Math 135 - More Fun with Sets 2/1/2010 Announcements -HW due tomorrow -Look for next HW to be out on Wed. Thursday - No office hours next Thusday (2/11) (sorry, doctor appointment)

Sets: some more définitions let S be a set. If S has exactly n (unque) elements, then we say Suis (s)=n. S is said to be infinite if it is not finite. What are infinite sets? N, Z, Q, K

Dhs (cont)

The power set of S, P(S) or 2, is the set of all subsets of S.

Ex: Let S= 20, 1, 23. What is the power set of S?

Ex: What is the power set of \$?

20 = {6} = {1}

Venn Diagrams

Sometimes we want a picture of how sets interact.

Ex: A = SnEN: n is even]

B = SnEN: n is divisible by 3]

C = Ex²: nE/N3

2 - 4 9

More Definitions Union: AUB = {x | x & A V x & B} Intersection: AnB = {x | x ∈ A \ and x ∈ B} Set Diffeence: A - B = \(\int \times \) x \(\int A \) and x \(\int B \)

DM:Two sets are called disjoint of their intersection is empty, A i.e. AnB = \$\phi\$.

Examples

 $A = \{2, 7, \{a,b\}, \pi\}$ $B = \{52, 7, \{a,b\}, \pi\}$ $C = \{\{a\}, b\}, \{a,b\}\}$

$$A \cup B = \{2,7, \{a,b\}, \pi, \sqrt{2}, a,b\}$$

 $A \cap B = \{\pi\}$
 $(A \cap C) \cup B = \{\sqrt{2}, \pi, a,b, \{a,b\}\}$
 $B - C > \{\sqrt{2}, a,\pi\}$

Set identities

Thm: For all sets A, B & C,

An (Buc) = (AnB) U(Anc)

(so O distributes over U)

Proof: Show An (Buc) = (AnB) u(Anc)
and (AnB) u (Anc) = An (Buc) DAn (BUC) = (ANB) U(ANC) Let $x \in A \cap (B \cup C)$. $\Rightarrow x \in A \quad and \quad x \in B \cup C$ If $x \in A$ and $x \in B$, then $x \in A \cap B$ If x &A and x &C, then x & A . C. One of these must hold, Since x EA and XEBUC. So X EA nB or X E A nC => x E (A nB) U (A nC) (AnB) U (AnC) = An(Buc) Let x ∈ (AnB) v (AnC). So x E AnB or x E AnC - If $x \in A \cap B$, then $x \in A$ and $x \in B$.

Now $x \in B$ \Rightarrow $x \in B \cup C$.

So $x \in A$ and $x \in B \cup C$. $- \text{If } x \in A \cap (B \cup C)$ $- \text{If } x \in A \cap C, \text{ then } x \in A \text{ and } x \in C$ $\text{Now } x \in C \implies x \in B \cup C.$ So xEA and XEBUC => x E An (BUC)

The Universe

Many times, all of the sets we are interested in come from a single large set called the universe.

 $\begin{array}{c|c}
 & U = R \\
 & Z \\
 &$

Complementation: Relative to U, the complement $\overline{A} = U - A = \{x \in U : x \notin A\}$

De Morgan's Laws
- AUB = AnB (look familier?) AUB

Prove that AnB = AUB pf: How do ue show two sets are equal! O Show ANB = AUB take $x \in AnB$ So $x \in U$ and $x \notin AnB$, SO XEU and X#A or X#B. If X & A and X & U, then X & A.

If X & B and X & U, then X & B.

So X & A or X & B. \Rightarrow xe A \vee B

(5) Show $A \cup B = A \cap B$ $X \in A \cup B$ then $X \in A$ or $X \in B$ If $X \in A$, then $X \in U$ and $X \notin A$.