

Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej

Podstawy Automatyki

Informatyka Stosowana, rok II

Identyfikacja obiektu regulacji

1. Cel ćwiczenia

Celem ćwiczenia jest identyfikacja parametrów modelu rzeczywistego obiektu regulacji. Obiekt rzeczywisty jest obiektem nieskończenie wymiarowym, ale dla celów sterowania może być opisany poniższymi modelami transmitancyjnymi:

A	$G(s) = \frac{ke^{-s\theta}}{Ts+1}$	obiekt inercyjny I rzędu z opóźnieniem
В	$G(s) = \frac{ke^{-s\theta}}{(T_1s+1)(T_2s+1)}$	obiekt inercyjny II rzędu z opóźnieniem (aproksymacja Kupfmuellera)
С	$G(s) = \frac{k}{(Ts+1)^n}$	obiekt wieloinercyjny bez opóźnienia (aproksymacja Strejca)

Parametry modelu:

 k, T, θ (model A); k, T_1, T_2, θ (model B); k, T, n (model C)

należy wyznaczyć w oparciu o doświadczalny przebieg odpowiedzi skokowej obiektu zapisany w pliku obiekt. mat. Czas pomiaru charakterystyki skokowej był równy 60 [s]. Zbiór zawierający charakterystykę jest wektorem, którego elementy są wartościami odpowiedzi skokowej w kolejnych chwilach czasu, od t = 1 do t = 60 [s].

1.1. Wskazówki

- wyznaczyć wzmocnienie statyczne obiektu: k = y / u gdzie: y amplituda odpowiedzi ustalonej obiektu, u amplituda skoku,
- wyznaczyć pozostałe parametry zastępcze (T, θ) ; (T_1, T_2, θ) ; (T, n) wg metod przedstawionych w dalszych rozdziałach,
- do odczytywania parametrów z wykresu pomocna jest funkcja ginput,
- do narysowania odpowiedzi skokowej użyć funkcji step.

2. Wyznaczanie parametrów obiektu inercyjnego na podstawie odpowiedzi skokowej

2.1. Obiekt inercyjny I rzędu z opóźnieniem

Dla obiektu o transmitancji:

$$G(s) = \frac{ke^{-s\theta}}{Ts+1}$$

poszukiwane parametry można odczytać z wykresu charakterystyki skokowej wg poniższego rysunku.

Rys. 1. Odpowiedź skokowa dla układu inercyjnego I rzędu z opóźnieniem.

2.2. Obiekt inercyjny II rzędu – metoda 1

UWAGA: W tej i następnej metodzie, aby zidentyfikować stałe czasowe, należy usunąć opóźnienie z układu. Wykresy należy analizować dla czasu $t' = t - \theta$. Po zidentyfikowaniu stałych czasowych, opóźnienie można dodać do układu za pomocą funkcji set:

set(obiekt,'outputdelay', θ)

Transmitancja takiego obiektu jest dana jako:

$$G(s) = \frac{k}{T^2 s + 2\xi T s + 1}$$

gdzie ξ jest współczynnikiem tłumienia. Jeżeli $\xi \ge 1$, to element inercyjny II rzędu można przedstawić jako iloczyn dwóch element inercyjnych I rzędu:

$$G(s) = \frac{k}{(T_1s+1)} \cdot \frac{1}{(T_2s+1)}$$

gdzie:

$$T_1 = T \Big(\xi + \sqrt{\xi^2 - 1} \Big) \quad T_2 = T \Big(\xi - \sqrt{\xi^2 - 1} \Big)$$

Odpowiedź skokowa ma wtedy postać (patrz rys. 2):

$$y(t) = k - \frac{k}{T_1 - T_2} \left(T_1 e^{-t/T_1} - T_2 e^{-t/T_2} \right), \quad T_1 \neq T_2$$

Rys. 2. Odpowiedź skokowa dla układu inercyjnego II rzędu

Na rysunku podane są współrzędne pewnych punktów charakterystyk, obliczone na podstawie powyższych wzorów. Ułatwiają one określenie parametrów T_1 i T_2 obiektu z jego charakterystyk eksperymentalnych.

Postępowanie jest następujące: znajdujemy czas t_a odpowiadający wartości $y(t) = 0.714 \ k$. Następnie obliczamy wartość $t_b = t_a / 4$, z charakterystyki skokowej określamy $y(t_b)$ i znajdujemy w tabeli stosunek T_2 / T_1 . Wartości T_1 i T_2 znajdujemy na podstawie wzorów:

$$T_1 = \frac{t_a}{1.2(1 + T_2/T_1)};$$
 $t_a \approx 1.2(T_1 + T_2)$

$y(t_b)$	T_2/T_1
0.260 k	0
0.200 k	0.1
0.174 k	0.2
0.150 k	0.3
0.135 k	0.4
0.131 k	0.5
0.126 k	0.6
0.125 k	0.7
0.124 k	0.8
0.123 k	0.9
0.122 k	1.0

2.3. Obiekt inercyjny II rzędu – metoda 2 (Harriotta)

Postępowanie w metodzie Harriotta jest następujące:

- a) znajdź czas t₇₃, dla którego odpowiedź skokowa osiąga 73% wartości ustalonej
- b) sume stałych czasowych można obliczyć ze wzoru $T_1 + T_2 = t_{73}/1.3$
- c) z wykresu doświadczalnego przebiegu odpowiedzi skokowej odczytaj jej wartość y dla czasu $t = 0.5(T_1 + T_2)$
- d) z wykresu Harriotta dla znalezionej wartości y odczytaj wartość $T_1/(T_1 + T_2)$
- e) z uzyskanych zależności oblicz T_1 i T_2

Rys. 3. Wykres Harriotta.

2.4. Optymalizacja numeryczna

Zadanie doboru parametrów można rozwiązać numerycznie w taki sposób, aby minimalizować całkę z kwadratu błędu pomiędzy odpowiedzią obiektu rzeczywistego i odpowiedzią modelu. Można do tego wykorzystać którąś z funkcji optymalizacyjnych Matlaba, np. *fminsearch*. W tym celu napisz następującą m-funkcję o nazwie *ident.m*, która jako argument wejściowy przyjmuje wektor parametrów początkowych (startowych) i zwraca błąd średniokwadratowy dopasowania (przykład dla obiektu C):

```
function blad = ident(X0)

K = X0(1);
T = X0(2);
n = X0(3);

%------%
% tutaj kod, który będzie obliczał %
% odpowiedź skokową obiektu symulowanego %
% o takiej samej długości jak odpowiedź %
% obiektu rzeczywistego %
%------%
e = y_rzecz - y_sym;
blad = sum(e.^2) / length(e);
```

Powyższą funkcję należy wywołać z wiersza poleceń Matalaba w następujący sposób:

```
[parametry, blad] = fminsearch('ident', [K0,T0,n0])
```

Argumentami wejściowymi są: nazwa m-funkcji oraz wektor parametrów początkowych (to powinny być konkretne wartości liczbowe). Funkcja zwraca wektor z obliczonymi parametrami optymalnymi oraz błąd optymalizacji. Szczegóły są dostępne w dokumentacji funkcji *fminsearch*.

3. Sprawozdanie

Dokonaj identyfikacji parametrów obiektu rzeczywistego za pomocą modeli A, B i C, następującymi metodami:

```
model A – metodą z roz. 2.1. i 2.4.
model B – metodą z roz. 2.2. lub 2.3. oraz metodą z roz. 2.4
model C – metodą z roz. 2.4.
```

W sprawozdaniu zamieść wyniki tych identyfikacji wraz z wykresami. Oszacuj (wg wybranego kryterium), która metoda i model dały najlepsze wyniki.