Improving Keyppoint Matching Using a Landmark-Based Image Representation

方法介绍

本方法有以下四步组成:

- 1. 提取两张图片中匹配的关键点作为地标
- 2. 计算两张图中的ConvNet特征用来检测和匹配地标
- 3. 在每对匹配的地标中匹配关键点,并使用修剪技术修剪匹配的关键点(以生产高质量的推定匹配项)
- 4. 将地标的所有匹配关键点组合为两个图像之间的推定匹配,并使用MVG和RANSAC识别内部匹配

选取作为地标的对象

使用BING方法提取地标,因为BING方法曾经呗看作为state-of-the-art物体检测算法。相比于其他方法,BING的执行速度更快,在作者的笔记本上能做到24ms/帧,在实验中,每张图片提取100个地标。

ConvNet特征作为地标描述子

使用预先训练的卷积神经网络就如AlexNet为每个地标生成特征向量或者描述子。

AlexNet包括五个卷积层,每个层都followed一个非线性激活函数。AlexNet同时有三个全连接层和最终的一个soft-max层。研究表明,较为中间的层中就像AlexNet的第三卷积层上表现出对图片中形状改变时提取出特征具有不变性。因此使用Conv3去提取地标的描述子。对于每个地标提取区域,resize it to 224 * 224 * 3,将其输入到AlexNet网络(ConvNet3),从而获得一个64890维的特征向量。

计算两个地标表述子的余弦距来确定两个地标相同:

$$d_{ij} = rac{< l_i^a, l_j^b>}{|l_i^a||l_j^b|}$$

当两个地标满足互为最近邻时,则可认为这是一对真实的匹配。

另外使用形状相似去来过滤地标对。匹配的地标对的两个相应的边界框必须在几何意义上足够的相似:

$$max(\omega_i^a,\omega_j^b) \leq r imes min(\omega_i^a,\omega_j^b)$$

$$max(h_i^a,h_i^b) \leq r imes min(h_i^a,h_i^b)$$

 w_i^a : 宽; h_i^a : 高, r是一个阈值, 文中给出为r=1.3

使用匹配的地标对来匹配关键点

由于更大的边界框会导致更多的匹配错误,所以需要首先限制一下边界框的大小从而限制地标对的匹配:

$$w_i^a \leq s imes w^a$$

$$h_i^a \le s \times h^a$$

本文中s=0..6, w^a 是图片 I^a 的宽, h^a 是图片 I^a 的高。

对于每对匹配的地标,将它们视为由其边界框定义的图像块。随后,将其关键点进行匹配,以生成针对 地标对的一组假定关键点匹配。真正的积极关键点匹配必然来自匹配的地标,并且图像的非标志性区域 往往质地较差并且不太可能产生易于匹配的独特关键点。

实验部分

回环检测

使用数据集: UACampus, Mapillary回环检测算法: CNN-based, GIST-based

实验设置:

TABLE I: Main properties of testing datasets used in our experiment. **Number** means the number of images in the corresponding subset. Note that **Potential loop closure dataset** indicates the loop closure image pairs generated by GIST-based and CNN-based loop closure detection algorithms on UACampus and Mapillary dataset.

Dataset	Number	Potential loop	Main changes			
		i otentiai 100p	Illmination	Viewpoint		
UAcampus [14]	647 647	UACampus-GIST	UACampus-CNN	large	minor	
	1300	N. III Gram				
Mapillary [23]	1300	Mapillary-GIST	Mapillary-CNN	moderate	large	

• 结果:

Fig. 4: Comparisons of competing methods in loop closure verification accuracy in terms of the precision-recall curve on four datasets of loop closure hypotheses. Note that the result of UACampus-CNN is not shown due to the almost perfect result and that the range of the y-axis of Fig. 4(a) is different from that of (b) and (c).

TABLE II: Loop closure verification accuracy of LM-ORB-RANSAC vs. ORB-RANSAC, LM-SIFT-RANSAC vs. SIFT-RANSAC and LM-RootSIFT-RANSAC vs. RootSIFT-RANSAC in terms of maximum recall at 100% precision (Re. at 100% Pr.) and average precision (AP). The highest value with respect to each metric on each dataset is highlighted in bold. The middle values are the differences between LM-ORB-RANSAC/ORB-RANSAC, LM-SIFT-RANSAC/SIFT-RANSAC and LM-RootSIFT-RANSAC/RootSIFT-RANSAC.

Method	UAcampus-CNN		UAcampus-GIST		Mapillary-CNN		Mapillary-GIST	
	Re. at 100% Pr.	AP						
LM-ORB-RANSAC	93.16%	99.81%	75.37%	98.10%	77.09%	96.16%	43.87%	78.64%
	+13.83%	+0.14%	+10.92%	+1.32%	+20.26%	+5.07%	+7.10%	+11.34%
ORB-RANSAC	79.33%	99.67%	64.45%	96.78%	56.83%	91.09%	36.77%	67.30%
LM-SIFT-RANSAC	89.60%	99.79%	76.23%	98.87%	74.01%	96.52%	52.26%	84.51%
	+14.08%	+0.12%	+12.20%	+2.91%	+3.08%	+1.96%	+9.03%	+10.04%
SIFT-RANSAC	75.52%	99.67%	64.03%	95.96%	70.93%	94.56%	43.23%	74.47%
LM-RootSIFT-RANSAC	94.44%	99.81%	74.52%	98.81%	79.74%	97.38%	60.00%	85.15%
	+7.16%	+0.10%	+8.35%	+2.68%	+3.97%	+2.29%	+22.59%	+11.57%
RootSIFT-RANSAC	87.28%	99.71%	66.17%	96.13%	75.77%	95.09%	37.41%	73.58%

可明显看出LM-系列算法鲁棒性更强

与传统方法对比

本文方法: LM-ORB-RANSAC、LM-SIFT-RANSAC、LM-RootSIFT-RANSAC

对比方法: ORB-RANSAC、SIFT-RANSAC、RootSIFT-RANSAC

结果: 同上

总结

提出了一种有效的关键点匹配方法。简单来说,使用BING从两个关键点匹配的图像中提取地标方案。 然后,为检测到的界标计算ConvNet特征,并在两个图像之间匹配界标。该方法在多个数据集上进行验证能有明显优于标准方法。