

Tiempo: 60 minutos

Departamento de Matemáticas 4^{o} Académicas

Examen extraordinario

Fecha:	Nombre:	ALEGRE FAJARDO,	LUCÍA

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

(2 puntos)

Tipo: A

- $(a) \qquad \qquad \sqrt{x+3} + \sqrt{x-2} = 5$
- (b) $2^{x^2 4x + 1} = \frac{1}{4}$
- 3. Halla el valor de k para que la siguiente división sea exacta: (1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- 4. El diámetro de la base de un cilindro es igual a su altura. El área total $(2 \ puntos)$ es $169,56 \ metros cuadrados.$ Calcula sus dimensiones
- 5. Contesta a las siguientes cuestiones: (2 puntos)
 - (a) Resuelve la inecuación: $\frac{x^2 4}{x^2 9} \le 0$
 - (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- 6. Representa la siguiente función a trozos e indica sus propiedades: (1 punto)

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

Tiempo: 60 minutos

Departamento de Matemáticas 4^{o} Académicas

Examen extraordinario

Fecha:	Nombre:	ARCAS SANCE	IEZ, DANIEL	

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

(2 puntos)

Tipo: A

(a)

$$\sqrt{x+3} + \sqrt{x-2} = 5$$

(b)

$$2^{x^2 - 4x + 1} = \frac{1}{4}$$

3. Halla el valor de k para que la siguiente división sea exacta:

(1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- 4. El diámetro de la base de un cilindro es igual a su altura. El área total es 169,56 metros cuadrados. Calcula sus dimensiones
- 5. Contesta a las siguientes cuestiones:

(2 puntos)

(1 punto)

- (a) Resuelve la inecuación: $\frac{x^2 4}{x^2 9} \le 0$
- (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- 6. Representa la siguiente función a trozos e indica sus propiedades:

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

Examen extraordinario

Fecha: Nombre:	ARIAS GARCÍA, ANDREA
----------------	----------------------

Tiempo: 60 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

(2 puntos)

(a)

$$\sqrt{x+3} + \sqrt{x-2} = 5$$

(b)

$$2^{x^2 - 4x + 1} = \frac{1}{4}$$

3. Halla el valor de k para que la siguiente división sea exacta:

(1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- 4. El diámetro de la base de un cilindro es igual a su altura. El área total es 169,56 metros cuadrados. Calcula sus dimensiones

(2 puntos)

5. Contesta a las siguientes cuestiones:

(2 puntos)

(1 punto)

- (a) Resuelve la inecuación: $\frac{x^2 4}{x^2 9} \le 0$
- (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- 6. Representa la siguiente función a trozos e indica sus propiedades:

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

Examen extraordinario

Fecha:	_ Nombre:	BUSTILLO TERCERO,	NICOLE DARIANA

Tiempo: 60 minutos

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

(2 puntos)

(a)

$$\sqrt{x+3} + \sqrt{x-2} = 5$$

(b)

$$2^{x^2 - 4x + 1} = \frac{1}{4}$$

3. Halla el valor de k para que la siguiente división sea exacta:

(1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- $4.\,$ El diámetro de la base de un cilindro es igual a su altura. El área total es $169{,}56$ metros cuadrados. Calcula sus dimensiones
- 5. Contesta a las siguientes cuestiones:

(2 puntos)

(1 punto)

- (a) Resuelve la inecuación: $\frac{x^2-4}{x^2-9} \le 0$
- (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- 6. Representa la siguiente función a trozos e indica sus propiedades:

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

Examen extraordinario

геспа:	Nombre:	LANA GNACIA, JUNGE	

Tiempo: 60 minutos Tipo: A

TADA ODAOTA

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

(2 puntos)

(a)

$$\sqrt{x+3} + \sqrt{x-2} = 5$$

(b)

$$2^{x^2 - 4x + 1} = \frac{1}{4}$$

3. Halla el valor de k para que la siguiente división sea exacta:

(1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- $4.\,$ El diámetro de la base de un cilindro es igual a su altura. El área total es $169{,}56$ metros cuadrados. Calcula sus dimensiones
- 5. Contesta a las siguientes cuestiones: (2 puntos)
 - (a) Resuelve la inecuación: $\frac{x^2 4}{x^2 9} \le 0$
 - (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- 6. Representa la siguiente función a trozos e indica sus propiedades: (1 punto)

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

Departamento de Matemáticas 4º Académicas

Examen extraordinario

Fecha:	Nombre:	MUÑOZ PELEGRÍN, MARIO	
Tiempo: 60 minu	tos		Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

(2 puntos)

(a)

$$\sqrt{x+3} + \sqrt{x-2} = 5$$

(b)

$$2^{x^2 - 4x + 1} = \frac{1}{4}$$

3. Halla el valor de k para que la siguiente división sea exacta:

(1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- 4. El diámetro de la base de un cilindro es igual a su altura. El área total es 169,56 metros cuadrados. Calcula sus dimensiones
- 5. Contesta a las siguientes cuestiones:

(2 puntos)

- (a) Resuelve la inecuación: $\frac{x^2-4}{x^2-9} \le 0$
- (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- 6. Representa la siguiente función a trozos e indica sus propiedades: (1 punto)

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

Examen extraordinario

Fecha:	Nombre:	PÉREZ DURO, IVÁN	
Tiempo: 60 minu	ıtos		Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

- $\sqrt{x+3} + \sqrt{x-2} = 5$
- (b) $2^{x^2 4x + 1} = \frac{1}{4}$
- 3. Halla el valor de k para que la siguiente división sea exacta: (1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- 4. El diámetro de la base de un cilindro es igual a su altura. El área total $(2 \ puntos)$ es $169,56 \ metros cuadrados.$ Calcula sus dimensiones
- 5. Contesta a las siguientes cuestiones: (2 puntos)
 - (a) Resuelve la inecuación: $\frac{x^2 4}{x^2 9} \le 0$
 - (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- 6. Representa la siguiente función a trozos e indica sus propiedades: (1 punto)

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

Examen extraordinario

Fecha:	Nombre:	RÓDENAS SÁNCHEZ, IVÁN	
Tiempo: 60 minu	tos		Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

(2 puntos)

(a)

$$\sqrt{x+3} + \sqrt{x-2} = 5$$

(b)

$$2^{x^2 - 4x + 1} = \frac{1}{4}$$

3. Halla el valor de k para que la siguiente división sea exacta:

(1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- 4. El diámetro de la base de un cilindro es igual a su altura. El área total es 169,56 metros cuadrados. Calcula sus dimensiones
- (2 puntos)

5. Contesta a las siguientes cuestiones:

- (a) Resuelve la inecuación: $\frac{x^2 4}{x^2 9} \le 0$
- (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- 6. Representa la siguiente función a trozos e indica sus propiedades: (1 punto)

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

Examen extraordinario

Fecha: USÓN HERRERO, SAI	.RA
--------------------------	-----

Tiempo: 60 minutos Tipo: A

Esta prueba tiene 10 ejercicios. La puntuación máxima es de 16. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	6	7	8	9	10	Total
Puntos:	2	2	1	2	2	1	1	1	2	2	16

- 1. Calcula (2 puntos)
 - (a) Racionaliza y simplifica: $\frac{\sqrt{3}}{2\sqrt{3}-\sqrt{2}}$
 - (b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt{0,125}$
 - (c) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$
 - (d) Sabiendo que $\log x = 1$ y $\log y = -2$, calcula: $\log(\frac{100 \cdot x^2}{\sqrt{x \cdot y}})$
- 2. Resuelve las siguientes ecuaciones:

(2 puntos)

(a)

$$\sqrt{x+3} + \sqrt{x-2} = 5$$

(b)

$$2^{x^2 - 4x + 1} = \frac{1}{4}$$

3. Halla el valor de k para que la siguiente división sea exacta:

(1 punto)

$$(3x^2 + kx - 2) : (x+2)$$

- 4. El diámetro de la base de un cilindro es igual a su altura. El área total es 169,56 metros cuadrados. Calcula sus dimensiones
- (2 puntos)

5. Contesta a las siguientes cuestiones:

(2 puntos)

- (a) Resuelve la inecuación: $\frac{x^2 4}{x^2 9} \le 0$
- (b) Calcula el dominio de: $f(x) = \frac{2x-1}{x^2+4x+3}$
- $6.\$ Representa la siguiente función a trozos e indica sus propiedades:

(1 punto)

$$f(x) = \begin{cases} 2x + 2 & \text{for } x \le -2\\ x^2 - 2x & x > -1 \end{cases}$$

- 7. La diagonal menor de un rombo mide 40 cm y el ángulo menor es de 60°. ¿Cuánto mide la otra diagonal?¿Y el lado del rombo?
 - $(1 \ punto)$

(1 punto)

(a)
$$\cos x - \frac{1}{4} = \frac{1}{4}$$

- (2 puntos)
- (a) Pasa por el punto medio a P(1, -1) y Q(5, 3) y es perpendicular a $r \equiv 4x 2y + 1 = 0$
- 10. Las calificaciones de un grupo de 24 alumnos han sido: 6 5 5 7 10 7 5 6 (2 puntos) 7 3 4 8 8 4 4 6 5 3 5 7 7 7 2 2.
 - Realiza una tabla de frecuencias
 - Realiza un diagrama de barras
 - Calcular los parámetros de centralización media, moda y mediana
 - Calcular los parámetros de posición P70, Q1, Q3
 - Calcular los parámetros de dispersión varianza y desviación típica
 - Realiza un diagrama de caja.

