LAPORAN

DATA SCIENCE CLASS (DSC) 2021

ANALISIS PENGARUH INDEK PEMBANGUNAN MANUSIA (IPM) DAN TINGKAT PENGANGGURAN TERHADAP KEMISKINAN DI INDONESIA

Nama : Siti Fatonah

NIM : 192400001

Kelas : Statistika 2019 A

Jurusan : Statistika

PROGRAM STUDI STATISTIKA FAKULTAS SAINS TEKNOLOGI UNIVERSITAS PGRI ADI BUANA SURABAYA TAHUN 2021/2022

1. Deskripsi Dataset

Data yang digunakan pada analisis ini adalah data sekunder yang diperoleh dari data penelitian yang dilakukan oleh peneliti terdahulu. Dalam analisis ini data yang digunakan terdiri dari dua variabel independen dan satu variabel dependen, yaitu data indek pembangunan masyarakat (X_1) dan tingkat pengangguran (X_2) serta data kemiskinan (Y).

Kemiskinan	IPM	Pengangguran		
16.98	68.81	9.02		
17.11	69.45	9.93		
16.43	70.00	7.57		
15.92	70.60	6.57		
4.76	72.48	1.90		
5.25	73.27	1.99		
4.15	73.65	1.89		
4.14	74.30	1.48		
4.97	68.27	5.14		
4.83	69.05	6.29		
5.04	69.55	2.60		
5.30	69.99	3.78		
5.51	69.89	9.07		
5.75	70.27	9.55		
5.36	70.96	8.92		
5.59	71.42	9.28		
17.09	68.06	3.47		
17.16	68.59	4.91		
17.03	69.33	3.30		
15.59	69.95	3.74		
4.09	78.39	8.47		
3.61	78.99	7.23		
3.75	79.60	6.12		
3.78	80.06	7.14		
17.41	65.17	4.18		
18.16	65.86	4.65		
17.63	66.29	2.76		
17.14	67.01	4.28		
9.18	68.80	8.45		
9.57	69.50	8.72		
8.77	70.05	8.89		
7.83	70.69	8.22		
8.39	68.24	5.08		
9.12	68.89	4.34		

8.37	69.62	4.00		
7.90	69.99	3.87		
13.58	68.78	5.68		
13.32	69.49	4.99		
13.19	69.98	4.63		
12.23	70.52	4.57		
12.28	68.14	4.19		
12.28	68.95	4.47		
11.85	69.74	4.21		
11.20	70.27	4.00		
8.07	64.89	4.04		
8.44	65.59	5.15		
8.00	65.88	4.23		
7.86	66.26	4.36		
4.81	67.63	3.80		
4.72	68.38	4.92		
4.52	69.05	5.45		
4.70	69.65	4.77		
6.07	67.77	3.24		
5.91	68.53	4.54		
5.36	69.13	4.82		
5.26	69.79	4.23		
6.31	73.82	7.38		
6.10	74.17	7.50		
6.00	74.59	7.95		
6.08	75.12	6.91		
6.00	68.64	5.50		
6.32	68.76	5.68		
6.99	69.20	5.23		
6.96	69.84	5.54		
6.40	73.40	6.69		
5.78	73.75	6.20		
5.84	73.99	7.69		
6.13	74.45	7.16		
14.21	66.42	4.79		
13.53	66.95	5.14		
13.86	67.65	4.62		
13.04	68.25	4.33		
18.44	66.74	10.51		
19.36	67.05	9.93		
19.26	67.60	7.05		

18.29	68.19	9.29		
7.41	65.18	5.29		
6.22	65.91	6.05		
6.41	66.63	4.01		
6.44	67.20	5.33		
17.05	64.31	5.75		
16.54	65.19	5.69		
16.02	65.81	3.94		
15.05	66.58	3.32		
19.60	62.26	3.26		
22.58	62.67	3.83		
22.01	63.13	3.25		
21.38	63.73	3.27		
26.26	61.28	5.02		
25.73	61.73	8.08		
24.88	62.21	7.46		
23.12	62.99	6.49		
27.80	56.75	3.44		
28.40	57.25	3.99		
28.40	58.05	3.35		
27.76	59.09	3.62		
7.99	70.33	6.56		
8.82	70.84	7.83		
7.67	71.20	7.43		
7.41	71.79	6.22		
12.05	62.24	2.08		
11.90	62.96	3.35		
11.19	63.60	3.33		
11.18	64.30	3.21		
9.54	68.49	5.08		
10.12	69.15	5.95		
9.24	69.76	4.80		
9.48	70.34	5.61		
13.61	66.43	3.68		
14.07	66.76	4.10		
14.09	67.47	3.29		
14.22	68.11	3.81		
12.77	68.07	4.43		
13.74	68.75	5.55		
12.77	69.31	2.72		
11.97	69.86	3.30		

8.26	66.43	7.54
8.98	70.39	9.03
8.20	71.05	6.18
7.90	71.66	7.18
6.89	69.36	6.50
6.71	69.98	6.89
7.14	70.73	5.09
6.75	71.24	5.58
13.62	66.75	4.96
13.77	67.46	6.07
13.39	68.24	4.31
13.10	68.86	4.39
9.85	68.87	6.23
10.79	69.51	6.71
10.27	70.00	5.84
9.28	70.57	5.60
14.55	76.81	3.33
13.16	77.59	4.07
13.10	78.38	2.72
12.36	78.89	3.02

2. Preprocessing Data

1) Import library

```
In [2]: import pandas as pd
   import numpy as np
   import statsmodels
   import patsy
   import statsmodels.api as sm
   import matplotlib.pyplot as plt
   from sklearn.linear_model import LinearRegression
   from sklearn.model_selection import train_test_split
   from sklearn import metrics
```

Import library yang diperlukan dalam analisis.

2) Memanggil data

```
In [3]: data = pd.read_csv('siti_dsc.csv')
    data
```

Syntax diatas digunakan untuk memanggil data yang akan di analisis sehingga menghasilkan output sebagai berikut:

Out[3]:				
		Kemiskinan	IPM	Pengangguran
	0	16.98	68.81	9.02
	1	17.11	69.45	9.93
	2	16.43	70.00	7.57
	3	15.92	70.60	6.57
	4	4.76	72.48	1.90
	131	9.28	70.57	5.60
	132	14.55	76.81	3.33
	133	13.16	77.59	4.07
	134	13.10	78.38	2.72
	135	12.36	78.89	3.02

136 rows × 3 columns

3) Penentuan variabel

```
In [6]: nama=['IPM','Pengangguran']
   X=data[nama]
   Y=data.Kemiskinan
   X
```

Syntax diatas digunakan untuk menentukan variabel yang dijadikan variabel independen dan variabel dependen dan menghasilkan output sebagai berikt:

Out	161
out	Lol.

	IPM	IPM Pengangguran		
0	68.81	9.02		
1	69.45	9.93		
2	70.00	7.57		
3	70.60	6.57		
4	72.48	1.90		
131	70.57	5.60		
132	76.81	3.33		
133	77.59	4.07		
134	78.38	2.72		
135	78.89	3.02		

136 rows x 2 columns

4) Data testing dan training

```
[9]: X_train, X_test, Y_train, Y_test = train_test_split(X,Y,random_state=1)
```

Syntax diatas digunakan untuk membagi data menjadi data testing dan data training.

5) Analisis regresi berganda

Berikut ini merupakan syntax-syantax yang digunakan untuk analisis regresi berganda:

• Model regresi linier

```
In [10]: from sklearn.linear_model import LinearRegression
    LinReg=LinearRegression()
```

• Membuat model dengan data latih

```
In [11]: LinReg.fit(X_train,Y_train)
Out[11]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
```

• Membuat prediksi pada pengujian data

```
In [13]: y_pred=LinReg.predict(X_test)
```

Menghitung RMSE

```
In [15]: print(np.sqrt(metrics.mean_squared_error(Y_test,y_pred)))
```

• Membuat model regresi

```
In [16]: model=sm.OLS(Y,X).fit()
    predictions=model.predict(X)
    model.summary()
```

Dari syntax diatas menghasilkan output sebagai berikut:

Out[16]: OLS Regression Results

Dep. Variable	e:	Kemiskir	nan	R-sq	uared (ur	ncentered	0.75
Mode	l:	0	LS Ad	j. R-sq	uared (ur	ncentered	0.74
Method	d: Le	ast Squa	res			F-statisti	c: 202.
Date	e: Sun,	30 Jan 20)22		Prob (I	F-statistic): 3.52e-4
Time	e:	22:06	:45		Log-	Likelihoo	d: -445.6
No. Observations	s:	1	136			AIC	C: 895.
Df Residuals	s:	1	134			BIG	C: 901.0
Df Mode	l:		2				
Covariance Type	e:	nonrob	ust				
	coef	std err	t	P> t	[0.025	0.975]	
IPM	0.1675	0.024	6.999	0.000	0.120	0.215	
Pengangguran	-0.0793	0.289	-0.274	0.784	-0.651	0.492	
Omnibus	24.600	Durbi	in Mate		0.245		
Omnibus:	21.690	Durbi	in-Watso	on:	0.345		
Prob(Omnibus):	0.000	Jarque-	Bera (J	B):	26.352		
Skew:	1.019		Prob(J	B): 1.	90e-06		
Kurtosis:	3.706		Cond. I	No.	36.2		

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correct

3. Modelling dan evaluating

Model regresi

Dari hasil output diatas sehingga dapat diperoleh model regresi linier berganda sebagai berikut:

$$\hat{Y} = \beta_0 + \beta_1 X_1 + \beta_2 X_2$$

$$\hat{Y} = \beta_0 + 0.1675 X_1 + (-0.0793) X_2$$

- Uji parsial
 - Hipotesis:

H0: i = 0, i = 0,1,2 (Tidak ada pengaruh secara singnifikan antara X dan Y) H1: i = 0, i = 0,1,2 (Ada pengaruh secara singnifikan antara X dan Y)

• Taraf signifikansi = 5% (0,05)

• Daerah kritis : Tolak H0 jika p-value < 0,05

• Keputusan

Nilai p-value X1 sebesar 0,000 < 0,05 : Tolak H0 Nilai p-value X2 sebesar 0,784 > 0,05 : Gagal toalk H0

• Kesimpulan

Variabel X1 berpengaruh signifikan terhadap variabel Y sedangkan variabel X2 tidak berpengaruh signifikan terhadap variabel Y.

\blacksquare R – square

Nilai R-square sebesar 0,751 dapat disimpulkan bahwa indeks pembangunan masyatakat (IPM) dan tingkat pengangguran berpengaruh terhadap kemiskinan sebesar 75,1% sisanya 24,9% dipengaruhi oleh faktor lain yang tidak masuk dalam model penelitian ini.

4. Kesimpulan

Variabel X1 berpengaruh signifikan terhadap variabel Y sedangkan variabel X2 tidak berpengaruh signifikan terhadap variabel Y. Nilai R-square sebesar 0,751 dapat disimpulkan bahwa indeks pembangunan masyatakat (IPM) dan tingkat pengangguran berpengaruh terhadap kemiskinan sebesar 75,1% sisanya 24,9% dipengaruhi oleh faktor lain yang tidak masuk dalam model penelitian ini.