

Credit Card Fraud Detection

PIB3
Buu NGUYEN
Anh-Thu DOAN
Casper CORNELIS

Agenda

01 Introduction

02 Methods

Results & Discussion

O4 Conclusion

Introduction

	7		V2	V3 [‡]	V4 [‡]	V5 [‡]	V6 [‡]	V7 [‡]	V8
		35980713	-0.07278117	2.53634674	1.37815522	-0.338320770	0.462387778	0.239598554	0.0986
		19185711	0.26615071	0.16648011	0.44815408	0.060017649	-0.082360809	-0.078802983	0.0851
•	The data was collected from over	35835406	-1.34016307	1.77320934	0.37977959	-0.503198133	1.800499381	0.791460956	0.2476
		96627171	-0.18522601	1.79299334	-0.86329128	-0.010308880	1.247203168	0.237608940	0.3774
		15823309	0.87773675	1.54871785	0.40303393	-0.407193377	0.095921462	0.592940745	-0.2705
	285,000 anonymized	42596588	0.96052304	1.14110934	-0.16825208	0.420986881	-0.029727552	0.476200949	0.2603
	transactions made by	22965763	0.14100351	0.04537077	1.20261274	0.191880989	0.272708123	-0.005159003	0.0812
	credit cards in	64426944	1.41796355	1.07438038	-0.49219902	0.948934095	0.428118463	1.120631358	-3.8078
		89428608	0.28615720	-0.11319221	-0.27152613	2.669598660	3.721818061	0.370145128	0.8510
	September 2013 by	33826175	1.11959338	1.04436655	-0.22218728	0.499360806	-0.246761101	0.651583206	0.0695
	European cardholders	44904378	-1.17633883	0.91385983	-1.37566665	-1.971383165	-0.629152139	-1.423235601	0.0484
•	Features V1 to V28	38497822	0.61610946	-0.87429970	-0.09401863	2.924584378	3.317027168	0.470454672	0.5382
	were the principal	24999874	-1.22163681	0.38393015	-1.23489869	-1.485419474	-0.753230165	-0.689404975	-0.2274
		06937359	0.28772213	0.82861273	2.71252043	-0.178398016	0.337543730	-0.096716862	0.1159
	components obtained	79185477	-0.32777076	1.64175016	1.76747274	-0.136588446	0.807596468	-0.422911390	-1.9071
	with PCA.	75241704	0.34548542	2.05732291	-1.46864330	-1.158393680	-0.077849829	-0.608581418	0.0036
•	Time, Amount, Class	10321544	-0.04029621	1.26733209	1.28909147	-0.735997164	0.288069163	-0.586056786	0.1893
	43690	43690507	0.91896621	0.92459077	-0.72721905	0.915678718	-0.127867352	0.707641607	0.0879
		40125766	-5.45014783	1.18630463	1.73623880	3.049105878	-1.763405574	-1.559737699	0.1608
		49293598	-1.02934573	0.45479473	-1.43802588	-1.555434101	-0.720961147	-1.080664130	-0.0531
		69488478	-1.36181910	1.02922104	0.83415930	-1.191208794	1.309108819	-0.878585911	0.4452
		96249607	0.32846103	-0.17147905	2.10920407	1.129565571	1.696037686	0.107711607	0.5215
		16661638	0.50212000	_0.06730031	2 26156024	0.428804105	0.080473517	0.241146580	0.1380

02 Method:

- R and its libraries (tidyverse, ggplot2, etc.) were used to explore the interactions and correlations between features then visualize them.
- Python were used to create a machine learning pipeline in this study.

F2 score was the primary metric of our models.

$$F_2 = \frac{TP}{TP + 0.2FP + 0.8FN}$$

03 Results & Discussion

Explanatory Analysis

Classification Models

Transactions class pie chart

- The majority of the samples are legitimate transactions.
- The illegal transactions only held 0.17%
- ➤ This dataset is very unbalanced

Distribution of transactions amount 0.03

	Fraud	mean(Amount)	median(Amount)	sd(Amount)
1	Fraudulent	122.21	9.25	256.68
2	Legitimate	88.29	22.00	250.11

Table 1: Descriptive statistics table of transactions class

- 80% of the amounts are between 0 and 100 euros => daily expenses
- Several small fraudulent transactions => unnoticed

Transactions amount and hour by Class

Class

Fraud

- The legitimate transactions
 decreased throughout the night, and
 it increased at the beginning of the
 day and kept remaining the whole
 day.
- The illegal transactions are more likely to evenly spread the whole time.

- The mean score: Legitimate > Fraud.
- The magnitude of the differences in the means was significant.
- There is a significant difference in transaction time between Legitimate and Fraud transactions.

- The mean score of the Legitimate is lower than Fraud transaction
- The magnitude of the differences in the means was significant.
- ➤ There is a significant difference in transaction amount between Legitimate and Fraud transactions.

Classification Models

	Mean F_2 Score	Hyperparameters
Logistic Regression	0.6475	C = 100
Decision Tree	0.7877	$max_depth = 5$
Random Forest	0.8041	$max_features = 5$ $n_estimators = 25$

Result model

Our final model is a Random
Forest Classifier with 25 trees in
the forest and 5 features to
consider when looking for the
best split.

F2 score on test set: 0.7987

Conclusion

- Nowadays, a solution that minimizes the threat of credit card fraud and is also not too aggressive to block legitimate transactions is needed.
- Therefore, we emphasize developing an efficient and secure system for detecting fraudsters in our study.

 This study concludes that the model that returns the best results in this dataset is the Random Forest Classifier with 25 trees in the forest and five features to consider when looking for the best split.

Limitation

- Since 28 over 31 variables have already been transformed to principal components, we only got three variables to play with.
- Therefore, we did not gain much insight from our explanatory analysis.

- Our method is a naive approach to this problem, so our model may not be good enough to apply in production.
- Moreover, we have not dealt with the most critical part of this dataset: the imbalance.

Thank you for your attention!