TP Méthode approchées UMIN215

Bruno Y., Chlöé T., Julien D. et Rémi F.

4 mars 2015

Partie Théorique

Exercice 1 - Sur le problème de la couverture sommet minimale : trois approches différentes

Exercice 2 - Sur le problème du couplage maximum de poids minimum : un début d'étude polyédrale sur le problème de couplage

Exercice 3 - Sur le problème de la coupe maximum

Exercice 4 - Sur le problème de Partition

Exercice 5 - Sur le problème du sac à dos simple

Exercice 6 - Programmation dynamique

Exercice 7 - Sur le produit matriciel

Exercice 8 - Résolution numérique

Exercice 9 - Seuil d'approximation pour le problème Bin Packing

Exercice 10 - Seuil d'approximation pour le problème de la coloration de sommets (reps. d'arêtes)

Exercice 11 - Comparaisons branch and bound and branch and cut

1. On peut tracer les droites correspondantes aux contraintes de PL_0 :

$$y_1 = 5 - \frac{3}{2}x$$

$$y_2 = \frac{17}{2} - \frac{2}{5}x$$

2

FIGURE 1 – Représentation des équations de PL_0 .

6

2. On peut tracer la fonction objective :

2

$$--y = -2x + k, k \in \mathbf{R}$$

La solution optimale pour PL_0 est donc $x_1 = \frac{10}{3}$ et $x_2 = 0$ avec $z = \frac{20}{3}$.

3. On commence par reprendre le programme linéaire donné :

$$PL_0 \begin{cases} \max z(x_1, x_2) = 2x_1 + x_2 \\ 2x_1 + 5x_2 \le 17 \\ 3x_1 + 2x_2 \le 10 \\ x_1, x_2 \ge 0 \end{cases}$$

On ajoute les variables d'écarts x_3 et x_4 pour obtenir PL_1 :

$$PL_1 \begin{cases} \max z(x_1, x_2) = 2x_1 + x_2 \\ 2x_1 + 5x_2 + x_3 = 17 \\ 3x_1 + 2x_2 + x_4 = 10 \\ x_1, x_2 \ge 0 \end{cases}$$

			2	1	0	0
			x_1	x_2	x_3	x_4
0	x_3	17	2	5	1	0
0	x_4	10	3	2	0	1
	z	0	-2	-1	0	0
			2	1	0	0
			x_1	x_2	x_3	x_4
			1 -	<u>-</u>	~ 3	
0	x_3	$\frac{31}{3}$	0	11	1	$\frac{-2}{3}$
2	x_3 x_1	$\frac{31}{3}$ $\frac{10}{3}$ 20	0 1			-2

Puisque que l'on a $\frac{31}{3} = \frac{11}{3}x_2 + x_3 - \frac{2}{3}x_4$, on peut déduire que : $\frac{11}{3}x_2 - \frac{2}{3}x_4 \ge \frac{1}{3}$. Puisque l'on a $\frac{10}{3} = x_1 + \frac{2}{3}x_2 + \frac{1}{3}x_4$, on peut donc déduire que $x_4 = 10 - 3x_1 - 2x_2$.

On obtient finalement la contrainte : $2x_1 + 5x_2 \ge 7$.

Le tableau final donne :

no constant man comito :											
				1	0	0					
			x_1	x_2	x_3	x_4	x_5				
0	x_3	$\frac{31}{3}$	0	$\frac{11}{3}$	1	$\frac{-2}{3}$					
2	x_1	$\frac{10}{3}$	1	$\frac{2}{3}$	0	$\frac{1}{3}$					
	z	$\frac{20}{3}$	0	$\frac{1}{3}$	0	$\frac{2}{3}$					

Partie Pratique

- 2.1 Programmation dynamique
- 2.2 Branch and Bound
- 2.3 Comparaisons entre un algorithme de complexité exponentielle et un FP-TAS

3