

Métodos Numéricos para Ingeniería Método de SOR

Algoritmo del método de SOR

Para resolver Ax = b dado el parámetro ω y una aproximación inicial $x^{(0)}$:

ENTRADA el número de ecuaciones y valores desconocidos n; las entradas a_{ij} , $1 \le i, j \le n$

de la matriz A; las entradas b_i , $1 \le i \le n$ de b; las entradas XO_i , $1 \le i \le n$,

de $XO = x^{(0)}$; el parámetro ω ; tolerancia TOL; número máximo de iteraciones N.

SALIDA la solución aproximada x_1, \ldots, x_n o un mensaje que indique que se superó

el número de iteraciones.

PASO 1 Determine k = 1.

PASO 2 Mientras $(k \le N)$ haga los pasos 3 - 6.

PASO 3 Para i = 1, ..., n

determine $x_i = (1 - \omega)XO_i + \frac{1}{a_{ii}} \left[\omega \left(-\sum_{j=1}^{i-1} a_{ij}x_j - \sum_{j=i+1}^n a_{ij}XO_j + b_i \right) \right].$

PASO 4 Si $||x - XO||_{\infty} < TOL$ entonces SALIDA (x_1, \ldots, x_n) ;

(El procedimiento fue exitoso.)

PARE.

PASO 5 Determine k = k + 1.

PASO 6 Para i = 1, ..., n determine $XO_i = x_i$.

PASO 7 SALIDA ('número máximo de iteraciones excedido');

(El procedimiento no fue exitoso.)

PARE.

Una pregunta obvia es cómo se selecciona el valor adecuado de ω cuando se usa el método de SOR. A pesar de que no se conoce una respuesta completa a esta pregunta para el sistema lineal Ax = b, el siguiente resultado se puede utilizar en ciertas situaciones importantes.

Teorema: Si A es definida positiva y tridiagonal, entonces la selección óptima de ω , para el método de SOR es

$$\omega = \frac{2}{1 + \sqrt{1 - [\rho(T_J)]^2}}.$$

Problema

Los sistemas de ecuaciones lineales pueden surgir al resolver ecuaciones diferenciales. Por ejemplo, la ecuación diferencial siguiente proviene de un balance de calor para una barra larga y delgada (véase la figura):

$$\frac{d^2T}{dx^2} + h(T_a - T) = 0 (0.1)$$

donde:

 $T: \text{temperatura} [^{\circ}C],$

x: distancia a lo largo de la barra [m],

h: coeficiente de transferencia de calor entre la barra y el aire del ambiente $[m^{-2}]$,

 T_a : temperatura del aire circundante [°C].

Esta ecuación se transforma en un sistema de ecuaciones lineales por medio del uso de una aproximación en diferencias finitas para la segunda derivada

$$\frac{d^2T}{dx^2} \approx \frac{T_{i-1} - 2T_i + T_{i+1}}{\Delta x^2}$$

donde T_i denota la temperatura en el nodo i. Esta aproximación se sustituye en la ecuación (0.1) y se obtiene

$$-T_{i-1} + (2 + h\Delta x^2) T_i - T_{i+1} = h\Delta x^2 T_a, \quad i = 1, 2, \dots, n-1.$$

Se puede plantear esta ecuación para cada uno de los nodos interiores de la barra, lo que resulta en un sistema tridiagonal de ecuaciones. Los nodos primero y último en los extremos de la barra están fijos por las condiciones de frontera.

Facultad de Ciencias de la Ingeniería Centro de Docencia de Ciencias Básicas para Ingeniería

Actividades

- (1) Implemente en Python el algoritmo del método de SOR siguiendo estrictamente las instrucciones del documento. No se deben utilizar variantes alternativas del algoritmo.
- (2) Plantee el problema anteriormente descrito como un sistema de ecuaciones lineales, Ax = b. Para ello:
 - (i) Desarrolle una función en Python que reciba como parámetros de entrada los valores de L, h y Δx ; y que entregue como salida la matriz A.
 - (i) Desarrolle una función en Python que reciba como parámetros de entrada los valores de L, T_a , T_0 , T_n , h y Δx ; y que entregue como salida el vector b.
- (3) Resuelva el sistema del apartado anterior, utilizando el algoritmo del método de SOR del ítem (1), con los siguientes parámetros: $x^{(0)} = \vec{0}$, $TOL = 10^{-13}$, N = 1000, L = 10 [m], $T_a = 20 [°C]$, $T_0 = 40 [°C]$, $T_a = 200 [°C]$, $t = 0.02 [m^{-2}]$ y t = 0.02 [m].