

Kontinuumsmechanik

Sommersemester 2011

Lösungsvorschlag zur Klausur vom 10.10.2011

Lösungsvorschlag

Theorieaufgaben

[10 Punkte]

Aufgabe T1

[1 Punkt]

Die Lösung der eindimensionalen Wellengleichung nach d'Alembert hat die Gestalt

$$w(x,t) = g(x-ct) + h(x+ct).$$

Welche der folgenden Ausdrücke beschreibt eine in die positive x-Richtung laufende Welle?

Aufgabe T2

[2 Punkte]

Geben Sie den Rayleigh-Quotienten R für die Stablängsschwingungen des skizzierten Systems an. Verwenden Sie U(x)=x als zulässige Funktion. Die Feder sei für u(l,t)=0 entspannt.

Gegeben: EA, ρA , k, l, m, U(x) = x

$$R = \frac{\frac{1}{2} \int_0^l EA \, dx + \frac{1}{2} k l^2}{\frac{1}{2} \int_0^l \rho Ax^2 \, dx + \frac{1}{2} m l^2} = \frac{EA + kl}{\frac{1}{3} \rho A l^2 + ml}$$
 (2)

Aufgabe T3

[1 Punkt]

Die vier skizzierten Euler-Bernoulli-Balken unterscheiden sich nur in der Art ihrer Lagerung. Die jeweilige Periodendauer der ersten Eigenform der Systeme ist $T_{\rm A,B,C,D}$. Kreuzen Sie die richtige(n) Aussage(n) an.

$$T_{\rm A} < T_{\rm B}$$

$$T_{\rm D} = \infty$$

$$T_{\rm B} > T_{\rm C}$$

$$T_{\rm D} = T_{\rm B} - T_{\rm C}$$

$$T_{\rm D}=0$$

Aufgabe T4 [3 Punkte]

In dem skizzierten Stab (E-Modul E, Flächenträgheitsmoment I, Wellenausbreitungsgeschwindigkeit c, Querschnittsfläche A, Länge l) läuft die Welle der gegebenen Funktion u(x,t) auf das linke eingespannte Ende zu. Kreuzen Sie an!

	richtig	falsch
Die Eigenkreisfrequenzen des Systems hängen von der Form der Welle $u(x,t)$ ab. \bigcirc		X
Am linken Ende nimmt bei der Wellenreflektion die mechanische Energie des Systems ab. 1		X
Die erste Eigenkreisfrequenz ist $4\pi \frac{l}{c}$.		X

Aufgabe T5 [2 Punkte]

Gegeben sei skizzierter Biegebalken (EI, l, μ) der an der linken Seite fest eingespannt ist. Belastet wird das System durch eine Streckenlast $q(x,t) = Q(x)\cos\Omega t$. Geben Sie die Randbedingungen sowie einen Ansatz für die partikuläre Lösung an.

Gegeben: EI, l, μ , Q(x), Ω

Aufgabe T6 [1 Punkt]

Welchen Einfluss hat ein zeitabhängiges äußeres Moment M(t) auf die Eigenfrequenzen der Torsionsschwingungen des skizzierten Systems? Kreuzen Sie an.

Die Eigenfrequenzen werden durch das Moment	kleiner	nicht verändert	größer	
		X		(1)

Aufgabe 1

[15 Punkte]

Das skizzierte System besteht aus zwei homogenen Dehnstäben (Dehnsteifigkeit EA, Massenbelegung μ , Länge l) die über eine **starre** Stange (Massenträgheitsmoment Θ^{P} , Masse vernachlässigbar, in Punkt Pgelagert) verbunden sind.

Gegeben: EA, μ , a, l, Θ^{P}

Geben Sie die Bewegungsgleichungen (Feldgleichungen) für die beiden Dehnstäbe in Abhängigkeit der gegeben Größen an.

Bewegungsgleichungen:

Dehnstab 1:

$$\mu \ddot{u}_1(x_1,t) - EAu_1''(x_1,t) = 0$$

Dehnstab 2:

$$\mu \ddot{u}_2(x_2, t) - EAu_2''(x_2, t) = 0$$

b) Geben Sie alle Rand- und Übergangsbedingungen des Systems an. (Hinweis: Zeichnen Sie ggf. ein Freikörperbild.)

Nebenrechnung, ggf. Freikörperbild:

$$\Rightarrow \ddot{\varphi} = \frac{\ddot{u}_1(l,t)}{a}$$

Rand- und Übergangsbedingungen:

$$u_1(0,t) = 0$$
 1 $u_2(0,t) = 0$ 1

$$u_2(0,t) = 0$$
 (1)

$$-EAu'_{1}(l,t)a + EAu'_{2}(l,t)a = \frac{\ddot{u}_{1}(l,t)}{a}\Theta^{P}$$

$$u_{1}(l,t) = -u_{2}(l,t)$$
1

$$u_1(l,t) = -u_2(l,t)$$
 (1)

c) Die erste Eigenkreisfrequenz ω_1 soll mit Hilfe des Rayleigh-Quotienten abgeschätzt werden. Welche Bedingungen müssen die Ansatzfunktionen $U_1(x_1)$ und $U_2(x_2)$ erfüllen?

Bedingungen für $U_1(x_1)$ und $U_2(x_2)$:

$$U_1(0) = 0$$

$$U_2(0) = 0$$

$$U_1(0) = 0$$
 $U_2(0) = 0$ $U_1(l) = -U_2(l)$

Wie lautet der Rayleigh-Quotient $R[U_1(x_1), U_2(x_2)]$ des Systems? Drücken Sie das Ergebnis nur in den gegebenen Größen sowie $U_1(x_1)$, $U_2(x_2)$ und deren Ableitungen aus.

Nebenrechnung:

$$T[\dot{u}_1(x_1,t),\dot{u}_2(x_2,t)] = \frac{1}{2} \int_0^l \mu \dot{u}_1^2(x_1,t) dx_1 + \frac{1}{2} \int_0^l \mu \dot{u}_2^2(x_2,t) dx_2 + \frac{1}{2} \left(\frac{\dot{u}_1(l,t)}{a}\right)^2 \Theta^{\mathbf{P}} \mathbf{2}$$

$$U[u_1(x_1,t), u_2(x_2,t)] = \frac{1}{2} \int_0^l EAu'_1^2(x_1,t) dx_1 + \frac{1}{2} \int_0^l EAu'_2^2(x_2,t) dx_2$$

$$R[U_1(x_1), U_2(x_2)] = \frac{U[U_1(x_1), U_2(x_2)]}{T[U_1(x_1), U_2(x_2)]}$$

$$R[U_1(x_1), U_2(x_2)] = \frac{\int_0^l EAU_1^2(x_1) dx_1 + \int_0^l EAU_2^2(x_2) dx_2}{\int_0^l \mu U_1^2(x_1) dx_1 + \int_0^l \mu U_2^2(x_2) dx_2 + \frac{1}{2} \left(\frac{U_1(l)}{a}\right)^2 \Theta^{\mathbf{P}}}$$
 (1)

Kreuzen Sie die richtige(n) Aussage(n) bezüglich der ersten Eigenkreisfrequenz ω_1 des Systems an.

Bei zunehmendem Massenträgheitsmoment Θ^{P} sinkt die erste Eigenkreisfrequenz.

Bei zunehmendem Massenträgheitsmoment Θ^{P} steigt die erste Eigenkreisfrequenz.

Das Massenträgheitsmoment Θ^{P} hat keinen Einfluss auf die erste Eigenkreisfrequenz.

Aufgabe 2 [9 Punkte]

Der skizzierte Euler-Bernoulli-Balken (ρA , EI, l) ist links gelagert und rechts über einen Dämpfer (Dämpfungskonstante d) abgestützt. Am linken Lager ist zusätzlich eine Drehfeder (Federsteifigkeit k_d) angebracht. Am rechten Ende des Balkens wirkt die Kraft F(t). Die Feder ist für die skizzierte Lage entspannt.

Gegeben: ρA , EI, l, k_d , d, F(t)

a) Geben Sie die kinetische Energie T des Systems an.

Nebenrechnung:

$$T = \frac{1}{2} \int_0^l \rho A \dot{w}^2(x, t) dx$$
 1

b) Geben Sie die potentielle Energie U des Systems an.

Nebenrechnung:

$$U = \frac{1}{2} \int_0^l EIw''^2(x,t) dx + \frac{1}{2} k_d w'^2(0,t)$$
 (1)

c) Geben Sie die virtuelle Arbeit δW der nicht in U berücksichtigten Kräfte an.

Nebenrechnung:

$$\delta W = F(t)\delta w(l,t) - d\dot{w}(l,t)\delta w(l,t)$$
 (1)

d) Geben Sie alle geometrischen Randbedingungen an.

geometrische Randbedingungen:

$$w(0,t) = 0$$
 (1)

e) Nach Ausführen der Variation und partieller Integration liefert das Prinzip von Hamilton für das gegebene System den Ausdruck

$$\int_{t_1}^{t_2} \left\{ \int_0^l \left(-\rho A \ddot{w}(x,t) - E I w^{\text{IV}}(x,t) \right) \delta w(x,t) \, \mathrm{d}x + \left(F(t) - d \dot{w}(l,t) \right) \delta w(l,t) \right. \\
\left. - k_d w'(0,t) \delta w'(0,t) + \left[E I w'''(x,t) \delta w(x,t) - E I w''(x,t) \delta w'(x,t) \right]_0^l \right\} \mathrm{d}t \\
+ \left[\int_0^l \rho A \dot{w}(x,t) \delta w(x,t) \mathrm{d}x \right]_{t_1}^{t_2} = 0.$$

Geben Sie damit die Bewegungsgleichung (Feldgleichung) des Systems und die natürlichen (dynamischen) Randbedingungen an.

Bewegungsgleichung:

$$\rho A\ddot{w}(x,t) + EIw^{IV}(x,t) = 0$$
 1

natürliche Randbedingungen:

$$F(t) - d\dot{w}(l, t) + EIw'''(l, t) = 0$$

$$EIw''(0, t) - k_d w'(0, t) = 0$$

$$EIw''(l, t) = 0$$

f) Kreuzen Sie die richtige(n) Aussage(n) an.

	Reibungskräfte können entweder über ihr Potential oder ihre virtuelle Arbeit berücksichtigt werden.
	Das Prinzip von Hamilton ist nicht anwendbar wenn verteilte, zeitabhängige Lasten auftreten.
X	Das Prinzip von Hamilton liefert bei Vorgabe der natürlichen Randbedingungen die Feldgleichung und die geometrischen Randbedingungen.

Aufgabe 3 [6 Punkte]

Die fest-fest gelagerte Saite (Wellenausbreitungsgeschwindigkeit c, Länge 8a) hat die skizzierte Anfangsauslenkung und keine Anfangsgeschwindigkeit ($\dot{w}(x,0)=0$).

Gegeben: c, a, h

a) Vervollständigen Sie das Bild, indem Sie die Auslenkung der Saite zu den Zeitpunkten $t_1=2a/c,\ t_2=4a/c,\ t_3=6a/c$ einzeichnen. Kennzeichnen Sie die Richtung der jeweiligen Wellenausbreitung.

b) Nach welcher Zeit T nimmt die Saite erstmals wieder den Anfangszustand ein?

$$T = \frac{16a}{c} \text{ } \bigcirc$$

c) Geben Sie die erste Eigenkreisfrequenz ω_1 des Systems an.

$$\omega_1 = \frac{2\pi}{T} = \frac{\pi c}{8a} \quad \boxed{1}$$

d) Skizzieren Sie die zweite Eigenform $W_2(x)$ der Saite.

Aufgabe 4

Eine Flüssigkeit unbekannter Dichte befindet sich in einem Behälter. Der Füllstand H kann als konstant angenommen werden. Ein Würfel der Kantenlänge a wird mit der Kaft F vollständig unter der Oberfläche gehalten. Aus einem Rohr des Querschnittes A_1 fließt die Flüssigkeit durch einen Dreifach-Ausfluss (jeweils Querschnittsfläche A_2 , Austrittsgeschwindigkeit v_2) in Hdie Umgebung. An der Stelle 1 habe die Flüssigkeit den bekannten Druck p_1 .

Ergänzung gegenüber ursprünglicher Aufgabenstellung: Gewichtskraft des Würfels ist zu vernachlässigen.

a) Wie groß ist die Dichte ρ der Flüssigkeit in Abhängigkeit der gegeben Größen?

Nebenrechung:

$$F = \rho a^3 g$$

$$\rho = \frac{F}{a^3 g} \quad \boxed{1}$$

b) Berechnen Sie nun für gegebene Geschwindskeit v_2 das nötige Querschnittsverhältnis $\frac{A_1}{A_2}$. Nehmen Sie die Dichte ρ jetzt als gegeben an.

Nebenrechnung:

$$A_1 v_1 = 3A_2 v_2 \Rightarrow \frac{A_1}{A_2} = 3\frac{v_2}{v_1}$$

$$\frac{1}{2}v_1^2\rho + p_1 + \rho gh = \frac{1}{2}v_2^2\rho + p_0$$

$$A_1 v_1 = 3A_2 v_2 \Rightarrow \frac{A_1}{A_2} = 3\frac{v_2}{v_1}$$

$$\frac{1}{2}v_1^2 \rho + p_1 + \rho gh = \frac{1}{2}v_2^2 \rho + p_0$$

$$\Rightarrow v_1 = \sqrt{\frac{2}{\rho} \left(p_0 - p_1 - \rho gh + \frac{1}{2}v_2^2 \rho\right)}$$

Querschnittsverhältnis:

$$\frac{A_1}{A_2} = \frac{3v_2}{\sqrt{\frac{2}{\rho} \left(p_0 - p_1 - \rho g h + \frac{1}{2} v_2^2 \rho\right)}}$$
 1

Andere richtige Lösungen durch verschiedene Bezugspunkte und Lage des Nullniveaus möglich.

Aufgabe 5

[6 Punkte]

Der skizzierte Euler-Bernoulli-Balken ($\rho A,\ EI,\ l)$ ist mit der konstanten positiven Kraft F vorgespannt.

Gegeben: ρA , EI, l, F

a) Geben Sie die kinetische Energie T des Systems an.

Nebenrechnung: $T = \frac{1}{2} \int_0^l \rho A \dot{w}^2(x,t) \mathrm{d}x \ \mathbf{1}$

b) Geben Sie die potentielle Energie U des Systems an. Berücksichtigen Sie auch F in der potentiellen Energie.

Nebenrechnung: $U = \frac{1}{2} \int_0^l EIw''^2(x,t) dx + \frac{1}{2} \int_0^l Fw'^2(x,t) dx$

c) Welche der folgenden Funktionen können als Ansatzfunktionen zur Abschätzung der ersten Eigenkreisfrequenz des Systems mit Hilfe des Rayleigh-Quotienten verwendet werden? Kreuzen Sie an.

d) Gegeben sind nun die Ansatzfunktionen $W_A(x) = x(x-l)$ und $W_B(x) = x^2(x-l)$. Berechnen Sie, welche der beiden Ansatzfunktionen die beste Abschätzung für die erste Eigenkreisfrequenz des Systems liefert.

Gegeben:

$$W_{\rm A}(x) = x(x-l), \qquad W_{\rm B}(x) = x^2(x-l)$$

Nebenrechnung:

$$\omega_{1,i}^2 \le \frac{U[W_i(x)]}{T[W_i(x)]}$$

$$\omega_{1,A}^2 \le \frac{10(12EI + Fl^2)}{\rho A l^4}$$
 1

$$\omega_{1,A}^{2} \leq \frac{10(12EI + Fl^{2})}{\rho A l^{4}}$$
 1
$$\omega_{1,B}^{2} \leq \frac{14(30EI + Fl^{2})}{\rho A l^{4}}$$
 1

 $\Rightarrow \omega_{1,A}^2$ ist die bessere Abschätzung

 $W_A(x)$ Die beste Abschätzung liefert:

