DOMINANCE REGIONS FOR AFFINE CLUSTER ALGEBRAS

NATHAN READING, DYLAN RUPEL, AND SALVATORE STELLA

Abstract. We study the dominance order for g-vectors in affine cluster algebras.

1

Theorem 0.1. Given $\lambda \in \mathbb{R}^m$, let $z \ge 0$ be the minimum value such that $\lambda + z\widetilde{B}^+\delta$ is real. (Then the dominance region \mathcal{P}_{λ} is the line segment $\{\lambda + x\widetilde{B}^+\delta : 0 \le x \le z\}$.

The uniform formulation of Theorem 0.1 hides in itself two cases: if λ is real then z=0 and \mathcal{P}_{λ} is just the point λ ; otherwise z>0 and \mathcal{P}_{λ} is a proper line segment. The former case was already established in [?] in complete generality; we will reprove it here by elementary means as a corollary of a result needed in the proof of the latter case. The proof of Theorem 0.1 is divided into several intermediate claims; we begin by showing that, for imaginary λ , $\mathcal{P}_{\lambda} \subseteq \mathcal{I}$.

Lemma 0.2. If λ is imaginary, then $\mathcal{P}_{\lambda} \subseteq \mathcal{I}$.

Proof. By definition, \mathcal{P}_{λ} is contained in $\{\lambda + \tilde{B}^{+}\alpha : \alpha \in \mathbb{R}^{n}_{\geqslant 0}\}$ which is a proper cone since \tilde{B}^{+} is full rank. In particular, for sufficiently large z, the dominance region \mathcal{P}_{λ} does not intersect the half space $H = \{\lambda' : \langle -B^{+}\delta, \lambda' \rangle \geqslant z\}$. ③ Suppose by contradiction that there exists some point $\lambda' \in \mathcal{P}_{\lambda} \setminus \mathcal{I}$. Since \mathcal{P}_{λ} is stable under mutations $\eta_{\mathbf{k}}^{\tilde{B}^{+}}(\lambda') \in \mathcal{P}_{\lambda}$ for any sequence of indices \mathbf{k} . ④ ⑤ Moreover, since λ' is not in \mathcal{I} , for sufficiently large ℓ the sequence $\mathbf{k} = (n, \ldots, 1)^{\ell}$ satisfies $\eta_{\mathbf{k}}^{\tilde{B}^{+}}(\lambda') \in \mathcal{H}$ contradicting our previous observation. ⑥

For $j \in \mathbb{Z}$, let $\langle j \rangle$ be the element of [1, n] congruent to $j \mod n$. If j > 0 let \mathbf{k}_j be the sequence $(\langle j \rangle, \langle j - 1 \rangle, \dots, \langle 1 \rangle)$; it has length j. Let \mathbf{k}_0 denote the empty sequence. If j < 0 let \mathbf{k}_j be the sequence $(\langle j + 1 \rangle, \langle j + 2 \rangle, \dots, \langle 0 \rangle)$; it has length -j.

Denote by t_i the seed obtained from t_0 mutating along the sequence k_i .

Remark 0.3. If $j \ge 0$ the seed t_j corresponds to the c-sorting element whose c-sorting word is the prefix of c^{∞} of length j. If $j \le -n$ the seed t_j corresponds to the c^{-1} -sorting element whose c^{-1} -sorting word is the prefix of $c^{-\infty}$ of length n-j.

Set
$$\mathcal{P}_{\lambda,j} = \left(\eta_{k_j}^{\tilde{B}^{t_0}}\right)^{-1} \left(\left\{\eta_{k_j}^{\tilde{B}^{t_0}}(\lambda) + \tilde{B}^{t_j}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^n\right\}\right)$$
; then $\mathcal{P}_{\lambda} \subseteq \bigcap_{j \in \mathbb{Z}} \mathcal{P}_{\lambda,j}$.

Lemma 0.4. For any $j \ge 0$, there exists a full-dimensional subset L_j of \mathbb{R}^m such that $\mathcal{I} \subseteq L_j$ and, for any $\lambda \in \mathcal{I}$,

$$\mathcal{P}_{\lambda,j} \cap L_j = \left\{ \lambda + \widetilde{B}^{t_0} C^{t_j} \alpha : \alpha \in \mathbb{R}^n_{\geqslant 0} \right\} \cap L_j.$$

Proof. First observe that the $\langle i+1 \rangle$ -st coordinate of $\eta_{\mathbf{k}_i}^{\tilde{B}^{t_0}}(\lambda)$ is non-positive for every $i \in \mathbb{Z}$. Indeed, since $\eta_{\mathbf{k}_i}^{\tilde{B}^{t_0}}(\lambda) \in \mu_{\mathbf{k}_i}(\mathcal{I})$, it is of the form Mv for some non-negative vector v and some matrix M whose $\langle i+1 \rangle$ -st row is a negative elementary unit vector (M) is the matrix of the change of

- 1. define imaginary, real, and the imaginary cone \mathcal{I} , \tilde{B}^+ , δ SS
- 2. We need to say why such an z existsi, i.e. $-\tilde{B}^+\delta$ positively spans the imaginary ray. SS

- 3. Think about how to write this better. SS
- 4. WARNING: do this only for sequences fixing λ . SS
- 5. Define mutation maps. of course we already knew this was to be done! SS
- 6. We need to say much more about this: explain finite/infinite c-orbits and how limits work. SS

coordinates in between positive d-vectors and non-initial g-vectors). (7) In particular $\eta_{k_j}^{\tilde{B}^{t_0}}$ acts on \mathcal{I} as $\tilde{E}_{\langle j \rangle,-}^{t_{j-1}} \cdots \tilde{E}_{1,-}^{t_0}$

7. I am trying venot to mention the matrix here nor so moves if possible S

8. Should we something to explain why this is not just 17? SS

Let L_j be the maximal cone on which $\eta_{k_j}^{\widetilde{B}^{t_0}}$ and $\widetilde{E}_{\langle j \rangle,-}^{t_{j-1}} \cdots \widetilde{E}_{1,-}^{t_0}$ agree. 8 We compute

$$\mathcal{P}_{\lambda,j} \cap L_{j} = \left(\eta_{\mathbf{k}_{j}}^{\widetilde{B}^{t_{0}}}\right)^{-1} \left(\left\{\eta_{\mathbf{k}_{j}}^{\widetilde{B}^{t_{0}}}(\lambda) + \widetilde{B}^{t_{j}}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\}\right) \cap L_{j}$$

$$= \left(\widetilde{E}_{\langle j \rangle, -}^{t_{j-1}} \cdots \widetilde{E}_{1, -}^{t_{0}}\right)^{-1} \left(\left\{\widetilde{E}_{\langle j \rangle, -}^{t_{j-1}} \cdots \widetilde{E}_{1, -}^{t_{0}}(\lambda) + \mu_{\mathbf{k}_{j}}(\widetilde{B}^{t_{0}})\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\}\right) \cap L_{j}$$

$$= \left\{\lambda + \widetilde{E}_{1, -}^{t_{0}} \cdots \widetilde{E}_{\langle j \rangle, -}^{t_{j-1}} \mu_{\mathbf{k}_{j}}(\widetilde{B}^{t_{0}})\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap L_{j}$$

$$= \left\{\lambda + \widetilde{B}^{t_{0}}F_{1, -}^{t_{0}} \cdots F_{\langle j \rangle, -}^{t_{j-1}}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap L_{j}$$

$$= \left\{\lambda + \widetilde{B}^{t_{0}}C^{t_{j}}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap L_{j}$$

where the last identity follows from Lemma 4.1 and the observation that the $\langle i+1 \rangle$ -st c-vector in the seed t_i is positive (it is the leftmost skip for the corresponding c-sorting word).

Lemma 0.5. For any $j \leq 0$, there exists a full-dimensional subset L_j of \mathbb{R}^m such that $\mathcal{I} \subseteq L_j$ and, for any $\lambda \in \mathcal{I}$,

$$\mathcal{P}_{\lambda,j} \cap L_j = \left\{ \lambda - \widetilde{B}^{t_0} C^{t_{j-n}} \alpha : \alpha \in \mathbb{R}^n_{\geqslant 0} \right\} \cap L_j.$$

Proof. The proof of this lemma follows closely the proof of the previous one with some important distinctions.

For any $i \in \mathbb{Z}$ the $\langle i \rangle$ -th coordinate of $\eta_{\mathbf{k}_i}^{\tilde{B}^{t_0}}(\lambda)$ is non-negative. Indeed since λ and $-\frac{1}{2}\tilde{B}^{t_0}\delta$ belong to the same maximal cone, the $\langle i \rangle$ -th coordinates of $\eta_{\mathbf{k}_i}^{\tilde{B}^{t_0}}(\lambda)$ and $\eta_{\mathbf{k}_i}^{\tilde{B}^{t_0}}(-\frac{1}{2}\tilde{B}^{t_0}\delta) = -\frac{1}{2}\tilde{B}^{t_i}\delta$ weekly agree in sign. But the $\langle i \rangle$ -th row of \tilde{B}^{t_i} contains only non-positive integers while δ is a vector of positive integers and the claim follows. ① In particular $\eta_{\mathbf{k}_j}^{\tilde{B}^{t_0}}$ acts on \mathcal{I} as $\tilde{E}^{t_{j+1}}_{\langle j+1\rangle,+}\cdots \tilde{E}^{t_0}_{n,+}$. Let L_j be the maximal cone on which $\eta_{\mathbf{k}_j}^{\tilde{B}^{t_0}}$ and $\tilde{E}^{t_{j+1}}_{\langle j+1\rangle,+}\cdots \tilde{E}^{t_0}_{n,+}$ agree. As before we compute

$$\mathcal{P}_{\lambda,j} \cap L_{j} = \left(\eta_{\mathbf{k}_{j}}^{\widetilde{B}^{t_{0}}}\right)^{-1} \left(\left\{\eta_{\mathbf{k}_{j}}^{\widetilde{B}^{t_{0}}}(\lambda) + \widetilde{B}^{t_{j}}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\}\right) \cap L_{j}$$

$$= \left(\widetilde{E}_{\langle j+1\rangle,+}^{t_{j+1}} \cdots \widetilde{E}_{n,+}^{t_{0}}\right)^{-1} \left(\left\{\widetilde{E}_{\langle j+1\rangle,+}^{t_{j+1}} \cdots \widetilde{E}_{n,+}^{t_{0}}(\lambda) + \mu_{\mathbf{k}_{j}}(\widetilde{B}^{t_{0}})\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\}\right) \cap L_{j}$$

$$= \left\{\lambda + \widetilde{E}_{\langle j+1\rangle,+}^{t_{j+1}} \cdots \widetilde{E}_{n,+}^{t_{0}} \mu_{\mathbf{k}_{j}}(\widetilde{B}^{t_{+}})\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap L_{j}$$

$$= \left\{\lambda + \widetilde{B}^{t_{0}} F_{\langle j+1\rangle,+}^{t_{j+1}} \cdots F_{n,+}^{t_{0}} \alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap L_{j}.$$

Now observe that the first n c-vectors encountered while mutating along k_j are positive while the remaining ones are negative. (Provided that j < -n, otherwise they are all positive.) Note also that $F_{1,-}^{t_{1-n}} \cdots F_{n,-}^{t_{0}} = -1$ and that $F_{\langle i \rangle, \varepsilon}^{t_{i}} = F_{\langle i-n \rangle, \varepsilon}^{t_{i-n}}$ for any i and ε . We get

$$F_{\langle j+1\rangle,+}^{t_{j+1}}\cdots F_{n,+}^{t_0} = F_{\langle j-n+1\rangle,+}^{t_{j-n+1}}\cdots F_{n,+}^{t-n} = -F_{\langle j-n+1\rangle,+}^{t_{j-n+1}}\cdots F_{n,+}^{t_{n-n}} F_{1,-}^{t_{1-n}}\cdots F_{n,-}^{t_0} = -C^{t_{j-n}}$$

again by Lemma 4.1 and we are done.

(10)

10. Note to self: if λ is a cluster monomial in t then exactly the same argument shows that $\mathcal{P}_{\lambda,j} \cap K_t$ has the same expression. This should imply that $\mathcal{P}_{\lambda} \cap K_t$ is just the point λ but it is not enough to conclude that $\mathcal{P}_{\lambda} = \lambda$ because we do not know that \mathcal{P}_{λ} is connected. SS

9. Maybe we should use this argument also in the

other proposition to avoid talking about the Euler matrix. SS

Proposition 0.6. Let λ be imaginary with z minimal such that $\lambda + z\widetilde{B}^{t_0}\delta$ is real. Then \mathcal{P}_{λ} is contained in the half line $\{\lambda + x\widetilde{B}^{t_0}\delta : x \leq z\}$.

Proof. Since $\mathcal{P}_{\lambda} \subseteq \bigcap_{j \in \mathbb{Z}} \mathcal{P}_{\lambda,nj}$ it suffices to show that $\bigcap_{j \in \mathbb{Z}} \mathcal{P}_{\lambda,nj}$ is a half line. Moreover, since by Lemma ?? $\mathcal{P}_{\lambda} \subseteq \mathcal{I}$, it suffices to show that $\bigcap_{j \in \mathbb{Z}} (\mathcal{P}_{\lambda,nj} \cap L_j)$ is a half line. In view of Lemmas ?? and ??, since \widetilde{B}^{t_0} has full rank, it sufficies to show that

$$\bigcap_{j \in \mathbb{Z}} \left\{ (-1)^{\operatorname{sgn}(j)} C^{t_{nj}} \alpha : \alpha \in \mathbb{R}^n_{\geqslant 0} \right\}$$

is the line spanned by δ .

By Remark ??, if $j \ge 0$ the *i*-th column of $C^{t_{nj}}$ is the root $c^j \alpha_i$. Similarly, if $j \le -1$ the *i*-th column of $-C^{t_j}$ is the root $c^{j+1}\alpha_i$. AAARGHHH This screws everything up, we cant use it to show that if $c^j \alpha_i$ is in a finite orbit then there is a j' < 0 such that $-c^j \alpha_i \in -C^{t_{nj'}}!!!!!!$

Using Proposition 0.3, the fact that $\mathcal{P}_{\lambda} \subseteq \{\lambda + \widetilde{B}^{+}\alpha : \alpha \in \mathbb{R}^{n}_{\geq 0}\}$, and the fact that \widetilde{B}^{+} is full rank, we deduce immediately the following upper bound for \mathcal{P}_{λ} .

Corollary 0.7. Let λ be imaginary with z minimal such that $\lambda + z\widetilde{B}^+\delta$ is real. Then \mathcal{P}_{λ} is contained in the line segment $\{\lambda + x\widetilde{B}^+\delta : 0 \leq x \leq z\}$

Lemma 0.8. There exists r > 0 so that $c^{-p}s_n \dots s_{\ell+1}\alpha_\ell$ has full support for any $p \ge r$ and any ℓ .

Proof. By [?, Theorem 1.2(1)] and [?, Section 1], the set $\{c^q s_n \dots s_{\ell+1} \alpha_\ell : q \in \mathbb{Z}\}$ is infinite. On the other hand, there are only finitely many roots without full support.

Suppose t is a seed corresponding to a c-sortable element v. The construction of Cambrian frameworks in [?] 1 provides the following description of the columns of C^t . Let $s_{a_1} \ldots s_{a_N}$ be the c-sorting word of v. For an index i consider the longest prefix $s_{a_1} \ldots s_{a_p}$ of $s_{a_1} \ldots s_{a_N}$ such that any instance of s_i in the corresponding prefix of c^∞ is also in $s_{a_1} \ldots s_{a_p}$. Then the i-th column of C^t is the root $s_{a_1} \ldots s_{a_p} \alpha_i$. This root is positive if and only if the word $s_{a_1} \ldots s_{a_p} s_i$ is reduced.

This description of C^t is instrumental in proving the next two results.

Proposition 0.9. Let t be a seed corresponding to a c-sortable element v(12) whose c-sorting word starts with c^r for r as in Lemma 0.5. Then the columns of C^t are not roots of the form $\pm c^{-p}s_n \dots s_{\ell+1}\alpha_\ell$ with $p \ge 0$.

Proof. Let k be the index such that s_k is the leftmost reflection of c^{∞} omitted in $s_{a_1} \dots s_{a_N}$. Since c^p is reduced for any p, the k-th column of c^p is a positive root of the form $c^q s_1 \dots s_{k-1} \alpha_k$ and, following [?, Theorem 1.2(1)] and [?, Section 1], it is not of the form $c^p s_n \dots s_{\ell+1} \alpha_\ell$ for $p \ge 0$.

All the other columns of C^t will be roots of the form $c^q s_{b_1} \cdots s_{b_{i-1}} \alpha_{b_i}$ for $q \ge r$ with $k \ne b_j$ for any j. Suppose that one such root were also of the form $\pm c^{-p} s_n \dots s_{\ell+1} \alpha_{\ell}$ for $p \ge 0$ and some index ℓ . Then $\pm c^{-p-q} s_n \dots s_{\ell+1} \alpha_{\ell} = s_{b_1} \cdots s_{b_{i-1}} \alpha_{b_i}$ would be a root without full support. But $p+q \ge r$, contradicting Lemma 0.5.

Proposition 0.10. Let t be the seed associated to c^r for r as in Lemma 0.5. Then C^t contains at least one column of the form $c^q s_1 \cdots s_{k-1} \alpha_k$ and at least one column of the form $-c^q s_1 \cdots s_{k-1} \alpha_k$. The remaining columns that are not of the form $\pm c^q s_1 \cdots s_{k-1} \alpha_k$ lie in finite c-orbits.

Proof. The first column of C^t is $c^r \alpha_1$ and the last column of C^t is $c^r \alpha_n = -c^{r-1} s_1 \cdots s_{n-1} \alpha_n$. By Proposition 0.6, any column of C^t which is not of the form $\pm c^q s_1 \cdots s_{k-1} \alpha_k$ must lie in a finite c-orbit.

11. after Prop 5.4 DR

12. Explain this correspondence SS

13. do we need a reference for this? SS

Lemma 0.11. For any root β the product $(\beta^{\vee})^T B^+ \delta$ is

- positive if $\beta = c^p s_1 \dots s_{k-1} \alpha_k$ for some $p \in \mathbb{Z}$ and some k,
- negative if $\beta = c^{-p} s_n \dots s_{k+1} \alpha_k$ for some $p \in \mathbb{Z}$ and some k,
- zero otherwise.

Proof. Begin by observing that the product $(\beta^{\vee})^T B^+ \gamma$ is invariant under source-sink moves. Indeed, $(s_1\beta^{\vee})^T B^+ (s_1\gamma) = (\beta^{\vee})^T (E_{1,-}^{t_+} B^+ F_{1,-}^{t_+}) \gamma = (\beta^{\vee})^T \mu_1(B^+) \gamma$ and similarly for s_n . Using this invariance, it suffices to establish the first claim for p=0 and k=1. Since δ is in

Using this invariance, it suffices to establish the first claim for p=0 and k=1. Since δ is in the kernel of A, we have that $(\alpha_1^{\vee})^T B^+ \delta = (\alpha_1^{\vee})^T (A+B^+) \delta$. The result then follows immediately from the observation that $A+B^+$ is a lower-triangular matrix with positive entries on the diagonal and that δ has full support.

Similarly it suffices to establish the second claim only for p=1 and k=1. By the same computation we just did we have $(-\alpha_1^{\vee})^T B^+ \delta = -(\alpha_1^{\vee})^T (A+B^+) \delta < 0$.

For the remaining case, since B^+ is skew-symmetrizable, $(\delta^{\vee})^T B^+ \delta = 0$. By assumption, the root β is in a finite c-orbit (c.f. [?, Proposition 1.9 and Section 1, final Remark]) so that there is a positive ℓ such that $\sum_{i=0}^{\ell} c^i \beta = q \delta$ for some $q \neq 0$ (cf. [?]). By the invariance under source-sink moves we have that $(c\beta^{\vee})^T B^+ \delta = (\beta^{\vee})^T B^+ \delta$ and we can compute

$$0 = q(\delta^{\vee})^T B^+ \delta = \left(\sum_{i=0}^{\ell} c^i \beta^{\vee}\right)^T B^+ \delta = \ell(\beta^{\vee})^T B^+ \delta$$

to conclude that $(\beta^{\vee})^T B^+ \delta = 0$.

Lemma 0.12. Suppose t is obtained from t_+ by mutating along the sequence $\mathbf{k} = (k_N, \dots, k_1)$ passing through the seeds $t_+ = t_1, \dots, t_{N+1} = t$. Consider seeds t'_1, \dots, t'_{N+1} with t'_{i+1} obtained from t'_i by mutation in direction k_i and t'_1 obtained from t_+ by mutating along the sequence $(n, \dots, 1)$ sufficiently many times that $(G^{\vee}, t'_i)^T \delta$ is a nonnegative vector for every i.

For $1 \leq i \leq N$, let ε_i be the opposite of the sign of the k_i -th column of $C^{\vee,t_i'}$. Set $\delta_1 = \delta$ and define $\delta_{i+1} = F_{k_i,\varepsilon_i}^{t_i} \cdots F_{k_1,\varepsilon_1}^{t_1} \delta$. Then the following hold.

- (1) δ_i is a nonnegative vector for $1 \leq i \leq N+1$;
- (2) For $1 \leq i \leq N$, if the k_i -th entry of $-\widetilde{B}^{t_i}\delta_i$ is nonzero then its sign is ε_i .
- (3) $\eta_{\mathbf{k}}^{\widetilde{B}^+}\left(-\widetilde{B}^+\delta\right) = -\widetilde{B}^t\delta_{N+1}.$

Remark 0.13. Something about $(G^{\vee,t'_i})^T\delta$ being the absolute value of the kernel of the quasi-Cartan companion A^{t_N} . Maybe mention something about companion bases not existing in affine types.

Proof. First observe that $F_{k_i,\varepsilon_i}^{t_i} = F_{k_i,\varepsilon_i}^{t_i'}$ for each i. By Lemma 4.7, $F_{k_i,\varepsilon_i}^{t_i'} \cdots F_{k_1,\varepsilon_1}^{t_1'} = (G^{\vee,t_{i+1}'})^T M$ for some matrix M such that $M\delta = \delta$ since t_1' is obtained from t_+ by repeatedly mutating along the sequence $(n,\ldots,1)$. Therefore $\delta_i = (G^{\vee,t_i'})^T \delta$ is a nonnegative vector by assumption.

The first n entries of $\tilde{B}^{t_i}\delta_i$ coincide with the entries of $B^{t_i}\delta_i$. We apply Corollary 4.8 to get

$$B^{t_i}\delta_i = B^{t'_i}\delta_i = B^{t'_i}(G^{\vee,t'_i})^T\delta = (C^{\vee,t'_i})^TB^+\delta.$$

Redefining the seeds t'_i , if needed, to ensure that the hypotheses of Proposition 0.6 are satisfied and combining Lemma 0.9 with Lemma 0.6 we see that the k_i -th sign of $\tilde{B}^{t_i}\delta_i$ weakly agrees with the sign of the k_i -th column of C^{\vee,t'_i} .

14. i.e. on the positive side of $\delta^\perp.$ This sentence needs to be justified; somewhere we need to discuss the plane δ^\perp and how it cuts the g-ector fan. SS

To conclude, we are now able to compute

$$\eta_{\mathbf{k}}^{\widetilde{B}^{+}}\left(-\widetilde{B}^{+}\delta\right) = -\widetilde{E}_{k_{N},\varepsilon_{N}}^{t_{N}}\cdots\widetilde{E}_{k_{1},\varepsilon_{1}}^{t_{1}}\widetilde{B}^{+}\delta$$

$$= -\widetilde{B}^{t}F_{k_{N},\varepsilon_{N}}^{t_{N}}\cdots F_{k_{1},\varepsilon_{1}}^{t_{1}}\delta$$

$$= -\widetilde{B}^{t}\delta_{N+1}.$$

Proposition 0.14. Let λ be imaginary with z minimal such that $\lambda + z\widetilde{B}^+\delta$ is real. Then \mathcal{P}_{λ} contains the line segment $\{\lambda + x\widetilde{B}^+\delta : 0 \leq x \leq z\}$.

Proof. Suppose t is obtained from t_+ by mutating along the sequence k. To establish the claim we need to show that, for $0 \le x \le z$,

$$\eta_{\boldsymbol{k}}^{\widetilde{B}^+}(\lambda+x\widetilde{B}^+\delta)\in\left\{\eta_{\boldsymbol{k}}^{\widetilde{B}^+}(\lambda)+\widetilde{B}^t\alpha:\alpha\in\mathbb{R}_{\geqslant 0}^n\right\}.$$

Since the vectors λ , $\lambda + x\widetilde{B}^+\delta$, and $-\widetilde{B}^+\delta$ all live in the same cone of the mutation fan, (16) we have that

16. we need to decide which presentation we will use and quote afftheta SS

$$\eta_{\mathbf{k}}^{\widetilde{B}^+}(\lambda + x\widetilde{B}^+\delta) = \eta_{\mathbf{k}}^{\widetilde{B}^+}(\lambda) - x\eta_{\mathbf{k}}^{\widetilde{B}^+}(-\widetilde{B}^+\delta)$$

and our task reduces to showing that

$$\eta_{\mathbf{k}}^{\widetilde{B}^+}(-\widetilde{B}^+\delta) = -\widetilde{B}^t\alpha$$

for some positive vector $\alpha \in \mathbb{R}^n_{\geq 0}$. Lemma 0.10 gives an explicit formula for such a vector α and completes the proof.

This concludes the proof of Theorem 0.1.

Some old stuff we no longer need

For $t \in \mathbb{T}_n$, define $K^t := \{G_t \alpha : \alpha \in \mathbb{R}_{\geq 0}^n\}$. For $\lambda \in \widetilde{K}^t := K^t \times \mathbb{R}^{m-n}$, set

$$L_{\lambda,\pm}^t := \{ \lambda \pm \widetilde{B}^{t_+} C^t \alpha : \alpha \in \mathbb{R}_{\geq 0}^n \}.$$

Lemma 0.15. For $\lambda \in \widetilde{K}^t$, we have $\mathcal{P}_{\lambda} \cap \widetilde{K}^t \subseteq L_{\lambda,+}^t \cap L_{\lambda,-}^t$.

Proof. Suppose t is obtained from t^+ by mutating along the sequence $\mathbf{k}^+ = (k_N, \dots, k_1)$. Set $\mathbf{k}^- = (n, \dots, 1, k_N, \dots, k_1)$.

First observe that $\left(\eta_{\mathbf{k}^+}^{\widetilde{B}^{t+}}\right)^{-1}$ acts linearly on $\mathbb{R}^n_{\geqslant 0} \times \mathbb{R}^{m-n}$. Then, since $\left(\eta_{\mathbf{k}^+}^{\widetilde{B}^{t+}}\right)^{-1} = \eta_{(\mathbf{k}^+)^{op}}^{\widetilde{B}^t}$, we see from [?, Equation (1.13)] that the action on $\mathbb{R}^n_{\geqslant 0} \times \mathbb{R}^{m-n}$ is given by the matrix \widetilde{G}^t , i.e.

$$\left(\eta_{\boldsymbol{k}^+}^{\widetilde{B}^{t_+}}\right)^{-1}(\mathbb{R}^n_{\geqslant 0}\times\mathbb{R}^{m-n})=\widetilde{G}^t(\mathbb{R}^n_{\geqslant 0}\times\mathbb{R}^{m-n})=\widetilde{K}^t.$$

By Lemma 2.2, we have $\left(\eta_{k^-}^{\widetilde{B}^{t_+}}\right)^{-1} = \left(\eta_{k^+}^{\widetilde{B}^{t_+}}\right)^{-1} \left(\eta_{(n,\cdots,1)}^{\widetilde{B}^t}\right)^{-1}$. But $\eta_{(n,\cdots,1)}^{\widetilde{B}^t}(\mathbb{R}^n_{\geqslant 0} \times \mathbb{R}^{m-n}) \stackrel{?}{=} (\mathbb{R}^n_{\leqslant 0} \times \mathbb{R}^{m-n})$ and so $\left(\eta_{k^-}^{\widetilde{B}^{t_+}}\right)^{-1} (\mathbb{R}^n_{\leqslant 0} \times \mathbb{R}^{m-n}) = -\widetilde{G}^t(\mathbb{R}^n_{\leqslant 0} \times \mathbb{R}^{m-n}) = \widetilde{K}^t$.

It follows that

$$\begin{split} S_{\boldsymbol{k}^{+},\lambda} & \cap \widetilde{K}^{t} = \left(\eta_{\boldsymbol{k}^{+}}^{\widetilde{B}^{t+}}\right)^{-1} \left\{\eta_{\boldsymbol{k}^{+}}^{\widetilde{B}^{t+}}(\lambda) + \widetilde{B}^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap \widetilde{K}^{t} \\ & = \left(\eta_{\boldsymbol{k}^{+}}^{\widetilde{B}^{t+}}\right)^{-1} \left(\left\{\eta_{\boldsymbol{k}^{+}}^{\widetilde{B}^{t+}}(\lambda) + \widetilde{B}^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap \left(\mathbb{R}_{\geqslant 0}^{n} \times \mathbb{R}^{m-n}\right)\right) \\ & = \widetilde{G}^{t} \left(\left\{\eta_{\boldsymbol{k}^{+}}^{\widetilde{B}^{t+}}(\lambda) + \widetilde{B}^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap \left(\mathbb{R}_{\geqslant 0}^{n} \times \mathbb{R}^{m-n}\right)\right) \\ & = \left\{\lambda + \widetilde{G}^{t}\widetilde{B}^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap \widetilde{K}^{t} \\ & = \left\{\lambda + \widetilde{B}^{t+}C^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n}\right\} \cap \widetilde{K}^{t} \\ & \subseteq L_{\lambda,+}^{t}, \end{split}$$

where the last equality uses Corollary 4.4. Similarly, we have

$$\begin{split} S_{\boldsymbol{k}^{-},\lambda} \cap \widetilde{K}^{t} &= \left(\eta_{\boldsymbol{k}^{-}}^{\widetilde{B}^{t+}}\right)^{-1} \left\{ \left(\eta_{\boldsymbol{k}^{-}}^{\widetilde{B}^{t+}}(\lambda) + \widetilde{B}^{t}\alpha\right) : \alpha \in \mathbb{R}_{\geqslant 0}^{n} \right\} \cap \widetilde{K}^{t} \\ &= \left(\eta_{\boldsymbol{k}^{-}}^{\widetilde{B}^{t+}}\right)^{-1} \left(\left\{\eta_{\boldsymbol{k}^{-}}^{\widetilde{B}^{t+}}(\lambda) + \widetilde{B}^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n} \right\} \cap \left(\mathbb{R}_{\leqslant 0}^{n} \times \mathbb{R}^{m-n}\right) \right) \\ &= -\widetilde{G}^{t} \left(\left\{\eta_{\boldsymbol{k}^{-}}^{\widetilde{B}^{t+}}(\lambda) + \widetilde{B}^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n} \right\} \cap \left(\mathbb{R}_{\leqslant 0}^{n} \times \mathbb{R}^{m-n}\right) \right) \\ &= \left\{\lambda - \widetilde{G}^{t}\widetilde{B}^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n} \right\} \cap \widetilde{K}^{t} \\ &= \left\{\lambda - \widetilde{B}^{t+}C^{t}\alpha : \alpha \in \mathbb{R}_{\geqslant 0}^{n} \right\} \cap \widetilde{K}^{t} \\ &\subseteq L_{\lambda,-}^{t}. \end{split}$$

Since $\mathcal{P}_{\lambda} \subseteq S_{\mathbf{k}^{\pm},\lambda}$, the claim follows.

Below here is the stuff we wrote so far.

1. Introduction

Cluster algebras are recursively defined commutative rings. Since their discovery by Fomin and Zelevinsky through an intensive study of dual canonical bases [?], cluster algebras have found application throughout mathematics, including Lie theory [?], representation theory [?], Teichmüller theory [?], and mathematical physics [?]. See [?] for a more exhaustive description of the deep connections found to cluster algebras.

A guiding question in the theory has always been to understand possible bases of a cluster algebra. Qin put bounds on how the pointed bases can be related.

2. MUTATION MAPS AND DOMINANCE

Fix $m \ge n$. Let $\widetilde{B} = (b_{ij})$ be an $m \times n$ exchange matrix with principal $n \times n$ submatrix B. Note that our exchange matrices are tall, which matches the convention of [?]. Then B is skew-symmetrizable with DB skew-symmetric for some diagonal integer matrix $D = \operatorname{diag}(d_1, \ldots, d_n)$.

For $b \in \mathbb{R}$, write $[b]_+ = \max(b,0)$. Given a sign $\varepsilon \in \{\pm\}$ and $1 \le k \le n$, define an $m \times m$ matrix $\widetilde{E}_{k,\varepsilon} = (e_{ij})$ with

(1)
$$e_{ij} = \begin{cases} 1 & \text{if } i = j \neq k; \\ -1 & \text{if } i = j = k; \\ [\varepsilon b_{ik}]_{+} & \text{if } i \neq j = k; \\ 0 & \text{otherwise;} \end{cases}$$

and an $n \times n$ matrix $F_{k,\varepsilon} = (f_{ij})$ with

(2)
$$f_{ij} = \begin{cases} 1 & \text{if } k \neq i = j; \\ -1 & \text{if } k = i = j; \\ [-\varepsilon b_{kj}]_{+} & \text{if } k = i \neq j; \\ 0 & \text{otherwise.} \end{cases}$$

Observe that $\widetilde{E}_{k,\varepsilon}^2 = \mathbb{1}_m$ and $F_{k,\varepsilon}^2 = \mathbb{1}_n$ for any choice of ε . Then define $\mu_k \widetilde{B} = \widetilde{E}_{k,\varepsilon} \widetilde{B} F_{k,\varepsilon}$. Using the identity $b_{ij} = [b_{ij}]_+ - [-b_{ij}]_+$ it is easy to see that $\mu_k \widetilde{B}$ doesn't depend on the choice of sign ε . Moreover, the principal part $\mu_k B$ of $\mu_k \tilde{B}$ is again skew-symmetrizable using the same matrix D.

Given a matrix M, denote by $M_{\bullet k}$ (resp. $M_{k\bullet}$) the k-th column (resp. k-th row) of M and write $[M]_{\bullet k}$ (resp $[M]_{k \bullet}$) the square matrix whose k-th column (resp. k-th row) matches that of M with all other entries being zero.

Lemma 2.1. For $\varepsilon \in \{\pm 1\}$ and $1 \le k \le n$, we have

(1)
$$\widetilde{E}_{k,-\varepsilon}\widetilde{E}_{k,\varepsilon} = \mathbb{1}_m + \varepsilon[\widetilde{B}]_{\bullet k}, \ \widetilde{E}_{k,\varepsilon} - \widetilde{E}_{k,-\varepsilon} = \varepsilon[\widetilde{B}]_{\bullet k}, \ and \ \widetilde{E}_{k,\varepsilon}[\widetilde{B}]_{\bullet k} = [\widetilde{B}]_{\bullet k};$$

(2) $F_{k,-\varepsilon}F_{k,\varepsilon} = \mathbb{1}_n + \varepsilon[B]_{k\bullet}, \ F_{k,\varepsilon} - F_{k,-\varepsilon} = -\varepsilon[B]_{k\bullet}, \ and \ F_{k,\varepsilon}[B]_{k\bullet} = -[B]_{k\bullet}.$

(2)
$$F_{k,-\varepsilon}F_{k,\varepsilon} = \mathbb{1}_n + \varepsilon[B]_{k\bullet}, \ F_{k,\varepsilon} - F_{k,-\varepsilon} = -\varepsilon[B]_{k\bullet}, \ and \ F_{k,\varepsilon}[B]_{k\bullet} = -[B]_{k\bullet}$$

Proof. This is immediate from the equality $\varepsilon b_{ij} = [\varepsilon b_{ij}]_+ - [-\varepsilon b_{ij}]_+$.

To record sequences of these matrix mutations, we introduce the n-regular rooted tree \mathbb{T}_n with root vertex t_0 and edges labeled by $\{1,\ldots,n\}$. Associate $m\times n$ matrices B^t with principal part B^t to the vertices $t \in \mathbb{T}_n$ so that:

- $\widetilde{B}^{t_0} = \widetilde{B}$:
- if $t, t' \in T_n$ are joined by an edge labeled k, then $\widetilde{B}^{t'} = \mu_k \widetilde{B}^t$.

Given a sequence $\mathbf{k} = (k_N, \dots, k_1)$ with $k_i \in \{1, \dots, n\}$ write μ_k for the iterated matrix mutation $\mu_{k_N} \circ \cdots \circ \mu_{k_1}$. Then more directly, when t' is obtained from t by following edges labeled by $\mathbf{k} = (k_N, \dots, k_1)$, we have $\widetilde{B}^{t'} = \mu_{\mathbf{k}} \widetilde{B}$.

A skew-symmetric matrix $B = (b_{ij})$ is acyclic if there is no sequence $i_1, \ldots, i_r, i_{r+1} = i_1$ so that $b_{i_\ell i_{\ell+1}} > 0$ for $1 \le \ell \le r$. In the case when B is acyclic, there exists a permutation σ of $\{1, \ldots, n\}$ so that r < r' implies $b_{\sigma_r \sigma_{r'}} \ge 0$. We also associate to B a Cartan matrix $A = (a_{ij})$ with $a_{ii} = 2$ and $a_{ij} = -|b_{ij}|$ if for $i \neq j$. We say that the mutation pattern is of affine type if there exists acyclic B^t whose associated Cartan matrix gives rise to an affine Dynkin diagram.

Assume there exists $t_+ \in \mathbb{T}_n$ so that $B^{t_+} = (b_{ij}^{t_+})$ is acyclic with $b_{ij}^{t_+} \ge 0$ for i < j. This provides a Coxeter element $c = s_1 \cdots s_n$ in the Weyl group associated to A.

Given $\mathbf{k} = (k_N, \dots, k_1)$ and any \widetilde{B} , define the piecewise-linear mutation map $\eta_{\mathbf{k}}^{\widetilde{B}} : \mathbb{R}^m \to \mathbb{R}^m$ where $\eta_{\mathbf{k}}^{\widetilde{B}}(\nu)$ is the last column of $\mu_{\mathbf{k}}([\widetilde{B} \ \nu])$.

Lemma 2.2.

- (1) $\left(\eta_{\mathbf{k}}^{\widetilde{B}}\right)^{-1} = \eta_{\mathbf{k}^{op}}^{\mu_{\mathbf{k}}\widetilde{B}}, \text{ where } \mathbf{k}^{op} := (k_1, \dots, k_N).$
- (2) Consider a sequence of mutations $\mathbf{k} = \mathbf{k}''\mathbf{k}'$ where $\mu_{\mathbf{k}'}$ goes from t_+ to t' and \mathbf{k}'' goes from t' to t''. Then $\eta_{\mathbf{k}}^{\tilde{B}^{t_+}} = \eta_{\mathbf{k}''}^{\tilde{B}^{t_+}} \eta_{\mathbf{k}'}^{\tilde{B}^{t_+}}$.

For $\lambda \in \mathbb{R}^m$ and a sequence $\mathbf{k} = (k_N, \dots, k_1)$ of mutations from t_+ to t, define

$$S_{\boldsymbol{k},\lambda} := \left\{ \left(\eta_{\boldsymbol{k}}^{\widetilde{B}^{t_+}} \right)^{-1} \left(\eta_{\boldsymbol{k}}^{\widetilde{B}^{t_+}} (\lambda) + \widetilde{B}^t \alpha \right) : \alpha \in \mathbb{R}_{\geqslant 0}^n \right\}.$$

Definition 2.3. For $\lambda \in \mathbb{R}^m$, define the dominance region

$$\mathcal{P}_{\lambda} = \bigcap_{\mathbf{k}} S_{\mathbf{k},\lambda}.$$

When $\mu \in \mathcal{P}_{\lambda}$, we say $\underline{\lambda}$ dominates $\underline{\mu}$. Write $\mathcal{P}_{\lambda}^{\mathbb{Z}} := \mathcal{P}_{\lambda} \cap \widetilde{B}^{+} \cdot \mathbb{Z}_{\geqslant 0}^{n}$.

Theorem 2.4. [?] $\mathcal{P}_{\mathbb{Z}}(\lambda)$ controls the deformations of a basis element pointed at $\widetilde{\lambda}$.

3. Weyl group combinatorics of mutations

Let $A^+ = (a_{ij})$ denote the Cartan companion of B^{t_+} . Fix an n-dimensional vector space V with basis $\alpha_1^{\vee}, \ldots, \alpha_n^{\vee}$, called the <u>simple coroots</u>. Define <u>simple roots</u> $\alpha_i := d_i \alpha_i^{\vee}$ which provide another basis of V. We will use the bilinear pairing K on V defined by $K(\alpha_i^{\vee}, \alpha_j) = a_{ij}$. This defines the <u>simple reflections</u> $s_i(\beta) = \beta - K(\alpha_i^{\vee}, \beta)\alpha_i$ and the corresponding Weyl group $W = \langle s_1, \ldots, s_n \rangle$ acting linearly on V. Write $S = \{s_1, \ldots, s_n\}$ for the collection of simple reflections. Given $I \subseteq S$, let $W_I = \langle s: s \in I \rangle$ denote the parabolic subgroup generated by I. For $s \in S$, write $[s] = S \setminus \{s\}$.

Let $c = s_1 \cdots s_n$ be the <u>Coxeter element</u> of W associated to B^{t_+} . More generally, any element of W that can be obtained as the product of all elements of S in some order is a <u>Coxeter element</u>. An element $s \in S$ is <u>initial</u> in c if $\ell(sc) < \ell(c)$, in this case sc is a Coxeter element of $W_{[s]}$. When s_k is initial in c, $s_k c s_k$ is the Coxeter element associated to $\mu_k B^{t_+}$. An element $w \in W$ is <u>c-sortable</u> if the following recursive definition holds

- the identity element of W is c-sortable;
- if s is initial in c and $\ell(sw) < \ell(w)$, then w is c-sortable if and only if sw is scs-sortable;
- if s is initial in c and $\ell(sw) > \ell(w)$, then w is c-sortable if and only if $w \in W_{\lceil s \rceil}$ is sc-sortable.

Statement about constructing C(v) from skips.

Definition 3.1. We say $\nu, \lambda \in \mathbb{R}^m$ are in the same $\underline{\widetilde{B}^+\text{-}class}$ if they lie in the same domain of linearity for $\eta_{\mathbf{k}}^{\widetilde{B}^+}$ for all sequences \mathbf{k} . Define the <u>mutation fan</u> $\mathcal{F}_{\widetilde{B}^+}$ whose maximal cones are the closures of the $\widetilde{B}^+\text{-}classes$.

Remark 3.2. $\mathcal{F}_{\widetilde{B}^+} = \mathcal{F}_{B^+} \times \mathbb{R}^{m-n}$ since the linearity domain in which ν lies depends only on its first n coordinates.

Cite these results for affine types:

- \mathcal{F}_{B^+} is simplicial and complete
- \mathcal{F}_{B^+} is equivalent to the (transposed) scattering diagram fan and the associahedron(?) fan
- A maximal (by inclusion) cone K in \mathcal{F}_{B^+} is <u>real</u> if there exists $t \in \mathbb{T}_n$ such that $K = K_t := G^t \cdot \mathbb{R}^n_{>0}$, otherwise it is imaginary.
- There is a finite of imaginary cones.

- Any maximal imaginary cone K is n-1 dimensional and is contained in δ^{\perp} (need to define
- There exists N > 0 so that c^N (as it acts on weights) fixes K pointwise
- $-\frac{1}{2}B^+ \cdot \delta$ is one of the primitive vectors spanning a ray of K
- Let $\eta_1, \ldots, \eta_{n-2}$ be the other n-2 primitive vectors spanning rays of K.
- Then there exists a real cone H in \mathcal{F}_{B^+} such that
 - $-\eta_1,\ldots,\eta^{n-2}$ span rays of H
 - $-c^{\ell N}H$ is a real cone for all $\ell \geqslant 0$
 - $\lim_{n \to \infty} c^{\ell N} H = K$

The second condition above defines a sequence $t_{\ell} \in \mathbb{T}_n$ that converges to K.

• Let η_{n-1}, η_n be the remaining primitive vectors spanning rays of H. Then, in the appropriate scaling limit, both of these vectors limit to $-\frac{1}{2}B^+ \cdot \delta$ under the action of $c^{\ell N}$ as

Part of \mathcal{F}_{B^+} is the Cambrian fan after Prop. 5.4 in [?] gives C-matrices explicitly

Theorem 3.3. Let $\widetilde{\lambda}$ be imaginary with s minimal such that $\widetilde{\lambda} + s\widetilde{B}^+ \cdot \delta$ is real. 17. We need to say why such an s exists. SS dominance region $\mathcal{P}(\widetilde{\lambda})$ is the segment $\{\widetilde{\lambda} + r\widetilde{B}^+ \cdot \delta : 0 \leq r \leq s\}$.

Remark 3.4. When \widetilde{B}^+ is full rank, $\mathcal{P}_{\mathbb{Z}}(\widetilde{\lambda})$ contains points of the form $\widetilde{\lambda} + r\widetilde{B}^+ \cdot \delta$ with $r \in \mathbb{Z}_{\geq 0}$. Without the full rank assumption, this no longer has to hold.

Proof.

- $\checkmark \mathcal{P}(\widetilde{\lambda})$ is contained in the imaginary cone. $\mathcal{P}(\widetilde{\lambda})$ is contained in $\widetilde{\lambda} + \widetilde{B}^+ \cdot \mathbb{R}^n_{\geq 0}$ which is a proper cone since \widetilde{B}^+ is full rank. In particular, for sufficiently large r, $\mathcal{P}(\widetilde{\lambda})$ doesn't contain $-r\tilde{B}^+ \cdot \delta$. Then for any point $\tilde{\mu}$ outside the closure of the imaginary cone, for sufficiently large ℓ the vector $c^{\ell}\tilde{\mu}$ has large magnitude and is arbitrarily close the imaginary
- $\mathcal{P}(\widetilde{\lambda})$ is contained in the ray $\{\widetilde{\lambda} + r\widetilde{B}^+ \cdot \delta : r \geq 0\}$.
 - Define green and red regions for real $\tilde{\lambda}$.
 - Compute the green and red regions as $\widetilde{\lambda} \pm \widetilde{B}^+ \cdot C^t \cdot \mathbb{R}^n_{\geq 0}$. Use $\widetilde{G}^t \widetilde{B}^t = \widetilde{B}^+ C^t$.
 - Limits of regions make sense because of continuity after intersecting with domains of linearity.
 - Use limits of C^t to draw the conclusion.
- $\checkmark \mathcal{P}(\widetilde{\lambda}) \text{ contains } \{\widetilde{\lambda} + r\widetilde{B}^+ \cdot \delta : 0 \leq r \leq s\}.$
 - δ spans the kernel of the Cartan companion A of B^+ as well as any number of Coxeter mutations away
 - after sufficiently many Coxeter mutations, the seed t lies entirely on one side of the imaginary hyperplane and so the kernel κ_t of the quasi-Cartan companion is sign coherent

proof: Since $A^t := (C^{\vee,t})^T A_0 C^t$ then $G^t A^t (G^{\vee,t})^T := A_0$. Since G^t is invertible $\overline{A_0 \cdot \delta} = 0$ implies $A^t(G^{\vee,t})^T \cdot \delta = 0$ i.e. $(G^{\vee,t})^T \cdot \delta$ spans the kernel of A^t . After sufficiently many coxeter all the g-vectors at t are on the positive side of δ^{\perp} and the result follows.

- for t' connected to t by mutation in direction k, we want $\eta_k^{\widetilde{B}^t}(\widetilde{B}^t \cdot \kappa_t) = \widetilde{B}^{t'} \cdot \kappa_{t'}$
- $-\eta_k^{\widetilde{B}^t}(\widetilde{B}^t \cdot \kappa_t) = \widetilde{E}_{k,\varepsilon}^t \widetilde{B}^t \cdot \kappa_t = \widetilde{E}_{k,\varepsilon}^t \widetilde{B}^t F_{k,\varepsilon}^t F_{k,\varepsilon}^t \cdot \kappa_t = \widetilde{B}^{t'} \cdot F_{k,\varepsilon}^t \kappa_t \text{ but } \kappa_{t'} = F_{k,\varepsilon_{trop}}^t \kappa_t$

- For Cambrian mutations, ε_{trop} is always positive. This follows from the explicit formula for c-vectors in [?] after Prop. 5.4.
- The k-th row of $F_{k,+}^t + F_{k,-}^t$ is the negative of the k-th row of the associated Cartan companion (not quasi)
- The k-th row of $F_{k,-}^t-F_{k,+}^t$ is the k-th row of \widetilde{B}^t
- The k-th entries of $\widetilde{B}^{t'} \cdot F_{k \in \kappa_t}^t$ and $\widetilde{B}^{t'} \cdot \kappa_{t'}$ are the same
- $-A^{t} := (C^{\vee,t})^{T} A_{0} C^{t}$ $-A^{t'} = (F^{t,\vee}_{k,\varepsilon_{trop}})^{T} A_{t} F^{t}_{k,\varepsilon_{trop}}$
- For (sufficiently) Cambrian seeds t, the sign of the k-th entry of $\widetilde{B}^t(G^{\vee,t})^T\delta$ is the same as the sign of the k-th c-vector since $\widetilde{B}^t(G^{\vee,t})^T\delta = (C^{\vee,t})^TB^+\delta = -2(C^{\vee,t})^T\nu_c(\delta)$ and ν_c is given by the negative of the Euler matrix.

4. c-vectors and q-vectors

Definition c-matrices C^t , for $t \in \mathbb{T}_n$, recursively as follows:

- $C^{t_+} = \mathbb{1}_n$ is the $n \times n$ identity matrix;
- when t and t' are joined by an edge labeled $k, C^{t'} = (c_{ij}^{t'})$ is related to $C^t = (c_{ij}^t)$ by

(3)
$$c_{ij}^{t'} = \begin{cases} -c_{ij}^t & \text{if } i = k \text{ or } j = k; \\ c_{ij}^t + [-\varepsilon c_{ik}^t]_+ b_{kj}^t + c_{ik}^t [\varepsilon b_{kj}^t]_+ & \text{otherwise;} \end{cases}$$

for any choice of sign $\varepsilon \in \{\pm 1\}$.

Following [?, ?] it is known that the column of C^t are always sign-coherent, i.e. all entries of each column $C_{\bullet k}^t$ are either all nonnegative or all nonpositive. Write ε_k^t for the sign of the nonzero entries of the k-th column of C^t . Using this choice of sign, the expression in (3) simplifies to

(4)
$$c_{ij}^{t'} = \begin{cases} -c_{ij}^t & \text{if } i = k \text{ or } j = k; \\ c_{ij}^t + c_{ik}^t [\varepsilon_k^t b_{kj}^t]_+ & \text{otherwise.} \end{cases}$$

Lemma 4.1. Suppose t is obtained from t_+ by mutating along the sequence $\mathbf{k} = (k_N, \dots, k_1)$ passing through $t_+ = t_1, \dots, t_N, t_{N+1} = t$. Then C^t can be factored as $F_{k_1, -\varepsilon_{k_1}}^{t_1} \cdots F_{k_N, -\varepsilon_{k_N}}^{t_N}$.

Proof. The recursion (4) can be rewritten as $C^{t'} = C^t F_{k,-\varepsilon_t^t}^t$ and the claim follows by induction. \square

Define g-matrices \widetilde{G}^t , for $t \in \mathbb{T}_n$, recursively as follows:

- $\widetilde{G}^{t_+} = \mathbb{1}_m$ is the $m \times m$ identity matrix;
- when t and t' are joined by an edge labeled $k, \ \widetilde{G}^{t'} = (g_{ij}^{t'})$ is related to $\widetilde{G}^t = (g_{ij}^t)$ by

(5)
$$g_{ij}^{t'} = \begin{cases} -g_{ik}^t + \sum_{\ell=1}^m g_{i\ell}^t [-b_{\ell k}^t \varepsilon_k^t]_+ & \text{if } j = k; \\ g_{ij}^t & \text{otherwise.} \end{cases}$$

Note that the q-matrices can also be defined via an arbitrary sign $\varepsilon \in \{\pm 1\}$ as in (3), however such a general expression is unnecessary for our purposes.

Remark 4.2. Since we only mutate in directions $k \in [1, n]$, \widetilde{G}^t has the following block form:

$$\left[egin{array}{cc} G^t & 0 \ * & \mathbb{1}_{m-n} \end{array}
ight]$$

where G^t is the $n \times n$ **g**-matrix for the coefficient-free case.

Lemma 4.3. Suppose t is obtained from t_+ by mutating along the sequence $\mathbf{k} = (k_N, \dots, k_1)$ passing through $t_+ = t_1, \dots, t_N, t_{N+1} = t$. Then \widetilde{G}^t can be factored as $\widetilde{E}^{t_1}_{k_1, -\varepsilon^{t_1}_{k_1}} \cdots \widetilde{E}^{t_N}_{k_N, -\varepsilon^{t_N}_{k_N}}$.

Proof. The recursion (5) can be rewritten as $\widetilde{G}^{t'} = \widetilde{G}^t \widetilde{E}^t_{k,-\varepsilon^t}$ and the claim follows by induction. \square

Proof. This is immediate from the definition (5).

Corollary 4.4. For any $t \in \mathbb{T}_n$, we have

$$\widetilde{G}^t \widetilde{B}^t = \widetilde{B}^+ C^t.$$

Proof. Suppose t is obtained from t_+ by mutating along the sequence $\mathbf{k} = (k_N, \dots, k_1)$ passing through $t_+ = t_1, \dots, t_N, t_{N+1} = t$. Then, by definition, we have

$$\widetilde{B}^t = \mu_{\pmb{k}} \widetilde{B}^+ = \widetilde{E}^{t_N}_{k_N, -\varepsilon^{t_N}_{k_N}} \cdots \widetilde{E}^{t_1}_{k_1, -\varepsilon^{t_1}_{k_1}} \widetilde{B}^+ F^{t_1}_{k_1, -\varepsilon^{t_1}_{k_1}} \cdots F^{t_N}_{k_N, -\varepsilon^{t_N}_{k_N}},$$

and the result follows from Lemma 4.1 and Lemma 4.3 using the identity $(E_{k,\varepsilon}^t)^2 = \mathbb{1}_m$.

It will be convenient to introduce $m \times m$ matrices $\widetilde{C}^{\vee,t}$ and $n \times n$ matrices $G^{\vee,t}$ for $t \in \mathbb{T}_n$ defined recursively by $\widetilde{C}^{\vee,t_+} = \mathbb{1}_m$, $G^{\vee,t_+} = \mathbb{1}_n$, and

(6)
$$c_{ij}^{\vee,t'} = \begin{cases} -c_{ij}^{\vee,t} & \text{if } i = k \text{ or } j = k; \\ c_{i,j}^{\vee,t} + c_{i,k}^{\vee,t} [-b_{ik}^t \varepsilon_k^t]_+ & \text{otherwise;} \end{cases}$$

(7)
$$g_{ij}^{\vee,t'} = \begin{cases} -g_{ik}^{\vee,t} + \sum_{\ell=1}^{n} g_{i\ell}^{\vee,t} [\varepsilon_k^t b_{k\ell}^t]_+ & \text{if } j = k; \\ g_{ij}^{\vee,t} & \text{otherwise;} \end{cases}$$

whenever $\widetilde{C}^{\vee,t} = (c_{ij}^{\vee,t})$ (resp. $G^{\vee,t} = (g_{ij}^{\vee,t})$) is related to $\widetilde{C}^{\vee,t'} = (c_{ij}^{\vee,t'})$ (resp. $G^{\vee,t'} = (g_{ij}^{\vee,t'})$) by mutation in direction k.

Remark 4.5. Since we only mutate in directions $k \in [1, n]$, $\widetilde{C}^{\vee, t}$ has the following block form:

$$\left[\begin{array}{cc} C^{\vee,t} & * \\ 0 & \mathbb{1}_{m-n} \end{array}\right]$$

where $C^{\vee,t}$ is the $n \times n$ **c**-matrix for $-B^T$

Lemma 4.6. For $1 \leq k, \ell \leq n$, we have $d_k c_{k\ell}^t = c_{k\ell}^{\vee,t} d_\ell$ and $d_k g_{k\ell}^t = g_{k\ell}^{\vee,t} d_\ell$. In particular, $DC^t = C^{\vee,t}D$ and so the first n columns of $\widetilde{C}^{\vee,t}$ share the same tropical signs with the n columns of C^t .

Proof. The first claim is an easy induction using (4) and (6) or (5) and (7) together with the identity $d_k b_{k\ell}^t = -d_\ell b_{\ell k}^t$. The second claim is an immediate consequence.

Lemma 4.7. Suppose t is obtained from t_+ by mutating along the sequence $\mathbf{k} = (k_N, \dots, k_1)$ passing through $t_+ = t_1, \dots, t_N, t_{N+1} = t$. Then the following hold.

- $(1) \ \widetilde{C}^{\vee,t} \ can \ be \ factored \ as \ \left(\widetilde{E}^{t_1}_{k_1,-\varepsilon^{t_1}_{k_1}}\right)^T \cdots \left(\widetilde{E}^{t_N}_{k_N,-\varepsilon^{t_N}_{k_N}}\right)^T. \ In \ particular, \ \left(\widetilde{C}^{\vee,t}\right)^T = \left(\widetilde{G}^t\right)^{-1}.$ $(2) \ G^{\vee,t} \ can \ be \ factored \ as \ \left(F^{t_1}_{k_1,-\varepsilon^{t_1}_{k_1}}\right)^T \cdots \left(F^{t_N}_{k_N,-\varepsilon^{t_N}_{k_N}}\right)^T. \ In \ particular, \ \left(G^{\vee,t}\right)^T = \left(C^t\right)^{-1}.$

Proof. The recursions (6) and (7) can be written as $\widetilde{C}^{\vee,t'} = \widetilde{C}^{\vee,t} (\widetilde{E}^t_{k,-\varepsilon^t_k})^T$ and $G^{\vee,t'} = G^{\vee,t} (F^t_{k,-\varepsilon^t_k})^T$ respectively. The first claims then follow by induction. The second claims follow from the identities $\left(\widetilde{E}_{k,-\varepsilon_{k}^{t}}^{t}\right)^{2} = \mathbb{1}_{m} \text{ and } \left(F_{k,-\varepsilon_{k}^{t}}^{t}\right)^{2} = \mathbb{1}_{n}.$

Corollary 4.8. For any $t \in \mathbb{T}_n$, we have

$$\widetilde{B}^t (G^{\vee,t})^T = (\widetilde{C}^{\vee,t})^T \widetilde{B}^+$$

The following is a well-known result from representation theory of associative algebras concerning the Euler paring that we recast here to save on notation; see [?] for the details.

Remark 4.9. Say something about quasi-Cartan companions.

There exists a rank 2 cluster algebra with frozen variables η_i , with g-vectors g_k for $k \in \mathbb{Z}$. This gives real clusters $X_k := \{\eta_1, \dots, \eta_{n-2}, \boldsymbol{g}_k, \boldsymbol{g}_{k+1}\}$ such that $\lim_{j\to\infty} c^{j\ell} \boldsymbol{g}_k = \nu_c(\delta)$.

Lemma 4.10. There exist $\lambda_k \in \operatorname{Span}_{\geq 0} X_k$ so that $\lim_{k \to \infty} \lambda_k = \lambda$.

5. Green and Red Regions

Definition 5.1. Consider real $\widetilde{\lambda}$, say $\widetilde{\lambda} \in \widetilde{K}_t := K_t \times \mathbb{R}^{m-n}$. Let t be connected to t_+ by a sequence of edges labeled by $\mathbf{k}^+ = (k_N, \dots k_1)$. Define the <u>green cone</u> $S_{\lambda}^+ := S_{\mathbf{k}^+, \widetilde{\lambda}} \cap \widetilde{K}_t$. Similarly, let $\mathbf{k}^- = (n, \dots, 1, k_N, \dots, k_1)$ and define the <u>red cone</u> $S_{\lambda}^- := S_{\mathbf{k}^-, \tilde{\lambda}} \cap \widetilde{K}_t$.

Define $S_{\lambda}^{\pm} := \lim_{k \to \infty} S_{\lambda_k}^{\pm}$.

Lemma 5.2. $\mathcal{P}(\lambda) \subseteq \Lambda_{\lambda}^{\pm}$

Lemma 5.3. Consider λ inside the g-vector fan, say λ lies inside the cone spanned by G_t . Then the intersection of $\phi_t^{-1}C_t(\phi_t\lambda)$ with this **g**-cone is spanned by the columns of \tilde{B}^+C^t .

Lemma 5.4. Similar statement for the red region

Corollary 5.5. Let $\lambda \in \mathbb{Z}^m$ correspond to a cluster monomial (18). Then $\mathcal{P}(\lambda) = \{\lambda\}$.

Remark 5.6. This uses full rank assumption.

Lemma 5.7. For imaginary λ , $\Lambda_{\lambda}^{+} \cap \Lambda_{\lambda}^{-}$ is the line through λ in direction $\nu_{c}(\delta)$.

Corollary 5.8. Assume \widetilde{B} is affine. For imaginary λ , $\mathcal{P}(\lambda)$ is contained in the line through λ in direction $\nu_c(\delta)$.

6. Affine Type

Let B be an acyclic exchange matrix of affine type with DB skew-symmetric. Write A for the Cartan companion of B and note that A has corank 1. Consider B^t mutation equivalent to B and C^t the associated **c**-matrix.

Let A_0 denote the Cartan companion of B and write δ_0 for the positive vector spanning the kernel of A_0 . For $t \in \mathbb{T}_n$, let $A^t := (C^{\vee,t})^T A_0 C^t$ denote the Reading-Speyer quasi-Cartan companion of B^t [?, Cor. 3.29].

18. Possibly multiplied by a Laurent monomial in coefficients DR

Theorem 6.1. Let δ^t be the absolute value of the kernel of A^t . Then the primitive purely imaginary g-vector direction at the seed t is $-B^t\delta^t/2$.

Lemma 6.2. The matrix $\mathcal{E}^t A^t \mathcal{E}^t$ is an admissible quasi-Cartan companion of B^t of corank 1. Moreover, the kernel of A^t is spanned by a non-negative vector δ^t .

Define
$$\zeta^t := -B^t \delta^t$$
.

Lemma 6.3. The vector ζ^t is an imaginary g-vector.

Lemma 6.4. With respect to the seed t, the **d**-vector of the imaginary theta basis element ϑ_{ζ^t} is δ^t .

 $19.~\mathrm{Is}$ this worth keeping DR