データマイニング

第9回 ツリーモデル

2023年春学期

宮津和弘

本日の講義・演習

日付	講義•演習内容
04/14/23	(1) イントロダクション
04/21/23	(2) ビジネスシミュレーション
04/28/23	(3) ID-POSデータ分析
05/12/23	(4) 対応分析
05/19/23	(5) クラスター分析
05/26/23	(6) 自己組織化マップ
06/02/23	(7) 線形判別分析
06/09/23	(8) 非線形判別分析
06/16/23	(9) ツリーモデル
06/23/23	(10) 集団学習
06/30/23	(11) サポートベクターマシン
07/04/23	(12) ネットワーク分析
07/14/23	(13) 共分散構造分析
07/21/23	(14) テキスト分析
07/28/23	(15) まとめ

機械学習の手法

教師データあり

- ✓ 線形回帰
- ✓ ロジスティック回帰
- サポートベクターマシーン
- ・分類木

本日の演習はこれ!

• 回帰木

"決定木"

- ランダムフォレスト
- 勾配ブースティング木
- ✓ ニューラルネットワーク
- 畳み込みニューラルネットワーク
- 再起型ニューラルネットワーク
- ✓ ナイーブベイズ
- k近傍法ブースティング
- バギング

教師データなし

- ✓ 階層型クラスタリング(ウォード法など)
- ✓ 非階層型クラスタリング (k-meansなど)
- トピックモデル (LDAなど)
- ✓ 自己組織化マップ
- ✓ アソシエーション分析(*)
- ✓ 協調フィルタリング (*)
- ✓ ベイジアンネットワーク (*)

* データサイエンス演習 1

本日の演習概要とポイント

■ 分類木と回帰木の考え方

→ カイ二乗統計量、ジニ係数、エントロピー

■ 決定木を用いたデータ演習

→ 偽札データ、IRISデータ、車速度&距離データ ボストン住宅価格データ

決定木 (ディシジョンツリー)

決定木(ディシジョンツリー)分析とは?

ある目的変数に対して、説明変数を関連性の強い項目から分岐させて、 **ツリー状**に表して分析する手法のこと。区分を分類するとき「**分類木**」、 数値を予測するとき「**回帰木**」とよばれる。

分岐基準の考え方

決定木では、以下のような基準にもとづいて情報(データ)を分岐させる。

- カイ二乗統計量
 - → 観測値と期待値の各分布の相違度合いを表す
- ジニ係数
 - → もともとは社会における所得の不平等さを測る指標で、データの偏りを表す
- エントロピー
 - → 情報理論におけるエントロピーでは、ある事象の起こりにくさを表す

決定木では、バラつきや偏りが生じていないようにサンプルを振り分ける

カイ二乗値

期待度数 (E_{ij}) に対して、実際の観測度数 (n_{ij}) が統計的有意に異なるかを検定する

 \Rightarrow 以下では、 $k \times m$ の二元配置における独立性を考える

自由度(k-1)(m-1)の**カイ二乗分布**に従う

$$\sum_{i=1}^{k} \sum_{j=1}^{m} \frac{(n_{ij} - E_{ij})^2}{E_{ij}} \sim \chi^2(k-1)(m-1)$$

カイ二乗分布の確率密度関数は $x \ge 0$ に対し

$$f(x;k) = rac{1}{2^{k/2}\Gamma(k/2)} x^{k/2-1} e^{-x/2}$$

また $x \le 0$ に対し $f_k(x) = 0$ という形をとる。ここで Γ はガンマ関数である。

PDF of chi-square distribution

https://ja.wikipedia.org/wiki

ジニ係数

ジニ係数とは右グラフにおいて、完全平等線と ローレンツ曲線で囲まれた面積と三角形全体の 面積(1/2)の比で表す。0 のときは完全平等で、 1 のときは完全不平等を示す。

$$GI = 1 - \sum_{i=1}^{c} |p(i|t)|^2$$

tはノード、iはクラス、pは分割された 個体がクラスに属する比率

ローレンツ曲線の例

都道府県における映画館のスクリーン数を少ない順に並べて累積度数を表す。80%の都道県併せてスクリーン数は全体の40%強、残り20%で全体の60%弱を占めている。

→スクリーン数には格差がある!

ジニ係数による 経済格差

各国における経済格差を表す指標: 0(完全平等)-1(完全不平等)

- 旧共産圏国で小さい (~0.2)
- 格差で社会が不安定(~0.4)
- ・ 社会的な不満が激増(~0.5)

1990年代に「一億総中流社会」と言われた 日本は、0.249(1993)は、0.379(2011)と 大きく上昇している

(OECD) https://data.oecd.org/inequality/income-inequality.htm

エントロピー

情報量は生起する確率をpとして 以下のように定義する

$$\log_2 \frac{1}{p} = -\log_2 p$$

情報源が生起する確率をそれぞれ p(1),p(2),・・・,p(c)として、 **エントロピー**は平均情報量として 以下のように表す

$$entropy = -\sum_{i=1}^{c} p(i|t)log_2 p(i|t)$$

情報減が2つの例

例えば、理想的なコイン投げを考えるとき、 この場合のエントロピーは1となる

$$-\frac{1}{2}\log\frac{1}{2} - \frac{1}{2}\log\frac{1}{2} = 1$$

ここで、表が1/4、裏が3/4で生起するコイン の場合、エントロピーは0.811と減少する

$$-\frac{1}{2}\log\frac{1}{4} - \frac{1}{2}\log\frac{3}{4} = 0.811$$

つまり、裏の塊(ラベル)が出やすくなると **エントロピーは減少**する

→ エントロピー増大の原理とは正反対!

分類回帰樹木法(CART)とは?

予測・分類 を目的とした教師あり機械学習の一つで、段階的にデータを不均一性が増加するように樹木の枝葉の様に分岐させる。CARTでは全データを用いて樹木を成長させてから剪定し、最適な樹木を構築する。

① 樹木の成長

② 樹木の刈込み

③ 最適な樹木の決定

※ 例えば、全データを10分割して、9つのデータセットで樹木を成長させ、 残りの1つのデータセットを用いて検証しながら樹木を剪定する。

偽札データの読込み

- ① Rstudio起動する
- ② > library(Rcmdr) ※コマンドラインから Rコマンダー を起動する
- ③ 演習ファイル "sbnote.csv" を読み込む
 - Rstudio > Dataset<-read.csv("sbnote.csv")
 又は
 - Rコマンダー (データ) → (データインポート) → (テキストファイルまたはクリップボード・・・) →
 ✓ OKを選択して、sbnote.csv を指定する
- ④ 演習データが Dataset に読込まれる

スイス銀行偽札データ

1000フラン紙幣の尺度指標

class	diagonal	top	bottom	right	left	length
0	141	9.7	9	131.1	131	214.8
0	141.7	9.5	8.1	129.7	129.7	214.6
0	142.2	9.6	8.7	129.7	129.7	214.8
0	1 42	10.4	7.5	129.6	129.7	214.8
0	141.8	7.7	10.4	129.7	129.6	215
0	141.4	10.1	9	130.5	130.8	215.7
0	141.6	9.6	7.9	129.7	129.5	215.5
0	141.7	10.7	7.2	129.2	129.6	214.5
0	141.9	11	8.2	129.7	129.4	214.9
0	140.7	10	9.2	130.3	130.4	215.2
0	141.8	11.7	7.9	130.3	130.4	215.3
0	142.2	10.5	7.7	129.6	129.5	215.1
0	141.4	10.8	7.9	129.6	130.8	215.2
0	141.7	10.9	7.7	129.7	129.7	214.7
0	141.8	10.8	7.7	129.7	129.9	215.1
0	141.6	8.5	9.3	129.8	129.8	214.5
0	141.7	9.8	8.2	130.1	129.9	214.6
0	141.9	9	9	129.7	129.9	215
0	141.5	11.5	7.4	129.6	129.6	215.2
0	141.9	10	8.6	129.9	130.2	214.7

真偽判定:1(偽札)、0(真札)

偽札データの決定木

1000フラン紙幣の真贋は diagonal を測れば、ほとんど見分けられる!

```
> library(rpart)
> note.rp<-rpart(class~.,data=Dataset)
> plot(note.rp,uniform=T,branch=0.6,margin=0.05)
> text(note.rp,use.n=T,all=T)
> print(note.rp)
n= 200

node), split, n, deviance, yval
    * denotes terminal node

1) root 200 50.0000000 0.5000000
    2) diagonal>=140.65 98 0.000000 0.0000000 *
    3) diagonal< 140.65 102 1.960784 0.9803922 *</pre>
```


IRISデータの読込み

Rコマンダーから 【データ】 \rightarrow 【パッケージ内のデータ】 \rightarrow 【アタッチされたパッケージからデータセットを…】

データセット名に"**iris**"入力してOKすると、irisデータが読み込まれるのを確認(↓)

(Emire to Tilmie to

170,)追加 9	リの追加				
		1	. 2	3	4	5
	rowname	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	1	5.1	3.5	1.4	0.2	setosa
2	2	4.9	3.0	1.4	0.2	setosa
3	3	4.7	3.2	1.3	0.2	setosa
4	4	4.6	3.1	1.5	0.2	setosa
5	5	5.0	3.6	1.4	0.2	setosa
6	6	5.4	3.9	1.7	0.4	setosa
7	7	4.6	3.4	1.4	0.3	setosa
8	8	5.0	3.4	1.5	0.2	setosa
9	9	4.4	2.9	1.4	0.2	setosa
10	10	4.9	3.1	1.5	0.1	setosa
-11	11	5.4	3.7	1.5	0.2	setosa
12	12	4.8	3.4	1.6	0.2	setosa

または、コマンドラインから直接入力

> data(iris)

IRISデータの決定木モデル結果

アヤメの種類はPetal(花弁)の大きさだけで、 ほとんど分類できる

IRISデータの決定木モデルの検証

→ 検証データの誤り率は4%

"partykit"をインストールして、library(partykit)で立ち上げた後

```
> res<-as.party(iris.rp)
> plot(res)
```


CARSデータの読込み

```
> data("cars")
> set.seed(0)
> cars.rp<-rpart(dist~speed,data=cars,minsplit=3)</pre>
> printcp(cars.rp)
Regression tree:
rpart(formula = dist ~ speed, data = cars, minsplit = 3)
Variables actually used in tree construction:
[1] speed
Root node error: 32539/50 = 650.78
n = 50
        CP nsplit rel error xerror
                                         xstd
1 0.467640
                    1.00000 1.02866 0.214220
2 0.149077
                    0.53236 0.79834 0.153005
3 0.110494
                    0.38328 0.65919 0.144586
                    0.27279 0.42660 0.092488
4 0.017441
                    0.25535 0.46957 0.086421
5 0.013284
6 0.010000
                    0.24206 0.50496 0.092792
```


CARSモデル検証の結果表示

- > res<-as.party(cars.rp)
- > plot(res)

- > cars.rp1<-prune(cars.rp,cp=0.044)</pre>
- > plot(cars.rp1,uniform=T,margin=0.05)
- > text(cars.rp1,use.n=T)

検証結果のパーティショニング

```
> iris.tr<-tree(Species~.,data=iris)
> iris.tr1<-snip.tree(iris.tr,nodes=c(12,7))
> iris.labels<-c("S","C","V")[iris[,5]]
> plot(iris[,3],iris[,4],type="n")
> text(iris[,3],iris[,4],labels=iris.labels)
> partition.tree(iris.tr1,add=T,col=2,cex=1.5)
```


- > cars.tr<-tree(dist~speed,data=cars)
- > plot(cars\$speed,cars\$dist)
- > partition.tree(cars.tr,add=T,col=2)

BOSTON住宅価格データの読込み

Rコマンダーから 【データ】 \rightarrow 【パッケージ内のデータ】 \rightarrow 【アタッチされたパッケージからデータセットを…】

または、コマンドラインから直接入力 > data("Boston") MASSパッケージ選択してBostonデータが 読み込まれるのを確認 (↓)

crim	zn	indus	chas	nox	rm	age	dis	rad	tax	ptratio	black	Istat	medv
0.00632	18	2.31	0	0.538	6.575	65.2	4.09	1	296	15.3	396.9	4.98	24
0.02731	0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.9	9.14	21.6
0.02729	0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7
0.03237	0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4
0.06905	0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.9	5.33	36.2
0.02985	0	2.18	0	0.458	6.43	58.7	6.0622	3	222	18.7	394.12	5.21	28.7
0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.6	12.43	22.9
0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.9	19.15	27.1
0.21124	12.5	7.87	0	0.524	5.631	100	6.0821	5	311	15.2	386.63	29.93	16.5
0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.1	18.9
0.22489	12.5	7.87	0	0.524	6.377	94.3	6.3467	5	311	15.2	392.52	20.45	15
0.11747	12.5	7.87	0	0.524	6.009	82.9	6.2267	5	311	15.2	396.9	13.27	18.9
0.09378	12.5	7.87	0	0.524	5.889	39	5.4509	5	311	15.2	390.5	15.71	21.7
0.62976	0	8.14	0	0.538	5.949	61.8	4.7075	4	307	21	396.9	8.26	20.4
0.63796	0	8.14	0	0.538	6.096	84.5	4.4619	4	307	21	380.02	10.26	18.2
0.62739	0	8.14	0	0.538	5.834	56.5	4.4986	4	307	21	395.62	8.47	19.9
1.05393	0	8.14	0	0.538	5.935	29.3	4.4986	4	307	21	386.85	6.58	23.1

※ まずは、MASSパッケージがインストールされていることを確認する!

BOSTON住宅価格データ

BOSTON住宅価格モデルの結果(刈込み前)

```
> library(rpart)
> boston.rp<-rpart(medv~.,data=Boston,control=rpart.control(cp=0))
> boston.rp
n= 506
node), split, n, deviance, yval
      * denotes terminal node
   1) root 506 42716.30000 22.532810
     2) rm< 6.941 430 17317.32000 19.933720
       4) lstat>=14.4 175 3373.25100 14.956000
         8) crim>=6.99237 74 1085.90500 11.978380
         16) nox>=0.6055 62 552.28840 11.077420
            32) lstat>=19.645 44
                                 271.79180 9.913636
              64) nox>=0.675 34 160.86260 9.114706
              128) crim>=13.2402 19
                                       52.44737 8.052632 *
              129) crim< 13.2402 15
                                       59.83600 10.460000 *
              65) nox< 0.675 10
                                  15.44100 12.630000
            33) lstat< 19.645 18
                                 75.23111 13.922220 *
         17) nox< 0.6055 12 223.26670 16.633330 *
```


BOSTON住宅価格樹木(刈込み前)

- > plot(boston.rp,uniform=T,margin=0.1)
- > text(boston.rp,cex=0.6)

BOSTON住宅価格モデルの結果(刈込み後)

13) lstat< 9.65 39 789.5123 33.73846 *

7) rm>=7.437 30 1098.8500 45.09667 *

```
> boston.rp<-rpart(medv~.,data=Boston,control=rpart.control(cp=0.01))</pre>
> plot(boston.rp)
> text(boston.rp)
                                                    cp=0.01で樹木を刈込み
> print(boston.rp)
n = 506
node), split, n, deviance, yval
      * denotes terminal node
1) root 506 42716.3000 22.53281
   2) rm< 6.941 430 17317.3200 19.93372
     4) lstat>=14.4 175 3373.2510 14.95600
       8) crim>=6.99237 74 1085.9050 11.97838 *
                                                                                 Istat>=14.4
                                                                                                           rm< 7.437
       9) crim< 6.99237 101 1150.5370 17.13762 *
     5) Istat < 14.4 255 6632.2170 23.34980</p>
     10) dis>=1.5511 248 3658.3930 22.93629
                                                                                                     23.06 33.74
        20) rm< 6.543 193 1589.8140 21.65648 *
        21) rm>=6.543 55 643.1691 27.42727 *
      11) dis< 1.5511 7 1429.0200 38.00000 *
   3) rm>=6.941 76 6059.4190 37.23816
     6) rm< 7.437 46 1899.6120 32.11304
     12) lstat>=9.65 7 432.9971 23.05714 *
```

Boston地域の住宅価格帯を分類

BOSTON住宅価格モデルの結果表示

課題:自動車データの決定木分析 auto.csv

自動車に関するデータ("auto.csv")を用いて、自動車価格(Price)に対する決定木モデルを構築して、 価格帯に対する自動車の特徴を議論しなさい。

Manufacturer	Price	Cylinders	EngineSize	Horsepower	RPM	Rev.per.mile	Fuel.tank.capacity	Passengers	Length	Wheelbase	Width	Turn.circle	Weight
Acura	15.9	4	1.8	140	6300	2890	13.2	5	177	102	68	37	2705
Acura	33.9	6	3.2	200	5500	2335	18.0	5	195	115	71	38	3560
Audi	29.1	6	2.8	172	5500	2280	16.9	5	180	102	67	37	3375
Audi	37.7	6	2.8	172	5500	2535	21.1	6	193	106	70	37	3405
BMW	30.0	4	3.5	208	5700	2545	21.1	4	186	109	69	39	3640
Buick	15.7	4	2.2	110	5200	2565	16.4	6	189	105	69	41	2880
Buick	20.8	6	3.8	170	4800	1570	18.0	6	200	111	74	42	3470
Buick	23.7	6	5.7	180	4000	1320	23.0	6	216	116	78	45	4105
Buick	26.3	6	3.8	170	4800	1690	18.8	5	198	108	73	41	3495
Cadillac	34.7	8	4.9	200	4100	1510	18.0	6	206	114	73	43	3620
Cadillac	40.1	8	4.6	295	6000	1985	20.0	5	204	111	74	44	3935
Chevrolet	13.4	4	2.2	110	5200	2380	15.2	5	182	101	66	38	2490

データマイニングを楽しもう!