Homework Assignment 3

Due Friday, February 14

In problems 1-4 we establish some important basic results about group homomorphisms. For all four problems we fix a homomorphism $\varphi: G \to H$.

- 1. (a) Show that $\varphi(1_G) = 1_H$.
 - (b) Show that $\varphi(x^{-1}) = \varphi(x)^{-1}$ for all $x \in G$.
 - (c) Show that if $g \in G$ has finite order, then $|\varphi(g)|$ divides |g|.
 - (d) Show that if φ is an isomorphism, then so is φ^{-1} .
 - (e) Conclude that if φ is an isomorphism, $|\varphi(g)| = |g|$.
- 2. Define the kernel of φ to be

$$\ker \varphi = \{ g \in G : \varphi(g) = 1_H \}$$

- (a) Show that $\ker \varphi$ is a subgroup of G.
- (b) Show that φ is injective if and only if $\ker \varphi = \{1_G\}$.
- 3. More generally, for $h \in H$ define the fiber over h to be

$$\varphi^{-1}(h) = \{ g \in G : \varphi(g) = h \}.$$

- (a) Show that $\ker \varphi = \varphi^{-1}(1)$
- (b) Show that the fiber over h is a subgroup if and only if $h = 1_H$.
- (c) Show that the *nonempty* fibers of φ form a partition of G. (In particular, if φ is surjective its fibers partition G.)
- (d) Show that all nonempty fibers have the same cardinality. (Hint: if $\varphi^{-1}(h)$ is nonempty, build a bijection between it and $\ker \varphi$)
- 4. Define the *image* of φ to be

$$\operatorname{im} \varphi = \{ h \in H : h = \varphi(g) \text{ for some } g \in G \}.$$

Show that im φ is a subgroup of H.

Recall that we defined the kernel of a group action in class. The following exercise shows that the kernel of a homomorphism and the kernel of a group action are related, justifying our terminology.

- 5. Let $G \times A \to A$ be an action of G on a set A. Let $\varphi : G \to \operatorname{Aut}(A)$ be the associated permutation representation. Show that the kernel of the group action is equal to $\ker \varphi$.
- 6. Describe an injective homomorphism from $\varphi: D_{2n} \to S_n$ (you may describe this in words). In the map you described, what is the cycle decomposition of $\varphi(r)$ (where as usual r is the generator corresponding to rotation of the n-gon by $2\pi/n$)?
- 7. The set S_3 has 6 elements. Compute the order and cycle decomposition of each element.