ECONOMETRIA I - LISTA 2 MODELO DE REGRESSÃO LINEAR SIMPLES

Mateus Cardoso

27/04/2021

As fórmulas

- Variância amostral: $S^2 = \frac{\sum (x_i \bar{x})^2}{n-1}$. A variância é uma medida que mostra o quão distantes da média estão os valores. Para obtê-la, devemos:
 - 1) encontrar a média (\bar{x}) ;
 - 2) subtrair a média de cada valor da amostra $(x_i \bar{x})$, isso será a variação em torno da média;
 - 3) elevar ao quadrado os resultados dessas subtrações¹;
 - 4) somar os resultados $(\sum (x_i \bar{x})^2)$ e
 - 5) dividir por $n-1^2$ (O 2 é uma nota de rodapé) $\left(\frac{\sum (x_i-\bar{x})^2}{n-1}\right)$.

Note que nos passos 4 e 5 estamos calculando uma média. Esta é a média do quadrado da variação em torno da média amostral.

O problema da variância é que, por estar elevada ao quadrado, possui difícil interpretação. Para resolver isso, convertemos a variância para desvio-padrão, que nada mais é do que a raiz quadrada da variância. Com este valor, podemos saber o quão usual é uma variação entre uma observação e a média em relação a variação que normalmente é vista (desvio-padrão).

- Covariância amostral: $Cov(x,y) = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{n-1}$. Funciona da mesma forma que a variância, exceto nos passos

 $^{^1}$ Elevamos ao quadrado pois a variância é o segundo momento da distribuição. Os momentos caracterizam as distribuições de probabilidade. Para uma variável aleatória X, o n-ésimo momento em torno de uma constante c é definido como $E[(X-c)^n]$. Sendo c=E(X), temos que o segundo momento central é $E[(X-E(X))^2]=Var(X).$ O terceiro momento (n=3) é chamado assimetria e o quarto momento (n=4) é chamado curtose. Vemos, portanto, que elevar não é uma escolha arbitrária, mas uma consequência dos momentos da distribuição.

²Dividimos por n-1 pois estamos fazendo um ajuste de graus de liberdade, eliminando o viés gerado por ter estimado a média.

- 1) encontrar a média para cada variável $(\bar{x} \in \bar{y})$;
- 2) subtrair a média das duas diferentes variáveis $((x_i \bar{x}) e (y_i \bar{y}))$ e
- 3) multiplicar o resultado de uma variável pelo resultado da outra $((x_i \bar{x})(y_i \bar{y}))$.

A covariância mede o quanto duas variáveis variam de forma conjunta ou distinta. Se elas tendem a estar acima da média ao mesmo tempo, então multiplicar uma pela outra produzirá um resultado positivo para a maioria das observações, aumentando a covariância. Se elas não tiverem nada a ver uma com a outra, multiplicá-las produzirá ora resultados positivos, ora resultados negativos, que quando somados no passo 4, levarão a covariância para 0.

Agora, podemos ver como a variância e a covariância nos levam para o estimador de Mínimos Quadrados Ordinários.

- Mínimos Quadrados Ordinários (MQO): Sabemos que a formula para o estimador de Mínimos Quadrados Ordinários é $\hat{\beta} = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$. Olhando com atenção, vemos que na verdade esta fórmula é $\frac{Cov(x,y)}{Var(x)}$.

De maneira simples, esta fórmula está dizendo: de toda a variação em x, quanto dela varia junto de y?

Tendo estimado o coeficiente angular $\hat{\beta}$, podemos estimar o intercepto por meio de $\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x}$.

- Soma de quadrados total (SST): $\sum (y_i \bar{y})^2$. Representa a variação total na variável dependente.
- Soma de quadrados da regressão (SSE): $\sum (\hat{y}_i \bar{y})^2$. Representa a variação explicada pela regressão.
- Soma de quadrados dos resíduos (SSR): $\sum \hat{u_i}^2$. Representa a variação não explicada pela regressão.

Da mesma forma que $y_i = \hat{y}_i + \hat{u}$, a variação total é igual a variação explicada pela regressão mais a variação não explicada, ou seja SST = SSE + SSR.

- R^2: O R-quadrado mede a fração da variação total que é explicada pela regressão. Ou seja, $R^2 = \frac{SSE}{SST}$ ou $R^2 = \frac{SSR}{SST}$ (total (1) menos a fração que não é explicada pela regressão).

Exercícios

1) Quais são as hipóteses do modelo de regressão linear simples?

$${}^{3}\text{E os } n-1? \text{ Estes são anulados na divisão } \frac{Cov(x,y)}{Var(x)}. \text{ Como } \frac{Cov(x,y)}{Var(x)} = \frac{\sum_{\substack{(x_i-\bar{x})(y_i-\bar{y})\\n-1}}^{x_i-1}}{\sum_{\substack{(x_i-\bar{x})^2\\n-1}}^{x_i-1}} = \frac{\sum_{\substack{(x_i-\bar{x})(y_i-\bar{y})\\n-1}}^{x_i-1} * \frac{1}{\sum_{\substack{(x_i-\bar{x})^2\\x_i-1}}^{x_i-1}} = \frac{\sum_{\substack{(x_i-\bar{x})(y_i-\bar{y})\\n-1}}^{x_i-1}}{n-1} * \frac{1}{\sum_{\substack{(x_i-\bar{x})^2\\x_i-1}}^{x_i-1}} = \frac{\sum_{\substack{(x_i-\bar{x})(y_i-\bar{y})\\n-1}}^{x_i-1}}{n-1} * \frac{1}{\sum_{\substack{(x_i-\bar{x})^2\\x_i-1}}^{x_i-1}} = \frac{\sum_{\substack{(x_i-\bar{x})(y_i-\bar{y})\\n-1}}^{x_i-1}}{n-1} * \frac{1}{\sum_{\substack{(x_i-\bar{x})(x_i-\bar{x})(y_i-\bar{y})\\x_i-1}}^{x_i-1}} = \frac{\sum_{\substack{(x_i-\bar{x})(y_i-\bar{y})\\x_i-1}}^{x_i-1}}{n-1} * \frac{1}{\sum_{\substack{(x_i-\bar{x})(x_i-\bar{x})(y_i-\bar{y})\\x_i-1}}^{x_i-1}}{n-1} = \frac{\sum_{\substack{(x_i-\bar{x})(x_i-\bar{x})(y_i-\bar{y})\\x_i-1}}^{x_i-1}}{n-1} * \frac{1}{\sum_{\substack{(x_i-\bar{x})(x_i-\bar{x})(x_i-\bar{x})(x_i-\bar{x})\\x_i-1}}^{x_i-1}}{n-1} = \frac{\sum_{\substack{(x_i-\bar{x})(x_i-\bar{$$

- 2) Explique o que é o coeficiente de determinação (R^2) .
- 3) (Exercício slides Aula 2 e 3) Com base na amostra de 10 valores, calcular as estimativas dos parâmetros do modelo: $Y_i = \alpha + \beta X_i + u_i$.

X	Y
0	3
1	2
1	3
2	5
3	4
3	4
4	7
5	6
5	7
6	9

- a) Determine as estimativas dos parâmetros.
- b) Calcular o coeficiente de determinação (R^2) .
- c) Calcular a variância do erro σ^2 .
- d) (Questão extra) Verifique se $\bar{\hat{y}}=\bar{y}.$ Explique o porquê.
- 4) Explique a diferença entre resíduo e erro.
- 5) (Wooldridge, Cap. 2) Seja kids o número de filhos de uma mulher, e educ os anos de educação da mulher. Um modelo simples que relaciona a fertilidade a anos de educação é

$$kids = \beta_0 + \beta_1 educ + u \quad ,$$

em que u é um erro não observável.

- a) Que tipos de fatores estão contidos em u? É provável que eles estejam correlacionados com o nível de educação?
- **b)** Uma análise de regressão simples mostrará o efeito *ceteris paribus* da educação sobre a fertilidade? Explique.
- **6)** (Gujarati, Cap.3) A tabela abaixo mostra os dados de renda familiar semanal (X) e despesas familiares de consumo semanal (Y).

X (US\$)	Y (US\$)
80	70
100	65
120	90
140	95
160	110
180	115
200	120
220	140
240	155
260	150

Calcule:

- a) As estimativas dos parâmetros β_0 e β_1 .
- b) O coeficiente de determinação.
- c) A elasticidade-renda do consumo (Modelo log-log), interpretando os coeficientes.

Exercícios no R

- 1) (Cunningham, Cap. 2.14) Utilizando o comando rnorm(), simule:
 - x: 10.000 observações aleatórias que seguem a distribuição normal, com desvio-padrão igual a 9;
 - u: 10.000 observações aleatórias que seguem a distribuição normal, com desvio-padrão igual a 36;
 - y: resultado da verdadeira relação entre as variáveis y = 3 + 2x + u;
 - \hat{y} : o resultado da regressão linear de y em x;
 - \hat{u} : os resíduos da regressão.

Verifique:

- a) Se $\sum \hat{u}_i = 0$.
- **b)** Se $\bar{y} = \hat{\hat{y}}$.
- 2) Use os dados do arquivo COUNTYMURDERS para responder a essas questões. Utilize somente os dados de 1996.
- (i) Quantos condados tiveram zero assassinatos em 1996? Quantos condados tiveram pelo menos uma execução? Qual é o maior número de execuções?

(ii) Estime a equação abaixo, em que murders corresponde ao número de assassinatos

$$murders = \beta_0 + \beta_1 execs + u$$

por MQO e relate os resultados da forma usual, incluindo o tamanho da amostra e o R-quadrado.

- (iii) Interprete o coeficiente de inclinação registrado no item (ii). A equação estimada sugere um efeito dissuasor da pena capital?
- (iv) Qual é o menor número de assassinatos que pode ser previsto pela equação? Qual é o resíduo de um condado com zero execuções e zero assassinatos?
- (v) Explique por que uma análise de regressão simples não é adequada para determinar se a pena capital tem um efeito dissuasor sobre os assassinatos.

Referências

HUNTINGTON-KLEIN, Nick. **The Effect:** An Introduction to Research Design and Causality. Disponível em: https://www.nickchk.com/book/The_Effect_DRAFT_DO_NOT_REHOST.pdf. Acesso em 28/04/2021.

CUNNINGHAM, Scott. **Causal Inference:** The Mixtape. Disponível em: https://mixtape.scunning.com/index.html. Acesso em 03/05/2021.

WOOLDRIDGE, Jeffrey. **Introdução à Econometria:** Uma Abordagem Moderna. 3. ed. São Paulo: Cengage, 2019.

GUJARATI, Damodar. Econometria básica: 4. ed. Rio de Janeiro: Elsevier, 2006.