Classification

2장 분류

고혜선 선생님

Contents

- 01. What is Classification?
- 02. Logistic / Softmax Regression
- 03. Evaluation Metrics
- 04. K-Nearest Neighbor
- 05. Naïve Bayes Classifier
- 06. Support Vector Machine

Curriculum

What is Classification?

분류 (Classification)의 의미와 특성을 이해하고, 회귀 (Regression)과의 차이점을 알아본다.

Logistic / Softmax Regression

Logistic Regression과 Softmax Regression의 의미와 특성을 이해한다.

Evaluation Metrics

혼동행렬 (Confusion Matrix)를 이해하고, 분류에 사용되는 여러 지표에 대해 알아본다.

Curriculum

K-Nearest Neighbor (KNN)

kNN의 원리를 이해하고, kNN에 사용되는 distance function에 대해 알아본다.

NBC의 기본이 되는 Bayes Theorem과 conditional independence를 이해하고, 계산방식에 대해 알아본다.

Support Vector Machines

SVM의 원리를 직관적으로 이해하고, 이를 Lagrangian multiplier를 사용한 수식을 통해 계산할 수 있다.

K-Nearest Neighbor (KNN)

▼ K-NN (최근접 이웃)이란?

클래스 = {RED, BLEU, GREEN}

▼ K-NN (최근접 이웃)이란?

새로운 데이터 (●)는 어떤 class일까?

▼ K-NN (최근접 이웃)이란?

- 기준이 되는 distance function을 정한 후, 근접한 k개의 데이터를 확인한다.
- 다수결로 새로운 데이터에 대한 클래스를 결정한다.

▼ K-NN (최근접 이웃)이란?

- 기준이 되는 distance function을 정한 후 근접한 k개의 데이터를 확인한다.
- 다수결로 새로운 데이터에 대한 클래스를 결정한다.

▼ K가 점점 커진다면..

- K=5일 때가, k=1일때보다 더 smoother boundary 를 그리고, label noise를 줄여준다.
- 하지만, k가 너무 클 때 (예: k=데이터개수), 항상 majority class로 분류하게 된다.

Distance function

Manhatton distance (L1-norm)

$$dist(x,y) = \sum_{i=1}^{N} |x_i - y_i|$$

Euclidean distance (L2-norm)

$$dist(x,y) = \sqrt{\sum_{i=1}^{N} (x_i - y_i)^2}$$

$$dist(x,y) = (\sum_{i=1}^{N} |x_i - y_i|^p)^{1/p}$$

Generalized version (p-norm)

How: Not just counting

$$S(x', \mathbf{RED}) = \sum_{x \in N(x', RED)}^{N} w(x)$$

$$S(x', \mathbf{BLUE}) = \sum_{x \in N(x', BLUE)}^{N} w(x)$$

How: Not just counting

$$S(x', RED) = \sum_{x \in N(x', RED)}^{N} w(x)$$

$$S(x', \mathbf{BLUE}) = \sum_{x \in N(x', BLUE)}^{N} w(x)$$

The set of RED data among the nearest neighbors of x'

How: Not just counting

$$S(x', \mathbf{RED}) = \sum_{x \in N(x', RED)}^{N} w(x)$$

$$S(x', \mathbf{BLUE}) = \sum_{x \in N(x', BLUE)}^{N} w(x)$$

Predicted Class = "RED"

How: Not just counting

$$S(x', \mathbf{RED}) = \sum_{x \in N(x', RED)}^{N} w(x)$$

$$S(x', \mathbf{BLUE}) = \sum_{x \in N(x', BLUE)}^{N} w(x)$$

Predicted Class = "BLUE"

How: Determine weights

Summary

- (+) No training step (only inference step)
- (-) Need to calculate the distance from all training data \rightarrow Time
- (-) Sensitive to noise
- (-) If training data is imbalanced, major class may dominate

- Which k is better?
- Small k: Higher variance (overfitting)
- Large k: Higher bias (underfitting)

❷ Naïve Bayes Classifier란

• Bayes 이론에 기반하여, 어떤 데이터가 주어졌을 때 Conditional Independence를 가정하여 "특정" 클래스에 속할 확률을 계산하여 분류하는 모델

Review: Bayes' Theorem

$$P(class \mid X) = \frac{P(X \mid class) P(c)}{P(X)}$$

Review: Bayes' Theorem

Bayesian vs. Frequentist

Probability vs. Likelihood

Probability

- 모델(모수; θ)을 기반으로 데이터가 나타날 확률
- 예: P(X>=30 | mean=20, std=1)

 $Pr(data | fixed distribution; \theta)$

Likelihood

- 데이터(관측치)를 기반으로 분포의 모수를 추정하는 것
- 예: P(mean=20, std=1 X=30)

 $Pr(\theta | data)$

Probability vs. Likelihood

Probability

- 모델 $(모수; \theta)$ 을 기반으로 데이터가 나타날 확률
- 예: P(X>=30 | mean=20, std=1)

Likelihood

- 데이터(관측치)를 기반으로 분포의 모수를 추정하는 것
- 예: P(mean=20, std=1 X=30)

Conditional Independence

• Two events are conditionally independent given an event C with P(C)>0 if

$$P(A, B | C) = P(A | C) P(B | C)$$

Conditional Independence

• Two events are conditionally independent given an event C with P(C)>0 if

$$P(A, B | C) = P(A | C) P(B | C)$$

P(class |
$$x_1, x_2, ..., x_d$$
) =
$$\frac{P(x_1, x_2, ..., x_d | \text{class}) P(c)}{P(X)}$$
x를 여러개의 feature로 표현

Conditional Independence

• Two events are conditionally independent given an event C with P(C)>0 if

$$P(A,B|C) = P(A|C)P(B|C)$$
각특성별확률곱으로계산될수있음
$$P(x_1|class)P(x_2|class)...P(x_d|class)$$

$$P(class|x_1,x_2,...,x_d) = \frac{P(x_1,x_2,...,x_d|class)P(c)}{P(X)}$$

$$x = 여러 개의 feature로 표현$$

Classification example: Good vs. Bad

	sex	mask	саре	tie	ears	smokes	Label
batman	male	yes	yes	no	yes	no	Good
robin	male	yes	yes	no	no	no	Good
alfred	male	no	no	yes	no	no	Good
penguin	male	no	no	yes	no	yes	Bad
catwoman	female	yes	no	no	yes	no	Bad
joker	male	no	no	no	no	no	Bad

Classification example: Good vs. Bad

	sex	mask	cape	tie	ears	smokes
batman	male	yes	yes	no	yes	no
robin	male	yes	yes	no	no	no
alfred	male	no	no	yes	no	no
penguin	male	no	no	yes	no	yes
catwoman	female	yes	no	no	yes	no
joker	male	no	no	no	no	no
superman	male	yes	yes	no	no	no

Label
Good
Good
Good
Bad
Bad
Bad

/* elice */

Classification example: Good vs. Bad

superman male yes yes no no	no
-----------------------------	----

• P(class=Good | X)와 P(class=Bad | X)를 비교해서 더 큰 값을 가지는 클래스로 분류!

Classification example: Good vs. Bad

superman male yes yes no no no

Prior probability

P(Good) = 0.5, P(Bad) = 0.5

> Conditional probability

- \bullet P(sex = male | Good) = 1.0, <math>P(sex = male | Bad) = 0.67
- P(mask = yes | Good) = 0.67, P(mask = yes | Bad) = 0.33
- P(cape = yes | Good) = 0.67, P(cape = yes | Bad) = 1.0
- P(tie = no | Good) = 0.67, P(tie = no | Bad) = 0.67
- P(ears = no | Good) = 0.67, P(ears = no | Bad) = 0.67
- P(smokes = no | Good) = 0.67, P(smokes = no | Bad) = 0.67

Classification example: Spam vs. Not-Spam

1 ham Hope you are having a good week. Just checking in 2 ham K_give back my thanks. 3 ham Am also doing in cbe only. But have to pay. 4 spam complimentary 4 STAR Ibiza Holiday or 10,000 cash needs your URGENT okmail: Dear Dave this is your final notice	IDX	type	text
Am also doing in cbe only, But have to pay. 4 spam complimentary 4 STAR Ibiza Holiday or 10,000 cash needs your URGENT okmail: Dear Dave this is your final notice	1	ham	
4 spam complimentary 4 STAR Ibiza Holiday or 10,000 cash needs your URGENT okmait Dear Dave this is your final notice	2	ham	K_give back my thanks.
10,000 cash needs your URGENT okmail: Dear Dave this is your final notice	3	ham	
I 5 I snam I	4	spam	
to collect your 4* Tenerife Holiday or ····	5	spam	okmail: Dear Dave this is your final notice to collect your 4* Tenerife Holiday or ·····

idx check good thanks pay ~							
1	1	1	0	0			
2	0	0	1	1	~		
3	0	0	0	0			

 $P(\Delta \mathbf{H}|\mathbf{T})$ 단어1, 단어2, 단어3 ...) > $P(\mathbf{S}|\mathbf{S}|\mathbf{T})$ 단어1, 단어2, 단어3 ...) 이면 스팸

ı			
	5559	ham	Shall call now dear having food
н			

Discussion: Zero Probability

$$P(x_1|class)P(x_2|class)...P(x_d|class)$$
= 0

05 Naïve Bayes Classifier

Example: Laplacian Correction (Laplacian estimator)

- 예: 100개의 데이터 중, score = A(10), score = B(90), score = C(0) 라고 가정하자.
- 문제점: P(score=A | new X)를 계산하는 과정에서 score C의 경우, zero probability가 발생함.
- 해결책: Laplacian Correction (Laplacian Estimator) (1) 각 데이터에 대해 1씩 더한다.
- 계산해보면?

P(score=A) =
$$(10+1)/(100+3) = 1/103$$

P(score=B) = $(90+1)/103 = 91/103$
P(score=C) = $(0+1)/103 = 1/103$

05 Naïve Bayes Classifier

Summary

- (+) Easy to implement
- (+) Good results can be obtained when cond.independence satisfies
- (-) Practically, dependencies exist among variables. -> loss of Accuracy
- (-) cannot model the dependency between attributes

Support Vector Machines (SVM)

♥ Classification: 김경호 vs. 크리스탈

♥ Classification: 김경호 vs. 크리스탈

Classification: new test data

Classification: new test data

김경호! (WRONG)

Margin

Margin

❷ Support Vector: Decision Boundary와 가까운 data points

- ❷ Support Vector: Decision Boundary와 가까운 data points
- Only support vectors are important; other examples are ignorable
 - → Less computation!

Linear Support Vector Machines (LSVM)

Non-Linear SVM

丑

 \exists

김

/* elice */

Non-Linear SVM

/* elice */

Non-Linear SVM

김

/* elice */

Non-Linear SVM: Kernel Trick $(y = x^2)$

Non-Linear SVM: Kernel Trick $(y = x^2)$

Non-Linear SVM: Kernel Trick

$$M = \|x^+ - x^-\|_2$$

$$M = \|x^+ - x^-\|_2$$

$$x^+ - x^- = \lambda w$$

$$M = ||x^{+} - x^{-}||_{2} = ||\lambda w||_{2} = \lambda \sqrt{w^{T} w}$$
$$x^{+} - x^{-} = \lambda w$$

$$M = ||x^{+} - x^{-}||_{2} = ||\lambda w||_{2} = \lambda \sqrt{w^{T} w}$$

$$x^{+} - x^{-} = \lambda w$$

$$w^{T}(x^{-} + \lambda w) + b = 1$$

$$M = \|x^{+} - x^{-}\|_{2} = \|\lambda w\|_{2} = \lambda \sqrt{w^{T} w}$$

$$x^{+} - x^{-} = \lambda w$$

$$w^{T}(x^{-} + \lambda w) + b = 1$$

$$w^{T}x^{-} + b + \lambda w^{T}w = 1 \quad \therefore \lambda = \frac{2}{w^{T}w}$$

$$M = \|x^{+} - x^{-}\|_{2} = \|\lambda w\|_{2} = \lambda \sqrt{w^{T} w} \implies M = \frac{2}{\sqrt{w^{T} w}} = \frac{2}{\|w\|_{2}}$$

$$x^{+} - x^{-} = \lambda w$$

$$w^{T}(x^{-} + \lambda w) + b = 1$$

$$w^{T}x^{-} + b + \lambda w^{T}w = 1 \implies \lambda = \frac{2}{w^{T}w}$$

Max margin
$$M = \frac{2}{\|w\|_2}$$
 While ...

Max margin
$$M = \frac{2}{\|w\|_2}$$
 While ...
$$w^T x + b \ge 1 \Rightarrow y = 1$$

$$w^T x + b \le -1 \Rightarrow y = -1$$

Max margin
$$M = \frac{2}{\|w\|_2}$$
 While ... $y_i(w^Tx_i + b) \ge 1$

Learning LSVM: Maximize the margin

Max margin
$$M = \frac{2}{\|w\|_2}$$
 While ... $y_i(w^Tx_i + b) \ge 1$

$$\Rightarrow \min \frac{1}{2} ||w||_2 \Rightarrow \min \frac{1}{2} ||w||_2^2$$

 $\|w\|_2$ 이 제곱근을 포함하고 있기 때문에 계산이 어려워서 계산상의 편의를 위해 다음과 같은 형태로 변경

♥ SVM 목적함수

Original Problem $minimize \frac{1}{2}||w||_2^2$

$$subject\ to\ y_i\big(w^Tx_i+b\big)\geq 1, i=1,2,\ldots,n$$

SVM 목적함수: Original Form

Original Problem

minimize
$$\frac{1}{2}||w||_2^2$$

subject to
$$y_i(w^Tx_i + b) \ge 1, i = 1, 2, \dots, n$$

Lagrangian Primal

$$\max_{\alpha} \min_{w,b} \mathcal{L}(w,b,\alpha) = \frac{1}{2} \|w\|_{2}^{2} - \sum_{i=1}^{n} \alpha_{i} (y_{i}(w^{T}x_{i} + b) - 1)$$
subject to $\alpha_{i} \geq 0, i = 1,2,...,n$

Lagrangian multiplier를 사용하여 목적식과 제약식을 하나의 식으로 표현가능

● SVM 목적함수

Lagrangian Primal $\max_{\alpha} \min_{w,b} \mathcal{L}(w,b,\alpha) = \frac{1}{2} \|w\|_2^2 - \sum_{i=1}^n \alpha_i (y_i(w^Tx_i+b)-1)$ subject to $\alpha_i \geq 0, i = 1,2,\ldots,n$

Convex, continuous이기 때문에 미분 = 0에서 최소값을 가짐

①
$$\frac{\partial \mathcal{L}(w,b,\alpha)}{\partial w} = 0$$
 \longrightarrow $w = \sum_{i=1}^{n} \alpha_i y_i x_i$

α 값을 알아야함

♥ SVM 목적함수

$$\frac{1}{2} \|w\|_{2}^{2} - \sum_{i=1}^{n} \alpha_{i} (y_{i}(w^{T}x_{i} + b) - 1)$$
①

①
$$\frac{1}{2} \|w\|_{2}^{2} = \frac{1}{2} w^{T} w$$

$$= \frac{1}{2} w^{T} \sum_{j=1}^{n} \alpha_{j} y_{j} x_{j}$$

$$= \frac{1}{2} \sum_{j=1}^{n} \alpha_{j} y_{j} (w^{T} x_{j})$$

$$= \frac{1}{2} \sum_{j=1}^{n} \alpha_{j} y_{j} \left(\sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}^{T} x_{j} \right)$$

 $= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_i \alpha_j y_i y_j x_i^T x_j$

● SVM 목적함수

$$\frac{1}{2} \|w\|_{2}^{2} - \sum_{i=1}^{n} \alpha_{i} (y_{i}(w^{T}x_{i} + b) - 1)$$
①

②
$$-\sum_{i=1}^{n} \alpha_i (y_i (w^T x_i + b) - 1)$$

$$= -\sum_{i=1}^{n} \alpha_{i} y_{i} (w^{T} x_{i} + b) + \sum_{i=1}^{n} \alpha_{i}$$

$$= -\sum_{i=1}^{n} \alpha_{i} y_{i} w^{T} x_{i} - b \sum_{i=1}^{n} \alpha_{i} y_{i} + \sum_{i=1}^{n} \alpha_{i}$$

$$= -\sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_{i} \alpha_{j} y_{j} y_{j} x_{i}^{T} x_{j} + \sum_{j=1}^{n} \alpha_{i}$$

$$\frac{\partial \mathcal{L}(w, b, \alpha)}{\partial b} = 0 \implies \sum_{i=1}^{n} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \mathcal{L}(w, b, \alpha)}{\partial w} = 0 \implies w = \sum_{i=1}^{n} \alpha_{i} y_{i} x_{i}$$

$$\frac{\partial \mathcal{L}(w, b, \alpha)}{\partial b} = 0 \implies \sum_{i=1}^{n} \alpha_i y_i = 0$$

$$\frac{\partial \mathcal{L}(w, b, \alpha)}{\partial w} = 0 \implies w = \sum_{i=1}^{n} \alpha_i y_i x_i$$

SVM 목적함수: Dual Form

$$\max_{\alpha} \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} y_{i} y_{j} \alpha_{i} \alpha_{j} (\mathbf{x}_{i} \cdot \mathbf{x}_{j})$$

$$\text{subject to} \begin{cases} \alpha_{i} \geq 0 & \text{for } i = 1, \dots, n \\ \sum_{i=1}^{n} \alpha_{i} y_{i} = 0 \end{cases}$$

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$

$$b = y_k - \mathbf{w} \cdot \mathbf{x}_k \quad \text{for any } \mathbf{x}_k \text{ such that } \alpha_k > 0$$

● SVM Example: W와 b는? * 시간: 10분

$$D = \{(1, 1, -1), (2, 2, +1)\}$$

S Max
$$(d_1+d_2)-\frac{1}{2}(y_1y_1d_1d_1x_1x_1+y_1y_2d_1d_2x_1.x_2+y_2y_1d_2d_1x_2.x_1+y_2y_2d_2d_2x_2.x_2)$$

D d subject to $d_1y_1y_1d_2x_2=0$

Exp(!! $(1,1,-1)(2,2,+1)$
 \Rightarrow Max $(d_1+d_2)-\frac{1}{2}(2d_1^2-4d_1d_2-4d_1d_2+8d_2^2)$ subject to $-d_1+d_2=0$
 \Rightarrow Max $(2d_1-d_1^2+4d_1^2-4x_1^2)\Rightarrow$ Min $(d_1^2-2d_1)$
 \Rightarrow Max $(2d_1-d_1^2+4d_1^2-4x_1^2)\Rightarrow$ Min $(d_1^2-2d_1^2-4x_1^2-4x_1^2-4x_1^2)\Rightarrow$ Min $(d_1^2-2d_1^2-4x_1$

Credit

/* elice */

코스 매니저 이호정

콘텐츠 제작자 고혜선

강사 고혜선

감수자 이해솔

디자인 이해솔

Contact

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

