Analysis III

January 24, 2015

Contents

1	We	gintegrale	2		
	1.1	Wege und Kurven, Parametrisierungen, Tangentenvektor	2		
	1.2	Weglänge, Parametrisierung mittels Weglänge	2		
	1.3	Vektorfelder und 1-Formen	3		
	1.4	Wegintegral (Kurvenintegral) einer 1-Form	5		
	1.5	Stammfunktionen, Sätze über deren Existenz	5		
	1.6	Integrabilitätsbedingungen und Lemma von Poincaré	7		
2	Ma	nnigfaltigkeiten	8		
	2.1	(Satz über implizite Funktionen und) Satz von der Umkehrab-			
		bildung	8		
	2.2	Immersion	8		
	2.3	Untermannigfaltigkeit und Charakterisierungen	8		
	2.4	Tangentenvektor, Normalenvektor an Untermannigfaltigkeit .	8		
	2.5	Lagrangemultiplikatoren	8		
3	Mehrfache Integrale 9				
	3.1	Iteriertes Integral und Vertauschung der Reihenfolge	10		
	3.2	Allgemeine Eigenschaften von Integralen	10		
	3.3	Partielle Integration	10		
	3.4	Prinzip von Cavalieri	10		
	3.5	Transformationsformel (genaue Formulierung, Partition der			
		Eins, Beweisidee)	10		
	3.6	Oberflächenintegrale über Funktionen und über Vektorfelder .	10		
	3.7	Konstruktion des Lebesgue-Integrals (Treppenfunktionen, Hüllreil	hen		
		$ \dot{ } _1$ -Halbnorm)	10		
	3.8		10		
	3.9	Klassen Lebesgue-integrierbarer Funktionen	10		

4	Integralsätze		
	4.1	Green und Gaußfür Normalenbereiche	11
	4.2	Differentialformen	11
	4.3	Äußere Ableitung (Spezialfälle: div, rot, grad)	11
	4.4	Integral über Differentialformen	11
	4.5	Pullback	11
	4.6	Allgemeine Formulierung des Satzes von Stokes	11

Wegintegrale

1.1 Wege und Kurven, Parametrisierungen, Tangentenvektor

Definition (Weg). Sei $I \subseteq \mathbb{R}$. Eine stetige Abbildung $\gamma : I \to \mathbb{R}^n$ heißt Weg.

Sei im Folgenden γ stets ein so definierter Weg.

Definition (Regulärer Weg). Ein Weg γ heißt regulär wenn γ stetig differenzierbar ist und $\forall t \in I : \dot{\gamma}(t) \neq 0$.

Definition (Parameter transformation). Seien $I, J \subseteq \mathbb{R}$ Intervalle. Eine zulässige Parameter transformation ist eine stetig differenzierbare Abbildung $\varphi: I \to J$ mit $\dot{\varphi}(t) > 0, \forall t \in I$

Definition (Kurve). Eine orientierte (reguläre) Kurve C ist eine Aquivalenzklasse von (regulären) Wegen, wobei zwei Wege γ_1 und γ_2 genau dann äquivalent sind, wenn es eine zulässige Parametertransformation φ gibt, sodass $\gamma_1 = \gamma_2 \circ \varphi$.

Jeder Repräsentant γ von C heißt eine Parametrisierung von C.

1.2 Weglänge, Parametrisierung mittels Weglänge

Definition (Bogenlänge). Sei γ ein stekweise stetig differenzierbarer Weg, dann heißt

$$L(\gamma) := \int_{a}^{b} ||\dot{\gamma}(t)|| dt$$

die Bogenlänge von γ .

Lemma (Invarianz unter Parametertransformation). Seien γ_1 und γ_2 äquivalent, dann gilt $L(\gamma_1) = L(\gamma_2)$.

Proof. Substitution.

Korollar. Die Länge einer regulären Kurve ist wohldefiniert.

Definition (Parametrisierung nach der Weglänge). Sei $\tilde{\gamma}$ eine Parametrisierung sodass $||\dot{\tilde{\gamma}}(t)|| = 1$. Dann ist $\tilde{\gamma}$ die Parametrisierung nach der Weglänge.

1.3 Vektorfelder und 1-Formen

Im Folgenden sei $U \subseteq \mathbb{R}^n$, $p \in U$ und $f: U \to \mathbb{R}^n$ eine \mathcal{C}^1 Funktion.

Definition (Vektorfeld). Eine Abbildung $v: U \to \mathbb{R}^n$ heißt Vektorfeld auf U.

Definition (Gradientenfeld). Sei U zusätzlich offen, dann nennt man das stetige Vektorfeld $v(p) := \nabla f(p)$ ein Gradientenfeld.

Definition (1-Form). Eine 1-Form auf U ist eine Abbildung $\omega: U \to (\mathbb{R}^n)^*$.

Bemerkung (Spezialfall: Gradient). Unter der Identifikation des Gradienten mit dem Zeilenvektor der partiellen Ableitungen ist $\nabla f: U \to (\mathbb{R}^n)^*$ ist eine 1-Form.¹

Definition (Außeres Differential). Die durch ∇ induzierte 1-Form bezeichnen wir mit df.

weis schreiben evt.

evt. Be-

ode
zur
Ermittlung
nachliefern

Meth-

 $^{{}^{1}\}nabla f(p)$ wäre im eindimensionalen Fall z.B. gerade die Steigung im Punkt p, aber nicht als Zahl, sondern als lineares Funktional (i.e. Multiplikation mit der Steigung).

Bemerkung (Darstellung durch das innere Produkt). Lineare Funktionale kann man stets als inneres Produkt schreiben, also erhalten wir allgemeiner für $h \in \mathbb{R}^n$:

$$\underbrace{df(p)(h)}_{\in (\mathbb{R}^n)^*} = \langle \nabla f(p), h \rangle$$

Definition (Basis). Mit dx_j bezeichnen wir von der j-ten Koordinatenprojektion pr_j^2 induzierte 1-Form.

Bemerkung (Dualität). Sei $\{e_1, \ldots, e_n\}$ die Standardbasis in \mathbb{R}^n , dann gilt $\forall p \in U$:

$$dx_j(p)(e_i) = \langle \nabla p r_j(p), e_i \rangle$$
$$= \langle e_j, e_i \rangle$$
$$= \delta_{ij}$$

Also ist $\{dx_1, \ldots, dx_n\}$ die zu $\{e_1, \ldots, e_n\}$ duale Basis; daraus folgt die folgende Darstellung von df(p):

$$df(p) = \sum_{i=1}^{n} \underbrace{D_{i}f(p)}_{\in \mathbb{R}} \underbrace{dx_{i}(p)}_{\in (\mathbb{R}^{n})^{*}}$$

Proposition (Identifikation von 1-Formen mit Vektorfeldern). Sei U offen. Für jede 1-Form ω existiert genau ein $f = (f_1, \ldots, f_n) : U \to \mathbb{R}^n$ sodass $\forall p \in U$:

$$\omega(p) = \sum_{i=1}^{n} f_i(p) dx_i(p)$$
(1.1)

Außerdem ist $v=(v_1,\ldots,v_n)\mapsto \sum_{i=1}^n v_i dx_i$ ein Isomorphismus (i.e. bijektiv und linear).

Proof. Technischer Beweis.
$$\Box$$

Definition (Stetigkeit und Differenzierbarkeit einer 1-Form). Eine 1-Form ist genau dann stetig/differenzierbar wenn es all ihre Komponentenfunktionen (vgl. (1.1)) sind.

 $²pr_j(x_1,\ldots,x_n)=x_j$

1.4 Wegintegral (Kurvenintegral) einer 1-Form

Definition (Wegintegral von ω über γ).

$$\int_{\gamma} \omega := \int_{a}^{b} \underbrace{\omega(\gamma(t))}_{\in (\mathbb{R}^{n})^{*}} (\dot{\gamma}(t)) dt$$

Bemerkung. Findet man eine Darstellung von ω mit Komponentenfunktionen $(f_1, \ldots, f_n) = f$, so haben wir:

$$\omega(\gamma(t))(\dot{\gamma}(t)) = \sum_{i=1}^{n} f_i(\gamma(t))(\dot{\gamma}(t))_i = \langle f(\gamma(t)), \dot{\gamma}(t) \rangle$$

Lemma (Unabhängigkeit des Wegintegrals von der Parametrisierung). Sei φ eine zuläßige Parametertransformation, dann gilt:

$$\int_{\gamma \circ \varphi} \omega = \int_{\gamma} \omega \tag{1.2}$$

Proof. Substitution.

Definition (Kurvenintegral). Sei γ ein beliebiger Repräsentant der Kurve C, dann definiert man $\int_C \omega := \int_{\gamma} \omega$.

Bemerkung. Wegen (1.2) ist das Kurvenintegral wohldefiniert.

Bemerkung. Mit der Identifikation von 1-Formen und Vektorfeldern (vgl. (1.1), kurz $\tilde{v} = \langle v, dx \rangle$) können wir folgende Definition vornehmen:

Definition (Kurvenintegrale über Vektorfeler).

$$\int_C \tilde{v} = \int_C \langle v, dx \rangle = \int_a^b \langle v(\gamma(t)), \dot{\gamma}(t) \rangle dt$$

1.5 Stammfunktionen, Sätze über deren Existenz

Definition (Stammfunktion einer 1-Form). $F: U \to \mathbb{R}$ ist eine Stammfunktion von ω genau dann wenn $dF = \omega$.

$${}^{3}dF = \sum_{i=1}^{n} \frac{\partial F}{\partial x_{i}} dx_{i}$$

Definition (Exaktheit). Eine 1-Form heißt exakt, wenn sie eine Stammfunktion besitzt.

Bemerkung (Spezialfall: Vektorfelder). v ist ein Gradientenfeld $\Leftrightarrow \tilde{v}$ ist exakt.

Lemma ("Hauptsatz" für 1-Formen). Sei ω eine exakte 1-Form und F eine Stammfunktion von ω . Für *jeden* stückweisen \mathcal{C}^1 Weg $\gamma: [a,b] \to U$ gilt:

$$\int_{\gamma} \omega = \int_{\gamma} dF = F(\gamma(b)) - F(\gamma(a)) \tag{1.3}$$

Proof. Kettenregel.

Korollar (Integration über geschlossene Wege). ω exakt $\Rightarrow \int_{\gamma} \omega = 0$ für alle γ mit $\gamma(a) = \gamma(b)$.

Definition (Gebiet). Ein Gebiet im \mathbb{R}^n ist eine offene und wegzusammenhängende Menge $U \subseteq \mathbb{R}^n$.

Lemma (Stückweise Differenzierbarkeit von Wegen in Gebieten). In einem Gebiet lassen sich je zwei Punkt nicht nur durch einen stetigen Weg, sondern sogar durch einen stückweise stetig differenzierbaren Weg verbinden.

Proof. Idee: Da man in einer offenen Teilmenge ist, kann man einen Weg als endliche Vereinigung linearer (also insbesondere differenzierbarer) Abschnitte mit Abstand echt größer 0 zum Rand konstruieren. \Box

Theorem (Zusammenhang exakt und Integral über geschlossene Wege). Sei $U \subseteq \mathbb{R}^n$ ein Gebiet, ω eine stetige 1-Form auf U und γ ein beliebiger geschlossener, stückweise stetig differenzierbarer Weg in U. Dann gilt:

$$\omega$$
 exakt in $U \Leftrightarrow \int_{\gamma} \omega = 0$

Proof. " \Rightarrow " wurde bereits gezeigt.

"
$$\Leftarrow$$
": Idee: Setze $F(x) = \int_{x_0}^x \omega = \int_{\alpha} \omega \text{ mit } \alpha(0) = x_0, \alpha(1) = x$. Wohldefiniert, denn für jeden⁴ anderen Weg β mit $\beta(0) = x_0, \beta(1) = x$

Wohldefiniert, denn für jeden⁴ anderen Weg β mit $\beta(0) = x_0, \beta(1) = x$ gilt: $\alpha + (-\beta) =: \gamma$ ist ein geschlossener Weg und $0 = \int_{\gamma} \omega = \int_{\alpha} \omega - \int_{\beta} \omega$.

Um zu zeigen, dass das tatsächlich eine Stammfunktion von ω ist, i.e. $dF = \omega$, zeigt man, dass für $\omega = \sum_{i=1}^{n} f_i dx_i$ gilt: $f_i = D_i F$.

Betrachte dafür
$$F(x + he_i) - \overline{F(x)}$$
 im Grenzwert $h \to 0$.

evt.
Rest
des
Beweises
nachbringen,
ist
aber

 $^{^4}$ Alle Wege müssen natürlich in U liegen.

1.6 Integrabilitätsbedingungen und Lemma von Poincaré

Definition (Geschlossenheit). Eine stetig differenzierbare 1-Form $\omega = \sum_{i=1}^{n} f_i dx_i$ auf U heißt geschlossen, falls

$$D_i f_i = D_i f_i \tag{1.4}$$

Theorem (Pointcaré). Sei U ein sternförmiges Gebiet und ω eine stetig differenzierbare 1-Form, dann gilt:

 ω exakt $\Leftrightarrow \omega$ geschlossen⁵

Proof. " \Rightarrow ": Nach dem Satz von Schwarz gilt: ω exakt $\Rightarrow \omega$ geschlossen. " \Leftarrow ": Sei oBdA U sternförmig bez. 0. Dann definiert man $F(x) := \int_0^1 \omega(tx)(x)dt$.

Als Parameterintegral ist es stetig differenzierbar.

Es bleibt zu zeigen, dass $D_i F = f_i$.

technischer
Beweis,
evt.
nachbringen

 $^{^5}$ "Geschlossenheit" hat nichts mit dem Integral über geschlossene Wege zu tun. Das sind nur die Integrationsbedingungen (1.4)!

Mannigfaltigkeiten

- 2.1 (Satz über implizite Funktionen und) Satz von der Umkehrabbildung
- 2.2 Immersion
- 2.3 Untermannigfaltigkeit und Charakterisierungen
- 2.4 Tangentenvektor, Normalenvektor an Untermannigfaltigkeit
- 2.5 Lagrangemultiplikatoren

Mehrfache Integrale

- 3.1 Iteriertes Integral und Vertauschung der Reihenfolge
- 3.2 Allgemeine Eigenschaften von Integralen
- 3.3 Partielle Integration
- 3.4 Prinzip von Cavalieri
- 3.5 Transformationsformel (genaue Formulierung, Partition der Eins, Beweisidee)
- 3.6 Oberflächenintegrale über Funktionen und über Vektorfelder
- 3.8 Eigenschaften des Lebesgue-Integrals
- 3.9 Klassen Lebesgue-integrierbarer Funktionen ¹¹

Integralsätze

- 4.1 Green und Gaußfür Normalenbereiche
- 4.2 Differentialformen
- 4.3 Äußere Ableitung (Spezialfälle: div, rot, grad)
- 4.4 Integral über Differentialformen
- 4.5 Pullback
- 4.6 Allgemeine Formulierung des Satzes von Stokes