	udent: ate:	Instructor: Bernard Omolo Assignment: Practice Problems - HT1 Course: DSA 8301 May 2023
1.	Explain the o	ifference between the z-test for μ using rejection region(s) and the z-test for μ using a P-value.
	Choose the	correct answer below.
	O A. In the	z-test using rejection region(s), the test statistic is compared with critical values. The z-test using a P-value compares the P-v
	OB. In the	z-test using rejection region(s), the test statistic is compared with the level of significance α . The z-test using a P-value compared with the level of significance α .
		t-test using rejection region(s) is used when the population is not normal. The z-test using a P-value is used when the population
	OD. The	-test using rejection region(s) is used when the population is normal. The z-test using a P-value is used when the population is
		the z-test using rejection region(s), the test statistic is compared with critical values. The z-test using a P-value compares α P-value with the level of significance α .
2.		for a hypothesis test is shown. Use the P-value to decide whether to reject H_0 when the level of significance is (a) α = 0.01, and (c) α = 0.10.
	P = 0.09	13
	(a) Do you re	ject or fail to reject H ₀ at the 0.01 level of significance?
	OA. Fail t	o reject H_0 because the P-value, 0.0913, is less than $\alpha = 0.01$.
	OB. Reje	at H $_0$ because the P-value, 0.0913, is less than α = 0.01.
	O. Fail t	p reject H_0 because the P-value, 0.0913, is greater than α = 0.01.
	OD. Reje	at H_0 because the P-value, 0.0913, is greater than α = 0.01.
	(b) Do you re	ject or fail to reject H ₀ at the 0.05 level of significance?
	OA. Fail t	o reject H_0 because the P-value, 0.0913, is greater than α = 0.05.
	OB. Reje	at H_0 because the P-value, 0.0913, is greater than α = 0.05.
	O. Fail t	p reject H_0 because the P-value, 0.0913, is less than $\alpha = 0.05$.
	OD. Reje	at H_0 because the P-value, 0.0913, is less than α = 0.05.
	(c) Do you re	ject or fail to reject H ₀ at the 0.10 level of significance?
	O A. Reje	et H_0 because the P-value, 0.0913, is greater than α = 0.10.
	OB. Reje	at H_0 because the P-value, 0.0913, is less than α = 0.10.
	O. Fail t	reject H_0 because the P-value, 0.0913, is greater than $\alpha = 0.10$.
	O. Fail t	o reject H_0 because the P-value, 0.0913, is less than α = 0.10.
	Answers C	Fail to reject H_0 because the P-value, 0.0913, is greater than α = 0.01.
	Α.	Fail to reject H_0 because the P-value, 0.0913, is greater than α = 0.05.
	В.	Reject H ₀ because the P-value, 0.0913, is less than α = 0.10.

5/10/23, 3:53 PM

)/ I	0/23, 3:53 PM
3.	The P-value for a hypothesis test is shown. Use the P-value to decide whether to reject H_0 when the level of significance is (a) α = 0.01, (b) α = 0.05, and (c) α = 0.10.
	P = 0.0531
	(a) Do you reject or fail to reject H ₀ at the 0.01 level of significance?
	\bigcirc A. Reject H ₀ because the P-value, 0.0531, is less than α = 0.01.
	B. Fail to reject H ₀ because the P-value, 0.0531, is less than $\alpha = 0.01$.
	C. Reject H ₀ because the P-value, 0.0531, is greater than α = 0.01.
	D. Fail to reject H ₀ because the P-value, 0.0531, is greater than α = 0.01.
	(b) Do you reject or fail to reject H ₀ at the 0.05 level of significance?
	A. Reject H ₀ because the P-value, 0.0531, is greater than α = 0.05.
	B. Reject H ₀ because the P-value, 0.0531, is less than α = 0.05.
	C. Fail to reject H ₀ because the P-value, 0.0531, is greater than α = 0.05.
	D. Fail to reject H ₀ because the P-value, 0.0531, is less than $\alpha = 0.05$.
	(c) Do you reject or fail to reject H ₀ at the 0.10 level of significance?
	\bigcirc A. Reject H ₀ because the P-value, 0.0531, is greater than α = 0.10.
	B. Fail to reject H ₀ because the P-value, 0.0531, is less than $\alpha = 0.10$.
	C. Reject H ₀ because the P-value, 0.0531, is less than α = 0.10.
	D. Fail to reject H ₀ because the P-value, 0.0531, is greater than α = 0.10.
	Answers D. Fail to reject H_0 because the P-value, 0.0531, is greater than α = 0.01.
	C. Fail to reject H_0 because the P-value, 0.0531, is greater than α = 0.05.
	C. Reject H_0 because the P-value, 0.0531, is less than α = 0.10.
4.	Find the P-value for a left-tailed hypothesis test with a test statistic of $z = -1.36$. Decide whether to reject H ₀ if the level of significance is $\alpha = 0.10$.
	P-value = (Round to four decimal places as needed.)
	State your conclusion. Choose the correct answer below.
	○ Since $P \le \alpha$, reject H_0 .
	\bigcirc Since P > α , reject H ₀ .
	Since $P > \alpha$, fail to reject H_0 .
	○ Since $P \le \alpha$, fail to reject H_0 .
	Answers 0.0869
	Since $P \le \alpha$, reject H_0 .

5. Find the P-value for the indicated hypothesis test with the given standardized test statistic, z. Decide whether to reject H₀ for the given level of significance α .

Right-tailed test with test statistic z = 1.36 and α = 0.05

P-value = (Round to four decimal places as needed.)

State your conclusion.

- Reject H₀
- Fail to reject H₀

Answers 0.0869

Fail to reject H₀

Match each P-value with the graph that displays its area without performing any calculations. Explain your reasoning. P = 0.1736 and P = 0.0188.

Graph (1) ______ displays the area for P = 0.1736 and graph (2) _____ displays the area for P = 0.0188 because

the P-value (3) _____ the (4) _

- (1) (a) (b)
- (2) (a) (b)
- (3)
- o is equal to
- o is related to
- is equal to one minus
- o is related to one minus

Answers (1) (b)

- (2) (a)
- (3) is equal to
- (4) shaded area.

- (4) absolute value of z.
 - shaded area.

7. Find the critical value(s) for a left-tailed z-test with α = 0.07. Include a graph with your answer.

The critical value(s) is(are)

(Round to two decimal places as needed. Use a comma to separate answers as needed.)

Draw a graph of the rejection region. Choose the correct graph below.

O A.

O B.

O C.

Answers - 1.48

8. Find the critical value(s) and rejection region(s) for the type of z-test with level of significance α . Include a graph with your answer.

Two-tailed test, $\alpha = 0.06$

The critical value(s) is/are z =

(Round to two decimal places as needed. Use a comma to separate answers as needed.)

Select the correct choice below and, if necessary, fill in the answer box to complete your choice. (Round to two decimal places as needed.)

- A. The rejection region is z <
- O B. The rejection regions are z <

and z >

○ C. The rejection region is z >

Choose the correct graph of the rejection region below.

O A.

○ B.

O C.

Answers - 1.88,1.88

B. The rejection regions are z <

- and z >
- 1.88

9.	Test the claim about the population mean, μ , at the given level of significance using the given sample statistic	S.						
	Claim: μ = 40; α = 0.08; σ = 3.96. Sample statistics: \bar{x} = 39.1, n = 62							
Identify the null and alternative hypotheses. Choose the correct answer below.								
	· · · · · · · · · · · · · · · · · · ·	В.	$H_0: \mu < 40$					
	$H_a: \mu > 40$		H_a : $\mu = 40$					
	C. $H_0: \mu \neq 40$ $H_a: \mu = 40$) D.	$H_0: \mu = 40$ $H_a: \mu < 40$					
	E. $H_0: \mu > 40$ $H_a: \mu = 40$) F.	H_0 : $\mu = 40$ H_a : $\mu \neq 40$					
	Calculate the standardized test statistic.							
	The standardized test statistic is . (Round to two decimal places as needed.)							
	Determine the critical value(s). Select the correct choice below and fill in the answer box to complete your cho	oice.						
	(Round to two decimal places as needed.)							
	○ A. The critical values are ±							
	O B. The critical value is							
	Determine the outcome and conclusion of the test. Choose the correct answer below.							
	○ A. Reject H ₀ . At the 8% significance level, there is enough evidence to reject the claim.							
	O B. Reject H ₀ . At the 8% significance level, there is enough evidence to support the claim.							
	○ C. Fail to reject H ₀ . At the 8% significance level, there is not enough evidence to reject the claim.							
	O. Fail to reject H ₀ . At the 8% significance level, there is not enough evidence to support the claim.							
	Answers F. H_0 : $\mu = 40H_a$: $\mu \neq 40$							
	- 1.79							
	A. The critical values are ± 1.75 .							

A. Reject $\mathrm{H}_{\mathrm{0}}.$ At the 8% significance level, there is enough evidence to reject the claim.

10.	Test the claim about the population mean, μ , at the given level of significance using the given sample statistics.										
	Claim: $\mu \neq 5000$; $\alpha = 0.07$; $\sigma = 356$. Sample statistics: $\bar{x} = 5400$, $n = 45$										
	Identify the null and alternative hypotheses. Choose the correct answer below.										
	○ A. $H_0: \mu \neq 5000$	B. $H_0: \mu \le 5000$ $H_a: \mu \ne 5000$									
	○ C. H_0 : $\mu \neq 5000$	D. $H_0: \mu = 5000$ $H_a: \mu \neq 5000$									
	○ E. $H_0: \mu \neq 5000$	F. $H_0: \mu \ge 5000$ $H_a: \mu \ne 5000$									
	Calculate the standardized test statistic.										
	The standardized test statistic is										
	Determine the critical value(s). Select the correct choice below and fill in the answer box to complete your choice.										
	(Round to two decimal places as needed.)										
	○ A. The critical values are ±										
	O B. The critical value is										
	Determine the outcome and conclusion of the test. Choose from the following.										
	○ A. Fail to reject H₀. At the 7% significance level, there is not enough evidence to reject the claim.										
	○ B. Reject H ₀ . At the 7% significance level, there is enough evidence to reject the claim.										
	○ C. Reject H ₀ . At the 7% significance level, there is enough evidence to support the claim.										
	O. Fail to reject H ₀ . At the 7% significance level, there is not enough evidence to support the claim.										
	Answers D. H_0 : $\mu = 5000H_a$: $\mu \neq 5000$										
	7.54										
	A. The critical values are ± 1.81										

C. Reject $\mathrm{H}_{\mathrm{0}}.$ At the 7% significance level, there is enough evidence to support the claim.

11.	A random sample of 82 eighth grade students' scores on a national mathematics assessment test has a mean score of 275. This test result prompts a state school administrator to declare that the mean score for the state's eighth graders on this exam is more than 270. Assume that the population standard deviation is 33. At α = 0.01, is there enough evidence to support the administrator's claim? Complete parts (a) through (e).										
	(a) Write the claim mathematically and identify H ₀ and H _a . Choose the correct answer below.										
	A. H_0 : $\mu = 270$ (claim)	B. H_0 : $\mu = 270$									
	H _a : μ > 270	H _a : μ > 270 (claim)									
	O. H ₀ : μ≥ 270 (claim) H _a : μ< 270	○ E. H ₀ : μ≤ 270 H _a : μ> 270 (claim)									
	(b) Find the standardized test statistic z.	(b) Find the standardized test statistic z.									
	z = (Round to two decimal pla	ces as needed.)									
	(c) Find the P-value.										
	P-value = (Round to three decimal places as needed.)										
	(d) Decide whether to reject or fail to reject the null hypothesis.										
	○ Fail to reject H ₀										
	○ Reject H ₀										
	(e) Interpret your decision in the context of the orig	inal claim.									
	At the 1% significance level, there (1)score for the state's eighth graders on the exam is	enough evidence to (2) the administrator's claim that the mean more than 270.									
	(1) is not (2) support reject										
	Answers E. H ₀ : μ≤270H _a : μ>270 (claim)										
	1.37										
	0.085										
	Fail to reject H ₀										
	(1) is not										
	(2) support										

5/10/23, 3:53 PM

12.	The lengths of time (in years) it took a random sample of 32 former smokers to quit smoking permanently are listed. Assume the
	population standard deviation is 5.4 years. At α = 0.03, is there enough evidence to reject the claim that the mean time it takes smokers
	to quit smoking permanently is 14 years? Complete parts (a) through (e).

8.6	22.5	12.9	15.9	21.4	8.3	22.3	20.2
8.8	20.5	21.2	13.9	12.9	11.9	14.8	7.9
18.3	9.9	13.7	16.1	13.5	19.9	12.9	21.2
19.8	14.2	15.3	16.2	16.1	14.5	9.1	18.3

					oothesis			

A .	H ₀ : μ > 14
	H _a : μ≤14 (claim)

○ B.	H ₀ : μ≥ 14 (claim)
	$H_a: \mu < 14$

○ E.	H_0 : μ = 14 (claim)
	H _a : μ≠ 14

(b)) Identify the	e standardized	test statistic.	Use technology.
-----	----------------	----------------	-----------------	-----------------

z=	(Round to two decimal places as needed.)

P =	(Round to three decimal places as needed.

(d) Decide whether to reject or fail to reject the null hypothesis and (e) interpret the decision in the context of the original claim at the 3% level of significance.

A .	$\label{eq:Reject H0} \text{Reject H00. There is sufficient evidence to reject the claim that the mean time it takes smokers to}$
	quit smoking permanently is 14 years.

Answers E. H_0 : μ = 14 (claim) H_a : $\mu \neq$ 14

1.47

0.141

C.

Fail to reject H_0 . There is not sufficient evidence to reject the claim that the mean time it takes smokers to quit smoking permanently is 14 years.

- 13. A company that makes cola drinks states that the mean caffeine content per 12-ounce bottle of cola is 35 milligrams. You want to test this claim. During your tests, you find that a random sample of thirty 12-ounce bottles of cola has a mean caffeine content of 33.3 milligrams. Assume the population is normally distributed and the population standard deviation is 6.5 milligrams. At α = 0.10, can you reject the company's claim? Complete parts (a) through (e).
 - (a) Identify H_0 and H_a . Choose the correct answer below.
 - O A. H₀: μ≤35 H_a: μ>35
 - **C.** H_0 : $\mu = 35$ H_a : $\mu \neq 35$
 - **E.** H_0 : $\mu \neq 35$ H_a : $\mu = 35$

- **B.** $H_0: \mu = 33.3$ $H_a: \mu \neq 33.3$
- **D.** H₀: $\mu \le 33.3$ H_a: $\mu > 33.3$
- **F.** $H_0: \mu \neq 33.3$ $H_a: \mu = 33.3$
- (b) Find the critical value(s). Select the correct choice below and fill in the answer box within your choice.

(Round to two decimal places as needed.)

- A. The critical values are ±
- O B. The critical value is

Identify the rejection region(s). Choose the correct answer below.

O A.

B.

- (c) Find the standardized test statistic.
- z = (Round to two decimal places as needed.)
- (d) Decide whether to reject or fail to reject the null hypothesis.
- O A. Since z is in the rejection region, fail to reject the null hypothesis.
- OB. Since z is not in the rejection region, reject the null hypothesis.
- O. Since z is in the rejection region, reject the null hypothesis.
- O. Since z is not in the rejection region, fail to reject the null hypothesis.
- (e) Interpret the decision in the context of the original claim.

At the 10% significance level, there (1) _____ enough evidence to (2) ____ the company's claim that the mean caffeine content per 12-ounce bottle of cola (3) ____ milligrams.

(1) is not (2) support (3

) is not	(2) O support
O is	reject

- (3) is equal to is different from
 - o is less than
 - o is greater than

Answers C. H_0 : $\mu = 35H_a$: $\mu \neq 35$

A. The critical values are \pm

1.64

- 1.43

- D. Since z is not in the rejection region, fail to reject the null hypothesis.
- (1) is not
- (2) reject
- (3) is equal to

35

14. A weight loss program claims that program participants have a mean weight loss of at least 10 pounds after 1 month. You work for a medical association and are asked to test this claim. A random sample of 30 program participants and their weight losses (in pounds) after 1 month is listed in the table below. Assume the population standard deviation is 3. At α = 0.08, do you have enough evidence to reject the program's claim? Complete parts (a) through (e).

5.6	6	6.4	6.7	7.1	7.4	7.7	8.1	8.2	8.7
8.9	9	9.2	9.3	9.5	9.8	10.3	10.3	10.4	10.5
10.8	11.1	11.5	11.7	11.8	12.3	12.5	12.6	13.1	15.7

- (a) Identify H₀ and H_a. Choose the correct answer below.
- **A.** H₀: μ = 10 H_a: μ ≠ 10
- **C.** $H_0: \mu \ge 10$ $H_a: \mu < 10$
- **E.** $H_0: \mu \neq 10$ $H_a: \mu = 10$

- **O B**. H₀: μ ≤ 10
 - H_a: μ > 10
- \bigcirc **D.** H₀: μ < 10
 - H_a: μ≥10
- **F.** $H_0: \mu > 10$ $H_a: \mu \le 10$
- (b) Find the critical value(s). Select the correct choice below and fill in the answer box within your choice.

(Round to two decimal places as needed.)

- A. The critical values are ±
- O B. The critical value is .

Identify the rejection region(s). Choose the correct answer below.

O A.

B.

- (c) Find the standardized test statistic.
- z = (Round to two decimal places as needed.)
- (d) Decide whether to reject or fail to reject the null hypothesis.
- A. Since z is not in the rejection region, fail to reject the null hypothesis.
- O B. Since z is not in the rejection region, reject the null hypothesis.
- C. Since z is in the rejection region, reject the null hypothesis.
- D. Since z is in the rejection region, fail to reject the null hypothesis.
- (e) Interpret the decision in the context of the original claim.

At the 8% significance level, there (1) _____ enough evidence to (2) ____ the program's claim that program participants have a mean weight loss (3) ____ pounds after 1 month.

- (1) o is
- 2) 🔘 reject
- (3) greater than
- O less than or equal to
- is not support greater than or equal to equal to
 - less than

Answers C. H_0 : $\mu \ge 10H_a$: $\mu < 10$

B. The critical value is -1.41

- 0.47
- A. Since z is not in the rejection region, fail to reject the null hypothesis.
- (1) is not
- (2) reject
- (3) greater than or equal to
- 10
- 15. When $P > \alpha$, does the standardized test statistic lie inside or outside of the rejection region(s)? Explain your reasoning.

Choose the correct answer below.

- \bigcirc **A.** Inside; When the standardized test statistic is outside the rejection region, P < α .
- \bigcirc **B.** Inside; When the standardized test statistic is outside the rejection region, P > α .
- \bigcirc **C.** Outside; When the standardized test statistic is inside the rejection region, P > α .
- \bigcirc **D.** Outside; When the standardized test statistic is inside the rejection region, P < α .

Answer: D. Outside; When the standardized test statistic is inside the rejection region, $P < \alpha$.