Topic: LMS and LTS Estimation

LMS Estimator

Rousseeuw (1984) proposed Least Median of Squares (LMS) regression which minimizes the median of the squared residuals instead of minimizing the sum of the squared residuals by OLS

$$\min_{\beta} median(\varepsilon_i^2)$$

In computational aspects, the LMS estimate would be obtained by evaluating subsets of the data points, where the integer h is defined as

$$h = \left[\frac{n}{2}\right] + \left[\frac{(p+1)}{2}\right]$$

in which n and p denotes the sample size and number of parameters in the model, respectively. The LMS-estimate can be obtained from the subset which provides the smallest median squared residual.

Problem 01.

Plot the Data to check outlier

R programming Code:

years <- 1976:1980

fires <- c(16694, 12271, 12904, 14036, 13874)

plot(years, fires, main="Plot the Data to check outlier", col="red")

Frist Fit LS model

```
plot(years, fires, main="LS Model Fit
line", col = "red")
abline( Im ( fires ~ years ), col= 4)
```

LS Model Fit line

Coefficients: (Intercept) years 780430.8 -387.5

Divided the data sub group (h)

R programming Code:

n=5
p=1
h =
$$((n/2)+(p+1)/2) = 3 \# of obs. Each group$$

Formula

$$h = \left\lceil \frac{n}{2} \right\rceil + \left\lceil \frac{(p+1)}{2} \right\rceil$$

Possible group
$$5c_3 = 10$$

Create afunction to collect median squre of errors

```
med.er.sq <- function( x, y){
    new <- data.frame(y, x)
    model <- lm(y ~ x)
    errors <- y - predict(model, new)
    med.er.sqr <- median(errors^2)
    return (med.er.sqr)
}</pre>
Function
```

Corresponding Median of errors

```
## medain Erros Squre calculation
e1 <- med.er.sq(years[c(1,2,3)], fires[c(1,2,3)]) ## 1.line
e2 <- med.er.sq(years[c(1,2,4)], fires[c(1,2,4)]) ## 2.line
e3 \leftarrow med.er.sq(years[c(1,2,5)], fires[c(1,2,5)]) ## 3.line
e4 <- med.er.sq(years[c(1,3,4)], fires[c(1,3,4)]) ## 4.line
e5 <- med.er.sq(years[c(1,3,5)], fires[c(1,3,5)]) ## 5.line
e6 <- med.er.sq(years[c(1,4,5)], fires[c(1,4,5)]) ## 6.line
e7 <- med.er.sq(years[c(2,3,4)], fires[c(2,3,4)]) ## 7.line
e8 <- med.er.sq(years[c(2,3,5)], fires[c(2,3,5)]) ## 8.line
e9 < -med.er.sq(years[c(2,4,5)], fires[c(2,4,5)]) ## 9.line
e10 \leftarrow med.er.sq(years[c(3,4,5)], fires[c(3,4,5)]) ##10.lines
```

710087.1111 574455.7194 327184.0000 186994.4694 629377.7778 6978.6746 6916.6944 447.0204 22264.9031 46512.1111

Find least median squre of errors e <-c(e1, e2, e3, e4, e5, e6, e7, e8, e9, e10) summary(e)

Min. 1st Qu. Median Mean 3rd Qu. Max. 447 10800 116753 251122 512638 710087

```
## Fitted LMS model

x <- years[c(2,3,5)]

y <- fires[c(2,3,5)]

lms.model <- lm(y ~ x)

lms.model
```

Graph of LMS

plot(years, fires, main= "LMS model line")
abline(lms.model, col= "red")

LMS model line

Coefficients: (Intercept) x -1030130.6 527.3

Comparison between LS and LMS

LMS model line

527.3

-1030130.6

LTS- Estimator

Frist the fit the LS model from the given data then,

Let $\mathcal{E}_{(1):n}^2 \le \mathcal{E}_{(2):n}^2 \le ... \le \mathcal{E}_{(n):n}^2$ be the ordered squared residuals.

Thus, the objective function of the LTS estimator is given by

$$\min_{\beta} \sum_{i=1}^{h} \varepsilon_{(i):n}^{2}$$

Where
$$h = [(1-\alpha)n] + [(p+1)/2]$$

 α is the percentage level of trimming.

LTS is the special case of LMS when $\alpha = 50\%$

U.S Air Force Data

Satellite cost vs weight

R programming Code:

```
## U.S Air Force Data ## Cost and Weight
```

```
cost <- c(2449, 2248, 3545, 789, 1619, 2079, 918, 1231, 3641, 4314, 2628, 3989, 2308, 376, 5428, 2786, 2497, 5551, 5208, 5438)
```

weight <-c(90, 87, 38, 28, 28, 23, 21, 17, 27, 39, 34, 46, 80, 14, 48, 38, 73, 40, 44, 41)

```
## Graph
plot(weight, cost, main = "U.S Air Force Data ")
abline(lm(cost~weight), col = "red") ## SL fit line
## create a data frame
myData <- data.frame(cost, weight)
## LS model Fit And Take Residuals
LS <- Im(cost ~ weight, data= myData)
errors <- LS$residuals
myData$residual <- errors
sort(errors)
```

U.S Air Force Data

Coefficients: (Intercept) 2373.70

weight 13.51

sort(errors)

```
-2186.8992 -1963.0940 -1739.4966 -1372.4410 -1301.4151 -1146.8177 -1140.9569 -1133.0940 -863.2203 -605.5245 -205.1775 -101.2332 657.7668 902.4199 993.6555 1413.2529 2239.6833 2405.6276 2510.2250 2636.7390 Residual plot
```

```
## Graph of Residual
plot(weight, errors, main = "Residual plot")

## trimmed the data
n = 20
p = 1
alpha = .20  ## 20% data trimmed
h = ((1-alpha)*n)+((p+1)/2)
h= 17 ## 3 large residual omit from data respectively
```



```
## trim data collection
t1.data <- myData[myData$residual < 2405, ]
t1.data</pre>
```

```
## model fit with trim data
LTS_model_1 <- lm(cost ~ weight,data = t1.data)
```

```
cost weight residual
1 2449
        90 -1140.9569
2 2248
        87 -1301.4151
3 3545
        38 657.7668
  789
        28 -1963.0940
  1619
        28 -1133.0940
6 2079 23 -605.5245
  918
        21 -1739.4966
8 1231 17 -1372.4410
9 3641
        27 902.4199
10 4314 39 1413.2529
11 2628
         34 -205.1775
12 3989
         46 993.6555
13 2308
         80 -1146.8177
        14 -2186.8992
14 376
16 2786
         38 -101.2332
17 2497
         73 -863.2203
19 5208
         44 2239.6833
```

2405.6276 2510.2250 2636.7390

abline(LTS_model_1, col = 4)
abline(lm(cost~weight), col = 6)

Coefficients: (Intercept) 2373.70

weight 13.51

LS

LTS

Frist LTS Model line

Coefficients:
(Intercept)

1933.30

weight

13.42

```
## again check residual omit h obs.
t1.data$residual <- LTS model 1$residuals
n=17
alpha = .2
p=1
h = ((1-alpha)*n)+((p+1)/2) ## h = 14.6 close to 15
# sort Residuals
sort(t1.data$residual) ## sort residuals and omit 2
large residauls.
```

```
[1] -1745.2287 -1520.1583 -1297.1935 -930.4993 -853.1473 -699.1825 -692.4179 -690.1583 [9] -416.2177 -163.0406 238.3005 342.6063 1101.6063 1345.2653 1438.2180 1857.1827 [17] 2684.0650
```

```
## trim two data t2.data <- t1.data[t1.data$residual < 1857, ]
```

```
LTS model 2 <- Im(cost ~ weight, data = t2.data)
## LTS 2 model
## trimmed three data
t3.data <- t2.data[t2.data$residual < 1655, ]
LTS model 3 <- Im(cost ~ weight, data = t3.data)
## LTS 3 model
t3.data$residual <- LTS model 3$residuals
sort(t3.data$residual)
```

```
Coefficients:
(Intercept) weight
1610.81 13.88
```

```
Coefficients:
(Intercept) weight
1235.46 16.48
```

```
## trimmed four data
t4.data <- t3.data[t3.data$residual < 1406, ]
LTS_model_4 <- lm(cost ~ weight, data = t4.data )
## LTS 4 model
t4.data$residual <- LTS_model_4$residuals
sort(t4.data$residual)</pre>
```

Coefficients:
(Intercept) weight
1043.88 17.64

```
## trim five data
t5.data <- t4.data[t4.data$residual < 1071.84893, ]
LTS_model_5 <- Im(cost ~ weight, data = t5.data )
## LTS 5 model</pre>
```

```
Coefficients:
(Intercept) weight
1043.88 17.64
```



```
## all model graph
plot(weight, cost, main = "All
Model graph")
abline(lm(cost~weight))
abline(LTS_model_1, col= 2)
abline(LTS_model_2, col= 3)
abline(LTS_model_3, col= 4)
abline(LTS_model_4, col= 5)
abline(LTS_model_5, col= 6)
```

Final LTS estimated is

```
Coefficients:
(Intercept) weight
1043.88 17.64
```

