二次型

Didnelpsun

目录

1	标准形			
	1.1	配方法	1	
		1.1.1 平方项	1	
		1.1.2 无平方项	2	
	1.2	初等变换法	2	
	1.3	正交变换法	3	
2	正定	二次型	3	

1 标准形

1.1 配方法

- 1. 如果二次型有平方项,则首先从 x_1 开始往后不断配方,让最后的式子全部 以平方加和的形式,从而不会有混合项。
- 2. 如果二次型没有平方项,则首先令 $x_1 = y_1 + y_2$, $x_2 = y_1 y_2$, $x_i = y_i$ 等 然后带入 f(x) 强行出现平方项,然后配方,成功后再用 z_i 替换。
- 3. 如果总的完全平方项数小于变量个数,则令多余的 x_i 为 y_i ,系数为 0。

1.1.1 平方项

例题:将 $f(x_1, x_2, x_3) = x_1^2 + 2x_1x_2 + 2x_1x_3 - x_2^2 - 2x_2x_3 - x_3^2$ 化为标准形并求出作的可逆线性变换。

解: 首先对 x_1 进行配方,因为有 x_1 因子的式子有 $x_1^2 + 2x_1x_2 + 2x_1x_3$ 。

所以将 x_1, x_2, x_3 全部配在一起: $(x_1 + x_2 + x_3)^2 = x_1^2 + x_2^2 + x_3^2 + 2x_1x_2 + 2x_1x_3 + 2x_2x_3$ 。

所以 $f(x) = (x_1 + x_2 + x_3)^2 - 2x_2^2 - 4x_2x_3 - 2x_3^2$,然后继续配 x_2 。

因为还有 $-2x_2^2 - 4x_2x_3$, 所以配成 $-2(x_2 + x_3)^2$, 正好全部配完了。

$$\therefore f(x) = (x_1 + x_2 + x_3)^2 - 2(x_2 + x_3)^2 \circ$$

 $\ \ \diamondsuit \ y_1=x_1+x_2+x_3, \ \ y_2=x_2+x_3, \ \ \bigstar \ \ y_3=x_3, \ \ \therefore f=y_1^2-2y_2^2\circ$

$$(y_1, y_2, y_3)^T = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} (x_1, x_2, x_3)^T$$
,此时是 $y = Dx$,但是我们要求的

是 x = Cy, 所以 $C = D^{-1}$, 所以 D^{-1} 才是作出的可逆线性变换。

所以得到的线性变换为
$$\begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$
。

这样方法还要重新求逆,比较麻烦。实际上我们要求的是 x = Cy,即用 y来表示 x,从而直接将 y来表示 x 就可以了。

首先 $y_3 = x_3$, 所以 $x_2 = y_2 - x_3 = y_2 - y_3$, $x_1 = y_1 - x_2 - x_3 = y_1 - y_2 + y_3 - y_3 = y_1 - y_2$, 综上 $x_1 = y_1 - y_2$, $x_2 = y_2 - y_3$, $x_3 = y_3$, 也得到同样结果。

1.1.2 无平方项

例题:将二次型 $f(x_1,x_2,x_3) = x_1x_2 + x_1x_3 - x_2x_3$ 化为规范形,并求所用的 可逆线性变换。

解:因为二次型中没有平方项式子,而如果进行配方一定会出现平方,就会 产生冲突,所以希望把x代换称有平方的式子。

令
$$x_1 = y_1 + y_2$$
, $x_2 = y_1 - y_2$, $x_3 = y_3$, 代入二次型中。

 $f = y_1^2 - y_2^2 + y_1y_3 + y_2y_3 - y_1y_3 - y_2y_3 = y_1^2 - y_2^2 + 2y_2y_3 = y_1^2 - y_1^2 + y_$ 此时由没有平方项就变成了有平方项, 所以就能进行配方。

$$=y_1^2-(y_2-y_3)^2+y_3^2$$
,继续之前的步骤,进行换元:

令
$$z_1 = y_1$$
, $z_2 = y_2 - y_3$, $z_3 = y_3$, $f = z_1^2 - z_2^2 + z_3^2$ 得到标准形。

对于
$$x$$
 与 y : $(x_1, x_2, x_3)^T = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} (y_1, y_2, y_3)^T$ 。 y 作为过渡变量。

将 y 转换为 z:
$$(z_1, z_2, z_3)^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} (y_1, y_2, y_3)^T$$
,我们需要 $x = Cz$

令
$$z_1 = y_1$$
, $z_2 = y_2 - y_3$, $z_3 = y_3$, $f = z_1^2 - z_2^2 + z_3^2$ 得到标准形。

对于 $x = y_1$, $z_2 = y_2 - y_3$, $z_3 = y_3$, $f = z_1^2 - z_2^2 + z_3^2$ 得到标准形。

将 y 转换为 z : $(x_1, x_2, x_3)^T = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} (y_1, y_2, y_3)^T$, 我们需要 $x = Cz$ 。

$$(x_1, x_2, x_3)^T = \begin{pmatrix} 1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}^{-1} (z_1, z_2, z_3)^T$$
, 从而得到 $C = (x_1, x_2, x_3)^T$, 从而得到 $C = (x_1, x_2, x_3)^T$, 从而得到 $C = (x_1, x_2, x_3)^T$

$$\left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & -1 & -1 \\ 0 & 0 & 1 \end{array}\right) \circ$$

1.2 初等变换法

 $f(x) = X^T A X$,线性变换 X = C Y, $C^T A C = \Lambda$, 又 C 可逆, $C = P_1 P_2 \cdots P_s$, $EP_1P_2\cdots P_s=C$, $\therefore (P_1P_2\cdots P_s)^TAP_1P_2\cdots P_3=\Lambda$,

- 1. 对 A, E 做同样的初等列变换。
- 2. 对 A 做相应的初等行变换。(交换 i, j 列就要交换 i, j 行)。一套行列变换 后 Λ 为对称矩阵。
- 3. A 化成对角矩阵时,E 化成的就是 C。

$$\begin{pmatrix} A \\ E \end{pmatrix} \rightarrow \begin{pmatrix} \Lambda \\ C \end{pmatrix}, \text{ 对整个列变换, } \text{ 只对 } A \text{ 行变换}.$$

$$\begin{pmatrix} A \\ E \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & -1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\therefore \Lambda = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, C = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix}$$

1.3 正交变换法

例题: 将二次型 $f(x_1, x_2, x_3) = 2x_1^2 + 5x_2^2 + 5x_3^2 + 4x_1x_2 - 4x_1x_3 - 8x_2x_3$ 使用正交变换法化为标准形,并求所作的正交变换。

已知将二次型通过矩阵表示:
$$= (x_1, x_2, x_3) \begin{pmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{pmatrix} (x_1, x_2, x_3)^T$$
。

这个矩阵跟第五章相似的实对称矩阵相似对角化的例题的矩阵一样。

所以直接结果: $\lambda_1 = \lambda_2 = 1$, $\lambda_3 = 10$, $\eta_1' = \frac{\sqrt{5}}{5}(-2,1,0)^T$, $\eta_2' = \frac{\sqrt{5}}{15}(2,4,5)^T$, $\eta_3' = \frac{1}{3}(1,2,-2)^T$ 。

第五步:
$$f(x) = g(y) = y^T \Lambda y = (y_1, y_2, y_3)$$
 $\begin{pmatrix} 1 \\ 1 \\ 10 \end{pmatrix} (y_1, y_2, y_3)^T = y_1^2 + y_2^2 + 10y_3^2$

2 正定二次型