Platforms as a Service

Cloud Services

- Infrastructure as a Service (laaS)
 - Provide machines in form of virtual machines
 - Guarantees in terms of main memory, CPU...
- Platform as a Service (Paas)
 - Provide abstractions of
 - General purpose DBS / key/value-store to store data
 - (user generates the database and writes application programs to access data)
 - Application Server
 - (user writes application programs and runs them in application server environment)
 - • •
 - The Hadoop Stack is a Paas
- Software as a Service (SaaS)
 - Provide the application (Google Docs)
 - ② (often includes the storage)

Publish-Subscribe

- Topic based with filters
 - Subscription to a topic
 - Filters allow to receive only a subset of notifications published on a topic
- Scalable high-throughput topics
 - Multicast tree of brokers per topic
 - Root it the publisher, leaves are the subscribers
 - Early filtering
- Reliability
 - Replication: two independent trees per topic
- Timely delivery
 - Control flow (rate scheme, overload protection...)

GFS/HDFS

- Support of application
 - Super-large files (Gigabytes, Terabytes)
 - Tens of millions of files on hundreds of nodes
 - Mostly read-only (scan/streaming) and append
 - Throughput over latency
- Interface
 - Create / delete / open / close / read / write / append
- File split into GFS Chunks / HDFS Blocks
 - default: 64 MB

COMP-512: Distributed Systems

GFS/HDFS coordination

- File split into GFS Chunks / HDFS Blocks
- One GFS master / HDFS NameNode
 - Maintains meta-information: location of chunks/blocks
 - No data-flow through master / NameNode
 - Clients cache meta-information
- Many GFS chunkservers / HDFS DataNodes
 - Keep replicas of the chunks/blocks

GFS Master/NameNode concept

- Master / NameNode concept works because:
 - Only control flow / no data flow
 - Data flow only between clients and chunk servers
 - Large chunk size → little meta data
 - Caching of meta-information at clients
- NameNode persists everything!
 - Por availability:
 - Meta-information files can be replicated
 - (BookKeeper; but not yet integrated)
- NameNode remains single point of failure
- Other tasks
 - Re-replication in case chunk replica fails
 - Load-balancing

COMP-512: Distributed Systems

HDFS Replication

- Blocks are write-once / immutable
- Typically each block is replicated three times
 - Two times in the same rack
 - One in another rack
- Each block has a master DataNode and two secondary DataNodes
- Write: Chain/Pipeline replication
 - From client to master DataNode to secondaries
 - In a stream (parallel writing)
 - Ack by last secondary
- Read: from closest replica

Hbase (BigTable)

- Data Model
 - 2 Hybrid between table (relation), key/value, and semi-structured
 - A table can have many columns (attributes)
 - Columns are bundled into column families
 - One mandatory column is the key
 - New columns can be added dynamically
 - Each row must have a unique value in the key column
 - Each row can have values in the other columns
 - Hbase maintains versions on a column basis
 - A row can have more than one value in a given column
 - Each value is considered a version (timestamped)

COMP-512: Distributed Systems

Hbase Query Language

- Get one row, or columns from one row
 - Indicate row-key, columns, timestamp
- Scan
 - Read all data of the table
- Scan with filter
 - Put a condition
 - On primary key (e.g., a range)
 - On other attributes (salary > 5000)
- No joins, ops on more than one table, aggregation....

Hbase Horizontal Data Partitioning

- Partitioning
 Partitioning
 - A table can be partitioned into many regions
 - Regions are maintained by region servers
 - Each region has a set of rows
 - Range Partitioning by primary key attribute
 - Each partition holds rows with primary keys within a range
 - E.g., partition with rows with rowid [1;10000], [10001,20000], ...
 - Complete and disjoint
 - Each tuple is in exactly one partition

COMP-512: Distributed Systems

Querying partitioned data

- Queries:
 - Get one tuple (point query):
 - access only region that has that key
 - Localized access
 - Scan (range query):
 - scan all relevant regions
 - Possibly in parallel
 - Intra-query parallelism

Non Hbase excursion: Hash Partitioning

- By Mod operator (bad idea)
 - Nodes have identifiers 0, N-I
 - $\ensuremath{\mathbb{D}}$ Let key of a row have value K, then row is assigned to node
 - K mod N
 - 2 Problem: If a new node is added, all keys need to be reshuffled
- Consistent Hashing: Cassandra, Riak,
 - Keys are hashed using a hash function that maps to a space between 0 and x (x being very very large)
 - Node identifiers are hashed to the same space (i.e., each node gets a random identifier between 0 and x)
 - Let n1 and n2 be two nodes with hashed id(n1) < id(n2) and there is no node n3 such that id(n1) < id(n3) < id(n2); i.e., n1 and n2 are "neighbors"
 - Let r be a row with hashed key id(r) such that id(n1) \leq id(n2): then r is stored on n1

Virtual Node Consistent Hashing

- Standard Consistent Hashing
 - One node can get overloaded if range is a hot spot
 - Adding nodes:
 - Load of one overloaded node is distributed across two nodes
- Fine-grained load balancing
 - 2 Every node has many virtual nodes, each with its own identifier
 - Virtual nodes serve much smaller range; hopefully sum of many virtual nodes does not represent a hot spot
 - Adding a new node:
 - Get a few virtual nodes from each existing node

Hbase Vertical Partitioning

- Different column families can be stored in different files
- In order to identify records, primary key might be replicated in all
- 2 Query: retrieve only columns of one family: only relevant files are accessed
 - \square SELECT column I, column 2 from table where primary key = x

Hbase Architecture

- Regions are stored on Region Servers
 - Data Distribution
 - No Data Replication at Hbase layer
- Hbase Master
 - Meta-data:
 - location of each region
 - Reliably stored in Zookeeper (fault-tolerant!)
 - Load-balancing: initiates move of regions
 - Failure Handling:
 - detects failed region servers
 - Restarts regions on other region servers
- Hbase Client
 - Retrieves loation information from Zookeeper
 - Interacts with all relevant region servers

Finding and managing records

- Index for primary key
- Index in each HDFS block
- Version management:
 - Compaction: take several HDFS files for same region and merge
 - Collocate versions of same record
 - Delete old versions

COMP-512: Distributed Systems

Map Reduce: Data Processing at Massive Scale

- Massive Scale
 - Petabytes of data
 - 2 100s, 1000s, 10000s of servers
 - Many hours
- Failure becomes an issue
 - If medium-time-between failure is I year
 - Then 10000 servers have one failure / hour
 - 2 Query execution must succeed even if individual nodes fail

The basics

- High-level programming model AND implementation for large-scale parallel data processing
- Programming model
 - Read a lot of data records (key-value pairs)
 - Map tasks: extract something interesting from records and output a new set of data records (key-value pairs)
 - Shuffle and sort (same key to same reduce task)
 - 2 Reduce tasks: aggregate, summarize, filter
 - Write the results
- Closed model
 - Input and output of map-reduce are key/value pairs

Overview

- Input and output considered key/value pairs in order to be able to compose several map/reduce instances
- Map and Reduce functions are written by programmer
- Number of map tasks and reduce tasks given at start of program
- The rest done automatically (at least conceptually)

COMP-512: Distributed Systems

Example: Word Count

- $\ \ \,$ Given: Document Set DS($\ \ \,$ M, documenttext)
- Output: For each word w occurring at least in one document of DS: indicate the number of occurrences of w in DS

Map Step

- Input Parameters from User
 - Number m of map tasks
 - Number r of reduce tasks
 - Data set = document set DS
- Map function written by User

WordCountMap:

For each input key/value pair (dkey, dtext)

For each word w of dtext

Output key-value pair (w, 1)

- System splits input set into m partitions
- System creates m map tasks gives each one partition
- Each map task executes map function on its partition
- Map step only completes once all map tasks are done

COMP-512: Distributed Systems

Shuffle and Reduce Step

- System sorts map outputs by key and transforms all key/value pairs (k, v_1) , (k, v_2) ,... (k, v_n) with same key k to one key/value-list pair $(k, (v_1, v_2,...v_n))$
 - ☑ For Word count: all ('and', I), ('and', I), ('and', I) ... are transformed into one ('and', (I,I,I,...))
- \square System partitions output by key into r partitions
- Each reduce task executes user written reduce function

WordCountReduce:

For each input key/value-list pair $(k, (v_1, v_2, ... v_n))$ Output (k, n)

Phase Summary

- Split input into partitions
- At map tasks
 - Record reader
 - Map function
 - Write to local file
- Group and shuffle
 - Group keys and aggregate value-lists
 - Copy from map location to reduce location
 - group keys and aggregate value-lists
- At reduce tasks
 - Reduce function and write to file system
- Several "waves" possible

COMP-512: Distributed Systems

Friends Calculation?

```
Friends information
                                                      Red: key
A -> B C
                  B \rightarrow A C D
                                                      Green: value
C \rightarrow ABD
                  D -> B C
Map(person, (list of friends)))
  for each friend in list of friends
     if "person" alphabetically before "friend"
        output ( (person, friend), (list of friends))
     else
        output ( (friend, person), (list of friends))
Reduce((pl, p2), ((list of friends I), (list of friends 2)))
    output ((pl, p2), (intersection of two friend lists))
   COMP-512: Distributed Systems
```

Implementation

- There is one master node controlling execution
- Master partitions file into m partitions
- Master assigns workers (server processes) to m map tasks
- Workers executing map tasks write to local disk
- Master assigns workers to r reduce tasks
- Reduce workers implement group and shuffle (read from map disks) and execute reduce tasks
 - Pull approach

COMP-512: Distributed Systems

Failures

- Failures are detected by master
 - Pailure of map task during map phase
 - master assigns new worker to map task
 - Pailure of map task during reduce phase
 - Master assigns new worker to map task to redo (as data stored locally)
 - Pailure of reduce task during reduce phase
 - Master assigns new worker to reduce task
- Straggler
 - A machine that takes unusually long to complete one of its last tasks
 - Maybe some I/O problem, too many other tasks...
 - Solution: back execution of last few remaining in-progress tasks

Discussion

- Simple programming model
 - Easy to understand
 - Sometimes complicated to implement a task
 - More and more support for data-declarative languagesE.g., SQL
- Built-in fault-tolerance
- But Lot of persistence
 - After map and after reduce
 - Time consuming
- Rigid
 - Everything must be map/shuffle/reduce
 - Simple things often require map/reduce workflows

COMP-512: Distributed Systems

Relational Operators

```
R(a, b, c) (a primary key)

SELECT a, b

FROM R

WHERE c < 50

Map (a, (b,c))

output (a, b) if c < 50

Reduce?

SELECT b, average(c)

FROM R

GROUP BY b
```

Relational Languages on top of Map/Recue

Hive, Pig Latin

COMP-512: Distributed Systems

Complex Queries

- Require a sequence of concatenated map/reduce jobs
- Fault-tolerance achieved by persisting each output of each map and each reduce task
- Expensive

Spark

- Resilient Distributed Datasets (RDD)
 - In main-memory
 - Distributed among machines
- Many transformations/actions defined on RDD
 - Map, reduce, group, join, union,
- Reslience:
 - Log lineage (sequence of transformations/actions) performed on a partition
 - Easy reconstruct in case of failure.
- Originally a functional programming API
- Now all kinds of things (incuding SQL, machine learning)