БДЗ по прикладной криптографии

Фирсов Георгий, М21-507

7 мая 2022 г.

Содержание

Задание	1 .	 •	•	•												•	•		•		 				•	2
Задание	2 .					•			•						•		•				 	•			•	2
Задание	3 .					•			•						•		•				 	•			•	3
Задание	4 .					•			•						•		•				 	•			•	3
Задание	5 .					•			•						•		•				 	•			•	3
Задание	6					•		 •					•								 	•				3
Задание	7					•		 •					•								 	•				3
Задание	8 .											•									 					3
Задание	9 .												•								 					3
Задание	10			•		•							•								 				•	3
Задание	11			•		•							•								 				•	3
Задание	12																				 					3

Задание 1

Анна генерирует два числа $x \stackrel{R}{\leftarrow} \mathbb{Z}_1, y \stackrel{R}{\leftarrow} \mathbb{Z}_q$, после чего отсылает Борису тройку $(A_0, A_1, A_2) = (g^x, g^y, g^{xy+a}).$

Борис генерирует свои два числа $r \stackrel{R}{\leftarrow} \mathbb{Z}_q, s \stackrel{R}{\leftarrow} \mathbb{Z}_q$, а затем отправляет Анне следующую пару: $(B_1, B_2) = (A_1^r \cdot g^s, (A_2/g^b)^r \cdot A_0^s)$. Заметим, что:

$$B_1 = A_1^r \cdot g^s = g^y \cdot g^s = g^{y+s}$$

$$B_2 = (A_2/g^b)^r \cdot A_0^s = g^{xy+a} \cdot g^{-b} \cdot g^{xs} = g^{x(y+s)+a-b}$$

Если B_1 возвести в степень x и затем умножить на обратный к полученному элемент число B_2 , то получится g^{a-b} :

$$B_1^x = (g^{y+s})^x = g^{x(y+s)}$$

$$B_2 \cdot (B_1^{-x}) = g^{x(y+s)+a-b} \cdot g^{-x(y+s)} = g^{a-b}$$

Если a=b, то $g^{a-b}=g^0=e_{\mathbb{G}}.$ Это свойство и можно использовать для проверки равенства чисел a и b.

Ответ: в) Анна проверяет равенство $B_2/B_1^x = 1$.

Задание 2

Так как числа p, a, b общеизвестны, то считаю, что при разработке программы все возможные вычисления с данными параметрами выполняются заранее (то есть, собственно, на этапе разработки программы). Несложно увидеть, что:

$$H^{(n)}(x) = \underbrace{H_{p,a,b}(H_{p,a,b}(\cdots H_{p,a,b}(x)\cdots))}_{\text{n pas}} = \underbrace{a(a(\cdots ax + b \cdots) + b) + b}_{\text{n pas}} = \underbrace{a^n x + b \sum_{j=0}^{n-1} a^j \mod p}$$

Обозначим:

$$a' := a^n \mod p$$

$$b' := b \sum_{j=0}^{n-1} a^j \mod p$$

Тогда:

$$H^{(n)}(x) = a'x + b' \mod p$$

Значения a' и b' возможно вычислить предварительно на этапе разработки программы, что позволит вычислять функцию $H^{(n)}$ так же быстро, как и $H_{p,a,b}$.

Но может случиться так, что числа p, a, b заранее не известны (например, меняются с течением времени). Таким образом, возникает потребность поддержки вычисления a', b' на лету. В таком случае заметим, что:

$$\sum_{j=0}^{n-1} a^j = (a^{n-1} - 1) \cdot (a-1)^{-1} \mod p$$

При больших n возведение в степень n-1 потребует примерно столько же операций, сколько и возведение в степень n. Заметим, что возведение в степень можно производить, пользуясь следующей идеей: $a^4 = a^2 \cdot a^2, a^8 = a^4 \cdot a^4$ и т.д. Данный алгоритм требует асимптотически $\log_2(n)$ умножений.

Ответ: а) $H^{(n)}$ может быть вычислена так же быстро, как $H_{p,a,b}$ (в случае известных заранее значений p,a,b); г) вычисление $H^{(n)}$ требует времени $O(\log n)$ (в случае неизвестных заранее значений p,a,b).

Задание 3

Рассмотрим по очереди все варианты, отобрав подходящие:

- $p_1=(k_1,k_2), p_2=(k_1'), p_3=(k_2')$: владельцы долей p_2,p_3 не смогут вдвоем восстановить ключ, так как $k_1'\oplus k_2'=???$.
- $p_1 = (k_1, k_2), p_2 = (k_2, k_2'), p_3 = (k_2')$: владелец p_2 может один восстановить ключ, так как $k = k_2 \oplus k_2'$.
- $p_1 = (k_1, k_2), p_2 = (k_1, k_2), p_3 = (k'_2)$: владельцы p_1, p_2 не смогут восстановить вдвоем ключ, так как никакая комбинация k_1, k_2 в сумме не даст k.
- $p_1 = (k_1, k_2), p_2 = (k_1', k_2'), p_3 = (k_2')$: владельцы p_2, p_3 не смогут восстановить вдвоем ключ, так как никакая комбинация k_1', k_2' в сумме не даст k.
- ullet $p_1=(k_1,k_2), p_2=(k_2'), p_3=(k_1',k_2)$: данный вариант подходит, так как:
 - $p_1, p_2: k_2 \oplus k_2' = k$
 - $-p_1, p_3: k_1 \oplus k'_1 = k$
 - $-p_2, p_3: k_2' \oplus k_2 = k$

При этом восстановление ключа ни одним участником единолично невозможно, так как ни один из них не обладает двумя частями с одинаковыми индексами.

Ответ: д) $p_1 = (k_1, k_2), p_2 = (k'_2), p_3 = (k'_1, k_2)$

- Задание 4
- Задание 5
- Задание 6
- Задание 7
- Задание 8
- Задание 9
- Задание 10
- Задание 11
- Задание 12