CS2022: 數位系統設計

Synchronous Sequential Logic

Outline

- Introduction
- Sequential Circuits
- Storage Element: Latches
- Storage Element: Flip-Flops
- Analysis of Clocked Sequential Circuits
- State Reduction and Assignment
- Design Procedure

Introduction

Combinational circuits

- Contains no memory elements
- The outputs depends on the inputs

Sequential Circuits

Sequential circuits

- A feedback path
- The state of the sequential circuit
- (inputs, current state) ⇒ (outputs, next state)
- Synchronous: the transition happens at discrete instants of time
- Asynchronous: at any instant of time

Synchronous Sequential Circuits

Synchronous sequential circuits

- A master-clock generator to generate a periodic train of clock pulses
- The clock pulses are distributed throughout the system
- Clocked sequential circuits
- Most commonly used
- Seldom instability problems
- The memory elements: flip-flops
 - » Each binary cell is capable of storing one bit of information
 - » Two outputs: one for the normal value and one for the complement value
 - » Maintain a binary state indefinitely until directed by an input signal to switch state

D: 0%

Duty cycle of a clock (pulse train)

Clocked Sequential Circuits

Fig. 2 Synchronous clocked sequential circuit

Latches

- Latches are level-sensitive devices
- **■** Flip-flops are edge-sensitive devices
- Latches are asynchronous sequential circuits
 - State changes whenever inputs change
 - Building blocks of flip-flops
 - Not practical for use in synchronous sequential circuits

SR Latch with NOR Gates

SR latch with NOR gates

Two NOR gates

S	R	Q Q'	_
1	0	1 0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
0	0	1 0	(after $S = 1, R = 0$)
0	1	0 1	
0	0	0 1	(after S = 0, R = 1)
1	1	0 0	(forbidden)

(a) Logic diagram

- (b) Function table
- More complicated types can be built upon it
- Cross-coupled connection
- An asynchronous sequential circuit
- ♦ (S, R) = (0, 0): no operation
 - (S, R) = (0, 1): reset (Q=0, the clear state)
 - (S, R) = (1, 0): set (Q=1, the set state)
 - (S, R) = (1, 1): forbidden state (Q=Q'=0)

SR Latch with NAND Gates

SR latch with NAND gates

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	S R	$R \mid Q \mid Q'$
	1 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 1	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
1 1 0 (after $S = 0, R = 0$ 0 1 1 (forbidden)	$\begin{array}{ccc} 1 & 1 \\ 0 & 0 \end{array}$	1 0 (after $S = 0, R = 1$) 1 1 (forbidden)

(b) Function table

Fig. 4 SR latch with NAND gates

SR Latch with Control

SR latch with control input

- ♦ En=0: no change
- ♦ En=1: operates as normal SR latch

Fig. 5 SR latch with control input

D Latch (Transparent Latch)

D Latch

- Eliminate the undesirable conditions of the indeterminate state in the SR latch
- D: data
- Gated D-latch
- $D \Rightarrow Q$ when En = 1 (transparent); no change when En = 0 (opaque)

Fig. 6 D latch

Various Graphic Symbols for Latches

S	R	Q	Q'	
1	0	1	0	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)
0	0	1	0	(after $S = 1, R = 0$)
0	1	0	1	
0	0	0	1	(after $S = 0, R = 1$)
1	1	0	0	(forbidden)

S	R	Q	Q'	_
1	0	0	1	
1	1	0	1	(after S = 1, R = 0)
1	1	1	0	(after $S = 0$, $R = 1$)
0	0	1	1	(after $S = 1$, $R = 0$) (after $S = 0$, $R = 1$) (forbidden)

En D	Next state of Q
0 X 1 0 1 1	No change $Q = 0$; reset state $Q = 1$; set state

SR latch with NOR gates

SR latch with NAND gates

D latch with enable

Fig. 7 Graphic symbols for latches

Flip-Flops

- Trigger
 - The state of a latch/flip-flop is switched by a change of the control input
- Level triggered Latch
 - The state transition starts as soon as the clock is during logic 1 (positive level-sensitive) or logic 0 (negative level-sensitive)
- Edge triggered Flip-Flop
 - The state transition starts only at positive (positive edge-triggered) or negative edge (negative edge-triggered) of the clock signal

Fig. 8 Clock response in latch and flip-flop

Level-Triggered vs. Edge-Triggered

- Level-triggered
 - The feedback path may cause instability problem
- Edge-triggered
 - The state transition happens only at the edge
 - Eliminate the multiple-transition problem

Master-Slave D Flip-Flop

Master-slave D flip-flop

- Two separate latches
 - » A master latch (positive-level triggered)
 - » A slave latch (negative-level triggered)
 - » Negative-edge-triggered flip-flop

Fig. 9 Master-slave D flip-flop

Edge-Triggered D Flip-Flop (1/4)

- Edge-triggered flip-flop
 - The state changes during a clock-pulse transition
- D-type positive-edge-triggered flip-flop

Fig. 10 D-type positive-edge-triggered flip-flop

Edge-Triggered D Flip-Flop (2/4)

Three basic SR latches

- (S, R) = (0, 1): Q = 1
- (S, R) = (1, 0): Q = 0
- » (S, R) = (1, 1): no operation
- (S, R) = (0, 0): should be avoided

Edge-Triggered D Flip-Flop (3/4)

Synchronous Sequential Logic-18

Digital System Design

Edge-Triggered D Flip-Flop (4/4)

Summary

- ◆ CLK = 0: (S, R) = (1, 1), no state change
- **CLK** =↑: state change once
- ◆ CLK = 1 and \(\psi: \) state holds
- Eliminate the feedback problems in sequential circuits
- All flip-flops must make their transitions at the same time
 - Clock Tree Synthesis: clock signal is distributed evenly to all sequential elements (i.e., flip-flops) in a design
 - Objective: minimize skew and latency

D Flip-Flops Graphic Symbols

The edge-triggered D flip-flops

The most economical and efficient

Fig. 11 Graphic symbols for edge-triggered D flip-flop

Setup and Hold Time for Flip-Flop

The setup time

- D input must be maintained at a constant value prior to the application of the positive CP pulse
- Data to the internal latches

The hold time

- D input must not changes after the application of the positive CP pulse
- Clock to the internal latch

JK Flip-Flop

JK flip-flop

Fig. 12 JK flip-flop

- → J=0, K=0: D=Q, no change
- $\bullet \quad J=0, K=1: D=0 \Rightarrow Q=0$
- \bullet J=1, K=0: D=1 \Rightarrow Q=1
- J=1, K=1: $D=Q' \Rightarrow Q=Q'$

J	K	Q(t+1)	
0	0	Q(t)	(No change)
0	1	0	(Reset)
1	0	1	(Set)
1	1	Q'(t)	(Complement)

T Flip-Flop

■ *T* (toggle) flip-flop

(b) From *D* flip-flop

Fig. 13 T flip-flop

» *T*=0: *D*=*Q*, no change

» $T=1: D=Q' \Rightarrow Q=Q'$

T	Q(t+1)	
0	Q(t) (No change)	
1	Q'(t) (Complement)	

Characteristic Tables

Characteristic tables

D Flip-Flop

D	Q(t + 1)	
0	0	Reset Set

JK Flip-Flop

J	K	Q(t + 1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

T Flip-Flop

T	Q(t + 1)	
0	Q(t) $Q'(t)$	No change Complement

Characteristic Equations

Characteristic equations

- D flip-flop
 - \rightarrow Q(t+1) = D'·0 + D·1 = D
- JK flip-flop
 - \rightarrow Q(t+1) = J'·K'·Q(t) + J'·K·0 + J·K'·1 + J·K·Q'(t) = J·Q'+K'·Q
- T flop-flop
 - \rightarrow Q(t+1) = T'·Q(t) + T·Q(t)' = T \oplus Q

D Flip-Flop

D	Q(t + 1)	
0	0	Reset Set

JK Flip-Flop

J	K	Q(t + 1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	Q'(t)	Complement

T Flip-Flop

T	Q(t + 1)	
0	Q(t) $Q'(t)$	No change Complement

Direct Inputs

Asynchronous set (preset) / asynchronous reset (clear)

Fig. 14 D flip-flop with asynchronous reset

Analysis of Clocked Sequential Circuits

Analysis for sequential circuit

- (inputs, current state) ⇒ (output, next state)
- State equation (also called transition equation) specifies the next state as a function of the present states and inputs
- State table (also called transition table) enumerates all present states and inputs
- State diagram graphical form of a state table
- Flip-flop input equation combinational function to flip-flop input
- Mealy and Moore machines

State Equations

- State equations
 - A(t+1) = A(t)x(t) + B(t)x(t)
 - $\bullet \quad B(t+1) = A'(t)x(t)$
- A compact form
 - \rightarrow A(t+1) = Ax + Bx
 - \rightarrow B(t+1) = A'x
- **■** The output equation

 - \rightarrow y = (A+B)x'

Fig. 15 Example of sequential circuit

State Table (1/2)

State table (transition table)

= State equations

Table 5.2

State Table for the Circuit of Fig. 5.15

A(t+1) = Ax + Bx
B(t+1) = A'x
y = Ax' + Bx'

Present State A B		Input		ext ate	Output y	
		X	A	В		
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	1	
0	1	1	1	1	0	
1	0	0	0	0	1	
1	0	1	1	0	0	
1	1	0	0	0	1	
1	1	1	1	0	0	

State Table (2/2)

$$A(t+1) = Ax + Bx$$

$$B(t+1) = A'x$$

$$y = Ax' + Bx'$$

Table 5.3 *Second Form of the State Table*

State Table for the Circuit of Fig. 5.15									
Present State		Input		ext ate	Output				
A	В	x	A	В	y				
0	0	0	0	0	0				
0	0	1	0	1	0				
0	1	0	0	0	1				
0	1	1	1_	1	0_				
1	0	0	0	0	1				
1	0	1	1	0	0				
ī	1 -	0	0	_ 0 _					

State Table for the Circuit of Fig. 5.15

Table 5.2

Present		N	Next State			Output			
	ate	x =	O	x =	= 1	x = 0	x = 1		
A	В	A	В	A	В	у	y		
0	0	0	0	0	1	0	0		
0	1	0	0	1	1	1	0		
1	0	0	0	1	0	1	0		
1	1	0	0	1	0	1	0		

State Diagram

State diagram

- A circle: a state
- A directed line connecting the circles: transition between the states
 - » Each directed line is labeled "inputs/outputs"

Table 5.3Second Form of the State Table

Present State		Next State			Output		
		x = 0 x		x =	= 1	x = 0	x = 1
Α	В	A	В	A	В	У	y
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Fig. 16 State diagram of the circuit of Fig. 15

◆ Circuit diagram ⇔ state equation ⇔ state table ⇔ state diagram

Flip-Flop Input Equations

- The part of circuit that generates the inputs to flip-flops
 - Also called excitation functions

$$\bullet$$
 $D_A = Ax + Bx$

$$\bullet$$
 $D_B = A'x$

- The output equations
 - To fully describe the sequential circuit
 - \rightarrow y = Ax' + Bx'
- Note
 - $ightharpoonup Q(t+1) = D_O$

Pitfall: flip-flop input equation ≠ state equation! (except D flip-flop)

Analysis with D FFs

The input equation

$$\bullet$$
 $D_A = A \oplus x \oplus y$

■ The state equation

$$\rightarrow$$
 $A(t+1) = A \oplus x \oplus y$

(a) Circuit diagram

Present state	Inputs	Next state		
A	x y	A		
0	0 0			
0	0 1			
0	1 0			
0	1 1			
1	0 0			
1	0 1			
1	1 0			
1	1 1			
(1-) (\4-4- 4-1-	1.		

(b) State table

(c) State diagram

Fig. 17 Sequential circuit with D flip-flop

Analysis with Other Flip-flops

The next-state can be derived by following procedures

- 1. Determine the flip-flop input equations in terms of the present state and input variables
- 2. List the binary values of each input equation
- 3. Use the corresponding flip-flop characteristic table to determine the next-state values in the state table

- OR -

- 1. Determine the flip-flop input equations in terms of the present state and input variables
- 2. Substitute the input equations into the flip-flop characteristic equation to obtain the state equation
- 3. Use the corresponding state equations to determine the next-state values in state table

Analysis with JK flip-flops (1/3)

An sequential circuit with JK FFs

- Determine the flip-flop input function in terms of the present state and input variables
- Used the corresponding <u>flip-flop characteristic table</u> to determine the next state

Analysis with JK flip-flops (2/3)

- \downarrow $J_A = B, K_A = Bx'$
- Derive the state table

J	K	Q(t+1)			
0	0	Q(t)	(No change)		
0	1	0	(Reset)		
1	0	1	(Set)		
1	1	Q'(t)	(Complement)		

Table 5.4 *State Table for Sequential Circuit with JK Flip-Flops*

	sent ate	Input		ext ate	Flip-Flop Inputs			
A	В	X	A	В	JA	K _A	J _B	K _B
0	0	0	0	1	0	0	1	0
0	0	1	0	0	0	0	0	1
0	1	0	1	1	1	1	1	0
0	1	1	1	0	1	0	0	1
1	0	0	1	1	0	0	1	1
1	0	1	1	0	0	0	0	0
1	1	0	0	0	1	1	1	1
1	1	1	1	1	1	0	0	0

Or, derive the state equations using characteristic equation

Analysis with JK flip-flops (3/3)

■ State transition diagram $J_A = B$, $K_A = Bx'$

$$J_A=B$$
, $K_A=Bx'$
 $J_B=x'$, $K_B=A'x+Ax'$

$$A(t+1) = J_A A' + K_A' A$$

 $B(t+1) = J_B B' + K_B' B$

State equation for A and B:

$$A(t+1) = BA' + (Bx')'A = A'B + AB' + Ax$$

$$B(t+1) = x'B' + (A \oplus x)'B = B'x' + ABx + A'Bx'$$

Table 5.4 *State Table for Sequential Circuit with JK Flip-Flops*

Present State		Input	Next State		
A	В	x	A	В	
0	0	0	0	1	
0	0	1	0	0	
0	1	0	1	1	
0	1	1	1	0	
1	0	0	1	1	
1	0	1	1	0	
1	1	0	0	0	
1	1	1	1	1	

Fig. 19 State diagram of the circuit of Fig. 18

Analysis with T Flip-Flops (1/2)

The input and output functions

- \bullet $T_A = Bx$
- $T_B = x$
- ϕ y = AB
- The characteristic equation
 - $\bullet \quad Q(t+1) = T \oplus Q = T'Q + TQ'$
- The state equations
 - lacktriangledown A(t+1) = (Bx)'A + (Bx)A' = AB' + Ax' + A'Bx
 - \rightarrow $B(t+1) = x \oplus B$

Fig. 20 Sequential circuit with T flip-flop

Analysis with T Flip-Flops (2/2)

- A(t+1) = AB' + Ax' + A'Bx
- \rightarrow $B(t+1) = x \oplus B$
- \rightarrow y = AB

T	Q(t+1)
0	Q(t) (No change)
1	Q'(t) (Complement)

Table 5.5 *State Table for Sequential Circuit with T Flip-Flops*

Pres Sta		Input	Next State			Output
A	В	x	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	1	0	
0	1	1	1	0	0	
1	0	0	1	0	0	
1	0	1	1	1	0	
1	1	0	1	1	1	
1	1	1	0	0	1	

Mealy and Moore Models (1/2)

- The Mealy model: the outputs are functions of both the present state and inputs (Fig. 15)
 - The outputs may change if the inputs change during the clock pulse period
 - » The outputs may have momentary false values unless the inputs are synchronized with the clocks
- The Moore model: the outputs are functions of the present state only (Fig. 20)
 - The outputs are <u>synchronous</u> with the clocks

Mealy and Moore Models (2/2)

Fig. 21 Block diagrams of Mealy and Moore state machines

State Reduction and Assignment

State Reduction

- A reduction in the number of states may result in a reduction in the number of flip-flops and gates
- Only the input-output sequences are important
- Two circuits are equivalent
 - » Have identical outputs for all input sequences
 - » The number of states is not important

State Reduction (1/5)

Fig. 25 State diagram

State Reduction (2/5)

Equivalent states

- Two states are said to be equivalent
 - » For each member of the set of inputs, they give exactly the same output and send the circuit to the same state or to an equivalent state
 - » One of them can be removed

Table 5.6 *State Table*

	Next State		Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	c	d	O	0	
c	а	d	0	0	
d	e	f	O	1	
e	а	f	0	1	
f	g	f	0	1	
g	а	f	0	1	

State Reduction (3/5)

Reducing the state table

- \bullet e = g (remove g);
- d = f (remove f);

Table 5.7 *Reducing the State Table*

	Next	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	a	d	0	0	
d	e	f	0	1	
e	а	f	0	1	
f	e	f	0	1	

State Reduction (4/5)

The reduced finite state machine

Table 5.8 *Reduced State Table*

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	x = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
e	a	d	0	1	

State: a a b c d e d d e d e a Input: 0 1 0 1 0 1 1 0 1 0 0 0 Output: 0 0 0 0 0 1 1 0 1 0 0

State Reduction (5/5)

- The checking of each pair of states for possible equivalence can be done systematically
- The unused states are treated as don't-care condition ⇒ fewer combinational gates

Table 5.8 *Reduced State Table*

	Next S	State	Output		
Present State	x = 0	x = 1	x = 0	<i>x</i> = 1	
а	а	b	0	0	
b	c	d	0	0	
c	а	d	0	0	
d	e	d	0	1	
e	а	d	0	1	

Fig. 26 Reduced State diagram

State Assignment (1/2)

State assignment

- To minimize the cost of the combinational circuits
- Various state assignments
 - » m states require at least n-bits, where $2^n > m$

Table 5.9 *Three Possible Binary State Assignments*

State	Assignment 1, Binary	Assignment 2, Gray Code	Assignment 3, One-Hot
a	000	000	00001
b	001	001	00010
c	010	011	00100
d	011	010	01000
e	100	110	10000

State Assignment (2/2)

- Any binary number assignment is satisfactory as long as each state is assigned a unique number
- There is no simple state-encoding procedure which guarantees a minimum-cost or minimum-delay combinational circuits

Table 5.10 *Reduced State Table with Binary Assignment 1*

	Next State		Output		
Present State	x = 0	x = 1	x = 0	x = 1	
000	000	001	0	0	
001	010	011	0	0	
010	000	011	0	0	
011	100	011	0	1	
100	000	011	0	1	

Design Procedure

Design Procedure for sequential circuit

- The word description of the circuit behavior to get a state diagram
- State reduction if necessary
- Assign binary values to the states
- Obtain the binary-coded state table
- Choose the type of flip-flops
- Derive the simplified flip-flop input equations and output equations
- Draw the logic diagram

Synthesis Using D flip-flops (1/4)

An example state diagram and state table: design a circuit to detect a sequence of three or more consecutive 1's

Fig. 27 State diagram for sequence detector

Table 5.11 *State Table for Sequence Detector*

Pres Sta		Input	Next State		Output
A	В	X	A	В	y
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	0
0	1	1	1	0	0
1	0	0	0	0	0
1	0	1	1	1	0
1	1	0	0	0	1
1	1	1	1	1	1

Synthesis Using D flip-flops (2/4)

Table 5.11 *State Table for Sequence Detector*

Present State				ext ate	Output	
A	В	×	A	В	у	
0	0	0	0	0	0	
0	0	1	0	1	0	
0	1	0	0	0	0	
0	1	1	1	0	0	
1	0	0	0	0	0	
1	0	1	1	1	0	
1	1	0	0	0	1	
1	1	1	1	1	1	

The flip-flop input equations

•
$$A(t+1) = D_A(A, B, x) = \Sigma(3, 5, 7)$$

•
$$B(t+1) = D_B(A, B, x) = \Sigma(1, 5, 7)$$

The output equation

Logic minimization using the K-map

$$\bullet$$
 $D_{\Delta} = Ax + Bx$

$$\rightarrow$$
 $D_B = Ax + B'x$

$$\phi$$
 $y = AB$

Synthesis Using D flip-flops (3/4)

Synchronous Sequential Logic-53

 \boldsymbol{x}

y = AB

Synthesis Using D flip-flops (4/4)

■ The logic diagram of sequence detector

Fig. 29 Logic diagram of sequence detector

Excitation Tables

- A state diagram ⇒ flip-flop input functions
 - Straightforward for D flip-flops
 - We need excitation tables for JK and T flip-flops

J	K	Q(t+1)
0	0	Q(t) (No change)
0	1	0 (Reset)
1	0	1 (Set)
1	1	Q'(t) (Complement)

T	Q(t+1)
0	Q(t) (No change)
1	Q'(t) (Complement)

Table 5.12 *Flip-Flop Excitation Tables*

Q(t)	Q(t + 1)	J	K	
0	0	0	X	
0	1	1	X	
1	0	X	1	
1	1	X	0	
0 1 1	1 0 1		X 1 0	

0
1
1
0

(b) *T*

Synthesis Using JK FFs (1/3)

- The same procedure with *D* FFs, but an extra excitation table must be used
- **■** The state table and *JK* flip-flop inputs

 Table 5.13
 0
 1
 1
 X
 1

 State Table and JK Flip-Flop Inputs
 1
 1
 X
 0

Present State		Input	Next State		Flip-Flop Inputs			
A	В	x	A	В	JA	K _A	J _B	K _B
0	0	0	0	0	0	X	0	X
0	0	1	0	1	0	X	1	X
0	1	0	1	0	1	\mathbf{X}	\mathbf{X}	1
0	1	1	0	1	0	X	X	0
1	0	0	1	0	X	0	0	X
1	0	1	1	1	X	0	1	X
1	1	0	1	1	X	0	X	0
1	1	1	0	0	X	1	X	1

K

X

Q(t + 1)

0

Q(t)

Synthesis Using JK FFs (2/3)

- \downarrow $J_A = Bx'; K_A = Bx$

Fig. 30 Maps for *J* and *K* input equations

Synchronous Sequential Logic-57

Digital System Design

Synthesis Using JK FFs (3/3)

Fig. 31 Logic diagram for sequential circuit with *JK* flip-flops

Synthesis Using T flip-flops (1/4)

An n-bit binary counter

- The state diagram
- No inputs (except for the clock input)

Fig. 32 State diagram of three-bit binary counter

Synthesis Using T flip-flops (2/4)

The state table and the flip-flop inputs

Q(t)	Q(t + 1)	T
0	0	0
0	1	1
1	0	1
1	1	0

Table 5.14 *State Table for Three-Bit Counter*

Present State		Next State			Flip-Flop Inputs			
A ₂	<i>A</i> ₁	A ₀	A ₂	A ₁	A ₀	T _{A2}	<i>T_{A1}</i>	T _{A0}
0	0	0	0	0	1	0	0	1
0	0	1	0	1	0	0	1	1
0	1	0	0	1	1	0	0	1
0	1	1	1	0	0	1	1	1
1	0	0	1	0	1	0	0	1
1	0	1	1	1	0	0	1	1
1	1	0	1	1	1	0	0	1
1	1	1	0	0	0	1	1	1

Synthesis Using T flip-flops (3/4)

Fig. 33 Maps of three-bit binary counter

$$T_{A0} = 1$$

Synthesis Using T flip-flops (4/4)

Logic simplification using the K-map

- $T_{A2} = A_1 A_0$
- $T_{A1} = A_0$
- $T_{A0} = 1$

■ The logic diagram

Fig. 34 Logic diagram of three-bit binary counter