T(n) =
$$\int n \int (\partial n) + N$$

Let $n = 2^k$, we get

 $T(2^k) = 2^k \int T(2^k) + 2^k$

divide 2^k for both side.

 $\frac{T(2^k)}{2^k} = \frac{T(2^k)}{2^k}$

Then $G(k) = \frac{T(2^k)}{2^k}$

Then $G(k) = G(k) + 1$

According to blaster Theorem.

 $a = 1 \quad b = 2 \quad f(n) = 1$, $(\log^a e^a = \log^a e^b)$
 $a = 1 \quad b = 2 \quad f(n) = 1$, $(\log^a e^a = \log^a e^b)$
 $a = 1 \quad b = 2 \quad f(n) = 1$, $(\log^a e^a)$
 $a = 1 \quad b = 2 \quad f(n) = 1$, $(\log^a e^a)$
 $a = 1 \quad b = 2 \quad f(n) = 1$, $(\log^a e^a)$
 $a = 1 \quad (\log^a e^a)$
 $a = 1 \quad \log^a e^a$
 $a = 1 \quad \log^a e^a$