

## Magnetische Kapazität (Ringkernspule 2)

GRUNDLA-GEN



SCAN ME

LÖSUN-GEN



SCAN ME

## Aufgabenstellung

Gegeben ist ein Ferritringkern mit einem Luftspalt, welcher gleichmäßig über den Umfang mit N Wicklungen bewickelt ist.

| Außendurchmesser | $D_A = 30 \ mm$ | Innendurchmesser  | $D_I = 20 mm$ |
|------------------|-----------------|-------------------|---------------|
| Kerndicke        | $d_K = 5 mm$    | Material (Ferrit) | $\mu_r = 400$ |
| Wicklungsanzahl  | N = 500         | Spulenstrom       | $I_S = 1 A$   |
| Luftspaltlänge   | s = 0.5 mm      |                   |               |



| Fragen |                                                                                                                                                   |  |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1.     | Zeichnen Sie das mechatronische Ersatzschaltbild des magnetischen Kreises.                                                                        |  |
| 2.     | Berechnen Sie die magnetische Gesamtkapazität sowie beide Einzelkapazitäten.                                                                      |  |
| 3.     | Wie groß ist die magnetische Gesamtspannung (Durchflutung)?                                                                                       |  |
| 4.     | Wie groß sind die magnetische Flussdichte und die Einzelfeldstärken sowie die magnetischen Spannungen?                                            |  |
| 5.     | Wie groß sind Energie und Co-Energie im magnetischen Kondensator?                                                                                 |  |
| 6.     | Berechnen Sie die elektrische Induktivität der Ringkernspule.                                                                                     |  |
| 7.     | Wie groß ist die gespeicherte Energie in der Ringkernspule? Vergleichen Sie diese mit der Energie und Co-<br>Energie im magnetischen Kondensator. |  |