Matrix Multiplication Section 2.2 (Hartman)

The Matrix product:

Let A be an $m \times r$ matrix and B be an $r \times n$ matrix. The matrix product of A and B, denoted by AB is the $m \times n$ matrix M whose entry in the *i*-th row and *j*-th column is the product of the *i*-th row of A and the *j*-th column of B.

NOTE:

- In order to multiply A and B, the number of columns of A must be the same as the number of rows of B.
- The resulting matrix has the same number of rows as A and columns as B.

Important: In general, $AB \neq BA$.

Example #1: Given
$$A = \begin{pmatrix} 2 & -3 & 0 \\ 3 & 1 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & -1 \\ 2 & 0 \end{pmatrix}$. and $C = \begin{pmatrix} 1 & 0 \\ 1 & -1 \end{pmatrix}$. If possible, find;

(b) BA =
$$\begin{pmatrix} 1 & 0 \\ 1 & -1 \\ 2 & 0 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 & 0 \\ 3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 2 & -3 & 0 \\ -1 & -4 & -5 \\ 4 & -6 & 0 \end{pmatrix}$$
3×2 2×3 3×3

(c) AC = Not possible, columns in A ≠ rows in C
$$\partial$$
. CA = $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$ $\cdot \begin{pmatrix} 2 & -3 & 0 \\ 3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 2 & -3 & 0 \\ -1 & -4 & -5 \end{pmatrix}$

Identity Matrix:

The $n \times n$ square matrix with 1's on the diagonal and zeros else-where is the $n \times n$ identity matrix, and it is denoted by I_n .

e.g.
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
, $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Example #2: Given $A = \begin{pmatrix} 2 & -3 & 0 \\ 3 & 1 & 5 \end{pmatrix}$. Prove AI = IA = A.

$$AI = \begin{pmatrix} 2 & -3 & 0 \\ 3 & 1 & 5 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & -3 & 0 \\ 3 & 1 & 5 \end{pmatrix}$$

$$IA = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 2 & -3 & 0 \\ 3 & 1 & 5 \end{pmatrix} = \begin{pmatrix} 2 & -3 & 0 \\ 3 & 1 & 5 \end{pmatrix}$$

Properties:

Let A, B, C be matrices with dimensions so that the following operations make sense, and let k be a scalar. Then the following equalities hold:

- (AB)C = A(BC)
- $\bullet \ A(B+C) = AB + AC$
- $\bullet \ k(AB) = (kA)B = A(kB)$
- \bullet AI = IA = A

NOTE: For matrices, $A^{-1} \neq \frac{1}{A}$. In fact, $\frac{1}{A}$ makes no sense. We will learn about A^{-1} under inverse matrices.