Orbit Classification For Prediction / NASA

Istraživanje podataka I

Opis skupa podataka

- 1748 instanci
- 11 numeričkih atributa i 1 kategorički

	a (AU)	e	i (deg)	w (deg)	Node (deg)	M (deg)	q (AU)	Q (AU)	P (yr)	H (mag)	MOID (AU)	class
0	1.078066	0.826854	22.825495	31.382966	88.010681	215.528772	0.1867	1.97	1.12	16.90	0.034507	APO*
1	1.245304	0.335342	13.337482	276.893024	337.207958	104.155607	0.8277	1.66	1.39	15.60	0.030669	APO*
2	1.470264	0.559922	6.352995	285.852564	35.736768	174.626213	0.6470	2.29	1.78	16.25	0.025795	APO*
3	1.776025	0.650141	39.832538	267.791993	356.903343	173.188556	0.6214	2.93	2.37	15.20	0.003551	APO*
4	1.874123	0.764602	1.326399	43.388048	349.694944	235.158622	0.4412	3.31	2.57	18.80	0.011645	APO*

Histogrami atributa

Matrica korelacije

Nedostajući podaci i elementi van granica

data.isna().sum()						
a (AU)	0					
e	0					
i (deg)	0					
w (deg)	0					
Node (deg)	0					
M (deg)	0					
q (AU)	0					
Q (AU)	0					
P (yr)	0					
H (mag)	0					
MOID (AU)	0					
class	0					
dtype: int64						

	lower	min	num_lower	upper	max	num_upper	percantage
a (AU)	-0.104511	0.635223	0	3.546646	3.888719	1	0
e	0.041192	0.025425	1	1.020715	0.956042	0	0
i (deg)	-15.987849	0.146084	0	39.647466	75.412403	65	4
w (deg)	-160.797589	0.521838	0	523.014817	359.662669	0	0
Node (deg)	-178.426441	0.136042	0	517.340838	359.854602	0	0
M (deg)	-204.964619	0.052165	0	564.446926	359.825201	0	0
q (AU)	0.138375	0.092800	10	1.414575	1.060100	0	1
Q (AU)	-0.957500	0.960000	0	6.302500	7.010000	2	0
H (mag)	15.950000	14.100000	25	24.350000	22.400000	0	1
MOID (AU)	-0.024570	0.000010	0	0.070444	0.049987	0	0

Pre izbacivanja autlajera

Posle izbacivanja autlajera

Klasifikacija

Parametri prosleđeni

GridSearch-U criterion : određuje kriterijum koji se koristi za merenje kvaliteta podela u svakom čvoru stabla. Dva najčešće korišćena kriterijuma su "gini" i "entropy"

"max_depth": kontroliše maksimalnu dubinu stabla. Dubina stabla odnosi se na broj čvorova od korena do lista i time se može sprečiti preprilagođavanje modela na trening podacima

"min_samples_leaf": određuje minimalni broj instanci koje moraju biti u svakom listu stable i može pomoći u sprečavanju preprilagođavanja

```
model.feature_importances_
array([0.52212145, 0. , 0. , 0. , 0. , 0. , 0. ])
```

Stabla odlučivanja

```
estimator = GridSearchCV(DecisionTreeClassifier(), param_grid = params, scoring = 'accuracy', cv = 4, verbose = 4)

estimator.fit(X_train, y_train)

Fitting 4 folds for each of 64 candidates, totalling 256 fits

estimator.best_estimator_

DecisionTreeClassifier(criterion='entropy', max_depth=3, min_samples_leaf=2)
```


 Kao napredniju tehniku koristimo RandomForest za poboljšanje performansi modela za klasifikaciju. Ova tehnika radi tako što kombinuje više stabala odlučivanja (Decision Trees) u ansambl, pri čemu svako stablo daje svoju predikciju. Random Forest koristi tehniku "bagging" (Bootstrap Aggregating) kako bi kreirao različite podskupove trening podataka za svako stablo.

200						-70					
	randon	n_	fore	st_re	eport(mod	el, X_t	est, y_t	est)		
Cor	nfusio	n	Matr	rix:							
ГΓ	29	0	0	0	0	0]					
]			0	0		0]					
ij			443			0]					
[0	2	_	0]					
]			1	0		0]					
ľ	_	0	0	0	0	1]	1				
١.		•				-].	1				
C1.	assifi	٠,	ation	Ron	ont:						
CI	322111	_	30101		ision		nocall	f1-scor		support	
				prec	151011		recarr	11-3001	E	Support	
		A۱	40*		0.97		1.00	0.9	8	29	
		1	ΔPO		1.00		1.00	1.0	10	4	
		ΑF	*00		1.00		1.00	1.0	10	444	
		1	ΔTE		1.00		1.00	1.0	10	2	
		Α	ΓE*		1.00		0.98			45	
		I	÷0*		1.00		1.00	1.0		1	
		_	-					2.0	_	_	
	accu	ra	acv					1.0	0	525	
	macro		-		0.99		1.00	0.9	9	525	
wei	ighted		_		1.00		1.00	1.0		525	
	-6				_,						

```
Precision = True Positives / (True Positives + False Positives)

Recall = True Positives / (True Positives + False Negatives)

F1 Score = 2 * (Precision * Recall) / (Precision + Recall)

Accuracy = \frac{TrueNegatives + TruePositive}{TruePositive + FalsePositive + TrueNegative}
```

K-najbližih suseda

```
params = {
    'n_neighbors' : range(2,20),
    'weights' : ['uniform', 'distance'],
    'p' : [1,2]
}
estimator = GridSearchCV(KNeighborsClassifier(), params, cv = 4, verbose = 4)
```

"n_neighbors":određuje broj najbližih suseda koji će se uzeti u obzir pri donošenju odluke o klasi novih instanci.

"weights": Parametar koji kontroliše težine suseda. Može biti postavljen na "uniform" (svi susedi imaju istu težinu) ili "distance" (susedi imaju težine obrnuto proporcionalne rastojanju od nove instance).

"p": Parametar koji određuje koji tip rastojanja se koristi. Ako je postavljen na 1, koristi se Manhattan rastojanje (L1 norma), dok se za vrednost 2 koristi Euklidsko rastojanje (L2 norma).

Koristimo tehniku kombinovanog oversampling-a i undersampling-a, SMOTE-ENN

```
estimator.best_estimator_

KNeighborsClassifier(n neighbors=6, p=1, weights='distance')
```

```
Confusion matrix:

[[ 7  0  22  0  0  0]

[ 0  0  4  0  0  0]

[ 4  0  438  0  2  0]

[ 0  0  1  0  1  0]

[ 0  0  18  0  27  0]

[ 0  0  0  0  1  0]]

Accuracy: 0.8990476190476191

Precision: 0.8990476190476191

F1 score: 0.8990476190476191
```

```
Confusion matrix:

[[ 12  0  16  0  1  0]

[ 0  0  4  0  0  0]

[ 31  7  390  1  15  0]

[ 0  0  1  0  1  0]

[ 0  0  13  3  26  3]

[ 0  0  0  0  0  1]]

Accuracy: 0.8171428571428572

Precision: 0.8171428571428572

F1 score: 0.8171428571428572
```

Kao ansambl tehniku za unapređenje KNN možemo iskoristiti
BaggingClassifier. Ovaj ansambl algoritam funkcioniše tako što generiše više
podskupova (bootstrap uzoraka) od trening podataka, a zatim trenira više

kopija osnovnog algoritma (u ovom slučaju KNN) na svakom od ovih

podskupova.

Con	tusi	on	ma	trix:			
]]	22		0	45	0	0	0]
[0		0	9	0	1	0]
[0		0	1026	0	6	0]
[0		0	2	0	3	0]
[0		0	32	0	72	0]
[0		0	2	0	2	0]]
Acc	urac	у:	0.	91653	02782	324058	
Pre	cisi	on:	0	.9165	30278	2324058	
Rec	all:	0.	91	65302	782324	4058	
F1	scor	e:	0.	91653	02782	324058	
Con	fusi	on	ma	trix:			
]]	3	0	_			_	
		0	2	6 0	0	0]	
[0	0		6 0 4 0	_	0] 0]	
]		0			0	_	
_	0	0 0	43	4 0	9 4	0]	
]	0 3 0	0 0 0	43	4 0 7 0 1 0	9 4	0] 0]	
]	0 3 0	0 0 0	43	4 0 7 0 1 0	0 4 1 16	0] 0] 0]	
]	0 3 0 0	0 0 0 0	43	4 0 7 0 1 0 9 0 0 0	0 4 1 16 1	0] 0] 0] 0]	
[[[Acc	0 3 0 0 0 urac	0 0 0 0 0 y:	43 2 0.	4 0 7 0 1 0 9 0 0 0 86857	0 4 1 16 1	0] 0] 0] 0] 0]	
[[Acc Pre	0 3 0 0 0 urac	0 0 0 0 0 y:	43 2 0.	4 0 7 0 1 0 9 0 0 0 86857	0 4 1 16 1	0] 0] 0] 0] 0]] 714285	
[[Acc Pre Rec	0 3 0 0 0 urac cisi	0 0 0 0 y: on:	43 2 0. 86	4 0 7 0 1 0 9 0 0 0 86857 .8685	0 4 1 16 1 14285 71428	0] 0] 0] 0] 0]] 714285	

Analiza glavnih komponenti(PCA)

 PCA radi tako što transformiše originalne atribute u novi skup nezavisnih atributa, nazvane glavne komponente, koje su linearna kombinacija

K-sredina

Algoritam K-sredina (K-means) je algoritam za klasterovanje koji funkcioniše tako što deli skup podataka u K klastera, gde je K unapred definisani broj klastera.

Iterativno izvršava sledeće korake:

- Svaka tačka se dodeljuje najbližem centru, formirajući time klasterove
- Centri se ponovo računaju kao srednje vrednosti tačaka u svakom klasteru
- Postupak se ponavlja dok se centri ne stabilizuju ili dok ne bude ispunjen

SSE (Sum of Squared Errors): meri sumu kvadratnih udaljenosti svake tačke od njenog najbližeg centra klastera

Silhouette koeficijent: meri koliko je svaka tačka slična tačkama u svom klasteru u poređenju sa tačkama u drugim klasterima

Bisekting K-Means

 Bisekting K-Means (Bisektni K-sredina) je varijacija algoritma K-sredina koja se koristi za podelu podataka na K klastera putem hijerarhijskog pristupa. Ovaj algoritam počinje sa jednim klasterom koji obuhvata sve tačke i zatim iterativno deli klaster na dva manja klastera tako da se minimizira suma kvadratnih udaljenosti unutar svakog podklastera.

Algoritam sakupljajućeg hijerarhijskog

klasterovanja

Algoritam sakupljajućeg
hijerarhijskog klasterovanja
je metoda klasterovanja koja
počinje sa svakom tačkom
kao zasebnim klasterom i
iterativno spaja najbliže
klasterove kako bi se
formirali hijerarhijski klasteri

Pravila pridruživanja

Primenjuje se kako bi se otkrili korisni obrasci i veze između različitih atributa u velikim skupovima podataka. Apriori algoritam radi tako što identifikuje česte asocijacije među stavkama i stvara "ako-onda" pravila koja opisuju te veze.

- Pouzdanost (eng. confidence): Ova metrika meri koliko često se pravilo stvarno ostvaruje u stvarnim podacima. Izražava se kao verovatnoća da će "onda" deo pravila biti tačan, ako je "ako" deo tačan.
- Podrška (eng. support): Ova metrika meri koliko često se pravilo pojavljuje u celokupnom datasetu.

Consequent	Antecedent	Support %	Confidence %
class = APO*	q (AU)_BIN = 4 e_BIN = 4	12.357	99.537
class = APO*	w (deg)_BIN = 2 q (AU)_BIN = 4	10.469	97.268
class = APO*	q (AU)_BIN = 4 H (mag)_BIN = 4	11.67	96.569
class = APO*	e_BIN = 4 H (mag)_BIN = 4	12.3	95.349
class = APO*	q (AU)_BIN = 4 i (deg)_BIN = 1	20.195	95.184
class = APO*	q (AU)_BIN = 4	29.176	94.51
class = APO*	w (deg)_BIN = 2	22.769	94.221
class = APO*	e_BIN = 4 i (deg)_BIN = 1	26.087	94.079
class = APO*	w (deg)_BIN = 2 i (deg)_BIN = 1	15.675	93.796
class = APO*	e_BIN = 4	34.039	93.445
class = APO*	w (deg)_BIN = 4 i (deg)_BIN = 1	16.362	93.007
class = APO*	w (deg)_BIN = 4	24.886	92.874
class = APO*	q (AU)_BIN = 4 H (mag)_BIN = 5	11.041	91.71
class = APO*	e_BIN = 4 H (mag)_BIN = 5 i (deg)_BIN = 1	10.584	91.351
class = APO*	H (mag)_BIN = 3 i (deg)_BIN = 1	10.526	91.304
class = APO*	MOID (AU) BIN = 1	10.170	00.070

