Learning to simulate complex physics

ICML under review

https://arxiv.org/abs/2002.09405

Task

 https://sites.google .com/view/learningto-simulate

Approach

Setup

- $X^t \in \chi$ is the state of the world at time t
- K timestep trajectory of states $X^{t_{0:K}} = (X^{t_0}, ..., X^{t_K})$
- A simulator, $s: \chi \to \chi$
- A simulated rollout trajectory as $\widetilde{X}^{t_{0:K}} = (\widetilde{X}^{t_0}, ..., \widetilde{X}^{t_K})$
 - Which is computed iteratively by, $\tilde{X}^{t_{k+1}} = s(\tilde{X}^{t_k})$

Input and output representation

- Input state vector
 - Current position (absolute or relative)
 - Sequence of C previous velocities
 - Material properties F (water, sand, rigid, boundary particle, ...)
 - Global properties g (external forces, ...)

$$X_i^{t_k} = [P_i^{t_k}, P_i^{t_{k-C+1}}, ..., P_i^{t_k}, F_i]$$

Input and output representation

- Output
 - For all decoder state vector y_i (per particle)
 - It outputs accelerations \ddot{P}_i
- Update
 - Euler integration
 - Assume $\Delta t = 1$

$$\dot{P}^{t_{k+1}} = \dot{P}^{t_k} + \Delta t \cdot \ddot{P}^{t_k}$$

$$P^{t_{k+1}} = P^{t_k} + \Delta t \cdot \dot{P}^{t_{k+1}}$$

Encoder / Decoder

- Construct the graph structure G_0
 - Connectivity radius R (K-NN from K-d tree)
 - ε^v and ε^e as MLP

Processor

- M stack of Battaglia et al., 2016
 - Interaction Networks for Learning about Objects, Relations and Physics

Loss

- Sample particle state pairs $(X_i^{t_k}, X_i^{t_{k+1}})$ randomly
 - From training trajectories
- Calculated target accelerations $\ddot{P}_i^{t_k}$
 - L_2 loss on the predicted per-particle accelerations

$$L(X_i^{t_k}, X_i^{t_{k+1}}; \theta) = \|d_{\theta}(X_i^{t_k}) - \ddot{P}_i^{t_k}\|^2$$

Tricks

- Training noise
 - To avoid error propagation
- Normalization
 - On input and target vectors
 - Elementwise to zero mean and unit variance
- Stopping criteria
 - Stop training when we observed negligible decrease in MSE
 - Training usually takes a few hours for small dataset
 - Training usually takes up to a week for complex dataset

Results

• Model can generalize the physical processes

Results

Model can generalize the physical processes

Conclusion

- General purpose ML framework for simulating complex systems
- Learned, differentiable simulators

Etc

• NVIDIA DLSS

Questions

- Why we use deep learning on physical simulation?
 - Unified framework? Yes
 - Accuracy? No
 - Speed? No
- Computer vision?
 - Point cloud?
 - Graph neural network?