Quick Sort

- Quick Sort is an efficient, comparison-based, divide-and-conquer sorting algorithm.
- It works by selecting a "pivot" element and partitioning the array into two sub-arrays:
 - Elements less than or equal to the pivot.
 - Elements greater than the pivot.
- It recursively applies the same process to the subarrays.
- In-Place: It sorts the array in place, meaning it requires only a small, constant amount of additional storage space.

Quick sort algorithm

Input:

A list of elements to be sorted.

Output:

A sorted list in ascending order.

Steps:

- Choose a Pivot:
 - Select an element from the list as the pivot
- 2. Partition the List:
 - Rearrange elements such that those less than the pivot are on the left, and those greater are on the right.
- 3. Recursively Sort Subarrays:
 - Recursively apply the above steps to the sub-arrays of elements with smaller values and greater values.

How quick sort works

99.99 49.9	299.49	19.95	199.95	129.99
------------	--------	-------	--------	--------

Select a pivot

99.99	49.95	299.49	19.95	199.95	129.99
-------	-------	--------	-------	--------	--------

• Put all the elements that are less than the pivot on its left side and elements that are greater than on its right side

99.99	49.95	19.95	129.99	199.95	299.49

Recursively sort left and right of the pivot

How quick sort works

• First call to partition:

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99

- Iteration 1:
- J = 0
- i = -1

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99
i 1					

- Iteration 1:
- J = 0
- i = 0

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99
i	J				

- Iteration 2:
- J = 1
- i = 0

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99
	i J				

- Iteration 2:
- J = 1
- i = 1

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99
	i	J			

- Iteration 3:
- J = 2
- i = 1

Comparison:

299.49 < 129.99 (False) i +=1

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99
	i		J		

- Iteration 4:
- J = 3
- i = 1

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99
		i	J		

- Iteration 4:
- J = 3
- i = 2

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	299.49	19.95	199.95	129.99
		i	J		

- Iteration 4:
- J = 3
- i = 2

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	19.95	299.49	199.95	129.99
		i	J		

- Iteration 4:
- J = 3
- i = 2

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	19.95	299.49	199.95	129.99
		j		J	

- Iteration 5:
- J = 4
- i = 2

Comparison:

199.95 < 129.99 (false) i +=1

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	19.95	299.49	199.95	129.99
		i		J	

- Final swap:
- J = 4
- i = 2

final:

swap prices[i + 1]
with prices[high]

- First call to partition:
 - Pivot = prices[high] = 129.99.
 - i = low -1 = -1.

low					high
0	1	2	3	4	5
99.99	49.95	19.95	129.99	199.95	299.49
		j		J	

- Final swap:
- J = 4
- i = 2

final:

swap prices[i + 1]
with prices[high]

• Result from first partition:

low					high
0	1	2	3	4	5
99.99	49.95	19.95	129.99	199.95	299.49
		i		J	

- Final swap:
- J = 4
- i = 2

Return i+1