Lecture 02: [Rabiner] Chapter 2 Fundamentals of Digital Signal Processing

DEEE725 음성신호처리실습

Speech Signal Processing Lab

Instructor: 장길진

What is DSP?

Digital

Method to represent a quantity, a phenomenon or an event

Signal

- something (e.g., a sound, gesture, or object) that carries information
- a detectable physical quantity (e.g., a voltage, current, or magnetic field strength) by which messages or information can be transmitted

Processing

- What kind of processing do we need and encounter almost everyday?
- Related to Computing

Common Forms of Computing

Text processing

- handling of text, tables, basic arithmetic and logic operations (i.e., calculator functions)
- word processing, language processing, spreadsheet processing, presentation processing

Signal Processing

- a more general form of information processing, including handling of speech, audio, image, video, etc.
- Filtering/spectral analysis
- Analysis, recognition, synthesis and coding of real world signals
- Detection and estimation of signals in the presence of noise or interference

Advantages of Digital Representations

- Permanence and robustness of signal representations;
 zero-distortion reproduction may be achievable
- Advanced IC technology works well for digital systems
- Virtually infinite flexibility with digital systems
 - Multi-functionality
 - Multi-input/multi-output
- Indispensable in telecommunications which is virtually all digital at the present time

Digital Processing of Analog Signals

- A-to-D conversion: bandwidth control, sampling and quantization
- Computational processing: implemented on computers or ASICs with finite-precision arithmetic
 - basic numerical processing: add, subtract, multiply (scaling, amplification, attenuation), mute, etc.
 - algorithmic numerical processing: convolution or linear filtering, nonlinear filtering (e.g., median filtering), difference equations, DFT, inverse filtering, MAX/MIN, etc.
- D-to-A conversion: re-quantification and filtering (or interpolation) for reconstruction

Discrete-Time Signals

- A sequence of numbers
- Mathematical representation;

$$x = \{x[n]\}, -\infty < n < \infty$$

- Sampled from an analog signal, x(t), at time t=nT; $x[n] = x(nT), -\infty < n < \infty$
- T is called the **sampling period**, and its reciprocal, $F_s = 1/T$, is called the **sampling frequency**

$$F_s = 8 \text{ kHz} \leftrightarrow T = 1/8000 = 125 \text{ µsec}$$

 $F_s = 10 \text{ kHz} \leftrightarrow T = 1/10000 = 100 \text{ µsec}$
 $F_s = 16 \text{ kHz} \leftrightarrow T = 1/16000 = 62.5 \text{ µsec}$
 $F_s = 44.1 \text{ kHz} \leftrightarrow T = 1/44100 = 22.676 \text{ µsec}$

Speech Waveform Display & Varying Sample Rates

Quantization

- Transforming a continuously-valued input into a representation that assumes one out of a finite set of values
- The finite set of output values is indexed; e.g., the value 1.8 has an index of 6, or (110)₂ in binary representation
- Storage or transmission uses binary representation; a quantization (mapping) table is needed

A 3-bit uniform quantizer

Discrete Signal Representations

Issues with Discrete Signals

- which <u>sampling rate</u> is appropriate
 - 6.4 kHz (telephone bandwidth)
 - 8 kHz (extended telephone bandwidth)
 - 11 kHz (extended bandwidth)
 - 16 kHz (hi-fi speech)
 - 44.1 kHz (hi-fi audio)
- how many <u>quantization levels</u> are necessary at each bit rate (bits/sample)
 - 16, 12, 8, etc. → ultimately determines the speech-to-noise ratio (SNR) of the speech
 - speech coding is concerned with answering this question in an optimal manner

The Sampling Theorem

Sampled 1000 Hz and 7000 Hz Cosine Waves; $F_s = 8000 \text{ Hz}$

 A bandlimited signal can be reconstructed exactly from samples taken with sampling frequency

$$\frac{1}{T} = F_s \ge 2f_{\text{max}}$$
 or $\frac{2\pi}{T} = W_s \ge 2W_{\text{max}}$

The Sampling Theorem

• If a signal $x_a(t)$ has a bandlimited Fourier transform $X_a(j\Omega)$ such that $X_a(j\Omega)=0$ for $\Omega \ge 2\pi F_N$, then $x_a(t)$ can be uniquely reconstructed from equally spaced samples $x_a(nT)$, $-\infty < n < \infty$, if $1/T \ge 2F_N$ ($F_S \ge 2F_N$) (A-D or C/D converter)

 $x_a(nT) = x_a(t) u_T(nT)$, where $u_T(nT)$ is a periodic pulse train of period T, with periodic spectrum of period $2\pi/T$

116

Sampling Theorem Interpretation

To avoid aliasing need:

$$2\pi/T - \Omega_N > \Omega_N$$

$$\Rightarrow 2\pi/T > 2\Omega_N$$

$$\Rightarrow F_s = 1/T > 2F_N$$

case where $1/T < 2F_N$, aliasing occurs

Nyquist's Sampling Rates

- F_N = Nyquist frequency (highest frequency with significant spectral level in signal)
- must sample at least twice the Nyquist frequency to prevent aliasing (frequency overlap)
 - telephone speech (300-3200 Hz) $\rightarrow F_s$ =8000 Hz
 - wideband speech (100-7200 Hz) → F_S =16000 Hz
 - audio signal (50-21000 Hz) $\rightarrow F_S$ =44100 Hz
 - AM broadcast (100-7500 Hz) \rightarrow F_S =16000 Hz
- can always sample at rates higher than twice the Nyquist frequency (but that is wasteful of processing)

Decimation

- Reducing sampling rate of already sampled signal by factor of $M \ge 2$
- Computing new signal $x_d[n]$ with sampling rate $F_s' = 1/T' = 1/(MT) = F_s/M$ such that $x_d[n] = x_a(nT')$ with no aliasing
- one solution is to downsample $x[n] = x_a(nT)$ by retaining one out of every M samples of x[n], giving $x_d[n] = x[nM]$

Decimation

- need to ensure that the highest frequency in is no greater than $F_s/(2M)$
- thus we need to filter x[n] using an ideal lowpass filter
- using the appropriate lowpass filter, we can downsample the resulting lowpass-filtered signal by a factor of M without aliasing

Interpolation

- assume we have $x[n] = x_a(nT)$ with no aliasing and we wish to increase the sampling rate by the integer factor of L
- we need to compute a new sequence of samples of $x_a(t)$ with period T''=T/L, i.e.,

$$x_i[n] = x_o(nT'') = x_o(nT/L)$$

- need to fill in the unknown samples by an interpolation process
 - Linear interpolation, sinusoidal interpolation, pulse train, etc.
- Low-pass filtering is necessary!!

Interpolation

- Original signal, x[n], at sampling period T, is first upsampled to give signal with sampling period T'' = T/L
- lowpass filter removes images of original spectrum giving:

$$x_i[n] = h_i[n] * x_a(nT'') = h_i[n] * x_a(nT/L)$$

Sampling Rate Conversion by Non-Integer Factors

- $T'=MT/L \rightarrow$ convert rate by factor of M/L
- need to interpolate by L, then decimate by M (why can't it be done in the reverse order?)
- for large values of *L*, or *M*, or both, can implement in stages, i.e., *L*=1024, use *L*1=32 followed by *L*2=32

DEEE725 음성신호처리실습, 장길진 Time domain representation, LTI system, convolution

CHAPTER 2. FUNDAMENTALS OF DIGITAL SIGNAL PROCESSING, PART 2

Discrete-Time Sequences

- x[n] denotes the "sequence value at 'time' n"
- Sources of sequences:
 - Sampling a continuous-time signal $x[n] = x_c(nT) = x_c(t)|_{t=nT}$
 - Mathematical formulas generative system
 e.g., x[n] = 0.3 x[n-1] -1; x[0] = 40

Impulse Representation of Sequences

Some Useful Sequences

unit sample
$$\delta[n] = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$
 real exponential

real

$$x[n] = \alpha^n$$

$$u[n] = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

sine wave
$$x[n] = A\cos(\omega_0 n + \phi)$$

Variants on Discrete-Time Step Function

Complex Signal

Complex Signal

$$x[n] = (\alpha + j\beta)^n u[n] = (re^{j\theta})^n u[n]$$

$$r = \sqrt{\alpha^2 + \beta^2}$$

$$\theta = \tan^{-1}(\beta / \alpha)$$

$$x[n] = r^n e^{j\theta n} u[n]$$

 r^n is a dying exponential
 $e^{j\theta n}$ is a linear phase term

Complex DT Sinusoid

$$x[n] = Ae^{j\omega n}$$

- Frequency ω is in radians (per sample), or just radians
 - not radians per second because "time" index n is dimensionless
 - once sampled, x[n] is a sequence that relates to time only through the sampling period T
- Important property: periodic in ω with period 2π :

$$Ae^{j\omega_0 n} = Ae^{j(\omega_0 + 2\pi r)n}$$

- Only unique frequencies are 0 to 2π (or – π to + π)
- Same applies to real sinusoids

Periodic DT Signals

- A signal is periodic with period N if x[n] = x[n+N] for all n
- For the complex exponential this condition becomes

$$Ae^{j\omega_0 n} = Ae^{j(\omega_0 + \omega_0 N)n}$$

- which requires $\omega_0 N = 2\pi k$ for some integer k
- Thus, not all DT sinusoids are periodic!
- Consequence: there are N distinguishable frequencies with period N

$$- e.g., \omega_0 = 2\pi k/N, k = 0, 1, ..., N-1$$

Signal Processing

Transform digital signal into more desirable form

Fig. 2.3 Block diagram representations of: (a) single input/single output system; (b) single input/multiple output system.

single input—single output single input—multiple output,
e.g., filter bank analysis,
sinusoidal sum analysis, etc.

LTI Discrete-Time Systems

Linearity (superposition):

$$T\{ax_1[n] + bx_2[n]\} = aT\{x_1[n]\} + bT\{x_2[n]\}$$

Time-Invariance (shift-invariance):

$$x_1[n] = x[n-n_d] \implies y_1[n] = y[n-n_d]$$

LTI implies discrete convolution:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] = x[n] * h[n] = h[n] * x[n]$$

LTI Discrete-Time Systems

Example:

```
Is system y[n] = x[n] + 2x[n+1] + 3 linear?
         x_1[n] \leftrightarrow y_1[n] = x_1[n] + 2x_1[n+1] + 3
         x_2[n] \leftrightarrow y_2[n] = x_2[n] + 2x_2[n+1] + 3
         x_1[n] + x_2[n] \leftrightarrow y_3[n] = x_1[n] + x_2[n] + 2x_1[n+1] + 2x_2[n+1] + 3
         \neq y_1[n] + y_2[n] \Rightarrow \text{Not a linear system!}
Is system y[n] = x[n] + 2x[n+1] + 3 time/shift invariant?
      y[n] = x[n] + 2x[n+1] + 3
      y[n-n_0] = x[n-n_0] + 2x[n-n_0+1] + 3 \Rightarrow System is time invariant!
Is system y[n] = x[n] + 2x[n + 1] + 3 causal?
      y[n] depends on x[n+1], a sample in the future
  ⇒ System is not causal!
```

$$x[n] = \begin{cases} 1 & 0 \le n \le 3 \\ 0 & \text{otherwise} \end{cases} \quad h[n] = \begin{cases} 1 & 0 \le n \le 3 \\ 0 & \text{otherwise} \end{cases}$$

What is y[n] for this system?

1 x[n],h[n] 1 1 2 3 4 5

Solution:

$$y[n] = x[n] * h[n] = \sum_{m=-\infty}^{\infty} h[m] x[n-m]$$

$$\sum_{m=-\infty}^{n} 1 \cdot 1 = (n+1) \qquad 0 \le n \le 3$$

$$= \begin{cases}
\sum_{m=0}^{n} 1 \cdot 1 = (n+1) & 4 \le n \le 6 \\
0 & n \le 0, n \ge 7
\end{cases}$$

The impulse response of an LTI system is of the form:

$$h[n] = a^n \ u[n] \qquad |a| < 1$$

and the input to the system is of the form:

$$x[n] = b^n \ u[n]$$
 | $b < 1, b \ne a$

Determine the output of the system using the formula for discrete convolution.

SOLUTION:

$$y[n] = \sum_{m=-\infty}^{\infty} a^m u[m] b^{n-m} u[n-m]$$

$$= b^n \sum_{m=0}^{n} a^m b^{-m} u[n] = b^n \sum_{m=0}^{n} (a/b)^m u[n]$$

$$= b^n \left[\frac{1 - (a/b)^{n+1}}{1 - (a/b)} \right] = \left[\frac{b^{n+1} - a^{n+1}}{b - a} \right] u[n]$$

Consider a digital system with input x[n] = 1 for n = 0,1,2,3 and 0 everywhere else, and with impulse response $h[n] = a^n u[n]$, |a| < 1. Determine the response y[n] of this linear system.

SOLUTION:

We recognize that x[n] can be written as the difference between two step functions, i.e., x[n] = u[n] - u[n-4]. Hence we can solve for y[n] as the difference between the output of the linear system with a step input and the output of the linear system with a delayed step input. Thus we solve for the response to a unit step as:

$$y_1[n] = \sum_{m=-\infty}^{\infty} u[m] a^{n-m} u[n-m] = \left[\frac{a^n - a^{-1}}{1 - a^{-1}} \right] u[n]$$
$$y[n] = y_1[n] - y_1[n-4]$$

Linear Time-Invariant Systems

- easiest to <u>understand</u>
- easiest to <u>manipulate</u>
- <u>powerful</u> processing capabilities
- <u>characterized completely</u> by their response to unit sample, h(n), via <u>convolution relationship</u>

- basis for <u>linear filtering</u>
- used as <u>models for speech production</u> (source convolved with system)

Equivalent LTI Systems

More Complex Filter Interconnections

$$y[n] = x[n] * h_c[n]$$

 $h_c[n] = h_1[n] * (h_2[n] + h_3[n]) + h_4[n]$

Example 1. Identity Transform

The identity system is defined by

$$T: y[n] = x[n], -\infty < n < \infty$$

• Find h[n] that describes the system T, such that

$$-y[n] = h[n] * x[n], -\infty < n < \infty$$

$$h[n] = \delta[n]$$

$$= u[n] - u[n-1]$$

Example 2. Ideal Delay System

The ideal delay system is defined by

$$T: y[n] = x[n - n_d], -\infty < n < \infty$$

• Find h[n] that describes the system T, such that

$$-y[n] = h[n] * x[n], -\infty < n < \infty$$

$$h[n] = \begin{cases} 1 & n = n_d \\ 0 & otherwise \end{cases}$$
$$= \delta[n - n_d]$$

Example 3. Moving Average

$$y = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} x[n-k]$$

$$= \frac{1}{M_1 + M_2 + 1} \{x[n+M_1] + \dots + x[n-M_2]\}$$

$$= h[n] * x[n]$$

$$h[n] = \frac{1}{M_1 + M_2 + 1} \sum_{k=-M_1}^{M_2} \delta[n - k]$$

Example 4. Accumulator

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]$$
$$= h[n] * x[n]$$

$$h[n] = \sum_{k=-\infty}^{n} \delta[k]$$

$$= \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

$$= u[n]$$

- How to obtain the impulse response of the system → replace x[n] with unit impulse δ[n], then the output y[n] becomes h[n]
- So, h[n] is called <u>impulse response</u> <u>function</u> of a system

Example 5. Difference Functions

forward difference system

T:
$$y[n] = x[n + 1] - x[n]$$

IRF: $h[n] = \delta[n + 1] - \delta[n]$

backward difference system

$$T: y[n] = x[n] - x[n-1]$$

IRF:
$$h[n] = \delta[n] - \delta[n-1]$$

Example 6. Compressor

$$y[n] = x[Mn], -\infty < n < \infty$$

$$x_1[n] = x[n - n_0]$$

$$y_1[n] = x_1[Mn]$$

$$= x[Mn - n_0]$$

- Also called decimator or down-sampler
- Is this LTI?
- No, except when M=1

$$y[n-n_0] = x[M(n-n_0)]$$

$$\neq y_1[n]$$

Other Characteristics

Causality

 the impulse response is causal only if it depends on the past sequence of the input

Stability

- an LTI system is stable only if its impulse response is absolutely summable
- also called finiteduration impulse response (FIR) system

$$S = \sum_{k=-\infty}^{\infty} |h[k]| < \infty$$

DSP Reference

 Discrete-Time Signal Processing (now 3rd Edition); Alan V. Oppenheim and Ronald W. Schafer; Prentice Hall; 2009

DEEE725 음성신호처리실습, 장길진 z-transform, Fourier transform

CHAPTER 2. FUNDAMENTALS OF DIGITAL SIGNAL PROCESSING, PART 3

z-Transform Representations

- Definition: infinite power series in z^{-1} , with x[n] as coefficients of term in z^{-n}
 - -z is a complex variable
- X(z) is finite and converges only for certin values of z:
 - sufficient condition for convergence
 - region of convergence:

$$x[n] \leftrightarrow X(z)$$
 $X(z) = \sum_{n=-\infty}^{\infty} x[n]z^{-n}$
 $x[n] = \frac{1}{2\pi j} \oint_C X(z)z^{n-1}dz$

$$\sum_{\substack{n=-\infty\\R_1<|z|< R_2}}^{\infty} |x[n]| |z^{-n}| < \infty$$

Examples of Convergence Regions

1.
$$x[n] = \delta[n - n_0]$$
 - delayed impulse $X(z) = z^{-n_0}$ - converges for $|z| > 1, n_0 > 0; \ |z| < 1, n_0 < 0; \ \forall z < \infty, n_0 < 0;$

2.
$$x[n] = u[n] - u[n - N] - box pulse$$

$$X(z) = \sum_{n=0}^{N-1} (1)z^{-n} = \frac{1-z^{-N}}{1-z^{-1}} - \text{converges for } 0 < |z| < \infty$$

– all finite length sequences converge in the region $0 < |z| < \infty$

3.
$$x[n] = a^n u[n] (a < 1)$$

3.
$$x[n] = a^n u[n] (a < 1)$$

 $X(z) = \sum_{n=0}^{\infty} a^n z^{-n} = \frac{1}{1 - az^{-1}} - \text{converges for } |z| > |a|$

- all infinite duration sequences which are non-zero for $n \geq 0$ converge in a region $|z| > R_1$

Examples of Convergence Regions

4.
$$x[n] = -b^n u[-n-1]$$
 $X(z) = \sum_{n=-\infty}^{-1} -b^n z^{-n} = \frac{1}{1-bz^{-1}} - \text{converges for } |z| < |b|$
 $- \text{ all infinite duration sequences which are non-zero for } n < 0$
 $\text{converge in a region } |z| < R_2$

- 5. x[n] non-zero for $-\infty < n < \infty$ viewed as a combination of 3 and 4 \Rightarrow giving a convergence region $R_1 < |z| < R_2$ - sub-sequence for $n \ge 0 \to |z| > R_1$ - sub-sequence for $n < 0 \to |z| < R_2$
- total sequence $\rightarrow R_1 < |z| < R_2$

Some z-Transforms

Property	Sequence	z-Transform
Linearity	$ax_1[n] + bx_2[n]$	$aX_1(z) + bX_2(z)$
Shift	$x[n+n_0]$	$z^{n_0}X(z)$
Exponential	$a^nx[n]$	$X(a^{-1}z)$
Linear Weighting	nx[n]	$-z\frac{dX(z)}{dz}$
Time reversal	x[-n]	$X(z^{\overset{\omega}{-1}})$
Convolution	x[n]*h[n]	X(z)H(z)
Multiplication	x[n]w[n]	$\frac{1}{2\pi j} \oint_{\mathcal{O}} X(v) W(\frac{z}{v}) v^{-1} dv$

^{*1:} non-causal, need $x[N_0-n]$ to be causal for finite length sequence

^{*2:} circular convolution in the frequency domain

Discrete-Time Fourier Transform

The discrete-time Fourier transform (DTFT) is defined by an evaluation of X(z) on the unit circle in the z-plane

$$\begin{array}{l} X(e^{j\omega}) = X(z)|_{z=e^{j\omega}} = \sum_{n=-\infty}^{\infty} x[n]e^{j\omega n} \\ \Leftrightarrow x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega})e^{j\omega n}d\omega \end{array}$$

$$z = e^{j\omega} \Leftrightarrow |z| = 1, \arg(z) = j\omega$$

sufficient condition for existence of Fourier transform:

$$\sum n = -\infty^{\infty} |x[n]| |z^{-n}| = \sum n = -\infty^{\infty} |x[n]| < \infty, :: |z| = 1$$

Properties – periodic; period of 2π corresponds to once around unit circle in the z-plane

$$X(e^{j\omega}) = X(e^{j(\omega + 2\pi n)})$$

Simple DTFTs

Impulse
$$X[n] = \delta[n], \qquad X(e^{j\omega}) = 1$$

Delayed impulse $X[n] = \delta[n - n_0], \quad X(e^{j\omega}) = e^{-j\omega n_0}$

Step function $X[n] = u[n], \qquad X(e^{j\omega}) = \frac{1}{1 - e^{-j\omega}}$

Rectangular window $X[n] = u[n] - u[n - N], \quad X(e^{j\omega}) = \frac{1 - e^{-j\omega N}}{1 - e^{-j\omega}}$

Exponential $X[n] = a^n \quad u[n], \qquad X(e^{j\omega}) = \frac{1}{1 - ae^{-j\omega}}, \quad a < 1$

Backward exponential $X[n] = -b^n \quad u[-n-1], \quad X(e^{j\omega}) = \frac{1}{1 - be^{-j\omega}}, \quad b > 1$

DTFT of a Cosine Signal

$$x[n] = cos(\omega_0 n), -\infty < n < \infty$$
 $X(e^{j\omega}) = \sum_{k=-\infty}^{\infty} \left[\pi\delta \left(\omega - \omega_0 + 2\pi k\right) + \pi\delta \left(\omega + \omega_0 + 2\pi k\right)\right]$

Within interval $-\pi < \omega < \pi$, $X(e^{j\omega})$ is comprised of a pair of impulses at $\pm \omega_0$

DFT – discrete Fourier transform

Discrete Fourier Transform

 consider a periodic signal with period N (samples), such that

$$-x[n]=x[n+N], -\infty < n < \infty$$

x[n] can be represented exactly by a discrete sum of sinusoids – exact representation of the discrete periodic sequence

-x[n]: N sequence values

- X[k]: N DFT coefficients

$$ilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j\frac{2\pi kn}{N}}$$
 $ilde{x}[n] = \frac{1}{N} \sum_{k=0}^{N-1} \tilde{X}[k]e^{-j\frac{2\pi kn}{N}}$

DFT can be viewed as computing correlation of input signal with sinusoids (sin and cosine functions)

Sampling the DTFT

$$k = 0; e^{-j2\pi k/8} = 1$$

$$k = 1; e^{-j2\pi k/8} = \frac{\sqrt{2}}{2}(1-j)$$

$$k = 2; e^{-j2\pi k/8} = -j$$

$$k = 3; e^{-j2\pi k/8} = \frac{\sqrt{2}}{2}(-1-j)$$

$$k = 4; e^{-j2\pi k/8} = -1$$

$$k = 5; e^{-j2\pi k/8} = \frac{\sqrt{2}}{2}(-1+j)$$

$$k = 6; e^{-j2\pi k/8} = j$$

$$k = 7; e^{-j2\pi k/8} = \frac{\sqrt{2}}{2}(1+j)$$

 $X(e^{j\omega})$ is evaluated (<u>sampled</u>) at N equally spaced normalized frequencies $\omega_k=(\frac{2\pi k}{N})$, for k=0,1,...,N-1

DFT Examples

DFT Properties

- The DFT, X[k], can be viewed as a sampled version of the DTFT of a finite-length sequence
- The DFT has properties very similar to many of the useful ones of z-transform and DTFT
- The N values of X[k] can be computed very efficiently, in $O(N \log N)$, by a set of computational algorithms known as the *fast Fourier transform* (FFT)

Property	Sequence	N-point DFT	
Linearity	$ax_1[n] + bx_2[n]$	$aX_1[k] + bX_2[k]$	
Shift	$x[((n-n_0))_N]$	$e^{-j\frac{2\pi k}{N}n_0}X[k]$	
Modulation	$x[n]e^{j\frac{2\pi k_0}{N}n}$	$X[((k-k_0))_N]$	
Time reversal	$x[((-n))_N]$	$X[((-k))_N] = X^*[k]$	
Convolution	$\sum_{m=0}^{N-1} x[m]h[((n-m))_N]$	X[k]H[k]	
Multiplication	x[n]w[n]	$\frac{1}{N} \sum_{r=0}^{N-1} X[r]W[((k-r))_N]$	
Parseval's Theorem	$\sum_{n=0}^{N-1} x[n] ^2 = \frac{1}{N} \sum_{n=0}^{N-1} X[k] ^2$		

DEEE725 음성신호처리실습, 장길진 Digital filters and MATLAB examples

CHAPTER 2. FUNDAMENTALS OF DIGITAL SIGNAL PROCESSING, PART 4

Digital Filters

 digital filter is a discrete-time linear, shift invariant system with input-output relation:

$$y[n] = x[n] * h[n] = \sum_{m=-\infty} x[m]h[n-m]$$

 $Y(z) = X(z) \cdot H(z)$

• H(z) is the system function with $H(e^{j\omega})$ as the complex frequency response

$$H(e^{j\omega})=H_r(e^{j\omega})+jH_i(e^{j\omega})$$
 real, imaginary representation $H(e^{j\omega})=|H(e^{j\omega})|\cdot e^{j\arg H(e^{j\omega})}$ magnitude, phase representation $\log H(e^{j\omega})=\log |H(e^{j\omega})|+j\arg H(e^{j\omega})$ $|H(e^{j\omega})|^2=H_r^2(e^{j\omega})+H_i^2(e^{j\omega})$

Causality and Stability

- causal linear shift-invariant $\rightarrow h[n]=0$ for n<0
- stable system every bounded input produces a bounded output
- a necessary and sufficient condition for stability and for the existence of $H(e^{j\omega})$

$$\sum_{n=-\infty}^{\infty} |h[n]| < \infty$$

Digital Filter Implementation

 input and output satisfy linear difference equation of the form:

$$y[n] - \sum_{k=1}^{N} a_k y[n-k] = \sum_{r=0}^{M} b_r x[n-r]$$

- evaluating z-transforms of both sides gives:
 - a rational function in z^{-1}
 - M zeros, N poles
 - zero makes denominator zero, while pole makes numerator zero

$$Y(z) - \sum_{k=1}^{N} a_k z^{-k} Y(z) = \sum_{r=0}^{M} b_r z^{-r} X(z)$$
$$Y(z) \left(1 - \sum_{k=1}^{N} a_k z^{-k}\right) = X(z) \sum_{r=0}^{M} b_r z^{-r}$$

$$H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{r=0}^{M} b_r z^{-r}}{1 - \sum_{k=1}^{N} a_k z^{-k}}$$

Ideal Filter Responses

FIR Systems

current output sample depends on past input only, i.e., all a_k 's are zero

$$y[n] = \sum_{r=0}^{M} b_r x[n-r] = b_0 x[n] + b_1 x[n-1] + \dots + b_M x[n-M]$$

$$h[n] = \begin{cases} b_n & 0 \le n \le M \\ 0 & otherwise \end{cases}$$

$$H(z) = \sum_{r=0}^{M} b_r z^{-r}$$
 M zeros, no pole

Linear Phase Filter

 An FIR filter h[n] is called <u>linear phase</u> if it satisfies either of the relations

$$h[n] = h[M-n]$$
 : symmetric $\Leftrightarrow A(e^{j\omega}) =$ purely real $h[n] = -h[M-n]$: anti-symmetric $\Leftrightarrow A(e^{j\omega}) =$ purely imaginary

 a function is called linear phase if the phase response (output) of the filter is a linear function of frequency

- symmetric linear phase filters are very common, such as Wiener filters
- an LTI system is **minimum-phase** if the system and its inverse are causal and stable (roots within a unit circle)

FIR Filter Design Methods

- cost of linear phase filter designs
 - any response can ne theoretically approximated to any degree of accuracy
 - it requires longer filters than non-linear phase designs
- FIR filter design methods
 - window approximation
 - analytical, closed form method
 - frequency sampling
 - iterative optimization method
 - Optimal (minimax error) approximation
 - iterative optimization method

Windowing

- The exact frequency response of a system requires infinite sequence
 → practically impossible
- Assume the finite length sequence to be multiplication of a finite window and infinite sequence → the frequency response becomes the convolution of frequency responses of the system and the window

$$H(z) = \sum_{n = -\infty}^{\infty} h[n]$$

$$w[n] = \begin{cases} w_n & 0 \le n \le M \\ 0 & otherwise \end{cases}$$

$$\widetilde{h}[n] = \sum_{n = -\infty}^{\infty} w[n]h[n] = \sum_{n = 0}^{M} w_n h[n]$$

$$\widetilde{H}(z) = W(z) * H(z)$$

→ Design the window so that its frequency response should be as close as an impulse function

Common Windows

1. Rectangular
$$w[n] = \begin{cases} 1 & 0 \le n \le M \\ 0 & otherwise \end{cases}$$

2. Bartlett
$$w[n] = 1 - \frac{2|n-M/2|}{M}$$

3. Blackman
$$w[n] = 0.42 - 0.5 \cos\left(\frac{2\pi n}{M}\right) + 0.08 \cos\left(\frac{4\pi n}{M}\right)$$

4. Hamming
$$w[n] = 0.54 - 0.46 \cos\left(\frac{2\pi n}{M}\right)$$

5. Hanning
$$w[n] = 0.5 - 0.5 \cos\left(\frac{2\pi n}{M}\right)$$

6. Kaiser
$$w[n] = \frac{I_0 \left\{ \beta \sqrt{1 - ((n - M/2)/(M/2))^2} \right\}}{I_0 \left\{ \beta \right\}}$$

Frequency Responses of Common Windows

Window	Mainlobe Width	Side lobe Attenuation
Rectangular	$4\pi/M$	-13 dB
Bartlett	8π/M	-27 dB
Hamming	8π/M	-43 dB
Blackman	12π/M	-58 dB
Hanning	8π/M	-32 dB

Low Pass Filter Examples

MATLAB FIR Design

- 1. Use **firpm** to design FIR filters
 - >> B=firpm(N,F,A)
 - N+1 point linear phase, FIR design
 - B=filter coefficients (numerator polynomial)
 - F=ideal frequency response band edges (in pairs) (normalized to 1.0)
 - A=ideal amplitude response values (in pairs)
- 2. Use **freqz** to convert to frequency response (complex)
 - >> [H,W]=freqz(B,den,NF)
 - H=complex frequency response
 - W=set of radian frequencies at which FR is evaluated (0 to pi)
 - B=numerator polynomial=set of FIR filter coefficients
 - den=denominator polynomial=[1] for FIR filter
 - NF=number of frequencies at which FR is evaluated
- 3. Use plot to evaluate log magnitude response
 - >> plot(W/pi, 20log10(abs(H)))

Lowpass Filter Design

```
N=30;
F=[0\ 0.4\ 0.5\ 1];
A=[1 1 0 0];
B=firpm(N,F,A);
NF=512;
[H,W]=freqz(B,1,NF);
plot(W/pi,20log10(abs(H)));
```


Bandpass Filter Design

```
0.2
% bandpass filter design
N=170;
                                                       Amplitude
F=[0\ 0.18\ .2\ .4\ .42\ 1];
A=[0\ 0\ 1\ 1\ 0\ 0];
                                                          -0.1
B=firpm(N,F,A);
                                                             0
NF=1024;
[H,W]=freqz(B,1,NF);
                                                       Log Magnitude (dB)
figure, orient landscape;
stitle=sprintf('bandpass fir design, N:%d',N);
n=0:N;
subplot(211),plot(n,B,'r','LineWidth',2);
axis tight, grid on, title(stitle);
                                                                 0.1
xlabel('Time in Samples'),ylabel('Amplitude');
legend('Impulse Response');
subplot(212),plot(W/pi,20*log10(abs(H)),'b','LineWidth',2);
axis ([0 1 - 60 0]); grid on;
xlabel('Normalized Frequency');
ylabel('Log Magnitude (dB)');
legend('Frequency Response');
```


0.5

Normalized Frequency

0.6

0.7

0.2

0.3

IIR Systems

general filters, y[n] depends on y[n-1], y[n-2],..., y[n-N] as well as x[n-1], x[n-2],..., x[n-M]

$$y[n] = \sum_{k=0}^{N} a_k y[n-k] + \sum_{r=0}^{M} b_r x[n-r]$$

partial fraction expansion is possible, with $A_0 = 0$ for M<N:

$$H(z) = \frac{\sum_{r=0}^{M} b_r z^{-r}}{1 - \sum_{k=1}^{N} a_k z^{-k}} = A_0 + \sum_{k=1}^{N} \frac{A_k}{1 - d_k z^{-1}}$$

for a causal system, it is shown that

$$h[n] = A_0 \delta[n] + \sum_{k=1}^{N} A_k (d_k)^n u[n]$$

h[n] has infinite duration due to u[n] – infinite impulse response (IIR)

IIR Filter Design

- IIR filter issues:
 - efficient implementations in terms of computations
 - can approximate any desired magnitude response with arbitrarily small error
 - non-linear phase
 time dispersion of waveform
- IIR filter design methods
 - Butterworth designs-maximally flat amplitude
 - Bessel designs-maximally flat group delay
 - Chebyshev designs-equi-ripple in either passband or stopband
 - Elliptic designs-equi-ripple in both passband and stopband

Matlab Elliptic Filter Design

- use ellip to design elliptic filter
 - >> [B,A] =ellip(N,Rp,Rs,Wn)
 - B=numerator polynomial—N+1 coefficients
 - A=denominator polynomial—N+1 coefficients
 - N=order of polynomial for both numerator and denominator
 - Rp=maximum in-band (passband) approximation error (dB)
 - Rs=out-of-band (stopband) ripple (dB)
 - Wp=end of passband (normalized radian frequency)
- use filter to generate impulse response
 - >> y=filter(B,A,x)
 - y=filter impulse response
 - x=filter input (impulse)
- use zplane to generate pole-zero plot
 - >> zplane(B,A)

Matlab Elliptic Lowpass Filter

Normalized Frequency

[b,a]=ellip(6,0.1,40,0.45); [h,w]=freqz(b,a,512); zplane(b,a);

DEEE725 음성신호처리실습, 장길진

END OF CHAPTER 2. FUNDAMENTALS OF DIGITAL SIGNAL PROCESSING