TEST REPORT

Reference No..... WTS16S1267535-1E

FCC ID 2AEHND100

Applicant..... Azpen Shenzhen MingTel Digital Technology CO., LTD.

2nd F, 9th Building, DeTai Industrial Park, Longhua Address.....

District, Shenzhen, China

Shenzhen Mingtel Digital Technology CO.,Ltd Manufacturer

2nd F, 9th Building, DeTai Industrial Park, Longhua Address.....

District, Shenzhen, China

Product Name..... **DOCKALL**

D100, D200, D300 Model No.....

🔼 azpen Brand Name.....

Standards..... FCC CFR47 Part 15 Section 15.247:2016

Date of Receipt sample Dec. 08, 2016

Date of Test Dec. 09, 2016 - Feb. 05, 2017

Date of Issue..... Mar. 30, 2017

Test Result..... **Pass**

Note This report is for Bluetooth function.

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

> Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Zero Zhou / Test Engineer

g / Manager

2 Contents

		Page
1	COVER PAGECONTENTS	
2	REVISION HISTORY	
3		
4	GENERAL INFORMATION	
	4.1 GENERAL DESCRIPTION OF E.U.T	
	4.3 CHANNEL LIST	
	4.4 TEST MODE	
	4.5 TEST FACILITY	
5	EQUIPMENT USED DURING TEST	7
	5.1 EQUIPMENT LIST	
	5.2 MEASUREMENT UNCERTAINTY	
_	5.3 TEST EQUIPMENT CALIBRATION	
6		
7	CONDUCTED EMISSION	
	7.1 E.U.T. OPERATION	
	7.3 MEASUREMENT DESCRIPTION	
	7.4 CONDUCTED EMISSION TEST RESULT	
8	RADIATED SPURIOUS EMISSIONS	13
	8.1 EUT OPERATION	13
	8.2 TEST SETUP	
	8.3 SPECTRUM ANALYZER SETUP	
	8.4 TEST PROCEDURE	
9	BAND EDGE MEASUREMENT	
	9.1 Test Procedure	20
	9.2 TEST RESULT	21
10	BANDWIDTH MEASUREMENT	27
	10.1 Test Procedure	
	10.2 TEST RESULT	
11	MAXIMUM PEAK OUTPUT POWER	
	11.1 TEST PROCEDURE	
	11.2 TEST RESULT	
12	HOPPING CHANNEL SEPARATION	
	12.1 TEST PROCEDURE	
13	NUMBER OF HOPPING FREQUENCY	
13	13.1 TEST PROCEDURE	
	13.2 TEST PROCEDURE	
14	DWELL TIME	
	14.1 Test Procedure	47
	14.2 Test Result	
15	ANTENNA REQUIREMENT	53
16	RF EXPOSURE	54

Reference No.: WTS16S1267535-1E Page 3 of 67

	16.1	REQUIREMENTS	54
	16.2	THE PROCEDURES / LIMIT	
	16.3	MPE CALCULATION METHOD	55
17	PHOT	TOGRAPHS – MODEL D100 TEST SETUP FOR BLUETOOTH	56
	17.1	PHOTOGRAPH – CONDUCTED EMISSION TEST SETUP AT TEST SITE 1#	56
	17.2	PHOTOGRAPH – RADIATION SPURIOUS EMISSION TEST SETUP	56
18	PHO	TOGRAPHS - CONSTRUCTIONAL DETAILS	59
	18.1	Model D100-External Photos	59
	18.2	MODEL D100-INTERNAL PHOTOS	64

Reference No.: WTS16S1267535-1E Page 4 of 67

3 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTS16S1267535-1E	Dec. 08, 2016	Dec. 09, 2016 – Feb. 05, 2017	Mar. 02, 2017	original	N/A	Replaced
WTS16S1267535-1E	Dec. 08, 2016	Dec. 09, 2016 – Feb. 05, 2017	c. 09, 116 – Mar. 30, b. 05, 2017 revision1		Revised Wireless Charging Lowest Frequency	Valid

Reference No.: WTS16S1267535-1E Page 5 of 67

4 **General Information**

4.1 **General Description of E.U.T.**

DOCKALL Product Name:

D100, D200, D300 Model No.:

Only the model name and appearance are different. The D100 Model Description:

is the test sample.

Bluetooth 2402MHz ~ 2480MHz, 79 channels in total Operation Frequency:

Wireless Charging 116.25~205KHz

Bluetooth GFSK, Pi/4DQPSK, 8DPSK Type of Modulation:

Wireless Charging ASK

The lowest Radio Frequency: 116.25 KHz

Bluetooth PCB printed antenna Antenna installation: Wireless Charging Coil antenna

Antenna Gain: Bluetooth 0dBi

4.2 Details of E.U.T.

Input: 12.0V === 2.0A Powered by Power Supply Technical Data:

> Power Supply by ShenZhen Xinspower Technology Co., Ltd (Input: AC 100-240V, 50/60Hz, 0.8A; Model: A241-1202000U)

Output current: 3A Max.

4.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	_

Reference No.: WTS16S1267535-1E Page 6 of 67

4.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests, the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

4.5 Test Facility

The test facility has a test site registered with the following organizations:

IC – Registration No.: 7760A-1

Waltek Services(Shenzhen) Co., Ltd. has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration 7760A-1, October 15, 2015

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

5 Equipment Used during Test

5.1 Equipment List Conducted Emissions Test Site 1#

Item	Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017		
2.	LISN	R&S	ENV216	100115	Sep.12, 2016	Sep.11, 2017		
3.	Cable	Тор	TYPE16(3.5M)	-	Sep.12, 2016	Sep.11, 2017		
Conducted Emissions Test Site 2#								
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12, 2016	Sep.11, 2017		
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017		
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017		
4.	Cable	Laplace	RF300	-	Sep.12, 2016	Sep.11, 2017		
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	1#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date		
1	Spectrum Analyzer	R&S	FSP	100091	Apr.29, 2016	Apr.28, 2017		
2	Amplifier	Agilent	8447D	2944A10178	Apr.29, 2016	Apr.28, 2017		
3	Active Loop Antenna	Beijing Dazhi	ZN30900A	0703	Oct.17, 2016	Oct.16, 2017		
4	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.09, 2016	Apr.08, 2017		
5	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	Sep.12, 2016	Sep.11, 2017		
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09, 2016	Apr.08, 2017		
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13, 2016	Apr.12, 2017		
8	Coaxial Cable (above 1GHz)	Тор	1GHz-18GHz	EW02014-7	Apr.13, 2016	Apr.12, 2017		
3m Ser	mi-anechoic Chamber	for Radiation Emis	sions Test site	2#				
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date		
1	Test Receiver	R&S	ESCI	101296	Apr.13, 2016	Apr.12, 2017		
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09, 2016	Apr.08, 2017		
3	Amplifier	ANRITSU	MH648A	M43381	Apr.13, 2016	Apr.12, 2017		
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13, 2016	Apr.12, 2017		

Last

RF Conducted Testing								
Item	Equipment	Manufacturer Model No. Serial		Serial No.	Last Calibration Date	Calibration Due Date		
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.12, 2016	Sep.11, 2017		
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12, 2016	Sep.11, 2017		
Signal Analyzer 3. (9k~26.5GHz)		Agilent	N9010A	MY50520207	Sep.12, 2016	Sep.11, 2017		

5.2 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
Radiated Spurious Emissions test	± 5.03 dB (Bilog antenna 30M~1000MHz)
Radiated Spurious Effissions test	± 5.47 dB (Horn antenna 1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

5.3 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTS16S1267535-1E Page 9 of 67

6 Test Summary

Test Items	Test Requirement	Result
	15.205(a)	
Radiated Spurious Emissions	15.209	С
	15.247(d)	
Dand adaa	15.247(d)	С
Band edge	15.205(a)	C
Conduct Emission	15.207	С
20dB Bandwidth	15.247(a)(1)	С
Maximum Peak Output Power	15.247(b)(1)	С
Frequency Separation	15.247(a)(1)	С
Number of Hopping Frequency	15.247(a)(1)(iii)	С
Dwell time	15.247(a)(1)(iii)	С
Maximum Permissible Exposure	1 1307/b)/1)	С
(Exposure of Humans to RF Fields)	1.1307(b)(1)	

Reference No.: WTS16S1267535-1E Page 10 of 67

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz & 5MHz $60~dB\mu V$ between 5MHz & 30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 25.5 °C Humidity: 51 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

Live line:

Neutral line:

Reference No.: WTS16S1267535-1E Page 13 of 67

8 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

iiiiit.							
_	Field Stre	ngth	Field Strength Limit at 3m Measurement Dist				
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0° to 360°

Turn Table

Absorbers

PC
System
Analyzer

AMP
Combining
Network

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed IF Bandwidth Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GH	z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTS16S1267535-1E Page 16 of 67

8.4 Test Procedure

1. The EUT is placed on a turntable. For below 1GHz, the EUT is 0.8m above ground plane; For above1GHz, the EUT is 1.5m above ground plane.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the X position. So the data shown was the X position only.

8.5 Summary of Test Results

Test Frequency: 9 KHz to 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz to 18GHz

Remark: only the worst data (GFSK modulation mode) were reported.

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK Low Channel								
281.22	22.32	QP	280	1.5	Н	-13.35	8.97	46.00	-37.03
281.22	20.33	QP	87	1.5	V	-13.35	6.98	46.00	-39.02
4804.00	50.22	PK	318	2.0	V	-1.06	49.16	74.00	-24.84
4804.00	43.22	Ave	318	2.0	V	-1.06	42.16	54.00	-11.84
7206.00	40.21	PK	192	1.2	Н	1.33	41.54	74.00	-32.46
7206.00	35.01	Ave	192	1.2	Н	1.33	36.34	54.00	-17.66
2340.66	45.60	PK	206	1.2	V	-13.19	32.41	74.00	-41.59
2340.66	38.53	Ave	206	1.2	V	-13.19	25.34	54.00	-28.66
2368.30	43.27	PK	139	1.5	Н	-13.14	30.13	74.00	-43.87
2368.30	38.98	Ave	139	1.5	Н	-13.14	25.84	54.00	-28.16
2489.82	44.89	PK	152	1.9	V	-13.08	31.81	74.00	-42.19
2489.82	37.05	Ave	152	1.9	V	-13.08	23.97	54.00	-30.03

Frequency	Receiver Reading	Detector	Turn table Angle	RX Antenna		Corrected	Corrected		
				Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
GFSK Middle Channel									
281.22	37.20	QP	209	1.7	Н	-13.35	23.85	46.00	-22.15
281.22	42.45	QP	244	1.5	V	-13.35	29.10	46.00	-16.90
4882.00	46.20	PK	350	1.1	V	-0.62	45.58	74.00	-28.42
4882.00	42.23	Ave	350	1.1	V	-0.62	41.61	54.00	-12.39
7323.00	38.90	PK	312	1.1	Н	2.21	41.11	74.00	-32.89
7323.00	34.56	Ave	312	1.1	Н	2.21	36.77	54.00	-17.23
2334.36	45.63	PK	92	1.5	V	-13.19	32.44	74.00	-41.56
2334.36	37.64	Ave	92	1.5	V	-13.19	24.45	54.00	-29.55
2352.41	44.61	PK	190	1.7	Н	-13.14	31.47	74.00	-42.53
2352.41	36.28	Ave	190	1.7	Н	-13.14	23.14	54.00	-30.86
2484.52	44.64	PK	176	2.0	V	-13.08	31.56	74.00	-42.44
2484.52	37.66	Ave	176	2.0	V	-13.08	24.58	54.00	-29.42

Frequency	Receiver	Detector	Turn table Angle	RX Antenna		Corrected	Corrected		
	Reading			Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
	GFSK High Channel								
281.22	38.56	QP	326	2.0	Н	-13.35	25.21	46.00	-20.79
281.22	42.56	QP	248	1.6	V	-13.35	29.21	46.00	-16.79
4960.00	43.89	PK	99	1.5	V	-0.24	43.65	74.00	-30.35
4960.00	40.39	Ave	99	1.5	V	-0.24	40.15	54.00	-13.85
7440.00	39.26	PK	336	1.4	Н	2.84	42.10	74.00	-31.90
7440.00	36.23	Ave	336	1.4	Н	2.84	39.07	54.00	-14.93
2326.11	46.67	PK	325	1.3	V	-13.19	33.48	74.00	-40.52
2326.11	38.58	Ave	325	1.3	V	-13.19	25.39	54.00	-28.61
2362.86	44.51	PK	99	1.2	Н	-13.14	31.37	74.00	-42.63
2362.86	36.21	Ave	99	1.2	Н	-13.14	23.07	54.00	-30.93
2488.92	44.40	PK	207	1.5	V	-13.08	31.32	74.00	-42.68
2488.92	37.85	Ave	207	1.5	V	-13.08	24.77	54.00	-29.23

Test Frequency: 18GHz to 25GHz

The measurements were more than 20 dB below the limit and not reported

Reference No.: WTS16S1267535-1E Page 20 of 67

9 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in

the restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section

15.209(a) (see Section 15.205(c)).

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see

§15.205(c)).

Test Mode: Transmitting and Hopping

9.1 Test Procedure

 Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto Detector function = peak, Trace = max hold

9.2 Test Result

Test plots

Reference No.: WTS16S1267535-1E Page 27 of 67

10 Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Mode: Test in fixing operating frequency at low, Middle, high

channel.

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

10.2 Test Result

Modulation	Test Channel	20 dB Bandwidth	99% Bandwidth	
GFSK	Low	1.036MHz	0.898MHz	
GFSK	Middle	1.036MHz	0.898MHz	
GFSK	High	1.036MHz	0.904MHz	
Pi/4 DQPSK	Low	1.311MHz	1.162MHz	
Pi/4 DQPSK	Middle	1.311MHz	1.168MHz	
Pi/4 DQPSK	High	1.311MHz	1.168MHz	
8DPSK	Low	1.287MHz	1.162MHz	
8DPSK	Middle	1.287MHz	1.168MHz	
8DPSK	High	1.287MHz	1.174MHz	

-80 dBm

CF 2.402 GHz

Test plots

Span 3.0 MHz

Reference No.: WTS16S1267535-1E Page 33 of 67

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (b)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz

band: 0.125 watts.

Refer to the result "Number of Hopping Frequency" of this

document. The 0.125watts (20.97 dBm) limit applies.

Test mode: Test in fixing frequency transmitting mode.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW =3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result

	D - 1 -	Pea			
Test Mode	Data Rate	Low Chanel	Middle Chanel	High Chanel	Limit (dBm)
GFSK	1Mbps	0.08	0.40	0.41	20.97
4*π4DQPSK	2Mbps	-0.20	0.51	0.47	20.97
8DPSK	3Mbps	0.24	0.61	0.64	20.97

GFSK High Channel

Pi/4 DQPSK High Channel

8DPSK High Channel

Reference No.: WTS16S1267535-1E Page 39 of 67

12 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 1W.

Test Mode: Test in hopping transmitting operating mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30KHz. VBW = 100KHz , Span = 3MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result

Modulation	Test Channel	Separation (MHz)	Result
GFSK	GFSK Low 1.000		PASS
GFSK	Middle	1.000	PASS
GFSK	High	1.000	PASS
Pi/4 DQPSK	Low	1.006	PASS
Pi/4 DQPSK	Middle	1.000	PASS
Pi/4 DQPSK	High	1.000	PASS
8DPSK	Low	1.000	PASS
8DPSK	Middle	1.000	PASS
8DPSK	High	1.000	PASS

Reference No.: WTS16S1267535-1E Page 45 of 67

13 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 1MHz. VBW = 1MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.483GHz. Sweep=auto;

13.2 Test Result

Test Plots: 79 Channels in total

Reference No.: WTS16S1267535-1E Page 47 of 67

14 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10:2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided

that a minimum of 15 channels are used.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

14.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)		
DH5	1600/79/6*0.4*79*(MkrDelta)/1000		
DH3	1600/79/4*0.4*79*(MkrDelta)/1000		
DH1 1600/79/2*0.4*79*(MkrDelta)/1000			
Remark: Mkr Delta is once pulse time. Only the worst data(DH5)			

Remark: Mkr Delta is once pulse time. Only the worst data(DH5) were show as follow.

Page	48	οf	67
i agc	τ	O.	\circ

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
		Low	2.880	0.307	0.4
GFSK	DH5	middle	2.880	0.307	0.4
		High	2.880	0.307	0.4
	DH5	Low	2.888	0.308	0.4
Pi/4DQPSK		middle	2.888	0.308	0.4
		High	2.888	0.308	0.4
		Low	2.880	0.307	0.4
8DPSK	DH5	middle	2.880	0.307	0.4
		High	2.880	0.307	0.4

8DPSK DH5 High Channel

15 Antenna Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited. This requirement does not apply to carrier current devices or to devices operated under the provisions of §15.211, §15.213, §15.217, §15.219, or §15.221. Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with §15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Result:

The EUT has one PCB Printed Antenna for Bluetooth, the gain is 0 dBi. meets the requirements of FCC 15.203.

Reference No.: WTS16S1267535-1E Page 54 of 67

16 RF Exposure

Test Requirement: FCC Part 1.1307

Evaluation Method: FCC Part 2.1091 & KDB 447498 D01 General RF Exposure Guidance v06

16.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

16.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ² , H ² or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500			F/300	6
1500-100,000			5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm²)	Averaging Time E ², H ² or S (minutes)
0.3-1.34	614	1.63 (100)*		30
1.34-30	824/f	2.19/f	(180/f)*	30
30-300	27.5	0.073	0.2	30
300-1500			F/1500	30
1500-100,000			1.0	30

Note: f = frequency in MHz; *Plane-wave equivalent power density

Reference No.: WTS16S1267535-1E Page 55 of 67

16.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm²)	Limit of Power Density (mW/cm²)	Result
0.00	1.00	0.64	1.16	0.000231	1	Compliance

17 Photographs – Model D100 Test Setup for Bluetooth

17.1 Photograph - Conducted Emission Test Setup at Test Site 1#

17.2 Photograph – Radiation Spurious Emission Test Setup

30MHz to 1GHz at Test Site 2#

Above 1GHz at Test Site 1#

Reference No.: WTS16S1267535-1E Page 58 of 67

18 Photographs - Constructional Details

18.1 Model D100-External Photos

Reference No.: WTS16S1267535-1E Page 60 of 67

Reference No.: WTS16S1267535-1E Page 61 of 67

Reference No.: WTS16S1267535-1E Page 62 of 67

Reference No.: WTS16S1267535-1E Page 63 of 67

18.2 Model D100-Internal Photos

Reference No.: WTS16S1267535-1E Page 65 of 67

Reference No.: WTS16S1267535-1E Page 66 of 67

===== End of Report =====