

Contents

C	ontents	2
Ι	Python recipies	5
1	Linear Regression	6
2	Heat Maps	9
3	Barplots	10

II R recipies

22

Introduction

This is one of my finer quotations.

-John Smith

This is a great place to write an introduction or prologue¹.

¹ You can even use a footnote to seem smarter

Part I Python recipies

Chapter 1

Linear Regression

Packages required to run this code

pandas for reading csv files1 format

scipy for doing linear regression analysis and obtaining the statistics

matplotlib for making the plots

¹ data not shown as tables

```
import matplotlib
matplotlib.use('Agg')
matplotlib.rc('font', family='serif')
  import pandas as pd
  import matplotlib.pyplot as plt
5
6 from scipy import stats
   cm5=pd.read csv("CM5 ARRANGED DATA FROM R.csv")
   cm1=pd.read csv("CM1A ARRANGED DATA FROM R.csv")
   xcm5=cm5['Expt']
  vcm5=cm5['G121']
10
  xcm1=cm1['Expt']
11
12 ycm1=cm1['G105']
  m1, c1, r1, p1, se1 = stats.linregress(xcm1, ycm1)
13
  m5, c5, r5, p5, se5 = stats.linregress(xcm5, ycm5)
14
  fig = plt. figure (figsize = (10, 5), dpi = 300)
15
  ax1 = plt.subplot(121)
16
   cm_1lab = "\$" + ("v = \%2, 2fx + \%2, 2f, r^2 = \%1, 2f", \%(m_1, c_1, r_1 * * 2))
17
        + " $ "
   ax1. plot (xcm1, ycm1, '^', mfc='none', mec='b', mew=1.2)
18
   ax1.plot(xcm1, m1*xcm1+c1, 'k---', linewidth=2, label=
19
        cmılab)
   plt.grid()
20
   plt.ylabel(r'$\Delta G^{GB/SA} {hyd}~$ 1.05*CM1A (kcal
21
        / mol), fontsize = 16)
   plt.xlabel(r'$\Delta G^{Expt}_{hyd}~$ (kcal/mol)',
22
        fontsize = 16)
   ax1.legend( loc='upper left')
23
   ax2 = plt.subplot(122)
24
   cm = lab = " + ( 'v = \% 2.2 fx + \% 2.2 f , r^2 = \% 1.2 f '\% (ms, cs, rs ** 2) )
25
   ax2. plot (xcm5, ycm5, 'o', mfc='none', mec='r', mew=1.2)
26
   ax2.plot(xcm5, m5*xcm5+c5, 'k-', linewidth = 2, label=
27
        cm5lab)
   ax2.legend( loc='upper left')
28
   plt.ylabel(r'\\Delta G\{GB/SA}_{hyd}~\ 1.21*CM5 (kcal/
29
        mol), fontsize = 16)
```


Figure 1.1: Linear regression analysis has been performed for two sets of data and the resulting model is shown in the legends of each figure

Chapter 2

Heat Maps

Chapter 3

Barplots

Packages required to run this code

pandas for reading "Hvap.csv1" format

numpy for creating and manipulating vectors

matplotlib for making the plots

¹ contains both the raw and devation data required for plot

Table 3.1: Data to be plotted using bar plots

Molecules	OPLS	CM1A	CM ₅	Expt
Acetic acid	12.26	13.52	14.46	12.49
Acetone	7.23	7.74	8.92	7.48
Acetonitrile	7.57	7.63	9.76	8.01
Aniline	11.88	16.41	14.61	12.60
Benzonitrile	12.52	14.45	15.49	12.54
Cyclohexane	7.56	7.64	7.61	7.86
Diethylamine	7.68	7.54	7.46	7.48
Diethyl ether	6.90	7.01	7.22	6.56
N,N-dimethylacetamide	13.44	14.34	15.57	11.75
Ethanethiol	6.67	6.48	6.68	6.58
Ethanol	10.29	9.06	10.19	10.11
Furan	6.91	8.01	7.17	6.56
Hexane	7.54	7.48	7.34	7.54
Methanol	9.00	7.60	8.84	8.95
Methyl acetate	7.99	10.00	10.12	7.72
Nitroethane	9.78	14.16	11.72	9.94
N-methylacetamide	13.87	16.12	19.06	13.30
Phenol	14.58	14.63	14.30	13.82
Propylamine	7.90	8.93	7.23	7.47
Pyridine	9.76	11.16	11.16	9.61
Pyrrole	10.32	13.81	12.37	10.80
Tetrahydrofuran	7.52	7.66	8.08	7.61

```
import pandas as pd
2 import numpy as np
  import matplotlib.pyplot as plt
   hvap = pd.read csv("Hvap.csv")
  n groups = len (hvap.D OPLS)
5
6
   opls = list (hvap.D OPLS)
   x lab = list (hvap. Molecules)
   cm5 = list (hvap.D CM5)
   cm1a = list (hvap.D CM1A)
   fig, ax = plt.subplots()
   index = np.arange(n groups)
12
   bar width = 0.33
   opacity = 0.5
14
   rects1 = plt.bar(index, opls, bar width,
15
                      alpha = opacity, color = 'r', label = 'OPLS')
16
   rects2 = plt.bar(index + bar width, cm5, bar width,
17
18
                      alpha = opacity, color = 'g', label = '1.27*
        CM5')
   rects3 = plt.bar(index + 2 * bar width, cm1a,
10
        bar width,
                      alpha = opacity, color = 'b', label = '1.14*
20
        CM<sub>1</sub>A')
   plt.ylabel(r'$\Delta H_{vap}^{expt}-\Delta H_{vap}^{
2.1
        calc \rangle \$ (kcal/mol)')
   plt.xticks(index + bar width, x lab, rotation = 90)
2.2.
   plt.grid()
23
   plt.xlim(-0.5, n \text{ groups} + 0.5)
24
   plt.legend(loc='lower left', ncol=3)
25
   plt.tight layout()
26
   plt.savefig("Tesh hvap.pdf")
27
```

Listing 3.1: Bar plot of the data shown in Table above

Figure 3.1: Data in table above is plotted where instead of raw data, deviations from experiments for each method is plotted

```
import matplotlib
2 matplotlib.use('Agg')
matplotlib.rc('font', family='serif')
  from matplotlib import pylab
  from pylab import rcParams
5
  rcParams['figure.figsize'] = 11, 7
  import pandas as pd
  import matplotlib.pvplot as plt
  import numpy as np
  import matplotlib.cm as cm
   dat = pd.read csv('all cm5 dat.csv')
   method=list(dat['Molecules'])
12
   legend = (dat.columns.values)[1:]
14
   #colors = cm. Greens(np. linspace(o. 1. len(legend)))
15
   colors = cm. Spectral (np. linspace (o, 1, len (legend)))
16
   index = np. arange (len (method))
17
18
   bar width = 1.0/len(legend)
   opacity = 1.0
19
   for i,c in zip(range(o,len(legend)),colors):
2.0
     plt.bar(index+bar width*i,dat[legend[i]], bar width
2.1
                       alpha = opacity,
22
                       color=c,
                       label=legend[i])
24
   plt.ylabel(r'$\Delta H_{vap}^{expt}-\Delta H_{vap}^{
        calc}~$ (kcal/mol)', fontsize = 14)
   plt.xticks(index + bar width * len(legend)/2, method,
26
        rotation = 90, fontsize = 12)
   plt.grid()
27
   plt. xlim(-0.1, len(method) + 0.0)
28
   #plt.legend(bbox to anchor = (1.0, 1.01), fontsize = 9, loc
29
        =o, frameon = False)
   plt.legend(loc='upper left', ncol=6, fontsize=10,
30
        frameon=False)
   plt.tight layout (rect = [0.0,0.01,0.99,1])
31
```


Figure 3.2: Data in table above is plotted where instead of raw data, deviations from experiments for each method is plotted

32 plt.savefig("Thh.pdf")

Listing 3.2: Barplot liquid properties using CM5 charges with different scale factors

```
import matplotlib
matplotlib.use('Agg')
matplotlib.rc('font', family='serif')
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import numpy as np
  import matplotlib.cm as cm
  from matplotlib.ticker import FuncFormatter
  hvap = pd. read csv('Hvap. csv')
  den = pd. read csv ('Den. csv')
10
  hvap.drop(hvap.columns[[1,2,3,4,5,7]], axis=1, inplace
11
        =True)
  den.drop(den.columns[[1,2,3,4,5,7]], axis=1, inplace=
12
        True)
  mi=list(hvap['Molecules'])
  m2=list (den['Molecules'])
14
15
16
  def millions(x, pos):
       'The two args are the value and tick position'
       return '%2.2f' % (x)
18
   formatter = FuncFormatter (millions)
19
2.0
   l1 = (hvap.columns.values)[1:]
2.1
   l2 = (den.columns.values)[1:]
2.2.
   colors = cm. Spectral (np. linspace (o, 1, len (l1)))
23
   fig (ax1, ax2) = plt.subplots(2, sharex=True)
24
   index = np.arange(len(m1))
25
   bar width = 1.0/len(l1)
26
   opacity = 1.0
   patterns = [ "*", "o", "."]
28
   for i, c in zip(range(o,len(l1)),colors):
29
     ax1.bar(index+bar width*i,hvap[l1[i]], bar width,
30
                       alpha = opacity,
31
                       color=c,
32
          hatch = patterns[i],
33
                       label=l1[i][2:])
34
```

```
35
   ax1.legend(fontsize=10.loc=9, bbox to anchor=(0.5.
        1.2), ncol = 3, frameon = False)
   ax1.set ylabel(r'$\Delta H {vap}^{expt}-\Delta H {vap
36
        }^{calc}~$ (kcal/mol)')
   ax1. vaxis. set major formatter (formatter)
37
   ax1. yaxis. set ticks (np. arange (-6,3,2))
38
   for i, c in zip(range(o, len(l2)), colors):
39
     ax2.bar(index+bar width * i, den[l1[i]], bar width,
40
                        alpha = opacity,
41
                        color=c.
42
           hatch = patterns[i],
43
                        label=12[i][2:])
44
   ax2.set vlabel(r'$\Delta \rho^{expt}-\Delta \rho^{calc}
45
        }~$ (g/cc)')
   ax2. vaxis. set ticks (np. arange (-0.1.0.08.0.04))
46
   plt.xticks(index + bar width * len(l2)/2, m2, rotation
47
        = 90. fontsize = 10)
   ax1.xaxis.grid()
48
   ax2.xaxis.grid()
49
50 ax1. yaxis. grid()
   ax2. vaxis.grid()
51
   ax1.set xlim(-0.1, len(m1) + 0.0)
52
   ax2.set xlim(-0.1, len(m2) + 0.0)
   plt.tight layout (rect = [0.0, 0.01, 0.89, 0.99])
54
   plt.savefig("Multi bar.pdf")
```

Listing 3.3: Multiple bar plots in matplotlib

Figure 3.3: Data in table above is plotted where instead of raw data, deviations from experiments for each method is plotted

```
import matplotlib
2 matplotlib.use('Agg')
matplotlib.rc('font', family='serif')
4 import pandas as pd
5 import matplotlib.pyplot as plt
6 import numpy as np
  import matplotlib.cm as cm
8 import seaborn as sns
o sns. set()
10 from matplotlib. ticker import FuncFormatter
  hvap = pd.read csv('Hvap.csv')
11
  den = pd.read csv('Den.csv')
12
   d std=pd.read csv('STD Den.csv')
13
  h std=pd.read csv('STD Hvap.csv')
14
15 h std['CM5']=h std.CM5 127
  hvap.drop(hvap.columns[[1,2,3,4,5,7]], axis=1, inplace
16
       =True)
  den.drop(den.columns[[1,2,3,4,5,7]], axis=1, inplace=
17
       True)
  m1=list (hvap['Molecules'])
  m2=list (den['Molecules'])
19
2.0
   def millions (x, pos):
2.1
       'The two args are the value and tick position'
       return '%2.2f' % (x)
   formatter = FuncFormatter (millions)
24
   25
   li = (hvap.columns.values)[1:]
26
   l2 = (den.columns.values)[1:]
   colors = cm.rainbow(np.linspace(o, 1, len(l1)))
28
   fig ,(ax1, ax2) = plt.subplots(2, sharex=True)
29
  index = np.arange(len(m1))
30
   bar width = 1.0/len(l1)
31
32 opacity = 1.0
33 patterns = [ "*", "o", "."]
34 for i, c in zip (range (o, len (l1)), colors):
```

```
35
     ax1.bar(index+bar width*i.hvap[l1[i]], bar width.
                        alpha = opacity,
36
                        facecolor=c.
37
           edgecolor = c.
38
           hatch=patterns[i],
39
                        label=l1[i][2:], yerr=h std[l1[i
40
        [[2:]], ecolor = 'k', capsize = 1)
   ax1.legend(fontsize=10,loc=9, bbox to anchor=(0.5,
41
        1.2), ncol=3, frameon=False)
   ax1.set vlabel(r'$\Delta H {vap}^{expt}-\Delta H {vap}
42
        }^{calc}~$ (kcal/mol)')
   ax1. yaxis. set major formatter (formatter)
43
   ax1.vaxis.set ticks(np.arange(-6,3,2))
44
   for i, c in zip (range (o, len (l2)), colors):
45
     ax2.bar(index+bar width*i.den[l1[i]] . bar width.
46
                        alpha = opacity,
47
                        facecolor=c.
48
           edgecolor=c,
49
           #hatch=patterns[i],
50
                        label=l2[i][2:], yerr=d std[l1[i
        [[2:]], ecolor = 'k', capsize = 1)
   ax2.set ylabel (r'$\Delta \rho^{expt}-\Delta \rho^{calc}
52
        }~$ (g/cc)')
   ax2. vaxis. set ticks (np. arange (-0.1,0.08,0.04))
53
   plt.xticks(index + bar width * len(l2)/2, m2, rotation
54
        = 90, fontsize = 10)
   #ax1.xaxis.grid()
55
  #ax2.xaxis.grid()
56
   #ax1. vaxis.grid()
57
  #ax2.yaxis.grid()
58
   ax1.set xlim(-0.1.len(m1) + 0.0)
59
   ax2.set xlim(-0.1, len(m2) + 0.0)
60
   plt.tight layout (rect = [0.0,0.01,0.89,0.99])
   plt.savefig("Ers Multi bar.pdf")
```

Listing 3.4: Multiple bar plots in matplotlib

Figure 3.4: Data in table above is plotted where instead of raw data, deviations from experiments for each method is plotted

Part II R RECIPIES