Mechanical Processing in Internally Coupled Ears

Anupam Prasad Vedurmudi

TMP Thesis Defence July 5, 2013

Auditory Systems

Independent Ears

Eustachian tubes typically very narrow.

Effectively independent eardrum vibrations.

Coupled Ears

Eardrums connected through wide eustachian tubes and a large mouth cavity.

Eardrums vibrations influence eachother.

Conclusion

3/13

The Model

Introduction

Internally Coupled Ears

$$a_{
m tymp}$$
 fixed. $V_{
m cyl} = \pi a_{
m tymp}^2 L$

Mouth Cavity

 a_{tymp} fixed.

$$V_{\rm cyl} = \pi a_{
m tymp}^2 L$$

$$a_{
m tymp}, \ V_{
m cyl}$$
 fixed. $a_{
m cyl} = \sqrt{V_{
m cyl}/\pi L}$

Acoustic Head Model

I - Ipsilateral ear, C Contralateral ear.
 p₀, p_L - sound pressure on
eardrums, θ - sound source
direction.

Acoustic Head Model

- Sound source "far away".
- Phase difference between sound at both ears $\Delta = 1.5kL \sin \theta$.
- No appreciable amplitude difference, $|p_0| = |p_L|$.

Cavity Pressure

3D Wave Equation

$$\frac{1}{c^2}\partial_t^2 p(x, r, \phi, t) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial p(x, r, \phi, t)}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 p(x, r, \phi, t)}{\partial \phi^2} + \frac{\partial p(x, r, \phi, t)}{\partial x^2} \tag{1}$$

To be solved using the separation ansatz

$$p(x, r, \phi, t) = f(x)g(r)h(\phi)e^{j\omega t}$$

Conclusion

Introduction

No-penetration at the cavity boundary, i.e. normal derivative vanishes

The Model

0000000

$$-j\rho\omega\mathbf{v} = \mathbf{n}. \left. \nabla p(\mathbf{x}, r, \phi; t) \right|_{r=\mathbf{a}_{\mathrm{cyl}}} = \left. \frac{\partial p}{\partial r} \right|_{r=\mathbf{a}_{\mathrm{cyl}}} = 0 \tag{2}$$

Evaluation

No-penetration at the cavity boundary, i.e. normal derivative vanishes

$$-j\rho\omega\mathbf{v} = \mathbf{n}. \ \nabla p(x, r, \phi; t)|_{r=\mathbf{a}_{\mathrm{cyl}}} = \frac{\partial p}{\partial r}|_{r=\mathbf{a}_{\mathrm{cyl}}} = 0$$
 (2)

Pressure Modes

$$p_{\rm qs}(x,r,\phi;t) = \left[A_{\rm qs} e^{j\zeta_{\rm qs}x} + B_{qs} e^{-j\zeta_{\rm qs}x} \right] \cos q\phi J_q(\nu_{qs}r) e^{j\omega t}$$
 (3) such that,
$$\left. \frac{\partial J_q(\nu_{qs}r)}{\partial r} \right|_{r=3} = 0 \quad \text{and} \quad \zeta_{\rm qs} = \sqrt{k^2 - \nu_{qs}^2}$$

4□ > 4□ > 4□ > 4□ > 4□ > 900

Plane Wave Mode

$$p_{00}(x, r, \phi; t) = \left[Ae^{jkx} + B_{qs}e^{-jkx} \right] e^{j\omega t}$$
 (4)

Trivially satisfies the no-penetration condition.

The Model

0000000

Introduction

Eardrum

Sketch of a Tokay eardrum as seen from the outside^a.

 $\ensuremath{\mathsf{COL}}$ - approximate position opposite the extracolumella insertion.

The ICE eardrum.

 ${\sf Extracolumella\ (dark)-rigid,\ stationary}.$

Tympanum - assumed linear elastic.

Rigidly clamped at the boundaries ($r = a_{\rm tymp}$ and $\phi = \beta, \ 2\pi - \beta$)

^aG. A. Manley, "The middle ear of the tokay gecko," Journal of Comparative Physiology, vol. 81, no. 3, pp. 239–250, 1972

The Model

000000

Membrane Vibrations

Introduction

Mouth Cavity

$$-\partial_t^2 u(r,\phi;t) - 2\alpha \partial_t u(r,\phi;t) + c_M^2 \Delta_{(2)} u(r,\phi;t) = \frac{1}{\rho_m d} \Psi(r,\phi;t)$$
 (5)

Introduction

Membrane Vibrations

Membrane EOM

$$-\partial_t^2 u(r,\phi;t) - 2\alpha \partial_t u(r,\phi;t) + c_M^2 \Delta_{(2)} u(r,\phi;t) = \frac{1}{\rho_m d} \Psi(r,\phi;t)$$
(5)

Membrane parameters

 α - damping coefficient, c_M^2 - propagation velocity ρ_m - density, d - thickness.

The Model

000000

The Model

Evaluation

∢ロト→御ト→恵ト→恵ト 恵

Conclusion

12/13

The Model

Introduction

Internally Coupled Ears

The Model

Thank You

Introduction

