SESI 2

SOAL NO 1

Kode 1.2.1

Terdapat dua kawat lurus berarus, kawat 1 dan kawat 2, seperti terlihat pada gambar. Panjang kedua kawat sama yaitu L m. Pada kawat 1 mengalir arus sebesar 1,2 A dan kawat 2 mengalir arus sebesar 1,5 A dengan arah arus terlihat pada gambar. Jawablah pertanyaan berikut dengan perhitungan vektornya. Tentukan resultan vektor medan magnet B pada titik P karena pengaruh dari kawat P dan kawat P!

Kode 1.2.2

Terdapat dua kawat lurus berarus, kawat 1 dan kawat 2, seperti terlihat pada gambar. Panjang kedua kawat sama yaitu L m. Pada kawat 1 mengalir arus sebesar I,2 A dan kawat 2 mengalir arus sebesar I,5 A dengan arah arus terlihat pada gambar. Jawablah pertanyaan berikut dengan perhitungan vektornya. Tentukan resultan vektor medan magnet B pada titik P karena pengaruh dari kawat 1 dan kawat 2!

Kode 1.2.3

Terdapat dua kawat lurus berarus, kawat 1 dan kawat 2, seperti terlihat pada gambar. Panjang kedua kawat sama yaitu L m. Pada kawat 1 mengalir arus sebesar I,2 A dan kawat 2 mengalir arus sebesar I,5 A dengan arah arus terlihat pada gambar. Jawablah pertanyaan berikut dengan perhitungan vektornya. Tentukan resultan vektor medan magnet B pada titik P karena pengaruh dari kawat 1 dan kawat 2!

Kode 1.2.4

Sebuah kawat panjangnya 2L dialiri arus I_1 dibelokkan tepat ditengah-tengah sehingga membentuk sudut 90° seperti ditunjukkan pada gambar. Kawat kedua ¼ Lingkaran dialiri arus I_2 dengan jari-jari 2a diletakkan seperti pada gambar. Jika L=4a tentukan kuat medan listrik pada titik P akibat kedua kawat tersebut.

SOAL NO 2

Kode 2.2.1

Dua rel penghantar berbentuk siku-siku. Sebuah batang konduktor yang kontak langsung dengan rel mula-mula diam di titik itu pada waktu t=0 s dan kemudian digerakkan dengan kecepatan konstan $\nu=5,2$ m/s di sepanjang rel tersebut. Jika medan magnet serbasama B=0,35 T berarah keluar bidang gambar, maka tentukan:

- a. Fluks magnet yang menembus segitiga siku-siku yang dibentuk oleh rel dan batang pada t = 3 s.
- b. GGL induksi di sekitar penghantar segitiga pada waktu t = 3 s.
- c. Jika GGL induksi memenuhi persamaan $\varepsilon = at^n$, dengan a dan n adalah konstanta, hitunglah nilai n ini.

Kode 2.2.2

Solenoida sangat panjang memiliki 200 lilitan/cm dan berjari-jari 2 cm. Di tengah-tengah solenoida tersebut secara sesumbu ditempatkan sebuah kumparan yang memiliki 40 lilitan dan berjarijari 0.5 cm. Bila arus yang mengalir pada solenoida dapat dinyatakan dengan $i(t) = (4t^2 - 3t)A$, sedangkan resistansi kumparan adalah 0.1 Ω . Tentukan :

- a. GGL induksi dan arus yang diinduksikan pada kumparan kecil untuk t = 2 s.
- b. Induktansi saling antara kedua kumparan ini.
- c. Rapat energi pada selenoida untuk t = 2 s.
- a. GGL Induksi dan Arus Induksi

Kode 2.2.3

Fluks magnetik $\phi=(2t^2+4t)$ Wb melalui loop kawat yang terhubung dengan hambatan R=2 Ω .

- a. Hitunglah besar GGL induksi pada loop untuk t = 2 s.
- b. Tentukan besar dan arah arus induksi pada loop untuk t = 2 s.

Kode 2.2.4

Sebuah batang konduktor sepanjang ℓ digerakkan ke kanan dengan kecepatan konstan v=5 m/s pada rel penghantar dalam medan magnet B serbasama seperti pada gambar. Kawat lurus sangat panjang di atasnya dialiri arus I=2 A ke kanan memiliki jarak a=1 cm dan b=20 cm. Jika resistansi

a. Besarnya GGL induksi.

 $R = 100 \Omega$, maka hitunglah

b. Besarnya arus induksi yang melewati resistor R.

SOAL NO 3

KODE: 3.2.1

Suatu rangkaian RLC seri dengan $R=20~\Omega$, L=30~mH, dan $C=12~\mu\text{F}$ dihubungkan dengan sumber tegangan bolak-balik yang memiliki tegangan efektif 90 Volt dan frekuensi 500 Hz. Hitunglah:

- a. Impedansi rangkaian
- b. Tegangan efektif pada resistor, induktor dan kapasitor
- c. Faktor daya dalam rangkaian

KODE: 3.2.2

Rangkaian arus AC seri RLC terdiri dari R = 100Ω , L = 0.4 H dan C = 50μ F dihubungkan dengan sumber AC dengan tegangan maksimum 100 V dan frekuensi 50 Hz. Tentukan

- a. Impedansi rangkaian
- b. Persamaan arus pada rangkaian
- c. Daya yang terdisipasi pada rangkaian

KODE: 3.2.3

Pada rangkaian R –L-C seri di bawah dibawah ini, jika diketahui rangkaian dihubungkan dengan sumber tegangan AC 12 V dan frekuensi 60 Hz. Hitunglah:

- a. Impedansi total dari rangkaian
- b. Arus total yang mengalir dalam sirkuit
- c. Frekuensi resonansi yang bekerja pada R

KODE: 3.2.4

Generator AC pada gambar mempunyai tegangan 120 V dengan frekuensi 60.0 Hz. Ketika saklar (S) terbuka seperti pada diagram, arus mendahului terhadap tegangan sebesar 20°, kemudian ketika saklar di posisi 1, arus ketinggalan terhadap tegangan sebesar 10°. Sedangkan ketika sakelar berada di posisi 2, arus yang mengalir adalah 2A. Berapakah harga:

- (a) Resistor (R)
- (b) Induktor (L)
- (c) Kapasitor (C

