WING PARAMETERS INITIALIZATION

Hidden Area --> Import of Excel INPUT Wing Data

Hidden Area --> Preliminary Mapping of imported Data and Cranked Wing CHECK

Hidden Area --> Import and preliminary mapping of OTHER Excel Data

Hidden Area --> Calculation of a few Horizontal Tail parameters, needed to compute wing downwash gradient

INPUT WING PARAMETERS LIST

\\/lima	ı alaha	I parameters
-		i naramereix

 $b_W = 60.92 \ m$

$$i_W = 2 \, deg$$

 $c_{W r} = 15.57 \ m$

 $t_over_c_{W_r} = 0.16$

 $\alpha_{0l_W_r} = -0.032$

 $C_{l\alpha W r} = 7.105$

 $C_{m\ ac\ W\ r}\!=\!-0.035$

 $\xi_{ac_W_r} = 0.27$

 $M_{cr_W_2D_r} = 0.63$

 $\eta_{a_in}\!=\!0.73$

 $\eta_{flap_in}\!=\!0.3$

 $\varDelta\alpha_{0l_W_flaps}\!=\!0.14$

 $c_{W\ kink} = 8.51\ m$

 $t_over_c_{W_kink} = 0.118$

 $\alpha_{0l_W_kink} = -0.038$

 $C_{l\alpha_W_kink} = 6.876$

 $C_{m_ac_W_kink} = -0.03$

 $\xi_{ac_W_kink} = 0.26$

 $M_{cr_W_2D_kink}\!=\!0.65$

 $\varepsilon_{W \ kink} = 0$

 $\eta_{a\ out} = 0.95$

 $\eta_{flap_out}\!=\!0.6$

 $c_{W\ t} = 2.15\ \boldsymbol{m}$

 $t_over_c_{W_t}\!=\!0.1$

 $\alpha_{0l_W_t} = -0.027$

 $C_{l\alpha W t} = 6.79$

 $C_{m\ ac\ W\ t}\!=\!-0.04$

 $\xi_{ac_W_t}\!=\!0.25$

 $M_{cr_W_2D_t} = 0.66$

 $\varepsilon_{W\ t} = -0.061$

 $c_a = 0.95 \ m$

 $c_{flap} = 0.75 \ m$

Wing, inner panel parameters

$b_{W_{-1}} = 21.48 \ m$	$c_{W_r_1} = 15.57 \ m$

$$t_over_c_{W_r_1} = 0.16 \\ t_over_c_{W_t_1} = 0.118$$

$$\Lambda_{W_LE_1} = 34.5 \, \operatorname{deg}$$
 $\Gamma_{W_1} = 7 \, \operatorname{deg}$

$$\alpha_{0l_W_r_1} \! = \! -1.845 \, \deg \qquad \qquad \alpha_{0l_W_t_1} \! = \! -2.175 \, \deg$$

$$C_{l\alpha_W_r_1} = 0.124 \, \deg^{-1} \qquad \qquad C_{l\alpha_W_t_1} = 0.12 \, \deg^{-1}$$

$$C_{m_ac_W_r_1} = -0.035$$
 $C_{m_ac_W_t_1} = -0.03$

$$\xi_{ac_W_r_1} = 0.27$$
 $\xi_{ac_W_t_1} = 0.26$ $\xi_{tmax_W_1} = 0.368$

$$M_{cr,W,2D,r,1} = 0.63$$
 $M_{cr,W,2D,t,1} = 0.65$

Wing, outer panel parameters

$$b_{W_2} = 39.44 \; \textit{m} \qquad \qquad c_{W_r_2} = 8.51 \; \textit{m} \qquad \qquad c_{W_t_2} = 2.15 \; \textit{m}$$

$$t_over_c_{W_r_2} = 0.118$$
 $t_over_c_{W_t_2} = 0.1$

$$\Lambda_{W_LE_2} = 34.5 \; deg$$
 $\Gamma_{W_2} = 7 \; deg$ $\varepsilon_{W_t_2} = -3.5 \; deg$

$$\begin{array}{ll} \alpha_{0l_W_r_2}\!=\!-2.175 \,\, deg & \alpha_{0l_W_t_2}\!=\!-1.525 \,\, deg \\ \\ C_{l\alpha_W_r_2}\!=\!0.12 \,\, deg^{-1} & C_{l\alpha_W_t_2}\!=\!0.119 \,\, deg^{-1} \end{array}$$

$$C_{m_ac_W_r_2} = -0.03$$
 $C_{m_ac_W_t_2} = -0.04$

$$\xi_{ac_W_r_2} = 0.26$$
 $\xi_{ac_W_t_2} = 0.25$ $\xi_{tmax_W_2} = 0.3$

$$M_{cr_W_2D_r_2} = 0.65$$
 $M_{cr_W_2D_t_2} = 0.66$

Imported parameters

$M_1 = 0.65$	$b_{H} = 21.96 \ m$	$\Delta X_{LE}Nose = 25.05 \ m$
	11	- LL-

$$\Lambda_{H_LE}$$
 = 39 deg $\Delta X_HT_{LE}_Nose$ = 63.4 m

$$\Gamma_H = 8.5 \ deg$$
 $\Delta Z_W_{LE} = -0.75 \ m$

 $c_{W_{_t_1}} \! = \! 8.51 \; m{m}$

 $\varepsilon_{W_t_1}\!=\!0~\pmb{deg}$

$$c_{H_r} = 7.2 \ m$$

$$\Delta Z_HT_{LE}_Nose = 1.35 \ m$$

$$c_{H\ t}\!=\!2.4\ m$$

WING PARAMETERS CALCULATIONS

Wing, inner panel basic parameters

$$\lambda_{W_{-1}} \coloneqq \frac{c_{W_{-}t_{-1}}}{c_{W_{-}r_{-1}}} = 0.547$$

$$S_{W_1} \coloneqq \frac{b_{W_1}}{2} \boldsymbol{\cdot} c_{W_r_1} \boldsymbol{\cdot} \left(1 + \lambda_{W_1}\right) = 258.619 \ \boldsymbol{m}^2$$

$$AR_{W_1}\!\coloneqq\!\frac{{b_{W_1}}^2}{S_{W_1}}\!=\!1.784$$

$$MAC_{W_1} \coloneqq \frac{2}{3} \cdot c_{W_r_1} \cdot \left(\frac{1 + \lambda_{W_1}^{2} + \lambda_{W_1}}{1 + \lambda_{W_1}}\right) = 12.385 \ m$$

$$X_{MAC_LE_W_1} \coloneqq \frac{b_{W_1}}{6} \cdot \frac{\left(1 + 2 \cdot \lambda_{W_1}\right)}{\left(1 + \lambda_{W_1}\right)} \cdot \tan\left(\varLambda_{W_LE_1}\right) = 3.33 \ m$$

$$Y_{MAC_W_1} \!\coloneqq\! \frac{b_{W_1}}{6} \!\cdot\! \frac{1 + 2 \cdot \lambda_{W_1}}{1 + \lambda_{W_1}} \!=\! 4.845 \ \textit{m}$$

$$Z_{MAC_W_1} \coloneqq Y_{MAC_W_1} \cdot \tan \left(\Gamma_{W_1} \right) = 0.595 \ m$$

$$\lambda_{W_1}\!=\!0.547$$

$$S_{W_{-}1} = 258.619 \ m^2$$

$$AR_{W-1} = 1.784$$

$$MAC_{W_{_1}} = 12.385 \ m$$

$$X_{MAC_LE_W_1} = 3.33 \ m$$

$$Y_{MAC_W_1} = 4.845 \ m$$

$$Z_{MAC_W_1} = 0.595 \ m$$

Wing, outer panel basic parameters

$$\lambda_{W_{-2}} := \frac{c_{W_{-}t_{-}2}}{c_{W_{-}r_{-}2}} = 0.253$$

$$\lambda_{W_2}\!=\!0.253$$

$$S_{W_2} \coloneqq \frac{b_{W_2}}{2} \cdot c_{W_r_2} \cdot \left(1 + \lambda_{W_2}\right) = 210.215 \ m^2$$

$$S_{W_2} = 210.215 \ m^2$$

$$AR_{W_2} \! \coloneqq \! \frac{2 \cdot b_{W_2}}{c_{W_r_2} \cdot \left(1 + \lambda_{W_2}\right)} \! = \! 7.4$$

$$AR_{W_2}\!=\!7.4$$

$$MAC_{W_{-2}} := \frac{2}{3} \cdot c_{W_{-}r_{-}2} \cdot \left(\frac{1 + \lambda_{W_{-2}}^2 + \lambda_{W_{-2}}}{1 + \lambda_{W_{-2}}}\right) = 5.962 \ m$$

$$MAC_{W_2} = 5.962 \ m$$

$$X_{MAC_LE_W_2} \coloneqq \frac{b_{W_2}}{6} \cdot \frac{\left(1 + 2 \cdot \lambda_{W_2}\right)}{\left(1 + \lambda_{W_2}\right)} \cdot \tan\left(\Lambda_{W_LE_2}\right) = 5.429 \ m$$

$$X_{MAC_LE_W_2} = 5.429 \ m$$

$$Y_{MAC_W_2} := \left(\frac{b_{W_2}}{6} \cdot \frac{1 + 2 \cdot \lambda_{W_2}}{1 + \lambda_{W_2}}\right) = 7.899 \ m$$

$$Y_{MAC\ W\ 2} = 7.899\ m$$

$$Z_{MAC_W_2} \coloneqq Y_{MAC_W_2} \cdot \tan \left(\Gamma_{W_2} \right) = 0.97 \ m$$

$$Z_{MAC\ W\ 2} = 0.97\ m$$

Wing, global basic parameters

$$\lambda_W \coloneqq \frac{c_{W_t}}{c_{W\ r}} = 0.138$$

$$\lambda_W = 0.138$$

$$S_W := S_{W_-1} + S_{W_-2} = 468.834 \ m^2$$

$$S_W = 468.834 \ m^2$$

$$AR_W := \frac{\left(b_{W_-1} + b_{W_-2}\right)^2}{S_W} = 7.916$$

$$AR_W\!=\!7.916$$

$$MAC_{W} \coloneqq \frac{S_{W_1} \cdot MAC_{W_1} + S_{W_2} \cdot MAC_{W_2}}{S_{W_1} + S_{W_2}} = 9.505 \ m$$

$$MAC_W = 9.505 \ m$$

$$\xi_{tmax_W} \coloneqq \frac{\xi_{tmax_W_1} \! \cdot \! S_{W_1} \! + \! \xi_{tmax_W_2} \! \cdot \! S_{W_2}}{S_{W_1} \! + \! S_{W_2}} \! = \! 0.338$$

$$\xi_{tmax\ W} = 0.338$$

Hidden Area --> Wing, linear laws defined over inner/outer panel semi-span

Wing, linear laws defined over the whole wing semi-spar

$$_{\mathbf{f}}\mathbf{c}_{\mathbf{W}}(y) \coloneqq \left\| \begin{array}{l} \text{if } y \leq \frac{b_{W_{-1}}}{2} \\ \left\| \operatorname{return} \ _{\mathbf{f}}\mathbf{c}_{\mathbf{W}_{-1}}(y) \right\| \\ \text{else} \\ \left\| \operatorname{return} \ _{\mathbf{f}}\mathbf{c}_{\mathbf{W}_{-2}}(y) \right\| \end{array} \right.$$

$$_{\mathbf{f}} \alpha_{0\mathbf{l}_{-}2\mathbf{D}_{-}\mathbf{W}}(y) \coloneqq \left\| \text{if } y \leq \frac{b_{W_{-}1}}{2} \right\|$$
 $\left\| \text{return }_{\mathbf{f}} \alpha_{0\mathbf{l}_{-}\mathbf{W}_{-}2\mathbf{D}_{-}1}(y) \right\|$
 \mathbf{else}
 $\left\| \text{return }_{\mathbf{f}} \alpha_{0\mathbf{l}_{-}\mathbf{W}_{-}2\mathbf{D}_{-}2}(y) \right\|$

$$_{\mathrm{f}}\mathrm{t_over_c_{W}}(y)\coloneqq \left\| \begin{array}{l} \mathrm{if}\ y\leq \dfrac{b_{W_1}}{2} \\ \left\| \mathrm{return}\ _{\mathrm{f}}\mathrm{t_over_c_{W_1}}(y) \right\| \\ \mathrm{else} \\ \left\| \mathrm{return}\ _{\mathrm{f}}\mathrm{t_over_c_{W_2}}(y) \right\| \end{array} \right\|$$

$$_{\mathbf{f}} arepsilon_{\mathbf{g}_{-\mathbf{W}}}(y) \coloneqq \left\| \begin{array}{l} \mathrm{if} \ y \leq rac{b_{W_{-1}}}{2} \\ \left\| \operatorname{return} \ _{\mathbf{f}} arepsilon_{\mathbf{g}_{-\mathbf{W}_{-1}}}(y) \\ \mathrm{else} \\ \left\| \operatorname{return} \ _{\mathbf{f}} arepsilon_{\mathbf{g}_{-\mathbf{W}_{-2}}}(y) \end{array} \right\|$$

$$_{\mathrm{f}}\mathrm{C}_{\mathrm{l}\alpha_{-}\mathrm{W}}(y) \coloneqq \left\| \begin{array}{c} \mathrm{if} \ y \leq \dfrac{b_{W_{-}1}}{2} \\ \left\| \operatorname{return} \ _{\mathrm{f}}\mathrm{C}_{\mathrm{l}\alpha_{-}\mathrm{W}_{-}1}(y) \\ \mathrm{else} \\ \left\| \operatorname{return} \ _{\mathrm{f}}\mathrm{C}_{\mathrm{l}\alpha_{-}\mathrm{W}_{-}2}(y) \end{array} \right\|$$

$$_{\mathrm{f}}\mathbf{C}_{\mathrm{m_ac_2D_W}}(y) \coloneqq \left\| \begin{array}{l} \mathrm{if} \ y \leq \frac{b_{W_1}}{2} \\ \left\| \mathrm{return} \ _{\mathrm{f}}\mathbf{C}_{\mathrm{m_ac_2D_W_1}}(y) \\ \mathrm{else} \\ \left\| \mathrm{return} \ _{\mathrm{f}}\mathbf{C}_{\mathrm{m_ac_2D_W_2}}(y) \end{array} \right\|$$

$$_{\mathrm{f}}\xi_{\mathrm{ac_2D_W}}(y)\coloneqq \left\| \begin{array}{l} \mathrm{if}\ y\leq rac{b_{W_1}}{2} \\ \left\| \mathrm{return}\ _{\mathrm{f}}\xi_{\mathrm{ac_2D_W_1}}(y) \right\| \\ \mathrm{else} \\ \left\| \mathrm{return}\ _{\mathrm{f}}\xi_{\mathrm{ac_2D_W_2}}(y) \right\| \end{array} \right\|$$

$$_{\mathrm{f}}\mathrm{M}_{\mathrm{cr_2D_W}}(y)\coloneqq egin{array}{c} \mathrm{if} \ y\leq rac{b_{W_1}}{2} \ & \| \mathrm{return} \ _{\mathrm{f}}\mathrm{M}_{\mathrm{cr_W_2D_1}}(y) \ & \mathrm{else} \ & \| \mathrm{return} \ _{\mathrm{f}}\mathrm{M}_{\mathrm{cr_W_2D_2}}(y) \ & \| \mathrm{return} \ _{\mathrm{f}}\mathrm{M}_{\mathrm{cr_W_2D_2}(y) \ & \| \mathrm{return} \ _{\mathrm{f}}\mathrm{M}_{\mathrm{cr_W_2D_2}}(y) \ & \| \mathrm{return} \ _{\mathrm{f}}\mathrm{M}_{\mathrm{cr_W_2D$$

Hidden Area --> Wing, data vectors for plotting linear laws in LaTeX

Wing, inner panel 2D mean quantities

$$C_{l\alpha_W_mean_1} \coloneqq \frac{2}{S_{W_1}} \cdot \int\limits_{0}^{\frac{b_{W_1}}{2}} {}_{\rm f} {\rm c_W}(y) \cdot {}_{\rm f} {\rm C_{l\alpha_W}}(y) \, {\rm d}y = 7.002 \qquad \qquad \qquad C_{l\alpha_W_mean_1} = 0.122 \, \textit{deg}^{-1}$$

$$\alpha_{0l_W_mean_1} \coloneqq \frac{2}{S_{W_1}} \cdot \int\limits_{0}^{\frac{b_{W_1}}{2}} \mathrm{fc_W}(y) \cdot \mathrm{f} \alpha_{0l_2D_W}(y) \, \mathrm{d}y = -0.035 \, \textit{rad} \\ \alpha_{0l_W_mean_1} = -1.994 \, \textit{deg}$$

$$C_{m_ac_W_mean_1} \coloneqq \frac{2}{S_{W_1} \cdot MAC_{W_1}} \cdot \int_{0}^{\frac{b_{W_1}}{2}} {}_{f}C_{W}(y)^{2} \cdot {}_{f}C_{m_ac_2D_W}(y) \, dy = -0.033$$

$$C_{m_ac_W_mean_1} = -0.033$$

Wing, outer panel 2D mean quantities

$$t_over_c_{W_mean_2} \coloneqq \text{if} \left({}_bCrk = 0 \text{ , } t_over_c_{W_t}, \frac{2}{S_{W_2}} \cdot \int\limits_{\frac{b_{W_1}}{2}}^{\frac{b_W}{2}} \mathsf{fc_W}(y) \cdot \mathsf{_ft_over_c_W}(y) \, \mathrm{d}y \right) = 0.111 \qquad \qquad t_over_c_{W_mean_2} = 0.111$$

$$C_{l\alpha_W_mean_2} \coloneqq \text{if} \left({}_{b}Crk = 0 \,, C_{l\alpha_W_t} \,, \frac{2}{S_{W_2}} \cdot \int\limits_{-\frac{b_W}{2}}^{\frac{b_W}{2}} {}_{f} c_W(y) \cdot {}_{f} C_{l\alpha_W}(y) \, \mathrm{d}y \right) = 6.842 \, \, \textit{rad}^{-1} \qquad \qquad C_{l\alpha_W_mean_2} = 0.119 \, \, \textit{deg}^{-1}$$

$$\alpha_{0l_W_mean_2} \coloneqq \text{if} \left({}_{b}Crk = 0 \text{ , } \alpha_{0l_W_t}, \frac{2}{S_{W_2}} \cdot \underbrace{\int\limits_{b_{W_1}}^{b_W}}_{2} \text{fc}_{\mathbf{W}}(y) \cdot {}_{\mathbf{f}} \alpha_{0l_2\mathbf{D}_\mathbf{W}}(y) \, \mathrm{d}y \right) = -0.033 \, \textit{rad} \qquad \qquad \alpha_{0l_W_mean_2} = -1.915 \, \textit{deg}(y) \cdot {}_{\mathbf{f}} \alpha_{0l_2\mathbf{D}_\mathbf{W}}(y) \cdot {}_{\mathbf{f}} \alpha_{0l_2\mathbf{D}_\mathbf{W}}(y) \, \mathrm{d}y = -0.033 \, \textit{rad}$$

$$C_{m_ac_W_mean_2} \coloneqq \text{if} \left({}_{b}Crk = 0 \,, C_{m_ac_W_t}, \frac{2}{S_{W_2} \cdot MAC_{W_2}} \cdot \underbrace{\int\limits_{b_{W_1}}^{b_W}}_{2} \cdot \int\limits_{c_{W_1}}^{c_W} \left(y \right)^2 \cdot {}_{f}C_{m_ac_2D_W} \left(y \right) \, \mathrm{d} \, y \right) = -0.033 \qquad \qquad C_{m_ac_W_mean_2} = -0.033$$

Wing, global 2D mean quantities

$$t_over_c_{W_mean} \coloneqq \frac{2}{S_W} \cdot \int_{0}^{\infty} f_{c_W}(y) \cdot f_{c_W}(y) dy = 0.127$$

$$t_over_c_{W_mean} = 0.127$$

$$C_{l\alpha_W_mean} \coloneqq \frac{2}{S_W} \cdot \int_{\text{f}}^{\frac{b_W}{2}} \text{fc}_{\text{W}}(y) \cdot_{\text{f}} \text{C}_{\text{l}\alpha_W}(y) \, \text{d}y = 6.93$$

$$C_{l\alpha_W_mean} = 0.121 \, \textit{deg}^{-1}$$

$$\alpha_{0l_W_mean} \coloneqq \frac{2}{S_W} \cdot \int\limits_0^{\frac{b_W}{2}} \mathrm{fc_W}(y) \cdot \mathrm{f}\alpha_{0l_2D_W}(y) \, \mathrm{d}y = -0.034 \; rad$$

$$\alpha_{0l_W_mean} = -1.958 \; deg$$

$$C_{m_ac_W_mean} := \frac{2}{S_W \cdot MAC_W} \cdot \int_{f}^{\frac{\pi}{2}} c_W(y)^2 \cdot {}_{f}C_{m_ac_2D_W}(y) dy = -0.033$$

$$C_{m_ac_W_mean} = -0.033$$

Wing, 3D alpha-zero-lift for inner panel, outer panel and whole wing

$$lpha_{0L_W_1} \coloneqq rac{2}{S_{W_1}} \cdot \int\limits_{0}^{rac{b_{W_1}}{2}} {}_{
m f} {
m c_W} ig(y) \cdot ig({}_{
m f} {
m lpha}_{0l_{
m 2D_W}} ig(y) - {}_{
m f} {
m arepsilon}_{
m g_W} ig(y)ig) \, {
m d}y = -0.035 \, \, m{rad}$$

$$\alpha_{0L_W_1} = -1.994 \ deg$$

$$\alpha_{0L_W_2} \coloneqq \text{if} \left({}_{b}Crk = 0 \text{ , } \alpha_{0l_W_t} \text{ , } \frac{2}{S_{W_2}} \cdot \underbrace{\int\limits_{\frac{b_{W_1}}{2}}^{\frac{b_{W}}{2}}}_{\frac{b_{W_1}}{2}} \cdot \underbrace{\int\limits_{\frac{b_{W_1}}{2}}^{\frac{b_{W}}{2}}}_{\frac{b_{W_1}}{2}} \text{c}_{\text{W}}(y) \cdot \left({}_{\text{f}}\alpha_{0l_2D_W}(y) - {}_{\text{f}}\varepsilon_{\text{g_W}}(y) \right) \, \mathrm{d}y \right) = -0.009 \, \textit{rad} \quad \alpha_{0L_W_2} = -0.513 \, \textit{deg}$$

$$\alpha_{0L_W} \coloneqq \frac{2}{S_W} \cdot \int\limits_0^{\frac{b_W}{2}} {_{\mathrm{f}}^{\mathrm{C}_{\mathrm{W}}}(y) \cdot \left({_{\mathrm{f}}} \alpha_{0\mathrm{l_2D_W}}(y) - {_{\mathrm{f}}} \varepsilon_{\mathrm{g_W}}(y) \right) \, \mathrm{d}y} = -0.023 \,\, \boldsymbol{rad}$$

$$\alpha_{0L\ W} = -1.33\ deg$$

Wing, sweep angles for inner/outer panel

$$_{\mathrm{f}}\Lambda\left(x\,,\boldsymbol{\varLambda}_{le}\,,AR\,,\boldsymbol{\lambda}\right)\coloneqq\mathrm{if}\left(AR=0\,,\boldsymbol{\varLambda}_{le}\,,\mathrm{atan}\left(\tan\left(\boldsymbol{\varLambda}_{le}\right)-\frac{4\boldsymbol{\cdot}x\boldsymbol{\cdot}\left(1-\boldsymbol{\lambda}\right)}{AR\boldsymbol{\cdot}\left(1+\boldsymbol{\lambda}\right)}\right)\right)$$

• Sweep angle function

$$\Lambda_{W LE 1} := {}_{\mathrm{f}}\Lambda \left(0, \Lambda_{W LE 1}, AR_{W 1}, \lambda_{W 1}\right) = 0.602$$

$$\Lambda_{W TE 1} \coloneqq {}_{f}\Lambda \left(1, \Lambda_{W LE 1}, AR_{W 1}, \lambda_{W 1}\right) = 0.03$$

$$\Lambda_{W_c4_1} := {}_{f}\Lambda \left(0.25, \Lambda_{W_LE_1}, AR_{W_1}, \lambda_{W_1}\right) = 0.482$$

$$\Lambda_{W c2} := {}_{f}\Lambda (0.5, \Lambda_{W LE 1}, AR_{W 1}, \lambda_{W 1}) = 0.344$$

$$\Lambda_{W_tmax_1} \coloneqq {}_{\mathrm{f}} \Lambda \left(\xi_{tmax_W_1} \,, \Lambda_{W_LE_1} \,, AR_{W_1} \,, \lambda_{W_1} \right) = 0.419$$

$$\Lambda_{W\ LE\ 1} = 34.5\ deg$$

$$\Lambda_{W_TE_1} = 1.714 \ deg$$

$$\Lambda_{W_c4_1} = 27.607 \ deg$$

$$\Lambda_{W_c2_1} = 19.728 \ deg$$

$$\Lambda_{W_tmax_1} = 24.007 \ deg$$

$$\Lambda_{W LE 2} := {}_{f}\Lambda (0, \Lambda_{W LE 2}, AR_{W 2}, \lambda_{W 2}) = 0.602$$

$$\Lambda_{W_TE_2} := {}_{f}\Lambda \left(1, \Lambda_{W_LE_2}, AR_{W_2}, \lambda_{W_2}\right) = 0.35$$

$$\Lambda_{W_c4_2} := {}_{f}\Lambda \left(0.25, \Lambda_{W_LE_2}, AR_{W_2}, \lambda_{W_2}\right) = 0.545$$

$$\Lambda_{W_{-}c2_{-}2} := {}_{f}\Lambda (0.5, \Lambda_{W_{-}LE_{-}2}, AR_{W_{-}2}, \lambda_{W_{-}2}) = 0.484$$

$$\Lambda_{W \ tmax \ 2} := {}_{\mathrm{f}} \Lambda \left(\xi_{tmax \ W \ 2}, \Lambda_{W \ LE \ 2}, AR_{W \ 2}, \lambda_{W \ 2} \right) = 0.533$$

$$\Lambda_{W\ LE\ 2} = 34.5\ deg$$

$$\Lambda_{W\ TE\ 2}\!=\!20.04$$
 deg

$$\Lambda_{W_c4_2} = 31.243 \ deg$$

$$\Lambda_{W_c2_2} = 27.745 \ deg$$

$$\Lambda_{W_tmax_2} = 30.563 \ deg$$

Wing, Mean Aerodynamic Chord position with respect to Wing Apex

$$\begin{split} \mathbf{f}\mathbf{Y}_{\mathrm{MAC_W}}\big(\!M\!A\!C\big) &\coloneqq \mathrm{if}\ M\!A\!C \!\geq\! c_{W_t_1} \\ & \left\| \mathrm{return}\ \frac{b_{W_1} \boldsymbol{\cdot} \big(\!M\!A\!C \!-\! c_{W_r_1}\big)}{2\boldsymbol{\cdot} \big(c_{W_t_1} \!-\! c_{W_r_1}\big)} \right\| \\ &= \mathrm{else} \\ & \left\| \mathrm{return}\ \frac{b_{W_1}}{2} \!+\! \frac{b_{W_2} \boldsymbol{\cdot} \big(\!M\!A\!C \!-\! c_{W_r_2}\big)}{2\boldsymbol{\cdot} \big(c_{W_t_2} \!-\! c_{W_r_2}\big)} \right\| \end{split}$$

 Function for Mean Aerodynamic Chord distance from wing apex, along Y axis

$$\begin{split} {}_{\mathbf{f}\mathbf{X}_{\mathrm{MAC_LE_W}}}(MAC) \coloneqq & \mathrm{if} \ MAC > c_{W_t_1} \\ & \parallel \mathrm{return} \ {}_{\mathbf{f}}\mathbf{Y}_{\mathrm{MAC_W}}(MAC) \cdot \tan \left(A_{W_LE_1} \right) \\ & \mathrm{else} \\ & \parallel \mathrm{return} \ \frac{b_{W_1}}{2} \cdot \tan \left(A_{W_LE_1} \right) + \frac{b_{W_2} \cdot \left(MAC - c_{W_r_2} \right)}{2 \cdot \left(c_{W_t_2} - c_{W_r_2} \right)} \cdot \tan \left(A_{W_LE_2} \right) \end{split}$$

 Function for Mean Aerodynamic Chord Leading Edge distance from wing apex, along X axis

$$\begin{split} _{\text{fZ}_{\text{MAC_W}}}(MAC) \coloneqq & \text{if } _{\text{f}} \mathbf{Y}_{\text{MAC_W}}(MAC) < \frac{b_{W_1}}{2} \\ & \qquad \qquad \| \text{return } _{\text{f}} \mathbf{Y}_{\text{MAC_W}}(MAC) \cdot \tan \left(\varGamma_{W_1} \right) \\ & \text{else} \\ & \qquad \qquad \| \text{return } \frac{b_{W_1}}{2} \cdot \tan \left(\varGamma_{W_1} \right) + \left(_{\text{f}} \mathbf{Y}_{\text{MAC_W}}(MAC) - \frac{b_{W_1}}{2} \right) \cdot \tan \left(\varGamma_{W_2} \right) \end{split}$$

 Function for Mean Aerodynamic Chord distance from wing apex, along Z axis

$$X_{MAC_LE_W} := {}_{f}X_{MAC_LE_W} (MAC_W) = 6.341 m$$

$$Y_{MAC_W} \coloneqq {}_{\mathrm{f}}\mathrm{Y}_{\mathrm{MAC}_W} \left(MAC_W \right) = 9.226 \ m$$

$$Z_{MAC_W} \coloneqq {}_{\mathbf{f}}\mathbf{Z}_{MAC_W} \left(MAC_W \right) = 1.133 \ \boldsymbol{m}$$

EQUIVALENT WING PARAMETERS CALCULATIONS

Equivalent Wing, geometric parameters

$$X_B := \frac{b_{W_{-1}}}{2} \cdot \tan \left(A_{W_{-}LE_{-1}} \right) = 7.381 \ m$$

$$X_{C}\!\coloneqq\!X_{B}\!+\!\frac{b_{W_2}}{2}\!\cdot\!\tan\left(\!\varLambda_{W_\!\!\!\!L\!E_2}\!\right)\!=\!20.935~\pmb{m}$$

$$X_{C'} := X_C + c_{W t 2} = 23.085 \ m$$

$$X_{B'} := X_B + c_{W_{-}t_{-}1} = 15.891 \ m$$

$$X_{A'} := c_{W r 1} = 15.57 m$$

$$Y_B := \frac{b_{W_- 1}}{2} = 10.74 \ m$$

$$Y_C := \frac{b_W}{2} = 30.46 \ m$$

$$Y_{C'} \coloneqq Y_C$$

$$Y_{B'} := Y_B = 10.74 \ m$$

$$Y_{A'} = 0 \, \boldsymbol{m}$$

Hidden Area --> Equivalent Wing, equivalence of areas on leading edge

Hidden Area --> Equivalent Wing, equivalence of areas on trailing edge

Equivalent Wing, planform results

$$X_{P1} = 0 \, \boldsymbol{m}$$

$$X_{P2} = 13.242 \ m$$

$$X_{W_r_LE_eqv} := X_{P1} = 0 m$$

$$X_{W_r_TE_eqv} := X_{P2} = 13.242 \ m$$

$$c_{W_r_eqv} \coloneqq \left| X_{P2} - X_{P1} \right| = 13.242 \ \textit{m}$$

$$\lambda_{W_eqv} \coloneqq \frac{c_{W_t}}{c_{W_r_eqv}} = 0.162$$

$$AR_{W_eqv} := \frac{{b_W}^2}{S_W} = 7.916$$

$egin{aligned} & A_{W_LE_eqv} \coloneqq \operatorname{atan}\left(rac{2 \cdot \left(X_C - X_{P1} ight)}{b_{W_1} + b_{W_2}} ight) = 0.602 \; rad \end{aligned}$	$arLambda_{W_LE_eqv}\!=\!34.5 deg$
$\boldsymbol{\varLambda}_{W_TE_eqv} \coloneqq {}_{\mathbf{f}} \boldsymbol{\Lambda} \left(1.0 \;, \boldsymbol{\varLambda}_{W_LE_eqv} \;, \boldsymbol{A} \boldsymbol{R}_{W_eqv} \;, \boldsymbol{\lambda}_{W_eqv} \right) = 0.313 \; \boldsymbol{rad}$	$\Lambda_{W_TE_eqv}$ = 17.908 deg
${{\Lambda _{{W_c}{4_eqv}}}} \coloneqq {_{\rm{f}}}\Lambda \left({0.25,{\Lambda _{{W_L}{E_eqv}}},A{R_{{W_eqv}}},{\lambda _{{W_eqv}}}} \right) = 0.538 {\pmb{rad}}$	$A_{W_c4_eqv}\!=\!30.805$ deg
$\boldsymbol{\varLambda}_{W_c2_eqv} \coloneqq {}_{\mathbf{f}}\boldsymbol{\Lambda} \left(0.5 , \boldsymbol{\varLambda}_{W_LE_eqv} , \boldsymbol{AR}_{W_eqv} , \boldsymbol{\lambda}_{W_eqv} \right) = 0.468 \boldsymbol{rad}$	$arLambda_{W_c2_eqv}\!=\!26.803~ extbf{\textit{deg}}$
$\boldsymbol{\Lambda}_{W_tmax_eqv} \coloneqq {}_{\mathbf{f}}\boldsymbol{\Lambda} \left(\boldsymbol{\xi}_{tmax_W}, \boldsymbol{\Lambda}_{W_LE_eqv}, \boldsymbol{AR}_{W}, \boldsymbol{\lambda}_{W_eqv}\right) = 0.514 \ \boldsymbol{rad}$	$\Lambda_{W_tmax_eqv}\!=\!29.439~deg$
$\varGamma_{W_eqv} \coloneqq \frac{\varGamma_{W_1} \cdot S_{W_1} + \varGamma_{W_2} \cdot S_{W_2}}{S_{W_1} + S_{W_2}} = 0.122$	$arGamma_{W_eqv}\!=\!7deg$
$MAC_{W_eqv}\coloneqq rac{2}{3} \cdot c_{W_r_eqv} \cdot \left(rac{1+{\lambda_{W_eqv}}^2+{\lambda_{W_eqv}}}{1+{\lambda_{W_eqv}}} ight) = 9.028 \ \emph{m}$	$MAC_{W_eqv}\!=\!9.028~m$
$X_{MAC_LE_W_eqv} \coloneqq \frac{b_W}{6} \cdot \frac{\left(1 + 2 \cdot \lambda_{W_eqv}\right)}{\left(1 + \lambda_{W_eqv}\right)} \cdot \tan\left(\Lambda_{W_LE_eqv}\right) = 7.953 \ m$	$X_{MAC_LE_W_eqv} = 7.953 \ m$
$Y_{MAC_W_eqv} \coloneqq \left(\frac{b_W}{6} \cdot \frac{1 + 2 \cdot \lambda_{W_eqv}}{1 + \lambda_{W_eqv}}\right) = 11.572 \ m$	$Y_{MAC_W_eqv} = 11.572 \ m$
$Z_{MAC_W_eqv} \coloneqq Y_{MAC_W_eqv} \cdot \tan \left(\Gamma_{W_eqv} \right) = 1.421 \ m$	$Z_{MAC_W_eqv}\!=\!1.421\;m$

CONSTRUCTED OUTBOARD PANEL PARAMETERS CALCULATIONS (DATCOM METHOD)

Constructed	Outboard Panel	paramatara	aalaulatian
Constructed	Outboard Paner	parameters	calculation

$$\Delta y \coloneqq \operatorname{if}\left({}_{b}Crk = 0, 0 \cdot m, \frac{1}{2} \cdot \left(\frac{b_{W_{-}1}}{2}\right)\right) = 5.37 \ m$$

$$\Delta y = 5.37 \ m$$

$$b'_{W_2}\!\coloneqq\!b_{W_2}\!+\!2\ \Delta y\!\equiv\!50.18\ \pmb{m}$$

$$b'_{W_2} = 50.18 \ m$$

$$b_{W_2} = 39.44 \ m$$

$$\frac{b'_{W_-^2}}{2} = 25.09 \ m$$

$$\frac{b_{W_2}}{2} = 19.72 \ m$$

$$c'_{W_{-}r_{-}2} \coloneqq {}_{\mathbf{f}} \mathbf{c}_{\mathbf{W}_{-}2} \left(\frac{b_{W_{-}1}}{2} - \Delta y \right) = 10.242 \ \boldsymbol{m}$$

$$c'_{W_r_2} = 10.242 \ m$$

$$c_{W\ r\ 2} = 8.51\ m$$

$$\lambda'_{W_{-2}} \coloneqq \frac{c_{W_{-}t_{-}2}}{c'_{W_{-}r_{-}2}} = 0.21$$

$$\lambda'_{W}$$
₂ = 0.21

$$\lambda_{W}_2 = 0.253$$

$$S'_{W_{-2}} := \frac{b'_{W_{-2}}}{2} \cdot c'_{W_{-r_{-2}}} \cdot \left(1 + \lambda'_{W_{-2}}\right) = 310.913 \ m^2$$

$$S'_{W_2} = 310.913 \; m^2$$

$$S_{W_2} = 210.215 \; m^2$$

$$AR'_{W_{-}2} := \frac{2 \cdot b'_{W_{-}2}}{c'_{W \ r \ 2} \cdot (1 + \lambda'_{W \ 2})} = 8.099$$

$$AR'_{W2} = 8.099$$

$$AR_{W_2} = 7.4$$

$$MAC'_{W_{-}2} := \frac{2}{3} \cdot c'_{W_{-}r_{-}2} \cdot \left(\frac{1 + \lambda'_{W_{-}2}^2 + \lambda'_{W_{-}2}}{1 + \lambda'_{W_{-}2}} \right) = 7.077 \ m$$

$$MAC'_{W_2} = 7.077 \ m$$

$$MAC_{W_{-2}} = 5.962 \ m$$

$$Y'_{MAC_W_2} \coloneqq \frac{b'_{W_2}}{6} \cdot \frac{1 + 2 \cdot \lambda'_{W_2}}{1 + \lambda'_{W_2}} = 9.814 \ m$$

$$Y'_{MAC_W_2} = 9.814 \ m$$

$$Y_{MAC_W_2} = 7.899 \ m$$

$$X'_{MAC_LE_W_2} \coloneqq Y'_{MAC_W_2} \cdot \tan \left(\varLambda_{W_LE_2} \right) = 6.745 \ \boldsymbol{m}$$

$$X'_{MAC\ LE\ W\ 2} = 6.745\ m$$

$$X_{MAC\ LE\ W\ 2} = 5.429\ m$$

$$X'_{LE_r_W_2} \coloneqq \frac{b_{W_1}}{2} \cdot \tan\left(\Lambda_{W_LE_1}\right) - \Delta y \cdot \tan\left(\Lambda_{W_LE_2}\right) = 3.691 \ m$$

$$Y'_{LE_r_W_2} := \frac{b_{W_1}}{2} - \Delta y = 5.37 \ m$$

$$X'_{LE_t_W_2} := \frac{b_{W_1}}{2} \cdot \tan \left(\Lambda_{W_LE_1} \right) + \frac{b_{W_2}}{2} \cdot \tan \left(\Lambda_{W_LE_2} \right) = 20.935 \ m$$

$$Y'_{LE_t_W_2} := \frac{b_{W_1} + b_{W_2}}{2} = 30.46 \ m$$

$$X'_{TE\ t\ W\ 2} := X'_{LE\ t\ W\ 2} + c_{W\ t\ 2} = 23.085\ m$$

$$Y'_{TE\ t\ W\ 2} := Y'_{LE\ t\ W\ 2} = 30.46\ m$$

$$X'_{TE_r_W_2} := X'_{LE_r_W_2} + c'_{W_r_2} = 13.933 \ m$$

$$Y'_{TE\ r\ W\ 2} := Y'_{LE\ r\ W\ 2} = 5.37\ m$$

MISCELLANEOUS DATA CALCULATIONS

Induced drag factors, only due to geometric effects

$$e_{W_alt_1} \coloneqq \frac{2}{2 - AR_{W_1} + \sqrt{4 + AR_{W_1}^{-2} \left(1 + \tan\left(\varLambda_{W_tmax_1}\right)^2\right)}} = 0.664$$

$$e_{W_alt_2} \coloneqq \frac{2}{2 - AR_{W_2} + \sqrt{4 + AR_{W_2}^2 \left(1 + \tan\left(\Lambda_{W_tmax_2}\right)^2\right)}} = 0.584$$

$$e_{W_alt} \coloneqq \frac{2}{2 - AR_W + \sqrt{4 + AR_W^2 \left(1 + \tan \left(\Lambda_{W_tmax_eqv}\right)^2\right)}} = 0.59$$

$$e_{W_alt_2} = 0.584$$

 $e_{W_alt_1} = 0.664$

$$e_{W_alt} = 0.59$$

$$e_{W_1_alt_A0} \coloneqq 1.78 \cdot \left(1 - 0.045 \cdot AR_{W_1}^{0.68}\right) - 0.64 = 1.021$$

$$e_{W\ 2\ alt\ A0} \coloneqq 1.78 \cdot \left(1 - 0.045 \cdot AR_{W\ 2}^{0.68}\right) - 0.64 = 0.828$$

$$e_{W \ alt \ A0} := 1.78 \cdot (1 - 0.045 \cdot AR_W^{0.68}) - 0.64 = 0.813$$

 Alternative formula: valid for unswept wings

$$e_{W_alt_A} \coloneqq 4.61 \cdot \left(1 - 0.045 \cdot AR_W^{-0.68}\right) \cdot \cos\left(\varLambda_{W_LE_eqv}\right)^{0.15} - 3.1 = 0.555$$

 Alternative formula: valid for swept wings

3d critical Mach number at mean aerodynamic chord

$$M_{cr_W_1_3D_@MAC_1} = 0.8$$

$$M_{cr_W_2_3D_@MAC_2} \coloneqq \frac{{}_{\rm f}\!M_{\rm cr_2D_W} \left(Y_{MAC_W_2}\right)}{\cos \left(\Lambda_{W_LE_2}\right)} = 0.807$$

$$M_{cr_W_2_3D_@MAC_2} = 0.807$$

$$M_{cr_W_3D_@MAC} \coloneqq \frac{{}_{f}\!\!\mathrm{M}_{cr_2D_W}\left(Y_{MAC_W}\right)}{\cos\left(\varLambda_{W_LE_eqv}\right)} = 0.81$$

$$M_{cr_W_3D_@MAC} = 0.81$$

Ailerons inner and outer stations and area

$$y_{a_in} := \eta_{a_in} \cdot \frac{b_W}{2} = 22.236 \ m$$

$$y_{a_out} := \eta_{a_out} \cdot \frac{b_W}{2} = 28.937 \ m$$

$$c_{W_mean_@a} \coloneqq {}_{\mathbf{f}} \mathbf{c_W} \left(\frac{y_{a_in} + y_{a_out}}{2} \right) = 3.722 \ \boldsymbol{m}$$

$$S_a = 2 \cdot c_a \cdot (y_{a_out} - y_{a_in}) = 12.732 \ m^2$$

$$y_{a_in} = 22.236 \ m$$

$$y_{a_out} = 28.937 \ m$$

$$c_{W_mean_@a} = 3.722 \ m$$

$$S_a = 12.732 \, \mathbf{m}^2$$

Flaps inner and outer stations and area

$$y_{\mathit{flap_in}} \coloneqq \eta_{\mathit{flap_in}} \cdot \frac{b_W}{2} = 9.138 \ \textit{m}$$

$$y_{flap_out} \coloneqq \eta_{flap_out} \cdot \frac{b_W}{2} = 18.276 \ m$$

$$S_{flap} \coloneqq 2 \cdot c_{flap} \cdot \left(y_{flap_out} - y_{flap_in} \right) = 13.707 \ m^2$$

$$\alpha_{0L_W_flaps_open} \coloneqq \alpha_{0L_W} + \frac{S_{flap}}{S_W} \cdot \Delta \alpha_{0l_W_flaps} = -0.019$$

$$y_{flap_in} = 9.138 \ m$$

$$y_{flap_out} = 18.276$$
 m

$$S_{flap} = 13.707 \ m^2$$

$$\alpha_{0L_W_flaps_open} = -1.096 \ deg$$

WING LIFT CURVE SLOPE

Wing Lift Curve Slope, function definitions

Formula Coefficient

 ${}_{\rm fk_{\rm Polhamus}} \left(M\,, M_{cr_3D}\,, \varLambda_{LE}\,, \lambda\,, AR \right) \coloneqq \left\| \text{ if } \left(M\,< M_{cr_3D} \right) \wedge \left(\varLambda_{LE}\,<\,32\,\, \textit{deg} \right) \wedge \left(\lambda\,>\,0.4 \right) \wedge \left(\lambda\,<\,1 \right) \wedge \left(AR\,>\,3 \right) \wedge \left(AR\,<\,8 \right) \right\|$ $\begin{vmatrix} AR \cdot (1.87 - 0.000233 \cdot \Lambda_{LE}) \\ 100 \end{vmatrix}$ return $1 + \frac{AR \cdot (1.87 - 0.000233 \cdot \Lambda_{LE})}{100}$ return $1 + \frac{((8.2 - 2.3 \cdot \Lambda_{LE}) - AR \cdot (0.22 - 0.153 \cdot \Lambda_{LE}))}{100}$ return 100

$$_{\mathrm{f}}\mathbf{C}_{\mathrm{L}\alpha_{-}\mathbf{W}}(M,k_{P},AR,\Lambda_{c2},C_{l\alpha@MAC},\Lambda_{LE})\coloneqq \| \mathrm{if}_{\mu}AR = 0$$

• General Formula for Lift Curve Slope

$$\begin{vmatrix} \text{if } AR = 0 \\ \text{return } C_{l\alpha@MAC} \end{vmatrix}$$
 if $k_P \neq 100$ (---> use Polhamus Formula)
$$2 \cdot \pi \cdot AR$$

$$2 + \sqrt{\left(\left(\frac{AR^2 \cdot (1 - M^2)}{k_P^2} \left(1 + \frac{\tan\left(\Lambda_{c2}\right)^2}{(1 - M^2)}\right)\right) + 4\right)}$$
 else (---> use alternative formula)
$$\begin{vmatrix} a_0 \leftarrow \frac{C_{l\alpha@MAC}}{\sqrt{1 - M^2 \cdot \cos\left(\Lambda_{LE}\right)^2}} \\ \\ return \frac{a_0 \cdot \cos\left(\Lambda_{LE}\right)}{\sqrt{1 - \left(M \cdot \cos\left(\Lambda_{LE}\right)\right)^2} + \left(\frac{a_0 \cdot \cos\left(\Lambda_{LE}\right)}{\pi \cdot AR}\right)^2} + \frac{a_0 \cdot \cos\left(\Lambda_{LE}\right)}{\pi \cdot AR}$$

Wing Lift Curve Slope, classic formula for inner/outer panel and whole wing

$$C_{L\alpha_W_1_classic} \coloneqq \frac{C_{l\alpha_W_mean_1}}{\sqrt{1 - {M_1}^2}} + \frac{C_{l\alpha_W_mean_1}}{\pi \cdot AR_{W_1} \cdot e_{W_alt_1}} = 2.651$$

$$C_{L\alpha_W_1_classic} = 0.046 \ deg^{-1}$$

$$C_{L\alpha_W_2_classic} \coloneqq \text{if} \left({}_{b}Crk = 0 \; , \frac{C_{l\alpha_W_mean_2}}{\sqrt{1 - {M_{1}}^{2}}} \; , \frac{C_{l\alpha_W_mean_2}}{\sqrt{1 - {M_{1}}^{2}}} + \frac{C_{l\alpha_W_mean_2}}{\pi \cdot AR_{W_2} \cdot e_{W_alt_2}} \right) = 5.414 \; \textit{rad}^{-1}$$

$$C_{L\alpha_W_2_classic} = 0.094 \ deg^{-1}$$

$$C_{L\alpha_W_classic} \coloneqq \frac{C_{l\alpha_W_mean}}{\sqrt{1 - {M_1}^2} + \frac{C_{l\alpha_W_mean}}{\pi \cdot AR_W \cdot e_{W_alt}}} = 5.623 \; rad^{-1}$$

$$C_{L\alpha_W_classic} = 0.098~deg^{-1}$$

Wing Lift Curve Slope, general formula for inner/outer panel and whole wing

 $k_{Polhamus_1} \coloneqq {}_{\mathbf{f}} \mathbf{k}_{\mathrm{Polhamus}} \left(M_1 \,, M_{cr_W_1_3D_@MAC_1} \,, \Lambda_{W_LE_1} \,, \lambda_{W_1} \,, AR_{W_1} \right) = 100$

 $k_{Polhamus_1}\!=\!100$

 $C_{l\alpha_{-}W_{-}1_{-}@MAC_{-}1} := {}_{f}C_{l\alpha_{-}W}(Y_{MAC_{-}W_{-}1}) = 7.002 \ rad^{-1}$

 $C_{llpha_W_1_@MAC_1}\!=\!0.122\;m{deg}^{-1}$

 $C_{L\alpha_W_1_@M0} \coloneqq {}_{\mathbf{f}}\mathbf{C}_{\mathbf{L}\alpha_W}\left(0\,,k_{Polhamus_1}\,,AR_{W_1}\,,\boldsymbol{\Lambda}_{W_c2_1}\,,\boldsymbol{C}_{l\alpha_W_1_@MAC_1}\,,\boldsymbol{\Lambda}_{W_LE_1}\right)$

 $C_{L\alpha\ W\ 1\ @M0}\!=\!2.341\ {\it rad}^{-1}$

 $C_{L\alpha_W_1_@M0} = 0.041~deg^{-1}$

 $C_{L\alpha_W_1} \coloneqq {}_{\mathbf{f}}\mathbf{C}_{\mathbf{L}\alpha_W} \left(M_1 \,, k_{Polhamus_1} \,, AR_{W_1} \,, \Lambda_{W_c2_1} \,, C_{l\alpha_W_1_@MAC_1} \,, \Lambda_{W_LE_1} \right)$

 $C_{L\alpha_W_1} = 2.529 \ rad^{-1}$

 $C_{L\alpha_{-}W_{-}1} = 0.044 \ deg^{-1}$

 $k_{Polhamus_2} := {}_{f}k_{Polhamus} (M_1, M_{cr_{W_2}3D_@MAC_2}, \Lambda_{W_{LE_2}}, \lambda_{W_2}, AR_{W_2}) = 100$

 $C_{l\alpha_{-}W_{-}2_{-}@MAC_{-}2} := {}_{f}C_{l\alpha_{-}W}(Y_{MAC_{-}W_{-}2}) = 6.937 \ rad^{-1}$

 $k_{Polhamus_2}\!=\!100$

 $C_{L\alpha_W_2_@M0} \coloneqq {}_{\mathbf{f}}\mathbf{C}_{\mathbf{L}\alpha_W}\left(0\,,k_{Polhamus_2},AR_{W_2}\,,\Lambda_{W_c2_2},C_{l\alpha_W_2_@MAC_2}\,,\Lambda_{W_LE_2}\right)$

 $C_{l\alpha_W_2_@MAC_2} = 0.121 \ deg^{-1}$

 $C_{Llpha_W_2_@M0}\!=\!4.481~{m rad}^{-1}$

 $CL\alpha_{-}W_{-}2_{-}@M0 = 1.101$ 7 at

 $C_{L\alpha\ W\ 2\ @M0} = 0.078\ deg^{-1}$

 $C_{L\alpha_W_2} \coloneqq {}_{\mathbf{f}}\mathbf{C}_{\mathbf{L}\alpha_W}\left(M_1, k_{Polhamus_2}, AR_{W_2}, \Lambda_{W_c2_2}, C_{l\alpha_W_2_@MAC_2}, \Lambda_{W_LE_2}\right)$

 $C_{L\alpha W 2} = 5.716 \ rad^{-1}$

 $C_{L\alpha W 2} = 0.1 \ deg^{-1}$

 $k_{Polhamus_W} \coloneqq {}_{\mathsf{f}} k_{\operatorname{Polhamus}} \left(M_1 \,, M_{cr_W_3D_@MAC} \,, \Lambda_{W_LE_eqv} \,, \lambda_{W_eqv} \,, AR_{W_eqv} \right) = 100$

 $k_{Polhamus_W} = 100$

 $C_{l\alpha_W_@MAC} := {}_{f}C_{l\alpha_W}(Y_{MAC_W}) = 6.908 \ rad^{-1}$

 $C_{l\alpha_W_@MAC} = 0.121 \ deg^{-1}$

 $C_{L\alpha_W_@M0} \coloneqq {}_{\mathrm{f}} C_{L\alpha_W} \left(0 , k_{Polhamus_W}, AR_{W_eqv}, \Lambda_{W_c2_eqv}, C_{l\alpha_W_@MAC}, \Lambda_{W_LE_eqv} \right)$

 $C_{L\alpha_W_@M0} = 0.079~{deg}^{-1}$

 $C_{Llpha_{W}_{@M0}}\!=\!4.537\;rad^{-1}$

Ea_W_emo

 $C_{L\alpha_W} \coloneqq {}_{\mathbf{f}}\mathbf{C}_{\mathbf{L}\alpha_W} \left(M_1, k_{Polhamus_W}, AR_{W_eqv}, \Lambda_{W_c2_eqv}, C_{l\alpha_W_@MAC}, \Lambda_{W_LE_eqv} \right)$

 $C_{L_{QW}} = 0.102 \ deg^{-1}$

 $C_{L\alpha_W} = 5.822 \; rad^{-1}$

Wing lift coefficient at initial conditions

$$C_{L0_W_1}\!:=\!C_{L\alpha_W_1}\!\cdot\!\left(i_W\!-\!\alpha_{0L_W_1}\right)\!=\!0.176$$

$$C_{L0_W_1}\!=\!0.176$$

$$C_{L0\ W\ 2} = C_{L\alpha\ W\ 2} \cdot (i_W - \alpha_{0L\ W\ 2}) = 0.251$$

$$C_{L0\ W\ 2} = 0.251$$

$$C_{L0_W} \coloneqq C_{L\alpha_W} \cdot (i_W - \alpha_{0L_W}) = 0.338$$

$$C_{L0_W} = 0.338$$

Induced drag factor, due to both geometric and aerodynamic effects

$$\begin{split} & _{\mathrm{fe}}\left(C_{L\alpha},AR\,,\lambda\,,\Lambda_{LE}\right) \coloneqq \left\| \begin{array}{l} \lambda_{e} \leftarrow \frac{AR \cdot \lambda}{\cos\left(\Lambda_{LE}\right)} \\ R \leftarrow 0.0004 \cdot \lambda_{e}^{-3} - 0.008 \cdot \lambda_{e}^{-2} + 0.0501 \cdot \lambda_{e} + 0.8642 \\ \mathrm{return} \ \mathrm{if}\left(AR = 0\,,0\,,\frac{1.1 \cdot C_{L\alpha}}{R \cdot C_{L\alpha} + \left(1 - R\right)\,\pi \cdot AR} \right) \\ \end{split} \right. \end{split}$$

 Function for calculating wing induced drag factor, icluding aerodynamic and geometric effects

$$e_{W_{-1}} := e(C_{L\alpha_{-}W_{-1}}, AR_{W_{-1}}, \lambda_{W_{-1}}, \Lambda_{W_{-}LE_{-1}}) = 0.995$$

$$e_{W-1} = 0.995$$

$$e_{W_2} = 0.932$$

$$e_W := {}_{\mathbf{f}} \mathbf{e} \left(C_{L\alpha_W}, AR_W, \lambda_W, \Lambda_{W_LE_eqv} \right) = 0.866$$

$$e_W = 0.866$$

WING AERODYNAMIC CENTER - GRAPHICAL METHOD (DATCOM/NAPOLITANO)

@Aerodynamic Database ---> (x_bar_ac_w)_k1_vs_lambda

$$K1_{ac\ W\ 1\ Datcom} = 1.254$$

$$K1_{ac_W_2_Datcom} = 1.42$$

$$K1_{ac_W_eqv_Datcom} = 1.457$$

@Aerodynamic Database ---> (x_bar_ac_w)_k2_vs_L_LE_(AR)_(lambda)

$$K2_{ac_W_1_Datcom} = 0.134$$

$$K2_{ac_W_2_Datcom} = 0.646$$

$$K2_{ac_W_eqv_Datcom}\!=\!0.602$$

@Aerodynamic Database ---> (x_bar_ac_w)_x'_ac_over_root_chord_vs_tan_(L_LE)_over_beta_(AR_times_tan_(L_LE))_
(lambda)

$$X_{ac_over_c_{r_W_1_Datcom}}\!=\!0.39$$

$$X_{ac_}over_c_{r_W_2_Datcom}\!=\!0.862$$

$$X_{ac_over_c_{r_W_Datcom}} \coloneqq \frac{X_{ac_over_c_{r_W_1_Datcom}} \cdot S_{W_1} \cdot C_{L\alpha_W_1} + X_{ac_over_c_{r_W_2_Datcom}} \cdot S_{W_2} \cdot C_{L\alpha_W_2}}{S_{W_1} \cdot C_{L\alpha_W_1} + S_{W_2} \cdot C_{L\alpha_W_2}} = 0.695$$

Adimensional aerodynamic center position with respect to MAC leading edge

$\xi_{ac_W_1} \coloneqq K1_{ac_W_1_Datcom} \cdot \left(X_{ac_over_c_{r_W_1_Datcom}} - K2_{ac_W_1_Datcom}\right) = 0.32$	$\xi_{ac_W_1} = 0.32$
$\xi_{ac_W_2} \coloneqq K1_{ac_W_2_Datcom} \cdot \left(X_{ac_over_c_{r_W_2_Datcom}} - K2_{ac_W_2_Datcom} \right) = 0.307$	$\xi_{ac_W_2} = 0.307$
$\xi_{ac_W_eqv} \coloneqq K1_{ac_W_eqv_Datcom} \cdot \left(X_{ac_over_c_{r_W_eqv_Datcom}} - K2_{ac_W_eqv_Datcom}\right) = 0.332$	$\xi_{ac_W_eqv} = 0.332$

$$\xi_{ac_W} \coloneqq \frac{\xi_{ac_W_1} \cdot S_{W_1} \cdot C_{L\alpha_W_1} + \xi_{ac_W_2} \cdot S_{W_2} \cdot C_{L\alpha_W_2}}{S_{W_1} \cdot C_{L\alpha_W_1} + S_{W_2} \cdot C_{L\alpha_W_2}} = 0.311$$

Aerodynamic center position with respect to wing apex

$X_{ac_W_1} := \xi_{ac_W_1} \cdot MAC_{W_1} + X_{MAC_LE_W_1} = 7.296 \ m$	$X_{ac_W_1} = 7.296 \ m$
$X_{ac_W_2} := \xi_{ac_W_2} \cdot MAC_{W_2} + X_{MAC_LE_W_2} = 7.256 \ m$	$X_{ac_W_2} = 7.256 \ m$
$X_{ac_W_eqv} \coloneqq \xi_{ac_W_eqv} \cdot MAC_{W_eqv} + X_{MAC_LE_W_eqv} = 10.948 \ m$	$X_{ac_W_eqv} = 10.948 \ m$
$X_{cc} = \xi_{cc} \cdot M \cdot MAC_W + X_{MAC} \cdot I_F \cdot W = 9.3 \ m$	$X_{ac} = 9.3 m$

Aerodynamic center position with respect to MAC leading edge

$x_{ac_W_1}\!:=\!X_{ac_W_1}\!-\!X_{MAC_LE_W_1}\!=\!3.966~m$	$x_{ac_W_1} = 3.966 \ m$
$x_{ac_W_2} := X_{ac_W_2} - X_{MAC_LE_W_2} = 1.828 \ m$	$x_{ac_W_2} = 1.828 \ m$
$x_{ac_W_eqv}\!:=\!X_{ac_W_eqv}\!-\!X_{MAC_LE_W_eqv}\!=\!2.995~\textbf{\textit{m}}$	$x_{ac_W_eqv} = 2.995 \ m$
$x_{ac_W} := X_{ac_W} - X_{MAC_LE_W} = 2.959 \ m$	x_{ac_W} $=$ $2.959~m$

SHRENK'S METHOD FOR BASIC AND ADDITIONAL WING LOADING

Loading function definitions and remarkable values

$${}_{\mathrm{f}}\mathbf{c}_{\mathrm{eff}}\!\left(y\right)\!\coloneqq\!\frac{{}_{\mathrm{f}}\mathbf{c}_{\mathbf{W}}\!\left(y\right)\!\cdot{}_{\mathrm{f}}\mathbf{C}_{\mathrm{l}\alpha_{-}\!\mathbf{W}}\!\left(y\right)}{C_{l\alpha_{-}\!W_{-}mean}}$$

$$c_{ell_0} \coloneqq \frac{4 \cdot S_W}{\pi \cdot b_W} \qquad \qquad {}_{\mathrm{f}} \mathrm{c}_{\mathrm{ell}} \left(y \right) \coloneqq c_{ell_0} \cdot \sqrt{1 - \left(\frac{y}{\frac{b_W}{2}} \right)^2}$$

$$_{\mathbf{f}}\alpha_{\mathbf{b}}(y)\coloneqq \alpha_{0L_W}-\left(_{\mathbf{f}}\alpha_{0\mathbf{l}_2\mathbf{D}_\mathbf{W}}(y)-{}_{\mathbf{f}}\varepsilon_{\mathbf{g}_\mathbf{W}}(y)\right)$$

$${}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}_{-\mathbf{b}}}\!\left(y\right) \coloneqq \frac{1}{2} \boldsymbol{\cdot}_{\mathbf{f}} \mathbf{c}_{\mathbf{W}}\!\left(y\right) \boldsymbol{\cdot}_{\mathbf{f}} \mathbf{C}_{\mathbf{l}\alpha_{-}\mathbf{W}}\!\left(y\right) \boldsymbol{\cdot}_{\mathbf{f}} \!\alpha_{\mathbf{b}}\!\left(y\right)$$

$${}_{\mathrm{f}}\mathrm{cC}_{\mathrm{l}_{-}\mathrm{a}}\!\left(y\right) \coloneqq \frac{1}{2} \cdot \left({}_{\mathrm{f}}\mathrm{c}_{\mathrm{eff}}\!\left(y\right) + {}_{\mathrm{f}}\mathrm{c}_{\mathrm{ell}}\!\left(y\right)\right)$$

$${}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}}\left(y\right)\coloneqq{}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}_{-\mathbf{b}}}\left(y\right)+{}_{\mathbf{f}}\mathbf{c}\mathbf{C}_{\mathbf{l}_{-\mathbf{a}}}\left(y\right)$$

$$C_{L_b} \coloneqq rac{2}{S_W} \cdot \int\limits_0^{b_W} {
m fcC_{l_b}(y)} \, {
m d} \, y = 5.857 \cdot 10^{-4}$$

$$C_{L_a} \coloneqq rac{2}{S_W} \cdot \int\limits_0^{rac{b_W}{2}} \mathrm{fcC_{l_a}}ig(y) \, \mathrm{d}y = 1$$

- Effective chord distribution function
- Elliptic chord distribution function
- "Basic" angle of attack function
- Basic wing loading
- Additional wing loading function
- Wing loading function
 - REMARK: the effects of wing sweep angle are neglected

Spanwise loading curve plots

3D PITCHING MOMENT COEFFICIENT ABOUT WING AERODYNAMIC CENTER

Exact formulation

$$\begin{split} {}_{\mathbf{f}\mathbf{X}_{\mathbf{b}_{-}\mathbf{W}}}(y) \coloneqq & \text{if } y \leq \frac{b_{W_{-1}}}{2} \\ & \parallel \operatorname{return} X_{ac_{-}W} - \left(y \cdot \tan\left(\varLambda_{W_{-}LE_{-1}}\right) + {}_{\mathbf{f}}\mathbf{c}_{\mathbf{W}}(y) \cdot {}_{\mathbf{f}}\boldsymbol{\xi}_{\mathbf{ac}_{-}2\mathbf{D}_{-}\mathbf{W}}(y)\right) \\ & \text{else} \\ & \parallel \operatorname{return} X_{ac_{-}W} - \left(\frac{b_{W_{-1}}}{2} \cdot \tan\left(\varLambda_{W_{-}LE_{-1}}\right) + \left(y - \frac{b_{W_{-1}}}{2}\right) \cdot \tan\left(\varLambda_{W_{-}LE_{-2}}\right) + {}_{\mathbf{f}}\mathbf{c}_{\mathbf{W}}(y) \cdot {}_{\mathbf{f}}\boldsymbol{\xi}_{\mathbf{ac}_{-}2\mathbf{D}_{-}\mathbf{W}}(y)\right) \end{split}$$

• Moment arm from section's aerodynami c center to wing 3D aerodynami c center

$$C_{M_ac_W_b} \coloneqq \frac{2}{S_W \cdot MAC_W} \cdot \int\limits_0^{\frac{b_W}{2}} {}_{\mathbf{f}} \mathbf{c} \mathbf{C}_{\mathbf{l_b}} \big(y \big) \cdot {}_{\mathbf{f}} \mathbf{x}_{\mathbf{b_W}} \big(y \big) \, \mathrm{d} \, y = 0.028$$

$$C_{M_ac_W_b} = 0.028$$

$$C_{M_ac_W_a} \coloneqq \frac{2}{S_W \boldsymbol{\cdot} MAC_W} \boldsymbol{\cdot} \int\limits_0^{\frac{b_W}{2}} {}_{\mathrm{f}} \mathrm{C}_{\mathrm{m_ac_2D_W}} (y) \boldsymbol{\cdot}_{\mathrm{f}} \mathrm{c_W} (y)^2 \, \, \mathrm{d}y = -0.033$$

$$C_{M\ ac\ W\ a} \!=\! -0.033$$

$$C_{M \ ac \ W} := C_{M \ ac \ W \ b} + C_{M \ ac \ W \ a} = -0.005$$

$$C_{M_ac_W} = -0.00532$$

Approximated formulation (Roskam)

$$C_{M\ ac\ W\ b\ Roskam} = 0.025$$

$$C_{M_ac_W_Roskam} \coloneqq C_{M_ac_W_b_Roskam} + C_{M_ac_W_a} = -0.008$$

$$C_{M_ac_W_Roskam} = -0.008$$

DOWNWASH

Prandtl Lifting Line Theory (LLT)

$$_{\mathbf{f}}\varepsilon_{\mathbf{\alpha}_\mathbf{LLT}_{_\mathbf{W}}}\left(C_{L\alpha}\,,AR\,,e\,,M\right)\coloneqq\mathrm{if}\left(AR=0\,,0\,,2\,\boldsymbol{\cdot}\frac{C_{L\alpha}}{\pi\,\boldsymbol{\cdot}AR\,\boldsymbol{\cdot}\,e}\,\boldsymbol{\cdot}\frac{1}{\sqrt{1-M^{2}}}\right)$$

• Downwash gradient according to linear theory

$$\varepsilon_{\alpha_LLT_@M0_W} \coloneqq {}_{\mathrm{f}}\varepsilon_{\alpha_LLT_W}\left(C_{L\alpha_W},AR_W,e_W,0\right) = 0.541$$

$$\varepsilon_{\alpha_LLT_W}\!\coloneqq_{\mathbf{f}}\!\varepsilon_{\alpha_LLT_W}\left(C_{L\alpha_W},AR_W,e_W,M_1\right)\!=\!0.711$$

$$\boldsymbol{\varepsilon}_{0_LLT_W}\!\coloneqq\!\boldsymbol{\varepsilon}_{\alpha_LLT_W}\!\boldsymbol{\cdot} \left(i_W\!-\!\alpha_{0L_W}\right)\!=\!0.041$$

$$\varepsilon_{\alpha_LLT_@M0_W}\!=\!0.541$$

$$\varepsilon_{\alpha_LLT_W}\!=\!0.711$$

$$arepsilon_{0_LLT_W} \! = \! 2.368~deg$$

DATCOM Method

$$\Delta X_HT_{LE}_W_{LE} \coloneqq \Delta X_HT_{LE}_Nose - \Delta X_W_{LE}_Nose = 38.35 \ \textit{m}$$

$$\Delta Z_HT_{LE}_W_{LE} \coloneqq \Delta Z_HT_{LE}_Nose - \Delta Z_W_{LE}_Nose = 2.1 \ m$$

$$\Delta X_HT_{LE}_W_{LE} = 38.35 \ m$$

$$\Delta Z_{\perp}HT_{LE}W_{LE} = 2.1 \ m$$

$$\xi_{ac_H} := K1_{ac_H_Datcom} \cdot (X_{ac_over_c_{r_H_Datcom}} - K2_{ac_H_Datcom}) = 0.277$$

$$\xi_{ac_H} = 0.277$$

$$\Delta Z_HT_{MAC4}_W_{MAC4} \coloneqq \Delta Z_HT_{LE}_W_{LE} + Y_{MAC}_H \cdot \tan\left(\Gamma_H\right) - Y_{MAC}_W \cdot \tan\left(\Gamma_{W_eqv}\right) = 1.651 \ m$$

$$\Delta X_{_}HT_{MAC4}_W_{MAC4} \coloneqq \Delta X_{_}HT_{LE}_W_{LE} + \left(X_{MAC_LE_H} + \frac{MAC_H}{4}\right) - \left(X_{MAC_LE_W} + \frac{MAC_W}{4}\right) = 34.638 \ \textit{m}$$

$$\Delta Z'_HT_{MAC4}_W_{MAC4} \coloneqq \Delta X_HT_{MAC4}_W_{MAC4} \cdot \sin\left(i_W\right) + \Delta Z_HT_{MAC4}_W_{MAC4} \cdot \cos\left(i_W\right) = 2.859 \ m$$

$$\Delta X'_HT_{MAC4}_W_{MAC4} \coloneqq \Delta X_HT_{MAC4}_W_{MAC4} \cdot \cos\left(i_W\right) - \Delta Z_HT_{MAC4}_W_{MAC4} \cdot \sin\left(i_W\right) = 34.559 \ m$$

- Normal to root chord
- Parallel to root chord

$$\Delta X_HT_{ac}_W_{ac} \coloneqq \Delta X_HT_{LE}_W_{LE} + \left(X_{MAC}_{LE}_H + \xi_{ac}_H \cdot MAC_H\right) - X_{ac}_W = 34.197 \ m$$

$$\Delta X_{-}HT_{ac}_{-}W_{ac} = 34.197 \ m$$

$$\Delta Z_HT_{ac}_W_{ac} := \Delta Z_HT_{MAC4}_W_{MAC4} = 1.651 \ m$$

$$\Delta Z$$
_ HT_{ac} _ W_{ac} = 1.651 m

$$_{f}K_{AR}(AR) := \frac{1}{AR} - \frac{1}{1 + (AR)^{1.7}}$$

$$\begin{split} K_M \left(\!M\,, C_{L\alpha_@M0}\,, C_{L\alpha}\!\right) &\coloneqq \text{if } M \leq 0.7 \\ & \left\| \text{return } \sqrt{1-M^2} \right\| \\ & \text{else} \\ & \left\| \text{return } \frac{C_{L\alpha}}{C_{L\alpha_@M0}} \right\| \end{split}$$

$$_{f}K_{\lambda}(\lambda) := \frac{10 - 3 \cdot \lambda}{7}$$

$$_{\mathrm{f}} \mathbf{K}_{\mathrm{MAC4}} \left(\Delta Z', \Delta X', b \right) \coloneqq \frac{1 - \frac{\Delta Z'}{b}}{\sqrt[3]{2 \cdot \frac{\Delta X'}{b}}}$$

$$K_{AR_{-}W} := {}_{f}K_{AR} \left(AR_{W} \right) = 0.097$$

$$K_{\lambda W} := {}_{\mathrm{f}} K_{\lambda} (\lambda_{W}) = 1.369$$

$$K_{MAC4_WH} \coloneqq {}_{\mathrm{f}} \mathbf{K}_{\mathrm{MAC4}} \left(\Delta Z'_HT_{MAC4}_W_{MAC4}, \Delta X'_HT_{MAC4}_W_{MAC4}, b_W \right) = 0.914$$

$$K_{M_W} := K_M \langle M_1, C_{L\alpha_W_@M0}, C_{L\alpha_W} \rangle = 0.76$$

$$K_{AR_W} = 0.097$$

$$K_{\lambda W} = 1.369$$

$$K_{MAC4_WH} = 0.914$$

$$K_{M_W} = 0.76$$

$$\varepsilon_{\alpha_@M0_W} \coloneqq 4.44 \cdot \left(K_{AR_W} \cdot K_{\lambda_W} \cdot K_{MAC4_WH} \cdot \sqrt{\cos\left(\varLambda_{W_c4_eqv} \right)} \right)^{1.19} = 0.332$$

$$\varepsilon_{\alpha_W}\!\coloneqq\!\varepsilon_{\alpha_@M0_W}\!\cdot\!\sqrt{1\!-\!{M_1}^2}$$

$$\varepsilon_{0_W} \coloneqq \varepsilon_{\alpha_W} \cdot (i_W - \alpha_{0L_W}) = 0.015$$

$$\varepsilon_{\alpha_@M0_W}\!=\!0.332$$

$$\varepsilon_{\alpha_W}\!=\!0.252$$

$$\varepsilon_{0_W}\!=\!0.84~{\color{red}\textit{deg}}$$

MISCELLANEOUS PARAMETERS PLOT

MAPPING AND OUTPUT CREATION

Includi << ../Default_Map_Wing.mcdx

Excel Writing

 $First_Row_{W} := 4$

 $Block_{W_1} := {}_{f}map_matrix_transform ({}_{m}Wing_Data_Map_{imported})$

 $Excel_Output_{W_{-1}} := {}_{\text{f}}write_full_output ({}_{s}Output_Excel_File , Block_{W_{-1}}, n_{sheet}, First_Row_{W_{-1}})$

 $First_Row_{W_2} := First_Row_{W_1} + rows (Block_{W_1}) + 2 = 25$

 $Block_{W_2} := {}_{f}map_matrix_transform ({}_{m}Wing_Data_Map_{input})$

 $Excel_Output_{W_2} \coloneqq_{\mathsf{f}} \mathsf{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{W_2} \,, n_{sheet} \,, First_Row_{W_2} \right)$

 $First_Row_{W_3} := First_Row_{W_2} + rows (Block_{W_2}) + 2 = 87$

 $Block_{W_3} := {}_{f}map_matrix_transform ({}_{m}Wing_Data_Map)$

 $Excel_Output_{W_3} \coloneqq {}_{\mathsf{f}} \mathsf{write_full_output} \left({}_{s}Output_Excel_File \,, Block_{W_3} \,, \, n_{sheet} \,, First_Row_{W_3} \right)$

 $First_Row_{W_4} := First_Row_{W_3} + rows (Block_{W_3}) + 2 = 373$

 $Block_{W_4} \coloneqq {}_{\mathrm{f}} \mathrm{map_matrix_transform} \left({}_{m} Wing_Data_Map_{COP} \right)$

 $Excel_Output_{W_4} \coloneqq {}_{\mathsf{f}} \mathsf{write_full_output} \left({}_{s}Output_Excel_File} \right., \\ Block_{W_4}, n_{sheet}, First_Row_{W_4} \right)$

 $First_Row_{W_5} \coloneqq First_Row_{W_4} + \operatorname{rows}\left(Block_{W_4}\right) + 2 = 407$

 $Block_{W_5} := {}_{f}map_matrix_transform ({}_{m}Wing_Data_Map_{LLCoeffs})$

 $Excel_Output_{W_5} := _{\text{f}} write_full_output \left(_{s}Output_Excel_File \,, Block_{W_5} \,, \, n_{sheet} \,, First_Row_{W_5} \right)$

 $First_Row_{W_5} := First_Row_{W_5} + rows (Block_{W_5}) + 2 = 475$

 $Block_{W_6} := {}_{f}map_matrix_transform ({}_{m}Wing_Data_Map_{Misc})$

 $Excel_Output_{W_6} := {}_{\mathrm{f}} write_\mathrm{full_output} \left({}_{s}Output_Excel_File \,, Block_{W_6} \,, \, n_{sheet} \,, First_Row_{W_6} \right)$

CSV Tabs Writing

$$_{m}CSV_{W_1} \coloneqq \operatorname{augment}\left(_{v}y,_{v}c_{ell},_{v}c_{eff},_{v}cC_{l_a},_{v}cC_{l_b}\right) \cdot \frac{1}{m}$$

 $CSV_Output_{W_1} := WRITECSV (".\Output\WING_shrenk_loading(y,c_ell,c_eff,cCl_a,cCl_b).csv", {}_{m}CSV_{W_1})$

$${}_{m}CSV_{W_2} \coloneqq \operatorname{augment}\left({}_{v}y \cdot \frac{1}{m}, {}_{v}x_{b_W} \cdot \frac{1}{m}, {}_{v}IC_{M_ac_W_b} \cdot \frac{1}{m^2}, {}_{v}IC_{M_ac_W_b_Roskam} \cdot \frac{1}{m^2}\right)$$

 $CSV_Output_{W\ 2} \coloneqq \text{WRITECSV}\left(\text{``.} \setminus \text{Output} \setminus \text{WING_shrenk-roskam_loading}(y, x_b, \text{IC_M_b, IC_M_b_Roskam}). \text{csv''}, {}_{m}CSV_{W\ 2}\right)$

$$_{m}CSV_{W_3} \coloneqq \operatorname{augment} \left(_{v}y \cdot \frac{1}{m}, _{v}c_{W} \cdot \frac{1}{m}, _{v}\alpha_{0l_2D}, _{v}\varepsilon_{g}, _{v}C_{l\alpha_W}, _{v}C_{m_ac_2D_W}, _{v}\xi_{ac_2D_W} \right)$$

 $CSV_Output_{W_3} \coloneqq \text{WRITECSV} \left(\text{``.} \setminus \text{Output} \setminus \text{WING_linear_laws}(y, c, \text{alphazl,epsilon}, \text{Clalpha,Cmac,Csiac}). \text{csv''}, {}_{m}CSV_{W_3}\right)$

$$\begin{split} & {}_{m}CSV_{W_4} \coloneqq \text{augment} \left({}_{v}X_{W}, {}_{v}Y_{W} \right) \cdot \frac{1}{m} \\ & CSV_Output_{W_4} \coloneqq \text{WRITECSV} \left(\text{``.} \backslash \text{Output} \backslash \text{WING_planform}(\mathbf{X}_\mathbf{W}, \mathbf{Y}_\mathbf{W}).\text{csv''}, {}_{m}CSV_{W_4} \right) \\ & {}_{m}CSV_{W_5} \coloneqq \text{augment} \left({}_{v}X_{mac.1}, {}_{v}Y_{mac.1}, {}_{v}X_{mac.2}, {}_{v}Y_{mac.2}, {}_{v}X_{mac.W}, {}_{v}Y_{mac.W}, {}_{v}X_{ac_W}, {}_{v}Y_{ac_W} \right) \cdot \frac{1}{m} \\ & CSV_Output_{W_5} \coloneqq \text{WRITECSV} \left(\text{``.} \backslash \text{Output} \backslash \text{WING_planform_MAC_and_AC}(\text{Xmac1,Ymac1,Xmac2,Ymac2,XmacW,YmacW}).\text{csv''}, {}_{m}CSV_{W_5} \right) \\ & {}_{m}CSV_{W_6} \coloneqq \text{augment} \left({}_{v}X_{ac_2D}, {}_{v}Y_{ac_2D} \right) \cdot \frac{1}{m} \\ & CSV_Output_{W_6} \coloneqq \text{WRITECSV} \left(\text{``.} \backslash \text{Output} \backslash \text{WING_planform_ac2D}(\text{Xac2D,Yac2D}).\text{csv''}, {}_{m}CSV_{W_6} \right) \end{split}$$

TeX Macro writing on .tex

 $\begin{subarray}{l} $_v complete_macros_W \coloneqq \mathrm{stack} \left(Block_{W_{-1}}^{(2)}, Block_{W_{-2}}^{(2)}, Block_{W_{-3}}^{(2)}, Block_{W_{-4}}^{(2)}, Block_{W_{-5}}^{(2)}, Block_{W_{-6}}^{(2)}\right)$ \\ $_v tex_W \coloneqq {}_f \mathrm{write_matrix} \left(\text{``.} \setminus \mathrm{Output} \setminus \mathrm{WING_Tex_Macros.tex''}, {}_v complete_macros_W, \text{``'}\right)$ \\ \end{subarray}$