

1604C023 – Statistics

Uji Hipotesis

Week 12

Program Studi Teknik Informatika

Fakultas Teknik – Universitas Surabaya

Tujuan Pembelajaran

Mahasiswa dapat

- 1. menjelaskan tentang pengertian hipotesis statistik
- 2. membedakan pengujian satu arah dan dua arah
- menjelaskan kesalahan yang terjadi di dalam pengujian hipotesa
- 4. menjelaskan tentang prosedur pengujian hipotesis

Statistika Inferensia

Metode statistik yang digunakan untuk menggambarkan dan *menarik kesimpulan* mengenai <u>parameter populasi</u> melalui analisis pada <u>statistik sampel</u>.

Parameter Populasi vs Statistik Sampel

Ukuran	Parameter Populasi	Statistik Sampel
Rata-rata	μ	$\overline{\mathcal{X}}$
Standar Deviasi	σ	S
Varians	σ^2	s ²
Proporsi	π atau p	\overline{p} atau $\widehat{m{p}}$

Uji hipotesis adalah sebuah teknik untuk menentukan apakah adanya perlakuan khusus memberikan efek terhadap unit populasi

Evaluasi hasil dilakukan dengan cara:

- Mengambil sample dari populasi
- Perlakuan diberikan pada sampel
- Setelah adanya perlakuan, unit sample diukur.

- Jika perbedaan antara sampel dan populasi terlalu besar untuk dijelaskan dengan sampling error (tampaknya ada efek perlakuan), maka ada bukti bahwa perlakuan yang diberikan mempunyai pengaruh
- Jika perbedaan antara sample dan populasi dapat dijelaskan dengan sampling error, maka tidak ada bukti bahwa perlakuan yang diberikan mempunyai pengaruh

Uji Hipotesis

Hipotesis Statistik

Pernyataan mengenai nilai atau sekumpulan nilai dari suatu parameter atau sekelompok parameter populasi.

Pengujian hipotesis

Pengujian terhadap sepasang hipotesis statistik melalui analisis terhadap data sampel

Pernyataan / klaim mengenai nilai parameter populasi

Contoh hipotesis:

kelas ini adalah 90

Rata-rata tinggi wanita dewasa di indonesia adalah kurang dari 170 cm

Sedikitnya 5% mahasiswa Ubaya menghabiskan biaya lebih dari 2 juta/bulan.

Uji Hipotesis

Tujuan pengujian hipotesis adalah memilih satu di antara dua hipotesis yang saling bertentangan mengenai nilai parameter populasi yang mungkin.

Dua hipotesis yang saling bertentangan:

- hipotesis nol (H₀)
- hipotesis alternatif (H₁).

Karakteristik H₀ dan H₁: mutually exclusive, yaitu jika satu benar, maka yang lain harus salah

Enam langkah dalam pengujian hipotesis:

- 1. Perumusan hipotesis (H₀ dan H₁)
- 2. Penentuan signifikan level
- 3. Lakukan pengambilan sample, pilih statistik uji yang sesuai kemudian hitung statistik uji
- 4. Penentuan titik kritis dan daerah penolakan
- 5. Bandingkan statistik uji dengan titik kritis, lalu putuskan untuk menerima atau menolak H₀
- 6. Membuat kesimpulan (interpretasi)

1. Perumusan Hipotesis

- H₀ dan H₁ adalah pernyataan tentang parameter populasi, bukan statistik sample
- H₀ adalah asumsi mengenai nilai parameter populasi yang sedang dipelajari.
- Ada 3 macam H₀, yaitu :
 - \Box H₀: parameter = a,
 - \Box H₀: parameter \geq a,
 - \Box H₀: parameter \leq a,
- H₁ adalah satu set alternatif nilai yang mungkin dari parameter populasi yang tidak ditentukan dalam H₀
- Hipotesis yang ingin diuji dijadikan H₁.

Dua macam Hipotesis

Hipotesis Null, H₀

- Pernyataan tentang kondisi awal sebelum adanya perlakuan
- Pernyataan yang ingin dibuktikan ketidakbenarannya
- Pernyataan yang dipertahankan selama tidak ada bukti yang cukup untuk mengatakan bahwa pernyataan ini tidak benar
- Selalu terdapat simbol "=" (bisa juga ≤ atau ≥)

Hipotesis Alternatif, H₁

- Pernyataan tentang kondisi yang diharapkan setelah adanya perlakuan
- Pernyataan yang ingin dibuktikan kebenarannya
- Pernyataan yang dianggap salah selama tidak ada bukti yang cukup untuk mengatakan bahwa pernyataan ini benar
- Tidak pernah ditemui simbol "="
 yang ada simbol ≠ , >, atau <

Tentukan hipotesis dari pernyataan berikut:

Pengalaman menunjukkan bahwa rata-rata tingkat penyembuhan terhadap suatu penyakit dengan obat biasa **maksimum** adalah 60 %. Rata-rata tingkat penyembuhan dengan obat baru diharapkan lebih besar. Obat baru tersebut dicobakan pada 20 orang. Apakah obat baru tersebut efektif memberikan rata-rata tingkat penyembuhan yang lebih tinggi?

Tentukan hipotesis dari pernyataan berikut:

Dari informasi yang diperoleh menyatakan bahwa rata-rata tekanan darah di desa A adalah 140. Seorang ahli mengambil sampel sebanyak 90 orang dari penduduk desa tersebut dan ingin meneliti apakah rata-rata tekanan darah di desa tersebut sudah turun ?

Tentukan hipotesis dari pernyataan berikut:

Sebuah mesin digunakan untuk mengisi kaleng-kaleng susu sebesar 200 ml. Dalam kondisi normal, mesin tersebut mengisi kaleng-kaleng susu dengan standard deviasi 10 ml. Setelah mesin berjalan 5 tahun perusahaan ingin mengetahui apakah mesin tersebut masih berfungsi dengan standard deviasi 10 ml?

Jenis Kesalahan

Dalam pengujian hipotesis statistik, selalu terdapat unsur **ketidakpastian** dalam pengambilan kesimpulan. Hal ini terjadi karena adanya **kemungkinan** kesalahan pengujian.

Kesimpulan	Kenyataan	
	H ₀ benar	H ₀ salah
Tidak tolak H ₀	Benar	type II error [β]
Tolak H ₀	type I error [α]	Benar

Jenis Kesalahan

Dua jenis kesalahan dalam pengambilan kesimpulan:

- Kesalahan tipe I
 - Tolak null hipotesis yang benar
 - **Probabilitas** kesalahan tipe I (α)
 - Disebut signifikan level
 - Ditentukan tim riset
- Kesalahan tipe II
 - Gagal menolak null hipotesis yang salah
 - Probabilitas kesalahan tipe II (β)

Kesalahan Tipe I & II saling berlawanan

Kemungkinan Hasil Uji Hipotesa

Ho : $p \le 0.6$

 $H_1 : p > 0.6$

- Terima Ho / Ho benar → Menyimpulkan obat baru biasa saja, kenyataannya memang biasa saja
- Tolak Ho / Ho benar → Menyimpulkan obat baru lebih manjur padahal kenyataannya biasa saja
- Terima Ho / Ho salah → Menyimpulkan obat baru biasa saja, padahal kenyataannya sebenarnya lebih manjur
- Tolak Ho / Ho salah → Menyimpulkan obat baru lebih manjur dan kenyataannya memang lebih manjur

2. Level Signifikan (α)

• Nilai α yang sering digunakan: 1%, 5%, 10%

 Nilai α harusnya telah ditentukan di awal oleh tim riset

• Nilai α akan digunakan untuk menentukan titik kritis dalam pengujian

2. Level Signifikan (α)

Statistik Uji

adalah suatu nilai yang diperoleh dari hasil perhitungan data sampel, yang digunakan untuk menentukan apakah menolak atau menerima H₀

Gunakan rumus yang sesuai untuk perhitungan statistik uji.

Contoh: untuk uji mean 1 populasi sample kecil bisa digunakan tes statistik:

$$t = \frac{\overline{x} - \mu}{\sigma / \sqrt{n}}$$

4. Penentuan Titik Kritis dan Daerah Penolakan

Titik kritis

adalah nilai yang memisahkan daerah kritis (daerah penolakan) dari daerah penerimaan.

- Digunakan sebagai dasar untuk menentukan untuk menolak atau gagal menolak H₀
- Dasar yang digunakan : degree of freedom, level of significance

4. Penentuan Titik Kritis dan Daerah Penolakan

- Daerah kritis berisi hasil yang sangat tidak mungkin terjadi jika H₀ benar, artinya, daerah kritis ditentukan oleh rata-rata sampel yang <u>hampir tidak mungkin</u> diperoleh jika perlakuan tidak berpengaruh.
- Kalimat "hampir tidak mungkin" berarti bahwa sampel mempunyai probabilitas (p) yang lebih kecil α.

4. Penentuan Titik Kritis dan Daerah Penolakan

Dua Jenis Pengujian

Pengujian satu sisi – One tailed test

- H₁ menyatakan bahwa parameter populasi berbeda dari nilai yang dinyatakan dalam H₀ dalam satu arah tertentu.
- Daerah kritis terletak hanya di satu ujung distribusi sampling.

Dua Jenis Pengujian

Pengujian dua sisi – Two tailed test

- H₁ menyatakan bahwa parameter populasi mungkin kurang dari atau lebih besar dari nilai yang dinyatakan dalam H₀.
- Daerah kritis dibagi di antara kedua ujung distribusi sampling.

Pengujian satu sisi – One tailed test

Upper-tail Critical

Lower-tail Critical

Pengujian dua sisi – Two tailed test

Kategorikan pengujian berikut sebagai pengujian satu sisi atau dua sisi, dan gambarkan *rejection regions*-nya

Pengalaman menunjukkan bahwa rata-rata tingkat penyembuhan terhadap suatu penyakit dengan obat biasa **maksimum** adalah 60 %. Rata-rata tingkat penyembuhan dengan obat baru diharapkan lebih besar. Obat baru tersebut dicobakan pada 20 orang. Apakah obat baru tersebut efektif memberikan rata-rata tingkat penyembuhan yang lebih tinggi?

Kategorikan pengujian berikut sebagai pengujian satu sisi atau dua sisi, dan gambarkan *rejection regions*-nya

Sebuah mesin digunakan untuk mengisi kaleng-kaleng susu sebesar 200 ml. Dalam kondisi normal, mesin tersebut mengisi kaleng-kaleng susu dengan standard deviasi 10 ml. Setelah mesin berjalan 5 tahun perusahaan ingin mengetahui apakah mesin tersebut masih berfungsi dengan standard deviasi 10 ml?

5. Bandingkan statistik uji dengan titik kritis, lalu putuskan untuk menerima atau menolak \mathbf{H}_0

yang diarsir)

Critical value

UBAYA UNIVERSITAS SURABAYA

Keputusan ada 2 macam:

- Tolak H₀ (artinya data yang ada mendukung H₁)
- Gagal tolak H₀ (artinya data yang ada tidak mendukung H₁)

Jika kesimpulan yang dibuat adalah 'Gagal tolak H₀', bukan berarti H₀ benar. Namun hanya menunjukkan bahwa tidak ditemukan bukti yang cukup kuat untuk menolak H₀. Sebaliknya 'Tolak H₀', menunjukkan bahwa H₁ mungkin benar.

Latihan

Tentukan hipotesis (H₀ dan H₁) dan gambarkan rejection regions-nya

1. Perusahaan sereal memproduksi kemasan sereal kotak dengan berat 368gr. Laporan dari QC menyatakan bahwa banyak kemasan yang isinya tidak 368 gr. Perusahaan ingin mengetahui kebenaran informasi tersebut?

Latihan

2. Selama ini perusahaan sereal mengadakan demo di mal-mal untuk promosi produknya. Namun, cara ini dinilai hanya mampu meningkatkan penjualan maksimal 4%. Untuk itu bagian pemasaran mencoba media promosi yang baru dengan harapan dapat meningkatkan penjualan lebih dari sebelumnya.

Latihan

3. Sebuah perusahaan nutrisi makanan menyatakan bahwa dengan mengkonsumsi produknya secara teratur akan dapat menurunkan berat badan minimal 2kg. Buktikan bahwa pernyataan tersebut tidak benar