OPERATIONAL AMPLIFIER (OP-AMP)

- Input is applied to non-inverting terminal
- Feedback is given to inverting terminal
- Output voltage will be in-phase with input voltage
- Here again, the following assumptions are made
 - Since A_d is very high, v_{id} should be very small; v_{id} taken as almost zero
 - Current entering OPAMP input terminal is almost zero

$$v_{id} = 0$$

$$v_1 = v_2 = v_{in}$$

$$i_1 = \frac{v_2}{R_1} = \frac{v_{in}}{R_1}$$

$$i_1 = \frac{v_2}{R_1} = \frac{v_{in}}{R_1}$$
 $i_2 = \frac{v_o - v_2}{R_F} = \frac{v_o - v_{in}}{R_F}$

$$i_1 = i_2$$

$$\frac{v_{in}}{R_1} = \frac{v_o - v_{in}}{R_F}$$

$$v_o = v_{in} \left(1 + \frac{R_F}{R_1} \right)$$

PROBLEMS

- 1. For an non-inverting amplifier using OPAMP, R_1 =1K, R_F =100K, v_{in} =0.1sin(ω t). Find v_o .
- 2. For a non-inverting amplifier, R_1 =10K, R_F =100K. Calculate v_o if v_i = 25 mV dc.
- 3. An ac signal of rms value 2 mV needs to be amplified to 1.2 V rms, and output must be in same phase as input. Design a suitable amplifier choosing R_1 =2K

Fin the output voltage VO for the following circuit if v1= 2V = V2.

Fin the output voltage VO for the following circuit if Vin= 2V, R1=2k and Rf= 10k.

VOLTAGE FOLLOWER

- Special case of non- inverting amplifier where $R_F=0$
- Voltage gain is unity. $v_o = v_{in}$
- Has very high input resistance and very low output resistance; Used as buffer for impedance matching

Fin the output voltage V0 for the following circuit if v1= 2V = V2.

Fin the output voltage VO for the following circuit if v1= 2.V.

Fin the output voltage VO for the following circuit.

Calculate the range of output voltage for the circuit.

-Thank You