

FOTOVOLTAICA, BIOMASA Y COGENERACION

BLOQUE I: Principios de generación y diseño de instalaciones fotovoltaica. Clase IV

- 1) Pérdidas de energía tolerables
- 2) Temperatura que no deteriore su integridad
- 3) Evitar la posibilidad de accidentes

4.1 Cálculo de la caída de tensión (I/II)

$$U = I \cdot R \tag{1}$$

$$R = L/(S \cdot k)$$

$$S = \left(\frac{2}{k}\right) \cdot \left(\frac{I}{U_a}\right) \cdot L \tag{2}$$

- *U* caída de tensión en V
- *I* intensidad en A
- R resistencia del conductor en Ω
- *L* longitud del conductor en m
- S área de la sección recta en mm²
- k conductividad en $(m/(\Omega \cdot mm^2))$

4.1 Cálculo de la caída de tensión (II/II)

$$U = Z \cdot I \tag{3}$$

donde:

- *U* caída de tensión en V
- $Z^2 = R^2 + [2 \cdot \pi \cdot n \cdot L (2 \cdot \pi \cdot n \cdot C)^{-1}]^2$ es la impedancia del circuito en Ω
- *I* intensidad en A
- R resistencia del conductor en Ω
- *n* la frecuencia de la corriente en Hz
- L la autoinducción en Henrios (H)
- C capacidad del circuito en F

Material	Cable de cobre	Cable de aluminio		Plata pura
Conductividad a 20 °C m/(Ω·mm²)	56	35	15	63

Conductividad de algunos materiales

- 4. Conocimientos básicos
- 4.2 Pérdida de energía y calentamiento del conductor (I/III)

$$P = R \cdot I^2 \tag{1}$$

- P es la energía perdida por unidad de tiempo, en W
- R resistencia del conductor en Ω
- I intensidad en A

- 4. Conocimientos básicos
- 4.2 Pérdida de energía y calentamiento del

D

conductor (II/III)

$$Q = \alpha \cdot C \cdot L \cdot \Delta T$$

$$D^{3} = \left(\frac{4}{\pi^{2}}\right) \cdot (k \cdot \alpha \cdot \Delta T)^{-1} \cdot I^{2}$$

(Para un conductor macizo y de sección circular)

- Q calor disipado por unidad de tiempo en W
- α coeficiente global de transmisión de calor referido a la superficie metálica, en $W/m^2 \cdot K$
- C perímetro del conductor, en m
- L longitud del conductor, en m
- ΔT diferencia de temperatura entre el cable y el exterior, en K
- D diámetro del conductor metálico, en mm
- k conductividad en $(m/(\Omega \cdot mm^2))$
- I intensidad en A

- 4. Conocimientos básicos
- 4.2 Pérdida de energía y calentamiento del conductor (|||/|||)

$$D^{3} = \left(\frac{4}{\pi^{2}}\right) \cdot (k \cdot \alpha \cdot \Delta T)^{-1} \cdot I^{2}$$

(Para un conductor macizo y de sección circular)

- diámetro del conductor metálico, en mm • D
- conductividad en $(m/(\Omega \cdot mm^2))$
- coeficiente global de transmisión de calor referido a la superficie metálica, en $W/m^2 \cdot K$
- diferencia de temperatura entre el cable y el exterior, en K
- intensidad en A

- El diámetro del conductor debe aumentar al aumentar la intensidad de la corriente.
- El coeficiente de transmisión de calor (α) depende de las capas de aislante y de la situación del conductor
- Debe tenerse en cuenta la temperatura del espacio por donde pasa el cable

4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable (I/III)

1) Cálculo de la sección mínima aceptable

$$S = \left(\frac{2}{k}\right) \cdot \left(\frac{I}{U}\right) \cdot L \tag{2}$$

donde

S área de la sección recta en mm² conductividad en $(m/(\Omega \cdot mm^2)$

U caída de tensión en V

L longitud del conductor en m

- 4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable (II/III)
- 2) Identificación del método de instalación de referencia mediante la tabla 52-B1 de la norma UNE 20460-5-523:2004.

TABLA 52	B1 (UNE 20460-5-52	3:20									
			Ц		•	columna					
						ara los circuit	_				
					niento	Aislaı	niento				
				PVC XLPE o EP							
Instal	ación de referencia			Número de conductores							
				2	3	2	3				
Local	Conductores aislados en un conducto en una pared térmicamente aislante	A1	A	Tabla 52-1 bis lumna 4	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 6				
Local	Cable multiconductor en un conducto en una pared térmicamente aislante	A2	A	Tabla 52-1 bis lumna 3	Tabla A.52-1 bis columna 2	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5				
	Conductores aislados en un conducto sobre una pared de madera o mampostería	B1	A	Tabla 52-1 bis lumna 6	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8				
	Cable multiconductor en un conducto sobre una pared de madera o mampostería	В2	A	Tabla 52-1 bis lumna 5	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 7				
3 ⊙	Cables unipolares o multipolares sobre una pared de madera o mampostería	С	A	Tabla 52-1 bis lumna 8	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 11	Tabla A.52-1 bis columna 9				
	Cable multiconductor en conductos enterrados	D	A	Tabla 52-2 bis lumna 3	Tabla A.52-2 bis columna 4	Tabla A.52-2 bis columna 5	Tabla A.52-2 bis columna 6				
© © © © © © © © © © © © © © © © © © ©	Cable multiconductor al aire libre Distancia al muro no inferior a 0,3 veces el diámetro del cable	E	A	Tabla 52-1 bis lumna 9	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 12	Tabla A.52-1 bis columna 10				
90 000 0	Cables unipolares en contacto al aire libre Distancia al muro no inferior al diámetro del cable	F		Tabla 52-1 bis umna 10	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 13	Tabla A.52-1 bis columna 11				
, o . o o	Cables unipolares espaciados al aire libre Distancia entre ellos como mínimo el diámetro del cable	G			Ver UNE 20460-5-523		Ver UNE 20460-5-523				
XLPE: Polietileno	reticulado (90ºC) EPR:	Etiler	10-	ropileno (9	90ºC) PVC :	Policloruro de	vinilo (70ºC)				

Reproducción de la tabla 52-B1 (UNE 20460-5-523:2004)

Cobre: $\rho_{20} = 1/56 \ \Omega \text{mm}^2/\text{m}$; Aluminio: $\rho_{20} = 1/35 \ \Omega \text{mm}^2/\text{m}$

- 4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable (III/III)
- 3) Identificación del método de instalación de referencia mediante la tabla 52-B1 de la norma UNE 20460-5-523:2004.

TABLA A.52-1 BIS (UNE 20460-5-523:2004) Intensidades admisibles en amperios

Reproducción de la tabla 52-B1 BIS (UNE 20460-5-523:2004)

4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1

Un generador fotovoltaico que tiene una potencia nominal de 1 kW y una tensión de 24 V se conecta al regulador mediante conductores de cobre, con aislante de polietileno reticulado (XLPE), bajo tubo al aire y la caída de tensión máxima admisible es del 1.5%. La distancia entre el generador y el regulador, siguiendo el trazado del cable, es 20 m. La conductividad del cobre a 20 $^{\circ}$ C es 56 m/(Ω · mm²).

Calcular la sección del cable.

4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos I/IV)

Paso 1: Cálculo de la conductividad aceptando que la temperatura del interior del cable puede llegar a 90 ºC.

$$k_{90} = \frac{k_{20}}{K_{\theta}} = \frac{56}{1.28}$$

donde

 k_{90} conductividad del conductor a la temperatura de 90 °C (en m/ $(\Omega \cdot mm^2)$

 k_{20} conductividad del conductor a la temperatura de 20 ºC (en m $/(\Omega \cdot mm^2)$

 K_{θ} constante correctora para "convertir" la conductividad de referencia (20 °C) a la conductividad a 90 °C

4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos II/IV)

```
Paso 2: Cálculo de la intensidad nominal; I = \frac{P}{V}
```

Paso 3: Cálculo de la caída de tensión; $U = V \cdot \Delta V\%$

```
Paso 4: Cálculo de la sección necesaria; S = \left(\frac{2}{k_{90}}\right) \cdot \left(\frac{I}{U}\right) \cdot L
```


4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos III/IV)

Paso 5: Identificación de la sección según la norma UNE 20460-5-523:2004 para un aislamiento de XLPE y dos conductores.

TABLA 52-	TABLA 52-B1 (UNE 20460-5-523:2004) Métodos de instalación de referencia											
				Tabla y columna Intensidad admisible para los circuitos simples								
				miento		miento						
			PV	vc		o EPR						
Instal	lación de referencia			Número de conductores 2 3 2 3								
		\vdash		3		3						
Local	Conductores aislados en un conducto en una pared térmicamente aislante	A1	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 6						
Local	Cable multiconductor en un conducto en una pared térmicamente aislante	A2	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 2	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5						
	Conductores aislados en un conducto sobre una pared de madera o mampostería	B1	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8						
	Cable multiconductor en un conducto sobre una pared de madera o mampostería	B2	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 7						
⊗	Cables unipolares o multipolares sobre una pared de madera o mampostería	С	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 11	Tabla A.52-1 bis columna 9						
0	Cable multiconductor en conductos enterrados	D	Tabla A.52-2 bis columna 3	Tabla A.52-2 bis columna 4	Tabla A.52-2 bis columna 5	Tabla A.52-2 bis columna 6						
8	Cable multiconductor al aire libre Distancia al muro no inferior a 0,3 veces el diámetro del cable	E	Tabla A.52-1 bis columna 9	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 12	Tabla A.52-1 bis columna 10						
9	Cables unipolares en contacto al aire libre Distancia al muro no inferior al diámetro del cable	F	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 13	Tabla A.52-1 bis columna 11						
,	Cables unipolares espaciados al aire libre Distancia entre ellos como mínimo el diámetro del cable	G		Ver UNE 20460-5-523		Ver UNE 20460-5-523						
XLPE: Polietileno	XLPE: Polietileno reticulado (90°C) EPR: Etileno-propileno (90°C) PVC: Policloruro de vinilo (70°C)											

Cobre: $\rho_{20} = 1/56 \Omega \text{mm}^2/\text{m}$; Aluminio: $\rho_{20} = 1/35 \Omega \text{mm}^2/\text{m}$

 $\rho = K_{\theta} \cdot \rho_{20}$

Para el cobre y el aluminio: $\theta = 70^{\circ}\text{C} \rightarrow \text{K}_{\theta} = 1,20$; $\theta = 90^{\circ}\text{C} \rightarrow \text{K}_{\theta} = 1,28$

- 4. Conocimientos básicos
- 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos IV/IV)

Paso 6: Selección de la sección normalizada dentro de la norma UNE 20460-5-523:2004 para un aislamiento de XLPE y dos conductores.

TABLA A.52-1 BIS (UNE 20460-5-523:2004) Intensidades admisibles en amperios Temperatura ambiente 40 °C en el aire

Método de instalación de la tabla 52-B1		Número de conductores cargados y tipo de aislamiento											
A1		PVC3	PVC2		XLPE3	XLPE2							
A2	PVC3	PVC2		XLPE3	XLPE2	XEI EE							
B1				PVC3	PVC2		XLPE3		XLPE2				
B2			PVC3	PVC2		XLPE3	XLPE2						
С					PVC3		PVC2	XLPE3		XLPE2			
E						PVC3		PVC2	XLPE3		XLPE2		
F							PVC3		PVC2	XLPE3		XLPE2	
1	2	3	4	5	6	7	8	9	10	11	12	13	
Sección													
mm ²													
<u>Cobre</u>													
1,5	11	11,5	13	13,5	15	16	16,5	19	20	21	24	-	
2,5	15	16	17,5	18,5	21	22	23	26	26,5	29	33	-	
4	20	21	23	24	27	30	31	34	36	38	45	-	
6	25	27	30	32	36	37	40	44	46	49	57	-	
10	34	37	40	44	50	52	54	60	65	68	76	-	
16	45	49	54	59	66	70	73	81	87	91	105	-	
25	59	64	70	77	84	88	95	103	110	116	123	140	
35	-	77	86	96	104	110	119	127	137	144	154	174	
50 70	-	94	103	117 149	125	133 171	145 185	155 199	167 214	175 224	188 244	210 269	
95	-		-	180	160 194	207	224	241	259	271	296	327	
120	-		-	208	225	240	260	280	301	314	348	380	
150				236	260	278	299	322	343	363	404	438	
185	_		_	268	297	317	341	368	391	415	464	500	
240			-	315	350	374	401	435	468	490	552	590	
Aluminio													
2,5	11,5	12	13,5	14	16	17	18	20	20	22	25		
4	15	16	18,5	19	22	24	24	26,5	27,5	29	35	-	
6	20	21	24	25	28	30	31	33	36	38	45	-	
10	27	28	32	34	38	42	42	46	50	53	61	-	
16	36	38	42	46	51	56	57	63	66	70	83	-	
25	46	50	54	61	64	71	72	78	84	88	94	105	
35	-	61	67	75	78	88	89	97	104	109	117	130	
50	-	73	80	90	96	106	108	118	127	133	145	160	
70	-	-	-	116	122	136	139	151	162	170	187	206	
95	-	-	-	140	148	167	169	183	197	207	230	251	
120	-	-	-	162	171	193	196,5	213	228	239	269	293	
150	-	-	-	187	197	223	227	246	264	277	312	338	
185	-	-	-	212	225	236	259	281	301	316	359	388	
XLPE: Polie	-		-	248	265	300 o-propile	306	332	355	372	429 de vinilo	461	

4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos I/IV)

Paso 1: Cálculo de la conductividad aceptando que la temperatura del interior del cable puede llegar a 90 ºC.

$$k_{90} = \frac{k_{20}}{K_{\theta}} = \frac{56}{1.28}$$

donde

 k_{90} conductividad del conductor a la temperatura de 90 °C (en m/ $(\Omega \cdot mm^2)$

 k_{20} conductividad del conductor a la temperatura de 20 ºC (en m $/(\Omega \cdot mm^2)$

 K_{θ} constante correctora para "convertir" la conductividad de referencia (20 °C) a la conductividad a 90 °C

4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Solución I/IV)

Cálculo de la conductividad aceptando que la temperatura del interior del cable puede llegar a 90 ºC.

$$k_{90} = \frac{k_{20}}{K_{\theta}} = \frac{56}{1.28} = 43.8 \ m/(\Omega \cdot mm^2)$$

donde

conductividad del conductor a la temperatura de 90 °C (en m/ $(\Omega \cdot mm^2)$) conductividad del conductor a la temperatura de 20 °C (en m/ $(\Omega \cdot mm^2)$) constante correctora para "convertir" la conductividad de referencia (20 ºC) a la conductividad a 90 °C

TABLA 52	ABLA 52-B1 (UNE 20460-5-523:2004) Métodos de instalación de referencia											
				Tabla y columna								
		1		Intensidad admisible para los circuitos simples								
		1		miento		miento						
		1	PVC XLPE o EPR Número de conductores									
Instal	lación de referencia	1										
	т		2	3	2	3						
Local	Conductores aislados en un conducto en una pared térmicamente aislante	A1	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 6						
Local	Cable multiconductor en un conducto en una pared térmicamente aislante	A2	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 2	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5						
	Conductores aislados en un conducto sobre una pared de madera o mampostería	В1	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8						
	Cable multiconductor en un conducto sobre una pared de madera o mampostería	В2	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 7						
· ·	Cables unipolares o multipolares sobre una pared de madera o mampostería	С	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 11	Tabla A.52-1 bis columna 9						
0	Cable multiconductor en conductos enterrados	D	Tabla A.52-2 bis columna 3	Tabla A.52-2 bis columna 4	Tabla A.52-2 bis columna 5	Tabla A.52-2 bis columna 6						
000 g go	Cable multiconductor al aire libre Distancia al muro no inferior a 0,3 veces el diámetro del cable	Е	Tabla A.52-1 bis columna 9	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 12	Tabla A.52-1 bis columna 10						
3	Cables unipolares en contacto al aire libre Distancia al muro no inferior al diámetro del cable	F	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 13	Tabla A.52-1 bis columna 11						
	Cables unipolares espaciados al aire libre Distancia entre ellos como mínimo al diámetro dal cable	G		Ver UNE 20460-5-523		Ver UNE 20460-5-523						
XLPE: Polietileno reticulado (90ºC) EPR: Etileno-propileno (90ºC) PVC: Policloruro de vinilo (70ºC)												

Para el cobre y el aluminio: $\theta = 70^{\circ}\text{C} \longrightarrow \text{K}_{\theta} = 1,20$; $\theta = 90^{\circ}\text{C} \longrightarrow \text{K}_{\theta} = 1,28$

- 4. Conocimientos básicos
- 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos II/IV)

```
Paso 2: Cálculo de la intensidad nominal; I = \frac{P}{V}
```

Paso 3: Cálculo de la caída de tensión; $U = V \cdot \Delta V\%$

```
Paso 4: Cálculo de la sección necesaria; S = \left(\frac{2}{k_{90}}\right) \cdot \left(\frac{I}{U}\right) \cdot L
```


- 4. Conocimientos básicos
- 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Solución II/IV)

Cálculo de la intensidad nominal

$$I = \frac{P}{V} = \frac{1000}{24} = 42 A$$

Cálculo de la caída de tensión

$$U = V \cdot \Delta V\% = 24 \cdot \frac{1.5}{100} = 0.36 V$$

Cálculo de la sección necesaria

$$S = \left(\frac{2}{k_{90}}\right) \cdot \left(\frac{I}{U}\right) \cdot L = \left(\frac{2}{43.8}\right) \cdot \left(\frac{42}{0.36}\right) \cdot 20 = 107mm^2 (2)$$

donde

I intensidad nominal en A

P potencia nominal del generador fotovoltaico en W

V tensión del generador fotovoltaico en V

U caída de tensión máxima admisible en V

 $\Delta V\%$ caída de tensión máxima admisible en %

S área de la sección recta en mm²

k conductividad en $(m/(\Omega \cdot mm^2))$

L longitud del conductor en m

4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos III/IV)

Paso 5: Identificación de la sección según la norma UNE 20460-5-523:2004 para un aislamiento de XLPE y dos conductores.

TABLA 52-	TABLA 52-B1 (UNE 20460-5-523:2004) Métodos de instalación de referencia											
				Tabla y columna Intensidad admisible para los circuitos simples								
				miento		miento						
			PV	vc		o EPR						
Instal	lación de referencia			Número de conductores 2 3 2 3								
		\vdash		3		3						
Local	Conductores aislados en un conducto en una pared térmicamente aislante	A1	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 6						
Local	Cable multiconductor en un conducto en una pared térmicamente aislante	A2	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 2	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5						
	Conductores aislados en un conducto sobre una pared de madera o mampostería	B1	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8						
	Cable multiconductor en un conducto sobre una pared de madera o mampostería	B2	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 7						
⊗	Cables unipolares o multipolares sobre una pared de madera o mampostería	С	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 11	Tabla A.52-1 bis columna 9						
0	Cable multiconductor en conductos enterrados	D	Tabla A.52-2 bis columna 3	Tabla A.52-2 bis columna 4	Tabla A.52-2 bis columna 5	Tabla A.52-2 bis columna 6						
8	Cable multiconductor al aire libre Distancia al muro no inferior a 0,3 veces el diámetro del cable	E	Tabla A.52-1 bis columna 9	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 12	Tabla A.52-1 bis columna 10						
9	Cables unipolares en contacto al aire libre Distancia al muro no inferior al diámetro del cable	F	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 13	Tabla A.52-1 bis columna 11						
,	Cables unipolares espaciados al aire libre Distancia entre ellos como mínimo el diámetro del cable	G		Ver UNE 20460-5-523		Ver UNE 20460-5-523						
XLPE: Polietileno	XLPE: Polietileno reticulado (90°C) EPR: Etileno-propileno (90°C) PVC: Policloruro de vinilo (70°C)											

Cobre: $\rho_{20} = 1/56 \ \Omega \,\text{mm}^2/\text{m}$; Aluminio: $\rho_{20} = 1/35 \ \Omega \,\text{mm}^2/\text{m}$

Para el cobre y el aluminio: $\theta = 70^{\circ}C \rightarrow K_{\theta} = 1,20$; $\theta = 90^{\circ}C \rightarrow K_{\theta} = 1,28$

4. Conocimientos básicos
4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Solución III/IV)

Identificación de la sección según la norma UNE 20460-5-523:2004.

TABLA 52	-B1 (UNE 20460-5-52	TABLA 52-B1 (UNE 20460-5-523:2004) Métodos de instalación de referencia														
					columna											
				d admisible p												
				miento VC	Aislamiento XLPE o EPR											
Yt-1	lación de referencia		Número de conductores													
Insta	ación de referencia		2													
Local	Conductores aislados en un conducto en una pared térmicamente aislante	A1	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 6										
Local	Cable multiconductor en un conducto en una pared térmicamente aislante	A2	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 2	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5										
	Conductores aislados en un conducto sobre una pared de madera o mampostería	В1	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8										
	Cable multiconductor en un conducto sobre una pared de madera o mampostería	В2	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 7										
⊗	Cables unipolares o multipolares sobre una pared de madera o mampostería	С	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 11	Tabla A.52-1 bis columna 9										
0	Cable multiconductor en conductos enterrados	D	Tabla A.52-2 bis columna 3	Tabla A.52-2 bis columna 4	Tabla A.52-2 bis columna 5	Tabla A.52-2 bis columna 6										
8	Cable multiconductor al aire libre Distancia al muro no inferior a 0,3 veces el diámetro del cable	E	Tabla A.52-1 bis columna 9	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 12	Tabla A.52-1 bis columna 10										
	Cables unipolares en contacto al aire libre Distancia al muro no inferior al diámetro del cable	F	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 13	Tabla A.52-1 bis columna 11										
];o;o o	Cables unipolares espaciados al aire libre Distancia entre ellos como mínimo el diámetro del cable	G		Ver UNE 20460-5-523		Ver UNE 20460-5-523										
XLPE: Polietileno	reticulado (90ºC) EPR:	Etile	no-propileno (90ºC) PVC :	Policloruro de	ILPE: Polietileno reticulado (90°C) EPR: Etileno-propileno (90°C) PVC: Policloruro de vinilo (70°C)										

Cobre: $\rho_{20} = 1/56 \ \Omega \text{ mm}^2/\text{m}$; Aluminio: $\rho_{20} = 1/35 \ \Omega \text{ mm}^2/\text{m}$

- 4. Conocimientos básicos
- 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos IV/IV)

Paso 6: Selección de la sección normalizada dentro de la norma UNE 20460-5-523:2004 para un aislamiento de XLPE y dos conductores.

TABLA A.52-1 BIS (UNE 20460-5-523:2004) Intensidades admisibles en amperios Temperatura ambiente 40 °C en el aire

Método de instalación													
de la tabla 52-B1		ı	Número	de co	nducto	ores ca	rgados	y tipo	de aisl	amient	0		
A1		PVC3	PVC2		XLPE3	XLPE2							
A2	PVC3	PVC2		XLPE3	XLPE2	ALI LL							
B1				PVC3	PVC2		XLPE3		XLPE2				
B2			PVC3	PVC2		XLPE3	XLPE2						
С					PVC3		PVC2	XLPE3		XLPE2			
E						PVC3		PVC2	XLPE3		XLPE2		
F							PVC3		PVC2	XLPE3		XLPE2	
1	2	3	4	5	6	7	8	9	10	11	12	13	
Sección													
mm ²													
<u>Cobre</u>													
1,5	11	11,5	13	13,5	15	16	16,5	19	20	21	24	-	
2,5	15	16	17,5	18,5	21	22	23	26	26,5	29	33	-	
4	20	21	23	24	27	30	31	34	36	38	45	-	
6	25	27	30	32	36	37	40	44	46	49	57	-	
10	34	37	40	44	50	52	54	60	65	68	76	-	
16	45	49	54	59	66	70	73	81	87	91	105	-	
25	59	64	70	77	84	88	95	103	110	116	123	140	
35	-	77	86	96	104	110	119	127	137	144	154	174	
50	-	94	103	117	125	133	145	155	167	175	188	210	
70	-	-	-	149	160	171	185	199	214	224	244	269	
95	-	-	-	180	194	207	224	241	259	271	296	327	
120	-	-	-	208	225	240	260	280	301	314	348	380	
150	-	-	-	236	260	278	299	322	343	363	404	438	
185 240	-	-	-	268	297	317 374	341 401	368	391	415 490	464	500	
	-	-	-	315	350	3/4	401	435	468	490	552	590	
Aluminio	11 5	10	13,5	14	16	17	10	20	20	22	25		
2,5 4	11,5 15	12 16	18,5	19	16 22	17 24	18 24	20 26,5	20 27,5	29	35	_	
6	20	21	24	25	28	30	31	33	36	38	45		
10	27	28	32	34	38	42	42	46	50	53	61		
16	36	38	42	46	51	56	57	63	66	70	83	_	
25	46	50	54	61	64	71	72	78	84	88	94	105	
35	-	61	67	75	78	88	89	97	104	109	117	130	
50	-	73	80	90	96	106	108	118	127	133	145	160	
70	-	-	-	116	122	136	139	151	162	170	187	206	
95	-	-	-	140	148	167	169	183	197	207	230	251	
120	-	-	-	162	171	193	196,5	213	228	239	269	293	
150	-	-	-	187	197	223	227	246	264	277	312	338	
185	-	-	-	212	225	236	259	281	301	316	359	388	
240	-	-	-	248	265	300	306	332	355	372	429	461	
XLPE: Polie	tileno re	eticulado	(90°C)	EPR	· Etileno	-propile	no (90º	C) PI	C: Poli	cloruro e	le vinilo	(70°C)	

4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Solución IV/IV)

Identificación de la sección según la norma UNF 20460-5-523:2004.

$$S = 107mm^2 (2)$$

$$I = 42 A$$

INDLA	TABLA 52-B1 (UNE 20460-5-523:2004) Métodos de instalación de referencia										
			Tabla y columna Intensidad admisible para los circuitos simples								
			Aislaı	d admisible p miento VC	Aislamiento XLPE o EPR						
Insta	lación de referencia			Número de conductores							
			2	3	2	3					
Local	Conductores aislados en un conducto en una pared térmicamente aislante	A1	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 6					
Local	Cable multiconductor en un conducto en una pared térmicamente aislante	A2	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 2	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5					
	Conductores aislados en un conducto sobre una pared de madera o mampostería	В1	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8					
	Cable multiconductor en un conducto sobre una pared de madera o mampostería		Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 7					
◎	Cables unipolares o multipolares sobre una pared de madera o mampostería	С	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 11	Tabla A.52-1 bis columna 9					
6	Cable multiconductor en conductos enterrados	D	Tabla A.52-2 bis columna 3	Tabla A.52-2 bis columna 4	Tabla A.52-2 bis columna 5	Tabla A.52-2 bis columna 6					
©	Cable multiconductor al aire libre Distancia al muro no inferior a 0,3 veces el diámetro del cable	E	Tabla A.52-1 bis columna 9	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 12	Tabla A.52-1 bis columna 10					
90	Cables unipolares en contacto al aire libre Distancia al muro no inferior al diámetro del cable	F	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 13	Tabla A.52-1 bis columna 11					
Cables unipolares espaciados al aire libre Distancia entre ellos como mínimo el diámetro del cable LPE: Polietileno reticulado (90°C) EPR		G		Ver UNE 20460-5-523		Ver UNE 20460-5-523					

TABLA A.52-1 BIS (UNE 20460-5-523:2004) Intensidades admisibles en amperios

XLPE: Polietileno reticulado (90°C)

Para el cobre y el aluminio: $\theta = 70^{\circ}\text{C} \rightarrow \text{K}_{\theta} = 1,20$; $\theta = 90^{\circ}\text{C} \rightarrow \text{K}_{\theta} = 1,28$

4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable. Ejemplo

Rehacer los cálculos del ejemplo anterior pero suponiendo ahora que la tensión es de 48 V.

numérico 2

4.3 Elección de la sección y tipo de cable. Ejemplo numérico 2 (Pasos I/III)

Paso 1: Cálculo de la conductividad aceptando que la temperatura del interior del cable puede llegar a 90 ºC.

$$k_{90} = \frac{k_{20}}{K_{\theta}} = \frac{56}{1.28}$$

donde

 k_{90} conductividad del conductor a la temperatura de 90 °C (en m/ $(\Omega \cdot mm^2)$

 k_{20} conductividad del conductor a la temperatura de 20 ºC (en m $/(\Omega \cdot mm^2)$

 K_{θ} constante correctora para "convertir" la conductividad de referencia (20 °C) a la conductividad a 90 °C

4.3 Elección de la sección y tipo de cable. Ejemplo numérico 2 (Pasos II/III)

```
Paso 2: Cálculo de la intensidad nominal; I = \frac{P}{V}
```

Paso 3: Cálculo de la caída de tensión; $U = V \cdot \Delta V\%$

```
Paso 4: Cálculo de la sección necesaria; S = \left(\frac{2}{k_{90}}\right) \cdot \left(\frac{I}{U}\right) \cdot L
```


- 4. Conocimientos básicos
- 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 2 (Pasos III/III)

Paso 5: Identificación y selección de la sección normalizada dentro de la norma UNE 20460-5-523:2004 para un aislamiento de XLPE y dos conductores.

TABLA A.52-1 BIS (UNE 20460-5-523:2004) Intensidades admisibles en amperios Temperatura ambiente 40 °C en el aire

Temperatura ambiente 40 °C en el aire Método de												
instalación		- 1	Númer	o de co	nducto	res ca	rgados	y tipo	de ais	lamient	0	
de la tabla							_					
52-B1												
A1		PVC3	PVC2		XLPE3	XLPE2						
A2	PVC3	PVC2		XLPE3	XLPE2							
B1				PVC3	PVC2		XLPE3		XLPE2			
B2			PVC3	PVC2		XLPE3	XLPE2					
С					PVC3		PVC2	XLPE3		XLPE2		
E						PVC3		PVC2	XLPE3		XLPE2	
F							PVC3		PVC2	XLPE3		XLPE
1	2	3	4	5	6	7	8	9	10	-11	12	13
Sección												
mm ²												
Cobre												
1,5	11	11,5	13	13,5	15	16	16,5	19	20	21	24	-
2,5	15	16	17,5	18,5	21	22	23	26	26,5	29	33	-
4	20	21	23	24	27	30	31	34	36	38	45	-
6	25	27	30	32	36	37	40	44	46	49	57	-
10	34	37	40	44	50	52	54	60	65	68	76	-
16	45	49	54	59	66	70	73	81	87	91	105	-
25	59	64	70	77	84	88	95	103	110	116	123	140
35	-	77	86	96	104	110	119	127	137	144	154	174
50	-	94	103	117	125	133	145	155	167	175	188	210
70	-	-	-	149	160	171	185	199	214	224	244	269
95	-	-	-	180	194	207	224	241	259	271	296	327
120	-	-	-	208	225	240	260	280	301	314	348	380
150	-	-	-	236	260	278	299	322	343	363	404	438
185	-	-	-	268	297	317	341	368	391	415	464	500
240	-	-	-	315	350	374	401	435	468	490	552	590
<u>Aluminio</u>												
2,5	11,5	12	13,5	14	16	17	18	20	20	22	25	-
4	15	16	18,5	19	22	24	24	26,5	27,5	29	35	-
6	20	21	24	25	28	30	31	33	36	38	45	-
10	27	28	32	34	38	42	42	46	50	53	61	-
16	36	38	42	46	51	56	57	63	66	70	83	-
25	46	50	54	61	64	71	72	78	84	88	94	105
35	-	61	67	75	78	88	89	97	104	109	117	130
50	-	73	80	90	96	106	108	118	127	133	145	160
70	-	-	-	116	122	136	139	151	162	170	187	206
95	-	-	-	140	148	167	169	183	197	207	230	251
120	-	-	-	162	171	193	196,5	213	228	239	269	293
150	-	-	-	187	197	223	227	246	264	277	312	338
185	-	-	-	212	225	236	259	281	301	316	359	388
240	-	-	-	248	265	300	306	332	355	372	429	461
XLPE: Polie	tileno re	eticulado	(90°C)	EPR	: Etileno	-propile	no (90°	C) PV	C: Poli	cloruro	de vinilo	(70°C)

4.3 Elección de la sección y tipo de cable. Ejemplo numérico 2 (Pasos I/III)

Paso 2: Cálculo de la conductividad aceptando que la temperatura del interior del cable puede llegar a 90 ºC.

$$k_{90} = \frac{k_{20}}{K_{\theta}} = \frac{56}{1.28}$$

donde

 k_{90} conductividad del conductor a la temperatura de 90 °C (en m/ $(\Omega \cdot mm^2)$

 k_{20} conductividad del conductor a la temperatura de 20 ºC (en m $/(\Omega \cdot mm^2)$

 K_{θ} constante correctora para "convertir" la conductividad de referencia (20 °C) a la conductividad a 90 °C

4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 2 (Solución I/III)

Cálculo de la conductividad aceptando que la temperatura del interior del cable puede llegar a 90 ºC.

$$k_{90} = \frac{k_{20}}{K_{\theta}} = \frac{56}{1.28} = 43.8 \ m/(\Omega \cdot mm^2)$$

donde

la conductividad a 90 ºC

conductividad del conductor a la temperatura de 90 °C (en m/ $(\Omega \cdot mm^2)$) conductividad del conductor a la temperatura de 20 °C (en m/ $(\Omega \cdot mm^2)$) constante correctora para "convertir" la conductividad de referencia (20 ºC) a

Tabla y columna Intensidad admisible para los circuitos simples Aislamiento Aislamiento PVC XLPE o EPR Número de conductores Instalación de referencia Conductores aislados en Tabla Tabla Tabla Tabla un conducto en una pared A1 A.52-1 bis A.52-1 bis A.52-1 bis A.52-1 bis térmicamente aislante columna 4 columna 3 columna 7 columna 6 Cable multiconductor en Tabla Tabla Tabla Tabla un conducto en una pared A.52-1 bis A.52-1 bis A.52-1 bis A.52-1 bis térmicamente aislante columna 2 columna 5 columna 3 columna 6 Conductores aislados en Tabla Tabla Tabla Tabla un conducto sobre una B1 A.52-1 bis A.52-1 bis A.52-1 bis A.52-1 bis pared de madera o columna 5 columna 10 columna 8 columna 6 mampostería Cable multiconductor en Tabla Tabla Tabla Tabla un conducto sobre una B2 A.52-1 bis A.52-1 bis A.52-1 bis A.52-1 bis pared de madera o columna 5 columna 4 columna 8 columna 7 mampostería Cables unipolares o Tabla Tabla Tabla Tabla multipolares sobre una A.52-1 bis A.52-1 bis A.52-1 bis A.52-1 bis pared de madera o columna 8 columna 6 columna 11 columna 9 mampostería Tabla Tabla Tabla Tabla Cable multiconductor en A.52-2 bis A.52-2 bis A.52-2 bis A.52-2 bis conductos enterrados columna 3 columna 4 columna 5 columna 6 Cable multiconductor al Tabla Tabla Tabla Tabla aire libre A.52-1 bis A.52-1 bis A.52-1 bis A.52-1 bis Distancia al muro no inferior a columna 9 columna 7 columna 12 columna 10 0,3 veces el diámetro del cable Cables unipolares en Tabla Tabla Tabla Tabla contacto al aire libre 000 A.52-1 bis A.52-1 bis A.52-1 bis A.52-1 bis Distancia al muro no inferior al columna 10 columna 8 columna 13 columna 11 diámetro del cable Cables unipolares Ver UNE Ver UNE espaciados al aire libre 20460-5-523 20460-5-523 Distancia entre ellos como XLPE: Polietileno reticulado (90ºC) EPR: Etileno-propileno (90°C) PVC: Policloruro de vinilo (70ºC)

TABLA 52-B1 (UNE 20460-5-523:2004)

Cobre: $\rho_{20} = 1/56 \Omega \text{ mm}^2/\text{m}$; Aluminio: $\rho_{20} = 1/35 \Omega \text{ cmm}^2/\text{m}$

 $\rho = K_0 \cdot \rho_{20}$

Para el cobre y el aluminio: $\theta = 70^{\circ}\text{C} \rightarrow \text{K}_{\theta} = 1,20$; $\theta = 90^{\circ}\text{C} \rightarrow \text{K}_{\theta} = 1,28$

Métodos de instalación de referencia

- 4. Conocimientos básicos
- 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 2 (Pasos II/III)

```
Paso 2: Cálculo de la intensidad nominal; I = \frac{P}{V}
```

Paso 3: Cálculo de la caída de tensión; $U = V \cdot \Delta V\%$

```
Paso 4: Cálculo de la sección necesaria; S = \left(\frac{2}{k_{90}}\right) \cdot \left(\frac{I}{U}\right) \cdot L
```


- 4. Conocimientos básicos
- 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 2 (Solución II/III)

Cálculo de la intensidad nominal

$$I = \frac{P}{V} = \frac{1000}{48} = 21 A$$

Cálculo de la caída de tensión

$$U = V \cdot \Delta V\% = 48 \cdot \frac{1.5}{100} = 0.72 V$$

Cálculo de la sección necesaria

$$S = \left(\frac{2}{k_{90}}\right) \cdot \left(\frac{I}{U}\right) \cdot L = \left(\frac{2}{43.8}\right) \cdot \left(\frac{21}{0.72}\right) \cdot 20 = 27 \ mm^2 \ (2)$$

donde

I intensidad nominal en A

P potencia nominal del generador fotovoltaico en W

 $V = {\sf tensi\acute{o}n}$ tensi ${\sf del}$ generador fotovoltaico en ${\sf V}$

U caída de tensión máxima admisible en V

 $\Delta V\%$ caída de tensión máxima admisible en %

S área de la sección recta en mm²

k conductividad en $(m/(\Omega \cdot mm^2))$

L longitud del conductor en m

- 4. Conocimientos básicos
- 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Pasos III/III)

Paso 5: Identificación y selección de la sección normalizada dentro de la norma UNE 20460-5-523:2004 para un aislamiento de XLPE y dos conductores.

TABLA A.52-1 BIS (UNE 20460-5-523:2004) Intensidades admisibles en amperios Temperatura ambiente 40 °C en el aire

Método de instalación de la tabla 52-B1		Número de conductores cargados y tipo de aislamiento											
A1		PVC3	PVC2		XLPE3	XLPE2							
A2	PVC3	PVC2		XLPE3	XLPE2								
B1				PVC3	PVC2		XLPE3		XLPE2				
B2			PVC3	PVC2		XLPE3	XLPE2						
С					PVC3		PVC2	XLPE3		XLPE2			
E						PVC3		PVC2	XLPE3		XLPE2		
F							PVC3		PVC2	XLPE3		XLPE2	
1	2	3	4	5	6	7	8	9	10	11	12	13	
Sección mm² Cobre													
1,5	11	11,5	13	13,5	15	16	16,5	19	20	21	24		
2,5	15	16	17,5	18,5	21	22	23	26	26,5	29	33		
4	20	21	23	24	27	30	31	34	36	38	45		
6	25	27	30	32	36	37	40	44	46	49	57		
10	34	37	40	44	50	52	54	60	65	68	76	-	
16	45	49	54	59	66	70	73	81	87	91	105	-	
25	59	64	70	77	84	88	95	103	110	116	123	140	
35	-	77	86	96	104	110	119	127	137	144	154	174	
50	-	94	103	117	125	133	145	155	167	175	188	210	
70	-	-	-	149	160	171	185	199	214	224	244	269	
95	-	-	-	180	194	207	224	241	259	271	296	327	
120	-	-	-	208	225	240	260	280	301	314	348	380	
150	-	-	-	236	260	278	299	322	343	363	404	438	
185	-			268	297	317	341	368	391	415	464	500	
240	-	-	-	315	350	374	401	435	468	490	552	590	
Aluminio 2,5	11,5	12	13,5	14	16	17	18	20	20	22	25		
4	15	16	18,5	19	22	24	24	26,5	27,5	29	35		
6	20	21	24	25	28	30	31	33	36	38	45	-	
10	27	28	32	34	38	42	42	46	50	53	61		
16	36	38	42	46	51	56	57	63	66	70	83		
25	46	50	54	61	64	71	72	78	84	88	94	105	
35	-	61	67	75	78	88	89	97	104	109	117	130	
50	-	73	80	90	96	106	108	118	127	133	145	160	
70	-	-	-	116	122	136	139	151	162	170	187	206	
95	-	-	-	140	148	167	169	183	197	207	230	251	
120	-	-	-	162	171	193	196,5	213	228	239	269	293	
150	-	-	-	187	197	223	227	246	264	277	312	338	
185	-	-	-	212	225	236	259	281	301	316	359	388	
VI DE: Polis	-	-	-	248	265	300	306	332	355	372	429	461	

XLPE: Polietileno reticulado (90°C) EPR: Etileno-propileno (90°C) PVC: Policloruro de vinilo (70°C)

4. Conocimientos básicos 4.3 Elección de la sección y tipo de cable. Ejemplo numérico 1 (Solución III/III)

Identificación de la sección según la norma UNE 20460-5-523:2004.

$$S = 27 \ mm^2 \ (2)$$

$$I = 21 A$$

TABLA 52-B1 (UNE 20460-5-523:2004) Métodos de instalación de referencia Tabla y columna											
			Intensidad		coiumna ara los circuit	os simples					
			Aislaı	miento VC	Aislamiento XLPE o EPR						
Instal	ación de referencia			Número de conductores							
			2	3	2	3					
Local	Conductores aislados en un conducto en una pared térmicamente aislante		Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 6					
Local	Cable multiconductor en un conducto en una pared térmicamente aislante	A2	Tabla A.52-1 bis columna 3	Tabla A.52-1 bis columna 2	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5					
	Conductores aislados en un conducto sobre una pared de madera o mampostería	В1	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8					
	Cable multiconductor en un conducto sobre una pared de madera o mampostería		un conducto sobre una pared de madera o		Tabla A.52-1 bis columna 5	Tabla A.52-1 bis columna 4	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 7			
(S) ⁶⁰	Cables unipolares o multipolares sobre una pared de madera o mampostería	C	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 6	Tabla A.52-1 bis columna 11	Tabla A.52-1 bis columna 9					
0	Cable multiconductor en conductos enterrados	D	Tabla A.52-2 bis columna 3	Tabla A.52-2 bis columna 4	Tabla A.52-2 bis columna 5	Tabla A.52-2 bis columna 6					
300 % % (S)	Cable multiconductor al aire libre Distancia al muro no inferior a 0,3 veces el diámetro del cable	E	Tabla A.52-1 bis columna 9	Tabla A.52-1 bis columna 7	Tabla A.52-1 bis columna 12	Tabla A.52-1 bis columna 10					
, 0	Cables unipolares en contacto al aire libre Distancia al muro no inferior al diámetro del cable	F	Tabla A.52-1 bis columna 10	Tabla A.52-1 bis columna 8	Tabla A.52-1 bis columna 13	Tabla A.52-1 bis columna 11					
Cables unipolares espaciados al aire libre Distancia entre ellos como mínimo el diámetro del cable		G		Ver UNE 20460-5-523		Ver UNE 20460-5-523					
XLPE: Polietileno reticulado (90°C) EPR: Etileno-propileno (90°C) PVC: Policloruro de vinilo (70°C) Cobre: $\rho_{20} = 1/56 \ \Omega \text{mm}^2/\text{m}$; Aluminio: $\rho_{20} = 1/35 \ \Omega \text{mm}^2/\text{m}$											

TABLA A.52-1 BIS (UNE 20460-5-523:2004) Intensidades admisibles en amperios Temperatura ambiente 40 °C en el aire

Temperatura ambiente 40 °C en el aire												
Método de												
instalación	Número de conductores cargados y tipo de aislamiento											
de la tabla												
52-B1										_		
A1		PVC3	PVC2		XLPE3	XLPE2						
A2	PVC3	PVC2		XLPE3	XLPE2							
B1				PVC3	PVC2		XLPE3		XLPE2			
D2			FVUS	P V U Z		VELES	ALPEZ					
С					PVC3		PVC2	XLPE3		LPE2		
E						PVC3		PVC2	XLPE3		XLPE2	
F		_			_	_	PVC3	_	PVC2	LPE3		XLPE2
1	2	3	4	5	6	7	8	9	10	11	12	13
Sección												
mm ²												
<u>Cobre</u>												
1,5	11	11,5	13	13,5	15	16	16,5	19	20	21	24	-
2,5	15	16	17,5	18,5	21	22	23	26	26,5	29	33	-
4	20	21	23	24	27	30	31	34	36	38	45	-
6	25	27	30	32	36	37	40	44	46	49	57	-
10	34	37	40	44	50	52	54	60	65	68	76	-
16	45	49	54	59	66	70	73	81	87	91	105	-
25	59	64	70	77	84	88	95	103	110	116	123	140
35	-	77	86	96	104	110	119	127	137	144	154	174
70		94	103	149	160	171	185	199	214	224	244	269
95	-	-	-	180	194	207	224	241	259	271	296	327
120	-			208	225	240	260	280	301	314	348	380
150				236	260	278	299	322	343	363	404	438
185	-	_	-	268	297	317	341	368	391	415	464	500
240		-	-	315	350	374	401	435	468	490	552	590
Aluminio				-		• • •	141		100	-		
2,5	11,5	12	13,5	14	16	17	18	20	20	22	25	_
4	15	16	18,5	19	22	24	24	26,5	27,5	29	35	_
6	20	21	24	25	28	30	31	33	36	38	45	-
10	27	28	32	34	38	42	42	46	50	53	61	-
16	36	38	42	46	51	56	57	63	66	70	83	-
25	46	50	54	61	64	71	72	78	84	88	94	105
35	-	61	67	75	78	88	89	97	104	109	117	130
50	-	73	80	90	96	106	108	118	127	133	145	160
70	-	-	-	116	122	136	139	151	162	170	187	206
95	-	-	-	140	148	167	169	183	197	207	230	251
120	-	-	-	162	171	193	196,5	213	228	239	269	293
150	-	-	-	187	197	223	227	246	264	277	312	338
185	-	-	-	212	225	236	259	281	301	316	359	388
240	-	-	-	248	265	300	306	332	355	372	429	461

XLPE: Polietileno reticulado (90°C) EPR: Etileno-propileno (90°C) PVC: Policioruro de vinilo (70°C)

4.4 Cálculo de la sección económica para una instalación conectada a la red (I/IX)

$$P = R \cdot I^2 \tag{4}$$

$$Q = R \cdot I^2 \cdot t$$

donde

P es la energía perdida por unidad de tiempo, en W

R resistencia del conductor en Ω

I intensidad en A

t tiempo transcurrido en s

4.4 Cálculo de la sección económica para una instalación conectada a la red (II/IX)

$$Q_{dia} = \int R \cdot I^2 \cdot t$$

$$Q_d = \frac{1}{1000} \cdot \sum_{0}^{24} R_h \cdot I_h^2 \tag{5}$$

donde

 Q_{dia} energía diaria disipada en kWh (integral)

R resistencia del conductor en Ω

I intensidad en A

dt diferencial de tiempo

 Q_d energía diaria disipada en kWh (sumatorio)

 R_h resistencia eléctrica media horaria del conductor en Ω

 I_h intensidad media horaria en A

4.4 Cálculo de la sección económica para una instalación conectada a la red (III/IX)

$$I_h = 0.9 \cdot I_{cc,h}$$

$$Q_d = \frac{1}{1000} \cdot \sum_{0}^{24} R_h \cdot I_h^2 \tag{5}$$

$$Q_d = 8.1 \cdot 10^{-4} \cdot I_{cc}^2 \cdot R \cdot \sum_{0}^{24} G_h^2$$

Donde

 I_h intensidad media horaria en A

 $I_{cc,h}$ intensidad de cortocircuito para la irradiación horaria en A

 Q_d energía diaria disipada en kWh (sumatorio)

 R_h resistencia eléctrica media horaria del conductor en Ω

 I_h intensidad media horaria en A

 I_{cc} intensidad de cortocircuito para la irradiación media diaria en A

R resistencia eléctrica media diaria del conductor en Ω

- 4. Conocimientos básicos
- 4.4 Cálculo de la sección económica para una instalación conectada a la red (IV/IX)

$$Q_d = 8.1 \cdot 10^{-4} \cdot I_{cc}^2 \cdot R \cdot \sum_{0}^{24} G_h^2$$

$$Q_d = 8.1 \cdot 10^{-4} \cdot I_{cc}^2 \cdot \frac{L}{S \cdot k} \cdot \sum_{0}^{24} G_h^2$$

$$Q_d = A \cdot (L/S) \cdot \sum_{0}^{24} G_h^2$$
 donde

 Q_d energía diaria disipada en kWh (sumatorio)

 I_{cc} intensidad de cortocircuito para la irradiación media diaria en A

R resistencia eléctrica media diaria del conductor en Ω

 G_h irradiación horaria en kWh/m^2 L longitud del conductor en m S sección del conductor en mm^2 k conductividad en $(m/(\Omega \cdot mm^2))$

 $A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$

número de panales, o filas iguales, conectados en paralelo

4.4 Cálculo de la sección económica para una instalación conectada a la red (V/IX)

$$C_e = A \cdot \left(\frac{L}{S}\right) \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m \tag{6}$$

donde

 C_e dinero que se deja de ingresar anualmente en ϵ

 $A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$

número de panales, o filas iguales, conectados en paralelo

 I_{cc} intensidad de cortocircuito para la irradiación media diaria en A

k conductividad en $(m/(\Omega \cdot mm^2))$

 $N_{d,m}$ número de días del mes m que la instalación está conectada a la red

 G_m $\sum_{0}^{24} G_h^2$ para el mes m

 G_h irradiación horaria en kWh/m^2

pe precio neto de venta de la electricidad en €/kWh

- 4. Conocimientos básicos
- 4.4 Cálculo de la sección económica para una instalación conectada a la red (VI/IX)

$$C_c = L \cdot p_c / N_{av} \tag{7}$$

En esta asignatura nos limitaremos al retorno de capital simple (PB)

donde

 C_c coste anual del cable en \in

L longitud en metros

p_c precio del conductor ya instalado, en €/kWh

 N_{av} número de años de vida de la instalación

4.4 Cálculo de la sección económica para una instalación conectada a la red (VII/IX)

$$I = \left(\frac{1}{S_{REBT}} - \frac{1}{S}\right) \cdot B$$

donde

incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para

la sección prescrita por el REBT (€/(m·año)

 S_{REBT} sección mínima del cable según el REBT en mm²

S sección del cable que se instalará en mm²

 $B = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m$

 $A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$

pe precio neto de venta de la electricidad en €/kWh

 $N_{d,m}$ número de días del mes m que la instalación está conectada a la red

 $G_m \qquad \qquad \sum_{0}^{24} G_h^2 \text{ para el mes m}$

 G_h irradiación horaria en kWh/m^2

número de panales, o filas iguales, conectados en paralelo

 I_{cc} intensidad de cortocircuito para la irradiación media diaria en A

k conductividad en $(m/(\Omega \cdot mm^2))$

4.4 Cálculo de la sección económica para una instalación conectada a la red (VIII/IX)

$$E = p_c - p_{c,REBT} \tag{9}$$

El tiempo de retorno de capital simple (PB) es el tiempo que debería transcurrir hasta que el incremento de ingreso acumulado iguale al exceso de capital invertido.

donde

E coste extra de instalación de un cable de sección mayor que el establecido por el REBT en \mathfrak{e} precio del cable, por unidad de longitud, que se instalará, en $\mathfrak{e}/\mathfrak{m}$ precio del cable para la sección S_{REBT} en $\mathfrak{e}/\mathfrak{m}$

4.4 Cálculo de la sección económica para una instalación conectada a la red (IX/IX)

$$E = p_c - p_{c,REBT} (9)$$

El tiempo de retorno de capital simple (PB) es el tiempo que debería transcurrir hasta que el incremento de ingreso acumulado iguale al exceso de capital invertido.

$$PB = E/I \tag{10}$$

d	0	n	d	e		

E coste extra de instalación de un cable de sección mayor que el establecido por el REBT en ϵ

 p_c precio del cable, por unidad de longitud, que se instalará, en ϵ/m

 $p_{c,REBT}$ precio del cable para la sección S_{REBT} en $\mathfrak{E}/\mathfrak{m}$ PB tiempo de retorno de capital simple, en años

I incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para

la sección prescrita por el REBT (€/(m·año)

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico

La sección de un campo de colectores fotovoltaicos está formada por 15 paneles asociados en serie. La corriente de cortocircuito de cada panel es 5.2 A en condiciones de medición estándar (STC). La irradiación horaria, en media mensual, para la inclinación y orientación de los paneles y lugar de la instalación, se muestra en la tabla de la diapositiva siguiente. La conductividad del cable es 47 m/(Ω · mm²) y su sección, según el REBT es 35 mm².

Calcular el tiempo de retorno de capital simple para las cinco secciones siguientes, según el REBT, aceptando este escenario económico: el precio de venta de la electricidad es de 0.44 €/kWh, el estudio se extiende a 20 años, la tasa de actualización del dinero se supone constante e igual a 0.03 (3%) y el precio del cable, para distintas secciones, es el que se mostrará en la siguiente diapositiva.

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (tablas)

Irradiación horaria para la orientación, inclinación y lugar de la instalación

Hora	Mes	Mes										
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
5-6	0	0	0	6	31	43	38	18	0	0	0	0
6-7	0	0	51	85	126	136	139	112	62	0	0	0
7-8	40	108	195	203	254	255	274	252	187	131	63	1
8-9	186	240	358	331	390	379	414	403	326	267	189	142
9-10	312	371	516	452	515	493	543	542	459	402	310	250
10-11	415	480	641	546	611	579	641	650	563	510	409	340
11-12	473	527	710	598	663	636	694	709	620	570	464	391

Nota: La hora se da en tiempo solar verdadero (TSV)

La irradiación se da en Wh/m²

La irradiación después del mediodía es simétrica, es decir, la correspondiente a las 12-13 es igual a la dada para las 11-12; la correspondiente a las 13-14 es igual a la dada para las 10-11, etc.

Precio unitario del cable ya instalado

S (mm²)	35	50	70	95	120	15	185	240
<i>p_c</i> (€/m)	5.0	6.5	9.0	12.5	15.5	19.0	25.0	31.0

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Pasos I/III)

Paso 1: Cálculo de A

Paso 2: Cálculo de G_m

Paso 3: Cálculo del valor de G_m para los doce meses del año y cálculo del parámetro B

donde

```
A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k
```

número de panales, o filas iguales, conectados en paralelo

 I_{cc} intensidad de cortocircuito para la irradiación media diaria en A

k conductividad en $(m/(\Omega \cdot mm^2))$

 $G_m \qquad \sum_{0}^{24} G_h^2$ para el mes m, en , en kWh/m^2

 G_h irradiación horaria en kWh/m^2

 $B = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m$

pe precio neto de venta de la electricidad en €/kWh

 $N_{d,m}$ número de días del mes m que la instalación está conectada a la red

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Pasos II/III)

Paso 4: Cálculo de
$$I$$
; $I = \left(\frac{1}{S_{REBT}} - \frac{1}{S}\right) \cdot B$ $\in /(m \cdot a\tilde{n}o)$

```
donde
```

I incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para la sección prescrita por el REBT (€/(m·año)

 S_{REBT} sección mínima del cable según el REBT en mm²

S sección del cable que se instalará en mm²

 $B = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m$

 $A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$

pe precio neto de venta de la electricidad en €/kWh

 $N_{d,m}$ número de días del mes m que la instalación está conectada a la red

 G_m $\sum_{0}^{24} G_h^2$ para el mes m

 G_h irradiación horaria en kWh/m^2

número de panales, o filas iguales, conectados en paralelo

 I_{cc} intensidad de cortocircuito para la irradiación media diaria en A

k conductividad en $(m/(\Omega \cdot mm^2))$

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Pasos III/III)

Paso 5: Cálculo del tiempo de retorno de capital simple para las cinco secciones siguientes a la reglamentaria

$$E = p_c - p_{c,REBT} \tag{9}$$

S (mm ²)	?	?	?	??
<i>p_c</i> (€/m)	3	3	?	? ?
<i>I</i> [€/(m·año)]	?	?	?	? ?
<i>E</i> (€/m)	?	?	?	??
PB (años)	?	?	?	??

donde

S sección del conductor, en mm^2

 p_c precio del cable, por unidad de longitud, que se instalará, en ϵ /m

I incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para la sección prescrita por el REBT (€/(m·año)

E coste extra de instalación de un cable de sección mayor que el establecido por el REBT en €

PB tiempo de retorno de capital simple (años)

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Pasos I/III)

Paso 1: Cálculo de A

Paso 2: Cálculo de G_m

Paso 3: Cálculo del valor de G_m para los doce meses del año y cálculo del parámetro B

```
A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2/k n \qquad \text{número de panales, o filas iguales, conectados en paralelo} I_{cc} \qquad \text{intensidad de cortocircuito para la irradiación media diaria en A} k \qquad \text{conductividad en } (m/(\Omega \cdot mm^2)) G_m \qquad \sum_0^{2^4} G_h^2 \text{ para el mes m, en , en } kWh/m^2 G_h \qquad \text{irradiación horaria en } kWh/m^2 B \qquad = A \cdot p_e \cdot \sum_0^{12} N_{d,m} \cdot G_m p_e \qquad \text{precio neto de venta de la electricidad en } \ell/kWh número de días del mes m que la instalación está conectada a la red
```

- 4. Conocimientos básicos
- 4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Solución I/V)

$$A = 8.1 \cdot 10^{-4} \cdot \frac{(n \cdot I_{cc})^2}{k} = 8.1 \cdot 10^{-4} \cdot \frac{(15 \cdot 5.2)^2}{47} = 0.105$$

$$A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$$

número de paneles, o filas iguales, conectados en paralelo

 I_{cc} intensidad de cortocircuito para la irradiación media diaria en A

k conductividad en $(m/(\Omega \cdot mm^2))$

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Pasos I/III)

Paso 1: Cálculo de A

Paso 2: Cálculo de G_m

Paso 3: Cálculo del valor de G_m para los doce meses del año y cálculo del parámetro B

```
A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k
             número de panales, o filas iguales, conectados en paralelo
n
             intensidad de cortocircuito para la irradiación media diaria en A
I_{cc}
             conductividad en (m/(\Omega \cdot mm^2))
             \sum_{0}^{24} G_h^2 para el mes m, en , en kWh/m^2
             irradiación horaria en kWh/m^2
G_h
             = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m
             precio neto de venta de la electricidad en €/kWh
p_e
             número de días del mes m que la instalación está conectada a la red
N_{d,m}
```

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Solución II/V)

Irradiación horaria para la orientación, inclinación y lugar de la instalación

Hora	Mes											
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic
5-6	0	0	0	6	31	43	38	18	0	0	0	0
6-7	0	0	51	85	126	136	139	112	62	0	0	0
7-8	40	108	195	203	254	255	274	252	187	131	63	1
8-9	186	240	358	331	390	379	414	403	326	267	189	142
9-10	312	371	516	452	515	493	543	542	459	402	310	250
10-11	415	480	641	546	611	579	641	650	563	510	409	340
11-12	473	527	710	598	663	636	694	709	620	570	464	391

Nota: La hora se da en tiempo solar verdadero (TSV)

La irradiación se da en Wh/m²

La irradiación después del mediodía es simétrica, es decir, la correspondiente a las 12-13 es igual a la dada para las 11-12; la correspondiente a las 13-14 es igual a la dada para las 10-11, etc.

$$G_m = \sum_{0}^{24} G_h^2 = \left[40^2 + 186^2 + 312^2 + 415^2 + 473^2\right] \cdot \left(\frac{2}{1000^2}\right) = 1.059 \ kWh/m^2$$
 donde
$$G_m \qquad \sum_{0}^{24} G_h^2 \ \text{para el mes m;}$$

$$G_h \qquad \text{irradiación horaria en } kWh/m^2$$

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Pasos I/III)

Paso 1: Cálculo de APaso 2: Cálculo de G_m

Paso 3: Cálculo del valor de G_m para los doce meses del año y cálculo del parámetro B

```
A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2/k
n \qquad \text{número de panales, o filas iguales, conectados en paralelo}
I_{cc} \qquad \text{intensidad de cortocircuito para la irradiación media diaria en A}
k \qquad \text{conductividad en } (m/(\Omega \cdot mm^2))
G_m \qquad \sum_0^{2^4} G_h^2 \text{ para el mes m, en , en } kWh/m^2
G_h \qquad \text{irradiación horaria en } kWh/m^2
B \qquad = A \cdot p_e \cdot \sum_0^{12} N_{d,m} \cdot G_m
p_e \qquad \text{precio neto de venta de la electricidad en } \ell/kWh
número de días del mes m que la instalación está conectada a la red
```

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Solución III/V)

$$B = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m$$

$$A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$$

 p_e precio neto de venta de la electricidad en ℓ kWh

 $N_{d,m}$ número de días del mes ${\bf m}$ que la instalación está conectada a la red

 $G_m \qquad \qquad \sum_{0}^{24} G_h^2$ para el mes m

 G_h irradiación horaria en kWh/m^2

Cálculo del valor de Gm para los doce meses del año y cálculo del parámetro B

Hora	Mes	Mes													
	Ene	Feb	Mar	Abr	May	Jun	Jul	Ago	Sep	Oct	Nov	Dic			
5-6	0	0	0	6	31	43	38	18	0	0	0	0			
6-7	0	0	51	85	126	136	139	112	62	0	0	0			
7-8	40	108	195	203	254	255	274	252	187	131	63	1			
8-9	186	240	358	331	390	379	414	403	326	267	189	142			
9-10	312	371	516	452	515	493	543	542	459	402	310	250			
10-11	415	480	641	546	611	579	641	650	563	510	409	340			
11-12	473	527	710	598	663	636	694	709	620	570	464	391			
G_m	1.059	1.430	2.700	2.036	2.623	2.398	2.909	2.915	2.114	1.670	1.037	0.702			
$N_{d,m}$	31	29	31	30	31	30	31	31	30	31	30	31			
$G_m \cdot N_{d,m}$	32.83	41.47	83.7	61.08	81.31	71.94	90.18	90.37	63.42	51.77	31.11	21.76			

$$B = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m = 0.105 \cdot 0.44 \cdot 720.94 = 33.3$$

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Pasos II/III)

Paso 4: Cálculo de
$$I$$
; $I = \left(\frac{1}{S_{PERT}} - \frac{1}{S}\right) \cdot B$ $\notin /(m \cdot a\tilde{n}o)$

```
donde
```

I incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para la sección prescrita por el REBT (€/(m·año)

 S_{REBT} sección mínima del cable según el REBT en mm²

S sección del cable que se instalará en mm²

 $B = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m$

 $A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$

pe precio neto de venta de la electricidad en €/kWh

 $N_{d,m}$ número de días del mes m que la instalación está conectada a la red

 G_m $\sum_{0}^{24} G_h^2$ para el mes m

 G_h irradiación horaria en kWh/m^2

número de panales, o filas iguales, conectados en paralelo

 I_{cc} intensidad de cortocircuito para la irradiación media diaria en A

k conductividad en $(m/(\Omega \cdot mm^2))$

4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Solución IV/V)

$$I = \left(\frac{1}{S_{RERT}} - \frac{1}{S}\right) \cdot B = \left(\frac{1}{35} - \frac{1}{S}\right) \cdot 33.3 = 0.952 - \frac{33.3}{S}$$
 $\in /(m \cdot a\tilde{n}o)$

- I incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para la sección prescrita por el REBT (€/(m·año)
- S_{REBT} sección mínima del cable según el REBT en mm²
- *S* sección del cable que se instalará en mm²
- $B = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m$
- $A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$
- p_e precio neto de venta de la electricidad en ϵ/kWh
- $N_{d,m}$ número de días del mes m que la instalación está conectada a la red
- $G_m \qquad \sum_{0}^{24} G_h^2$ para el mes m
- G_h irradiación horaria en kWh/m^2
- n número de panales, o filas iguales, conectados en paralelo
- I_{cc} intensidad de cortocircuito para la irradiación media diaria en A
- k conductividad en $(m/(\Omega \cdot mm^2))$

- 4. Conocimientos básicos
- 4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Pasos III/III)

Paso 5: Cálculo del tiempo de retorno de capital simple para las cinco secciones siguientes a la reglamentaria

$$E = p_c - p_{c,REBT} \tag{9}$$

S (mm ²)	?	?	?	??
<i>p_c</i> (€/m)	?	5	3	3 3
<i>I</i> [€/(m·año)]	?	?	?	? ?
<i>E</i> (€/m)	?	?	?	??
PB (años)	?	?	?	??

donde

S sección del conductor, en mm^2

 p_c precio del cable, por unidad de longitud, que se instalará, en ϵ /m

I incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para la sección prescrita por el REBT (€/(m·año)

E coste extra de instalación de un cable de sección mayor que el establecido por el REBT en €

PB tiempo de retorno de capital simple (años)

- 4. Conocimientos básicos
- 4.4 Cálculo de la sección económica para una instalación conectada a la red. Ejemplo numérico (Solución V/V)

$$E = p_c - p_{c,REBT} = p_c - 5.0 \, \text{€/m} \tag{9}$$

Cálculo del tiempo de retorno de capital simple para las cinco secciones siguientes a las de 35 mm²

S (mm ²)	50	70	95	120	150
<i>p_c</i> (€/m)	6.5	9.0	12.5	15.5	19.0
I [€/(m·año)]	0.286	0.476	0.601	0.675	0.730
<i>E</i> (€/m)	1.5	4.0	7.5	10.5	14.0
PB (años)	5.2	8.4	12.5	15.6	19.2

- S sección del conductor, en mm^2
- p_c precio del cable, por unidad de longitud, que se instalará, en ϵ/m
- *I* incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para la sección prescrita por el REBT (€/(m·año)
- E coste extra de instalación de un cable de sección mayor que el establecido por el REBT en €
- PB tiempo de retorno de capital simple (años)

$$B = A \cdot p_e \cdot \sum_{d=0}^{12} N_{d,m} \cdot G_m = 0.105 \cdot 0.30 \cdot 720.94 = 23.6$$

$$I = \left(\frac{1}{S_{REBT}} - \frac{1}{S}\right) \cdot B = \left(\frac{1}{35} - \frac{1}{50}\right) \cdot 23.6 = 0.202 \, \text{@f}/(m \cdot a\tilde{n}o)$$

$$E = p_c - p_{c,REBT} = p_c - 5.0 \, \text{@f}/(m \cdot a\tilde{n}o)$$

$$PB = \frac{E}{I} = \frac{1.5}{0.202} = 7.4 \, a\tilde{n}os \qquad (10)$$

- $B = A \cdot p_e \cdot \sum_{0}^{12} N_{d,m} \cdot G_m$;
- $A = 8.1 \cdot 10^{-4} \cdot (n \cdot I_{cc})^2 / k$;
- p_e precio neto de venta de la electricidad en €/kWh
- $N_{d,m}$ número de días del mes m que la instalación está conectada a la red
- G_m $\sum_{0}^{24} G_h^2$ para el mes m
- G_h irradiación horaria en kWh/m^2
- *n* número de panales, o filas iguales, conectados en paralelo
- I_{cc} intensidad de cortocircuito para la irradiación media diaria en A
- k conductividad en $(m/(\Omega \cdot mm^2))$
- I incremento de ingreso, por venta de electricidad, de una sección respecto del ingreso que se tendría para la sección prescrita por el REBT (€/(m·año)
- S_{REBT} sección mínima del cable según el REBT en mm²
- *S* sección del cable que se instalará en mm²
- E coste extra de instalación de un cable de sección mayor que el establecido por el REBT en €
- p_c precio del cable, por unidad de longitud, que se instalará, en ϵ/m
- PB tiempo de retorno de capital simple (años)

FOTOVOLTAICA, BIOMASA Y COGENERACION

FIN
¿¿¿¿PREGUNTAS????
GRACIAS POR SU ATENCIÓN

FOTOVOLTAICA, BIOMASA Y COGENERACION

BLOQUE I: Principios de generación y diseño de instalaciones fotovoltaica. Clase V

- 5. Análisis económico.
- 5.1 Coste neto de la instalación FV y beneficio anual neto (I/II)

$$C = C_{spf} - S \tag{8}$$

- *C* coste neto, en €
- C_{spf} coste den la instalación, llaves en mano (en \mathfrak{t})
- *S* subvención, en €

- 5. Análisis económico.
- 5.1 Coste neto de la instalación FV y beneficio anual neto (II/II)

$$C = C_{spf} - S \tag{8}$$

$$B = I_{ve} - G_{fv} \tag{9}$$

- *C* coste neto, en €
- C_{spf} coste den la instalación, llaves en mano (en €)
- *S* subvención, en €
- *B* beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en \in
- G_{fv} gastos anuales asociados a la instalación FV, en $\mathbf{\epsilon}$

- 5. Análisis económico.
- 5.2 Tiempo de retorno de la instalación: simple (PB) y actualizado (PBA)

$$PB = C/B \tag{10}$$

$$PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$$
 (11)

- PB retorno de la inversión simple
- *C* coste neto, en €
- *B* beneficio neto anual, en €
- PBA retorno de la inversión actualizado
- *k* tasa de actualización en tanto por uno

- 5. Análisis económico.
- 5.3 Valor actual neto de la inversión, VAN (I/II)

Diferencia entre el valor acumulado del beneficio neto actualizado y el valor de la inversión realizada.

$$VAN = -C + \sum_{i=1}^{i=n} \frac{B_i}{(1+k)^i}$$
 (12)

- VAN valor actual neto, en €
- C valor de la inversión realizada, en €
- B beneficio neto para el año i, en €
- k tasa de actualización en tanto por uno
- n número de años de estudio de inversión

5. Análisis económico.

5.3 Valor actual neto de la inversión, VAN (II/II)

Diferencia entre el valor acumulado del beneficio neto actualizado y el valor de la inversión realizada.

$$VAN = -C + \sum_{i=1}^{i=n} \frac{B_i}{(1+k)^i}$$
 (12)

$$VAN = -C + B \cdot r \cdot [(1 - r^n)/(1 - r)] \tag{13}$$

donde

- VAN valor actual neto, en €
- *C* valor de la inversión realizada, en €
- B_i beneficio neto para el año i, en \in
- k tasa de actualización en tanto por uno
- *n* número de años de estudio de inversión
- r factor de actualización = 1/(1+k)

El VAN puede entenderse como el dinero que se ha recuperado, al cabo de unos años de realizada la inversión, en euros al año en que se ha efectuado esta inversión.

- 5. Análisis económico.
- 5.4 Tasa de rendimiento interno de la inversión (TRI)

$$VAN = -C + \sum_{i=1}^{i=n} \frac{B_i}{(1+k)^i}$$
 (12)

$$C = \sum_{i=1}^{i=n} \frac{B_i}{(1+TRI)^i}$$
 (14)

En el caso de mantenerse el beneficio constante

$$\frac{C}{R} = r \cdot [(1 - r^n)/(1 - r)] \tag{15}$$

- VAN valor actual neto, en €
- C valor de la inversión realizada, en €
- B_i beneficio neto para el año i, en €
- k tasa de actualización en tanto por uno
- *n* número de años de estudio de inversión
- r factor de actualización = 1/(1+k)

5. Análisis económico. Ejemplo numérico 1

Una instalación fotovoltaica tiene instalada una potencia pico de 100 kWp y genera 2.85 kWh/día por kWp instalado. En promedio anual se estima que el coste de la instalación es 6000 €/kWp y que los gastos de mantenimiento son 0.02 €/kWh generado. El total de ayudas y subvenciones cubre el 30% del coste de la instalación.

Calcular cómo evoluciona el tiempo de retorno simple de la inversión en función del precio de venta de la electricidad (entre 0.1 y 0.8 €/kWh).

5. Análisis económico. Ejemplo numérico 1 (Pasos I/II)

Paso 1: Cálculo del coste de la instalación: $P_p \cdot C_p$

Paso 2: Cálculo de las subvenciones: $C_{TI} \cdot AS$

Paso 3: Cálculo del coste neto: $C_{TI} - S$

Paso 4: Cálculo de la electricidad anual generada: $E_D \cdot n$

Paso 5: Gastos de mantenimiento: $E_A \cdot G_m$

- P_p potencia pico de la instalación fotovoltaica, en kWp
- C_p coste de la instalación en €/kWp
- C_{TI} coste total de la instalación en \in
- AS porcentaje de ayudas y subvenciones
- *S* subvenciones, en €
- E_D electricidad generada por día, en kWh/día
- *n* número de días en un año
- E_A electricidad generada al cabo de un año, en kWh/año
- G_m gastos de mantenimiento en $\mathbf{\xi}/k$ Wh generado

5. Análisis económico. Ejemplo numérico 1 (Pasos II/II)

Paso 6: Cálculo del ingreso neto anual por venta de electricidad : $I_{ve} = E_A \cdot P_V$

Paso 7: Cálculo del beneficio neto anual, $B = I_{ve} - G_{fv}$

Paso 8: Cálculo del retorno de la inversión simple, en años, PB = C/B

- I_{ve} ingreso neto anual por venta de electricidad, en €
- E_A electricidad generada al cabo de un año, en kWh/año
- P_V precio de venta de la electricidad, en €/kWh
- *B* beneficio neto anual, en €
- G_{fv} gastos anuales asociados a la instalación FV, en ullet
- PB retorno de la inversión simple, en años
- *C* coste neto, en €

5. Análisis económico. Ejemplo numérico 1 (Pasos I/II)

Paso 1: Cálculo del coste de la instalación: $P_p \cdot C_p$

Paso 2: Cálculo de las subvenciones: $C_{TI} \cdot AS$

Paso 3: Cálculo del coste neto: $C_{TI} - S$

Paso 4: Cálculo de la electricidad anual generada: $E_D \cdot n$

Paso 5: Gastos de mantenimiento: $E_A \cdot G_m$

- ullet P_p potencia pico de la instalación fotovoltaica, en kWp
- C_p coste de la instalación en €/kWp
- C_{TI} coste total de la instalación en \in
- *AS* porcentaje de ayudas y subvenciones
- *S* subvenciones, en €
- E_D electricidad generada por día, en kWh/día
- *n* número de días en un año
- E_A electricidad generada al cabo de un año, en kWh/año
- G_m gastos de mantenimiento en $\mathbf{\xi}/k$ Wh generado

5. Análisis económico. Ejemplo numérico 1 (Solución I/II)

Coste de la instalación: $P_p \cdot C_p = 100 \cdot 6000 = 600 \ 000 \in 600 \ k \in 6000 = 6000 \ k \in 6000 = 6$

Subvenciones: $C_{TI} \cdot AS = 600\ 000 \cdot 0.30 = 180\ 000€ = 180\ k€$

Coste neto: $C_{TI} - S = 600\ 000 - 180\ 000 = 420\ 000 \in 420\ 000 \in 420\ 000 = 420\ 0$

Electricidad anual generada: $E_D \cdot 365 \cdot 100 = 2.85 \cdot 365 \cdot 100 = 104\ 025 \frac{kWh}{a\tilde{n}a}$

Gastos de mantenimiento: $E_A \cdot G_m = 104\ 205 \cdot 0.02 = \frac{2081}{a\tilde{n}o} = 2.081\ k \in /a\tilde{n}o$

- P_p potencia pico de la instalación fotovoltaica, en kWp
- C_p coste de la instalación en €/kWp
- C_{TI} coste total de la instalación en \in
- AS porcentaje de ayudas y subvenciones
- *S* subvenciones, en €
- E_D electricidad generada por día, en kWh/día
- *n* número de días en un año
- E_A electricidad generada al cabo de un año, en kWh/año
- G_m gastos de mantenimiento en $\mathbf{\xi}$ /kWh generado

5. Análisis económico. Ejemplo numérico 1 (Pasos II/II)

Paso 6: Cálculo del ingreso neto anual por venta de electricidad : $I_{ve} = E_A \cdot P_V$

Paso 7: Cálculo del beneficio neto anual, $B = I_{ve} - G_{fv}$

Paso 8: Cálculo del retorno de la inversión simple, en años, PB = C/B

- I_{ve} ingreso neto anual por venta de electricidad, en €
- E_A electricidad generada al cabo de un año, en kWh/año
- P_V precio de venta de la electricidad, en €/kWh
- *B* beneficio neto anual, en €
- G_{fv} gastos anuales asociados a la instalación FV, en ullet
- PB retorno de la inversión simple, en años
- *C* coste neto, en €

5. Análisis económico. Ejemplo numérico 1 (Solución II/II)

$$PB = C/B$$
 (10)
 $I_{ve} = E_A \cdot P_V$
 $B = I_{ve} - G_{fv}$

•	PB	retorno de	la	inversión	simple	e, en	años
---	----	------------	----	-----------	--------	-------	------

- *C* coste neto, en €
- *B* beneficio neto anual, en €
- P_V precio de venta de la electricidad, en €/kWh
- I_{ve} ingreso neto anual por venta de electricidad, en $\mathbf{\epsilon}$
- G_{fv} gastos anuales asociados a la instalación FV, en ullet
- E_A electricidad generada al cabo de un año, en kWh/año

P. venta €/kWh	<i>I_{ve}</i> k€/año	G _{fv} k€/año	B k€/año	PB años
0.1	10.403	2.081	8.322	50.5
0.2	20.805	2.081	18.725	22.4
0.3	31.209	2.081	29.128	14.4
0.4	41.612	2.081	39.531	10.6
0.5	52.015	2.081	49.934	8.4
0.6	62.418	2.081	60.337	7.0
0.7	72.821	2.081	70.740	5.9
0.8	83.224	2.081	81.143	5.2

5. Análisis económico. Ejemplo numérico 2

El coste neto de una instalación fotovoltaica es 420 k€, genera 104 MWh/año, el gasto por mantenimiento es 2.081 k€/año y la tasa de actualización es del 3%. Calcular el tiempo de retorno de la instalación actualizado (PBA) de la inversión con un precio de venta de la electricidad de 0.5 €/kWh y 0.3 €/kWh.

5. Análisis económico. Ejemplo numérico 2 (Pasos)

- Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 ϵ /kWh, en ϵ , $B = I_{ve} G_{fv}$
- Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$
- Paso 3: Cálculo del beneficio neto anual con un precio de venta de 0.3 ϵ /kWh, en ϵ , $B = I_{ve} G_{fv}$
- Paso 4: Cálculo del retorno de la inversión actualizado, PBA, en años, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en ϵ
- G_{fv} gastos anuales asociados a la instalación FV, en \in
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 2 (Pasos)

```
Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 \, \text{€/kWh}, en \text{€}, B = I_{ve} - G_{fv}
Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, PBA = \frac{log(1-k \cdot C/B)}{-log(1+k)}
```

Paso 3: Cálculo del beneficio neto anual con un precio de venta de 0.3 ϵ /kWh, en ϵ , $B = I_{ve} - G_{fv}$

Paso 4: Cálculo del retorno de la inversión actualizado, PBA, en años, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en ϵ
- G_{fv} gastos anuales asociados a la instalación FV, en \in
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 2

(Solución I/V)

$$B = I_{ve} - G_{fv}$$

= 52.015 - 2.081
= 49.934 $k \in /a\tilde{n}o$

P. venta €/kWh	<i>I_{ve}</i> k€/año	G_{fv} k €/año	B k€/año	PB años
	Key and	Ke/ano	Key arre	anos
0.1	10.403	2.081	8.322	50.5
0.2	20.805	2.081	18.725	22.4
0.3	31.209	2.081	29.128	14.4
0.4	41.612	2.081	39.531	10.6
0.5	52.015	2.081	49.934	8.4
0.6	62.418	2.081	60.337	7.0
0.7	72.821	2.081	70.740	5.9
0.8	83.224	2.081	81.143	5.2

donde

B beneficio neto anual, en €

 I_{ve} ingreso neto anual por venta de electricidad, en ${\mathfrak C}$

 G_{fv} gastos anuales asociados a la instalación FV, en $m \ref{fig:prop}$

5. Análisis económico. Ejemplo numérico 2 (Pasos I/II)

```
Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 \notin /kWh, en \emptyset, B = I_{ve} - G_{fv}
Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}
Paso 3: Cálculo del beneficio neto anual con un precio de venta de 0.3 \notin /kWh, en \emptyset, B = I_{ve} - G_{fv}
Paso 4: Cálculo del retorno de la inversión actualizado, PBA, en años, PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}
```

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en ϵ
- G_{fv} gastos anuales asociados a la instalación FV, en \in
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 2 (Solución II/V)

$$PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)} = \frac{log(1-0.03\cdot 420/49934)}{-log(1+0.03)} = 9.9 \ a\tilde{n}os$$
 (11)

donde

PBA retorno de la inversión actualizado

k tasa de actualización en tanto por uno

C coste neto, en €

B beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 2 (Pasos I/II)

```
Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 \, \text{€/kWh}, en \text{€}, B = I_{ve} - G_{fv} Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, PBA = \frac{log(1-k \cdot C/B)}{-log(1+k)} Paso 3: Cálculo del beneficio neto anual con un precio de venta de 0.3 \, \text{€/kWh}, en \text{€}, B = I_{ve} - G_{fv} Paso 4: Cálculo del retorno de la inversión actualizado, PBA, en años, PBA = \frac{log(1-k \cdot C/B)}{-log(1+k)}
```

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en $\mathbf{\epsilon}$
- G_{fv} gastos anuales asociados a la instalación FV, en \in
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 2

(Solución III/V)

$$B = I_{ve} - G_{fv}$$

= 31.209 - 2.081
= 29.128 $k \in /a\tilde{n}o$

P. venta €/kWh	<i>I_{ve}</i> k€/año	G _{fv} k€/año	B k€/año	PB años
0.1	10.403	2.081	8.322	50.5
0.2	20.805	2.081	18.725	22.4
0.3	31.209	2.081	29.128	14.4
0.4	41.612	2.081	39.531	10.6
0.5	52.015	2.081	49.934	8.4
0.6	62.418	2.081	60.337	7.0
0.7	72.821	2.081	70.740	5.9
0.8	83.224	2.081	81.143	5.2

donde

B beneficio neto anual, en €

 I_{ve} ingreso neto anual por venta de electricidad, en $\mathbf{\epsilon}$

 G_{fv} gastos anuales asociados a la instalación FV, en $m \ref{fig:prop}$

5. Análisis económico. Ejemplo numérico 2 (Pasos I/II)

```
Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 \[ \in \]/kWh, en \[ \in \], B = I_{ve} - G_{fv} Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)} Paso 3: Cálculo del beneficio neto anual con un precio de venta de 0.3 \[ \in \]/kWh, en \[ \in \], B = I_{ve} - G_{fv} Paso 4: Cálculo del retorno de la inversión actualizado, PBA, en años, PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}
```

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en €
- G_{fv} gastos anuales asociados a la instalación FV, en \in
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 2 (Solución IV/V)

$$PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)} = \frac{log(1-0.03\cdot 420/29128)}{-log(1+0.03)} = 19.2 \ a\tilde{n}os \quad (11)$$

donde

PBA retorno de la inversión actualizado

k tasa de actualización en tanto por uno

C coste neto, en €

B beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 2 (Solución V/V)

$$PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)} = \frac{log(1-0.03\cdot 420/29128)}{-log(1+0.03)} = 19.2 \ a\tilde{n}os \quad (11)$$

Para PB = 8.4 años; PBA = 9.9 años

Para PB = 14.4 años; PBA = 19.2 años

donde

PBA retorno de la inversión actualizado k tasa de actualización en tanto por uno C coste neto, en \mathbb{E} beneficio neto anual, en \mathbb{E}

El valor del retorno de la inversión actualizado (PBA) se aleja más del retorno de la inversión simple (PB) a medida que el retorno de la inversión simple (PB) aumenta, con todos los demás datos constantes

5. Análisis económico. Ejemplo numérico 3

El coste neto de una instalación fotovoltaica es 420 k€, genera 104 MWh/año, el gasto por mantenimiento es 2.081 k€/año y el precio de venta de la electricidad es 0.5 €/kWh.

Calcular el tiempo de retorno de la instalación actualizado (PBA) para una tasa de actualización del 3% y del 5%.

5. Análisis económico. Ejemplo numérico 3 (Pasos)

Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 ϵ /kWh, en ϵ , $B = I_{ve} - G_{fv}$

Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$

Paso 3: Cálculo del retorno de la inversión actualizado, PBA, en años, con una tasa de descuento del 5%, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en \in
- G_{fv} gastos anuales asociados a la instalación FV, en \in
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 3 (Pasos)

Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 ϵ /kWh, en ϵ , $B = I_{ve} - G_{fv}$

Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$

Paso 3: Cálculo del retorno de la inversión actualizado, PBA, en años, con una tasa de descuento del

5%,
$$PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$$

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en \in
- G_{fv} gastos anuales asociados a la instalación FV, en $m \ref{fv}$
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 3

(Solución I/III)

$$B = I_{ve} - G_{fv}$$

= 52.015 - 2.081
= 49.934 $k \in /a\tilde{n}o$

P. venta €/kWh	<i>I_{ve}</i> k€/año	G _{fv} k€/año	B k€/año	PB años
0.1	10.403	2.081	8.322	50.5
0.2	20.805	2.081	18.725	22.4
0.3	31.209	2.081	29.128	14.4
0.4	41.612	2.081	39.531	10.6
0.5	52.015	2.081	49.934	8.4
0.6	62.418	2.081	60.337	7.0
0.7	72.821	2.081	70.740	5.9
0.8	83.224	2.081	81.143	5.2

donde

B beneficio neto anual, en €

 I_{ve} ingreso neto anual por venta de electricidad, en ϵ

 G_{fv} gastos anuales asociados a la instalación FV, en $m \ref{fig:prop}$

5. Análisis económico. Ejemplo numérico 3 (Pasos)

Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 €/kWh, en €, $B = I_{ve} - G_{fv}$

Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$

Paso 3: Cálculo del retorno de la inversión actualizado, PBA, en años, con una tasa de descuento del

5%,
$$PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$$

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en \in
- G_{fv} gastos anuales asociados a la instalación FV, en $m \ref{fv}$
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 3 (Solución II/III)

$$PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)} = \frac{log(1-0.03\cdot 420/49934)}{-log(1+0.03)} = 9.9 \ a\tilde{n}os$$
 (11)

donde

PBA retorno de la inversión actualizado

k tasa de actualización en tanto por uno

C coste neto, en €

B beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 3 (Pasos)

Paso 1: Cálculo del beneficio neto anual con un precio de venta de 0.5 €/kWh, en €, $B = I_{ve} - G_{fv}$ Paso 2: Cálculo del retorno de la inversión actualizado, PBA, en años, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$

Paso 3: Cálculo del retorno de la inversión actualizado, PBA, en años, con una tasa de descuento del 5%, $PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)}$

- B beneficio neto anual, en €
- I_{ve} ingreso neto anual por venta de electricidad, en $\mathbf{\epsilon}$
- G_{fv} gastos anuales asociados a la instalación FV, en $m \ref{fv}$
- PBA retorno de la inversión actualizado
- k tasa de actualización en tanto por uno
- *C* coste neto, en €
- *B* beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 3 (Solución III/III)

$$PBA = \frac{log(1-k\cdot C/B)}{-log(1+k)} = \frac{log(1-0.05\cdot 420/49934)}{-log(1+0.05)} = 11.2 \ a\tilde{n}os$$
 (11)

donde

PBA retorno de la inversión actualizado

k tasa de actualización en tanto por uno

C coste neto, en €

B beneficio neto anual, en €

5. Análisis económico. Ejemplo numérico 4

El coste neto de una instalación fotovoltaica es 420 k€, genera 104 MWh/año, el gasto por mantenimiento es 2.081 k€/año y la tasa de actualización es del 3%. Calcular el VAN de la inversión, a 20 años, con un precio de venta de la electricidad de 0.5 €/kWh y 0.3 kWh.

5. Análisis económico. Ejemplo numérico 4 (Pasos I/II)

Paso 1: Cálculo del beneficio neto anual con un precio de venta de la electricidad de 0.5 $\rm \ell/kWh$, $B=I_{ve}-G_{fv}$

Paso 2: Cálculo del factor de actualización, $r = \frac{1}{1+k}$

Paso 3: Cálculo del valor actual neto $VAN = -C + B \cdot r \cdot \left[\frac{(1-r^n)}{1-r}\right]$

donde

B beneficio neto anual, en €

Ingreso neto anual por venta de electricidad, en \mathfrak{C}_{fv} gastos anuales asociados a la instalación FV, en \mathfrak{C}

r factor de actualización

k tasa de actualización en tanto por uno

VAN valor actual neto, en €

C valor de la inversión realizada, en €

5. Análisis económico. Ejemplo numérico 4 (Pasos II/II)

Paso 4: Cálculo del beneficio neto anual con un precio de venta de la electricidad de 0.3 ϵ /kWh, $B=I_{ve}-G_{fv}$

Paso 5: Cálculo del factor de actualización, $r = \frac{1}{1+k}$

Paso 6: Cálculo del valor actual neto $VAN = -C + B \cdot r \cdot \left[\frac{(1-r^n)}{1-r}\right]$

donde

B beneficio neto anual, en €

 I_{ve} ingreso neto anual por venta de electricidad, en \mathfrak{C}_{fv} gastos anuales asociados a la instalación FV, en \mathfrak{C}

r factor de actualización

k tasa de actualización en tanto por uno

VAN valor actual neto, en €

C valor de la inversión realizada, en €

5. Análisis económico. Ejemplo numérico 4 (Pasos I/II)

Paso 1: Cálculo del beneficio neto anual con un precio de venta de la electricidad de 0.5 ϵ/kWh , $B=I_{ve}-G_{fv}$

Paso 2: Cálculo del factor de actualización, $r = \frac{1}{1+k}$

Paso 3: Cálculo del valor actual neto $VAN = -C + B \cdot r \cdot \left[\frac{(1-r^n)}{1-r}\right]$

donde

B beneficio neto anual, en €

 I_{ve} ingreso neto anual por venta de electricidad, en \mathfrak{C}_{fv} gastos anuales asociados a la instalación FV, en \mathfrak{C}

r factor de actualización

 $k \sim 1$ tasa de actualización en tanto por uno

VAN valor actual neto, en €

C valor de la inversión realizada, en €

5. Análisis económico. Ejemplo numérico 4 (Solución I/IV)

$$B = I_{ve} - G_{fv} = 52.015 - 2.081 = 49.934 \, k \in /a\tilde{n}o$$

$$r = \frac{1}{1+k} = \frac{1}{1+0.03} = 0.971$$

donde

B beneficio neto anual, en €

*I*_{ve} ingreso neto anual por venta de electricidad, en €

 G_{fv} gastos anuales asociados a la instalación FV, en \in

r factor de actualización

k tasa de actualización en tanto por uno

5. Análisis económico. Ejemplo numérico 4 (Pasos I/II)

Paso 1: Cálculo del beneficio neto anual con un precio de venta de la electricidad de 0.5 ϵ /kWh, $B=I_{ve}-G_{fv}$

Paso 2: Cálculo del factor de actualización, $r = \frac{1}{1+k}$

Paso 3: Cálculo del valor actual neto $VAN = -C + B \cdot r \cdot \left[\frac{(1-r^n)}{1-r}\right]$

donde

B beneficio neto anual, en €

 I_{ve} ingreso neto anual por venta de electricidad, en \mathfrak{C}_{fv} gastos anuales asociados a la instalación FV, en \mathfrak{C}

r factor de actualización

k tasa de actualización en tanto por uno

VAN valor actual neto, en €

C valor de la inversión realizada, en €

5. Análisis económico. Ejemplo numérico 4 (Solución II/IV)

$$VAN = -C + B \cdot r \cdot \left[\frac{(1-r^n)}{1-r} \right] = -420 + 49934 \cdot 0.971 \cdot \left[\frac{(1-0.971^{20})}{0.03} \right] = -420 + 719 = 299$$
 (13)

donde

VAN valor actual neto, en €

C valor de la inversión realizada, en €

B beneficio neto, en €

r factor de actualización = $\frac{1}{1+k}$

k tasa de actualización en tanto por uno

5. Análisis económico. Ejemplo numérico 4 (Pasos II/II)

Paso 4: Cálculo del beneficio neto anual con un precio de venta de la electricidad de 0.3 ℓ kWh, $B=I_{ve}-G_{fv}$

Paso 5: Cálculo del factor de actualización, $r = \frac{1}{1+k}$

Paso 6: Cálculo del valor actual neto $VAN = -C + B \cdot r \cdot \left[\frac{(1-r^n)}{1-r}\right]$

donde

B beneficio neto anual, en €

 I_{ve} ingreso neto anual por venta de electricidad, en \mathfrak{C}_{fv} gastos anuales asociados a la instalación FV, en \mathfrak{C}

r factor de actualización

k tasa de actualización en tanto por uno

VAN valor actual neto, en €

C valor de la inversión realizada, en €

5. Análisis económico. Ejemplo numérico 4 (Solución III/IV)

$$B = I_{ve} - G_{fv} = 31.209 - 2.081 = 29.128 \, k \in /a\tilde{n}o$$

$$r = \frac{1}{1+k} = \frac{1}{1+0.03} = 0.971$$

donde

B beneficio neto anual, en €

*I*_{ve} ingreso neto anual por venta de electricidad, en €

 G_{fv} gastos anuales asociados a la instalación FV, en \in

r factor de actualización

k tasa de actualización en tanto por uno

5. Análisis económico. Ejemplo numérico 4 (Pasos II/II)

Paso 4: Cálculo del beneficio neto anual con un precio de venta de la electricidad de 0.3 ϵ /kWh, $B = I_{ve} - G_{fv}$

Paso 5: Cálculo del factor de actualización, $r = \frac{1}{1+k}$

Paso 6: Cálculo del valor actual neto $VAN = -C + B \cdot r \cdot \left[\frac{(1-r^n)}{1-r}\right]$

donde

B beneficio neto anual, en €

 I_{ve} ingreso neto anual por venta de electricidad, en \mathfrak{C}_{fv} gastos anuales asociados a la instalación FV, en \mathfrak{C}

r factor de actualización

k tasa de actualización en tanto por uno

VAN valor actual neto, en €

C valor de la inversión realizada, en €

5. Análisis económico. Ejemplo numérico 4 (Solución IV/IV)

$$VAN = -C + B \cdot r \cdot \left[\frac{(1-r^n)}{1-r} \right] = -420 + 29 \cdot 128 \cdot 0.971 \cdot \left[\frac{(1-0.971^{20})}{0.03} \right] = -420 + 419 = 1 \in (13)$$

donde

VAN valor actual neto, en €

C valor de la inversión realizada, en €

B beneficio neto, en €

r factor de actualización = $\frac{1}{1+k}$

k tasa de actualización en tanto por uno

FOTOVOLTAICA, BIOMASA Y COGENERACION

FIN
¿¿¿¿PREGUNTAS????
GRACIAS POR SU ATENCIÓN

