# INTRODUCCIÓN A LA FÍSICA

Magnitudes y sistemas de unidades. Análisis dimensional. Proceso de medida y teoría de errores.

Manuel Carlevaro

### **OBJETIVOS**

- ▶ Recordar el concepto de medición y unidad de medida.
- ▶ Repasar las diferentes magnitudes básicas, sus unidades, múltiplos y submúltiplos.
- ▶ Repasar las reglas para conversión de unidades.
- ▶ Aprender a representar la incertidumbre de una medida.

#### MAGNITUDES FÍSICAS

## Definición: Magnitud o cantidad física.

Una **magnitud** o **cantidad física** es una propiedad de un sistema físico que puede ser **cuantificada** por medio de una medición o de una relación de medidas.

Se expresa como un valor, que es una multiplicación de un valor numérico y una unidad de medición.

#### Magnitudes físicas

## Definición: Magnitud o cantidad física.

Una magnitud o cantidad física es una propiedad de un sistema físico que puede ser cuantificada por medio de una medición o de una relación de medidas.

Se expresa como un valor, que es una multiplicación de un valor numérico y una unidad de medición.

### Ejemplo : Masa de un cuerpo.

$$M = 94.5 imes kg = 94.5 \,\mathrm{kg}$$

M = 94.5 imes valor numérico

### Magnitudes básicas:

- ► Longitud (altura, distancia, profundidad, diámetro, perímetro, ...)
- ▶ Masa (inercia)
- ▶ Tiempo (duración, retraso, ...)

## Magnitudes derivadas:

- ▶ Velocidad, aceleración
- ▶ Area, volumen
- ▶ Fuerza

#### MEDIR ES COMPARAR

# Ejemplo: Mediciones.

- ▶ La **longitud** de la mesa mide igual que el diámetro de 8 platos.
- ▶ El **tiempo** para caminar de Pamplona a Madrid es igual a 3.1 veces el tiempo que la tierra tarda en dar una vuelta sobre su eje.
- ▶ La **masa** de la manzana es 0.5 veces la de un vaso de leche.

#### MEDIR ES COMPARAR

## Ejemplo: Mediciones.

- ▶ La **longitud** de la mesa mide igual que el diámetro de 8 platos.
- ▶ El **tiempo** para caminar de Pamplona a Madrid es igual a 3.1 veces el tiempo que la tierra tarda en dar una vuelta sobre su eje.
- La masa de la manzana es 0.5 veces la de un vaso de leche.

# Sistema Internacional (SI)



## Algunas unidades básicas:

- lacktriangle Tiempo [t] ightarrow segundo (s):  $9\,192\,631\,770$  veces el período de la microonda necesaria para excitar los átomos de cesio.
- ▶ Longitud [l]  $\rightarrow$  **metro** (m): distancia que recorre la luz en el vacío en 1/299792458 segundos].
- ▶ Masa [m]  $\rightarrow$  kilogramo (kg): se fija la constante de Plank:  $h = 6.626\,070\,15 \times 10^{-34}\,\mathrm{kg}\,\mathrm{m}^2/\mathrm{s}^{-1}$ .

#### MEDIR ES COMPARAR

## Ejemplo: Mediciones.

- ▶ La **longitud** de la mesa mide igual que el diámetro de 8 platos.
- ▶ El **tiempo** para caminar de Pamplona a Madrid es igual a 3.1 veces el tiempo que la tierra tarda en dar una vuelta sobre su eje.
- La masa de la manzana es 0.5 veces la de un vaso de leche.

# Sistema Internacional (SI)



## Ejemplo: Mediciones SI.

- ▶ La longitud de la mesa mide 1.6 m.
- $\blacktriangleright$  El tiempo para caminar de Pamplona a Madrid es de  $273\,600\,\mathrm{s}$ .
- ▶ La masa de la manzana es de 0.1 kg.

Fuente: Wikimedia Commons

# **Prefijos**

| Prefijo | Símbolo | Exponente  | Prefijo | Símbolo | Potencia  |
|---------|---------|------------|---------|---------|-----------|
| quecto  | q       | $10^{-30}$ | deca    | da      | 1         |
| ronto   | r       | $10^{-27}$ | hecto   | h       | $10^{2}$  |
| yocto   | У       | $10^{-24}$ | kilo    | k       | $10^{3}$  |
| zepto   | Z       | $10^{-21}$ | mega    | M       | $10^{6}$  |
| atto    | а       | $10^{-18}$ | giga    | G       | $10^{9}$  |
| femto   | f       | $10^{-15}$ | tera    | Т       | $10^{12}$ |
| pico    | р       | $10^{-12}$ | peta    | Р       | $10^{15}$ |
| nano    | n       | $10^{-9}$  | exa     | Е       | $10^{18}$ |
| micro   | μ       | $10^{-6}$  | zetta   | Z       | $10^{21}$ |
| mili    | m       | $10^{-3}$  | yotta   | Υ       | $10^{24}$ |
| centi   | С       | $10^{-2}$  | ronna   | R       | $10^{27}$ |
| deci    | d       | $10^{-1}$  | quetta  | Q       | $10^{30}$ |



El gramo (g) no se considera una unidad fundamental de masa, pero se usa para definir los múltiplos y submúltiplos de masa.

## EJEMPLOS DE ESCALAS



#### Masa:

- ▶ 1 μg: partícula pequeña de polvo
- ▶ 1 mg: grano de sal
- ▶ 1 g: sujetador de papeles

## Tiempo:

- ightharpoonup 1 ns: tiempo en que la luz recorre  $0.3\,\mathrm{m}$
- $ightharpoonup 1 \, \mu s$ : tiempo en que la ISS recorre  $7.7 \, mm$
- ▶  $1\,\mathrm{ms}$ : tiempo en que el sonido recorre  $0.35\,\mathrm{m}$

### Expresión de cantidades físicas y consistencia de unidades

- ▶ Las unidades en que se mide una magnitud son más importantes que el número específico. Si el resultado correcto es 3.5 cm y por un error obtuve 8.3 cm es mucho mejor que si obtengo 3.5 kg, 3.5 dm o 3.5.
- ▶ Una cantidad específica puede representarse con un símbolo algebraico (por ejemplo, una letra en itálica) (a, h, x, t,  $\phi$ , etc). Esta letra representa al número y la unidad juntos. Las unidades no van en itálica.
- ▶ Las ecuaciones deben ser **consistentes** en sus unidades. Sólo pueden sumarse, restarse o compararse cantidades con unidades iguales (metros con metros, etc).
- ▶ Si debo sumar, restar o comparar cantidades que están expresadas en diferentes múltiplos o submúltiplos de una misma unidad fundamental puedo hacer **conversión** de unidades.
- ▶ Los símbolos de las unidades se operan en forma algebraica como una cantidad cualquiera.

#### **ESTRATEGIAS**

- ▶ Convertir primero todas las unidades en SI (m, kg, s, etc.).
- ▶ Hacer las operaciones.
- ▶ Convertir el resultado a las unidades deseadas.
- ▶ Para convertir unidades se puede multiplicar y dividir por la misma cantidad expresada en dos múltiplos (o submúltiplos) diferentes:  $\frac{1\,\mathrm{m}}{1000\,\mathrm{mm}}$ ,  $\frac{60\,\mathrm{s}}{1\,\mathrm{min}}$ ,  $\frac{1\,\mathrm{kg}}{1\,000\,000\,\mu\mathrm{g}}$ , ...
- ▶ Verificar la consistencia de las unidades de un resultado.

#### **EJEMPLOS**

# Ejemplo: Conversión de unidades de rapidez.

La Estación Espacial Internacional (ISS) orbita la Tierra a una altura de aproximadamente  $420\,\mathrm{km}$  a una velocidad de  $27\,600\,\mathrm{km/h}$ . Expresar esa rapidez en  $\mathrm{m/s}$ .

#### **EJEMPLOS**

## Ejemplo : Conversión de unidades de rapidez.

La Estación Espacial Internacional (ISS) orbita la Tierra a una altura de aproximadamente  $420\,\mathrm{km}$  a una velocidad de  $27\,600\,\mathrm{km/h}$ . Expresar esa rapidez en  $\mathrm{m/s}$ .

$$27\,600\,\mathrm{km/h} = \left(27\,600 \times 10^3 \frac{\mathrm{m}}{\mathrm{h}}\right) \left(\frac{1\,\mathrm{h}}{3600\,\mathrm{s}}\right) = 7666.666\,\mathrm{m/s}$$

#### EJEMPLOS

## Ejemplo : Conversión de unidades de rapidez.

La Estación Espacial Internacional (ISS) orbita la Tierra a una altura de aproximadamente  $420\,\mathrm{km}$  a una velocidad de  $27\,600\,\mathrm{km/h}$ . Expresar esa rapidez en  $\mathrm{m/s}$ .

$$27\,600\,\mathrm{km/h} = \left(27\,600 \times 10^3\,\frac{\mathrm{m}}{\mathrm{h}}\right) \left(\frac{1\,\mathrm{h}}{3600\,\mathrm{s}}\right) = 7666.666\,\mathrm{m/s}$$

### Ejemplo : Conversión de unidades de volumen.

El diamante tallado más grande del mundo es la Primera Estrella de África (montado en el cetro real británico y guardado en la Torre de Londres). Su volumen es de 1.84 pulgadas cúbicas. ¿Cuál será su volumen en centímetros cúbicos? (1 pulgada = 2.54 cm.)

## Ejemplo : Conversión de unidades de rapidez.

La Estación Espacial Internacional (ISS) orbita la Tierra a una altura de aproximadamente  $420\,\mathrm{km}$  a una velocidad de  $27\,600\,\mathrm{km/h}$ . Expresar esa rapidez en  $\mathrm{m/s}$ .

$$27\,600\,\mathrm{km/h} = \left(27\,600 \times 10^3 \frac{\mathrm{m}}{\mathrm{h}}\right) \left(\frac{1\,\mathrm{h}}{3600\,\mathrm{s}}\right) = 7666.666\,\mathrm{m/s}$$

### Ejemplo : Conversión de unidades de volumen.

El diamante tallado más grande del mundo es la Primera Estrella de África (montado en el cetro real británico y guardado en la Torre de Londres). Su volumen es de 1.84 pulgadas cúbicas. ¿Cuál será su volumen en centímetros cúbicos? (1 pulgada = 2.54 cm.)

$$1.84\,\mathrm{in}^3 = (1.84\,\mathrm{in}^3) \left(\frac{2.54\,\mathrm{cm}}{1\,\mathrm{in}}\right)^3 = (1.84)(2.54)^3 \frac{\mathrm{in}^3\mathrm{cm}^3}{\mathrm{in}^3} = 30.2\,\mathrm{cm}^2$$

#### **INCERTIDUMBRE**

- Las cantidades físicas no se pueden medir con exactitud infinita. Hay incertidumbre o error.
- lacktriangle La incertidumbre se puede expresar como  $(3.5\pm0.2)\,\mathrm{m}$  o en forma más compacta  $3.5(2)\,\mathrm{m}$ .
- ▶ También se puede usar el error porcentual como  $3.5\,\mathrm{m}\,\pm\,2.9\,\%$ .
- ▶ Si no hay un error indicado se entiende que la última cifra significativa representa el error:  $3.5\,\mathrm{m}$  significa  $3.5(1)\,\mathrm{m}$ ,  $3.50\,\mathrm{m}$  significa  $3.50(1)\,\mathrm{m}$  y  $347\,\mathrm{kg}$  significa  $347(1)\,\mathrm{kg}$ .
- ▶ 300 m significa ¿?

## INCERTIDUMBRE Y NOTACIÓN CIENTÍFICA

- ▶ Notación científica:  $300 = 3 \times 10^2$  y  $0.03 = 3 \times 10^{-2}$ .
- ▶  $3.00 \times 10^2$  m significa  $(300 \pm 1)$  m o 300(1) m.
- ▶  $3.0 \times 10^2 \,\mathrm{m}$  significa  $(300 \pm 10) \,\mathrm{m}$  o  $300(10) \,\mathrm{m}$ .
- ▶  $3 \times 10^2 \, \mathrm{m}$  significa  $(300 \pm 100) \, \mathrm{m}$  o  $300(100) \, \mathrm{m}$ .
- ▶  $3.0 \times 10^{-2} \, \mathrm{m}$  significa  $(0.030 \pm 0.001) \, \mathrm{m}$ .
- ▶  $3 \times 10^{-2}$  m significa  $(0.03 \pm 0.01)$  m.

# **Operaciones**

- $\blacktriangleright$   $\times$  y  $\div:$  la menor cantidad de cifras significativas.
- ▶ + y —: la mayor incertidumbre.

#### INCERTIDUMBRE EN OPERACIONES ALGEBRAICAS

| Operación matemática      | Cifras significativas en el resultado                                                                                                                                                                       |  |  |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Multiplicación o división | No más que el número que tiene menos cifras significativas<br>Ejemplo: $0.745 \times 2.2/3.885 = 0.42$ (no $0.4218790219$ )<br>Ejemplo: $1.32578 \times 10^7 \times 4.11 \times 10^{-3} = 5.45 \times 10^4$ |  |  |
| Suma o resta              | Lo determina el número con mayor incertidumbre (es decir, el menor número de dígitos a la derecha del punto decimal) $Ejemplo:\ 27.153+138.2-11.74=153.6\ (\text{no}\ 153.613)$                             |  |  |



No dar un resultado con más cifras significativas que los datos con que fue calculado.

