

CSC-257 Theory Of Computation (BSc CSIT, TU)

Ganesh Khatri kh6ganesh@gmail.com

State Elimination Method to Convert DFA into RE

Step 1: The initial state of the DFA must not have any incoming edge:

 If there exists incoming edges to initial state, create a new initial state having no incoming edge to it as show in figure.

Step 2: There must exist only one final state in the DFA:

 If there exist multiple final states in DFA, convert all final states into non-final states and create a new single final state as shown in figure.

State Elimination Method to Convert DFA into RE

- Step 3: Final state of the DFA must not have any outgoing edge:
 - If there exists any outgoing edge from the final state, then create a new final state having no outgoing edge from it as in figure.

Note: The state elimination method can be applied to any finite automata.
 i.e. DFA, NFA, ∈-NFA

State Elimination Method to Convert DFA into RE

Step 4 :

- Eliminate all the intermediate states one by one.
- These states may be eliminated in any order.
- At the end, only an initial state going to the final state will be left
- The cost of this transition is the required regular expression

- Find regular expression for the following DFA
- Solution :

- Initial state A has an incoming edge.
- So, we create a new initial state q_i and resulting DFA is

Step 2:

- Final state B has an outgoing edge
- So, we create a new final state q_f and resulting DFA is

- Step 3: Now, we start eliminating the intermediate states.
 - First, let us eliminate state A
 - There is a path going from state qi to state B via state A
 - So, after eliminating state A, we put a direct path from state q_i to state B having cost $\in .0 = 0$
 - There is a loop on state B using state A
 - So, after eliminating state A, put a direct loop on state B having cost 1.0 = 10
 - Eliminating state A, we get :

• Step 3:

- Now, let us eliminate state B
- There is a path going from state qi to state q_f via state B
- So, after eliminating state B, put a direct path from state q_i to state q_f having cost 0.(10)*.∈ = 0(10)*
- Eliminating state B, we get:

• So the required RE = **0(10)***

Find regular expression for the following DFA

Solution:

• Step 1:

- There exist multiple final states
- So, we convert them into a single state as

- Step 2: Now, we start eliminating the intermediate states
 - First, let us eliminate state q₄
 - So, after eliminating state q₄:

- Similarly,
- After eliminating state q₃ and q₅:

- Step 2:
 - Now, it can be reconstructed as :

Now, after eliminating state q2:

So, resulting RE = a(b+c+d)

Find regular expression for the following DFA

Find regular expression for the following DFA

Find regular expression for the following DFA

