Solution: Assignment #7

Consider the following two equations:

Equation-1: $f(x) = x^2 + 3x - 7$

Equation-2: $f(x) = x^3 + 3x^2 + 5x + 7$

Question # 1: [8 Marks] Solve the $1^{\rm st}$ equation $f(x)=\mathbf{0}$ sing Newton's Method. Show your calculation for at least 4 iterations, and also express the numerical values up to five decimal places.

Question # 2: [8 Marks] Solve the $2^{\rm nd}$ equation f(x) = 0 sing Secant Method. Show your calculation up to at least 4 iterations, and also express the numerical values up to five decimal places.

Question # 3: [4 Marks] Explain which technique used in the previous two questions to find the root is better to find x_* . Give at least two reasons.

Qth : Here $f(x) = x^2 + 3n - 7$ 50, f'(x) = 2n + 3 $g(x) = n - \frac{f(x)}{f'(x)} = n - \frac{x^2 + 3n - 7}{2n + 3}$ $= \frac{2x^2 + 3x - x^2 - 3x + 7}{2n + 3}$ $\Rightarrow g(x) = \frac{x^2 + 7}{2n + 3}$ So, meitenation formula 6: $x_{k+1} = g(x_k)$ (x_k) $(x_k = 0_1)$. $x_k = g(x_k)$ (x_k) (x_k) $(x_k = 0_1)$. $x_k = g(x_k)$ (x_k) (x_k)

A#2 $f(x) = x^3 + 3x^2 + 5n + 7$ Here the therature formula is $x_{k+2} = x_{k+1} - \frac{f(x_{k+1})(x_{k+1} - x_k)}{f(x_{k+1}) - f(x_k)}$ with k = 0, 1, 2, ----, etc.(it's chose: $x_0 = 0$ and $x_1 = 1$ $(x_1 - x_0) = 0.77778$. $(x_2 - x_1 - \frac{f(x_0)(x_1 - x_0)}{f(x_1 - f(x_0))} = 0.77778$. $(x_3 - x_1 - \frac{f(x_0)(x_1 - x_0)}{f(x_1) - f(x_0)} = 2.25825$. $(x_1 - x_0) = \frac{f(x_1) - f(x_1)}{f(x_1) - f(x_2)} = 3.9862$ $(x_1 - x_0) = \frac{f(x_1) - f(x_2)}{f(x_1) - f(x_2)} = 3.9862$ After u iterations: $(x_1 - x_0) = x_1$ After u iterations: $(x_2 - x_1) = x_1$ $(x_1 - x_0) = x_1$ $(x_2 - x_0) = x_1$ $(x_1 - x_0) = x_1$

Uring the secont

(i) No need to worsy about the turning point because f'(x) is not involved.
(ii) Only one function to be calculated per iteration.