1

CONTENTS

1 Phase Margin

Abstract—This manual is an introduction to control systems based on GATE problems.Links to sample Python codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/control/codes

1 Phase Margin

1.1. Find the Phase Margin of G(s) in degrees where

$$G(s) = \frac{2}{(s+1)(s+2)}$$
 (1.1.1)

Solution: Phase Margin:It is the difference between phase of the system and -180° at the gain crossover frequency,(the gain crossover frequency being the frequency at which the open-loop gain first reaches 1).

Phase Margin is given by,

$$P.M = \phi - \angle G(j\omega)|_{\omega = \omega_{DC}} = \phi + 180^{\circ}$$
 (1.1.2)

where,

$$\phi = \angle G(j\omega)|_{\omega = \omega_{gc}} \tag{1.1.3}$$

 ω_{pc} is the Phase crossover frequency (The frequency at which the phase of open-loop transfer function reaches -180°).

 ω_{gc} is the Gain crossover frequency (The frequency at which the gain of the open-loop transfer fuction reaches 1).

Given,

$$G(s) = \frac{2}{(s+1)(s+2)}$$
 (1.1.4)

$$G(j\omega) = \frac{1}{(j\omega+1)(j\omega+2)}$$
 (1.1.5)

We can find magnitude and phase as

$$|G(j\omega)| = \frac{2}{(\sqrt{\omega^2 + 1})(\sqrt{\omega^2 + 4})}$$
 (1.1.6)

$$\angle G(j\omega) = -tan^{-1}(\omega) - tan^{-1}(\frac{\omega}{2}) \qquad (1.1.7)$$

We know that, Gain in dB = 0 at $\omega = \omega_{gc}$

$$20log_{10}|G(j\omega_{gc})| = 0 (1.1.8)$$

$$|G(j\omega_{gc})| = 1 \tag{1.1.9}$$

1

$$\frac{2}{(\sqrt{\omega_{gc}^2 + 1})(\sqrt{\omega_{gc}^2 + 4})} = 1 \tag{1.1.10}$$

Solving we get,

$$\omega_{gc}^2(\omega_{gc}^2 + 5) = 0 (1.1.11)$$

$$\Rightarrow \omega_{gc} = 0, +j\sqrt{5}, -j\sqrt{5}$$
 (1.1.12)

As frequency is a real quantity Hence, $\omega_{gc} \neq \text{Imaginary}$

$$\therefore \omega_{gc} = 0 \tag{1.1.13}$$

From (1.1.3) and (1.1.7)

$$\phi = \angle G(j\omega_{gc}) = -tan^{-1}(\omega_{gc}) - tan^{-1}(\frac{\omega_{gc}}{2})$$
(1.1.14)

$$=> \phi = 0^{\circ}$$
 (1.1.15)

$$\therefore P.M = 180^{\circ} + 0^{\circ} = 180^{\circ}$$
 (1.1.16)

1.2. We can verify the above result using phase plot. The following code plots Fig(1.3)

codes/ee18btech11017.py

1.3. The Phase plot is as shown, We can observe

Fig. 1.3

that at
$$\omega_{gc} = 0$$
, $\phi = 0^{\circ}$

$$P.M = 180^{\circ}$$
 (1.3.1)

- 1.4. **Application:** Phase margin is measure of stability in closed-loop, dynamic-control systems.(i.e, For stability of a system both gain margin and phase margin should be positive.)
- 1.5. **Example:**Phase Margin is a measure of stability.

Consider a standard second order system with

$$G(s)H(s) = \frac{\omega_n^2}{s(s+2\delta\omega_n)}$$
 (1.5.1)

Sunstituting, $s=j\omega$

$$G(j\omega)H(j\omega) = \frac{\omega_n^2}{(j\omega)(j\omega + 2\delta\omega_n)}$$
 (1.5.2)
(1.5.3)

At the gain cross over frequency ω_{gc} , $|G(j\omega)H(j\omega)| = 1$

$$\frac{\omega_n^2}{\omega_{gc}\sqrt{\omega_{gc}^2 + 4\delta^2\omega_n^2}} = 1 \qquad (1.5.4)$$

$$= > \omega_{gc}^4 + 4\delta_2 \omega_{gc}^2 \omega_n^2 - \omega_n^4 = 0 \qquad (1.5.5)$$

Solving we get,

$$\omega_{gc}^2 = \omega_n^2 \sqrt{4\delta^4 + 1} - 2\delta^2 \tag{1.5.6}$$

Phase Margin is given by,

$$P.M = 180^{\circ} + (-90^{\circ} - tan^{-1}(\frac{\omega_{gc}}{2\delta\omega_{rr}}))$$
 (1.5.7)

Further simplifying we get

$$P.M = tan^{-1}(\frac{2\delta\omega_n}{\omega_{gc}}) \tag{1.5.8}$$

We can observe from (1.5.8) for P.M to be negative

$$1.\delta < 0, \omega_n > 0$$

$$2.\delta > 0, \omega_n < 0$$

For both the cases the pole in the Equation(1.5.1) lie on right half of s-plane. So, the system is unstable.