

计算机组成原理

第 17讲

左德承

哈尔滨工业大学计算学部 容错与移动计算研究中心

续接第8章 CPU 的结构和功能

- 8.1 CPU 的结构
- 8.2 指令周期
- 8.3 指令流水

举例: MIPS 五段流水线

8.4 中断系统

8.3 指令流水

- 一、如何提高机器速度
 - 1. 提高访存速度

高速芯片 Cache

多体并行

2. 提高 I/O 和主机之间的传送速度

中断

DMA

通道 I/O 处理机

多总线

3. 提高运算器速度

高速芯片 改进算法

快速进位链

• 提高整机处理能力

高速器件 改进系统结构 ,开发系统的并行性

二、系统的并行性

8.3

1. 并行的概念

并行 { 两个或两个以上事件在 同一时间段 发生 同时 两个或两个以上事件在 同一时刻 发生 时间上互相重叠

2. 并行性的等级

过程级(程序、进程) 粗粒度 软件实现

指令级(指令之间) 细粒度 硬件实现 (指令内部)

2024/6/5

三、指令流水原理

8.3

1. 指令的串行执行

 取指令1
 执行指令1
 取指令2
 执行指令2
 取指令3
 执行指令3
 …

 取指令
 取指令部件
 完成
 总有一个部件空闲

 执行指令
 执行指令部件
 完成

2. 指令的二级流水

若 取指 和 执行 阶段时间上 完全重叠 指令周期 减半 速度提高 1 倍

2024/6/5

3. 影响指令流水效率加倍的因素

8.3

(1) 执行时间 > 取指时间

(2) 条件转移指令 对指令流水的影响

必须等上条 指令执行结束,才能确定下条 指令的地址,

造成时间损失

猜测法

解决办法 ?

4. 指令的六级流水

8.3

完成一条指令

串行执行

六级流水

6个时间单位

 $6 \times 9 = 54$ 个时间单位

14个时间单位

三、影响指令流水线性能的因素

2024/6/5

1. 结构相关 不同指令争用同一功能部件产生资源冲突

9 **12** | 10 l 14 DI ¦ CO FO I EI | WO 指令 2! CO FO I 指令 3¦ CO FO EI WO 指令 4 指令 5! FO ! CO | FO | EI | 指令 6 指令 7 FO I 指令 8¦ **FO** DI CO FO 指令9 EI WO 解决办法

中突 指令1、指令3、指令6冲突指令存储器和数据存储器分开 指令1与指令4

指令2与指令5次 (适用于访存周期短的情况)

2. 数据相关

不同指令因重叠操作,可能改变操作数的 读/写 访问顺序

·写后读相关(RAW)

SUB
$$R_1$$
, R_2 , R_3 ; $(R_2) - (R_3) \rightarrow R_1$

ADD
$$R_4$$
, R_5 , R_1 ; $(R_5) + (R_1) \rightarrow R_4$

•读后写相关(WAR)

STA M,
$$R_2$$
 ; $(R_2) \rightarrow M$ 存储单元

ADD
$$R_2$$
, R_4 , R_5 ; $(R_4) + (R_5) \rightarrow R_2$

•写后写相关(WAW)

MUL
$$R_3$$
, R_2 , R_1 ; $(R_2) \times (R_1) \rightarrow R_3$

SUB
$$R_3$$
, R_4 , R_5 ; $(R_4) - (R_5) \rightarrow R_3$

2024/6/5 解决办法 • 后推法

• 采用 旁路技术(定向技术)

采用定向技术消除数据相关

3. 控制相关

8.3

由转移指令引起

```
LDA
     # 0
LDX
     # 0
               BNE 指令必须等
     X, D
ADD
               CPX 指令的结果
INX
               才能判断出
CPX
     # N
               是转移
BNE
     M
DIV
     # N
               还是顺序执行
STA
     ANS
```

2024/6/5

3. 控制相关

8.3

设指令3是转移指令

2024/6/5

四、流水线性能

8.3

1. 吞吐率

单位时间内流水线所完成指令或输出结果的数量设m 段的流水线各段时间为At

• 最大吞吐率

$$T_{pmax} = \frac{1}{\Delta t}$$

• 实际吞吐率

连续处理 n 条指令的吞吐率为

$$T_p = \frac{n}{m \cdot \Delta t + (n-1) \cdot \Delta t}$$

2. 加速比 S_p

8.3

m 段的 流水线的速度 与等功能的 非流水线的速度 之比 设流水线各段时间为 🔥

完成 n 条指令在 m 段流水线上共需

$$T = m \cdot \Delta t + (n-1) \cdot \Delta t$$

完成n条指令在等效的非流水线上共需

$$T'=nm \cdot \Delta t$$

则
$$S_p = \frac{nm \cdot \Delta t}{m \cdot \Delta t + (n-1) \cdot \Delta t} = \frac{nm}{m+n-1}$$

3. 效率

8.3

流水线中各功能段的 利用率

由于流水线有 建立时间 和 排空时间 因此各功能段的 设备不可能 一直 处于 工作 状态

3. 效率

8.3

流水线中各功能段的利用率

$$=\frac{mn\Delta t}{m(m+n-1)\Delta t}$$

- 1. 超标量技术
 - ▶ 每个时钟周期内可并发多条独立指令 配置多个功能部件
 - 不能调整 指令的 执行顺序通过编译优化技术,把可并行执行的指令搭配起来

2. 超流水线技术

- 8.3
- 不能调整 指令的 执行顺序 靠编译程序解决优化问题

3. 超长指令字技术

8.3

- 由编译程序 挖掘 出指令间 潜在 的 并行性, 将 多条 能 并行操作 的指令组合成 一条具有 多个操作码字段 的 超长指令字(可达几百位)
- > 采用 多个处理部件

1. 指令流水线结构

完成一条指令分6段, 每段需一个时钟周期

若 流水线不出现断流

1 个时钟周期出 1 结果

不采用流水技术

6 个时钟周期出 1 结果

理想情况下, 6级流水的速度是不采用流水技术的6倍

2. 运算流水线

完成 浮点加减 运算 可分对阶、尾数求和、规格化 三段

分段原则 每段操作时间尽量一致

MIPS CPU实现方案

- 单周期方案
 - 性能受限于最慢的指令

- 结构简单,实现容易 ""

- 多周期方案
 - 传统多周期
 - 提升性能,复用器件
 - 异步控制,变长指令周期
 - 指令流水线
 - 多指令并行,提升性能
 - 部件并发

谭志虎等 计算机组成原理

1. MIPS单周期、多周期与流水线

单周期时空图

流水线指令运行动态

■ 数据通路细分为5段, 各段完全并发

- □ 取指令 IF (Instruction Fetch)
- □ 指令译码 ID (Instruction Decode)
- □ 执行运算 EX (Execution)
- □ 访存阶段 MEM
- □ 结果写回 WB (Write Back)

指令流水线时空图

完成n条指令的时间=完成第一条指令时间5T+(n-1)*T=(n+4)T

2.流水线数据通路

单周期MIPS处理器数据通路

单周期MIPS数据通路流水线改造

单周期MIPS数据通路流水线改造

流水线中写回数据通路改造8.3

5段指令流水线数据与信号传递3

控制信号分类

控制信号	位置	来源	功能说明
BranchTaken	IF	EX	分支跳转信号,为 1 表示跳转,由 EX 段的 Branch 信号与 equal 标志进行逻辑与生成
RegDst	ID	ID	写入目的寄存器选择,为1时目的寄存器为rd寄存器,为0时为rt寄存器
RegWrite	ID	WB	控制寄存器堆写操作,为1时数据需要写回寄存器堆中的指定寄存器
AluSrc	EX	EX	ALU 的第二输入选择控制,为0时输入寄存器rt,为1时输入扩展后的立即数
AluOp	EX	EX	控制 ALU 进行不同运算,具体取值和位宽与 ALU 的设计有关
MemWrite	MEM	MEM	控制数据存储器写操作,为0时进行读操作,为1时进行写操作
MemToReg	WB	WB	为1时将数据存储器读出数据写回寄存器堆,否则将ALU运算结果写回

5段流水线控制信号与传递8.3

MIPS流水线中的冲突与处理?