Instance-Conditioned GAN

Чернышёв Александр, 617 группа

Напоминание: GAN

GAN (Generative adversarial network) — генеративно-состязательная сеть.

- Впервые GAN описан в работе lan'a Goodfellow и других исследователей в 2014 году.
- Генератор генерирует образцы.
- Дискриминатор пытается отличить сгенерированные (fake) образцы от подлинных (real). Обычно GAN не может полностью покрыть выборку.

$$\min_{G} \max_{D} \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}[\log(1 - D(G(\boldsymbol{z})))]$$

GAN: примеры из оригинальной статьи

В правой колонке находится самый близкий к сгенерированному объект из обучающей выборки.

Напоминание: KDE

- KDE (Kernel Density Estimation, ядерная оценка плотности) способ оценки плотности случайной величины.
- K(x) ядро, ядерная функция.
- h ширина окна (сглаживающий параметр).

$$\hat{f}_h(x) = rac{1}{n}\sum_{i=1}^n K_h(x-x_i) = rac{1}{nh}\sum_{i=1}^n K\Big(rac{x-x_i}{h}\Big)$$

100 точек из стандартного нормального распределения.

Серая кривая: истинная плотность.

Красная кривая: KDE c h=0,05. Чёрная кривая: KDE c h=0,337. Зелёная кривая: KDE c h=2.

Instance-conditioned GAN

- Основная идея: моделируем распределение сложного набора данных p(x) в виде взвешенной суммы распределений, обусловленных на объекты из набора данных $p(x \mid h_i)$: $p(\mathbf{x}) \approx \frac{1}{M} \sum_i p(\mathbf{x} | \mathbf{h}_i)$.
- $h_i = f_{\phi}(x_i)$, f_{ϕ} функция для извлечения высокоуровневых признаков из объекта (глубокая CNN).
- Генератор и дискриминатор обусловим на h_i .
- Во время обучения:
 - Выбираем произвольный объект x_i из набора данных.
 - Берем множество ближайших к нему соседей (k штук): A_i .
 - Генератор и дискриминатор обуславливаем на $h_i = f_{\phi}(x_i)$.
 - Дискриминатору подаем на вход выход генератора с пометкой fake и соседей x_i из A_i с пометкой real.
 - Далее обучаем так же, как и обычный GAN.

$$\min_{G} \max_{D} \mathbb{E}_{\mathbf{x}_{i} \sim p(\mathbf{x}), \mathbf{x}_{n} \sim \mathcal{U}(\mathcal{A}_{i})} [\log D(\mathbf{x}_{n}, f_{\phi}(\mathbf{x}_{i}))] + \\ \mathbb{E}_{\mathbf{x}_{i} \sim p(\mathbf{x}), \mathbf{z} \sim p(\mathbf{z})} [\log (1 - D(G(\mathbf{z}, f_{\phi}(\mathbf{x}_{i})), f_{\phi}(\mathbf{x}_{i})))]$$

(a) Neighborhood A_i of instance \mathbf{h}_i

Instance-conditioned GAN

- Во время инференса:
 - Выбираем произвольный объект x_i из набора данных.
 - Генератор обуславливаем на $h_i = f_{\phi}(x_i)$ и (как и обычно) подаем шум на вход.

Instance-conditioned GAN

- Можно генератор и дискриминатор обусловить еще и на метку класса объекта.
- Во время обучения:
 - Выбираем произвольный объект x_i из набора данных.
 - Берем множество ближайших к нему соседей (k штук, не обязательно из того же класса): A_i .
 - Для каждого объекта (x_i, y_i) из A_i генератор и дискриминатор обуславливаем на $h_i = f_{\phi}(x_i)$ и на y_i .
 - Дискриминатору подаем на вход выход генератора с пометкой fake и соседей x_i из A_i с пометкой real.
 - Далее обучаем так же, как и обычный GAN.
- Во время инференса дан класс у:
 - Выбираем произвольный объект x_i из набора данных.
 - Генератор обуславливаем на $h_i = f_{\phi}(x_i)$ и на y, и (как и обычно) подаем шум на вход.

Эксперименты

- Наборы данных:
 - ImageNet;
 - COCO-Stuff;
 - ImageNet-LT;
 - Для transfer learning: Cityscapes, MetFaces, PACS и Sketches.
- Метрики качества:
 - Fréchet Inception Distance (FID);
 - Inception Score (IS);
 - LPIPS.
- Нейронные сети:
 - f_{ϕ} ResNet50;
 - GAN BigGan или StyleGAN2.

Результаты

• Неразмеченная выборка:

ImageNet

Method	Res.	↓FID	↑IS
Self-sup. GAN [41]	64	19.2*	16.5*
Uncond. BigGAN [†]	64	$16.9* \pm 0.0$	$14.6* \pm 0.1$
IC-GAN	64	$10.4* \pm 0.1$	$21.9* \pm 0.1$
IC- GAN + DA (d,i)	64	$9.2* \pm 0.0$	$23.5* \pm 0.1$
MGAN [23]	128	58.9	13.2
PacGAN2 [32]	128	57.5	13.5
Logo-GAN-AE [45]	128	50.9	14.4
Self-cond. GAN [33]	128	41.7	14.9
Uncond. BigGAN [36]	128	25.3	20.4
SS-cluster GAN [36]	128	22.0	23.5
PGMGAN [2]	128	21.7	23.3
IC-GAN	128	13.2 ± 0.0	45.5 ± 0.2
IC- GAN + DA (d,i)	128	$\textbf{11.7} \pm 0.0$	48.7 ± 0.1
ADM [12]	256	26.2	39.7
IC-GAN $(ch \times 64)$	256	17.0 ± 0.2	53.0 ± 0.4
IC -GAN $(ch \times 64)$ + DA (d,i)	256	17.4 ± 0.1	53.5 ± 0.5
$\mathbf{IC\text{-}GAN}(ch\times 96) + \mathrm{DA}(\mathbf{d})$	256	15.6 ± 0.1	59.0 \pm 0.4

COCO-Stuff (c transfer learning c ImageNet результаты лучше!)

		↓FID				↑ LPIPS
128×128	# prms.	train	eval	eval seen	eval unseen	eval
LostGANv2 [48]	41 M	12.8 ± 0.1	40.7 ± 0.3	80.0 ± 0.4	55.2 ± 0.5	0.45 ± 0.1
OC-GAN [49]	170 M	_	45.1 ± 0.3	85.8 ± 0.5	60.1 ± 0.2	0.13 ± 0.1
Unconditional (BigGAN)	18 M	17.9 ± 0.1	46.9 ± 0.5	103.8 ± 0.8	60.9 ± 0.7	0.68 ± 0.1
IC-GAN (BigGAN)	22 M	16.8 ± 0.1	44.9 ± 0.5	81.5 ± 1.3	60.5 ± 0.5	0.67 ± 0.1
IC-GAN (BigGAN, transf.)	77 M	8.5 ± 0.0	35.6 ± 0.2	77.0 ± 1.0	48.9 ± 0.2	0.69 ± 0.1
Unconditional (StyleGAN2)	23 M	8.8 ± 0.1	37.8 ± 0.2	92.1 ± 1.0	53.2 ± 0.5	0.68 ± 0.1
IC-GAN (StyleGAN2)	24 M	8.9 ± 0.0	36.2 ± 0.2	74.3 ± 0.8	50.8 ± 0.3	0.67 ± 0.1
256×256						
LostGANv2 [48]	46 M	18.0 ± 0.1	47.6 ± 0.4	88.5 ± 0.4	62.0 ± 0.6	0.56 ± 0.1
OC-GAN [49]	190 M	_	57.0 ± 0.1	98.7 ± 1.2	71.4 ± 0.5	0.21 ± 0.1
Unconditional (BigGAN)	21 M	51.0 ± 0.1	81.6 ± 0.5	135.1 ± 1.6	95.8 ± 1.1	0.77 ± 0.1
IC-GAN (BigGAN)	26 M	24.6 ± 0.1	53.1 ± 0.4	88.5 ± 1.8	69.1 ± 0.6	0.73 ± 0.1
IC-GAN (BigGAN, transf.)	90 M	13.9 ± 0.1	40.9 ± 0.3	79.4 ± 1.2	55.6 ± 0.6	0.76 ± 0.1
Unconditional (StyleGAN2)	23 M	7.1 \pm 0.0	44.6 ± 0.4	98.1 ± 1.7	59.9 ± 0.5	0.76 ± 0.1
IC-GAN (StyleGAN2)	25 M	9.6 ± 0.0	41.4 ± 0.2	76.7 \pm 0.6	57.5 ± 0.5	0.74 ± 0.1

Результаты

• Размеченная выборка (размечены классы):

ImageNet

	Res.	↓FID	↑IS
BigGAN* [5]	64	12.3 ± 0.0	27.0 ± 0.2
BigGAN* [5] +DA (d)	64	10.2 ± 0.1	30.1 ± 0.1
IC-GAN	64	8.5 ± 0.0	39.7 ± 0.2
IC - $GAN + DA(\mathbf{d}, \mathbf{i})$	64	6.7 \pm 0.0	45.9 ± 0.3
BigGAN* [5]	128	9.4 ± 0.0	98.7 ± 1.1
BigGAN* [5]. DA(d)	128	8.0 ± 0.0	107.2 ± 0.9
IC-GAN	128	10.6 ± 0.1	100.1 ± 0.5
IC - $GAN + DA(\mathbf{d}, \mathbf{i})$	128	9.5 ± 0.1	108.6 ± 0.7
BigGAN* [5] $(ch \times 64)$	256	8.0 ± 0.1	139.1 ± 0.3
BigGAN* [5] $(ch \times 64) + DA(\mathbf{d})$	256	8.3 ± 0.1	125.0 ± 1.1
IC-GAN $(ch \times 64)$	256	8.3 ± 0.1	143.7 ± 1.1
IC-GAN $(ch \times 64) + DA(\mathbf{d}, \mathbf{i})$	256	7.5 ± 0.0	152.6 ± 1.1
$BigGAN^{\dagger}$ [5] $(ch \times 96)$	256	8.1	144.2
$\text{IC-GAN } (ch \times 96) + \text{DA}(\mathbf{d})$	256	8.2 ± 0.1	173.8 ± 0.9

ImageNet-LT (бывает мало объектов при обучении)

	Res.	↓train FID	↑train IS	↓val FID	many/med/few \psi val FID	↑val IS
BigGAN* [5]	64	27.6 ± 0.1	18.1 ± 0.2 19.5 ± 0.1	28.1 ± 0.1	$28.8 / 32.8 / 48.4 \pm 0.2$	16.0 ± 0.1
IC-GAN	64	23.2 ± 0.1		23.4 ± 0.1	$23.8 / 28.0 / 42.7 \pm 0.1$	17.6 ± 0.1
BigGAN* [5]	128	31.4 ± 0.1	30.6 ± 0.1	35.4 ± 0.1	$34.0 / 43.5 / 64.4 \pm 0.2$	24.9 ± 0.2
IC-GAN	128	23.4 ± 0.1	39.6 ± 0.2	24.9 ± 0.1	24.3 / 31.4 / 53.6 \pm 0.3	32.5 ± 0.1
BigGAN* [5]	256	27.8 ± 0.0 21.7 ± 0.1	58.2 ± 0.2	31.4 ± 0.1	$28.1 / 40.9 / 67.6 \pm 0.3$	44.7 ± 0.2
IC-GAN	256		66.5 ± 0.3	23.4 ± 0.1	$20.6 / 32.4 / 60.0 \pm 0.2$	51.7 ± 0.1

Подбор количества соседей и числа хранимых образцов

- k количество соседей (аналог ширины окна в KDE).
- Кластеризуем все обучающие объекты с помощью k-means, сохраняем в модели наиближайшие к центроидам кластеров объекты и их соседей.
- Precision про качество изображений, recall про разнообразие.
- 1000 хранимых изображений достаточно, k=50 лучший выбор.

Примеры работы IC-GAN

(d) Class-conditional IC-GAN transfer samples

Примеры работы IC-GAN

Выводы

• Вклад:

- IC-GAN без учета классов показывает лучшие результаты по сравнению с другими подходами.
- Хорошо справляется с transfer learning, можно использовать на различных наборах данных без переобучения.
- IC-GAN с учетом классов показывает результаты на уровне других подходов.

• Ограничения:

- Нужно хранить часть выборки в модели (но 1000 объектов хватает).
- Нужна предобученная сеть f_{ϕ} .
- IC-GAN хорошо показывает себя на данных, на которых он не обучался, но если данные совсем не похожи на обучающую выборку, то качество сильно проседает.