0 = \mathbf{0}$, after T mistake corrections,

$$\frac{\mathbf{w}_{\mathit{f}}^{T}}{\|\mathbf{w}_{\mathit{f}}\|}\frac{\mathbf{w}_{\mathit{T}}}{\|\mathbf{w}_{\mathit{T}}\|} \geq \sqrt{T} \cdot \mathsf{constant}$$

Let's upper-bound T, the number of mistakes that PLA 'corrects'.

Define
$$R^2 = \max_n \|\mathbf{x}_n\|^2$$
 $\rho = \min_n y_n \frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \mathbf{x}_n$

We want to show that $T \leq \square$. Express the upper bound \square by the two

terms above. R^2-半径的平方,每个向量的 长度,最大的是多少

- $\mathbf{0} R/\rho$
- **2** R^2/ρ^2
- **4** ρ^2/R^2

rho-我们想要的那条线,目标线的法向量跟每个点的内积,如果是 线性可分的话,rho一定是大于0的

Let's upper-bound T, the number of mistakes that PLA 'corrects'.

Define
$$R^2 = \max_n \|\mathbf{x}_n\|^2$$
 $\rho = \min_n y_n \frac{\mathbf{w}_f^T}{\|\mathbf{w}_f\|} \mathbf{x}_n$

We want to show that $T \leq \square$. Express the upper bound \square by the two terms above.

- $\mathbf{0} R/\rho$
- **2** R^2/ρ^2
- $3 R/\rho^2$
- Φ^{2}/R^{2}

Reference Answer: (2)

The maximum value of $\frac{\mathbf{w}_t^T}{\|\mathbf{w}_t\|} \frac{\mathbf{w}_t}{\|\mathbf{w}_t\|}$ is 1. Since T mistake corrections **increase the inner product by** $\sqrt{T} \cdot$ **constant**, the maximum number of corrected mistakes is $1/\text{constant}^2$.

More about PLA

Guarantee

as long as linear separable and correct by mistake

- inner product of \mathbf{w}_t and \mathbf{w}_t grows fast; length of \mathbf{w}_t grows slowly
- PLA 'lines' are more and more aligned with w_f ⇒ halts

Pros

simple to implement, fast, works in any dimension d

Cons

- 'assumes' linear separable D to halt
 - —property unknown in advance (no need for PLA if we know \mathbf{w}_f)
- not fully sure how long halting takes (ρ depends on w_f)
 —though practically fast

what if \mathcal{D} not linear separable?

Learning with Noisy Data

how to at least get $g \approx f$ on noisy \mathcal{D} ?

Line with Noise Tolerance

- assume 'little' noise: $y_n = f(\mathbf{x}_n)$ usually
- if so, $g \approx f$ on $\mathcal{D} \Leftrightarrow y_n = g(\mathbf{x}_n)$ usually
- how about

$$\mathbf{w}_g \leftarrow \operatorname*{argmin} \sum_{n=1}^N \left[y_n \neq \operatorname{sign}(\mathbf{w}^T \mathbf{x}_n) \right]$$
 总共犯了多少错误
-NP-hard to\solve, unfortunately

can we modify PLA to get an 'approximately good' q?

在所有犯错误里面选择一个最 小的当作 Wg

Pocket Algorithm

modify PLA algorithm (black lines) by keeping best weights in pocket

initialize pocket weights ŵ

For $t = 0, 1, \cdots$

- 1 find a (random) mistake of \mathbf{w}_t called $(\mathbf{x}_{n(t)}, y_{n(t)})$
- 2 (try to) correct the mistake by

$$\mathbf{w}_{t+1} \leftarrow \mathbf{w}_t + y_{n(t)} \mathbf{x}_{n(t)}$$

3 if \mathbf{w}_{t+1} makes fewer mistakes than $\hat{\mathbf{w}}$, replace $\hat{\mathbf{w}}$ by \mathbf{w}_{t+1}

...until enough iterations return $\hat{\mathbf{w}}$ (called \mathbf{w}_{POCKET}) as g

a simple modification of PLA to find (somewhat) 'best' weights

我们拿到一个资料

Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what's the difference between the two?

- $oldsymbol{0}$ pocket on \mathcal{D} is slower than PLA
- 2 pocket on \mathcal{D} is faster than PLA
- 3 pocket on \mathcal{D} returns a better g in approximating f than PLA
- 4 pocket on \mathcal{D} returns a worse g in approximating f than PLA

Should we use pocket or PLA?

Since we do not know whether \mathcal{D} is linear separable in advance, we may decide to just go with pocket instead of PLA. If \mathcal{D} is actually linear separable, what's the difference between the two?

- $oldsymbol{0}$ pocket on $\mathcal D$ is slower than PLA
- 2 pocket on \mathcal{D} is faster than PLA
- 4 pocket on \mathcal{D} returns a worse g in approximating f than PLA

Reference Answer: 1

Because pocket need to check whether \mathbf{w}_{t+1} is better than $\hat{\mathbf{w}}$ in each iteration, it is slower than PLA. On linear separable \mathcal{D} , $\mathbf{w}_{\text{POCKET}}$ is the same as \mathbf{w}_{PLA} , both making no mistakes.

Summary

When Can Machines Learn?

Lecture 1: The Learning Problem

Lecture 2: Learning to Answer Yes/No

- Perceptron Hypothesis Set
 hyperplanes/linear classifiers in R^d
- Perceptron Learning Algorithm (PLA)
 correct mistakes and improve iteratively
- Guarantee of PLA
 no mistake eventually if linear separable
- Non-Separable Data
 hold somewhat 'best' weights in pocket
- next: the zoo of learning problems
- 2 Why Can Machines Learn?
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?