

CS 4104 APPLIED MACHINE LEARNING

Dr. Hashim Yasin

National University of Computer and Emerging Sciences,

Faisalabad, Pakistan.

DEEP LEARNING

Handwriting Digit Recognition

Input

Output

Each dimension represents the confidence of a digit.

Handwriting Digit Recognition

In deep learning, the function f is represented by neural network

Neural Network Elements

Neuron

$$f: R^K \to R$$

Dr. Hashim Yasin

Deep means many hidden layers

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

Neural Network

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = \begin{bmatrix}0.62\\0.83\end{bmatrix}$$

$$f: \mathbb{R}^2 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = \begin{bmatrix}0.51\\0.85\end{bmatrix}$$

Different parameters define different function

Matrix Operation

Neural Network

11

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

Neural Network

$$y = f(x)$$

Using parallel computing techniques to speed up matrix operation

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

SOFTMAX LAYER

Softmax

Properties

- The calculated probabilities will be in the range of 0 to 1.
- □ The sum of all the probabilities equals 1.

Softmax Function Usage

- Used in multiple classification logistic regression model.
- In building neural networks, softmax functions are used in different layer levels, mostly in the output layer.

Softmax

□ The formulation of softmax function is,

$$S(z_i) = \frac{e^{z_i}}{\sum_{j}^{n} e^{z_j}}$$

 \square The bigger the Z, the higher its probability.

Softmax

Softmax layer as the output layer

Softmax Layer

Probability:

- $1 > y_i > 0$
- $\blacksquare \sum_i y_i = 1$

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

Network Parameters

Set the network parameters θ such that

Input: y_1 has the maximum value y_2 has the maximum value Applied Machine Learning (CS4104)

Dr. Hashim Yasin

No ink \rightarrow 0

 $lnk \rightarrow 1$

Training Data

□ Preparing training data: images and their labels

Using the training data to find the network parameters.

Total Cost

For all training data ...

Total Cost:

$$C(\theta) = \sum_{r=1}^{R} L^{r}(\theta)$$

How bad the network parameters θ is on this task

Find the network parameters θ^* that minimize this value

Applied Machine Learning (CS4104)

WHY DEEP LEARNING

Any continuous function f

$$f: \mathbb{R}^N \to \mathbb{R}^M$$

Can be realized by a network with one hidden layer (given **enough** hidden neurons)

Why "Deep" neural network not "Fat" neural network?

Shallow vs Deep

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

Layer X Size	Word Error Rate (%)
1 X 2k	24.2
2 X 2k	20.4
3 X 2k	18.4
4 X 2k	17.8
5 X 2k	17.2
7 X 2k	17.1
9 X 2k	17.0

Not surprised, more parameters, better performance

Seide, Frank, Gang Li, and Dong Yu. "Conversational Speech Transcription Using Context-Dependent Deep Neural Networks." *Interspeech*. 2011.

can be trained by little data

Deep Learning also works on small data set

□ Deep → Modularizatio → Less training data?

The most basic classifiers

Use 1st layer as module to build classifiers

Use 2nd layer as module

MORE ACTIVATION FUNCTIONS

□ Rectified Linear Unit (ReLU)

 $f(x) = \max(0, x)$

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute
- 2. one sided
- 3. Efficient gradient propagation (accelerate (e.g. a factor of 6) the convergence of stochastic gradient descent compared to the sigmoid/tanh functions.)
- 4. Scale-invariant
- 5. Sparse activation

Applied Machine Learning (CS4104)

- □ Non-linear in nature
- The main advantage of using the ReLU function over other activation functions is that it does not activate all the neurons at the same time.
- If the input is negative, it will convert it to zero and the neuron does not get activated.
 - This means that at a time only a few neurons are activated making the network sparse, making it efficient and easy for computation.

Dr. Hashim Yasin

Applied Machine Learning (CS4104)

Leaky ReLU

□ Leaky Rectified Linear Unit (LReLU)

It fixes the "dying ReLU" problem, as it doesn't have zero-slope parts.

Parameterized ReLU

□ Parameterized Rectified Linear Unit (PReLU)

Parametric ReLU (PReLU) is a type of leaky ReLU that, instead of having a predetermined slope like 0.01, makes it a parameter for the neural network to figure out itself.

Leaky ReLU: y=0.01x

Parametric ReLU: y=ax

□ Learnable activation function [lan J. Goodfellow, ICML'13]

You can have more than 2 elements in a group.

- Learnable activation function
- Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

2 elements in a group

3 elements in a group

Choosing Activation Function

- Sigmoid functions and their combinations generally work better in the case of classifiers
- Sigmoids and tanh functions are sometimes avoided due to the vanishing gradient problem
- ReLU function is a general activation function and is used in most cases
- If we encounter a case of dead neurons in our networks the leaky ReLU function is the best choice

Choosing Activation Function

- ReLU function should only be used in the hidden layers
- As a rule of thumb, you can begin with using ReLU function and then move over to other activation functions in case ReLU doesn't provide optimum results
- Softmax function is used generally on output layer and for multi-label classification.

Acknowledgement

Stuart J. Russell and Peter Norvig, Tom M. Mitchell, Jiwon Jeong, Floydhub, Danqing Liu Andrej Karpathy, Hung-yi Lee