GLS 1 - Data set: COST FUNCTION

INTRODUZIONE

I dati utilizzati per questa analisi contengono le caratteristiche di una serie storica di carattere economico nel range di anni 1947-1971. Le variabili contenute sono:

- 1. YEAR: anno
- 2. COST: indice di costo
- 3. K: quota del costo capitale
- 4. L: quota del costo del lavoro
- 5. E: quota del costo dell'energia
- 6. M: quota del costo dei materiali
- 7. PK: costo del capitale
- 8. PL: costo del lavoro
- 9. PE: costo dell'energia
- 10. PM: costo dei materiali

Analisi proposte:

- 1. Statistiche descrittive
- 2. Regressione
- 3. Studio dell'autocorrelazione

```
#-- R CODE
library(pander)
library(car)
library(olsrr)
library(systemfit)
library(het.test)
panderOptions('knitr.auto.asis', FALSE)
#-- White test function
white.test <- function(lmod,data=d){</pre>
  u2 <- lmod$residuals^2
  y <- fitted(lmod)
  Ru2 <- summary(lm(u2 \sim y + I(y^2)))$r.squared
  LM <- nrow(data)*Ru2
  p.value <- 1-pchisq(LM, 2)</pre>
  data.frame("Test statistic"=LM,"P value"=p.value)
#-- funzione per ottenere osservazioni outlier univariate
FIND_EXTREME_OBSERVARION <- function(x,sd_factor=2){</pre>
  which(x = x(x) + sd_factor * sd(x) \mid x = x(x) - sd_factor * sd(x))
#-- import dei dati
library(AER)
data("ManufactCosts")
d <- data.frame(ManufactCosts)</pre>
```

```
names(d) <- c("cost","k","l","e","m","pk","pl","pe","pm")
#-- vettore di variabili numeriche presenti nei dati
VAR_NUMERIC <- c("cost","k","l","e","m","pk","pl","pe","pm")
#-- print delle prime 6 righe del dataset
pander(head(d),big.mark=",")</pre>
```

cost	k	1	e	m	pk	pl	pe	pm
182.4	0.05107	0.2473	0.04253	0.6591	1	1	1	1
183.2	0.05817	0.2772	0.05127	0.6134	1.003	1.155	1.303	1.055
186.5	0.04602	0.2591	0.05075	0.6441	0.7437	1.156	1.197	1.066
221.7	0.04991	0.2479	0.04606	0.6561	0.925	1.235	1.124	1.124
255.9	0.05039	0.2549	0.04482	0.6499	1.049	1.338	1.252	1.217
264.7	0.04916	0.2666	0.0446	0.6397	0.9974	1.379	1.279	1.2

STATISTICHE DESCRITTIVE

```
#-- R CODE
pander(summary(d[,VAR_NUMERIC]),big.mark=",") #-- statistiche descrittive
```

Table 2: Table continues below

cost	k	1	e
Min. :182.4	Min. :0.04602	Min. :0.2473	Min. :0.03963
1st Qu.:274.5	1st Qu.:0.05033	1st Qu.:0.2683	1st Qu.:0.04348
Median $:358.4$	Median $:0.05443$	Median $:0.2772$	Median :0.04482
Mean $:380.9$	Mean $:0.05349$	Mean $:0.2745$	Mean $:0.04482$
3rd Qu.:475.0	3rd Qu.:0.05635	3rd Qu.:0.2834	3rd Qu.:0.04606
Max. :658.2	Max. $:0.06185$	Max. $:0.2975$	Max. $:0.05127$

m	pk	pl	pe	pm
Min. :0.6064	Min. :0.7437	Min. :1.000	Min. :1.000	Min. :1.000
1st Qu.:0.6181	1st Qu.:1.0065	1st Qu.:1.435	1st Qu.:1.303	1st Qu.:1.206
Median: 0.6196	Median : 1.2018	Median $:1.734$	Median $:1.376$	Median $:1.327$
Mean $:0.6272$	Mean $:1.1836$	Mean $:1.772$	Mean: 1.346	Mean $:1.301$
3rd Qu.:0.6394	3rd Qu.:1.3246	3rd Qu.: 2.055	3rd Qu.:1.392	3rd Qu.:1.375
Max. $:0.6591$	Max. $:1.4990$	Max. $:2.760$	Max. $:1.647$	Max. $:1.550$

pander(cor(d[,VAR_NUMERIC]),big.mark=",") #-- matrice di correlazione

Table 4: Table continues below

	cost	k	1	e	m	pk
cost	1	0.1324	0.8592	-0.6702	-0.6668	0.8236

	$\cos t$	k	1	e	m	pk
k	0.1324	1	0.3627	-0.02038	-0.6316	0.5728
1	0.8592	0.3627	1	-0.3786	-0.9277	0.7874
\mathbf{e}	-0.6702	-0.02038	-0.3786	1	0.1301	-0.7141
\mathbf{m}	-0.6668	-0.6316	-0.9277	0.1301	1	-0.7301
$\mathbf{p}\mathbf{k}$	0.8236	0.5728	0.7874	-0.7141	-0.7301	1
\mathbf{pl}	0.9897	0.1678	0.8863	-0.5809	-0.7213	0.8096
\mathbf{pe}	0.8184	0.1937	0.8618	-0.2341	-0.7821	0.6299
\mathbf{pm}	0.9558	0.1997	0.8576	-0.5511	-0.7118	0.8053

	pl	pe	$_{ m pm}$
cost	0.9897	0.8184	0.9558
\mathbf{k}	0.1678	0.1937	0.1997
1	0.8863	0.8618	0.8576
\mathbf{e}	-0.5809	-0.2341	-0.5511
\mathbf{m}	-0.7213	-0.7821	-0.7118
$\mathbf{p}\mathbf{k}$	0.8096	0.6299	0.8053
\mathbf{pl}	1	0.8653	0.9717
\mathbf{pe}	0.8653	1	0.8877
\mathbf{pm}	0.9717	0.8877	1

plot(d[,VAR_NUMERIC],pch=19,cex=.5) #-- scatter plot multivariato


```
par(mfrow=c(3,3))
for(i in VAR_NUMERIC){
  boxplot(d[,i],main=i,col="lightblue",ylab=i)
}
```


REGRESSIONE

Si effettua ora la regressione della variabili "Cost" su "L", "PK", "PL", "PM".

```
#-- R CODE
mod1 <- lm(cost ~ l + pk + pl + pm, d) #-- stima modello lineare semplice
pander(summary(mod1), big.mark=",")</pre>
```

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	213.6	184.7	1.157	0.2611
1	-1,321	695.5	-1.9	0.07198
pk	71.97	36.73	1.959	0.06418
\mathbf{pl}	356	40.08	8.883	2.228e-08
\mathbf{pm}	-142.9	116.4	-1.228	0.2337

Table 7: Fitting linear model: $cost \sim l + pk + pl + pm$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
25	19.59	0.9847	0.9817

pander(anova(mod1),big.mark=",")

Table 8: Analysis of Variance Table

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
1	1	370,650	370,650	965.8	2.102e-18
$\mathbf{p}\mathbf{k}$	1	$28,\!568$	$28,\!568$	74.44	3.559 e-08
\mathbf{pl}	1	$94,\!560$	$94,\!560$	246.4	1.039e-12
\mathbf{pm}	1	578.7	578.7	1.508	0.2337
Residuals	20	7,676	383.8	NA	NA

Il modello interpreta bene la variabile dipendente. Tuttavia solo il parametro associato alla variabile "pl" risulta chiaramente significativo.

Verifichiamo ora la sfericità dei residui; il test di White mostra con chiarezza che i residui sono omoschedastici.

#-- R CODE
pander(white.test(mod1),big.mark=",") #-- white test

Test.statistic	P.value
7.361	0.0252

pander(dwtest(mod1),big.mark=",") #-- Durbin-Whatson test

Table 10: Durbin-Watson test: mod1

Test statistic	P value	Alternative hypothesis
0.7531	1.033e-05 * * *	true autocorrelation is greater than 0

#-- R CODE
plot(1:nrow(d),resid(mod1),xlab="Observation Index",ylab="Residui",pch=19)
abline(h=0,col=2,lwd=3,lty=2)

Il grafico dei residui mostra un andamento "non rettangolare" a segnalare l'esistenza di correlazione. Si calcola perciò il coefficiente di autocorrelazione di primo grado fra i residui regredendo i residui rispetto ai residui ritardati.

```
#-- R CODE
library(Hmisc)

## Warning: package 'Hmisc' was built under R version 3.4.3

d1 <- d
d1$resid <- resid(mod1)
d1$resid_l1 <- Lag(d1$resid,1)

pander(cor(data.frame(d1$resid,d1$resid_l1),use="pairwise.complete.obs"))</pre>
```

```
        d1.resid
        d1.resid_l1

        d1.resid
        1
        0.6117

        d1.resid_l1
        0.6117
        1
```

```
#-- R CODE
mod2 <- arima(d1$cost, order=c(1,0,0), xreg = d1[,c("l","pk","pl","pm")],method="ML")
mod2
```

```
##
## Call:
##
  arima(x = d1$cost, order = c(1, 0, 0), xreg = d1[, c("l", "pk", "pl", "pm")],
       method = "ML")
##
##
  Coefficients:
##
                                             pk
##
            ar1
                                     1
                 intercept
                                                        pl
                                                                  pm
##
         0.7160
                   77.8908
                            -1216.9719
                                        68.8727
                                                  290.4698
                                                             32.2447
## s.e. 0.1468
                                                   37.5612
                  114.0014
                              369.0325
                                        29.1789
                                                            105.9266
##
## sigma^2 estimated as 169.2: log likelihood = -99.97, aic = 213.95
coeftest(mod2)
##
## z test of coefficients:
##
##
                Estimate
                          Std. Error z value Pr(>|z|)
                             0.14680 4.8774 1.075e-06 ***
## ar1
                 0.71601
## intercept
                77.89082
                           114.00144 0.6832 0.4944526
## 1
             -1216.97193
                           369.03245 -3.2977 0.0009747 ***
## pk
                68.87275
                            29.17888 2.3604 0.0182571 *
               290.46983
                            37.56124
                                      7.7332 1.048e-14 ***
## pl
## pm
                32.24472
                           105.92663 0.3044 0.7608185
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
durbinWatsonTest(as.numeric(mod2$residuals))
```

[1] 1.620563

Come era prevedibile i modelli danno risultati simili: i valori dei D e i p-value per il Durbin Watson mostra che è accettata l'ipotesi di non autocorrelazione dei residui.

Dal punto di vista interpretativo si evince che il fattore determinante il costo della manifattura negli anni considerati è stato il costo del lavoro.

Si osserva dal p-value associato al parametro AR1 che corregge i residui correlati che tale parametro risulta significativo, vale a dire che prima della correzione i residui erano correlati come si era visto nelle precedenti analisi mostrate sopra.