Rényi Divergence Variational Inference

Arne Gebert, Wei-Chen Lee, Evan Neill, Rohan Saphal

University of Oxford Department of Computer Science

{arne.gebert, wei-chen.lee, evan.neill, rohan.saphal}@cs.ox.ac.uk

Introduction

Variational Inference (VI) is a means of approximating posterior probability densities p(z|x) in a Latent Variable Model (LVM) wherein z is a latent variable representation of data x. This is achieved by minimizing a *divergence* measuring the dissimilarity between the parameterized proposed approximation $q_{\psi}(z)$ and the posterior p(z|x). A typical and performant choice of divergence is the Kullback-Leibler (KL) divergence. The paper Rényi Divergence Variational Inference [1] introduces the parametrized family of **Rényi's** α -divergences:

$$D_{\alpha}(p(x)||q(x)) := \frac{1}{\alpha - 1} \log \mathbb{E}_p \left[\left(\frac{p(x)}{q(x)} \right)^{\alpha - 1} \right]$$

Rényi's α -divergences include multiple commonly used divergence functions as special cases, including the KL divergence for $\alpha \to 1$. Like in traditional variational inference this divergence can be used to derive an **optimizable bound** \mathcal{L}_{α} which can be approximated:

$$\mathcal{L}_{\alpha} = \frac{1}{1 - \alpha} \log \mathbb{E}_{q} \left[\left(\frac{p_{\theta}(x, z)}{q_{\psi}(z | x)} \right)^{1 - \alpha} \right] \approx \frac{1}{1 - \alpha} \log \frac{1}{K} \sum_{k=1}^{K} \left(\frac{p_{\theta}(x, z_{i})}{q_{\psi}(z_{i} | x)} \right)^{1 - \alpha} = \mathcal{L}_{\alpha, K}$$

Applying Rényi α -divergences to VAEs

The **reparameterization trick** is applied to able to use $\hat{\mathcal{L}}_{\alpha,K}$ in the VAE framework:

$$\hat{\mathcal{L}}_{\alpha,K} = \frac{1}{1-\alpha} \log \frac{1}{K} \sum_{i=1}^{K} \left[\left(\frac{p(x, z_{i,\epsilon})}{q(z_{i,\epsilon}|x)} \right)^{1-\alpha} \right]$$

with $z_{\epsilon} = \mu + \Sigma \epsilon$ where $\epsilon \sim \mathcal{N}(0, \mathcal{I})$ and \mathcal{I} is the identity matrix.

Special cases: $\hat{\mathcal{L}}_{\alpha,K}$ recovers the objective of the 'vanilla' VAE [2] with $\alpha \to 1$ and IWAE [3] with $\alpha = 0$.

The proposes altering the optimization of $\hat{\mathcal{L}}_{\alpha,K}$ with an algorithm termed VR- α algorithm which only needs to backpropagate one sample per K Monte-Carlo samples:

Algorithm 1: One step of the $VR-\alpha$ algorithm

- 1: sample $\epsilon_1,...,\epsilon_K \sim \mathcal{N}(0,\mathcal{I})$
- 2: for i=1,...,K compute: $\log \hat{w}_i := \log \frac{p_{\theta}(x,z_{i,\epsilon})}{q_{\psi}(z_{i,\epsilon}|x)}$
- 3: build Multinomial distribution Mul(w) weighted according to $\log \hat{w}_i^{(1-\alpha)}$
- 4: sample one $\log \hat{w}_j^{(1-lpha)} \sim Mul(w)$
- 5: backpropagate $\log \hat{w}_i^{(1-\alpha)}$

When $\alpha = -\infty$, the sample with largest unnormalised importance weight $\log \hat{w}_i$ is always chosen to backpropagate. In this case, the algorithm is termed **VR-max**.

Replication of VAE results

Implementation: We reimplement VAE, IWAE, and the new VR- α and VR-max in PyTorch. We then adapt the training procedure to reproduce the results with reduced computational resources:

Dataset	K	VAE	IWAE	VR-max	VR-0.5
Caltech 101 Silhouettes	5	-108.51	-107.61	-107.00	-107.09
		(-119.69)	(-117.89)	(-118.01)	
	50	-109.47	-106.99	-106.09	-106.51
		(-119.61)	(-117.21)	(-117.10)	
MNIST	5	-88.83	-87.33	-87.20	-87.61
		(-86.47)	(-85.41)	(-85.42)	
	50	-89.25	-86.08	-86.27	-86.65
		(-86.35)	(-84.80)	(-84.81)	

Table 1:Our test negative log likelihoods compared to [1]'s (in parentheses)

Analysis: We are generally able to reproduce the paper's results.

- Like in [1], VR-max and IWAE perform almost indistinguishably and better than VAE.
- ▶ Based on the tightness of the respective bounds VAE < VR-0.5 < IWAE. We show that this corresponds to the analogue result in relative performance.
- ► We were able to improve the NLL baseline on Silhouettes by almost 10% due to hyperparameter tuning.

Further investigations on VAEs

The authors show in a toy example how large positive and large negative α respectively forces the posterior approximation to mode-seek or mass-cover. We attempt to uncover this behaviour in a VAE experiment:

Figure 1: Left: mean standard deviations of latent dimension on two MNIST models. Right: their reconstructions (original sample top, $\alpha = -500$ middle, $\alpha = 500$ bottom)

Analysis: We successfully recover this behaviour.

- Standard deviations around 1 indicate maximizing the mass under the prior distribution $\mathcal{N}(\mathbf{0}, \mathcal{I})$, while standard deviations under 1 indicate preventing sampling from distal regions of those dimensions.
- Where there is a difference, it indicates there is a region of some dimension for each model where the $\alpha=500$ model can't always create good reconstructions and won't risk expansion to that region, while $\alpha=-500$ sees that some reconstructions are possible and tries to cover it.

Tuning alpha: We further investigate the influence of α on performance:

Figure 2: Performance of VR- α dependent on α and K

Analysis: We find that the VAE framework is largely invariant to the choice of α , as long as $\alpha \leq 0$. The choice of K is more impactful than the choice of α .

Applying Rényi α -divergences to BNNs

In addition to Monte Carlo approximation, a mini-batching technique, 'energy approximation', is used to efficiently train the Bayesian neural network (BNN), defined by the following approximation (termed black box- α [4]) of the VR bound:

$$\mathcal{L}_{BB-\alpha} = \frac{1}{1-\alpha} \log \mathbb{E}_q \left[\left(\frac{p(w)(\prod_i^M p(x_i|w))^{N/M}}{q(w)} \right)^{1-\alpha} \right]$$

where M is the mini-batch size and N the size of the training set. This approximation effectively scales the 'average likelihood' of the mini-batch to the training size N.

Replication of BNN results

Analysis: Our replication of the BNN experiments produces largely consistent average test root-mean-squared-error (RMSE) and average test negative log likelihood (NLL) compared to the paper, except for smaller datasets such as Boston.

Dataset	$\alpha \to -\infty$	$\alpha = 0$	$\alpha = 0.5$	$\alpha = 1$ (VI)	$\alpha \to \infty$
power	4.12 ± 0.04	$4.17{\pm}0.04$	4.09 ± 0.03	4.05 ± 0.03	4.08 ± 0.03
	(4.08 ± 0.03)	(4.10 ± 0.04)	(4.07 ± 0.04)	(4.07 ± 0.04)	(4.08 ± 0.04)
protein	4.56 ± 0.01	4.52 ± 0.03	4.56 ± 0.03	4.51 ± 0.02	4.55 ± 0.02
	(4.57 ± 0.05)	(4.44 ± 0.03)	(4.51 ± 0.03)	(4.45 ± 0.02)	(4.45 ± 0.01)
wine	$0.63 {\pm} 0.01$	$0.63 {\pm} 0.01$	$0.64 {\pm} 0.01$	$0.63 {\pm} 0.01$	$0.63 {\pm} 0.01$
	(0.64 ± 0.01)	(0.64 ± 0.01)	(0.64 ± 0.01)	(0.63 ± 0.01)	(0.63 ± 0.01)
power	$2.82{\pm}0.01$	$2.82{\pm}0.01$	2.81 ± 0.01	$2.82{\pm}0.01$	2.83 ± 0.01
	(2.82 ± 0.01)	(2.83 ± 0.01)	(2.82 ± 0.01)	(2.82 ± 0.01)	(2.83 ± 0.01)
protein	2.94 ± 0.00	2.93 ± 0.00	2.94 ± 0.01	2.93 ± 0.00	2.94 ± 0.00
	(2.94 ± 0.01)	(2.91 ± 0.00)	(2.92 ± 0.01)	(2.91 ± 0.00)	(2.91 ± 0.00)
wine	$0.95{\pm}0.01$	$0.95{\pm}0.01$	$0.96 {\pm} 0.01$	$0.96 {\pm} 0.01$	$0.96 {\pm} 0.01$
	(0.95 ± 0.01)	(0.95 ± 0.01)	(0.95 ± 0.01)	(0.96 ± 0.01)	(0.97 ± 0.01)

Table 2: BNN regression replication: Average test RMSE (top) and NLL (bottom), \pm standard error, on selected datasets. Lowest mean value for each dataset shown in bold. Original results shown in parentheses.

Figure 3: BNN replication results for 7 out of 10 datasets in the paper, plus two additional datasets QSAR and Forest

Further investigations on BNNs

The paper's main hypotheses are:

- 1. Models with high α values minimise RMSE while models with low α values minimise NLL.
- 2. Monte Carlo approximation biases the model towards $\alpha = 1$ (VI), so the effective optimal α is further from 1 than the true optimal α . The bias $\to 0$ as $K \to \infty$.

Analysis:

- No strong evidence to support the first hypothesis. Figure 3 shows that $\alpha = 1$ (VI) often performs well against other values of α for both RMSE and NLL, though there are clear exceptions.
- Some evidence to support the second. Figure 4 shows that when the true optimal α is 1, increasing K increases the performance of VI relative to other values of α . However, when the true optimal appears to be negative (bottom left), we do not observe strong bias in favour of negative α values when K is small.
- More extensive testing is required to establish relationships between α , performance measures (RMSE and NLL), experimental parameters (e.g. Monte Carlo sample size K and mini-batch size M), and dataset characteristics (e.g. uni-modal or multi-modal).

Figure 4: Impact of K on optimal α , for dataset QSAR

Conclusions

- ► Replication of results: We are able to generally replicate and validate the results of the paper with moderate computational resources.
- Application to VAE: IWAEs perform at least as well as VR-α without any trade-offs calling the practical usability into question.
- ▶ **Application to BNN:** We find that $\alpha = 1$ (VI) generally performs well against other values of α , though there are clear exceptions. Extensive testing is required to better understand the circumstances under which alternative values of α would outperform VI.

References

- [1] Yingzhen Li and Richard E. Turner. Rényi divergence variational inference, 2016.
- [2] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2013.
 [3] Yuri Burda, Roger Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders, 2015.
- [4] José Miguel Hernández-Lobato, Yingzhen Li, Mark Rowland, Daniel Hernández-Lobato, Thang Bui, and Richard E. Turner. Black-box -divergence minimization, 2015.