# mml-Linear Algebra

# Linear Algebra

# **Systems of Linear Equations**

For a systematic approach to solving systems of linear equations, we collect

- coefficients  $a_{ij}$  into **vectors**
- and vectors into matrix

$$\begin{bmatrix} a_{11} \\ \vdots \\ a_{m1} \end{bmatrix} x_1 + \begin{bmatrix} a_{12} \\ \vdots \\ a_{m2} \end{bmatrix} x_2 + \dots + \begin{bmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{bmatrix} x_n = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix} \qquad \Longleftrightarrow \begin{bmatrix} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}.$$

$$\iff \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix}.$$

### **Matrix**

With  $m,n\in N$  a real-valued (m,n) matrix A is an  $m\cdot n$ -tuple of elements  $a_{ij}, i=1,2,...,3, j=1,2,...,3$  which is ordered according to a rectangular scheme consisting of m rows and n columns

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \quad a_{ij} \in \mathbb{R}.$$

# **Addition and Multiplication**

#### Addition

The tow matrices should be in the same shape.

$$\mathbf{A} + \mathbf{B} := \begin{bmatrix} a_{11} + b_{11} & \cdots & a_{1n} + b_{1n} \\ \vdots & & \vdots \\ a_{m1} + b_{m1} & \cdots & a_{mn} + b_{mn} \end{bmatrix} \in \mathbb{R}^{m \times n}.$$

#### Multiplication

The matrix of B should have the same rows as the columns of the matrix of A, multiply the elements of the ith row of A with the jth column of B and sum them up.

For matrices  $A \in \mathbb{R}^{m \times n}$ ,  $B \in \mathbb{R}^{n \times k}$ , the elements  $c_{ij}$  of the product  $C = AB \in \mathbb{R}^{m \times k}$  are computed as

$$c_{ij} = \sum_{l=1}^{n} a_{il} b_{lj}, \qquad i = 1, \dots, m, \quad j = 1, \dots, k.$$
 (2.13)

The multiplication of matrices is actually *dot production of corresponding row and column*, and use  $A\cdot B$  to denote the operation.



 $\mathbf{AB} 
eq \mathbf{BA}$ : more likely

### Identify Matrix $\mathbf{I}_n$

Define a  $n \times n$  - matrix contains 1 on the whole diagonal and 0 everywhere else.

$$m{I}_n := egin{bmatrix} 1 & 0 & \cdots & 0 & \cdots & 0 \ 0 & 1 & \cdots & 0 & \cdots & 0 \ dots & dots & \ddots & dots & \ddots & dots \ 0 & 0 & \cdots & 1 & \cdots & 0 \ dots & dots & \ddots & dots & \ddots & dots \ 0 & 0 & \cdots & 0 & \cdots & 1 \end{bmatrix} \in \mathbb{R}^{n imes n}$$

#### **Some properties of matrix**

Associativity

$$orall A \in \mathbb{R}^{m imes n}, B \in \mathbb{R}^{n imes p}, C \in \mathbb{R}^{p imes q}: (\mathbf{AB})\mathbf{C} = \mathbf{A}(\mathbf{BC})$$

Distributivity

$$orall \mathbf{A}, \mathbf{B} \in \mathbb{R}^{m imes n}, \mathbf{C} \in \mathbb{R}^{n imes p} : (\mathbf{A} + \mathbf{B})\mathbf{C} = \mathbf{A}\mathbf{C} + \mathbf{B}\mathbf{C}$$

Multiplication with the  $\mathbf{I}_n$ 

$$orall \mathbf{A} \in \mathbb{R}^{m imes n} : \mathbf{I}_m \mathbf{A} = \mathbf{A} \mathbf{I}_n$$

#### **Inverse Matrices**

For square matrices,  ${f AB}={f I}_n={f BA}$ , then  ${f B}$  is the inverse of the matrix  ${f A}$ , denoted by  ${f A}^{-1}$ .



Not every matrix  ${f A}$  has a inverse.

If the inverse of a matrix  $\mathbf{A}$  exists, then  $\mathbf{A}$  is called *regular/invertible/nonsingular*, and it's unique. Otherwise,  $\mathbf{A}$  is called *singular/noninvertible*.

For a 2 imes 2 - matrix, its inverse is, if and only if  $a_{11}a_{22}-a_{12}a_{21} 
eq 0$ ,

$$\mathbf{A}^{-1} = \frac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

#### **Transpose Matrix**

For tow matrices  $\mathbf{A} \in \mathbb{R}^{m \times n}$ ,  $\mathbf{B} \in \mathbb{R}^{n \times m}$  with  $b_{ij} = a_{ji}$ , then  $\mathbf{B}$  is the *transpose* of  $\mathbf{A}$ , denoted by  $\mathbf{B} = \mathbf{A}^T$ .

More properties...

$$egin{aligned} m{A}m{A}^{-1} &= m{I} &= m{A}^{-1}m{A} & (m{A}^{ op})^{ op} &= m{A} \ & (m{A}m{B})^{-1} &= m{B}^{-1}m{A}^{-1} & (m{A}+m{B})^{ op} &= m{A}^{ op} + m{B}^{ op} \ & (m{A}m{B})^{ op} &= m{A}^{ op} m{A}^{ op} \end{aligned}$$

#### **Symmetric Matrix**

If  $\mathbf{A} = \mathbf{A}^T$  , then  $\mathbf{A}$  is symmetric.

Only square matrices can be symmetric.

If  $\mathbf{A}$  is invertible, then so is  $\mathbf{A}^T$ :  $(\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1} := \mathbf{A}^{-T}$ .

The sum of tow symmetric matrices is always symmetric, the product, however, is generally not.

### Multiplication by a scalar

When a scalar  $\lambda \in \mathbb{R}$  multiply to a matrix  $\mathbf{A} \in \mathbb{R}^{m \times n}$ , the  $\lambda$  times with each element in the matrix, the result is also a matrix.

#### Properties...

Associativity:

$$(\lambda \psi) \mathbf{C} = \lambda (\psi \mathbf{C}), \quad \mathbf{C} \in \mathbb{R}^{m \times n}$$

- $\lambda(BC) = (\lambda B)C = B(\lambda C) = (BC)\lambda$ ,  $B \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{n \times k}$ . Note that this allows us to move scalar values around.
- $(\lambda C)^{\top} = C^{\top} \lambda^{\top} = C^{\top} \lambda = \lambda C^{\top}$  since  $\lambda = \lambda^{\top}$  for all  $\lambda \in \mathbb{R}$ .
- *Distributivity:*

$$(\lambda + \psi)C = \lambda C + \psi C, \quad C \in \mathbb{R}^{m \times n}$$
  
 $\lambda(B + C) = \lambda B + \lambda C, \quad B, C \in \mathbb{R}^{m \times n}$ 

#### **Compact Representations of Linear Equations**

Represent linear equations in matrix form as  $\mathbf{A}x = b$ , with  $\mathbf{A}$  represents the coefficients,  $\mathbf{x}$  represents the xs.

# **Solving System of Linear Equations**

#### **Particular and General Solution**

#### The Minus-1 Trick

for reading out the solutions of a homogeneous system of linear equations Ax=0, where  $A\in\mathbb{R}^{k\times n}$ , by extending the matrix(RREF) to  $n\times n$ -matrix with n-k rows of

$$\begin{bmatrix} 0 & \cdots & 0 & -1 & 0 & \cdots & 0 \end{bmatrix}$$

Example of Minus-1 Trick

### Example 2.8 (Minus-1 Trick)

Let us revisit the matrix in (2.49), which is already in reduced REF:

$$\mathbf{A} = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \end{bmatrix} . \tag{2.53}$$

We now augment this matrix to a  $5 \times 5$  matrix by adding rows of the form (2.52) at the places where the pivots on the diagonal are missing and obtain

$$\tilde{\mathbf{A}} = \begin{bmatrix} 1 & 3 & 0 & 0 & 3 \\ 0 & -\mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 9 \\ 0 & 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 & -\mathbf{1} \end{bmatrix} . \tag{2.54}$$

From this form, we can immediately read out the solutions of Ax = 0 by taking the columns of  $\tilde{A}$ , which contain -1 on the diagonal:

$$\left\{ \boldsymbol{x} \in \mathbb{R}^5 : \boldsymbol{x} = \lambda_1 \begin{bmatrix} 3 \\ -1 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \lambda_2 \begin{bmatrix} 3 \\ 0 \\ 9 \\ -4 \\ -1 \end{bmatrix}, \quad \lambda_1, \lambda_2 \in \mathbb{R} \right\},$$
(2.55)

which is identical to the solution in (2.50) that we obtained by "insight".

# **Elementary Transformation**

Transform the equation system into a simpler form, using the Gaussian Elimination laws.

- Exchange of two equations (rows in the matrix representing the system of equations)
- Multiplication of an equation (row) with a constant  $\lambda \in \mathbb{R} \setminus \{0\}$
- Addition of two equations (rows)

The Gaussian elimination can change augmented matrix into the *reduced row-echelon form(RREF)*. An example of a REF of a  $4 \times 5-$ matrix.

$$egin{bmatrix} 1 & a_0 & a_1 & a_2 & a_3 \ 0 & 0 & 2 & a_4 & a_5 \ 0 & 0 & 0 & 1 & a_6 \ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Pivots: the leading coefficient of a row, or, 1st nonzero number from left

#### **Basic and free variables:**

- basic variables are those corresponding to the pivots,  $x_1, x_3, x_4$  in the above example.
- the others are free variables,  $x_2, x_5$  in the above example.

**Reduced Row Echelon Form(RREF)**: a REF where every pivot is 1 and is the only nonzero entry <u>in its</u> column. An example of a RREF  $3 \times 5$ —matrix.

$$egin{bmatrix} 1 & 0 & a_1 & 0 & b_1 \ 0 & 1 & a_2 & 0 & b_2 \ 0 & 0 & 0 & 1 & b_3 \end{bmatrix}$$

The REF helps find the *particular solution* while the *RREF* helps find the *general solution* directly.

### Calculating the Inverse

To compute the inverse  $A^{-1}$  of  $A \in \mathbb{R}^{n \times n}$ , we need a matrix X that satisfies  $AX = I_n$ , then  $X = A^{-1}$ .

We use the augmented matrix  $[A|I_n] \to [I_n|A^{-1}]$  to reduced row-echelon form, the the inverse is on the right-hand side of the equation system.

### Moore-Penrose pseudo-inverse

For square and invertible matrices, we can use the inverse to solve the equation of Ax=b with the result as  $x=A^{-1}b$ .

For more usual cases, we can use the transformation

$$Ax = b \iff A^TAx = A^Tb \iff x = (A^TA)^{-1}A^Tb$$

and use the *Moore-Penrose pseudo-inverse*  $(A^TA)^{-1}A^T$  to determine the solution.



Due to large computation of matrix production and inverse, it's not recommended.

# **Vector Spaces**

### **Groups**

A set of elements and an operation defined on these elements that keeps some structure of the set intact.

For a set  $\varsigma$  and an operation  $\otimes$ ,  $G := (\varsigma, \otimes)$  is a group if:

- 1. Closure of  $\mathcal{G}$  under  $\otimes$ :  $\forall x, y \in \mathcal{G} : x \otimes y \in \mathcal{G}$
- 2. Associativity:  $\forall x, y, z \in \mathcal{G} : (x \otimes y) \otimes z = x \otimes (y \otimes z)$
- 3. Neutral element:  $\exists e \in \mathcal{G} \forall x \in \mathcal{G} : x \otimes e = x \text{ and } e \otimes x = x$
- 4. Inverse element:  $\forall x \in \mathcal{G} \exists y \in \mathcal{G} : x \otimes y = e \text{ and } y \otimes x = e, \text{ where } e \text{ is the neutral element. We often write } x^{-1} \text{ to denote the inverse element of } x.$

Abelian group / commutative:

If additionally  $\forall x,y \in \varsigma: x \otimes y = y \otimes x$ , then  $G = (\varsigma, \otimes)$  is Abelian group.



 $(\mathbb{R}^{m \times n}, +)$ , the set of  $m \times n-$ matrix is Abelian, with component-wise addition.

#### General linear group:

 $(\mathbb{R}^{n\times n},\cdot)$  is the *general linear group*, denoted by  $GL(n,\mathbb{R})$ , when the the matrices are regular, or invertible and with the respect to matrix multiplication as (2.13).

Since the matrix multiplication is not commutative, the GL-group is not Abelian.

# **Vector Spaces**

Inner operation  $\rightarrow$  +

Outer operation  $\rightarrow$  •, the multiplication of a vector by a scalar

A real-valued vector space  $V=(\gamma,+,\cdot)$  is a set  $\gamma$  with 2 operations

$$+: \mathcal{V} \times \mathcal{V} \to \mathcal{V}$$
 (2.62)

$$\cdot: \mathbb{R} \times \mathcal{V} \to \mathcal{V} \tag{2.63}$$

where

- 1.  $(\mathcal{V}, +)$  is an Abelian group
- 2. Distributivity:

1. 
$$\forall \lambda \in \mathbb{R}, x, y \in \mathcal{V} : \lambda \cdot (x + y) = \lambda \cdot x + \lambda \cdot y$$

- 2.  $\forall \lambda, \psi \in \mathbb{R}, \boldsymbol{x} \in \mathcal{V} : (\lambda + \psi) \cdot \boldsymbol{x} = \lambda \cdot \boldsymbol{x} + \psi \cdot \boldsymbol{x}$
- 3. Associativity (outer operation):  $\forall \lambda, \psi \in \mathbb{R}, x \in \mathcal{V} : \lambda \cdot (\psi \cdot x) = (\lambda \psi) \cdot x$
- 4. Neutral element with respect to the outer operation:  $\forall x \in \mathcal{V} : 1 \cdot x = x$
- The elements  $\mathbf{x} \in \gamma$  are *vectors*
- The neutral element of  $(\gamma,+)$  is zero vector  $\mathbf{0}=[0,\dots,0]^{ op}$
- Inner operation + is *vector addition*
- The elements  $\lambda \in \mathbb{R}$  are *scalar*, the outer operation is *multiplication by scalars*

### **Vector Subspaces**

vector subspace

**Definition 2.10** (Vector Subspace). Let  $V = (\mathcal{V}, +, \cdot)$  be a vector space and  $\mathcal{U} \subseteq \mathcal{V}$ ,  $\mathcal{U} \neq \emptyset$ . Then  $U = (\mathcal{U}, +, \cdot)$  is called *vector subspace* of V (or *linear subspace*) if U is a vector space with the vector space operations + and  $\cdot$  restricted to  $\mathcal{U} \times \mathcal{U}$  and  $\mathbb{R} \times \mathcal{U}$ . We write  $U \subseteq V$  to denote a subspace U of V.

To determine whether  $(U,+,\cdot)$  is a subspace

- 1.  $\mathcal{U} \neq \emptyset$ , in particular:  $\mathbf{0} \in \mathcal{U}$
- 2. Closure of U:
  - a. With respect to the outer operation:  $\forall \lambda \in \mathbb{R} \ \forall x \in \mathcal{U} : \lambda x \in \mathcal{U}$ .
  - b. With respect to the inner operation:  $\forall x,y \in \mathcal{U} : x+y \in \mathcal{U}$ .

- For every vector space V, the trivial subspaces are V itself and  $\{0\}$ .
- Only example D in Figure 2.1 is a subspace of  $\mathbb{R}^2$  (with the usual inner/outer operations). In A and C, the closure property is violated; B does not contain  $\mathbf{0}$ .
- The solution set of a homogeneous system of linear equations Ax = 0 with n unknowns  $x = [x_1, \dots, x_n]^\top$  is a subspace of  $\mathbb{R}^n$ .
- The solution of an inhomogeneous system of linear equations Ax = b,  $b \neq 0$  is not a subspace of  $\mathbb{R}^n$ .
- The intersection of arbitrarily many subspaces is a subspace itself.



# **Linear Independence**

#### **Linear Combination**

**Definition 2.11** (Linear Combination). Consider a vector space V and a finite number of vectors  $x_1, \ldots, x_k \in V$ . Then, every  $v \in V$  of the form

$$v = \lambda_1 x_1 + \dots + \lambda_k x_k = \sum_{i=1}^k \lambda_i x_i \in V$$
 (2.65)

with  $\lambda_1, \ldots, \lambda_k \in \mathbb{R}$  is a linear combination of the vectors  $x_1, \ldots, x_k$ .

0-vector is always a linear combination, since  $0=\sum_{i=1}^k 0x_i$  is always true.

# **Linear Independence**

If there's at least one coefficient isn't 0, then it's *linearly dependent*.

**Definition 2.12** (Linear (In)dependence). Let us consider a vector space V with  $k \in \mathbb{N}$  and  $x_1, \ldots, x_k \in V$ . If there is a non-trivial linear combination, such that  $\mathbf{0} = \sum_{i=1}^k \lambda_i x_i$  with at least one  $\lambda_i \neq 0$ , the vectors  $x_1, \ldots, x_k$  are linearly dependent. If only the trivial solution exists, i.e.,  $\lambda_1 = \ldots = \lambda_k = 0$  the vectors  $x_1, \ldots, x_k$  are linearly independent.

#### Useful properties to check linearly independency

- *k* vectors are either *linearly dependent* or *linearly independent*, no other options.
- If at least one of the vectors is **0** then they're *linearly dependent*. Same if there're 2 identical vectors.
- Using Gaussian Elimination to convert matrix to (Reduced) REF, and
  - if and only if all columns are pivot columns, they are linear independent
  - if there's one non-pivot column, they're *linearly dependent*

### **Basis and Rank**

#### **Basis**

# **Generating Set and Span**

**Definition 2.13** (Generating Set and Span). Consider a vector space  $V = (\mathcal{V}, +, \cdot)$  and set of vectors  $\mathcal{A} = \{x_1, \dots, x_k\} \subseteq \mathcal{V}$ . If every vector  $\mathbf{v} \in \mathcal{V}$  can be expressed as a linear combination of  $x_1, \dots, x_k$ ,  $\mathcal{A}$  is called a generating set of V. The set of all linear combinations of vectors in  $\mathcal{A}$  is called the span of  $\mathcal{A}$ . If  $\mathcal{A}$  spans the vector space V, we write  $V = \operatorname{span}[\mathcal{A}]$  or  $V = \operatorname{span}[x_1, \dots, x_k]$ .

Generating sets are sets of vectors that span vector (sub)spaces, every vector can be represented as a linear combination of the vectors in the generating set.

the smallest generating set that spans a vector (sub)space

**Definition 2.14** (Basis). Consider a vector space  $V = (\mathcal{V}, +, \cdot)$  and  $\mathcal{A} \subseteq \mathcal{V}$ . A generating set  $\mathcal{A}$  of V is called *minimal* if there exists no smaller set  $\tilde{\mathcal{A}} \subsetneq \mathcal{A} \subseteq \mathcal{V}$  that spans V. Every linearly independent generating set of V is minimal and is called a *basis* of V.



A basis is a minimal generating set and a maximal linearly independent set of vectors.

Let  $V=(\mathcal{V},+,\cdot)$  be a vector space and  $\mathcal{B}\subseteq\mathcal{V},\mathcal{B}\neq\emptyset$ . Then, the following statements are equivalent:

- $\blacksquare$   $\mathcal{B}$  is a basis of V.
- $\mathcal{B}$  is a minimal generating set.
- $\mathcal{B}$  is a maximal linearly independent set of vectors in V, i.e., adding any other vector to this set will make it linearly dependent.
- Every vector  $x \in V$  is a linear combination of vectors from  $\mathcal{B}$ , and every linear combination is unique, i.e., with

$$\boldsymbol{x} = \sum_{i=1}^{k} \lambda_i \boldsymbol{b}_i = \sum_{i=1}^{k} \psi_i \boldsymbol{b}_i$$
 (2.77)

and  $\lambda_i, \psi_i \in \mathbb{R}$ ,  $b_i \in \mathcal{B}$  it follows that  $\lambda_i = \psi_i, i = 1, \dots, k$ .

- Every vector space possesses a basis, but there's no unique basis.
- *Basis vectors*, the same number of elements of basis.

In finite-dimensional vector spaces V, the *dimension* of V is the number of basis vectors of V, write dim(V).

• If  $U\subseteq V$  is a subspace of V, then  $dim(U)\leq dim(V)$  and dim(U)=dim(V) if and only if U=V.

#### **Determining a Basis**

Determine a basis of a subspace:

Remark. The dimension of a vector space is not necessarily the number of elements in a vector.

*Remark.* A basis of a subspace  $U = \operatorname{span}[x_1, \dots, x_m] \subseteq \mathbb{R}^n$  can be found by executing the following steps:

- 1. Write the spanning vectors as columns of a matrix A
- 2. Determine the row-echelon form of A.
- 3. The spanning vectors associated with the pivot columns are a basis of U.



Make vectors to a matrix  $\, \rightarrow \,$  Gaussian Elimination transfer to REF  $\, \rightarrow \,$  the pivots columns are the basis of the subspace U

### Rank

The number of linearly independent columns of a matrix  $A \in \mathbb{R}^{m \times n}$  equals to the number of linearly independent rows and is called the rank, denoted by  $rk(\mathbf{A})$ .

The rank is also the number of pivots of a Row-Echelon Form of the matrix A.

- $\operatorname{rk}(A) = \operatorname{rk}(A^{\top})$ , i.e., the column rank equals the row rank.
- The columns of  $A \in \mathbb{R}^{m \times n}$  span a subspace  $U \subseteq \mathbb{R}^m$  with  $\dim(U) = \operatorname{rk}(A)$ . Later we will call this subspace the *image* or *range*. A basis of U can be found by applying Gaussian elimination to  $\underline{A}$  to identify the pivot columns.
- The rows of  $A \in \mathbb{R}^{m \times n}$  span a subspace  $W \subseteq \mathbb{R}^n$  with  $\dim(W) = \operatorname{rk}(A)$ . A basis of W can be found by applying Gaussian elimination to  $A^{\top}$ .
- For all  $A \in \mathbb{R}^{n \times n}$  it holds that A is regular (invertible) if and only if  $\operatorname{rk}(A) = n$ .
- For all  $A \in \mathbb{R}^{m \times n}$  and all  $b \in \mathbb{R}^m$  it holds that the linear equation system Ax = b can be solved if and only if rk(A) = rk(A|b), where A|b denotes the augmented system.
- For  $A \in \mathbb{R}^{m \times n}$  the subspace of solutions for Ax = 0 possesses dimension n rk(A). Later, we will call this subspace the *kernel* or the *null space*.
- A matrix  $A \in \mathbb{R}^{m \times n}$  has *full rank* if its rank equals the largest possible rank for a matrix of the same dimensions. This means that the rank of a full-rank matrix is the lesser of the number of rows and columns, i.e.,  $\operatorname{rk}(A) = \min(m, n)$ . A matrix is said to be *rank deficient* if it does not have full rank.

# **Linear Mappings**

Vectors are objects that can be added together and multiplied by a scalar, and the resulting object is still a vector

**Definition 2.15** (Linear Mapping). For vector spaces V, W, a mapping  $\Phi: V \to W$  is called a *linear mapping* (or *vector space homomorphism/linear transformation*) if

$$\forall x, y \in V \,\forall \lambda, \psi \in \mathbb{R} : \Phi(\lambda x + \psi y) = \lambda \Phi(x) + \psi \Phi(y). \tag{2.87}$$

We can represent linear mappings as matrices.

#### Homomorphism

A homomorphism is a map between two <u>algebraic structures</u> of the same type (that is of the same name), (here is tow vector space), that preserves

# the operations of the structures.

For example:

The mapping 
$$\Phi: \mathbb{R}^2 \to \mathbb{C}$$
,  $\Phi(x) = x_1 + ix_2$ , is a homomorphism: 
$$\Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right) = (x_1 + y_1) + i(x_2 + y_2) = x_1 + ix_2 + y_1 + iy_2$$

$$= \Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) + \Phi\left(\begin{bmatrix} y_1 \\ y_2 \end{bmatrix}\right)$$

$$\Phi\left(\lambda \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \lambda x_1 + \lambda i x_2 = \lambda (x_1 + i x_2) = \lambda \Phi\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right).$$

#### **Special mappings**: Injective, Surjective, Bijective

**Definition 2.16** (Injective, Surjective, Bijective). Consider a mapping  $\Phi: \mathcal{V} \to \mathcal{W}$ , where  $\mathcal{V}, \mathcal{W}$  can be arbitrary sets. Then  $\Phi$  is called

- ullet Injective if  $\ orall x,y\in \mathcal{V}: \Phi(x)=\Phi(y) \implies x=y$
- Surjective if  $\Phi(\mathcal{V}) = \mathcal{W}$ .
- Bijective if it is injective and surjective.

The definition and figure examples of these terms.



#### Special cases of linear mappings:

#### **Definitions**

- *Isomorphism:*  $\Phi: V \to W$  linear and bijective
- Endomorphism:  $\Phi: V \to V$  linear
- Automorphism:  $\Phi: V \to V$  linear and bijective
- We define  $\mathrm{id}_V:V\to V$  ,  $x\mapsto x$  as the identity mapping or identity automorphism in V .
- **Epimorphism**: a homomorphism that is surjective (AKA onto)
- Monomorphism: a homomorphism that is injective (AKA one-to-one, 1-1, or univalent)
- Isomorphism: a homomorphism that is bijective (AKA 1-1 and onto); isomorphic objects are equivalent, but perhaps defined in different ways

#### Graph understanding

Epimorphism: surjective, AKA onto

Monomorphism: injective, AKA 1-1

Isomorphism: bijective, 1-1 and onto

Endomorphism: from a structure to itself

Automorphism: bijective endomorphism

 Automorphism: a bijective endomorphism (an isomorphism from an object onto itself,

• **Endomorphism**: a homomorphism from an object to itself

essentially just a re-labeling of elements)



For more...

#### Homomorphism

In algebra, a homomorphism is a structure-preserving map between two algebraic structures of the same type (such as two groups, two rings, or two vector spaces). The word homomorphism comes from the Ancient Greek language: ὁμός (homos) meaning "same" and μορφή (morphe) meaning "form" or "shape". However, the word was apparently

w https://en.wikipedia.org/wiki/Homomorphism

#### **Isomorphism**

Theorem

Finite-dimensional vector spaces V and W are isomorphism if and only if dim(V) = dim(W).

This theorem states that

- there exists a linear, bijective mapping between two vector spaces of the same dimension, means they're kind of same thing
- treat  $\mathbb{R}^{m \times n}$  and  $\mathbb{R}^{mn}$  the same

#### Properties of isomorphism

- $\bullet$  For linear mappings  $\Phi\,:\,V\,\to\,W$  and  $\Psi\,:\,W\,\to\,X,$  the mapping  $\Psi\circ\Phi:V\to X\text{ is also linear.}$  • If  $\Phi:V\to W$  is an isomorphism, then  $\Phi^{-1}:W\to V$  is an isomorphism,
- phism, too.
- If  $\Phi:V\to W,\ \Psi:V\to W$  are linear, then  $\Phi+\Psi$  and  $\lambda\Phi,\ \lambda\in\mathbb{R},$  are linear, too.

# **Matrix Representation of Linear Mappings**

Any n-dimensional vector space V is isomorphic to  $\mathbb{R}^n$ . Consider the ordered basis vectors of V, write as  $B = (b_1, ..., b_n)$ .

$$B=(b_1,\ldots,b_n)$$
: ordered basis  $\{b_1,\ldots,b_n\}$  : unordered basis  $[b_1,\ldots,b_n]$ : a matrix whose columns are vectors  $b_1,\ldots,b_n$ 

#### **Coordinates**

the coordinate vector/coordinate representation

**Definition 2.18** (Coordinates). Consider a vector space V and an ordered basis  $B = (b_1, \dots, b_n)$  of V. For any  $x \in V$  we obtain a unique representation (linear combination)

$$\boldsymbol{x} = \alpha_1 \boldsymbol{b}_1 + \ldots + \alpha_n \boldsymbol{b}_n \tag{2.90}$$

of x with respect to B. Then  $\alpha_1, \ldots, \alpha_n$  are the coordinates of x with respect to B, and the vector

$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} \in \mathbb{R}^n \tag{2.91}$$

is the  $coordinate\ vector/coordinate\ representation\ of\ x$  with respect to the ordered basis B.

#### **Transformation Matrix**

Definition

**Definition 2.19** (Transformation Matrix). Consider vector spaces V, W with corresponding (ordered) bases  $B = (\mathbf{b}_1, \dots, \mathbf{b}_n)$  and  $C = (\mathbf{c}_1, \dots, \mathbf{c}_m)$ . Moreover, we consider a linear mapping  $\Phi : V \to W$ . For  $j \in \{1, \dots, n\}$ ,

$$\Phi(\boldsymbol{b}_j) = \alpha_{1j}\boldsymbol{c}_1 + \dots + \alpha_{mj}\boldsymbol{c}_m = \sum_{i=1}^m \alpha_{ij}\boldsymbol{c}_i$$
 (2.92)

is the unique representation of  $\Phi(b_j)$  with respect to C. Then, we call the  $m \times n$ -matrix  $A_{\Phi}$ , whose elements are given by

$$A_{\Phi}(i,j) = \alpha_{ij} \,, \tag{2.93}$$

the transformation matrix of  $\Phi$  (with respect to the ordered bases B of V and C of W).

Example:

Algebra

Example 2.21 (Transformation Matrix)

Consider a homomorphism  $\Phi:V\to W$  and ordered bases  $B=(b_1,\ldots,b_3)$  of V and  $C=(c_1,\ldots,c_4)$  of W. With

$$\begin{split} &\Phi(\boldsymbol{b}_1) = \boldsymbol{c}_1 - \boldsymbol{c}_2 + 3\boldsymbol{c}_3 - \boldsymbol{c}_4 \\ &\Phi(\boldsymbol{b}_2) = 2\boldsymbol{c}_1 + \boldsymbol{c}_2 + 7\boldsymbol{c}_3 + 2\boldsymbol{c}_4 \\ &\Phi(\boldsymbol{b}_3) = 3\boldsymbol{c}_2 + \boldsymbol{c}_3 + 4\boldsymbol{c}_4 \end{split} \tag{2.95}$$

the transformation matrix  $A_{\Phi}$  with respect to B and C satisfies  $\Phi(b_k)=\sum_{i=1}^4 \alpha_{ik}c_i$  for  $k=1,\ldots,3$  and is given as

$$\mathbf{A}_{\Phi} = [\alpha_1, \alpha_2, \alpha_3] = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 3 \\ 3 & 7 & 1 \\ -1 & 2 & 4 \end{bmatrix}, \tag{2.96}$$

where the  $\alpha_j,\ j=1,2,3,$  are the coordinate vectors of  $\Phi(\boldsymbol{b}_j)$  with respect to C.

Graphic



We consider three linear transformations of a set of vectors in  $\mathbb{R}^2$  with the transformation matrices

$$\boldsymbol{A}_{1} = \begin{bmatrix} \cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{bmatrix}, \ \boldsymbol{A}_{2} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}, \ \boldsymbol{A}_{3} = \frac{1}{2} \begin{bmatrix} 3 & -1 \\ 1 & -1 \end{bmatrix}. \quad (2.97)$$

# **Basis Change**

The change of the basis make the transformation matrix of a linear mapping replace by an equivalent matrix.

**Theorem 2.20** (Basis Change). For a linear mapping  $\Phi: V \to W$ , ordered bases

$$B = (\boldsymbol{b}_1, \dots, \boldsymbol{b}_n), \quad \tilde{B} = (\tilde{\boldsymbol{b}}_1, \dots, \tilde{\boldsymbol{b}}_n)$$
 (2.103)

of V and

$$C = (\boldsymbol{c}_1, \dots, \boldsymbol{c}_m), \quad \tilde{C} = (\tilde{\boldsymbol{c}}_1, \dots, \tilde{\boldsymbol{c}}_m)$$
 (2.104)

of W, and a transformation matrix  $\mathbf{A}_{\Phi}$  of  $\Phi$  with respect to B and C, the corresponding transformation matrix  $\tilde{\mathbf{A}}_{\Phi}$  with respect to the bases  $\tilde{B}$  and  $\tilde{C}$  is given as

$$\tilde{\boldsymbol{A}}_{\Phi} = \boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S} \,. \tag{2.105}$$

Here,  $S \in \mathbb{R}^{n \times n}$  is the transformation matrix of  $\mathrm{id}_V$  that maps coordinates with respect to  $\tilde{B}$  onto coordinates with respect to B, and  $T \in \mathbb{R}^{m \times m}$  is the transformation matrix of  $\mathrm{id}_W$  that maps coordinates with respect to  $\tilde{C}$  onto coordinates with respect to C.

And we can have the *equivalence* and *similarity* defined by the <u>Theorem 2.20</u>.

**Definition 2.21** (Equivalence). Two matrices  $A, \tilde{A} \in \mathbb{R}^{m \times n}$  are equivalent if there exist regular matrices  $S \in \mathbb{R}^{n \times n}$  and  $T \in \mathbb{R}^{m \times m}$ , such that  $\tilde{A} = T^{-1}AS$ .

**Definition 2.22** (Similarity). Two matrices  $A, \tilde{A} \in \mathbb{R}^{n \times n}$  are *similar* if there exists a regular matrix  $S \in \mathbb{R}^{n \times n}$  with  $\tilde{A} = S^{-1}AS$ 

#### **▼** An basis change example

### Example 2.24 (Basis Change)

Consider a linear mapping  $\Phi: \mathbb{R}^3 \to \mathbb{R}^4$  whose transformation matrix is

$$\mathbf{A}_{\Phi} = \begin{bmatrix} 1 & 2 & 0 \\ -1 & 1 & 3 \\ 3 & 7 & 1 \\ -1 & 2 & 4 \end{bmatrix}$$
 (2.117)

with respect to the standard bases

$$B = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}), \quad C = \begin{pmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \end{pmatrix}. \tag{2.118}$$

We seek the transformation matrix  $\tilde{\boldsymbol{A}}_{\Phi}$  of  $\Phi$  with respect to the new bases

$$\tilde{B} = \begin{pmatrix} \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix} \end{pmatrix} \in \mathbb{R}^3, \quad \tilde{C} = \begin{pmatrix} \begin{bmatrix} 1\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \end{pmatrix}. \quad (2.119)$$

Then,

$$S = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \qquad T = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \tag{2.120}$$

where the *i*th column of S is the coordinate representation of  $\tilde{b}_i$  in terms of the basis vectors of B. Since B is the standard basis, the coordinate representation is straightforward to find. For a general basis B, we would need to solve a linear equation system to find the  $\lambda_i$  such that

 $\sum_{i=1}^{3} \lambda_i \boldsymbol{b}_i = \tilde{\boldsymbol{b}}_j, j = 1, \dots, 3$ . Similarly, the jth column of  $\boldsymbol{T}$  is the coordinate representation of  $\tilde{\boldsymbol{c}}_j$  in terms of the basis vectors of C.

Therefore, we obtain

$$\tilde{\boldsymbol{A}}_{\Phi} = \boldsymbol{T}^{-1} \boldsymbol{A}_{\Phi} \boldsymbol{S} = \frac{1}{2} \begin{bmatrix} 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ -1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 2 & 1 \\ 0 & 4 & 2 \\ 10 & 8 & 4 \\ 1 & 6 & 3 \end{bmatrix}$$
(2.121a)

$$= \begin{bmatrix} -4 & -4 & -2 \\ 6 & 0 & 0 \\ 4 & 8 & 4 \\ 1 & 6 & 3 \end{bmatrix} . \tag{2.121b}$$

### **Image and Kernel**

Definition

Definition 2.23 (Image and Kernel).

For  $\Phi: V \to W$ , we define the *kernel/null space* 

$$\ker(\Phi) := \Phi^{-1}(\mathbf{0}_W) = \{ v \in V : \Phi(v) = \mathbf{0}_W \}$$
 (2.122)

and the image/range

$$\operatorname{Im}(\Phi) := \Phi(V) = \{ w \in W | \exists v \in V : \Phi(v) = w \}.$$
 (2.123)

We also call V and W also the domain and codomain of  $\Phi$ , respectively.



The kernel is the set of vectors  $v \in V$  that maps onto the neutral element  $0_w \in W$ .

The image is the set of vectors  $w \in W$  that can be reached by mapping from any vector in V.

*Remark.* Consider a linear mapping  $\phi:V o W$ , where V,W are vector spaces.

- The null space is never empty, since  $\phi(0_v)=0_w$  , and  $0_v\in\ker(\phi)$
- $\operatorname{Im}(\phi)$  is a subspace of W,  $\ker(\phi)$  is a subspace of V.
- $\phi$  is injective (one-to-one) if and only if  $\ker(\phi) = \{0\}$ .

*Remark.* (Null space and Column space). Consider  $A\in\mathbb{R}^{m\times n}$  and a linear mapping  $\phi:\mathbb{R}^n o\mathbb{R}^m,x\mapsto Ax$ .

• The image is the span of the columns of A, also called column space. For  $A=[a_1,\ldots,a_n]$ , where  $a_i$  are the columns of A, we obtain

$$ext{Im} = \{Ax: x \in \mathbb{R}^n\} = \left\{\sum_{i=1}^m x_i a_i: x_1, \dots, x_n \in \mathbb{R}
ight\} = ext{span}[a_1, \dots, a_n] \subseteq \mathbb{R}^{m imes n}$$

- $\operatorname{rk}(A) = \dim(\operatorname{Im}(\phi))$  = number of pivots = number of linear independent rows
- The kernel/null space  $\ker(\phi)$  is the general solution to the homogeneous system of linear equation Ax=0 and captures all possible linear combinations of the elements in  $\mathbb{R}^n$  that produce  $0\in\mathbb{R}^m$

# **Affine Spaces (linear space)**

The spaces that are offset from the origin.

### **Affine subspaces**

Definition

**Definition 2.25** (Affine Subspace). Let V be a vector space,  $x_0 \in V$  and  $U \subseteq V$  a subspace. Then the subset

$$L = x_0 + U := \{x_0 + u : u \in U\}$$
 (2.130a)

$$= \{ \boldsymbol{v} \in V | \exists \boldsymbol{u} \in U : \boldsymbol{v} = \boldsymbol{x}_0 + \boldsymbol{u} \} \subseteq V$$
 (2.130b)

is called affine subspace or linear manifold of V.

U is called *direction/direction space*, and  $x_0$  is called *support point*.

### **Affine mapping**

For tow vector spaces V, W, a linear

mapping  $\Phi:V\to W$ , and  ${\boldsymbol a}\in W$ , the mapping

$$\phi: V \to W \tag{2.132}$$

$$x \mapsto a + \Phi(x) \tag{2.133}$$

is an affine mapping from V to W. The vector  $\boldsymbol{a}$  is called the translation vector of  $\phi$ .

- Every affine mapping  $\phi: V \to W$  is also the composition of a linear mapping  $\Phi: V \to W$  and a translation  $\tau: W \to W$  in W, such that  $\phi = \tau \circ \Phi$ . The mappings  $\Phi$  and  $\tau$  are uniquely determined.
- The composition  $\phi' \circ \phi$  of affine mappings  $\phi: V \to W$ ,  $\phi': W \to X$  is affine.
- Affine mappings keep the geometric structure invariant. They also preserve the dimension and parallelism.