which is strictly positive, since $\lambda_i > 0$ for i = 1, ..., n, and $x_i^2 > 0$ for some i, since $x \neq 0$.

Conversely, assume that

$$\langle f(x), x \rangle > 0$$

for all $x \neq 0$. Then for $x = e_i$, we get

$$\langle f(e_i), e_i \rangle = \langle \lambda_i e_i, e_i \rangle = \lambda_i,$$

and thus $\lambda_i > 0$ for all $i = 1, \ldots, n$.

(2) As in (1), we have

$$\langle f(x), x \rangle = \sum_{i=1}^{n} \lambda_i x_i^2,$$

and since $\lambda_i \geq 0$ for i = 1, ..., n because f is positive semidefinite, we have $\langle f(x), x \rangle \geq 0$, as claimed. The converse is as in (1) except that we get only $\lambda_i \geq 0$ since $\langle f(e_i), e_i \rangle \geq 0$.

Some special notation is customary (especially in the field of convex optimization) to express that a symmetric matrix is positive definite or positive semidefinite.

Definition 42.2. Given any $n \times n$ symmetric matrix A we write $A \succeq 0$ if A is positive semidefinite and we write $A \succ 0$ if A is positive definite.

Remark: It should be noted that we can define the relation

$$A \succ B$$

between any two $n \times n$ matrices (symmetric or not) iff A - B is symmetric positive semidefinite. It is easy to check that this relation is actually a partial order on matrices, called the positive semidefinite cone ordering; for details, see Boyd and Vandenberghe [29], Section 2.4.

If A is symmetric positive definite, it is easily checked that A^{-1} is also symmetric positive definite. Also, if C is a symmetric positive definite $m \times m$ matrix and A is an $m \times n$ matrix of rank n (and so $m \ge n$ and the map $x \mapsto Ax$ is injective), then $A^{\top}CA$ is symmetric positive definite.

We can now prove that

$$Q(x) = \frac{1}{2}x^{\mathsf{T}}Ax - x^{\mathsf{T}}b$$

has a global minimum when A is symmetric positive definite.

Proposition 42.2. Given a quadratic function

$$Q(x) = \frac{1}{2}x^{\mathsf{T}}Ax - x^{\mathsf{T}}b,$$

if A is symmetric positive definite, then Q(x) has a unique global minimum for the solution $x_0 = A^{-1}b$ of the linear system Ax = b. The minimum value of Q(x) is

$$Q(A^{-1}b) = -\frac{1}{2}b^{\top}A^{-1}b.$$