Chapter 5 Integrals

OUTLINE

In this chapter, we study about:

- 1. Definite Integral
- 2. Techniques of integration
- **3.** Approximate integration
- 4. Improper integral of type 1
- 5. Improper integral of type 2

Chapter 5. Integrals Definite Integral

THE AREA PROBLEM

Find the area of the region S that lies under the curve y = f(x) from x = a to x = b.

We start by subdividing S into strips $S_1; S_2; \ldots; S_n$ of equal width as in Figure below

- * Let's approximate the th strip S_i by a rectangle with width Δx and height $f(x_i)$. Then the area of the rectangle is $f(x_i) \Delta x$.
- \star So, the area of S is approximated by the sum of the areas of these rectangles, which is

$$R_n = f(x_1) \Delta x + f(x_2) \Delta x + \dots + f(x_n) \Delta x$$

On each rectangle S_i takes any number x_i^* in the subinterval $[x_{i-1}, x_i]$. We have

$$S = S_1 + S_2 + \dots + S_n$$

$$S \simeq f(x_1^*) \Delta x + f(x_2^*) \Delta x + \dots + f(x_n^*) \Delta x$$

$$S \simeq \sum_{i=1}^n f(x_i^*) \Delta x_i$$

Figure below shows this approximation for n =2; 4; 8 and 12. Notice that this approximation appears to become better and better as the number of strips increases, that is, as $n \to +\infty$

DEFINITION

Definition. Given a function f(x) that is continuous on the interval [a,b] we divide the interval into n subintervals of equal width, Δx , and from each interval choose a point, x_i^* . Then the definite integral of f(x) from a to b is

$$I = \lim_{n \to +\infty} \left(\sum_{i=1}^{n} f(x_i^*) \Delta x_i \right) = \int_a^b f(x) dx.$$

Remark: the sum $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i}$ is call Riemann sum.

If f is integrable on [a, b], then

$$\int_{a}^{b} f(x)dx = \lim_{n_{i} \to \infty} \sum_{i=1}^{n} f(x_{i}) \Delta x$$

PROPERTIES OF DEFINITE INTEGRALS

1. Order of Integration:
$$\int_{b}^{a} f(x)dx = -\int_{a}^{b} f(x)dx$$

2. Zero Width Interval:
$$\int_a^a f(x)dx = 0$$

3. Constant Multiple:
$$\int_a^b kf(x)dx = k \int_a^b f(x)dx$$

4. Sum and Difference:
$$\int_a^b (f(x) \pm g(x)) dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$$

5. Additivity:
$$\int_a^b f(x)dx + \int_b^c f(x)dx = \int_a^c f(x)dx$$

PROPERTIES OF DEFINITE INTEGRALS

6. Max-Min Inequality: If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then

$$m \le \frac{1}{b-a} \int_a^b f(x) dx \le M.$$

7. Domination:

$$\star f(x) \ge g(x) \text{ on } [a,b] \Rightarrow \int_a^b f(x)dx \ge \int_a^b g(x)dx.$$

$$\star f(x) \ge 0 \text{ on } [a,b] \Rightarrow \int_a^b f(x)dx \ge 0.$$

(a) Zero Width Interval:

$$\int_{a}^{a} f(x) \, dx = 0$$

(d) Additivity for Definite Integrals:

$$\int_{a}^{b} f(x) dx + \int_{b}^{c} f(x) dx = \int_{a}^{c} f(x) dx$$

(b) Constant Multiple: (k = 2)

$$\int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx$$

(e) Max-Min Inequality:

$$\min f \cdot (b - a) \le \int_{a}^{b} f(x) \, dx$$

\$\le \max f \cdot (b - a)\$

(c) Sum: (areas add)

$$\int_{a}^{b} (f(x) + g(x)) dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

(f) Domination:

$$f(x) \ge g(x) \text{ on } [a, b]$$

$$\Rightarrow \int_{a}^{b} f(x) \, dx \ge \int_{a}^{b} g(x) \, dx$$

Chapter 5. Integrals The Fundamental Theorem of Calculus

THE FUNDAMENTAL THEOREM OF CALCULUS

The Fundamental Theorem of Calculus

Suppose f is continuous on [a, b].

* If
$$g(x) = \int_a^x f(t)dt$$
, then $g'(x) = f(x)$.

$$\star \int_a^b f(x)dx = F(b) - F(a)$$
, where F is any antiderivative of f , that is, $F' = f$.

FTC 1 - DERIVATIVES OF INTEGRALS

The Fundamental Theorem of Calculus, Part 1

If f is continuous on [a,b], then the function g defined by

$$g(x) = \int_{a}^{x} f(t)dt \quad a \leqslant x \leqslant b$$

is continuous on [a,b] and differentiable on (a,b), and g'(x)=f(x).

Using Leibniz notation for derivatives, we can write the FTC1 as $\label{eq:property} % \begin{subarray}{ll} \end{subarray} % \begin{subarray}{l$

$$\boxed{\frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)}$$

when f is continuous.

Example. Use the Fundamental Theorem to find dy/dx if

a)
$$y = \int_{a}^{x} (t^3 + 1) dt$$

b)
$$y = \int_{r}^{5} 3t \sin t dt$$

Solution.

(a)
$$\frac{dy}{dx} = \frac{d}{dx} \int_{0}^{x} (t^3 + 1) dt = x^3 + 1$$

Eq. (2) with
$$f(t) = t^3 + 1$$

(b)
$$\frac{dy}{dx} = \frac{d}{dx} \int_{x}^{5} 3t \sin t dt = \frac{d}{dx} \left(- \int_{5}^{x} 3t \sin t dt \right)$$

$$= -\frac{d}{dx} \int_{5}^{x} 3t \sin t dt$$

$$= -3x \sin x$$

Eq. (2) with
$$f(t) = 3t \sin t$$

Leibniz's Rule

If f is continuous on [a,b] and if u(x) and v(x) are differentiable functions of x whose values lie in [a,b], then

$$\star \frac{d}{dx} \int_{a}^{u(x)} f(t)dt = f(u(x)) \frac{du}{dx}$$

*
$$\frac{d}{dx} \int_{v(x)}^{u(x)} f(t)dt = f(u(x)) \frac{du}{dx} - f(v(x)) \frac{dv}{dx}$$

Example.

1. Let $F(x) = \int_{1}^{\sqrt{x}} \sin t dt$. Find F'(x).

$$F'(x) = \frac{\sin\sqrt{x}}{2\sqrt{x}}$$

2. Let $F(x) = \int_{\sqrt{x}}^{3x} t^2 \sin(1+t^2) dt$. Find F'(x)

Solution. This will use the final formula that we derived above.

$$\left(\int_{\sqrt{x}}^{3x} t^2 \sin\left(1 + t^2\right) dt \right)' = (3)(3x)^2 \sin\left(1 + (3x)^2\right) - \frac{1}{2\sqrt{x}}(\sqrt{x})^2 \sin\left(1 + (\sqrt{x})^2\right)$$
$$= 27x^2 \sin\left(1 + 9x^2\right) - \frac{1}{2}\sqrt{x}\sin(1 + x).$$

FTC 2

The Fundamental Theorem of Calculus, Part 2

If f is continuous on [a, b], then

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$

where F is any antiderivative of f, that is, a function such that F'=f.

NET CHANGE THEOREM

So, we can reformulate $\int_a^b f(x)dx = F(b) - F(a)$ as follows.

The integral of a rate of change is the net change:

$$\int_{a}^{b} F'(x)dx = F(b) - F(a)$$

NET CHANGE THEOREM

If c(x) is the cost of producing x units of a certain commodity, then c'(x) is the marginal cost. From Net change theorem,

$$\int_{x_1}^{x_2} c'(x)dx = c(x_2) - c(x_1),$$

which is the cost of increasing production from x_1 units to x_2 units.

NET CHANGE THEOREMS

If the rate of growth of a population is dn/dt, then

$$\int_{t_1}^{t_2} \frac{dn}{dt} dt = n\left(t_2\right) - n\left(t_1\right)$$

is the net change in population during the time period from t_1 to t_2 .

- * The population increases when births happen and decreases when deaths occur.
- * The net change takes into account both births and deaths.

NET CHANGE THEOREM

If an object moves along a straight line with position function s(t), then its velocity is $v(t)=s^{\prime}(t)$, so

$$\int_{t_1}^{t_2} v(t)dt = s(t_2) - s(t_1)$$

is the net change of position, or displacement, of the particle during the time period from t_1 to t_2 .

If we want to calculate the distance the object travels during that time interval, then the distance is

$$\int_{t_1}^{t_2} |v(t)| dt =$$
total distance traveled

Example. A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6 \ m/s$.

- 1. Find the displacement of the particle during the time period $1 \le t \le 4$.
- 2. Find the distance traveled during this time period.

Solution. 1. The displacement is

$$s(4) - s(1) = \int_{1}^{4} v(t)dt = \int_{1}^{4} (t^{2} - t - 6) dt$$
$$= \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t \right]_{1}^{4} = -\frac{9}{2}$$

This means that the particle moved $4.5~\mathrm{m}$ toward the left

2. The distance traveled is

$$\int_{1}^{4} |v(t)|dt = \int_{1}^{3} [-v(t)]dt + \int_{3}^{4} v(t)dt$$

$$= \int_{1}^{3} (-t^{2} + t + 6) dt + \int_{3}^{4} (t^{2} - t - 6) dt$$

$$= \left[-\frac{t^{3}}{3} + \frac{t^{2}}{2} + 6t \right]_{1}^{3} + \left[\frac{t^{3}}{3} - \frac{t^{2}}{2} - 6t \right]_{3}^{4}$$

$$= \frac{61}{6} \approx 10.17m$$

MEAN VALUE THEOREM FOR DEFINITE INTEGRALS

The Mean Value Theorem for Definite Integrals

If f is continuous on [a,b], then there exists a number c in [a,b] such that

$$f(c) = f_{\text{ave}} = \frac{1}{b-a} \int_{a}^{b} f(x) dx$$

that is,

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$

Example.

- a) Find the average value of $f(x) = \sqrt{4 x^2}$ on [-2, 2].
- b) Find the average value of the function $f(x) = x^2 + 3$ on the interval [2, 5]

Solution. a)

$$f_{\text{ave}} = \frac{1}{2 - (-2)} \int_{-2}^{2} \sqrt{4 - x^2} dx = \frac{1}{4} (2\pi) = \frac{\pi}{2}$$

The average value of $f(x) = \sqrt{4-x^2}$ on [-2,2] is $\pi/2$

Chapter 5. Integrals Techniques of integration

INTEGRATION FOMULARS

$$1. \int adx = ax + C$$

$$2. \int x^{\alpha} dx = \frac{1}{\alpha + 1} x^{\alpha + 1} + C$$

3.
$$\int \frac{1}{x} dx = \ln|x| + C$$

$$4. \int e^{ax} dx = \frac{1}{a} e^{ax} + C$$

$$5. \int a^x dx = \frac{a^x}{\ln a} + C$$

6.
$$\int \sin ax dx = -\frac{1}{a}\cos ax + C$$
$$\int \cos ax dx = \frac{1}{a}\sin ax + C$$

7.
$$\int \frac{dx}{\cos^2 x} = \tan x + C$$
$$\int \frac{dx}{\sin^2 x} = -\cot x + C$$

8.
$$\int \frac{dx}{x^2 + a^2} = \frac{1}{a} \arctan \frac{x}{a} + C$$

9.
$$\int \frac{dx}{\sqrt{a^2 - x^2}} = \arcsin \frac{x}{a} + C = -\arccos \frac{x}{a} + C$$

10.
$$\int \frac{dx}{\sqrt{x^2 \pm a^2}} = \ln\left(x + \sqrt{x^2 \pm a^2}\right) + C \quad a \neq 0$$

Example. Find

a)
$$\int \left(x + \sin 2x + e^x + \frac{1}{x}\right) dx$$

c)
$$\int \frac{x^2 + xe^{2x} - 1}{x} dx$$

b)
$$\int x(x+1)^2 dx$$

THE SUBSTITUTION RULE

If u=u(x) is a differentiable function whose range is an interval I and f is continuous on I, then

$$\int f(u(x))u'(x)dx = \int f(u)du$$

Example. Find
$$I = \int 2x\sqrt{1+x^2}dx$$

Solution. Let $u = \sqrt{1+x^2}$

Then $u^2 = 1 + x^2$, so 2udu = 2xdx

There for,

$$I = \int 2u^2 du = \frac{2}{3}u^3 + C = \frac{2}{3}\left(\sqrt{1+x^2}\right)^3 + C$$

Example. Evaluate $\int_{1}^{2} \frac{dx}{(3-5x)^2}$

- Let u = 3 5x.
- Then, du = -5dx, so dx = -du/5.
- When x=1, u=-2, and when x=2, u=-7.

INTEGRATION BY SUBSTITUTION

Exercise.

a)
$$\int x^3 \cos(x^4 + 2) dx$$

b)
$$\int \sqrt{2x+1}dx$$

c)
$$\int \frac{x}{\sqrt{1-4x^2}} dx$$

$$d) \int \sqrt{1+x^2}x^5 dx$$

e)
$$\int \tan x dx$$

Exercise.

a)
$$\int_0^1 t^3 (1+t^4)^3 dt$$

c)
$$\int_{-1}^{1} \frac{5r}{(4+r^2)^2} dr$$

b)
$$\int_{0}^{\sqrt{7}} t (t^2 + 1)^{1/3} dt$$

d)
$$\int_0^1 \frac{10\sqrt{v}}{(1+v^{3/2})^2} dv$$

INTEGRATION BY PARTS

$$\int u dv = uv - \int v du$$

Example.

a)
$$\int xe^x dx$$

b)
$$\int \ln x dx$$

c)
$$\int x \sin 2x dx$$

REVIEW

Exercise.

a)
$$I = \int_0^1 (x^2 - e^{2x} + 1) dx$$

c)
$$I = \int_{1}^{2} x \ln x dx$$

e)
$$I = \int_{1}^{3} \frac{xe^{2x} + 1}{x} dx$$

b)
$$I = \int_{0}^{2\sqrt{2}} \sqrt{1 + x^2} \cdot x dx$$

d)
$$I = \int_{0}^{\frac{\pi}{4}} x(1+\sin 2x)dx$$

Chapter 5. Integrals Approximate Integration

APPROXIMATING DEFINITE INTEGRALS USING RIEMANN SUMS

- The width of the interval [a, b] is b - a, so the width of each of the n strips is

$$\Delta x := \Delta x_i = \frac{b-a}{n}$$

- These strips divide the interval $\left[a,b\right]$ into n subintervals

$$[x_0, x_1], [x_1, x_2], [x_2, x_3], \dots, [x_{n-1}, x_n]$$

where $x_0 = a$ and $x_n = b$. The right endpoints of the subintervals are

$$x_1 = a + \Delta x,$$

$$x_2 = a + 2\Delta x,$$

$$x_3 = a + 3\Delta x.$$

So

$$\int_{a}^{b} f(x)dx = S \approx \sum_{i=1}^{n} f(x_{i}^{*}) \Delta x$$

- If $x_i^* = x_i$ for any $i \in \overline{1,n}$, then

$$R_n := S \approx \sum_{i=1}^n f(x_i) \Delta x \Longrightarrow \text{Right Endpoint Rule}$$

- If $x_i^* = x_{i-1}$ for any $i \in \overline{1,n}$, then

$$L_n := S \approx \sum_{i=1}^n f(x_{i-1}) \Delta x. \implies \text{Left Endpoint Rule}$$

- If $x_i^* = \frac{x_{i-1} + x_i}{2}$, for any $i \in \overline{1, n}$, then

$$M_n := S \approx \sum_{i=1}^n f\left(\frac{x_{i-1} + x_i}{2}\right) \Delta x \implies \text{Midpoint Rule}$$

Example. Use rectangles to estimate the area under the parabola $y=x^2$ from 0 to 1 . Use right and Left Endpoint rules.

Dividing the interval [0,1] into n subintervals. So, $\Delta x = \frac{1}{n}$ and $x_i = \frac{i}{n}$ with $i = \overline{1,n}$.

$$R_n = \sum_{i=1}^n f(x_i) \cdot \Delta x = \sum_{i=1}^n \left(\frac{i}{n}\right)^2 \frac{1}{n} = \frac{1}{n^3} \sum_{i=1}^n i^2 = \frac{1}{n^3} \cdot \frac{n(n+1)(2n+1)}{6}$$

$$L_n = \sum_{i=1}^n f(x_{i-1}) \cdot \Delta x = \sum_{i=1}^n \left(\frac{i-1}{n}\right)^2 \frac{1}{n} = \frac{1}{n^3} \sum_{i=1}^n (i-1)^2 = \frac{2n^2 - 3n + 1}{6n^2}.$$

The table below shows the results of some calculations.

n	L_n	R_n					
10	0.2850000	0.3850000					
20	0.3087500	0.3587500					
30	0.3168519	0.3501852					
50	0.3234000	0.3434000					
100	0.3283500	0.3383500					
1000	0.3328335	0.3338335					

TRAPEZOIDAL RULE

The area of the trapezoid that lies above the i th subinterval is:

$$\Delta x \left(\frac{f(x_{i-1}) + f(x_i)}{2} \right) = \frac{\Delta x}{2} \left[f(x_{i-1}) + f(x_i) \right]$$

TRAPEZOIDAL RULE

$$\int_{a}^{b} f(x)dx \approx T_{n} = \frac{\Delta x}{2} \left[f(x_{0}) + 2f(x_{1}) + 2f(x_{2}) + \dots + 2f(x_{n-1}) + f(x_{n}) \right]$$

where $\Delta x = \frac{b-a}{m}$ and $x_i = a + i\Delta x$

Example. Use the Trapezoidal Rule with n=4 to estimate $\int_{1}^{2} x^{2} dx$.

Partition [1, 2] into four subintervals of equal length (Figure below). Then evaluate $y=x^2$ at each partition point (Table below).

We have

n = 4, a = 1, b = 2 $\Delta x = (2-1)/4 = 1/4$

$$\int_{1}^{2} x^{2} dx \approx T_{4} = \frac{\Delta x}{2} \left(y_{0} + 2y_{1} + 2y_{2} + 2y_{3} + y_{4} \right)$$

$$=\frac{1}{8}\left(1+2\left(\frac{25}{16}\right)+2\left(\frac{36}{16}\right)+2\left(\frac{49}{16}\right)+4\right)=\frac{75}{32}=2.34375$$

Example. Use (a) the Trapezoidal Rule and (b) the Midpoint Rule with n=5 to approximate the integral $\int_{1}^{2} \frac{1}{x} dx$.

(a) With n=5, a=1, and b=2, we have $\Delta x=\frac{2-1}{5}=0.2$, and so the Trapezoidal

Rule gives
$$\int_{1}^{2} \frac{1}{x} dx \approx T_{5} = \frac{0.2}{2} [f(1) + 2f(1.2) + 2f(1.4) + 2f(1.6) + 2f(1.8) + f(2)]$$

$$= \frac{0.2}{2}[f(1) + 2f(1.2) + 2f(1.4) + 2f(1.6) + 2f(1.8) + f(2)]$$

$$= 0.1\left(\frac{1}{1} + \frac{2}{1.2} + \frac{2}{1.4} + \frac{2}{1.6} + \frac{2}{1.8} + \frac{1}{2}\right)$$

(b) The midpoints of the five subintervals are 1.1, 1.3, 1.5, 1.7, and 1.9, so the Midpoint Rule give

e give
$$\int_1^2 \frac{1}{x} dx \approx M_5 = \Delta x [f(1.1) + f(1.3) + f(1.5) + f(1.7) + f(1.9)]$$

$$= \frac{1}{5} \left(\frac{1}{1.1} + \frac{1}{1.3} + \frac{1}{1.5} + \frac{1}{1.7} + \frac{1}{1.9} \right)$$

FPT UNIVER

$$\approx 0.691908$$

ERROR BOUNDS

Suppose $|f''(x)| \le K$ for $a \le x \le b$.

If E_T and E_M are the errors in the Trapezoidal and Midpoint Rules, then

$$|E_T| \le \frac{K(b-a)^3}{12n^2}$$
 and $|E_M| \le \frac{K(b-a)^3}{24n^2}$

SIMPSON'S RULE

This is called Simpson's Rule - after the English the English mathematician Thomas Simpson (1710–1761).

SIMPSON'S RULE

$$\int_{a}^{b} f(x)dx \approx S_{n} = \frac{\Delta x}{3} \left[f(x_{0}) + 4f(x_{1}) + 2f(x_{2}) + 4f(x_{3}) + \cdots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_{n}) \right]$$

where *n* is even and $\Delta x = \frac{b-a}{x}$.

ERROR BOUND (SIMPSON'S RULE)

Suppose that $|f^{(4)}(x)| \leq K$ for $a \leq x \leq b$.

If E_s is the error involved in using Simpson's Rule, then

$$|E_s| \le \frac{K(b-a)^5}{180n^4}$$

Example. Use Simpson's Rule with n = 10 to approximate $\int_{1}^{2} \frac{1}{x} dx$.

Solution. Putting $f(x) = \frac{1}{x}$, n = 10, and $\Delta x = 0.1$ in Simpson's Rule, we obtain

$$\int_{1}^{2} \frac{1}{x} dx \approx S_{10}$$

$$= \frac{\Delta x}{3} [f(1) + 4f(1.1) + 2f(1.2) + 4f(1.3) + \dots + 2f(1.8) + 4f(1.9) + f(2)]$$

$$= \frac{0.1}{3} \left(\frac{1}{1} + \frac{4}{1.1} + \frac{2}{1.2} + \frac{4}{1.3} + \frac{2}{1.4} + \frac{4}{1.5} + \frac{2}{1.6} + \frac{4}{1.7} + \frac{2}{1.8} + \frac{4}{1.9} + \frac{1}{2} \right)$$

$$\approx 0.693150.$$

TRAPEZOIDAL RULE VS SIMPSON'S RULE

TABLE 8.4 Trapezoidal Rule approximations (T_n) and Simpson's Rule approximations (S_n) of In $2 = \int_1^2 (1/x) dx$

		Error		Error less than	
n	T_n	less than	S_n		
10	0.6937714032	0.0006242227	0.6931502307	0.0000030502	
20	0.6933033818	0.0001562013	0.6931473747	0.0000001942	
30	0.6932166154	0.0000694349	0.6931472190	0.0000000385	
40	0.6931862400	0.0000390595	0.6931471927	0.0000000122	
50	0.6931721793	0.0000249988	0.6931471856	0.0000000050	
100	0.6931534305	0.0000062500	0.6931471809	0.0000000004	

Chapter 5. Integrals Improper integral

THE AREA PROBLEM

Find the area of the region S that lies under the curve y=f(x), above the -axis, and to the right of the line x=a.

$$S = \int_{a}^{+\infty} f(x)dx = \lim_{t \to +\infty} \int_{a}^{t} f(x)dx$$

IMPROPER INTEGRALS OF TYPE 1

Definition. Let y = f(x) be a function defined on $[a, +\infty)$, and there exists

$$\int_a^t f(x)dx$$
 for every number $t\geq a$, then the integral
$$\int_a^{+\infty} f(x)dx = \lim_{t\to +\infty} \int_a^t f(x)dx$$

is called an improper integrals of type 1.

Similarly, we have the following improper integral of type 1
$$\int_{a}^{a} f(x) dx = \int_{a}^{a} f(x) dx$$

$$\int_{-\infty}^{a} f(x)dx = \lim_{t \to -\infty} \int_{t}^{a} f(x)dx$$
$$\int_{-\infty}^{+\infty} f(x)dx = \int_{-\infty}^{a} f(x)dx + \int_{a}^{+\infty} f(x)dx$$

CONVERGENCE AND DIVERGENCE OF THE IMPROPER INTEGRAL OF TYPE 1

The improper integrals
$$\int_a^\infty f(x)dx$$
 and $\int_{-\infty}^a f(x)dx$ are called:

- * Convergent if the corresponding limit exists.
- * Divergent if the limit does not exist.

Two problems with improper integral:

- ★ Calculate the improper integrals;
- * Check convergence of the improper integrals.

Example. Calculate and determine whether the improper integral $\int_1^{+\infty} \frac{1}{x} dx$ is convergent or divergent.

Solution. By definition, we have

$$\int_{1}^{+\infty} \frac{1}{x} dx = \lim_{t \to +\infty} \int_{1}^{t} \frac{1}{x} dx = \lim_{t \to +\infty} \ln|x| \Big|_{1}^{t}$$
$$= \lim_{t \to +\infty} (\ln t - \ln 1) = \lim_{t \to +\infty} \ln t = +\infty$$

The limit does not exist as a real number, so the improper integral $\int_1^{+\infty} \frac{1}{x} dx$ is divergent.

Example. Calculate and determine whether the improper integral $\int_1^{+\infty} \frac{1}{x^p} dx$, $\forall p$ is convergent or divergent.

Solution. if p=1 then the improper integral $\int_1^{+\infty} \frac{1}{x} dx$ is divergent. So, we assume $p \neq 1$, then

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx = \lim_{t \to +\infty} \left(\int_{1}^{t} x^{-p} dx \right) = \lim_{t \to +\infty} \left(\frac{x^{-p+1}}{-p+1} \right) \Big|_{x=1}^{x=t}$$
$$= \lim_{t \to +\infty} \frac{1}{1-p} \left(\frac{1}{t^{p-1}} - 1 \right).$$

- If p>1 then $p-1>0 \Longrightarrow t^{p-1}\to +\infty$ and $\frac{1}{t^{p-1}}\to 0$ as $t\to +\infty$, hence

$$\int_{1}^{+\infty} \frac{1}{x^{p}} dx = \frac{1}{p-1}$$
, if $p > 1$

so, the improper integral is convergent.

- If p < 1, then p - 1 < 0 and so

$$\frac{1}{t^{p-1}} = t^{1-p} \to +\infty \text{ khi } t \to +\infty$$

thus the improper integral is divergent.

Example. Calculate and determine whether the improper integral $\int_{-\infty}^{\infty} xe^x dx$ is convergent or divergent.

Solution. By definition, we have $\int_{-\infty}^{0} xe^{x}dx = \lim_{t \to -\infty} \int_{t}^{0} xe^{x}dx.$ - We use integration by parts with $u = x, dv = e^{x}dx \Rightarrow du = dx, v = e^{x}$:

$$\int_{t}^{0} x e^{x} dx = x e^{x} \Big|_{t}^{0} - \int_{t}^{0} e^{x} dx = -t e^{t} - 1 + e^{t}$$

 $e^t \to 0$ as $t \to -\infty$. Follow L'Hopital rule, then

$$\lim_{t \to -\infty} t e^t = \lim_{t \to -\infty} \frac{t}{e^{-t}} = \lim_{t \to -\infty} \frac{t'}{\left(e^{-t}\right)'} = \lim_{t \to -\infty} \frac{1}{-e^{-t}} = \lim_{t \to -\infty} \left(-e^t\right) = 0$$

Thus

$$\int_{-\infty}^{0} xe^{x} dx = \lim_{t \to -\infty} \left(-te^{t} - 1 + e^{t} \right) = -0 - 1 + 0 = -1$$

so, the improper integral is convergent.

IMPROPER INTEGRAL OF TYPE 2

If f is continuous on [a;b) and is discontinuous at b, then

$$\int_{a}^{b} f(x)dx = \lim_{t \to b^{-}} \int_{a}^{t} f(x)dx$$

if this limit exists as a finite number.

IMPROPER INTEGRAL OF TYPE 2

If f is continuous on (a; b] and is discontinuous at a, then

$$\int_{a}^{b} f(x)dx = \lim_{t \to a^{+}} \int_{t}^{b} f(x)dx$$

if this limit exists as a finite number.

IMPROPER INTEGRAL OF TYPE 2

If f has a discontinuity at c, where a < c < b, then

$$\begin{split} \int_a^b f(x)dx &= \int_a^c f(x)dx + \int_c^b f(x)dx \\ &= \lim_{t \to c^-} \int_a^t f(x)dx + \lim_{t \to c^+} \int_t^c f(x)dx \end{split}$$

CONVERGENCE AND DIVERGENCE OF THE IMPROPER INTEGRAL OF TYPE 2

The improper integral $\int_a^b f(x)dx$ is called:

- * Convergent if the corresponding limit exists.
- * Divergent if the limit does not exist.

Solution. The function $f(x) = \frac{1}{\sqrt{x-2}}$ is discontinuous at x=2. So

$$\int_{2}^{5} \frac{1}{\sqrt{x-2}} dx = \lim_{t \to 2^{+}} \int_{t}^{5} \frac{dx}{\sqrt{x-2}}$$

$$= \lim_{t \to 2^{+}} 2\sqrt{x-2} \Big|_{t}^{5}$$

$$= \lim_{t \to 2^{+}} 2(\sqrt{3} - \sqrt{t-2})$$

$$= 2\sqrt{3}$$

Example. Calculate and determine whether the improper integral $I = \int_0^3 \frac{dx}{x-1}$ is convergent or divergent.

Solution. The function $f(x) = \frac{dx}{x-1}$ is discontinuous at x = 1. Thus,

$$I = \int_0^1 \frac{dx}{x-1} + \int_1^3 \frac{dx}{x-1} = I_1 + I_2$$

Moreover,

$$I_1 = \lim_{t \to 1^-} \int_0^t \frac{dx}{x - 1} = \lim_{t \to 1^-} \ln|x - 1| \Big|_0^t = \lim_{t \to 1^-} \ln|t - 1| = -\infty$$

So the improper integral I is divergent.

COMPARISON THEOREM

Theorem. Direct Comparison Test

Suppose f and g are continuous functions with $f(x) \ge g(x) \ge 0$ for $x \ge a$.

a) If
$$\int_a^\infty f(x)dx$$
 is convergent, then $\int_a^\infty g(x)dx$ is convergent.

b) If
$$\int_a^\infty g(x)dx$$
 is divergent, then $\int_a^\infty f(x)dx$ is divergent.

Example.

(a)
$$\int_{1}^{\infty} \frac{\sin^2 x}{x^2} dx$$
 converges because

$$0 \le \frac{\sin^2 x}{x^2} \le \frac{1}{x^2}$$
 on $[1, \infty)$ and $\int_1^\infty \frac{1}{x^2} dx$ converges.

(b)
$$\int_{1}^{\infty} \frac{1}{\sqrt{r^2-0.1}} dx$$
 diverges because

$$\frac{1}{\sqrt{x^2-0.1}} \ge \frac{1}{x}$$
 on $[1,\infty)$ and $\int_{1}^{\infty} \frac{1}{x} dx$ diverges.

Example.

(c)
$$\int_0^{\pi/2} \frac{\cos x}{\sqrt{x}} dx$$
 converges because

$$0 \le \frac{\cos x}{\sqrt{x}} \le \frac{1}{\sqrt{x}} \quad \text{ on } \quad \left[0, \frac{\pi}{2}\right]$$

and

$$\int_0^{\pi/2} \frac{dx}{\sqrt{x}} = \lim_{a \to 0^+} \int_a^{\pi/2} \frac{dx}{\sqrt{x}}$$

$$= \lim_{a \to 0^+} \sqrt{4x} \Big]_a^{\pi/2}$$

$$= \lim_{a \to 0^+} (\sqrt{2\pi} - \sqrt{4a}) = \sqrt{2\pi} \quad \text{converges.}$$

COMPARISON THEOREM

Theorem. Limit Comparison Test

If the positive functions f and g are continuous on $[a, \infty)$, and if

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = L, \quad 0 < L < \infty,$$

then

$$\int_{a}^{\infty} f(x)dx \quad \text{and} \quad \int_{a}^{\infty} g(x)dx$$

both converge or both diverge.

Example. Show that

$$\int_{1}^{\infty} \frac{dx}{1+x^2}$$

converges by comparison with $\int_{1}^{\infty} \frac{1}{x^2} dx$.

The functions $f(x) = \frac{1}{x^2}$ and $g(x) = \frac{1}{1+x^2}$ are positive and continuous on $[1,\infty)$.

Also,

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{1/x^2}{1/(1+x^2)} = \lim_{x \to \infty} \frac{1+x^2}{x^2}$$
$$= \lim_{x \to \infty} \left(\frac{1}{x^2} + 1\right) = 0 + 1 = 1,$$

a positive finite limit.

Therefore, $\int_{1}^{\infty} \frac{dx}{1+x^2}$ converges because $\int_{1}^{\infty} \frac{dx}{x^2}$ converges.

Thank you for your attention.

Prob 1. Estimate the area under the graph of y = f(x) using 6 rectangles and left endpoints:

a)
$$f(x) = \frac{1}{x} + x, x \in [1, 4]$$

b) A table of values for f is given

x	1	2	3	4	5	6	7
f(x)	5	6	3	2	7	1	2

Prob 2. Repeat Prob 1 using right endpoints.

Prob 3. Use (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule to approximate the given integral with the specified value of n.

a)
$$\int_{0}^{3} \sqrt{x} dx, n = 4$$

b)
$$\int_{1}^{3} \frac{\sin x}{x} dx, n = 6$$

Prob 4. Find the derivative of the function
$$g(x) = \int_0^x \sqrt{t^2 + 1} dt$$

Prob 5. Find g'

a)
$$g(x) = \int_{1}^{x^4} \frac{1}{\cos t} dt$$

b)
$$g(x) = \int_1^{\sqrt{x}} \frac{\sin u}{u} du$$

Prob 6. Find the average value of the function on the given interval

a)
$$f(x) = x^2, [-1, 1]$$

b)
$$f(x) = \frac{1}{x}, [1, 5]$$

Prob 7. A particle moves along a line so that its velocity at time t is $v(t) = t^2 - t - 6$ (m/s)

- a) Find the displacement of the particle during the time period $1 \le t \le 4$.
- b) Find the distance traveled during this time period.

Prob 8. Suppose the acceleration function and intial velocity are a(t) = t + 3 (m/s²), v(0) = 5 (m/s). Find the velocity at time t and the distance traveled when $0 \le t \le 5$ **Hint** a(t) = v'(t))

Prob 9. A particle moves along a line with velocity function $v(t) = t^2 - t$ (m/s). Find the displacement and the distance traveled by the particle during the time interval $t \in [0,2]$.

Prob 10. Evaluate the integral
$$I = \int_{0}^{2} x^{2} \sqrt{x^{3} + 1} dx$$
.

Prob 11. Suppose
$$f(x)$$
 is differentiable, $f(1) = 4$ and $\int_0^1 f(x)dx = 5$. Find $\int_0^1 x f'(x)dx$

Prob 12. Suppose
$$f(x)$$
 is differentiable, $f(1) = 3$, $f(3) = 1$ and $\int_{1}^{3} x f'(x) dx = 13$. What is the average value of f on the interval $[1,3]$?

Prob 13. Let $f(x) = \begin{cases} -x - 1 & \text{if } -3 \le x \le 0 \\ -\sqrt{1 - x^2} & \text{if } 0 < x < 1 \end{cases}$. Evaluate $\int_{-x}^{1} f(x) dx$

Prob 14. Calculate the improper integral
$$\int_2^{+\infty} \frac{2}{x+1} dx$$

a) $+\infty$ b) $-\infty$ c) $\ln 3$
Prob 15. Calculate the improper integral $\int_1^{+\infty} \frac{1}{x^4} dx$

Prob 16. Calculate the improper integral
$$\int_{1}^{+\infty} \frac{1}{x^5} dx$$

a) -1/4 b) 1/2 c) 1

Prob 17. Calculate the improper integral $\int_{0}^{+\infty} xe^{x}dx$

d) 1/4

d) $\ln(2)/3$

al
$$\int_{-2}^{+\infty} \frac{dx}{x^2 + 4x + 5}$$

a) $\pi/2$

b) $\pi/3$

c) $2\pi/3$

d) $\pi/4$

Prob 19. Determine whether each integral is convergent or divergent. Evaluate those that are convergent.

a)
$$\int_{1}^{\infty} \frac{dx}{(3x+1)^2}$$

$$b) \int_{-\infty}^{0} \frac{dx}{2x - 5}$$

c)
$$\int_0^4 \frac{1}{\sqrt{4-x}} dx$$

$$\mathsf{d)} \ \int_0^1 \frac{dx}{4x - 1}$$

$$e) \int_3^4 \frac{dx}{\sqrt{x-3}}$$

