Project Report

Twitter Sarcasm Classification Challenge

Sahil Rishi - sahilr2@illinois.edu

Work Done:

I have made 11 submissions for my challenge (username: reckoner) and have achieved a best rank of 8.

After sometime I started investigating models with lower parameters which still allow me to beat the baseline.

The current leaderboard results are with a distilbert model, Epoch-8, 'max_seq_length': 256, Ir: 3e-5.

That model is also loaded into `demo.ipnyb` and can be loaded and run.

Task	Status	Comments/Challenge	
Dataset Preparation	Done	We have to create dataset in a format so that we can try a variety of problem formulations	
Framework	Done	Model Supported: Bert, Distilbert and RoBerta Models. Task Supported: Binary Classification Sentence Pair Classification	
Method 1: (distilbert-base-uncased, Only Response, no pre-processing)	Done	Got Rank 20 and F1_Score:0.73	
Method 2: (distilbert-base-uncased,Response+Context, no pre-processing)	Done	Got Rank 8 and F1_Score:0.756	
Hyper Parameter Searching	Done	Used wandb hyper-parameter tuning on Ir. Sequence size manually tested.	

Model

We used a transfer learning package called <u>SimpleTransformers</u>. This package supports creating and training huggingface transformer models and provides necessary abstractions to make the process faster.

We make use of https://simpletransformers.ai/docs/sentence-pair-classification/ module of the library.

We are training a model which takes a PAIR of sentences, and returns a label. The model input is: (text_a, text_b) Output: Label

This module trains a transformer model to predict over a pair of sentences.

The idea is to use the response of the tweet and the context as the pair of sentences. i.e.

text a, text b => Sarcasm/Not Sarcasm

Here text_a is response text_b is concatenation of (context 2 and context 1)

For testing parameters I used a 80:20 split. Final training was done on all the data points.

Other Methods Tried:

- I also tried a simple classification model(within simpletransformers library) with only the response. It gave me **F1_Score:0.73**
- I also tried **Roberta Large model**. This model did not give me a successful result. The reason for this was that as the model was very large, only small sequence lengths were fitting in the GPU (seq: 32). This proved to be too small to capture the sentence embeddings and this variation of the model failed.

• I also tried **Bert and Bert Large** model. They gave similar performance to distilbert models so I investigated only distilbert.

HyperParameter Tuning:

SimpleTransformers library provides hyperparameter tuning support with the wandb. I investigated optimal Ir.

For sequence length I investigated by hand as I observed that small changes in sequence length did not affect the scores by a lot.

Optimal Ir: 3.1134e-5 Sequence: 256

Epoch: 8

After 4000 steps (or 8 epochs) the model stopped automatically as we put the early stop parameter. With this when the model stops learning the training procedure stops itself.

	global_step	tp	tn	fp	fn	mcc
1	500	332	467	49	152	0.6081619486978196
2	1000	327	471	45	157	0.6083824503182047
3	1500	406	401	115	78	0.6162030292607681
4	2000	397	429	87	87	0.6516432827215068
5	2000	397	429	87	87	0.6516432827215068
6	2500	402	428	88	82	0.6598298309777768
7	3000	417	393	123	67	0.624881827250996
8	3500	396	435	81	88	0.6615667585778565
9	4000	404	426	90	80	0.660001504804287
10	4000	404	426	90	80	0.660001504804287

(Results reported on 1000 samples withheld from the training data)

Due to GPU costs I only performed hyperparameter tuning on sentence pair classification distilbert model.

Summary

As I wanted to use large transformers models, I made use of a specialised library which abstracts many functions required for transfer learning. Due to this the task of using complex models such as distilbert, bert, Roberta become really easy and straightforward.