SPECIAL COURSE IN SOFTWARE ENGINEERING, AUTUMN 2024

EXERCISE 4 – MORE DATA ANALYSIS

In this exercise, you will write program to conduct more data analysis using *regression*, *t*-test, and chi-square.

THIS EXERCISE WILL BE GRADED (MAX: 10 points)

SUBMISSION DEADLINE: OCTOBER 18, 2024, MIDNIGHT

Task 1. dataset_loading()

This function simply loads the dataset that's available in the root folder.

Task 2. list_column_types()

This function is similar to one you implemented in **GEX3**. The function sorts all the columns into interval, numeric ordinal, non-numeric ordinal, and nominal.

It stores the column names and the unique elements in that column in a dictionary called **column_types**

Task 3. select variable()

The function is similar to the function you implemented in **GEX3.** The function lists all the available columns and their types. Asks the user the type of data that is needed to implement the test.

This function is called from the **main()** function, depending on the test the user has selected to perform.

If the user selects **t-test or Mann-Whitney U test**, then this function should have the logic to tell the user if a column has more than two categories. If that's the case, the user should be asked to enter another variable.

The function takes type of data (e.g., nominal, interval), max_categories (e.g., 2, for t-test) and allow_skip (e.g., True or False) as parameters.

The function returns the variable name that the user enters.

Task 4. check normality()

The function is similar to the function you implemented in **GEX3.** The function checks if the column has more than 2,000 items. If it has, then it will check normality using Anderson-Darling Test. Otherwise, it will use Shapiro-Wilk test.

SPECIAL COURSE IN SOFTWARE ENGINEERING, AUTUMN 2024

The function accepts the **column**, and **size_limit** as the parameter, and returns the **statistic** and **p_value** from the test.

Task 5. perform_regression()

The function takes two columns as the parameters, handles, NA entries, and performs simple linear regression.

Task 6. t_test_or_mannwhitney()

The function accepts a continuous variable and a categorical variable (nominal or ordinal) as its parameters. The test first checks for normality and based on the result from that **check_normality()** function, either **t-Test** is conducted or **Mann-Whitney U Test**.

The function returns the **test statistic** and **p_value**.

Task 7. chi_square_test()

The function accepts two **categorical variables (nominal)** as its parameters.

The function returns the **test statistic** and **p_value**.

Task 8. main()

After creating the object and loading the data, the function presents the following options to the user to pick from:

- 1. t-test or Mann-Whitney U Test
- 2. Chi-square Test
- 3. Linear Regression

Based on the user choice, the appropriate function is called, while making sure that first the right variable is selected from **select_variable** function. If the user chooses '1', then the program should inform the user if there are any nominal variable where there are more than 2 categories. If all the columns have more than 2 categories, the program should inform the user that **t-Test or Mann-Whitney U Test is not possible** with the available dataset.

Similarly, if there are no nominal variables suitable for **Chi-square Test**, the user should be informed. And in case of regression, if there are not enough continuous type variables, then **Linear Regression** should also not be possible.