Tutorial 3

Determinants

- 1. If a 3×3 matrix A has |A| = -1, find $|\frac{1}{2}A|, |-A|, |A^2|$ and $|A^{-1}|$.
- 2. Reduce $A=\begin{bmatrix}1&1&1\\1&2&3\\1&2&2\end{bmatrix}$ to U to find |A| as the product of pivots.
- 3. Using variables a, b, c, construct a 3×3 skew-symmetric matrix $(A = -A^T)$. Show that the determinant of such a matrix is equal to 0.
- 4. Find the volume of the parallelepiped with one vertex at the origin and adjacent vertices at (1,3,0), (-2,0,2) and (-1,3,-1).
- 5. In the figure below, let S be the tetrahedron in \mathbb{R}^3 with vertices at the vectors $\mathbf{0}, \mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ (\mathbf{e}_i 's are standard unit vectors) and let S' be the tetrahedron with vertices at vectors $\mathbf{0}, \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
 - a. Find the standard matrix for the linear transformation that maps S to S'.
 - b. Find a formula for the volume of the tetrahedron S'. (Volume of a tetrahedron = $(1/3) \times (\text{area of base}) \times \text{height}$).

Answers

- 1. -1/8, 1, 1, -1
- 2. 1
- 3.
- 4. 18
- 5. a. $A = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix}$ b. $(1/6) \times \operatorname{abs}(|A|)$

 End