Transmissions numériques pour les Télécommunications - 7WEK4NH1

4A - 2i - Polytech Nancy

Exercice 1. — Échantillonnage

Soit le signal $x(t) = \cos(8000\pi t)$.

- 1. Quelle est la fréquence du signal x(t)?
- 2. Donner l'expression de sa transformée de Fourier X(f).
- 3. Représenter graphiquement x(t) et X(f)
- 4. Le signal est échantillonnée avec une fréquence d'échantillonnage $f_e = 10 \text{ kHz}$.
 - (a) Représenter le signal échantillonné.
 - (b) Que vaut la transformée de Fourier du signal échantillonné?
 - (c) La représenter graphiquement.
- 5. Le signal échantillonné est reconstruit avec un filtre interpolateur idéal de Shannon.
 - (a) Donner l'expression de ce filtre.
 - (b) Donner l'expression analytique du signal en sortie de l'interpolateur
 - (c) La représenter graphiquement.
- 6. Reprendre les deux dernières questions lorsque $f_e = 5 \text{ kHz}$.

Exercice 2. — Code en ligne

Représenter la séquence $\{0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1\}$ pour les codes lignes suivants :

- 1. NRZ unipolaire;
- 2. NRZ polaire différentiel;
- 3. NRZ unipolaire différentiel;
- 4. Manchester différentiel;
- 5. RZ bipolaire.

Pour chaque code, vous préciserez les opérations effectuées par le codeur numérique et le signal g(t) de mise en forme du code ligne.

Les codes seront calculés comme suit

- 1. unipolaire : $a_k \in \{0, 1\}, b_k = a_k$
- 2. polaire : $a_k \in \{0, 1\}, b_k = 2a_k 1, b_k \in \{-1, 1\}$
- 3. différentiel : $a_k \in \{0, 1\}, b_k = b_{k-1} \oplus a_k$, $b_0 = 0$
- 4. bipolaire : $a_k \in \{0, 1\}$, $c_k = c_{k-1} \oplus a_k$, $c_0 = 0$ et $b_k = c_k c_{k-1}$

Exercice 3. — Code HDB3

Ce code consiste à remplacer toute suite de quatre 0 consécutifs par l'un des motifs "000V" ou "B00V".

Le choix se fait de façon à garantir que des bits de viols successifs ont des polarités différentes. Ce code est basé sur le code AMI (0->0v, 1->+V ou -V alternativement).

Si le nombre de pulses depuis la dernière substitution est impair alors on remplace par 000V sinon par B00V. B représente le bit de transition bipolaire et V le bit de violation.

 $Représenter\ le\ signal\ codant\ la\ séquence: 0100\ 1000\ 0011\ 0100\ 0000\ 0000\ 0101\ 10101$

Parité de +/-			
depuis le précédent V	Motif	Impulsion précédente	Code
impaire	000V	+	000+
impaire	000V	-	000-
paire	B00V	+	-00-
paire	B00V	_	+00+

Exercice 4. — Densité spectrale de puissance

Soit $\{a_n\}$ une source binaire indépendante stationnaire telle que : P("0") = p et P("1") = 1 - p.

- 1. Déterminer la densité spectrale de puissance du signal de communication lorsque le code en ligne utilisé est sous le format NRZ.
- 2. Représenter la graphiquement pour p=0.25 sur la gamme fréquentielle $f\in [-3/T,3/T]$ où T est la période de base. On rappelle que la DSP d'un signal de communication utilisant un code sans mémoire est donnée par :

$$R_{\rm ss}(f) = \frac{\sigma^2}{T} \left| G(f) \right|^2 + \frac{\mu^2}{T^2} \sum_{m=-\infty}^{+\infty} \left| G\left(\frac{m}{T}\right) \right|^2 \delta\left(f - \frac{m}{T}\right)$$

avec μ et σ^2 respectivement la moyenne et la variance de la séquence binaire fournie par le codeur numérique.

Exercice 5. — Filtre en cosinus surélevé

Un canal de transmission est conçu de telle sorte que son comportement global soit équivalent à un filtre en cosinus surélevé avec un coefficient de surélévation $\alpha = 0.5$. La largeur de bande du canal est de 1.2MHz.

- 1. Quel est le débit maximal garantissant l'absence d'IES?
- 2. Un signal analogique est alors converti en un signal PCM de 64 niveaux de quantification.
 - (a) Quelle est la fréquence d'échantillonnage maximale permettant la transmission en temps réel du signal PCM sur ce canal?
 - (b) En déduire la largeur de bande maximale du signale analogique.

Exercice 6. — *Codage*

Soit les signaux : $g_1(t) = \sin(2\pi f_0 t) \operatorname{rect}(\frac{t-T/2}{T})$ et $g_2(t) = \cos(2\pi f_0 t) \operatorname{rect}(\frac{t-T/2}{T})$.

- 1. Représenter graphiquement $g_1(t)$, $g_2(t)$, $g_1(t)+g_2(t)$, $g_1(t)-g_2(t)$ pour $T=\frac{f_0}{2}$.
- 2. Montrer en utilisant la formule d'Euler que $\sin(\alpha)\cos(\beta) = \frac{1}{2}(\sin(\alpha+\beta) + \sin(\alpha-\beta))$.
- 3. Calculer $\langle g_1(t), g_2(t) \rangle$ produit scalaire défini par $\langle g_1(t), g_2(t) \rangle = \int_{-\infty}^{+\infty} g_1(t)g_2(t)dt$.
- 4. Montrer que $g_1(t) \perp g_2(t)$ i.e. $\langle g_1(t), g_2(t) \rangle = 0$ si et seulement si $T = \frac{kT_0}{2}$, $k \in \mathbb{Z}$ et où $T = \frac{1}{f_0}$ (bizarre)
- 5. On désire transmettre une source quaternaire GPSK. Les fonctions de base sont $g_1(t)$ et $g_2(t)$. Le codeur numérique est définira la table de correspondance :

a_n	(b_n,c_n)
0	(+1,+1)
1	(+1,-1)
2	(-1,-1)
_3	(-1,+1)

- (a) Donner la structure du codeur en ligne et la constellation du code.
- (b) Représenter temporellement le signal codant la suite quaternaire 01321320.
- 6. On rajoute au codeur précédent un codage différentiel pour former un code QPSK.
 - (a) Donner la structure du codeur numérique correspondant.
 - (b) Représenter le signal temporel codant la suite quaternaire 01321320.
 - (c) Quel est l'intérêt d'ajouter un codeur différentiel?