RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION EXAMEN DU BACCALAURÉAT SESSION 2019

Session	de c	ontrôle
---------	------	---------

Épreuve : Mathématiques

Section: Mathématiques

Durée : 4h

Coefficient de l'épreuve : 4

Le sujet comporte 4 pages numérotées de 1/4 à 4/4.

La page 4/4 est à rendre avec la copie

Exercice1: (3 points)

Soient ABC un triangle rectangle en A et \triangle la médiatrice du segment [AB].

Répondre par « Vrai » ou « Faux » en justifiant la réponse.

- 1) $t_{\overline{BC}} \circ S_{\Delta} = t_{\overline{AC}} \circ S_{(AC)}$.
- 2) $S_{(AB)} \circ h_{(A,2)} \circ S_{(AC)} = h_{(A,-2)}$
- 3) Si f est une isométrie fixant les points A et B alors f⁻¹oS_∧of est une symétrie glissante d'axe △.

Exercice 2: (4,5 points)

Dans le plan P muni d'un repère orthonormé direct $R(O, \vec{u}, \vec{v})$, on considère les points I, C, D et K d'affixes respectives 1 + i, 1 + 2i, 2i et 3i.

- 1) a) Placer les points I, C, D et K dans le repère R.
 - b) Montrer qu'il existe une unique similitude indirecte g qui transforme I en D et D en K.
 - c) Déterminer le rapport de g.
 - d) Déterminer l'image du triangle IDO.
- 2) Soit Mun point du plan et M' son image par g.

On désigne par z et z'les affixes respectives de M et M'.

- a) Montrer que z' = $-\frac{1}{2}(1 + i)\bar{z} + 1 + 2i$.
- b) Soit Ω le centre de g. Déterminer l'affixe de Ω .
- c) Vérifier que K est le milieu du segment [ΩI].
- d) Construire alors le centre Ω et l'axe Δ de g.
- 3) Soit h = gog.
 - a) Montrer que h est une homothétie de rapport $\frac{1}{2}$.
 - b) On considère la suite de points $(A_n)_{n\in\mathbb{N}}$ définie par : $A_0=I$ et pour tout $n\in\mathbb{N},\ A_{n+2}=h(A_n)$. Déterminer et construire les points A_2 et A_4 .
 - c) Soit $S_n = A_0A_2 + A_2A_4 + ... + A_{2n-2}A_{2n}$.

Montrer que la suite $(S_n)_{n\in\mathbb{N}}$ est convergente et déterminer sa limite.

Exercice 3: (3 points)

Une entreprise fabrique des pièces électroniques pour une marque de voitures. Une étude statistique a prouvé que 6% des pièces fabriquées sont défectueuses.

L'unité de contrôle rejette 97% des pièces défectueuses et 2% des pièces non défectueuses.

On choisit une pièce au hasard et on la soumet à un test de contrôle.

On note D : " la pièce est défectueuse." et R : "la pièce est rejetée par l'unité de contrôle."

- 1) Traduire la situation par un arbre pondéré de probabilités.
- a) Calculer la probabilité que la pièce soit défectueuse et ne soit pas rejetée par l'unité de contrôle.
 - b) On dit qu'il ya erreur de contrôle lorsque une pièce défectueuse est acceptée ou une pièce non défectueuse est rejetée. Calculer la probabilité pour qu'il y ait une erreur de contrôle.
- 3) Montrer que la probabilité pour que la pièce soit acceptée est égale à 0,923.
- 4) Pour la commercialisation de ses pièces l'entreprise décide de faire passer chaque pièce à trois contrôles successifs mais indépendants :
 - Si la pièce est acceptée par les trois contrôles, elle sera commercialisée avec le logo de la marque de voiture.
 - > Si elle est acceptée uniquement par deux contrôles, elle sera commercialisée sans le logo de la marque de voiture.
 - Si elle est acceptée uniquement par un contrôle ou rejetée, elle sera détruite.
 - a) Montrer que la probabilité pour que la pièce soit commercialisée sans le logo de la marque de voiture est $3\times(0,923)^2\times(0,077)$.
 - b) Déterminer la probabilité pour que la pièce soit détruite.

Exercice 4: (4 points)

Dans l'espace muni d'un repère orthonormé $(O, \vec{i}, \vec{j}, \vec{k})$, on considère les plans P_1 et P_2 d'équations respectives $P_1: 3x - 2y - 2z = 1$ et $P_2: 4x - 11y + 2z = 0$.

- 1) a) Montrer que P_1 et P_2 se coupent suivant une droite Δ .
 - b) Donner une représentation paramétrique de Δ .

Dans la suite de l'exercice, on se propose de déterminer les points de Δ à coordonnées entières.

- On considère dans Z×Z l'équation (E): 7x 13y = 1.
 Vérifier que (2, 1) est une solution de (E) et résoudre l'équation (E).
- 3) On considère dans $\mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$ le système (S) : $\begin{cases} 3x 2y 2z = 1, \\ 4x 11y + 2z = 0. \end{cases}$
 - a) Soit $(x, y, z) \in \mathbb{Z} \times \mathbb{Z} \times \mathbb{Z}$.

 Montrer que (x, y, z) est solution de (S) si et seulement si $\begin{cases} 7x 13y = 1, \\ 2z = 11y 4x. \end{cases}$
 - b) En déduire l'ensemble des points de Δ à coordonnées entières.

Exercice 5: (5,5 points)

Soit la fonction g définie sur \mathbb{R} par $g(x) = e^{\frac{-1}{2x^2}}$ si $x \neq 0$ et g(0) = 0. On désigne par \mathscr{C} sa courbe représentative dans un repère orthonormé $\left(0, \vec{i}, \vec{j}\right)$ du plan.

- 1) a) Montrer que g est continue sur \mathbb{R} .
 - b) Etudier la parité de g. Interpréter graphiquement le résultat.
- 2) a) Calculer $\lim_{x\to 0^+} \frac{g(x)}{x}$ et en déduire que gest dérivable en 0.
 - b) Montrer que g'est dérivable sur \mathbb{R}^* et que g'(x) = $\frac{g(x)}{x^3}$, pour tout $x \neq 0$.
 - c) Dresser le tableau de variation de g.
 - d) Montrer que g réalise une bijection de $[0, +\infty[$ sur [0,1[.
 - e) On désigne par g^{-1} la fonction réciproque de g, expliciter $g^{-1}(x)$ pour tout $x \in [0,1]$.
- 3) a) Montrer que & admet deux points d'inflexions A et B que l'on déterminera. (A désigne le point d'inflexion d'abscisse positive).
 - b) En annexe, on a représenté dans le repère $\left(O,\,\vec{i},\,\vec{j}\right)$ les courbes \mathscr{C}_1 et \mathscr{C}_2 d'équations respectives $y=e^x$ et $y=x^2$, pour tout $x\in\mathbb{R}$.

Construire dans le même repère les points A et B et tracer la courbe $\,\mathscr{C}\,$

- 4) Soit f la fonction définie sur $[0, +\infty[$ par $f(x) = g^2(x)$. Justifier que f est croissante sur $[0, +\infty[$.
- 5) Soit un entier $n \ge 2$. On pose $V(n) = \pi \int_0^n f(t) dt$.
 - a) Interpréter graphiquement V(n).
 - b) Montrer que $V(n) \ge \pi \int_{\sqrt{n}}^{n} f(t) dt$.
 - c) En déduire que $\lim_{n\to +\infty} V(n) = +\infty$.
 - d) Montrer que $V(n) \le n\pi$.
 - e) Déterminer $\lim_{n\to+\infty} \frac{V(n)}{n}$.

Section:	Signatures des surveillants
Nom et Prénom :	
Date et lieu de naissance :	
×	

Épreuve : Mathématiques - Section : Mathématiques - Session de contrôle (2019)

Annexe à rendre avec la copie

