CS5560 Knowledge Discovery and Management

Problem Set 4 June 26 (T), 2017

Name: Revanth Charilam

Class ID: 02.

I. N-Gram

Consider a mini-corpus of three sentences

<s> I am Sam </s>

<s> Sam I am </s>

<s> I like green eggs and ham </s>

- 1) Compute the probability of sentence "I like green eggs and ham" using the appropriate bigram probabilities.
- 2) Compute the probability of sentence "I like green eggs and ham" using the appropriate trigram probabilities.

II. Word2Vec

Word2Vec reference: https://blog.acolver.org/2016/04/21/the-amazing-power-of-word-vectors/

Consider the following figure showing the Word2Vec model.

word2vec

most_similar('france'):

spain 0.678515 belgium 0.665923 netherlands 0.652428 0.633130

> highest cosine distance values in vector space of the nearest words

a. Describe the word2vec model

b. Describe How to extend this model for multiple documents. Also draw a similar diagram for the extended model.

Describe the differences of the following approaches

- · Continuous Bag-of-Words model,
- · Continuous Skip-gram model

For the sentence "morning fog, afternoon light rain,"

- Place the words on the skip-gram Word2Vec model below.
- Draw a CBOW model using the same words.

N-Gram: N-gram includes anoding of key words and also coord olding cautematically.

1) Bi-gram probabilities:

Calculation:

 $P(w_i|w_{i-1}) = Count(w_{i-1}, w_i)/Count(w_{i-1})$

probability that word :-, is followed by word :=

[No. of times we saw wand in, followed by word i)

[No of times une saw word i-1]

I - beginning of sentence 15 - end of lentence

P(2/s) = 2/3

P (like /D) = 1/3

P(green/like) = + =1

P (eggs/green) - 1/1 = 1

P (and feggs) = 1/1 = 1

P (ham / and) = 1/1 = 1

P(is/ham) = 1/1=1

the text the engle wa

many from the break of

promote from a great of A. M.

2) Tri gram probabilitées:

Calculation:

P(wi/wi-1 wi-2)= Count (wi, wi-1, wi-2) / count (win, wi-2)

Probability that we saw word: , followed by word: 2 followed by word: = Num times we saw the 3 words in order

Num times we saw word: -, followed by word: -2

P(green/2 the) = count (green 2 like)/ count (2 like) = = = 0

P(eggs/like green) = Count (eggs like green)/ count (like green) = = = 0

P(cand/green eggs) = count (and green eggs)/ count (green eggs) = 0 = 0

P(ham/eggs and) = Count (ham eggs and)/ count (eggs and) = 0 = 0

D Word 2 Vec:

a) Description: It is a two layer neural network that processes the text. The input is a text corpus.

Outget which were occesive is a set of vectors: feature vectors for words in that corpus.

W24 is not a day Neural network but a numerical from that day nots can understood. There is no similarly as expressed 90° rangle,

Simplanty = $cos(0) = A \cdot B = \underbrace{\overset{n}{\underset{i=1}{\text{if }}} AiBi}_{\overset{n}{\underset{i=1}{\text{of }}} Ai}^{n} AiBi}_{\overset{n}{\underset{i=1}{\text{of }}} Ai}^{n} \underbrace{\overset{n}{\underset{i=1}{\text{of }}} AiBi}_{\overset{n}{\underset{i=1}{\text{of }}} Bi}^{n}$

In the representation, the Puput observent is used to build a could 2 ver model contains word in the idocument and found the nearest words wing come similarity.

Am externion of wev model to construct embeddings from entire adocuments is called paragraph 2 vec or deep vec.

Doezvec is an unsuperised algorithm to generate vectors for sentence / paragraphs / closements. This algorithm is an adepting of W2V model which generate vectors for words.

The vector ignerated by adocs ver can be used for tasks like finding similarity between Sentences / paragraphs / closement Doc 2/1/20 Sentence vectors vare word order endpondent. Dt generate word vector Constructed from character n grams a adding up the word vectors to compose a Sentence vector. It generate vector where the vector for a sentence is generated by predicting the cadjacent sentences, that can canused to be semantically selated.

Input n' no. of does

112,3....

training a word Wester for each word cand each document gets a Id/ty with a vector while braining.

most - similar ('france')

paris 0.5 lower 0-7 normandy 0.6.

highest cosine distance Values in victor space with Consideration of the document vectors.

Vector space: Cornists of word vectors for each word Cy additional document vectors.

Wer model can utilize either of two model architectures to Produce a distributed representation of words

- a) Continous Bay of words (CROW)
- b) Continueus skip-gram

In the Cow achitector, the model predicts the current word from a window of surrounding Context words.

The order cof Context words does not influence frediction

projection w(t-2) []~ Sum w(t-1)[] 1 w(t) w(++) [] w(++2)[] /

Continues skip-Gram:

In this auditectur, the model carry the current severed to predict the surrounding without of clontext woods. The skep-gram architectur weight nearly Context woods more heavily than more identant context woods.

Diff du cison qu Continous skip gram:

- O In CROW, we need to think task as "predicting the cool qu' where cas we think predicting igner a word"
- (2) skip gram sut small amount of braining edate.
- 3 Crow is faster to train, by slightly has a better accuracy
- In skip-gram we need to create a lot more training instances from limited amount of Idata a for CBOW, we need more since the Conditioning on context, which can get exponentially huge.

" Morning fog , aftermoon light rain" Training samply Morning (norming, fog), (morning, afternoon) (fog, morning) (fog, afternoon) (fog, light) afternoon Cafter room, morning) (afternoom, fog) (afternoom, dight) (afternoon, valn) Light (light, morning) (light, fog) (light, afternoon), (light , rain) roun (rown, morning) (rown, Pog) (rown, afternoon) (rown, light morning = (1,0,0,0,0) afternoon: (0,0,1,0,0) , light (0,0,0,1,0) w(t-1) (morning) w(t+1) (affarmoon) > (light) CBOW model: morning of of of of regut 0 0/2