

Faculty of Engineering and Technology

Electrical and Computer Engineering Department

INFORMATION SECURITY AND COMPUTER NETWORK LABORATORY ENCS5121

Report II

Experiment # 2: Padding Oracle Attack

Student Name: Yara Darabumukho

Student Number: 1211269

Instructor: Dr. Ahmad Alsadeh

Teaching Assistant: Eng. Tariq Odeh

Section No: 1

Date: 30/10/2024

Abstract

In this experiment the main aim is to understand and apply the padding and learn about the Padding Oracle Attack.

Table of Contents

Abstract	1
Table of Figures	III
Table of Tables	III
Plaintext	1
CC1 Values	3

Table of Figures

Figure 1: Plaintext.	
Figure 2: Block Cipher Values.	
Figure 3: Valid Value	. 2
Figure 4: CC1 values for the last iteration.	. 3
Table of Tables	

Plaintext

Figure 1: Plaintext.

As shown in the previous figure, the last 7-bytes of the plain test is:

0x***********bbccddee030303

From the plaintext we can notice that the padding done for 3-bytes only, that's mean the encrypted block contains 13-Bytes.

Block Cipher (D)

Figure 2: Block Cipher Values.

We get one value of the Block Cipher data in each iteration; after running the code we got a valid value, after that we just find the result of xoring this valid value with the iteration number "Key number".

This is the valid value for Key equal to 7. "Seventh iteration"

Figure 3: Valid Value.

⇒ Valid value from the last figure is 0x9d if u check the value of its xoring with the iteration number which is 7 u will get 0x9a. "The value of D2[9] in the Block Cipher Values figure"

CC1 Values

CC1 values in each iteration is the Block Cipher values xoring with the previous iteration number.

Figure 4: CC1 values for the last iteration.

	K = 1	K = 2	K = 3	K = 4	K = 5	K = 6	K = 7	K = 8
CC1[0]	0x00							
•••	•••	•••	•••	•••	•••	•••	•••	•••
CC1[9]	0x00	0x92						
CC1[10]	0x00	0x00	0x00	0x00	0x00	0x00	0xeb	0xe4
CC1[11]	0x00	0x00	0x00	0x00	0x00	0x43	0x42	0x4d
CC1[12]	0x00	0x00	0x00	0x00	0x19	0x1a	0x1b	0x14
CC1[13]	0x00	0x00	0x00	0xf5	0xf4	0xf7	0xf6	0xf9
CC1[14]	0x00	0x00	0x38	0x3f	0x3e	0x3d	0x3c	0x33
CC1[15]	0x00	0xcc	0xcd	0xca	0xcb	0xc8	0xc9	0xc6

Table 1: CC1 values.

Let's take K = 4 for example "Which is the Fourth iteration":

- \Rightarrow From the first Key we got D = 0xce, 0x3b from the second one, and 0xf1 from the third one.
- \Rightarrow To calculate the values of CC1 we just do xoring for the previous determined values in D with K = 4.