CMPE 110 Computer Architecture Fall 2015, Homework #2 Solution

Computer Engineering UC Santa Cruz

November 3, 2015

Question 1. Pipelining Hazards (18 points)

Solution.

Question 1.A Stalling for Structural Hazards (6 points)

See the pipeline diagram on the next page.

CPI Calculation:

- Before loop begins, instructions 1-3 (3 instructions) are called, taking 10 cycles total (C0-C9).
- After loop begins, a single iteration of the loop (instructions 4-11, 8 instructions) adds 21 cycles (C10-C30) to the pipeline.
- All 10 iterations of the loop would require $10 \times 21 = 210$ cycles.
- ullet When the loop ends, the bne instruction is executed once more, adding 1 cycle.
- Add the above three points together and we get 10 + 210 + 1 = 221 cycles for the entire program.
- The program has a total of $3 + 10 \times 8 + 1 = 84$ instructions executed.
- CPI = $\frac{221 \text{ cycles}}{84 \text{ instructions}} = 2.63 \text{ cycles/instruction}$

Dynamic Instruction	0	-	8	0 1 2 3 4 5	4	10	9	-	00	9	0	1	1	8	10 11 12 13 14 15 16	15	16 16	17 18 19	18	19	20	21	22	23	2	25	24 25 26 27	27	28	29	30
xor r0, r0, r0	G.	Q	×	M	W																										
addiu rl, r0, 10		_ 	۵	۵		×	M	3																							
j 1.1			F	i i	F		×	M	*																						
lw r3, 0(r2)						4																									
bne r0, r1, -8							<u>-</u>	٥	(X)	W W	^																				
:							[F	Q	ľ	ľ																				
:									4			ľ																			
lw r3, 0(r2)										F D		×	M	W																	
mul r4, r3, r3										_	F	D	D I	٥	X0 X	XI	X2	X3	M	*											
mul r3, r3, r1											_	F	F	E.	O O	XO	XI	X2	X3	M	×										
addiu rO, rO, 1															F	D	D	D	D	×	M	W									
div r3, r4, r3																F	F	F	F	D	D	0X	0X	0X	0X	M	W				
sw r3, O(r2)																				<u>G</u>	<u>r</u>	D	D	D	O	D	Q	×	M	*	
addiu r2, r2, 4																						Œ	Œ	G.	Œ	Œ	Œ	D	×	M	W

Question 1.B Bypassing for Data Hazards (6 points)

See the pipeline diagram on the next page.

CPI Calculation:

- Before loop begins, instructions 1-3 (3 instructions) are called, taking 8 cycles total (C0-C7).
- After loop begins, a single iteration of the loop (instructions 4-11, 8 instructions) adds 17 cycles (C8-C24) to the pipeline.
- All 10 iterations of the loop would require $10 \times 17 = 170$ cycles.
- When the loop ends, the bne instruction is executed once more, adding 1 cycle.
- Add the above three points together and we get 8 + 170 + 1 = 179 cycles for the entire program.
- The program has a total of $3 + 10 \times 8 + 1 = 84$ instructions executed.
- CPI = $\frac{179 \text{ cycles}}{84 \text{ instructions}} = 2.13 \text{ cycles/instruction}$

Dynamic													Cycle											
Instruction	0 1 2 3	_	~	4		5 6 7	7	œ	6	10	11	12	13	14	15	16	17	18	8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	20	21	55	23	24
xor r0, r0, r0	F D	\otimes	M	M I	Λ																			
addiu r1, r0, 10	I	F I	\bigotimes_{α}	M (S	M I	7																		
j L1		H	F D	×	M X	M																		
lw r3, 0(r2)			1	F.		'	'																	
bne r0, r1, -8					D D	\otimes	M	W																
:					F	D		•	1															
:						Ŧ		1	1	•														
lw r3, 0(r2)							(E)		D X	3	M													
mul r4, r3, r3								Ŧ	D	D	(S)		X1 X2 X3	X3	M	W								
mul r3, r3, r1									H	H	D	0X	X1	X2	X3	(3)	W							
addiu r0, r0, 1											H	D	D	D	D	X	M	W						
div r3, r4, r3												F	Ŧ	H	Ŧ	D	8		$x_0 x_0 x_0$	(X)	M	W		
sw r3, 0(r2)																Ŀ	Q	D	D	D	$\langle \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$	M (W	
addiu r2, r2, 4																	H	H	H	H	D	X	X M	W

Question 1.C Compiler Optimization for Control Hazards (6 points)

New re-ordered code:

```
xor r0, r0, r0
1
3
        j L1
2
        addiu r1, r0, 10
5 loop: mul r4, r3, r3
6
        mul r3, r3, r1
7
        addiu r0, r0, 1
        div r3, r4, r3
8
9
        sw r3, 0(r2)
        addiu r2, r2, 4
10
        bne r0, r1, -7
11 L1:
        lw r3, 0(r2)
```

See the pipeline diagram on the next page.

CPI Calculation:

- Before loop begins, instructions 1-3 (3 instructions) are called, taking 7 cycles total (C0-C6).
- After loop begins, a single iteration of the loop (instructions 4-11, 8 instructions) adds 15 cycles (C7-C21) to the pipeline.
- All 10 iterations of the loop would require $10 \times 15 = 150$ cycles.
- When the loop ends, the bne and lw instructions are executed once more, adding 2 cycles.
- Add the above three points together and we get 7 + 150 + 2 = 159 cycles for the entire program.
- The program has a total of $3 + 10 \times 8 + 2 = 85$ instructions executed.
- CPI = $\frac{159 \text{ cycles}}{85 \text{ instructions}} = 1.87 \text{ cycles/instruction}$

Dynamic												Cycle	a)									
Instruction	0 1 2	1		က	4	n	9	7	œ	6	9 10 11 12 13 14 15 16 17 18 19 20	11	12	13	14	15	16	17	18	19	20	21
xor r0, r0, r0	F D X	Q	×	3	W																	
j L1		伍	D	×	M.	W																
addiu r1, r0, 10			Œ	Q	X	M	W															
bne r0, r1, -7				Ŀ	D	Ø	M	W														
lw r3, 0(r2)					伍	D	×	3	8													
:						H	<u>'</u> .	'	ر'													
mul r4, r3, r3							Œ	Q	9	X	X2 X3	X3	M	W								
mul r3, r3, r1								Ŀ	D	X0	X1	X2	X3	3	W							
addiu r0, r0, 1									H	D	D	D	D	X	M	W						
div r3, r4, r3										H	Ŧ	H	H	D	2	X0	X0 X0 🔇	8	M	W		
sw r3, 0(r2)														伍	D	D	D	D	\otimes	M	W	
addiu r2, r2, 4															H	ы	ы	H	D	×	M	W

Question 2. Datapath Bypassing (18 points)

Solution.

Question 2.A Resolving Data Hazards by Stalling (6 points)

Dynamic									Cyc	le							
Instruction	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
bne r1, r0, done	F	D	X0	X1	M	W											
lw r5, 0(r2)		F	D	X0	X1	M	W										
lw r6, 0(r3), 10			F	D	X0	X1	M	W									
addu r7, r5, r6				F	D	D	D	D	X0	(X1)-	M	W					
addiu r8, r4, 4					F	F	F	F	D	X0	(X1)	M	W				
sw r7, 0(r8)									F	D	D	D	D	X0	X1	M	W

Question 2.B Implementing Data Bypassing (6 points)

Modified datapath is shown on the next page. It is not possible to completely remove stalling using only bypassing because the pipeline has a load-use dependency where an lw instruction may produce a value (in the M stage) needed in the following instructions ALU operation. Additionally, dependent back-to-back integer operations will have to stall no matter what because of the two-stage execution.

Question 2.C Bypassing Execution (6 points)

Dynamic							C	ycle						
Instruction	0	1	2	3	4	5	6	7	8	9	10	11	12	13
bne r1, r0, done	F	D	X0	X1	M	W								
lw r5, 0(r2)		F	D	X0	X1	M	W							
lw r6, 0(r3), 10			F	D	X0	X1	$\overline{\mathbb{M}}$	W						
addu r7, r5, r6				F	D	D	D	X0	XI	M	W			
addiu r8, r4, 4					F	F	F	D	X0	(XI)	M	W		
sw r7, 0(r8)								F	D	D	X0	X1	M	W

Question 3. Branch Prediction (10 points)

Solution.

Each stall in your instruction increases the CPI of that instruction by one. Since CPI is an average, repeated occurrences of stalls do not contribute any further to CPI.

$$CPI = Base CPI + Stalls$$

In this system, we assume bypassing is implemented. Therefore, the only stalls are due to branch mispredictions and load-use latency.

$$CPI = Base CPI + Load Stalls + Branch Stalls$$

Loads comprise 12% of instructions and 30% of the time they cause a 2-cycle stall. Branches comprise 25% of instructions and 55% of the time they mispredict, which causes a 4-cycle penalty.

$$CPI = 1 + (0.12 \times 0.30 \times 2) + (0.25 \times 0.55 \times 4)$$

$$CPI = 1.62$$

Question 4. Out-of-Order Execution (18 points)

Solution.

In this problem, we denote the Reservation Station as R_s and the Reorder Buffer as R_o .

Question 4.A Out-of-Order with no Bypassing (6 points)

See the pipeline diagram on the second to last page.

Question 4.B Out-of-Order with Bypassing (6 points)

See the pipeline diagram on the last page.

Question 4.C Program Latency (6 points)

No Bypassing (Question 4.A):

- As shown in the pipeline diagram on the penultimate page, the first iteration of the loop starts at Cycle 4 and ends on cycle 30. This means a total of 27 cycles are needed for the first iteration.
- The bne instruction at the start of the next iteration only misfetches 2 instructions (rather than 4) so only 2 instructions are fetched and then squashed.
- These two squashed instructions do not count toward the cycle count because they overlap with instructions from the previous iteration that are still executing.
- Therefore, the **bne** instruction from the second iteration onward only adds 1 cycle to the overall cycle count.
- After this branch is resolved, the remainder of the second iteration onward behaves like Cycles 13-30, which is 18 cycles.
- Therefore, each iteration after the first adds 19 cycles to the total cycle count.
- The total cycles in the loop are $27 + 9 \times 19 = 198$ cycles.

With Bypassing (Question 4.B):

- As shown in the pipeline diagram on the last page, the first iteration of the loop starts at Cycle 4 and ends on cycle 23. This means a total of 20 cycles are needed for the first iteration.
- These two squashed instructions after the **bne** of the second iteration onward do not count toward the cycle count because they overlap with instructions from the previous iteration that are still executing.
- Therefore, the **bne** instruction from the second iteration onward only adds 1 cycle to the overall cycle count.
- After this branch is resolved, the remainder of the second iteration onward behaves like Cycles 11-23, which is 13 cycles.
- Therefore, each iteration after the first adds 14 cycles to the total cycle count.
- The total cycles in the loop are $20 + 9 \times 14 = 146$ cycles.

Dynamic Instruction	0	1	61	es	4	no.	9	7	œ	6	10	11	12	13	14	Cycle 15 16		17	18	19	20	21	22	23	24	25	26	27	28	29	30
xor r0, r0, r0	F	D	×	M	W																										
addiu r1, r0, 10		Ŀ	Q	R_s	R_s	×	M	×																							
j L1			F	<u>a</u>	×	M	R_o	R_o	W																						
lw r3, 0(r2)				F	,																										
bne r0, r1, -8					(F)	Q	R_s	R_s	×	M	W																				
:						Ŀ	D	×	M																						
:							뚀	Q	×																						
:								Ŀ	Q	١,		,																			
:									F	<u>ا</u> ٰٰٰٰ		١,	١,																		
lw r3, 0(r2)										F	D	×	M	W																	
mul r4, r3, r3											F	D 7	R_s	R_s	0X	Х1	X2	X3	M	W											
mul r3, r3, r1												F	D	R_s	R_s	0X	X1	X2	X3	M	W										
addiu r0, r0, 1													F	D	×	M	R_o	R_o	R_o	R_o	R_o	W									
div r3, r4, r3														F	D	R_s	R_s	R_s	R_s	R_s	R_s	0X	0X	0X	0X	M	W				
sw r3, 0(r2)															F	D	R_s	×	M	W											
addiu r2, r2, 4																F	D	R_s	R_s	×	M	R_o	W								

Dynamic												Cycle	٩										
u	0		8	4	10	9	4	œ	6	10	:	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	13	14	15	16	17	18	19	20	21	22	23
xor r0, r0, r0	F D X M W	Š	Ž	2	Α																		
addiu r1, r0, 10		3	F D X		W																		
j L1		-		\sim	M W X	🔉																	
lw r3, 0(r2)			Œ,	جنبا	'	•	٠.																
bne r0, r1, -8				۳	F D X M W	(x)	M	*															
:					Ŀ	D	·	•	•														
:						1	جنہ	٠.															
lw r3, 0(r2)								F D X M W	×	3	*												
mul r4, r3, r3								Œ	Q	R_s	2	F D R, XO X1 X2 X3 M W	X2	X3	M	W							
mul r3, r3, r1									4	D	R_s	F D R, X0 X1 X2 (X3) M	X	X2	(E)	M	W						
addiu rO, rO, 1										Œ	Q	D X M Ro Ro Ro W	M	R_o	R_o	Ro	R_o	M					
div r3, r4, r3											Œ	F D R, R, R, X0 X0 X0 X0 M W	R_s	R_{s}	$R_{\rm s}$	8	X0	X0	S	M	×		
sw r3, 0(r2)												Ŀ	Q	$R_{\rm s}$	$R_{\rm s}$	R_s	F D R, R, R, R, R, R, M,	R_{s}	R_s	\otimes	M	8	
addiu r2, r2, 4													Ŀ	۵	R.	×	F D R, X M R, R, R, R, R, W	Ro	R	R	R	Ro	>