線形代数学・同演習 B

10 月 18 日分 演習問題*1

- 1^{\dagger} $W_1,\,W_2$ は $V=\mathbb{R}^2$ の部分空間となるか.また, $W_3,\,W_4$ は $C(\mathbb{R})$ の部分空間となるか.
 - (1) $W_1 = \{(y, ay); y \in \mathbb{R}\}$ (a は定数) (2) $W_2 = \{(x, x^2); x \in \mathbb{R}\}$
 - (3) $W_3 = \{ f \in C(\mathbb{R}) ; f(x) + f(x)^2 = 0 \}$ (4)* $W_4 = \{ g \in C(\mathbb{R}) ; \int_{-\infty}^{\infty} |g(x)| dx < \infty \}.$
- 2. 次の \mathbb{R}^3 のベクトルの組は線形独立か?

$$(1) (\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3) = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & -1 \\ -1 & 3 & 2 \end{pmatrix} \quad (2) (\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4) = \begin{pmatrix} 1 & -1 & 1 & -2 \\ 3 & -3 & -1 & -3 \\ -2 & -2 & 2 & 1 \end{pmatrix}$$

 $3. u_1, u_2, u_3, u_4$ は線形独立とする.このとき,次のベクトルは線形独立となるか?

(1)
$$\begin{cases} \mathbf{v}_1 = 2\mathbf{u}_1 - \mathbf{u}_2 \\ \mathbf{v}_2 = -\mathbf{u}_1 + 2\mathbf{u}_2 - \mathbf{u}_3 \\ \mathbf{v}_3 = -\mathbf{u}_2 + 2\mathbf{u}_3 - \mathbf{u}_4 \\ \mathbf{v}_4 = -\mathbf{u}_3 + 2\mathbf{u}_4 \end{cases}$$
(2)
$$\begin{cases} \mathbf{w}_1 = \mathbf{u}_1 - \mathbf{u}_2 + 2\mathbf{u}_3 + \mathbf{u}_4 \\ \mathbf{w}_2 = \mathbf{u}_1 + \mathbf{u}_2 + \mathbf{u}_3 + 2\mathbf{u}_4 \\ \mathbf{w}_3 = 3\mathbf{u}_1 + \mathbf{u}_2 + 4\mathbf{u}_3 + 12\mathbf{u}_4 \\ \mathbf{w}_4 = 2\mathbf{u}_1 + 3\mathbf{u}_3 + 10\mathbf{u}_4 \end{cases}$$

- 4. $V = \mathbb{R}[x]_3$ を 3 次以下の多項式全体のなすベクトル空間とする。
 - (1) 多項式の組 $1, 1+x, (1+x)^2, (1+x)^3$ は線形独立であることを示せ.
 - (2) 多項式 $p(x) = x^3$ を (1) の多項式の線形結合で表わせ.
- 5^{\dagger} 次のベクトル(多項式)の組において、線形独立なベクトル(多項式)の最大個数 r と *2 , そ のr個のベクトル(多項式)の組を一組求めよ.

(1)
$$(\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3, \boldsymbol{u}_4) = \begin{pmatrix} 1 & 0 & -1 & 1 \\ -1 & 1 & 0 & -1 \\ 0 & 2 & 1 & 3 \\ 1 & -1 & 0 & 1 \end{pmatrix}$$

(2) $(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_3, \boldsymbol{v}_4, \boldsymbol{v}_5) = \begin{pmatrix} 1 & -3 & -3 & 5 & 6 \\ -2 & 1 & 1 & -5 & -7 \\ 3 & 5 & 5 & 1 & 4 \end{pmatrix}$

(3)
$$p_1(x) = 1 + 2x - x^2$$
, $p_2(x) = 1 + x - x^2$, $p_3(x) = -2 - 5x + 2x^2$, $p_4(x) = 4 + 6x - 2x^2$, $p_5(x) = 3x - 2x^2$

- 6^\dagger V をベクトル空間とする.次の命題が正しいならば証明し,間違っているならば反例を示せ.
 - (1) $m{v}_1, m{v}_2, m{v}_3$ が線形独立ならば, $m{v}_1 + m{v}_2, m{v}_1 m{v}_2, m{v}_1 3m{v}_3 + 2m{v}_3$ も線形独立.
- (2) $m{v}_1,\dots,m{v}_n$ が線形独立ならば, $m{v}_1+m{v}_2,\dots,m{v}_{n-1}+m{v}_n$ および $m{v}_n+m{v}_1$ も線形独立. 7^* $P_n(x):=rac{1}{2^n n!}rac{d^n}{dx^n}\left[(x^2-1)^n
 ight]^{*3}$ とおく.次の問に答えよ.
 - (1) n = 0, 1, 2 に対して, 各 $P_n(x)$ を求めよ.
 - $(2) P_0(x), P_1(x), P_2(x)$ は線形独立となることを示せ.

 $^{^{*1}}$ 凡例:無印は基本問題 , \dagger は特に解いてほしい問題 , * は応用問題 .

 $^{^{*2}}$ 線形独立な r 本のベクトルの組が存在するが,どの r+1 本のベクトルの組も線形従属となるような数 r のこと.

^{*3} このようにして定義される多項式を Legendre 多項式と呼ぶ.