泰坦尼克之灾实验报告

导包

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
import re
import warnings
warnings.simplefilter('ignore')
```

一、数据预处理: 缺失值处理+字符串转数字

In [2]:

```
train_set = pd.read_csv('./train.csv')
test_set = pd.read_csv('./test.csv')
train_set.head()
```

Out[2]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	(
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	_
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	

In [3]:

```
train_set. info()
test_set. info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype		
		001 11			
0	PassengerId	891 non-null	int64		
1	Survived	891 non-null	int64		
2	Pclass	891 non-null	int64		
3	Name	891 non-null	object		
4	Sex	891 non-null	object		
5	Age	714 non-null	float64		
6	SibSp	891 non-null	int64		
7	Parch	891 non-null	int64		
8	Ticket	891 non-null	object		
9	Fare	891 non-null	float64		
10	Cabin	204 non-null	object		
11	Embarked	889 non-null	object		
dtvn	es: float64(2) int64(5) ohi	ect (5)		

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	418 non-null	int64
1	Pclass	418 non-null	int64
2	Name	418 non-null	object
3	Sex	418 non-null	object
4	Age	332 non-null	float64
5	SibSp	418 non-null	int64
6	Parch	418 non-null	int64
7	Ticket	418 non-null	object
8	Fare	417 non-null	float64
9	Cabin	91 non-null	object
10	Embarked	418 non-null	object
dtyp	es: float64(2), int64(4), obj	ect (5)

memory usage: 36.0+ KB

In [4]:

train_set.describe()

Out[4]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [5]:

```
# 数据集合并
train_test = pd.concat([train_set, test_set])
train_test.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 417
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	1309 non-null	int64
1	Survived	891 non-null	float64
2	Pclass	1309 non-null	int64
3	Name	1309 non-null	object
4	Sex	1309 non-null	object
5	Age	1046 non-null	float64
6	SibSp	1309 non-null	int64
7	Parch	1309 non-null	int64
8	Ticket	1309 non-null	object
9	Fare	1308 non-null	float64
10	Cabin	295 non-null	object
11	Embarked	1307 non-null	object
dtyp	ect (5)		

memory usage: 132.9+ KB

In [6]:

```
# 查看每列是否有缺失情况
train_test.isnull().any()
```

Out[6]:

PassengerId False Survived True Pclass False Name False False Sex Age True SibSp False False Parch Ticket False Fare True Cabin True True Embarked dtype: bool

In [7]:

```
# 缺失值处理
train_test['Age'].isnull().value_counts()
```

Out[7]:

False 1046 True 263

Name: Age, dtype: int64

In [8]:

```
# 处理age的缺失,用中位数填充,并修改原数据集
train_test['Age'].fillna(train_test['Age'].median(),inplace = True)
train_test['Age']
```

Out[8]:

```
22.0
0
1
       38.0
2
       26.0
3
       35.0
       35.0
4
       . . .
413
       28.0
       39.0
414
       38.5
415
416
       28.0
       28.0
417
Name: Age, Length: 1309, dtype: float64
```

```
In [9]:
train_test['Embarked'].unique()
Out [9]:
array(['S', 'C', 'Q', nan], dtype=object)
In [10]:
train_test['Embarked'].value_counts()
Out[10]:
S
     914
     270
C
     123
Name: Embarked, dtype: int64
In [11]:
# 处理embarked的缺失,用众数填充,并保存修改
train_test['Embarked'].fillna('S', inplace = True)
In [12]:
train_test['Embarked'].value_counts()
Out[12]:
     916
S
C
     270
     123
Name: Embarked, dtype: int64
In [13]:
# 字符串转数字
train_test['Sex'] = train_test['Sex'].map({'female':0, 'male':1})
train_test['Embarked'] = train_test['Embarked'].map({'S':0, 'C':1, 'Q':2})
```

In [14]:

```
train_test.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 417
Data columns (total 12 columns):

Data	COLUMNIS (LOL	ai iz coiumis).	
#	Column	Non-Null Count	Dtype
0	PassengerId	1309 non-null	int64
1	Survived	891 non-null	float64
2	Pclass	1309 non-null	int64
3	Name	1309 non-null	object
4	Sex	1309 non-null	int64
5	Age	1309 non-null	float64
6	SibSp	1309 non-null	int64
7	Parch	1309 non-null	int64
8	Ticket	1309 non-null	object
9	Fare	1308 non-null	float64
10	Cabin	295 non-null	object
11	Embarked	1309 non-null	int64
dtyp	es: float64(3), int64(6), obj	ect (3)
memo	ry usage: 132	.9+ KB	

In [15]:

```
# 缺失值多,去除cabin
train_test.drop('Cabin',axis=1,inplace = True)
```

In [16]:

train_test.head()

Out[16]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Em
0	1	0.0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2500	
1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	38.0	1	0	PC 17599	71.2833	
2	3	1.0	3	Heikkinen, Miss. Laina	0	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	35.0	1	0	113803	53.1000	
4	5	0.0	3	Allen, Mr. William Henry	1	35.0	0	0	373450	8.0500	

In [17]:

```
# 用皮尔逊系数计算各特征相关性,并用热力图可视化
train_test_corr = train_test.corr()
plt.figure(figsize = (8,8))
ax = plt.subplot()
ax.set_xticklabels(train_test_corr.columns)
ax.set_yticklabels(train_test_corr.index)
plt.imshow(train_test_corr)
plt.colorbar()
```

Out[17]:

<matplotlib.colorbar.Colorbar at 0x1e187848a60>

In [18]:

train_test_corr

Out[18]:

	Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	
Passengerld	1.000000	-0.005007	-0.038354	0.013406	0.025799	-0.055224	0.008942	0.0
Survived	-0.005007	1.000000	-0.338481	-0.543351	-0.064910	-0.035322	0.081629	0.2
Pclass	-0.038354	-0.338481	1.000000	0.124617	-0.377908	0.060832	0.018322	-0.5
Sex	0.013406	-0.543351	0.124617	1.000000	0.053663	-0.109609	-0.213125	-0.1
Age	0.025799	-0.064910	-0.377908	0.053663	1.000000	-0.189972	-0.125851	0.1
SibSp	-0.055224	-0.035322	0.060832	-0.109609	-0.189972	1.000000	0.373587	0.1
Parch	0.008942	0.081629	0.018322	-0.213125	-0.125851	0.373587	1.000000	0.2
Fare	0.031428	0.257307	-0.558629	-0.185523	0.179256	0.160238	0.221539	1.0
Embarked	0.040143	0.106811	0.038875	-0.120423	0.018654	-0.073461	-0.095523	0.0

用皮尔逊系数计算各特征相关性,并用热力图可视化

In [19]:

```
plt.subplots(figsize=(10,10))
sns.heatmap(train_test_corr,vmin = -1, annot = True, square = True)
```

Out[19]:

<matplotlib.axes._subplots.AxesSubplot at 0x1e187a2d790>

In [20]:

```
# 处理fare, 根据热力图和经验, fare与pclass和embarked有关
train_test.groupby(['Pclass', 'Embarked'])['Fare'].mean()
```

Out[20]:

Pclass	Embarked	
1	0	72. 235825
	1	106. 845330
	2	90.000000
2	0	21. 206921
	1	23. 300593
	2	11. 735114
3	0	14. 435422
	1	11.021624
	2	10. 390820

Name: Fare, dtype: float64

In [21]:

```
# 查看缺失值
train_test[train_test['Fare'].isnull()]
```

Out[21]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
152	1044	NaN	3	Storey, Mr. Thomas	1	60.5	0	0	3701	NaN	С

In [22]:

```
# 用对应平均值填充fare缺失值
train_test['Fare'].fillna(14.435422,inplace = True)
```

In [23]:

```
train_test. info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 417
Data columns (total 11 columns):
                  Non-Null Count Dtype
#
     Column
0
     PassengerId 1309 non-null
                                   int64
 1
     Survived
                  891 non-null
                                   float64
 2
     Pclass
                  1309 non-null
                                   int64
                  1309 non-null
 3
     Name
                                   object
                  1309 non-null
                                   int64
 4
     Sex
 5
                  1309 non-null
                                   float64
     Age
 6
     SibSp
                  1309 non-null
                                   int64
 7
     Parch
                  1309 non-null
                                   int64
 8
     Ticket
                   1309 non-null
                                   ob iect
 9
                  1309 non-null
                                   float64
     Fare
```

dtypes: float64(3), int64(6), object(2)

1309 non-null

int64

memory usage: 122.7+ KB

10 Embarked

In [24]:

```
# 数据预处理完成,保留有用特征,划分数据集
# features = ['Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
train_data = train_test[:891]
test_data = train_test[891:]
```

In [25]:

```
train_data.shape
```

Out[25]:

(891, 11)

In [26]:

```
train data.columns
```

Out[26]:

In [27]:

```
train_data['Survived']
```

Out[27]:

```
0
       0.0
       1.0
1
2
       1.0
       1.0
4
       0.0
886
       0.0
887
       1.0
       0.0
888
889
       1.0
890
       0.0
```

Name: Survived, Length: 891, dtype: float64

In [28]:

```
train_data[['SibSp','Parch']].T
```

Out[28]:

	0	1	2	3	4	5	6	7	8	9	 881	882	883	884	885	886	887	888	889	890
SibSp	1	1	0	1	0	0	0	3	0	1	 0	0	0	0	0	0	0	1	0	0
Parch	0	0	0	0	0	0	0	1	2	0	 0	0	0	0	5	0	0	2	0	0

2 rows × 891 columns

features = ['Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']

二、乘客属性分布

In [29]:

```
#乘客属性分布 绘图
# 设置属性
plt.rcParams['font.sans-serif'] = ['SimHei'] # 正常显示中文标签
plt.rcParams['font.family']='sans-serif'
plt.rcParams['axes.unicode_minus'] = False # 正常显示负号
fig = plt. figure (figsize=(20, 10))
fig. set (alpha=0.2) # 设定图表颜色alpha参数
# 获救情况 survived 柱状图
plt. subplot2grid((2, 4), (0, 0))
train data['Survived']. value counts().plot(kind='bar')
plt.title("获救情况(1为获救)")
plt.ylabel("人数")
# 等级分布 pclass 柱状图
plt. subplot2grid((2, 4), (0, 1))
train_data.Pclass.value_counts().plot(kind="bar")
plt.ylabel("人数")
plt.title("乘客等级分布")
#性别分布 sex 柱状图
plt. subplot2grid((2, 4), (0, 2))
train_data. Sex. value_counts().plot(kind="bar")
plt.ylabel("人数")
plt.title("乘客性别分布")
# 年龄分布 age 散点图
plt. subplot2grid((2, 4), (0, 3))
x = np. linspace (0, 891, 891)
plt. scatter(x, train_data['Age'])
plt.ylabel("年龄")
plt.title("乘客年龄分布")
# # 年龄 age 散点图
# plt. subplot2grid((2, 4), (0, 4))
# plt. scatter(train_data['Survived'], train_data['Age'])
# plt. ylabel("年龄")
# plt.grid(b=True, which='major', axis='y')
# plt. title("按年龄看获救分布(1为获救)")
# 各等级的乘客年龄分布 密度图
plt. subplot2grid((2,4), (1,0), colspan=2)
train data. Age[train data. Pclass == 1]. plot(kind='kde')
train_data. Age[train_data. Pclass == 2].plot(kind='kde')
train data. Age[train data. Pclass == 3]. plot(kind='kde')
plt. xlabel("年龄")
plt.ylabel("密度")
plt.title("各等级的乘客年龄分布")
plt. legend(('头等舱', '2等舱', '3等舱'), loc='best')
# 船票分布 fare 散点图
plt. subplot2grid((2, 4), (1, 2))
plt. scatter(x, train data['Fare'])
plt. xlabel("船票费用")
plt.title("船票费用分布")
# 各登船口岸上船人数 柱状图
plt. subplot2grid((2, 4), (1, 3))
train data. Embarked. value counts().plot(kind='bar')
plt. title("各登船口岸上船人数")
plt.ylabel("人数")
plt.show()
```


三、按特征分别观察与获救的关系:特征组合+创建新特征

In [30]:

```
# 乘客等级与获救情况
Survived_0 = train_data.Pclass[train_data.Survived == 0].value_counts() # 0 未获救
Survived_1 = train_data.Pclass[train_data.Survived == 1].value_counts() # 1 获救
df = pd.DataFrame({'获救':Survived_1,'未获救':Survived_0})
df.plot(kind = 'bar', stacked = True)
plt.title('各乘客等级的获救情况')
plt.xlabel('乘客等级')
plt.ylabel('人数')
plt.show()
```


In [31]:

```
# 按性别看获救情况 'female':0, 'male':1
Survived_m = train_data.Survived[train_data.Sex == 1].value_counts() # m 男性
Survived_f = train_data.Survived[train_data.Sex == 0].value_counts() # f 女性
df = pd.DataFrame({'男性':Survived_m,'女性':Survived_f})
df.plot(kind = 'bar', stacked = True)
plt.title('按性别看获救情况')
plt.xlabel('是否获救')
plt.ylabel('人数')
plt.show()
```


In [32]:

```
#联合分析,等级12与3差异大,男女差异大,根据舱等级(12为中高3为低)和性别的获救情况
fig = plt.figure(figsize=(20, 5))
plt. title('联合分析舱等级和性别的获救情况')
# 女性 0 高级舱
ax1 = fig. add_subplot(141)
train_data.Survived[train_data.Sex == 0][train_data.Pclass != 3].value_counts().plot(kind = 'bar',
axl.set_xticklabels(['获救','未获救'], rotation = 0)
ax1. legend(['女性/中高级舱'], loc = 'best')
ax2 = fig. add subplot(142, sharey = ax1)
train_data.Survived[train_data.Sex == 0][train_data.Pclass == 3].value_counts().plot(kind = 'bar',
ax2. set_xticklabels([u"未获救", u"获救"], rotation=0)
plt.legend([u"女性/低级舱"], loc='best')
ax3 = fig.add_subplot(143, sharey = ax1)
train_data.Survived[train_data.Sex == 1][train_data.Pclass != 3].value_counts().plot(kind = 'bar',
ax3. set_xticklabels(['未获救','获救'], rotation = 0)
plt.legend(['男性/中高级舱'], loc = 'best')
ax4 = fig. add_subplot(144, sharey = ax1)
train_data. Survived[train_data. Sex == 1][train_data. Pclass == 3]. value_counts().plot(kind = 'bar',
ax4. set_xticklabels(['未获救','获救'], rotation = 0)
plt.legend(['男性/低级舱'], loc = 'best')
plt.show()
```


In [33]:

```
# 各登陆港口乘客的获救情况
fig = plt.figure()
Survived_0 = train_data.Embarked[train_data.Survived == 0].value_counts()
Survived_1 = train_data.Embarked[train_data.Survived == 1].value_counts()
df = pd.DataFrame({' 获救':Survived_1, '未获救':Survived_0})
df.plot(kind = 'bar', stacked = True)
plt.title('各登陆港口乘客的获救情况')
plt.xlabel('登陆港口')
plt.ylabel('人数')
plt.show()
```

<Figure size 432x288 with 0 Axes>

In [34]:

```
# 堂兄妹人数与获救 分组分析
g = train_data.groupby(['SibSp','Survived'])
df = pd.DataFrame(g.count()['PassengerId']).T
df
```

Out[34]:

SibSp		0		1			3			5	8	
Survived	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0
Passengerld	398	210	97	112	15	13	12	4	15	3	5	7

In [35]:

```
# 父母人数与获救
g = train_data.groupby(['Parch','Survived'])
df = pd.DataFrame(g.count()['PassengerId']).T
df
```

Out[35]:

Parch		0		1		2		3	4		5	6	
Survived	0.0	1.0	0.0	1.0	0.0	1.0	0.0	1.0	0.0	0.0	1.0	0.0	
Passengerld	445	233	53	65	40	40	2	3	4	4	1	1	

创建新特征SibSp_Parch,联合分析亲人人数与获救关系

```
In [36]:
```

```
# 创建新特征SibSp_Parch,联合分析亲人人数与获救关系
train_test['SibSp_Parch'] = train_test['SibSp'] + train_test['Parch']
g = train_data.groupby(['SibSp_Parch', 'Survived'])
df = pd. DataFrame(g. count()['PassengerId']).T
df
```

KeyError Traceback (most recent call last) <ipython-input-36-05da23d2e223> in <module> 1 # 创建新特征SibSp Parch, 联合分析亲人人数与获救关系 2 train_test['SibSp_Parch'] = train_test['SibSp'] + train_test['Parch']
----> 3 g = train_data.groupby(['SibSp_Parch', 'Survived']) 4 df = pd. DataFrame (g. count () ['PassengerId']). T d:\program files\python 3.8.3\lib\site-packages\pandas\core\frame.py in gr oupby(self, by, axis, level, as_index, sort, group_keys, squeeze, observe d) 5799 axis = self._get_axis_number(axis) 5800 -> 5801return groupby_generic.DataFrameGroupBy(5802 obj=self, 5803 keys=by, d:\program files\python 3.8.3\lib\site-packages\pandas\core\groupby\groupb y.py in __init__(self, obj, keys, axis, level, grouper, exclusions, selecti on, as_index, sort, group_keys, squeeze, observed, mutated) from pandas.core.groupby.grouper import get_grouper 402 --> 403 grouper, exclusions, obj = get_grouper(404 obj, 405 keys, d:\program files\python 3.8.3\lib\site-packages\pandas\core\groupby\groupe r.py in get grouper(obj, key, axis, level, sort, observed, mutated, validat e) 598 in_axis, name, level, gpr = False, None, gpr, None 599 else: --> 600 raise KeyError (gpr) 601 elif isinstance (gpr, Grouper) and gpr. key is not None: # Add key to exclusions 602 KeyError: 'SibSp_Parch'

创建名称 (称呼可能体现地位) 新特征 NameLength, Title, 分类处理

In [178]:

```
train_test['NameLength'] = train_test['Name'].map(lambda name: len(name))
train_test['NameLength'].head()
```

Out[178]:

- 0 23
- 1 51
- 2 22
- 3 44
- 4 24

Name: NameLength, dtype: int64

In [185]:

```
# 正则匹配name, 提取称呼,如 'Carlsson, Mr. Frans Olof' train_test['Title'] = train_test['Name']. map(lambda name: re.search(r', (.*?)\. .*', name).group(1) train_test['Title'].unique()
```

Out[185]:

In [186]:

```
# col表示上校, rev表示牧师, Mlle表示法国小姐, Major陆军少校, Sir爵士, Capt上尉, Countess女伯爵, Jone # 把相同的意思的title归成一类.
title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Dr": 5, "Rev": 6, "Major": 7, "Col": 7, train_test['Title'] = train_test['Title'].map(title_mapping)
train_test['Title'].unique()
```

Out[186]:

array([1, 3, 2, 4, 9, 6, 5, 8, 7, 10], dtype=int64)

In [187]:

train_test.head()

Out[187]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Em
0	1	0.0	3	Braund, Mr. Owen Harris	1	22.0	1	0	A/5 21171	7.2500	
1	2	1.0	1	Cumings, Mrs. John Bradley (Florence Briggs Th	0	38.0	1	0	PC 17599	71.2833	
2	3	1.0	3	Heikkinen, Miss. Laina	0	26.0	0	0	STON/O2. 3101282	7.9250	
3	4	1.0	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	0	35.0	1	0	113803	53.1000	
4	5	0.0	3	Allen, Mr. William Henry	1	35.0	0	0	373450	8.0500	

```
In [188]:
train test. info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 1309 entries, 0 to 417
Data columns (total 14 columns):
                  Non-Null Count Dtype
#
     Column
0
     PassengerId 1309 non-null
                                   int64
 1
     Survived
                  891 non-null
                                   float64
 2
     Pclass
                  1309 non-null
                                   int64
 3
     Name
                  1309 non-null
                                   object
 4
     Sex
                  1309 non-null
                                   int64
 5
                  1309 non-null
                                   float64
     Age
 6
     SibSp
                  1309 non-null
                                   int64
 7
     Parch
                  1309 non-null
                                   int64
 8
     Ticket
                  1309 non-null
                                   object
 9
     Fare
                  1309 non-null
                                   float64
     Embarked
                  1309 non-null
                                   int64
 10
 11
     SibSp_Parch 1309 non-null
                                   int64
                  1309 non-null
 12
     NameLength
                                   int64
                  1309 non-nu11
                                   int64
13
    Title
dtypes: float64(3), int64(9), object(2)
memory usage: 153.4+ KB
In [189]:
train_test[train_test['Title'].isnull()]
Out[189]:
  Passengerld Survived Pclass Name Sex Age SibSp Parch Ticket Fare Embarked Sib
   [ ]:
In
In [ ]:
```

四、 创建模型, 分别使用新老特征预测

```
In [191]:
```

```
features_old = ['Survived', 'Pclass', 'Sex', 'Age', 'SibSp', 'Parch', 'Fare', 'Embarked']
features_new = ['Survived', 'Pclass', 'Sex', 'Age', 'Fare', 'Embarked', 'SibSp_Parch', 'NameLength', 'Ti
train_data = train_test[:891]
test_data = train_test[891:]
```

逻辑斯蒂回归模型预测

```
In [42]:
```

```
# 逻辑斯蒂回归模型
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
```

```
In [43]:
```

```
# 老特征
data_old = train_data[features_old].drop(['Survived'], axis = 1)
target_old = train_data[features_old]['Survived']
X_train_old, X_test_old, y_train_old, y_test_old = train_test_split(data_old, target_old, test_size=0.
```

In [44]:

```
logisitc = LogisticRegression(random_state=0)
logisitc.fit(X_train_old, y_train_old)
```

Out[44]:

LogisticRegression (random state=0)

```
In [45]:
```

```
y_predict = logisitc.predict(X_test_old)
```

```
In [46]:
```

```
score = logisitc.score(X_test_old, y_test_old)
score
```

Out[46]:

0.8097014925373134

In [47]:

```
# 新特征
data_new = train_data[features_new].drop(['Survived'],axis = 1)
target_new = train_data[features_new]['Survived']
X_train_new, X_test_new, y_train_new, y_test_new = train_test_split(data_new, target_new, test_size=0.
```

In [48]:

```
logisitc = LogisticRegression()
logisitc.fit(X_train_new, y_train_new)
logisitc.score(X_test_new, y_test_new)
```

Out[48]:

0.7910447761194029

交叉验证优化 优点:

1: 交叉验证用于评估模型的预测性能,尤其是训练好的模型在新数据上的表现,可以在一定程度上减小过拟合。2: 还可以从有限的数据中获取尽可能多的有效信息。原始采用的train_test_split方法,数据划分具有偶然性;交叉验证通过多次划分,大大降低了这种由一次随机划分带来的偶然性,同时通过多次划分,多次训练,模型也能遇到各种各样的数据,从而提高其泛化能力;与原始的train_test_split相比,对数据的使用效率更高。train_test_split,默认训练集、测试集比例为3:1,而对交叉验证来说,如果是5折交叉验证,训练集比测试集为4:1;10折交叉验证训练集比测试集为9:1。数据量越大,模型准确率越高!

In [49]:

```
from sklearn.model_selection import cross_val_score
```

In [50]:

```
#老特征
logisitc = LogisticRegression()
score = cross_val_score(logisitc, data_old, target_old, cv=5).mean()
score
```

Out[50]:

0.7934906785512524

```
In [51]:
```

```
# 老特征
logisitc = LogisticRegression()
score = cross_val_score(logisitc, data_old, target_old, cv=10).mean()
score
```

Out[51]:

0.7946192259675405

In [52]:

```
# 新特征
logisitc = LogisticRegression()
score = cross_val_score(logisitc, data_new, target_new, cv=5).mean()
score
```

Out[52]:

0.8092147385600402

In [53]:

```
# 新特征
data = train_data[features_new].drop(['Survived'], axis = 1)
target = train_data[features_new]['Survived']
logisitc = LogisticRegression()
score = cross_val_score(logisitc, data_new, target_new, cv=10).mean()
score
```

Out[53]:

0.8114481897627964

使用随机森林预测

In [54]:

```
from sklearn.ensemble import RandomForestClassifier
```

In [55]:

```
# 老特征
rfc = RandomForestClassifier(random_state=0)
rfc.fit(X_train_old, y_train_old)
rfc.score(X_test_old, y_test_old)
```

Out[55]:

0.8283582089552238

In [56]:

```
# 新特征
rfc = RandomForestClassifier(random_state=0)
rfc.fit(X_train_new, y_train_new)
rfc.score(X_test_new, y_test_new)
```

Out[56]:

0.8208955223880597

交叉验证优化

In [57]:

```
# 老特征
rfc = RandomForestClassifier(random_state=0)
score = cross_val_score(rfc, data, target, cv=5).mean()
score
```

Out[57]:

0.8159312033142928

In [58]:

```
# 新特征
rfc = RandomForestClassifier(random_state=0)
score = cross_val_score(rfc, data, target, cv=10).mean()
score
```

Out[58]:

0.8194132334581772

初步小结:新特征优化模型score更高;随机森林分类score高于逻辑斯蒂模型;交叉验证优化计算得出score比train_test_split结果更稳定,train_test_split只进行了一次划分,数据结果具有偶然性,如果在某次划分中,训练集里全是容易学习的数据,测试集里全是复杂的数据,这样就会导致最终的结果不尽如意,所以交叉验证的评价

结果更加有参考意义。一般k为5或者10

网格搜索定义: 网格搜索法是指定参数值的一种穷举搜索方法,通过将估计函数的参数通过交叉验证进行优化来得到最优的学习算法。

步骤: · 将各个参数可能的取值进行排列组合, 列出所有可能的组合结果生成"网格"。

- ·然后将各组合用于SVM训练,使用交叉验证对表现进行评估。
- ·在拟合函数尝试了所有的参数组合后,返回一个合适的分类器,自动调整至最佳(性能度量)参数组合,可以通过clf.best params 获得参数值

使用交叉验证对模型评估: 如果使用K折交叉验证。将原始数据划分为k份, k-1份作为训练集, 1份作为测试集。 轮流进行k次。

性能度量: 可以选择accuracy, f1-score, f-beta, precise, recall等 'criterion':("gini", "entropy")

随机森林调参优化,用网格搜索调整参数

In [59]:

from sklearn.model selection import GridSearchCV

In []:

```
parameters = {'criterion':("gini", "entropy")
, "max_depth":[*range(1,10)]
, "min_samples_split":[*range(1,10)]
, 'min_samples_leaf':[*range(1,10)]
}
rfc = RandomForestClassifier(random_state=1)
GS = GridSearchCV(rfc, parameters, cv=10)
GS. fit(X_train_new, y_train_new)
GS. best_params_
GS. best_score_
```

```
In [61]:
```

```
parameters = {
    "min_samples_split":[*range(1,10)]
    ,'min_samples_leaf':[*range(1,10)]
}
rfc = RandomForestClassifier(random_state=2)
GS = GridSearchCV(rfc, parameters, cv=10)
GS.fit(X_train_new, y_train_new)
GS.best_params_
GS.best_score_
```

Out[61]:

0.8442652329749103

In [62]:

```
GS.best_params_
GS.best_score_
```

Out[62]:

0.8442652329749103

In [63]:

```
GS.best_params_
```

Out[63]:

```
{'min_samples_leaf': 1, 'min_samples_split': 7}
```

In [68]:

pd.DataFrame(GS.cv_results_).T

Out[68]:

	0	1	2	
mean_fit_time	0.0347071	0.132652	0.123761	0
std_fit_time	0.0056673	0.0198074	0.0104566	0.0
mean_score_time	0	0.00866692	0.010081	0.0
std_score_time	0	0.00110095	0.00389639	0.00
param_min_samples_leaf	1	1	1	
param_min_samples_split	1	2	3	
	{'min_samples_leaf':	{'min_samples_leaf':	{'min_samples_leaf':	{'min_sampl
params	1, 'min_samples_split': 1}	1, 'min_samples_split': 2}	1, 'min_samples_split': 3}	'min_sample
split0_test_score	NaN	0.857143	0.825397	
split1_test_score	NaN	0.84127	0.825397	0
split2_test_score	NaN	0.809524	0.809524	
split3_test_score	NaN	0.725806	0.741935	0
split4_test_score	NaN	0.822581	0.822581	
split5_test_score	NaN	0.83871	0.870968	0
split6_test_score	NaN	0.919355	0.903226	0
split7_test_score	NaN	0.774194	0.790323	0
split8_test_score	NaN	0.774194	0.758065	0
split9_test_score	NaN	0.870968	0.854839	0
mean_test_score	NaN	0.823374	0.820225	0
std_test_score	NaN	0.0526522	0.0466079	0.0
rank_test_score	81	71	72	

20 rows × 81 columns

```
In [69]:
```

```
parameters = {
    "min_samples_split":[*range(1,10)]
, 'min_samples_leaf':[*range(1,10)]
}
rfc = RandomForestClassifier(random_state=2)
GS = GridSearchCV(rfc, parameters, cv=10)
GS.fit(data_new, target_new)
GS.best_params_
GS.best_score_
```

Out[69]:

0.8440324594257179

In [70]:

```
GS.best_params_
```

Out[70]:

```
{'min_samples_leaf': 2, 'min_samples_split': 7}
```

In [71]:

pd.DataFrame(GS.cv_results_).T

Out[71]:

	0	1	2	
mean_fit_time	0.0807838	0.315551	0.145504	0
std_fit_time	0.0130726	0.0255484	0.0295117	0.0
mean_score_time	0	0.0225392	0.0086832	0.0
std_score_time	0	0.00510859	0.000898009	0.00
param_min_samples_leaf	1	1	1	
param_min_samples_split	1	2	3	
	{'min_samples_leaf':	{'min_samples_leaf':	{'min_samples_leaf':	{'min_sampl
params	1, 'min_samples_split': 1}	1, 'min_samples_split': 2}	1, 'min_samples_split': 3}	'min_sample
split0_test_score	NaN	0.777778	0.766667	0
split1_test_score	NaN	0.853933	0.876404	
split2_test_score	NaN	0.764045	0.752809	0
split3_test_score	NaN	0.831461	0.842697	0
split4_test_score	NaN	0.865169	0.876404	0
split5_test_score	NaN	0.831461	0.842697	0
split6_test_score	NaN	0.797753	0.820225	0
split7_test_score	NaN	0.775281	0.797753	0
split8_test_score	NaN	0.865169	0.865169	0
split9_test_score	NaN	0.831461	0.842697	0
mean_test_score	NaN	0.819351	0.828352	
std_test_score	NaN	0.0360972	0.0413582	0.0
rank_test_score	81	72	71	

20 rows × 81 columns

```
In [72]:
```

```
parameters = {
    "min_samples_split":[*range(1,10)]
    ,'min_samples_leaf':[*range(1,10)]
}
rfc = RandomForestClassifier(random_state=2)
GS = GridSearchCV(rfc, parameters, cv=10)
GS.fit(data_old, target_old)
GS.best_params_
GS.best_score_
```

Out[72]:

0.8361922596754058

In [73]:

```
GS.best_params_
```

Out[73]:

```
{'min_samples_leaf': 3, 'min_samples_split': 7}
```

In [139]:

```
rfc = RandomForestClassifier(n_estimators=100, min_samples_split=7, min_samples_leaf=2)
rfc.fit(data_new, target_new)
score = cross_val_score(rfc, data_new, target_new, cv=10).mean()
score
```

Out[139]:

0.8406991260923844

筛选主要特征预测

```
In [140]:
```

```
importances = rfc.feature_importances_
importances
```

Out[140]:

```
array([0.10253587, 0.17846402, 0.1175261, 0.1589364, 0.02924163, 0.07114541, 0.1341938, 0.20795677])
```

绘制柱状图比较重要性

In [141]:

```
plt.figure(figsize=(10,8))
plt.bar(np.arange(0,8), importances)
_ = plt.xticks(np.arange(0,8), features_new[1:])
```


小结:通过对随机森林网格优化调参,采取n_estimators=100, min_samples_split=7, min_samples_leaf=2的随机森林,

选取特征为['Pclass', 'Sex', 'Age','Fare','NameLength', 'Title','SibSp_Parch','Embarked'],交叉验证后得到的 模型得分最高。

然后对此模型的选取特征的重要性进行评估,得到重要性值并绘制柱状图,发现'SibSp_Parch','Embarked'特征的重要性低,所以采取去掉这两个对模型再次训练。

结果发现,虽然重要性低,仍然对模型得分产生影响,故仍保留这两个特征。该模型得分可到84左右。

```
In [147]:
```

```
features=['Pclass', 'Sex', 'Age', 'Fare', 'NameLength', 'Title']
rfc = RandomForestClassifier(n_estimators=100, min_samples_split=7, min_samples_leaf=2)
rfc.fit(data_new[features], target_new)
score = cross_val_score(rfc, data_new[features], target_new, cv=10).mean()
score
```

Out[147]:

0.8305867665418228

In []:

```
In [148]:
```

```
features=['Pclass', 'Sex', 'Age', 'Fare', 'NameLength', 'Title', 'Embarked']
rfc = RandomForestClassifier(n_estimators=100, min_samples_split=7, min_samples_leaf=2)
rfc.fit(data_new[features], target_new)
score = cross_val_score(rfc, data_new[features], target_new, cv=10).mean()
score
```

Out[148]:

0.8395380774032459

In [149]:

```
features=['Pclass', 'Sex', 'Age', 'Fare', 'NameLength', 'Title', 'SibSp_Parch']
rfc = RandomForestClassifier(n_estimators=100, min_samples_split=7, min_samples_leaf=2)
rfc.fit(data_new[features], target_new)
score = cross_val_score(rfc, data_new[features], target_new, cv=10).mean()
score
```

Out[149]:

0.8339575530586767

In [151]:

```
features=['Pclass', 'Sex', 'Age', 'Fare', 'NameLength', 'Title', 'SibSp_Parch', 'Embarked']
rfc = RandomForestClassifier(n_estimators=100, min_samples_split=7, min_samples_leaf=2)
rfc.fit(data_new[features], target_new)
score = cross_val_score(rfc, data_new[features], target_new, cv=10).mean()
score
```

Out[151]:

0.8418227215980025

In [192]:

```
test_data[features].head()
```

Out[192]:

	Pclass	Sex	Age	Fare	NameLength	Title	SibSp_Parch	Embarked
0	3	1	34.5	7.8292	16	1	0	2
1	3	0	47.0	7.0000	32	3	1	0
2	2	1	62.0	9.6875	25	1	0	2
3	3	1	27.0	8.6625	16	1	0	0
4	3	0	22.0	12.2875	44	3	2	0

In [193]:

```
data_test = test_data[features]
data_test.info()
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 418 entries, 0 to 417
Data columns (total 8 columns):

#	Column	Non-Null Count	Dtype
0	Pclass	418 non-null	int64
1	Sex	418 non-null	int64
2	Age	418 non-null	float64
3	Fare	418 non-null	float64
4	NameLength	418 non-null	int64
5	Title	418 non-null	int64
6	SibSp_Parch	418 non-null	int64
7	Embarked	418 non-null	int64

dtypes: float64(2), int64(6)

memory usage: 29.4 KB

```
In [ ]:
```

用模型预测测试集,输出结果

```
In [195]:
```

```
target_test = rfc.predict(data_test)
```

In [203]:

```
result = pd.DataFrame({"Survived":target_test},index=test_data["PassengerId"])
```

In [204]:

```
result.head()
```

Out[204]:

Survived

Passengerld

892	0.0
893	0.0
894	0.0
895	0.0
896	1.0

In [205]:

```
result.to_csv('result.csv', header=True, index=True)
```