Code

Emily Mittleman & Julia Rosner

2022 - 12 - 05

This file will be used for our initial code while we explore the data, different models, etc. Then we'll compile it into Report. Rmd

Load Data

```
data <- read.csv("Data/diabetes_012.csv", header = TRUE)</pre>
```

EDA

head(data)

##		Diabetes_0	012 Hig	nBP	HighCh	ıol	CholCl	neck	BMI	Smoke	r St	roke	Неа	artDiseaseo	rAttack
##	1		0	1		1		1	40		1	0			0
##	2		0	0		0		0	25		1	0			0
##	3		0	1		1		1	28	()	0			0
##	4		0	1		0		1	27	()	0			0
##	5		0	1		1		1	24	()	0			0
##	6		0	1		1		1	25		1	0			0
##		PhysActivi	ity Fru	its	Veggie	s H	IvyAlc	ohol	Consi	ımp An	yHea	lthca	are	${\tt NoDocbcCos}$	t
##	1		0	0		1				0			1		0
##	2		1	0		0				0			0		1
##	3		0	1		0				0			1		1
##	4		1	1		1				0			1		0
##	5		1	1		1				0			1		0
##	6		1	1		1				0			1		0
##		GenHlth Me	entHlth	Phy	sHlth	Dif	fWalk	Sex	Age	Educa	tion	Inco	ome		
##	1	5	18		15		1	0	9		4		3		
##	2	3	0		0		0	0	7		6		1		
##	3	5	30		30		1	0	9		4		8		
##	4	2	0		0		0	0	11		3		6		
##	5	2	3		0		0	0	11		5		4		
##	6	2	0		2		0	1	10		6		8		

Look at correlations between variables. helps to know which attributes are highy dependent on the prediction variable

##		Diabetes_012	HighBP	HighChol	CholCheck
##	Diabetes_012	1.00000000	0.271596424	0.20908491	0.067546476
##	HighBP	0.27159642	1.000000000	0.29819930	0.098508273
##	HighChol	0.20908491	0.298199295	1.00000000	0.085642228
##	CholCheck	0.06754648	0.098508273	0.08564223	1.000000000
##	BMI	0.22437947	0.213748120	0.10672208	0.034495087
##	Smoker	0.06291410	0.096991467	0.09129936	-0.009928878
##	Stroke	0.10717867	0.129574913	0.09262007	0.024157667
##	${\tt HeartDiseaseorAttack}$	0.18027169	0.209361211	0.18076535	0.044205810
##	PhysActivity	-0.12194717	-0.125266866	-0.07804619	0.004189617
##	Fruits	-0.04219163	-0.040554659	-0.04085908	0.023849406
##	Veggies	-0.05897160	-0.061266165	-0.03987361	0.006121010
##	HvyAlcoholConsump	-0.05788191	-0.003971574	-0.01154252	-0.023730091
##	AnyHealthcare	0.01541038	0.038424769	0.04222986	0.117625625
##	NoDocbcCost	0.03543569	0.017357984		-0.058255084
	GenHlth	0.30258662	0.300529631	0.20842555	0.046588865
	MentHlth	0.07350677	0.056455917		-0.008365598
	PhysHlth	0.17628674	0.161211571	0.12175053	0.031774808
	DiffWalk	0.22423912	0.223618466	0.14467154	0.040585057
##	Sex	0.03104016	0.052206961		-0.022115036
	Age	0.18502579	0.344452330	0.27231823	0.090321114
##	Education		-0.141357934		0.001510491
##	Income		-0.171234581		0.014258747
##		BMI	Smoker		HeartDiseaseorAttack
##	Diabetes_012	0.22437947	0.062914095	0.107178670	0.18027169
##	HighBP	0.21374812	0.096991467	0.129574913	0.20936121
##	HighChol	0.10672208	0.091299357	0.092620074	0.18076535
##	CholCheck		-0.009928878	0.024157667	0.04420581
	BMI	1.00000000	0.013804467	0.020152661	0.05290426
##	Smoker	0.01380447	1.00000000	0.061172675	0.11444122
	Stroke	0.02015266	0.061172675	1.000000000	0.20300194
	HeartDiseaseorAttack		0.114441218	0.203001940	1.00000000
	PhysActivity		-0.087401163		-0.08729899
	Fruits		-0.077665839		-0.01979035
	Veggies		-0.030677710 -		-0.03916741
	HvyAlcoholConsump	-0.04873628	0.101618687		-0.02899052
	AnyHealthcare	-0.01847079	0.048945823	0.008775925	0.01873419
	NoDocbcCost GenHlth	0.05820629		0.034804106	0.03099970
	MentHlth	0.23918537	0.163143067	0.177942260 0.070171812	0.25838341
		0.08531016	0.092196474 0.116459714		0.06462129
	PhysHlth DiffWalk	0.12114111 0.19707776			0.18169754 0.21270870
	Sex	0.19707776	0.093662361		0.08609551
	Age Education	-0.03661764	0.120641084 -0.161955255 -		0.22161763 -0.09959992
	Income		-0.161955255		-0.14101123
##	THCOME	PhysActivity			HvyAlcoholConsump
	Diabetes_012	,	-0.04219163 ·		-0.057881912
	HighBP		-0.04219163		-0.037681912
	HighChol		-0.04085908		-0.003971574
πт	111-21101101	0.070040100	0.04000000	0.000010001	0.011042013

```
## CholCheck
                        0.004189617 0.02384941 0.006121010
                                                                   -0.023730091
## BMT
                        -0.147293634 -0.08751812 -0.062275194
                                                                   -0.048736275
                        -0.087401163 -0.07766584 -0.030677710
## Smoker
                                                                    0.101618687
## Stroke
                        -0.069151416 -0.01338935 -0.041124225
                                                                   -0.016950330
## HeartDiseaseorAttack -0.087298987 -0.01979035 -0.039167409
                                                                   -0.028990516
                        1.000000000 0.14275586 0.153149570
## PhysActivity
                                                                   0.012392236
## Fruits
                        0.142755863
                                     1.00000000
                                                 0.254342244
                                                                   -0.035287733
## Veggies
                        0.153149570 0.25434224
                                                 1.000000000
                                                                    0.021064481
## HvyAlcoholConsump
                        0.012392236 -0.03528773
                                                 0.021064481
                                                                    1.00000000
## AnyHealthcare
                        0.035504737 0.03154392 0.029583817
                                                                   -0.010488085
## NoDocbcCost
                        -0.061638387 -0.04424269 -0.032231705
                                                                    0.004683595
## GenHlth
                        -0.266185624 -0.10385417 -0.123066330
                                                                   -0.036723570
## MentHlth
                        -0.125587088 -0.06821738 -0.058883553
                                                                    0.024715803
## PhysHlth
                       -0.219229522 -0.04463332 -0.064290327
                                                                   -0.026415474
## DiffWalk
                        -0.253174007 -0.04835167 -0.080505717
                                                                   -0.037668174
## Sex
                        0.032481686 -0.09117487 -0.064765156
                                                                    0.005740219
## Age
                       -0.034577637
## Education
                        0.199658057
                                     0.11018710 0.154329262
                                                                    0.023996867
## Income
                        0.198539455 0.07992931 0.151086944
                                                                   0.053618566
##
                        AnyHealthcare NoDocbcCost
                                                        GenHlth
                                                                   MentHlth
## Diabetes_012
                         0.015410377
                                      0.035435685 0.302586621
                                                                0.073506766
## HighBP
                          0.038424769
                                                   0.300529631
                                                                 0.056455917
                                      0.017357984
## HighChol
                                                                0.062069154
                          0.042229862 0.013310163
                                                   0.208425550
## CholCheck
                          0.117625625 -0.058255084
                                                   0.046588865 -0.008365598
## BMT
                                                                0.085310159
                        -0.018470787
                                      0.058206290
                                                   0.239185373
## Smoker
                         -0.023250803
                                      0.048945823
                                                   0.163143067
                                                                0.092196474
## Stroke
                          0.008775925
                                                   0.177942260
                                      0.034804106
                                                                0.070171812
## HeartDiseaseorAttack
                          0.018734186
                                      0.030999705
                                                   0.258383409
                                                                0.064621292
## PhysActivity
                          0.035504737 -0.061638387 -0.266185624 -0.125587088
## Fruits
                          0.031543919 -0.044242689 -0.103854171 -0.068217375
## Veggies
                          0.029583817 -0.032231705 -0.123066330 -0.058883553
## HvyAlcoholConsump
                         -0.010488085 0.004683595 -0.036723570
                                                                0.024715803
## AnyHealthcare
                          1.000000000 -0.232532105 -0.040817072 -0.052706597
## NoDocbcCost
                                      1.000000000
                         -0.232532105
                                                   0.166397186
                                                                0.192106853
## GenHlth
                         -0.040817072
                                      0.166397186
                                                   1.00000000
                                                                0.301674393
## MentHlth
                        -0.052706597
                                      0.192106853
                                                   0.301674393
                                                                1.000000000
## PhysHlth
                        -0.008276167 0.148997564
                                                   0.524363644
                                                                0.353618868
## DiffWalk
                         0.007074092 0.118446862
                                                   0.456919503
                                                                0.233688079
## Sex
                         -0.019405465 -0.044931366 -0.006091004 -0.080704863
## Age
                         0.138045679 -0.119777068 0.152449830 -0.092068024
## Education
                         0.122514239 -0.100701002 -0.284911532 -0.101829695
## Income
                         0.157999279 -0.203182369 -0.370013734 -0.209806127
                           PhysHlth
                                        DiffWalk
                                                          Sex
                                                                        Age
## Diabetes_012
                        0.176286736 0.224239123
                                                  0.031040164
                                                               0.185025794
## HighBP
                        0.161211571
                                     0.223618466
                                                  0.052206961
                                                               0.344452330
## HighChol
                        0.031205330
                                                               0.272318226
                                                               0.090321114
## CholCheck
                        0.031774808
                                     0.040585057 -0.022115036
## BMI
                        0.121141107
                                     0.197077760
                                                  0.042950303 -0.036617635
## Smoker
                        0.116459714
                                     0.122463215
                                                  0.093662361
                                                               0.120641084
## Stroke
                        0.148944169
                                     0.176566917
                                                  0.002978288
                                                               0.126973699
## HeartDiseaseorAttack 0.181697536
                                     0.212708695
                                                  0.086095508
                                                               0.221617632
## PhysActivity
                       -0.219229522 -0.253174007 0.032481686 -0.092510633
## Fruits
                        -0.044633325 -0.048351675 -0.091174865
                                                               0.064547217
## Veggies
                        -0.064290327 -0.080505717 -0.064765156 -0.009771198
```

```
-0.026415474 -0.037668174 0.005740219 -0.034577637
## HvyAlcoholConsump
## AnyHealthcare
                   ## NoDocbcCost
                    ## GenHlth
                    ## MentHlth
## PhysHlth
                   1.000000000 0.478416619 -0.043136502 0.099129925
## DiffWalk
                    0.478416619 1.000000000 -0.070298902 0.204450090
## Sex
                   -0.043136502 -0.070298902 1.000000000 -0.027340383
## Age
                    ## Education
                   -0.155092517 -0.192642100 0.019479786 -0.101901070
## Income
                   -0.266798962 -0.320124244 0.127141058 -0.127775278
##
                      Education
                                  Income
## Diabetes_012
                   -0.130516918 -0.17148304
                   -0.141357934 -0.17123458
## HighBP
## HighChol
                   -0.070801887 -0.08545931
## CholCheck
                    0.001510491 0.01425875
## BMI
                   -0.103932022 -0.10006871
## Smoker
                   -0.161955255 -0.12393723
## Stroke
                   -0.076008557 -0.12859858
## HeartDiseaseorAttack -0.099599915 -0.14101123
## PhysActivity
                    0.199658057 0.19853946
## Fruits
                    0.110187097 0.07992931
## Veggies
                    0.154329262 0.15108694
## HvyAlcoholConsump
                   0.023996867 0.05361857
## AnyHealthcare
                    0.122514239 0.15799928
## NoDocbcCost
                   -0.100701002 -0.20318237
## GenHlth
                   -0.284911532 -0.37001373
## MentHlth
                   -0.101829695 -0.20980613
## PhysHlth
                   -0.155092517 -0.26679896
## DiffWalk
                   -0.192642100 -0.32012424
                    0.019479786 0.12714106
## Sex
## Age
                   -0.101901070 -0.12777528
## Education
                    1.000000000 0.44910642
## Income
                    0.449106424 1.00000000
```

corrplot(correlations, method="color")

Next, look at box plots of the 2 most correlated predictors and color by outcome.

```
ggplot(data, aes(x = HighBP, fill = factor(Diabetes_012))) +
geom_bar(position="fill")
```



```
ggplot(data, aes(x = GenHlth, fill = factor(Diabetes_012))) +
geom_bar(position="fill")
```



```
ggplot(data, aes(x = GenHlth, fill = factor(HighBP))) +
  geom_bar(position="fill")
```


Make pivot table to make historgrams of each variable simpler

```
data_long <- data %>%  # Apply pivot_longer function
  pivot_longer(colnames(data)) %>%
  as.data.frame()
head(data_long)
```

```
##
              name value
## 1 Diabetes_012
## 2
            HighBP
                         1
## 3
          HighChol
                         1
## 4
         CholCheck
                         1
## 5
                {\tt BMI}
                        40
## 6
            Smoker
                         1
```

 $\label{thm:constraints} \mbox{ Visualize predictor variable distributions:}$

```
ggp1 <- ggplot(data_long, aes(x = value)) +  # Draw each column as histogram
  geom_histogram(bins=10) +
  facet_wrap(~ name, scales = "free")+
  theme(text=element_text(size=20))
ggp1</pre>
```


Next, look for outliers in predictors:

```
p1 <- ggplot(data, aes(x = BMI, y=factor(Diabetes_012), color=factor(Diabetes_012))) +
  geom_boxplot(outlier.shape=8, outlier.size=4)+
  labs(title="BMI", y="Diabetes")+
  scale_color_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
p2 <- ggplot(data, aes(x = GenHlth, y=factor(Diabetes_012), color=factor(Diabetes_012))) +
  geom_boxplot(outlier.shape=8, outlier.size=4)+
  labs(title="GenHlth",y="Diabetes")+
  scale_color_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
p3 <- ggplot(data, aes(x = MentHlth, y=factor(Diabetes 012), color=factor(Diabetes 012))) +
  geom boxplot(outlier.shape=8, outlier.size=4)+
  labs(title="MentHlth", y="Diabetes")+
  scale_color_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
p4 <- ggplot(data, aes(x = PhysHlth, y=factor(Diabetes_012), color=factor(Diabetes_012))) +
  geom boxplot(outlier.shape=8, outlier.size=4)+
  labs(title="PhysHlth",y="Diabetes")+
  scale color discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
p5 <- ggplot(data, aes(x = Age, y=factor(Diabetes_012), color=factor(Diabetes_012))) +
  geom_boxplot(outlier.shape=8, outlier.size=4)+
  labs(title="Age",y="Diabetes")+
  scale_color_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
p6 <- ggplot(data, aes(x = Education, y=factor(Diabetes_012), color=factor(Diabetes_012))) +
  geom_boxplot(outlier.shape=8, outlier.size=4)+
  labs(title="Education", y="Diabetes")+
  scale_color_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
p7 <- ggplot(data, aes(x = Income, y=factor(Diabetes_012), color=factor(Diabetes_012))) +
```

```
geom_boxplot(outlier.shape=8, outlier.size=4)+
labs(title="Income", y="Diabetes")+
scale_color_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
p1
```


p2

рЗ

p7

From the boxplots above, we see that the predictors BMI, MntHlth, and PhysHlth have a lot of outliers. All three distributions are very skewed to the right. GenHlth and Age have only a couple outliers. Education and Income have none.

Now, we visulaize predictor distributions and relation to response. $\,$

```
ggplot(data, aes(x = GenHlth, fill = factor(Diabetes_012))) +
  geom_bar(position="fill")
```



```
ggplot(data, aes(x = GenHlth, fill = factor(Diabetes_012))) +
geom_bar(position="fill")
```



```
pbox1 <- ggplot(data, aes(x = HighBP, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="HighBP", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox2 <- ggplot(data, aes(x = HighChol, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="HighChol", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox3 <- ggplot(data, aes(x = CholCheck, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="CholCheck", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox4 <- ggplot(data, aes(x = Smoker, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="Smoker", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox5 <- ggplot(data, aes(x = Stroke, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="Stroke", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox6 <- ggplot(data, aes(x = HeartDiseaseorAttack, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="HeartDiseaseorAttack", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox7 <- ggplot(data, aes(x = PhysActivity, fill=factor(Diabetes_012))) +</pre>
  geom bar(position="fill")+
```

```
labs(title="PhysActivity", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox8 <- ggplot(data, aes(x = Veggies, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="Veggies", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox9 <- ggplot(data, aes(x = HvyAlcoholConsump, fill=factor(Diabetes_012))) +</pre>
  geom bar(position="fill")+
  labs(title="HvyAlcoholConsump", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox10 <- ggplot(data, aes(x = AnyHealthcare, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="AnyHealthcare", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox11 <- ggplot(data, aes(x = NoDocbcCost, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="NoDocbcCost", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox12 <- ggplot(data, aes(x = DiffWalk, fill=factor(Diabetes_012))) +</pre>
  geom_bar(position="fill")+
  labs(title="DiffWalk", y="Diabetes")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
pbox1
```


pbox2

pbox3

pbox10

Next, look at "Age" and its relation to response (diabetes diagnosis):

```
ggplot(data, aes(x = Age, fill=factor(Diabetes_012))) +
  geom_bar(position="dodge")+
  labs(title="Age")+
  scale_fill_discrete(name="diabetes", labels=c('no', 'prediabetic', 'yes'))
```


Factor Numeric Variables

factored <- data

```
factored$Diabetes_012 <- as.factor(factored$Diabetes_012)</pre>
factored$HighBP <- as.factor(factored$HighBP)</pre>
factored$CholCheck <- as.factor(factored$CholCheck)</pre>
factored$Smoker <- as.factor(factored$Smoker)</pre>
factored$Stroke <- as.factor(factored$Stroke)</pre>
factored$HeartDiseaseorAttack <- as.factor(factored$HeartDiseaseorAttack)</pre>
factored$PhysActivity <- as.factor(factored$PhysActivity)</pre>
factored$Fruits <- as.factor(factored$Fruits)</pre>
factored$Veggies <- as.factor(factored$Veggies)</pre>
factored$HvyAlcoholConsump <- as.factor(factored$HvyAlcoholConsump)</pre>
factored$AnyHealthcare <- as.factor(factored$AnyHealthcare)</pre>
factored$NoDocbcCost <- as.factor(factored$NoDocbcCost)</pre>
factored$GenHlth <- as.factor(factored$GenHlth)</pre>
factored$MentHlth <- as.factor(factored$MentHlth)</pre>
factored$DiffWalk <- as.factor(factored$DiffWalk)</pre>
factored$Sex <- as.factor(factored$Sex)</pre>
factored$Age <- as.factor(factored$Age)</pre>
factored$Education <- as.factor(factored$Education)</pre>
factored$Income <- as.factor(factored$Income)</pre>
```

Make diabetes response variable binary

```
factored$diabetes <- ifelse(factored$Diabetes_012 == 0, 0, 1)
factored$diabetes <- as.factor(factored$diabetes)</pre>
```

EDA of factored binary outcome dataset

Next, look at plots of 2 most correlated predictors and color by outcome.

```
ggplot(factored, aes(x = HighBP, fill = diabetes)) +
  geom_bar(position="fill")
```



```
ggplot(factored, aes(x = GenHlth, fill = diabetes)) +
geom_bar(position="fill")
```



```
ggplot(factored, aes(x = GenHlth, fill = HighBP)) +
geom_bar(position="fill")
```


Modeling

Split data train and test

```
set.seed(17)
sample <- sample(c(TRUE, FALSE), nrow(factored), replace=TRUE, prob=c(0.7,0.3))
train <- factored[sample, ]
test <- factored[!sample, ]</pre>
```

Logistic Regression

##

##

AnyHealthcare + PhysActivity + HvyAlcoholConsump + Fruits +

Veggies + GenHlth + DiffWalk + Sex + Income + Education +

BMI + PhysHlth, family = binomial, data = factored)

```
##
## Deviance Residuals:
      Min
                10
                     Median
  -2.6391 -0.5709 -0.3458 -0.1950
                                       3.3048
##
##
## Coefficients:
                          Estimate Std. Error z value Pr(>|z|)
## (Intercept)
                        -6.3521264 0.2029512 -31.299 < 2e-16 ***
## HighBP1
                         0.8580177
                                    0.0135340 63.397
                                                       < 2e-16 ***
## HighChol
                         0.6622910
                                    0.0127883
                                               51.789
                                                       < 2e-16 ***
## CholCheck1
                         1.2682978
                                    0.0612894
                                               20.694
                                                       < 2e-16 ***
## HeartDiseaseorAttack1 0.3486985
                                   0.0169737
                                               20.543
                                                      < 2e-16 ***
## AnyHealthcare1
                         0.2637651 0.0302104
                                                8.731
                                                      < 2e-16 ***
## PhysActivity1
                        -0.0773155 0.0137267
                                              -5.632 1.78e-08 ***
## HvyAlcoholConsump1
                        -0.7310683 0.0348105 -21.001
                                                      < 2e-16 ***
## Fruits1
                         0.0187151
                                    0.0129260
                                                1.448
                                                         0.148
## Veggies1
                                              -2.097
                        -0.0317548
                                   0.0151412
                                                         0.036 *
## GenHlth2
                         0.6743468
                                    0.0299579
                                              22.510
                                                       < 2e-16 ***
## GenHlth3
                         1.3102135
                                              44.674
                                   0.0293286
                                                      < 2e-16 ***
## GenHlth4
                         1.7089027
                                    0.0320518
                                              53.317
                                                       < 2e-16 ***
## GenHlth5
                         1.8260068
                                   0.0390360
                                              46.778
                                                      < 2e-16 ***
## DiffWalk1
                         0.2331478
                                    0.0161499
                                              14.436
                                                      < 2e-16 ***
## Sex1
                         0.2248034
                                    0.0126142 17.821 < 2e-16 ***
## Income2
                         0.0486912 0.0340345
                                                1.431
                                                         0.153
## Income3
                         0.0147855 0.0326853
                                                0.452
                                                         0.651
## Income4
                        -0.0033858
                                   0.0319829
                                              -0.106
                                                         0.916
## Income5
                        -0.0531764
                                    0.0314616
                                              -1.690
                                                         0.091
## Income6
                        -0.1323599
                                    0.0309673
                                              -4.274 1.92e-05 ***
## Income7
                        ## Income8
                        -0.3975044
                                   0.0309880 -12.828 < 2e-16 ***
## Education2
                         0.1319623
                                    0.1910435
                                                0.691
                                                         0.490
## Education3
                        -0.0619709
                                    0.1891820
                                              -0.328
                                                         0.743
## Education4
                        -0.1544469
                                    0.1878698
                                               -0.822
                                                         0.411
                                               -0.753
## Education5
                        -0.1416108
                                    0.1879406
                                                         0.451
## Education6
                        -0.2041633
                                    0.1880597
                                               -1.086
                                                         0.278
                                              60.300 < 2e-16 ***
## BMI
                         0.0503335
                                   0.0008347
## PhysHlth
                        -0.0038936
                                   0.0007620
                                               -5.110 3.23e-07 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
  (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 221031 on 253679 degrees of freedom
## Residual deviance: 177461 on 253650 degrees of freedom
## AIC: 177521
##
## Number of Fisher Scoring iterations: 6
glm.probs.all <- predict(glm.fit.all, type = "response")</pre>
glm.probs.all[1:10]
##
                      2
                                 3
                                            4
                                                       5
           1
## 0.63249102 0.01687247 0.38194366 0.09855522 0.16073669 0.13680568 0.16900813
##
           8
                      9
                                10
```

```
## 0.31757030 0.58580367 0.05293381
```

```
glm.pred.all <- rep(0, length(factored$diabetes))</pre>
glm.pred.all[glm.probs.all > 0.5] <- 1</pre>
table(glm.pred.all, factored$diabetes)
##
## glm.pred.all
               0 208152 32874
##
                   5551
                         7103
accuracy <- sum(diag(table(glm.pred.all, factored$diabetes)))/nrow(factored)</pre>
accuracy
## [1] 0.8485296
Now make model based off of training data:
glm.fit.trainall <- glm(diabetes ~ HighBP+ HighChol + CholCheck + HeartDiseaseorAttack + AnyHealthcare
+ PhysActivity + HvyAlcoholConsump + Fruits + Veggies + GenHlth + DiffWalk + Sex + Income + Education +
                data = train, family = binomial)
glm.probs.trainall <- predict(glm.fit.trainall, test, type = "response")</pre>
glm.pred.trainall <- rep(0, length(test))</pre>
glm.pred.trainall[glm.probs.trainall > 0.5] <- 1</pre>
table(glm.pred.trainall, test$diabetes)
##
## glm.pred.trainall
##
                        17
                    1 1624 2128
accuracy <- sum(diag(table(glm.pred.trainall, test$diabetes)))/nrow(test)</pre>
accuracy
## [1] 0.02817697
To improve the accuracy we will consider a subset of predictors. Look at correlations to decide. The most
correlated to diabetes are GenHlth and HighBP.
glm.fit.cor <- glm(diabetes ~ GenHlth + HighBP, data=train, family = binomial)</pre>
glm.probs.cor <- predict(glm.fit.cor, test, type = "response")</pre>
glm.pred.cor <- rep("no diabetes", length(test))</pre>
glm.pred.cor[glm.probs.cor > 0.5] <- "diabetes"</pre>
table(glm.pred.cor, test$diabetes)
##
## glm.pred.cor 0 1
     no diabetes 18 5
```

```
Accuracy <- (0+5)/(1+18+5+0)
Accuracy
```

```
## [1] 0.2083333
```

The subset of predictors made our predictive performance worse.

KNN

```
#KNN wont knit but works (just takes a while to run)
#library(class)
#set.seed(1)
#knn.pred <- knn(train, test, train$diabetes, k = 10)
#table(knn.pred, test$diabetes)

#accuracy <- sum(diag(table(knn.pred, test$diabetes)))/nrow(test)
#accuracy</pre>
```

Perform CV to find best k value...?

text(tree.all, pretty = 0)

Trees

```
library(tree)
```

tree.all <- tree(diabetes ~ HighBP+ HighChol + CholCheck + HeartDiseaseorAttack + AnyHealthcare
+ PhysActivity + HvyAlcoholConsump + Fruits + Veggies + GenHlth + DiffWalk + Sex + Income + Education +
summary(tree.all)</pre>

```
##
## Classification tree:
## tree(formula = diabetes ~ HighBP + HighChol + CholCheck + HeartDiseaseorAttack +
## AnyHealthcare + PhysActivity + HvyAlcoholConsump + Fruits +
## Veggies + GenHlth + DiffWalk + Sex + Income + Education +
## BMI + PhysHlth, data = factored)
## Variables actually used in tree construction:
## [1] "HighBP" "GenHlth"
## Number of terminal nodes: 4
## Residual mean deviance: 0.7534 = 191100 / 253700
## Misclassification error rate: 0.1576 = 39977 / 253680
```



```
set.seed(3)
cv.tree.all <- cv.tree(tree.all, FUN = prune.misclass)</pre>
names(cv.tree.all)
## [1] "size"
                "dev"
                          "k"
                                   "method"
cv.tree.all
## $size
## [1] 4 1
##
## $dev
## [1] 39977 39977
##
## $k
## [1] -Inf
##
## $method
## [1] "misclass"
## attr(,"class")
## [1] "prune"
                        "tree.sequence"
```

```
par(mfrow = c(1,2))
plot(cv.tree.all$size, cv.tree.all$dev, type = "b")
plot(cv.tree.all$k, cv.tree.all$dev, type = "b")
```



```
prune.tree <- prune.misclass(tree.all, best = 4)
plot(prune.tree)
text(prune.tree, pretty = 0)</pre>
```

