ELECTRIC FLUX DENSITY AND GAUSS LAW

- Faraday used the equipment shown in figure below to study static electric fields
- The inner sphere was given a positive charge and the outer sphere was discharged by connecting it momentarily to ground

- It was found that the total charge on the outer sphere was equal in magnitude to the original charge placed on the inner sphere
- This was true regardless of the dielectric material separating the two spheres
- It was concluded that there was some sort of displacement from the inner sphere to the outer sphere which was independent of the medium
- >We now refer this flux as displacement flux or simply electric flux

- Faraday's experiments also showed that a larger positive charge on the inner sphere induced a correspondingly larger negative charge on the outer sphere
- >Hence there exists a direct proportionality between the electric flux and the charge on the inner sphere
- ➤ The constant of proportionality is dependent on the system of units involved and for SI units, it is 1
- \triangleright If the electric flux is denoted by ψ and the total charge on the inner sphere by Q, then from Faraday experiment:

$$\Psi = Q$$

- >We can obtain more quantitative information by considering an inner sphere of radius a and outer sphere of radius b, with charges of Q and Q
- So at the surface of the inner sphere, ψ coulombs of electric flux are produced by the charge Q (= ψ) distributed uniformly over a surface having an area of:

$$4\pi a^2 \,\mathrm{m}^2$$

The density of the flux at this surface is called *electric flux* density and is denoted by **D**, mathematically:

$$Q/4\pi a^2$$
 C/m²

- The direction of **D** at a point is the direction of the flux lines at that point and the magnitude is given by the number of flux lines crossing a surface normal to the lines divided by the surface area
- \triangleright At a radial distance r, where $a \le r \le b$

$$\mathbf{D} = \frac{Q}{4\pi r^2} \mathbf{a}_r$$

- \triangleright If we now let the inner sphere become smaller and smaller, while still retaining a charge of Q, it becomes a point charge, but the electric flux density is still given by the above equation
- >The electric field intensity is given as:

$$\mathbf{E} = \frac{Q}{4\pi\epsilon_0 r^2} \mathbf{a}_r$$

>Therefore, we have in free space:

$$\mathbf{D} = \epsilon_0 \mathbf{E}$$

The electric flux ψ in terms of **D** may be obtained using the surface integral:

$$\Psi = \int \mathbf{D} \cdot d\mathbf{S}$$

 \succ All the formulas derived for **E** from Coulomb's law can be used in calculating **D**, except that we must multiply those formulas by ϵ_o

>So for an infinite sheet of charge, we have:

$$\mathbf{D} = \frac{\boldsymbol{\rho}_S}{2} \, \mathbf{a}_n$$

>And for a volume charge distribution, we have:

$$\mathbf{D} = \int \frac{\rho_{\nu} \, d\nu}{4\pi R^2} \, \mathbf{a}_R$$

Gauss Law

 \triangleright Gauss's law states that the total electric flux ψ through any closed surface is equal to the total charge enclosed by that surface:

$$\Psi = Q_{\rm enc}$$

>That is:

$$\Psi = \oint d\Psi = \oint_{S} \mathbf{D} \cdot d\mathbf{S}$$
= Total charge enclosed $Q = \int \rho_{v} dv$

>Or:

$$Q = \oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{v} \rho_{v} \, dv$$

Gauss Law

➤ By applying divergence theorem:

$$\oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{V} \nabla \cdot \mathbf{D} \, dV$$

>Comparing the two volume integrals above:

$$\rho_{\nu} = \nabla \cdot \mathbf{D}$$

- >This is the **first** of the four Maxwell's equations
- The equation states that the volume charge density is the same as the divergence of the electric flux density

Gauss Law - Important Points

➤Integral form of Gauss law:

$$Q = \oint_{S} \mathbf{D} \cdot d\mathbf{S} = \int_{v} \rho_{v} \, dv$$

> Differential or point form of Gauss law:

$$\rho_{v} = \nabla \cdot \mathbf{D}$$

- ➤ Gauss's law provides an easy means of finding **E** or **D** for symmetrical charge distributions
- Examples of symmetrical charge distributions are a point charge, an infinite line charge, an infinite cylindrical surface charge, and a spherical distribution of charge

Problem-1

- \gt A uniform volume charge density of 80 μ C/m³ is present throughout the region 8mm< r <10mm. Let ρ_v = 0 for 0< r <8mm.
- \triangleright a) Find the total charge inside the spherical surface r = 10 mm:
- \triangleright b) Find D_r at r = 10 mm:
- >c) If there is no charge for r > 10 mm, find Dr at r = 20 mm:

Problem-2

- >Volume charge density is located as follows: $\rho_v = 0$ for $\rho < 1$ mm and $\rho > 2$ mm, $\rho_v = 4\rho \, \mu \text{C/m}^3$ for $1 < \rho < 2$ mm.
- \succ a) Calculate the total charge in the region $0 < \rho < \rho 1$, 0 < z < L, where $1 < \rho 1 < 2$ mm:
- >b) Determine D_{ρ} at ρ = ρ 1: