Poshlem: Input: A set of n points P= {P1, P2, ..., Pn}
output: Find a pair (Pi, bj) such that their
listance is minimum.

A naire algorithm

For each pair compute the Listance return the pair with minimum Listonce.

running time O(n)

can we do better??

1D-ression points are on a line. Sort the points. tare distance between consecutive pair,

running time! O(n(rgn) + O(n)

Applying D&C on DVersion

Sort the points

closest/air (P) If (P) = 1 Yeturn SF=4 $J \in |P| = 2 \quad \text{return} \quad S_F = |P_2 - P_1|$ otherwise L = median (P) Divide P in P, and P2 W. T. +. L S, = dosest pair (Pi) SR = closest pour (P2) S12 = minimum distance crossing L relum $S_F = min \{ S_L, S_R, S_{12} \}$ $T(n) = 2T(n_2) + f(n)$ where f(n)

 $S = \min\{\delta_1, S_R\}$

$$T(n) = 2T(2) + A(n)$$

$$= O(nlogn)$$

2 D- Verrim closest par 2D(P) .25 = tor each pinh, and for each 2 in b compute their sistemes 812 = minimum of them 8F = { SL, SR, S12}

S = min{5,5p} $T(n) = 2 T(n_2) + O(n^2)$ - 0 (n²) improvement ave there in a ringle bor ?

Ang. At most 1

5/2

45

The tinal algorithm

Pri: Sorted in x order

Closest pair 2D (P)

Py: 1, 1, 1, 0 order construct P_{χ} and P_{χ} — $O(n|n_{g}n)$ α : first n_{χ} boints in P_{χ} $(P_{0},P_{1}^{*})=closest-pair-rec}(P_{\chi},P_{\chi})$ — $O(n|g_{1}n)$ R \in remaining points in P_{χ} (ro/rx) - 11 11 (Ra, Ry) -T(M/2) $S = min \left\{ d\left(q_0^*, q_1^*\right), d\left(\gamma_0^*, \gamma_1^*\right) \right\} - \theta(1)$ $x^* = max$ x-coordinate of a point in $q - \theta()$ $L = \{(x,y) \mid x = x^* \}$ 5 = points in p within 5 distance of L - O(n)

construct Sy for each point SESy compute Listomers from (Storach of the next 15 privis in Sy let S12 be minimum $S_{12} = d \left(2^{*}_{2}, 8^{*}_{2} \right)$ If $J(q_n^*, \theta_n^*) \leq S$ then return $(2^{\chi}, \gamma_{L}^{\star})$ else if d (20,94) Ld (70*,701*) Jeturn (20,21) return (ro, r, x) T(n) = 2T(n) + O(n)- 0 (n/gn)