1. NO(g), H₂(g), N₂(g) and H₂O(g) exist in equilibrium: $2NO(g) + 2H_2(g) \rightleftharpoons N_2(g) + 2H_2O(g)$

At room temperature and pressure, the equilibrium lies well to the right-hand side.

Which of the following could be the equilibrium constant for this equilibrium?

- A. $1.54 \times 10^{-3} \text{ mol dm}^{-3}$
- B. $6.50 \times 10^2 \text{ mol dm}^{-3}$
- C. $1.54 \times 10^{-3} \text{ dm}^3 \text{ mol}^{-1}$
- D. $6.50 \times 10^2 \,\mathrm{dm}^3 \,\mathrm{mol}^{-1}$

Your answer

[1]

2(a). Iodine, I₂, is a grey-black solid that is not very soluble in water.

Equilibrium 1 is set up with the equilibrium position well to the left.

$$I_2(s) \rightleftharpoons I_2(aq)$$

Equilibrium 1

Solid iodine is much more soluble in an aqueous solution of potassium iodide, KI(aq), than in water.

Equilibrium 2 is set up.

$$I_2(aq) + I^-(aq) \rightleftharpoons I_3^-(aq)$$

Equilibrium 2

A student dissolves I₂ in KI(aq).

The resulting 200 cm³ equilibrium mixture contains:

$$4.00 \times 10^{-5} \text{ mol } I_2(aq)$$

$$9.404 \times 10^{-2} \text{ mol I}^{-}(\text{aq})$$

$$1.96 \times 10^{-3} \text{ mol } I_3^-(aq).$$

Calculate K_c for **equilibrium 2**.

Give your answer to an **appropriate** number of significant figures.

	$\mathcal{K}_{\text{c}} = \dots $ units[4]
(b).	The student adds an excess of aqueous silver nitrate, $AgNO_3(aq)$, to the equilibrium mixture.
	Predict what would be observed.
	Explain the observations in terms of both equilibrium 1 and equilibrium 2 and any species formed.
	[4]

3. Peroxycarboxylic acids are organic compounds with the COOOH functional group.

Peroxyethanoic acid, CH₃COOOH, is used as a disinfectant.

i. Suggest the structure for CH₃COOOH. The COOOH functional group must be clearly displayed.

ii.	Peroxyethanoic acid can be prepared by reacting hydrogen peroxide with ethanoic
	acid

This is a heterogeneous equilibrium.

$$H_2O_2(aq) + CH_3COOH(aq) \rightleftharpoons CH_3COOOH(aq) + H_2O(I)$$
 $K_c = 0.37$ dm³ mol⁻¹

iii.

A 250 cm 3 equilibrium mixture contains concentrations of 0.500 mol dm $^{-3}$ H $_2$ O $_2$ (aq) and 0.500 mol dm $^{-3}$ CH $_3$ COOH(aq).

Calculate the amount, in mol, of peroxyethanoic acid in the equilibrium mixture.

amount	mol[
=	

4(a). Nitrogen monoxide, NO, and oxygen, O₂, react to form nitrogen dioxide, NO₂, in the reversible reaction shown in **equilibrium 18.1**.

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$
 Equilibrium 18.1

Write an expression for K_c for this equilibrium and state the units.

$$K_{c} =$$

- (b). A chemist mixes together nitrogen and oxygen and pressurises the gases so that their total gas volume is 4.0 dm³.
 - The mixture is allowed to reach equilibrium at constant temperature and volume.

- The equilibrium mixture contains 0.40 mol NO and 0.80 mol O₂.
- Under these conditions, the numerical value of K_c is 45.

Calculate the amount, in mol, of NO₂ in the equilibrium mixture.

amount of NO₂ = mol [4]

END OF QUESTION paper

Mark scheme

	ue	Answer/Indicative	M a		
	ion	content	r k s	Guidance	
1		D	1		
		Total	1		
2	a	FIRST, CHECK THE ANSWER ON ANSWER LINE IF $K_c = 104 \text{ dm}^3$ mol ⁻¹ award 4 marks: 3 for calculation of 104 from data, 1 for units Equilibrium concentrations (mol × 5) (1 mark) $I_2 = 4.00 \times 10^{-5} \times 5 = 2.00 \times 10^{-4} \text{ (mol dm}^{-3)}$ AND $I^- = 9.404 \times 10^{-2} \times 5 = 0.4702$ (mol dm ⁻³) \checkmark AND $I_3^- = 1.96 \times 10^{-3} \times 5 = 9.80 \times 10^{-4} \times 10^{-2} \times 5 = 0.80 \times 10^{-3} \times 5 = 9.80 \times 10^{-2} \times 5 \times 10^{-2} \times 5 = 0.80 \times 10^{-3} \times 5 = 9.80 \times 10^{-2} \times 5 \times 10^{-2} \times 10^{-2} \times 5 \times 10^{-2} \times 1$	4	FULL ANNOTATIONS MUST BE USED Throughout, at least 3SF but ALLOW absence of trailing zeroes e.g. for 9.80 × 10 ⁻³ ALLOW 9.8 × FOR I ⁻ 0.4702, ALLOW 0.47(0) (mol dm ⁻³) still → 104 for calc State symbols not required in K _c expression ALLOW ECF from incorrect concentrations Any ECF value MUST be to 3 SF for K _c value COMMON ERRORS 104.2 → 104.2109741 (calc) > 3 SF	2 marks + units 2 marks + units
		10 ⁻³ (mol dm ⁻³) Calculation of <i>K</i> _c and units (3 marks)		2610 ÷ 5 instead of × 5 for concs $\mathbf{9.60 \times 10^{-3}} \ K_{c} \ \text{upside down, correct concs}$	2 marks + units 2 marks + units
		$K_c = \frac{[I_3^-(ac)]}{[I_2(aq)]} \times$		$1.92 \times 10^{-3} K_c$ upside down, no \times 5 for concs	1 mark + units
		= 104 √ Must be 3		NOTE : With K_c upside down, units become mol dm ⁻³ by ECF	
		$dm^3 mol^{-1}$ OR mol^{-1} dm^3 \checkmark		Examiner's Comments	
		@ OCD 2017 Vov		This question was about equilibrium, set in the context of the solubility of iodine. av photocopy this page. Page 5 of 8	Created in ExamBuilder

			Most candidates are comfortable with calculations of equilibrium constants. The correct numerical answer of 104 and units of
			dm³ mol $^{-1}$ were seen often. The commonest calculation error was use of the equilibrium moles, rather than concentrations, giving 521. This question asked for the final value to be expressed to the most appropriate number of significant figures. Candidates should use the least significant number of significant figures in the provided data, in this case 3. Many candidates lost a mark by using more than 3 significant figures (e.g. 104.2 and 104.21). Answer: $K_c = 104 \text{ dm}^3 \text{ mol}^{-1}$
b	Ag ⁺ / silver nitrate reacts with I ⁻ to form AgI / silver iodide OR Ag ⁺ + I ⁻ → AgI ✓ yellow precipitate / solid forms ✓ Equilibrium 2 shifts to the left ✓ Equilibrium 1 shifts to left AND I ₂ comes out of solution / less I ₂ dissolves / I ₂ precipitates / black solid / grey solid / violet solid ✓	4	FULL ANNOTATIONS MUST BE USED
	Total	8	
3 i	ALLOW skeletal OR displayed formula OR mixture of the above as long as non-ambiguous, e.g.	1	ALLOW H ₃ C — O — O H ₃ C — O O O O O O O O O O O O O O O O O O
i	0.023(125) (mol) award	3	If there is an alternative answer, check for any ECF credit $0.37 = \frac{\text{[CH}_3\text{COOOH]}}{0.500 \times 0.500}$ ALLOW Photocopy this page. Page 6 of 8

		3 marks for				
		calculation		ALLOW ECF but ONLY if 0.37 AND		
				0.5×0.5 have been used		
				Common errors		
		K _c expression		0.076	2 marks	
		$(K_c =) \frac{[CH_3CG]}{[H_2O_2][C]}$			Use of [CH3COOOH] ²	
		$(N_c -)$ [H ₂ O ₂] [C				
				0.675	2 marks	
		[CH ₃ COOOH]		0.070	Use of 0.5 for [H_2O] on K_c	
		$= 0.37 \times$			USE OF 0.5 FOR [H2O] OF No	
		0.500 ×				
		0.500 =		0.100	O magadag	
		0.0925		0.169	2 marks	
		$(mol\ dm^{-3})$			Inverted K_c	
		(mor am) ✓				
		Subsumes		0.338	1 mark	
		K_c			Inverted K_c AND 0.5 for [H_2 O]	
		expression			• •	
				5.78 × 10 ⁻³	2 marks	
		n(CH₃COOOH)			$\times \frac{250}{1000}$ before [CH ₃ COOOH]	
		$= 0.0925 \times \frac{250}{1000}$			× 1000 before [CH3COOCH]	
		$= 0.0925 \times 1000$				
				Examiner's Comment:		
				Many candidates obtained the correct answer but water was often seen in the K₀ expression. Candidates then assigned arbitrary		
				values to the concentration of the w	ater, often the same as CH₃COOH, unity, or even 55.6 from 1000/18. The mark scheme	
				allowed some credit by use of error	carried forwards.	
				Answer: 0.023 mol		
		Total	4			
				Must be square brackets		
		-		IGNORE state symbols		
		$K_{c} = \frac{[NO_{2}]^{2}}{[NO]^{2} [O_{2}]}$				
		$^{1/_{c}}$ [NO] ² [O ₂]				
				ALLOW mol ⁻¹ dm ³		
4	а	Units =	2	ALLOW mol dm ⁻³ as ECF from inve	erted K- expression	
		dm ³ mol ⁻¹		an actor nonline		
		√		Examiner's Comments		
		V				
				The expression and the units were	almost universally known by the candidates.	
		FIRST CHECK THE		ANNOTATIONS MUST BE USED		
		ANSWER ON THE			swers from 2 significant figures up to the calculator value	
		ANSWER LINE IF				
		answer = 1.2 (mol)		Ignore rounding errors after second	significant figure	
		award 4 marks		.gs.s realising errors and second	g	
	b		4	1st mark is for realising that concen	trations need to be calculated	
		Unless otherwise		.s. mant is for realising that correct		
		stated, marks are		ALLOW ECF		
		for correctly		ALLUW EUF		
		calculated values.		Correct numerical answer with no working would score all previous calculation marks		
				Joinett numerical answer with no working would score all previous calculation marks		

Working shows how values have been derived.	
been derived.	
$[NO] = \frac{0.40}{4.0} =$	Making point 2 subsumes point 1
AND	Making point 3 subsumes points 2 and 1
0.80	Common errors
$[O_2] = \frac{0.80}{4.0} = 0$	$9.6 = 3$ marks mol of NO and O_2 used
1.0	0.36 = 3 marks mol of NO ₂ calculated from [NO ₂] ²
$[NO_2]^2 = 45 \times 0.102$	2.4 = 2 marks mol of NO and O ₂ used and no mol of NO ₂ calculated
× 0.20 OR = 0.09(0) √	Examiner's Comments
$[NO_2] = \sqrt{(45 \times 0.10^2)}$	There were three steps to this calculation:
\times 0.20) OR = 0.3(0) (mol dm ⁻³) \checkmark	Conversion of molar quantities of NO and O ₂ to molar concentrations.
amount $NO_2 = 0.30 \times$	Insertion into the K₂ expression and determination (via a square root calculation) of the molar concentration of NO₂.
4 = 1.2 (mol) √	Conversion of the molar concentration of NO ₂ to a molar quantity.
	Steps 1 and/or 3 of the calculation were occasionally omitted but if the calculation was presented in a coherent manner, even
	here, partial credit was awarded.
Total	