Алгебра, семинар №3 вшэ, осень, первый курс

1. Поделите с остатком многочлен f(x) на многочлен g(x) в кольце $\mathbb{Z}[x]$

и в кольце
$$(\mathbb{Z}/2\mathbb{Z})[x]$$
:
 $a) \ f(x) = 3x^4 + 4x^3 + 5x^2 - 6x + 4, \ g(x) = x^2 - 2x + 1;$
 $b) \ f(x) = x^7 + 3x^3 + 2x^2 + 1, \ g(x) = x^3 + 2.$

b)
$$f(x) = x^7 + 3x^3 + 2x^2 + 1$$
, $g(x) = x^3 + 2$.

2. Поделите многочлен f(x) с остатком на $x - x_0$:

a).
$$f(x) = 4x^6 + 2x^4 - 3x + 7$$
, $x_0 = -1$,
b). $f(x) = -x^5 + 3x^3 - x$, $x_0 = 2$.

b).
$$f(x) = -x^5 + 3x^3 - x$$
, $x_0 = 2$.

3. Найдите остаток от деления многочлена $x^{179} + x^{57} + x^2 + 1$ в кольце многчоленов $\mathbb{Z}[x]$ на многочлены

a)
$$x^2 + 1$$
, b) $x^2 - 1$, c) $x^2 + x + 1$.

4. Вычислите остаток от деления многочлена $(x+1)^{2019}$ на многочлен $x^2 + x + 1$ в кольце $\mathbb{Z}[x]$.

5. Какие многочлены делятся нацело на a) x+1 и b) x^2+1 в кольце

6. При каких n в кольце $\mathbb{Z}/n\mathbb{Z}$ имеются нетривиальные (то есть отличные от 1 и 0) идемпотенты (то есть решения уравнения $a^2 = a$)?

7. Сколько решений имеет уравнение $x^3 = 1$ в кольце $\mathbb{Z}/360\mathbb{Z}$?