b. 连缘的私函数复合函数的连续.

(3) 就初等函数

汪: 就和等函数在其有成的区域 内是连原的.

(3): 了证明
$$f(x,y) = \begin{cases} xy \frac{x^2-y^2}{x^2+y^2}, & (x,y) \neq 10,0 \end{cases}$$
 在(0,0)处值信、
0 , $x^2+y^2=0$

b. 遊傳的和函數的复合函數仍道像。

(3) 多元初聲函數在其有成於因區域內是遊傳的。

(4): 了证明
$$f(x,y) = \int_{0}^{\infty} \frac{x^{2}-y^{2}}{x^{2}+y^{2}}$$
 , $(x,y) \neq 10, 0$)

 $\chi^{2}+y^{2}=0$

T止: 初登前 $\chi = r\cos 0$, $y = r\sin 0$
 $\chi^{2}+y^{2}=1$, $(x,y) \to (0,0) \iff x \neq 0$, $r \to 0^{+}$
 $0 \le |x| \frac{x^{2}-y^{2}}{x^{2}+y^{2}}| = \frac{1}{4}r^{2}|\sin 4\theta| \le \frac{1}{4}r^{2}$
 $|x| \to r^{2} = 0$. $|x| \to r^{2} = 0$

放fx,约在(0,0)处连续

(4) 有界闭区城上道该路数的性质 性质1. (最大風)值定理) 性质2. 介值定理

S. 6.3 偏导数和全线分

[1) 成文: 这多=f(x,y), $(x,y)\in D$, $p(x_0,y_0)\in D$, $g\in U(p_0)$ 内有定义,给自定量义在义。处增量处,而为= y_0 , 相应得到函数发升义偏增量 $\Delta_x\delta = f(x_0+\Delta x, y_0)-f(x_0,y_0)$ 巷点 $\Delta x = \lim_{\Delta x \to 0} f(x_0+\Delta x, y_0)-f(x_0,y_0)$ 存在, 知 称此极限为 $\delta = f(x,y)$ 称 p_0 点、对义的偏导数, p_0 点、对