Assignment 1

Harshdeep Gupta, 2013MT60597 Deepali Gupta, 2013MT60079

Due date: January 25, 2017, 11:55pm IST

1 Answer 1

1.1 ER Diagram

Table 1: Entities and Attributes

Entity	Attributes	Keys
Degree	ID, Name, Curriculum, Pricing, Admission, AboutTheProgram	ID
	DisplayImage	
Specialization	ID, Name, Price, Description, DisplayImage	ID
Course	ID, Name, Topic, Price, Session, BasicInfo, Level, Language, Dis-	ID
	playImage, HowToPass, UserRatings, CourseReviews, AboutThe-	
	Course, WhoIsThisCourseFor, Syllabus, CertificateOffering, De-	
	scription	
Institution	Name, Region, Description, DisplayImage, Contact Details	Name, Region
User	ID, Name, Photo, Location, Gender, Birthday, AboutUser, Web-	ID
	sites, Privacy, Purchases	
Instructor	UserID, Designation, Twitter Handle, Department, Description	UserID
Assignment	Index, Title, Deadline, ToPass, Weight, Grade, Questions	CourseID, Index
Video	ID, Title, Transcript, Likes, Subtitles, Resources, Language	ID
Forum	ID, Topic, Guidelines, Description, No of threads, Last updated	ID
Thread	ID, UserID, Title, Post, Views, Likes, Last Posted, Content	ID
Comment	ID, UserID, Statement, Likes, PostedAt	ID
Reply	ID, UserID, Statement, Likes, PostedAt	ID
FAQ	ID, Index, Question, Answer	ID
Resource	Index, Type, Title, Content, Last Updated	CourseID, Index

1.2 Set of relations

- Degree(<u>ID</u>, Name, Curriculum, Pricing, Admission, AboutTheProgram, DisplayImage)
- Specialization(<u>ID</u>, Name, Price, Description, DisplayImage)
- Course(<u>ID</u>, Name, Topic, Price, Session, BasicInfo, Level, Language, DisplayImage, HowToPass, User-Ratings, CourseReviews, AboutTheCourse, WhoIsThisCourseFor, Syllabus, CertificateOffering, Description)
- Institution(Name, Region, Description, DisplayImage, Contact Details)
- User(ID, Name, Photo, Location, Gender, Birthday, AboutUser, Websites, Privacy, Purchases)
- Instructor(UserID, Designation, Twitter Handle, Department, Description)
- Assignment(CourseID, Index, Title, Deadline, ToPass, Weight, NoOfQuestions)
- Video(ID, CourseID, Title, Transcript, Likes, Subtitles, Resources, Language)
- Forum(ID, CourseID, Topic, Guidelines, Description, No of threads, Last updated)
- Thread(<u>ID</u>, ForumID, UserID, Title, Post, Views, Likes, Last Posted, Content)
- Comment(<u>ID</u>, ThreadID, UserID, Statement, Likes, PostedAt)
- Reply(<u>ID</u>, CommentID, UserID, Statement, Likes, PostedAt)
- FAQ(ID, Index, Question, Answer)
- Resource(CourseID, Index, Type, Title, Content, Last Updated)
- DegreeSpecs(DegreeID, SpecID)
- SpecCourses(SpecID, CourseID)
- DegreeCourses(DegreeID, CourseID)
- InstFaculty(InstName, InstRegion, InstructorID)

- InstDegree(InstName, InstRegion, DegreeID)
- InstSpec(InstName, InstRegion, SpecID)
- InstCourse(InstName, InstRegion, CourseID)
- EnrolledIn(CourseID, UserID)
- Teaches(CourseID, InstructorID)
- Watched(VideoID, UserID, Status)
- $\bullet \ Attempted (Course ID, \, Assign Index, \, User ID, \, Status, \, Grade)\\$

1.3 Keys and FDs

All the keys are underlined in the previous section. Below are the FD's

 \bullet Institution: Contact Details \to Name , Region

 \bullet Forum: (CourseID, Topic) \rightarrow ForumID

 \bullet Thread: (ForumID, UserID, Title) \to ThreadID

1.4 Sample Data

Table 2: Course

ID	Name	Level	Price	Session	HowToPass	UserRatings
1	Neural	NULL	\$95	Jan23-April23	Pass all assign-	4.5
	Networks				ments	
2	Game	Beginner	\$50	Feb18-May20	Pass all assign-	4.6
	Theory				ments	
3	Advanced	NULL	\$40	Jan23-April23	Pass all assign-	4.6
	Writing				ments	
4	Algebra	Beginner	\$80	Jan23-Mar07	Pass all assign-	4.5
					ments	
5	Hadoop	Intermediate	\$60	Jan23-Feb30	Pass all assign-	NULL
	Platform				ments	

Table 3: User

ID	Name Location		Gender	Birthday	Privacy
1	Deepali Gupta	New Delhi, India	Female	23/05/1995	OnlyMe
2	Vladimir Diaz	New York, USA	Male	02/01/1984	The Coursera Community
3	Santiago Torres	Mexico City, Mex-	Male	06/07/1989	Everyone on the Web
	Arias	ico			
4	Ghada Al-	Chicago, USA	Female	25/08/1979	OnlyMe
	mashaqbeh				

Course Introduction Page

Course Introduction Page

Universities Page

University Details Page

Course Details Page

Assignment Page

Assignment Questions Page

User Profile Page

Discussion Forum

1.5 List of various relationships

Table 4: Relationships

Type of relationship	Example
Weak Entity Set	(Assignment, Question), (Resource)
Non-Binary Relationship	(Course, User, Video)
Hierarchical Relationship	Instructor is a type of User
Type of relationship Con-	All keys are unique and non null, User age must be in a valid
straint	range etc
Referential Constraint	ThreadID in comments refers to Thread, ForumID in thread refers
	to Forum, CourseID in thread refers to Course

2 Answer 2

Combining the attributes from tables: Course, User and Instructor, suppose we create a table with the following schema.

 $R(CourseID, Forum\ Topic,\ UserID,\ Thread\ Title,\ Thread\ ID,\ Forum\ ID,\ Thread\ Views,\ University\ Name, Contact\ Details)$

For the purposes of example, we assume the following FD's in our data

- \bullet Contact Details \to Name
- (CourseID, Forum Topic) \rightarrow ForumID
- (ForumID, UserID, Thread Title) \rightarrow ThreadID
- $\bullet \ ({\rm ThreadID}) \to ({\rm Thread} \ {\rm Title}, \ {\rm Thread} \ {\rm Views})$

- (ForumID) \rightarrow (Forum Topic)
- (ForumID, ThreadID) \rightarrow (UserID)

We see that (CourseID, ForumTopic, UserID, ThreadTitle, Contact Details) forms a key for this relation as its closure is the entire relation. Also, its minimal

Decomposition into 2NF In 2NF, no non prime attribute is dependent on proper subset of candidate key of the table. In the above relation, we see that the first three FD's violate this rule. So we decompose R into following relations:

- R1(Contact Details, UniName)
- R2(CourseID, Forum Topic, Forum ID)
- R3(ForumID, UserID, Thread Title, Thread Views, ThreadID)
- R4(CourseID, ForumTopic, UserID, Contact Details, Thread Title)

Decomposition into 3 NF In 3 NF, no non prime attribute can depend on another non prime attribute. We remove all the transitive dependencies.

- R2(a) (CourseID, ForumID)
- R2(b) (ForumID, ForumTopic)
- R3(a) (<u>ThreadID</u>, Thread Title, Thread Views)
- R3(b) (ForumID, UserID, ThreadID)

Decomposition into BCNF We see that the last FD is violating the BCNF criteria, so we modify relation 3(b).

• R3(b)(i) (ForumID, ThreadID, UserID)

3 Answer 3

3.1 Schema

Table 5: Dataset 1: Consumer Complaints

Field Name	Data Type
ComplaintID	bigint
Product	varchar(40)
Issue	varchar(80)
Company	varchar(20)
State	char(2)
TimelyResponse	varchar(3)

Table 6: Dataset 2: Most Recent Cohorts Scorecard Elements

Field Name	Data Type
UnitID	bigint
INSTNM	varchar(40)
City	varchar(20)
Insturl	varchar(40)
Npcurl	varchar(100)

Table 7: Dataset 3: US Chronic Disease Indicators

Field Name	Data Type
YearStart	char(4)
YearEnd	char(4)
LocationAbbr	char(2)
Topic	varchar(20)
Question	varchar(200)
Response	varchar(100)

3.2 Various insert modes

3.2.1 Bulk Load

Data was loaded from the csv files into the tables using the COPY command as follows: COPY consumer_complaints FROM ' /Downloads/Consumer_Complaints.csv' DELIMITER ',' csv;

3.2.2 Insert statements

A python script was written to load tuples from the csv file and place them into insert statements using psycopg2.

3.2.3 JDBC

A JDBC script was written to do a bulk insert.

3.3 Statistics

Machine Configuration

• Processor : intel CORE i5

RAM: 8 GBHDD: 1 TBSSD: 125 GB

• OS : Ubuntu 15.04

• JDBC : Java 8

Table 8: Data Insertion Statistics

Dataset No.	No. of tuples	Size(MB)	Bulk Load Time(ms)	Inserts Time(s)	JDBC Time(ms)
1	699224	59.5	3464.832	73	8649.273
2	53921	7	438.921	10	1357.538
3	237962	23	3837.433	35	7912.924

4 Answer 4

A python script was written to duplicate the data in the previous datasets by around 150 to 250 times.

Table 9: Data Insertion Statistics for Larger Datasets

Dataset No.	No. of tuples	Size(GB)	Bulk Load Time(min)	Inserts Time(min)	JDBC Time(min)
1	99047410	8.3	20	76	26
2	39439360	5.1	8	48	12
3	63535854	6.5	14	59	19