

ROBOTICS RESEARCH INSTITUTE INFORMATION TECHNOLOGY

Job Scheduling

Uwe Schwiegelshohn

EPIT 2007, June 5 Ordonnancement

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

Examples of Job Scheduling

Processor scheduling

- Jobs are executed on a CPU in a multitasking operating system.
- Users submit jobs to web servers and receive results after some time.
- Users submit batch computing jobs to a parallel processor.

Bandwidth scheduling

- Users call other persons and need bandwidth for some period of time.
- Airport gate scheduling
 - → Airlines require gates for their flights at an airport.
- Repair crew scheduling
 - Customer request the repair of their devices.

Job Properties

- Independent jobs
 - → No known precedence constraints
 - Difference to task scheduling
- Atomic jobs
 - → No job stages
 - Difference to job shop scheduling
- Batch jobs
 - → No deadlines or due dates
 - Difference to deadline scheduling

p _j	processing time of job j	
r_j	release date of job j	earliest starting time
\mathbf{w}_{j}	weight of job j	importance of the job
m _j	size of job j	parallelism of the job

Machine Environments

- 1: single machine
 - Many job scheduling problems are easy.
- **■** P_m: m parallel identical machines
 - Every job requires the same processing time on each machine.
 - Use of machine eligibility constraints M_j if job j can only be executed on a subset of machines
 - Airport gate scheduling: wide and narrow body airplanes
- Q_m: m uniformly related machines
 - The machines have different speeds v_i that are valid for all jobs.
 - → In deterministic scheduling, results for P_m and Q_m are related.
 - → In online scheduling, there are significant differences between P_m and Q_m.
- R_m: m unrelated machines
 - → Each job has a different processing time on each machine.

Restrictions and Constraints

- Release dates r_i
- Parallelism m_i
 - → Fixed parallelism: m_j machines must be available during the whole processing of the job.
 - Malleable jobs: The number of allocated machines can change before or during the processing of the job.
- Preemption
 - → The processing of a job can be interrupted and continued on another machine.
 - Gang scheduling: The processing of a job must be continued on the same machines.
- Machine eligibility constraints M_i
- Breakdown of machines
 - → m(t): time dependent availability

rarely discussed in the literature

Objective Functions

- Completion time of job j: C_i
- Owner oriented:
 - → Makespan: C_{max} = max (C₁,...,C_n)
 - completion time of the last job in the system
 - → Utilization U_t: Average ratio of busy machines to all machines in the interval (0,t] for some time t.
- User oriented:
 - Total completion time: Σ C_j
 - Total weighted completion time: Σ w_j C_j
 - → Total weighted waiting time: $\sum w_j (C_j p_j r_j) = \sum w_j C_j \sum w_j (p_j + r_j)$
 - → Total weighted flow time: $\sum w_j (C_j r_j) = \sum w_j C_j \sum w_j r_j$ const.
- Regular objective functions:
 - → non decreasing in C₁,...,C_n

Workload Classification

Deterministic scheduling problems

- → All problem parameters are available at time 0.
- Optimal algorithms,
- Simple individual approximation algorithms
- Polynomial time approximation schemes

Online scheduling problems

- → Parameters of job j are unknown until r_i (submission over time).
- → p_j is unknown C_j (nonclairvoyant scheduling).
- Competitive analysis

Stochastic scheduling

- Known distribution of job parameters
- Randomized algorithms

Workload based scheduling

An algorithm is parameterized to achieve a good solution for a given workload.

Nondelay (Greedy) Schedule

No machine is kept idle while a job is waiting for processing. An optimal schedule need not be nondelay!

Example: $1 \mid \mid \Sigma w_j C_j$

Nondelay schedule

Complexity Hierarchy

Some problems are special cases of other problems:

Notation: $\alpha_1 | \beta_1 | \gamma_1 \propto \text{(reduces to)} \quad \alpha_2 | \beta_2 | \gamma_2$

Examples:

 $1 \mid\mid \Sigma \mid C_{j} \mid \infty \mid 1 \mid\mid \Sigma \mid w_{j} \mid C_{j} \mid \infty \mid P_{m} \mid\mid \Sigma \mid w_{j} \mid C_{j} \mid \infty \mid P_{m} \mid\mid m_{j} \mid\mid \Sigma \mid w_{j} \mid C_{j} \mid$

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

$1 \parallel \Sigma w_j C_j$

- 1 || Σ w_j C_j is easy and can be solved by sorting all jobs in decreasing Smith order w_j/p_j (weighted shortest processing time first (WSPT) rule, Smith, 1956).
 - Nondelay schedule
 - Proof by contradiction and localization:
 If the WSPT rule is violated then it is violated by a pair of neighboring task h and k.

$$S_1$$
: $\Sigma w_j C_j = ... + w_h(t+p_h) + w_k(t+p_h+p_k)$

$$S_1-S_2$$
:
 $W_k p_h - W_h p_k > 0$
 $W_k/p_k > W_h/p_h$

$$S_2$$
: $\Sigma w_j C_j = ... + w_k(t + p_k) + w_h(t + p_k + p_h)$

Other Single Machine Problems

- Every nondelay schedule has
 - optimal makespan and
 - optimal utilization for any interval starting at time 0.
- WSPT requires knowledge of the processing times
 - No direct application to nonclairvoyant scheduling
- 1 | prmp | Σ C_j is easy.
 - → The online nonclairvoyant version (Round Robin) has a competitive factor of 2-2/(n+1) (Motwani, Phillips, Torng, 1994).
- $1 \mid r_j$, prmp $\mid \Sigma C_j$ is easy.
 - → The online, clairvoyant version is easy.
- $1 | r_j | \Sigma C_j$ is strongly NP hard.
- $1 \mid r_j$, prmp $\mid \Sigma w_j C_j$ is strongly NP hard.
 - → The WSRPT (remaining processing time) rule is not optimal.

Optimal versus Approximation

- 1 | r_j ,prmp | Σ w_j (C_j-r_j) and 1 | r_j ,prmp | Σ w_j C_j
 - Same optimal solution
 - Larger approximation factor for 1 | r_j ,prmp | Σ w_j (C_j-r_j).
 - → No constant approximation factor for the total flowtime objective (Kellerer, Tautenhahn, Wöginger, 1999)

$$\frac{\sum w_{j} \cdot (C_{j}(S) - r_{j})}{\sum w_{j} \cdot (C_{j}(OPT) - r_{j})} =$$

$$= \frac{\sum_{\mathbf{w}_{j}} \cdot \mathbf{C}_{j}(\mathbf{S})}{\sum_{\mathbf{w}_{j}} \cdot \mathbf{C}_{j}(\mathbf{OPT})} \sum_{\mathbf{w}_{j}} \cdot (\mathbf{C}_{j}(\mathbf{OPT}) - \mathbf{r}_{j}) + \left(\frac{\sum_{\mathbf{w}_{j}} \cdot \mathbf{C}_{j}(\mathbf{S})}{\sum_{\mathbf{w}_{j}} \cdot \mathbf{C}_{j}(\mathbf{OPT})} - 1\right) \sum_{\mathbf{w}_{j}} \mathbf{w}_{j} \cdot \mathbf{r}_{j}}{\sum_{\mathbf{w}_{j}} \cdot (\mathbf{C}_{j}(\mathbf{OPT}) - \mathbf{r}_{j})} = \frac{\sum_{\mathbf{w}_{j}} \mathbf{w}_{j} \cdot \mathbf{C}_{j}(\mathbf{OPT})}{\sum_{\mathbf{w}_{j}} \cdot \mathbf{C}_{j}(\mathbf{OPT}) - \mathbf{r}_{j}} = \frac{\sum_{\mathbf{w}_{j}} \mathbf{w}_{j} \cdot \mathbf{C}_{j}(\mathbf{OPT})}{\sum_{\mathbf{w}_{j}} \cdot \mathbf{C}_{j}(\mathbf{OPT}) - \mathbf{C}_{j}}$$

$$= \frac{\sum w_{j} \cdot C_{j}(S)}{\sum w_{j} \cdot C_{j}(OPT)} + \left(\frac{\sum w_{j} \cdot C_{j}(S)}{\sum w_{j} \cdot C_{j}(OPT)} - 1\right) \cdot \frac{\sum w_{j} \cdot r_{j}}{\sum w_{j} \cdot (C_{j}(OPT) - r_{j})}$$

Approximation Algorithms

- $\blacksquare 1 \mid r_j \mid \Sigma C_j$
 - → Approximation factor e/(e-1)=1.58 (Chekuri, Motwani, Natarajan, Stein, 2001)
 - Clairvoyant online scheduling: competitive factor 2 (Hoogeveen, Vestjens, 1996)
- $\blacksquare 1 \mid r_j \mid \Sigma w_j C_j$
 - Approximation factor 1.6853 (Goemans, Queyranne, Schulz, Skutella, Wang, 2002)
 - Clairvoyant online scheduling: competitive factor 2 (Anderson, Potts, 2004)
- \blacksquare 1 | r_j , prmp | Σ w_j C_j
 - Approximation factor 1.3333,
 - Randomized online algorithm with the competitive factor 1.3333
 - WSPT online algorithm with competitive factor 2 (all results: Schulz, Skutella, 2002)

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

P_m and Makespan with m_j=1

- A scheduling problem for parallel machines consists of 2 steps:
 - Allocation of jobs to machines
 - Generating a sequence of the jobs on a machine
- A minimal makespan represents a balanced load on the machines if no single job dominates the schedule.

$$C_{max}(OPT) \ge \max \left\{ max \left\{ p_j \right\}, \frac{1}{m} \cdot \sum p_j \right\}$$

Preemption may improve a schedule even if all jobs are released at the same time.

$$C_{\text{max}}(\text{OPT}) = \max \left\{ \max \left\{ p_j \right\}, \frac{1}{m} \cdot \sum p_j \right\}$$

 Optimal schedules for parallel identical machines are nondelay.

$P_m \parallel C_{max}$

- \blacksquare P_m || C_{max} is strongly NP-hard (Garey, Johnson 1979).
- Approximation algorithm: Longest processing time first (LPT) rule (Graham, 1966)
 - → Whenever a machine is free, the longest job among those not yet processed is put on this machine.
 - → Tight approximation factor: $\frac{C_{max}(LPT)}{C_{max}(OPT)} \le \frac{4}{3} \frac{1}{3m}$
 - → The optimal schedule C_{max}(OPT) is not necessarily known but a simple lower bound can be used:

$$C_{max}(OPT) \ge \frac{1}{m} \sum_{j=1}^{n} p_j$$

LPT Proof (1)

- If the claim is not true, then there is a counterexample with the smallest number n of jobs.
- The shortest job n in this counterexample is the last job to start processing (LPT) and the last job to finish processing.
 - → If n is not the last job to finish processing then deletion of n does not change C_{max} (LPT) while C_{max} (OPT) cannot increase.
 - → A counter example with n 1 jobs
- Under LPT, job n starts at time $C_{max}(LPT)-p_n$.
 - → In time interval $[0, C_{max}(LPT) p_n]$, all machines are busy.

$$C_{max}(LPT) - p_n \le \frac{1}{m} \sum_{j=1}^{n-1} p_j$$

LPT Proof (2)

$$C_{max}$$
 (LPT) $\leq p_n + \frac{1}{m} \sum_{j=1}^{n-1} p_j = p_n (1 - \frac{1}{m}) + \frac{1}{m} \sum_{j=1}^{n} p_j$

$$\frac{4}{3} - \frac{1}{3m} < \frac{C_{\text{max}}(\text{LPT})}{C_{\text{max}}(\text{OPT})} \le \frac{p_n(1 - \frac{1}{m})}{C_{\text{max}}(\text{OPT})} + \frac{\frac{1}{m} \sum_{j=1}^{n} p_j}{C_{\text{max}}(\text{OPT})} \le \frac{p_n(1 - 1/m)}{C_{\text{max}}(\text{OPT})} + 1$$

$$C_{max}(OPT) < 3p_n$$

At most two jobs are scheduled on each machine. For such a problem, LPT is optimal.

A Worst Case Example for LPT

jobs	1	2	3	4	5	6	7	8	9
pj	7	7	6	6	5	5	4	4	4

- 4 parallel machines: P4||C_{max}
- $C_{max}(OPT) = 12 = 7+5 = 6+6 = 4+4+4$
- $C_{\text{max}}(LPT) = 15 = 11+4=(4/3 1/(3\cdot4))\cdot 12$

7	4	4
7	4	
6	5	
6	5	

List Scheduling

- LPT requires knowledge of the processing times.
 - No direct application to nonclairvoyant scheduling
- Arbitrary nondelay schedule (List Scheduling, Graham, 1966)
 - → Tight approximation factor:

$$\frac{C_{\text{max}} \text{ (LIST)}}{C_{\text{max}} \text{ (OPT)}} \le 2 - \frac{1}{m}$$

Online Transformation

Let A be an algorithm for a job scheduling problem without release dates and with

$$\frac{C_{\max}(A)}{C_{\max}(OPT)} \le k$$

Then there is an algorithm A' for the corresponding online job scheduling problem with

$$\frac{C_{\max}(A')}{C_{\max}(OPT)} \le 2k$$

(Shmoys, Wein, Williamson, 1995)

Transformation Proof

- \blacksquare S₀: Jobs available at time $0=F_{-1}=F_{-2}$
- $F_0 = C_{\text{max}}(A, S_0)$
- \blacksquare S_{i+1}: Jobs released in (F_{i-1},F_i]
- \blacksquare $F_i = C_{max}(A, S_i)$ such that no job from S_i starts before F_{i-1} .
- Assume that all jobs in S_i are released at time F_{i-2}
 - ightharpoonup $C_{max}(OPT)$ cannot increase while $C_{max}(A')$ remains unchanged.
- Proof

$$F_{i-2} + F_i - F_{i-1} \le k \cdot C_{max}(A, S_i) = k \cdot C_{max}(A')$$

$$F_{i-1} - F_{i-2} \le F_{i-3} + F_{i-1} - F_{i-2} \le k \cdot C_{max}(A, S_{i-1}) < k \cdot C_{max}(A')$$

$$F_i < 2k \cdot C_{max}(A')$$

List Scheduling Extensions

- The List scheduling bound 2-1/m also applies to $P_m|r_j|C_{max}$ (Hall, Shmoys, 1989).
- Online extension of List scheduling to parallel jobs:
 - No machine is kept idle while there is at least one job waiting and there are enough machines idle to start this job (nondelay).
- The List scheduling bound 2-1/m also applies to $P_m|m_i|C_{max}$ (Feldmann, Sgall, Teng, 1994).
- The List scheduling bound 2-1/m also applies to $P_m|m_j,r_j|C_{max}$ (Naroska, Schwiegelshohn, 2002).
 - → 2-1/m is a competitive factor for the corresponding online nonclairvoyant scheduling problem.
 - Proof by induction on the number of different release dates

$P_m \mid m_j \mid C_{max} \text{ Proof}$

The bound holds if during the whole schedule there is no interval with at least m/2 idle machines.

$$C_{\max}(OPT) \ge \frac{1}{m} \sum_{j=1}^{m} m_{j} \cdot p_{j} \ge \frac{m+1}{2m} \cdot C_{\max}(S) \ge \frac{m}{2m-1} \cdot C_{\max}(S) = \frac{1}{2-\frac{1}{m}} \cdot C_{\max}(S)$$

The sum of machines used in any two intervals is larger than m unless the jobs executed in one interval are a subset of the jobs executed in the other interval.

$$C_{\max}(S) \le \max \left\{ \left(2 - \frac{1}{m} \right) \cdot \sum_{j} m_{j} \cdot p_{j}, \left(2 - \frac{1}{m} \right) \cdot \max \left\{ p_{j} \right\} \right\}$$

Makespan with Preemptions

- \blacksquare P_m |prmp| C_{max} is easy.
 - → Transformation of a nonpreemptive single machine schedule in a preemptive parallel schedule (McNaughton, 1959)
 - The single machine schedule is split into at most m schedules of length C_{max}(OPT).
 - Each schedule is executed on a different machine.
 - There are at most m-1 preemptions.
- P_m |r_j, prmp| C_{max} is easy.
 - Longest remaining processing time algorithm.
 - Clairvoyant online scheduling
 - Competitive factor 1 for allocation as late as possible.
 - Competitive factor e/(e-1)=1.58 for allocation of machine slots at submission time (Chen, van Vliet, Wöginger, 1995)
 - → Nonclairvoyant online scheduling: same competitive factor 2-1/m as for the nonpreemptive case (Shmoys, Wein Williamson, 1995)

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

Utilization

- Utilization U_t is closely related to the makespan C_{max} if t=C_{max}.
 - → In online job scheduling problems, there is no last submitted job.
 - → U_t with t being the actual time is better suited than the makespan objective.
- \blacksquare $P_m |r_j| U_t$
 - → Nonclairvoyant online scheduling: tight competitive factor for any nondelay schedule 1.3333 (Hussein, Schwiegelshohn, 2006)
 - Proof by induction on the different release dates.

$$U_2(LIST) = 0.75$$

$$U_2(OPT)=1$$

Utilization Proof (1)

- Transformation of the job system
 - → Reduction of the release dates

Utilization Proof (2)

- Transformation of the job system
 - Splitting of jobs
 - → The system only contains short and long jobs.
 - All long jobs start at the end of an interval.

Utilization Proof (3)

- Transformation of the job system
 - Modification of jobs with earlier release dates

Utilization Proof (4)

If all long jobs of a transformed job system start at their release date, then the utilization is maximal for all t and the equal priority completion time is minimal.

Utilization Proof (5)

Nondelay schedule S

Nondelay schedule S

Optimal schedule

Optimal schedule

$P_m | r_j, m_j | U_t$

- Parallel jobs may cause intermediate idle time even if all jobs are released at time 0.
- Nonclairvoyant online scheduling:
 - → Competitive factor → m in the worst case
 - → Competitive factor → 2 if the actual time >> max{p_i}

Jobs	1	2	3	4	5	6
p _j	1+ε	1+ε	1+ε	1+ε	1	5
r _j	0	1	2	3	4	0
m _i	1	1	1	1	1	5

1		3		5	
	2		4		6

$$U_5(LIST) = 0.2 + 0.16\epsilon$$

$$U_5(OPT)=1$$

$P_m | r_j, m_j, prmp | U_t$

- Here, preemption of parallel jobs is based on gang scheduling.
 - All allocated machines concurrently start, interrupt, resume, and complete the execution of a parallel job.
 - → There is no migration or change of parallelism.
- Nonclairvoyant online scheduling: competitive factor 4 (Schwiegelshohn, Yahyapour, 2000)

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

$P_{m} || \Sigma C_{j}$

- \blacksquare $P_m || \Sigma C_j$ is easy.
 - Shortest processing time (SPT) (Conway, Maxwell, Miller, 1967)
 - Single machine proof:
 - $\Sigma C_j = n p_{(1)} + (n-1) p_{(2)} + ... 2 p_{(n-1)} + p_{(n)}$
 - $p_{(1)} \le p_{(2)} \le p_{(3)} \le \dots \le p_{(n-1)} \le p_{(n)}$ must hold for an optimal schedule.
 - Parallel identical machines proof:
 - Dummy jobs with processing time 0 are added until n is a multiple of m.
 - The sum of the completion time has n additive terms with one coefficient each: m coefficients with value n/m

m coefficients with value n/m - 1

1

m coefficients with value 1

- If there is one coefficient h>n/m then there must be a coefficient k<n/m.
- Then we replace h with k+1 and obtain a smaller ΣC_i.
- \blacksquare P_m |prmp| Σ C_j is easy (Shortest remaining processing time).

$P_m || \sum w_j C_j$

- \blacksquare P_m || Σ w_iC_j is strongly NP-hard.
 - → The WSPT algorithm has a tight approximation factor of 1.207 (Kawaguchi, Kyan, 1986)
 - → It is sufficient to consider instances where all jobs have the same ratio w_i/p_i.
 - Proof by induction on the number of different ratios.
 - J is the set of all jobs with the largest ratio in an instance I.
 - The weights of all jobs in J are multiplied by a positive factor ε <1 such that those jobs now have the second largest ratio.
 - This produces instance I'.
 - The WSPT order is still valid.
 - The WSPT schedule remains unchanged.
 - The optimal schedule may change.

Different Ratios

Induction Proof

- \rightarrow Σw_iC_j(WSPT,I')≤λ·Σw_iC_j(OPT,I') (induction assumption)
- \rightarrow x: contribution of all jobs in J to $\sum w_i C_j(WSPT,I)$
- \rightarrow y: contribution of all jobs not in J to $\sum w_i C_j(WSPT,I)$
- \rightarrow x': contribution of all jobs in J to $\sum w_i C_j(OPT,I)$
- \rightarrow y': contribution of all jobs not in J to $\sum w_i C_j(OPT,I)$
- \rightarrow x \leq λ ·x' (induction assumption)
- → Σ w_iC_j(WSPT,I)= x+y and Σ w_iC_j(WSPT,I')=ε·x+y,
- → $\Sigma w_i^* C_j(OPT,I) = x' + y'$ and $\Sigma w_i^* C_j(OPT,I') \le \varepsilon \cdot x' + y'$
- \rightarrow y≤ λ ·y' \rightarrow Σ w_jC_j(WSPT,I)≤ λ · Σ w_jC_j(OPT,I)
- \rightarrow y> $\lambda \cdot y' \rightarrow \lambda \cdot x'y>x \cdot \lambda \cdot y' \rightarrow x'/y'>x/y \rightarrow x'y-xy'>0 \rightarrow x'y-xy'>\varepsilon(x'y-xy')$
- $\sum_{j} \sum_{i} \sum_{j} \sum_{$
- → $\Sigma w_i C_j (WSPT,I) \le \lambda \cdot \Sigma w_i C_j (OPT,I)$
- Assumption: w_j=p_j holds for all jobs j.

WSPT Proof (1)

- Transformation of the job system
 - \rightarrow Splitting of job j into jobs j₁ and j₂.
 - The system only contains short and long jobs.
 - All long jobs start at the end of busy interval in the list schedule.

$$\sum_{j} w_{j} C_{j}(S') - \sum_{j} w_{j} C_{j}(S) = p_{j} C_{j}(S') - p_{j_{1}} C_{j_{1}}(S) - p_{j_{2}} C_{j_{2}}(S) =$$

$$= (p_{j_{1}} + p_{j_{2}}) \cdot C_{j}(S') - p_{j_{1}} \cdot (C_{j}(S') - p_{j_{2}}) - p_{j_{2}} C_{j}(S') =$$

machines

$$\begin{split} \frac{\sum w_{j}C_{j}(S)}{\sum w_{j}C_{j}(OPT)} &\geq \frac{\sum w_{j}C_{j}(S') - p_{j_{1}}p_{j_{2}}}{\sum w_{j}C_{j}(OPT') - p_{j_{1}}p_{j_{2}}} \geq \\ &\geq \frac{\sum w_{j}C_{j}(S')}{\sum w_{j}C_{j}(OPT')} \end{split}$$

WSPT Proof (2)

- Single machine without intermediate idle time
 - → w_i=p_i holds for all jobs.

 - Proof by induction on the number of jobs

$$\sum w_{j}C_{j}(S) = \frac{1}{2} \left(\left(\sum p_{j} \right)^{2} + \sum p_{j}^{2} \right) + p_{j'} \left(p_{j'} + \sum p_{j} \right) =$$

$$= \frac{1}{2} \left(\left(\sum p_{j} \right)^{2} + 2p_{j'} \sum p_{j} + p_{j'}^{2} \right) + \frac{1}{2} \left(\sum p_{j}^{2} + p_{j'}^{2} \right)$$

WSPT Proof (3)

43

Equalization of the long jobs

- Assumption of a continuous model (fraction of machines)
- → k long jobs with different processing times are transformed into n(k) jobs with the same processing time p(k) such that ∑p_i=n(k) · p(k) and ∑p_i²=n(k) · (p(k))² hold.
- \rightarrow p(k)= $\sum p_j^2 / \sum p_j$ and n(k)= $(\sum p_j)^2 / \sum p_j^2$
- → Then we have k≥n(k) for reasons of convexity.

machines machines

WSPT Proof (4)

- Modification of the job system
 - Partitioning of the long jobs into two groups
 - Equalization of the both groups separately
 - → The maximum completion time of the small jobs decreases due to the large rectangle.
 - → The jobs of the small rectangle are rearranged.
 - New equalization of the large rectangle
 - Determination of the size of the large rectangle

Release Dates

- \blacksquare $P_m |r_j| \Sigma C_j$
 - Approximation factor 2
 - Clairvoyant, randomized online scheduling: competitive factor 2
- \blacksquare $P_m | r_j, prmp | \Sigma C_j$
 - Approximation factor 2
 - Clairvoyant, randomized online scheduling: competitive factor 2
- $P_{m} |r_{j}| \Sigma w_{j} C_{j}$
 - Approximation factor 2
 - Clairvoyant, randomized online scheduling: competitive factor 2
- \blacksquare $P_m | r_j, prmp | \Sigma w_j C_j$
 - Approximation factor 2
 - Clairvoyant, randomized online scheduling: competitive factor 2 (all results Schulz, Skutella, 2002)

Parallel Jobs

- \blacksquare $P_m | m_j, prmp | \Sigma w_j C_j$
 - Use of gang scheduling without any task migration
 - Approximation factor 2.37 (Schwiegelshohn, 2004)
- \blacksquare $P_m | m_j, prmp | \Sigma C_j$
 - Nonclairvoyant approximation factor 2-2/(n+1) if all jobs are malleable with linear speedup (Deng, Gu, Brecht, Lu, 2000).
- $P_m |m_j| \Sigma w_j C_j$
 - → Approximation factor 7.11 (Schwiegelshohn, 2004)
 - Approximation factor 2 if m_j≤0.5m holds for all jobs (Turek et al., 1994)
- \blacksquare $P_m | m_j | \Sigma C_j$
 - → Approximation factor 2 if the jobs are malleable without superlinear speedup (Turek et al., 1994)

Online Problems

- \blacksquare $P_m | m_j, r_j, prmp | \Sigma w_j C_j$
 - Nonclairvoyant online scheduling with gang scheduling and w_j=m_j⋅p_j: competitive factor 3.562 (Schwiegelshohn, Yahyapour, 2000)
 - w_j=m_j·p_j guarantees that no job is preferred over another job regardless of its resource consumption as all jobs have the same (extended) Smith ratio.
 - All jobs are started in order of their arrival (FCFS).
 - Any job started after a job j can increase the flow time C_j-r_j by at most a factor of 2
 - Clairvoyant online scheduling with malleable jobs and linear speedup:
 - Competitive factor 12+ε for a deterministic algorithm
 - Competitive factor 8.67 for a randomized algorithm (both results Chakrabarti et al., 1996)

Content of the Lecture

- What is job scheduling?
- Single machine problems and results
- Makespan problems on parallel machines
- Utilization problems on parallel machines
- Completion time problems on parallel machines
- Exemplary workload problem

MPP Problem

Machine model

→ Massively parallel processor (MPP): m parallel identical machines

Job model

- Multiple independent users
- → Nonclairvoyant (unknown processing time p_i) with estimates
- → Online (submission over time r_i)
- Fixed degree of parallelism m_i during the whole processing
- → No preemption

Objective

- Machine utilization
- → Average weighted response time (AWRT): p_j·m_j·(C_j-r_j)
- Based on user groups

Algorithmic Approach

- Reordering of the waiting queue
 - Parameters of jobs in the waiting queue
 - Actual time
 - → Scheduling situations: weekdays daytime (8am 6pm), weekdays nighttime (6pm – 8am), weekends
- Selected sorting criteria
- Selected objective
 - Consideration of 2 user groups: 10 AWRT₁+ 4 AWRT₂
- Parameter training with Evolution Strategies
 - Recorded workloads and simulations
 - Workload scaling for comparison

Workloads and User Groups

User Group	1	2	3	4	5
RC _u /RC	> 8%	2 – 8 %	1 – 2 %	0.1 – 1 %	< 0.1 %

User group definition

Identifier	СТС	KTH	LANL	SDSC 00	SDSC 95	SDSC 96
Machine	SP2	SP2	CM-5	SP2	SP2	SP2
Period	06/26/96 – 05/31/97	09/23/96 – 08/29/97	04/10/94 – 09/24/96	04/28/98 – 04/30/00	12/29/94 – 12/30/95	12/27/95 – 12/31/96
Processors (m)	1024	1024	1024	1024	1024	1024
Jobs (n)	136471	167375	201378	310745	131762	66185

Workload scaling

Sorting Criteria

$$\begin{split} f_{1}(Job) &= \sum_{i=1}^{|Groups|} w_{i} \cdot \left(K_{i} + a \cdot \frac{waitTime}{requestedTime} + b \cdot \frac{requestedTime}{processors}\right) \\ f_{2}(Job) &= \sum_{i=1}^{|Groups|} w_{i} \cdot \left(K_{i} + a \cdot waitTime + b \cdot \frac{requestedTime}{processors}\right) \\ f_{3}(Job) &= \sum_{i=1}^{|Groups|} w_{i} \cdot \left(K_{i} + a \cdot \frac{waitTime}{requestedTime \cdot processors}\right) \\ f_{4}(Job) &= \sum_{i=1}^{|Groups|} w_{i} \cdot \left(K_{i} + a \cdot waitTime + b \cdot requestedTime \cdot processors\right) \end{split}$$

Training of parameters w_i, K_i, a, b with Evolution Strategies

CTC Training and CTC Workload

Method	AWRT 1	AWRT 2	AWRT 3	AWRT 4	AWRT 5	UTIL	
GREEDY	52755.80 s	61947.65 s	56275.18 s	54017.23 s	35085.84 s	66.99 %	\prod
EASY	59681.28 s	64976.07 s	50317.47 s	46120.02 s	31855.68 s	66.99 %	

CTC Training and All Workloads

- Some workloads are similar (CTC, LANL).
- Some workloads are significantly different (CTC, KTH).

Results in CTC Paretofront

Results in SDSC 95 Paretofront

Conclusion

- Most deterministic job scheduling problems are NP hard.
 - Approximation algorithms
 - Polynomial time approximation schemes
 - Simple algorithms
- Complete problem knowledge is rare in practice.
 - Online algorithms
 - Competitive analysis
 - Stochastic scheduling
 - Randomized algorithms
- Challenges
 - Partial information
 - Recorded workloads
 - User estimates
 - Scheduling objectives and constraints