FMI, Info, Anul I

Logică matematică și computațională

Seminar 11

(S11.1) Să se arate că pentru orice formule φ , ψ și orice variabilă $x \notin FV(\varphi)$,

- (i) $\varphi \bowtie \exists x \varphi$;
- (ii) $\forall x(\varphi \wedge \psi) \vDash \varphi \wedge \forall x\psi$;
- (iii) $\exists x(\psi \to \varphi) \vDash \forall x\psi \to \varphi$.

(S11.2) Considerăm limbajul $\mathcal{L}_{ar} = (\dot{<}, \dot{+}, \dot{\times}, \dot{S}, \dot{0})$ (limbajul aritmeticii) și \mathcal{L}_{ar} -structura canonică peste acest limbaj $\mathcal{N} := (\mathbb{N}, <, +, \cdot, S, 0)$. Să se dea exemplu de \mathcal{L}_{ar} -formule $\varphi_1, \varphi_2, \varphi_3$ astfel încât pentru orice $e: V \to \mathbb{N}$,

- (i) $\mathcal{N} \vDash \varphi_1[e] \Leftrightarrow e(v_0)$ este par;
- (ii) $\mathcal{N} \vDash \varphi_2[e] \Leftrightarrow e(v_0)$ este prim;
- (iii) $\mathcal{N} \vDash \varphi_3[e] \Leftrightarrow e(v_0)$ este putere a lui 2 cu exponent strict pozitiv.

(S11.3) Considerăm limbajul $\mathcal{L}_r = (\dot{+}, \dot{\times})$ şi \mathcal{L}_r -structura $\mathcal{R} := (\mathbb{R}, +, \cdot)$. Să se dea exemplu de \mathcal{L}_r -formulă ψ astfel încât pentru orice $e: V \to \mathbb{R}$,

$$\mathcal{R} \vDash \psi[e] \Leftrightarrow e(v_0) \le e(v_1).$$

(S11.4) Considerăm limbajul \mathcal{L} ce conține un singur simbol, anume un simbol de funcție de aritate 2. Să se găsească un enunț φ astfel încât $(\mathbb{Z}, +) \models \varphi$, dar $(\mathbb{Z} \times \mathbb{Z}, +) \not\models \varphi$.