Marina Andretta

ICMC-USP

19 de outubro de 2016

Baseado no livro Introduction to Linear Optimization, de D. Bertsimas e J. N. Tsitsiklis.

Já vimos que, para problemas na forma padrão, o custo g(p) de qualquer solução dual fornece um limitante inferior para o custo ótimo do problema primal.

Veremos agora que esta propriedade é válida para problemas de programação linear gerais.

Teorema 1 (Teorema fraco de dualidade). Se x é uma solução viável de um problema primal e p é uma solução viável do problema dual correspondente, então

$$p^T b \leq c^T x$$
.

Prova: Para todos vetores x e p, definimos

$$u_i = p_i(a_i^T x - b_i),$$

$$v_j = (c_j - p^T A_j) x_j.$$

Suponha que x e p são viáveis nos problemas primal e dual, respectivamente. A definição do problema dual impõe que o sinal de p_i seja o mesmo sinal de $a_i^T x - b_i$ e que o sinal de $c_j - p^T A_j$ seja o mesmo de x_j . Então, a viabilidade primal e dual determinam que

$$u_i \geq 0$$
, $\forall i$, e $v_j \geq 0$, $\forall j$.

Note que

$$\sum_{i} u_{i} = p^{T} A x - p^{T} b$$

e

$$\sum_{j} v_{j} = c^{T} x - p^{T} A x.$$

Somando estas duas restrições de igualdade e usando a não-negatividade de u_i e v_j , temos

$$0 \leq \sum_{i} u_i + \sum_{j} v_j = c^T x - p^T b.$$

Portanto, $p^T b \le c^T x$. \square

Corolário 1.

- (a) Se o custo ótimo do problema primal é $-\infty$, então o problema dual é inviável.
- (b) Se o custo ótimo do problema dual é ∞ , então o problema primal é inviável.

Prova do Corolário 1

Prova: Primeiramente, vamos mostrar (a). Ou seja, se o custo ótimo do problema primal é $-\infty$, então o problema dual é inviável.

Suponha que o custo ótimo do problema primal é $-\infty$ e que o problema dual tem uma solução viável p. Pelo Teorema fraco de dualidade (Teorema 1), $p^Tb \le c^Tx$, para toda solução viável primal x.

Tomando o mínimo de todas as soluções viáveis primais x, temos que $p^Tb \le -\infty$. Isso é impossível, o que mostra que o problema dual não pode ter uma solução viável.

Para mostrar (b), basta usar um argumento análogo. \Box

Corolário 2. Sejam x e p soluções viáveis para os problemas primal e dual, respectivamente, e suponha que $p^Tb = c^Tx$. Então, x e p são soluções ótimas para os problemas primal e dual, respectivamente.

Prova do Corolário 2

Prova: Sejam x e p soluções viáveis para os problemas primal e dual, respectivamente. Suponha que $p^Tb = c^Tx$.

Para toda solução viável primal y, o Teorema fraco de dualidade (Teorema 1) diz que $c^Tx = p^Tb \le c^Ty$, o que mostra que x é ótimo.

Para toda solução viável dual q, o Teorema fraco de dualidade (Teorema 1) diz que $q^Tb \le c^Tx = p^Tb$, o que mostra que p é ótimo.

Teorema 2 (Teorema forte de dualidade). Se um problema de programação linear tem uma solução ótima, seu dual também tem e os custos ótimos de ambos os problemas são iguais.

Prova: Considere um problema de programação linear na forma padrão

minimizar
$$c^T x$$

sujeita a $Ax = b$,
 $x \ge 0$.

Suponha agora que as linhas de A são linearmente independentes e que existe uma solução ótima. Aplique o Método Simplex a este problema. Desde que ciclagem seja evitada (por exemplo, usando regra de pivotamento lexicográfica), o Método Simplex termina com uma solução ótima x e uma base ótima B. Seja $x_B = B^{-1}b$ o vetor correspondente de variáveis básicas.

Quando o Método Simplex termina, os custos reduzidos devem ser não-negativos e temos

$$c^T - c_B^T B^{-1} A \ge 0^T,$$

com c_B^T o vetor com os custos das variáveis básicas. Defina um vetor p como $p^T=c_B^TB^{-1}$. Temos então que $p^TA\leq c^T$, o que mostra que p é uma solução viável do problema dual

minimizar
$$p^T b$$

sujeita a $p^T A \le c^T$.

Além disso,

$$p^Tb = c_B^TB^{-1}b = c_B^Tx_B = c^Tx.$$

Então, pelo Corolário 2, p é uma solução ótima do problema dual e o custo ótimo dual é igual ao custo ótimo primal.

Se estamos lidando com um problema de programação linear geral Π_1 que tem uma solução ótima, primeiro o transformamos em um problema equivalente na forma padrão Π_2 , com mesmo custo ótimo e com as linhas de A linearmente independentes.

Sejam D_1 e D_2 os problemas duais de Π_1 e Π_2 , respectivamente. Pelo Teorema 2 da aula sobre "Teoria de dualidade", os problemas duais D_1 e D_2 têm o mesmo custo ótimo.

Já mostramos que Π_2 e D_2 têm o mesmo custo ótimo. Portanto, Π_1 e D_1 também têm o mesmo custo ótimo. \square

Lembre-se em um problema de programação linear exatamente uma das seguintes 3 possibilidades pode acontecer:

- 1 Existe alguma solução ótima.
- ② O problema é "ilimitado", ou seja, o custo ótimo é $-\infty$ (para problemas de minimização) ou $+\infty$ (para problemas de maximização).
- 3 O problema é inviável.

Isso gera 9 possibilidades de combinação para os problemas primal e dual.

Pelo Teorema forte de dualidade (Teorema 2), se um problema tem solução ótima, o outro também tem.

Além disso, o Teorema fraco de dualidade (Teorema 1) implica que se um problema é ilimitado, o outro é inviável.

A tabela a seguir resume as combinações possíveis entre os problemas primal e dual.

	Ótimo finito	llimitado	Inviável
Ótimo finito	Possível	Impossível	Impossível
llimitado	Impossível	Impossível	Possível
Inviável	Impossível	Possível	Possível

O caso em que ambos os problemas são inviáveis pode ocorrer, como pode ser visto no exemplo a seguir.

Considere o problema primal inviável

minimizar
$$x_1 + 2x_2$$

sujeita a $x_1 + x_2 = 1$,
 $2x_1 + 2x_2 = 3$.

Seu dual é

maximizar
$$p_1 + 3p_2$$

sujeita a $p_1 + 2p_2 = 1$,
 $p_1 + 2p_2 = 2$,

que também é inviável.

Uma importante relação entre soluções ótimas primal e dual é dada pelas condições de folga complementares, apresentadas no teorema a seguir.

Teorema 3 (folgas complementares). Sejam x e p soluções viáveis para os problemas primal e dual, respectivamente. Os vetores x e p são soluções ótimas dos dois respectivos problemas se, e somente se,

$$p_i(a_i^T x - b_i) = 0, \quad \forall i,$$

$$(c_j - p^T A_j)x_j = 0, \quad \forall j.$$

Prova: Na prova do Teorema 1, definimos $u_i = p_i(a_i^T x - b_i)$ e $v_j = (c_j - p^T A_j)x_j$ e notamos que, para x viável no primal e p viável no dual, temos $u_i \ge 0$ e $v_j \ge 0$ para todo i e j.

Além disso, mostramos que

$$c^T x - p^T b = \sum_i u_i + \sum_j v_j.$$

Primeiramente, vamos mostrar que, se x e p são ótimos do primal e dual, respectivamente, então $u_i = 0$ e $v_i = 0$ para todo i e j.

Pelo Teorema forte de dualidade (Teorema 2), se x e p são ótimos, então $c^Tx = p^Tb$. Assim, $u_i = v_j = 0$ para todo i e j.

Agora vamos mostrar que, se $u_i = 0$ e $v_j = 0$ para todo i e j, então x e p são ótimos do primal e dual, respectivamente.

Se $u_i = v_j = 0$ para todo i e j, então $c^T x = p^T b$. Pelo Corolário 2, temos que x e p são ótimos. \square

A primeira condição de folgas complementares é automaticamente satisfeita por toda solução viável de um problema na forma padrão.

Se o problema primal não está na forma padrão e tem uma restrição do tipo $a_i^T x \ge b_i$, a condição de folga complementar correspondente diz que a variável dual p_i é nula a menos que a restrição seja ativa.

Uma explicação intuitiva é que uma restrição que não é ativa em uma solução ótima pode ser removida sem que o custo ótimo mude e não há razão para associar um preço não nulo a esta restrição.

Se o problema primal está na forma padrão e uma solução básica viável ótima não-degenerada é conhecida, as condições de folgas complementares determinam uma única solução para o problema dual.

Vejamos isso no próximo exemplo.

Considere o problema de programação linear na forma padrão

minimizar
$$13x_1 + 10x_2 + 6x_3$$

sujeita a $5x_1 + x_2 + 3x_3 = 8$,
 $3x_1 + x_2 = 3$,
 $x_1, x_2, x_3 \ge 0$.

Seu dual é dado por

O vetor $x^* = (1,0,1)$ é uma solução ótima não-degenerada do problema primal (o que será verificado mais adiante).

Usando as condições de folgas complementares, podemos construir uma solução ótima do problema dual.

As condições $p_i(a_i^T x^* - b_i) = 0$ são satisfeitas para todo i, já que o problema primal está na forma padrão.

As condições $(c_j - p^T A_j)x_j^* = 0$ é satisfeita para j = 2, já que $x_2^* = 0$.

Como $x_1^* > 0$ e $x_3^* > 0$, temos

$$5p_1 + 3p_2 = 13$$
 e $3p_1 = 6$.

Resolvendo estas duas equações, temos $p_1 = 2$ e $p_2 = 1$.

Note que esta é uma solução viável do dual com custo 19, que é o mesmo custo de x^* .

Com isso comprovamos que, de fato, x^* é uma solução ótima do primal.

Vamos agora generalizar este exemplo.

Suponha que x_j é uma variável básica em uma solução básica viável ótima não-degenerada de um problema primal na forma padrão.

Então, como $x_j > 0$, as condições de folgas complementares $(c_j - p^T A_j)x_j = 0$ implicam que $c_j = p^T A_j$ para todo j.

Como x_j é uma solução básica, as colunas A_j são linearmente independentes. Assim, temos um sistema linear $p^T=c_B^TB^{-1}$ com solução única.

Uma conclusão similar pode ser tirada para problemas que não estão na forma padrão.

Por outro lado, se temos uma solução básica viável ótima degenerada para o problema primal, as condições de folgas complementares não são de grande ajuda para calcular a solução ótima do problema primal.

Se as restrições primais estão na forma $Ax \ge b$ e $x \ge 0$ e o problema primal tem uma solução ótima, então existem soluções ótimas para os problemas primal e dual que satisfazem folgas complementares estritas.

Isto é, uma variável em um problema é não-nula se, e somente se, a restrição correspondente no outro problema é ativa.