

Men's Basketball Score Predictions

(using Linear Regression)

Tony Ghabour

January 2020

Motivation

GAMBLING!

Motivation

More specifically...

Rely on historical NCAA basketball performance metrics and OLS to "accurately" predict the outcome of a given game.

Original Objective

Score differential would allow user to make predictions regarding the "spread" and "money line."

REVISED Objective

Independent score predictions permit "over/under" picks in addition to spread and money line.

Strategy

Top-down approach:

- 1. Collect numerous features
- 2. Use polynomial terms to artificially create more features
- 3. Start with overfitted baseline (intentional)
- 4. Rely on regularization to identify/emphasize important features

Raw Data

sportradar

- Huge data dump of historical statistics
- Offense vs. defense
- Home vs. Away
- Additional team & game-specific info (e.g. conference, venue data)

- Scraped roster-specific data
- Player height and weight

Pre-processing

Narrow domain (types of games)

NOt to Scale

High-level Feature Selection

Transform for Modeling

- Raw data = game-level
- Model(s) require historical team averages preceding prediction

The "System"

Multicollinearity and endogeny

Similarly Distributed Targets

Analysis & Model Evaluation

Model	Regularization*	R ²	RSME					
HOME MODELS								
"Vanilla OLS"	None	0.237	9.928					
Linear Regression	Lasso	0.236	9.937					
Linear Regression	Ridge	0.238	9.923					
Polynomial (deg 2)	Lasso	0.162	10.407					
Polynomial (deg 3)	Lasso	0.168	10.370					
AWAY MODELS								
"Vanilla OLS"	None	0.236	9.778					
Linear Regression	Lasso	0.233	9.800					
Linear Regression	Ridge	0.236	9.779					
Polynomial (deg 2)	Lasso	0.155	10.284					
Polynomial (deg 3)	Lasso	0.166	10.216					

^{*} Regularization hyperparameter λ = 1 in all cases, as applicable.

	actual_home	actual_away	predictions_home	predictions_away	actual_margin	predicted_margin
count	1783.000000	1783.000000	1783.000000	1783.000000	1783.00000	1783.000000
mean	75.418957	70.096467	75.469455	69.771305	5.32249	5.698150
std	11.372038	11.191562	5.582934	5.432878	13.53649	7.428717
min	49.000000	45.000000	52.751343	46.948691	-40.00000	-17.872835
25%	67.000000	62.000000	71.958748	66.484072	-4.00000	0.890124
50%	75.000000	70.000000	75.259291	69.816039	5.00000	5.128873
75%	83.000000	78.000000	78.845928	73.331635	14.00000	9.749419
max	107.000000	100.000000	101.567423	91.541813	54.00000	39.654323

Based on 20% "holdout" test set

Based on 20% "holdout" test set

Based on 20% "holdout" test set

Conclusions

- DO NOT USE FOR GAMBLING
- Ambitious objective
- Great deal of inherent variability in underlying system
 - Example: 2018 Tournament > #1 Overall seed lost in 1st round
- Not enough to match aggregate distributions, matchups matter
- Linear models may be inadequate for stated objective

Future Work

- Start with fewer, more targeted features
 - Offensive Rebound % = OR / (OR + Opp. DR)
 - Free Throw Rate = FT attempts / FG attempts
- Incorporate K-fold cross-validation
- Consider categorical variables
 - Conference, in-conference matchup
- Try more robust/appropriate models:
 - Weighted Least Squares (WLS)
 - General Linear Models (GLM)
 - Ensemble Models (combinations)

