										_							_	CD	<u> </u> -			_
持込の指示	(許可)		持定の物 内容:	のみ許	可 				学籍	番号							-		採	点	欄	
指定のない)場合は不許可	とします。							氏	名												
秋学期	2 0 1 8	年度 政	治	経	済	学	部	中	間	試	験	問	是	I 11	月	26	日	(月)	限	
科目	経済	千数 与	≠ 入	門			クラス) 6		担任			蒲	7	g j	武	信			: .	

(I) 下の各問に答えよ.

$$f(x) = \begin{cases} -x^3 + x^2 + 1 & (x < 1) \\ 1 & (x = 1) \\ -2x^2 + 3x & (x > 1) \end{cases}$$

問

- 1. x < 1 のとき, f'(x), f''(x) を求めよ.
- 2. x > 1 のとき, f'(x), f''(x) を求めよ.
- に最も適するものを入れ、定義に従って f'(1) を求めよ. (A) ~ (K) には、下から選び、記号で答えよ. (L) には、数値で答えよ. 微分の定義から f'(1) = (A) (B) である. 右側極限 $a_1 = (C)$ (B) と左側極限 $a_2 = (D)$ (B) が存在し、かつ $a_1 = a_2$ のとき、極限 a = (A) (B) が存在し、 $a = a_1(=a_2)$ である. a_1 , a_2 は、 $a_1 = (C)$ (E) (E)
- 4. 定義に従って f''(1) を求めよ.
- 5. y = f(x) の極値を求めよ.

持込の指示	į.	乔許	司		全て許	3 vI v	宇定の物 容:::	のみ許	可 為(())	19381	ijilk:		学籍	番号							-	CD	採	点	欄	7
指定のない		合は	不割	4可と	:します								氏	名												
秋学期	2	0	1	8	年度	政	治	経	済	学	部	中	間	試	験	問	愚	5 11	月	26	日	(月)	2 限	Į -
科目		糸	圣	済	数	Į j	· 入	門			クラス		06		担任			瀧	. 清	₽ .	武	信				

(II) 関数の極限 (Limit) を求めよ.

(1)
$$\lim_{x \to 0} \frac{x^4}{e^x + e^{-x} - x^2 - 2}$$

(2)
$$\lim_{x\to 0} \frac{\sqrt{1-x^2}-1}{x^2}$$

(III) 関数の極値 (Extremum) を求めよ.

(1)
$$f(x) = \log x + \frac{1}{x} (x > 0)$$

(2)
$$f(x) = e^{\sqrt{1+x^2}}$$

(IV)下の各問に答えよ.

労働投入量 $\ell(>0)$ だけの関数 $y=f(\ell)$ を生産関数とする. y は財の産出量である. いま、労働力 1 単位あたりの賃金を w、資本投入にかかる固定費用を C とする. また、財は販売価格 p ですべて売れるものとする.

- (1) $f(\ell) = \ell^{\frac{2}{3}}, p = 1, w = 1, C = 10$ のとき, 利潤関数 $\pi(\ell)$ を求めよ. また, 最適労働投入量 ℓ^* とそのときの生産量 $y^*(y$ の最大値) を求めよ.
- (2) $f(\ell) = \ell^{\frac{1}{2}}, w = 2, C = 10$ のとき, 供給関数 $y^*(p)$ を求めよ $(y^* \circ p)$ の関数として表わせ).