20CP209P					Design and Analysis of Algorithm LAB					
Teaching Scheme					Examination Scheme					
L	т	Р	С	Hrs/Week	Theory			Practical		Total
					MS	ES	IA	LW	LE/Viva	Marks
0	0	2	1	2	-	-	-	50	50	100

COURSE OBJECTIVES

- Analyze the asymptotic performance of the algorithms
- Implement time and space efficient optimized algorithms.
- Demonstrate a familiarity with major algorithms and data structures.
- Apply important algorithmic design paradigms and methods of analysis.

LAB EXPERIMENTS

- Program to solve the fractional knapsack using greedy approach.
- Program to implement the MST using prim's method and kruskal's method.
- Program to implement the Huffman coding and shortest path.
- 4. Program to implement the making change using greedy strategy.
- 5. Program to implement the binary search.
- 6. Program to implement the merge, quick and heap sort.
- 7. Program to implement the strassen's matrix multiplication.
- 8. Program to implement the assembly line scheduling.
- 9. Program to implement the chained matrix multiplication and LCS.
- 10. Program to implement the all pair shortest path algorithm.
- 11. Program to implement the 0/1 knapsack
- 12. Program to implement the making change using dynamic programming.
- 13. Program to implement the TSP using backtracking.

COURSE OUTCOMES

On completion of the course, student will be able to

CO1- Understand need of complexity analysis of the algorithm

CO2- Solve Homogenous and Inhomogeneous recurrence relations using Master Theorem, Substitution method, and Recurrence tree.

CO3- Apply Dynamic Programming, Divide and Conquer Strategy and greedy method to solve computational and graph problems.

CO4- Compare different algorithmic Strategies on efficiency parameters for optimization problems.

CO5- Evaluate Classical problems through Backtracking and Branch & Bound techniques.

CO6- Create algorithms for real time problems Design algorithms for computational problems of moderate complexity.

TEXT/REFERENCE BOOKS

Max. Marks: 100

- 1. Charles E. Leiserson, Thomas H. Cormen, Ronald L. Rivest, Clifford Stein Introduction to Algorithms, PHI
- 2. Gilles Brassard & Paul Bratley, Fundamentals of Algorithmic, PHI
- 3. Ellis Horowitz, Sartaj Sahni, Sanguthevar Rajasekharan, Fundamentals of Computer Algorithms, Galgotia.

END SEMESTER EXAMINATION QUESTION PAPER PATTERN

Part A: Evaluation Based on the class performance and Laboratory book

Part B: Viva Examination based conducted experiments

Exam Duration: 2 Hrs

50 Marks

50 Marks