Advanced Deep Learning: Properties

Anders Søgaard

Course outline

Goal 1: Quick tour of recent developments in deep learning

Goal 2: Inspiration for thesis/research projects

Week	Lecturer	Subject	Literature	Assignment
1	Stefan	Introduction to Neural Networks.	d2l 2.1-2.5, 2.7, 11.5.1, slides	
2	Stefan	CNNs; FCNs; U-Nets. Data augmentation; invariance; regularization e.g. dropout	d2l 6, 7, 13.9-13.11, slides	Assignment 1 (May 10)
3	Anders/Phillip	May 9 (A): RNNs May 11 (P): Transformers	d2l 8 Transformers: d2l 10.5-10.7 + <u>Vaswani et al. (2017)</u> &	Assignment 2 (May 20)
4		May 16 (P): Representation and Adversarial Learning May 18 (A): A Learning Framework + Self-supervised Learning + Contrastive Learning	Autoencoders: <u>blog post</u> & GANs: <u>Goodfellow (2016)</u> & Self-supervised learning: <u>blog post</u> & Contrastive learning: <u>Dor et al. (2018)</u> & Adversarial examples: <u>Goodfellow et al. (2015)</u> &	
5	Anders	May 23: General Properties, e.g., Scaling Laws, Lottery Tickets, Bottleneck Phenomena May 25: Applications of Representation, Adversarial and Contrastive Learning	GANs: Lample et al. (2018) & Autoencoders: Chandar et al. (2011) & Contrastive learning: Yu et al. (2018) & DynaBench: Talk by Douwe Kiela & (Facebook, now HuggingFace) Scaling laws: Kaplan et al. (2020) &	Assignment 3 [MC on Representation Learning/1p Report on Lottery Ticket extraction] (June 3)
6	Anders	May 30: Interpretability, Transparency, and Trustworthiness & Deep Learning for Scientific Discovery June 1: Interpretability (Feature Attribution), including Guest Lecture by Stephanie Brandl	DL for Scientific Discovery: <u>Sullivan (2022)</u> & Interpretability/Background: <u>Søgaard (2022)</u> &	
7	Anders	June 6: Off (no teaching) June 8: Interpretability (Training Data Influence)	Literature: Feng and Boyd-Graber (2018) ♥; Jiang and Senge (2021) ♥	
8	Anders	June 13-15: Best Practices		Assignment 4 [MC on Interpretability; 1p Report on Best Practices] (June 21)

Architectures

Course outline

Goal 1: Quick tour of recent developments in deep learning

Goal 2: Inspiration for thesis/research projects

Framework

Fairness /

Explainable Al

Week	Lecturer	Subject	Literature	Assignment
1	Stefan	Introduction to Neural Networks.	d2l 2.1-2.5, 2.7, 11.5.1, slides	
2	Stefan	CNNs; FCNs; U-Nets. Data augmentation; invariance; regularization e.g. dropout	d2l 6, 7, 13.9-13.11, slides	Assignment 1 (May 10)
3	Anders/Phillip	May 9 (A): RNNs May 11 (P): Transformers	d2l 8 Transformers: d2l 10.5-10.7 + <u>Vaswani et al. (2017</u>) &	Assignment 2 (May 20)
	Dhillin (Andors	May 16 (P): Representation and Adversarial Learning	Autoencoders: <u>blog post</u> e GANs: <u>Goodfellow (2016)</u> e	
4	Phillip/Anders	May 18 (A): A Learning Framework + Self-supervised Learning + Contrastive Learning	Self-supervised learning: <u>blog post</u> e Contrastive learning: <u>Dor et al. (2018</u>) e Adversarial examples: <u>Goodfellow et al. (2015</u>) e	
5	Anders	May 23: General Properties, e.g., Scaling Laws, Lottery Tickets, Bottleneck Phenomena May 25: Applications of Representation, Adversarial and Contrastive Learning	GANs: <u>Lample et al.</u> (2018) ø Autoencoders: <u>Chandar et al.</u> (2011) ø Contrastive learning: <u>Yu et al.</u> (2018) ø DynaBench: <u>Talk by Douwe Kiela</u> ø (Facebook, now HuggingFace) Scaling laws: <u>Kaplan et al.</u> (2020) ø	Assignment 3 [MC on Representation Learning/1p Report on Lottery Ticket extraction] (June 3)
6	Anders	May 30: Interpretability, Transparency, and Trustworthiness & Deep Learning for Scientific Discovery June 1: Interpretability (Feature Attribution), including Guest Lecture by Stephanie Brandl	DL for Scientific Discovery: <u>Sullivan (2022)</u> ಆ Interpretability/Background: <u>Søgaard (2022)</u> ಆ	
7	Anders	June 6: Off (no teaching) June 8: Interpretability (Training Data Influence)	Literature: Feng and Boyd-Graber (2018) &; Jiang and Senge (2021) &	
8	Anders	June 13-15: Best Practices	Literature: <u>Dodge et al. (2019</u>) ဧ and <u>Raji et al. (2021</u>) ဧ	Assignment 4 [MC on Interpretability; 1p Report on Best Practices] (June 21)

Methodology

Today

- a) Scaling laws
- b) Lottery tickets
- c) Bottleneck theory
- d) Over-parameterization

Background

Loss Landscapes

Complex manifolds, riddled with local minima.

Regularization

E.g., drop-out, near-equivalent to L2 regularization. Note that there are many forms of regularization, e.g., from averaging, smoothing, multi-task learning.

(a) Standard Neural Net

(b) After applying dropout.

Scaling laws

Model	Layers	Parameters	Hidden layer size	Training data	Objective
BERT-base	12	108m	768	16GB	MLM+NSP
BERT-large	24	324m	1024	16GB	MLM+NSP
ALBERT-base	12	12m	768	16GB	MLM+SRO
ALBERT-large	24	18m	1024	16GB	MLM+SRO
RoBERTa-large	24	324m	1024	160GB	MLM
GPT2	48	1542m	1600	40GB	Autoregressive
GPT3	96	170b	12288	570GB	Autoregressive

Model	Layers	Parameters	Hidden layer size	Training data	Objective
BERT-base	12	108m	768	16GB	MLM+NSP
BERT-large	24	324m	1024	16GB	MLM+NSP
ALBERT-large	24	18m	1024	16GB	MLM+SRO
RoBERTa-large	24	324m	1024	160GB	MLM
GPT2	48	1542m	1600	40GB	Autoregressive
GPT3	96	170b	12288	570GB	Autoregressive
Chinchilla	80	70b	8192	1.4TB	Autoregressive

Scaling laws for NLP

Kaplan et al. (2020) presented the first set of scaling laws, for NLP:

- Your model has to be very big to make use of large volumes of data.
- As model size (N) grows, you data should grow ~N^{0.74}.
- Given a 10× increase in budget, you need to increase N by 5.5× and D by 1.8×.

New scaling laws

Hoffmann et al. (2022) update these scaling laws.

 Given an increase in budget, you need to increase N and D by equal factors.

Note: Hoffmann et al. (2022) present three approaches to deriving scaling laws.

FLOPs

Good news

The general take-home message from Hoffmann et al. (2022) is that you don't need your models to be as big as expected (from Kaplan et al., 2020).

Note: It wouldn't make sense to train a 520B parameter model unless you had 60x the compute used for Chinchilla.

Parameters	FLOPs	FLOPs (in Gopher unit)	Tokens
400 Million	1.92e+19	1/29, 968	8.0 Billion
1 Billion	1.21e+20	1/4, 761	20.2 Billion
10 Billion	1.23e + 22	1/46	205.1 Billion
67 Billion	5.76e + 23	1	1.5 Trillion
175 Billion	3.85e + 24	6.7	3.7 Trillion
280 Billion	9.90e+24	17.2	5.9 Trillion
520 Billion	3.43e + 25	59.5	11.0 Trillion
1 Trillion	1.27e + 26	221.3	21.2 Trillion
10 Trillion	1.30e + 28	22515.9	216.2 Trillion

Scaling laws in CV

Zhai et al. (2021) present scaling laws for computer vision. **Note:** Small models (blue circles) trained on small data (small circles) fall off the frontier.

Take-home messages

- Power laws can save the world a lot of energy.
- Big models only make sense if you have sufficient data.
- Training for long only makes sense if you have both big models and big data.

Carbon Emission and DL

DL is used at scale. Even a single company like Meta produces about 5,000 terabytes of data each day, and make trillions of predictions each day. Training even moderate-sized language models, e.g., MegatronLM, requires 3-4 times the energy an average household spends in a year.

Model	Hardware	Power (W)	Hours	kWh-PUE	CO ₂ e	Cloud compute cost
Transformer _{base}	P100x8	1415.78	12	27	26	\$41-\$140
Transformer _{biq}	P100x8	1515.43	84	201	192	\$289-\$981
ELMo	P100x3	517.66	336	275	262	\$433-\$1472
$BERT_{base}$	V100x64	12,041.51	79	1507	1438	\$3751-\$12,571
$BERT_{base}$	TPUv2x16	-	96	_	_	\$2074-\$6912
NAS	P100x8	1515.43	274,120	656,347	626,155	\$942,973-\$3,201,722
NAS	TPUv2x1	_	32,623	_	_	\$44,055-\$146,848
GPT-2	TPUv3x32	_	168	_	_	\$12,902-\$43,008

Table 3: Estimated cost of training a model in terms of CO₂ emissions (lbs) and cloud compute cost (USD). Power and carbon footprint are omitted for TPUs due to lack of public information on power draw for this hardware.

Common carbon footprint benchmarks

in lbs of CO2 equivalent

Chart: MIT Technology Review · Source: Strubell et al. · Created with Datawrapper

Lottery tickets

—

Lottery ticket hypothesis

Hypothesis: Dense, randomly-initialized, feed-forward networks contain subnetworks ("winning tickets") that - when trained in isolation - reach test accuracy comparable to the original network in a similar number of iterations.

__

Lottery ticket hypothesis

Weight pruning does come at a cost, however: fairness (Hansen and Søgaard, 2021).

Lottery ticket hypothesis

Weight pruning does come at a cost, however: fairness (Hansen and Søgaard, 2021).

Mitigation: Group Distributionally Robust Optimization? See <u>Sagawa et al.</u> (2019).

Bottleneck theory

Bottleneck theory

- DNNs undergo two distinct phases consisting of an initial fitting phase and a subsequent compression phase
- the compression phase is causally related to generalization performance
- the compression phase occurs due to the diffusion-like behavior of stochastic gradient descent.

Over-paramerization

Double descent

Our intuitions in the under-parameterized regime are guided by the bias-variance trade-off, but this is less useful, it seems, in the over-parameterized regime.

Take-home messages

- Big models only make sense if you have sufficient data.
- Training for long only makes sense if you have both big models and big data.
- In that case, training for long does make sense, however,
 i.e., it gives better generalization.
- Once you have trained, you can typically distill smaller and more efficient models.