Universidade Federal da Grande Dourados Análise Numérica — Lista 1 Engenharia Mecânica — 2016.2 Prof. Adriano Barbosa

1. Calcule o erro absoluto e relativo das aproximações de p por p^* :

(a)
$$p = \pi$$
, $p^* = 22/7$

(b)
$$p = \pi$$
, $p^* = 3.1416$

(c)
$$p = e$$
, $p^* = 2.718$

(d)
$$p = \sqrt{2}$$
, $p^* = 1.414$

(e)
$$p = 8!$$
, $p^* = 39900$

2. Encontre o maior intervalo ao qual p^* deve pertencer para aproximar p com erro relativo de pelo menos 10^{-3} .

(a)
$$p = \pi$$

(b)
$$p = e$$

(c)
$$p = 150$$

(d)
$$p = 1500$$

3. O número e pode ser definido por $\sum_{n=0}^{\infty} \frac{1}{n!}$. Calcule o erro absoluto e relativo

da aproximação
$$\sum_{n=0}^{5} \frac{1}{n!}.$$

4. Um sistema linear da forma

$$\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$$

pode ser resolvido utilizando o seguinte algoritmo:

calcule
$$m = \frac{c}{a}$$
, se $a \neq 0$;
 $d_1 = d - mb$;
 $f_1 = f - me$;
 $y = \frac{f_1}{d_1}$;
 $x = \frac{e - by}{a}$.

Resolva o sistema abaixo utilizando aritimética computacional com quatro dígitos e arredondamento.

$$\begin{cases} 1.130x - 6.990y = 14.20 \\ 1.013x - 6.099y = 14.22 \end{cases}$$

- 5. Use o método da Bisseção e encontre p_3 para $f(x) = \sqrt{x} \cos x$ em [0, 1].
- 6. Use o método da Bisseção para encontrar a solução da equação $x^3 7x^2 + 14x 6 = 0$ com precisão de 10^{-2} em cada intervalo:
 - (a) [0,1]
 - (b) [1, 3.2]
 - (c) [3.2, 4]
- 7. Esboce o gráfico de y=x e $y=2\sin x$. Use o método da Bisseção para encontrar uma a proximação com precisão de 10^{-2} da primeira raiz positiva de $x=2\sin x$.
- 8. Encontre uma aproximação de $\sqrt[3]{25}$ com precisão de 10^{-2} usando o método da Bisseção.

Respostas:

- 1. (a) 0.001264, 4.025×10^{-4}
- (b) 7.346×10^{-6} , 2.338×10^{-6}
- (c) 2.818×10^{-4} , 1.037×10^{-4}
- (d) 2.136×10^{-4} , 1.1510×10^{-4}
- (e) $420, 1.042 \times 10^{-2}$
- 2. (a) [3.138451061, 3.144734246]
- (b) [1.412799349, 1.415627776]
- (c) [149.85, 150.15]
- (d) [1498.5, 1501.5]
- 3. aproximação: 2.7166667

erro absoluto: 0.0016152

erro relativo: 5.9418×10^{-4}

- 4. x = 67.42, y = 8.869
- 5. $p_3 = 0.625$
- 6. (a) $p_7 = 0.5859$ (b) $p_8 = 3.002$ (c) $p_7 = 3.419$
- 7. Usando [1.5, 2], $p_6 = 1.8984375$
- 8. Usando $[2,3], p_7 = 2.9921875$