TRIGONOMETRY Chapter 06

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO III

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

Razones trigonométricas, son los cocientes entre las longitudes de los lados de un triángulo rectángulo, respecto de uno de sus ángulos interiores agudos.

$$sen\alpha = \frac{Cateto opuesto al \not \alpha}{Hipotenusa} = \frac{CO}{H}$$

$$cos\alpha = \frac{Cateto adyacente al \not \alpha}{Hipotenusa} = \frac{CA}{H}$$

$$tan\alpha = \frac{Cateto opuesto al \not \alpha}{Cateto adyacente al \not \alpha} = \frac{CO}{CA}$$

$$\cot \alpha = \frac{\text{Cateto adyacente al } \alpha \alpha}{\text{Cateto opuesto al } \alpha} = \frac{\text{CA}}{\text{CO}}$$

$$\sec \alpha = \frac{\text{Hipotenusa}}{\text{Cateto adyacente al } \not \propto \alpha} = \frac{\mathbf{H}}{\mathbf{CA}}$$

$$csc\alpha = \frac{Hipotenusa}{Cateto opuesto al < \alpha} = \frac{H}{CO}$$

MÉTODO NEMOTÉCNICO: "COCA COCA HELADA HELADA"

senα	cosα	tanα	cotα	secα	cscα
СО	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

Del gráfico, efectúe:

$$P = \sqrt{29} \operatorname{sen} \alpha + 3$$

Recordar:

$$sen \alpha = \frac{CO}{H}$$

RESOLUCIÓN

Teorema de Pitágoras:

$$(H)^2 = (CO)^2 + (CA)^2$$

$$(H)^2 = (5)^2 + (2)^2 = 25 + 4$$

$$(H)^2 = 29 \implies H = \sqrt{29}$$

Calculamos P: $P = \sqrt{29} \operatorname{sen} \alpha + 3$

$$P = \sqrt{29} \left(\frac{2}{\sqrt{29}} \right) + 3 = 2 + 3$$

$$\therefore P = 5$$

Del gráfico, efectúe:

$$Q = \sqrt{34} \operatorname{sec} + \tan \phi$$

Recordar:

$$sec\phi = \frac{H}{CA}$$

$$tan \phi = \frac{co}{cA}$$

RESOLUCIÓN

Teorema de Pitágoras:

$$(CO)^{2} + (CA)^{2} = (H)^{2}$$

$$(5)^{2} + (CA)^{2} = (\sqrt{34})^{2}$$

$$25 + (CA)^{2} = 34$$

$$(CA)^{2} = 9 \implies CA = 3$$

Calculamos Q: $Q = \sqrt{34} \sec \phi + \tan \phi$

$$Q = \sqrt{34} \left(\frac{\sqrt{34}}{3} \right) + \frac{5}{3} = \frac{34}{3} + \frac{5}{3}$$

$$Q = \frac{39}{3}$$

$$\therefore Q = 13$$

Del gráfico, efectúe:

$$T = \csc^2 \beta + \cot^2 \beta$$

Recordar:

$$\mathbf{csc}\alpha = \frac{\mathbf{H}}{\mathbf{CO}}$$

$$\cot \alpha = \frac{CA}{CO}$$

RESOLUCIÓN

Teorema de Pitágoras:

$$(CO)^2 + (CA)^2 = (H)^2$$

$$(\mathbf{CO})^2 + (\sqrt{7})^2 = (\mathbf{4})^2$$

$$(CO)^2 + 7 = 16$$

$$(CO)^2 = 9 \implies CO = 3$$

Efectuamos T: $T = csc^2\beta + cot^2\beta$

$$T = \left(\frac{4}{3}\right)^2 + \left(\frac{\sqrt{7}}{3}\right)^2 = \frac{16}{9} + \frac{7}{9}$$

$$\therefore T = \frac{23}{9}$$

Una barra metálica descansa sobre una pared (observe el gráfico), formándose un ángulo α entre la barra metálica y la pared. - Sabiendo que la longitud de la barra metálica es de 5 m y la altura de la pared mide $\sqrt{21}$ m ; calcule el producto de la cotangente y la secante de dicho ángulo.

RESOLUCIÓN

| Teorema de Pitágoras :

$$(CO)^2 + (CA)^2 = (H)^2$$

$$(CO)^2 + (\sqrt{21})^2 = (5)^2$$

$$(CO)^2 + 21 = 25$$

$$(CO)^2 = 4$$
 $CO = 2$

Calculamos Q: $Q = \cot \alpha$. $\sec \alpha$

$$\mathbf{Q} = \left(\frac{\sqrt{21}}{2}\right) \left(\frac{5}{\sqrt{21}}\right)$$

$$\therefore Q = \frac{5}{2}$$

$$\cot \alpha = \frac{CA}{CO}$$

$$sec\alpha = \frac{H}{CA}$$

Si $\tan\alpha = \frac{1}{4}$, siendo α un ángulo agudo, efectúe $P = \sqrt{17} \cos\alpha$.

RESOLUCIÓN

Recordar:
$$\tan \alpha = \frac{CO}{CA}$$

$$\cos \alpha = \frac{CA}{H}$$

Teorema de Pitágoras:

$$(H)^2 = (CO)^2 + (CA)^2$$

$$(H)^2 = (4)^2 + (1)^2 = 16 + 1$$

 $(H)^2 = 17 \implies H = \sqrt{17}$

1 = CO | Efectuamos P:

$$P = \sqrt{17} \cos \alpha$$

$$\mathsf{P} = \sqrt{17} \left(\frac{4}{\sqrt{17}} \right)$$

$$\cdot P = 4$$

El profesor Gerald planteó el siguiente ejercicio para designar al delegado del aula: Encuentre el triángulo rectángulo en el que uno de sus catetos es el menor número par de dos cifras significativas y el otro cateto es el primer número impar mayor que tres; luego determine $Q = sen\beta \cdot csc\beta$; si se sabe que β es el menor ángulo interior de dicho triángulo rectángulo. **RESOLUCIÓN**

$$sen\beta = \frac{CO}{H}$$

$$csc\beta = \frac{H}{CO}$$

Teorema de Pitágoras:

$$(H)^2 = (CO)^2 + (CA)^2$$

$$(H)^2 = (5)^2 + (12)^2$$

$$(H)^2 = 25 + 144$$

$$(H)^2 = 169$$
 \rightarrow $H = 13$

Calculamos Q:

$$Q = sen\beta \cdot csc\beta$$

$$5 = CO \qquad Q = \left(\frac{5}{13}\right) \left(\frac{13}{5}\right)$$

Tres matemáticos están dibujando triángulos, pero solo uno de ellos tiene una regla, motivo por el cual, Raúl (dueño de la regla), decidió partirla en tres pedazos para repartirlos entre ellos; pero lo hizo de un modo en el que cada uno obtuvo un lado diferente de un mismo triángulo rectángulo. - Si sus amigos tienen 9 cm y 12 cm de la regla, calcule $Q = \text{sen}\phi + \text{csc}\phi$; si se sabe que ϕ no es ni el mayor ni el menor ángulo interior de dicho triángulo.

Nota : Raúl tiene el pedazo de regla de mayor tamaño.

9 cm = CA

RESOLUCIÓN

Teorema de Pitágoras :

$$(H)^2 = (9)^2 + (12)^2$$

$$(H)^2 = 81 + 144$$

$$(H)^2 = 225 \implies H = 15$$

Calculamos Q:

$$Q = sen\phi + csc\phi$$

$$\mathbf{Q} = \frac{12}{15} + \frac{15}{12} = \frac{4}{5} + \frac{5}{4}$$

$$Q = \frac{16 + 25}{20}$$

