Roweno J.R.K. Heijmans and Ana Moura

Tilburg University

October 7, 2020

We're both on the market this year, so...

Introduction

Motivation

- Pandemics carry significant social and economic costs.
 - Why do some diseases go epidemic whilst others are kept at bay?
 - Pure biology/epidemiology? Or economics as well?
 - How to avoid the next epidemic?

This paper

- We study epidemic policy using a game theoretic model featuring:
 - Incomplete information about the disease
 - Strategic complementarity in eradication efforts
- Uncertainty + strategic complementarity = global game
 - Carlsson & Van Damme (1993, ECTA), Morris & Shin (1998, AER)

Model

Building Blocks

- \bullet N countries, labeled i.
- Binary action x_i : effort to eradicate $(x_i = 1)$, or not $(x_i = 0)$.
- Cost of eradication effort: C.
- Benefit of eradication: $B \in [\underline{B}, \overline{B}]$, drawn uniformly.
- True B unobserved. Countries observe private signal $b_i \in [B \varepsilon, B + \varepsilon], \ \varepsilon > 0$, drawn uniformly.
- Probability of successful eradication, given n countries take efforts, is p(n), with $p' \ge 0$, p(0) = 0 and p(N) = 1.

The payoff to country i, given n countries $j \neq i$ play $x_j = 1$, is:

$$u_i(x_i; B, n) = [p(n+x_i) \cdot B - C] \cdot x_i, \tag{1}$$

normalized so that the payoff to no eradication $(x_i = 0)$ is zero. Since B is unobserved, i chooses x_i to maximize:

$$u_i^e(x_i; b_i, n) = [p(n+x_i) \cdot b_i - C] \cdot x_i.$$
(2)

Tie-breaking rule: play $x_i = 1$ if $u_i^e = 0$; inconsequential.

 B_1

$B \in (B_0, B_1)$ $B < B_0 \qquad \text{national best-responses} \qquad B > B_1$ never eradicate $\qquad \text{mutually dependent} \qquad \text{always eradicate}$

 B_0

strict dominance region

• Social planner: eradication for $B \ge B_0$, no eradication for $B < B_0$

В

The structure of the game is common knowledge and as follows:

- **1** Nature draws a true $B \in [\underline{B}, \overline{B}]$.
- **2** Each $i \in \{1, 2, ..., N\}$ receives private signal b_i of B.
- **3** All $i \in \{1, 2, ..., N\}$ simultaneously choose action $x_i \in \{0, 1\}$.
- Payoffs are realized according to B and the actions chosen by all players.

Results

Theorem

The game has a unique Bayesian Nash equilibrium. Let x_i^* denote the associated equilibrium strategy for country i. Then there exists a unique $b^* \in (B_0, B_1)$ such that, for all $i \in \{1, 2, ..., N\}$:

$$x_i^*(b_i) = \begin{cases} 1 & \text{if } b_i \ge b^* \\ 0 & \text{if } b_i < b^* \end{cases}$$
 (3)

The result is actually stronger: there is one and only one strategy surviving iterated elimination of dominated strategies. The associated strategy-profile x^* hence has to be the unique BNE, or any type of self-referential equilbrium concept based on Nash. It is therefore also rationalizable in the sense of Bernheim (1984, ECTA) and Pearce (1984, ECTA).

Intuitive Proof: recall support of B

national best-responses are mutually dependent never eradicate always eradicate $B \in (B_0, B_1)$ $B < B_0$ $B > B_1$ B_0 B_1

Intuitive Proof: extending the no-eradication region at B_0

never eradicate $b_i < B_0^1$ $B B_0 B_0^1$ $B_1 \overline{B}$

Intuitive Proof: extending the no-eradication region at ${\cal B}^1_0$

never eradicate $b_i < B_0^2$

Intuitive Proof: extending the no-eradication region to B_0^{∞}

Intuitive Proof: extending the eradication region at B_1

Why
$$B_0^{\infty} = B_1^{\infty}$$
?

- Suppose not, so $B_0^{\infty} < B_1^{\infty}$.
- Then, in expectation, $\mathbb{E}_n u_i^e(x_i=1;b_i,n) = \mathbb{E}_n[p(n+1)\cdot b_i C] > 0$ for all $b_i > B_0^{\infty}$, by the definition of B_0^{∞} .
- Similarly, $\mathbb{E}_n u_i^e(x_i=1;b_i,n) = \mathbb{E}_n[p(n+1)\cdot b_i C] < 0$ for all $b_i < B_1^{\infty}$, by the definition of B_1^{∞} .
- But if $B_0^{\infty} < B_1^{\infty}$, then there must exist at least one b_i for which $\mathbb{E}_n u_i^e(x_i = 1; b_i, n) < 0 < \mathbb{E}_n u_i^e(x_i = 1; b_i, n).$
- This is a contradiction.
- Hence $B_0^{\infty} = B_1^{\infty}$.

Intuitive Proof: $B_0^{\infty} = B_1^{\infty} = b^*$

never eradicate

national best-responses are mutually dependent

always eradicate

 $b_i < b^*$ country i does not eradicate the disease, $x_i = 0$

 $b_{i} > b^{*}$ country i eradicates the disease, $x_i = 1$

Proposition (Inefficiency)

For all $B \in (B_0, b^*)$, a epidemic is inefficient. Moreover:

- (i) For $2\varepsilon < B_1 B_0$, the probability of successful eradication is monotone increasing in the (true) eradication benefit B.
- (ii) For ε sufficiently small, for all $B \in (B_0, b^*)$, there will be a rational but inefficient epidemic.

Note: not possible to make a stochastic dominance statement with multiple equilibria!

$$B < B_0$$

SP does not

eradicate the disease

$$B \ge B_0$$

SP eradicates the disease

$$b_i < b^*$$

country i does not eradicate the disease, $x_i = 0$

$$b_i \ge b^*$$

country i eradicates the disease, $x_i = 1$

Corollary (Speed bump effect)

More lethal diseases $(B > b^* + \varepsilon)$ cause fewer deaths than less lethal ones $(B < b^* - \varepsilon)$.

- Fatality rate SARS: $\sim 10\%$. Fatality rate COVID-19: $\sim 0.5\%$.
- \bullet Death toll SARS: <900. Death toll COVID-19: >424,000, and counting.

Theorem: Unique Equilibrium, Heterogeneous Countries

Let C_i and B_i denote the country-specific eradication cost and benefit, respectively.

Theorem (Heterogeneous countries)

Given $(C_i)_{i=1}^N$, for any $(B_i)_{i=1}^N \in [\underline{B}, \overline{B}]^N$, the game has a unique Bayesian Nash equilibrium. For all $i \in \{1, 2, ..., N\}$, let x_i^* denote the equilibrium strategy. Then there exists a unique $(b_i^*)_{i=1}^N \in (B_0, B_1)^N$ such that, for all $i \in \{1, 2, ..., N\}$:

$$x_i^*(b_i) = \begin{cases} 1 & \text{if } b_i \ge b_i^* \\ 0 & \text{if } b_i < b_i^* \end{cases}$$
 (4)

Global Disease Eradication

Policy challenge

How to make sure disease get eradicated when eradication is efficient?

Commitment

- A subset of $\bar{n} < N$ countries forms a coalition.
- WLOG, coalition consists of countries $i \in \{1, 2, ..., \bar{n}\}$
- Prior to an outbreak, they commit to strategy:

$$x_i^c(b_i) = \begin{cases} 1 & \text{if } b_i \ge B_0 \\ 0 & \text{if } b_i < B_0 \end{cases}.$$

- That is: promise to take eradication efforts whenever eradication is (perceived to be) globally efficient.
- Note: The coalition could in principle commit to any threshold $b^c \in [B_0, b^*]$. Our result would mutatis mutandis hold true.

Unique But Better Equilibrium

Theorem (Equilibrium with a coalition)

Given \bar{n} , the game has a unique Bayesian Nash equilibrium. For all $i \in \{\bar{n}+1,...,N\} \supseteq \{N\}$, let $x_i^*(\cdot;\bar{n})$ denote the associated equilibrium strategy. Then there exists a unique (conditional on \bar{n}) $b^*(\bar{n})$ such that, for all $i \in \{\bar{n}+1,...,N\}$:

$$x_i^*(b_i) = \begin{cases} 1 & \text{if } b_i \ge b^*(\bar{n}) \\ 0 & \text{if } b_i < b^*(\bar{n}) \end{cases}$$
 (5)

Moreover, $b^*(\bar{n})$ is monotone decreasing in \bar{n} , with $b^*(0)=b^*$ and $b^*(N)=B_0$.

For countries $i=1,2,...,\bar{n}$, the strategy is given by assumption.

Greater Coalitions Make For Fewer Epidemics

Proposition (Inefficiency with a coalition)

For all $B \in (B_0, b^*(\bar{n}))$, a epidemic is rational but inefficient. Moreover, the probability of an inefficient but rational epidemic is decreasing in \bar{n} , the number of countries in the coalition.

Summary

- We study international epidemic policy in a global game
- Our game has a unique equilibrium, which may:
 - imply a "rational epidemic"
 - be inefficient
 - cause more deaths from less lethal diseases
- International epidemic policy:
 - Prior to an outbreak, a subset of players (e.g. countries) commits to eradication.
 - Still a unique equilibrium.
 - Probability of inefficient rational epidemic decreasing in coalition size

Thank you!

a.c.moura@tilburguniversity.edu r.j.r.k.heijmans@tilburguniversity.edu