

Database Lesson 7. Entity Relationship Model

Learning Map

Sequence	Title
1	Introduction to Databases
2	Relational Databases
3	Relational Algebra
4	Structured Query Language – Part 1
5	Structured Query Language – Part 2
6	Constraints and Triggers
7	Entity Relationship Model
8	Functional Dependency
9	Normalization
10	Storage - Indexing
11	Query Processing
12	Transaction Management – Part 1
13	Transaction Management – Part 2

Outline

- Introduction
- How to create an ER
- Mapping from ER to relational schema

Objectives

- Upon completion of this lesson, students will be able to:
 - Know what the entity relationship model is
 - Know how to create an ER from a real-world problem
 - Transform from ER into relational schema

1. Introduction

- Introduction
- Entity sets
- Attributes
- Key
- Relationships

1.1. Introduction

- Two approaches to DB designing
 - Top down: Entity Relationship model (ER)
 - Bottom up: Functional Dependencies and Normalization
- ER model is used in DB design

1.1. Introduction

- The structure of data is represented graphically: ER
- Three principal element types:
 - Entity sets
 - Attributes
 - Relationships

1.2. Entity sets

- Entity
 - is a thing in the real world with an independent existence.
 - An entity may be an object with a physical existence (a particular person, car, house, or employee) or it may be an object with a conceptual existence (a company, a job, or a university course).
- Entity sets
 - a collection of similar entities forms an entity set.
- Weak entity type vs. strong entity type
 - Weak entity type do not have key attributes of their own while strong entity type do have a key attribute
 - a weak entity can not be identified without an owner entity.
- In ER, rectangular boxes represent for entity sets

student

student id student

full_name

gender

dob

- Attributes
 - Entity sets have associated attributes, which are properties of the entities in that set.
 - For instance, each entity "student" has some properties such as student_id, first_name, last_name, dob, gender, address, and so on.
 - In ER, ovals represent for attributes
- Value domain of an attribute
 - Each simple attribute of an entity type is associated with a value set (or domain of values).
 - For example: domain(gender) = {male, female}; domain(dob) = {date}; domain(last_name) = {char(30)}.

1.3. Attributes

- Some types of attributes
 - Simple/atomic attributes: Attributes that are not divisible.
 - Composite attributes:
 attributes can be divided
 into smaller subparts,
 which represent more
 basic attributes with
 independent meanings.

1.3. Attributes

- Some types of attributes
 - Single-valued attributes: have a single value for a particular entity
 - Multi-valued attributes: can have different numbers of values

1.3. Attributes

- Some types of attributes
 - Stored attributes vs. Derived attributes: age attribute is called a derived attribute and is said to be derivable from the dob attribute, which is called a stored attribute.

1.4. Key

- One or more attributes whose values are distinct for each individual entity in the entity set. Such an attribute is called a key attribute, and its values can be used to identify each entity uniquely.
- Each entity can have some keys. We choose one of them to be primary key.

• In ER diagrammatic notation, each key attribute has its name underlined inside the oval

student id student gender full_name dob

1.5. Relationships

- Relationships are connections among two or more entity sets.
- In ER diagrams, relationship types are displayed as diamondshaped boxes,
 - which are connected by straight lines to the rectangular boxes representing the participating entity types.
 - The relationship name is displayed in the diamond-shaped box.

1.5. Relationships

1.5. Relationships

- Type of relationships
 - 1 − 1
 - 1 − n
 - n − m
 - recursive

2. How to create an ER

- ER process
- Example

2.1. ER process

- Step 1: Identify all entity sets
 - Notice concepts, nouns
- Step 2: Identify all relationships among entity sets
 - Notice verbs
 - Type and degree of relationships

2.2. An example

- Read carefully the following scenario:
 - The information about students includes student identification (uniquely identify each student), name, gender, date of birth and address.
 - During the education time at school, students must study a lot of subjects. A subject can be learnt by students. A <u>subject</u> should be contained information such as subject identification, name and credit.
 - A lecturer can teach some subjects, and a subject can be taught by a group of lecturers. The information about lecturers should include lecturer identification, name, phone, email.
 - Students learn subjects at some semester, and their results should be stored.

2.2. An example

We can draw this ER diagram

3. Mapping from ER to relational schema

- Mapping process
- Example

- Mapping of strong entity sets
 - For each entity set, create a relation that includes all the simple attributes of that entity set.
 - PK of entity set becomes PK of the relation class(class_id, name, faculty) teacher(teacher_id, name, dob, phone)

- Mapping of weak entity sets
 - For each entity set, create a relation that includes all the simple attributes of that entity set.
 - PK of strong entity set should be included in PK of the relation dependent(emp_id, name, dob, sex)

- Mapping of 1 1 relationships
 - Create a new relation which has all prime-attributes of both entity sets manage(class_id, teacher_id)
 - Use foreign key class(class_id, name, faculty, teacher_id)

- Mapping of 1 n relationships
 - Create a new relation which has all prime-attributes of both entity sets join(class_id, student_id)
 - Use foreign key student(student_id, name, dob, address, class_id)

- Mapping of n m relationships
 - Create a new relation which has all prime-attributes of both entity sets learn(subject_id, student_id)

- Mapping of multivalued attributes
 - For each multivalued attribute A, create a new relation R including an attribute corresponding to A, plus the primary key attribute K (as a foreign key in R) of the corresponding entity set
 - The primary key of R is the combination of A and K.
 - subject_lecturer(subject_id, lecturer)

3.2. Example

- student(student_id, name, gender, dob, address)
- subject(subject_id, name, credit)
- lecturer(lecturer_id, name, phone, email)
- learn(student_id, subject_id, semester, result)
- teach(lecturer_id, subject_id)

Remark

- ERD: an approach to DB designing
- Entity sets, attributes, key, relationships
- How to create an ERD
- Mapping from ERD to relational schema

Summary

- Introduction
 - ERD in DB designing, and its components
- How to create an ERD
 - discover entity sets, attributes and relationships among entity sets
- Mapping from ERD to relational schema
 - transform from ERD into a set of tables

TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI HANOI UNIVERSITY OF SCIENCE AND TECHNOLOGY

Next lesson: Functional Dependency

- Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom. Database Systems: The Complete Book. Pearson Prentice Hall. the 2nd edition. 2008: Chapter 7
- Nguyen Kim Anh, Nguyên lý các hệ cơ sở dữ liệu, NXB Giáo dục. 2004: Chương 7