

EERI 418 CONTROL THEORY II

Multivariable and digital control systems theory

SU 2 Linear mathematical models of systems Kenny Uren

General closed-loop system topology

Figure 1-1 Closed-loop system.

Closed-loop terminology

- Focus of the work is on
 - Closed-loop systems
 - Containing digital components
- Closed loop
 - System in which the forcing functions (inputs) are determined, at least in part, by the response (outputs) of the system
 - Physical process to be controlled is called the plant.
 - A system called the <u>control actuator</u> is required to drive the plant
 - The sensor (or sensors) measures the response of the plant, which is then compared to the desired response.
- Difference signal/error
 - The difference signal initiates actions that result in the actual response approaching the desired response, which drives the difference signal towards zero.

Compensator/Controller

- Difference signal/Error signal
 - Unacceptable closed-loop response occurs if the plant input is simply the difference in the desired response and the actual response
- Filter
 - The difference signal must be processed (filtered) by another physical system, called a compensator (controller) or simply a filter.
- Sensor
 - Will be an appropriate measuring instrument
- Compensation
 - Will be performed by a digital computer. (Will incorporate dynamics of the system in the digital computer)

System models

- We will use classical and modern control techniques of analysis and design
- Control system techniques will be designed for <u>linear time-invariant</u> <u>discrete system models</u>.
- Linear systems satisfy the principle of superposition
- Physical systems are inherently nonlinear; however if the system signals do not vary over too wide a range, the system responds linearly.

Discrete system

 It is a system that can change values only at discrete instants in time.

Digital control system example

Radar and control unit

- Measures the approximate vertical and lateral positions of the aircraft.
- Then transmits it to the controlling unit
- The controlling unit calculates appropriate pitch and bank commands
- These commands are then transmitted to the aircraft autopilots
- Which in turn cause the aircraft to respond accordingly

Control unit

- The control unit is a digital computer
- Lateral control system: Controls lateral position of aircraft
- Vertical control system: Controls the altitude of aircraft
- These two control systems are independent (decoupled)

Lateral control problem

Lateral control

Lateral control problem

lateral position, y(t)

The control system attempts to force y(t) to zero radar unit measures y(t) every 0.05 s Thus y(kT) is the sampled value of y(t)

T = 0.05 s and $k = 0, 1, 2, 3, \dots$

digital controller generates the discrete bank commands $\phi(kT)$.

w(t) wind input, which certainly affects the position of the aircraft.

Control system design

- To effect the design problem, it is necessary to know the mathematical relationships between the wind input, the bank command input, and the lateral position.
- These <u>mathematical relationships</u> are referred to as the mathematical model
- Th McDonell-Douglas Corporation F4 aircraft,
 - The model of the lateral system is <u>a ninth-order ordinary nonlinear</u> differential equation.
 - For the control of the bank command a <u>ninth-order ordinary linear</u> <u>differential equation</u> was used.

Satellite model

Figure 1-6 Servomotor system.

Develop model

END

