UC San Diego

Fitting Cognify to VLM applications

Benjamin Xia, Qi Qi, Nitya Agarwal, Jan Szczekulski

Content

- 1 What is the problem, and why is it important?
- 2 New Workflows
- 3 New Cogs
- 4 New Search Option
- **5** Evaluation

- 6 Issues?
- 7 Q&A

Cognify

GenAl Workflow Optimization

UC San Diego

Current Cognify Performance on Vision Tasks

Figure 1 - VQA Dataset Example

Figure 2 - Optimization Results

UC San Diego

Current Cognify Performance on Vision Tasks

Figure 1 - VQA Dataset Example

Figure 2 - Optimization Results

Can we do better?

GenAl Workflow Optimization

Can we do better?

GenAl Workflow Optimization

New VLM Workflows! (to evaluate on)

Image Classification

Multi-label classification

Cat, Dog, Rabbit

Image Captioning (Description)

Visual Question Answering

How many slices of pizza are there? Is this a vegetarian pizza?

New VLM-Specific Cogs!

Image Compression

Vision Planning

Query Disambiguation

Question Reasoning Prompt: What unpleasant emotional does clouds and lightning often cause?

New VLM Cog - Image Compression

Original image

1920

Resized like this:

Issue:

Images get tokenized when input into VLM. Tokens cost money.

Solution:

Test few different image sizes to find a relatively cheap one which will not reduce the quality of workflow output.

- · Scale to fit in a 2048px x 2048px square, maintaining original aspect ratio
- · Scale so that the image's shortest side is 768px long
- Count the number of 512px squares in the image—each square costs 170 tokens
- Add 85 tokens to the total

If your image does not need to be resized, you can estimate the number of tokens used through this algorithm: tokens = (width px * height px)/750

Bigger images = Bigger cost

New VLM Cog - Vision Planning

gpt made this, please don't read the text

Issue:

VLM responses will sometimes be more influenced by the query, ignoring the content of the image¹

Solution:

Inject more information about the image as extra context.

New VLM Cog - Vision Planning

gpt made this, please don't read the text

Vanilla VLM Workflow:

New VLM Cog - Vision Planning

gpt made this, please don't read the text

Vanilla VLM Workflow:

VLM Workflow with Vision Planning Cog:

New VLM Cog - Query Disambiguation

Issue:

The queries in VLM often reference objects in the image, which makes answering them harder

Solution:

Disambiguate query.

Example:

Query: "What did person in the image invent?" Image Caption: "Einstein standing on a stand" Disambiguated query: "What did Einstein invent?"

New VLM Cog - Query Disambiguation

Question Reasoning Prompt: What unpleasant emotional does clouds and lightning often cause?

New Search Option!

Issue:

All of our Cogs are applicable to only VLM-related task

Solution:

Create a new separate search **option** that can be applied to VLM tasks

Details:

One Layer Search.

Search created based on our (somewhat short) experience. Search combines our newly created Cogs, together with Few Shot learning and Model Selection Cogs

Evaluation per Cog - Summary

Applications

	Image Classification	Image Captioning (Description)	Visual Question Answering
Image Compression	Decreases cost	Decreases cost	Decreases cost
Vision Planning	?	?	?
Query Disambiguation	?	?	?

Cogs

Evaluation

- Vanilla Cognify
- FewShot + ModelSelect + Image Comp.+ Vision Plan
- Image Comp. + Vision Plan
- Image Comp. + FewShot +
 ModelSelect
- Image Compression Only

Image Description

Evaluated on Google Open Images Dataset V6

Evaluation - VQA

- Vanilla Cognify
- Image Compression + Vision Planning+ Vanilla Cognify
- Image Compression + Vision Planning Only

Evaluated on OK-VQA

Evaluation - Other applications

Classification

- Vanilla Cognify
- Image Comp.+ Vision Plan +Vanilla Cognify
- Image Comp. + Vision Plan Only
- Image Comp. + Vanilla Cognify
- Image Compression Only

Evaluated on Google Open Images Dataset V6

Description

Evaluation per Cog - Summary

Image Compression

Vision Planning

Query Disambiguation

Challenges

- There was a sharp learning curve for the code-base since the documentation is user-based and not contribution focused
- **GPT API calls are costly**, and have a token rate limit per minute intervening with our evaluation efforts. **Using our own OpenAI API credits limited depth of testing.**
- Coming up with Cog ideas isn't straightforward. We've read through 10s of VLM-related research papers. All of our Cogs are grounded in singular or multiple research papers cited here: Image Compression Cog, Vision Planning Cog, Query Disambiguation Cog.
- Not every idea works, we have to implement and more importantly experiment, especially
 do ablation studies.

Next Steps

- Finish cog integration with previous cogs
 - Some cogs may be closely integrated with each other
 - Verify with other existing example workflows
- Open a PR to contribute to open source project

UC San Diego

