# Synthesizing Context-free Grammars from Recurrent Neural Networks

迟智名

August 23, 2021

# 目录

# 目录

#### Extract CFGs from RNN

- extracting Automata(DFA sequences) from RNN using  $L^*$  algorithm
- DFAS  $\rightarrow$  PRSs(pattern rule sets)  $\rightarrow$  CFGs

- DFA:  $\langle \Sigma, q_0, Q, F, \delta \rangle$ ;  $\hat{\delta}(q_1, wa) = \delta(\hat{\delta}(q_1, w))$
- Complete DFA:  $\forall (q, a) \in Q \times \Sigma, \delta(q, a)$  is defined
- Sink reject states:  $Q_R$
- $L(A, q_1, q_2) \triangleq \{ w \in \Sigma^* \mid \hat{\delta}(q_1, w) = q_2 \}$
- defined tokens:  $def(A, q) \triangleq \{ \sigma \in \Sigma \mid \delta(q, \sigma) \notin Q_R \}$
- Set Representation of  $\delta: S_{\delta} = \{(q, \sigma, q') \mid \delta(q, \sigma) = q'\}$
- Replacing a State:  $\delta_{[q \leftarrow q_n]} : Q' \times \Sigma \to Q'$

Dyck language of order N: $D := \epsilon \mid L_i DR_i \mid DD, 1 \leq i \leq N$ 

- D: Start symbol
- $L_i, R_i$ : matching left and right delimiters
- distance & embedding depth Regular Expression Dyck language:  $L_i$ ,  $R_i$  derive some regular expression
- Regular Expression : $\{a|b\} \cdot c$
- The Chomsky–Schützenberger representation theorem shows that any context-free language can be expressed as a homomorphic image of a Dyck language intersected with a regular language

#### Pattern

#### 定义 (Patterns)

A pattern p= $\langle \Sigma, q_0, Q, q_X, \delta \rangle$  is a DFA  $A^p = \langle \Sigma, q_0, Q, \{q_X\}, \delta \rangle$  satisfying:  $L(A^p) \neq \emptyset$ , and either  $q_0 = q_X$ , or def  $(q_X) = \emptyset$  and  $L(A, q_0, q_0) = \{\varepsilon\}$ . If  $q_0 = q_X$  then p is called circular, otherwise, it is non-circular.

- $L_p = L(p)$
- $\bullet \ p^i = \left< \Sigma, \, q^i_0, \, Q^i, \, q^i_X, \delta^i \right>$

## Composition

#### 定义 (Serial Composition)

Let  $p^1, p^2$  be two non-circular patterns. Their serial composite is the pattern  $p^1 \circ p^2 = \langle \Sigma, q_0^1, Q, q_X^2, \delta \rangle$  in which  $Q = Q^1 \cup Q^2 \setminus \{q_X^1\}$  and  $\delta = \delta^1_{[q_X^1 \leftarrow q_0^2]} \cup \delta^2$ . We call  $q_0^2$  the **join state** of this operation.

## Composition

#### 定义 (Circular Composition)

Let  $p^1, p^2$  be two non-circular patterns. Their circular composite is the circular pattern  $p_1 \circ_c p_2 = \langle \Sigma, q_0^1, Q, q_0^1, \delta \rangle$  in which  $Q = Q^1 \cup Q^2 \setminus \{q_X^1, q_X^2\}$  and  $\delta = \delta^1_{[q_X^1 \leftarrow q_0^2]} \cup \delta^2_{[q_X^2 \leftarrow q_0^1]}$ . We call  $q_0^2$  the join state of this operation.

- $\bullet \ L_p = L_{p_1} \cdot L_{p_2}$
- $L_p = \{L_{p_1} \cdot L_{p_2}\}^*$

## Composition



Fig. 2. Examples of the composition operator



#### Pattern Instances

#### 定义 (Pattern Pair)

A pattern pair is a pair  $\langle P, P_c \rangle$  of pattern sets, such that  $P_c \subset P$  and for every  $p \in P_c$  there exists exactly one pair  $p_1, p_2 \in P$  satisfying  $p = p_1 \odot p_2$  for some  $\odot \in \{\circ, \circ_c\}$ . We refer to the patterns  $p \in P_c$  as the **composite patterns** of  $\langle P, P_c \rangle$ , and to the rest as its **base patterns**.

#### 定义 (Pattern Instances)

Let  $A = \langle \Sigma, q_0^A, Q^A, F, \delta^A \rangle$  be a DFA,  $p = \langle \Sigma, q_0, Q, q_X, \delta \rangle$  be a pattern, and  $\hat{p} = \langle \Sigma, q_0, Q', q_X, \delta' \rangle$  be a pattern **inside** A, i.e.,  $Q' \subseteq Q^A$  and  $\delta' \subseteq \delta^A$ . We say that  $\hat{p}$  is an instance of p in A if  $\hat{p}$  is isomorphic to p.

### join

## 定义 (join)

For each composite pattern  $p \in P_c$ , DFA A, and initial state q of an instance  $\hat{p}$  of p in A, join(p, q, A) returns the join state of  $\hat{p}$  with respect to its composition in  $\langle P, P_c \rangle$ .

• A pattern instance  $\hat{p}$  in a DFA A is uniquely determined by its structure and initial state: (p,q)

For infinite DFA sequence 
$$S = \{A_1, A_2, \cdots\}, i \in \mathbb{N}, L(A_i) \subset L(A_{i+1}), L(S) = \bigcup_{i=1}^{\infty} L(A_i)$$

- May be used to express CFLs, such as  $L = \{a^n b^n \mid n \in \mathbb{N}\}$
- infinite → finite: finite prefix, noisy; reconstruct the language by guessing how the sequence may continue
  - Pattern rule sets (PRSs): Create sequences of DFAs with a single accepting state.
- $\bullet$  Connect a new pattern instance to the current DFA to a join state of composite  $\mathrm{pattern}A_i$

#### 定义 (enabled instances)

An enabled DFA over a pattern pair  $\langle P, P_c \rangle$  is a tuple  $\langle A, \mathcal{I} \rangle$  such that  $A = \langle \Sigma, q_0, Q, F, \delta \rangle$  is a DFA and  $\mathcal{I} \subseteq P_c \times Q$  marks **enabled instances** of composite patterns in A.

Given enabled DFA  $< A, I >, (p, q) \in I$ :

- There is an instance of pattern p in A starting at state q
- We may connect new pattern instances to its join state join(p, q, A).

## 定义 (Pattern rule sets)

A PRS **P** is a tuple  $\langle \Sigma, P, P_c, R \rangle$  where  $\langle P, P_c \rangle$  is a pattern pair over the alphabet  $\Sigma$  and R is a set of rules. Each rule has one of the following forms, for some  $p, p^1, p^2, p^3, p^I \in P$ . with  $p^1$  and  $p^2$  non-circular:  $(1) \perp \rightarrow p^I$  $(2)p \rightarrow_c (p^1 \odot p^2) \propto p^3$ , where  $p = p^1 \odot p^2$  for  $oldsymbol{o} \in \{o, o_c\}$ , and  $p^3$  is circular

- $(3) p \rightarrow (p^1 \circ p^2) \propto p^3$ , where  $p = p^1 \circ p^2$  and  $p^3$  is non-circular

#### 定义 (Initial Composition)

 $\mathcal{D}_1 = \langle A_1, \mathcal{I}_1 \rangle$  is generated from a rule  $\perp \to p^I$  as follows:  $A_1 = A^{p^I}$ , and  $\mathcal{I}_i = \{(p^I, q_0^I)\}$  if  $p^I \in P_c$  and otherwise  $\mathcal{I}_1 = \emptyset$ .

#### 定义 (Rules of type (1))

A rule  $\perp \to p^I$  with circular  $p^I$  may extend  $\langle A_i, \mathcal{I}_i \rangle$  at the initial state  $q_0$  of  $A_i$ . iff  $\operatorname{def}(q_0) \cap \operatorname{def}\left(q_0^I\right) = \emptyset$ . This creates the DFA  $A_{i+1} = \left\langle \Sigma, q_0, Q \cup Q^I \setminus \{q_0^I\}, F, \delta \cup \delta_{[q_0^I \leftarrow q_0]}^I \right\rangle$ . If  $p^I \in P_c$  then  $\mathcal{I}_{i+1} = \mathcal{I}_i \cup \{(p^I, q_0)\}$  else  $\mathcal{I}_{i+1} = \mathcal{I}_i$ .

## 定义 (Rules of type (2))

A rule  $p \to_c (p^1 \odot p^2) \propto p^3$  may extend  $\langle A_i, \mathcal{I}_i \rangle$  at the join state  $q_i = \text{join}(p, q, A_i)$  of any instance  $(p,q) \in \mathcal{I}_i$ , provided def  $(q_j) \cap \text{def}(q_0^3) = \emptyset$ . This creates  $\langle A_{i+1}, \mathcal{I}_{i+1} \rangle$  as follows:

$$A_{i+1} = \left\langle \Sigma, q_0, Q \cup Q^3 \setminus q_0^3, F, \delta \cup \delta_{\left[q_0^3 \leftarrow q_i\right]}^3 \right\rangle, \text{ and } \mathcal{I}_{i+1} = \mathcal{I}_i \cup \{(p^k, q^k) \mid p^k \in P_c, k \in \{1, 2, 3\}\},$$
where  $q^1 = q$  and  $q^2 = q^3 = q_i$ 

#### 定义 (Rules of type (3))

A rule  $p \to_s (p^1 \odot p^2) \propto p^3$  may extend  $\langle A_i, \mathcal{I}_i \rangle$  at the join state  $q_j = \text{join}(p, q, A_i)$  of any instance  $(p, q) \in \mathcal{I}_i$ , provided  $\text{def}(q_j) \cap \text{def}(q_0^2) = \emptyset$ . This creates  $\langle A_{i+1}, \mathcal{I}_{i+1} \rangle$  as follows:

$$A_{i+1} = \left\langle \Sigma, q_0, Q \cup Q^3 \backslash q_0^3, F, \delta \cup \delta^3_{\left[q_0^3 \leftarrow q_i\right]} \cup C \right\rangle \text{ where}$$

$$C = \{(q_X^3, \sigma, \delta(q_j, \sigma)) \mid \sigma \in \text{def}(p^2, q_0^2)\}$$
 is **connection transitions**, and

$$\mathcal{I}_{i+1} = \mathcal{I}_i \cup \{(p^k, q^k) \mid p^k \in P_c, k \in \{1, 2, 3\}\}, \text{ where } q^1 = q \text{ and } q^2 = q^3 = q_j$$



# Example





- $\bot \rightarrow p^1 \circ p^2$
- $\bullet \ p^1 \circ p^2 \to_s (p^1 \circ p^2) \odot (p^1 \circ p^2)$

# 目录

## Dual problem

#### Given DFAs, how to reconstruct PRS **P**?

Main steps of inference algorithm. Given a sequence of DFAs  $A_1 \cdots A_n$ , the algorithm infers  $\mathbf{P} = \langle \Sigma, P, P_c, R \rangle$  in the following stages:

- Discover the initial pattern instance p̂<sup>I</sup> in A<sub>1</sub>. Insert p<sup>I</sup> into P and mark p̂<sup>I</sup> as enabled. Insert the rule ⊥ → p<sup>I</sup> into R.
- 2. For  $i, 1 \le i \le n 1$ :
  - (a) Discover the new pattern instance  $\hat{p}^3$  in  $A_{i+1}$  that extends  $A_i$ .
  - (b) If \(\hat{p}^3\) starts at the initial state \(q\_0\) of \(A\_{i+1}\), then it is an application of a rule of type (1). Insert \(p^3\) into \(P\) and mark \(\hat{p}^3\) as enabled, and add the rule \(\perp \rightarrow p^3\) to \(R.\)
  - (c) Otherwise  $(\hat{p}^3$  does not start at  $q_0$ ), find the unique enabled pattern  $\hat{p} = \hat{p}^1 \odot \hat{p}^2$  in  $A_i$  s.t.  $\hat{p}^3$ 's initial state q is the join state of  $\hat{p}$ . Add  $p^1, p^2$ , and  $p^3$  to P and p to  $P_c$ , and mark  $\hat{p}^1, \hat{p}^2$ , and  $\hat{p}^3$  as enabled. If  $\hat{p}^3$  is non-circular add the rule  $p \to_s (p^1 \odot p^2) \simeq p^3$  to R, otherwise add the rule  $p \to_c (p^1 \odot p^2) \simeq p^3$  to R.
- 3. Define  $\Sigma$  to be the set of symbols used by the patterns P.

## How to Discovering new Patterns

#### Exit State Discovery algorithm



Fig. 3. Structure of DFA after applying rule of type 2 or type 3

#### Deviations from the PRS framework

- Incorrect pattern creation:threshold
- Simultaneous rule applications



## algorithm

- $CFG = < \Sigma, N, S, Prod >: N, Prod?$
- $\forall p \in P, G_p = <\Sigma_p, N_p, Z_p, Prod_p >$
- $P_Y \subseteq P$ :LHS of some rule of type(2).
- $N = \{S, C_S, E_S\} \bigcup_{p \in P} \{N_p, E_p\} \bigcup_{p \in P_Y} \{C_p\}$
- $S ::= E_S, S ::= C_S E_S, C_S ::= C_S C_S$
- For  $\perp \rightarrow p^I, E_S ::= Z_{p^I}$ . If circular,  $\perp \rightarrow p^I, C_S ::= Z_{p^I}$
- For each  $p \to_c (p^1 \odot p^2) \propto p^3, p \to_s (p^1 \circ p^2) \propto p^3, Z_p ::= Z_{p_1} E_p Z_{p_2}, E_p ::= Z_{p_3}$
- For  $p \to_c (p^1 \odot p^2) \propto p^3$ , creates  $Z_p ::= Z_{p_1} C_p E_p Z_{p_2}$ ,  $C_p ::= C_p C_p$ ,  $C_p ::= Z_{p_3}$
- $Prod = \{\bigcup_{p \in P}\} \cup Prod'$



# 目录

- Every RE-Dyck language can be expressed by a PRS.
- But not every CFL can be expressed by a PRS, such as  $H = \{a^i x b^i, i \in \mathbb{N}\}.$
- The construction above does not necessarily yield a minimal CFG G equivalent to P. Experiment setting:
- vote:2
- Sample: weight version of CFG, N=10000
- 2-layer LSTM, hidden dimension = 10, input dimension = 4

| _     |      |      |       |         |           |              |      |      |       |         |           |
|-------|------|------|-------|---------|-----------|--------------|------|------|-------|---------|-----------|
| LG    | DFAs | Init | Final | Min/Max | CFG       | LG           | DFAs | Init | Final | Min/Max | CFG       |
|       |      | Pats | Pats  | Votes   | Correct   |              |      | Pats | Pats  | Votes   | Correct   |
| $L_1$ | 18   | 1    | 1     | 16/16   | Correct   | $  L_9 $     | 30   | 6    | 4     | 5/8     | Correct   |
| $L_2$ | 16   | 1    | 1     | 14/14   | Correct   | $  L_{10}  $ | 6    | 2    | 1     | 3/3     | Correct   |
| $L_3$ | 14   | 6    | 4     | 2/4     | Incorrect | $L_{11}$     | 24   | 6    | 3     | 5/12    | Incorrect |
| $L_4$ | 8    | 2    | 1     | 5/5     | Correct   | $L_{12}$     | 28   | 2    | 2     | 13/13   | Correct   |
| $L_5$ | 10   | 2    | 1     | 7/7     | Correct   | $L_{13}$     | 9    | 6    | 1     | 2/2     | Correct   |
| $L_6$ | 22   | 9    | 4     | 3/16    | Incorrect | $L_{14}$     | 17   | 5    | 2     | 5/7     | Correct   |
| $L_7$ | 24   | 2    | 2     | 11/11   | Correct   | $L_{15}$     | 13   | 6    | 4     | 3/6     | Incorrect |
| $L_8$ | 22   | 5    | 4     | 2/9     | Partial   |              | '    |      | '     |         |           |

Table 1. Results of experiments on DFAs extracted from RNNs

#### language of $X_n Y_n$ :

- $L_1 L_3 : (a, b), (a|b, c|d), (ab|cd, ef|gh)$
- $L_3 L_6 : (ab, cd), (abc, def), (ab|c, de|f)$

#### Dyck and RE-Dyck language:

- $L_7 L_9$ : Dyck languages (excluding  $\epsilon$ ) of order 2 through 4
- $L_{10} L_{11}$ : RE-Dyck of order  $1, L_{10}, R_{10} = (abcde, vwxyz), L_{11}, R_{11} = (ab|c, de|f)$

Variations of the Dyck languages:

- $L_{12}$ : alternating single-nested delimiters,([([])]) or [([])]
- $L_{13} L_{14}$ :Dyck-1,2 with additional neutral tokens a,b,c that may appear multiple Times
- $L_{15}$ :Dyck-1,additional neutral tokens abc or d;(abc()())d,a(bc()())d

- $\bullet$  Alternating Patterns:  $L^*$  extraction had 'split' the alternating expressions
- Simultaneous Applications: very large counterexample was returned to  $L^*$ :
- Missing Rules: large number of possible delimiter combinations  $(L_8)$
- RNN Noise:d be included between every pair of delimiters in DFAs( $L_{15}$ ).

Thank you