Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

SUGARBEET RESEARCH

1963 REPORT

Compiled by Sugarbeet Investigations

CROPS RESEARCH DIVISION

AGRICULTURAL RESEARCH SERVICE

UNITED STATES DEPARTMENT OF AGRICULTURE

UNITED STATES DEPARTMENT OF AGRICULTURE
Agricultural Research Service
Crops Research Division
Beltsville, Maryland

SUGARBEET RESEARCH

1963 REPORT-1/

Compiled by Sugarbeet Investigations

 $[\]overline{1}/$ This is a progress report of cooperative investigations, containing data, the interpretation of which may be modified with additional experimentation. Therefore, publication, display, or distribution of any data or statements herein should not be made without prior written approval of the Crops Research Division, ARS, U.S. Department of Agriculture, and the Cooperating Agency or Agencies concerned.

FOREWORD

SUGARBEET RESEARCH is an annual compilation of research accomplishments by staff members of Sugarbeet Investigations and by Cooperators.

The Report is a medium for presenting results of investigations that have been strengthened by contributions from the Beet Sugar Development Foundation and for reporting research accomplishments under Cooperative Agreements between the Crops Research Division of Agricultural Research Service, U.S. Department of Agriculture, and the Beet Sugar Development Foundation, the Farmers & Manufacturers Beet Sugar Association, and Union Sugar Division, Consolidated Foods Corporation.

Research at Salinas, California, on virus yellows has been strengthened through contributions from the California Beet Growers Association. Ltd.

Some of the investigations reported by staff members of Sugarbeet Investigations, as well as the field tests reported by Cooperators, have not been supported by the Beet Sugar Development Foundation or other cooperating agencies; therefore, Foundation project numbers or credit statements on "Part" title pages should not be construed as an indication that all investigations received support from the agency mentioned.

SCHARLEY RETAINED IN ACCOUNT CONSTRUCTOR OF STREET CONSTRUCTION AND ACCOUNT OF STREET CONSTRUCTOR AND ACCOUNT OF STREET

The Ripert is a medium for presenting results of inviening tions that have been strongthened by eventiuming rime the Sent Sugar Divelopment Foundations and for reporting rimers across planeaus ander Cooperative Approximate between the Gray Boscarch Ottersion of Applicational Leadanch Service, Dis. Department of Applications, and the Best Sugar Development foundation, the Remain & Manufactorers Best Sugar Development foundation, the Remain & Manufactorers Best Sugar Association, and United Sugar Diversion.

Reswarch of Skinnas, California, on virus yellous has been attenganted through contributions the Californ a seen Growing amountation of

Some or the largetigations reported by bittle ministed by Sugarbers investigations, as well as the field tests Especial by Sugarbers, have not been supported by the less Seas Development Formestion or other comparating agencies, thristory. Mostarios should graises numbers or uradit sugar-should not be construct as an indication that contains all investigation incomined as an indication that contains all investigation incomined as an indication that contains all investigation incomined and manner of the contains the construction and contains and investigation incomined and an in

CONTENTS

HIGHLIGHTS	OF ACCOMPLISHMENTS	Pag-
PART I	NEW DEVELOPMENTS IN BREEDING RESEARCH	6
	Items proposed for seed increase, 1963 Utilization and distribution of items Seed production of 1962 items Monogerm seed production in U.S.A	7 15 20 21
PART II	DEVELOPMENT AND EVALUATION OF INBRED LINES AND HYBRID VARIETIES SUITABLE FOR CALIFORNIA	22
	Summary of accomplishments Observational test - Leaf Spot Summary, 1963 tests - Gross Sugar Summary, 1963 tests - Sucrose percentage Field tests, Brawley, California Field tests, Salinas, California Field test, American Crystal Sugar Co. Field tests, Spreckels Sugar Co. Field tests, Union Sugar Division Purity percentage, 1962, Union Sugar Division Field tests, Holly Sugar Corp. Triploid variety test Development of tetraploid sugarbeets Studies on germination	37 38
PART III	BREEDING FOR CURLY TOP RESISTANCE AND STUDIES ON MALE STERILITY AND QUALITY	76
	Studies on asexual transfer of male sterility Environmental instability of male sterility Clonal propagation of sugarbeets Photograph - Propagation Chamber Variety tests, Logan, Utah Viability of sugarbeet seed Curly top investigations Curly top screening tests, Thatcher, Utah Studies on photosynthesis and respiration Light exposure and respiration	91 92 97 102 110
PART IV	EVALUATION OF BASIC BREEDING MATERIAL AND VARIETIES SUITABLE FOR THE GREAT LAKES REGION	120
	Section 1. Regional Tests	

COMMENTS

	Summary of accomplishments	
	BREADING PUR COREY TOP RESIDENCE AND BENDISH OR MALE STREETLITY AND QUALITY	
	SULTANIA TOR THE GREEK LAND MATCHEL AND VARIOUS SULTANIA TOR THE GREEK LAND HERITOR	

CONTENTS

		Page
	Field test, Buckeye Sugars, Inc	126
	Field test, Monitor Sugar Division	130
	Field tests, Michigan Sugar Co	132
	Field test, Western Ontario Agricultural School	138
	Field test, Wisconsin Agricultural Expt. Station .	140
	Field tests, Northern Ohio Sugar Co	142
	Recoverable Sugar, Great Western Sugar Co	148
	Section 2. Evaluation of Breeder Seed and	
	Experimental Hybrids	149
	Description of entries	151
	Field tests, Northern Ohio Sugar Co	152
	Field tests, F & M Association	156
	Summary of tests	160
	Section 3. Combining Ability Tests	161
	Field tests, F & M Association	162
	Leaf spot evaluation	178
PART V	DEVELOPMENT AND EVALUATION OF VARIETIES CARRYING	
	RESISTANCE TO LEAF SPOT AND CURLY TOP	179
	Discussion of objectives	180
	Top-Cross tests	181
	Development monogerm, Type O	187
	Cooperative regional tests	189
	Field test, Fort Collins, Colorado	193
	Field test, Rocky Ford, Colorado	195
	Field test, Tribune, Kansas	197
	Field test, Hereford, Texas	199
	Field test, Hamilton City, California	201
	Field test, Goodwell, Oklahoma	203
	Field test, Artesia, New Mexico	205
	Photograph - Artesia, New Mexico	208
		209
	Leaf spot test, Beltsville, Md	210
PART VI	DEVELOPMENT OF BREEDING PROCEDURES, CHEMICAL	
TITL VA	CENETICS AND PLOIDY EVALUATION	211
	OMMETOD INDICATE DAMPINETON	<u>_</u>
	Comparisons of chemical constituents in	
	petioles and thin juice	212
	Partitioning method of genetic analyses	240

CONTENTS

PART VII	PLOIDY IN RELATION TO ROOT YIELD, SUCROSE PERCENTAGE,	Page
	AND DISEASE RESISTANCE	268
	Polyploidy in sugarbeets	269
	Polyploidy and curly top resistance	279
	Production of tetraploid sugarbeets	291
	Nematode resistance of interspecific hybrids	297
PART VIII	BREEDING FOR NEMATODE RESISTANCE AND FIELD TESTS	299
	Breeding for resistance to the cyst nematode	300
	Relation of nematode-root rot	306
	Photographs:	311
PART IX	NEMATOLOGY INVESTIGATIONS	313
	Factors affecting hatching of cysts	314
	Legume crops for nematode control	322
	Fallow and nematode control	326
	ratiow and nematode control . ,	320
PART X	VIRUS YELLOWS INVESTIGATIONS	329
	Relative importance of beet yellows	
	and western yellows	330
	Field tests, Davis, California	336
	Amino acid pattern and yellows resistance	345
PART XI	RHIZOCTONIA INVESTIGATIONS	349
	Field tests	350
	Photograph	357
	Inotograph	37 1
PART XII	CERCOSPORA LEAF SPOT INVESTIGATIONS	358
	Sporulation of fungus	359
	Dissemination of pathogen	364
PART XIII	PHYSIOLOGICAL INVESTIGATIONS	369
	Germination studies	370
PART XIV	DEVELOPMENT OF BASIC BREEDING MATERIAL AND	
	EXPERIMENTAL HYBRIDS	374
	Improvement through selection	375
	Inheritance of monogerm	384

	OLDY IN TLAT ROOT I.D. CROSS ROLLTAGE,	
	THE SECOND CONTRACTOR OF SECON	
	Absolute of the superior of the special of the spec	
306 306 203	Procedury for a prince to the cyst tempto	
	'entert straceing betching of agains	
	VIRUS VALLOWS INVESTMENTATIONS	
	Melative Argorteace of Seet yellows end vostore gellows	
	FILLDOCTION A SAME PROPERTY AND A SAME PARTY AND A SAME P	
350 357		
878		
	Symmiation of the second secon	
	300 LAINENNIS MINISTER	
375		

AN ERA OF EXPANSION

Dewey Stewart

Recent events related to our beet sugar industry indicate that the Sugar Act Amendment of 1962 marks a significant epoch in the history of the sugarbeet in the United States. The domestic sugar industry has experienced market support and stability of production under the various revisions of the Sugar Act of 1937, and the consumer has been provided with sugar at bargain prices. However, in recent years the restrictive provisions of the Sugar Act have discouraged expansion by both the processor and the grower.

The recent crisis in the world's sugar supply prompted the U.S. Department of Agriculture to lift acreage restriction on sugarbeet production for 1963, 1964, and 1965. Governmental encouragement of increased domestic sugar production, together with a favorable sugar market, has brought about a remarkable expansion in production. For the 9-year period 1955-1963, sugarbeet production increased 89.7 percent. The 1963 sugarbeet crop alone showed 27 percent increase over the 1962 crop.

The progressive increases in sugarbeet production between 1955 and 1962 were processed in spite of the decreasing number of active factories and no new factory construction. The daily processing capacities were increased for many factories and the campaigns were lengthened. It is worthy of note that in many districts the operating period of the processor is now approximately equal to the growing season of the producer.

Expansion under Law.—The Sugar Act Amendment of 1962 provides for growth and expansion of the beet sugar industry attuned to the annual increases in sugar requirement that are related to growth in population. The Amendment stipulates that the Secretary of Agriculture shall reserve each year, from the national sugarbeet acreage requirement, an acreage required to yield 65,000 tons of sugar and shall commit the acreage to new growers supplying new factories in a new area. It is contemplated that this would enable the establishment of one new factory each year with two new factories in each third year.

In the distribution of sugarbeet acreage reserves, the determinations and selections shall be based upon several criteria such as suitability of the area for growing sugarbeets, the desire to grow the crop, the need for a new crop, proximity to markets, and the firmness of capital commitments for factory construction.

Feasibility of Expansion. -- The suitability of the sugarbeet to new districts becomes the keystone of the entire expansion program that will require approximately \$20 million for each new factory and a large outlay of capital by the growers for equipment. Therefore, a wealth of information based on experimental tests and commercial field trials is a prime requirement of each request for acreage allotment from the national reserve.

AN EELA OF EXPANCE FOR

Traward Plantert

Rocent even lared to our bact anger inducity indicate that the dignal and the dignal the discount in a significant anger industry has even, and discount in the continuous terminal rough advant the first of 1977 and the continuer has been provided with even at height prices. However, in recent years the centricities provided the signal at height and the graces are stoned to prove the stone such the graces are

the recent orinis in the world's same, suchly premoted the R S Department of Americal Luce to 11fc arreage restriction of Americal Luce to 11fc arreage restriction of Americal Luce to 1963; 1968 and 1965 anovernmental encouragement of fuer need downsin significant production, begainer with a favorable inger warset, has injought signodiction in product on. Por the Jett sugarjaction 1863, sugarfactor production increases the terresult. The 1961 sugarjact crossions alone the State of Porters increase over the State or one

The professive increases in a production between 1955 and 1962 were professed in spice of active factoring aminones professed in spice of the decreasing number of active factoring aminones for the decreasing capacitive against an example of the companies were languaged in it is outling note that in case districts our operating nucled of the processing approximately equal to the growing season of the producer.

gert Law - The begar act amendment on 1502 provides for growth experiences of particular of the sented in the setting of the sented in reader in sugar requirement that are related to growth it popularion. The Amendament stipulation that the Sciences of Agriculture shall review each passified the notional segarbaet not segarbaets requirement, as arround required to yield 55,000 for our of the spile shall commit the acreage required to supplying new factories in a new growers supplying new factories in a new growers supplying new factories in a constant shall that the stiff one new factories is as a constant when with the factories is as the same of the sectories is as a constant of the sectories is as a constant of the same factories and the same factories is as a constant of the same factories and the same factories is a constant of the same factories and the same factories are same factories.

t purcupa reserve: the determinations and appear and appear to severe the continuous the compact of the continuous to severe of capital commitments to severe of capital commitments.

-- The suitab lity of the sugarheet to now dis- se at the verire expansion program that whitidition for gade new factory and a large outlay
or equipm at. Thursfore, a mealth of informatests and administration field original in matter
set for ecousar allement limit the national reverse

Public Hearings.--Hearings were held September 25-28, 1962, for the presentation of testimony to support requests for acreage allotments for 20 facilities: 1 in 1963, 5 in 1964, and 14 in 1965. Based on the testimony presented at the Hearings, acreage allotments for 1963 were awarded to a factory under construction at Mendota, California; for 1964, to factories near Hereford, Texas, and Phoenix, Arizona; and for 1965, to a factory near Drayton, North Dakota, and one in southeastern South Dakota.

Hearings were held December 10-13, 1963, for the presentation of testimony for the remaining acreage reserve through 1966. Two requests were presented for 1965 quotas and 21 requests for 1966 quotas. These presentations were from Washington to Maine and south through Virginia, Tennessee, Texas, and Arizona, and represent a new level of public interest in sugarbeet production across the United States.

The acreage allocations to Arizona and South Dakota were revoked October 19, 1963, because substantial progress in construction was not demonstrated. It is significant that one reason for delay in factory construction in South Dakota was the need to further appraise the disease hazards in the region.

New Factories. -- In August 1963, the Mendota factory of Spreckels Sugar Company began operation. The Holly Sugar Corporation factory at Hereford, Texas, is scheduled to operate in 1964; and the American Crystal Sugar Company factory at Drayton, North Dakota, is under construction and will begin operation in 1965. These three factories are the first new ones in the United States since 1954.

On January 10, 1964, an acreage allotment was granted to the Finger Lakes Sugar Beet Growers Association and the Pepsi-Cola Company for a factory to be constructed in the vicinity of Auburn, N. Y. The factory is scheduled to operate in 1965. It is of interest that sugarbeets from the commercial trials in New York were shipped to Michigan for processing and that the sugar was returned to New York State. Thus, for the first time in more than 20 years, homegrown sugar was available in that State.

The 1966 acreage reserve awards, which will permit construction of two new factories, have not been announced. Requests for acreage were presented at the Hearings by 21 localities. Several of these presented substantial evidence of ability and desire to grow sugarbeets. Since the Hearings, 7 localities have submitted additional capital arrangements to the Department of Agriculture for factory construction.

Sugarbeet Investigations cooperated with State Agricultural Experiment Stations and Agricultural Extension Services, as well as with grower groups in several States, in the conductance of variety trials and feasibility studies. In addition, beet sugar companies conducted extensive exploratory commercial trials in several new districts.

Till and the state their september 20-15 1962, and the preretiment to support requests for account allements for
1 to 1763. If in 1365, and is in 1865, ander the reaas ar are Brazinge, account allements one 1965 to enacted
for construction at Memoria, (alifornia, for 1865, to

con threfield, Seres, and Phasella, Actions, and the 1965, to

real threfield; Seres takes and Phasella, in antisenter South Dekora.

imposit were in the hecomper 10-13. (MG), for the presentant of restinony for the remainf enterpy takens the remainf enterpy takens and 10 requests the 1906. Two requests were presented for a live 1965 quotes and 11 requests the 1904 quotes. There presented tives were from Washington to Maine and enter the Uryluse. It present the remaining of the present in sugar-section arross the United Starpes.

The acress allocations to Arleuna and sumin Desot, the cavable purphies 12, 1965, because substantial oraginal in electron was not diagon. This is always and the own reason to delive in tactory construction in New It Bases was the deed to juristic appraise the diagona narrance in the theorem.

New Factories - In anguit 1963, the mendots fortary of approvers Sugar Company on operation the Healty Sugar Company of actory it hereford. Fortary, is acted to received the contraction to operate Bugger Johnson, factory at Draylon, worth provide its under contraction and wall begin operation in 1965. These three tectories are the airst new order the States state 1964.

In Jamesey 16, 1904, an acroage allocated was granted to the Finege lakes in James J

in 1566 acce go regove amonded, which will permit construction of two had factories. Nave not been consumed. Requests for acrouge were presented at the crists by it localities. Several of these presumed constructed ever are of ability and desire to grow augentrooks. Since everying, I localities have submitted added one captual capital otrangements. Department of aget ulture for interpresentation.

cations coops and twith State Aprivoltural Expandence is util province of the selection Certifies, as well as with grower targes, in the conductor target requalises conducted auticition to the several new disertices.

The Sugar Act Amendment of 1962 has given the greatest boost to growth and expansion of the beet sugar industry and sugarbeet production since the first successful factory was put into operation at Alvarado, California, in 1870. The new era of growth and expansion should intensify sugarbeet culture in present districts of production and encourage productions in new geographical regions, thereby presenting new challenges to research and technology.

Programs of research should be strengthened and accelerated to supply guidance and support to growth and expansion. In the past, the potential of research has been commensurate with the needs of the sugarbeet, and equal success should be achieved in meeting the challenges of the future.

ven the greatest boost in amount on atting

... and
... and
... and expension telephanes, Call
... and expension stands intensity
... at production and areast pro... at pro

RESEARCH ACCOMPLISHMENTS

A. Variety Evaluation and Seed Production

Monogerm Seed Production.--Sugarbeet seed productions for 1955 through 1963 (P. 21) were taken from AGRICULTURAL STATISTICS. Preliminary statistics show that the 1963 sugarbeet seed crop was 86.7 percent monogerm. The seed crop of 1962 was 88.5 percent monogerm. In most districts, suitable monogerm hybrids have superseded multigerm varieties; but in a few districts, the changeover has not been complete. The development of monogerm varieties of sugarbeets suitable for the American grower has been a noteworthy accomplishment in which all agencies of sugarbeet research--such as government, industry, and seed-producing enterprises--have made significant contributions.

Productive Monogerm Hybrids.--New monogerm 3-way hybrids based on a malesterile F_1 (562 X 569) as seed-bearing parent have been produced as a result of the breeding research of J. S. McFarlane and associates and will be made available to growers in California in 1964. The pollinator will characterize the commercial hybrid and determine regional adaptation. These monogerm hybrids will supersede the present multigerm varieties. Fall plantings of sugarbeet variety trials by K. D. Beatty in the Imperial Valley have supplied advance information on performances of new developments in breeding research.

The regional field trials conducted in the Great Lakes region in cooperation with Farmers & Manufacturers Beet Sugar Association clearly demonstrated progressive improvement of new hybrids over SL 122ms X SP 5460-0 previously used in the region (p. 123). Significantly, improvement in commercial hybrids is brought about by use of a pollinator (SP 5822-0) that has excellent quality. The variety trials conducted by G. J. Hogaboam (USDA), M. R. Berrett (F&M), and cooperators clearly indicate that the best hybrids are statistically superior to the multigerm variety SP 5822-0 in roots and sugar.

Multigerm Varieties.—The multigerm varieties SP 5822-0 and SP 6051-0, developed largely in the breeding research conducted by G. E. Coe, have shown characteristics worthy of note. SP 5822-0 has shown leaf spot resistance, and precise and meaningful chemical tests have indicated high technical quality. Thus with the same quantity of gross sugar per ton of roots, the high quality of SP 5822-0 would give higher sugar recovery than varieties of lower quality. It has also been shown that when SP 5822-0 is used as pollinator its excellent quality characteristic is imparted to its hybrid progeny.

SP 6051-0 carries resistance to both leaf spot and curly top. In cooperative regional tests at Artesia, New Mexico, where both curly top and leaf spot occurred in epidemic proportions, the root yield of SP 6051-0 was more than double that of SP 5822-0, which is resistant to leaf spot but susceptible to curly top (pp. 205-208). In tests conducted under leaf spot exposure at Beltsville, the two varieties showed approximately equal resistance to the disease (p. 209). The leaf spot resistance of SP 6051-0 was developed in breeding work at the Plant Industry Station, Beltsville, Md., and the curly top selections were made by J. C. Overpeck in cooperation with New Mexico Agricultural Experiment Station. (See Sugar Beet Research, 1961 Report, pp. 2, 81, and 341.)

thu.

A. Variety Pvaluetion and Self Production

St send productions for through 1963

St. 11 were folen from ACRI STAINSTICS Proliminary statistics
show that the 1963 suggesteet wend ocup was 35.7 parcent monogers The said
crop of was 36 parcent conogram. In sort districts subtable toolotre supercode multigate venteries; but in a low districts.

The next low time toologies of the lower less but a monage of verteries
suitable for the American profess has been actived to second.

Sitte . In White all agencies of sugarcest them a note a government,
suitable. In White all agencies of sugarcest them and a constant of the second and a second and a

refurstic a agent Hid its. -New managers leves hybrids have to a magnification as a result of the associates and secondarias as a result of the associates and secondarias as a result of the associates and secondarias at the made are labely to a secondarias and the communication of the secondarias and the communication of the properties of the properties will supercede the property and the important of the properties of the important of the properties of the important of the properties of the important of the consensual and a supplied are accordant to the consensual and a supplied are an accordant to the consensual and a supplied and a supplied

The regional field eximit contented to the inestigate later lagion in compension with Faurers & Manufactures a Neet Sugar Association electly demonstrated progressive impreventation of more hybrids over St 132ms K SP Supple D previously used in the reason (p. 13). Sugnificantly, improvement in establishing apartial ayont due to brought about by use of a politinator (SF 5322-0) that has excelled quarity. The variety trials connected by G. J. pugabose (1898), 4 S. Bernert (1804), and an excellent of the multiple of the first over the state of the signal of the multiple of the SF 5822-0 in the sand sugar.

clies. -- The aminiques variables of 5872-0 solly 505051-1 developed targets in it braceing research conjunted to 5. F. Coa, have shown than abarecteristics worthy of rote. SF 582. A has from lest open conjetures and procise and maching rehamical tasts new indicated high technical quality. Thus with its same quality of gross angur now ten of routs infinitely and it is \$812-0 until give higher regar recovery than variation of news.

Light anally of SF 5812-0 until give higher recovery than variation of news.

of 181-0 named to bein seal spot and ently top. In cooperative med rate i esta taw Morton where both curity top and leaf spot to groperties, he took yield of 27 60%: 0 was note than \$820-7 which is start to leaf apor but enterphible confice ander that apor exposure at

het west.

B. Breeding and Genetics

Monogerm Male-Sterile Parents.--Cytoplasmic and Mendelian factors of the sugarbeet comprise the generative device utilized in the production of commercial hybrid seed. The key to the device is the type-0 line and its malesterile equivalent. The monogerm male-sterile lines 562 and 569 developed by J. S. McFarlane are promising additions to such parental material. The results of 1963 indicate that the male-sterile F_1 , 562 X 569, will have wide use with complementary pollinators in the production of 3-way hybrids for use in California. Monogerm type-0 line C 3550 is a valuable addition to the breeding material at Salinas.

Ten type-0 monogerm lines have been developed in the breeding research of J. O. Gaskill (p. 181). The male-sterile equivalent of these lines has demonstrated excellent combining ability in experimental hybrids. Field trials with experimental hybrids in which the new type-0 lines were used as female parent clearly indicated that the diversity of use of these lines would depend upon the diversity of character of the available pollinators.

Polyploidy.--The results of V. F. Savitsky have shown that the triploid hybrid is highest in combining ability, the tetraploid second highest, and the diploid lowest. Significantly, in his breeding material many tetraploid populations or hybrids did not exhibit the usual tetraploid depression in yield. Some tetraploid monogerm hybrids outyielded the diploid monogerm hybrids and exceeded the triploid hybrids in percentage sucrose.

The triploid hybrids produced with tetraploid 663 as pollinator (Hammond, p. 63), produced higher tonnage of roots than did the corresponding diploid hybrids in field tests conducted by J. S. McFarlane, but the triploid hybrids were inferior in sucrose percentage. The triploid hybrids showed significantly higher bolting resistance than did the corresponding diploids but they were more susceptible to curly top. The diploid and triploid forms in the test at Davis, California, were similar in yellows resistance.

Interspecific Hybridizations.--The cytological investigations of Helen Savitsky have presented explanations of the irregular meiotic configurations that occur in hybrids obtained by crossing cultivars of the sugarbeet (Beta vulgaris) with species in the section Patellares. The cytological principles being established will permit more direct approach to the genetic transfer of characters of the wild species to the sugarbeet.

Principles and Procedures.--Studies by LeRoy Powers and R. J. Hecker on the comparative effects of levels of total nitrogen, potassium, and sodium in the petioles and thin juice on weight per root, percentage sucrose, and apparent purity in sugarbeets have shown that the associations between levels of total nitrogen in the thin juice, percentage sucrose, and percentage apparent purity are negative; furthermore, for the latter the association is so close (r = -0.95) as to practically preclude the possibility of genetically combining high total nitrogen in the thin juice with high percentage apparent purity.

S. Breeding and describe

The wife of the control of the contr

Ten type-d acrosser the siews teer developed in righted tile sessanch of askill (p. 181). The mais-steril iquivalent at their transitions has demon inches right beautiful to the session of the session

The triploid hybra-is produced that we respict this as collimator islimiting to it), produced aughor tendence of now that the amore approximate for it'd life and the amore approximation by the interest the analysis of the first of the first of the amore approximation of the analysis of the artificial along the approximation of the analysis are as an and the analysis of the analys

respect descriptions -- The syte outsal any client put the activity consists the ference of the ference for the ference of the species in the species will proper form the ference of the species will parely more introduced to the granter terms, approach to the granter terms, and the substantes of the section of the substantes of the section of the substantes.

s. - Laudile by LeRdy Lowers and R. J. Hacket on the evolus of rotal nibrogen, parasitum, and softun in assets of rotal new took, department ago excress, and electron share new chad her assets arrows agometh in jurae, ys maje encress and per ray for the took of the passibility pascinds the passibility.

Studies on chemical genetics, by Powers and Hecker, further indicate that the higher levels of total nitrogen, potassium, and sodium in the petioles are conducive, if not essential, to the production of high root yields. The studies indicate that there is no reason why the metabolic requirements of higher yields of roots, percentage sucrose, and percentage apparent purity cannot be met by producing and growing genotypes which at the time of harvest have higher levels of total nitrogen, potassium, sodium, and phosphorus in the petioles rather than in the thin juice.

Populations of sugarbeets were found to differ in the relative levels of total nitrogen, potassium, and sodium in the petioles as compared with levels of these same chemicals in the thin juice. Some genotypes have higher levels of these three chemical characters in the petioles associated with lower levels in the thin juice. This finding is of importance and shows that populations can be bred that will have the high levels of these chemicals in the foliage (petioles) rather than in the roots (thin juice).

Nematode Resistance.—The persistent efforts by Helen Savitsky to bring about the genetic transfer of the extreme nematode tolerance of Beta patellaris to cultivars of the sugarbeet have been followed with interest. The results reported by H. Savitsky and Charles Price are most rewarding (p. 297). It is gratifying that large hybrid populations are now available for evaluation. Some hybrid plants with sugarbeet characteristics have remained free of attack by Heterodera schachtii when grown under precise and positive exposure to the pathogen. In a large backcross progeny, 33 plants had few nematodes developing to maturity in their roots. These highly resistant plants are currently receiving thermal induction, and seed production is anticipated.

In the breeding work by Charles Price, progress is being made toward the development of inbred lines and breeder seed of sugarbeets that have a high level of tolerance to Heterodera schachtii. In field tests conducted under severe exposure to the nematode, several new breeding lines were significantly higher than US 41 and US 75 in root yield. Further studies tend to point to soil fungi as accessory pathogens to the damage generally attributable to the cyst nematode. In a crock test, soil infestation by fungi caused a reduction of 12.7 percent in root weight; and by the nematode, 26.7 percent. Both categories of pathogens caused damage of 45.8 percent when combined as inoculum. Further research is needed to separate this disease complex into its component parts, thereby permitting a more logical approach to development of control measures.

Autotetraploid Lines.--The work of Helen Savitsky (p. 291), B. L. Hammond (p. 63), and G. E. Coe (p. 375) has resulted in significant additions of 4n lines available for evaluation. Inbred lines and breeder seed submitted to a contractor in Spain have supplemented the supply of autotetraploid lines at all Stations.

Autotetraploid lines are of primary interest in production of triploid hybrids, but some breeders have found improvement of economic characters such as disease resistance (V. F. Savitsky, p. 269), and prevention of spider mite damage (Hammond, p. 70).

ies! generics, by Powers and Macker, torramer indicate that is of repair mitto on parassium, and configure the prototes if not essential, to the production or high root pields. The a that there is no cease why the wermbolfs requirements of focots, protentage out as and pero newase apparent ourity producing and growing genotypes which of the time of nor such levels of rotal netrogen, parassium, sond phosphorus sone fevers of the time of the time of the time is returned to the time of the configuration of the time of the time of the first fevers of the time of the configurations.

suderbe of here found to differ in the relative evoluble tended of the least of the relative evoluble policy of the policy of the policy of the compared of the least of the control of th

in the breeding work of Charles Irise, progress is seing made toward the off of inbred lines and breader seed of separtheeth that there a high sevel of indersors to Priroders advents; in theid tesss conducted ender sevel of indersors in the breading lines were significantly and the fact than its 41 and a 75 in room yield testion along sond to point to act fungi as accessory pathogens to the damest generally attributed a to the constitute by inngricated a to the constitute by inner caused a of persons in room velight and by the newstode, 26.7 persons of pathodens caused as of pathodens caused as a party of pathodens caused at 10 miles of pathodens complex into the law Purther companies and the constitute of the constitute of the pathodens of the constitute of

Times : Trock of Welen Savitaky (p. 191), B. B. mammond
| last : Ited in styroffownt additions of
| the lines and biseder cost submitted
| the spyriv of amporetrapiotd (tres

s intercer sa production of triploid intridus, such as ninsuccession discretered and ninsuccession of spider with domage. The Haploid sugarbeet isolated from a mixed ploidy progeny by B. L. Hammond (p. 69) is of genetic interest. If his attempts to produce a diploid progeny from this plant meet with success, it will be the first time a completely homozygous sugarbeet has been produced. The production of autodiploids from haploid plants permits establishment of a perfection of homozygosity in one generation than that attainable in many generations of selfing.

Combining ability tests, conducted by G. J. Hogaboam and M. R. Berrett (p.161) on breeding material developed largely in the breeding work of Hogaboam and Coe, have indicated the breeding value of certain lines as pollinators or as female parents in the production of monogerm hybrids. These tests point to the need of having in the pollinator strongly marked characteristics desired in the resultant hybrid. Additional studies on combining ability tests are reported by Gaskill (p. 180), Ryser and Theurer (p. 92), and McFarlane (p. 26).

C. Disease Investigations

Yellowing of sugarbeet foliage is widespread in this country, but the highest incidence occurs in the Western States. Yellowing is not a specific symptom and may be induced by different causal agents. The research of C. W. Bennett and coworkers has shown progress in separating the disease complex into its components.

Beet Yellows is largely limited to California and the seed-producing areas of Arizona. In these districts the prevalence and damage by the virus are associated with and probably largely dependent on presence of sugarbeets throughout the year. Complete destruction of all sugarbeets in an area, even for a short period in the year, has markedly reduced the incidence of the disease.

Beet Western Yellows probably occurs throughout the Western States and to a lesser extent in the Midwest. The causal virus occurs in a number of weed hosts in which it probably persists in an area in the absence of the sugarbeet. However, if sugarbeet plants are present throughout the year, the infected ones can serve as an effective primary source of the virus and thereby favor widespread infection in new crops of sugarbeets. In 1962, beet western yellows was observed in Utah, Idaho, Washington, and Oregon. The disease is known to occur in Colorado and Montana, and probably in Michigan.

Strains of the viruses have been discovered which differ strikingly in their ability to cause damage in the sugarbeet. It is well established that the beet yellows virus and the beet western yellows virus differ strikingly in ability to cause damage and that within each of the viruses the isolates differ markedly in virulence. Most of the isolates of beet yellows virus have a high degree of virulence, and damage appraisal tests over a period of 12 years show a range of 20 to about 60 percent loss. The maximum damage to commercial varieties ranged from 30 to 40 percent. In a greenhouse test

From a mixed ploidy progetty by B. b. Hamerna if his research produce a deploid produce * it will be the first lime a comarcs * it will be the first lime a com-

est fociend by G. J. Negabosm and M. R. Berrett (p. 161)

st fociended lasgely in the bracking work of Bogabosm and
care the bracking value of certain lines as politions or
in the sto on tion of mot agarw bybeids, fibere tests point

county for the first lines of the strongly marked characteristical
desiron the resiltant bybeid Additional atomics on combining ability
tasts : appared by Kaskili (p. . . Never and Thank (p. 92), and

iniseps Thysethyasine

collowing of ingarheet (direct is widespread in this country but the brighest intidence occurs in the independence occurs in the case of a specific symptom and equipe or required by direct case in and coveriers has shown progress in and the direct corplex into its may?

Boot 'ellows is largely limited to California and the sead-producing areas of Actrona in these districts and prevalence and damage by the virus are seaded with and probably largely department on presence of sugarbrets unrunghout the year. Complete destrocales of all sugarbrets for a there person in the twe year, has marbedly reduced the indicence of the issues.

one probably accurs throughout the weatern States and to a surser of the read states occased in a surser of west specification occased in a surser of the sugar-confidence of the sugar-confidence of the surservice of the vice of the vice of the vice occase occased occase

discovered which diries strikingly in their
searbeet. It is need novellabed that the
ret yellows virus differ strikingly to
a each of the vicuous the look policies
has then a of beet yellows virus

with a strain of beet yellows from Grimes, California, and beet western virus from Longmont, Colorado, the 14 entries of breeder seed gave a range of no demonstrated damage to as high as 32.7 percent for the beet western yellows (Colorado) and 7 to 52.4 percent for beet yellows (California). When plants of the same entries were infected with both viruses, the damage was approximately equal to the sum of damages found for the viruses when used alone. In field trials it was demonstrated that beet yellows virus and beet western yellows virus induced a reduction in sucrose percentage as well as in root yield.

Curly top isolates, which are as virulent as the well-known potent strain ll, have been found in northern Utah by C. L. Schneider. The virus isolates from sugarbeets and from the leafhopper vector, Circulifer tenellus, were approximately equal in virulence. The tests with these curly top isolates demonstrated that strains capable of causing severe damage to sugarbeet varieties previously designated as highly resistant occur in the desert areas as well as in the sugarbeet districts of Utah.

Cercospora leaf spot on the same breeding material did not show the same relative damage in different locations. D. L. Mumford was unable to conclude whether the difference in reaction is due to difference in strains of the pathogen, effect of environment on the host, or on the pathogen.

Nematology Investigations. -- Studies on the cyst nematode, Heterodera schachtii, by A. E. Steele, Nematology Investigations, and associates, M. J. Fife and Charles Price, Sugarbeet Investigations, are given in Part IX of this Report. The studies by Steele and Fife show that the hatching factor for H. schachtii, produced by the sugarbeet root, is not affected by freezing and drying and that the hatching activity is lost only slowly by boiling.

D. Physiology

Seed Investigations. -- Seed germination studies (p. 370) by F. W. Snyder have demonstrated that in commercially harvested seedlots percentage germination appears to be inversely related to the percentage of immature seed, as indicated by dark-colored fruits.

Viability of sugarbeet seed under refrigeration for part of the test in Utah has been demonstrated by C. H. Smith to be for as long as 35 years. Although the germination had reduced from 83.5 to 22.1 percent in 35 years, the surviving seed produced plants of normal growth in the field. These results should be of interest to sugarbeet breeders, since they demonstrate that proper storage may enable the breeder to maintain seed of choice lines for approximately the professional life of a geneticist.

Photosynthesis and respiration rates in attached sugarbeet leaves were greatly influenced by leaf arrangement of the foliage bouquet in the research of Myron Stout. This investigation will have a bearing on the relative efficiency on density of the leaves as well as shading effect among leaves of the sugarbeet plant.

dr filfornie, and best varue of put for the dest varue of put if porteen int the dest varue of put if porteen int the dest varuer vallows for best williams (da) toomist. When yiants tested with buth buth viruser, the damage was approximated in the could for the viruser when used alone. In field craft it was decome trate that but yellows virus ond best wastern velt virus induced a reduction in success redecedance as well as in cook yiel.

icologos, union are so virulint on the self-anorm potentiare ti, found for, the virus isolanes in frame engarth and in virulence. The color, Circulitar temellus, were approximented ago in virulence. The crars with their courty top isolates decreased: ago in virulence. The crars with the suggresses decreased: strains especite of aguaing are armage to suggresses prove as well as in the december dictricts of theb

'. A: B. Of an Phe same breading asterial did not show the same rail outer as a distribute to energy the same rail that as a distribute to the same of the final same of the distribute of the same of the house, or an the pathogen.

ions, --itulies on the cyst membroto, Screrodera schachtit

by A. . Steel . Assatology instrugations, and assatisms, to on

Charl time Augastest Investigations, are given in Part IX of his Report

The stadic by Steels and Fire show that the Detailing inctor for E. charaff
produced by the sugnitions root, is not affected by Fatending and daying and

that the barching intivity is lost only slowly by boiling.

D. Physiciary

oned gazainelion studies (p. 170) by F. W. Anyder bauc condexcially bards seed coldent paracolage getaination applies in invalually releved to the percentage of immediate feed, og indesked by syleted colts.

Viebil, on sugaroust reed under refrageration for part He the test in Jush doctor. Free projects of the top of the sugarous forms of the sugarous forms of the sugarous project of the field. These results of the sugarous project of augustical project sugarous project of the field of the field of the sugarous sugarous

cation refer in altracked up the research of t

PARTI

NEW DEVELOPMENTS IN BREEDING RESEARCH

Items Proposed for Seed Increase 1963 and Utilization and Distribution of Items

Seed Production of 1962 Items

PRODUCTION OF MONOGERM SEED IN U S.A.

NEW DEVELOPMENTS IN BREEDING RESEARCH

Items Proposed for Seed Increase
May 21, 1963

Breeder seed, inbred lines, and hybrid varieties, which have been developed in the breeding research conducted by the staff of Sugarbeet Investigations, are proposed for seed increase through the Beet Sugar Development Foundation. Seed not needed for planting overwintering plots will be furnished on request to company members of the Foundation for utilization in their breeding programs. Brief descriptions, current designations, and estimates of seed available August 1, are given for the items.

These new products of breeding research have been developed by the staff of Sugarbeet Investigations in work conducted under Cooperative Agreements with:

Colorado Agricultural Experiment Station
Michigan Agricultural Experiment Station
Minnesota Agricultural Experiment Station
Utah Agricultural Experiment Station
Beet Sugar Development Foundation
Farmers & Manufacturers Beet Sugar Association
Union Sugar Division, Consolidated Foods Corp.

Items Proposed for Seed Increase and Utilization

- I. U.S. Agricultural Research Station, Salinas, California.
 - A. Developments in breeding research by J. S. McFarlane and associates; B. L. Hammond, and I. O. Skoyen:

Item 1. C3550 Monogerm 2 pounds

A curly-top-resistant and type O selection from S_4 (507 X NB6). This is a sister line of C1546 (Item 12 of 1961) and C2549 (Item 14 of 1962) which were made available in 1961 and 1962.

C3550 is superior to both of these lines in curly top resistance. Bolting resistance and combining ability have not been determined but are expected to be good.

Suggested utilization: (a) Increase C3550 and its male-sterile equivalent; and (b) produce an F_1 hybrid using 563HO as the seed-bearing parent. (See Item 3.)

Item 2.	C3550HO Monogerm	2	pounds
	A male-sterile monogerm derived from a cross between 546HO and C3550. This is the first back-cross to a segregate of 607 X NB6.		
	Suggested utilization: Use C3550HO as the seed- bearing parent in the production of the male-sterile equivalent of C3550.		
Item 3.	C3550Hl Monogerm	5	pounds
	An F_1 monogerm hybrid between 563HO and C3550. This F_1 hybrid is expected to have curly top resistance equal to that of the best "US" multigerm hybrids.		
	Suggested utilization: Use C3550Hl as the seed-bearing parent in the production of 3-way hybrids.		
Item 4.	C3505 Monogerm	1	pound
	The second backcross of a monogerm inbred to NB1. Performance tests have not been made, but the line should possess characteristics similar to NB1.		
	Suggested utilization: Probably of greatest value as a breeding line. Can be increased, if desired.		
Item 5.	C330 Multigerm	1	pound
	Fifth successive selection from US 75 for resistance to virus yellows. C330 is currently being tested for yellows resistance and is expected to be damaged only about half as severely as US 75.		
	Suggested utilization: (a) Increase; and (b) use as pollen parent in producing experimental quantities of hybrid seed.		
Item 6.	C3425 Tetraploid multigerm	1	pound
	Increase of a cross between tetraploids from 663 and NB7. Tetraploids produced by B. L. Hammond. Diploid 663 and NB7 are used extensively as pollen parents in "US" hybrids. 663 is a tonnage type and NB7 tends to be a high sugar parent. C3425 should have good resistance to both bolting and curly top.		
	Suggested utilization: (a) Increase; and (b) use as parent to produce experimental quantities of hybrid s		

B. Developments in breeding for nematode resistance, by Charles Price:

This multigerm breeder seed originated from 56-408 which was received from R. E. Finkner, American Crystal Sugar Co., for test for nematode resistance. In screening test at Salinas, Calif., 56-408 was about as susceptible to the cyst nematode Heterodera schachtii as US 41 which is used as a check. Through successive greenhouse and field selections, however, a relatively high tolerance to the nematode has been achieved, and under severe nematode exposure in field and greenhouse tests, 033-1 has been significantly superior to US 41. Tests in which 033-1 occurred are reported in Sugarbeet Research, 1962 Report, pp. 258-262.

Suggested utilization: (a) Seed increase; and (b) use 033-1 as a pollinator to produce hybrids.

Item 8. 019 Multigerm l pound

This multigerm breeder seed originated from US 400, which is resistant to leaf spot. 019 is very vigorous and in tests under severe exposure to H. schachtii in field and greenhouse has outyielded commercial variety US 41. See Sugarbeet Research, 1962 Report, pp. 258-262. 019 is an easy bolter; and it has not been evaluated for leaf spot resistance.

Suggested utilization: (a) Make seed increase; (b) use as pollen parent in production of hybrids.

Item 9. 060-3 Multigerm l pound

This breeder seed was synthesized from US 33 by interpollination of 10 selfed progenies selected in the greenhouse for nematode tolerance. Seed from these plants was planted in greenhouse and field tests, and further selections were made under severe exposure to nematode at Salinas, Calif., and moderate exposure to nematode at Toppenish, Wash. The test at Salinas was reported in Sugarbeet Research, 1962 Report, pp. 258-262. In the test at Toppenish by Utah-Idaho Sugar Co., in 1961, 060-3 yielded 28.4 tons per acre and

Item 9 (cont.)

14.5 percent sucrose. The lowest yield in this test was 11.6 tons per acre by a curly top susceptible line.

Suggested utilization: (a) Increase; (b) use as pollen parent to produce hybrids.

C. Developments in breeding and genetic research by Helen and V. F. Savitsky:

Item 10. S-132 Tetraploid Multigerm 1 pound

Leaf-spot-resistant, self-sterile, multigerm breeder seed selected from tetraploid US 401 for vigor and combining ability in the production of triploid monogerm hybrids. Excellent combining ability of S-132 was demonstrated by Utah-Idaho Sugar Co. in 1962 tests of monogerm triploid hybrids in South Dakota.

Suggested utilization: (a) Increase; (b) use as pollinator with diploid male-sterile monogerm seed-bearing parent in the production of leaf-spot-resistant monogerm triploid hybrids.

Tetraploid self-sterile multigerm breeder seed with a good grade of resistance to both curly top and leaf spot. S-204 was derived from hybridization of tetraploid strains which are resistant to curly top or to leaf spot, and propagation from the hybrid for three generations. S-204 (4n) is equal to US 401 (2n) in leaf spot resistance, according to evaluations made by J. O. Gaskill, Fort Collins, Colo.

Suggested utilization: Increase breeder seed S-204 for use as pollinator with a male-sterile, diploid, monogerm seed-bearing parent to produce triploid hybrids that are resistant to leaf spot and curly top.

A tetraploid, self-fertile monogerm line that is extremely bolting resistant. The bolting resistance of S-302 exceeds that found in the usual so-called nonbolting variety.

Item 12 (cont.)

Suggested utilization: (a) Increase; (b) use in hybrid combinations to determine combining ability.

II. Sugarbeet Investigations, Fort Collins, Colorado.

Developments in breeding research by J. O. Gaskill:

Item 13. FC 502 Monogerm 1 pound

Monogerm, type-0, rr, S₁ inbred line with very good leaf spot resistance and good sucrose percentage; derived from the cross, V. F. Savitsky's No. 715 mm % X US 201 MM. Meager, preliminary evidence of good combining ability has been obtained for FC 502. (See Sugarbeet Research, 1962 Report, pp. 141-144.) Key Strain No. SP 581227s1.

Suggested utilization: (a) Increase FC 502 and its male-sterile equivalent (FC 502-CMS); and (b) make the hybrid, FC 503-CMS X FC 502, for possible use as the seed bearer in production of 3-way hybrids.

Monogerm, rr, male-sterile equivalent of FC 502. Seed resulting from 3rd backcross will be available.

Suggested utilization: (a) Increase, using FC 502 as pollinator: (b) make the hybrid, FC 502-CMS X FC 503, for possible use as seed bearer in the production of 3-way hybrids.

Item 15. FC 503 Monogerm l pound

Monogerm, type-0 (±), RR inbred line with fairly good leaf spot resistance and medium sucrose percentage; derived (by selfing) from V. F. Savitsky's No. 716 (mm inbred obtained from the eross LSR MM X SLC 101 mm). Preliminary evidence indicates that FC 503 is good in combining ability.

Item 15 (cont.)

(See Sugarbeet Research, 1962 Report, pp. 141-144.) The monogerm and type-O characters are not perfect--but nearly so. Key Strain No. SP 571702-0.

Suggested utilization: (a) Increase FC 503 and its male-sterile equivalent, FC 503-CMS; and (b) make the hybrid, FC 502-CMS X FC 503, for possible use as the seed bearer in the production of 3-way hybrids.

Monogerm, male-sterile equivalent of FC 503. Seed resulting from the 3rd or 4th backcross will be available. A very low percentage of plants capable of producing a small amount of pollen is expected in this material.

Suggested utilization: (a) Increase, using FC 503 as pollinator; and (b) make the hybrid, FC 503-CMS X FC 502, for possible use as the seed bearer in the production of 3-way hybrids.

III. Plant Industry Station, Beltsville, Maryland.

Developments in breeding research by G. E. Coe.

Breeder seed produced from selected plants of SP 60194-01 (see Item 19, page 10, Sugarbeet Research, 1961 Report. as well as pages 85 and 88; also, pages 96, 115, 117, 131, and 137, of 1962 Report). The average root yield of SP 60194-01 in extensive field tests of 1961 was equal to that of SP 5481-0 (US 401) and superior to that of the monogerm hybrid SL 122MS X SP 5460-0. Discriminate selection was applied to a large population of SP 60194-01 (grown under leaf spot exposure at Beltsville) to improve leaf spot resistance and root size. The value of SP 63194-0 over its parent, SP 60194-01, depends upon the effectiveness of the selections.

Item 18.	SP 63196-0 Monogerm	pound
	Breeder seed improved in bolting resistance. Approximately 90 percent of selected parental plants were from SP 60194-01. The value of SP 63196-0 depends upon the improvement in bolting resistance, which has not been determined.	
Item 19.	SP 63624-0 Monogerm	pounds
	Selections from SP 61624-0 to improve leaf spot resistance. For the performance of SP 61624-0, see Sugarbeet Research, 1962 Report, pp. 96, 99, 125, 129, 131, and 137. SP 63624-0 should give root yield and quality performances equal to SP 60194-01 or SP 5481-0.	
Item 20.	SP 6122-0 Multigerm	pounds
	Selections from SP 5822-0 for improvement in leaf spot resistance. The parental variety, SP 5822-0, is excellent in resistance and quality. The available information (See Sugarbeet Research, 1962 Report, pp. 96, 133, and 137) indicates that SP 6122-0 has excellent thin juice apparent purity which characterizes the parental variety SP 5822-0.	
Item 21.	SP 6322-0 Multigerm	pounds
	A selection from SP 6122-0 for improvement in leaf spot resistance. The value of SP 6322-0 over SP 5822-0 or SP 6122-0 is the likelihood of improvement in leaf spot resistance.	
Item 22.	SP 61151-0 Multigerm	1 pound
	A selection from SP 5822-0 for improvement in leaf spot resistance and in purity. Field tests of 1962 (Sugarbeet Research, 1962 Report, pp. 133 and 137) indicate that a high level of leaf spot resistance of SP 5822-0 has been maintained in SP 61151-0 and that thin juice apparent purity improved.	
Item 23.	SP 6256-0 Multigerm	1 pound
	Selections for improvement in resistance to black root and leaf spot, using the polycross method. Preliminary tests indicate that SP 6256-0 is good	
	(cont.)	

Item 15 (cont.)

(See Sugarbeet Research, 1962 Report, pp. 141-144.) The monogerm and type-O characters are not perfect--but nearly so. Key Strain No. SP 571702-0.

Suggested utilization: (a) Increase FC 503 and its male-sterile equivalent, FC 503-CMS; and (b) make the hybrid, FC 502-CMS X FC 503, for possible use as the seed bearer in the production of 3-way hybrids.

Item 16. FC 503-CMS Monogerm 1 pound

Monogerm, male-sterile equivalent of FC 503. Seed resulting from the 3rd or 4th backcross will be available. A very low percentage of plants capable of producing a small amount of pollen is expected in this material.

Suggested utilization: (a) Increase, using FC 503 as pollinator; and (b) make the hybrid, FC 503-CMS X FC 502, for possible use as the seed bearer in the production of 3-way hybrids.

III. Plant Industry Station, Beltsville, Maryland.

Developments in breeding research by G. E. Coe.

Item 17. SP 63194-0 Monogerm 100 pounds

Breeder seed produced from selected plants of SP 60194-01 (see Item 19, page 10, Sugarbeet Research, 1961 Report. as well as pages 85 and 88; also, pages 96, 115, 117, 131, and 137, of 1962 Report). The average root yield of SP 60194-01 in extensive field tests of 1961 was equal to that of SP 5481-0 (US 401) and superior to that of the monogerm hybrid SL 122MS X SP 5460-0. Discriminate selection was applied to a large population of SP 60194-01 (grown under leaf spot exposure at Beltsville) to improve leaf spot resistance and root size. The value of SP 63194-0 over its parent, SP 60194-01, depends upon the effectiveness of the selections.

MEMORANDUM OF CALL
To: Dr. Coe
YOU WERE CALLED BY— YOU WERE VISITED BY— M. Stewart
OF (Organization)
PLEASE CALL ——————————————————————————————————
WILL CALL AGAIN IS WAITING TO SEE YOU
RETURNED YOUR CALL WISHES AN APPOINTMENT
message John found a glad letter from him Fischer
to Dr. Granman (for
afficial relace of
march 21, 1968. (over)
RECEIVED BY DATE TIME 3/28/7/ 12:45
TANOARD FORM G1

Item 23 (cont.)

in root yield, percentage sucrose, and purity. It was used as pollinator in hybrid seed production (1962-1963) in the greenhouse at East Lansing, Mich.

Item 24. SP 6323-0 Monogerm 6 pounds

A type "O" inbred line which is good in leaf spot resistance and moderate in black root resistance. This line was proposed for seed increase and utilization in 1962 as Item 11 but was withdrawn for an additional generation of purification and selection. (See Item 25 for male-sterile equivalent.)

Male-sterile equivalent of SP 6323-0. (See Item 24)

This male-sterile equivalent was proposed for seed increase and utilization in 1962 as Item 12 but was withdrawn for an additional generation of purification and selection. For type "O", see SP 6323-0 (Item 24).

BEET SUGAR DEVELOPMENT FOUNDATION

P. O. BOX 536 FORT COLLINS, COLORADO

UTILIZATION OF USDA SEED RELEASES, 1963

LISTED IN THE RELEASE MEMORANDUM DATED MAY 21, 1963

- 1. U. S. AGRICULTURAL RESEARCH STATION, SALINAS, CALIFORNIA
 - A. DEVELOPMENTS IN BREEDING RESEARCH BY J. S. McFARLANE AND ASSOCIATES, B. L. HAMMOND AND I. O. SKOYEN:

ITEM 1. C3550 MONOGERM

OF THE ESTIMATED QUANTITY OF SEED AVAILABLE, THE FOLLOWING COMPANIES WANT THE AMOUNTS AS INDICATED DISTRIBUTED TO THEM NOW:

AMALGAMATED - 50 GRAMS; AMERICAN CRYSTAL - 25 GRAMS; GREAT WESTERN - 10 GRAMS; HOLLY - 50 GRAMS; SPRECKELS - 20 GRAMS; AND UTAH-IDAHO - 50 GRAMS; APPROXIMATELY A 0.25 ACRE INCREASE (ALSO SEE ITEM 3) WILL BE MADE FROM THE BALANCE OF THE SEED BY THE WEST COAST BEET SEED COMPANY FROM WHICH GREAT WESTERN WISHES TO OBTAIN 10 POUNDS, THE REMAINDER OF WHICH WILL BE SHARED EQUALLY BETWEEN AMERICAN CRYSTAL, F & M, HOLLY, SPRECKELS AND UNION.

ITEM 2. C3550HO MONOGERM

THE UTILIZATION OF THIS ITEM WILL BE IDENTICAL IN ALL RESPECTS WITH ITEM 1 (ALSO SEE ITEM 3).

ITEM 3. C3550H1 MONOGERM

No Foundation increase will be made of this release. Part of the available quantity will be distributed as follows: American Crystal - 50 grams; Great Western - 30 grams; Utah-Idaho - 50 grams; A similar share will be distributed to F & M, Holly, Spreckels and Union.

THE BALANCE OF THE AVAILABLE QUANTITY WILL BE UTILIZED FOR A 1-ACRE PLANTING BY THE WEST COAST BEET SEED COMPANY USING ITEM 1, ITEM 2 AND 563HO. FROM THE SEED HARVESTED, DISTRIBUTION WILL BE MADE AS FOLLOWS: AMALGAMATED - 5 LBS; GREAT WESTERN - 25 LBS; UTAH-IDAHO - 10 LBS; WITH AMERICAN CRYSTAL, F & M, HOLLY, SPRECKELS AND UNION SHARING THE BALANCE.

^{1/} MEMORANDUM TO JAMES H. FISCHER FROM DEWEY STEWART WITH THE SUBJECT "PROPOSALS FOR SEED INCREASE AND UTILIZATION."

UTILIZATION OF USDA SEED RELEASES, 1963
PAGE 2

TTEM 4. C3505 MONOGERM

NO FOUNDATION INCREASE WILL BE MADE OF THIS ITEM. THE AVAILABLE QUANTITY WILL BE DISTRIBUTED AS FOLLOWS: AMALGAMATED - 25 GRAMS; AMERICAN CRYSTAL - 10 GRAMS; GREAT WESTERN - 20 GRAMS; HOLLY - 50 GRAMS; SPRECKELS - 50 GRAMS; UNION - 50 GRAMS; AND UTAH-IDAHO - 50 GRAMS.

TEM 5. C330 MULTIGERM

From the AVAILABLE QUANTITY THE FOLLOWING IMMEDIATE DISTRIBUTION WILL BE MADE: AMALGAMATED - 10 GRAMS; AMERICAN CRYSTAL - 10 GRAMS; SPRECKELS - 20 GRAMS; UTAH-IDAHO - 20 GRAMS.

THE BALANCE OF THE SEED WILL BE PLANTED BY THE WEST COAST BEET SEED COMPANY WITH THE INTENTION OF INCREASING THE QUANTITY OF SEED AND IN HYBRID COMBINATION AS A POLLINATOR. FROM THE INCREASE OF C330 THE FOLLOWING DISTRIBUTION WILL BE MADE: AMERICAN CRYSTAL - 3 LB; GREAT WESTERN - 2 LB; WITH HOLLY AND UNION EQUALLY SHARING THE BALANCE. THE INDIVIDUAL CROSSES BETWEEN C330 AND 569H1, 569H3, 546H3, AND 509H1 WILL BE SHARED AS FOLLOWS: GREAT WESTERN - 2 LB; THE BALANCE TO BE DISTRIBUTED EQUALLY BETWEEN HOLLY AND UNION.

ITEM 6. C3425 TETRAPLOID MULTIGERM 2/

FROM THE AVAILABLE QUANTITY OF SEED THE FOLLOWING DISTRIBUTION IS TO BE MADE: AMALGAMATED - 25 GRAMS; AMERICAN CRYSTAL - 25 GRAMS; GREAT WESTERN - 25 GRAMS; HOLLY 50 GRAMS; SPRECKELS - 100 GRAMS; AND UTAH-IDAHO - 25 GRAMS. THE BALANCE, NOT THUS DISTRIBUTED AND NOT UTILIZED AS INDICATED BELOW WILL BE USED BY UNION.

APPROXIMATELY A 0.1 ACRE PLANTING OF C3425 CROSSED WITH 569H1 569H2 AND 546H3 WILL BE MADE BY THE WEST COAST BEET SEED COMPANY. THE INDIVIDUAL CROSSES WILL BE SHARED AS FOLLOWS: AMERICAN CRYSTAL - 10 LB; GREAT WESTERN - 5 LB; HOLLY 15 - LB; UNION - 25 LB; AND UTAH-IDAHO - 2 LB.

B. DEVELOPMENTS IN BREEDING FOR NEMATODE RESISTANCE, BY CHARLES PRICE:

ITEM 7. 033-1 MULTIGERM

No Foundation increase of this seed will be made. From the available quantity, distribution will be made as follows: Amalgamated - 10 grams; American Crystal - 10 grams, Great Western - 10 grams; Holly - 25 grams; Spreckels - 25 grams; Union - 20 grams; Utah-Idaho 25 grams.

^{2/} THE AVAILABLE QUANTITY IS 3 LB, RATHER THAN THE 1 LB. SHOWN ON THE RELEASE MEMORANDUM.

UTILIZATION OF USDA SEED RELEASES, 1963
PAGE 3

ITEM 8. 019 MULTIGERM

No Foundation increase of this item will be made. From the AVAILABLE QUANTITY THE FOLLOWING DISTRIBUTION WILL BE MADE: AMERICAN CRYSTAL - 20 GRAMS; GREAT WESTERN - 20 GRAMS; HOLLY - 50 GRAMS; SPRECKELS - 50 GRAMS; UNION - 50 GRAMS; AND UTAH-IDAHO - 25 GRAMS.

ITEM 9. 060-3 MULTIGERM

No Foundation increase of this item will be made. From the available quantity the following distribution will be made: Amalgamated - 10 grams; American Crystal - 20 grams; Great Western - 20 grams; Holly - 50 grams; Spreckels - 50 grams; Union - 50 grams; and Utah-Idaho 25 grams.

C. DEVELOPMENTS IN BREEDING AND GENETICS RESEARCH BY HELEN AND V. F. SAVITSKY:

ITEM 10. S-132 TETRAPLOID MULTIGERM

NO FOUNDATION INCREASE WILL BE MADE OF THIS ITEM. FROM THE AVAILABLE QUANTITY, 50 GRAMS WILL BE SENT TO EACH OF THE FOLLOWING COMPANIES: AMALGAMATED, AMERICAN CRYSTAL, F & M, GREAT WESTERN, HOLLY, SPRECKELS, UNION AND UTAH-IDAHO.

ITEM 11. S-204 TETRAPLOID MULTIGERM

No Foundation increase will be made of this item. Distribution from the available seed will be the same as for Item 10.

ITEM 12. S-302 TETRAPLOID MONOGERM

NO FOUNDATION INCREASE OF THIS RELEASE WILL BE MADE. FROM THE CURRENT AVAILABLE QUANTITY, 25 GRAMS WILL BE DISTRIBUTED TO EACH OF THE FOLLOWING COMPANIES: AMALGAMATED, AMERICAN CRYSTAL, F & M, GREAT WESTERN, HOLLY, SPRECKELS, UNION AND UTAH-IDAHO.

11. SUGARBEET INVESTIGATIONS, FORT COLLINS, COLORADO. DEVELOPMENTS IN BREEDING RESEARCH BY J. O. GASKILL

ITEM 13. FC 502 MONOGERM 3/

From the available quantity 10 grams will be sent to each of the following companies: Amalgamated, American Crystal, F & M, Great Western, Holly, National, Spreckels, Union and Utah-Idaho. The balance will be used for increase by the USDA at Beltsville, Maryland.

^{3/} THE ORIGINAL COMPANY REQUESTS FOR UTILIZATION WERE CHANGED TO PROVIDE SUFFICIENT SEED FOR AN INCREASE.

UTILIZATION OF USDA SEED RELEASES, 1963 PAGE 4

ITEM 14. FC 502-CMS MONOGERM 3/

THIS ITEM IS TO BE UTILIZED IN THE SAME MANNER AS INDICATED FOR ITEM 13.

ITEM 15. FC 503 MONOGERM 3/

THIS ITEM IS TO BE UTILIZED IN THE SAME MANNER AS INDICATED FOR ITEM 13.

ITEM 16. FC 503-CMS MONOGERM 3/

THIS ITEM IS TO BE UTILIZED IN THE SAME MANNER AS INDICATED FOR ITEM 13.

111. PLANT INDUSTRY STATION, BELTSVILLE, MARYLAND. DEVELOPMENTS IN BREEDING RESEARCH BY G. E. COE

ITEM 17. SP 63194-0 MONOGERM

FROM THE AVAILABLE QUANTITY OF SEED THE AMOUNTS INDICATED WILL BE SENT TO THE FOLLOWING COMPANIES: AMERICAN CRYSTAL - 5 LB; GREAT WESTERN - 20 LB; HOLLY - 10 LB; SPRECKELS - 1 LB; AND UTAH-IDAHO - 5 LB. THE BALANCE (59 LB) WILL BE SENT TO THE WEST COAST BEET SEED COMPANY FOR UTILIZATION BY THE F & M.

ITEM 18. SP 63196-0 MONOGERM

NO FOUNDATION INCREASE WILL BE MADE OF THIS ITEM. THE AVAILABLE SEED WILL BE SHARED AMONG THE FOLLOWING COMPANIES: AMERICAN CRYSTAL, F & M, GREAT WESTERN, HOLLY, SPRECKELS AND UTAH-IDAHO.

ITEM 19. SP 63624-0 MONOGERM

FROM THE AVAILABLE QUANTITY OF SEED THE FOLLOWING DISTRIBUTION WILL BE MADE: AMERICAN CRYSTAL - 25 GRAMS; SPRECKELS - 25 GRAMS; UTAH-IDAHO - 25 GRAMS. THE BALANCE WILL BE INCREASED BY THE WEST COAST BEET SEED COMPANY FOR F & M.

ITEM 20. SP 6122-0 MULTIGERM

FROM THE AVAILABLE QUANTITY DISTRIBUTION WILL BE MADE AS FOLLOWS:

AMERICAN CRYSTAL - 1 LB; HOLLY - 1 LB; UTAH-IDAHO - 1 LB; SPRECKELS - 25

GRAMS WITH THE BALANCE GOING TO F & M. ONLY 5 POUNDS OF THE ESTIMATED 10

POUNDS HAS ACTUALLY BEEN RECOVERED FOR DISTRIBUTION.

^{3/} THE ORIGINAL COMPANY REQUESTS FOR UTILIZATION WERE CHANGED TO PROVIDE SUFFICIENT SEED FOR AN INCREASE.

UTILIZATION OF USDA SEED RELEASES, 1963 PAGE 5

ITEM 21. SP 6322-0 MULTIGERM

From the available quantity of seed (NET of 60 LB RATHER THAN 10 LB AS ESTIMATED) THE FOLLOWING DISTRIBUTION IS TO BE MADE: AMERICAN CRYSTAL - 1 LB; GREAT WESTERN - 2 LB; HOLLY - 1 LB; UTAH-IDAHO - 1 LB; AND SPRECKELS - 25 GRAMS. THE BALANCE WILL BE INCREASED BY THE WEST COAST BEET SEED COMPANY PRIMARILY FOR F & M WITH HOLLY, AMERICAN CRYSTAL, GREAT WESTERN AND UTAH-IDAHO SHARING IN A PORTION OF THE INCREASE, THE AMOUNTS AND PROCEDURES TO BE NEGOTIATED.

ITEM 22. SP 61151-0 MULTIGERM

FROM THE AVAILABLE QUANTITY OF SEED THE FOLLOWING DISTRIBUTION WILL BE MADE: AMERICAN CRYSTAL - 25 GRAMS; SPRECKELS - 25 GRAMS; WITH F & M, HOLLY AND UTAH-IDAHO SHARING THE BALANCE.

ITEM 23. SP 6256-0 MULTIGERM

FROM THE AVAILABLE QUANTITY OF SEED THE FOLLOWING DISTRIBUTION WILL BE MADE: AMERICAN CRYSTAL - 25 GRAMS; SPRECKELS - 25 GRAMS; WITH F & M, GREAT WESTERN, HOLLY AND UTAH-IDAHO SHARING THE BALANCE.

ITEM 24. SP 6323-0 MONOGERM

AN INCREASE OF THIS ITEM WILL BE MADE BY THE WEST COAST BEET SEED COMPANY PRIMARILY FOR F&M WITH HOLLY, AMERICAN CRYSTAL, GREAT WESTERN AND UTAH-IDAHO SHARING IN THE INCREASE, THE AMOUNTS AND PROCEDURES TO BE NEGOTIATED.

ITEM 25. SP 6323-01 MONOGERM

THIS ITEM WILL BE UTILIZED IN A MANNER SIMILAR TO ITEM 24.

1963 Productions of 1962 Proposals for Seed Increase (See 1962 Report, pp. 7-14)

1962		1963	Production
Item	Breeder seed description	Pounds	Designation
1	CO2563 Monogerm	136	F63-563
2	CO2563HO Monogerm	280	F63-563HO
3	CO2563H1 Monogerm	0	
4	S-23 Diploid monogerm	0	
5	S-71 Diploid monogerm	0	
6	S-201 Tetraploid multigerm	0	
7	S-202 Tetraploid multigerm	0	
8	S-301 Tetraploid monogerm	0	the map
9	SL 14500 Monogerm annual	0	
10 ,	SL 14500HO Monogerm annual	0	DWG Date
11	SP 6223-0 Monogerm	Few	SP 6323-0
12	SP 6223-01 Monogerm	Few	SP 6323-01
13	C264 Multigerm	544	F63-64
14	C2549 Monogerm	113	F63-549
15	S-133	9	GW A1453-631.
16	S-203 Tetraploid multigerm	138	

SUGARBEET SEED PRODUCTION IN UNITED STATES, $1955-1963\frac{1}{2}$

Year of		100-pound bags		Percent
production	Total	Multigerm	Monogerm2/	monogerm
1955	114,187	114,152	35	Trace
1956	88,279	84,991	3,431	3.9
1957	94,547	83,812	10,735	11.4
1958	109,832	82,571	27,261	24.8
1959	111,788	83,594	28,194	25.2
1960	124,545	49,869	74,676	60.0
1961	95,541	25,227	70,314	73.6
1962	93,416	10,768	82,648	88.5
19633/	94,396	12,487	81,909	86.8

¹/ Production records are from Agricultural Statistics, except for 1963.

^{2/} Mostly from hybridizations in which the pollen parent was $\mathtt{mul}\overline{\mathtt{t}}\mathtt{igerm}.$

^{3/} Preliminary statistics. Final values will appear in Agricultural Statistics, 1964.

PART II

DEVELOPMENT AND EVALUATION

of
INBRED LINES AND HYBRID VARIETIES OF SUGARBEETS
SUITABLE FOR CALIFORNIA

and

STUDIES ON POLYPLOIDY

Foundation Projects 24 and 29

J. S. McFarlane

B. L. Hammond

I. O. Skoyen

K. D. Beatty

Cooperators conducting tests:

American Crystal Sugar Company Holly Sugar Corporation Spreckels Sugar Company Union Sugar Division Southwestern Irrigation Field Station

REPORT ON FOUNDATION PROJECTS 24 AND 29

Summary of Accomplishments - 1963

PERFORMANCE OF MONOGERM MALE-STERILE PARENTS--Monogerm male-sterile parents are now available which approach the best multigerm parents in performance. The most promising monogerm male sterile in the 1963 variety tests was MS of 562×569 . This male sterile was a little inferior to both MS of NBl x NB3 and MS of NBl x NB5 in curly-top resistance but was equal or superior to these two multigerm parents in bolting resistance. Combining ability was very good in most tests. Results obtained in 1963 indicate that MS of 562×569 will have wide adaptation in California when used in conjunction with pollinators such as 663.

The monogerm male sterile, MS of 515 x 562, failed to perform as well as did MS of 562×569 from the standpoint of curly-top resistance, bolting resistance, and combining ability.

The new male steriles, MS of 569×563 and MS of 562×546 , showed good bolting and curly-top resistance but have not been evaluated for combining ability.

PERFORMANCE OF MONOGERM HYBRID VARIETIES—The performance of monogerm hybrids was very good in 1963 but was not quite as outstanding as in 1961 and 1962. This was particularly true of hybrids involving the NB7 pollinator. A summary of the performance of (MS of 515 x 569) x NB7 expressed in percent of the performance of US H6 follows:

Year	No. of tests	Gross sugar	Sucrose percentage
1961	9	104	101
1962	13	108	100
1963	14	99	100

The performance of $(562 \times 569) \times NB7$ tended to be inferior to that of a similar hybrid involving the 663 pollinator. In eleven California tests the gross sugar of $(562 \times 569) \times NB7$ averaged 97 percent and the sucrose percentage 100 percent of US H6. In the same tests both the gross sugar and sucrose content of $(562 \times 569) \times 663$ averaged 102 percent of US H6.

The NB7 hybrids are produced by crossing an F₁ hybrid between two inbreds with a third inbred, whereas the 663 hybrids are produced by crossing an F₁ hybrid with an open-pollinated line. The uniform NB7 hybrids possibly respond more sharply to differences in environment than do the 663 hybrids.

Results in 1962 indicated that the NB7 hybrids are more resistant to yellows than are the 663 hybrids. This suggests that they might perform relatively better than do the 663 hybrids in years of heavy yellows infection. The 1963 season was a light yellows year and may have favored the performance of the 663 hybrids.

Both $(562 \times 569) \times NB7$ and $(562 \times 569) \times 663$ are being increased commercially. The NB7 hybrid is superior in curly-top resistance but has shown less bolting resistance than the corresponding 663 hybrid in the coastal valleys. Tests by the Holly Sugar Corporation show the NB7 hybrid to be superior in bolting resistance in the Central Valley.

SEED LOTS MADE AVAILABLE THROUGH THE FOUNDATION—A monogerm inbred designated C3550 and combining resistance to bolting and curly top was made available in 1963. This type 0 inbred was selected from an S₄ population of 507mm x NB6. It is a sister line of C1546 and C2549 which were made available in 1961 and 1962, respectively. Greenhouse and field tests show C3550 to possess curly-top resistance similar to that of NB1. C3550 bolted 1.6 percent in a November 1962 planting at Salinas and was as resistant as any of the multigerm inbreds.

A male-sterile monogerm designated C3550HO and derived from a cross between 546HO and C3550 was also made available. This line is being used as the seed-bearing parent to produce the male-sterile equivalent of C3550.

An F_1 monogerm hybrid between 563HO and C355O was distributed for use as the seed-bearing parent in producing test quantities of threeway hybrid seed. This F_1 is expected to be similar in bolting and curly-top resistance to the multigerm parent MS of NBl x NB5.

C3505, the second backcross of a monogerm inbred to NBl, was made available through the Foundation. Tests at Salinas and at Thatcher, Utah, show C3505 to be superior to NBl in bolting resistance but inferior in curly-top resistance.

The fifth successive selection from US 75 for resistance to virus yellows has been designated C330 and has been suggested as a pollen parent to produce test hybrids in combination with monogerm male steriles. This selection remains relatively green when inoculated with yellows. It is also significantly more resistant to damage from yellows than is the original US 75.

A tetraploid multigerm designated C3425 is suggested for use as a pollen parent in combination with diploid male steriles. C3425 is an increase of a cross between tetraploids from 663 and NB7 which were produced by Dr. B. L. Hammond. Diploid 663 and NB7 are used extensively as pollen parents in "US" hybrids.

^{1/} See pages 7-9.

A leaf-spot-resistant monogerm inbred designated C2648 may help fill the need for additional type-0 inbred parents for use in producing leaf-spot-resistant hybrid varieties. C2648 is the increase of a leaf-spot-resistant selection made at Fort Collins from S₃(673-2 x 507mm). 673-2 is a type 0 plant found at Salinas in polycross selections from US 401. C2648 had a leaf-spot rating of 2.5 in a 1963 test at Fort Collins compared with a rating of 5.5 for the synthetic check and 0.5 for US 201.

BOLTING RESISTANCE--Bolting occurred in nearly all lines included in a November 15, 1962, planting at Salinas, and additional information was obtained on resistance under coastal growing conditions. Bolting percentages for a group of multigerm and monogerm parental lines planted at Salinas in November 1961, 1962, and 1963 are summarized below:

Mult	igerm	lines			Monogerm 1	lines		
		1961	1962	1963		1961	1962	1963
	NB1 NB4 NB5 NB6 NB7	46 2 0 2	79 9 10 6 40	13 4 4 5 16	515 546 562 563 569	48 10 19	83 39 16 35	50 6 17 6 32
NB1	x NB4 x NB5 x NB6	3 5 2	18 29 11	11 15 5	515 x 569 562 x 569 562 x 546	23	72	35 13 9

Results obtained in 1963 provided additional evidence that the relative bolting resistance of inbreds and hybrids is influenced by seasonal environmental conditions. Bolting-resistance information from the Central Valley was not available when the report was prepared.

CURLY TOP RESISTANCE--Field tests conducted in 1963 at Thatcher, Utah, by A. M. Murphy showed that monogerm inbreds are now available with curly-top resistance equal to that of the best multigerm inbreds. The inbred C3550 showed outstanding resistance and was the best of the monogerm lines made available through the Foundation.

Greenhouse testing was continued in cooperation with Dr. C. W. Bennett. Resistance ratings for varieties and breeding lines were similar in the field and greenhouse. However, greater variation in severity of symptoms occurred within varieties in the greenhouse than in the field. Progeny tests showed that plants with the mildest greenhouse symptoms were not always the most resistant to curly top. Results, thus far, with greenhouse selections for curly-top resistance have been disappointing.

EVALUATION OF TRIPLOID HYBRIDS--Triploid hybrids involving tetraploid 663 produced a higher tonnage of roots than did the corresponding diploid hybrids but were lower in sucrose percentage. A summary of the performance of triploid hybrids expressed in percent of the performance of corresponding diploid hybrids follows:

	Year	No. tests	Gross sugar	Acre yield	Sucrose percentage
US H2 (3n)	1962	9	107	109	99
US H2 (3n)	1963	6	106	108	98
US H6 (3n)	1963	16	103	107	96
263H4 (3n)	1963	11	102	106	96

The triploid hybrids showed significantly higher bolting resistance than did the corresponding diploids but were a little inferior in curly-top resistance. Tests at Davis, California, showed that the yellows resistance of diploid and triploid forms of US H6 and 263H4 was similar.

Seed germination has been a serious problem in triploid seed produced in small isolations by the strip method. The problem may be caused, in part, by poor distribution of the tetraploid pollen which is heavier than diploid pollen. A 1963-64 seed planting has been made in which the 663 tetra pollinator has been mixed with the male-sterile parent at a ratio of 1:10.

PRODUCTION OF AUTOTETRAPLOIDS--Dr. B. L. Hammond produced additional tetraploids of the better bolting-resistant breeding lines. He has now produced tetraploids in seven self-sterile multigerm lines, six self-fertile multigerm lines, and nine self-fertile monogerm lines. He has also produced tetraploids in a male-sterile multigerm line and a male-sterile monogerm line. A detailed description of these lines may be found on pages 63-70.

GERMINATION OF MONOGERM SEED--Several commercial increases of bolting-resistant monogerm seed have germinated poorly. Work by I. O. Skoyen has shown that low germination in many monogerm seed lots is associated with tight seed caps which prevents moisture from reaching the seed. By removing the caps, germination was increased more than fifty percent in some very low germinating lots. A detailed report on this work may be found on pages 71-75.

COOPERATIVE VARIETY TESTS--Results with "US" hybrids included in cooperative company variety tests are again summarized in this report. Included are results of all 1963 tests which were completed on December 31 plus the results of 1962 tests which were not available in time for the 1962 report.

OBSERVATIONAL TEST OF SUGARBEET STRAINS GROWN UNDER LEAF SPOT EXPOSURE, 1963 Leaf Spot Field, Hospital Farm, Ft. Collins, Colorado

	. Jo	,					
	b/.No. 0	:plot	mmaa	~~~~	NMMM	mmmn	4000
	Vigor	: 8/13	4694	80.45 80.05	22.65	7650	44.00.4
	क	1 8/29	1 W W Z	844 2000	0 8 90	4.7 6.0 0.5 0.5	2.6
(af spot	: 8/22	0 0 0 0 0 0	てこれている。	8788	4 v v o o v o v o v o v o v o v o v o v	5.7.4 8.0.7.6
& J.O. Gaskill	Leaf	: 8/13	0110 5272	2444 2500	04.09	0327	0000
J.O.	Entry	no	252 232 233 233 233 234 235 235 235 235 235 235 235 235 235 235	234 234 234 234 234 234 234 234 234 234	223 223 223 223	577 777 777 777 777 777	550 550 550
lder &	t. Col.	no.	2539 2540 2541 2541	2543 2544 2545 2546	2547 2548 2549 2550	Acc. 2551 Acc. 2552 Acc. 2553 581001-0	2483 2269 2524 2525
J.A. Elder	Ft.		Acc. Acc. Acc.	Acc. Acc.	Acc. Acc.	Acc. Acc. 5810	Acc.
Conducted by J	: Contrib-	ou:	2646-501 2646-5 2646-1701 2646-2301	2646-32-13C1 2648-3C2 2648-9C1 2648-11C2	2649-30C1 267 0539 2539T	663 F62-63T 1413	EL - 1023 WC 0464 C 2563 C2563H0
)	g		inbred) inbred			v.g. CTR
	Description	1	Ft.C. sel. of M(McF.) inbred Increase of 1646-501 Ft.C. sel. of M(McF.) inbred do	CT + LS res. M inbred Ft.C. sel. of mm (McF.) inbred do	do Bolt. res. sel. SL Ol6 NB7 NB7 (4n)	Top cross parent 663 (4n) Tetraploid US 201 (501007-0)	SP 5481-0 Synthetic Check Bolt, res, mm, inbr., v.g. CTR CMS of C 2563
			Ft.C. se Increase Ft.C. se	CT + LS Ft.C. se	Bolt, re NB7 (4n)	Top cross 1 663 (4n) Tetraploid US 201 (501	SP 5481-0 Synthetic Check Bolt. res.,mm, CMS of C 2563

a/ Leaf spot (J. A. Elder): 0 = no leaf spot; 10 = complete defoliation.

b/ Foliage vigor (J. A. Elder): Higher no. = greater vigor.

Field Plan: Plots 2 rows x 12'; rows 20" apart. Artificial inoculation and frequent sprinkling were employed to promote the development of leaf spot.

SUMMARY.--Gross sugar yields of bolting-resistant hybrids in 1963 California variety tests, expressed in percent of the yield of US H6.

265THL		106	103	80 ml	ı	ı	1	(C)	1	•	1	i		,	105	107		•	100		102	103	8	88	102		
263TH2		113	107	108	102	102	1	96	95	•	1	1		1	105	104	87	1	101		104	107	104	105	108		
263णम		112	104	109	t	,	ı	88	1	1	1	1		•	101	105	88	ı	1		901	110	t	•		hybrids:	NB7 663 NB7 663 NB7 663 Tetra
264 TI		108	103	101	,		ı	•	•	1	,	1		, 1		1	٠		ě		103	101	•	•	4	monogerm 1	×××× 569) ××××× 562) ×××××
2539H6		76	93	16	26	お	101			98	1	٠		77	96	76	١	٠	1		87			•	•	Description of	1(515H0 (562H0 (562H0 (515H0 5(515H0
263H6		102	*	66	93	46	107	•	•	•	95	1		95	100	107	1	,	1		76	•		•	•	Descri	2539H1- 263H4- 2539H4- 263H6- 2539H6- 2539H6-
2539H4		96	66	98	92	92	100		1	•	ı	1		89	t	1	ı	113	100		98	91	·	٠	•		993
263年4		105	100	104	66	96	110	8	,	ŧ	1	1		76		111	ŧ	106	103		お	96	103	66	108		sel. fr. 6
2539旺		102	66	98	な	76	103	ŧ	112	104	102	109		80	•	1	,	ı	93		100	100	t	,	1	to.	res. Tetra
US H2		66	46	101	%	1	1	98	1	•	•	101		1	,	•	1	ŧ	•		101	101	1	1	4	rm hybrid	NB5) x 663 NB5) x Bolt NB5) x 663 NB3) x 663 NB3) x 663
9H SN		100	100	100	100	100	100	100	100	100	100	100		100	100	100	100	100	100		100	100	100	100	100	of multige	****
Testing		USDA	88	Union		=	Spreckels	& &	22	E		E		Am. Crystal	Spreckels	=	00 00	Holly	2		USDA	D0.	Holly	24	2	Description of multigerm hybrids	US E6(MS OF NEL 264H1(MS OF NEL 263TH2(MS OF NEL US H2(MS OF NEL 263TH1(MS OF NEL
Location	Coastal Area	Salinas - Nov. plt.	Salinas - Dec. plt.	King City	San Ardo	Betteravia	Spreckels - Test 1	Spreckels - Test 2	Spreckels - Test 3	Spreckels - Test 4	Alisal	Greenfield	Central Valley	Dixon	Crows Landing	Tulare Lake	Yettem	Visalia	North Tracy	Imperial Valley	Brawley - Early	Brawley - Late	Imp. Val 1st har.	" - 2nd "	" - 3rd "		

SUMMARY...-Sucrose percentage of bolting-resistant hybrids in 1963 California variety tests, expressed in percent of US H6.

		1963 (aliforni	Journal Juliose Percentage of Colling-resistant Myorids 1963 California variety tests, expressed in percent of US	tests, ext	ressed in	percent of	of US H6.				
Location	Testing Agency	OR RO	US HZ	2539HJ.	263年4	2539E4	26346	2539H6	264配	263THI	263TH2	263TH4
Coastal Area												
Salinas - Nov. plt.	USDA	100	101	66	109	104	105	76	102	101	100	98
Salinas - Dec. plt.	do en	100	101	101	103	101	101	76	106	101	101	100
King City	Union	100	100	101	100	66	103	66	101	66	98	103
San Ardo	4.	100	66	100	100	86	101	66	1	•	98	•
Betteravia	=	100	,	86	66	76	100	76	,	•	66	•
Spreckels - Test 1	Spreckels	100	1	102	105	102	102	98	,	•	1	
Spreckels - Test 2		100	101	1	104	f	,	4	t	95	95	102
Spreckels - Test 3	#	100	1	98		,		1		•	46	•
Spreckels - Test 4	#	100	1	98		,		96	,		ŧ	
Alisal	#	100	1	76	•	1	103	ı	,	,	ı	,
Greenfield	E	100	100	66	•	1	1	•	1	1	ı	•
Central Valley												
Dixon	Am. Crystal	100	1	8	101	95	100	お	1	,	ı	
Crows Landing	Spreckels	100		•		1	76	お	1	76	89	8
Tulare Lake	#	100		,	66		101	101	,	16	85	87
Yettem	ŧ	100	í	•		•	,	•	•	92	76	•
Visalia	Holly	100	1		103	101	,			1	1	•
North Tracy	=	100	ı	98	103	66	•		,		76	76
Imperial Valley												
Brawley - Early	USDA	100	101	102	100	102	100	102	100	88	98	86
Brawley - Late	E	100	66	102	100	101	1		100	. 86	76	98
Imp. Val 1st har.	Holly	100	1		66		1	4	1	,	16	66
" - '2nd "	2	100	ı	1	100	1	1		1	,	66	66
" - 3rd "	=	100	ř	i	100	ě	•		1		76	100

VARIETY TEST, BRAWLEY, CALIFORNIA, 1962-63

Location: U. S. Department of Agriculture, Southwestern Irrigation

Field Station.

Soil type: Holtville silty clay loam.

Previous crops: Grain sorghum, 1959; sweet sorghum, 1960; Sesbania

species cover crop, 1961; fallow, 1962.

Fertilizer used: 100 lbs. per acre Poo, preplant.

80 lbs. per acre nitrogen, actual, preplant.
145 lbs. per acre nitrogen, actual, sidedressed

October 31, 1962.

Planting date: September 14, 1962.

Thinning date: October 5-8, 1962.

Harvest dates: Early harvest, April 23-24, 1963.

Late harvest, June 6, 1963.

Irrigations: Early harvest, six.

Late harvest, eight.

Diseases and insects: Curly top and yellows viruses were of minor importance in the 1962-63 test. The test plot was sprayed with 2 lbs. DDT per acre September 23, and with 4 oz. Endrin per acre September 29, 1962 for the control of the desert flea beetle and the cabbage beetle. On October 25, 1962, 2 lbs. per acre of Toxaphene was applied for the control of desert flea beetle and webworm. Twenty lbs. per acre of 10 percent Thimet granules was applied on both early and late harvested tests January 14, 1963. A second application of Thimet was made on the late harvested test February 27, 1963 for the control of aphis and spider mites.

Experimental design: Ten varieties planted in a 10 x 10 latin square, two-row plots; and a randomized block test with ten replications, single-row plots, for early harvest. Ten varieties planted in a 10 x 10 latin square, two-row plots, for late harvest. Rows spaced 30 inches apart. Plots 40 feet long.

Sugar analysis: From two ten-beet samples per plot by Holly Sugar Corporation, Brawley, California.

Remarks: Test designed and results analyzed by the United States Agricultural Research Station, Salinas, California.

2/ Plot under supervision of K. D. Beatty stationed at Southwestern Irrigation Field Station, Brawley, California.

VARIETY TEST, BRAWLEY, CALIFORNIA, 1963

(10 x 10 Latin Square)

Planted: September 13-14, 1962 Harvested: April 23, 1963

		A	373 - 7 - 7		77
Variety No.	Description	Sugar	Yield Beets	Sucrose	Harvest
variety no.	Description	Pounds	Tons	Percent	Number
263TH1	(MS of NBl x NB3) x 663 Tetra	8,550	24.42	17.5	129
263TH2	(MS of NBl x NB5) x 663 Tetra	8,400	24.16	17.4	129
264H1	(MS of NB1 x NB5) x 663 (NB)	8,280		17.8	127
263TH4 063HI	(562H0 x 569) x 663 Tetra (MS of NBl x NB3) x 663	8,230	23.42	17.6	140 141
00311	(MD OI NDI X.ND3) X 003	0,190	22.90	17.9	141
163н2	(MS of NBl x NB5) x 663	8,070	22.63	17.8	142
1539H1	(515HO x 569) x NB7	8,050	22.23	18.1	125
2539Н4	(562HO x 569) x NB7	7,900	21.86		135
263Н4	(562H0 x 569) x 663	7,580	21.35	17.8	124
263TH3	(515H0 x 569) x 663 Tetra	7,510	21.27	17.8	115
General MEAN	of				
all varietie		8,080	22.75	17.8	Beets
S. E. of MEA		127	0.39	0.11	per
	Difference (19:1)	359	1.11	0.30	100'
S. E. of MEA		7 577	1 70	0.60	row
in % of MEAN		1.57	1.72	0.60	

Odds 19:1 = 2.00 x $\sqrt{2}$ x Standard Error of MEAN

	Degrees	MEA	NSQU	ARES
Variation due to	of	Gross	Tons	Percent
	Freedom	Sugar	Beets	Sucrose
Between varieties	9	1,120,563	11.96	0.54
Between replications	9	356,051	5.77	2.28
Between columns	9	375,615	3.52	0.39
Remainder (Error)	72	161,532	1.53	0.11
Total	99			
Calculated F value		6.94**	7.82**	4.74**
** Exceeds the 1% poin	t of signif	icance (F=2.6	57)	

VARIETY TEST, BRAWLEY, CALIFORNIA, 1963

(10 x 10 Latin Square)

Planted: September 13-14, 1962 Harvested: June 6, 1963

Variety	Description	Acre Sugar Pounds	Yield Beets Tons	Sucrose Percent	Harvest Count Number
263TH1	(MS of NBl x NB3) x 663 Tetra	11,370	33.7	17.0	135
263TH2	(MS of NBl x NB5) x 663 Tetra	11,060	33.1	16.8	131
263TH4	(562H0 x 569) x 663 Tetra	10,680	31.3	17.1	144
264H1	(MS of NBl x NB5) x 164	10,450	30.3	17.4	136
063H1	(MS of NBl x NB3) x 663	10,440	30.5	17.3	139
163H2	(MS of NBl x NB5) x 663	10,350	30.0	17.4	143
1539H1	(515H0 x 569) x NB7	10,320	29.2	17.8	149
263TH3	(515H0 x 569) x 663 Tetra	10,230	29.9	17.3	123
263H4	(562H0 x 569) x 663	9,900	28.8	17.4	126
2539H4	(562H0 x 569) x NB7	9,390	26.9	17.6	144
General ME all variet S. E. of M Significant S. E. of M in % of ME	ties MEAN nt Difference (19:1) MEAN	10,420 173 490 1.66	30.4 0.54 1.52	17.3 0.14 0.40 0.82	Beets per 100' row

Odds 19:1 = 2.00 x $\sqrt{2}$ x Standard Error of MEAN

	Degrees	MEAI		A R E S Percent
Variation due to	of Freedom	Gross Sugar	Tons Beets	Sucrose
Between varieties	9	3,079,860	39.74	0.84
Between replications	9	719,242	9.83	0.50
Between columns	9	806,254	95.69	18.27
Remainder (Error)	72	300,297	2.89	0.20
Total,	99			
Calculated F value		10.26**	13.75**	4.14**
** Exceeds the 1% poi	nt of sign:	ificance (F=	2.67)	

VARIETY TEST, BRAWLEY, CALIFORNIA, 1963

(10 replications of each variety)

Planted: September 13-14, 1962
Harvested: April 24, 1963

Variety No.	Description	Acre Sugar Pounds	Yield Beets Tons	Sucrose Percent	Harvest Count Number
163H2	(MS of NBl x NB5) x 663	8,530	23.70	18.02	139
2954-6H1	(569H0 x 562) x El0/59	8,270	23.38	17.69	135
2954-4H1	(569H0 x 562) x D38/59	8,260	23.77	17.39	131
263H6	(515H0 x 562) x 663	8,260	22.88	18.09	123
2954-2H1	(569H0 x 562) x Dl3/59	8,240	24.01	17.17	130
263H7	(561H0 x 569) x 663	8,200	22.84	17.96	133
263H8	(569H0 x 562) x 663	8,070	22.71	17.81	128
163H5	(515H0 x 569) x 663	7,830	21.93	17.86	136
F57-63	Inc. 663	7,560	21.06	17.98	128
2539H6	(515H0 x 562) x NB7	7,420	20.20	18.40	133
2539H8	(569H0 x 562) x NB7 Bolt. res. sel. 663 Yel. res. sel. 368 US 75	7,290	19.66	18.52	132
264		7,080	19.99	17.77	116
011		7,000	19.79	17.72	129
368		6,450	18.13	17.82	129
General MEAN all varietie S. E. of MEA Significant S. E. of MEA in % of MEAN	N Difference (19:1)	7,750 236 661 3.05	21.72 0.69 1.93	17.87 0.18 0.50	Beets per 100' row

Odds 19:1 = 1.98 x √2 x Standard Error of MEAN

	Degrees	MEAI	MEAN SQUARES					
Variation due to	of	Gross	Tons	Percent				
	Freedom	Sugar	Beets	Sucrose				
Between varieties	13	3,854,341	35.70	1.22				
Between replications	9	819,131	6.47	2.75				
Remainder (Error)	117	556,358	4.73	0.32				
Total	139							
Calculated F value		6.93**	7.55**	3.81**				
** Exceeds the 1% point	of signific	cance (F=2.30)						

VARIETY TEST, SALINAS, CALIFORNIA, 1963

Location: Spence Field of the U. S. Agricultural Research Station.

Soil type: Sandy loam.

Previous crops: Fallow, 1960; barley cover crop, 1961; vetch cover crop, 1962.

Fertilizer used: 500 lbs. per acre 10:10:5, preplant.

220 lbs. per acre ammonium sulfate sidedressed

March 5, 1963.

200 lbs. per acre ammonium sulfate sidedressed

April 30, 1963.

Planting date: Bolting test, planted November 15, 1962. Yield test, planted December 11, 1962.

Thinning date: Bolting test, December 27, 1963. Yield test, January 8, 1963.

Harvest date: Bolting test, September 16-17, 1963. Yield test, September 17-20, 1963.

Irrigations: Sprinkler irrigation as required up to April 25, 1962. Subsequently, furrow irrigation used at about ten-day intervals.

Diseases and insects: Infection with yellows viruses and mosaic approached 100 percent by late June. Test plots were sprayed once with Dylox plus brown sugar for the control of leaf miner.

Experimental design: Randomized block with four replications for the November, 1962 planting. Varieties planted in two-row plots; plots 35 feet long. Randomized block with eight replications for the December, 1962 planting. Varieties planted in two-row plots with rows spaced 28 inches apart. Plots 60 feet long.

Sugar analysis: From two ten-beet samples per plot by Spreckels Sugar Company, Spreckels, California.

VARIETY TEST, SALINAS, CALIFORNIA, 1963

(4 replicated plots of each variety)

Planted: November 15, 1962 Harvested: September 16-17, 1963

		Acre	Yield			Harvest
Variety	Description	Sugar	Beets	Sucrose	Bolting	Count
		Pounds	Tons	Percent	Percent	Number
263TH2 263TH1 263TH3 F60-554H1 264H1 263TH4	(MS of NB1 x NB5) x 663 Te (MS of NB1 x NB3) x 663 Te (515HO x 569) x 663 Tetra MS of NB1 x NB4 (MS of NB1 x NB5) x 264 (562HO x 569) x 663 Tetra		45.1 44.3 43.3 41.2 42.1 43.3	15.2 15.4 15.4 16.0 15.5 14.9	7.6 8.0 10.0 10.7 21.0 4.6	129 123 143 127 136
263H4 163H5 2539HL 1539HL 263H6 F62-63T	(562HO x 569) x 663 (515HO x 569) x 663 (515HO x 569) x NB7 (515HO x 569) x NB7 (515HO x 562) x 663 663 Tetraploid	12,750 12,600 12,380 12,320 12,310 12,260	38.6 39.6 41.1 41.6 38.6 42.0	16.5 15.9 15.1 14.8 16.0 14.7	12.6 23.4 28.2 22.4 18.6 1.2	133 134 134 137 135 126
163H2a 087H1 263H7 263H1 263H8 2539H6	(MS of NB1 x NB5) x 663 (MS of NB5 x NB6) x 787 (561H0 x 569) x 663 (MS of NB1 x NB3) x 663 (569H0 x 562) x 663 (515H0 x 562) x NB7	12,100 12,090 12,000 11,970 11,860 11,740		15.2 15.2 15.9 15.3 15.9 14.8	14.1 5.7 11.3 18.6 12.7 20.1	139 133 139 108 133 129
2539H4 F60-547H1 063H3 1547H1 011 F60-512H1	(562HO x 569) x NB7 MS of NB1 x NB5 (MS of NB1 x NB4) x 663 MS of NB1 x NB5 Yel. res. sel. 368 MS of NB5 x NB6	11,630 11,610 11,490 11,460 11,440 11,420	38.2 36.0	15.8 15.9 15.1 15.9 15.9	13.0 14.7 12.4 7.4 14.0 4.7	125 126 134 135 120 136
2539H8 264 2546-36H1 2546-8H1 663 F59-569H1	(569HO x 562) x NB7 Bolt. res. sel. 663 562HO x 546-36 562HO x 546-8 (US15 x US22/3) Sel. 515HO x 569	11,320 11,320 10,780 10,780 10,640 10,540	37.2 35.5 36.0 33.9 34.4 31.9	15.2 16.0 15.0 15.9 15.5 16.6	23.7 16.5 12.9 7.5 6.8 34.9	126 143 133 115 133 136
F62-569H3	562H0 x 569 562H0 x 546 562H0 x 569 562H0 x 569 UB 75 85H0 x 85	10,400 10,370 10,140 10,090 10,030 8,010	33.0 31.9 32.3 30.4 31.7 26.2	15.8 16.2 15.7 16.6 15.9	9.7 9.2 12.9 12.6 8.9 2.5	123 126 125 122 142 139
	les EAN t Difference (19:1)	11,650 419 1,175	37.5 1.40 3.94	15.6 0.34 0.97	13.2 2.26 6.33	Beets per 100'
S. E. of MI		3.6	3.7	2.2	17.2	row
			J-1			

Odds $19:1 = 1.98 \times \sqrt{2} \times \text{Standard Error of MEAN}$ VARIANCE TABLE

	Degrees	M	EAN	SQUARI	ES
Variation due to	of Freedom	Gross Sugar	Tons Beets	Percent Sucrose	Percent Bolting
Between varieties	35	5,571,481	73.18	1.11	214.36
Between replications	3	1,504,190	44.70	2.29	19.30
Remainder (Error)	105	701,122	7.88	0.48	20.40
Total	143				

Calculated F value

7.95** 9.29** 2.34** 10.51**

^{**} Exceeds the 1% point of significance (F=1.84)

VARIETY TEST, SALINAS, CALIFORNIA, 1963

(10 replicated plots of each variety)

Planted: December 11, 1962 Harvested: September 17-19, 1963

		Acre	Yield			Harvest
Variety	Description	Sugar	Beets	Sucrose	Bolting	Count
		Pounds	Tons	Percent	Percent	Number
263TH2 263TH1 263TH4 264H1 263H4	(MS of NB1 x NB5) x 663 Tetra (MS of NB1 x NB3) x 663 Tetra (562H0 x 569) x 663 Tetra (MS of NB1 x NB5) x 264 (562H0 x 569) x 663	13,300 12,900 12,780 12,730 12,460	43.1 41.9 41.9 39.0 39.5	15.5 15.5 15.4 16.4 15.8	3.8 3.5 2.1 15.5 4.9	145 138 143 133 129
163H2a 2539H4 2539H1 263H8 263H7	(MS of NB1 x NB5) x 663 (562H0 x 569) x NB7 (515H0 x 569) x NB7 (569H0 x 562) x 663 (561H0 x 569) x 663	12,400 12,280 12,220 12,190 12,140	40.4 39.9 39.4 40.2 39.2	15.4 15.5 15.6 15.2 15.5	6.3 9.4 20.4 6.6 5.2	162 141 141 143 134
163H5 063H3 263H6 263H1 2539H6	(515H0 x 569) x 663 (MS of NB1 x NB4) x 663 (515H0 x 562) x 663 (MS of NB1 x NB3) x 663 (515H0 x 562) x NB7	11,980 11,960 11,660 11,620 11,520	37.6 39.3 37.5 37.3 38.7	16.0 15.2 15.6 15.6 15.0	14.0 5.7 10.7 9.3 22.0	137 156 117 146 136
General Mall varie	eties	12,280	39.7	15.5	9.3	Beets
S. E. of		271	0.79	0.20	1.09	per
S. E. of	ant Difference (19:1)	759	2,20	0.57	3.03	100'
in % of N		2.2	2.0	1.3	11.6	row

Odds 19:1 = 1.976 x $\sqrt{2}$ x Standard Error of MEAN

	Degrees	MEAN SQUARES								
Variation due to	of Freedom	Gross Sugar	Tons Beets	Percent Sucrose	Percent Bolting					
Between varieties	14	2,509,753	28.04	1.17	377.2					
Between replications	9	1,854,898	108.31	20.75	9.8					
Remainder (Error)	126	737,031	6.20	0.41	11.8					
Total	149			· ·						
Calculated F value		3.41**	4.52**	2.86**	31.97*					

^{**} Exceeds the 1% point of significance (F=2.20)

VARIETY TEST, CLARKSBURG, CALIFORNIA

California Test #3 - 1963

		By A	merican	Crystal Su		
			Yield		Harvest	
Variety	Description	Sugar	Beets	Sucrose	Count	
		Pounds	Tons	Percent	Number	
62-4Т23 Н15	(561 x 569) x 163T	7413	31.98	11.67	128	
61-4Т9 Н7	61-Triploid	7137	26.67	13.41	131	
62-4Т32 Н14	$(515 \times 569) \times 163T$	6946	30.23	11.59	134	
62-4T32 H11	$(515 \times 562) \times 163T$	6806	29.18	11.60	129	
263 TH4	$(562 \times 569) \times 163T$	6446	26.86	12.20	145	
61-479 н15	61-Triploid	6334	24.04	13.15	123	
263 Н7	$(561 \times 569) \times 663$	6052	24.10	12.52	141	
163 H2a	$(1 \times 5) \times 663$	5976	24.09	12.35	141	
263 НЦ	(562 x 569) x 663	5802	23.15	12.48	224	
Am #5-H1	$(1 \times 5) \times 58-205-0$ Com'1	5717	22.84	12.40	138	
263 Н6	$(515 \times 562) \times 663$	5661	22.92	12.38	126	
163 H5	$(515 \times 569) \times 663$	5442	21.65	12.57	146	
2539 НЦ	(562 x 569) x NB7	5306	22.15	11.78	123	
1539 H3	F60-561 HO x NB7	5141	21.59	11.95	133	
2539 Hl	(515 x 569) x NB7	4752	20.33	11.85	123	
2539 н6	(515 x 562) x NB7	4574	19.50	11.64	119	
General Mean		5969	24.45	12.21	131	Beets
ISD (0.05)		791	3.19	•58	17.2	Per
ISD (0.01)		1048	4.24	•77	22.4	1001
Calculated F V	alue	10.72**		10.38**	2.51	H Row
C. V. %		13.32	13.16	4.77	13.07	
Efficiency		124%	123%	121%		

** Exceeds the 1% point of significance (F=2.28)

Cooperator: L. F. Olson

Location: Dixon

Planted: March 13, 1963

Harvested: September 23-24, 1963

Experimental Design: 4 = 4 Simple Lattice Repeated 4 times.

Comparison of 2n and 3n Hybrids of the Same Parental Material

	Acre Yi	eld		Harvest	Number of	
	Sugar	Beets	Sucrose	Count	Comparisons	
	Pounds	Tons	Percent	Number		
Diploid	5739	22.96	12.49	132	4	
Triploid	6903	29.56	11.76	134	4	

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1963

Sugar		2.		17.0	29	63	6.	11		
Sugar Beets % T/Ac. T/Ac. Sugar		4.997 34.95 14.3 5.480 31.94 17.2		5.957 35.07 17.0	December 31, 1962	September 5, 1963	5.333 31.60 16.9			Ten
Bee I	·	31.		7 35.	ember	tember	3 31.			-
		5.48		5.957	Dec	Sep	5.33	Date	Date	
gar Beets TAc. Sugar		14.3		13.9	63	63	14.2	No Statistical Analysis To Date No Statistical Analysis to Date	No Statistical Analysis To Date	
Beets T/Ac.		4.95		36.84 13.9	January 7, 1963	August 28, 1963	5.017 35.33 14.2	No Statistical Analysis To No Statistical Analysis to	Analys	Eight
Sugar 8		£ 766		4.761 3	annary	ugust	317	rical	FIC.	ш
13.21		4		N-4	3	Ā	5.0	tatist	tatist	
Sugar		14.3		0.41	963	1963	14.1	2 2		
Beets T/Ac.		30.34		31.352	٧ 8, 1	ber 6,	28.13			The Ive
Sugar Beets K T/Ac. T/Ac. Sugar		4.218 29.703 14.3		4.373 31.352 14.0	January 8, 1963	September 6, 1963	3.969 28.13 14.1			
los H								Ñδ.	86	
Sugar	1.0	=		1.	1963	3, 196	2.0	0.55	1.80	=
Beets T/Ac.	29.28	31.77	32.10	32.32	February 8, 1963	September 28, 1963	33.30	3.97	1.411	Fourteen
Sugar Beets % I/Ac. I/Ac. Sugar	3.213	3.523 31.77 11.1	3.351	3.694	Februa	Septer	3.682 33.30 11.0	0.403	3.91	u.
Beets % T/Ac. Sugar	13.4	12.9	13.0		1962	1963	12.5	0.70	2.01	
Beets T/Ac.	31.18	36.10	33.89		December 5, 1962	er 4.	31.56 12.5	5.21	1.88	Eighteen
Sugar T/Ac.	811.3	4.590			Decemb	September 4, 1963	3.929	0.625	0.225	Ē
Sugar 1		2.5.2			52	3			0.317 0	
Su					5, 19	. 136	3 12.9	ž ž		é
ugar Beets /Ac. T/Ac. Su	4.38.88.88.89.84.84.84.84.84.84.84.84.84.84.84.84.84.				December 5, 1962	August 26, 1963	4.380 33.93	25.55	1.394	Twelve
Sugar T/Ac.	4.749 4.624 4.567 4.450 4.430 4.374	4.339 4.326 4.312			Dece	Aug	4.380	22	0.189	
e t X				,	Date	ate	EAN	.05	5	Test
ariety	26344 26346 26348 26347 253941 253948	2539H6 2539H4 USH6 263TH4	759-63H1 263TH2 263TH1 2539H1	16345 053941 153941 16346 56341	Planting Date	Harvest Date	GENERAL MEAN	66	E of Mean	Var. In Test
>	263H4 263H8 263H8 263H7 2539H	2539H 2539H USH6 263TH	26.35	16345 0539H 1539H 16346 663H1	Pla	Har	GEN	LSD	S S FIFE	N Va

DATA ON U.S.D.A. VARIETIES TESTED BY SPRECKELS SUGAR COMPANY, 1963

% Sugar				4.4	14.7		15.7			15.3		63		8
Beets T/Ac. S				3.57 24.8 14.4	24.0 1		25.9					January 18, 1963	Sixteen	July 30, 1963
Sugar T/Ac.				3.57	3.53		4.07			3.40 22.0		January	Si	July
NG %	12.0		11.4	12.0		6. =		12.2		12.3	0.97	963		1963
	3.838 32.45		4.028 36.03 11.4	3.896 33.23 12.0	4.043 36.24 11.3	3.710 31.94	3.849 31.25 12.7	2.691 22.60 12.2		3.722 30.85 12.3	0.569 5.27 0.97	January 10, 1963	Fifteen	September 4, 1963
CROWS LANE Sugar Beets T/Ac. T/Ac.	3.838		4.028	3.896	4.043	3.710	3.849	2.691		3.722	0.569	Januar	Ē.	Septem
Sugar	14.2						14.41	14.3		14.1		1963		963
KERN COUNTY Sugar Beets I/Ac. I/Ac. S	23.8						3.25 22.6 14.4	18.1		21.1		January 11, 1963	Sixteen	July 8, 1963
Sugar Beets T/Ac. T/Ac.	3.38						3.25	2.59		2.99		Janua		٦٢
% Sugar							13.6		14.5	13.9		1963		1963
KERN COUNTY Sugar Beets T/Ac. T/Ac. S							4.75 34.9		35.5	32.9		February 5, 1963	Sixteen	August 8, 1963
Sugar T/Ac.							4.75		5.15	4.56		Febr		Aug
KE %	15.0	14.8	12.9	13.5	12.7	15.1	14.9	14.9		14.41	0.67	1963		1963
TULARE LAKE Sugar Beets I/Ac. I/Ac. Si	4.306 28.73	4.475 30.37	4.306 33.34	4.256 31.53	4.209 33.17	3.912 25.88 15.1	4.036 26.95 14.9	3.113 20.98 14.9		4.021 27.96 14.4	0.478 3.01 0.67	January 23, 1963	Sixteen	August 29, 1963
Sugar T/Ac.	4.306	4.475	4.306	4.256	4.209	3.912	4.036	3.113		4.021	0.478	Janua		Augu
AREAS: Variety	263н-6	263H-4	263ТН-4	263ТН-1	263TH-2	2539н-6	USH6	US 75	263Н8	GEN. MEAN	rsd (5%)	PLANTING DATE	eties	HARVEST DATE
TEST AREAS:	26	26	26	76	26	2.	ä	S	35	GEI	LS	PLANTI	# Varieties in Test	HARVE

VARIETY TEST, BETTERAVIA, CALIFORNIA, 1963

Grower and location: R. N. Winters, Guadalupe, California.

Soil type: Sandy loam.

Previous crops: Broccoli (2 crops), 1960; beans, 1961; potatoes, 1962.

Fertilizer used: 100 lbs. per acre NH3, preplant. 100 lbs. per acre NH3, sidedressing.

Planting date: January 14, 1963.

Thinning date: March 1, 1963.

Harvest date: October 1, 1963.

Irrigations: Four.

Diseases and insects: Not a factor in the test plot.

Experimental design: Randomized block with eight replications.

Varieties planted on double-row beds with 40-inch centers. Plots 60 feet long.

Sugar analysis: From two ten-beet samples per plot by Union Sugar Division, Betteravia, California.

Remarks: Seed was furnished, test designed, and results analyzed by United States Agricultural Research Station, Salinas, California. Appearance of test plot shortly before harvest indicated nitrogen deficiency in that part of the field in which test plot was located. The extremely high sugar percentages tend to substantiate this probability.

VARIETY TEST, BETTERAVIA, CALIFORNIA, 1963

(8 replications of each variety)

By Union Sugar Division

	Acre Yield				Harvest	
Variety	Description	Sugar	Beets	Sucrose	Count	
		Pounds	Tons	Percent	Number	
263TH2 263TH3 163H2 263H4 063H3	(MS of NB1 x NB5) x 663 Tetra (515H0 x 569) x 663 Tetra (MS of NB1 x NB5) x 663 (562H0 x 569) x 663 (MS of NB1 x NB4) x 663	12,550 12,420 12,360 11,830 11,720	34.8 34.3 34.0 32.7 32.3	18.1 18.2 18.1 18.1	142. 145 149 147 151	
263H6 2539H1 2539H6 2539H4 163H5	(515H0 x 562) x 663 (515H0 x 569) x NB7 (515H0 x 562) x NB7 (562H0 x 569) x NB7 (515H0 x 569) x 663	11,680 11,640 11,630 11,420 11,280	32.2 32.5 33.1	18.2 17.9 17.6 17.7 18.0	154 146 146 149 153	
General MEAN of						
S. E. of MEAN Significant Difference (19:1)		11,850 303 858	33.0 0.86 N.S.	18.0 0.13 0.37	Beets per 100'	
S. E. of Min % of ME	2.6	2.6	0.7	row		

Odds 19:1 = $2 \times \sqrt{2} \times \text{Standard Error of MEAN}$

	Degrees	MEAN SQUARES			
Variation due to	of	Gross	Tons	Percent	
	Freedom	Sugar	Beets	Sucrose	
Between varieties	9	1,532,627	9.18	0.36	
Between replications	7	3,897,363	35.65	0.70	
Remainder (Error)	63	736,559	5.89	0.14	
Total	79				
Calculated F value		2.08*	N.S.	2.54*	
* Exceeds the 5% noint	t of giani	Figence (F-2	03)		

^{*} Exceeds the 5% point of significance (F=2.03)

VARIETY TEST, SAN ARDO, CALIFORNIA, 1963

Grower and location: Hansen and Fowler, San Ardo, California.

Soil type: Sandy loam.

Previous crops: Alfalfa, 1960; sugarbeets, 1961; tomatoes, 1962.

Fertilizer used: 400 lbs. per acre 12:15:0, preplant.

250 lbs. per acre 32:0:0, (liquid) sidedressed in

one application.

Planting date: January 8, 1963.

Thinning date: March 7, 1963.

Harvest date: September 11, 1963.

Irrigations: A total of four, the first, May 16, and the last, July 24, 1963.

Diseases and insects: Not a factor in the test plot.

Experimental design: Ten varieties planted in a 10 x 10 latin square. Varieties planted on double-row beds with 40-inch centers. Plots 60 feet long.

Sugar analysis: From two ten-beet samples per plot by Union Sugar Division, Betteravia, California.

Remarks: Test plot was hand thinned and remainder of field machine thinned. The field yielded an average of 33.31 tons per acre with an average of 16.54 percent sucrose. The variety was US H2. Seed for the test plot was furnished, the test designed and the results analyzed by the United States Agricultural Research Station, Salinas, California.

VARIETY TEST, SAN ARDO, CALIFORNIA, 1963

10 x 10 Latin Square

By Union Sugar Division

		Acre	Yield		Harvest
Variety	Description	Sugar	Beets	Sucrose	Count
		Pounds	Tons	Percent	Number
263TH2 163H2 263H4 263H8 2539H6	(MS of NBl x NB5) x 663 Tetra (MS of NBl x NB5) x 663 (562H0 x 569) x 663 (569H0 x 562) x 663 (515H0 x 562) x NB7	14,010 13,750 13,620 13,410 13,340	40.7 39.2 38.7 38.0 38.1	17.2 17.6 17.6 17.6	145 161 152 163 157
263H1 163H5 2539H1 263H6 2539H4	(MS of NBl x NB3) x 663 (515H0 x 569) x 663 (515H0 x 569) x NB7 (515H0 x 562) x 663 (562H0 x 569) x NB7	13,150 12,980 12,930 12,790 12,680	37.7 36.5 36.7 36.2 36.8	17.5 17.8 17.6 17.7	155 170 156 152 157
General N	ŒAN of				
all varie		13,260	37.9	17.5	Beets
S. E. of	MEAN	287	0.61	0.11	per
Significa	ant Difference (19:1)	813	1.71	0.31	1001
S. E. of					row
in % of N	ŒAN	2.2	1.6	0.6	

Odds 19:1 = 1.994 x $\sqrt{2}$ x Standard Error of MEAN

VARIANCE TABLE

Variation due to	Degrees of Freedom	M E A N Gross Sugar	S Q U A Tons Beets	R E S Percent Sucrose
Between varieties	9	1,908,178	19.45	0.33
Between replications	9	608,970	6.98	0.12
Between columns	9	1,437,663	29.86	1.65
Remainder (Error)	72	832,374	3.69	0.12
Total	99			
Calculated F value		2.29*	5.28 **	2.71**

^{*} Exceeds the 5% point of significance (F=2.01)
** Exceeds the 1% point of significance (F=2.67)

VARIETY TEST, KING CITY, CALIFORNIA, 1963

Grower and location: A. S. Duarte, King City, California.

Soil type: Salinas clay.

Previous crops: Tomatoes, 1960; lettuce, 1961; carrots, 1962.

Fertilizer used: 300 lbs. per acre 16:20:0, preplant.

400 lbs. per acre ammonium sufate, sidedressed in

one application.

Planting date: February 28, 1963.

Thinning date: April 10, 1963.

Harvest date: October 29-30, 1963.

Irrigations: Six.

Diseases and insects: Diseases and insect damage were of minor importance in the 1963 test plots. Nematode damage was moderately severe throughout the 1963 test plot area.

Experimental design: One test of 10 varieties planted in a 10 x 10 latin square; and a test of 10 varieties replicated four times. Varieties planted on double-row beds with 40-inch centers. Plots 60 feet long.

Sugar analysis: From two ten-beet samples per plot by Union Sugar Division, Betteravia, California.

Remarks: Seed was furnished, test designed, and results analyzed by the United States Agricultural Research Station, Salinas, California.

VARIETY TEST, KING CITY, CALIFORNIA, 1963

(10 x 10 Latin Square)

By Union Sugar Division

Variety Description	Acre Sugar Pounds	Yield Beets Tons	Sucrose Percent	Harvest Count Number
263TH1 (MS of NB1 x NB3) x 663 Tetra 263TH2 (MS of NB1 x NB5) x 663 Tetra 263H4 (562H0 x 569) x 663 163H5 (515H0 x 569) x 663 264H1 (MS of NB1 x NB5) x 164	8,830 8,790 8,460 8,420 8,240	23.7 23.8 22.5 22.1 21.8	18.6 18.5 18.8 19.2 18.9	124 132 151 155 135
263H1 (MS of NB1 x NB3) x 663 163H2 (MS of NB1 x NB5) x 663 2539H1 (515H0 x 569) x NB7 2539H4 (562H0 x 569) x NB7 2539H6 (515H0 x 562) x NB7	8,210 8,120 7,990 7,960 7,840	21.8 21.7 21.2 21.4 21.1	18.8 18.9 18.6 18.6	153 159 158 155 144
General MEAN of all varieties S. E. of MEAN Significant Difference (19:1) S. E. of MEAN in % of MEAN	8,290 257 N.S.	22.1 0.63 1.77	18.8 0.16 N.S.	Beets per 100' row

Odds 19:1 = 1.994 x $\sqrt{2}$ x Standard Error of MEAN

VARIANCE TABLE

	Degrees	MEAN	SQUA	RES
Variation due to	of Freedom	Gross Sugar	Tons Beets	Percent
	Tiecdom	Dugar	Decos	Ductobe
Between varieties	9	1,131,593	9.16	0.37
Between replications	9	1,817,252	16.07	1.37
Between columns	9	269,139	7.37	1.10
Remainder (Error)	72	658,185	3.96	0.25
Total	99			
Calculated F value		N.S.	2.31*	N.S.

^{*} Exceeds the 5% point of significance (F=2.01)

VARIETY TEST, KING CITY, CALIFORNIA, 1963

(4 replicated plots of each variety)

By Union Sugar Division

		Acre	Yield		Harvest
Variety	Description	Sugar	Beets	Sucrose	Count
		Pounds	Tons	Percent	Number
263TH4 263H7 163H2 263H6 011	(562H0 x 569) x 663 Tetra (561H0 x 569) x 663 (MS of NB1 x NB5) x 663 (515H0 x 562) x 663 V. Y. sel. from US 75	9,570 9,180 8,900 8,840 8,390	25.8 24.3 25.0 23.9 22.6	18.5 18.9 17.9 18.5 18.6	148 147 148 153 137
263H8 F57-68 F62-546H1 F62-569H3 2546-8H1	(569H0 x 562) x 663 US 75 562H0 x 546 562H0 x 569 562H0 x 546-8	8,290 8,060 7,970 7,470 7,450	22.0 21.9 21.1 19.9 20.7	18.8 18.5 18.9 18.8 18.0	156 156 138 160 124
General MEA					
all varieties		8,410	22.7	18.5	Beets
S. E. of MEAN Significant Difference (19:1)		322 935	0.80	0.33 N.S.	per
S. E. of ME	S. E. of MEAN		C • 2T	N.D.	100'
in % of MEA	N	3.8	3.51	1.76	20#

Odds 19:1 = 2.052 x $\sqrt{2}$ x Standard Error of MEAN VARIANCE TABLE

***	Degrees	MEA	N SQU	ARES
Variation due to	of Freedom	Gross Sugar	Tons Beets	Percent Sucrose
Between varieties	9	2,005,120	15.38	0.52
Between replications	3	1,216,614	9.00	0.90
Remainder (Error)	27	415,236	2.54	0.43
Total	39			·
Calculated F value		4.83 **	6.06**	N.S.

^{**} Exceeds the 1% point of significance (F=3.14)

By Union Sugar Division FURITY ANALYSIS, KING CITY, BETTERAVIA AND WATSONVILLE VARIETY TESTS, 1962 (See pages 31-36, 1962 Report, for yield data and sucrose percentage)

		King City	Thin jui	ce purit	у
Variety	Description	Test 1 Percent	Test 2a/ Percent	Betteravia	Watsonville
1539ft 0546-22ft 163ff2 063ft 0562ft2 163ft2 163ft3	(515HO x 569) x NB7 (2m) 85HO x 546-22 (2m) (MS of NB1 x NB3) x 663 Tetra US H6 (2m) US H2 (2m) 85HO x 562 (2m) US H6 (New) (2m) (515HO x 569) x 663 (2m) (515HO x 562) x 663 (2m)	888998888 6.0.1989888	93.8 92.9 92.9	86.5	98.0
163#4 1970#2 063#3 1964#2 1958#2 1958-1#2 1954-1#2	(515HO x 561) x 663 (2n) (MS of NBL x NB3) x H9394 US H5 (2n) (MS of NBL x NB5) x H7566 (MS of NBL x NB5) x H9568 (MS of NBL x NB5) x H9568 (MS of NBL x NB5) x H9568 (MS of NBL x NB5) x H6551 (MS of NBL x NB5) x H6551	9.06	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
1956E2 1963E2 1962E2 1955E2 1954-6E2 1967E2 1963E1	(MS of NB1 x NB5) x H18 (MS of NB1 x NB5) x H5261 (MS of NB1 x NB5) x H5358 (MS of NB1 x NB5) x H5608 (MS of NB1 x NB5) x =10/59 (MS of NB1 x NB5) x =10/59 (MS of NB1 x NB5) x H9355 (515H0 x 569) x H5261 (515H0 x 569) x H63544 (515H0 x 569) x H18		22822222 7. 2. 2. 2. 3. 4. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 4. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.		
King City	MEAN LSD 5% King City triploid evaluation test.	90.8	92.2 N.S.	ر م	47.0

1962-63

Imperial Valley, Calif.

1st Date of Harvest

Coop: Nelson Correll

Variety	Source or Description	Grose Sugar	Tons Per Acre	% Sucrose	% T.J.P.	% Bolt.	No. Beets 1001 Row
12379 12473 12368 USH4 12381 US75	F60-547H1 x 163rr T3i F61-569H3 x C663 547H1 x 663 L1343 F61-569H3 x 163rr T3i L9252	7388 7201 7026	23.986 23.101 22.281 21.434 21.760 22.038	15.63 15.99 16.16 16.39 15.92 15.52	96.26 95.68 96.08 96.36 96.11 95.89	•06	161 159 189 193 177 178
Gen. Mean SEmean LSD (5%) SEm/Gen. Mean	(%)	7135 135 <u>A</u> / 379 1.89	22.376 .403 1.132 1.80	15.95 .09 .26 .57	96.26 .29 .70 .26		180

			Mean Squares	
Variation Due To	DF	Tôns Beets	% Sucrose	% T.J.P.
Replication	8	36,377	1.858	3.081
Variety	15	9.847	•733	.983
Error	120	1.465	.075	•557
Total	1713			
Calc. F.		6.72**	9.81**	NS

A/ Short Cut Formula Exceeds 1% Level 2.26

NS Not Significant

Design: 4 x 4 Triple Lattice - 9 reps.

Plot Size: 2 rows (34") x 53' Planted 2 rows x 50' Harvested

Planted: September 13, 1962 Harvested: April 18, 1963

Remarks: Excellent test. Only scattered yellows infected plants visible.

1962-63

Imperial Valley, Calif.

2nd Date of Harvest

Coop: Nelson Correll

Variety	Source or Description	Gross Sugar	Tons Per Acre	% Sucrose	% T.J.P.	% Bolt.	% C.T.	No. Beets 100' Row
12379 12368 12473 USHU 12381 US75	F60-547H1 x 163rr T3n 547H1 x 663 F61-569H3 x C663 L1343 F61-569H3 x 163rr T3n 19252	10912 10377 10282 10202 10151 9178	31.628 29.683 29.309 28.402 29.321 27.528	17.54 17.96 17.31	95.17 95.12 94.47 95.13 95.16 94.62	.09 .20 .26 .55	4.94 3.91 7.99 1.59 4.95 2.23	138 173 143 167 162 165
Gen. Mean SEmean LSD (5%) SEm/Gen. M	Mean (%)	10018 222 <u>A</u> / 623 2.22	28.832 .606 1.700 2.10	.12	95.10 •24 •67 •25			162

Variance Table

			Mean Squares	
Variation Due To	DF Tons Beets		% Sucrose	% T.J.P.
Replication	8	146.053	3.148	3.655
Variety	15	14.232	1.345	1.105
Error	120	3.306	.134	.518
Total	143			
Calc. F.		4.42**	10.22**	2.13*

A/ Short Cut Formula
*** Exceeds 1% Level 2.26
* Exceeds 5% Level 1.79

Design: 4 x 4 Triple Lattice - 9 reps.

Plot Size: 2 rows (34") x 53' Planted 2 rows x 50 Harvested

Planted: September 13, 1962

Harvested: June 7, 1963

1962-63

Imperial Valley, Calif.

3rd Date of Harvest

Coop: Nelson Correll

Variety	Source or Description	Gross Sugar	Tons Per Acre	% Sucrose	% T.J.P.	% Bolt.	No. Beets 100' Row
USH4 12379 12473 12381 12368 US75	L1343 F60-547H1 ■ 163rr T3n F61-569H3 x c663 F61-569H3 x 163rr T3n 547H1 x 663 L9252	9553 9524 9512 8988 8796 7196	27.804 29.413 28.721 27.153 26.431 22.474	17.18 16.19 16.56 16.56 16.64 16.01	94.83 93.06 94.17 92.83 93.47 93.00	1.23 .09 .41 .08 .45	156 134 142 151 152 141
Gen. Mean SEmean LSD (5%) SEm/Gen. Mean	(%)	8678 325 <u>A</u> / 913 3•75	25.923 .945 2.650 3.64	16.74 •14 •41 •86	93.81 .47 1.31 .50		153

Variance Table

		Mean Squares				
Variation Due To	DF	Tons Beets	% Sucrose	- T.J.P.		
Replication	8	213.091	1.844	2.544		
Variety	15	28.403	1.745	5.181		
Error	120	8.031	. 188	1.968		
Total	143					
Calc. F.		3.54**	9.28***	2,63**		

A/ Short Cut Formula Exceeds 1% Level 2.26

Design: 4 x 4 Triple Lattice - 9 reps.

Plot Size: 2 rows (34") x 53' Planted

2 ruws = 50' Harvested September 13, 1962 Planted:

Harvested: July 19, 1963

The following applies to all test of DP-DH.

 500 lbs. single super phosphate all preplant.
 100 lbs. NH₃ in December. Fertilizer:

Preceding Crops:

1961 - beets 1960 - alfalfa 1959 - alfalfa

(3) Insecticides 8 oz. Endrin + 8 oz. Parathion on October 7 for flea beetles and worms. 20 lbs. 5% Thimet 1-15-63

Remarks: Excellent Test. Mild curly top and occasional yellows only visible diseases.

1962-63

Brawley, California

Early Plant - Early Harvest

Coop: John Fifield

Variety	Source or Description	Gross Sugar	Tons Per Acre	% Sucrose	% T.J.P.	% Bolt.	No. Beets 100° Row
2539HL USHL 263HL US75	F61-569H3 x 0539 L13L3 F59-569H3 x 663 L9252	6260 6217 6119 5463	22.011 21.617 21.807 20.188	14.22 14.38 14.03 13.53	88.20 87.60 86.71 86.62	•09	141 135 130 129
Gen. Mean SEmean LSD (5%) SEm/Gen. Mean	(%)	5958 219 <u>A</u> / 610 3.68	21.387 .753 2.094 3.52	13.95 -18 -50 1.30	87.71 .43 1.19 .49		145

Variance Table

Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.
Replication	8	146.851	24.229	47.002
Variety	41	39.1,16	2.142	9.936
Error	328	5.097	•294	1.652
Total	377			
Calc. F.		7.73**	7.29**	6.01**
A/ Short Cut Formula				

** Exceeds 1% Level 1.69

Design: 6 x 7 Rect. Lattice - 9 reps.

Plot Size: 2 rows (30") x 53' Planted 2 rows x 50' Harvested

Planted: September 11, 1962 Harvested: April 18, 1963

AGRICULTURAL RESEARCH DEPARTMENT * HOLLY SUGAR CORPORATION

Previous Crop History: 1962 - Milo 1961 - Alfalfa

1960 - Alfalfa 1959 - Alfalfa

Fertilizer Applied: 300 lbs. of 11-48-0 - pre-listing time.

120 lbs. of NH₃ - at listing time. 125 lbs. of NH₃ - 10-12-62

125 lbs. of NH₃ = 10-12-02 125 lbs. of NH₃ = 11-19-62

Pesticides: 7 oz./A. Parathion 9-19-62 8 oz./A. " 9-29-62 15 oz./A. " 10-13-62

Remarks: Fair test. Stands somewhat erratic, due to grass and rot. Some mosaic and yellows present.

1963

Visalia, California

Fall pl. - South San Joaquin

Coop: Vern Dailey

Variety	Source or Description	Gross Sugar	Tons Per Acre	% Sucrose	% T.J.P.	No. Beets 100' Row
2539HL 263HL 263TH3 USH6 USHL US75	569H3 x NB7 569H3 x 663 L2381 (515 x 569) x 663T (NB1MS x NB5) x 663 L0336	8494 7928 7687 7509 7034 6403	38.366 34.988 36.227 34.226 30.688 29.132	11.07 11.33 10.61 10.97 11.46 10.99		135 146 127 153 150 146
Gen. Mean SEmean ISD (5%) SEm/Gen. Mean	n (%)	7432 473 <u>A</u> / 1322 6.36	33.127 1.977 NS 5.97	11.23 .25 .69 2.21		148

Variance Table

		Mean Squares				
Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.		
Replication	8	843.043	24.350	7		
Variety	19	48.893	1.459			
Error	152	35.188	•554			
Total	179	37.100	•224			
Calc. F.		NG	2 61.44			
A/ Short Cut Formula		NS	2.64**			

** Exceeds 1% Level 2.00
NS Not Significant

Design: 4 x 5 Rect. Lattice - 9 reps.

Plot Size: 2 rows (30") x 53' Planted 2 rows x 50' Harvested

Planted: February 22, 1963 Harvested: September 20, 1963

Remarks: Sandy strip ran through replications 2, 3, 4, and 5, accounting for high replication M.S. Little, if any, disease present.

1963

Merced, California

Spring Plant

Coop: Striblings Nursery

Variety	Source or Description	Gross Sugar	Tons Per Acre	% Sucrose	% T.J.P.	No. Beets 100! Row
USH6 263THL USHL	(163H2a) (1 x 5) x 663 569H3 x 4n 663 L1343	5843 5832 5733	17.913 18.143 16.223	16.31 15.81 17.67		162 159 156
Gen. Mean SEmean ISD (5%) SEm/Gen. Mean	(%)	5795 3344/ 934 5•76	17.344 .928 NS 5.35	16.71 .36 1.00 2.14		153

Variance Table

			Mean Squares	
Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.
Replication	8	41.709	1.999	
Variety	15	3.806	3.985	
Error	120	7.749	1.146	
Total	143			
Calc. F.		NS	3.48**	

A Short Cut Formula ** Exceeds 1% Level 2.15 NS-Not Significant

Design: 4 x 4 Triple Lattice - 9 reps.

Plot Size: 2 rows (30") x 53' Planted 2 rows x 50' Harvested

Planted: March 7, 1963 Harvested: October 2, 1963

Remarks: Excellent test, except yields were restricted by lack of nitrogen during a good portion of the season. Just & few plants infected with yellows and/or mosaic.

1963

North Tracy, Calif.

CTR - North Tracy

Coop: Arnaudo Bros.

Variety	Source or Description	Oross Sugar	Tons Per Acre	% Sucrose	% T.J.P.	No. Beets 100' Row
263H/ ₁	569Н3 ж 663	8418	31.622	13.31		129
USHL	L13h3	8395	31.160	13.47		161
263TH2	$(1 \times 5) \times lin 663$	8283	34.003	12.18		88
2539-HJ	569H3 x NB7	8194	32.003	12.77		134
263THh	569н3 х цп 663	8190	32.657	12.54		135
USH6	163H2a (1 x 5) x 663	- 8184	31.575	12.96		147
US75	L9252	7732	30.299	12.76		151
2539H1	(515 x 569) = NB7	7588	29.992	12.65		130
Gen. Mean		8251	31.608	13.09		1/17
SEmean		3114/	1.000	.27		
LSD (5%)		868	2.789	.74		
SEm/Gen. Me	an (%)	3.77	3.16	5.07		

Variance Table

			Mean Squares		
Variation Due To:	DF	Tons Beets	Sucrose	% T.J.P.	
Replication	8	87.111	24.973		
Variety	29	30.976	2.140		
Error	232	9.006	.641		
Total	269				
Calc. F.		3-44**	334		

A/ Short Cut Formula ** Exceeds 1% Level 1.79

Design: 5 = 6 Triple Rect. Lattice - 9 reps.

Plot Size: 2 rows (30") x 53' Planted 2 rows x 50' Harvested

Planted: May 15, 1963 Harvested: November 14, 1963

Remarks: Excellent test. Harvested under extremely wet conditions. Very little yellows present.

1963

Grimes, California

Coop: Jim Kalsfbeek

Variety	Source or Description	Gross Sugar	Tons Per Acre	% Sucrose	% T.J.P.	No. Beets 100° Row
263THL	569Н3 и цп 663	6878	34.392	10.00		111
USH4	11343	6236	27.763	11.23		109
US75	L9252	4591	22.439	10.23		112
Gen. Mean		5929	27.215	10.89		112
SEmean		537A/	2.292	.36		
LSD (5%)		1513	6.462	NS		
SEm/Gen. Mean	(%)	9.06	8.42	3.34		

Variance Table

			Mean Squares	
Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.
Replication	4	100.527	1.821	
Variety	19	62.670	.800	
Error	76	26.267	.662	
Total	99			
Calc. F.		2.39**	NS	
A/ Short Cut Formula		,		

A/ Short Cut Formula ** Exceeds 1% Level 2.15 NS-Not Significant

Design: 4 x 5 Rect. Lattice - 5 reps. analyzed as a randomized block.

Plot Size: 2 rows (30") x 53' Planted 2 rows x 50' Harvested

Planted: May 24, 1963 Harvested: October 30, 1963

Remarks: Four replications near the middle of this were lost due to Sclerotium. No leafspot or yellows. At harvest, top growth excessive and soil moisture great.

Spring Variety Test

1962

Tulare, Calif.

Coop: Bright's Nursery

Variety	Source	Oross Sugar	Tone Per Acre	% Sucrose	T.J.P.	No. Beets
USH6 USH4 USH2 1539H1 1539H2 163H6	(NEINS = NB5) = C663 1.0336 (NEIMS = NB3) = C663 (515HO = 569) = C663 (515HO = 562) = C663	5480 5076 5053 4557 4273 4235	16.496 15.344 15.760 13.223 12.612 12.801	16.61 16.54 16.03 17.23 16.94 16.54	95=33 96.18 94.88 94.16 94.98 93.96	117 109 110 110 108 116
Gen. Hean SEmean LSD (5%) SEmean/Gen.	Hean (%)	4799 401 <u>4</u> / 1118 8.36	14.586 1.192 3.323 8.17	16.48 •28 •79 1.72	94.18 .45 1.26 .47	113

VARIANCE TABLE

			Mean Squares	
Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.
Replication	8	123.597	2.834	26,267
Variety	29	33.371	1.423	2.872
Error		12.784	•723	1,832
Total	232 269			
Calc. F.		2.61**	1.97**	1.57

**Exceeds 1% Level 1.79

* Exceeds 5% Level 1.52

A/Short Cut Formula

Design: 5 x 6 Rectangular Lattice - 9 reps.

Plot Size: 2 rows (30") x 50° Flanted

2 rows x 47° Harvasted

Planted: Harch 30, 1962 Harvested: August 11, 1962 CTR Variety Test

1962

Tracy, California

Coop: John Paulson

Variety	Source	Oross Sugar	Tons Per Acre	% Sucrose	% T.J.P.	No. Beets
USH2 1539H1 USH6 163H5 1539H2 USH4 US75 Gen. Mean SEmean LSD (5%)	(NBIMS = NB3) x C663 (515HO x 569) x O539 (NBIMS x NB5) x C663 (515HO x 562) x C663 (515HO x 569) x C663 569HO x O539 10366 10255	7084 6942 6820 6735 6537 61463 6126 5934 6625 226 <u>A</u> /	22.083 21.694 22.143 20.711 21.034 20.876 19.227 19.926 21.054 .645	16.04 16.00 15.40 16.26 15.54 15.48 15.93 14.89	94.60 95.16 94.62 94.24 94.21 94.35 94.49 94.33	1514 152 146 151 1514 149 153 149
SEmean/Gen.	Mean (%)	3.41	1.796 3.07	.65 1.48	.07	

VARIANCE TABLE

		Mean Squares				
Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.		
Replication	8	57.308	4.585	11.079		
Variety	41	25.505	1.684	1.317		
Error	328	3.750	-1488	.587		
Total	377					
Calc. F.		6.80**	3.15**	2.24**		
MATE 1 30 Tame 3 3 4	0					

A/Short Cut Formula

Design: 6 = 7 Rectangular Lattice - 9 reps.

Plot Size: 2 rows (30") x 53' Planted
2 rows = 50' Harvested

Planted: April 30, 1962 Harvested: October 18, 1962

1962

South San Joaquin

Coops Ed Irwin

Variety	Source	Gross Sugar	Tons Per Acre	% Sucrose	≴ T.J.P.	No. Beets
USH6 USH4 1539H2 US75	(NELIAS x NB5) x C663 063H2 L0136 P59-569H0 x 0539 L1138 L0252	4194 4052 3566 3272	14.725 14.051 13.100 12.153	14.24 14.42 13.61 13.46	92.49 92.73 93.33 92.84	170 170 150 149
Con. Mean SEmean LSD (5%) SEmean/Gen.	. Man (%)	3859 258 <u>A</u> / 724 6.69	13.951 .883 2.476 6.33	13.83 .03 .42 2.14	92.81 .56 1.58 6.08	158

VARIANCE TABLE

			Mean Squares	
Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.
Replication	8	836.474	2.954	22.681
Variety	15	14.539	•930	2.581
Error	120	7.010	.791	2.870
Total	143			
Calc. F		2,07*	NS	NS
UB_ 2 FO 7 2 9 70				

*Exceeds 5% Level 1.79
NS-Not Significant
A/Short Out Formula

Design: 4 x 4 Triple Lettics - 9 reps.
Plot Sise: 2 rows (30") x 33' Planted
2 rows x 30' Harvested

Planted: December 12, 1961 Harvested: August 16, 1962

Above results extracted from test with 16 varieties.

CTR VARIETY TEST

1962

Staten Island

Coop: M & T Inc.

Variety 1970H2 1968H2 1967H2 1962H2 19514-6H2 1963H2 1963H1 USH4 USH6	Source 1 x 3 x SWin 1 x 3 x SWin 1 x 3 x SWin 1 x 5 x SW	Oross Sugar 6673 6269 6214 5849 5767 5702 5688 51:07 5328 4753	Tons Per Acre 23.562 23.166 22.797 20.830 21.630 21.339 21.240 19.505 20.107 17.735	% Sucrose 14.16 13.53 13.63 14.04 13.33 13.36 13.39 13.86 13.25 13.40	% T.J.P. 94.73 94.13 94.18 94.52 94.83 94.56 93.89 94.99 94.99 94.93 93.82	No. Beets 100° Row 121 126 121 130 119 126 121 123 115
Gen Mean SE mean LSD (5%) SE mean/Gen Me		5317 263 <u>4</u> / 518 3.l.9	20.158 .704 1.963 3.49	13.40 .19 .53 1.43	94.56 .28 .78 .30	126

VARIANCE TABLE

			Mean Squares				
Variation Due To	DF	Tons Beets	% Sucrose=	% T.J.P.			
Replication	8	358.196	1,913	4.548			
Variety	29	30.974	.913	4.049			
Error	232	4.1459	•329	.712			
Total	269						
Calc. F.		6.95***	2.77**	5.69**			
**Exceeds 1% point 1	•79						

A/ Short Cut Formula

Design: 5 x 6 Rectangular Lattice Analyzed as R.B. Plot Size: 2 row (20") x 50'

Planted: 5-15-62 Harvested: 11-24-62

1962

Gerber, California

Coops Dean Clatz

Wand akan	Source	Gross Sugar	Tons Per Acre	% Sucrose	T.J.P.	No. Beets
Variety 18443 USH4 US75	(NB145 x NB3) x 984 L0336 L0255	10343 9720 8806	35.372 33.494 32.091	14.62 14.51 13.72	94.79 93.91 93.44	173 187 192
Gen. Mean SEmean LSD (5%) SEmean/Gen.	Mnan (%)	9240 2384/ 663 2.58	32.737 .739 2.056 2.26	14.12 .18 .49 1.24	93.71 .36 1.00 3.83	178

VARIANCE TABLE

			Mean Squares	
Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.
Replication Variety Error Total	8 35 280 323	393.434 42.758 4.913	68.406 •551 •277	75.583 2.583 1.160
Calc. F.		8.70**	1,99##	2,23**

A/Short Cut Formula

Design: 6 x 6 Triple Lattice
Plot Size: 2 rows (34") x 53' Planted
2 rows x 50' Harvested

Planted: April 24, 1962 Harvested: November 7, 1962

Above results extracted from test with 36 varieties.

1962

Chico, Calif.

CTR - Soring Plant

Coop: Chico State Fndn. Farm

Variety	Source	Gross Sugar	Tons Per Acre	% Suc rose	% T.J.P.	No. Beets
USH2 163H6 USH4 US75 USH6	(NBLMS x NB3) x C663 (515H0 x 562) x C663 L0336 L0255 (NBLMS x NB5) x C663	4557 4401 4319 3844 3414	19.745 19.154 18.551 17.284 17.652	11.54 11.49 11.64 11.12 9.67	92.50 93.25 92.74 92.27 92.87	130 137 139 121 129
Gen Mean SEmean LSD (5%) SEm/Gen. Mean	(%)	4046 294 <u>4</u> / 819 7.27	18.259 1.165 3.241 6.38	11.02 •38 1.06 3.46	92.64 .1:8 NS .51	131

Variance Table

			Mean Squares			
Variation Due To	DF	Tons Beets	% Sucrose	% T.J.P.		
Replication	B	108.811	.63	10.30		
Variety	35	61.108	10.07	2.75		
Error	280	12.216	1.31	2.03		
Total	323					
Calc. F.		5.00**	7.70**	NS		
NS-Non Significant						

NS-Non Significant
LICENTED 1% Level 1.79
A/Short Cut Formula

Design: 6 x 6 Triple Lattice
Plot Size: 2 rows (30") x 53' Planted
2 rows x 50' Harvested

Planted: April 11, 1962 Harvested: October 30, 1962

Above results extracted from a test of 36 varieties.

TRIPLOID VARIETY TEST

1962

Hamilton City, Calif.

Coop: Chico Fndn. Farm

Variety 1963H2 1961H2 USH2 1963H1 1954-6H2 USH6 1967H2 1962H2 1970H2 1968H2	Source (NRIMS x NB5) x SWLn (NEIMS x NB5) x SWLn 063H1 (515H0 x 569) x SWLn (NBIMS x NB5) x Elln. Ln (NBIMS x NB5) x 663 (NBIMS x NB3) x SWLn (NBIMS x NB3) x SWLn	Gross Sugar 7119 6960 6824 6558 61,97 6313 631.0 6139 6002 5537	Tons Per Acre 29.96h 29.071 29.463 27.031 27.645 26.911 26.965 25.473 24.965 22.381	% Sucrose 11.88 11.97 11.58 12.13 11.75 11.73 11.70 12.05 12.02 12.37	7.J.P. 90.2 88.9 91.1 90.3 90.3 91.1 91.6 90.3 91.2 88.2	No. Beets 100' Row 131 136 137 121 128 125 129 131 95
Gen Mean SE mean LSD (5%) SE mean/Gen.	Mean	7143 482 <u>1</u> / 1345 6•75	30.252 1.777 4.954	11.81 •39 1.09	90.7 .70 1.96	119

VARIANCE TABLE

VARIATION DUE TO	DF	TONS BRETS	% T.J.P.	
Replication Variety Error Total	5 h1 205 251	29.7923 111.6622 18.9412	% SUCROSE 2.280 1.1,29 .920	5.778 6.750 2.956
Calc. F.	•69	5.90**	1.55*	2.23∺∺

* Exceeds 5% point 1.45 A/Short Cut Formula

Design: 6 x 7 Rectangular Lattice
Plot Size: 1 row (28") x 28' Planted
1 row x 23' Harvested
Planted: April 11, 1962
Harvested: October 30, 1962

DEVELOPMENT OF TRIPLOID AND TETRAPLOID SUGARBEETS

B. L. Hammond

Seed increases of the tetraploid derivative of the multigerm top-cross parent, 663, have been made. As pollen parent, this tetraploid along with the male-sterile monogerm diploids, MS of 515 x 569, and MS of 562 x 569, and the male-sterile multigerm diploid, MS of NB1 x NB3, were isolated for production of triploid seed. These triploid hybrids were evaluated in 1962 and 1963 in USDA and cooperative sugar company variety tests. The results of these tests will be found in the section of these reports dealing with the performance of triploids.

Composite seed increases were made in 1962 and in 1963 of a number of $\overline{18}$ -line single-plant tetraploid selections. The $\overline{18}$ line was a group of tetraploid plants produced from $S_{(US22/3 \times NB1)}$. The composite increase has been assigned the number 3423.

Seed increases of the multigerm tetraploid inbred 0539 (NB7) also were made in 1962 and in 1963.

In the early part of this program, work was begun on developing a male-sterile monogerm tetraploid line from type 0 monogerm inbred, 0562, and its male-sterile equivalent, 9561H2, for use with diploid pollinators. The tetraploid line proved to have retained the excellent male-sterility shown in the diploid line. Seed increases have been made, and cytological and breeding work involving other inbred lines is under way.

The diploid monogerm lines <u>SLO156</u> (MSmm x CT5mm) and <u>SLO267</u> (SLC129mmaa x CT5mmAa) developed by Dr. Owen were made tetraploid. A seed increase of these lines was made in isolation during the summer of 1963.

Seventy-four colchicine-treated seedlings of the monogerm inbred 0546-36 were selected in July 1961 on the basis of cytological examination and thermally induced for 4 months, after which they were interpollinated. C₁ seed was harvested in April 1962, and a portion of it was planted in the summer. Seventy-four tetraploid seedlings with green hypocotyls and 60 with red hypocotyls were placed under thermal induction in October for seed increases. Plants were removed from thermal induction in April 1963 and interpollinated. Seed was collected in September. Only 3.5 gms. of seed were harvested from plants with green hypocotyls and 18 gms. from plants with red hypocotyls, indicating very low fertility this time of year.

Pregerminated seed of the monogerm inbred 0546-48 was colchicinetreated in June 1961. After cytological examinations, 72 were selected for thermal induction in October 1961. These were removed in March 1961 and interpollinated. Thirty-two grams of C₁ seed were harvested in July 1962. Some of this was planted in October for selection of tetraploid plants for seed increase. In December 1962, the seedlings were placed in bands. Of the 131 C₁ seedlings examined, all were tetraploid. These were placed under thermal induction in March 1963 and transferred to isolators in July. Five-hundred twenty gms. of seed were harvested in December.

Fifty-seven colchicine-treated seedlings of the monogerm inbred 0546-22 planted in July 1961 were selected and placed in the coldroom for thermal induction in November 1961. These were removed in April 1962 and interpollinated. Only $4\frac{1}{2}$ gms. of C_1 seed were obtained. Work on this selection was discontinued in favor of the more highly curly-top-resistant selection 1546-22 described below.

One-hundred thirty-eight colchicine-treated seedlings of the monogerm inbred 1546-22 were transplanted to pots in October 1961. Forty-nine of these were selected for thermal induction in December 1961 and removed in May 1962 for interpollination. Only 17 gms. of C₁ seed were obtained, indicating a fairly high degree of infertility. A portion of this seed was planted in October 1962 for the selection of tetraploids for seed increase and for crossing with the male-sterile line, 562HO-T. (This cross is described elsewhere in the report.) In December 1962, the seedlings were transplanted to bands. These were placed under thermal induction in April 1963 and transferred to isolators in August. Two-hundred sixty-six gms. of seed from 1546-22T were harvested in December.

In September 1962, pregerminated seed of type 0 monogerm inbred 1672 was colchicine-treated. The seedlings were transplanted to pots in October 1961. Fifty-four plants including 15 with green hypocotyls were selected for thermal induction in February 1962. These were removed from the coldroom in July 1962 and interpollinated. The C1 seed was harvested in November 1962. Only 1.8 gms. of seed were obtained from the plants with green hypocotyls. 14.5 gms. were obtained from plants with red hypocotyls. Seed increases will be made from both classes. This selection originated from a backcross to the NB1 multigerm inbred.

Pregerminated seed of the type 0 monogerm 1561-16-7Cl was treated with colchicine in January 1962. The seedlings were potted in March and, on the basis of cytological observations, 42 plants were placed under thermal induction in May 1962. These were removed in October and interpollinated. In March 1963, 18 gms. of C₁ seed were harvested and a portion planted for selection of tetraploid plants for a seed increase and for crossing to the male-sterile line, 562HO-T. This inbred was recently found highly resistant to curly top.

- 65 =

Sixty-six colchicine-treated seedlings of the type 0 multigerm 871 were selected for thermal induction in July 1961. These were removed from the coldroom in November 1961 and interpollinated after being examined cytologically. Fourteen of these having green hypocotyls were pollinated separately. C₁ seed was obtained from each class in June 1962. In August, seed from both classes was planted in Oregon to obtain stecklings for seed increase at Salinas. In March 1963, 23 stecklings having green hypocotyls and 72 having red hypocotyls were brought from Oregon and stored in the coldroom until July when they were placed in isolators. Two-hundred thirty-six gms. of seed from plants with green hypocotyls and 286 gms. from plants with red hypocotyls were harvested in November.

Pregerminated seed of the type 0 multigerm F57-85 and its malesterile equivalent, F57-85HO, was colchicine-treated in late fall of 1961. Sixty-five plants of F57-85 and 67 plants of F57-85HO were selected for thermal induction in April 1962. These were removed in September. Crosses between F57-85HO C and F57-85 C as well as F57-85 C sib crosses were made. C seed was planted in January 1963. One-hundred twenty-five tetraploid plants of each kind were placed under thermal induction in May 1963. Sixty plants of each were removed in October for seed increase. The remainder will be removed later.

In last year's report, it was noted that 9 plants of F57-85 C and 5 plants of F57-85HO C had bolted prior to thermal induction. Bolting in the greenhouse of highly non-bolting commercial varieties not thermally induced apparently had not been observed. These plants were crossed in the manner described above for the non-bolting ones. The small amount of C, seed obtained was planted in August 1962. From the cross, F57-85HO C X F57-85 C, 40 seedlings were obtained, all of which were tetraploid. Twenty-three seedlings were obtained from F57-85 C, also tetraploid. This material was placed under thermal induction in December 1962 for seed increases and removed in August 1963. During thermal induction, most of the plants died from disease. From the remaining few plants, 27 seeds were obtained from (F57-85HO X F57-85)T and approximately 100 from F57-85T. Seed increases will be used later for comparison with tetraploids from non-bolting plants with respect to degree of bolting under field conditions.

Pregerminated seed of the type 0 monogerm inbred <u>F61-515</u> was colchicine-treated in June 1962. Of the 52 plants obtained, 31 were selected on the basis of cytological examination for thermal induction in October. They were removed from the coldroom in April 1963 and interpollinated. Thirty-four grams of seed were harvested in September 1963. This selection was highly sensitive to the colchicine treatments. Since nearly 100 percent of these plants have red hypocotyls, this inbred should be of considerable value in outcrossing studies.

Forty-eight colchicine-treated seedlings of the vigorous multigerm inbred 1547 (from NB5) planted in July 1962 were placed in the coldroom for thermal induction in October. Twenty-eight of these had green

hypocotyls, and 20 red hypocotyls. The latter will be used in outcross studies. All were removed from the coldroom in April 1963, and each class was interpollinated separately. Seed was harvested in September; 15 gms. from plants with green hypocotyls and 26 gms. from plants with red hypocotyls. For the purpose of securing additional plants with red hypocotyls, a second planting of colchicine-treated seedlings of this material was made. Fifty-eight plants having red hypocotyls were placed under thermal induction in March 1963 and removed in July 1963 for interpollination and seed increase.

In July 1962, pregerminated seed of multigerm 586 was colchicine-treated. On the basis of cytological observations, 62 plants were selected for thermal induction and placed in the coldroom in December. They were removed in July 1963 and interpollinated. Twenty plants had green hypocotyls and 42 red hypocotyls. This selection is an open-pollinated multigerm. It is high in sucrose percentage but low in root yield. Crosses will be made with 663T and with 871T in an attempt to develop a tetraploid top-cross parent with good tonnage and sucrose percentage.

Colchicine-treated seedlings of the multigerm inbred F59-509 (NB3) planted in August 1962 were transplanted to pots in November. In January 1963, 38 selected C plants were placed under thermal induction and removed in July for interpollination. All plants have red hypocotyls, a character which will facilitate studies in outcrossing involving tetraploids derived from self-fertile diploid inbreds.

Pregerminated seed of Selection F58-554 (NB4) was treated with colchicine and planted in late October. They were transplanted to pots in December 1962. Seventy-four selected C plants were placed in the coldroom for thermal induction in March 1963 and removed in August for interpollination. This selection is a small-seeded, multigerm inbred. All plants have green hypocotyls.

In November 1962, pregerminated seed of selection 2559-1 was colchicine-treated. Seedlings were potted in January 1963. Sixty-seven C plants selected on the basis of cytological examination were placed under thermal induction in May 1963 and removed in August for interpollination. After 5 weeks with no evidence of bolting, these plants were returned to the coldroom for further thermal induction. This selection is a multigerm inbred similar to NB1. Nearly 100 percent of the seedlings had red hypocotyls, a character which will facilitate studies in outcrossing.

Pregerminated seed of selection 164, a bolting resistant selection from 663, was colchicine-treated in June 1963. Seventy-eight selected c plants (68 with red hypocotyls and 10 with green hypocotyls) were placed under thermal induction in September.

One-hundred fifty-five colchicine-treated seedlings of selection 330 were transplanted to pots in September 1963. Seventy of these

(16 with green hypocotyls and 54 with red hypocotyls) were placed in the coldroom for thermal induction in December 1963. This is a selection from the self-sterile, multigerm, US 75, and is yellows resistant.

Colchicine-treated seedlings of selection <u>952were</u> planted in July 1963 and transplanted to pots in September. Desirable C plants are now being selected for thermal induction. This is a self-sterile, type O selection from US 15.

663T X 0539T (C3425).--A seed increase of this cross was made in Oregon in 1963. Performance tests are now in progress.

871T X 0539T.--In August 1962, 871C, seed was planted in the Salinas greenhouse for the purpose of selecting tetraploid seedlings for crossing with 0539T (tetraploid of 0539 already produced) planted at the same time. Of the 150 871C, seedlings potted, all were tetraploid. These together with 125 tetraploid seedlings of 0539 were placed under thermal induction in November 1962. They were removed in May 1963 and crossed. Thirty-seven grams of seed from the self-sterile parent, 871T, were collected in September. This cross will be evaluated in field tests.

562HO-T X 1546-22T.--Earlier in the program, a male-sterile, monogerm-tetraploid line was developed from the type O monogerm, 0562, and its male-sterile equivalent, 956lH2. This line was crossed with the highly curly-top-resistant selection 1542-22T, a monogerm inbred, type O. Seed of both selections was planted in October 1962, transplanted to bands in December, and placed under thermal induction in April 1963. Seedlings of these selections were placed in isolators in August. An additional isolation of 1546-22T was also made for seed increase. All seed was harvested in December 1963.

562HO-T X 563T.--The male-sterile, monogerm inbred line, 562HO-T, is also being crossed with the tetraploid selection of 1561-16-7Cl (563T). Seedlings of both lines were placed in the coldroom for thermal induction in July 1963. The diploid form of the latter selection has been made available through the foundation as C2563. It is a type 0 monogerm and highly resistant to curly top.

2423T (T8 Increase) X 1547T.--In December 1963, seed of 2423T, together with seed of the multigerm inbred, 1547T, was planted for the purpose of making crosses between these two selections. 2423T is a composite seed increase of a number of T8-line single-plant tetraploid selections derived from S₆(US22/3 X NB1). The gene for red hypocotyl in 1547T will be used in selecting crosses.

2539T X 1547T.--Also in December 1963, tetraploid seed of the multigerm inbred 2539 (from NB7), together with seed of another tetraploid, multigerm inbred, 1547T, was planted for the purpose of crossing these two inbreds. Selection 2539T has green hypocotyls. Being also self-fertile, only the red-hypocotyl plants of 1547T will be used for selecting actual crosses.

Studies are in progress to determine the effect of polyploidy on the bolting of annual beets. For this purpose, 2589Cl and 2541 were selected. Seed of 2589Cl was colchicine-treated in June 1962. The 25 surviving plants were potted. Upon bolting, the 5 plants showing predominantly tetraploid tissue at the tips of inflorescences were selfed. Forty-three C₁ seedlings were obtained from seeds collected in January 1963. Of these, 39 were tetraploid, 2 were triploid, and 1 was a haploid having 9 chromosomes (Figure 1). Seed of 2541 was colchicine-treated in January 1963. Eleven gms. of 2589Cl-T seed and 11 gms. of 2541C₁ seed were collected in September.

The haploid mentioned above is being increased by means of vegetative propagation. Colchicine will be used in an attempt to double the number of chromosomes in order to obtain fertility and produce a homozygous population.

The C₁ seedlings of selection 0546-36 described earlier in this report have revealed a rather interesting situation. Upon separating the diploid seedlings from the tetraploid during the summer of 1962, it was noted that the diploid seedlings had been heavily infested with spider mites, whereas the tetraploids showed no signs of having been infested (Figure 2). Comparisons of tetraploids, triploids, and diploids of this and other selections or varieties made tetraploid will be made with respect to resistance to mites. It is commonly known that spider mites are troublesome on sugarbeets in the Imperial Valley.

Figure 1. A vigorous, haploid sugarbeet with 9 chromosomes, found among C₁ seedlings of 2589Cl. Leaves are relatively narrower and more tapered than those of diploid beets. Plant flowered profusely during the summer months of 1963. Flowers were small with anthers devoid of pollen.

Figure 2. C₁ diploid and tetraploid seedlings of inbred 0546-36 after separation. Diploid seedlings at right show effects of having been heavily infested with spider mites. Tetraploids on left show no signs of infestation.

STUDIES ON THE GERMINATION OF MONOGERM SUGARBEET VARIETIES AND INBREDS DEVELOPED AT SALINAS, CALIFORNIA

I. O. Skoyen

The tests reported here were made as a result of low germination found to exist in the 1962 Oregon seed increases of USDA originated hybrid monogerm varieties.

Random seed samples of each variety tested were used in crack tests to determine apparent seed-ball fill and for the germination tests. Seed treatments, following a 4-hour presoaking in running tap water, consisted of removing the glandular disc before planting, removing the seed from the cork, and planting the whole or intact seed ball. Fifty seed balls were used for each test, with a few exceptions in which 25 seed balls were used. Seed was placed between moistened blotters in petri dishes or planted in flats of sand. Tests were also made with whole unsoaked seed in the sand cultures. The tests in sand were made in the greenhouse and the blotter tests in the laboratory.

The blotter tests in the laboratory were made at room temperatures. These ranged from nighttime lows of 62-68° F to daytime highs of 68-74° F. The greenhouse temperatures ranged from nighttime lows of 46-68° F to daytime highs of 78-90° F.

An additional experiment was conducted in which solutions of a household detergent, at various concentrations, were used as a seed soak. These were used in conjunction with various water soak treatments. The hybrid variety 2539H8 was used in these tests.

No fungicide seed treatments were used in the germination tests.

The whole seed germinated on blotters was counted as germinated when sprouts were at least one-fourth inch long. Seed with the glandular discs removed was considered sprouted when any evidence of growth was noted because of the possibility of seed injury when the cap was removed which would result in abnormal growth. In the sand cultures counts were made of emerged seedlings.

The descriptions of the monogerm varieties and inbreds tested are listed below.

Seed produced in 1962

Variety No.	Description
263TH3 (3N) 263TH4 (3N) 263H6 263H8 2539H1 2539H6 2539H8 F62-546 F62-546H0 F62-546H1 F62-569H3	(515H0 x 569) x 663 Tetraploid (562H0 x 569) x 663 Tetraploid (515H0 x 562) x 663 (569H0 x 562) x 863 (515H0 x 569) x NB7 (515H0 x 562) x NB7 (569H0 x 562) x NB7 Inbred 546-22 (546-22H0 x 546) (562H0 x 569)
	Seed produced in 1961
163H5 Lot 1370	(515но х 569) х 663

Results showed that, with few exceptions, removing the glandular discs from the seed balls substantially increased the germination percentages for both blotter and sand tests (Table 1). Percentages shown are based on approximately 14-day test periods. Repeated tests on seed with the discs removed showed uniform germination regardless of blotter or sand tests, but results on whole seed were generally just the opposite. Periodic counts of germination, continued up to 32 days after planting, showed whole seed germinated as much as 54 percent below that of seed with discs removed. Results also indicated no significant increase in germination for seed completely removed from the cork over seed balls with only the glandular discs removed.

Removing the glandular discs and examining unsprouted seed balls after approximately three weeks' testing indicated that frequently seeds were still firm and appeared capable of germination. Moisture appeared to have penetrated the cork but not the seed coat of the firm seeds. By pricking the seed coat and breaking away small particles of the seed, the consistency was found to be dry and mealy. Seeds showing moisture penetration through the seed coat were generally soft and deteriorated and often appeared to be only partially developed. Continuing germination tests on the good seed for several days resulted in increasing total germination percentages by 4 to 20 percent.

Table 1.--Germination of seed of monogerm sugarbeet varieties and inbreds following various seed treatments.

Variety	Test/	Whole	Bare	Seed-ball	
No.	No.I	Seed Percent	Discs Removed Percent	Seed Percent	Fill Percent
o(omio (on)	,				76
263TH3 (3N)	1 2	21	59 69	73	ţo
o (omil (ov)	3	20	00		02
263 TH 4 (3N)	1 2	24 32 44	80 76		81
of avr	3		60	7/	01.
263н6	1 1 2	53 32	78 7 5	76	84
	2	16 48	72		
263н8	1	64	80		77
	2	38 24	88 88		
	3	50			20
2539н6	1 2	48 44	81 79	76	88
	3	48			
2539н8	1	5 ⁴ 38	74 72		88
	2	44 48	72		
F62-546	1	61	64		82
	1 2	48 18	64 64		
	3	34			
F62-546H0	1	38 24	84 68	76	83
	2	10 20	64		
F62-546H1	1	24	85		83
102-)+014.	2	20 36	74		
F62-5 69 H 3	1	62	88	78	88
roz-209n3	1	42 58	74 80	10	00
	2	38	00		
2539HL	,	75	03	00	92
Unprocessed	1 3 1 3	75 66	91	92	92
Processed	3	77 63	90		
163н5					
Lot 1370 Unprocessed	1	74	86	88	
Processed	1 3 1 3	59 97 74	98		97
- /	3	74			

1/ Test numbers refer to:

Seed soaked 4 hours and placed between blotters in petri dishes.
 Seed soaked 4 hours and planted in flats of sand.
 Unsoaked seed planted in flats of sand.

Comparisons were made on the germination of processed and unprocessed seed of two hybrids, 2539Hl and 163H5 (Lot No. 1370). Results of tests on 2539Hl showed no difference in germination between unprocessed and processed seed (Table 1). The higher germination shown for seed with the discs removed over whole seed, after 14 days, was reduced to 6 percent for both sand and blotter tests after 21 days. As the results show, processed seed of 163H5 germinated as much as 23 percent higher than unprocessed seed after 14 days. After 21 days, in the blotter tests, processed seed with discs removed germinated about 12 percent higher than unprocessed seed with discs removed. Whole processed seed, in the sand tests, germinated 91 percent in 23 days and unprocessed whole seed 85 percent in 22 days.

The purpose of the experiments, in which detergent solutions were used in soaking treatments on the seed balls, was to determine if addition of a wetting agent to water was effective in increasing moisture penetration into the seed ball. Results of the experiments indicated little if any increased germination response with the use of detergents (Table 2).

CONCLUSIONS

The results reported show that the potential germination of most of the hybrid varieties tested may be substantially higher than that obtained in tests on whole seed. Similar trends were shown for the inbreds and the F₁ hybrids tested. The increase in germination obtained by removing the discs on seed after three weeks' testing is an indication that part of the problem is failure of moisture penetration through the seed coat. It appears that removing the glandular disc from the seed ball ruptures the seed coat allowing moisture penetration. The improvement in germination often obtained by processing sugarbeet seed is probably due not only to removal of light and empty or only partially developed seed balls but also is influenced by the effects of abrasion or polishing on good seed. The tests on processed and unprocessed seed from lots with good germination showed that differences may be more apparent than real when 14-day and 21-day germination test periods are compared.

Table 2..-Germination of seed of the monogerm hybrid 2539H8 following various soak treatments with water and with detergent solutions.

	1111	rent	irs	ent)												
hours water plus	plus 1/2 hour	_		(Percent	77	04	‡	84	84	52	79	72	76	8	8	8
	1/2 hours	0.1%	Blotters	(Percent)	56	24	42	14	74	L#	57	19	22	70	2	2
	4 0	detergent	on Blotters	(Percent)	34	62	99	99	99	999	九	82	82	82	82	82
	1/2 hour	0.3%	on Blotters	(Percent)	45	64	73	43	64	84	8	ħ	77	11	77	11
nation	1/2 hour	0.1%	Blotters	(Percent)	38	50	50	50	50	50	54	19	19	19	19	19
Check 1/2 hour water plus 2 hours water plus	1/2 hour	0.05%	in	(Percent)		16	32	04				29	62	22		
	1/2 hour	0.05%	on Blotters	(Percent)	36	52	52	95			7	88	88	88		
	0	detergent	on Blotters	(Percent)	20	17	54	74	<u>†</u>	64	62	92	92	76	92	92
	ater plus	0.05% detergent	Sand	(Percent)		7	28	32				36	#	7		
	1/2 hours	0.05% determent	on Blotters	(Percent) (Percent)	12	52	95	1 9			04	92	8	8		
	Check dry seed	planted	Sand	(Percent)		42	04	84				99	8	8		
		Test	Period	(Days)	m	5	7	6	#	13	m	5	7	6	#	13
	Seed Treatment Whole Seed						Glandular Discs Removed									

PART III

DEVELOPMENT AND EVALUATION OF INBRED LINES
AND HYBRID VARIETIES OF SUGARBEETS
with emphasis on

Curly Top Resistance, Monogermness, and High Quality

STUDIES ON GENETICS OF MALE STERILITY
IN THE SUGARBEET

GREENHOUSE TECHNIQUES
TO EVALUATE BREEDING MATERIAL FOR
RESISTANCE TO CURLY TOP AND VIRUS YELLOWS

_ _ _ _ _

PHOTOSYNTHESIS AND RESPIRATION

Foundation Projects 17, 21, and 27

A. M. Murphy

J. C. Theurer

G. K. Ryser

C. H. Smith Myron Stout

E. H. Ottley

C. L. Schneider

Cooperation:

Utah Agricultural Experiment Station

AND EVALUATION OF SERVICE OF SERV

.comensus you vist one was same.

STUDIES ON THE THE SUCKERS OF STORES

ECRETATION OF REGION OF

POTRABLISCEN DIA SICERIMYSKYONG

Coundation Project 17 21. and

Preliminary Studies of Asexual Transfer of Cytoplasmic Male Sterility in Sugarbeets.

J. C. Theurer and E. H. Ottley

The transfer of cytoplamsic male sterility from one line to another by asexual means would be a valuable technique for the plant breeder. This is because it would be a more rapid conversion method than the conventional backcross and would not alter the genotype of a line which had been previously selected for other desirable characteristics.

In 1956 Frankel (3) reported that cyto-sterility was transferred from one line of Petunia to another by the simple technique of grafting. Subsequent studies with Petunia (2, 4) have given further support to this possibility. Attempts to transfer cytoplasmic male sterility by grafting have failed in studies with corn (6) and tobacco (7). Thus, the transfer phenomenon may be a peculiarity of the Petunia.

The objective of this study was to evaluate the possiblilty that cytoplasmic male sterility in sugarbeets could be transferred by grafting.

Materials and Methods

A description of the sugarbeet lines used for grafting is given in Table 1.

Grafting procedures for annuals included: Coe's seedling method (1), Johnson's seedling-seedstalk method (5), and cleft grafting of succulent seedstalks. Attempts were made to graft male-sterile scions onto fertile stocks, fertile scions onto male-sterile stocks, male-sterile scions onto male-sterile stocks, and fertile scions onto fertile stocks. The latter two types of grafts were made to observe whether grafting per se has any effect upon the degree of fertility. Stecklings and mother beets were grafted using Stout's plug method (8).

All fertile scions were selfed and male-sterile scions on fertile seedstalks were sib pollinated. To date the G_0^2 and part of the G_1 generations have been carefully checked for phenotypic changes in pollen production. The degree of fertility for each plant in each generation was determined by microscopic examination of stained pollen grains at anthesis of the first flowers on the terminal branch of the seedstalk.

^{1/} Numbers in brackets refer to literature cited.

^{2/} GO refers to the scion, G1 to the first self or sib generation.

Table 1. Sugarbeet lines used for grafting studies

Current Number	Description	
	Annuals	
14460	SLC 03	BBMMrr
о446оно	SLC 03 CMS	BBMMrr
	Biennials	
Stecklings:		
2104-1	SLC 129 CMS subline	bbmmrr
9502	SLC 129	bbmmrr
Mother Beets:		
0223	CT 5	bbmmrr
1114	(SLC 127 X 128) X CT5	bbmmrr
1122	SLC 129 X CT 5	bbmmrr
1124	(SLC 127 X 129) X 129	bbmmrr

Results and Discussion

Several grafts were made by each seedling graft method, however, only a small percentage of them was successful (Table 2). A minimum of 50 grafts was made using Coe's method in which very young seedlings are inserted into the crown of seedlings used as stocks. This method was the only one which resulted in complete failure. This, no doubt, was due to two factors, dislodging of the scion by the growing tip of the stock before union occurred, and the relatively poor facilities available for maintaining high humidity. The cleft grafting method was successful when very young succulent seedstalks of comparable size were used, although this type of graft was quite susceptible to injury and breakage of the grafted seedstalk. The most successful seedling grafts were made using a modification of Johnson's method wherein grafting wax rather than string was used in joining the seedling scion to the seedstalk. Over 70% of the plug grafts was successful. Another 10% made successful union between scion and stock but later died, presumably due to a bacterial blight. 2/

Some of the mother beets in the grafting study were infected with curly-top virus. Of interest was the observation that some of the scions grafted onto these roots showed typical curly-top symptoms indicating that the virus was transmitted across the graft union.

The fertility of the annual pollinator line ranged from 55 to 90% with an average of 80% stainable pollen (Table 3). By comparison fertile scions, regardless of the stock they were grafted on, were also about 80% fertile. Repeated examination of grafted plants failed to reveal any phenotypic alteration in the fertility of the scions. All branches of a plant and all flowers on the different branches had yellow anthers.

All male-sterile scions of the $G_{\mbox{\scriptsize O}}$ generation remained completely male sterile regardless of the fertility of the stock they were grafted to.

The pollen fertility of lines in the G_1 generation from self-pollinated G_0 scions is given in Table 4. The various lines ranged from 10% to 90% with an average of 52% stainable pollen. In comparison with the annual pollinator (Table 3) the G_1 lines appear to be considerably lower in fertility. However, the fertility readings of pollinator grafted onto male sterile were similar to those of pollinator grafted onto pollinator. Thus, the decrease in fertility was probably due to

^{2/} Dr. C. L. Schneider observed that symptoms were similar to those caused by Pseudomonas aptata which he observed on beets at Beltsville in 1959.

environmental effects or to a physiological disturbance conditioned by grafting per se. Phenotypic variation in sterility between flowers or branches of the seedstalk of a plant was not observed in this generation either.

Representative lines of the G₁ generation of plug grafts are presently being grown in the greenhouse, but data concerning sterility will not be available until the spring of 1964.

Table 2. Number of grafts made and percent successful union by method.

Method	Scion	Stock	Number	Number successful	Percent successful
Seedling insert (Coe)	MS F	F MS	25 25	0	0
Seedling on bolter (Johnson)	MS MS F F	MS F MS F	75 82 135 30	11 7 17 3	15 9 13 10
Cleft seedstalk grafts	F F MS	F MS F	8 25 20	5 2 2	63
Plug grafts			350	251	72

Table 3. Fertility of pollinator scions grafted on pollinator and male-sterile stocks, and seed obtained from the selfed scions.

	Graft se	gment		neration
Plant Number	Stock % fertile1/	Scion % fertile1/	Current Number	Seed (No. seedballs)
1	70	90	G-3501	5
2	55	65	one deal	02/
. 3	90	90	G-3502	15
4	90	90	G-3503	22
5	85	80	G-3504	90
6	90	80	G-3505	48
9	MS	90	G-3281A	96
10	MS	90	G-3291	19
11	MS	90	G-3289	105
12	MS	90	G-3290	88
13	MS	50	G-3285	235
14	MS	75	G-3286	28
15	MS	75	G-3292	133
16	MS	80	G-3287	31
17	MS	90	G-3288	66
18	MS	60	G-3293	68
19	MS	60	G-3282	70
20	MS	80	G-3283	166
21	MS	90	G-3284	198

Percent fertility based on microscopic determination of acetocarmine stained pollen.

^{2/} Seedstalk accidentally broken shortly after anthesis.

Table 4. Pollen fertility in the G_1 generation from selfed G_0 scions.

Plant.	Current	No. G generation	Pollen fe	rtility1/
Number	Number	Plants	Range	Average
1	G-3501	0	400 Set 500 See	00 00 to ap po
5	DAN DAN DAN VAN VAN	0	Mill Mill rest day day	fine rate last last
3	G-3502	1.8	30-70	55
5	G-3503	3	50-70.	57
6	G-3505	72	10-80	44
9	G-3281A	124	10-80	50
10	G-3291	22	30-95	53
1.1	G-3289	56	10-80	147
rs	G - 3290	31	10-90	59
13	G-3285	116	20-80	54
14	G-3286	10	20-90	48
1.5	G-3292	44	10-90	50
1.6	G-3287	32	20-90	60
1.7	G-3288	57	10-80	47
18	G-3293	15	25-70	52
19	G-3282	39	10-90	53
20	G-3283	127	10-80	50
21	G-3284	65	10-85	53

Percent fertility based on microscopic determination of acetocarmine stained pollen.

Literature Cited

- 1. Coe, Gerald E. 1954. A grafting technique enabling an unthrifty interspecific hybrid of Beta to survive. Proc. Amer. Sugar Beet Tech. 8(2):157-160
- 2. Edwardson, J. R. and M. K. Corbett. 1961. Asexual transmission of cytoplasmic male sterility. Proc. Nat. Acad. Sci. 47:390-396.
- Frankel, R. 1956. Graft induced transmission to progency of male sterility in Petunia. Sci. 124:684-685.
- 4. 1962. Further evidence on graft induced transmission to progency of cytoplasmic male sterility in Petunia. Genetics 47:641-646.
- 5. Johnson, R. T. 1956. A grafting method to increase survival of seedlings of interspecific hybrids within the genus Beta. Proc. Amer. Sugar Beet Tech. 9(1):25-31.
- 6. Rhodes, M. M. 1933. The cytoplasmic inheritance of male sterility in Zea mays. Jour. Genet. 27(1):71-93.
- 7. Sand, S. A. 1960. Autonomy of cytoplasmic male sterility in grafted scions of tobacco. Sci. 131:665.
- 8. Stout, Myron. 1945. Translocation of the reproductive stimulus in sugar beets. Bot. Gaz. 107(1):86-95.

A Preliminary Study of Environmental Instability of Male Sterility in Sugarbeets

J. C. Theurer, Myron Stout, G. K. Ryser

Several research workers have noted that the expression of male sterility is greatly influenced by the environment in which the plants are grown. This variation has been observed not only within a given line, but even among branches on the same plant and flowers on the same branch. In some cases male-sterile plants that have been bagged produced a small amount of pollen, while unbagged sister plants remained male sterile. An apparent aging factor has also been reported wherein older plants, previously scored as male steriles, began producing a limited amount of viable pollen.

Relatively little research has been conducted regarding the climatological, nutritional or physiological factors influencing male sterility; however, evidence has been found to suggest that this instability is under genetic control.

A pilot study was conducted this year to observe differences in male-sterility expression due to temperature, light intensity, nutrition, and bagging.

Materials and methods

Stecklings of 15 male-sterile hybrids were photothermally induced, planted in 7-inch clay pots, and placed in a single section of the greenhouse. They were grown under artifical light until seedstalks of the earliest bolting plants were about a foot high. On April 2, 1963, the plants of each line were separated into 7 lots. To make up a factorial experiment involving 3 temperatures and 2 light intensities as shown in table 1, 2 lots, consisting of 12 plants of each line, were placed in bay 3 of the greenhouse, 2 in bay 5, and 2 in a cold chamber. One-half of the plants of each line within each of the 6 environments were randomly bagged with a Snowfibre paper bag when plants were in the early bud stage of development. The seventh lot, consisting of 4 plants of each line, was further subdivided for nutritional studies under the environmental conditions listed in table 1. Minor elements were applied as foliar sprays to the two small sublots at weekly intervals prior to flowering.

At anthesis the degree of fertility was determined by microscopic examination of aceto-carmine-stained pollen from 3-4 mature flowers

Table 1 - Average light intensity and temperature exposures for sugarbeet environment study.

Location	Foot-candles1/		erage te Min.	Mean
East Bay 3 West Nutritional Study2/	175 93 138	71.4	62.1	66.7
East Bay 5 West	169 92	64.5	52.2	58.4
East Cold Room West	314 149	45.0	43.0	44.0

^{1/} Foot-candles at 2 feet above bench or bed.

- 1. 90 ppm MnSO4 · 4H2O applied weekly April 4 to 29.
- 2. Iron chelate 167 ppm; MnSO₄·4H₂O 75 ppm; H₃BO₃50 ppm; ZnSO₄ 8 ppm; CuSO₄·5H₂O 4 ppm; CoCl₂ 1 ppm and (NH₄)₂MO₄ 3 ppm applied weekly April 4 to 29.

Minor element spray treatments:

of each plant. The plants in bay 3, bay 5, and those in the nutritional study were resampled every two days for 3 weeks in order to ascertain if any changes in fertility occurred on other branches of the same plant or occurred due to aging of the plant. Since plants in the cold chamber were relatively slow in flowering, they were resampled for fertility at weekly intervals for 11 weeks.

Results and Discussion

The number of pollen-producing plants and the average percent fertility for each line with respect to the various environmental conditions are given in table 2. A few plants produced as high as 70-80% stainable pollen, however, the average percent for the lines ranged from .3 to 26.0%. Pollen-producing plants were observed in 9 of the 15 lines in the high-temperature environment, in 6 lines in the 58° F. unit, and in only 1 line in the cold chamber. Most of the male-sterile plants in the latter environment showed a blasted condition rather than typical male sterility. These results suggest that the higher the temperature the greater the number of plants that will produce pollen. Consequently, screening for 0 type pollinators should be done at relatively high temperatures if this is a valid conclusion for all varieties. However, this study was extremely limited in scope and additional work is required to substantiate this conclusion. It is noted that two lines (20 and 30) had more partially fertile plants in the environment at 58° F. than at 67° F., and 3 lines (20, 30, and 41) had a greater degree of fertility, on the average, at 580 F. than plants of the same lines flowering at higher temperatures.

Four lines (26, 41, 57, and 66) had more fertile plants and a greater degree of fertility under high light intensity than under low light intensity. This trend was reversed for lines 30, 32, and 38.

Lines 20, 38, 49, and 66 showed greater fertility when bagged, while 5 other lines (26, 30, 32, 41, and 57) gave the opposite conclusion.

Only lines 20, 26, 30, 32, and 38 showed fertile plants when treated with minor elements. The average fertility of these treated lines was greater than that of untreated plants grown in the same greenhouse. However, inasmuch as one or more of the untreated plants exceeded the fertility of the plants sprayed with minor nutrients, this difference, no doubt, was due to chance alone.

Some of the semi-sterile plants observed in this study gave similar percentages of fertility with repeated pollen sampling.

Number of pollen-producing plants and average percent fertility of 15 hybrid lines of sugarbeets. Table 2.

			Tempe	Temperature	e,			Light		Intensity	X			Not			Nutrition	ion	
		020	E4	589	GE4	0 474	E.	High		Low	1	Bag	Bagged	Bagged	ged	Trea	Treatment	Tres	Treatment
No.	Description	No.	1/4/1	No	1941	No.1	146/	No	174/	No	144/	No	1/4/2	No	2/44/	No. 2/	14/	No	1941
00	500	9	26.2	1	7 00	0	0		α.	V	α κ	α		1	0 0 0	C	0 90		C N
23	SIC 127 CMS	0	0.0	-0	0.0	10	0.0		0.0	0	0.0	0	0	-0	0.0	10	000	10	000
25	129	0	0.0	0	0.0	0	0.0		0.0	0	0.0	0		0	0.0	0	0.0		0.0
56	7121 X 86.97	9	12.0	2	8.3	0	0.0		9.4	2	0.4	10		10	4.7	~	15.0		0.0
30	SP 557 CMS	٦	9.0	9	12.2	0	0.0		1.6	5	6.9	· 1· C		7	6.7	0	0.0		0,0
32	7121 X 803	0	14.1	10	13.3	0	0.0		4.9	w.	5.3	0		9	6.2	Н	24.0		0.17
38	9142 × 9202	Н	1.4	0	0.0	0	0.0		0.0	Н	0	Н		0	0.0	0	0.0		5.0
39	9142 × 95.68.3	0	0.0	0	0.0	0	0.0		0.0	0	0.0	0		0	0.0	0	0.0		0.0
47	9145 × 95.5.5	2	2.3	N	13.3	0	0.0		2.1	N	1.0	CVI		101	4.8	0	0.0		0.0
75		0	0.0	0	0.0	0	0.0		0.0	0	0.0	0		0	0.0	0	0.0		0.0
44	9351 x 9202	0	0.0	0	0.0	0	0.0		0.0	0	0.0	0		0	0.0	0	0.0		0.0
78	9352 X 9202	0	0.0	0	0.0	0	0.0		0.0	0	0.0	0		0	0.0	0	0.0		0.0
64	9142 × 95.501	4	1.6	0	0.0	0	0.0		0.5	7	9.0	N		N	0.2	0	0.0		0.0
22	308HO-1 X 9628-321	5	7.0	0	0.0	0	0.0		0	N	ص ص	M		N	3.4	0	0.0		0.0
99	0156 X 0223	2	2.9	Н	0.3	0	0.0		0.0	-	7.0	Н		10	0.5	0	0.0		0.0
1																			

Number of plants having stainable pollen with a total of 12 plants for each line. $\frac{2}{}$ Number of plants having stainable pollen with a total of 18 plants for each line.

2/ Number of plants having stainable pollen with a total of 2 plants for each line. 4/ Average percent fertility based on the total number of plants. Others showed considerable variation with some plants increasing and others decreasing in percent of fertile pollen. No consistency was observed wherein all pollen-producing plants of a line showed a similar trend to increase or decrease upon repeated pollen sampling.

Six lines appeared to be environmentally stable since they remained male sterile under all environmental conditions imposed in this study. These lines will provide good parent material for test crosses to be used in conducting more refined studies of the inheritance of environmental instability of male sterility which are now possible with the new growth chambers recently installed at Crops Research Laboratory.

- 0 -

Notes on Clonal Propagation of Sugarbeets

J. C. Theurer, E. H. Ottley, G. K. Ryser

Several proceedures were used this past year to clonally propagate various lines of sugarbeets preparatory to experiments concerning environmental influence on cytoplasmic male sterility. In general, cuttings were made of vegetative seedstalks according to Owen's suggestions (1) but, in addition, were treated with rooting compounds and placed in rooting beds of different media.

Cuttings dipped in indole -3-acetic acid or Rootone rooting compound showed little difference from untreated cuttings. Hormone treatment of woody material seemed to help rooting, however, these cuttings seldom developed sufficient roots to carry the plant through to a healthy growing condition when transplanted. Observations showed that young succulent cutting material was far more critical than hormone treatment in obtaining a high degree of success.

The following types of substrate were used for rooting medium: vermiculite, perlite, sand; 50-50 mixture perlite and sand; 50-50 mixture vermiculite and sand. The latter medium was by far the best, giving more roots per cutting and a greater percentage of rooted cuttings. No roots developed on cuttings placed in the perlite medium.

To make sure the medium temperature was kept near 70° F., a soil cable was buried in 2 inches of sand below the rooting medium. This proved to be unneccessary, since the greenhouse heating radiator, located directly under the cutting bed, supplied sufficient heat.

In order to provide a humidified atmosphere in the rooting bed, an automatic sprinkling device was set up with the use of a solenoid water valve and pressure regulator. The valve was controlled by a time clock that could be set to operate as frequently as every other minute. This clock, in turn, was regulated by another time clock to alter the frequency of watering during day and night. Several types of nozzles were tried, the best being a 90° oil burner nozzle having a rated discharge of 1.25 gallons per minute at 100 pounds pressure. The solenoid valve we used was operated between 65-70 pounds pressure, which produced an extremely fine mist resulting in a relative humidity of 50-65%.

Studies/varying the frequency of water discharge showed that a one-minute operation every hour during the day provided sufficient moisture to irrigate the cuttings and maintain humidity.

A photograph of a section of the rooting chamber presently in use is shown in Figure 1. The whole cutting bed is 3 feet wide and 10 feet long with the top of the chamber 3 feet above the bad. Three sides and the top of the chamber are covered with white muslin to provide shading during the summer months. Five pairs of 90° oil burner nozzles, suspended from the top of the chamber, provide a relatively even moisture coverage.

Over 70% of the cuttings made from good succulent seedstalks will root in this chamber in less than 2 weeks.

Since July 1, 1963, 452 successful clones involving 14 lines of sugarbects have been made using this propagating chamber.

Litertaure Cited

1. Owen. F. V. Asexual propagation of sugarbeets. Journal of Heredity. Vol. 32, No. 6, June 1961.

Figure 1. Propagation chamber showing construction over greenhouse bench

Variety Test, Logan, Utah 1963

G. K. Ryser and J. C. Theurer

The varieties in this test consisted of the best cytoplasmic malesterile hybrids of the 1962 tests (1101, 1104, 1114, 1120, 1123, and 1128); 6 cytoplasmic male-sterile hybrids made in 1962 (2154, 2158, 2159, 2162, and 2165); 8 pollinators (0457, 0548, 0523, 0552-2, 0503, 0527, 711 and 712-13); 3 male steriles used as females in hybrids (0156, 0157, and 0158); and a high yielding check variety (9140).

The average gross sugar, tonnage, and sugar percentage ware lower this year than in the 1962 test (Tables 1 and 2). The variety 1114 was the highest yielding variety and one of the highest in sugar percentage for both years. Two hybrids (1101 and 1104) having 0457 ((US 35/2 X Ovana) X CT 8 X CT 5) as a pollen parent were again among the high yielders. Seven varieties produced more sugar than the check 9140; however, only 1114 showed a significant difference. The check variety 9140 was the most curly top resistant variety with a reading of only 14.4% curly top.

The inbred lines, as expected, were the lowest in yield in the test. (Table 1 and 3). Of the pollen parents included in the variety test, 0457 was the highest yielding line but in turn showed the least resistance to curly top. Data indicate that this line has potential for increasing yield, if the resistance to curly top can be increased.

The combined sister lines 712 and 713 had significantly better sugar percentage than all others in the test with the exception of hybrid 2165, where another sister line 711 was used as the pollinator.

An indication of the combining ability of six pollinators crossed with the same male-sterile parent is given in Table 4. All crosses yielded more gross sugar than the average of the two parents with the magnitude of difference decreasing in the same order as gross sugar. Differences were mainly due to tonnage, as deviations from the midparent value for sucross were negligible.

Variety Test, Logan, Utah, 1963 by G. K. Ryser

(Field history and experimental design)

SOIL TYPE: Silty clay loam.

PREVIOUS CROPS: Peas and barley 2 years previous, 1960 safflower, 1957 to 1959 alfalfa.

PLANTED: May 6, 1963.

THINNED: June 3 and 4, 1963.

IRRIGATIONS: Sprinkle only; on weekly schedule starting day after planting.

CURLY TOP: No symptoms were noted on these varieties at Logan, but these same varieties were planted in the curly-top testing field at Thatcher by Albert Murphy, and the curly-top data given in Tables 2 and 3 came from this source.

HARVESTED: October 16, 1963.

Tops were removed with a roto-beater and scalped with tractormounted scalping tools, supplemented by long-handled hoe trimming to
assure a complete topping job. Beets in plots were counted (after scalping)
before lifting with the harvester. Ten-beet samples were obtained at
random from each of the two center rows of each four-row plot for sugar
analysis and all beets in the two center rows were weighed to determine
root yield.

Experimental Design: Twenty-five varieties planted as a balanced lattice with six replications. Plots were four rows wide, 22 inches apart, with a harvested plot length of 28 feet.

The test was analyzed as a lattice square and means reported in Table 1 are corrected means where indicated.

Table 2 and 3 show the results of analyzing the data in two parts, CMS hybrids and pollinators. The pollinators show large significant differences as expected, because some are hybrids of two inbred lines.

Means of 6 hybrids having a common female parent are given in Table 4. The hybrid combinations all seem to just meet the means of the two parents in percent sugar with non-significant increases over the average of the two parents in other measurements.

VARIETY TEST, NORTH FARM, LOGAN, UTAH, 1963
25 varieties, 6 replications of each variety
Balanced Lattice Table 1

PPM27 ACRE YIELDI Tons Percent Amino Beets Sugar N 3/ Vor. Description Gross Beets Code Sugar 100' No. Sugar Beets 24 14.0 184 1114 193 9132 X CT 5 9,152 52.7 1290 119 13.9 194 1285 0156 X 711 and 713 32.5 120 114 9 21.59 9,063 0157 X 0457 33.4 1348 13 1101 9,007 13.4 550 220 115 0168 X 0457 8,947 286 108 11 1104 32.0 14.0 202 1294 8,790 6 13.9 186 0156 9142 X 924 31.6 183 1263 112 18 2154 1123 X 02.30.1 8,592 31.1 13.8 254 255 1375 106 9142 X 95.68.3 SLC 133 8,446 1387 12 0157 33.7 12.5 238 292 112 8,442 2 9140 7121 X CT 5 B 13.7 239 214 110 30.7 1292 14.2 8,415 169 25 2165 0156 X 711 rr 29.7 157 1270 115 16 2162 0156 X 0548 8,351 31.6 13.2 201 215 1405 113 184 1289 3 2158 1120 X 711 and 713 8,300 29.7 14.0 177 106 0168 9146 X 95.244.11 8,186 30.5 13.4 1151 550 230 115 15 7,909 1383 9132 7121 X 87.55 SLC 129 29.0 13.6 192 222 22 109 28.6 7,872 1128 0156 X 0552-3 13.8 172 155 1208 17 107 7,817 2163 28.5 13.7 167 197 1139 20 0156 X 0523 107 7,460 28.1 23 1123 0156 X SLC 132 13.3 192 232 1376 92 7,476 1348 1120 0156 x 924 (CT 5) 27.4 13.6 193 174 89 19 0457 630 aa X CT 5 8,385 14.0 106 10 30.0 252 197 1320 188 4 712 and (CT 5 X CT 8) 7,730 26.3 14.6 177 1237 109 713 6,943 28.0 12.4 0548 257 104 5 SLC 129 X 132 219 1555 6,832 163 24.4 14.0 159 1167 21 711 rr CT 5 X CT 8 110 CT 5 mm 8 0523 6,355 22.9 13.8 165 188 1195 96 6,284 14 0552-3 CT 5 mm subline 22.6 13.9 163 135 1156 90 23.5 SLC 129 0503 6,165 13.1 212 216 1377 97 7 5,960 24.1 12.4 262 333 1438 0527 SLC 132 92 1 General Mean 28.91 15.62 7,875 205 207 1302 of all varieties S. E. of Mean 244 .89 0.16 18 15 47 Sig. Diff. 682 2.49 .45 50 43 132 Coefficient of 7.58 7.35 2.87 21.00 18.00 8.80 Variation %

16.28 **14.97 **12.28**3.82**8.15**4.62**

Calculated F Values

^{1/}Means not adjusted because of negative adjustment factor.

^{2/} Means adjusted by lattice design.

^{3/} True Amino N.

VARIETY TEST, NORTH FARM, LOGAN, UTAH, 1963 Hybrid Combinations Analyzed as Randomized Blocks

Table 2

Code	Var.	Description	ACRE Y Gross Sugar	Tons Beets	Percent Sugar		p.p.m. Na	К	% C.T. Sept. 302/
24	1114	9132 X CT 5	9,152	32.70	13.98	194	189	1272	45.6
9	2159	0156 X 711 and 713	9,063	32.52	13.94	196	198	1305	47.5
13	1101	0157 X 0457	9,007	33.45	13.45	230	220	1353	34.4
11	1104	0168 X 0457	8,947	32.03	13.97	291	204	1304	42.8
6	0156	9142 X 924	8,790	31.63	13.90	184	186	1261	30.5
18	2154	1123 X 02.30.1	8,592	31.13	13.78	248	250	1351	53.2
12	0157	9142 X 95.68,3 (133)	8,446	33.67	12.53	240	289	1381	26.5
2	9140	7121 X CT 5 B	8,442	31.73	13.73	234	214	1287	14.4
25	2165	0156 X 711 rr	8,415	29.68	14.18	165	154	1259	38.6
16	2162	0156 X 0548	8,351	13.58	13.22	190	216	1404	44.6
3	2158	1120 X 711 and 713	8,300	29.67	14.00	179	178	1286	34.6
15	0168	9146 X 95.244.11	8.186	30.48	13.45	222	233	1162	27.9
22	9132	7121 X 87.55 (129)	7,909	28.98	13.62	184	218	1373	19.6
17	1128	0156 X 0552-3	7.872	28.55	13.78	174	159	1211	19.7
20	2163	0156 X 0523	7.817	28.48	13.72	166	199	1128	23.3
23	1123	0156 X SLC 132	7,460	28.07	13.28	194	234	1357	36.1
19	1120	0156 X 924 (CT 5)	7,476	27.40	13.63	202	171	1368	51.4
S. E.	al Mean arieties of Mean Diff. 19 fficient		8,366 258 729 7•55	30.63 0.87 2.43 6.95	13.65 0.16 0.45 2.85	205.38 18 50 21.1	207 16 47 0 19.4	1298 47 132 8.79	

Calculated F. Values

4.23** 4.93** 6.07** 3.66** 4.29** 2.79**

^{1/} True Amino N.

^{2/} Average of two replications. Information came from Thatcher disease nursery. Readings made by Albert Murphy.

VARIETY TEST, NORTH FARM, LOGAN, UTAH, 1963 Pollinators analyzed as Randomized Blocks

Table 3

			ACRE Y	IELD		PPM			
Code	Var. No.	Description	Gross sugar	Tons beets	Percent sugar	Amino N	Na	,	C.T. pt. 30
10 4 5 21 8 14 7	0457 712-713 0548 711 rr 0523 0552-3 0503 0527	630 aa X CT 5 CT 5 X CT 8 SLC 129 X 132 CT 5 X CT 8 CT 5 mm CT 5 mm (subline SLC 129 SLC 132	8,385 7,730 6,943 6,832 6,355 e)6,284 6,165 5,960	29.98 26.32 28.05 24.43 22.93 22.55 23.5 24.12	13.97 14.65 12.37 13.98 13.83 13.93 13.10 12.45	254 188 221 154 169 167 214 258	202 179 253 161 189 134 216 329	1325 1229 1563 1161 1216 1165 1392 1436	50.0 42.5 31.8 46.21/ 19.3 21.22/ 44.4 16.7
Mean o	f all		6,832	25.24	13.54	203	208	1311	
Sig. I	of Mean differ. ficient of	variation	260 736 9•33	0.92 2.59 8.89	0.18 0.51 3.27	21 59 25.15	14 41 16.9	51 144 91 9.48	

Calculated F values

10.48** 8.43**20.13** 3.64** 17.75**8.08**

- Average of two replication unless otherwise noted. Readings made at Thatcher disease nursery by Albert Murphy.
- 2/ One replication.

VARIETY TEST, NORTH FARM, LOGAN, UTAH, 1963

Table 4

		`	ACRE :	CIELD			PPM	
Code	Var.	Description .	Gross sugar	Tons beets	Percent sugar	Amino N	Na	K
9 25 16 17 20 23	2159 2165 2162 1128 2163 1123	0156 X 712 and 713 0156 X 711 rr 0156 X 0548 0166 X 0552-3 0156 X 0523 0156 X SLC 132	9,063 8,415 8,351 7,872 7,817 7,476	32.52 29.68 31.58 28.55 28.48 27.40	13.94 14.18 13.22 13.78 13.72 13.63	196 165 190 174 166 202	198 154 216 159 199 171	1305 1259 1404 1211 1128 1368
Mean			8,166	29.70	13.74	183	183	1279

FURTHER STUDIES ON THE VIABILITY OF SUGARBEET SEED STORED AT LOW TEMPERATURES VERSUS NORMAL SEED STORAGE

By Clifton H. Smith

Section I. Long-term germination studies on German sugarbeet variety used in commercial sugarbeet plantings.

A seed storage experiment at low temperatures was begun March 8, 1928, by Dr. Dean A. Pack1/. Two five-pound samples were placed in tin can containers; one can was sealed and the other remained unsealed. The cans were placed in a commercial cold storage plant where temperatures were maintained at 0° F. The seed used was the German variety Braune, reproduced in St. George, Utah, in 1927. To eliminate small seed, the samples were run over a 7/64" screen. Upon examination of the seed in 1938, the cans were found to be rusted and perforated with holes. The seed was then changed to cloth bags. On July 3, 1942, the seed was taken to Hygeia Ice Company for storage, where it remained until July 1, 1961, when it was transferred to a deep-freeze unit at the present Sugarbeet Investigation Facility at Logan, Utah. At this time, part of the seed was placed in glass bottles to determine if this might be an aid in maintaining seed viability.

The following standard germination procedure was followed for testing seed viability on the various dates indicated in this paper. Seed samples containing 100 seed balls each were washed in running water for three hours and placed between moistened blotting paper stamped with 100 indentations to accommodate 100 seed balls. These samples were then placed in a moist chamber or germinator where high humidity and a temperature of 72° to 75° F. were maintained. At intervals of 3, 6, 10, and 14 days counts were made and recorded of number of sprouts and percent germination.

^{1/} Dr. Dean A. Pack was formerly Physiologist, Division of Sugar Plant Investigations, Bureau of Plant Industry, Soils, and Agricultural Engineering, Agricultural Research Administration, U. S. Department of Agriculture.

Table 1 - Germination of sugarbeet seed held 35 years in cold storage (1928-1963)

ate	Length of Storage years	Percent Germination	Tested by
928	0	83.5	D. A. Pack
942	14	86.5	Myron Stout
947	19	85.0	W. J. Musser
948	20	75.0	Betty Nielsen
49	21	81.0	Betty Nielsen
50	22	75.0	C. H. Smith
60	32	33.1	C. H. Smith
63	35	22.1	C. H. Smith
63 1/	35	34.0	C. H. Smith

^{1/} Sample removed from cold storage in 1950 and stored at regular storage.

Table 1 shows combined data compiled by Dr. F. V. Owen and reported in the 1950 A.S.S.B.T. Proceedings2/ with additional data obtained by the writer in 1960 and 1963. Tests made in 1950 show a reduction of 8 1/2 percent from the original seed germination. By 1960 the germination had been reduced 50 percent. 1963 germination tests showed a further reduction in germination. The earliest sprouts appearing in the 1963 tests had good vigor, but those on the 10-and 14-day counts were weak and very much shortened up they emerged from the seed balls. Samples of seed taken from cold storage in 1950 and stored in regular storage showed less reduction of germination and less loss of vigor of 10-and 14-day sprouts. This data would indicate that for the Braune variety, seed viability and vigor of seedlings may both be affected more severely in cold storage than in regular seed storage. It is unfortunate that no seed samples of the Braune variety were stored under normal seed storage for comparison with samples stored in cold storage temperatures.

Section II. Long-term germination studies on curly-top-resistant varieties of sugarbeets.

On May 17, 1938, the writer began a seed storage experiment at Oo F. temperature with five curly top resistant varieties. Control samples of the same numbers were also placed in regular storage located in fire-proof, unheated warehouse. Unfortunately, the sample of one number (618) maintained in the warehouse was lost, which eliminated a comparison of cold versus normal seed storage for this variety.

From the results in Table 2, differences were noted among varieties for storageability at cold temperatures as well as at normal seed storage. The tendency of germination to fluctuate in some varieties is unexplainable. Number 9.153 was an example of this fluctuating tendency. In normal storage the germination decreased from 68% in 1938 to 27% in 1947. A similar percentage was noted in 1960, but in 1963 the germination was up to 40%. Seed stored in cold storage showed a drop from 68% to 40.5% in 1947 and an additional decrease to 28.3% in 1960. However, in 1963 the germination was up again to 46.7%. Number 3407 maintained its germination at low temperatures but showed a decline at regular storage. Number 722 showed a rapid decline in regular storage. At cold temperature germination of 722 declined 20% during the first ten years but remained constant thereafter. Number 717 gave no indication of a decline in germination

^{2/} Viability of Sugarbeet Seed Held in Cold Storage for 22 Years.
D. A. Pack and F. V. Owen. 1950 A.S.S.B.T. Proceedings.

Table 2 - Viability of sugarbeet seed held 25 years in storage. (1938-1963)

		Type of	Germin 193817	ation pe	1960	year 196	3
Number	Variety	Storage	27)	±7+1	1,00	A	В
9.153	US # 1	Regular	68.0	27.0	30.3	40.0	
		Cold		40.5	28.3	46.7	45.7
3407	Factory # 1	Regular	81.0	59•5	33.7	39.0	
		Cold		96.5	91.3	93.4	96.0
722	US 22	Regular	82.0	54.0	29.0	18.3	
		Cold		62.0	64.3	66.7	69.0
717	US 15	Regular	53.0	74.5	65.3	61.0	
	•	Cold		60.0	53.7	53.7	46.4
618	US 12	Cold	79.0	59.0	59.7	58.6	71.7

A. Seed stored in cloth bags.

B. Part of seed previously stored in cloth bags was transferred to glass jars in 1961 when transferred to the Logan facility.

^{1/} Original germination at harvest.

at either normal or cold temperature storage. The increase in germination at normal storage is difficult to explain. Number 618 showed a decreased germination during the first ten years at cold temperatures but remained constant thereafter. The rise in germination from the samples of seed placed in bottles in 1961 is unexplainable. However, the seed stored in cloth bags may have absorbed moisture from the air or the bottled seed may have had an accumulation of CO₂ from respiration of the seed, which could account for the difference in viability of the two samples of seed of variety number 618. No measurement was made to determine moisture content of the seed or accumulation of CO₂ in bottled versus bagged seed.

A field planting was made in June 1963 to study emergence and plant vigor of seed stored for both 25-and 35-year periods in cold storage compared to regular storage. Six replications of each variety and each treatment were planted. Emergence readings corresponded well with germination percentages noted in previous tables. Vigor ratings were all good without variation between high or low germination percentages. The only variation in vigor noted was strictly varietal and not between treatments or germination percentages. In the presence of good moisture conditions, seedling growth was rapid in all varieties and treatments.

It is concluded that many of the disturbing factors affecting germination of seed are associated with differences in the physiological make-up of varieties, the differences occurring among seed lots of the same variety, as well as a multitude of other combinations of factors. Controlled tests to eliminate as many as possible of the factors adversely affecting seed viability should be employed in searching for methods of storing and maintaining seed viability for long periods of time.

Curly Top Disease Investigations

C. L. Schneider

Materials and Methods

Beet leafhoppers were employed in curly top inoculation experiments in the greenhouse. Colonies of non-viruliferous leafhoppers were maintained on sugarbeets and Beta maritima at about 80° F. The insects were caged on curly top plants for approximately 7 days to acquire the virus.

Inoculation tests were conducted in the greenhouse maintained at about 75° F. Host plants were grown in shallow 6" clay pots of steam-sterilized soil. To maintain adequate soil fertility, 100 ml of Hoagland's solution were added to each pot of seedlings per week. Inoculation of seedlings was accomplished by attaching small glass cages, each containing one viruliferous leafhopper, to cotyledons about 2 weeks after planting. Curly top symptoms generally began to appear after about 5 days. Records of incidence of infection and degree of curly top severity were taken about 6 weeks after inoculation.

Virulence of Curly Top Isolates from Northern Utah

In 1962, 20 curly top cultures were isolated from the following 2 sources in northern Utah; (1) beet leafhoppers collected in the desert near Promontory; (2) infected plants of curly top resistant sugarbeet strains growing in the curly top nursery at Thatcher. Sub-cultures were subsequently isolated from each culture employing methods that were probably selective for the more virulent strains of the virus. Leafhoppers from plants infected with the original virus cultures were transferred serially to sugarbeet seedlings of a highly resistant variety and allowed to feed for approximately 12 hours on each plant. From the comparatively few seedlings that developed curly top, the sub-cultures employed in the subsequent tests were established.

In greenhouse inoculation tests, the virulence of 27 sub-cultures was compared on 3 sugarbeet varieties; SL 68 (highly resistant to curly top); US 75 (moderately resistant); SL 742 (highly susceptible) and on Turkish tobacco. Most of the isolates were also tested on Gomphrena globosa, Celosia cristata and on tomato (variety Marglobe). Two leafhoppers were used to inoculate each plant of tobacco and tomato; one leafhopper per plant was used for all the other species.

Differences in virulence between the curly top isolates were noted (Table 1). Most of the isolates were equal in virulence to highly virulent strain 11. The curly top severity rating of variety US 75 infected with this strain was 3.9. At least one of the isolates tested (A 26 A) was more virulent that strain 11. As a group, the isolates from the leafhoppers collected in the desert were as virulent as those from the sugarbeet hosts. All isolates tested on tomato caused severe curly top symptoms. With a few exceptions, the isolates were pathogenic on tobacco, Gomphrena and Celosia.

Among the 3 sugarbeet varieties, there was a high degree of association between their reactions to each curly top isolate (Tables 2 and 3). The reactions of sugarbeet and Gomphrena to each isolate were also significantly associated (correlation coefficient = .560 **). The reactions of sugarbeet and tobacco did not appear to be significantly associated (correlation coefficient = .183).

These results show that curly top strains capable of causing severe damage to sugarbeet varieties previously designated as highly resistant, occur in desert and in sugarbeet growing areas of northern Utah. These isolates differ in degree of virulence on sugarbeet varieties but no differential response to the isolates was noted among the 3 varieties tested.

Some Factors Affecting Development of Curly Top in the Greenhouse

In testing sugarbeet strains in the greenhouse for resistance to curly top, the number of plants to be inoculated and evaluated is usually limited; therefore, a high incidence of infection is desirable. To standardize greenhouse inoculation procedures towards a greater and more uniform incidence of curly top infection, studies were made to determine the effect of the following factors on curly top development: age of plants when inoculated; number of leafhoppers applied per plant; stage of leafhopper vector, length of sojourn of leafhopper on curly top source plant, and effect of preinoculation starvation period of leafhopper vector.

Incidence and severity of infection decreased with increase of age of seedlings from 21 to 35 days (Table 4). Increasing the number of caged leafhoppers per test seedling from 1 to 2 increased incidence and severity of infection on a resistant and susceptible sugarbeet variety. (Table 5). No differences in incidence and severity of infection were noted between plants on which viruliferous leafhopper nymphs and those on which viruliferous adults had fed. Varying the feeding time on curly of curly top, nor did starvation periods of 0 to 50 hours from the time placed on the seedlings to be inoculated.

Table 1 - Virulence of 27 curly top virus cultures isolated from Northern Utah in 1962

Source and culture number	Curly	top sev	verity 1/	Incid othe	ence of r hosts	infect	ion on	- ants
of curly top isolates	SL 68	US 75	varieties SL742	Turkish Tobacco	curly to goodolg	Celosia de cristata	Tomato Tomato	Shepherd's
From sugarbeet leafhoppers collected in desert near Promontory, Utah								
A 1 A A 1 C A 3 A A 3 B A 3 C	3.3 3.9 3.6 3.7 3.4	3.9 4.3 4.2 3.8	5.2 5.3 5.2 5.5 5.2	6/24 5/25 5/8 4/20 2/16	3/8 3/5 5/8 10/13	6/14 3/5 2/8 7/13 1/16	7/10 7/10 7/10 7/10	5/10
A 4 D A 7 A A 21 A From sugarbeet plants in cu		4.2 3.6 3.9	5.2 4.6 5.5	2/10 4/20 3/20	7/20	5/24	35/40	5/5
top nursery at Thatcher, Ut	2.9	3.3	4.8	1/15	3/4	0/8		
A 9 B A 9 C A 10 A A 11 B A 12 A A 12 B	3.4 3.6 3.3 3.9 3.5 3.5	3.6 4.0 3.8 4.2 3.7 3.8	5.2 5.6 5.4 5.4	2/10 5/15 3/45 3/26 9/20 10/10	6/8 4/4 3/4 10/20 7/7	6/10 1/8 3/5 3/4 7/8	1/10 7/10 21/40 2/10 5/10	6/6
A 12 C A 13 B A 15 B A 16 B A 17 B A 17 C A 18 B	3.5 4.2 2.8 3.3 3.6 3.0	4.5 4.3 3.2 3.9 3.7 4.0 3.8	5.2 5.9 4.5 5.1 5.4 5.2	2/10 6/20 1/21 3/15 1/27 6/20 0/15	7/8 5/6 0/2 8/8 0/4 4/4 3/4	3/12 6/8 0/8 5/8 4/8	35/50 3/10 10/10 6/10	
A 19 B A 23 A A 24 A A 25 A A 26 A	3.1 3.0 3.4 3.1 4.0	3.4 3.1 4.0 3.3 4.7	4.3 4.4 5.3 4.5 5.3	11/20 10/20 3/20 11/17 16/20	5/8 2/4 13/24 5/8	7/8	5/7 5/10 7/10	1

^{1/}Results expressed as mean of 2 tests, each comprising 12-20 plants. Severity ranged from 0 (no disease) to 6 (dead).

Table 2 - Distribution of 27 curly top cultures according to virulence on Sugarbeet varieties US 75 and SL 68: Number of cultures occuring in each host-reaction class.

SL 68 curly top severity classes 1/ (Y)	US 75 curly top severity classes 1/(x)						
	3.1 - 3.5	3.6 - 4.0	4.1 - 4.5	4.6 - 5.0			
4.1 - 4.5	PG gar an		1	* mm m -			
3.6 = 4.0		2	5	1			
3.1 - 3.5	2	11	1				
2.6 - 3.0	3	1		on on to			

Correlation coefficient $(r_{XY}) = .884 **$

Table 3 - Distribution of 27 curly top cultures according to virulence on sugarbeet varieties US 75 and SL 742: Number of cultures in each host reaction class.

SL 742 curly top severity classes 1/(Y)	US 75 curly top severity classes (X)						
	3.1 - 3.5	3.6 - 4.0	4.1 - 4.5	4.6 - 5.0			
5.6 - 6.0	000 000 MI	1	1	600 600 and			
5.1 - 5.5		• 12	6				
4.6 - 5.0	1	1					
4.1 - 4.5	14	Allo des gas	900 000 900	-			

Correlation coefficient (rXY) = .679 **

^{1/} Host reaction classes based on ascending scale: 0 (no symptoms) to 6 (dead). Results expressed as mean of 2 tests.

^{1/} Host reaction classes based on ascending scale: 0 (no symptoms) to 6 (dead). Results expressed as mean of 2 tests.

Table 4 - Effect of age of sugarbeet plants when inoculated on subsequent development of curly top on varieties SL 68, US 75, and SL 742 in the greenhouse.

Age of plants	Plants (per	infected cent)	1/	Curly top severity 1/			
(days)	SL 68	US 75	SL 742	SL 68	US 75	SL 742	
21	81	81	94	3 . 8	3.9	5.7	
28	62	94	94	3.0	3.3	5.3	
35	1414	56	100	2.8	2.6	4.2	

^{1/} Data expressed as mean 4 replicates of each variety - treatment combination (16 plants).

Table 5 - Effect of number of viruliferous leafhoppers per plant on subsequent development of curly top on sugarbeet varieties US 22/4 and SL 742 in the greenhouse.

Number of leaf-	Presy	mptom period (days)		infected cent)	Curly top severity		
hoppers per plant	US 22	/4 SL 742	US 22/4	SL 742	US 22/4	SL 742	
1	15.3	12.2	65	70	3.6	5.1	
2	17.9	10.5	70	90	3.9	5.7	

² Results based on 5 replicates of each variety treatment combinations (20 plants).

Evaluation of Sugarbeet Strains in the Greenhouse for Resistance to Curly Top

In a series of inoculation tests in the greenhouse, 58 sugarbeet strains were evaluated for resistance to curly top isolates equal in virulence to Gidding's strain 11. In each experiment comprising usually 10 varieties, was included moderately resistant variety US 75 as a standard of comparison. Highly susceptible line SL 742 was also included in each test as a check on the potential of the inoculation treatment. Highly resistant variety US 22/4 was included in most tests. Twenty plants of each strain were tested.

Incidence of infection and severity of curly top of 3 varieties included in each of 6 tests varied from test to test (Table 6). Consequently, curly top evaluations of entries from different tests can probably be more accurately compared if expressed in percent of that standard check variety included in each test.

Curly top incidence on the 58 sugarbeet strains ranged from 37 to 185 percent of check variety US 75. Curly top severity ratings ranged from 70 to 134 percent. Analysis of the results shows that incidence of infection and degree of curly top severity tended to be associated among the 58 strains tested (Table 7). The greenhouse method of testing for curly top resistance therefore permits discrimination between a fairly wide range of degrees of resistance, even with highly virulent curly top isolates.

Table 6 - Differences in incidence and severity of curly top in 3 sugarbeet varieties in 6 greenhouse experiments.

Variety1/ US 75			Variety1/ SL 742			Variety1/ US 22/4		
Experiment No. C. T. Incidence (percent) C. T.		C. T. Incidence (percent)		C. T. Severity in pct. US 75	C. T. Incidence (percent)	C. T. Severity	C. T. Severity in pct. US 75	
1	55	4.0	85	5.6	140	40	3.9	98
5	35	3.8	45	4.9	129	30	3.3	87
3	55	4.1	80	5.0	122	35	3.5	85
, 4	55	3.5	85	5.1	1 45	35	3.0	86
5	70	4.1	75	5.3	129	55	3.8	93
6	75	4.1	85	4.9	119	67	3.6	88
C. T. Severity Range	3.5 - 1	+.1	4.9 -	5.6		3.0 -	3.9	

^{1/} Results expressed as mean of 5 replicated pots in each experiment (20 plants).

^{2/} C. T. severity based on ascending scale from 0 (no symptoms) to 6 (dead).

Table 7 - Distribution of 58 sugarbeet lines according to incidence and severity of curly top in greenhouse tests: Number of lines in each class.

Curly top severity in percent of US 75 (Y)	Curly top incidence in percent of US 75 (X)									
					101-120		141-160	161-180	181-200	
21 - 135			~~~		10 to 60			1		
11 - 120		400 000				1			1	
01110					1				1	
91 - 100				9	3				to to to	
81 - 90	2		7	11	1		1		***	
71 80	m m m "	1	3	5	2	1				
61 - 70		1	1	5						

Correlation coefficient (rXY) = .542 **

Curly Top Screening Test, Thatcher, Utah by Albert M. Murphy

The curly top test of 1963 was in the same field as the test of 1962 and the available area consisted of about 3 1/2 acres.

Buffer areas of the curly top susceptible European variety were planted on each end of the field as well as in strips 15 feet wide crosswise of the field at 100-foot intervals. This material was planted May 7. Mother beets infected with curly top virus were transplanted at intervals within these strips also early in May. The test plots varied in size from single rows 25 feet long to two-row plots 50 feet long, while material planted for the purpose of making selections consisted of blocks 16 rows wide and 50 feet long. In 1963 more single-row plots were planted and less space devoted to block plantings, because of the unexpected requests for space. The reason for the high number of requests by so many breeders for space for a few to several varieties is not entirely clear. It is, however, an indication on the part of industry that curly top can still cause serious losses, if conditions are such that make a curly top epidemic possible. Curly top is a very cooperative disease and in many areas occurs in association with certain other diseases, which has had an alarming effect on both yield and sucrose.

The curly top exposure developed in the breeding field in1963 was classed as being of moderate intensity. Thus, a remarkable degrees of success was attained, since the incidence of curly top appearing in susceptible crops in northern Utah and southern Idaho was almost nonexistent in 1963.

The curly top epidemic was very slow developing, for two reasons:
(1) very few adult leafhoppers moved into the field, and (2) the spring
was very wet and cold, which greatly retarded the reproduction of the
leafhopper and the development of the disease. By delaying the planting
of test material until the latter part of June, the curly top exposure
was adequate to evaluate the bulk of material under test; however, it
was not severe enough to bring out the differences in resistance in
highly resistant material where it was suspected some lurked. The fall
weather was beautiful and a killing frost did not occur until October 23,
and even though planting was late and curly top got off to a slow start,
the total amount of disease that developed was truly astonishing.

Generally speaking, it is more difficult to produce a uniform epidemic of a light or of a moderate nature than a severe or heavy one, because there are too few leafhoppers to feed and thus spread the disease rapidly. This was especially true in the 1963 test, as in some cases there were considerable differences between replications. However, due to lack of space (also seed, in many cases) it was not possible

to have enough replication to minimize this difference. In spite of this it is felt that in the 1963 test, by and large, the goal was attained, in that entries under test were correctly classed as to the degree of curly top resistance they possessed. However, when testing so many varieties there is always a chance that a particular number may be incorrectly classed. At any rate, the varieties used as checks reacted to curly top exposure produced, in the proper manner.

Breeding material was screened for a few of the western beet sugar companies and in addition to Logan Laboratory, for the following ARS investigators: Coe, Gaskill, McFarlane, and Savitsky. Selections at harvest were made for all ARS breeders except J. S. McFarlane.

In the interest of space it is not feasible to report all data obtained in a separate section; therefore, pertinent information will appear in this report at the option of the many cooperators in the project.

Photosynthesis and Respiration Studies on Sugarbeets.

By Myron Stout

Photosynthetic and respiration rate studies on intact sugarbeet plants were made by monitoring changes in CO₂ concentration within a closed system. The constant-temperature water-jacketed chamber is 22" X 22" square and 21" deep. Water is rapidly circulated on all sides and to a depth of 2 1/4-inches above the glass top of the chamber before overflowing to the constant-temperature bath. Heat from lights mounted above is absorbed by the water before entering the plant chamber. An electric fan inside the chamber continuously circulates air and insures a uniform mixture of gases to the leaves and to inlet and outlet sampling tubes.

A Beckman CO_2 analyzer, connected to a strip chart recorder, makes a continuous record of CO_2 concentration changes. The instrument is calibrated by means of a standard mixture of CO_2 in nitrogen. Total milligrams of CO_2 in the system is determined by absorption of all CO_2 , then adding known amounts of CO_2 by means of a 50 ml hypodermic syringe. Net accumulation or respiration rate values can then be made at any given temperature, light intensity and CO_2 cencentration, by plotting the slope of the line at a given CO_2 concentration and measuring the time required to change the total CO_2 content between measured, arbitrary values.

Total leaf area of plants is determined by tracing each leaf on a uniform-weight bond paper, cutting out the tracings and weighing the paper. Net accumulation or respiration rate values are calculated in milligrams of CO₂ per decimeter of leaf area per hour. Photosynthetic rates can be estimated by adding the net-accumulation and respiration-rate values. A schematic diagram of the equipment is shown in Figure 1.

Effect of Foliar Density

Net-accumulation and respiration-rate values were determined on normal sugarbeet plants. Vertical and profile photographs were taken to record normal foliar arrangement. The foliage was then rearranged by placing a rubber band around all petioles or tying them in stacks of 2 to 4 petioles. Vertical and profile photographs were again taken to record the modified foliar arrangement, then net accumulation and respiration rates were redetermined.

At a light intensity of 1500 foot-candles and 25° C., the net-accumulation rate of plants having about 1/2 or more of the leaves exposed to direct light reduced the net accumulation rate to 1/2 the previous value. The respiration rate was reduced only slightly by

Figure 1 - Schematic diagram and flow-sheet of equipment to measure respiration and net accumulation rates of sugarbeet plants.

increasing foliar density. This degree of foliar shading may be encountered in closely spaced plants in the field under high nitrogen nutrition. Some tests with more closely packed leaves resulted in no decrease in CO₂ concentration with 1500 foot-candles of light at 25° C. Typical data for a plant of variety 202H9 before and after reducing foliar exposure are shown in table 1. The appearance of the plant before and after reducing the foliar exposure is shown in figure 2.

The effect of stacking the foliage on net accumulation and respiration rates is shown in table 2 and figure 3. A comparison of the data and figures in tests 5 and 14 indicate that the loosely bunched foliage in test 5 reduced photosynthesis more than stacking of foliage in test 14.

The technique is believed to be especially suitable for studies of the effects of diseases on major physiological processes.

Figure 2 - Profile and vertical views of sugarbeet plant with normal (above) and bunched (below) foliar arrangement.

Test No. 5.

Table 1 - Test No. 5. Date 9/24/63, temperature 25° C. Lights 5-150 W foot-candles 1500

	Foliage		
	Normal	Bunched	
Mg CO ₂ between scale 5 and 7 Seconds required for 21.6 Mg CO ₂ uptake Total leaf area (decimeters) Net accumulation rate Mg CO ₂ /DM/hour Seconds required for 21.6 Mg CO ₂ evolved Respiration rate Mg CO ₂ /DM/hour Net accumulation/respiration	21.6 600. 8.00 16.21 2090. 4.66 3.48	21.6 1550. 8.00 6.27 1960. 4.96 1.26	

Figure 3 - Profile and vertical views of sugarbeet plant with normal (above) and stacked (below) foliar arrangement. Test No. 14.

Table 2 - Test No. 14. Date 10/16/63, temperature 250 C. Lights 5-150 W foot-gandles 1500

	Foliage	
	Normal	Stacked
Mg CO between scale 5 and 7	21.6	21.6
Mg CO, between scale 5 and 7 Seconds required for 21.6 Mg CO ₂ uptake Total leaf area (decimeters)	645.	985.
Total leaf area (decimeters)	11.9	11.9
Net accumulation rate Mg CO2/DM/hour	10.1	6.64
Seconds required for 21.6 Mg CO ₂ evolved Respiration rate Mg CO ₂ /DM/ hour Net accumulation/respiration	1200 . 5.42	1580.
Net accumulation/respiration	1.87	1.60

Effects of Previous Light Exposure on Respiration of Sugarbeet Leaves

by Myron Stout

Previous attempts, by the writer and others, to relate leaf respiration rates of sugarbeets to genetic or other characters, have met with extreme variation between samples. Variation with time-of-day, different days, and different leaves taken at one time makes the data unreliable. The present studies were undertaken to determine some of the causes of this erratic behavior.

One-half of leaves previously exposed to full sunlight were enclosed in cardboard containers for varying periods before sampling for respiration rate measurements by the Warburg technique. Uniform samples 19 by 66 mm. were cut by means of a sharpened rectangular metal cutter. Respiration-rate measurements were made at 20° C. All data are reported in percentage of the respiration rate or dry weight of the darkened half of the same leaf. Each point on the figures represents the average of six measured comparisons.

The data in figure 1 show a progressive increase in respiration rate of irradiated over darkened halves of the same leaves. Figure 1 also shows a progressive increase in dry weight of irradiated halves of leaves.

As a further check on the apparent cause of differences, potted sugarbeets were kept in the dark overnight, then half-leaves were exposed to sunlight before sampling. The half-leaf covers were installed in subdued light, then all six plants were wheeled into sunlight for varying periods before sampling.

The data in figure 2 show a much more rapid response in respiration rate and dry weight of previously darkened leaves.

The data indicate that changes in respiration rate and dry weight of leaves may be due to rather rapid changes in respiratory substrate in the leaf tissues. It apparently requires a considerably longer time to effect a differential concentration in the leaf tissues by translocation of the products of photosynthesis from the leaf than it does to create a difference by direct photosynthesis; although the magnitude of the differences is similar.

Figure 1 - Time vs respiration rate (upper figure) and dry weight (bottom figure) of half-leaves left in sunlight compared to darkened (check) halves of the same leaves.

Figure 2 - Time vs respiration rate (upper figure) and dry weight (bottom) of half-leaves exposed to sunlight compared to halves of the same leaves kept in darkness.

PART IV

EVALUATION OF BASIC BREEDING MATERIAL AND VARIETIES OF SUGARBEETS SUITABLE FOR THE GREAT LAKES REGION

Foundation Project 26

G. E. Coe

G. J. Hogaboam

D. L. Mumford

Cooperation:

Farmers & Manufacturers Beet Sugar Association
Buckeye Sugars, Inc.
Canada and Dominion Sugar Company, Ltd.
Michigan Sugar Company
Monitor Sugar Division
Northern Ohio Sugar Company
Michigan Agricultural Experiment Station
Wisconsin Agricultural Experiment Station
Western Ontario Agricultural School, Ridgetown, Ontario

TOTAL STATE

goldst

ominion ager Coupany, Ltd

in he station

ural School, Ridgetown, Ontario

EVALUATION OF SUGARBEET VARIETIES AND BASIC BREEDING MATERIAL SUITABLE FOR THE GREAT LAKES REGION

The cooperative field trials of 1963 in the Great Lakes region were a continuation of a program of annual evaluations of sugarbeet varieties, hybrids, and basic breeding material for local and regional adaptation. The several items available for evaluations were separated into three categories for testing, and accordingly the results are presented in three sections: 1) Regional field tests of advanced hybrids and varieties that are candidates for grower use; 2) miscellaneous breeder seed, inbred lines, and experimental hybrids (p. 149); and 3) combining ability tests to appraise selected pollinators and male-sterile lines (p. 161)

Section 1. Regional Field Tests of Hybrids and Varieties

The objectives of the cooperative regional field tests were a further appraisal of the monogerm hybrid that has largely superseded multigerm varieties in the region and a determination of whether additional productivity could be attained through the introduction of new hybrids that could be made available for grower use.

The regional tests for the evaluation of six varieties were planned by G. J. Hogaboam (Geneticist, USDA) and M. R. Berrett (Director of Research, F & M) and conducted jointly with company members of the Farmers & Manufacturers Beet Sugar Association: Canada and Dominion Sugar Co. (p. 124), Monitor Sugar Division (p. 130), Michigan Sugar Co. (p. 132), and Buckeye Sugars, Inc., (pp. 126 and 128). In addition, tests were conducted by Western Ontario Agricultural School, Ridgetown, Ontario (p. 138), and Hancock Experimental Farm, College of Agriculture, University of Wisconsin (p. 140). Three varieties were included in field trials conducted by the Northern Ohio Sugar Co. (pp. 142-148).

Results.--The performances of six varieties in six regional tests are summarized on page 123. Although each of the monogerm hybrids had a multigerm pollinator (SP 5822-0 or SP 5460-0), the processed seed was monogerm. The average values for SP 5822-0, the multigerm variety in the tests, may be taken as a standard of performance for the appraisal of the monogerm varieties.

The monogerm hybrids SL 122 ms X SP 5460-0 and SL 126 ms X SP 5460-0 did not differ significantly in percentage sucrose or clear juice purity, but in yield of roots and recoverable sugar a superiority was shown for the hybrid with SL 126 ms as the seedbearing parent. SL 122 ms X SP 5460-0, the first monogerm hybrid used extensively in the Great Lakes region, will be largely superseded in 1964 by the more productive hybrid SL 126 ms X SP 5460-0.

The hybrids SL 128 ms X SP 5822-0 and [(SL 122 X SL 128) X SL 126]ms X SP 5822-0 each exceeded significantly the other entries including SP 5822-0, the pollinator, in yield of roots and recoverable sugar. The marked similarity of

performance of these two hybrids indicates that if SP 5822-0 is used as the pollinator, the single-cross with the male-sterile monogerm line SL 128 ms is as productive as the hybrid derived from the complex female line.

The disappointing performance of the open-pollinated monogerm variety SP 62100-0 conforms to past experience in attempts to develop an open-pollinated variety that is superior to monogerm hybrids obtained through the use of multigerm pollinators.

The determinations of clear juice purity for the regional tests were obtained through the cooperation of M. G. Frakes, Michigan Sugar Co. The procedure for the calculations of recoverable sugar from the clear juice purity is given below:

It will be observed from the tests conducted by the Northern Ohio Sugar Co. at Fremont (p. 142) and Old Fort (p. 146) that SP 5822-0 had percentage sucrose numerically below that of SP 5481-0, but the thin juice purity coefficient (p. 148) was significantly higher for SP 5822-0 in each test. This finding confirms previous indication of high quality in this multigerm variety.

A reference to the summary table on page 123 indicates that the high quality characteristic of SP 5822-0 was imparted to its hybrids. SP 5822-0 is the progenitor of SP 61151-0, which has shown combining ability for excellent quality (p. 161) when used as a pollinator.

Standard Footnotes for all Experiments with Farmers & Manufacturers
Beet Sugar Association as Cooperator:

a) Calculated according to Great Western formula rearranged as follows:

 $RC = TA \times 2000 \times \%S - FL \times P_X$

RC is the calculated recoverable sugar.

TA is the yield of roots in tons per acre.

S is sucrose.

FL is factory loss (we used 0.30%)

 P_{K} is 1 - (MP X 100 - CJP / 100 - MP X CJP). This factor is constant for any given clear juice purity (CJP) if the molasses purity (MP) is held constant. We used 62.5% MP for all calculations.

- b) Approximation Calculated as percentage of difference required for significance for gross sugar on basis of relationship between general means for Gross and Recoverable sugar.
- c) Clear Juice Apparent Purity determinations were made following procedures worked out by Mr. M. G. Frakes of Michigan Sugar Co. These values approximate the thin juice purities obtained in the factory.
- d) Rating scale 0 no evidence of disease; 10 = complete necrosis due to leaf spot.

Combined anal	ysis, Expts. 1,	3,4,5,6	,871/		Year:	1963
Locations: 1 in Canada	, 2 in Ohio, ar	nd 3 in	Michigan	n	Expt.	16
	ncluded in Clea Acre Sugar		Clear Juice App.(c Leaf	Beets f per		
Variety	Recoverable (a	Gross lbs.	Roots	Sucrose %	Purity Spot	
SL128msXSP5822-0 SL((122X128)X126)ms XSP5822-0	6689 66 5 8 7	8023 8113		18.71		89 94
SP62100-0 SL126msXSP5460-0 SL122msXSP5460-0 SP5822-0	5474 6154 4 5630 6297	7074	20.78 4	17.70 18.34 18.15 18.43	90.38 4	79 88 88 89
General Mean S.E. Var. Mean above as % Gen. Mean LSD 5% Point	6146 306 (b	128.7	.287	18.3 .16 0.87	·34 0·38	88 2.0 2.3 6
Random Block Analysis	:			ance Tab		
Source of Variation :D/	F: :	*	Mean	n Square		Beets

: 5 :3,269,150:45.0689: 22.4077 :21.2052 :

: 5 :1,621,146: 7.2319: 0.7048 : 1.7963 :

:25 : 99,370: 0.4946: 0.1565 : .5723 :

:5/25: 16.31**: 14.62**: 4.50** : 3.14* :

: Roots : Sucrose : Purity : Leaf :

100

Row

951

149

23

: Spot :

Standard Footnotes a), b), c), and d) on page 122.

Between Locations

Between Varieties

Calculated F. value

Loc. X Var.

Total

: Gross

: Sugar

^{1/} See pages 124-135, inclusive, for individual experiments.

Conducted by: C. E. Broadwell

Location: Canada & Dominion Sugar Co. Experimental Farm

Wallaceburg, Ontario

Cooperation: Canada & Dominion Sugar Co. Ltd.

Date of Planting: April 16, 1963

Date of Harvest: October 4, 1963

Experimental Design: 6 x 6 Latin Square

Size of Plots: 6 rows x 28'

Harvested Area per Plot for Root Yield: 281 x 4 center rows

Samples for Sucrose Determination: 2 samples of 10 beets each

Stand Counts: Counted when harvested

Recent Field History: 1962 - Oats

1961 - Corn 1960 - Beets

Fertilization of Beet Crop: 700# 5-20-20 with drill; 200# ammonium

nitrate broadcast & worked in before plantin

Black Root Exposure: None

<u>Leaf Spot Exposure</u>: Very little

Other Diseases and Pests: None

Soil and Seasonal Conditions: Fairly dry

Reliability of Test: Fair - good

Cooperator: C. & D. Sugar Co.Ltd., F.&M. Beet Sugar Association Year: 1963

Location: C.&D. Wallaceburg Experimental Farm, Wallaceburg, Ontario Expt. 1

6	X	6	Latin	Square
~		_	TOTAL CONTRACTOR	~ 4 ~~~~

Variety	Acre l Sugar Recoverable (a lbs.	Gross lbs.	Roots	Sucrose %	Clear Juice App. Leaf Purity Spot	Beets per 100 ft. No.
SL128msXSP5822-0 SL((122X128)x126)ms XSP5822-0		77661	22.86 2 23.16	16.82		76 78
SP62100-0 SL126msXSP5460-0 SL122msXSP5460-0 SP5822-0		5722 6 6912 3 6672 4 6399 5	18.33 6 21.05 3 19.77 5 20.01 4	15.6 6 16.4 4 16.9 1 16.0 5		48 67 71 66
General Mean S.E. Var. Mean above as % Gen. Mean LSD 5% Point.		6852 246 3.59 697	20.86 .739 3.54 2.09	16.4 .224 1.36 0.6		67 2.5 3.7 7

Latin Square Analysi	s			Variar	ce Table			
	: :	: Mean Squares						
Source of Variation	:D/F :	Gross : Sugar :	Roots	Sucrose	: Purity	: Leaf : Spot	: Beets : 100' : Row	
Between Rows Between Columns Between Varieties Remainder (Error) Total	5 : 5 : 20 : 35 :	1825490 : 218538 : 3573194 : 364486 :	1.1552 21.0711 3.2763	.5153 1.4787 .2999	:	:	52 : 29 : 689 : 37	
Calculated F. value	:5/20:	9.80 ** :	6.43**	: 4.93**	:	:	: 18.62**	

Standard footnotes (a, (b, (c, and (d, page 122.

Conducted by: M. R. Berrett

Location: Willard Jones farm, Ottawa, Ohio

Cooperation: F & M Beet Sugar Association, Buckeye Sugars, Inc.

Date of Planting: April 16, 1963

Date of Harvest: October 23, 1963

Experimental Design: 6 x 6 Latin Square

Size of Plots: 6 rows x 28' - 32" between rows

Harvested Area per Plot for Root Yield: 4 rows x 26 feet

Samples for Sucrose Determination: 2 samples of 10 beets each taken consecutively from the outside harvested rows

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1962 - Beans - (Beets were torn up) 425# 6-24-12 plus 150# 6-24-12

1961 - Alfalfa

1960 - Alfalfa - 400# 5-10-10

Fertilization of Beet Crop: 435# 6-24-12 plus Boron & Manganese

Black Root Exposure: None

Leaf Spot Exposure: Heavy

Other Diseases and Pests: Heavy Rhizoctonia - some plots

Soil and Seasonal Conditions: Dry Seedbed - Below normal moisture throughout season

Reliability of Test:

Good

Cooperator: F.	& M.	Beet	Sugar	Association,	Buckeye	Sugars,	Inc.	Year:	1963
								_	-

Location: Willard Jones farm, Ottawa, Ohio Expt. 3

	5	X	6	Latin	Square
--	---	---	---	-------	--------

	Acre Sugar	Yield			Juice App. (c Leaf	Beets
Variety	Recoverable (a lbs.	Gross lbs.	Roots	Sucrose	Purity Spot	100 ft. No.
SL128msXSP5822-0 SL((122X128)X126)ms XSP5822-0	6710 2 6712 2	8046 8098	18.65 2	21.6 / 21.0 2	91.47 4.00 91.2423.83	108
SP62100-0 SL126msXSP5460-0 SL122msXSP5460-0 SP5822-0	6081 4 5729 5 5411 6 6294 3	7530 7132 6881 7687	18.08 ⁴ 17.62 ⁵ 17.10 ⁶ 18.44 ³	20.16	89.8852.83 89.90 44.83 89.2465.17 90.67 32.00	104 105 102 103
General Mean S.E.Var. Mean above as % Gen. Mean LSD 5% Point	6143 372 (ъ	7562 162 2.14 458	18.20 .37 2.03 1.05	20.8 .22 1.06 .62	90.41 3.78 .27 .16 0.30 4.31 .77 .46	105 2.6 2.5 NS

Latin Square Analysi	s			Variance	Tab	ole			
	:			Mean Squ	ares	3			
Source of Variation	:D/F:								Beets
	: :	Gross	: Roots	: Sucrose	: Pt	urity	: Leaf	:	100°
	: :	Sugar	:	:	:		: Spot	:	Row
	: :		:	:	:		:	:	
Between Rows		1075214			: .	6351	: .24		128
Between Columns	: 5 :	350635	:3.4502	:1.0976	: 1.	7981	: .18	:	41
Between Varieties	: 5 :	1424107	:3.6002	:1.7452	: 4.	7441	: 8.58	:	64
Remainder (Error)	:20 :	157496	: .8292	: .2883	: .	4450	: .16	:	40
Total	:35 :		:	:	:		:	:	
Calculated F. value	:5/20	: 9.04**	: 4.34**	6.05**	: 10	.66**	:53.63	+	NS

Standard footnotes (a,(b,(c, and (d, page 122.

M. R. Berrett Conducted by:

Arthur Busch farm, Hamler, Ohio Location:

F & M Beet Sugar Association, Buckeye Sugars, Inc. Cooperation:

Date of Planting: April 16, 1963

October 25, 1963 Date of Harvest:

Experimental Design: 6 x 6 Latin Square

6 rows x 28' - 28" between rows Size of Plots:

Harvested Area per Plot for Root Yield: 4 rows x 26 feet

Samples for Sucrose Determination: 2 samples of 10 beets each taken consecutively from the outside harvested rows

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1962 - Soil Bank - No fertilizer

1961 - Oats - No fertilizer 1960 - Corn - 500# 6-24-12

- 500# 6-24-12 82# N.

Sidedressed Fertilization of Beet Crop: 700# 6-24-12 65# N. Sidedressed

Black Root Exposure: None

Leaf Spot Exposure: Heavy

Other Diseases and Pests: Moderate Rhizoctonia - some plots

Soil and Seasonal Conditions: Dry seedbed - Below normal moisture throughout season

Reliability of Test: Good

Cooperator	F	&	M	Beet	Sugar	Association,	Buckeye	Sugars,	Inc.	Year:	1963

Location: Arthur Busch farm, Hamler, Ohio . Expt. 4

6 X 6 Latin Square					672	
	Sugar	Yield			Clear Juice App. (c. Leaf	Beets Per
Variety	Recoverable (a lbs.	Gross lbs.	Roots	Sucrose %	Purity Spot (d	100 ft. No.
SL128msXSP5822-0 SL((122X128)X126)ms XSP5822-0	6632 ² 6914	7885 8150		21.27		83 94
\$P62100 \$L126msX\$P5460-0 \$L122msX\$P5460-0 \$P5822-0	4995 6174 5261 6373	6230 7559 6598 7542	18.493	19.5 4 20.5 4 19.7 5 20.7 3	90.57 4 3.83 89.84 5 4.33	79 80
General Mean S.E.Var. Mean above as % Gen. Mean LSD 5% Point	6042 448 (b	7327 192 2.6 543	17.88 .41 62 2.29 1.16	20.5 .36 1.73 1.0	91.06 3.08 .40 .19 0.44 6.20 1.12 .54	3.0
Latin Square Analysis			Variance	ce Table		
Source of Variation :I		oots : S	Mean Sucrose	Squares Purity	: Beets Leaf: 100' : Spot: Row	5
Between Rows	5: 2416211 :12.	3275: 2	2.1615	2.4210	.32 530	

5: 744431 : 4.5860: .9881 : .3216 :

: 5: 3386645 : 8.9906: 3.3162 :7.4434 :

Calculated F. value :5/20: 15.32**: 8.90**: 4.37**: 7.90**: 24.77**: 6.33**

: 20: 221044: 1.0097: .7582

168

342

54

.32:

5.45:

.22:

: .9422

Standard footnotes (a, (b, (c, and (d, page 122.

Between Columns

Between Varieties

Remainder (Error)

Total

Conducted by: M. R. Berrett

Location: Howard Hayward farm. Bay City. Michigan

Cooperation: F & M Beet Sugar Association - Monitor Sugar Divn.

Date of Planting: April 17, 1963

Date of Harvest: October 9, 1963

Experimental Design: 6 x 6 Latin Square

Size of Plots: 6 rows x 28 feet - 28" between rows

Harvested Area per Plot for Root Yield: 4 rows x 26 feet

Samples for Sucrose Determination: 2 samples of 10 beets each taken at random from each plot

Stand Counts: Harvested beets counted when weighed

None

Recent Field History: 1962 - Potatoes - Spring plowed - 1100# 4-11-11 (Liquid)

1961 - Wheat 200# 5-20-20 250# 12-12-12 seeded to

1960 - Beans 250# 5-20-20 & Manganese (clover. Fertilization of Beet Crop: 500# 12-12-12 plowed down (Fall); 500# 6-24-12 & Manganese at planting time

Black Root Exposure:

Leaf Spot Exposure: Light

Other Diseases and Pests: None

Soil and Seasonal Conditions: Moist seedbed - Generally good growing

conditions most of the year. Below normal moisture latter part of season

(60# N. Sidedressed

Reliability of Test: Excellent Cooperator: F & M Beet Sugar Association - Monitor Sugar Divn. Year: 1963

Location: Howard Hayward farm, Bay City, Michigan

Expt. 5

6 X 6 Latin Square

	Sugar	Yield		Clear Juice App. (c Leaf	Beets per	
Variety	Recoverable (a lbs.	lbs.	Roots	Sucrose %	Purity Spot	100 ft. No.
SL128msXSP5822-0 SL((122X128)X126)ms XSP5822-0	6885 1 6533 4	9007 9125	26.12 2 27.13	1 0	88.12 4 85.85	90 95
SP62100-0 SL126msXSP5460-0 SL122msXSP5460-0 SP5822-0	5853 6808 3 6140 5 6856 2	7657 8689 8378 8888	25.00 4			85 95 93 94
General Mean S.E. Var. Mean above as % Gen. Mean LSD 5% Point	651 7 621 (b	8624 290 3.3 822	25.25 .89 6 3.52 NS	17.1 .37 2.16 NS	87.79 .78 0.89 NS	92 2.4 2.6 NS

	:					
Source of Variation :D	/F: Gross Sugar	: Roots :		Squares: Purity	: : Leaf : Spot	
Between Columns : Between Varieties : Remainder (Error) :2	5 : 326736 5 : 1760762 0 : 506364	: 5.6504: : 5.6504: : 3.2034: :10.2905: : 4.7042:	.3467		:	: 162 : 110 : 85 : 33 :

Standard footnotes (a,(b,(c, and (d, page 122.

M. R. Berrett Conducted by:

Harold Gremel farm, Sebewaing, Michigan Location:

Cooperation: F & M Beet Sugar Association - Michigan Sugar Company

April 18, 1963 Date of Planting:

October 17, 1963 Date of Harvest:

Experimental Design: 6 x 6 Latin Square

6 rows x 28' - 28" between rows Size of Plots:

Harvested Area per Plot for Root Yield: 4 rows x 26 feet

Samples for Sucrose Determination: 2 samples of 10 beets each taken at random from each plot

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1962 - Beans - 300# 6-24-12 with Manganese 1961 - Corn - 300# 5-20-20

1960 - Hay, Pasture - No fertilizer

Fertilization of Beet Crop: 700# 6-24-12 with Boron and Manganese

Black Root Exposure: None

Leaf Spot Exposure: Light

Other Diseases and Pests: None

Soil and Seasonal Conditions: Moist Seedbed - Generally good growing

conditions most of the year. Below normal moisture latter part of season

Reliability of Test: Good

Cooperator: F & M Beet Sugar Association - Michigan Sugar Company Year: 1963

Location: Harold Gremel farm, Sebewaing, Michigan Expt. 6

6 X 6 Latin Square

Variety	Acre Sugar Recoverable (a	Yield Gross lbs.	Roots Sucros	Clear Juice App. (c Leaf e Purity Spot	_
SL128msXSP5822-0 SL((122X128)X126)ms XSP5822-0	5954 5670 ₂	7324 7037	22.11 16.6 4 21.03 216.73	90.25 2	94 95
SP62100-0 SL126msXSP5460-0 SL122msXSP5460-0 SP5822-0	4666 6 5430 4 4693 5 5615 3	5968 6867 6040 7016	18.58 5 16.1 6 20.553 16.7 3 18.45 6 16.4 5 20.39 4 17.3 1		78 95 92 100
General Mean S.E.Var. Mean above as % Gen Mean LSD 5% Point	5310 407 (b	182	20.18 16.6 .56 .21 1.2.78 1.27 1.59 .6	89.63 .36 0.40 1.02	92 3.7 4.0

Latin Square Analys	is	Variance Table						
			Mean	Squares				
Source of Variation	:D/F: : : Gross : : Sugar	Roots	Sucrose:		: Beets : 100' : Row			
Between Rows Between Columns Between Varieties Remainder (Error) Total	1 5 : 1386949 1 5 : 1922292	: 14.2250: : 6.8989: : 12.2727: : 1.8935:	1.6496 : 1.0385 :	1.9028 : 2.0271 : 2.5546 : .7769 :	: 111 : 293 : 338 : 82			
Calculated F.value	:5/20: 9.70×1	· : 6.48**:	4.06* :	3.29*:	: 4.12**			

Standard footnotes (a,(b,(c, and (d, page 122.

M. R. Berrett Conducted by:

Location: Fred Ruegsegger farm, Kawkawlin, Michigan

Cooperation: F & M Beet Sugar Association - Monitor Sugar Divn.

April 18, 1963 Date of Planting:

October 18. 1963 Date of Harvest:

Experimental Design: 6 x 6 Latin Square

6 rows x 28' - 28" between rows Size of Plots:

Harvested Area per Plot for Root Yield: 4 rows x 26 feet

Samples for Sucrose Determination: 2 samples of 10 beets each

taken at random from each plot

Harvested beets counted when weighed Stand Counts:

Recent Field History: 1962 - Beans - 300# 3-12-12

1961 - Wheat - Seeded to Clover - 250# 5-20-20 1960 - Beans - 300# 3-12-12 Top Dressed

Fertilization of Beet Crop: 700# 5-20-20 65# N. Sidedressed

Black Root Exposure: None

Leaf Spot Exposure: Light

Other Diseases and Pests: None

Soil and Seasonal Conditions: Moist seedbed - Generally good

growing conditions most of the season. Below normal moisture latter part of

Reliability of Test: Excellent

Cooperator: F & M Beet Sugar Association - Monitor Sugar Divn.	Year: 1963
Location: Fred Ruegsegger farm. Kawkawlin, Michigan	Expt. 7
6 X 6 Latin Square	

Variety	Acre Sugar Recoverable (a	Recoverable (a Gross Roots Sucrose					
SL 128msXSP5822-0 SL((122X128)X126)ms XSP5822-0	7139 3 7367 1	8234 8503	22.29	18.5 2	93.28 1 93.23 2	85 92	
SP62100-0 SL126msXSP5460-0 SL122msXSP5460-0 SP5822-0	6539 6886 714 5 7218 7	7650 8054 7875 8419	21.99	17.8 6 18.3 4 18.0 5 18.3 4	92.65 5 92.75 4 92.50 4 92.93 3	87 86 93 87	
General Mean S.E. Var. Mean above as % Gen. Mean LSD 5% Point	6955 NS	8122 255 3.1 NS	22.27 .75 4 3.37 NS	18.2 .24 1.32 NS	92.89 .45 0.48 NS	88 3.1 3.5 NS	

Latin Square Analys:	Variance Table						
Source of Variation	: :	Gross Sugar	: Roots	: Sucrose		: Leaf : Spot	
Between Rows Between Columns Between Varieties Remain der (Error) Total	: 5:	1502472 641020	:2.0043	: .7777 : 1.4506 : .5550 : .3350	: .9600 : 1.7577 : .4956 : 1.1976	:	96 168 67 58
Calculated F. value	:5/20	NS NS	: NS	: NS	: NS	:	: NS

Standard footnotes (a,(b,(c, and (d, page 122.

Conducted by: M. R. Berrett

Henry Miller farm, Marlette, Michigan Location:

Cooperation: F & M Beet Sugar Association

Date of Planting: May 9, 1963

Date of Harvest: October 10, 1963

Experimental Design: 6 x 6 Latin Square

Size of Plots: 6 rows x 28' - 28" between rows

Harvested Area per Plot for Root Yield: 4 rows x 26 feet

Samples for Sucrose Determination: 2 samples of 10 beets each taken at random from each plot

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1962 - Pickles - 400# - 5-20-20 plus 150# 10-1010

1961 - Pickles - 300# - 5-20-20 1960 - Corn - 300# 6-24-12 Broadcast 100# 10-10-10 banded

Fertilization of Beet Crop: 350# - 6-24-12

Black Root Exposure: None

Leaf Spot Exposure: None

Other Diseases and Pests: None

Soil and Seasonal Conditions: Moist Seedbed - Generally good grow-

ing conditions most of the year. Below normal moisture latter part of season

Reliability of Test: Excellent Cooperator: F & M Beet Sugar Association

Year:1963

Location: Henry Miller farm, Marlette, Michigan

Expt. 8

6 X 6 Latin Square

Variety	Acre Sugar Recoverable (a	Gross		ucrose	Clear Juice App. (c Lea Purity Spo	t 100 ft.
	lbs.	lbs.	tons	%	%	No.
R5651 SL((122X128)X126)ms XSP5822-0	5233 6 6209 1	6869 7461	17.97 ³ 19.58 1		88.08 6	95 95
SP62100-0 SL126msXSP5460-0 SL122msXSP5460-0 SP5822-0	5436 5 5859 2 5544 4 5677 3	6752 7249 6808 6860	17.59 4 18.44 2 17.40 6 17.50 5	19.7	90.13 5 90.23 4 3 90.52 3 391.26 2	96 99 103 99
General Mean S.E. Var. Mean above as % Gen. Mean	5666	7000 20 ¹ 4 2.9	18.08 .42 1 2.32	19.4 .22		98 2.1 2.1
LSD 5% Point	NS	NS	1.18	NS	NS	NS

Latin Square Analysi	is		Varia	nce Table			
	:		Mean	Squares			
Source of Variation	:D/F: : : Gross : : Sugar	: Roots	: Sucrose	: : Purity :	: Leaf : Spot		
Between Rows Between Columns Between Varieties Remainder (Error) Total	: 5 : 1251289 : 5 : 490736 :20 : 249504 :35 :	:4.1691	: 3.0253 : .5091	: 7.4113 :18.9526 : 8.5819 : 7.6862	:	: 102 : 162 : 61 : 27	
Calculated F.value	:5/20: NS	: 4.00*	: NS	: NS	:	: NS	

Standard footnotes (a,(b,(c, and (d, page 122.

Conducted by: W. W. Snow

Location: Western Ontario Agricultural School, Ridgetown, Ontario

Cooperation: Canada & Dominion Sugar Co. Ltd.

Date of Planting: April 29, 1963

Date of Harvest: October 17, 1963

Experimental Design: Latin Square

Size of Plots: 4 rows x 20' x 24" between rows

Harvested Area per Plot for Root Yield: 2 rows x 16'

Samples for Sucrose Determination: 6 beets per plot

Stand Counts: All satisfactory

Recent Field History: 1962 - Oats - 600# 3-11-11

1961 - Corn - 1000# - 14-7-7

Fertilization of Beet Crop: 950# - 14-7-7

Black Root Exposure: None

Leaf Spot Exposure: None

Other Diseases and Pests: None

Soil and Seasonal Conditions: Dry Seedbed

Reliability of Test:

Good

W.O.A.S. AGRONOMIC EVALUATION TEST, SUGAR BEETS - 1963

STRAIN	TONS PER ROOTS : YIELD :	ACRE TOPS YIELD	SUGAR :	LBS. PER ACRE SUGAR
SL 126 ms X SP 5460-0 SL 128 ms X SP 5822-0 SL [(122X128) X 126 ms] XSP5822-0 SP 5822-0 SL 122 sm X SP5460-0 SP 62100-0	15.85 H: 14.91 5:	9.70 9.90 9.36 10.01 8.74 8.57	21.2 2	7459 I 6947 3 7146 2 6494 4 6119 5 5839 6
L.S.D. at 5% level L.S.D. at 1% level C.V.	1.50 : 2.04 : 7.8% :	0.97 8.8%		73 100 9.1%

Planting Date - April 29

Plot Length - 20' (16' x 2 rows harvested)

Row Width = 24"

Fertilizer Amount and Analysis - 950 lbs. 14-7-7

Seed Bed Condition - Dry

Previous Crop and Fertilizer History

1962 - Oats, 3-11-11 @ 600 lbs.

1961 - Corn, 14-7-7 @ 1000 lbs.

Harvest Date - October 17

October 25, 1963

Hancock Experimental Farm College of Agriculture University of Wisconsin Hancock, Wisconsin

REPORT OF 1963 SUGAR EEET TRIALS
Cooperating with Michigan State University
and USDA, ARS(1)

Four varieties were grown under irrigated conditions on Plainfield Loamy Sand Soil at the Hancock Experimental Farm, Hancock, Wisconsin.

Varieties: 1. SP62100-0 Monogerm, broad-base.

2. SL126 x SP5460-0 Monogerm Hybrid.

3. SL122 ■ SP5460-0 " "

4. SP5822-0 Multigarm (with high Cercospera resistance.)

Soil Test--P- 165 lbs./acre; K- 185 lbs./acre; pH - 6.5.
Planted--4/26/63 with belt seeder. Row width 28" - seed dropped approximately at 1" intervals, about 1" average depth.

Fertilizer applied --

4/26/63 Broadcast pre-plant - 550 1bs./acre 0-0-60.

Banded in row 3" deep, 165#/acre 8-16-16.

Side dressed applications--

6/11/63 - 250 lbs./acre 33-0-0.

7/9/63 - 300 lbs./acre 33-0-0 plus 10#/acre Borax.

Weed Control --

4/26/63 - Broadcast pre-plant 3 lbs./acre Tillam.(2) Disked in.

6/6/63 - Thinned to 12 to 15 plants in 10 feet.

7/9/63 - Hoed and hand weeded.

Harvested Oct. 21, 1963.

Sucrose Analysis - Oct. 24, 1963, by the American Crystal Sugar Co., Chaska, Minnesota(3) (15 beets per plot were sampled.)

1963 Sugar Beets, Hancock, Wisconsin. Yield in Tons per acre.
Replicate

Treatment	<u>I</u>	II	III	IV	<u>''</u>	VJ.	T	Ave 6 reps.
SP62100-0	25.0	25.9	34.2	24.1	25.3	29.0	163.5 3	27.2
SL126 x SP5460-0	29.8	30.3	30.4	27.8	26.9	25.6	170.8	28.5
SL122 = SP5460-0	31.6	25.7	27.9	26.7	26.8	26.4	165.1 2	27.5
SP5822-0	30.4	26.2	25.0	24.0	27.8	27.4	160.8	26.8

⁽¹⁾ George J. Hogaboam, Research Agronomist, USDA, ARS.

(3) D. R. Peterson, Plant Superintendent.

⁽²⁾ Tillam furnished by Stauffer Chemical Company.

1963 Sugar Beet Trials, Hancock Wisconsin

Sugar Beet Sucrose Analysis - Per Cent Sucrose. Replicate

Treatment SP62100-0	17.5	11 17.4	<u>III</u> 18.0	<u>IV</u> 18.5	V 18.4	VI 17.7	Total 107.5	Ave	. 6 reps.
SL126 x SP5460-0	18.3	19.6	18.3	18.4	17.8	18.4	110.8	1	18.5
SL122 x SP5460-0	18.0	18.2	18.1	18.4	18.5	17.6	108.8	3	18.1
SP5822-0	18.2	18.4	16.7	18.6	18.7	18.3	108.9	3	18.2

Irrigation Applied:	Date	Inches per scre
	6/3	1.3
	6/25	1.3
	6/29	1.3
	7/2	1.3
	7/6	1.3
	7/11	1.3
	7/1.7	1.3
	7/25	1.3
	7/31	1.3
	8/7	1.3
	8/16	1.3
	9/19	1.5
	12 applications	15.8 inches per erre total.

5/7/63 - Severe sand storm wind damaged and buried by drifting sand, plants in Reps. I, II and III.

Diseases - no evidence of Cerocospera. Rhizoctonia damage to scattered plants first noted on 7/22/53. Damage actually was not as great as it first appeared that it would be. No differences were noted between varieties as to degree of infestation.

Myron D. Groskopp, Supt. Hancock Experimental Farm

General Variety Test

Conducted by: Richard Zielke, H. L. Bush, R. K. Oldemeyer, and D. L. Sunderland

Location: Glenn Haas Farm, Fremont, Ohio

Cooperation: Northern Ohio Sugar Company

Date of Planting: April 27, 1963

Date of Harvest: October 14, 1963

Experimental Design: Triple Lattice

Size of Plots: 4 rows x 24 feet planted (28-inch rows)

Harvest Area per Plot for Root Yield: 4 rows x 18 feet

Samples for Sucrose Determinations: 2 samples per plot, each 1 row x 18 feet

Stand Counts and Bolter Counts: Beets counted in laboratory for harvest stand.

No bolters developed.

Recent Field History: Corn (1962)

Fertilization of Beet Crop: 400 pounds 0-25-25 plowed down

116 pounds N as anhydrous ammonia sidedressed on June 17

200 pounds 6-24-12 in row

Leaf Spot Exposure: Very light, late development

Black Root Exposure: Mild

Curly Top Exposure: None noted

Other Diseases: None noted

Soil and Seasonal Conditions: Good soil moisture conditions existed shortly after planting. Remainder of the summer was extremely dry.

Cooperator: Northern Ohio Sugar Company by Richard Zielke, H. L. Bush,

R. K. Oldemeyer and D. L. Sunderland

General Variety Test Location: Glen Haas Farm, Fremont, Ohio

Year: 1963

(Results given as 12 plot averages)

	Acre Yield			Thin		. (0	
	Recover-	gar		_	Juice App.	Leaf	Beets (e
Variety	able (a (lbs.)	Gross (lbs.)	Roots (tons)	Sucrose (%)	Purity (%) (10		100 ft. (No.)
SP5822-0 SP5481-0 SP62100-0.	5676 1 5575 2 4859 3	6309 6280 5580	15.51 / 15.43 ² 13.69 ³	20.34 3 20.35 3 20.38 3	95.06 / 94.41 2 93.50 3	0.2 0.3 0.0	144 150 143
General Mean(f S.E. Variety Mean (Sm Sm/Gen. Mean (%) LSD 5% pt.	5354) - 254(b	6054 344.11 1.64 287	14.81 1.9294 1.58 0.67	20.44 .0933 0.46 0.27	94.23 .1923 0.20 0.55	0.3	142

Variance Table (c

		Mean Squares			
Source of Variance	DF	Roots	Sucrose	Purity	
		(lbs.)(h	(%)	(%)	
Replicates	11	164.3109	.3018	•7264	
Component (a)	18	49.3128	.1172	•4322	
Component (b)	6	30.5950	.1067	•4433	
Blocks (eliminating varieties)	24	44.6333	.1146	•4350	
Varieties (ignoring blocks)	8	1813.2300	1.2100	7.8163	
Error (Intra-block)	64	44.6817	.1008	•4470,	
Error (Random Block)	88	44.6685 (g	.1045 (g	.4438 (g	
Total	107	189.1971	.2075	1.0240	
Calculated F value		40.59**	11.58**	17.61**	

(a, (b, (c See page 11,8.

(d 0 = no evidence of disease, 10 = complete necrosis due to leaf spot

(e Harvest stand

(f General mean for 9 varieties in test

(g Error term used (h Pounds per plot

General Variety Test

Conducted by: Richard Zielke, H. L. Bush, R. K. Oldemeyer, and D. L. Sunderland

Location: Kenneth Krauss Farm, Findlay, Ohio

Cooperation: Northern Ohio Sugar Company

Date of Planting: April 18, 1963

Date of Harvest: October 2, 1963

Experimental Design: Triple Lattice

Size of Plots: 4 rows x 22 feet planted (22-inch rows)

Harvest Area Per Plot for Root Yield: 4 rows x 18 feet

Samples for Sucrose Determinations: 2 samples per plot, each 1 row x 18 feet

Stand Counts and Bolter Counts: Beets counted in laboratory for harvest stand.
No bolters developed.

Recent Field History: Corn (1962)

Fertilization of Beet Crop: 100 pounds N, 180 pounds P205 and 120 pounds K20 plowed down.

150 pounds 6-24-12 in row.

Leaf Spot Exposure: Mild, late development

Black Root Exposure: Mild

Curly Top Exposure: None noted

Other Diseases: Rhizoctonia crown rot caused slight loss in stands.

Soil and Seasonal Conditions: Extremely dry weather was encountered throughout the growing season.

Cooperator: Northern Ohio Sugar Company by Richard Zielke, H. L. Bush,

R. K. Oldemeyer and D. L. Sunderland General Variety Test

Location: Kenneth Krauss Farm, Findlay, Ohio

Year: 1963

(Results given as 12 plot averages)

	Acr	e Yield			Thin Juice	Beets(e	
Variety	Recover- able(a (lbs.)	Gross (lbs.)	Roots (tons)	Sucrose (%)	Purity		per 100 ft. (No.)
SP5481-0 SP5822-0 SP62100-0	5916 5749 2 5185 3	6842 6508 5991	16.50 l 15.42 1 14.29 3	20.73 3 21.10 1 20.96 2	93.17 ³ 94.17 ¹ 93.22 ³	0.8	170 169 148
General Mean ^(f) S.E. Variety Mean (Sm) Sm/Gen. Mean (%) LSD 5% pt.	5677) - 1 - 418(b	6577 67.69 2.55 4.84	15.71 3.2767 2.43 1.10	20.95 .1523 0.76 0.46	93.09 .3646 0.39 1.05	0.9	156 - -

Variance Table (c

Source of Variance	DF	(Roots)(h	Sucrose (%)	Purity (%)
Replicates Component (a) Component (b) Blocks (eliminating varieties) Varieties (ignoring blocks) Error (Intra-block) Error (Random Block) Total Calculated F value	11 18 6 24 8 64 88 107	920.1409 62.7839 72.9517 65.3258 1211.2025 64.1023 64.4360(g 238.1452 18.80*	2.7091 .3500 .4733 .3808 1.6788 .2781(g .3061 .6558 5.48*	7.0582 .9550 .9417 .9517 10.4975 1.8369 1.5955(g 2.8226 6.58*

(a, (b, (c See page 148.

(d 0 = no evidence of disease, 10 = complete necrosis due to leaf spot

(e Harvest stand

(f General mean for 9 varieties in test

(g Error term used

(h Pounds per plot

AGRONOMIC EVALUATION TEST, 1963

General Variety Test

Conducted by: Richard Zielke, H. L. Bush, R. K. Oldemeyer, and D. L. Sunderland

Location: George Riehm Farm, Old Fort, Ohio

Cooperation: Northern Ohio Sugar Company

Date of Planting: April 17, 1963

Date of Harvest: November 1, 1963

Experimental Design: Triple Lattice

Size of Plots: 4 rows x 24 feet planted (28-inch rows)

Harvest Area per Plot for Root Yield: 4 rows x 18 feet

Samples for Sucrose Determinations: 2 samples per plot, each 1 row x 18 feet

Stand Counts and Bolter Counts: Beets counted in laboratory for harvest stand.

No bolters developed.

Recent Field History: Tomatoes (1962)

Fertilization of Beet Crop: 100 pounds N

80 pounds P205 Broadcast and plowed down

255 pounds K20

150 pounds 6-24-12 in row

Leaf Spot Exposure: Moderate, September development

Black Root Exposure: Mild

Curly Top Exposure: None noted

Other Diseases: Rhizoctonia crown rot caused loss in stands

Soil and Seasonal Conditions: Extremely dry weather conditions persisted all summer.

Light showers were received in September. Good soil moisture conditions existed shortly after planting.

Cooperator: Northern Ohio Sugar Company by Richard Zielke, H. L. Bush,

R. K. Oldemeyer and D. L. Sunderland General Variety Test

Location: George Riehm Farm, Old Fort, Ohio Year: 1963

(Results given as 12 plot averages)

	Acre	Yield		Thin				
Variety		ross Roots lbs.) (tons)	Sucrose (%)		Leaf S	pot (d 26/63)	Beets per 100 ft. (No.)	
SP5822-0 SP5481-0 SP62100-0	7604 2 8	671 22.79	18.973 19.021 19.281	93.892:	1.1 2	2.1	134 152 140	
General Mean (f S.E. Variety Mean (Sm) Sm/Gen. Mean (%) LSD 5% pt.	- 184 - 2	247 21.66 .38 3.4505 .23 2.06 532 1.29	19.01 .1648 0.87 0.48	93.53 .1959 0.21 0.57	0.9 1 - -	.•7 - -	139	

Variance Table (c

		M	dean Squares	
Source of Variance	DF	Roots (h	Sucrose	Purity
		(lbs.)(h	(%)	(%)
Replicates	11	87.0682	•9936	5.3018
Component (a)	18	133.5606	.3511	.4206
Component (b)	6	129.3100	.1467	• 3350
Blocks (eliminating varieties)	24	132.4979	3000	-3992
Varieties (ignoring blocks)	8	5592.0612	2.2125	15.5500
Error (Intra-block)	64	146.0788	•3356,	.4833
Error (Random Block)	88	142.3749(8	.3259 ^{(g}	.4603(g
Total	107	544.1423	•5356	2.0863
Calculated F value		39.28**	6.79**	33.78**

(a, (b, (c See page 148.

(d 0 = no evidence of disease, 10 = complete necrosis due to leaf spot

(e Harvest stand

(f General mean for 9 varieties in test

(g Error term used (h Pounds per plot

(a Recoverable Sugar

A technique, whereby thin juice purity could be determined from small samples, was first used in 1953, following methods developed in the G. W. Research Laboratory at Denver. Using the resultant purity figure, a calculated "Recoverable Sugar" is obtained. An example of the calculation is as follows:

Sugar in beets = 12.00% Standard total losses = 0.30% Sugar on beets at sugar end - 12.00 - 0.30 = 11.70%

Assume standard molasses purity = 62.5% 100.0 - 62.5 = 37.5% Impurities on solids in molasses

 $\frac{62.5}{37.5}$ = 1.6667% Sugar on impurities in molasses

Sugar sacked
85% purity thin juice = 15% impurities

15 = 17.6471% impurities on sugar

Sugar end = 11.70 = 17.6471% = 2.06471% on beets Molasses produced = $2.06471 \times 1.66667 = 3.4413\%$ on beets Sugar sacked = 12.00 - (0.30 + 3.4413) = 8.2587%

Recoverable sugar = $\frac{8.2587}{12.00}$ = 68.82%

- (b Approximation Calculated as percentage of "difference required for significance for "gross" sugar on basis of relationship between general means for "Gross" and "Recoverable" sugar.
- (c Gross sugar calculated from the formula:

Section 2. Evaluations of Breeder Seed, Inbred Lines, and Experimental Hybrids

The need for further improvement in monogerm varieties and hybrids in the Great Lakes region impels a continuing search for suitable and more desirable basic breeding material. Several centers of sugarbeet breeding (mostly U.S. Department of Agriculture) have made available entries for evaluations. Most of the breeding material was developed by G. E. Coe or supplied from other sources through the Farmers & Manufacturers Beet Sugar Association.

The tests at Ft. Jennings, Ohio, and Merrill, Michigan, were conducted by M. R. Berrett, F.& M, with clear juice purity determination by M. G. Frakes, Michigan Sugar Co. (p. 122), and analysis of variances by G. J. Hogaboam. Tests at Fremont and Old Fort, Ohio, were the full responsibility of the Northern Ohio Sugar Co. The descriptions of the various entries in the several tests are given on page 151. The results of individual tests are given on pages 152-160.

Results: The multigerm variety SP 5822-0, which occurs as an entry in all of these tests as well as in tests given in Section 1 (p. 121), may be taken as a standard for judging relative performances of the entries. The multigerm variety SP 5481-0, which occurs in the Ft. Jennings and Merrill tests (p. 160), is related to and essentially equivalent in productivity to US 401, a multigerm variety formerly used in the region. In these tests the average performances of SP 5822-0 and SP 5481-0 were very similar, except that SP 5822-0 was more resistant to leaf spot.

The field tests of the Northern Ohio Sugar Co. (p. 152) confirm the excellent quality (thin juice purity) of SP 5822-0. It will be noted that SP 6122-0 and SP 61151-0, which have been derived from SP 5822-0, show the excellent quality of their progenitor. Thus with the same quantity of gross sugar per ton of roots these high quality varieties would give higher sugar recovery than varieties of lower quality. The progenitive tendency of the excellent quality characteristic of SP 5822-0 and SP 61151-0 has been mentioned in Sections 1 and 3 of this report.

The purity coefficients of hybrids 62B1 X 05 and 62B2 X 05, which have EL 32C1 as the female parent but SP 5822-0 and 02 clone, respectively, as pollinators, indicate that the 02 clone also is an excellent pollinator.

SP 5944-0, which was derived from a Russian monogerm variety (p. 389), was hybridized with American monogerm lines to produce the three hybrids SP 623359-02, -010, and -012. In the tests conducted by the Northern Ohio Ohio Sugar Co. (p. 152), these hybrids were intermediate in productivity. In the Merrill test (p. 156), the -012 hybrid produced the highest yield of roots and gross sugar of the 36 entries.

The line SP 623000-0, which derived its monogermness from an accession of Beta maritima (p. 384), was hybridized with three monogerm lines to produce

hybrids SP 623000-02, -011, and -013. The root yield and sugar production of these hybrids in the Merrill test were significantly lower than for the commercial hybrid SL 126ms X SP 5460-0, but in the Ft. Jennings test (p.158) the hybrids SP 623000-011 and -013 did not differ significantly from the commercial check in these categories of comparison. The maritima hybrids were more resistant to leaf spot than the check.

The entries in these tests provide certain comparisons between diploid and triploid hybrids. In the summary of the F & M tests (p.160), the triploid hybrid SP 623356-04 ranks highest in gross sugar production, but other triploid hybrids do not rank so favorably. For example, the triploid hybrid F 61-562HO X US 401 (4n) ranks 13th in the list of 36 and has gross sugar production numerically below that of SP 5481-0 or SP 5822-0.

In general, these tests serve to give preliminary indication of breeding material of superior potentialities for the region, but further hybridizations and evaluations are required before utilization of specific entries or hybrid combinations of parental material is recommended.

DESCRIPTION OF LINES IN MISCELLANEOUS FIELD TRIALS OF 1963

```
Monogerm male-sterile lines used in the production of hybrids:
SL 122ms - resistant to curly top.
SL 126ms -
                    do .
SL 128ms -
                    do .
SL 129ms -
                    do .
SL 133ms -
                    do .
SL (122 X 127)128)129)ms - resistant to curly top.
CT5 mm ms - resistant to curly top.
F60-569HO - resistant to curly top and bolting.
F61562 - inbred; resistant to curly top and bolting.
(AI-10 X AI-12) - furnished by Amalgamated Sugar Co.
SP 6223-0X - male sterile or F1 male sterile with some resistance to leaf spot
               and black root.
SP 6224-0X -
                    do.
SP 6225-0X -
                    do .
SP 557ms -
                    do .
                           (Isolated and supplied by U-I Sugar Co.)
Pollen-fertile lines used in the production of monogerm hybrids:
6045 sel - Utah-Idaho selection from LSR-BRR monogerm synthetic.
UI 160 - pollen-fertile line of U-I Sugar Co.
SL 010 - selection for curly top resistance from US 201B multigerm.
SL 0410 - differs from SL 010 only in number of Mendelian male-sterile segregants.
02 Clone - multigerm; resistant to leaf spot and black root.
US 401 4n - US 401 tetraploidized by Helen Savitsky.
SP 5460-0 - multigerm; leaf spot and black root resistant.
SP 6180-0 - multigerm synthetic, leaf spot and black root resistant.
SP 5822-0 - multigerm synthetic with good resistance to leaf spot and tolerant to
              black root.
SP 6122-0 - multigerm selected from SP 5822-0 for yield and leaf spot resistance.
SP 61151-0 -multigerm selected from SP 5822-0 for purity and leaf spot resistance.
SP 6256-0 - multigerm synthetic resistant to leaf spot and black root.
62B25-0 - selection from US 401 multigerm by H. L. Kohls.
62B26-0 -
            leaf spot resistant multigerm selection by H. L. Kohls.
Other varieties in the tests:
SP 62100-014 - open-pollinated monogerm; leaf spot and black root resistant.
SP 62100-030 -
                            do.
SP 62100-055 -
                            do.
SP 62100-0 - pooled seed of the above and other similarly related lines.
62B1X05 - monogerm hybrid EL32C1 X 02 clone (see above).
62B2X05 - monogerm hybrid EL32C<sub>1</sub> X SP 5822-0 (see above).
62B1X09 - monogerm hybrid SP 6123-01 X 02 clone (see above).
       - monogerm hybrid furnished by U-I Sugar Co.
SP 603000-0 - open-pollinated pollen-fertile monogerm derived from B.maritima source.
SP 623000-02 - monogerm hybrid SP 6020-05mmMS X SP 603000-0 (described above.)
SP 623000-011- monogerm hybrid SP 601152H01mmMS X SP 603000-0 (described above).
SP 623000-013- monogerm hybrid SP 601159H01mmMS X SP 603000-0 (described above).
SP 603102-0 - tetraploid pollen-fertile multigerm resistant to leaf spot and black root.
SP 603107-0 - tetraploid pollen-fertile multigerm resistant to leaf spot and black root.
SP 623356-04 - triploid monogerm hybrid SP 6123-01mmMS X SP 603102-0 (described above).
SP 623356-05 - triploid monogerm hybrid SP 6124-01mmMS X SP 603102-0 (described above).
SP 623357-013- triploid monogerm hybrid SP 601159H01mmMS X SP 603103-01 4n MM PF
                 resistant to leaf spot and black root.
SP 623358-04 - triploid monogerm hybrid SP 6123-01mmMS X SP 603107-0 (described above).
SP 623358-07 - triploid monogerm hybrid SP 6125-01mmMS X SP 603107-0 (described above).
             - open-pollinated monogerm (Russian source) selected for tolerance to
SP 5944-0
                 leaf spot.
SP 623359-02 - monogerm hybrid SP 6020-03mmMS X SP 5944-0mm PF (described above).
SP 623359-010- monogerm hybrid FC 502CMSmm X SP 5944-0mm PF (described above.
SP 623359-012-, monogerm hybrid SP 601158H01mmMS X SP 5944-0mm PF (described above).
SP 623360-010- monogerm hybrid FC 502CMSmm X SP 6061-0mm PF synthetic variety in
                 field trials in 1961.
```

AGRONOMIC EVALUATION TEST, 1963

Miscellaneous Variety Test

Conducted by: Richard Zielke, H. L. Bush, R. K. Oldemeyer and D. L. Sunderland

Location: Glenn Haas Farm, Fremont, Ohio

Cooperation: Northern Ohio Sugar Company

Date of Planting: April 26, 1963

Date of Harvest: October 7, 1963

Experimental Design: Triple Lattice

Size of Plots: 1 row x 24 feet planted (28-inch rows)

Harvest Area per Plot for Root Yield: 1 row x 18 feet

Samples for Sucrose Determinations: 1 sample per plot; 1 row x 18 feet

Stand Counts and Bolter Counts: Beets counted in laboratory for harvest stand.

No bolters developed.

Recent Field History: Corn (1962)

Fertilization of Beet Crop: 400 pounds 0-25-25 plowed down

116 pounds N as anhydrous ammonia sidedressed on June 17

200 pounds 6-24-12 in row

Leaf Spot Exposure: Mild, late development

Black Root Exposure: Mild to moderate

Curly Top Exposure: None noted

Other Diseases: None noted

Soil and Seasonal Conditions: Extremely dry weather throughout the summer.

Favorable moisture conditions did exist during

the seedling stage.

Cooperator: Northern Ohio Sugar Company by Richard Zielke, H. L. Bush,

R. K. Oldemeyer and D. L. Sunderland

Miscellaneous Variety Test

Location: Fremont, Ohio Year: 1963

(Results given as 12 plot averages)

	Acr Sug	e Yield ar			Thin Juice	(2	Beets(e
Variety	Recover- able(a (lbs.)	Gross (lbs.)	Roots (tons)	Sucrose (%)	App. Purity (%) (1		100 ft.
62B2 x 05 62B1 x 05 SP623356-04 SP623356-05 SP623358-07 62B1 x 09 SP623359-02 SP623359-010 SP623359-010 SP623359-012 SP6122-0 SP61256-0 SP61151-0 SP5822-0 SP6180-0 SP623000-02 SP623000-013 SP623000-011	5947 5947 5942 5919 5892 5726 5539 5482 5455 5430 5090 5090 4959 4959 4966 4555 4266 3917	7178 6832 6852 6894 6790 6648 6255 6439 6277 6321 5716 5616 5520 5472 5251 5243 4895 4546	18.52 17.42 3 17.01 6 17.56 1 17.12 4 17.10 5 15.52 10 16.62 7 15.85 9 16.47 14.46 11 13.57 13.64 14 13.54 11 13.76 13 12.25 11 11.23 18	19.38 S 19.61 20.14 19.63 8 19.83 8 19.44 2 20.15 4 19.37 8 19.80 9 19.19 7 19.93 7 19.42 3 20.06 5 19.39 4 19.05 8 19.98 6 20.24 2	93.32/3 93.51 8 93.31/3 92.88/7 93.34/3 93.02/5 94.29 5 92.50/8 93.41/0 94.56 4 94.68 3 94.99 2 95.10 1 93.87 6 93.53 8 93.01/5	0.8 1.2 0.7 0.6 0.9 0.8 1.2 1.5 0.6 1.2 0.0 0.3 0.0 0.2 0.3 1.5 0.9	126 137 112 117 106 98 113 103 100 106 120 142 126 119 119 118
General Mean(f S.E. Variety Mean (Sm) Sm/Gen. Mean (%) LSD 5% pt.	4897 - 2 601(b	5632 37.05 4.21 691	14.13 1.1992 4.11 1.69	19.93 .1828 0.92 0.54	93.43 .3359 0.36 0.90	0.6	116

Variance	Table	C

			Mean Squares	
Source of Variance	DF	Roots,	Sucrose	Purity
		(lbs.)(h	(%)	(%)
Replicates	11	18.8136	1.5382	6.8700
Component (a)	45	39.8558	1.3718	2.5244
Component (b)	15	32.4507	•6900	1.6193
Blocks (eliminating varieties)	THE RESERVE AND PERSONS ASSESSED.	38.0045	1.2013	2.2982
Varieties (ignoring blocks)	35	250.6897	2.4360	5.3194
Error (Intra-block)	325	17.2571 (g	.4008(g	1.3537 (g
Error (Random Block)	385	20.4905	•5256	1.5009
Total	431	39.1413	•7065	1.9480
Calculated F Value		14.53**	6.08**	3.93**

(a, (b, (c See page 148. (d O = no evidence of disease, 10 = complete necrosis due to leaf spot (e Harvest stand

(e Harvest stand (f General mean for 36 varieties in test

(g Error term used h Pounds per plot

AGRONOMIC EVALUATION TEST, 1963

Miscellaneous Variety Test

Conducted by: Richard Zielke, H. L. Bush, R. K. Oldemeyer and D. L. Sunderland

Location: George Riehm Farm, Old Fort, Ohio

Cooperation: Northern Ohio Sugar Company

Date of Planting: April 16, 1963

Date of Harvest: November 1, 1963

Experimental Design: Triple Lattice, 12 replicates

Size of Plots: 1 row x 24 feet planted (28-inch rows)

Harvest Area per Plot for Root Yield: 1 row x 18 feet

Samples for Sucrose Determinations: 1 sample per plot, 1 row x 18 feet

Stand Counts and Bolter Counts: Beets counted in the laboratory for harvest

stand. No bolters developed.

Recent Field History: Tomatoes (1962)

Fertilization of Beet Crop: 100 pounds N, 80 pounds P205 and 255 pounds K20

plowed down.

150 pounds 6-24-12 in row.

Leaf Spot Exposure: Moderate, September development

Black Root Exposure: Mild

Curly Top Exposure: None noted

Other Diseases: Rhizoctonia crown rot caused some loss in stands.

Soil and Seasonal Conditions: Extremely dry weather prevailed through the summer. Adequate moisture was received for

the germination and seedling stages of growth.

Cooperator: Northern Ohio Sugar Company by Richard Zielke, H. L. Bush, R. K. Oldemeyer and D. L. Sunderland

Miscellaneous Variety Test

Location: Old Fort, Ohio Year: 1963

(Results given as 12 plot averages)

<u>Variety</u>	Acr Sug Recover- able(a (lbs.)	e Yield ar Gross (lbs.)	Roots (tons)	Sucrose	Thin Juice App. Purity (%) (1	Leaf	Beets(e per OO ft. (No.)
SP623358-04 SP623356-05 62B1 x 09 SP623356-04 62B2 x 05 62B1 x 05 SP623358-07 SP623359-012 SP623359-010 SP6122-0 SP61151-0 SP5822-0 SP623359-02 SP623359-02 SP623000-011 SP623000-013 SP623000-02	9948 9475 2 9179 3 9090 4 8859 5 8675 6 8503 7 8456 8 8405 9 8338 8332 8270 8139 8139 8012 7890 7214 7085 6276 62	11495 11097 10531 10568 10250 10209 10127 10073 9865 9431 9460 9873 9358 9057 8817 8331 7548	30.23 30.06 2 27.37 6 28.18 3 27.57 5 27.01 8 27.59 5 26.90 9 25.78 10 24.70 4 25.16 3 25.24 1 27.07 8 25.14 3 24.57 5 23.69 6 22.49 7 21.11 8	19.01 H 18.46/4 19.24 1 18.75 6 18.59 12 18.90 5 18.35/6 18.72 7 19.13 2 19.09 3 18.74 8 18.74 8 18.24/7 18.61 II 18.43/5 18.61 II 18.52/3 17.88 8	93.27 6 92.69 10 93.60 5 92.99 8 93.24 7 92.45 13 91.95 15 92.57 11 94.27 2 93.77 3 91.20 18 92.81 1 93.61 5 90.86 16 92.51 12 91.75 17	0.9	114 126 119 114 130 146 106 112 137 138 117 145 145 147 124
General Mean(f S.E. Variety Mean Sm/Gen. Mean (%) LSD 5% pt.	7697 (Sm) - - 770(b	9054 326.96 3.61 906	24.08 1.6020 3.45 2.30	18.81 .2007 1.07 0.56	92.47 .3853 0.42 1.07	1.3	L30 - -

	Varian	ce Table(c	ean Squares	
Source of Variance	DF	Roots (h	Sucrose (%)	Purity (%)
Replicates Component (a) Component (b) Blocks (eliminating varieties) Varieties (ignoring blocks) Error (Intra-block) Error (Random Block) Total Calculated F Value	11 45 15 60 35 325 385 431	101.5482 22.7136 28.3927 24.1333 578.6731 32.0274 30.7972 (g 77.0940 18.79**	1.5500 .5784 .9353 .6677 2.2391 .4491 .4832(g .6530 4.63**	13.9909 1.5987 2.1107 1.7267 11.4683 1.7916 1.7815(g 2.8797 6.44**

(a, (b, (c See page 148. (d O = no evidence of disease, 10 = complete necrosis due to leaf spot (e Harvest stand

(f General mean for 36 varieties in test

(g Error term used (h Pounds per plot

AGRONOMIC EVALUATION TEST

Conducted by: M. R. Berrett

Location: Detroit Stake Farm, Merrill, Michigan

Cooperation: F & M Beet Sugar Association - Michigan Sugar Company

Date of Planting: April 13, 1963

Date of Harvest: October 1, 1963

Experimental Design: 6 x 6 Triple Lattice

Size of Plots: 6 rows x 20' - 30" between rows

Harvested Area per Plot for Root Yield: 4 rows x 18'

Samples for Sucrose Determination: 2 samples of 6 beets each taken consecutively from the outside

harvested rows

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1962 - Corn - 400# 6-24-12

1961 - Corn - 400# 6-24-12 1960 - Beets - 500# 6-24-12

Fertilization of Beet Crop: 400# 5-20-20 broadcast; 300# 10-20-10 plus

Boron and Manganese at planting time

Black Root Exposure: None

Leaf Spot Exposure: None

Other Diseases and Pests: None

Soil and Seasonal Conditions: Moist Seedbed - Generally good growing

conditions most of the year. Below normal moisture latter part of season

Reliability of Test: Good

Cooperator: F. & M. Beet S		-411 MA	hd one		177	ent e
Location: Detroit Stake 6 X 6 triple lattice and					E:	cpt.:
					ear	
	Acre yield	-			ice	Bee
		a			p. (c Lea:	_
	Recoverab.	Le Gross	Roots S	ucrose Pu		100
	lbs.	lbs.	tons		%	No
SL133 X SP5460-0	5046	7890	23.27 8		2.77	80
CT5 X SP5460-0	53979	8006	23.745	16.810 8		93
122X127)128)129)msXUI160	5883	8164	23.745	17.33 8	6.0114 -	95
SL128 X SP6045sel.	5422 7	7420	22.35	16.615 8	6 60 0	94
SL128 X SL010	5691 4	7890	21.96		6.15	91
		1	22.47			-
SL129 X SL010	4981	7622		17.06 8	3.21	91
SL128 X SL0410	4865	7375	21.08	17.528	3.51	96
R5651	5390 10	7451	21.88	17.058	6.39 11	75
(AI-10XAI-12)msXUS401 4m	5085	7107	21.92		6.0813	88
SP557ms X US401 4n	5251/1	7141	21.40	16.7128		84
F60-569HO X US401 4n	5072	7492	22.9312		4.37	75
F61-562HO X US401 4n	5104/1	7448	23.66 6	15.8 8	4.57	78
SL126ms X US 401 4n	4959	7433	22.97 11	16.1 8	4.03	. 83
SL122ms X US401 4n	5341 11	7014	21.34		8.21 /	86
F61-562 X SP5460-0	4817	7127	22.41		4.27	87
(AI-10XAI-12)msXSP5460-0	57152	7496	22.53	16.712 8		89
SP557ms X SP5460-0	5181 [3	6967	21.58		7.18 3	87
	5417 8		21.70	16.5178		93
SP62100-030		7179				
SP62100-014	5032	7401	23.50 7		4.54	79
EP621C0-055	513414	7281	23.09 7		5.50	80
SP623000-011	4286	6025	19.68		5.88	55
SP623000-013	4166	6375	19.95		3.27	62
SP623000=02	4019	5953	18.44		4.31	53
8P623356=04	4819	8072	25.012	16.1 8	0.95	63
SP623356=05	5029	71.81	24.063	15.0 8	5.22	49
SP623357-013	2975	4571	15.15		3.20	32
SP623359-010	5443 6	7411	21.64	17.14 8	6.89 6	60
SP623359-012	4839	8239	25.671		0.51	82
SP623359-02	4542	7025	21.76		3.08	61
SP623360-010	4155	5935	17.97	16.5178		
2100 A CDC//CO O						50
SL122 X SP5460-0	5551 5	7569	22.81/4			86
SP5822=0	4874	7591	22.9113	16.6158	2.75	87
SP5481-0	5069	7311	22.9711	15.9	5.06	70
62B26-0	4249	5852	18.92	15.5 8	16.45 10	90
62B25=0	57083	7486	22.20		8.08	89
SL126 X SP5460-0	5104 %	7328	21.70		5.11.	78
					,	
General Mean	5004	7190	21.95		5.09	
S.E. var. mean		326			1.92	3
above as Gen. Mean	(3)	4.53	3.65	2.38	2.26	4
Diff. for Sig. (odds 19:1)	634 (b	911	2.95	1.1	NS	11
Random Block Analysis		,	/ariance	l'able		
Random Block Analysis		1	Variance	lable .		
			Mean Squa	ares		
Source of variation D/F	;			1.	: 1	Beets
: :	Gross :	Roots	Sucrose	: Purity	Leaf:	100
1 1	augar ;			:	;Spot;	Row
1 1				1	: 1	
Between replications; 5:	217122:	5.8329	. 5797	: 83.1455		500
	2252402	24.4973	2.5486	: 21.8550		1489
Between varieties : 35:						2.102
	639740;	3.8614	.9064	; 22.1010		88
Between varieties : 35:						

AGRONOMIC EVALUATION TEST

Conducted by: M. R. Berrett

Location: Clyde McKanna farm, Ft. Jennings. Ohio

Cooperation: F & M Beet Sugar Association, Buckeye Sugars, Inc.

Date of Planting: April 15, 1963

Date of Harvest: October 22, 1963

Experimental Design: 6 x 6 Triple Lattice

Size of Plots: 6 rows x 20' - 36" between rows

Harvested Area per Plot for Root Yield: 4 rows x 18 feet

Samples for Sucrose Determination: 2 samples of 10 beets each taken consecutively from the outside harvested rows

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1962 - Corn 300# 6-24-12 100# N. Sidedressed 1961 - Tomatoes 800# 5-20-20 60# N. Sidedressed 1960 - Beets 300# 6-24-12 80# N. Sidedressed

Fertilization of Beet Crop: 300# 6-24-12 with Manganese and Boron

Black Root Exposure:

80# N. Sidedressed None

Leaf Spot Exposure:

Moderate

Other Diseases and Pests:

None

Soil and Seasonal Conditions: Moist seedbed - Below normal moisture

throughout season

Reliability of Test:

Good

Cooperator:	F.	33	7.1	Beet.	Sugar	Assn.	28	Buckeye	Sugars.	Inc.	Year: 1963
LOODETH LOT	F 0	CC	1.7 .	1000	D - 1 - C- L	Wooll .	100	Tucker 1 c	out the ore		

Location: Clyde McKanna farm. Ft. Jennings, Ohio
6 X 6 triple lattice analyzed as a random block

Expt.: 12

_	A	ere Yie	d		Clear		
-		jar	-		Juice		Beets
	Recover.		5		App.	Leaf	per 100'
<u> </u>	lbs.	Gross	tons	Sucrose	Purity c)	Spot	No.
SL133 X SP5160-0	108.	80686		020.420		2.50	100
CT5 X SP5460-0			20.67	121.63	90.82 3	2.50	104
SL(((122X127)128)129)msXVI16	50	7966 11	18.94		89.95 9	3.33	101
SL128 X SP6045sel.		7202	17.01		90.44	3.83	107
SL128 X SL010		781914	17.97		91.12 2	4.17	107
SL129 X SL010		792313			91.40 /	4.00	99
SL128 X SL0410		7311	17.34		90.73 4	3.83	116
R5651		7664	18.64		89.2122 -	3.17	87
(AI-10XAI-12)msXUS401 4	in.	7672	19.83		87.97	3.17 2.83	100 98
SP557ms X US401 4n F60-569H0 X US 401 4 n		7531	18.76		88.50	3.00	89
F61-562HO X US401 4n		780315			88.21	2.50	88
SL126ms X US401 4n		7566	18.40	20.614		3.17	100
SL122ms X US401 4n		7534	17.85		89.4217	3.67	110
F61-562 X SP5460-0		798310			88.97	2.00	91
(AI-10XAI-12)mgXSP5460-	•0			1421.34	89.32 18	2.83	100
SP557ms X SP5460-0		7636	18.12	21.1		2.83	99
SP62100-030		794213	18.92	21.0	88.75	1.33	96
SP62100-014		7378	19.13	20.4 2	89.52 15	1.93	93 88
SP62100-055 SP623000-011		7569	18.32			1.93	76
SP623000=013		7094	17.33	20.516	88.34	2.17	72
SP623000-02		6274	16.00		87.72	2.00	53
SP623356-04		9131/	22.17	20.712	89.7814	1.67	86
£P623356-05	-	-776116			87.65	1.33	62
SP623357-013		5218	14.55	17.9	87.05	2.00	32
SP623359-010					89.2470	2.17	74
SP623359-012		81104	20.22	No.	86.66	2.17	87
SP623359-02		7037	18.30	19.3	87.03	3.33	65
SP623360-010 SL122 X SP5460-0		6111 7398	14.97	20.420	88.86	2.83	62 95
SP5822-0		7690	18.39		90.09 8	1.17	102
SP5481-0		80587	19.86		89.23 1	2.00	94
62B26=0		6277	15.36	20.410	89.86 11	1.17	89
62B25-0		80745	20.03		89.50 16	1.33	89
SL126 X SP5460-0		7684	19.24		89.03 24	3.33	88
General Mean		7594	18.58	20.4	89.20	2.50	89
S.E. var. mean		343	.85	.33		.21	3.8
above as % Gen. Mean	-31		4.57	1.62		8.40	4.3
Diff. for Sig. (odds 19	1:1)	959	2.37	0.9	(0	0.59	11

Random Block Analys	is		Va	ariance Ta	able			
			1	Mean Squar	res			
Source of Variation	:D/F:		:		:	:	:	Beets
	: :	Gross	: Roots	: Sucrose	:	Purity:	Leaf :	100
	: :	Sugar	:		:	:	Spot :	Row
	: :		•		:	;	:	
Between replication	s: 5:	1244977	: 5.5376	: 3.6109	:	(0;	.28:	556
Between varieties	: 35:	3199301	:15.1828	: 3.5484	:	:	4.62:	1791
Remainder - Error	:175:	707737	: 4.3106	. 6669	:	:	.27:	89
Total	:215:		:	•	:	:	:	
Calculated F.value	35/175	4.52**	: 3.52**	5.32**	:	:	17.11*	*: 20.12*

^{•)} Too many missing plots for analysis of variance. Data reported as averages of from 4 to 6 plots.

Location: Merrill, Michigan and Ft. Jennings, Ohio (Combined) Expt.: 17
6 X 6 triple lattice analyzed as a random block

	Acre yi Sugar		_		Beets
	cover-	Poots	Sucrose	(c Leaf Purity Spot	
	le (a Gross	Roots	Sucrose %	FULLOY, Shor	No.
SL133 X SP5460-0	7979	21.53	18.7		90
CT5 X SP5460-0	8466	22.20	19.2		99
(122X127)128)129)msXVI16	0 8065	21.34	19.1		98
SL128 X SP6045sel.	7311	19.68	18.9		100
SL128 X SL010	7854	19.96	19.9		99
SL129 X SL010	7772	20.42	19.3		95
SL128 X SL0410	7343	19.21	19.3		106
R5651	7558	20.26	18.8		81
(AI-10XAI-12)msXUS401 4		20.88	17.8		94
SP557ms X US401 4n	7561	20.62	18.5		91
F60-569HO X US401 4n	7512	20.84	18.2		82
F61-562HO X US401 4n	7626	21.79	17.7		83
SL126ms X UShO1 hn	7499	20.69	18.4		91
SL122ms X US401 4n	7274	19.59	18.8		98
F61-562 X SP5460-0	7555	21.02	18.1		89
(AI-10XAI-12)msXSP5460-	7827	20.84	19.0		94
SP557ms X SP5460-0	7301	19.85	18.6		93
SP62100-030	7560	20.31	18.7		94
SP62100-014	7591	21.31	18.1		86
SP62100-055	7329	20.76	17.9		84
SP623000-011	6797	19.00	18.0		65
SP623000-013	6734	18.64	18.2		67
SP623000-02	6113	17.22	17.9		53
SP623356-04	8602	23.59	. 18.4		714
SP623356-05	7471	22.02	17.2		56
SP623357-013	4894	14.85	16.5		32
SP623359-010	7726	20.52	18.9		67
SP623359-012	8174	22.95	18.0		84
SP623359-02	7031	20.03	17.7		63
SP623360-010	6023	16.47	18.4		56
SL122 X SP5460-0	7483	20.45	18.5		90
SP5822-0	7641	20.65	18.7		95
SP5481-0	7685	21.42	18.1		82
62B26=0	6065	17.14	18.0		89
62B25-0	7780	21.12	18.5		89
SL126 X SP5460-0	7506	20.47	18.4		83
General Mean	7392	20.27	18.4		83
S.E. var. mean	116	.32	.18		2.0
above as % Gen. Mean	1.5	7 1.58	0.98		2.41
Diff. for Sig. (odds 19:	1) 322 (1		•5		C + +T

Random Block Analysis			Variance Table				
Source of New	: 7/=:	Mean Square			es		
Source of Variation	:D/F:	Gross Sugar	Roots	Sucrose	Purity	: Leaf : Spot	
Between Locations Between varieties L X V = Error Total	35: 35: 71:	80085	: 6.0100	299.1218 .8177 .1984			2325 524 23
Calculated F. value	35/35	: 12.63**	·: 9.96**:	4.12**			22.78*

Standard footnotes(a, (b, (c, and (d, page 122.

Section 3. Combining Ability Tests

Field tests were conducted in 1963 to determine the combining ability of several lines of sugarbeets. The determinations involved four multigerm varieties (SP 5460-0, SP 61151-0, SP 6256-0, and 02 clone) as pollinators and 13 male-sterile monogerm sorts as female parents. The hybridizations were produced by G. J. Hogaboam in a plastic house provided by the Farmers & Manufacturers Beet Sugar Association. The field evaluations of the experimental hybrids were conducted by the Association under the supervision of M. R. Berrett.

Female parental lines in each of the four pollinator compartments of the plastic house were rogued, if necessary, to remove pollen-producing plants before anthesis. The quantity and quality of seed obtained from some of the intended hybridizations were not sufficient for a field test, but so far as practicable all possible hybrid combinations were evaluated in the tests at Ottawa, Ohio, and Bay City, Michigan. The commercial monogerm hybrid SL 126ms X SP 5460-0 was included for comparisons in each field test.

Results: The general combining ability of pollinators or of female lines is judged from significant F values for the various categories of evaluation. Significant differences among the entries permit comparisons between specific F_1 's and the commercial hybrid.

Differences in combining ability for root yield were demonstrated among pollinators in the Ottawa test, with SP 5460-0 having the highest mean value. Significant differences were not shown among the female parents in this test, and this was true also in the Bay City test for both the female parents and pollinators.

Significant differences in mean sucrose percentage among pollinators or female parents were not shown in the Ottawa test. In the Bay City test, significant differences were shown for sucrose percentage among F_1 entries as well as between both pollinators and female parents. Several of the F_1 entries had significantly higher sucrose percentage than the commercial hybrid SL 126ms X SP 5460-0.

Significant differences among the pollinators for coefficient of clear juice purity were shown only in the Bay City test. It is worthy of note that the highest mean value is shown for SP 61151-0 which, along with its progenitor SP 5822-0, has shown excellent quality in several tests.

Significant differences were not shown for gross sugar, recoverable sugar, or for stand among pollinators or female parents in either field test.

Both tests showed significant differences among pollinators in leaf spot tolerance. At Bay City the mean readings indicated higher resistance for the hybrids from O2 clone than for those from SP 61151-0, but at Beltsville, Maryland, and Ottawa, Ohio, the reverse was demonstrated. This interaction of location with varieties is discussed by D. L. Mumford on page 178.

AGRONOMIC EVALUATION TEST

Conducted by: M. R. Berrett

Walter Helmreich farm, Bay City, Michigan Location:

Cooperation: F & M Beet Sugar Association, Monitor Sugar Divn.

May 17, 1963 Date of Planting:

October 14, 1963 Date of Harvest:

6 x 7 Rectangular Lattice Experimental Design:

4 rows x 20' - 28" between rows Size of Plots:

Harvested Area per Plot for Root Yield: 4 rows x 18 feet

Samples for Sucrose Determination: 2 samples of 10 beets each taken

consecutively from the outside

harvested rows

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1962 - Beans - 300# 5-20-20

1961 - Hay - 450# 0 - 50 - 01960 - Hay - 450# 0-20-0

Fertilization of Beet Crop: 450# 12-12-12 broadcast in the fall

450# 5-20-20 with Boron & Manganese at

Black Root Exposure: (planting time Heavy (Seedling Phase)

Leaf Spot Exposure: iight

Other Diseases and Pests: None

Soil and Seasonal Conditions: Moist seedbed. Generally good growing

conditions most of the year. Below normal moisture latter part of season

Reliability of Test: Good

AGRONOMIC EVALUATION TEST

Conducted by: M. R. Berrett

Location: Alphonse Schroeder farm - Ottawa, Ohio

Cooperation: F & M Beet Sugar Association, Buckeye Sugars, Inc.

Date of Planting: May 15, 1963

Date of Harvest: October 25, 1963

Experimental Design: 6 x 6 Triple Lattice

Size of Plots: 4 rows x 20' - 32" between rows

Harvested Area per Plot for Root Yield: 4 rows x 18 feet

Samples for Sucrose Determination: 2 samples of 10 beets each taken consecutively from the outside

consecutively from the outside

harvested rows

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1962 - Clover and timothy hay

1961 - Wheat 400# 5-20-20 1960 - Beans 200# 0-20-20

Fertilization of Beet Crop: 500# 5-20-20 64# N sidedressed

Black Root Exposure: None

Leaf Spot Exposure: Light

Other Diseases and Pests: None

Soil and Seasonal Conditions: Dry seed bed. Below normal moisture

throughout season

Reliability of Test: Fair

Cooperator: Farmers and Manufacturers Beet Sugar Association Year: 1963

Yield of Roots in Tons	per Acre	(6 plot a	verages)	Expt.:	13&14
Lattice design analyzed as a rando	m block	774 7	le transmitte	Immedah Fan	
Expt. 13. Alphonse Schroede	r Farm	EXPt. I	4. Walter He	ty, Michiga	
Ottawa, Ohio			Male Pare		rit i
: Male Parent Female: 02Clone: 61151-0:5460-0:6256	-O Fomole	• 0207 one	:61151-0:546	0-0:6256-0:	Female
	4) : Ave.	: (63BI)	:(63B2):(63	B3):(63B4):	Ave.
Code : (63B1): (63B2):(63B3):(63B XO2 : 15.81 15.71 14.9		:	20.38 18.		19.22
		: 19.13	19.09 20.		20.00
X03 : - 15.62 15.77 14.9 X04 : 14.43 - 16.56 15.3		: 19.43	19.37 19.		19.74
X05 : 17.68 16.6		:	19.99 19.	Comment of the contract of the	20.53
x06 : 16.64 16.77 17.4		: 19.86	20.49 20.	-	20.54
x07 : 14.99 17.83 16.9		: 21.18	20.23 19.	The state of the s	20.60
x08 : 14.52 15.82 17.15 17.1	A STATE OF THE PARTY OF THE PAR	: 19.37	19.43 20.		19.74
x09 : 17.41 16.90 15.6	and the same of th	: 20.53			19.72
x010 : 15.26 17.26 16.3		: (21.34)	The same of the same of	and the same of th	21.32
X011 : 15.20 16.37 16.53 15.9		: 20.10	20.79 20.		20.61
X012 : 17.03	17.03	: 21.40			21.40
X013 :	11.00	: 18.29	(A) en (A) en		18.29
X014 : 15.45	15.45	: 19.88	pr. est 000 00		19.88
Male Averages (SL126X5460-0 15.26)		(SLI	26x5460-0 2		Expt.
All F. 15.66 15.91 (16.82) 16.1		20.05	20.21 20.		20.20
Common F. 15.49 17.00 16.4		20.11	20.22 20.		20.28
ANALYSIS OF VARIANCE SOURCE D.F. MEAN SQUARE	F.	D.F	. MEAN SQU	ARE F.	
(entire expt.)					
Replications 5 126.6828		5	21.61	07	
Varieties 35 5.3933	NS	41	5.20	11 1.7	11**
R X V 175 3.7627		205	3.04	99	
Total 215		251			
			point 1.99		
(analysis of hybrids withcommon	female and	d _commo	n male paren	ts.)	
Expt. 13 7 females by 3 ma		Expt. 14	8 females		
Females 6 .7577	NS	7	1.3		
Males 2 4.0281	6.07 **	3		675 NS	
F X M 12 .6637 Hybrids 20		<u>21</u> 31	5	886	
Hybrids 20		31			
Female:		Female:			
Code : Description of Female			Description		
XO2 S1126 X SL128			SP6225-03	(23 X 25)	
X03 SI129 X SI133			SP6223-01	(23)	
X04 SL (128 X 129) X 133			62B10X08	(EL35C1 X	EL32)
X05 SP6224-02 (21 X 24)			SP6225-04	(24 X 25)	
X06 SP6224-03 (23 X 24)			SP6224-04	(25 X 24)	
x07 SP6225=01 (25)		X013	SL 127 X 128		

SP6223-02 (24 X 23)

X014

Year: 1963 Cooperator: Farmers and Manufacturers Beet Sugar Association Yield of Roots in Tons/Acre Combined (6repl/Loc. X 2 Loc.) Expt.:13&14 Lattice design analyzed as a random block Expts. 13 & 14 Combined Michigan and Ohio Male Parent Male Parent Female: 02Clone: 61151-0:5460-0:6256-0: Female :02Clone:61151-0:5460-0:6256-0:Female ::(63B1): (63B2):(63B3):(63B4): Ave. Code X02 18.10 16.98 16.98 17.34 18.34 17.90 17.85 X03 17.35 18.21 17.80 X04 16.93 17.63 18.81 18.99 X05 19.17 -18.25 18.72 19.27 18.73 X06 18.86 19.04 X07 18.09 18.64 80X 16.94 17.63 (18.91) 18.33 17.95 18.46 : (18.97) 16.80 18.05 X09 -18.30 18.65 18.68 19.14 X010 17.65 18.66 18.32 XOLL 18.58 18.37 X012 19.22 19.22 X013 17.67 17.67 XO14 Male Averages Expt. Expt. 18.48) 18.26 All F. 18.00 17.92 18.21 Common F. 17.88 18.67 18.36 18.30 ANALYSIS OF VARIANCE SOURCE MEAN SQUARE MEAN SQUARE D.F. (entire expt.) 272.5501 Locations 1 1.81* 1.1158 Varieties 32 .6156 LXV Total (analysis of hybrids with 7 common female and 3 common male parents) 6 .5143 NS Females 1.1163 2 NS Males

Femal	e:	:Female		
Code	:Description of Female	■ Code	:Description	of Female
X02	SL126 X SL128	x08	SP6225-03	(23 X 25)
X03	SL129 X SL133	X09	SP6223-01	(23)
X04	SL(128 X 129) X 133	XOLO	62B10X08	(EL35C1 X EL32)
X05	SP6224-02 (21 X 24)	XOLL	SP6225-04	(24 X 25)
x06	SP6224-03 (23 X 24)	X012	SP6224-04	(25 X 24)
X07	SP6225-01 (25)	X013	SL 127 X 128	
350	- (-)/	X014	SP6223-02	(24 X 23)

.4312

FXM

Hybrids

12

	Cooperat	tor: Far	mers ar	nd Manuf	acturer	s Beet	Sugar Ass	ociatio	n	Year:	1963
						average				Expt.	:13&14
	Lattice	dogian	analazze	25 25	random	block					
	na corce	Expt. 13	3. Alpho	onse Sch	roeder	Farm	Expt. 14.	Walter	Helmre	ich Far	m
			Ottav	ra, Ohio				Bay Ci	ty, Mic	higan	
			Male	Parent		:		Male F	arent	:	The latest
	Female:	O2Clone:	:61151-0	5:5460-0	:6256-0	:Female	:02Clone	:61151-0	:5460-0	1:6256-0	:Female
	Code :	(63BL)	: (63B2)):(63B3)	:(63B4)	: Ave.	: (63B1)	(63BS)	:(63B3)	:(63.84)	: Ave.
	X02 :	(80) OH	21.20	21.38	20.70	21.07		18.20	18.50	17.75	18.13
	x03 :		21-02	21.40	21.00	A STATE OF THE PARTY OF THE PAR	- Sweet		18.22	18.42	18.36
	XO4 :	21.13		21.27	21.02	21.12		The same of the sa	18.50	18.38	18.53
	X05 :	20.63		19.83	20.38	20.26		17.70	17.17	17.32	17.38 17.86
	X07 :	20.67		20.58	19.63	20.27		17.40	17.67	17.10	17.45
	x08 :	20.77	20.07	19.43	20.13	20.10	18.38			17.38	17.77
	X09 :	20.82		20.30					17.60	17.83	17.82
	X010 :	20.48		20.20	20.17			manufacture of the said		17.80	18.10
	X011 : X012 :	20.67	20.43	20.60	20.58	20.57		17.50	18.03	17.40	17.79
	X013 :						Towns .				18.93
	XO14 :_	21.35		00 top		21.35	18.30		pa ==	01 mi	18.30
	Male Ave	100				Expt.:		126X546			Expt.
	All F. mon F.	20.77	20.68	20.49	20.45	20.59		17.99	17.83	17.71	17.96
				20.52	20.72	20.47	10.50	10.00	11.02	71.17	17.96
J	analysis	OF VAR	IANCE								
	SOURCE		.F.	Mean squ	JARE	F.	D.F.	MEA	N SQUAR	E F.	
	(entire Replicat	-	5	10.732	25		5		3.4106		
	Varietie		35	1.62		NS	41		1.2752	2.6	5 **
	RXV	1	.75	1.222			205		.4810	2.0,	
	Total	2	15				251				
	(analysi	s of ha	hride w	ith or	mmon f	LSD	5% Point	0.79	manana	-1	
	E	xpt. 13	7 fem	ales by	3 male	s I	kpt. 14.	8 fem	parents	4 male	a
	Females		6	-379	92	NS	7	20111	.4916	7.83	
	Males		2	.340		NS	3		.4155	6.62	
	F X M Hybrids		12 20	.132	23		3 21 31		.0628		
4	Ty DI LUS	,	20				31				
Ī	Female:					: Re	male :				
(Code :	Descri	ption o	f Female				escript:	ion of 1	Female	
	X02	SL126	X SL128				:08 s	P6225-0	3 (23	3 X 25)	
	X03 X04	SL129	X SL133 X 129)	V 7.22				P6223-0			
	X05	SP6224		1 X 24)				2B10X08 P6225-01		L35C1 X	EL32)
2	x06	SP6224	,	3 X 24)				P6224-01	,	4 X 25) 5 X 24)	
2	X07	SP6225						L 127 X	, ,	A 24)	
							- 7	P6223-02		X 23)	
									,		

```
Cooperator: Farmers and Manufacturers Beet Sugar Association
                                                                      Year:1963
               Percent Sucrose Combined (6 repl./Loc X 2 Loc.)
                                                                           Expt.:13&14
  Lattice design analyzed as a random block
         Expts. 13&14 Combined
                Michigan and Ohio
                                                       Male Parent
                    Male Parent
  Female: 02Clone: 61151-0:5460-0:6256-0: Female: 02Clone: 61151-0:5460-0:6256-0: Female
         : (63B1): (63B2):(63B3):(63B4): Ave.
   Code
                                                                             : Ave.
  X02
                   19.70) (19.94) 19.23
                                        19.60
                   19.63 19.81 19.71 19.70 :
  X03
                         19.88 (19.70 (19.81)
  X04
           19.90
                                18.58
  X05
                          18.53
                                       18.56
                          18.59 19.04
           19.49
  X06
                                        19.02
                          19.13 18.37
  X07
           19.14
                                        18.86
                   --
           19.57
                         18.42 18.76
                                       18.94
  X08
                  18.99
           19.46
                                19.43
                                       19.26
  X09
                          18.95
  X010
           19.35
                          19.01
                                18.98
                                       19.09
           19.44
                                       19.18
  XOLL
                   18.97
                          19.32
                                18.99
  X012
           19.23
                                        19.23
  X013
           19.83
                                        19.83
  X014
                                                                                Expt.
  Male Averages
                                        Expt.
           19.49 19.32
                         19.16
                                19.08
                                        19.24
  All F.
Common F.
           19.48
                          19.04
                                19.03
                                       19.19
  ANALYSIS OF VARIANCE
  SOURCE
                        MEAN SQUARE
                                                          MEAN SQUARE
                D.F.
                                      F.
   (entire expt.)
                  1
                          116.5557
  Locations
                                      7.21**
                             .4109
  Varieties
                  32
  LXV
                             .0570
  Total
  (analysis of hybrids with 7 common female and 3 common male parents)
                 6
                             .3081
                                      3.76*
  Females
                                      5.48*
                             .4474
                  2
  Males
                             .0816
  FXM
                 12
  Hybrids
                 20
```

Female:		:Female:		
Code :	Description of Female	: Code :	Description of	
X02	SL126 X SL128	X08	SP6225-03	(23 X 25)
хо3	SL129 X SL133	X 09	SP6223-01	(23)
X04	SL(128 X 129) X 133	XOTO	62B10X08	(EL35CL X EL32)
X05	SP6224-02 (21 X 24)	XO11	SP6225-04	(24 X 25)
X06	SP6224-03 (23 X 24)	X012	SP6224-04	(25 X 24)
X07	SP6225-01 (25)	X013	SL 127 X 128	
		x014	SP6223-02	(24 X 23)

Cooperator: Farmers and Manufacturers Beet Sugar Association Year: 1963

Gross Sugar in Pounds/Acre (6 plot averages) Expt: 13&14
Lattice design analyzed as a random block

Male Parent Female:02Clone:61151-0:5460-0:6256-0:Female:02Clone:61151-0:5460-0:6256-0:F	emale
Female: 02Clone: 61151-0:5460-0:6250-0: Female: 02Clone: 61151-0:5460-0: 6250-0: Female: 02Clone: 61151-0:5460-0: 6250-0: Female: 02Clone: 61151-0: 5460-0: 6250-0: 62	ema le
	A CHARLES
	Ave.
100	5,968
x03 : 6,502 6,727 6,239 6,489 : 7,098 6,947 7,588 (7,689)	7,331
x04 : 6,033 7,017 6,403 6,484 : 7,266 7,188 7,355 7,451	7,315
x_{05} : 6,972 6,603 6,788: 7,072 6,851 7,488	7,137
x06 : 6.830 6,600 (7,084) (6,838) : 7,285 7,372 7,149 7,474	7,320
x07 · 6.163 7:321 6.519 6.668 : 7,466 7,046 7,014 7,245	7,193
x08 : 6.024 6.307 6.637 6.892 6,465 : 7,124 6,952 7,198 6,765	7,010
x00 · 7 265 6.843 6.565 6.891 : 7,428 7.238 7,054 6,389	7,027
x010 : 6.183 6.959 6.560 6.567 : 7,764 8,125 7,484 7,473	7,712
XO11 : 6,213 6,643 6,790 6,530 6,544 : 7,321 7,285 7,280 7,402	7,322
x012 : 6,946 6,946 : 7,721	7,721
XO13 : : 6,933	6,933
X014 : 6,563 6,563 : 7,267	7,267
Male Averages (SL126X5460-0 6,437) Expt. (SL126X5460-0 7,173)	xpt.
All F. 6,469 6,535 6,858 6,556 6,596 7,334 7,263 7,171 7,214	7,246
Common F.2)6,119 6,475 6,714 6,711 6,505 7,344 7,269 7,265 7,236	7,279
Common Transport of the Control of t	
ANALYSIS OF VARIANCE	
SOURCE D.F. MEAN SQUARE F. D.F. MEAN SQUARE F.	
DOUGH THE THE PARTY OF THE PART	
(entire expt.) Replications 5 14.433.362 5 2,186,269	
, , , , , , , , , , , , , , , , , , , ,	46*
Valiable 57	40"
Total 215 251	
LSD 5% point 732	
(analysis of hybrids with common female and common male parents)	
E TOMOLO DY MILLE LA TOMOLO LA TOMOL	
Females 1 12,482 NS 7 193,055 2.55**	
Males 3 157,460 NS 3 16,960 NS	
F X M 3 46,351 <u>21</u> 75,629 Hybrids 7 31	
Hybrids 7 31	

Female:		:Female:		
Code :	Description of Female	:Code :	Description o	f Female
X02	SL126 X SL128	80x	SP6225-03	(23 X 25)
X03	SL129 X SL133	X09	SP6223-01	(23)
X04	SL(128 X 129) X 133	XO10	62B10X08	(EL35C1 X EL32)
X05	SP6224-02 (21 X 24)	XOLL	SP6225-04	(24 X 25)
х06	SP6224-03 (23 X 24)	X015	SP6224-04	(25 X 24)
X07	SP6225-01 (25)	X013	SL 127 X 128	
		X014	SP6223-02	(24 x 23)

Cooperator: Farmers and Manufacturers Beet Sugar Association Year: 1963

Gross Sugar in Pounds/Acre Combined (6 repl/loc by 2 loc.) Expt.: 13 & 14 Lattice design analyzed as a random block

Expts. 13 & 14 combined Michigan and Ohio : Male Parent : Male Parent Female: 02Clone: 61151-0:5460-0:6256-0: Female: 02Clone: 61151-0:5460-0:6256-0: Female Code : (63B1): (63B2):(63B3):(63B4): Ave. : : : : : (7,047) 6,727 6,462 6,745 : X02 6,725 7,157 6,964 6,949 : X03 : 6,650 X04 -- (7,186) 6,927 6,921 : 6,912 7,045) 6,979: X05 : (7,058) -- 6,875 7,279 7,071 : 6,882 6,955 : X06 : 6,814 (7,168)XO7 : 6,574 6,630 6,917 6,828 6,737 : 80X x09 : 7,347 -- 6,949 6,477 6,924 : (7,222) 7,017 7,072 : x010 : 6,974 6,964 7,035 XO11 : 6,767 6,966 6,933 : 7,333 : X012 : (7,333)X013 : 6,915: X014 : 6,915 Expt. Male Averages Expt. 6,842 (7,015) 6,885 6,933 All F. 6,937 Common F.7)6,883 7,050 6,911 6,948 ANALYSIS OF VARIANCE

SOURCE (entire expt	D.F.	MEAN SQUARE	F.	MEAN SQUARE F.
Locations	1	6,413,710		
Varieties	32	102,731	NS	
LXV	32	109,288		
Total	65			

(analysis of hybrids with 7 common female and 3 common male parents.)

Females	6	31,388	NS
Males	2	56,040	NS
FXM	12	58,386	
Hybrids	20		

Female:	:Female:
Code : Description of Female	:Code : Description of Female
XO2 SL126 X SL128	X08 SP6225-03 (23 X 25)
X03 SL129 X SL133	X09 SP6223-01 (23)
X04 SL(128 X 129) X 133	XO10 62B10X08 (EL35C1 X EL32)
X05 SP6224-02 (21 X 24)	X011 SP6225-04 (24 X 25)
x06 SP6224-03 (23 X 24)	X012 SP6224-04 (25 X 24)
X07 SP6225-01 (25)	x013 SL 127 X 128 x014 SP6223-02 (24 X 23)
	X014 SP6223-02 (24 X 23)

· Cooperator: Farmers and Manufacturers Beet	Sugar Association Year: 1963				
Clear Juice App. Purity (6 plot Lattice design analyzed as a random block	averages) Expt.:13&14				
Expt. 13. Alphonse Schroeder Farm	Expt. 14. Walter Helmreich Farm				
Ottawa, Ohio	Bay City, Michigan				
Male Parent :	Male Parent :				
Female: 02Clone: 61151-0:5460-0:6256-0: Female Code: (63B1): (63B2): (63B3): (63B4): Ave.	:02Clone:61151-0:5460-0:6256-0:Female : (63B1): (63B2):(63B3):(63B4): Ave.				
X02 : 91.83) 92.01 90.70 91.51	: (63B1): (63B2):(63B3):(63B4): Ave. : 90.42 90.07 90.34 90.28				
X03 : - 91.34 91.32 90.41 90.99	: 90.56 89.90 89.17 90.16 89.95				
X04 : 91.39 91.41 92.23 91.68	: 89.81 91.00 89.52 90.65 90.25				
x05 : 89.47 89.89 89.68	: 89.17 88.86 87.44 88.49				
X06 : 91.07 90.07 90.33 90.49	: 89.69 89.72 89.57 87.75 89.18				
X07 : 90.35 90.03 89.38 89.92	: 88.63 88.78 88.75 88.27 88.61				
X08 : 91.24 90.61 89.87 90.49 90.55 X09 : 91.45 90.65 91.39 91.16	: 89.75 91.47 88.99 90.42 90.16				
X09 : 91.45 90.65 (91.39) 91.16 X010 : 90.43 90.49 89.96 90.29	: 91.72 91.07 89.16 90.74 90.67 : 89.57 90.37 88.44 88.65 89.26				
X011 : 90.30 90.34 90.29 90.12 90.26	: 89.57 90.37 88.44 88.65 89.26 : 90.52 89.55 89.60 89.01 89.67				
X012 : 90.28 90.28	: 90.21 90.21				
X013 :	: 90.71 90.71				
X014:90.92 90.92	: 89.83 89.83				
Male Averages (SL126X5460-0 91.84) Expt.	Expt.				
All F. 90.83 (91.03) 90.55 90.49 90.71 Common F. 90.89 90.40 90.56 90.62	90.09 90.15 89.21 89.34 89.71				
Common F. 90.89 90.40 90.56 90.62	90.03 90.23 89.15 89.46 89.72				
ANALYSIS OF VARIANCE					
SOURCE D.F. MEAN SQUARE F.	D.F. MEAN SQUARE F.				
(entire expt.)					
Replications 5 6.9333	5 46.9776				
Varieties 35 3.0353 2.29** R X V 175 1.3244	41 5.3736 NS				
Total 215	205 251 4.2503				
	2)1				
(analysis of hybrids with common female an	d common male parents)				
Expt. 13 7 females by 3 males	Expt. 14. 8 females by 4 males				
Females 6 1.0899 6.11**	7 1.8108 3.89**				
Males 2 .4361 NS: F X M 12 .1785	3 2.0106 4.32*				
Hybrids 20	3 2.0106 4.32* 21 .4655 31				
	31				
Female:					
Code : Description of Female	:Female :				
XO2 SL126 X SL128	: Code : Description of Female XO8				
XO3 SL129 X SL133	X08 SP6225-03 (23 X 25) X09 SP6223-01 (23)				
XO4 SL(128 X 129) X 133	X010 62B10X08 (EL35C1 X EL32)				
X05 SP6224-02 (21 X 24)	X011 SP6225-04 (24 X 25)				
X06 SP6224-03 (23 X 24)	XO12 SP6224-04 (25 X 24)				
X07 SP6225-01 (25)	X013 SL 127 X 128				
	X014 SP6223-02 (24 X 23)				
Standard footnotes (a,(b,(c, and (d, page 12)	2.				
, , , , , , , , , , , , , , , , , , ,					

Year:1963

Cooperator: Farmers and Manufacturers Beet Sugar Association

```
Clear Juice App. Purity (Combined)(6 repl/Loc. X 2 Loc.) Expt.:13&14
   Lattice design analyzed as a random block
          Expts. 13 & 14 Combined
                  Michigan and Ohio
                     Male Parent
                                                                Male Parent
   Female: 02Clone: 61151-0:5460-0:6256-0: Female
                                                    :02Clone:61151-0:5460-0:6256-0:Female
          : (63B1): (63B2):(63B3):(63B4): Ave.
   X02
                    91.12
                           (91.04) 33.52 (
                                          90.89
   X03
                    90.62
                            90.25
                                   90.28
                                           90.38
   X04
            90.60
                            90.47
                                   61.44
                                          90.83
   X05
                            89.16
                                   88.67
                                          88.92
   X06
            90.38
                           89.82
                                   89.04
                                          89.75
   XO7
           89.49
                            89.39
                                   88.82
                                          89.23
   80X
            90.49
                    91.04) 89.43
                                   90.45
                                          90.35
   X09
            91.58
                                   91.06 90.85
                           89.90
   X010
          : 90.00
                            89.46
                                   89.30
                                          89.59
   XOll
            90.41
                    89.95
                           89.94
                                   89.57
                                          89.97
   X012
            90.24
                                          90.24
   X013
   X014
            90.37
                                          90.37
   Male Averages
                                          Expt.
                                                                                    Expt.
   All F.
            90.40 (90.68)
                                   89.92
                           89.89
                                          90.13
Common F.
            90.42
                           89.77
                                   89.95
                                          90.05
   ANALYSIS OF VARIANCE
   SOURCE
                  D.F.
                          MEAN SQUARE
                                                             MEAN SQUARE
                                                                              F.
   (entire expt.)
   Locations
                    1
                            22.0432
                                       126.54**
   Varieties
                   32
                             1.2410
                                         7.12**
   LXV
                   32
                              .1742
   Total
  (analysis of hybrids with 7 common female and 3 common male parents.)
  Females
                    6
                                         4.49*
                             1.1192
  Males
                    2
                              .7838
                                          NS
  FXM
                   12
                               .2490
  Hybrids
                  20
  Female:
                                                  :Female :
  Code
          : Description of Female
                                                  : Code
                                                            Description of Female
  X02
            SL126 X SL128
                                                    80X
                                                            SP6225-03
                                                                           23 X 25)
  X03
            SL129 X SL133
                                                   X09
                                                            SP6223-01
                                                                          (23)
  X04
            SL(128 X 129) X 133
                                                   XOLO
                                                            62B10X08
                                                                           (EL35C1 X EL32)
            SP6224-02 (21 X 24)
  X05
                                                   XOLL
                                                            SP6225-04
                                                                          (24 \times 25)
            SP6224-03 (23 X 24)
  X06
                                                   X012
                                                            SP6224-04
                                                                          (25 X 24)
            SP6225-01 (25)
  X07
                                                   X013
                                                            SL 127 X 128
                                                                          (24 X 23)
                                                   X014
                                                            SP6223-02
```

Standard footnotes (a, (b, (c, and (d, page 122.

Cooperator: Far	mers and Manuf	acturers Beet	Sugar Asso	ciation	Year: 1963	
Rec Cal Expt. 13 : : Female: O2Clone:	overable Sugar culated from A . Alphonse Sch Ottawa, Ohio Male Parent	in Pounds/Acverage: Tons/.rocder Farm	re (a Acre, % Successive Successi	erose, & % Pur Walter Helm Bay City, M Male Parent	Expt.:13&14 rity reich Farm Michigan :::6256-0:Female :(63B4): Ave. 5461 5630 6190 5875 6070 5874 5608 5494 5639 5750 5540 5551 5482 5636 5220 5727 5779 6070 5796 5821 6219 5652 5806 Expt.	
Common F. 5276	 5600	5445 5440	5887	5863 5700	5714 5701	
(analysis of hyte Expt. 13, Females Malcs	F. MEAN SQU	common female males . NS . NS	D.F. andcom 7	MEAN SQUAR mon male paren 4, 8 females 1 105,849 76,492 58,853	nts.) by 4 males NS	

Female	2 .	:Female:
Code	: Description of Female	: Code : Description of Female
X02 X03 X04 X05 X06 X07	SL126 X SL128 SL129 X SL133 SL(128 X 129) X 133 SP6224-02 (21 X 24) SP6224-03 (23 X 24) SP6225-01 (25)	X06 SP6225-03 (23 X 25) X09 SP6223-01 (23) X010 62B10X08 (EL35C1 X EL32) X011 SP6225-04 (24 X 25) X012 SP6224-04 (25 X 24) X013 SL 127 X 128
		XO14 SP6223-02 (24 X 23)

Standard footnotes (a,(b,(c, and (d, page 122.

Cooperator: Farmers and Manufacturers Beet Sugar Association Year: 1963

Recoverable Sugar/Acre Calculated from Combined Averages (a Expt.: 13&14

,										
-		Male	Parent	,	:	-:		le Parer		0 0
Female:	O2Clone:6				Female	:02Cl	one:6115	1-0:5460	0-0:6256	-0:Female
Code :	(63B1):			(63B4):	Ave.	:		0	:	: Ave.
X02 :	m m	(5882)	5576	5306	5588	:				
хоз :	data and	5550	5868	5702	5707	b				
XO4 :	5489		(5879)	(5829)	5732	:				
X05 :	and only	-	5469	5516	5493	:				
x06 :	5762		5554	5740	5685	:				
x07 :	5482	-	5698	5437	5539	:				
x08 :	5385	5509	5503	5576	5493	:				
x09 :	(6156)		5597	5376	5710					
XO10:	5681	c().(5756	5576	56 7 1 5629					
XO11:	5562	5646	5685	5622	5965	•				
X012 :	(5965).	400			7907	•				
X013 : X014 :	5676				5676					
	erages				Expt.					Expt.
All F.	5684	5647	5659	5568	5637					
Common F.	5645		5667	5594	5635					
OOMINION 1.	,01,		,		, 0,					
ANALYSI	S OF VARI	LANCE								
SOURCE	D	.F. I	MEAN SQ	UARE	F.		MEAN	SQUARE	F.	
(analys	is of hyl	orids w	ith 7 c	ommon fe	emale a	nd 3 cc	mmon mal	Le paren	ts)	

Females	6	24,923	NS
Males	2	10,014	NS
FXM	12	41,735	
Hybrids	20		

Fema.	4.	:Female :	
Code	: Description of Female	:Code : Description of Female	
X02	SL126 X SL128	X08 SP6225-03 (23 X 25)	
X03	SL129 X SL133	x09 SP6223-01 (23)	,
X04	SL(128 X 129) X 133	X010 62B10X08 (EL35C1 X EL3	(2)
X05	SP6224-02 (21 X 24)	X011 SP6225-04 (24 X 25)	
x06	SP6224-03 (23 X 24)	AU12 SP6224-04 (25 X 24)	
X07	SP6225-01 (25)	x013 SL 127 X 128 x014 SP6223-02 (24 X 23)	

Standard footnotes (a,(b,(c, and (d, page 122.

	Cooper	ator	: Far	rmers	and Man	ufacture	ers Beet	Su	gar Ass	ociation	1	Year	:1963
			Bee	ets pe	r 100 f	eet of I	Row (6 pl	ot	averag	es)		Expt	:13&14
	Lattic	e de Exp	sign t. 13	3 Alpho	zed as onse Sc wa, Ohi	a random hroeder o	farm	:	Expt. 1	4. Walte	er Helmr City, Mi		
		:		Male	Parent	`	:	-:		Male	Parent		:
	Female Code	:020	lone	61151 (63B	-0:5460 2):(63B	-0:6256- 3):(63BL	O:Female +): Ave.	:(02Clone (63B1)	:61151-0 : (63B2):5460 - 0	1:6256-0 1:63B4	O:Female): Ave.
	X02	:	===	84	85		85	:		87	83	89	86
	X03		PR 845	88	82		86		82	88	94	94	90
	X04	:	83		86		83	:	80	79	90	87	84
	X05				80			:	(m) (m)	76		85	80
	X06	:	79	-	84	74	79	:	95	82	90	85	88
	X07		81		78		78	:	90	80	74	89	83
	X08		81	88	70		79	:	87	85	80	81	83
			76		82		80	:	86	84	80	76	82
	XOLO		82	-	78		81		86	83	83	80	83
	XOll		84	82	75		82	:	92	88	94	91	91
	X012		85				85	:	91				91
	X013		_			000 000		:	83		-	-	83
	X014	:	75				75	:	80		46 PH	00.00	80
	Male A	vera	ges (SL1262	(5460-0	88)	Expt.	-		(SL126X)	5460-0	92)	Expt.
	All F.		81	86	80		81		87	83	85	.86	85
Con	mon F.		81		79	79	80		87	84	86	85	85
	ANALYS: SOURCE (entire		I	RIANCE	MEAN	SQUARE	F.		D.F	• M	ean squa	RE 1	F.
	Replica			5		1161			5		83		
	Variet:			35		126.	2.10**		41		175		1.99**
	RXV]	-75		60			205		88		//
	Total			215					251				
			LSI	5% P	oint 9				LSD 5	% Point	11		
	(analy	sis	of hy	brids	with	common	female a	nd				:)	
		Exp	t. 13	3. 7 :	females	by 3 ma	les		Expt. 1		emales b		les
	Female	S							7		52		NS
	Males			2		7	NS		3 21 31	•	17		NS
	FXM			12		19			21	•	26		
	Hybrid	S		20					31				
	Female	•											
			a and	ded and	.o m	3 -		:1	Temale:	-			
	XO2			SL128	of Fema	те		-:		Descrip			
	X03			SL133					X08	SP6225.		23 X 2)
	X04) X 133				X09	SP6223.		23)	
	X05		6224-) A 133 21 X 24				XOIO	62B10X0	,		X EL32)
	x06		6224		23 X 24			1	XOLL	SP6225		24 X 2	
	X07		6225.		25 A 24 25)	,			X012	SP6224		25 X 2	4)
	201	DI.	الاحر)،	-01 (2	-)1				X013	SL 127		01: 35 0	2)
									X014	SP6223-	(20	24 X 23	3)

o o c p o z	a 001	raimers ar	ia ranut	accurei	's beet	Suga	r Associa	CTOU		rea	r:1963
T	-	Beets/100	Combin	ed (6 1	repl./L	oc. l	y 2 Locat:	ions)	,	Exp	t.: <u>13</u> &1
Lattic		gn analyze 13 & 14			plock						
	· Exhra	Michigan									
Female	:020701	ne:61151=0	2:5460-0	·6258-0):Femal	e:020	Clone:6115	1-0.5)160	-0.625	6-0.	Fomolo
Code	: (63B	1): (63B2)):(63B3)	: (63B4)): Ave.	:	tone (out).	:	:		Ave.
	:	85	84	88	86	-					Avc.
хоз		88	88	91	89	:					
	: 81	g00 ma	88	84	84						
X05	:		80	82	81	:					
X06	: 87	ant and	87	79	84	:					
X07	: 85		76	81	81						
X08	: 84	86	75	79	81	:					
	: 81		81	78	80	:					
X010	: 84		81	82	82	:					
	: 88	85	85	88	86	:					
	: 88				88	:					
						:					
X014	: 78		mm		78	:					
		(SL126X)	460=0	90)	Expt.						Exp.
All F.	84 84	86	83	83	84						
mon F.	04	-	82	82	83						
ANALYS:	IS OF	VARIANCE									
SOURCE		D.F.	MEAN S	QUARE	F.		ME	AN SQUAR	RE I	i .	
(entire	e expt	.)									
Locatio	ons	1		04							
Variet:	ies	32		32	NS						
LXV		32 65		18							
Total		65									
(analys	sis of	hybrids w	rith 7 ce	ommon f	emale	and 3	common ma	ale pare	ents)		
Females	q	6		22	NS						
Males		2		14	NS						
FXM		12		11	210						
		20									
Hybrids	3	20									

Female:		:Female :		
Code :	Description of Female	: Code :	Description o	
X02	SL126 X SL128	X08	SP6225-03	(23 X 25)
X03	SL129 X SL133	X 09	SP6223-01	(23)
x04	SL(128 X 129) X 133	XOlo	62B10X08	(EL35C1 X EL32)
X05	SP6224-02 (21 X 24)	XO11	SP6225-04	(24 X 25)
X06	SP6224-03 (23 X 24)	X015	SP6224-04	(25 X 24)
X07	SP6225-01 (25)	X013	SL 127 X 128	
-		X014	Sp6223-02	(24 x 23)

Cooperator:	Farmers	and	Manufacturers	Beet	Sugar	Association

Year:1963

Leaf	Spot Rating	s (3 plot ave	in Md. 6 plot	ave. Mich.)	Exot.:
Lattice design a	analyzed as a	random block			-

Plant Industry Station, Beltsville, Md.: Expt. 14. Walter Helmreich Farm Rated 9/19/63@ : Rated 10/2/63@

		110	toca)	7) 000					THE OCC.	20/2/03/	·		
		:		Male I	Parent		:	:		Male Pa	arent		:
	Fema.	le:C	2Clone	e:61151-0:	5460-0	0:6256-0	:Femal	e:(O2Clone:	51151-0	5460-0	:6256-0	:Female
	Code	:	(63B1): (63B2):	(63B3):(63B4)	: Ave.	:	(63B1):	(63B2):	(63B3)	:(63B4)	: Ave.
	X02	:		3.33	3.33	(2.67)	3.11	:		2.00	2.83	2.17	2.33
	X03		3.33	3.33	3.67	3.00	3.33	:	2.00	1.83	2.83	2.17	2.21
	X04	:	4.00	3.33	4.00	3.33	3.67		1.17	1.83	2.83	2.17	2.00
	X05	:		3.00	3.00	(2.33)	2.78		- Section	1.33	2.33	1.83	1.83
	X06	:	3.00	(2.33)	3.00	2.67	2.75	*	1.17)	1.67	1.83	2.33	1.75
	XO7	4 :	3.67	2.67	3.67	2.67	3.17	*	1.50	2.00	2.67	2.00	2.04
	xo8	:	3.33	3.33	3.00	(2.67)	3.08		(1.33)	1.83	2.50	2.00	1.92
	X09	9	4.00	3.33	3.67	3.00	3.50		1.50	2.00	2.17	2.00	1.92
	XO10	0	4.00	3.33	3.67	3.33	3.58	:	2.00	1.67	2.50	2.00	2.04
	XOII	:	3.33	3.00	3.33	3.00	3.17	:	1.67	2.00	2.83	2.17	2.17
	X015	:	4.00	an an	PIG 047		4.00	:	2.00				2.00
	X013	:	4.00				4.00		1.83		940, 040	000 mm	1.83
	XO14	-:	4.00			000 000	4.00	:_	1.67	pag sele	00 m		1.67
	Male	Ave	rages	(SL 126 X	5460	= 3.67)	Expt.		(SL12	26 X 546	00 = 2.8	33)	Exp.
	All E	ī.	3.70	3.10	3.43	2.87	3.28		(1.62)	1.82	2.53	2.08	2.01
Co	mmon I	F .	3.58	3.08	3.50	2.96	3.28		1.54	1.85	2.52	2.11	2.01

ANALYSIS OF VARIANCE

SOURCE (entire expt.	D.F.	MEAN SQUARE	F.	D.F.	MEAN SQUARE	F.
Replications	2	. 45	1.80	5	.40	NS
Varieties	41	.66	2.54 **	41	1.15	6.70 **
RXV	82	.25		205	.17	
Total	125			251		

(analysis of hybrids with 8 common female and 4 common male parents)

Females Males	7 3	3.27 6.78	7.60 ** 15.77 **	2.92 45.70	1.30 20.31 **
FXM	21	.43	-2-11	2.25	20.01
Hybrids	31				

Female:		:Female :	
Code :	Description of Female	: Code :	Description of Female
X02	SL126 X SL128	хо8	SP6225-03 (23 X 25)
X 03	SL129 X SL133	X09	SP6223-01 (23)
X04	SL(128 X 129) X 133	XOLO	62Blox08 (EL35Cl X EL32)
X05	SP6224-02 (21 X 24)	XOll	SP6225-04 (24 X 25)
X06	SP6224-03 (23 X 24)	X012	SP6224-04 (25 X 24)
X07	SP6225-01 (25)	X013	SL 127 X 128
		X014	SP 6223-02 (24 X 23)

[@] Rated on a scale of 0 to 10 with 0 being disease free and 10 lethal.

	Cooperator: Farmers and Manufacturers Beet	Sugar Association	Year:1963
	Leaf Spot Ratings (6 plot Ave.) Ohdo O Mach O Oh	to Combined Front 12011
	Leaf Spot Ratings to plot Ave. Lattice design analyzed as a random block	J Onto & Mich. & On	to Comprised Expt.:13&14
	Expt. 13. Alphonse Schroeder Farm	Exmts. 13&14. Mic	nigan and Ohio Combined
	Ottawa, Ohio, Rated 10/8/63@	:33 hybrids common	
	Male Parent :	: Male Par	
	Female:02Clone:61151-0:5460-0:6256-0:Female		
	Code : (63B1): (63B2):(63B3):(63B4): Ave.	: : :	: I Ave.
	X02 : (1.00) 2.00 1.17 1.39		2.42 1.67 1.86
	X03 : (1.17) 1.83 1.67 1.56	: 1.50	2.33 1.92 1.92
	x04 : (1.00) == 2.00 1.83 1.61		2.42 2.00 1.84
	X05 : 1.33 1.00 1.17		1.83 1.42 1.63
			1.58 1.67 1.50
			2.00 1.59 1.61
			2.00 1.59 1.62
			1.92 1.59 1.69
			2.09 1.67 1.81
			2.25 1.67 1.69
		: 1.67	1.67
	X013 :	:	
		11.59	1.59
	Male Averages (SL 126 X 5460 = 2.17) Expt.	- 10	Expt.
	All F. 1.30 1.04 1.63 1.27 1.31	9	2.08 1.68 1.67
Co	mmon F. 1.31 1.00 1.59 1.17 1.27	1.38	2.04 1.68 1.70
	ANALYSIS OF VARIANCE SOURCE D.F. MEAN SQUARE F.	D.F. MEAN S	QUARE F.
	(entire expt.)		
	Replications 5 .69	Loc. 1 288.	
	Varieties 35 .70 4.67**		12 2.90 **
	R X V 175 .15	EXV 32 2.	80
	Total 215	65	
	LSD 5% Point .44		
			amouta \
	(analysis of hybrids withcommon female Expt. 13. 2 common Females by 4 Males	and common male p Expt. 13&14. 7 F	emales by 3 Males
			04 NS
			77 15.40
	Males 3 4.83 NS F X M 3 3.67	12	05
	Hybrids 7	<u>12</u> 20	
	nybi i do		
	Female:	:Female :	
	Code : Description of Female	: Code : Descript	ion of Female
	XO2 SL126 X SL128	X08 SP6225-0	
	X03 SL129 X SL133	x09 SP6223-0	
	xo4 SL(128 x 129) x 133	X010 62B10X08	(EL35C1 X EL32)
	X05 SP6224-02 (21 X 24)	X011 SP6225-0	
	x06 SP6224-03 (23 X 24)	X012 SP6224-0	
	X07 SP6225-01 (25)	X013 SL 127 X	
		X014 SP6223-0	
	0 m 1 m 2 m 0 1 - 30 - 112 0 2 - 1 - 1 - 0	I have some from and I	Olothal.

@ Rated on a scale of 0 to 10 with 0 being disease free and 10 lethal.

TEST FOR STRAINS OF CERCOSPORA BETICOLA by David L. Mumford

Field observations in 1962, comparing hybrids from crosses involving male perents 5822-0 and 02-clone, indicated a difference in their reaction to leaf spot at Beltsville, Maryland, and at Bay City, Michigan. Hybrids from crosses involving these two males were planted in 4 locations in 1963 to again observe their reaction to infection by Cercospora beticola. Hybrids grown at Beltsville were artificially inoculated with an application of diseased leaves collected locally and ground into small particles. Leaf spot at the other locations was due to natural infection. Ratings based on • O to 10 scale were assigned to each hybrid. Lighter infection at the Michigan and Ohio locations made it necessary to expand the lower part of the scale in assigning ratings. At each location careful observation of diseased leaves indicated that the pathogen involved was C. beticola. The average leaf spot ratings are listed in the table below.

Hybrids from O2-clone received significantly lower leaf spot ratings at 2 locations near Bay City, Michigan. Hybrids from 5822-0 received significantly lower ratings at Beltsville, Maryland. There was no significant difference in the ratings assigned hybrids from these 2 males at the Ohio location. Similar results were obtained when leaf spot ratings were assigned the 1963 greenhouse hybrids involving these same 2 males grown at Beltsville, Michigan and Ohio. Data on this material are presented elsewhere in this

report.

This complete reversal of reaction at the 2 most widely separated locations could have one or more explanations, but in any case it points out the value of making selections for disease resistance in the area where the varieties will be grown commercially and with isolates of the pathogen that are present in that area. It is not known whether the difference in reaction reported here is due to strains of the pathogen, effect of environment on host reaction, or intensity of infection. Studies in the greenhouse with different isolates of the pathogen may indicate the relative importance of pathogenic strains in this phenomenon.

Average Leaf Spot Ratings for Hybrids Planted at 4 Locations in 1963

	Male			Fema:	le parent							
Location	parent	EL34C1	EL32C1	6123-01	EL33C1	All2ms	Mean					
Kawkawlin,	02-clone		1.33	1.33	1.40	1.43	1.37	**				
Mich.	5822-0		1.33	2.26	1.83	1.67	1.77					
(6 reps.)	Mean		1.33	1.80	1.62	1.55						
Beltsville	02-clone		3.33	4.00	4.00	4.00	3.83					
Md.	5822-0		3.00	2.67	3.33	3.00	3.00	**				
(3 reps.)	Mean		3.17	3.34	3.67	3.50						
Ottawa,	02-clone	1.43		1.33	1.43	1.43	1.41					
Ohio	5822-0	1.33		1.33	1.43	1.27	1.34	ns				
(4 reps)	Mean	1.38		1.33	1.43	1.35						
Bay City,	02-clone				1.57	1.67	1.62					
Mich.	5822-0				2.00	2.43	2.22					
(3 reps.)	Mean				1.79	2.05						

^{** -} Significantly lower leaf spot rating (p - .01) single location

(p - .05)

ns - No significant difference.

PARTV

DEVELOPMENT AND EVALUATION

of

SUGARBEET BREEDING MATERIAL AND VARIETIES CARRYING RESISTANCE TO LEAF SPOT AND CURLY TOP

Foundation Project 25

J. O. Gaskill G. E. Coe C. W. Bennett A. M. Murphy

J. A. Elder

Cooperation:

American Crystal Sugar Company
The Great Western Sugar Company
Holly Sugar Corporation
National Sugar Manufacturing Company
Tribune Branch Station, Kansas
Agricultural Experiment Station
Southeastern Substation, New Mexico
Agricultural Experiment Station
Panhandle Experiment Station, Oklahoma
Agricultural Experiment Station

LA DE SERVICES STEERS SERVICES

19-20-4 DW1 1-39-5 W1009 T 10-58-475 T WASSET

The second of th

THE MANAGEMENT STORY AND THE S

The relation of the result of

in the second of the second contraction of

Alleria . pr. Liberal (2 mg) . Septi

The county of the same of the

to be - 16 offer transfer the minute

DEVELOPMENT AND EVALUATION OF SUGARBEET BREEDING MATERIAL AND VARIETIES CARRYING RESISTANCE TO LEAF SPOT AND CURLY TOP, 1963

(A phase of Beet Sugar Development Foundation Project No. 25)

John O. Gaskill

This report pertains largely to the development and evaluation of sugarbeet lines and varieties resistant to both leaf spot and curly top — so-called "LSR-CTR" material. However, as a part of the program of evaluating leaf spot resistant (LSR) lines for combining ability, top crosses were made in 1962, using several types of pollinators. Some of these pollinators are known to be resistant to both leaf spot and black root (LSR-BRR) and susceptible to curly top. This report includes 1963 field results for such top crosses, and consequently portions of the report will be of special interest to those in need of LSR-BRR material where curly top is not a factor.

In general, work involved in the initial selection and preliminary (disease resistance and sucrose) evaluation of type-0 lines is omitted in this report. An exception is the presentation of a table of results showing progress in the development of LSR-CTR, type-0, monogerm lines in cooperation with Dr. C. W. Bennett, Salinas, California. The major portion of the report deals with the results of cooperative evaluation tests of LSR-CTR varieties. This program involved agronomic and observational tests in 8 states.

Top-cross Tests

Two top-cross tests (Experiments 2A and 3A) were conducted at Ft. Collins in 1963. Descriptions of parental and other material involved in both tests are given in an accompanying table. The summarized results obtained from the 2 tests are presented in separate tables, together with an explanatory page for each test. Also included in the 2 summary tables are the results of CTR evaluation of some of the material performed by A. M. Murphy at Thatcher, Utah.

l/ This progress report pertains to breeding and evaluation work conducted at Ft. Collins, Colorado, and to cooperative tests conducted at other locations, by various investigators, with results summarized at the Ft. Collins station. The work at Ft. Collins was performed in cooperation with Colorado Agricultural Experiment Station, Beet Sugar Development Foundation, and Board of County Commissioners of Larimer County, and was supported in part by funds contributed by the National Sugar Manufacturing Co.

The results of Experiment 2A indicate considerable promise for the type-0 lines, SP 581181s1 and SP 581222s1, on the basis of general combining ability (e.g. in gross sucrose). SP 581179s1 also produced certain excellent hybrids. The most striking thing in the table is the high general combining ability shown for the LSR-BRR pollinator, SP 59818-0. The 3 top-cross hybrids having that number as the d parent and the CMS phase of the above 3 type-0 lines as the respective 2 parents averaged 5435 pounds gross sucrose per acre. This average is 39% above the gross sucrose yield shown for SP 5481-0 and 42% above that shown for the best of the 2 monogerm checks, SL 126 MS x SP 5460-0. These differences are highly significant. It also should be noted that the sucrose percentage of each of the same 3 top-cross hybrids was significantly above that of SP 5481-0 and SL 126 MS x SP 5460-0. (Page 184)

Also of special interest in the Experiment-2A table is the superior performance of the LSR-CTR top-cross hybrids, SP 581181s1 (CMS) x SP 6051-0 and SP 581222s1 (CMS) x SP 6051-0. Each of these hybrids significantly exceeded SL 126 MS x SP 5460-0 in gross sucrose and in sucrose percentage, each was about equal to SL 126 MS x SP 5460-0 in LSR, and each was given a curly top rating of 4, the same as for SP 6051-0.

Among the high lights of results for the diploid LSR-CTR hybrids, as shown in the table for Experiment 3A, is the high general combining ability (in gross sucrose) for 2 type-0 lines (SP 592013s1 and FC 502/2) and for 2 pollinators (SL 932 and SP 581813-00). On the basis of results shown for certain combinations involving these lines, the following double cross appears promising: (FC 502/2 CMSP x SP 592013s1) CMSP x (SL 932 aa P x SP 581813-00). The F₁ hybrids have been made on a green-house scale, and the double cross is to be made in 1964. This double cross is expected to have moderate curly top resistance and to be somewhat superior to SL 126 MS x SP 5460-0 in leaf spot resistance. Under conditions such as those existing in the 3A test of 1963, it should be substantially better than SL 126 MS x SP 5460-0 in gross sucrose yield and in sucrose percentage. (Page 186)

The performance of the 2 triploid hybrids in Experiment 3A is of interest and suggests the advisability of further exploration of the use of the Savitsky tetraploid line, S-62-16, as a pollinator of diploid, monogerm, LSR, CMS lines for the production of triploid, LSR-CTR hybrids.

TOP-CROSS TESTS, FT. COLLINS, COLORADO, 1963 Experiments 2A and 3A

Description of Material

Strain designation	:Seed:	LSRª/	CTRª/	Description
ype-0 lines: FC 501	· mm	+++	-?	S2 inbred, rr, from the cross, US 201 MM x SP 51101- mm.
FC 502/2	JZWN.	+++	-	S ₂ inbred, rr, from the cross, US 201 MM x V. F. Savitsky #715 mm.
FC 503	m	++	-	SP 571702-0, RR, derived (by selfing) from V.F. Savitsky #716 mm inbred.
SP 561606-0	mux.	++	-?	S ₃ inbred, rr, derived from SP 51100-0
SP 561609-0	mm .	±	-?	S3 inbred, rr, derived from SP 51101-40
SP 581179al	mm.	+++	-?	S ₁ inbred, rr, from the cross, US 201 MM x type-0 mm.
SP 581181s1	mn	++	-?	S ₁ inbred, rr, from the cross, US 201 MM x type-0 mm.
SP 581194sl	mn	+++	-	S ₁ inbred, rr, from the cross, US 201 MM x type-0 mm.
SP 581222sl	mn	++	-?	S ₁ inbred, rr, from the cross, US 201 MM x type-0 mm.
SP 592013sl	mn	+++	-	rr, derived (by selfing) from V.F. Savitsky #6-2 inbred.
S-62-16	М	+	++	4n; F4; from the cross, 4n mono. CTR x 4n US 401; received from V.F. Savits
SL 932	MM	-	+++	F1, CT5aa m CT9A; from F.V. Owen.
SP 5481-0	301	++	-	Open-pol. black root resistant com'l.
SP 581813-0	O MM	++	+	Open-pol. var. derived by mass sel. fi the cross, (SL 202 & US 22/4) x (US 22/3 x US 201)
SP 59B18-0	101	++	-?	Black root res. hyb. from H.W. Bock-stahler and G.J. Hogaboam.
SP 591101-0	177870.	++	-	Black root res. open-pol. var. with equiv. of 1 gen. of sel. for res. to Botrytis (storage rot).
SP 6051-0	ж	+	++	Open-pol, var. developed by U.S.D.A. and N.M. Agr. Exp. Sta.; received from G. E. Coe.
SP 621104-0	mm	+	++	Open-pol. var. derived by mass sel. from the cross, SL 539 CTR mm x CTR MM x (CTR MM x US 201 MM)].
SL 122 MS X SP 5460-0	T m	+	++	WC 2433; commercial hybrid; furnished by F & M and West Coast Beet Seed Co.
SL 126 H3 x SP 5460-0	} m	+	++	WC 2371; commercial hybrid; furnished by F & M and West Coast Best Seed Co.
SP 621000-0	mn	++	-	Sel. from SP 591101-0 (see above).
SP 621160-0	0 =	++		Derived from the cross, SP 591101-0

a/Rough classification with respect to leaf spot resistance (LSR) and curly top resistance (CTR), based on various sources of information and on personal opinion: +++ = good; ++ = fairly good; + = fair to medium; + = slight if any; - = none; -? = probably none.

TOP-CROSS TEST, FT. COLLINS, COLORADO, 1963 Experiment No. 2A

Conducted by: J.A. Elder and J.O. Gaskill (Also see "Note", below, regarding curly top resistance evaluation by A.M. Murphy).

Location: Hospital Farm, Ft. Collins, Colorado; field no. 4.

Cooperation: Colorado Agricultural Experiment Station, National Sugar Manufacturing Company, Beet Sugar Development Foundation, and Board of County Commissioners of Larimer County.

Dates of Planting and Harvest: April 19-22; October 7.

Experimental Design: Randomized-block; 7 replications; plots 1 row x 221; rows 20" apart; hand thinned to single-plant hills.

Determination of Root Yield: With minor exceptions, all roots in 19' of row in each plot were hand topped, washed, and weighed.

Determination of Sucrose Percentage: All roots harvested for root yield determination in each plot constituted one sample for sucrose analysis. Duplicate sucrose determinations were made for the composited pulp from each sample.

Stand: Good.

Recent Cropping History: 1960 and 1961, alfalfa; 1962, barley.

Chemicals Applied for Sugarbeet Crop: Treble superphosphate (approximately 225 lbs. per acre) and ammonium nitrate (approximately 82 lbs. per acre) were applied in September, 1962, just before plowing. Shell DD (about 42 gal. per acre) was applied in September, 1962, for sugarbeet nematode control.

Leaf Spot Exposure: Severe; prolonged.

Curly Top Exposure: Negligible.

Yellows Virus: Yellows (presumably "western") was rather general throughout the field; effects mild.

Other Diseases & Pests: Negligible.

Soil and Seasonal Conditions: The 1963 crop season was hot and dry on the whole. A heavy rain about September 20 and unusually warm fall weather were conducive to growth and unfavorable for sucrose accumulation. Adequate soil moisture was maintained throughout the season by means of furrow and sprinkler irrigations. Inoculation (July 2) and subsequent frequent sprinkling were employed in order to promote the development of leaf spot (Cercospora beticola).

Reliability of Test: Good.

* * * * * *

Note: The above information pertains entirely to the #2A Top-Cross Test at Ft. Collins, Colorado. Curly top resistance evaluation, as shown in the table of results, was performed by A.M. Murphy at Thatcher, Utah, by means of field plots in which the development of curly top was promoted artificially. Most lines and hybrids were represented by a single plot, 1 row x 50' in size.

TOP-CROSS TEST, FT. COLLINS, COLORADO, 1963 (EXP. NO. 2A)

	1	2	!		linators	a/		Aver. b/	Check vars	t SL	:Misc.(mm,LS	SR-BRR) a/:
	Perform-	(CMS of mm lines below)	CTR SL 932	:LSR-CTR: : SP : :6051-0 :	LSR-BF	SP :		of thybrids	122 MS x SP 5460-0	126 NU 1 x SP 1 5460-0	621000	621160
Roots	Pol.,etc.			14.09			16.26		13.33	15.34	16.27	16.75
tons)	Hybride M	FC 501 (1 FC 503 (2 SP 561609-0 (3) 15.90	15.84 16.39	18.82							
	10 10 10 10 10	SP 561606-0 (4 SP 581179sl (5 SP 581181sl (6 SP 581222sl (7 Av. 4-7 2) 13.97) 16.44) 15.70 15.38	15.77 14.81 17.13 16.39 16.03	16.36 20.06 18.68 19.41 18.63 .) = 1.90	15.96 17.09 16.91 16.12	16.00 17.50 16.77 17.14 16.85 0.95; (15.61 16.46 17.22) 17.11 (3) = 0.85				;
Buc-	Pol.,etc.			11.63		12,26	13,39		12.46	12.39	12.71	13.54
ross (%)	Hybrids "	FC 501 (1 FC 503 (2 SP 561609-0 (3)	13.04 13.52	13.13							
	19 96 98 99	SP 561606-0 (4 SP 581179s1 (5 SP 581181s1 (6 SP 581222s1 (7 Av. 4-7 9	13.57	12.56 12.88 13.46 13.79 13.17	13.66 13.74 14.13 14.13 13.92)	12.52 13.54 13.61 13.02	13.16	12.81 13.22 13.55 13.71)				
Gross	Pol., etc.			3328		3903	4383		3353	3827	4150	4532
rose per acre	Hybrids	FC 501 (1 FC 503 (2 SP 561609-0 (3	:)	4136 1451	4953 3715							
(1bs.)	90 28 00	SP 561606-0 (4 SP 581179el (5 SP 581181el (6 SP 581222el (7 Av. 4-7 2	3752	3970 3824 4605 4518 4229	4485 5528 5280 5497 5198 = 639;	3608 4010 4654 4597 4217 (2) = 3	4097 4791 4384 4525 4449 320; (3)	4013 4381 4680 1697				
Leaf 9/	Pol.,etc.	1		4.9		3.4	2.9		5.4	4.4	2.7	3.1
spot grade (8/28)	Hybrids	FC 501 (1 FC 503 (2 SP 561609-0 (3	2)	3.4 4.5	2.9							
	98 89 89 89	SP 561606-0 (4 SP 581179s1 (5 SP 581181s1 (6 SP 581222s1 (7 Av. 4-7 9	6.1	5.0 4.9 4.1 4.6 4.7	4.4 4.4 3.5 4.1 4.1	4.5 4.9 3.6 3.7 4.2	4.3 3.3 3.1 3.9 3.7	4.8 4.7 3.8 4.3				
	Pol.,etc.		3.5(F	2) 4								
top grade (That- cher,	Hybrids	FC 501 (1 FC 503 (2 SP 561609-0 (3	2 6	5 4.5								
Utah)	17 == ==	SP 561606-0 (# SP 581179s1 (5 SP 581181s1 (6 SP 581222s1 (7	5) 4	5 4 4								

a/ Basic data presented as 7-plot averages, except curly top.

b/ 35-plot averages.

o/ 28-plot averages (hybrids of CMS lines 4-7, inclusive).

d/ LSD (5% point) for comparisons between: (1) 7-plot averages; (2) 28-plot averages; and (3) 35-plot averages.

e/ Leaf spot grades (J. A. Elder): 0 = no leaf spot; 10 = complete defoliation.

f/ Curly top grades (Thatcher, Utah; A.M. Murphy; moderate curly top exposure; mostly single-plot readings; end of October, 1963); 0 = healthy; 9 = dead due to curly top. Grades for checks were as follows: SL 202 H9, 2; US 41, 3; US 33, 5.3; SP 5481-0, 6.

TOP-CROSS TEST, FT. COLLINS, COLORADO, 1963 Experiment No. 3A

Conducted by: J.A. Elder and J.O. Gaskill (Also see "Note", below, regarding curly top resistance evaluation by A.M. Murphy).

Location: Hospital Farm, Ft. Collins, Colorado; field no. 4.

Cooperation: Colorado Agricultural Experiment Station, National Sugar Manufacturing Company, Beet Sugar Development Foundation, and Board of County Commissioners of Larimer County.

Dates of Planting and Harvest: May 6-7; October 15.

Experimental Design: Equalized-random-block, 24 x 8; plots 1 row x 20'; rows 20" apart; hand thinned to single plant hills.

Determination of Root Yield: With minor exceptions, all roots in 17' of row in each plot were hand topped, washed, and weighed.

Determination of Sucrose Percentage: All roots harvested for root yield determination in each plot constituted one sample for sucrose analysis. Duplicate sucrose determinations were made for the composited pulp from each sample.

Stand: Good.

Recent Cropping History: 1960 and 1961, alfalfa; 1962, barley.

Chemicals Applied for Sugarbeet Crop: Treble superphosphate (approximately 225 lbs. per acre) and ammonium nitrate (approximately 82 lbs. per acre) were applied in September, 1962, just before plowing. Shell DD (about 42 gal. per acre) was applied in September, 1962, for sugarbeet nematode control.

Leaf Spot Exposure: Severe.

Curly Top Exposure: Negligible.

Yellows Virus: Yellows (presumably "western") was rather general throughout the field; effects mild.

Other Diseases and Pests: Negligible.

Soil and Seasonal Conditions: The 1963 crop season was hot and dry on the whole. A heavy rain about September 20 and unusually warm fall weather were conducive to growth and unfavorable for sucrose accumulation. Adequate soil moisture was maintained throughout the season by means of furrow and sprinkler irrigations. Inoculation (July 2) and subsequent frequent sprinkling were employed in order to promote the development of leaf spot (Cercospora beticola).

Reliability of test: Good.

* * * * * *

Note: The above information pertains entirely to the #3A Top-Cross Test at Ft. Collins, Colo. Curly top resistance evaluation, as shown in the table of results, was performed by A.M. Murphy at Thatcher, Utah, by means of field plots in which the development of curly top was promoted artificially. Most lines and hybrids were represented by a single plot, 1 row x 50' in size.

* * * * *

(LSR, 2n, mm; SL : SP :	13.7 13.12 15.05 12.09 12.94 12.65 17.03 13.25 14.68 12.75 11.25; (2) = 0.	12,46 12,83 12,19 12,78	FC 502/2 14.40 14.69 14.83 13.93 14.54 FC 503 14.05 13.34 13.29 13.26 13.20 SP 58119481 13.96 13.42 14.00 13.33 SP 59201381 13.58 12.48 13.18 13.34 Aver.(2n hybs) b/ 14.00 13.48 13.63 13.47 LSD 2/: (1) = 0.68; (2) = 0.34	3211 3196 2549 3250	FC 502/2 384,5 3636 4,070 3688 4,201 FC 503 FC 503 SP 581194,81 3750 34,04 3996 3212 3873 SP 581194,81 3783 34,06 3632 3357 SP 59201331 4787 3557 44,87 3572 Aver. (2n hybs) b/ 3999 34,88 4,046 3447 LSD 2/** (1) = 4,11; (2) = 205	4.2 3.4	FC 502/2 4.9 3.4 2.8 3.4 3.9 FC 503 5.2 4.0 3.4 3.9 SP 58119451 5.8 3.5 3.5 3.8 SP 59201361 4.0 3.6 3.1 3.6	3.5 (F2) 4 5 4 4 4	N.Y
SI Pollinators (CIR +) 20 m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m 2 m m 2 m m 2 m m 2 m m 2 m m 2 m m 2	12.41 13.72 13.12 12.67 15.05 12.09 12.65 12.94 12.65 13.94 17.03 13.75 12.94 14.68 12.77 12.94 14.68 12.75	12.83 12.19	13.34 13.29 13.26 13.42 14.00 13.33 12.48 13.18 13.34 13.48 13.18 13.34 13.48 13.63 13.47	3196 2549	3636 4,070 3688 34,04 3996 3212 34,06 3632 3357 34,07 44,87 3532 34,88 4,046 344,7 5, (1) = 4,11; (2) = 205	4.02 3.04 4.05	3.4 2.8 4.0 3.4 3.5 3.4 3.9 3.5 3.5 3.6 3.1 3.6	4 5 4	A A A A A A A A A A A A A A A A A A A
Pollinators (CTR ±) 3/ 2n M4 : 2 <u>n</u> :4 <u>n</u> :4 <u>n</u> mu : SP : SP : SP : S- : 6051-0 :581813-00: 621104-0:62-16 : (LSR) : (LSR) : (LSR) : (LSR) : 1.58	12.41 13.71 13.12 12.75 15.05 12.09 12.65 12.04 12.65 13.94 14.08 13.25 12.94 14.08 12.75 12.94 14.08 12.75	12.83 12.19	14.83 13.93 13.29 13.26 14.00 13.33 13.18 13.34 13.63 13.47	3196 2549	4,070 3688 3996 3212 3992 3327 4487 3532 4046 3447 = 4,11; (2) = 205	3.4 4.5	2.8 3.4 3.5 2.5 3.6 3.2 3.2 3.2 3.2 3.2	4 5 4	N.Y
SP SP SP SP SP SP SP SP	13.12 12.09 12.62 13.25 13.25 12.77	12,19	13.93 13.26 13.33 13.34 13.47 (2) = 0.34	2549	3688 3212 3357 3357 3447 (2) = 205	4.5	40,80,0	2 4 4	WA
CTR +) 3/ 20 mm :40 mu SP S- : 621104-0:62-16 : (LSR) : (LSR	12.09 22.62 23.25 25.27 20.00		13.93 13.26 13.34 13.34 13.47		iso:			7 7	
1,12 mu. 1,52-16 1,58-16	100	12,78	4.22 2.20	3250	3873	4.5	3.9	7	*
Aver (2n h	13.21 15.22 25.23		13.15		3810 3591 3545 4030		3.6		
: (Tono) : (Theck vars. (mono.) 3/ : (An hybs: SL 122 MS : SL 126 MS : SP 5460-0 : SP 546		п.95		2819		5.04			
SL 126 IE:		12.92		3315		5.0			

a/ Basic data presented ** 8-plot averages, except curly top.

b/ 32-plot averages.

c/ LSD (5% point): (1) for comparison of 8-plot averages; (2) for comparison of 32-plot averages.

d/ Leaf spot grades (J.A. Elder): 0 = no leaf spot; 10 = complete defoliation.

e/ Curly top grades (Thatcher, Utah; A.M. Murphy; moderate curly top exposure; mostly single-plot readings; end of October, 1963): 0 = healthy; 9 = dead due to curly top. Grades for checks warm as follows: SL 202 H9, 2; EE 41, 3; US 33, 5.3; SP 548L-0, 6. The grade for the type-0 phase of each ? line is shown in parentheses following the line no.

Development of Monogerm, Type-O, LSR-CTR, Inbred Lines

The following B2 material was produced at Ft. Collins, during a period of several years, to serve as a basis for selection of monogerm, type—O lines having resistance to both leaf spot and curly top:

US 201, the non-recurring parent, served as the source of leaf spot resistance, and field selection under leaf spot conditions was employed in successive generations in an attempt to retain a high level of resistance. Monogerm segregants, carrying the cytoplasm of SLC 122-0, were selected from an increase of the B2 and grouped to produce a seed lot designated SP 611100-0. Monogerm segregants from a backcross similar to the above, but with cytoplasm derived from the multigerm variety, SL 202, were grouped to produce SP 611101-0. Staked (LSR) plants, selected in both of the "61" numbers, were selfed and indexed for the type-0 character in 1962. Twenty of the original selfed seed lots were shared with Dr. C. W. Bennett, Salinas, California, early in 1963 for CTR evaluation and a portion of each lot was planted on the Hospital Farm at Ft. Collins for LSR evaluation.

As may be observed in the accompanying table, at least 10 of the lines with a perfect "O-rating" (100/0) or nearly so (90/0 or better) were approximately equal to US 75 in CTR and to SP 5481-0 in LSR. The relatively high frequency of occurrence of the combination of the type-0 character with LSR and CTR in this material is very encouraging.

EVALUATION OF LEAF SPOT AND CURLY TOP RESISTANCE OF NEW, MONOGERM, TYPE-O AND NEAR TYPE-O S1 LINES, 1963

Ft. Collins, Colorado, and Salinas, California

Immediate	1		:Pol-	a/:	- /	: CTT	R evaluat	ion c/:		LSR ev	aluati	on d/	:	
parent	1	Strain	:len	2	0- b/	:				: No. :	LS	grade	:	Vig.e/:
or de-	1	no.	:rat-	:	rat-	■ Code	:inf. :	CT:	try	of :	1	:	:	:
scription	:		:ing	:	ing	: no.	:plants:	grade:	no.	:plots:	8/15:	8/23:	8/30:	8/15:
/2222		/		Set	I for		aluation							
SP 611100-0	-	62201281	5		100/0	63-1	31	3.5	403	2	2.5	4.0	4.8	4.0
do		622027sl	5		100/0	63-2	34	3.3	406	2	0.5	1.0	1.8	5.5
do		622050sl	5		72/17	63-3	35	3.4	408	1	1.0	1.5	2.0	5.0
do	SP	622073sl	1		90/0	63-4	31	3.0	415	1	1.0	1.0	2.0	8.0
do		622078sl	1		100/0	63-5	27	2.6	419	1	2.5	3.0	3.0	6.0
do		62207981	5		70/0	63-6	32	3.5	421	1	4.0	5.0	5.0	4.0
do		622091 s 1 622106 s 1	5		87/0	63-7	37	3.0	426	1	2.0	3.5	4.0	6.0
do do		622100s1	2		100/0	63-8	00	0 1	430	2	1.0	2.8	3.8	5.0
do		622107s1	2		100/0	63-9	33	3.4	432	1	1.5	2.5	3.5	5.0
CTR check	US		Т		90/0	63-10	-	2.4	434	2 .	1.0	2.3	2.8	6.5
OIR CHOOK	03	1)					35	3.2						
nn (11100 0	an	/00330-3		jet			raluation							
SP 611100-0	-	622112s1	5		9070	63-11	-	3.2	438	2	1.3	1.5	3.0	5.0
do	SP	62211581	1		91/0	63-12		3.3	440	2	1.8	2.3	2.8	6.5
do	SP	622116sl	5		95/0	63-13	-	2.6	442	1	1.5	3.0	3.0	5.0
do SP 611101-0		622120sl	5		100/0	63-14		3.6	444	2	3.5	5.0	5.5	5.0
		622067sl	5		90/0	63-15		3.0	446	1	1.0	2.5	2.5	4.0
do		622068sl	5		86/0	63-16		3.6	447	1	0.5	1.0	1.0	3.0
do		622071sl 622101sl	3		100/0	63-17	~ ~	2.9	449	1	1.0	1.0	1.0	6.0
do		622114s1	5		100/0	63-18		2.6	453	1	2.0	3.0	3.0	6.0
		622119sl	. 5		95/0	63-19		3.1	456	1	4.0	6.0	5.0	4.0
do			,)		79/11	63-20		3.2	458	2	2.0	2.8	4.0	5.5
CTR Check	US	1)					37	3.6						
				hor	ka for	TCD F	aluation							
US 201	SP	581001-0	-	1100	101		arua o roll		498	6	0.8	1.0	1.4	6.2
SP 5481-0		2483							499	8	1.4	2.2	2.8	7.3
Syn. Check		2269							500	6	4.7	5.6	6.0	5.0
Office Officer	2100	- 223/							700		P+ 0 1	700	0.0	7.0

a/ Quantity of pollen shed by the individual plant that was selfed to produce the indicated strain no.; grades 1 - 5 in ascending order of abundance.

b/ Pertains to the indexing population (usually about 20 plants); left number is percentage classed as male sterile; right number is percentage classed as male fertile; percentage unaccounted for, if any, represents intermediate types.

c/ Curly top resistance evaluation by C.W. Bennett, Salinas, Calif., using greenhouse seedling technique with curly top virus strain ll; curly top grades 1 - 5 in ascending order of severity. The plants were classified individually, and nominfected plants were disregarded in computing averages.

d/ Leaf spot resistance evaluation by J.A. Elder in field plots (Experiment 6A) on Hospital Farm, Ft. Collins, Colo.; plots 1 row x 19' flanked by a susceptible strain; inoculation and frequent sprinkling used to promote leaf spot development. Basis of grades: 0 = no leaf spot; 10 = complete defoliation.

e/ Foliage vigor: larger no. = greater vigor.

Cooperative Evaluation Tests of LSR-CTR Varieties

Seed supplies described in an accompanying table were assembled at Ft. Collins and distributed to cooperators for evaluation. A partial set was furnished for 1 test. For all others, complete sets of 7 varieties were supplied. One or 2 "local-check" varieties were furnished for each test by the cooperator. Tests completed by the end of November were as follows:

10 00 10		Type of	
State	Locality	test	Organization conducting test
Calif.	Hamilton City	Agron.	Holly Sugar Corp.
Colo.	Ft. Collins	Agron.	U.S. Dept. of Agriculture
Colo.	Rocky Ford	Agron.	American Crystal Sugar Co.
Kan.	Tribune	Agron.	Kansas Agr. Exp. Station and
			the National Sugar Mfg. Co.
Md.	Beltsville	Agron.	U.S. Dept. of Agriculture
N.M.	Artesia	Agron.	N.M. Agr. Exp. Station
Okla.	Goodwell	Agron.	Okla. Agr. Exp. Station
Texas	Hereford	Agron.	Holly Sugar Corp.
Utah	Thatcher	Observ.	U.S. Dept. of Agriculture

Results for the individual tests are presented in separate tables. A general summary of harvest results for all agronomic tests, except for that with the incomplete set of varieties, is given in a single table in which averages are shown as percentages of those obtained for variety no. 1 (SL 122 MS x SP 5460-0), a monogerm hybrid serving as the standard.

The 1963 results confirmed the finding reported for 1962 regarding the superiority of the monogerm hybrid, SL 126 MS x SP 5460-0, compared with SL 122 MS x SP 5460-0. Based on all tests providing gross sucrose data, the former hybrid exceeded the latter in gross sucrose yield, each year, by 11%. This difference was largely due to the superior root yielding ability of SL 126 MS x SP 5460-0. Differences between the 2 varieties in sucrose percentage were negligible in 1962. In 1963 the sucrose percentage of SL 126 MS x SP 5460-0 was significantly higher than that of SL 122 MS x SP 5460-0 in 1 test. Averages for the 2 varieties, based on the other 5 tests, were nearly identical. The 2 varieties differ very little in resistance to leaf spot and curly top (2 years' results). For 1962 results, see p.145, Sugarbeet Research, 1962 Report.

The 2 triploid monogerm hybrids, entries 4 and 5, were about equal to SL 126 MS x SP 5460-0 in gross sucrose yield in 1963.

The severe curly top exposure at Artesia, New Mexico, in 1963 emphasizes the importance of curly top in that area. It also should be recalled that even more severe curly top exposure has been observed at Hereford, Texas, within the last 10 years, exposure so intense that the susceptible check in a variety test yielded less than 1 ton of roots per acre in contrast with 20 tons for the CTR check (US 22/3).

Leaf spot was an important factor in several of the agronomic tests in 1963, but the test at Artesia was the only one where both leaf spot and curly top were important. Under these conditions, the multigerm, LSR-CTR variety, SP 6051-0, was strikingly superior to all other varieties in vigor and relative freedom from disease. That variety was the highest in final yield of roots (58.3 tons per acre), being 43% above SL 122 MS x SP 5460-0. Additional results for SP 6051-0 appear in Sugarbeet Research-1961 Report, pages 122-132, and also in the current (1963) issue of Sugarbeet Research under the heading, "Top-cross Tests" (Ft. Collins Experiments 2A and 3A), where combining ability data are presented.

^{1/} For results, see pages 205-207.

^{2/} Photo, page 208.

COOPERATIVE AGRONOMIC EVALUATION TESTS OF LSR-CTR VARIETIES, 1963

Description of Varieties

	:Ft. Co		
1	Acc.	2528	SL 122MS x SP 5460-0; monogerm; LSR-CTR; Farmers and Manufacturers Beet Sugar Assoc. and West Coast Beet Seed Co. (W.C. lot 2433).
2	Acc.	2529	SL 126 MS x SP 5460-0; monogerm; LSR-CTR; F. & M. and West Coast Beet Seed Co. (W.C. lot 2371).
3	Acc.	2530	F61-562HO (MS) x SP 5460-0; monogerm; LSR-CTR; F. & M. and West Coast Beet Seed Co. (W.C. lot 2401)
4	Acc.	2531	SL 126 MS x US 401 4n; monogerm; LSR-CTR; F. & M. and West Coast Beet Seed Co. (W.C. lot 2362).
5	Acc.	2532	F61- 562HO (MS) x US 401 4n; monogerm; LSR-CTR; F. & M. and West Coast Beet Seed Co. (W.C. lot 2361)
6	Acc.	2533	SP 5822-0; a U.S.D.A., leaf spot-black root resistant, multigerm variety developed for eastern sugarbeet areas; included in these cooperative tests as an LSR check; seed furnished by the Great Western Sugar Co.
7	Acc.	2534	2539H1; (515 HO x 569) x NB7; a U.S.D.A., bolting resistant, curly top resistant, monogerm hybrid developed for use in California; included in these tests as a CTR check; seed furnished by the Union Sugar Division (through J.S. McFarlane, U.S.D.A., Salinas, California).
8			Local check, furnished by cooperator.
9			Local check, furnished by cooperator (occasional use).

						eral S	ummar	Jo K	Harve	st Re	General Summary of Harvest Results a/	व							
	AVe	rages	Averages expressed	essed	as p	ercent	ages	of th	ose o	btair	as percentages of those obtained for SL 122 MS x	SL 12	2 NS 2	SP 5	SP 5460-0)				
	_ (Gross	sucrose yield	se vi	eld		Ī	R	Root yield	ield			_		Percent sucrose	Sucre	Se	-
Description	it is	try Col. Co		Trb.	Her.	of : Trb : Her : H.C.	S CO	Col	Trb.	.Her.	F.C. : R.F.: Trb.: Her.: Art. D	/ : H.C. : Bel.	Bel.	C) 1	23	.Trb.	.Her.	Art. D	:H.C.
	no.	(1)	:no. (1) :(2) :(3)	:(3)	(7):	(9)	3	(2)	(3)	(7)	:(5)	(9)	(7)	35	(2)	. (3)	Tex.	N.N.	- E
Disease exposure C	•• •	T.S	SI:		SI:	SI:					5		SI	53	3		15	5	: LS
SL 122 NS x											3		BR?		••			: LS	
SP 5460-0; mono.	4	100	100 100	100	100	100	100	300	200	100	30	300	100	2	2	200	100	000	000
SL 126 MS							3	3	3	3	3	3	3	3	37	76	3	100	9
SP 5460-0; mono.	8	118	130	103	105	86	112	119	100	106	113	103	711	106	100	103	00	8	90
F61-562H0 M5 x)					-									,	11	2
SP 5460-0; mono.	m	108	727	105	193	11	109	108	103	107	95	8	971	100	115	103	96	76	60
ST TSO MS E																	2	ŧ	74
US 401 4n; mono.	4	118	118	101	105	113	113	113	107	100	127	115	305	10%	300	70	00	00	2
F61-562HO MS x							,					ì	3	3	1	74	70	74	~
US 401 4n; mono.	2	124	105	119	110	109	115	102	123	116	118	120	132	300	300	00	20	20	8
SP 5822-0; LSR			- 8						1				1/1	7.00	707	7(72	72	7
check; multi.	9	132	139	66	109	83	119	100	98	100	97	87	138	110	130	100	300	300	90
2539H1; CTR												,		1	2	704	101	TOS	2
check; mono.	7	78	젊	16	89	107	7	16	101	103	109	106	29	98	89	9	86	8	ğ
/ 2	,	(((1	-		-				*	?
Local check	00	149 132	132		120	122	130	109		126	143	118	101	115	121		95	16	103
Local check d/	0		120		2			8		8					(
The state of the s			2		3			75		3					130		101		
L.S.D. (5% point)		Ħ	23	19	6	80	2	19	15	9	22	7	17	9	10	4	6	0	0
							The special property lies	-						-) 4		,	,	0

a/ Location of tests: (1) Ft. Collins, Colo.; (2) Rocky Ford, Colo.; (3) Tribune, Kan.; (4) Hereford, Texas; (5) Artesia, N.M.; (6) Hamilton City, Calif.; (7) Beltsville, Md.

b/ Artesia, N.M.: November-21 harvest results; refractometer percentages used instead of sucrose percentages.

2/ Disease exposure considered important: BR = black root; CT = curly top; LS = Cercospora leaf spot.

d/Local check: (1) GW 674-56C; (2) entry 8 = Amer. #2 multi., entry 9 = Amer. #2 mono.; (3) deleted; (4) entry 8 = HH 10, entry 9 = HH 12; (5) SP 6051-0; (6) NBHHI; (7) SP 622-0.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963 Experiment No. 1A, Ft. Collins, Colorado

Conducted by: J. A. Elder and J. O. Gaskill

Location: Hospital Farm, Ft. Collins, Colorado; field no. 4

Cooperation: Colorado Agricultural Experiment Station, National Sugar Manufacturing Company, Beet Sugar Development Foundation, and Board of County Commissioners of Larimer County.

Dates of Planting and Harvest: April 22; October 9.

Experimental Design: Latin Square, 8 x 8; plots 2 rows x 22'; rows 20" apart; hand thinned to single-plant hills.

Determination of Root Yield: All roots in both rows x 19' of each plot were hand topped, washed, and weighed.

Determination of Sucrose Percentage: All roots harvested for root yield determination in each plot were divided into 2 samples for sucrose analyses. Duplicate sucrose determinations were made for the composited pulp from each sample.

Stand and Bolter Counts: For stand, all hills were counted in each plot on September 18 in the area to be harvested for root yield. Bolter percentages were determined by counts (entire plots) in mid-season, before seed matured. Seedstalks were cut off at that time.

Recent Cropping History: 1960 and 1961, alfalfa; 1962, barley.

Chemicals Applied for Sugarbeet Crop: Treble superphosphate (approximately 225 lbs. per acre) and ammonium nitrate (approximately 82 lbs. per acre) were applied in September, 1962, just before plowing. Shell DD (about 42 gal. per acre) was applied in September, 1962, for sugarbeet nematode control.

Leaf Spot Exposure: Severe; prolonged; first extensive "burning" or "blighting" of leaves occurred early in August.

Curly Top Exposure: Negligible.

Yellows Virus: Yellows (presumably "western") was rather general throughout the field; effects mild.

Other Diseases and Pests: Negligible.

Soil and Seasonal Conditions: The 1963 crop season was hot and dry on the whole. A heavy rain about September 20 and unusually warm fall weather were conducive to growth and unfavorable for sucrose accumulation. Adequate soil moisture was maintained throughout the season by means of furrow and sprinkler irrigations. Inoculation (July 2) and subsequent frequent sprinkling were employed in order to promote the development of leaf spot (Cercospora beticola).

Reliability of Test: Good.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963
Experiment No. 1A, Ft. Collins, Colorado
(Results given as 8-plot averages)

	Ft. Col.	Col		Acre	Acre yield		Le	Leaf Spota	ta .	1 /q	Stand	**	4
Description	seed:	т. Т.	Entry no.	Gross	Roots	Sucrose:	8/13	8/21:	8/28	8/13: 8/21: 8/28: 8/13:p	(Hills	:Bolters	
				Lbs.	Tons	88					No.	80	
SL 122 MS x SP 5460-0; mono.	Acc.	, 2528	7	3672	14.80	12,38	3.6	4.4	5.4	6.1	112	0.24	
SL 126 MS x SP 5460-0; mono.	Acc.	Acc. 2529	~	4351	16.56	13,12	2.9	0.4	5.1	9.9	112	0.0	
F61-562HO MS x SP 5460-0; mono.	Acc.	Acc. 2530	m	3967	16,06	12,33	2.4	2.9	3.8	8.9	113	00.00	
SL 126 MS x US 401 4n; mono.	Acc	Acc. 2531	7	4337	16.79	12.92	3.3	9.4	5.4	8.9	113	0.25	
F61-562HO MS x US 401 4n; mono.	Acc	Acc. 2532	7	4550	17.06	13,33	2.9	0.4	6.4	7.1	. 111	0.24	
SP 5822-0; multi.; LSR check	Acc.	Acc. 2533	9	(7875)	17.66	13.66	1.3	1	2.5	6.5	777	00.00	
2539 Hl; mono.; CTR check	Acc.	Acc. 2534	7	2848	13.40	10.61	5.8	6.5	7.5	3.9	113	800	
GW 674-56C; multi.; local check	Acc	Acc. 2168	80	5475	19.19	14.26	2.3	3.2	4.5	8.9	110	00.00	
General mean				4255.22	16,4405	12,8263							
S.k. of var. mean as % of gen. mean S.E.				3,19	2,18	0,24,31							
L.S.D. (5% point)				388	1,02	69°0							
				Wow!	Warfance marie								
				AGT TOA	ווכפ ומחדם								

		STOWER D	Tomis Donnes of the training	200		
Source of Variation	: D/F	 Gross		••	-	
		 Sucrose	Roots	Su	icrose %:	
Rows	4	840,970.7	4.9020		2,4486	
Columns	~	289,341.4	1,6568	0	9808	
Varieties	2	4,959,462.1	24.7039	0	,6369	
Error (remainder)	777	147,862.9	1,0243	0	0.4730	
Total	63					
Calculated F value		33.54**	24.12**		20.37**	

a/ Leaf spot: 0 = no leaf spot; 10 = complete defolistion.

b/ Foliage vigor: Larger no. = greater vigor.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963 Rocky Ford, Colorado

Conducted by: American Crystal Sugar Company.

Location: Rocky Ford, Colorado.

Dates of Planting and Harvest: April 10; October 8.

Experimental Design: Triple Lattice, repeated 3 times, 9 replications; plots 1 row x 351; rows 22" apart.

Determination of Root Yield: Complete plot.

Determination of Sucrose Percentage: Approximately one-half of the beets per plot were bulked as one sample.

Stand Counts: Harvested beets counted when weighed.

Recent Cropping History: Alfalfa.

Fertilizer Applied for Sugarbeet Crop: 800 pounds of 18-46-0.

Leaf Spot Exposure: Moderate.

Curly Top Exposure: Light.

Other Diseases and Pests: Negligible.

Soil and Seasonal Conditions: Season extremely dry, beets suffered from drought a couple of times.

Reliability of Test: Fair.

opı
Colorad
Rocky Ford,

2.98% :per 351 38.5 No. 38.8 40.9 :Leaf a/: (roots 36.4 40.2 : Stand 40.3 2000 200 cm 345 :Sucrose: spot 16.15% 10.09 11.04 10.54 9.00 0.98 9.32 3.39 Tons 18.12 21.61 19.55 16.49 Roots 20.51 18,93 Acre Yield Results given as 9-plot averages : no. : sucrose: Entry Gross 21,10 1.bs. 3657 4771 4323 3830 5080 4528 2968 4819 4258 4258 849 りらか N 00 0 2528 Acc. 2529 2532 2534 Acc. 2530 2531 2533 seed no. Acc. Acc. Acc. Acc. Acco 54-406-0 (Amer.#2 multi.); local ck. 59-415-0 (Amer.#2 mono.); local ck. F61-562HO MS x SP 5460-0; mono. F61-562HO MS x US 401 4n; mono. SL 126 MS x US 401 4n; mono. 5460-0; mono. SI 126 MS x SP 5460-0; mono. SP 5822-0; multi.; LSR check Description 2539Hl; mono.; CTR check L.S.D. (5% point SL 122 MS x SP General mean F value V. 86

a/ Leaf spot readings (9/17/63, J.0.Gaskill): 0 = no leaf spot; 10 = complete defoliation.

b/ For gross sucrose: SE lbs.sucrose = mean lbs.sucrose x $\left(\frac{\text{(SE lbs.beets)}^2}{\text{(mean lbs.beets)}}^2 + \frac{\text{(SE \% sucrose)}^2}{\text{(mean \% sucr.)}}\right)$

		Mean	Mean Square (variance)	riance)	9/
Source of Variation	:D/F:	D/F: Roots (lbs.	:Sucrose	ucrose %:No. Roots(351)	J.0°
Replicates	∞	58,9312	0,9838	165.750	10
Component (a)	12	109,5391	1.4242	36.583	
Component (b)	9	261.4116	0,3250	13,833	b/ H
Blocks	188	160,1633	1.0577	29,000	Sir Sir
Varieties	₩	221,6600	17.7162	69,375	
Error (Intra-Block)	947	100,1691	1,1132	23,326	(8)
	79		1,0976		<u> </u> 目
Total	8	121.6931	2,7481	39.500	<i>></i>

2

Variance Table

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963
Tribune, Kansas

Conducted by: Roy E. Gwin, Jr., and Henry Wolfe.

Location: Tribune Branch Station, Kansas Agricultural Experiment Station, Tribune, Kansas.

Cooperation: Kansas Agricultural Experiment Station and the National Sugar Manufacturing Company.

Date of Harvest: November 5.

Experimental Design: Latin Square, 8 x 8; plots 6 rows x 30'; rows 22" apart; hand thinned to single-plant hills. One variety was deleted due to poor stand, and the results were analyzed on a randomized-block basis.

Determination of Root Yield: All roots in 30' to 50' of row (usually 50') in each plot were topped, cleaned, and weighed.

Determination of Sucrose Percentage: All roots harvested for root yield in each plot were divided into 3 or more samples for sucrose analysis.

Stand Counts: Based on harvested roots.

Leaf Spot Exposure: Mild.

Curly Top Exposure: Negligible.

Other Diseases and Pests: Negligible.

Soil and Seasonal Conditions: High fertility; adequate irrigation; warm fall weather, unfavorable for sucrose accumulation.

Reliability of Test: Variability was greater than usual in this test, especially in yield of roots and gross sucrose. According to the "F" test (F= 1.68), varieties did not differ significantly in gross-sucrose yield, and consequently the L.S.D. value shown for gross sucrose (1422) should be used with caution.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963 Tribune, Kansas

(Re	sults	given	as 8-p]	Results given as 8-plot averages	(5)			
	: Ft. Col	Col		: Acre Yield	(ield	••	: Stand	1
Description	: seed	p,	Entry	Gross			: (Beets	
	: no.		no。	sucrose:	Roots	:Sucrose	:per 1001)	
SI 122 MS x SP 5460-0; mono.	Acc.	2528	1 3/	1599 7599	Tons 26.86	14.04	No.	
SL 126 MS x SP 5460-0; mono.	Acco	2529	2	7856	26.99	14.51	137	
F61-562HO MS x SP 5460-0; mono.	Acc.	2530	3	8016	27.62	14.40	113	
SI 126 MS x US 401 4n; mono.	Acc.	2531	4	7685	28,70	13.20	121	
F61-562HO MS x US 401 4n; mono.	Acc.	2532	2	(87/06)	32.93	13.68	106	
SP 5822-0; multi.; LSR check	Acco	2533	9	7509	26.34	14.30	107	
2539Hl; mono.; CTR check	Acc. 2534	2534	7	6934	27.20	12,58	114	
General mean				7806.73	28,0905	13,8145		
S.E. of var. mean				497.63	1,3697	0.3562		
S.E. of var. mean as % of gen. mean				6.37	4.88	2.58		
L.S.D. (5% point)				1422	3.91	1,02		

Variance Table

••	Se 98	2	4	Ę,		
ance)	: Sucros	124.9	4.056	1,0151		7,00%
are (Vari	Roots	21,0079	40.8576	15,0075	-	2,72%
: Mean Squ	:Gross sucrose:	5,807,540.6	3,328,658,2	1,981,058.3 15,0075 1.01		1,68
••	: D/F	7	9	07	53	
	Source of Variation	Replications	Varieties	Error (remainder)	Total	Calculated F value

The data for one plot were missing, and results for that plot were estimated, using the method of Allen and Wishart. a

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963 Hereford, Texas

Conducted by: D. F. Peterson, W. S. Fisher, et al.

Location: Reinauer Farm near Hereford, Texas.

Cooperation: Holly Sugar Corporation; Eddie Reinauer, grower.

Dates of Planting and Harvest: March 29; September 26.

Experimental Design: Latin Square, 9 x 9; plots 2 rows x 54'; rows 30" apart.

Determination of Root Yield: All roots in 2 rows x 50' in each plot were weighed for yield determination.

Determination of Sucrose Percentage: Two 10-beet samples from each plot.

Leaf Spot Exposure: Severe

Curly Top Exposure: Negligible

Other Diseases and Pests: Negligible

Soil and Seasonal Conditions: High fertility; good uniformity; irrigation adequate.

Reliability of Test: An excellent test in all respects; data very reliable.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963 Hereford, Texas

	(Result	Sgiv	en as 9	Results given as 9-plot averages	rages)			Party 4
Desemint on	Fr. Col.	ot.	Ent.mr	Acre	Acre Yield	_. .	. Teaf a/	: Stand
POSC PACE	no.	1 0	no.	sucrose:	Roots	: Sucrose	spot :	
SL 122 MS x SP 5460-0; mono. SL 126 MS x SP 5460-0; mono.	Acc	2528	12	1.bs. 4646 4874	Tons 18,996 20,073	12.23	4.8	No. 151 161
F61-562HO MS x SP 5460-0; mono.	Acc.	2530	~	4778	20,331	11.75	4.2	157
SL 126 MS x US 401 4n; mono.		2531	4,	7987	20,318	11.97	9.4	162
FOL-502HU MS X US 4UL 4n; mono. SP 5822-0; multi.; LSR check	Acc.	2533	00	5044	18.975	13.29	2.2	777
2539HI; mono.; CTR check	Acc.	2534	~ 00	4121	19.493	10.57	0.8	162
HH 12; local check			6	1,641	18,818	12,33	5.3	155
General mean S.E. of var. mean S.E. of var. mean as % of gen. mean	ne			4850 151 b/ 3,11 428	20.343	11 .94 0 .29 24.2 0 .82	4.7	157

Variance Table

	••	:Mean squar	re (variance):	
Source of Variation	: D/F	: Roots	Roots : Sucrose % :	
Rows	€	60°9	3.54	
Columns	₩	7.60	1.59	
Varieties	€	26.01	4.80	
Error (remainder)	56	1.42	0.75	
Total	80	79.4	1.52	
Calculated F value		18,31**	**07.9	

a/ Leaf spot grades: scale of 1 to 10 in ascending order of severity.

b/ S. E. of var. mean calculated from formula.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963
Hamilton City, California

Conducted by: D. D. Dickenson

Location: Hamilton City, California

Cooperation: Holly Sugar Corporation; grower, Nichols.

Dates of Planting and Harvest: May 2; October 29.

Experimental Design: Latin Square, 8 x 8; plots 2 rows x 50'; rows 30" apart.

Determination of Root Yield: 2 rows x 47' harvested.

Leaf Spot Exposure: Leaf spot began about September 1 and continued until harvest. The amount at harvest was less than at earlier dates, however.

Curly Top Exposure: Negligible.

Remarks: The soil was extremely moist at harvest and top growth was very great.

1963	
VARIETIES,	
OF LSR-CTR	ifornia
TEST	y, Cal:
C EVALUATION	milton Cit
AGRONOMIC	Har
COOPERATIVE	

Description	(Results given as Ft. Col.: seed :Entry	given 1.		Ver Yie		Leafa/: Spot :	Stand (Beets	
122 MS x SP 5460-0; mono.	Acc. 25	2528			Sucrose 9.32	3.3	No.	
SL 126 MS x SP 5460-0; mono.			2 5470	30.733	8 6	1d-	133	
SL 126 MS x US 401 4n; mono.	Acc. 25	2531		34.238	9.19	2 %	777	
F61-562H0 MS x US 401 4n; mono.				35.646	8.51	2.9	110	
SP 5822-0; multi.; LSR check 253941; mono.: CTR check	Acc. 25	2533	6 4584 7 5755	25.869	8,86	15°2	159	
NBHHl (12325); local check			3 6768	35.106	9.64	2,1	164	
General Mean S.E. of var. mean			5593	30.973	9.01	3.0	139	
S.E. of var. mean as % of gen. mean L.S.D. (5% point)	ıean		2.66	1.74	2.96			
		Vari	Variance Table				·	
	••	. M	Mean Square	(variance)				
Source of Variation	: D/F		Roots:	Sucrose	88			
Rows	-		8,641	2,202				
Columns	2		16,480	0.391				
Varieties	6	Η'	132,205	1,151				
Error (remainaer)	\$ 63		2.400	0,040				
Calculated F value			24.48**	NS				
Leaf spot ratings: scale 1 -	. 10 in ascending order	ending	of	severity.				
Short-cut formula		**	Exceeds 1%	1% level 3.10	N	NS: Not si	Not significant	

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963 Goodwell, Oklahoma

Conducted by: H. Eugene Reeves, Bill Ott and Ralph Matlock.

Location: Panhandle Agricultural Experiment Station, Goodwell, Oklahoma.

Cooperation: Oklahoma Agricultural Experiment Station, Holly Sugar Corporation, Great Western Sugar Company, American Crystal Sugar Company, U.S.D.A. Ft. Collins, Colorado.

Dates of Planting and Harvest: March 24; October 29.

Experimental Design: Randomized block; 10 replications; plots 3 rows 21', rows 28" apart, center row test variety, 2 rows common border US-35/2; hand thinned to single plant hills 9" apart.

Determination of Root Yield: All roots in 16' of harvest row were hand topped, cleaned and weighed.

Determination of Sucrose and Thin Juice Purity Percentages: A random sample of roots was taken from the row and shipped to Holly Sugar Corporation for analysis.

Recent Cropping History: 1961 Fallow, 1962 Sesame.

Chemicals Applied for Sugar Beet Crop: 80 lbs. of N (applied as ammonium nitrate) applied on May 8 as a sidedressing.

Leaf Spot Exposure: Negligible.

Curly Top Exposure: Very mild.

Other Diseases and Pests: Mild to moderate root aphid infestation; otherwise negligible.

Soil and Seasonal Conditions: The 1963 crop season was unusually dry and fairly hot. A hail storm on July 12 completely defoliated the plants. Recovery was good. Adequate soil moisture was maintained throughout the season by means of furrow irrigation.

Reliability of Test: Good.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963 Goodwell, Oklahoma (Results given as 10-plot averages)

	: Ft. Col.	••	Acre	Acre Yield		: Thin
Description	seed:	:Entry:	Gross	••	••	: juice
	ou :	: no. :	sucrose	Roots	: Sucrose	: purity
SI 126 MS x SP 5460-0; mono.	Acc. 2529	2	1.bs. 5200.02	Tons 20,11	12.70	96.89
SL 126 MS x US 401 4n; mono.	Acc. 2531	4	5220.35	21.42	12,12	96.76
нн 6 Sp 295 (ноlly)			5236.07	20.93	12.42	60°96
General mean			5218,81	20.82	12.41	96.58
S.E. of variety mean			348.999	.247	.170	.284
S.E. of var. mean as % of gen. m	mean		6,687	1,186	1,369	,294

Variance Table

	••		square (v	Mean square (variance) and Calculated F values	nd Calcul	ated F	value	S		
Source of variation	:D/F:	Gross	••	••	nS:	Sucrose		Thin juice:	••	
	••	sucrose	••	Roots	: F : percent : F	rcent	E	:purity % : F	E-1	- 1
	c	מס גנון כסכ	5	0000 11			-	((1))	7 6	
ceptications	7	2,202,411.28		11.3022			7.40	0.0133	or°x	
Preatments (varieties)	2	3,266.71		4.3700			.95	1.8450	2.27	-
Grror (remainder)	18 1	,218,689.91		6,1366	2,9244			.8155		
Total	29 1	,440,160,43	1,18	6.4517	1.05 3.3489	3489	1.14	1.14 2.6858	3,31	

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963 Artesia, New Mexico

Conducted by: W. J. Russell.

Location: Southeastern Substation, New Mexico Agricultural Experiment Station, Artesia, New Mexico.

Cooperation: New Mexico Agricultural Experiment Station.

Dates of Planting and Harvest: March 28; October 21*

Experimental Design: Randomized complete block design with 5 replications; plots 2 rows x 25'; rows 24" apart; hand thinned to single-plant hills (about 1.5 plants per foot).

Determination of Root Yield: One 10' section (20' of row) per plot.

Refractometer Readings: Made by means of a hand sugar refractometer using pressed juice of 10 roots per plot. Readings exceeded sucrose percentages by approximately 3.0.

Stand Counts: Based on roots harvested (20' of row per plot).

Fertilizers Applied for 1963 Crop: None.

Leaf Spot Exposure: Moderately severe. 1/

Curly Top Exposure: Very severe. 1/

Other Diseases and Pests: Negligible.

Remarks: The plants were grown on narrow beds. The field was irrigated immediately after planting, and subsequent irrigations were made at intervals of 2 to 3 weeks, with the last application being made on October 16. Stands and soil uniformity were satisfactory.

*Note: Disease ratings and the October 21st harvest data are summarized in Table 1. Results of a supplemental harvest (November 21) are compared with the October 21st results in Table 2.

1/ Photo, page 208.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963

(Results given as 5-plot averages) Artesia, New Mexico Table

		IGNTO T	-					
	: Ft. Col.	•11	:Roots:	••	:Leaf			Stand
Description	seed.	:Entry	: per	Refract	-:Spot	Cur	Curly top	;(plants
	ou :	no.	acre	acre : ometer	:8/17	:8/17 5/	7:9/195/	: per ft.
			Tons	82				No.
ST. 122 MS x SP 5460-0; mono.		-	43.7	16.3	2.0	0.4	2.5	1.4
ST. 126 MS x SP 5460-0; mono.		2	43.0	16.2	3.0	1.5	3.0	1.5
F61-562HO MS x SP 5460-0; mono.		3	31.6	14.4	2.0	8.5	2.0	1.4
SI 126 MS x US 401 4n; mono.	Acc. 2531	4	47.4	74.5	0.9	0.5	£0.	1.4
-onom : 11/ 10/ 211 x 21/ 0HC73-17a	Acc. 2532	4	43.8	15.0	0.5	3.0	2.5	1.3
Sp 5822-0: milti: I.SR check	Acc. 2533	0	19.0	17.3	0.5	10.0	7.3	1.2
2430Hl mono: CTR check		7	39.1	12,8	0 &	2.0	2.5	1.4
SP 6051-0: milti: local check	SP 621228F	8	47.1	15.0	0.0	0.0	1.0	1.4
General mean			39.3	15.2	2.8	3.7	3.2	1.4
L.S.D. (5% point)			8.63	2,20				
L.S.D. (1% point)			11.64	2.96				
Coop of war (%)			16.93	11,18				
(%) - TO - TOO!								

-
0
O
2
d
Variance
54
. 00
of
0
S
O
S
>
÷Γ
d
Analyses
-C

	••	. Reiractometer	iter	TOOU ITET	Tera
rce of Variation	: D/F	: Mean Square :	Ē	: Mean Square	[±.
Donlingtes	77	8,58	2,98%	11.08	0.25
	-	0 1,3	3.27%	764.76	10°78××
Hes	- 1	74.0	1201	17. 25	
or	28	2,88		44.55	
-	39				
	33				

Curly Top, 8/17: Reading of 5 or above indicates all plants seriously affected (W. J. Russell). Curly Top, 9/19: 0 = healthy; 9 = dead (C. L. Schneider, 4-plot averages). Leaf Spot: 0 = healthy; 10 = all leaves dead (W. J. Russell). लोगेंग *

Significant at the 5% level.

Significant at the 1% level.

COOPERATIVE AGRONOMIC EVALUATION TEST OF LSR-CTR VARIETIES, 1963
Artesia, New Mexico
(Results given as 5-plot averages)
Table 2

Description : SL 122 MS x SP 5460-0; mono. SL 126 MS x SP 5460-0; mono. F61-562H0 MS x SP 5460-0; mono. SL 126 MS x US 401 4n; mono. F61-562H0 MS x US 401 4n; mono. SP 5822-0; multi.; LSR check 2539 H1; mono.; CTR check	Fort Collins seed number Acc. 2528 Acc. 2530 Acc. 2531 Acc. 2532 Acc. 2533 Acc. 2534	Entry no. 1	10/21 10/21 10/21 13.0 31.6 47.4 43.8 19.0 39.1	11/21:10/21 Tons % 40.8 16.3 46.3 16.3 38.7 14.4 51.9 14.5 48.1 15.0	Refract 10/21 : 16.3 16.2 14.4 14.5 17.3 17.3	Refractometer: Stand (plants) 0/21 : 11/21:10/21 : 11/21 16.3	Stand (pper fo 10,21 : 10,4 10,4 10,4 10,2 10,2	(plants): foot) 11/21: No. 1.5 1.6 1.6 1.6 1.6 1.6	Mean weight per root 10/21 : 11/2 11/2 11/2 2.6 2.8 2.6 2.5 3.1	2.6 2.6 2.8 2.5 3.1 2.8 2.5
i.; local ck.	sp 621228но	- το	39.3 8.63 11.64 16.93	\$8.3 43.4 11.54 15.23	15.2 2.20 2.96 11.18	16.9	1.4 n.s. n.s. 15.97	1.5	3.2 2.6 0.59 0.79	2.7

Figure 1.--Differences in curly top resistance between sugarbeet varieties in test plots of cooperative test of LSR-CTR varieties at State Experiment Station near Artesia, New Mexico.

September 1963
Left 2 rows - SP 6051-0; Center 2 rows - SP 5822-0.

1963	
VARIETIES,	
OF LSR-CTR	yland
TEST	, Mar
EVALUATION	Beltsville
AGRONOMIC	
COOPERATIVE	

Test cor (Results	nducted given	by G.	E. Co	Test conducted by G. E. Coe, U.S.D.A. (Results given as 6-plot averages) 3/				
	: Ft. Col.	ol.	••	Roots 9/:		af Spot	Leaf Spot C, e/:	S
Description	: seed		:Entry:	. ber				(Beets
	· ou		no.	Acre:	8/1	: 8/8 :	8/1:8/8:8/18:	per 100
				Tons				No.
SI 122 MS x SP 5460-0; mono.	Acc. 2	528		18.13	0°4	4.3	4.5	75
SI 126 MS x SP 5460-0; mono.	Acc. 2	529	~	20,58	3.5	3.8	8.4	72
F61-562HO MS x SP 5460-0; mono.	Acc. 2	2530	3	21.00	3.5	3.7	4.2	26
SI 126 MS x US 401 4n; mono.	Acc. 2	531	4	19.52	3.8	4.2	8.4	66
F61-562HO MS x US 401 4n; mono.	Acc. 2	532	2	23,86	3.2	3.7	4.2	92
SP 5822-0; multi.; LSR check	Acc. 2	2533	9	(25.11)	2.8	2.8	3.5	102
2539Hl; mono.; CTR check	Acc. 2	534	7	12,15	5.2	5.7	6.2	72
SP 622-0; mono.; tolerant to LS and CT			8	18,33	3.3	3.7	4.3	103
General mean				19,8350				
S. E. of var. mean	•			1.0957				
S. E. of var. mean as % of gen. mean	i			5.52				

Ì
ľ
ï
1
)
۹
ř
7 7 7 7
i
Š

D. (5% point

	••	Mean Square (variance) :
Source of Variation	: D/F :	Tons roots per acre
Replications	5	3,9942
Varieties	7	94.4824
Error (remainder)	35	7,2035
Total	27	
Calculated F value		13,12%*

Plots 1 row x 201; rows 24" apart; randomized-block design; 6 replications; hand thinned. Basis of leaf spot readings: 0 = no leaf spot; 10 = complete defoliation. Whole plots harvested for determination of root yield. वे गे ने ग

Stand counts based on roots harvested.

SP 6051-0 gave leaf spot readings of 2.5, 8/1; 2.5, 8/8; and 3.5, 8/18.

COOPERATIVE OBSERVATIONAL TEST OF LSR-CTR VARIETIES, 1963 Test Conducted by Albert M. Murphy, U.S.D.A. Thatcher, Utah

grade a/ of Oct.)				
T. graend of	400	494	ヤコン	om
. C. T.	^			
9/3	62/2	69 774 61	999	22,34
% Curly top 5 : 8/20 :	22 46 25	1833	39 22 22	10
8	10	272	16 20 19	377
Ft. Collins : Entry: seed no. :	Н	2004	702	
lins o.	2528	2529 2530 2531	2532 2533 2534	
t. Colli seed no.	Acc. 25	Acc. 25 Acc. 25 Acc. 25	Acc. 25 Acc. 25 Acc. 25	
•• ••	A	AAA	AAA	
Description	US 41 check US 33 check SL 122 MS x SP 5460-0; mono.	SL 126 MS x SP 5460-0; mono. F61-562H0 MS x SP 5460-0; mono. SL 126 MS x US 401 4n; mono.	F61-562HO MS x US 401 4n; mono. SP 5822-0; multi.; LSR check 2539Hl; mono.; CTR check	US 41 check US 33 check

Results based on two replications for each entry. Basis of curly top grades: 0 = healthy; $\frac{a}{9}$ Results based on two rep $\frac{a}{9}$ = death due to curly top. Note: The crop was planted on June 20, and moderate curly top exposure was promoted by artificial means. Plots were 1 row x 50' in replication I and 2 rows x 50' in replication II.

$\underline{P} \underline{A} \underline{R} \underline{T} \underline{VI}$

DEVELOPMENT OF BREEDING PROCEDURES

and

PRODUCTION OF BASIC BREEDING MATERIAL

Chemical Genetic Studies and Polyploidy Evaluation

Foundation Project 25

LeRoy Powers

R. J. Hecker

Research conducted in cooperation with Colorado Agricultural Experiment Station.

PROGRESS REPORT TO THE BEET SUGAR DEVELOPMENT FOUNDATION ON THE GENETIC AND PLANT BREEDING PHASES OF PROJECT NUMBER 25 1/, 2/, 3/, 4/

By LeRoy Powers and Richard J. Hecker

Comparative Effects of Levels of Total Nitrogen, Potassium, and Sodium in the Petioles and in the Thin Juice on Weight Per Root, Percentage Sucrose and Percentage Apparent Purity in Sugarbeets (Beta vulgaris L.)

Studies conducted (see Payne et al. 7) $\frac{4}{}$ to determine levels of total nitrogen, potassium, and sodium in the petioles as compared with levels of these same chemicals in the thin juice, at time of harvest, have shown that there are interactions of genotypes and material analysed. It was found that some genotypes as compared to others tended to have higher levels of the three chemicals in the petioles as compared with the thin juice of the sugarbeet (Beta vulgaris L.). For other comparisons the reverse was found to be true. The purpose of the study reported in this article was to determine relations between weight of roots per plot, percentage sucrose, and percentage apparent purity and levels of total nitrogen, potassium and sodium in the petioles as compared with levels of these same chemicals in the thin juice. Also the relations between levels of phosphorus in the petioles with weight of roots per plot, percentage sucrose and percentage apparent purity were studied. The petioles analyzed were collected at time of harvest and the thin juice was prepared from the roots harvested.

- 1/ The breeding and genetic phases of Project 25 are cooperative with the Agronomy and Chemistry Departments of the Colorado State University Agricultural Experiment Station, the Mathematics Department of C.S.U., and the Beet Sugar Development Foundation.
- 2/ Acknowledgments are due the Western Data Processing Center at the University of California at Los Angeles for use of the computing facilities for analysing data, Job Numbers 398 and 1081.
- 3/ The writers are indebted to R. Ralph Wood of the Great Western Sugar Company for obtaining thin-juice samples by an oxalate method standard with his company.
- .4/ Figures in parentheses refer to literature cited.

Literature Review

The literature pertaining to combining ability in sugarbeets is rather limited. This probably is due to the fact that until quite recently the number of inbred lines of sugarbeets available for testing has been and, comparatively speaking, still is rather limited.

Oldemeyer (4) used a commercial sugarbeet variety and the red marker beet as topcross testers to determine the general combining ability of inbred lines of sugarbeets and concluded that the red marker beet is satisfactory to test general combining ability for both yield and percentage sucrose. Peterson and Dickenson (8) using the red-marker beet to test for general combining ability found that the single crosses producing the most sugar per acre were those whose parents were high in general combining ability when tested by crossing with the red-marker beet and whose F₁ hybrids exhibited heterosis for percentage sucrose.

Oldemeyer and Rush (3) made a very interesting study using malesterile testers. Seventeen self-fertile inbred lines and one open-pollinated variety of sugarbeets were crossed to five cytoplasmic male-sterile tester lines. The hybrids and their corresponding parents were grown in a field test. The results of this test showed that there are differences among the inbred lines for general combining ability and that specific combining ability is important, particularly in regard to yield. Heterosis and phenotypic dominance were found for both yield and sucrose percentage. Parental performance showed little association with the combining ability of their respective inbreds. This points out the necessity of making test crosses when evaluating inbreds. The variance attributable to the males and females is considered by them to be an index of that part of the over-all variation among the test crosses, due to the general combining ability, of the parents. The interaction variance (male X female) is considered an index of that part of the over-all variation, due to specific combining ability. To study the effect of specific combining ability, the means of the individual crosses were adjusted by adding to, or subtracting from them, the deviations of the means of all respective crosses of each parent from the test averages.

Helmerick et al. (2) employing varietal crosses made rather extensive studies pertaining to heterosis and combining ability. They concluded that rather substantial gains could be made by utilizing heterosis in the production of beet sugar. They also studied the environmental and genetic variances and identifiable proportion of genetic deviates and pointed out the value of this information in breeding hybrid populations of sugarbeets.

Powers et al. (9) conducted studies which showed that certain planting arrangements in isolation plots containing two parental sources resulted in approximately 68 percent of the progeny being the result of cross-fertilization between sources and that probably the remaining 32 percent of the progeny resulted from cross-fertilization between plants within sources. Other studies (10, 11, and 12) showed that certain inbreds produced hybrids that exhibited heterosis for percentage sucrose and percentage apparent purity. It is expected that heterosis for weight per root would be obtained. Such was found to be the case.

Chemical genetic studies (Powers et al. 12) revealed that the dominance phenomena for the chemical characters associated with percentage sucrose and percentage apparent purity are such as to result in both of these characters exhibiting heterosis in hybrids between certain selected inbred lines. This indicates that by employing those methods of breeding designed to utilize heterosis, hybrid populations can be bred that are superior in weight per root, percentage sucrose, and percentage apparent purity to those varieties now being grown for the production of beet sugar. Some such hybrid combinations involving inbred lines were obtained.

For methods of chemical analysis see Payne et al. (6 and 5) and for a review of the literature involving the heritability of the chemical characters see Powers et al. (10 and 11) and Finkner et al. (1).

Materials and Design of the Experiment

The materials used in the study are as follows: There is a total of 20 populations in the experiment. One is a commercial variety, 4 are three-way hybrids, each composed of 3 inbreds, and 15 are F1 hybrids, each composed of 2 inbreds. The dates of harvest are September 14, October 3. and October 16. The characters studied are weight of roots per plot, percentage sucrose, percentage apparent purity, and levels of total nitrogen. potassium and sodium in the petioles and in the thin juice, and levels of phosphorus in the petioles. Weight of roots per plot are expressed as kilograms, sucrose and purity as percentages, the levels of the chemical characters are expressed as milligrams per 100 grams in the petioles, and the levels of the chemical characters are expressed as milligrams per 100 milliliters of thin juice equated to a refractive dry substance of 10 in the thin juice. The thin juice was prepared by The Great Western Sugar Company by an oxalate method standard with them. In this process the nitrate nitrogen is removed. Hence the total nitrogen for the thin juice does not include all the nitrogenous compounds found in the total nitrogen analysis of the petioles. However, as shown by Powers et al. (11), the association between total nitrogen in the thin juice and the press juice is extremely high, most of the variability of one being accounted for by the variability of the other.

The design of the experiment is a split plot with populations randomized within replications and dates of harvest randomized within blocks. Each block is composed of three dates of harvest and each date of harvest has two replications with 20 populations randomized within each replication. There are five such blocks. Hence, the design of the experiment is a modified randomized complete block.

Results

The F values calculated from the analyses of variance for all the characters are listed in table 1. For all characters, there are significant differences between means of populations. There are significant differences between means of dates of harvest for percentage sucrose and possibly for levels of sodium in the thin juice. The interactions having possible statistical significance are for the characters percentage sucrose, percentage apparent purity, and levels of sodium in the petioles. The interaction involving the levels of phosphorus in the petioles is fairly well established statistically. The data will be considered on the basis of the average of all dates of harvest as the amount of the variability accounted for by the interactions involving dates of harvest is small, comparatively. The interactions that are of greatest importance in this article involve populations, chemical constituents, and materials analyzed.

Table 1.—The F values calculated from the analyses of variance for weight per plot, percentage sucrose, percentage apparent purity, levels of total nitrogen, potassium, and sodium in the petiples and in the thin juice and levels of phosphorus in the petiples. 1

Variation due to:	Weight per plot	Percen age sucros	Percentage age apparent purity	Total nitrogen Petioles Thin juice	trogen Thin juice	Potassium Petioles Thin juice	Thin Juice	Sodium phon phon Petioles Thin Petil	Thin Juice	Phos- phorus Value of F at: Petioles 5% 1%	Value o	of Fat:
Populations 2/	33.59	22,81	22.38	6.85	41.84	22.38 6.85 41.84 48.87 19.43	19.43	9.65	9.36	9.62 9.36 8.37 1.60	1.60	1.92
Dates 3/	-	16.24	-	1	-		1.59	1.99	7.80	1.80	94.4	8.65
P X D 2/		1.41	1.42	1.22	1.20	1.20 1.33		1.45	1.08	1.45 1.08 1.90 1.42	1.42	1.64

/ signifies that the error mean square is the larger.

An error mean square composed of the interactions B X P, R X P, B X R X P, B X P X D, R X P X D, and B X R X P X D with 513 degrees of freedom was used to calculate F values for populations and populations X dates. 2

An error mean square composed of the interaction B X D with 8 degrees of freedom was used to calculate the value for dates. m

The means for weight per plot, percentage sucrose, and percentage apparent purity; for levels of total nitrogen, potassium, and sodium in the petioles and in the thin juice; and levels of phosphorus in the petioles are listed in table 2. Also, the least significant differences and the grand averages are listed at the bottom of this table. Powers et al. (13) have shown that very little of the environmental variability is included in the differences between the means of populations. Hence, the differences noted between means of populations are predominantly genetic. In this article, the data in table 2 have their greatest interest in the degrees of association between the level of a chemical in the petioles and the level of the same chemical in the thin juice, their corresponding interactions, and the association of the level of these chemicals with the important agronomic characters, weight of roots per plot, percentage sucrose, and percentage apparent purity. The associations are determined by studying the simple correlation coefficients.

the petioles							
and sodium in t	Phoschorus Petioles Mg/100gm	178.0 186.7 194.2 166.0 201.6	196.2 195.1 176.8 221.0	202.8 170.1 195.2 182.3	194.2 172.1 177.9 204.7 206.5	13.5	189.5
rtassium,	Thin fuice Mg/100ml	43.00 33.00 45.00 45.00 45.00	#1.8 36.3 37.8 30.9	33.00 30.00 40.00 60.00	20 mm	7.5	39-9
trogen, po	Sodium Petioles Mg/100gm Mg	282 W W W W W W W W W W W W W W W W W W	33.00 30.00	382.09	335.4 # 35.0 %	20.0	337
total ni	Thin fulce fulce fa/100ml	666.3 73.7 93.9	66660 4000 4000 7000 7000 7000	48.7 71.9 53.1 53.1 53.6	67.2 57.9 62.1 60.7	7.57	9.09
levels of	Potassium Petioles Thi ju	24.2 26.5 17.0 18.0	27.8 21.1 13.8 17.9	24.1 14.2 20.7 20.7	22.4 24.7 21.0 17.9 16.4	2.1	20.0
urity for	itrogen Inin juice	2,000 2,000	57 £5.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 6	845.0 442.0 442.0 50.0	55.03.0	5.0	52.6
pparent p	Total nitrogen Petioles Thin fulc Mg/100gm Mg/100	1365.0 1374.0 1345.0 1470.8	1489.8 1431.8 1488.7 1383.5	1431.7 1321.0 1278.2 1315.3 1316.2	1442.6 1485.7 1404.5 1488.2	77.8	1403.5
roentage	Purity	999999	99999999999999999999999999999999999999	94.9	92.09 92.09 93.00 93.00	0.80	93.5
se, and pe	Sucrose	117.00	1175.6 105.7 105.3	16.1 16.2 15.2 15.6	15.75 15.75 14.08	0.34	15.3
tage sucr	Weight per plot Kg	4.5.678 7.5.678 7.5.60 7.5.60	4.358 802 802 802 802	5.050 5.257 5.465 5.052	6.128 6.128 7.623 .843	0.414	5.778
joquisoud j	Entry	ተሪመቱ r		12222 12222	1146		
Table 2.—Weans for weight per plot, percentage sucrose, and percentage apparent purity for levels of total nitrogen, potassium, and sodium in the petioles and in the thin juice and levels of phosphorus in the petioles.	Population	52-430 X 52-407 F ₁ 52-305 GE X (52-430 X 52-407) F ₁ 52-305 GE X 52-430 F ₁ 52-305 GE X 52-407 F ₁	52-305 Grs X 52-307 F1 52-430 X 52-408 F1 52-430 X 54-520 F1 52-305 Grs X 54-520 F1 52-305 Grs X 54-565 F1	52-305 Grs X 54-565 F1 52-305 Grs X 54-458 F1 52-430 X 54-346 F1 52-305 Grs X 54-346 F1 52-305 Grs X 54-346 F1	52-305 Crs x (52-430 x 54-520) F1 52-305 Crs x 34 F1 52-305 Crs x (54-458 x 34) F1 54-565 x 52-407 F1	LSD at 5%	Average

Associations

The simple correlation coefficients are listed in table 3.

Weight per plot is positively associated with levels of total nitrogen and sodium in the petioles and with levels of sodium in the thin juice. The association of weight per plot with levels of potassium in the petioles is not statistically significant, only 4 percent of the variability being accounted for by covariation. The association between percentage sucrose and total nitrogen in the petioles is negative and 22 percent of the variation is covariation. Likewise, the association between percentage sucrose and level of sodium in the petioles is negative and here 18 percent of the variation is covariation. In no case is the association between percentage apparent purity and levels of total nitrogen, potassium, and sodium in the petioles statistically significant.

Table 3.—Correlation coefficients for weight of roots per plot, percentage sucrose, and percentage apparent purity with levels of total nitrogen, potassium, sodium and phosphorus. 1/

Weight per plot	Percentage sucrose	Percentage apparent purity
0.54	-0.47	-0.21
-0.03	-0.54	-0.95
-0.20	0.03	0.02
0.09	-0.70	-0.85
0.66	-0.43	-0.03
0.70	-0.80	-0.07
-0.00	0.28	0.56
	0.54 -0.03 -0.20 0.09 0.66 0.70	per sucrose plot 0.54

^{1/} The approximate value of r at the 5% level is 0.273.

Weight per plot does not show any statistically significant association with levels of total nitrogen or potassium in the thin juice. However, levels of total nitrogen in the thin juice and percentage apparent purity are very closely associated and the association is negative. Also levels of potassium in the thin juice are rather closely associated with percentage apparent purity and again the association is negative. With this high a degree of association, it is not at all likely that the breeder can obtain genotypes having a high purity and a high level of total nitrogen in the thin juice. The same associations hold for percentage sucrose and levels of total nitrogen and potassium in the thin juice but the associations are not nearly so pronounced. Likewise, percentage sucrose is rather strongly associated with levels of sodium in the thin juice and the association is negative, 64 percent of the variability being covariation.

These results show that at time of harvest it is much more desirable to have the higher levels of total nitrogen, potassium, and sodium in the petioles rather than in the thin juice; as here they are positively associated with weight of roots per plot and are not closely associated negatively with either percentage sucrose or percentage apparent purity. Levels of phosphorus in the petioles show little, if any, association with weight per plot, but the associations with percentage sucrose and percentage apparent purity are statistically significant and positive. However, the closeness of the association is not marked; the greatest amount of the variability being covariation is 31 percent.

The interactions of weight per plot, percentage sucrose, and percentage apparent purity with total nitrogen in the petioles and in the thin juice are depicted by the means listed in table 4. These populations are selected from table 2 because they show that certain combinations of characters can be obtained. The comparisons between the means of the F1 hybrid 52-305 CMS X 54-458 and the F1 hybrid 52-430 X 52-408 show that an increase of total nitrogen in the petioles and a decrease of total nitrogen in the thin juice are accompanied by increases in weight of roots per plot, percentage sucrose, and percentage apparent purity. The comparisons involving the F1 hybrid 52-430 X 52-408 with A56-3 show that further increases of total nitrogen in the petioles and in the thin juice are accompanied by a further increase in weight per plot and by decided decreases in percentage sucrose and in percentage apparent purity. These comparisons confirm the relations shown by the correlation coefficients; namely, that increases of total nitrogen in the petioles rather than in the thin juice can result in an increase in all 3 of the important agronomic characters -weight per plot, percentage sucrose, and percentage apparent purity. They further show that an increase of total nitrogen in the thin juice does not have an adverse relation with weight of roots per plot but it does have decidedly adverse relations with percentage sucrose and percentage apparent purity. Hence, weight of roots per plot, percentage sucrose, and percentage apparent purity in some populations are favorably associated with total nitrogen in the petioles but not with total nitrogen in the thin juice.

Hence, the breeder should be able to increase these three desirable agronomic characters by breeding genotypes having high levels of total nitrogen in the petioles at time of harvest. These results indicate that higher levels of total nitrogen in the petioles may be conducive to higher yields and are not conducive to lower percentage sucrose and lower percentage purity; whereas higher levels of total nitrogen in the thin juice are not conducive to higher yields but are conducive to lower percentage sucrose and lower percentage apparent purity. Then, it seems as though the plant breeder can improve both yield and quality by genetically controlling the location, at time of harvest, of the higher levels of total nitrogen; that is, breeding those genotypes having higher levels of this chemical in the petioles instead of the thin juice.

The means showing the interactions of weight per plot, percentage sucrose, and percentage apparent purity with levels of potassium in the petioles and in the thin juice are listed in table 5. The comparisons involving the two F_1 hybrids 52-305 CMS X 54-458 and 52-430 X 52-408 show that an increase in levels of potassium in the petioles and a decrease in the levels of the potassium in the thin juice are accompanied by material increases in weight per plot, percentage sucrose, and percentage apparent purity. The comparisons between populations 52-430 X 52-408 and A56-3 show that a decrease in the level of potassium in the petioles and no change in the level of potassium in the thin juice are accompanied by decreases in percentage sucrose and percentage apparent purity and a comparatively small increase in weight per plot. As for levels of total nitrogen, increased levels of potassium in the petioles are associated with increased percentage sucrose and percentage apparent purity, whereas increases in levels of potassium in the thin juice show the reverse associations. Again, if higher levels of potassium are essential to those metabolic processes conducive to higher yields, it is more desirable to have these higher levels in the petioles at time of harvest rather than in the thin juice.

Table 4.—Interactions of weight per plot, percentage sucrose, and percentage apparent purity with levels of total nitrogen in the petioles and in the thin juice.

Population	Weight	Sucrose	Purity	Total ni Petioles	Thin juice
	Kg	%	%	Mg/100gm	Mg/100ml
52-305 CMS X 54-458 F1	5.257	14.8	91.8	1321.0	64.9
52-430 X 52-408 F ₁	7.358	15.5	94.7	1431.8	44.8
A56-3	7.843	14.0	93.1	1531.2	54.4
LSD at 5% LSD at 1%	0.414	0.34	0.80	77.8 102.6	3.9 5.1

Table 5.—Interactions of weight per plot, percentage sucrose, and percentage apparent purity with levels of potassium in the petioles and in the thin juice.

Population	Weight	Sucrose	Purity	Potassi	Thin juice
	Kg	%	%	Mg/100gm	Mg/100ml
52-305 CMS X 54-458 F ₁	5.257	14.8	91.8	16.4	71.9
52-430 X 52-408 F ₁	7.358	15.5	94.7	21.1	60.4
A56-3	7.843	14.0	93.1	16.4	60.7
LSD at 5% LSD at 1%	0.414	0.34	0.80	1.6	5.7 7.6

The means showing the interactions of weight per plot, percentage sucrose, and percentage apparent purity with levels of sodium in the petioles and in the thin juice are listed in table 6. Comparing the F1 hybrids 52-305 CMS X 54-458 and 52-430 X 52-408 it can be seen that an increase in levels of sodium in the petioles and no material change in levels of sodium in the thin juice are accompanied by increases in weight of roots per plot, percentage sucrose, and percentage apparent purity. Comparing 52-430 X 52-408 and A56-3 no material change in levels of sodium in the petioles and an increase in levels of sodium in the thin juice are associated with decided decreases in percentage sucrose and percentage apparent purity and a moderate increase in weight of roots per plot. Again, if higher levels of sodium are conducive to favorable metabolic processes in the sugarbeet plant, it is preferable to have the higher levels in the petioles rather than having the higher levels in the thin juice at time of harvest.

Table 6.—Interactions of weight per plot, percentage sucrose, and percentage apparent purity with levels of sodium in the petioles and in the thin juice.

Population	Weight	Sucrose	Purity	Sodi	
				Petioles	Thin juice
52-305 CMS	Kg	%	%	Mg/100gm	Mg/100ml
X 54-458 F ₁ 52-430 X	5.257	14.8	91.8	32.0	39.4
52-408 F ₁	7.358	15.5	94.7	36.9	36.8
A56-3	7.843	14.0	93.1	35.9	55.7
LSD at 5% LSD at 1%	0.414	0.34	0.80	2.7 3.5	5.5 7.2

The means showing the interactions of weight per plot, percentage sucrose, and percentage apparent purity with levels of phosphorus in the petioles are listed in table 7. For all three populations listed in this table, the higher levels of phosphorus in the petioles are associated with increases in weight of roots per plot and there are no consistent relations involving percentage sucrose and percentage apparent purity. However, from the correlation coefficients listed in table 3 it can be seen that, on an average, the genetic variability shows the association between weight of roots per plot and levels of phosphorus in the petioles to be negligible; whereas those involving sucrose and purity are not marked but are statistically significant and favorable, being positive.

Table 7.—Interactions of weight per plot, percentage sucrose, and percentage apparent purity with levels of phosphorus in the petioles.

Population	Weight	Sucrose	Purity	Phosphorus Petioles
	Kg	%	%	Mg/100gm
52-305 CMS X 54-458 F1	5.257	14.8	91.8	170.1
52-430 X 52-408 F ₁	7.358	15.5	94,7	186.8
A56-3	7.843	14.0	93.1	206.5
LSD at 5% LSD at 1%	0.414	0.34	0.80	13.5 17.8

Discussion and Summary

- The associations between levels of total nitrogen in the thin juice, percentage sucrose, and percentage apparent purity are negative and for percentage apparent purity is extremely close. In fact, the association is so close (r = -0.95) as to practically preclude the possibility of genetically combining high total nitrogen in the thin juice with high percentage apparent purity. However, the association between high levels of total nitrogen in the petioles and high percentage apparent purity is much lower, only 4 percent of the variability being attributable to covariance. Moreover, the higher levels of total nitrogen in the petioles are positively associated with higher yields of roots (weight of root per plot). This indicates that high levels of total nitrogen in the petioles are conducive to greater weight of roots per plot. Percentage sucrose is adversely affected by higher levels of total nitrogen in the petioles but the adverse effects are not as marked as for higher levels of total nitrogen in the thin juice. In fact, only 22 percent of the variability is covariance, indicating that genetically higher levels of total nitrogen in the petioles can be combined with higher percentage sucrose. The data in table 4 for the F1 hybrid 52-430 X 52-408, as pointed out in the discussion under results, show that these two chemical characters can be favorably recombined.
- (2) Essentially the same findings hold for levels of potassium, sodium, and phosphorus. That is, it is much more desirable to have the higher levels of these chemicals in the petioles as contrasted with the thin juice.
- (3) Further, it seems that the higher levels of total nitrogen, potassium, and sodium in the petioles are conducive, if not essential, to the production of higher yields. The higher levels of phosphorus in the petioles appear to be conducive to higher percentage sucrose and higher percentage apparent purity. The relation is stronger for percentage apparent purity than for percentage sucrose.
- (4) Finally, there seems to be no reason why the metabolic requirements for higher yields of roots, higher percentage sucrose, and higher percentage apparent purity cannot be met by producing and growing genotypes which, at the time of harvest, tend to have the higher levels of total nitrogen, potassium, sodium, and phosphorus in the petioles rather than in the thin juice.

Literature Cited

- (1) Finkner, R. E., C. W. Doxtator, P. C. Hanzas and R. H. Helmerick. 1962. Selection for low and high aspartic acid and glutamine in sugar beets. J. Am. Soc. Sugar Beet Technol. 12(2): 152-162.
- (2) Helmerick, R. H., R. E. Finkner and C. W. Doxtator. In process of publication. Variety crosses in sugar beets (Beta vulgaris L.).

 I. Expression of heterosis and combining ability. II. Estimation of environmental and genetic variances for weight per root and sucrose percent. III. Estimating the number and proportion of genetic deviates by the partitioning method of genetic analysis.
- (3) Oldemeyer, Donald L. and George E. Rush. 1960. Evaluation of combining ability in self-fertile lines of sugar beets using malesterile testers. J. Am. Soc. Sugar Beet Technol. 11(2): 175-185.
- (4) Oldemeyer, R. K. 1954. General combining ability of sugar beet inbreds as determined with two different top cross testers. Proc. Am. Soc. Sugar Beet Technol. 8(2): 59-63.
- (5) Payne, Merle G. 1961. Some chemical-genetic studies pertaining to quality in sugar beets (Beta vulgaris L.). J. Am. Soc. Sugar Beet Technol. 11(7): 610-628.
- (6) Payne, Merle G., LeRoy Powers, and Grace W. Maag. 1959. Population genetic studies on the total nitrogen in sugar beets (Beta vulgaris L.). J. Am. Soc. Sugar Beet Technol. 10(7): 631-646.
- (7) Payne, Merle G., LeRoy Powers, and Grace W. Maag. In process of publication. Levels of total nitrogen, potassium and sodium in the petioles and in the thin juice of sugarbeets.
- (8) Peterson, D. F. and D. D. Dickenson. 1958. Results of divergent selection for general combining ability. J. Am. Soc. Sugar Beet Technol. 10(1): 60-65.
- (9) Powers, LeRoy. 1957. Identification of genetically-superior individuals and the prediction of genetic gains in sugar beet breeding programs. J. Am. Soc. Sugar Beet Technol. 9(5): 408-432.
- (10) Powers, LeRoy, D. W. Robertson, Robert S. Whitney, and Willard R. Schmehl. 1958. Population genetic studies with sugar beets (Beta vulgaris L.) at different levels of soil fertility. J. Am. Soc. Sugar Beet Technol. 9(8): 637-676.

- (11) Powers, LeRoy, Ralph E. Finkner, George E. Rush, R. R. Wood, and Donald F. Peterson. 1959. Genetic improvement of processing quality in sugar beets. J. Am. Soc. Sugar Beet Technol. 10(7): 578-593.
- (12) Powers, LeRoy, W. R. Schmehl, W. T. Federer, and Merle G. Payne. 1963. Chemical genetic and soils studies involving thirteen characters in sugarbeets. J. Am. Soc. Sugar Beet Technol. 12(5): 393-448.
- (13) Powers, LeRoy, E. E. Remmenga and N. S. Urquhart. In process of publication. The partitioning method of genetic analysis applied to a study of weight per root and percentage sucrose in sugarbeets (Beta vulgaris L.).

Levels of Total Nitrogen, Potassium and Sodium in the Petioles and in the Thin Juice of Sugarbeets

In 1961 studies were conducted to determine levels of total nitrogen, potassium and sodium in the petioles as compared with levels of these same chemicals in the thin juice. The petioles are a structure of the tops of the sugarbeet and the thin juice is prepared from the roots of the same plant. The primary purpose of the study was to determine whether genotypes differ as to levels of these chemical constituents in the petioles and in the thin juice and, if so, whether some genotypes tend to have higher levels in the petioles and lower levels in the thin juice, whereas for other genotypes the reverse is true. In other words, is there an interaction of genotypes and material analysed (petioles or thin juice) as regards levels of total nitrogen, potassium and sodium? Such information is of great fundamental and practical importance to the beet sugar industry as these chemicals have been found to be associated with yield and quality.

Literature Review

Emmert (2, 3, 4) working with tomatoes, lettuce, and cucumbers developed rapid methods for estimating nitrate nitrogen, phosphate, and potassium in plants. He believed that inasmuch as the nutrients derived by a growing plant from the soil must enter in solution through the stem the concentration of a given nutrient in this mature conductive tissue should be directly proportional to the available supply of the nutrient in the soil. Hence, a measure of the concentration of nutrients in this conductive tissue may be a better measure of the ability of the soil to supply nutrients to growing plants than chemical tests of the soil itself. Also, he felt that an optimum content of nutrients in this kind of tissue exists for the various stages of growth of each kind of crop, regardless of the kind of soil in which the crop is growing. His researches supported these deductions and hence seemed to justify the practice of analyzing the mature conducting tissues of the plant to determine the ability of the soil to provide the nutrient requirements. Gardner and Robertson (5) analyzed petioles of sugarbeets and used the analyses in determining fertilizer needs as regards nitrate, phosphate and potassium.

Ulrich (15, 16, 17) has conducted extensive experiments with sugarbeets, studying yield and quality as regards fertilizer practices. He found a negative relation between levels of nitrate nitrogen in the petioles and percentage sucrose of the roots. He also established the optimum level of nitrate nitrogen in the petioles as regards percentage sucrose to be approximately 1000 ppm. He found that, once the critical nutrient level for an element has been established for a crop through many field experiments,

plant analysis has the following applications: (1) determination of the kind of nutrient that might be deficient in the field; (2) estimation of the time of application and the amount of fertilizer to apply; (3) aid in selecting the location of fertilizer experiments; and (4) aid in maintenance of the proper level of soil fertility. Also, some of the beet sugar companies have used the techniques he developed to determine fertilizer practices and established dates of harvest. Probably one of the more important contributions of the researches by Ulrich is the stimulation of rather extensive researches on the effect of fertilizer practices on the yield, quality and processing of sugarbeets.

Rorabaugh and Norman (11) found the order in which some of the common beet-sirup impurities adversely affect crystallization of sugar, during factory processing, to be as follows: (1) carbonate and chloride salts. (2) amino acids, (3) betaine and non-nitrogenous organic acids, and (4) sulfate salts. They found the carbonates and chlorides to be strongly melassigenic and to be present in relatively large concentrations in the beet sirups. Hence, the carbonates and chlorides accounted for a large fraction of the total sugar lost in molasses. They conclude that the most fertile ground for improvement of the crystallization characteristic lies in the elimination of carbonate and chloride salts with lowering of pyrolidonecarboxylic acid and that glutamic acid is the second most likely. point of attack. They further point out that the case against pyrolidonecarboxylic acid and glutamic acid is a two-edged one, since not only are they major contributors to sugar loss in molasses, but also decomposition of glutamine, the amide from which they originate, causes processing difficulties through lowering of buffering capacity of juice and lowering alkalinity. The rather extensive studies of Carruthers and Oldfield (1) in general agree with those of Rorabaugh and Norman (11). In addition, Carruthers and Oldfield present methods of assessing quality that appear to have considerable merit and hence extensive application.

Haddock, Linton and Hurst (6) found that nitrogen fertilization and nitrogen plant composition are closely associated with sucrose storage in beet roots and sugar recoveries from extract juice. Also, they found that the soluble nitrogen constituents of the sugar beet roots are highly associated with, if not responsible for, variations in purity and sucrose percentage as well as dry matter percentage. From their studies the particular components which appear to be most highly associated with changes in quality are the glutamine and ammonia fractions. They believe the glutamine nitrogen to be of greatest significance in quality variation, because of its high association with quality factors and because the concentration of this form of nitrogen is ten times that of ammonia nitrogen.

Rounds et al. (12) found that the nitrogen levels caused greater variations in the amounts of nonsugars present in the beet roots than did the varieties tested. Significant interactions of varieties X nitrogen fertility levels were found for sodium content. The data presented indicate that both varieties and nitrogen fertility levels can appreciably influence the amount of nonsugars in beets. The association of total nitrogen and nitrogen compounds with reduced purity and extraction in the roots was pronounced. Ryser et al. (13) in a comparison of harvest dates found that the sugars from the late harvest were higher than from the early harvest, while the purities were lower. The unexpected decrease in purity was not accounted for by an increase in the level of amino nitrogen. Levels of nitrate-nitrogen in the petioles, amino N in the roots, and Na content in the roots were greatly influenced by high nitrogen fertilization, but varietal differences were just as striking. In Na content, a four or fivefold difference between low Na types and high Na types was not uncommon.

Owen et al. (7) found that highest purity was not always associated with highest percentage sucrose. They attributed their results to be due to an interaction between genotypes (as represented by hybrids) and locations. Powers et al. (8) found that some genotypes might have a high nitrate nitrogen content in the petioles and low total nitrogen in the thin juice as compared with other genotypes. The same was found to hold true for potassium. Some populations were found to be high in level of potassium in the petioles and low in levels of potassium in the thin juice as compared with other populations.

Materials and Design of the Experiment

The materials used in the study are as follows. There is a total of 20 populations in the experiment. One is a commercial variety; 4 are threeway hybrids, each composed of 3 inbreds; and 15 are F1 hybrids, each composed of 2 inbreds. The dates of harvest are September 14, October 3, and October 16. The characters studied are levels of total nitrogen, potassium and sodium in the petioles and in the thin juice. In the petioles the characters are expressed as milligrams per 100 grams and in the thin juice as milligrams per 100 milliliters of thin juice equated to a refractive dry substance of 10. The thin juice was prepared by the Great Western Sugar Company by an oxalate method standard with them. In the process the nitrate nitrogens are removed. Hence the total nitrogen for the thin juice does not include all the nitrogenous compounds found in the total nitrogen analysis of the petioles.

The design of the experiment is a split plot with populations randomized within replications and dates of harvest randomized within blocks. Each block is composed of 3 dates of harvest and each date of harvest has 2 replications with 20 populations randomized within each replication. There are 5 such blocks. Hence the design of the experiment is a modified randomized complete block.

Results

The F values calculated from an analysis of variance are listed in table 1. A study of this table reveals that there are significant differences between populations as regards all chemical characters for both the levels in the petioles and in the thin juice. This is not true for dates of harvest (with the possible exception of sodium in the thin juice) as the differences noted between dates of harvest can readily be explained by chance. This is also true of the first order interaction of populations X dates of harvest. It may be concluded that the changes in levels of total nitrogen, potassium and sodium when harvested September 14, October 3, and October 16 have little if any practical significance. Further research is necessary to determine whether the changes in levels of sodium for the different dates of harvest are other than chance deviations, as for the thin juice they were significant at the 5% level, but just barely so. For that reason the different dates of harvest will not be considered individually in this article.

Table 1.--The F values calculated from the analyses of variance for levels of total nitrogen, potassium, and sodium in the petioles and in the thin juice. 1

Variation due to:	Total ni Petioles		Potass Petioles		Sodiu Petioles	Thin juice	Value of 5%	Fat;
Populations	6.85	41.84	48.87	19.43	9.62	9.36	1.60	1.92
Dates		GOOD WOMEN ON	distriction made difference	1.59	1.99	7.80	4.46	8.65
PXD	1.22	1.20	1.33	*************	1.45	1.08	1.42	1.64

^{1/ ----} signifies that the error mean square is the larger.

The means and least significant differences for levels of total nitrogen, potassium, and sodium in the petioles and in the thin juice are listed
in table 2. As has been shown by Powers et al. (10) very little environmental variability is included in the differences between means of populations, the differences noted are predominantly genetic. In this article
the data in table 2 have their greatest interest in the degrees of association between levels of a chemical in the petioles and the level of the
same chemical in the thin juice; and the interactions involving levels of
the chemicals in the petioles as compared with levels of the chemicals in
the thin juice. The correlation coefficients will be considered first.

Table 2.—Means and the least significant differences for levels of total nitrogen, potassium, and sodium in the petioles and in the thin juice.

Population, LSD and average	Entry	Total nitrogen Petioles Thin juice	rogen Thin Juice	Potassium Petioles j	fum Thin fuice	Sodium	um Thin Juice
52-430 X 52-407 F ₁ 52-305 CMS X (52-430 X 52-407) F ₁ 52-305 CMS X 52-430 F ₁ 52-305 CMS X 52-407 F ₁ 52-430 X 52-307 F ₁	H C M T L	Mg/100gm 1365.0 1376.7 1374.0 1345.0	Mg/100m1 49.2 56.1 49.6 62.1 40.9	Mg/100gm 16.2 24.2 26.5 17.0 18.0	Mg/100m1 66.3 69.9 65.7 73.4	Mg/100gm 40.6 32.3 28.5 34.5 35.9	Mg/100m1 50.3 43.9 37.2 39.3
52-305 GMS X 52-307 F1 52-430 X 52-408 F1 52-430 X 54-520 F1 52-305 GMS X 54-520 F1 52-430 X 54-565 F1	10	1489.8 1431.8 1488.7 1383.5 1330.8	52.3 44.8 57.6 65.6 41.6	27.8 21.1 13.8 17.9 18.4	650 650 650 650 650 650 650 650 650 650	331.35 32.95 32.95 32.95 35.95 35.95	336.8
52-305 CMS X 54-565 F1 52-305 CMS X 54-458 F1. 52-430 X 54-346 F1 52-305 CMS X 54-346 F1 52-305 CMS X (52-430 X 54-346) F1	12215 12215	1431.7 1321.0 1278.2 1315.3	45.0 47.4 47.0 44.5	24.1 16.4 14.2 20.7 20.5	48.2 71.9 53.1 53.1	00 m t - 1	0.0000 0.0000 0.0000
52-305 CMS X (52-430 X 54-520) F ₁ 52-305 CMS X 34 F ₁ 52-305 CMS X (54-458 X 34) F ₁ 54-565 X 52-407 F ₁ A56-3	114 119 20 20 20	1442.6 1485.7 1404.5 1531.2	65.2 61.3 57.4 54.4	22.4 24.7 21.0 17.9 16.4	67.2 62.1 73.2 60.7	335.4	4,86.8 1,36.8 55.0 7.0 7.0
ISD at 5% ISD at 1%		77.8	5.1	2.1	7.2	3.5	7.2
Average		1403.5	52.6	20.0	9.09	33.7	39.9

Associations

From table 3 it can be seen that the correlation between total nitrogen in the petioles and in the thin juice is 0.29, between potassium in the petioles and in the thin juice is 0.06, and finally between sodium in the petioles and in the thin juice is 0.60. Hence the greatest percent of the variability accounted for by the correlation of a chemical in the petioles and in the thin juice is 36 percent and is for sodium.

The strongest association (-0.44) between chemicals in the petioles involves potassium and sodium and here only 19 percent of the genetic variation of one is accounted for by the genetic variation of the other. The greatest association between chemicals in the thin juice is 0.77 and involves total nitrogen and potassium. Here 59 percent of the total variation is covariation. The next strongest association for the thin juice is 0.40 and is between potassium and sodium.

Further, from the correlation coefficients listed in table 3 it can be determined that in no case is a chemical character in the petioles closely associated with another chemical character in the thin juice. These results show that by proper breeding procedures it should be possible to recombine desirable levels of these chemical characters in the petioles with desirable levels of the same characters in the thin juice.

Table 3.—Correlation coefficients for levels of total nitrogen, potassium and sodium in the petioles and in the thin juice.

Character and material analysed	Total nitrogen Thin juice	Potass Petioles		Sodiu Petioles		1
Total nitrogen Petioles Thin juice Potassium	0.29	0.20	0.22	0.38 -0.01	0.43	
Petioles Thin juice Sodium			0.06	-0.44 0.21	-0.21 0.40	
Petioles Thin juice					0.60	

^{1/} The approximate value of r at the 5% level is 0.273.

Interactions

The means showing the interactions are taken from table 2.

Means for levels of total nitrogen showing interactions of populations X materials analysed are listed in table 4. The F1 hybrid 52-430 X 54-346 has a low level of total nitrogen in both the petioles and in the thin juice. The F1 hybrid 52-305 CMS X 54-458 has a low level of total nitrogen in the petioles and a high level of total nitrogen in the thin juice. The F1 hybrid (52-430 X 52-307) shows the reverse in that it has a high level of nitrogen in the petioles and a low level of nitrogen in the thin juice. The commercial variety A56-3 has the highest level of total nitrogen in the petioles and has an intermediate level of total nitrogen in the thin juice.

Table 4.—Means for levels of total nitrogen showing interactions of populations X materials analyzed.

Population	Total nitrogen Petioles Thin juice	
	Mg/100gm Mg/100ml	_
52-430 X 54-346 F ₁ 52-305 CMS X 54-458 F ₁ 52-430 X 52-307 F ₁ A56-3	1278.2 37.4 1321.0 64.9 1470.8 40.9 1531.2 54.4	
LSD at 5% LSD at 1%	77.8 3.9 102.6 5.1	

The comparisons for the F_1 hybrids 52-430 X 54-346 and the F_1 hybrid 52-305 CMS X 54-458 are not significant for total nitrogen in the petioles but are significant for total nitrogen in the thin juice. The comparisons for the F_1 hybrids 52-430 X 54-346 and 52-430 X 52-307 are statistically significant for the petioles and not for the thin juice. The comparisons for the F_1 hybrids 52-305 CMS X 54-458 and 52-430 X 52-307 are significant for both the petioles and the thin juice. The same is true for the comparison involving 52-305 CMS X 54-458 and A56-3. The comparison between the F_1 hybrid 52-430 X 52-307 and A56-3 are not significant for the petioles but are statistically significant for the thin juice.

These results definitely show that some populations at time of harvest have higher levels of total nitrogen in the petioles as compared to other varieties and lower levels of total nitrogen in the thin juice. The reverse is also true; some populations have high levels of total nitrogen in the thin juice and low levels of total nitrogen in the petioles as compared with other populations. These results definitely show that for total nitrogen there is an interaction between genotypes and material analyzed (petioles and thin juice). Hence by proper breeding procedures different combinations of levels of total nitrogen in the petioles and in the thin juice are attainable.

Means for levels of potassium showing interactions of populations X material analyzed are listed in table 5. The F_1 hybrid 52-430 X 54-346 has low potassium in both the petioles and in the thin juice, whereas 52-305 CMS X 54-458 is low in potassium in the petioles and high in potassium in the thin juice. The F_1 hybrid 52-305 CMS X 54-565 is high in potassium in the petioles and low in potassium in the thin juice. The variety A56-3 is low in potassium in the petioles and moderately high in potassium in the thin juice. Again there is an interaction between genotypes and levels of potassium in the petioles as compared with levels of potassium in the thin juice. It is apparent that genotypes can be obtained having different levels of potassium in the petioles and in the thin juice. That is, populations can be bred that have desirable levels of potassium in the petioles and desirable levels of potassium in the thin juice.

Table 5.—Means for levels of potassium showing interactions of populations X material analyzed.

Population	Potas	
	Petioles	Thin juice
	Mg/100gm	Mg/100ml
52-430 X 54-346 F ₁ 52-305 CMS X 54-458 F ₁ 52-305 CMS X 54-565 F ₁ A56-3	14.2 16.4 24.1 16.4	41.9 71.9 48.2 60.7
LSD at 5% LSD at 1%	1.6	5.7 7.6

Means for levels of sodium showing interactions of populations X material analyzed are listed in table 6. The F_1 hybrid 52-305 CMS X 54-565 is low in levels of sodium in both the petioles and thin juice. The F_1 hybrid 52-305 CMS X 52-307 possesses a low level of sodium in the petioles and a high level of sodium in the thin juice. The F_1 hybrid 52-430 X 52-408 has the highest level of sodium in the petioles and a moderately low level of sodium in the thin juice. A56-3 has a high level of sodium in both the petioles and in the thin juice. In fact, it is significantly higher in level of sodium in the thin juice than any other population listed in table 6. Also for sodium, as was the case for total nitrogen and potassium, there is an interaction between genotypes and levels of sodium in the petioles as compared with levels of sodium in the thin juice. It follows that different combinations of levels of sodium in the petioles and in the thin juice can be obtained by proper breeding procedures.

Table 6.—Means for levels of sodium showing interactions of populations X materials analyzed.

Population	Sodi Petioles	um Thin juice	
52-305 CMS X 54-565 F ₁ 52-305 CMS X 52-307 F ₁ 52-430 X 52-408 F ₁ A56-3	Mg/100gm 30.9 32.2 36.9 35.9	Mg/100ml 30.6 41.8 36.8 55.7	
LSD at 5% LSD at 1%	2.7 3.5	5.5 7.2	

Discussion

The interactions involving genotypes X material analyzed (petioles and thin juice) have shown that at time of harvest levels of the three chemicals vary in the petioles and thin juice according to populations. When interpreting these findings it is well to have in mind that the petioles are a part of the tops of the sugarbeet and the thin juice is prepared from the roots. Hence, it appears that at time of harvest some genotypes have the higher levels of these chemicals in the tops of the plant, whereas for other genotypes the higher levels are found in the roots as represented by analysis of the thin juice. These findings are of extreme importance to the beet sugar industry in that this shows populations can be bred that will have the higher levels of these three chemical characters in the tops of the plant rather than in the roots. These three chemicals at higher levels have a decided adverse effect on percentage sucrose and percentage apparent purity (see Powers and Payne, 9).

Hence, it becomes of importance to know whether the genotypes tending to have the higher levels of the three chemical characters in the petioles rather than in the thin juice, at time of harvest, have yielding ability. The results from the studies involving these three chemical characters and weight per root, percentage sucrose and percentage apparent purity are presented in another article (see Powers and Payne, 9).

Summary

- (1) Populations of sugarbeets were found to differ in the relative levels of total nitrogen, potassium, and sodium in the petioles as compared with levels of these same chemicals in the thin juice. It is well to keep in mind that the petioles are part of the tops of the sugarbeet plant, whereas the thin juice is prepared from the roots.
- (2) The interactions involving genotypes X materials analyzed (petioles or thin juice) have shown that, at time of harvest, higher levels of the three chemicals occur in either the petioles or the thin juice, or in both. Conversely, at time of harvest, some genotypes have higher levels of these three chemical characters in the petioles associated with lower levels in the thin juice.
- (3) This latter finding is of extreme importance to the beet sugar industry, because it shows that populations can be bred that will have the higher levels of these chemicals in the tops (petioles) of the sugarbeet rather than in the roots (thin juice). The higher levels of these three chemicals in the thin juice have a decidedly adverse effect on percentage sucrose and on percentage apparent purity (see Powers and Payne, 9).

Literature Cited

- (1) Carruthers, A. and J. F. T. Oldfield. 1960. Methods for the assessment of beet quality. XI^e Assemblee Commission Internationale Technique de Sucrerie. Frankfurt. 1-12.
- (2) Emmert, E. M. 1930. A method for the rapid determination of phosphate in fresh plant tissue. Plant Phys. 5: 413-417.
- (3) Emmert, E. M. 1932. Field method of estimating nitrate, phosphate and potassium in plants. Plant Phys. 7: 315-321.
- (4) Emmert, E. M. 1935. New methods for the determination of the availability of nitrogen and phosphorus to plants. J. Am. Soc. Agron. 27: 1-7.
- (5) Gardner, Robert and D. W. Robertson. 1935. The use of sugar beet petioles as indicators of soil fertility needs. Colo. Agri. Exp. Sta. Tech. Bull. 14.
- (6) Haddock, J. L., D. C. Linton and R. L. Hurst. 1956. Nitrogen constituents associated with reduction of sucrose percentage and purity of sugar beets. J. Am. Soc. Sugar Beet Technol. 9(2): 110-117.
- (7) Owen, F. V., Myron Stout, A. M. Murphy, C. H. Smith and G. K. Ryser. 1960. Interaction of components of impurity and location in hybrids from inbred lines of sugar beets. J. Am. Soc. Sugar Beet Technol. 11(1): 37-43.
- (8) Powers, LeRoy, W. R. Schmehl, W. T. Federer and Merle G. Payne. 1963. Chemical genetic and soils studies involving thirteen characters in sugar beets. J. Am. Soc. Sugar Beet Technol. 12(5): 393-448.
- (9) Powers, LeRoy and Merle G. Payne. In process of publication. Comparative effects of levels of total nitrogen, potassium, and sodium in the petioles and thin juice on weight per root, percentage sucrose and percentage apparent purity.
- (10) Powers, LeRoy, E. E. Remmenga and N. S. Urquhart. In process of publication. The partitioning method of genetic analysis applied to a study of weight per root and percentage sucrose in sugarbeets (Beta vulgaris L.).
- (11) Rorabaugh, Guy and Lloyd W. Norman. 1956. The effects of various impurities on the crystallization of sucrose. J. Am. Soc. Sugar Beet Technol. 9(3): 238-252.

- (12) Rounds, Hugh G., George E. Rush, Donald L. Oldemeyer, C. P. Parrish and Frank N. Rawlings. 1958. A study and economic appraisal of the effect of nitrogen fertilization and selected varieties on the production and processing of sugar beets. J. Am Soc. Sugar Beet Technol. 10(2): 97-116.
- (13) Ryser, G. K., Myron Stout, A. Ulrich and F. V. Owen. 1959. Some chemical and physiological characteristics of inbred lines of sugar beets. J. Am. Soc. Sugar Beet Technol. 10(6): 525-543.
- (14) Tolman, Bion and R. C. Johnson. 1958. Effect of nitrogen on the yield and sucrose content of sugar beets. J. Am. Soc. Sugar Beet Technol. 10(3): 254-257.
- (15) Ulrich, Albert. 1942. The relationship of nitrogen to the formation of sugar in sugar beets. Proc. Am. Soc. Sugar Beet Technol. 3: 66-80.
- (16) Ulrich, Albert. 1948. Plant analysis as a guide to the nutrition of sugar beets in California. Proc. Am. Soc. Sugar Beet Technol. 5: 364-377.
- (17) Ulrich, Albert and F. J. Hills. 1952. Petiole sampling of sugar beet fields in relation to their nitrogen, phosphorus, potassium and sodium status. Proc. Am. Soc. Sugar Beet Technol. 7: 32-45.

The Partitioning Method of Genetic Analysis Applied to a Study of Weight Per Root and Percentage Sucrose in Sugarbeets (Beta vulgaris L.)

The partitioning method of genetic anlaysis (Powers 7, 9) is applied to a study of weight per root and percentage sucrose in sugarbeets (Beta vulgaris L.). The components of variance method of genetically studying populations, developed independently by Fisher (2) and Wright (14), and the partitioning method of genetic analysis are predicated on much the same basic theory. The two methods differ in that the former emphasizes a study of the variances and covariances, whereas the latter places more emphases on the frequency distributions. As pointed out by Falconer (1), Fisher, Wright, and many other statistical geneticists have extended the components of variance method of genetic analysis until today a substantial body of theory exists that is accepted as valid by most. The books by Iush (4), Mather (5), Lerner (3), and Falconer (1) have done much to clarify and promote use of these theories in both the theoretical and applied fields of genetics.

The purposes of this article are:

(1) To illustrate and present in some detail the methods and

procedures employed in analyzing the data.

(2) To evaluate this method of analyzing the data by showing its relation to heritability ratios used in the components of variance method of studying quantitative characters.

Methods

The partitioning method of genetic analysis, as employed in this study, partitions the frequency distributions of segregating populations on the basis of populations comparatively free from genetic variation; namely, an inbred population and an F1 hybrid population. This procedure provides an estimate of the identifiable numbers of genetic deviates in the lower and upper classes of the frequency distributions of the segregating populations. Also, the components of variance (total, environmental, and genetic) are estimated by using an inbred and an F1 hybrid to estimate the environmental variation. The genetic variance is estimated by subtracting the estimate of the environmental variance from the total. From these components of variance, heritability ratios are calculated. Then, in turn, correlation is employed to determine the degree of association between the identifiable numbers of genetic deviates in upper and lower classes of the frequency distributions of segregating populations and their corresponding heritability ratios. Similar procedures are applied to the bivariate frequency distributions.

Previous partitioning of the obtained frequency distributions to estimate the identifiable numbers of genetic deviates in the lower and upper classes of the frequency distributions has been based on the assumption that the environmental variation results in frequency distributions normal in type (see Powers 8 and Powers et al. 10, 11, 12). In this study the frequency distributions are partitioned by methods not requiring any assumptions as to the type of the environmental frequency distribution (normal or otherwise). To accomplish this, the frequency distributions must be free from differences due to replications and differences due to populations. In other words, the frequency distributions must be adjusted so that there are no differences between replication means and adjusted so that there are no differences between means of populations. For replications this was done by taking the difference between the mean of any given culture (plot) and that of its respective population and adding or subtracting, as the case may require, this difference from the value of each plant in that culture. Then, to remove population differences, these values for each plant within a population were readjusted on the basis of the difference between the mean of a given population and the mean of all populations. The formula used in making the adjustments is: Adjusted observations = $x_{ijk} - (x_{ij} - x_{i}) - (x_{i} - x_{i})$. In this formula x_{ijk} denotes the kth observation in the ith population and jth replication; x_{ij} the mean of the observations in population i, and replication j; x_{ij} the mean of the observations in population i, and replication j; x_1 . mean of the observations in population i; and x the grand mean of all populations.

For the partitioning of the segregating population frequency distributions to be valid, the magnitude of the within-plot variances should not be associated with the magnitude of the means, when non-segregating populations are used to estimate the frequency distributions attributable to environmental variation. If there is an association between the magnitude of the means and their corresponding variances, then the range of the frequency distribution attributable to environmental variation will be associated with the magnitude of the means also. Consequently, in such an event, the inbred and F1 hybrid frequency distributions may not furnish valid estimates of the environmental frequency distributions of the segregating populations. Such would be expected, if the inbred mean and F₁ hybrid means are materially different from those of the segregating populations. Theoretically this difficulty is overcome by transforming the data to logarithms. Hence, such a transformation is employed. The adjustments described above and the transformation to logarithms are readily accomplished by the use of modern digital computers.

Materials and Experimental Design

The materials consist of inbreds, varieties, and hybrids. There are 19 different populations included in the studies.

CMS is a population of sugarbeets derived from cytoplasmic malesterile plants of S.L. 211-H3 exposed to pollen from 20 different populations. By using 20 different pollen parents it was hoped a population having a broad genetic base would be obtained.

The individual plant 4W-34 is a selection from A54-1. This individual was increased by asexual reproduction to produce population 4W-34. Population 4W-34 S₂ is 4W-34 inbred by self-pollination for two generations. Population 4W-34AR was derived from seven roots selected from the progeny of 4W-34 grown in polycross test trials. This progeny in turn was produced from seed of 4W-34 grown in a polycross isolation plot with 31 other individual plant selections from A54-1. These 32 roots from A54-1 were selected for high weight per root and high percentage sucrose.

A54-1 is a commercial variety which was grown for several years in the Great Plains Region east of the Rocky Mountains. A56-3 is a seed increase of A54-1 made in Oregon by the Great Western Sugar Company. Populations 52-430, 54-520, 52-307, 52-305, and 34 are inbreds produced by self-pollination. Population A58-5 is a stock beet and A58-22 is SP 5832-0 which possesses considerable resistance to the organisms causing Cercospora leaf spot and Aphanamyces root rot.

To produce the hybrids with CMS having 4W-34, A54-1, 4W-34 S₂, and 4W-34AR as pollen parents, 40 roots of CMS were quartered and one quarter was planted in each of four different isolation plots to produce the four topcross populations. The procedure was the same for the four topcross hybrids having 34, A54-1, A58-5, and A58-22 as pollen parents.

Of the CMS population 34 percent (27 plants among 80) of the progeny were cytoplasmic male-sterile plants. The pollen producers among the 40 CMS plants, used to produce each of the two groups of hybrids, were pulled and discarded before pollen was shed. This assured that the seed harvested from the cytoplasmic male-sterile plants resulted from cross fertilization.

The design of the experiment was a modified randomized complete block. There were two groups of populations, each composed of 12 entries. The populations were randomized within groups and replications, and the groups were randomized within replications. Hence, for each of the two groups of populations, taken individually, the design of the experiment was a randomized complete block. There are 30 replications. Since A56-3 is a seed increase of A54-1, these two populations represent duplicate entries within each replication and , hence, can be used to estimate the environmental variability due to differences between entries. Other entries were common to both groups, and hence, there were only 19 genetically different populations in the two groups.

Results

First, under results, the desirability and effects of transforming the original data to logarithms will be considered.

Transformation to Logarithms

The methods of analyses employed assume that there is no material relation between the magnitude of the variances and the magnitude of the means, as regards the environmental variability. The F₁ hybrid 52-430 X 52-307 is used to estimate the frequency distribution attributable to environmental variation for group 1. The frequency distribution of inbred 34 is used for the same purpose for group 2. For weight per root the total within plot variance for this F1 hybrid calculated from the non-transformed data is 0.245688 and the corresponding mean is 1.2110.025 kilograms (see table 1). In group 2 the inbred 34 has a within-plot variance of 0.070413 and a mean of 0.69±0.017. Since the variabilities of this F_1 and inbred 34 are almost, if not entirely, attributable to environmental differences, these figures indicate a positive relation between the magnitude of the means and the magnitude of their corresponding variances before transformation of the data to logarithms. This was found to hold for other data on weights per root of the sugarbeet (see Powers et al. 12). To correct such a relation transformation of the original data to logarithms is commonly used.

Table 1.--Means and their standard errors, and total within-plot variances for weight per root in kilograms, data not transformed.

Population	Mean and standard error	Total within-plot variance 2/	Population	Group 2 Wean and standard error	Total within-plot variance 2/
	Kg			Χœ	
CMS X 4W-34, 1	1.17*0.030	0.385363	CFS X 34, 13	1.32±0.027	0.381195
CMS X A54-1, 2	1.19±0.028	0.388821	34, 14 1	0.69*0.017	0.070413
A54-1, 3	1,12±0,031	0.370423	CIS X A54-1, 15	1,23±0,034	0.395906
CMS X 4W-34 S2, 4	1.09*0.026	0.282390	A54-1, 16	1.18±0.026	0.351635
4w-34 S2, 5	0.92*0.026	0.281420	CIVIS X A58-5, 17	1.67±0.049	0.758110
CIVE X 4W-34AR, 6	1.14±0.025	0.310506	A58-5, 18	1.75±0.062	0.683360
4W-34AR, 7	0.98±0.021	0.288190	CMS X A58-22, 19	1.24±0.031	0.368810
52-430 X 54-520 Fl. 8	1.08*0.020	0.275297	A58-22, 20	1.10*0.027	0.317241
52-430 X 52-307 F ₁ , 9 1/	1.21±0.025	0.245688	52-430 X 54-520 Fl, 21	1.11±0.029	0.257153
54-520 X 52-305 F1, 10	1.09±0.032	0.365298	54-520 X 52-305 Fl. 22	1.09±0.021	0.345386
A56-3, 11	1.09±0.028	0.328601	A56-3, 23	1.15±0.028	0.322516
54-520, 12	0.83*0.019	0.159033	54-520, 24	0.89±0.025	0.209671

 \mathcal{V} Used to estimate the frequency distribution due to environmental variation.

The degrees of freedom for the total within-plot variances are 420. 7

Previous investigations (see Powers et al. 12) have shown no consistent relation between the means and within-plot variances for percentage sucrose. However, any tendency noted has been for those nonsegregating populations having the higher percentages sucrose to possess somewhat lower variances. Also, the means and variances for populations (52-430 x 52-307) F1 and 34 show the same tendency (see table 2). This may be due to the existence of a ceiling for the upper limits of percentage sucrose.

In this study, both weight per root and percentage sucrose were transformed to logarithms. On the logarithmic scale the variance and the mean of the F_1 hybrid for weight per root are 0.04510436 and 0.038808 and for inbred 34 are 0.04084310 and -0.201723 (see table 3). The degrees of freedom for the two within-plot variances are 420. The F value calculated by dividing the F_1 variance by the variance of 34 is 1.10, and the corresponding value of P is greater than 0.05. It is apparent that the differences between the variances can be readily accounted for by chance fluctuations. On the other hand, the difference between the two means of the logarithms is highly statistically significant. The transformation to logarithms of the weights per root taken in kilograms has effectively removed the relation between the means and variances.

Table 2.—Means and their standard errors, and total within-plot variances for percentage sucrose, data not transformed.

Population	Mean and standard error	Total within-plot variance 2/	Population	Group 2 Mean and standard error	Total within-plot variance 2/
	56			₽6	
CMS X 4W-34, 1	16.7*0.19	1.915976	CMS X 34, 13	16.3*0.18	1.536331
CMS X A54-1, 2	16.5±0.16	1.965964	34, 14 1	16.4±0.21	1.795271
A54-1, 3	16.9±0.18	2.097929	CINS X A54-1, 15	16.0±0.17	2.435434
CINS X 44-34 S2, 4	17.2±0.13	1,609357	A54-1, 16	16.6±0.17	2.313297
4W-34 S2, 5	17.0±0.16	1.612046	CMS X A58-5, 17	12.6±0.18	1.919944
CPS X 4W-34AR, 6	16.9±0.18	1,909500	A58-5, 18	9.1±0.18	2,815033
4W-34AR, 7	17.4±0.15	1.703176	CMS X A58-22, 19	15.7*0.18	2,347427
52-430 X 54-520 F ₁ , 8	17.1±0.14	1.482122	A58-22, 20	15.5±0.20	2,614335
52-430 X 52-307 F ₁ , 9 ½	17.8±0.14	1.397220	52-430 X 54-520 F ₁ , 21	16.8±0.20	1,313386
54-520 X 52-305 F ₁ , 10	16.9±0.16	1,268957	54-520 X 52-305 F1, 22	16.7±0.15	1,458935
A56-3, 11	16.9*0.19	2.061303	A56-3, 23	16.8±0.13	1.864405
54-520, 12	16.2±0.16	0.892398	54-520, 24	15.9±0.15	1,164662

Used to estimate the frequency distribution due to environmental variation.

The degrees of freedom for the total within-plot variances are 420. 2

Used to estimate the frequency distribution due to environmental variation

For percentage sucrose, after transformation, the variance for the F1 hybrid (52-430 X 52-307) is 0.00055446 and the mean is 1.249470, whereas the corresponding values for inbred 34 are 0.00087136 and 1.214010, respectively (see table 4). Again each of the within plot variances has 420 degrees of freedom and the F value is 1.57. The P value is less than 0.01. It is apparent that the difference between the variance of the F1 hybrid and inbred 34 is not readily accounted for by chance fluctuation. This may be due to the fact that the F_1 hybrid is highest of all populations in percentage sucrose and therefore is more influenced by a possible ceiling. This possibility must be kept in mind when interpreting the data for percentage sucrose. That is, when using the F1 hybrid frequency distribution to partition out the identifiable numbers of genetic deviates in the upper classes of the frequency distributions in group 1, the estimates would be expected to be somewhat too high for those populations having lower means than the F1. Likewise, for group 2 when using inbred 34 for the same purpose, the estimates of the identifiable numbers of genetic deviates would be somewhat too low for segregating populations having means larger than that of 34. That this probably is not serious for these data becomes apparent as the analysis of the transformed data proceeds.

Group and	F	1	=	4	4	-	×	0	11 01	Class	255	77.1	r.	4	17	EX.	0	20	5	22	23	Mean and	Total
population	1							1			1		1					1		1		To the control of	200
CINS X 144-34, 1										-	0 1	4	1	27	64	98	152	80	25	10	Н	1.215459=0.005111	0.00140614
CPS X A54-1, 2										2	0	4	00	72	26	100	140	83	25	m	2	1.216107 *0.004384	0.00146724
A54-1, 3										1 1	Н	N	72	27	57	16	138	95	24	00		1.226293 ±0.004704	0.00150786
CPS X 464-34 S2, 4												CV	9	20	57	120	142	98	20	m		1.233647*0.003441	0.00107642
44-34 S2, 5									-	0 1	0	#	W	23	43	#11	140	78	33	Н		1.229650*0.004222	0.00138215
CMS X 4M-34AR, 6												m	7	18	56	124	131	80	25	2	H	1.226420*0.004867	0.00117416
4W-34AR, 7													7	19	94	123	162	72	19	н		1.239405*0.003840	0.00095125
52-430 X 54-520 F1, B											1 0	0	4	Ħ	62	122	151	80	13			1.230654*0.003685	90006000000
52-430 X 52-307 F1, 9 1											p	0	0	77	41	148	189	9	-			1.249470*0.003562	0,00055446
54-520 X 52-305 Fl, 10													2	15	09	126	146	82	18	Н		1.226911 * 0.004117	0.00086282
A56-3, 11												0	77	27	20	901 09	137	66	23	Н		1.225587*0.005054	0.00113871
54-520, 12					н	0	0	0	0	0	2	7	7	17	54	54 10 7	147	92	22	13		1.207243*0.004585	0.00168179
Group 2 GVS X 34, 13										. 2	00	7	9	117	139	82	54	9				1.210076*0.004868	0.00114111
34, 14 1/										1 0	4	11	15	124	167	92	14	2				1.214010*0.005643	0.00087136
CAS X A54-1, 15										rU.	00	23	56	98	130	96	53	7	Н			1.202076*0.004811	0.00137587
A54-1, 16					Н	0	0		0	3 6	2010	17	52	16	136	92	32	0				1.218363*0.004443	0.00187436
CINS X A58-5, 17							H		Н	8	3 20	34	57	79	96	19	53	24	N			1.095809*0.006455	0.00304107
A58-5, 18	0 1	0	0	Н	0	н	2	2	77	8 18	3 28	31	57	59	57	69	42	28	20	16	0	0.949566*0.008901	0.00653163
CIVIS X A58-22, 19						Н	0	0	0	0 1	00	27	53	107	128	19	49	5	-			1.192189*0.005066	0.00157941
A58-22, 20							Н	Н	7	9	77	56	69	85	109	80	41	13	#	Н		1.187068*0.005749	0.00244849
52-430 x 54-520 F1, 21											7	15	45	132	154	73	22	2				1.223603*0.005003	0.00091486
54-520 x 52-305 F1, 22											ľ	22	59	108	145	87	22	N				1.221524*0.003920	0.00101904
A56-3, 23							Н	0	0	2 6	2	25	55	107	127	11	39	1	2			1.221935*0.003481	0.00167110
मेट ०८३ मेड										1 h	0		0		CCF	α	C	C	-			פעומחה ה+וככספר ו	אכיואוירטט ס

Table 4.--Population frequency distributions adjusted to eliminate differences between replications within populations and differences between populations

1/ Used to estimate the frequency distribution due to environmental variation.

Individual Plant Data

The discussion of the individual plant data will be followed by a discussion of the population means.

Univariate Frequency Distributions

The population univariate frequency distributions adjusted to eliminate differences between replications within populations and adjusted to eliminate differences between populations within groups for weight per root transformed to logarithms are listed in table 3. In studying the frequency distributions of this table, it is helpful to keep in mind that the frequency distributions of the F₁ hybrid (52-430 X 52-307) is used to estimate the frequency distributions, due to environmental variation for the populations of group 1, and that the frequency distribution of inbred 34 is used for the same purpose for the populations of group 2.

A study of the frequency distributions for the populations in group 1 of table 3 reveals that all of the other frequency distributions have more individuals in classes 10 and 18 than does the frequency distribution of the F_1 hybrid (52-430 X 52-307). Consequently, classes 10 and below are taken as those lower classes of the frequency distribution having some identifiable numbers of genetic deviates, and classes 18 and above as those of the frequency distribution having some identifiable numbers of genetic deviates in the upper classes of the frequency distribution. Since each frequency distribution is composed of the same number of individuals, namely 450, this F_1 hybrid frequency distribution can be employed to partition directly the identifiable numbers of genetic deviates in the lower and in the upper classes of the frequency distribution of any segregating population in group 1. This is a modification of the procedure used by Powers (8) and Powers et al. (11). The modification involves the adjustments employed to eliminate differences between replications within populations and differences between populations.

For group 2, using the frequency distribution of inbred 34 as an estimate of the environmental variability, the lower classes having some identifiable numbers of genetic deviates are found to be 11 and below and the upper classes are found to be 17 and above. Since the frequency distributions of table 3 are derived from the original values transformed to logarithms and adjusted to eliminate differences between replications and differences between populations, any frequency distribution in group 1 is directly comparable to any other frequency distribution in this same group. The same is true of the frequency distributions in group 2.

To illustrate, consider the frequency distributions of CMS X 34 and Totaling for both frequency distributions gives values of 108 and 90 for the lower classes, 241 and 291 for the middle classes, and 101 and 69 for the upper classes. Subtracting the appropriate values shows that the identifiable number of genetic deviates in the lower classes is fluctuating around 18 and the identifiable number of genetic deviates in the upper classes is fluctuating around 32. The difference for the middle class is -50. Chi square can be used to determine the probability of these numbers (108 and 90, 241 and 291, and 101 and 69) being chance fluctuations from a common frequency distribution. The degrees of freedom are 2. By completing the necessary calculations chi square is found to be 12.359 and P is less than 0.01. Considerable confidence can be placed in the assumption that these values of 18, -50, and 32 are not chance fluctuations from zero, and therefore, that population CMS X 34 has 32±5 superior genetic deviates in the upper classes. The standard error 5 is obtained from application of the formula; the standard error = \sqrt{pqn} , in which q = 32/450 and p = 1-q, and finally, n is the number in the sample, in this case 450.

Taking another example, whether CMS X A58-22 and A58-22 populations differ can be tested directly by comparing the two frequency distributions. The comparable numbers in the lower, middle, and upper classes of the frequency distributions are 115 and 118, 223 and 211, and 112 and 121. In this case the value of chi square is 0.718. The degrees of freedom are 2 and P is greater than 0.05. The differences in numbers noted are readily accounted for by chance fluctuation. It follows that these two populations do not differ significantly in identifiable numbers of genetic deviates. However this finding must not be taken as evidence that they do not differ in other respects.

To determine whether they do differ in other respects the means corresponding standard errors, and variances of table 1 should be studied. These are the nonadjusted and nontransformed data. A study of the means, their standard errors, and the frequency distributions of table 3 for populations CMS X A58-22 and A58-22 reveals that the former is significantly higher in mean weight per root. This in turn provides valuable information concerning the location of the identifiable numbers of superior genetic deviates. More of the identifiable number of genetic deviates would fall in the higher classes of the frequency distribution for the nonadjusted data of population CMS X A58-22 than would be the case for the frequency distribution of population A58-22. Such being the case, population CMS X A58-22 would be superior to population A58-22 for breeding purposes even though the identifiable numbers of superior genetic deviates are essentially the same for both populations. In other words, proper breeding procedures should result in comparable advances in both populations, but due to the average superiority of the individuals in population CMS X A58— 22, this population should give superior results to population A58-22 as

regards weight per root. It is clear that in order to properly evaluate the breeding potential of populations the means from the nonadjusted data need to be studied along with the adjusted frequency distributions.

The frequency distributions for percentages of sucrose transformed to logarithms and adjusted to eliminate differences between replications within populations and differences between populations are listed in table 4. As was done for weight per root, the frequency distribution of the F_1 hybrid (52-430 x 52-307) is taken as an estimate of the frequency distribution attributable to environmental variation for the populations of group 1. For the populations of group 2 the frequency distribution of inbred 34 serves a similar purpose.

For group 1, the F₁ hybrid (52-430 X 52-307) has fewer individuals in class 17 and lower classes than does any other population. Also, this istrue of class 20 and higher classes. For group 2, inbred 34 has fewer individuals in class 15 and lower classes than any other population with the exception of population 52-430 X 54-520. For the higher classes the break occurs in class 19. Then for group 1 the identifiable numbers of genetic deviates occur in class 17 and lower classes and class 20 and higher classes; and for group 2 in class 15 and lower classes and in class 19 and higher classes. These lines of demarcation for percentage sucrose for groups 1 and 2 are fairly definite (see table 4). The same was true for weight per root (see table 3). This supports previous findings (Powers, 8 and Powers et al. 10 and 11).

Now, the data from these various experiments are sufficiently broad in scope of material and sufficiently extensive to justify the conclusion that this method of dividing the frequency distributions of segregating populations into lower, middle, and upper classes to estimate the identifiable numbers of genetic deviates in the lower and upper classes of the frequency distributions is biologically sound.

Total within-plot and genetic variances, heritability ratios, and identifiable numbers of genetic deviates

The total within-plot and genetic variances, heritability ratios, and identifiable numbers of genetic deviates with their standard errors for weight per root and percentage sucrose are listed in table 5. For group 1, the F₁ hybrid (52-430 X 52-307) is used to estimate the total within-plot variance due to environmental variation. Inbred 34 serves a similar purpose for group 2, Whether any of the total within-plot variances differ significantly from each other can be determined by using Snedecor's F test. The degrees of freedom for the within-plot total variances are 420.

Table 5.-Total within-plot and genetic variances, heritability ratios, and identifiable numbers of genetic deviates with their standard errors for weight

and entry number Total Group 1 CNS X 4W-34, 1 CNS X 484-1, 2 CNS X 4W-34, 2 CNS X 4W-34, 3 CNS X 4W-34, 5 CNS X 4W-34, 8 CNS X 4W-34,	Varlance tal	Men	Weight per root					Per	Percentage sucrose			
1 4W-34, 1 X A54-1, 2 -1, 3 X 4W-34 S2, 4 34 S2, 5 34 S2, 5 54 M-34 AR, 6		Genetic	ratio ratio	Identifi of gene Super- ior	Identifiable number of genetic deviates uper- Infer- Tota lor ior	umber lates Total	Variance Total	Genet1		Ident of ger Super-	Identifiable number of genetic deviates per- Infer- Total or ior	viates Total
54-1, 2 3 W-34 S2, 4 W-34AR, 6	493394	0.02232958	996811880	39±6	42*6	81#8	מואסטונטט ט	99158000	01787107 0	he . c	0.01	t
34 S2, 4 %-34 AR, 6	0.06411969	0.01901533	0.29655992	35+6	40#6	75±8	0.00146724	0.00091278	0.62210681	52±7	42.5	97 #8
9	0.06558278	0.02047842	0.31225300	33*0	34±6	53*7	0.00107641	0.00095339	0.63228438	7±09	18+7	108±9
0	0.07671928	0.03161492	0.41208572	48±7	43*6	91:8	0.00138215	0.00082769	0.59884238	45.6	32*5	77 ±8
	0.07051341	0.02540905	0.36034351	4446	40#6	23.47	0.00117416	0.00061970	0.52778156	9444	38±6	82±8
54-520 Fl. 8	0.05739611	0.01229175	0.21415650	24±5	37±6	2=19	0.00094006	0.00038560	0.41018658	32±5	32=5	54.7
X 52-305 Fl, 10	0.08069467	0.03559031	0.44104908	39*6	7±84	87±8	0.00055446	0.00030835	0.35737880	34*6	31:5	2=59
12	0.05805029	0.01294593	0.22301232	20±4	30±5	5047	0.00168179	0.00112733	0.51308059	56±7	38*6	94±8
Group 2	47041	אלססככנט ט	מכמווורככ ח	11+CC	7.0	t c		1		-		
14	84310 1	0.01223304	0.<5144050	34=3	10±4	20#7	0.00087136 1	0.00026975	0.23639264	14*4	15±4	29±5
GMS X A54-1, 15 0.07005840 A54-1, 16 0.06877882	05840	0.02921530	0.41701352	54±7	37±6	91#8	0.00137587	0.00050451	0.36668435	18*4	25±5	43*6
58-5, 17	17320	0.02433010	0.37331449	42*6	42±6	84*8	0.00304107	0.00216971	0.71346927	73*8	58.7	131:10
58-22, 19	31556 91783	0.01347246	0.31834814	30±5 43±6	25=5	555±7 68±8	0.00653163	0.00566027	0.86659379	39*9	86±8	185*10
A58-22, 20 0.06649649	49649	0.02565339	0.38578563	5247	28#5	80#8	0.00244849	0.00157713	0.64412352	49=7	9444	93*8
X 52-305 F1, 22	59220	0.03474910		59*7	9717	100#9	0.00101904	0.00014768	0.04754826	8 8 8	19*4	843
54-520, 24 0.06875872	75872	0.02791562	0.40599389	46±6	29#5	74±8	0.00167110	0.00079974	0.47857100	32*5	24*5	56±7

Used ■ an estimate of environmental variance.

Before proceeding with the discussion of the data in table 5, it is desirable to determine what confidence can be placed in differences noted. For example, if the total within-plot variance of a given population is significantly larger than the estimate of the variance attributable to environmental variation, then the corresponding genetic variance and heritability ratio are significantly different from zero. Hence, both become meaningful. For example, the F_1 hybrid (52-430 X 54-520) has a total within-plot variance of 0.05739611 and the F_1 hybrid (52-430 X 52-307) used to estimate environmental variation has a total within-plot variance of 0.04510436. The corresponding F value (0.05739611 + 0.04510436) is 1.27. The degrees of freedom are 420 for both variances. The odds are greater than 99:1 against these variances being chance deviations from a common value. It follows that both the genetic variance of 0.01229175 and the heritability ratio of 0.21415650 are significantly different from zero.

Also, it is informative to determine what confidence can be placed on differences between genetic variances and differences between heritability ratios. Again, if the two total within-plot variances for any two populations are significantly different, then it follows that the corresponding genetic variances differ significantly from each other and the same is true of the corresponding heritability ratios. For example, it may be informative to determine whether the genetic variance and heritability ratio are greater for the stock beet A58-5 than for its hybrid with CMS. The value of F is (0.06517320 + 0.05431556, see table 5) or 1.20. The odds are greater than 19:1 against these genetic variances being chance fluctuations from a common variance. The same holds true for the heritability ratios. Hence, considerable confidence can be placed on the deduction that the genetic variance of CMS X A58-5 is greater than that of the stock beet A58-5. Also, the same degree of confidence can be placed on the deduction that the heritability ratios differ significantly.

With this information, the heritability ratios and the identifiable numbers of genetic deviates can be studied more advantageously. The heritability ratios are the values obtained by dividing the genetic variances by the total within-plot variances. The genetic variances are obtained by subtracting the estimate of the environmental variance from the total within plot variance. In group 1, the variance of the F_1 hybrid (52-430 X 52-307) was used to estimate the environmental variance and, in group 2, inbred 34 was used for this purpose.

The identifiable numbers of genetic deviates are indicated as superior, inferior, and total (superior + inferior) in table 5. The method of calculating these values will be illustrated for weight per root and population CMS X 4W-34 of group 1 (see table 3). The number of individuals falling in classes of 18 and above for the F_1 hybrid (52-430 X 52-307) is 21 and the number of individuals falling in class 10 and in lower classes is 76. The

numbers of individuals falling in these same classes for CMS X 4W-34 are 60 and 118. Hence, the identifiable number of superior genetic deviates is 60 - 21 or 39. The identifiable number of inferior genetic deviates is 118 - 76 or 42. It follows that the total identifiable numbers of genetic deviates are 39 (superior), 42 (inferior) and 81 (total) as shown in table 5. The other values for the identifiable numbers of genetic deviates listed in table 5 were calculated in an identical manner.

The association between the heritability ratios and the identifiable numbers of genetic deviates is studied by employing correlation. Consider first these values for weight per root (see table 5). According to theory and on the basis of normalcy, the heritability ratios should be rather closely associated with the identifiable numbers of superior genetic deviates. That is, the larger the heritability ratio the larger should be the identifiable number of superior genetic deviates. An examination of the data under the column headings, heritability ratio and identifiable number of genetic deviates, reveals that there are positive relations between these two constants for both weight per root and percentage sucrose. This is true also of the comparisons involving the heritability ratios and the inferior and the total identifiable numbers of genetic deviates. A further study of the data shows that the deduction holds for the comparison involving characters.

The degree of association as regards comparisons within groups can be determined by employing correlation procedures. The correlation coefficients between heritability ratios and the identifiable numbers of genetic deviates for superior, inferior, and total are listed in table 6. The characters are weight per root and percentage sucrose. The correlation coefficients were calculated from the data listed in table 5.

Table 6.--Simple correlation coefficients between heritability ratios and the identifiable numbers of genetic deviates for superior, inferior, and total of the univariate frequency distributions; the characters being weight per root and percentage sucrose.

Group	0	W	eight	per ro				Per	centag	e sucr	ose	
		ior				tal		erior	Inf	erior	To	tal
	r r	2(100)	r r	2(100)	r r	2(100)	r r	2(100)	r r	2(100)	r r	2(100)
1	0.77	59	0.81	66	0.84	71	0.72	52	0.76	58	0.76	58
2	0.92	85	0.80	64	0.93	86	0.91	83	0.91	83	0.92	85

A study of table 6 reveals that the least amount of the variation accounted for by correlation is 52 percent and the greatest is 86 percent. The values are consistently higher for group 2 than they are for group 1. For weight per root the associations are higher for the identifiable numbers of superior and total genetic deviates than they are for the inferior. However, for percentage sucrose the degrees of associations within groups do not differ materially. Hence the percentages of the variation of the identifiable numbers of genetic deviates accounted for by regression with the heritability ratios are high as compared with biological data in general.

It follows that the estimates of identifiable numbers of genetic deviates in the frequency distributions of populations are reliable. They are of considerable value to both geneticists and plant breeders in population genetic studies. When studied in conjunction with the means they provide the plant breeder with considerable information about the breeding potential of populations.

Bivariate Frequency Distributions

The methods and procedures for partitioning out the identifiable numbers of genetic deviates in upper and lower classes of the univariate frequency distribution have been given in some detail. This section of the paper gives the methods and procedures for partitioning out the identifiable numbers of genetic deviates in the upper and lower classes of the bivariate frequency distributions of segregating populations.

The bivariate frequency distributions for weight per root and percentage sucrose for populations F_1 hybrid (52-430 X 52-307) and A54-1 are given in tables 7 and 8, respectively. The data are for goup 1. As was the case for the univariate frequency distributions given in tables 3 and 4, the bivariate frequency distributions listed in tables 7 and 8 have been adjusted to eliminate differences between replications within populations and to eliminate differences between populations within groups. Again, for the group 1 populations, the F_1 hybrid is used to estimate the bivariate frequency distribution due to environmental variation. Inbred 34 is used for the same purpose for the populations of group 2.

Table 7.--Bivariate frequency distribution adjusted to eliminate differences between replications within populations and differences between populations within groups; group 1, data transformed to logarithms, 52-430 K 52-307 Fl, weight per root in kilograms and percentage sucrose.

Total		0	7 (5)	09	189	148	lη	#.	0	0	H	(3) 0	0	450	
k	22														
	77														
, c	PS .														
ç	र्				2	m	ব							6	
2	9				rv	m	3	Н						12	
	77			-	7	17	9	~						32	
4	07		Н	Ŋ	16	17	rv	н						克	
	<u>۽</u>		٦	7	28	17	9	0						59	
-	14	(9)	М	9	53	22	5	0					(2)	25	
lass	77		2	9	56	16	2	0						53	
Weight, class	K		Н	27	56	50	2	0						19	
Wei	=		Н	13	21	6	2	0						24	
4	3			2	S	4	0	0						16	
c	,			2	7	#	Н	0						14	
	0			3	80	m	н	0						15	i
	. "			٦	m	٦	7	7						7	ı
	0			H	2	7	0							10	
	۷.			0	2	~	0							4	
-	7			٦	0	-	0							2	
	m				0	0	0							0	
	2					Н	-							m	
	7				2	1	1				н			r.	
			(1) T		.07	(8)						Œ			
Sucrose,	class	2	21	20	19	18	17	16	15	17#	ដ	21	7	Total	

 $\underline{\underline{\hspace{0.05cm}}}$ The figures in parentheses are the nine sections of the frequency distribution.

Table 8.—Bivariate frequency distribution adjusted to eliminate differences between replications within populations and differences between populations within groups; group 1, data transformed to logarithms, A54-1, weight per root in kilograms and percentage sucrose.

Total		00	42	95	138	91	25	27	2	2	-	-	-1		1150
Ę-i			(2)		(4)					(3)					
22						Н	H								~
21					н	1	Н	2		н					9
20					m	-1	#	#	2	0					ħī.
19					2	2	m	m	0	-					Ħ
22				m	2	7	7	2	0						ਫ਼
77			2	80	6	9	9	4	0						35
15		~	H	4	17	77	5	m	0			H			45
2		н	-	9	14	9	9	н	2						017
苕	(9)	н	2	10	15	S S	7	-	0					(2)	146
lass 13		0	m	00	Ħ	7	7	0	0						9
Weight, class		0	m	12	21	7	m	0	0		H				38
1 Nei		0	2	21	15	4	2	2	0						38
2		2	н	œ	7	00	н	2	0						26
0		н	0	00	œ	2	0	m	0				٦		8
0		0	m	~	m	2	~		0						ಬ
-		н	2	0	m	Н	-		0						∞
o			2	m	4	r.	-		Н						16
2			0	4	4	н	-								10
4			0	m	-	0									4
m			H	0	2	-									#
2			п	0	=	2									-
-				H	-	н									m
			7 (2)			(8)				3					
Sucrose,		8	ដ	20	19	18	17	91	15	14	EI	77	Ħ		Total

 \underline{Y} The figures in parentheses are the nine sections of the frequency distribution.

At this time, it seems desirable to point out that other lines of demarcation of the univariate and bivariate frequency distributions may be more informative than those shown in tables 7 and 8. For example, some sugarbeet breeders, as regards weight per root, may be interested in class 20 and higher classes and, as regards percentage sucrose, in class 22 only. Hence, in such an event, only the univariate frequency distributions are involved. For the bivariate frequency distributions, it is quite probable that some breeders would be interested in the number of individuals in a section including class 17 and higher classes for weight per root, and class 19 and higher classes for percentage sucrose. The total number of individuals in such a section of the bivariate frequency distribution of tables 8 is 33 and of table 7 is 15. Hence, the identifiable number of genetic deviates is 33 - 15, or 18. It is evident that breeders can choose lines of demarcation best suited to their purposes and apply the methods and procedures set forth in this article to a study of the frequency distributions.

An examination of tables 7 and 8 show that two vertical and two horizontal lines divide each table into nine different sections. The method of determining the locations of these lines is the same as that given for the univariate frequency distributions and hence will not be repeated here. In fact the locations of the lines are taken from tables 3 and 4. The sections are given numbers from 1 to 9 moving counter-clockwise with number 9 being the center section. The section numbers are shown in parentheses in each section. With characters such as weight per root and percentage sucrose in which the higher values represent, economically, the more desirable individuals, these 9 sections of the bivariate frequency distribution may be described as follows (see table 8).

Section 1: Inferior for weight and inferior for sucrose

**

11

2: Average for weight and inferior for sucrose

3: Superior for weight and inferior for sucrose 4: Superior for weight and average for sucrose

5: Superior for weight and superior for sucrose

6: Average for weight and superior for sucrose
Inferior for weight and superior for sucrose

7: Inferior for weight and superior for sucrose 8: Inferior for weight and average for sucrose

" 9: Average for weight and average for sucrose

It is evident that the most desirable individuals as regards these two characters fall in section 5 and the least desirable in section 1. It is equally evident that the second most desirable individuals fall in sections 4 and 6, if weight per root and percentage sucrose are considered equal in assessing desirability. It follows from the same reasoning that the second least desirable individuals fall in sections 2 and 8. The number of individuals for populations of group 1 in each section of the bivariate frequency distribution for weight per root and percentage sucrose and totals of sections 4, 5, and 6 and of 1, 2, and 8 are listed in table 9. The original data for both characters were transformed to logarithms.

Table 9.—Number of individuals for populations of group 1 in each section of the bivariate frequency distribution for weight per root and percentage sucrose, data transformed to logarithms, and totals of sections 4, 5, and 6 and of 1, 2, and 8.

Population and					Sect	lon				Total of	sections
entry number	1	2	3	4	5	6	7	В	9	4,5,6	1,2,8
,	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.
CMS X 4W-34, 1	15	48	25	28	7	61	44	59	163	96	122
CMS X A54-1, 2	10	53	28	21	7	61	51	55	164	89	118
A54-1, 3	14	52	28	23	3	81	43	57	149	107	123
CMS X 4W-34 S2, 4	13	47	19	21	0	66	43	54	187	87	114
4W-34 S ₂ , 5	15	43	20	40	9	67	36	68	152	116	126
CMS X 4W-34AR, 6	9	52	23	21	4	68	39	54	180	93	115
4W-34AR, 7	21	32	20	39	6	59	27	68	178	104	121
52-430 x 54-520 F ₁ , 8	6	51	21	22	2	50	47	60	191	74	117
52-430 x 52-307 F ₁ , 9 1/	7	31	8	13	0	57	10	59	265	70	97
54-520 X 52-305 F ₁ , 10	25	33	19	36	5	58	38	61	175	99	119
A56-3, 11	11	52	21	28	8	70	45	63	152	106	126
54–520, 12	22	48	15	22	4	81	26	58	174	107	128

^{1/} Used as an estimate of the environmental frequency distribution.

The reason for grouping sections 4, 5, and 6 and for grouping 1, 2, and 8 is that, after subtracting the number of individuals due to environment from the individuals in section 5 and doing the same for section 1, the majority of the values for the various populations (see table 9) are less than 10, and hence the problem of small numbers arises. This problem is largely avoided by grouping classes 4, 5, and 6 as the superior identifiable numbers of genetic deviates and 1, 2, and 8 for the inferior.

It will be remembered that the frequency distribution of the F₁ hybrid (52-430 X 52-307) was used to estimate the frequency distribution attributable to environmental variation. This population has 70 individuals in sections 4, 5, and 6 (superior) and 97 individuals in sections 1, 2, and 8 (inferior). These, respectively, are subtracted from the corresponding values of the segregating populations to give the identifiable numbers of genetic deviates in table 10 under the column headings "Superior, sections 4, 5, and 6" and "Inferior, sections 1, 2, and 8". The sums of numbers for superior and inferior give the identifiable numbers of genetic deviates under column heading "Total". The heritability ratios for weight per root and for percentage sucrose are listed in columns 2 and 3 of table 10. The method of calculating these heritability ratios and determining their reliability is given in table 5 and the discussion of that table.

A study of table 10 reveals that there is an association between the magnitude of the heritability ratios and the size of the identifiable numbers of genetic deviates listed as superior, inferior, and total. On an average, as the heritability ratios increase the identifiable numbers of genetic deviates increase also.

The degrees of the associations are determined by multiple correlation techniques. The multiple correlation coefficients are listed in table 11.

Table 11.—Multiple correlation coefficients between heritability ratios and the identifiable numbers of genetic deviates for superior, inferior, and total of the bivariate frequency distributions; the characters being weight per root and percentage sucrose.

Group	Supe R F	rior 82(100)		erior R2(100)	Tot	cal R2(100)
1	0.77	59	0.60	36	0.74	55
2	0.90	81	0.64	41	0.83	69

Table 10.—For weight per root and percentage sucrose, heritability ratios and identifiable numbers of genetic deviates in sections 4, 5, and 6 (superior) and in sections 1, 2, and 8 (inferior) and total for the bivariate frequency distributions adjusted to eliminate differences between replications and to eliminate differences between populations, data transformed to logarithms, groups 1 and 2.

Group and population	Heritabi	llity ratio		lfiable numb netic deviat	
	Weight	Sucrose	Superior sections 4,5,6	Inferior sections 1,2,8	Total
Group 1			No.	No.	No.
CMS X 4W-34, 1 CMS X A54-1, 2 A54-1, 3 CMS X 4W-34 S ₂ , 4 4W-34 S ₂ , 5 CMS X 4W-34AR, 6 4W-34AR, 7 52-430 X 54-520 F ₁ , 8 52-430 X 52-307 F ₁ , 9 1/ 54-520 X 52-305 F ₁ , 10 A56-3, 11	0.33113266 0.29655992 0.35813254 0.31225300 0.41208572 0.23589192 0.36034351 0.21415650 0.44104908 0.34029800	0.60568649 0.62210681 0.63228438 0.48489888 0.59884238 0.52778156 0.41712484 0.41018658	26±5 19±4 37±6 17±4 46±6 23±5 34±6 4±2 29±5 36±6	25*5 21*4 26*5 17*4 29*5 18*4 24*5 20*4	51±7 40±6 63±7 34±6 75±8 41±6 58±7 24±5
54 - 520 , 12	0.22301232	0.67031556	37±6	31±5	68±8
Group 2 CMS X 34, 13 34, 14 1/ CMS X A54-1, 15 A54-1, 16 CMS X A58-5, 17 A58-5, 18 CMS X A58-22, 19 A58-22, 20 52-430 X 54-520 F ₁ , 21 54-520 X 52-305 F ₁ , 22 A56-3, 23 54-520, 24	0.23144535 0.41701352 0.40616748 0.37331449 0.24804052 0.31834814 0.38578563 0.20046129 0.45969161 0.39654716 0.40599389	0.23639264 0.36668435 0.53511599 0.71346927 0.86659379 0.44830031 0.64412352 0.04754826 0.14492071 0.47857100 0.41293304	21±4 36±6 39±6 32±5 38±6 30±5 43±6 14±4 44±6 37±6 36±6	15±4 29±5 14±4 21±4 21±4 9±3 21±4 5±2 32±5 12±3 31±5	36±6 65±7 53±7 53±7 59±7 39±6 64±7 19±4 76±8 49±7 67±8

Used as an estimate of environmental variance.

A study of the data in table 11 reveals that the least amount of the variability of identifiable numbers of the genetic deviates accounted for by multiple correlation is 36 percent and the greatest is 81 percent. Again, comparatively speaking and as regards biological data, the percentages of the variability of identifiable numbers of genetic deviates accounted for by multiple correlation are high. It follows that partitioning the frequency distributions to determine the numbers of identifiable genetic deviates provides a reliable method of studying such data. The partitioning of bivariate frequency distributions is of value to the plant breeder in determining the comparative breeding potential of populations. Again the means must be studied in conjunction with the identifiable numbers of genetic deviates in order to evaluate populations.

Population Means

In 1856 Louis de Vilmorin (13) introduced the progeny test as a method of plant breeding. Hjalmar Nilsson (6) adopted the progeny test as a method of breeding wheat at the Svalof Experiment Station in Sweden. Here it became known as the pedigree method of breeding and has become widely used throughout the world. One reason for its popularity lies in the fact that means of progeny are used to evaluate their worth and means are much more reliable than data from individual plants. The means of the logarithms of the 24 populations are listed in tables 3 and 4. These will be studied next.

The analyses of variance of means of logarithms for weight per root and means of logarithms for percentage sucrose are given in table 12 for groups 1 and 2. The means are analyzed on the basis of duplicate entries and the basis of all populations. The duplicate entries provide an estimate of the magnitude of environmental variance that is included with the differences between means of populations, whereas the differences between populations provide an estimate of the magnitude of the variance attributable to both environmental and genetic causes. A comparison of the F values listed under populations (see table 12) shows that in no case are the differences between means of duplicate entries greater than would be expected due to chance. Hence, it may be concluded that the duplicate entries provide a valid estimate of the magnitude of environmental variance. A comparison of the obtained F values with those for the 5-percent level listed under populations shows that the differences between the means of all populations are not readily explained by chance. This is true for both weight per root and percentage sucrose. This shows that a considerable portion of the variance due to differences between population means is attributable to genetic causes.

r per-	4
is for	
variance of means of logarithms for weight per root and of means of logarithms for per-	s of duplicate entries and on the basis of all populations, groups I and 2.
ans of	groups
of me	ions.
and	pulat
r root	all po
tht pe	s of
r weigh	e bast
is fo	on th
garithm	s and c
of 1c	entrie
means	[cate
ce of	dup1
varrian	sis of
go s	he ba
alyse	on t
12An	ucrose.
Table	centage s

centage sucrees on the pasts of auplicate entries and on the pasts of all populations, groups I and 2.	ndas	is of aupticat	a enco	ries and on c	ne nas	is of all popula	tions, gra	ins I ar	nd 2.	1
Groups, characters			Vari	Variation due to:				F values	lues	
and basis of analysis	DF	Neplication OF Variance	다. 다.	rooulation Variance	THE SECOND	Variance	Replications Obtained 5%	5%	Poculations Obtained 5	Sugar Sugar
Group 1 Weight per root Duplicate entries All populations	श्र	0.00569137 0.00848419	~ #	0.00102073	29	0.00505391	1.13	1.85	21.79	1.81
Group 2 Weight per root Duplicate entries All populations	22	0.00417831	겁	0.00169233	29	0.00431659	2,38	1.49	73.82	1.81
Group 1 Percentage sucrose Duplicate entries All populations	88	0.00107898 0.00328340		0.00000748	29	0.00035117	3.07	1.85	11.11	1.81
Group 2 Percentage sucrose Duplicate entries All populations	53	0.00070031	- H	0.00019134	319	0.00025542	2.74	1.85	383.31	1.81

.

A comparison of the interaction variance for duplicate entries with those for all populations furnishes further information of value in the interpretation of the data. The only F value approaching significance is the one for percentage sucrose of group 2. The F value obtained by dividing the interaction variance for all populations by the interaction variance for duplicate entries is 1.95. This F value is significant at the 1-percent level. Even so, it is very small compared with 0.19120919, the variance attributable to differences between means of populations. Hence, these interaction variances provide a reliable estimate of that portion of the total variance attributable to environmental causes.

The detailed data essential to calculation of the genetic variances and heritability ratios are listed in table 13. A study of the heritability ratios of this table reveals that they are extremely high. It can be concluded that as regards the conditions of this experiment, and for all practical purposes, the environmental variability is negligible. In other words, a great deal of confidence can be placed in the differences noted between population means. It furnishes further information as to why progeny tests are so reliable, and hence, why the pedigree method of breeding has been so universally accepted.

Table 13.—Total, environmental, and genetic variances, and heritability ratios for weight per root and percentage sucrose based on differences between population means.

Character and group		Variance		Heritability
and group	Total 1/	Environmental 2/	Genetic	ratio
Weight per root Group 1 Group 2	0.08057947 0.32627703	0.00369724 0.00442003	0.07688223 0.32185700	0.95411685 0.98645314
Percentage sucrose Group 1 Group 2	0.00351305 0.19120919	0.00031609 0.00049884	0.00319696 0.19071035	0.91002405 0.99739113

The degrees of freedom are 11.

^{2/} The degrees of freedom are 319.

Conclusions and Summary

- 1. The method and procedures employed in partitioning the univariate and bivariate frequency distributions into identifiable numbers of genetic deviates are given in some detail and are illustrated.
- 2. Individual plant data are adjusted so as to eliminate differences between replications and differences between populations. By so doing frequency distributions are directly comparable and no assumptions concerning type of curve (normal or otherwise) are necessary.
- 3. The original plant data for both weight per root and percentage sucrose were transformed to logarithms. For weight per root this effectively removed the positive relation between the means and variances. There was no consistent relation between the means and variance for percentage sucrose. The only tendency noted was for the extremely high mean percentage sucrose values to be accompanied by somewhat lower variances. This tendency did not materially interfere with the analysis and interpretation of the data for percentage sucrose.
- 4. The identifiable numbers of genetic deviates for both the univariate frequency distribution and the bivariate frequency distribution are rather closely associated with the magnitude of the heritability ratios.
- 5. Using the partitioning method of genetic analysis to determine the identifiable numbers of genetic deviates has its greatest value to the plant breeder in studying frequency distributions based on individual plant data involving comparatively large numbers.
- 6. The heritability ratios are more valuable in studying means of populations of progenies or means of families. This is particularly true of those studies in which the number of replications is sufficient to provide fairly reliable estimates of the means. Usually due to the limitations placed on the number of progenies or families that it is possible to include in the studies, the partitioning of progeny, or family, frequency distributions into identifiable numbers of genetic deviates does not provide much information. This is so because of the small numbers in each class.
- 7. The partitioning of frequency distributions into identifiable numbers of genetic deviates and the components of variance method of studying populations are supplemental. They should not be considered as mutually exclusive. Both contribute to an understanding of the genetic composition of populations and to the evaluation of their breeding potentials.

Literature Cited

- (1) Falconer, D. S. 1960. Introduction to quantitative genetics. The Ronald Press Company, New York. 365 pp.
- (2) Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans. Roy. Soc. Edinburgh 52:399-433.
- (3) Lerner, I. M. 1950. Population genetics and animal improvement. Cambridge University Press, Cambridge, England. 342 pp.
- (4) Lush, Jay L. 1945. Animal breeding plans. The Iowa State College Press, Ames, Iowa. 443 pp.
- (5) Mather, K. 1949. Biometrical genetics. Dover Publications, Inc., New York. 158 pp.
- (6) Nilsson, H. H. 1914. Plant breeding in Sweden. Jour. Hered. 5:281-296.
- (7) Powers, LeRoy. 1934. The nature and interaction of genes differentiating habit of growth in a cross between varieties of Triticum vulgare. Jour. Agr. Res. 49:573-605.
- (8) Powers, LeRoy. 1963. The partitioning method of genetic analysis and some aspects of its application to plant breeding. Statistical Genetics and Plant Breeding. National Academy of Sciences-National Research Council 982:280-318.
- (9) Powers, LeRoy, L. F. Locke, and J. C. Garrett. 1950. Partitioning method of genetic analysis applied to quantitative characters of tomato crosses. U. S. Dept. Agr. Tech. Bul. 998, 56 pp.
- (10) Powers, LeRoy, D. W. Robertson, Robert S. Whitney, and Willard R. Schmehl. 1958. Population genetic studies with sugar beets (Beta vulgaris L.) at different levels of soil fertility. Jour. Amer. Soc. Sugar Beet Tech. IX(8):637-676.
- (11) Powers, LeRoy, D. W. Robertson, and A. G. Clark. 1958. Estimation by the partitioning method of the numbers and proportions of genetic deviates in certain classes of frequency distributions. Jour. Amer. Soc. Sugar Beet Tech. IX(8):677-696.
- (12) Powers, LeRoy, D. W. Robertson, and E. E. Remmenga. 1958. Estimation of the environmental variances and testing reliability of residual variances for weight per root in sugar beets. Jour. Amer. Soc. Sugar Beet Tech. IX(8):697-708.
- (13) Vilmorin, Louis de. 1856. Note sur la création d'une nonvelle race de betterave à sucre, pp25-29. Notices sur l'amelioration des plantes by Louis Levêque de Vilmorin and Andre Levêque de Vilmorin. Vilmorin-Andrieux, Paris.
- (14) Wright, S. 1921. Systems of mating. Genetics 6:111-178.

PART VII

POLYPLOIDY IN RELATION TO ROOT YIELD, SUCROSE PERCENTAGE, AND DISEASE RESISTANCE

INTERSPECIFIC HYBRIDIZATION and STUDIES ON TETRAPLOIDY

Foundation Project 11

Balleria (C.)

The transfer of the army to

William Control

SERVED REPORTED TO THE TRANSPORT OF THE SERVED SERV

The second secon

TO SEE TO SEE THE SEE

(21.51). AND THE STATE OF THE S

AL RESERVE AND THE RESERVE AND

The state of the s

The rest of the method of Mariana Comments of the Comment of the C

LICTURE TO THE RESIDENCE OF THE STATE OF THE

deligne .. gar,

POLYPLOIDY IN SUGARBEETS

Combining Ability in Tonnage and Sucrose in Single-cross and Three-way Diploid, Triploid, and Tetraploid Male-sterile Monogerm Hybrids.

V. F. Savitsky

Materials and Methods.

Combining ability in diploid, triploid, and tetraploid single-cross and three-way hybrids was studied. Self-fertile and self-sterile stocks were used for hybridization. Parental stocks with minimum and maximum expression of yielding ability, percent sucrose and curly top resistance were chosen. The role of genetic diversity served as a supplementary factor in selection of parental stocks for production of male sterile monogerm hybrids.

The triploid male-sterile monogerm hybrids were obtained after hybridization of diploid male-sterile strains with 2 types of tetraploid pollinators. Some pollinators were tetraploid populations obtained by H. Savitsky after colchicine treatment. The others were tetraploid hybrids between different tetraploids previously obtained by colchicine treatment. Advanced generations of these tetraploid hybrids were used for production of three-way hybrids with the purpose to study the possibility of substitution of the single-cross hybrids for the three-way hybrids. The three-way hybrids may be of importance in several cases. They are especially important when the combining of more than 2 characters is pursued (for example - resistance, yield, percent sucrose) at the level which is close to their highest expression.

The tetraploid male-sterile monogerm hybrids were obtained from hybridization of tetraploid male-sterile monogerm strain with tetraploid pollinators.

Hybridization of male-sterile monogerm strains with diploid and tetraploid pollinators was conducted on separate isolations.

The experiment included 28 populations (9 diploid, 7 triploid, and 12 tetraploid) which were planted in 10 replications in randomized complete block design.

The experimental plots were planted April 3 and harvested October 17, 1963. The previous crop was barley. Fertilization consisted of 1000 pounds of 10-10-5 fertilizer per acre as a preplant application and 2 side dressings of 400 pounds of 16-20 mixture per acre.

Mean squares, degrees of freedom, and sources of variation in analysis of variance for percent sucrose and weight of roots. Table 1...

1-		r			
	E 000	'	1.92 2.50	1.57 1.88	'
	E 005	1	1.92	1.57	1
rose	Variance Ratio	•	3.811	20,198	ı
Percent sucrose	Mean		1,386	7.348	0.368
Pe	Sum of Squares	299,290	12.479	198,400	88.411
	00 <u>5</u> 001	1	1.92 2.50	1.57 1.88	
	F 003	1	1.92	1.57	1
ots	Variance Ratio	1	2.235	11.22	1
Tons of roots	Mean Squares	. r .	h00°86	492.059	43 . 8410
	s Sum of Squares	24820.997	882,032	13285.597	10653,368
	Degrees freedom	279	တ	27	243
	of Variation	Total sum of square	Between	Between Populations	Residual (error)

Single-row plots were used and the plots were spaced 28 inches apart. Irrigations were applied at 7-day intervals by furrows from time of planting. Plants were sprayed to control leaf minor. No bolting or curly top damage was observed in the experiments.

Degrees of freedom, sum of squares and sources of variation in analysis of variance of root weight and sucrose are shown in table 1. The table shows highly significant differences for populations in both characters because the F ratio for percent sucrose equaled 20.2 and for tonnage 11.2, while tabulated F at the 5-percent point level equaled 1.57 and at the 1-percent level, 1.88.

Experimental results

Monogerm male-sterile hybrids derived from crosses with curly top

resistant self-fertile lines

Two self-fertile curly top resistant lines, monogerm 127 and multigerm 168, were used for study of the combining ability at the diploid, triploid, and tetraploid levels.

Both tetraploid lines, 127 and 168, showed higher resistant to curly top than their diploid ancestors in tests in Utah.

Male-sterile monogerm hybrids from crosses with self-fertile monogerm inbred 127. The majority of the monogerm diploid self-fertile inbreds do not exhibit good combining ability in tonnage when crossed with each other by the use of their male-sterile diploid equivalents. The same is true for the diploid inbred 127.

F₁ monogerm diploid male-sterile hybrid (code N 139) derived from hybridization of 2 monogerm inbreds had the lowest tonnage in comparison with the F₁ hybrids between monogerm and multigerm lines (table 2,3, 4,5, code 133, 146, 151, 132, 141).

The tetraploid equivalent (code 134) of the line 127 distinguished by a high grade of curly top resistance at Thatcher, Utah. This tetraploid inbred is significantly higher in percent sucrose than the diploid US 75, but is lower in yield (table 2).

In spite of this, the F_1 tetraploid hybrid (code 135) and also triploid "pure" monogerm F_1 male-sterile hybrid (code 152) exhibited heterosis in the weight of root. Percent sucrose in the diploid and triploid hybrids was the same (table 2).

^{*}Sugarbeet Research, 1958 Report, page 8.

Table 2... Tonnage and sucrose in F1MS monogerm diploid, triploid, and tetraploid hybrids derived from pollination by self-fertile inbred 127

Populations	Code N	Tons of roots	Percent sucrose
Tetraploid monogerm inbred 127 (pollinator)	134	14.9248	14.93
F ₁ tetraploid hybrid	135	17.5336	14.93
F ₁ triploid hybrid	152	22.5992	14.65
F ₁ diploid hybrid	139	16.4512	14.58
US 75 population	-	16.4088	14.10
msd at 5% point	-	2.47	0.53
1sd at 1% point	-	3.26	0.70

Table 3... Tonnage and sucrose in F₁ MS monogerm diploid, triploid, and tetraploid hybrids derived from pollination by self-fertile inbred 168.

Populations	Code N	Tons of roots	Percent sucrose	
Tetraploid multigerm self-fertile inbred 168	155	13.3984	15.11	
F ₁ tetraploid hybrids	153	17.2568	15.5	
F ₁ triploid hybrids	154	21.1152	14.97	
F ₁ diploid hybrids	133	18.7832	15.05	
US 75	-	16.4088	14.10	
msd at 5% point	-	2.47	0.53	
1sd at 1% point	-	3.26	0.70	

The F₁ triploid hybrid significantly exceeded in root weight, the F₁ diploid and the F₁ tetraploid hybrids. The yield of the diploid and tetraploid hybrids equaled the yield of US 75.

Thus, in this given case, the combining ability in yield appeared to be the highest in the triploid, then in tetraploid hybrids, and the lowest in the diploid male-sterile F1 hybrids derived from crosses of 2 monogerm inbreds.

Male-sterile monogerm hybrids from crosses with multigerm inbred 168.

The tetraploid self-fertile multigerm inbred 168 (code 155) has the highest curly top resistance of 7 pollinator lines of F1 hybrids which were studied in 1963. The tetraploid inbred 168, as well as its diploid ancestor, has small roots and an average percent sucrose (table 3).

In spite of this, the diploid F_1 hybrids derived from this inbred show heterosis in the weight of root and it significantly exceeded the yield of the tetraploid inbred 168 (code 155) and US 75. In percent sucrose this F_1 hybrid significantly exceeded US 75.

The tetraploid F_1 hybrid (code 153) was 1.5 tons lower in yield than the F_1 diploid hybrid (code 133), but 0.45% higher in sucrose.

The yield of the triploid F_1 male-sterile hybrid (code 154) was 2.34 tons higher than that of the F_1 diploid hybrid and 3.86 tons higher than the yield of the F_1 tetraploid hybrid. The difference in the yield of sugar between the triploid and tetraploid hybrids is less, because the F_1 tetraploid hybrid is higher in sugar.

Male-sterile monogerm hybrids from crosses with self-sterile multigerm populations. Diploid, triploid and tetraploid male-sterile monogerm hybrids obtained from crosses, with 4 different populations were studied. One of these populations derived from high-sucrose, self-sterile, variety Janasz. The tetraploid strain was produced from this population by H. Savitsky after colchicine treatment.

The 3 other populations were F4 hybrids originating from hybridization of the same monogerm tetraploid line with different multigerm tetraploids. These multigerm tetraploid parental strains showed a good combining ability at the triploid level; i.e., the yield of the triploid hybrids obtained from them was higher than the yield of the corresponding diploid hybrids.

All 3 tetraploid F_{ij} hybrids had a good grade of curly top resistance and were used as pollinators for production of three male-sterile monogerm hybrids.

Table 4.--Tonnage and sucrose in F₁ MS monogerm diploid, triploid, and tetraploid hybrids derived from pollination by the self-sterile, high sucrose population of Janasz.

Populations	Code N	Tons of roots	Percent sucrose	
Tetraploid multigerm parental population	143	19.8430	16.08	
F ₁ tetraploid hybrid	147	21.0728	15.78	
F ₁ triploid hybrid	145	23.1928	15.45	
F ₁ diploid hybrid	146	19.2920		
Diploid multigerm parental population	142	16.7056	16.18	
US 75 (diploid)	-	16.4088	14.10	
msd at 5% point	**	2.47	0.53	
lsd at 1% point	-	3.26	0.70	

Self-sterile multigerm high sucrose populations. During 2 years' testing at Salinas in 1962 and 1963 the parental variety Janasz and its monogerm male-sterile hybrids showed higher sucrose content than any other hybrids or populations used.

The average percent sucrose for 5 diploid, triploid, and tetraploid populations of Janasz in 1962 was 16.374, whereas the diploid variety US 75 in the same experiment produced only 14.40 percent sucrose.

Almost the same ratio was observed in the 1963 experiments with these selections (table 4). The average percent sucrose for 5 populations of Janasz was 15.836, whereas the percent sucrose in US 75 was 14.10. Differences in percent sucrose between Janasz hybrids and US 75 in the 1962 and 1963 tests were 1.9% and 1.7%, respectively.

During the 2-year period the diploid and the tetraploid populations of Janasz (code 142 and 143) showed higher sucrose than the diploid, triploid and tetraploid F₁ male-sterile monogerm hybrids (code 146, 145, and 147). See table 4.

The tetraploid population (code 143) gave a higher yield than the diploid population (code 142). According to our observations, the tetraploid population of Janasz shows better adaptiveness to our conditions than its original diploid population.

In the 1963 test, all 3 F₁ hybrids/derived from Janasz had sucrose percent that exceeded the diploid check (US 75) by 1.4 to 1.7 percentage points. Among the hybrids the highest in sucrose was the tetraploid male-sterile hybrid, although the excess in percentage sucrose in this hybrid was not significant.

A comparative leveling of percent sucrose in the F₁ hybrids at different ploidy levels is probably caused by a very high root yield of the triploid male-sterile hybrids. Yield in the triploid hybrid (code 145) was 23.19 tons with 15.45 percent sucrose. The diploid F₁ hybrid (code 146) yielded 19.29 tons with 15.69 percent sucrose (table 4).

Maximum differences in the percent sucrose and yield in triploid male-sterile monogerm hybrids. The tetraploid population of Janasz was used for obtaining the highest possible percent sucrose in the triploid male-sterile monogerm hybrids. The triploid hybrid (code 145) exceeded by 1.4 percentage points the percent sucrose in the diploid US 75.

For obtaining the maximum yield in male-sterile monogerm triploid hybrids the progeny of hybrids between sugarbeets and fodder beets was used. Triploid hybrid (code 144) had 26.6696 tons of beets, but its

percent sucrose declined to 11.33; i.e., sucrose in this triploid hybrid was 2.67 percentage points lower than in the diploid US 75. Despite the enormous yield in this hybrid, which outyielded by 30% the best diploid and triploid F₁ hybrids, such hybrids will be of commercial value only after improvement in sugar content.

Monogerm male-sterile three-way hybrids derived from hybridiza-

tion with 3 self-sterile hybrid populations.

Three self-sterile hybrid populations (code 156, 149, 136) derived from crosses of monogerm self-sterile tetraploid SLC 15 with 3 different multigerm tetraploids (US 401, US 104, and US 35/2) were used as pollinators for production of triploid male-sterile hybrids. (See table 5.)

The triploid hybrids obtained in this way were three-way hybrids between male-sterile monogerm diploid stock and progenies of the above mentioned tetraploid hybrids. All 4 tetraploids involved in hybridization showed good combining ability in triploid male-sterile monogerm hybrids. This was one of the main reasons for their utilization in production of three-way triploid and tetraploid hybrids. The corresponding diploid hybrids were obtained from crosses of male-sterile monogerm with the same F1 diploid hybrids which have been used at the tetraploid level (self-sterile SLC 15 x US 401, US 104 and US 35/2). In such a way the diploid, triploid and tetraploid hybrids had the same gene pool, but the dose of these genes varied in accordance with the ploidy levels.

Diploid three-way hybrids. All 3 diploid hybrids (code 151, 132, 141) exceeded in yield and in percent sucrose the check US 75. They did not differ from each other in yield, but the sucrose was considerably higher in the hybrids with US 35/2 than in the other 2 three-way diploid hybrids (table 5).

Tetraploid pollinators. All three tetraploid pollinators (code 156, 149, 136) used to obtain three-way hybrids distinguished by a good vigor. Their yield equaled or exceeded the yield of the diploid three-way hybrids. In sugar content they did not differ from the three-way diploid hybrids.

Tetraploid three-way hybrids. The tetraploid male-sterile monogerm three-way hybrids (code 138, 131, 140) obtained from the above mentioned pollinators gave the same yield as the tetraploid pollinators. The tetraploid hybrids derived from US 35/2 (code 138) showed higher sucrose than the pollinators or the diploid hybrids.

Table 5... Tonnage and sucrose in three-way MS monogerm diploid, triploid, and tetraploid hybrids, derived from pollination by self-sterile hybrid populations

Populations	Code N	Tons of roots	Percent sucrose		
Pollinator : monogerm 15 x US	35/2				
Tetraploid parental population	156	20.5216	15.25		
F ₁ tetraploid hybrid	138	22.9808	15.60		
F ₁ triploid hybrid	150	22.7688	15.24		
F ₁ diploid hybrid	151	19.5888	15.20		
Pollinator : monogerm 15 x US	104				
Tetraploid parental population	149	22.7688	14.97		
F ₁ tetraploid hybrid	131	20,9880	15.01		
F ₁ triploid hybrid	137	23.2776	14.99		
F ₁ diploid hybrid	132	18.9952	14.95		
Pollinator : monogerm 15 x US	401				
Tetraploid parental population	136	20.8184	14.77		
F ₁ tetraploid hybrid	140	19.5464	14.56		
F ₁ triploid hybrid	148	23.1928	14.75		
F ₁ diploid hybrid	141	19.9704	14.58		
US 75 (diploid)		16.4088	14.10		
msd at 5% point		2.47	0.53		
lsd at 1% point		3.26	0.70		

Triploid three way hybrids. All 3 triploid three-way hybrids (code 150, 137, 148) in spite of a good yield did not differ in percent sucrose from the diploid three-way hybrids (table 5) all three-way triploid hybrids exceeded in yield the diploid three-way hybrids. The triploid hybrids derived from US 401 and from US 104 significantly exceeded in yield the tetraploid three-way hybrids.

Conclusion

- 1. Combining ability for yield and percent sucrose varied in monogerm male-sterile hybrids depending on ploidy level (diploid, triploid, tetraploid).
- 2. Changes in combining ability at different ploidy levels were observed in self-fertile and in self-sterile strains, and also in single-cross and in three-way hybrids.
- 3. Many tetraploid populations, or single and three-way hybrids, did not exhibit the tetraploid depression under California conditions. Some tetraploid male-sterile monogerm hybrids outyielded the diploid monogerm hybrids and exceeded the triploid hybrids in percent sucrose.
- 4. In the 1963 experiments the combining ability for yield was the highest in triploids, but combining ability for percent sucrose was the highest in some tetraploids.
- 5. The tetraploid hybrids propagated during several generations may be used as tetraploid pollinators for production of three-way triploid male-sterile monogerm hybrids. This permits the use of any tetraploid lines for pollination of diploid male-sterile beets, regardless of whether these lines carry the genes recovering pollen fertility in F₁ male-sterile hybrids.

For production of three-way hybrids in the diploid beets it is necessary that one of the three lines, the F_l hybrid of which will serve as a second pollinator, carries the genes restoring pollen fertility in F_l male-sterile hybrids, or that 2 lines produce a completely male-sterile F_l progeny which will be pollinated by the third line.

EFFECT OF HYBRIDIZATION AND SELECTION FOR CURLY TOP AND LEAF SPOT RESIST-ANCE, AND OTHER TRAITS ON CURLY TOP AND LEAF SPOT RESISTANCE IN TETRA-PLOID SUGARBEET STRAINS.

by V. F. Savitsky, Helen Savitsky, and Albert M. Murphy.

Application of new methods for increase of disease resistance in sugarbeet populations is of a great importance. Variability in the grade of resistance may be caused by the action of individual genes, by the complex of genes, or by changes in genome numbers (ploidy levels). Any of these factors can be used in sugarbeet breeding and in industry, although the breeding methods will be different.

In the history of sugarbeet breeding, selection for resistance to any disease was based on the conventional breeding of diploid biotypes and on selection of the most resistant self-sterile plants; seldom on self-fertile plants, or lines.

Experimental results obtained during recent years indicate that not only diploid, but also tetraploid sugarbeets may be used for improvement in disease resistance. Doubling of chromosomes changes genetic variability of curly top resistance. Genetic pool of the same original genes shows a different expression of curly top resistance at diploid and at tetraploid levels in many varieties.

The improved grade of curly top resistance caused by doubling of chromosomes is not the same in different populations and lines. The variety US 401 showed a positive reaction on chromosome doubling in respect to curly top resistance. Under the conditions of severe curly top infection at Jerome (Idaho) in 1958, 1959 and 1960, and at Thatcher (Utah) in 1962 and 1963, the diploid variety US 401 was almost completely destroyed by curly top. The tetraploid population of US 401 was also damaged, but not in the same degree.

Under such conditions the grade of curly top severity varied for the diploid US 401 from 8 to 10, and for the tetraploid US 401 from 2 to 7, on a basis of 10 points in ascending order of severity.

The original US 401 is a commercial leaf spot resistant variety; therefore, the tetraploid population US 401 was used not only for study of its resistance to curly top but also for evaluation of leaf spot resistance in different lines derived from this variety.

For this purpose within the tetraploid population of US 401, selection for curly top and leaf spot resistance was conducted under conditions of artificial infestation. Also, some plants were selected for characteristics such as vigor and dry matter. Every selection was made under conditions excluding infestation by another disease or selection for any other

character. The beets selected for curly top resistance in Twin Falls (Idaho), or for leaf spot resistance in Fort Collins (Colorado) were shipped to Salt Lake City (Utah) or to Salinas (California) for propagation. The tetraploid self-sterile monogerm line with a medium grade of curly top resistance, but susceptible to leaf spot, was crossed to tetraploid US 401. The true F_1 hybrids were propagated and the F_2 lines were chosen at random and propagated twice in curly top and leaf spot free conditions.

These tetraploid lines permitted the study of resistance to curly top and to leaf spot in the same lines during 1962 and 1963. The following tetraploid lines were studied: a/ eight lines selected in tetraploid US 401 for curly top resistance in Salt Lake City, Utah; b/ seven lines selected in tetraploid US 401 for leaf spot resistance in Fort Collins, Colorado; c/ seven lines selected in tetraploid US 401 for vigor and dry matter; and d/ six tetraploid F4 hybrids derived from crosses of a monogerm line with medium grade of curly top resistance to tetraploid US 401.

In the experiment were included as checks diploid US 401, the original tetraploid population of US 401, the highly leaf spot resistant multigerm variety US 201, the highly leaf spot resistant monogerm diploid inbred S-23, US 35/2 and a European variety susceptible to both curly top and leaf spot.

Tests for leaf spot resistance were performed by J. A. Elder and J. O. Gaskill in Fort Collins, Colorado, in 1962 and 1963. Plantings were made in 2-row plots in a randomized block design in 3 replications. Artificial inoculation and frequent sprinkling were employed to promote development of leaf spot. The August 27, 1962, and August 29, 1963, readings were made at the approximate peak of the epidemic by J.A. Elder. (Table 1)

Test for curly top resistance in 1962 and 1963 was performed by A.M. Murphy at Thatcher, Utah. Tetraploid lines were randomized in single-row plots (150 feet long). The curly top exposure was increased by planting of test population and planting susceptible beets (Klein) about 2 months earlier than the test planting. Virulent strains of curly top virus were introduced by transplanting diseased beets selected the previous year. Readings of curly top severity were made by V.F. Savitsky September 11-14, 1962, and October 3-6, 1963. Each plot was given a general evaluation. Readings were made also for each individual plant in all plots.

Evaluation of leaf spot and curly top resistance in tetraploid lines

selected in US 401 for leaf spot resistance.

Seven tetraploid lines selected in US 401 for leaf spot resistance showed an average grade of leaf spot resistance in 2 years tests of 3.44

Table 1.... Evaluation of curly top and leaf spot resistance in tetraploid lines selected for leaf spot resistance.

Code N		Leaf spot resistance			Curly top resistance			Index	
1962	1963	1962	1963	Mean	1962	1963	Mean	CT	
S-62-1	S-63-23	3.0	4.0	3.50	7.0	7.0	7,0	2.0	
S-62-2	S-63-24	3.0	4.0	3.50	5.0	4.0	4.5	1.29	
S-62-3	S-63-25	2.5	4.0	3.25	3.0	4.0	3.5	0.92	
S-62-4	S-63-14	3.0	3.5	3.25	7.0	6.0	6.5	2.00	
S-62-5	S-63-16	3.5	3.8	3.65	5.0	5.0	5.00	1.37	
S-62-6	S-63-15	3.3	4.0	3.65	5.5	5.0	5.25	1.44	
S-62-7	S-63-29	2.8	3.8	3.33	7.0	7.0	7.00	2.10	
Mean		3.0143	3.8714	3.4428	5.6429	5.4286	5.5357		
2n: US 4	01	3.0	4.0	3.50	8.5	7.8	8.15	2.33	
4n: US 401		3.7	4.0	3.85	5.0	4.0	4.50	1.17	
2n: US 35/3					2.0	2.0	2.00		
2n: Klein Wanz.		5.0	6.7	5.85	9.5	9.0	9.25	1.58	
2n: US 201		1.5	2.2	1.85					
2n: S-23-in ²		1.0	1.2	1.10	9.5	9.0	9.25	8.41	

(table 1). The average grade of severity of the diploid US 401 was 3.50, and of the tetraploid US 401, 3.85. The average grade of leaf spot resistance in 7 tetraploid lines was a little higher than in the original diploid and tetraploid population of US 401. During 2 years testing, 5 of 7 lines were never evaluated lower in resistance to leaf spot than the diploid US 401. Two of 7 lines received the first year the same evaluation in resistance to leaf spot as the diploid US 401, and in the second year test, 1 line was graded 0.3 and another 0.5 of a point lower in resistance than the diploid US 401. None of the 7 lines in 2 years tests received lower grades for resistance to leaf spot than the original tetraploid population US 401.

These 7 lines were different in resistance to curly top, but their average resistance was higher than that of the diploid US 401 (table 1). Two of 7 lines were equal to the tetraploid US 401 in curly top resistance and five lines were lower in resistance. None of the tetraploid lines were selected for curly top resistance. In general, the relation of curly top and leaf spot resistance was better in these lines than in the diploid US 401. For instance, in the best line, S-62-3, the index Ct did not reach even 1; i.e., in this line resistance to each disease appeared the same. In the tetraploid lines with the lowest value for curly top resistance, the index Ct increased to 2.1. For the diploid US 401 this index was 2.33, and for the highly leaf spot resistant and completely susceptible to curly top line, S-23 m², it was 8.41 (table 1).

Evaluation of leaf spot and curly top resistance in tetraploid lines

selected in US 401 for curly top resistance.

Eight tetraploid lines selected in US 401 for curly top resistance were propagated twice without selection. The average 2-year evaluation in leaf spot resistance for these lines was 3.5625 (table 2), consequently the resistance to leaf spot in these lines was almost the same as in the diploid population US 401. Variation in leaf spot resistance was a little higher in these lines than in the tetraploid lines selected for leaf spot resistance. Two or 3 lines of this group had a lower evaluation than the original tetraploid population. But in general the changes in the grade of resistance to leaf spot were insignificant in spite of the high effectiveness of selection for curly top resistance.

It is possible that the high effectiveness of selection for curly top resistance was due to the high intensiveness of selection: only 0.5 to 1% of plants tested for curly top resistance produced seed for the following selection.

The average resistance to curly top in 8 lines was 4.1250, whereas in the diploid US 401 it was 8.15 and in the original tetraploid population, US 401, it was 4.50.

Table 2.... Evaluation of curly top and leaf spot resistance in tetraploid lines selected for curly top resistance.

Code N		Leaf spot resistance			Curly top resistance			Index
1962	1963	1962	1963	Mean	1962	1963	Mean	IS IS
S-62-22	S-63-1	3.0	3.7	3.35	4.0	3.0	3.5	1.04
S-62-23	S-63-2	3.5	3.7	3.60	4.0	3.0	3.5	0.97
S-62-24	S-63-3	3.7	4.2	3.95	5.0	4.0	4.5	1.14
S-62-25	S-63-22	3.8	4.0	3,90	5.0	4.0	4.5	1.15
S-62-26	S-63-4	3.3	3.7	3.50	3.0	3.0	3.0	0.86
S-62-27	S-63-5	2.5	3.7	3.10	5.0	5.0	5.0	1.61
S-62-28	S-63-6	3.2	4.2	3.70	4.0	5.0	4.5	1.22
S-62-29	S-63-7	2.8	4.0	3.40	5.0	4.0	4.5	1.32
Mean		3.2250	3.9000	3.5625	4.3750	3.875	4.1250	
2n: US 401		3.0	4.0	3.50	8.5	7.8	8.15	2.33
4n: US 40	01	3,7	4.0	3.85	5.0	4.0	4.50	1.17
2n: US 35/3					2.0	2.0	2.0	
2n: Klein Vanz.		5.0	6.7	5.85	9.5	9.0	9.25	1.58
2n: US 201		1.5	2.2	1.85				
2n: S-23-m ²		1.0	1.2	1.10	9.5	9.0	9.25	8.41

Improvement in curly top resistance and the very insignificant decline in leaf spot resistance resulted in a value of ct index for these lines which did not exceed 1.1 for almost 75% of the lines. In such a way, a good grade of resistance to curly top was combined with leaf spot resistance at the level peculiar to the leaf spot resistant parental variety.

Evaluation of leaf spot and curly top resistance in tetraploid lines

selected for vigor and dry matter.

Tetraploid lines were selected for vigor and then for dry matter in Salt Lake City, Utah, under leaf spot and curly top-free conditions; therefore, these lines should be considered as checks for the 2 first mentioned selections.

The average evaluation of these 7 lines in leaf spot resistance was 3.5354; i.e., their grade of resistance did not differ from the diploid population US 401 for which the average grade of resistance was 3.50. Variation in leaf spot resistance was even lower in these lines than the variation in leaf spot resistance in the lines selected for curly top resistance (table 3).

The average evaluation of these lines in curly top resistance was still higher than of diploid US 401 and about the same as the average curly top resistance of the lines - progeny of plants selected for leaf spot resistance (tables 1 and 3).

At the same time the grade of curly top resistance was lower in these lines than in the lines selected for curly top resistance (tables 2 and 3).

Index $\frac{ct}{IS}$ for the lines of this group is better than for the diploid US 401 but worse than for the tetraploid original population US 401 (table 3).

Evaluation of leaf spot and curly top resistance in F4 hybrids.

A tetraploid, monogerm, self-sterile line with a medium grade of resistance to curly top and susceptible to leaf spot was crossed to US 401. F_2 lines have been isolated in this hybrid under conditions of no infection with either diseases.

The average evaluation of leaf spot resistance in 6 such lines was 3.6333 (table 4); i.e., resistance to leaf spot almost equaled the resistance of the diploid US 401 or of tetraploid lines selected in US 401 for curly top resistance, vigor, or dry matter. One of these lines had grade of 3.25 in resistance to leaf spot.

Six F_4 hybrids exhibited a good grade of curly top resistance (2.9583) (table 4), while the grade of curly top resistance was 8.15 in the diploid US 401 and 4.50 in the tetraploid US 401.

Table 3.... Evaluation of curly top and leaf spot resistance in tetraploid lines selected for vigor and dry matter in a tetraploid population US 401.

Code N Leaf spot resistance Ourly top resistance								
1962	1963	1962	1963	Mean	1962 1963		Mean	CT IS
S-62-8			3.75	6.0	6.0	6.00	1.60	
S-62-9	S-63-28	3.5	4.5	4.00	5.5	5.0	5.25	1.31
S-62-10	S-63-27	3.0	4.2	3.60	5.0	5.0	5.00	1.39
S-62-11	S-63-17	2.3	3.5	2.90	5.0	4.0	4.50	1.55
S-62-12	S-63-18	3.2	4.0	3.60	6.0	4.0	5.00	1.39
S-62-13	S-63-19	3.3	4.0	3.65	5.0	5.0	5.00	1.37
S-62-14	S-63-20	2.5	4.0	3.25	7.0	7.0	7.00	2.15
						1 11 11		11,300
Mean		2.9714	4.1000	3.5357	5.6429	5.1429	5.3929	
2n: US 4	01	3.00	4.00	3.50	8.5	7.8	8.15	2.33
4n: US 4	01	3.7	4.00	3.85	5.0	4.0	4.50	1.17
2n: US 3	15/3				2.0	2.0	2.00	22.0
2n: Klein Vanz.		5.0	6.7	5.85	9.5	9.0	9.25	1.58
2n: US 201		1.5	2.2	1.85				
2n: S-23-m ²		1.0	1.2	1.10	9.5	9.00	9.25	8.4]

Table 4... Evaluation of curly top and leaf spot resistance in tetraploid

F₄ hybrids derived from crosses of tetraploid monogerm self-sterile

strain to tetraploid US 401.

Code N		Leaf	spot res	istance	Curl	y top res	sistance	Index
1962 1963		1962	1963	Mean	1962	1963	Mean	CT
S-62-15	S-63-8	3.2	3.3	3.25	2.5	3.5	3.00	0.92
S-62-16	S-63-9	3.3	4.0	3.65	2.0	2.0	2.00	0.55
S-62-17	S-63-11	3.8	4.0	3.90	2.5	3.0	2.75	0.71
S-62-18	S-63-10	3.5	4.0	3.75	4.0	4.0	4.00	1.07
S-62-19	S-63-12	3.3	4.0	3.65	3.0	3.0	3.00	0.82
S-62-20	S-63-13	3.2	4.0	3.60	3.0	3.0	3.00	0.83
Mean		3.3833	3.8833	3.6333	2.8333	3.0833	2.9583	
2n: US 4	01	3.0	4.0	3.50	8.5	7.8	8.15	2.33
4n: US 4	01	3.7	4.0	3.85	5.0	4.0	4.50	1.17
2n: US 3	5/3				2.0	2.0	2.00	
2n: Klein Vanz.		5.0	6.7	5.85	9.5	9.0	9.25	1.58
2n: US 201		1.5	2.2	1.85				
2n: S-23-m ²		1.0	1.2	1.10	9.5	9.0	9.25	8.41

One of the hybrid lines (S-62-15) showed the grade of resistance to curly top of 3.0 and a grade of resistance to leaf spot of 3.25, which gave a value of 0.92 for the ct index. In the other line (S-62-16) the grade of resistance to leaf spot was 3.65 and to curly top 2.0, and its ct index decreased to 0.55.

Thus, hybridization of tetraploid lines, without selection for curly top or leaf spot resistance, produced some tetraploid lines in which the resistance to curly top and to leaf spot was maintained on the same, or even on the higher level, than in the original diploid parental varieties. Each of parental varieties was resistant to only one disease.

Discussion and conclusion

- 1. Tetraploid lines in self-sterile tetraploid population US 401 showed in many experiments higher resistance to curly top than the original diploid variety US 401. At the same time, the majority of these tetraploid lines were approximately equal or better in leaf spot resistance than the diploid variety US 401.
- 2. A study of curly top resistance at Thatcher (Utah) and leaf spot resistance at Fort Collins (Colorado) during 1962 and 1963, in 29 tetraploid lines derived after selection for curly top and leaf spot resistance, vigor, and dry matter, showed that selection for curly top and for leaf spot resistance is effective in tetraploid sugarbeet lines. Selection for resistance to either disease (leaf spot or curly top) fixed the more resistant lines and excluded the lines low in resistance. (Tables 5 and 6.)
- 3. Selection for one disease affected only slightly the average evaluation of lines for resistance to the other disease. Selection improved the individual lines in resistance to disease for which they were selected. At the same time, in some of these lines the resistance to another disease was not reduced. This is well demonstrated in the line S-62-3 selected for curly top resistance and in the line S-62-22 selected for leaf spot resistance.
- 4. The highest evaluations in curly top and leaf spot resistance were obtained when the lines were selected for curly top resistance. Such selection led to considerable improvement of curly top resistance with insignificant changes in leaf spot resistance. Higher effectiveness of selection for curly top than for leaf spot resistance was obviously due to higher intensiveness of selection for curly top than for leaf spot resistance.
- 5. However, the best combination of resistance to both diseases was obtained in some hybrid lines derived from crosses of curly top and leaf spot resistant tetraploid parents, and also even when the parental strains have been propagated under conditions which excluded the possibility of improvement in resistance.

- 6. In such a way, the results obtained indicate that the method of tetraploid selection, based on the selection in the varietal populations or in hybrid progenies, may be considered as one of methods which leads to improvement of different types of resistance (curly top, leaf spot) and as a method which makes possible the combining on a higher level of resistance to 2 diseases in the same tetraploid population.
- 7. A method of combining 2 desirable genomes from different autotetraploids in one tetraploid population is an important breeding method for association of polygenic traits, if the desirable grade of both traits is manifested in the F_1 generation.

Table 5 ... Mean curly top and leaf spot resistance in 1962 and 1963 in the traploid or dry matter in the tetraploid population US 401 and in F_{μ} hybrids

tetraploid lines selected for curly top resistance, leaf spot resistance, vigor, or dry matter in the tetraploid population US 401 and in F_4 hybrids. Mean curly top and leaf spot resistance for 2 years in 29 Table 6

Leaf spot resistance Curly top resistance Mean evaluation of lines Range of variation of lines Nean evaluation between lines 3.44 3.25 - 3.65 5.54 3.5 - 7.0 3.56 3.10 - 3.95 4.13 3.5 - 7.0 3.54 2.90 - 4.00 5.39 4.5 - 7.0 3.63 3.25 - 3.90 2.96 2.0 - 4.0 3.50 - 8.15 -
Curly top resisent lines - 3.65 - 3.95 - 4.00 - 3.90 - 2.96 - 3.90 - 8.15
0100
Range of variation between lines 3.5 - 7.0 3.0 - 5.0 4.5 - 7.0

PRODUCTION OF TETRAPLOID STRAINS

by Helen Savitsky

1/ One monogerm curly top resistant inbred and 2 nematode resistant strains received from Mr. Charles Price were treated by colchicine in 1961. C₁ seed, obtained from intercrosses of selected C₀ tetraploid plants during the summer of 1962, were planted in greenhouse. Young C₁ plants obtained from these strains were checked for the number of chromosomes and exposed to thermal induction. In the spring, the C₁ tetraploid plants selected were planted in isolations and new tetraploid strains were produced.

2/ Three monogerm inbred lines and 3 male-sterile equivalents for them were treated with colchicine in 1962. The affected seedlings were transplanted to the field in the spring of 1963, and tetraploid C plants were selected in these strains. Cl seed were obtained from selfing of tetraploid plants selected in the inbred lines. Because the self-fertile plants did not develop a sufficient amount of pollen under the low temperatures of spring and early summer, the selected male-sterile plants could not be pollinated by the pollen of tetraploid plants from the corresponding inbreds. The tetraploid male-sterile plants selected were maintained until the next season. Cl seed harvested from selfed tetraploid plants were planted in greenhouse for determination of chromosome numbers and selection of tetraploid plants in 1964.

3/ Some new monogerm and multigerm lines were treated by colchicine in the fall of 1963.

Study of the influence of colchicine treatment on different materials is being continued.

INTERSPECIFIC HYBRIDIZATION

by Helen Savitsky.

To maintain the basic pool of interspecific F_1 hybrids between Beta vulgaris and species of the section Patellares, new crosses are continuously made and new hybrids produced; the F_1 hybrids previously produced are maintained and propagated as far as possible.

Production of seed from F_1 hybrids is continued by growing several hundred plants for pollination of F_1 hybrids.

Cytogenetic study, growing of the next hybrid generation (b₁), and test of b₁ hybrids for resistance to sugarbeet nematode (Heterodera schachtii) are being continued.

Meiosis in triploid(sesquidiploid) and in allotetraploid hybrids between

Beta vulgaris and species of the section Patellares.

Meiosis in triploid hybrids. Triploid F₁ hybrids (4n B. vulgaris x 2n B. procumbens) contained 2 genomes of B. vulgaris (18 chromosomes) and 1 genome of B. procumbens (9 chromosomes). As in diploid hybrids between B. vulgaris and B. webbiana or B. procumbens, so in triploid and in allotetraploid hybrids association of chromosomes belonging to different species (allosyndetic association) was observed. In triploid hybrids at diakinesis, besides bivalents, trivalents and quadrivalents were formed. Bivalents were present in all pollen mother cells (PMC). Their number varied from 5 to 11. All PMC contained 1 to 3 trivalents or quadrivalent associations. Quadrivalents were observed in smaller numbers (1, 2 per PMC). Pentavalents were seldom formed.

It may be assumed that in triploid hybrids with 18. B. vulgaris and 9 B. procumbens chromosomes, a greater affinity of B. vulgaris chromosomes will lead to autosyndetic pairing, but some bivalents may be formed by allosyndesis as in the corresponding diploid hybrids.

The large number of associations - 10, 11, 12 - observed in these hybrids is due to the associations formed by B. vulgaris and B. procumbens chromosomes, since the number of associations formed exclusively by autosyndesis of B. vulgaris chromosomes cannot exceed 9. Presence of a large number of associations 11, 12 (for instance: 12 assoc. : $10_{11} + 2_{111} + 1_1$) indicates the possibility of occurrence of translocations which enable association between nonhomologous chromosomes of different species. Formation of these associations is possible on the basis of breakage and interchanges between chromosomes of different species. The heterobivalents with terminal deficiencies and with additional segments were observed in the pollen mother cells.

Trivalents are presented in the shape of rods, chains, loops, Y-type associations and open or closed rings (fig. 1). All types of trivalents with exception of closed rings, originated from association of 2 homologous chromosomes of B. vulgaris with a homologous segment of a B. procumbens chromosome, or by association of one normal B. vulgaris chromosome with translocated B. vulgaris and B. procumbens chromosomes.

Fig. 1. Triploid hybrids - 4n B. vulgaris x 2n B. procumbens

Trivalent associations at diakinesis

Fig. 2. Allotetraploid hybrids - 4n <u>B. vulgaris</u> x 4n <u>B. patellaris</u>

Tetravalent associations at diakinesis

A closed ring of three may originate only if one of 3 chromosomes involved in the association is segmentally changed and its both ends are identical. It may be an iso-chromosome derived from B. procumbens telocentric chromosome.

Observations in the triploid hybrids/closed rings of 3 originated as a consequence of reciprocal translocation involving only 1 chromatid of B. vulgaris and 1 chromatid of B. procumbens chromosomes; the other arm of this B. procumbens chromosome carries a segment homologous to B. vulgaris chromosome.

The ring is formed by association of 2 homologous B. vulgaris chromosomes one of which is connected by a second chiasma with a homologous segment in the left arm of B. procumbens chromosome. The chromatid translocated into the B. procumbens chromosome forms a chiasma with the normal chromatid of B. vulgaris chromosome and this chiasma closes the ring.

Such a closed ring of 3 sometimes forms a quadrivalent association when the normal chromatid of B. procumbens chromosome associate with the homologous segment in another pair of B. vulgaris chromosome.

In such a way, every trivalent association involves one entire B. procumbens chromosome or a segment of B. procumbens chromosome.

Quadrivalents were presented in the shape of rods, chains, figures of eights, and open or closed rings.

The quadrivalent association may arise from association of 2 bivalents associated by a chiasma at the homologous segments. Such a quadrivalent may involve 1 bivalent formed by 2 chromosomes of B. vulgaris and a second bivalent formed by 1 chromosome of B. vulgaris and 1 chromosome of B. procumbens, or both bivalents may consist of 1 B. vulgaris and 1 B. procumbens chromosome.

Quadrivalent associations may arise also as a result of translocations involving B. vulgaris and B. procumbens chromosomes. In such a quadrivalent one arm of the normal B. vulgaris chromosome associates with the translocated B. vulgaris chromosome, and another arm with the translocated B. procumbens chromosome. The normal arm of the B. procumbens chromosome associates with a homologous segment in the B. vulgaris chromosome of another pair. This kind of association may produce quadrivalents of different configuration but not closed rings. Formation of a closed ring of 4 in a triploid hybrid requires 2 translocations - one in each arm of the B. procumbens chromosome.

A B. procumbens chromosome which carries the double translocation, forms a terminal chiasma with the normal B. vulgaris chromosome of the first translocated pair, and the other arm associates with the normal

B. vulgaris chromosome from the second translocated pair. These 2 B. vulgaris chromosome associate with the translocated B. vulgaris chromosome of the first pair.

In this way, a quadrivalent association will always involve 1 or 2 chromosomes of B. procumbens or 1 or 2 segments of B. procumbens chromosomes.

At the first anaphase separation and the movement of chromosomes in the spindle was not simultaneous, but all or almost all chromosomes, reached the poles.

Interkinetic nuclei contained from 11 to 16 chromosomes.

Meiosis in allotetraploid hybrids (4n B. vulgaris x B. patellaris).

The F₁ allotetraploid hybrids carry 2 genomes of B. vulgaris and 2 genomes of B. patellaris (18 chromosomes of each species).

In meiosis of allotetraploid hybrids many multivalent associations were formed along with bivalents.

Quadrivalents, as shown/their configuration, were often formed by association of 2 bivalents at the homologous segments (fig. 2).

Hexavalents arose from association of 3 bivalents.

Octavalents were formed by association of 2 quadrivalents.

The higher valency associations of 10 or 14 chromosomes were also observed.

The majority of associations were bivalents. They arose mainly from autosyndetic association formed by the chromosomes belonging to the same species. Almost all PMC contained quadrivalents, and in many cells, hexavalents were observed. Every multivalent association, and some bivalents, included chromosomes of B. patellaris.

Vulgares-Patellares hybrids are segmental hybrids. They carry some homeologous chromosomes which enable the association of B. vulgaris chromosomes with the chromosomes of the species of the section Patellares. The allotetraploid hybrids did not form 9 B. vulgaris and 9 B. patellaris bivalents, typical for the true amphidiploid hybrids. The type of chromosome association in Vulgares-Patellares hybrids is similar to that found in several other segmental hybrids such as Primula Kewensis, Crepis capillaris-tectorum, Allium cepa-fistulosum, Nicotiana glauca, and others.

Pairing in Vulgares-Patellares hybrids is auto- and allosyndetic. Besides bivalents, multivalent associations involving chromosomes of both parental species are formed.

First division is more regular in allotetraploid than in triploid hybrids and fewer laggards were observed in the first anaphase. Almost all chromosomes moved to the respective poles.

The interkinetic nuclei contained from 15 to 20 chromosomes. In the majority of them 17, 18 or 19 chromosomes were observed.

Thus, chromosomes of both parental species were transmitted in triploid and in allotetraploid hybrids to the interkinetic nuclei, and, after the second division, to the nuclei of tetrads. All gametes of triploid and allotetraploid hybrids contained in addition to B. vulgaris chromosomes many chromosomes of species of the section Patellares.

The outline of meiosis indicates the possibility of transmission of genes from Patellares species into species of B. vulgaris.

First backcross hybrids showed striking resemblance to the backcross parent B. vulgaris. Analysis of chromosome numbers showed that the progeny of triploid hybrids consisted mainly of plants with 18 chromosomes. Some plants were trisome (19 chromosomes), double trisome, or tetrasome with 20 chromosomes. Chromosome number in progeny of allotetraploid hybrids was 36, or approached 36. It is obvious that only those gametes were viable which carried either a haploid or a diploid set of B. vulgaris chromosomes or a complete set of B. vulgaris chromosomes with an addition of 1 or 2 chromosomes—in some cases, alien chromosomes.

Fast recovery to the B. vulgaris type is due to the elimination of gametes and zygotes with unbalanced chromosome numbers or unbalanced composition of chromosome sets caused probably by duplications or deficiencies resulting from the type of separation of the multivalents.

In spite of the general resemblance to the B. vulgaris type, the hybrids of the first backcross generation manifested several characters of wild species. Characters of wild species are transmitted to the first backcross generation a/ as a substitution - by segmental interchanges due to translocations and crossingover, which results in incorporation of segments of chromosomes of wild species into the chromosomes of B. vulgaris, and b/ in some cases, as an addition by the supplement of single chromosomes from wild species to the set of B. vulgaris chromosomes.

Test for resistance to sugarbeet nematode (Heterodera schachtii) in

Vulgares-Patellares hybrids.

by Helen Savitsky and Charles Price.

1. Test of the first backcross hybrid generation · Seed of the first backcross generation were obtained by H. Savitsky. F₁ hybrids between B. vulgaris and species of the section Patellares were pollinated by sugarbeet plants to produce first backcross hybrids.

Four hundred plants of the first backcross progeny were tested for nematode resistance in 1963. Seeds were planted in the greenhouse. Germination of bl seed was about 10%. Seedlings in the 2-leaf stage were transplanted by H. Savitsky in nematode-infested soil prepared by Charles Price. Sixty days after infestation the hybrid plants were examined by both investigators for presence of female nematodes on the roots. Hybrids with heavy and medium infestation were discarded. Only the plants with few female nematodes (0 to 10) were selected. Some hybrid plants free of nematodes were found for the first time.

To gain more confidence in selections, plants with few nematodes on the roots were transplanted again in nematode-infested soil for a repeated check. A method of threefold testing used in 1962 showed some disadvantage, because several hybrid plants did not survive 3 transplantings after cutting the leaves and root system at each transplanting. Therefore, the repeated tests were used in 1963 in accordance with the vigor of hybrid plants. The most vigorous plants were tested 3 times, those lower in vigor were tested twice, and the weakest plants were tested only once.

Of 400 first backcross hybrids tested, 33 plants were selected which had only a few nematodes on the roots. These are growing in the green-house and will be exposed to thermal induction for seed production in 1964.

2. Test of F₁ hybrids for nematode resistance.

Seed of 2 parental species, tetraploid Beta vulgaris (sugarbeet) susceptible to nematode and tetraploid B. patellaris resistant to nematode, together with F₁ hybrid seed obtained from crosses of these species, were planted in soil in the greenhouse. Viable matings were selected in which F₁ hybrids grew on their own roots.

Ten seedlings of each parental species and 10 seedlings of F₁ hybrids were transplanted in the 2-leaf stage into cyst-infested soil to test for nematode resistance. After 60 days of growth the plants were examined for the presence of female nematodes on the roots.

The 10 sugarbeet plants were heavily infested with nematodes, Nine of 10 B. patellaris plants were free of nematodes and 1 plant had 2 females on the roots. The F₁ hybrids had well developed root systems. Of 10 F₁ hybrid plants 8 were free of nematodes, 1 had 1 comparatively well developed female, and on 1 plant 2 females were found.

The plants examined fell into 2 groups: a highly susceptible group which contained sugarbeets, and a resistant group which included B. patellaris and F_1 hybrids. The data obtained were calculated by using the chisquare method. The value of chi-square was 0.3922. Tabulated value at the 5% level for d.f. = 1 is 0.05 = 3.841 and at 1% level 0.01 = 6.63. The tabulated value of the chi-square is much larger than the calculated value, which indicates that the difference in resistance between B. patellaris and F_1 hybrids is not significant.

Resistance to nematode (Heterodera schachtii) is a dominant character. The tetraploid F₁ hybrids (B. vulgaris x B. patellaris) did not differ in the grade of resistance from the resistant parent, B. patellaris.

Preliminary tests of related interspecific hybrids for resistance to Heterodera schachtii are given in Sugarbeet Research, 1962 Report, pp. 247-248.

PART VIII

BREEDING FOR NEMATODE RESISTANCE

and

SCREENING TESTS IN FIELD AND GREENHOUSE

Foundation Project 13

Charles Price

PROGRESS REPORT TO THE SUGARBEET DEVELOPMENT FOUNDATION ON BREEDING SUGARBEETS FOR RESISTANCE TO THE CYST NEMATODE HETERODERA SCHACHTII AND OTHER STUDIES OF NEMATODES

(Foundation Project 13)

Charles Price

Breeding sugarbeets for resistance to Heterodera schachtii has taken on much greater significance than formerly, since it has been determined that the cyst nematode plays an important part in the damage caused by other diseases of sugarbeets. Root rotting fungi, for example, cause more damage to nematode susceptible sugarbeets when nematodes are also present in the soil than when they are absent. Experimental results are reported elsewhere in this report of the damage to variety US 41 by nematodes alone and in combination with root rotting fungi. In breeding sugarbeets for resistance to H. schachtii at Salinas, California, it has been observed in greenhouse screening tests for possible resistance to this nematode that Rhizoctonia causes less damage to sugarbeets when other soil organisms are present with Rhizoctonia than with a pure culture isolate of Rhizoctonia taken from the same soil. The reason for this phenomenon is not understood. There is need to separate pathogenic fungi found in the soils in which sugarbeets are grown and to evaluate the separate pathogenic capability of the fungi alone and in combination with Heterodera schachtii. Studies along these lines are in progress in cooperation with Dr. C. L. Schneider of Crops Research Laboratory, Logan, Utah.

New lines of sugarbeets developed for tolerance to nematode (Figure 1) and lines tested in previous years were included in a field test in 1963. The field test (Figure 2) was located at the U.S. Agricultural Research Station at Salinas, California.

Testing Lines of Sugarbeets for Resistance to Heterodera Schachtii.

Soil of the test field on the Station grounds has been inoculated with nematode cysts and root-rotting fungi. This was achieved by means of distributing soil containing a high population of nematode cysts uniformly over the field and planting sugarbeets to build up the population of nematodes. In addition to nematode cysts, root-rotting fungi were added to the soil.

Lines of sugarbeets selected for resistance to nematodes and root rot ere planted in randomized replicated plots, using US 41 and US 75 as checks. The damage from nematode and root rot was severe and yields affected adversely. Field-grown beets were selected from the segregating population, and these selections are being thermally induced for seed increase and hybridization. Yield data are presented in Table 1. It is apparent from Table 1 that there is a wide difference in yield among the

lines. Many of the lines are significantly higher than the checks US 41 and US 75. US 41 has been used consistently in tests for resistance to nematode, and it has been found that, while this variety is susceptible to nematode, it is not the most susceptible commercial variety. All lines in the 1963 test were superior in yield of roots to US 41 and US 75. US 75 was lower in yield in the 1962 test than US 41 and appreciably better than US 41 in the 1963 test. US 75, because of its adaptability in the Salinas Valley, was used extensively in commercial planting before hybrids were developed.

The selections for nematode resistance would undoubtedly reduce losses as compared with open-pollinated varieties. Resistance must be incorporated into hybrid varieties to gain the most from nematode resistant lines in developing commercial varieties. Most promising lines for resistance to nematode are multigerms. Some monogerms have been screened for resistance to nematodes, but more work is necessary to develop nematode resistant monogerms. The value of monogerms in commercial varieties has been demonstrated and, eventually, all sugarbeet seed planted commercially will be monogerm, because of its advantages over multigerm. Some monogerm material has been screened for resistance to nematode, but little improvement has as yet been made. Work is being continued in cooperation with Helen Savitsky on hybridization between Beta vulgaris and Beta patellaris. (See page 297.)

BOLTING TEST, SALINAS, CALIFORNIA, 1963

It is important that the plant breeder knows the bolting tendencies of lines of sugarbeets which he uses in his hybridization program. Knowledge of bolting tendencies of breeding material is especially important in California where sugarbeets are planted in fall and winter at a time when temperatures are favorable for thermal induction. Easy bolting sugarbeets are not desirable for fall and winter planting in California because of reduced production, troublesome seed stalks at harvest, and later volunteer beet problems. A test was designed in which some breeding lines of sugarbeets developed in connection with breeding for nematode resistance were included. The purpose of the test was to determine the amounts of bolting in a winter planting at Salinas, California.

Two commercial varieties with wide differences in bolting tendencies were included in the test, because these varieties are used in nematode tests to measure the degree of resistance in nematode resistant lines of sugarbeets. US 41 is an easy bolting variety, and US 75 is bolting resistant. US 75 has been used widely in the Salinas Valley for winter plantings because of its resistance to bolting. Plots in the test consisted of single-row plots 25 feet in length with three replications for each line in the test. The results are presented in Table 2. In this table are presented the average bolting percents of the three replications for each variety. Most of the lines tested are shown to be easy bolters. Line 133 is significantly lower in bolting percentage than US 75. Lines 060-3, 861-15, and 067-10 are about equal to US 75, and all other lines bolted much more than US 75 and approximately equal to US 41.

AGRONOMIC EVALUATION TEST, 1963

Conducted: By Charles Price

Location: Salinas, California

Date of Planting: May 6 and 7, 1963

Experimental Design: Randomized Block

Size of Plot: 1 row 25 feet long

Date of Harvest: October 15, 1963

Stand Count: At harvest

Field History: Vetch cover crop during winter; sugarbeets 1 year with nematode cysts and root rotting fungi added to the soil.

Fertilization: 100 pounds of P205 per acre applied to cover crop;

100 pounds of nitrogen per acre as a side dressing after thinning.

Virus Yellows Exposure: Natural, but severe

Root Rot Exposure: Severe

Nematode Exposure: Severe

Other Diseases: Western yellows and mosaic

Table 1. Sugarbeet Nematode Resistance Evaluation Test,
Salinas, California 1963.

Line or Variety Breeder's No.	Acre Yield Tons	Increase Acre Yield Over US 41 Tons	Increase Acre Yield Over US 75 Tons
102-9	24.31	14.72	9.15
102-23	24.23	14.64	9.07
863	24.23	14.64	9.07
028	23.79	14.20	8.63
157-F3	22.57	12.98	7 • 41.
856-1	22.40	12.81	7.24
SL 054-2	22.40	12.81	7.24
SL 060-3	22.05	12.46	6.89
133-3A	21.96	12.37	6.80
260	21.79	12.20	6.63
162-15	21.44	11.85	6.28
257-5	21.18	11.59	6.02
294	21.18	11.59	6.02
134-H8	21.09	11.50	5.93
SL 054-1	21.01	11.42	5.85
C 057-15	20.74	11.15	5.58
861-25	20.57	10.98	5.41
257-10	20.31	10.72	5.15
033-1	20.22	10.63	5.06
C 076-6	20.22	10.63	5.06
101-13	20.22	10.63	5 • 06°
90-207	19.37	10.28	4.71
SL 254-1	19.52	9.93	4.36

Table 1 - Continued.

Line or Variety Breeder's No.	Acre Yield Tons	Increase Acre Yield Over US 41 Tons	Increase Acre Yield Over US 75 Tons
050-6	19.26	9.67	4.10
102-5	18.98	9.39	3.82
B 075	18.83	9.24	3.67
150-1	18.56	8.97	3.40
128B1	18.56	8.97	3.40
801-7	18.56	8.97	3.40
156-22	18.04	8.45	2.88
1089 G	17.78	8.19	2.62
134	17.61	8.02	2.45
338	17.43	7.84	2.27
80-75	17.43	7.84	2.27
862	17.35	7.76	2.19
192	17.13	7.54	1.97
171-13	16.73	7.14	1.57
B 076	16.56	6.97	1.40
899-11	16.56	6.97	1.40
062-11	16.38	6.79	1.22
U 074	16.38	6.79	1.22
219	16.38	6.79	1.22
0317	16.21	6.62	1.05
339	16.21	6.62	1.05
US 75	15.16	5.57	
US 41	9.59		-5.57

L. S. D. 5% . . . 4.81 Tons Acre

L. S. D. 1% . . . 6.36 Tons Acre

Table 2. BOLTING TEST, SALINAS, CALIFORNIA 1963

Line or Variety		Av.		Bolter Counts Date					
	Breeder's No.	Stand	5/13	5/28	6/12	7/9	7/30	8/21	Total Percent
	133	37	0	0	0	0	.9	7.1	. 8
	033-1	35	25.8	27.4	15.2	24.8	4.8	1.9	100
	SL 060-3	35	0	0	3.8	13.5	9.9	5.4	33
	856-1	35	0	12.3	7.6	33.3	7.7	6.7	68
	150-1	36	0	11.9	18.1	32.5	15.9	7.4	86
	C 057-15	35	1.9	4.6	13.8	29.8	24.7	3.9	79
	SL 054-1	36	0	8.3	9.3	34.3	9.3	5.6	67
	060	36	0	6.2	14.1	27.7	17.8	4.6	70
	159-8	36	0 4	4.5	13.9	31.5	15.7	6.4	72
	861-15	36	0	0	1.0	5.5	14.7	9.3	30
	162-15	36	1.0	44.9	26.1	11.4	6.5	1.0	91
	861-25	37	0	14.1	21.5	27.0	10.3	2.8	76
	B 076	38	0	10.6	17.7	36.3	17.7	2.7	85
	0317	34	9.3	29.7	8.7	28.1	10.5	4.9	91
	802-5	36	0	3.5	6.9	33.7	14.6	7.5	66
	134-H8	33	0	2.9	2.0	34.3	22.7	4.1	67
	133-3A	32	2.4	24.4	24.2	24.3	4.2	3.2	83
•	028	34	12.8	34.8	17.1	14.0	5.9	1.0	86
	U074	34	6.8	24.7	15.9	22.8	7.0	3.9	81
	134-30B	38	0	23.8	15.0	16.3	7.1	5.4	68
	057-10	36	0	1.0	1.8	12.1	7.4	5.5	28
	050-6	33	1.0	14.1	31.0	28.5	8.1	1.9	85
	894-6	37	0	29.1	30.0	21.8	9.1	2.7	93
	028	31	48.0	29.2	9.0	8.0	6.2	0	100
	US 75	33	•7	2.1	10.2	2.0	4.4	4.7	24
	US 41	37	11.6	24.6	12.4	21.2	12.4	4.7	87

Relation Between Heterodera Schachtii and Root Rot of Sugarbeets

Introduction

Damping-off is the principal cause of poor stands of sugarbeets. The suddenness of damping-off attack is often impressive, inasmuch so one day the seedlings look good, and the next day they are dying in large patches in the field. Damping-off fungi are almost universally in the soil, and early-planted sugarbeets are subject to attack, especially in wet soil. Pre-emergence damping-off is perhaps the most serious aspect of the disease, because seedlings are attacked before they reach the surface of the soil and nothing can be done to remedy the situation except to replant.

In commercial sugarbeet production post-emergence rotting of sugar beets also causes serious losses, because rotting sometimes continues throughout the entire period of growth resulting in low quality or final death of the plant. It has been observed by the author that the incidence of root rot is greater and the disease more severe in fields of sugarbeets in which nematodes are also present in the soil than when nematodes are absent. It is concluded, therefore, that the punctures made in the root tissue of sugarbeets by larvae of Heterodera schachtil afford a means for entrance of soilborne pathogens, which results in severe damage to sugar beets by combination of nematode and root rot.

In connection with breeding sugarbeets for resistance to Heterodera schachtii, it has been observed in greenhouse screening tests at Salinas, California, that damage to sugarbeets from root-rotting fungi is greatly increased if grown in soil infested with nematodes. It was, therefore, important to determine the amount of reduction in yield by nematodes alone and in combination with root-rotting fungi. This paper reports tests conducted under controlled conditions/the effect on yield of sugarbeets grown in (1) soil with nematodes (2) soil with pathogenic fungi and (3) soil with both nematode and fungi. The predominant fungus causing root rot was believed to be Rhizoctonia solani, because this fungus was later isolated from the soil used in this test.

Plan and Procedure

The variety US 41 was used in all tests. Comparisons in yields were made on the basis of weight of roots after petioles and leaf blades were removed. Seeds were planted in sterile sand and the seedlings were transplanted to the soil in three-gallon crocks with one seedling per crock.

There were three replicated plots of 10 crocks each for each of the four treatments in the test, or a total of 30 beets per treatment, and each root was weighed separately. Treatment 1 consisted of adding nematode cysts to soil which had been sterilized to insure destruction of root-rotting fungi. Treatment 2 consisted of soil known to contain root-rotting fungi added to the sterilized soil which had no nematodes present.

Treatment 3 consisted of soil in which both nematodes and root-rotting fungi were added to the sterilized soil. Treatment 4 (control) consisted of sterilized soil with no nematodes or root-rotting fungi added.

Results

Results given in Table 3 show comparisons between sugarbeets grown in nematode-free soil and soil infested with H. schachtii and root-rotting fungi. The percent reduction in weight of beets was 12.74 for those grown in soil with root-rotting fungi alone, 26.9 in soil with H. schachtii alone, and 45.8 in soil in which both nematodes and root-rotting fungi were added.

Summary

In this test it is evident that reduction in weight of the sugarbeet roots was lowest in the beets grown in soil with root-rotting fungi alone, next lowest with nematodes alone, and highest with both nematodes and root-rotting fungi present. Sugarbeets exposed to both nematodes and root-rotting fungi suffered more damage than the sum of losses due to nematodes alone and root rot alone. The beets were apparently weakened by nematodes, and root rot was then more severe when the beets were under stress of the effect of nematodes.

Table 3. Relation Between Heterodera Schachtii and Root Rot of Sugarbeets

Treatment Sugarbeets Grown:	Av. Wt. of Beets Grams	Difference Between Control & Disease Grams	Loss Due to Disease Percent
In soil with root-rotting fungi alone	586.0	85.6	12.74
In soil infested with H. schachtii alone	491.0	180.6	26.9
In soil with both H. schachtii and root-rotting fungi	364.0	307.6	45.8
No disease (control)	671.6	00 MP 00	

CORRELATION OF ROOT TO TOP OF NEMATODE-RESISTANT AND SUSCEPTIBLE SUGARBEETS GROWING IN NEMATODE-FREE AND INFESTED SOIL, SALINAS, CALIFORNIA

Variation in size of roots and tops of sugarbeets within a variety is readily observed. Sugarbeets growing in nematode-infested soil, however, react differently than those growing in nematode-free soil. Susceptibility to nematode damage in sugarbeets is usually observed as reduction in weight of roots. In commercial fields of sugarbeets stands are reduced by nematodes and, therefore, some beets have more space than others in which to grow. In nematode-free soil beets given more space in the row usually are larger in size than beets in a dense stand. In nematode-infested soil, however, sugarbeets rarely are larger, even if given more space. Under stress of nematodes they are unable to take advantage of the extra space allotment. Resistance to damage from nematodes is judged primarily on the basis of reduction in root weight. In breeding for resistance to nematodes the principal aim is to develop selections which show little differences in weight of roots between beets grown in nematode-infested and nematode-free soil. It would be of great value to the plant breeder to be able to judge the relative resistance of sugarbeet selections by some criterion other than root weight; for example, top vigor. It has been observed that some nematode resistant lines of sugarbeets have more top vigor than susceptible varieties when grown under conditions of heavy exposure to nematodes. To determine the reduction by nematodes in weight of roots and the relation of tops to roots in susceptible and resistant lines. an experiment was designed in which resistant and susceptible sugarbeets were compared in nematode-free and nematode-infested soil. Three seeds were planted in three-gallon crocks and all but one seedling was removed from each crock. Individual beets grown in separate crocks containing nematode-infested and nematode-free soil were randomized in nine replications, each replication consisting of three beets. Each beet was harvested separately and the weight of each root and top was weighed and recorded. US 41, a good commercial variety, which has been planted extensively, was used as check.

Referring to Table 4, it is seen that line 857-3 is susceptible to the effects of nematode infestation. In clean soil the mean top weight was 657.2 grams and the mean root weight was 1546.1 grams. The beets grown in infested soil had a mean top weight of 467.2 grams, while the mean root weight was 1101.1 grams. The reduction in root weight of 445.0 grams and in top weight of 190.0 grams was significant (5% LSD=178.1 grams). The check variety, US 41, had a mean top weight of 691.0 grams and a mean root weight of 1278.1 grams in clean soil. In infested soil the mean top weight was 459.7 grams, while the mean root weight was 880.3 grams. The reduction of the tops and roots in infested soil as compared with non-infested soil was significant (5% LSD=187.1 grams). The root loss of 397.8 grams and the top loss of 231.3 grams was due to the influence of nematodes. The premise is valid as regards susceptibility—that is, the root weight and top weight are both reduced due to infestation with nematodes. Line 801-7 similarly gave a susceptible reaction to nematodes.

Table 4. Mean Yield of Tops and Roots of Sugarbeets grown in Nematode-free and Nematode-infested Soil.

Field Crock Test, Salinas, California.

		MEAN W	EIGHT		Difference		
Selection	Clean			Infested	Between I	LSD	
Variety	Scil Grams	Soil Grams	Soil Grams	Soil Grams	Tops Grams	Roots	5% Grams
US 41	691.0	459.7	1278.1	880.3	231.3	397.8	187.1
857-3	657.2	467.2	1546.1	1101.1	190.0	445.0	178.1
801-7	743.4	674.3	1205.5	994.6	68.6	210.9	54.1
062-11	951.5	862.6	1259.6	1253.7	88.9	5.9	211.4
050-6	842.9	865.0	1398.4	1213.9	22.1	184.5	286.6
019	894.4	988.9	1374.2	1200.4	94.5	173.8	225.0
U 074	705.3	714.8	1301.1	1109.8	9.0	191.3	231.4
033-1	1010.9	982.3	1224.8	1102.7	28.6	122.1	299.0
1089G	671.6	804.6	1363.1	1307.3	133.0	55.8	141.0
C057-15	699.7	635.7	1603.9	1268.4	64.0	335.5	124.8
1033-1	720.0	711.6	1451.1	1173.8	8.4	277.3	113.5
028	779.7	618.9	1495.2	1085-1	160.8	410.1	216.8

Some of the other selections in the test reacted differently than did the check variety, US 41. In clean soil, 062-11 had a mean top weight of 951.5 grams and a mean root weight of 1259.6 grams. The beets grown in infested soil had a mean top weight of 862.6 grams and a mean root weight of 1253.7 grams. The root weight loss of 5.9 grams and the top weight loss of 88.9 grams was not significant (5% LSD=211.4 grams). Another line that proved to be resistant was 050-6. In clean soil the mean top weight was 842.9 grams and the mean root weight was 1398.4 grams. The beets grown in infested soil had a mean top weight of 865.0 grams, while the mean root weight was 1213.9 grams. The reduction in the roots of 184.5 grams and the increase in the top weight of 22.1 grams was not significant (5% LSD=286.6 grams). There were four other selections tested that showed no significant reduction either in the amount of top or size of root when the yields from clean and nematode-infested soil were compared (Table 4). Thus, as the roots were able to resist the damaging effects of the nematode infestation, the tops also seemed to withstand the stress.

In this experiment another type of reaction occurred which was intermediate between susceptibility and resistance. In the test, in clean soil, selection C 057-15 had a mean top weight of 699.7 grams and a mean root weight of 1603.9 grams. However, in infested soil the mean top weight was 635.7 grams and the mean root weight was 1268.4 grams. The reduction in top weight of 64.0 grams was not significant (5% LSD-124.8 grams), but the reduction in root weight of 335.5 grams was significant. It was observed that the leaves of this selection died midway in the growing period and that the plants were called upon to produce a new set of leaves. This new top was produced at the expense of the root, thereby diminishing the root yield. It probably would have been possible to harvest the beets when the top growth showed the stress reaction, thereby preventing the weight loss in the roots. Perhaps selections which give this type of interaction could be grown during a shorter growing season without extensive reduction in root weight.

diging part and a few orders of the second o

To serve the contract of the server of a s

The second and decide persones reduced to equi mentione decide in.

The second and provided the second income the military consists in the second and the second income the military consists in the second and the second income the second and the second income the s

wite. Feriage selections which give last type of the free instance withhout subsmalre

Figure 1. Sugarbeet seed planted in greenhouse flat in soil heavily infested with Heterodera schachtii and also containing root-rotting fungi. Line 019, selected for nematode resistance, shows remarkable resistance. US 41 is susceptible and most of the plants are dead.

Figure 2. U. S. Agricultural Research Station, Salinas, California.

View of the test plot in which basic breeding lines of sugar beets that are tolerant to the sugarbeet cyst nematode are evaluated. This soil is infested with Heterodera schachtii and root-rotting fungi.

PART IX

NEMATOLOGY INVESTIGATIONS

Foundation Project 13

J. M. Fife

Arnold E. Steele-1/

Charles Price

^{1/} Nematology Investigations, Crops Protection Research Branch, ARS, USDA, Salinas, California.

Trans.

NEMATA INTO THE STICKTIONS

Poundables Proje : m

model Lagada I bloom

Grops Protection Posteron Brand

Factors affecting the hatching activity of sugarbeet-root diffusate.

Arnold E. Steele and J. M. Fife

The cuticular remains of the female of nematodes of the genus Heterodera forms a tough, sac-like cyst which may, in the absence of host plants and under favorable conditions of moisture and temperature, protect the enclosed eggs for many years.

In the presence of root exudates of host plants, eggs hatch and larvae escape from the cyst and invade host roots, where they develop to maturity and reproduce.

Shepherd (3) has recently published a review of over 300 papers which have been written on hatching and the hatching factor, but the chemical structure of no hatching factor has been established. Experiments reported here were designed to test the effect of various concentration methods on the hatching factor for the sugarbeet nematode produced by sugar beets.

Materials and Methods

Beet-root diffusate was leached from four-inch pots, each containing 3 sugarbeet seedlings (Beta vulgaris L. var. U.S. 75), by adding sufficient tap water to collect 200 ml of leachings from each pot in a 24-hour period. Fresh diffusate was obtained and treated at weekly intervals during a 6-week period. The pH of the beet-root diffusate varied from 6.0 to 6.5, whereas the total solids amounted to less than 0.5% as determined with the aid of a refractometer. All diffusate was filtered before use.

For the first experiment, the diffusate was concentrated by drying or by freezing. Fifty ml of diffusate in a 100 ml glass beaker was evaporated to dryness by continuously directing a jet of forced air down upon the surface. The dried residue was redissolved in 1,000 ml of tap water to bring the concentration to 5% of that of the untreated diffusate. A 100 ml volumetric flask containing 50 ml of diffusate was sealed with a cork stopper and placed in an inverted position in the freezing compartment of a refrigerator until only 8 to 11 ml remained unfrozen. This was separated from the ice and brought to 5% of its original concentration by addition of enough tap water to make a total of 1,000 ml. Other treatments of this test included 5% solutions of diffusate, undiluted diffusate, and tap water.

For the second experiment, the effects of beet-root diffusate, boiled for varying periods in a reflux condenser, untreated diffusate, and tap water

^{1/}Nematologist and Research Chemist respectively, Crops Research Division, United States Department of Agriculture, Salinas, California.

on emergence of larvae from cysts of the beet nematode were compared. One hundred fifty ml aliquots of diffusate, in flasks fitted with reflux condensers, were held at boiling for 1, 2, 4, 8, 16, 32, and 64 minutes. The third experiment included an additional treatment of beet diffusate refluxed for 128 minutes.

The fourth experiment measured the effect of heating 100 ml aliquots of sugarbeet-root diffusate in a pressure cooker held at 15 pounds pressure to obtain temperatures approximately 121° C for 4, 8, 16, 32, 64, and 128 minutes. Immediately after termination of the heat treatments, the diffusates were brought to room temperature by placing the flasks in an iced water bath.

The fifth experiment was designed to determine the effects of various dilutions of beet diffusate on diffusate hatching activity. A series of graded concentrations were obtained by diluting freshly leached diffusate with tap water.

The conduct of the hatching tests of each study was essentially the same. Each treatment was replicated 4 times in separate watch glasses containing 40 Heterodera schachtii cysts and approximately 15 ml of treatment solution. The watch glasses, with contents, were kept in a dark, aerated cabinet in the laboratory during the 6-week test period. At weekly intervals the cysts were transferred to clean watch glasses containing fresh solutions and the emerged larvae preserved in 5% formalin until counted. Samples that contained large numbers of larvae were aliquoted for counting. Data for all tests were analysed for statistical significance by the analysis of variance method, while correlation coefficients were calculated for data presented in figure 1.

Results

Data from the first experiment listed in table 1 demonstrate that beetroot diffusate can be concentrated by drying or freezing with no measurable loss in hatching activity.

Boiling beet diffusate (second and third experiments) or heating diffusate at 15 pounds pressure (fourth experiment) for 32 minutes or longer significantly reduced the diffusate hatching activity. Figure 1 shows that hatch in treated diffusate expressed as percent of hatch in untreated diffusate is proportional to the log time of exposure to boiling or heating diffusate at 15 pounds pressure. A more rapid decline in diffusate activity was obtained by heating the diffusate to approximately 121°C (15 pounds pressure) than by boiling at atmospheric pressure. The diffusate held at the higher temperature for 64 and 128 minutes gave similar hatches which were significantly higher than tap water (Table 4).

Dilution of diffusate to 5 percent of its original concentration did not significantly alter its hatching activity. However, significantly fewer larvae hatched in diffusate diluted to 1 percent (Table 5).

Figure 1. Effects of heat treatments on hatching activity of sugarbeet-root diffusate. The numbers of Heterodera schachtii larvae emerged from cysts exposed 6 weeks to treated diffusates is expressed as a percent of hatch in untreated diffusate.

Hague (2), Wallace (5), and Winslow and Ludwig (6) observed that dilution of concentrated diffusate increased its hatching activity. Increasing the dilution beyond an optimum level resulted in decreased hatches. Simtlar results were obtained in this study when diffusate was heated. Brief exposures of diffusate to high temperatures resulted in increased diffusate activity, whereas prolonged treatments decreased diffusate activity (Tables 2, 3 and 4).

Discussion and Conclusions

In the first experiment, it was demonstrated that concentration of beetroot diffusate by freezing or drying has no significant effect on its
ability to stimulate hatching of eggs of Heterodera schachtii. A preliminary experiment, not previously reported, indicated that storage of the
frozen diffusate for 11 months had no effect on activity. Viglierchio (4)
has recently reported that storage at 25° C for less than 8 days has no
effect on activity.

The data of the second and third experiments (Tables 2 and 3) show no significant effect with boiling times of less than 16 minutes. However, two effects were consistent in both experiments. One was the decrease in activity as compared with the control for a boiling time of one minute. This was just a little less than significant in the first experiment. With boiling times of 2 minutes or 4 minutes, the activity was about equal to that of the unboiled control. With longer boiling times, there was a steady decrease in activity. When percent hatch as compared with the control was plotted on semi-log paper, the two sets of points lie close to a straight line with a correlation coefficient of 0.97, which is excellent evidence that loss of activity is proportional to the log of the boiling time. The best estimate from the available data is that about half of the activity was lost in 128 minutes. By extrapolating the curve, it appears that a boiling period of approximately 34 hours would be required to reduce the activity to that of the tap water control.

Heating to approximately 121° C accelerated the rate of loss of activity, with no evidence of a change in the nature of the effect. The rate of loss of activity was proportional to the log of heating time with a significant correlation coefficient of -0.98. As compared with the unboiled control, about half the activity was lost by heating between 32 and 64 minutes. However, diffusate heated for 64 or 128 minutes gave similar hatches significantly higher than tap water (Table 4). Hatches in these treatments may be an osmotic effect of materials in diffusate. The presence of an osmotic effect would tend to establish a threshold below which decomposition of hatch factor could not be evaluated. Wallace (1956) demonstrated that 10⁻² molar concentrations of urea, sodium chloride, and sucrose increased hatching of sugar-beet nematode by as much as 2 to 4 times the amount of hatch in distilled water.

Dilution of the diffusate in experiment No. 5 had no significant effect at 5%, though there was a steady decrease in activity between 75% and 5%. At 1% dilution the effect was significant, and at 0.1%, activity approached that

of the control. This would indicate that there is no sharp optimum dilution as reported by Hague (1) for potato-root diffusate and Heterodera rostochiensis.

The data from these experiments show that the hatching factor for Heterodera schachtii produced by sugarbeets is not affected by freezing and drying, that it loses activity only slowly on boiling and more rapidly by heating at about 121°C, and that there is no sharp optimum concentration. While this information provides no definite clues to the chemical identity of the hatching factor, it does permit the elimination of substances which are rapidly decomposed by boiling or by heating to about 121°C from consideration. On the positive side, it has been shown that the hatching factor is slowly inactivated by heat in the range tested.

Hague was not certain whether reduced hatch at higher concentrations were due to inhibition salts present in the diffusate or to the factor itself. Wallace suggested that reduced hatch may result from an osmotic effect exerted by salts at concentrations higher than optimum; however, similar hatching effects were obtained in this study by heating diffusate under conditions which did not decrease the salt concentration.

Table 1. The effects of concentration of sugarbeet-root diffusate by freezing or drying on diffusate hatching activity.

Treatment	Method of concen-	% concen-	R	eplica	tions			
solution	tration	tration	1	2	3	4	Total	Average
Pap water Beet diff. """ """ Bignifican	Dried None None	5 5 5 100	7,670 5,820	2,180 7,130 7,460 8,900 6,820	5,750 8,570 8,460	5,720 6,560 5.850	7,860 26,270 28,410 29,680 34,200	1,965 6,568 7,103 7,420 8,550
ISD .05								1,801

^{1/}Figures indicate the total numbers of larvae emerged from 40 cysts exposed 6 weeks to the various treatments.

Table 2. The effects of boiling sugarbeet-root diffusate on diffusate hatching activity.

Treatmen	t Boiling time	1	Replica 2	tions 3	4	Total	Average	4 ² /
Tap wate Beet Dif	r 0 f. 0 1 2 4 8 16 32	330 4,440 4,800 5,260 7,160 4,970 3,780 2,770 3,530	620 6,340 4,740 8,110 6,250 7,050 5,330 6,620 6,380	1,180 9,620 7,340 6,990 7,480 8,480 8,220 5,290 4,970	780 8,210 5,730 6,760 6,960 7,380 7,390 5,140 4,340	2,910 28,610 22,610 27,120 27,850 27,880 24,720 19,820 19,220	728 7,153 5,653 6,780 6,963 6,970 6,180 4,955 4,805	10.2 100.0 79.0 94.8 97.3 97.4 86.4 69.3 67.2
LSD .05							1,510	21.1

Table 3. The effects of boiling sugarbeet-root diffusate on diffusate hatching activity.

Trea	tment	Boiling time	7	Replica	tions	4	Total	Average	% ² /
	water diff.	0 0 1 2 4 8 16 32 64 128	760 6,070 5,120 7,620 5,300 4,800 4,320 4,280 3,920 3,800	1,040 5,330 4,940 7,490 5,480 6,190 5,160 3,500 3,350 3,550	880 6,350 5,450 5,400 7,170 5,570 6,200 5,900 4,200 2,830	810 5,950 6,140 5,980 5,770 5,390 5,600 2,740 2,550 3,180	3,490 23,700 21,650 26,490 23,720 21,950 21,280 16,420 14,020 13,360	873 5,925 5,413 6,623 5,930 5,488 5,320 4,105 3,505 3,340	14.7 100.0 91.4 111.8 100.1 92.6 89.8 69.3 59.2 56.4
LSD	.05							1,114	18.8

Figures indicate the total number of larvae emerged from 40 cysts exposed 6 weeks to the various treatments.

^{2/} Percent of hatch in unboiled beet-root diffusate.

Table 4. The effects of heating sugarbeet-root diffusate at 15 pounds pressure on diffusate hatching activity.

Treatmnet	Heating time	1	Replica 2	tions 3	4	Total	Average	1 ² /
Tap water Beet diff. """ """ """ """ """ """ """ """ """	0 4 8 16 32 64 128	1,489 12,310 10,791 12,172 9,175 6,300 5,369 4,691	1,610 10,754 10,216 11,448 10,859 6,310 4,367 4,265	1,993 11,015 11,261 10,431 10,037 6,644 4,030 4,263	1,561 9,880 12,213 10,725 9,371 7,056 4,684 4,972	6,653 43,959 44,481 44,776 39,442 26,310 18,450 18,191	1,663.3 10,989.8 11,120.3 11,194.0 9,860.5 6,577.5 4,612.5 4,547.8 1,018.0	15.1 100.0 101.2 101.9 89.7 59.9 42.0 41.4

Table 5. Total numbers of <u>Heterodera schachtii</u> larvae emerged from cysts exposed.6 weeks to various concentrations of beet-root diffusate.

Diffusate3/treatment	1	Replic 2	ations .	.4	Total	Average	g/4/
100 75 50 25 10 5 1	13,676 16,080 11,923 11,014 10,895 10,742 9,221 4,705 5,078	11,552 9,266 9,695 9,699 9,059 11,059 6,660 6,202 4,001	8,364 10,036 10,670 10,387 9,406 10,713 7,072 4,885 4,686	8,972 8,382 9,868 9,862 9,079 6,205 7,475 4,840 3,989	42,564 43,764 42,156 40,962 38,439 38,719 30,428 20,632 17,754	10,641.0 10,941.0 10,539.0 10,240.5 9,609.8 9,679.8 7,607.0 5,158.0 4,438.5	100.0 102.8 99.1 96.2 90.3 91.0 71.5 48.5 41.7
LSD .05						2,051.1	19.3

^{1/}Figures indicate the total number of larvae emerged from 40 cysts exposed 6 weeks to the various treatments.

^{2/}Percent of hatch in unboiled beet-root diffusate.

^{3/}Percent concentration of beet-root diffusate in tap water.

^{4/} Percent of hatch in undiluted beet-root diffusate.

Literature Cited

- 1. Hague, N. G. 1954. Concentration of potato-root diffusate by vacuum distillation. Nature, London. 174:1018.
- 2. Hague, N. G. 1958. The concentration of potato-root diffusate under reduced pressure. Nematologica 3:149-153.
- 3. Shepherd, Audrey M. 1962. The emergence of larvae from cysts in the genus Heterodera. Technical Communication No. 32, Commonwealth Bureau of Helminthology, St. Albans, Herts, England.
- 4. Viglierchio, D. R. 1963. On the nature of hatching of Heterodera schachtii. Proc. Helminthol. Soc. Wash. 30(2):195-198.
- 5. Wallace, H. R. 1956. The emergence of larvae from cysts of the beet eelworm, Heterodera schachtii Schmidt, in aqueous solutions of organic and inorganic substances. Ann. Appl. Biol. 44:274-282.
- 6. Winslow, R. D. and Ludwig, R. A. 1957. Studies on hatching stimulation in the beet nematode, Heterodera schachtii Schmidt.

 J. Bot. 35:619-634.

The efficacy of various legume crops in controlling

Heterodera schachtii.

Arnold E. Steele and Charles Price

In studies of rotation systems on nematode infested land, Johnson and Wheatley (1959) found that inclusion of beans in the rotation greatly increased yields of sugarbeets. Golden and Shafer (1959) demonstrated that beans had a stimulatory trap crop effect on larvae of the beet nematode and suggested that beans might have some practical value in rotation systems for the control of this pest.

Jones (1955, 1956a, and 1956b) found that some of the difficulties associated with population studies using field plots were overcome when microplots were used. Microplots described by this worker were constructed of slotted concrete posts and paving stones joined together with bitumastic and measured 2 feet 4 inches square and two feet deep. Mai (1958) reported successful use of 8 x 5 feet plots bounded by 12-inch redwood boards for research involving the golden nematode, Heterodera rostochiensis The success of these workers suggested that similar microplots might be used to study the efficacy of various legume crops for controlling the sugarbeet nematode, Heterodera schachtii.

Materials and Methods

Twenty-five bins, measuring 4 feet square and 3 feet deep, were constructed of 3/4" x 12" redwood, lined with polyethylene plastic sheeting, and sunk into the ground to a depth of 2 1/2 feet. Aluminum nails were used in the construction of the bins. Individual bins were placed 4 feet apart. Examination of the soil in the experimental area did not reveal the presence of nematode cysts.

Sugarbeets (<u>Beta vulgaris</u> L. var. U.S. 75) were grown in individual aluminum foil cylinders containing steam-sterilized soil. When the plants were well established, the aluminum foil was removed and 16 beets transplanted to each bin. Infested soil was added to one-half of the plots at the time the beets were transplanted.

Soil samples were obtained from each plot on March 9, 1961, after beets had been removed. The samples were oven dried, weighed, and processed to recover cysts. Cyst counts of samples appear in table 1.

Legume crops were planted on April 25, 1961, and May 25, 1962. Each of the crops were replicated 5 times in a randomized block design. Crop treatments were as follows: Kentucky wonder white-seeded pole beans (Phaseolus vulgaris L.), Small white navy beans (Phaseolus vulgaris L.), Telephone dark-podded peas (Pisum sativum), White Dutch clover (Trifolium repens), and Chilean alfalfa (Medicago sativa). Each plot receiving peas or beans contained 4 planting rows spaced 1 foot apart, while seeds of clover or alfalfa were broadcast planted.

Table 1. Numbers of cysts of Heterodera schachtii per 100 grams of soil.

Sampled March 9, 1961

		Rep	licati	ons			
	1	2	3	4	5	Total	Average
Navy beans	42	46	40	63	56	247	49.4
Clover	38	52	64	36	57	247	49.4
Alfalfa	36	49	59	67	35	246	49.2
Pole beans	47	62	31	50	51	241	48.2
Peas	42	62	37	64	39	244	48.8
Total	205	271	231	280	238	1,225	
		Sampl	ed Oct	ober 2	5, 1961		
Navy beans	19	23	31	27	23	123	24.6
lover	26	40	62	22	28	178	35.6
lfalfa	30	35	37	31	25	158	31.6
ole beans	26	23	17	29	27	122	24.4
Peas	30	40	18	17	25	130	26.0
Total	131	161	165	126	128	711	
		Sampl	ed Oct	ober 2	5, 1962		
lavy beans	23	37	28	36	28	152	30.4
lover	20	21	23	23	31	118	23.6
lfalfa	25	36	27	33	.29	150	30.0
ole beans	26	30	23	36	34	149	29.8
eas	34	30	17	23	25	129	25.8
Total	128	154	118	151	147	698	
		Sample	ed Octo	ober 10), 1963		
avy beans	351	91	100	118	127	787	157.4
lover	109	139	179	136	87	650	130.0
lfalfa	100	99	123	154	93	569	113.8
ole beans	132	68	103	165	125	593	118.6
eas	109	82	105	220	101	617	123.4
Total	801	479	610	793	533	3,216	

Table 2. Weight of 50 sugarbeet plants sampled from each plot on March 12, 1963. (grams)

		Re	plicatio	ns			
	1	2	3	4	- 6	Total	Average
Navy beans	1.40	1.85	1.20	1.35	1.50	7.30	1.46
Clover	2.00	1.70	2.00	1.50	2.60	9.80	1.96
Alfalfa	1.30	2.05	1.95	1.45	2.10	8.85	1.77
Pole beans	1.60	1.65	1.40	2.10	1.25	8.00	1.60
Peas	1.40	1.10	1.65	1.60	1.45	7.20	1.44
Total	7.70	8.35	8.20	8.00	8.90	41.15	

Table 3. Number of beet-nematode larvae per plant sampled March 12, 1963.

		F	Replicat	ions			
	1	2	3	4	5	Total	Average
Navy beans	22.5	18.7	13.2	17.1	12.4	83.9	16.8
Clover	7.8	6.8	27.0	6.5	10.6	58.7	11.7
Alfalfa	6.8	5.0	9.3	11.1	8.2	40.4	8.1
Pole beans	24.3	10.7	5.1	44.9	29.5	114.5	22.9
Peas	12.9	18.2	16.3	28.1	21.9	97.4	19.5
Total	74.3	59.4	70.9	107.7	82.6	394.9	

Table 4. Average number of larvae per gram of roots of beet plants sampled March 12, 1963.

]	Replicat:	ions			
	1	2	3	4	6	Total	Average
Navy beans	797	504	554	646	412	2,913	582.6
Clover	196	397	676	188	205	1,662	332.4
Alfalfa	260	122	238	381	196	1,197	239.4
Pole beans	752	320	178	1,077	1,203	3,530	706.0
Peas	463	835	488	884	750	3,420	684.0
Total	2,468	2,178	2,134	3,176	2,766	12,722	
L.S.D05							353.3

Table 5. Weights of sugarbeets harvested October 2, 1963. (lbs.)

		Re	plicatio	ns			
	1	8	3	4	5	Total	Average
Navy beans	0.93	0.98	1.05	0.90	0.90	4.76	0.95
Clover	0.70	1.00	1.18	1.09	1.29	5.26	1.05
Alfalfa	1.03	1.10	0.98	1.18	1.11	5.40	1.08
Pole beans	0.75	0.98	1.00	0.83	0.69	4.25	0.85
Peas	0.93	1.17	1.00	1.26	1.03	5.39	1.08
Total	4.34	5.23	5.21	5.26	5.02	25.06	

Random samples were obtained from each plot on October 25, 1961, and October 25, 1962, after legume crops were removed from the plots. The samples were oven dried, weighed, and processed to recover cysts. Cyst counts of these samples appear in tables 2 and 3.

Seed of sugarbeets were planted in each of the 25 plots on February 4, 1963. On March 12, 1963, several plants were removed from each plot and taken to the laboratory, where the plants were washed and weighed and the roots stained in a boiling solution of lactophenol and examined for the presence of nematode larvae. Data on plant weights and counts of larvae are listed in tables 2, 3, 4, and 5.

Beets were thinned to 20 plants per plot on March 14, 1963, and harvested and weighed on October 2, 1963. Soil samples taken on October 10, 1963, were oven dried, weighed, and processed to recover cysts. Plant weights and cyst counts appear in tables 5 and 1, respectively.

Results and Conclusions

There were no significant differences in cyst populations between crop treatment on any of the sampling dates. However, clover or alfalfa reduced cyst populations slightly more than did peas or beans (table 1). The data indicate that the nematode-trapping effect of these legumes when grown 2 seasons following beets was not sufficient to appreciably lower soil populations of sugarbeet nematode cysts.

Investigations to Determine the Influence of Fallow on the Decline of Soil Populations of Heterodera Schachtii

by

Arnold E. Steele and Charles Price

Published information on survival of nematodes is based largely upon results of short-term laboratory or greenhouse studies that involve a limited number of nematodes. Studies are usually designed to determine the maximum time individuals will survive. Few attempts have been made to test populations whose members are of a definite and determinable age. Consequently, information of this nature is of limited value. Therefore, a study has been initiated to determine the rate of decline of cyst populations of Heterodera schachtii as influenced by length of fallow. The study will be conducted over a period of several years and is expected to yield information that may have practical application or serve as a guide for additional research.

The study is being undertaken in microplots located in a field at the U. S. Agricultural Research Station, Salinas, California. The microplots consist of 25 redwood bins, measuring 4 feet square, 3 feet deep, and sunk into the ground to a depth of $2\frac{1}{2}$ feet. The bins are 4 feet apart and arranged in a 5' x 5' square design.

Soil samples of plots taken over the last three years have not contained cysts of Heterodera schachtii.

Nematode cysts. obtained by washing and screening soil of greenhouse cultures, were broken open and the eggs, larvae, and cyst walls inoculated on 210 seedlings of Beta vulgaris L. (Var. U.S. 75) at the rate of 30 cysts per plant. The inoculated plants were grown in aluminum foil cylinders in the greenhouse for 30 days so that larvae would not be adversely affected by extremes of moisture and/or temperature and will have an opportunity to invade beet roots. At the end of 30 days the plants were carefully removed from cylinders and transplanted to microplots, care being taken not to disrupt the column of soil adhering to the roots. In this way, twenty infested plants were transplanted in 4 rows in each of 5 plots on a given date. The entire process was repeated at intervals, until all 25 plots contained infested plants. Beet seedlings were inoculated on October 2, 1962, January 4, 1963, April 2, 1963, June 2, 1963, or August 2, 1963. Beets were harvested from all plots on October 2, 1963. At this time plots contained plants infested for 2, 4, 6, 9, or 12 months. Soil samples obtained from each plot were oven dried, weighed, and processed to recover sugarbeet nematode cysts.

As shown in figure 1, the numbers of cysts recovered from samples were proportional to the length of time beets were grown in the plots. However, the percent of cysts which were viable (contained eggs and larvae)

Figure 1. Influence of length of infection on increase of cyst populations.

Figure 2. Influence of age on decline of viability of cyst populations.

decreased with increase of time up to 5 months (figure 2). At 9 months only 57 percent of the cysts contained eggs and larvae, whereas 64 percent of cysts recovered from plots in which beets were grown 12 months.

The plots will be fallowed for a number of years. Soil samples will be taken at intervals and examined to determine the rates of decline of cyst populations and the viability of cyst contents.

Table 1. Number of cysts per 100 grams soil sampled October 14, 1963.

Age of Cyst Population		Rep	plicati	ions			
(months)	1	2	3	4	5	Total	Avorage
2	7	4	3	2	7	23	4.6
4	36	30	52	34	49	201	40.2
6	38	17	42	35	19	151	30.2
9	35	29	83	25	42	214	42.8
12	37	45	31	108	68	289	57.8
Total	153	125	211	204	185	878	
L.S.D0	5						42.6

Table 2. Influence of age on decline of viability of cyst populations.

Age of Cyst Population		Re	plicati	ons			
(months)	1	8	5	4	5	Total	Average
2	71.41	80.0	100.0	100.0	100.0	451.4	90.3
4	91.9	71.0	75.0	76.5	82.0	396.4	79.3
6	60.5	75.0	82.9	61.8	82.1	362.3	72.5
9	41.7	58.6	43.9	64.0	74.4	282.6	56.5
12	50.0	51.1	77.4	73.1	67.6	319.2	63.8
Total	315.5	335.7	379.2	375.4	406.1	1,811.9	-
L.S.D(05						14.3

^{1/}Figures are percent of cysts containing eggs and larvae.

1010 1. Musicor of cysts various soil plant introduct 14, 1361.

1010 1010 14, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11, 1361.

1010 11,

8.001 0.001 80001 6.001 0.001 6.001 0.00 8.00 6.00

Museum of models as .

Statement of the statem

PARTX

VIRUS YELLOWS INVESTIGATIONS 1/

and

BREEDING FOR YELLOWS RESISTANCE 2/

Foundation Project 12

C. W. Bennett

J. M. Fife

J. S. McFarlane

I. O. Skoyen

^{1/} Investigations supported in part by funds received from California Beet Growers Association, Limited, under Cooperative Agreement.

^{2/} Field test at Davis, California, conducted in cooperation with California Agricultural Experiment Station.

LEGISTRADITERY ENCLIST STO

LITTE

Library of the least of the color

Poundation Profect 12

7. – Magantano 1. V Serven

RELATIVE ECONOMIC IMPORTANCE OF BEET YELLOWS AND BEET WESTERN YELLOWS IN WESTERN UNITED STATES

C. W. Bennett

During the past several years efforts have been made by surveys and by other means to determine the incidence and geographic range of the two chief beet yellowing viruses, beet yellows virus (BYV) and beet western yellows virus (BWYV) in western United States. Surveys have been made at intervals, various people associated with the beet industry have been consulted, and more than a thousand beets from different sugarbeet-producing areas of western United States have been assayed for virus content. Attempts have been made also to evaluate the virulence of virus isolates taken from beets from widely separated areas of the western states.

Geographic Distribution

The evidence available from these studies indicates that yellowing of beets is widespread and may occur in any of the beet-growing areas in the western half of the country. However, incidence of infection and type of virus involved vary greatly. So far as has been determined, beet yellows is largely limited to California, but it occurs also in the seed-producing areas of Arizona. Its prevalence and destructiveness are associated with and probably largely dependent on the presence of beets throughout the year. Complete destruction of all beets in an area, even for a short period in the year, has markedly reduced the incidence of beet yellows. This has been true also for beet mosaic.

Beet western yellows is much more widely distributed than beet yellows. It probably occurs throughout the United States, but its presence is most clearly evident in beet fields of the western part of the country. The causal virus is widely distributed in a number of weed plants in which it probably can persist in the absence of beet plantings. However, as with beet yellows, the presence of beet plants throughout the year favors earlier and more widespread infection. Many beet fields throughout California have a high percentage of infection by the first of June. The seed areas in Arizona and Oregon also usually show a high percentage of infection before harvest. In 1962 western yellows was observed in many fields in Utah, Idaho, Washington and Oregon. Except for one small area in southern Washington, incidence of infection was very low, in many fields amounting to only a few plants per acre. Yellowing of beets has been reported in some fields in Colorado during different years, and diseased beets have been obtained from Montana.

"Beet mild yellows" reported to be prevalent in England, has a number of characteristics in common with beet western yellows in the United States. However, the exact relationship between the two diseases and their causal viruses has not been determined.

Evaluation of Virulence of Isolates of Beet Yellows and Beet Western Yellows Viruses

Reasonably extensive studies of strains of beet yellows virus have been made and reported. The range of virulence of strains of this virus is appreciable, but even the less virulent strains are capable of causing considerable damage. Unfortunately, most of the isolates of this virus from sections where it has been found have a high degree of virulence. Maximum damage caused by beet yellows in extensive tests over a period of 12 years has ranged from about 20 to about 60 percent, depending largely on the beet selection tested. Maximum damage to commercial varieties is usually from 30 to 40 percent.

Since western yellows is more widespread than beet yellows, it is highly important to determine the range of virulence of strains of the virus and the damage various strains are capable of producing and also the range of resistance of different varieties and selections of sugarbeet. Therefore, tests have been made both in the greenhouse and in the field over the past three years to obtain further information on damage strains of this virus are capable of producing. Results of two years of field testing in cooperation with J. S. McFarlane, using one strain each of beet yellows and beet western yellows viruses have been reported (See Sugarbeet Research 1961 and 1962 Reports). Further greenhouse tests and the results of the 1963 field tests are presented in this report.

Greenhouse Tests. Several tests to determine relative damage caused by various isolates of beet western yellows virus have been made. Seeds were planted in 6-inch pots and the seedlings were thinned to 4 plants per pot when they were in the cotyledon stage. The plants were inoculated with the selected virus isolate when they were in the 4-leaf stage. After approximately three months the plants were harvested and weighed. It has been found that there is considerable variation in size of plants under these conditions and it is not considered that results of pot tests are as reliable as replicated field tests. However, by using relatively large numbers of plants, results have been obtained that give some indication of general effects of different virus isolates on different beet selections.

Results of two of these tests are shown in Tables 1 and 2. Plants used in the test shown in Table 1 were inoculated with an isolate of beet western yellows virus from near Salinas, California which came from a beet showing very marked yellowing. It was selected as one of the more virulent strains of BWYV on the basis of origin and its effects on greenhouse plants. The beet yellows inoculations were made with an isolate called "Strain 5" known from field and greenhouse tests to be a virulent strain of this virus.

A BWYV isolate from Longmont, Colorado, and a BYV isolate from Grimes, California, were used for the test, results of which are shown in Table 2. Greenhouse tests indicated that the BWYV Longmont strain, had a relatively high virulence and the BYV isolate is even more virulent than strain 5 used in the first test.

Table 1. Root yields of sugarbeet selections in the greenhouse as affected by beet western yellows and beet yellows, singly and in combination. BWYV - Salinas, California; BYV - Strain 5.

Variety or Selection	Percent reduction in root weight			
	BWY	BY	BWY + BY	
F58-86H7 F56-66H2 F59-63H1 US 201B 512 IRS 5904 SL 8096 5511 57 EL-42S	11.4 4.1 2.7 6.4 .4 5.2 +5.2 +3.4 4.6	28.6 17.3 16.1 24.8 9.4 +.7 23.4 33.2 21.7	46.8 42.8 20.0 48.6 10.0 12.7 27.7 33.6 25.0	

Table 2. Root yields of sugarbeet selections in the greenhouse as affected by beet western yellows and beet yellows, singly and in combination. BWYV - Longmont, Colorado; BYV - Grimes, California.

Selection	Pero	Percent reduction in root weight				
	BWY	ВУ	BWY + BY			
S1 952 F61-569H1 163H5 F59-509H1 F58-554H1 1768C2 F59-509 F58-554 0716 1757C2 1760C2 5502 5511	0.0 2.8 10.6 12.4 32.7 1.9 .9 .8 5.8 13.8 1.7 +2.3 +9.6	27.5 28.9 21.2 33.3 52.4 29.1 24.3 33.6 35.3 36.7 7.0 27.3 19.4 36.9	27.5 32.7 34.6 42.3 54.5 31.0 25.0 36.7 37.6 33.9 29.5 24.3 44.7			

There are some inconsistencies in the results in both Table 1 and and Table 2, probably due to variation in the growth of plants in pots under greenhouse conditions, but the results indicate that each of the isolates of BWYV causes much less damage than was produced by the two isolates of BYV.

In a third test (Table 3) the effects of isolates of BWYV from different locations were compared with the effects of three isolates of BYV on US 75. Strain 1 of BYV is one of the milder isolates of this virus, whereas strain 5 and the isolate from Grimes are highly virulent.

All of the isolates of BWYV produced less damage than the more virulent isolates of BYV, and all but one produced less damage than the less virulent strain of BYV. Isolates of BYV and BWYV were selected on the basis of this test for further comparison in field plots at Davis, California, in 1963.

Field Test. For further testing of the effect of different isolates of BYV and BWYV under field conditions, two isolates of BYV and four isolates of BWYV were selected for use in plot inoculations at Davis. The BYV isolates consisted the highly virulent strain 5 and a less virulent strain 1. The BWYV isolates were selected on the basis of apparent virulence under greenhouse conditions, and an attempt was made to select isolates to cover a range of virulence.

The test planting was made with the monogerm variety 539Hl June 4; plots were inoculated July 22 and harvested December 5. The plots were two rows wide and fifty-four long. There were five replications.

Symptoms of beet yellows began to appear about 20 days after inoculation, and yellowing was quite evident four weeks after inoculation. The plots inoculated with the virulent BYV strain 5 were more yellow than those inoculated with the less virulent BYV strain 1, throughout the season. Plants inoculated with isolates of BWYV began to show yellowing about 30 days after inoculation, but yellowing was not so marked as with the BYV isolates. The low degree of yellowing by BWYV probably resulted from the relatively high nitrogen level of the soil of the experimental area. Sugarbeets that are infected with BWYV can be almost wholly prevented from turning yellow by high nitrogen applications. This is not equally true with beets with beet yellows.

Both root weight and sugar were significantly reduced by all isolates of both viruses (Table 4). Reductions in root yield by BYV strains 5 and 1 were 41.7 and 24.1 percent, respectively. These reductions are of the same order as those produced in other field tests with these viruses, and they indicate roughly the range of damage that can be produced by strains of BYV of different degrees of virulence, although one strain of this virus is known which is more virulent than strain 5 used in this test.

Table 3. Reduction in root yield of sugarbeet by different isolates of beet yellows and beet western yellows viruses in the greenhouse. Inoculated 2-28-63; harvested 5-6-63. 80 plants US 75 per test.

Virus used and source	Percent reduction in root weight
BWYV, Salinas, Calif.	10.5
BWYV, Salem, Ore.	17.4
BWYV, Rocky Ford, Colo.	.6
BWYV, Longmont, Colo.	13.9
BWYV, Pocatello, Idaho	23.3
BWYV, Sand Valley, Calif.	18.0
BWYV, Mesa, Ariz.	+1.7
BWYV + BYV, Mesa, Ariz.	26.1
BYV, Salinas, Calif., St. 1	20.9
BYV, Salinas, Calif., St. 5	31.3
BYV, Grimes, Calif.	40.7

Table 4. Reduction in yield and sucrose in sugarbeet (var. 539Hl monogerm) by strains of beet yellows and beet western yellows viruses at Davis, California, 1963.

photographic design of the second sec	Reduction	in yield	Reduction
Virus used as inoculum	Sugar	Beets	in sucrose
	Percent	Percent	Pct. pts.
BYV. strain 5	42.7	41.7	0.24
BYV, strain 1	26.1	24.1	0.39
BWYV, Rocky Ford, Colo.	16.5	13.7	0.46
BWYV, Four Corners, Calif.	12.3	11.2	0.21
BWYV, Sand Valley, Calif.	21.3	18.2	0.55
BWYV, Salem, Ore.	13.4	10.8	0.42
LSD (5%)	6.1	5.0	NS

There was appreciable variation in the reduction in root weight by the different isolates of BWYV, but the damage in all instances was less than that produced by the less virulent strain of BYV, and it was less than half that produced by the more virulent strain of this virus. The range of reduction in root weight (10.8-18.2%) by isolates of BWYV probably reflects degree of virulence among the isolates. In selecting these isolates for field test an effort was made to select isolates with a range of virulence based on greenhouse results. On the basis of greenhouse tests the isolates were rated Rocky Ford, Four Corners, Salem, and Sand Valley, in ascending order of virulence. The isolates fell in this order in the field test, except that the Rocky Ford isolate caused more damage than was expected. In the greenhouse this isolate has caused no significant reduction in root weight (Table 3).

All isolates of both viruses reduced sugar percent. These reductions ranged from 0.21 to 0.55 of a percentage point. None of these reductions was statistically significant. Reduction in sugar percent by yellows viruses has been one of the most variable effects of both beet and beet western yellows. In some tests in previous years the reduction in percent sugar has been marked and highly significant; in others it has not reached significance. The factors causing these results are wholly unknown.

Conclusions

Results of the tests described in this report, as well as results from field tests conducted earlier in cooperation with J. S. McFarlane (See Sugarbeet Research 1961 and 1962 Reports), indicate that beet yellows is capable of producing much greater reductions in yield than beet western yellows. It would appear that the reduction by beet western yellows might be less than half that expected from beet yellows.

There is evidence that beet yellows can be effectively controlled by certain sanitary measures, such as destroying wild and escaped beets and providing for a beet-free period where this is possible. These measures also affect the incidence and time of infection with beet western yellows, but they are not so effective in controlling beet western yellows as they are in controlling beet yellows. The reason for this difference is that most of the beet yellows virus for infection of beet fields comes from beets, whereas beet western yellows virus may come from a number of weed plants in addition to beets.

The lesser damage produced by beet western yellows, therefore, is highly significant economically. Where beet yellows is controlled or is not present, losses from beet western yellows, while they may be substantial, are not likely to catastrophic, whereas high percentages of infection with beet yellows, which nearly always also involves high percentages of infection with beet western yellows and beet mosaic, may produce very large reductions in yield as has been demonstrated in several areas in California during the past few years.

RESULTS OF 1963 YELLOWS RESISTANCE EVALUATION TESTS / J. S. McFarlane, C. W. Bennett, and I. O. Skoyen

The only way to accurately determine the resistance of a sugarbeet variety or breeding line to yellows is to compare the performance of inoculated and noninoculated plots. To obtain an accurate comparison, the noninoculated plots must be maintained free of infection. Aphid populations remain high at Salinas during the entire growing season, and experience has shown that the spread of yellows cannot be prevented even though the plots are sprayed frequently with an aphicide. Arrangements have therefore been made with the University of California to do the evaluation work on the Agronomy farm at Davis. By delaying planting until the aphid population has dropped to a low level, little difficulty has been experienced at Davis in maintaining infection at a low level in the noninoculated plots.

Plans and Procedures

Evaluation tests were planted at Davis on May 21 and irrigated June 4. One test was designed to determine the resistance of three hybrid monogerm varieties to both beet and western yellows. The treatments, consisting of a noninoculated check, a beet-yellows inoculation, a western-yellows inoculation, and a combination beet and western-yellows inoculation were arranged in randomized strips across each of four replications. The variety subplots were two rows wide and 54 feet long.

A second test consisting of nine open-pollinated yellows-resistant selections, two unselected parent varieties, and a tetraploid line was planted to determine resistance to the combination of beet and western yellows. The variety subplots were two rows wide by 43 feet long and were replicated five times. A third test consisting of six hybrid varieties was planted in a similar manner to determine resistance to the combination of beet and western yellows. Using a similar design, a fourth test was planted to measure the resistance of seven F₁ hybrids, an open-pollinated line, and eight inbreds to western yellows. The hybrids and inbreds were randomized as separate groups.

Stand counts were made following thinning and plant populations were adjusted so that a similar number of plants remained in the inoculated and noninoculated plots of any given variety in each replication. Inoculations were made July 22 with virulent strains of beet yellows and beet western yellows viruses. Ratings for yellowing and stunting were made October 4. The beets were harvested December 2-7.

^{1/} The assistance of Dr. F. J. Hills of the University of California in arranging and caring for the tests is gratefully acknowledged.

Results

High levels of infection were obtained with both beet and western yellows viruses in all inoculated plots. Almost no yellows spread to the noninoculated check plots. Stands were light in a few hybrid and open-pollinated varieties and in several of the inbreds. Pronounced yellowing and stunting occurred in plots inoculated with beet yellows virus and with the combination of beet and western yellows viruses. Little or no difference was observed in the appearance of plots inoculated with beet yellows virus alone and with the combination of viruses. Plots inoculated with western yellows virus showed very mild yellowing and very little stunting. Root yields were high for the relatively short six-month growing season. Sucrose percentages tended to be low.

The three monogerm hybrid varieties 539H1, 539H4, and 63H4 showed similar losses of root yield and sucrose percentage when inoculated with beet yellows virus and also when inoculated with western yellows virus (tables 1 and 2). Root yield losses from the combination of beet and western yellows ranged from 35.1 percent for 539H4 to 41.4 percent for 63H4, and the difference between varieties was significant.

Yield losses from western yellows averaged 19.9 percent; those from beet yellows, 35.3 percent; and those from the combination of viruses, 38.7 percent. Losses in sucrose content averaged 0.146 percentage points for western yellows, 0.23 percentage points for beet yellows, and 1.14 percentage points for the combination of viruses (table 1).

The average root yield of the three varieties inoculated with western yellows virus was significantly lower than that of the non-inoculated checks. The average root yield of varieties inoculated with beet yellows virus and with the combination of beet and western yellows viruses was significantly lower than for those inoculated with western yellows virus. There was no significant difference in the yield of varieties inoculated with beet yellows virus and those inoculated with the combination of viruses. The average sucrose percentage of the varieties inoculated with the combination of beet and western yellows viruses was significantly lower than that of the same varieties inoculated with beet yellows virus alone, western yellows virus alone, or of the noninoculated plots. The interaction between varieties and virus treatments was not significant (table 2).

Table 1. Reduction in yield and sucrose percentage of sugarbeet hybrids when inoculated with western yellows, beet yellows, and the combination of beet and western yellows viruses at Davis, California, in 1963.

	Varie	ty or Select		LSD
Treatment	539Н1	539H4	63н4	(5%)
Percent Reduction in Gross	Sugar			
Western yellows	23.4	21.4	24.1	NS
Beet yellows	35.9	34.1	38.4	NS
Beet & western yellows	45.8	39.8	46.7	1.1
Percent Reduction in Yield	of Roots			
Western yellows	19.2	19.3	21.2	NS
Beet yellows	34.7	33.7	37.5	NS
Beet & western yellows	40.0	35.1	41.1	3.0
Percentage Points Reduction	n in Sucro	<u>se</u>		
Western yellows	0.61	0.34	0.44	NS
Beet yellows	0.28	0.18	0.23	NS
Beet & western yellows	1.23	0.90	1.29	NS

Table 2. Effect of western yellows, beet yellows, and the combination of beet and western yellows on the performance of sugarbeet hybrids at Davis, California, in 1963.

Treatment	Variet 539Hl	y or Selection 539H4	etion 63H4	Ave.	LSD (5%)
Gross Sugar Yield in Pounds	per Acre				
Check	7250	7120	8160	7510	436
Western yellows	5560	5590	6190	5780	NS
Beet yellows	4640	4680	5010	4780	NS
Beet & western yellows	3930	4280	4340	4180	NS
LSD (5%) for treatment	s (averag	ge of all v	rarieties)=351	
Root Yield in Tons per Acre					
Check	28.4	29.3	31.2	29.7	ns
Western yellows	23.1	23.7	24.6	23.8	NS
Beet yellows	18.6	19.5	19.6	19.2	ns
Beet & western yellows	17.1	19.1	18.4	18.2	1.31
LSD (5%) for treatment	s (averag	e of all v	arieties)=1.34	
Percent Sucrose					
Check	12.8	12.2	13.1	12.7	0.65
Western yellows	12.2	11.9	12.7	12.2	0.50
Beet yellows	12.5	12.0	12.9	12.5	NS
Beet & western yellows	11.6	11.3	11.8	11.6	ns
LSD (5%) for treatment	s (averag	e of all v	arieties))=0.47	

In the second test the combination of beet and western yellows caused root-yield losses ranging from 21.0 to 49.5 percent (table 3). The selection 213 showed approximately two-thirds as great a loss as did the US 75 variety from which it was selected. The loss in both root yield and sucrose percentage was significantly lower in the selection. The loss in the best selection from 671 was also significantly reduced by approximately one-third over that of the parent line. A selection from the 663 top cross parent failed to show any improvement in yellows resistance. A tetraploid from 663 showed significantly less damage than did the diploid form.

Two of the most promising selections developed by the Instituut voor Rationele Suikerproductie in The Netherlands were included in the test. One of these selections, 235, proved inferior to selections made at Salinas. The second selection, 234, was outstanding in this test and showed a significantly lower yield loss than any of the USDA selections tested. The performance of inoculated check of 234 was also comparable to that of US 75.

The six hybrid varieties evaluated for resistance to the combination of beet and western yellows showed yield losses of about 40 percent and a reduction in sucrose content of 1.21 to 1.86 percentage points (table 4). No significant differences were observed among hybrids. Triploids were no more resistant than were diploid forms of the same hybrids.

Root yield losses from western yellows among seven F_1 male-sterile hybrids ranged from 12.8 to 22.7 percent (table 5) Losses in sucrose content ranged from 0.68 to 1.24 percent, but differences among hybrids were not significant.

Damage from western yellows varied widely among the inbred lines, but the differences were not significant (table 5) Stands were more irregular in the inbreds and root rot caused damage in several of the lines.

Table 3. Reduction in yield and sucrose percentage of yellows-resistant selections and of unselected lines when inoculated with a combination of beet and western yellows viruses at Davis, California, in 1963.

Loss from Yellows ot Yield Sucrose ercent Percentage Points	1.22	1.90	1.35	1.46	0.73
Loss fro Root Yield Percent	37.9	29. 41.7. 45.0.	45.5	38.0	5.6
Sucrose Percent	13.5	13.8	13.5	13.5	0.63
Performance Root Yield Tons/Acre	27.6 27.2 27.3	24.2 24.2 27.0	29.6	25.2 28.2 28.7	06.00
Description	4th suc. yel. res. sel. US 75 5th suc. yel. res. sel. US 75 5th suc. yel. res. sel. US 75 US 75	2nd suc. yel. res. sel. 671 2nd suc. yel. res. sel. 671 Type 0 line	1st yel. res. sel. 663 Top cross parent 663 (tetra)	Yel. res. sel. 55-RF393 Yel. res. sel. from Rietberg Yel. res. sel. from Rietberg	(9
Variety	213	123 123 129 129	233 663 F62-63T	219 234 235	LSD (5%)

Table 4. Reduction in yield and sucrose percentage of hybrid sugarbeet varieties when inoculated with a combination of beet and western yellows viruses at Davis, California, in 1963.

		Performance of Check	f Check	Loss from Yellows	Yellows
17	Description	Root Yield	Sucrose	Root Yield	Sucrose
Variety	1701041	Tons/Acre	Percent	Percent	Percentage Points
163H2	US H6	27.9	14.5	39.0	1.86
2631114	(562 x 569) x 663(4n)	28.7	13.8	40.5	1.31
2539印	(515 x 569) x NB7	26.5	13.9	41.3	1.45
2539年4	(562 x 569) x NB7	25.2	13.7	4-14	1.21
263TH2	US H6 (triploid)	31.4	13.5	41.8	1.28
263114	(562 x 569) x 663(2n)	29.0	14.2	45.0	1.48
LSD (5%)	(2	1.86	0.62	NS	NS

Table 5. Reduction in yield and sucrose percentage of sugarbeet varieties and inbreds when inoculated with western yellows virus at Davis, California, in 1963.

Varieties and Hybrids	Description	Reduction in Root Yield	Reduction in Sucrose
		Percent	Percentage Points
509H1 547H1	NB1 x NB3 NB1 x NB5	12.8 14.8	0.90
569H3 546H1	562 x 569 562 x 546	16.5 17.5	0.68 1.02
554H1 511H1	NB1 x NB4 NB1 x NB2	18.3 18.5	0.88 1.24
952 569 н .	Type 0 US 15 515 x 569	19.2 22.7	0.76 0.92
LSD (5%)		7.4	NS
Inbreds			
554 502 н 0	NB4 MS of NB1	0.0	0.62 0.64
511 546	NB2	14.8	0.72 0.86
2750 539	M- inbred NB7	21.6	1.60
549 569	mm inbred mm inbred	24.3 28.5	0.66
LSD (5%)		NS	ns

Discussion and Conclusions

The 1963 yellows-resistance evaluation tests were among the best that have been conducted by the U.S. Agricultural Research Station. Excellent infection in the inoculated plots and absence of infection in the check plots contributed to the success of the tests. Clear-cut differences in resistance to both beet yellows and western yellows were demonstrated.

Results with selections from US 75 and 671 clearly demonstrated that improvements in resistance can be made by selecting in the field on the basis of root size from plants inoculated with yellows. The improvement in resistance was expressed primarily as an improvement in root yield. A tendency for improved sucrose percentage was also observed in the US 75 selections, but the results were highly variable. The 1963 results provide additional evidence that the comparison of root yields of inoculated and noninoculated plots is a more reliable measure of resistance than is a comparison of sucrose percentages.

Losses from yellows were higher in 1963 tests at Davis than in similar 1962 tests. As an example, the 1962 root-yield losses in the 539Hl hybrid were 4.4 percent for western yellows, 24.2 percent for beet yellows, and 28.9 percent for the combination of beet and western yellows. In 1963, root-yield losses for 539Hl were 19.2 percent for western yellows, 34.7 percent for beet yellows, and 40.0 percent for the combination of viruses.

Differences in the relative resistance of Oll, the fourth successive selection from US 75, have also been observed. In 1961, root-yield losses were 42 percent for US 75 and 24 percent for Oll. In 1962, root-yield losses were 43 percent for US 75 and 29 percent for Oll. In 1963, losses were 50 percent for US 75 and 38 percent for Oll. The inoculations were made with a combination of the same strains of beet and western yellows viruses in each of the three years.

The results of the past three years show that the damage from yellows varies from season to season, even though inoculations are made with the same strains of virus on plants of approximately the same age. More than one year's testing is required to correctly assess the resistance of a variety or selection.

13.45

Pincheston on load to the

The state of the s

M. Collections from 15 75 and 6): Grashy demonstrator racy a in resistance can be upon by estempton in the fixterest and a in resistance can be upon by estempton in the fixterest most size from plants income when estypeased primarily, as as shapenversent amount and and contents were frequently variable. She resistance into the results were ingular variable. She resistance is additional and continued the content and positional and positions of a sound of a so

The prilone was appeared to 1963 teats at heirs than in under core facts to the core facts were to the armorphic to 1967 root-viets losses to the yeard were to a prilonal 10.7 personal for the combinerior of teat to western in 19.7, topic-years in the core to 19.8, topic entre to 19.8, topic entre to 19.8, topic entre to 19.8, topic entre to 19.8, and an in personal for the fact of western the factors.

et i the solutive trained of Mil, one Courch and ton for from CC 75. have also been seed to 19ml that the CC 45 have also been seed to 19ml the 1962 were 42 werent ton 18 75 and 24 and 05 percent to 211 to 18 75 and 05 percent to 211 ma. I went to percent to 18 med the graphy and 11. The a west to 18 percent to 18 med the cure of the trained a first to 18 the three percents.

mosi travel on the composition of the particle of the composition and the composition of the composition of

RESULTS OF 1963 FIELD TESTS OF F, AND F, SELECTIONS MADE ON THE BASIS OF ROOT WEIGHT AND ON THE AMINO ACID PATTERN IN INFECTED LEAVES FOR POSSIBLE RESISTANCE TO BEET YELLOWS

by

J. M. Fife

INTRODUCTION

The concentration of certain amino acids has been found to be greatly upset in the mature leaves of sugarbeet plants showing the chronic symptoms of beet yellows and western yellows 1/. The degree of upset in the amino acid pattern was found to vary over a wide range among individual plants, indicating that the degree of upset may be correlated with resistance. If this is the case, then the amino acid pattern may be an aid in identifying individual plants that are resistant to beet yellows and possibly to western yellows as well.

This report summarizes the 1963 field plot tests of the F₂ and the F₃ generations which were produced without making any further selection.

METHODS AND RESULTS

More than 1000 plants of US 75 were grown in sand culture in the greenhouse under controlled nutritional conditions. The plants were inoculated, in the 4-leaf stage, with a virulent strain of the beet yellows virus. Mature leaves, showing the chronic symptoms of the disease, were taken from each plant and the juice expressed. The expressed juice was analyzed, by paper chromatography, for certain amino acids. Individual plants were selected on the basis of the root weight, after 120 days of growth, and the amino acid ratio 2/, calculated from the concentration of three amino acids determined in the mature leaves taken earlier.

1/ Amer. Soc. Sugar Beet Tech. XI (4) 327-333.

acids" (calculated as Citrulline).

2/ Amino acid ratio: Aspartic acid + Glutamic acid. Evidence has Citrulline + Alanine recently been obtained to indicate that the amino acid called citrulline may, on further investigation, turn out to be another amino acid instead. This in no way affects the results. Until the identity of this particular amino acid is definitely established, the denominator of the above amino acid ratio should read. "Two amino

Twenty-eight plants, having a superior root weight and also an amino acid ratio greater than the mean, for all plants tested, were selected. These 28 plants were given 120 days of thermal induction and then placed in isolation for an open-pollinated seed increase. The seed from each plant was harvested separately, thereby making ? each selection originating from a single plant progeny. Ten other plants, having a superior amino acid ratio and in addition a greater than the mean root weight were selected from the same 1000 plants. These plants were also given thermal induction and placed in isolation for an open-pollinated seed increase. The seed from each of these 10 plants was also harvested separately, thereby making each of these selections originating from a single plant progeny. A more complete description of the methods used has been reported 3/.

Screening tests were conducted in the greenhouse, on healthy and beet-yellows inoculated plants of the selections grown under controlled nutritional conditions. Those selections having a growth rate 4/ superior to that of the parent were tested in the field.

Seed increases (F_2) were made without further selection of certain lines that appeared promising. Seed increases (F_3) were again made without further selection.

In the tests conducted in 1963, one F_2 and four F_3 progeny of selections were tested along with the parent US 75.

The test was carried out adjacent to the regular planting of a plot test conducted by McFarlane, Bennett and Skoyen. The agronomic operations and cultural practices were the same, the only difference being in the experimental design. The information pertinent to this test is given below.

Location: Spence field of the U. S. Agricultural Research Station.

Soil type: Sandy loam.

Fertilizer applied: lbs. 10-10-5 preplant.
May 27, 1963, 200 lbs. ammonium sulfate.
July 2, 1963, 200 lbs. ammonium sulfate.

Planting date: April 8, 1963.

Thinning date: May 13, 1963.

Disease treatment: Plants inoculated June 26, with a virulent strain of the beet yellows virus.

3/ Foundation Project. Sugar Beet Research, 1961 Report, p. 295-318.

4/ Amer. Soc. Sugar Beet Tech. 12, (6) 497-502.

Harvest date: October 21, 1963.

Irrigation: Sprinkler irrigation as required up to May 15; subsequently, furrow irrigation used at about 10-day intervals until harvest.

Diseases and insects: By thinning time, practically 100 per cent of the plants were naturally infected with yellows viruses. Other diseases and insect injury were not factors in this test.

Experimental design: 6 X 6 latin square, two-row plots 50 feet long, rows 28 inches apart.

Sugar analysis: From two 20-beet samples taken from each plot and run in duplicate.

It is generally conceded that the 1963 season, in the Salinas Valley at least, was the second best year in history for sugarbeet production. Although the experimental plot was inoculated with the same strain of the beet yellows virus as the previous year, the degree of yellowing and the extent of necrosis was considerably less in the 1963 test. During the month before harvest, frequent rains and other favorable conditions stimulated new growth. At harvest, there was no marked difference in color between inoculated and uninoculated plants of the plot.

Despite the favorable season and the vigorous second growth occurring the last month, four of the five selections produced a greater tonnage of beets than did the parent, Table 1. These differences, however, were not found to be significant. One selection yielded 1.6 tons of beets more per acre than the parent. This same increase in tonnage over the parent was found for one selection in the 1962 tests, which was significant.

Two selections had a higher percentage sucrose than the parent. One selection was significantly greater than the parent at the 5 percent level.

The greater yield of beets of two selections, coupled with higher percentages of sucrose, produced significantly more sugar per acre than the parent.

Certain sugarbeet selections, made on the basis of a combination of the root weight and on the amino acid pattern in mature infected leaves, are superior to the parent in yield of sugar per acre. These results are in accord with observations made in the two preceding years.

Table 1.

Field test of selections 1/ inoculated in an early stage of growth with a virulent strain of beet yellows virus, 1963.

		Acre Yield			Harvest
Selection	Gen.	Sugar	Beets	Sucrose	Count
		Pounds	Tons	Percent	Number
US 75 DS-3 DS-9 DS-22 DS-23 DS-C	F3 F3 F3 F2	3633 4163 3418 3708 4077 3958	13.9 15.0 13.8 14.9 14.9	13.1a 13.9° 12.3 12.3 13.6 12.7	140 137 145 148 152 146

^{1/} Selections made on the basis of a superior root weight and a greater than the mean amino acid ratio.

"a" Superscript: Superior to the parent when applying Duncan's multiple range test.

General MEAN	3826	14.7	13.0	144
S. E. of MEAN	137	0.49	0.26	Beets
L.S.D. (19:1)	400		0.76	per
S. E. of MEAN in % of MEAN	3.6	3.3	2.0	100'

Odds 19:1 = 2.060 x $\sqrt{2}$ x Standard Error of MEAN VARIANCE TABLE

	Degrees	MEAN	I S Q U	ARES
Variation due to	of	Sugar	Tons	Percent
	Freedom	Pounds	Beets	Sucrose
		100 000	0 770	0.50
Between selections	5	493,968	2.72	2.53
Between replications	5	901,611	10.43	0.26
De tween reprications		701,011	10010	0.20
Remainder (Error)	25	113,440	1.44	0.42
Mo+-3	25			
Total	35			
Calculated F value		4.35**	N.S.	4.11**
WY Through the 1d mai		Stanna In	2 601	

^{**} Exceeds the 1% point of significance (F=3.68)

PART XI

RHIZOCTONIA INVESTIGATIONS

Selecting for Resistance and Utilization of Inoculation Techniques

Foundation Project 25

J. O. Gaskill

Research conducted in cooperation with the Botany and Plant Pathology Section, Colorado Agricultural Experiment Station.

- - in the base of the same of

in despite the grander has been passed and stone of the content of

\$0.5 Y

RHIZOCTONIA INVESTIGATIONS, FORT COLLINS, COLORADO, 1963 1/

(A phase of Beet Sugar Development Foundation Project 25)

John O. Gaskill

A study of Rhizoctonia exposure techniques for evaluation of resistance in sugarbeet lines under field conditions (Experiment R-1) was the principal undertaking in Rhizoctonia research at Ft. Collins in 1963. Field work on Rhizoctonia also included preliminary trials of other exposure techniques, selection of roots under disease conditions for breeding purposes, production of seed, and preliminary evaluation of resistance of a number of breeding lines. The latter phase included lines resulting from Rhizoctonia resistance selection work performed independently by the U. S. Department of Agriculture and the Great Western Sugar Company. This report pertains to Experiment R-1, only.

Material and Methods

The sugarbeet varieties or strains used in this study are described below:

	Ft. Collins seed no.	<u>Description</u>
1	Acc. 2233	SP 5831-0; a monogerm, U.S.D.A. variety, resistant to leaf spot and black root.
2	SP 621004-0	A product of selecting for Rhizoctonia resistance, at Ft. Collins, in SP 5831-0.
3	Acc. 2168	GW 674-56C; a multigerm, G.W.S. Co., leaf spot resistant variety.
4	SP 621113-00	Increase of SP 611107-0; a product of selecting for Rhizoctonia resistance, at Ft. Collins, in GW 674-56C.
5	Acc. 2518	C 817 (G.W.S. Co.); an increase of LeRoy Powers' Select A54-1 Synthetic; multigerm; leaf spot resistant; derived from CW 359.

^{1/} A progress report on investigations conducted by the Crops Research Division, Agricultural Research Service, U.S. Department of Agriculture, in Cooperation with the Colorado Agricultural Experiment Station, the Beet Sugar Development Foundation, and the Board of County Commissioners of Larimer County.

6	SP 621003-0	A product of selecting for Rhizoctonia resistance, at Ft. Collins, in C 817.
7	Acc. 2057	US 401; multigerm, U.S.D.A. variety, resistant to leaf spot and black root.

Inoculation techniques and timing were as follows:

Treat. no.	Description
1	Semi-circle method, early (July 15, 1 week after thinning)
2	Rosette method, early (July 15, 1 week after thinning)
3	Semi-circle method, late (July 29, 3 weeks after thinning)
4	Rosette method, late (July 29, 3 weeks after thinning)

Dry, ground, barley-grain inoculum of a highly pathogenic isolate of Rhizoctonia (B-6) was used at the rate of one-sixth teaspoon per plant. The term, semi-circle method, signifies the placement of inoculum in a half circle about 1 1/2 inches from the tap root and 1 inch below the soil surface. In the other method, inoculum was deposited in the center of the foliar rosette.

A high-fertility field, in which barley had been grown in 1961 and 1962, was used for this study. The experiment was arranged in 2 distinct halves separated by a 30' fallowed strip. The entire field was irrigated by sprinkler as needed for satisfactory plant growth throughout the season and to maintain a relatively moist condition at the inoculum sites for a few days after the application of inoculum. In addition, the west half of the experimental area — designated the "high moisture" section — was given supplemental water from July 26 to the end of the irrigating season (September 19). Ordinarily this was done by means of one moderate supplemental sprinkling in each interval between the regular irrigation sprinklings for the entire field. During the period, July 26 through September 19, the west half of the field received about 61 percent more hours of artificial sprinkling than the east half. Natural precipitation during the period amounted to approximately 2.6 inches, most of which fell after August 24. A heavy rain fell on September 20.

Within each half of the experiment (see above), inoculation treatments occurred as main plots with 2 replications. The 7 sugarbeet strains occurred as subplots within each main plot. Thus, in the entire experiment, each sugarbeet strain occurred in 16 subplots. Each subplot was

2 rows x 25' in size, with rows 20" apart. An area, 2 rows x 14', was inoculated in each plot. The entire experiment was planted on June 10 and thinned (about 9" spacing) on July 8. Harvest, performed on October 14, was limited to the inoculated section of each subplot. All living plants were trimmed (leaves and petioles removed), washed, and weighed. Living plants were counted in the inoculated section of each subplot periodically between the dates of thinning and harvest, and survival percentages were based on thinned stand. Variance analyses were omitted where variation was seriously restricted by the frequent occurrence of zero subplot values.

Results and Discussion

As shown in Figure 1 and Table 1, inoculations performed on July 15, 1 week after thinning, resulted in prompt and extremely severe attack. Some early evidence of differences in resistance among sugarbeet strains had largely disappeared by August 27, approximately 6 weeks after inoculation, when all but 0.3 percent of the population were dead. At harvest (October 14) only 1 inoculated plant remained alive in the entire set of 56 subplots.

Rhizoctonia attack, resulting from inoculations made on July 29, 3 weeks after thinning, was much slower than that resulting from the earlier inoculations. As shown in Figure 2 and Table 2, sugarbeet strains differed very strikingly in percentage survival from 4 to 7 weeks after the July 29th inoculations. By harvest, however, the average percentage survival had dropped to 4.5 (Table 2), and the yield of roots (Table 3) averaged 1.12 pounds per subplot. Actual differences among strains at that time were small, but on a relative basis these differences appeared to be rather substantial.

Features of special interest in Tables 2 and 3 are the systematically higher average survival percentages and higher average yields shown for the selections (strains 2, 4, and 6) as compared with the corresponding parental varieties (strains 1, 3, and 5, respectively). On August 27, the average survival of the 3 selections was 187 percent of that of the parents. Corresponding percentages on September 16 and October 14 were 283 and 235, respectively. Root yields of the 3 selections averaged 214 percent of that of the parents. It also is noteworthy that the higher average survival percentage and higher average root yield shown for strain 4 (increase of SP 611107-0), in contrast with the parental variety, strain 3 (GW 674-56C), and the check, strain 7 (US 401), are in keeping with results reported for those strains in experiments conducted in 1961 and 1962.

Comparative reaction to the 2 inoculation methods, as shown in Table 1, is of little importance, because of the extreme severity of disease attack resulting from the July 15th inoculations. Where variance analyses

Table 1. — Comparative survival percentages of sugarbeet strains following Rhizoctonia inoculations performed on July 15, 1 week after thinning. Basic results presented as 2-plot averages

a/ The high-moisture condition was begun on 7/26/63.

b/ Average of treatments 1 and 2 for the indicated strain (a product of selection for Rhizoctonia resistance) expressed as percent of the average for the corresponding parental variety.

Table 2. — Comparative survival percentages of sugarbeet strains following Rhizoctonia inoculations performed on July 29, 1963, 3 weeks after thinning. Basic results presented as 2-plot averages.

	Strain	High	th moisture	Aver	150	moisture	Aver	Trea		low	isture :
2	no	- 1		384	3	. 4	3 & 4		: 4 :	3 & 4	: parent a/ :
	120	35°4 50°4 32°4	46.9 68.4 32.9	41.2	4.88.4	22.6 54.6 16.7	15.5	21.9	34.8 61.5 24.8	28.3	159
	4500	50.05 50.05	75.8 87.5 29.3	25.75 28.25 26.25	52.3	13.5.6 B	34.9 21.0 53.1	38.9 30.0 58.5 18.0	8252 2.00.2	49.6 36.2 64.7	223
	strain	45.0 strains & treat.	~	50.5 18.3 8.52**	16.5	34.2	25.3 15.8 8.95**	30.7	45.1	37.9	187
	7024202	1899972 189997 1999	44.6.5.24.88 6.6.6.99 4.0.6.99	19.6 17.6 17.6 1.5.4 4.7	0004040	2,5,1,0,0,1,1,0,0,1,1,0,0,1,1,0,1,1,1,1,1	1804w00 4wcowoo	1.6.1.0.0 6.8.6.4.0.0	26.00 26.00 26.00 26.00 26.00	13.9 10.8 10.8 18.6 2.6	278 372 200
e e	strain	7.1 strains x treat.	21.2	14.2 9.2 8.20**	9.0	7.2	3.9	ф Ф	14.2	0.6	283
	7004mph	00000000000000000000000000000000000000	8.7 1.7.1 5.1 11.5 116.1 18.4 4.0	101 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0000000	0844464	0400400	1104110 6001440	42 w c c d u 4 c u s u c o	ないようないこれ	261 311 134
		3.0	11.5	7.3	0.0	3.5	1.7	1.5	7.5	4.5	235

a/ Average of treatments 3 and 4 for the indicated strain (a product of selection for Rhizoctonia resistance) expressed as percent of the average for the corresponding parental variety.

Table 3. -- Comparative root yields of sugarbeet strains following Rhizoctonia inoculations performed on July 29, 1963, 3 weeks after thinning. Basic results presented as pounds per plot (2-plot averages). 2/

	- 1								1
rure	g of by:		145		353		1744		214
. Average, high & low moisture	3 & 4	0.95	1.38	0,40	1.41	1.33	1.91	64.0	1,12
e, high &	Treat. : Treat. : Aver. 3 & 4	1.72	2.52	0.71	2.48	2.43	3.46	0.98	2.04
: Averag		0.18	0.24	0.08	0.34	0,22	0.36	0.00	0.53 0.20
	Aver. 3 & 4:	0.0	0.54	0,10	0.57	0,31	1.57	0.65	
Low moisture		00.00	1,08	0.21	1,13	19.0	3.14	1.30	0.00 1.07
	: Treat.: Treat.	00.00	00.00	00.00	00.00	00.00	00.00	00.00	
ure	Aver.	1.90	2,22	69.0	2,25	2,35	2,25	0.33	1.71
High moisture	Strain: Treat.: Treat.: Aver.	3.45	3.96	1,22	3.83	4.25	3.78	99.0	Average 0.40 3.02
H	Treat.	0.36	24.0	0,16	0.68	44.0	0.73	00.00	0700
	Strain:	т.	8	~	47	2	9	7	Average

a/ 28 ft. of row per plot; 10/14/63

b/ Average of treatments 3 and 4 for the indicated strain (a product of selection for Phizoctonia resistance) expressed as percent of the average for the corresponding parental variety. were performed for the data summarized in Table 2, the interaction, strains x treatments, was not significant. On this basis it would appear that relatively similar results could be expected from the 2 methods (treatments 3 and 4). However, since disease attack was slower and final survival percentages were higher for treatment 4 than for treatment 3, the former would seem to be preferable. Furthermore, treatment 4 — the rosette method — has the additional advantage of convenience.

Since moisture levels were not replicated, the differences between moisture levels must be considered inconclusive. However, the higher survival percentages shown in Table 2 for the higher moisture level suggest that such conditions may be more favorable for Rhizoctonia-resistance evaluation work.

Conclusions

- 1. Inoculations performed 3 weeks after thinning appeared to be more favorable for Rhizoctonia-resistance evaluation of sugarbeet strains than inoculations performed 1 week after thinning.
- 2. The rosette inoculation method was at least as effective as the semicircle method — perhaps more so — for resistance evaluation purposes where inoculations were performed 3 weeks after thinning.
- 3. The use of relatively high soil moisture conditions may be more desirable for resistance evaluation work. Further study of this question is needed.
- 4. Where inoculations were performed 3 weeks after thinning, there were highly significant differences among sugarbeet strains, in percentage survival, 4 to 7 weeks after inoculation. During that period, a strong tendency toward higher survival percentages was evident for lines derived by selection for Rhizoctonia resistance as contrasted with their parental varieties. These observations indicated the existence of a measurable degree of resistance in the 3 selections, as a class. However, this level of resistance was not sufficient to maintain a large actual yield advantage at harvest under the conditions of this experiment.

The contract of the contract o

Benefitt

eron on ad begroups spinnish rooms stank f lembolishs tenier in head agus to up with this most of the total against the light forw in comment of

in the second second was a second to the properties and the second secon

high soil somethers soud those only has one ogece syalmethos work. which standy of the engage

Figure 1. — General view of Rhizoctonia experimental field, Ft. Collins, Colo., September 3, 1963. Complete kill by treatment 2 is shown in foreground where inoculation was performed on July 15, 1 week after thinning.

Figure 2. — Comparative reaction of 2 sugarbeet strains to Rhizoctonia, Ft. Collins, Colo., September 3, 1963. Inoculation (treatment 4) was performed on July 29, 3 weeks after thinning. Two-row plots, left to right: strain 2 (selection from SP 5831-0), and strain 7 (US 401).

PART XII

CERCOSPORA LEAF SPOT INVESTIGATIONS

Lucas Calpouzos

Research conducted in cooperation with Minnesota Agricultural Experiment Station.

CFRCOSPORA LEAF SPOT INVESTIGATIONS

L. Calpouzos

A research program was started in 1963 to study fundamental and applied aspects of sugarbeet diseases. Cercospora leaf spot has become in recent years a major disease problem of sugarbeets in the North Central United States. This disease is currently being studied and some of the initial results are reported here.

Sporulation of the Pathogen in Culture

Most cercospora species including C. beticola sporulate poorly or not at all in culture. Since the early part of this century researchers have attempted to induce cultures of C. beticola to form large quantities of spores to be used as a source of artificial inoculum. Varying degrees of success were reported and were often attributed to the use of certain media whose identity commonly differed from one report to another. Special techniques were also recommended, such as working with cultures of a certain age, using conidia rather than mycelium when preparing new transfers, mechanically injuring mature colonies, or transferring mature colonies to fresh medium. Although spores were sometimes obtained in culture, clear understanding of the factors controlling sporulation is lacking. These factors are being investigated and current data are summarized here.

General Materials and Methods. Fight isolates of C. beticola were used, of which designations and origins are as follows: "Towa" from N.E. Iowa, "RRV" from Eastern North Dakota in the Red River Valley, "Rose" from Central Minnesota, "NR" from Southern Minnesota, "Ohio" from N.E. Ohio, "Holland" from S.W. Netherlands, "Bav" from S.W. Germany, and "Italy" from Northern Italy. The Bav, Holland, Ohio, and Iowa were single-spore isolates; however, no differences in fungal behavior could be attributed to the fact that some isolates were single-spore and the others were not.

Sporulation was determined by observing the fungus colonies under a dissecting microscope at a magnification of 18 and 72X. The sporulating region of a colony often appeared as a dark olive-gray area consisting of erect, nonbranching growth, whereas the sterile region varied from white to dark gray, primarily with either short or long flaccid, branched hyphae. Presence of spores was checked by removing = 2-3 mm piece of the colony, using an arrow-pointed needle and gently touching the aerial

In cooperation with the Department of Plant Pathology and Physiology, and the Agricultural Experiment Station, University of Minnesota.

growth to the agar surface. Spores, if present, detached readily and were easily observed lying on the agar. Hyphae were rarely detached by this treatment. The ratio of sterile hyphae to sporulating growth was rated according to an arbitrary scale of 0-5, where 5 indicates that only sporulating growth is present. This method of estimating sporulation is quick, it provides a measure of local variations in sporulation which can be great within a single colony, and it leaves the colony largely undisturbed for future observations.

Importance of Fungus Strains for Sporulation. The 8 isolates were subcultured approximately every 7 days gyer a period of 2 to 4 months on a single nutrient medium, Mycophil agar , which provided luxurient growth. Before transferring, the colonies were examined microscopically. Morphologically distinct sectors were common within each colony. Some sectors contained few to many spores, while most sectors consisted only of sterile hyphae. Inoculum for the new subculture was selected from sporulating areas, if present. During this experiment sporulating colonies would occasionally form sterile sectors, and conversely, sterile colonies would form sectors bearing spores. Generally, sporulating areas were more common on colonies less than one-week old. After several successive subcultures, the NR, Rose and Holland isolates gave rise to strains which sporulated regularly on 10-60% of the surface area of one-week-old colonies. The other isolates were erratic in their sporulating behavior. except for Bay which remained sterile. These results suggest that sporulation is influenced by the genetic nature of the fungus. Strains must be selected that have the inherent capacity to sporulate. However, this is not the only important factor, as will be shown by the next experiment.

Importance of Media for Sporulation. All eight isolates, after being subcultured as described above, were grown on several synthetic and natural media, each containing from 1.5-2% agar. Water agar (WA)distilled water plus 2% of pure agar. Czapek Dox agar (Cz)-35g of commerically prepared Czapek Dox broth plus 20 g of agar per liter of water. Potato dextrose agar (PDA) - 39g of commercially prepared medium per liter of water. Mycophil agar (MYC)-40g of commercially prepared medium per liter of water. V8-Juice agar (V8)-250 ml of commercial V8 juice made up to one liter with water and 20g of agar added. (V8 + S)—same as V8 but with 20g of glucose. Sugarbeet leaf extract agar (BLA) - 200g of chopped fresh sugarbeet leaves boiled for 15 minutes in 750 ml of water which was then decanted and diluted to one liter and 1520g of agar added. (BLA + S) - same as BLA but with 20g of glucose. The media were autoclaved and poured uniformly in Petri dishes to a depth of approximately 5 mm. The pH of each fresh medium was measured. Each isolate was inoculated uniformly with the same source of inoculum on each of the agar plates. All plates were incubated under the same temperature, humidity, and light conditions. Amount of sporulation was observed

^{2/}A papaic digest of soy meal, plus glucose. Prepared by the Baltimore Biological Laboratories, Baltimore, Md.

six days after inoculation. The pH of the medium directly under the colony was also measured at six days. The results summarized in Table 1 show that sporulation can vary widely for a given isolate grown on different media. BLA and BLA + S media favored the greatest amount of sporulation on the average. Colonial growth (not shown in Table 1) was greatest on MYC and the two V8 media, while PDA, Cz, and the two BLA media had slightly less but still considerable growth. WA supported only a trace of growth. The nature of the medium, therefore, is another important factor affecting sporulation of Cercospora beticola in culture. This effect probably is not due to pH, since no correlation exists in Table 1 between pH and sporulation. These studies are continuing.

Effect of Early and Late Planting on Leaf Spot Incidence

Growers often claim that late-planted sugarbeets, as contrasted to early-planted, develop less leaf spot. A preliminary experiment was carried out, first to confirm the effect of early and late planting dates, and second, to explore the reason for this phenomenon.

The experiment was conducted at the Agricultural Experiment Station of the University of Minnesota, in Rosemount, on a rectangular field 37 x 80 feet. Twenty 80-foot rows each spaced 22 inches apart were marked out. Alternate sets of 4 rows; nos. 1-4, 9-12, and 17-20, were planted to variety American Crystal 3N on May 8, 1963. Five weeks later, June 14, the remaining rows, nos. 5-8 and 13-16, were also planted to variety 3N. This design provided two plots of late-planted beets bordered on either side with plots of early-planted beets.

On July 13, nine weeks after the first planting, no disease had appeared; therefore, the plots were inoculated thoroughly with a water suspension of pulverized old diseased leaves by means of motorized mist blower. A week later, about 200 heavily diseased fresh leaves obtained elsewhere were scattered uniformly throughout the plots as an additional source of inoculum.

Leaf spot symptoms first appeared in August and observations were made on August 30, September 6 and 30; 16, 17 and 20 weeks, respectively, after the first planting. Disease was uniformly distributed within each plot. The average amount of disease in a plot was determined by rating twelve randomly selected plants located about halfway along the 80-foot axis of the field. The disease-rating scale ranged from 0-5 according to the Kleinwanzlebener Cercospora-table.

The data were analyzed statistically by the F test, and are summarized in Table 2. The August 30 and September 6 results indicated that the early-planted beets had more disease (at the 1% level of significance) than the late-planted beets. The data taken on September 30 showed no significant difference in the amount of disease between early- and late-planted beets.

Sporulation of Cercospora beticola isolates on different media six days after inoculation, and the pH of the media. Table 1.

Cercospora isolate	BLA(5.9)	5.9) BLA+S(5.8)	Media (and V8(4.4)	initial pl V8+S(4.5)	Media (and initial pH) $V8(\mu, \mu) V8+S(\mu, 5) M\underline{Y}C(6, 3) PDA(5, \mu) CZ(6, 8) WA(7, \mu)$	PDA(5.4)	cz(6.8)	WA(7.b)
NR	54(8.2)b	5 ^a (8.2) ^b 4.5 (7.1)	4.5 (8.4)	4.5 (8.4) h (6.7)	1 (7.0)	3 (6.7)	3 (6.7) 2 (8.3) 0.5(6.5)	0.5(6.5)
RRV	2.5 (8.5)	(8.5) 4 (7.8)	1 (8.b) 0 (7.8)	0 (7.8)	0 (7.2)	0 (6.5)	0 (6.5) 0 (8.0) 0 (6.6)	(9.9) 0
Rose	3.5 (8.3) 2	2 (7.3)	3.5 (8.3) 35(6.4)	35(6.4)	3 (7.0)	2 (6.8)	2 (7.8)	0 (6.8)
Iowa	h (8.6) 1	1 (7.2)	0.5 (8.5) 1 (6.3)	1 (6.3)	0 (7.5)	0 (6.5)	0 (8.0)	0 (6.5)
Ohio	1 (8.6)	(8.6) 0.5 (7.2)	0 (8.2)	(8.2) 0 (6.5)	0 (7.5)	0 (6.6)	0 (8.0)	0 (8.0) 0 (6.6)
Holland	po	4.5 (7.6)	2 (7.5)	(7.5) 0 (6.4)	2 (8.0)	0 (6.8)	0 (8.4)	0 (7.0)
Italy	70	4.5 (7.3)	1 (7.5)	(7.5) 1,5(6.2)	0 (7.2)	0 (1.0)	0 (8.5)	0.5(7.0)
Bav	P	7	0 (8.5)	(8.5) 0 (5.9)	(4.9) 0	0 (3.5)	(0.6) 0	0 (7.0)
Average sporulation								
isolates	3.2	3.0	1.6	1,3	8.0	9.0	0.5	0.1

a Sporulation rating: 0 = no spores, 5 = 100% of the colony surface had spores, no sterile growth.

b Numbers in parenthesis indicate pH of medium under the 6-day-old colony. The media were unbuffered.

c A dash indicates no agar plate available for this experiment.

d In a further test, Bav did not sporulate on BLA or BLA+S whereas Holland and Italy had 4-5 sporulation.

Table 2. Average leaf spot rating on early- and late-planted sugarbeets observed on three different dates.

	Ave	rage leaf spot re	ating
Observation date	Early planted	Late planted	F-test for signifi- cant difference
August 30	1.7 ^e .	1.1	48
September 6	1.7	0.8	**
September 30	4.9	4.8	NS.

Inoculated on July 13 and 20, 1963.

b Planted May 8. Average for 36 plants (12 per replicate plot) except on August 30 when only 2 plots were rated.

C Planted June 14. Average for 24 plants (12 per replicate plot).

d ** = difference between the 2 averages is significant at the 1% level.

Disease rating; O = no disease, 5 = whole plant diseased, outer leaves dead, inner leaves severely damaged, fresh foliage begins to grow.

Several possibilities could account for the difference in disease incidence at the first two observation dates. First, the microclimate among the older plants might have been more favorable for disease. It should be noted that the average plant size and density of foliage differed between the two groups of beets at the first two observations but not at the last. Second, the younger plants might have been producing new leaves more rapidly than the older plants. This could result in fewer diseased leaves of the total present on younger plants, hence a lower disease rating. Third, the younger beets at first might have been less susceptible to leaf spot, but with further growth (and perhaps with further increase in the inoculum load) the difference in susceptibility disappeared.

The results of this preliminary test support the notion that on late-planted beets leaf spot tends to develop more slowly than on early beets; however, the practical significance of this effect may not be important, since differences in disease levels tend to disappear with time. The reason for the temporary difference in disease between early- and late-planted beets is not known and deserves further study.

Dissemination of the Pathogen

It is commonly believed that the leaf spot fungus, Cercospora beticola, is disseminated primarily by wind; however, there are scant published data on the subject. Some field observations suggest that agents other than wind may also be important. For example, it is not unusual during the first stages of an epiphytotic to find: a) disease appearing in local areas of a field and spreading outwards gradually, or b) adjacent beet fields separated by a narrow roadway with one field showing significantly more disease than the other. If wind dissemination is the primary mode, one would expect a quicker and more uniform spread of disease throughout the beet fields.

Spore dissemination was studied during August and September at New Richland and Rosemount. Minnesota, where spore trap and weather data were collected for periods of 12 to 18 days. Two observation stations, one in the center of the sugarbeet field and the other 100 feet East of the field (westerly winds prevailed) were established on each farm. Three spore traps at 2-, 4-, and 7-feet, respectively, above the ground level were located at each station. The traps were exposed for 24-hour periods except for weekends when they were exposed for 2 or 3 days. Daily rainfall and wind speeds were obtained from weather stations 12 miles from the New Richland farm and one-half mile from the Rosemount farm. Periodic estimates of the spore population on the heavily diseased beet leaves were also made.

^{3/} The farm of Mr. G. Arneman.

^{4/} Agricultural Experiment Station Farm of the University of Minnesota.

The spore trap consisted of a 6-inch glass rod with a polyethylene plastic strip, 1 x 2 cm, coated with silicone grease and wrapped around the rod near its upper tip. The rod was exposed by mounting it on top of a metal tube. Before and after exposure the rod was kept in a large, clean test tube in such a way as not to allow the plastic strip to touch the sides of the tube. Later, the plastic strip was removed from the rod, mounted on a glass slide and examined microscopically at 100% magnification. The entire length of the strip was scanned over a width of three microscopic fields. Cercospora spores were counted as well as other large fungus spores present. Small fungus spores were not counted.

Great numbers of <u>C</u>. beticola spores were present in both fields during the experiment. The New Richland sugarbeet field had a disease rating of 4-5 according to the Kleinwanzlebner Cercospora-table which ranges from 0 to 5. Leaves collected at the start, middle, and end of the experiment showed heavy sporulation on over 90% of the lesions. An estimate of over half a million spores per plant would be conservative. The Rosemount sugarbeet field had a disease rating of 3-5 during the experiment. Diseased leaves collected each week day showed heavy sporulation on 50-100% of the lesions. The inoculum potential was high.

Conditions favorable for wind dispersion were present during most of the experiment at each site. This was indicated by the wind speed data obtained from the weather stations and by the several hundred trapped large spores of other fungus species known to be wind disseminated, e.g. rusts and Alternaria spp.

The spore-trap results from the two farms and selected weather data are summarized in Tables 3A and 3B. Appreciable numbers of cercospora spores (100 or more per trap) were caught only during 5 out of 12 days in New Richland, and no days out of a possible 18 at Rosemount. By contrast, appreciable numbers of other large, wind-disseminated, fungus spores were trapped in at least 7 out of 8 days in New Richland and 7 out of 9 days in Rosemount (omitting weekends for the other-fungus-spore data). There is a trend for the numbers of spores to increase with increasing elevation of the trap. This could be due to eddying air currents and to more air flowing past the taller trap, since it is more exposed to the wind. In the New Richland data there is a trend for appreciable catches of cercospora to be associated with rainy days. This suggests that water may be involved in spore dispersal. The association between rainy days and trapped cercospora spores does not appear in the Rosemount data. This might be due to periods of little or no wind at the time of rainfall.

The spore trap data do not support the idea that C. beticola is primarily disseminated by wind, since large numbers of spores were present on the leaves near the traps as well as conditions favorable for wind dissemination, yet few spores were trapped except on some (not all) rainy days.

^{5/} Obtained from Dr. J. B. Rowell, Cooperative Cereal Rust Laboratory, University of Minnesota.

Number of cercospora spores and other large fungus spores trapped in and near a sugarbeet field at New Richland, Minnesota. Table 3A.

Trap	S	Station no. 1	ບຼ	63	Station no. 2	2 d	9	Wind
date	2 ft	h ft	7 ft	2 ft	l ft	7 ft	inches	M/H
Aug 2	100(219)	0(5)	345(663)	3(180)	6(420)	75(739)	°05	19
~	3(30)	0(151)	119(993)	(86)0	0(145)	0(222)	0	22
5 (2 days)	6(73)	42(320)	15(345)	0(540)	6(297)	(四)	0	25,28
7	180(103)	72(元山山)	33(161)	3(112)	6(134)	0(210)	o)	33
80	((21)	(65)9	(99)5	0(39)	3(88)	0(107)	0	35
6	834(501)	448(205)	1220(719)	48(128)	184(306)	296(676)	70°	37
10	153(47)	0(80)	36(100)	0(16)	0(38)	(95)9	0	39
12 (2 days)	12(148)	30(373)	93(412)	3(163)	2(461)	27(582)	0.53	1,37
13	(68)9	6(198)	0(270)	0(500)	0(420)	0(865)0	0	11
15	(6)0	0(30)	0(23)	0(25)	0(58)	0(47)0	0	13

Numbers in parenthesis represent other large Numbers outside parenthesis represent cercospora spores. fungus spores.

b One-day exposures except for traps collected on August 5 and 12.

c Center of heavily diseased sugarbeet field.

d One hundred feet east of the sugarbeet field.

No record of rain at nearest weather station 12 miles away. e Localized shower at farm.

Number of cercospora spores and other large fungus spores trapped in and near a sugarbeet field at Rosemount, Minnesota. Table 3B.

Trap	St	Station no. 1	e e	Sta	Station no. 2	7	Rain Cal	Mand Supposed
collection date	2 ft	h ft	7 ft	2 ft	h ft	7 ft	Inches	estimated range
Sept 12	20(43)	50(781)	0(1065)	(079)5	\$(905)	0(1917)	. выз	15-35
13	0(11)	5(75)	(96)0	0(58)	0(52)	0(63)	0	8-15
16 (3 days)	5(438)	(998)0	0(1600)	0(2100)	0(3038)	0(3507)	0	10-36
17	0(62)	0(334)	०(गाम)०	0(231)	0(595)	0(580)	.37	5-15
18	0(57)	4(231)	0(851)	0(632)	(901)9	(926)0	90.	5-18
20	23(11)	0(35)	0(54)	0(45)	0(51)	0(63)	0	3-8
23 (3 days)	56(1061)	0(1321)	15(1225)	19(1102)	1(1821)	0(834)	0	3-20
24	0(276)	0(942)	(077710)	0(1202)	0(1971)	0(2175)	•30	5-18
25	2(22)	2(117)	0(225)	2(159)	3(153)	0(225)	•20	0-3
26	7(93)	1(491)	0(621)	2(489)	95(741)	0(897)	0	3-7
27	12(72)	0(457)	0(757)	0(612)	0(726)	1	0	7-15
30 (3 days)		3(855)	0(1500)	0(1017)	1(1452)	0(1650)	60.	5-25

Numbers outside parenthesis represent cercospora spores. Numbers in parenthesis represent other large fungus spores.

b One-day exposures except for traps collected on September 16, 23, and 30.

Center of diseased sugarbeet field.

d One hundred feet east of the sugarbeet field.

The possible effect of wind was studied further in the laboratory. Diseased leaves bearing many cercospora spores were placed under a dissecting microscope and exposed to the air blast of an electric fan held one foot away. Greased slides were held six inches away on the leeward side of the mounted leaves. Randomly selected cercospora spots on 15 leaves were observed through the microscope during the 5-minute exposure to the air blast. No removal of spores from the spots could be detected and no spores appeared on the greased slides, indicating that wind alone cannot remove cercospora spores from the leaf spots.

The possible role of water in cercospora dissemination was explored. First, diseased sugarbeet leaves wet with dew early in the morning were gently shaken over glass slides to collect samples of the dew droplets which were allowed to dry. Microscopic examination of the areas on the slides where dew drops had dried showed that 79 out of 97 areas contained cercospora spores. The number of spores per microscopic field (100X magnification) ranged from 2 to 500 with the majority of areas having 50 or more spores per field. Second, large droplets of water (2-3 mm in diameter) were permitted to roll across the surface of sporulating spots being observed under a dissecting microscope and the spores were readily removed. The same happened with water droplets falling directly on the spots. It is apparent from these trials that cercospora spores can be effectively removed from diseased leaves by water.

If spores are dispersed by water, appreciable numbers should be found regularly in Station number 1 at 2 feet, since this trap is almost touching the leaves. However, the hydrophobic properties of the siliconegreased strip were found to prevent all but about 1% of the water-carried spores to stick on, whereas dry spores were readily captured. Therefore, different spore trap will have to be used for studying water-disseminated spores.

Although only occasional spores were trapped 100 feet away from the beet field, small numbers of wind-borne spores may be important for establishing scattered infection loci in remote, isolated sugar beet fields.

Most of the evidence found here does not strongly support the concept of wind dissemination. More direct evidence of the importance of water dispersal is needed before its role can be conclusively demonstrated. However, the impression from earlier publications that this fungus is primarily wind disseminated will probably have to be modified. At present, it appears that C. beticola spores are detatched from leaf spots only by water and are subsequently disseminated by either wind or water, the latter agent playing a more important role than was previously realized.

PART XIII

PHYSIOLOGICAL INVESTIGATIONS

Studies on Seed Germination and Quality

F. W. Snyder

Research conducted in cooperation with Michigan Agricultural Experiment Station.

PHYSIOLOGICAL INVESTIGATIONS-19631/ F. W. Snyder

Germination Studies 2/

ABSTRACT: Ripeness of the seed at harvest strikingly affects the percentage germination of sugarbeet seeds. The seeds in fruits that fully ripen on the plant (fruits that are straw-colored) germinate more rapidly and completely than those in fruits harvested before full maturity (fruits that are dark or greenish-colored). In commercially harvested seedlots, the percentage germination appears to be inversely related to the percentage of immature or dark-colored fruits.

Three commercial monogerm seedlots (SL 122ms = 5460-0, Lot 2433; F 61-562H0 x SP 5460-0, Lot 2401; F61-562H0 x US 401-4n, Lot 2361) harvested in 1962 had a sizable percentage of fruits that were dark or greenish-colored. The germination percentages, corrected for undeveloped or partially developed seeds, were approximately 80, 62, and 63, respectively. Thus, from 20 to 38 percent of the seeds that appeared to be sufficiently developed to germinate failed to do so. In contrast, two seedlots, (SL 126 x 128) ms x 5822-0 and (SL 129 x 133) ms x 5822-0, harvested in 1963 contained very few fruits that were dark or greenish-colored. These corrected germination percentages were approximately 89. Only 11 percent of the developed seeds failed to germinate.

Hand-harvested samples of monogerm seed were collected in Oregon in 1963 from 25 plants of (SL 126 x 128) ms x 5822-0 and of (SL 129 x 133) ms x 5822-0. One set of samples was collected 18 days and the other set 3 days before the field was cut for commercial harvest. Some of the samples collected early were very green, while other samples contained some fruits that were straw-colored and some that ranged to a very greenish color. The late-harvest samples contained only straw-colored fruits. The germination data are summarized in Table 1. The low germination percentages for the early harvest might be expected. However, when 2 of the larger fruited samples with the highest germination were examined for developed seeds, only 3 to 5 percent of the fruits contained no seed or a poorly developed seed. Thus, more than half of the plump seeds from the early harvest failed to germinate. The data (Table 1) might include considerable plant to plant variation, since the seeds for the early harvest were collected from different plants than those for the later harvest.

Fruits of plant #10 of variety (SL 126×128) ms x 5822-0 were separated into ripe (straw-colored) and green (green-colored) categories and also by sizes. Each class had approximately 100 fruits which contained a developed seed. Ripeness again appeared to affect the percentage germination

^{1/} Research conducted in cooperation with Michigan Agricultural Experiment Station.

^{2/} The samples of seed were supplied by the West Coast Beet Seed Company and the Farmers and Manufacturers Beet Sugar Association.

(Table 2). Since size of fruit was confounded with ripeness, another study of the effect of ripeness was designed using fruits of plant #25 of variety (SL 129 x 133) ms x 5822-0. The data (Table 3) indicate a significant effect of ripeness, particularly if the data are combined into three categories of ripeness. Seeds in the straw-colored fruits germinated 92.5 percent; those in the intermediate (Intermediate and Ripest categories), 66.3; and those in the green (Green and Greenest), 35.2 percent.

The effect of ripeness and fruit size on the percentage germination of a commercially harvested monogerm variety, F 61-562H0 x SP 5460-0, Lot 2401, appears to be as marked as for the single plants (Table 4). The germination of the ripest and greenest fractions when averaged closely approximated the germination percentage for a bulked sample of the variety.

Although ripeness of seed is a critical factor, germination percentages of fully mature, hand-harvested seeds from individual plants indicate that other factors also may be involved (Table 5).

At the 1960 ASSBT meeting, Hogaboam and Snyder reported that seeds in the smaller fruits generally germinated more rapidly than those in larger fruits. This was true for fruits harvested when straw-colored, but recent tests indicate that if maturity is a factor, the tendency for the smaller fruits to be less ripe may reverse this trend. Thus, immaturity may be indicated when seeds in the smaller fruits germinate relatively slowly and less completely than those in the larger fruits.

Table 1. Effect of ripeness on percentage germination of seed of 25 plants of 2 monogerm varieties.

Variety	No. days before comm'l. harvest		germination in 10 days* Range among plants
(SL 126 x 128) ms x 5822-0	18	10.1 87.8	0 - 37 45 - 98
(SL 129 x 133) ms x 5822-0	18 3	14.5 83.5	0 - 3 9 61 - 98

*Data not corrected for undeveloped or partially developed seeds in fruits.

Table 2. Ripeness as related to speed and percentage germination of seeds of plant #10, variety (SL 126 x 128) ms x 5822-0.

	Ripeness of	Accumula	ated per	centage	germinat	ion by d	ays
Fruit size	fruits	. 3	5	7	10	14	
Variable	Straw-colored	25.0	79.3	91.3	91.3	94.6	
On 10/64" screen	Green	3.0	46.5	57.4	68.3	77.2	
On 8/64" screen	Green	0.0	20.5	28.9	50.6	63.9	

Table 3. Ripeness and size as related to percentage germination of seeds of plant #25, variety (SL 129 x 133) ms x 5822-0.

Fruit size		of its	Accum.	% gerr	mination 10	by days*
On 13/64'' screen	Straw-colored	30	30	80	97	97
011 13704 3010011	Intermediate	20	60	70	75	75
	Greenest	10	60	60	80	90
On 11/64'' screen	Straw-colored	50	54	88	90	90
	Intermediate	50	39	64	66	66
	Green	50	10	24	26	34
	Greenest	50	8	18	24	31
On 10/64'' screen	Ripest	20	40	50	50	50
	Greenest	20	15	25	30	35
On 9/64'' screen	Ripest	10	17	33	50	67
	Greenest	10	0	0	10	10
On 8/64" screen	Greenest	10	0	0	20	40

*Data corrected for undeveloped or partially developed seeds in fruits.

Table 4. Effect of ripeness and size of fruit on percentage germination of monogerm variety F 61-562H0 x SP 5460-0, Lot 2401.

		% good	Accumulated %		germination	by days*	
Fruit size	Ripeness	seeds	4	7	10	12	
On 9/64'' screen	Ripest Greenest	99 95	68 17	79 34	83 41	83 44	
On 8/64'' screen	Ripest Greenest	97 87	. 45 22	62 34	72 43	76 43	
On 7/64" screen	Unsorted	76	39	57	,62	63	

*Data corrected for undeveloped or partially developed seeds in fruits.

Table 5. Variation in percentage germination of seeds from 25 different plants of a variety when hand-harvested at full maturity.

Variety		germination in 10 days* Range among plants
(SL 126 x 128) ms x 5822-0	91.7	49 - 100
(SL 129 x 133) ms x 5822-0	91.1	70 - 99

*Data corrected for undeveloped or partially developed seeds in fruits.

$\underline{P} \underline{A} \underline{R} \underline{T} \underline{XIV}$

DEVELOPMENT OF BASIC BREEDING MATERIAL AND EXPERIMENTAL HYBRIDS FOR THE GREAT LAKES REGION

INHERITANCE OF MONOGERMNESS

Foundation Project 26

G. E. Coe

Total Manual Man

DEVELOPMENT OF BREEDING MATERIAL RESISTANT TO LEAF SPOT AND BLACK ROOT

G. E. Coe

Research under Foundation Project 26 at the Plant Industry Station, Beltsville, Maryland, is directed mainly toward varietal improvement in resistance to Cercospora leaf spot and Aphanomyces black root. This program contributed to the synthesis of many varieties, hybrids, and other items evaluated in field tests reported in Part IV, 1963 Report.

This part of the report will cover trends in the performances of basic breeding material, nursery tests of some experimental hybrids, and some results of genetic tests with monogerm genes from different sources.

Improvement in Basic Breeding Stocks

The trends of the basic breeding stocks in disease resistance and agronomic characteristics as compared to the performance of US 401 are presented in graph form. Graphs 1 thru 8 provide comparisons of the multigerm and monogerm breeding lines with the performance of US 401. The performance of US 401 is given a numerical value of 100. Ratings higher than 100 indicate that the breeding lines performed better than US 401, and ratings lower than 100 indicate that the breeding lines did not perform as well as US 401. In percentage soluble nonsugar solids, a rating greater than 100 still indicates a better performance than US 401, which means a lower percentage of soluble nonsugar solids. In this case, it must be remembered that better performance means a lesser amount of soluble nonsugar solids.

Compared with US 401, there was an increase in resistance to leaf spot of approximately the same magnitude as reported in 1962 Report, page 326, for both multigerm and monogerm varieties (graphs 1 and 2). Greenhouse tests indicated a slight improvement in monogerm varieties in resistance to black root, but the multigerm lines showed no improvement. Selections made directly from the greenhouse black root tests did show improvement over parental lines, but these are not included in the graph.

The root yield performances of multigerm basic breeding stocks in 1963 were inconclusive (graph 3). There was a decrease at the East Lansing, Michigan, nursery and an increase at the Beltsville nursery. The increase at the Beltsville nursery was due at least partially to improved leaf spot resistance; thus it is probable that there was little or no improvement in the yield of the multigerm lines.

The yield performance of monogerm lines at East Lansing (graph 4), although lower than the yield in the 1961 test, was sufficient to indicate a continuing upward trend.

The percent sugar in multigerm breeding lines (graph 5) has shown little variation since 1956. It was higher at Beltsville than US 401, because of improved resistance to leaf spot. It is noteworthy that this good sugar percentage is being maintained despite increased root yields at Beltsville. Paradoxically, these same lines showed no increased sugar percentage at East Lansing despite the fact that yields were lower in comparison to US 401. The sugar percentage of monogerm breeding lines (graph 6) has not changed greatly in recent years, with the exception of 1960 when sugar percentages were high and yields rather low. It should be noted that sugar percentage remained constant in the monogerm lines at a time when root yields increased.

The Beltsville tests indicate that since 1958 there has been considerable improvement (decrease) in the content of soluble nonsugar solids of the multigerm breeding lines (graph 7). Tests of these same lines at East Lansing show a fluctuation of percent soluble nonsugar solids around those of US 401 and indicate no change in this characteristic. However, certain multigerm lines that have been produced from this program have consistently given good purity percentages in field trials. (See the performance of SP 5822-0, SP 6122-0, SP 61151-0, SP 6256-0, and hybrids with these lines as pollinators, in Part IV of this report.) The monogerm lines have been rather high in the percentage of soluble nonsugar solids (low in performance as compared to US 401) since analyzing for this characteristic was started in 1958 (graph 8). The Beltsville data show considerable year-to-year variation of soluble nonsugar solids, and perhaps several more years of data will be necessary before a trend can be defined with confidence. The East Lansing data for 1960 and 1961 indicate only slightly higher content of soluble nonsugar solids (lower numerical values) in the monogerm lines than in US 401. The 1962 data indicate that in the monogerm lines these undesirable soluble nonsugar solids were quite high.

In conclusion, it can be said that most progress has been made in selecting for resistance to leaf spot, whereas progress in improving most other characteristics has been rather slow.

Experimental Hybrids Tested at Beltsville

Several experimental hybrids were evaluated in the Beltsville nursery in 1963. Some of these hybrids were also evaluated in preliminary screening tests in the Great Lakes area. Data from the Beltsville test furnish information concerning leaf spot resistance and give some indication of yield potential and quality. In producing the hybrid seed, crosses could not be made in all directions, because of the limited number of plants available of both the female parents and the pollinators. However, the available data are a preliminary indication of the potential performance of the various parent lines. The best female line appears to be SP 6121-01 mm MS and individual plant components of this MS line. (They are hybrid numbers ending in -03, -014, -015, -016, and -017.) Another female line, FC 502 CMS, used in two crosses produced hybrids (hybrid number ending in -010) with the best gross sugar yields and best resistance to leaf spot of any of the hybrids using those particular pollinators. Therefore, this monogerm male-sterile line is worthy of further testing as a female parent.

The three monogerm pollinators used in these crosses produced mediocre hybrids (SP 623000- etc., SP 623359- etc., and SP 623360- etc.), and they should not be considered as potential commercial pollinators. On the otherhand, the hybrids (SP 623356- etc., SP 623357- etc., and SP 623358etc.) from crosses with the three tetraploid pollinators had reasonably good gross sugar production. However, all the triploid hybrid seed germinated rather poorly and stands were not good. Of the tetraploid pollinators, SP 603107-0 4n MM produced hybrids (SP 623358- etc.) superior in root yield and sugar percentage. It should be noted that these hybrids were not as productive in the Beltsville nursery as the multigerm check varieties SP 61151-0 and SP 6122-0. This is undoubtedly related to more damage to the hybrids by leaf spot. Better leaf spot resistance is needed in the tetraploid pollinator lines. New tetraploids, produced from lines with better resistance to leaf spot, should give triploid hybrids with better performance where leaf spot is serious, than the triploid hybrids presently available.

Leaf Spot Observational Plot

Conducted by: G. E. Coe

Location: Plant Industry Station, South Farm Plot F-11, Beltsville, Md.

Date of Planting: April 25. 1963

Date of Harvest: October 18, 1963

Experimental Design: One 4-row observational plot

Size of Flots: 4 rows X 20' 24" apart

Harvested Area per plot for Root Yield: 4 rows X 20 feet

Samples for Sucrose Determinations: 2 samples -- all the beets in each of the two middle rows taken as samples.

Stand Counts: Harvested beets counted when weighed

Recent Field History: 1960 - Beets - 400# 10-6-4 + 2% Boron, 2 tons limestone 1961 - Rye - 400# 10-6-4 + 2% Boron, 2 tons limestone 1962 - Rye - 400# 10-6-4 + 2% Boron, 2 tons limestone

Fertilization of Beet Crop: 115 # N. 400# 10-6-4 + 2% Boron, 2 tons limestone

Black Root Exposure: Slight

Loaf Spot Exposure: Moderately severe starting early in July

Other Diseases and Pests: Light infestation of root aphids at harvest.

Soil and Seasonal Conditions: Drought conditions developed by early

August and were terminated by irrigation
on August 20.

Reliability of test: Good for estimating leaf spot resistance.

Year: 1963

Observational Plots

Location: U.S.D.A. Nursery, Beltsville, Md.

One 4-row plot.

	(Resu	lts giv	en as aver	age of 4 r	ows)	
	Acre-Y			1	1 8	Beets
Variety and Description	Gross I			1	I Leaf I	Per 100'
	Sugar :	Roots	Sucrose	: Purity	I Spot I	Row
	Pounds I	-		Percent	1 1	Control of the last of the las
SP 61151-0 MM	7697 1:			88.03	1 2.50 1	91
SP 6122-0 MM	7546 2 8	26.57	14.20	86.24	1 3.00 1	
SP 5822-62R MM	5792 :	21.14	13.70	: 86.17	1 3.25 1	104
U.S. 401 MM	5053	21.78		: 81.81	1 4.75 1	-
SL 126 EN X SP 5460-0	5195 :	21.12	12.30	1 80.75	1 4.75	104
SP 623000-02 2n mm Hybrid	4226	17.11	12.35	81.83	1 3.75	88
	4105	15,73		1 82.10	1 4.00 1	78
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	4836 :			83.38	1 4.00 1	88
SP 623000-012 " "	4716	20.24		81.60	1 3.25 1	82
SP 623359-02 "	4960	19.08		81.80	1 4.75 1	79
	5454 1	23.21	11.75	1 80.39	1 4.50 1	85
SP 623359-09 " "	4542 1	:19.67	11.55	81.40	1 5.75	92
SP 623359-010 " "	6126 1	22.44	13.65	82.89	1 3.25	90
SP 623359-012 " "	5052 1	20.62	12.25	1 80.19	1 4.25	
	4434	18.71		1 80.32	: 3.00 :	69
SP 623360-05 " "	4802	21.63	: 11.10	1 78.52	1 3.00	
	: 4992	20.05	12.45	1 80.99	1 3.25 1	
	4816		13.80	1 86.57	1 4.00	1 -
	4546 1	17.22		1 85.61	1 5.00	77
5P 623360-010 " "	65158	21.79	14.95	: 84.91	1 2.00	83
SP 623356-04 3n mM Hybrid	5908	23.08		1 82.26	1 3.50	77
SP 623356-05 "	: 5428	21.54		81.73	1 4.00	11
SP 623356-07 " "	5763			82.56	1 3-75	
SP 623356-08 " "	6102	22.03	13.85	\$ 85.84	1 4.25	00
SP 623356-09 " "	6254101		13.55	82.25	# 4.00	71
SP 623356-014 " "	65497	-/ -	-21.	85.40	1 4.00	, ,
SP 623356-015 " "	: 65916 1		13.55	82.97	3.75	
SP 623356-016 " "	: 6135		: 13.95	82.54	7000	107
SP 623356-017 " "	: 71173	25.06		85.01		106
SP 623357-02 " "		20.62		84.87	4.00	89
SP 623357-011 " "	69824			83.86	3.50	72
SP 623357-012 " "	6052		13.15	83.19	1000	74
SP 623357-013 " "	7-2	19.30	-	83.65	3.00	149
SP 623358-03 " "	62511		14.20	84.29	20 = 2	78
5F 623358-04 " "	: 6655 5	23.19	14.35	85.87		76
SP 623358-07 " "	: 62879			76.73	7100	85
General Mean	5679	21.50	13.16	83.01	3.85	84

ory V

Inheritance of the Monogerm Characteristic

For several years, tests have been conducted in an attempt to determine the nature of the relationship of the monogerm characteristic derived from three sources. The characteristic was obtained from the American source (SL 101), the Russian monogerm, and the monogerm from a Beta maritima imported from England (PI 211874). Classification of plants as either monogerm or multigerm was difficult, because they may range in fruit type from 100 percent monogerm through plants with increasing numbers of fruits developing from "double" and "triple" flower clusters. The other extreme of fruit type was found in plants whose fruits developed from clusters of four or more flowers—sometimes from as many as 10. For this reason, it was necessary to set up an arbitrary fruit—type classification system. The classification used in the studies at Beltsville is similar to the one used by Owen and Ryser in the 1959 Sugar Beet Research Report but should not be thought of as being identical. The Beltsville classification is as follows:

- 0 All flowers single, except that as many as three double flowers are allowed on the contral floral axis above the uppermost lateral branch.
- 2 .. Flowers mostly single; but some doubles permitted on the central axis.
- 4 At least half the flowers single; many doubles occurring on central axis or also on side branches. An occasional triple flower on the central axis above the uppermost lateral branch permissible.
- 6 Mostly doubles; less than 50 percent single flowers. May be all double flowers. Some triple flowers permissible.
- 8 More than 50 percent of flowers triple. Only rarely are single flowers permissible. Clusters of four or more flowers often present.
- 10 Mostly clusters of four or more flowers. Some triples permissible. No singles or doubles present.

Classes 0, 2, and 4 are considered to be monogerm, because they rarely produce plants in selfed progenies which may be placed in classes 6, 8, and 10. Classes 6, 8 and 10 are considered multigerm, because they may produce a minority of plants in selfed progenies which can be placed in classes 0, 2, or 4.

Sometimes when it was difficult to classify a plant it was given the number between the two classes.

Two plants were found in a B. maritima introduction (PI 211874) from Devon, England, having single pollen-sterile flowers. These were pollinated with pollen from several leaf spot and black root tolerant multigerm

breeding lines. Only a few fruit were set on these two Beta maritima plants. The fruit produced seven seedlings that were brought to flower and allowed to freely interpollinate. All seven plants in this F1 generation were multigerm and pollen fertile, indicating recessive factors in the original B. maritima plants for monogermness and male sterility. Seed was harvested individually from the F, plants and theoretically should have produce F2 progenies with similar ratios of monogerm to multigerm plants and similar ratios of pollen-fertile to pollen-sterile plants. The data in table 1 indicate that such is not the case. The ratios varied widely among the F2 progenies, and there was no relation between the multigerm to monogerm ratio and the pollen-fertile to pollen-sterile ratio. It can be concluded that the plants in the original cross were widely divergent genetically and/or that many factors influenced the expression of these characteristics. Plants breeding true for the monogerm character were recovered in later generations. These plants were used in later crosses with the American monogerm.

Each year since 1953, crosses between plants of the American monogerm source and leaf spot and black root resistant multigerm plants were made. The seed was harvested from each monogerm plant individually, but of course, in the ${\rm F_1}$ progenies it was not possible to distinguish plants having a common pollinator from those having other pollinators. Selected ${\rm F_1}$ plants, all of which were multigerm, were allowed to freely interpollinate. Seed was harvested from each ${\rm F_1}$ plant individually. This seed was planted to recover monogerm plants in the ${\rm F_2}$ generation. The ratio of multigerm plants to monogerm plants varied widely from progeny to progeny. This result is similar to the result of the cross which furnished the data for table 1. The percentage of monogerm plants was most commonly between 10 and 15 percent, although some ${\rm F_1}$ progenies had as few as 1 percent monogerm plants and a few progenies had as many as 50 percent monogerm plants. Again this indicates many factors influencing the expression of fruiting type and a wide genetic variation of the plants used in the original crosses.

Table 1.--Fruit classification and pollen fertility classification of F $_2$ progeny of a cross between monogerm male-sterile Beta maritima X multigerm pollen-fertile sugarbeet.

Seed No.	Fruit	classi	fication	Male-fertility classification					
of F1	Multiger	m Monoge	erm M-/mm	Pollen-	Pollen-	PF/MS			
plant	<u> </u>	ŭ	Ratio	fertile	sterile	Ratio			
	(number)	(numbe:	,	(number)	(number)				
563043-1	36	23	1.57:1	43	16	2.69:1			
563043-2	64	12	5.33:1	54	22	2.45:1			
563043-3	38	21	1.81:1	49	10	4.90:1			
563043-4	25	2	12.50:1	19	8	2.38:1			
563043-5	21	32	.66:1	29	24	1.21:1			
563043-6	3	2	1.50:1	3	2	1.50:1			
563043-7	67	12	5.58:1	40	39	1.03:1			
Totals	254	104	2.44:1	237	121	1.96:1			

I. Cross between Russian Monogerm X American Multigerm

When the Russian monogerm plants were received, crosses were made in bags in the greenhouse. A Russian monogerm plant with class 3 fruit type was bagged with an American multigerm having class 8 fruit type and shall be referred to as Cross No. 1. Both plants of this cross appeared to be self sterile. The classification of the fruits of the F, plants from the Russian monogerm and subsequent generations are presented in table 2. All the F₁ plants grown from the P₁ Russian monogerm seed were multigerm. Many of the F1 plants were self sterile and consequently were lost when selfing was attempted. Only four of the selfed F1 plants produced seed. To guard against complete loss of the line, four paired crosses were made among the F₁ plants. Again it can be seen that the ratios of multigerm plants to monogerm plants in the F2 progenies varied greatly. The totals of the F2 progenies give a ratio of 4:1 monogerm plants to 1 monogerm plant. Another point of interest is that F2 progenies of reciprocal crosses were more similar to each other in fruit type than to progenies of other F1 crosses. Generally, this was true in all the paired matings in the studies of inheritance of fruit type. In item 12, table 2, two F3 multigerm plants were obtained from a selfed F2 monogerm plant. Hence, a multigerm type was recovered from a monogerm plant. This would not be expected if the multigerm factor were completely dominant over the monogerm factor. Another point of interest is the three monogerm plants of class 0 fruit type recovered in the F2 generation, even though the P1 monogerm was only of class 3 fruit type.

The fruit classifications of the F_1 progeny and subsequent generations of the seed harvested from the multigerm P_1 plant are presented in table 3. The results of the reciprocal cross and the cross were quite similar. All the F_1 hybrids were multigerm. There was great variation in the ratio of multigerm to monogerm plants among the F_2 progenies. The totals of the F_2 progenies of the reciprocal cross gave a ratio of 7.07 multigerm plants to 1 monogerm plant. In item 6, table 3, an F_2 plant with class 5 fruit produced plants with class 2, 4, and 6 type fruit in the F_3 progeny. Admittedly it was difficult to say definitely whether the F_2 plant was multigerm or monogerm, but the F_3 progeny had 10 plants that could be classified as monogerm and only 6 plants that could be classified as multigerm. This indicates a lack of dominance of the multigerm gene and perhaps a strong effect of modifying factors.

In the F_2 progenies there were also four F_2 plants with class 0 fruit. Thus, a better type monogerm fruit than that of the Russian P_1 parent was recovered in the F_2 generation.

It should be noticed in table 3 that two of the F_1 crosses--items 10 and 11 and items 21 and 22--gave no monogerm plants in the F_2 generation. Unfortunately, this can be accounted for by the possibility of a low percentage of pseudo-self-fertility in the multigerm P_1 plant.

Table 2. Fruit classification of descendants of cross #1---Russian monogerm (class 3 fruit type) sugarbeet X American multigerm (class 8 type fruit) sugarbeet

Item	Generation of Parent(s)	Female Pa	Type or S		Male Pare	nt Type	rel ma		ger		geny	W.	tigerm
1	P ₁	Russian	-	_				-	-	er of	-	-	10
-	-1	mm	3	X	Amer. MM	8	593086-1	0	0	0	10	5	4
2	Fl	593086-1	6	70	None	-	603785.	0	1	.1	5	4	0
3	Fı	91	6	Ø	86	-	603786.	0	0	1	3	2	1
4	Fı	n	10	100	98	-	603787.	0	1	1	5	2	0
5	Fı	n	10	H	п	-	603788.	0	2	0	1	6	4
6	Fı	593086-1	6	X	593086-1	-	603755-1	0	0	3	14	3	0
7	Fı	Reciproca	l of	Ite	m 6		603755-2	0	0	2	10	3	1
8	Fl	593086-1	6	X	593086-1	8	603756-1	1	0	1	2	3	2
9	Fı	Reciproca	1.	of	Item 8		603756-2	1	0	1	8	4	4
10	Fı	593086-1	8	X	593086-1	8	603757-1	0	2	4	9	7	1
11	Fı	Reciproca	1	of	Item 10		603757-2	0	2	1	8	3	2
12	F ₂	603757-1	4	×	None	-	623766.	0	0	0	2	0	0
13	Fl	593086-1	8	X	593086-1	8	603758-1	0	0	1	0	0	0
14	Fl	Reciproca	1	of	Item 13		603058-2	1	0	3	4	1	1
		Number pla Totals of Number pla	F ₂ I	roge	Progeny enies 3 Progeny			0 3 0	0 8 0	0 19 0	10 69 2	5 38 0	4 16 0

Table 3. Fruit classification of descendants of the reciprocal of cross #1
---American multigerm (class 8 fruit type) X Russian monogerm
(class 3 fruit type) sugarbeet.

Circles Const.	Geno of]	Female Pa	rent	t x Male Parent			Seed Prog Fema	Fru	iit (ifica geny	tio	n of
Item	Generation of Parent(s)	Seed Number	Fruit	or	Seed Number	Type		0	2	m <-		8	ltigerm
1 2 3	P ₁ F ₁ F ₁	Amer. MM 593086-2 593086-2	8 6 6	X	Russian mm None	3 -	593086-2 603789. 603790.	0 1 1	0 0 1	0 1 0	8 0 1	3 0 1	11 3 0
4 5 6	Fi	593086-2 Reciproca 603769-1	6	X of M	593086-2 Item 4 None	6	603769-1 603769-2 623769.	0 1 0	0 0 1	2 1 9	11 10 6	540	1 1 0
7 8 9	F ₁ F ₂	593 0 86-2 Reciproce 603770-2		X of Ø	593086-2 Item 7 None	8	603770-1 603770-2 623770.	0 0	0 1 0	2 4 0	11 6 1	7 5 0	2 0 0
10	F ₁	593086-2 Reciproca		X of	593086-2 Item 10	10	603771-1 603771-2	0	0	0	3 2	3 2	10 7
12 13	F ₁	593086-2 Reciproce		X	593086-2 Item 12	8	603775 - 1 603775 - 2	0	0	2	6	8 9	2
14 15 16	F ₁ F ₂	593086-2 Reciproca 603774-1	11	X of N	593086-2 Item 14 None	10	603774-1 603774-2 623771.	0 0	0 0	0 4	6 4 2	6 10 2	4 1 0
17 18	F ₁	593086-2 Reciproce		X	593086-2 Item 17	10	603772 - 1 603772 - 2	0	0	2	6 5	4	3 4
19 20	F ₁ F ₁	593086-2 Reciproca	10	X	593086-2 Item 19	10	603773 - 1 603773 - 2	0	0	3	1	7 2	2 2
21	F ₁ F ₁	593086-2 Reciproca	10	X	593086-2 Item 21	10	603776 - 1 603776 - 2	0	0	0	1	5 2	12
	TOU	ber of pla als of F ₂ als of F ₃	Prog	renie	8			0 4 0	0 2 1	0 23 9		3 87 2	11 55 0

II, Crosses between Russian Monogerm and American Monogerm

Cross No. 2 - Self-sterile Russian monogerm, class 5 fruit type X selffertile American mm class I fruit type .-- The fruit classification of F1, F2, and F3 progenies from this cross are presented in table 4. The P1 Russian monogerm plant contained only about 50 percent monogerm fruits, the remainder being doubles except for a few triples along the central axis. Since it was not definitely a monogerm plant, the fruit was classed as No. 5 rather than No. 4 or No. 6. The F1 progeny had plants varying in fruit type from 0 to 6, indicating the heterogeneity of factors influencing fruit type in the P_1 plants. Since multigerm F_1 plants were in the minority, it can be concluded that the dominance of the multigerm factor(s) from the Russian P, plant had been overcome by the monogerm factor or other factors modifying fruit type. It should be noted in item 5, table 4, that multigerm plants were recovered in the F2 generation from a self-pollinated F1 plant having class 0 fruit. In this F, plant the multigerm factors were completely hidden by factors for monogermness. This is also true for one or both of the two F₁ plants crossed in items 8 and 11, table 4. It is also true for the self-pollinated F, plant in item 21, table 4. On the otherhand, the monogerm F2 plants in items 6, 7, and 17, table 4, bred true for the monogerm fruit type, apparently having few or no factors for multigermness.

Seed from the reciprocal cross, i.e., from the American monogerm plant SP 57791-01, was planted and the plants used in test crosses with ${\rm F}_1$ hybrids from another American monogerm X Russian monogerm hybridization. Since those data are not pertinent to this study of closebred descendants, they will not be presented here.

A trend was noticed in all the inheritance studies of fruit type; namely, when plants are selected at the extreme ends of the range in fruit type and increased by selfing (or crossing with another plant in the progeny with a similar fruit type), their offspring usually tend to have a range of fruit types similar to that of the previous generation, only rarely having a plant with a fruit type beyond the range of the selected parent. This was especially true at the upper end of the fruit classification scale. For instance, if a plantwith class 8 fruit was selected from a progeny with a range of fruit types distributed about a median of 2 or 4, the selfed progeny always had a range of fruit type distributed about a median of 2 or 4 and only rarely was there a plant with a class 10 fruit type.

Cross No. 3 - Self-sterile Russian monogerm plant with class 5 fruit X self-fertile American monogerm plant, SP 5831-016, with class 1 fruit.—The fruit classification of F_1 and F_2 progenies are presented in table 5. The F_1 progeny had fruit types ranging from 2 to 6, again indicating the heterogeneity of at least one of the P_1 monogerm parents. Only 2 of the 19 plants in the F_1 progeny could be classed as multigerm, indicating the lack of dominance of the multigerm factor over monogermness. The multigerm to monogerm ratios in the F_2 progenies varied greatly. The total of all the F_2 progenies gave a ratio of 1 multigerm plant to 1.19 monogerm plants. This is further evidence against simple single-gene control of fruit type.

Table 4. Fruit classification of descendants of cross #2---self-sterile Russian monogerm (class 5 fruit type) X self-fertile American monogerm (class 1 fruit type).

	of F	Female Pa	rent	X	N/- 7 - 73	ent	Seed No.	Fru	it C	lassi Pro	ficat	tion	of
Item	Parent(s		Type	N		Frui	Progeny of Female Parent	mon	ogem			nult:	Lgerm
	(8)	Number	+ 0 + 0		Number	7.6	101010	0	2	4	6	8	10
										ber o		ints	
1 2 3 4 5	P ₁ F ₁ F ₁ F ₁ F ₁ F ₁	Russian mm 593084-1 593084-1 593084-1	1 5 4 4 0	X X	57791-01 None	1	593084-1 603778. 603779. 603780. 603777.	3 1 1	5 1 0 0 0	10 6 1 2 1	8 8 1 2	0 4 0 2 1	0 0 0
6	F ₁ F ₁	593084-1 Reciprocal	2	Xof	593084-1 Item 6	2	603735-1 603735-2	16	8	2	0	0	0
8 9 10 11	F1 F2 F1	593084-1 603736-1 603736-1 Reciprocal	2 6 6	X M of	593084-1 None " Item 8	2	603736-1 623720. 623721. 603736-2	5 0 0 4	2 1 1 0	5 0 4 2	9 9 19 8	0 1 2 1	0 0 0
12 13 14 15 16 17	F1 F2 F1 F2 F2 F2	593084-1 603737-1 603737-1 Reciprocal 603737-2 603737-2	46560	X M of M	593084-1 None " Item 12 None	4 - - -	603737-1 623722. 623700. 603737-2 623723. 623725.	5 8 1 6 5 46	1 3 0 3 1	4 3 0 8 8 0	5 15 4 6 14 0	200300	0 0 0 0 0 0
18	F1 F1	593084-1 Reciprocal	4	X	593084-1 Item 18	4	603738-1 603738-2	1	0	5	0	1 3	0
20 21 22 23 24	F1 F2 F2 F2 F2	593084-1 603739-1 Reciprocal 603739-2 603739-2	4 0 6 4	X of Ø	593084-1 None Item 20 None	4 -	603739-1 623728. 603739-2 623729. 623730.	28401	0 4 1 0 1	1 3 1 1 4	2 1 3 19 8	0 0 1 3 0	0 0 0 0
25 26 27 28	F1 F2 F2 F1	593084-1 603740-1 603740-1 Reciprocal	6	X N Of	593084-1 None " Item 25	-	603740-1 623701. 623702. 603740-2	6 0 0 5	0 0 0	3 0 1 2	11 0 0 13	1 0	0 0 0
29	Pl	Reciprocal		of	Item 1		593084-2	9	4	0	4	0	0
		Totals of 1 Totals of 1 Totals of 1	Fo P	rog	enies			10 73 69	9 22 11	10 47 24	12 83 89	0 22 8	0 0 0

Table 5. Fruit classification of descendants of cross #3--Russian monogerm (class 5 fruit type) X self-fertile American monogerm (class 1 fruit type).

*****	of :	Female Pa	rent	X	Male Pare	ent	Seed No.			assif Prog	eny		
Item	Generation of Parent(s)	Seed Number	Type		Seed Number	Type	of Progeny of Female Parent	•	2	4	6	8	tigerm
									Num	per of	Plai	aus	
1	P ₁	Russian	5	x	5831-016	1	593085-1	0	1	16	2	0	0
2	Fa	593085-1	4	X	593085-1	2	603745-1	6	3	6	4	0	0
	-	Reciproca							3	7	3	0	0
4	F ₁	593085-1	4	X	593085-1	4	603746-1	7	. 1	2	13	0	0
5	F ₁	593085-1	4	X	593085-1	4	603747-1	2	1	2	16	0	0
6	F ₁	593085-1	6	X	593085-1	6	603748-1	3	1	1	4	0	0
7	Fı	Reciproca	1	of	Item 6		603748-2	1	1	0	2	0	0

III. Crosses between Beta maritima monogerm source X American monogerm

Cross No. 4 - Beta maritima monogerm with class 0 fruit type X American monogerm with class 2 fruit type, Seed harvested from the B. maritima monogerm source produced only 6 plants - 5 with class 0 fruit and 1 with class 2 fruit (table 6). Two of the F_1 plants with class 0 fruit type crossed together produced 9 plants in the F_2 progeny, all of which had class 0 fruit (items 2 and 3, table 6).

The seed harvested from the American monogerm plant produced 11 F_1 plants having fruit type ranging from 0 to 4 (item 4, table 6). One of the F_1 plants with class 4 fruit was self-pollinated. Its F_2 progeny had a range of fruit type similar to the previous generation (item 5, table 6). Two other plants having class 4 fruit in the F_1 progeny were crossed. The F_2 progeny of one of the plants had 14 multigerm plants and only 1 monogerm plant (item 13, table 6), and the F_2 progeny of the other plant had 7 multigerm and 7 monogerm plants in the F_1 progeny (item 14, table 6). Other F_1 plants in the progeny 593081-2 could have resulted from selfing of the self-fertile American monogerm P_1 plant. The conclusion may be made that the P_1 plants of this cross carried hidden factors for multigermness that were able to express themselves in the F_2 generation.

Cross No. 5 - Monogerm male-sterile plant from B. maritima source with class 2 fruit X self-fertile American monogerm with class 1 fruit.—Seed harvested from the P_1 male-sterile plant produced 9 F_1 plants, all of which had class 6 fruit (table 7). In this case it would seem that two different complementary loci were involved. If this were true, the progenies would have given a dihybrid ratio; however, they did not. Too many monogerm plants were produced. The F_3 progeny of self-pollinated F_2 plants gave a ratio of 8.33 multigerm plants to 1 monogerm plant; but again this does not approach a simple inheritance ratio, which indicates many factors influencing fruit type.

The seed from the other P_1 plant in this cross produced descendants with class 0 to 2 fruit type. Since the P_1 parent was self fertile, it is unlikely that any of the F_1 plants from this parent were actually F_1 hybrids. From their appearance, it is probable that they were inbreds.

Table 6. Fruit classification of descendants of cross #4---self-sterile monogerm derived from Beta maritima source (class 0 fruit type)

X self-fertile American monogerm (class 2 fruit type)

	Ger	Female Par	ent	X	Male Pare	nt	Seed No.	Fru	lt Cle		ficat	ion	of
1-4	Par			or			of	mono	ogerm	<-	1 -> m	ult:	lgerm
Item	Generation of Parent(s)	Seed Number	Type	<u>n</u>	Seed Number	Type Fruit	Progeny of Female Parent	0	2	4	-	8	10
1	Pl	B. mar.	0	х	Amer. mm	2	593081-1	5	Numb	o o	f Pla	nts 0	0
2	Fl	593081-1	0	X	593081-1	0	603710-1	4	0	0	0 .	0	0
3	Fl	Reciprocal	L	of	Item 2		603710-2	5	0	0	.0	0	0
4	Pl	Reciprocal	L	of	Item 1		593081-2	6	2	3	0	0	0
5	Fı	593081-2	4	M	None		603795.	7	6	14	0	0	0
6	Fl	593081-2	0	х	593081-2	0	603711-1	6	0	1	0	0	0
7	F2	603711-1	4	Ø	None	-	623703.	1	9	1	0	0	0
8	Fl	Reciprocal	L	of	Item 6		603711-2	2	0	0	0	0	0
9	Fı	593081-2	2	X	593081-2	2	603712-1	8	5	0	0	0	0
10	Fı	Reciproca	L	of	Item 9		603712-2	Ţŧ.	0	0	0	0	0
11	Fl	593081-2	2	X	593081-2	2	603713-1	10	3	0	0	0	0
12	Fl	Reciprocal	l	of	Item 11		603713-2	0	0	0	0	0	0
13	Fı	593081-2	14	X	593081-2	4	603714-1	1	0	0	11	3	0
14	Fl	Reciprocal	1	of	Item 13		603714-2	2	0	5	6	1	0
	Tot	al of F ₁ Prals of F ₂ lal of F ₃ Pr	Prog	enie	S			11 49 1	3 14 9	3 10 1	0 17 0	0 4 0	0 0

Table 7. Fruit classification of descendants of cross #5---male-sterile monogerm derived from Beta maritima source (class 2 fruit type)

X self-fertile American monogerm (class 1 fruit type)

	Gene of Pa	Female Pa	rent	Х	Male Pare	ent	Seed No.			Pro	ficat		
Item	Generation f Parent(s	Seed	Type	or	Seed	Type	of Progeny of Female Parent					,	igerm
	<u> </u>	Number	c+		Number #		rateno	0	Numi	ber	of Pl		
1	Pl	B. mar.	2	x	Amer. mm	1	593082-1	0	0	0	9	0	0
2	Fl	593082-1	6	Ø	None	-	603791.	3	1	4	9	1	0
3	F ₂	603791.	4	Ø	None	-,	623708.	3	0	0	1	0	0
4	F ₂	603791.	6	Ø	11	-	623709.	0	0	3	25	0	0
5	F ₂	603791.	6	Ø	11	-	623710.	0	0	2	13	0	0
6	Fl	593082-1	6	X	593082-1	6	603715-1	0	0	0	2	0	0
7	Fı	Reciproca	1	of	Item 6		603715-2	4	1	1	7	1	0
		Number Pla Totals of Totals of	F ₂ P	roge	enies	7		0 7 3	0 2 0	o 5 5	9 18 39	0 2 0	0 0

Cross No. 6 - Monogerm male-sterile plant from Beta maritima source having class 4 fruit X self-fertile American monogerm having class 1 fruit. Seed harvested from the male-sterile plant produced an F, progeny having a range of fruit type from 2 to 6 (table 8). Contrast this to the previous cross where all the F1 plants had class 6 fruit type. In crossing two monogerm plants having the monogerm factors derived from different sources, one cannot predict to what degree monogermness will occur in the F1 generation. In items 7 and 8, table 8, multigerm plants were also recovered from a cross between two monogerm F1 plants having class 2 fruit. One or both of the F₁ plants, even though they were monogerm, must have been carrying factors for multigermness. Attempts were made in the F1 and F2 generations to recover plants breeding true for the multigerm characteristic by self-pollinating plants with class 6 fruit. These attempts were unsuccessful, which means that they were all carrying factors for monogermness. It should not be concluded that true-breeding multigerm plants cannot be extracted from this line of breeding, because only a limited number of self-fertile plants were bagged.

Conclusions

- 1) No two monogerm factors from the three sources are identical alleles.
- 2) It is likely that the monogerm factor from the Beta maritima source is at a different locus from the locus of the American monogerm factor.
- 3) Many factors exert an influence on fruit type.

Table 8. Fruit classification of descendants of cross #6---male-sterile monogerm derived from Beta maritima source (class 4 fruit type) X self-fertile American monogerm(class 1 fruit type).

		Female Pa	ren	t o	Male Par	ent	Seed No.		Fruit Classification of Progeny. monogerm < -> Multigerm						
		Seed Number		10	Seed Number		Progeny of Female Parent		2	4		8	10		
1	P ₁	B. mar.	4	x	Amer. mm	1	593083-1	0	3	15	12	0	0		
2	F ₁	593083-1	6	圆	None	~	603792.	4	0	3	11	0	0		
3	F2	603792.	6	Ø	11	-	623711.	1	1	0	1	0	0		
4	F2	603792.	6	10	11	_	623712.	1	1	1	9	0	0		
5	Fı	593083-1	6	Ø	None	-	603793.	5	2	1	10	1	0		
6	F ₂	603793.	6	U	11	-	623713.	0	0	0	1	0	0		
7	F ₁	593083-1	2	X	593083-1	2	603716-1	2	0	0	2	0	0		
8	Fl	Reciprocal		of	Item 7		603716-2	2	1	2	1	0	0		
9	F ₁	593083-1	4	х	593083-1	4	603718-1	4	1	7	17	0	0		
10	F ₂	603718-1	6	ळ	None	-	623705.	7	3	6	7	0	0		
11	Fl	Reciprocal		of	Item 9		603718-2	5	1	2	12	0	0		
12	Fı	593083-1	6	x	593083-1	6	603720-1	1	0	1	12	1	0		
13	F ₁	Reciprocal		of	Item 12		603720-2	2	0	3	7	2	0		
14	Fı	593083-1	6	x	593083-1	6	603721-1	2	0	3	2	1	0		
									0		0	0	0		
		Number of p Totals of F Totals of F	2 1	roge	nies	ny		0 27 9	3 5 5	15 22 7	12 74 18	0 5 0	0 0 0		

