Algorithm Analysis

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- This week, we learn how to analyze the efficiency of our program
 - Algorithm analysis
- Objectives are
 - Memorizing the definition and the rules of the big-Oh notation
 - Understanding what determines the efficiency of programs
 - Understanding simple algorithms
 - Memorizing the insert and the delete of lists, stacks, and queues
 - Memorizing the bubble sort
 - Able to apply the big-Oh notation analysis to programs

Factors of program's efficiency

- Algorithm
 - A clearly specified set of simple instructions to be followed to solve a problem
 - Takes a set of values as inputs
 - Produces a set of values as outputs
 - Specified in
 - English
 - A computer program
 - Pseudo-code
- Data structures
 - Methods of organizing data
- Program
 - = algorithms + data structures

Bubble sort algorithm

- Examples of algorithms
 - Insertion, deletion, search of linked lists, stacks, queues...
 - Sorting of linked lists...
 - Various sorting methods
 - Bubble sort, Quick sort, Merge sort...
- Bubble Sort(list)
 - For itr1=0 to length(list)
 - For itr2=itr+1 to length(list)
 - If list[itr1] < list[itr2]
 - Swap list[itr1], list[itr2]
 - Return list
- This program uses
 - Data structure: List
 - Algorithm: Bubble sort

```
import random
 def performSelectionSort(Ist):
    for itr1 in range(0, len(lst)):
        for itr2 in range(itr1+1, len(lst)):
                 Ist[itr1], Ist[itr2] =\footnotemath{#}
                 Ist[itr2], Ist[itr1]
N = 10
IstNumbers = list(range(N))
random.shuffle(IstNumbers)
print(IstNumbers)
print(performSelectionSort(IstNumbers))
 IstNumbers2 = [2, 5, 0, 3, 3, 3, 1, 5, 4, 2]
print(IstNumbers2)
print(performSelectionSort(IstNumbers2))
[9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
[5, 5, 4, 3, 3, 3, 2, 2, 1, 0]
```

Example of bubble sort execution

Let's observe the execution of the bubble sort

Total iterations

```
= 9+8+....+1
```

• =45 iterations

•
$$=\frac{n(n-1)}{2}=\frac{1}{2}n^2-\frac{1}{2}n$$

```
[2, 5, 0, 3, 3, 3, 1, 5, 4, 2]
\rightarrow (itr1 = 0, itr2=1..9) = 9 iterations
      \rightarrow (itr1 = 0, itr2 = 1)
             \rightarrow 2 < 5, Hit and swap!!!
             \rightarrow list[0] = 5, list[1] = 2 from now
      \rightarrow (itr1 = 0, itr2 = 2)
             \rightarrow 5<0, No hit
      \rightarrow (itr1 = 0, itr2 = 3)
             \rightarrow 5<3. No hit
\rightarrow (itr1 = 1, itr2=2..9) = 8 iterations
      \rightarrow ....
→ ....
\rightarrow (itr1 = 8, itr2=9..9) = 1 iterations
      → .....
```

Why do we care about efficiency?

- Writing a working program is not good enough
 - The program could be inefficient
 - If the program runs on a large data, the running time becomes a big issue
 - Sometimes, a program may not be usable because of the efficiency
 - Imagine a transaction system of a financial company
 - 1 transaction = 0.001 sec
 - 10 transactions by 10,000 account holders = 100 sec
 - Side effect
 - → If there is no reaction from the system, the users click the request again!
 - → Increased requests when there is a delay
 - Imagine a bubble sorting function for bank accounts
 - 10,000 accounts → roughly 50,000,000 iterations for sorting
- Therefore, we need a guarantee of the worst-case scenario
 - The worst-case running time of a single transaction
 - The worst-case transaction request numbers of a single day

Definition of Algorithm Analysis

- Analyzing an algorithm
 - Estimating the resources that the algorithm requires
 - Memory
 - Communication bandwidth
 - Computational time (the most important resource in the most of cases)
- Factors affecting the running time
 - Computer used for executions
 - Algorithms
 - Data structures
 - Input data size
- After analyzing the algorithms
 - We estimate the worst-case of the costs by the factors
 - i.e. Computational time by input data size
 - i.e. Iterations by input data size

Simple algorithm analysis

- Line 1 to 4
 - Line 1:1 iteration
 - Line 2, 3:
 (intTo-intFrom) iterations X 2 lines = N iterations X 2 lines
 = 2N iterations
 - Line 4: 1 iteration
- Total # of iterations = 2N+2 iterations=O(N)

Bubble sort algorithm analysis

- Line 1 to 5
 - Line 1 : *N* iterations
 - Line 2, 3, 4: N-i iterations (i is from 0 to N-1) X 3 lines
 - 1 to N, 2 to N,, N-1 to N
 - In other words, $(\sum_{i=0}^{N-1} \sum_{j=i+1}^{N-1} 1)$ iterations X 3 lines
 - Assuming that "if" always results in true
 - Line 5: 1 iteration
- Total # of iterations = $\frac{3}{2}n^2 \frac{3}{2}n + n + 1$ iterations = $O(N^2)$

Asymptotic notation: Big-Oh

- What do O(N) and O(N²) mean?
- That's the Big-Oh notation
 - Notation to show the worst-case running time
 - Do you remember?
 - Assuming that "if" always results in true
 - So, this is a worst scenario for the run-time
 - Because the program should run the statements in the "if" block
- Definition of the Big-Oh notations
 - f(N) = O(g(N))
 - There are positive constants c and n_0 such that
 - $f(N) \le c g(N)$ when $N \ge n_0$
 - The growth rate of f(N) is less than or equal to the growth rate of g(N)
 - g(N) is an upper bound on f(N)

Growth rate

- Definition of the Big-Oh notations
 - f(N) = O(g(N))
 - There are positive constants c and n_0 such that
 - $f(N) \le c g(N)$ when $N \ge n_0$
 - The growth rate of f(N) is less than or equal to the growth rate of g(N)
 - g(N) is an upper bound on f(N)

Exponential function (cⁿ) grows more than cubic function (n³)

Quadratic function (n²) grows more than linear function (n)

Examples of Big-Oh notation

- Assume $f(N) = 7N^2$. Then
 - $f(N) = O(N^4)$
 - $f(N) = O(N^3)$
 - $f(N) = O(N^2)$ (best answer, asymptotically tight)
- $N^2 / 2 3N$
 - O(N²)
- 1 + 4N
 - O(N)
- $7N^2 + 10N + 3$
 - $O(N^2)$
- $\log_{10} N = \log_2 N / \log_2 10$

- $O(\log_2 N) = O(\log N)$
- sin N
 - 0(1)
- 10
 - 0(1)
- 10¹⁰
 - 0(1)
- log N + N
 - O(N)

Rules of Big-Oh notation

- When considering the growth rate of a function using Big-Oh
 - Ignore the lower order terms and the coefficients of the highest-order terms
 - When we have N³, then N² and N means nothing in terms of Big-Oh
 - From the growth rate order
 - $c^{N} > N^{k} > N^{2} > N \log N > N > \log N > C$
 - C >= 2 and k > 2
 - No need to specify the base of logarithm
 - $O(\log N) = O(\log_C N)$
- If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then
 - $T_1(N) + T_2(N) = max(O(f(N)), O(g(N)))$
 - $max(O(N), O(N^2)) = O(N^2)$
 - $T_1(N) * T_2(N) = O(f(N) * g(N))$
 - $\bullet O(N) * O(logN) = O(NlogN)$

Big-Oh notation of list, stack and queue

	List	Stack	Queue
Pop	X	1 retrieval 0(1)	X
Push	X	1 retrieval 0(1)	X
Enqueue	X	X	1 retrieval 0(1)
Dequeue	X	X	1 retrieval 0(1)
Search	<i>i</i> retrieval (if the target instance at i th in the list) O(N)	X (Does not allow search in the stack)	X (Does not allow search in the queue)

Detour: Performance of binary search tree

Coming from divide and conquer

	Linked List	BST in Average	BST in Worst Case
Search	0(n)	O (log n)	O(n)
Insert after search	0(1)	0(1)	0(1)
Delete after search	0(1)	0(1)	0(1)
Traverse	O(n)	O(n)	O(n)

BST in Average

Insert 3, 2, 0, 5, 4, 7

Further Readings

- Introductions to Algorithms by Cormen et al.
 - pp. 5-61