Unit 9

Codes

Outline of Unit 9

- □ 9.1 Parity-Check Codes
- 9.2 Generator and Parity Check Matrices
- □ 9.3 Hamming Codes

Example: Error Detection

NEW SMART HK (D

CURRENT HONG KONG ID

Is this a valid HKID card number?

Weighted Average Mod 11

□ Weight: 9 8 7 6 5 4 3 2 1

$$36 \times 9 + 12 \times 8 + 6 \times 7 + 6 \times 6 + 8 \times 5 + 6 \times 4 + 6 \times 3 + 8 \times 2 + x \equiv 0 \pmod{11}$$

 $5 + 8 + 9 + 3 + 7 + 2 + 7 + 5 + x \equiv 0 \pmod{11}$
 $x \equiv -2 \equiv 9 \pmod{11}$

Example: Error Correction

Does it still work?

Unit 9.1

Parity-Check Codes

Digital Communication Systems

Bit Errors due to Noise

□ Suppose *N* bits are transmitted.

$$x = (x_1, x_2, ..., x_N)$$
 Channel $\Rightarrow y = (y_1, y_2, ..., y_N)$

- During the transmissions, bit errors may occur due to noise.
- □ The probability that a bit error occurs is called the *bit error rate*.

	Twisted Pair	Coaxial Cable	Optical Fiber
Data Rate in Mbps	10	100	1000
Bit Error Rate	10^{-5}	10^{-6}	10^{-9}
Bandwidth	250 kHz	350 MHz	1 GHz

Error Vector

$$x = (x_1, x_2, \dots, x_N) \xrightarrow{+} y = (y_1, y_2, \dots, y_N)$$

$$e = (e_1, e_2, \dots, e_N)$$

- ☐ If the *i*-th bit is in error, then $e_i = 1$; else $e_i = 0$.
- \square Hence, for all i,

$$y_i = x_i + e_i,$$

A	В	A+B
0	0	0
0	1	1
1	0	1
1	1	0

where binary addition (+) means logical XOR.

How to Handle Bit Errors?

Two basic strategies:

1. Error Correction

• Include enough redundant information along with a data packet to enable the receiver to identify which bits are in error and then *correct* them.

2. Error Detection

- Include only enough redundant information to allow the receiver to detect that an error occurred.
- If error is detected, the receiver may request for retransmissions.

Single Parity Check

- \square Suppose there are k information bits.
- An extra bit (called parity bit) is added for detecting single-bit errors.
 - Even parity: add an extra bit so that the total number of '1's is even.
 - Odd parity can be defined similarly.
 - The receiver doesn't know which bit is in error.

Two-Dimensional Parity Check

This scheme can detect and correct single-bit errors.

Even parity is assumed in this example.

single bit error

Parity-Check Codes

message u (a row vector)

information bits
Systematic
encoding

codeword *c* (a row vector)

k r = n - k information bits check bits

- \square (n, k) binary code with the following notation:
 - *k* information bits
 - *r* redundant bits
 - Codeword length:

$$n = k + r$$

• The code is a set of 2^k codewords.

- □ The encoding of a code is systematic if the information bits are embedded as part of the encoded output.
 - The check bits are not necessarily after the information bits.

Examples

(4,3) Even Parity

■ 8 codewords

Parity bits

(5,1) Repetition

2 codewords

Code Rate

 \square The code rate of an (n, k) code is defined as

$$R_c = \frac{k}{n}$$
.

- Proportion of the data stream that is useful.
- □ If the raw data rate of a link is W bps, then the effective data rate (or information rate) is R_cW bps.
- Example:
 - Suppose every 7 bits of data are encoded with single parity check.
 - The encoded output is then transmitted through a link with 1 Mbps.
 - What is the effective data rate?

Error Detection Failure

□ (4, 3) Even Parity Check Code:

Hamming Distance

- ☐ Hamming distance is a useful concept for analyzing the error correction/detection capability of a code.
- □ The Hamming distance d(x, y) of two vectors, x and y, is defined as the number of bits that they are different.
- □ The Hamming weight w(x) of a vector x is defined as the number of 1's in x.
- Example:

$$x = (0, 0, 1, 1, 1), \quad w(x) = 3.$$
 $y = (0, 1, 1, 0, 1), \quad w(y) = 3.$
 $d(x, y) = 2.$

Error Detection Failure

- □ If the Hamming distance between two codewords is d, then it will require d errors to convert one codeword into the other.
- ☐ Example:

• An *error detection failure* occurs if the above three bits are in error.

Error Detection Capability

Definition: The minimum distance, d_{\min} , of a code is the *smallest* Hamming distance between *all pairs* of distinct codewords in the code.

- $lue{}$ Error detection capability of a code depends on its d_{\min} .
- □ It is guaranteed that error can be detected if number of bits in error is less than or equal to $s = d_{min} 1$.

Examples (revisited)

(4,3) Even Parity

☐ Eight codewords:

(5,1) Repetition

☐ Two codewords:

What is d_{\min} of each of these codes?

How many bit errors does each code guarantee to detect?

Decoding Rule for Error Correction

$$x = (x_1, x_2, ..., x_N)$$
 Channel $\Rightarrow y = (y_1, y_2, ..., y_N)$

- Nearest-Neighbor Decoding: The decoder picks a codeword that is closest to y in terms of Hamming distance.
 - In other words, find $x \in C$ which minimizes d(x, y), where C is the set of all codewords.
 - Tie is broken arbitrarily.
 - a.k.a minimum-distance decoding
- Example: (5, 1) Repetition Code
 - How many bit errors can the code correct?

Error Correction Capability

- $lue{}$ Error correction capability of a code depends on its d_{\min} .
- Error can be corrected if no. of bits in error is less than or equal to

$$t = \left| \frac{d_{\min} - 1}{2} \right|,$$

- where [x] is the floor operator which denotes the largest integer less than or equal to x.
- Example: (6, 1) Repetition Code $d_{\min} = 6$, $t = \lfloor 2.5 \rfloor = 2$.

Code Rate of (5, 1) Repetition

- \Box *C* = {00000, 11111}.
- $\Box d_{\min} = 5$, t = 2. (correct all double-bit errors)
- \square Code rate $R = \frac{k}{n} = \frac{1}{5}$.
 - For each information bit, we need to transmit 5 bits.
 - For example, if transmission rate equals 1 Mbps, then we can transmit 200 kbps of useful information.
- What if we want to convey information faster?

Classwork (Repetition with an Extra Parity)

$$u = (u_1, u_2)$$
 Encoder $c = (c_1, c_2, c_3, c_4, c_5)$

$$\Box c_1 = c_3 = u_1$$

$$\Box c_2 = c_4 = u_2$$

$$\Box c_5 = u_1 + u_2$$

Message u	Codeword c
00	
01	
10	
11	

- a) Complete the table.
- b) Determine d_{\min} .
- c) How many errors can it correct?

Solution

$$\square R = \frac{2}{5}, d_{\min} = 3, t = 1.$$

- For example, if transmission rate equals 1 Mbps, then we can transmit 400 kbps of useful information.
- Comparison with (5, 1) repetition code:
 - More efficient in communications (less redundancy)
 - Weaker error correction capability

Performance Measures

Code rate

The higher the value of R_c , the more efficient the coding scheme is, which means the higher the effective data rate can be achieved.

Minimum distance

 \circ The larger the value of d_{\min} , the higher the error detection/correction capability.

Unit 9.2

Generator and Parity-Check Matrices

Binary Linear Codes

- A linear code is defined by the generator matrix, G.
 - \circ $k \times n$ matrix
 - Each entry is 0 or 1.
- Encoding is done by :

$$c = uG$$
.

$$u \longrightarrow \text{Encoder} \longrightarrow a$$

(*u* and *c* are *row* vectors.)

- □ For systematic encoding, $G = [I_k | P]$.
 - I_k is the $k \times k$ identity matrix.
 - *G* is said to be in standard form.
 - In general, G need not contain the identity matrix, and the corresponding code is non-systematic.

Example: (5, 4) Even Parity

- □ Message $u = [u_1 \ u_2 \ u_3 \ u_4]$.
- \square Add a parity c_5 so that there is an *even number* of 1's in every codeword.
- In matrix form, c = uG, where

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}_{k \times n}$$

(*G* is the generator matrix.)

$$c_1 = u_1$$
 $c_2 = u_2$
 $c_3 = u_3$
 $c_4 = u_4$
 $c_5 = u_1 + u_2 + u_3 + u_4$

Encoding: An Injective, Linear Mapping

Encoding of a linear code Example: is a linear function:

$$f: \mathbb{B}^k \to \mathbb{B}^n$$
,

where

- \circ f(u) = uG;
- \circ \mathbb{B}^m is the set of all binary *m*-vectors.
- The mapping should be injective.
 - That means, no two inputs map to the same output.
 - Remark: *G* needs to be of full row rank, (i.e., the rows are linearly independent).

$$G = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}.$$

- Consider two messages
 - $u_1 = [1 \ 1 \ 0]$
 - $u_2 = [0 \ 0 \ 1]$
- Both of them map to the same codeword:
 - $u_1G = [1 \ 0 \ 1 \ 1]$
 - $u_2G = [1 \ 0 \ 1 \ 1]$
- Ambiguity arises in decoding.

(3,2) Even Parity

The range (i.e., the code) is a vector subspace of \mathbb{B}^3 .

Linear Code is a Subspace of \mathbb{B}^n

- (Closed under vector addition)
 - For any binary linear code, the *sum* (i.e., XOR) of any two codewords is a *codeword*.
 - Consider two codewords, c_u and c_v .
 - $c_u + c_v = uG + vG = (u + v)G$, which is a codeword.
- □ (Closed under scalar multiplication)
 - Any codeword *c* multiplied by a *scalar* (i.e., 0 or 1) is also a codeword.
 - $c \times 1 = c$ (a codeword)
 - $c \times 0 = \mathbf{0}$ (a codeword due to zero-in zero-out)
 - Note that binary multiplication is the same as logical AND.

Example: (5,4) Even Parity (cont'd)

Clearly, any codeword satisfies

$$c_1 + c_2 + c_3 + c_4 + c_5 = 0.$$

- ☐ This is called the parity-check equation.
- Represented in matrix form,

$$c H^T = 0$$
,

where

$$H = [1 \ 1 \ 1 \ 1 \ 1]$$

is called the *parity-check matrix*.

This equation can be used to check whether a given vector is a codeword or not.

Parity-Check Matrices

- Let G be a generator matrix of an (n, k) code.
 - \bigcirc It is a $k \times n$ matrix.
- A parity-check matrix H is an $r \times n$ matrix satisfying $G H^T = 0$.
 - It is not unique.
 - Recall r = n k is the number of redundant bits.

For a systematic code, the generator matrix is of the form

$$G = [I_k \mid A].$$

- ☐ A parity-check matrix is given by $H = [A^T | I_r].$
 - Caution: This applies only to binary codes.

Re-visit (Repetition with an Extra Parity)

- \Box $c_1 = c_3 = u_1$, $c_2 = c_4 = u_2$, $c_5 = u_1 + u_2$
- □ This is a systematic matrix, which can be expressed as

$$c = uG = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}.$$
 G is $k \times n$

According to the previous slide, the parity-check matrix can be expressed as

$$H = \begin{bmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{bmatrix}.$$

■ All codewords satisfy the parity-check equation: $cH^T = 0$

H is $r \times n$

Re-visit (Repetition with an Extra Parity)

- Parity check equations:
- 1. $c_1 + c_3 = 0$ (repetition)
- 2. $c_2 + c_4 = 0$ (repetition)
- 3. $c_1 + c_2 + c_5 = 0$. (c_5 is parity)

Error Detection by Checking r Parities

$$x = (x_1, x_2, ..., x_N)$$
 Channel $\Rightarrow y = (y_1, y_2, ..., y_N)$

- \square The receiver computes $s = yH^T$ to check the parities.
 - s is an r-vector, which corresponds to r parity-check equations.
 - If $s_i \neq 0$, then the *i*-th parity-check equation does not hold.
- \square *s* is called the syndrome.

$$s \begin{cases} = 0 & \text{no error is detected.} \\ \neq 0 & \text{error is detected.} \end{cases}$$

Re-visit (Repetition with an Extra Parity)

- Suppose y = (0, 1, 0, 0, 1) is received.
- Compute the syndrome:

$$s = yH^T = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}.$$

- □ Since the syndrome is non-zero, error is detected.
- Only the second parity-check equation does not hold, i.e.,
 - 1. $c_1 + c_3 = 0$
 - 2. $c_2 + c_4 \neq 0$ (i.e., either c_2 or c_4 is in error)
 - 3. $c_1 + c_2 + c_5 = 0$.
- \square If one bit is in error, then it must be c_4 .
 - \circ Otherwise, if c_2 is in error, the third equation cannot hold.

Unit 9.3

Hamming Codes

Hamming Codes

- □ Goal: *To correct single-bit errors*.
- □ A Hamming code has $r \ge 2$ parity bits, which yields $d_{min} = 3$.
 - Either detect up to two-bit errors or correct one-bit errors (but not both).

Inventor:

- Worked at Bell Labs in 1940s.
- Frustrated with the error-prone punched card reader and invented the famous (7,4) Hamming code in 1950.

Richard Wesley Hamming (1915-1998). He won the Turing Award in 1968.

Example: (7, 4) Hamming Code

The encoding equations are

$$c_{1} = u_{1}$$

$$c_{2} = u_{2}$$

$$c_{3} = u_{3}$$

$$c_{4} = u_{4}$$

$$c_{5} = u_{1} + u_{2} + u_{4}$$

$$c_{6} = u_{1} + u_{3} + u_{4}$$

$$c_{7} = u_{2} + u_{3} + u_{4}$$

$$c_{6}$$

Parity-check equations:

$$c_1 + c_2 + c_4 + c_5 = 0$$

$$c_1 + c_3 + c_4 + c_6 = 0$$

$$c_2 + c_3 + c_4 + c_7 = 0$$

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 \end{bmatrix}_{k \times n}$$

$$H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}_{r \times n}$$

Codewords of (7,4) Hamming code

☐ It can be checked that $d_{\min} = 3$.

Either detect all single-bit errors and double-bit errors, or correct all single-bit errors, but not both.

$\mathbf{c_1}$	\mathbf{c}_2	\mathbf{c}_3	c ₄	c ₅	c ₆	c ₇
0	0	0	0	0	0	0
0	0	0	1	1	1	1
0	0	1	0	0	1	1
0	0	1	1	1	0	0
0	1	0	0	1	0	1
0	1	0	1	0	0	1
0	1	1	0	1	1	0
0	1	1	1	0	0	1
1	0	0	0	1	1	0
1	0	0	1	0	0	1
1	0	1	0	1	0	1
1	0	1	1	0	1	0
1	1	0	0	0	1	1
1	1	0	1	1	0	1
1	1	1	0	0	0	0
1	1	1	1	1	1	1

Fast Method to Determine d_{\min}

Theorem: Given any linear code,

 d_{\min} = min. weight of all non-zero codewords

Proof: Pick two distinct codewords *x* and *y*.

$$d(x,y) = w(x+y)$$
 $(x_i + y_i = 1 \text{ if the two bits are different})$
= $w(z)$ for some $z \in C$. (property of linear code)

Note that z is non-zero since $x \neq y$. Q.E.D.

• Verify it using the (7,4) Hamming code in the previous slide!

Example: (7, 4) Hamming Code

$$y = (1, 1, 0, 1, 0, 0, 1)$$

$$\Box H = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}_{7}$$

1st and 3rd circles are in error.

If one bit is in error, which one is it?

Recommended Reading

- Section 15.5, K. Levasseur and A. Doerr, *Applied Discrete Structures*, lulu.com, 2017.
 - Available online:

http://faculty.uml.edu/klevasseur/ads/

□ Chapters 5-7, R. Hill, *A First Course in Coding Theory*, Oxford 1986.