

Scrapable Insights: How Twitter Can Inform on Kenyan Electrical Grid Growth and Development

Shayne T. O'Brien SUNY Geneseo

Margaret Sy UC Berkeley

Dr. Eric Brewer UC Berkeley

This research is funded by NSF Grant No. 1359499.

Background

 Around the world, significant portions of the world population remain "off the grid."

 Being connected does not mean that the power supply is reliable.

Background

Research Question

What can we learn about the reliability and growth of Kenya's electrical grid over time by analyzing public customer service communications?

Data

Data consists of:

- Tweet ID
- Text
- Date
- Time
- Username
- Location*
- GPS Coordinates*

--> Identify outages

@KenyaPower_Care we have had no power from morning one line near tusksy matasia

5:59 - 31 jul. 2016

Outage-related

@kenyapower_care hapa kipkona tunateseka sana wiki hii yote

3:41 - 30 jul. 2016

Swahili Tweet

musundi amos

@KenyaPower_Care 3829409-01-when are you giving us new transformer? The old was dismantled and left on site by your technicians.

2:44 - 28 jul. 2016

Noise (...?)

Workflow

Example Printout

Error Type	Actual	Predicted	Tweet Text
FP	[]	['L1']	@KenyaPower is there a reason you schedule black outs everyday in this area
FN	['L2']	[]	@kenyapower thank you very much lights are back kudos to your team
FN	['L1']	[]	@KenyaPower Hi same story as yesterday and it's now total blackout Please attend
FP	[]	['L1']	@KenyaPower any scheduled maintenance in imara daima
FN	['L2']	[]	@kenyapower Thanks for the reply. Its ok though power came back. Your guys were on it quite fast. Well done.
FN	['L1']	[]	@KenyaPower the whole of riruta satellite.off naivasha rd.kinyanjui road.ngotho rd. plot is called jirani Centre.

- Misclassified tweets pulled from SVM simulation.

Confusion Matrix

		Predicted condition				
	Total population	Predicted Condition positive	Predicted Condition negative	$= \frac{\Sigma \text{ Condition positive}}{\Sigma \text{ Total population}}$		
True condition	condition positive	True positive	False Negative (Type II error)	True positive rate (TPR), Sensitivity, Recall $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Condition positive}}$	False negative rate (FNR), Miss rate $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Condition positive}}$	
	condition negative	False Positive (Type I error)	True negative	False positive rate (FPR), Fall-out $= \frac{\sum \text{False positive}}{\sum \text{Condition negative}}$	True negative rate (TNR), Specificity (SPC) = $\frac{\Sigma \text{ True negative}}{\Sigma \text{ Condition negative}}$	
	Accuracy (ACC) =	Positive predictive value (PPV), Precision $= \frac{\Sigma \text{ True positive}}{\Sigma \text{ Test outcome positive}}$	False omission rate (FOR) $= \frac{\Sigma \text{ False negative}}{\Sigma \text{ Test outcome negative}}$	Positive likelihood ratio (LR+) $= \frac{TPR}{FPR}$	Diagnostic odds ratio (DOR)	
	$\frac{\Sigma \text{ True positive} + \Sigma \text{ True negative}}{\Sigma \text{ Total population}}$	False discovery rate (FDR) $= \frac{\Sigma \text{ False positive}}{\Sigma \text{ Test outcome positive}}$	Negative predictive value (NPV) $= \frac{\Sigma \text{ True negative}}{\Sigma \text{ Test outcome negative}}$	Negative likelihood ratio $(LR-) = \frac{FNR}{TNR}$	$=\frac{LR+}{LR-}$	

$$MCC = \frac{(TP * TN) - (FP * FN)}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

* Test dataset size = 390 tweets

Neural Network

 Common technique in NLP Output layer

y₁ y₂ y₃

Accuracy Increase
 ---> tradeoffs

from linear model

Hidden layer 000

Initialize weights derived

Hidden layer

Input layer

00

 x_2

 r_3

 x_4

Considerations

- Not everyone has access to/uses Twitter.
- Classifiers are not perfect.
- Data are tweets.
- Not just one language.

Considerations

- Location bias.
- Time of day bias.
- Grid expansion and reliability over time.
- Data normalization is complicated.
- Privacy/security issues.

Moving Forward

Ensemble Modeling, Neural Networks

Translation/labeling of Swahili Tweets

Improve Location Parsing

Normalize Results, Further Categorize

Classifier Implementation and Full Analysis in Google Datalab

Acknowledgements

Opr. Eric Brewer

Jordan and Javier

Tiffany

UC Berkeley

Any Questions?

Error Type	Actual	Predicted	Tweet Text	
FP	[]	['L1']	@KenyaPower is there a reason you schedule black outs everyday in this area	
FN	['L2']	[]	@kenyapower thank you very much lights are back kudos to your team	
FN	['L1']	[]	@KenyaPower Hi same story as yesterday and it's now total blackout Please attend	
FP	[]	['L1']	@KenyaPower any scheduled maintenance in imara daima	
FN	['L2']	[]	@kenyapower Thanks for the reply. Its ok though power came back. Your guys wer on it quite fast. Well done.	
FN	['L1']	[]	@KenyaPower the whole of riruta satellite.off naivasha rd.kinyanjui road.ngotho rd. plot is called jirani Centre.	

- Misclassified tweets pulled from SVM simulation.

References

- 1. Brown, Peter F., Peter V. deSouza, and Robert L. Mercer. "Class-Based N-Gram Models Of Natural Language". Association for Computational Linguistics 18.4 (1992): 467-479. Web. 1 Aug. 2016.
- 2. Lee, Kenneth et al. "Electrification For "Under Grid" Households In Rural Kenya". Development Engineering 1 (2016): 26-35. Web.
- 3. "Milestones In Kenya's Electricity Access | Kplc.Co.Ke". Kplc.co.ke. N.p., 2016. Web. 30 July 2016.
- 4. Mikolov, Tomas, Wen-tau Yih, and Geoffrey Zweig. "Linguistic Regularities In Continuous Space Word Representations". NAACL2013, Microsoft Research (2013): 1-6. Web. 27 July 2016.
- 5. Scikit-learn: Machine Learning in Python, Pedregosa et al., JMLR 12, pp. 2825-2830, 2011.
- 6. R. Socher, Naive neural networks for very fast and accurate text classification, Private communication (2013).