TRƯỜNG ĐẠI HỌC XÂY DỰNG HÀ NỘI
Bộ môn Toán ứng dụng
Ho và tên:

Đề kiểm tra ĐQT môn: Toán học tính toán, Đề số 94

Thời gian: 90 phút. Không được dùng tài liệu.

MSSV: Lớp MH:

Câu 1. Dùng công thức nội suy Lagrange, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Câu 2. Cho biết công thức tính độ dài đường cong $y = \varphi(x)$ với $x \in [a, b]$ là $\ell = \int_a^b \sqrt{1 + \left[\varphi'(x)\right]^2} dx$. Bằng phương pháp hình thang, tính gần đúng độ dài đường cong $y = -\sin(5x)$ khi x chạy từ -2 đến 0, khi chia đều đoạn [-2, 0] thành 4 đoạn, và đánh giá sai số.

Câu 3. Xét phương trình $x+e^x=0$ trên đoạn [-1,2]. Bằng phương pháp Newton, tìm nghiệm gần đúng và sai số tương ứng trong 5 bước lặp.

TRƯỜNG ĐẠI HỌC XÂY DỰNG HÀ NỘ
Bộ môn Toán ứng dụng

Ho và tên:

Đề kiểm tra ĐQT môn: Toán học tính toán, Dề số 63
Thời gian: 90 phút. Không được dùng tài liệu.

MSSV: Lớp MH:

Câu 1. Xét phương trình $x=\frac{2\cos{(x)}}{3}$ trên đoạn $\left[0,\frac{\pi}{2}\right]$. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0=0$, tìm nghiệm gần đúng và sai số tương ứng sau 3 bước lặp.

Câu 2. Cho bảng giá trị của hàm số y = f(x)

	2.0							
y _i	0.909	0.887	0.863	0.837	0.808	0.778	0.746	0.711

- a) Dùng công thức ba điểm, tính gần đúng $f''(x_i)$, $i = \overline{0,7}$.
- b) Tính gần đúng $\int_{2}^{2.35} f(x) dx$.

Câu 3. Dùng công thức nội suy Lagrange, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

TRƯỜNG ĐẠI HỌC XÂY DỰNG HÀ NỘ
Bộ môn Toán ứng dụng

Ho và tên:

Đề kiểm tra ĐQT môn: Toán học tính toán, Đề số 70

Thời gian: 90 phút. Không được dùng tài liệu.

MSSV: Lớp MH:

Câu 1. Xét phương trình $x = \frac{2\cos(x)}{3}$ trên đoạn $\left[0, \frac{\pi}{2}\right]$. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0 = 0$, tìm nghiệm gần đúng và sai số tương ứng sau 3 bước lặp.

Câu 2. Dùng công thức nội suy Lagrange, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Câu 3. Cho bảng giá trị của hàm số y = f(x)

- a) Dùng công thức ba điểm, tính gần đúng $f''(x_i)$, $i = \overline{0,7}$.
- b) Tính gần đúng $\int_{4.3}^{5} f(x) dx$.

TRƯỜNG ĐẠI HỌC XÂY DỰNG HÀ NỘI
Bộ môn Toán ứng dụng
Ho và tên:

Đề kiểm tra ĐQT môn: Toán học tính toán, Đề số 87

Thời gian: 90 phút. Không được dùng tài liệu.

MSSV: Lớp MH:

Câu 1. Dùng công thức nội suy Lagrange, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Câu 2. Xét phương trình $x=\frac{2\cos{(x)}}{3}$ trên đoạn $\left[0,\frac{\pi}{2}\right]$. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0=0$, tìm nghiệm gần đúng và sai số tương ứng sau 3 bước lặp.

Câu 3. Cho biết công thức tính độ dài đường cong $y = \varphi(x)$ với $x \in [a, b]$ là $\ell = \int_a^b \sqrt{1 + \left[\varphi'(x)\right]^2} dx$. Bằng phương pháp Simpson, tính gần đúng độ dài đường cong $y = \sin(5x - 4)$ khi x chạy từ -2 đến 0, khi chia đều đoạn [-2, 0] thành 8 đoạn, và đánh giá sai số.

TRƯỜNG ĐẠI HỌC XÂY DỰNG HÀ NỘ
Bộ môn Toán ứng dụng

Ho và tên:

Đề kiểm tra ĐQT môn: Toán học tính toán, Đề số 38

Thời gian: 90 phút. Không được dùng tài liệu.

MSSV: Lớp MH:

Câu 1. Cho bảng giá trị của hàm số y = f(x)

$$x_i$$
 0.8
 0.85
 0.9
 0.95
 1.0

 y_i
 0.717
 0.751
 0.783
 0.813
 0.841

- a) Dùng công thức ba điểm, tính gần đúng $f'(x_i)$, $i = \overline{0, 4}$.
- b) Tính gần đúng $\int_{0.8}^{1} f(x) dx$ bằng phương pháp hình thang.

Câu 2. Dùng công thức nội suy Newton lùi, tìm đa thức nội suy của hàm số có giá trị cho trong bảng

Câu 3. Xét phương trình $x=\frac{2\cos{(x)}}{3}$ trên đoạn $\left[0,\frac{\pi}{2}\right]$. Bằng phương pháp lặp điểm bất động, với xấp xỉ ban đầu $x_0=0$, tìm nghiệm gần đúng và sai số tương ứng sau 3 bước lặp.

Đán án

38)

$$x_i$$
 0.8 0.85 0.9 0.95 1.0 $f'(x_i) \approx$ 0.69214 0.65918 0.62134 0.58105 0.54321

b)
$$I = \int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} (x_i - x_{i-1}) \frac{y_i + y_{i-1}}{2} = 0.15637 \dots$$
 0.5đ + 0.5đ

2 a)
$$\Delta^0 y_i \equiv y_i, i = \overline{0, n}; \quad \Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i, k = \overline{1, n}, i = \overline{0, n-k}$$
0.5đ

b)
$$P(x) = \sum_{k=0}^{n} \frac{\Delta^{k} y_{n-k}}{k!} \prod_{i=0}^{k-1} (t+i), \quad t = \frac{x-x_{n}}{h}, \quad x_{n} = -\frac{1}{2}, h = \frac{1}{2}$$
 . **0.5**đ

$$P(x) = -\frac{t(t+1)(t+2)}{8} - \frac{t(t+1)}{4} + \frac{21t}{8} - \frac{51}{8} \dots \dots \dots \dots 0.25d$$

3 a)
$$g(x) = \frac{2\cos(x)}{3}$$
; $0 \le -2.9141 \cdot 10^{-8} \le g(x) \le 0.66667 \le \frac{\pi}{2}$ **0.25d**

$$x_{n+1} = g(x_n), n = 0, 1, \dots$$
 0.25
 $|x_n - x^*| \le \frac{q}{1-q} |x_n - x_{n-1}|, n \ge 1 \dots$ 0.25d

$$\begin{array}{c|cccc} n & x_n & \varepsilon_n \\ \hline 1 & 0.66667 & 1.3333 \\ 2 & 0.52392 & 0.28548 \\ 3 & 0.57724 & 0.10663 \\ \end{array}$$

$$\begin{array}{c|cccc} n & x_n & \varepsilon_n \\ \hline 1 & 0.66667 & 1.3333 \\ 2 & 0.52392 & 0.28548 \\ 3 & 0.57724 & 0.10663 \\ \end{array}$$

2 a)
$$f''(x_0) \approx \frac{y_0 - 2y_1 + y_2}{h^2}$$
, $f''(x_n) \approx \frac{y_n - 2y_{n-1} + y_{n-2}}{h^2}$
 $f''(x_i) \approx \frac{y_{i+1} - 2y_i + y_{i-1}}{h^2}$, $i = \overline{1, n-1}$

0.5đ

b)
$$I = \int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} (x_i - x_{i-1}) \frac{y_i + y_{i-1}}{2} = 0.28651 \dots$$
 0.5đ + 0.5đ

3 a)
$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$
, $L_i(x) = \prod_{j=0}^{n} \frac{x - x_j}{x_i - x_j}$ 0.5 + 0.5đ

b)
$$L_0(x) = \frac{(x-2)(x-1)}{6} = \frac{x^2}{6} - \frac{x}{2} + \frac{1}{3} + \dots$$
 0.56
$$L_1(x) = -\frac{(x-2)(x+1)}{2} = -\frac{x^2}{2} + \frac{x}{2} + 1$$

$$L_2(x) = \frac{(x-1)(x+1)}{2} = \frac{x^2}{2} - \frac{1}{2}$$

70)

1 a)
$$g(x) = \frac{2\cos(x)}{3}$$
; $0 \le -2.9141 \cdot 10^{-8} \le g(x) \le 0.66667 \le \frac{\pi}{2}$ 0.25đ $|g'(x)| \le 0.66667 = q < 1 \ \forall x \in \left[0, \frac{\pi}{2}\right] \dots \dots \dots$ 0.25

$$x_{n+1} = g(x_n), n = 0, 1, \dots$$
 0.25

$$|x_n - x^*| \le \frac{q}{1-q} |x_n - x_{n-1}|, n \ge 1...$$
 0.25đ

$$\begin{array}{c|cccc} n & x_n & \varepsilon_n \\ \hline 1 & 0.66667 & 1.3333 \\ 2 & 0.52392 & 0.28548 \\ 3 & 0.57724 & 0.10663 \\ \end{array}$$

2 a)
$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$
, $L_i(x) = \prod_{\substack{j=0 \ i=j}}^{n} \frac{x - x_j}{x_i - x_j}$ 0.5 + 0.5d

$$L_1(x) = -\frac{(x-2)(x+4)}{8} = -\frac{x^2}{8} - \frac{x}{4} + 1$$

$$P(x) = x^{2} + 1. ..$$

$$x_i$$
 4.3 4.4 4.5 4.6 4.7 4.8 $f''(x_i) \approx$ 0.30212 0.29907 0.21362 0.11292 0.012207 -0.085258

b)
$$I = \int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} (x_i - x_{i-1}) \frac{y_i + y_{i-1}}{2} = -0.042715$$
 . **0.5đ + 0.5đ**

87)

1 a)
$$P(x) = \sum_{i=0}^{n} y_i L_i(x)$$
, $L_i(x) = \prod_{i=0}^{n} \frac{x - x_i}{x_i - x_i}$ 0.5 + 0.56

$$L_{1}(x) = \frac{x(x-1)(x+2)}{2} = \frac{x^{3}}{2} + \frac{x^{2}}{2} - x$$

$$L_{2}(x) = -\frac{(x-1)(x+1)(x+2)}{2} = -\frac{x^{3}}{2} - x^{2} + \frac{x}{2} + 1$$

$$x(x+1)(x+2) = x^{3} - x^{2} - x$$

0.5d

2 a)
$$g(x) = \frac{2\cos(x)}{3}$$
; $0 \le -2.9141 \cdot 10^{-8} \le g(x) \le 0.66667 \le \frac{\pi}{2}$ **0.25**d

$$x_{n+1} = g(x_n), n = 0, 1, \dots$$
 0.25
 $|x_n - x^*| \le \frac{q}{1 - q} |x_n - x_{n-1}|, n \ge 1 \dots$ 0.25

$$\begin{array}{c|cccc}
n & x_n & \varepsilon_n \\
\hline
1 & 0.66667 & 1.3333 \\
2 & 0.52392 & 0.28548 \\
3 & 0.57724 & 0.10663
\end{array}$$

a) $f(x) = \sqrt{1 + [\varphi'(x)]^2} = \sqrt{25\cos^2(5x - 4) + 1}$ 0.25d

b)
$$\ell = \int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} (x_{2i} - x_{2i-2}) \frac{y_{2i} + 4y_{2i-1} + y_{2i-2}}{6} = 6.5725$$
 0.25đ + 0.5đ

94)

b)
$$L_0(x) = -\frac{(x-4)(x-1)(x+2)}{28} = -\frac{x^3}{28} + \frac{3x^2}{28} + \frac{3x}{14} - \frac{2}{7} \dots 0.5d$$

$$L_1(x) = \frac{(x-4)(x-1)(x+3)}{18} = \frac{x^3}{18} - \frac{x^2}{9} - \frac{11x}{18} + \frac{2}{3}$$

$$L_2(x) = -\frac{(x-4)(x+2)(x+3)}{36} = -\frac{x^3}{36} - \frac{x^2}{36} + \frac{7x}{18} + \frac{2}{3}$$

$$L_3(x) = \frac{(x-1)(x+2)(x+3)}{126} = \frac{x^3}{126} + \frac{2x^2}{63} + \frac{x}{126} - \frac{1}{21}$$

$$P(x) = -x^2 + x + 3 \dots 0.5d$$
a) $f(x) = \sqrt{1 + \left[\varphi'(x)\right]^2} = \sqrt{25\cos^2(5x) + 1} \dots 0.25d$
Bång giá trị \tag{0.25}
$$\frac{x_i}{y_i} \frac{-2.0}{4.3129} \frac{-1.5}{2.001} \frac{-0.5}{1.7354} \frac{0}{4.1287} \frac{0}{5.099}$$

b)
$$\ell = \int_{a}^{b} f(x) dx \approx \sum_{i=1}^{n} (x_{i} - x_{i-1}) \frac{y_{i} + y_{i-1}}{2} = 6.2855 \dots$$
 0.25d + 0.5d

c)
$$|f''(x)| \le M_2$$
, $\forall x \in [a, b] \Rightarrow \text{chọn } M_2 = 122.57. \dots$ 0.25đ

3 a)
$$f(x) = x + e^x$$
; $f' > 0$, $f'' > 0$, $f(-1) < 0$, $f(2) > 0 \Rightarrow x_0 = 2$.
0.25đ

$$X_{n+1} = X_n - \frac{f(X_n)}{f'(X_n)}, n = 0, 1, \dots$$
 0.25đ

$$|x_n - x^*| \le \frac{M}{2m} |x_n - x_{n-1}|^2 = \varepsilon_n, n \ge 1...$$
 0.25đ

$$|f''(x)| \le M \ \forall x \in [-1, 2] \Rightarrow \text{chọn } M = 7.3891.$$

$$m = \min\{|f'(-1)|, |f'(2)|\} = 1.3679...$$
 0.25đ

n	X _n	$arepsilon_n$
1	0.8808	3.3832
2	-0.084275	2.5155
3	-0.51931	0.51116
4	-0.56672	0.0060725
5	-0.56714	$4.7652 \cdot 10^{-7}$