Register set supposted by Intel Microprocessur
along with the historical perspectively
4004, 8008, 8080, 8086 (80186), 80286,
80386, 80486, Pertium 1,2, Selevon, Pertium-5,4,
Perlium 4.
64 bit Dual Hyperathreading
Coire, Coire 2, Coae i 3,7,5 Gen-1,13.
8080 : 8-bit
8086: 16-bit
80386: 32-bit.
P4:64 bit
Come Auch onwards all Indel CPU's are by default
64 bit but maintain the backward compatibility
towards the 32 and the 16 6.7.

Stage-1: Registers in 8-bit processors.

there were four registers.

1) Accumulator 2) Base 3) Count 4) Data.

Cl Count
Base
Al Accumulator

Accumulator Register: expression evaluation.

e.g. High level lang.

d = Q + b - C

Compute a+ b.

Store the result Q+b in tmp. neg.

Compute: Emp. reg - C

Store: tmp. seg-c in some temp regi

 $al \leftarrow a$

 $dl \leftarrow 6$

 $al \leftarrow al+dl$

 $al \leftarrow al - c$

 $d \leftarrow al$

2) Base Register: Role: to stone the base address of aggregate data blocks.

3) Count Register:

If you want to maintain counter variable of loop into a register then think of the counter register.

4] Data Register:

If you would to maintain a data element in register rather than in memory for efficiency. then think of the data agaister

— 8 bit 1 8 bit —	— 8 bit— <u></u>	— 8 bit——	
	dk	dil (dx	: edn
	Ch_	CL (cr)	CL
	Ьh	b.l. (63)	;ebx
	ah	and (ax)	:eax
·	Si		: es;
	di		: હતું
	bp		: ebp
	Ch Cl (cr) bh bl (br) ah al (ax) Si ali bp		: epp.
	iρ		: લંગ.

reg8: 8: al, bl, cl, dl, ah, bh, ch, dh

Deg 16: 8: 4x. 6x. cx, dx, si, di, sp, bp

lez-12: 8: eax, ebx, ecx, edx, esi, edi, esp, edy.

8086 16 bit: 20 bits 80386 3251: Gu bit.

mmx register (P2)
multi-media extension 60 bit.
$mmo \qquad mm7 \cdot : 8$
B7: B6 B5 B4 B3 B6 B1 B0
SSE: Streaming SIMD extension. SIMD = Single Justruction Multiple Data. 128 611 = 16 byle
SIMO = Single dustruction Mulhplu Data.
128 bit: = 16 byle
(377 (317) (32 (31 (B10 B1 B8 B7 B6 B5 B3 B2 B1 B0)
Xmmo Xmm7:8-1285,2
1 buc 25
B7 B0
8 - 1 byte Integer
4-2 bute Jutegor.
2 - 4 but integer.
1 - 8 byte ineser
2 - Ploats
1 - 00466.
(- CVe.

128 - 607. 4- floats 16 - 1 byte int. 2 - doubles 8 - 2 bute int. 4 - 4 byte in. 1 - extended 2 - 8 buto double precision 1 - 16 bute int a [100]; int b [100]; int c[100]; int i: for (i = 0; i < 100; ++i) C(i)= a[i] + b[i); //)00. 70 (ali) 21 <-- P[i] mo ← mo+r| C[i] ___ rd

