Technical Project Tutorial

Data Science Online Summer School 04/08/2021

Common Medical Image Analysis Tasks

Localisation

Output: bounding boxes

Classification

Output: tumour/no tumour

Semantic Segmentation

Output: segmentation map

Example: classification

With/without

tumour

Classification

Classification

Source: Castro et al. 2018. https://arxiv.org/abs/1809.10780

Convolution

Input Image

a ₁₁	a ₁₂	a ₁₃	***	a ₁
a ₂₁	a ₂₂	a ₂₃	1806	a ₂₁
a ₃₁	a ₃₂	a ₃₉	12.00	a ₃₁
200				
			90	s

Mask

m ₁₁	m ₁₂	m ₁₃
m ₂₁	m ₂₂	m ₂₃
m ₃₁	m ₃₂	m ₃₃

Output Image

b ₁₁	b ₁₂	b ₁₃	3.564	bıı
b ₂₁	b ₂₂	b ₂₃		b ₂₁
b ₃₁	b ₃₂	b ₃₃		b _{3i}
	:	- 1		3

 $b_{22} = (a_{11} * m_{11}) + (a_{12} * m_{12}) + (a_{13} * m_{13}) + (a_{21} * m_{21}) + (a_{21} * m_{21}) + (a_{22} * m_{22}) + (a_{23} * m_{23}) + (a_{31} * m_{31}) + (a_{32} * m_{32}) + (a_{33} * m_{33}) + (a_{31} * m_{31}) + (a_{32} * m_{32}) + (a_{32} * m_{32}) + (a_{33} * m_{33}) + (a_{31} * m_{31}) + (a_{32} * m_{32}) + (a_{32} * m_{32}) + (a_{33} * m_{33}) + (a_{32} * m_{32}) + (a_{33} * m_{33}) + (a_{33} * m_{33$

Convolution

Convolution

Sobel filter

Classification

CNN model

Project Workflow

- Understand and preprocess your dataset
- Build the model
- Train the model
- Find the optimal hyperparameters
- Evaluation

Brain MRI

- Non-invasive imaging technology
- Produce three dimensional detailed anatomical images
- Used for disease detection, diagnosis, and treatment monitoring

Brain MR Images

Different MRI sequences

Classification Dataset

• 5391 images are given to you for training and testing the model.

• All the images have been preprocessed for you for better training result.

Brain image with tumour

Brain image without tumour

Segmentation Dataset

 251 MRI volumes and segmentation maps are given to you for training the model. Around 100 volumes will be given to you on 19th August for testing your model.

• All the MRI volumes have not been preprocessed.

Brain tumour in 3D

Data preprocessing

- Denoise
- Standardise images (resize, normalisation, etc)
- Data augmentation (rotation, sheer, scale, etc)

Build the classification model

Preprocessed dataset

CNN-based backbone model for feature extraction (VGG16, AlexNet, ResNet, etc)

Classifier

Output

Train the classification model

Preprocessed dataset

CNN-based backbone model for feature extraction (VGG16, AlexNet, ResNet, etc)

Classifier

Training loss

Improve the accuracy of the prediction

- Choose the right augmentation methods to tackle the overfitting problem;
- Find the best backbone model;
- Choose to finetune the model or train it from the scratch;
- Set the number of epochs to train the model and early stopping criteria;
- Tune other hyperparameters to achieve the best performance.

Test the classification model

Test data

CNN-based backbone model for feature extraction (VGG16, AlexNet, ResNet, etc)

Classifier

Result

Result evaluation

Accuracy is used to evaluate the performance of your classification model, which is defined as

$$Accuracy = \frac{Number\ of\ correctly\ classified\ images}{Number\ of\ total\ images} \times 100\%$$

Segmentation model

Result evaluation

Dice score is used to evaluate the performance of your segmentation model, which is defined as

Dice score = (2 * Area of Overlap)/(total pixels combined)

Agony of choice

- Model architecture: depth, width, scales, residuals,...
- Loss function: (weighted) cross-entropy, IoU, Dice,...
- Sampling strategy: equally per class, fore/background, uniform,...
- Optimization: optimizer, learning rate, momentum, regularization,...
- Data normalization/standardisation: z-score, bias field correction, histogram matching,...

Setting Up Python Development Environment

Anaconda Installation (2020.02)

https://repo.anaconda.com/archive/

For using Nvidia GPU

https://github.com/antoniosehk/keras-tensorflow-windows-installation

Packages:

Tensorflow

Scikit-learn

SimpleITK