Introduction to HDFS

Bachar Wehbi me@bachwehbi.net

Big Data: Hadoop

- Hadoop is a framework for distributed data storage and processing at scale
- The core components of Hadoop include HDFS for data storage and YARN for resource management
- Hadoop is also a rich ecosystem with many complementary components
 - Ingestion (Sqoop, Flume, Kafka)
 - Storage (HDFS, Hbase, Kudu)
 - Processing (Spark, MapReduce)
 - Querying (Presto, Drill, Impala, Hive)
 - Exploring and Search (Hue, Solr)

Hadoop Cluster

Cluster of nodes running Hadoop at Yahoo! (Source Yahoo!)

HDFS

- HDFS is a distributed massively scalable file system
- Based on Google File System (GFS)
- Very large files, 128 MB chunks
- Runs on top of native file systems
 - Runs in User Space
 - Heterogeneous Hardware and Software Platforms
- Major improvements and new features in Hadoop V3.x

HDFS
OS File System
Storage

HDFS

- 21 Petabytes in HDFS as of 2010 at Facebook
- 100+ Petabytes in HDFS as of 2012 at Facebook
- Yahoo! more than 100,000 CPU in over 40,000 servers running Hadoop (multiple clusters, biggest 4500 nodes)
- 455 Petabytes in HDFS at Yahoo!
- Today, most of the Big Names have Hadoop and store their data in HDFS
- HDFS today is the de-facto storage for Data lakes

HDFS Assumptions and Goals

- Designed for large data sets
 - Cluster thousands of nodes, millions of large files, tens of PB
- Hardware failure is the rule not the exception
 - Nodes may fail at any time: uses replication to cope with node failure
 - Mean time between failures for 1 node = 3 years
 - If you have a 1000 nodes cluster → 1 failure per day
 - Fault tolerance: detect failures and recover from them

HDFS Assumptions and Goals

- Data Locality: Moving Computing is Cheaper than Moving Data
 - Network bandwidth is neither unlimited nor free
 - Execute jobs where data is stored instead of moving it to computing nodes
- Optimized for Batch processing
 - Provides very high throughput access: high aggregate read data rate instead of low latency
- Designed for write once read many datasets
 - Not designed for operational data
 - Data can be appended but never updated

HDFS: Storing Data

- Files are divided into blocks of 128 MB (default, can be configured)
- Data Blocks are replicated to 3 DataNodes (default, can be configured)
- Name Node selects Data Nodes to host a block on load time
- Client sends the block to the first Data Node in the list
- The replication process is pipelined from one data node to another
 - A Data Node can be receiving data from a client or another data node and forwarding it to another data node at the same time

HDFS Architecture

Name Node maintains metadata

HDFS: Name Node Metadata

- Name Node keeps metadata in memory
 - Very efficient to reply to client requests
- Metadata includes:
 - List of files
 - For every file, list of blocks and block attributes (ex: location)
- Transaction log
 - Reporting: file creation, file deletion, etc.
- HDFS Federation
 - Adding multiple Name nodes/namespaces to HDFS

HDFS: Data Node

- Stores blocks of data on local file system
- Stores metadata of blocks like block ID, CRC32 checksum, block length
- Serves block data and metadata to clients
- Validates periodically block checksum to detect data corruption
- Participates in data pipelining
 - Forwards data to other specified Data Nodes
- Sends period block report to Name Node
 - Includes list of all existing blocks
- Sends periodic heartbeat message to Name Node
 - To indicate it is alive

HDFS: Data Node Heartbeats

- Signal sent by the Data Node to the Name Node at regular interval (by default 3sec)
- Indicates the presence of the Data Node and it is alive
- If after a certain period (default 10 min) of last heartbeat the Name Node do not receive any message from the Data Node, it considers it is dead.
 - It also considers all data blocks hosted by that Data Node to be unavailable
 - Name Node schedules the creation of new replicas of those blocks on other Data Nodes.

HDFS: Data Node Heartbeats

- Heartbeats includes information about:
 - total storage capacity, fraction of storage in use, and the number of data transfers currently in progress, cache capacity and in use.
 - This is used by the Name Node to select the best Data Node when replying to client requests.
- Based on Heartbeat messages, Name Node can issue following commands to Data Nodes:
 - Block recovery command: to recover specific blocks (when writing to HDFS)
 - Block command: To transfer block to another node or to invalidate certain blocks
 - Cache & Uncach command: to cache or uncache certain blocks

HDFS: Data Blocks

- Data Blocks are continuous location on drive where data is stored (similar to any file system).
 - Blocks in Hadoop v.2+ are by default 128MB large
 - Blocks in HDFS can however be of any size up to the configured maximum
- Why HDFS has a large block size when Linux has 4KB blocks?
 - We are talking about huge datasets (in Terabytes or Petabytes).
 - Having smaller Blocks implies too much metadata (to map files to blocks and blocks to their location)
 - The overhead will be huge!

HDFS: Data Blocks

- When an HDFS client wants to write data, it follows the following procedure
- 1. Client calls the Name Node to create the file
 - Name Node verifies the file does not exist and the client is authorized
 - Adds new file with no blocks to the metadata
 - Name Node provides the Data Nodes where to write the blocks
- 2. Client writes blocks to Data Nodes
 - Data Nodes implicated in the replication pipeline forward blocks
 - Data Nodes in the pipeline acknowledge the block write
- 3. Data Nodes report back to the Name Node about new blocks
- 4. Name Node updates metadata with file blocks list and their location

- When an HDFS client wants to read data, it follows the following procedure
- 1. Client calls the Name Node to request blocks of the file to read
 - Name Node verifies the file exist and the client is authorized
 - Name Node replies with list of blocks of requested file
 - For every block, the Name Node indicates locations and best one
- 2. For every block, client read block from best node

- What happens when an error is encountered while reading from a Data Node
- 1. The client will try to fetch data from the next closest Data Node
- 2. The client will remember about the Data Node in order not to read data from in the future
- When reading data, the client checks block checksum
- 1. If a corrupt block is found (reported checksum different than computed one)
- 2. Client reports error to the Name Node

HDFS - Robustness

- The main objective of HDFS is to store data reliably even in the presence of failure.
- Three common types of failure are:
 - Name Node failure
 - Data Node failure
 - Network partitioning
 - Causing a subset of Data Nodes to loose connectivity with the Name Node
- Let's see how HDFS behaves in front of these failures

Network Partitions can cause multiple Data Nodes to lose connectivity with the Name Node

HDFS Robustness: High Availability

- Before talking about Name Node Failure, let's talk about High Availability (HA) in HDFS
- Prior ro Hadoop V2, the Name Node was a Single Point Of Failure (SPOT)
 - If the Name Node was down (failure) or for maintenance, the HDFS cluster would be unavailable (until the Name Node was restarted or recovered)
- Hadoop V2 introduced High Availability to HDFS with the support of 2 redundant Name Nodes in active/passive mode.
- Hadoop V3 allows to have more than 2 redundant Name Nodes for better availability
- But How high availability in HDFS works?

HDFS Robustness: High Availability

HDFS Robustness: Name Node Failover

- Manual process using HDFS's utility tool: hdfs haadmin
 - -transitionToActive <serviceId>
 - -transitionToStandby <serviceId>
 - -failover <activeId> <standbyId>
- Automatic Failover: requires ZooKeeper
 - All Name Nodes inform their status to ZooKeeper
 - When Zookeeper detects Master Name Node unavailability
 - Initiates an election process to select the new master Name Node among the standby Name Nodes

Data Storage Formats

How you store data defines how (fast & efficiently) you can read it

Data Storage Formats

- The tools in the Hadoop (Big) Data ecosystem use different formats to store data
 - The selection of the format depends on the use case. There is nothing as the best data format for big data!
- The major formats are
 - Text files including tabular and CSV files
 - JSON files
 - Apache Avro data format
 - Apache ORC data format
 - Apache Parquet data format
- The field is still in active research and development. Apache Arrow is another project to unify the layout of data in Memory.
- HDFS does not depend on a particular data format. HDFS considers files simply as a sequence of bytes.

Data Storage Formats: Text Files

- Text files are the most basic and simple format type.
 - It consists of storing everything in its String (text) representation
 - It can therefore be read and written by all programming languages. Just read text from a file
 - CSV and tabular formats are the most commonly used text file formats. They have the advantage of being compatible with most of the tools in the Hadoop ecosystem.
 - Human friendly format as it can be read and dubugged very naturally
- Text files are however very inefficient
 - Inefficient for binary and numeric (non text) types:
 - 1234567890 is a 4 Bytes integer by consumes 10 Bytes in string format
 - Inapropritate for binary object data (as images, sound, etc.): convert to Base64
 - Conversion from/to native types is CPU intensive
 - Does not support schema definition as part of the format
 - Off channel schema definition which adds complexity when working with Text files
 - Poor performance in general

Data Storage Formats: JSON Files

- JavaScript Object Notation is a serialization format for the Web
- It is basically a text based format with wide support almost everywhere
- Complete integration between data and Schema
- Row based format
- Dos not include any built in compression
 - Compression should be applied on top
- Human friendly and very easy to debug
- Verbose and take lot of disk space
 - Keys are repeated in every record (every row)
- As with text files, JSON is very inefficient at scale

Data Storage Formats: Apache Avro

- Row based file format
- Cross-language file format for Hadoop
- Binary data storage with optimized encoding
 - Data stored in native types → no conversion required on read or write
- Schema metadata embedded within the file
 - Schema segregated from data (complete seperation)
 - JSON based → language independent
 - Schema evolution as primary goal: good for future changes
- Widely supported in the Hadoop ecosystem and outside
 - Used in streaming systems like Apache Kafka
- Comes with a utility command line tool to work with files
 - Convenient for debugging as the binary format is not human friendly

Data Storage: Columnar vs. Row Formats

ID	Name	City	Country	
1	Alice	Paris	France	
2	Bob	Lille	France	
3	Mike	Berlin	Germany	
4	Hiba	Paris	France	

- Row Based File Format
- Organizes data into rows
- Traditional way for storing data
- Example: Apache Avro

ID	Name	City	Country	
1	Alice	Paris	France	
2	Bob	Lille	France	
3	Mike	Berlin	Germany	
4	Hiba	Paris	France	

- Column Based File Format
- Organizes data into columns
- Reads only selected columns efficient in reading data
 - Example: SELECT ID, Name FROM table
- Example: Apache Parquet, Apache ORC

Data Storage Formats: Apache ORC

- ORC is a column based file format developped originally by Hortonworks to optimize storage for Hive data
 - Facebook has 300PB of ORC data (improved compression from 5x to 8x, and saved 1400 servers)
 - The main focus was on enabling high speed processing and reducing file sizes.
 - Lightweight indexes stored in each file
 - min, max, avg for numeric columns, enumerations for string based columns
 - Schema seperated from data and stored into footer
 - Rich type model
 - Integrates compression, indexes and statistics
- Wide support in the Hadoop ecosystem
- Comes with a utility command line tool to work with files
 - Convenient for debugging as the binary format is not human friendly

Data Storage Formats: Apache ORC

- ORC data layout: efficient read and write & reduce storage needs
- Stripes: Divided into row groups
 - The default stripe size is 250 MB. Large stripe sizes enable large, efficient reads from HDFS.
 - Each column is stored in several streams
 - Integer columns have 2 streams: PRESENT (bitmask) to indicate if the value is non null and DATA stream that include the non Null values
 - For binary data ORC uses 3 streams: PRESENT, DATA, and LENGTH
 - Index Data: includes min and max for every column in a row group and an optional bloom index
 - Stripe Footer: includes the encoding (data type) of each column and the location of the streams
- File Footer: it contains
 - List of stripes in the file, the number of rows per stripe, and type information (data Schema).
 - Column-level statistics: cunt, min, max, and sum and has Null.
- Postscript: At the end of the file (after the file footer). It contains compression parameters and the size of the compressed footer.

Data Storage Formats: Apache ORC

- Parquet is a column based format designed for efficient storage and retrieval of data
 - Developped initially by Cloudera and Twitter
 - Embeds Schema metadata in the file
 - Inspired by Google Dremel Paper to enable efficient storage of data and improve read efficiency
 - Optimized for Batch write as it identifies repeated patterns to reduce storage space
- Wide support in the Hadoop ecosystem
- Comes with a utility command line tool to work with files
 - Convenient for debugging as the binary format is not human friendly

Parquet Data Layout: advanced techniques to read less data

- Row Groups
 - Data needed for a group of rows to be reassembled
 - Smallest task or input split size
 - Made of Column Chunks
- Column Chunks
 - Contiguous data for a single column
 - Made of data pages and an optional dictionary page
- Data Pages
 - Encoded and compressed runs of values
- Dictionary Page
 - Includes the list of unique values in a data page of a column
 - Useful to skip entire row groups when the search criteria (where statement) is missing in the dictionary
 - Example: SELECT * FROM table WHERE city=Paris

Row Group

Column Chunk & Data Pages

Data Storage Formats: Summary

	Text Files	JSON Files	Apache Avro	Apache ORC	Apache Parquet
Human friendly	X	X			
Tools compatibility	X	X	X	X	X
Performance			X	X	X
Binary format			X	X	X
Embedded Schema		X	X	X	X
Column Based				X	X

Data Compression

- Reduces disk space required for data storage
- Compression is a tradeoff between disk space/bandwidth and CPU
 - High compression rate codecs take more CPU time but save more disk space and require less I/O
 - Lower compression rate codecs are much faster but vase less disk space and require more I/O compared to agressive algorithms
- Compression can significantly improve performance of Big Data jobs:
 - Allows to handle more I/O operations
 - Improves the performance when reading/writing over the network (Cloud storage)
 - Improves the performance when reading/writing to a magnetic Disk
- The selection of the compression codec is use case specific
- Hadoop Natively supports multiple compression Codecs
- Compression Codecs include: bzip, gzip, lzo, lz4, snappy, brotli