

THE ONTARIO WATER RESOURCES COMMISSION

REPORT ON

LAKEH EAD AREA
WATER POLLUTION SURVEY

MOE LAK REP ATJV

c.1

JANUARY 1960

PARLIAMENT BUILDINGS - TORONTO

Copyright Provisions and Restrictions on Copying:

This Ontario Ministry of the Environment work is protected by Crown copyright (unless otherwise indicated), which is held by the Queen's Printer for Ontario. It may be reproduced for non-commercial purposes if credit is given and Crown copyright is acknowledged.

It may not be reproduced, in all or in part, for any commercial purpose except under a licence from the Queen's Printer for Ontario.

For information on reproducing Government of Ontario works, please contact ServiceOntario Publications at copyright@ontario.ca

THE ONTARIO WATER RESOURCES COMMISSION

Report on

LAKEHEAD AREA

WATER POLLUTION SURVEY

January 1960

Parliament Buildings- Toronte

ACKNOWLEDGEMENT

The Commission wishes to acknowledge with thanks the time and valuable information given by the following for this report:

Port Arthur-

Mr.E.A.Vigars, Manager, P.U.C. Mr.D.H.Annala, Water Works Engineer

Mr.A.H.Evans, Clerk

Mr.T.Fell, City Engineer

Dr.W.C.MacPherson, M.O.H.and staff Mr.W.L.Sleeman, District Forester and staff

Fort William -

Mr.W.E.Maclennan, Water Works Supt.

Mr.J.A.Marshall, City Engineer Mr.D.M.Martin, Clerk

Dr.M.R.Warren, M.O.H. and staff

Mr.D. Thompson, Planning Administrator

Mr.Wm.Hollenbeck, Superintendent,

Chippewa Park and staff

Shuniah -

Miss H.M.Lampshire, Clerk-Treasurer

Neebing -

Miss.H.M.Hewitt, Clerk-Treasurer Mr.E.Baker, Assessor

The Lakehead Planning Board-Mr.N.Dant, Director

In addition appreciation is acknowledged to Dr.A.E.Allin, M.D., Director of the Regional Laboratory and staff for conducting bacteriological analyses of samples.

LAKEHEAD AREA POLLUTION SURVEY

Index

	SUMMARY AND RECOMMENDATIONS	
		Page
I	Summary	4
II	Recommendations	8
	Port Arthur Fort William Shuniah Neebing	8 8 9
	GENERAL	
I	Purpose and Extent	10
II	Sampling Procedure and Terms	10
III	Commission Objectives	11
	PORT ARTHUR	
I	Lakefront Area	13
	(1) Water Use and Complaints(2) Sampling Results	13 14
II	Inland Watercourses	17
	(1) Neebing River (a) Water Use (b) Sampling Results (2) McIntyre River (a) Water Use (b) Sampling Results (3) McVicar Creek (a) Water Use (b) Sampling Results	17 17 18 18 18 18 19

	- 2	-	Page
	<pre>(4) Current River (a) Vater Use (b) Sampling</pre>		19 19 19
III	Pollution Control		20
	FORT WI	LLIAM	
I	Lakefront Area		22
	(1) Water Use and(2) Sampling Resul		22 22
II	Inland Watercourses		24
	(1) Kaministikwia (a) Water Use (b) Sampling	ı	24 24 24
	(2) Neebing River (a) Water Use (b) Sampling (3) McKellar River (a) Water Use (b) Sampling (4) Mission River (a) Water Use (b) Sampling	Results	26 26 26 27 27 27 28 28 28
III	Pollution Control		29
	MUNICIPALITY	OF NEEBING	
I	Inland Watercourses		30
	(b) Sampling (2) Neebing River	and Complaints Results and Complaints	30 30 30 30 31 32
II	Pollution Control		32

		Page
	MUNICIPALITY OF SHUNIAH	
I	Lakefront Area	33
	(1) Water Use and Complaints(2) Sampling Results	33 34
II	Inland Watercourses	34
	(1) McIntyre River(a) Water Use(b) Sampling Results	34 34 34
	(2) McVicar Creek (a) Water Use	34 34
	 (b) Sampling Results (3) Current River (a) Water Use (b) Sampling Results 	34 35 35 35 35
III	Pollution Control	35
	THUNDER BAY EXCLUSIVE OF HARBOUR AREA	
I	Water Use and Complaints	37
II	Sampling Results	37
	MAPS AND FIGURES	
Map #1	Lakehead Area Sampling Points - General (Front Insert)
Map #2	Central Lakehead Area Sampling Points-Th	nunder Bay (Back Insert)
Fig.1	Lakehead Pollution Sample Analyses(Thund	
Fig.2	Lakehead Pollution Samples Analyses(Inla	and ercourses)40-43

LAKEHEAD AREA POLLUTION SURVEY

SUMMARY AND RECOMMENDATIONS

I Summary

Pollution exists in the streams and lakefront area of the Lakehead. At present it is caused by both sanitary sewage and industrial waste. The worst conditions exist along the lakefront and in the Kam and Neebing Rivers as they pass through Fort William and Port Arthur. The water-courses in Neebing and Shuniah in general are of good quality. This can be attributed in part to the lack of extensive industrial and residential development.

The present sewerage plans for Port Arthur and Fort William indicate that adequate treatment of sanitary and some industrial wastes will be provided by these cities in the near future.

The condition of the watercourse in Neebing and Shuniah will deteriorate with future industrial and residential development, unless an adequate sewerage plan is adopted. For the most efficient and economical servicing of the area all new sewer and sewage treatment plans should be based on an overall scheme for the four municipalities of Fort William, Port Arthur, Neebing and Shuniah.

Much of the pollution in the area is caused by industrial wastes. This has resulted in most of the lakefront

area being contaminated with phenol. In addition, wood fibre in the water has been the cause of complaints by commercial fishermen, cottage owners and water consumers. The industries contributing much of the contamination are:

Provincial Pulp and Paper Company Limited, Abitibi Power and Paper Company, Thunder Bay and Mission mills, Great Lakes Paper Company, Ogilvie Flour Mills Limited, and Northern Wood Preservers Limited. These wastes will not be treated at the municipal sewage treatment plants.

The pulp and paper mills can provide for wood fibre removal by installing or improving either lagoons or some form of suspended solids removal equipment. This should be considered as the necessary first step in waste treatment and should be proceeded with as soon as possible. When such installations become adequate the presence of wood fibre in the water will still be a problem at the Port Arthur water works.because considerable quantities of wood fibre are now deposited on the lake bottom. This material will continue to rise and float into the intake during times of storm.

This can be removed readily in a water filtration plant which would ensure a satisfactory quality water at all times.

Phenol treatment at the pulp and paper mills can be most effectively achieved by substituting non-phenolic type slime control agents for those presently being used. This is at present being practised at some of the mills. The treatment of phenol at the Northern Wood Preservers Limited poses a more difficult problem and should receive further study.

At the present time there is no acceptable economical method of reducing the high B.O.D. content of the pulp and paper mill waste. This problem should receive top priority by the recently formed, pollution abatement committee of the area mills.

In addition to phenol treatment the Northern Wood
Preservers Limited, should consider oil removal. This can
be affected in a conventional type oil-water separator. There
is also some suspended solids present in this waste which
possibly can be effectively treated by proper in-plant care.

The volume of waste produced at the Ogilvie Flour Mills Limited is relatively small, however, it is excessively strong on the basis of the 5 Day B.O.D. test. For this reason conventional forms of treatment will probably not produce an effluent of satisfactory quality, and it will be necessary to provide complete elimination.

Complaints concerning pollution in the area were made by commercial fishermen, cottage owners, officials of the Port Arthur Public Utilities Commission and home-owners in the low-lying areas of the Neebing River.

The commercial fishermen revealed that wood fibre had covered the fish spawning areas near the harbour and that the flesh of fish caught in the area were tainted with industrial waste. This could be attributed to oil and phenol wastes.

Cottage owners in the Silver Beach area of Shuniah have been subjected to beach pollution by wood fibre. This can be attributed in part to log booming operations. Wood

fibre is produced by these logs rubbing together especially in times of storm and producing fibre and bark. There does not appear to be an economical method of controlling the waste produced by these operations. Wood fibre waste, which is ground wood or chemical wood fibre, produced at the pulp and paper mills can be controlled.

Wood fibre and some chemical wood fibre cause contamination to the Port Arthur water supply. As discussed one effective method of controlling this problem at the water works is the installation of a modern water filtration plant.

There is frequent flooding of basements in the lowlying areas near the mouth of the Neebing River. As the river contains much sanitary sewage this presents a public health objection. Proposed municipal sewerage plans should eliminate this problem.

In addition, there is the possibility of wood fibre contamination to the process water supply for the Ontario Hydro Steam Generating Plant now being constructed at the mouth of the Mission River. At times of high water level in Lake Superior and easterly winds, wastes from the Abitibi Mission mill may be carried to the Hydro plant intake.

II Recommendations

1. The four municipalities of Fort William, Port Arthur, Neebing and Shuniah should adopt a plan for the future sewer development of the area.

Port Arthur

- 2. The sewerage plan recommended by the city's consulting engineer should be implemented as soon as possible.
- 3. The Provincial Paper Company should provide satisfactory treatment for suspended solids removal as soon as possible.
- 4. The Abitibi Power and Paper Company Limited, Thunder Bay, should continue its efforts at reducing the suspended solids in the mill effluent.
- 5. At both paper mills:
- (a) phenol should be satisfactorily treated or removed from the mill wastes as soon as possible.
- (b) every effort should be made to develop an efficient method of B.O.D. reduction in the wastes.
- 6a. The Northern Wood Preservers Limited, should provide effective treatment for suspended solids and oil.
- b. Consideration should be given to the adequate reduction of phenol.

Fort_William_

- 7. The sewerage plan recommended by the city's consulting engineer should be implemented as soon as possible.
- 8. The Abitibi Power and Paper Company Limited, Mission mill, should provide satisfactory treatment for suspended solids

removal as soon as possible.

- b. Phenol should be satisfactorily treated or removed from the mill waste as soon as possible.
- c. Every effort should be made to develop an efficient method of B.O.D. reduction in the wastes.
- 9. The Ogilvie Flour Mills Limited, should provide satisfactory treatment for the plant waste.

Neebing

- 10. A further investigation should be made of the phenol pollution and the possibility of sanitary sewage contamination in the Neebing River.
- 11. The Great Lakes Paper Company should provide satisfactory treatment for suspended solids removal, as soon as possible.
- b. Every effort should be made to develop an efficient method of B.O.D. reduction.

Shuniah_

12. Local authorities should investigate the reason for sanitary sewage pollution in the McIntyre River near the Golf Links Road.

LAKEHEAD AREA POLLUTION SURVEY

GENERAL

I Purpose and Extent

The purpose of this survey was to study the amount and extent of water pollution in the lakehead area and to establish a method for control and abatement. Samples were obtained from the rivers and streams, the harbour area, and from Thunder Bay.

Discussions were held with municipal officials and persons affected by pollution, i.e., commercial fishermen, cottage owners and those using the water for recreation, or for domestic or industrial consumption.

II Sampling Procedures and Terms

Samples were taken from the surface, at various depths and from the bottom of the watercourses. The following tests were applied to the surface and depth samples:

5 Day B.O.D. (Biochemical Oxygen Demand) - a measurement of the amount of oxygen required to stabilize by aerobic decomposition the organic material in the sample.

Solids- Total, Suspended, Dissolved

Turbidity- in silica units.

Phenols- chemical compound which gives a blue colour with Gibbs reagent.

Ether Solubles- substances which are soluble in a 50% by 50% by volume solution of carbon tetrachloride and diethyl ether, such as oil or greases.

Bacteriological - recorded as Indicated Number of Total Coliform per 100 cc. and is a measure of the amount of sanitary sewage present. Owing to the number of dilutions used, the maximum count recorded is 1,000,000/100 cc.

All bottom samples and the solids from some of the surface and depth samples were examined visually and by staining in order to determine their source. The staining procedure produces colours characteristic of various chemical wood fibre extraction methods employed at pulp and paper mills. It should be noted that there is some difficulty in determining whether wood fibre in a sample is from actual mill operations, i.e., ground wood or from the rubbing action of logs in booms as they are being transported to the mills.

The bacteriological samples were tested at the Ontario Department of Health Laboratory in Fort William. All other samples were tested at the Ontario Water Resources Commission Laboratory in Toronto.

In order for clarity the following definition of terms should be used for this report:

- wood fibre- this includes chemically extracted wood fibre, mechanically extracted wood fibre and the wood fibre produced by the rubbing of logs in booms.
- chemical wood fibre- wood fibre extracted from logs by chemicals.
- ground wood- wood fibre extracted from logs by mechanical grinding and screening.
- log boom fibre- wood fibre rubbed off logs during booming operations.

III Commission Objectives

The objectives for water quality set by the Commission

are that all wastes, including sanitary sewage, storm water and industrial effluents, shall be in such condition that they will not create conditions which will adversely affect the use of these waters for the following purpose; source of domestic water supply, navigation, fish and wildlife, bathing, recreation, agriculture and other riparian activities.

For convenience in the interpretation of laboratory analyses it may be taken as an objective that pollution in streams or lakes should not exceed the following figures:

5 Day B.O.D. - 4 p.p.m. (parts per million)

Suspended Solids- this varies depending on the watershed, but satisfactory conditions will prevail if drains or effluents are limited to 15 p.p.m.

Phenols- after initial dilution an average of 2 ppb. (parts per billion) and a maximum of 5 ppb.

Ether Solubles- oil and floating solids should be reduced to a point such that they will not create fire hazards, coat boat hulls, injure fish or wildlife or their habitat or will adversely affect public or private recreational development or other legitimate shore line development or uses. Protections hould be provided if effluents or drains do not contain oils in excess of 15 p.p.m.or a sufficient amount to create more than a faint irridescence.

Total Coliform Indicated Number per 100 cc.- 1000

LAKEHEAD AREA POLLUTION SURVEY

PART ARTHUR

I Lakefront Area

(1) Water Use and Complaints_

The lakefront area water is used extensively by commercial shipping, for transportation of log booms, as an industrial and municipal water supply, and for commercial and private fishing. There are no developed public beaches, and there is very limited swimming along the Port Arthur waterfront.

Complaints concerning pollution of this water were made by the municipal water works officials and by commercial fishermen. It was indicated that wood fibre waste enters the city intake and the distribution system. The fibres are quite small and are not readily apparent, but they deposit and build up in low flow areas of the distribution system. These accumulated masses of fibre are eventually sloughed off by pressure changes and discharged at the consumers' taps. The intermittent discharge of this material has been the cause for many complaints in the past.

Commercial fishermen report that they can no longer catch fish in the Port Arthur area. It is now necessary for them to set their nets farther from the cities. They attribute this to wood fibre covering the bottom in the

spawning areas. In addition, the flesh of fish caught in the harbour area is tainted with industrial wastes.

(2) Sampling Results

Port Arthur- Thunder Bay(T.B.)

SAMPLE No.	SAMPLING DATE DESCRIPTION		DS(P.P.M.) SUSP. DISS.		TOTAL COLIFORM COUNT IND.NO./100 CC.
PI.	SEPT.9 THUNDER BAY-MOUTH SEPT.16 OF NEEBING RIVER SEPT.15	2.2 92 1.1 70 1.5 70	L# 82 8 62 12 58	8 8 10	10,000 100 100
P2.1	SEPT.9 T.B 5001 FROM SEPT.15 MOUTH OF MCINTYRE SEPT.16 RIVER	2.8 100 1.3 62 1.6 -	8 92 6 56	22 6 4	1,000,009 1,000 \$0,000
P3.1	SEPT.9 T.B 100'FROM SEPT.15 OUTFALL- NORTHERN SEPT.16 WOOD PRESERVERS	74.0 152 1.7 1.7 92	28 124 6 20 72	500 4 5	ETHER SOLUBLES- 320
P3.2	SEPT.9 T.B 500'SOUTH SEPT.85 OF P3.1 SEPT.16	1.2 84 8.8 1.6	20 64 10 14	9 20 4	
P3,3	SEPT.9 T.B 500'SOUTH SEPT.15 OF P3.2 SEPT.16	1.6 74 1.6 3.0	8 66 10 20	9 4 4	
P3.4	SEPT.9 T.B 500 EAST SEPT.15 OF P3.1 SEPT.16	3.0 72 2.0 - 1.6 78	8 64 10 16 62	9 5 4	
P3•5	SEPT.9 T.B 500' EAST SEPT.15 OF P3.4 SEPT.16	1.9 80 2.1 1.2	4 76 8 14	 €0 3 5	
P3.6	SEPT.9 T.B 500 NORTH SEPT.L6 OF P3.1 SEPT.16	5.2 82 1.6 1.6 86	28 54 10 18 68	22 3 3	
P3.7	SEPT.9 T.B 500'NORTH SEPT.15 OF P3.6 SEPT.16	1.9 76 1.4 — 1.4 84	12 58 4 18 66	25 0 3	1,000
P4	SEPT.9 T.B 500' FROM SEPT.15 WILSON ST. SEPT.16 SEWER OUTFALL	1.6 76 1.8 1.6 96	10 66 8 16 80	6 3	10,000 1,000 10,000
P5	SEPT.9 T.B 500'FROM SEPT.15 RRVER ST.SEWER SEPT.16 OUTFALL	2.1 76 1.7 1.1 76	8 68 6 16 60	15 6 4	1,000 10,000 1,000
P6	SEPT.9 T.B MOUTH OF SEPT.15 MCVICAR CREEK SEPT.16	1.5 L04 10	6 8 12 12 20 20	96	0,000 100,000 1,600,600
P7	SEPT.9 T.B 500' FROM SEPT.15 CLACKE ST. SEWER SEPT.16 OUTFALL	2.4 82 2.2 — 1.3 78	8 74 12 14 64	12 8 40	1,000 10,000 1,000
P8	SEPT.9 T.B. 500 FROM SEPT.15 POINTH OF CURRENT SEPT.16 RIVER	1.4 106 2.6 1.8 80	8 98 10 16 64	8 10 7	1,000 100,000

SAMPLE No.	SAMPLING DATE	DESCRIPTION	5 DAY B.O.D.	SOL ID TOTAL	SUSP.		PHENOL PPB ₉	TOTAL COLIFORM COUNT
P9•1	SEPT.9	T.B LOO'FROM PROVINCIAL MILL OUTFALL	68.0	446	258	188	12	100,000
P9.2	SEPT.9 SEPT.15	T.B 500'south	-	372	212	160	10	1,000
P9.3	SEPT. 15 SEPT. 16	T.B.= 500'south OF P9.2	20.0 1.8 7.5	7,5	18 12 28	90 70	25 10 30	10,000
P9.4	SEPT.15 SEPT.16	T.B 500 EAST OF P9.1	8.6 76.0	300	22 38	262	15 0	
P9.5	SEPT. 15 SEPT. 16	T.B 500 'EAST OF P9.2	264.0 6.2			1076 ##0	0 30	10,000
P9,5A	SEPT.9 SEPT.15 SEPT.16	T.B 500 EAST OF P9.5 BOTTOM SAMPLE	6.5	TAINED 1 76	10	€6	25 25	
P11•1		T.B 100 FROM ABITIBI MILL OF	JTFALL	NOT OBT	AINED			
P11.2	SEPT.16	T.B 500 SOUTH OF ABITIB! MILL OUTFALL		88	8	80	3	
P11.3	SEPT.15	T.B 500'SOUTH OF PII.2		PRESEN	12 T 4	70	7	
P11.4	SEPT. 15 SEPT. 16	T.B 500'EAST	3.7.5	156 274	16	140 248	700	1,000
P11.5	SEPT.15 SEPT.15	T.B 500 EAST		 70	12 10	60	5 3	100
P11.5A	SEPT.16 SEPT.16 SEPT.16	T.B. MILE FROM ABITIBI OUTFAL 25 FT. DEPTH BOTTOM SAMPLE	L 2.4	78 FIBRE F	16 PRESENT	62 r	15	
P11.6	SEPT.16	T.B 500 NORT	н .9		4		3	
P11.7	SEPT.15 SEPT.15 SEPT.16	T.B 500 NORT OF PII.6 BOTTOM SAMPLE	1.4		14 4 PRESEN		4 3	
PI2	SEPT. 16	T.B CITY WAT	ER 2,2		,	4	2	100
PIZA	SEPT.15	T.B.30'DEPTH A CITY WATER INT T.B.25'DEPTH A CITY WATER INT	AKE WOO	FIBRE	PRESE	6	0	0
P12B	SEPT. 15	T.B.CITY WATER INTAKE AT BOTT 50 FT.DEPTH	R rom 8.4		12	2	6	

The bacteriological samples indicate that there is pollution of most of the city lakefront area by sanitary sewage.

Contamination is greatest opposite the mouths of the watercourses and sewer outfalls. The water in the area of the intake is of good bacteriological quality.

The chemical samples show that the pollution is greatest in the immediate area of the two paper mills and the creosoting phant. Phenol pollution is confirmed in the waste discharge from these three industries. The high phenol content in the sample obtained opposite the Clarke Street sewer on September 16th, was most likely caused by the waste from the Provincial Paper Company. The wind was from the north-east at this time, and there was also a high phenol content in sample P9.3 which is representative of the waste from the mill on that date. The phenol pollution is general in the area inside the break-wall and diminishes to a maximum of 2 ppb.at the outer edge of Thunder Bay.

On the basis of 5 Day B.O.D., the strongest wastes are noted in the area of the three observed industries. The dilution is sufficient to reduce the B.O.D. below 4 p.p.m. within 1000 feet of the outfall at the Abitibi mill and the creosoting plant. This objective is not obtained in the area of the Provincial mill. In addition, heavy pollution is indicated opposite the mouth of McVicar Creek.

The highest concentration of suspended solids is noted in the area of the Provincial Paper Company.

Oil pollution was present in the waste from the Northern Wood Preservers. This became rapidly dispersed and was not noticeable at a distance of 1000 feet from the outfall.

Bottom samples illustrated that there was wood fibre and some chemical fibre at the North Gap. This is approximately three-quarters of one miles from the Provincial Paper Company outfall. Wood fibre was obtained from the bottom at a point one-half of one mile east of the Abitibi outfall and also in the area of the mouth of the city water intake. During the pilot studies for the city water works micro-strainer it was established that some of this material was chemical fibre.

II Inland Watercourses

(1) <u>Neebing River</u>

(a) Water Use

The Neebing River flows easterly from the Fort William boundary and extends for one mile through Port Arthur before entering Thunder Bay. It is used to a limited extent by small private boats. There is no residential housing in this area.

(b) Sampling Results

			Port	Arth	ur-	Neeb	ing Ri	Lver
SAMPLE No.	SAMPLING DATE	DESCRIPTION	5 DAY 8.0.D.	SOLIDS TOTAL	(P.P.I	M.) Diss.	PBENOL PPB.	TOTAL COLIFORM IND. NO. PER 100CC.
FN2	SEPT. 19 SEPT. 15 SEPT. 17	NEEBING RIVER (DOWNSTRE/* FROM FT.WILLI S.T.P.	37.0	214 246 210	20 58 38	194 188 172	25	1,000,000 1,000,000 1,000,000
PI.I	SEPT. 9 SEPT. 15 SEPT. 16	THUNDER BAY- MOUTH OF NEEBING RIVER	2.2 1.1 1.5	92 70 70	10 8 12	82 ಿ2 58	8 8 10	1,000 100 10,000

The sampling results show that much of the pollution in the river comes from Fort William. This becomes more diluted as it approaches the mouth of the river.

(2) McIntyre River

(a) Water Use

There is no significant industrial or commercial development along this section of the McIntyre River. The river will eventually receive the effluent from the Port Arthur sewage treatment plant, which is now under construction.

(b) Sampling Results

Port Arthur- McIntyre River

SAMPLE No.	SAMPLING DATE	DESCRIPTION B	DAY .U.D.			.P.M.) DISS.	PHENOL PPB.	TOTAL COLIFORM COUNT IND. No./100cc
PM 2	SEPT. 9 SEPT.15	MAY ST. BRIDGE	3.6 2.4	1 46 1 38	8	138 128	2	1,000
PM IA	SEPT.15	MAY ST. BRIDGE DOWNSTREAM FROM PT. ARTHUR S.T.P.	(C-18)	112	10	102		10,000
PM I	SEPT. 9 SEPT. 16	MOUTH OF MCINTYRE RIVER	3.1 1.6	148 100	12	1 2 6 88	10	1,000
P2.1	SEPT. 15	THUNDER BAY-500' E. OF MOUTH OF MCINTYRE RIVER	2.8 1.3 1.6	100 62	8 6	92 56	22 6 4	100,000 1,000 10,000

The sampling results show that the river in general approaches the objectives of the Commission for a clean stream. There is an increase in pollution east of the mouth of the river. This is due to discharges from sewers in the harbour area.

(3) McVicar Creek

(a) Water Use

At present the creek receives intermittent discharges of process waste from a local brewery. Arrangements have now been made to direct these wastes to the city's sanitary sewers.

The lower portion of the creek has been developed to some extent as a public park.

(b) Sampling Results

Port Arthur- McVicar Creek								
SAMPLE No.	SAMPL ING DATE	DESCRIPTION	B.O.D. P.P.M.	SOL	SUSP.	Mo)	PHENOL PPB.	TOTAL COLIFORM COUNT IND. NO. LOO C.C.
PV 2	SEPT.9 SEPT.15 SEPT.17	WARDROPE AVE.AT PT.ARTHUR BOUND ARY	1.7 2.0 1.2	135 128 154	8 6 8	128 122 146	8 ****	100 10 100
PV I	SEPT.17	MOUTH OF MCVICAR CREEK	13.0	192	24	168	***	100,000
P 5	SEPT.8 SEPT.15 SEPT.16	THUNDER BAY- 500° FROM MOUTH OF McVicar Cr.	1.5 14.0 2,0	104 68 79	8 12 20	96 55 50	8 4 3	10,000 100,000 1,000,000

The upper section of the creek is in good condition, but the bacterial counts are high near the downstream end. This indicates that sanitary sewage is entering the creek as it passes through the city.

(4) <u>Current River</u>

(a) Water Use

The Current River is utilized by the City of Port Arthur for recreational purposes and as a source of additional electrical power. The flow in tht river is controlled by two dams, that is, the Onion Lake dam and the Boulevard Lake dam, which are respectively 10 miles and one-half mile upstream from the mouth.

(b) Sampling Results
Port Arthur- Current River

SAMPLE NO.	SAMPLIN DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.		DS (P.P.M.	DISS.	PHENOL PPB	TOTAL COLIFORM COUNT
SC 3	SEPT _e 9	CURRENT Ro-PORT	2,1	86	8	78	3	1,000
	SEPT. 15	ARTHUR BOUNDARY	2,3	68	6	62	en oue	10
	SEPT ₂ 17		1.4	68	6	62	-	10
SB 1	SEPT _o 9	E.BRANCH AT	1.5	144	10	134	2	10
	SEPT. 15	PT ARTHUR	2,5	124	12	112	-	10
	SEPTa17	BOUNDARY	1.1	150	6	144	oren	10
PC 2	SEPT ₀ 9	UPSTREAM OF	1.5	90	12	78	2	100
	SEPT. 17	BOULEYARD PK.	1.3	68	6	62	-	10
	SERT				-			,-
PC 1	SEPT 9	UPSTREAM OF	1.2	84	12	72	4	100
		BOULEVARD PKo						
P8.1	SEPT.9	THUNDER BAY-	1.4	106	8	98	8	1,000
	SEPT. 15	MOUTH OF CURRENT	236	83	18	64	ĮΩ	198:888
	SEPT 17	RIVER		500			mi .rom	
	The	sampling res	ults	indicat	se char	the	river	is in good

condition. Pollution is present at the mouth, but this can be attributed to the unsatisfactory conditions existing in the harbour.

III Pollution Control

At present nearly all sanitary sewage in the city is discharged raw to the harbour area of Thunder Bay. The exception to this is the settling tank located opposite Lillian Street. This serves approximately 1000 homes in the Current River area.

The City of Port Arthur is now installing sewage works which will do much to lessen pollution due to sanitary sewage.

This system will not receive the process wastes from the Abitibi Power and Paper Company Limited, the Northern Wood Preservers Limited, or Provincial Pulp and Paper Company Limited.

The two pulp and paper mills could improve their waste discharges by constructing or improving settling lagoons or other forms of solids removal equipment. The Abitibi mill has a settling area which is effective in removing much of the suspended material from the wastes. Continued efforts

in this direction will do much to lessen the amount of wood fibre now discharged to the harbour and Thunder Bay. As discussed in previous reports by the Commission the phenol content of the wastes could be most economically removed by using non-phenolic control agents. At present some of the mills are using such control agents. The problem of B.O.D. reduction is one that will have to receive further investigation.

The Northern Wood Preservers Limited will need to install satisfactory treatment for reducing the phenol, suspended solids, and oil content of their waste. The oil content for the most part will be readily removed in oil-water separators. When this has been accomplished consideration should be given to some form of phenol control.

LAKEHEAD AREA POLLUTION SURVEY

FORT WILLIAM

Lakefront Area

The lakefront area here is used for the same purposes as noted for Port Arthur except that it does not serve as a source for municipal water. Chippewa Park near the south boundary of the city contains a protected swimming area on Lake Superior. In addition, there are a number of summer homes to the south of the park.

There were complaints from commercial fishermen that fish caught in this area could not be sold on the local market. This is due to the fact that the flesh is said to be tainted with oil and other industrial wastes. The Chippewa Park officials reported that there was no problem of beach pollution in that area.

(2) Sampling Results

Fort William - Thunder Bay 5 DAY TOTAL COLI. IND. NO. SAMPLE SAMPLING B.O.D. PHENOL SOLIDS (P.P.M.) DESCRIPTION P.P.M. TOTAL SUSP. DISS. PPB PER 100 cc DATE NO. F1.1 62.0 262 56 206 4 SEPT. 17 T.B. 500' SOUTH OF ABITIB! MILL AREA. 128 25 F1.2 SEPT. 17 T.R. 500° SOUTH OF FI.1 10.0 32 96 FI.3 SEPT。17 T.B. 500' SOUTH OF FI.2 3,6 104 22 82 18 T.B. 500' SOUTH OF FI.2 (10' FI.3A 80 30 SEPT. 17 4.4 F1.4 SEPT. 15 T.B. 500' E. OF FI.I 1.2 8 70

SAMPLE NO.	SAMPLING DATE	DESCRIPTION	23 - 5 DAY B.O.D. P.P.M.	SOLIDS TOT AL		.M.) DISS.	PHENOL PPB	TOTAL COLI IND NO PER 100 CC	•
F1.5	SEPT. 15	T.B. 500 S.E. FROM F1.4	1.8	-	8	-	15	1,000	
F1.7	SEPT. 15	T.B. 500 S.E. FROM FI.5	2,8	-	6	•	25	-	
FMI.I	SEPT. 9 SEPT. 15 SEPT. 16 SEPT. 17	T.B. UPSTREAM FROM MOUTH OF MISSION R.	19.0 5.7 4.8 7.0	166 132 180	28 20 20 56	138 112 160	6 25 -	1,000 10 10 100	
F2.4	SEPT. 18	T.B. 5001 N. OF ABITIBI OUTFALL	. 85.0	474	168	306	0	1,000	
F2.5	SEPT. 18	T.B. 500 N. OF F2.4	36.0	190	40	150	0	•	
F3.1	SEPT. 9 SEPT. 16	T.B. MOUTH OF MCKELLAR R.	5.4 2.0	120 76	22 10	98 66	12 5	1,000	
F4.1	SEPT. 9 SEPT. 15 SEPT. 16	T.B. MOUTH OF KAM RIVER.	1.8 6.8 3.8	122	14 26 14	108 - 96	9 25 7	10,009 10,000 1,909	
F5.1	SEPT. 9 SEPT. 16	T.B. FT. WILLIAM PT. ARTHUR BOUNDARY.	1.2 1.8	80 72	6 12	74 60	10	1,006	
	SEPT. 16	BOUNDARY.	1,00	16	,		-	,	

The bacteriological samples indicate that, the pollution at the mouth of the Kam River and opposite the Fort William, Port Arthur boundary, was in excess of the Commission's objective. This pollution can be attributed to sanitary sewage.

The chemical sample results show that there was pollution at the mouths of the three rivers, i.e., Mission, McKellar and Kam. Industrial wastes would be the cause of the high phenol concentrations.

There are two areas of waste discharge for the Abitibi mill, namely, the east side, represented by samples Fl.1 to Fl.7 inclusive, and the north side represented by samples F2.4 and F2.5. The wastes discharged to the east side create pollution in the immediate area of the outfall, but due to settling in the bark area and dilution, the water at the Mission Gap approaches a satisfactory condition. The wastes discharged to the north side were quite noticeable at the time of sampling. This is substantiated by the sampling results which illustrate a strong waste both on the basis of 5 Day B.O.D. and Suspended Solids. Bottom samples were obtained in the bay to the south of the Abitibi mill. There was no evidence of wood fibre in this area. This can be attributed to the previously noted settling obtained in the bark area.

II Inland Watercourses

(1) Kaministikwia River(Kam River)

(a) Water Use

The Kam River flows through the City of Fort William for a distance of some five miles and empties into Thunder Bay. It is navigable to the west boundary of the city for all lake and most ocean boats. Industries located along the river include; Canadian Iron Foundries Limited, Imperial Cil storage tanks, Ogilvie Flour Mills Limited, several large grain elevators, coal docks and general shipping docks. This section of the river also has docks for small pleasure boats. There are no developed swimming beaches in the area.

There are a number of municipal and private sewers which discharge to the river. It is estimated that approximately one-half of the municipal sanitary sewage is discharged untreated to the watercourse.

(b) Sampling Results
Fort William- Kam River

SAMPLE NO.	SAMPL ING DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.		DS (P.P SUSP.	DISS.	PHENOL PPB	TOTAL COLIFORM (
FK 8	SEPT.10 SEPT.17 SEPT.18	KAM Roupstream Golopaper	3.8 2.6 2.6	144 134 76	16 20 10	128 114 66	13	1,000	
FK 7,1	SEPT.10	KAM R. 100° DOWNSTREAM FROM G.L. PAPER CO.	65 ₀ 0	2162	134	2028		100	to A
FK 7₀6	SEPT.10	KAM R.50C.SDOWN- STREAM FROM FK 7.1	71,0	356	112	244	0	100	
FK 7,7	SEPT.10	KAM R. 1000* DOWNSTREAM FROM FK 7.6	64,0	350	76	274	0	1000	
FK7.7A	SEPT.⊾8	KAM R.12 MI.BOWN- STREAM FROM GT. LAKES PAPER CO. BOTTOM SAMPLE.		WOOD	FIBRE	PRESENT			

SAMPLE No.	SAMPLING DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.		S(P.P.M.) USP. DISS.		TOTAL COLIFORM COUNT IND.NO. PER 1100 CC.
FK7.7B	SEPT.21	KAM RIVER TURNING BASIN, 2000' BELOW GT. LAKES PAPER CO. BOTTOM SAMPLE		WOOD F	IBRE PRESEN	NT CONTA	INING SOME CHEMICAL
FK6.A	SEPT. 10	KAM R. NEAR MUNICIPAL SEWER OUTFALL.	21.0	178	32 146	24	1,000,000
FK 6	SEPT.15 SEPT.17	JUNCTION OF KAM RIVER AND MISSION RIVER.	5.9 4.3 30.0	78	34 144 18 60 34 34	14 18	10,000 100 10,000
FK 5	SEPT. 15 SEPT. 16	KAM RIVER- UPSTREAM OGILVIE MILL.	19.0 8.0 2.8	96	18 138 20 76 12 112	4 30 12	10,000 *,000 10,000
FK 4.1	SEPT.15 SEPT.16	KAM RIVER 100°DOWNSTREAM FROM OGILVIE OUTFALL.	215.0 5.8 198.0	82	56 216 20 62 60 160	25 15 10	100,000
FK 4.6	SEPT.15 SEPT.16	KAM RIVER 500' DOWNSTREAM FROM FK 4.1	21 12.0 3.8	136	39 120 20 116 18 124	4 25 12	
FK 4.7	SEPT.9 SEPT.15	KAM RIVER 500* DOWNSTREAM FROM FK 4.6	17.0 8.3	,	24 ≰08 30 90	4 20	1,000
FK 3	SEPT. 15 SEPT. 16	JUNCTION KAM AND MCKELLAR RIVER	7.0 5.2 3.0	124 13	70 128 24 108 20 112	.9 18 12	100,000 10,000 BROKEN
FK 2	SEPT.9 SEPT.16	NEAR PROPOSED S.T.P.	4.0 3.2	146	28 118 4 118	8	1,000,000
F 4.L	SEPT.9 SEPT.15	MOUTH OF KAM RIVER	1.8 6.8		14 108 26 86	9 25	1,000

The bacteriological results indicate that the river upstream of the Fort William western boundary was of satisfactory quality. Samples downstream of the boundary showed considerable pollution. This can be attributed to sanitary sewage.

Sanitary chemical sampling results illustrate that throughout the city the river was in an unsatisfactory condition. Two of the main sources of pollution were Great Lakes Paper Company and the Ogilvie Flour Mill. It was apparent during the survey that other industries were contributing to the pollution of the river such as chaff from the grain elevators.

Bottom samples were obtained at the Turning Basin about 2000 feet downstream from the Great Lakes Paper Company and also about one and one-half miles downstream from the mill. There

was wood fibre in both of these samples and some chemical fibre in the material taken from the Turning Basin.

(2) Neebing River

(a) Water Use and Complaints

The Neebing River flows through Fort William in an easterly direction for some four miles. There are no known industries discharging waste directly to the river in this section. The only use made of this part of the river is by small pleasure boats.

Flooding conditions occur frequently during the spring in this area. As many of the homes are at a low elevation the flow in the storm sewers backs up to house cellars. This presents a public health problem as the river water contains consider quantities of sanitary sewage. There have been frequent complaints in the past concerning this matter.

(b) Sampling Results
Fort William- Neebing River

SAMPL No.	E SAMPLIN	G DESCRIPTION	5 DAY B.O.D. P.P.M.	SOLID:	S(PoPoMo SUSPo		PHENOL PPB	Total Coliform Count IND.NO.PER 100 CC.
NN 5	SEPT.15 SEPT.17	NEAR VICKER'S AVE.	2,3 2,0 1,3	206 172 202	16 8 10	190 164 192	12	10,000 1,000 100
FN 3	SEPT.15 SEPT.17	NEEBING Ro (MAY STo BRIDGE)	2,6 4,0 2,0	190 163 168	14 14 12	176 154 156	25	100,000 1,000,000 10,000
FN 2	SEPT.15 SEPT.17	NEEBING R. (DOWNSTREAM FROM FT.WILLIAM S.T.P.	5,4 37,0 11,0	214 246 210	20 58 38	194 188 172	25	1,000,000 1,000,000 1,000,000

There is a high degree of pollution by sanitary sewage in this river as indicated by the bacteriological sampling results. This condition prevailed both upstream and downstream of the present sewage treatment plant. The sample Pl.l could not be obtained close to the mouth of the river due to the shallow water. For this reason it is not considered representative of the degree of contamination in the river.

The sanitary chemical results illustrates that the stream was in its worst condition immediately downstream of the present sewage treatment plant. This is of course due to the overloaded condition which prevails at the plant.

(3) McKellar River

(a) Water Use

The McKellar River is used by both lake and ocean boats. At present there are coal docks and an oil refinery located along its banks. There is no recreational development along this river.

(b) Sampling Results
Fort William- McKellar River

SAMPLE No.	SAMPLING DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.	SOL1E TOTAL	S(P.P.) SUSP.	M。) Dissa	PHENOL PPB.	TOTAL COLIFORM COUNT IND.NO. PER 100 CC.
FK 3	SEPT.9 SEPT.15 SEPT.16	JUNCTION KAM & MCKELLAR RIVER	7.0 5.2 3.0	170 124 120	42 15 8	128 108 112	9 18 12	100,000 10,000 Bruker
FM 3	SEPT.9 SEPT.16	UPSTREAM OF HUSKY OIL CO.	46.0 11.0	138 128	24 4	114 124	12 18	10,000
FM 2	SEPT.9 SEPT.16	BOWNSTREAM FROM HUSKY OIL CO.	18°0 4°2	146 128	34 2	112 116	6 22	10,000
F3.1	SEPT.9 SEPT.16	MOUTH OF MCKELLAR R.	5.4 2.0	120 76	22 10	98 66	12 5	000,1

The sampling results show that there was a greater degree of pollution at the upstream end of the river. This can be attributed to the unsatisfactory condition of the Kam River as it enters this river.

(4) Mission River

(a) Water Use

The Mission River is used by lake boats, ocean boats and for log boom transportation. There are docks, warehouses and oil storage tanks located along this watercourse. At present the largest water consumer on the river is the Abitibi Power and Paper Company Limited. In the future large amounts of water will be used by the Ontario Hydro steam generating plant, now under construction. It can be expected that under certain conditions the waste discharges from the paper mill will contaminate the water supply for the Hydro steam plant.

(b) Sampling Results
Fort William- Mission River

SAMPLE No.	SAMPLING DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.	SOL 10 TOTAL	SUSP.	Me) Disso	PHENOL PPB.	TOTAL COLIFORM COUNT IND, NO. PER 100 CC.
FK 6	SEPT.15 SEPT.17	JUNCTION OF KAM AT Mission R _e	5,9 4,3 30,0	178 78 202	34 18 34	44 60 68	18	10,600 100 -10,000
FM I	SEPT. 15 SEPT. 16 SEPT. 17	UPSTREAM UROM MOUTH MISSION Ro	19:0 5:7 4.8 7:0	66 32 80	28 20 20 56	138 112 160	6 25 18	1,000 10 10 100
F 2 ₀ 4	SEPT.13	500 N. OF ABITIBI OUT- FALL	85.0	474	168	306	0	1,000
F 2,5	SEPT.18	500 °N. 0F F 2.4	36,0	190	40	150	0	

There was a considerable amount of contamination in the river. Since the 5 Day B.O.D. content is high and the bacterial counts low, this pollution can be attributed to industrial waste. As previously discussed most of the industrial waste is from the Abitibi Power and Paper Company Limited.

III Pollution Control

Much of the pollution in Fort William is due to industrial waste. The three main industries in this regard are the Abitibi Power and Paper Company Limited, Mission mill, the Great Lakes Paper Company Limited, and the Ogilvie Flour Mills Limited. The Great Lakes Paper Company is located in Neebing Township at the Fort William- Neebing Township boundary.

The paper companies should consider adequate lagoons or, other suspended solids removal devices for the removal of wood fibre, as a necessary first step in any waste treatment programme. Phenol control where necessary would be most economically realized by substituting other materials as slime control agents. The adequate reduction of B.O.D. is a problem which should receive further study.

Waste treatment at the Ogilvie Flour Mills should be designed to reduce both the B.O.D. and the suspended solids. Since a previous survey by the Commission indicated that the B.O.D. content of this waste was excessively high, consideration should be given to treatment which would produce a satisfactory effluent or if this is not possible then complete elimination would be necessary.

LAKEHEAD AREA POLLUTION SURVEY

MUNICIPALITY OF NEEBING

I Inland Watercourses

(1) <u>Kaministikwia River(Kam River)</u>

(a) Water Use and Complaints

The rapids at Point de Meuron restricts its use for boats. These rapids are located some two and one-half miles upstream from the east boundary of the township. Log boom boats navigate the downstream section up to the Great Lakes Paper Company. It is used for recreational purposes such as boating, fishing, swimming, park sites, summer cottage location and landing bases for small float equipped aircraft.

There were no reported complaints concerning pollution in this part of the watercourse with the exception of the area near the Great Lakes Paper Company.

(b) Sampling Results
Neebing Twp.- Kam River

SAMPLE NO.	SAMPLING EATE	DESCRIPTION	5 DAY B.O.D. P.P.M.		SUSP.		PHENOL PPD	TOTAL COL!FORM COUNT IND. NO. PER 100 CC.
NK 8	SEPT.15 SEPT.17 NOV.13 NOV.16	KAM RIVER NEAR W. BOUNDARY OF NEEBING TWP.	3 ₀ 0 3 ₀ 0 2 ₀ 4	134 88 100	18 10 12	116 78 88	TRACE 3	100 10 100
FK C	SEPT.17 SEPT.18	KAM RIVER UPSTREAM G.L.PAPER CO.	3,8 2,6 2,6	144 134 76	16 20 10	128 114 66	13	1,000

On the basis of the bacteriological sampling results the stream was in a satisfactory condition.

The sanitary chemical sample results are all within the objectives of the OWRC with the exception of phenol. The small amount of phenol noted at sampling point NK 8 is likely due to natural causes, as the only industry upstream of this point is the brick yard at Rosslyn. It is not likely that this operation would produce a phenolic waste. The high phenol content in sample FK 8 on September 10th is likely due to waste from the Great Lakes Paper Company Limited.

Considerable pollution is produced in the river by wastes from the Great Lakes Paper Company. These affect the river downstream in Fort William and are discussed under that municipality.

(2) Neebing River _ _ _

(a) Water Use and Complaints

The flow in the Neebing River is quite variable, with a recorded maximum of 1460 cubic feet per second and a low of zero. It has no commercial use in this section and limited recreational use for private fishing. The only complaint of pollution to the river concerned the operation of private waste disposal areas on the flood plain. At the time of the survey adequate steps had been taken to prevent pollution from this source.

(b) Sampling Results

Neebing Twp .- Neebing River

SAMPLE No.	SAMPLING DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.	SOL TOTAL	IDS(P.F SUSP.	DISS.	PHENOL PPB.	TOTAL COLIFORM COUNT IND. NO. PER 100 CC.
NN 6	SEPT.10	NEEBING TWP.	1.9	210	6	204	15	100
	SEPT. 17	WEST BOUND- ARY	1.9 4.0	204 228	8	199 220		100
SN 6	SEPT.10 SEPT.15 SEPT.17	N. BRANCH AT ARTHUR ST.	1.6 1.5	174 136 192	8 8 6	166 288 186	30	1,000 1,000 100
NN 5	SEPT.15 SEPT.17	NEAR VICKERS AVE.	2.3 2.0 1.3	206 172 202	16 8	190 164 192	12	10,000 1,000 100

The bacteriological sample results were all satisfactory with the exception of one obtained at sampling point NN 5 near Vickers Avenue. In view of the fact that only one of the three samples exceeded the Commission objective, more sampling at this point will be necessary in order to determine the extent of pollution.

With the exception of the high phenol content the sanitary chemical sample results were satisfactory. It is difficult to explain the high phenol content of samples in this area. More samples will have to be obtained and a further investigation made of this area.

II Pollution Control

The pollution in Neebing Township except for Great
Lakes Paper Company is limited. It can be expected that this
will increase with future industrial and residential
development unless an adequate sewerage plan is now prepared
for the area. This should envisage a co-operative sewerage
development with the City of Fort William.

LAKEHEAD AREA POLLUTION SURVEY

MUNICIPALITY OF SHUNIAH

I Lakefront Area

(1) Water Use and Complaints_

The lakefront area here is developed mostly for summer homes. Complaints have been received from the persons in this section concerning the deposition of wood fibre on the beaches.

(2) Sampling Results_

Shuniah- Thunder Bay

SAMPLE No.	SAMPLING DATE	DESCR!PT ION	5 DAY B ₂ O ₂ D ₆ P ₂ P ₂ M ₂	SOLIDS TOTAL	(PcP.) SUSP.		PHENOL	TOTAL COLIFORM COUNT IND, NO. PER 100 CC.
TB [SEPT.15	FLORAL BEACH Mile N.OF PT.ARTHUR WATER INTAKE	ರಿಂ8		6	99	20	10

The surface sample obtained opposite Floral Beach indicated that the water met the objectives of the Commission with the exception of the phenol content, which was 20 ppb.

There was no wood fibre present in a bottom sample from this area. Both the surface and the bottom samples were taken at 1,000 feet from shore.

Samples obtained from the water and beach at Silver
Bay contained wood fibre, but no chemical fibre. It could
not be established whether the material was ground wood from

mill operations or fibre from log boom operations in the area.

II Inland Watercourses

(1) McIntyre River_

(a) Water Use

The flow in the McIntyre River is quite low during part of the year. There is no commercial or industrial use made of this part of the river.

(t) Sampling Results

Shuniah- McIntyre River

SAMPLE NO _s	SAMPL ING DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.	SOL!	DS (Pa	PoMe) DISSe	PHENOL PPB.	TOTAL COLIFORM COUNT IND. NO. PER 100 CC.
SM 6	SEPT.9 SEPT.15	NEAR JOHN STREET	3°2 2°2	146 120	16 4	130 116	2	1,000
SM 5	SEPT. 15 SEPT. 17	NEAR PT. ARTHUR BOUNDARY	1.9 2.2 1.6	148 100 112	8 12 10	≱40 ৪১ 102	6	1,000 100 1,000
SM 4	SEPT. 9 SEPT. 15 SEPT. 17	ELEVENTH AVENUE BRIDGE	2.0 1.7 1.8	132 126 130	10 8 12	122 118 118	2	10,006 1,009 100,600
PM 2	SEPT.9 SEPT.15	MAY STREET BRIDGE	3,6 2,4	146 138	8 19	138 128	2	1,000

The upper portion of the river was in a satisfactory condition from a pollution standard. Samples obtained near Golf Links Road show that this section of the river was contaminated with sanitary sewage.

(2) McVicar Creek

(a) Water Use

There is only a short section of McVicar Creek flowing through Shuniah. The flow here is low and there is only limited residential development in the area.

The following results indicate that the condition of

this watercourse in Shuniah is satisfactory.

(b) Sampling Results

Shuniah- McVicar Creek

SAMPLE No.	SAMPLING DATE			SOL I TOTAL	DS (P.F SUSP.	DISS.	PHENOL.	TOTAL COLIFORM COUNT IND. NO. PER 100 CC.
PV 2	SEPT.15 SEPT.17	WARDROPE AVE, AT PT_ARTHUR BOUNDARY	1,7 2,0 1,2	136 128 154	8 6 8	128 122 146	8	100 10

(3) Current River

(a) Water Use

There is no significant house developments in this area of the Current River. No commercial or industrial use is made of this part of the river.

(b) Sampling Results

Shuniah- Current River

SAMPLE No.	SAMPLING DATE	_	5 DAY B.O.D. P.P.M.	SOL I	DS (P.F SUSP.	DISS.	PHENOL PPB	TOTAL COLIFORM COUNT IND. NO. PER 100 M.
SC 3	SEPT.9 SEPT.15 SEPT.17	CURRENT RIVER- PORT ARTHUR BOUNDARY	2.1 2.3 1.4	86 68 63	8 6 6	78 62 62	3 - -	1,000 10 10
SB I	SEPT.9 SEPT.15 SEPT.17	E.BRANCH AT PT.ARTHUR BOUNDARY	1,5 2,5 1.1	144 124 150	10 12 6	34 2 44	2	10 10 10

The Current River and its southern branch was in a satisfactory condition as it flows through the Municipality of Shuniah.

III Pollution Control

Future industrial and residential development of this area, if not adequately planned will create extensive pollution problems. For this reason an adequate sewerage plan

should now be prepared for the area. The most efficient plan will be based on a joint scheme with the cities of Port Arthur and Fort William.

The only industrial pollution in Shuniah is due to wood fibre which occurs along the lakefront, and the presence of phenol. Much of this wood fibre is due to log boom operations in the area, and the resulting pollution is difficult to control. The phenol and other wood fibre waste are caused by industries outside the municipality.

The presence of sanitary sewage in the McIntyre River near the Golf Links Road is likely due to, the lack of, or improperly constructed, private sewage disposal systems. Present installations are adequately controlled by the local health unit, and the problem is possibly due to older installations. In any case the situation should be corrected by the local authorities.

LAKEHLAD AREA POLLUTION SURVEY

THUNDER BAY EXCLUSIVE OF HARBOUR AREA

I Water Use and Complaints

Thunder Bay outside the harbour area is used for shipping, transporting of log booms, commercial and private fishing, and for boating. Its outlets to Lake Superior are approximately 13 miles south-east of the lakehead.

It was reported that wood fibre was deposited on the beach at the Sleeping Giant. The Sleeping Giant is a point of land which forms part of the east boundar of the bay and is approximately 15 miles east of Port Arthur and Fort William.

II Sampling Results

		Thunde	r Bay 5 DAY					TOTAL COLI.
SAMPLE NO.	SAMPLING DATE	<u>DESCRIPTION</u>	B.O.D. P.P.M.	1.0.00000000000000000000000000000000000	(P.P. SUSP.	DISS.	PHENOL P.P.B.	ND. NO. PER 100 CC
TB 6	SEPT. 17	MISSION R. GAP.	4,8	•	16	-	4	100
TB 7	SEPT。16	SOUTH GAP.	1.9	78	16	62	4	10,000
TB 8	SEPT. 15 SEPT. 17	MAIN GAP.	1,3 2,2	- 72	8 6	0 66	-0	100 100
TB 9	SEPT. 8 SEPT. 9 SEPT. 15	NORTH GAP.	BOTTO 1.5 1.4	OM SAMPLI	E CONTA 8 14	INED WOO	B FIBRE.	100,000
TB 1	SEPT. 15	FLORAL BEACH MILE N. OF PT. ARTHUR WATER INTAKE.	0.8	-	6	-	20	10
TB 3	SEPT. 17	MILE N.W. OF HARE SLAND.	1,2	TURBIDIT	Y IN SI	LICA UN	ITS- 0	0
TB.4	SEPT. 17	NORTH END OF PIE ISLAND.	0.7		3,2		2	Ð

SAMPLE NO.	SAMPLING DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.	SOLIDS (P.P.M.) TOTAL SUSP. DISS.	PHENOL P.P.B.	TOTAL COLI. IND. NO. PER 100 CC
TB. 5	SEPT. 17	SOUTH END OF PIE ISLAND	0,9	TURBIDITY IN SILICA UNITS - 2.7	0	10
TB, 2	SEPT. 17	WHISKEY JACK POINT 1500* FROM SHORE	0,9	3,2	2	100

Four samples were obtained at various points near the outlets of Thunder Bay. These are indicated on Map #2. The sampling results indicate that pollution discharged from the lakehead area was diluted satisfactorily in Thunder Bay before reaching Lake Superior.

The beach at the Sleeping Giant could not be reached at the time of the survey. An examination was made of the beach on Hare Island which is one and one-half miles west of the Sleeping Giant. It was noted that there was a considerable amount of bark on the shore, but no wood fibre. The bark would most likely be from log boom operations.

- 40 -LAKEHEAD POLLUTION SAMPLE ANALYSES

	LAKEHEAD POLLUTION SAMPLE ANALYSES FIGURE 1.										
SAMPLE NO.		SAMPLING DATE	5 E B.0	THUNDER DAY SD.			DISS.	PHENOL PPB.	TOTAL COI IND. NO. PER 100 (
			PORT ARTH	IUR- THU	NDER BA	Y (T.B	.)				
P.1. I	R1584 R1739 R1682	SEPT, 9 SEPT, 16 SEPT, 15	THUNDER BAY - MOUTH OF NEEBING RIVER	2,2 1,1 1,5	92 70 70	10 8 12	82 62 58	8 8 10	1,000 100 10,000		
P2.1	R1579 R1680 R1737	SEPT, 9 SEPT, 15 SEPT, 16	THUNDER BAY - 500' FROM MOUTH OF MCINTYRE R.	1.3 1.6	100 62	8 6 -	92 56	22 6 4	1,000 1,000 10,000	ETHER SOLUBLE	
P3.1	R1574 R1898 R1751	SEPT. 9 SEPT. 15 SEPT. 16	T.B100? FROM OUTFALL NORTHERN WOOD PRESERVER		152 92	28 6 20	124 - 72	500 4 5	1,000	320	
P3.2	R1572 R1696 R1735	SEPT, 9 SEPT, 15 SEPT, 16	T.B 500' SOUTH P3.1	1.2 8.8 1.6	84	20 10 14	64	9 20 4	=		
P3.3	R1577 R1681 R1736	SEPT. 9 SEPT. 15 SEPT. 16	T ₀ B. = 500 ¹ S. of P3 ₀ 2	1.6 1.6 3.0	74	8 10 20	66	9 4 4	-		
P3,4	R1575 R1695 R1752	SEPT. 15	T.B 500° E. of P3.1	3.0 2.0 1.6	72 - 78	8 10 16	64 62	9 5 4	-		
P3.5	R1576 R1697 R1734	SEPT. 15	T.8 500° E. of P3.4	1,9 2,1 1,2	80	4 8 14	76 - -	3 5	-		
P3.6	R1573 R1699 R1750	SEPT. !6	T.B 500 N. OF P3.1	5.2 1.6 1.6	82 86	28 10 18	54 - 68	22 3 3	-		
P3.7	R1578 R1694 R1749	SEPT. 15	T.B. ~ 500' N. of P3.6	1.9 1.4 1.4	70 - 84	12 4 18	58 - 66	25 - 3	1,000		
P.4	R1580 R1693 R1748	SEPT, 15	T.B 500' FROM WILSON ST. SEWER OUTFALL	1.6 1.8 1.6	76 ** 96	10 8 16	66 - 80	12 3	10,000 1,000 10,000		
P.5	R1581 R1688 R1754		T.B 500° FROM RIVER SEWER OUTFALL	ST.2.1 1.7 1.1	76 76	8 6 16	68 60	15 6 4	1,000 10,000 1,000		
P.6	R1600 R1760 R1745	SEPT. 15	T.B. MOUTH OF MCVICAR CRES.	1.5 14.0 2.0	104	8 12 20	96	8 4 3	10,000 100,000 1,000,000		
P.7	R1599 R1689 R1755	SEPT. 15	T.B 500' FROM CLARK ST. SEWER OUTFALL	E 2,4 2,2 1,3	82 - 78	8 12 14	74 - 64	12 8 40	1,000 10,000 1,000		
P.8	R1602 R1687 R1756	SEPT. 15	T.B 500' FROM MOUTH OF CURRENT RIVER,	1.4 2.6 1.8	106	8 10 16	98 64	8 10 7	1,000 100,000 10,000		
P 9.1	R1596	SEPT, 9	T.B 100° FROM PROVINCIAL MILL OUTFAL	68 . 0	446	258	188	12	100,000		
P 9.2	R1598 R1691		T.B 500' S. of P9.1	44.0 2.6	372 -	212 6	160	10	1,000		

- 41 -

				ER BAY 5 DAY				TOTAL COLI.
SAMPLE No.	NO.	DATE DATE		B.O.D. PPM	SOLIDS (P.P.I TOTAL SUSP.		PHENOL PPB	PER 100 CC.
P 9.3	R1597 R1690 R1787	SEPT. 9 SEPT. 15 SEPT. 16	T.B. 5001 S. of P9 _e 2	20.0 1.8 7.5	108 18 - 12 98 28	90 - 70	25 10 30	10,000
P 9.4	R1685 R1785	SEPT. 15 SEPT. 16	T.B. 500' E. of P9.1	8.6 76.0	- 22 300 38	262	15	-
P 9.5	R1686 R1759	SEPT. 15 SEPT. 16	T.B. 500' E. of P9.2	264.0 6.2	1126 50 134 34	1076 110	30	10,000
P 9.5A	R1692 R1762	SEPT. 9 SEPT. 15 SEPT. 16	T.B. 500° E. OF P9.5 BOTTO T.B. 500° E. OF P9.5	M SAMPLE. 6.5 6.9	CONTAINED 76 10 126 26	WOOD FIBRE 66 100	25 25	:
P11.1			T.B. 100' FROM ABITIB! MILL OUTFALL.		NOT OBTA	INED.		
P11.2	R1760	SEPT. 16	T.B. 500° S. OF ABITIBI MILL OUTFALL	0.9	88 8	80	3	-
PII.3	R1704 R176!	SEPT. 15 SEPT. 16 SEPT. 15	T.B. 500° S. OF PII.2	1.0	- 12 74 4 BARK PRES	70 ENT.	7 3	-
P11.4	R1705 R1765	SEPT. 15 SEPT. 16	T.B. 500' E. OF PII.1	26,0 52,0	156 16 274 26 CHEMICAL	140 248 FIBRE PRESE	700 - NT.	1,000
P11.5	R1706 R1764	SEPT. 15 SEPT. 16	T.B. 500' E. of Pll.4	1.1	- 12 70 10	60	5 3	100
PII.5A	R1763	SEPT. 16	T.B. & MILE 25° DEPTH FROM ABITIBI OUTFALL BOTTOM SAMPLE	2.4	78 16 Wood FIBR	62 E PRESENT.	15	-
P11.6	R1742	SEPT. 16	T.B. 500 North of Pll.I	۰,9	- 4	-	3	-
P1!.7	R1707	SEPT, 15	T.B. 500' NoRTH OF FI1.6	1.7	- 14	-	4	_
	R1743	SEPT. 15 SEPT. 16	BOTTOM SAMPLE. T.B. 500' NORTH OF PII.6	1.5	WOOD FIBR ■ 4	E PRESENT,	3	-
P 12	R1744	SEPT. 16	T.B. CITY WATER INTAKE	2,2	- 4	-	2	100
P 12A	R1702	SEPT. 15	T.B. 30' DEPTH AT CITY WATER INTAKE	1.2	- 6 WOOD FIBR	E PRESENT	-	-
	R1744	SEPT. 16	T.B. 251 DEPTH AT CITY WATER INTAKE	1.6	- 16	E PRESENT.	2	-
P 12B	R1763	SEPT. 15	T.B. CITY WATER INTAKE AT BOTTOM, 50° DEPTH.	8,4	122 WOOD FIBE	e PRESENT.	6	-
			FORT WILLIAM	4 - THUND	ER BAY			
F 1.1	R1803	SEPT. 17	T.B. 500° S. OF ABITIB! MILL AREA.	62,0	262 56	206	4	-
F1,2	R1805	SEPT. 17	T.B. 500' S. OF F 1.1	10.0	128 32	96	25	•
F 1.3	R1804	SEPT。17	T.B. 500' S. OF F 1.2	3.6	104 22	82	18	-
F 1.3A	R1806	SEPT. 17	T.B. Do. (10' DEP	тн)4,4	92 12	89	30	-
F 1.4	R1712	SEPT. 15	T.B. 500' E. OF F I.I	1,2	- 8	-	70	-
F 1.5	R1714	SEPT, 15	T.B. 500 S. E. FROM F1.4	1.8	- 8	-	15	1,000
F 1.7	R1711	SEPT. 15	T.B. 500 S. E. FROM FI.5	2,8	- 6	-	25	~

- 42 -FORT WILLIAM - THUNDER BAY

SAMPLE NO.	LAB.	SAMPLING DATE	DESCRIPTION	5 DAY B.O.D. P.P.M.		(P.P.M		PHENOL P.P.B.	TOTAL COLI. IND. NO. PER 100 cc.
FMI.I	R1592 R1709 R1784 R1795	SEPT. 9 SEPT. 15 SEPT. 16 SEPT. 17	T.B. UPSTREAM FROM MOUTH OF MISSION RIVER	19.0 5.7 4.8 7.0	166 132 180	28 20 20 56	138 112 160	6 25 18	1,000 10 10 100
F 2.4	R1800	SEPT, 18	T.B. 500' N. OF ABITIB!	85.0	474	168	306	-	1,000
F 2.5	R1802	SEPT. 18	OUTFALL. T _a B _a 500° N _a of F 2 _a 4	36 _e 0	190	40	150	60	-
F 3.1	R1588 R1768	SEPT. 9 SEPT. 16	T.B. MOUTH OF MCKELLAR R.	5.4 2.0	120 76	22 10	98 66	12 5	1,000
F 4.1	R1582 R1683 R1741	SEPT. 9 SEPT. 15 SEPT. 16	T.B. MOUTH OF KAM R.	1.8 6.8 3.8	122	14 26 14	108 96	9 25 7	10,000 10,000 1,000
F 5.1	R1586 R1740	SEPT. 9 SEPT. 16	T.B FT. WILLIAM - PT. ARTHUR BOUNDARY	1.2	80 72	6 12	74 60	10	1,000
			THUN	DER BAY					
TB 6	R1807	SEPT. 17	MISSION R. GAP	4,8	**	16	**	4	100
TB 7	R1753	SEPT. 16	SOUTH GAP	1.9	78	16	62	4	10,000
TB 8	R1713 R1783	SEPT. 15 SEPT. 17		1.3	72	8 6	66	» »	100
TB 9	R1601 R1708	SEPT. 8 SEPT. 9 SEPT. 15	NORTH GAP, BOTTOM SAMPLE	CONTAIN 1.5 1.4	ED WOOD 1	FIBRE S 8 14	оме Сне 68	MICAL FIERE。 8 10	100
TB I	R1701	SEPT. 15		0,8	-	6	-	20	10
			PT. ARTHUR WATER INTAKE			RBIDITY			
TB 3	R1796	SEPT. 17	ONE MILE N.W. OF HARE ISLAM	ID. 1.2		1.9		-	-
TB 4	R1797	SEPT, 17	NORTH END OF PIE ISLAND.	0.7		3,2		2	-
TB 5	R1798	SEPT. 17	SOUTH END OF PIE ISLAND.	0.9		2,7		~	10
TB 2	R1799	SEPT. 17	WHISKEY JACK PT. 1500* FROM SHORE.	0.9		3.2		2	100
			INLAND WATERCO						
NK 8	R1617 R1664 R1785 R2332 R2333	SEPT. 10 SEPT. 15 SEPT. 17 NOV. 13 NOV. 16	KAM R. NEAR W. BOUNDARY OF NEEBING TWP.	WP KAM R 3.0 3.0 2.4	134 88 100	18 10 12	116 78 88	TRACE	100 10 100
FK 8	R1620 R1777 R1801	SEPT. 17 SEPT. 18	7	3,8 2,6 2,6	144 134 76	16 20 10	128 114 66	13	1,000
			FORT WILL	IAM - KAM RI	<u>I VER</u>				
FK 7.1	R1623	SEPT. 10) KAM R. 100° DOWNSTREAM FROM GREAT LAKES PAPER CO.	M 658.0	2162	134	2028		100
FK 7.6	R1622	SEPT. 10	KAM R. 500° DOWNSTREAM FROM FK7.1	M 71.0	356	115	244		100

- 43 -FURT WILLIAM - KAM RIVER

			TORT STEETAN	5 DAY	IVEI				
SAMPLE NO.	LAB. NO.	SAMPLING DATE	DESCRIPTION	B.O.D. PPM	SOLIDS TOTAL		M) Diss.	PHENOL PPB	TOTAL COLI. IND. NO. PER 100cc
FK 7.7	R1621	SEPT. 10	KAM R. 1000° DOWNSTREAM FROM FK 7.6	64.0	350	76	274	**	1,000
BOTTOM SA	AMPLE	SEPT. 18	KAM R. 12 MILES DOWNSTREAM FROM GT. LAKES PAPER CO.	WOOD F	IBRE PRE	SENT.			
BOTTOM SA	AMPLE	SERT. 21	KAM R. TURNING BASIN, 2000' BELOW GT. LAKES PAPER CO.	WOOD F	IBRE PRE	SENT (CONTAINING	SOME C	HEMICAL FIBRE.
FK 6A	R1619	SEPT. 10	KAM R NEAR MUNICIPAL SEWER OUTFALL	21.0	178	32	146	24	1,000,000
FK 6	R1618 R1715 R1792	SEPT. 10 SEPT. 15 SEPT. 17	JUNCTION OF KAM & MISSION	5,9 4,3 30,0	178 78 202	34 18 34	144 60 168	14	10,000 100 10,000
FK 5	R1595 R1710 R1767	SEPT. 9 SEPT. 15 SEPT. 16	KAM R UPSTREAM OGILVIE MILL.	19.0 8.0 2.8	156 96 124	18 20 12	138 76 112	4 30 12	10,000 1,000 10,000
FK 4.1	R1594 R1716 R1766	SEPT. 9 SEPT. 15 SEPT. 16	KAM R 100' DOWNSTREAM FROM OGILVIE OUTFALL.	215.0 5.8 198.9	382 82 386	166 20 160	216 62 226	25 15 10	100,000 10,000 1,000,000
FK 4.6	R1591 R1769 R1677	SEPT. 9 SEPT. 16 SEPT. 15	KAM R 500† DOWNSTREAM FROM FK 4.1	2 3,8 2,0	154 142 136	39 18 20	120 124 116	4 12 25	=
FK 4.7	R1590 R1584	SEPT. 9' SEPT. 15	KAM R _c - 500° DOWNSTREAM FROM FK 4.6	17.0 8.3	132 120	24 30	108 90	4 20	1,000
FK 3	R1587 R1678 R1772	SEPT. 9 SEPT. 15 SEPT. 16	JUNCTION KAM & MCKELLAR R.	7.0 5.2 3.0	170 124 120	42 16 8	128 108 112	9 18 12	100,000 10,000 Broken.
FK 2	R1583 R1772	SEPT. 9 SEPT. 16	NEAR PROPOSED S.T.P. AREA.	4,0 3,2	146 122	28 4	118 118	8 12	1,000,000
F 4.1	R1582 R1683	SEPT. 9 SEPT. 15	MOUTH OF KAM R.	1,8 6,8	122 112	14 26	108 86	9 25	1,000
			IMLAND WA	ATERCOUR!	SES				
			FORT WILLIAM -	MCKELLA	RRIVER				
FM 3	R1589 R1771	SEPT. 9 SEPT. 16	UPSTREAM OF HUSKY DIL CO.	46.0 11.0	138 128	24 4	114 124	12 18	1,000
FM 2	R1593 R1770	SEPT, 9 SEPT, 16	DOWNSTREAM FROM HUSKY 01L C	0.18.0 4,5	146 128	34 12	112 116	6 22	10,000
F3.1	R1588 R1768	SEPT. 9 SEPT. 16	Mouth of McKellar River.	5.4 2.0	120 76	22 10	98 66	12 5	1,000
			FORT WILLIAM .	MISSIO	N RIVER				
FM 1.1	R1592 R1709 R1784 R1795		UPSTREAM FROM MOUTH MISS!ON RIVER	19.0 5.7 4.8 7.0	166 132 180	28 20 20 56	138 112 160	6 25 -	1,000 10 10 100
F 2.4	R1800	SEPT. 18	500' N. OF ABITIB! OUTFALL.	85.0	474	160	306	-	1,000
F 2.5	R1802	SEPT, 18	500' N. OF F2.4	36,0	190	40	150	-	-

- 44-

	MEEBING TWP NEEBING RIVER									
SAMPLE NO.		SAMPLING DATE	DESCR! PT JON	5 DAY B.O.D. P.P.M.	SOLIDS TOTAL		M) DISS	PHENOL PPB.	TOTAL COLI. IND. NO. PER 100 CC	
NN 6	R1616 R1663 R1786	SEPT. 10 SEPT. 15 SEPT. 17	NEEBING TWP. W. BOUNDARY	1.9 1.9 4.0	210 204 228	6 10 8	204 199 220	15	100 10 100	
SN 6	R1612 R1665 R1787	SEPT. 10 SEPT. 15 SEPT. 17	N, BRANCH AT ARTHUR ST.	1.6 1.5	174 136 192	8 8 6	166 128 186	30	1,000 1,000 100	
NN 5	R1615 R1666 R1788	SEPT. 10 SEPT. 15 SEPT. 17	NEAR VICKERS AVE.	2.3 2.0 1.3	206 172 202	16 8 10	190 164 192	12	10,000 1,000 100	
			FORT WILLIAM -	NEEBING R	IVER					
FN 3	R1613 R1672 R1791	SEPT. 10 SEPT. 15 SEPT. 17	NEEBING R. (MAY ST. BRIDGE)	2.6 4.0 2.0	!90 168 168	14 14 12	176 154 156	25	1,000,000 1,000,000 10,000	
FN 2	R1614 R1668 R1790	SEPT. 10 SEPT. 15 SEPT. 17	NEEBING R. (DOWNSTREAM FROM FT. WILLIAM S.T.P.)	5,4 37.0 11.0	214 246 210	20 58 38	194 188 172	25	1,000,000 1,000,000 1,000,000	
			PORT ARTHUR -	NEEBING R	IVER					
P1.1	R1584 R1739 R1682	SEPT. 9 SEPT. L6 SEPT. 16	THUNDER BAY - MOUTH OF NEEBING RIVER.	2.2 1.1 1.5	92 70 70	10 8 12	82 62 58	8 8 10	1,000 100 10,000	
	SHUNIAH - MCINTYRE RIVER									
SM 6	R1605 R1673	SEPT. 9 SEPT. 15	NEAR JOHN ST.	3.2 2.2	146 120	16 4	130 116	2	1,000	
SM 5	R1606 R1669 R1779	SEPT. 9 SEPT. 15 SEPT. 17	NEAR PORT ARTHUR BOUNDARY	1.9 2.2 1.6	148 100 112	8 12 10	88 102	6	1,000 100 1,000	
SM 4	R1604 R1670 R1778	SEPT. 9 SEPT. 15 SEPT. !7	ELEVENTH AVE. BRIDGE.	2,0 1.7 1,8	132 126 130	10 8 12	122 118 118	2	10,000 1,000 100,000	
PM 2	R1607 R1671	SEPT. 9 SEPT. 15	MAY ST. BRIDGE	3,6 2,4	146 138	8 10	138 128	2	1,000	
			PORT ARTHUR - 1	CINTYRE F	RIVER					
PM .1 . A	R1667	SEPT. 15	MAY ST. BRIDGE DOWNSTREAM FROM NEW PORT ARTHUR S.T.P.	2,6	112	10	102		10,000	
PM I	R1585 R1738	SEPT. 9 SEPT. 16	MOUTH OF MCINTYRE RIVER	3.1 1.6	148 100	22 12	126 88	10	1,000	
P2.1	R1579 R1680 R1737	SEPT. 9 SEPT. 15 SEPT. 16	THUNDER BAY - 500° E. OF MOUTH OF MCINTYRE R.	2.8 1.3 1.6	100 62	8 6	92 56	22 6 4	100,000 1,500 10,000	
			SHUNIAH - MG	VICAR CRE	EK.					
PV 2	R161! R1674 R1782	SEPT, 9 SEPT, 15 SEPT, 17	WARDROPE AVE. AT PT. ARTHUR BOUNDARY	1.7 2.0 1.2	136 128 154	8 6 8	128 122 146	8	100 10 100	
PV I	R1793	SEPT。17	Mouth of McVicar Creer.	13.0	192	24	168	-	100,000	

PORT ARTHUR - MCVICAR CREEK 5 DAY									TOTAL COLI.
SAMPLE NO.	LAB. NO.	SAMPLING DATE	DESCRIPTION	B.O.D. P.P.M.	SOLIDS TOTAL		.M.) . DISS.	P.P.B.	IND. NO.
P 6	R1600 R1700 R1745	SEPT. 8 SEPT. 15 SEPT. 16	THUNDER BAY - 500° FROM MOUTH OF McVicar Cr	1.5 14.0 2.0	104 68 70	8 !2 20	96 56 50	· 8 4 3	10,000 100,000 1,000,000
SHUNIAH CURRENT RIVER									
SC 3	R1608 R1675 R1781	SEPT. 9 SEPT. 15 SEPT. 17	CURRENT R PORT ARTHUR BOUNDRY.	2.1 2.3 1.4	86 68 68	8 6 6	78 62 62	3	1,000
SB [R1609 R1676 R1794	SEPT. 9 SEPT. 15 SEPT. 17	E. BRANCH AT PT. ARTHUR BOUNDRY.	1.5 2.5 1.1	144 124 150	10 12 6	134 112 144	2	10 10 10
PORT ARTHUR CURRENT RIVER									
PC 2	R1610 R1780	SEPT. 9 SEPT. 17	UPSTREAM OF BOULEVARD RK.	1.5 1.3	90 68	12 6	78 62	1 -	100
PC I	R1603	SEPT. 9	DOWNSTREAM OF BOULEVARD PK.	1.2	84	12	72	4	100
P8.1	R1602 R1687 R1756	SEPT. 9 SEPT. 15 SEPT. 17	THUNDER BAY, MOUTH OF CURRENT	R _e 1 _e 4 2 _e 6 1 _e 8	80	8 10 16	98 64	8 10 7	1,000 10,000 100,000

