Einführung in die Geometrie und Topologie - Mitschrieb -

Übung im Wintersemester 2011/2012

Sarah Lutteropp, Simon Bischof 12. Dezember 2011

Inhaltsverzeichnis

1	24. :	10.2011	
	1.1	Induzierte Topologie	
	1.2	Offen und abgeschlossen	
	1.3	Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten	
		Topologie	
	1.4	Teilraumtopologie	
	1.5	Homotopieäquivalenz	
2	31.10.2011		
	2.1	Universelle Eigenschaft der Teilraumtopologie	
	2.2	Homöomorphismen	
	2.3	Die Peano-Kurve	
3	07.11.2011		
	3.1	Nachträge und Wiederholungen zur Vorlesung	
4	14.11.2011		
	4.1	Beispiele für Beweise im Kontext von Hausdorffräumen	
	4.2	Beispiele für Mannigfaltigkeiten	
5	21.11.11		
	5.1	Untermannigfaltigkeiten	
	5.2	Wichtige Spezialfälle (und Beispiele) von Untermannigfaltig-	
		keiten	
6	05.12.2011		
	6.1	Homotopieäquivalenzen	
	6.2	Beispiele zu Homotopien	
	6.3	Kontrahierbarkeit	
	6.4	Deformationsretrakte	
7	12.12.2011		
	7.1	Anwendungen zu Sätzen aus der Vorlesung	
	7.2	Homotopien und Fundamentalgruppe	
	–		

$\mathbf{Vorwort}$

Dies ist ein Mitschrieb der Übung "Einführung in die Geometrie und Topologie" vom Wintersemester 2011/2012 am Karlsruher Institut für Technologie, die von Frau Dipl.-Math. Sandra Lenz gehalten wird.

24.10.2011

1.1 Induzierte Topologie

Definition 1.1 (Induzierte Topologie). Sei X eine Menge. Sei $d: X \times X \to \mathbb{R}$ eine Metrik. Diese Metrik d definiert durch folgende Bedingung eine Topologie \mathcal{O} auf X:

 $O \subseteq X$ ist genau dann offen (d.h. $O \in \mathcal{O}_d$), wenn für alle $x \in O$ ein $\epsilon > 0$ existiert mit

$$B_{\epsilon}(x) := \{ y \in X \mid d(x, y) < \epsilon \} \subseteq O.$$

 $(B_{\epsilon} nennt man offenen \epsilon - Ball.)$

1.2 Offen und abgeschlossen

Sei X eine Menge.

• Mengen können sowohl offen als auch abgeschlossen (zugleich) sein.

Beispiel 1.1. Betrachte \emptyset und X in der trivialen Topologie $\mathcal{O} = \{X, \emptyset\}.$

Es gilt: $X \in \mathcal{O}, \emptyset \in \mathcal{O}$ nach Definition, d.h. X und \emptyset sind offen. Außerdem gilt: $X^c = \emptyset \in \mathcal{O}$, ebenso: $\emptyset^c = X \in \mathcal{O}$, d.h. die Komplemente von X und \emptyset sind offen und somit X und \emptyset abgeschlossen.

- Mengen können weder offen noch abgeschlossen sein.
 - Beispiel 1.2. Betrachte \mathbb{R} mit der von der Standardmetrik induzierten Topologie. Es ist [0,1[nicht offen in dieser Topologie, denn für den Punkt 0 finden wir kein $\epsilon > 0$, so dass $B_{\epsilon}(0)$ in [0,1[liegt. Die Menge [0,1[ist aber auch nicht abgeschlossen, da ihr Komplement $\mathbb{R}\setminus[0,1[=]-\infty,0[\cup[\underline{1},\infty[$ nicht offen ist.
- Bilder offener Mengen unter stetigen Abbildungen müssen nicht notwendigerweise offen sein.

Beispiel 1.3. Betrachte \mathbb{R} mit der von der Standardmetrik induzierten Topologie.

Definiere $f: \mathbb{R} \to \mathbb{R}, x \mapsto x^2$. Es gilt für die in \mathbb{R} offene Menge]-1,1[:

f(]-1,1[)=[0,1[und [0,1[ist nicht offen in \mathbb{R} .

1.3 Basis der von der Standardmetrik auf dem \mathbb{R}^n definierten Topologie

$$\mathcal{B} = \{ B_{\frac{1}{m}}(x) \mid x \in \mathbb{Q}^n, m \in \mathbb{N} \}$$

Diese Basis ist abzählbar.

1.4 Teilraumtopologie

Es sei (X, \mathcal{O}) ein topologischer Raum, $A \subseteq X$. Die Teilraumtopologie (oder Spurtopologie) ist definiert durch

$$\mathcal{O}|_{A} := \{ U \cap A \mid U \in \mathcal{O} \}$$

Satz 1.1. In der Tat definiert $\mathcal{O}|_A$ eine Topologie auf A.

Beweis. •<u>z.z.</u>: Für jede Indexmenge I gilt: $\forall i \in I : O_i \in \mathcal{O}|_A \Rightarrow \bigcup_{i \in I} O_i \in \mathcal{O}|_A$.

Sei I beliebige Indexmenge. Für alle $i \in I$ mit $O_i \in \mathcal{O}|_A$ gilt: Es existieren $\mathcal{U}_i \in \mathcal{O}$ mit $O_i = \mathcal{U}_i \cap A$. Es gilt:

$$\bigcup_{i \in I} O_i = \bigcup_{i \in I} (\mathcal{U}_i \cap A) = (\bigcup_{i \in I} \mathcal{U}_i) \cap A \in \mathcal{O}|_A$$

 $(\operatorname{da}\bigcup_{i\in I}\mathcal{U}_i\in\mathcal{O}).$

• $\underline{\mathbf{z}.\mathbf{z}.}$: $\forall O_1, O_2 \in \mathcal{O}|_A$: $O_1 \cap O_2 \in \mathcal{O}|_A$.

Seien $O_1, O_2 \in \mathcal{O}|_A$. Dann ex. $\mathcal{U}_1, \mathcal{U}_2 \in \mathcal{O}$ mit $O_i = \mathcal{U}_i \cap A, i \in \{1, 2\}$. Es gilt: $O_1 \cap O_2 = (\mathcal{U}_1 \cap A) \cap (\mathcal{U}_2 \cap A) = (\mathcal{U}_1 \cap \mathcal{U}_2) \cap A \in \mathcal{O}|_A$, da $\mathcal{U}_1 \cap \mathcal{U}_2 \in \mathcal{O}$.

• $\underline{\mathbf{z}}.\underline{\mathbf{z}}.$: $A, \emptyset \in \mathcal{O}|_A$.

Es gilt: $A = X \cap A \in \mathcal{O}|_A$, da $X \in \mathcal{O}$ nach Definition von \mathcal{O} .

Es gilt: $\emptyset = \emptyset \cap A \in \mathcal{O}|_A$, da $\emptyset \in \mathcal{O}$ nach Definition von \mathcal{O} .

1.5 Homotopieäquivalenz

Definition 1.2. Seien X, Y topologische Räume. X heißt homotopieäquivalent zu Y, falls es stetige Abbildungen $f \colon X \to Y$ und $g \colon Y \to \overline{X}$ gibt, so dass $f \circ g \simeq id_Y$ und $g \circ f \simeq id_X$.

Satz 1.2. $\mathbb{R}^n \setminus \{0\}$ ist homotopieäquivalent zur Sphäre S^{n-1} .

Beweis. Sei $f\colon S^{n-1}\hookrightarrow \mathbb{R}^n\backslash\{0\}, x\mapsto x$ (Inklusions abbildung). Dann ist f stetig.

Sei weiter $g \colon \mathbb{R}^n \setminus \{0\} \to S^{n-1}, x \mapsto \frac{x}{||x||}$. Dann ist auch g stetig und es gilt: $g \circ f = id_{S^{n-1}}$, also insbesondere $g \circ f \simeq id_{S^{n-1}}$.

Für $f \circ g$ betrachte folgende Abbildung:

$$H \colon \mathbb{R}^n \backslash \{0\} \times [0,1] \to \mathbb{R}^n \backslash \{0\}, (x,t) \mapsto (1-t) \frac{x}{||x||} + t \cdot x$$

Dann ist H stetig und es gilt für alle $x \in \mathbb{R} \setminus \{0\}$:

$$H(x,1) = x = id_{\mathbb{R}^n \setminus \{0\}}(x)$$

$$H(x,0) = \frac{x}{||x||} = (f \circ g)(x)$$

Dann ist H Homotopie von $f \circ g$ nach $id_{\mathbb{R}^n \setminus \{0\}}$ (in Zeichen: $f \circ g \simeq id_{\mathbb{R}^n \setminus \{0\}}$).

31.10.2011

2.1 Universelle Eigenschaft der Teilraumtopologie

Es sei (X, \mathcal{O}_X) ein topologischer Raum und $A \subseteq X$ versehen mit der Teilraumtopologie $\mathcal{O}_A = \{O \cap A \mid O \in \mathcal{O}_X\}$. Weiter sei $\iota \colon A \hookrightarrow X$ die Inklusionsabbildung und (Y, \mathcal{O}_Y) ein weiterer topologischer Raum.

Satz 2.1. Behauptung Eine Abbildung $\phi: Y \to A$ ist genau dann stetig, wenn die Komposition $\iota \circ \phi: Y \to X$ stetig ist.

Beweis. ' \Rightarrow ': Es sei ϕ : $Y \to A$ stetig. [<u>z.z.</u>: $\iota \circ \phi$ ist stetig, d.h. $\forall O \in \mathcal{O}_X$: ($\iota \circ \phi$)⁻¹(O) $\in \mathcal{O}_Y$]

Sei $O \in \mathcal{O}_X$. Dann gilt $(\iota \circ \phi)^{-1}(O) = \phi^{-1}(\iota^{-1}(O))$ und es ist $\iota^{-1}(O) \in \mathcal{O}_A$, da ι stetig ist.

Es gilt somit $\phi^{-1}(\iota^{-1}(O)) \in \mathcal{O}_Y$, da ϕ stetig ist (nach Voraussetzung).

'⇐': Es sei ϕ : $Y \to A$ eine Abbildung, so dass $\iota \circ \phi$: $Y \to X$ stetig ist. [z.z.: ϕ ist stetig, d.h. $\forall O \in \mathcal{O}_A$: $\phi^{-1}(O) \in \mathcal{O}_Y$.]

Sei also $O \in \mathcal{O}_A$. Dann existiert $O' \in \mathcal{O}_X$, so dass $O = O' \cap A$. Es gilt: $\iota^{-1}(O') = O' \cap A = O$.

 $\phi^{-1}(O) = \phi^{-1}(O' \cap A) = \phi^{-1}\left(\iota^{-1}(O')\right) = (\iota \circ \phi)^{-1}(O') \in \mathcal{O}_Y, \text{ da } \iota \circ \phi \text{ stetig (nach Voraussetzung).}$

Bemerkung 2.1. (Bemerkung in der Vorlesung)

Die Teilraumtopologie ist die gröbste Topologie, bezüglich der die Inklu $sionsabbildung \ \iota \colon A \hookrightarrow X \ stetig \ ist.$

Beweis. Stetigkeit der Inklusionsabbildung:
$$[\underline{z}.\underline{z}.: \forall O \in \mathcal{O}_X: \iota^{-1}(O) \in \mathcal{O}_A]$$

Sei $O \in \mathcal{O}_X$. Dann gilt $\iota^{-1}(O) = O \cap A \in \mathcal{O}_A$.

Beweis. Nichtstetigkeit in gröberen Topologien: [z.z.: $\mathcal{O}_A \not\subseteq \tilde{\mathcal{O}} \Rightarrow \exists O' \in$ $\mathcal{O}_X \colon \iota^{-1}(O') \notin \tilde{\mathcal{O}}]$

Sei
$$\mathcal{O}_A \nsubseteq \tilde{\mathcal{O}} \Rightarrow \exists O \in \mathcal{O}_A \colon O \notin \tilde{\mathcal{O}}$$
. Dann $\exists O' \in \mathcal{O}_X \colon O = O' \cap A$. Damit ist aber $\iota^{-1}(O') = O' \cap A = O \notin \tilde{\mathcal{O}} \Rightarrow \iota \colon (A, \tilde{\mathcal{O}}) \to (X, \mathcal{O}_X)$ ist nicht stetig. \square

2.2Homöomorphismen

Zeigen Sie, dass für $a, b \in \mathbb{R}$ mit a < b das Intervall (a, b) homöomorph zum Intervall (0,1) ist, sowie dass (0,1) homöomorph ist zu \mathbb{R} .

Definiere
$$f:(a,b)\to (0,1), x\mapsto \frac{a-x}{a-b},$$
 und $g:(0,1)\to (a,b), x\mapsto (1-x)\cdot a+x\cdot b.$

Es gilt für alle $x \in (a, b)$:

Es gilt für alle
$$x \in (a,b)$$
:
$$(g \circ f)(x) = g\left(\frac{a-x}{a-b}\right) = \left(1 - \frac{a-x}{a-b}\right)a + \frac{a-x}{a-b}b = \left(\frac{a-b-a+x}{a-b}\right)a + \frac{a-x}{a-b}b = \frac{x-b}{a-b}a + \frac{a-x}{a-b}b = \frac{ax-ab+ab-bx}{a-b} = x.$$
Es gilt für alle $x \in (0,1)$:

 $(f \circ g)(x) = f((1-x) \cdot a + x \cdot b) = \frac{a - ((1-x)a + bx)}{a - b} = \frac{a - a + ax - bx}{a - b} = x$. Somit ist f bijektiv. Da f und $g = f^{-1}$ stetig sind, gilt damit: f ist ein Homöomorphismus, d.h. $(a, b) \equiv (0, 1)$.

Definiere $h: (0,1) \to \mathbb{R}, x \mapsto \tan\left((x-\frac{1}{2})\pi\right)$.

 $f: [0,1) \to S^1, t \mapsto e^{2\pi i t} (= (\cos 2\pi t, \sin 2\pi t))$ ist kein Homöomorphismus (da die Umkehrabbildung nicht stetig ist).

2.3 Die Peano-Kurve

(Guiseppe Peano, ~ 1890)

Satz 2.2. Es gibt eine surjektive, stetige Abbildung $I = [0,1] \rightarrow I \times I$.

Verallgemeinerung

- Es gibt eine surjektive, stetige Abbildung $I \to I^n = I \times I \times ... \times I(n \in$
- Es gibt eine surjektive, stetige Abbildung $\mathbb{R} \to \mathbb{R}^n$.

(a) f ist stetig . . .

(b) $\dots f^{-1}$ aber nicht.

Abbildung 2.1: Prinzip der Peano-Kurve

2.3.1 Zugang mit Hilfe der Cantor-Menge $\mathcal C$

Definiere
$$f: \mathcal{C} \to I, f\left(\sum_{i=1}^{\infty} \frac{a_i}{3}\right) = \sum_{i=1}^{\infty} \frac{\frac{a_i}{2}}{2^i}$$
 für $a_i \in \{0, 2\}$.

Definiere
$$f: \mathcal{C} \to I, f\left(\sum_{i=1}^{\infty} \frac{a_i}{3}\right) = \sum_{i=1}^{\infty} \frac{\frac{a_i}{2}}{2^i}$$
 für $a_i \in \{0, 2\}$.
Dann ist f surjektiv und stetig.
Definiere $g: \mathcal{C} \to \mathcal{C} \times \mathcal{C}, g\left(\sum_{i=1}^{\infty} \frac{a_i}{3}\right) = \left(\sum_{i=1}^{\infty} \frac{a_{2i}}{3^i}, \frac{a_{2i+1}}{3^i}\right) =: (g_1, g_2)$ für $a_i \in \{0, 2\}$.

Dann ist g surjektiv und stetig.

Es ist auch $h: \mathcal{C} \to I \times I, x \mapsto (f(g_1(x)), f(g_2(x)))$ surjektiv und stetig. Setze die Abbildung h durch lineare Fortsetzungen stetig auf I fort.

07.11.2011

3.1 Nachträge und Wiederholungen zur Vorlesung

3.1.1 Überdeckung, Teilüberdeckung und Kompaktheit

Sei X ein topologischer Raum.

- **Definition 3.1.** Eine Familie $\{U_{\alpha} \mid \alpha \in A\}$ von Teilmengen von X heißt $\underline{\ddot{U}berdeckung}$ von X, falls gilt: $X = \bigcup_{\alpha \in A} \mathcal{U}_{\alpha}$.
 - Eine Überdeckung heißt offen (bzw. abgeschlossen), falls alle $\mathcal{U}_{\alpha}(\alpha \in A)$ offen (bzw. abgeschlossen) sind.
 - Es heißt X kompakt, falls jede offene Überdeckung $\mathcal{U} = \{U_{\alpha}, \alpha \in A\}$ eine endliche Teilüberdeckung \mathcal{U}' besitzt, d.h. es existiert $A' \subset A$ endlich, so dass $\mathcal{U}' = \{\mathcal{U}_{\alpha} \mid \alpha \in A'\}$ eine offene Überdeckung von X ist.
- Beispiel 3.1. Endliche Räume und mit der trivialen Topologie versehene Räume sind kompakt.
 - Diskrete Räume sind genau dann kompakt, wenn sie aus endlich vielen Elementen bestehen.
 - \mathbb{R} (versehen mit der Standardtopologie) ist <u>nicht</u> kompakt, $\mathbb{R}_{\mathcal{T}_1}$ schon. $(\mathcal{T}_1 = {\mathbb{R} \setminus E \mid E \text{ endliche Teilmenge von } \mathbb{R}}) \cup {\emptyset})$
- **Definition 3.2.** Eine <u>kompakte Menge</u> ist eine Teilmenge eines vom Kontext her klaren topologischen Raumes, die bezüglich der Teilraumtopologie kompakt ist.
- **Beispiel 3.2.** $[0,1)(\subseteq \mathbb{R})$ ist nicht kompakt, <u>denn:</u> Die Überdeckung $\{(-1,1-\frac{1}{n})\mid n\in\mathbb{N}\}\ von\ [0,1)$ enthält keine endliche Teilüberdeckung.
- Bemerkung 3.1. <u>Satz von Heine-Borel:</u> Teilmengen euklidischer, endlich dimensionaler Räume sind genau dann kompakt, wenn sie abgeschlossen und beschränkt sind.

- Abgeschlossene Teilmengen kompakter Räume sind kompakt.
- Stetige Bilder kompakter Mengen sind kompakt, d.h. ist X eine kompakte Menge, Y topologischer Raum, $f: X \to Y$ stetig, dann ist f(X) kompakt.
- Ist X kompakt, $f: X \to \mathbb{R}$ stetig, so ist f(X) kompakt und f nimmt auf X Maximum und Minimum an.
- <u>Lebesque-Lemma</u>: Ist $f: X \to Y$ stetige Abbildung topologischer Räume und X metrisch und kompakt, so gilt: Ist \mathcal{U} eine offene Überdeckung von Y, so existiert $\delta \in \mathbb{R}_{>0}$, sodass für alle $A \subseteq X$ mit diam $A < \delta$ ein $U' \in \mathcal{U}$ mit $f(A) \subseteq U'$ existiert.

3.1.2 Wegzusammenhang

- **Definition 3.3.** Ein Weg in X ist eine stetige Abbildung γ : $I(=[0,1]) \rightarrow X$ mit Anfangspunkt $\gamma(0)$ und Endpunkt $\gamma(1)$.
 - Man nennt X wegzusammenhängend, falls für alle $x, y \in X$ ein Weg $\gamma \colon [0,1] \to X$ in X existiert mit $\gamma(0) = x, \gamma(1) = y$.
 - Eine Wegzusammenhangskomponente von X ist eine wegzusammenhängende Teilmenge von X, die in keiner echt größeren solchen Teilmenge enthalten ist.
- Bemerkung 3.2. Jeder Punkt von X liegt in genau einer Wegzusammenhangskomponente von X, und zwei solche Komponenten sind entweder gleich oder disjunkt.
 - Stetige Bilder wegzusammenhängender Mengen sind wegzusammenhängend.

Korollar 3.1. Wegzusammenhang bleibt unter Homöomorphismen erhalten, ebenso die Anzahl der Wegzusammenhangskomponenten.

Wegzusammende topologische Räume sind zusammenhängend (Übungsaufgabe), die Umkehrung gilt im Allgemeinen nicht.

Beispiel eines Raumes, der zusammenhängend, aber nicht wegzusammenhängend ist Definiere $A = \{(x,y) \in \mathbb{R}^2 \mid x > 0, y = \sin\left(\frac{1}{x}\right)\}, X := A \cup \{(0,0)\}.$

Es gilt:

- Es ist A wegzusammenhängend, denn: $A \cong (0, +\infty) \cong \mathbb{R}$, und \mathbb{R} ist wegzusammenhängend.
- Es ist X zusammenhängend, denn: Es gilt: $\bar{A} = A \cup \{(0, y) \mid y \in [-1, 1]\}$ ist als Abschluss einer zusammenhängenden Menge wieder zusammenhängend (siehe Bemerkung in der Vorlesung).

Außerdem gilt: $A \subseteq X \subseteq \bar{A}$, und X ist als Teilmenge des Abschlusses eines zusammenhängenden Raumes wieder zusammenhängend. (<u>Allgemein:</u> Es sei A zusammenhängend, $A \subseteq B \subseteq \bar{A}$. Dann ist auch B zusammenhängend.)

• Es ist X <u>nicht wegzusammenhängend</u>, denn: Es lässt <u>sich</u> (0,0) <u>nicht über einen Weg in</u> X mit einem beliebigen anderen Punkt aus X verbinden¹.

Bemerkung 3.3. Der Abschluss wegzusammenhängender Räume ist im Allgemeinen nicht wegzusammenhängend!

Beispiel 3.3 (Beispiel von oben). Der Abschluss von A $\underline{in \ X}$ - nicht in \mathbb{R}^2 - ist X, und X ist (s.o.) nicht wegzusammenhängend.

Bemerkung 3.4. Besitzt jeder Punkt eines topologischen Raumes X eine wegzusammenhängende Umgebung, so sind alle Wegzusammenhangskomponenten offen in X, und X ist genau dann wegzusammenhängend, wenn X zusammenhängend ist.

Beispiel 3.4. Offene Teilmengen von \mathbb{R}^n sind genau dann wegzusammenhängend, wenn sie zusammenhängend sind, denn:

Jeder Punkt $x \in \mathbb{R}^n$ besitzt dann als offene Umgebung einen offenen Ball, und offene Bälle sind wegzusammenhängend.

 $^{^1\}mathrm{Formale}$ Begründung: Jeder in (0,0) startende Weg ist konstant.

14.11.2011

4.1 Beispiele für Beweise im Kontext von Hausdorffräumen

Satz 4.1. Behauptung: Ist X ein Hausdorffraum, so besitzt jede Folge $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ höchstens einen Grenzwert.

Beweis. Sei X ein Hausdorffraum.

Annahme: Es existiert eine Folge $(x_n)_{n\in\mathbb{N}}\in X^{\mathbb{N}}$ mit $x=\lim_{n\to\infty}(x_n)=x'$ und $x\neq x'$.

Da X Hausdorffsch ist, existieren offene Teilmengen $U,V\subseteq X$, mit $U\cap V=\emptyset$ und $x\in U,x'\in V$. Dann existieren $n_0,n'_0\in \mathbb{N}$ mit $x_n\in U,x_m\in V$ für alle $n\in \mathbb{N}_{\geq n_0},m\in \mathbb{N}_{\geq n'_0}$. Dann gilt also für alle $k\geq \max\{n_0,n'_0\}: x_k\in U\cap V=\emptyset$. $\not\downarrow$

Satz 4.2. Jeder metrische Raum ist Hausdorffsch.

 $\begin{array}{l} \underline{z.z.:} \ \forall x \neq y \in X \exists U_x, U_y \subseteq X \colon U_x \cap U_y = \emptyset. \ \text{Seien} \ x \neq y \in X. \ \text{W\"{a}hle} \ U_x \coloneqq B_{\frac{d(x,y)}{3}}(x), U_y \coloneqq B_{\frac{d(x,y)}{3}}(y). \\ \text{Dann gilt:} \ U_x \cap U_y = \emptyset. \end{array}$

4.2 Beispiele für Mannigfaltigkeiten

- 1. Was sind 0-dimensionale Mannigfaltigkeiten?
 - Abzählbare diskrete Mengen.
- 2. 1-dimensionale glatte Mannigfaltigkeiten

- Offene Intervalle in \mathbb{R} sind 1-dimensionale glatte Mannigfaltigkeiten, denn: Seien $a, b \in \mathbb{R}$ mit a < b.
 - (a,b) ist als metrischer Raum Hausdorffsch.
 - Es ist $\mathcal{B} = \{B_{\frac{1}{n}}(x) \mid x \in \mathbb{Q}, n \in \mathbb{N}\}$ eine abzählbare Basis der Topologie.
 - -(a,b) ist lokal homöomorph zu \mathbb{R} , <u>denn</u>: Es gilt: $id:(a,b)\mapsto (a,b)\subseteq\mathbb{R}$ ist ein Homöomorphismus einer offenen Menge in eine offene Teilmenge von \mathbb{R} . Somit ist $((a,b),id_{(a,b)})$ eine $(\text{globale})^1$ Karte.
 - Für den Kartenwechsel gilt: $id_{(a,b)} \circ id_{(a,b)}^{-1}$: $(a,b) \to (a,b), x \mapsto x$, ist eine glatte Abbildung.
- $S^1 = \{x \in \mathbb{R}^2 \mid ||x|| = 1\}$

ist eine 1-dimensionale glatte Mannigfaltigkeit, denn:

– Es ist S^1 als Teilmenge des metrischen Raumes \mathbb{R}^2 Hausdorffsch.

¹Global, da für die ganze Mannigfaltigkeit gleich.

Ebenso besitzt S^1 eine abzählbare Basis der Topologie.

- Definiere

$$U_1 := \{(x, y) \in S^1 \mid y \neq 1\} = S^1 \setminus \{N\} \quad (N := (0, 1))$$

und

$$U_2 := \{(x, y) \in S^1 \mid y \neq -1\} = S^1 \setminus \{S\} \quad (S := (0, -1)).$$

Dann gilt:

- $U_1 \cup U_2 = S^1,$
- Es sind U_1 und U_2 offene Teilmengen von S^1 , denn sie sind jeweils Komplement einer einpunktigen und damit abgeschlossenen Menge.
- Definiere

$$\varphi_1 \colon U_1 \to \mathbb{R}, (x, y) \mapsto \frac{x}{1 - y},$$

$$\varphi_2 \colon U_2 \to \mathbb{R}, (x, y) \mapsto \frac{x}{1 + y}.$$

Im Folgenden zeigen wir, dass (U_1, φ_1) eine Karte ist. Analoges gilt auch für (U_2, φ_2) mit analoger Rechnung.

- Definiere

$$\psi \colon \mathbb{R} \to S^1, u \mapsto (\frac{2u}{u^2+1}, \frac{u^2-1}{u^2+1}).$$

Dann gilt:

$$\varphi_1 \circ \psi = id_{\mathbb{R}},$$

$$\psi \circ \varphi_1 = id_{U_1}$$
.

Damit ist φ_1 bijektiv.

Da φ_1 und ψ stetig sind, ist φ_1 damit ein Homöomorphismus.

- Die Kartenwechsel sind glatt, denn es gilt:

$$\varphi_1(U_1 \cap U_2) = \mathbb{R} \setminus \{0\} = \varphi_2(U_1 \cap U_2).$$

Für alle $u \in \mathbb{R} \setminus \{0\}$ gilt:

$$(\varphi_2 \circ \varphi_1^{-1})(u) = (\varphi_2 \circ \psi)(u) = \frac{1}{u},$$

und dies ist tatsächlich ein C^{∞} -Diffeomorphismus² $\mathbb{R}\setminus\{0\}\to\mathbb{R}\setminus\{0\}$.

- 3. Es ist \mathbb{R}^n eine *n*-dimensionale glatte Mannigfaltigkeit, denn:
 - \mathbb{R}^n ist Hausdorffsch und besitzt eine abzählbare Basis der Topologie.
 - $(\mathbb{R}^n, id_{\mathbb{R}^n})$ ist eine globale Karte.

Bemerkung 4.1. Jeder Atlas, der aus nur einer Karte besteht, ist glatt.

Beweis. Es sei $\mathcal{A} = \{(\varphi, U)\}$ dieser Atlas. Dann gilt: Es gibt nur genau einen Kartenwechsel:

$$\varphi \circ \varphi^{-1} = id_{\varphi(U)} \colon \varphi(U) \to \varphi(U)$$

und dieser ist natürlich glatt.

Satz 4.3. Offene Teilmengen von C^k -Mannigfaltigkeiten sind wieder C^k -Mannigfaltigkeiten.

Beweis. Es sei M eine C^k -Mannigfaltigkeit der Dimension $n, N \subseteq_{offen} M$.

- \bullet Als Teilmenge von M ist N Hausdorffsch und auch die abzählbare Basis der Topologie überträgt sich.
- Es sei $\mathcal{A} = \{(\varphi_{\alpha}, U_{\alpha}) \mid \alpha \in \Lambda\}$ (Λ Indexmenge) ein \mathbb{C}^k -Atlas von M. Für alle $\alpha \in \Lambda$ ist $U_k \cap N$ offen in N und es gilt:

$$\varphi_{\alpha}|_{U_{\alpha}\cap N} \colon U_{\alpha}\cap N \to \varphi_{\alpha}(U_{\alpha}\cap N) \subseteq \mathbb{R}^n$$

und $\varphi_{\alpha}(U_{\alpha} \cap N)$ ist als stetiges Bild der offenen Menge $U_{\alpha} \cap N$ wieder offen.

Somit ist $\{(\varphi_{\alpha}\big|_{U_{\alpha}\cap N}, U_{\alpha}\cap N)\mid \alpha\in\Lambda\}$ ein Atlas für N.

Da die Kartenwechsel weiterhin \mathbb{C}^k -Abbildungen sind, ist dieser Atlas ein \mathbb{C}^k -Atlas für N.

Beispiel 4.1. Es gilt: $GL(n,\mathbb{R}) = \det^{-1}(\mathbb{R} \setminus \{0\}) \subseteq_{offen} \mathbb{R}^{n^2}$

 $^{^2}$ d.h. bijektiv und unendlich oft differenzierbar und mit unendlich oft differenzierbarer Umkehrabbildung

21.11.11

5.1 Untermannigfaltigkeiten

Satz 5.1. C^{∞} -Untermannigfaltigkeiten von \mathbb{R}^{n+l} sind C^{∞} -Mannigfaltigkeiten Es sei $M \subseteq \mathbb{R}^{n+l}$ eine n-dimensionale C^{∞} -Untermannigfaltigkeit von \mathbb{R}^{n+l} , versehen mit der Teilraumtopologie, und $\{\psi_{\alpha} \colon W_{\alpha} \to U_{\alpha} \cap M \mid \alpha \in \Lambda\}$ eine Menge lokaler Parametrisierungen (siehe Untermannigfaltigkeitskriterium, (c)) mit $M \subseteq \bigcup_{\alpha \in \Lambda} U_{\alpha}$.

Dann ist $\mathcal{A} = \{(\psi_{\alpha}^{-1}, U_{\alpha} \cap M) \mid \alpha \in \Lambda\}$ ein C^{∞} -Atlas für M und M somit eine C^{∞} -Mannigfaltigkeit.

Beweis. • Es gilt: M ist Hausdorffsch und besitzt eine abzählbare Basis der Topologie (als Teilmenge von \mathbb{R}^{n+l}).

- Es ist A ein Atlas (nach Definition der lokalen Parametrisierungen).
- [z.z.: Die Kartenwechsel sind glatt, d.h.:

$$\forall \alpha, \beta \in \Lambda \colon (U_{\alpha} \cap M) \cap (U_{\beta} \cap M) \neq \emptyset$$

$$\Rightarrow \psi_{\beta}^{-1} \circ \psi_{\alpha} \colon \psi_{\alpha}^{-1}(U_{\alpha} \cap U_{\beta} \cap M) \to \psi_{\beta}(U_{\alpha} \cap U_{\beta} \cap M)$$

ist glatt.]

Seien $\alpha, \beta \in \Lambda$ mit $(U_{\alpha} \cap M) \cap (U_{\beta} \cap M) \neq \emptyset$.

(<u>Vorsicht</u>: Es ist ψ_{β}^{-1} nicht auf einer offenen Teilmenge von \mathbb{R}^{n+l} definiert, daher ist die Kettenregel nicht direkt anwendbar!)

Zeige: Es ist ψ_{β}^{-1} auf einer (offenen) Umgebung eines jeden Punktes $y \in U_{\alpha} \cap U_{\beta} \cap M$ eine glatte Abbildung.

Sei $x \in \psi_{\alpha}^{-1}(U_{\alpha} \cap U_{\beta} \cap M)$. Nach dem Untermannigfaltigkeits-Kriterium (b) existiert eine Umgebung $U \subseteq U_{\alpha} \cap U_{\beta}$ von $\psi_{\alpha}(x) \in M$ in \mathbb{R}^{n+l} und ein C^{∞} -Diffeomorphismus $\varphi \colon U \to \varphi(U) \subseteq \mathbb{R}^{n+l}$ mit $\varphi(U \cap M) = \varphi(U) \cap (\mathbb{R}^n \times \{0\})$

Definiere $\pi \colon \mathbb{R}^{n+l} \cong \mathbb{R}^n \times \mathbb{R}^l \to \mathbb{R}^n$, die Projektion auf die ersten n

Komponenten und $\iota \colon \mathbb{R}^n \hookrightarrow \mathbb{R}^{n+l}, x \mapsto (x,0)$, die Inklusion. Dann gilt auf $\varphi(U \cap M) \subseteq \mathbb{R}^n \times \{0\}$: $\iota \circ \pi = id$. Daher gilt auf $\psi_{\alpha}^{-1}(U \cap M)$:

$$\psi_{\beta}^{-1} \circ \psi_{\alpha} = \psi_{\beta}^{-1} \circ \varphi^{-1} \circ \varphi \circ \psi_{\alpha} = (\psi_{\beta}^{-1} \circ \varphi^{-1} \circ \iota) \circ (\pi \circ \varphi \circ \psi_{\alpha}).$$

Es sind $(\psi_{\beta}^{-1} \circ \varphi^{-1} \circ \iota) = (\pi \circ \varphi \circ \psi_{\beta})^{-1}$ und $\pi \circ \varphi \circ \psi_{\alpha}$ glatte Abbildungen zwischen offenen Teilmengen des \mathbb{R}^n und somit auch die Komposition $\psi_{\beta}^{-1} \circ \psi_{\alpha}$.

5.2 Wichtige Spezialfälle (und Beispiele) von Untermannigfaltigkeiten

(a) Niveaumengen Es seien $V \subseteq \mathbb{R}^{n+l}$ offen, $f \in C^{\infty}(V, \mathbb{R}^l)$ und $c \in \mathbb{R}^l$. Gilt Rang Df(x) = l in jedem Punkt x der Niveaumenge

$$f^{-1}(c) := f^{-1}(\{c\}) = \{x \in V \mid f(x) = c\},\$$

so ist $f^{-1}(c)$ eine n-dimensionale glatte Untermannigfaltigkeit von \mathbb{R}^{n+l} .

Beweis. Wende Untermannigfaltigkeits-Kriterium (a) auf die Abbildung

$$g = f - c \colon x \mapsto f(x) - c$$

an.

[<u>z.z.</u>: Rang Df(x) = l auf einer Umgebung U von $f^{-1}(c)$, nicht nur auf der Niveaumenge selbst!]

Sei $x_0 \in f^{-1}(c)$. Da Rang $Df(x_0) = l$, existiert eine $(l \times l)$ -Unterdeterminante A(x) von $\det Df(x)$, so dass $A(x_0) \neq 0$. Da f stetig ist, ist die Abbildung $x \mapsto A(x)$ stetig, und somit folgt: $A(x) \neq 0$ auf einer Umgebung $U(x_0)$ von x_0 . Dann ist Rang Df(x) = l für alle $x \in U(x_0)$.

Setze
$$U := \bigcup_{x_0 \in f^{-1}(c)} U(x_0)$$
, dann folgt die Behauptung.

Beispiel 5.1.

Der Zylinder $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ ist als Niveaumenge der Abbildung $f : \mathbb{R}^3 \to \mathbb{R}, (x, y, z) \mapsto \underbrace{x^2 + y^2}_{} - 1$, eine C^{∞} -Untermannigfaltigkeit von \mathbb{R}^3 .

(b)

Beispiel 5.2. Der Graph der Abbildung $\varphi \colon \mathbb{R} \to \mathbb{R}^2, t \mapsto (\cos(t), \sin(t)),$ d.h. die Menge $\{(\cos(t), \sin(t), t) \mid t \in \mathbb{R}\},$ die <u>Helix</u>, ist eine 1-dimensionale

glatte Untermannigfaltigkeit von \mathbb{R}^3 .

(c) Global parametrisierte Untermannigfaltigkeiten Es sei $W \subseteq \mathbb{R}^n$ offen und $\psi \colon W \to \mathbb{R}^{n+l}$ glatt mit Rang $D\psi(w) = n$ für alle $w \in W$. Es

sei ferner $\psi \colon W \to \psi(W)$ Homöomorphismus. Dann ist $\psi(W)$ eine C^{∞} -Untermannigfaltigkeit von \mathbb{R}^{n+l} (nach Untermannigfaltigkeits-Kriterium (c) mit $U := \mathbb{R}^{n+l}$).

Für n=2 und l=1 heißt $\psi(W)$ eine parametrisierte Fläche von \mathbb{R}^3 .

Beispiel 5.3. 1. Parametrisierung des Zylinders:

Betrachte die glatte Abbildung $\psi: (0,2\pi) \times \mathbb{R} \to \mathbb{R}^3, (t,s) \mapsto (\cos(t), \sin(t), s)$. Das Bild dieser Abbildung ist der Zylinder im \mathbb{R}^3 (wie oben, ohne eine Gerade). Es gilt:

$$D\psi(t,s) = \begin{pmatrix} -\sin(t) & 0\\ \cos(t) & 0\\ 0 & 1 \end{pmatrix}$$

für alle $(t,s) \in \mathbb{R}^2$, und damit: Rang $D\psi(t,s) = 2$ für alle $(t,s) \in \mathbb{R}$, da sin und cos keine gemeinsamen Nullstellen haben.

Damit ist ψ eine (globale) Parametrisierung des Zylinders.

2. (Rotationsflächen im \mathbb{R}^3)

Rotiere für Konstanten 0 < r < a die Kurve $\gamma : [0, 2\pi] \to \mathbb{R}^3, t \mapsto (a + a)$

 $r \cdot \cos(t), 0, r \cdot \sin(t)$. in der x_1x_3 -Ebene:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \cos \Theta & -\sin \Theta & 0 \\ \sin \Theta & \cos \Theta & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a + r \cdot \cos(t) \\ 0 \\ r \cdot \sin(t) \end{pmatrix}$$

$$= \underbrace{\begin{pmatrix} (a+r\cdot\cos{(t)})\cos{(\Theta)} \\ (a+r\cdot\cos{(t)})\sin{(\Theta)} \\ r\cdot\sin{(t)} \end{pmatrix}}_{(*)}$$

Dann definiert $\Phi_{\gamma} \colon (0,2\pi) \times (0,2\pi) \to \mathbb{R}^3, (\Theta,t) \mapsto (*)$ eine parametrisierte Fläche, den Rotationstorus.

• Der Rotationstorus $T \subseteq \mathbb{R}^3$ lässt sich als Niveaumnge definieren:

$$T = \{(x, y, z) \in \mathbb{R}^3 \mid z^2 + (\sqrt{x^2 + y^2} - a)^2 = r^2\}.$$

• Eine weitere (aus der Vorlesung bekannte) Darstellung des Torus ist

$$S^1 \times S^1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 \mid (x_1)^2 + (x_2)^2 = 1 \land (x_3)^2 + (x_4)^2 = 1\},\$$

und dies ist nicht die letzte Möglichkeit der Darstellung des Torus (siehe nächste Vorlesung) ...

05.12.2011

Homotopieäquivalenzen 6.1

Definition Für zwei topologische Räume X, Y heißt eine stetige Abbildung

 $\underbrace{f \in C(X,Y)}_{f \in C(X,Y)}$ Homotopieäquivalenz, falls es eine stetige Abbildung $g \colon Y \to X$ gibt, sodass $g \circ f \simeq id_x$ und $f \circ g \simeq id_Y$ gilt.

Proposition 6.1. Es seien X, Y topologische Räume. Die Relation " \simeq " ist eine Aquivalenzrelation auf C(X,Y).

- Reflexivität: Es sei $f \in C(X,Y)$. Definiere $H: X \times I \to I$ $Y,(x,t)\mapsto f(x)$. Dann ist H eine Homotopie von f nach f, was die Reflexivität von " \simeq " zeigt.
 - Symmetrie: Es seien $f, g \in C(X, Y)$ mit $f \simeq g$, d.h. es existiert eine Homotopie H von f nach g. Definiere $G: X \times I \to Y, (x,t) \mapsto H(x,1-t)$ t). Dann ist G Homotopie von g nach f und die Symmetrie von " \simeq " gezeigt.
 - Transitivität: Es seien $f,g,h\in C(X,Y)$ mit $f\simeq g\simeq h$ durch die Homotopien H_1 und H_2 . Definiere

$$H: X \times I \to Y, (x,t) \mapsto \begin{cases} H_1(x,2t), & 0 \le t \le \frac{1}{2} \\ H_2(x,2t-1), & \frac{1}{2} \le t \le 1 \end{cases}$$

Dann gilt für alle $x \in X$:

$$- H(x,0) = H_1(x,0) = f(x),$$

$$- H(x,1) = H_2(x,1) = h(x),$$

Für $t = \frac{1}{2}$ betrachte:

$$\lim_{t \nearrow \frac{1}{2}} H(x,t) = \lim_{t \nearrow \frac{1}{2}} H_1(x,2t) = H_1(x,1) = g(x),$$

$$\lim_{t \searrow \frac{1}{2}} H(x,t) = \lim_{t \searrow \frac{1}{2}} H_2(x,2t-1) = H_2(x,0) = g(x).$$

Damit ist H Homotopie von f nach h und die Transitivität von " \simeq " gezeigt.

6.2 Beispiele zu Homotopien

1. <u>Beh.</u>: Für einen topologischen Raum X sind je zwei Abbildungen $f,g\colon X\to\mathbb{R}^{n-1}$ homotop.

Beweis. Sei X ein topologischer Raum, $f, g \in C(X, \mathbb{R}^n)$. Definiere $H: X \times I \to \mathbb{R}^n, (x, t) \mapsto (1 - t)f(x) + t \cdot g(x)$. Dann ist H Homotopie von f nach g, eine **lineare** Homotopie.

2. <u>Beh.:</u> Jede stetige Abbildung $\mathbb{R}^n \to Y, Y$ topologischer Raum, ist nullhomotop.

Beweis. Es sei Y topologischer Raum $f \in C(\mathbb{R}^n, Y)$. Definiere $H \colon \mathbb{R}^n \times I \to Y, (x, t) \mapsto f((1 - t)x)$. Dann gilt für alle $x \in \mathbb{R}^n$:

- H(x,0) = f((1-0)x) = f(x),
- H(x,1) = f((1-1)x) = f(0).

Dann ist H Homotopie f nach $c_{f(0)} (= c \equiv f(0))$.

Definition: Es seien X, Y topologische Räume, $A \subseteq X$. Seien $f, g \in C(X, Y)$. Es heißt \underline{f} relativ \underline{A} homotop zu \underline{g} (in Zeichen $\underline{f} \simeq g$ rel \underline{A}), falls eine Homotopie $\underline{H} : X \times I \to Y$ von \underline{f} nach \underline{g} existiert, so dass $\underline{H}(a, t) = \underline{H}(a, 0)$ für alle $\underline{a} \in A, t \in I$.

Bemerkung 6.1. Es seien X, Y topologische Räume, $A \subseteq X$. Dann ist "Homotopie rel A" eine Äquivalenzrelation.

Proposition 6.2. Homotopieäquivalenz ist eine Äquivalenzrelation (auf der Klasse der topologischen Räume).

Bemerkung 6.2.

- Reflexivität: Es sei X topologischer Raum. Es gilt: $X \simeq X$ durch die Homotopieäquivalenz $\tilde{f}, \tilde{g} := id_X$.
- Symmetrie: Seien X, Y topologische Räume mit $X \simeq Y$, d.h. es existieren $\tilde{f} \in C(X,Y)$, $\tilde{g} \in C(Y,X)$ mit $\tilde{g} \circ \tilde{f} \simeq id_X$, $\tilde{f} \circ \tilde{g} \simeq id_Y$. Definiere $f := \tilde{g}, g := \tilde{f}$. Dann gilt $f \circ g \simeq id_X$, $g \circ f \simeq id_Y$, d.h. $Y \simeq X$.

 $^{^1\}mathrm{Statt}\ \mathbb{R}^n$ reicht: kontrahierbarer Raum

• Transitivität: Seien X, Y, Z topologische Räume mit $X \simeq Y \simeq Z$, d.h. es existieren $f_1 \in C(X,Y), g_1 \in C(Y,X), f_2 \in C(Y,Z), g_2 \in C(Z,Y)$ mit

$$g_1 \circ f_1 \simeq id_X, f_1 \circ g_1 \simeq id_Y$$

 $g_2 \circ f_2 \simeq id_Y, f_2 \circ g_2 \simeq id_Z$

Definiere $f := f_2 \circ f_1, g := g_1 \circ g_2$. Dann gilt:

$$g \circ f \simeq id_X, f \circ g \simeq id_Z,$$

 $d.h. X \simeq Z.$

6.3 Kontrahierbarkeit

Es sei X ein topologischer Raum.

Definition Man nennt X kontrahierbar, falls gilt: $X \simeq \{pt\}$.

Bemerkung 6.3. Es gilt:

 $X \ kontrahierbar \Leftrightarrow id_X \ ist \ nullhomotop.$

Beispiel 6.1.

• Es ist \mathbb{R}^n kontrahierbar, <u>denn</u>: Definiere $H: \mathbb{R}^n \times I \to \mathbb{R}^n$, $(x,t) \mapsto (1-t)x$. Dann ist H Homotopie von id_X nach c_0 , d.h. \mathbb{R}^n ist kontrahierbar nach obiger Bemerkung.

Teilmenge

• Genauer ist jede **sternförmige**² $M \subseteq \mathbb{R}^n$ kontrahierbar.

Beispiel 6.2. D^n, B^n .

Bemerkung 6.4.

- Kontrahierbarkeit ist eine topologische Invariante.
- Kontrahierbare Räume sind einfach-zusammenhängend.

²Es existiert $x_0 \in M$, so dass für alle $x \in M$ gilt: $(1-t)x + t \cdot x_0 \in M$

6.4 Deformationsretrakte

Behauptung: S^{n-1} ist (starker) Deformationsretrakt von $D^k \setminus \{0\}$.

Beweis. Betrachte die Abbildung

$$H \colon D^n \backslash \{0\} \times I \to D^n \backslash \{0\}, (x,t) \mapsto (1-t)x + t \cdot \frac{x}{||x||}$$

Definiere
$$r(x) = \frac{x}{||x||}$$
 für alle $x \in D^n \setminus \{0\}$.

12.12.2011

7.1 Anwendungen zu Sätzen aus der Vorlesung

Satz 7.1 (Brouwerscher Fixpunktsatz). Jede stetige Abbildung $f: D^2 \to D^2$ besitzt einen Fixpunkt, d.h. es ex. $x \in D^2$ mit f(x) = x.

Fundamentalsatz der Algebra

Satz 7.2 (Borsuk-Ulam). Ist $f: S^2 \to \mathbb{R}^2$ stetig, so existiert ein $x \in S^2$ mit f(x) = f(-x).

Korollar 7.1. Es lässt sich S^2 nicht in \mathbb{R}^2 einbetten.

Korollar 7.2. Auf der Erde existieren immer zwei verschiedene Punkte mit gleichem Luftdruck und gleicher Temperatur.

7.2 Homotopien und Fundamentalgruppe

7.2.1 Der komplex projektive Raum \mathbb{CP}^n

Der komplex projektive Raum $\mathbb{CP}^n = \{\text{komplexe Geraden durch } 0 \in \mathbb{C}^{n+1}\}$ = $\{1\text{-dim. komplexe lineare Teilräume von } \mathbb{C}^{n+1}\}$ lässt sich auch wie folgt darstellen:

Führt man auf $\mathbb{C}^{n+1}\setminus\{0\}$ durch

$$v \sim w : \Leftrightarrow \exists \lambda \in \mathbb{C} \setminus \{0\} : \lambda v = w$$

eine Äquivalenzrelation ein, so kann man \mathbb{CP}^n mit $(\mathbb{C}^{n+1}\setminus\{0\})/_{\sim}$ identifizieren.

Betrachte $S^{2n+1}=\{v\in\mathbb{C}^{n+1}\mid ||v||=1\}$ als Teilraum von \mathbb{C}^{n+1} . Dann induziert die Inklusion $S^{2n+1}\hookrightarrow\mathbb{C}^{n+1}\backslash\{0\}$ einen Homöomorphismus

 $S^{2n+1}/_{\sim} \cong (\mathbb{C}^{n+1}\setminus\{0\})/_{\sim}.$

Seine Inverse ist die von der radialen Projektion

$$\mathbb{C}^{n+1} \setminus \{0\} \to S^{2n+1}, v \mapsto \frac{1}{||v||} v,$$

induzierte stetige Abbildung ($\mathbb{C}^{n+1}\setminus\{0\}$)/ $_{\sim}\cong S^{2n+1}/_{\sim}$. Da S^{n+1} kompakt ist und die Äquivalenzklassen in S^{2n+1} abgeschlossen sind, ist $\mathbb{CP}^n\cong S^{2n+1}/_{\sim}$ kompakter Hausdorffraum.

- $\underline{n=0}$: $\mathbb{CP}^0=\{\text{komplexe Geraden durch }0\in\mathbb{C}\}$ ist ein einpunktiger Raum.
- $\underline{n} = \underline{1}$: \mathbb{CP}^1 ist homöomorph zu $S^3/_{\sim} \cong S^2$, und damit gilt: $\pi_1(\mathbb{CP}^1) = \{0\}$, denn nach Vorlesung gilt $\pi_1(S^n) = \{0\}$ für alle $n \geq 2$ und homöomorphe Räume haben isomorphe Fundamentalgruppen. Der Homöomorphismus ist gegeben durch die folgende Abbildung

$$\varphi \colon \underbrace{S^3}_{\subseteq \mathbb{C}^2} \to S^2, \quad (z, w) \mapsto (2\bar{z}w, |w|^2 - |z|^2),$$

welche einen Homöomorphismus $S^3/_{\sim} \cong S^2$ induziert.

Allgemein gilt: Für alle $n \in \mathbb{N}_0$ ist \mathbb{CP}^n einfach zusammenhängend (da wegzusammenhängend: $\pi_1(\mathbb{CP}^n) = \{0\}$).

Bemerkung 7.1. Der reell projektive Raum \mathbb{RP}^n ist für <u>kein</u> $n \in \mathbb{N}$ einfach zusammenhängend, seine Fundamentalgruppe ist nicht trivial.

7.2.2 Die spezielle unitäre Gruppe SU(n)

Für $n \in \mathbb{N}$ betrachte die spezielle unitäre Gruppe

$$SU(n) = \{ A \in \mathbb{C}^{n \times n} \mid A^*A = I_n, \det(A) = 1 \}$$

 $(A^* \text{ bezeichnet die "Adjungierte"}: A^* = \bar{A}^T)$

Es ist SU(n) als Urbild abgeschlossener Mengen unter stetigen Abbildungen abgeschlossen in \mathbb{C}^{n^2} . Da die Spalten einer unitären Matrix orthonormal zueinander sind und somit Einheitsvektoren bilden, ist SU(n) beschränkt. Nach dem Satz von Heine-Borel (welcher anwendbar ist, da $\mathbb{C}^{n^2} \cong \mathbb{R}^{2n^2}$) ist SU(n) damit kompakt.

- $\underline{n=1}$: $SU(1)=\{z\in\mathbb{C}, \bar{z}z=1, \det(z)=1\}=\{1\}$ ist ein einpunktiger Raum.
- $\underline{n} = \underline{2}$: SU(2) ist homöomorph zu S^3 und damit einfach zusammenhängend (mit gleicher Begründung wie für \mathbb{CP}^1). Zum Homöomorphismus:

Betrachte $S^3=\{(z,w)\in\mathbb{C}^2\mid |z|^2+|w|^2=1\}$ als Teilraum von $\mathbb{C}^2.$ Dann ist

$$\varphi \colon S^3 \to SU(2), \quad (z,w) \mapsto \begin{pmatrix} z & -\bar{w} \\ w & \bar{z} \end{pmatrix}$$

ein Homö
omorphismus $S^3 \cong SU(2).$

• Allgemein gilt: Für jedes $n \in \mathbb{N}$ ist SU(n) einfach zusammenhängend.

7.2.3 Die Kreislinie $S^1 \subseteq \mathbb{R}^2$

Behauptung 7.1. S^1 ist nicht einfach zusammenhängend.

Was sind geschlossene Wege in S^1 ? Für $k \in \mathbb{Z}$ definiere

$$u_k \colon I \to S^1, \quad t \mapsto (\cos 2\pi kt, \sin 2\pi kt)$$

Solche Schleifen lassen sich für $k \neq 0$ nicht zusammenziehen.

7.2.4 Das Möbiusband

Das Möbiusband M entsteht durch Verklebung zweier gegenüberliegender Seiten im Einheitsquadrat I^2 in entgegengesetzter Richtung:

$$M = I^2/_{[(0,t)\sim(1,1-t)]}$$

Es bezeichnet $p\colon I^2\to M$ die Projektion und $S:=p(I\times\{\frac{1}{2}\})$. Man kann zeigen, dass S ein Deformationsretrakt von M ist. Somit sind S und M vom selben Homotopietyp und damit

$$\pi_1(M) \underset{\text{isomorph}}{\approx} \pi_1(S).$$

Andererseits gilt: S ist homö
omorph zu S^1 und somit:

$$\pi_1(S^1) \approx \pi_1(S) \approx \pi_1(M).$$