MIDR_EL1, Main ID Register

The MIDR EL1 characteristics are:

Purpose

Provides identification information for the PE, including an implementer code for the device and a device ID number.

Configuration

AArch64 System register MIDR_EL1 bits [31:0] are architecturally mapped to AArch32 System register MIDR[31:0].

AArch64 System register MIDR_EL1 bits [31:0] are architecturally mapped to External register MIDR_EL1[31:0].

Attributes

MIDR EL1 is a 64-bit register.

Field descriptions

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

RES0										
Implementer	Variant	Architectu	re	PartNum				Re	visi	on
31 30 29 28 27 26 25 24	23 22 21 20	19 18 17 16	15 14 1	3 1 2 1 1 1 1 0 9 8	7	6 5	4	3	2 1	

Bits [63:32]

Reserved, res0.

Implementer, bits [31:24]

The Implementer code. This field must hold an implementer code that has been assigned by Arm. Assigned codes include the following:

Implementer	Meaning		
0x00	Reserved for software		
	use.		
0x41	Arm Limited.		
0x42	Broadcom Corporation.		
0x43	Cavium Inc.		

0x44	Digital Equipment Corporation.
0x46	Fujitsu Ltd.
0x49	Infineon Technologies AG.
0x4D	Motorola or Freescale Semiconductor Inc.
0x4E	NVIDIA Corporation.
0x50	Applied Micro Circuits Corporation.
0x51	Qualcomm Inc.
0x56	Marvell International Ltd.
0x69	Intel Corporation.
0xC0	Ampere Computing.

Arm can assign codes that are not published in this manual. All values not assigned by Arm are reserved and must not be used.

This field has an implementation defined value.

Access to this field is **RO**.

Variant, bits [23:20]

Variant number. Typically, this field is used to distinguish between different product variants, or major revisions of a product.

This field has an implementation defined value.

Access to this field is **RO**.

Architecture, bits [19:16]

Architecture version. Defined values are:

Architecture	Meaning
0b0001	Armv4.
0b0010	Armv4T.
0b0011	Armv5 (obsolete).
0b0100	Armv5T.
0b0101	Armv5TE.
0b0110	Armv5TEJ.
0b0111	Armv6.
0b1111	Architectural features are individually
	identified in the ID_* registers.

All other values are reserved.

This field has an implementation defined value.

Access to this field is **RO**.

PartNum, bits [15:4]

Primary Part Number for the device.

On processors implemented by Arm, if the top four bits of the primary part number are 0x0 or 0x7, the variant and architecture are encoded differently.

This field has an implementation defined value.

Access to this field is **RO**.

Revision, bits [3:0]

Revision number for the device.

This field has an implementation defined value.

Access to this field is **RO**.

Accessing MIDR EL1

Accesses to this register use the following encodings in the System register encoding space:

MRS <Xt>, MIDR EL1

op0	op1	CRn	CRm	op2	
0b11	0b000	0b0000	0b0000	0b000	

```
elsif EL2Enabled() then
        X[t, 64] = VPIDR_EL2;
else
        X[t, 64] = MIDR_EL1;
elsif PSTATE.EL == EL2 then
        X[t, 64] = MIDR_EL1;
elsif PSTATE.EL == EL3 then
        X[t, 64] = MIDR_EL1;
```

AArch32 Registers AArch64 Registers

AArch32 Instructions AArch64 Instructions Index by Encoding

External Registers

28/03/2023 16:01; 72747e43966d6b97dcbd230a1b3f0421d1ea3d94

Copyright \hat{A} © 2010-2023 Arm Limited or its affiliates. All rights reserved. This document is Non-Confidential.