Logic mệnh đề

Tô Hoài Việt Khoa Công nghệ Thông tin Đại học Khoa học Tự nhiên TPHCM thviet@fit.hcmuns.edu.vn

Tổng quan

- Giới thiệu về logic
- Logic mệnh đề
- Cú pháp logic mệnh đề
- Ngữ nghĩa logic mệnh đề
- Suy dẫn trong logic mệnh đề
- Chứng minh trong logic mệnh đề

Logic

- Cần một công cụ để biểu diễn và sử dụng tri thức của con người
- Logic: "khoa học về lập luận, chứng minh, suy nghĩ hay suy diễn"
- Sử dụng logic làm một công cụ để biểu diễn và xử lý tri thức

Logic là gì?

- Một ngôn ngữ hình thức
 - Cú pháp: Biểu thức nào là hợp lệ
 - Ngữ nghĩa: Biểu thức hợp lệ có ý nghĩa gì
 - Hệ chứng minh: một cách xử lý các biểu thức có cú pháp để có được các biểu thức có cú pháp khác (cho ta biết được thông tin mới)
- Chứng minh để làm gì:
 - Từ các quan sát => kết luận về thế giới
 - Trạng thái hiện tại & hành động => thuộc tính của trạng thái kế tiếp
- Hai loại logic : logic mệnh đề (đơn giản) và logic vị từ (phức tạp hơn).

Cú pháp Logic Mệnh đề

- Cú pháp: Là những gì được cho phép viết
 - (C++): for (int i=0; i< n; i++)...
 - (Tiếng Việt): Cơm ăn tôi rất ngon.
- Câu (sentence) trong logic mệnh đề:
 - true và false là các câu
 - Các biến mệnh đề là các câu: P, Q, R, Z
 - Nếu α, β là các câu thì
 - $\neg \alpha$, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \Rightarrow \beta$, $\alpha \Leftrightarrow \beta$ cũng là các câu
 - Ngoài ra, không có một câu nào nữa

Độ ưu tiên

$A \lor B \land C$	A ∨ (B ∧ C)
$A \land B \Rightarrow C \lor D$	$(A \land B) \Rightarrow (C \lor D)$
$A \Rightarrow B \lor C \Leftrightarrow D$	$(A \Rightarrow (B \lor C)) \Leftrightarrow D$

- Luật ưu tiên cho phép các dạng viết tắt của các câu, nhưng chính thức chỉ có dạng đầy đủ dấu ngoặc mới hợp lệ.
- Các dạng nhập nhằng về cú pháp được cho phép viết tắt chỉ khi chúng tương đương ngữ nghĩa:

 $A \wedge B \wedge C$ tương đương với $(A \wedge B) \wedge C$ và $A \wedge (B \wedge C)$

Ngữ nghĩa

- Nghĩa của một câu là một chân trị {t, f}
- Thể hiện là việc gán một các chân trị cho các biến mệnh đề

```
    holds(α,i) [câu α là t trong thể hiện i]
    [câu α đúng trong thể hiện i]
    fails(α,i) [câu α là f trong thể hiện i]
    [câu α sai trong thể hiện i]
```

Các luật ngữ nghĩa

```
holds(<u>true</u>, i) với mọi i
fails(<u>false</u>, i) với mọi i
holds(¬α, i) nếu và chỉ nếu (iff) fails(α,i)
holds(α∧β,i) iff holds(α,i) và holds(β,i) nối liền
holds(α∨β,i) iff holds(α,i) hay holds(β,i) nối rời
```

Thể hiện i dưới dạng bảng tra, P là biến mệnh đề:

Một số dạng viết tắt quan trọng

- $\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$ (điều kiện, kéo theo) tiền đề \Rightarrow kết luận
- $\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ (tương đương)

Bảng chân trị

Р	Q	¬Р	P∧Q	P∨Q	P⇒Q	Q⇒P	P⇔Q
f	f	t	f	f	t	t	t
f	t	t	f	t	t	f	f
t	f	f	f	t	f	t	f
t	t	f	t	t	t	t	t

Tính hợp lệ và thỏa mãn được

 Một câu là hợp lệ nếu và chỉ nếu chân trị của nó là t trong tất cả thể hiện

Câu hợp lệ: <u>true</u>, ¬<u>false</u>, P ∨ ¬P

 Một câu là thỏa mãn được nếu và chỉ nếu chân trị của nó là t trong ít nhất một thể hiện

Câu thỏa mãn được: P, true, ¬P

 Một câu là không thỏa mãn được nếu và chỉ nếu chân trị của nó là f trong tất cả thể hiện

Câu không thỏa mãn được: P ∧ ¬P, <u>false</u>, ¬<u>true</u>

Ví dụ

Câu	Hợp lệ?	Thể hiện làm cho chân trị của câu = f
khói ⇒ khói	hợp lệ	
khói ∨ ⊸khói		
khói ⇒ lửa	thỏa mãn được, nhưng không hợp lệ	khói = t, lửa = f
$k \Rightarrow I \Rightarrow (\neg k \Rightarrow \neg I)$	thỏa mãn được, nhưng không hợp lệ	$k= f, l= t$ $k \Rightarrow l = t, \neg k \Rightarrow \neg l = f$
phản chứng $k \Rightarrow l \Rightarrow (\neg l \Rightarrow \neg k)$	hợp lệ	

Tính thỏa mãn được

- Cho trước một câu S, cố gắng tìm một thể hiện i sao cho holds(S, i)
- Tương tự việc tìm một phép gán các giá trị cho các biến sao cho các ràng buộc thỏa
- Các phương pháp vét cạn: liệt kê tất cả các thể hiện và kiểm tra
- Các phương pháp tốt hơn:
 - tìm kiếm heuristic
 - lan truyền ràng buộc
 - tìm kiếm ngẫu nhiên

Một ví dụ: Bài giảng tốt?

Giả sử ta biết rằng:

- Nếu hôm nay trời nắng, thì Tomas sẽ vui vẻ
 (S ⇒ H)
- Nếu Tomas vui vẻ, bài giảng sẽ tốt
 (H ⇒ G)
- Hôm nay trời nắng (S)

Ta có thể kết luận rằng bài giảng sẽ tốt?

Kiểm tra các Thể hiện

S	Н	G
3		0
t	t	t
t	t	f
t	f	t
t	f	f
f	t	t
f	t	f
f	f	t
f	f	f

Với 3 biến, ta có tất cả 8 thể hiện có thể

Kiểm tra các Thể hiện

S	Η	G	$S \Rightarrow H$	$H \Rightarrow G$	S
t	t	t	t	t	t
t	t	f	t	f	t
t	f	t	f	t	t
t	f	f	f	t	f
f	t	t	t	t	f
f	t	f	t	f	f
f	f	t	t	t	f
f	f	f	t	t	f

Trong đó, chỉ có 1 thể hiện thỏa tất cả các câu trong cơ sở tri thức: S=true, H=true, G=true

Kiểm tra các Thể hiện

S	Η	G	$S \Rightarrow H$	$H \Rightarrow G$	S	G
t	t	t	t	t	t	t
t	t	f	t	f	t	f
t	f	t	f	t	t	t
t	f	f	f	t	f	f
f	t	t	t	t	f	t
f	t	f	t	f	f	f
f	f	t	t	t	f	t
f	f	f	t	t	f	f

Và G cũng đúng trong thể hiện đó

Thêm một biến

L	S	Н	G	$S \Rightarrow H$	$H \Rightarrow G$	S	G
t	t	t	t	t	t	t	t
t	t	t	f	t	f	t	f
t	t	f	t	f	t	t	t
t	t	f	f	f	t	f	f
t	f	t	t	t	t	f	t
t	f	t	f	t	f	f	f
t	f	f	t	t	t	f	t
t	f	f	f	t	t	f	f
f	t	t	t	t	t	t	t
f	t	t	f	t	f	t	f
•••							

Giả sử ta thêm một biến: Leslie vui vẻ (L)

Có 2 thể hiện thỏa KB

Và chúng cũng thỏa G

Thêm một biến

Giả sử ta thêm một biến: Leslie vui vẻ (L)

Suy dẫn (Entailment)

 Một cơ sở tri thức (KB) suy dẫn (entails) một câu α nếu và chỉ nếu mọi thể hiện làm cho KB đúng cũng làm cho α đúng. Ký hiệu: KB | α

Tính toán Suy dẫn

- liệt kê tất cả thể hiện
- chọn những thể hiện mà tất cả thành phần của KB là đúng
- kiểm tra xem α có đúng trong tất cả các thể hiện này không

Suy dẫn bằng cách Liệt kê

Thuật toán liệt kê theo chiều sâu tất cả các thể hiện

```
function TT-Entails? (KB, \alpha) returns true or false
   symbols \leftarrow a list of the proposition symbols in KB and \alpha
   return TT-CHECK-ALL(KB, \alpha, symbols, [])
function TT-Check-All(KB, \alpha, symbols, model) returns true or false
   if Empty?(symbols) then
       if PL-True?(KB, model) then return PL-True?(\alpha, model)
       else return true
   else do
       P \leftarrow \text{First}(symbols); rest \leftarrow \text{Rest}(symbols)
       return TT-CHECK-ALL(KB, \alpha, rest, EXTEND(P, true, model) and
                TT-CHECK-ALL(KB, \alpha, rest, Extend(P, false, model)
```

 Với n biến, độ phức tạp thời gian là O(2ⁿ), độ phức tạp không gian là O(n)

Suy dẫn và chứng minh

 Chứng minh là cách kiểm tra xem một KB có suy dẫn một câu α hay không mà không cần liệt kê tất cả các thể hiện có thể

- Một chứng minh là một chuỗi các câu
- Câu đầu tiên là các tiền đề (KB)
- Sau đó, ta có thể viết được dòng kế tiếp là kết quả của việc áp dụng một luật suy dẫn lên dòng trước
- Khi α xuất hiện trên dòng, ta đã chứng minh α từ KB
- Nếu các luật suy dẫn là đúng, thì bất kỳ α có thể chứng minh từ KB cũng suy dẫn được bởi KB
- Nếu các luật suy dẫn là đủ, thì bất kỳ α nào có thể được suy dẫn bởi KB cũng có thể được chứng minh từ KB

Suy diễn tự nhiên

Một số luật suy diễn

$$\begin{array}{c}
\alpha \Rightarrow \beta \\
\hline
\alpha \\
\beta
\end{array}$$

$$\begin{array}{c}
\alpha \Rightarrow \beta \\
-\beta \\
-\alpha
\end{array}$$

And-Elimination

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim
5	R	4,2 Modus Ponens

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim
5	R	4,2 Modus Ponens
6	Q	1 And-Elim

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \land R \Rightarrow S$	Cho trước
4	Р	1 And-Elim
5	R	4,2 Modus Ponens
6	Q	1 And-Elim
7	Q ^ R	5,6 And-Intro

Bước	Công thức	Nguồn gốc
1	$P \wedge Q$	Cho trước
2	$P \Rightarrow R$	Cho trước
3	$Q \wedge R \Rightarrow S$	Cho trước
4	Р	1 And-Elim
5	R	4,2 Modus Ponens
6	Q	1 And-Elim
7	Q ^ R	5,6 And-Intro
8	S	3,7 Modus Ponens

Các hệ thống chứng minh

- Có nhiều hệ thống suy diễn tự nhiên; chúng thường là các "chương trình kiểm tra chứng minh", đúng nhưng không đủ
- Suy diễn tự nhiên dùng nhiều luật suy diễn gây nên một hệ số phân nhánh lớn trong việc tìm một chứng minh.
- Thông thường, ta cần dùng "chứng minh theo trường hợp" thậm chí còn phân nhánh nhiều hơn
 VD: cần chứng minh R từ (P v Q), (P ⇒ R) và (Q ⇒ R).

Hợp giải mệnh đề

Luật hợp giải:

$$\alpha \vee \beta$$
 $\neg \beta \vee \gamma$
 $\alpha \vee \gamma$

- Luật hợp giải đơn lẻ là một hệ chứng minh đúng và đủ
- Đòi hỏi tất cả các câu được chuyển sang dạng chuẩn hội

Các hệ thống logic

- · Hệ thống suy diễn tiến
- Hệ thống suy diễn lùi
- Hệ thống dựa trên hợp giải

sẽ tiếp tục trong bài sau...