University of Milano-Bicocca Master's degree session in Data Science 19 October 2023

Advancements in Diabetes Severity Prediction: A Study of Deep Learning Personalized Approaches

Niccolò Puccinelli

University of Milano-Bicocca n.puccinelli@campus.unimib.it

Supervisor:
Prof. Paolo Napoletano
University of Milano-Bicocca
paolo.napoletano@unimib.it

Co-supervisor:
Dr. Flavio Piccoli
University of Milano-Bicocca
flavio.piccoli@unimib.it

Type-1 diabetes

- Global health concern [1], set to expand significantly [2].
- Deficiency in insulin production arising from the insulin-producing beta cells recognition as foreign entities, triggering a destructive immune response against them.

Main symptoms

Excessive thirst and hunger, fatigue, partial vision loss, sudden weight loss, frequent urination.

Complications

Kidney failure, neuropathy, amputations, heart attacks, socio-psychological problems. **Need for insulin injections**.

[4]

Introduction

- Crucial need for continuous and accurate **Blood Glucose Concentration** (BGC) **prediction** [5].
- Advancements in **wearable sensors** and **IoT** techniques [6], [7], [8].
- **Real-time monitoring**: prompt interventions, minimizing life-threatening events.
- In recent years, machine- and especially deep-learning techniques demonstrated increasing accuracy and reliability in estimating BGC levels [9].

Multiple challenges in data-driven BGC prediction.

- Biases, heterogeneity, incompleteness of available datasets.
- **Personalization**: unique characteristics and habits.

Main contributions

- Investigating the impact of several **pre-processing strategies** on the performance.
- Conducting a comparative analysis between 2 different **personalization techniques** and a **general** strategy with no customization at all.
- Proposing a new personalization technique, called *Threetask*, that outperforms previous methods in the majority of the patients.
- Studying the influence of **additional features and subjects** on overall and subject-specific performance.
- Analyzing diverse approaches and methodologies across both regression and classification tasks, on multiple Prediction Horizons (PHs): 30 min, 60 min, 90 min and 120 min.

Model personalization

General pipeline

The OhioT1DM clinical dataset

- Experiments conducted on **OhioT1DM** clinical dataset [10], **widely employed** by several works.
- Eight weeks' worth of Continuous Glucose Monitoring (CGM) of BGC levels from 12 heterogeneous patients, recorded every five minutes.
- Optional finger stick glucose (FG) measured directly by the patients.
- Insulin, physiological sensor and selfreported life-event data.
- **Training-test split** already provided (~75%-25%).

Dataset detials

Year	Gender	Age	PID	Sensor	Training samples	Test samples
2018	Female	40-60	559	Basis	10796	2514
2018	Male	40-60	563	Basis	12124	2570
2018	Male	40-60	570	Basis	10982	2745
2018	Female	40-60	575	Basis	11866	2590
2018	Female	40-60	588	Basis	12640	2791
2018	Female	40-60	591	Basis	10847	2760
2020	Male	40-60	540	Empatica	11947	2884
2020	Male	40-60	544	Empatica	10623	2704
2020	Male	20-40	552	Empatica	9080	2352
2020	Female	20-40	567	Empatica	10858	2377
2020	Male	40-60	584	Empatica	12150	2653
2020	Male	60-80	596	Empatica	10877	2731

Selecting features

- Current advancements [9], including state-of-the-art research [12], predominantly focused on utilizing the following the **four primary features**:
- **glucose_level** (BGC): Continuous glucose monitoring of BGC data, recorded every five minutes.
- **finger_stick** (FS): Blood glucose values obtained through self-monitoring by the patient.
- **bolus** (BI): Insulin delivered to the patient, typically before a meal or when the patient is hyperglycemic.
- **meal** (C): The self-reported carbohydrate estimate for the meal.

Impact of data pre-processing strategies

Pre-processing strategies

- Several pre-processing strategies and combinations tested. **Best three** datasets:
- Smoothed: Pre-processing reimplementation of state-of-the-art research by Shuvo et al. [12].

Missing values
$$\begin{cases} \text{linear interpolation} & \text{if } g \leq 120 \text{ min} \\ \text{discarded} & \text{otherwise} \end{cases} \qquad \begin{cases} \text{using the model's predictions} & \text{if } g \leq 30 \text{ min} \\ \text{linear interpolation} & \text{if } 30 \text{ min} > g \leq 120 \text{ min} \\ \text{discarded} & \text{otherwise} \end{cases}$$

$$\text{Training} \qquad \qquad \text{Test}$$

- **Averaged**: Same as standard, but large holes of data in the **training set** (> 30 min) are filled with the average of the values referring to the same time interval of the other days.
- Active_carbs: Dataset preprocessed following the methodology explained in Butt et al. [9], i.e., the variables BI and C are converted to continuous values.

Deep Multitask model

• Reimplementation of the neural network architecture developed by Shuvo et al. [12].

Experimental results

- Testing pre-processing strategies on the **Deep Multitask** model.
 - Same methodology employed in [12]: training-test split as already provided (~75%-25% for each subject).
 - Regression task on 4 different Prediction Horizons (PH).
 - Input: **two-hour** sliding window.
 - Evaluating Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) among 5 different runs.

	PH = 30min		PH = 60min		PH = 90min		PH = 120min	
Dataset	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
Smoothed	10.07±0.17	14.61±0.27	21.90±0.17	29.77±0.21	30.60±0.16	40.99±0.23	37.71±0.47	48.47±0.26
Averaged	10.09 ± 0.05	14.66±0.10	21.98±0.18	30.15±0.26	31.65 ± 0.93	41.97±0.98	38.28 ± 0.22	48.79±0.23
Active_carbs	10.16±0.19	14.79 ± 0.25	21.87 ± 0.07	30.01 ± 0.15	31.71 ± 0.38	41.16±0.32	37.40 ± 0.27	48.16±0.16
Reference**	10.64±1.35	16.06±2.74	22.07±2.96	30.89±4.31	30.16±4.10	40.51±5.16	36.36±4.54	47.39±5.62

^{*:} In green the best score, in blue the second and in red the third.

Remarkable similarity with the results reported in [12].

Impact of personalization

Deep Threetask model

- Considerable variability in BGC levels among the 12 subjects observed during data exploration.
- Implementing a **branch** for each range (according to [13]):
 - Normal (N). BGC median level under 140 mg/dL.
 - Medium (M). BGC median level between 140 mg/dL and 180 mg/dL.
 - High (H). BGC median level over 180 mg/dL.

• Prediction tailored directly to the disease level.

Personalized vs. general model

Experiments

- Comparing performance between *Multitask*, *General*, and *Threetask*.
- Conducting tests on **all four time horizons** (PH = 30 min, 60 min, 90 min and 120 min).
- Leveraging the **three datasets** previously computed (smoothed, averaged, active_carbs).
- Adopting Leave-One-Subject-Out Cross-Validation (LOSO-CV) split.
 - Providing a more realistic representation of real-world scenarios as the models are tested on entirely new subjects during each iteration.
- Final values of MAE and RMSE derived by averaging the results across all subjects.
- Maintaining same core structure and hyperparameter configuration for each model.
- Robust and unbiased assessment of the performance of the models.

Experimental results

- Overall, MAE and RMSE **slightly increased** compared to the previous task (models are now tested on data from subjects that have never been seen before), but the range is **still comparable**.
- Multitask consistently **underperforms** (16 cells), General (35 cells) is similar to Threetask (45 cells).
- Threetask generalizes over a larger number of subjects, but when it makes errors they tend to be more significant than those made by General.

	PH = 6		PH	= 12	PH	= 18	PH = 24		
PID	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE	
559	smooth: 12.38	smooth: 19.36	smooth: 27.37	avrg: 38.51	smooth: 38.94	smooth: 52.25	avrg: 46.65	avrg: 60.67	
563	avrg: 8.77	avrg: 12.76	smooth: 18.91	avrg: 26.0	avrg: 26.71	avrg: 35.62	smooth: 32.55	smooth: 42.22	
570	smooth: 8.96	carbs: 13.45	avrg: 19.21	avrg: 26.57	avrg: 27.84	carbs: 37.17	smooth: 35.72	carbs: 45.86	
575	smooth: 10.88	smooth: 17.24	smooth: 23.39	smooth: 33.57	smooth: 33.19	smooth: 44.85	smooth: 40.51	avrg: 53.17	
588	avrg: 10.78	avrg: 15.80	carbs: 21.28	carbs: 29.45	carbs: 28.24	avrg: 37.93	smooth: 32.63	avrg: 43.11	
591	carbs: 12.26	smooth: 18.91	smooth: 24.79	smooth: 34.61	carbs: 33.32	avrg: 44.10	smooth: 38.40	smooth: 48.91	
540	carbs: 11.40	avrg: 16.27	carbs: 25.16	carbs: 34.14	smooth: 33.70	smooth: 44.07	carbs: 39.35	avrg: 50.22	
544	avrg: 9.67	avrg: 13.87	carbs: 20.85	smooth: 28.84	smooth: 31.67	smooth: 41.65	carbs: 39.04	carbs: 50.52	
552	avrg: 10.04	avrg: 15.03	smooth: 21.87	smooth: 30.28	avrg: 29.9	avrg: 39.77	smooth: 34.95	smooth: 45.47	
567	avrg: 12.09	avrg: 19.08	smooth: 26.74	carbs: 37.19	avrg: 36.97	avrg: 48.42	carbs: 43.51	avrg: 55.51	
584	avrg: 13.77	carbs: 21.50	carbs: 28.04	carbs: 39.37	carbs: 37.44	carbs: 50.54	avrg: 44.30	avrg: 58.04	
596	smooth: 9.24	smooth: 13.89	smooth: 19.22	smooth: 26.20	carbs: 25.89	avrg: 34.74	carbs: 31.64	carbs: 41.35	

^{*:} In red if the best score belongs to the Multitask, in blue for the General and in green for the Threetask.

Classification task

Experiments

- Evaluating **personalization** on several different **classification tasks**, mainly conducted on *General* and *Threetask* models.
- Similar performance of the three datasets, thus we employed the standard **Smoothed**.
- Same core structure and configuration for both models to ensure fair comparison.
- Similar methodology as regression task: **LOSO-CV** split and evaluation on all four time horizons (PH = 30 min, 60 min, 90 min and 120 min).
- Evaluation metric: macro-averaged accuracy.
 - Treating each class independently and subsequently averaging the accuracy scores for all classes.
- Experimenting on **binary** and **multi-class** classification.

Experiments

• **Binary classification**, based on the commonly established risk threshold for BGC level **180mg/dL** [13], [14].

• Multi-class classification: obtaining overall balanced distribution by leveraging quartiles.

Class 0 (low risk): BGC $\leq 113 \text{ mg/dL}$.

Class 1 (medium risk): 113 mg/dL < BGC \le 151 mg/dL.

Class 2 (high risk): $151 \text{ mg/dL} < BGC \le 197 \text{ mg/dL}$.

Class 3 (very high risk): BGC > 197 mg/dL.

- Standard: evaluating personalization impact.
- BGC-only: evaluating effectiveness of additional features.
- **Integrate**: evaluating influence of adding additional subjects (**BIG IDEAs** dataset [14]) to the training process.

Deep Fourtask model

• BIG IDEAs subjects show generally lower BGC values, thus we added an additional branch (L).

Experimental results

• Binary classification shows **almost equal performance** for *General* and *Threetask* models.

Multi-class classification:

- Threetask model outperforms General, especially on shorter time horizons.
- Standard and BGC-only approaches performance are closely aligned: additional features demonstrate limited usefulness.
- The integration of the new subjects has **limited effectiveness**. Nevertheless, the *Fourtask* model **outperforms** *Threetask* model, mitigating the problem related to error magnitude.

	Standard		BGC	C-only	BGC-only - integrate BIG IDEAs		
PH	General	Threetask	General	Threetask	General	Threetask	Fourtask
30-min	70.17±3.51%	78.75±2.09%	70.50±3.71%	78.92±1.98%	70.33±3.79%	78.75±2.38%	78.67±2.39%
60-min	54.92±3.28%	60.25±3.49%	54.83±3.21%	60.50±4.07%	54.67±3.35%	60.58±4.15%	61.08±3.77%
90-min	45.17±4.54%	47.08±5.58%	45.50±4.15%	47.17±5.37%	44.83±3.76%	47.17±5.46%	49.83±4.00%
120-min	37.58±2.81%	37.92±6.05%	38.08±3.57%	38.58±5.09%	38.42±3.33%	38.25±6.31%	41.42±3.25%

Conclusions

- Personalized models application for BGC level prediction represents a promising approach.
- However, the **general counterpart** of the model not only matches but, in several instances, even surpasses the performance of the *Multitask* model considered as the reference.
- Developed a **novel customized model** (*Threetask*), leveraging the **median BGC** level of patients.
 - Slightly outperformed the General model for individual subjects in most cases in regression task.
 - Consistently outperformed the general model in multi-class classification task.
- Demonstrated **limited effectiveness** of additional features.
- Further increased performance through the *Fourtask* approach.
- The integration of more and more subjects, a more efficient imputation of missing values, and **new personalization approaches** based on the distribution of patients' BGC levels could **further improve** performance.

References

- [1] G. Sierra, "The global pandemic of diabetes," African Journal of Diabetes Medicine, vol. 17, no. 11, pp. 4–8, 2009.
- [2] T. Robinson, S. Linklater, F. Wang, S. Colagiuri, C. Beaufort, K. Donaghue, D. Magliano, J. Maniam, T. Orchard, P. Rai, and G. Ogle, "Global incidence, prevalence, and mortality of type 1 diabetes in 2021 with projection to 2040: a modelling study", The Lancet Diabetes & Endocrinology, vol.10, 09 2022.
- [3] https://www.thejdca.org/publications/report-library/archived-reports/2022-reports/view-this-email-in-your-browser-click-here-to-unsubscribe-the-growing-global-burden-of-t1d.html.
- [4] Standl, E., Khunti, K., Hansen, T. B., & Schnell, O. (2019). The global epidemics of diabetes in the 21st century: Current situation and perspectives. European journal of preventive cardiology, 26(2_suppl), 7-14.
- [5] Y. Mei, "Modeling and control to improve blood glucose concentration for people with diabetes," Ph.D. dissertation, lowa State University, 2017.
- [6] W. Sun, Z. Guo, Z. Yang, Y. Wu, W. Lan, Y. Liao, X. Wu, and Y. Liu, "A review of recent advances in vital signals monitoring of sports and health via flexible wearable sensors," Sensors, vol. 22, no. 20, 2022. [Online]. <u>Available</u>.
- [7] A. J. Perez and S. Zeadally, "Recent advances in wearable sensing technologies," Sensors, vol. 21, no. 20, 2021. [Online]. <u>Available</u>.
- [8] M. Baig, H. Gholamhosseini, A. Moqeem, F. Mirza, and M. Lind´en, "A systematic review of wearable patient monitoring systems current challenges and opportunities for clinical adoption," Journal of Medical Systems, vol. 41, 06 2017.

References

- [9] K. Bach, R. C. Bunescu, C. Marling, and N. Wiratunga, Eds., Proceedings of the 5th International Workshop on Knowledge Discovery in Healthcare Data co-located with 24th European Conference on Artificial Intelligence, KDH@ECAI 2020, Santiago de Compostela, Spain & Virtually, August 29-30, 2020, ser. CEUR Workshop Proceedings, vol. 2675. CEUR-WS.org, 2020. [Online]. <u>Available</u>.
- [10] C. Marling and R. Bunescu, "The ohiot1dm dataset for blood glucose level prediction: Update 2020," CEUR workshop proceedings, vol. 2675, pp. 71–74, 09 2020.
- [11] H. Butt, I. Khosa, and M. A. Iftikhar, "Feature transformation for efficient blood glucose prediction in type 1 diabetes mellitus patients," Diagnostics, vol. 13, no. 3, 2023. [Online]. <u>Available</u>.
- [12] M. M. H. Shuvo and S. K. Islam, "Deep multitask learning by stacked long short-term memory for predicting personalized blood glucose concentration," IEEE Journal of Biomedical and Health Informatics, vol. 27, no. 3, pp. 1612–1623, 2023.
- [13] A. Campbell, "Diabetes self-management," June 2019, last accessed: 27th Sep 2023. [Online]. <u>Available</u>.
- [14] E. Kraegen, D. Chisholm, and M. E. McNamara, "Timing of insulin delivery with meals," Hormone and Metabolic Research, vol. 13, no. 07, pp. 365–367, 1981.
- [15] P. Cho, J. Kim, B. Bent, and J. Dunn," Big ideas lab glycemic variability and wearable device data (version 1.1.2)," PhysioNet, 2023.

Thank you for your attention

