Medici MAT185: Cheat Sheet

Chapter 4: A Postcard from Vector Space

Vector Space:

A vector space V over a field Γ of elements $\{\alpha, \beta, \gamma...\}$ called scalars, is a **set** of elements $\{u, v, w...\}$ called vectors, such that the following **axioms are satisfied**.

These axioms involve two operations:

1. **Vector Addition**, denoted as u + w, such that for all $u, v, w \in V$

Ai. Closure: $u + v \in V$

Aii. Associativity: (u + v) + w = u + (v + w)

Aiii. Zero: \exists a zero or null vector $0 \in V$ such that u + 0 = u

Aiv. Negative: \exists a negative $-u \in V$ such that u + (-u) = 0

2. **Scalar Multiplication**, denoted as αu , such that for all $u, v \in V$ and all $\alpha, \beta \in \Gamma$

Mi. Closure: $\alpha u \in V$

Mii. Associativity: $\alpha(\beta u) = (\alpha \beta)u$

Miii. Distributivity:

a)
$$(\alpha + \beta)u = \alpha u + \beta u$$

b)
$$\alpha(u + v) = \alpha u + \alpha v$$

Be careful: One is the rule of adding real numbers and the other is adding vectors.

Miv. Unitary: For the identity element $1 \in \Gamma$, 1u = u

Proposition I:

For every u, $-u \in V$, -u + u = 0

Proposition II:

For every, $u \in V$, 0 + u = u

Theorem I: Cancellation Theorem

If u + w = v + w then u = v for any $u, v, w \in V$

Proposition III:

Let $u \in V$, then...

- 1. The zero vector $0 \in V$ is unique.
- 2. The negative -u of u is unique.
- 3. -(-u) = u

Definition of Subtraction:

If $u, v \in V$, then the subtraction of v from u, denoted by u - v, is

Proposition IV (Commutative Property):

For $u, v \in V$, u + v = v + u

Proposition V (Properties of Zero):

 $\forall v \in V \text{ and all } \alpha \in \Gamma$,

- 1. 0v = 0
- 2. $\alpha 0 = 0$
- 3. If $\alpha v = 0$, then either $\alpha = 0$ or v = 0

Proposition VI:

 $\forall v \in V \text{ and } \alpha \in \Gamma, (-\alpha)v = -(\alpha v) = \alpha(-v)$

Chapter 5: The Subspace Homesick Blues

Definition of Subset:

A subset U of a vector space V is a subspace of V iff U is itself a vector space over the same field Γ with the same vector addition and scalar multiplication of V

Theorem I: Subspace Test

Let *U* be a subset of a vector space *V*. Then *U* is a subspace of *V*, over the same field Γ with the same vector addition and scalar multiplication as *V*, iff for all $u, v \in V$ and all $\alpha \in \Gamma$,

S1. Zero: \exists a zero or null vector $0 \in U$

S2. Closure under VA: $u + v \in U$

S3. Closure under SM: $\alpha u \in U$

Definition of Linear Combination:

A vector $v \in V$ is linear combination of $\{v_1, v_2 \dots v_n\} \subset V$ iff it can be written as

$$v = \sum_{j=1}^{n} \lambda_{j} v_{j} = \lambda_{1} v_{1} ... + \lambda_{n} v_{n}$$
 for some $\lambda_{j} \in \Gamma$

Definition of Span:

The span of $\{v_1, v_2 \dots v_n\} \subset V$, denoted $span\{v_1, v_2 \dots v_n\}$, is

$$span\{v_1, v_2 \dots v_n\} = \{v | v = \sum_{j=1}^n \lambda_j v_j, \forall \lambda_j \in \Gamma\}$$

Proposition I:

The span of $\{v_1, v_2 \dots v_n\} \subset V$ is a subspace of the vector space V

Proposition II:

Let $U = span\{v_1, v_2 \dots v_n\} \sqsubseteq V$. If W is subspace of V containing the vectors $\{v_1, v_2 \dots v_n\}$, then $U \sqsubseteq W$.

Chapter 6: Covering All the Bases

Definition of Linear Independence:

A set of vectors $\{v_1, v_2 \dots v_n\} \subset V$ is linearly independent iff

$$\sum_{j=1}^{n} \lambda_{j} v_{j} = \lambda_{1} v_{1} + \dots + \lambda_{n} v_{n} = 0$$

implies that all $\lambda_i = 0$

Proposition I:

If $\{v_1, v_2 \dots v_n\} \subset V$ is linearly independent and $v = \sum_{j=1}^n \lambda_j v_j$ for all $v \in V$, then λ_j are uniquely determined.

Theorem I:

Let $\{v_1, v_2 \dots v_n\} \subset V$, a vector space. For every $v_k (k = 1 \dots n)$, $span\{v_1 \dots v_{k-1}, v_{k+1} \dots v_n\} \subsetneq span\{v_1 \dots v_n\} \text{ iff } \{v_1, v_2 \dots v_n\} \text{ is linearly independent.}$

Corollary:

$$\begin{split} & \text{Let } \{v_1^{}, v_2^{} ... v_n^{}\} \subset V \text{, a vector space. For at least one } v_k^{} (1 \leq k \leq n), \\ & span\{v_1^{} ... v_{k-1}^{}, v_{k+1}^{} ... v_n^{}\} = span\{v_1^{} ... v_n^{}\} \text{ iff } \{v_1^{}, v_2^{} ... v_n^{}\} \text{ is linearly dependent.} \end{split}$$

Theorem II Fundamental Theorem of Algebra:

Let V be a vector space spanned by n vectors. If a set of m vectors from V is linearly independent, then $m \le n$.

Definition of Bases:

A set of vectors $\{e_1, e_2 \dots e_n\} \in V$ is a basis for the vector space V iff

- 1. $\{e_1, e_2 \dots e_n\}$ is linearly independent
- 2. $\{e_1, e_2 \dots e_n\}$ spans V.

Theorem III:

Every basis for a given vector space contains the same number of vectors.

Definition of Dimensions:

The dimension of a vector space *V*, denoted *dim V*, is the number of vectors in any of its bases.

Proposition II:

Let V be a finite-dimensional vector space w / dim V = n. Then,

- 1. A linearly independent set of vectors in V can at most contain n vectors.
- 2. A spanning set for V must at least contain n vectors.

Theorem IV:

Let $\{v_1, v_2 \dots v_n\} \subset V$ be linearly independent. Then for a vector $v \in V$, $\{v, v_1, v_2 \dots v_n\}$ is linearly independent iff $v \notin span\{v_1, v_2 \dots v_n\}$

Theorem V Existence of Bases:

Let *V* be a vector space spanned by a finite set of vectors. Then every linearly independent set of vectors in *V* can be extended to a basis for V.

Theorem VI:

Let U & W be subspaces of a finite-dimensional vector space V. It follows that

- 1. U is finite-dimensional and $\dim U \leq \dim V$
- 2. If $U \subseteq W$, then $\dim U \leq \dim W$
- 3. If $U \subseteq W$ and $\dim U = \dim W$, then U = W

Theorem VII:

Any spanning set for a vector space V contains a basis for V.

Theorem VIII:

Let V be a vector space and dim V = n. Then,

- 1. Any set $\{v_1...v_n\} \subset V$ that's linearly independent is a basis for V; and
- 2. Any set $\{v_1 \dots v_n\} \subset V$ that spans V is a basis for V.

Chapter 7: Rank and File

Definition of Row Space:

The row space of $A \in {}^m R^n$, denoted row A, is $row A \triangleq span\{r_1, r_2 \dots r_m\}$ where $r_i \in R^n$ are the rows of A.

Definition of Column Space:

The column space of $A \in {}^m R^n$, denoted col A, is $col A \triangleq span\{c_1, c_2 \dots c_n\}$ where $c_i \in {}^m R$ are the columns of A.

Proposition I:

Let $A \in {}^m R^n$, $U \in {}^m R^m$ and $V \in {}^n R^n$. Then $row \ UA \le row \ A$ with equality holding if U is invertible. Furthermore, $col \ AV \subseteq col \ A$ with equality holding if V is invertible.

Proposition II:

Let $\{x_1, x_2 \dots x_r\} \subset^m R$ and let $U \in^m R^m$ be invertible. Then $\{x_1, x_2 \dots x_r\}$ is linearly independent iff $\{U_{x_1}, U_{x_2} \dots U_{x_r}\}$ is linearly independent.

Lemma I:

Let $A \in {}^m R^n$. Then $row \tilde{A} = row A$, where \tilde{A} is the RREF of A, and hence $dim row \tilde{A} = dim row A$. Moreover, the non-zero rows of \tilde{A} constitute a basis for row A.

Lemma II:

Let $A \in {}^{m}R^{n}$. Then

- 1. The set of columns with leading "1"s $\{\varsigma_{j_1}, \varsigma_{j_2}...\varsigma_{j_r}\}$ of \tilde{A} , the RREF of A, constitutes a basis for *col* \tilde{A} .
- 2. The set of corresponding columns $\{c_{j_1}, c_{j_2} \dots c_{j_r}\}$ of A constitutes a basis for col A.

As such $\dim \operatorname{col} \tilde{A} = \dim \operatorname{col} A$

Theorem I:

Let $A \in {}^{m}R^{n}$. Then $\dim row A = \dim col A$

Definition of Rank:

Let $A \in {}^{m}R^{n}$. The rank of A, denoted rank A, is the common dimension of row A and col A.

Properties of Rank:

Property I: If $A \in {}^{m}R^{n}$, then $rank A = rank \tilde{A}$

Property II: If $A \in {}^{m}R^{n}$, then $rank A = rank A^{T}$

Property III: If $A \in {}^m R^n$, $U \in {}^m R^m$ and $V \in {}^n R^n$, then $rank \ UA \le rank \ A$ and

 $rank \ AV \le rank \ A$ with equality holding if U and V are, respectively, invertible.

Theorem II Dimension Formula:

Let $A \in {}^{m}R^{n}$. Then $\dim null A = n - rank A$

Theorem III: (Square Matrices)

Let $A \in {}^{n}R^{n}$. Then the following statements are equivalent.

- 1. A is invertible
- 2. A has full rank n
- 3. The rows of A are linearly independent.
- 4. The columns of A are linearly independent.
- 5. For $x \in {}^{n}R$, Ax = 0 implies x = 0
- 6. For $z \in {}^{n}R$, $z^{T}A = 0$ implies z = 0

Theorem IV: (Column Version)

Let $A \in {}^{m}R^{n}$. Then the following statements are equivalent.

- 1. rank A = n
- 2. The columns of A are linearly independent.
- 3. For $x \in {}^n R$, Ax = 0 implies x = 0.
- 4. $A^{T}A$ is invertible.
- 5. A has a left inverse, i.e. BA = I for some $B \in {}^{n}R^{m}$

Lemma III:

Let $s \in {}^{n}R$. Then, if $s^{T}s = 0$, s = 0

Theorem V: (Row Version)

Let $A \in {}^{m}R^{n}$. Then the following statements are equivalent.

- 1. rank A = m
- 2. The rows of A are linearly independent.
- 3. For $z \in {}^m R$, $z^T A = 0$ implies z = 0.
- 4. AA^{T} is invertible.
- 5. A has a right inverse, i.e. AB = I for some $B \in {}^{n}R^{m}$

Chapter 8: Coordination Plans

Definition of Linear Transformation:

Proposition I:

Definition of Image:

Definition of Kernel

Proposition II:

Theorem I Dimension Formula:

Definition of

Chapter 9: Great Determinations Determinant of a 2x2 Matrix: Sarrus's Rule: **Definition of Determinant Function:** Theorem I Properties of a Determinant Function: **Proposition I: Proposition II:** Lemma I: Theorem II: **Definition of Determinant: Definition of Minor Matrix: Definition of Laplace Expansion:** Theorem III: **Determinants of Elementary Matrices: Theorem IV Cauchy-Binet Product Theorem:** Theorem V Transpose Theorem: Theorem VI Invertibility Theorem:

Corollary:
Theorem VII Maclaurin-Cramer Rule:
Definition of Cofactor:
Definition of Adjoint:
Theorem VIII: