LOGIC AND THEORETICAL FOUNDATION OF COMPUTER SCIENCE

LATFOCS

Pamela Fleischmann

fpa@informatik.uni-kiel.de

Winter Semester 2019

Kiel University Dependable Systems Group

 We have now the language of propositional logic for describing problems and for deducing valid stuff

- We have now the language of propositional logic for describing problems and for deducing valid stuff
- How does this help to accept that some problems are solvable by a computer and others not?

- We have now the language of propositional logic for describing problems and for deducing valid stuff
- How does this help to accept that some problems are solvable by a computer and others not?
- How to get our fancy atoms into a computer?

- We have now the language of propositional logic for describing problems and for deducing valid stuff
- How does this help to accept that some problems are solvable by a computer and others not?
- How to get our fancy atoms into a computer?
- We will develop models for computation and refine them until we get something sufficient.

- We have now the language of propositional logic for describing problems and for deducing valid stuff
- How does this help to accept that some problems are solvable by a computer and others not?
- How to get our fancy atoms into a computer?
- We will develop models for computation and refine them until we get something sufficient.
- Recall: we are only interested in decision problems!

Definition

 \bigcirc alphabet: $\Sigma = \{a, b, c, \dots\}$ finite set of symbols, letters

- \bigcirc alphabet: $\Sigma = \{a, b, c, ...\}$ finite set of symbols, letters
- $\, \bigcirc \,$ string, word: finite length sequence of elements of Σ

- \bigcirc alphabet: $\Sigma = \{a, b, c, ...\}$ finite set of symbols, letters
- \bigcirc string, word: finite length sequence of elements of Σ
- \bigcirc length of word: |w| number of letters

- \bigcirc alphabet: $\Sigma = \{a, b, c, ...\}$ finite set of symbols, letters
- \bigcirc string, word: finite length sequence of elements of Σ
- \bigcirc length of word: |w| number of letters
- \bigcirc set of all words over Σ of length $n \in \mathbb{N}$: Σ^n

- \bigcirc alphabet: $\Sigma = \{a, b, c, ...\}$ finite set of symbols, letters
- \bigcirc string, word: finite length sequence of elements of Σ
- \bigcirc length of word: |w| number of letters
- set of all words over Σ of length $n \in \mathbb{N}$: Σ^n
- set of all words over Σ longer than $n \in \mathbb{N}$: $\Sigma^{\geq n}$

- \bigcirc alphabet: $\Sigma = \{a, b, c, ...\}$ finite set of symbols, letters
- \bigcirc string, word: finite length sequence of elements of Σ
- \bigcirc length of word: |w| number of letters
- set of all words over Σ of length $n \in \mathbb{N}$: Σ^n
- \bigcirc set of all words over Σ longer than $n \in \mathbb{N}$: $\Sigma^{\geq n}$
- \bigcirc set of all words over Σ : $\Sigma^* = \bigcup_{n \in \mathbb{N}_0} \Sigma^n$

- \bigcirc alphabet: $\Sigma = \{a, b, c, ...\}$ finite set of symbols, letters
- \odot string, word: finite length sequence of elements of Σ
- \bigcirc length of word: |w| number of letters
- \bigcirc set of all words over Σ of length $n \in \mathbb{N}$: Σ^n
- set of all words over Σ longer than $n \in \mathbb{N}$: $\Sigma^{\geq n}$
- \bigcirc set of all words over Σ : $\Sigma^* = \bigcup_{n \in \mathbb{N}_0} \Sigma^n$
- \bigcirc empty string: ε : $|\varepsilon| = 0$

- \bigcirc alphabet: $\Sigma = \{a, b, c, ...\}$ finite set of symbols, letters
- \odot string, word: finite length sequence of elements of Σ
- \bigcirc length of word: |w| number of letters
- \bigcirc set of all words over Σ of length $n \in \mathbb{N}$: Σ^n
- \bigcirc set of all words over Σ longer than $n \in \mathbb{N}$: Σ ^{≥n}
- \bigcirc set of all words over Σ : $\Sigma^* = \bigcup_{n \in \mathbb{N}_0} \Sigma^n$
- \bigcirc empty string: ε : $|\varepsilon| = 0$
- number of $a \in \Sigma$ in a word $w \in \Sigma^*$: $|w|_a$

Definition

 \bigcirc concatenation of words u, v: uv

- \bigcirc concatenation of words u, v: uv
- \bigcirc repetition: $u^0 = \varepsilon$, $u^{n+1} = uu^n$

- \bigcirc concatenation of words u, v: uv
- \bigcirc repetition: $u^0 = \varepsilon$, $u^{n+1} = uu^n$
- for a word $w \in \Sigma^n$ for $n \in \mathbb{N}_0$, w[i] denotes the ith letter of w for all $i \in [n]_0$

- \bigcirc concatenation of words u, v: uv
- \bigcirc repetition: $u^0 = \varepsilon$, $u^{n+1} = uu^n$
- for a word $w \in \Sigma^n$ for $n \in \mathbb{N}_0$, w[i] denotes the ith letter of w for all $i \in [n]_0$
- \bigcirc denote by $w[i\dots j]$ the word which is obtained by concatenating the letters $w[i]\dots w[j]$ for $0 \le i \le j \le |w|$

 \bigcirc associative: (uv)w = u(vw)

- \bigcirc associative: (uv)w = u(vw)
- \bigcirc ε is neutral element: $\varepsilon u = u \varepsilon = u$

- \bigcirc associative: (uv)w = u(vw)
- \bigcirc ε is neutral element: $\varepsilon u = u \varepsilon = u$
- $\bigcirc |xy| = |x| + |y|$

- \bigcirc associative: (uv)w = u(vw)
- \bigcirc ε is neutral element: $\varepsilon u = u \varepsilon = u$
- $\bigcirc |xy| = |x| + |y|$
- $\bigcirc x^{m+n} = x^m x^n$

- \bigcirc associative: (uv)w = u(vw)
- \odot ε is neutral element: $\varepsilon u = u \varepsilon = u$
- $\bigcirc |xy| = |x| + |y|$
- $\bigcirc x^{m+n} = x^m x^n$
- $\Rightarrow \Sigma^*$ is a free monoid

- \bigcirc associative: (uv)w = u(vw)
- \bigcirc ε is neutral element: $\varepsilon u = u \varepsilon = u$
- $\bigcirc |xy| = |x| + |y|$
- $\bigcirc x^{m+n} = x^m x^n$
- $\Rightarrow \Sigma^*$ is a free monoid

Be careful: concatenation is not commutative! (washing-machine ≠ machine-washing)

FINITE AUTOMATA AND REGULAR

SETS

Intuition for Automata

What is an automaton?

○ Input

Intuition for Automata

What is an automaton?

- Input
- States (snapshot of time)

Intuition for Automata

What is an automaton?

- Input
- States (snapshot of time)
- Transitions (changes of states)

Finite Automata

Definition (Deterministic Finite Automata)

quintuple $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ is DFA iff

- **finite** set of states *Q*
- \bigcirc input alphabet Σ
- initial/starting state $q_0 \in Q$
- \bigcirc transition **function** $\delta: Q \times \Sigma \rightarrow Q$
- final/accepting states $F \subseteq Q$

Visualisation

	а	b
q_0	q_1	q_0
q_1	q_1	q_2
q_2	q_3	q_2
q_3F	<i>q</i> 3	93

Acceptance of a DFA

Input: word w and DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$

Does \mathcal{A} accept w?

Acceptance of a DFA

Input: word w and DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$

Does \mathcal{A} accept w?

Definition (Transition function for words)

$$\hat{\delta}: Q \times \Sigma^* \to Q$$
 extension of δ :

$$\bigcirc \hat{\delta}(q, \varepsilon) = q \text{ for } q \in Q$$

$$\bigcirc \hat{\delta}(q, ax) = \hat{\delta}(\delta(q, a), x) \text{ for } q \in Q, x \in \Sigma^*, a \in \Sigma$$

Acceptance of a DFA

Input: word w and DFA $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$

Does \mathcal{A} accept w?

Definition (Transition function for words)

 $\hat{\delta}: Q \times \Sigma^* \to Q$ extension of δ :

- \bigcirc $\hat{\delta}(q, \varepsilon) = q \text{ for } q \in Q$
- $\bigcirc \hat{\delta}(q, \mathsf{a} x) = \hat{\delta}(\delta(q, \mathsf{a}), x) \text{ for } q \in Q, x \in \Sigma^*, a \in \Sigma$

 \mathcal{A} accepts $w \in \Sigma^*$: $\hat{\delta}(q_0, w) \in F$ (otherwise reject)

Language of an Automaton and Regular Set of Words

Definition

 \mathcal{A}' s language: $L(\mathcal{A}) = \{ w \in \Sigma^* | \hat{\delta}(q_0, w) \in F \}$

Definition

 $A \subseteq \Sigma^*$ regular: $\exists A DFA: A = L(A)$

REGULAR SETS

Closure Properties

Lemma

 $A, B \ regular \ sets \Rightarrow$

Lemma

A, B regular sets \Rightarrow

 \bigcirc $A \cup B$ regular

Lemma

- \bigcirc $A \cup B$ regular
- \bigcirc $A \cap B$ regular

Lemma

- \bigcirc $A \cup B$ regular
- \bigcirc $A \cap B$ regular
- \bigcirc $\Sigma^* \backslash A$ regular

Lemma

- \bigcirc $A \cup B$ regular
- \bigcirc $A \cap B$ regular
- $\bigcirc \Sigma^* \backslash A$ regular
- AB regular

Lemma

- \bigcirc $A \cup B$ regular
- \bigcirc $A \cap B$ regular
- $\bigcirc \Sigma^* \backslash A$ regular
- AB regular
- *A** regular

$$\bigcirc$$
 A regular $\Rightarrow \exists \mathcal{A} = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ with $L(\mathcal{A}) = A$

- \bigcirc A regular $\Rightarrow \exists A = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ with L(A) = A
- $B \text{ regular} \Rightarrow \exists \Re = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \text{ with } L(\Re) = B$

- $\bigcirc A \text{ regular} \Rightarrow \exists \mathcal{A} = (Q_A, \Sigma, \delta_A, q_0^A, F_A) \text{ with } L(\mathcal{A}) = A$
- $B \text{ regular} \Rightarrow \exists \Re = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \text{ with } L(\Re) = B$
- plan: walking simultaneously in both automata, accepting if both accept

- $\bigcirc A \text{ regular} \Rightarrow \exists \mathcal{A} = (Q_A, \Sigma, \delta_A, q_0^A, F_A) \text{ with } L(\mathcal{A}) = A$
- $B \text{ regular} \Rightarrow \exists \mathfrak{B} = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \text{ with } L(\mathfrak{B}) = B$
- plan: walking simultaneously in both automata, accepting if both accept
- \bigcirc $\mathcal{C} = (Q_{\cap}, \Sigma, \delta_{\cap}, q_0^{\cap}, F_{\cap})$ with

- \bigcirc A regular $\Rightarrow \exists A = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ with L(A) = A
- $B \text{ regular} \Rightarrow \exists \mathfrak{B} = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \text{ with } L(\mathfrak{B}) = B$
- plan: walking simultaneously in both automata, accepting if both accept
- $\mathscr{C} = (Q_{\cap}, \Sigma, \delta_{\cap}, q_0^{\cap}, F_{\cap}) \text{ with}$ $\circ Q_{\cap} = Q_A \times Q_B$

- \bigcirc A regular $\Rightarrow \exists A = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ with L(A) = A
- $B \text{ regular} \Rightarrow \exists \Re = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \text{ with } L(\Re) = B$
- plan: walking simultaneously in both automata, accepting if both accept
- $\bigcirc \mathscr{C} = (Q_{\cap}, \Sigma, \delta_{\cap}, q_0^{\cap}, F_{\cap}) \text{ with }$
 - $Q_{\cap} = Q_A \times Q_B$
 - $\bullet \ F_{\cap} = F_A \times F_B$

- \bigcirc A regular $\Rightarrow \exists A = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ with L(A) = A
- $B \text{ regular} \Rightarrow \exists \Re = (Q_B, \Sigma, \delta_B, q_0^B, F_B) \text{ with } L(\Re) = B$
- plan: walking simultaneously in both automata, accepting if both accept
- \bigcirc $\mathcal{C} = (Q_{\cap}, \Sigma, \delta_{\cap}, q_0^{\cap}, F_{\cap})$ with
 - $Q_{\cap} = Q_A \times Q_B$
 - $\bullet \ F_{\cap} = F_A \times F_B$
 - $q_0^{\cap} = (q_0^A, q_0^B)$

- \bigcirc A regular $\Rightarrow \exists \mathcal{A} = (Q_A, \Sigma, \delta_A, q_0^A, F_A)$ with $L(\mathcal{A}) = A$
- B regular $\Rightarrow \exists \Re = (Q_B, \Sigma, \delta_B, q_0^B, F_B)$ with $L(\Re) = B$
- plan: walking simultaneously in both automata, accepting if both accept
- \bigcirc $\mathscr{C} = (Q_{\cap}, \Sigma, \delta_{\cap}, q_0^{\cap}, F_{\cap})$ with
 - $Q_{\cap} = Q_A \times Q_B$
 - $\bullet \ F_{\cap} = F_A \times F_B$
 - $q_0^{\cap} = (q_0^A, q_0^B)$
 - $\delta_{\cap}((q, q'), a) = (\delta_A(q, a), \delta_B(q', a))$ (extension as usual)

Proof of
$$L(\mathcal{C}) = L(\mathcal{A}) \cap L(\mathcal{B})$$
:

$$\bigcirc x \in L(\mathcal{C})$$

Proof of
$$L(\mathscr{C}) = L(\mathscr{A}) \cap L(\mathscr{B})$$
:

- $\bigcirc x \in L(\mathscr{C})$
- $\bigcirc \iff \hat{\delta}_{\cap}(q_0^{\cap},x) \in F_{\cap}$

Proof of $L(\mathscr{C}) = L(\mathscr{A}) \cap L(\mathscr{B})$:

- $\bigcirc x \in L(\mathscr{C})$
- $\bigcirc \Leftrightarrow \hat{\delta}_{\cap}(q_0^{\cap}, x) \in F_{\cap}$
- $\bigcirc \Leftrightarrow \hat{\delta}_{\cap}((q_0^A, q_0^B), x) \in F_A \times F_B$

Proof of $L(\mathscr{C}) = L(\mathscr{A}) \cap L(\mathscr{B})$:

- $\bigcirc x \in L(\mathscr{C})$
- $\bigcirc \Leftrightarrow \hat{\delta}_{\cap}(q_0^{\cap}, x) \in F_{\cap}$
- $\bigcirc \Leftrightarrow \hat{\delta}_{\cap}((q_0^A, q_0^B), x) \in F_A \times F_B$
- $\bigcirc \Leftrightarrow (\hat{\delta}_A(q_0^A, x), \hat{\delta}_B(q_0^B, x)) \in F_A \times F_B$

Proof of
$$L(\mathscr{C}) = L(\mathscr{A}) \cap L(\mathscr{B})$$
:

- $\bigcirc x \in L(\mathscr{C})$
- $\bigcirc \Leftrightarrow \hat{\delta}_{\cap}(q_0^{\cap}, x) \in F_{\cap}$
- $\bigcirc \iff \hat{\delta}_{\cap}((q_0^A, q_0^B), x) \in F_A \times F_B$
- $\bigcirc \Leftrightarrow (\hat{\delta}_A(q_0^A, x), \hat{\delta}_B(q_0^B, x)) \in F_A \times F_B$
- $\bigcirc \Leftrightarrow \hat{\delta}_A(q_0^A, x) \in F_A \text{ and } \hat{\delta}_B(q_0^B, x) \in F_B$

Proof of $L(\mathscr{C}) = L(\mathscr{A}) \cap L(\mathscr{B})$:

- $\bigcirc x \in L(\mathscr{C})$
- $\bigcirc \Leftrightarrow \hat{\delta}_{\cap}(q_0^{\cap}, x) \in F_{\cap}$
- $\bigcirc \iff \hat{\delta}_{\cap}((q_0^A, q_0^B), x) \in F_A \times F_B$
- $\bigcirc \Leftrightarrow (\hat{\delta}_A(q_0^A, x), \hat{\delta}_B(q_0^B, x)) \in F_A \times F_B$
- $\bigcirc \Leftrightarrow \hat{\delta}_A(q_0^A, x) \in F_A \text{ and } \hat{\delta}_B(q_0^B, x) \in F_B$
- $\bigcirc \Leftrightarrow x \in L(\mathcal{A}) \text{ and } x \in L(\mathcal{B})$

Proof of $L(\mathscr{C}) = L(\mathscr{A}) \cap L(\mathscr{B})$:

- $\bigcirc x \in L(\mathscr{C})$
- $\bigcirc \Leftrightarrow \hat{\delta}_{\cap}(q_0^{\cap}, x) \in F_{\cap}$
- $\bigcirc \iff \hat{\delta}_{\cap}((q_0^A, q_0^B), x) \in F_A \times F_B$
- $\bigcirc \Leftrightarrow (\hat{\delta}_A(q_0^A, x), \hat{\delta}_B(q_0^B, x)) \in F_A \times F_B$
- $\bigcirc \Leftrightarrow \hat{\delta}_A(q_0^A, x) \in F_A \text{ and } \hat{\delta}_B(q_0^B, x) \in F_B$
- $\bigcirc \Leftrightarrow x \in L(\mathcal{A}) \text{ and } x \in L(\mathcal{B})$
- $\bigcirc \Leftrightarrow x \in L(\mathcal{A}) \cap L(\mathcal{B})$

Regular Sets are closed under Morphisms

Definition

 Σ , Γ alphabets:

 $\bigcirc h: \Sigma^* \to \Gamma^*$ (homo)morphism:

$$\forall x,y \in \Sigma^*: h(xy) = h(x)h(y)$$

Regular Sets are closed under Morphisms

Definition

 Σ , Γ alphabets:

 $\bigcirc h: \Sigma^* \to \Gamma^*$ (homo)morphism:

$$\forall x,y \in \Sigma^*: h(xy) = h(x)h(y)$$

Lemma

$$\bigcirc h(\varepsilon) = \varepsilon$$

Regular Sets are closed under Morphisms

Definition

 Σ , Γ alphabets:

 $\bigcirc h: \Sigma^* \to \Gamma^*$ (homo)morphism:

$$\forall x,y \in \Sigma^*: h(xy) = h(x)h(y)$$

Lemma

- $\bigcirc h(\varepsilon) = \varepsilon$
- \bigcirc morphism h uniquely determined by values on Σ

Morphisms and Regular Sets

 $h: \Sigma^* \to \Gamma^*$ morphism, $A \subseteq \Sigma^*$, $B \subseteq \Gamma^*$

Definition

- \bigcirc image of A under h: $h(A) := \{h(x) | x \in A\}$
- \bigcirc preimage of B under $h: h^{-1}(B) := \{x | h(x) \in B\}$

Morphisms and Regular Sets

 $h: \Sigma^* \to \Gamma^*$ morphism, $A \subseteq \Sigma^*$, $B \subseteq \Gamma^*$

Definition

- \bigcirc image of A under h: $h(A) := \{h(x) | x \in A\}$
- \bigcirc preimage of B under h: $h^{-1}(B) := \{x | h(x) \in B\}$

Theorem

- $\bigcirc B \subseteq \Gamma^* regular \Rightarrow h^{-1}(B) regular$
- $\bigcirc A \subseteq \Sigma^* regular \Rightarrow h(A) regular$

○ DFAs have nice closure properties

- O DFAs have nice closure properties
- $\, \bigcirc \,$ nicely to visualise

- DFAs have nice closure properties
- o nicely to visualise
- can we express every problem by a DFA such that this automaton decides whether a property holds or not?

- DFAs have nice closure properties
- o nicely to visualise
- can we express every problem by a DFA such that this automaton decides whether a property holds or not?
- Consider the problem: Has a word w the same number of a and b?

- DFAs have nice closure properties
- nicely to visualise
- can we express every problem by a DFA such that this automaton decides whether a property holds or not?
- Consider the problem: Has a word w the same number of a and b?
- We need something more powerful?

Non-deterministic Finite

AUTOMATA

Motivation

O What is non-determinism? Why did we call the previous automaton deterministic finite automaton?

Motivation

- What is non-determinism? Why did we call the previous automaton **deterministic finite automaton**?
 - Formal difference between determinism and non-determinism?

Motivation

- What is non-determinism? Why did we call the previous automaton deterministic finite automaton?
- Formal difference between determinism and non-determinism?
- How can we adopt this to finite automata?

Informal Answers

 determinism: input determines output (transitions can be described as functions)

Informal Answers

- determinism: input determines output (transitions can be described as functions)
- non-determinism: input does not determine output uniquely (not a function anymore)

- determinism: input determines output (transitions can be described as functions)
- non-determinism: input does not determine output uniquely (not a function anymore)
 - several choices for a path

- determinism: input determines output (transitions can be described as functions)
- non-determinism: input does not determine output uniquely (not a function anymore)
 - o several choices for a path
 - guessing

- determinism: input determines output (transitions can be described as functions)
- non-determinism: input does not determine output uniquely (not a function anymore)
 - several choices for a path
 - guessing
 - o choosing by random

- determinism: input determines output (transitions can be described as functions)
- non-determinism: input does not determine output uniquely (not a function anymore)
 - several choices for a path
 - guessing
 - choosing by random
- previous automaton defined by transition-function ⇒ determinism

Definition (NFA)

quintuple $\mathcal{A} = (Q, \Sigma, \Delta, q_0, F)$ is NFA iff

○ **finite** set of states *Q*

Definition (NFA)

- **finite** set of states *Q*
- \bigcirc finite alphabet Σ

Definition (NFA)

- **finite** set of states *Q*
- \bigcirc finite alphabet Σ
- \bigcirc transition-**relation** $\Delta \subseteq Q \times \Sigma \times Q$

Definition (NFA)

- **finite** set of states *Q*
- \bigcirc finite alphabet Σ
- \bigcirc transition-**relation** $\Delta \subseteq Q \times \Sigma \times Q$
- starting/initial state $q_0 \in Q$

Definition (NFA)

- **finite** set of states *Q*
- \bigcirc finite alphabet Σ
- \bigcirc transition-**relation** $\Delta \subseteq Q \times \Sigma \times Q$
- starting/initial state $q_0 \in Q$
- \bigcirc set of final states $F \subseteq Q$

transitions:

transitions:

```
as relation (q_1, a, q_1), (q_1, b, q_1), (q_1, b, q_2) (q_2, a, q_1), (q_2, b, q_3) (q_3, a, q_3)
```


transitions:

as relation
$$(q_1, a, q_1), (q_1, b, q_1), (q_1, b, q_2)$$
 $(q_2, a, q_1), (q_2, b, q_3)$ (q_3, a, q_3)

as function
$$\Delta': Q \times \Sigma \to \mathcal{P}(Q)$$

 $(q_1, a) \mapsto \{q_1\}$
 $(q_1, b) \mapsto \{q_1, q_2\}$
 $(q_2, a) \mapsto \{q_1\}$
 $(q_2, b) \mapsto \{q_3\}$
 $(q_3, a) \mapsto \{q_3\}$
+ remaining to the empty set

Definition (Extending Δ)

 $\hat{\Delta}: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ with

Definition (Extending Δ)

$$\hat{\Delta}: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
 with

$$\bigcirc \hat{\Delta}(A, \varepsilon) = A$$

Definition (Extending Δ)

$$\hat{\Delta}: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
 with

$$\bigcirc \hat{\Delta}(A, \varepsilon) = A$$

$$\bigcirc \hat{\Delta}(A, ax) = \bigcup_{q \in \Delta(A, a)} \hat{\Delta}(q, x)$$

Definition (Extending Δ)

$$\hat{\Delta}: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
 with

$$\bigcirc \hat{\Delta}(A,\varepsilon) = A$$

$$\bigcirc \hat{\Delta}(A, ax) = \bigcup_{q \in \Delta(A, a)} \hat{\Delta}(q, x)$$

Definition (Acceptance, Language)

 \bigcirc \mathcal{N} accepts $x \in \Sigma^*$: $\hat{\Delta}(Q_0, x) \cap F \neq \emptyset$

Definition (Extending Δ)

$$\hat{\Delta}: \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$$
 with

- $\bigcirc \hat{\Delta}(A, \varepsilon) = A$
- \bigcirc $\hat{\Delta}(A, ax) = \bigcup_{q \in \Delta(A, a)} \hat{\Delta}(q, x)$

Definition (Acceptance, Language)

- \bigcirc \mathcal{N} accepts $x \in \Sigma^*$: $\hat{\Delta}(Q_0, x) \cap F \neq \emptyset$
- \bigcirc language $L(\mathcal{N}) = \{x \in \Sigma^* | \mathcal{N} \text{ accepts } x\}$

Properties of NFA and DFA

 \odot each DFA is an NFA

Properties of NFA and DFA

- each DFA is an NFA
- $\bigcirc \ \forall x,y \in \Sigma^* \forall A \subseteq Q: \hat{\Delta}(A,xy) = \hat{\Delta}(\hat{\Delta}(A,x),y)$

Properties of NFA and DFA

- each DFA is an NFA
- $\bigcirc \ \forall x,y \in \Sigma^* \forall A \subseteq Q: \hat{\Delta}(A,xy) = \hat{\Delta}(\hat{\Delta}(A,x),y)$
- \bigcirc $\hat{\Delta}$ commutes with \cup : $\forall n \in \mathbb{N} \forall A_1, \dots, A_n \subseteq Q$:

$$\hat{\Delta}\left(\bigcup_{i\in[n]}A_i,x\right)=\bigcup_{i\in[n]}\hat{\Delta}(A_i,x)$$

Did we build something more powerful?

 Only if there exists an NFA accepting a language that cannot be accepted by a DFA, we build something more powerful ...

Did we build something more powerful?

- Only if there exists an NFA accepting a language that cannot be accepted by a DFA, we build something more powerful . . .
- ... and we can have a look if NFAs are sufficient for the definition of *computation*

Did we build something more powerful?

- Only if there exists an NFA accepting a language that cannot be accepted by a DFA, we build something more powerful ...
- ... and we can have a look if NFAs are sufficient for the definition of *computation*
- we will show in the following that NFAs are not more powerful ~ guessing does not bring any advantage in finite automata

Subset Construction (Power Set Construction)

```
Input: NFA \mathcal{N} = (Q, \Sigma, \Delta, q_0, F)
```

Output: DFA
$$\mathcal{A} = (@, \Sigma, \delta, \{q_0\}, \mathcal{F})$$

Construction:
$$\bigcirc \mathbb{Q} = \mathcal{P}(Q)$$

$$\bigcirc \ \delta: @ \times \Sigma \to @, (R,a) \mapsto \{q' \in Q | \, \exists q \in R: \, (q,a,q') \in \Delta\}$$

$$\bigcirc \ \mathcal{F} = \{S \in \mathbb{Q} \,|\, S \cap F \neq \emptyset\}$$

Example

Example

Connection: DFA and NFA

Lemma

The constructed DFA is equivalent to the given NFA.

Connection: DFA and NFA

Lemma

The constructed DFA is equivalent to the given NFA.

Theorem

NFA and DFA are equivalent!

PATTERN MATCHING - REGULAR

EXPRESSIONS

Problem: Given a text *T* and a set of words *P*, does *T* contain the words?

Problem: Given a text T and a set of words P, does T contain the words? How to formalize this? Can we use P as a stencil?

Problem: Given a text T and a set of words P, does T contain the words?

How to formalize this? Can we use *P* as a stencil?

learn

pattern

Problem: Given a text *T* and a set of words *P*, does *T* contain the words?

How to formalize this? Can we use *P* as a stencil?

learn

pattern

In this tutorial we learn something about patterns.

Problem: Given a text T and a set of words P, does T contain the words?

How to formalize this? Can we use *P* as a stencil?

llearm

pattern

Application for NFA/DFA

Problem: Given a text *T* and a set of words *P*, does *T* contain the words?

How to formalize this? Can we use *P* as a stencil?

learn

pattern

Now we are getting into details on patterns.

Application for NFA/DFA

Problem: Given a text *T* and a set of words *P*, does *T* contain the words?

How to formalize this? Can we use *P* as a stencil?

learn

pattern

Now we are getting into details on patterns.

This does not match!

○ Does a string x match a pattern α ?

- Does a string x match a pattern α ?
- Is every set of words representable by pattern?

- \bigcirc Does a string x match a pattern α ?
- Is every set of words representable by pattern?
- Are two patterns α , β equivalent, i.e. $L(\alpha) = L(\beta)$?

- O Does a string x match a pattern α ?
- Is every set of words representable by pattern?
- \bigcirc Are two patterns α , β equivalent, i.e. $L(\alpha) = L(\beta)$?
- Is there a reason that we called sets accepted by DFAs regular?

Definition

 \bigcirc new symbol \emptyset for *the nothing* (this is not(!) ε)

- \bigcirc new symbol \emptyset for *the nothing* (this is not(!) ε)
- \odot ε is the empty word/string

- \bigcirc new symbol \emptyset for the nothing (this is not(!) ε)
- \circ ε is the empty word/string
- \bigcirc atomic pattern every element from $\Sigma \cup \{\varepsilon, \emptyset\}$

- \bigcirc new symbol \emptyset for the nothing (this is not(!) ε)
- \bigcirc ε is the empty word/string
- \bigcirc atomic pattern every element from $\Sigma \cup \{\varepsilon, \emptyset\}$
- operations: +,·, *

- \bigcirc new symbol \emptyset for *the nothing* (this is not(!) ε)
- \bigcirc ε is the empty word/string
- \bigcirc atomic pattern every element from $\Sigma \cup \{\varepsilon, \emptyset\}$
- operations: +,·, *
- \bigcirc compound patterns for given patterns α , β : $\alpha + \beta$, $\alpha \cdot \beta$, α^*

- \bigcirc new symbol \emptyset for the nothing (this is not(!) ε)
- \bigcirc ε is the empty word/string
- atomic pattern every element from $\Sigma \cup \{\varepsilon, \emptyset\}$
- operations: +,·, *
- \bigcirc compound patterns for given patterns α , β : $\alpha + \beta$, $\alpha \cdot \beta$, α^*
- \bigcirc Precedences for operators: \cdot , * > +

Definition

Definition

$$\bigcirc \ \forall a \in \Sigma : L(a) = \{a\}$$

Definition

- $\bigcirc \forall a \in \Sigma : L(a) = \{a\}$
- $\bigcirc L(\emptyset) = \emptyset$

Definition

- $\bigcirc \forall a \in \Sigma : L(a) = \{a\}$
- $\bigcirc L(\emptyset) = \emptyset$
- $\bigcirc L(\alpha + \beta) = L(\alpha) \cup L(\beta)$

Definition

- $\bigcirc \forall a \in \Sigma : L(a) = \{a\}$
- $\bigcirc L(\emptyset) = \emptyset$
- $\bigcirc L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- $\bigcirc L(\alpha \cdot \beta) = L(\alpha \beta) = L(\alpha)L(\beta)$

Definition

- $\bigcirc \forall a \in \Sigma : L(a) = \{a\}$
- $\bigcirc L(\emptyset) = \emptyset$
- $\bigcirc L(\alpha + \beta) = L(\alpha) \cup L(\beta)$
- $\bigcirc L(\alpha \cdot \beta) = L(\alpha \beta) = L(\alpha)L(\beta)$
- $\bigcirc L(\alpha^*) = \bigcup_{i \in \mathbb{N}_0} L(\alpha)^i$

Lemma

○ + is associative, commutative, idempotent

- + is associative, commutative, idempotent
- \bigcirc \emptyset is neutral element w.r.t. +

- + is associative, commutative, idempotent
- \bigcirc \emptyset is neutral element w.r.t. +
- · is associative

- + is associative, commutative, idempotent
- \bigcirc 0 is neutral element w.r.t. +
- · is associative
- \odot ε is neutral element w.r.t. \cdot

- + *is associative, commutative, idempotent*
- \bigcirc \emptyset is neutral element w.r.t. +
- · is associative
- \odot ε is neutral element w.r.t. \cdot
- $\bigcirc \ \alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma \ and \ (\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$

- + *is associative, commutative, idempotent*
- \bigcirc \emptyset is neutral element w.r.t. +
- · is associative
- \odot ε is neutral element w.r.t. \cdot
- $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ and $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$
- \bigcirc $\emptyset \alpha = \alpha \emptyset = \emptyset$

- + is associative, commutative, idempotent
- \bigcirc \emptyset is neutral element w.r.t. +
- \bigcirc · is associative
- \bigcirc ε *is neutral element w.r.t.* \cdot
- $\alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma$ and $(\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$
- \bigcirc $\emptyset \alpha = \alpha \emptyset = \emptyset$
- \circ $\varepsilon + \alpha^+ = \alpha^*$

Lemma

- + is associative, commutative, idempotent
- Ø is neutral element w.r.t. +
- · is associative
- \bigcirc ε *is neutral element w.r.t.* \cdot
- $\bigcirc \alpha(\beta + \gamma) = \alpha\beta + \alpha\gamma \text{ and } (\alpha + \beta)\gamma = \alpha\gamma + \beta\gamma$
- \bigcirc $\emptyset \alpha = \alpha \emptyset = \emptyset$
- \circ $\varepsilon + \alpha^+ = \alpha^*$

The proof is left to the reader.

Connection between Regularity, RegExp, Finite Automata

Theorem

 $A \subseteq \Sigma^* \Rightarrow$ following statements are equivalent:

- 1. A is regular
- **2.** exists DFA \mathcal{A} such that $L(\mathcal{A}) = A$
- 3. exists NFA \mathcal{N} such that $L(\mathcal{N}) = A$
- 4. exists regular expression β such that $L(\beta) = A$

Connection between Regularity, RegExp, Finite Automata

Theorem

 $A \subseteq \Sigma^* \Rightarrow$ following statements are equivalent:

- 1. A is regular
- **2.** exists DFA \mathcal{A} such that $L(\mathcal{A}) = A$
- 3. exists NFA \mathcal{N} such that $L(\mathcal{N}) = A$
- 4. exists regular expression β such that $L(\beta) = A$

This theorem is important!

 \bigcirc how to prove that *n* statements are equivalent?

- \bigcirc how to prove that *n* statements are equivalent?
- we can do that by proving $\frac{n(n+1)}{2}$ equivalences, i.e. n(n+1) implications

- \bigcirc how to prove that *n* statements are equivalent?
- O we can do that by proving $\frac{n(n+1)}{2}$ equivalences, i.e. n(n+1) implications
- smarter: ring-proof
 - prove that the i^{th} statement implies the $(i + 1)^{th}$
 - \circ prove that the n^{th} statement implies the 1st

- \bigcirc how to prove that *n* statements are equivalent?
- O we can do that by proving $\frac{n(n+1)}{2}$ equivalences, i.e. n(n+1) implications
- smarter: ring-proof
 - prove that the i^{th} statement implies the $(i + 1)^{th}$
 - prove that the n^{th} statement implies the 1^{st}
- \bigcirc we have already proven 1. \rightarrow 2., 2. \rightarrow 3.

- \bigcirc how to prove that *n* statements are equivalent?
- we can do that by proving $\frac{n(n+1)}{2}$ equivalences, i.e. n(n+1) implications
- smarter: ring-proof
 - prove that the i^{th} statement implies the $(i + 1)^{th}$
 - prove that the n^{th} statement implies the 1^{st}
- \bigcirc we have already proven 1. \rightarrow 2., 2. \rightarrow 3.
- \bigcirc it remains to show: 3. \rightarrow 4. and 4. \rightarrow 1.

$NFA \Rightarrow RegExp$

$$\mathcal{A} = (Q, \Sigma, \Delta, S, F) \text{ NFA, } X \subseteq Q, q, q' \in Q$$

$NFA \Rightarrow RegExp$

$$\mathcal{A} = (Q, \Sigma, \Delta, S, F) \text{ NFA}, X \subseteq Q, q, q' \in Q$$

 \bigcirc regular expression for \mathscr{A} is $\alpha = +_{i \in [n], j \in [m]} \alpha_{s_i f_j}^{\mathbb{Q}}$

$NFA \Rightarrow RegExp$

$$\mathcal{A} = (Q, \Sigma, \Delta, S, F)$$
 NFA, $X \subseteq Q, q, q' \in Q$

- \bigcirc regular expression for \mathscr{A} is $\alpha = +_{i \in [n], j \in [m]} \alpha_{s_i f_j}^{\mathbb{Q}}$
- induction basis: $a_1, \ldots, a_k \in \Sigma$ with $v \in \Delta(q, a_i)$

$$q \neq q' : \alpha_{qq'}^{\emptyset} = \begin{cases} a_1 + \dots + a_k & \text{if } k \geq 1, \\ \emptyset & \text{otherwise} \end{cases}$$

$NFA \Rightarrow RegExp$

$$\mathcal{A} = (Q, \Sigma, \Delta, S, F)$$
 NFA, $X \subseteq Q, q, q' \in Q$

- \bigcirc regular expression for \mathscr{A} is $\alpha = +_{i \in [n], j \in [m]} \alpha_{s_i, t_i}^{\mathscr{Q}}$
- induction basis: $a_1, \ldots, a_k \in \Sigma$ with $v \in \Delta(q, a_i)$

$$q \neq q': \alpha_{qq'}^{\emptyset} = \begin{cases} a_1 + \dots + a_k & \text{if } k \geq 1, \\ \emptyset & \text{otherwise} \end{cases}$$

$$q = q': \alpha_{qq'}^{\emptyset} = \begin{cases} a_1 + \dots + a_k + \varepsilon & \text{if } k \geq 1, \\ \emptyset + \varepsilon & \text{otherwise} \end{cases}$$

$$\circ q = q' \colon \alpha_{qq'}^{\emptyset} = \begin{cases} a_1 + \dots + a_k + \varepsilon & \text{if } k \ge 1, \\ \emptyset + \varepsilon & \text{otherwise} \end{cases}$$

$NFA \Rightarrow RegExp$

$$\mathcal{A} = (Q, \Sigma, \Delta, S, F) \text{ NFA}, X \subseteq Q, q, q' \in Q$$

- regular expression for \mathcal{A} is $\alpha = +_{i \in [n], j \in [m]} \alpha_{s, f, i}^{\mathcal{Q}}$
- induction basis: $a_1, \ldots, a_k \in \Sigma$ with $v \in \Delta(q, a_i)$

$$q \neq q': \alpha_{qq'}^{\emptyset} = \begin{cases} a_1 + \dots + a_k & \text{if } k \geq 1, \\ \emptyset & \text{otherwise} \end{cases}$$

$$q \neq q': \alpha_{qq'}^{\emptyset} = \begin{cases} a_1 + \dots + a_k & \text{if } k \geq 1, \\ \emptyset & \text{otherwise} \end{cases}$$

$$q = q': \alpha_{qq'}^{\emptyset} = \begin{cases} a_1 + \dots + a_k + \varepsilon & \text{if } k \geq 1, \\ \emptyset + \varepsilon & \text{otherwise} \end{cases}$$

induction step: $X \neq \emptyset$, $r \in X$

$$\circ \ \alpha^X_{qq'} = \alpha^{X\backslash \{r\}}_{qq'} + \alpha^{X\backslash \{r\}}_{qr} (\alpha^{X\backslash \{r\}}_{rr})^* \alpha^{X\backslash \{r\}}_{rq'}$$

Regular Expression \rightarrow Regular Set

For this proof we need an extension of NFAs (which is not an extension): transitions without reading anything

Regular Expression \rightarrow Regular Set

For this proof we need an extension of NFAs (which is not an extension): transitions without reading anything

Definition (NFA with ε -Transistion)

$$\mathcal{N} = (Q, \Sigma, \Delta, Q_0, F)$$
 with Q, Σ, Q_0, F as in the *normal* NFA and

$$\Delta \subseteq Q \times \Sigma \cup \{\varepsilon\} \times Q$$

ε -transitions

Lemma

NFA with ε -transitions is **not** more powerful than an NFA

- $\bigcirc M_{\varepsilon}$ accepts $x \in \Sigma^*$ if there exists $y \in (\Sigma \cup \{\varepsilon\})^*$ such that
 - x is obtained by deleting all occurrences of ε in y
 - *y* is accepted under the ordinary definition

ε -transitions

Lemma

NFA with ε -transitions is **not** more powerful than an NFA

- \bigcirc M_{ε} accepts $x \in \Sigma^*$ if there exists $y \in (\Sigma \cup {\varepsilon})^*$ such that
 - x is obtained by deleting all occurrences of ε in y
 - *y* is accepted under the ordinary definition

formally: deleting ε is morphism $h:(\Sigma \cup \{\varepsilon\})^* \to \Sigma$ with

- $\bigcirc h(a) = a \text{ for } a \in \Sigma \text{ and } h(\varepsilon) = \varepsilon$
- o image and preimage of regular sets are regular

$$\bigcirc \ r = \varepsilon \leadsto q \xrightarrow{\varepsilon} f \in F$$

$$\bigcirc \ r = \varepsilon \leadsto q \xrightarrow{\varepsilon} f \in F$$

$$\bigcirc r = \mathsf{a} \leadsto q \xrightarrow{\mathsf{a}} f \in F$$

- $\bigcirc \ r = \varepsilon \leadsto q \xrightarrow{\varepsilon} f \in F$
- $\bigcirc r = a \leadsto q \xrightarrow{a} f \in F$
- $\bigcirc r = \alpha + \beta \leadsto q \xrightarrow{\varepsilon} q_0^{\mathfrak{A}}, q \xrightarrow{\varepsilon} q_0^{\mathfrak{B}}, q_f^{\mathfrak{A}} \xrightarrow{\varepsilon} f \in F, q_f^{\mathfrak{B}} \xrightarrow{\varepsilon} f \in F$ with $\mathfrak{A} \varepsilon\text{-NFA}$ for $\alpha, \mathfrak{B} \varepsilon\text{-NFA}$ for β

- $\bigcirc \ r = \varepsilon \leadsto q \xrightarrow{\varepsilon} f \in F$
- $\bigcirc r = a \leadsto q \xrightarrow{a} f \in F$
- $\bigcirc r = \alpha + \beta \leadsto q \xrightarrow{\varepsilon} q_0^{\mathfrak{A}}, q \xrightarrow{\varepsilon} q_0^{\mathfrak{B}}, q_f^{\mathfrak{A}} \xrightarrow{\varepsilon} f \in F, q_f^{\mathfrak{B}} \xrightarrow{\varepsilon} f \in F$ with $\mathscr{A} \varepsilon$ -NFA for α , $\mathscr{B} \varepsilon$ -NFA for β
- $\bigcirc \ r = \alpha \cdot \beta \leadsto q_0^{\mathcal{A}} \longrightarrow q_f^{\mathcal{A}} = q_0^{\mathcal{B}} \longrightarrow q_f^{\mathcal{B}}$

$$\bigcirc r = \varepsilon \leadsto q \xrightarrow{\varepsilon} f \in F$$

$$\bigcirc r = a \leadsto q \xrightarrow{a} f \in F$$

$$(r = \alpha + \beta \leadsto q \xrightarrow{\varepsilon} q_0^{\mathcal{A}}, q \xrightarrow{\varepsilon} q_0^{\mathcal{B}}, q_f^{\mathcal{A}} \xrightarrow{\varepsilon} f \in F, q_f^{\mathcal{B}} \xrightarrow{\varepsilon} f \in F$$
 with $\mathcal{A} \varepsilon$ -NFA for α , $\mathcal{B} \varepsilon$ -NFA for β

$$\bigcirc \ r = \alpha \cdot \beta \leadsto q_0^{\mathcal{A}} \longrightarrow q_f^{\mathcal{A}} = q_0^{\mathcal{B}} \longrightarrow q_f^{\mathcal{B}}$$

$$\bigcirc \ r = \alpha^* \leadsto q \xrightarrow{\varepsilon} q_0^{\mathcal{A}} \to q_f^{\mathcal{A}} \xrightarrow{\varepsilon} f \in F, f \xrightarrow{\varepsilon} q, q_f^{\mathcal{A}} \xrightarrow{\varepsilon} q_0^{\mathcal{A}}$$

 $\, \bigcirc \,$ we know that DFAs are not powerful enough for our goal

- we know that DFAs are not powerful enough for our goal
- $\, \bigcirc \,$ NFAs and DFAs are equivalent

- we know that DFAs are not powerful enough for our goal
- NFAs and DFAs are equivalent
- why keeping on talking about these automata?

- we know that DFAs are not powerful enough for our goal
- NFAs and DFAs are equivalent
- why keeping on talking about these automata?
- they are elegant and small for handling problems like syntax-checks (compiler construction)

- we know that DFAs are not powerful enough for our goal
- NFAs and DFAs are equivalent
- why keeping on talking about these automata?
- they are elegant and small for handling problems like syntax-checks (compiler construction)
- unfortunately, determinism is better for implementing but DFAs may have too many states

- O we know that DFAs are not powerful enough for our goal
- NFAs and DFAs are equivalent
- why keeping on talking about these automata?
- they are elegant and small for handling problems like syntax-checks (compiler construction)
- unfortunately, determinism is better for implementing but DFAs may have too many states
- before we build a better automata model, let's try to handle the state explosion

DFA STATE MINIMIZATION

- \bigcirc Subset Construction \Rightarrow DFA has exponentially many states
 - NFA with $|Q| = n \in \mathbb{N} \Rightarrow \text{DFA}$ has $|\mathcal{P}(Q)| = 2^n$ states

- Subset Construction ⇒ DFA has exponentially many states
 - NFA with $|Q| = n \in \mathbb{N} \Rightarrow \text{DFA}$ has $|\mathcal{P}(Q)| = 2^n$ states
- Are they all necessary?

- \bigcirc Subset Construction \Rightarrow DFA has exponentially many states
 - NFA with $|Q| = n \in \mathbb{N} \Rightarrow \text{DFA}$ has $|\mathcal{P}(Q)| = 2^n$ states
- Are they all necessary?
 - Unfortunately, sometimes **yes**, but not always

- \bigcirc Subset Construction \Rightarrow DFA has exponentially many states
 - NFA with $|Q| = n \in \mathbb{N} \Rightarrow \text{DFA}$ has $|\mathcal{P}(Q)| = 2^n$ states
- Are they all necessary?
 - Unfortunately, sometimes yes, but not always
- Have a look at the constructed DFA discussed here:

- no incoming arrow ⇒ state
 is not reachable
- \bigcirc here: $\{q_2\}$, $\{q_1, q_2, q_3\}$

Cont.

Cont.

Can we reduce more? Exists something like a similar "behaviour" of states?

Assume: $q_1, q_2 \in Q$ and whatever you read starting in them you either reach with both a final state or with none

Assume: $q_1, q_2 \in Q$ and whatever you read starting in them you either reach with both a final state or with none

Definition

states $q_1, q_2 \in Q$ equivalent $(q_1 \approx q_2)$:

$$\forall x \in \Sigma^* : \hat{\delta}(q_1, x) \in F \iff \hat{\delta}(q_2, x) \in F$$

Assume: $q_1, q_2 \in Q$ and whatever you read starting in them you either reach with both a final state or with none

Definition

states $q_1, q_2 \in Q$ equivalent $(q_1 \approx q_2)$:

$$\forall x \in \Sigma^* : \hat{\delta}(q_1, x) \in F \iff \hat{\delta}(q_2, x) \in F$$

 \bigcirc [p] = { $q \in Q | p \approx q$ } equivalence class of p

Assume: $q_1, q_2 \in Q$ and whatever you read starting in them you either reach with both a final state or with none

Definition

states $q_1, q_2 \in Q$ equivalent $(q_1 \approx q_2)$:

$$\forall x \in \Sigma^* : \hat{\delta}(q_1, x) \in F \Leftrightarrow \hat{\delta}(q_2, x) \in F$$

- \bigcirc [p] = { $q \in Q | p \approx q$ } equivalence class of p
- \circ ≈ is equivalence relation (reflexive, symmetric, transitive)

Assume: $q_1, q_2 \in Q$ and whatever you read starting in them you either reach with both a final state or with none

Definition

states $q_1, q_2 \in Q$ equivalent $(q_1 \approx q_2)$:

$$\forall x \in \Sigma^* : \hat{\delta}(q_1, x) \in F \iff \hat{\delta}(q_2, x) \in F$$

- \bigcirc [p] = { $q \in Q | p \approx q$ } equivalence class of p
- \bigcirc \approx is equivalence relation (reflexive, symmetric, transitive)
- $\bigcirc \approx$ equivalence relation \Rightarrow factorisation possible

Quotient Automaton

Definition

quotient automaton $\mathcal{A}/\approx=(Q',\Sigma,\delta',q_0',F')$ for DFA $\mathcal{A}=(Q,\Sigma,\delta,q_0,F)$:

- $\bigcirc Q' = \{[q] | q \in Q\}$
- $\bigcirc \delta' : Q' \times \Sigma \rightarrow Q' \text{ with } \delta'([q], a) = [\delta(q, a)]$
- $Q_0' = [q_0]$
- $\bigcirc F' = \{[q] | q \in F\}$

$$p,q\in Q,x\in \Sigma^*$$

$$\bigcirc \ p \approx q \Rightarrow \delta(p,a) \approx \delta(q,a)$$

$$p,q\in Q,x\in \Sigma^*$$

- $\bigcirc \ p \approx q \Longrightarrow \delta(p,a) \approx \delta(q,a)$
- $\bigcirc \ [p] = [q] \Rightarrow [\delta(p,a)] = [\delta(q,a)]$

$$p,q\in Q,x\in \Sigma^*$$

- $\bigcirc \ p \approx q \Longrightarrow \delta(p,a) \approx \delta(q,a)$
- $\bigcirc \ [p] = [q] \Rightarrow [\delta(p,a)] = [\delta(q,a)]$
- $\bigcirc \ p \in F \Leftrightarrow [p] \in F'$

$$p,q\in Q,x\in \Sigma^*$$

- $\bigcirc \ p \approx q \Longrightarrow \delta(p,a) \approx \delta(q,a)$
- \bigcirc $[p] = [q] \Rightarrow [\delta(p, a)] = [\delta(q, a)]$
- $\bigcirc p \in F \Leftrightarrow [p] \in F'$
- $\bigcirc \ \hat{\delta'}([p],x) = [\hat{\delta}(p,x)]$

$$p,q\in Q,x\in \Sigma^*$$

- $\bigcirc p \approx q \Rightarrow \delta(p, a) \approx \delta(q, a)$
- $\bigcirc \ [p] = [q] \Rightarrow [\delta(p,a)] = [\delta(q,a)]$
- $\bigcirc p \in F \Leftrightarrow [p] \in F'$
- $\bigcirc \ \hat{\delta'}([p],x) = [\hat{\delta}(p,x)]$

Theorem

For every DFA \mathcal{A} : $L(\mathcal{A}) = L(\mathcal{A}/\approx)$

Minimized DFA

Notice: applying the quotient construction twice **does not** reduce the states!

Minimized DFA

Notice: applying the quotient construction twice **does not** reduce the states!

Definition

 \mathcal{A}_{min} minimized DFA for \mathcal{A} :

- 1. eliminate all non-reachable states
- 2. build the quotient automaton

Minimized DFA

Notice: applying the quotient construction twice **does not** reduce the states!

Definition

 \mathcal{A}_{\min} minimized DFA for \mathcal{A} :

- 1. eliminate all non-reachable states
- 2. build the quotient automaton

there exists a nice algorithm for detecting the equivalent states

Minimization Algorithm

DFA ${\mathcal A}$ with no unreachable states

Minimization Algorithm

DFA A with no unreachable states

- 1. write down a table with all pairs $\{p, q\}$
- **2. mark** $\{p, q\}$ if $p \in F$ and $q \notin F$ and vice versa
- 3. **Repeat Until** no changes
 - o $\exists \{p,q\}$ unmarked $\exists a \in \Sigma$: $\{\delta(p,a), \delta(q,a)\}$ marked \Rightarrow mark $\{p,q\}$

Remarks

- \bigcirc {p, q} marked \Rightarrow not equivalent
- every pair may be checked several times
- only stop if really nothing changes
- $\bigcirc \ge 1$ mark in each iteration \Rightarrow at most $\binom{|Q|}{2}$ iterations

	q_0	q_1	92	93	q_4	95
q_0	-	-	-	-	-	-
q_1		-	-	-	-	-
q_2			-	-	-	-
93				-	-	-
q_4					-	-
95						-

Step 2: 1 final state, 1 non-final state

	q_0	q_1	q_2	q_3	q_4	<i>q</i> ₅
q_0	-	-	-	-	-	-
q_1	×	-	-	-	-	-
92	×		-	-	-	-
q_3		×	×	-	-	-
q_4		×	×		-	-
95	×			×	×	-

Step 3: for marking $\{q_0, q_3\}$, $\{\delta(q_0, a/b), \delta(q_3, a/b)\} = \{q_1/q_2, q_5\}$ needs to be marked \Rightarrow nothing

	q_0	q_1	92	93	q_4	95	
q_0	-	-	-	-	-	-	
q_1	×	-	-	-	-	-	
q_2	×		-	-	-	-	
q_3		×	×	-	-	-	
q_4		×	\times		-	-	
q_5	×			×	×	-	

Step 3: for marking $\{q_0, q_4\}$, $\{\delta(q_0, a/b), \delta(q_4, a/b)\} = \{q_1/q_2, q_5\}$ needs to \Rightarrow nothing

	q_0	q_1	q_2	<i>q</i> ₃	q_4	95
q_0	-	-	-	-	-	-
q_1	\times	-	-	-	-	-
q_2	×		-	-	-	-
q_3		\times	×	-	-	-
q_4		\times	×		-	-
q_5	\times			×	\times	-

Step 3: for marking $\{q_1, q_2\}$, $\{\delta(q_1, a/b), \delta(q_2, a/b)\} = \{q_3/q_4, q_4/q_3\}$ needs to be marked \Rightarrow nothing

	q_0	q_1	92	93	q_4	95	
q_0	-	-	-	-	-	-	
q_1	×	-	-	-	-	-	
q_2	×		-	-	-	-	
93		×	×	-	-	-	
q_4		×	×		-	-	
q_5	×			×	\times	-	

Step 3: for marking $\{q_1, q_5\}$, $\{\delta(q_1, a/b), \delta(q_5, a/b)\} = \{q_3/q_4, q_5\}$ needs to be marked \Rightarrow mark

	40	41	42	43	44	45	
q_0	-	-	-	-	-	-	
q_1	×	-	-	-	-	-	
q_2	×		-	-	-	-	
93		×	×	-	-	-	
q_4		×	×		-	-	
95	×	×		×	×	-	

Step 3: for marking $\{q_2, q_5\}$, $\{\delta(q_2, a/b), \delta(q_5, a/b)\} = \{q_4/q_3, q_5\}$ needs to be marked \Rightarrow mark

	40	41	42	43	44	45	
q_0	-	-	-	-	-	-	
q_1	×	-	-	-	-	-	
q_2	×		-	-	-	-	
93		×	×	-	-	-	
q_4		×	\times		-	-	
q_5	×	×	×	×	×	-	

Step 3: for marking $\{q_3, q_4\}$, $\{\delta(q_3, a/b), \delta(q_4, a/b)\} = \{q_5, q_5\}$ needs to be marked \Rightarrow nothing

	q_0	q_1	92	93	q_4	95
q_0	-	-	-	-	-	-
q_1	\times	-	-	-	-	-
q_2	\times		-	-	-	-
q_3		×	×	-	-	-
q_4		\times	\times		-	-
q_5	\times	×	×	×	×	-

Step 3: for marking $\{q_0, q_3\}$, $\{\delta(q_0, a/b), \delta(q_3, a/b)\} = \{q_1/q_2, q_5\}$ needs to be marked \Rightarrow mark

	q_0	q_1	92	93	q_4	95	
q_0	-	-	-	-	-	-	
q_1	×	-	-	-	-	-	
q_2	×		-	-	-	-	
q_3	×	×	×	-	-	-	
q_4		×	×		-	-	
q_5	×	×	×	×	×	-	

Step 3: for marking $\{q_0, q_4\}$, $\{\delta(q_0, a/b), \delta(q_4, a/b)\} = \{q_1/q_2, q_5\}$ needs to be marked \Rightarrow mark

	q_0	q_1	92	93	q_4	95	
q_0	-	-	-	-	-	-	
q_1	×	-	-	-	-	-	
92	×		-	-	-	-	
93	×	×	×	-	-	-	
q_4	×	×	×		-	-	
95	×	×	×	×	×	-	

no more changes \Rightarrow q_1 , q_2 and q_3 , q_4 are equivalent

	q_0	q_1	q_2	q_3	q_4	<i>q</i> ₅
q_0	-	-	-	-	-	-
q_1	×	-	-	-	-	-
q_2	×		-	-	-	-
93	×	×	×	-	-	-
q_4	×	×	×		-	-
95	×	×	×	×	×	-

