Nuclear and Particle Physics Workshop 1

- 1. For heavy, instable atomic nuclei α -decay is a comparatively common phenomenon, but proton emission is virtually non-existent. What is the reason for this observation?
 - a) Based on the semi-empirical mass formula, calculate the energy release for α decay (the pairing term can be neglected $\delta = 0$)

$$E_{\alpha} = M(A, Z) - M(A - 4, Z - 2) - M(4, 2)$$
.

b) Show that an approximate expression for E_{α} for Z=A/2 and $\frac{1}{A}\ll 1$ is given by

$$E_{\alpha} \approx -4a_V + \frac{8}{3} \frac{a_s}{A^{1/3}} + a_c \frac{5}{3} A^{2/3} + B(4, 2)$$

c) Use the numerical values $B(4,2) = 28.3 \,\text{MeV}$ and

$$a_V = 15.84 \,\text{MeV}$$
, $a_s = 18.33 \,\text{MeV}$,
 $a_c = 0.71 \,\text{MeV}$, $a_a = 92.80 \,\text{MeV}$.

to show that $E_{\alpha} \geq 0$ for $A \gtrsim 93$. Therefore, only for heavy nuclei the energy release ispositive and α -decay is possible. Note that Z = A/2 is not a good approximation for heavy nuclei. The more realistic value derived in the homework exercise $Z = A/(2 + 0.015A^{2/3})$ yields $E_{\alpha} \geq 0$ for $A \gtrsim 150$.

d) Calculate the energy release for proton emission

$$E_P = M(A, Z) - M(A - 1, Z - 1) - M(1, 1)$$
.

and show that in the same approximation as above, Z=A/2 and $\frac{1}{A}\ll 1$,

$$E_P = -a_V + \frac{2}{3} \frac{a_s}{A^{1/3}} + a_c \frac{11}{12} A^{2/3} ,$$

which is always smaller than E_{α} for nuclei with $A \gtrsim 93$. Proton emission is typically energetically less favourable than α -decay for nuclei with $E_{\alpha} \geq 0$.

2. A Uranium nucleus $^{236}_{92}$ U can break apart through spontaneous fission. Assume that it breaks in two roughly equal parts. Using that the electrostatic energy of a sphere with uniformly distributed charge Q is given by $E_{\rm stat}=\frac{3}{5}\frac{Q^2}{4\pi R}$ and the radius of both the Uranium atom and the fission products can be described by $R=1.2\cdot 10^{-13}A^{1/3}$, calculate the energy released in $^{236}_{92}$ U fission.