1 Parameters

 c_p : Cost of an individual platform p

 n_d : Number of designs per platform allowed (this could be expanded into an array if desired values vary by platform)

1.1 Block description

1.2 Graph description

 n_b : Number of blocks of type b

 $bw_{b\rightarrow c}$: Amount of communication required between blocks b and c

2 Variables

 n_{pd} : Number of units that implement design d

 n_p : For p in platforms, n_p is the total number of units used

c: Total cost of the system w: Total power of the system

2.1 FPGA

logic: total amount of logic available

 $logic_b$: amount of logic required by block b bram: total amount of bram available

 $bram_b$: amount of bram required by block b

dsps: total number of dsps available

 $dsps_b$: number of dsps required by block b

2.2 GPU

3 Constraints

Summing all the units in a platform for each design should give the total number of units for that platform

$$\sum_{i=0}^{n_d-1} n_{pd} = n_p$$

Summing over all platforms, the number of units times cost should give the total cost of the system

$$\sum_{p \in platforms} n_p * c_p = c$$

4 Objective functions

c : costw : power