Computer Networks I

Data Link Control Protocols (Medium Access Control Protocols)

(Channel Partitioning, Taking Turns)

Amitangshu Pal
Computer Science and Engineering
IIT Kanpur

Multiple access links, protocols

Two types of "links":

- Point-to-point
 - Point-to-point link between Ethernet switch, host
- Broadcast (shared wire or medium)
 - Old-school Ethernet
 - 802.11 wireless LAN, 4G/5G, satellite

humans at a cocktail party (shared air, acoustical)

shared radio: WiFi

shared radio: satellite

Multiple access protocols

- Single shared broadcast channel
- Two or more simultaneous transmissions by nodes:
 - Collision if node receives two or more signals at the same time

Multiple access protocol

- Distributed algorithm that determines how nodes share channel, i.e., determine when node can transmit
- Communication about channel sharing must use channel itself!
 - no out-of-band channel for coordination

An ideal multiple access protocol

Given: multiple access channel (MAC) of rate R bps Desired rate:

- 1. When one node wants to transmit, it can send at rate R
- 2. When M nodes want to transmit, each can send at average rate R/M
- 3. Fully decentralized:
 - No special node to coordinate transmissions
 - No synchronization of clocks, slots
- 4. Simple

MAC protocols: taxonomy

Three broad classes:

- Channel partitioning
 - Divide channel into smaller "pieces" (time slots, frequency, code)
 - Allocate piece to node for exclusive use
- Taking turns"
 - Nodes take turns, but nodes with more to send can take longer turns
- Random access
 - Use randomization for handling collisions
 - "Recover" from collisions

Channel partitioning protocols: TDMA

TDMA: Time division multiple access

- Access to channel in "rounds"
- Each station gets fixed length slot (length = packet transmission time) in each round
- Unused slots go idle
- Example: 6-station scenario, 1,3,4 have packets to send, slots 2,5,6 idle

Channel partitioning protocols: FDMA

FDMA: Frequency division multiple access

- Channel spectrum divided into frequency bands
- Each station assigned fixed frequency band
- Unused transmission time in frequency bands go idle
- Example: 6-station scenario, 1,3,4 have packet to send, frequency bands 2,5,6 idle

MAC protocols: taxonomy

Three broad classes:

- Channel partitioning
 - Divide channel into smaller "pieces" (time slots, frequency, code)
 - Allocate piece to node for exclusive use
- Taking turns"
 - Nodes take turns, but nodes with more to send can take longer turns
- Random access
 - Use randomization for handling collisions
 - "Recover" from collisions

"Taking turns" MAC protocols

Polling:

- Centralized controller "invites" other nodes to transmit in turn
- Typically used with "dumb" devices
- Concerns:
 - Polling overhead
 - Latency
 - Single point of failure (master)
- Bluetooth uses polling

"Taking turns" MAC protocols

Token passing:

- Control token message explicitly passed from one node to next, sequentially
 - Transmit while holding token
- Concerns:
 - Token overhead
 - Latency
 - Single point of failure (token)

Summary

■ Multiple Access Control:

- Channel partitioning, by time, frequency or code
 - TDMA, FDMA
- Taking turns
 - Polling from central site, token passing