

### PROJEKT INŻYNIERSKI

Budowa mapy otoczenia z wykorzystaniem robota mobilnego

## Krzysztof GRĄDEK

Nr albumu: 300362

Kierunek: Automatyka i Robotyka

**Specjalność:** Technologie Informacyjne

### PROWADZĄCY PRACĘ

dr inż. Krzysztof Jaskot KATEDRA Katedra Automatyki i Robotyki Wydział Automatyki, Elektroniki i Informatyki

Gliwice 2024

#### Tytuł pracy

Budowa mapy otoczenia z wykorzystaniem robota mobilnego

#### Streszczenie

Projekt koncentruje się na implementacji systemu autonomicznej nawigacji robota mobilnego, z naciskiem na dwa kluczowe aspekty: tworzenie mapy otoczenia oraz realizację precyzyjnej nawigacji typu "punkt-punkt"w zmapowanej przestrzeni. Rozwiązanie opiera się na dwóch współpracujących ze sobą mikrokontrolerach - Raspberry Pi 4, który odpowiada za obsługę czujnika RPLidar A1 oraz wykonywanie algorytmów mapowania i nawigacji, oraz Arduino Nano zarządzającym silnikami z enkoderami, zapewniającymi precyzyjne sterowanie ruchem robota.

#### Słowa kluczowe

Mapowanie, robot mobilny, lokalizacja, SLAM, ROS

#### Thesis title

Construction of an Environment Map Using a Mobile Robot

#### Abstract

The project focuses on implementing an autonomous mobile robot navigation system, emphasizing two key aspects: environment mapping and precise point-to-point navigation in the mapped space. The solution is based on two cooperating microcontrollers - Raspberry Pi 4, which handles the RPLidar A1 sensor and executes mapping and navigation algorithms, and Arduino Nano managing motors with encoders, providing precise robot motion control.

#### Key words

Mapping, mobile robot, localization, SLAM, ROS

# Spis treści

| 1  | Wst    | Ç <b>e</b> p                                                     | 1  |
|----|--------|------------------------------------------------------------------|----|
|    | 1.1    | Wprowadzenie do tematu                                           | 1  |
|    | 1.2    | Osadzenie problemu w dziedzinie                                  | 2  |
|    | 1.3    | Cel pracy                                                        | 2  |
|    | 1.4    | Metodyka realizacji                                              | 3  |
|    | 1.5    | Struktura pracy                                                  | 3  |
|    | 1.6    | Wkład własny autora                                              | 3  |
| 2  | Ana    | aliza tematu                                                     | 5  |
|    | 2.1    | Sformułowanie problemu                                           | 5  |
|    | 2.2    | Stan aktualny dziedziny                                          | 5  |
|    | 2.3    | Przegląd istniejących rozwiązań                                  | 6  |
|    |        | 2.3.1 SLAM Toolbox                                               | 6  |
|    |        | 2.3.2 Adaptacyjna lokalizacja Monte Carlo - AMCL (Adaptive Monte |    |
|    |        | Carlo Localization)                                              | 6  |
|    | 2.4    | Wybór rozwiązania                                                | 7  |
| 3  | Wy     | magania i narzędzia                                              | 9  |
| 4  | [Po    | dstawy teoretyczne]                                              | 11 |
| 5  | [Wy    | magania i specyfikacja użytkowa]                                 | 13 |
| 6  | Wei    | ryfikacja i walidacja                                            | 15 |
| 7  | Pod    | lsumowanie i wnioski                                             | 17 |
| Bi | ibliog | grafia                                                           | 19 |
| Sp | ois sk | krótów i symboli                                                 | 23 |
| Źı | ródła  |                                                                  | 25 |
| Li | sta d  | lodatkowych plików, uzupełniajacych tekst pracy                  | 27 |

| Spis rysunków | 29 |
|---------------|----|
| Spis tabel    | 31 |

## Wstęp

Niniejsza praca skupia się na zbudowaniu prostego robota mobilnego wykorzystującego LiDAR do mapowania otoczenia. Robot wyposażony jest w mikrokontroler Raspberry Pi 4 stanowiący podstawę operacyjną robota, oraz Arduino Nano do obsługi silników z enkoderami. W szczególności, praca koncentruje się na implementacji rozwiązania umożliwiającego robotowi poruszanie się między zadanymi punktami w przestrzeni na utworzonej mapie.

Do realizacji założonych celów wykorzystano nowoczesne narzędzia z ekosystemu ROS 2 (Robot Operating System 2), w tym:

- Nav2 (Navigation 2) do planowania, wykonywania ścieżek oraz lokalizacji na utworzonej mapie
- SLAM Toolbox (Simultaneous Localization and Mapping Toolbox) do jednoczesnej lokalizacji i mapowania
- ROS2 Control (Robot Operating System 2 Control) do sterowania napędem robota

### 1.1 Wprowadzenie do tematu

Jednoczesna lokalizacja i mapowanie - SLAM (Simultaneous Localization and Mapping) to proces, w którym robot konstruuje mapę nieznanego środowiska podczas jednoczesnej lokalizacji w tym środowisku i śledzenia swojej trajektorii poruszania się [1]. Jest to podstawowa technologia umożliwiająca robotom autonomiczne poruszanie się w nowych przestrzeniach.

### 1.2 Osadzenie problemu w dziedzinie

Realizacja systemu SLAM i autonomicznej nawigacji wymaga integracji wielu zaawansowanych technologii. Główne wyzwania techniczne obejmują wykorzystanie i synchronizację:

- Sensorów (w tym LiDAR Light Detection and Ranging, kamery)
- Algorytmów SLAM (Simultaneous Localization and Mapping)
- Systemów kontroli ruchu
- Szkieletów programistycznych dla robotów (jak ROS Robot Operating System)

### 1.3 Cel pracy

Głównym celem pracy jest zaprojektowanie i implementacja systemu mapowania otoczenia z wykorzystaniem robota mobilnego. Cele szczegółowe obejmują:

- Budowę platformy mobilnej
- Implementację systemu sterowania
- Integrację czujników
- Realizację algorytmów SLAM
- Implementację systemu nawigacji

Zakres pracy obejmuje:

- Analizę istniejących rozwiązań w dziedzinie mapowania i nawigacji robotów mobilnych
- Projekt i implementację systemu sterowania robotem
- Integrację komponentów sprzętowych i programowych
- Implementację algorytmów SLAM i nawigacji
- Testy i walidację stworzonego rozwiązania

### 1.4 Metodyka realizacji

Praca została zrealizowana w następujących etapach:

- Analiza literatury i istniejących rozwiązań
- Projekt i budowa platformy sprzętowej
- Implementacja oprogramowania
- Integracja komponentów
- Testy i optymalizacja

### 1.5 Struktura pracy

Praca składa się z sześciu rozdziałów. Po niniejszym wstępie, w rozdziale drugim przedstawiono analizę tematu i przegląd literatury. Rozdział trzeci opisuje wymagania projektowe oraz wykorzystane narzędzia. W rozdziale czwartym omówiono specyfikację zewnętrzną systemu, a w piątym - jego implementację. Rozdział szósty zawiera opis przeprowadzonych testów i ich wyniki. Pracę kończy podsumowanie i wnioski.

### 1.6 Wkład własny autora

W ramach pracy autor samodzielnie:

- Zaprojektował i zbudował platformę mobilna
- Zaimplementował sterowniki urządzeń
- Zintegrował komponenty sprzętowe i programowe
- Zaimplementował i dostosował algorytmy SLAM
- Przeprowadził testy i optymalizację systemu

## Analiza tematu

### 2.1 Sformułowanie problemu

Problem jednoczesnej lokalizacji i mapowania (SLAM) jest fundamentalnym zagadnieniem w robotyce mobilnej. Polega on na rozwiązaniu dwóch współzależnych problemów:

- Budowy mapy nieznanego otoczenia
- Określenia pozycji robota w tym otoczeniu

Trudność polega na tym, że do stworzenia dokładnej mapy potrzebna jest precyzyjna lokalizacja robota, a do precyzyjnej lokalizacji potrzebna jest dokładna mapa. Jest to klasyczny problem "kury i jajka".

### 2.2 Stan aktualny dziedziny

W ostatnich latach nastąpił znaczący postęp w dziedzinie SLAM, głównie dzięki rozwojowi:

- Wydajnych algorytmów optymalizacji
- Dokładniejszych sensorów (LiDAR, kamery RGB-D)
- Mocy obliczeniowej komputerów

Współczesne rozwiązania SLAM można podzielić na kilka głównych kategorii:

- Filtracyjne (np. Extended Kalman Filter SLAM)
- Optymalizacyjne (Graph SLAM)
- Oparte na skanach laserowych
- Wizyjne (Visual SLAM)

### 2.3 Przegląd istniejących rozwiązań

#### 2.3.1 SLAM Toolbox

SLAM Toolbox to nowoczesne rozwiązanie open-source dla ROS 2, które implementuje algorytm Graph SLAM [bib:slamtoolbox]. Jego główne cechy to:

- Tworzenie map 2D w czasie rzeczywistym
- Optymalizacja grafu pozycji robota
- Możliwość serializacji i deserializacji map
- Wsparcie dla map wielowarstwowych

SLAM Toolbox wykorzystuje skany laserowe do budowy mapy i lokalizacji. Algorytm działa w następujących krokach:

- 1. Akwizycja danych z czujników
- 2. Dopasowanie skanów metodą Iteracyjny najbliższy punk ICP (Iterative Closest Point)
- 3. Budowa grafu pozycji robota
- 4. Optymalizacja grafu metodą Levenberga-Marquardta

# 2.3.2 Adaptacyjna lokalizacja Monte Carlo - AMCL (Adaptive Monte Carlo Localization)

AMCL to implementacja probabilistycznej lokalizacji wykorzystująca filtry cząsteczkowe [bib:amcl]. Główne cechy AMCL:

- Adaptacyjna liczba cząstek
- Efektywna implementacja filtra cząsteczkowego
- Obsługa map probabilistycznych

Algorytm AMCL działa w następujących krokach:

- 1. Inicjalizacja chmury cząstek
- 2. Predykcja ruchu cząstek na podstawie odometrii
- 3. Aktualizacja wag cząstek na podstawie pomiarów
- 4. Resampling cząstek

## 2.4 Wybór rozwiązania

W projekcie zdecydowano się wykorzystać połączenie SLAM Toolbox do lokalizacji w trakcie mapowania oraz zapisu mapy, oraz AMCL do lokalizacji podczas nawigacji z następujących powodów:

- Dobra integracja z ROS 2 i Nav2
- Sprawdzona skuteczność w aplikacjach robotów mobilnych
- Aktywne wsparcie społeczności
- Dostępność dokumentacji i przykładów

## Wymagania i narzędzia

- wymagania funkcjonalne i niefunkcjonalne
- przypadki użycia (diagramy UML) dla prac, w których mają zastosowanie
- opis narzędzi, metod eksperymentalnych, metod modelowania itp.
- metodyka pracy nad projektowaniem i implementacją dla prac, w których ma to zastosowanie

## [Podstawy teoretyczne]

Jeśli "Specyfikacja zewnętrzna":

- wymagania sprzętowe i programowe
- sposób instalacji
- sposób aktywacji
- kategorie użytkowników
- sposób obsługi
- administracja systemem
- kwestie bezpieczeństwa
- przykład działania
- scenariusze korzystania z systemu (ilustrowane zrzutami z ekranu lub generowanymi dokumentami)



Rysunek 4.1: Podpis rysunku po rysunkiem.

## [Wymagania i specyfikacja użytkowa]

Jeśli "Specyfikacja wewnętrzna":

- przedstawienie idei
- architektura systemu
- opis struktur danych (i organizacji baz danych)
- komponenty, moduły, biblioteki, przegląd ważniejszych klas (jeśli występują)
- przegląd ważniejszych algorytmów (jeśli występują)
- szczegóły implementacji wybranych fragmentów, zastosowane wzorce projektowe
- diagramy UML

Krótka wstawka kodu w linii tekstu jest możliwa, np. **int** a; (biblioteka listings). Dłuższe fragmenty lepiej jest umieszczać jako rysunek, np. kod na rys 5.1, a naprawdę długie fragmenty – w załączniku.

Rysunek 5.1: Pseudokod w listings.

## Weryfikacja i walidacja

- sposób testowania w ramach pracy (np. odniesienie do modelu V)
- organizacja eksperymentów
- przypadki testowe zakres testowania (pełny/niepełny)
- wykryte i usunięte błędy
- opcjonalnie wyniki badań eksperymentalnych

Tabela 6.1: Nagłówek tabeli jest nad tabelą.

|    | metoda  |         |                |              |              |               |                |  |  |  |  |  |  |
|----|---------|---------|----------------|--------------|--------------|---------------|----------------|--|--|--|--|--|--|
|    |         |         |                | alg. 3       | alg. 4       | $\gamma = 2$  |                |  |  |  |  |  |  |
| ζ  | alg. 1  | alg. 2  | $\alpha = 1.5$ | $\alpha = 2$ | $\alpha = 3$ | $\beta = 0.1$ | $\beta = -0.1$ |  |  |  |  |  |  |
| 0  | 8.3250  | 1.45305 | 7.5791         | 14.8517      | 20.0028      | 1.16396       | 1.1365         |  |  |  |  |  |  |
| 5  | 0.6111  | 2.27126 | 6.9952         | 13.8560      | 18.6064      | 1.18659       | 1.1630         |  |  |  |  |  |  |
| 10 | 11.6126 | 2.69218 | 6.2520         | 12.5202      | 16.8278      | 1.23180       | 1.2045         |  |  |  |  |  |  |
| 15 | 0.5665  | 2.95046 | 5.7753         | 11.4588      | 15.4837      | 1.25131       | 1.2614         |  |  |  |  |  |  |
| 20 | 15.8728 | 3.07225 | 5.3071         | 10.3935      | 13.8738      | 1.25307       | 1.2217         |  |  |  |  |  |  |
| 25 | 0.9791  | 3.19034 | 5.4575         | 9.9533       | 13.0721      | 1.27104       | 1.2640         |  |  |  |  |  |  |
| 30 | 2.0228  | 3.27474 | 5.7461         | 9.7164       | 12.2637      | 1.33404       | 1.3209         |  |  |  |  |  |  |
| 35 | 13.4210 | 3.36086 | 6.6735         | 10.0442      | 12.0270      | 1.35385       | 1.3059         |  |  |  |  |  |  |
| 40 | 13.2226 | 3.36420 | 7.7248         | 10.4495      | 12.0379      | 1.34919       | 1.2768         |  |  |  |  |  |  |
| 45 | 12.8445 | 3.47436 | 8.5539         | 10.8552      | 12.2773      | 1.42303       | 1.4362         |  |  |  |  |  |  |
| 50 | 12.9245 | 3.58228 | 9.2702         | 11.2183      | 12.3990      | 1.40922       | 1.3724         |  |  |  |  |  |  |

## Podsumowanie i wnioski

- uzyskane wyniki w świetle postawionych celów i zdefiniowanych wyżej wymagań
- kierunki ewentualnych danych prac (rozbudowa funkcjonalna ...)
- problemy napotkane w trakcie pracy

## Bibliografia

[1] Luis Bermudez. Medium - Overview of SLAM. 2024. URL: https://medium.com/machinevision/overview-of-slam-50b7f49903b7 (term. wiz. 17.04.2024).

## Dodatki

## Spis skrótów i symboli

```
DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)
```

 $MVC \mod - \text{widok} - \text{kontroler (ang. } model-view-controller)$ 

 ${\cal N}\,$ liczebność zbioru danych

 $\mu\,$ stopnień przyleżności do zbioru

 $\mathbb E \,$ zbi<br/>ór krawędzi grafu

 ${\cal L}\,$ transformata Laplace'a

## Źródła

Jeżeli w pracy konieczne jest umieszczenie długich fragmentów kodu źródłowego, należy je przenieść w to miejsce.

# Lista dodatkowych plików, uzupełniających tekst pracy

W systemie do pracy dołączono dodatkowe pliki zawierające:

- źródła programu,
- dane testowe,
- film pokazujący działanie opracowanego oprogramowania lub zaprojektowanego i wykonanego urządzenia,
- itp.

# Spis rysunków

| 4.1 | Podpis rysunku po rysunkiem | 12 |
|-----|-----------------------------|----|
| 5.1 | Pseudokod w listings        | 13 |

# Spis tabel

| 6.1 | Nagłówek tabeli | jest nad | tabela. | <br> |  | <br> |  |  |  |  |  | 16 |
|-----|-----------------|----------|---------|------|--|------|--|--|--|--|--|----|
|     |                 |          |         |      |  |      |  |  |  |  |  |    |