

Figure 1(a)

Properties of DFA and NFA techniques used on conventional microprocessors	Storage: Bound on # of States (for an R character Regular Expression)	Evaluation time (for N bytes of input) [order of]
Deterministic Finite State Automata or DFA running on a GP CPU	2^R (needs very large memory)	N memory access cycles
Non-Deterministic Finite State Automata or NFA running on a GP CPU	R	R * N cpu cache+branch cycles

Figure 1(b)

CPU walking DFA table in DRAM

Coprocessor closer to table in SRAM

Performance on evaluating Regular Expressions on every byte of input stream

1000s of REs @ 100 Mbps 100s of REs @ 280 Mbps

Gigabytes of Memory 100s of MBs of SRAM

Figure 2

Figure 3(a)

Thompson's NFA

RE = (alb)^{*}ab

○ = Start State

○ = Accepting State

RE Parse Tree

For RE with R chars and O operators

- NFA has epsilon transitions (ϵ).
- ϵ implies a special unconditional zero-cycle state transition
- $2^*(R+O) + 1$ states
- R character comparators

For RE with R chars

- $R+1$ States
- Maximum R^2 Arcs
- R character comparators

Figure 3(b)

Figure 4

Figure 5

Figure 6

Fig 7

- Simple regular structure enables a high density → dense array of multiple tiles
- Several thousands of automata (organized as multiple rows of tiles) can fit on a single die on 0.13μ technology

State Machine Building Block
= Supernode of larger graph

N_i

Figure 8(a)

Figure 8(b)

Figure 9(a)

Prior Art

Properties of DFA and NFA techniques used on conventional microprocessors	Storage: Bound on # of States (for R characters)	Evaluation time (for N bytes) [order of]
D eterministic Finite State Automata or DFA running on a GP CPU	2R (needs very large memory)	N memory access cycles (~100ns)
Non-Deterministic Finite State Automata or NFA running on a GP CPU	R cpu cache+branch cycles (~4ns)	R * N
Non-Deterministic Finite State Automata r NFA running on the Apparatus	R	N Tight on chip state transition cycle (~1 ns)

Figure 9(b)

Perf on REs on every byte

1000s of REs @ 100Mbps

100s of REs @ 280Mbps

1000s of REs @ > 10Gbps

Gigabytes of Memory

Two orders of magnitude speedup without need for table memory