

<u>Course</u> > <u>Unit 2:</u>... > <u>3 Colu</u>... > 12. Inv... 12. Inverse matrices **Inverse matrices** 3:10 / 3:10 X 66 CC ▶ 2.0x HD Video

Download video file

Transcripts

Download SubRip (.srt) file

Download Text (.txt) file

When a square matrix $\bf A$ has the property that for every vector $\bf b$, the system $\bf Ax=b$ has a unique solution, then $\bf A$ has an inverse matrix.

Definition 12.1 The **inverse** of an $n \times n$ matrix \mathbf{A} is another $n \times n$ matrix \mathbf{A}^{-1} such that

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{I} \qquad \text{and} \qquad \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}.$$

Suppose that $\bf A$ represents the linear transformation $\bf f$. Then $\bf A^{-1}$ exists if and only if an inverse function $\bf f^{-1}$ exists; in that case, $\bf A^{-1}$ represents $\bf f^{-1}$.

Problem 12.2 Does the rotation matrix $\mathbf{R} := \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$ have an inverse? If so, what is it?

Solution: The inverse linear transformation is rotation by - heta, so

$$\mathbf{R}^{-1} = egin{pmatrix} \cos(- heta) & -\sin(- heta) \ \sin(- heta) & \cos(- heta) \end{pmatrix} = egin{pmatrix} \cos heta & \sin heta \ -\sin heta & \cos heta \end{pmatrix}.$$

(As a check, try multiplying ${f R}$ by this matrix, in either order.)

Problem 12.3 Does the projection matrix
$$\mathbf{A} := \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 have an inverse? If so, what is it?

https://courses.edx.org/courses/course-v1:MITx+18.033x+1T2018/courseware/unit2/03_fundspaces/4?activate_block_id=block_v1%3AMITx%2B18.033x%2B1T2018/

Solution: The associated linear transformation \mathbf{f} is not a **1**-to-**1** correspondence, because it maps more than one vector to $\mathbf{0}$ (it maps the whole \mathbf{z} -axis to $\mathbf{0}$). Thus \mathbf{f}^{-1} does not exist, so \mathbf{A}^{-1} does not exist.

Algorithm to find the inverse of a matrix

Let ${f A}$ by an ${m n} imes {m n}$ matrix.

- 1. Form the n imes 2n augmented matrix $[{f A}|{f I}].$
- 2. Convert to RREF; the result will be $[\mathbf{I}|\mathbf{B}]$ for some $n \times n$ matrix \mathbf{B} .
- 3. Then ${\bf A}^{-1} = {\bf B}$.

This is a special case of solving a matrix equation $\mathbf{AX} = \mathbf{B}$ since \mathbf{A}^{-1} is the solution to $\mathbf{AX} = \mathbf{I}$.

Algorithm in practice

Video

4/13/2018

Transcripts

Inverses concept check

1/1 point (graded)

If **A** and **B** are two $n \times n$ matrices, what is $(\mathbf{AB})^{-1}$? (Hint: Think of **A** and **B** as functions from \mathbb{R}^n to \mathbb{R}^n .)

- $A^{-1}B^{-1}$
- $OA^{-1}B$
- $B^{-1}A^{-1}$
- $OB^{-1}A$
- $\bigcirc AB^{-1}$
- $\bigcirc BA^{-1}$.

Solution:

 $(AB)^{-1}=B^{-1}A^{-1}$. We can see this by computing:

$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}IB$$

= $B^{-1}B = I$,

and

$$(AB) (B^{-1}A^{-1}) = A(BB^{-1})A = AIA^{-1}$$

= $AA^{-1} = I$.

(The key rule is that taking inverses reverses the order of matrix multiplication . Similarly, $(ABC)^{-1}=C^{-1}B^{-1}A^{-1}$, and so on.)

Submit

You have used 1 of 3 attempts

• Answers are displayed within the problem

Worked examples: inverses

Learn About Verified Certificates

© All Rights Reserved