Съдържание

1	Правила за заместване	1
	1.1 Стратегии за разрешаване на конфликти	1
	1.2 Токенизация чрез правила за заместване	1
2	Крайни Автомати	2
3	Детерминирани Крайни Автомати	3
4	Бимашини	3

1 Правила за заместване

Дефиниция 1.1. (Регулярна стрингова релация.)

Дефиниция 1.2. (Конкатенация на релации.)

Дефиниция 1.3. (Правило на заместване като регулярна релация.)

1.1 Стратегии за разрешаване на конфликти

1.2 Токенизация чрез правила за заместване

Токенизираща релация за даден език можем да дефинираме като множество от правила, които представляват регулярни релации. Тези правила биват два вида - такива, които маркират дадена лексема, или нормализиращи правила, които служат за предварителна обработка входния текст, като на пример за премахване на излишни символи.

Пример 1.2.1. Лексическа граматика на аритметичен израз с естествени числа.

- 1. WHITESPACE+ $\rightarrow \epsilon$
- 2. $[0-9] + \rightarrow \dots END_OF_TOKEN$
- 3. $+ |-| * | \setminus \rightarrow \dots END_OF_TOKEN$

Правила 2 и 3 маркират лексемите съответно за естествено число и аритметичен оператор. Правило 1 е нормализиращо правило, което премахва интервалите от входната дума, тъй като те не носят значение за аритметичния израз.

Всяко от тези правила само по себе си представлява регулярна релация, като токенизиращата релация получаваме като резултат от композицията на нормализиращото

правило с обединението на лексическите правила. С други думи, ако за всяко правило i построим краен преобразувател T_i , токенизиращата релация под стратегията най-ляво-най-дълго срещане можем да представим както следва

$$R^{LML}(T_1) \circ R^{LML}(T_2 \cup T_3)$$

2 Крайни Автомати

Дефиниция 2.1. *Краен автомат* дефинираме като петорка $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$, където

- \bullet Σ е крайна азбука от символи
- Q е крайно множество от състояния
- ullet $I\subseteq Q$ е множество от начални състояния
- $F \subseteq Q$ е множество от финални състояния
- $\Delta \subseteq Q \times \Sigma \times Q$ е релация на прехода

Тройки от вида $\langle q_1, m, q_2 \rangle \in \Delta$ наричаме npexodu и казваме, че започва състояние q_1 , има етикет m и завършва в състояние q_2 . Алтернативно, тези преходи обозначаваме като $q_1 \to^m q_2$.

Дефиниция 2.2. Нека \mathcal{A} е краен автомат. *Разширена релация на прехода* $\Delta^* \subseteq Q \times \Sigma^* \times Q$ дефинираме индуктивно:

- $\langle q, \epsilon, q \rangle \in \Delta^*$ за всяко $q \in Q$
- $\langle q_1,wa,q_2\rangle\in\Delta^*$ за всяко $q_1,q_2,q\in Q,\ a\in\Sigma,w\in\Sigma^*,$ ако $\langle q_1,w,q\rangle\in\Delta^*$ и $\langle q,a,q_2\rangle\in\Delta$

Дефиниция 2.3. Нека $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$ е краен автомат. Път в \mathcal{A} наричаме крайна редица от преходи с дължина k > 0

$$\pi = q_0 \to^{a_1} q_1 \to^{a_2} \dots \to^{a_k} q_k$$

където $\langle q_{i-1}, a_i, q_i \rangle \in \Delta$ за $i=1\dots k$. Казваме, че *пътмят* започва от състояние q_0 и завършва в състояние q_k . Елементите q_0, q_1, \dots, q_k наричаме *състояния на пътмя*, а думата $w=a_1a_2\dots a_k$ наричаме *етикет на пътмя*.

 $Успешен \ n \pi m$ в автомата е $n \pi m$, който започва от начално състояние и завършва във финално състояние.

Дефиниция 2.4. Нека \mathcal{A} е краен автомат. Множеството от етикети на всички успещни пътища в \mathcal{A} наричаме eзик на \mathcal{A} и обозначаваме като $L(\mathcal{A})$.

$$L(\mathcal{A}) = \{ w \in \Sigma^* \mid \exists i \in I, f \in F : \langle i, w, f \rangle \in \Delta^* \}$$

Дефиниция 2.5. Нека \mathcal{A}_1 и \mathcal{A}_2 са крайни автомати. Казваме, че \mathcal{A}_1 е еквивалентен на \mathcal{A}_2 ($\mathcal{A}_1 \equiv \mathcal{A}_2$), ако езиците им съвпадат ($L(\mathcal{A}_1) = L(\mathcal{A}_2)$)

3 Детерминирани Крайни Автомати

Дефиниция 3.1. Краен автомат $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$ е детерминиран, ако:

- \mathcal{A} има единствено начално състояние $I = \{q_0\}.$
- За всяко $q_1 \in Q$ и символ $a \in \Sigma$, съществува не повече от едно $q_2 \in Q$, такова че $\langle q_1, a, q_2 \rangle \in \Delta$.

Иначе казано, релацията на прехода може да се представи като частична функция $\delta: Q \times \Sigma \to Q$ и детерминираните автомати можем преставим в следния вид

$$\mathcal{A}_D = \langle \Sigma, Q, q_0, F, \delta \rangle$$

Предимството на demep munupanume автомати се изразява в това, че могат да разпознават дали дума w принадлежи на езика на автомата $L(\mathcal{A}_D)$ за линейно време спрямо дължината ѝ - O(|w|).

Дефиниция 3.2. Нека $A_D = \langle \Sigma, Q, q_0, F, \delta \rangle$ е детерминиран краен автомат. Разширена функция на прехода $\delta^* : Q \times \Sigma^* \to Q$ дефинираме индуктивно:

- $\delta^*(q, \epsilon) = q$
- $\delta^*(q, aw) = \delta^*(\delta(q, a), w)$, където $a \in \Sigma, w \in \Sigma^*$

Теорема 3.1. За всеки краен автомат $\mathcal{A} = \langle \Sigma, Q, I, F, \Delta \rangle$, съществува еквивалентен на него, детерминиран краен автомат \mathcal{A}_D .

 \square оказателство.

4 Бимашини

Дефиниция 4.1. *Бимашина* дефинираме като тройка $\mathcal{B} = \langle \mathcal{A}_L, \mathcal{A}_R, \psi \rangle$, където

• $\mathcal{A}_L = \langle \Sigma, Q_L, s_L, Q_L, \delta_L \rangle$ и $\mathcal{A}_R = \langle \Sigma, Q_R, s_R, Q_R, \delta_R \rangle$ са детерминирани крайни автомати и ги наричаме съответно ляв и десен автомати на бимашината. Всички състояния на тези автомати са финални.

• $\psi: (Q_L \times \Sigma \times Q_R) \to \Sigma^*$ е частична функция, която наричаме изходна функция.

Дефиниция 4.2. Нека $\mathcal{B} = \langle \mathcal{A}_L, \mathcal{A}_R, \psi \rangle$ е класическа бимашина, Σ е азбуката на на автоматите \mathcal{A}_L и \mathcal{A}_R и $w = a_1 a_2 \dots a_k \in \Sigma^*$ $(k \geq 0)$, дума и $a_i \in \Sigma$ $(1 \leq i \leq k)$ са букви. Ако $\delta_L^*(a_1 a_2 \dots a_k)$ и $\delta_R^*(a_k a_{k-1} \dots a_1)$ са дефинирани, то можем да получим двата пътя:

$$\pi_L = l_0 \to^{a_1} l_1 \to^{a_2} \dots l_{k-1} \to^{a_k} l_k$$

$$\pi_R = r_0 \leftarrow^{a_1} r_1 \leftarrow^{a_2} \dots r_{k-1} \leftarrow^{a_k} r_k$$

Където π_L и π_R са пътища в съответно левия и десния автомат и думата w се разпознава от \mathcal{A}_L в посока от ляво на дясно, а от \mathcal{A}_R , съответно от дясно на ляво. Ако за всички тройки $\langle l_{i-1}, a_i, r_i \rangle$, изходната функция $\psi(l_{i-1}, a_i, r_i)$ е дефинирана, то двойката пътища $\langle \pi_L, \pi_R \rangle$ наричаме yспешно изпълнение на \mathcal{B} с етикет $w = a_1 a_2 \dots a_k$ и uзхоd

$$\mathcal{O}_{\mathcal{B}}(w) = \psi(l_0, a_1, r_1) \cdot \psi(l_1, a_2, r_2) \cdot \ldots \cdot \psi(l_{k-1}, a_k, r_k)$$

 $\mathcal{O}_{\mathcal{B}}$ наричаме *изходна функция на бимашината* и казваме, че бимашината *превежда* w в m, ако $\mathcal{O}_{\mathcal{B}}(w) = m$, където m е резултат от конкатенация на всички $\psi(l_{i-1}, a_i, r_i)$ $1 \le i \le k$.

Бимашината чете входната дума и за всеки символ извежда дума над азбуката си. На всяка стъпка изведената от изходната функция ψ дума зависи от входния символ и двете състояния в които биха преминали левият и десният автомат, четейки входа съответно от ляво на дястно и от дясно на ляво. Крайният резултат е конкатенацията на всички така изведени думи.

Пример 4.0.1. (Бимашина и изпълнение) ...

Дефиниция 4.3. Нека $\mathcal{B} = \langle \mathcal{A}_L, \mathcal{A}_R, \psi \rangle$ е бимашина. *Разширената изходна функция* ψ^* дефинираме индуктивно:

- $\psi^*(l,\epsilon,r)=\epsilon$ за всяко $l\in Q_L,r\in Q_R$
- $\psi^*(l, wa, r) = \psi^*(l, w, \delta_R(r, a)) \cdot \psi(\delta_L^*(l, w), a, r)$, sa $l \in Q_L, r \in Q_R, w \in \Sigma^*, a \in \Sigma$

Дефиниция 4.4. Бимашина $\mathcal{B} = \langle \mathcal{A}_L, \mathcal{A}_R, \psi \rangle$ наричаме *тотална*, ако функциите на прехода $\delta_L: Q_L \times \Sigma \to Q_L$ и $\delta_R: Q_R \times \Sigma \to Q_R$ на левия и десния автомат съответно, както и функцията на изхода $\psi: (Q_L \times \Sigma \times Q_R) \to \Sigma^*$ са *тотални*.