Formalizing Lindenbaum-Tarski algebra for propositional logic in Cubical Agda

Caroline Roos

Supervisor: Anders Mörtberg

Degree project

Department of Mathematics Stockholm University

June 13, 2023

Outline of talk

- Background and motivation
- 2 Classical propositional logic and provability in Agda
- 3 Constructing the Lindenbaum-Tarski algebra using set quotioents from Cubical Agda
- 4 Proving the Lindenbaum-Tarski algebra is a Boolean algebra

Table of Contents

- Background and motivation
- 2 Classical propositional logic and provability in Agda
- 3 Constructing the Lindenbaum-Tarski algebra using set quotioents from Cubical Agda
- 4 Proving the Lindenbaum-Tarski algebra is a Boolean algebra

Lindenbaum-Tarski algebra

- The Lindenbaum-Tarski algebra for propositional logic is the quotient algebra obtained by quotienting the algebra of formulas by the equivalence relation ~.
- The algebraic operations in the Lindenbaum-Tarski algebra are derived from the logical connectives present in the underlying logical system.
- These operations allow for the manipulation of formulas within the algebraic structure.

Formalizing mathematics

Why formalize?

Benefits of formalizing mathematics:

- Ensure correctness
- Detect errors in tradional mathematical proofs

There are many proof assistants out there Coq, **Agda**, Lean, Idris, ...

Propositions as types

The propositions-as-types interpretation is the direct relationship between computer programs and mathematical proofs.

Prop	Type
Т	unit
\perp	void
$\phi_1 \wedge \phi_2$	$ au_1 imes au_2$
$\phi_1 \supset \phi_2$	$ au_1 ightarrow au_2$
$\phi_1 \lor \phi_2$	$ au_1 + au_2$

Becuase of strong typing and dependent types, Agda makes a good proof assistant.

Agda proof assistant

Defining a datatype in Agda

data Bool : Type where

true : Bool false : Bool

Bool is the name of the datatype, and **true** and **false** are its constructors.

Agda proof assistant

Functions over datatypes can be defined using pattern matching.

```
\begin{array}{l} \mathsf{not} : \mathsf{Bool} \to \mathsf{Bool} \\ \mathsf{not} \; \mathsf{true} = \mathsf{false} \\ \mathsf{not} \; \mathsf{false} = \mathsf{true} \end{array}
```

The type of **not** is defined as a function from **Bool** to **Bool**. The function is then defined by pattern matching on the arguments.

Agda proof assistant

A **dependent type** is a type that depends on elements of another type.

For example, the polymorphic identity function:

$$\mathsf{id} \,:\, (A : \mathsf{Type}) \to A \to A \\ \mathsf{id} \,\, A \,\, x = x$$

In Agda it is possible to use implicit arguments.

$$\mathsf{id'}: \{A:\mathsf{Type}\} \to A \to A \\ \mathsf{id'}\; x = x$$

Agda will try to infer the type for us.

Cubical Agda

Cubical Agda is an extension of Agda that incorporates features of cubical type theory.

It has native support for set quotients!

Note: We are using the agda/cubical library, which is the standard library for Cubical Agda.

Table of Contents

- 1 Background and motivation
- 2 Classical propositional logic and provability in Agda
- 3 Constructing the Lindenbaum-Tarski algebra using set quotioents from Cubical Agda
- 4 Proving the Lindenbaum-Tarski algebra is a Boolean algebra

Formulas and context?

Choosing logical connectives

$$\top \perp \wedge \vee \neg$$

Inference rules. All rules follow this general shape.

Law of excluded middle

The law of excluded middle states that for every proposition, either the proposition or its negation is true.

That is, for all formulas ϕ .

$$\vdash \phi \lor \neg \phi$$

This makes it a classical logic. In Agda:

LEM :
$$\{\phi : \mathsf{Formula}\}\$$

 $\to \emptyset \vdash \phi \lor \neg \phi$

There are three common structural rules:

- Weakening
- Exchange
- Contraction

Only weakening and exchange are needed.

A logic that rejects contraction is an affine logic.

Choice of logical connectives can affect dependencies on structural rules.

Biprovability relation

Definition

$$\phi \sim \psi$$
 if and only if $\Gamma, \phi \vdash \psi$ and $\Gamma, \psi \vdash \phi$.

The relation is defined as a pair, so we define it as a product in Agda:

$$_\sim_-$$
: Formula → Formula → Type $\phi \sim \psi = (\Gamma :: \phi \vdash \psi) \times (\Gamma :: \psi \vdash \phi)$

This is an equivalence relation!

Table of Contents

- 3 Constructing the Lindenbaum-Tarski algebra using set quotioents from Cubical Agda

Formalizing Lindenbaum-Tarski algebra

Define Lindenbaum-Tarski algebra in Cubical Agda using the existing definition of set quotients.

```
LindenbaumTarski : Type
LindenbaumTarski = Formula / \_\sim_
```

Formalizing Lindenbaum-Tarski algebra

Operations on the equivalence classes

$$\wedge/$$
 $\vee/$ $\neg/$

To define these operations in Agda we made use of already existing definitions in the agda/cubical library.

Formalizing Lindenbaum-Tarski algebra

Conjunction:

Disjunction and negation are defined similarly.

Table of Contents

- 1 Background and motivation
- 2 Classical propositional logic and provability in Agda
- 3 Constructing the Lindenbaum-Tarski algebra using set quotioents from Cubical Agda
- 4 Proving the Lindenbaum-Tarski algebra is a Boolean algebra

The Lindenbaum-Tarski algebra is a Boolean algebra

- A lattice is a non-empty partially ordered set $\langle L, \leq \rangle$ where every $x, y \in L$ has a supremum $x \vee y$ and an infimum $x \wedge y$.
- A lattice *L* is distributive if for all $x, y, z \in L$,

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z)$$

■ A lattice L is complemented if there exist both least and greatest elements in L denoted \bot and \top , and for every $x \in L$ there exists $y \in L$ such that

$$x \lor y = \top$$
 and $x \land y = \bot$

A Boolean algebra is a complemented distributive lattice

The Lindenbaum-Tarski algebra is a Boolean algebra

- Showing the Lindenbaum-Tarski algebra is a complemented distributive lattice implies that it is a Boolean algebra.
- There is an existing definition of a distributive lattice in the agda/cubical library.

The Lindenbaum-Tarski algebra is a Boolean algebra

```
LindenbaumTarski-DistLattice-supremum : (A: \mathsf{fst} \ \mathsf{LindenbaumTarski-DistLattice}) \to A \lor \mathsf{I} \neg \mathsf{I} A \equiv 1 \mathsf{I} LindenbaumTarski-DistLattice-supremum A = \lor \mathsf{I} - \mathsf{I} - \mathsf{I} where  \lor \mathsf{I} - \mathsf{I}
```

Applications

#TODO

- Soundness?
- Usefulness of doing algebra on logic?