Matemática Discreta

2019/20 Indução

Professores João Araújo, Júlia Vaz Carvalho, Manuel Silva Departamento de Matemática FCT/UNL

Baseados em slides elaborados pelos Professores Drª. Isabel Oitavem e Drª. Cecília Perdigão

Programa

- Parte 1 Conjuntos e Relações e Funções
 - Conjuntos, representações e operações básicas; conjunto das partes; cardinalidade.
 - Relações binárias: equivalências e ordens parciais.
 - 3 Funções: bijecções; inversão e composição.
- Parte 2 Indução
 - Definições indutivas
 - 2 Indução nos naturais e estrutural
 - Primeiro e segundo princípios de indução
 - Funções recursivas e provas por indução
- Parte 3 Grafos e Aplicações
 - Generalidades
 - Onexidade
 - Árvores

Departamento de Matemática (FCT/UNL)

- Grafos Eulerianos
- 6 Matrizes e grafos

Parte 2 - Indução 2.1 - Definições indutivas: Definições indutivas de conjuntos

2.1 - Definições indutivas de conjuntos

Com um número finito de regras é possível definir conjuntos com um número infinito de elementos. A este tipo de definição dá-se usualmente o nome de definição indutiva ou recursiva.

Numa definição indutiva temos:

- Regras (axiomas) que determinam os elementos básicos (constantes) do conjunto.
- Regras para obter novos elementos a partir dos que já estão no conjunto.

Dizemos que um conjunto com um número infinito de elementos é um conjunto indutivo se pode ser gerado pelas regras anteriores.

Exemplo

O conjunto \mathbb{N}_0 é um conjunto indutivo pois,

- $0 \in \mathbb{N}_0$
- ② Se $n \in \mathbb{N}_0$ então $suc(n) \in \mathbb{N}_0$, onde suc(n) denota sucessor de n em \mathbb{N}_0 , ou seja, o elemento que cobre *n* na cadeia (\mathbb{N}_0, \leq) .

O conjunto dos números pares não negativos P é definido em compreensão por

$$\mathbb{P} = \{2n : n \in \mathbb{N}_0\}$$

Também é possível definir este conjunto indutivamente da seguinte forma:

- $0 \in \mathbb{P}$.
- $x \in \mathbb{P} \Rightarrow \operatorname{suc}(\operatorname{suc}(x)) \in \mathbb{P}.$

Exemplo

Seja SEQ o conjunto de todas as seguências finitas de elementos naturais. Por exemplo, são elementos de SEQ as sequências (1,2), (3,4,10) ou (3, 2, 1, 4, 3).

Como definir este conjunto indutivamente?

- **1** A sequência vazia () \in SEQ
- ② Se $x \in \mathbb{N}_0$ e $s \in SEQ \Rightarrow (x, s) \in SEQ$.

Como justificar, usando a definição indutiva de \mathbb{N}_0 que $4 \in \mathbb{N}_0$? Sabemos que:

- $0 \in \mathbb{N}_0$ pois 0 pela regra **1** é um elemento básico de \mathbb{N}_0 .
- $1 \in \mathbb{N}_0$ aplicando a regra **2** que diz que como $0 \in \mathbb{N}_0$ então $suc(0) \in \mathbb{N}_0$.
- $2 \in \mathbb{N}_0$ aplicando a regra **2** que diz que como $1 \in \mathbb{N}_0$ então $suc(1) \in \mathbb{N}_0$.
- $3 \in \mathbb{N}_0$ aplicando a regra **2** que diz que como $2 \in \mathbb{N}_0$ então $suc(2) \in \mathbb{N}_0$.
- $4 \in \mathbb{N}_0$ aplicando a regra **2** que diz que como $3 \in \mathbb{N}_0$ então $suc(3) \in \mathbb{N}_0$.

Exemplo

Mostre que a sequência $(3,4,2,4) \in SEQ$. Temos:

- $() \in SEQ$ axioma
- $4 \in \mathbb{N}_0$ e () $\in SEQ \Rightarrow (4, ()) = (4) \in SEQ$
- $2 \in \mathbb{N}_0 \text{ e } (4) \in SEQ \Rightarrow (2, (4)) = (2, 4) \in SEQ$
- $4 \in \mathbb{N}_0 \text{ e } (2,4) \in SEQ \Rightarrow (4,(2,4)) = (4,2,4) \in SEQ$
- $3 \in \mathbb{N}_0$ e $(4,2,4) \in SEQ \Rightarrow (3,(4,2,4)) = (3,4,2,4) \in SEQ$

Regras de inferência

Um sistema dedutivo é constituído por um conjunto de axiomas e regras (regras de inferência).

As regras de inferência são normalmente escritas na forma

$$J_1 \dots J_n$$
 ___ implica - traço de fração

onde $J_1 \dots J_n$, J são asserções ou proposições, tendo-se n=0 quando a regra J é um axioma.

Exemplo

Usando a definição indutiva de \mathbb{N}_0 podemos escrever assim as suas regras de inferência:

$$\frac{n\in\mathbb{N}_0}{0\in\mathbb{N}_0}\quad e\quad \frac{n\in\mathbb{N}_0}{suc(n)\in\mathbb{N}_0}$$

O conjunto dos números pares não negativos $\ensuremath{\mathbb{P}}$ foi definido indutivamente da seguinte forma:

- $0 \in \mathbb{P}.$
- $x \in \mathbb{P} \Rightarrow \operatorname{suc}(\operatorname{suc}(x)) \in \mathbb{P}.$

as sua regras de inferência são:

$$0 \in \mathbb{P}$$
 e $\frac{x \in \mathbb{P}}{suc(suc(x)) \in \mathbb{P}}$

Exemplo

Seja SEQ o conjunto de todas as sequências finitas de elementos naturais definido indutivamente por

- **1** A sequência vazia () \in *SEQ*
- 2 Se $x \in \mathbb{N}_0$ e $s \in SEQ \Rightarrow (x, s) \in SEQ$.

as suas regras de inferência são:

$$\frac{1}{() \in SEQ} \quad e \quad \frac{x \in \mathbb{N}_0 \quad s \in SEQ}{(x,s) \in SEQ}$$

Uma proposição J diz-se derivável se, e só se, uma das seguintes situações ocorre:

- — é um axioma.
- $\frac{J_1...J_n}{J}$ é uma regra de inferência e $J_1...J_n$ são asserções deriváveis.

Podemos determinar se um elemento pertence a um dado conjunto indutivo aplicando as regras de inferência pela ordem contrária (trabalhando de baixo para cima).

Exemplo

 $suc(suc(0)) \in \mathbb{N}_0$ é derivável de acordo com a definição de \mathbb{N}_0 anteriormente descrita:

$$\frac{\frac{0 \in \mathbb{N}_0}{suc(0) \in \mathbb{N}_0}}{suc(suc(0)) \in \mathbb{N}_0}$$

Como justificar, usando as regras de inferência de \mathbb{N}_0 , que $4 \in \mathbb{N}_0$? Temos:

$$\frac{\frac{\frac{Suc(0)\in\mathbb{N}_{0}}{suc(suc(0))\in\mathbb{N}_{0}}}{\frac{suc(suc(suc(0)))\in\mathbb{N}_{0}}{suc(suc(suc(0)))\in\mathbb{N}_{0}}}}{suc(suc(suc(suc(0))))\in\mathbb{N}_{0}}$$

Exemplo

Mostre, usando as regras de inferência, que a sequência $(3,4,2,4) \in SEQ$. Temos:

$$3 \in \mathbb{N}_{0} \quad \frac{4 \in \mathbb{N}_{0} \quad \frac{4 \in \mathbb{N}_{0} \quad \frac{4 \in \mathbb{N}_{0} \quad () \in SEQ}{(4) \in SEQ}}{(2,4) \in SEQ}}{(4,2,4) \in SEQ}}{(3,4,2,4) \in SEQ}$$

Palavras

Uma palavra é uma sequência finita de zero ou mais elementos colocados uns a seguir aos outros por justaposição.

Os elementos individuais com os quais podemos construir palavras constituem o **alfabeto** habitualmente representado por Σ .

Uma palavra sem elementos designa-se por **palavra vazia** e denota-se por ϵ .

O comprimento de uma palavra é a quantidade de caracteres dessa palavra, e pode ser qualquer valor inteiro não negativo.

A palavra vazia é a única palavra de comprimento 0.

O conjunto de todas as palavras, sobre Σ , de comprimento n é denotado por Σ^n .

Notemos que $\Sigma^0 = \{\epsilon\}$ para qualquer alfabeto Σ .

O conjunto das palavras binárias $\mathbb W$ é um conjunto de palavras definido sobre o alfabeto $\Sigma=\{0,1\}$ (sequências finitas de 0's e 1's). O conjunto $\mathbb W$ é um conjunto indutivo definido pelas regras:

- ② Se $w \in \mathbb{W}$, então $conc_0(w) \in \mathbb{W}$ (onde $conc_0(w)$ corresponde a "aumentar" a palavra w justapondo à direita de w o elemento 0);
- ③ Se $w \in \mathbb{W}$, então $conc_1(w) \in \mathbb{W}$ (onde $conc_1(w)$ corresponde a "aumentar" a palavra w justapondo à direita de w o elemento 1).

Ao conjunto W correspondem as seguintes regras de inferência:

$$\frac{w \in \mathbb{W}}{conc_0(w) \in \mathbb{W}} \qquad \frac{w \in \mathbb{W}}{conc_1(w) \in \mathbb{W}}$$

Exemplo

Por exemplo, para as palavras binárias \mathbb{W} temos $\{0,1\}^2 = \{00,01,10,11\}$.

Árvores binárias

Seja K um conjunto finito ou infinito e indutivo. O conjunto \mathbb{A} das árvores binárias sobre K é um conjunto de vértices e arcos (linhas que ligam dois vértices) definido indutivamente pelas regras:

- A árvore vazia () é uma árvore binária.
- Se A e B são duas árvores binárias e $k \in K$ então $nodo_k(A, B)$ é uma árvore binária.

Onde $nodo_k(A, B)$ é a árvore que se obtém ligando um novo vértice com etiqueta k, por um único arco, a cada uma das árvores A e B.

Chama-se árvore esquerda a A e árvore direita a B.

Definição

- Cada elemento de uma árvore binária designa-se por vértice.
- Chama-se grau de um vértice de A ao número de arcos que tocam nesse vértice.

Se uma árvore C = nodo_k(A, B) dizemos que o novo vértice criado é ascendente dos únicos vértices de A e de B aos quais está ligado.

- Chamamos raiz ao único vértice de uma árvore sem ascendente.
- Aos vértices que não são ascendentes de nenhum vértice de uma árvore chamamos folhas.
- O nível de um vértice é o número de vértices, com excepção da raiz, que estão no segmento que une o vértice à raiz (a raiz tem nível zero).
- A altura de uma árvore é o máximo dos níveis dos seus vértices.

A representação gráfica de árvores adopta as seguintes convenções:

- A raiz está no topo;
- Os vértices são representados por círculos;
- Os arcos são representados por linhas.

Seja $K = \{a, b, c\}$ Sejam A e B as seguintes árvores sobre K

- O vértice b é a raiz da árvore A.
- O vértice b é a raiz da árvore B mas também é folha.

A árvore que se obtém a partir das árvores anteriores fazendo $nodo_c(A, B)$ é

O vértice c é a raiz da árvore $C = nodo_c(A, B)$. Os vértices a e b são folhas de C. A altura da árvore C é 2.

O conjunto das árvores binárias de 0's e 1's T é um conjunto de vértices e arcos (linhas que ligam dois vértices) definido indutivamente pelas regras:

 $0 \in \mathbb{T}$, isto é, 0 é uma árvore constituída pelo único vértice 0.

 $1 \in \mathbb{T}$; isto é, 1 é uma árvore constituída pelo único vértice 1.

Se $t_1 \in \mathbb{T}$ e $t_2 \in \mathbb{T}$, então nodo $(t_1, t_2) \in \mathbb{T}$. onde nodo (t_1, t_2) é a árvore que se obtém ligando um novo vértice, por um único arco, a cada uma das árvores t₁ e t₂.

A este conjunto correspondem as regras de inferência:

$$egin{array}{cccc} \overline{0 \in \mathbb{T}} & \overline{1 \in \mathbb{T}} & rac{t_1 \in \mathbb{T} & t_2 \in \mathbb{T}}{nodo(t_1, t_2) \in \mathbb{T}} \end{array}$$

A seguinte árvore é uma árvore binária de 0's e 1's

que corresponde a nodo(1,0) em \mathbb{T} .

A altura desta árvore é 1.

O nível das suas folhas é também 1.

São árvores binárias de 0's e 1's

que correspondem às árvores obtidas por nodo(nodo(1,1), nodo(0,1)), e por nodo(nodo(nodo(1,1), nodo(0,1)), nodo(1,0)), respectivamente.

- Defina indutivamente o conjunto L de todas as palavras sobre $\Sigma = \{0,1\}$ da forma $\{\epsilon,01,0011,000111,\ldots\}$, isto é, as palavras constituídas por um certo número de 0's consecutivos seguidos pelo mesmo número de 1's consecutivos.
- ② Prove que $nodo(0, nodo(1, 0)) \in \mathbb{T}$ e represente a respectiva árvore binária.

Uma vez que uma função é um subconjunto de um produto cartesiano então, em certos casos, também uma função pode ser definida indutivamente.

Exemplo

Seja $f: \mathbb{N}_0 \longrightarrow \mathbb{N}_0$ a função tal que f(n) = 3n, para todo o $n \in \mathbb{N}_0$. Uma vez que

$$f(0) = 0$$
, $f(1) = 3 = f(0) + 3$, $f(2) = 6 = f(1) + 3$,...

podemos definir recursivamente esta função por

$$\begin{cases} f(0) = 0 \\ f(n+1) = f(n) + 3 \end{cases}$$

Definamos indutivamente a função $h: \mathbb{W} \longrightarrow \mathbb{N}_0$ que determinará o número de 1's de uma palavra de W.

Atendamos a que:

- A palavra vazia não tem um's, podemos afirmar que $h(\epsilon) = 0$;
- Dada uma palavra $w \in \mathbb{W}$, $conc_0(w)$ tem exactamente o mesmo número de um's que w
- Dada uma palavra $w \in \mathbb{W}$, $conc_1(w)$ tem mais um 1 que w.

Assim, a função h poderá ser definida recursivamente por:

$$h(\epsilon) = 0$$

$$h(conc_0(w)) = h(w) \quad \forall w \in \mathbb{W}.$$

$$h(conc_1(w)) = h(w) + 1$$

2.2 - Indução nos Naturais e Estrutural

Para provar que uma propriedade P é válida num conjunto indutivo A, é suficiente provar que qualquer que seja a regra de inferência (associada à definição indutiva de A)

$$\frac{J_1\cdots J_n}{J}$$

se J_1, \dots, J_n satisfazem a propriedade P então J também satisfaz P.

Indução sobre No

As regras de inferência para N₀ são

$$\frac{n \in \mathbb{N}_0}{0 \in \mathbb{N}_0} \qquad \frac{n \in \mathbb{N}_0}{suc(n) \in \mathbb{N}_0}$$

Assim, uma propriedade P é válida em \mathbb{N}_0 se:

- P(0), i.e. P é válida para 0, e
- $\forall n \ (P(n) \Rightarrow P(suc(n)))$, i.e., qualquer que seja n, se P é válida para n então é válida para suc(n).

Primeiro Princípio de Indução

A indução sobre \mathbb{N}_0 é usualmente designada por indução matemática e pode ser formulada como se segue:

$$[P(\mathbf{0}) \land \forall n(P(\mathbf{n}) \Rightarrow P(\mathbf{suc}(\mathbf{n})))] \Rightarrow \forall n \ P(n)$$

Sejam $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $\mathbb{N}_m = \{I \in \mathbb{N}_0 : I \ge m\}$ e S um subconjunto de \mathbb{N}_m tal que:

- \bullet $m \in S$;
- $k \in S \Rightarrow k+1 \in S$, para qualquer $k \in \mathbb{N}_m$.

Então $S = \mathbb{N}_m$.

Mostremos, usando o princípio de indução que $2n+1 \le 2^n$, para qualquer natural $n \ge 3$.

Observemos que:

$$\mathbb{N}_m = \mathbb{N}_3$$

$$S = \{ n \in \mathbb{N}_3 : 2n + 1 < 2^n \}$$

Assim, teremos de provar que $S = \mathbb{N}_3$.

Como
$$2 \times 3 + 1 = 7 \le 2^3 = 8$$
 temos que $3 \in S$.

HI:Suponhamos que dado $k \in \mathbb{N}_3$, $k \in S$.

Verifiquemos agora que também $k + 1 \in S$.

Ora,

$$2(k+1)+1=2k+2+1=2k+1+2 \le$$
 (Por HI)
 $2^k+2 \le 2^k+2^k=2^{k+1}$

Então $k + 1 \in S$.

Usando o Princípio de Indução Matemática podemos concluir que $S = \mathbb{N}_3$, ou seja, $2n + 1 \le 2^n$, para qualquer natural $n \ge 3$.

Segundo Princípio de Indução

Indução Completa ou Segundo Princípio de Indução:

A indução matemática pode ser generalizada da seguinte forma:

$$[P(\mathbf{0}) \land \forall n ((\forall \mathbf{m} \leq \mathbf{n} P(\mathbf{m})) \Rightarrow P(\mathbf{suc}(\mathbf{n})))] \Rightarrow \forall n P(n)$$

Sejam $m \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$, $\mathbb{N}_m = \{I \in \mathbb{N}_0 : I \ge m\}$ e S um subconjunto de \mathbb{N}_m tal que:

- \bullet $m \in S$;

Então $S = \mathbb{N}_m$.

Consideremos a sucessão $(a_n)_{n\geq 0}$ definida por

$$\begin{cases} a_0 = 1 \\ a_1 = 2 \\ a_n = 4a_{n-1} - 4a_{n-2}, \ n \ge 2. \end{cases}$$

Mostremos, usando o princípio de indução completa, que $a_n=2^n$, para qualquer $n\in\mathbb{N}_0$.

Temos que:

- **1** $a_0 = 2^0$, pelo que, $0 \in S$; Para k = 1 temos $a_1 = 2 = 2^1$, ou seja, $1 \in S$.
- ② Seja $k \in S$ e admitamos que para todo o t tal que $0 \le t \le k$ se tem $t \in S$, isto é, $a_t = 2^t$.

Queremos provar que, para $k \ge 1$, $k + 1 \in S$.

Como $k \ge 1$ temos $a_k = 2^k$ e $a_{k-1} = 2^{k-1}$. Donde

$$a_{k+1} = 4a_k - 4a_{k-1}$$

$$= 4.2^k - 4.2^{k-1}$$

$$= 2^{k+2} - 2^{k+1}$$

$$= 2^{k+1}(2-1)$$

$$= 2^{k+1}.$$

Logo, $k+1 \in S$ e pelo princípio de indução completa podemos concluir que $S = \mathbb{N}_0$, ou seja, que que $a_n = 2^n$, para qualquer $n \in \mathbb{N}_0$.

Definição

Sejam S um conjunto indutivo e R um subconjunto de S.

Seja

$$\frac{J_1 \qquad J_2 \qquad \dots \qquad J_n}{J}$$

uma regra de inferência que define S indutivamente e que não é um axioma.

Seja Q_i a proposição que se obtém da proposição J_i substituindo o conjunto S pelo conjunto R, para $i=1,\ldots,n$ e seja Q a proposição que se obtém da proposição J substituindo o conjunto S pelo conjunto R.

Se a proposição

$$\frac{Q_1}{Q}$$
 ... $\frac{Q_n}{Q}$

for verdadeira em R, dizemos que

$$\frac{J_1}{I}$$
 $\frac{J_2}{I}$... $\frac{J_n}{I}$

é uma R-regra.

Princípio de Indução Estrutural

Sejam S um conjunto indutivo e R um subconjunto de S tal que:

- Os elementos básicos de S pertencem a R.
- 2 As regras de inferência que definem indutivamente S e que não são axiomas, são R-regras.

Então
$$R = S$$
.

Indução sobre $\mathbb T$

Recordemos que as regras de inferência para $\mathbb T$ são

$$egin{array}{cccc} \overline{0 \in \mathbb{T}} & \overline{1 \in \mathbb{T}} & & rac{t_1 \in \mathbb{T} & t_2 \in \mathbb{T}}{nodo(t_1, t_2) \in \mathbb{T}} \end{array}$$

Assim, uma propriedade P é válida em $\mathbb T$ se:

- P(0) e
- P(1) e
- $\forall t_1, t_2 \ (\ (P(t_1) \land P(t_2)) \Rightarrow P(nodo(t_1, t_2)))$

Considere as seguintes equações:

$$alt(0) = 0$$
 $alt(1) = 0$ $alt(nodo(t_1, t_2)) = 1 + \max\{alt(t_1), alt(t_2)\}$

As equações acima definem uma função, i.e. para cada árvore t existe um, e um só, número natural n tal que alt(t) = n.

Consideremos $R = \{t \in \mathbb{T} : \exists^1 n \in \mathbb{N}_0 : alt(t) = n\}$

Vamos demonstrar por indução estrutural que $(R=\mathbb{T})$.

- $0 \in R$ e $1 \in R$ pois alt(0) = 0 e alt(1) = 0, logo existe um único $n \in \mathbb{N}_0$ (o zero) tal que alt(0) = n e alt(1) = n. Logo $0 \in R$ e $1 \in R$.
- Para $\mathbb T$ temos a seguinte regra de inferência: $\frac{t_1 \in \mathbb T}{nodo(t_1,t_2) \in \mathbb T}$

Dados
$$t_1, t_2 \in \mathbb{T}$$
,
se $\exists^1 n_1 \ alt(t_1) = n_1$ e $\exists^1 n_2 \ alt(t_2) = n_2$
então $\exists^1 n \ alt(nodo(t_1, t_2)) = n$
 $[n = 1 + \max\{n_1, n_2\}]$

Então nodo $(t_1, t_2) \in R$ e, pelo Princípio de Indução Estrutural, $R = \mathbb{T}$. Logo, podemos afirmar que a função alt está definida recursivamente pelas equações dadas.

Atenda-se à definição indutiva de $h: \mathbb{W} \longrightarrow \mathbb{N}_0$ que determina o número de 1's de uma palavra de \mathbb{W} .

$$\begin{cases} h(\epsilon) = 0 \\ h(conc_0(w)) = h(w) \\ h(conc_1(w)) = h(w) + 1 \end{cases} \forall w \in \mathbb{W}.$$

Prove-se, por indução, que *h* é uma função.

Neste caso definimos $R = \{ w \in \mathbb{W} : \exists^1 n \in \mathbb{N}_0, h(w) = n \}.$

Vejamos que $R = \mathbb{W}$ por indução estrutural.

Elementos básicos A palavra ϵ é o único elemento básico de \mathbb{W} . Uma vez que $h(\epsilon)=0$, existe um único elemento de \mathbb{N}_0 (o zero) que é imagem de ϵ . Logo $\epsilon\in\mathbb{W}$.

Departamento de Matemática (FCT/UNL)

Regras Em W temos duas regras

Vejamos que $\frac{w \in \mathbb{W}}{conc_1(w) \in \mathbb{W}}$ é uma R-regra.

HI Se $w \in R$ então existe um único elemento $p \in N_0$, tal que h(w) = p. Porque $h(conc_1(w)) = h(w) + 1$, então existe um único número natural r tal que $h(conc_1(w)) = r$ (r = p + 1).

Tese Podemos então concluir que $conc_1(w) \in R$.

Vejamos que $\frac{w \in \mathbb{W}}{conc_0(w) \in \mathbb{W}}$ é uma R-regra.

HI Se $w \in R$ então existe um único elemento $p \in N_0$, tal que h(w) = p. Porque $h(conc_0(w)) = h(w)$, então existe um único número natural r tal que $h(conc_0(w)) = r$ (r = p).

Tese Podemos então concluir que $conc_0(w) \in R$.

Assim, pelo Princípio de Indução estrutural, $R=\mathbb{W}$. Portanto h é uma

Exercício

- (a) Escreva equações que, para cada $t \in \mathbb{T}$, definam recursivamente nmv(t) como o número máximo de vértices de t.
- (b) Mostre, por indução em \mathbb{T} , que nmv assim definida é uma função.