- (I) Algebraicamente, como un conjunto de ternas (x, y, z), donde x, y y z son números reales.
- (II) Geométricamente, como un conjunto de segmentos rectos dirigidos.

Estas dos formas de ver \mathbb{R}^3 son equivalentes. Para hacer una generalización es más fácil utilizar la definición (I). Específicamente, podemos definir \mathbb{R}^n , donde n es un entero positivo (posiblemente mayor que 3), como el conjunto de todas las n-tuplas ordenadas (x_1, x_2, \ldots, x_n) , donde los x_i son números reales. Por ejemplo, $(1, \sqrt{5}, 2, \sqrt{3}) \in \mathbb{R}^4$.

El conjunto \mathbb{R}^n así definido se conoce como *espacio euclídeo* n-dimensional, y sus elementos, que se denotan mediante $\mathbf{x}=(x_1,x_2,\ldots,x_n)$ y se llaman *vectores* o *vectores* n-dimensionales. Haciendo n=1,2 o 3, obtenemos la recta, el plano y el espacio tridimensional, respectivamente.

Vamos a comenzar nuestro estudio del espacio euclídeo n-dimensional presentando varias operaciones algebraicas. Estas son análogas a las presentadas en la Sección 1.1 para \mathbb{R}^2 y \mathbb{R}^3 . Las dos primeras, suma y multiplicación por un escalar, se definen como sigue:

- (I) $(x_1, x_2, \dots, x_n) + (y_1, y_2, \dots, y_n) = (x_1 + y_1, x_2 + y_2, \dots, x_n + y_n);$
- (II) para cualquier número real α ,

$$\alpha(x_1, x_2, \dots, x_n) = (\alpha x_1, \alpha x_2, \dots, \alpha x_n).$$

La importancia geométrica de estas operaciones para \mathbb{R}^2 y \mathbb{R}^3 ya la hemos visto en la Sección 1.1.

Los n vectores

$$\mathbf{e}_1 = (1, 0, 0, \dots, 0), \mathbf{e}_2 = (0, 1, 0, \dots, 0), \dots, \mathbf{e}_n = (0, 0, \dots, 0, 1)$$

se denominan *vectores de la base canónica* de \mathbb{R}^n y generalizan los tres vectores unitarios ortogonales $\mathbf{i}, \mathbf{j}, \mathbf{k}$ de \mathbb{R}^3 . El vector $\mathbf{x} = (x_1, x_2, \dots, x_n)$ se puede escribir entonces como $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \dots + x_n \mathbf{e}_n$.

Para dos vectores $\mathbf{x} = (x_1, x_2, x_3)$ e $\mathbf{y} = (y_1, y_2, y_3)$ de \mathbb{R}^3 , definimos el producto escalar $\mathbf{x} \cdot \mathbf{y}$ como el número real $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + x_3 y_3$. Esta definición se generaliza fácilmente a \mathbb{R}^n ; específicamente, para $\mathbf{x} = (x_1, x_2, \dots, x_n)$ e $\mathbf{y} = (y_1, y_2, \dots, y_n)$, definimos el **producto escalar** de \mathbf{x} e \mathbf{y} como $\mathbf{x} \cdot \mathbf{y} = x_1 y_1 + x_2 y_2 + \dots + x_n y_n$. En \mathbb{R}^n , se suele emplear la notación $\langle \mathbf{x}, \mathbf{y} \rangle$ en lugar de $\mathbf{x} \cdot \mathbf{y}$ para el producto escalar.

Continuando la analogía con \mathbb{R}^3 , definimos el concepto de longitud o norma de un vector \mathbf{x} mediante la fórmula

Longitud de
$$\mathbf{x} = \|\mathbf{x}\| = \sqrt{\mathbf{x} \cdot \mathbf{x}} = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$
.

Si \mathbf{x} e \mathbf{y} son dos vectores en el plano (\mathbb{R}^2) o en el espacio (\mathbb{R}^3), entonces sabemos que el ángulo θ que forman está dado por la fórmula

$$\cos \theta = \frac{\mathbf{x} \cdot \mathbf{y}}{\|\mathbf{x}\| \|\mathbf{y}\|}.$$