TRABAJO ESPECIAL DE GRADO

DISEÑO DE UN SENSOR INTELIGENTE PARA APLICACIONES DE MONITOREO DE SALUD ESTRUCTURAL

Presentado ante la ilustre Universidad Central de Venezuela por el Br. Jose Alejandro Tovar Briceño para optar al título de Ingeniero Electricista.

Caracas, noviembre de 2023

TRABAJO ESPECIAL DE GRADO

DISEÑO DE UN SENSOR INTELIGENTE PARA APLICACIONES DE MONITOREO DE SALUD ESTRUCTURAL

TUTOR ACADÉMICO: MSc Jose Romero

Presentado ante la ilustre Universidad Central de Venezuela por el Br. Jose Alejandro Tovar Briceño para optar al título de Ingeniero Electricista.

Caracas, noviembre de 2023

RECONOCIMIENTOS Y AGRADECIMIENTOS

Autor del Trabajo de Grado

Título del Trabajo de Grado

Tutor Académico: MSc Jose Romero. Tesis. Caracas, Universidad Central de Venezuela. Facultad de Ingeniería. Escuela de Ingeniería Eléctrica. Mención Electrónica y Control. Año 2023, xvii, 144 pp.

Palabras Claves: Palabras clave.

Resumen.- Escribe acá tu resumen

ÍNDICE GENERAL

RECONOCIMIENTOS Y AGRADECIMIENTOS	III				
ÍNDICE GENERAL VI					
LISTA DE FIGURAS	XI				
LISTA DE TABLAS	XII				
LISTA DE ACRÓNIMOS	XIII				
INTRODUCCIÓN	1				
MARCO REFERENCIAL	5				
1.1. Planteamiento del problema	5				
1.2. Justificación	5				
1.3. Objetivos	5				
1.3.1. Objetivo general	5				
1.3.2. Objetivos específicos	5				
1.4. Antecedentes	5				
MARCO TEÓRICO	6				
2.1. Estructuras civiles	6				
2.1.1. Características generales	6				
2.1.2. Tipos de estructuras	6				
2.1.3. Comportamiento de las estructuras civiles	7				

	2.1.4.	Respuesta en frecuencia	11
	2.1.5.	Daño en estructuras	11
	2.1.6.	Principios de la Sismoresistencia	12
2.2.	Salud	estructural	15
	2.2.1.	Definición	15
	2.2.2.	Reseña histórica	15
	2.2.3.	Línea de trabajo del Monitoreo de Salud Estructural	15
	2.2.4.	Métodos de identificación de daño	15
	2.2.5.	Criterios de evaluación	15
	2.2.6.	Variables de interés	15
	2.2.7.	Consideraciones y desafíos	15
MARCO METODOLÓGICO			16
DESARROLLO			17
PRUEBAS EXPERIMENTALES			18
RESULTADOS			19
CONCLUSIONES		20	
RECOMENDACIONES		21	
TÍTULO DEL ANEXO		22	
TÍTULO DEL ANEXO			23
TÍTULO DEL ANEXO			24

REFERENCIAS 25

LISTA DE FIGURAS

2.1.	Modelo de masa concentrada de 1 grado de libertad (Fuente: Intro-	
	ducción a la Dinámica Estructural)	9
2.2.	Respuesta ante vibración libre en sistema Subamortiguado (Fuente:	
	Introducción a la Dinámica Estructural)	11

LISTA DE TABLAS

LISTA DE ACRÓNIMOS

INTRODUCCIÓN

La seguridad de las infraestructuras es un tema de gran importancia en la actualidad, especialmente cuando se trata de estructuras como edificios o puentes.

Los primeros indicios del monitoreo del estado de las infraestructuras data de nuestros comienzos como especie sedentaria. En la antigüedad, los especialistas utilizaban técnicas de inspección visual y auditiva para detectar posibles problemas en las estructuras, como grietas o ruidos inusuales. Con el tiempo, se desarrollaron técnicas más avanzadas para el monitoreo de estructuras, como la utilización de medidores de deformación, inclinación, sensores de vibración, entre otros.

La integración de la instrumentación con el análisis estructural comenzó a desarrollarse en la década de 1960 con el advenimiento de la informática y la disponibilidad de computadoras capaces de realizar cálculos estructurales complejos. En esa época, se comenzaron a utilizar sistemas de adquisición de datos para recopilar información sobre el comportamiento de las estructuras en tiempo real y utilizarla para calibrar y validar los modelos estructurales.

Actualmente, las normas sismo-resistentes apuntan a estructuras que sean capaces de mantener su integridad ante un evento de cierta magnitud. Además, el monitoreo continuo de ciertos indicadores en la estructura permiten determinar un índice de la salud estructural y ajustar el modelo a las condiciones actuales de la misma para evaluar el cumplimiento de la normativa sismorresistente. Para el monitoreo a largo plazo, el resultado de este proceso es información actualizada periódicamente sobre la capacidad de la estructura para desempeñar su función prevista a la luz del inevitable envejecimiento y degradación resultantes de los

entornos operativos.

Según Balageas, Fritzen, y Güemes (2010), el monitoreo de la salud estructural (SHM) tiene por objeto proporcionar, en cada momento de la vida de una estructura, un diagnóstico del estado de los materiales constitutivos, de las diferentes partes, y del conjunto de estas partes que constituyen la estructura en su totalidad. El estado de la estructura debe permanecer en el ámbito especificado en el diseño, aunque este puede verse alterado por el envejecimiento normal debido al uso, por la acción del medio ambiente y por sucesos accidentales. Gracias a la dimensión temporal de la supervisión, que permite tener en cuenta toda la base de datos histórica de la estructura, y con la ayuda del monitoreo del funcionamiento. También puede proporcionar un pronóstico (evolución de los daños, vida residual, entre otros).

Si consideramos solo la primera función, el diagnóstico, podríamos estimar que el monitoreo de la salud estructural es una forma nueva y mejorada de realizar una evaluación no destructiva. Esto es parcialmente cierto, pero SHM es mucho más. Implica la integración de sensores, posiblemente materiales inteligentes, transmisión de datos, potencia computacional y capacidad de procesamiento en el interior de las estructuras. Permite reconsiderar el diseño de la estructura y la gestión completa de la propia estructura y de la estructura considerada como parte de sistemas más amplios.

En este sentido, el monitoreo de las estructuras se ha convertido en una herramienta esencial para garantizar la seguridad de las personas durante la vida útil de la misma, incluyendo la ocurrencia de eventos de cierta magnitud. Además, el monitoreo de las estructuras puede ayudar a mejorar la eficacia de las normas sismorresistentes, ya que permite validar y mejorar los modelos estructurales utilizados en la normativa.

Según Nagayama (2007), dado que las edificaciones suelen ser grandes y complejas, la información de unos pocos sensores es inadecuada para evaluar con precisión el estado estructural. El comportamiento dinámico de estas estructuras es complejo tanto a escala espacial como temporal. Además, los daños y/o el deterioro es intrínsecamente un fenómeno local. Por lo tanto, para comprender el comportamiento dinámico, el movimiento de las estructuras debe ser supervisado por sensores con una frecuencia de muestreo suficiente para captar las características dinámicas más destacadas. Esta información combinada con el registro del comportamiento estático de la estructura permiten tener una visión más amplia del estado actual de la estructura.

El primer paso, además de un mantenimiento adecuado, para garantizar la seguridad de estas estructuras, es contar con sistemas de monitoreo que permitan detectar posibles daños o fallas en su funcionamiento y tomar medidas preventivas. Por tanto, los sistemas de adquisición de datos y monitoreo son herramientas esenciales en la prevención de accidentes y daños.

A su vez, según Nagayama (2007), un dispositivo inteligente, es decir, con capacidad de procesamiento de datos en el caso de los sensores, es una característica esencial que permite incrementar el potencial de los sensores al ser estos inalámbricos. Los sensores inteligentes pueden procesar localmente los datos medidos y trasmitir solo la información importante a través de comunicaciones inalámbricas. Cuando estos son configurados como una red, se extienden las capacidades de los mismos.

Los sensores inteligentes, con sus capacidades de cómputo y de comunicación integradas, ofrecen nuevas oportunidades para la SHM. Sin necesidad de cables de alimentación o comunicación, los costes de instalación pueden reducirse drásticamente. Los sensores inteligentes ayudarán a que el monitoreo de las estructuras con un denso conjunto de sensores sea económicamente práctico. Se espera que los

sensores inteligentes instalados en masa sean fuentes de información muy valiosa para la SHM.

En este trabajo de grado se abordará el diseño para una futura implementación de un sistema de adquisición de datos de bajo costo basado dispositivos programables con capacidad de interconexión para el monitoreo y procesamiento de variables como aceleración, inclinación, humedad y temperatura en estructuras críticas, con el objetivo de prevenir daños y accidentes.

CAPÍTULO I

MARCO REFERENCIAL

- 1.1. Planteamiento del problema
- 1.2. Justificación
- 1.3. Objetivos
- 1.3.1. Objetivo general
- 1.3.2. Objetivos específicos
- 1.4. Antecedentes

CAPÍTULO II

MARCO TEÓRICO

En este capítulo se definirán los conceptos o fundamentos de instrumentación estructural, sensores inteligentes y adquisición de datos, necesarios para llevar a cabo esta investigación.

2.1. Estructuras civiles

2.1.1. Características generales

Una estructura se refiere a un sistema de partes o elementos que se interconectan para cumplir una función es específico. En el caso de la ingeniería civil,
suelen ser miembros que se utilizan para soportar una carga. Algunos ejemplos
importantes son los edificios, los puentes y las torres; y en otras ramas de la
ingeniería, son importantes las corazas de barcos y aviones, los sistemas mecánicos
y las estructuras que soportan las líneas de transmisión eléctrica (Hibbeler y
Nolan, 1997).

2.1.2. Tipos de estructuras

Según Hibbeler y Nolan (1997), cada sistema está formado por uno o varios de los cuatro tipos básicos de estructuras:

- Celosías.
- Cables y arcos.
- Armazones.
- Estructuras de superficie.

En general, estos elementos suelen soportar cargas, pueden ser estacionarios y también estar restringidos. Sus diferencias suelen basarse en la cantidad de fuerzas a las que están sujetos estos elementos en un instante dado.

La combinación de estos elementos y los materiales que los componen es lo que se denomina un sistema estructural. Estos sistemas, aunque sean pasados por alto, son utilizados diariamente por industrias y personas, siendo elementos claves en el desarrollo y progreso de la civilización actual.

2.1.3. Comportamiento de las estructuras civiles

La gran mayoría de los sistemas cuentan con una respuesta dinámica y estática. Ambas respuestas permiten conocer el comportaiento completo del sistema en estudio ante distintas entradas o en diferentes situaciones. Al estudiar el comportamiento estructural se encuentra una extensa literatura tanto para el estudio dinámico como para el régimen estático, recopilándose lo siguiente:

Respuesta estática: En la ingeniería civil toda estructura se diseña para que se encuentre en reposo cuando actúan sobre esta fuerzas externas, es decir, la estructura en conjunto debe cumplir con las condiciones de equilibrio, siendo la fuerza y el momento resultanto sobre esta igual a cero en todo momento. Para describir estas condiciones de equilibrio se cuentan con herramientas matemáticas que proporcionan las condiciones necesarias para su cumplimiento. Estas ecuaciones permiten la resolución estática de la estructura, la cual permite determinar el valor de todas las incógnitas estáticas de interés (Basset Salom, 2014).

Cuando las fuerzas que actúan sobre la estructura pueden calcularse a partir de las ecuaciones de equilibrio, se tiene una estructura en equilibrio y se denonima estructura estáticamente determinada. En caso de tenerse más fuerzas desconocidas que ecuaciones de equilibrio se habla de una estructura estáticamente indeterminada.

- Rigidez: Uno de los parámetros más importantes dentro de la respuesta estática es la rigidez. Esta se define como la propiedad que tiene un elemento estructural de soportar la deformación o deflección al estar bajo la acción de una fuerza o carga. Una medida de la rigidez viene dada por el Módulo de Young; esta es una constante del material y es independiente de la cantidad de material.
- Respuesta dinámica: La dinámica estructural se encarga de estudiar el efecto que tienen cargas dinámicas sobre el sistema. La respuesta ante estos eventos, como pueden ser sismos, vientos, equipos mecánicos, paso de vehículos o personas, se denomina respuesta dinámica (Hurtado, 2000). Además, la respuesta dinámica permite caracterizar algunos parámetros de gran interés para estudiar su comportamiento conocidos como parámetros modales. Estos parámetros surgen al estudiar las ecuaciones diferenciales que describen el movimiento de la estructura, partiendo de un modelo idealizado simple de masa concentrada como el de la Figura 2.1.

Figura 2.1. Modelo de masa concentrada de 1 grado de libertad (Fuente: Introducción a la Dinámica Estructural).

La dinámica de este modelo puede describirse utilizando la ecuación diferencial de movimiento:

$$m\ddot{u} + f_R(t) = p(t) \tag{2.1}$$

La ecuación 2.1 se conoce como ecuación de vibración libre sin amortiguamiento. Donde p(t) representa las cargas dinámicas y $f_R(t)$ la fuerza de restitución propia de un material elástico. Esta ecuación es una ecuación diferencial de coeficientes constantes, que consta de una solución homogénea más una solución particular. La solución homogénea será la respuesta de la estructura a la vibración libre, es decir, si la masa de la Figura 2.1 se deja oscilar libremente.

Se sabe que una ecuación de este tipo tendrá una solución como:

$$u = A.\sin\omega t + B.\cos\omega t \tag{2.2}$$

La ecuación 2.2 contiene información relevante para la caracterización dinámica de la estructura. Esta caracterización parte del estudio de los parámetros modales de la misma.

Entre estos parámetros modales se encuentran:

• Frecuencia natural: Toda estructura física tiene asociada una frecuencia de vibración natural. Las máquinas, los puentes, los edificios; todas estas estructuras vibran u oscilan al ser perturbadas o removidas de su estado de reposo inicial. Es una propiedad es intrínseca del sistema y depende de su masa, rigidez y amortiguamiento. Todas tienen al menos una frecuencia natural y es posible que tengan múltiples frecuencias de resonancia (Irvine, 2000).

Se suele calcular la frecuencia natural de resonancia de un sistema libre usando:

$$f = \frac{1}{\sqrt{\frac{k}{m}}} \tag{2.3}$$

- Amortiguamiento: Toda estructura comienza a oscilar una vez es removida de su estado de reposo o equilibrio, sin embargo, ese movimiento no es perpetuo. El amortiguamiento se define como la capacidad de disipación de energía que posee la estructura bajo excitaciones externas.
 Las soluciones a la ecuación 2.1, al añadir el amortiguamiento de tipo viscoso, arrojan 3 posibles casos:
 - 1. Sistema críticamente amortiguado: El sistema no vibra.
 - 2. Subamortiguado o amortiguado subcrítico: Caso más común por la naturaleza de los materiales utilizados en las estructuras. La respuesta del sistema decae con el tiempo de forma exponencial, como se puede ver en la Figura 2.2.

Figura 2.2. Respuesta ante vibración libre en sistema Subamortiguado (Fuente: Introducción a la Dinámica Estructural).

3. Sobreamortiguado: Nunca se encuentra esta respuesta en sistemas estructurales por los materiales utilizados.

2.1.4. Respuesta en frecuencia

Incluir?

2.1.5. Daño en estructuras

El daño a una estructura civil o mecánica puede definirse como todo cambio en las propiedades materiales o geométricas del material que llegan a afectar de forma adversa la confiabilidad y el desempeño actual o futuro del sistema. Por tanto, el daño es una comparación entre el sistema en cuestión en 2 instantes de tiempo distintos (Farrar y Worden, 2007). Estos efectos adversos pueden ser, en el caso estructural, desplazamientos, estrés indeseado en un elemento o vibraciones estructurales indeseadas (Chen, 2018).

Toda estructura civil, como puentes y edificios, acumulan daño de forma continua a medida que están en servicio y transcurre su vida útil. Este daño puede manifestarse como fracturas, fatiga, socavaciones o desprendimiento del concreto. El daño que no sea detectado puede conducir a una falla estructural que a su vez ocasione pérdidas humanas. Por tanto, es imperativo y necesario detectar el daño en una estructura tan pronto como sea posible, (Chen, 2018).

Entre algunos de los factores que influyen del deterioro de una estructura se encuentran:

- Proceso de degradación natural de los materiales.
- Corrosión del acero de refuerzo.
- Evento sísmico, incendios o condiciones de guerra.
- Carga por encima del límite de diseño.

Las escalas de tiempo y de extensión del daño son diversas. Por ejemplo, el deterioro por el paso del tiempo bajo ciertas condiciones climáticas es muy lento comparado al daño causado por un evento catastrófico.

2.1.6. Principios de la Sismoresistencia

Una edificación sismorresistente es aquella que está diseñada y construida para soportar las fuerzas causadas por eventos sísmicos. Sin embargo, incluso las edificaciones diseñadas y construidas según las normas sismorresistentes pueden sufrir daños en caso de un terremoto muy fuerte, sin embargo, las normas establecen los requisitos mínimos para proteger la vida de las personas que ocupan la edificación

Algunas de las características de una estructura sismoresistente son:

- Forma regular.
- Bajo peso.
- Mayor rigidez.
- Buena estabilidad.
- Suelo firme y buena cimentación.
- Materiales competentes.
- Capacidad de disipación de energía.
- Fijación de acabados e instalaciones.

En Venezuela las estructuras deben cumplir con la Norma Venezolana CO-VENIN 1756:2001 (Edificaciones Sismorresistentes).

Se ha observado que al estudiar el comportamiento de las estructuras luego de un evento sísmico, es evidente que cuando se toman en cuenta las normas de diseño sismorresistente dispuestas en la ley y la construcción es debidamente supervisada, los daños estructurales resultan ser considerablemente menores que en las edificaciones en las cuales no se cumplen los requerimientos mínimos indispensables estipulados en la norma, (Blanco, 2012).

Importancia de la instrumentación

La instrumentación estructural permite medir y monitorear las acciones y respuestas estructurales ante distintos eventos. Esto proporciona datos en tiempo real sobre el comportamiento dinámico y estático de la estructura, como deformaciones, aceleraciones y desplazamientos, que son fundamentales para evaluar

y verificar si la estructura cumple con los criterios de diseño sismoresistente establecidos en la norma.

La instrumentación estructural ayuda a validar los modelos y suposiciones utilizados en el diseño estructural inicial. Al comparar los datos recopilados por la instrumentación durante un evento sísimco con las predicciones del modelo, es posible verificar si la estructura se comporta de acuerdo con las expectativas y si cumple con los criterios de seguridad establecidos en la normas.

Además, el monitoreo continuo de la estructura permite conocer el estado actual de la misma, tema que representa la idea principal del Monitoreo de Salud Estructural, permitiendo a los ingenieros evaluar si se sigue cumpliendo con la norma para luego tomar decisiones y actuar en pro de la seguridad de la edificación.

2.2. S	alud estructural	
2.2.1.	Definición	
2.2.2.	Reseña histórica	
2.2.3.	Línea de trabajo del Monitoreo de Salud Estructural	
2.2.4.	Métodos de identificación de daño	
Basado en modelo		
Basado en respuesta		
2.2.5.	Criterios de evaluación	
2.2.6.	Variables de interés	

 ${\bf 2.2.7.}\quad {\bf Consideraciones}\ {\bf y}\ {\bf desafíos}$

CAPÍTULO III

MARCO METODOLÓGICO

CAPÍTULO IV

DESARROLLO

CAPÍTULO V

PRUEBAS EXPERIMENTALES

CAPÍTULO VI

RESULTADOS

CAPÍTULO VII

CONCLUSIONES

CAPÍTULO VIII

RECOMENDACIONES

Apéndice I

TÍTULO DEL ANEXO

Apéndice II

TÍTULO DEL ANEXO

Apéndice III

TÍTULO DEL ANEXO

REFERENCIAS

- Balageas, D., Fritzen, C.-P., y Güemes, A. (2010). Structural health monitoring (Vol. 90). John Wiley & Sons.
- Basset Salom, L. (2014). Análisis estático de estructuras planas. oai:riunet .upv.es:10251/38538.
- Blanco, M. (2012). Criterios fundamentales para el diseño sismorresistente.

 Revista de la Facultad de Ingeniería Universidad Central de Venezuela,
 27(3), 071–084.
- Chen, H.-P. (2018). Structural health monitoring of large civil engineering structures (Vol. 1). John Wiley & Sons Ltd.
- Farrar, C. R., y Worden, K. (2007). An introduction to structural health monitoring. *Philosophical Transactions of the Royal Society A:*Mathematical, Physical and Engineering Sciences, 365(1851), 303–315.
- Hibbeler, R. C., y Nolan, G. (1997). Structural analysis. Prentice Hall Upper Saddle River, New Jersey New Jersey.
- Hurtado, J. E. (2000). Introducción a la dinámica de estructuras. *Universidad Nacional de Colombia SEDE Manizales*.
- Irvine, T. (2000). An introduction to frequency response functions. Rapport, College of Engineering and Computer Science, 2000.
- Nagayama, B. F., Tomonori y Spencer Jr. (2007). Structural health monitoring using smart sensors. Newmark Structural Engineering Laboratory Report Series 001.