Sylow 子群

定义 1 (p-群). 设 G 是有限群, p 是素数, 若 $|G| = p^k, k \in \mathbb{N}^+$, 则称 G 是一个 p-群.

引理 1. 设 p-群 G 作用在集合 X 上,若 |X| = n,X 中的不动点个数为 t $(t \in \mathbb{N})$,则

- (1) $t \equiv n \pmod{p}$;
- (2) 若 (n,p) = 1,则不动点存在.

证明. (1) 设 $X = \bigsqcup_{i \in I} \operatorname{Orb}(x_i)$. x_i 为不动点当且仅当 $|\operatorname{Orb}(x_i)| = 1$,于是

$$n = t + \sum_{|\operatorname{Orb}(x_i) \neq 1|} |\operatorname{Orb}(x_i)|.$$

而由轨道-稳定化子定理, $|\operatorname{Orb}(x_i)|$ 能整除 |G|, 而 $|G|=p^k\ (k\in\mathbb{N}^+)$, 于是 p 能整除 $|\operatorname{Orb}(x_i)|$. 故 $t\equiv n\pmod p$.

(2) 若 (n,p) = 1,则 $n \nmid p$,由 (1),得 $t \nmid p$,则 $t \neq 0$,即存在不动点.

引理 2. 在正整数中,设 p 是素数, $n=p^lm$,若 $k\leqslant l$,则 p^{l-k} 恰能整除 $\mathbf{C}_n^{p^k}$.

证明. 由组合数公式,

$$C_n^{p^k} = \frac{n}{p^k} \prod_{i=1}^{p^k - 1} \frac{n - i}{p^k - i},$$

而

$$\frac{n}{p^k} = p^{l-k}m \Rightarrow p^{l-k} \mid \mathcal{C}_n^{p^k},$$

设 $1 \leqslant i \leqslant p^k - 1$ 表示为 $i = p^t j$,其中 (p, j) = 1, $t < k \leqslant l$. 则

$$n - i = p^t \left(p^{l-t} m - j \right),\,$$

$$p^k - i = p^t \left(p^{k-t} - j \right),$$

于是
$$p \nmid \prod_{i=1}^{p^k-1} \frac{n-i}{p^k-i}$$
,故 p^{l-k} 恰能整除 $C_n^{p^k}$.

下面若无特殊说明,默认 G 的阶为 $p^l m$,其中 p 为素数,(p,m) = 1, $l \ge 1$.

定理 1 (Sylow 第一定理,存在性). 若 $1 \le k \le l$,则 G 存在 p^k 阶子群.

证明. 设 G 中所有 p^k 阶子集组成的集合为 \mathcal{X} . 则 $|\mathcal{X}| = C_n^{p^k}$,这里 $n = p^l m$. 设 G 作用在 \mathcal{X} 上,则有轨道分解

$$\mathcal{X} = \bigsqcup_{i \in I} \operatorname{Orb}(A_i), \quad A_i \in \mathcal{X}.$$

于是

$$|\mathcal{X}| = \sum_{i \in I} |\operatorname{Orb}(A_i)|.$$

由引理2,存在 $A \in \mathcal{X}$, $p^{l-k+1} \nmid |Orb(A)|$. 由轨道-稳定化子定理,

$$p^{l-k+1} \nmid \frac{|G|}{|\operatorname{Stab}(A)|} \Rightarrow p^{l-k+1} \nmid \frac{p^l m}{|\operatorname{Stab}(A)|}.$$

设 $|\operatorname{Stab}(A)| = p^a b$,其中 (a, b) = 1. 则 $p^{l-a} < p^{l-k+1}$,即 a > k-1, $a \geqslant k$. 于是 $p^k \mid |\operatorname{Stab}(A)|$. 由于 $\operatorname{Stab}(A) < G$,对任意 $g \in \operatorname{Stab}(A)$, $a \in A$,定义群 $\operatorname{Stab}(A)$ 对集合 A 的作用 $g \cdot a = ga$. 由于 $\operatorname{Stab}(A) = \{g \in G \mid g \cdot a = a, \ \forall a \in A\}$,于是 $ga \in A$. 则 $\operatorname{Stab}(A) \cdot a \subset A$. 而 $\operatorname{Stab}(A)$ 到 $\operatorname{Stab}(A) \cdot a$ 之间是双射,于是 $|\operatorname{Stab}(A)| = |\operatorname{Stab}(A) \cdot a| \leqslant |A| = p^k$. 即 $\operatorname{Stab}(A)$ 是一个 p^k 阶子群.

定义 2 (Sylow p-子群). 设 G 的阶是 $p^l m$,其中 p 是素数,则 G 的 p^l 阶子群称为 G 的 Sylow p-子群.

定理 2 (Sylow 第二定理,共轭性). 设 $P \in G$ 的一个 Sylow p-子群, $H \in P$ 的一个 p^k 阶 子群,则 H 包含于 P 的共轭子群中. 特别地,Sylow p-子群之间互相共轭.

证明. 设 G 作用在 G/P 上, $g \cdot gP = ggP$,称为左平移作用. 将这个作用限制在 H 上,则 $h \cdot gP = hgP$. 由于 |G/P| = m,(m,p) = 1,由引理1(2),存在 $gP \in G/P$ 满足 hgP = gP. 于是 $hg \in gP$,即 $h \in gPg^{-1}$,H 包含于 P 的共轭子群中. 特别地,当 $|H| = p^l$,则 P 也包含在 H 的共轭子群中,于是 $H = gPg^{-1}$.

定理 3 (Sylow 第三定理, 计数定理). 设 G 的 Sylow p-子群的个数为 k, 则

- (1) 当且仅当 k=1 时,这个 Sylow p-子群 $P \triangleleft G$;
- (2) $k \equiv 1 \pmod{p} \perp k \mid m$.

证明. (1) 设 P 是群 G 的一个 Sylow p-子群. 若 P' 是另外一个 Sylow p-子群,则由 Sylow 第二定理,有 $P' \subset \{gPg^{-1} \mid g \in G\}$,同时有 $P \subset \{gP'g^{-1} \mid g \in G\}$. 若 k = 1,则 $P = gPg^{-1}$,对任意 $g \in G$ 成立,于是 $P \triangleleft G$. 反之,若 $P \triangleleft G$,则 $P = gPg^{-1}$,得 k = 1.

(2) 设 \mathcal{X} 是群 G 的所有 Sylow p-子群的集合,群 $P \in \mathcal{X}$ 作用在集合 \mathcal{X} 上的作用为共轭作用. 对任意 $q \in P$,

$$g \cdot P = gPg^{-1} = P,$$

因此 P 是该作用下的一个不动点. 假设 P_1 也是一个不动点,则对任意 $g \in P$,

$$gP_1g^{-1} = P_1,$$

因此 $g \in N_G(P_1)$, $P \subset N_G(P_1)$. 而 $|P| = p^l$,于是设 $|N_G(P_1)| = p^l m_1$,其中 $m_1 \mid m$. 于是 P, P_1 都是 $N_G(P_1)$ 的 Sylow p-子群,而 $P_1 \triangleleft N_G(P_1)$,由 (1),得 k = 1,即 $P = P_1$,该作用下只有一个不动点. 由引理1(1),有 $k \equiv 1 \pmod{p}$.

设群 G 在集合 $\mathcal X$ 上的作用为共轭作用. 则由 Sylow 第二定理,对任意 $P_1,P_2\in\mathcal X$,存在 $g\in G$,使得

$$P_1 = g \cdot P_2 = g P_2 g^{-1},$$

于是 \mathcal{X} 是可传递的. 对任意 $P \in \mathcal{X}$,

$$k = |\mathcal{X}| = |\operatorname{Orb}(P)| = \frac{|G|}{|\operatorname{Stab}(P)|},$$

于是 $k \mid |G|$, 即 $k \mid p^l m$. 而由于 $k \equiv 1 \pmod{p}$, 于是 (k, p) = 1, 则 $k \mid m$.

下面介绍 Sylow 定理的若干应用.

定义 3 (单群). 没有非平凡正规子群的群称为单群。

例 1. 72 阶群不是单群.

证明. 首先, $72 = 2^3 \times 3^2$,设有限群 G 的阶 |G| = 72,设 G 的 Sylow 2-子群的个数为 k_1 ,Sylow 3-子群的个数为 k_2 . 由 Sylow 第三定理, k_1 可能为 1,3,9, k_2 可能为 1,4.

当 $k_1 = 1$ 时,由 Sylow 第三定理 (1),这个 8 阶的 Sylow 2-子群是 G 的正规子群. 当 $k_2 = 1$ 时,这个 9 阶的 Sylow 3 子群也是 G 的正规子群. 它们都不是平凡的.

当 $k_2 = 4$ 时,设 $X = \{P_1, P_2, P_3, P_4\}$,其中 P_i 是互不相同的 Sylow 3-子群. 设 G 作用在 X 上的作用为共轭作用. 即

$$g \cdot P_i = gP_ig^{-1}, \ \forall g \in G,$$

则这个作用决定了一个同态 $\varphi: G \to S_X$.

而 $\ker \varphi \triangleleft G$,假设 $\ker \varphi = G$,则对任意 $g \in G$,

$$g \cdot P_i = id(P_i) = P_i$$

则 Sylow 子群之间不能互相共轭,这与 Sylow 第二定理矛盾.

假设 $\ker \varphi = \{e\}$,则由同态基本定理,

$$G/\ker\varphi\cong\varphi(G),$$

于是

$$|G/\ker\varphi| = |G/e| = |G| = |\varphi(G)| < |S_4| = 24,$$

而 |G| = 72,矛盾.

于是 $\ker \varphi$ 是 G 的非平凡正规子群,故 72 阶群不是单群.

例 2. 56 阶群不是单群.

证明. 首先, $56 = 2^3 \times 7$,设有限群 G 的阶 |G| = 56,设 G 的 Sylow 2-子群的个数为 k_1 ,Sylow 7-子群的个数为 k_2 . 由 Sylow 第三定理, k_1 可能为 1,7, k_2 可能为 1,8.

当 $k_1 = 1$ 时,由 Sylow 第三定理 (1),这个 8 阶的 Sylow 2-子群是 G 的正规子群. 当 $k_2 = 1$ 时,这个 7 阶的 Sylow 7-子群也是 G 的正规子群. 它们都不是平凡的.

当 $k_1 = 7$ 且 $k_2 = 8$ 时,由于素数阶群必为循环群,于是这 8 个 Sylow 7-子群中,除幺元外的 6 个元素都是 7 阶的,且各不相同. 于是一共含有 |G| 中的 $1+6\times8=49$ 个元素. 对任意的一个 Sylow 2-子群,除幺元外含有 7 个元素,且与 Sylow 7-子群中的元素不同. 这就有 49+7=56 个元素. 而这 7 个 Sylow 2-子群元素不是完全一致的,于是 Sylow 7 子群和 Sylow 8 子群中不重复的元素个数就超过了 56,这与 |G|=56 矛盾! 于是 $k_1=1$ 或 $k_2=1$,则由上述可知 56 阶群不是单群.

例 3. 设 $|G| = p^l m$, (p, m) = 1, $p > m \neq 1$, 则 G 是单群.

证明. 设 G 的 Sylow p-子群的个数为 k,由 Sylow 第三定理,k 的取值只能为 1. 而 m > 1,于是 G 的 Sylow p-子群是 G 的 p^l 阶真正规子群.

注. k 的取值只能为 1, 因为当 k 取 1+p 时, 1+p>m 于是不能整除. 那么其他取值更不能取到了.