Intervals, Sets of Sets, and Power Set

Intervals

Intervals

An interval in $\mathbb R$ is a subset of $\mathbb R$ that contains all the points between any two of its points.

Definition 1 (Interval)

To say that I is an interval of $\mathbb R$ means that $\underline{I \subseteq \mathbb R}$ and for each $u, v \in I$, for each $x \in \mathbb R$, if u < x < v, then $x \in I$.

(∀u,v ∈ I)(∀1 ∈ IR)[ux 1<v ⇒ 1 ∈ I]

The set $\{1, 2, 3\}$ is not an interval in \mathbb{R} because

1.5 lies between 1 and 2, yet 1.5
$$\notin$$
 $\{1,2,3\}$.

Bounded Intervals

Bounded Intervals

Let $a, b \in \mathbb{R}$ such that $a \leq b$. Then the following sets are intervals in \mathbb{R} .

$$[a,b] = \{x \in \mathbb{R} : a \leqslant x \leqslant b\}$$
 (closed)
$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$
 (open)
$$[a,b) = \{x \in \mathbb{R} : a \leqslant x < b\}$$
 (left-closed or right-open)
$$(a,b] = \{x \in \mathbb{R} : a < x \leqslant b\}$$
 (left-open or right-closed)

These are called *bounded intervals*. If a = b, these bounded intervals yield

$$[a, b] = \{a\}$$

 $(a, b) = [a, b) = (a, b] = \emptyset$

These are called degenerate intervals.

Unbounded Intervals

Unbounded Intervals

Let $c \in \mathbb{R}$. Then the following sets are intervals in \mathbb{R} .

$$\begin{array}{ll} [c,\infty) = \{x \in \mathbb{R} : c \leqslant x\} & \text{(closed half-line)} \\ (c,\infty) = \{x \in \mathbb{R} : c < x\} & \text{(open half-line)} \\ (-\infty,c] = \{x \in \mathbb{R} : x \leqslant c\} & \text{(closed half-line)} \\ (-\infty,c) = \{x \in \mathbb{R} : x \leqslant c\} & \text{(open half-line)} \\ \end{array}$$

The whole real line

$$(-\infty,\infty)=\mathbb{R}$$

is also an interval in \mathbb{R} . Half-lines and the whole real line are unbounded intervals.

Examples

Question. Determine whether each of the following is an interval.

- $(-1,1) \cup [0,4]$
- $[-1,1] \cap (0,2)$
- **3** $[1,2] \cup [3,4]$
- **4** $[2,5) \cap [5,6]$
- **6** $(3,5) \setminus [4,7]$
- **6** $(4,8] \setminus [5,6)$

Unions and Intersections of Sets of Sets

Unions of Sets of Sets

Cursive caps: A, B, C, D, ... for set of sets

Definition 2

Let \mathcal{A} be a set of sets. Then the union of \mathcal{A} (denoted $\bigcup \mathcal{A}$) is the set of all things that belong to at least one of the sets in \mathcal{A} ; in other words, $\bigcup \mathcal{A} = \{x : x \in A \text{ for some } A \in \mathcal{A}\}.$

Example. Let A, B, and C be sets. Then

- []{} = []Ø = Ø
- $\bigcup \{A\} = A$
- $\bigcup \{A, B\} = A \cup B$
- $| | \{A, B, C\} = A \cup B \cup C |$

Example. Let $\mathcal{A}=\{[1/n,5]:n\in\mathbb{N}\}$. infartely many Then $|\mathcal{A}=(0,5].$

f[1,5], [1/2,5],

[1/3,5],[1/4,5]...

Intersections of Sets of Sets

Definition 3

Let \mathcal{A} be a <u>nonempty</u> set of sets. Then the intersection of \mathcal{A} (denoted $\bigcap \mathcal{A}$) is the set of all things that belong to all of the sets in \mathcal{A} ; in other words,

$$\bigcap \mathcal{A} = \{x : \underline{x \in A \text{ for each } A \in \mathcal{A}}\}.$$

Example. Let A, B, and C be sets. Then

- $\bigcap \{A\} = A$
- $\bigcap \{A, B\} = A \cap B$
- $\bigcap \{A, B, C\} = A \cap B \cap C$

Example. Let $\mathcal{A} = \{[1/n, 5] : n \in \mathbb{N}\}$. Then

$$\mathcal{A} = [1, 5].$$

Example 4

For each of the following, find $\bigcup A$ and $\bigcap A$. State clearly if either/both of the

- **2** $A = \emptyset$. **3** $A = \{1, \{2\}\}$.
- @ Ud = Ø, Nd is undefined.
- (3) UA and NA are undefined because It is not a set of sets.

Note

Q. What if $\Delta = \{\phi\}$?

& A & which is undefined. A. $U \{ \phi \} = \phi = \bigcap \{ \phi \}$

Set Inclusion

Proposition 1

Let \mathcal{A} be a nonempty set of sets and let $A_0 \in \mathcal{A}$. Then $\bigcap \mathcal{A} \subseteq A_0 \subseteq \bigcup \mathcal{A}.$

Proof Consider any $d \in \cap M$. Then for each $A \in M$, $a \in A$.

In particular, $a \in A$ because $A \cap CM$. This shows $\cap M \subseteq A_0$.

A Now consider $A \in A_0$. Since $A_0 \in \mathcal{A}$, it is true that $A \in A$ for some $A \in \mathcal{A}$. (Simply take $A = A_0$). In other words, $A \in \mathcal{U}A$. This shows $A_0 \subseteq \mathcal{U}A$.

Not an Element

Proposition 2

Let A be a nonempty set of sets and let x be any object. Then:

- 1 $x \notin \bigcup A$ iff for each $A \in A$, $x \notin A$.
- 2 $x \notin \bigcap A$ iff there exists $A \in A$ such that $x \notin A$.

Proof We have

$$z \notin UA$$

iff $\neg (z \in UA)$

iff $\neg (\exists A \in A)(z \in A)$

iff $(\forall A \in A) \neg (z \in A)$ (by GDM)

iff $(\forall A \in A)(z \notin A)$

De Morgan's Laws Again

Theorem 5 (Generalized De Morgan's Laws for Sets of Sets)

Let S be a set and let \mathcal{A} be a nonempty set of sets. Then:

Proof. Let it be any object. Then we have
$$z \in S \setminus UA$$
 iff $z \in S \setminus UA$ iff $z \in S \setminus UA$ and $z \notin UA$ [by Prop. 2) iff $z \in S \setminus UA \in A \setminus (z \in S \setminus A)$ (by dist. law) iff $z \in S \setminus UA \setminus (z \in S \setminus A)$

Distributive Laws Again

Theorem 6 (Generalized Distributive Laws for Sets of Sets)

Let S be a set and let \mathcal{A} be a nonempty set of sets. Then:

$$2 S \cup \bigcap \mathcal{A} = \bigcap \{S \cup A : A \in \mathcal{A}\}.$$

Power Set of a Set

Power Set of a Set

Definition 7

Let A be a set. The *power set of* A (denoted $\mathcal{P}(A)$) is the set of all subsets of A; in other words, $\mathcal{P}(A) = \{S : S \subseteq A\}$.

Example.

$$\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}, \{1,2\}\}.$$

$$\mathcal{N} = \mathbb{Z} = 4$$

Note.

• If A is a finite set with n elements, then $\mathcal{P}(A)$ has 2^n elements.

Example: (Recursive) Power Sets of the Empty Set

Let $V_0 = \emptyset$ and for each $n \in \omega$, let $V_{n+1} = \mathcal{P}(V_n)$. That is,

$$\begin{split} V_0 &= \varnothing \\ V_1 &= \mathcal{P}(\varnothing) = \{\varnothing\} \\ V_2 &= \mathcal{P}(\{\varnothing\}) = \{\varnothing, \{\varnothing\}\} \\ V_3 &= \mathcal{P}(\{\varnothing, \{\varnothing\}\}) = \{\varnothing, \{\varnothing\}, \{\{\varnothing\}\}, \{\varnothing, \{\varnothing\}\}\} \} \\ &\vdots \end{split}$$

Counting the number of elements:

Set	# of Elem.	Set	# of Elem.
V_0	0	V_4	$2^4 = 16$
V_1	$2^0 = 1$	V_5	$2^{16} = 65536$
V_2	$2^1 = 2$	V_6	$2^{65536} \approx 2 \times 2^{19,728}$
V_3	$2^2 = 4$		10