AVRTools

Generated by Doxygen 1.9.8

1 AVE	Riools: A Library for the AVR Almega328 and Almega2560 Microcontrollers	1
1.	1 Overview	1
1.	2 Audience	2
1.	3 AVRTools is not	2
1.	4 Quick Tour of AVRTools	3
	1.4.1 Foundational Elements and Concepts	3
	1.4.2 What you need to know about pin name macros	3
	1.4.3 The core modules	4
	1.4.3.1 System initialization module	5
	1.4.3.2 System clock module	5
	1.4.3.3 Analog-to-Digital module	5
	1.4.3.4 PWM module	6
	1.4.3.5 Minimal USART modules	6
	1.4.3.6 ABI module	6
	1.4.3.7 New module	6
1.	5 Sample start up code using AVRTools	7
1.	6 Advanced modules	7
1.	7 Documentation	7
1.	8 Questions	7
2 Adv	vanced Features	9
2.	1 Advanced serial (USART) module	9
2.	2 I2C modules	10
	2.2.1 I2C Master module	11
	2.2.2 I2C Slave module	11
2.	3 I2C-based LCD module	12
2.	4 Interrupt utilities module	12
2.	5 SPI module	12
2.	6 Memory utilities module	14
2.	7 Simple delays module	14
2.	8 GPIO pin variables	14
	2.8.1 Example using GPIO pin macros	16
	2.8.2 Example using GPIO pin variables	16
3 FAC		19
3.	1 Frequently Asked Questions	19
3.	2 Can AVRTools be installed as an Arduino IDE Library?	19
	3 Why can't I assign pins like pPin01 to a variable?	
3.	4 Why isn't the SPI module asynchronous?	20
3.	5 Why does the SPI module only implement master mode?	20

3.6 Why is there a setGpioPinHigh() macro and a _setGpioPinHigh() macro?	20
3.7 _setGpioPinHigh() is defined with 8 arguments, but called with 1 argument—how can that work?	20
3.8 Why is there a setGpioPinHigh() macro and a setGpioPinHighV() function?	21
4 Namespace Index	23
4.1 Namespace List	23
5 Hierarchical Index	25
5.1 Class Hierarchy	
6 Class Index	27
6.1 Class List	
	29
7.1 File List	29
8 Namespace Documentation	33
8.1 I2cMaster Namespace Reference	33
8.1.1 Detailed Description	35
8.1.2 Enumeration Type Documentation	35
8.1.2.1 I2cBusSpeed	35
8.1.2.2 I2cPullups	36
8.1.2.3 I2cSendErrorCodes	36
8.1.2.4 I2cStatusCodes	36
8.1.3 Function Documentation	37
8.1.3.1 busy()	37
8.1.3.2 pullups()	37
8.1.3.3 readAsync() [1/2]	37
8.1.3.4 readAsync() [2/2]	38
8.1.3.5 readSync() [1/2]	38
8.1.3.6 readSync() [2/2]	39
8.1.3.7 start()	39
8.1.3.8 stop()	39
8.1.3.9 writeAsync() [1/4]	40
8.1.3.10 writeAsync() [2/4]	40
8.1.3.11 writeAsync() [3/4]	41
8.1.3.12 writeAsync() [4/4]	42
8.1.3.13 writeSync() [1/4]	42
8.1.3.14 writeSync() [2/4]	43
8.1.3.15 writeSync() [3/4]	43
8.1.3.16 writeSync() [4/4]	44

8.2 I2cSlave Namespace Reference	44
8.2.1 Detailed Description	45
8.2.2 Enumeration Type Documentation	45
8.2.2.1 I2cBusSpeed	45
8.2.2.2 I2cPullups	45
8.2.2.3 I2cStatusCodes	46
8.2.3 Function Documentation	46
8.2.3.1 busy()	46
8.2.3.2 processl2cMessage()	46
8.2.3.3 pullups()	47
8.2.3.4 start()	47
8.2.3.5 stop()	48
8.3 Interrupts Namespace Reference	48
8.3.1 Detailed Description	48
8.3.2 Enumeration Type Documentation	48
8.3.2.1 ExternalInterrupts	48
8.3.2.2 PinChangeInterrupts	49
8.4 MemUtils Namespace Reference	49
8.4.1 Detailed Description	50
8.4.2 Function Documentation	50
8.4.2.1 freeMemoryBetweenHeapAndStack()	50
8.4.2.2 freeSRAM()	50
8.4.2.3 getFreeListStats()	50
8.4.2.4 memoryAvailableOnFreeList()	51
8.4.2.5 resetHeap()	51
8.5 SPI Namespace Reference	51
8.5.1 Detailed Description	52
8.5.2 Enumeration Type Documentation	53
8.5.2.1 ByteOrder	53
8.5.2.2 SpiMode	53
8.5.3 Function Documentation	54
8.5.3.1 configure()	54
8.5.3.2 disable()	54
8.5.3.3 enable()	
8.5.3.4 transmit() [1/2]	
8.5.3.5 transmit() [2/2]	
8.5.3.6 transmit16()	
8.5.3.7 transmit32()	
8.6 USART0 Namespace Reference	

8.6.1 Detailed Description	 . 57
8.6.2 Function Documentation	 . 57
8.6.2.1 available()	 . 57
8.6.2.2 flush()	 . 57
8.6.2.3 peek()	 . 58
8.6.2.4 read()	 . 58
8.6.2.5 start()	 . 58
8.6.2.6 stop()	 . 58
8.6.2.7 write() [1/4]	 . 59
8.6.2.8 write() [2/4]	 . 59
8.6.2.9 write() [3/4]	 . 59
8.6.2.10 write() [4/4]	 . 60
8.7 USART1 Namespace Reference	 . 60
8.7.1 Detailed Description	 . 61
8.7.2 Function Documentation	 . 61
8.7.2.1 available()	 . 61
8.7.2.2 flush()	 . 61
8.7.2.3 peek()	 . 61
8.7.2.4 read()	 . 61
8.7.2.5 start()	 . 62
8.7.2.6 stop()	 . 62
8.7.2.7 write() [1/4]	 . 62
8.7.2.8 write() [2/4]	 . 63
8.7.2.9 write() [3/4]	 . 63
8.7.2.10 write() [4/4]	 . 64
8.8 USART2 Namespace Reference	 . 64
8.8.1 Detailed Description	 . 65
8.8.2 Function Documentation	 . 65
8.8.2.1 available()	 . 65
8.8.2.2 flush()	 . 65
8.8.2.3 peek()	 . 65
8.8.2.4 read()	 . 65
8.8.2.5 start()	 . 66
8.8.2.6 stop()	 . 66
8.8.2.7 write() [1/4]	 . 66
8.8.2.8 write() [2/4]	
8.8.2.9 write() [3/4]	 . 67
8.8.2.10 write() [4/4]	 . 68
8.9 USART3 Namespace Reference	 . 68

	8.9.1 Detailed Description	39
	8.9.2 Function Documentation	
	8.9.2.1 available()	
	8.9.2.2 flush()	
	8.9.2.3 peek()	
	8.9.2.4 read()	39
	8.9.2.5 start()	
	8.9.2.6 stop()	70
	8.9.2.7 write() [1/4]	70
	8.9.2.8 write() [2/4]	71
	8.9.2.9 write() [3/4]	71
	8.9.2.10 write() [4/4]	71
0	Class Documentation 7	73
y '	9.1 Interrupts::AllOff Class Reference	
	9.1.1 Detailed Description	
	9.2 Interrupts::ExternalOff Class Reference	
	9.2.1 Detailed Description	
	9.2.2 Constructor & Destructor Documentation	
	9.2.2 Constructor & Destructor Documentation	
	9.3 GpioPinVariable Class Reference	
	9.3.1 Detailed Description	
	9.4 I2cLcd Class Reference	
	9.4.1 Detailed Description	
	9.4.2 Member Enumeration Documentation	
	9.4.2.1 anonymous enum	
	9.4.2.2 anonymous enum	
	9.4.2.3 IntegerOutputBase	
	9.4.3 Member Function Documentation	
	9.4.3.1 command()	
	9.4.3.2 displayBottomRow()	
	9.4.3.3 displayTopRow()	
	9.4.3.4 init()	
	9.4.3.5 print() [1/10]	
	9.4.3.6 print() [2/10]	
	9.4.3.7 print() [3/10]	
	9.4.3.8 print() [4/10]	
	9.4.3.9 print() [5/10]	
	9.4.3.10 print() [6/10]	

9.4.3.11 print() [7/10]	 83
9.4.3.12 print() [8/10]	 84
9.4.3.13 print() [9/10]	 84
9.4.3.14 print() [10/10]	 85
9.4.3.15 println() [1/10]	 85
9.4.3.16 println() [2/10]	 85
9.4.3.17 println() [3/10]	 86
9.4.3.18 println() [4/10]	 86
9.4.3.19 println() [5/10]	 86
9.4.3.20 println() [6/10]	 87
9.4.3.21 println() [7/10]	 87
9.4.3.22 println() [8/10]	 87
9.4.3.23 println() [9/10]	 88
9.4.3.24 println() [10/10]	 88
9.4.3.25 readButtons()	 88
9.4.3.26 setBacklight()	 89
9.4.3.27 setCursor()	 89
9.4.3.28 write() [1/4]	 89
9.4.3.29 write() [2/4]	 90
9.4.3.30 write() [3/4]	 90
9.4.3.31 write() [4/4]	 90
9.5 Interrupts::PinChangeOff Class Reference	 91
9.5.1 Detailed Description	 91
9.5.2 Constructor & Destructor Documentation	 91
9.5.2.1 PinChangeOff()	 91
9.6 Reader Class Reference	 92
9.6.1 Detailed Description	 93
9.6.2 Member Function Documentation	 93
9.6.2.1 available()	 93
9.6.2.2 find() [1/2]	 94
9.6.2.3 find() [2/2]	 94
9.6.2.4 findUntil() [1/2]	 94
9.6.2.5 findUntil() [2/2]	 95
9.6.2.6 peek()	 95
9.6.2.7 read()	 95
9.6.2.8 readBytes() [1/2]	 96
9.6.2.9 readBytes() [2/2]	 96
9.6.2.10 readBytesUntil() [1/2]	 96
9.6.2.11 readBytesUntil() [2/2]	 97

9.6.2.12 readFloat() [1/2]
9.6.2.13 readFloat() [2/2]
9.6.2.14 readLine()
9.6.2.15 readLong() [1/2]98
9.6.2.16 readLong() [2/2]98
9.6.2.17 setTimeout()
9.7 RingBuffer Class Reference
9.7.1 Detailed Description
9.7.2 Constructor & Destructor Documentation
9.7.2.1 RingBuffer()
9.7.3 Member Function Documentation
9.7.3.1 isEmpty()
9.7.3.2 isFull()
9.7.3.3 isNotEmpty()
9.7.3.4 isNotFull()
9.7.3.5 peek()
9.7.3.6 pull()
9.7.3.7 push()
$9.8 \; RingBufferT < T, N, SIZE > Class Template \; Reference \; . \; . \; . \; . \; . \; . \; . \; . \; . \; $
9.8.1 Detailed Description
9.8.2 Member Function Documentation
9.8.2.1 discardFromFront()
9.8.2.2 isEmpty()
9.8.2.3 isFull()
9.8.2.4 isNotEmpty()
9.8.2.5 isNotFull()
9.8.2.6 peek()
9.8.2.7 pull()
9.8.2.8 push()
9.9 Serial0 Class Reference
9.9.1 Detailed Description
9.9.2 Member Enumeration Documentation
9.9.2.1 IntegerOutputBase
9.9.3 Member Function Documentation
9.9.3.1 available()
9.9.3.2 find() [1/2]
9.9.3.3 find() [2/2]
9.9.3.4 findUntil() [1/2]
9.9.3.5 findUntil() [2/2]

9.9.3.6 peek()		 	 	 	111
9.9.3.7 print() [1/10]		 	 	 	111
9.9.3.8 print() [2/10]		 	 	 	112
9.9.3.9 print() [3/10]		 	 	 	112
9.9.3.10 print() [4/10)]	 	 	 	112
9.9.3.11 print() [5/10)]	 	 	 	113
9.9.3.12 print() [6/10)]	 	 	 	113
9.9.3.13 print() [7/10)]	 	 	 	114
9.9.3.14 print() [8/10)]	 	 	 	114
9.9.3.15 print() [9/10)]	 	 	 	115
9.9.3.16 print() [10/1	10]	 	 	 	115
9.9.3.17 println() [1/	10]	 	 	 	115
9.9.3.18 println() [2/	10]	 	 	 	116
9.9.3.19 println() [3/	10]	 	 	 	116
9.9.3.20 println() [4/	10]	 	 	 	116
9.9.3.21 println() [5/	10]	 	 	 	117
9.9.3.22 println() [6/	10]	 	 	 	117
9.9.3.23 println() [7/	10]	 	 	 	117
9.9.3.24 println() [8/	10]	 	 	 	118
9.9.3.25 println() [9/	10]	 	 	 	118
9.9.3.26 println() [10	/10]	 	 	 	118
9.9.3.27 read()		 	 	 	119
9.9.3.28 readBytes()	[1/2]	 	 	 	119
9.9.3.29 readBytes()	[2/2]	 	 	 	119
9.9.3.30 readBytesU	ntil() [1/2]	 	 	 	120
9.9.3.31 readBytesU	ntil() [2/2]	 	 	 	120
9.9.3.32 readFloat()	[1/2]	 	 	 	121
9.9.3.33 readFloat()	[2/2]	 	 	 	121
9.9.3.34 readLine()		 	 	 	121
9.9.3.35 readLong()	[1/2]	 	 	 	122
9.9.3.36 readLong()	[2/2]	 	 	 	122
9.9.3.37 setTimeout()	 	 	 	122
9.9.3.38 start()		 	 	 	123
9.9.3.39 stop()		 	 	 	123
9.9.3.40 write() [1/4]	 	 	 	123
9.9.3.41 write() [2/4]	 	 	 	124
9.9.3.42 write() [3/4]	 	 	 	124
9.9.3.43 write() [4/4]	 	 	 	124
9.10 Serial1 Class Reference		 	 	 	125

9.10.1 Detailed Description
9.10.2 Member Enumeration Documentation
9.10.2.1 IntegerOutputBase
9.10.3 Member Function Documentation
9.10.3.1 available()
9.10.3.2 find() [1/2]
9.10.3.3 find() [2/2]
9.10.3.4 findUntil() [1/2]
9.10.3.5 findUntil() [2/2]
9.10.3.6 peek()
9.10.3.7 print() [1/10]
9.10.3.8 print() [2/10]
9.10.3.9 print() [3/10]
9.10.3.10 print() [4/10]
9.10.3.11 print() [5/10]
9.10.3.12 print() [6/10]
9.10.3.13 print() [7/10]
9.10.3.14 print() [8/10]
9.10.3.15 print() [9/10]
9.10.3.16 print() [10/10]
9.10.3.17 println() [1/10]
9.10.3.18 println() [2/10]
9.10.3.19 println() [3/10]
9.10.3.20 println() [4/10]
9.10.3.21 println() [5/10]
9.10.3.22 println() [6/10]
9.10.3.23 println() [7/10]
9.10.3.24 println() [8/10]
9.10.3.25 println() [9/10]
9.10.3.26 println() [10/10]
9.10.3.27 read()
9.10.3.28 readBytes() [1/2]
9.10.3.29 readBytes() [2/2]
9.10.3.30 readBytesUntil() [1/2]
9.10.3.31 readBytesUntil() [2/2]
9.10.3.32 readFloat() [1/2]
9.10.3.33 readFloat() [2/2]
9.10.3.34 readLine()
9.10.3.35 readLong() [1/2]

9.10.3.36 readLong() [2/2]	41
9.10.3.37 setTimeout()	41
9.10.3.38 start()	42
9.10.3.39 stop()	42
9.10.3.40 write() [1/4]	42
9.10.3.41 write() [2/4]	43
9.10.3.42 write() [3/4]	43
9.10.3.43 write() [4/4]	43
9.11 Serial2 Class Reference	44
9.11.1 Detailed Description	47
9.11.2 Member Enumeration Documentation	47
9.11.2.1 IntegerOutputBase	47
9.11.3 Member Function Documentation	47
9.11.3.1 available()	47
9.11.3.2 find() [1/2]	48
9.11.3.3 find() [2/2]	48
9.11.3.4 findUntil() [1/2]	48
9.11.3.5 findUntil() [2/2]	49
9.11.3.6 peek()	
9.11.3.7 print() [1/10]	
9.11.3.8 print() [2/10]1	50
9.11.3.9 print() [3/10]	50
9.11.3.10 print() [4/10]1	50
9.11.3.11 print() [5/10]1	
9.11.3.12 print() [6/10]1	51
9.11.3.13 print() [7/10]1	52
9.11.3.14 print() [8/10]1	52
9.11.3.15 print() [9/10]1	53
9.11.3.16 print() [10/10]	53
9.11.3.17 println() [1/10]	53
9.11.3.18 println() [2/10]	
9.11.3.19 println() [3/10]	54
9.11.3.20 println() [4/10]	
9.11.3.21 println() [5/10]	55
9.11.3.22 println() [6/10]	55
9.11.3.23 println() [7/10]	
9.11.3.24 println() [8/10]	
9.11.3.25 println() [9/10]	
9.11.3.26 println() [10/10]	56

9	9.11.3.27 read()	7
9	0.11.3.28 readBytes() [1/2]	7
(9.11.3.29 readBytes() [2/2]	7
9	0.11.3.30 readBytesUntil() [1/2]	8
9	0.11.3.31 readBytesUntil() [2/2]	8
9	0.11.3.32 readFloat() [1/2]	9
9	0.11.3.33 readFloat() [2/2]	9
9	0.11.3.34 readLine()	9
9	0.11.3.35 readLong() [1/2]	0
9	0.11.3.36 readLong() [2/2]	0
9	9.11.3.37 setTimeout()	0
9	9.11.3.38 start()	1
9	9.11.3.39 stop()	1
9	9.11.3.40 write() [1/4]	1
9	0.11.3.41 write() [2/4]	2
9	0.11.3.42 write() [3/4]	2
9	9.11.3.43 write() [4/4]	2
9.12 Serial3 C	lass Reference	3
9.12.1 D	etailed Description	6
9.12.2 N	ember Enumeration Documentation	6
9	0.12.2.1 IntegerOutputBase	6
9.12.3 M	ember Function Documentation	6
9	9.12.3.1 available()	6
9	0.12.3.2 find() [1/2]	7
9	0.12.3.3 find() [2/2]	7
9	0.12.3.4 findUntil() [1/2]	7
9	0.12.3.5 findUntil() [2/2]	8
(9.12.3.6 peek()	8
(9.12.3.7 print() [1/10]	8
9	0.12.3.8 print() [2/10]	9
9	0.12.3.9 print() [3/10]	9
9	0.12.3.10 print() [4/10]	9
9	0.12.3.11 print() [5/10]	'0
9	0.12.3.12 print() [6/10]	'0
9	0.12.3.13 print() [7/10]	'1
9	0.12.3.14 print() [8/10]	'1
9	9.12.3.15 print() [9/10]	'2
9	0.12.3.16 print() [10/10]	'2
9	9.12.3.17 println() [1/10]	'2

9.12.3.18 println() [2/10]	173
9.12.3.19 println() [3/10]	173
9.12.3.20 println() [4/10]	173
9.12.3.21 println() [5/10]	174
9.12.3.22 println() [6/10]	174
9.12.3.23 println() [7/10]	174
9.12.3.24 println() [8/10]	175
9.12.3.25 println() [9/10]	175
9.12.3.26 println() [10/10]	175
9.12.3.27 read()	176
9.12.3.28 readBytes() [1/2]	176
9.12.3.29 readBytes() [2/2]	176
9.12.3.30 readBytesUntil() [1/2]	177
9.12.3.31 readBytesUntil() [2/2]	177
9.12.3.32 readFloat() [1/2]	178
9.12.3.33 readFloat() [2/2]	178
9.12.3.34 readLine()	178
9.12.3.35 readLong() [1/2]	179
9.12.3.36 readLong() [2/2]	179
9.12.3.37 setTimeout()	179
9.12.3.38 start()	180
9.12.3.39 stop()	180
9.12.3.40 write() [1/4]	180
9.12.3.41 write() [2/4]	181
9.12.3.42 write() [3/4]	181
9.12.3.43 write() [4/4]	181
9.13 SPI::SPISettings Class Reference	182
9.13.1 Detailed Description	182
9.13.2 Constructor & Destructor Documentation	182
9.13.2.1 SPISettings()	182
9.13.3 Member Function Documentation	183
9.13.3.1 getSpcr()	183
9.13.3.2 getSpsr()	183
9.14 Writer Class Reference	183
9.14.1 Detailed Description	185
9.14.2 Member Enumeration Documentation	185
9.14.2.1 IntegerOutputBase	185
9.14.3 Member Function Documentation	186
9.14.3.1 print() [1/10]	186

	9.14.3.2 print() [2/10]
	9.14.3.3 print() [3/10]
	9.14.3.4 print() [4/10]
	9.14.3.5 print() [5/10]
	9.14.3.6 print() [6/10]
	9.14.3.7 print() [7/10]
	9.14.3.8 print() [8/10]
	9.14.3.9 print() [9/10]
	9.14.3.10 print() [10/10]
	9.14.3.11 println() [1/10]
	9.14.3.12 println() [2/10]
	9.14.3.13 println() [3/10]
	9.14.3.14 println() [4/10]
	9.14.3.15 println() [5/10]
	9.14.3.16 println() [6/10]
	9.14.3.17 println() [7/10]
	9.14.3.18 println() [8/10]
	9.14.3.19 println() [9/10]
	9.14.3.20 println() [10/10]
	9.14.3.21 write() [1/4]
	9.14.3.22 write() [2/4]
	9.14.3.23 write() [3/4]
	9.14.3.24 write() [4/4]
10 File Documer	
	e Reference
	Detailed Description
10.2 abi.h .	
_	Digital.h File Reference
	Detailed Description
10.3.2 [Macro Definition Documentation
	10.3.2.1 readGpioPinAnalog
10.3.3 I	Enumeration Type Documentation
	10.3.3.1 A2DVoltageReference
10.3.4 I	Function Documentation
	10.3.4.1 initA2D()
	10.3.4.2 readA2D()
	$10.3.4.3\ read Gpio Pin Analog V () \ldots $
	10.3.4.4 setA2DVoltageReference()

10.3.4.5 setA2DVoltageReference11V()
10.3.4.6 setA2DVoltageReference256V()
10.3.4.7 setA2DVoltageReferenceAREF()
10.3.4.8 setA2DVoltageReferenceAVCC()
10.4 Analog2Digital.h
10.5 ArduinoMegaPins.h File Reference
10.5.1 Detailed Description
10.6 ArduinoMegaPins.h
10.7 ArduinoPins.h File Reference
10.7.1 Detailed Description
10.8 ArduinoPins.h
10.9 ArduinoUnoPins.h File Reference
10.9.1 Detailed Description
10.10 ArduinoUnoPins.h
10.11 GpioPinMacros.h File Reference
10.11.1 Detailed Description
10.11.2 Macro Definition Documentation
10.11.2.1 getGpioADC
10.11.2.2 getGpioCOM
10.11.2.3 getGpioDDR
10.11.2.4 getGpioMASK
10.11.2.5 getGpioOCR
10.11.2.6 getGpioPIN
10.11.2.7 getGpioPORT
10.11.2.8 getGpioTCCR
10.11.2.9 GpioPin
10.11.2.10 GpioPinAnalog
10.11.2.11 GpioPinPwm
10.11.2.12 isGpioPinModeInput
10.11.2.13 isGpioPinModeOutput
10.11.2.14 makeGpioVarFromGpioPin
10.11.2.15 makeGpioVarFromGpioPinAnalog
10.11.2.16 makeGpioVarFromGpioPinPwm
10.11.2.17 readGpioPinDigital
10.11.2.18 setGpioPinHigh
10.11.2.19 setGpioPinLow
10.11.2.20 setGpioPinModeInput
10.11.2.21 setGpioPinModeInputPullup
10.11.2.22 setGpioPinModeOutput

10.11.2.23 writeGpioPinDigital
10.11.3 Enumeration Type Documentation
10.11.3.1 anonymous enum
10.11.4 Function Documentation
10.11.4.1 isGpioPinModeInputV()
10.11.4.2 isGpioPinModeOutputV()
10.11.4.3 readGpioPinDigitalV()
10.11.4.4 setGpioPinHighV()
10.11.4.5 setGpioPinLowV()
10.11.4.6 setGpioPinModeInputPullupV()
10.11.4.7 setGpioPinModeInputV()
10.11.4.8 setGpioPinModeOutputV()
10.11.4.9 writeGpioPinDigitalV()
10.12 GpioPinMacros.h
10.13 l2cLcd.h File Reference
10.13.1 Detailed Description
10.14 l2cLcd.h
10.15 I2cMaster.h File Reference
10.15.1 Detailed Description
10.16 l2cMaster.h
10.17 l2cSlave.h File Reference
10.17.1 Detailed Description
10.18 l2cSlave.h
10.19 InitSystem.h File Reference
10.19.1 Detailed Description
10.19.2 Function Documentation
10.19.2.1 initSystem()
10.20 InitSystem.h
10.21 InterruptUtils.h File Reference
10.21.1 Detailed Description
10.22 InterruptUtils.h
10.23 MemUtils.h File Reference
10.23.1 Detailed Description
10.24 MemUtils.h
10.25 new.h File Reference
10.25.1 Detailed Description
10.26 new.h
10.27 Pwm.h File Reference
10.27.1 Detailed Description

10.27.2 Macro Definition Documentation	19
10.27.2.1 writeGpioPinPwm	19
10.27.3 Function Documentation	19
10.27.3.1 clearTimer0()	19
10.27.3.2 clearTimer1()	50
10.27.3.3 clearTimer2()	50
10.27.3.4 clearTimer3()	50
10.27.3.5 clearTimer4()	50
10.27.3.6 clearTimer5()	51
10.27.3.7 initPwmTimer0()	51
10.27.3.8 initPwmTimer1()	52
10.27.3.9 initPwmTimer2()	52
10.27.3.10 initPwmTimer3()	52
10.27.3.11 initPwmTimer4()	53
10.27.3.12 initPwmTimer5()	53
10.27.3.13 writeGpioPinPwmV()	54
10.28 Pwm.h	54
10.29 Reader.h File Reference	56
10.29.1 Detailed Description	57
10.30 Reader.h	57
10.31 RingBuffer.h File Reference	59
10.31.1 Detailed Description	59
10.32 RingBuffer.h	30
10.33 RingBufferT.h File Reference	31
10.33.1 Detailed Description	31
10.34 RingBufferT.h	31
10.35 SimpleDelays.h File Reference	33
10.35.1 Detailed Description	34
10.35.2 Function Documentation	35
10.35.2.1 delayQuartersOfMicroSeconds()	35
10.35.2.2 delayTenthsOfSeconds()	35
10.35.2.3 delayWholeMilliSeconds()	36
10.36 SimpleDelays.h	36
10.37 SPI.h File Reference	37
10.37.1 Detailed Description	38
10.38 SPI.h	38
10.39 SystemClock.h File Reference	72
10.39.1 Detailed Description	73
10.39.2 Function Documentation	73

10.39.2.1 delay()
10.39.2.2 delayMicroseconds()
10.39.2.3 delayMilliseconds()
10.39.2.4 initSystemClock()
10.39.2.5 micros()
10.39.2.6 millis()
10.40 SystemClock.h
10.41 USART0.h File Reference
10.41.1 Detailed Description
10.41.2 Enumeration Type Documentation
10.41.2.1 UsartSerialConfiguration
10.42 USARTO.h
10.43 USART0Minimal.h File Reference
10.43.1 Detailed Description
10.43.2 Function Documentation
10.43.2.1 initUSART0()
10.43.2.2 receiveUSART0()
10.43.2.3 releaseUSART0()
10.43.2.4 transmitUSART0() [1/2]
10.43.2.5 transmitUSART0() [2/2]
10.44 USART0Minimal.h
10.45 USART1.h File Reference
10.45.1 Detailed Description
10.45.2 Enumeration Type Documentation
10.45.2.1 UsartSerialConfiguration
10.46 USART1.h
10.47 USART1Minimal.h File Reference
10.47.1 Detailed Description
10.47.2 Function Documentation
10.47.2.1 initUSART1()
10.47.2.2 receiveUSART1()
10.47.2.3 releaseUSART1()
10.47.2.4 transmitUSART1() [1/2]
10.47.2.5 transmitUSART1() [2/2]
10.48 USART1Minimal.h
10.49 USART2.h File Reference
10.49.1 Detailed Description
10.49.2 Enumeration Type Documentation
10.49.2.1 UsartSerialConfiguration

Index

10.50 USART2.h
10.51 USART2Minimal.h File Reference
10.51.1 Detailed Description
10.51.2 Function Documentation
10.51.2.1 initUSART2()
10.51.2.2 receiveUSART2()
10.51.2.3 releaseUSART2()
10.51.2.4 transmitUSART2() [1/2]
10.51.2.5 transmitUSART2() [2/2]
10.52 USART2Minimal.h
10.53 USART3.h File Reference
10.53.1 Detailed Description
10.53.2 Enumeration Type Documentation
10.53.2.1 UsartSerialConfiguration
10.54 USART3.h
10.55 USART3Minimal.h File Reference
10.55.1 Detailed Description
10.55.2 Function Documentation
10.55.2.1 initUSART3()
10.55.2.2 receiveUSART3()
10.55.2.3 releaseUSART3()
10.55.2.4 transmitUSART3() [1/2]
10.55.2.5 transmitUSART3() [2/2]
10.56 USART3Minimal.h
10.57 Writer.h File Reference
10.57.1 Detailed Description
10.58 Writer.h

315

Chapter 1

AVRTools: A Library for the AVR ATmega328 and ATmega2560 Microcontrollers

1.1 Overview

This library provides an Arduino-like, simple-to-use interface to the AVR ATmega328 and ATmega2560 microcontrollers without the bloat and slowness of the official Arduino libraries.

AVRTools is an attempt to provide the convenience of the Ardiuno library interface while embracing the fundamental C/C++ philosophy of "you don't pay for what you don't use" and "assume the programmer knows what he or she is doing."

Like the Arduino libraries, AVRTools allows you to refer to pins on an Arduino via simple names such as pPin07 for digital pin 7 or pPinA03 for analog pin 3. However, unlike the Arduino libraries, these names are pure macros so that setGpioPinHigh(pPin12) always translates directly into PORTB = (1 < PORTB4) on an Arduino Uno. Similar macros are available for conveniently naming any pin on an ATmega328 or ATmega2560, providing easy and efficient access to all the functionality available on that pin (digital I/O, analog-to-digital conversion, PWM, etc). In combination with these pin name macros, AVRTools provides functions to access the major subsystems and functionality of the ATmega328 and ATmega2560 microcontrollers.

On the other hand, because "you don't pay for what you don't use," when using AVRTools nothing is initialized or configured unless you explicitly do it. If you need analog inputs, then you must explicitly initialize the analog-to-digital subsystem before reading any analog pins. If you need an Arduino-style system clock (for functions like delay() or millis()), then you must explicitly start a system clock. AVRTools provides functions to do any necessary initialization, but the programmer must explicitly call these function to perform the initialization.

Similarly, because AVRTools "assumes the programmer knows what he or she is doing," it doesn't conduct a lot of checks to ensure you don't do something stupid. For example, when you set the output value of a digital pin using the Arduino library function $\mathtt{digitalWrite}()$, it checks if that pin is currently configured for PWM and if it is, it automatically turns off PWM-mode before writing to the pin. The equivalent of $\mathtt{digitalWrite}()$ in the AVRTools library, $\mathtt{writeGpioPinDigital}()$ doesn't do that: it assumes that if the programmer previously used the pin in PWM mode that they remembered to turn off PWM mode before using the pin digitally. Assuming the programmer knows what they are doing allows the functions in AVRTools to be much faster than their Arduino library counterparts. For example, a call to the Arduino function $\mathtt{digitalWrite}()$ takes about 70 cycles; a call to the equivalent AVRTools function $\mathtt{writeGpioPinDigital}()$ takes 2 cycles (it's actually a macro in AVRTools that the compiler translates to a single, 2-cycle assembler instruction).

1.2 Audience

If you are an Arduino programmer, you may want to try AVRTools if:

- You are comfortable programming the Arduino Uno and Mega directly using the the avr-gcc toolset.
- You are frustrated by the slowness of even simple functions in the official Arduino libraries.
- Your code doesn't fit into the available memory because the official Arduino libraries are so big.

If you are an ATmega328 or ATmega2560 microcontroller programmer, you may want to try AVRTools if:

- · You are secretly jealous of how easy and convenient it is to use the Arduino libraries.
- · You wish you could bind together DDRs, PORTs, and PINs so you didn't have to write code like:

• You wish you could use a function-like syntax to switch input/output mode, read a pin, or set a pin high or low but still have the compiler generate simple in and out type of instructions.

If you fit into either category, then you should read further.

1.3 AVRTools is not...

AVRTools is not a general purpose AVR programming library. I use the Arduino Uno and the Arduino Mega in my projects, and I wrote AVRTools to support these specific needs. There is conditional code throughout the implementation that is tailored to the ATmega328 and ATmega2560 microcontrollers. Additional conditional code could be added to create corresponding implementations for other AVR processors in the AT-family, but I haven't done it. Furthermore, the code is written for (and works with) microcontrollers running at either 8 MHz, 12 MHz, or 16 MHz (the code automatically adapts to these three clock speeds). I have not tested any other clock speeds, and some of the delay functions are specifically coded for 8 MHz, 12 MHz, and 16 MHz and will not work (as written) at other clock speeds.

Finally, the AVRTools interface is designed to meet my needs and coding style. That means the interfaces are designed in ways which may not reflect your usage. A particular example of this is the I2C module, which is designed to support the I2C idioms I use in my projects and is significantly different from the I2C interface offered by the Arduino libraries.

AVRTools is a C++ library. People may say that it is crazy to use C++ to program a microcontroller because C++ adds bloat and overhead, because behind your back the C++ compiler adds lots of code to make unnecessary copies, manage heap objects, handle exceptions, etc. C++, much like C, is a language that rewards programmers who know what they are doing and punishes those who don't. One can use C++ because it is a "better C" and use C++ features without incurring performance penalties or code bloat. For example, AVRTools uses namespaces to compartmentalize functionality into logical units and avoid name clashes; AVRTools also uses classes in a few cases where objects provide the most natural and convenient implementation of a capability (for example, certain advanced output classes such as USARTO or I2cLcd; note that AVRTools also provides a minimalistic USART interface using functions instead of classes, because different needs call for different tools).

1.4 Quick Tour of AVRTools 3

1.4 Quick Tour of AVRTools

This section provides an overview of how AVRTools works, starting with the foundational elements and then summarizing the modules that provide interfaces into the major hardware subsystems of the ATmega328 and ATmega2560 microcontrollers.

1.4.1 Foundational Elements and Concepts

The foundation of the AVRTools library consists of a collection of macros that enable you to refer to "pins" on the chips using a single name that can be used to switch input/output mode, read, or write a pin. This single name provides access, as appropriate, to the DDRx, PORTx, PINx registers and also the specific pin number. For pins that support analog-to-digital conversion, the single name also provides access to the analog channel associated with the pin. For pins that support PWM, the single name also provides access to the control and compare registers and bits needed to configure and control the PWM functionality of that pin.

This is all done via preprocessor macros, both for the single pin name mechanism and for the "functions" that make use of that single pin name. This means that access to any pin-related functionality is as fast as possible, designed specifically so that the avr-gcc compiler will emit simple 1- or 2-cycle in, out, sbi, cbi, sbic, or sbis instructions for such operations whenever possible. However, the complex internal representation of the macros means that the pin names are strictly constant and can only be passed to the specialized macro-functions designed to manipulate them. Although they may look and feel like simple constants, pin names cannot be assigned to variables, or passed to ordinary C/C++ functions (however, see the GPIO Pin Variables section in the Advanced Features section for a way to create and use variables for the GPIO pins). The AVRTools library does include macro-functions to extract any of the components related to a pin name so that users can access and manipulate the individual components as needed.

1.4.2 What you need to know about pin name macros

To access the pin names of the Arduino Uno or Mega, you only need to include the file "ArduinoPins.h". It will automatically detect whether you are compiling for Uno or Mega and it will correspondingly define the macros pPinNN (NN = 00 to 13 for Arduino Uno, NN = 00 to 53 for Mega) for digital ports and macros pPinAnn (nn = 00 to 07 for Uno, nn = 00 to 15 for Mega) for the analog ports. These correspond directly to the labeled pins on the Arduino boards. You can use these pin names to define your own macros:

While you cannot assign these to pin names to variables or pass them to ordinary functions, AVRTools provides a large collection of macro-functions to operate on the pin names. These include:

- setGpioPinModeOutput (pin) Enable the corresponding DDRn bit
- setGpioPinModeInput (pin) Clear the corresponding DDRn and PORTn bits
- setGpioPinModeInputPullup(pin) Clear the corresponding DDRn bit and set the PORTn bit
- isGpioPinModeOutput (pin) Is the corresponding DDRn bit set?
- isGpioPinModeInput (pin) Is the corresponding DDRn bit clear?
- readGpioPinDigital(pin) Is the corresponding PINn bit is set? (returns zero or non-zero)
- writeGpioPinDigital (pin, value) Write a 0 or 1 to the corresponding PORTn bit

- setGpioPinHigh (pin) Set the corresponding PORTn bit
- setGpioPinLow(pin) Clear the corresponding PORTn bit
- readGpioPinAnalog (pin) Read an analog value from the corresponding ADC channel
- writeGpioPinPwm(pin, value) Set the corresponding PWM output level for that pin

Most of these macros are automatically defined when you include "ArduinoPins.h", although to define the last two you need to include "Analog2Digital.h" and "Pwm.h" (respectively). These macros allow you to write code such as:

```
// Assuming everything has been initialized properly before this point
setGpioPinModeOutput( THE_RED_LED );
setGpioPinLow( THE_RED_LED );
setGpioPinModeOutput( THE_GRN_LED );
setGpioPinLow( THE_GRN_LED );
if ( readGpioPinAnalog( POTENTIOMETER ) < 100 )
{
    setGpioPinHigh( THE_RED_LED );
}
else
{
    setGpioPinHigh( THE_GRN_LED );</pre>
```

If you are working directly with an AVR ATmega328 or ATmega2560, you can define pin macros yourself by including "GpioPinMacros.h" (this file is automatically included for you when you include "ArduinoPins.h" if you are working on Arduinos) and using one of three pin naming macros:

- GpioPin(letter, number) An ordinary pin located on bank letter and bit number; for example the macro GpioPin(B, 5) corresponds to pin PB5.
- GpioPinAnalog(letter, number, channel) An ADC capable pin on bank letter and bit number with ADC channel, e.g., GpioPinAnalog(C, 5, 5) for ATmega328 pin PC5/ADC5, or GpioPinAnalog(K, 1, 9) for ATmega2560 pin PK1/ADC9.
- GpioPinPwm (letter, number, timer, channel) A PWM capable pin on bank letter and bit number with timer and channel used to select the appropriate OCRn[A/B], TCCRnA registers, and COMn[A/B]1 bits needed to configure the PWM settings, e.g., GpioPinPwm(B, 2, 1, B) for ATmega328 pin PB2/OC1B.

So for example, pin 11 on the Arduino Uno, which corresponds to ATmega328 pin B3 which is PWM capable using OC2A, would be defined as follows:

```
#define pPin11 GpioPinPwm(B, 3, 2, A)
```

1.4.3 The core modules

In addition to the macro-based pin naming and access system discussed above, there are seven additional elements that make up the core of AVRTools and provide access to basic functional elements of the ATmega328 and ATmega2560 microcontrollers. Together, these provide an Arduino-like interface to the microcontroller features. Five of the seven modules directly interface to microcontroller capabilities:

- · System initialization module
- · System clock module

1.4 Quick Tour of AVRTools 5

- · Analog-to-Digital module
- PWM module
- · Minimal USART modules

Two of the seven modules supplement the C++ implementation provided by the avr-qcc toolset:

- ABI module (support for the C++ ABI not included in the avr-gcc distribution)
- New module (implementation for operator new and operator delete)

Brief descriptions of these modules follow.

1.4.3.1 System initialization module

This module provides a single function that puts the microcontroller in a clean, known state. To use it include the header file InitSystem.h and link against InitSystem.cpp. These files provides a single function:

void initSystem();

The initSystem() function clears any bootloader settings, clears all timers, and turns on interrupts. This should be the first function your code calls at start up.

1.4.3.2 System clock module

This module provides a system clock functionality using Timer0 similar to that in the Arduino library. To employ this functionality include the header file SystemClock.h and link against SystemClock.cpp.

Some of key functions provided by this module include:

```
void initSystemClock();
unsigned long millis();
void delayMilliseconds( unsigned long ms );
```

Note that unlike the Arduino libary, you must explicitly initialize the clock functionality by calling initSystemClock(). This module also provides additional functions providing a richer interface to the system clock.

1.4.3.3 Analog-to-Digital module

This module provides access to the analog read capabilities of the ATmega328 and ATmega2560. To employ this functionality include the header file <code>Analog2Digital.h</code> and link against <code>Analog2Digital.cpp</code>. The principle functions provided by this module include:

```
void initA2D();
void turnOffA2D();
readGpioPinAnalog( pinName );  /* implemented as a macro */
```

You must initialize the analog-to-digital subsystem by calling initA2D() before attempting to read any analog pins.

1.4.3.4 PWM module

This module provides access to the PWM features available on certain ATmega328 and ATmega2560 pins. To employ this functionality include the header file Pwm.h and link against Pwm.cpp. The principle functions provided by this module include (among others):

```
void initPwmTimer1();
void initPwmTimer2();
void clearTimer1();
void clearTimer2();
writeGpioPinPwm( pinName, value ); /* implemented as a macro */
```

Depending on which pins you wish to employ in PWM mode, you should initialize the appropriate timers by calling the appropriate <code>initPwmTimerN()</code> function (where N is the appropriate timer number) before writing to the pin in PWM mode. This module also includes additional functions to access the extended PWM capabilities of the ATmega2560. The philosophical difference between the standard Arduino library and AVRTools is evident in this module: none of these function try to deduce which timers need to be turned on for any given pin, because that would require adding extra code and look-up tables. Instead AVRTools assumes the programmer will check the appropriate references to determine which timers correspond to the pins they want to use in PWM mode, and will use that knowledge to initialize the appropriate timers. For convenience, tables of PWM-capable pins and corresponding timers are included in the Pwm.h documentation.

1.4.3.5 Minimal USART modules

These modules provide basic functionality for reading and writing from the USARTs available on the ATmega328 and ATmega2560. To employ the USART0 functionality, you must include the header file USART0Minimal.h and link against the file USART0Minimal.cpp. The principle functions for accessing the USARTs are:

```
void initUSART0( unsigned long baudRate );
void transmitUSART0( unsigned char data );
void transmitUSART0( const char* data );
unsigned char receiveUSART0();
void releaseUSART0();
```

To make use of the USART0 capability, first call <code>initUSART0()</code> to initialize the USART. Then you can use <code>transmitUSART0()</code> and <code>receiveUSART0()</code> functions to communicate on USART0. When you are done with USART0 and want to use pins 0 and 1 for other purposes, call <code>releaseUSART0()</code>. Similar functions are provided to access the other three USARTs available on the ATmega2560; simply include <code>USARTnMinimal.h</code> and link against the file <code>USARTnMinimal.cpp</code>, where <code>n = 1, 2, or 3</code>. If you want more advanced serial capabilities, checkout the class <code>Serial0</code> in <code>USART0.h</code>.

1.4.3.6 ABI module

You only need this module if building your code produces link errors regarding missing symbols with strange names like $__{\texttt{CXA}}$ XXX (where XXX is some unusual string). In that case, simply link your code against abi.cpp. These are symbols related to the way the avr-gcc C++ compiler implements abstract virtual functions.

1.4.3.7 New module

This module implements operator new and operator delete. You only need this if you use new and delete to manage objects on the heap. Link against new.cpp to make use of these operators. AVRTools itself does not make any use of heap objects or operators new or delete.

1.5 Sample start up code using AVRTools

You can use AVRTools to create an environment that is very similar to the standard Arduino environment. The following sample code illustrates how to do this. The sample code reads a potentiometer and sets both a digital pin and a PWM pin based on the value of the potentiometer.

```
#include "AVRTools/ArduinoPins.h"
#include "AVRTools/InitSystem.h"
#include "AVRTools/SystemClock.h"
#include "AVRTools/Analog2Digital.h"
#include "AVRTools/Pwm.h"
#define pPot
                        pPinA01
                        pPin11
#define pPwmLed
#define pLed
                        pPin04
int main()
    initSystem();
    initSystemClock();
    initPwmTimer2();
   initA2D();
    setGpioPinModeOutput( pLed );
    setGpioPinModeOutput( pPwmLed );
   setGpioPinModeInput( pPot );
    while (1)
        int i = readGpioPinAnalog( pPot ) / 4;
        writeGpioPinPwm( pPwmLed, i );
        if ( i > 127 )
            setGpioPinHigh( pLed );
        else
        {
            setGpioPinLow( pLed );
        delayMilliseconds ( 100 );
```

1.6 Advanced modules

AVRTools also includes modules that provide access to more complex microcontroller capabilities and provide advanced services. These include modules for I2C communication (both master and slave mode), a module for SPI communications, a module for more advanced serial input and output (including conversion of various numerical types and strings), a module for temporarily suppressing selected interrupts, a module for driving an LCD display via I2C, a module for reporting memory utilization, a module for very precise delays, and a module for manipulating GPIO pins as actual variables. Information on these modules can be found in the Advanced Features sections of the documentation.

1.7 Documentation

Detailed documentation is provided by this PDF document located in the repository, or online in HTML form.

1.8 Questions

If you have questions, please check out the FAQ.

8	AVRTools: A Library for the AVR ATmega328 and ATmega2560 Microcontrollers

Chapter 2

Advanced Features

The AVRTools library includes a collection more advanced and/or specialized features:

- · Advanced serial (USART) module
- I2C modules
- I2C-based LCD module
- · Interrupt utilities module
- · SPI module
- · Memory utilities module
- · Simple delays module
- · GPIO pin variables

These features provide functionality that is different from that provided by the Arduino libraries, either in the design of their interface or in the underlying implementation, or both. While the core modules of the AVRTools library are basically independent and can be used individually, these advanced features depend in various ways upon the AVRTools core modules and, sometimes, on each other. These dependencies are highlighted in the corresponding sections.

2.1 Advanced serial (USART) module

The advanced USART module provides two different high-level interfaces to USART0 hardware available on the Arduino Uno (ATmega328) and the Arduino Mega (ATmega2560). These interfaces provide serial input and output that is flexible, buffered, and asynchronous by exploiting the interrupts that are associated with the USART0 hardware. This means the transmit functions return immediately after queuing data in the output buffer for transmission, and the actual transmission happens asynchronously while your code continues to execute. Similarly, data is received asynchronously and placed into the input buffer for your code to read at its convenience.

If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). When receiving data, however, the receive buffer will overwrite itself when it gets full (in a circular, first-in is first-overwritten fashion). You must clear the receive buffer by reading it regularly when

receiving significant amounts of data. The sizes of the transmit and receive buffers can be set at compile time via macro constants.

Two interfaces to USART0 thardware are provided. The first is provided in namespace USART0 and provides a functional interface that makes use of the buffering and asynchronous transmit and receive capabilities of the microcontroller hardware. However, USART0 functionality is limited to transmitting and receiving byte and character streams. Think of USART0 as a buffered version of the receiveUSART0() and transmitUSART0() functions provided by the Minimal USART modules.

The second interface is Serial0. Serial0 is the most advanced and capable interface to the USART0 hardware. Serial0 provides a object-oriented interface that includes the ability to read and write numbers of various types and in various formats, all asynchronously. Serial0 is implemented using USART0, so you may mix the use of USART0 and Serial0 interfaces in your code (although it is not recommended).

To use these the advanced serial capabilities, include the file USART0.h in your source code and link against the file USART0.cpp.

Note

The advanced serial module is incompatible with the minimal interface to USART0. If you link against the file USART0.cpp (even if you don't actually use Serial0 or USART0), do *not* call initUSART0() or releaseUSART0(); there is no point in any case because the receiveUSART0() and transmitUSART0() functions won't work. You may, however, use the minimal interface to access USART1, USART2, and/or USART3 while simultaneously using Serial0 and USART0 to access USART0.

Use of the timeout feature in Serial0 and USART0 requires linking against SystemClock.cpp and calling the function initSystemClock() from your start-up code.

If you are coding for the ATmega2560, you can also use USART1, USART2, and USART3 and/or Serial1, Serial2, and Serial3 to access the USART1, USART2, and USART3 hardware available on the ATmega2560. These work just like USART0 and Serial0. Again, if you link against USART1.cpp, USART2.cpp, or USART3.cpp then you cannot use the corresponding minimal interfaces for USART1, USART2, and USART3, and calling initUSART1() or releaseUSART1() (or their corresponding equivalents for the other USARTs) will put that USART in an inoperable configuration.

2.2 I2C modules

There are two modules providing different interfaces to the two-wire serial interface (TWI) hardware of the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560). These modules provide a high-level interface to I2C protocol communications. There are two different modules corresponding to the role within the I2C protocol that your application will use: if your application functions as an I2C "Master", use the Master module; if your application functions as an I2C "Slave", use the Slave module.

Note

AVRTools does not support applications that function both as I2C Masters and I2C Slaves. The two I2C modules provided by AVRTools are incompatible and cannot be mixed.

Both modules offer interfaces that are buffered for both input and output, making use of interrupts associated with the TWI hardware. This means the asynchronous transmit functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated TWI hardware. Similarly, data is received asynchronously and placed into the input buffer.

2.2 I2C modules 11

2.2.1 I2C Master module

The I2C Master module provides I2C-protocol-based interface to the TWI hardware that implements the Master portions of the I2C protocol. The interfaces are buffered for both input and output and operate using interrupts associated with the TWI hardware. This means the asynchronous transmit functions return immediately after queuing data in the output buffer for transmission, and the transmission happens asynchronously, using dedicated TWI hardware. Similarly, data is received asynchronously and placed into the input buffer.

The interface offered by the I2C Master module is designed around the normal operating modes of the I2C protocol. From a Master device point of view, I2C communications consist of sending a designated device a message to do something, and then either:

- doing nothing because no further action required on the Master's part (e.g., telling the designated device to shutdown).
- transmitting additional data needed by the designated device (e.g., you told the designated device to store some data, next you need to send the data).
- receiving data from the designated device (e.g., telling the designated device to report the current temperature or to read back some data from its memory).

For very simple devices, the receipt of the message itself can suffice to tell it to do something. More commonly, the instruction to the designated device consists of a single byte that passes a "register address" on the device. It is called a register address because it often corresponds directly to a memory register on the device. But it is best to think of it as an instruction code to the designated device (e.g., 0x01 =report the temperature; 0x02 =set the units to either degrees F or degrees C (depending on additional data sent by the Master); 0x03 =report the humidity; etc.).

The interface offered by the I2C Master module conforms directly to the above I2C paradigm. For convenience, the interface functions come in both synchronous and asynchronous versions. The synchronous versions simply call the asynchronous versions and block internally until the asynchronous operations are complete.

Note

The I2C Master module is incompatible with the I2C Slave module: you must use and link against only one of the two modules.

2.2.2 I2C Slave module

The I2C Slave module provides I2C-protocol-based interface to the TWI hardware that implements the Slave portions of the I2C protocol. The interfaces are buffered for both input and output and operate using interrupts associated with the TWI hardware. This means the functions return immediately after queuing data for transmission and the transmission happens asynchronously, using the dedicated TWI hardware. Similarly, data is received asynchronously and placed into a buffer.

The interface offered by the I2C Slave module is designed around the normal operating modes of the I2C protocol. From a Slave device point of view, I2C communications consist of receiving a message from the Master telling it to do something, and in response:

- · Processing the message and taking whatever action is appropriate.
- If that action includes returning data to the Master, queuing the data for transmission.

The interface offered by the I2C Slave module conforms directly to the above I2C paradigm.

2.3 I2C-based LCD module

The I2C-based LCD module provides a high-level interface to an LCD offering an I2C interface. The most common variant of this is an HD44780U controlled LCD driven by an MCP23017 that offers an I2C interface (such LCDs are available from Adafruit and SparkFun). This module allows you to write to the LCD much as it if were a serial device and includes the ability to write numbers of various types in various formats. It also lets you detect button presses on the 5-button keypad generally associated with such devices.

Note

The I2C-based LCD module requires the I2C Master module.

2.4 Interrupt utilities module

It is often necessary to suppress interrupts to avoid conflicts between the main thread of code execution and code that runs in interrupts. While it is easy to suppress all interrupts using the avr-gcc built-in cli() function, often a more selective approach is desirable. And when interrupts are suppressed, it is also easy to forget to re-enable them.

The Interrupts module addresses these problems by providing simple utility C++ classes whose constructors disable certain kinds of interrupts and whose corresponding destructors re-enable them. A block of code can suppress interrupts by simply declaring an object of one of these classes; interrupts will be automatically restored when the block of code is exited for any reason. For example, if you want to suppress two of the pin change interrupts in a certain block of code, you would do this:

```
#include "AVRTools/InterruptUtils.h"

//

/// ... snip ...

//

void dontLetPinChangeInterruptsHappenHere( uint8_t data )
{

    // Pin change interrupts 1 and 2 conflict with this function, so suppress these
    // two pin change interrupts for the duration of this function
    Interrupts::PinChangeOff interruptsOff( kPinChangeInterrupt1 | kPinChangeInterrupt2 );

    // Here is some code that would conflict with the interrupt routines
    // assigned to pin change interrupt 1 and 2...
    // ... snip ...

    // Pin change interrupts 1 and 2 are automatically restored when this
    // function exits
}
```

One common application for this is when using SPI transmissions in both main thread code and interrupt routines. See the documentation for the SPI module for an example.

2.5 SPI module

The SPI module provides a high-level interface to the SPI hardware subsystem present on the AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega) microcontrollers. This module provides functions to initialize the SPI hardware, configure it appropriately for your needs, and transmit (and receive) data. While the SPI hardware supports asynchronous transmission via interrupt functions (analogous to the I2C hardware), AVRTools does not implement asynchronous SPI transmission, instead implementing synchronous transmission that polls the appropriate SPI status register to determine when transmission of a byte has completed. The reason for this is that testing of polling and

2.5 SPI module 13

interrupt implementations by Tomaž Šolc has shown that polling implementations are faster than interrupt-based implementations by nearly a factor of 2. This is because SPI can work at half the CPU frequency; at this speed, the CPU can only execute about 16 instructions per byte sent via SPI. When the CPU is calling interrupts so often, the overhead of calling the interrupt function dominates, and is greater than the overhead of a simple polling loop.

The SPI module only implements SPI operation in master mode. Slave mode SPI operation is not supported at this time. In master mode, you may use any free pin as the Slave Select (SS) for the remote device.

The SPI module contains functions to enable and disable the SPI hardware. Note that when enabled the SPI hardware takes control of the MOSI, MISO, and CLK pins. It also sets the local SS pin to output mode to prevent inadvertent automatic triggering of slave-mode by the SPI hardware. This happens if a low signal is received on the SS pin. The SS pin can still be used as a general purpose output port, because it doesn't affect SPI operations as long as it remains in output mode.

To use the SPI module, call the SPI::enable() function as part of your initialization. Then when you are ready to transmit, configure the hardware appropriately using SPI::configure(), write the receiving device's slave select pin LOW, call SPI::transmit() (or any one of the related transmit functions) any number of times to transfer data, and finally write the receiving device's SS pin HIGH to indicate that transmission has ended.

One potential complication may occur if you use SPI to transmit data from inside an interrupt routine and also use SPI in the main execution thread. In this situation, you have to make sure that a SPI transmission in the main thread is not interrupted by a SPI transmission from an interrupt routine. You can do this very easily by disabling the appropriate interrupt (or interrupts) during the period of time that an SPI transmission occurs in the main thread. The classes in Interrupts allow you to selectively disable interrupts.

The following example code illustrates how to do this. Assume that SPI is used by interrupt routines associated with pin change interrupts 0 and 1, and with external interrupt 1. Your main thread code would then look like this:

```
// ... snip ..
#include "AVRTools/SPI.h"
#include "AVRTools/InterruptUtils.h"
// ... snip ...
void initializeEverything()
    // ... snip ...
    // Initialize the SPI subsystem
    SPI::enable();
// ... snip ...
uint8_t sendData( uint8_t data )
    // For illustration, assume SPI is also used by interrupt functions, in particular
    // SPI is used by the interrupt functions that respond to pin change interrupts 0 and 1,
    // and external interrupt 1. To prevent clashes, we suppress these three interrupts
    // for the duration of this function
    Interrupts::PinChangeOff pinChangeOff( kPinChangeInterrupt0 | kPinChangeInterrupt1 );
    Interrupts::ExternalOff externalOff( kExternalInterrupt1 );
    SPI::configure( SPISettings( 4000000, SPI::kLsbFirst, SPI::kSpiMode2 ) );
    // Set the remote slave SS pin low to initiate a transmission
    setGpioPinLow( pConnectedToSlaveSS );
    // Transmit (and receive)
    uint8 t retVal = SPI::transmit( data );
    // Set the remote slave SS pin high to terminate the transmission
    setGpioPinHigh( pConnectedToSlaveSS );
    // Interrupts automatically reset when this function exits
    return retVal:
```

2.6 Memory utilities module

The Memory Utilities module provides functions that report the available memory in SRAM. These help you gauge in real-time whether your application is approaching memory exhaustion or the heap and stack are close to colliding. The primary functions are freeSRAM() which returns the number of free bytes remaining in SRAM, and freeMemory DetweenHeapAndStack() which returns the number of free bytes remaining between the top of the heap and top of the stack (recall that these grow towards each other).

2.7 Simple delays module

The Simple Delays module provides simple delay functions that do not involve timers or interrupts. These functions simply execute a series of nested loops with known and precise timing.

These functions are all implemented directly in assembler to guarantee cycle counts. However, if interrupts are enabled, then the delays will be at least as long as requested, but may actually be longer. Depending on the application, it may be appropriate to disable interrupts prior to calling one of these. The delay functions are:

- delayQuartersOfMicroSeconds(uint16_t nbrOfQuartersOfMicroSeconds);
- delayWholeMilliSeconds(uint8 t nbrOfMilliSeconds);
- delayTenthsOfSeconds(uint8_t nbrOfTenthsOfSeconds);

2.8 GPIO pin variables

There is sometimes a desire to assign GPIO pins to variables. Unfortunately, the pin name macros defined for you when you include ArduinoPins.h or that you define yourself using GpioPin(), GpioPinAnalog(), or GpioPinPwm() cannot be assigned to variables or used for anything other than passing them to the specialized macro functions designed to handle them. This is normally not a big limitation: the use of GPIO pins is generally encapsulated in functions or classes that function much like software drivers for hardware, hiding the pins from the rest of the application. Treating the pins as macro constants usually works well in such situations. However, there do sometimes arise situations in which it would be convenient to be able to assign GPIO pins to variables and manipulate GPIO pins via those variables.

AVRTools provides a way to convert GPIO pins macros into variables and provides corresponding functions for manipulating those variables. However, this convenience comes at a very significant cost for two reasons.

The first reason is that functions that manipulate AVR I/O registers via variables are inherently slower than those that manipulate them as constants. When using the GPIO pin macros, most operations map directly to in and out AVR assembler instructions. However, due to the constraints on these instructions, when using variables to pass the pins, the compiler must use slower ld and st instruction to access the I/O registers (for more on this issue, see the section in the AVR-GCC FAQ). In addition, when using variables and function calls the bit-shifts needed to generate suitable masks have to be generated at run-time (often using loops) instead of at compile-time.

The second reason is that the variables that store GPIO pins are rather large. On the AVR hardware architecture, manipulating a GPIO pin requires knowing three different I/O registers (DDRn, PORTn, and PINn) and a bit number. Accessing an analog pin requires a corresponding analog-to-digital channel number. Manipulating a PWM pin requires knowing two additional registers (OCRn[A/B] and TCCRnA) and another bit number (COMn[A/B]1). So a general-purpose variable representing a GPIO pin has to store all of these registers, bit numbers, and channel numbers. It is

2.8 GPIO pin variables 15

possible to create smaller GPIO pin variables by encoding information and using look-up tables. The costs are still there, and it is simply a choice of where to pay them. In AVRTools, the choice is to implement "heavy" variables and avoid look-up tables and encoding schemes.

In AVRTools, GPIO pin variables have type GpioPinVariable, which is a class defined in GpioPinMacros.h (recall that this file is automatically included by ArduinoPins.h). There are three macros that you can use to initialize GPIO pin variables of type GpioPinVariable. These are: makeGpioVarFromGpioPin(), makeGpioVarFromGpioPinAnalog(), and makeGpioVarFromGpioPinPwm(). They are used like this:

```
GpioPinVariable pinA( makeGpioVarFromGpioPin( pPin10 ) );
GpioPinVariable pinB = makeGpioVarFromGpioPinAnalog( pPinA01 );
GpioPinVariable pinC( makeGpioVarFromGpioPinPwm( pPin03 ) );

GpioPinVariable pinArray[3];
pinArray[0] = pinA;
pinArray[1] = pinB;
pinArray[2] = makeGpioVarFromGpioPin( pPin07 );
```

Which macro you choose depends upon what functionality of the GPIO pin you plan to access: you are free to use makeGpioVarFromGpioPin() with an analog pin macro (e.g., pPinA01) if you only plan to use the resulting variable digitally. But if you plan to use the analog capabilities of the GPIO pin, you must use makeGpioVarFromGpioPinAnalog() to initialize the variable. Similarly for PWM functionality.

Once you've created GPIO pin variables using the above macros, these variables can be assigned and passed to functions as needed. To use these GPIO pin variables, there are special function analogs of the pin manipulation macros. These have the same names as the pin manipulation macros, except with a "V" appended:

Macro Version	Function Version	Purpose
isGpioPinModeOutput(pinMacro)	isGpioPinModeOutputV(const GpioPi	n Wsa.thade look meist ploan ding DDRn bit set?
isGpioPinModeInput(pinMacro)	isGpioPinModeInputV(const GpioPin\	/alsiathteecopies/pon)ding DDRn bit clear?
setGpioPinModeOutput(pinMacro)	setGpioPinModeOutputV(const GpioF	PinEvinaribabilitance poort/easp) onding DDRn bit
setGpioPinModeInput(pinMacro)	setGpioPinModeInputV(const GpioPin	Nalealolthe poor√esponding DDRn bit
setGpioPinModeInputPullup(pinMacro) jetGpioPinModeInputPullupV(const 0	Gran Vale acoete spooteling DDRn and PORTn bits
readGpioPinDigital(pinMacro)	readGpioPinDigitalV(const GpioPinVa	tri Beltu&nptine/a va]ue (0 or 1) of the cor- responding PINn bit
writeGpioPinDigital(pinMacro, value)	writeGpioPinDigitalV(const GpioPinVa	ar lAfrite ஃ ஷ்டு var,1 btoothe.loe n)esponding PORTn bit
setGpioPinHigh(pinMacro)	setGpioPinHighV(const GpioPinVaria	ol Setphre/eo n)responding PORTn bit
setGpioPinLow(pinMacro)	setGpioPinLowV(const GpioPinVariat	deanther corresponding PORTn bit
readGpioPinAnalog(pinMacro)	readGpioPinAnalogV(const GpioPinV	alRedde&apilaWallog value from the corresponding ADC channel
writeGpioPinPwm(pinMacro, value)	writeGpioPinPwmV(const GpioPinVar	ia Set &t he n orresonding al R&M output level for that pin

Note

GPIO pin variables can only be passed to the function versions; GPIO pin variables cannot be passed to the macro versions. Similarly, GPIO pin macros cannot be passed to the function versions.

To illustrate how GPIO pin variables can be used, here are two versions of a trivial program, the first using the macros, and the second using variables.

2.8.1 Example using GPIO pin macros

Compiled for an Arduino Uno, the following program is 1,978 bytes.

```
#include "AVRTools/ArduinoPins.h"
#include "AVRTools/InitSystem.h"
#include "AVRTools/SystemClock.h"
#define pRed
                         pPin10
#define pYellow
                         pPin07
#define pGreen
                       pPin04
int main()
    initSystem();
    initSystemClock();
    setGpioPinModeOutput( pGreen );
    setGpioPinModeOutput( pYellow );
    setGpioPinModeOutput( pRed );
    setGpioPinHigh( pGreen );
    setGpioPinHigh( pYellow );
    setGpioPinHigh( pRed );
    delayMilliseconds( 2000 );
    setGpioPinLow( pGreen );
    setGpioPinLow( pYellow );
    setGpioPinLow( pRed );
    while (1)
        delayMilliseconds ( 1000 );
        setGpioPinLow( pRed );
        setGpioPinHigh( pGreen );
        delayMilliseconds ( 1000 );
        setGpioPinLow( pGreen );
        setGpioPinHigh( pYellow );
        delayMilliseconds ( 1000 );
        setGpioPinLow( pYellow );
        setGpioPinHigh( pRed );
```

2.8.2 Example using GPIO pin variables

Compiled for an Arduino Uno, the following program is 2,456 bytes (478 bytes larger than the macro version) and uses an additional 45 bytes of SRAM compared to the macro version.

```
#include "AVRTools/ArduinoPins.h
#include "AVRTools/InitSystem.h"
#include "AVRTools/SystemClock.h"
#define pRed
                       pPin10
#define pYellow
                       pPin07
#define pGreen
                       pPin04
int main()
    initSystem();
   initSystemClock();
   GpioPinVariable pins[3];
   pins[0] = makeGpioVarFromGpioPin( pRed );
   pins[1] = makeGpioVarFromGpioPin( pYellow );
   pins[2] = makeGpioVarFromGpioPin( pGreen );
    for ( int i = 0; i < 3; i++ )
        setGpioPinModeOutputV( pins[i] );
```

2.8 GPIO pin variables

```
setGpioPinHighV( pins[i] );
}
delayMilliseconds( 2000 );
for ( int i = 0; i < 3; i++ )
{
    setGpioPinLowV( pins[i] );
}
int i = 0;
while ( 1 )
{
    delayMilliseconds( 1000 );
    setGpioPinLowV( pins[i++] );
    i %= 3;
    setGpioPinHighV( pins[i] );
}</pre>
```

18 Advanced Features

Chapter 3

FAQ

3.1 Frequently Asked Questions

- Can AVRTools be installed as an Arduino IDE Library?
- · Why can't I assign pins like pPin01 to a variable?
- · Why isn't the SPI module asynchronous?
- Why does the SPI module only implement master mode?
- Why is there a setGpioPinHigh() macro and a _setGpioPinHigh() macro?
- _setGpioPinHigh() is defined with 8 arguments, but called with 1 argument—how can that work?
- Why is there a setGpioPinHigh() macro and a setGpioPinHighV() function?

3.2 Can AVRTools be installed as an Arduino IDE Library?

No, AVRTools is designed to replace the Arduino Library. It is designed for use directly with the avr-gcc compiler (the same compiler used by the Arduino IDE).

3.3 Why can't I assign pins like pPin01 to a variable?

Because pin names like pPin01 are actually complex macros that expand to a comma separated list of other macros. The macro pin names can only be understood and used by the function macros specifically designed to use them. This is explained in greater detail in What you need to know about pin name macros.

If you really need GPIO pin variables, there is a way to do it. See the section on GPIO pin variables. Note in particular that GPIO pin variables come with high costs, both in speed and memory requirements.

20 FAQ

3.4 Why isn't the SPI module asynchronous?

The SPI module is implemented synchronously using polling loops because actual testing has shown this to be nearly twice as fast as implementing the functionality asynchronously using interrupts. Tomaž Šolc has done the research and posted the results on his blog. Check it out (and check out his other articles; his blog is pretty interesting).

3.5 Why does the SPI module only implement master mode?

Easy answer: I have never needed anything other than SPI master mode. In every case I use SPI, the AVR microcontroller is the master talking to some external sensor or device that is the slave. While AVR's SPI hardware supports slave mode, I don't think it is common. If you want to use SPI to communicate across two AVR microcontrollers, obviously one of them would have to be in slave mode. But in that situation, I'd probably have them communicate via a serial connection.

If you need a slave mode SPI interface, let me know. It's pretty straightforward to code. I may well get around to doing it one day in any case, just for completeness.

3.6 Why is there a setGpioPinHigh() macro and a _setGpioPinHigh() macro?

Getting maximum efficiency from the GPIO pin name macros while making them easy to use requires a series of recursive macro expansions. To make this work, it is essential to force rescanning of macro expansions, and using nested macro function calls is a practical way to force macro rescanning. So all of the GPIO pin related macro functions call a helper macro function that has the same name except for a prepended underscore.

The helper macro functions are an internal implementation detail, and that is why they are not formally documented.

3.7 _setGpioPinHigh() is defined with 8 arguments, but called with 1 argument—how can that work?

Someone has been reading the header files. It works because of the magic of the C/C++ preprocessor rescanning rules. The rescanning rules are described in 6.10.3.4 of the [ISO Standard for C] ($http://www.open-std. \leftarrow org/jtc1/sc22/wg14/www/docs/n1124.pdf$) (the same rules apply to C++). It requires lawyer-like abilities to completely comprehend the full implications of this short paragraph. However, the gist of it is that if you have the following three macros:

```
#define BAR(X,Y) (X+Y)
#define FOO(X) BAR(X)
#define A B,C
```

And if you then call FOO (A) in your code, the preprocessor executes the following steps:

- first FOO (A) is expanded to BAR (A)
- next BAR (A) is expanded to BAR (B, C)
- then finally BAR (B, C) is expanded to (B+C).

This preprocessor rescanning logic is what powers all of the pin macro magic, not just setGpioPinHigh().

3.8 Why is there a setGpioPinHigh() macro and a setGpioPinHighV() function?

All of the GPIO pin related "functions" come in two versions. The versions that do not end in a "V" are actually macros and work with the GPIO pin name macros (e.g, pPin01). The versions that end with a "V" are true functions and work with GPIO variables. See GPIO pin variables.

22 FAQ

Chapter 4

Namespace Index

4.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

12cMaste	er e	
	This namespace bundles the I2C-protocol-based interface to the TWI hardware. It provides logical cohesion for functions implement the Master portions of the I2C protocol and prevents namespace collisions	33
I2cSlave		
	This namespace bundles the I2C-protocol-based interface to the TWI hardware. It provides logical cohesion for functions implement the Slave portions of the I2C protocol and prevents namespace collisions	44
Interrupts	S	
	This namespace bundles various utility classes designed to suppress selected interrupts using the RAII idiom	48
MemUtils	S	
	A namespace providing encapsulation for functions that report the available memory in SRAM	49
SPI		
	This namespace bundles an interface to the SPI hardware subsystem on the AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega) microcontrollers. It provides logical cohesion for functions implement the Master portion of the SPI protocol and prevents namespace collisions	51
USART0		
	This namespace bundles a high-level buffered interface to the USART0 hardware. It provides logical cohesion and prevents namespace collisions	56
USART1		
	This namespace bundles a high-level buffered interface to the USART1 hardware. It provides logical cohesion and prevents namespace collisions	60
USART2		
	This namespace bundles a high-level buffered interface to the USART2 hardware. It provides logical cohesion and prevents namespace collisions	64
USART3		
	This namespace bundles a high-level buffered interface to the USART3 hardware. It provides logical cohesion and prevents namespace collisions	68

24 Namespace Index

Chapter 5

Hierarchical Index

5.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

terrupts::AllOff	. 73
terrupts::ExternalOff	. 73
pioPinVariable	. 74
terrupts::PinChangeOff	. 91
eader	. 92
Serial0	. 106
Serial1	. 125
Serial2	. 144
Serial3	. 163
ingBuffer	. 99
ingBufferT< T, N, SIZE >	. 102
PI::SPISettings	. 182
riter	. 183
I2cLcd	. 76
Serial0	. 106
Serial1	. 125
Serial2	. 144
Serial3	. 163

26 Hierarchical Index

Chapter 6

Class Index

6.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

Interrupts::AllOff
This class defines an object that disables all interrupts during its lifetime. Interrupt state is restored by the object's destructor when the object goes out of scope
Interrupts::ExternalOff
This class defines an object that disables selected external interrupts during its lifetime. The selected external interrupts are restored by the object's destructor when it goes out of scope
GpioPinVariable
This class defines a type that can encode a GPIO pin as a variable. Read the section on [GPIO Pin Variables] (GPIO pin variables) to understand how to use this class
I2cLcd
This class provides a high-level interface via I2C to an LCD such as those offered by AdaFruit and SparkFun. Specifically, it communicates via I2C with an MCP23017 that drives an HD44780U controlling an LCD. It also lets you detect button presses on the 5-button keypad generally associated with such devices
Interrupts::PinChangeOff
This class defines an object that disables selected pin change interrupts during its lifetime. The selected pin change interrupts are restored by the object's destructor when it goes out of scope 9
Reader
This is an abstract class defining a generic interface to read numbers and strings from a sequential stream of bytes (such as a serial device)
RingBuffer
This class provides an efficient ring buffer implementation for storing bytes. Ring buffers are particularly useful for memory constrained microcontrollers such as the ATmega328 and ATmega2650. For maximum efficiency, this class is focused on the storgage of bytes, providing a single code base that is shared by all instances of this class
RingBufferT < T, N, SIZE >
Template-based ring buffer class that can store different kinds of objects in buffers of whatever size is needed
Serial0
Provides a high-end interface to serial communications using USART0
Provides a high-end interface to serial communications using USART1

28 Class Index

Serial2		
	Provides a high-end interface to serial communications using USART2	144
Serial3		
	Provides a high-end interface to serial communications using USART3	163
SPI::SPI	lSettings	
	A class that binds settings for configuring SPI transmissions	182
Writer		
	This is an abstract class defining a generic interface to write numbers and strings to a sequential stream of bytes (such as a serial output device)	183

Chapter 7

File Index

7.1 File List

Here is a list of all documented files with brief descriptions:

abi.h	
	This file provides certain functions needed to complete the avr-gcc C++ ABI. You never need to
	include this file, and you only need to link against abi.cpp if you encounter certain link errors 195
Analog2	Digital.h
	This file provides functions that access the analog-to-digital conversion capability of the ATmega328
	and ATmega2560 microcontrollers
Arduinol	MegaPins.h
	This file defines the standard Arduino Uno pin name macros. It may be included directly by user code, although more commonly user code includes the file ArduinoPins.h, which in turn includes this
	file (when compiling for Arduino Uno targets)
ArduinoF	Pins.h
	This file is the primary one that users should include to access and use the pin name macros 206
Arduinol	JnoPins.h
	This file defines the standard Arduino Uno pin name macros. It may be included directly by user
	code, although more commonly user code includes the file ArduinoPins.h, which in turn includes this
	file (when compiling for Arduino Uno targets)
GpioPinI	Macros.h
•	This file contains the primary macros for naming and manipulating GPIO pin names
I2cLcd.h	
	This file defines a class that provides a high-level interface to an LCD offering an I2C interface. The most common variant of this is HD44780U controlled LCD driven via an MCP23017 that offers an
	I2C interface (such LCDs are available from Adafruit and SparkFun). To use this class you must also
	use and properly initialize the I2C Master package from I2cMaster.h
12cMaste	
	This file provides functions that interface to the TWI (two-wire serial interface) hardware of the Arduino
	Uno (ATmega328) and Arduino Mega (ATmega2560), providing a high-level interface to I2C protocol
	communications. Include this file if you want your application will operate in Master mode as defined
	in the I2C protocol
I2cSlave	.h
	This file provides functions that interface to the TWI (two-wire serial interface) hardware of the Arduino
	Uno (ATmega328) and Arduino Mega (ATmega2560), providing a high-level interface to I2C protocol
	communications. Include this file if you want your application will operate in Slave mode as defined
	in the I2C protocol

30 File Index

InitSyste	m.h	
	Include this file to use the functions that initialize the microcontroller to a known, basic state	238
Interrupt		
	This file provides utilities for temporarily disabling (suppressing) interrupts of various kinds in a block of code. It uses the C++ RAII paradigm to ensure interrupt state is restored automatically when the block of code is exited. While all interrupts can be suppressed, tools are provided that allow more selective control of which interrupts are suppressed	239
MemUtil		
	This file provides functions that provide information on the available memory in SRAM	243
new.h	T1 (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	This file provides operator new and operator delete. You only need this file if you use new and delete to manage objects on the heap	245
Pwm.h		
	This file provides functions that access the PWM capability of the ATmega328 and ATmega2560 microcontrollers	246
Reader.h	1	
	This file provides a generic interface to incoming data streams of any kind. It is designed around how serial streams are generally used, but can be used with any system that provides a sequential input of bytes that can be interpreted as strings and/or numbers	256
RingBuff		
	This file provides an efficient ring buffer implementation for storing bytes	259
RingBuff		004
SimpleD	This file provides a very flexible, template-based ring buffer implementation	26 I
SimpleD	This file provides simple delay functions that do not involve timers or interrupts. These functions	
SPI.h	simply execute a series of nested loops with known and precise timing	263
01 1.11	This file provides an interface to SPI subsystem available on the AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega) microcontrollers	267
SystemC		
	Include this file to use the functions that instantiate and access a system clock that counts elapsed milliseconds	272
USART0		
	This file provides functions that offer high-level interfaces to USART0 hardware, which is available on the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560)	276
USART0	OMinimal.h	
	This file provides functions that provide a minimalist interface to USART0 available on the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560)	281
USART1		
	This file provides functions that offer high-level interfaces to USART1 hardware, which is available on	
LICADTA	Arduino Mega (ATMega2560)	284
USARI1	Minimal.h This file provides functions that provide a minimalist interfers to USART1 evallable on the Arduine.	
	This file provides functions that provide a minimalist interface to USART1 available on the Arduino Mega (ATmega2560)	289
USART2		
	This file provides functions that offer high-level interfaces to USART2 hardware, which is available on Arduino Mega (ATMega2560)	292
USART2	Minimal.h This file provides functions that provide a minimalist interfers to USARTS evallable on the Arduine.	
	This file provides functions that provide a minimalist interface to USART2 available on the Arduino	ഉറ
USART3	Mega (ATmega2560)	∠90
00/11110	This file provides functions that offer high-level interfaces to USART3 hardware, which is available on	
	Arduino Mega (ATMega2560)	301

7.1 File List 31

USART3I	Minimal.h
	This file provides functions that provide a minimalist interface to USART3 available on the Arduino
	Mega (ATmega2560)
Writer.h	
	This file provides a generic interface to outgoing data streams of any kind. It is designed around how serial streams are generally used, but can be used with any system that requires converting strings
	and/or numbers into a sequential output of bytes $\ldots\ldots\ldots\ldots\ldots\ldots 310$

32 File Index

Chapter 8

Namespace Documentation

8.1 I2cMaster Namespace Reference

This namespace bundles the I2C-protocol-based interface to the TWI hardware. It provides logical cohesion for functions implement the Master portions of the I2C protocol and prevents namespace collisions.

Enumerations

enum I2cBusSpeed { kI2cBusSlow , kI2cBusFast }

This enum lists I2C bus speed configurations.

enum l2cStatusCodes { kl2cCompletedOk = 0x00 , kl2cError = 0x01 , kl2cNotStarted = 0x02 , kl2cInProgress = 0x04 }

This enum lists I2C status codes reported by the various transmit functions.

enum I2cSendErrorCodes {

```
 kl2cNoError = 0 \; , \; kl2cErrTxBufferFull = 1 \; , \; kl2cErrMsgTooLong = 2 \; , \; kl2cErrNullStatusPtr = 3 \; , \; kl2cErrWriteWithoutData = 4 \; , \; kl2cErrReadWithoutStorage = 5 \; \}
```

This enum lists I2C errors codes that may occur when you try to write a message.

enum I2cPullups { kPullupsOff , kPullupsOn }

This enum lists the options for controlling the built-in pullups in the TWI hardware.

Functions

void start (uint8 t speed=kl2cBusFast)

Configures the TWI hardware for I2C communications in Master mode. You must call this function before conducting any I2C communications using the functions in this module.

void stop ()

Terminates the I2C communications using the TWI hardware, and disables the TWI interrupts.

void pullups (uint8_t set=kPullupsOn)

Sets the state of the internal pullups that are part of the TWI hardware.

· bool busy ()

Reports whether the TWI hardware is busy communicating (either transmitting or receiving).

uint8_t writeAsync (uint8_t address, uint8_t registerAddress, volatile uint8_t *status)

Transmit a single register address (a one-byte message) asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

uint8 t writeAsync (uint8 t address, uint8 t registerAddress, uint8 t data, volatile uint8 t *status)

Transmit a single register address and corresponding single byte of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

• uint8 t writeAsync (uint8 t address, uint8 t registerAddress, const char *data, volatile uint8 t *status)

Transmit a single register address and corresponding null-terminated string of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

uint8_t writeAsync (uint8_t address, uint8_t registerAddress, uint8_t *data, uint8_t numberBytes, volatile uint8_t *status)

Transmit a single register address and corresponding buffer of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

uint8_t readAsync (uint8_t address, uint8_t numberBytes, volatile uint8_t *destination, volatile uint8_t *bytes←
 Read, volatile uint8_t *status)

Request to read data from a device and receive that data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function). When the status variable reports kl2cCompletedOk, the requested data can be read from the receive buffer.

uint8_t readAsync (uint8_t address, uint8_t registerAddress, uint8_t numberBytes, volatile uint8_t *destination, volatile uint8 t *bytesRead, volatile uint8 t *status)

Request to read data from a specific register on a device and receive that data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function). When the status variable reports kl2cCompletedOk, the requested data can be read from the receive buffer.

int writeSync (uint8_t address, uint8_t registerAddress)

Transmit a single register address (a one-byte message) synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int writeSync (uint8_t address, uint8_t registerAddress, uint8_t data)

Transmit a single register address and corresponding single byte of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

• int writeSync (uint8 t address, uint8 t registerAddress, const char *data)

Transmit a single register address and corresponding null-terminated string of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int writeSync (uint8 t address, uint8 t registerAddress, uint8 t *data, uint8 t numberBytes)

Transmit a single register address and corresponding buffer of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int readSync (uint8_t address, uint8_t numberBytes, uint8_t *destination)

Request to read data from a device and receive that data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int readSync (uint8 t address, uint8 t registerAddress, uint8 t numberBytes, uint8 t *destination)

Request to read data from a specific register on a device and receive that data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

8.1.1 Detailed Description

This namespace bundles the I2C-protocol-based interface to the TWI hardware. It provides logical cohesion for functions implement the Master portions of the I2C protocol and prevents namespace collisions.

These interfaces are buffered for both input and output and operate using interrupts associated with the TWI hardware. This means the asynchronous transmit functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated TWI hardware. Similarly, data is received asynchronously and placed into the input buffer.

These functions are designed around the normal operating modes of the I2C protocol. From a Master device point of view, I2C communications consist of sending a designated device a message to do something, and then either:

- doing nothing because no further action required on the Master's part (e.g., telling the designated device to shutdown)
- transmitting additional data needed by the designated device (e.g., telling the designated device to store some data)
- receiving data from the designated device (e.g., telling the designated device to report the current temperature or to read back some data from its memory)

For very simple devices, the receipt of the message itself can suffice to tell it to do something. More commonly, the instruction to the designated device consists of a single byte that passes a "register address" on the device. It is call a register address because it often corresponds directly to a memory register on the device. But it is best to think of it as an instruction code to the designated device (e.g., 0x01 = report the temperature; 0x02 = set the units to either F or C (depending on additional data sent by the Master); 0x03 = report the humidity; etc.)

The functions defined by this module conform directly to the above I2C paradigm. The functions come in both synchronous and asynchronous versions. The synchronous versions simply call the asynchronous versions and block internally until the asynchronous operations are complete.

Note also that even "read" operations always begin (from the Master's point of view) with a "send" to the designated device the Master wants to read data from. For this reason all operations (both read and write) utilize the transmit buffer.

8.1.2 Enumeration Type Documentation

8.1.2.1 I2cBusSpeed

enum I2cMaster::I2cBusSpeed

This enum lists I2C bus speed configurations.

Enumerator

kl2cBusSlow	I2C slow (standard) mode: 100 KHz.
kl2cBusFast	I2C fast mode: 400 KHz.

8.1.2.2 I2cPullups

enum I2cMaster::I2cPullups

This enum lists the options for controlling the built-in pullups in the TWI hardware.

Enumerator

kPullupsOff	Disable the built-in TWI hardware pullups.
kPullupsOn	Enable the built-in TWI hardware pullups.

8.1.2.3 I2cSendErrorCodes

enum I2cMaster::I2cSendErrorCodes

This enum lists I2C errors codes that may occur when you try to write a message.

Enumerator

kl2cNoError	No error.
kl2cErrTxBufferFull	The transmit buffer is full (try again later)
kl2cErrMsgTooLong	The message is too long for the transmit buffer.
kl2cErrNullStatusPtr	The pointer to the status variable is null (need to provide a valid pointer)
kl2cErrWriteWithoutData	No data provided to send.
kl2cErrReadWithoutStorage	Performing a write+read, but no buffer provided to store the "read" data.

8.1.2.4 I2cStatusCodes

enum I2cMaster::I2cStatusCodes

This enum lists I2C status codes reported by the various transmit functions.

Enumerator

kl2cCompletedOk	I2C communications completed on this message with no error.
kl2cError	I2C communications had an error on this message.
kl2cNotStarted	I2C communications not started on this message.
kl2cInProgress	I2C communications on this message still in progress.

8.1.3 Function Documentation

8.1.3.1 busy()

```
bool I2cMaster::busy ( )
```

Reports whether the TWI hardware is busy communicating (either transmitting or receiving).

Returns

true if the TWI hardware is busy communicating; false if the TWI hardware is idle.

8.1.3.2 pullups()

Sets the state of the internal pullups that are part of the TWI hardware.

start() automatically enables the internal pullups. You only need to call this function if you want to turn them off, or if you want to alter their state.

• set the desired state of the built-in internal pullup. Defaults to enable (kPullupsOn).

8.1.3.3 readAsync() [1/2]

Request to read data from a device and receive that data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function). When the status variable reports kl2cCompletedOk, the requested data can be read from the receive buffer.

If the transmit buffer is full, this function will block until room is available in the buffer.

- address the I2C address of the destination device you want to read from.
- numberBytes the number of bytes you expect to read.
- destination a pointer to a buffer in which the received data will be stored; the buffer should be at least numberBytes large.
- bytesRead a pointer to a byte-sized countered in which the TWI hardware will asynchronously keep track of how many bytes have been received.
- status a pointer to a byte-size location in which the commincations status of this message will be reported (volatile because the value will be updates asynchronously after the function returns by the TWI hardware) values correspond to I2cStatusCodes.

Returns

error codes corresponding to I2cSendErrorCodes (0 means no error)

8.1.3.4 readAsync() [2/2]

Request to read data from a specific register on a device and receive that data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function). When the status variable reports kl2cCompletedOk, the requested data can be read from the receive buffer.

If the transmit buffer is full, this function will block until room is available in the buffer.

- address the I2C address of the destination device you want to read from.
- registerAddress in device-centric terms, the register address on the destination device; think of it as a onebyte instruction to the destination device telling it what you want to read (e.g., temperature or the starting address of a block of memory).
- numberBytes the number of bytes you expect to read.
- destination a pointer to a buffer in which the received data will be stored; the buffer should be at least numberBytes large.
- bytesRead a pointer to a byte-sized countered in which the TWI hardware will asynchronously keep track of how many bytes have been received.
- status a pointer to a byte-size location in which the commincations status of this message will be reported (volatile because the value will be updates asynchronously after the function returns by the TWI hardware); values correspond to I2cStatusCodes.

Returns

error codes corresponding to I2cSendErrorCodes (0 means no error)

8.1.3.5 readSync() [1/2]

Request to read data from a device and receive that data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

- address the I2C address of the destination device you want to read from.
- numberBytes the number of bytes you expect to read.
- destination a pointer to a buffer in which the received data will be stored; the buffer should be at least numberBytes large.

Returns

an error code which if positive corresponds to I2cSendErrorCodes, or if negative the absolute value corresponds to I2cStatusCodes (0 means no error).

8.1.3.6 readSync() [2/2]

Request to read data from a specific register on a device and receive that data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

- address the I2C address of the destination device you want to read from.
- registerAddress in device-centric terms, the register address on the destination device; think of it as a onebyte instruction to the destination device telling it what you want to read (e.g., temperature or the starting address of a block of memory).
- numberBytes the number of bytes you expect to read.
- destination a pointer to a buffer in which the received data will be stored; the buffer should be at least numberBytes large.

Returns

an error code which if positive corresponds to I2cSendErrorCodes, or if negative the absolute value corresponds to I2cStatusCodes (0 means no error).

8.1.3.7 start()

Configures the TWI hardware for I2C communications in Master mode. You must call this function before conducting any I2C communications using the functions in this module.

This function enables the TWI related interrupts and enables the built-in hardware pullups.

• speed the speed mode for the I2C protocol. The options are slow (100 KHz) or fast (400 KHz); the default is fast (kI2cBusFast).

8.1.3.8 stop()

```
void I2cMaster::stop ( )
```

Terminates the I2C communications using the TWI hardware, and disables the TWI interrupts.

After calling this function, you need to call start() again if you want to resume I2C communications.

8.1.3.9 writeAsync() [1/4]

Transmit a single register address and corresponding null-terminated string of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

If the transmit buffer is full, this function will block until room is available in the buffer.

- address the I2C address of the destination device for this message
- registerAddress in device-centric terms, the register address on the destination device; think of it as a one-byte instruction to the destination device telling it to do something (e.g., an address in a memory device).
- data a null-terminated string of data serving as a parameter to the register address (e.g., a string to store sequentially starting at the registerAddress).
- status a pointer to a byte-size location in which the commincations status of this message will be reported
 (volatile because the value will be updates asynchronously after the function returns by the TWI hardware); values
 correspond to I2cStatusCodes.

Returns

error codes corresponding to I2cSendErrorCodes (0 means no error)

8.1.3.10 writeAsync() [2/4]

Transmit a single register address and corresponding buffer of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

If the transmit buffer is full, this function will block until room is available in the buffer.

- address the I2C address of the destination device for this message
- registerAddress in device-centric terms, the register address on the destination device; think of it as a one-byte instruction to the destination device telling it to do something (e.g., an address in a memory device).

- data a buffer of data serving as a parameter to the register address (e.g., the data to store sequentially starting at the registerAddress).
- numberBytes the number of bytes from the buffer to transmit.
- status a pointer to a byte-size location in which the commincations status of this message will be reported
 (volatile because the value will be updates asynchronously after the function returns by the TWI hardware); values
 correspond to I2cStatusCodes.

Returns

error codes corresponding to I2cSendErrorCodes (0 means no error)

8.1.3.11 writeAsync() [3/4]

Transmit a single register address and corresponding single byte of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

If the transmit buffer is full, this function will block until room is available in the buffer.

- address the I2C address of the destination device for this message
- registerAddress in device-centric terms, the register address on the destination device; think of it as a one-byte instruction to the destination device telling it to do something (e.g., set the volume level).
- data a single byte of data serving as a parameter to the register address (e.g., the volume level to set).
- status a pointer to a byte-size location in which the commincations status of this message will be reported (volatile because the value will be updates asynchronously after the function returns by the TWI hardware); values correspond to I2cStatusCodes.

Returns

error codes corresponding to I2cSendErrorCodes (0 means no error)

8.1.3.12 writeAsync() [4/4]

Transmit a single register address (a one-byte message) asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

If the transmit buffer is full, this function will block until room is available in the buffer.

- address the I2C address of the destination device for this message
- registerAddress in device-centric terms, the register address on the destination device; think of it as a one-byte instruction to the destination device telling it to do something (e.g., turn off or on).
- status a pointer to a byte-size location in which the commincations status of this message will be reported (volatile because the value will be updates asynchronously after the function returns by the TWI hardware); values correspond to I2cStatusCodes.

Returns

error codes corresponding to I2cSendErrorCodes (0 means no error)

8.1.3.13 writeSync() [1/4]

Transmit a single register address (a one-byte message) synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

- address the I2C address of the destination device for this message.
- registerAddress in device-centric terms, the register address on the destination device; think of it as a one-byte instruction to the destination device telling it to do something (e.g., turn off or on).

Returns

an error code which if positive corresponds to I2cSendErrorCodes, or if negative the absolute value corresponds to I2cStatusCodes (0 means no error).

8.1.3.14 writeSync() [2/4]

Transmit a single register address and corresponding null-terminated string of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

- address the I2C address of the destination device for this message
- registerAddress in device-centric terms, the register address on the destination device; think of it as a one-byte instruction to the destination device telling it to do something (e.g., an address in a memory device).
- data a null-terminated string of data serving as a parameter to the register address (e.g., a string to store sequentially starting at the registerAddress).

Returns

an error code which if positive corresponds to I2cSendErrorCodes, or if negative the absolute value corresponds to I2cStatusCodes (0 means no error).

8.1.3.15 writeSync() [3/4]

Transmit a single register address and corresponding buffer of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

- address the I2C address of the destination device for this message
- registerAddress in device-centric terms, the register address on the destination device; think of it as a one-byte instruction to the destination device telling it to do something (e.g., an address in a memory device).
- data a buffer of data serving as a parameter to the register address (e.g., the data to store sequentially starting at the registerAddress).
- numberBytes the number of bytes from the buffer to transmit.

Returns

an error code which if positive corresponds to I2cSendErrorCodes, or if negative the absolute value corresponds to I2cStatusCodes (0 means no error).

8.1.3.16 writeSync() [4/4]

Transmit a single register address and corresponding single byte of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

- address the I2C address of the destination device for this message.
- registerAddress in device-centric terms, the register address on the destination device; think of it as a one-byte instruction to the destination device telling it to do something (e.g., set the volume level).
- data a single byte of data serving as a parameter to the register address (e.g., the volume level to set).

Returns

an error code which if positive corresponds to I2cSendErrorCodes, or if negative the absolute value corresponds to I2cStatusCodes (0 means no error).

8.2 I2cSlave Namespace Reference

This namespace bundles the I2C-protocol-based interface to the TWI hardware. It provides logical cohesion for functions implement the Slave portions of the I2C protocol and prevents namespace collisions.

Enumerations

enum I2cBusSpeed { kI2cBusSlow , kI2cBusFast }

This enum lists I2C bus speed configurations.

```
    enum I2cStatusCodes {
    kI2cCompletedOk = 0x00 , kI2cError = 0x01 , kI2cTxPartial = 0x02 , kI2cRxOverflow = 0x04 , kI2cInProgress = 0x06 }
```

This enum lists I2C status codes reported by the various transmit functions.

enum I2cPullups { kPullupsOff , kPullupsOn }

This enum lists the options for controlling the built-in pullups in the TWI hardware.

Functions

uint8_t processl2cMessage (uint8_t *buffer, uint8_t len)

This function must be defined by the user. It is called by the TWI interrupt function installed as part of I2cSlave.cpp whenever it receives a message from the Master. The user should implement this function to respond to the data in the buffer, taking actions and as appropriate returning data to the buffer (for asynchronous transmission to the Master).

void start (uint8_t ownAddress, uint8_t speed=kl2cBusFast, bool answerGeneralCall=false)

Configures the TWI hardware for I2C communications in Slave mode. You must call this function before conducting any I2C communications using the functions in this module.

• void stop ()

Terminates the I2C communications using the TWI hardware, and disables the TWI interrupts.

void pullups (uint8 t set=kPullupsOn)

Sets the state of the internal pullups that are part of the TWI hardware.

• bool busy ()

Reports whether the TWI hardware is busy communicating (either transmitting or receiving).

8.2.1 Detailed Description

This namespace bundles the I2C-protocol-based interface to the TWI hardware. It provides logical cohesion for functions implement the Slave portions of the I2C protocol and prevents namespace collisions.

These interfaces are buffered for both input and output and operate using interrupts associated with the TWI hardware. This means the functions return immediately after queuing data for transmission and the transmission happens asynchronously, using the dedicated TWI hardware.

These functions are designed around the normal operating modes of the I2C protocol. From a Slave device point of view, I2C communications consist of receiving a message from the Master telling it to do something, and in response:

- Processing the message and taking whatever action is appropriate.
- If that action includes returning data to the Master, queuing that data for transmission.

The functions defined by this module conform directly to the above I2C paradigm. The key function is processI2cMessage() and must be defined by the user. This function is called whenever the Slave receives a message and is also used to pass back any data that should be transmitted back to the Master.

8.2.2 Enumeration Type Documentation

8.2.2.1 I2cBusSpeed

enum I2cSlave::I2cBusSpeed

This enum lists I2C bus speed configurations.

Enumerator

kl2cBusSlow	I2C slow (standard) mode: 100 KHz.
kl2cBusFast	I2C fast mode: 400 KHz.

8.2.2.2 I2cPullups

enum I2cSlave::I2cPullups

This enum lists the options for controlling the built-in pullups in the TWI hardware.

Enumerator

kPullupsOff	Disable the built-in TWI hardware pullups.
kPullupsOn	Enable the built-in TWI hardware pullups.

8.2.2.3 I2cStatusCodes

```
enum I2cSlave::I2cStatusCodes
```

This enum lists I2C status codes reported by the various transmit functions.

Enumerator

kl2cCompletedOk	I2C communications completed with no error.	
kl2cError	I2C communications encountered an error.	
kl2cTxPartial	I2C Master terminated transmission before all data were sent.	
kl2cRxOverflow	low Recieved a message larger than can be held in the receive buffer.	
kl2cInProgress	I2C communications on this message still in progress.	

8.2.3 Function Documentation

8.2.3.1 busy()

```
bool I2cSlave::busy ( )
```

Reports whether the TWI hardware is busy communicating (either transmitting or receiving).

Returns

true if the TWI hardware is busy communicating; false if the TWI hardware is idle.

8.2.3.2 processl2cMessage()

This function must be defined by the user. It is called by the TWI interrupt function installed as part of I2cSlave.cpp whenever it receives a message from the Master. The user should implement this function to respond to the data in the buffer, taking actions and as appropriate returning data to the buffer (for asynchronous transmission to the Master).

The user should implement this function to do the following:

- · review the incoming data from the Master
- · take appropriate actions in response to that data
- if data must be returned to the Master, write the data into the buffer and return the number of bytes you placed in the buffer
- if no data must be returned to the Master, return 0

Note

This function is called at interrupt time, so the implementation must be kept short. If any significant work must be done as a result of the message received from the Master, this function should simply set a flag that can be detected by the main execution thread and have it do the heavy lifting.

- buffer is both an input and output parameter. On entrance to the function, it contains the message received from the Master; on return from the function should contain data (if any) that should be sent back to the Master.
- len is only an input parameter. It is the number of received bytes in the input buffer.

Returns

the number of bytes placed in the buffer to be sent back to the Master; 0 if no data is to be returned to the Master.

8.2.3.3 pullups()

Sets the state of the internal pullups that are part of the TWI hardware.

start() automatically enables the internal pullups. You only need to call this function if you want to turn them off, or if you want to alter their state.

• set the desired state of the built-in internal pullup. Defaults to enable (kPullupsOn).

8.2.3.4 start()

Configures the TWI hardware for I2C communications in Slave mode. You must call this function before conducting any I2C communications using the functions in this module.

This function enables the TWI related interrupts and enables the built-in hardware pullups.

- ownAddress is the I2C address for this slave.
- speed the speed mode for the I2C protocol. The options are slow (100 KHz) or fast (400 KHz); the default is fast (kI2cBusFast).
- answerGeneralCall pass true for the Slave to answer I2C general calls; false for the Slave to ignore I2C general calls and only answer calls to his specific address. The defaults is to not answer general calls. and defaults to not answering I2C general calls.

8.2.3.5 stop()

```
void I2cSlave::stop ( )
```

Terminates the I2C communications using the TWI hardware, and disables the TWI interrupts.

After calling this function, you need to call start() again if you want to resume I2C communications.

8.3 Interrupts Namespace Reference

This namespace bundles various utility classes designed to suppress selected interrupts using the RAII idiom.

Classes

· class AllOff

This class defines an object that disables all interrupts during its lifetime. Interrupt state is restored by the object's destructor when the object goes out of scope.

class ExternalOff

This class defines an object that disables selected external interrupts during its lifetime. The selected external interrupts are restored by the object's destructor when it goes out of scope.

class PinChangeOff

This class defines an object that disables selected pin change interrupts during its lifetime. The selected pin change interrupts are restored by the object's destructor when it goes out of scope.

Enumerations

enum ExternalInterrupts {
 kExternalInterrupt0 , kExternalInterrupt1 , kExternalInterrupt2 , kExternalInterrupt3 ,
 kExternalInterrupt4 , kExternalInterrupt5 , kExternalInterrupt6 , kExternalInterrupt7 ,

kExternalInterruptAll }

This enum lists the external interrupts that can be suppressed (disabled). To pass more than one external interrupt, simply "or" them.

enum PinChangeInterrupts { kPinChangeInterrupt0 , kPinChangeInterrupt1 , kPinChangeInterrupt2 , kPinChangeInterruptAll }

This enum lists the pin change interrupts that can be suppressed (disabled). To pass more than one pin change interrupt, simply "or" them.

8.3.1 Detailed Description

This namespace bundles various utility classes designed to suppress selected interrupts using the RAII idiom.

8.3.2 Enumeration Type Documentation

8.3.2.1 ExternalInterrupts

```
enum Interrupts::ExternalInterrupts
```

This enum lists the external interrupts that can be suppressed (disabled). To pass more than one external interrupt, simply "or" them.

Enumerator

kExternalInterrupt0	External interrupt 0.
kExternalInterrupt1	External interrupt 1.
kExternalInterrupt2	External interrupt 2 (ATmega2560 only)
kExternalInterrupt3	External interrupt 3 (ATmega2560 only)
kExternalInterrupt4	External interrupt 4 (ATmega2560 only)
kExternalInterrupt5	External interrupt 5 (ATmega2560 only)
kExternalInterrupt6	External interrupt 6 (ATmega2560 only)
kExternalInterrupt7	External interrupt 7 (ATmega2560 only)
kExternalInterruptAll	All external interrupts.

8.3.2.2 PinChangeInterrupts

enum Interrupts::PinChangeInterrupts

This enum lists the pin change interrupts that can be suppressed (disabled). To pass more than one pin change interrupt, simply "or" them.

Enumerator

kPinChangeInterrupt0	Pin change interrupt 0.
kPinChangeInterrupt1	Pin change interrupt 1.
kPinChangeInterrupt2	Pin change interrupt 2.
kPinChangeInterruptAll	All pin change interrupts.

8.4 MemUtils Namespace Reference

A namespace providing encapsulation for functions that report the available memory in SRAM.

Functions

• size_t freeSRAM ()

Get the total free memory remaining in SRAM.

• size_t freeMemoryBetweenHeapAndStack ()

Get the free memory between the heap and the stack.

• void resetHeap ()

Reset the heap to an empty (virgin) state.

• size_t memoryAvailableOnFreeList ()

Get the free memory on the heap free-list.

 $\bullet \ \, \text{size_t getFreeListStats} \ (\text{int} \ * \text{nbrBlocks}, \ \text{size_t} \ * \text{sizeSmallestBlock}, \ \text{size_t} \ * \text{sizeLargestBlock}) \\$

Get information about the heap free-list.

8.4.1 Detailed Description

A namespace providing encapsulation for functions that report the available memory in SRAM.

8.4.2 Function Documentation

8.4.2.1 freeMemoryBetweenHeapAndStack()

```
size_t MemUtils::freeMemoryBetweenHeapAndStack ( )
```

Get the free memory between the heap and the stack.

This does not include any memory potentially available within the heap on the free-list. It executes quickly, so this function is useful for checking to make sure the heap and stack aren't in danger of collision.

Returns

The number of free bytes remaining between the top of the heap and the top of the stack.

8.4.2.2 freeSRAM()

```
size_t MemUtils::freeSRAM ( )
```

Get the total free memory remaining in SRAM.

This includes memory on the free-list (if the heap is used) as well as memory available between the heap and the stack (which grow towards each other). If the heap has been used, the function will walk the free-list to determine the total amount of free memory.

Returns

The number of free bytes remaining in SRAM.

8.4.2.3 getFreeListStats()

```
size_t MemUtils::getFreeListStats (
    int * nbrBlocks,
    size_t * sizeSmallestBlock,
    size_t * sizeLargestBlock )
```

Get information about the heap free-list.

This provides information about the number of blocks on the free list, the size of the largest and smallest block, as well as the total memory held on the free list.

Note

This does NOT include any unallocated memory available between the top of the heap and the top of the stack.

- nbrBlocks returns the number of blocks in the free-list.
- sizeSmallestBlock returns the size of the smallest block on the free-list.
- answerGeneralCall returns the size of the largest block on the free-list.

Returns

The total number of free bytes on the heap's free list.

8.4.2.4 memoryAvailableOnFreeList()

```
size_t MemUtils::memoryAvailableOnFreeList ( )
```

Get the free memory on the heap free-list.

This shows the total free memory available on the free-list. This is the sum of the free-blocks contained within the heap.

Note

This does NOT include any unallocated memory available between the top of the heap and the top of the stack.

Returns

The total number of free bytes on the heap's free-list.

8.4.2.5 resetHeap()

```
void MemUtils::resetHeap ( )
```

Reset the heap to an empty (virgin) state.

This function resets the heap to an empty, pristine state. Not only are all memory allocations abandoned, but the free list is also purged, leaving everything between the start of the heap and the top of the stack as unallocated (actually, never-allocated) memory.

8.5 SPI Namespace Reference

This namespace bundles an interface to the SPI hardware subsystem on the AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega) microcontrollers. It provides logical cohesion for functions implement the Master portion of the SPI protocol and prevents namespace collisions.

Classes

class SPISettings

A class that binds settings for configuring SPI transmissions.

Enumerations

enum ByteOrder { kLsbFirst , kMsbFirst }

An enumeration that defines the byte order for multibyte SPI transmissions.

enum SpiMode { kSpiMode0 , kSpiMode1 , kSpiMode2 , kSpiMode3 }

An enumeration that defines the modes available for SPI transmissions.

Functions

· void enable ()

Enable the SPI subsystem for transmission.

· void disable ()

Disable the SPI subsystem, precluding further transmissions.

void configure (SPISettings settings)

Set the configuration of SPI subsystem to match the needs of the system you are going to communicate with.

uint8 t transmit (uint8 t data)

Transmit a single byte using the SPI subsystem.

uint16 t transmit16 (uint16 t data)

Transmit a word-sized integer (two bytes) using the SPI subsystem. The order in which the bytes are sent is determined by the bit order configuration that has been set.

uint32 t transmit32 (uint32 t data)

Transmit a long-word-sized integer (four bytes) using the SPI subsystem. The order in which the bytes are sent is determined by the bit order configuration that has been set.

void transmit (uint8 t *buffer, size t count)

Transmit an array of bytes using the SPI subsystem. The bytes are transmitted in array order.

8.5.1 Detailed Description

This namespace bundles an interface to the SPI hardware subsystem on the AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega) microcontrollers. It provides logical cohesion for functions implement the Master portion of the SPI protocol and prevents namespace collisions.

These interfaces are synchronous, based on polling the flag in the SPI status register to determine transmission is complete and refill the transmit register with data. While it is possible to create an interrupt driven, asynchronous interface to the SPI subsystem, SPI-based communications are so fast that interrupt-based implementations are slower than polling by nearly a factor of 2. This is based on actual testing data which you can review [here] (https://www.tablix.corg/~avian/blog/archives/2012/06/spi_interrupts_versus_polling/). What happens is that SPI can work at half the CPU frequency, which means the CPU can only execute about 16 instructions per byte sent. When the CPU is calling interrupts that often, the overhead of calling the interrupt function dominates, and is greater than the overhead of a simple polling loop.

The AVRTools implementation is based in part on the Arduino Library SPI module. In particular, the SPISettings class from the Arduino library is very cleverly and efficiently coded and has been adopted here. The lessons learned by the Arduino library SPI authors in correctly initializing the SPI subsystem have also been incorporated into this implementation. However, the packaging of the interface is somewhat different the AVRTools implementation takes a different approach to deconflicting SPI usage between the main thread of code execution and interrupt code.

The fundamental problem is this: if SPI is used in both the main code and in interrupt code, then it is important to ensure that the SPI "transactions" not be interleaved, that only one SPI "transaction" happen at a time. More specifically, you have to ensure that interrupt code using SPI does not interrupt an on-going SPI transaction in the main thread. The Arduino library achieves this by requiring library users to register any interrupts that use SPI and then requiring users to formally define (via function calls) the beginning and end of an SPI "transaction". The AVRTools library instead provides tools (via the InterruptUtils module) to temporarily suppress selected interrupts while the main thread is executing an SPI transaction. This approach allows more fine-tuned control of interrupt suppression, automatically restores interrupts when the SPI transaction is complete (no risk of a missing "end-of-transaction"), and does it with less overhead and memory footprint than the Arduino SPI library. The following code snippet illustrates how to protect main thread SPI usage from conflicts with SPI usage by two external interrupt handlers:

uint8_t send(uint8_t data)

```
{
    // SPI is used by the interrupt functions that respond to external interrupts 0 and 1,
    // so to prevent clashes, we suppress these two external interrupts for
    // the duration of this function
    Interrupts::ExternalOff interruptsOff( kExternalInterrupt0 | kExternalInterrupt1);

    // Configure SPI
    SPI::configure( SPISettings( 4000000, SPI::kLsbFirst, SPI::kSpiMode2 ) );

    // Set the remote slave SS pin low to initiate a transmission
    setGpioPinLow( pConnectedToSlaveSSpin );

    // Transmit
    uint8_t retVal = SPI::transmit( data );

    // Set the remote slave SS pin high to terminate the transmission
    setGpioPinLow( pConnectedToSlaveSSpin );

    // Interrupts automatically reset when this function exits
    return retVal;
}
```

Note

This module implements SPI master mode only.

8.5.2 Enumeration Type Documentation

8.5.2.1 ByteOrder

```
enum SPI::ByteOrder
```

An enumeration that defines the byte order for multibyte SPI transmissions.

Enumerator

kLsbFirst	Least significant byte first.
kMsbFirst	Most significant byte first.

8.5.2.2 SpiMode

```
enum SPI::SpiMode
```

An enumeration that defines the modes available for SPI transmissions.

There are four modes controlling whether data is shifted in and out on the rising or falling edge of the data clock signal (called the phase, CPHA), and whether the clock is idle when high or low (called the polarity, CPOL). The four modes are simply the possible combinations of phase and polarity.

Enumerator

	kSpiMode0	Phase falling, idle low (CPHA = 0, CPOL = 0)
	kSpiMode1	Phase rising, idle low (CPHA = 1, CPOL = 0)
kSpiMode2 Phase falling, idle high (CPHA = 0, C		Phase falling, idle high (CPHA = 0, CPOL = 1)
	kSpiMode3	Phase rising, idle high (CPHA = 1, CPOL = 1)

8.5.3 Function Documentation

8.5.3.1 configure()

Set the configuration of SPI subsystem to match the needs of the system you are going to communicate with.

You should always configure the SPI subsystem *before* transmitting any data. The configuration settings remain in place until a subsequent call to this function or until you disable SPI.

Note

If you are using SPI both from interrupts and from the main thread of execution, you must protect SPI onfigurations and transmissions from interleaving. To do this, disable interrupts in the main thread by using the appropriate objects from InterruptUtils. Interrupts should be disabled starting before setting the configuration until the end of the corresponding data transmission. For example:

```
uint8_t send( uint8_t data )
{
    // SPI is used by the interrupt functions that respond to external interrupts 0 and 1,
    // so to prevent clashes, we suppress these two external interrupts for
    // the duration of this function
    Interrupts::ExternalOff interruptsOff( kExternalInterrupt0 | kExternalInterrupt1 );

    // Configure SPI
    SPI::configure( SPISettings( 4000000, SPI::kLsbFirst, SPI::kSpiMode2 ) );

    // Set the remote slave SS pin low to initiate a transmission
    setGpioPinLow( pConnectedToSlaveSSpin );

    // Transmit
    uint8_t retVal = SPI::transmit( data );

    // Set the remote slave SS pin high to terminate the transmission
    setGpioPinLow( pConnectedToSlaveSSpin );

    // Interrupts automatically reset when this function exits
    return retVal;
}
```

8.5.3.2 disable()

```
void SPI::disable ( )
```

Disable the SPI subsystem, precluding further transmissions.

This call disables the SPI hardware, releasing the MOSI, MISO, CLK, and SS pins for other uses.

Note

No further SPI transmissions should be made after calling this function, unless you re-enable the SPI subsystem by again calling enable().

8.5.3.3 enable()

```
void SPI::enable ( )
```

Enable the SPI subsystem for transmission.

This call enables the SPI hardware and configures the MOSI, MISO, CLK, and SS pins, making them unavailable for other uses. It also sets a default configuration of the SPI subsystem to a maximum transmission speed of 8 MHz, most significant bit first, and kSpiMode0.

Note

Even though SPI is configured in master-mode, the configuration of the SS pin is affected. The SS pin is set to output to prevent inadvertent automatic triggering of slave-mode by the SPI hardware (this happens if a low signal is received on the SS pin). Although the SS pin must be in output mode, it can still be used as a general purpose output port (it doesn't affect SPI operations as long as it remains in output mode).

8.5.3.4 transmit() [1/2]

Transmit an array of bytes using the SPI subsystem. The bytes are transmitted in array order.

• buffer the array of bytes to transmit. Incoming bytes are also stored here, replacing the outgoing data, byte-for-byte.

Returns

nothing, but the received stream of bytes is loaded into the buffer, replacing the data originally in the buffer.

8.5.3.5 transmit() [2/2]

Transmit a single byte using the SPI subsystem.

• data the byte to be transmitted.

Returns

the byte received from the SPI subsystem.

8.5.3.6 transmit16()

Transmit a word-sized integer (two bytes) using the SPI subsystem. The order in which the bytes are sent is determined by the bit order configuration that has been set.

• data the word-sized integer (two bytes) to be transmitted.

Returns

the word-sized integer (two bytes) received from the SPI subsystem, with byte order determined by the bit order configuration that has been set.

8.5.3.7 transmit32()

Transmit a long-word-sized integer (four bytes) using the SPI subsystem. The order in which the bytes are sent is determined by the bit order configuration that has been set.

• data the long-word-sized integer (four bytes) to be transmitted.

Returns

the long-word-sized integer(four bytes) received from the SPI subsystem, with byte order determined by the bit order configuration that has been set.

8.6 USARTO Namespace Reference

This namespace bundles a high-level buffered interface to the USART0 hardware. It provides logical cohesion and prevents namespace collisions.

Functions

• void start (unsigned long baudRate, UsartSerialConfiguration config=kSerial_8N1)

Initialize USART0 for buffered, asynchronous serial communications using interrupts.

• void stop ()

Stops buffered serial communications using interrupts on USARTO.

• size t write (char c)

Write a single byte to the transmit buffer.

• size_t write (const char *c)

Write a null-terminated string to the transmit buffer.

• size_t write (const char *c, size_t n)

Write a character array of given size to the transmit buffer.

size_t write (const uint8_t *c, size_t n)

Write a byte array of given size to the transmit buffer.

void flush ()

Flush transmit buffer.

• int peek ()

Examine the next character in the receive buffer without removing it from the buffer.

• int read ()

Return the next character in the receive buffer, removing it from the buffer.

• bool available ()

Determine if there is data in the receive buffer..

8.6.1 Detailed Description

This namespace bundles a high-level buffered interface to the USART0 hardware. It provides logical cohesion and prevents namespace collisions.

8.6.2 Function Documentation

8.6.2.1 available()

```
bool USARTO::available ( )
```

Determine if there is data in the receive buffer...

Returns

if the receive buffer contains data, it returns TRUE; if the receive buffer is empty, it returns FALSE;

8.6.2.2 flush()

```
void USARTO::flush ( )
```

Flush transmit buffer.

This function blocks until the transmit buffer is empty and the last byte has been transmitted by USART0. flush() doesn't actually do anything to make the transmit happen; it simply waits for the transmission to complete.

8.6.2.3 peek()

```
int USARTO::peek ( )
```

Examine the next character in the receive buffer without removing it from the buffer.

Returns

if there is a value in the receive buffer, it returns the value (a number between 0 and 255); if the receive buffer is empty, it returns -1;

8.6.2.4 read()

```
int USART0::read ( )
```

Return the next character in the receive buffer, removing it from the buffer.

Returns

if there is a value in the receive buffer, it returns the value (a number between 0 and 255) and removes the value from the receive buffer; if the receive buffer is empty, it returns -1;

8.6.2.5 start()

Initialize USART0 for buffered, asynchronous serial communications using interrupts.

You must call this function before using any of the other USARTO functions.

- baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).
- config sets the configuration in term of data bits, parity, and stop bits. If omitted, the default is 8 data bits, no parity, and 1 stop bit.

8.6.2.6 stop()

```
void USART0::stop ( )
```

Stops buffered serial communications using interrupts on USART0.

After calling this function, Arduino pins 0 and 1 are released and available for use as ordinary digital pins.

If you want to use USART0 again for buffered, asynchronous serial communications, you must again call start().

8.6.2.7 write() [1/4]

```
size_t USART0::write ( char c )
```

Write a single byte to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART0-related interrupts.

• c the char (byte) to write into the transmit buffer

Returns

the number of bytes written into the output buffer.

8.6.2.8 write() [2/4]

Write a null-terminated string to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART0-related interrupts.

ullet c the null-terminated string to write into the transmit buffer.

Returns

the number of bytes written into the output buffer.

8.6.2.9 write() [3/4]

Write a character array of given size to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART0-related interrupts

- c the character array to write into the transmit buffer.
- n the number of elements from the array to write into the transmit buffer.

Returns

the number of characters written into the output buffer.

8.6.2.10 write() [4/4]

Write a byte array of given size to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART0-related interrupts

- c the byte array to write into the transmit buffer.
- n the number of elements from the array to write into the transmit buffer.

Returns

the number of bytes written into the output buffer.

8.7 USART1 Namespace Reference

This namespace bundles a high-level buffered interface to the USART1 hardware. It provides logical cohesion and prevents namespace collisions.

Functions

void start (unsigned long baudRate, UsartSerialConfiguration config=kSerial_8N1)

Initialize USART1 for buffered, asynchronous serial communications using interrupts.

void stop ()

Stops buffered serial communications using interrupts on USART1.

• size t write (char c)

Write a single byte to the transmit buffer.

size_t write (const char *c)

Write a null-terminated string to the transmit buffer.

• size_t write (const char *c, size_t n)

Write a character array of given size to the transmit buffer.

size_t write (const uint8_t *c, size_t n)

Write a byte array of given size to the transmit buffer.

· void flush ()

Flush transmit buffer.

int peek ()

Examine the next character in the receive buffer without removing it from the buffer.

• int read ()

Return the next character in the receive buffer, removing it from the buffer.

• bool available ()

Determine if there is data in the receive buffer..

8.7.1 Detailed Description

This namespace bundles a high-level buffered interface to the USART1 hardware. It provides logical cohesion and prevents namespace collisions.

8.7.2 Function Documentation

8.7.2.1 available()

```
bool USART1::available ( )
```

Determine if there is data in the receive buffer..

Returns

if the receive buffer contains data, it returns TRUE; if the receive buffer is empty, it returns FALSE;

8.7.2.2 flush()

```
void USART1::flush ( )
```

Flush transmit buffer.

This function blocks until the transmit buffer is empty and the last byte has been transmitted by USART1. flush() doesn't actually do anything to make the transmit happen; it simply waits for the transmission to complete.

8.7.2.3 peek()

```
int USART1::peek ( )
```

Examine the next character in the receive buffer without removing it from the buffer.

Returns

if there is a value in the receive buffer, it returns the value (a number between 0 and 255); if the receive buffer is empty, it returns -1;

8.7.2.4 read()

```
int USART1::read ( )
```

Return the next character in the receive buffer, removing it from the buffer.

Returns

if there is a value in the receive buffer, it returns the value (a number between 0 and 255) and removes the value from the receive buffer; if the receive buffer is empty, it returns -1;

8.7.2.5 start()

Initialize USART1 for buffered, asynchronous serial communications using interrupts.

You must call this function before using any of the other USART1 functions.

- baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).
- config sets the configuration in term of data bits, parity, and stop bits. If omitted, the default is 8 data bits, no parity, and 1 stop bit.

8.7.2.6 stop()

```
void USART1::stop ( )
```

Stops buffered serial communications using interrupts on USART1.

After calling this function, Arduino pins 0 and 1 are released and available for use as ordinary digital pins.

If you want to use USART1 again for buffered, asynchronous serial communications, you must again call start().

8.7.2.7 write() [1/4]

```
size_t USART1::write ( \operatorname{char} c )
```

Write a single byte to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART1-related interrupts.

- $_{\mbox{\scriptsize C}}$ the char (byte) to write into the transmit buffer

Returns

the number of bytes written into the output buffer.

8.7.2.8 write() [2/4]

```
size_t USART1::write ( const char *c)
```

Write a null-terminated string to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART1-related interrupts.

ullet c the null-terminated string to write into the transmit buffer.

Returns

the number of bytes written into the output buffer.

8.7.2.9 write() [3/4]

Write a character array of given size to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART1-related interrupts

- c the character array to write into the transmit buffer.
- n the number of elements from the array to write into the transmit buffer.

Returns

the number of characters written into the output buffer.

8.7.2.10 write() [4/4]

Write a byte array of given size to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART1-related interrupts

- c the byte array to write into the transmit buffer.
- n the number of elements from the array to write into the transmit buffer.

Returns

the number of bytes written into the output buffer.

8.8 USART2 Namespace Reference

This namespace bundles a high-level buffered interface to the USART2 hardware. It provides logical cohesion and prevents namespace collisions.

Functions

void start (unsigned long baudRate, UsartSerialConfiguration config=kSerial_8N1)

Initialize USART2 for buffered, asynchronous serial communications using interrupts.

void stop ()

Stops buffered serial communications using interrupts on USART2.

• size t write (char c)

Write a single byte to the transmit buffer.

size_t write (const char *c)

Write a null-terminated string to the transmit buffer.

• size_t write (const char *c, size_t n)

Write a character array of given size to the transmit buffer.

size_t write (const uint8_t *c, size_t n)

Write a byte array of given size to the transmit buffer.

· void flush ()

Flush transmit buffer.

int peek ()

Examine the next character in the receive buffer without removing it from the buffer.

• int read ()

Return the next character in the receive buffer, removing it from the buffer.

• bool available ()

Determine if there is data in the receive buffer..

8.8.1 Detailed Description

This namespace bundles a high-level buffered interface to the USART2 hardware. It provides logical cohesion and prevents namespace collisions.

8.8.2 Function Documentation

8.8.2.1 available()

```
bool USART2::available ( )
```

Determine if there is data in the receive buffer..

Returns

if the receive buffer contains data, it returns TRUE; if the receive buffer is empty, it returns FALSE;

8.8.2.2 flush()

```
void USART2::flush ( )
```

Flush transmit buffer.

This function blocks until the transmit buffer is empty and the last byte has been transmitted by USART2. flush() doesn't actually do anything to make the transmit happen; it simply waits for the transmission to complete.

8.8.2.3 peek()

```
int USART2::peek ( )
```

Examine the next character in the receive buffer without removing it from the buffer.

Returns

if there is a value in the receive buffer, it returns the value (a number between 0 and 255); if the receive buffer is empty, it returns -1;

8.8.2.4 read()

```
int USART2::read ( )
```

Return the next character in the receive buffer, removing it from the buffer.

Returns

if there is a value in the receive buffer, it returns the value (a number between 0 and 255) and removes the value from the receive buffer; if the receive buffer is empty, it returns -1;

8.8.2.5 start()

Initialize USART2 for buffered, asynchronous serial communications using interrupts.

You must call this function before using any of the other USART2 functions.

- baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).
- config sets the configuration in term of data bits, parity, and stop bits. If omitted, the default is 8 data bits, no parity, and 1 stop bit.

8.8.2.6 stop()

```
void USART2::stop ( )
```

Stops buffered serial communications using interrupts on USART2.

After calling this function, Arduino pins 0 and 1 are released and available for use as ordinary digital pins.

If you want to use USART2 again for buffered, asynchronous serial communications, you must again call start().

8.8.2.7 write() [1/4]

```
size_t USART2::write ( char c )
```

Write a single byte to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART2-related interrupts.

- $_{\mbox{\scriptsize C}}$ the char (byte) to write into the transmit buffer

Returns

the number of bytes written into the output buffer.

8.8.2.8 write() [2/4]

```
size_t USART2::write ( const char * c )
```

Write a null-terminated string to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART2-related interrupts.

• c the null-terminated string to write into the transmit buffer.

Returns

the number of bytes written into the output buffer.

8.8.2.9 write() [3/4]

Write a character array of given size to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART2-related interrupts

- c the character array to write into the transmit buffer.
- n the number of elements from the array to write into the transmit buffer.

Returns

the number of characters written into the output buffer.

8.8.2.10 write() [4/4]

Write a byte array of given size to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART2-related interrupts

- c the byte array to write into the transmit buffer.
- n the number of elements from the array to write into the transmit buffer.

Returns

the number of bytes written into the output buffer.

8.9 USART3 Namespace Reference

This namespace bundles a high-level buffered interface to the USART3 hardware. It provides logical cohesion and prevents namespace collisions.

Functions

void start (unsigned long baudRate, UsartSerialConfiguration config=kSerial_8N1)

Initialize USART3 for buffered, asynchronous serial communications using interrupts.

• void stop ()

Stops buffered serial communications using interrupts on USART3.

• size t write (char c)

Write a single byte to the transmit buffer.

size_t write (const char *c)

Write a null-terminated string to the transmit buffer.

• size_t write (const char *c, size_t n)

Write a character array of given size to the transmit buffer.

size_t write (const uint8_t *c, size_t n)

Write a byte array of given size to the transmit buffer.

· void flush ()

Flush transmit buffer.

int peek ()

Examine the next character in the receive buffer without removing it from the buffer.

• int read ()

Return the next character in the receive buffer, removing it from the buffer.

• bool available ()

Determine if there is data in the receive buffer..

8.9.1 Detailed Description

This namespace bundles a high-level buffered interface to the USART3 hardware. It provides logical cohesion and prevents namespace collisions.

8.9.2 Function Documentation

8.9.2.1 available()

```
bool USART3::available ( )
```

Determine if there is data in the receive buffer..

Returns

if the receive buffer contains data, it returns TRUE; if the receive buffer is empty, it returns FALSE;

8.9.2.2 flush()

```
void USART3::flush ( )
```

Flush transmit buffer.

This function blocks until the transmit buffer is empty and the last byte has been transmitted by USART3. flush() doesn't actually do anything to make the transmit happen; it simply waits for the transmission to complete.

8.9.2.3 peek()

```
int USART3::peek ( )
```

Examine the next character in the receive buffer without removing it from the buffer.

Returns

if there is a value in the receive buffer, it returns the value (a number between 0 and 255); if the receive buffer is empty, it returns -1;

8.9.2.4 read()

```
int USART3::read ( )
```

Return the next character in the receive buffer, removing it from the buffer.

Returns

if there is a value in the receive buffer, it returns the value (a number between 0 and 255) and removes the value from the receive buffer; if the receive buffer is empty, it returns -1;

8.9.2.5 start()

Initialize USART3 for buffered, asynchronous serial communications using interrupts.

You must call this function before using any of the other USART3 functions.

- baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).
- config sets the configuration in term of data bits, parity, and stop bits. If omitted, the default is 8 data bits, no parity, and 1 stop bit.

8.9.2.6 stop()

```
void USART3::stop ( )
```

Stops buffered serial communications using interrupts on USART3.

After calling this function, Arduino pins 0 and 1 are released and available for use as ordinary digital pins.

If you want to use USART3 again for buffered, asynchronous serial communications, you must again call start().

8.9.2.7 write() [1/4]

```
size_t USART3::write ( char c )
```

Write a single byte to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART3-related interrupts.

- $_{\mbox{\scriptsize C}}$ the char (byte) to write into the transmit buffer

Returns

the number of bytes written into the output buffer.

8.9.2.8 write() [2/4]

Write a null-terminated string to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART3-related interrupts.

• c the null-terminated string to write into the transmit buffer.

Returns

the number of bytes written into the output buffer.

8.9.2.9 write() [3/4]

Write a character array of given size to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART3-related interrupts

- c the character array to write into the transmit buffer.
- n the number of elements from the array to write into the transmit buffer.

Returns

the number of characters written into the output buffer.

8.9.2.10 write() [4/4]

Write a byte array of given size to the transmit buffer.

This function attempts to queue the data into the transmit buffer. If there is room in the transmit buffer, the function returns immediately. If not, the function blocks waiting for room to become available in the transmit buffer.

The data is transmitted asynchronously via USART3-related interrupts

- c the byte array to write into the transmit buffer.
- $\ n$ the number of elements from the array to write into the transmit buffer.

Returns

the number of bytes written into the output buffer.

Chapter 9

Class Documentation

9.1 Interrupts::AllOff Class Reference

This class defines an object that disables all interrupts during its lifetime. Interrupt state is restored by the object's destructor when the object goes out of scope.

#include <InterruptUtils.h>

Public Member Functions

· AllOff ()

Suppress all interrupts when the object is instantiated.

• ∼AllOff ()

Re-enable interrupts, restoring the interrupt state as it was when the object was instantiated.

9.1.1 Detailed Description

This class defines an object that disables all interrupts during its lifetime. Interrupt state is restored by the object's destructor when the object goes out of scope.

The documentation for this class was generated from the following file:

InterruptUtils.h

9.2 Interrupts::ExternalOff Class Reference

This class defines an object that disables selected external interrupts during its lifetime. The selected external interrupts are restored by the object's destructor when it goes out of scope.

#include <InterruptUtils.h>

Public Member Functions

ExternalOff (uint8 t whichOnesToTurnOff=kExternalInterruptMask)

Suppress some or all of the external interrupts when the object is instantiated.

∼ExternalOff ()

Re-enable the selected external interrupts.

9.2.1 Detailed Description

This class defines an object that disables selected external interrupts during its lifetime. The selected external interrupts are restored by the object's destructor when it goes out of scope.

9.2.2 Constructor & Destructor Documentation

9.2.2.1 ExternalOff()

Suppress some or all of the external interrupts when the object is instantiated.

• whichOnesToTurnOff is a bit mask, indicating the external interrupts to disable. The mask bits correspond to the bits in the External Interrupt Mask Register (EIMSK). If the argument is omitted, all external interrupts will be disabled.

The documentation for this class was generated from the following file:

• InterruptUtils.h

9.3 GpioPinVariable Class Reference

This class defines a type that can encode a GPIO pin as a variable. Read the section on [GPIO Pin Variables] (GPIO pin variables) to understand how to use this class.

```
#include <GpioPinMacros.h>
```

Public Member Functions

Gpio8Ptr ddr () const

Return a pointer to the DDR register.

• Gpio8Ptr port () const

Return a pointer to the PORT register.

• Gpio8Ptr pin () const

Return a pointer to the PIN register.

• Gpio16Ptr ocr () const

Return a pointer to the OCR register (PWM related).

• Gpio8Ptr tccr () const

Return a pointer to the TCCR register (PWM related).

• uint8_t bitNbr () const

Return the bit number of this GPIO pin within the DDR, PORT, and PIN registers.

• uint8_t com () const

Return the bit number needed for manipulating TCCR register (PWM related).

uint8_t adcNbr () const

Return the ADC channel number (analog-to-digital related).

9.3.1 Detailed Description

This class defines a type that can encode a GPIO pin as a variable. Read the section on [GPIO Pin Variables] (GPIO pin variables) to understand how to use this class.

There are also three macros that you need to create vaiables of type GpioPinVariable: makeGpioVarFromGpioPin(), makeGpioVarFromGpioPinAnalog(), and makeGpioVarFromGpioPinPwm(). These are used like this:

```
GpioPinVariable pinA( makeGpioVarFromGpioPin( pPin10 ) );
GpioPinVariable pinB( makeGpioVarFromGpioPinAnalog( pPinA01 ) );
GpioPinVariable pinC = makeGpioVarFromGpioPinPwm( pPin03 );

GpioPinVariable pinArray[3];
pinArray[0] = pinA;
pinArray[1] = pinB;
pinArray[2] = makeGpioVarFromGpioPin( pPin07 );
```

Once you've done this, these variables can be assign and passed to functions as needed. To use these GPIO pin variables, there are special function analogs of the GPIO pin manipulation macros. These have the same names as the GPIO pin manipulation macros, except with a "V" appended.

The documentation for this class was generated from the following file:

• GpioPinMacros.h

9.4 I2cLcd Class Reference

This class provides a high-level interface via I2C to an LCD such as those offered by AdaFruit and SparkFun. Specifically, it communicates via I2C with an MCP23017 that drives an HD44780U controlling an LCD. It also lets you detect button presses on the 5-button keypad generally assocaited with such devices.

```
#include <I2cLcd.h>
```

Inheritance diagram for I2cLcd:

Collaboration diagram for I2cLcd:

Public Types

```
enum {kButton_Select , kButton_Right , kButton_Down , kButton_Up ,kButton_Left }enum {
```

kBacklight_Red , kBacklight_Yellow , kBacklight_Green , kBacklight_Teal , kBacklight_Blue , kBacklight_Violet , kBacklight_White }

• enum IntegerOutputBase { kBin = 2 , kOct = 8 , kDec = 10 , kHex = 16 }

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

9.4 I2cLcd Class Reference 77

Public Member Functions

• I2cLcd ()

Constructor simply initializes some internal bookkeeping.

• int init ()

Initialize the I2cLcd object. This must be called before using the I2cLcd, or calling any of the other member functions. The I2C system must be initialized before calling this function (by calling I2cMaster::start() from I2cMaster.h).

· void clear ()

Clear the display (all rows, all columns).

· void home ()

Move the cursor home (the top row, left column).

void displayTopRow (const char *str)

Display a C-string on the top row.

void displayBottomRow (const char *str)

Display a C-string on the bottom row.

• void clearTopRow ()

Clear the top row.

void clearBottomRow ()

Clear the bottom row.

· void displayOff ()

Turn the display off.

void displayOn ()

Turn the display on.

· void blinkOff ()

Do not blink the cursor.

void blinkOn ()

Blink the cursor.

void cursorOff ()

Hide the cursor.

• void cursorOn ()

Display the cursor.

void scrollDisplayLeft ()

Scroll the display to the left.

void scrollDisplayRight ()

Scroll the display to the right.

• void autoscrollOn ()

Turn on automatic scrolling of the display.

• void autoscrollOff ()

Turn off automatic scrolling of the display.

void setCursor (uint8_t row, uint8_t col)

Move the cursor the a particular row and column.

int setBacklight (uint8_t color)

Set the backlight to a given color. Set a black-and-white LCD display to White if you want to have a backlight.

void command (uint8_t cmd)

Pass a command to the LCD.

• uint8 t readButtons ()

Read the state of the buttons associated with the LCD display.

virtual size_t write (char c)

Write a single character to the LCD at the current cursor location. This implements the pure virtual function Writer::write(char c).

virtual size_t write (const char *str)

Write a C-string to the LCD at the current cursor location. This implements the pure virtual function Writer::write(const char* str).

• virtual size_t write (const char *buffer, size_t size)

Write a given number of characters from a buffer to the LCD at the current cursor location. This implements the pure virtual function Writer::write(const char* buffer, size_t size).

virtual size t write (const uint8 t *buffer, size t size)

Write a given number of bytes from a buffer to the LCD at the current cursor location. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

virtual void flush ()

This function does nothing. It simply implements the pure virtual function Writer::flush().

• size t print (const char *str, bool addLn=false)

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

size t print (const uint8 t *buf, size t size, bool addLn=false)

Print a number of bytes to the output stream, with or without adding a new line character at the end.

• size t print (char c, bool addLn=false)

Print a single character to the output stream, with or without adding a new line character at the end.

size t print (int8 t n, int base=kDec, bool addLn=false)

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

size t print (uint8 t n, int base=kDec, bool addLn=false)

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

• size t print (int n, int base=kDec, bool addLn=false)

Print an integer to the output stream, with or without adding a new line character at the end.

size t print (unsigned int n, int base=kDec, bool addLn=false)

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (long n, int base=kDec, bool addLn=false)

Print a long integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned long n, int base=kDec, bool addLn=false)

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

size_t print (double d, int digits=2, bool addLn=false)

Print a floating point number to the output stream, with or without adding a new line character at the end.

size_t println (const char *str)

Print a null-terminated string to the output stream, adding a new line character at the end.

size_t println (const uint8_t *buf, size_t size)

Print a number of bytes to the output stream, adding a new line character at the end.

size_t println (char c)

Print a single character to the output stream, adding a new line character at the end.

size_t println (int8_t n, int base=kDec)

Print an 8-bit integer to the output stream, adding a new line character at the end.

size_t println (uint8_t n, int base=kDec)

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

• size t println (int n, int base=kDec)

Print an integer to the output stream, adding a new line character at the end.

size t println (unsigned int n, int base=kDec)

Print an unsigned integer to the output stream, adding a new line character at the end.

size t println (long n, int base=kDec)

9.4 I2cLcd Class Reference 79

Print a long integer to the output stream, adding a new line character at the end.

size_t println (unsigned long n, int base=kDec)

Print an unsigned long integer to the output stream, adding a new line character at the end.

size_t println (double d, int digits=2)

Print a floating point number to the output stream, adding a new line character at the end.

• size t println ()

Print a new line to the output stream.

9.4.1 Detailed Description

This class provides a high-level interface via I2C to an LCD such as those offered by AdaFruit and SparkFun. Specifically, it communicates via I2C with an MCP23017 that drives an HD44780U controlling an LCD. It also lets you detect button presses on the 5-button keypad generally assocaited with such devices.

This class derives from Writer, allowing you to write to the LCD much as it if were a serial device.

To use these features, include I2cLcd.h in your source code and link against I2cLcd.cpp and I2cMaster.cpp, and initialize the I2C hardware by calling I2cMaster::start().

9.4.2 Member Enumeration Documentation

9.4.2.1 anonymous enum

anonymous enum

These constants are used to identify the five buttons.

Enumerator

kButton_Select	the Select button
kButton_Right	the Right button
kButton_Down	the Down button
kButton_Up	the Up button
kButton_Left	the Left button

9.4.2.2 anonymous enum

anonymous enum

These constants are used to set the backlight color on the LCD.

Enumerator

kBacklight_Red	Backlight red.
----------------	----------------

Enumerator

kBacklight_Yellow	Backlight yellow.
kBacklight_Green	Backlight green.
kBacklight_Teal	Backlight teal.
kBacklight_Blue	Backlight blue.
kBacklight_Violet	Backlight violet.
kBacklight_White	Backlight white.

9.4.2.3 IntegerOutputBase

```
enum Writer::IntegerOutputBase [inherited]
```

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Enumerator

kBin	Produce a binary representation of integers (e.g., 11 is output as 0b1011)	
kOct	Oct Produce an octal representation of integers (e.g, 11 is output as 013)	
kDec	Produce a decimal representation of integers (e.g., 11 is output as 11.	
kHex	Produce a hexadecimal representation of integers (e.g., 11 is output as 0x0b)	

9.4.3 Member Function Documentation

9.4.3.1 command()

Pass a command to the LCD.

• cmd a valid command to send to the HD44780U.

9.4.3.2 displayBottomRow()

Display a C-string on the bottom row.

• str the C-string to display.

9.4 I2cLcd Class Reference 81

9.4.3.3 displayTopRow()

Display a C-string on the top row.

• str the C-string to display.

9.4.3.4 init()

```
int I2cLcd::init ( )
```

Initialize the I2cLcd object. This must be called before using the I2cLcd, or calling any of the other member functions. The I2C system must be initialized before calling this function (by calling I2cMaster::start() from I2cMaster.h).

The LCD display is initialized in 16-column, 2-row mode.

9.4.3.5 print() [1/10]

Print a single character to the output stream, with or without adding a new line character at the end.

- c is the character to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.4.3.6 print() [2/10]

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

- ${\tt str}$ is the null-terminated string to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.4.3.7 print() [3/10]

Print a number of bytes to the output stream, with or without adding a new line character at the end.

- · buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.4.3.8 print() [4/10]

Print a floating point number to the output stream, with or without adding a new line character at the end.

- d is the floating point number to output.
- digits is the number of decimal digits to output; the default is 2.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.4.3.9 print() [5/10]

```
size_t Writer::print (
    int n,
    int base = kDec,
    bool addLn = false ) [inherited]
```

Print an integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.4 I2cLcd Class Reference 83

9.4.3.10 print() [6/10]

```
size_t Writer::print (
    int8_t n,
    int base = kDec,
    bool addLn = false ) [inherited]
```

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.4.3.11 print() [7/10]

Print a long integer to the output stream, with or without adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.4.3.12 print() [8/10]

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.4.3.13 print() [9/10]

```
size_t Writer::print (
          unsigned int n,
          int base = kDec,
          bool addLn = false ) [inline], [inherited]
```

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- \bullet addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.4 I2cLcd Class Reference 85

9.4.3.14 print() [10/10]

```
size_t Writer::print (
          unsigned long n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.4.3.15 println() [1/10]

Print a single character to the output stream, adding a new line character at the end.

 $\bullet \ _{\rm C}$ is the character to output.

Returns

the number of bytes sent to the output stream.

9.4.3.16 println() [2/10]

Print a null-terminated string to the output stream, adding a new line character at the end.

• str is the null-terminated string to output.

Returns

9.4.3.17 println() [3/10]

Print a number of bytes to the output stream, adding a new line character at the end.

- · buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.

Returns

the number of bytes sent to the output stream.

9.4.3.18 println() [4/10]

Print a floating point number to the output stream, adding a new line character at the end.

- d is the flaoting point number to output.
- digits is the number of decimal digits to output; the default is 2.

Returns

the number of bytes sent to the output stream.

9.4.3.19 println() [5/10]

Print an integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.4 I2cLcd Class Reference 87

9.4.3.20 println() [6/10]

Print an 8-bit integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.4.3.21 println() [7/10]

Print a long integer to the output stream, adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.4.3.22 println() [8/10]

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.4.3.23 println() [9/10]

```
size_t Writer::println (
          unsigned int n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.4.3.24 println() [10/10]

```
size_t Writer::println (
          unsigned long n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned long integer to the output stream, adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.4.3.25 readButtons()

```
uint8_t I2cLcd::readButtons ( )
```

Read the state of the buttons associated with the LCD display.

Returns

a byte with flags set corresponding to the buttons that are depressed. You must "and" the return value with $k \leftarrow$ Button_Right, kButton_Left, kButton_Down, kButton_Up, or kButton_Select to determine which buttons have been pressed.

9.4 I2cLcd Class Reference 89

9.4.3.26 setBacklight()

Set the backlight to a given color. Set a black-and-white LCD display to White if you want to have a backlight.

color the color to set the backlight. Pass one of kBacklight_Red, kBacklight_Yellow, kBacklight_Green, k
 Backlight_Teal, kBacklight_Blue, kBacklight_Violet, or kBacklight_White.

9.4.3.27 setCursor()

Move the cursor the a particular row and column.

- row the row to move the cursor to (numbering starts at 0).
- col the column to move the cursor to (numbering starts at 0).

9.4.3.28 write() [1/4]

Write a single character to the LCD at the current cursor location. This implements the pure virtual function Writer::write(char c).

• the character to be written.

Returns

the number of bytes written.

Implements Writer.

9.4.3.29 write() [2/4]

Write a given number of characters from a buffer to the LCD at the current cursor location. This implements the pure virtual function Writer::write(const char* buffer, size t size).

- buffer the buffer of characters to write.
- size the number of characters to write

Returns

the number of bytes written.

Implements Writer.

9.4.3.30 write() [3/4]

Write a C-string to the LCD at the current cursor location. This implements the pure virtual function Writer::write(const char* str).

• the C-string to be written.

Returns

the number of bytes written.

Implements Writer.

9.4.3.31 write() [4/4]

Write a given number of bytes from a buffer to the LCD at the current cursor location. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

- buffer the buffer of bytes to write.
- size the number of bytes to write

Returns

the number of bytes written.

Implements Writer.

The documentation for this class was generated from the following files:

- I2cLcd.h
- I2cLcd.cpp

9.5 Interrupts::PinChangeOff Class Reference

This class defines an object that disables selected pin change interrupts during its lifetime. The selected pin change interrupts are restored by the object's destructor when it goes out of scope.

```
#include <InterruptUtils.h>
```

Public Member Functions

- PinChangeOff (uint8_t whichOnesToTurnOff=kPinChangeInterruptMask)
 - Suppress some or all of the pin change interrupts when the object is instantiated.
- ∼PinChangeOff ()

Re-enable the selected pin change interrupts.

9.5.1 Detailed Description

This class defines an object that disables selected pin change interrupts during its lifetime. The selected pin change interrupts are restored by the object's destructor when it goes out of scope.

9.5.2 Constructor & Destructor Documentation

9.5.2.1 PinChangeOff()

Suppress some or all of the pin change interrupts when the object is instantiated.

• whichOnesToTurnOff is a bit mask, indicating the pin change interrupts to disable. The mask bits correspond to the bits in the Pin Change Interrupt Control Register (PCICR). If the argument is omitted, all pin change interrupts will be disabled.

The documentation for this class was generated from the following file:

InterruptUtils.h

9.6 Reader Class Reference

This is an abstract class defining a generic interface to read numbers and strings from a sequential stream of bytes (such as a serial device).

#include <Reader.h>

Inheritance diagram for Reader:

Public Member Functions

· Reader ()

Constructor. It sets the default timeout to 1 second.

virtual int read ()=0

Pure virtual function that reads and removes the next byte from the input stream.

virtual int peek ()=0

Pure virtual function that examines the next byte from the input stream, without removing it.

virtual bool available ()=0

Pure virtual function that determines if data is available in the input stream.

void setTimeout (unsigned long milliseconds)

Sets maximum milliseconds to wait for stream data, default is 1 second.

bool find (const char *target)

Read data from the input stream until the target string is found.

bool find (const char *target, size_t length)

Read data from the stream until the target string of given length is found.

bool findUntil (const char *target, const char *terminator)

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

bool findUntil (const char *target, size_t targetLen, const char *terminate, size_t termLen)

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

bool readLong (long *result)

Return the first valid long integer value from the stream.

bool readFloat (float *result)

Return the first valid float value from the stream.

9.6 Reader Class Reference 93

bool readLong (long *result, char skipChar)

Return the first valid long integer value from the stream, ignoring selected characters.

bool readFloat (float *result, char skipChar)

Return the first valid float value from the stream, ignoring selected characters.

size t readBytes (char *buffer, size t length)

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is NOT null-terminated.

• size t readBytesUntil (char terminator, char *buffer, size_t length)

Read characters from the input stream into a buffer, terminating when the terminator charactor is encountered, or if length characters have been read, or if the function times out. The result is NOT null-terminated.

size t readBytes (uint8 t *buffer, size t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

size_t readBytesUntil (uint8_t terminator, uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

size t readLine (char *buffer, size t length)

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

void consumeWhiteSpace ()

Consumes whitespace characters until the first non-whitespace character is encountered or the function times out.

9.6.1 Detailed Description

This is an abstract class defining a generic interface to read numbers and strings from a sequential stream of bytes (such as a serial device).

It implements functions to convert a sequence of bytes into various integers and floating point numbers (so it is not a pure interface class). These functions depend on a small set of lower-level functions that are purely abstract and must be implemented by classes deriving from Reader.

Serial0 is an example of a class that derives from Reader by implementating the purely abstract functions in Reader.

Note

Use of the timeout feature requires linking against SystemClock.cpp and calling initSystemClock() from your start-up code. If you do not wish to use the system clock and link against SystemClock.cpp, then define the macro USE_READER_WITHOUT_SYSTEM_CLOCK. This means that calls will never timeout, and you are likely to lock your system if you read input that doesn't naturally terminate parsing (e.g., if you read numbers and the last number isn't followed by a newline).

9.6.2 Member Function Documentation

9.6.2.1 available()

```
virtual bool Reader::available ( ) [pure virtual]
```

Pure virtual function that determines if data is available in the input stream.

Returns

True if data is available in the stream before timeout expires; false if timeout expires before any data appears in the stream.

Implemented in Serial0, Serial1, Serial2, and Serial3.

9.6.2.2 find() [1/2]

Read data from the input stream until the target string is found.

• target is the string the function seeks in the input stream.

Returns

true if target string is found before timeout, false otherwise.

9.6.2.3 find() [2/2]

Read data from the stream until the target string of given length is found.

- target is a string, the first length bytes of which the function seeks in the input stream.
- length is the number of bytes of the string to use for comparison.

Returns

true if target string of given length is found, false if the function times out before finding the target string.

9.6.2.4 findUntil() [1/2]

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- terminator is the string that stops the search.

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.6 Reader Class Reference 95

9.6.2.5 findUntil() [2/2]

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- targetLen is the number of bytes in target that the function seeks in the input stream.
- terminator is the string that stops the search.
- termLen is the number of bytes in the terminator that

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.6.2.6 peek()

```
virtual int Reader::peek ( ) [pure virtual]
```

Pure virtual function that examines the next byte from the input stream, without removing it.

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implemented in Serial0, Serial1, Serial2, and Serial3.

9.6.2.7 read()

```
virtual int Reader::read ( ) [pure virtual]
```

Pure virtual function that reads and removes the next byte from the input stream.

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implemented in Serial0, Serial1, Serial2, and Serial3.

9.6.2.8 readBytes() [1/2]

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is *NOT* null-termimated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout).

9.6.2.9 readBytes() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

- · buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout).

9.6.2.10 readBytesUntil() [1/2]

Read characters from the input stream into a buffer, terminating when the terminator character is encountered, or if length characters have been read, or if the function times out. The result is *NOT* null-terminated.

- terminator a character that when encountered causes the function to return.
- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.6 Reader Class Reference 97

9.6.2.11 readBytesUntil() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

- terminator a byte that when encountered causes the function to return.
- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.6.2.12 readFloat() [1/2]

Return the first valid float value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit.

result is a pointer to where the float will be stored.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.6.2.13 readFloat() [2/2]

Return the first valid float value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the float will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.6.2.14 readLine()

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result *IS* null-termimated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting EOL).

9.6.2.15 readLong() [1/2]

Return the first valid long integer value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit.

• result is a pointer to where the long integer will be stored.

Returns

true if a valid integer is found prior to timeout; false otherwise.

9.6.2.16 readLong() [2/2]

Return the first valid long integer value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the long integer will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid long integer is found prior to timeout; false otherwise.

9.6.2.17 setTimeout()

```
void Reader::setTimeout (
          unsigned long milliseconds ) [inline]
```

Sets maximum milliseconds to wait for stream data, default is 1 second.

• milliseconds the length of the timeout period in milliseconds.

The documentation for this class was generated from the following files:

- · Reader.h
- · Reader.cpp

9.7 RingBuffer Class Reference

This class provides an efficient ring buffer implementation for storing bytes. Ring buffers are particularly useful for memory constrained microcontrollers such as the ATmega328 and ATmega2650. For maximum efficiency, this class is focused on the storgage of bytes, providing a single code base that is shared by all instances of this class.

```
#include <RingBuffer.h>
```

Public Member Functions

• RingBuffer (unsigned char *buffer, unsigned short size)

Construct a ring buffer by providing the storage area for the ring buffer.

• int pull ()

Extract the next (first) byte from the ring buffer.

int peek (unsigned short index=0)

Examine an element in the ring buffer.

bool push (unsigned char element)

Push a byte into the ring buffer. The element is appended to the back of the buffer.

bool isFull ()

Determine if the buffer is full and cannot accept more bytes.

bool isNotFull ()

Determine if the buffer is not full and can accept more bytes.

• bool isEmpty ()

Determine if the buffer is empty.

· bool isNotEmpty ()

Determine if the buffer is not empty.

• void clear ()

Clear the ring buffer, leaving it empty.

9.7.1 Detailed Description

This class provides an efficient ring buffer implementation for storing bytes. Ring buffers are particularly useful for memory constrained microcontrollers such as the ATmega328 and ATmega2650. For maximum efficiency, this class is focused on the storgage of bytes, providing a single code base that is shared by all instances of this class.

For maximum flexiblity, the caller must provide the storage to be used for each RingBuffer object instantiated (this allows the use of different sized ring bufferss without having to make dynamic memory allocations).

The implementation of RingBuffer is interrupt safe: the key operations are atomic, allowing for RingBuffer objects to be shared between interrupt functions and ordinary code.

The template-based RingBufferT class provides a more flexible ring buffer implementation that can store a variety of data types. However, this comes at the cost of replicating code for each template instantiation of RingBufferT.

9.7.2 Constructor & Destructor Documentation

9.7.2.1 RingBuffer()

```
RingBuffer::RingBuffer (
    unsigned char * buffer,
    unsigned short size )
```

Construct a ring buffer by providing the storage area for the ring buffer.

- buffer the storage for the ring buffer.
- size the size of the storage for the ring buffer.

9.7.3 Member Function Documentation

9.7.3.1 isEmpty()

```
bool RingBuffer::isEmpty ( ) [inline]
```

Determine if the buffer is empty.

Returns

true if the buffer is empty; false if not.

9.7.3.2 isFull()

```
bool RingBuffer::isFull ( )
```

Determine if the buffer is full and cannot accept more bytes.

Returns

true if the buffer is full; false if not.

9.7.3.3 isNotEmpty()

```
bool RingBuffer::isNotEmpty ( ) [inline]
```

Determine if the buffer is not empty.

Returns

true if the buffer is not empty; false if it is empty.

9.7.3.4 isNotFull()

```
bool RingBuffer::isNotFull ( )
```

Determine if the buffer is not full and can accept more bytes.

Returns

true if the buffer is not full; false if it is full.

9.7.3.5 peek()

```
int RingBuffer::peek (
          unsigned short index = 0 )
```

Examine an element in the ring buffer.

• index the element to examine; 0 means the first (= next) element in the buffer. The default if the argument is omitted is to return the first element.

Returns

the next element or -1 if there is no such element.

9.7.3.6 pull()

```
int RingBuffer::pull ( )
```

Extract the next (first) byte from the ring buffer.

Returns

the next byte, or -1 if the ring buffer is empty.

9.7.3.7 push()

```
bool RingBuffer::push (
          unsigned char element )
```

Push a byte into the ring buffer. The element is appended to the back of the buffer.

• element is the byte to append to the ring buffer.

Returns

0 (false) if it succeeds; 1 (true) if it fails because the buffer is full.

The documentation for this class was generated from the following files:

- · RingBuffer.h
- RingBuffer.cpp

9.8 RingBufferT < T, N, SIZE > Class Template Reference

a template-based ring buffer class that can store different kinds of objects in buffers of whatever size is needed.

```
#include <RingBufferT.h>
```

Public Member Functions

· RingBufferT ()

Construct a ring buffer to store elements of type T indexed by integer type N, with size SIZE. All of these are passed as template parameters. *.

• T pull ()

Extract the next (first) element from the ring buffer.

• T peek (N index=0)

Examine an element in the ring buffer.

bool push (T element)

Push an element into the ring buffer. The element is appended to the back of the buffer.

bool isEmpty ()

Determine if the buffer is empty .

bool isNotEmpty ()

Determine if the buffer is not empty.

bool isFull ()

Determine if the buffer is full and cannot accept more bytes.

bool isNotFull ()

Determine if the buffer is not full and can accept more bytes.

void discardFromFront (N nbrElements)

discard a number of elements from the front of the ring buffer.

· void clear ()

Clear the ring buffer, leaving it empty.

9.8.1 Detailed Description

template<typename T, typename N, unsigned int SIZE> class RingBufferT< T, N, SIZE >

a template-based ring buffer class that can store different kinds of objects in buffers of whatever size is needed.

The implementation of RingBufferT is interrupt safe: the key operations are atomic, allowing for RingBuffer objects to be shared between interrupt functions and ordinary code.

The template-based RingBufferT class provides a very flexible ring buffer implementation; however different instantiations of RingBufferT (e.g., RingBufferT char, int, 32 > and RingBufferT char, int, 16 >) result in replicated code for each instantiation, even when they could logically share code. For a more efficient ring buffer that avoids such code bloat but can only store bytes, use RingBuffer.

Template Parameters

T	is the type of object that will be stored in the RingBufferT instantiation.
N	is the integer type that will be used to index the RingBufferT elements.
SIZE	is an integer indicating the size of the RingBufferT instantiation.

9.8.2 Member Function Documentation

9.8.2.1 discardFromFront()

discard a number of elements from the front of the ring buffer.

• nbrElements the number of elements to discard.

9.8.2.2 isEmpty()

```
template<typename T , typename N , unsigned int SIZE> bool RingBufferT< T, N, SIZE >::isEmpty ( ) [inline]
```

Determine if the buffer is empty.

Returns

true if the buffer is empty; false if not.

9.8.2.3 isFull()

```
template<typename T , typename N , unsigned int SIZE>
bool RingBufferT< T, N, SIZE >::isFull ( ) [inline]
```

Determine if the buffer is full and cannot accept more bytes.

Returns

true if the buffer is full; false if not.

9.8.2.4 isNotEmpty()

```
template<typename T , typename N , unsigned int SIZE>
bool RingBufferT< T, N, SIZE >::isNotEmpty ( ) [inline]
```

Determine if the buffer is not empty.

Returns

true if the buffer is not empty; false if it is empty.

9.8.2.5 isNotFull()

```
template<typename T , typename N , unsigned int SIZE> bool RingBufferT< T, N, SIZE >::isNotFull ( ) [inline]
```

Determine if the buffer is not full and can accept more bytes.

Returns

true if the buffer is not full; false if it is full.

9.8.2.6 peek()

Examine an element in the ring buffer.

• index the element to examine; 0 means the first (= next) element in the buffer. The default if the argument is omitted is to return the first element.

Note

There is no general purpose safe value to return to indicate an empty element, so before calling peek() be sure the element exists.

Returns

the next element.

9.8.2.7 pull()

```
template<typename T , typename N , unsigned int SIZE> T RingBufferT< T, N, SIZE >::pull ( ) [inline]
```

Extract the next (first) element from the ring buffer.

Note

There is no general purpose safe value to return to indicate an empty buffer, so before calling pull() be sure to check the ring buffer is not empty.

Returns

the next element.

9.8.2.8 push()

Push an element into the ring buffer. The element is appended to the back of the buffer.

• element is the item to append to the ring buffer.

Returns

0 (false) if it succeeds; 1 (true) if it fails because the buffer is full.

The documentation for this class was generated from the following file:

· RingBufferT.h

9.9 Serial0 Class Reference

Provides a high-end interface to serial communications using USART0.

#include <USARTO.h>

Inheritance diagram for Serial0:

Collaboration diagram for Serial0:

Public Types

• enum IntegerOutputBase { kBin = 2, kOct = 8, kDec = 10, kHex = 16 }

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Public Member Functions

void start (unsigned long baudRate, UsartSerialConfiguration config=kSerial 8N1)

Configure the hardware for two-way serial communications, including turning on associated interrupts. You must call this function before reading from or writing to SerialO on USARTO.

void stop ()

Stops buffered serial communications using Serial0 on USART0 by deconfiguring the hardware and turning off interrupts.

virtual size t write (char c)

Write a single character to the output stream. This implements the pure virtual function Writer::write(char c).

virtual size_t write (const char *str)

Write a null-terminated string to the output stream. This implements the pure virtual function Writer::write(char* str).

• virtual size t write (const char *buffer, size t size)

Write a given number of characters from a buffer to the output stream. This implements the pure virtual function Writer::write(const char* buffer, size t size).

virtual size t write (const uint8 t *buffer, size t size)

Write a given number of bytes from a buffer to the output stream. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

• virtual void flush ()

Flush the output stream. When this function returns, all previously written data will have been transmitted through the underlying output stream. This implements the pure virtual function Writer::flush().

virtual int read ()

Read and remove the next byte from the input stream. This implements the pure virtual function Reader::read().

virtual int peek ()

Examine the next byte from the input stream, without removing it. This implements the pure virtual function Reader::peek().

virtual bool available ()

Determine if data is available in the input stream. This implements the pure virtual function Reader::available().

size_t print (const char *str, bool addLn=false)

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

size_t print (const uint8_t *buf, size_t size, bool addLn=false)

Print a number of bytes to the output stream, with or without adding a new line character at the end.

size_t print (char c, bool addLn=false)

Print a single character to the output stream, with or without adding a new line character at the end.

size_t print (int8_t n, int base=kDec, bool addLn=false)

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

size_t print (uint8_t n, int base=kDec, bool addLn=false)

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (int n, int base=kDec, bool addLn=false)

Print an integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned int n, int base=kDec, bool addLn=false)

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (long n, int base=kDec, bool addLn=false)

Print a long integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned long n, int base=kDec, bool addLn=false)

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

size_t print (double d, int digits=2, bool addLn=false)

Print a floating point number to the output stream, with or without adding a new line character at the end.

size_t println (const char *str)

Print a null-terminated string to the output stream, adding a new line character at the end.

• size_t println (const uint8_t *buf, size_t size)

Print a number of bytes to the output stream, adding a new line character at the end.

• size t println (char c)

Print a single character to the output stream, adding a new line character at the end.

size t println (int8 t n, int base=kDec)

Print an 8-bit integer to the output stream, adding a new line character at the end.

size t println (uint8 t n, int base=kDec)

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

size t println (int n, int base=kDec)

Print an integer to the output stream, adding a new line character at the end.

size_t println (unsigned int n, int base=kDec)

Print an unsigned integer to the output stream, adding a new line character at the end.

size_t println (long n, int base=kDec)

Print a long integer to the output stream, adding a new line character at the end.

size_t println (unsigned long n, int base=kDec)

Print an unsigned long integer to the output stream, adding a new line character at the end.

size t println (double d, int digits=2)

Print a floating point number to the output stream, adding a new line character at the end.

size t println ()

Print a new line to the output stream.

void setTimeout (unsigned long milliseconds)

Sets maximum milliseconds to wait for stream data, default is 1 second.

bool find (const char *target)

Read data from the input stream until the target string is found.

bool find (const char *target, size_t length)

Read data from the stream until the target string of given length is found.

bool findUntil (const char *target, const char *terminator)

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

bool findUntil (const char *target, size t targetLen, const char *terminate, size t termLen)

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

bool readLong (long *result)

Return the first valid long integer value from the stream.

bool readLong (long *result, char skipChar)

Return the first valid long integer value from the stream, ignoring selected characters.

bool readFloat (float *result)

Return the first valid float value from the stream.

bool readFloat (float *result, char skipChar)

Return the first valid float value from the stream, ignoring selected characters.

• size t readBytes (char *buffer, size t length)

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is NOT null-terminated.

size_t readBytes (uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

size t readBytesUntil (char terminator, char *buffer, size t length)

Read characters from the input stream into a buffer, terminating when the terminator charactor is encountered, or if length characters have been read, or if the function times out. The result is NOT null-terminated.

size_t readBytesUntil (uint8_t terminator, uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

size t readLine (char *buffer, size t length)

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

void consumeWhiteSpace ()

Consumes whitespace characters until the first non-whitespace character is encountered or the function times out.

9.9.1 Detailed Description

Provides a high-end interface to serial communications using USART0.

The functions in this class are buffered for both input and output and operate using interrupts associated with USARTO. This means the write functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated USARTO hardware. Similarly, data is received asynchronously and placed into the read buffer.

The read and write buffers are both ring buffers. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). The read buffer, however, will overwrite if it gets full. You must clear the read buffer by actually reading the data regularly when receiving significant amounts of data.

9.9.2 Member Enumeration Documentation

9.9.2.1 IntegerOutputBase

```
enum Writer::IntegerOutputBase [inherited]
```

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Enumerator

kBin	Produce a binary representation of integers (e.g., 11 is output as 0b1011)
kOct	Produce an octal representation of integers (e.g, 11 is output as 013)
kDec	Produce a decimal representation of integers (e.g., 11 is output as 11.
kHex	Produce a hexadecimal representation of integers (e.g., 11 is output as 0x0b)

9.9.3 Member Function Documentation

9.9.3.1 available()

```
virtual bool Serial0::available ( ) [virtual]
```

Determine if data is available in the input stream. This implements the pure virtual function Reader::available().

Returns

True if data is available in the stream; false if not.

Implements Reader.

9.9.3.2 find() [1/2]

Read data from the input stream until the target string is found.

• target is the string the function seeks in the input stream.

Returns

true if target string is found before timeout, false otherwise.

9.9.3.3 find() [2/2]

Read data from the stream until the target string of given length is found.

- target is a string, the first length bytes of which the function seeks in the input stream.
- length is the number of bytes of the string to use for comparison.

Returns

true if target string of given length is found, false if the function times out before finding the target string.

9.9.3.4 findUntil() [1/2]

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- terminator is the string that stops the search.

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.9.3.5 findUntil() [2/2]

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- targetLen is the number of bytes in target that the function seeks in the input stream.
- terminator is the string that stops the search.
- termLen is the number of bytes in the terminator that

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.9.3.6 peek()

```
virtual int SerialO::peek ( ) [virtual]
```

Examine the next byte from the input stream, without removing it. This implements the pure virtual function Reader::peek().

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implements Reader.

9.9.3.7 print() [1/10]

Print a single character to the output stream, with or without adding a new line character at the end.

- c is the character to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.9.3.8 print() [2/10]

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

- str is the null-terminated string to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.9.3.9 print() [3/10]

Print a number of bytes to the output stream, with or without adding a new line character at the end.

- · buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.9.3.10 print() [4/10]

Print a floating point number to the output stream, with or without adding a new line character at the end.

- d is the floating point number to output.
- digits is the number of decimal digits to output; the default is 2.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.9.3.11 print() [5/10]

```
size_t Writer::print (
    int n,
    int base = kDec,
    bool addLn = false ) [inherited]
```

Print an integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.9.3.12 print() [6/10]

```
size_t Writer::print (
    int8_t n,
    int base = kDec,
    bool addLn = false ) [inherited]
```

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

- $\bullet \ \ n$ is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.9.3.13 print() [7/10]

Print a long integer to the output stream, with or without adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.9.3.14 print() [8/10]

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

- $\bullet \ \ n$ is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.9.3.15 print() [9/10]

```
size_t Writer::print (
          unsigned int n,
          int base = kDec,
          bool addLn = false ) [inline], [inherited]
```

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.9.3.16 print() [10/10]

```
size_t Writer::print (
          unsigned long n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.9.3.17 println() [1/10]

Print a single character to the output stream, adding a new line character at the end.

 $\bullet \ \ {\mbox{\scriptsize c}}$ is the character to output.

Returns

9.9.3.18 println() [2/10]

Print a null-terminated string to the output stream, adding a new line character at the end.

• str is the null-terminated string to output.

Returns

the number of bytes sent to the output stream.

9.9.3.19 println() [3/10]

Print a number of bytes to the output stream, adding a new line character at the end.

- buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.

Returns

the number of bytes sent to the output stream.

9.9.3.20 println() [4/10]

Print a floating point number to the output stream, adding a new line character at the end.

- d is the flaoting point number to output.
- digits is the number of decimal digits to output; the default is 2.

Returns

9.9.3.21 println() [5/10]

Print an integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.9.3.22 println() [6/10]

Print an 8-bit integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.9.3.23 println() [7/10]

Print a long integer to the output stream, adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.9.3.24 println() [8/10]

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.9.3.25 println() [9/10]

```
size_t Writer::println (
          unsigned int n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.9.3.26 println() [10/10]

```
size_t Writer::println (
          unsigned long n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned long integer to the output stream, adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.9.3.27 read()

```
virtual int Serial0::read ( ) [virtual]
```

Read and remove the next byte from the input stream. This implements the pure virtual function Reader::read().

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implements Reader.

9.9.3.28 readBytes() [1/2]

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is *NOT* null-terminated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout).

9.9.3.29 readBytes() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout).

9.9.3.30 readBytesUntil() [1/2]

Read characters from the input stream into a buffer, terminating when the terminator charactor is encountered, or if length characters have been read, or if the function times out. The result is *NOT* null-terminated.

- terminator a character that when encountered causes the function to return.
- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.9.3.31 readBytesUntil() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

- terminator a byte that when encountered causes the function to return.
- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.9.3.32 readFloat() [1/2]

Return the first valid float value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit.

• result is a pointer to where the float will be stored.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.9.3.33 readFloat() [2/2]

Return the first valid float value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the float will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.9.3.34 readLine()

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting EOL).

9.9.3.35 readLong() [1/2]

Return the first valid long integer value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit.

• result is a pointer to where the long integer will be stored.

Returns

true if a valid integer is found prior to timeout; false otherwise.

9.9.3.36 readLong() [2/2]

Return the first valid long integer value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the long integer will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid long integer is found prior to timeout; false otherwise.

9.9.3.37 setTimeout()

```
void Reader::setTimeout (
          unsigned long milliseconds ) [inline], [inherited]
```

Sets maximum milliseconds to wait for stream data, default is 1 second.

• milliseconds the length of the timeout period in milliseconds.

9.9.3.38 start()

Configure the hardware for two-way serial communications, including turning on associated interrupts. You must call this function before reading from or writing to Serial0 on USART0.

- baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).
- config sets the configuration in term of data bits, parity, and stop bits. If omitted, the default is 8 data bits, no parity, and 1 stop bit.

9.9.3.39 stop()

```
void Serial0::stop ( ) [inline]
```

Stops buffered serial communications using Serial0 on USART0 by deconfiguring the hardware and turning off interrupts.

After calling this function, Arduino pins 0 and 1 are released and available for use as ordinary digital pins.

If you want to use SerialO again for communications, you must call start() again.

9.9.3.40 write() [1/4]

Write a single character to the output stream. This implements the pure virtual function Writer::write(char c).

• the character to be written.

Returns

the number of bytes written.

Implements Writer.

9.9.3.41 write() [2/4]

Write a given number of characters from a buffer to the output stream. This implements the pure virtual function Writer::write(const char* buffer, size_t size).

- buffer the buffer of characters to write.
- size the number of characters to write

Returns

the number of bytes written.

Implements Writer.

9.9.3.42 write() [3/4]

Write a null-terminated string to the output stream. This implements the pure virtual function Writer::write(char* str).

• str the string to be written.

Returns

the number of bytes written.

Implements Writer.

9.9.3.43 write() [4/4]

Write a given number of bytes from a buffer to the output stream. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

- buffer the buffer of bytes to write.
- size the number of bytes to write

Returns

the number of bytes written.

Implements Writer.

The documentation for this class was generated from the following file:

USART0.h

9.10 Serial1 Class Reference 125

9.10 Serial1 Class Reference

Provides a high-end interface to serial communications using USART1.

#include <USART1.h>

Inheritance diagram for Serial1:

Collaboration diagram for Serial1:

Public Types

• enum IntegerOutputBase { kBin = 2, kOct = 8, kDec = 10, kHex = 16 }

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Public Member Functions

void start (unsigned long baudRate, UsartSerialConfiguration config=kSerial 8N1)

Configure the hardware for two-way serial communications, including turning on associated interrupts. You must call this function before reading from or writing to Serial1 on USART1.

void stop ()

Stops buffered serial communications using Serial1 on USART1 by deconfiguring the hardware and turning off interrupts.

virtual size t write (char c)

Write a single character to the output stream. This implements the pure virtual function Writer::write(char c).

virtual size_t write (const char *str)

Write a null-terminated string to the output stream. This implements the pure virtual function Writer::write(char* str).

• virtual size t write (const char *buffer, size t size)

Write a given number of characters from a buffer to the output stream. This implements the pure virtual function Writer::write(const char* buffer, size t size).

virtual size t write (const uint8 t *buffer, size t size)

Write a given number of bytes from a buffer to the output stream. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

• virtual void flush ()

Flush the output stream. When this function returns, all previously written data will have been transmitted through the underlying output stream. This implements the pure virtual function Writer::flush().

virtual int read ()

Read and remove the next byte from the input stream. This implements the pure virtual function Reader::read().

virtual int peek ()

Examine the next byte from the input stream, without removing it. This implements the pure virtual function Reader::peek().

virtual bool available ()

Determine if data is available in the input stream. This implements the pure virtual function Reader::available().

size_t print (const char *str, bool addLn=false)

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

size_t print (const uint8_t *buf, size_t size, bool addLn=false)

Print a number of bytes to the output stream, with or without adding a new line character at the end.

size_t print (char c, bool addLn=false)

Print a single character to the output stream, with or without adding a new line character at the end.

• size_t print (int8_t n, int base=kDec, bool addLn=false)

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

size_t print (uint8_t n, int base=kDec, bool addLn=false)

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (int n, int base=kDec, bool addLn=false)

Print an integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned int n, int base=kDec, bool addLn=false)

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (long n, int base=kDec, bool addLn=false)

Print a long integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned long n, int base=kDec, bool addLn=false)

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

size_t print (double d, int digits=2, bool addLn=false)

Print a floating point number to the output stream, with or without adding a new line character at the end.

size_t println (const char *str)

Print a null-terminated string to the output stream, adding a new line character at the end.

• size_t println (const uint8_t *buf, size_t size)

Print a number of bytes to the output stream, adding a new line character at the end.

size_t println (char c)

Print a single character to the output stream, adding a new line character at the end.

size t println (int8 t n, int base=kDec)

Print an 8-bit integer to the output stream, adding a new line character at the end.

size t println (uint8 t n, int base=kDec)

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

size_t println (int n, int base=kDec)

Print an integer to the output stream, adding a new line character at the end.

size_t println (unsigned int n, int base=kDec)

Print an unsigned integer to the output stream, adding a new line character at the end.

• size t println (long n, int base=kDec)

Print a long integer to the output stream, adding a new line character at the end.

size_t println (unsigned long n, int base=kDec)

Print an unsigned long integer to the output stream, adding a new line character at the end.

• size_t println (double d, int digits=2)

Print a floating point number to the output stream, adding a new line character at the end.

size t println ()

Print a new line to the output stream.

void setTimeout (unsigned long milliseconds)

Sets maximum milliseconds to wait for stream data, default is 1 second.

bool find (const char *target)

Read data from the input stream until the target string is found.

bool find (const char *target, size_t length)

Read data from the stream until the target string of given length is found.

bool findUntil (const char *target, const char *terminator)

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

bool findUntil (const char *target, size t targetLen, const char *terminate, size t termLen)

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

bool readLong (long *result)

Return the first valid long integer value from the stream.

bool readLong (long *result, char skipChar)

Return the first valid long integer value from the stream, ignoring selected characters.

bool readFloat (float *result)

Return the first valid float value from the stream.

bool readFloat (float *result, char skipChar)

Return the first valid float value from the stream, ignoring selected characters.

size_t readBytes (char *buffer, size_t length)

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is NOT null-terminated.

size_t readBytes (uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

size_t readBytesUntil (char terminator, char *buffer, size_t length)

Read characters from the input stream into a buffer, terminating when the terminator character is encountered, or if length characters have been read, or if the function times out. The result is NOT null-terminated.

size_t readBytesUntil (uint8_t terminator, uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

• size t readLine (char *buffer, size t length)

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

void consumeWhiteSpace ()

Consumes whitespace characters until the first non-whitespace character is encountered or the function times out.

9.10.1 Detailed Description

Provides a high-end interface to serial communications using USART1.

The functions in this class are buffered for both input and output and operate using interrupts associated with USART1. This means the write functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated USART1 hardware. Similarly, data is received asynchronously and placed into the read buffer.

The read and write buffers are both ring buffers. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). The read buffer, however, will overwrite if it gets full. You must clear the read buffer by actually reading the data regularly when receiving significant amounts of data.

9.10.2 Member Enumeration Documentation

9.10.2.1 IntegerOutputBase

```
enum Writer::IntegerOutputBase [inherited]
```

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Enumerator

kBin	Produce a binary representation of integers (e.g., 11 is output as 0b1011)
kOct	Produce an octal representation of integers (e.g, 11 is output as 013)
kDec	Produce a decimal representation of integers (e.g., 11 is output as 11.
kHex	Produce a hexadecimal representation of integers (e.g., 11 is output as 0x0b)

9.10.3 Member Function Documentation

9.10.3.1 available()

```
bool Serial1::available ( ) [virtual]
```

Determine if data is available in the input stream. This implements the pure virtual function Reader::available().

Returns

True if data is available in the stream; false if not.

Implements Reader.

9.10.3.2 find() [1/2]

Read data from the input stream until the target string is found.

• target is the string the function seeks in the input stream.

Returns

true if target string is found before timeout, false otherwise.

9.10.3.3 find() [2/2]

Read data from the stream until the target string of given length is found.

- target is a string, the first length bytes of which the function seeks in the input stream.
- length is the number of bytes of the string to use for comparison.

Returns

true if target string of given length is found, false if the function times out before finding the target string.

9.10.3.4 findUntil() [1/2]

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- terminator is the string that stops the search.

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.10.3.5 findUntil() [2/2]

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- targetLen is the number of bytes in target that the function seeks in the input stream.
- terminator is the string that stops the search.
- termLen is the number of bytes in the terminator that

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.10.3.6 peek()

```
int Serial1::peek ( ) [virtual]
```

Examine the next byte from the input stream, without removing it. This implements the pure virtual function Reader::peek().

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implements Reader.

9.10.3.7 print() [1/10]

Print a single character to the output stream, with or without adding a new line character at the end.

- c is the character to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.10.3.8 print() [2/10]

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

- str is the null-terminated string to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.10.3.9 print() [3/10]

Print a number of bytes to the output stream, with or without adding a new line character at the end.

- · buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.10.3.10 print() [4/10]

Print a floating point number to the output stream, with or without adding a new line character at the end.

- d is the floating point number to output.
- digits is the number of decimal digits to output; the default is 2.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.10.3.11 print() [5/10]

```
size_t Writer::print (
          int n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print an integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.10.3.12 print() [6/10]

```
size_t Writer::print (
    int8_t n,
    int base = kDec,
    bool addLn = false ) [inherited]
```

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

- $\bullet \ \ n$ is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.10 Serial1 Class Reference 133

9.10.3.13 print() [7/10]

```
size_t Writer::print (
          long n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print a long integer to the output stream, with or without adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.10.3.14 print() [8/10]

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

- $\bullet \ \ n$ is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.10.3.15 print() [9/10]

```
size_t Writer::print (
          unsigned int n,
          int base = kDec,
          bool addLn = false ) [inline], [inherited]
```

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.10.3.16 print() [10/10]

```
size_t Writer::print (
          unsigned long n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.10.3.17 println() [1/10]

Print a single character to the output stream, adding a new line character at the end.

 $\bullet \ \ {\mbox{\scriptsize c}}$ is the character to output.

Returns

9.10 Serial1 Class Reference 135

9.10.3.18 println() [2/10]

Print a null-terminated string to the output stream, adding a new line character at the end.

• str is the null-terminated string to output.

Returns

the number of bytes sent to the output stream.

9.10.3.19 println() [3/10]

Print a number of bytes to the output stream, adding a new line character at the end.

- buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.

Returns

the number of bytes sent to the output stream.

9.10.3.20 println() [4/10]

Print a floating point number to the output stream, adding a new line character at the end.

- d is the flaoting point number to output.
- digits is the number of decimal digits to output; the default is 2.

Returns

9.10.3.21 println() [5/10]

Print an integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.10.3.22 println() [6/10]

Print an 8-bit integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.10.3.23 println() [7/10]

Print a long integer to the output stream, adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.10 Serial1 Class Reference 137

9.10.3.24 println() [8/10]

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.10.3.25 println() [9/10]

```
size_t Writer::println (
          unsigned int n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.10.3.26 println() [10/10]

```
size_t Writer::println (
          unsigned long n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned long integer to the output stream, adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.10.3.27 read()

```
int Serial1::read ( ) [virtual]
```

Read and remove the next byte from the input stream. This implements the pure virtual function Reader::read().

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implements Reader.

9.10.3.28 readBytes() [1/2]

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is *NOT* null-terminated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout).

9.10.3.29 readBytes() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout).

9.10 Serial1 Class Reference 139

9.10.3.30 readBytesUntil() [1/2]

Read characters from the input stream into a buffer, terminating when the terminator charactor is encountered, or if length characters have been read, or if the function times out. The result is *NOT* null-terminated.

- terminator a character that when encountered causes the function to return.
- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.10.3.31 readBytesUntil() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

- terminator a byte that when encountered causes the function to return.
- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.10.3.32 readFloat() [1/2]

Return the first valid float value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit.

• result is a pointer to where the float will be stored.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.10.3.33 readFloat() [2/2]

Return the first valid float value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the float will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.10.3.34 readLine()

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting EOL).

9.10 Serial1 Class Reference 141

9.10.3.35 readLong() [1/2]

Return the first valid long integer value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit.

• result is a pointer to where the long integer will be stored.

Returns

true if a valid integer is found prior to timeout; false otherwise.

9.10.3.36 readLong() [2/2]

Return the first valid long integer value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the long integer will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid long integer is found prior to timeout; false otherwise.

9.10.3.37 setTimeout()

```
void Reader::setTimeout (
          unsigned long milliseconds ) [inline], [inherited]
```

Sets maximum milliseconds to wait for stream data, default is 1 second.

• milliseconds the length of the timeout period in milliseconds.

9.10.3.38 start()

Configure the hardware for two-way serial communications, including turning on associated interrupts. You must call this function before reading from or writing to Serial1 on USART1.

- baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).
- config sets the configuration in term of data bits, parity, and stop bits. If omitted, the default is 8 data bits, no parity, and 1 stop bit.

9.10.3.39 stop()

```
void Seriall::stop ( ) [inline]
```

Stops buffered serial communications using Serial1 on USART1 by deconfiguring the hardware and turning off interrupts.

After calling this function, Arduino pins 0 and 1 are released and available for use as ordinary digital pins.

If you want to use Serial1 again for communications, you must call start() again.

9.10.3.40 write() [1/4]

Write a single character to the output stream. This implements the pure virtual function Writer::write(char c).

• the character to be written.

Returns

the number of bytes written.

Implements Writer.

9.10.3.41 write() [2/4]

Write a given number of characters from a buffer to the output stream. This implements the pure virtual function Writer::write(const char* buffer, size_t size).

- buffer the buffer of characters to write.
- size the number of characters to write

Returns

the number of bytes written.

Implements Writer.

9.10.3.42 write() [3/4]

Write a null-terminated string to the output stream. This implements the pure virtual function Writer::write(char* str).

• str the string to be written.

Returns

the number of bytes written.

Implements Writer.

9.10.3.43 write() [4/4]

Write a given number of bytes from a buffer to the output stream. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

- buffer the buffer of bytes to write.
- size the number of bytes to write

Returns

the number of bytes written.

Implements Writer.

The documentation for this class was generated from the following files:

- USART1.h
- USART1.cpp

9.11 Serial2 Class Reference

Provides a high-end interface to serial communications using USART2.

#include <USART2.h>

Inheritance diagram for Serial2:

Collaboration diagram for Serial2:

Public Types

• enum IntegerOutputBase { kBin = 2, kOct = 8, kDec = 10, kHex = 16 }

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Public Member Functions

void start (unsigned long baudRate, UsartSerialConfiguration config=kSerial 8N1)

Configure the hardware for two-way serial communications, including turning on associated interrupts. You must call this function before reading from or writing to Serial2 on USART2.

void stop ()

Stops buffered serial communications using Serial2 on USART2 by deconfiguring the hardware and turning off interrupts.

virtual size t write (char c)

Write a single character to the output stream. This implements the pure virtual function Writer::write(char c).

virtual size_t write (const char *str)

Write a null-terminated string to the output stream. This implements the pure virtual function Writer::write(char* str).

• virtual size t write (const char *buffer, size t size)

Write a given number of characters from a buffer to the output stream. This implements the pure virtual function Writer::write(const char* buffer, size t size).

virtual size t write (const uint8 t *buffer, size t size)

Write a given number of bytes from a buffer to the output stream. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

• virtual void flush ()

Flush the output stream. When this function returns, all previously written data will have been transmitted through the underlying output stream. This implements the pure virtual function Writer::flush().

virtual int read ()

Read and remove the next byte from the input stream. This implements the pure virtual function Reader::read().

virtual int peek ()

Examine the next byte from the input stream, without removing it. This implements the pure virtual function Reader::peek().

virtual bool available ()

Determine if data is available in the input stream. This implements the pure virtual function Reader::available().

size_t print (const char *str, bool addLn=false)

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

size_t print (const uint8_t *buf, size_t size, bool addLn=false)

Print a number of bytes to the output stream, with or without adding a new line character at the end.

size_t print (char c, bool addLn=false)

Print a single character to the output stream, with or without adding a new line character at the end.

size_t print (int8_t n, int base=kDec, bool addLn=false)

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

size_t print (uint8_t n, int base=kDec, bool addLn=false)

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (int n, int base=kDec, bool addLn=false)

Print an integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned int n, int base=kDec, bool addLn=false)

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (long n, int base=kDec, bool addLn=false)

Print a long integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned long n, int base=kDec, bool addLn=false)

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

size_t print (double d, int digits=2, bool addLn=false)

Print a floating point number to the output stream, with or without adding a new line character at the end.

size_t println (const char *str)

Print a null-terminated string to the output stream, adding a new line character at the end.

• size_t println (const uint8_t *buf, size_t size)

Print a number of bytes to the output stream, adding a new line character at the end.

size_t println (char c)

Print a single character to the output stream, adding a new line character at the end.

size t println (int8 t n, int base=kDec)

Print an 8-bit integer to the output stream, adding a new line character at the end.

size t println (uint8 t n, int base=kDec)

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

size t println (int n, int base=kDec)

Print an integer to the output stream, adding a new line character at the end.

size_t println (unsigned int n, int base=kDec)

Print an unsigned integer to the output stream, adding a new line character at the end.

size t println (long n, int base=kDec)

Print a long integer to the output stream, adding a new line character at the end.

size_t println (unsigned long n, int base=kDec)

Print an unsigned long integer to the output stream, adding a new line character at the end.

size_t println (double d, int digits=2)

Print a floating point number to the output stream, adding a new line character at the end.

size t println ()

Print a new line to the output stream.

void setTimeout (unsigned long milliseconds)

Sets maximum milliseconds to wait for stream data, default is 1 second.

bool find (const char *target)

Read data from the input stream until the target string is found.

bool find (const char *target, size t length)

Read data from the stream until the target string of given length is found.

bool findUntil (const char *target, const char *terminator)

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

bool findUntil (const char *target, size t targetLen, const char *terminate, size t termLen)

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

bool readLong (long *result)

Return the first valid long integer value from the stream.

bool readLong (long *result, char skipChar)

Return the first valid long integer value from the stream, ignoring selected characters.

bool readFloat (float *result)

Return the first valid float value from the stream.

bool readFloat (float *result, char skipChar)

Return the first valid float value from the stream, ignoring selected characters.

size_t readBytes (char *buffer, size_t length)

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is NOT null-terminated.

size_t readBytes (uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

size t readBytesUntil (char terminator, char *buffer, size t length)

Read characters from the input stream into a buffer, terminating when the terminator charactor is encountered, or if length characters have been read, or if the function times out. The result is NOT null-terminated.

size_t readBytesUntil (uint8_t terminator, uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

size t readLine (char *buffer, size t length)

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

void consumeWhiteSpace ()

Consumes whitespace characters until the first non-whitespace character is encountered or the function times out.

9.11.1 Detailed Description

Provides a high-end interface to serial communications using USART2.

The functions in this class are buffered for both input and output and operate using interrupts associated with USART2. This means the write functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated USART2 hardware. Similarly, data is received asynchronously and placed into the read buffer.

The read and write buffers are both ring buffers. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). The read buffer, however, will overwrite if it gets full. You must clear the read buffer by actually reading the data regularly when receiving significant amounts of data.

9.11.2 Member Enumeration Documentation

9.11.2.1 IntegerOutputBase

```
enum Writer::IntegerOutputBase [inherited]
```

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Enumerator

kBin	Produce a binary representation of integers (e.g., 11 is output as 0b1011)
kOct	Produce an octal representation of integers (e.g, 11 is output as 013)
kDec	Produce a decimal representation of integers (e.g., 11 is output as 11.
kHex	Produce a hexadecimal representation of integers (e.g., 11 is output as 0x0b)

9.11.3 Member Function Documentation

9.11.3.1 available()

```
bool Serial2::available ( ) [virtual]
```

Determine if data is available in the input stream. This implements the pure virtual function Reader::available().

Returns

True if data is available in the stream; false if not.

Implements Reader.

9.11.3.2 find() [1/2]

Read data from the input stream until the target string is found.

• target is the string the function seeks in the input stream.

Returns

true if target string is found before timeout, false otherwise.

9.11.3.3 find() [2/2]

Read data from the stream until the target string of given length is found.

- target is a string, the first length bytes of which the function seeks in the input stream.
- length is the number of bytes of the string to use for comparison.

Returns

true if target string of given length is found, false if the function times out before finding the target string.

9.11.3.4 findUntil() [1/2]

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- terminator is the string that stops the search.

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.11.3.5 findUntil() [2/2]

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- targetLen is the number of bytes in target that the function seeks in the input stream.
- terminator is the string that stops the search.
- termLen is the number of bytes in the terminator that

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.11.3.6 peek()

```
int Serial2::peek ( ) [virtual]
```

Examine the next byte from the input stream, without removing it. This implements the pure virtual function Reader::peek().

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implements Reader.

9.11.3.7 print() [1/10]

Print a single character to the output stream, with or without adding a new line character at the end.

- c is the character to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.11.3.8 print() [2/10]

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

- str is the null-terminated string to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.11.3.9 print() [3/10]

Print a number of bytes to the output stream, with or without adding a new line character at the end.

- · buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.11.3.10 print() [4/10]

Print a floating point number to the output stream, with or without adding a new line character at the end.

- d is the floating point number to output.
- digits is the number of decimal digits to output; the default is 2.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.11.3.11 print() [5/10]

```
size_t Writer::print (
    int n,
    int base = kDec,
    bool addLn = false ) [inherited]
```

Print an integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.11.3.12 print() [6/10]

```
size_t Writer::print (
    int8_t n,
    int base = kDec,
    bool addLn = false ) [inherited]
```

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

- $\bullet \ \ n$ is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.11.3.13 print() [7/10]

Print a long integer to the output stream, with or without adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.11.3.14 print() [8/10]

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

- $\bullet \ \ n$ is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.11.3.15 print() [9/10]

```
size_t Writer::print (
          unsigned int n,
          int base = kDec,
          bool addLn = false ) [inline], [inherited]
```

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.11.3.16 print() [10/10]

```
size_t Writer::print (
          unsigned long n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.11.3.17 println() [1/10]

Print a single character to the output stream, adding a new line character at the end.

 $\bullet \ \ {\mbox{\scriptsize c}}$ is the character to output.

Returns

9.11.3.18 println() [2/10]

Print a null-terminated string to the output stream, adding a new line character at the end.

• str is the null-terminated string to output.

Returns

the number of bytes sent to the output stream.

9.11.3.19 println() [3/10]

Print a number of bytes to the output stream, adding a new line character at the end.

- buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.

Returns

the number of bytes sent to the output stream.

9.11.3.20 println() [4/10]

Print a floating point number to the output stream, adding a new line character at the end.

- d is the flaoting point number to output.
- digits is the number of decimal digits to output; the default is 2.

Returns

9.11.3.21 println() [5/10]

Print an integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.11.3.22 println() [6/10]

Print an 8-bit integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.11.3.23 println() [7/10]

Print a long integer to the output stream, adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.11.3.24 println() [8/10]

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.11.3.25 println() [9/10]

```
size_t Writer::println (
          unsigned int n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.11.3.26 println() [10/10]

```
size_t Writer::println (
          unsigned long n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned long integer to the output stream, adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.11.3.27 read()

```
int Serial2::read ( ) [virtual]
```

Read and remove the next byte from the input stream. This implements the pure virtual function Reader::read().

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implements Reader.

9.11.3.28 readBytes() [1/2]

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is *NOT* null-terminated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout).

9.11.3.29 readBytes() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout).

9.11.3.30 readBytesUntil() [1/2]

Read characters from the input stream into a buffer, terminating when the terminator charactor is encountered, or if length characters have been read, or if the function times out. The result is *NOT* null-terminated.

- terminator a character that when encountered causes the function to return.
- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.11.3.31 readBytesUntil() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

- terminator a byte that when encountered causes the function to return.
- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.11.3.32 readFloat() [1/2]

Return the first valid float value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit.

• result is a pointer to where the float will be stored.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.11.3.33 readFloat() [2/2]

Return the first valid float value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the float will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.11.3.34 readLine()

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting EOL).

9.11.3.35 readLong() [1/2]

Return the first valid long integer value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit.

• result is a pointer to where the long integer will be stored.

Returns

true if a valid integer is found prior to timeout; false otherwise.

9.11.3.36 readLong() [2/2]

Return the first valid long integer value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the long integer will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid long integer is found prior to timeout; false otherwise.

9.11.3.37 setTimeout()

```
void Reader::setTimeout (
          unsigned long milliseconds ) [inline], [inherited]
```

Sets maximum milliseconds to wait for stream data, default is 1 second.

• milliseconds the length of the timeout period in milliseconds.

9.11.3.38 start()

```
void Serial2::start (
          unsigned long baudRate,
          UsartSerialConfiguration config = kSerial_8N1 ) [inline]
```

Configure the hardware for two-way serial communications, including turning on associated interrupts. You must call this function before reading from or writing to Serial2 on USART2.

- baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).
- config sets the configuration in term of data bits, parity, and stop bits. If omitted, the default is 8 data bits, no parity, and 1 stop bit.

9.11.3.39 stop()

```
void Serial2::stop ( ) [inline]
```

Stops buffered serial communications using Serial2 on USART2 by deconfiguring the hardware and turning off interrupts.

After calling this function, Arduino pins 0 and 1 are released and available for use as ordinary digital pins.

If you want to use Serial2 again for communications, you must call start() again.

9.11.3.40 write() [1/4]

Write a single character to the output stream. This implements the pure virtual function Writer::write(char c).

• the character to be written.

Returns

the number of bytes written.

Implements Writer.

9.11.3.41 write() [2/4]

Write a given number of characters from a buffer to the output stream. This implements the pure virtual function Writer::write(const char* buffer, size_t size).

- buffer the buffer of characters to write.
- size the number of characters to write

Returns

the number of bytes written.

Implements Writer.

9.11.3.42 write() [3/4]

Write a null-terminated string to the output stream. This implements the pure virtual function Writer::write(char* str).

• str the string to be written.

Returns

the number of bytes written.

Implements Writer.

9.11.3.43 write() [4/4]

Write a given number of bytes from a buffer to the output stream. This implements the pure virtual function Writer::write(const uint8 $_t*$ buffer, size $_t*$ size $_t*$).

- buffer the buffer of bytes to write.
- size the number of bytes to write

Returns

the number of bytes written.

Implements Writer.

The documentation for this class was generated from the following files:

- USART2.h
- USART2.cpp

9.12 Serial3 Class Reference

Provides a high-end interface to serial communications using USART3.

#include <USART3.h>

Inheritance diagram for Serial3:

Collaboration diagram for Serial3:

Public Types

• enum IntegerOutputBase { kBin = 2, kOct = 8, kDec = 10, kHex = 16 }

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Public Member Functions

void start (unsigned long baudRate, UsartSerialConfiguration config=kSerial 8N1)

Configure the hardware for two-way serial communications, including turning on associated interrupts. You must call this function before reading from or writing to Serial3 on USART3.

void stop ()

Stops buffered serial communications using Serial3 on USART3 by deconfiguring the hardware and turning off interrupts.

virtual size t write (char c)

Write a single character to the output stream. This implements the pure virtual function Writer::write(char c).

virtual size_t write (const char *str)

Write a null-terminated string to the output stream. This implements the pure virtual function Writer::write(char* str).

• virtual size t write (const char *buffer, size t size)

Write a given number of characters from a buffer to the output stream. This implements the pure virtual function Writer::write(const char* buffer, size t size).

virtual size t write (const uint8 t *buffer, size t size)

Write a given number of bytes from a buffer to the output stream. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

• virtual void flush ()

Flush the output stream. When this function returns, all previously written data will have been transmitted through the underlying output stream. This implements the pure virtual function Writer::flush().

virtual int read ()

Read and remove the next byte from the input stream. This implements the pure virtual function Reader::read().

virtual int peek ()

Examine the next byte from the input stream, without removing it. This implements the pure virtual function Reader::peek().

virtual bool available ()

Determine if data is available in the input stream. This implements the pure virtual function Reader::available().

size_t print (const char *str, bool addLn=false)

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

size_t print (const uint8_t *buf, size_t size, bool addLn=false)

Print a number of bytes to the output stream, with or without adding a new line character at the end.

size_t print (char c, bool addLn=false)

Print a single character to the output stream, with or without adding a new line character at the end.

• size_t print (int8_t n, int base=kDec, bool addLn=false)

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

size_t print (uint8_t n, int base=kDec, bool addLn=false)

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (int n, int base=kDec, bool addLn=false)

Print an integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned int n, int base=kDec, bool addLn=false)

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

size_t print (long n, int base=kDec, bool addLn=false)

Print a long integer to the output stream, with or without adding a new line character at the end.

size_t print (unsigned long n, int base=kDec, bool addLn=false)

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

size_t print (double d, int digits=2, bool addLn=false)

Print a floating point number to the output stream, with or without adding a new line character at the end.

size_t println (const char *str)

Print a null-terminated string to the output stream, adding a new line character at the end.

• size_t println (const uint8_t *buf, size_t size)

Print a number of bytes to the output stream, adding a new line character at the end.

size_t println (char c)

Print a single character to the output stream, adding a new line character at the end.

size t println (int8 t n, int base=kDec)

Print an 8-bit integer to the output stream, adding a new line character at the end.

size t println (uint8 t n, int base=kDec)

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

size_t println (int n, int base=kDec)

Print an integer to the output stream, adding a new line character at the end.

size_t println (unsigned int n, int base=kDec)

Print an unsigned integer to the output stream, adding a new line character at the end.

• size t println (long n, int base=kDec)

Print a long integer to the output stream, adding a new line character at the end.

size_t println (unsigned long n, int base=kDec)

Print an unsigned long integer to the output stream, adding a new line character at the end.

• size t println (double d, int digits=2)

Print a floating point number to the output stream, adding a new line character at the end.

size t println ()

Print a new line to the output stream.

void setTimeout (unsigned long milliseconds)

Sets maximum milliseconds to wait for stream data, default is 1 second.

bool find (const char *target)

Read data from the input stream until the target string is found.

bool find (const char *target, size_t length)

Read data from the stream until the target string of given length is found.

bool findUntil (const char *target, const char *terminator)

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

bool findUntil (const char *target, size t targetLen, const char *terminate, size t termLen)

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

bool readLong (long *result)

Return the first valid long integer value from the stream.

bool readLong (long *result, char skipChar)

Return the first valid long integer value from the stream, ignoring selected characters.

bool readFloat (float *result)

Return the first valid float value from the stream.

bool readFloat (float *result, char skipChar)

Return the first valid float value from the stream, ignoring selected characters.

size_t readBytes (char *buffer, size_t length)

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is NOT null-terminated.

size_t readBytes (uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

size t readBytesUntil (char terminator, char *buffer, size t length)

Read characters from the input stream into a buffer, terminating when the terminator charactor is encountered, or if length characters have been read, or if the function times out. The result is NOT null-terminated.

size_t readBytesUntil (uint8_t terminator, uint8_t *buffer, size_t length)

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

size_t readLine (char *buffer, size_t length)

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

void consumeWhiteSpace ()

Consumes whitespace characters until the first non-whitespace character is encountered or the function times out.

9.12.1 Detailed Description

Provides a high-end interface to serial communications using USART3.

The functions in this class are buffered for both input and output and operate using interrupts associated with USART3. This means the write functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated USART3 hardware. Similarly, data is received asynchronously and placed into the read buffer.

The read and write buffers are both ring buffers. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). The read buffer, however, will overwrite if it gets full. You must clear the read buffer by actually reading the data regularly when receiving significant amounts of data.

9.12.2 Member Enumeration Documentation

9.12.2.1 IntegerOutputBase

```
enum Writer::IntegerOutputBase [inherited]
```

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Enumerator

kBin	Produce a binary representation of integers (e.g., 11 is output as 0b1011)
kOct	Produce an octal representation of integers (e.g, 11 is output as 013)
kDec	Produce a decimal representation of integers (e.g., 11 is output as 11.
kHex	Produce a hexadecimal representation of integers (e.g., 11 is output as 0x0b)

9.12.3 Member Function Documentation

9.12.3.1 available()

```
bool Serial3::available ( ) [virtual]
```

Determine if data is available in the input stream. This implements the pure virtual function Reader::available().

Returns

True if data is available in the stream; false if not.

Implements Reader.

9.12.3.2 find() [1/2]

Read data from the input stream until the target string is found.

• target is the string the function seeks in the input stream.

Returns

true if target string is found before timeout, false otherwise.

9.12.3.3 find() [2/2]

Read data from the stream until the target string of given length is found.

- target is a string, the first length bytes of which the function seeks in the input stream.
- length is the number of bytes of the string to use for comparison.

Returns

true if target string of given length is found, false if the function times out before finding the target string.

9.12.3.4 findUntil() [1/2]

Read data from the stream until the target string is found, or the terminator string is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- terminator is the string that stops the search.

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.12.3.5 findUntil() [2/2]

Read data from the stream until the target string of given length is found, or the terminator string of given length is found, or the function times out.

This function is like find() but the search ends if the terminator string is found first.

- target is the string the function seeks in the input stream.
- targetLen is the number of bytes in target that the function seeks in the input stream.
- terminator is the string that stops the search.
- termLen is the number of bytes in the terminator that

Returns

true if target string is found before the terminator is encountered and before the function times out; false otherwise.

9.12.3.6 peek()

```
int Serial3::peek ( ) [virtual]
```

Examine the next byte from the input stream, without removing it. This implements the pure virtual function Reader::peek().

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implements Reader.

9.12.3.7 print() [1/10]

Print a single character to the output stream, with or without adding a new line character at the end.

- c is the character to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.12.3.8 print() [2/10]

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

- str is the null-terminated string to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.12.3.9 print() [3/10]

Print a number of bytes to the output stream, with or without adding a new line character at the end.

- · buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.12.3.10 print() [4/10]

Print a floating point number to the output stream, with or without adding a new line character at the end.

- d is the floating point number to output.
- digits is the number of decimal digits to output; the default is 2.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.12.3.11 print() [5/10]

```
size_t Writer::print (
          int n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print an integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.12.3.12 print() [6/10]

```
size_t Writer::print (
    int8_t n,
    int base = kDec,
    bool addLn = false ) [inherited]
```

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

- $\bullet \ \ n$ is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.12 Serial3 Class Reference 171

9.12.3.13 print() [7/10]

```
size_t Writer::print (
          long n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print a long integer to the output stream, with or without adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.12.3.14 print() [8/10]

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

- $\bullet \ \ n$ is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.12.3.15 print() [9/10]

```
size_t Writer::print (
          unsigned int n,
          int base = kDec,
          bool addLn = false ) [inline], [inherited]
```

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.12.3.16 print() [10/10]

```
size_t Writer::print (
          unsigned long n,
          int base = kDec,
          bool addLn = false ) [inherited]
```

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.12.3.17 println() [1/10]

Print a single character to the output stream, adding a new line character at the end.

- $_{\mbox{\scriptsize C}}$ is the character to output.

Returns

9.12.3.18 println() [2/10]

Print a null-terminated string to the output stream, adding a new line character at the end.

• str is the null-terminated string to output.

Returns

the number of bytes sent to the output stream.

9.12.3.19 println() [3/10]

Print a number of bytes to the output stream, adding a new line character at the end.

- buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.

Returns

the number of bytes sent to the output stream.

9.12.3.20 println() [4/10]

Print a floating point number to the output stream, adding a new line character at the end.

- d is the flaoting point number to output.
- digits is the number of decimal digits to output; the default is 2.

Returns

9.12.3.21 println() [5/10]

Print an integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.12.3.22 println() [6/10]

Print an 8-bit integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.12.3.23 println() [7/10]

Print a long integer to the output stream, adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.12.3.24 println() [8/10]

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.12.3.25 println() [9/10]

```
size_t Writer::println (
          unsigned int n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.12.3.26 println() [10/10]

```
size_t Writer::println (
          unsigned long n,
          int base = kDec ) [inline], [inherited]
```

Print an unsigned long integer to the output stream, adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.12.3.27 read()

```
int Serial3::read ( ) [virtual]
```

Read and remove the next byte from the input stream. This implements the pure virtual function Reader::read().

Returns

the next byte, or -1 if there is nothing to read in the input stream before timeout expires.

Implements Reader.

9.12.3.28 readBytes() [1/2]

Read characters from the input stream into a buffer, terminating if length characters have been read or the function times out. The result is *NOT* null-terminated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout).

9.12.3.29 readBytes() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating if length bytes have been read or the function times out.

- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout).

9.12 Serial3 Class Reference 177

9.12.3.30 readBytesUntil() [1/2]

Read characters from the input stream into a buffer, terminating when the terminator charactor is encountered, or if length characters have been read, or if the function times out. The result is *NOT* null-terminated.

- terminator a character that when encountered causes the function to return.
- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.12.3.31 readBytesUntil() [2/2]

Read bytes (uint8_t) from the input stream into a buffer, terminating when the terminator byte is encountered, or if length bytes have been read, or if the function times out.

- terminator a byte that when encountered causes the function to return.
- buffer a pointer to where the bytes read will be stored.
- length the maximum number of bytes to read.

Returns

the number of bytes placed in the buffer (0 means no data were read prior to timeout or detecting the terminator character).

9.12.3.32 readFloat() [1/2]

Return the first valid float value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit.

• result is a pointer to where the float will be stored.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.12.3.33 readFloat() [2/2]

Return the first valid float value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the float is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the float will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid float is found prior to timeout; false otherwise.

9.12.3.34 readLine()

Read characters from the input stream into a buffer, until it reaches EOL, or if length characters have been read, or if it times out. The result IS null-terminated.

- buffer a pointer to where the characters read will be stored.
- length the maximum number of characters to read.

Returns

the number of characters placed in the buffer (0 means no data were read prior to timeout or detecting EOL).

9.12 Serial3 Class Reference 179

9.12.3.35 readLong() [1/2]

Return the first valid long integer value from the stream.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit.

• result is a pointer to where the long integer will be stored.

Returns

true if a valid integer is found prior to timeout; false otherwise.

9.12.3.36 readLong() [2/2]

Return the first valid long integer value from the stream, ignoring selected characters.

Initial characters that are not digits (or the minus sign) are skipped; the integer is terminated by the first character that is not a digit and is not one of the skip characters. This allows format characters (typically commas) to be ignored on input.

- result is a pointer to where the long integer will be stored.
- skipChar is a character that will be ignored on input.

Returns

true if a valid long integer is found prior to timeout; false otherwise.

9.12.3.37 setTimeout()

```
void Reader::setTimeout (
          unsigned long milliseconds ) [inline], [inherited]
```

Sets maximum milliseconds to wait for stream data, default is 1 second.

• milliseconds the length of the timeout period in milliseconds.

9.12.3.38 start()

Configure the hardware for two-way serial communications, including turning on associated interrupts. You must call this function before reading from or writing to Serial3 on USART3.

- baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).
- config sets the configuration in term of data bits, parity, and stop bits. If omitted, the default is 8 data bits, no parity, and 1 stop bit.

9.12.3.39 stop()

```
void Serial3::stop ( ) [inline]
```

Stops buffered serial communications using Serial3 on USART3 by deconfiguring the hardware and turning off interrupts.

After calling this function, Arduino pins 0 and 1 are released and available for use as ordinary digital pins.

If you want to use Serial3 again for communications, you must call start() again.

9.12.3.40 write() [1/4]

Write a single character to the output stream. This implements the pure virtual function Writer::write(char c).

• the character to be written.

Returns

the number of bytes written.

Implements Writer.

9.12.3.41 write() [2/4]

Write a given number of characters from a buffer to the output stream. This implements the pure virtual function Writer::write(const char* buffer, size_t size).

- buffer the buffer of characters to write.
- size the number of characters to write

Returns

the number of bytes written.

Implements Writer.

9.12.3.42 write() [3/4]

Write a null-terminated string to the output stream. This implements the pure virtual function Writer::write(char* str).

• str the string to be written.

Returns

the number of bytes written.

Implements Writer.

9.12.3.43 write() [4/4]

Write a given number of bytes from a buffer to the output stream. This implements the pure virtual function Writer::write(const uint8_t* buffer, size_t size).

- buffer the buffer of bytes to write.
- size the number of bytes to write

Returns

the number of bytes written.

Implements Writer.

The documentation for this class was generated from the following files:

- USART3.h
- USART3.cpp

9.13 SPI::SPISettings Class Reference

A class that binds settings for configuring SPI transmissions.

```
#include <SPI.h>
```

Public Member Functions

• SPISettings (uint32_t maxSpeed, uint8_t bitOrder, uint8_t dataMode)

The constructor builds an SPISettings object out of three parameters describing the maximum transmission speed, the data order (most or least significant bit first), and the data mode (phase and polarity). Note that bit order extends to byte order when passing multibyte integers.

SPISettings ()

The constructor builds an SPISettings object with default settings corresponding to a maximum transmission speed of 8 MHz, most significant bit first, and kSpiMode0.

uint8_t getSpcr () const

Return the appropriate configure value for the SPCR register.

uint8_t getSpsr () const

Return the appropriate configure value for the SPSR register.

9.13.1 Detailed Description

A class that binds settings for configuring SPI transmissions.

The SPISettings object is used to configure the SPI hardware. The three parameters are combined into a single SPISettings object, which is passed to SPI::configure(). You need to configure the SPI subsystem in this way before transmitting any data. The configuration remains in effect until explicitly changed by another call to SPI::configure() or the SPI subsystem is disabled by a call to SPI::disable().

This class is taken almost verbatim from the Arduino library SPISettings class created by Matthijs Kooijman and licensed under terms of either the GNU General Public License version 2 or the GNU Lesser General Public License version 2.1.

The implementation makes clever use of GCC intrinsic functions to do essentially all the heavy lifting at compile time whenever the SPI parameters are compile-time constants, producing very small and efficient code in this case. My modifications reformat the code to the AVRTools library conventions and adapt the interface to align with the AVRTools SPI implementation.

9.13.2 Constructor & Destructor Documentation

9.13.2.1 SPISettings()

The constructor builds an SPISettings object out of three parameters describing the maximum transmission speed, the data order (most or least significant bit first), and the data mode (phase and polarity). Note that bit order extends to byte order when passing multibyte integers.

The code is designed to be exceptionally efficient and small if all three parameters are compile-time constants.

9.14 Writer Class Reference 183

- maxSpeed the maximum speed of transmission, in herz (Hz). For a SPI chip rated up to 16 MHz, use 16000000.
- bitOrder whether least significant or most significant bit is first. Pass either kMsbFirst or kLsbFirst.
- dataMode sets the data mode (phase and polarity) for SPI communications. Pass one of kSpiMode0, kSpi
 Mode1, kSpiMode2, or kSpiMode3.

9.13.3 Member Function Documentation

9.13.3.1 getSpcr()

```
uint8_t SPI::SPISettings::getSpcr ( ) const [inline]
```

Return the appropriate configure value for the SPCR register.

Returns

a value to load in the SPCR register to configure the SPI hardware.

9.13.3.2 getSpsr()

```
uint8_t SPI::SPISettings::getSpsr ( ) const [inline]
```

Return the appropriate configure value for the SPSR register.

Returns

a value to load in the SPSR register to configure the SPI hardware.

The documentation for this class was generated from the following file:

• SPI.h

9.14 Writer Class Reference

This is an abstract class defining a generic interface to write numbers and strings to a sequential stream of bytes (such as a serial output device).

```
#include <Writer.h>
```

Inheritance diagram for Writer:

Public Types

enum IntegerOutputBase { kBin = 2 , kOct = 8 , kDec = 10 , kHex = 16 }

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Public Member Functions

• virtual size_t write (char c)=0

Pure virtual function that writes a single character to the output stream.

• virtual size_t write (const char *str)=0

Pure virtual function that writes a null-terminated string to the output stream.

• virtual size_t write (const char *buffer, size_t size)=0

Pure virtual function that writes a given number of characters from a buffer to the output stream.

• virtual size_t write (const uint8_t *buffer, size_t size)=0

Pure virtual function that writes a given number of bytes from a buffer to the output stream.

• virtual void flush ()=0

Pure virtual function to flush the output stream. When this function returns, all previously written data will have been transmitted through the underlying output stream.

size t print (const char *str, bool addLn=false)

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

size_t print (const uint8_t *buf, size_t size, bool addLn=false)

Print a number of bytes to the output stream, with or without adding a new line character at the end.

size_t print (char c, bool addLn=false)

Print a single character to the output stream, with or without adding a new line character at the end.

size_t print (int8_t n, int base=kDec, bool addLn=false)

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

size t print (uint8 t n, int base=kDec, bool addLn=false)

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

size t print (int n, int base=kDec, bool addLn=false)

Print an integer to the output stream, with or without adding a new line character at the end.

size t print (unsigned int n, int base=kDec, bool addLn=false)

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

size t print (long n, int base=kDec, bool addLn=false)

Print a long integer to the output stream, with or without adding a new line character at the end.

size t print (unsigned long n, int base=kDec, bool addLn=false)

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

size_t print (double d, int digits=2, bool addLn=false)

Print a floating point number to the output stream, with or without adding a new line character at the end.

size_t println (const char *str)

Print a null-terminated string to the output stream, adding a new line character at the end.

size_t println (const uint8_t *buf, size_t size)

Print a number of bytes to the output stream, adding a new line character at the end.

size_t println (char c)

Print a single character to the output stream, adding a new line character at the end.

size_t println (int8_t n, int base=kDec)

Print an 8-bit integer to the output stream, adding a new line character at the end.

9.14 Writer Class Reference 185

size_t println (uint8_t n, int base=kDec)

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

size t println (int n, int base=kDec)

Print an integer to the output stream, adding a new line character at the end.

size_t println (unsigned int n, int base=kDec)

Print an unsigned integer to the output stream, adding a new line character at the end.

size t println (long n, int base=kDec)

Print a long integer to the output stream, adding a new line character at the end.

size_t println (unsigned long n, int base=kDec)

Print an unsigned long integer to the output stream, adding a new line character at the end.

• size t println (double d, int digits=2)

Print a floating point number to the output stream, adding a new line character at the end.

• size t println ()

Print a new line to the output stream.

9.14.1 Detailed Description

This is an abstract class defining a generic interface to write numbers and strings to a sequential stream of bytes (such as a serial output device).

It implements functions to convert various integers and floating point numbers into a sequence of bytes (so it is not a pure interface class). These functions depend on a small set of lower-level functions that are purely abstract and must be implemented by classes deriving from Writer.

Serial0 is an example of a class that derives from Writer by implementating the purely abstract functions in Writer.

9.14.2 Member Enumeration Documentation

9.14.2.1 IntegerOutputBase

enum Writer::IntegerOutputBase

An enumeration that defines the number that will be used as the base for representing integer quantities as a string of characters.

Enumerator

kBin	Produce a binary representation of integers (e.g., 11 is output as 0b1011)
kOct	Produce an octal representation of integers (e.g, 11 is output as 013)
kDec	Produce a decimal representation of integers (e.g., 11 is output as 11.
kHex	Produce a hexadecimal representation of integers (e.g., 11 is output as 0x0b)

9.14.3 Member Function Documentation

9.14.3.1 print() [1/10]

Print a single character to the output stream, with or without adding a new line character at the end.

- c is the character to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.14.3.2 print() [2/10]

Print a null-terminated string to the output stream, with or without adding a new line character at the end.

- str is the null-terminated string to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.14.3.3 print() [3/10]

Print a number of bytes to the output stream, with or without adding a new line character at the end.

- buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.14 Writer Class Reference 187

9.14.3.4 print() [4/10]

Print a floating point number to the output stream, with or without adding a new line character at the end.

- d is the floating point number to output.
- digits is the number of decimal digits to output; the default is 2.
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.14.3.5 print() [5/10]

```
size_t Writer::print (
          int n,
          int base = kDec,
          bool addLn = false )
```

Print an integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.14.3.6 print() [6/10]

```
size_t Writer::print (
    int8_t n,
    int base = kDec,
    bool addLn = false )
```

Print an 8-bit integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.14.3.7 print() [7/10]

Print a long integer to the output stream, with or without adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.14 Writer Class Reference 189

9.14.3.8 print() [8/10]

Print an 8-bit unsigned integer to the output stream, with or without adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.14.3.9 print() [9/10]

```
size_t Writer::print (
          unsigned int n,
          int base = kDec,
          bool addLn = false ) [inline]
```

Print an unsigned integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

9.14.3.10 print() [10/10]

```
size_t Writer::print (
          unsigned long n,
          int base = kDec,
          bool addLn = false )
```

Print an unsigned long integer to the output stream, with or without adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).
- addLn if true, a new line character is added at the end of the output; the default is false.

Returns

the number of bytes sent to the output stream.

9.14.3.11 println() [1/10]

Print a single character to the output stream, adding a new line character at the end.

 $\bullet \ _{\rm C}$ is the character to output.

Returns

the number of bytes sent to the output stream.

9.14.3.12 println() [2/10]

Print a null-terminated string to the output stream, adding a new line character at the end.

• str is the null-terminated string to output.

Returns

9.14 Writer Class Reference 191

9.14.3.13 println() [3/10]

Print a number of bytes to the output stream, adding a new line character at the end.

- · buf is the buffer containing bytes to output.
- size is the number of bytes from the buffer to output.

Returns

the number of bytes sent to the output stream.

9.14.3.14 println() [4/10]

Print a floating point number to the output stream, adding a new line character at the end.

- d is the flaoting point number to output.
- digits is the number of decimal digits to output; the default is 2.

Returns

the number of bytes sent to the output stream.

9.14.3.15 println() [5/10]

Print an integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.14.3.16 println() [6/10]

Print an 8-bit integer to the output stream, adding a new line character at the end.

- n is the integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.14.3.17 println() [7/10]

Print a long integer to the output stream, adding a new line character at the end.

- n is the long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.14.3.18 println() [8/10]

Print an 8-bit unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

9.14 Writer Class Reference 193

9.14.3.19 println() [9/10]

```
size_t Writer::println (
          unsigned int n,
          int base = kDec ) [inline]
```

Print an unsigned integer to the output stream, adding a new line character at the end.

- n is the unsigned integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.14.3.20 println() [10/10]

```
size_t Writer::println (
          unsigned long n,
          int base = kDec ) [inline]
```

Print an unsigned long integer to the output stream, adding a new line character at the end.

- n is the unsigned long integer to output.
- base is the base used to represent the number; should be one of IntegerOutputBase; defaults to decimal representation (kDec).

Returns

the number of bytes sent to the output stream.

9.14.3.21 write() [1/4]

Pure virtual function that writes a single character to the output stream.

• \circ the character to be written.

Returns

the number of bytes written.

Implemented in I2cLcd, Serial0, Serial1, Serial2, and Serial3.

9.14.3.22 write() [2/4]

Pure virtual function that writes a given number of characters from a buffer to the output stream.

- buffer the buffer of characters to write.
- size the number of characters to write

Returns

the number of bytes written.

Implemented in I2cLcd, Serial0, Serial1, Serial2, and Serial3.

9.14.3.23 write() [3/4]

Pure virtual function that writes a null-terminated string to the output stream.

• str the string to be written.

Returns

the number of bytes written.

Implemented in I2cLcd, Serial0, Serial1, Serial2, and Serial3.

9.14.3.24 write() [4/4]

Pure virtual function that writes a given number of bytes from a buffer to the output stream.

- buffer the buffer of bytes to write.
- size the number of bytes to write

Returns

the number of bytes written.

Implemented in I2cLcd, Serial0, Serial1, Serial2, and Serial3.

The documentation for this class was generated from the following files:

- · Writer.h
- Writer.cpp

Chapter 10

File Documentation

10.1 abi.h File Reference

This file provides certain functions needed to complete the avr-gcc C++ ABI. You never need to include this file, and you only need to link against abi.cpp if you encounter certain link errors.

#include <stdlib.h>
Include dependency graph for abi.h:

10.1.1 Detailed Description

This file provides certain functions needed to complete the avr-gcc C++ ABI. You never need to include this file, and you only need to link against abi.cpp if you encounter certain link errors.

If when building your project you get link-time errors about undefined references to symbols of the form $__cxa_XXX$ (e.g., $__cxa_pure_virtual$), then you should link your project against abi.cpp (there is no need to include abi.h in any of your sources.

If you don't encounter such errors, you can completely disregard both abi.h and abi.cpp.

196 File Documentation

10.2 abi.h

Go to the documentation of this file.

```
00001 /*
           abi.h - C++ ABI support missing from avr-gcc.
00002
           This is part of the AVRTools library.
00003
00004
           Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00005
00006
           This program is free software: you can redistribute it and/or modify
           it under the terms of the GNU General Public License as published by
00007
00008
           the Free Software Foundation, either version 3 of the License, or
00009
           (at your option) any later version.
00010
00011
           This program is distributed in the hope that it will be useful,
           but WITHOUT ANY WARRANTY; without even the implied warranty of
00012
00013
           MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00014
           GNU General Public License for more details.
00015
00016
           You should have received a copy of the GNU General Public License
00017
           along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00018 */
00019
00020
00021
00039 #ifndef abi_h
00040 #define abi_h
00041
00042
00043 #include <stdlib.h>
00044
00045 __extension__ typedef int __guard __attribute__((mode (__DI__)));
00046
00047 extern "C"
00048 {
00049 int __cxa_guard_acquire( __guard* );
00050 void __cxa_guard_release ( __guard* );
00051 void __cxa_guard_abort ( __guard* );
00053 void __cxa_pure_virtual() __attribute__ ((__noreturn__));
00054 void __cxa_deleted_virtual() __attribute__ ((__noreturn__));
00056
00057
00058
00059
00061 #endif
```

10.3 Analog2Digital.h File Reference

This file provides functions that access the analog-to-digital conversion capability of the ATmega328 and ATmega2560 microcontrollers.

```
#include <stdint.h>
#include "GpioPinMacros.h"
```

Include dependency graph for Analog2Digital.h:

Macros

#define readGpioPinAnalog(pinName)

Read the analog value of the pin.

Enumerations

enum A2DVoltageReference { kA2dReferenceAREF , kA2dReferenceAVCC , kA2dReference11V , kA2dReference256V }

Constants representing voltage references.

Functions

int readA2D (int8_t channel)

Read an analog voltage value.

uint16_t readGpioPinAnalogV (const GpioPinVariable &pinVar)

Read the analog value of the pin.

void initA2D (uint8_t ref=kA2dReferenceAVCC)

Initialize the analog-to-digital system.

· void turnOffA2D ()

Turn off the analog-to-digital system.

void setA2DVoltageReference (A2DVoltageReference ref)

Set the voltage reference for the analog-to-digital system.

void setA2DVoltageReferenceAREF ()

Set the voltage reference for the analog-to-digital system to AREF.

void setA2DVoltageReferenceAVCC ()

Set the voltage reference for the analog-to-digital system to AREF.

void setA2DVoltageReference11V ()

Set the voltage reference for the analog-to-digital system to AREF.

void setA2DVoltageReference256V ()

Set the voltage reference for the analog-to-digital system to AREF.

10.3.1 Detailed Description

This file provides functions that access the analog-to-digital conversion capability of the ATmega328 and ATmega2560 microcontrollers.

To use these functions, include Analog2Digital.h in your source code and link against Analog2Digital.cpp.

10.3.2 Macro Definition Documentation

10.3.2.1 readGpioPinAnalog

Read the analog value of the pin.

This function returns a number between 0 and 1023 that corresponds to voltage between 0 and a maximum reference value. The reference value is set using one of the setA2DVoltageReferenceXXX() functions.

pinName a pin name macro generated by GpioPinAnalog().

Returns

an value between 0 and 1023.

Note

Before calling this function must fist initialize the analog-to-digital sub-system by calling initA2D().

10.3.3 Enumeration Type Documentation

10.3.3.1 A2DVoltageReference

enum A2DVoltageReference

Constants representing voltage references.

Enumerator

kA2dReferenceAREF	Reference is AREF pin, internal VREF turned off.
kA2dReferenceAVCC	Reference is AVCC pin, internal VREF turned off.
kA2dReference11V	Reference is internal 1.1V VREF.
kA2dReference256V	Reference is internal 2.56V VREF (only available on ATmega2560)

10.3.4 Function Documentation

10.3.4.1 initA2D()

Initialize the analog-to-digital system.

You must call this function before using any of the analog-to-digital functions.

• ref provides the voltage reference to be used for analog-to-digital conversions. Pass one of the constants from enum A2DVoltageReference. If no value is provided, the default is kA2dReferenceAVCC.

Note

This function only works for CPU clocks running at either 8 MHz, 12 MHz, or 16 MHz.

10.3.4.2 readA2D()

Read an analog voltage value.

Voltage is read relative to the currently set reference value.

channel is an ADC channel number (between 0 and 7 on ATmega328; between 0 and 15 on ATMega2560).

Returns

a number between 0 and 1023.

Note

Generally users will not call this function but instead call readPinAnalog() passing it a pin name macro generated by Analog().

10.3.4.3 readGpioPinAnalogV()

Read the analog value of the pin.

This function returns a number between 0 and 1023 that corresponds to voltage between 0 and a maximum reference value. The reference value is set using one of the setA2DVoltageReferenceXXX() functions.

• pinVar a pin variable that has analog-to-digital capabilities (i.e., initialized with makeGpioVarFromGpioPinAnalog()).

Returns

an value between 0 and 1023.

Note

Before calling this function must fist initialize the analog-to-digital sub-system by calling initA2D().

10.3.4.4 setA2DVoltageReference()

```
void setA2DVoltageReference ( {\tt A2DVoltageReference}\ ref\ )
```

Set the voltage reference for the analog-to-digital system.

After your have initialized the analog-to-digital system with initA2D(), you can use this function to change the voltage reference.

• ref provides the voltage reference to be used for analog-to-digital conversions. Pass one of the constants from enum A2DVoltageReference.

10.3.4.5 setA2DVoltageReference11V()

```
void setA2DVoltageReference11V ( ) [inline]
```

Set the voltage reference for the analog-to-digital system to AREF.

This is an inline synonym for setA2DVoltageReference(kA2dReference11V)

10.4 Analog2Digital.h 201

10.3.4.6 setA2DVoltageReference256V()

```
void setA2DVoltageReference256V ( ) [inline]
```

Set the voltage reference for the analog-to-digital system to AREF.

This is an inline synonym for setA2DVoltageReference(kA2dReference256V)

Note

this function is only available on ATmega2560 (not on the ATmega328).

10.3.4.7 setA2DVoltageReferenceAREF()

```
void setA2DVoltageReferenceAREF ( ) [inline]
```

Set the voltage reference for the analog-to-digital system to AREF.

This is an inline synonym for setA2DVoltageReference(kA2dReferenceAREF)

10.3.4.8 setA2DVoltageReferenceAVCC()

```
void setA2DVoltageReferenceAVCC ( ) [inline]
```

Set the voltage reference for the analog-to-digital system to AREF.

This is an inline synonym for setA2DVoltageReference(kA2dReferenceAVCC)

10.4 Analog2Digital.h

Go to the documentation of this file.

```
00002
          Analog2Digital.h - A library for analog-to-digital conversions.
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
00008
          it under the terms of the GNU General Public License as published by
00009
          the Free Software Foundation, either version 3 of the License, or
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00014
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
          GNU General Public License for more details.
00016
00017
          You should have received a copy of the GNU General Public License
00018
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00019 */
00020
00021
00033 #ifndef Analog2Digital h
00034 #define Analog2Digital_h
00035
```

```
00036 #include <stdint.h>
00037
00038 #include "GpioPinMacros.h"
00039
00040
00041 #if defined(__AVR_ATmega2560__)
00042
00043
00048 enum A2DVoltageReference
00049 {
00050
          kA2dReferenceAREF = 0x00,
          kA2dReferenceAVCC = 0x01,
00051
00052
          kA2dReference11V = 0x02,
          kA2dReference256V = 0x03
00053
00054 };
00055
00056 #else
00057
00058 enum A2DVoltageReference
00059 {
                                       // 0x00 -> AREF pin, internal VREF turned off
00060
          kA2dReferenceAREF = 0x00,
                                       // 0x01 -> AVCC pin, internal VREF turned off
00061
          kA2dReferenceAVCC = 0x01,
                                       // 0x03 -> Internal 1.1V VREF
00062
          kA2dReference11V = 0x03
00063 };
00064
00065 #endif
00066
00067
00068 /*
00069
          The following macro is not intended for end-user use; it is needed to support the pin naming
00070
          macros in conjunction with the C/C++ preprocessor's re-scanning rules.
00071 */
00072
00073 #define _readGpioPinAnalog( ddr, port, pin, nbr, adc, ocr, com, tccr ) readA2D( adc )
00074
00075
00076
00077
00095 #define readGpioPinAnalog( pinName )
                                                                                   _readGpioPinAnalog( pinName )
00096
00097
00098 int readA2D( int8_t channel );
00099
00100
00101
00117 inline uint16_t readGpioPinAnalogV( const GpioPinVariable& pinVar )
00118 {
00119
          return readA2D( pinVar.adcNbr() );
00120 }
00121
00122
00135 void initA2D( uint8_t ref = kA2dReferenceAVCC );
00136
00137
00138
00144 void turnOffA2D();
00145
00146
00157 void setA2DVoltageReference( A2DVoltageReference ref );
00158
00159
00160
00167 inline void setA2DVoltageReferenceAREF()
00168 { setA2DVoltageReference( kA2dReferenceAREF ); }
00169
00170
00171
00178 inline void setA2DVoltageReferenceAVCC()
00179 { setA2DVoltageReference( kA2dReferenceAVCC ); }
00180
00181
00182
00189 inline void setA2DVoltageReference11V()
00190 { setA2DVoltageReference( kA2dReference11V ); }
00191
00192
00193 #if defined(__AVR_ATmega2560__)
00194
00195
00204 inline void setA2DVoltageReference256V()
00205 { setA2DVoltageReference( kA2dReference256V ); }
```

```
00206

00207 #endif

00208

00209

00210

00226 int readA2D( int8_t channel );

00227

00228 #endif
```

10.5 ArduinoMegaPins.h File Reference

This file defines the standard Arduino Uno pin name macros. It may be included directly by user code, although more commonly user code includes the file ArduinoPins.h, which in turn includes this file (when compiling for Arduino Uno targets).

```
#include "GpioPinMacros.h"
Include dependency graph for ArduinoMegaPins.h:
```


This graph shows which files directly or indirectly include this file:

10.5.1 Detailed Description

This file defines the standard Arduino Uno pin name macros. It may be included directly by user code, although more commonly user code includes the file ArduinoPins.h, which in turn includes this file (when compiling for Arduino Uno targets).

The standard Arduino Uno digital pins will be defined as pPin00 through pPin53.

The standard Arduino Uno analog pins will be defined as pPinA00 through pPinA15.

Additionally, the I2C SDA and SCL pins are also defined as pSDA and pSCL (these are synonyms for pPin20 and pPin21, respectively).

10.6 ArduinoMegaPins.h

Go to the documentation of this file.

```
00001 /
00002
          ArduinoMegaPins.h - Macros naming the pins on the Arduino Mega.
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00003
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
00008
          it under the terms of the GNU General Public License as published by
00009
          the Free Software Foundation, either version 3 of the License, or
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00014
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
          GNU General Public License for more details.
00016
          You should have received a copy of the GNU General Public License
00017
00018
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00019 */
00020
00021
00040 #ifndef ArduinoMegaPins_h
00041 #define ArduinoMegaPins_h
00042
00043 #ifndef ArduinoPinsDefined
00044 #define ArduinoPinsDefined
00045 #else
00046 #error "Only include one Arduino model pin definition file; more than one appears to be included"
00047 #endif
00048
00049
00051 #include "GpioPinMacros.h"
00052
00053
00054 #define pPinA00
                                  GpioPinAnalog(F, 0, 0)
                                                                  // PFO, ADCO
00055 #define pPinA01
                                  GpioPinAnalog(F, 1, 1)
                                                                   // PF1, ADC1
00056 #define pPinA02
                                  GpioPinAnalog(F, 2, 2)
                                                                  // PF2, ADC2
00057 #define pPinA03
                                  GpioPinAnalog(F, 3, 3)
                                                                   // PF3, ADC3
00058 #define pPinA04
                                  GpioPinAnalog(F, 4, 4)
                                                                  // PF4, ADC4, TCK
00059 #define pPinA05
                                  GpioPinAnalog(F, 5, 5)
                                                                   // PF5, ADC5, TMS
00060 #define pPinA06
                                  GpioPinAnalog(F, 6, 6)
                                                                  // PF5, ADC6, TDO
00061 #define pPinA07
                                  GpioPinAnalog(F, 7, 7)
                                                                  // PF5, ADC7, TDI
00062
00063 #define pPinA08
                                  GpioPinAnalog(K, 0, 8)
                                                                   // PFO, ADC8, PCINT16
00064 #define pPinA09
                                  GpioPinAnalog( K, 1, 9 )
                                                                   // PF1, ADC9, PCINT17
                                                                   // PF2, ADC10, PCINT18
00065 #define pPinA10
                                  GpioPinAnalog( K, 2, 10 )
                                                                   // PF3, ADC11, PCINT19
00066 #define pPinA11
                                  GpioPinAnalog( K, 3, 11 )
00067 #define pPinA12
                                  GpioPinAnalog(K, 4, 12)
                                                                   // PF4, ADC12, PCINT20
00068 #define pPinA13
                                                                   // PF5, ADC13, PCINT21
                                  GpioPinAnalog( K, 5, 13 )
                                                                   // PF5, ADC14, PCINT22
00069 #define pPinA14
                                  GpioPinAnalog( K, 6, 14 )
                                  GpioPinAnalog(K, 7, 15)
                                                                   // PF5, ADC15, PCINT23
00070 #define pPinA15
00071
```

```
00072 #define pPin00
                                                                     // PEO, RXDO, PCINT8
                                    GpioPin(E, 0)
00073 #define pPin01
                                    GpioPin(E, 1)
                                                                     // PE1, TXD0, PCINT3
00074 #define pPin02
                                    GpioPinPwm(E, 4, 3, B)
                                                                      // PE4, INT4, OC3B
00075 #define pPin03
                                    GpioPinPwm( E, 5, 3, C )
                                                                     // PE5, INT5, OC3C
00076 #define pPin04
                                    GpioPinPwm(G, 5, 0, B)
                                                                     // PG5, OC0B
00077 #define pPin05
                                   GpioPinPwm(E, 3, 3, A)
                                                                     // PE3, AIN1, OC3A
00078
00079 #define pPin06
                                   GpioPinPwm(H, 3, 4, A)
                                                                     // PH3, OC4A, PCINT8
00080 #define pPin07
                                                                      // PH4, OC4B
                                   GpioPinPwm(H, 4, 4, B)
00081 #define pPin08
                                    GpioPinPwm(H, 5, 4, C)
                                                                      // PH5, OC4C
00082 #define pPin09
                                    GpioPinPwm(H, 6, 2, B)
                                                                      // PH6, OC2B
00083 #define pPin10
                                                                     // PB4, OC2A, PCINT4
                        GpioPinPwm( B, 5, 1, A )
GpioPinPwm( B, 6, 1, B )
GpioPinPwm( B, 7, 0, A )
GpioPin( J, 1 )
                                   GpioPinPwm(B, 4, 2, A)
00084
                                                                     // PB5, OC1A, PCINT5
00085 #define pPin11
00086 #define pPin12
                                                                     // PB6, OC1B, PCINT6
00087 #define pPin13
                                                                      // PB7, OCOA, PCINT7
00088 #define pPin14
                                                                     // PJ1, TXD3, PCINT10
                                                                     // PJO, RXD3, PCINT9
00089 #define pPin15
                                   GpioPin(J, 0)
00090
                                                                     // PH1, TXD2
00091 #define pPin16
                                   GpioPin(H, 1)
                                                                     // PHO, RXD2
                                   GpioPin(H, 0)
00092 #define pPin17
00093 #define pPin18
                                   GpioPin(D, 3)
                                                                     // PD3, INT3, TXD1
                                                                     // PD2, INT2, RXD1
// PD1, INT1, SDA
00094 #define pPin19
                                   GpioPin(D, 2)
00095 #define pPin20
                           GpioPin(D, 0)
GpioPin(A, 0)
GpioPin(A, 1)
GpioPin'
GpioPin'
                                   GpioPin(D, 1)
00096
                                                                     // PDO, INTO, SCL
00097 #define pPin21
                                                                     // PA0, AD0
// PA1, AD1
00098 #define pPin22
00099 #define pPin23
                                                                     // PA2, AD2
00100 #define pPin24
00101 #define pPin25
                                                                     // PA3, AD3
00102
                                                                     // PA4, AD4
00103 #define pPin26
                                  GpioPin(A, 4)
00104 #define pPin27
                                   GpioPin(A, 5)
                                                                     // PA5, AD5
                                                                      // PA6, AD6
00105 #define pPin28
                                    GpioPin(A, 6)
                                   GpioPin( A, 7 )
GpioPin( C, 7 )
                                                                     // PA7, AD7
// PC7, A15
00106 #define pPin29
00107 #define pPin30
                              GpioPin( C, 6 )
GpioPin( C, 5
00108
                                                                     // PC6, A14
00109 #define pPin31
00110 #define pPin32
                                                                      // PC5, A13
00111 #define pPin33
                                                                     // PC4, A12
                                                                     // PC3, A11
// PC2, A10
00112 #define pPin34
                                   GpioPin(C, 3)
00113 #define pPin35
                                   GpioPin(C, 2)
00114
00115 #define pPin36
                                   GpioPin(C, 1)
                                                                     // PC1, A9
00116 #define pPin37
00117 #define pPin38
                                   GpioPin(C, 0)
GpioPin(D, 7)
                                                                     // PC0, A8
// PD7, T0
00118 #define pPin39
                                   GpioPin(G, 2)
                                                                     // PG2, ALE
                                                                     // PG1, RD
00119 #define pPin40
                                   GpioPin(G, 1)
                         GpioPin( G, 0 )
GpioPin( L, 7 )
GpioPin( L, 6 )
GpioPinPwm( J. F
GpioPinPwm( J. F
00120
                                                                     // PG0, WR
00121 #define pPin41
00122 #define pPin42
                                                                     // PL7
                                                                      // PL6
00123 #define pPin43
00124 #define pPin44
                                    GpioPinPwm(L, 5, 5, C)
                                                                     // PL5, OC5C
00125 #define pPin45
                                   GpioPinPwm(L, 4, 5, B)
                                                                     // PL4, OC5B
00126
00127 #define pPin46
                                  GpioPinPwm(L, 3, 5, A)
                                                                     // PL3, OC5A
                                   GpioPin(L, 2)
00128 #define pPin47
                                                                     // PL2, T5
00129 #define pPin48
                                    GpioPin(L, 1)
                                                                      // PL1, ICP5
00130 #define pPin49
                                   GpioPin(L, 0)
                                                                     // PLO, ICP4
00131 #define pPin50
                                                                     // PB3, MISO, PCINT3
                                   GpioPin(B, 3)
00132
                               GpioPin(B, 2)
GpioPin(B. 1 \
00133 #define pPin51
                                                                     // PB2, MOSI, PCINT2
00134 #define pPin52
                                   GpioPin(B, 1)
                                                                     // PB1, SCK, PCINT1
00135 #define pPin53
                                   GpioPin(B, 0)
                                                                      // PBO, SS, PCINTO
00136
                                                                      // I2C SDA
// I2C SCL
00137 #define pSDA
                                   pPin20
00138 #define pSCL
                                   pPin21
00139
00140 #define pSS
                                  pPin53
                                                                      // SPI SS
                                pPin51
pPin50
00141 #define pMOSI
                                                                      // SPI MOSI
00142 #define pMISO
                                                                      // SPI MISO
00143 #define pSCK
                                                                      // SPI SCK
                                   pPin52
00144
00145
00146 #endif
```

10.7 ArduinoPins.h File Reference

This file is the primary one that users should include to access and use the pin name macros.

#include "ArduinoMegaPins.h"
Include dependency graph for ArduinoPins.h:

10.7.1 Detailed Description

This file is the primary one that users should include to access and use the pin name macros.

Including this file will automatically include either the default Arduino Uno pin names (by including ArduinoUnoPins.h) or the default Arduino Mega pin names (by including ArduinoMegaPins.h).

The standard Arduino digital pins will be defined in the form pPinNN (where NN = 00 through 13 for Arduino Uno, and 00 through 53 for Arduino Mega).

The standard Arduino analog pins will be defined in the form pPinAxx (where xx = 00 through 07 for Arduino Uno, and xx = 00 through 15 for Arduino Mega).

10.8 ArduinoPins.h

10.8 ArduinoPins.h

Go to the documentation of this file.

```
00001 /*
00002
          ArduinoPins.h - Macros naming the Arduino pins (selects the appropriate variant).
00003
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
          This is part of the AVRTools library.
00004
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
00008
          it under the terms of the GNU General Public License as published by
00009
          the Free Software Foundation, either version 3 of the License, or
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00014
00015
          GNU General Public License for more details.
00016
00017
          You should have received a copy of the GNU General Public License
00018
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00019 */
00020
00021
00043 #ifndef ArduinoPins_h
00044 #define ArduinoPins_h
00045
00046
00047 #if defined(__AVR_ATmega328P__)
00048
00049 #include "ArduinoUnoPins.h"
00050
00051 #elif defined(__AVR_ATmega2560__)
00052
00053 #include "ArduinoMegaPins.h"
00054
00055 #else
00056
00057 #error "Undefined AVR processor type"
00059 #endif
00061
00062 #endif
00063
```

10.9 ArduinoUnoPins.h File Reference

This file defines the standard Arduino Uno pin name macros. It may be included directly by user code, although more commonly user code includes the file ArduinoPins.h, which in turn includes this file (when compiling for Arduino Uno targets).

#include "GpioPinMacros.h"
Include dependency graph for ArduinoUnoPins.h:

10.9.1 Detailed Description

This file defines the standard Arduino Uno pin name macros. It may be included directly by user code, although more commonly user code includes the file ArduinoPins.h, which in turn includes this file (when compiling for Arduino Uno targets).

The standard Arduino Uno digital pins will be defined as pPin00 through pPin13.

The standard Arduino Uno analog pins will be defined as pPinA00 through pPinA07.

Additionally, the I2C SDA and SCL pins are also defined as pSDA and pSCL (these are synonyms for pPinA04 and pPinA05, respectively).

10.10 ArduinoUnoPins.h

Go to the documentation of this file.

```
00001 /*
          ArduinoUnoPins.h - Macros naming the pins on the Arduino Uno.
00003
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
00008
          it under the terms of the GNU General Public License as published by
00009
          the Free Software Foundation, either version 3 of the License, or
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00013
00014
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
          GNU General Public License for more details.
00016
00017
          You should have received a copy of the GNU General Public License
```

```
00018
             along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00019 */
00020
00021
00041 #ifndef ArduinoUnoPins_h
00042 #define ArduinoUnoPins_h
00044 #ifndef ArduinoPinsDefined
00045 #define ArduinoPinsDefined
00047 #error "Only include one Arduino model pin definition file; more than one appears to be included"
00048 #endif
00049
00050
00051
00052 #include "GpioPinMacros.h"
00053
00054
00055 #define pPinA00
                                              GpioPinAnalog( C, 0, 0 )
                                                                                          // PCO, ADCO, PCINT8
00056 #define pPinA01
                                              GpioPinAnalog( C, 1, 1 )
                                                                                         // PC1, ADC1, PCINT9
00057 #define pPinA02
                                                                                         // PC2, ADC2, PCINT10
                                              GpioPinAnalog( C, 2, 2 )
00058 #define pPinA03
                                             GpioPinAnalog( C, 3, 3 )
                                                                                         // PC3, ADC3, PCINT11
                                                                                        // PC4, ADC4, SDA, PCINT12
// PC5, ADC5, SCL, PCINT13
00059 #define pPinA04
                                             GpioPinAnalog( C, 4, 4 )
00060 #define pPinA05
                                           GpioPinAnalog(C, 5, 5)
00061
                                                                                        // PDO, RXD, PCINT16
00062 #define pPin00
                                            GpioPin(D, 0)
                             Gplor:...

GpioPin( D, 2 )

GpioPinPwm( D, 3, 2, B )

GpioPinPwm( D, 5, 0, B )

GpioPinPwm( D, 5, 0, A )

GpioPinPwm( D, 7 )

GpioPin( B, 0 )

GpioPinPwm( B, 1, 1, A )

GpioPinPwm( B, 2, 1, B )

GpioPinPwm( B, 3, 2, A )

GpioPin( B, 4 )

GpioPin( B, 5 )

GpioPin( B, 5 )

GpioPin( B, 5 )

GpioPinPwm( B, 3, 2, A )

GpioPinPwm( B, 3, 2, A )

GpioPinPwm( B, 5 )

GpioPin( B, 5 )
00063 #define pPin01
                                                                                          // PD1, TXD, PCINT17
                                             GpioPin(D, 1)
00064 #define pPin02
00065 #define pPin03
00066 #define pPin04
00067 #define pPin05
00068 #define pPin06
00069 #define pPin07
00070 #define pPin08
00071 #define pPin09
00072 #define pPin10
00073 #define pPin11
00074 #define pPin12
00075 #define pPin13
00076
00077 #define pSDA
00078 #define pSCL
00079
00080 #define pSS
                                           pPin11
00081 #define pMOSI
                                                                                         // SPI MOSI
                                             pPin12
00082 #define pMISO
                                                                                          // SPI MISO
00083 #define pSCK
                                            pPin13
                                                                                          // SPI SCK
00084
00085
00086 #endif
```

10.11 GpioPinMacros.h File Reference

This file contains the primary macros for naming and manipulating GPIO pin names.

#include <avr/io.h>

Include dependency graph for GpioPinMacros.h:

This graph shows which files directly or indirectly include this file:

Classes

• class GpioPinVariable

This class defines a type that can encode a GPIO pin as a variable. Read the section on [GPIO Pin Variables] (GPIO pin variables) to understand how to use this class.

Macros

#define GpioPin(portLtr, pinNbr)

Primary macro-function for defining a GPIO pin name.

#define GpioPinAnalog(portLtr, pinNbr, adcNbr)

Secondary macro-function for defining a GPIO pin name for GPIO pins that support analog conversion.

#define GpioPinPwm(portLtr, pinNbr, timer, chan)

Secondary macro-function for defining a GPIO pin name for GPIO pins that support PWM output.

#define isGpioPinModeOutput(pinName)

Test if the mode of the GPIO pin is output (i.e., the corresponding DDRn bit is set).

#define isGpioPinModeInput(pinName)

Test if the mode of the GPIO pin is input (i.e., the corresponding DDRn is clear).

#define setGpioPinModeOutput(pinName)

Set the mode of the GPIO pin to output (i.e., set the corresponding DDRn bit).

#define setGpioPinModeInput(pinName)

Set the mode of the GPIO pin to input (i.e., clear the corresponding DDRn and PORTn bits).

#define setGpioPinModeInputPullup(pinName)

Set the mode of the GPIO pin to input with pullup (i.e., clear the corresponding DDRn bit and set the PORTn bit).

#define readGpioPinDigital(pinName)

Read the value of the GPIO pin (i.e., return the value of correspoinding the PINn bit).

#define writeGpioPinDigital(pinName, val)

Write a value the GPIO pin (i.e., set or clear the correspoinding the PORTn bit).

• #define setGpioPinHigh(pinName)

Write a 1 to the GPIO pin (i.e., set the correspoinding the PORTn bit).

• #define setGpioPinLow(pinName)

Write a 0 the GPIO pin (i.e., clear the corresponding the PORTn bit).

#define getGpioDDR(pinName)

Get the DDRn corresponding to this GPIO pin.

• #define getGpioPORT(pinName)

Get the PORTn corresponding to this GPIO pin.

#define getGpioPIN(pinName)

Get the bit number corresponding to this GPIO pin.

#define getGpioMASK(pinName)

Get the bit mask corresponding to this GPIO pin.

#define getGpioADC(pinName)

Get the ADC channel corresponding to this GPIO pin, assuming it is an ADC capable GPIO pin.

• #define getGpioOCR(pinName)

Get the OCR register corresponding to this GPIO pin, assuming it is a PWM capable GPIO pin.

#define getGpioCOM(pinName)

Get the COM bit name corresponding to this GPIO pin, assuming it is a PWM capable GPIO pin.

#define getGpioTCCR(pinName)

Get the TCCR register corresponding to this GPIO pin, assuming it is a PWM capable GPIO pin.

• #define makeGpioVarFromGpioPin(pinName)

Create a GPIO pin variable of type GpioPinVariable from a GPIO pin macro.

#define makeGpioVarFromGpioPinAnalog(pinName)

Create a GPIO pin variable of type GpioPinVariable that can be used for analog-to-digital reading from a GPIO pin macro.

#define makeGpioVarFromGpioPinPwm(pinName)

Create a GPIO pin variable of type GpioPinVariable that can be used for PWM from a GPIO pin macro.

Enumerations

enum { kDigitalLow = 0 , kDigitalHigh = 1 }

Constants for digital values representing LOW and HIGH.

Functions

bool isGpioPinModeOutputV (const GpioPinVariable &pinVar)

Test if the mode of the GPIO pin is output (i.e., the corresponding DDRn bit is set).

bool isGpioPinModeInputV (const GpioPinVariable &pinVar)

Test if the mode of the GPIO pin is input (i.e., the corresponding DDRn is clear).

void setGpioPinModeOutputV (const GpioPinVariable &pinVar)

Set the mode of the GPIO pin to output (i.e., set the corresponding DDRn bit).

void setGpioPinModeInputV (const GpioPinVariable &pinVar)

Set the mode of the GPIO pin to input (i.e., clear the corresponding DDRn and PORTn bits).

void setGpioPinModeInputPullupV (const GpioPinVariable &pinVar)

Set the mode of the GPIO pin to input with pullup (i.e., clear the corresponding DDRn bit and set the PORTn bit).

bool readGpioPinDigitalV (const GpioPinVariable &pinVar)

Read the value of the GPIO pin (i.e., return the value of corresponding the PINn bit).

void writeGpioPinDigitalV (const GpioPinVariable &pinVar, bool value)

Write a value the GPIO pin (i.e., set or clear the corresponding the PORTn bit).

void setGpioPinHighV (const GpioPinVariable &pinVar)

Write a 1 to the GPIO pin (i.e., set the corresponding the PORTn bit).

void setGpioPinLowV (const GpioPinVariable &pinVar)

Write a 0 to the GPIO pin (i.e., clear the correspoinding the PORTn bit).

10.11.1 Detailed Description

This file contains the primary macros for naming and manipulating GPIO pin names.

Normally you do not include this file directly. Instead include either ArduinoPins.h, which will automatically include this

10.11.2 Macro Definition Documentation

10.11.2.1 getGpioADC

Get the ADC channel corresponding to this GPIO pin, assuming it is an ADC capable GPIO pin.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

a number between 0-7 (for ATmega328) or between 0-15 (for ATmega2560).

10.11.2.2 getGpioCOM

Get the COM bit name corresponding to this GPIO pin, assuming it is a PWM capable GPIO pin.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

```
a COMn[A/B]1 bit name (e.g., COM2B1)
```

10.11.2.3 getGpioDDR

Get the DDRn corresponding to this GPIO pin.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

a DDRn register name (e.g., DDRB)

10.11.2.4 getGpioMASK

Get the bit mask corresponding to this GPIO pin.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

a byte-sized bitmask

10.11.2.5 getGpioOCR

Get the OCR register corresponding to this GPIO pin, assuming it is a PWM capable GPIO pin.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

```
a OCRn[A/B] register name (e.g., OCR2B)
```

10.11.2.6 getGpioPIN

Get the bit number corresponding to this GPIO pin.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

a number between 0 and 7

10.11.2.7 getGpioPORT

Get the PORTn corresponding to this GPIO pin.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

a PORTn register name (e.g., PORTB)

10.11.2.8 getGpioTCCR

Get the TCCR register corresponding to this GPIO pin, assuming it is a PWM capable GPIO pin.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

```
a TCCTn[A/B] register name (e.g., TCCR2B)
```

10.11.2.9 GpioPin

Primary macro-function for defining a GPIO pin name.

- portLtr an uppercase letter identifying the port (e.g., A, B, C, ...) the GPIO pin belongs to.
- pinNbr a number between 0 and 7 identifying the bit on that port that corresponds to the GPIO pin.

10.11.2.10 GpioPinAnalog

Secondary macro-function for defining a GPIO pin name for GPIO pins that support analog conversion.

- portLtr an uppercase letter identifying the port (e.g., A, B, C, ...) the GPIO pin belongs to.
- pinNbr a number between 0 and 7 identifying the bit on that port that corresponds to the GPIO pin.
- adcNbr a number representing the ADC converter channel corresponding to this GPIO pin (0-7 for ArduinoUno; 0-15 for ArduinoMega)

10.11.2.11 GpioPinPwm

Secondary macro-function for defining a GPIO pin name for GPIO pins that support PWM output.

- \bullet portLtr an uppercase letter identifying the port (e.g., A, B, C, ...) the GPIO pin belongs to.
- pinNbr a number between 0 and 7 identifying the bit on that port that corresponds to the GPIO pin.
- timer a number representing the timer number associated with the PWM function on this GPIO pin.
- chan a letter (A, B, or C) representing the channel on the timer associated with the PWM function on this GPIO pin.

10.11.2.12 isGpioPinModeInput

Test if the mode of the GPIO pin is input (i.e., the corresponding DDRn is clear).

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

10.11.2.13 isGpioPinModeOutput

Test if the mode of the GPIO pin is output (i.e., the corresponding DDRn bit is set).

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

10.11.2.14 makeGpioVarFromGpioPin

Create a GPIO pin variable of type GpioPinVariable from a GPIO pin macro.

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

a GpioPinVariable.

10.11.2.15 makeGpioVarFromGpioPinAnalog

Create a GPIO pin variable of type GpioPinVariable that can be used for analog-to-digital reading from a GPIO pin macro

• pinName a GPIO pin name macro generated by GpioPinAnalog().

Returns

a GpioPinVariable that can be used for analog-to-digital reading.

10.11.2.16 makeGpioVarFromGpioPinPwm

Create a GPIO pin variable of type GpioPinVariable that can be used for PWM from a GPIO pin macro.

• pinName a GPIO pin name macro generated by GpioPinPwm().

Returns

a GpioPinVariable that can be used for PWM.

10.11.2.17 readGpioPinDigital

```
\label{eq:define_position} \begin{page}{0.5\textwidth} \# define \ readGpioPinDigital(\\ pinName\ ) \end{page}
```

Read the value of the GPIO pin (i.e., return the value of correspoinding the PINn bit).

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

Returns

0 (false) or a non-zero (true) value

10.11.2.18 setGpioPinHigh

Write a 1 to the GPIO pin (i.e., set the correspoinding the PORTn bit).

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

10.11.2.19 setGpioPinLow

Write a 0 the GPIO pin (i.e., clear the corresponding the PORTn bit).

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

10.11.2.20 setGpioPinModeInput

Set the mode of the GPIO pin to input (i.e., clear the corresponding DDRn and PORTn bits).

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

10.11.2.21 setGpioPinModeInputPullup

Set the mode of the GPIO pin to input with pullup (i.e., clear the corresponding DDRn bit and set the PORTn bit).

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

10.11.2.22 setGpioPinModeOutput

Set the mode of the GPIO pin to output (i.e., set the corresponding DDRn bit).

• pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().

10.11.2.23 writeGpioPinDigital

Write a value the GPIO pin (i.e., set or clear the corresponding the PORTn bit).

- pinName a GPIO pin name macro generated by either GpioPin(), GpioPinAnalog(), or GpioPinPwm().
- val the value to be written: 0 means to clear the GPIO pin; any other value means to set it.

10.11.3 Enumeration Type Documentation

10.11.3.1 anonymous enum

```
anonymous enum
```

Constants for digital values representing LOW and HIGH.

Enumerator

kDigitalLow	Value representing digital LOW.
kDigitalHigh	Value representing digital HIGH.

10.11.4 Function Documentation

10.11.4.1 isGpioPinModeInputV()

Test if the mode of the GPIO pin is input (i.e., the corresponding DDRn is clear).

• pinVar a GPIO pin variable of type GpioPinVariable.

10.11.4.2 isGpioPinModeOutputV()

Test if the mode of the GPIO pin is output (i.e., the corresponding DDRn bit is set).

• pinVar a GPIO pin variable of type GpioPinVariable.

10.11.4.3 readGpioPinDigitalV()

Read the value of the GPIO pin (i.e., return the value of correspoinding the PINn bit).

• pinVar a GPIO pin variable of type GpioPinVariable.

Returns

```
0 (false) or 1 (true)
```

10.11.4.4 setGpioPinHighV()

Write a 1 to the GPIO pin (i.e., set the correspoinding the PORTn bit).

• pinVar a GPIO pin variable of type GpioPinVariable.

10.11.4.5 setGpioPinLowV()

Write a 0 to the GPIO pin (i.e., clear the correspoinding the PORTn bit).

• pinVar aa GPIO pin variable of type GpioPinVariable.

10.11.4.6 setGpioPinModeInputPullupV()

Set the mode of the GPIO pin to input with pullup (i.e., clear the corresponding DDRn bit and set the PORTn bit).

• pinVar a GPIO pin variable of type GpioPinVariable.

10.11.4.7 setGpioPinModeInputV()

Set the mode of the GPIO pin to input (i.e., clear the corresponding DDRn and PORTn bits).

• pinVar a GPIO pin name variable of type GpioPinVariable.

10.11.4.8 setGpioPinModeOutputV()

Set the mode of the GPIO pin to output (i.e., set the corresponding DDRn bit).

• pinVar a GPIO pin variable of type GpioPinVariable.

10.11.4.9 writeGpioPinDigitalV()

Write a value the GPIO pin (i.e., set or clear the corresponding the PORTn bit).

- pinVar a GPIO pin variable of type GpioPinVariable.
- val the value to be written: 0 means to clear the GPIO pin; any other value means to set it.

10.12 GpioPinMacros.h

Go to the documentation of this file.

```
00001 /*
00002
          GpioPinMacros.h - Macros for naming and manipulating Arduino pins.
00003
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
          it under the terms of the GNU General Public License as published by
00008
00009
          the Free Software Foundation, either version 3 of the License, or
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00014
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
          GNU General Public License for more details.
00016
00017
          You should have received a copy of the GNU General Public License along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>>.
00018
00019 */
00020
00021
00035 #ifndef GpioPinMacros h
00036 #define GpioPinMacros_h
00037
00038
00039 #include <avr/io.h>
00040
00041
00042
00047 enum
00048 {
00049
          kDigitalLow = 0,
          kDigitalHigh = 1
00051 };
00052
00053
00054
00055
00056
00057 /*
00058
00059
          These macros are implementation details for the port naming macros and are not intended
00060
          for end-users. These are required to make the macros work due to the
00061
          reparsing and resubstitution rules of the C/C++ preprocessor.
00062
00063 */
00064
00065
00066 #define _GpioPin( ddr, port, pin, nbr)
                                                  ddr, port, pin, nbr, -1, 0, -1, 0
00069 #define _GpioPinAnalog( ddr, port, pin, nbr, adc )
00070
                                                 ddr, port, pin, nbr, adc, 0, -1, 0
00071
00072 #define _GpioPinPwm( ddr, port, pin, nbr, ocr, com, tccr )
00073
                                              ddr, port, pin, nbr, -1, ocr, com, tccr
00074
00075 #define _isGpioPinModeOutput( ddr, port, pin, nbr, adc, ocr, com, tccr)
00077 #define _isGpioPinModeInput( ddr, port, pin, nbr, adc, ocr, com, tccr)
                                                                                             (!( ddr & (1«nbr) ))
00079 #define _setGpioPinModeOutput( ddr, port, pin, nbr, adc, ocr, com, tccr)
                                                                                             ddr \mid = (1 \times nbr)
00080
00081 #define _setGpioPinModeInput( ddr, port, pin, nbr, adc, ocr, com, tccr)
                                                                                             ddr \&= \sim (1 \ll nbr), port &=
00082
00083 #define _setGpioPinModeInputPullup( ddr, port, pin, nbr, adc, ocr, com, tccr ) ddr &= ~(1«nbr), port |=
00084
00085 #define _readGpioPinDigital( ddr, port, pin, nbr, adc, ocr, com, tccr )
                                                                                             ( pin & (1«nbr) )
00086
00087 #define _writeGpioPinDigital( ddr, port, pin, nbr, adc, ocr, com, tccr, value ) 
00088 do { if (value) port |= (1«nbr); else port &= \sim(1«nbr); } while (
00090 #define _setGpioPinHigh( ddr, port, pin, nbr, adc, ocr, com, tccr )
                                                                                            port |= (1«nbr)
```

```
00091
00092 #define _setGpioPinLow( ddr, port, pin, nbr, adc, ocr, com, tccr)
                                                                                        port &= ~(1«nbr)
00093
00094 #define _getGpioDDR( ddr, port, pin, nbr, adc, ocr, com, tccr )
                                                                                         ddr
00095
00096 #define _getGpioPORT( ddr, port, pin, nbr, adc, ocr, com, tccr)
00097
00098 #define _getGpioPIN( ddr, port, pin, nbr, adc, ocr, com, tccr)
                                                                                         pin
00099
00100 #define _getGpioMASK( ddr, port, pin, nbr, adc, ocr, com, tccr )
                                                                                         (1«nbr)
00101
00102 #define _getGpioADC( ddr, port, pin, nbr, adc, ocr, com, tccr )
                                                                                         adc
00103
00104 #define _getGpioOCR( ddr, port, pin, nbr, adc, ocr, com, tccr )
00105
00106 #define _getGpioCOM( ddr, port, pin, nbr, adc, ocr, com, tccr )
                                                                                         com
00107
00108 #define _getGpioTCCR( ddr, port, pin, nbr, adc, ocr, com, tccr )
                                                                                         tccr
00109
00110
00111
00112
00113
00114 /*
00115
00116
          These macros are for end-users to name GPIO pins and manipulate GPIO pin name macros.
00117
00118 */
00119
00120
00121
00131 #define GpioPin(portLtr, pinNbr)
                                                _GpioPin( DDR##portLtr, PORT##portLtr, PIN##portLtr, pinNbr )
00132
00133
00134
00135
00146 #define GpioPinAnalog( portLtr, pinNbr, adcNbr )
00147
                                               _GpioPinAnalog( DDR##portLtr, PORT##portLtr, PIN##portLtr, pinNbr,
      adcNbr )
00148
00149
00161 #define GpioPinPwm( portLtr, pinNbr, timer, chan )
00162
          _GpioPinPwm( DDR##portLtr, PORT##portLtr, PIN##portLtr, pinNbr, OCR##timer##chan, COM##timer##chan##1,
      TCCR##timer##A )
00163
00164
00165
00174 #define isGpioPinModeOutput( pinName )
                                                                                        _isGpioPinModeOutput(
     pinName )
00175
00176
00177
00186 #define isGpioPinModeInput( pinName )
                                                                                        isGpioPinModeInput(
     pinName )
00187
00188
00189
00198 #define setGpioPinModeOutput( pinName )
                                                                                         _setGpioPinModeOutput(
      pinName )
00199
00200
00201
00210 #define setGpioPinModeInput( pinName )
                                                                                         _setGpioPinModeInput(
     pinName )
00211
00212
00213
... JosephorinModeInputPullup( pi
_setGpioPinModeInputPullup( pinName )
00223
00222 #define setGpioPinModeInputPullup( pinName )
00224
00225
00236 #define readGpioPinDigital(pinName)
                                                                                         _readGpioPinDigital(
     pinName )
00237
00238
00248 #define writeGpioPinDigital(pinName, val)
                                                                                         writeGpioPinDigital(
     pinName, val )
00249
00250
00251
```

```
00260 #define setGpioPinHigh(pinName)
                                                                                        _setGpioPinHigh( pinName )
00261
00262
00263
00272 #define setGpioPinLow( pinName )
                                                                                        _setGpioPinLow( pinName )
00273
00274
00275
00286 #define getGpioDDR( pinName )
                                                                                        _getGpioDDR( pinName )
00288
00289
00300 #define getGpioPORT( pinName )
                                                                                        _getGpioPORT( pinName )
00302
00303
00314 #define getGpioPIN(pinName)
                                                                                        _getGpioPIN( pinName )
00315
00316
00317
00328 #define getGpioMASK( pinName )
                                                                                        getGpioMASK( pinName )
00329
00330
00331
00342 #define getGpioADC( pinName )
                                                                                        _getGpioADC( pinName )
00343
00344
00345
00356 #define getGpioOCR( pinName )
                                                                                        _getGpioOCR( pinName )
00357
00358
00359
00370 #define getGpioCOM( pinName )
                                                                                        _getGpioCOM( pinName )
00371
00372
00373
00384 #define getGpioTCCR( pinName )
                                                                                       _getGpioTCCR( pinName )
00385
00386
00387
00388
00389 /***********************************
00390
00391 /*
00392 \,\,\star\, Support for GPIO pin variables 00393 \,\,\star\,
00394
00395
00396
00397 typedef volatile uint8_t* Gpio8Ptr;
00398 typedef volatile uint16_t* Gpio16Ptr;
00399
00424 class GpioPinVariable
00425 {
00426 public:
00427
00428
          GpioPinVariable()
00429
          : mDdr(0), mPort(0), mPin(0), mOcr(0), mTccr(0), mCom(0xFF),
00430
          mNbr( 0xFF ), mAdc( 0xFF )
00431
00432
00433
          GpioPinVariable( Gpio8Ptr ddr, Gpio8Ptr port, Gpio8Ptr pin, int8_t nbr )
00434
          : mDdr( ddr ), mPort( port ), mPin( pin ), mOcr( 0 ), mTccr( 0 ), mCom( 0xFF ),
00435
          mNbr( static_cast<uint8_t>(nbr) ), mAdc( 0xFF )
00436
00437
00438
          GpioPinVariable( Gpio8Ptr ddr, Gpio8Ptr port, Gpio8Ptr pin, int8_t nbr, int8_t adc )
00439
          : mDdr(ddr), mPort(port), mPin(pin), mOcr(0), mTccr(0), mCom(0xFF),
00440
          mNbr( static_cast<uint8_t>(nbr) ), mAdc( static_cast<uint8_t>(adc) )
00441
00442
00443
          GpioPinVariable( Gpio8Ptr ddr, Gpio8Ptr port, Gpio8Ptr pin, int8_t nbr, Gpio16Ptr ocr, Gpio8Ptr tccr,
     int8 t com )
00444
          : mDdr( ddr ), mPort( port ), mPin( pin ), mOcr( ocr ), mTccr( tccr ), mCom( com ),
          mNbr(static_cast<uint8_t>(nbr)), mAdc(0xFF)
00445
00446
          { }
00447
00449
          Gpio8Ptr ddr() const
00450
          { return mDdr; }
00451
00453
          Gpio8Ptr port() const
```

```
00454
          { return mPort; }
00455
00457
          Gpio8Ptr pin() const
00458
          { return mPin; }
00459
00461
          Gpio16Ptr ocr() const
00462
          { return mOcr; }
00463
00465
          Gpio8Ptr tccr() const
00466
          { return mTccr; }
00467
00469
          uint8_t bitNbr() const
00470
          { return mNbr; }
00471
00473
          uint8_t com() const
00474
          { return mCom; }
00475
00477
          uint8_t adcNbr() const
00478
          { return mAdc; }
00479
00480
00481 private:
00482
00483
          Gpio8Ptr
                          mDdr:
00484
          Gpio8Ptr
                          mPort:
00485
          Gpio8Ptr
                          mPin;
00486
          Gpio16Ptr
                          mOcr:
00487
          Gpio8Ptr
                          mTccr;
00488
          uint8 t
                          mCom;
00489
          uint8 t
                          mNbr:
00490
          uint8_t
                          mAdc;
00491 };
00492
00493
00494
00495
00496
00497 #define _makeGpioVarFromGpioPin( ddr, port, pin, nbr, adc, ocr, com, tccr )
00498
                                                           GpioPinVariable( &(ddr), &(port), &(pin), nbr )
00499
00500 #define _makeGpioVarFromGpioPinAnalog( ddr, port, pin, nbr, adc, ocr, com, tccr)
00501
                                                           GpioPinVariable( &(ddr), &(port), &(pin), nbr, adc )
00502
00503 #define _makeGpioVarFromGpioPinPwm( ddr, port, pin, nbr, adc, ocr, com, tccr )
00504
                                                           GpioPinVariable( &(ddr), &(port), &(pin), nbr, &(ocr),
      &(tccr), com)
00505
00506
00507
00518 #define makeGpioVarFromGpioPin( pinName )
                                                               _makeGpioVarFromGpioPin( pinName )
00519
00520
00531 #define makeGpioVarFromGpioPinAnalog( pinName )
                                                               _makeGpioVarFromGpioPinAnalog( pinName )
00532
00533
00544 #define makeGpioVarFromGpioPinPwm( pinName )
                                                               _makeGpioVarFromGpioPinPwm( pinName )
00545
00546
00547
00548
00549
00556 inline bool isGpioPinModeOutputV( const GpioPinVariable& pinVar )
00557 {
00558
          return *(pinVar.ddr()) & ( 1 « pinVar.bitNbr() );
00559 }
00560
00561
00568 inline bool isGpioPinModeInputV( const GpioPinVariable& pinVar )
00569 {
00570
          return !( *(pinVar.ddr()) & ( 1 « pinVar.bitNbr() ) );
00571 }
00572
00573
00574
00575
00576
00585 inline void setGpioPinModeOutputV( const GpioPinVariable& pinVar )
00586 {
00587
          *(pinVar.ddr()) |= (1 « pinVar.bitNbr() );
00588 }
00589
```

```
00590
00591
00592
00601 inline void setGpioPinModeInputV( const GpioPinVariable& pinVar )
00602 {
00603
          *(pinVar.ddr()) &= ~( 1 « pinVar.bitNbr() );
00604
          *(pinVar.port()) &= ~( 1 « pinVar.bitNbr() );
00605 }
00606
00608
00617 inline void setGpioPinModeInputPullupV( const GpioPinVariable& pinVar )
00618 {
          *(pinVar.ddr()) &= ~( 1 « pinVar.bitNbr() );
00620
          *(pinVar.port()) |= ( 1 « pinVar.bitNbr() );
00621 }
00622
00623
00624
00635 inline bool readGpioPinDigitalV( const GpioPinVariable& pinVar)
00636 {
00637
          return *(pinVar.pin()) & ( 1 « pinVar.bitNbr() );
00638 }
00639
00640
00641
00642
00652 inline void writeGpioPinDigitalV( const GpioPinVariable& pinVar, bool value )
00653 {
00654
          if (value)
00655
              *(pinVar.port()) |= ( 1 « pinVar.bitNbr() );
00656
00657
00658
         else
00659
          {
              *(pinVar.port()) &= ~( 1 « pinVar.bitNbr() );
00660
00661
00662 }
00663
00664
00665
00674 inline void setGpioPinHighV( const GpioPinVariable& pinVar )
00675 {
00676
          *(pinVar.port()) |= ( 1 « pinVar.bitNbr() );
00677 }
00678
00679
00680
00681
00690 inline void setGpioPinLowV( const GpioPinVariable& pinVar )
00691 {
00692
          *(pinVar.port()) &= ~( 1 « pinVar.bitNbr() );
00693 }
00694
00695
00696
00697 #endif
```

10.13 I2cLcd.h File Reference

This file defines a class that provides a high-level interface to an LCD offering an I2C interface. The most common variant of this is HD44780U controlled LCD driven via an MCP23017 that offers an I2C interface (such LCDs are available from Adafruit and SparkFun). To use this class you must also use and properly initialize the I2C Master package from I2cMaster.h.

```
#include <inttypes.h>
#include "Writer.h"
```

10.14 I2cLcd.h 227

Include dependency graph for I2cLcd.h:

Classes

· class I2cLcd

This class provides a high-level interface via I2C to an LCD such as those offered by AdaFruit and SparkFun. Specifically, it communicates via I2C with an MCP23017 that drives an HD44780U controlling an LCD. It also lets you detect button presses on the 5-button keypad generally associated with such devices.

10.13.1 Detailed Description

This file defines a class that provides a high-level interface to an LCD offering an I2C interface. The most common variant of this is HD44780U controlled LCD driven via an MCP23017 that offers an I2C interface (such LCDs are available from Adafruit and SparkFun). To use this class you must also use and properly initialize the I2C Master package from I2cMaster.h.

To use these features, include I2cLcd.h in your source code and link against I2cLcd.cpp and I2cMaster.cpp.

10.14 I2cLcd.h

Go to the documentation of this file.

```
00001 /*
00002
          I2cLcd.h - Tools for using an I2C-based LCD such as the
          Adafruit RGB 16x2 LCD Shield .
00003
00004
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00005
          This is part of the AVRTools library.
00006
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00007
00008
          This program is free software: you can redistribute it and/or modify
          it under the terms of the GNU General Public License as published by
00009
00010
          the Free Software Foundation, either version 3 of the License, or
00011
          (at your option) any later version.
00012
```

```
00013
          This program is distributed in the hope that it will be useful,
00014
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00015
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00016
          GNU General Public License for more details.
00017
00018
          You should have received a copy of the GNU General Public License
00019
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00020 */
00021
00022
00037 #ifndef I2cLcd_h
00038 #define I2cLcd_h
00039
00040 #include <inttypes.h>
00041 #include "Writer.h"
00042
00043
00044
00045
00057 class I2cLcd : public Writer
00058 {
00059 public:
00060
00064
          enum
00065
00066
               kButton_Select
                                = 0 \times 01,
00067
               kButton_Right
                                = 0 \times 02
00068
               kButton_Down
                                = 0 \times 04
00069
                                = 0x08,
               kButton_Up
00070
                                = 0x10
               kButton_Left
00071
          };
00072
00073
00077
          enum
00078
00079
                                    = 0x1,
               kBacklight_Red
                                    = 0x3,
00080
               kBacklight_Yellow
00081
               kBacklight_Green
                                    = 0x2,
00082
               kBacklight_Teal
                                    = 0x6,
00083
                                    = 0x4,
               kBacklight_Blue
00084
               kBacklight_Violet
                                    = 0x5,
00085
               kBacklight_White
                                    = 0x7
00086
          };
00087
00088
00092
          I2cLcd();
00093
00094
00102
          int init();
00103
00104
00108
          void clear();
00109
00110
00114
          void home();
00115
00116
00122
          void displayTopRow( const char* str );
00123
00124
00130
          void displayBottomRow( const char* str );
00131
00132
00136
          void clearTopRow();
00137
00138
00142
          void clearBottomRow();
00143
00144
00145
00149
          void displayOff();
00150
00151
00155
          void displayOn();
00156
00157
00161
          void blinkOff();
00162
00163
00167
          void blinkOn();
00168
```

10.14 I2cLcd.h 229

```
00169
00173
          void cursorOff();
00174
00175
00179
          void cursorOn();
00180
00181
00185
          void scrollDisplayLeft();
00186
00187
00191
          void scrollDisplayRight();
00192
00193
00197
          void autoscrollOn();
00198
00199
00203
          void autoscrollOff();
00204
00205
00212
          void setCursor( uint8_t row, uint8_t col );
00213
00214
00222
          int setBacklight( uint8_t color );
00223
00224
00230
          void command( uint8_t cmd );
00231
00232
00240
          uint8_t readButtons();
00241
00242
00243
00252
          virtual size_t write( char c );
00253
00254
00263
          virtual size_t write( const char* str );
00264
00265
00275
00276
          virtual size_t write( const char* buffer, size_t size );
00277
00287
          virtual size_t write( const uint8_t* buffer, size_t size );
00288
00289
00294
          virtual void flush();
00295
00296
00297 private:
00298
00299
          enum
00300
00301
              kWriteFourBitsSendChar = 0,
00302
              kWriteFourBitsSendCommand = 1
00303
00304
00305
          int initMCP23017();
00306
          int initHD44780U();
00307
          size_t write( uint8_t value );
00308
          int writeFourBitsToLcd( uint8_t value, uint8_t gpioB );
00309
          int sendCharOrCmdToLcd( uint8_t value, bool isCommand );
00310
00311
          int sendCommand( uint8_t cmd )
00312
          {
00313
              return sendCharOrCmdToLcd( cmd, kWriteFourBitsSendCommand );
00314
00315
00316
          int sendCharToDisplay( uint8_t value )
00317
          {
00318
              return sendCharOrCmdToLcd( value, kWriteFourBitsSendChar );
00319
00320
00321
          uint8 t
                               mDisplayControl;
                               mDisplayMode;
00322
          uint8 t
00323
          uint8 t
                               mCurrLine;
00324
          volatile uint8_t
                               mI2cStatus;
00325 };
00326
00327 #endif
```

10.15 I2cMaster.h File Reference

This file provides functions that interface to the TWI (two-wire serial interface) hardware of the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560), providing a high-level interface to I2C protocol communications. Include this file if you want your application will operate in Master mode as defined in the I2C protocol.

```
#include <stdint.h>
#include <stdlib.h>
#include <util/atomic.h>
Include dependency graph for I2cMaster.h:
```


Namespaces

• namespace I2cMaster

This namespace bundles the I2C-protocol-based interface to the TWI hardware. It provides logical cohesion for functions implement the Master portions of the I2C protocol and prevents namespace collisions.

Enumerations

enum I2cMaster::I2cBusSpeed { I2cMaster::kI2cBusSlow , I2cMaster::kI2cBusFast }

This enum lists I2C bus speed configurations.

enum I2cMaster::I2cStatusCodes { I2cMaster::kI2cCompletedOk = 0x00 , I2cMaster::kI2cError = 0x01 , I2cMaster::kI2cNotStarted = 0x02 , I2cMaster::kI2cInProgress = 0x04 }

This enum lists I2C status codes reported by the various transmit functions.

• enum I2cMaster::I2cSendErrorCodes {

 $\begin{tabular}{ll} I2cMaster::kl2cNoError = 0 & , & I2cMaster::kl2cErrTxBufferFull = 1 & , & I2cMaster::kl2cErrMsgTooLong = 2 & , & I2cMaster::kl2cErrNullStatusPtr = 3 & , & \\ \end{tabular}$

I2cMaster::kI2cErrWriteWithoutData = 4 , I2cMaster::kI2cErrReadWithoutStorage = 5 }

This enum lists I2C errors codes that may occur when you try to write a message.

enum I2cMaster::I2cPullups { I2cMaster::kPullupsOff , I2cMaster::kPullupsOn }

This enum lists the options for controlling the built-in pullups in the TWI hardware.

Functions

void I2cMaster::start (uint8 t speed=kI2cBusFast)

Configures the TWI hardware for I2C communications in Master mode. You must call this function before conducting any I2C communications using the functions in this module.

void I2cMaster::stop ()

Terminates the I2C communications using the TWI hardware, and disables the TWI interrupts.

void I2cMaster::pullups (uint8 t set=kPullupsOn)

Sets the state of the internal pullups that are part of the TWI hardware.

bool I2cMaster::busy ()

Reports whether the TWI hardware is busy communicating (either transmitting or receiving).

uint8 t I2cMaster::writeAsync (uint8 t address, uint8 t registerAddress, volatile uint8 t *status)

Transmit a single register address (a one-byte message) asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

uint8 t l2cMaster::writeAsync (uint8 t address, uint8 t registerAddress, uint8 t data, volatile uint8 t *status)

Transmit a single register address and corresponding single byte of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

- $\bullet \ \ uint8_t \ l2cMaster::writeAsync \ (uint8_t \ address, uint8_t \ registerAddress, const \ char \ *data, \ volatile \ uint8_t \ *status)$
 - Transmit a single register address and corresponding null-terminated string of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).
- uint8_t l2cMaster::writeAsync (uint8_t address, uint8_t registerAddress, uint8_t *data, uint8_t numberBytes, volatile uint8_t *status)

Transmit a single register address and corresponding buffer of data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function).

uint8_t l2cMaster::readAsync (uint8_t address, uint8_t numberBytes, volatile uint8_t *destination, volatile uint8 ← t *bytesRead, volatile uint8 t *status)

Request to read data from a device and receive that data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function). When the status variable reports kl2cCompletedOk, the requested data can be read from the receive buffer.

uint8_t l2cMaster::readAsync (uint8_t address, uint8_t registerAddress, uint8_t numberBytes, volatile uint8_
 t *destination, volatile uint8 t *bytesRead, volatile uint8 t *status)

Request to read data from a specific register on a device and receive that data asynchronously. This function queues the message and returns immediately. Eventual status of the transmitted message can be monitored via the designated status variable (passed as a pointer to this function). When the status variable reports kl2cCompletedOk, the requested data can be read from the receive buffer.

int I2cMaster::writeSync (uint8 t address, uint8 t registerAddress)

Transmit a single register address (a one-byte message) synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int I2cMaster::writeSync (uint8_t address, uint8_t registerAddress, uint8_t data)

Transmit a single register address and corresponding single byte of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int I2cMaster::writeSync (uint8_t address, uint8_t registerAddress, const char *data)

Transmit a single register address and corresponding null-terminated string of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int I2cMaster::writeSync (uint8 t address, uint8 t registerAddress, uint8 t *data, uint8 t numberBytes)

Transmit a single register address and corresponding buffer of data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int I2cMaster::readSync (uint8_t address, uint8_t numberBytes, uint8_t *destination)

Request to read data from a device and receive that data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

int I2cMaster::readSync (uint8_t address, uint8_t registerAddress, uint8_t numberBytes, uint8_t *destination)

Request to read data from a specific register on a device and receive that data synchronously. This function blocks until the communications exchange is complete or encounters an error. Error codes are returned (0 means no error).

10.15.1 Detailed Description

This file provides functions that interface to the TWI (two-wire serial interface) hardware of the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560), providing a high-level interface to I2C protocol communications. Include this file if you want your application will operate in Master mode as defined in the I2C protocol.

To use these functions, include I2cMaster.h and link against I2cMaster.cpp.

These interfaces are buffered for both input and output and operate using interrupts associated with the TWI hardware. This means the asynchronous transmit functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated TWI hardware. Similarly, data is received asynchronously and placed into the input buffer.

The transmit buffer is a ring buffer. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). Receive buffers are provided by the callers of these functions. Note that due to the nature of the I2C protocol, Master I2C "read" operations must still write a command instructing the destination device to send data for the Master to read, and thus "read" operations still utilize the transmit buffer.

The size of the transmit buffer can be set at compile time via macro constants (the receive buffers are provided the corresponding functions are called). The default size of the transmit buffer assumes the maximum transmit message length is 24 bytes and allows 3 out-going messages to be queued. You can change these defaults by defining the macros I2C_MASTER_MAX_TX_MSG_LEN to specify the maximum transmit message length and I2C_MASTER_MAX_ \leftarrow TX_MSG_NBR to specify the maximum number of transmit messages to hold in the buffer. You need to make these define these macros prior to including the file I2cMaster.h, each time it is included. So you should define these using a compiler option (e.g., -DI2C_MASTER_MAX_TX_MSG_LEN=32 -DI2C_MASTER_MAX_TX_MSG_NBR=5) to ensure they are consistently defined throughout your project.

This interface assumes your application will operator in I2C Master mode as defined in the I2C protocol. If you wish your application to operate in I2C Slave mode, then instead include I2cSlave.h and link against I2cSlave.cpp.

Note

Only one of I2cMaster.cpp and I2cSlave.cpp can be linking into your application. These two files install different, incompatible versions of the TWI interrupt function. AVRTools does not support building an application that functions both as a Master and as a Slave under the I2C protocol. This limitation allows the corresponding TWI interrupt functions to be significantly leaner and faster.

10.16 I2cMaster.h 233

10.16 I2cMaster.h

```
00001 /*
00002
          I2cMaster.h - An I2C master library
00003
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
          it under the terms of the GNU General Public License as published by
00008
00009
          the Free Software Foundation, either version 3 of the License, or
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00014
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
          GNU General Public License for more details.
00016
00017
          You should have received a copy of the GNU General Public License along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>>.
00018
00019 */
00020
00021
00068 #ifndef I2cMaster h
00069 #define I2cMaster_h
00070
00071
00072 #ifdef I2cSlave h
00073 \#error "You cannot use both I2cMaster and I2cSlave in the same application"
00074 #endif
00075
00076
00077 #include <stdint.h>
00078 #include <stdlib.h>
00079
00080 #include <util/atomic.h>
00081
00082
00083 \#if defined( DEBUG_I2cMasterBuffer ) || defined( DEBUG_I2cMasterDiary )
00084 #include "USARTO.h"
00085 #endif
00086
00087
00088
00089
00090
00091 #ifndef I2C_MASTER_MAX_TX_MSG_LEN
00092 #define I2C_MASTER_MAX_TX_MSG_LEN
                                                 24
00093 #endif
00094
00095 #ifndef I2C_MASTER_MAX_TX_MSG_NBR
00096 #define I2C_MASTER_MAX_TX_MSG_NBR
00097 #endif
00098
00099 #if I2C_MASTER_MAX_TX_MSG_LEN > 255
00100 #error "I2C_MASTER_MAX_TX_MSG_LEN exceeds size of a uint8_t"
00101 #endif
00102
00103 #if I2C_MASTER_MAX_TX_MSG_NBR > 255
00104 #error "I2C_MASTER_MAX_TX_MSG_NBR exceeds size of a uint8_t"
00105 #endif
00106
00107
00108
00109
00110
00142 namespace I2cMaster
00143 {
00144
00150
          enum I2cBusSpeed
00151
00152
               kI2cBusSlow
                                             = 0.
                                             = 1
00153
               kI2cBusFast
00154
          };
00155
00156
00160
          enum I2cStatusCodes
00161
```

```
00162
              kI2cCompletedOk
                                                  = 0x00,
00163
              kI2cError
                                                  = 0x01,
00164
              kI2cNotStarted
                                                  = 0x02,
00165
              kI2cInProgress
                                                  = 0x04
00166
          };
00167
00168
00172
          enum I2cSendErrorCodes
00173
00174
              kI2cNoError
00175
              kI2cErrTxBufferFull
                                           = 1,
                                           = 2,
00176
              kI2cErrMsgTooLong
                                           = 3,
00177
              kI2cErrNullStatusPtr
00178
              kI2cErrWriteWithoutData
                                           = 4,
00179
              kI2cErrReadWithoutStorage
00180
          };
00181
00182
          enum I2cPullups
00188
00189
          {
00190
              kPullupsOff
                                           = 0,
00191
              kPullupsOn
00192
          };
00193
00194
00195
00196
00197
00207
          void start( uint8 t speed = kI2cBusFast );
00208
00209
00215
          void stop();
00216
00217
          void pullups( uint8_t set = kPullupsOn );
00226
00227
00228
00235
          bool busy();
00236
00237
00238
00239
00240
          // Asynchronous functions
00241
00242
00259
          uint8_t writeAsync( uint8_t address, uint8_t registerAddress, volatile uint8_t* status );
00260
00261
00279
          uint8_t writeAsync( uint8_t address, uint8_t registerAddress, uint8_t data, volatile uint8_t* status
     );
00280
00281
00300
          uint8_t writeAsync( uint8_t address, uint8_t registerAddress, const char* data, volatile uint8_t*
00301
00302
00322
          uint8_t writeAsync( uint8_t address, uint8_t registerAddress, uint8_t* data, uint8_t numberBytes,
00323
                                   volatile uint8_t* status );
00324
00325
00326
00347
          uint8_t readAsync( uint8_t address, uint8_t numberBytes, volatile uint8_t* destination,
00348
                               volatile uint8_t* bytesRead, volatile uint8_t* status );
00349
00350
00374
          uint8_t readAsync( uint8_t address, uint8_t registerAddress, uint8_t numberBytes,
00375
                               volatile uint8_t* destination, volatile uint8_t* bytesRead,
00376
                               volatile uint8_t* status );
00377
00378
00379
00380
          // Synchronous
00381
00382
00394
          int writeSync( uint8_t address, uint8_t registerAddress );
00395
00396
00409
          int writeSync( uint8 t address, uint8 t registerAddress, uint8 t data );
00410
00411
00426
          int writeSync( uint8 t address, uint8 t registerAddress, const char* data );
```

```
00427
00428
00445
          int writeSync( uint8_t address, uint8_t registerAddress, uint8_t* data, uint8_t numberBytes );
00446
00447
00448
00462
          int readSync( uint8_t address, uint8_t numberBytes, uint8_t* destination );
00463
00464
00481
          int readSync( uint8_t address, uint8_t registerAddress, uint8_t numberBytes, uint8_t* destination );
00482
00483
00484 #if defined( DEBUG_I2cMasterBuffer ) || defined( DEBUG_I2cMasterDiary )
         void setDebugSout( Serial0* s );
00486 #endif
00487
00488 #ifdef DEBUG_I2cMasterBuffer
00489
       void dumpBufferContents();
00490 #endif
00491
00492 #ifdef DEBUG_I2cMasterDiary
00493
         void clearDebugI2cDiary();
00494
         void dumpDebugI2cDiary();
00495 #endif
00496
00497
00498 };
00499
00500
00501 #endif
```

10.17 I2cSlave.h File Reference

This file provides functions that interface to the TWI (two-wire serial interface) hardware of the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560), providing a high-level interface to I2C protocol communications. Include this file if you want your application will operate in Slave mode as defined in the I2C protocol.

```
#include <stdint.h>
Include dependency graph for I2cSlave.h:
```


Namespaces

• namespace I2cSlave

This namespace bundles the I2C-protocol-based interface to the TWI hardware. It provides logical cohesion for functions implement the Slave portions of the I2C protocol and prevents namespace collisions.

Enumerations

enum l2cSlave::l2cBusSpeed { l2cSlave::kl2cBusSlow , l2cSlave::kl2cBusFast }

This enum lists I2C bus speed configurations.

```
    enum I2cSlave::I2cStatusCodes {
    I2cSlave::kI2cCompletedOk = 0x00 , I2cSlave::kI2cError = 0x01 , I2cSlave::kI2cTxPartial = 0x02 , I2cSlave::kI2cRxOverflow = 0x04 , I2cSlave::kI2cInProgress = 0x06 }
```

This enum lists I2C status codes reported by the various transmit functions.

enum I2cSlave::I2cPullups { I2cSlave::kPullupsOff , I2cSlave::kPullupsOn }

This enum lists the options for controlling the built-in pullups in the TWI hardware.

Functions

uint8_t l2cSlave::processl2cMessage (uint8_t *buffer, uint8_t len)

This function must be defined by the user. It is called by the TWI interrupt function installed as part of I2cSlave.cpp whenever it receives a message from the Master. The user should implement this function to respond to the data in the buffer, taking actions and as appropriate returning data to the buffer (for asynchronous transmission to the Master).

void I2cSlave::start (uint8 t ownAddress, uint8 t speed=kI2cBusFast, bool answerGeneralCall=false)

Configures the TWI hardware for I2C communications in Slave mode. You must call this function before conducting any I2C communications using the functions in this module.

void I2cSlave::stop ()

Terminates the I2C communications using the TWI hardware, and disables the TWI interrupts.

void I2cSlave::pullups (uint8_t set=kPullupsOn)

Sets the state of the internal pullups that are part of the TWI hardware.

bool I2cSlave::busy ()

Reports whether the TWI hardware is busy communicating (either transmitting or receiving).

10.17.1 Detailed Description

This file provides functions that interface to the TWI (two-wire serial interface) hardware of the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560), providing a high-level interface to I2C protocol communications. Include this file if you want your application will operate in Slave mode as defined in the I2C protocol.

To use these functions, include I2cSlave.h and link against I2cSlave.cpp.

These interfaces are buffered for recieving and sending data and operate using interrupts associated with the TWI hardware. This means data from the Master is received asynchronously and when reception is complete, a user-supplied function is called. That function has the option of placing data in a buffer to be transmitted asynchronously back to the Master.

The Slave buffer is a simple array. The size of the Slave buffer can be set at compile time via the macro constant I2C← _SLAVE_BUFFER_SIZE. The default size of the Slave buffer is 32 bytes. You can change the default by defining the macro I2C_SLAVE_BUFFER_SIZE prior to including the file l2cSlave.h, each time it is included. So you should define it using a compiler option (e.g., ¬DI2C_SLAVE_BUFFER_SIZE=64) to ensure it is consistently defined throughout your project.

This interface assumes your application will operator in I2C Slave mode as defined in the I2C protocol. If you wish your application to operate in I2C Master mode, then instead include I2cMaster.h and link against I2cMaster.cpp.

Note

Only one of I2cMaster.cpp and I2cSlave.cpp can be linking into your application. These two files install different, incompatible versions of the TWI interrupt function. AVRTools does not support building an application that functions both as a Master and as a Slave under the I2C protocol. This limitation allows the corresponding TWI interrupt functions to be significantly leaner and faster.

10.18 I2cSlave.h 237

10.18 I2cSlave.h

```
00001 /*
00002
           I2cSlave.h - An I2C slave library
00003
           For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
           This is part of the AVRTools library.
00005
           Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
           This program is free software: you can redistribute it and/or modify
           it under the terms of the GNU General Public License as published by
00008
00009
           the Free Software Foundation, either version 3 of the License, or
00010
           (at your option) any later version.
00011
00012
           This program is distributed in the hope that it will be useful,
00013
           but WITHOUT ANY WARRANTY; without even the implied warranty of
00014
           MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
           GNU General Public License for more details.
00016
00017
          You should have received a copy of the GNU General Public License along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>>.
00018
00019 */
00020
00021
00022
00023
00024
00059 #ifndef I2cSlave h
00060 #define I2cSlave_h
00061
00062
00063 #ifdef I2cMaster_h
00064 #error "You cannot use both I2cMaster and I2cSlave in the same application"
00065 #endif
00066
00067
00068 #include <stdint.h>
00069
00070 #ifdef DEBUG_I2cSlaveDiary
00071 #include "USARTO.h"
00072 #endif
00073
00074
00075
00076 #ifndef I2C_SLAVE_BUFFER_SIZE
00077 #define I2C_SLAVE_BUFFER_SIZE
                                             32
00078 #endif
00079
00080 #if I2C_SLAVE_BUFFER_SIZE > 255
00081 #error "I2C_SLAVE_BUFFER_SIZE exceeds size of a uint8_t"
00082 #endif
00083
00084
00085
00086
00087
00107 namespace I2cSlave
00108 {
00109
00110
00138
           uint8_t processI2cMessage( uint8_t* buffer, uint8_t len );
00139
00140
00141
00142
00148
           enum I2cBusSpeed
00149
00150
               kI2cBusSlow
                                              = 0,
00151
               kI2cBusFast
00152
00153
00154
00155
           enum I2cStatusCodes
00159
00160
00161 /*
00162
               kI2cCompletedOk
                                                     = 0 \times 00.
00163
               kI2cNotStarted
                                                     = 0x01.
00164
               kI2cInProgress
                                                      = 0 \times 02.
```

```
00165
              kI2cError
                                                  = 0x04,
00166
              kI2cBusError
                                                  = 0x07
00167 */
00168
              kI2cCompletedOk
                                                  = 0x00,
00169
              kI2cError
00170
              kI2cTxPartial
                                                  = 0x02,
00171
              kI2cRxOverflow
                                                  = 0x04,
00172
              kI2cInProgress
                                                  = 0x06
00173
          };
00174
00175
00176
00182
          enum I2cPullups
00183
00184
              kPullupsOff
                                           = 0,
00185
              kPullups0n
00186
          };
00187
00188
00189
00190
00204
          void start( uint8_t ownAddress, uint8_t speed = kI2cBusFast, bool answerGeneralCall = false );
00205
00206
00212
          void stop();
00213
00214
00223
          void pullups( uint8_t set = kPullupsOn );
00224
00225
00232
         bool busy();
00233
00234
00235 #ifdef DEBUG_I2cSlaveDiary
00236
          void setDebugSout( Serial0* s );
00237
00238
00239
          void clearDebugI2cDiary();
00240
         void dumpDebugI2cDiary();
00241
00242 #endif
00243
00244 };
00245
00246
00247 #endif
00248
```

10.19 InitSystem.h File Reference

Include this file to use the functions that initialize the microcontroller to a known, basic state.

Functions

· void initSystem ()

This function initializes the microcontroller by clearing any bootloader settings, clearing all timers, and turning on interrupts.

10.19.1 Detailed Description

Include this file to use the functions that initialize the microcontroller to a known, basic state.

To use these functions, include InitSystem.h in your source code and link against InitSystem.cpp.

10.20 InitSystem.h

10.19.2 Function Documentation

10.19.2.1 initSystem()

```
void initSystem ( )
```

This function initializes the microcontroller by clearing any bootloader settings, clearing all timers, and turning on interrupts.

This function is generally called at the very beginning of main ().

10.20 InitSystem.h

Go to the documentation of this file.

```
00001 /
00002
          SystemClock.cpp - Functions to initialize and use a system clock
00003
          on AVR chips that is compatible with Arduino.
00004
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00005
          This is part of the AVRTools library.
00006
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00007
          Functions readlong() and readFloat() adapted from Arduino code that
00008
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00009
00010
          This program is free software: you can redistribute it and/or modify
00011
          it under the terms of the GNU Lesser General Public License as published by
00012
          the Free Software Foundation, either version 3 of the License, or
00013
          (at your option) any later version.
00014
00015
          This program is distributed in the hope that it will be useful,
00016
          but WITHOUT ANY WARRANTY; without even the implied warranty of
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
00017
00018
          GNU Lesser General Public License for more details.
00019
00020
          You should have received a copy of the GNU Lesser General Public License
00021
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00022 */
00023
00024
00037 #ifndef InitSystem_h
00038 #define InitSystem_h
00039
00040
00049 void initSystem();
00050
00051
00052 #endif
```

10.21 InterruptUtils.h File Reference

This file provides utilities for temporarily disabling (suppressing) interrupts of various kinds in a block of code. It uses the C++ RAII paradigm to ensure interrupt state is restored automatically when the block of code is exited. While all interrupts can be suppressed, tools are provided that allow more selective control of which interrupts are suppressed.

```
#include <stdint.h>
#include <stddef.h>
#include <avr/io.h>
```

#include <util/atomic.h>

Include dependency graph for InterruptUtils.h:

Classes

· class Interrupts::AllOff

This class defines an object that disables all interrupts during its lifetime. Interrupt state is restored by the object's destructor when the object goes out of scope.

· class Interrupts::ExternalOff

This class defines an object that disables selected external interrupts during its lifetime. The selected external interrupts are restored by the object's destructor when it goes out of scope.

· class Interrupts::PinChangeOff

This class defines an object that disables selected pin change interrupts during its lifetime. The selected pin change interrupts are restored by the object's destructor when it goes out of scope.

Namespaces

namespace Interrupts

This namespace bundles various utility classes designed to suppress selected interrupts using the RAII idiom.

Enumerations

enum Interrupts::ExternalInterrupts {
 Interrupts::kExternalInterrupt0 , Interrupts::kExternalInterrupt1 , Interrupts::kExternalInterrupt2 , Interrupts::kExternalInterrupt3 ,
 Interrupts::kExternalInterrupt4 , Interrupts::kExternalInterrupt5 , Interrupts::kExternalInterrupt6 , Interrupts::kExternalInterrupt7 ,
 Interrupts::kExternalInterruptAll }

This enum lists the external interrupts that can be suppressed (disabled). To pass more than one external interrupt, simply "or" tham

enum Interrupts::PinChangeInterrupts { Interrupts::kPinChangeInterrupt0 , Interrupts::kPinChangeInterrupt1 , Interrupts::kPinChangeInterrupt2 , Interrupts::kPinChangeInterruptAll }

This enum lists the pin change interrupts that can be suppressed (disabled). To pass more than one pin change interrupt, simply "or" them.

10.22 InterruptUtils.h

10.21.1 Detailed Description

This file provides utilities for temporarily disabling (suppressing) interrupts of various kinds in a block of code. It uses the C++ RAII paradigm to ensure interrupt state is restored automatically when the block of code is exited. While all interrupts can be suppressed, tools are provided that allow more selective control of which interrupts are suppressed.

10.22 InterruptUtils.h

```
00001 /*
00002
          InterruptUtils.h - Utilities for managing interrupts for
00003
          AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00006
          Functions printNumber() and printFloat() adapted from Arduino code that
00007
          is Copyright (c) 2008 David A. Mellis and licensed under LGPL.
00008
00009
          This program is free software: you can redistribute it and/or modify
00010
          it under the terms of the GNU Lesser General Public License as published by
00011
          the Free Software Foundation, either version 3 of the License, or
00012
          (at your option) any later version.
00013
00014
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00015
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00016
00017
          GNU Lesser General Public License for more details.
00018
00019
          You should have received a copy of the GNU Lesser General Public License
00020
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00021 */
00022
00023
00036 #ifndef InterruptUtils_h
00037 #define InterruptUtils_h
00038
00039 #include <stdint.h>
00040 #include <stddef.h>
00041
00042 #include <avr/io.h>
00043 #include <util/atomic.h>
00044
00045
00046
00047
00048
00054 namespace Interrupts
00055 {
00056
00063
          class AllOff
00064
00065
          public:
00066
00071
              Alloff()
00072
00073
                  mSreg = SREG;
00074
                  cli();
00075
00076
00077
00083
               ~AllOff()
00084
00085
                   // Turn on global interrupt, only if it was already on. Leave other bits alone.
00086
                   if ( mSreq & static_cast<uint8_t>(1 « SREG_I) )
00087
                   {
00088
                       sei();
00089
                   }
00090
00091
00092
00093
          private:
00094
00095
              uint8 t mSreq;
```

```
00096
00097
00098
00099
00100
00101
00102
00103
00104 #if defined(__AVR_ATmega328P__)
00105 #define kExternalInterruptMask
00106 #elif defined(__AVR_ATmega2560__)
00107 #define kExternalInterruptMask
                                              0xFF
00108 #else
00109 #error "Undefined AVR processor type"
00110 #endif
00111
00112
00120
          enum ExternalInterrupts
00121
00122
              kExternalInterrupt0
                                       = (1 \ll INT0),
00123
                                      = (1 \ll INT1),
              kExternalInterrupt1
00124
00125 #if defined(__AVR_ATmega2560__)
00126
              kExternalInterrupt2
                                      = ( 1 « INT2 ),
00127
              kExternalInterrupt3
                                       = (1 \ll INT3),
              kExternalInterrupt4
                                       = ( 1 \ll INT4 ),
00128
                                      = ( 1 « INT5 ),
00129
              kExternalInterrupt5
00130
              kExternalInterrupt6
                                      = (1 \ll INT6),
                                      = ( 1 \ll INT7 ),
00131
              kExternalInterrupt7
00132 #endif
00133
00134
              kExternalInterruptAll = kExternalInterruptMask
00135
          };
00136
00137
00138
00144
          class ExternalOff
00145
          public:
00146
00147
              ExternalOff( uint8_t whichOnesToTurnOff = kExternalInterruptMask )
00157
00158
              : mExternalInterruptsToSuppress( whichOnesToTurnOff & kExternalInterruptMask)
00159
00160
                  // Disable the selected interrupts
00161
                  EIMSK &= ~(mExternalInterruptsToSuppress);
00162
00163
00164
00170
              ~ExternalOff()
00171
00172
                  // Enable the selected interrupts
00173
                  EIMSK |= mExternalInterruptsToSuppress;
00174
00175
00176
00177
          private:
00178
00179
              uint8_t mExternalInterruptsToSuppress;
00180
00181
00182
00183
00184
00185
00188 #if defined(__AVR_ATmega328P__)
00189 #define kPinChangeInterruptMask
                                               0x07
00190 #elif defined(__AVR_ATmega2560__)
00191 #define kPinChangeInterruptMask
                                               0x07
00192 #else
00193 #error "Undefined AVR processor type"
00194 #endif
00195
00196
00204
          enum PinChangeInterrupts
00205
00206
              kPinChangeInterrupt0
                                       = ( 1 « PCINTO ),
00207
              kPinChangeInterrupt1
                                        = ( 1 \ll PCINT1 ),
00208
                                        = ( 1 « PCINT2 ),
              kPinChangeInterrupt2
00209
                                       = kPinChangeInterruptMask
              kPinChangeInterruptAll
```

```
00210
          };
00211
00212
00213
00219
          class PinChangeOff
00220
00221
          public:
00222
00231
              PinChangeOff( uint8_t whichOnesToTurnOff = kPinChangeInterruptMask )
00232
              : mPinChangeInterruptsToSuppress( whichOnesToTurnOff & kPinChangeInterruptMask )
00233
00234
                   // Disable the selected interrupts
00235
                  PCICR &= ~ (mPinChangeInterruptsToSuppress);
00236
00237
00238
00243
              ~PinChangeOff()
00244
              {
00245
                   // Enable the selected interrupts
00246
                  PCICR |= mPinChangeInterruptsToSuppress;
00247
00248
00249
00250
         private:
00251
00252
              uint8_t mPinChangeInterruptsToSuppress;
00253
00254
00255
00256
00257 }; // End namespace
00258
00259
00260 #endif
00261
```

10.23 MemUtils.h File Reference

This file provides functions that provide information on the available memory in SRAM.

```
#include <stddef.h>
Include dependency graph for MemUtils.h:
```


Namespaces

namespace MemUtils

A namespace providing encapsulation for functions that report the available memory in SRAM.

Functions

size t MemUtils::freeSRAM ()

Get the total free memory remaining in SRAM.

size_t MemUtils::freeMemoryBetweenHeapAndStack ()

Get the free memory between the heap and the stack.

void MemUtils::resetHeap ()

Reset the heap to an empty (virgin) state.

size_t MemUtils::memoryAvailableOnFreeList ()

Get the free memory on the heap free-list.

size_t MemUtils::getFreeListStats (int *nbrBlocks, size_t *sizeSmallestBlock, size_t *sizeLargestBlock)
 Get information about the heap free-list.

10.23.1 Detailed Description

This file provides functions that provide information on the available memory in SRAM.

To use these functions, include MemUtils.h in your source code and link against MemUtils.cpp.

These functions are wrapped in namespace MemUtils to avoid namespace collisions.

10.24 MemUtils.h

```
00001 /*
00002
          MemUtils.h - Memory-related utilities
00003
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
00008
          it under the terms of the GNU General Public License as published by
00009
          the Free Software Foundation, either version 3 of the License, or
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00014
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
          GNU General Public License for more details.
00016
00017
          You should have received a copy of the GNU General Public License
00018
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00019 */
00020
00021
00022
00036 #ifndef MemUtils_h
00037 #define MemUtils_h
00038
00039 #include <stddef.h>
00040
00045 namespace MemUtils
00046 {
00047
00059
          size_t freeSRAM();
00060
00061
00062
00073
          size_t freeMemoryBetweenHeapAndStack();
00074
```

10.25 new.h File Reference 245

```
00075
00076
00086
          void resetHeap();
00087
00088
00089
00103
         size_t memoryAvailableOnFreeList();
00104
00105
00106
00124
          size_t getFreeListStats( int* nbrBlocks, size_t* sizeSmallestBlock, size_t* sizeLargestBlock );
00125
00126 };
00127
00128 #endif
```

10.25 new.h File Reference

This file provides operator new and operator delete. You only need this file if you use new and delete to manage objects on the heap.

```
#include <stdlib.h>
Include dependency graph for new.h:
```


10.25.1 Detailed Description

This file provides operator new and operator delete. You only need this file if you use new and delete to manage objects on the heap.

If you do use new and delete, then include new.h in your source files and link your project against new.cpp.

Note

The AVRTools library does not itself make any use of heap storage or the new or delete operators.

10.26 new.h

Go to the documentation of this file.

```
00001 /*
00002
          new.cpp - operator new implementations not provided with avr-gcc.
00003
          This is part of the AVRTools library.
00004
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00005
00006
          This program is free software: you can redistribute it and/or modify
          it under the terms of the GNU General Public License as published by
00007
00008
          the Free Software Foundation, either version 3 of the License, or
00009
          (at your option) any later version.
00010
00011
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00012
00013
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00014
          GNU General Public License for more details.
00015
00016
          You should have received a copy of the GNU General Public License
00017
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00018 */
00019
00020
00021
00037 #ifndef new_h
00038 #define new_h
00039
00040
00041 #include <stdlib.h>
00042
00043 void* operator new( size_t size );
00044 void* operator new[]( size_t size );
00045
00046
00047 void operator delete( void* ptr );
00048 void operator delete[]( void* ptr );
00049
00050 #if __cplusplus >= 201402L
00051
00052 void operator delete ( void* ptr, size_t sz );
00053 void operator delete[]( void* ptr, size_t sz );
00054
00055 #endif
00056
00057
00058 // Placement new & delete operators
00059
00060 inline void* operator new( size_t, void* ptr )
00061 { return ptr; }
00062 inline void* operator new[]( size_t, void* ptr )
00063 { return ptr; }
00064
00065 inline void operator delete( void* , void* )
00066 { }
00067 inline void operator delete[]( void* , void* )
00068 { }
00069
00070
00071 #endif
00072
```

10.27 Pwm.h File Reference

This file provides functions that access the PWM capability of the ATmega328 and ATmega2560 microcontrollers.

```
#include <stdint.h>
#include <util/atomic.h>
```

10.27 Pwm.h File Reference 247

#include "GpioPinMacros.h"
Include dependency graph for Pwm.h:

Macros

#define writeGpioPinPwm(pinName, value)
 Write a PWM value to a pin.

Functions

void writeGpioPinPwmV (const GpioPinVariable &pinVar, uint8_t value)

Write a PWM value to a pin.

void initPwmTimer0 ()

Initialize timer0 for PWM.

void initPwmTimer1 ()

Initialize timer1 for PWM.

• void initPwmTimer2 ()

Initialize timer2 for PWM.

• void clearTimer0 ()

Clear timer0.

void clearTimer1 ()

Clear timer1.

• void clearTimer2 ()

Clear timer2.

void initPwmTimer3 ()

Initialize timer3 for PWM.

• void initPwmTimer4 ()

Initialize timer4 for PWM.

void initPwmTimer5 ()

Initialize timer5 for PWM.

• void clearTimer3 ()

Clear timer3.

· void clearTimer4 ()

Clear timer4.

• void clearTimer5 ()

Clear timer5.

10.27.1 Detailed Description

This file provides functions that access the PWM capability of the ATmega328 and ATmega2560 microcontrollers.

To use these functions, include Pwm.h in your source code and link against Pwm.cpp.

Before you use the writePinPwm() function, you must first initialize the appropriate timers using the appropriate init← PwmTimerN() function.

The association between PWN pins and timers is as follows:

For Arduino Uno (ATmega328)

Arduino Uno pin	ATmega328 pin	Timer
3	PD3	timer2
5	PD5	timer0
6	PD6	timer0
9	PB1	timer1
10	PB2	timer1
11	PB3	timer2

For Arduino Mega (ATmega2560)

Arduino Mega pin	ATmega2560 pin	Timer
2	PE4	timer3
3	PE5	timer3
4	PG5	timer0
5	PE3	timer3
6	PH3	timer4
7	PH4	timer4
8	PH5	timer4
9	PH6	timer2
10	PB4	timer2
11	PB5	timer1
12	PB6	timer1
13	PB7	timer0
44	PL5	timer5
45	PL4	timer5
46	PL3	timer5

10.27 Pwm.h File Reference 249

Note

Timer0 is also used by the system clock. *Do not initialize or clear timer0* if you are also using the system clock function from SystemClock.h. If you are using the system clock function, you can use timer0-based PWM functions *without* having to call initPwmTimer0().

10.27.2 Macro Definition Documentation

10.27.2.1 writeGpioPinPwm

Write a PWM value to a pin.

This sets the duty cycle for the PWM on the pin. Completely off is represented by 0; completely on is represented by 1.

Before calling this function, you must initialize the appropriate timer by calling initPwmTimerN(), where N = 1, 2, 3, 4, or 5 is the timer corresponding to that particular pin.

- pinName a pin name macro generated by GpioPinPwm().
- value a value between 0 and 255.

Warning

Timer0 is also used by the system clock. *Do not initialize or clear timer0* if you are also using the system clock function from SystemClock.h. If you are using the system clock function, you can use timer0-based PWM functions *without* having to call initPwmTimer0().

Note

You can temporarily turn off PWM by writing a 0 to the pin with writePinPwm(pin, 0). In particular, this is how to turn off PWM to pins associated with timer0 when timer0 is also being used by the system clock.

This macro ensures operations on 16-bit timers are atomic (at the cost of a small amount of overhead in the case of 8-bt timers).

10.27.3 Function Documentation

10.27.3.1 clearTimer0()

```
void clearTimer0 ( )
```

Clear timer0.

This function clears timer0.

Note

Timer0 is also used by the system clock. *Do not clear timer0* if you are also using the system clock function from SystemClock.h.

Only call this function if you called initPwmTimer0() instead of initSystemClock().

Note

To turn off PWM on pins associated with timer0 while also using the system clock, write a zero to the pin by calling writePinPwm(pinName, 0).

10.27.3.2 clearTimer1()

```
void clearTimer1 ( )
```

Clear timer1.

This function clears timer1, turning off the PWM functionality.

10.27.3.3 clearTimer2()

```
void clearTimer2 ( )
```

Clear timer2.

This function clears timer2, turning off the PWM functionality.

10.27.3.4 clearTimer3()

```
void clearTimer3 ( )
```

Clear timer3.

This function clears timer3, turning off the PWM functionality.

Note

This function is only available on Arduino Mega (ATmega2560).

10.27.3.5 clearTimer4()

```
void clearTimer4 ( )
```

Clear timer4.

This function clears timer4, turning off the PWM functionality.

Note

This function is only available on Arduino Mega (ATmega2560).

10.27 Pwm.h File Reference 251

10.27.3.6 clearTimer5()

```
void clearTimer5 ( )
```

Clear timer5.

This function clears timer5, turning off the PWM functionality.

Note

This function is only available on Arduino Mega (ATmega2560).

10.27.3.7 initPwmTimer0()

```
void initPwmTimer0 ( )
```

Initialize timer0 for PWM.

This function sets timer0 for phase-correct PWM mode. You must call this function or initSystemClock() before calling writePinPwm() on a PWM pin associated with timer0.

The PWM pins supported by timer0 are:

- Arduino Uno (ATmega328): pin 5 (PD5), pin 6 (PD6)
- Arduino Mega (ATmega2560): pin 4 (PG5), pin 13 (PB7)

Note

Timer0 is also used by the system clock. *Do not initialize timer0* if you are also using the system clock function from SystemClock.h.

The function initSystemClock() puts timer0 in fast PWM mode. While this is different than the phase-correct PWM mode preferred for PWM usage, fast PWM mode still allows PWM operations on the associated pins. However, the duty cycles may be slightly off, and calling writePinPwm(pin, 0) may not completely turn off output on the pins associated with timer0.

Only call initPwmTimer0() if you did *not* call initSystemClock() (i.e., you are *not* using the system clock) and you wish to use PWM on the pins associate with timer0.

Note

To turn off PWM on pins associated with timer0 while also using the system clock, write a zero to the pin by calling writePinPwm(pinName, 0).

10.27.3.8 initPwmTimer1()

```
void initPwmTimer1 ( )
```

Initialize timer1 for PWM.

This function sets timer1 for phase-correct PWM mode. You must call this function before calling writePinPwm() on a PWM pin associated with timer1.

The PWM pins supported by timer1 are:

- Arduino Uno (ATmega328): pin 9 (PB1), pin 10 (PB2)
- Arduino Mega (ATmega2560): pin 11 (PB5), pin 12 (PB6)

10.27.3.9 initPwmTimer2()

```
void initPwmTimer2 ( )
```

Initialize timer2 for PWM.

This function sets timer2 for phase-correct PWM mode. You must call this function before calling writePinPwm() on a PWM pin associated with timer2.

The PWM pins supported by timer2 are:

- Arduino Uno (ATmega328): pin 3 (PD3), pin 11 (PB3)
- Arduino Mega (ATmega2560): pin 9 (PH6), pin 10 (PB4)

10.27.3.10 initPwmTimer3()

```
void initPwmTimer3 ( )
```

Initialize timer3 for PWM.

This function sets timer3 for phase-correct PWM mode. You must call this function before calling writePinPwm() on a PWM pin associated with timer3.

The PWM pins supported by timer3 are:

• Arduino Mega (ATmega2560): pin 2 (PE4), pin 3 (PE5)

Note

This function is only available on Arduino Mega (ATmega2560).

10.27 Pwm.h File Reference 253

10.27.3.11 initPwmTimer4()

```
void initPwmTimer4 ( )
```

Initialize timer4 for PWM.

This function sets timer4 for phase-correct PWM mode. You must call this function before calling writePinPwm() on a PWM pin associated with timer4.

The PWM pins supported by timer4 are:

Arduino Mega (ATmega2560): pin 6 (PH3), pin 7 (PH4), pin 8 (PH5)

Note

This function is only available on Arduino Mega (ATmega2560).

10.27.3.12 initPwmTimer5()

```
void initPwmTimer5 ( )
```

Initialize timer5 for PWM.

This function sets timer5 for phase-correct PWM mode. You must call this function before calling writePinPwm() on a PWM pin associated with timer5.

The PWM pins supported by timer5 are:

Arduino Mega (ATmega2560): pin 44 (PL5), pin 45 (PL4), pin 46 (PL3)

Note

This function is only available on Arduino Mega (ATmega2560).

10.27.3.13 writeGpioPinPwmV()

Write a PWM value to a pin.

This sets the duty cycle for the PWM on the pin. Completely off is represented by 0; completely on is represented by 1.

Before calling this function, you must initialize the appropriate timer by calling initPwmTimerN(), where N = 1, 2, 3, 4, or 5 is the timer corresponding to that particular pin.

- pinVar a pin variable that has PWM capabilities (i.e., initialized with makeGpioVarFromGpioPinPwm()).
- value a value between 0 and 255.

Warning

Timer0 is also used by the system clock. *Do not initialize or clear timer0* if you are also using the system clock function from SystemClock.h. If you are using the system clock function, you can use timer0-based PWM functions *without* having to call initPwmTimer0().

Note

You can temporarily turn off PWM by writing a 0 to the pin with writePinPwm(pin, 0). In particular, this is how to turn off PWM to pins associated with timer0 when timer0 is also being used by the system clock.

This function ensures operations on 16-bit timers are atomic (at the cost of a small amount of overhead in the case of 8-bt timers).

10.28 Pwm.h

```
00001 /*
00002
          Pwm.h - Macros and Functions for accessing the PMW capabilities of AVRs.
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00003
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
00008
          it under the terms of the GNU General Public License as published by
          the Free Software Foundation, either version 3 of the License, or
00009
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00014
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
          GNU General Public License for more details.
00016
          You should have received a copy of the GNU General Public License
00017
00018
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00019 */
00020
00021
00022
```

10.28 Pwm.h 255

```
00076 #ifndef Pwm_h
00077 #define Pwm_h
00078
00079
00080 #include <stdint.h>
00081
00082 #include <util/atomic.h>
00083
00084 #include "GpioPinMacros.h"
00085
00086
00087
00088 #define _writeGpioPinPwm( ddr, port, pin, nbr, chl, ocr, com, tccr, value )
00090
00091
                                                    if ( value <= 0 )
00092
00093
                                                        tccr &= ~(1«com);
                                                        port &= ~ (1«nbr);
00094
00095
00096
                                                    else if ( value >= 255 )
00097
00098
                                                        tccr &= ~(1«com);
                                                        port |= (1«nbr);
00099
00100
00101
                                                    else
00102
00103
                                                        tccr \mid = (1 \ll com);
                                                        ATOMIC_BLOCK( ATOMIC_RESTORESTATE )
00104
00105
00106
                                                            ocr = value;
00107
00108
00109
                                                while ( 0 )
00110
00111
00112
00113
00143 #define writeGpioPinPwm( pinName, value )
                                                       _writeGpioPinPwm( pinName, value )
00144
00145
00146
00147
00176 inline void writeGpioPinPwmV( const GpioPinVariable& pinVar, uint8_t value )
00177 {
00178
          if ( value == 0 )
00179
00180
              *(pinVar.tccr()) &= ~( 1 « pinVar.com() );
00181
              *(pinVar.port()) &= ~( 1 « pinVar.bitNbr() );
00182
00183
00184
          else if ( value == 255 )
00185
00186
              *(pinVar.tccr()) &= ~( 1 « pinVar.com() );
00187
              *(pinVar.port()) |= ( 1 « pinVar.bitNbr() );
00188
00189
          else
00190
          {
00191
              *(pinVar.tccr()) |= ( 1 « pinVar.com() );
00192
               // Provide atomicity for 16-bit timers (not needed for 8-bit timers, but be safe)
00193
              ATOMIC_BLOCK( ATOMIC_RESTORESTATE )
00194
00195
                   *(pinVar.ocr()) = value;
00196
00197
00198 }
00199
00200
00201
00229 void initPwmTimer0();
00230
00231
00244 void initPwmTimer1();
00245
00246
00259 void initPwmTimer2();
00260
00261
00276 void clearTimer0();
00277
00278
```

```
00279
00280
00287 void clearTimer1();
00288
00296 void clearTimer2();
00297
00298
00299 #if defined(__AVR_ATmega2560__)
00301
00315 void initPwmTimer3();
00316
00331 void initPwmTimer4();
00333
00334
00348 void initPwmTimer5();
00349
00350
00351
00352
00361 void clearTimer3();
00362
00363
00372 void clearTimer4();
00373
00374
00383 void clearTimer5();
00384
00385 #endif
00386
00387 #endif
00388
```

10.29 Reader.h File Reference

This file provides a generic interface to incoming data streams of any kind. It is designed around how serial streams are generally used, but can be used with any system that provides a sequential input of bytes that can be interpreted as strings and/or numbers.

```
#include <stddef.h>
#include <stdint.h>
Include dependency graph for Reader.h:
```


10.30 Reader.h 257

This graph shows which files directly or indirectly include this file:

Classes

class Reader

This is an abstract class defining a generic interface to read numbers and strings from a sequential stream of bytes (such as a serial device).

10.29.1 Detailed Description

This file provides a generic interface to incoming data streams of any kind. It is designed around how serial streams are generally used, but can be used with any system that provides a sequential input of bytes that can be interpreted as strings and/or numbers.

10.30 Reader.h

```
00001 /*
00002
          Reader.cpp - a base class for reading data
00003
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
          Functions readLong() and readFloat() adapted from Arduino code that
00007
          is Copyright (c) 2008 David A. Mellis and licensed under LGPL.
00008
00009
          This program is free software: you can redistribute it and/or modify
00010
          it under the terms of the GNU Lesser General Public License as published by
00011
          the Free Software Foundation, either version 3 of the License, or
00012
          (at your option) any later version.
00013
00014
          This program is distributed in the hope that it will be useful,
00015
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00016
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00017
          GNU Lesser General Public License for more details.
00018
          You should have received a copy of the GNU Lesser General Public License
00019
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00020
00021 */
00022
00032 #ifndef Reader h
00033 #define Reader h
00034
00035
00036 #include <stddef.h>
```

```
00037 #include <stdint.h>
00038
00039
00040 #ifndef SERIAL_INPUT_EOL
00041 #define SERIAL_INPUT_EOL
00042 #endif
00043
00044
00065 class Reader
00066 {
00067
00068 public:
00069
00070
00075
          Reader();
00076
00077
00078
00079
          // Virtual methods (pure -- need to be implmented by derived classes)
00080
00087
          virtual int read() = 0;
00088
00089
00096
          virtual int peek() = 0;
00097
00098
00105
          virtual bool available() = 0;
00106
00107
00108
00109
00110
          // Parsing methods
00111
00117
          \verb"void setTimeout" ( \verb"unsigned long milliseconds")"
00118
          { mTimeOut = milliseconds; }
00119
00120
00128
          bool find( const char *target )
00129
          { return findUntil( target, 0 ); }
00130
00131
00141
          bool find( const char *target, size_t length )
00142
          { return findUntil( target, length, NULL, 0 ); }
00143
00144
00157
          bool findUntil( const char *target, const char *terminator );
00158
00159
00174
          bool findUntil( const char *target, size_t targetLen, const char *terminate, size_t termLen );
00175
00176
00187
          bool readLong( long* result );
00188
00189
00200
          bool readFloat( float* result );
00201
00202
00217
          bool readLong( long* result, char skipChar );
00218
00219
00234
          bool readFloat( float* result, char skipChar );
00235
00236
00247
          size_t readBytes( char *buffer, size_t length );
00248
00249
00262
         size_t readBytesUntil( char terminator, char* buffer, size_t length );
00263
00264
00275
          size_t readBytes( uint8_t* buffer, size_t length )
00276
          { return readBytes( reinterpret_cast<char*>(buffer), length ); }
00277
00278
00279
00292
         size_t readBytesUntil( uint8_t terminator, uint8_t* buffer, size_t length )
00293
         { return readBytesUntil( static_cast<char>(terminator), reinterpret_cast<char*>(buffer), length ); }
00294
00295
00307
          size_t readLine( char *buffer, size_t length );
00308
00309
```

```
00314
          void consumeWhiteSpace();
00315
00316
00317 private:
00318
00319
          // Number of milliseconds to wait for the next char before aborting timed read
00320
         unsigned long mTimeOut;
00321
00322
         int timedRead();
                                     // private method to read stream with timeout
         int timedPeek();
                                     // private method to peek stream with timeout
00324
         int peekNextDigit();
                                     // returns the next numeric digit in the stream or -1 if timeout
00325 };
00326
00327
00328 #endif
```

10.31 RingBuffer.h File Reference

This file provides an efficient ring buffer implementation for storing bytes.

```
#include <util/atomic.h>
Include dependency graph for RingBuffer.h:
```


Classes

class RingBuffer

This class provides an efficient ring buffer implementation for storing bytes. Ring buffers are particularly useful for memory constrained microcontrollers such as the ATmega328 and ATmega2650. For maximum efficiency, this class is focused on the storgage of bytes, providing a single code base that is shared by all instances of this class.

10.31.1 Detailed Description

This file provides an efficient ring buffer implementation for storing bytes.

Ring buffers are particularly useful for memory constrained microcontrollers such as the ATmega328 and ATmega2650.

10.32 RingBuffer.h

```
00001 /*
00002
          RingBuffer.h - A ring buffer class for AVR processors.
00003
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
          This is part of the AVRTools library.
00004
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
          This program is free software: you can redistribute it and/or modify
00007
          it under the terms of the GNU General Public License as published by
00008
00009
          the Free Software Foundation, either version 3 of the License, or
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00014
00015
          GNU General Public License for more details.
00016
00017
          You should have received a copy of the GNU General Public License
00018
          along with this program. If not, see \frac{\text{http://www.gnu.org/licenses/>.}}{\text{this program.}}
00019 */
00020
00021
00022
00034 #ifndef RingBuffer_h
00035 #define RingBuffer_h
00036
00037
00038 #include <util/atomic.h>
00039
00040
00041
00060 class RingBuffer
00062 public:
00063
00070
          RingBuffer( unsigned char *buffer, unsigned short size );
00071
00077
          int pull();
00078
          int peek( unsigned short index = 0 );
00088
          bool push ( unsigned char element );
00098
00099
00105
          bool isFull();
00106
00112
          bool isNotFull();
00113
00119
          bool isEmpty()
00120
          { return !static_cast<bool>( mLength ); }
00121
00127
          bool isNotEmpty()
00128
          { return static_cast<bool>( mLength ); }
00129
00133
          void clear();
00134
00135
00136 private:
00137
          unsigned char *mBuffer;
00138
00139
          volatile unsigned short mSize;
00140
          volatile unsigned short mLength;
00141
          volatile unsigned short mIndex;
00142
00143 };
00144
00145
00146 #endif
00147
00148
```

10.33 RingBufferT.h File Reference

This file provides a very flexible, template-based ring buffer implementation.

```
#include <util/atomic.h>
Include dependency graph for RingBufferT.h:
```


Classes

class RingBufferT< T, N, SIZE >

a template-based ring buffer class that can store different kinds of objects in buffers of whatever size is needed.

10.33.1 Detailed Description

This file provides a very flexible, template-based ring buffer implementation.

Ring buffers are versatile storage structures. This file provides a template-based ring buffer implementation that can store different kinds of objects in buffers of whatever size is needed.

10.34 RingBufferT.h

```
RingBufferT.h - A ring buffer template class for AVR processors.
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00003
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          This program is free software: you can redistribute it and/or modify
00008
          it under the terms of the GNU General Public License as published by
00009
          the Free Software Foundation, either version 3 of the License, or
00010
          (at your option) any later version.
00011
00012
          This program is distributed in the hope that it will be useful,
00013
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00014
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015
          GNU General Public License for more details.
00016
```

```
00017
          You should have received a copy of the GNU General Public License
00018
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00019 */
00020
00021
00022
00023
00035 #ifndef RingBufferT_h
00036 #define RingBufferT_h
00038
00039 #include <util/atomic.h>
00040
00060 template< typename T, typename N, unsigned int SIZE > class RingBufferT
00062
00063 public:
00064
00069
          RingBufferT()
              : mSize( SIZE ), mLength( 0 ), mIndex( 0 )
00070
00071
00072
00073
00083
          T pull()
00084
00085
               T element = 0;
00086
               ATOMIC_BLOCK ( ATOMIC_RESTORESTATE )
00087
00088
                   if ( mLength )
00089
                   {
00090
                       element = mBuffer[ mIndex ];
00091
                       mIndex++;
                       if ( mIndex >= mSize )
00092
00093
00094
                           mIndex -= mSize;
00095
00096
                       --mLength;
00097
                   }
00098
               }
00099
               return element;
00100
00101
00102
00115
          T peek ( N index = 0 )
00116
00117
               T element;
               ATOMIC_BLOCK ( ATOMIC_RESTORESTATE )
00118
00119
00120
                   element = mBuffer[ ( mIndex + index ) % mSize ];
00121
00122
               return element;
00123
00124
00125
00134
          bool push ( T element )
00135
00136
               ATOMIC_BLOCK( ATOMIC_RESTORESTATE )
00137
00138
                   if ( mLength < mSize )</pre>
00139
00140
                       mBuffer[ ( mIndex + mLength ) % mSize ] = element;
00141
                       ++mLength;
00142
                       return 0;
00143
00144
00145
               // True = failure
00146
               return 1;
00147
          }
00148
00149
00155
          bool isEmpty()
00156
00157
               return !static cast<bool>( mLength );
00158
00159
00160
00166
          bool isNotEmptv()
00167
00168
               return static_cast<bool>( mLength );
00169
```

```
00170
00171
00177
          bool isFull()
00178
00179
              ATOMIC_BLOCK( ATOMIC_RESTORESTATE )
00180
00181
                   return ( mSize - mLength ) <= 0;</pre>
00182
00183
00184
00191
          bool isNotFull()
00192
              ATOMIC_BLOCK( ATOMIC_RESTORESTATE )
00194
00195
                  return ( mSize - mLength ) > 0;
00196
00197
00198
00199
00205
          void discardFromFront( N nbrElements )
00206
00207
              ATOMIC_BLOCK ( ATOMIC_RESTORESTATE )
00208
00209
                   if ( nbrElements < mLength )
00210
00211
                       mIndex += nbrElements:
00212
                       if( mIndex >= mSize )
00213
00214
                           mIndex -= mSize;
00215
00216
                       mLength -= nbrElements;
00217
00218
00219
                  {
                       // flush the whole buffer
00220
00221
                      mLength = 0;
00222
00223
00224
          }
00225
00226
00230
          void clear()
00231
00232
              ATOMIC_BLOCK( ATOMIC_RESTORESTATE )
00233
00234
                  mLength = 0;
00235
00236
00237
00238
00239
00240 private:
00241
00242
          T mBuffer[ SIZE ] ;
00243
          volatile N mSize;
00244
          volatile N mLength;
00245
          volatile N mIndex;
00246
00247 };
00248
00249
00250 #endif
00251
```

10.35 SimpleDelays.h File Reference

This file provides simple delay functions that do not involve timers or interrupts. These functions simply execute a series of nested loops with known and precise timing.

#include <stdint.h>

Include dependency graph for SimpleDelays.h:

Functions

void delayQuartersOfMicroSeconds (uint16_t nbrOfQuartersOfMicroSeconds)

Delay a given number of quarter microseconds. Due to function call overhead, at 16 MHz the smallest possible delay is just under 6 quarter microseconds (\sim 1.5 microseconds). Delays of 7 quarter microseconds or greater are reasonably accurate. At 8 MHz the smallest possible delay is just under 12 quarter microseconds (\sim 3 microseconds). Delays of 13 quarter microseconds or greater are reasonably accurate.

void delayWholeMilliSeconds (uint8_t nbrOfMilliSeconds)

Delay a given number of milliseconds. Despite function call overhead, this function is accurate within a few hundreds of microseconds.

void delayTenthsOfSeconds (uint8_t nbrOfTenthsOfSeconds)

Delay a given number of tenths of a seconds. Despite function call overhead, this function is accurate within a few hundreds of microseconds.

10.35.1 Detailed Description

This file provides simple delay functions that do not involve timers or interrupts. These functions simply execute a series of nested loops with known and precise timing.

For precision, these functions are all implemented directly in assembler.

Note

These functions are implemented for (and automatically adjust to) either an 8 MHz, 12 MHz, or a 16 MHz clock cycle.

10.35.2 Function Documentation

10.35.2.1 delayQuartersOfMicroSeconds()

Delay a given number of quarter microseconds. Due to function call overhead, at 16 MHz the smallest possible delay is just under 6 quarter microseconds (\sim 1.5 microseconds). Delays of 7 quarter microseconds or greater are reasonably accurate. At 8 MHz the smallest possible delay is just under 12 quarter microseconds (\sim 3 microseconds). Delays of 13 quarter microseconds or greater are reasonably accurate.

At 16 MHz delays of less than 7 quarter microseconds produce a delay of just under 6 quarter microseconds (\sim 1.5 microseconds). At 8 MHz delays of less than 12 quarter microseconds produce a delay of just under 12 quarter microseconds (\sim 3 microseconds).

The maximum delay is 65535 quarter microseconds (equal to 16,383.75 microseconds, or about 16.4 milliseconds).

nbr0fQuarters0fMicroSeconds the number of quarter microseconds to delay. For 16 MHz clocks, arguments less than 7 quarter microseconds for 16 MHz clocks all produce delays of just under 6 quarter microseconds. For 8 MHz clocks, arguments less than 13 quarter microseconds all produce delays of about 12 quarter microseconds.

Note

This delay function is only accurate if interrupts are disabled. If interrupts are enabled, the delays will be at least as long as requested, but may actually be longer. If accurate delays are desired, disable interrupts before calling this function (remember to enable interrupts afterwards).

This function only works for CPU clocks running at either 8 MHz, 12 MHz, or 16 MHz.

For precision, this function is implemented directly in assembler.

10.35.2.2 delayTenthsOfSeconds()

Delay a given number of tenths of a seconds. Despite function call overhead, this function is accurate within a few hundreds of microseconds.

• nbrOfTenthsOfSeconds the number of tenths of seconds to delay. The maximum delay is 256 tenths of a second or 25.6 seconds (pass 0 for a delay of 256 tenths of a second).

Note

This delay function is only accurate if interrupts are disabled. If interrupts are enabled, the delays will be at least as long as requested, but may actually be longer. If accurate delays are desired, disable interrupts before calling this function (remember to enable interrupts afterwards).

This function only works for CPU clocks running at either 8 MHz, 12 MHz, or 16 MHz.

For precision, this function is implemented directly in assembler.

10.35.2.3 delayWholeMilliSeconds()

Delay a given number of milliseconds. Despite function call overhead, this function is accurate within a few hundreds of microseconds.

nbrOfMilliSeconds the number of milliseconds to delay. The maximum delay is 256 milliseconds (pass 0 for a delay of 256 milliseconds).

Note

This delay function is only accurate if interrupts are disabled. If interrupts are enabled, the delays will be at least as long as requested, but may actually be longer. If accurate delays are desired, disable interrupts before calling this function (remember to enable interrupts afterwards).

This function only works for CPU clocks running at either 8 MHz, 12 MHz, or 16 MHz.

For precision, this function is implemented directly in assembler.

10.36 SimpleDelays.h

```
00001 /*
00002
          SimpleDelays.h - Simple delay functions.
          This is part of the AVRTools library.
00003
00004
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00005
00006
          This program is free software: you can redistribute it and/or modify
00007
          it under the terms of the GNU General Public License as published by
00008
          the Free Software Foundation, either version 3 of the License, or
00009
          (at your option) any later version.
00010
00011
          This program is distributed in the hope that it will be useful,
00012
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00013
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00014
          GNU General Public License for more details.
00015
00016
          You should have received a copy of the GNU General Public License
00017
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00018 */
00019
00020
00037 #ifndef SimpleDelays_h
00038 #define SimpleDelays_h
00039
00040
00041 #include <stdint.h>
00042
00043
00044 #ifdef __cplusplus
00045 extern "C" {
00046 #endif
00047
00048
00049
00050
00051
00052
00083 void delayOuartersOfMicroSeconds ( uint16 t nbrOfQuartersOfMicroSeconds );
```

10.37 SPI.h File Reference 267

```
00084
00085
00086
00087
00088
00107 void delayWholeMilliSeconds( uint8_t nbrOfMilliSeconds);
00108
00109
00110
00111
00131 void delayTenthsOfSeconds( uint8_t nbrOfTenthsOfSeconds );
00132
00134
00135
00136
00137 #ifdef __cplusplus
00138 }
00139 #endif
00140
00141
00142 #endif
```

10.37 SPI.h File Reference

This file provides an interface to SPI subsystem available on the AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega) microcontrollers.

```
#include <stdint.h>
#include <stddef.h>
#include <avr/io.h>
Include dependency graph for SPI.h:
```


Classes

• class SPI::SPISettings

A class that binds settings for configuring SPI transmissions.

Namespaces

namespace SPI

This namespace bundles an interface to the SPI hardware subsystem on the AVR ATMega328p (Arduino Uno) and AT-Mega2560 (Arduino Mega) microcontrollers. It provides logical cohesion for functions implement the Master portion of the SPI protocol and prevents namespace collisions.

Enumerations

enum SPI::ByteOrder { SPI::kLsbFirst , SPI::kMsbFirst }

An enumeration that defines the byte order for multibyte SPI transmissions.

enum SPI::SpiMode { SPI::kSpiMode0 , SPI::kSpiMode1 , SPI::kSpiMode2 , SPI::kSpiMode3 }

An enumeration that defines the modes available for SPI transmissions.

Functions

· void SPI::enable ()

Enable the SPI subsystem for transmission.

void SPI::disable ()

Disable the SPI subsystem, precluding further transmissions.

· void SPI::configure (SPISettings settings)

Set the configuration of SPI subsystem to match the needs of the system you are going to communicate with.

· uint8 t SPI::transmit (uint8 t data)

Transmit a single byte using the SPI subsystem.

uint16_t SPI::transmit16 (uint16_t data)

Transmit a word-sized integer (two bytes) using the SPI subsystem. The order in which the bytes are sent is determined by the bit order configuration that has been set.

• uint32 t SPI::transmit32 (uint32 t data)

Transmit a long-word-sized integer (four bytes) using the SPI subsystem. The order in which the bytes are sent is determined by the bit order configuration that has been set.

void SPI::transmit (uint8_t *buffer, size_t count)

Transmit an array of bytes using the SPI subsystem. The bytes are transmitted in array order.

10.37.1 Detailed Description

This file provides an interface to SPI subsystem available on the AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega) microcontrollers.

10.38 SPl.h

```
00002
          SPI.h - an interface to the SPI subsystem of the
          AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00006
          Various portions of this code adapted from Arduino SPI code that
00007
          is Copyright (c) 2010 by Cristian Maglie, Copyright (c) 2014 by Paul Stoffregen,
00008
          Copyright (c) 2014 by Matthijs Kooijman, and Copyright (c) 2014 by Andrew J. Kroll
00009
          and licensed under the terms of either the GNU General Public License version 2
00010
          or the GNU Lesser General Public License version 2.1.
00011
00012
          This program is free software: you can redistribute it and/or modify
00013
          it under the terms of the GNU Lesser General Public License as published by
00014
          the Free Software Foundation, either version 3 of the License, or
00015
          (at your option) any later version.
00016
          This program is distributed in the hope that it will be useful,
00017
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00018
```

10.38 SPI.h 269

```
00019
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00020
          GNU Lesser General Public License for more details.
00021
00022
          You should have received a copy of the GNU Lesser General Public License
00023
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00024 */
00025
00026
00036 #ifndef SPI_h
00037 #define SPI_h
00038
00039 #include <stdint.h>
00040 #include <stddef.h>
00041
00042 #include <avr/io.h>
00043
00044
00109 namespace SPI
00110 {
00111
00115
          enum ByteOrder
00116
00117
               kLsbFirst
                            = 0,
00118
               kMsbFirst
00119
          };
00120
00121
00130
          enum SpiMode
00131
00132
               kSpiMode0
                           = 0x00.
               kSpiMode1
00133
                           = 0x04,
00134
               kSpiMode2
                           = 0x08,
00135
               kSpiMode3
                           = 0 \times 0 C
00136
          };
00137
00138
00158
          class SPISettings
00159
          public:
00160
00161
00179
               SPISettings( uint32_t maxSpeed, uint8_t bitOrder, uint8_t dataMode )
00180
00181
                   if ( __builtin_constant_p( maxSpeed ) )
00182
00183
                       initAlwaysInline( maxSpeed, bitOrder, dataMode );
00184
00185
                   else
00186
                   {
00187
                       initMightInline( maxSpeed, bitOrder, dataMode );
00188
00189
00190
00191
00192
00199
               SPISettings()
00200
00201
                   initAlwaysInline( 8000000, kMsbFirst, kSpiMode0 );
00202
00203
00204
00205
00212
               uint8_t getSpcr() const
00213
               {
00214
                   return mSpcr;
00215
00216
00217
00224
               uint8_t getSpsr() const
00225
00226
                   return mSpsr;
00227
00228
00229
00230
00231
00232
00233
          private:
00234
00235
00236
               void initMightInline( uint32_t maxSpeed, uint8_t bitOrder, uint8_t dataMode )
00237
```

```
00238
                   initAlwaysInline( maxSpeed, bitOrder, dataMode );
00239
00240
00241
00242 #pragma GCC diagnostic push
00243 #pragma GCC diagnostic ignored "-Wunused-variable"
00244
00245
               void initAlwaysInline( uint32_t maxSpeed, uint8_t bitOrder, uint8_t dataMode )
      __attribute__((__always_inline__))
00246
              {
00247
00248
                   \star The following are internal constants
00249
                   const uint8_t kSpiClockDiv4
00251
                   const uint8_t kSpiClockDiv16
                                                     = 0x01;
00252
                   const uint8_t kSpiClockDiv64
00253
                   const uint8_t kSpiClockDiv128
                                                     = 0x03;
00254
                   const uint8_t kSpiClockDiv2
                                                     = 0x04;
00255
                   const uint8_t kSpiClockDiv8
                                                     = 0x05;
                   const uint8_t kSpiClockDiv32
00256
                                                     = 0x06;
00257
00258
                   const uint8_t kSpiModeMask
                                                     = 0x0C;
                                                                // CPOL = bit 3, CPHA = bit 2 on SPCR
                   const uint8_t kSpiClockMask
                                                                // SPR1 = bit 1, SPR0 = bit 0 on SPCR
00259
                                                     = 0x03;
00260
                   const uint8_t kSpi2xClockMask
                                                     = 0 \times 01;
                                                                // SPI2X = bit 0 on SPSR
00261
00262
00263
                   // Clock settings are defined as follows. Note that this shows SPI2X
00264
                   // inverted, so the bits form increasing numbers. Also note that
00265
                   // fosc/64 appears twice
00266
                   // SPR1 SPR0 ~SPI2X Freq
00267
                   // 0
// 0
                           0
                                  0 fosc/2
1 fosc/4
00268
00269
                   11
                       0 1
                                    0
                                        fosc/8
00270
                       0
                             1
                                    1
                                        fosc/16
00271
                        1
                             0
                                    0
                                        fosc/32
00272
                   11
                              0
                        1
                                    1
                                        fosc/64
00273
                        1
                              1
                                    0
                                        fosc/64
00274
                        1
                              1
                                    1
                                        fosc/128
00275
00276
                   // We find the fastest clock that is less than or equal to the
                   // given clock rate. The clock divider that results in clock_setting // is 2 ^^ (clock_div + 1). If nothing is slow enough, we'll use the // slowest (128 == 2 ^^ 7, so clock_div = 6).
00277
00278
00279
00280
                   uint8_t clockDiv;
00281
00282
                   // When the clock is known at compile time, use this if-then-else
00283
                   // cascade, which the compiler knows how to completely optimize
00284
                   // away. When clock is not known, use a loop instead, which generates
00285
                   // shorter code.
00286
                   if ( __builtin_constant_p( maxSpeed ) )
00287
00288
                        if ( maxSpeed >= F_CPU / 2 )
00289
00290
                            clockDiv = 0;
00291
00292
                        else if ( maxSpeed >= F_CPU / 4 )
00293
00294
                           clockDiv = 1;
00295
00296
                       else if ( maxSpeed >= F_CPU / 8 )
00297
00298
                            clockDiv = 2;
00299
00300
                        else if ( maxSpeed >= F_CPU / 16 )
00301
00302
                           clockDiv = 3;
00303
00304
                       else if ( maxSpeed >= F_CPU / 32 )
00305
00306
                           clockDiv = 4;
00307
00308
                       else if ( maxSpeed >= F_CPU / 64 )
00309
00310
                           clockDiv = 5;
00311
00312
                       else
00313
                           clockDiv = 6;
00314
00315
00316
                   else
00317
```

10.38 SPI.h 271

```
00318
00319
                      uint32_t clockSetting = F_CPU / 2;
00320
                      clockDiv = 0;
00321
                       while ( clockDiv < 6 && maxSpeed < clockSetting )</pre>
00322
00323
                           clockSetting /= 2;
00324
                           clockDiv++;
00325
00326
                   }
00328
                   // Compensate for the duplicate fosc/64
00329
                   if ( clockDiv == 6 )
00330
00331
                      clockDiv = 7;
00332
00333
00334
                   // Invert the SPI2X bit
                  clockDiv ^= 0x1;
00335
00336
00337
                   // Pack into the SPISettings class
                  mSpcr = _BV(SPE)
00338
00339
                           BV (MSTR)
00340
                           ( (bitOrder == kLsbFirst) ? _BV(DORD) : 0 )
00341
                           | ( dataMode & kSpiModeMask )
00342
                           | ( (clockDiv » 1) & kSpiClockMask );
00343
00344
                  mSpsr = clockDiv & kSpi2xClockMask;
00345
00346
00347 #pragma GCC diagnostic pop
00348
00349
00350
              uint8_t mSpcr;
00351
              uint8_t mSpsr;
00352
          };
00353
00354
00355
00356
00371
          void enable();
00372
00373
00374
00384
          void disable();
00385
00386
00426
          inline void configure ( SPISettings settings )
00427
00428
              SPCR = settings.getSpcr();
00429
              SPSR = settings.getSpsr();
00430
00431
00432
00441
          inline uint8_t transmit( uint8_t data )
00442
00443
              SPDR = data;
00444
00445
              \star The following NOP introduces a small delay that can prevent the wait
00446
              \star loop from iterating when running at the maximum speed. This gives
00447
              * about 10% more speed, even if it seems counter-intuitive. At lower
00448
               * speeds it is unnoticed.
00449
00450
              asm volatile( "nop" );
00451
              while ( !( SPSR & _BV(SPIF) ) )
00452
                  ; // wait
00453
              return SPDR;
00454
00455
00456
          inline uint16_t transmit16( uint16_t data )
00467
00468
00469
              union
00470
                  uint16_t val;
00471
00472
                  struct
00473
                   {
                      uint8_t lsb;
00474
00475
                      uint8_t msb;
00476
00477
                  };
00478
              } in, out;
```

```
00479
00480
              in.val = data;
00481
00482
              if ( SPCR & _BV(DORD) )
00483
              {
00484
                  SPDR = in.lsb;
                  asm volatile( "nop" );
00485
                                                        // See transmit( uint8_t ) function
00486
                  while ( !( SPSR & _BV(SPIF) ) )
00487
                  out.lsb = SPDR;
00489
00490
                  SPDR = in.msb;
00491
                  asm volatile( "nop" );
                  while ( !( SPSR & _BV(SPIF) ) )
00493
00494
                  out.msb = SPDR;
00495
00496
              else
00497
00498
                  SPDR = in.msb;
                  asm volatile ( "nop" );
00499
                                                         // See transmit( uint8_t ) function
00500
                  while ( !( SPSR & _BV(SPIF) ) )
00501
00502
                  out.msb = SPDR;
                  SPDR = in.lsb;
asm volatile( "nop" );
00503
00504
00505
                  while ( !( SPSR & _BV(SPIF) ) )
00506
00507
                  out.lsb = SPDR:
00508
00509
00510
              return out.val;
00511
00512
00513
00524
          uint32_t transmit32( uint32_t data );
00525
00526
00527
00539
          inline void transmit( uint8_t* buffer, size_t count )
00540
00541
              if ( count )
00542
                  uint8_t* p = buffer;
00543
00544
                  SPDR = *p;
00545
00546
                  while (--count > 0)
00547
00548
                       uint8_t out = *(p + 1);
00549
                       while ( !( SPSR & _BV(SPIF) ) )
00550
00551
                       uint8_t in = SPDR;
00552
                       SPDR = out;
                       *p++ = in;
00553
00554
00555
00556
                  while ( !(SPSR & _BV(SPIF) ) )
00557
00558
                   *p = SPDR;
00559
              }
00560
00561
00563 }
         // End namespace
00564
00565 #endif
```

10.39 SystemClock.h File Reference

Include this file to use the functions that instantiate and access a system clock that counts elapsed milliseconds.

Functions

void initSystemClock ()

This function initializes a system clock that tracks elapsed milliseconds.

void delayMicroseconds (unsigned int us)

Delay a certain number of microseconds.

· void delayMilliseconds (unsigned long ms)

Delay a certain number of milliseconds.

void delay (unsigned long ms)

Delay a certain number of milliseconds.

• unsigned long micros ()

Return the number of elasped microseconds since the system clock was turned on.

• unsigned long millis ()

Return the number of elasped milliseconds since the system clock was turned on.

10.39.1 Detailed Description

Include this file to use the functions that instantiate and access a system clock that counts elapsed milliseconds.

To use these functions, include SystemClock.h in your source code and link against SystemClock.cpp.

Note

Linking against SystemClock.cpp installs a interrupt function on timer0. This interrupt routine is installed regardless of whether the system clock is actually initialized or not. If you have other uses for timer0, do not use SystemClock functions and do not link against SystemClock.cpp.

10.39.2 Function Documentation

10.39.2.1 delay()

Delay a certain number of milliseconds.

This inline function is a synonym for delayMilliseconds(); it is provided for compatibility with the standard Arduino library.

• m the number of milliseconds to delay.

10.39.2.2 delayMicroseconds()

Delay a certain number of microseconds.

• us the number of microseconds to delay.

Note

This function only works for CPU clocks running at either 8 MHz, 12 MHz, or 16 MHz.

10.39.2.3 delayMilliseconds()

```
void delayMilliseconds ( {\tt unsigned\ long\ \it ms\ )}
```

Delay a certain number of milliseconds.

• m the number of milliseconds to delay.

10.39.2.4 initSystemClock()

```
void initSystemClock ( )
```

This function initializes a system clock that tracks elapsed milliseconds.

The system clock uses timer0, so you cannot use timer0 for other functions if you use the system clock functionality.

Note

Linking against SystemClock.cpp installs a interrupt function on timer0. This interrupt routine is installed regardless of whether the system clock is actually initialized or not. If you have other uses for timer0, do not use SystemClock functions and do not link against SystemClock.cpp.

10.39.2.5 micros()

```
unsigned long micros ( )
```

Return the number of elasped microseconds since the system clock was turned on.

The microsecond count will overflow back to zero in approximately 70 minutes.

Returns

the number of elapsed microseconds.

10.40 SystemClock.h 275

10.39.2.6 millis()

```
unsigned long millis ( )
```

Return the number of elasped milliseconds since the system clock was turned on.

Returns

the number of elapsed milliseconds.

10.40 SystemClock.h

Go to the documentation of this file.

```
00001 /*
00002
          SystemClock.h - Functions to initialize and use a system clock
00003
          on AVR chips that is compatible with Arduino.
00004
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00005
          This is part of the AVRTools library.
00006
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
          Functions delayMicroseconds() and delayMilliseconds() adapted from Arduino code that
00007
00008
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00009
00010
          This program is free software: you can redistribute it and/or modify
00011
          it under the terms of the GNU Lesser General Public License as published by
00012
          the Free Software Foundation, either version 3 of the License, or
00013
           (at your option) any later version.
00014
00015
          This program is distributed in the hope that it will be useful,
00016
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00017
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00018
          GNU Lesser General Public License for more details.
00019
          You should have received a copy of the GNU Lesser General Public License along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00020
00021
00022 */
00023
00024
00025
00042 #ifndef SystemClock_h
00043 #define SystemClock_h
00044
00045
00046
00047
00048 #define clockCyclesPerMicrosecond()
                                                     ( F_CPU / 1000000L )
00049 #define clockCyclesToMicroseconds( a )
                                                     ( (a) / clockCyclesPerMicrosecond() )
00050 #define microsecondsToClockCycles(a)
                                                      ( (a) * clockCyclesPerMicrosecond() )
00065 void initSystemClock();
00077 void delayMicroseconds( unsigned int us );
00087 void delayMilliseconds( unsigned long ms );
00088
00089
00100 inline void delay( unsigned long ms)
00101 { delayMilliseconds( ms ); }
00102
00103
00113 unsigned long micros();
00114
00115
00123 unsigned long millis();
00124
00125
00126
00127 #endif
```

10.41 USART0.h File Reference

This file provides functions that offer high-level interfaces to USART0 hardware, which is available on the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560).

```
#include "Writer.h"
#include "Reader.h"
#include <stdint.h>
#include <stddef.h>
Include dependency graph for USARTO.h:
```


Classes

• class Serial0

Provides a high-end interface to serial communications using USARTO.

Namespaces

• namespace USART0

This namespace bundles a high-level buffered interface to the USART0 hardware. It provides logical cohesion and prevents namespace collisions.

Enumerations

```
    enum UsartSerialConfiguration {
    kSerial_5N1, kSerial_6N1, kSerial_7N1, kSerial_8N1,
    kSerial_5N2, kSerial_6N2, kSerial_7N2, kSerial_8N2,
    kSerial_5E1, kSerial_6E1, kSerial_7E1, kSerial_8E1,
    kSerial_5E2, kSerial_6E2, kSerial_7E2, kSerial_8E2,
    kSerial_5O1, kSerial_6O1, kSerial_7O1, kSerial_8O1,
    kSerial_5O2, kSerial_6O2, kSerial_7O2, kSerial_8O2}
```

This enum lists serial configuration in terms of data bits, parity, and stop bits.

Functions

void USART0::start (unsigned long baudRate, UsartSerialConfiguration config=kSerial_8N1)

Initialize USART0 for buffered, asynchronous serial communications using interrupts.

void USART0::stop ()

Stops buffered serial communications using interrupts on USARTO.

• size_t USART0::write (char c)

Write a single byte to the transmit buffer.

size t USART0::write (const char *c)

Write a null-terminated string to the transmit buffer.

size t USART0::write (const char *c, size t n)

Write a character array of given size to the transmit buffer.

size_t USART0::write (const uint8_t *c, size_t n)

Write a byte array of given size to the transmit buffer.

void USART0::flush ()

Flush transmit buffer.

int USART0::peek ()

Examine the next character in the receive buffer without removing it from the buffer.

int USART0::read ()

Return the next character in the receive buffer, removing it from the buffer.

bool USART0::available ()

Determine if there is data in the receive buffer..

10.41.1 Detailed Description

This file provides functions that offer high-level interfaces to USART0 hardware, which is available on the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560).

These interfaces are buffered for both input and output and operate using interrupts associated with USART0. This means the transmit functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated USART0 hardware. Similarly, data is received asynchronously and placed into the input buffer.

The transmit and receive buffers are both ring buffers. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). The receive buffer, however, will overwrite if it gets full. You must clear the receive buffer by reading it regularly when receiving significant amounts of data.

The sizes of the transmit and receive buffers can be set at compile time via macro constants. The default sizes are 32 bytes for the receive buffer and 64 bytes for the transmit buffer. To change these, define the macros $USART0_RX_ \hookrightarrow BUFFER_SIZE$ (for the receive buffer) and $USART0_TX_BUFFER_SIZE$ (for the transmit buffer) to whatever sizes you need. You need to make these define these macros prior to compiling the file USART0.cpp.

Two interfaces are provided. USART0 is a functional interface that makes use of the buffering and asynchronous transmit and receive capabilities of the microcontrollers. However, USART0 is limited to transmitting and receiving byte and character streams.

Serial0 is the most advanced and capable interface to the USART0 hardware. Serial0 provides a object-oriented interface that includes the ability to read and write numbers of various types and in various formats, all asynchronously.

To use these functions, include USART0.h in your source code and link against USART0.cpp.

Note

Linking against USART0.cpp installs interrupt functions for transmit and receive on USART0 (interrupts USART← _UDRE and USART_RX on Arduino Uno/ATmega328; interrupts USART0_UDRE and USART0_RX on Arduino Mega/ATmega2560). You cannot use the minimal interface to USART0 (from USARTMinimal.h) if you link against USART0.cpp. In particular, do *not* call initUSART0() or clearUSART0() if you link against USART0.cpp.

10.41.2 Enumeration Type Documentation

10.41.2.1 UsartSerialConfiguration

enum UsartSerialConfiguration

This enum lists serial configuration in terms of data bits, parity, and stop bits.

The format is kSerial_XYZ where

- X = the number of data bits
- Y = N, E, or O; where N = none, E = even, and O = odd
- Z = the number of stop bits

Enumerator

kSerial_5N1	5 data bits, no parity, 1 stop bit
kSerial_6N1	6 data bits, no parity, 1 stop bit
kSerial_7N1	7 data bits, no parity, 1 stop bit
kSerial_8N1	8 data bits, no parity, 1 stop bit
kSerial_5N2	5 data bits, no parity, 2 stop bits
kSerial_6N2	6 data bits, no parity, 2 stop bits
kSerial_7N2	7 data bits, no parity, 2 stop bits
kSerial_8N2	8 data bits, no parity, 2 stop bits
kSerial_5E1	5 data bits, even parity, 1 stop bit
kSerial_6E1	6 data bits, even parity, 1 stop bit
kSerial_7E1	7 data bits, even parity, 1 stop bit
kSerial_8E1	8 data bits, even parity, 1 stop bit
kSerial_5E2	5 data bits, even parity, 2 stop bits
kSerial_6E2	6 data bits, even parity, 2 stop bits
kSerial_7E2	7 data bits, even parity, 2 stop bits
kSerial_8E2	8 data bits, even parity, 2 stop bits
kSerial_5O1	5 data bits, odd parity, 1 stop bit
kSerial_6O1	6 data bits, odd parity, 1 stop bit
kSerial_701	7 data bits, odd parity, 1 stop bit
kSerial_8O1	8 data bits, odd parity, 1 stop bit
kSerial_5O2	5 data bits, odd parity, 2 stop bits
kSerial_6O2	6 data bits, odd parity, 2 stop bits
kSerial_702	7 data bits, odd parity, 2 stop bits
kSerial_802	8 data bits, odd parity, 2 stop bits

Generated by Doxygen

10.42 USART0.h 279

10.42 USARTO.h

Go to the documentation of this file.

```
00001 /*
00002
          USARTO.h - Functions and classes to use USARTO on AVR systems for
00003
          serial I/O (includes buffering).
00004
          For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
00005
          This is part of the AVRTools library.
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
00007
          Functions readlong() and readFloat() adapted from Arduino code that
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00008
00009
00010
          This program is free software: you can redistribute it and/or modify
00011
          it under the terms of the GNU Lesser General Public License as published by
00012
          the Free Software Foundation, either version 3 of the License, or
00013
          (at your option) any later version.
00014
00015
          This program is distributed in the hope that it will be useful,
00016
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00017
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00018
          GNU Lesser General Public License for more details.
00019
00020
          You should have received a copy of the GNU Lesser General Public License
00021
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00022 */
00023
00067 #ifndef USARTO_h
00068 #define USARTO_h
00069
00070 #include "Writer.h"
00071 #include "Reader.h"
00072
00073 #include <stdint.h>
00074 #include <stddef.h>
00075
00076
00077 #ifndef USART_SERIAL_CONFIG
00078 #define USART_SERIAL_CONFIG
00079
00090 enum UsartSerialConfiguration
00091 {
00092
          kSerial_5N1 = 0x00,
          kSerial_6N1 = 0x02,
00093
00094
          kSerial_7N1 = 0x04,
          kSerial_8N1 = 0x06
00095
00096
          kSerial_5N2 = 0x08,
00097
          kSerial_6N2 = 0x0A,
00098
          kSerial_7N2 = 0x0C,
00099
          kSerial_8N2 = 0x0E,
          kSerial_5E1 = 0x20,
00100
00101
          kSerial_6E1 = 0x22,
00102
          kSerial_7E1 = 0x24,
          kSerial_8E1 = 0x26,
00103
00104
          kSerial_5E2 = 0x28,
00105
          kSerial_6E2 = 0x2A,
00106
          kSerial_7E2 = 0x2C,
00107
          kSerial_8E2 = 0x2E,
          kSerial_501 = 0x30,
00108
00109
          kSerial_601 = 0x32,
          kSerial_701 = 0x34,
00110
00111
          kSerial_801 = 0x36,
00112
          kSerial\_502 = 0x38,
00113
          kSerial_602 = 0x3A
00114
          kSerial_{702} = 0x3C
          kSerial_802 = 0x3E
00115
00116 };
00117
00118 #endif
00119
00120
00121
00122
00128 namespace USARTO
00129 {
00130
          void start( unsigned long baudRate, UsartSerialConfiguration config = kSerial_8N1 );
00144
00145
00146
00157
          void stop();
```

```
00158
00159
00160
00175
          size_t write( char c );
00176
00177
00192
          size_t write( const char* c );
00193
00194
00211
          size_t write( const char* c, size_t n );
00212
00213
00230
          size_t write( const uint8_t* c, size_t n );
00231
00232
00241
          void flush();
00242
00243
00251
          int peek();
00252
00253
00261
          int read();
00262
00263
00271
          bool available():
00272 };
00273
00274
00275
00276
00277
00278
00279
00280
00295 class SerialO : public Writer, public Reader
00296 {
00297 public:
00298
          void start( unsigned long baudRate, UsartSerialConfiguration config = kSerial_8N1 )
00311
00312
          { USARTO::start( baudRate, config ); }
00313
00314
          void stop()
00324
00325
          { USARTO::stop(); }
00326
00327
00328
00329
00330
00339
          virtual size_t write( char c );
00340
00349
          virtual size_t write( const char* str );
00350
00360
          virtual size_t write( const char* buffer, size_t size );
00361
00371
          virtual size_t write( const uint8_t* buffer, size_t size );
00372
00378
          virtual void flush();
00379
00380
00381
00382
          // Virtual functions from Reader
00383
00391
          virtual int read();
00392
00393
00401
          virtual int peek();
00402
00403
00410
          virtual bool available();
00411 };
00412
00413
00414
00415 #endif
00416
```

10.43 USARTOMinimal.h File Reference

This file provides functions that provide a minimalist interface to USART0 available on the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560).

Functions

void initUSART0 (unsigned long baudRate)

Initialize USART0 for serial receive and transmit.

void transmitUSART0 (unsigned char data)

Transmit a single byte on USARTO.

void transmitUSART0 (const char *data)

Transmit a null-terminated string on USARTO.

unsigned char receiveUSART0 ()

Receive a byte on USARTO.

• void releaseUSART0 ()

Release USART0, making pins 0 and 1 again available for non-USART use.

10.43.1 Detailed Description

This file provides functions that provide a minimalist interface to USARTO available on the Arduino Uno (ATmega328) and Arduino Mega (ATmega2560).

These functions are minimalist in the following sense:

- They only send sigle bytes or zero-terminated character strings.
- · They only receive single characters.
- They do not use the USART-related interrupts.
- They determine when the USART is ready to send by polling the relevant register bit.
- They determine when the USART has received data by polling the relevant register bit.

To use these functions, include USART0Minimal.h in your source code and link against USART0Minimal.cpp.

For a more advanced USART0 interface, consider using either the USART0 or Serial0 interfaces. Both of these are available by including USART0.h instead of USART0Minimal.h.

10.43.2 Function Documentation

10.43.2.1 initUSART0()

```
void initUSARTO (
          unsigned long baudRate )
```

Initialize USART0 for serial receive and transmit.

USART0 is tied to pins 0 (RX) and 1 (TX) on both Arduino Uno (ATmega328 pins PD0, PD1) and Arduino Mega (ATmega2560 pins PE0, PE1).

Communications are configured for 8 data bits, no parity, and 1 stop bit.

• baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).

10.43.2.2 receiveUSART0()

```
unsigned char receiveUSARTO ()
```

Receive a byte on USART0.

You must first initialize USART0 by calling initUSART0().

This function blocks until the USART receives a byte.

Returns

the byte received.

10.43.2.3 releaseUSART0()

```
void releaseUSART0 ( )
```

Release USART0, making pins 0 and 1 again available for non-USART use.

After calling this function, you cannot read or write to the USART unless you first call initUSART0().

10.43.2.4 transmitUSART0() [1/2]

Transmit a null-terminated string on USART0.

You must first initialize USART0 by calling initUSART0().

This function blocks until the USART becomes available and all the bytes can be transmitted.

• data the null-terminated string to be transmitted.

10.44 USART0Minimal.h 283

10.43.2.5 transmitUSART0() [2/2]

```
void transmitUSART0 (
          unsigned char data )
```

Transmit a single byte on USART0.

You must first initialize USART0 by calling initUSART0().

This function blocks until the USART becomes available and the byte can be transmitted.

• data the byte to be transmitted.

10.44 USART0Minimal.h

Go to the documentation of this file.

```
USARTOMinimal.h - Minimal, light-weight functions to use
00003
          USARTO available on AVR ATMega328p (Arduino Uno) and
00004
          ATMega2560 (Arduino Mega) processors (no buffering).
00005
          This is part of the AVRTools library.
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00006
00007
          Functions readlong() and readFloat() adapted from Arduino code that
00008
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00009
00010
          This program is free software: you can redistribute it and/or modify
          it under the terms of the GNU Lesser General Public License as published by
00011
00012
          the Free Software Foundation, either version 3 of the License, or
00013
          (at your option) any later version.
00014
00015
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00016
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00017
00018
          GNU Lesser General Public License for more details.
00019
00020
          You should have received a copy of the GNU Lesser General Public License
00021
          along with this program. If not, see \frac{\text{http://www.gnu.org/licenses/>.}}{\text{this program.}}
00022 */
00023
00024
00025
00048 #ifndef USARTOMinimal_h
00049 #define USARTOMinimal_h
00050
00051
00052
00066 void initUSARTO( unsigned long baudRate );
00068
00079 void transmitUSARTO( unsigned char data );
00080
00081
00092 void transmitUSARTO( const char* data );
00093
00094
00105 unsigned char receiveUSARTO();
00106
00107
00115 void releaseUSARTO();
00116
00117
00118
00119
00120 #endif
```

10.45 USART1.h File Reference

This file provides functions that offer high-level interfaces to USART1 hardware, which is available on Arduino Mega (ATMega2560).

```
#include "Writer.h"
#include "Reader.h"
#include <stdint.h>
#include <stddef.h>
Include dependency graph for USART1.h:
```


Classes

• class Serial1

Provides a high-end interface to serial communications using USART1.

Namespaces

namespace USART1

This namespace bundles a high-level buffered interface to the USART1 hardware. It provides logical cohesion and prevents namespace collisions.

Enumerations

```
    enum UsartSerialConfiguration {
    kSerial_5N1, kSerial_6N1, kSerial_7N1, kSerial_8N1,
    kSerial_5N2, kSerial_6N2, kSerial_7N2, kSerial_8N2,
    kSerial_5E1, kSerial_6E1, kSerial_7E1, kSerial_8E1,
    kSerial_5E2, kSerial_6E2, kSerial_7E2, kSerial_8E2,
    kSerial_5O1, kSerial_6O1, kSerial_7O1, kSerial_8O1,
    kSerial_5O2, kSerial_6O2, kSerial_7O2, kSerial_8O2}
```

This enum lists serial configuration in terms of data bits, parity, and stop bits.

Functions

void USART1::start (unsigned long baudRate, UsartSerialConfiguration config=kSerial_8N1)

Initialize USART1 for buffered, asynchronous serial communications using interrupts.

void USART1::stop ()

Stops buffered serial communications using interrupts on USART1.

• size_t USART1::write (char c)

Write a single byte to the transmit buffer.

size t USART1::write (const char *c)

Write a null-terminated string to the transmit buffer.

size t USART1::write (const char *c, size t n)

Write a character array of given size to the transmit buffer.

size_t USART1::write (const uint8_t *c, size_t n)

Write a byte array of given size to the transmit buffer.

void USART1::flush ()

Flush transmit buffer.

int USART1::peek ()

Examine the next character in the receive buffer without removing it from the buffer.

int USART1::read ()

Return the next character in the receive buffer, removing it from the buffer.

bool USART1::available ()

Determine if there is data in the receive buffer..

10.45.1 Detailed Description

This file provides functions that offer high-level interfaces to USART1 hardware, which is available on Arduino Mega (ATMega2560).

These interfaces are buffered for both input and output and operate using interrupts associated with USART1. This means the transmit functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated USART1 hardware. Similarly, data is received asynchronously and placed into the input buffer.

The transmit and receive buffers are both ring buffers. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). The receive buffer, however, will overwrite if it gets full. You must clear the receive buffer by reading it regularly when receiving significant amounts of data.

The sizes of the transmit and receive buffers can be set at compile time via macro constants. The default sizes are 32 bytes for the receive buffer and 64 bytes for the transmit buffer. To change these, define the macros $USART1_RX_ \leftrightarrow BUFFER_SIZE$ (for the receive buffer) and $USART1_TX_BUFFER_SIZE$ (for the transmit buffer) to whatever sizes you need. You need to make these define these macros prior to compiling the file USART1.cpp.

Two interfaces are provided. USART1 is a functional interface that makes use of the buffering and asynchronous transmit and receive capabilities of the microcontrollers. However, USART1 is limited to transmitting and receiving byte and character streams.

Serial1 is the most advanced and capable interface to the USART1 hardware. Serial1 provides a object-oriented interface that includes the ability to read and write numbers of various types and in various formats, all asynchronously.

To use these functions, include USART1.h in your source code and link against USART1.cpp.

Note

Linking against USART1.cpp installs interrupt functions for transmit and receive on USART1 (interrupts USART1.
_UDRE and USART1_RX on Arduino Mega/ATmega2560). You cannot use the minimal interface to USART1 (from USARTMinimal.h) if you link against USART1.cpp. In particular, do *not* call initUSART1() or clearUSART1() if you link against USART1.cpp.

10.45.2 Enumeration Type Documentation

10.45.2.1 UsartSerialConfiguration

enum UsartSerialConfiguration

This enum lists serial configuration in terms of data bits, parity, and stop bits.

The format is kSerial_XYZ where

- X = the number of data bits
- Y = N, E, or O; where N = none, E = even, and O = odd
- Z = the number of stop bits

Enumerator

kSerial_5N1	5 data bits, no parity, 1 stop bit
kSerial_6N1	6 data bits, no parity, 1 stop bit
kSerial_7N1	7 data bits, no parity, 1 stop bit
kSerial_8N1	8 data bits, no parity, 1 stop bit
kSerial_5N2	5 data bits, no parity, 2 stop bits
kSerial_6N2	6 data bits, no parity, 2 stop bits
kSerial_7N2	7 data bits, no parity, 2 stop bits
kSerial_8N2	8 data bits, no parity, 2 stop bits
kSerial_5E1	5 data bits, even parity, 1 stop bit
kSerial_6E1	6 data bits, even parity, 1 stop bit
kSerial_7E1	7 data bits, even parity, 1 stop bit
kSerial_8E1	8 data bits, even parity, 1 stop bit
kSerial_5E2	5 data bits, even parity, 2 stop bits
kSerial_6E2	6 data bits, even parity, 2 stop bits
kSerial_7E2	7 data bits, even parity, 2 stop bits
kSerial_8E2	8 data bits, even parity, 2 stop bits
kSerial_5O1	5 data bits, odd parity, 1 stop bit
kSerial_6O1	6 data bits, odd parity, 1 stop bit
kSerial_701	7 data bits, odd parity, 1 stop bit
kSerial_8O1	8 data bits, odd parity, 1 stop bit
kSerial_5O2	5 data bits, odd parity, 2 stop bits
kSerial_6O2	6 data bits, odd parity, 2 stop bits
kSerial_702	7 data bits, odd parity, 2 stop bits
kSerial_802	8 data bits, odd parity, 2 stop bits

Generated by Doxygen

10.46 USART1.h 287

10.46 USART1.h

Go to the documentation of this file.

```
00001 /*
00002
          USART1.h - Functions and classes to use USART1 on AVR systems for
00003
          serial I/O (includes buffering).
00004
          For AVR ATMega2560 (Arduino Mega).
00005
          This is part of the AVRTools library.
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00006
00007
          Functions readlong() and readFloat() adapted from Arduino code that
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00008
00009
00010
          This program is free software: you can redistribute it and/or modify
00011
          it under the terms of the GNU Lesser General Public License as published by
00012
          the Free Software Foundation, either version 3 of the License, or
00013
          (at your option) any later version.
00014
00015
          This program is distributed in the hope that it will be useful,
00016
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00017
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00018
          GNU Lesser General Public License for more details.
00019
          You should have received a copy of the GNU Lesser General Public License
00020
00021
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00022 */
00023
00024
00025 #if !defined(__AVR_ATmega2560__)
00026 #error "USART1 doesn't exist on ATMega328p (Arduino Uno); you can only use this on ATMega2560 (Arduino
     Mega)."
00027 #endif
00028
00029
00030
00074 #ifndef USART1 h
00075 #define USART1 h
00076
00077 #include "Writer.h"
00078 #include "Reader.h"
00079
00080 #include <stdint.h>
00081 #include <stddef.h>
00082
00083
00084 #ifndef USART_SERIAL_CONFIG
00085 #define USART_SERIAL_CONFIG
00086
00097 enum UsartSerialConfiguration
00098 {
00099
          kSerial_5N1 = 0x00,
00100
          kSerial_6N1 = 0x02,
00101
          kSerial_7N1 = 0x04,
          kSerial_8N1 = 0x06
00102
00103
          kSerial_5N2 = 0x08,
00104
          kSerial_6N2 = 0x0A,
00105
          kSerial_7N2 = 0x0C,
00106
          kSerial_8N2 = 0x0E,
          kSerial_5E1 = 0x20,
00107
00108
          kSerial_6E1 = 0x22,
          kSerial_7E1 = 0x24,
00109
00110
          kSerial_8E1 = 0x26,
          kSerial_5E2 = 0x28,
00111
          kSerial_6E2 = 0x2A,
00112
00113
          kSerial_7E2 = 0x2C
          kSerial_8E2 = 0x2E,
00114
          kSerial_501 = 0x30,
00115
00116
          kSerial_601 = 0x32,
00117
          kSerial_701 = 0x34,
          kSerial_801 = 0x36,
00118
          kSerial_502 = 0x38,
00119
00120
          kSerial_602 = 0x3A
00121
          kSerial_{702} = 0x3C
          kSerial_802 = 0x3E
00122
00123 };
00124
00125 #endif
00126
00127
00128
```

```
00129
00135 namespace USART1
00136 {
00137
00151
          void start( unsigned long baudRate, UsartSerialConfiguration config = kSerial_8N1 );
00152
00153
00164
          void stop();
00165
00166
00167
00182
          size_t write( char c );
00183
00184
00199
          size_t write( const char* c );
00200
00201
00218
          size_t write( const char* c, size_t n );
00219
00220
00237
          size_t write( const uint8_t* c, size_t n );
00238
00239
00248
          void flush();
00249
00250
00258
          int peek();
00259
00260
00268
          int read();
00269
00270
00278
          bool available():
00279 };
00280
00281
00282
00283
00284
00285
00286
00287
00302 class Serial1 : public Writer, public Reader
00303 {
00304 public:
00305
          void start( unsigned long baudRate, UsartSerialConfiguration config = kSerial_8N1 )
00318
00319
          { USART1::start( baudRate, config ); }
00320
00321
00331
          void stop()
00332
          { USART1::stop(); }
00333
00334
00335
00336
00337
00346
          virtual size_t write( char c );
00347
00356
          virtual size_t write( const char* str );
00357
00367
          virtual size_t write( const char* buffer, size_t size );
00368
00378
          virtual size_t write( const uint8_t* buffer, size_t size );
00379
00385
          virtual void flush();
00386
00387
00388
00389
          // Virtual functions from Reader
00390
00398
          virtual int read();
00399
00400
00408
          virtual int peek();
00409
00410
00417
          virtual bool available();
00418 };
00419
00420
```

00421 00422 #endif 00423

10.47 USART1Minimal.h File Reference

This file provides functions that provide a minimalist interface to USART1 available on the Arduino Mega (ATmega2560).

Functions

void initUSART1 (unsigned long baudRate)

Initialize USART1 for serial receive and transmit.

void transmitUSART1 (unsigned char data)

Transmit a single byte on USART1.

void transmitUSART1 (const char *data)

Transmit a null-terminated string on USART1.

unsigned char receiveUSART1 ()

Receive a byte on USART1.

void releaseUSART1 ()

Release USART1, making pins 0 and 1 again available for non-USART use.

10.47.1 Detailed Description

This file provides functions that provide a minimalist interface to USART1 available on the Arduino Mega (ATmega2560).

These functions are minimalist in the following sense:

- They only send sigle bytes or zero-terminated character strings.
- · They only receive single characters.
- They do not use the USART-related interrupts.
- They determine when the USART is ready to send by polling the relevant register bit.
- They determine when the USART has received data by polling the relevant register bit.

To use these functions, include USART1Minimal.h in your source code and link against USART1Minimal.cpp.

For a more advanced USART1 interface, consider using either the USART1 or Serial1 interfaces. Both of these are available by including USART1.h instead of USART1Minimal.h.

10.47.2 Function Documentation

10.47.2.1 initUSART1()

Initialize USART1 for serial receive and transmit.

USART1 is tied to pins 18 (TX) and 19 (RX) on Arduino Mega (ATmega2560 pins PD3, PD2).

Communications are configured for 8 data bits, no parity, and 1 stop bit.

baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).

Note

This function is only available on Arduino Mega (ATmega2560).

10.47.2.2 receiveUSART1()

```
unsigned char receiveUSART1 ( )
```

Receive a byte on USART1.

You must first initialize USART1 by calling initUSART1().

This function blocks until the USART receives a byte.

Returns

the byte received.

Note

This function is only available on Arduino Mega (ATmega2560).

10.47.2.3 releaseUSART1()

```
void releaseUSART1 ( )
```

Release USART1, making pins 0 and 1 again available for non-USART use.

After calling this function, you cannot read or write to the USART unless you first call initUSART1().

Note

This function is only available on Arduino Mega (ATmega2560).

10.47.2.4 transmitUSART1() [1/2]

Transmit a null-terminated string on USART1.

You must first initialize USART1 by calling initUSART1().

This function blocks until the USART becomes available and all the bytes can be transmitted.

• data the null-terminated string to be transmitted.

Note

This function is only available on Arduino Mega (ATmega2560).

10.47.2.5 transmitUSART1() [2/2]

```
void transmitUSART1 (
          unsigned char data )
```

Transmit a single byte on USART1.

You must first initialize USART1 by calling initUSART1().

This function blocks until the USART becomes available and the byte can be transmitted.

• data the byte to be transmitted.

Note

This function is only available on Arduino Mega (ATmega2560).

10.48 USART1Minimal.h

Go to the documentation of this file.

```
00001 /*
00002
          USART1Minimal.h - Minimal, light-weight functions to use
00003
          USART1 available on ATMega2560 (Arduino Mega) processors (no buffering).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00006
          Functions readlong() and readFloat() adapted from Arduino code that
00007
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00008
00009
          This program is free software: you can redistribute it and/or modify
00010
          it under the terms of the GNU Lesser General Public License as published by
00011
          the Free Software Foundation, either version 3 of the License, or
00012
          (at your option) any later version.
00013
00014
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00015
00016
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00017
          GNU Lesser General Public License for more details.
00018
00019
          You should have received a copy of the GNU Lesser General Public License
00020
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00021 */
00022
00023
00024
00047 #ifndef USART1Minimal_h
00048 #define USART1Minimal_h
00049
00050
00051
00052 #if defined(__AVR_ATmega2560__)
00053
00054
00055
00070 void initUSART1( unsigned long baudRate );
00071
00085 void transmitUSART1( unsigned char data );
00100 void transmitUSART1( const char* data );
00102
00115 unsigned char receiveUSART1();
00116
00117
00127 void releaseUSART1();
00128
00129
00130
00131 #endif
00132
00133
00134
00135 #endif
```

10.49 USART2.h File Reference

This file provides functions that offer high-level interfaces to USART2 hardware, which is available on Arduino Mega (ATMega2560).

```
#include "Writer.h"
#include "Reader.h"
#include <stdint.h>
```

#include <stddef.h>
Include dependency graph for USART2.h:

Classes

class Serial2

Provides a high-end interface to serial communications using USART2.

Namespaces

namespace USART2

This namespace bundles a high-level buffered interface to the USART2 hardware. It provides logical cohesion and prevents namespace collisions.

Enumerations

```
    enum UsartSerialConfiguration {
    kSerial_5N1, kSerial_6N1, kSerial_7N1, kSerial_8N1,
    kSerial_5N2, kSerial_6N2, kSerial_7N2, kSerial_8N2,
    kSerial_5E1, kSerial_6E1, kSerial_7E1, kSerial_8E1,
    kSerial_5E2, kSerial_6E2, kSerial_7E2, kSerial_8E2,
    kSerial_5O1, kSerial_6O1, kSerial_7O1, kSerial_8O1,
    kSerial_5O2, kSerial_6O2, kSerial_7O2, kSerial_8O2}
```

This enum lists serial configuration in terms of data bits, parity, and stop bits.

Functions

void USART2::start (unsigned long baudRate, UsartSerialConfiguration config=kSerial_8N1)

Initialize USART2 for buffered, asynchronous serial communications using interrupts.

void USART2::stop ()

Stops buffered serial communications using interrupts on USART2.

• size_t USART2::write (char c)

Write a single byte to the transmit buffer.

size t USART2::write (const char *c)

Write a null-terminated string to the transmit buffer.

size t USART2::write (const char *c, size t n)

Write a character array of given size to the transmit buffer.

size_t USART2::write (const uint8_t *c, size_t n)

Write a byte array of given size to the transmit buffer.

void USART2::flush ()

Flush transmit buffer.

int USART2::peek ()

Examine the next character in the receive buffer without removing it from the buffer.

int USART2::read ()

Return the next character in the receive buffer, removing it from the buffer.

bool USART2::available ()

Determine if there is data in the receive buffer..

10.49.1 Detailed Description

This file provides functions that offer high-level interfaces to USART2 hardware, which is available on Arduino Mega (ATMega2560).

These interfaces are buffered for both input and output and operate using interrupts associated with USART2. This means the transmit functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated USART2 hardware. Similarly, data is received asynchronously and placed into the input buffer.

The transmit and receive buffers are both ring buffers. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). The receive buffer, however, will overwrite if it gets full. You must clear the receive buffer by reading it regularly when receiving significant amounts of data.

The sizes of the transmit and receive buffers can be set at compile time via macro constants. The default sizes are 32 bytes for the receive buffer and 64 bytes for the transmit buffer. To change these, define the macros $USART2_RX_ \leftrightarrow BUFFER_SIZE$ (for the receive buffer) and $USART2_TX_BUFFER_SIZE$ (for the transmit buffer) to whatever sizes you need. You need to make these define these macros prior to compiling the file USART2.cpp.

Two interfaces are provided. USART2 is a functional interface that makes use of the buffering and asynchronous transmit and receive capabilities of the microcontrollers. However, USART2 is limited to transmitting and receiving byte and character streams.

Serial2 is the most advanced and capable interface to the USART2 hardware. Serial2 provides a object-oriented interface that includes the ability to read and write numbers of various types and in various formats, all asynchronously.

To use these functions, include USART2.h in your source code and link against USART2.cpp.

Note

Linking against USART2.cpp installs interrupt functions for transmit and receive on USART2 (interrupts USART2 ← _UDRE and USART2_RX on Arduino Mega/ATmega2560). You cannot use the minimal interface to USART2 (from USARTMinimal.h) if you link against USART2.cpp. In particular, do *not* call initUSART2() or clearUSART2() if you link against USART2.cpp.

10.49.2 Enumeration Type Documentation

10.49.2.1 UsartSerialConfiguration

enum UsartSerialConfiguration

This enum lists serial configuration in terms of data bits, parity, and stop bits.

The format is kSerial_XYZ where

- X = the number of data bits
- Y = N, E, or O; where N = none, E = even, and O = odd
- Z = the number of stop bits

Enumerator

kSerial_5N1	5 data bits, no parity, 1 stop bit
kSerial_6N1	6 data bits, no parity, 1 stop bit
kSerial_7N1	7 data bits, no parity, 1 stop bit
kSerial_8N1	8 data bits, no parity, 1 stop bit
kSerial_5N2	5 data bits, no parity, 2 stop bits
kSerial_6N2	6 data bits, no parity, 2 stop bits
kSerial_7N2	7 data bits, no parity, 2 stop bits
kSerial_8N2	8 data bits, no parity, 2 stop bits
kSerial_5E1	5 data bits, even parity, 1 stop bit
kSerial_6E1	6 data bits, even parity, 1 stop bit
kSerial_7E1	7 data bits, even parity, 1 stop bit
kSerial_8E1	8 data bits, even parity, 1 stop bit
kSerial_5E2	5 data bits, even parity, 2 stop bits
kSerial_6E2	6 data bits, even parity, 2 stop bits
kSerial_7E2	7 data bits, even parity, 2 stop bits
kSerial_8E2	8 data bits, even parity, 2 stop bits
kSerial_5O1	5 data bits, odd parity, 1 stop bit
kSerial_6O1	6 data bits, odd parity, 1 stop bit
kSerial_701	7 data bits, odd parity, 1 stop bit
kSerial_8O1	8 data bits, odd parity, 1 stop bit
kSerial_5O2	5 data bits, odd parity, 2 stop bits
kSerial_6O2	6 data bits, odd parity, 2 stop bits
kSerial_7O2	7 data bits, odd parity, 2 stop bits
Generated by Boxyge	_n 8 data bits, odd parity, 2 stop bits

10.50 USART2.h

Go to the documentation of this file.

```
00001 /*
00002
          USART2.h - Functions and classes to use USART2 on AVR systems for
00003
          serial I/O (includes buffering).
00004
          For AVR ATMega2560 (Arduino Mega).
00005
           This is part of the AVRTools library.
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00006
00007
          Functions readlong() and readFloat() adapted from Arduino code that
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00008
00009
00010
          This program is free software: you can redistribute it and/or modify
00011
          it under the terms of the GNU Lesser General Public License as published by
00012
          the Free Software Foundation, either version 3 of the License, or
00013
          (at your option) any later version.
00014
00015
          This program is distributed in the hope that it will be useful,
00016
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00017
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00018
          GNU Lesser General Public License for more details.
00019
00020
          You should have received a copy of the GNU Lesser General Public License
00021
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00022 */
00023
00024
00025 #if !defined(_AVR_ATmega2560_)
00026 #error "USART2 doesn't exist on ATMega328p (Arduino Uno); you can only use this on ATMega2560 (Arduino
     Mega)."
00027 #endif
00028
00029
00030
00074 #ifndef USART2 h
00075 #define USART2_h
00076
00077 #include "Writer.h" 00078 #include "Reader.h"
00079
00080 #include <stdint.h>
00081 #include <stddef.h>
00082
00083
00084 #ifndef USART_SERIAL_CONFIG
00085 #define USART_SERIAL_CONFIG
00086
00097 enum UsartSerialConfiguration
00098 {
00099
          kSerial_5N1 = 0x00,
00100
          kSerial_6N1 = 0x02,
00101
          kSerial_7N1 = 0x04,
          kSerial_8N1 = 0x06
00102
00103
          kSerial_5N2 = 0x08,
00104
          kSerial_6N2 = 0x0A,
00105
          kSerial_7N2 = 0x0C,
00106
          kSerial_8N2 = 0x0E,
          kSerial_5E1 = 0x20,
00107
00108
          kSerial_6E1 = 0x22,
          kSerial_7E1 = 0x24,
00109
00110
          kSerial_8E1 = 0x26,
          kSerial_5E2 = 0x28,
00111
          kSerial_6E2 = 0x2A,
00112
00113
          kSerial_7E2 = 0x2C
          kSerial_8E2 = 0x2E,
00114
          kSerial_501 = 0x30,
00115
          kSerial_601 = 0x32,
00116
00117
          kSerial_701 = 0x34,
          kSerial_801 = 0x36,
00118
          kSerial_502 = 0x38,
00119
00120
          kSerial_602 = 0x3A
00121
          kSerial_{702} = 0x3C
00122
          kSerial_802 = 0x3E
00123 };
00124
00125 #endif
00126
00127
00128
```

10.50 USART2.h 297

```
00129
00135 namespace USART2
00136 {
00137
00151
          void start( unsigned long baudRate, UsartSerialConfiguration config = kSerial_8N1 );
00152
00153
00164
          void stop();
00165
00166
00167
00182
          size_t write( char c );
00183
00184
00199
          size_t write( const char* c );
00200
00201
00218
          size_t write( const char* c, size_t n );
00219
00220
00237
          size_t write( const uint8_t* c, size_t n );
00238
00239
00248
          void flush();
00249
00250
00258
          int peek();
00259
00260
00268
          int read();
00269
00270
00278
          bool available():
00279 };
00280
00281
00282
00283
00284
00285
00286
00287
00302 class Serial2 : public Writer, public Reader
00303 {
00304 public:
00305
          void start( unsigned long baudRate, UsartSerialConfiguration config = kSerial_8N1 )
00318
00319
          { USART2::start( baudRate, config ); }
00320
00321
00331
          void stop()
00332
          { USART2::stop(); }
00333
00334
00335
00336
00337
00346
          virtual size_t write( char c );
00347
00356
          virtual size_t write( const char* str );
00357
00367
          virtual size_t write( const char* buffer, size_t size );
00368
00378
          virtual size_t write( const uint8_t* buffer, size_t size );
00379
00385
          virtual void flush();
00386
00387
00388
00389
          // Virtual functions from Reader
00390
00398
          virtual int read();
00399
00400
00408
          virtual int peek();
00409
00410
00417
          virtual bool available();
00418 };
00419
00420
```

00421 00422 #endif 00423

10.51 USART2Minimal.h File Reference

This file provides functions that provide a minimalist interface to USART2 available on the Arduino Mega (ATmega2560).

Functions

void initUSART2 (unsigned long baudRate)

Initialize USART2 for serial receive and transmit.

· void transmitUSART2 (unsigned char data)

Transmit a single byte on USART2.

• void transmitUSART2 (const char *data)

Transmit a null-terminated string on USART2.

• unsigned char receiveUSART2 ()

Receive a byte on USART2.

void releaseUSART2 ()

Release USART2, making pins 0 and 1 again available for non-USART use.

10.51.1 Detailed Description

This file provides functions that provide a minimalist interface to USART2 available on the Arduino Mega (ATmega2560).

These functions are minimalist in the following sense:

- They only send sigle bytes or zero-terminated character strings.
- · They only receive single characters.
- They do not use the USART-related interrupts.
- They determine when the USART is ready to send by polling the relevant register bit.
- They determine when the USART has received data by polling the relevant register bit.

To use these functions, include USART2Minimal.h in your source code and link against USART2Minimal.cpp.

For a more advanced USART2 interface, consider using either the USART2 or Serial2 interfaces. Both of these are available by including USART2.h instead of USART2Minimal.h.

10.51.2 Function Documentation

10.51.2.1 initUSART2()

Initialize USART2 for serial receive and transmit.

USART2 is tied to pins 16 (TX) and 17 (RX) on Arduino Mega (ATmega2560 pins PH1, PH0).

Communications are configured for 8 data bits, no parity, and 1 stop bit.

• baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).

Note

This function is only available on Arduino Mega (ATmega2560).

10.51.2.2 receiveUSART2()

```
unsigned char receiveUSART2 ( )
```

Receive a byte on USART2.

You must first initialize USART2 by calling initUSART2().

This function blocks until the USART receives a byte.

Returns

the byte received.

Note

This function is only available on Arduino Mega (ATmega2560).

10.51.2.3 releaseUSART2()

```
void releaseUSART2 ( )
```

Release USART2, making pins 0 and 1 again available for non-USART use.

After calling this function, you cannot read or write to the USART unless you first call initUSART2().

Note

This function is only available on Arduino Mega (ATmega2560).

10.51.2.4 transmitUSART2() [1/2]

Transmit a null-terminated string on USART2.

You must first initialize USART2 by calling initUSART2().

This function blocks until the USART becomes available and all the bytes can be transmitted.

• data the null-terminated string to be transmitted.

Note

This function is only available on Arduino Mega (ATmega2560).

10.51.2.5 transmitUSART2() [2/2]

```
void transmitUSART2 (
          unsigned char data )
```

Transmit a single byte on USART2.

You must first initialize USART2 by calling initUSART2().

This function blocks until the USART becomes available and the byte can be transmitted.

• data the byte to be transmitted.

Note

This function is only available on Arduino Mega (ATmega2560).

10.52 USART2Minimal.h 301

10.52 USART2Minimal.h

Go to the documentation of this file.

```
00001 /*
00002
          USART2Minimal.h - Minimal, light-weight functions to use
00003
          USART2 available on ATMega2560 (Arduino Mega) processors (no buffering).
          This is part of the AVRTools library.
00004
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
          Functions readlong() and readFloat() adapted from Arduino code that
00007
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00008
00009
          This program is free software: you can redistribute it and/or modify
00010
          it under the terms of the GNU Lesser General Public License as published by
00011
          the Free Software Foundation, either version 3 of the License, or
00012
          (at your option) any later version.
00013
00014
          This program is distributed in the hope that it will be useful,
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00015
00016
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00017
          GNU Lesser General Public License for more details.
00018
00019
          You should have received a copy of the GNU Lesser General Public License
00020
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00021 */
00022
00023
00024
00047 #ifndef USART2Minimal_h
00048 #define USART2Minimal_h
00049
00050
00051
00052 #if defined(__AVR_ATmega2560__)
00053
00054
00055
00070 void initUSART2( unsigned long baudRate );
00071
00085 void transmitUSART2 ( unsigned char data );
00100 void transmitUSART2( const char* data );
00102
00115 unsigned char receiveUSART2();
00116
00117
00127 void releaseUSART2();
00128
00129
00130
00131 #endif
00132
00133
00134
00135 #endif
```

10.53 USART3.h File Reference

This file provides functions that offer high-level interfaces to USART3 hardware, which is available on Arduino Mega (ATMega2560).

```
#include "Writer.h"
#include "Reader.h"
#include <stdint.h>
```

#include <stddef.h>
Include dependency graph for USART3.h:

Classes

class Serial3

Provides a high-end interface to serial communications using USART3.

Namespaces

namespace USART3

This namespace bundles a high-level buffered interface to the USART3 hardware. It provides logical cohesion and prevents namespace collisions.

Enumerations

```
    enum UsartSerialConfiguration {
    kSerial_5N1 , kSerial_6N1 , kSerial_7N1 , kSerial_8N1 ,
    kSerial_5N2 , kSerial_6N2 , kSerial_7N2 , kSerial_8N2 ,
    kSerial_5E1 , kSerial_6E1 , kSerial_7E1 , kSerial_8E1 ,
    kSerial_5E2 , kSerial_6E2 , kSerial_7E2 , kSerial_8E2 ,
    kSerial_5O1 , kSerial_6O1 , kSerial_7O1 , kSerial_8O1 ,
    kSerial_5O2 , kSerial_6O2 , kSerial_7O2 , kSerial_8O2 }
```

This enum lists serial configuration in terms of data bits, parity, and stop bits.

Functions

void USART3::start (unsigned long baudRate, UsartSerialConfiguration config=kSerial_8N1)

Initialize USART3 for buffered, asynchronous serial communications using interrupts.

void USART3::stop ()

Stops buffered serial communications using interrupts on USART3.

• size_t USART3::write (char c)

Write a single byte to the transmit buffer.

size t USART3::write (const char *c)

Write a null-terminated string to the transmit buffer.

size_t USART3::write (const char *c, size_t n)

Write a character array of given size to the transmit buffer.

size_t USART3::write (const uint8_t *c, size_t n)

Write a byte array of given size to the transmit buffer.

void USART3::flush ()

Flush transmit buffer.

int USART3::peek ()

Examine the next character in the receive buffer without removing it from the buffer.

int USART3::read ()

Return the next character in the receive buffer, removing it from the buffer.

bool USART3::available ()

Determine if there is data in the receive buffer..

10.53.1 Detailed Description

This file provides functions that offer high-level interfaces to USART3 hardware, which is available on Arduino Mega (ATMega2560).

These interfaces are buffered for both input and output and operate using interrupts associated with USART3. This means the transmit functions return immediately after queuing data in the output buffer for transmission and the transmission happens asynchronously, using dedicated USART3 hardware. Similarly, data is received asynchronously and placed into the input buffer.

The transmit and receive buffers are both ring buffers. If you try to queue more data than the transmit buffer can hold, the write functions will block until there is room in the buffer (as a result of data being transmitted). The receive buffer, however, will overwrite if it gets full. You must clear the receive buffer by reading it regularly when receiving significant amounts of data.

The sizes of the transmit and receive buffers can be set at compile time via macro constants. The default sizes are 32 bytes for the receive buffer and 64 bytes for the transmit buffer. To change these, define the macros $USART3_RX_ \leftrightarrow BUFFER_SIZE$ (for the receive buffer) and $USART3_TX_BUFFER_SIZE$ (for the transmit buffer) to whatever sizes you need. You need to make these define these macros prior to compiling the file USART3.cpp.

Two interfaces are provided. USART3 is a functional interface that makes use of the buffering and asynchronous transmit and receive capabilities of the microcontrollers. However, USART3 is limited to transmitting and receiving byte and character streams.

Serial3 is the most advanced and capable interface to the USART3 hardware. Serial3 provides a object-oriented interface that includes the ability to read and write numbers of various types and in various formats, all asynchronously.

To use these functions, include USART3.h in your source code and link against USART3.cpp.

Note

Linking against USART3.cpp installs interrupt functions for transmit and receive on USART3 (interrupts USART3. UDRE and USART3_RX on Arduino Mega/ATmega2560). You cannot use the minimal interface to USART3 (from USARTMinimal.h) if you link against USART3.cpp. In particular, do *not* call initUSART3() or clearUSART3() if you link against USART3.cpp.

10.53.2 Enumeration Type Documentation

10.53.2.1 UsartSerialConfiguration

enum UsartSerialConfiguration

This enum lists serial configuration in terms of data bits, parity, and stop bits.

The format is kSerial_XYZ where

- X = the number of data bits
- Y = N, E, or O; where N = none, E = even, and O = odd
- Z = the number of stop bits

Enumerator

kSerial_5N1	5 data bits, no parity, 1 stop bit
kSerial_6N1	6 data bits, no parity, 1 stop bit
kSerial_7N1	7 data bits, no parity, 1 stop bit
kSerial_8N1	8 data bits, no parity, 1 stop bit
kSerial_5N2	5 data bits, no parity, 2 stop bits
kSerial_6N2	6 data bits, no parity, 2 stop bits
kSerial_7N2	7 data bits, no parity, 2 stop bits
kSerial_8N2	8 data bits, no parity, 2 stop bits
kSerial_5E1	5 data bits, even parity, 1 stop bit
kSerial_6E1	6 data bits, even parity, 1 stop bit
kSerial_7E1	7 data bits, even parity, 1 stop bit
kSerial_8E1	8 data bits, even parity, 1 stop bit
kSerial_5E2	5 data bits, even parity, 2 stop bits
kSerial_6E2	6 data bits, even parity, 2 stop bits
kSerial_7E2	7 data bits, even parity, 2 stop bits
kSerial_8E2	8 data bits, even parity, 2 stop bits
kSerial_5O1	5 data bits, odd parity, 1 stop bit
kSerial_6O1	6 data bits, odd parity, 1 stop bit
kSerial_701	7 data bits, odd parity, 1 stop bit
kSerial_8O1	8 data bits, odd parity, 1 stop bit
kSerial_5O2	5 data bits, odd parity, 2 stop bits
kSerial_6O2	6 data bits, odd parity, 2 stop bits
kSerial_702	7 data bits, odd parity, 2 stop bits
kSerial_802	8 data bits, odd parity, 2 stop bits

Generated by Doxygen

10.54 USART3.h 305

10.54 USART3.h

Go to the documentation of this file.

```
00001 /*
00002
          USART3.h - Functions and classes to use USART3 on AVR systems for
00003
          serial I/O (includes buffering).
00004
          For AVR ATMega2560 (Arduino Mega).
00005
          This is part of the AVRTools library.
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00006
00007
          Functions readlong() and readFloat() adapted from Arduino code that
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00008
00009
00010
          This program is free software: you can redistribute it and/or modify
00011
          it under the terms of the GNU Lesser General Public License as published by
00012
          the Free Software Foundation, either version 3 of the License, or
00013
          (at your option) any later version.
00014
00015
          This program is distributed in the hope that it will be useful,
00016
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00017
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00018
          GNU Lesser General Public License for more details.
00019
          You should have received a copy of the GNU Lesser General Public License
00020
00021
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00022 */
00023
00024
00025 #if !defined(_AVR_ATmega2560_)
00026 #error "USART3 doesn't exist on ATMega328p (Arduino Uno); you can only use this on ATMega2560 (Arduino
     Mega)."
00027 #endif
00028
00029
00030
00074 #ifndef USART3 h
00075 #define USART3_h
00076
00077 #include "Writer.h"
00078 #include "Reader.h"
00079
00080 #include <stdint.h>
00081 #include <stddef.h>
00082
00083
00084 #ifndef USART_SERIAL_CONFIG
00085 #define USART_SERIAL_CONFIG
00086
00097 enum UsartSerialConfiguration
00098 {
00099
          kSerial_5N1 = 0x00,
00100
          kSerial_6N1 = 0x02,
00101
          kSerial_7N1 = 0x04,
          kSerial_8N1 = 0x06
00102
00103
          kSerial_5N2 = 0x08,
00104
          kSerial_6N2 = 0x0A,
00105
          kSerial_7N2 = 0x0C,
00106
          kSerial_8N2 = 0x0E,
          kSerial_5E1 = 0x20,
00107
00108
          kSerial_6E1 = 0x22,
          kSerial_7E1 = 0x24,
00109
00110
          kSerial_8E1 = 0x26,
          kSerial_5E2 = 0x28,
00111
          kSerial_6E2 = 0x2A,
00112
00113
          kSerial_7E2 = 0x2C
          kSerial_8E2 = 0x2E,
00114
          kSerial_501 = 0x30,
00115
00116
          kSerial_601 = 0x32,
00117
          kSerial_701 = 0x34,
          kSerial_801 = 0x36,
00118
          kSerial_502 = 0x38,
00119
00120
          kSerial_602 = 0x3A
00121
          kSerial_{702} = 0x3C_{1}
          kSerial_802 = 0x3E
00122
00123 };
00124
00125 #endif
00126
00127
00128
```

```
00129
00135 namespace USART3
00136 {
00137
00151
          void start( unsigned long baudRate, UsartSerialConfiguration config = kSerial_8N1 );
00152
00153
00164
          void stop();
00165
00166
00167
00182
          size_t write( char c );
00183
00184
00199
          size_t write( const char* c );
00200
00201
00218
          size_t write( const char* c, size_t n );
00219
00220
00237
          size_t write( const uint8_t* c, size_t n );
00238
00239
00248
          void flush();
00249
00250
00258
          int peek();
00259
00260
00268
          int read();
00269
00270
00278
          bool available():
00279 };
00280
00281
00282
00283
00284
00285
00286
00287
00302 class Serial3 : public Writer, public Reader
00303 {
00304 public:
00305
          void start( unsigned long baudRate, UsartSerialConfiguration config = kSerial_8N1 )
00318
00319
          { USART3::start( baudRate, config ); }
00320
00321
00331
          void stop()
00332
          { USART3::stop(); }
00333
00334
00335
00336
00337
00346
          virtual size_t write( char c );
00347
00356
          virtual size_t write( const char* str );
00357
00367
          virtual size_t write( const char* buffer, size_t size );
00368
00378
          virtual size_t write( const uint8_t* buffer, size_t size );
00379
00385
          virtual void flush();
00386
00387
00388
00389
          // Virtual functions from Reader
00390
00398
          virtual int read();
00399
00400
00408
          virtual int peek();
00409
00410
00417
          virtual bool available();
00418 };
00419
00420
```

00421 00422 #endif 00423

10.55 USART3Minimal.h File Reference

This file provides functions that provide a minimalist interface to USART3 available on the Arduino Mega (ATmega2560).

Functions

void initUSART3 (unsigned long baudRate)

Initialize USART3 for serial receive and transmit.

· void transmitUSART3 (unsigned char data)

Transmit a single byte on USART3.

void transmitUSART3 (const char *data)

Transmit a null-terminated string on USART3.

• unsigned char receiveUSART3 ()

Receive a byte on USART3.

void releaseUSART3 ()

Release USART3, making pins 0 and 1 again available for non-USART use.

10.55.1 Detailed Description

This file provides functions that provide a minimalist interface to USART3 available on the Arduino Mega (ATmega2560).

These functions are minimalist in the following sense:

- They only send sigle bytes or zero-terminated character strings.
- · They only receive single characters.
- They do not use the USART-related interrupts.
- They determine when the USART is ready to send by polling the relevant register bit.
- They determine when the USART has received data by polling the relevant register bit.

To use these functions, include USART3Minimal.h in your source code and link against USART3Minimal.cpp.

For a more advanced USART3 interface, consider using either the USART3 or Serial3 interfaces. Both of these are available by including USART3.h instead of USART3Minimal.h.

10.55.2 Function Documentation

10.55.2.1 initUSART3()

Initialize USART3 for serial receive and transmit.

USART3 is tied to pins 14 (TX) and 15 (RX) on Arduino Mega (ATmega2560 pins PJ1, PJ0).

Communications are configured for 8 data bits, no parity, and 1 stop bit.

baudRate the baud rate for the communications, usually one of the following values: 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 28800, 38400, 57600, or 115200 (although other values below can be specified).

Note

This function is only available on Arduino Mega (ATmega2560).

10.55.2.2 receiveUSART3()

```
unsigned char receiveUSART3 ( )
```

Receive a byte on USART3.

You must first initialize USART3 by calling initUSART3().

This function blocks until the USART receives a byte.

Returns

the byte received.

Note

This function is only available on Arduino Mega (ATmega2560).

10.55.2.3 releaseUSART3()

```
void releaseUSART3 ( )
```

Release USART3, making pins 0 and 1 again available for non-USART use.

After calling this function, you cannot read or write to the USART unless you first call initUSART3().

Note

This function is only available on Arduino Mega (ATmega2560).

10.55.2.4 transmitUSART3() [1/2]

Transmit a null-terminated string on USART3.

You must first initialize USART3 by calling initUSART3().

This function blocks until the USART becomes available and all the bytes can be transmitted.

• data the null-terminated string to be transmitted.

Note

This function is only available on Arduino Mega (ATmega2560).

10.55.2.5 transmitUSART3() [2/2]

```
void transmitUSART3 (
          unsigned char data )
```

Transmit a single byte on USART3.

You must first initialize USART3 by calling initUSART3().

This function blocks until the USART becomes available and the byte can be transmitted.

• data the byte to be transmitted.

Note

This function is only available on Arduino Mega (ATmega2560).

10.56 USART3Minimal.h

Go to the documentation of this file.

```
00001 /*
00002
          USART3Minimal.h - Minimal, light-weight functions to use
00003
          USART3 available on ATMega2560 (Arduino Mega) processors (no buffering).
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2015 Igor Mikolic-Torreira. All right reserved.
00006
          Functions readlong() and readFloat() adapted from Arduino code that
00007
          is Copyright (c) 2005-2006 David A. Mellis and licensed under LGPL.
00008
00009
          This program is free software: you can redistribute it and/or modify
00010
          it under the terms of the GNU Lesser General Public License as published by
00011
          the Free Software Foundation, either version 3 of the License, or
00012
          (at your option) any later version.
00013
00014
          This program is distributed in the hope that it will be useful,
00015
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00016
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00017
          GNU Lesser General Public License for more details.
00018
00019
          You should have received a copy of the GNU Lesser General Public License
00020
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00021 */
00022
00023
00024
00047 #ifndef USART3Minimal_h
00048 #define USART3Minimal_h
00049
00050
00051
00052 #if defined(__AVR_ATmega2560__)
00053
00054
00055
00070 void initUSART3( unsigned long baudRate );
00071
00085 void transmitUSART3 ( unsigned char data );
00100 void transmitUSART3( const char* data );
00102
00115 unsigned char receiveUSART3();
00116
00117
00127 void releaseUSART3();
00128
00129 #endif
00130
00131
00132
00133 #endif
```

10.57 Writer.h File Reference

This file provides a generic interface to outgoing data streams of any kind. It is designed around how serial streams are generally used, but can be used with any system that requires converting strings and/or numbers into a sequential output of bytes.

```
#include <stdint.h>
#include <stddef.h>
```

10.58 Writer.h 311

Include dependency graph for Writer.h:

This graph shows which files directly or indirectly include this file:

Classes

· class Writer

This is an abstract class defining a generic interface to write numbers and strings to a sequential stream of bytes (such as a serial output device).

10.57.1 Detailed Description

This file provides a generic interface to outgoing data streams of any kind. It is designed around how serial streams are generally used, but can be used with any system that requires converting strings and/or numbers into a sequential output of bytes.

10.58 Writer.h

Go to the documentation of this file.

```
00001 /*
00002 Writer.h - a base class for writing data.
00003 For AVR ATMega328p (Arduino Uno) and ATMega2560 (Arduino Mega).
```

```
00004
          This is part of the AVRTools library.
00005
          Copyright (c) 2014 Igor Mikolic-Torreira. All right reserved.
00006
          Functions printNumber() and printFloat() adapted from Arduino code that
00007
          is Copyright (c) 2008 David A. Mellis and licensed under LGPL.
00008
00009
          This program is free software: you can redistribute it and/or modify
00010
          it under the terms of the GNU Lesser General Public License as published by
00011
          the Free Software Foundation, either version 3 of the License, or
00012
          (at your option) any later version.
00013
00014
          This program is distributed in the hope that it will be useful,
00015
          but WITHOUT ANY WARRANTY; without even the implied warranty of
00016
          MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00017
          GNU Lesser General Public License for more details.
00018
00019
          You should have received a copy of the GNU Lesser General Public License
          along with this program. If not, see <a href="http://www.gnu.org/licenses/">http://www.gnu.org/licenses/</a>.
00020
00021 */
00022
00023
00034 #ifndef Writer_h
00035 #define Writer_h
00036
00037 #include <stdint.h>
00038 #include <stddef.h>
00039
00040
00041
00042 #ifndef SERIAL_OUTPUT_EOL
00043 #define SERIAL_OUTPUT_EOL
00044 #endif
00045
00046
00047
00048
00063 class Writer
00064 {
00065 public:
00066
00067
00073
          enum IntegerOutputBase
00074
00075
              kBin
                      = 2.
                      = 8,
00076
              k0ct.
                      = 10,
00077
              kDec
                      = 16
00078
              kHex
00079
          };
00080
00081
00082
00090
          virtual size_t write( char c ) = 0;
00091
00092
00100
          virtual size_t write( const char* str ) = 0;
00101
00102
00111
          virtual size_t write( const char* buffer, size_t size ) = 0;
00112
00113
00122
          virtual size_t write( const uint8_t* buffer, size_t size ) = 0;
00123
00124
00129
          virtual void flush() = 0;
00130
00131
00132
00133
00145
          size_t print( const char* str, bool addLn = false );
00146
00147
00160
          size_t print( const uint8_t* buf, size_t size, bool addLn = false );
00161
00162
00174
          size_t print( char c, bool addLn = false );
00175
00176
00190
          size_t print( int8_t n, int base = kDec, bool addLn = false );
00191
00192
00206
          size t print ( uint8 t n, int base = kDec, bool addLn = false )
00207
          { return print( static_cast<unsigned long>( n ), base, addLn ); }
```

10.58 Writer.h 313

```
00208
00222
          size_t print( int n, int base = kDec, bool addLn = false );
00223
00224
00238
          size_t print( unsigned int n, int base = kDec, bool addLn = false )
00239
          { return print( static_cast<unsigned long>( n ), base, addLn ); }
00240
00241
00255
          size_t print( long n, int base = kDec, bool addLn = false );
00256
00257
00271
          size_t print( unsigned long n, int base = kDec, bool addLn = false );
00272
00273
00286
          size_t print( double d, int digits = 2, bool addLn = false );
00287
00288
00297
          size_t println( const char* str )
                                                                   { return print( str, true ); }
00298
00308
          size_t println( const uint8_t* buf, size_t size )
                                                                   { return print( buf, size, true ); }
00309
00318
          size_t println( char c )
                                                                   { return print( c, true ); }
00319
00332
          size_t println( int8_t n, int base = kDec )
                                                                     { return print( n, base, true ); }
00333
00346
          size_t println( uint8_t n, int base = kDec )
                                                             { return print( n, base, true ); }
00347
00360
          size_t println( int n, int base = kDec )
                                                                   { return print( n, base, true ); }
00361
00374
          size_t println( unsigned int n, int base = kDec )
                                                                   { return print( n, base, true ); }
00375
00388
          size_t println(long n, int base = kDec)
                                                                   { return print( n, base, true ); }
00389
00402
          size_t println( unsigned long n, int base = kDec )
                                                                  { return print( n, base, true ); }
00403
          size_t println( double d, int digits = 2 )
00415
                                                                  { return print( d, digits, true ); }
00416
00420
          size_t println();
00421
00422 private:
00423
00424
          size_t printNumber( unsigned long n, uint8_t base );
00425
          size_t printFloat( double d, uint8_t digits );
00426 };
00427
00428 #endif
00429
```

Index

ABBUU BU	B
A2DVoltageReference	Pwm.h, 250
Analog2Digital.h, 198	clearTimer3
abi.h, 195, 196	Pwm.h, 250
Advanced Features, 9	clearTimer4
Analog2Digital.h, 196, 201	Pwm.h, 250
A2DVoltageReference, 198	clearTimer5
initA2D, 199	Pwm.h, 250
kA2dReference11V, 198	command
kA2dReference256V, 198	I2cLcd, 80
kA2dReferenceAREF, 198	configure
kA2dReferenceAVCC, 198	SPI, <u>54</u>
readA2D, 199	J, J.
readGpioPinAnalog, 198	delay
readGpioPinAnalogV, 199	SystemClock.h, 273
setA2DVoltageReference, 200	delayMicroseconds
-	SystemClock.h, 273
setA2DVoltageReference11V, 200	delayMilliseconds
setA2DVoltageReference256V, 200	SystemClock.h, 274
setA2DVoltageReferenceAREF, 201	delayQuartersOfMicroSeconds
setA2DVoltageReferenceAVCC, 201	•
ArduinoMegaPins.h, 203, 204	SimpleDelays.h, 265
ArduinoPins.h, 206, 207	delayTenthsOfSeconds
ArduinoUnoPins.h, 207, 208	SimpleDelays.h, 265
available	delayWholeMilliSeconds
Reader, 93	SimpleDelays.h, 265
Serial0, 109	disable
Serial1, 128	SPI, 54
Serial2, 147	discardFromFront
Serial3, 166	RingBufferT $<$ T, N, SIZE $>$, 103
USART0, 57	displayBottomRow
USART1, 61	I2cLcd, 80
USART2, 65	displayTopRow
USART3, 69	I2cLcd, 80
AVRTools: A Library for the AVR ATmega328 and AT-	
mega2560 Microcontrollers, 1	enable
mogazooo morooona onoro, r	SPI, 54
busy	ExternalInterrupts
I2cMaster, 37	Interrupts, 48
I2cSlave, 46	ExternalOff
ByteOrder	Interrupts::ExternalOff, 74
SPI, 53	,
Si 1, 30	FAQ, 19
clearTimer0	find
Pwm.h, 249	Reader, 93, 94
clearTimer1	Serial0, 110
Pwm.h, 249	Serial1, 129
clearTimer2	Serial2, 148
ciear fillerz	Octiviz, 170

Serial3, 167	GpioPinPwm, 215
findUntil	isGpioPinModeInput, 216
Reader, 94	isGpioPinModeInputV, 219
Serial0, 110	isGpioPinModeOutput, 216
Serial1, 129	isGpioPinModeOutputV, 219
Serial2, 148	kDigitalHigh, 219
Serial3, 167	kDigitalLow, 219
flush	makeGpioVarFromGpioPin, 216
USART0, 57	makeGpioVarFromGpioPinAnalog, 216
USART1, 61	makeGpioVarFromGpioPinPwm, 217
USART2, 65	readGpioPinDigital, 217
USART3, 69	readGpioPinDigitalV, 220
freeMemoryBetweenHeapAndStack	setGpioPinHigh, 217
MemUtils, 50	setGpioPinHighV, 220
freeSRAM	setGpioPinLow, 218
MemUtils, 50	setGpioPinLowV, 220
	setGpioPinModeInput, 218
getFreeListStats	setGpioPinModeInputPullup, 218
MemUtils, 50	setGpioPinModeInputPullupV, 220
getGpioADC	setGpioPinModeInputV, 221
GpioPinMacros.h, 212	setGpioPinModeOutput, 218
getGpioCOM	setGpioPinModeOutputV, 221
GpioPinMacros.h, 212	writeGpioPinDigital, 219
getGpioDDR	writeGpioPinDigitalV, 221
GpioPinMacros.h, 213	GpioPinPwm
getGpioMASK	GpioPinMacros.h, 215
GpioPinMacros.h, 213	GpioPinVariable, 74
getGpioOCR	,
GpioPinMacros.h, 213	I2cBusSpeed
getGpioPIN	I2cMaster, 35
GpioPinMacros.h, 214	I2cSlave, 45
getGpioPORT	I2cLcd, 76
GpioPinMacros.h, 214	command, 80
getGpioTCCR	displayBottomRow, 80
GpioPinMacros.h, 214	displayTopRow, 80
getSpcr	init, 81
SPI::SPISettings, 183	IntegerOutputBase, 80
getSpsr	kBacklight_Blue, 80
SPI::SPISettings, 183	kBacklight Green, 80
GpioPin	kBacklight Red, 79
GpioPinMacros.h, 215	kBacklight_Teal, 80
GpioPinAnalog	kBacklight Violet, 80
GpioPinMacros.h, 215	kBacklight White, 80
GpioPinMacros.h, 209, 222	kBacklight_Yellow, 80
getGpioADC, 212	kBin, 80
getGpioCOM, 212	kButton_Down, 79
getGpioDDR, 213	kButton_Left, 79
getGpioMASK, 213	kButton Right, 79
getGpioOCR, 213	kButton_Select, 79
getGpioPIN, 214	kButton_Up, 79
getGpioPORT, 214	kDec, 80
getGpioTCCR, 214	kHex, 80
GpioPin, 215	kOct, 80
GpioPinAnalog, 215	print, 81–84
Sp	P

println, 85–88	pullups, 47
readButtons, 88	start, 47
setBacklight, 88	stop, 47
setCursor, 89	I2cSlave.h, 235, 237
write, 89, 90	I2cStatusCodes
I2cLcd.h, 226, 227	I2cMaster, 36
I2cMaster, 33	I2cSlave, 45
busy, 37	init
I2cBusSpeed, 35	I2cLcd, 81
I2cPullups, 35	initA2D
I2cSendErrorCodes, 36	Analog2Digital.h, 199
I2cStatusCodes, 36	initPwmTimer0
kl2cBusFast, 35	Pwm.h, 251
kl2cBusSlow, 35	initPwmTimer1
kl2cCompletedOk, 36	Pwm.h, 251
kl2cErrMsgTooLong, 36	initPwmTimer2
kl2cErrNullStatusPtr, 36	Pwm.h, 252
kl2cError, 36	initPwmTimer3
kl2cErrReadWithoutStorage, 36	Pwm.h, 252
kl2cErrTxBufferFull, 36	initPwmTimer4
kl2cErrWriteWithoutData, 36	Pwm.h. 252
kl2clnProgress, 36	initPwmTimer5
kl2cNoError, 36	Pwm.h, 253
kl2cNotStarted, 36	initSystem
kPullupsOff, 36	InitSystem.h, 239
kPullupsOn, 36	InitSystem.h, 238, 239
pullups, 37	initSystem, 239
readAsync, 37	initSystemClock
readSync, 38	SystemClock.h, 274
start, 39	initUSART0
stop, 39	USART0Minimal.h, 282
writeAsync, 39–41	initUSART1
writeSync, 42, 43	USART1Minimal.h, 290
I2cMaster.h, 230, 233	initUSART2
I2cPullups	USART2Minimal.h, 299
I2cMaster, 35	initUSART3
I2cSlave, 45	USART3Minimal.h, 308
I2cSendErrorCodes	IntegerOutputBase
I2cMaster, 36	I2cLcd, 80
I2cSlave, 44	Serial0, 109
busy, 46	Serial1, 128
I2cBusSpeed, 45	Serial2, 147
I2cPullups, 45	Serial3, 166
I2cStatusCodes, 45	Writer, 185
kl2cBusFast, 45	Interrupts, 48
kl2cBusSlow, 45	ExternalInterrupts, 48
kl2cCompletedOk, 46	kExternalInterrupt0, 49
kl2claProgress 46	kExternalInterrupt1, 49
kl2clnProgress, 46	kExternalInterrupt2, 49
kl2cRxOverflow, 46	kExternalInterrupt3, 49
kl2cTxPartial, 46	kExternalInterrupt4, 49
kPullupsOff, 45	kExternalInterrupt5, 49
kPullupsOn, 45	kExternalInterrupt6, 49
processI2cMessage, 46	kExternalInterrupt7, 49

kExternalInterruptAll, 49	I2cLcd, 80
kPinChangeInterrupt0, 49	kBin
kPinChangeInterrupt1, 49	I2cLcd, 80
kPinChangeInterrupt2, 49	Serial0, 109
kPinChangeInterruptAll, 49	Serial1, 128
PinChangeInterrupts, 49	Serial2, 147
Interrupts::AllOff, 73	Serial3, 166
Interrupts::ExternalOff, 73	Writer, 185
ExternalOff, 74	kButton_Down
Interrupts::PinChangeOff, 91	I2cLcd, 79
PinChangeOff, 91	kButton_Left
InterruptUtils.h, 239, 241	I2cLcd, 79
isEmpty	kButton_Right
RingBuffer, 100	I2cLcd, 79
RingBufferT< T, N, SIZE >, 103	kButton_Select
isFull	I2cLcd, 79
RingBuffer, 100	kButton_Up
RingBufferT< T, N, SIZE >, 103	I2cLcd, 79
isGpioPinModeInput	kDec
GpioPinMacros.h, 216	I2cLcd, 80
isGpioPinModeInputV	Serial0, 109
GpioPinMacros.h, 219	Serial1, 128
isGpioPinModeOutput	Serial2, 147
GpioPinMacros.h, 216	Serial3, 166
isGpioPinModeOutputV	Writer, 185
GpioPinMacros.h, 219	kDigitalHigh
isNotEmpty	GpioPinMacros.h, 219
RingBuffer, 100	kDigitalLow
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104	kDigitalLow GpioPinMacros.h, 219
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80 kBacklight_Red	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80 kBacklight_Red I2cLcd, 79	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterruptAll Interrupts, 49
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBuffer, T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80 kBacklight_Red I2cLcd, 79 kBacklight_Teal	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterruptAll Interrupts, 49 kHex
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80 kBacklight_Red I2cLcd, 79 kBacklight_Teal I2cLcd, 80	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterruptAll Interrupts, 49 kHex I2cLcd, 80
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80 kBacklight_Red I2cLcd, 79 kBacklight_Teal I2cLcd, 80 kBacklight_Teal I2cLcd, 80 kBacklight_Violet	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterruptAll Interrupts, 49 kHex I2cLcd, 80 Serial0, 109
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80 kBacklight_Red I2cLcd, 79 kBacklight_Teal I2cLcd, 80 kBacklight_Teal I2cLcd, 80 kBacklight_Violet I2cLcd, 80	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Serial0, 109 Serial1, 128
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80 kBacklight_Red I2cLcd, 79 kBacklight_Teal I2cLcd, 80 kBacklight_Violet I2cLcd, 80 kBacklight_Violet I2cLcd, 80 kBacklight_Violet I2cLcd, 80 kBacklight_White	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterruptAll Interrupts, 49 kHex I2cLcd, 80 Serial0, 109 Serial1, 128 Serial2, 147
RingBuffer, 100 RingBufferT< T, N, SIZE >, 104 isNotFull RingBuffer, 101 RingBufferT< T, N, SIZE >, 104 kA2dReference11V Analog2Digital.h, 198 kA2dReference256V Analog2Digital.h, 198 kA2dReferenceAREF Analog2Digital.h, 198 kA2dReferenceAVCC Analog2Digital.h, 198 kBacklight_Blue I2cLcd, 80 kBacklight_Green I2cLcd, 80 kBacklight_Red I2cLcd, 79 kBacklight_Teal I2cLcd, 80 kBacklight_Teal I2cLcd, 80 kBacklight_Violet I2cLcd, 80	kDigitalLow GpioPinMacros.h, 219 kExternalInterrupt0 Interrupts, 49 kExternalInterrupt1 Interrupts, 49 kExternalInterrupt2 Interrupts, 49 kExternalInterrupt3 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Interrupts, 49 kExternalInterrupt6 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt7 Interrupts, 49 kExternalInterrupt4 Interrupts, 49 kExternalInterrupt5 Serial0, 109 Serial1, 128

kl2cBusFast	I2cSlave, 45
I2cMaster, 35	kPullupsOn
I2cSlave, 45	I2cMaster, 36
kl2cBusSlow	I2cSlave, 45
I2cMaster, 35	kSerial_5E1
I2cSlave, 45	USART0.h, 278
kl2cCompletedOk	USART1.h, 286
I2cMaster, 36	USART2.h, 295
I2cSlave, 46	USART3.h, 304
kl2cErrMsgTooLong	kSerial_5E2
I2cMaster, 36	USART0.h, 278
kl2cErrNullStatusPtr	USART1.h, 286
I2cMaster, 36	USART2.h, 295
kl2cError	USART3.h, 304
I2cMaster, 36	kSerial_5N1
I2cSlave, 46	USART0.h, 278
kl2cErrReadWithoutStorage	USART1.h, 286
I2cMaster, 36	USART2.h, 295
kl2cErrTxBufferFull	USART3.h, 304
I2cMaster, 36	kSerial_5N2
kl2cErrWriteWithoutData	USART0.h, 278
I2cMaster, 36	USART1.h, 286
kl2cInProgress	USART2.h, 295
I2cMaster, 36	USART3.h, 304
I2cSlave, 46	kSerial_5O1
kl2cNoError	USART0.h, 278
I2cMaster, 36	USART1.h, 286
kl2cNotStarted	USART2.h, 295
I2cMaster, 36	USART3.h, 304
kl2cRxOverflow	kSerial_5O2
I2cSlave, 46	USART0.h, 278
kl2cTxPartial	USART1.h, 286
I2cSlave, 46	USART2.h, 295
kLsbFirst	USART3.h, 304
SPI, 53	kSerial_6E1
kMsbFirst	USART0.h, 278
SPI, 53	USART1.h, 286
kOct	USART2.h, 295
I2cLcd, 80	USART3.h, 304
Serial0, 109	kSerial_6E2
Serial1, 128	USART0.h, 278
Serial2, 147	USART1.h, 286
Serial3, 166	USART2.h, 295
Writer, 185	USART3.h, 304
kPinChangeInterrupt0	kSerial_6N1
Interrupts, 49	USART0.h, 278
kPinChangeInterrupt1	USART1.h, 286
Interrupts, 49	USART2.h, 295
kPinChangeInterrupt2	USART3.h, 304
Interrupts, 49	kSerial_6N2
kPinChangeInterruptAll	USART0.h, 278
Interrupts, 49	USART1.h, 286
kPullupsOff	USART2.h, 295
I2cMaster, 36	USART3.h, 304

kSerial_6O1	USART3.h, 304
USART0.h, 278	kSerial_8N2
USART1.h, 286	USART0.h, 278
USART2.h, 295	USART1.h, 286
USART3.h, 304	USART2.h, 295
kSerial_602	USART3.h, 304
USART0.h, 278	kSerial_8O1
USART1.h, 286	USART0.h, 278
USART2.h, 295	USART1.h, 286
USART3.h, 304	USART2.h, 295
kSerial_7E1	USART3.h, 304
USART0.h, 278	kSerial_8O2
USART1.h, 286	USART0.h, 278
USART2.h, 295	USART1.h, 286
USART3.h, 304	USART2.h, 295
kSerial 7E2	USART3.h, 304
USART0.h, 278	kSpiMode0
USART1.h, 286	SPI, 53
USART2.h, 295	kSpiMode1
USART3.h, 304	SPI, 53
kSerial 7N1	kSpiMode2
USART0.h, 278	SPI, 53
USART1.h, 286	kSpiMode3
USART2.h, 295	SPI, 53
USART3.h, 304	01 1, 00
kSerial 7N2	makeGpioVarFromGpioPin
USART0.h, 278	GpioPinMacros.h, 216
USART1.h, 286	makeGpioVarFromGpioPinAnalog
USART2.h, 295	GpioPinMacros.h, 216
	makeGpioVarFromGpioPinPwm
USART3.h, 304	GpioPinMacros.h, 217
kSerial_701	memoryAvailableOnFreeList
USART0.h, 278	MemUtils, 50
USART1.h, 286	MemUtils, 49
USART2.h, 295	freeMemoryBetweenHeapAndStack, 50
USART3.h, 304	freeSRAM, 50
kSerial_702	
USARTO.h, 278	getFreeListStats, 50
USART1.h, 286	memoryAvailableOnFreeList, 50
USART2.h, 295	resetHeap, 51
USART3.h, 304	MemUtils.h, 243, 244
kSerial_8E1	micros
USART0.h, 278	SystemClock.h, 274
USART1.h, 286	millis
USART2.h, 295	SystemClock.h, 274
USART3.h, 304	70.0 h 045 040
kSerial_8E2	new.h, 245, 246
USART0.h, 278	peek
USART1.h, 286	•
USART2.h, 295	Reader, 95
USART3.h, 304	RingBuffer, 101
kSerial_8N1	RingBufferT < T, N, SIZE >, 104
USART0.h, 278	Serial0, 111
USART1.h, 286	Serial1, 130
USART2.h, 295	Serial2, 149
	Serial3, 168

USART0, 57	Serial3, 175
USART1, 61	USARTO, 58
USART2, 65	USART1, 61
USART3, 69	USART2, 65
PinChangeInterrupts	USART3, 69
Interrupts, 49	readA2D
PinChangeOff	Analog2Digital.h, 199
Interrupts::PinChangeOff, 91	readAsync
print	I2cMaster, 37
I2cLcd, 81–84	readButtons
Serial0, 111–115	I2cLcd, 88
Serial1, 130–134	readBytes
Serial2, 149–153	Reader, 95, 96
Serial3, 168–172	Serial0, 119
Writer, 186–189	Serial1, 138
println	Serial2, 157
I2cLcd, 85–88	Serial3, 176
Serial0, 115–118	readBytesUntil
Serial1, 134–137	Reader, 96
Serial2, 153–156	Serial0, 119, 120
Serial3, 172–175	Serial1, 138, 139
Writer, 190–193	Serial2, 157, 158
processI2cMessage	Serial3, 176, 177
I2cSlave, 46	Reader, 92
pull	available, 93
RingBuffer, 101	find, 93, 94
RingBufferT< T, N, SIZE >, 104	findUntil, 94
pullups	peek, 95
I2cMaster, 37	read, 95
I2cSlave, 47	readBytes, 95, 96
push RingBuffer, 101	readBytesUntil, 96 readFloat, 97
RingBufferT < T, N, SIZE >, 105	readLine, 97
Pwm.h, 246, 254	readLong, 98
clearTimer0, 249	setTimeout, 98
clearTimer1, 249	Reader.h, 256, 257
clearTimer2, 250	readFloat
clearTimer3, 250	Reader, 97
clearTimer4, 250	Serial0, 120, 121
clearTimer5, 250	Serial1, 139, 140
initPwmTimer0, 251	Serial2, 158, 159
initPwmTimer1, 251	Serial3, 177, 178
initPwmTimer2, 252	readGpioPinAnalog
initPwmTimer3, 252	Analog2Digital.h, 198
initPwmTimer4, 252	readGpioPinAnalogV
initPwmTimer5, 253	Analog2Digital.h, 199
writeGpioPinPwm, 249	readGpioPinDigital
writeGpioPinPwmV, 253	GpioPinMacros.h, 217
	readGpioPinDigitalV
read	GpioPinMacros.h, 220
Reader, 95	readLine
Serial0, 118	Reader, 97
Serial1, 137	Serial0, 121
Serial2, 156	Serial1, 140

Serial2, 159	kBin, 109
Serial3, 178	kDec, 109
readLong	kHex, 109
Reader, 98	kOct, 109
Serial0, 121, 122	peek, 111
Serial1, 140, 141	print, 111–115
Serial2, 159, 160	println, 115–118
Serial3, 178, 179	read, 118
readSync	readBytes, 119
I2cMaster, 38	readBytesUntil, 119, 120
receiveUSART0	readFloat, 120, 121
USART0Minimal.h, 282	readLine, 121
receiveUSART1	readLong, 121, 122
	-
USART1Minimal.h, 290	setTimeout, 122
receiveUSART2	start, 122
USART2Minimal.h, 299	stop, 123
receiveUSART3	write, 123, 124
USART3Minimal.h, 308	Serial1, 125
releaseUSART0	available, 128
USART0Minimal.h, 282	find, 129
releaseUSART1	findUntil, 129
USART1Minimal.h, 290	IntegerOutputBase, 128
releaseUSART2	kBin, 128
USART2Minimal.h, 299	kDec, 128
releaseUSART3	kHex, 128
USART3Minimal.h, 308	kOct, 128
resetHeap	peek, 130
MemUtils, 51	print, 130–134
RingBuffer, 99	println, 134–137
isEmpty, 100	read, 137
isFull, 100	readBytes, 138
isNotEmpty, 100	readBytesUntil, 138, 139
isNotFull, 101	readFloat, 139, 140
peek, 101	readLine, 140
pull, 101	readLong, 140, 141
push, 101	setTimeout, 141
•	
RingBuffer, 100	start, 141
RingBuffer.h, 259, 260	stop, 142
RingBufferT< T, N, SIZE >, 102	write, 142, 143
discardFromFront, 103	Serial2, 144
isEmpty, 103	available, 147
isFull, 103	find, 148
isNotEmpty, 104	findUntil, 148
isNotFull, 104	IntegerOutputBase, 147
peek, 104	kBin, 147
pull, 104	kDec, 147
push, 105	kHex, 147
RingBufferT.h, 261	kOct, 147
	peek, 149
Serial0, 106	print, 149–153
available, 109	println, 153–156
find, 110	read, 156
findUntil, 110	readBytes, 157
IntegerOutputBase, 109	readBytesUntil, 157, 158
•	10005,100011111, 107, 100

readFloat, 158, 159	GpioPinMacros.h, 218
readLine, 159	setGpioPinModeInputPullupV
readLong, 159, 160	GpioPinMacros.h, 220
setTimeout, 160	setGpioPinModeInputV
start, 160	GpioPinMacros.h, 221
stop, 161	setGpioPinModeOutput
write, 161, 162	GpioPinMacros.h, 218
Serial3, 163	setGpioPinModeOutputV
available, 166	GpioPinMacros.h, 221
find, 167	setTimeout
findUntil, 167	Reader, 98
IntegerOutputBase, 166	Serial0, 122
kBin, 166	Serial1, 141
kDec, 166	Serial2, 160
kHex, 166	Serial3, 179
kOct, 166	SimpleDelays.h, 263, 266
peek, 168	delayQuartersOfMicroSeconds, 265
print, 168–172	delayTenthsOfSeconds, 265
println, 172–175	delayWholeMilliSeconds, 265
read, 175	SPI, 51
readBytes, 176	ByteOrder, 53
readBytesUntil, 176, 177	configure, 54
readFloat, 177, 178	disable, 54
readLine, 178	enable, 54
readLong, 178, 179	kLsbFirst, 53
setTimeout, 179	kMsbFirst, 53
start, 179	kSpiMode0, 53
stop, 180	kSpiMode1, 53
write, 180, 181	kSpiMode2, 53
setA2DVoltageReference	kSpiMode3, 53
Analog2Digital.h, 200	SpiMode, 53
setA2DVoltageReference11V	transmit, 55
Analog2Digital.h, 200	transmit16, 55
setA2DVoltageReference256V	transmit32, 56
Analog2Digital.h, 200	SPI.h, 267, 268
setA2DVoltageReferenceAREF	SPI::SPISettings, 182
Analog2Digital.h, 201	getSpcr, 183
setA2DVoltageReferenceAVCC	getSpsr, 183
Analog2Digital.h, 201	SPISettings, 182
setBacklight	SpiMode
I2cLcd, 88	SPI, 53
setCursor	SPISettings
I2cLcd, 89	SPI::SPISettings, 182
setGpioPinHigh	start
GpioPinMacros.h, 217	I2cMaster, 39
setGpioPinHighV	I2cSlave, 47
GpioPinMacros.h, 220	Serial0, 122
setGpioPinLow	Serial, 141
GpioPinMacros.h, 218	
•	Serial2, 170
setGpioPinLowV	Serial3, 179
GpioPinMacros.h, 220	USARTO, 58
setGpioPinModeInput	USART1, 61
GpioPinMacros.h, 218	USART2, 65
setGpioPinModeInputPullup	USART3, 69

stop kSerial_7E1, 278 I2cMaster, 39 kSerial_7E2, 278 I2cSlave, 47 kSerial_7N1, 278 Serial0, 123 kSerial_7N2, 278 Serial1, 142 kSerial_7O1, 278 Serial2, 161 kSerial_7O2, 278 Serial3, 180 kSerial_8E1, 278 USART0, 58 kSerial_8E2, 278 USART1, 62 kSerial_8N1, 278 USART2, 66 kSerial_8N2, 278 USART3, 70 kSerial_8O1, 278 SystemClock.h, 272, 275 kSerial_8O2, 278 delay, 273 UsartSerialConfiguration, 278 delayMilliseconds, 274 initUSART0, 282 initUSART0, 282 receiveUSART0, 282 micros, 274 releaseUSART0, 282 millis, 274 transmitUSART0, 282 USART1, 60 available, 61 flush, 61
I2cSlave, 47
I2cSlave, 47
Serial0, 123 kSerial_7N2, 278 Serial1, 142 kSerial_7O1, 278 Serial2, 161 kSerial_7O2, 278 Serial3, 180 kSerial_8E1, 278 USART0, 58 kSerial_8E2, 278 USART1, 62 kSerial_8N1, 278 USART2, 66 kSerial_8N2, 278 USART3, 70 kSerial_801, 278 SystemClock.h, 272, 275 kSerial_802, 278 delay, 273 UsartSerialConfiguration, 278 delayMilliseconds, 274 USART0Minimal.h, 281, 283 initUsART0, 282 receiveUsART0, 282 micros, 274 releaseUsART0, 282 transmit available, 61 SPI, 55 flush, 61
Serial1, 142 kSerial_701, 278 Serial2, 161 kSerial_702, 278 Serial3, 180 kSerial_8E1, 278 USART0, 58 kSerial_8E2, 278 USART1, 62 kSerial_8N1, 278 USART2, 66 kSerial_8N2, 278 USART3, 70 kSerial_801, 278 SystemClock.h, 272, 275 kSerial_802, 278 delay, 273 UsartSerialConfiguration, 278 delayMilliseconds, 274 USARTOMinimal.h, 281, 283 initUSART0, 282 receiveUSART0, 282 micros, 274 releaseUSART0, 282 transmit available, 61 SPI, 55 flush, 61
Serial2, 161 kSerial_702, 278 Serial3, 180 kSerial_8E1, 278 USART0, 58 kSerial_8E2, 278 USART1, 62 kSerial_8N1, 278 USART2, 66 kSerial_8N2, 278 USART3, 70 kSerial_801, 278 SystemClock.h, 272, 275 kSerial_802, 278 delay, 273 UsartSerialConfiguration, 278 delayMiliseconds, 273 USART0Minimal.h, 281, 283 delayMilliseconds, 274 initUSART0, 282 micros, 274 receiveUSART0, 282 millis, 274 transmitUSART0, 282 USART1, 60 available, 61 transmit available, 61 SPI, 55 flush, 61
Serial3, 180 kSerial_8E1, 278 USART0, 58 kSerial_8E2, 278 USART1, 62 kSerial_8N1, 278 USART3, 70 kSerial_801, 278 SystemClock.h, 272, 275 kSerial_802, 278 delay, 273 UsartSerialConfiguration, 278 delayMicroseconds, 273 USART0Minimal.h, 281, 283 delayMilliseconds, 274 initUSART0, 282 initSystemClock, 274 receiveUSART0, 282 micros, 274 releaseUSART0, 282 millis, 274 transmitUSART0, 282 USART1, 60 available, 61 transmit available, 61 SPI, 55 flush, 61
USART0, 58
USART1, 62 USART2, 66 USART3, 70 SystemClock.h, 272, 275 delay, 273 delayMicroseconds, 273 delayMilliseconds, 274 initSystemClock, 274 micros, 274 millis, 274 transmit SPI, 55 kSerial_8N1, 278 kSerial_8O1, 278 kSerial_8O2, 278 kSerial_8O2, 278 UsartSerialConfiguration, 278 USART0Minimal.h, 281, 283 initUSART0, 282 receiveUSART0, 282 releaseUSART0, 282 USART1, 60 available, 61 flush, 61
USART2, 66
USART3, 70 SystemClock.h, 272, 275 delay, 273 delayMicroseconds, 273 delayMilliseconds, 274 initSystemClock, 274 micros, 274 millis, 274 transmit SPI, 55 kSerial_801, 278 kSerial_802, 278 kSerial_802, 278 USARTOMinimal.h, 281, 283 initUSART0, 282 receiveUSART0, 282 receiveUSART0, 282 transmitUSART0, 282 USART1, 60 available, 61 flush, 61
SystemClock.h, 272, 275 delay, 273 delayMicroseconds, 273 delayMilliseconds, 274 initSystemClock, 274 micros, 274 millis, 274 transmit SPI, 55 kSerial_802, 278 UsartSerialConfiguration, 278 USARTOMinimal.h, 281, 283 initUSART0, 282 receiveUSART0, 282 releaseUSART0, 282 transmitUSART0, 282 USART1, 60 available, 61 flush, 61
delay, 273 delayMicroseconds, 273 delayMilliseconds, 274 initSystemClock, 274 micros, 274 millis, 274 transmit SPI, 55 USARTOMinimal.h, 281, 283 initUSART0, 282 receiveUSART0, 282 releaseUSART0, 282 transmitUSART0, 282 USART1, 60 available, 61 flush, 61
delayMicroseconds, 273 delayMilliseconds, 274 initUSART0, 282 initSystemClock, 274 micros, 274 millis, 274 initUSART0, 282 receiveUSART0, 282 releaseUSART0, 282 transmitUSART0, 282 USART1, 60 transmit SPI, 55 flush, 61
delayMilliseconds, 274 initUSART0, 282 initSystemClock, 274 micros, 274 millis, 274 receiveUSART0, 282 releaseUSART0, 282 transmitUSART0, 282 USART1, 60 transmit sPI, 55 flush, 61
initSystemClock, 274 micros, 274 micros, 274 millis, 274 releaseUSART0, 282 releaseUSART0, 282 transmitUSART0, 282 USART1, 60 transmit spl, 55 flush, 61
initSystemClock, 274 micros, 274 micros, 274 millis, 274 releaseUSART0, 282 releaseUSART0, 282 transmitUSART0, 282 USART1, 60 transmit spl, 55 flush, 61
micros, 274 releaseUSARTO, 282 millis, 274 transmitUSARTO, 282 USART1, 60 transmit available, 61 SPI, 55 flush, 61
millis, 274 transmitUSART0, 282 USART1, 60 transmit available, 61 SPI, 55 flush, 61
transmit uSART1, 60 spl, 55 spl, 55 spl, 61 spl, 61
transmit available, 61 SPI, 55 flush, 61
SPI, 55 flush, 61
naon, or
1 140
Peek, 61
SPI, 55 read, 61
transmit32 start, 61
SPI, 56 stop, 62
transmitUSART0 write, 62, 63
USART0Minimal.h, 282 USART1.h, 284, 287
transmitUSART1 kSerial_5E1, 286
USART1Minimal.h, 290, 291
transmitUSART2 kSerial_5N1, 286
USART2Minimal.h, 299, 300
1000 A D.T.
KOEHAI_501, 200
Noonal_002, 200
USART0, 56 kSerial_6E1, 286
available 57
flush, 57 kSerial_6N1, 286
KSeriai biyz. 286
peek, 57 kSerial_6O1, 286
read, 58 kSerial_602, 286
start, 58 kSerial, 7F1, 286
stop, 58 kSerial_7E2, 286
write, 58, 59 kSerial 7N1, 286
USART0.h, 276, 279
kSorial 5E1 978
kSerial_701, 286 kSerial_5E2, 278
kSerial 5N1 278
kSerial 5N2 278
kSerial 501 278
kSerial 502 278
Koenar onz. Zop
kSerial_6E1, 278 kSerial_801, 286
kSerial_6E2, 278 kSerial_8O2, 286
KSerial_6N1, 278 UsartSerialConfiguration, 286
KSerial_6N2, 278 USART1Minimal.h. 289, 292
kSerial_601, 278 initUSART1, 290
kSerial_602, 278

receiveUSART1, 290	kSerial_5N2, 304
releaseUSART1, 290	kSerial_501, 304
transmitUSART1, 290, 291	kSerial_5O2, <mark>304</mark>
USART2, 64	kSerial_6E1, 304
available, 65	kSerial_6E2, 304
flush, 65	kSerial_6N1, 304
peek, 65	kSerial_6N2, 304
read, 65	kSerial_6O1, 304
start, 65	kSerial_6O2, 304
stop, 66	kSerial_7E1, 304
write, 66, 67	kSerial_7E2, 304
USART2.h, 292, 296	kSerial_7N1, <mark>304</mark>
kSerial_5E1, 295	kSerial_7N2, <mark>304</mark>
kSerial_5E2, 295	kSerial_701, 304
kSerial_5N1, 295	kSerial_7O2, 304
kSerial_5N2, 295	kSerial_8E1, 304
kSerial_501, 295	kSerial_8E2, 304
kSerial_5O2, 295	kSerial_8N1, 304
kSerial_6E1, 295	kSerial_8N2, 304
kSerial_6E2, 295	kSerial_8O1, 304
kSerial_6N1, 295	kSerial_8O2, 304
kSerial_6N2, 295	UsartSerialConfiguration, 304
kSerial_6O1, 295	USART3Minimal.h, 307, 310
kSerial_6O2, 295	initUSART3, 308
kSerial_7E1, 295	receiveUSART3, 308
kSerial_7E2, 295	releaseUSART3, 308
kSerial_7N1, 295	transmitUSART3, 308, 309
kSerial_7N2, 295	UsartSerialConfiguration
kSerial_701, 295	USART0.h, 278
kSerial_702, 295	USART1.h, 286
kSerial_8E1, 295	USART2.h, 295
kSerial_8E2, 295	USART3.h, 304
kSerial_8N1, 295	
kSerial_8N2, 295	write
kSerial_801, 295	I2cLcd, 89, 90
kSerial_8O2, 295	Serial0, 123, 124
UsartSerialConfiguration, 295	Serial1, 142, 143
USART2Minimal.h, 298, 301	Serial2, 161, 162
initUSART2, 299	Serial3, 180, 181
receiveUSART2, 299	USART0, 58, 59
releaseUSART2, 299	USART1, 62, 63
transmitUSART2, 299, 300	USART2, 66, 67
USART3, 68	USART3, 70, 71
available, 69	Writer, 193, 194
flush, 69	writeAsync
peek, 69	I2cMaster, 39-41
read, 69	writeGpioPinDigital
start, 69	GpioPinMacros.h, 219
stop, 70	writeGpioPinDigitalV
write, 70, 71	GpioPinMacros.h, 221
USART3.h, 301, 305	writeGpioPinPwm
kSerial_5E1, 304	Pwm.h, 249
kSerial_5E2, 304	writeGpioPinPwmV
kSerial_5N1, 304	Pwm.h, 253

```
Writer, 183
IntegerOutputBase, 185
kBin, 185
kDec, 185
kHex, 185
kOct, 185
print, 186–189
println, 190–193
write, 193, 194
Writer.h, 310, 311
writeSync
I2cMaster, 42, 43
```