

AD-A 133348

12

AFWAL-TR-83- 4095

COMPOSITE LAMINATE WEIGHT OPTIMIZATION ON THE SHARP PC-1500 POCKET COMPUTER

Gerald V. Flanagan, 1Lt, USAF Mechanics and Surface Interactions Branch Nonmetallic Materials Division

and

Won J. Park Universal Energy Systems, Inc. Dayton, OH 45432

August 1983

Final Report for Period June 1983 - October 1983

Approved for public release; distribution unlimited.

MATERIALS LABORATORY
AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

D

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

STEPHEN W. TSAI, Chief

Mechanics and Surface Interactions Branch

Nonmetallic Materials Division

FOR THE COMMANDER

FRANKLIN D. CHERRY, Chief

Nonmetallic Materials Division

"If your address has changed, if you wish to be removed from our mailing list, or if the addressee is no longer employed by your organization please notify <a href="https://www.affacts.org/affacts/a

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

BECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO	
AFWAL -TR-83-4095 A133 348	
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERE
Composite Laminate Weight Optimization on	JUNE 1983-OCTOBER 1983
The Sharp PC-1500 Pocket Computer	6. PERFORMING ORG. REPORT NUMBER
AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(*)
Gerald V Flanagan*	F33615-82-C-5001
Won J. Park**	
PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Materials Laboratory, Air Force Wright	
Aeronautical Labs, WPAFB, Oh 45433* and	
Universal Energy Systems, Inc., Dayt., Oh.45432	** <u> </u>
CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Materials Lab., (AFWAL/MLBM) Air Force Wright	August, 1983
Aeronautical Laboratories, WPAFB, Oh 45433	13. NUMBER OF PAGES
	25
. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)	15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

The computer programs contained herein are theoretical and/or references that in no way reflect Air Force-owned or developed computer software.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)

Optimization Laminate Sizing Composite Materials In- Plane Strength Microcomputer

ABSTRACT (Continue on reverse side if necessary and identify by block number)

An automated composite laminate sizing technique is presented, which optimizes for minimum weight. The technique can be coded for a microcomputer and a listing is given for the Sharp PC-1500. The program is interactive and easy to use. Ply ratios are optimized for point stress under multiple independent loads

FOREWORD

This report was prepared in the Mechanics and Surface Interactions
Branch (AFWAL/MLBM), Nonmetallic Materials Division, Materials
Laboratory, Air Force Wright Aeronautical Laboratories, Wright-Patterson
Air Force Base, Ohio. The work was performed under the support of
Project Number 2307, "Nonmetallic Structrual Materials", Task Number
2307P2, "Composite Materials and Mechanics Technology," and under
Contract F33615-83-C-5001.

In this report, an automated composite laminate sizing technique is presented, which optimizes for minimun weight. The technique can be coded for a microcomputer and a listing is given for the Sharp PC-1500. The program is interactive and easy to use. Ply ratios are optimized for point stress under multiple independent loads.

This program is available on cassette tape and can be obtained by sending a blank 15 or 30-minute tape to AFWAL/MLBM, Wright-Patterson AFB, Ohio 45433 and referencing this report.

Acces	sion Fo	r		
DTIC Unann	GRALI TAB ounced ficatio			23.0
Ву			_	18
Distr	ibution	a/	_	· * /
Avai	labilit	ty Codes		
Dist	Avail Spec	•		
A				

TABLE OF CONTENTS

SECTION		PAGE
I	Program Description	. 1
II	General Instruction	. 2
III	Method	. 4
Appendi	ices	. 10
	(A) Flow Diagram	. 10
	(B) Key Operation Procedure	. 11
	(C) Memory Contents	. 13
	(D) Sample Problems	. 15
	(E) Program Listing	. 17

. The second of the second of

SECTION I

PROGRAM DESCRIPTION

The program "OPTIM" is an optimization program designed to run on a small microcomputer. The listing presented here is for a Sharp PC-1500 with an 8K memory expansion. The version of Basic is standard enough that translations to other microcomputers is possible.

The program will find a minimum thickness lamimate which will not fail under any of the load conditions entered. Ply orientations are chosen by the user. The program's capability in handling multiple, independent, loads could be useful for loads which change with time or for situations where there is uncertainty in calculating the loads. As the program is currently dimensioned, four independent load combinations and 6-ply orientations can be entered.

Only point stresses are considered, thus the program optimizes the laminate only at one point in the structure. Furthermore, the program assumes in-plane loads only and no out of plane deflections. This implies a symmetric laminate, but stacking sequence is not a factor in the program. The layer thicknesses generated by the program are the total and must be divided by 2 to get the halves of a symmetrical laminate.

No knowledge of optimization techniques is needed to run the program and very little knowledge of laminate plate theory is needed. In addition, material properities for three common advanced composites are stored in the program and new composite materials can be added by inputting their material constants into the program directly.

SECTION II

GENERAL INSTRUCTIONS

The Sharp PC-1500 manual includes tape loading instructions. Because "OPTIM" takes so long to read (approximately 5 minutes), it's a good idea to test tape player volume level with a short one or two line program to see if all is well. Load the tape using "OPTIM" as the name. An example of the display and appropriate responses are given in this report.

The program is started in RUN mode by instruction RUN (press the keys [R] [U] [N] and [ENTER]). User is guided through the program by simple questions. The user types the chosen answer and presses the [ENTER] key. At the completion of the routine, after all results have been displayed, the program will restart itself.

Run times can be quite long. They range from a minute for a 2-layer laminate, to 10 minutes for a 6-layer laminate subject to multiple loads.

The material constants are stored in the program. When "MATERIAL NO.=" is asked, input the material number;

1....T300/5208

2....BORON/5508

3....AS/3501

To add other materials (up to 6 more), user should type (in PRO mode) for a material with the material number N,

16Ng: DATA "name of material", E_x , E_y , v_x , E_s , h_o , X, X', Y, Y', S: RETURN.

An example of adding a new material (Aluminum....Material number 4) is as follows:

Set PRO Mode and type,

1640 DATA "ALUMINUM", 69, 69, .3, 26.538, 125E-6, 400, 400, 400, 230:

RETURN

and press ENTER key.

The unit of engineering constants are in GPa and thickness of single ply \mathbf{h}_{O} is in meters.

STATEMENT STREET, PROPERTY DESCRIPTION STREET, STATEMENT

SECTION III

METHOD

The goal is to minimize the total thickness of a composite laminate subject to failure constraints under static loads. Specifically

$$\sum_{k=1}^{L} h_k = min$$
. where L = number of layers

subject to h > 0 and G $G_{ij}^{(\Theta_k)} \varepsilon_i^{(N)} \varepsilon_j^{(N)} + G_i^{(\Theta_k)} \varepsilon_i^{(N)} - 1 \le 0$ where h_k is the total thickness of all the plies at the k'th orientation (which will be referred to as a "layer" in this report). The failure criteria is a first ply failure based on the Tsai-Wu tensor criteria in strain space. The G's are transformed to the laminate axis from the k'th layers orientation. The strains are associated with the N'th loading combination. This distinction is made since more than one independent loading may be considered. For the definition of the G's in terms of experimental strength data, see reference 1.

Stacking sequence is not included in this formulation, and the laminate is assumed not to bend or warp. Therefore, strains and loads are related by

$$\vec{N} = |A| \vec{\epsilon}$$

The optimization method applied is a modification of the method of feasible directions. The method can be demonstrated graphically with 2-dimensions, i.e. two layers. In figure 1 the two equalities

$$G_{i,j}^{(0)} \varepsilon_i \varepsilon_i + G_i^{(0)} \varepsilon_i - 1 = 0$$

$$G_{i,j}^{(90)} \varepsilon_i \varepsilon_j + G_i^{(90)} \varepsilon_i - 1 = 0$$

have been plotted as functions of $h^{[0]}$ and $h^{[90]}$ for the single loading condition shown. Any point above and to the right of these two curves is feasible, that is, failure will not occur. Points to the left and below the curves are infeasible. Because our objective function (the sum of the layer thicknesses) is linear, the optimum point will lie on one of these curves or the intersection of multiple curves.

The program starts by finding an initial feasible point (A) which lies on a constraint curve farthest from the origin on the line $h^{[90]}=h^{[0]}$. The distance from the origin is calculated using a strain ratio method. Along any vector which passes through the origin

$$h_k^{i+1} = h_k^i \cdot S/S_0$$

where S is a scalar distance, and $S_0 = \left[\sum_{k=1}^{L} (h_k^i)^2\right]^{1/2}$

along this vector, strain can be found using

$$\epsilon_i = \frac{\epsilon_i^0 S_0}{S}$$

where ϵ_i° is a component of laminate strain evaluated at S_0 . Substituting into the failure criteria we have

$$\frac{G^{(\Theta_k)} \varepsilon_i^2 \varepsilon_j^2}{S^2} + \frac{G_i^{(\Theta_k)} \varepsilon_i^2 S_0}{S} - 1 = 0$$

To ensure the calculated point lies slighty in the feasible region despite any numerical error, the program sets this function equal to the negative of a small number 1E(-6) rather than zero. Solving this equation for positive S we have

$$S = \frac{-B + \sqrt{(B^2 - 4AC)}}{2A}$$

where

A=1-1E-6
$$B = \sum_{i=1}^{3} -G^{\Theta_{k}} \epsilon_{i}^{\circ} S_{0}$$

$$C = \sum_{i=1}^{3} \sum_{j=1}^{3} -G^{\Theta_{k}} \epsilon_{i}^{\circ} \epsilon_{j}^{\circ} S_{0}^{2}$$

If $S_{\rm O}$ lies in the feasible region we solve the above equation for each layer and each load combination then take the smallest resulting S as the one that defines the boundary of the feasible region.

The next step in the optimization procedure is to establish a direction vector which will point away from the constraint A lies on and is parallel to the plane defined by Σ h_k=constant. In figure 1, this direction is shown as Z. Finding Z first requires calculation of the gradient of the active constraint evaluated at A. Let

$$C_{k,N} = G_{ij}^{(\Theta_k)} \varepsilon_i^{(N)} \varepsilon_i^{(N)} + G_{i}^{(\Theta_k)} \varepsilon_i^{(N)} - 1$$

where k and N correspond to the layer and load combination of the active constraint. A constraint is considered active if $C_{k^*N} > -E_2$ where E_2 =1E-5 is a small number. Note that more than one constraint may be active. The gradient is then given by

$$\vec{\nabla} C_{k,N} = \sum_{L=1}^{L} \left[G_{i,j}^{(\Theta_k)} \left(\frac{\partial \varepsilon_i^{(N)}}{\partial h_L} \varepsilon_j^{(N)} + \varepsilon_i^{(N)} \frac{\partial \varepsilon_j^{(N)}}{\partial h_L} \right) + G^{(\Theta_k)} \frac{\partial \varepsilon_i^{(N)}}{\partial h_L} \right] \hat{h}_L$$

where \mathbf{h}_{L} is a unit vector. To find the partials of strain we start with the basic equation

$$\frac{1}{N} = |A| \stackrel{\rightleftharpoons}{\epsilon}$$

$$0 = \frac{\partial}{\partial h_i} |A| \stackrel{\rightleftharpoons}{\epsilon} + A \frac{\partial}{\partial h_i} \stackrel{\rightleftharpoons}{\epsilon}, \frac{\partial \stackrel{\rightleftharpoons}{\epsilon}}{\partial h_i} = -|A^{-1}| \frac{\partial}{\partial h_i} |A| \stackrel{\rightleftharpoons}{\epsilon}$$

and

$$\frac{\partial}{\partial h_{i}} |A| = \begin{bmatrix} (\Theta_{i}) & (\Theta_{i}) & (\Theta_{i}) \\ Q_{11} & Q_{12} & Q_{13} \\ (\Theta_{i}) & (\Theta_{i}) & (\Theta_{i}) \\ Q_{21} & Q_{22} & Q_{23} \\ (\Theta_{i}) & (\Theta_{i}) & (\Theta_{i}) \\ Q_{13} & Q_{23} & Q_{33} \end{bmatrix} = \begin{bmatrix} (\Theta_{i}) \\ Q_{1} \end{bmatrix}$$

The gradient vector is normalized to unit length. If more than one constraint is active, the normalized gradients are summed together and the sum is then normalized to one. The negative of the gradient will point away from the constraint, into the feasible region. This vector is now projected onto the plane defined by the unit normal \hat{n} , where

$$\hat{n} = \frac{1}{\sqrt{L}} \sum_{i=1}^{L} \hat{h}_{i}$$

The projection can be made with a double cross product

With a vector identity, this can be rewritten as

$$\vec{Z} = (\nabla c \cdot \hat{n})\hat{n} - \nabla c$$
.

Finally, \vec{Z} is also normalized to unit length.

Along Z, another constraint will eventually be reached (point B in Figure 1). The point is found iteratively by a bisection technique. Since the bisection method is very time consuming, the constraint line is only found within a relatively large error band. What we are really interested in is a point approximately midway between A and B, which is C in the figure. From point C, the strain ratio technique is used to analytically calculate D. Starting at D, the entire procedure repeats.

The program terminates when the distance \overrightarrow{AB} or \overrightarrow{CD} is small (say 1/10 of a ply thickness) or the magnitude of \overrightarrow{Z} before normalization is very small (implying \widehat{n} and $\overrightarrow{\nabla} c$ are almost parallel).

In some cases, $h_k \ge 0$ constraint may be reached. When this happens, that orientation is completely dropped from further calculations. Thus, the constraints associated with a zero thickness layer cannot affect the results. Once an orientation reaches zero thickness, it is never reinstated in later iterations.

Figure 1 shows a case where the program reaches the intersection of two constraints. However, simultaneous failure should not be considered a criteria for optimization. The constraint line for the +45° layer is completely in the infeasible region. The line $h^{[45]} + h^{[-45]} = const.$ has been included to show that point D is the minimum thickness (See Figure 2).

References

- S.W. Tsai, H.T. Hahn, <u>Introduction to Composite Materials</u>, Technomic Publishing Company, Westport, Connecticut, 1980.
- 2. D.M Himmelblan, <u>Applied Nonlinear Programming</u>, McGraw-Hill, New York, 1972.

Contractor (Specialist

Figure 1. Constraint Surfaces and Optimization Trajectory for 0/90 under Biaxial Load.

ACCOUNT TO SECOND ACCOUNT OF SECOND ACCOUNT ACCOUNTS

Figure 2. Constraint Surfaces and Optimization Trajectory for \pm 45 Laminate Under Pure Shear.

APPENDIX A
FLOW DIAGRAM

APPENDIX B

KEY OPERATION PROCEDURE

DISPLAY	INPUT	PRINT OUT & REMARKS
MATERIAL NUMBER =	RUN [ENTER] 1 [ENTER]	T300/5208
NUMBER OF PLY ANGLES ? PLY ANGLE-1 ? PLY ANGLE-2 ?	2 [ENTER] 0 [ENTER] 90 [ENTER]	NO.OF PLY ANGLE= 2 ANGLE= 0.0 ANGLE= 90.0
NUMBER OF INDEPENDENT LOADINGS	2 [ENTER]	
LOADING-1 N1=? N2=? N6=? LOADING-2 N1=? N2=? N6=?	4 [ENTER] 1 [ENTER] 0 [ENTER] 1.25 [ENTER] 3.25 [ENTER] 1.299 [ENTER]	NO.OF LOADINGS= 2 LOADING UNIT is in MN/m LOADING-1 N1= 4.000 N2= 1.000 N6= 0.000 LOADING-2 N1= 1.250 N2= 3.250 N6= 1.299
		AFTER 4 ITERATIONS TOTAL THICKNESS = 2.282E 00 cm '32.57 PLIES

DISPLAY	INPUT	PRINT OUT & REMARKS
		ANGLE= 0.0 RATIO= 0.304 # PLIES= 55.63 ANGLE= 90.0 RATIO= 0.695 # PLIES= 126.94 STRENGTH RATIOS 1=ULTIMATE STRAIN AND >1=SAFE LOADING-1 PLY RATIO 3.0 2.301 30.0 1.371 LOADING-2 PLY RATIO 0.0 1.900 90.0 1.023
MATERIAL NUMBER	[ON] [ENTER]	BREAK

SCALL LINES STATES CHARLES SUBSECTION SECTIONS SECTIONS STATES CASSISSES STATES STATES STATES SANCES

APPENDIX C MEMORY CONTENTS

f	The state of the s		
MEMORY	DESCRIPTION	MEMORY	DESCRIPTION
A(3,3)	Value of Thickness	Z(6)	Direction Vector
B(6,9)	G _{ij} (Strength Parameters in Strain Space)	A\$(6)	Subscript Indicators
C(6,9)	Q _{ij} (Modulus Components)	U1U5	Modulus invariants
D(3,3)	ΣQ ^k j Z _k	V1V7	Strength invariants (Strain Space)
E(4,3)	Strains	C2	COS 2⊖
G(3,3)	Strength Parameter Matrix	C4	COS 40
N(4,3)	Loads	S2	sin 20
P(3,3)	Inverse of A Matrix	S4	sin 40
Q(3,3)	Modulus Matrix	S	Final scalar dist a nce to be moved
C\$(10,2)	List of active constraints	S1S2	Points in feasible region
H(6)	Thickness for each ply	SR	Distance to origin
R(3)	Intermediate results	SM	Distance to first h=0 constraint
S(3)	Strength parameter components	NP	Number of ply orientations
T(6)	Angle of each ply	NL	Number of independent loadings

MEMORY CONTENTS (CONTINUED)

Portons Institute Receipe Receipe States and Institute States

			
MEMORY	DESCRIPTION	MEMORY	DESCRIPTION
W(6)	Normalized gradient of a constraint	NC	Number of active constraints
X(6)	Normalized sum of gradients	IT	Iteration counter
Y(3)	Intermediate results	TP	Individual thickness
IM	Maximum number of iterations	GR,GS GP,GQ	Strength parameter
NN	$(1-v_xv_y)^{-1}$	GX,GY	strain space
A, B, C, D, G, H,	Intermediate calculations	F\$	Flag to halt program when "F"
CN, NM, TS, SV	CN, NM,	G\$	Flag "F" if a constraint is
I, J, K, L	Loop counters	M\$	Material Numbers
P, II	Ply orientation pointers	W\$	Material Names
N	Load pointers	X\$	Subscript indicators
Z	√NP		
0, Q, R, T	Engineering constants		
U, V, W, X, Y	Strengths		
Q1-Q4	Modulus		
		!	
			أحرك والمراجع

APPENDIX D

(D) SAMPLE PROBLEMS

" LEADER MANGER SECTION SECTION SECTION SECTION SECTION SECTION.

T300/5208		
	T300/5208	
NO.OF PLY ANGLE = 2	NO.OF PLY ANGLE= 4	
ANGLE=-10.0 ANGLE= 70.0	ANGLE= 0.0	
411022- 70.0	ANGLE= 45.0	
NO.OF LOADINGS= 2	ANGLE=-45.0	
LOADING UNIT is	ANGLE= 90.0	
in MN/m	NO.OF LOADINGS= 4	
LOADING-1	LOADING UNIT is	
N1= 4.000	in MN/m	
N2= 1.000 N6= 0.000		
N6= 0.000	LOADING-1 N1= 1.000	
LOADING-2	N2= 1.000	
NI= 1.250	N6= 1.000	
N2= 3.250		
N6= 1.299	LOADING-2 N1= 2.000	
AFTER 5 ITERATIONS	N2= 1.000	
TITER STIERRITORS	N6= 0.000	
TOTAL THICKNESS =		STRENGTH RATIOS
1.133E 00 cm	LOADING-3 N1= 2.000	
90.68 PLIES	N2= -1.000	1=ULTIMATE STRAIN
ANGLE=-10.0	N6= 0.000	AND >1=SAFE
RATIO= 0.500		LOADING-1
# PLIE\$= 45.34	LOADING-4 N1= 0.000	PLY RATIO
ANGLE= 70.0	N2= 0.000	0.0 1.320
RATIO= 0.500	N6 = -1.500	45.0 2.271 -45.0 1.074
# PLIES= 45.34	ACTED 4 ITEDATIONS	90.0 1.384
STRENGTH RATIOS	AFTER 4 ITERATIONS	
5. KENGTH KHITUS	TOTAL THICKNESS =	LOADING-2 PLY RATIO
:=ULTIMATE STRAIN	7.727E-01 cm	0.0 1.839
AND >1=SAFE	61.82 PLIES	45.0 1.476
LOADING-1	ANGLE= 0.0	-45.0 1.513
FLY RATIO	RATIO= 0.301	90.0 1.298
-12. 2 1.388	# PLIES= 18.62	LOADING-3
70.0 1.200	ANGLE= 45.0	PLY RATIO
LCADING-2	RATIO= 0.254	0.0 2.396
PLY RATIO	# PLIES= 15.72	45.0 1.260 -45.0 1.264
-12.2 1.268		90.0 1.000
"2.2 1.2·	ANGLE=-45.0 RATIO= 0.232	
	# PLIES= 14.35	LOADING-4
		PLY RATIO 0.0 1.269
	ANGLE= 90.0	45.0 1.010
	RATIO= 0.212 # PLIES= 13.12	-45.0 2.453
Copy available to DTIC does not	# FLIES- 13.12	90.0 1.271
permit fully legible reproduction		

15

T300/5208	BORON/5505	45/3501
NO.OF PLY ANGLE= 4 ANGLE= 0.0 ANGLE= 90.0 ANGLE= 45.0 ANGLE=-45.0	NO.OF PLY ANGLE= 4 ANGLE= 0.0 ANGLE= 90.0 ANGLE= 45.0 ANGLE=-45.0	NO.OF PLY ANGLE= 4 ANGLE= 0.0 ANGLE= 90.0 ANGLE= 45.0 ANGLE=-45.0
NO.OF LOADINGS= 2 LOADING UNIT is in MN/m	NO.OF LOADINGS= 2 LOADING UNIT is in MN/m	NO.OF LOADINGS= 2 LOADING UNIT is in MN/m
LOADING-1 N1= 3.000 N2= 2.000 N6= 0.500	LOADING-1 N1= 3.000 N2= 2.000 N6= 0.500	LOADING-1 N1= 3.000 N2= 2.000 N6= 0.500
LOADING-2 N1= 1.000 N2= 4.000 N6= 0.000	LOADING-2 N1= 1.000 N2= 4.000 N6= 0.000	LOADING-2 NI= 1,000 N2= 4,000 N6= 0.000
AFTER 3 ITERATIONS	AFTER 5 LITERATIONS	AFTER 7 ITERATIONS
TOTAL THICKNESS = 1.154E 00 cm 92.32 PLIES	TOTAL THICKNESS = 1 194E 00 cm 95.56 PLIES	TOTAL THICKNESS = 1 000E 00 cm 80.04 PLIES
	ANGLE= 0.0 RATIO= 0.203 # PLIES= 19.41	ANGLE= 0.0 RATIO= 0.203 # PLIES= 16.26
ANGLE= 90.0 RATIO= 0.335 # PLIES= 30.97	ANGLE= 90.0 RATIO= 0.337 # PLIES= 32.21	ANGLE= 90.0 RATIO= 0.333 # PLIES= 26.67
	RATIO= 0.229	ANGLE= 45.0 RATIO= 0.23! # PLIES= 18.56
ANGLE=-45.0 RATIO= 0.230 # PLIES= 21.30		ANGLE=-45.0 RATIO= 0.23! # PLIES= 18.56
STRENGTH RATIOS	STRENGTH RATIOS	STRENGTH RATIOS
1=ULTIMATE STRAIN AND >1=SAFE	!=ULTIMATE STRAIN AND >1=SAFE	1=ULTIMATE STRAIN AND >1=SAFE
LOADING-1 PLY RATIO 0.0 1.426 90.0 1.004 45.0 1.324 -45.0 1.043	LOADING-1 PLY RAIIO 0.0 1.379 90.0 1.002 45.0 1.32: -45.0 1.046	LOADING-1 PLY RATIO 0.0 1.362 90.0 1.019 45.0 1.287 -45.0 1.054
LOADING-2 PLY RATIO 0.0 1.000 90.0 1.769 45.0 1.220 -45.0 1.220	LOADING-2 PLY RATIO 0.0 1.000 90.0 1.654 45.0 1.300 -45.0 1.300	LOADING-2 PLY RATIO 0.0 1.000 90.0 1.591 45.0 1.195 -45.0 1.195

APPENDIX E

PROGRAM LISTING

10: "OPTIM": CLEAR	275; NEXT N	430:R=(T*W-U*U)/D:
12:DIM H(6), R(3),	280: NEXT P	H=(U*X-W*U)/D.
5(3), T(6), W(6)	295 RETURN	0=(U*U-T*X)/D
.X(6),Y(3),Z(6	300: NM=0, [[=P;	435.P(1,1)=F,P(1,2
)	GOSUB 650)=G, P(1, 3)=H, P
14:DIM A(3, 3), B(6	305 FOR L=110 NP	(2,1)=G,P(2,2)
, 9), C(6, 9), D(3	310: (F H(L)=060T0	= 0
, 3), E(4, 3), G(3	370	440.P(2, 3)=0,P(3, 1
.3), N(4, 3), P(3	315: [=L: GOSUB 600)=H, P(3, 2)=Q, P
, 3), Q(3, 3)	320.FOR J=1TO 3 R((3,3)=R
16:DIM A\$(6),C\$(1	J)=0	450 FOR 1=110 NL
0, 2)	325 FOR K=1TO 3	FOR J=170 3
18: [T=1; [M=10	330.R(J)=R(J)-Q(J,	455,E(I, J)=0
20. DATA "1", "2", "	K) *E(N, K)	460 FOR K=110 3
3°, °4°, °5°, °6°	335 NEXT KINEXT J	470.E(I, J)=E(I, J)+
21: RESTORE 20: FOR	340:FOR J≈110 3:Y(P(J, K) *N(I, K)
	J)=0	480: NEXT K. NEXT J
T=1TO 6.READ A		490 NEXT LIRETURN
\$(I):NEXT [342:FOR K=1TO 3:Y(500 FOR 1=110 3
30: GOSUB 1200	J)=Y(J)+P(J, k)	FOR J=170 3
40 GOSUB 1700	*R(K)	510:A(I, J)=0.D(I, J
GOSUB 1100:	345:NEXT K:NEXT J)=0
GOSUB 1000	350:W(L)=0	520 NEXT J: NEXT 1
42.GOSUB 800	352.FOR J=110 3.	530 FOR 1=110 NP: 1
45: IF F\$="F"GOTO	FOR K=1TO 3	
1300	354.W(L)=W(L)+G(J.	[=] 540:505UD 500
50: GOSUB 700	K)*(Y(J)*E(N, K	540 GOSUB 600
60. [T=[T+1)+E(N, J)*Y(K))	550 FOR J=110 3
70: [F F\$="F"OR [T	356 NEXT K	FOR K=1TO 3
>IMTHEN GOTO 1	358.W(L)=W(L)+S(J)	560:A(J, K)=A(J, K)+
300	*Y(J) NEXT J	Q(J,K)*H(I).D(
75:GQTO 42	360:NM=NM+W(L)*W(L	J, K)=D(J, K)+Q(
200:G\$="P":NC=0)	J, K)*Z(I)
210: FOR P=1TO NP	370 NEXT L	570 NEXT KINEXT J.
215: IF H(P)=0G0T0	375 NM= (NM)	NEXT I
280	380: FOR L=110 NP	580 RETURN
220: [[=P:GOSUB 650	385;W(L)=W(L)/NM,	600 FOR J=1TO 3.
225; FOR N=1TO NL	NEXT L	FOR K=170 3
230: CN=-1	390 RETURN	610.0(J, K) = C(II, Jk)
235; FOR K=1TO 3;	400: FOR I=1TO 3.	K)
FOR J=1TO 3	FOR J=110 3	620 NEXT KINEXT J
240: CN=CN+G(K, J) #E	405.E(I,J)=A(I,J)+	640 RETURN
(N, J)*E(N, K).	D([,J)#S	550.FOR J=1TO 3
NEXT J	410 NEXT J NEXT [FCR K=1TO 3
245; CN=CN+S(K) *E(N	415:T=E(1,1),U=E(1	660.G(J.K)=B([[,J*
, K). NEXT K	, 2), U=E(1, 3), W	k)
250: IF CN>OLET G\$=	≈E(2, 2), X=E(2,	670 NEXT KINEXT J
"F": GOTO 295	3), Y=E(3, 3)	680.S(1)=B(11,7).S
253; IF CNK-, 1GOTO	420.D=T*W*Y+2*U*X*	(2)=8(11,8),\$(
275	U-W*U*U-T*X*X-	3)=B([[,5)
255: NC=NC+1	Y*U*U	690. RETURN
260; C\$(NC, 1)=CHR\$	425.F=(W*Y-X*X)/D	700. SM=1E10
P; C\$(NC, 2)=	D=(T#Y-U#U)/D	732 FOR 1=110 NP
CHR\$ N	G=(U*X-U*Y)/D	734. IF Z(I)(>0LET
	, -	S=-H(I)/Z(I)

736: IF S>0AND S <sm THEN LET SM=S</sm 	810:P=ASC C\$(I,1): N=ASC C\$(I,2):	1020 GOSUB 500 1030 S=0 SR=1
737: NEXT I	GOSUB 300	GOSUB 400
738:F\$="P"	812:FOR J≈1TO NP:X	1040 S=0 GOSUB 90
740: [F SM>10LET F\$	(J)=X(J)-W(J)	0
="F" RETURN	814: NEXT J: NEXT I	1050 FOR I=1TO NP
744: S1=0: S2=SM: S=S	820: NM=0: FOR J=1TO	H(I)=H(I)±S
M	NP	NEXT I.
746: IF NC=0G0T0 77	825: NM=NM+X(J) *X(J	1060: S=0: GOSUB 50
5	DINEXT J	9
748:GOSUB 400:	830: NM=1(NM): TS=0	1070 GOSUB 400:
GOSUB 200	850:FOR I≈1TO NP:X (I)=X(I)/NM	GOSUB 200: RETURN
750: IF G\$="F"LET S	855: TS=TS+X(I)*Z*	1100:FOR I=110 NP
2=S	SGN H(I):NEXT	1110 C2=COS (2*T(
752: [F_G\$="P"LET S	I I	()):C4=COS (
1=S	860: NM=0: FOR I=1TO	4*T(I))
754: IF SI=SMGOTO 7	NP	1120: S2=SIN (2*T(
65 755: S=(S1+S2)/2	865: Z(I)=X(I)-TS*Z	[)):S4=SIN (
756. IF (\$2-\$1)<1E-	*SGN H(1)	4*T(]))
SAND SI=OTHEN	870:NM=NM+Z(I)*Z(I	1130.B(I.1)=V1+C2
LET F\$="F"	DINEXT I	*U2+C4*U3/B(
758: [F F\$="F"GOTO	872+F\$="P"	[,4}=U1-C2*U
786	874: IF NM<1E-6LET	2+C4*U3
760: IF S1/(S2-S1)(F\$=1F1	1140.B(I, 2)=U4-C4
4GOTQ 748	876: IF F\$≈"F"THEN	*V3. B([, 9)=V
762: S=S1/2	RETURN	5-C4#U3
765 · SR=0	878:NM={(NM)	1150;B(I,3)=\$2/2* U2+\$4*U3,B(I
767: FOR I=1TO NP:4	880:FOR I≈1TO NP:Z (I)=Z(I)/NM;	6)=\$2/2*U2-
(1)=H(1)+Z(1)*	NEXT [S4*U3
S	885: GOSUB 500	1160:B(I, 7)=U6+C2
768: IF_H(I)(IE-5	890: RETURN	*U7:B(I,8)=U
LET H(I)=0	900 FOR P=170 NP	6-C2*U7:B(],
770:SR=SR+H(I)*H(I	905: (F H(P)=0G0T0	5>=S2*U <i>7</i>
):NEXT { 775:S=0:GOSUB 500:	980	1170:C(I, 1)=U1+C2
GOSUB 400	910: [[=P:GOSUB 650	*U2+C4*U3;C(
778:LET SR=J(SR)	915:FOR N=1TO NL.B	I,4)=U1~C2*U
780: GOSUB 900	=0:C=0	2+C4*U3
782: IF (SR-S)(1E-5	920: FOR I=110 3	1180:C(I, 2)=U4-C4
LET F\$#"F"	FOR J=110 3	*U3:C(I,9)=U
784: FOR I=1TO NP: H	925: C=C-SR*SR*G(1,	5-C4*U3
(1)=H(1)*S/SR;	J) *E(N, I) *E(N,	1190:C(I,3)=S2/2* U2+S4*U3:C(I
NEXT I	J)	6)=S2/2*U2-
786:S=0.GOSUB 500:	930.NEXT J 940.8=8-SR*S([)*E(54 * U.3
GOSUB 400	N, I) NEXT I	1195: NEXT 1
790:GOSUB 200:	950: SU=(-B+1(B*B-4	RETURN
RETURN	*C*(1-1E-6)))/	1200 GOSUB 1600.
800: NM=1, Z=0	/2*(1-1E-6))	LF (1)
802: FOR 1=110 NP. X	960: IF SU>SLET S=S	1210: GOSUB 1830
(1)=0 	V 300.11 3073221 0 0	1220: INPUT "NO. OF
804; Z=Z+SGN H(I).	978: NEXT N	PLY ANGLES
NEXT I 806: Z=1/5Z	980: NEXT P: RETURN	2", VP
807.1F NC=0GOTO 85	200.2=1/5(NP)	1230: LPRINT "NO.0
9	:210.FOR I=1TO NP	F PLY ANGLE=
808 FOR 1=1TO NC	Z(I)=Z;H(I)	"; VP
-	=Z:NEXT T	1235.FOR I=1TO NP

1240: PAUSE "PLY A NGLE-"+STR\$ (I): INPUT T(1347:GOSUB 1850 1350:LPRINT " ";B ;" PLIES"	1530-B=INT ((H(I) /TP+.005)*10 0)/100
T) 1241:GOSUB 1810 1242:LPRINT " AN	1355: GOSUB 1500 1360: GOSUB 1400: GOTO 20	1535.GOSUB 1810 1540:LPRINT "ANGL E=";W(I)
GLE="; T(I) 1245: NEXT [:LF (1	1400:LF (1) 1405:LPRINT " STR	1545:GOSUB 1800 1550:LPRINT "RATI
1248: GOSUB 1830	ENGTH RATIOS ".LF (1) 1410:LPRINT " 1=U	0=";4 1555:GOSUB 1850 1560:LPRINT "# PL
1250; INPUT "NO.OF INDEP. LOAD INGS=";NL	LTIMATE STRA IN AND >1	TES=";B 1570: NEXT [;
1252:LPRINT "NO.O F LOADINGS="	=SAFE",LF (1	RETURN 1600: INPUT "MATER
; NL 1253; LPRINT " L	1420:FQR I=1TO NL 1430:LPRINT " LOADING-"+	[AL NO.= ";M \$ 1602:[=UAL M\$*10+
OADING UNIT is in M N/m ".LF (1	STR\$ (I) 1440:LPRINT " PL	1600: GOSUB I : RESTORE I:
) 1255.FOR I=170 NL	Y":LF (-1) 1445:LPRINT "	READ W\$, 0, 0, R, T, TP, U, U, W
:LPRINT " L DADING-"+A\$(IO" 1446: GOSUB 1450	, X, Y:LPRINT W\$:GOTO 1697 1610:DATA "T300∕5
1256:FOR J=1TO 3 1260:L=J:[F J=3	1448: NEXT I: RETURN	208", 1817, 10 3, 28, 7, 17,
LET L=6 1262: X\$=" N"+A \$(L)+"="	1450:FOR P=1TO NP 1452:IF H(P)=0 GOTO 1490	125E-6, 1500, 1500, 40., 246 , 68. RETURN
1265: GOSUB 1800 1267: LPRINT X\$.	1455: II=P: GOSUB 6 50	1620: DATA "BORON/ 5505", 2041
INPUT N(I, J)	1460:A=0:B=0 1465:FOR J=1TO 3:	8.5, .23, 5.59 .125E-6, 1260
1268: LPRINT N(I, J) 1269: N(I, J)=N(I, J	FOR K=1TO 3 1470:A=A+G(J,K)*E (I,J)*E(I,K)	. 2500, 61. , 20 2. , 67. , RETURN
)*1E6 1270:NEXT J:LF (1	:NEXT K 1475:B=B+S(J)*E(I	1630.DATA MAS/350 17,1388.96
):NEXT !. RETURN 1300:TS=0	,J):NEXT J 1480:A=(-B+J(B*B+ 4*A))/2/A	30,7 1,125 E-6,1447,144 7,51.7,206.,
1310:FOR I=1TO NP 1320:TS=TS+H(I):	1482:A=INT ((A+.5 /1E3)*1E3)/1	93. RETURN 1640.DATA
NEXT [1322; LPRINT "AFTE	E3 1483:GOSUB 1810 1484:LPRINT " ";W	RETURN 1650-DATA " "
R "+STR\$ (IT)+" ITERATIO NS",LF (1)	(P):LF (-1) 1485:GOSUB 1800	RETURN 1660-DATA RETURN
1325 GOSUB 1840 1330 LPRINT "TOTA	1486:LPRINT A 1490:NEXT P	1670.DATA " ". RETURN
L THICKNESS ="; TS*100-LF (-1)	1495:LF (1): RETURN 1500:FOR I=1TO NP	1680:DATA " RETURN 1690:DATA " "
1340: LPRINT " cm"	1505:LF (1) 1510:W(I)=INT ((T	RETURN 1697, RETURN
1345:B=INT ((TS/T P+.005)*100)	(I)+.05)*10) /10 1520:A=INT ((H(I)	
/100	/TS+.5/1E4)* 1E4)/1E4	

THE PARTY OF THE PROPERTY OF THE PROPERTY OF THE PROPERTY OF THE PARTY OF THE PARTY

1700: 0=0*1E9, Q=Q* 1E9, T=T*1E9, U=U*1E6, U=U* 1E6, W=W*1E6, X=X*1E6, Y=Y* 1E6

1705: NN=1/(1-R*R* Q/0): Q1=NN*O : Q2=NN*Q: Q3=

NN*R*Q: Q4=T 1710: U1=(3*Q1+3*Q 2+2*Q3+4*Q4) /8: U2=(Q1-Q2)/2: U3=(Q1+Q 2-2*Q3-4*Q4)

1720:U4=(Q1+Q2+6* Q3-4*Q4)/8:U 5=(Q1+Q2-2*Q 3+4*Q4)/8

1730: Q=1/(U*U): Q= 1/(W*X): T=1/ (Y*Y): G=1/U-1/U: H=1/W-1/ X

1740:F=-J(O*Q)/2 1750:GP=0*Q1*Q1+2 *F*Q1*Q3+Q*Q 3*Q3-G=0*Q3 *Q3+2*F*Q3*Q 2+Q*Q2*Q2

1760: GR=0*Q1*Q3+F *(Q1*Q2+Q3*Q 3)+Q*Q3*Q2: G S=T*Q4*Q4

1765.GX=G*Q1+H*Q3 :GY=G*Q3+H*Q 2

1770:U1=(3*GP+3*G Q+2*GR+4*GS) /8:U2=(GP-GQ)/2

1775: U3=(GP+GQ-2* GR-4*GS)/8:U 4=(GP+GQ+6*G R-4*GS)/8

1780:U5=(GP+GQ-2* GR+4*GS)/8

1790: U6=(GX+GY)/2 : U7=(GX+GY)/ 2: RE TURN

1800.USING "###.# ##":RETURN 1810:USING "###.# ".RETURN 1830: USING "##": RETURN

1840: USING "####. ###^": RETURN

1850: USING "####. ##": RETURN

1890: END

FILMED

10-83