زنجیرهسازی کارکردهای مجازی سرویس شبکه با لحاظ محدودیت منابع مدیریتی

مهندسی فناوری اطلاعات - شبکههای کامپیوتری

پرهام الوانى

بهار ۱۳۹۸

دانشکده مهندسی کامپیوتر و فناوری اطلاعات دکتر بهادر بخشی

١

فهرست

- ◄ مقدمه
- ◄ چالشھا
- ◄ سابقهي كارها
- ◄ تعريف مساله
- ◄ چالشها و نوآوریهای مساله
 - ◄ معیار و نحوهی ارزیابی
 - ◄ فرمولبندي
 - ◄ ارزيابي
 - ◄ مراجع

- ◄ عدم انعطافپذیری معماری فعلی شبکه
- ► در مجازیسازی کارکرد شبکه با استفاده از مجازیسازی منابع، میتوان کارکردها را بر روی سرورهای استاندارد اجرا کرد و بهرهوری منابع را فزایش داده و هزینههای انرژی را کاهش داد.
- ▼ زنجیره سازی کارکرد سرویس نیز امکان ایجاد زنجیرهای از کارکردها را به صورت پویا فراهم میکند.

- ◄ با توجه به جداسازی زیرساخت از نرمافزار کارکردهای شبکه، نیاز به هماهنگی میان آنها ایجاد شده است.
- ◄ به صورت کلی تفاوتهایی که با توجه به فرآیند مجازی سازی کارکردهای شبکه ایجاد شدهاند را می توان به ترتیب زیر دسته بندی نمود:
 - زيرساخت مجازيسازي شده
 - کارکردهای شبکهای مجازیسازی شده
 - سرویسهای شبکهای

شکل ۱: معماری سطح بالای مجازیسازی کارکردهای شبکه

- ▼ NFVO وظیفهی استقرار زنجیرههای کارکرد سرویس را برعهده دارد.
- ▼ VNFM مسئول چرخهی زندگی کارکردهای مجازی شبکه میباشد.
- ◄ چرخهی زندگی هر کارکرد مجازی شامل عملیاتهایی همچون نمونهسازی،
 مقیاسکردن، بهروزرسانی و پایان دادن میباشد.
 - هر نمونه از کارکردهای مجازی شبکه نیاز دارد تحت مدیریت یکی از VNFM

چالشھا

- ◄ مديريت و هماهنگي
- ◄ مصرف بهینهی انرژی
 - ▼ تخصیص منابع بهکارکردهای مجازی
- ◄ مسیریابی زنجیرههایکارکرد سرویس
 - ▼ پذیرش زنجیرههایکارکرد سرویس
- ◄ به روزرسانی و مقیاس کردن کارکردهای مجازی سرویس

جدول ۱: مقایسه مقالات پذیرش زنجیرههای کارکرد سرویس

_	تخصیم NFM		اشتراک نمونه		انتساب کارکرد		نگاشت کارکرد و لینک		برخط یا برون خط		محدودی ظرفیت پردازشی نمونه			س	منابح تخصیص یافته	منبع
ندارد	دارد	ندارد	دارد	چند نمونه	یک نمونه	لینک	كاركرد	برون خط	برخط	ندارد	دارد	CPU	BW	MEM (other	#
✓	_	✓	_	_	✓	✓	✓	✓	_	✓	_	✓	✓	_	_	[/]
✓	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	_	[۲]
✓	_	✓	_	✓	_	✓	✓	✓	_	_	✓	✓	✓	_	_	[٣]
_	✓	_	_	_	_	✓	_	_	✓	✓	_	_	_		NFM acity	[۴]
_	✓	✓	_	_	✓	✓	✓	✓	_	_	✓	✓	✓	✓	_	پژوهش حاضر

- ◄ این مقاله به مانند کار پژوهشی حاضر تاخیر را در لینکهای مدیریتی در نظر میگیرد.
 - ◄ این مقاله فرض میکند زنجیرهها از پیش پذیرفته شدهاند.
 - ◄ هدف این مقاله جایگذاری VNFMها به صورت مستقل با هدف کاهش هزینههای عملیاتی می باشد.

M. Abu-Lebdeh, D. Naboulsi, R. Glitho, et al., "On the placement of VNF managers in large-scale and distributed NFV systems," *IEEE Transactions on Network and Service Management*, vol. 14, no. 4, pp. 875–889, Dec. 2017. DOI: 10.1109/tnsm.2017.2730199. [Online]. Available: https://doi.org/10.1109/tnsm.2017.2730199

تعريف مساله

پذیرفتن بیشترین تقاضای زنجیره کارکرد سرویس با در نظر گرفتن نیاز برخی از نمونهها کارکرد مجازی شبکه به یک ${
m VNFM}$.

تعريف مساله

- ▼ توپولوژی زیرساخت شامل پنهای باند لینکها و ظرفیت NFVI-PoPها، موجود است.
 - رنجیره کارکرد سرویس به صورت کامل و از پیش مشخص شده داریم. ${\bf r}$
- ◄ هر تقاضا شامل نوع و تعداد نمونههای مجازی، پنهای باند لینکهای مجازی و توپولوژی نمونههای مجازی میباشد.

تعريف مساله

- ▼ نمونهها بین زنجیرهها به اشتراک گذاشته نمیشوند.
 - ▶ محدودیت ظرفیت لینکها
- ▼ محدودیت توان پردازش سرورهای فیزیکی با توجه به میزان حافظه و تعداد پردازندهها
- ◄ برخی از سرورهای فیزیکی نمیتوانند سرورهای فیزیکی مشخصی را مدیریت کنند.
 - ◄ برخی از سرورهای فیزیکی توانایی پشتیبانی از کارکردهای مجازی را ندارد.
 - ▼ تنها برخی از نمونههای کارکردهای مجازی نیاز به مدیریت دارند.

- ◄ برای مدیریت یکدست و آسانتر زنجیرهها و در عین حال جمع آوری راحتر خطاها،
 برای هر زنجیره یک VNFM تخصیص میدهیم.
 - ▼ VNFM ها میتوانند بین زنجیره به اشتراک گذاشته شوند.
 - ▶ هر نمونه از VNFMها میتواند تعداد مشخصی از نمونههای کارکرد مجازی شبکه را سرویس دهد.
- ▶ برای ارتباط میان هر نمونه از m VNFMها و m VNFها پهنای باند مشخصی رزرو میگردد.
- ▶ در صورتی که $NFVI ext{-PoP}$ بتواند از VNFM پشتیبانی نماید، می توان به هر تعداد که ظرفیت آن اجازه می دهد بر روی آن VNFM نصب نمود.

چالشها و نوآوریهای مساله

- ▼ در نظر گرفتن نیازمندی نمونههای کارکرد مجازی به یک VNFM
 - ▼ در نظر گرفتن نیازمندی تاخیر برای لینکهای مدیریتی
- ▼ تخصیص منابع مدیریتی به زنجیرهها و مسیریابی ارتباط مدیریتی
 - ▼ جایگذاری و مسیریابی توامان زنجیرههای کارکرد سرویس

معیار و نحوهی ارزیابی

- ◄ مدلسازي مساله
- ◄ حل مسالهی بهینه در ابعاد کوچک
 - ▼ پیادهسازی راهحل مکاشفهای
- ◄ معیار مقایسه این راه حل نرخ پذیرش تقاضاهای زنجیرههای کارکرد سرویس می باشد.
 - ◄ مقایسهی نتایج راهحل مکاشفهای با جواب بهینه
 - ◄ مقایسه با کارهای مرتبط که نیازمندیهای مدیریتی را مدنظر قرار ندادهاند.

فرمولبندی و مدلسازی ریاضی مساله

پارامترهای مساله

memory(k)	required RAM of VNF in-
	stance with type k in GB
core(k)	required CPU cores of VNF
	instance with type k
memory	required RAM of VNFM in
	GB
côre	required CPU cores of VNFM
capacity	maximum number of VNF in-
	stances that VNFM can han-
	dle
len(h)	number of VNF instances in
	hth SFC request

پارامترهای مساله

type(v, k)	assuming the value 1 if the
	VNF instance v has type k
bandwidth(u, v)	required bandwidth in link
	from VNF instance u to v
bandwidth	required bandwidth in manag-
	meent link
radius	maximum neighborhood dis-
	tance for instance manage-
	ment

متغیرهای تصمیمگیری

- x_h binary variable assuming the value 1 if the hth SFC request is accepted; otherwise its value is zero
- y_{wk} the number of VNF instances of type k that are used in server $w \in V_s^{PN}$
- z_{vw}^k binary variable assuming the value 1 if the VNF node $v \in \bigcup_{i=1}^T V_{i,F}^{SFC}$ is served by the VNF instance of type k in the server $w \in V_s^{PN}$

فرمولبندى

متغیرهای تصمیمگیری

 \bar{y}_w the number of VNFMs that are used in server $w \in V_s^{PN}$ \bar{z}_{hw} binary variable assuming the value 1 if hth SFC is assigned to VNFM on server $w \in V_s^{PN}$

۲.

هدف اصلی مساله پذیریش بیشترین تعداد تقاضا میباشد. در اینجا فرض میکنیم پذیرش هر تقاضا سودی منحصر به فرد خواهد داشت. بنابراین تابع هدف به شکل زیر میباشد:

$$\max \sum_{h=1}^{T} x_h \tag{1}$$

محدوديت حافظه نودها

$$\sum_{k=1}^{F} y_{wk} memory(k) + \bar{y_w} me\bar{m}ory \le N_{ram}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (2)

محدوديت تعداد پردازندههای نودها

$$\sum_{k=1}^{F} y_{wk} core(k) + \bar{y_w} c\bar{o}re \le N_{core}^{PN}(w) \quad \forall w \in V_s^{PN}$$
 (3)

VNF نوع k روی سرور w سرویس شود میبایست VNF instance اگر v ، v وی سرور v فعال شود. توجه شود که اشتراک گذاری v ها پشتیبانی instance نمی گردد.

$$\sum_{v \in \cup_{i=1}^T V_{i,F}^{SFC}} z_{vw}^k \le y_{wk} \quad \forall w \in V_s^{PN}, \forall k \in [1, \dots, F]$$
 (4)

اگر تقاضای $\ln n$ ام پذیرفته شده باشد میبایست تمام $VNF \ node$ های آن سرویس شده باشند. یک $VNF \ column$ حداکثر یکبار سرویس داده شود.

$$x_h = \sum_{k=1}^{F} \sum_{w \in V_s^{PN}} z_{vw}^k \quad \forall v \in V_{h,F}^{SFC}, \forall h \in [1, \dots, T]$$
 (5)

اگر تقاضای hام پذیرفته شده باشد میبایست توسط یک VNFM سرویس شده باشد. توجه شود که این محدودیت اجازهی تخصیص بیش از یک VNFM به زنجیره نمی دهد.

$$x_h = \sum_{w \in V_s^{PN}} \bar{z}_{hw} \quad \forall h \in [1, \dots, T]$$
 (6)

m W اگر m SFC، m i توسط m VNFM روی سرور m w سرویس شود میبایست یک m VNFM سرور m w برای آن فعال شود.

$$\sum_{h=1}^{T} \bar{z}_{hw} \le \bar{y}_{w} \quad \forall w \in V_{s}^{PN} \tag{7}$$

محدوديت ظرفيت سرويسدهي VNFM

$$\sum_{i=1}^{I} \bar{z}_{iw} * len(i) \le capacity \quad \forall w \in V_s^{PN}$$
 (8)

اگر VNF توسط نمونهای نوع k روی سرور w سرویس میشود میبایست این VNF از نوع k اگر باشد.

$$z_{vw}^k \le type(v, k) \quad \forall w \in V_s^{PN}, \forall k \in [1, \dots, F], \forall v \in \bigcup_{i=1}^T V_{i,F}^{SFC}$$
 (9)

فرمولبند*ي*

متغیرهای تصمیمگیری

 $\tau_{ij}^{(u,v)}$ binary variable assuming the value 1 if the virual link (u,v) is routed on the physical network link (i,j)

 $\bar{\tau}_{ij}^{v}$ binary variable assuming the value 1 if the management traffic of VNF node v is routed on the physical network link (i, j)

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \tau_{ij}^{(u,v)} - \sum_{(j,i)\in E^{PN}} \tau_{ji}^{(u,v)} = \sum_{k=1}^{F} z_{ui}^{k} - \sum_{k=1}^{F} z_{vi}^{k}$$

$$\forall i \in V_{S}^{PN}, (u,v) \in E_{h}^{SFC}, h \in [1,\dots,T]$$
(10)

Flow Conservation

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{v} - \sum_{(j,i)\in E^{PN}} \bar{\tau}_{ji}^{v} = \sum_{k=1}^{F} z_{vi}^{k} - \bar{z}_{hi}$$

$$\forall i \in V_{S}^{PN}, v \in V_{h,F}^{SFC}, h \in [1, \dots, T]$$
(11)

محدوديت ظرفيت لينكها

$$\sum_{v \in \cup_{i=1}^T V_{i,F}^{SFC}} \bar{\tau}_{ij}^v * bandwidth + \sum_{(u,v) \in \cup_{i=1}^T E_i^{SFC}} \tau_{ij}^{(u,v)} * bandwidth(u,v) \leq C_{ij}$$

$$\forall (i,j) \in E^{PN}$$

$$(12)$$

٣١

شعاع همسایگی تضمین میکند که زمان سرویسدهی توسط VNFMها در یک بازه مشخص (از نظر تعداد هاب) خواهد بود.

$$\sum_{(i,j)\in E^{PN}} \bar{\tau}_{ij}^{v} \le radius \quad \forall v \in \cup_{i=1}^{T} V_{i,F}^{SFC}$$
 (13)

ارزيابي

ارزیابی

فرمول بندی ارائه شده بر روی نرمافزار cplex که محصول شرکت IBM بوده و برای حل مسائل برنامه ریزی خطی و ... استفاده می شود، به زبان جاوا پیاده سازی شده و تست گشت.

ارزيابي

زنجیرههای زیر را به عنوان تقاضاها در نظر میگیریم.

ارزيابي

فرض میکنیم مرکز دادهای دارای توپولوژی زیر میباشد.

در نهایت نتیجه زیر از مساله حاصل میگردد.

cost = 20.0

>> Chains

Chain 0 is accepted.

Chain 1 is accepted.

>> Instance mapping

Chain 0:

Node 0 with type 0 is mapped on 3

Chain 1:

Node 0 with type 0 is mapped on 2

Node 1 with type 0 is mapped on 1

Node 2 with type 0 is mapped on 2

- >> Manager mapping
 Chain 0 manager is 4
 Chain 1 manager is 0
- >> Instance links
 Chain 1 link 1 (0 2) is on 2-0
 Chain 1 link 0 (0 1) is on 3-4

>> Management links Chain 0 node 0 manager is on 3-4 Chain 1 node 1 manager is on 1-2 Chain 1 node 0 manager is on 2-0 Chain 1 node 1 manager is on 2-0 Chain 1 node 2 manager is on 2-0

- V. Eramo, A. Tosti, and E. Miucci, "Server resource dimensioning and routing of service function chain in NFV network architectures," *Journal of Electrical and Computer Engineering*, vol. 2016, pp. 1–12, 2016. DOI: 10.1155/2016/7139852. [Online]. Available: https://doi.org/10.1155/2016/7139852.
- M. Ghaznavi, N. Shahriar, S. Kamali, R. Ahmed, and R. Boutaba, "Distributed service function chaining," *IEEE Journal on Selected Areas in Communications*, vol. 35, no. 11, pp. 2479–2489, Nov. 2017. DOI: 10.1109/jsac.2017.2760178. [Online]. Available: https://doi.org/10.1109/jsac.2017.2760178.
- H. Huang, P. Li, S. Guo, W. Liang, and K. Wang, "Near-optimal deployment of service chains by exploiting correlations between network functions," *IEEE Transactions on Cloud Computing*, pp. 1–1, 2017. DOI: 10.1109/tcc.2017.2780165. [Online]. Available: https://doi.org/10.1109/tcc.2017.2780165.
- M. Abu-Lebdeh, D. Naboulsi, R. Glitho, and C. W. Tchouati, "On the placement of VNF managers in large-scale and distributed NFV systems," *IEEE Transactions on Network and Service Management*, vol. 14, no. 4, pp. 875–889, Dec. 2017. DOI: 10.1109/tnsm.2017.2730199. [Online]. Available: https://doi.org/10.1109/tnsm.2017.2730199.