Побудова моделі

Ознайомитись з різновидами регресійних моделей. Після завершення цієї лабораторної роботи ви зможете:

- Будувати регресійні моделі кількох видів
- Оцінювати якість моделі візуально
- Оцінювати якість моделі за допомогою числових мір, без використання тестової вибірки
- Виконувати прогнозування відгуку, використовуючи побудовану модель
- 1. Скачати дані із файлу "clean_data2.csv" (Data2.csv з виправленими помилками та заповненими пропусками). Записати дані у dataframe. В попередній роботі ви визначили ознаки, що можуть бути предикторами для 'CO2 emission'. Побудуйте моделі лінійної регресії для кожного з цих предикторів.
- 2. Побудуйте модель множинної лінійної регресії для всіх доречних предикторів разом.
- 3. Побудуйте кілька поліноміальних моделей другого порядку.
- 4. Побудуйте візуалізації для оцінки всіх моделей.
- 5. Порахуйте значення R^2 та MSE для оцінки якості кожної моделі. Оберіть найкращу модель.

Завдання #1:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
%matplotlib inline
```

Зчитую дані з файлу у датафрейм

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
df = pd.read csv("clean_data2.csv", encoding='cp1252')
print(df)
              Country Name
                                                         GDP per capita
                                                 Region
0
               Afghanistan
                                             South Asia
                                                             561.778746
1
                   Albania
                                  Europe & Central Asia
                                                             4124.982390
2
                   Algeria Middle East & North Africa
                                                             3916.881571
3
            American Samoa
                                    East Asia & Pacific
                                                           11834.745230
```

4		Andorra	Europe &	Central Asia	36988.622030
212	Virgin Isla	nds (U.S.) La	ntin America	& Caribbean	6.327732
213	West Ban	k and Gaza Mid	Idle East &	North Africa	2943.404534
214	Yemen, Rep. Middle East & North Africa 990.33477				
215		Zambia	Sub-Sa	haran Africa	1269.573537
216		Zimbabwe	Sub-Sa	haran Africa	1029.076649
0 1 2 3 4 212 213 214 215 216	Population 34656032 2876101 40606052 55599 77281 102951 4551566 27584213 16591390 16150362	C02 emission 9809.225000 5716.853000 145400.217000 31.100793 462.042000 57.577071 2540.270209 22698.730000 4503.076000 12020.426000	Area 652860.0 28750.0 2381740.0 200.0 470.0 350.0 6020.0 527970.0 752610.0 390760.0	Density 53.083405 100.038296 17.048902 277.995000 164.427660 294.145714 756.074086 52.245796 22.045136 41.330643	
[217 rows x 7 columns]					

Розробимо моделі, використовуючи ці ознаки як змінні-предиктори.

Знаходжу коефіцієнти моделі

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання print(lml.intercept_, lml.coef_)
-9784.648735498631 [0.00485045]
```

Отримали кінцеву лінійну модель зі структурою:

```
Yhat1 = -9784.648735498631 + 0.00485045 * Population
```

Підставляючи фактичні значення, маємо:

```
# Напишіть рівняння моделі, виконувати не потрібно
population = 34656032

print(lml.predict([[population]]))

[158312.77633003]

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names
  warnings.warn(
```

Створюю об'єкт лінійної регресії та навчаю другу модель

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання print(lm2.intercept_, lm2.coef_)
-5614.714474228735 [0.26117268]
```

Отримали кінцеву лінійну модель зі структурою:

$$Y hat 2 = -5614.714474228735 + 0.26117268 * Area$$

Підставляючи фактичні значення, маємо:

```
# Напишіть рівняння моделі, виконувати не потрібно

area = 652000

print(lm2.predict([[area]]))

[164669.87209127]

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names
  warnings.warn(
```

Завдання #2:

Створюю об'єкт лінійної регресії та навчаю множинну лінійну модель із структурою

$$Yhat3 = a + b_1 X_1 + b_2 X_2$$

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання z = df[['Population', 'Area']]

lm3 = LinearRegression()

lm3.fit(z, df['C02 emission'])

Yhat3 = lm3.predict(z)

Yhat3[0:10]

array([162198.98902431, -45462.51926112, 402591.43505412, -60537.49220539, -60415.29031767, 212597.92686989, -60322.43123902, 465649.17398869, -45140.03388658, -60339.1901485 ])
```

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання print(lm3.intercept_, lm3.coef_)
-60789.30599349941 [0.00407944 0.12500562]
```

Підставляючи фактичні значення, маємо:

```
# Напишіть рівняння моделі, виконувати не потрібно
population = 34656032
area = 652000

print(lm3.predict([[population, area]]))

[162091.48419462]

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but LinearRegression was fitted with feature names
warnings.warn(
```

Завдання #3:

Створюю об'єкт поліноміальної регресії та навчаю поліноміальну модель із структурою

$$Y hat 4 = a + b_1 X_1 + b_2 X_1^2$$

Знаходжу коефіцієнти моделі

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання f4 = np.polyfit(df['Population'], df['CO2 emission'], 2)

p4 = np.polyld(f4)
print(p4)

population = 34656032
print("\nПрогноз по фактичним даним:", p4(population))

2
-3.972e-13 x + 0.005348 x - 1.919e+04

Прогноз по фактичним даним: 165684.75134640624
```

 $Yhat 4 = -1.919*10^4 + 0.005348*Population + -3.972*10^{-13}*Population^2$

Створюю об'єкт поліноміальної регресії та навчаю поліноміальну модель із структурою

$$Yhat5=a+b_1X_2+b_2X_2^2$$

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання f5 = np.polyfit(df['Area'], df['CO2 emission'], 2)
```

```
p5 = np.polyld(f5) print(p5) area = 652000 print("\nПporнoз по фактичним даним:", <math>p5(area)) 2 -1.525e-08 x + 0.4425 x - 6.128e+04 Прогноз по фактичним даним: 220770.52337759885
```

$$Yhat5=6.128*10^3+0.4425*Area+-1.525*10^{-08}*Area^2$$

Створюю об'єкт поліноміальної регресії та навчаю поліноміальну модель із структурою

$$Y hat 6 = a + b_1 X_1 + b_2 X_2 + b_3 X_1 X_2 + b_4 X_1^2 + b_5 X_2^2$$

```
from sklearn.preprocessing import PolynomialFeatures
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
pr=PolynomialFeatures(degree=2)
z pr = pr.fit transform(z)
print(z.shape, z pr.shape)
print(pr.get_params())
p6 = LinearRegression()
y = df['CO2 emission']
p6.fit(z pr, y)
(217, 2) (217, 6)
{'degree': 2, 'include_bias': True, 'interaction_only': False,
'order': 'C'}
LinearRegression()
Input=[('scale',StandardScaler()), ('polynomial',
PolynomialFeatures(include bias=False, degree=2)),
('model',LinearRegression())]
pipe=Pipeline(Input)
pipe
pipe.fit(z, y)
```

```
ypipe=pipe.predict(z)
ypipe[0:10]
array([118101.667091 , 8841.32501777, 229045.61639412,
1337.84241013,
         1396.46598068, 129772.29960276, 1451.83583943,
263041.5395112 ,
         8986.4190027 , 1454.04808905])
print('\nKoeфiцiєнти:\n', pipe.named_steps['model'].intercept_,
pipe.named steps['model'].coef )
population = 34656032
area = 652000
print('\nПiдставляння фактичних даних:\n',pipe.predict([[population,
area]]))
Коефіцієнти:
114866.64172676989 [373587.99648854 101998.07798248 -57207.06908492
249104.93171
 -14676.768681851
Підставляння фактичних даних:
 [118053.40500603]
/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439:
UserWarning: X does not have valid feature names, but StandardScaler
was fitted with feature names
 warnings.warn(
```

Y hat 6=114866.64172676989+373587.99648854*Population+101998.0779824*Area-57207.06908493

Завдання #4:

Для простої лінійної регресії чудовим способом візуалізації відповідності моделі є використання графіків регресії. Цей графік покаже комбінацію розсіяних точок даних (діаграма розсіювання, scatterplot) та підігнану лінію лінійної регресії, що проходить через дані.

Таким способом візуалізую перші моделі.

```
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
```

```
x_p = df[['Population']]
plt.scatter(x_p, y, color='blue')
plt.title('Діаграма розсіювання для Yhat1')
plt.xlabel('Population')
plt.ylabel('C02 emission')

plt.plot(x_p, Yhat1, color='red')
plt.show()
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
```



```
x_a = df[['Area']]

plt.scatter(x_a, y, color='blue')
plt.title('Діаграма розсіювання для Yhat2')
plt.xlabel('Area')
plt.ylabel('CO2 emission')

plt.plot(x_a, Yhat2, color='red')
plt.show()
```


Для візуалізації дисперсії даних використаю діаграми залишків.

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання sns.residplot(x=df['Population'], y=df['CO2 emission'], lowess=True, line_kws={'color': 'red'}) plt.show()
```



```
sns.residplot(x=df['Area'], y=df['C02 emission'], lowess=True,
line_kws={'color': 'red'})
plt.show()
```


Для візуалізації моделі множинної лінійної регресії використаю діаграму розподілу.

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
ax1 = sns.distplot(df['C02 emission'], hist=False, color="r",
label="Actual Value")
sns.distplot(Yhat3, hist=False, color="b", label="Fitted Values" ,
ax=ax1)
plt.title("Actual vs Fitted Values for CO2 emission")
plt.xlabel("Population")
plt.ylabel("Area")
plt.show()
plt.close()
<ipython-input-48-13d5475b14ab>:2: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `kdeplot` (an axes-level function for kernel
```

density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

ax1 = sns.distplot(df['C02 emission'], hist=False, color="r",
label="Actual Value")
<ipython-input-48-13d5475b14ab>:3: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(Yhat3, hist=False, color="b", label="Fitted Values" ,
ax=ax1)

Для візуалізації поліноміальних моделей з одним предиктором використаю функцію poly1d

```
def PlotPolly(model, independent_variable, dependent_variable, Name):
    x_new = np.linspace(0, independent_variable.max(), 10000)
    y_new = model(x_new)

    plt.plot(independent_variable, dependent_variable, '.', x_new,
    y_new, '-')
    plt.title("Polynomial Fit for Yhat4")
    ax = plt.gca()
    ax.set_facecolor((0.898, 0.898, 0.898))
    fig = plt.gcf()
    plt.xlabel(Name)
    plt.ylabel("CO2 emission")

    plt.show()
    plt.close()

PlotPolly(p4, x_p, y, 'Population')
```


PlotPolly(p5, x_a, y, 'Area')

Для візуалізації поліноміальних моделей з кількома предикторами використаю діаграму розподілу або діаграму залишків

```
ax1 = sns.distplot(df['C02 emission'], hist=False, color="r",
label="Actual Value")
sns.distplot(ypipe, hist=False, color="b", label="Fitted Values",
ax=ax1)

plt.title("Actual vs Fitted Values for C02 emission")
plt.xlabel("Population")
plt.ylabel("Area")

plt.show()
plt.close()

<ipython-input-84-7a544c6078d5>:1: UserWarning:
    `distplot` is a deprecated function and will be removed in seaborn
v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel
```

density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

ax1 = sns.distplot(df['C02 emission'], hist=False, color="r",
label="Actual Value")
<ipython-input-84-7a544c6078d5>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(ypipe, hist=False, color="b", label="Fitted Values" ,
ax=ax1)

Завдання #5:

Значення R^2 отримую безпосередньо з моделі .score(X, Y), а для розрахунку MSE спочатку формую прогнозовані значення .predict(X) і порівнюю їх з фактичними

```
from sklearn.metrics import mean_squared_error
```

Модель 1:

$$Y hat 1=a+bX$$

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
print('The R-square for Yhat1 is: ', lm1.score(x_p, y))
print('The mean square error of actual and predicted value for Yhat1
is: ',
    f"{mean_squared_error(y, Yhat1):.8e}")

The R-square for Yhat1 is: 0.6468593619245477
The mean square error of actual and predicted value for Yhat1 is: 2.31156943e+11
```

Модель 2:

$$Y hat 2=a+b X$$

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання
print('The R-square for Yhat2 is: ', lm2.score(x_a, y))
print('The mean square error of actual and predicted value for Yhat2
is: ',
f"{mean_squared_error(y, Yhat2):.8e}")

The R-square for Yhat2 is: 0.34654693986415996
The mean square error of actual and predicted value for Yhat2 is: 4.27733870e+11
```

Модель 3:

$$Y hat 3 = a + b_1 X_1 + b_2 X_2$$

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання print('The R-square for Yhat3 is: ', lm3.score(z, y)) print('The mean square error of actual and predicted value for Yhat3 is: ', f"{mean_squared_error(y, Yhat3):.8e}")

The R-square for Yhat3 is: 0.7099048811998729
The mean square error of actual and predicted value for Yhat3 is: 1.89888938e+11
```

$$Y hat 4 = a + b_1 X_1 + b_2 X_1^2$$

```
# Імпортуємо функцію r2_score з модуля metrics, оскільки використовуємо іншу функцію from sklearn.metrics import r2_score

# Напишіть ваш код нижче та натисніть Shift+Enter для виконання print('The R-square for Yhat4 is: ', r2_score(y, p4(x_p))) print('The mean square error of actual and predicted value for Yhat4 is: ', f"{mean_squared_error(y, p4(x_p)):.8e}")

The R-square for Yhat4 is: 0.6474091088349259
The mean square error of actual and predicted value for Yhat4 is: 2.30797093e+11
```

Модель 5:

$$Yhat5=a+b_1X_2+b_2X_2^2$$

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання print('The R-square for Yhat5 is: ', r2_score(y, p5(x_a))) print('The mean square error of actual and predicted value for Yhat5 is: ', f"{mean_squared_error(y, p5(x_a)):.8e}")

The R-square for Yhat5 is: 0.37503241558027023
The mean square error of actual and predicted value for Yhat5 is: 4.09087997e+11
```

Модель 6:

$$Yhat6=a+b_1X_1+b_2X_2+b_3X_1X_2+b_4X_1^2+b_5X_2^2$$

```
# Напишіть ваш код нижче та натисніть Shift+Enter для виконання print('The R-square for Yhat6 is: ', r2_score(y, ypipe)) print('The mean square error of actual and predicted value for Yhat6 is: ', f"{mean_squared_error(y, ypipe):.8e}")

The R-square for Yhat6 is: 0.9381328840329533
The mean square error of actual and predicted value for Yhat6 is: 4.04966516e+10
```

Додаткове завдання:

- 1. Побудуйте кілька поліноміальних моделей різних порядків.
- 2. Побудуйте візуалізації для оцінки всіх моделей.
- 3. Порахуйте значення R^2 та MSE для оцінки якості кожної моделі. Оберіть найкращу модель.

За попередніми результатами можна зробити висновок, що множинні моделі набагато краще підходять для прогнозування даних.

Створимо поліноміальні множинні моделі 3 та 4 порядку.

Будуємо модель 3 порядку

```
Input=[('scale',StandardScaler()), ('polynomial'
PolynomialFeatures(include bias=False, degree=3)),
('model',LinearRegression())]
pipe=Pipeline(Input)
pipe
pipe.fit(z, y)
ypipe7=pipe.predict(z)
ypipe7[0:10]
array([ 87762.54659047, 12680.83475085, 149297.46426928,
3394.83959103,
         3471.85858329, 101195.81350794, 3528.12697493,
172120.34372945,
        12875.40936752, 3515.46200448])
ax1 = sns.distplot(df['C02 emission'], hist=False, color="r",
label="Actual Value")
sns.distplot(ypipe7, hist=False, color="b", label="Fitted Values" ,
ax=ax1)
plt.title("Actual vs Fitted Values for CO2 emission")
plt.xlabel("Population")
plt.ylabel("Area")
plt.show()
plt.close()
<ipython-input-140-1dcd5286eef1>:1: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `kdeplot` (an axes-level function for kernel
```

density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

ax1 = sns.distplot(df['C02 emission'], hist=False, color="r",
label="Actual Value")
<ipython-input-140-1dcd5286eef1>:2: UserWarning:

`distplot` is a deprecated function and will be removed in seaborn v0.14.0.

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `kdeplot` (an axes-level function for kernel density plots).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(ypipe7, hist=False, color="b", label="Fitted Values" ,
ax=ax1)


```
sns.residplot(x=df['Area'] * df['Population'], y=df['C02 emission'],
lowess=True, line_kws={'color': 'red'}, order=3)
plt.show()
```



```
print('The R-square for Yhat7 is: ', r2_score(y, ypipe7))
print('The mean square error of actual and predicted value for Yhat7
is: ',
    f"{mean_squared_error(y, ypipe7):.8e}")

The R-square for Yhat7 is: 0.9589646928712889
The mean square error of actual and predicted value for Yhat7 is: 2.68606757e+10
```

Порівняно із множинною поліноміальною моделлю другого порядку, R^2 збільшилось на ~3%, а MSE зменшилось вдвічі.

Будуємо модель 4 порядку

```
Input=[('scale',StandardScaler()), ('polynomial',
PolynomialFeatures(include_bias=False, degree=4)),
('model',LinearRegression())]
pipe=Pipeline(Input)
pipe
```

```
pipe.fit(z, y)
vpipe8=pipe.predict(z)
ypipe8[0:10]
array([ 92943.06851494, 11002.927017 , 154239.2683525 , -
3273.26057563,
        -3167.33336409, 57737.94454213, -3013.26689074,
187854.4203334 ,
        11180.01804774, -2957.95808369])
ax1 = sns.distplot(df['C02 emission'], hist=False, color="r",
label="Actual Value")
sns.distplot(ypipe8, hist=False, color="b", label="Fitted Values" ,
ax=ax1
plt.title("Actual vs Fitted Values for CO2 emission")
plt.xlabel("Population")
plt.ylabel("Area")
plt.show()
plt.close()
<ipython-input-144-653637613e73>:1: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `kdeplot` (an axes-level function for kernel
density plots).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
  ax1 = sns.distplot(df['C02 emission'], hist=False, color="r",
label="Actual Value")
<ipython-input-144-653637613e73>:2: UserWarning:
`distplot` is a deprecated function and will be removed in seaborn
v0.14.0.
Please adapt your code to use either `displot` (a figure-level
function with
similar flexibility) or `kdeplot` (an axes-level function for kernel
density plots).
For a guide to updating your code to use the new functions, please see
https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751
```

sns.distplot(ypipe8, hist=False, color="b", label="Fitted Values" ,
ax=ax1)

sns.residplot(x=df['Area'] * df['Population'], y=df['C02 emission'],
lowess=True, line_kws={'color': 'red'}, order=4)
plt.show()


```
print('The R-square for Yhat8 is: ', r2_score(y, ypipe8))
print('The mean square error of actual and predicted value for Yhat8
is: ',
    f"{mean_squared_error(y, ypipe8):.8e}")

The R-square for Yhat8 is: 0.9845841238667445
The mean square error of actual and predicted value for Yhat8 is:
1.00908432e+10
```

Порівняно із попередньою моделлю, R^2 знов збільшилось на ~3%, а MSE зменшилось вдвічі.

Також, в ході роботи було визначено, що Population є кращим предиктором, ніж Area.

Порівняймо множинну поліноміальну модель 4 порядку із поліноміальною моделлю 4 порядку, створену лише на основі предиктора Population.

Будую модель 4 порядку для предиктора Population.

```
f9 = np.polyfit(df['Population'], df['CO2 emission'], 4)
p9 = np.polyld(f9)
print(p9)
```

```
population = 34656032

print("\nПpoгноз по фактичним даним:", p9(population))

4 3 2
9.892e-29 x - 1.982e-19 x + 9.396e-11 x - 0.004814 x + 6.098e+04
Прогноз по фактичним даним: -1124.7584049121433
PlotPolly(p9, x_p, y, 'Population')
```


Як видно з графіку, викиди дуже сильно впливають на цю модель.

```
print('The R-square for Yhat9 is: ', r2_score(y, p9(x_p)))
print('The mean square error of actual and predicted value for Yhat9
is: ',
    f"{mean_squared_error(y, p9(x_p)):.8e}")

The R-square for Yhat9 is: 0.8710375952767171
The mean square error of actual and predicted value for Yhat9 is: 8.44155331e+10
```

Як видно, поліноміальна модель з одним предиктором виявляється гіршою ніж із двома.

Також у минулій роботі було виявлено слабку кореляцію між CO2 emission та GDP per capita.

Побудуємо поліноміальну модель 3 порядку, засновану на 3 предикторах.

```
x g = df[['GDP per capita']]
z updated = df[['Population', 'Area', 'GDP per capita']]
Input=[('scale',StandardScaler()), ('polynomial',
PolynomialFeatures(include bias=False, degree=3)),
('model',LinearRegression())]
pipe=Pipeline(Input)
pipe
pipe.fit(z updated, y)
ypipe10=pipe.predict(z updated)
ypipe10[0:10]
array([ 44078.49652194, 4474.28780456, 140736.48204357,
4572.67100044,
        22719.21176856, 88397.87722756, 7137.62151041,
370424.50263092,
         3625.97377241, -7776.58644558])
sns.residplot(x=df['Area'] * df['Population']*df['GDP per capita'],
y=df['C02 emission'], lowess=True, line_kws={'color': 'red'}, order=3)
plt.show()
```



```
print('The R-square for Yhat10 is: ', r2_score(y, ypipe10))
print('The mean square error of actual and predicted value for Yhat10
is: ',
    f"{mean_squared_error(y, ypipe10):.8e}")

The R-square for Yhat10 is: 0.9948977976299725
The mean square error of actual and predicted value for Yhat10 is: 3.33977281e+09
```