

MODELAGEM DE BANCO DE DADOS

Prof^o Me. Jones Artur Gonçalves

BANCO DE DADOS NORMALIZAÇÃO

Chaves

<u>Chave candidata</u>: atributo ou conjunto de atributos que, por suas características de unicidade e obrigatoriedade, presta-se a identificação de linhas em uma relação.

```
Exemplos:
Alunos (RA, Nome, Sexo, RG, CPF, TitEleitor, DtMatr, SiglaCurso)
{RA,CPF, TitEleitor}
Disciplinas (Código, Sigla, Nome, Curso, Ementa, CargaHor, Periodo)
{Sigla, Código}
```

Chaves

<u>Chave primária (PK)</u>: uma das chaves candidatas escolhida como o identificador principal da relação. Os critérios para escolha de uma chave primária baseiam-se na sua minimalidade e em sua estabilidade (atributos cujo valor muda menos ao longo do tempo são preferidos).

Uma relação pode possuir diversas chaves candidatas, mas apenas uma chave primária.

Chaves

Chave simples: formada por um único atributo

Exemplos:

Alunos (RA, Nome, Sexo, RG, CPF, TitEleitor, DtMatr, SiglaCurso)

Cursos (Sigla, Nome, ValorMens, DtAutoriz)

Disciplinas (Sigla, Nome, Curso, Ementa, CargaHor, Periodo)

NF (NrNF, DtNF, VrTotal, CdCli, CdVend)

Produtos (Codigo, Nome, UnidMed, QtDisp, CodForn)

Chaves

Chave composta: formada pela combinação de mais de um atributo

Exemplos:

AluCursos (RA, Curso, DtMatr, DtTranc)

Matriculas (RA, Disc, SemLetivo, Nota, Faltas, Resultado)

ItensNF (NrNF, CodProd, QtPed, QtAtend, DtUltAtend)

Observando as duas tabelas a seguir, qual representa uma relação bem estruturada?

Empregado 1			
Emp_ID	Nome	Depart	Salário
100	Margarida	Marketing	42000
140	Hélio	Financeira	39000
110	Cristóvão	Sist. Informação	41500
190	Lourenço	Contabilidade	38000
150	Susana	Marketing	38500

Empregad	io 2				
Emp_ID	Nome	Depart	Salário	Curso	Dta de conclusão
100	Margarida	Marketing	42000	SPSS	19-06-2002
100	Margarida	Marketing	42000	Pesquisa	07-10-2002
140	Hélio	Financeira	39000	IVA	08-12-2002
110	Cristóvão	Sist. Informação		SPSS	01-12-2002
110	Cristóvão	Sist. Informação	41500	C++	22-04-2002
190	Lourenço	Contabilidade	38000	Investimen	07-05-2002
150	Susana	Marketing	38500	SPSS	19-06-2002
150	Susana	Marketing	38500	TQM	12-08-2003

R: É a 1ª, uma vez que só apresenta informações sobre um empregado e qualquer modificação, como p.ex. o salário, será limitada a uma única linha da tabela;

A 2ª contém informações sobre os empregados e os cursos que eles frequentaram e a chave primária para esta tabela terá de ser uma combinação entre EmpID e Curso.

Então, a tabela Empregado_2 não é uma relação bem estruturada e pode ser dividida em duas relações: Empregado e Curso.

O processo de normalização baseia-se no conceito de forma normal.

Uma forma normal é uma regra obedecida por uma tabela para que esta seja considerada "bem projetada".

Primeira Formal Normal (1FN)

Requer que a relação não apresente atributos repetitivos (multivalorados) em sua estrutura (não deve conter tabelas aninhadas).

Tabela não normalizada

NrEncomenda	NrCliente	Cliente	Endereço	Data Encomenda	Cod Produto	Nome Produto	Qtde Encomenda
123	1001	Cris	R. 31 de março, 10	29/04/17	I	Bolo Sonho de Valsa	lkg
123	1001	Cris	R.31 de março,10	29/04/17	2	Brigadeiro	150
123	1001	Cris	R. 31 de março, 10	29/04/17	3	Cajuzinho	80
124	955	Abner	R. Teste, I	29/04/17	Ī	Bolo Sonho de Valsa	4kg

Tabela 1FN

Nr Encomen da	Cod Produto	Nome Produto	Qtde Encomenda
123	I	Bolo Sonho de Valsa	lkg
123	2	Brigadeiro	150
123	3	Cajuzinho	80
124	I	Bolo Sonho de Valsa	4kg
125	I	Bolo Sonho de Valsa	lkg
125	3	Cajuzinho	20

NrEncomenda	NrCliente	Cliente	Endereço	Data Encomenda
123	1001	Cris	R. 31 de março, 10	29/04/17
124	955	Abner	R.Teste, I	29/04/17
125	955	Abner	R. Teste, I	03/06/21

Dependência Funcional

Em uma tabela relacional diz-se que uma coluna C_2 depende funcionalmente de uma coluna C_1 quando, em todas as linhas da tabela, para cada valor de C_1 que aparece na tabela, aparecer o mesmo valor de C_2

O símbolo → é usado para denotar dependência funcional.

Dependência Funcional

•••	Código	•••	Salário	•••
	EI		10	
	E3		10	
	El		10	
	E2		5	
	E3		10	
	E2		5	
	El		10	

A coluna salário depende funcionalmente da coluna Código pelo fato de cada valor de código estar associado sempre ao mesmo valor de salário.

Dependência Funcional

•••	Código	•••	Salário	•••
	EI		10	
	E3		10	
	EI		10	
	E2		5	
	E3		10	
	E2		5	
	EI		10	

Exemplo: o valor "E1" da coluna código identifica o mesmo valor de salário ("10").

Sendo assim: Código → Salário

Dependência Funcional

O determinante de uma dependência funcional pode ser um conjunto de colunas e não somente uma coluna.

Ex.
$$(A,B) \rightarrow C$$

Neste exemplo a coluna C depende das colunas A e B, ou seja, há uma dependência funcional (A,B) → C

Segunda Formal Normal (2FN)

Uma tabela se encontra na 2FN quando, além de estar na 1FN, **não** contém dependências parciais.

Dependência parcial ocorre quando uma coluna depende apenas de parte de uma chave-primária composta.

Segunda Formal Normal (2FN)

Nome do Produto depende do Código do Produto

(Depende de parte da chave composta)

QtdeEncomenda depende do Número da Encomenda e Código do Produto (Depende da chave composta inteira).

Tabela 2FN

NrEncomenda	CodProduto	QtdeEncomenda
123	1	lkg
123	2	150
123	3	80
124	I	4kg

NrEncomenda	NrCliente	Cliente	Endereço	Data Encomenda
123	1001	Cris	R. 31 de março, 10	29/04/17
124	955	Abner	R.Teste, I	29/04/17

CodProduto	NomeProduto
I	Bolo Sonho de Valsa
2	Brigadeiro
3	Cajuzinho

Terceira Formal Normal (3FN)

Uma tabela encontra-se na terceira forma normal quando, além de estar na 2FN, não contém dependências transitivas.

Dependência transitiva ocorre quando uma coluna ou conjunto de colunas A depende de outra coluna B que não pertence à chave-primária, mas é dependente funcional desta.

Terceira Formal Normal (3FN)

A passagem à 3FN consiste em dividir tabelas, de forma a eliminar as dependências transitivas.

2FN

NrEncomenda	NrCliente	Cliente	Endereço	Data Encomenda	Dependências transitivas
123	1001	Cris	R.31 de março,10	29/04/17	
124	955	Abner	R. Teste, I	29/04/17	

3FN

NrCliente	Cliente	Endereço
1001	Cris	R. 31 de março, 10
955	Abner	R.Teste, I

NrEncomenda	NrCliente	Data Encomenda
123	1001	29/04/17
124	955	29/04/17

3FN

NrEncomenda	NrCliente	Data Encomenda
123	1001	29/04/17
124	955	29/04/17

NrCliente	Cliente	Endereço
1001	Cris	R. 31 de março, 10
955	Abner	R.Teste, I

NrEncomenda	CodProduto	QtdeEncomenda
123	I	lkg
123	2	150
123	3	80
124	1	4kg

CodProduto	NomeProduto
I	Bolo Sonho de Valsa
2	Brigadeiro
3	Cajuzinho

Quarta Formal Normal (4FN)

Uma tabela encontra-se na 4FN, quando, além de estar na 3FN, não contém dependências multivaloradas.

CodProj	CodEmp	CodEquip
1	1	1
1	2	1
1	3	1
1	1	2
1	2	2
1	3	2

Quarta Formal Normal (4FN)

CodProj	CodEmp	CodEquip
1	1	1
1	2	1
1	3	1
1	1	2
1	2	2
1	3	2
2	2	2
2	2	4
3	3	1
3	4	1

Tabela não está na 4FN e deve ser decomposta em duas tabelas (considerando que queremos saber qual equipamento cada projeto/func. utiliza).

Aqui a coluna CodEmp depende multivaloradamente da coluna Codproj, já que um valor de CodProj determina múltiplas vezes um conjunto de valores de CodEmp

Quarta Formal Normal (4FN)

CodProj

ProjEmp(CodProj, CodEmp)

ProjEquip(CodProj, CodEquip)

ProjEquip

Cod

4

Equip

ProjEmp

CodProj	CodEmp
1	1
1	2
1	3
2	2
3	3

Tabelas do exemplo anterior em 4FN

Quinta Formal Normal (5FN)

Trata de casos particulares (relacionamentos múltiplos: ternários, quaternários, etc).

Uma relação está na 5FN, quando, além de estar na 4FN, seu conteúdo não puder ser reconstruído a partir de diversas relações menores que não possuam a mesma chave-primária.

Estrutura Original

CodMaterial	NrRequisicao	NrPedido
M1	R1	P1
M2	R1	P2
M2	R2	P1

Quinta Formal Normal (5FN)

CodMaterial	NrRequisicao	NrPedido
M1	R1	P1
M2	R1	P2
M2	R2	P1

Tentativa de decomposição possível

ItensReq

CodMaterial	NrRequisicao
M1	R1
M2	R1
M2	R2

ItensPed

CodMaterial	NrPedido
M1	P1
M2	P2
M2	P1

PedReq

NrRequisicao	NrPedido	
R1	P1	
R1	P2	
R2	P1	

Quinta Formal Normal (5FN)

Solução possível: (ItensReq |x| ItensPed |x| PedReq)

Linha		a	ItensReq	
			CodMaterial	NrRequisicao
•		1	M1	R1
,	3	2	M2	R1
		4	M2	R2

		<u>ItensI</u>	Ped
		CodMaterial	NrPedido
	1	M1	P1
	3	M2	P2
4	2	M2	P1

PedReq			eq
0	4	NrRequisicao	NrPedido
2	1	R1	P1
	3	R1	P2
	4	R2	P1

Linha	CodMaterial	NrRequisicao	NrPedido
1	M1	R1	P1
2	M2	R1	P1 _
3	M2	R1	P2
4	M2	R2	P1
Lir	nha gerada a mais	pela	

combinação dos dados -

das três tabelas

RESUMO

1FN	Não deve conter tabelas Aninhadas
2FN	Não deve conter dependências parciais, ou seja, quando uma coluna depende apenas de parte de uma chave-primária composta.
3FN	Não contém dependências transitivas, ou seja, quando uma coluna, além de depender da chave-primária da tabela, depende de outra coluna ou conjunto de colunas da tabela.
4FN	Não contém dependências multivaloradas.
5FN	Conteúdo original não pode ser reconstruído

BIBLIOGRAFIA

BÁSICA:

DATE, C. J. PROJETO DE BANCO DE DADOS E TEORIA RELACIONAL: FORMAS NORMAIS E TUDO O MAIS. SÃO PAULO: NOVATEC, 2015.

ELMASRI, R.; NAVATHE, S. B. SISTEMAS DE BANCO DE DADOS: FUNDAMENTOS E APLICAÇÕES. 7 ED. SÃO PAULO: PEARSON, 2019.

HEUSER, C. A. PROJETO DE BANCO DE DADOS. 6 ED. PORTO ALEGRE: BOOKMAN, 2010.

COMPLEMENTAR:

HARRINGTON, J. L. Projeto de Bancos de Dados Relacionais: Teoria e Prática. São Paulo: Campus, 2002. MACHADO, F. N. R., Banco de dados: projeto e implementação. 2 ed. São Paulo: Érica, 2008. NADEAU, Tom et al. Projeto e Modelagem de Banco de Dados. 5 ed. Rio de Janeiro: Elsevier Brasil, 2013. SILBERSCHATZ, Abraham; SUNDARSHAN, S.; KORTH, Henry F. Sistema de banco de dados. Rio de Janeiro: Elsevier Brasil, 2016.

Referências

O.K. TAKAI; I.C.ITALIANO; J.E. FERREIRA, INTRODUÇÃO A BANCO DE DADOS OSVALDO KOTARO, APOSTILA, DCC-IME-USP – FEVEREIRO - 2005 MATTOSO, MARTA, INTRODUÇÃO À BANCO DE DADOS – AULA BANCO DE DADOS BÁSICO, UNICAMP, CENTRO DE COMPUTAÇÃO, SLIDES. BOGORNY VANIA, MODELO ENTIDADE-RELACIONAMENTO, SLIDES.

WWW.JOINVILLE.UDESC.BR/PORTAL/PROFESSORES/MAIA/.../6___MODELO_ER.PPT DATA DE ACESSO: 01/07/2015

ABREU, FELIPE MACHADO; ABREU, MAURÍCIO – PROJETO DE BANCO DE DADOS – UMA VISÃO PRÁTICA - ED. ÉRICA – SÃO PAULO HEUSER, CARLOS ALBERTO. PROJETO DE BANCO DE DADOS – UMA VISÃO PRÁTICA. PORTO ALEGRE: SAGRA LUZATTO, 2004.

KORTH, H. F.; SUDARSHAN, S; SILBERSCHATZ, A. SISTEMA DE BANCO DE DADOS. 5A ED. EDITORA CAMPUS, 2006. - CAPÍTULO 6

REIS, FÁBIO. HTTP://WWW.BOSONTREINAMENTOS.COM.BR/ DATA DE ACESSO: 03/03/2022

MUNARI, ANTÔNIO CESAR. APOSTILA DE NORMALIZAÇÃO. DATA DE ACESSO: 03/03/2022

HTTP://WWW.PROFTONINHO.COM/DOCS/MODELAGEM_AULA_6_ENTID_ASSOC.PDF DATA DE ACESSO: 01/07/2015

HTTPS://MATERIALPUBLIC.IMD.UFRN.BR/CURSO/DISCIPLINA/4/56/1/6 DATA DE ACESSO: 01/02/2023

HTTPS://WWW.DEVMEDIA.COM.BR/ALGEBRA-RELACIONAL-TUTORIAL/2663 DATA DE ACESSO: 01/02/2023 HTTPS://COENS.DV.UTFPR.EDU.BR/WILL/WP-CONTENT/UPLOADS/2022/03/APOSTILA_ALGEBRA_RELACIONAL.PDF ELMASRI, R.; NAVATHE S. B. SISTEMAS DE BANCO DE DADOS. 4 ED. EDITORA ADDISON-WESLEY. 2005. - CAPÍTULO 3 DAVENPORT, THOMAS H.; PRUSAK, LAURENCE. CONHECIMENTO EMPRESARIAL: COMO AS ORGANIZAÇÕES GERENCIAM O SEU CAPITAL INTELECTUAL. RIO DE JANEIRO: CAMPUS, 1998.

HTTP://WWW.IME.UNICAMP.BR/~HILDETE/DADOS.PDF ACESSO EM: 12 MAIO 2016.

GEHRKE, RAMAKRISHMAN. SISTEMA DE GERENCIAMENTO DE BANCO DE DADOS. MCGRAWHILL, 3ª EDIÇÃO – SP, 2008 RAGHU, RAMAKRISHMAN, JOHANNES, GEHRKE. SISTEMAS DE GERENCIAMENTO DE BANCO DE DADOS. 3ª EDIÇÃO, MC GRAW HILL

OBRIGADO