Zhengdong Zhang

Email: zhengz@uoregon.edu

Course: MATH 648 - Abstract Algebra Instructor: Professor Arkady Berenstein

Homework - Week 7

ID: 952091294

Term: Winter 2025

Due Date: 26^{th} February, 2025

Problem 17.2.5

True or false? $\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ for any $m \in \mathbb{Z}_{>0}$.

Solution: This is true. From Example 17.2.4 in the book, we know that

$$\mathbb{Z}/m\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}/m\mathbb{Q}.$$

Note that \mathbb{Q} is a field and m is invertible in \mathbb{Q} , so $m\mathbb{Q} \cong \mathbb{Q}$ and we have

$$\mathbb{Z}/m\mathbb{Z}\otimes_{\mathbb{Z}}\mathbb{Q}=0.$$

Problem 17.2.6

 $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$ as abelian groups.

Solution: We define a map

$$f: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q},$$
$$(\frac{p}{q}, \frac{r}{s}) \mapsto \frac{pr}{qs}.$$

where $\frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$. For any $m \in \mathbb{Z}$, we have

$$mf(\frac{p}{q},\frac{r}{s}) = \frac{mpr}{qs} = f(\frac{mp}{q},\frac{r}{s}) = f(\frac{p}{q},\frac{mr}{s}).$$

And for $\frac{p_1}{q_1}, \frac{p_2}{q_2} \in \mathbb{Q}$, we have

$$\begin{split} f(\frac{p_1}{q_1} + \frac{p_2}{q_2}, \frac{r}{s}) &= (\frac{p_1}{q_1} + \frac{p_2}{q_2}) \cdot \frac{r}{s} \\ &= \frac{p_1 r}{q_1 s} + \frac{p_2 r}{q_2 s} \\ &= f(\frac{p_1}{q_1}, \frac{r}{s}) + f(\frac{p_2}{q_2}, \frac{r}{s}) \end{split}$$

By symmetry, this is also true for the second component. Thus, we can conclude that f is a \mathbb{Z} -balanced map between \mathbb{Z} -modules. By the universal property of tensor product, there exists a map $\tilde{f}: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbb{Q}$ between abelian groups sending $\frac{p}{q} \otimes \frac{r}{s}$ to $\frac{pq}{rs}$. Consider a map

$$g: \mathbb{Q} \to \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q},$$
$$\frac{p}{q} \mapsto \frac{p}{q} \otimes 1$$

It is easy to check this is also a map between abelian groups. For $\frac{p}{q}, \frac{r}{s} \in \mathbb{Q}$, we have

$$(g \circ \tilde{f})(\frac{p}{q} \otimes \frac{r}{s}) = g(\frac{pr}{qs})$$

$$= \frac{pr}{qs} \otimes 1$$

$$= (r \cdot \frac{p}{qs}) \otimes 1$$

$$= \frac{p}{qs} \otimes (s \cdot \frac{r}{s})$$

$$= (s \cdot \frac{p}{qs}) \otimes \frac{r}{s}$$

$$= \frac{p}{q} \otimes \frac{r}{s}.$$

This proves that $g \circ \tilde{f} = id$. Conversely, we know that

$$(\tilde{f} \circ g)(\frac{p}{q}) = \tilde{f}(\frac{p}{q} \otimes 1) = \frac{p}{q}.$$

So $\tilde{f} \circ g = id$. This proves that \tilde{f} is an isomorphism between abelian groups. Therefore we can conclude that

$$\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$$

as abelian groups.

Problem 17.2.7

If I is a right ideal of a ring R and V is a left R-module, then there is an isomorphism of abelian groups

$$R/I \otimes_R V \cong V/IV$$
,

where IV is the subgroup of V generated by all elements xv with $x \in I$ and $v \in V$.

Solution: We define a map

$$f: R/I \times V \to V/IV,$$

 $(r+I, v) \mapsto rv + IV.$

We first check f is well-defined. Suppose $r_1 + I$ and $r_2 + I$ is the same element in R/I, this means $r_1 - r_2 \in I$. Then for any $v \in V$, we have $r_1v - r_2v = (r_1 - r_2)v \in IV$. This means $r_1v + IV$ and $r_2v + IV$ is the same element in V/IV. Given $s \in R$, we have

$$f(rs+I,v) = rsv + IV = f(r+I,sv).$$

So f is a R-balanced map. By the universal property of tensor product, there exists a unique abelian group homomorphism $\tilde{f}: R/I \otimes_R V \to V/IV$ sending $(r+I) \otimes v$ to rv+IV. Next, we are going to show that \tilde{f} is an isomorphism.

Given $(r+I) \otimes v \in R/I \otimes_R V$, if $\tilde{f}((r+I) \otimes v) = 0 \in V/IV$, then $rv \in IV$. By definition this means $r \in I$, so r+I is the zero element in R/I and we have $(r+I) \otimes v = (0+I) \otimes v = 0 \in R/I \otimes_R V$.

This proves that \tilde{f} is injective. Conversely, given $w + IV \in V/IV$, consider $(1+I) \otimes w \in R/I \otimes_R V$, we have

$$\tilde{f}((1+I)\otimes w) = w + IV.$$

This proves \tilde{f} is surjective. Thus, we can conclude that \tilde{f} is an isomorphism between abelian groups and

$$R/I \otimes_R V \cong V/IV$$
.

Problem 17.2.13

Prove:

- (1) If M is any \mathbb{Z} -module, then $M \otimes_{\mathbb{Z}} \mathbb{Q}$ is an injective \mathbb{Z} -module.
- (2) Deduce that given an injective \mathbb{Z} -module homomorphism $f:M\to N$, there exists a \mathbb{Z} -module homomorphism $\alpha:N\to M\otimes_{\mathbb{Z}}\mathbb{Q}$ such that $\alpha(f(m))=m\otimes 1$.
- (3) Let $\mu: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbb{Q}$ be the product map, and

$$\beta := (id \otimes \mu) \circ (\alpha \otimes id) : N \otimes_{\mathbb{Z}} \mathbb{Q} \to M \otimes_{\mathbb{Z}} \mathbb{Q}.$$

Then $\beta \circ (f \otimes id)$ is identity on $M \otimes_{\mathbb{Z}} \mathbb{Q}$.

(4) Deduce that $f \otimes id$ is injective and \mathbb{Q} is a flat \mathbb{Z} -module.

Solution:

(1) Let $n \geq 0$ be an integer. (n) is an ideal in \mathbb{Z} , viewed as a \mathbb{Z} -module. Suppose we have a \mathbb{Z} -module homomorphism $p:(n) \to M \otimes_{\mathbb{Z}} \mathbb{Q}$. We know that p is completely determined by the image of $n \in (n)$. Assume $p(n) = \sum_{i=1}^k m_i \otimes \frac{p_i}{q_i}$. Consider a map $\tilde{p}: \mathbb{Z} \to M \otimes_{\mathbb{Z}} \mathbb{Q}$ by sending $1 \in \mathbb{Z}$ to $\sum_{i=1}^k m_i \otimes \frac{p_i}{nq_i}$. This is a \mathbb{Z} -module homomorphism and

$$\tilde{p}(n) = n\left(\sum_{i=1}^{k} m_i \otimes \frac{p_i}{nq_i}\right)$$

$$= \sum_{i=1}^{k} m_i \otimes n \cdot \frac{p_i}{nq_i}$$

$$= \sum_{i=1}^{k} m_i \otimes \frac{p_i}{q_i}$$

$$= p(n).$$

Namely we have a commutative diagram

$$(n) \xrightarrow{p} \mathbb{Z}$$

$$M \otimes_{\mathbb{Z}} \mathbb{Q}$$

Note that \mathbb{Z} is a PID and every ideal in \mathbb{Z} has the form (n) for some $n \in \mathbb{Z}$. We have proved every \mathbb{Z} -module homomorphism p can be extended to a \mathbb{Z} -module homomorphism \tilde{p} . By Baer's Criterion, $M \otimes_{\mathbb{Z}} \mathbb{Q}$ is an injective \mathbb{Z} -module.

(2) We use the definition of injective modules. Consider the following diagram of solid arrows

$$\begin{array}{ccc}
M \otimes_{\mathbb{Z}} \mathbb{Q} \\
\downarrow & \uparrow & \uparrow \\
0 & \longrightarrow M & \xrightarrow{f} N
\end{array}$$

where $i: M \to M \otimes_{\mathbb{Z}} \mathbb{Q}$ is the inclusion map sending any $m \in M$ to $m \otimes 1 \in M \otimes_{\mathbb{Z}} \mathbb{Q}$. There exists a \mathbb{Z} -module homomorphism $\alpha: N \to M \otimes_{\mathbb{Z}} \mathbb{Q}$ such that the above diagram commutes. For any $m \in M$, we have

$$\alpha(f(m)) = i(m) = m \otimes 1.$$

(3) $- \otimes_{\mathbb{Z}} \mathbb{Q}$ is a functor and consider the following diagram

where $\mu: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbb{Q}$ is the product map. For any $m \in M$ and $\frac{p}{q} \in \mathbb{Q}$, we have

$$\gamma(m \otimes \frac{p}{q}) = (\beta \circ (f \otimes id))(m \otimes \frac{p}{q})$$

$$= \beta(f(m) \otimes \frac{p}{q})$$

$$= (id \otimes \mu) \circ (\alpha \otimes id)(f(m) \otimes \frac{p}{q})$$

$$= (id \otimes \mu)(\alpha(f(m)) \otimes \frac{p}{q})$$

$$= (id \otimes \mu)(m \otimes 1 \otimes \frac{p}{q})$$

$$= m \otimes \frac{p}{q}.$$

So $\gamma = id: M \otimes_{\mathbb{Z}} \mathbb{Q} \to M \otimes_{\mathbb{Z}} \mathbb{Q}$ is the identity.

(4) We first prove the following claim.

<u>Claim:</u> Suppose $p: X \to Y$ and $q: Y \to Z$ are two maps of \mathbb{Z} -modules. If $q \circ p$ is injective, then p is injective.

<u>Proof:</u> Let $x \in \ker p$. We have $p(x) = 0 \in Y$. This implies that $(q \circ p)(x) = q(0) = 0$. So

 $x \in \ker(q \circ p)$. Since $q \circ p$ is injective, so x = 0. This means p is also injective.

Use the claim above, because $id = \gamma = \beta \circ (f \otimes id)$ is injective, we can conclude that $f \otimes id$ is also injective. And since $- \otimes_{\mathbb{Z}} \mathbb{Q}$ sends injective maps to injective maps, \mathbb{Q} is a flat \mathbb{Z} -module.

Problem 17.2.20

Prove that a free module is flat. Then prove that a projective module is flat.

Solution: We will use Exercise 17.2.18. We prove it in the claim.

<u>Claim</u>: Let $(V_i)_{i\in I}$ be a family of R-modules. Then $\bigoplus_{i\in I} V_i$ is flat if and only if all V_i are flat.

<u>Proof:</u> Let $f: M \to N$ be an injective R-module homomorphism. Given a family of R-modules $(V_i)_{i \in I}$, by Theorem 17.2.16, we have a commutative diagram

$$M \otimes_R (\bigoplus_{i \in I} V_i) \xrightarrow{f \otimes id} N \otimes_R (\bigoplus_{i \in I} V_i)$$

$$\downarrow^{\alpha_M} \qquad \qquad \downarrow^{\alpha_N}$$

$$\bigoplus_{i \in I} (M \otimes_R V_i) \xrightarrow{\oplus (f \otimes id)} \bigoplus_{i \in I} (N \otimes_R V_i)$$

where α_M , α_N are isomorphism of abelian groups. Assume $\bigoplus_{i \in I} V_i$ is flat, this means $f \otimes id$ in the top row is injective. Then

$$\alpha_N \circ (f \otimes id) = \oplus (f \otimes id) \circ \alpha_M$$

is also injective because α_N is an isomorphism. And since α_M is also an isomorphism, we know that $\oplus (f \otimes id)$ is injective. Conversely, if $\oplus (f \otimes id)$ is injective, by the same argument, we can see that $f \otimes id$ in the top row is injective. This proves that $\bigoplus_{i \in I} V_i$ is flat if and only if all V_i are flat.

Let $f:M\to N$ be an injective R-module homomorphism. We know that $M\otimes_R R\cong M$ and $N\otimes_R R\cong R$, this isomorphism is functorial so we have a commutative diagram

$$M \otimes_R R \xrightarrow{f \otimes id} N \otimes_R R$$

$$\sim \downarrow \qquad \qquad \downarrow \sim$$

$$M \xrightarrow{f} N$$

We can see that $f \otimes id$ is also injective. So R is a flat R-module. By the claim we know that $\bigoplus_{i \in I} R$ is also flat. Suppose P is a projective R-module, this is equivalent to that there exists an R-module P' such that $P \oplus P' = \bigoplus_{i \in I} R$. We have already known that the free module $\bigoplus_{i \in I} R$ is flat, by the claim we know P is also flat.

Problem 17.3.2

If R is commutative and I, J are ideals in R, then there is an isomorphism of R-modules

$$R/I \otimes_R R/J \cong R/(I+J).$$

Solution: From what we know in Exercise 17.2.7, we can see that have an isomorphism of abelian groups

$$R/I \otimes_R R/J \cong (R/J)/I(R/J).$$

Since R is commutative, both sides can be viewed as an R-module and we the isomorphism we defined before is a R-module isomorphism.

<u>Claim:</u> If R is commutative and $I, J \subset R$ are ideals, then we have the following R-module isomorphisms.

$$I(R/J) \cong I/(I \cap J) \cong (I+J)/J.$$

<u>Proof:</u> We define a map of R-modules. For any $a(b+I) \in I(R/J)$ where $a \in I$ and $b+J \in R/J$,

$$f: I(R/J) \to I/(I \cap J),$$

 $a(b+J) \mapsto ab+I \cap J.$

We check this is well-defined. Suppose $b_1 + J$ and $b_2 + J$ are two representatives for the same element in R/J. This means $b_1 - b_2 \in J$. Then we know

$$f(a(b_1+J)) - f(a(b_2+J)) = a(b_1-b_2) + I \cap J.$$

Since $a \in I$ and $b_1 - b_2 \in J$, $a(b_1 - b_2) \in I \cap J$, so $f(a(b_1 + J)) = f(a(b_2 + J))$. Next, we are going to show this is an isomorphism. For any $a \in I$, consider the map

$$g: I/(I \cap J) \to I(R/J),$$

 $(a+I \cap J) \mapsto a(1+J).$

This is well-defined. Indeed, suppose for $a_1, a_2 \in I$, $a_1 + I \cap J$ and $a_2 + I \cap J$ represents the same element in $I/(I \cap J)$. This means $a_1 - a_2 \in I \cap J$. Then the image

$$g(a_1 + I \cap J) - g(a_2 + I \cap J) = (a_1 - a_2)(1 + J).$$

Note that $a_1 - a_2 \in I \cap J \subset J$, so $(a_1 - a_2)(1 + J) = (a_1 - a_2) + J = J$ is the zero element in R/J. So g is a well-define R-module homomorphism. Moreover, we have $f \circ g = id$ and for any $a \in I$ and $b + J \in R/J$,

$$g(ab + I \cap J) = ab(1+J) = a(b+J).$$

This proves that f is an isomorphism of R-modules and

$$I(R/J) \cong I/(I \cap J) \cong (I+J)/J.$$

The next isomorphism is by the second isomorphism theorem in commutative rings. Note that $J \subset I + J \subset R$, use the third isomorphism theorem and we have

$$R/I \otimes_R R/J \cong (R/J)/I(R/J) \cong (R/J)/(I+J/J) \cong R/(I+J).$$

Problem 17.3.10

 $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong M_2(\mathbb{C})$ as \mathbb{C} -algebras.

Solution: \mathbb{H} is a 4-dimensional \mathbb{R} -vector space with standard \mathbb{R} -basis $\{1, i, j, k\}$ and \mathbb{C} is a \mathbb{R} -vector

space with \mathbb{R} -basis $\{1, \sqrt{-1}\}$. By Theorem 17.3.4, $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C}$ has a \mathbb{R} -basis

$$1 \otimes 1, i \otimes 1, j \otimes 1, k \otimes 1, 1 \otimes i, i \otimes i, j \otimes i, k \otimes i.$$

If we view $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C}$ as a \mathbb{C} -algebra, then for any $a \in \{1, i, j, k\}$, we have

$$i(a \otimes 1) = a \otimes i$$
.

Thus,

$$1 \otimes 1, i \otimes 1, j \otimes 1, k \otimes 1$$

is a basis for $\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C}$ as a \mathbb{C} -algebra. Consider the following map

$$f: \mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \to M_2(\mathbb{C}),$$

$$1 \otimes 1 \mapsto \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix},$$

$$i \otimes 1 \mapsto \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix},$$

$$j \otimes 1 \mapsto \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix},$$

$$k \otimes 1 \mapsto \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

It is easy to check that

$$f(i\otimes 1)^2 = f(j\otimes 1)^2 = f(k\otimes 1)^2 = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix}$$

and

$$f(i \otimes 1)f(j \otimes 1) = -f(j \otimes 1)f(i \otimes 1) = \begin{pmatrix} 0 & \sqrt{-1} \\ -\sqrt{-1} & 0 \end{pmatrix} = f(k \otimes 1),$$

$$f(j \otimes 1)f(k \otimes 1) = -f(k \otimes 1)f(j \otimes 1) = \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix} = f(i \otimes 1),$$

$$f(k \otimes 1)f(i \otimes 1) = -f(i \otimes 1)f(k \otimes 1) = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} = f(j \otimes 1).$$

So f defines a \mathbb{C} -algebra homomorphism. Next, we are going to show f is surjective. Let $M \subset M_2(\mathbb{C})$ be the subspace generated by

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} i & 0 \\ 0 & -i \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}.$$

We can see that

$$\frac{1}{2}(f(1\otimes 1) - if(i\otimes 1)) = \frac{1}{2}(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix},$$

$$\frac{1}{2}(f(1\otimes 1) + if(i\otimes 1)) = \frac{1}{2}(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}) = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix},$$

$$\frac{1}{2}(f(j\otimes 1) - if(k\otimes 1)) = \frac{1}{2}(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} - \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}) = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix},$$

$$-\frac{1}{2}(f(j\otimes 1) + if(k\otimes 1)) = -\frac{1}{2}(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}) = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}.$$

We know that $M_2(\mathbb{C})$ can be generated by

$$\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

as a \mathbb{C} -algebra. This proves that $M=M_2(\mathbb{C})$ and f is surjective. Note that

$$\dim_{\mathbb{C}}(\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C}) = 4 = \dim_{\mathbb{C}}(M_2(\mathbb{C})).$$

So we have

$$\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C} \cong M_2(\mathbb{C})$$

as \mathbb{C} -algebras.

Problem 17.3.11

 $M_n(R) \otimes_R M_m(R) \cong M_{mn}(R)$ for a commutative ring R.

Solution: Let $A = (a_{ij})_{1 \leq i,j \leq n} \in M_n(R)$ and $B = (b_{kl})_{1 \leq k,l \leq m} \in M_m(R)$. We define a map

$$f: M_n(R) \times M_m(R) \to M_{mn}(R),$$

$$(A, B) \mapsto \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{pmatrix}.$$

where the image is a block matrix and for $1 \le i, j \le n$, each block $a_{ij}B$ is a $m \times m$ matrix with (k, l)-entry $a_{ij}b_{kl}$ for $1 \le k, l \le m$. For any $r \in R$, we have

$$f(Ar, B) = \begin{pmatrix} a_{11}rB & a_{12}rB & \cdots & a_{1n}rB \\ a_{21}rB & a_{22}rB & \cdots & a_{2n}rB \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}rB & a_{n2}rB & \cdots & a_{nn}rB \end{pmatrix} = f(A, rB).$$

So f is a R-balanced map and by universal property of tensor product, we have an R-module

homomorphism $\tilde{f}: M_n(R) \otimes_R M_m(R) \to M_{mn}(R)$. Suppose $A \otimes B \in M_n(R) \otimes_R M_m(R)$ satisfying $\tilde{f}(A \otimes B) = 0$, namely $a_{ij}B$ is the zero matrix for any $1 \leq i, j \leq n$. Let E_{ij} be the $n \times n$ matrix with 1 at the (i, j)-entry and all other entries are zero. Then we can write

$$A \otimes B = (\sum_{1 \leq i, j \leq n} a_{ij} E_{ij}) \otimes B$$

$$= \sum_{1 \leq i, j \leq n} (a_{ij} E_{ij} \otimes B)$$

$$= \sum_{1 \leq i, j \leq n} E_{ij} \otimes a_{ij} B$$

$$= \sum_{(1 \leq i, j \leq n)} (1 \leq i, j \leq n) E_{ij} \otimes 0$$

$$= 0$$

This proves $\ker \tilde{f} = 0$, so \tilde{f} is injective. Note that both the matrix algebra $M_n(R)$ is a free R-module of rank n^2 , so we have

$$\operatorname{rank}(M_n(R) \otimes_R M_m(R)) = \operatorname{rank} M_n(R) \cdot \operatorname{rank} M_m(R) = n^2 \cdot m^2 = (mn)^2 = \operatorname{rank} M_m(R).$$

This proves that \tilde{f} is an R-module isomorphism. The last thing we need to show is that \tilde{f} is compatible with matrix multiplication. Let $A \otimes B, C \otimes D \in M_n(R) \otimes_R M_m(R)$, suppose $A = (a_{ij})_{1 \leq i,j \leq n}$ and $C = (c_{ij})_{1 \leq i,j \leq n}$. Then we have

$$\tilde{f}(A \otimes B) \cdot \tilde{f}(C \otimes D) = \begin{pmatrix} a_{11}B & a_{12}B & \cdots & a_{1n}B \\ a_{21}B & a_{22}B & \cdots & a_{2n}B \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1}B & a_{n2}B & \cdots & a_{nn}B \end{pmatrix} \begin{pmatrix} c_{11}D & c_{12}D & \cdots & c_{1n}D \\ c_{21}D & c_{22}D & \cdots & c_{2n}D \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1}D & c_{n2}D & \cdots & c_{nn}D \end{pmatrix}$$

Viewed as a block matrix, for $1 \le i, j \le n$, the (i, j)-block entry is

$$\sum_{k=1}^{n} (a_{ik}B)(c_{kj}D) = \sum_{k=1}^{n} (a_{ik}c_{kj})BD = (AC)_{ij}BD$$

where $(AC)_{ij}$ means the (i,j)-entry for the matrix AC. On the other hand, we know that

$$\tilde{f}(AC \otimes BD) = \begin{pmatrix}
(AC)_{11}BD & (AC)_{12}BD & \cdots & (AC)_{1n}BD \\
(AC)_{21}BD & (AC)_{22}BD & \cdots & (AC)_{2n}BD \\
\vdots & \vdots & \ddots & \vdots \\
(AC)_{n1}BD & (AC)_{n2}BD & \cdots & (AC)_{nn}BD
\end{pmatrix}$$

This proves that

$$\tilde{f}(A \otimes B) \cdot \tilde{f}(C \otimes D) = \tilde{f}(AC \otimes BD).$$

So \tilde{f} is indeed an matrix algebra homomorphism.

Problem 17.3.13

True or false? $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$ as \mathbb{Z} -algebras.

Solution: This is true. The isomorphism we defined in Exercise 17.2.6 is the map

$$f: \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \to \mathbb{Q},$$
$$\frac{p}{q} \otimes \frac{r}{s} \mapsto \frac{pq}{rs}$$

We need to show f is compatible with multiplication. Suppose $\frac{p_1}{q_1} \otimes \frac{r_1}{s_1}, \frac{p_2}{q_2} \otimes \frac{r_2}{s_2} \in \mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q}$, we have

$$\begin{split} f(\frac{p_1}{q_1} \otimes \frac{r_1}{s_1}) \cdot f(\frac{p_2}{q_2} \otimes \frac{r_2}{s_2}) &= \frac{p_1 r_1}{q_1 s_1} \cdot \frac{p_2 r_2}{q_2 s_2} \\ &= \frac{p_1 p_2 r_1 r_2}{q_1 q_2 s_1 s_2} \\ &= f(\frac{p_1 p_2}{q_1 q_2} \otimes \frac{r_1 r_2}{s_1 s_2}) \\ &= f((\frac{p_1}{q_1} \otimes \frac{r_1}{s_1}) \cdot (\frac{p_2}{q_2} \otimes \frac{r_2}{s_2})) \end{split}$$

Now we know that $\mathbb{Q} \otimes_{\mathbb{Z}} \mathbb{Q} \cong \mathbb{Q}$ as \mathbb{Z} -algebras.

Problem 17.3.21

True or false? Let A and B be a finite dimensional semisimple algerbras over an alegbraically closed field \mathbb{F} . Then every finite dimensional $A \otimes B$ -module is of the form $V \boxtimes W$ for some A-module V and some B-module W.

Solution: This is false. Consider $A = M_2(\mathbb{C}) \times M_3(\mathbb{C})$ and $B = M_3(\mathbb{C}) \times M_4(\mathbb{C})$. By Wedderburn-Artin Theorem for algebras, A and B are semisimple. By Proposition 16.2.8, simple A-modules up to isomorphism have the form \mathbb{C}^2 , \mathbb{C}^3 and simple B-modules up to isomorphism have the form \mathbb{C}^3 , \mathbb{C}^4 . Consider the $A \otimes_{\mathbb{C}} B$ -module $M = (\mathbb{C}^2 \boxtimes \mathbb{C}^4) \oplus (\mathbb{C}^3 \boxtimes \mathbb{C}^3)$. By Theorem 17.3.20, we know that both $\mathbb{C}^2 \boxtimes \mathbb{C}^4$ and $\mathbb{C}^3 \boxtimes \mathbb{C}^3$ are simple $A \otimes_{\mathbb{C}} B$ -modules, so M is a finite dimensional $A \otimes_{\mathbb{F}} B$ -module. Now we show that M cannot be written as $V \boxtimes W$ where V is a A-module and W is a B-module. Note that A and B are semisimple, every A-module and B-modules. For dimension reasons, we have

$$\dim_{\mathbb{C}} M = 17 = \dim_{\mathbb{C}} V \cdot \dim_{\mathbb{C}} W.$$

So one of $\dim_{\mathbb{C}} V$ or $\dim_{\mathbb{C}} W$ has to be 1, but \mathbb{C} is not a simple A-module or simple B-module. Thus, M cannot be written in this form.