Introduction to inverse reinforcement learning (1/3)

Eiji Uchibe

Dept. of Brain Robot Interface

ATR Computational Neuroscience Labs.

What is Reinforcement Learning (RL)?

 RL is a computational framework for finding an optimal policy (controller) by trial and error

- Inspired by psychology
 - Thorndike's law of effect
 - Skinner's principle of reinforcement
- Computational model of decision making of human/animal
- Learning algorithm of artificial agents

K. Doya (2007). Reinforcement learning: Computational theory and biological mechanisms. HFSP Journal, vol. 1, no. 1, pp. 30–40.

Reinforcement learning in neuroscience

Dopamine neurons code Temporal Difference error

Schultz, W.P., Dayan, P., and Montague, P.R. (1997). <u>A Neural Substrate of Prediction and Reward</u>. *Science* 275, no. 5306: 1593–99.

Distributional RL in our brain a single reward outcome can simultaneously elicit positive RPEs (within relatively pessimistic channels) and negative RPEs (within more optimistic ones)

Dabney, W., Kurth-Nelson, Z., Uchida, N. et al. (2020). <u>A distributional code for value in dopamine-based reinforcement learning</u>. *Nature*, 577, 671–675.

Reinforcement learning in games

AlphaGo Zero board game, Go RL from scratch 4.9 millions of self-play AlphaStar multiagent real-time strategy game RL + supervised learning 200 years Gran Turismo Sophy realistic racing game RL with shaped rewards 1,000 PlayStation 4

Silver, D., Schrittwieser, J., Simonyan, K. et al. (2017). Mastering the game of Go without human knowledge. *Nature*, 550, 354–359.

Vinyals, O., Babuschkin, I., Czarnecki, W.M. et al. (2019). Grandmaster level in StarCraft II using multi-agent reinforcement learning. *Nature*, vol. 575, 350-354.

Wurman, P.R., Barrett, S., Kawamoto, K. et al. (2022). <u>Outracing champion Gran Turismo drivers with deep reinforcement learning</u>. *Nature*, 602, 223–228.

Reinforcement learning in robotics

Manipulating Rubik's cube RL + domain randomization 2.8 GWh of electricity MT-Opt
Grasping objects using visual information
RL (+ supervised learning)
7 robots, 9600 robot hours

ANYmal (quadruped robot) complete an hour-long hiking loop faster than human

Teacher: RL with privileged info.

Student: imitate the teacher

Akkaya, I., Andrychowicz, M., Chociej, M. et al. (2019). Solving Rubik's Cube with a Robot Hand. arXiv. [OpenAl Blog] Kalashnikov, D., Varley, J., Chebotar, ,Y. et al. (2021). <u>Scaling Up Multi-Task Robotic Reinforcement Learning</u>. In Proc. of the 5th Conference on Robot Learning.

Miki, T., Lee, J., Hwangbo, J. et al. (2022). <u>Learning robust perceptive</u> <u>locomotion for quadrupedal robots in the wild</u>. Science Robotics, vol. 7, issue 62.

Designing Reward is important

- In the case of Go
 - positive reward for winning
 - negative reward for losing
 - zero otherwise
- AlphaGo Zero, which does not use a record of a game of go, needs
 4.9 million games of self-play

- Deep RL is applicable when we can collect samples by using multiple simulators
- What happens if we use a dense reward?

But designing reward is difficult ...

• Task: move forward as fast as possible (continuous state-action problem)

immediate reward

$$r(s, a) = v_x - 0.05 ||a||_2^2$$

forward squared norm velocity of applied torque

- Even if the reward function is well-shaped, it is not enough to find an optimal policy when learning time is limited
- Inverse RL provides the method to design the reward from behaviors of experts

Designing Reward is Difficult

- Task: catch a battery pack
- Two reward functions: $r_{\rm orig}$ and $r_{\rm aug}$

 Watching a battery pack was obtained according to the choice of w although it learned faster

Trained with r_{orig}

Trained with r_{orig} + wr_{aux}

Designing Reward is Difficult

- Task: finish the boat race quickly
 - not directly reward the player's progression around the course
 - get rewards by hitting targets laid out along the route

Everitt, T. (2018). <u>Towards Safe Artificial General Intelligence</u>. Ph.D. Thesis. Australian National University.

- $-\dot{r}$: true reward
- $-\hat{r}$: corrupt, observed reward

https://www.youtube.com/watch?v=tlOIHko8ySg

Reward function for folding a T-shirt

Reward

The reward function is designed to trigger an action to fold the hem after folding the sleeve. The processing is shown in Algorithm 3.

Samples: 0

Training time: 0

```
Algorithm 3: Reward function of t-shirt folding task
Initialize InitHemR = [0.675, 0.8], InitHemL = [0.325, 0.8]
Initialize TargetHemR = [0.675, 0.208],
TargetHemL = [0.325, 0.208]
Function HemReward (SleevePoint, CenterHem):
   Initialize reward = 0
   reward = -Sum(|SleevePoint - CenterHem|)
  return reward
Function SleeveReward (HemPoint, InitHem, TargetHem):
   Initialize reward = 0
   Initalize\ Distance = |InitHem - TargetHem|
   reward = Sum(Distance - |HemPoint - TargetHem|)
   return reward
Function ShirtReward():
   Initialize reward = 0
   Update color marker
   Get HemPointR, HemPointL, SleevePointR, SleevePointL
   if Detect hem marker then
      CenterHem = (HemPointR + HemPointL)/2
      reward = SleeveReward(SleevePointR, CenterHem) +
      SleeveReward(SleevePointL, CenterHem)
   else
    reward = 1
   if Detect sleeve marker then
      reward = reward +
      HemReward(HemPointR, InitHemR, TargetHemR) +
      HemReward (HemPointL, InitHemL, TargetHemL)
```

Y. Tsurumine, Y. Cui, E. Uchibe, and T. Matsubara. (2019). <u>Deep reinforcement learning with smooth policy update: Application to robotic cloth</u> manipulation. Robotics and Autonomous Systems, vol. 112, pp. 72–83, 2019.

return reward

Inverse Reinforcement Learning (IRL)

Estimate a reward function from observed behaviors generated by an optimal policy

- It is often easy to demonstrate some good behaviors
- Ill-posed problem. That is, the solution is not uniquely determined

Modeling risk anticipation behaviors

Estimate a speed control behavior Classification π_k $+ \overline{ heta}_{k,\underline{d}}$ Driver's **Decision Process** Inverse Reinforcement Group 1 Learning Group 2 Group 3 **Driving Plan** Velocity Driving Demonstration Course2 Course4 Distance **Training Data Novel Scene**

Shimosaka, M., Kaneko, T., & Nishi, K. (2014). <u>Modeling risk anticipation and defensive driving on residential roads with inverse reinforcement learning</u>. *Proc. of the 17th International IEEE Conference on Intelligent Transportation Systems*, 1694–1700.

Application to Brain-Computer Interface

 Gaussian process-based IRL infers the user's preference

Batzianoulis, I., Iwane, F., Wei, S., et al. (2021). <u>Customizing skills for assistive robotic manipulators, an inverse reinforcement learning approach</u> <u>with error-related potentials</u>. Communications Biology 4, 1.

Smart health-care assistants

- Detecting physiological needs to improve the comfort of the patient
- Maximum entropy-based IRL

Change the

bed position

S3

Close the

window

Close the

window

Ss

Open the

window

Open the

window

Episode 1

Hantous, K., Rejeb, L., and Hellali, R. (2022). <u>Detecting Physiological Needs Using Deep Inverse Reinforcement Learning</u>. *Applied Artificial Intelligence*.

Investigation of C. elegans thermotactic behavior

- Two basic strategies are found
 - Directed Migration (DM): Worms efficiently reached specific temperatures,
 which explains their thermotactic behavior when fed.
 - Isothermal Migration (IM). Worms moved along a constant temperature, which reflects isothermal tracking, well-observed in previous studies.

線虫は育成された温度を好むように、また 飢餓を経験した温度を避けるように移動する。

動物が行動していて遭遇する各状況が、戦略上どれくらいの価値があるのかを示している。

Yamaguchi, S., Honda, N., Ikeda, M., Tsukada, Y., Nakano, S., Mori, I., and Ishii, S. (2018). <u>Identification of animal behavioral strategies by inverse reinforcement learning</u>. PLoS Computational Biology.

Table tennis

- Reward function for table preferences
- Individual player preferences

Fig. 5 The bouncing angles θ_y and θ_z in the xy- and xz-surface define the orientation of the ball. While θ_z corresponds to the horizontal bouncing angle, θ_y corresponds to the direction of the ball and thereby defines if the ball is played cross to the *left*, cross to the *right* or straight

Muelling, K., Boularias, A., Mohler, B., Schölkopf, B., and Peters, J. (2014). <u>Learning strategies in table tennis</u> using inverse reinforcement learning. Biological Cybernetics, 108(5): 603-619.

TV Advertisement Scheduling by Learning Expert Intentions

広告会社

東求

商品ブランド

会社イメージ

広告効果

TV放送局

提案

Mon.

CM1

スケジューリング(案)

CM1

CM₂

Wed.

CM1

放映スケジュール

Tue.

CM1

CM₂

CM10

CM1

Wed.

CM1

CM4

 Imitate the decision-making process of scheduling experts

NECプレスリリース(2019/07/17)

Suzuki, Y., Wee, W.M., & Nishioka, I. (2019). <u>TV Advertisement Scheduling by Learning Expert Intentions</u>. In Proc. of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3071–81.