MOFIT Lab1 - schemat Eulera, schemat trapezów

Jan Malczewski

March 2022

1 Wstęp

Do wykonania zadań użyto języka Python 3 oraz bibliotek numpy, pandas, matplotlib oraz math. Poniżej zamieszczam wykresy wraz z adnotacjami do konkretnych zadań. Wszystkie wartości na osiach zostały zapisane w układnie SI.

Rysunek 1: **Zad.1** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą jawnego Eulera dla t=(0,30) oraz $\Delta t=0.01$.

Rysunek 2: **Zad.1** Wykres potencjału od położnie
a metodą jawnego Eulera dla t=(0,30)ora
z $\Delta t=0.01$

Rysunek 3: Zad.1 Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą jawnego Eulera dla t=(0,30) oraz $\Delta t=0.001$.

Rysunek 4: **Zad.1** Wykres potencjału od położnie
a metodą jawnego Eulera dla t=(0,30) oraz $\Delta t=0.001.$

Rysunek 5: **Zad.1** Wykres prędkości od położenia metodą jawnego Eulera dla t=(0,100) oraz $\Delta t=0.01.$

Rysunek 6: **Zad.1** Wykres prędkości od położenia metodą jawnego Eulera dla t=(0,100) oraz $\Delta t=0.001.$

Rysunek 7: **Zad.1** Wykres prędkości od położenia metodą jawnego Eulera dla t=(0,1000) oraz $\Delta t=0.01.$

Rysunek 8: **Zad.1** Wykres prędkości od położenia metodą jawnego Eulera dla t=(0,1000) oraz $\Delta t=0.001.$

Rysunek 9: **Zad.2** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą jawnego Eulera dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=0.5$.

Rysunek 10: **Zad.2** Wykres potencjału od położenia metodą jawnego Eulera dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=0.5.$

Rysunek 11: **Zad.2** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą jawnego Eulera dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=5$.

Rysunek 12: **Zad.2** Wykres potencjału od położenia metodą jawnego Eulera dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=5.$

Rysunek 13: **Zad.2** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą jawnego Eulera dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=201$.

Rysunek 14: **Zad.2** Wykres potencjału od położenia metodą jawnego Eulera dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=201.$

Rysunek 15: **Zad.2** Wykres prędkości od położenia metodą jawnego Eulera dla $t=(0,100), \Delta t=0.01$ oraz $\alpha=0.5.$

Rysunek 16: **Zad.2** Wykres prędkości od położenia metodą jawnego Eulera dla $t=(0,100), \Delta t=0.01$ oraz $\alpha=5.$

Rysunek 17: **Zad.2** Wykres prędkości od położenia metodą jawnego Eulera dla $t=(0,100), \Delta t=0.01$ oraz $\alpha=201.$

Rysunek 18: **Zad.2** Wykres prędkości od położenia metodą jawnego Eulera dla $t=(0,1000), \Delta t=0.01$ oraz $\alpha=0.5$.

Rysunek 19: **Zad.2** Wykres prędkości od położenia metodą jawnego Eulera dla $t=(0,1000), \Delta t=0.01$ oraz $\alpha=5.$

Rysunek 20: **Zad.2** Wykres prędkości od położenia metodą jawnego Eulera dla $t=(0,1000), \Delta t=0.01$ oraz $\alpha=201.$

Rysunek 21: **Zad.3** Kod generujący pierwszy krok czasowy wzorem trapezów dla $\alpha=0$ oraz $\Delta t=0.01.$

Rysunek 22: **Zad.4** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą trapezów dla t=(0,30) oraz $\Delta t=0.01$.

Rysunek 23: **Zad.4** Wykres potencjału od położnie
a metodą trapezów dla t=(0,30)oraz $\Delta t=0.01$

Rysunek 24: **Zad.4** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą trapezów dla t=(0,30) oraz $\Delta t=0.001$.

Rysunek 25: **Zad.4** Wykres potencjału od położnie
a metodą trapezów dla t=(0,30)oraz $\Delta t=0.001.$

Rysunek 26: **Zad.4** Wykresy prędkości od położnie
a metodą trapezów dla t=(0,100) (górny wiersz) t=(1,1000) (dolszy wiersz) oraz
 $\Delta t=0.01$ (lewa kolumna) $\Delta t=0.001$ (prawa kolumna).

Rysunek 27: **Zad.4** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą trapezów dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=0.5$.

Rysunek 28: **Zad.4** Wykres potencjału od położnie
a metodą trapezów dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=0.5.$

Rysunek 29: **Zad.4** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą trapezów dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=5$.

Rysunek 30: **Zad.4** Wykres potencjału od położnie
a metodą trapezów dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=5.$

Rysunek 31: **Zad.4** Wykresy położenia, prędkości, energi kinetycznej oraz sumy energii od czasu metodą trapezów dla $t = (0, 30), \Delta t = 0.01$ oraz $\alpha = 201$.

Rysunek 32: **Zad.4** Wykres potencjału od położnie
a metodą trapezów dla $t=(0,30), \Delta t=0.01$ oraz $\alpha=201.$

Rysunek 33: **Zad.4** Wykresy prędkości od położenia dla t=(0,100) (górny wiersz), t=(0,1000) (dolny wiersz), $\Delta t=0.01$ oraz $\alpha=0.5,5,201$ kolejno pierwsza, druga i trzecia kolumna.