<!--Laboratorio de Microcontroladores-->

→ Proyecto Final{

<Afinador de cuerda con microcontrolador/>

<Por="Sofia Villalta y Elias Alvarado."/>

Contenidos

- 01 Descripción de la aplicación
- 02 Objetivos y alcances
- 03 Justificación
- 04 Nota Teórica
- 05 Implementación
- 06 Análisis de Resultados
- 7 Conclusiones y recomendaciones

Descripción de la aplicación

La idea de esta aplicación es implementar un afinador de guitarra que utilice un sensor de sonido, detecte la nota que produce el instrumento y haga una comparación entre la referencia y el sonido captado. Utilizando un microcontrolador, machine learning y la plataforma lot thingsboard.

Objetivos y alcances {

01

Diseñar un circuito que detecte los valores emitidos por el instrumento de cuerda.

02

Mediante el circuito desarrollado comparar los valores captados con los de referencia y detección de notas mediante Machine Learning.

03

Mostrar la diferencia entre el valor de referencia y el emitido en una interfaz gráfica.

Justificación {

Facilidad para ajustar las notas.

Se desea generar un sistema automatizado que facilite la tarea de afinar una guitarra por lo que puede ahorrar tiempo.

Forma accesible de afinar instrumentos

Como este sistema va a implementar el conocimiento obtenido en el curso permite que los estudiantes desarrollen sus propias maneras de afinar instrumentos de cuerda.

Nota Teórica {

Lenguaje de programación:

Se va a utilizar el lenguaje de programación C para programar el código del microcontrolador.

Librerías a utilizar:

- PDM: Librería para el micrófono.
- Librería de red neuronal entrenada

Arduino Nano 33 Ble Sense

- Diseño compacto, además incorpora 11 sensores.
- Sensor de proximidad, color, medidor de intensidad de luz, micrófono digital.
- Cuenta con conectividad Bluetooth Low Energy

Componentes destacados del microcontrolador

• Pines del microcontrolador

• Topología

Edge Impulse

• Plataforma que se entrena un modelo de una red neuronal

Modelocompatiblecon elArduino Nano33 Ble

 Modelo que captura la notas de las cuerdas de la guitarra

lot Thingsboard

• Plataforma para desarrollo de soluciones de Iot(Internet de las cosas)

 Mediante la conexión a la plataforma, mediante un widget muestra la interfaz gráfica con las notas captadas.

Implementación{

- Proyecto com machine learning implementado en Edge Impulse.
- 12 audios de 5 minutos para notas afinadas, 2 audios para notas desafinadas y de fondo.
- Exportación como biblioteca de Arduino.
- Script de python para conexión con Thingsboard.

Programa de Arduino{

- Inicialización del micrófono y manejo de errores.
- Espera y grabación de audio con procesamiento posterior.
- Clasificación de audio y determinación de la nota más probable.
- Gestión de búfer PDM para captura y procesamiento de datos.

Programa de Python{

- Establecimiento de comunicación serial y conexión MQTT con Thingsboard.
- Lectura continua de datos del serial y procesamiento.
- Identificación y publicación de la nota con mayor probabilidad en Thingsboard.

- Modelo con resultados de precisión de 80.8%.
- Notas con menos precisión al usar el modelo: tunedd y tunede, aunque al entrenar la red su porcentaje de precisión fue de más de 70%.

1.5%

9.9%

11.5%

0.82

2.5%

0.3%

0.86

0.7%

1.4%

0.85

0.83

TUNEDE

TUNEDE2

TUNEDG

F1 SCORE

2.0%

0.1%

1.3%

0.76

1.1%

4.8%

0.7%

0.91

8.0%

0.77

2.5% **67.5%**

0.78

Algunas complicaciones:

- Los sets de datos y sus etiquetas.
- Muchas muestras de datos no es tan eficiente por el límite de Edge Impulse.

Solución:

- Muestras de datos directamente de la guitarra y de otra fuente (Aplicación de afinador)
- Énfasis en muestras de datos para notas afinadas.

- Resultado exitoso de clasificación de notas afinadas tanto con guitarra como con sonido del afinador.
- Buena diferenciación entre notas.

Predictions (DSP: 82 ms., Classification: 28 ms., Anomaly: 0 ms.):
 desafinadofloja: 0.00000
 desafinadotensa: 0.00000
 fondo: 0.00000
 tuneda: 0.00000
 tunedb: 0.99609

Nota detectada con mayor probabilidad: tunedb

• Como se puede observar primero el modelo capta la nota con una probabilidad de 0.5 pero sabe que está desafinada porque la cuerda está tensa, cuando se ajusta y afina la nota aflojando la cuerda se capta bien que la nota es tunedb.

Nota detectada con mayor probabilidad: desafinadotensa

Data published to Thingsboard

fondo: 0.00000 tuneda: 0.00000 tunedb: 0.50000

Nota detectada con mayor probabilidad: tunedb

Data published to Thingsboard

Conclusiones{

- El Arduino Nano 33 BLE Sense es versátil y eficiente para proyectos de reconocimiento de audio con ML, minimizando tiempo y costos.
- Se creó un modelo de ML con Edge Impulse para identificar notas de guitarra, integrándose fácilmente con el hardware de Arduino.
- Un script en Python y Thingsboard provee una interfaz simple para visualizar notas musicales.
- Más datos mejoran la precisión del modelo ante notas de frecuencias cercanas.

Recomendaciones{

- Incremento de Datos: Ampliar el conjunto de datos de entrenamiento para incluir una mayor variedad de tonos y sonidos de guitarra, lo que podría mejorar la precisión del modelo en condiciones más diversas y con diferentes guitarras.
- Expansión de Funcionalidades: Explorar la posibilidad de añadir nuevas características al modelo, como el reconocimiento de acordes o la capacidad de afinar otros instrumentos de cuerda.

<!--Laboratorio de Microcontroladores-->

Gracias {

```
<Por="Sofia Villalta y Elías
Alvarado"/>
}
```