3. เครื่องตรวจวิเคราะห์ดัชนีหักเหของอัญมณี (Refractometer)

ใช้ในการตรวจวิเคราะห์ดัชนีหักเหของอัญมณี โดยอัญมณีแต่ละชนิดจะมีค่า ดัชนีหักเหเฉพาะ ซึ่งค่าดัชนีหักเห (Refractive Index : RI) ของอัญมณี คือสัดส่วน ระหว่างความเร็วของแสงที่ผ่านเข้าไปในอากาศต่อความเร็วของแสงที่ผ่านเข้าไปในอัญ มณี ดังสมการ

โดยที่ RI = ค่าดัชนีหักเหของอัญมณี

Vอากาศ = ความเร็วของแสงที่ผ่านเข้าไปในอากาศ

Vอัญมณี = ความเร็วของแสงที่ผ่านเข้าไปในอัญมณี

(ศิวาพร สหวัฒน์ <u>อัญมณีศาสตร์</u>. นนทบุรี:โรงพิมพ์ nudear, 2549.)

ค่าดัชนีหักเหของอัญมณีเป็นค่าคงที่ที่นิยมใช้บ่งบอกชนิดของวัตถุ ได้อย่างถูกต้อง และเชื่อถิอได้ ในการอ่านค่าดัชนีหักเหของอัญมณีจะระบุเป็นตัวเลขเชิงปริมาณและ แม่นยำนั้นจะใช้เครื่องมือทางแสงที่เรียกว่า รีแฟรกโตมิเตอร์

รูปที่ 1 รีแฟรกโตมิเตอร์

ส่วนประกอบของ รีแฟรกโตมิเตอร์ ที่สำคัญ ประกอบด้วย

- แท่งแก้วปริซึม รองรับตัวอย่าง (ทำจากแก้วที่มีค่าดัชนีหักเหสูง)
- สเกลบอกค่าดัชนีหักเห อยู่ภายในตัวเครื่อง แต่มองเห็นได้ทางเลนส์ตา
- เลนส์ที่ใช้มองสเกลให้ใหญ่ขึ้น
- แผ่นโพลารอยด์ เป็นตัวทำให้เกิดแสงโพลาไรซ์ สำหรับหาค่าไบรีฟริงเจ้นท์ (Birefringence) ของตัวอย่างที่เป็น DR
 - ช่องรับแสงด้านหลัง

รูปที่ 2 ส่วนประกอบของ รีแฟรกโตมิเตอร์ (Refractometer)

สำหรับแสงที่ใช้กับรีแฟรกโตมิเตอร์ ควรเป็นแสงโมโนโครมาติก (Monochromatic Light) ซึ่งเป็นแสงที่มีความยาวคลื่นเดียว เนื่องจากถ้าใช้แสงสีขาว เป็นแสงแบบโพลิโครมาติก (Polychromatic Light) จำทำให้การอ่านค่าดัชนีหักเหไม่ แน่นอนเพราะจะเกิดเงารบกวนทำให้มองเห็นได้ไม่ชัดเจน แต่แสงโมโนโครมาติกจะไม่ ทำให้เกิดเงาทำให้อ่านค่าได้อย่างชัดเจน โดยแสงที่นิยมใช้เป็นแสงสีเหลือง มีความยาว คลื่นอยู่ที่ 589 นาโนเมตร

วิธีการอ่านค่าดัชนีหักเหของอัญมณี แบ่งเป็น 2 วิธี คือ

1. วิธีการอ่านค่าดัชนีหักเหของอัญมณีหน้าเรียบ

ใช้กับอัญมณีที่ผ่านการเจียระไนแล้วหรืออัญมณีก้อนที่มีการขัดหน้าเรียบและขัด เงามาแล้ว มีขั้นตอนดังนี้

- 1.1 ปิดฝา รีแฟรกโตมิเตอร์ และถอดแว่นขยายออก หยิบตัวอย่างขึ้นมา (เลือกหน้าที่ขัดมันมากที่สุด และกว้างที่สุด มักเป็นหน้า Table) แล้วทำความสะอาดด้วย กระดาษทิชชู หรือผ้าสะอาด
- 1.2 เปิดแหล่งกำเนิดแสง (Monochromatic Light) ให้ส่องผ่านช่องรับแสง ด้านหลัง
- 1.3 หยดน้ำยาหาค่า RI (RI Liquid) ในปริมาณเท่าปลายเข็ม ลงบนแผ่นโลหะ ด้านบนของ Refractometer (เส้นผ่าศูนย์กลาง ประมาณ 0.25 mm.)
- 1.4 วางตัวอย่างโดยใช้หน้าเรียบที่เลือกไว้บนน้ำยา และเลื่อนไปมาเบาๆ เพื่อ เกลี่ยให้น้ำยากระจายออก
- 1.5 เลื่อนตัวอย่าง อย่างเบาที่สุด ไปอยู่กลางแท่งแก้วปริซึม ให้ขนานกับด้าน ยาวของ แท่งแก้วปริซึม
- 1.6 เคลื่อนศีรษะออกจากรีแฟรกโตมิเตอร์ ให้ห่างประมาณ 10-12 นิ้ว มอง ผ่านเลนส์ เพื่อหาภาพขอบของตัวอย่างที่ปรากฎบน scale อาจเลื่อนตัวอย่างไปมาเบาๆ (เลื่อนขึ้น-ลง) ได้จากจุดศูนย์กลางของ แท่งแก้วปริซึม
- 1.7 สังเกตว่าภาพของตัวอย่างเคลื่อนที่ขึ้น-ลงผ่าน scale ขณะชะโงกศีรษะ ขึ้นลง หยุดเมื่อเห็นภาพตัวอย่างอยู่ในตำแหน่ง scale บนสุด (เลขต่ำสุด) ณ จุดนี้จะเห็น ภาพมืดทั้งหมด แล้วค่อยๆเคลื่อนศีรษะลงอย่างช้าๆ โดยจับตามองที่ภาพของตัวอย่าง และ scale จะมีบางตำแหน่งที่ส่วนล่างของภาพสว่างขึ้น แนวขอบที่อยู่ด้านล่างตัดบน scale (ทางตัวเลขมาก) คือค่า RI ของตัวอย่างโดยประมาณ

1.8 ใส่แผ่นโพลารอยด์บน รีแฟรกโตมิเตอร์ จะทำให้เห็นแนวเขตทับอยู่ ประมาณแนว scale 2 ขีด(แต่ละขีดมีค่า 0.01) ให้อ่านค่า RI จาก scale ที่สูงกว่า หรือขอบด้านล่างของแถบสี จะเห็นแนวค่า RI เป็นขอบสีเทาคมชัด ถ้าขอบดังกล่าวอยู่ ระหว่าง scale 2 ขีด ให้ประมาณค่า RI เป็นทศนิยมตำแหน่งที่ 3 (0.001) การอ่านค่า ควรหมุนอัญมณี 360 องศา โดยบันทึกทุก 30 องศา เพื่อหาค่า RI สูงสุดและต่ำสุดแล้ว นำค่าที่ได้มาหาค่า ไบรีฟริงเจ้นท์ (Birefringence)

รูปที่ 3 ตัวอย่างการอ่านค่าดัชนีหักเหของอัญมณีหน้าเรียบ

2. วิธีการอ่านค่าดัชนีหักเหของอัญมณีโดยวิธีสปอต

ใช้กับอัญมณีที่มีการเจียระไนแบบหลังเบี้ย

- 2.1 ถอดเลนส์ตา แล้วเปิดแหล่งกำเนิดแสง
- 2.2 หยดน้ำยาลงบนแผ่นโลหะ แล้ววางพลอยโดยเอาส่วนที่นูนแตะที่น้ำยา แล้วค่อยๆเลื่อนไปที่กึ่งกลางแท่งแก้วปริซึม
- 2.3 มองดูสเกล แล้วเคลื่อนศรีษะขึ้นลงจนเห็นหยดวงรีเปลี่ยนจากมืดเป็น สว่าง
- 2.4 อ่านตำแหน่งโดยให้วงรีมีเงาครึ่งมืดครึ่งสว่าง ตำแหน่งนี้จะเป็นค่าดัชนี หักเหของอัญมณี ค่าที่อ่านได้ 2 ตำแหน่ง

รูปที่ 4 ตัวอย่างการอ่านค่าดัชนีหักเหแบบสปอต

ตาราง แสดงค่าดัชนีหักเหของอัญมณี

อัญมณี	ลักษณะ ทางแสง	ค่าดัชนีหักเห	ค่าไบรีฟริงเจนท์
โอปอล (Opal)	SR	1.40 to 1.46	-
ฟลูออไรท์ (Fluorite)	SR	1.43 to 1.44	-
แก้วสังเคราะห์ (Man-Made)	SR	1.50 to 1.70	-
ควอตซ์ (Quartz)	DR Uni +	1.54 to 1.56	0.009
เบอริล (Beryl)	DR Uni -	1.56 to 1.60	0.003 to 0.010
โทพาซ (Topaz)	Dr Bi +	1.61 to 1.64	0.008 to 0.010
หยกเนฟไฟร์ (Nephrite)	AGG	1.62	
ทั่วมาลื่น (Tourmaline)	DR Uni -	1.62 to 1.64	0.014 to 0.021
เพอริดอท (Peridot)	Dr Bi +/-	1.65 to 1.69	0.036
หยกเจดไดท์ (Jadeite)	AGG	1.66	-
แทนซาไนท์ (Tanzanite)	Dr Bi +	1.69 to 1.70	0.006 to 0.013
สปิเนล (Spinel)	SR	1.71 to 1.74	-
คริสโซเบอริล (Chrysoberyl)	Dr Bi +	1.74 to 1.76	
คอรันดัม (Corundum)	DR Uni -	1.76 to 1.78	0.008 to 0.010

ประโยชน์จากการใช้รีแฟรกโตมิเตอร์ (Refractometer)

- 1. สามารถหาค่าดัชนีหักเห (Refractive Index) ของอัญมณีได้
- 2. สามารถหาค่าไบรีฟริงเจ้นท์ (Birefringent) ได้
- 3. สามารถจำแนกอัญมณีหักเหเดี่ยว (SR) กับอัญมณีหักเหคู่ (DR) ได้
- 4. สามารถจำแนกอัญมณีหักเหคู่เป็นหนึ่งแกน (Uniaxial)กับ สองแกน (Biaxial) ได้
- 5. สามารถหาเครื่องหมายทางแสงของอัญมณีหักเหคู่เป็นหนึ่งแกน (Uniaxial) กับ สอง แกน (Biaxial) ว่าเป็น + หรือ - ได้

ข้อจำกัดในการใช้

- 1. สำหรับอัญมณีที่มีการฝังกับตัวเรือน ควรระมัดระวังในการหาค่าดัชนีหักเหเพราะตัว เรือนจะทำให้แผ่นแก้วเป็นรอยได้
- 2. ควรระมัดระวังในการใช้น้ำยา RI เนื่องจากน้ำยา RI เป็นน้ำยาที่อันตรายควรล้างมือ ทุกครั้งหลังจากใช้เครื่องมือเสร็จ
 - 3. แสงที่ใช้ควรเป็นแสงโมโนโครมาติก เพื่อความชัดเจนในการอ่านค่า