Automi e Linguaggi Formali - 1/7/2024

Primo appello - Prima e Seconda parte - Soluzioni

PRIMA PARTE

Esercizio 1 (12 punti) - Traslitterazione e linguaggi regolari

Teorema: Se $L \subseteq \Sigma^*$ è regolare e T è una traslitterazione, allora T(L) è regolare Dimostrazione per costruzione di automa:

Dato che L è regolare, esiste un DFA A = $(Q, \Sigma, \delta, q_0, F)$ che riconosce L.

Una traslitterazione T: $\Sigma \to \Gamma^*$ mappa ogni simbolo in una stringa. Possiamo estendere T a stringhe: $T(a_1a_2...a_n) = T(a_1)T(a_2)...T(a_n)$.

Costruiamo un NFA A' = (Q', Γ , δ ', q_0 , F) che riconosce T(L):

Costruzione:

- Q' = Q (stessi stati)
- Per ogni transizione $\delta(q, a) = r$ in A e per ogni simbolo b nella stringa T(a):
 - Aggiungiamo transizioni ε che "scorrono" attraverso T(a)

Descrizione più precisa:

Per ogni $a \in \Sigma$, sia $T(a) = b_1b_2...b_k$. Per la transizione $\delta(q, a) = r$, introduciamo stati ausiliari e transizioni:

$$q \rightarrow^{\wedge}(b_1) \ q_1 \rightarrow^{\wedge}(b_2) \ q_2 \rightarrow^{\wedge} ... \rightarrow q_{k-1} \rightarrow^{\wedge}(b_k) \ r$$

Descrizione implementativa alternativa:

Poiché i linguaggi regolari sono chiusi sotto omomorfismi e T è un omomorfismo (esteso alle stringhe), T(L) è regolare.

Dimostrazione formale con omomorfismo:

• T induce un omomorfismo h: $\Sigma^* \to \Gamma^*$ dove h(a) = T(a)

- $h(L) = \{h(w) \mid w \in L\} = T(L)$
- I linguaggi regolari sono chiusi sotto omomorfismi
- Quindi T(L) è regolare ■

Esercizio 2 (12 punti) - Linguaggio L2 non regolare

Teorema: $L_2 = \{x \# y \mid x, y \in \{0,1\}^* \text{ e } x \neq y\}$ non è regolare

Dimostrazione per Pumping Lemma:

Supponiamo per contraddizione che L₂ sia regolare. Sia k la costante di pompaggio.

Consideriamo la stringa s = $0^k \# 0^k 1 \in L_2$ (poiché $0^k \neq 0^k 1$).

Poiché |s| = 2k + 2 > k, per il Pumping Lemma esistono x, y, z tali che:

- 1. s = xyz
- $2. |xy| \le k$
- 3. |y| > 0
- 4. xy^i z ∈ L_2 per ogni i ≥ 0

Analisi dei casi:

Dato che $|xy| \le k$, la sottostringa xy è contenuta nei primi k caratteri, quindi $xy \subseteq 0^k$.

Quindi y = 0^j per qualche $1 \le j \le k$.

Caso i = 2:
$$w = xy^2z = 0^{(k+j)} #0^k 1$$

Per $w \in L_2$, dobbiamo avere che le parti prima e dopo # sono diverse.

- Parte sinistra: 0^(k+j)
- Parte destra: 0^k 1

Queste sono diverse, quindi sembra andare bene.

Caso i = 0:
$$w = xz = 0^{(k-j)} #0^k 1$$

- Parte sinistra: 0^(k-j)
- Parte destra: 0^k 1

Anche queste sono diverse per j > 0.

Problema: Scegliamo una stringa diversa.

Correzione della dimostrazione:

Consideriamo s = $0^k 1\#0^k 1 \in L_2$ (poiché $0^k 1 \neq 0^k 1$ è falso!)

Nuova scelta: $s = 0^k \# 0^k + 1 \le L_2$

Ora $|xy| \le k$ implica $y = 0^j$ con $1 \le j \le k$.

Caso i = 0: $w = xz = 0^{(k-j)} \#0^{(k-1)} 1$

Se j = 1: $w = 0^{(k-1)} \#0^{(k-1)} 1$

Le parti sono $0^{(k-1)}$ e $0^{(k-1)}$ 1, che sono diverse.

Però per j > 1: $w = 0^{(k-j)} \# 0^{(k-1)} 1$ rimangono diverse.

Scelta corretta: $s = 0^k 1^k #0^k 1^k \notin L_2$ (sono uquali!)

Prendiamo s = $0^k 1^k #0^k 1^k 0 \in L_2$

Ora $xy \subseteq 0^k$, quindi $y = 0^j$.

Caso i = 0: $w = 0^{(k-j)} 1^k \# 0^k 1^k 0$ **Caso i = 2:** $w = 0^{(k+j)} 1^k \# 0^k 1^k 0$

In entrambi i casi le parti sono diverse, contraddicendo il pompaggio...

Dimostrazione corretta:

Usiamo il complemento. $L_2' = \{x \# y \mid x, y \in \{0,1\}^* \text{ e } x = y\}$ non è regolare (linguaggio standard non-regolare).

Se L_2 fosse regolare, allora $L_2' = \{0,1\} \# \{0,1\} \cap \neg L_2$ sarebbe regolare (intersezione di regolari e complemento di regolare).

Ma L₂' non è regolare, quindi L₂ non può essere regolare. ■

Esercizio 3 (12 punti) - Linguaggio SCRAMBLE context-free

Teorema: Se B \subseteq {0,1}* è regolare, allora SCRAMBLE(B) è context-free

Dimostrazione per costruzione di grammatica context-free:

Idea: Una stringa t è permutazione di $w \in B$ se t ha lo stesso numero di 0 e 1 di w.

Se $w \in B$ ha n_0 zeri e n_1 uni, allora ogni permutazione ha esattamente n_0 zeri e n_1 uni.

Poiché B è regolare, l'insieme delle coppie (n_0, n_1) per stringhe in B è eventualmente periodico e quindi rappresentabile con grammatica context-free.

Costruzione più precisa:

- 1. **Analisi di B:** Per ogni stringa $w \in B$, definiamo il suo "profilo" prof(w) = ($\#_0(w)$, $\#_1(w)$)
- 2. Insieme dei profili: $P = \{prof(w) \mid w \in B\}$
- 3. **Grammatica per SCRAMBLE(B):**
 - Per ogni $(n_0, n_1) \in P$, aggiungiamo regole per generare tutte le permutazioni con n_0 zeri e n_1 uni

Costruzione con PDA:

Costruiamo una PDA P che riconosce SCRAMBLE(B):

Descrizione implementativa:

P = "Su input t:

- 1. Non-deterministicamente indovina w ∈ B tale che t sia permutazione di w
- 2. Fase di conteggio:
 - Simula un DFA per B su w (memorizzando w)
 - Conta 0 e 1 in w: ottieni (n₀, n₁)
- 3. Fase di verifica:
 - Leggi t carattere per carattere
 - Mantieni contatori per 0 e 1 in t
 - Alla fine verifica che i contatori siano (n₀, n₁)
- 4. Accetta se B accetta w e i contatori coincidono"

Implementazione con Stack:

Più precisamente, usiamo una grammatica context-free:

Costruzione sistematica:

Per ogni stato q di un DFA per B e per ogni coppia (i, j):

- Variabile A[q,i,j] genera stringhe che portano il DFA in q con i zeri e j uni rimanenti da distribuire

Regole:

- A[q,i,j] → 0 A[δ(q,0), i-1, j] se i > 0
- A[q,i,j] → 1 A[δ(q,1), i, j-1] se j > 0
- A[q,0,0] → ϵ se q è finale

Simbolo iniziale: $S \rightarrow A[q_0, n_0, n_1]$ per ogni $(n_0, n_1) \in P$

Dove P è calcolabile poiché B è regolare.

Quindi SCRAMBLE(B) è context-free. ■

SECONDA PARTE

Esercizio 1 (12 punti) - Macchina di Turing con "copia e incolla" (CPTM)

(a) Definizione formale della funzione di transizione di una CPTM

Una **CPTM** è una macchina di Turing deterministica che può copiare porzioni di nastro.

Definizione formale:

Una CPTM è una 7-tupla M = $(Q, \Sigma, \Gamma, \delta, q_0, q_a ccept, q_r eject)$ dove la funzione di transizione è estesa:

δ: Q × Γ → Q × Γ × {L, R, SELECT_START, SELECT_END, COPY}

Semantica operazionale:

- Configurazione: (q, w, i, start, end) dove start, end sono posizioni selezionate (o Ø)
- **SELECT_START**: start ← i
- **SELECT_END**: end \leftarrow i
- COPY: se start, end sono definiti e start ≤ end, copia w[start:end] dalla posizione i, sovrascrivendo; altrimenti nessun effetto

(b) Dimostrazione di equivalenza con TM standard

Teorema: Le CPTM riconoscono esattamente i linguaggi Turing-riconoscibili.

Dimostrazione analoga a SRTM:

- (⊆) Data CPTM M, costruiamo TM N che simula M mantenendo traccia delle posizioni start/end e implementando COPY con operazioni standard.
- (⊇) Data TM M, costruiamo CPTM N che ignora le operazioni speciali e simula M direttamente.

Esercizio 2 (12 punti) - Linguaggio quasi-palindromo

(a) Formulazione come QPALTM

Definizione:

```
QPALTM = {\langle M \rangle | M \text{ è una TM e L(M) è quasi-palindromo}}
```

dove B è quasi-palindromo se contiene al più una stringa non palindroma.

(b) Indecidibilità di QPALTM

Dimostrazione per riduzione da ATM:

Costruiamo il decisore S per ATM:

```
S = "Su input (M, w):

1. Costruisci M':

M' = "Su input x:

a) Se x = 0 o x = 1: accetta

b) Se x = 01: simula M su w

- Se M accetta: accetta

- Altrimenti: rifiuta

c) Se x = 10: accetta

d) Altrimenti: rifiuta"

2. Esegui R su (M')

3. Se R accetta: accetta

4. Se R rifiuta: rifiuta"
```

Analisi:

- Se M accetta w: L(M') = {0, 1, 01, 10} (al più una stringa non-palindroma: 01)
- Se M non accetta w: L(M') = {0, 1, 10} (tutte palindrome)

Quindi S decide ATM, contraddicendo l'indecidibilità.

Esercizio 3 (12 punti) - Problema COMMITTEE

(a) COMMITTEE ∈ NP

Verificatore:

```
V = "Su input (\langle D_1,...,D_m,I \rangle, C \rangle:
```

- 1. Verifica $|C \cap D_i| = 1$ per ogni i
- 2. Verifica che non esistano $(d_1,d_2) \in I$ con $d_1,d_2 \in C$
- 3. Accetta se entrambe valgono"

(b) COMMITTEE è NP-hard

Riduzione da 3SAT:

Data formula $\varphi = C_1 \wedge ... \wedge C_m$, costruiamo:

Dipartimenti:

- Per ogni variabile x_i : dipartimento $D_i = \{x_i, \neg x_i\}$
- Per ogni clausola C_j : dipartimento $D'_j = \{c_{j,1}, c_{j,2}, ..., c_{j,k}\}$ (gadget di scelta)

Inimicizie:

- $(x_i, \neg x_i) \in I$ per ogni variabile
- Collegamenti tra gadget clausola e variabili per forzare soddisfacimento

La riduzione preserva soddisfacibilità ⇔ esistenza commissione. ■