Krzywe w \mathbb{R}^3

Zadania elementarne

Zadanie 1. Obliczyć długość następujących wektorów w \mathbb{R}^3 :

- (1,1,1)
- $(3, \pi, 2\sqrt{3})$
- $(7\frac{1}{2}, e, 3\sqrt{2})$
- $(\cos \phi, \sin \phi \cos \psi, \sin \phi \sin \psi)$ dla ustalonych katów ϕ i ψ .

Zadanie 2. Znaleźć postać parametryczną prostej w \mathbb{R}^3 przechodzącej przez punkty $(3, \pi, 2\sqrt{3})$ oraz $(7\frac{1}{2}, e, 3\sqrt{2})$.

Zadanie 3. Pokazać, że α jest prostą wtedy i tylko wtedy gdy $\alpha'' \equiv 0$.

Zadanie 4. Udowodnić, że żadne 4 różne punkty leżące na krzywej (t, t^2, t^3) nie leżą na jednej płaszczyźnie.

Zadanie 5. Udowodnić, że rzut ortogonaly krzywej α na dowolną oś ma długość co najwyżej równą długości wyjściowej krzywej.

Znajdowanie parametryzacji

Zadanie 6. Rozważmy okrąg o promieniu r i środku w punkcie (0, r). Niech P będzie punktem na okręgu o współrzędnych w \mathbb{R}^2 równych (0,0). Okrąg ten zaczyna się toczyć po prostej (w prawo bądź w lewo). Wyznaczyć równanie krzywej po której porusza się punkt P (jest to tzw. cykloida).

Zadanie 7. Okrąg o promieniu r toczy się wewnątrz okręgu o promieniu nr. Wyznaczyć równanie krzywej po której porusza się punkt P będący początkowym punktem styczności obu okręgów. (jest to tzw. *asteroida*).

Zadanie 8. Sprawdzić, że asteroida dla n = 4 może być opisana równaniami:

$$\alpha(t) = (a\cos^3 t, b\cos^3 t)$$
 (równanie parametryczne),

$$x^{2/3} + y^{2/3} = a^{2/3}$$
 (równanie analityczne).

Zadanie 9. Niech l(t) = (t, at + b) będzie krzywą na płaszczyźnie przechodzącą przez punkt (-1,0). Sparametryzować jedną z gałęzi hiperboli zadanej wzorem $x^2 - y^2 = 1$ jako parametr wybierając współczynnik b.

Zadanie 10. Niech l(t) = (t, at + b) będzie krzywą na płaszczyźnie przechodzącą przez punkt (-1,0). Sparametryzować krzywą zadaną równaniem $x^2 + y^2 = 1$ jako parametr wybierając współczynnik b (uwaga: parametryzacja nie obejmuje punktu (-1,0)!)

Zadanie 11 (fizyczne). Zbadać kształt krzywej mostu wiszącego, tj. krzywej $\alpha(t)$, której "ciężar" rozłożony jest jednorodnie wzdłuż osi OX.

Korzystając z powyższego rysunku sprowadzić to zadanie do rozwiązania układu równań:

$$\alpha'(t)\cos\theta = T$$
$$\alpha'(t)\sin\theta = Ct$$

gdzie

- θ to kat między wektorem $\alpha'(t)$ a osią OX,
- T jest pewną stałą (jaka jest jej interpretacja fizyczna?),
- *C* jest pewną stałą (jaka jest jej interpretacja fizyczna?).

Następnie rozwiązać układ pamiętając o tym, że $\alpha'(t) = \operatorname{tg} \theta$.

Zadanie 12 (fizyczne). Sprowadzić powyższe zadanie do równania krzywej opisującego rzut ukośny (pocisk wystrzelony pod kątem θ w jednorodnym polu grawitacyjnym).

Reparametryzacja

Zadanie 13. Pokazać, że jeśli krzywe (regularne) α i $\overline{\alpha}$ mają ten sam kształ (tj. wykres w R^3), wówczas jedna z nich jest reparametryzacją (gładką) drugiej.

Zadanie 14. Omówić dowód istnienia parametryzacji unormowanej.

- 1. Niech $s(t) = \int_a^t |\alpha'(x)| dx$.
- 2. s(t) jest funkcją ściśle rosnącą (bo krzywa jest unormowana), więc posiada funkcję odwrotną:

$$t(s) = s^{-1}(t)$$
,

która jest szukaną reparametryzacją krzywej:

3. $\alpha(t(s))$ jest krzywą unormowaną.

Zadanie 15. Wyznaczyć parametryzację unormowaną dla

- okręgu o promieniu r,
- linia śrubowa (helisy) o promieniu *a* i współczynniku nachylenia *b*
- krzywej zadanej przez

$$\alpha(t) = \left(e^t, e^{-t}, \sqrt{2}t\right).$$

Niezmienniki krzywych, Trójnóg Freneta

Zadanie 16. Obliczyć wektor styczny i normalny do okręgu o promieniu r i środku w punkcie (0,0).

Zadanie 17. Znaleźć wektor styczny i jego długość:

$$\alpha(t) = \left(\frac{\lambda}{2} \left(\frac{1}{t} + 2t + t^3\right), \frac{\lambda}{2} \left(\ln \frac{1}{t} + t^2 + \frac{3}{4}t^4\right) - \frac{7}{8}\lambda\right)$$

Zadanie 18. Niech $\alpha(t)$ będzie krzywą w \mathbb{R}^2 zadaną przez wykres funkcji $f: \mathbb{R} \to \mathbb{R}$. Znaleźć wektory styczny i normalny do α . Pokazać, że krzywizna α jest równa

$$\kappa = \frac{|f''|}{(1 + (f')^2)^{3/2}}.$$

Zadanie 19. Znaleźć krzywą płaską α (o parametryzacji unormowanej), której krzywizna wynosi

$$\kappa_{\alpha}(s) = \frac{1}{s}.$$

(Podpowiedź: $\alpha(s) = (\int_0^s \sin(\vartheta(u)) du, \int_0^s \cos(\vartheta(u)) du)$.

Zadanie 20. Dla krzywych unormowanych sprawdzić

- wzór Freneta na T'
- wzór Freneta na *B*′

Zadanie 21. Wyznaczyć Trójnóg Freneta oraz torsję i krzywiznę dla następujących krzywych.

• linia śrubowa

•

$$\alpha(t) = (t, t^2, t^3),$$

•

$$\alpha(t) = \left(\frac{t^2}{2}, \sqrt{2}\frac{t^3}{3}, \frac{t^4}{4}\right)$$

•

$$\beta(s) = \left(\frac{(1+s)^{\frac{3}{2}}}{3}, \frac{(1-s)^{\frac{3}{2}}}{3}, \frac{s}{\sqrt{2}}\right),\,$$

•

$$\alpha(t) = \left(2\ln t, 2t, \frac{t^2}{2}\right)$$

Zadanie 22. Dla krzywej regularnej α (niekoniecznie unormowanej) wyprowadzić następujące wzory:

$$T = \frac{\alpha'}{\|\alpha'\|},$$
 $B = \frac{\alpha' \times \alpha''}{\|\alpha' \times \alpha''\|},$ $N = B \times T,$

$$\kappa = \frac{\|\alpha' \times \alpha''\|}{\|\alpha'\|^3}, \qquad \tau = \frac{\langle \alpha' \times \alpha'', \alpha''' \rangle}{\|\alpha' \times \alpha''\|}.$$

Zadanie 23. Niech

$$\beta(t) = \int_0^t B_{\alpha}(s) \, ds$$

dla pewnej krzywej unormowanej α . Wyrazić trójnóg Freneta dla krzywej β ($T_{\beta}, B_{\beta}, N_{\beta}$) oraz krzywiznę κ_{β} i torsję τ_{β} przy pomocy tychże niezmienników krzywej α .

Zadanie 24. Więcej o iloczynie wektorowym: Wektor Darboux. Niech ω będzie takim wektorem, że

$$T' = \omega \times T$$
$$N' = \omega \times N$$
$$B' = \omega \times B$$

Pokazać, że $\omega = \tau T + \kappa B$

Ewolwenty i ewoluty

Zadanie 25. Niech α będzie krzywą regularną. *Ewolwenta* (lub *rozwijająca*) krzywej α ma następującą interpretację geometryczną.

Wyobraźmy sobie, że punkt A porusza się po krzywej $\alpha(t)$ ciągnąc za sobą punkt B na linie której długość jest równa długości drogi którą przebiegł punkt A. Krzywą po której porusza się punkt B nazywamy ewolwentą krzywej $\alpha(t)$ i oznaczamy $\mathcal{E}(\alpha)(t)$.

Korzystając z tej interpretacji znajdź wzór (zależny od α) którym wyraża się $\mathscr{E}(\alpha)(t)$.

Zadanie 26. Niech α będzie krzywą regularną. *Ewoluta* krzywej α ma następującą interpretację geometryczną.

W każdym punkcie krzywej α narysujmy okrąg ściśle styczny do $\alpha(t)$, tj. okrąg styczny do α , leżący w płaszczyźnie rozpiętej przez wektory $T_{\alpha}(t)$ i $N_{\alpha}(t)$, o krzywiźnie równej odwrotności krzywizny w danym punkcie $(\frac{1}{\kappa_{\alpha}(t)})$. Środki tych okręgów dla zmieniającego się t utworzą krzywą którą nazywamy ewolutą krzywej $\alpha(t)$ i oznaczamy $E(\alpha)(t)$.

Korzystając z tej interpretacji znajdź wzór (zależny od α) którym wyraża się $E(\alpha)(t)$.

Zadanie 27. Pokaż, że ewolwenta (&) ewoluty jest równa wyjściowej krzywej, tj.

$$\mathscr{E}(E(\alpha))(t) = \alpha(t).$$

Zadanie 28. Pokaż, że ewoluta ewolwenty jest równa wyjściowej krzywej, tj.

$$E(\mathscr{E}(\alpha))(t) = \alpha(t).$$

Zadania różne

Zadanie 29. Pokaż, że jeśli wszystkie proste styczne do krzywej α zawierają jeden punkt, to krzywa ta jest prostą (odcinkiem).

Zadanie 30. Pokaż, że jeśli wszystkie proste normalne do krzywej α zawierają jeden punkt, to krzywa ta jest okręgiem.

Zadanie 31. Pokaż, że jeśli wszystkie płaszczyzny normalne do krzywej zawierają jeden punkt, to krzywa ta jest krzywą sferyczną (i.e. leży na powierzchni sfery).

Zadanie 32. Udowodnij, że jeśli wszystkie wektory binormalne do krzywej α są równoległe, to α jest krzywą płaską.

Zadanie 33. Pokaż że krzywa o stałej torsji τ i krzywiźnie κ jest linią śrubową postaci

$$(a\sin x, a\cos x, bx).$$

Wyrazić a i b w terminach τ i κ .

Zadanie 34. Obliczyć paramatryzację unormowaną dla elipsy. Dlaczego są z tym problemy?

Zadanie 35. Pokazać, że krzywa zadana wzorem

$$\alpha(t) = \begin{cases} \left(\operatorname{tg}\left(\frac{\pi}{4}t\right), \sin(\pi t), t \sin\left(\frac{\pi}{t}\right) \right) & t \in (0, 1] \\ (0, 0, 0) & t = 0 \end{cases}$$

ma nieskończoną długość.

Zadanie 36. Fred Flinstone ma samochód o kołach będącymi kwadratami o przekątnej równej 2. W jaki sposób powinien zaprojektować drogę, żeby jechać po niej bez wstrząsów? (tj. podczas toczenia się, środek kwadratu ma mieć współrzędną *y* równą stale 1).

Zadanie 37. Pokazać, że jeśli $|\alpha(t)| > R$ dla wszystkich $t \in (-\varepsilon, \varepsilon), \ t \neq 0$, oraz $|\alpha(0)| = R$, to

$$\kappa(0) \leqslant \frac{1}{R}.$$

Czy da się udowodnić, że $\kappa(0) < \frac{1}{R}$?

Zadanie 38 (Wektor Darboux). Zamiast trójnogu Freneta można dla danej krzywej (o prędkości jednostkowej) $\alpha \colon [a,b] \to \mathbb{R}^3$ określić układ T,U,V, biorąc jako T wektor styczny do α , żądając, aby U było dowolnym jednostkowym polem wektorowym wzdłuż α takim, że $T \cdot U = 0$, tzn. odwzorowanie $U \colon [a,b] \to \mathbb{R}^3$ przyporządkowuje każdemu $t \in [a,b]$ wektor jednostkowy U(t) prostopadły do wektora T(t). Niech $V = T \times U$. Pokaż, że naturalne związki (czyli "wzory Freneta") dla tego układu mają postać:

$$T = \omega_3 U - \omega_2 V$$

$$U = -\omega_3 T + \omega_1 V$$

$$V = \omega_2 T - \omega_1 U$$

gdzie współczynniki ω_1 , ω_2 i ω_3 są rzeczywiste. Ponadto pokaż, że wektor ω (zwany wektorem Darboux) spełniający zależności $T=\omega\times T$, $U=\omega\times U$ oraz $V=\omega\times V$ jest postaci

$$\omega = \omega_1 T + \omega_2 U + \omega_3 V$$

Zadanie 39. Dwie krzywe α i β nazywamy *parą Bertranda* jeśli dla każdego t, prosta normalna do α przechodząca przez punkt $\alpha(t)$ jest równa prostej normalnej do β przechodzącej przez punkt $\beta(t)$. Pokazać, że zachodzą następujące własności.

- Jeśli α ma parametryzację unormowaną, wówczas $\beta=\alpha+cN_{\alpha}$ dla pewnej stałej c.
- Co więcej, kat między T_{α} i T_{β} jest stały.
- Załóżmy, że α jest niepłaską krzywą unormowaną. Pokazać, że α ma parę Bertranda wtedy i tylko wtedy, gdy istnieją stałe c_1 i c_2 spełniające $c_1\kappa_{\alpha}(t)+c_2\tau_{\alpha}(t)=1$.
- Załóżmy, że istnieje więcej niż jedna krzywa β która stanowi parę Bertranda dla α . Pokazać, że wówczas istnieje ich nieskończenie wiele. Pokazać, że taka sytuacja zachodzi wtedy i tylko wtedy, gdy α jest linią śrubową.

Twierdzenie klasyfikacyjne dla krzywych (Wykład 4)

Zadanie 40. Niech $A \in SO(3)$ będzie macierzą o kolumnach ortonormalnych. Pokazać, że dla dowolnej krzywej α , krzywa

$$\gamma(t) = A \cdot \alpha(t)$$

ma te same niezmienniki (tj. (T, N, B, κ, τ)).

Zadanie 41. Znaleźć interpretację umożliwiającą zastosowanie Twierdzenia Picarda (Twierdzenie 4.3) do dowodu twierdzenia klasyfikacyjnego.

Zadanie 42. Sformułować układ równań wiążących pochodne funkcji $p'_{i,j}(t)$ z funkcjami $\{p_{i,j}(t)\}$ oraz $\kappa(t)$ i $\tau(t)$.

Zadanie 43. Pokazać, że otrzymany w dowodzie wektor $X_3(t)$ ma ten sam zwrot co $B_{\alpha}(t)$ dla wszystkich t.

Powierzchnie

Parametryzacje powierzchni

Zadanie 44. Zastanowić się jak pokryć całą powierzchnię sfery jednym płatem powierzchniowym. Gdzie pojawiają się problemy?

Zadanie 45. (Projekcja stereograficzna) Rozważmy sferę $S^2 \subset \mathbb{R}^3$ o promieniu 1 i środku w punkcie (0,0,0). Niech $l_{(x,y)}$ oznacza prostą w \mathbb{R}^3 przechodzącą przez punkt (x,y,0) oraz przez punkt (0,0,1).

- Pokazać, że każda taka prosta przecina S^2 w dokładnie dwóch punktach: (0,0,1) oraz (a,b,c). Znaleźć współrzędne a,b,c w terminach x i y.
- Pokazać, że przyporządkowanie

$$(x, y) \mapsto (a, b, c)$$

jest parametryzacją powierzchni sfery nie obejmującą punktu (0,0,1). Co się dzieje w tym punkcie?

Zadanie 46. Sprawdzić, że parametryzacja paraboloidy

$$x(u, v) = (u, v, u^2 + v^2)$$

jest regularna.

Zadanie 47. Znaleźć parametryzację Monge'a stożka.

Zadanie 48. Znaleźć parametryzację i wektor normalny do poniższych powierzchni:

- powierzchnia siodłowa
- Powierzchnia śrubowa
- walec
- powierzchnia sfery o promieniu *R*.

Jak wyglądają w każdym przypadku linie parametrów?

Parametryzacja obrotowa

Zadanie 49. Wskazać reprezentację macierzową dla grupy *SO*(3) (macierze obrów o dowolny kąt wokół każdej z osi).

Zadanie 50. Korzystając z poprzedniego ćwiczenia wskazać parametryzację obrotową

- sfery o promieniu *R*
- hiperboloidy dwupowłokowej
- katenoidy (hiperboloida jednopowłokowa)
- · paraboloidy
- torusa

Obliczyć wektor normalny i opisać linie parametru na tych powierzchniach.

Zadanie 51. Zastanowić się, co się dzieje gdy tworzymy powierzchnię obrotową z krzywej która

- · posiada samoprzecięcia
- przecina oś obrotu.

Zadanie 52. Znaleźć ogólny wzór na wektor normalny do powierzchni obrotowei.

Zadanie 53. Wyznaczyć parametryzację powierzchni powstałej przez obrót krzywej

$$\alpha(t) = (x, x + \sin x, 0)$$

wokół prostej l = (t, t, 0).

Wskazówka: wyobrazić sobie krzywą i powierzchnię w przestrzeni. Jakich obrotów wokół osi bazy standardowej trzeba dokonać, by uzyskać obrót wokół zadanej osi? Złożyć je.

Zadanie 54. Napisać parametryzację obrotową stożka zawierającego wszystkie trzy osie współrzędnych.

Zadanie 55. Pokazać, że macierze

$$\mathcal{A}(\phi) = \begin{bmatrix} \cos(\phi) & \sin(\phi) & 0 \\ -\sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & 1 \end{bmatrix}, \qquad \mathcal{B}(\psi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\psi) & \sin(\psi) \\ 0 & -\sin(\psi) & \cos(\psi) \end{bmatrix},$$

oraz
$$\mathscr{C}(\chi) = \begin{bmatrix} \cos(\chi) & \sin(\chi) & 0 \\ -\sin(\chi) & \cos(\chi) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(po odpowiedniej interpretacji) tworzą bazę SO(3) (uwaga, tutaj nie ma błędu, to nie są znane nam obroty o zadany kąt wokół *ustalonych* osi x, y, z!) tj. pokazać, że odpowiednio dobrany iloczyn $\mathcal{A}, \mathcal{B}, \mathcal{C}$ zadaje dowolny obrót w przestrzeni \mathbb{R}^3 . (Obrót definiujemy jako odwzorowanie $\mathbb{R}^3 \to \mathbb{R}^3$ zachowujące długość wektorów, kąty między nimi i ich wzajemną *orientację*. Są to tzw. **Kąty Eulera**).

Prostokreślność

Zadanie 56. Wskazać parametryzację prostokreślną

- stożka
- walca
- powierzchni siodłowej
- · katenoidy
- · wstęgi Möbiusa

Zadanie 57. Przedstaw jako powierzchnię prostokreślną powierzchnię daną równaniem:

•
$$z = 4x^2 - y^2$$

Wskazówka: Co to za powierzchnia? Znaleźć odpowiednie podstawienie i wyrazić prostokreślność w nowych zmiennych.

Zadanie 58. Korzystając z parametryzacji wstęgi Möbiusa jako powierzchni prostokreślnej pokazać, że wektor normalny po obiegnięciu pełnego okręgu zmienił swój znak, a zatem jest to parametryzacja (!) *nieorientowalna*.

Zadanie 59. Podać parametryzację walca która nie będzie parametryzacją prostokreślną.

Wektor normalny i płaszczyzna styczna

Zadanie 60. Wyznaczyć równanie płaszczyzny stycznej w punkcie

$$\left(\frac{\sqrt{2}}{4}, \frac{\sqrt{2}}{4}, \frac{1}{2}\right)$$

do sfery o środku (0,0,0).

Wskazówka: Jaki jest wektor normalny w tym punkcie? Następnie skorzystać z iloczynu skalarnego.

Zadanie 61. Wyznaczyć równanie płaszczyzny stycznej w punkcie (1,1,1) do powierzchni zadanej przez równanie $x^2 + 2y^2 + z^2 = 3$.

Zadanie 62. Znaleźć parametryzację powierzchni powstałej przez obrót krzywej $(t, \sqrt{1+t^2}, 0)$ wokół drugiej osi współrzędnych. Wyznaczyć odwzorowanie Gaussa dla tej parametryzacji. Wykazać, że jest ono różnowartościowe i oszacować wielkość obrazu tego odwzorowania.

Zadanie 63. Wyznaczyć odwzorowanie Gaussa dla katenoidy

$$x(u, v) = (u, \cosh u \cos v, \cosh u \sin v).$$

Wykazać, że jest różnowartościowe. Oszacować wielkość obrazu tego odwzorowania dla u > 0.

Izometria i konforemność

Zadanie 64. Obliczyć pierwszą formę podstawową dla następujących powierzchni

- sfera
- torus
- powierzchnia śrubowa
- katenodida

Zadanie 65. Niech będzie dana funkcja $f: \mathbb{R}^2 \to S^1 \times \mathbb{R}$ określona przez

$$f(s,t) = (\cos s, \sin s, t).$$

- Pokazać, że f jest lokalną izometrią.
- Pokazać, że f nie jest dyfeomorfizmem, więc f nie może być izometrią.

Zadanie 66. Niech $M \subset \mathbb{R}^3$ będzie powierzchnią gładką i niech $x \colon U \to M$ będzie lokalnym układem współrzędnych. Rozważmy krzywą gładką

$$\alpha(t) = (\alpha_1(t), \alpha_2(t)) \subset U.$$

Pokazać, że długość krzywej $\overline{\alpha} = x \circ \alpha \colon \mathbb{R} \to M$ na powierzchni jest równa

$$L(\overline{\alpha}) = \int_{a}^{b} \sqrt{I_{\alpha(t)} \left(\alpha_{1}'(t), \alpha_{2}'(t) \right)} dt,$$

co można bezpośrednio zapisać:

$$\int_{a}^{b} \sqrt{(\alpha_{1}')^{2} g_{11}(\alpha(t)) + 2\alpha_{1}' \alpha_{2}' g_{12}(\alpha(t)) + (\alpha_{2}')^{2} g_{22}(\alpha(t))} dt.$$

Jaki jest związek między długościami krzywych na powierzchniach lokalnie izometrycznych?

Zadanie 67. Mówimy, że parametryzacja $x: \mathbb{R}^2 \to M$ jest *konforemna* (lub *wiernokątna*) jeśli zachowuje kąty.

Zinterpretować tę geometryczną definicję w języku geometrii różniczkowej.

Zadanie 68. Pokazać, że parametryzacja jest konforemna wtedy i tylko wtedy, gdy $g_{11} = g_{22}$ oraz $g_{12} = g_{21} = 0$.

Zadanie 69. Pokazać, że projekcja stereograficzna jest parametryzacją konforemną.

Zastosowania kartograficzne

Zadanie 70. (geograficzne – projekcja Lamberta) Rozważmy odwzorowanie które punktowi na sferze wpisanej w walec przyporządkowuje odpowiadający punkt na tym walcu zachowując współrzędną z. Znajdź wzór opisujący to odwzorowanie.

Uwaga – odwzorowanie to nie obejmuje biegunów.

Zadanie 71 (geograficzne). Aby policzyć pole powierzchni na sparametryzowanej powierzchni $x: U \to M$ można posłużyć się następującym wzorem:

$$A(x(u,v)) = \int_U \|x_u \times x_v\| \, du \, dv.$$

Pokaż, że projekcja Lamberta ze sfery wpisanej w walec na jego powierzchnię zachowuje pole, ale nie jest ani izometrią ani odwzorowaniem konforemnym.

Najlepiej zacząć od współrzędnych sferycznych na sferze i parametryzacji ($\cos v, \sin v, \cos u$) walca.

Zadanie 72 (geograficzne – projekcja Merkatora). Odwzorowanie Merkatora (wynalezione na długo przed początkami geometrii różniczkowej) było pierwszym odwzorowaniem, w którym linia prosta na mapie faktycznie była najkrótszą droga na kuli ziemskiej.

Pokazać, że parametryzacja (lub odwzorowanie $R^2 \supset U \rightarrow S^2$)

$$x(u, v) = \left(\frac{\cos v}{\sinh u}, \frac{\sin v}{\sinh u}, \frac{\sinh u}{\cosh u}\right)$$

jest konforemna.

Trudniejsze zadanie polega na wyprowadzeniu tej formuły. Niech (ϕ, θ) będą współrzędnymi sferycznymi. Wtedy linie parametru u muszą przejść na południki funkcją f(u) – korzystamy tutaj z symetrii sfery. Pokazać, że f(u) = $2\arctan(e^{-u})$.

Odwzorowanie Weingartena i Krzywizna Gaussa

Zadanie 73. Pokazać (z definicji), że odwzorowanie Weingartena S_p jest odwzorowaniem liniowym.

Zadanie 74. Sprawdzić, że macierz odwzorowania Weingartena $S_p \colon T_pM \to T_pM$ wyraża się jako

$$S_p = I_p^{-1} I I_p.$$

Wystarczy zapisać $S_p(x_u)=ax_u+bx_v$ i $S_p(x_v)=cx_u+dx_v$ i wyprowadzić układ równań liniowych na a,b,c i d.

Zadanie 75. Korzystając z równań Weingartena obliczyć macierz odwzorowania Weingartena S_p dla następujących powierzchni

- sfera
- powierzchnia śrubowa
- · katenoida
- torus

Zadanie 76. Korzystając z równania $S_p = I_p^{-1} II_p$ obliczyć formę macierzową odwzorowania Weingartena dla następujących powierzchni:

- walec
- powierzchnia siodłowa
- powierzchnia śrubowa

Zadanie 77. Oblicz krzywiznę Gaussa i krzywiznę średnią powierzchni danej równaniem parametrycznym:

- $x(u, v) = (v \cos u, v \sin u, \sin u)$,
- $x(u, v) = (u^2, 2uv, 2v^2)$

Zadanie 78. Oblicz krzywizny główne i ich wektory w punkcie p = (1,0,2) powierzchni danej równaniem

- $z^2 + 2x^2 + v^2 = 6$.
- $z^2 2x^2 v^2 = 2$.

Krzywizny główne to $k_1 = k(u_1) = \max_u k(u)$, oraz $k_2 = k(u_2) = \min_u k(u)$.

 $k(u) = S_p(u) \cdot u = \kappa_\alpha(0) \cos \theta$ to krzywizna normalna, w punkcie w kierunku wektora **jednostkowego** $u \in T_p$ z przestrzeni stycznej. u_1 i u_2 nazywamy wektorami krzywizn głównych. α jest krzywą na powierzchni spełniającą: $\alpha(0) = p$, oraz $\alpha'(0) = u$. θ jest kątem między U(p), a $N_\alpha(0)$.

Wskazówka: Powierzchnie te są poziomicami pewnej funkcji. Jaką postać może mieć wektor jednostkowy należący do przestrzeni stycznej w punkcie *p*?

Zadanie 79. Proszę wybrać punkt na powierzchni danej równaniem

$$z^2 - 5x^2 + y^2 = 5,$$

a następnie policzyć w nim krzywizny główne i ich wektory.

Zadanie 80. Dla powierzchni zadanej równaniem

$$2x^2 - y^2 - z^2 = 2$$

W punkcie (2,0,2) policzyć krzywiznę Gaussa i średnią a także znaleźć krzywizny główne i ich wektory.

Zadanie 81. Pokazać że powierzchnia prostokreślna ma krzywiznę Gaussa ≤ 0.

Zadanie 82. Sprawdzić, że powierzchnia pseudosfery (tj. powierzchnia otrzymana przez obrót traktrysy – krzywej pościgu) zadana wzorem

$$x(u, v) = \left(u - \tanh u, \frac{\cos v}{\cosh u}, \frac{\sin v}{\cosh u}\right)$$

ma stałą krzywiznę Gaussa równą −1.

Theorema Egregium Gaussa

Zadanie 83. Udowodnić Równanie Gaussa

$$l_{11}l_{22} - l_{12}^2 = \sum_{r=1}^2 g_{1r} \left[\frac{\partial \Gamma_{22}^r}{\partial u_1} - \frac{\partial \Gamma_{21}^r}{\partial u_2} + \sum_{m=1}^2 \left(\Gamma_{22}^m \Gamma_{m1}^r - \Gamma_{21}^m \Gamma_{m2}^r \right) \right].$$

Podpowiedź: należy porównać współczynniki stojące przy x_1 i x_2 w rozwinięciach x_{ijk} i x_{ikj} względem bazy $\{x_1, x_2, n\}$. Następnie podstawić (i=2, j=1, k=2).

Zadanie 84. Prześledzić dowód Theorema Egregium Gaussa i wyprowadzić jawny wzór na krzywiznę korzystający tylko ze współczynników metrycznych.

Zadanie 85. Niech

$$M = \{ y(u, v) = (u \sin v, u \cos v, \ln u) : u \in \mathbb{R}_+, v \in (-\pi, \pi) \},$$

$$N = \{ x(u, v) = (v \sin u, v \cos u, u) : u \in \mathbb{R}_+, v \in (-\pi, \pi) \},$$

oraz zdefiniujmy funkcję $f: M \rightarrow N$ jako

$$f(y(u,v)) = x(v,u).$$

Sprawdzić, że

$$K(f(y(u,v))) = K(x(v,u)) = \frac{-1}{(1+u^2)^2} = K(y(u,v)),$$

a mimo to f nie jest (lokalną) izometrią.

Geodezyjne

Zadanie 86. Korzystając z równań geodezyjnych pokazać, że proste i tylko proste są geodezyjnymi na płaszczyźnie.

Zadanie 87. Sprawdzić jak wyglądają równania geodezyjnych dla sfery o promieniu 1. Spróbować wyprowadzić, że krzywe je spełniające są okręgami wielkimi.

Zadanie 88. Niech γ będzie (niestałą) krzywą geodezyjną na powierzchni M.

- Pokazać, że γ ma stałą prędkość.
- Reparametryzacja tej krzywej $\gamma \circ h(t)$ jest geodezyjną wtedy i tylko wtedy, gdy h jest funkcją afiniczną.

Zadanie 89. Niech $M \subset \mathbb{R}^3$ będzie powierzchnią obrotową z lokalnym układem współrzędnych

$$x(t,\theta) = (\alpha_1(t), \alpha_2(t)\cos\theta, \alpha_2(t)\sin\theta),$$

oraz załóżmy, że krzywa profilu $x(t,0)=(\alpha_1(t),\alpha_2(t),0)$ jest unormowana. Pokazać, że równania geodezyjnych mają dla M postać

$$g_1'' - \alpha_1 \alpha_1' (g_2')^2 = 0$$

$$g_2'' + 2\frac{\alpha_1'}{\alpha_1}g_1'g_2' = 0.$$

Zadanie 90. Korzystając z powyższej formy równań geodezyjnych pokazać, że każda krzywa profilu (południk) na powierzchni *M* może być sparametryzowana jako krzywa geodezyjna.

Zadanie 91. Sprawdzić, że krzywa na powierzchni obrotowej zadana przez równanie $t = t_0$ (tzn. linia parametru) jest geodezyjną wtedy i tylko wtedy, gdy $\alpha'_1(t_0) = 0$. Co ten wynik oznacza geometrycznie?

Zadanie 92. Zastanowić się jak mogą wyglądać geodezyjne na torusie. Spróbować wywnioskować pewne własności geodezyjnych na torusie z postaci równań geodezyjnych.

Twierdzenie Gaussa-Bonneta

Zadanie 93. Znaleźć triangulację sfery o minimalnej liczbie ścian. Czy można ją zrealizować przez trójkąty geodezyjne?

Zadanie 94. Znaleźć triangulację (dowolną, niekoniecznie geodezyjną) torusa.

Zadanie 95. Znaleźć przedstawienie geometryczne torusa jako powierzchni powstałej przez utożsamienie boków n-kąta foremnego. Dla jakich n to się uda?

Zadanie 96. Policzyć charakterystykę Eulera dla sfery i torusa.

Zadanie 97. Pokazać geometrycznie jak skonstruować 2-torus (poprzez sumę spójną). Zinterpretować to w języku utożsamiania boków wielokątów.

Zadanie 98. Korzystając z prezentacji *n*-torusa znaleźć jego triangulację i policzyć charakterystykę Eulera.

Zadanie 99. Jakie wnioski odnośnie krzywizny n-torusów 1 można wyciągnąć na podstawie Twierdzenia Gaussa-Bonneta?

Geometria hiperboliczna i płaskie zanurzenia

Zadanie 100. Policzyć *II* formę podstawową, symbole Christoffela i krzywiznę Gaussa dla płaszczyzny hiperbolicznej zdefiniowanej jako półpłaszczyznę

$$\mathcal{H} = \left\{ (u, v) \in \mathbb{R}^2 \colon v > 0 \right\},\,$$

wyposażoną w pierwszą formę podstawową

$$I_{\mathcal{H}} = \{I(u, v)\}_{(u, v) \in \mathcal{H}} = \left\{ \begin{bmatrix} \frac{1}{v^2} & 0\\ 0 & \frac{1}{v^2} \end{bmatrix} \right\}$$

Zadanie 101. Korzystając z poprzedniego zadania wyznaczyć równania geodezyjnych dla \mathcal{H} . Następnie

• sprawdzić, że prosta w parametryzacji

$$v(t) = (C, C_1 e^{C_2 t})$$

jest geodezyjną, gdzie C, C_1 , C_2 są stałymi.

Zadanie 102 (Transformacje Möbiusa). Pokazać, że specjalna transformacja Möbiusa zdefiniowana jako funkcja $T^{a,b}_{c,d}\colon \mathbb{C} \to \mathbb{C}$ i zadana wzorem

$$T_{c,d}^{a,b}(z) = \frac{az+b}{cz+d}$$

zachowuje górną półpłaszczyznę, tj.

$$T_{c,d}^{a,b}\Big|_{\mathcal{H}}: \mathcal{H} \to \mathcal{H}$$

jest dobrze zdefiniowanym odwzorowaniem.

Zadanie 103. Pokazać, że złożenie transformacji Möbiusa odpowiada mnożeniu macierzy.

 $^{^1\}mathrm{W}$ rzeczywistości n-torusyto jedyne zamknięte powierzchnie orientowalne

Zadanie 104. Pokazać, że specjalne transformacje Möbiusa przenoszą geodezyjne na geodezyjne.

Podpowiedź: Pokazać, że następujące macierze generują grupę $PSL(2,\mathbb{R})$:

$$\left\{ \left(\begin{array}{cc} 1 & c \\ 0 & 1 \end{array}\right), \quad \left(\begin{array}{cc} \lambda & 0 \\ 0 & \frac{1}{\lambda} \end{array}\right), \quad \left(\begin{array}{cc} 0 & -1 \\ 1 & 0 \end{array}\right) \right\}.$$

Następnie zinterpretować geometrycznie działanie poszczególnych macierzy.

Zadanie 105 (Model Kleina). Koło otwarte $\mathcal{K} = \{(x, z) : x^2 + z^2 < 1\}$, wraz z pierwszą formą podstawową

$$I_{\mathcal{K}} = I_{(x,z)} = \begin{bmatrix} \frac{4}{(1-x^2-z^2)^2} & 0\\ 0 & \frac{4}{(1-x^2-z^2)^2} \end{bmatrix}$$

nazywamy Modelem Kleina geometrii hiperbolicznej.

Pokazać, że odwzorowanie $W: \mathcal{H} \to \mathcal{K}$ określone wzorem

$$W(x+iy) = \frac{x+i(y-1)}{x+i(y+1)}$$

jest izometrią.

Podpowiedź: W jest transformacja Möbiusa stowarzyszona z macierzą $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$.

Zadanie 106. Dlaczego przy konstrukcji *gładkiego n*-torusa poprzez identyfikację boków wielokąta foremnego wymagamy, by suma kątów wewnętrznych była równa 2π ?? Co się dzieje kiedy suma jest mniejsza? Co jeśli większa?aaaaaa

Zadania różne

Zadanie 107. Niech będą dane dwa współosiowe, równoległe okręgi w \mathbb{R}^3 odległe od siebie o A, o promieniach odpowiednio r i R. Podać parametryzację katenoidy zawierającej je oba. Czy zawsze da się to zrobić?

Zadanie 108. Zidentyfikować wszystkie powierzchnie, dla których linie normalne (proste wyznaczone przez wektory normalne przesunięte do odpowiedniego punktu na powierzchni) przechodzą przez jeden ustalony punkt *P*.

Zadanie 109. Policzyć odwzorowanie Weingartena dla dowolnej powierzchni powstałej przez obrót krzywej

$$\alpha(t) = (f(t), g(t), 0)$$

wokół osi OX. Jak wyglądają krzywizny główne i ich wektory? (dla ułatwienia można założyć, że α jest krzywą unormowaną).

Zadanie 110. Policzyć odwzorowanie Weingartena dla dowolnej powierzchni prostokreślnej. Jak wyglądają krzywizny główne i ich wektory?

Zadanie 111. Udowodnić bądź znaleźć kontrprzykład:

Jeśli M jest powierzchnią o dodatniej krzywiźnie Gaussa (K(p) > 0 dla wszystkich $p \in M$), wtedy każda krzywa leżąca na powierzchni ma również krzywiznę dodatnią.

Zadanie 112. Niech *M* będzie dowolną powierzchnią prostokreślną. Udowodnić lub wskazać kontrprzykład:

Odwzorowanie Weingartena wzdłuż prostych będących liniami parametru jest zerowe.

Zadanie 113. Pokazać, że jeśli odwzorowanie Weingartena powierzchni M jest postaci $\frac{-1}{R}$ [id], gdzie [id] oznacza macierz identycznościową, to M jest powierzchnią sfery (lub jej fragmentem).

Zadanie 114. Pokazać, że zamknięta powierzchnia M (tzn. zwarta i bez brzegu) zanurzona (gładko!) w \mathbb{R}^3 posiada taki punkt $p \in M$, że K(p) > 0.

Zadanie 115 (Wiązki okręgów nad krzywą zamkniętą). Wstęga Möbiusa powstawała jako powierzchnia prostokreślna przez obiegnięcie okręgu równocześnie przekręcając proste "normalne" o połowę kąta pełnego.

Rozważmy następujuącą powierzchnię "okręgo-kreślną", czyli składającą się z odpowiednio przekręconych okręgów nad (bazowym) okręgiem². Niech

$$\alpha: [0,2\pi) \to \mathbb{R}^3$$

będzie krzywą zamkniętą bez samoprzecięć o zerowej torsji.

- Dla każdego $t \in [0,2\pi)$ do krzywej α dołączamy okrąg o promieniu ε (odpowiednio małym) przechodzący przez punkt $\alpha(t)$, leżący w płaszczyźnie $N_{\alpha}(t) \times B_{\alpha}(t)$ (płaszczyzna normalna). Jak wygląda powierzchnia utworzona z tych okręgów? Przyjąć, że α jest okręgiem jednostkowym i znaleźć parametryzację utworzonej powierzchni.
- Załóżmy teraz, że zamiast okręgu umieszczamy w każdym punkcie α odpowiednio małą lemniskatę Bernoulliego (której środek leży punkcie $\alpha(t)$). Jak wygląda utworzona powierzchnia w zależności od sposobu położenia lemniskaty? jak wyglądają punkty samoprzecięcia?
- Przyjmijmy, że $\alpha(t)$ jest okręgiem jednostkowym i skorzystajmy z symetrii lemniskaty aby wzdłuż krzywej $\alpha(t)$ obrócić ją o połowę kąta pełnego. Znaleźć parametryzację utworzonej powierzchni. Jest to tzw. Butelka Kleina.
- Korzystając z powyższej parametryzacji pokazać, że butelka Kleina jest sklejeniem dwóch wstęg Möbiusa wzdłuż ich brzegu.

Uwaga: Butelki Kleina nie uda się zanurzyć w \mathbb{R}^3 bez samoprzecięć.

² Prawidłowa nazwa brzmi: *S*¹-wiązka nad okręgiem.