20K-0497.

EXTRUSE #1-2.	`^ '
A	Dale
OHL	\$ TO 1
7(0) = -1/3	8/1 -f 8/ h
4= 1 -0	J - 1 = 4 /2
(1+C, e-x)	21,06
-1 = 1	
3 1+ C, e°	27,8
-1 = 1	410=3
3 1+01	7- = 0
$-(1+c_1)=3$	1 . 1 . 0
$-1-c_1=3$	1 if could
	the large intend
$c_i = -4$	y y
D- 11	447
$0 = y = 1$ $(10 - 4e^{-x})$	11-11-11
(1000)	7 - 7 - 1
Q#2.	3,45,6
y(-1) = 2	
y = 1 - 0	
J = (1+c,e-x)	2,37
2 = /	N 111
1+c,e'	214 6
	R 5011
1+qe = 1	7-7-8-5
0	2 / (1)
C1e = -1	24-8
2 2 - 3 - 3 - 3	This is not defined
C1 = 1-1/20-	read the paper with
O=> y =	20 - 2 To 18 18 18 18 18 18 18 18 18 18 18 18 18
1-1/20-1 (21-10-)	S 3 X
y - 1	
y - 1 2-e-x-1	

4+0=3 c = -1 the largest interval $\Rightarrow \chi \in (1, \infty)$ 1000 x2-1 Q#4 4+C = 2 This is not defined at $x = \sqrt{2} \le x = -\sqrt{2}$. From intal condition we conclude it is defined at x = -2, therefore interval at $x \in \mathbb{Z}$ $(-\infty, -\sqrt{2})$

Q#7 x(0)=-1 , x (0)=8 X = c, Cost + casint x' = -C; Sint + Ca Cost 2(0) = 8 8 = - CIGIN 0+C2 COS 0 8 = 02 C2 = 8 $\chi(0) = -1$ 2 = GCost + Casint -1 = C, Coso+ Casino -1 = C, C1 = -1 So solution of IVP is: x = - Cost + 85mt. OH8 x(1/2)=0, x'(1/2)=1 x = C, Cost + C28mt x' = -C, Smt + c2 Cost $\chi'(T/2) = 1$ $1 = -c_1 \sin(T/2) + c_2 \cos(T/2)$ 1= -0, (1) +0 DC1 = -1 2 (1/2)=0 0 = G SOS (T/2) + C2 Sin (T/2) 0 = 0 + C2(1) c2 = 0 So Solution of IVP is: z = - cost

i Had 3 a C gradu estal out

D. Salah

EXELLISE # 1.2

$$\chi \left(\frac{\pi}{6} \right) = \frac{1}{2}, \quad \chi' \left(\frac{\pi}{6} \right) = 0$$

 $\chi_{\delta} = C_1 \cos t + C_0 \sin t$

$$\frac{-1c_1 + c_2 \sqrt{3}}{2} = 0$$

$$\frac{1}{2} = \frac{c_1 \sqrt{3} + c_2}{2} + \frac{1}{2}$$

$$(3=) - \sqrt{3}c_1 + 3c_2 = 0$$

$$\frac{1399 + 62 = 1}{462 = 1}$$

$$C_{2} = \frac{1}{4}$$

$$C_{2} = \frac{1}{4}$$

$$C_{1} + \frac{1}{4}(\sqrt{3}) = 0$$

$$C_{1} = \sqrt{3}/4$$
So Solution of NP is

```
\chi\left(\sqrt{1/4}\right) = \sqrt{2}; \chi'\left(\sqrt{1/4}\right) = 2\sqrt{2}.
 X = e, Cost + cisirt
 72 = C, COS (T/4) + C2 SIN( T/4)
 V2 = 4 V2/2 + C2 (12/2)
C1 + C2 = 2. - 0
x' = -C, Sint + Cz Cost
2\sqrt{2} = -c_1 Sin(\pi/4) + c_2 cos(\pi/4)
2\sqrt{2} = -c_1(\frac{r_2}{2}) + c_2(\frac{r_2}{2})
2 = -\frac{1}{2}c_1 + \frac{1}{2}c_2
 - C++C2 = 4 - 0
 (2) (2) +(2) = 2

(2) -(2) +(2) = 4
              202 = 46
              C2 = 6/2
             02=3
(2)=> -CI+ 3=4
      C1 = -1
 so solution of IVP is.
   2 - - Cost +38 int.
y(0) = 1 ; y'(0) = 3

y = 0.0^{2} + 0.0^{2}

y = 0.0^{2} + 0.0^{2}
 C, +c2=1-0
y'= C, ex - 0, e-x
 0 A = c, e - Ge
  C1 - C2 = 2 - 2
()=) C, + /2 = 1
      ci -/cz = 2
          20, = 3
           C1 = 3/2
```

(0=)
$$0.3/2 + C_2 = 1$$

 $C_2 = 1-3/2$
 $C_2 = -1/2$
So solution of IVP is $\frac{1}{2}$
 $y = \frac{3}{2}e^{-1} - \frac{1}{2}e^{-x}$

$$y(1) = 0 ; y(1) = e$$

$$y = e, e^{\chi} + c, e^{-\chi}$$

$$0 = c_1 e^{\psi} + c_2 e^{-1}$$

$$0 = c_1 e^{\psi} + c_2 e^{-1}$$

$$0 = c_1 e^{\chi} + c_2 e^{-1}$$

$$y' = c_1 e^{\chi} - c_2 e^{-\chi}$$

$$e = c_1 e^{\chi} - c_2 e^{-1}$$

$$0 \Rightarrow c_{1}e + c_{2}(1/e) = 0$$
 $0 \Rightarrow c_{1}e - c_{2}(1/e) = e$
 $2c_{1}e = e$
 $c_{1} = 1/2$

$$c_{2} = -\frac{1}{2}e^{2}$$
30 Solution of INP is
$$y = \frac{1}{2}e^{x} - \frac{1}{2}e^{2}e^{-x}$$

$$y = \frac{1}{2}e^{x} - \frac{1}{2}e^{2-n}$$

$$Q # 13$$

$$y(-1) = 5 ; y'(-1) = -5$$

$$y = e_1 e^{2} + c_2 e^{-x}$$

$$5 = e_1 e^{-1} + c_2 e^{1}$$

$$e_1(1/e) + c_2 e = 5 - 0$$

$$y' = e_1 e^{x} + e_2 e^{-x}$$

$$-5 = e_1 e^{-1} - e_2 e^{-1}$$

$$-5 = c_1(e'/e) - c_2 e - 6$$

$$e_1(4e) + e_2/e = 5/$$

 $e_1(4e) - q_2e = -/5$
 $e_1 = 0$

$$0 = 0$$
 0 $1/e$ $1/e$

$$Q # | Y = 0 = 0 = 0 = 0$$

$$Y = c_1 e^{2t} + c_2 e^{-2t}$$

$$D = c_1 e^{0} + c_2 e^{0}$$

$$0 = c_1 + c_2 = 0$$

$$Y' = c_1 e^{2t} - c_2 e^{-2t}$$

$$0 = c_1 e^{0} - c_2 e^{0}$$

$$0 = c_1 - c_2 = 0$$

$$C_1 + Q_2 = 0$$
 $C_1 - Q_2 = 0$
 $C_1 = 0$
 $C_1 = 0$

$$y = \frac{1}{x-1}$$

$$y = \frac{1}{1-x}$$
H is discontinuous at $x = 1$
So largest interval of for this IVP is $(-\infty, 1)$.

$$y(0) = -1$$

$$-1 = -\frac{1}{2}$$
it is discontinuous at $x = -1$
So largest interval forths IVP is $(-\infty, 1)$.

$$y(0) = y(0) = y(0)$$

$$y' = -\frac{1}{x+2}$$

$$(a)$$

$$y'' = -\frac{1}{x+2}$$

$$(b) = -\frac{1}{x+2}$$

$$(c) = -\frac{1}{x+2}$$

$$(c) = -\frac{1}{x+2}$$

$$(d) = -\frac{1}{x+2}$$

$$(e) = -\frac{1}{x$$

OY (1/40 ix) y(0.

(5)

y(0)=0

0 = - 1/c

y=0 $(-\infty,\infty)$.

; y dy = 3x -0

()=> y/3x/y)=3x

3x = 3x.

Boved. 3x2-y2=c is one perameter family of solution (b) $3x^{2} - y^{2} = 3.$ $y^{2} = 3x^{2} - 3.$ $y^{2} = 3(x^{2} - 1)$ $y = \pm \sqrt{3}(x^{2} - 1)$ discontinuous at x = t140,00 - Co boxed (-2,-1) U(1, x)