[ADL 2023 Fall] HW2 Report

Student ID: R12945039 Name: 楊瀚博

Q1: Model

Model

MT5-small (Multilingual Text-to-Text Transfer Transformer, small version) is a multilingual model based on the Transformer architecture.

The model takes input texts, which can be in various languages, and converts it into a **numerical representation** (tokens to embeddings). Afterwards, the input embeddings are then passed through a stack of **encoder layers**, which consists of multiple **self-attention** mechanisms and **feed-forward neural networks**. These layers allow the model to learn contextual information from the input texts, capturing relationships between words. For text summarization, the model uses a **decoder**, which consists of **self-attention** and **cross-attention** mechanisms, to generate summaries of the input texts.

During training, the model is fine-tuned based on **cross-entropy** loss function. It is provided with training data consisting of **pairs of source texts** and corresponding **reference summaries**. The model learns to generate summaries that are close to the reference summaries by minimizing the cross-entropy loss between the generated output and the target output.

At each step of the inference process, the model uses the **outputs** from the **encoder** and the inputs from the decoder as **cross-attention** inputs, generating **one token at a time**. It predicts the probability distribution (**condition** on the **previous generated tokens**) over the vocabulary tokens and selects the best next one using various decoding strategies. This process (feeding the model with the **generated token sequence**) is **repeated** until the model generates the **end of sentence** (**EOS**) token. Finally, we decode the output tokens into words to get the predicted summaries.

Preprocessing

Data Cleaning

Before sending training data pairs into the tokenizer, we first remove pairs where at least one record (main-text or title) is absent.

```
def preprocess_function(examples):
    # remove pairs where at least one record is None
    inputs, targets = [], []
    for i in range(len(examples[text_column])):
        if examples[text_column][i] and examples[summary_column][i]:
            inputs.append(examples[text_column][i])
            targets.append(examples[summary_column][i])
```

Tokenization

Subsequently, we preprocess the data pairs on the basis of the following steps:

- Prefix the input with a prompt "summarize: " so that MT5 model knows this is a summarization task. (Some models capable of multiple NLP tasks require prompting for specific tasks.)
- 2. Use the keyword "text target" argument when tokenizing labels.
- 3. Truncate sequences to be no longer than the maximum length set by the "max_length" parameter.

```
inputs = [prefix + input for input in inputs]
model_inputs = tokenizer(
   inputs,
   max_length=data_args.max_source_length,
   padding=padding,
   truncation=True,
)

# Tokenize targets with the `text_target` keyword argument
labels = tokenizer(
   text_target=targets,
   max_length=max_target_length,
   padding=padding,
   truncation=True,
)
```

Q2: Training

Hyperparameter

Loss Function	Cross-Entropy
Optimization Algorithm	AdaFactor
Learning Rate	3e-4
Warmup Ratio	0.05
Batch Size per Device	4
Gradient Accumulation Steps	16
Effective Batch Size	64
Epochs	25
Max Source Length	256
Max Target Length	64
Padding to Max Length	True

We set the **learning rate** to **3e-4** based on the **trial & error** process. When the learning rate is set to **5e-5**, which is the default value of MT5-small model, both the training and the validation loss **stop dropping** after 8th epoch, indicating that the model converges too slowly or gets stuck in a local minimum. On the other hand, when the learning rate is set to **8e-4**, both the training and validation loss start to **oscillate**, indicating a too high learning rate. The final learning rate, 3e-4, makes the model learn efficiently.

Moreover, we increase the batch size to 64 so that the learning process could be **smoother** and **more stable**. Accordingly, we also **increase** the number of **epochs** for training, hence the model could **converge** eventually.

Learning Curves

We randomly split the *train.jsonl* file into "train" and "validation" datasets (9:1) for training and evaluation. These curves are plotted by the TensorBoard packages using the logs files.

(Note: The rouge score in the curves showed below is calculated based on the "evaluate" and "rouge-score" package, not the "tw_rouge" package.)

Loss Curve on Train Dataset
(Vertical Axis: Loss Value, Horizontal Axis: Training Steps)

Loss Curve on Validation Dataset
(Vertical Axis: Loss Value, Horizontal Axis: Training Steps)

Rouge-1 Score on Validation Dataset

(Vertical Axis: Rouge-1 Score, Horizontal Axis: Training Steps)

Rouge-2 Score on Validation Dataset

(Vertical Axis: Rouge-2 Score, Horizontal Axis: Training Steps)

Rouge-L Score on Validation Dataset

(Vertical Axis: Rouge-L Score, Horizontal Axis: Training Steps)

Q3: Generation Strategies

Strategies

Greedy

Greedy decoding is a straightforward strategy where the model selects the token with the **highest probability** at **each step** of the decoding process. Simplicity and speed make greedy an efficient choice for generating text, but it may lead to **suboptimal results** as it can prematurely commit to a word, ignoring the possibility of better choices later in the sequence. This can result in less diverse and less fluent text generation.

Beam Search

Beam search explores multiple token choices at each step and maintains a beam of the top *num_beams* candidates. These candidates are chosen based on their combined probabilities. Beam search keeps the most likely *num_beams* of hypotheses at each time step and eventually choosing the hypothesis that has the overall highest probability.

Top-k Sampling

Top-k sampling is a **probabilistic** decoding strategy that **randomly samples** from the **top-k most likely tokens** at each decoding step. The value of k is a hyperparameter that controls the diversity of the output. Top-k sampling introduces **randomness** and **diversity** into the generated text, making it less deterministic and more creative. Nevertheless, it might sometimes generate **less contextually relevant** text.

Top-p Sampling

Top-p sampling is another **probabilistic** strategy that samples tokens from the set of tokens with **cumulative probabilities** that exceed a certain **threshold**, **p**. It ensures that the chosen tokens are among the most probable, but the **number** of **tokens** can **vary** depending on their probabilities. Top-p sampling allows for more dynamic control over the number of tokens considered, making it adaptable to different contexts. It encourages **diversity** while maintaining **quality**.

Temperature

Temperature is a hyperparameter used with sampling strategies, including top-k and top-p sampling. It controls the level of randomness in the sampling process. Mathematically, the temperature parameter adjusts the SoftMax function used in sampling.

When temperature is set to a **low value** (e.g., close to 0), the SoftMax function sharpens the probability distribution, **emphasizing** the **most probable tokens**. This makes the text generation more deterministic.

Conversely, when temperature is set to a **high value** (e.g., > 1), the SoftMax function softens the probability distribution, giving **more tokens** a **chance** to be **selected**, even those with lower probabilities. This results in more randomness and diversity in the generated text.

Hyperparameters

Greedy (default)

Performance on public.jsonl

Rouge-1	Rouge-2	Rouge-L
25.1853	9.3628	22.5589

Samples of Generated Title

```
168 {"title": "孤味是女性的孤味 女性的孤味", "id": "21877"}
169 {"title": "天竺鼠車車爆紅!港貨發現活生生生生生生 網怒轟買家「無人性」", "id": "21878"}
170 {"title": "MLB/洋基獲薪資仲裁 布勒、巴恩斯仍未共識", "id": "21879"}
171 {"title": "雪白迷人!2021中南部賞梅秘境 全台最大賞梅秘境", "id": "21880"}
172 {"title": "影/選對瀏覽器、電視看 Netflix 體驗高畫質的美好", "id": "21881"}
```

Greedy (no repeat ngram size = 3)

Performance on public.jsonl

Rouge-1	Rouge-2	Rouge-L
25.0778	9.1741	22.2414

Samples of Generated Title

```
168 {"title": "孤味是女性的孤味 女性的「孤味」", "id": "21877"}
169 {"title": "天竺鼠車車爆紅!港貨發現活生生生天竺豹扣起代為飼養", "id": "21878"}
170 {"title": "MLB/洋基獲薪資仲裁 布勒、巴恩斯仍未共識", "id": "21879"}
171 {"title": "雪白迷人!2021中南部賞梅秘境 全台最大賞梅景點一次看", "id": "21880"}
172 {"title": "影/選對瀏覽器、電視看 Netflix 體驗高畫質的美好", "id": "21881"}
```

Beam Search (num_beams = 3)

Performance on public.jsonl

Rouge-1	Rouge-2	Rouge-L
26.2021	10.4652	23.3775

Samples of Generated Title

```
168 {"title": "「孤味」在台語中演繹女性的獨特滋味", "id": "21877"}
169 {"title": "天竺鼠車車爆紅 網怒轟買家「無人性」", "id": "21878"}
170 {"title": "MLB/洋基獲薪資仲裁 布勒、巴恩斯仍未共識", "id": "21879"}
171 {"title": "2021中南部賞梅秘境! 台中「梅花森林、梅花隧道」免費美拍", "id": "21880"}
172 {"title": "用電腦觀看1080P影片 讓你看看畫質上的差別", "id": "21881"}
```

Beam Search (num_beams = 5)

Performance on public.jsonl

Rouge-1	Rouge-2	Rouge-L
26.3910	10.6199	23.6194

Samples of Generated Title

```
168 {"title": "【一劍浣春秋】孤味是什麼?", "id": "21877"}
169 {"title": "天竺鼠車車爆紅 網怒轟買家「無人性」", "id": "21878"}
170 {"title": "MLB/洋基獲薪資仲裁 布勒、巴恩斯仍未共識", "id": "21879"}
171 {"title": "2021中南部賞梅秘境!台中「梅花森林、梅花隧道」免費美拍", "id": "21880"}
172 {"title": "影/選對瀏覽器 體驗高畫質的美好", "id": "21881"}
```

Top-k Sampling (k = 10)

Performance on *public.jsonl*

Rouge-1	Rouge-2	Rouge-L
22.2741	7.5292	19.7261

Samples of Generated Title

```
168 {"title": "《孤味》讓男性更具體的「孤味」", "id": "21877"}
169 {"title": "天竺鼠車車爆紅!港貨「活生生的天」遭控 網怒轟買家「無人性」", "id": "21878"}
170 {"title": "MLB/MLB/洋基被裁為高教 前球星依然有共識", "id": "21879"}
171 {"title": "2021中南部賞梅秘境! 2021中南部最佳秘境、特色美景全攻略", "id": "21880"}
172 {"title": "你會用電腦觀看1080P的影片! 教你如何讓你更了解這些小撇步!", "id": "21881"}
```

Top-k Sampling (k = 50)

Performance on public.jsonl

Rouge-1	Rouge-2	Rouge-L
20.4494	6.6737	18.0812

Samples of Generated Title

```
168 {"title": "從孤味看見她 陳伯昌看見老公的孤味", "id": "21877"}
169 {"title": "天命神遊港貨貨 網怒轟:無人性", "id": "21878"}
170 {"title": "MLB/法官賈吉獲10萬美元 雙手也無夢被封", "id": "21879"}
171 {"title": "不只是雪白片林! 2020中南部雪景美拍全攻略", "id": "21880"}
172 {"title": "免開啟就能看高清影片!測出高畫質的美好", "id": "21881"}
```

Top-p Sampling (p = 0.7)

Performance on public.jsonl

Rouge-1	Rouge-2	Rouge-L
23.2630	8.2273	20.6688

Samples of Generated Title

```
168 {"title": "孤昧與女性相愛:女人的孤味 還是孤味?", "id": "21877"}
169 {"title": "天竺鼠被放入禁運黑名單 網怒轟「無人性」", "id": "21878"}
170 {"title": "MLB/洋基雙手獲薪資仲裁 布勒也未共識", "id": "21879"}
171 {"title": "2021中南部賞梅秘境!台中「梅花森林、雪白隧道」免飛台中,還有「鮭魚葡萄」仙境", "id": "21880"}
172 {"title": "影/在家也能看 Netflix 影片", "id": "21881"}
```

Top-p Sampling (p = 0.9)

Performance on *public.jsonl*

Rouge-1	Rouge-2	Rouge-L
21.3869	7.3673	19.0536

Samples of Generated Title

```
168 {"title": "孤味是男性的滋味", "id": "21877"}
169 {"title": "日動畫天竺鼠車車爆紅 網怒轟買家「無人性」", "id": "21878"}
170 {"title": "MLB/洋基奪新人王 法官賈吉獲10萬美元", "id": "21879"}
171 {"title": "美拍全台最美梅景!2021中南部賞梅秘境「山城雪景」賞全攻略", "id": "21880"}
172 {"title": "免開啟就能看高清影片!測出高畫質的美好", "id": "21881"}
```

Temperature (T = 0.5)

• Performance on *public.jsonl*

Rouge-1	Rouge-2	Rouge-L
24.0860	8.7386	21.5045

Samples of Generated Title

```
168 {"title": "孤味的男味 女主角的孤味", "id": "21877"}
169 {"title": "天竺鼠車車爆紅 網怒轟買家無人性", "id": "21878"}
170 {"title": "MLB/洋基「法官」獲101萬美元 巴恩斯仍有共識", "id": "21879"}
171 {"title": "賞梅秘境!2021中南部賞梅秘境「雪白雪景」 台中新社「梅花隧道」全攻略", "id": "21880"}
172 {"title": "影/想用電腦看電影也能看 1080P影片!測你會怎麼看?", "id": "21881"}
```

Temperature (T = 1.5)

Performance on public.jsonl

Rouge-1	Rouge-2	Rouge-L
14.8802	3.8200	13.0641

Samples of Generated Title

```
      168 {"title": "孤味從演繹上女性精神靈魂化身新風潮", "id": "21877"}

      169 {"title": "海軍偷買到香港快來港天免費貓,她衝退錢搶到開貨?", "id": "21878"}

      170 {"title": "MLB/敵名人堂「法官」奇 不僅前一豪都沒有共識", "id": "21879"}

      171 {"title": "15間「中南部賞梅」秘境懶人包!跟著「全美雪必看」!", "id": "21880"}

      172 {"title": "想想進去Apple、Google、Apple等開網 看電影可能是電影外觀差在哪?", "id": "21881"}
```

Result Comparison

According to the rouge score performance and the title generation results showed above, we could compare these text decoding strategies and hyperparameters:

Greedy Decoding:

By default, Greedy Decoding may lack diversity and cause repetition issue, the use of "no_repeat_ngram_size" = 3 helps to mitigate this problem.

Beam Search:

Increasing "num_beams" from 3 to 5 will explore more alternative possibilities during decoding, leading to a better output.

Top-k Sampling:

Setting a higher " top_k " value, such as 50, will allow a larger pool of tokens to be considered at each step, increasing diversity and creativity. A smaller " top_k ", like 10, limits the choice of tokens, making the output more focused but potentially repetitive.

Top-p Sampling:

A "top_p" value of 0.9 allows more tokens with higher probabilities to be considered, resulting in more diversity and creativity in the output. Lowering "top_p" to 0.7 restricts the pool of tokens to those with very high probabilities, potentially making the output more deterministic.

Temperature:

A lower temperature value, such as **0.5**, makes the output more **deterministic**, favoring the most probable tokens. Increasing the temperature to **1.5** introduces more randomness, potentially leading to more diverse and creative output, while, in this case, the generated outputs become **too creative** and **lack of fluent texts**.

We could end up with a brief summary:

- Greedy decoding is suitable for tasks where deterministic, accurate, and focused output is required.
- Beam search is a good choice for generating fluent, coherent text, such as in translation or summarization.
- Top-k and Top-p Sampling are ideal for tasks where diversity and creativity are desired, such as creative writing.
- Temperature provides fine-tuned control, making it adaptable to a wide range of use cases.

Final Generation Strategy

Based on the experiments results, we choose **beam search** (num_beams = 5) as the final strategy to generate titles. The performance is showed in the following table.

Rouge-1	Rouge-2	Rouge-L
26.3910	10.6199	23.6194

(We also tried the combination of beam search and sampling strategies with different temperature settings, but the model did not perform better on the public dataset.)