Algebraic Topology

Daniel Mao

Copyright \bigodot 2020 - 2022 Daniel Mao All Rights Reserved.

Contents

1	Homotopy				
	1.1	Definitions	1		
	1.2	Properties	1		
	1.3	Homotopy Equivalent	1		
	1.4	Invariance Properties	2		

ii CONTENTS

Chapter 1

Homotopy

1.1 Definitions

DEFINITION 1.1 (Homotopy, Homotopic). Let \mathfrak{X} and \mathfrak{Y} be topological spaces. Let $f, g \in \mathcal{C}(\mathfrak{X}, \mathfrak{Y})$. Let $H \in \mathcal{C}(\mathfrak{X} \times [0, 1], \mathfrak{Y})$. We say that H is a **homotopy** between f and g if and only if $\forall x \in \mathfrak{X}$, H(x, 0) = f(x) and H(x, 1) = g(x). We say that f and g are **homotopic**, denoted by $f \equiv g$, if and only if there is some homotopy between them.

PROPOSITION 1.2. Being homotopic is an equivalence relation on $\mathcal{C}(\mathfrak{X},\mathfrak{Y})$.

1.2 Properties

PROPOSITION 1.3. Let $f_1, g_1, f_2, g_2 \in \mathcal{C}(\mathfrak{X}, \mathfrak{Y})$. Suppose that $f_1 \equiv g_1$ and $f_2 \equiv g_2$. Then $f_2 \circ f_1 \equiv g_2 \circ g_1$.

1.3 Homotopy Equivalent

DEFINITION 1.4 (Homotopy Equivalence, Homotopy Equivalent). Let \mathfrak{X} and \mathfrak{Y} be topological spaces. Let $f \in \mathcal{C}(\mathfrak{X})$. Let $g \in \mathcal{C}(\mathfrak{Y})$. We say that the pair (f,g) is a **homotopy equivalence** between \mathfrak{X} and \mathfrak{Y} if and only if $g \circ f \equiv \mathrm{Id}_{\mathfrak{X}}$ and $f \circ g \equiv \mathrm{Id}_{\mathfrak{Y}}$.

We say that \mathfrak{X} and \mathfrak{Y} are **homotopy equivalent** if and only if there is some homotopy equivalence between \mathfrak{X} and \mathfrak{Y} .

PROPOSITION 1.5. If \mathfrak{X} and \mathfrak{Y} are homeomorphic topological spaces, then they are homotopy equivalent.

1.4 Invariance Properties

PROPOSITION 1.6. If \mathfrak{X} and \mathfrak{Y} are homotopy equivalent topological spaces, then \mathfrak{X} is path-connected if and only if \mathfrak{Y} is.