Optimized Image Classification Models on Dark Skin Lesions

Problem Statement

- Skin diseases
 - 1 in 4 Americans impacted by skin diseases
 - \$75B USD spent annually
 - Only 1 in 3 Americans with skin diseases seen by a dermatologist
- Underserved groups, including ethnic minorities, have poorer melanoma and nonmelanoma skin cancer outcomes. This is mostly due to lack of adequate awareness and general apathy towards proactive care. Providing non-intrusive early triage could help spur them to action (seeing a dermatologist).

Background Research

- Previous research demonstrates that images of skin lesions on dark skin are a significant problem for image classifiers and publishes datasets to address that.
 - Uses various techniques to correct that bias within a single model
 - Pruning parts of the model that would only work for one skin type or another
 - Segmenting skin disease images beforehand
 - Resampling dataset to be more balanced

Materials

- Trained on Kaggle Notebooks platformUsed Python, TensorFlow, and Keras
 - Network A input Output Transfer parameters input Output Source: https://min23th.tistory.com/ Network B

Design Execution

- □ Independent variable: whether or not an image modification algorithm is used
- □ Dependent variable: ROC-AUC metric
- □ Controls: dataset subsets used for trials
- Images split by their measurement on Fitzpatrick scale
 - \odot Fitzpatrick type values 1-3 were placed in Group 1 & 4-6 in Group 2
- Optimized image modification layers:
 - focused on Group 2, fine-tuned image layers to maximize accuracy

Performed hyperparameter optimization on the image modification layers using Optuna Created 3 subsets for cross-validating the data

Ran 24 trials, models trained and tested for each subset Used a model based on EfficientNet-B1

Modification Layers Deployed

Image Modification Layer

Contrast Modifier

Brightness Modifier

Image Saturation Modifier

Findings

	Control	With Image Modifications	
Trial 0	0.791	0.907	
Trial 1	0.818	0.913	
Trial 2	0.832	0.852	
Average	0.814	0.891	
Standard Deviation	0.021	0.034	

Dataset

- Fitzpatrick 17k dataset has 17000 images from 2 datasets
- Fitzpatrick describes skin tones: 1 lightest & 6 darkest
- Skin type assessed through human annotation
- It has three classifications:
 - Non-neoplastic growth
 (growth or changes in tissue not caused by abnormal cell growth)
 - Benign growth (non-cancerous growths or changes in tissue)
 - Malignant growth (cancerous growths or changes in tissue)

	Non-Neoplastic	Benign	Malignant
# Images	12,080	2,234	2,263
Type 1	17.0%	19.9%	20.2%
Type 2	28.1%	30.0%	32.8%
Type 3	19.7%	21.2%	20.2%
Type 4	17.5%	16.4%	13.3%
Type 5	10.1%	7.1%	6.5%
Type 6	4.4%	2.0%	2.7%
Unknown	3.2%	3.3%	4.6%

Table 1. Distribution of skin conditions in Fitzpatrick 17k by Fitzpatrick skin type and high level skin condition categorization.

The Fitzpatrick Scale

Performance Overview

This graph shows a comparison of the performance of the models depending on whether or not there is an image modification layer.

Conclusions

- Image classifier model accuracy can be enhanced by segmenting data based on visual aspects and using image modification layers
 - Multiple similar models can be combined to create highly accurate ensemble-based classifications tailored for an individual.
- Can be used by medical professionals with limited experience with certain disease pairs, especially in diverse countries where training materials are comparatively homogeneous.

Results

This novel approach of optimizing image preprocessing is an effective way to increase model performance for datasets with similar types of images.

7.7%

increase in ROC-AUC score, on average

Skin Cancer on Lighter Skin Tones

Skin Cancer on Darker Skin Tones

Saturation example - Adobe Support

+80

-80

Brightness example - Tutorialspoint

Original image

Increased contrast

OPTUNA

The Fitzpatrick Scale

TYPE I

Light, pale white

Always burns, never tans

TYPE II

White, fair

Usually burns, tans with difficulty

TYPE III

Medium, white to olive

Sometimes mild burn, gradually tans to olive

TYPE IV

Olive, moderate brown

Rarely burns, tans with ease to a moderate brown

TYPE V

Brown, dark brown

Very rarely burns, tans very easily

TYPE VI

Black, very dark brown to black

Never burns, tans very easily, deeply pigmented