Unive	ersité	Denis	Diderot
UFR	de M	[athém	atiques

Test	${ m n}^{\circ}$	4	(durée	:	30	mn))
------	------------------	---	--------	---	----	-----	---

NOM:	

Question de cours

Soient $((x_n, y_n))_{n\geq 0}$ une suite de point de \mathbb{R}^2 et $(x, y) \in \mathbb{R}^2$, où \mathbb{R}^2 est muni de la distance usuelle d. Quand dit-on que (x, y) est une valeur d'adhérence de la suite $((x_n, y_n))_{n\geq 0}$?

- 2) On définit $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ en posant $f(x,y) = \arctan \left| \frac{y}{x} \right|$ si $x \neq 0$ et $f(x,y) = \frac{\pi}{2}$ si x = 0.
 - a) Montrer que $U=\{(x,y)\in\mathbb{R}^2\,|\,x\neq0\}$ et $V=\{(x,y)\in\mathbb{R}^2\,|\,y\neq0\}$ sont des ouverts de $\mathbb{R}^2\,\setminus\{0\}$.

b) Démontrer que f est continue.

Indication:remarquer, en le justifiant, que $f(x,y)=\frac{\pi}{2}-\arctan|\frac{x}{y}|$ quand $y\neq 0.$

c) Question subsidiaire (hors barème). Existe-t-il une application continue $\widetilde{f}: \mathbb{R}^2 \to \mathbb{R}$ dont la restriction à $\mathbb{R}^2 \setminus \{0\}$ est f?