

a better way to trade your crypto

Decentralized Liquidity Mining

Exchange Based on AMM

目录

摘要	4
1. 概述	5
1.1 btSwap 设计理念	5
1.2 Logo 设计理念	6
2. Token 发行说明	8
2.1 Token 基本信息	8
2.2 Token 经济模型	8
2.3 BT 价值	10
3. 挖矿发行	11
3.1 减半规则	11
3.2 交易挖矿	12
3.2.1 矿池份额	13
3.2.2 提现份额	13
3.2.3 交易挖矿	14
3.3 流动性挖矿	15
3.3.1 流动性份额简介	15
3.3.2 提供流动性(充值)	17
3.3.3 提取流动性(提现)	20
4.1 恒定乘积 AMM 介绍	21
4.2 交易挖矿和流动性挖矿	22

	4.3 BT 挖矿套利	23
	4.4 链上预言机	24
5.	结论	26
6.	免责声明	27
7.	参考文献	28

摘要

目前,首次去中心化交易所发行非常火爆,堪比早几年前的 ICO 热潮,这主要是由于近期 Defi 的热度高居不下、以及加密货币经济周期等多个原因的诱发。在大部分现有的 DEX (去中心化交易所)中,只是对流动性的提供者进行了手续费的奖励,而平台方并没有发行自己的代币,因此很难调动交易者或流动性提供者的积极性。因此,我们在此基础上,提出了一个新型的 DEX(Decentralized EXchange)模型 **btSwap。**

btSwap 是一个基于以太坊上自动代币交换的协议,完全的去中心化,并且围绕易用性、gas使用效率、抗审查性和零抽租而设计。在流动性池理念的基础之上开发,将 AMM(自动做市)发扬光大。

同时,btSwap 也对类似 Bancor 等基于 AMM 模型开发的 DEX(去中心化交易所)做了改进,并实现了无门槛上币(Bancor 等需要抵押平台币)。它在 AMM 自动做市理念的基础上,增加了流动性挖矿功能,很大程度上激发了大家的参与热情与套利空间,从而让用户持续的留在平台,做到可持续的生态循环。

1. 概述

1.1 btSwap 设计理念

btSwap 是一个基于资金池理念的自动做市去中心化交易所,功能上类似于市面上的一些DEX,但在此基础之上,增加了流动性挖矿的元素。也就是说,只要进行一笔交易,就会有一定量的 Token 产生并发送给交易方。

资金池理念的本质是无限提供流动性。只要用户想要交易,任何时候都可以把币卖出去,而不会出现交易所那种只有单方向盘面的情况,因此被称为 AMM(自动做市)。当然,它也有一定的缺陷,就是价格越往两极走,曲线也就越陡峭。总的来说,AMM 具有巨大的潜力和价值,是未来人机交易所的雏形。

而流动性挖矿,是一个平等分发代币的过程,可以将对该项目感兴趣的用户聚集在一起形成生态,并且持续正循环。btSwap 将按照以太坊每个区块来产生新的 Token,每 4 年进行一次减半,实现了完全的去中心化。

1.2 Logo 设计理念

Logo 的设计理念主要是选用了"蜜蜂"的元素。

自然界有两个庞大的群体总是令人心生敬畏,一个是蚂蚁,另外一个就是蜜蜂。我们都知道,有了蜜蜂的辛勤劳作,才有了可口的蜂蜜。所以,我们希望 btSwap 社区成员能如同蜜蜂一样,勤勤恳恳的挖矿,收获属于自己的那份成就。

另外,就是凯文凯利的《失控》里提及的蜂群思维 —— 去中心化的超级有机体、分布式管理,正如区块链具有的几个特点。

蜂群思维的本质是一个去中心化的超级有机体,没有强制性的中心控制系统,几万只蜜蜂汇聚在一起,组成了一个新的有机体生物。蜂群的力量不会在1只、2只或者是几十只蜜蜂的个体行为后涌现出能量。只有当成员足够多,成员之间点与点的链接和互相影响,会释放出很强大的效应,指数级的增长也就在量变到质变的时候出现。

蜂群的统治是依靠群氓的智慧,由一个个小蜜蜂回传的信息,再经过讨论投票决定行动方案。 比如蜂群要哪里采蜜?都是依靠一个个工蜂回传的信息(用跳舞的方式),大家一起看谁的 舞蹈跳的热烈,就再派几波蜜蜂实地考察,核实无误后,蜂群开始行动。这是民主制度的精 髓,是彻底的分布式管理。

综合以上的特点,我们把"蜜蜂"作为 Logo 的首要元素。正说明了,btSwap 的完全去中心化。同时,需要依托社区成员扮演好自己的角色,无论是交易员还是流动性提供者在,在这个系统中发挥出其最大的价值,从而创造属于自己的财富。

2. Token 发行说明

2.1 Token 基本信息

Token 名字: BT (btSwap Token)

Token 总量: 约 5040 万枚

出块周期: 与以太坊一致(基于其智能合约运行)

初始奖励: 每区块3个币

减半周期: 每四年减半一次

2.2 Token 经济模型

btSwap 的总供应量为 5040 万,项目遵循"零预挖,零空投",所有的代币均由交易挖矿及提供流动性挖矿产生。其中挖矿产出量的 10%分配给项目方,用于项目的技术研发、社区推广等。剩余的 90%代币分配给为 btSwap 资金池提供流动性的用户,其中 60%分配给交易者,30%分配给提供流动性的做市商。

通过这种流动性挖矿的方式,代币产出相对较为缓慢,因此该项目并没有设计锁仓机制。 btSwap 每四年进行挖矿减半,当挖矿产出结束后,将由社区自行决定交易手续费比例并继续保持系统的正常运转。

流动性挖矿的优势,包括了如下几点:

- 1. 对于交易者来说,除了在 btSwap 享受低价优惠手续费的同时,还可以通过交易挖矿得 到产出总量的 60%,因此有极大的动力过来交易;
- 2. 对于流动性提供者来说,除了奖励他们交易手续费之外,btSwap 还额外奖励 30%的 挖矿产出,这种强大的激励,也会刺激其主动增加流动性;
- 3. 项目方完全零预挖,初期与社区及其他投资者一样,持有量均为零;
- 4. 交易手续费的五分之一将留给项目方,用于回购和平台搭建、生态建设等。其中,50% 用来回购直至总量减少到 2100 万为止;
- 5. 不是所有上线的币种都可以进行流动性挖矿,而是需要通过社区投票并抵押一定量的

Token。如果币种方有涉及欺骗等行为,抵押的 Token 将会销毁,相当于将总流通量进行通缩。

具体的挖矿机制详见第3章节。

2.3 BT 价值

BT 可用于进行 btSwap 的社区治理,就社区的重大事件作出决议。比如投票决定交易手续费比例的多少、其他重要章程等的审议、以及针对于代币定期回购销毁达成通缩的决策等等,具体参见公告。

3. 挖矿发行

btSwap 的出块周期与以太坊的一致。当以太坊每出一个块,btSwap 就会挖矿发行 3 个 Token;同时,每 8409600 个区块(按目前以太坊出块速度计算,时长约 4 年)产出量将 减半。因此可通过计算得出 Token 总量上限大约为 5040 万枚。

每个区块产出的代币将会按照一定的比例分配给 Trader 即交易者、LP (Liquidity Provider) 即提供流动性的做市商、以及项目团队。整个挖矿的设计规则为零预挖。

3.1 减半规则

众所周知,比特币每 21 万个区块(也就是我们常说的四年)进行减半,以避免货币通胀。 因此,我们参考比特币的减半理念后,并设计了如下减半规则:

- 1. 每 8409600 个区块(按目前以太坊出块速度约 4 年) 为一个阶段;
- 2. 第一个阶段,每个区块奖励(也就是挖矿产出)为3个BT;
- 3. 之后每经历一个阶段后,奖励减半。比如第二个阶段(第五年开始),每个区块奖励为 1.5 个 BT;
- 4. 在经历 84096000 个区块(按目前以太坊出块速度约 40 年)后,将不再出奖励。

因此,通过这种方式进行计算,可以得出总的挖矿奖励约为: 5040 万枚,这也是 btSwap 的总发行量。

减半奖励结束后,将由手续费代替出块奖励作为主要激励方式,从而引导整个生态系统的正常运作。

3.2 交易挖矿

为激励 trader(交易员)交易,每个区块产出量的 60% BT 将奖励给交易者,这些奖励将产于在一个称之为 trader Mining Pool (交易员挖矿池)中,每个 trader 根据其交易量在总交易量中的比重而分配一定比例的份额。

3.2.1 矿池份额

为方便理解, 我们定义几个名词:

userVolume:表示某个用户在 BT 系统中当前拥有的交易量,也就是其拥有的份额,以 eth 计价,单位为 1e18;

totalVolume:表示BT系统总的交易量,也就是总的份额;

totalTMPBalance:表示当前 traderMiningPool 中 BT 的总量。(每个区块产出固定数量, 具体参见 3.1 章节)

因此,某个用户当前在矿池中持有的 BT 总量为:

$$balance[user] \equiv \frac{userVolume}{totalVolume} * totalTMPB alance$$

3.2.2 提现份额

根据公式,我们可以推断出用户提现的行为,比如 user 提现 X 个 token,则 user 在矿池中的 Token 将变更为:

$$balance[user] = \frac{\left(userVolume - \frac{X*totalVolume}{totalTMPBalance}\right)}{totalVolume - \frac{X*totalVolume}{totalTMPBalance}} * (totalTMPBalance - X)$$

从公式可以得出,用户提现后,userVolume 将会减少,totalTMPBalance 也会同步减少。

3.2.3 交易挖矿

从上面我们可以得知,用户只要产生交易,就会增大 User Volume,从而获得更多的代币,那交易过程中挖矿奖励具体是如何计算的?

举例说明, 假设 user 本次新增的交易量为 Current Volume, 则其最新余额为:

$$balance[user] \equiv \frac{\text{userVolume} + currentVolume}{totalVolume + currentVolume} * \text{totalTMPBalance}$$

根据此公式,我们可以得知随着交易量的增大,该用户获得的新挖矿奖励会逐步变多,但同时增长速度也会慢慢变低(分母 totalVolume 变大)。

由于 BT 会在每个区块中挖矿发行新的 Token,因此 totalTMPBalance 会一直增加,也就是对于持币者来说,如果没有新的用户加入交易增加新的交易量(也就是 totalVolume 不变),那它的余额会持续增加,因此假设在该用户最后一次交易到当前区块都没有新的交易时,那该用户在矿池中的余额为:

$$balance[user] \equiv \frac{\text{userVolume}}{totalVolume} * (\text{totalTMPBalance} + (block.number - previosBlockNumber}) * Award)$$

* block.number 表示当前区块高度

*previosBlockNumber 表示该用户最后一次交易的区块高度

*Award 表示当前阶段内每个区块奖励的 BT 数目,比如第一阶段 Award=3

综上所述,如果有用户在某个时刻刷交易量,从而使自己的 User Volume 大幅变高(Total Volume 也会变高),然后提走矿池中属于自己份额的 BT,这是合理的,因为刷量是需要消耗手续费的。同时,如果池子中 totalTMPBalance 较大,用户也会有动力及时提现,避免该情况发生。

3.3 流动性挖矿

对于 Liquidity Provider(流动性提供者),除了获得所有的手续费奖励之外,同时还会获得挖矿发行数量的 30%,这些奖励将产出在一个称之为 LPMiningPool (流动性提供者矿池)中,每个 LP 根据其流动性提供的比例占有其中一定的份额,这一过程,我们称之为流动性挖矿。

流动性挖矿的原理与交易挖矿类似,但计算机制完全不同。BT 系统中会有一个以eth*blockNumber 乘积计价的流动池总量,而每个 Liquidity Provider 在提供流动性后将增加一定的份额,在提取后就降低份额,同时提取出获得的 BT 奖励。

3.3.1 流动性份额简介

首先,我们要给流动性份额一个定义,在 BT 系统中,某用户流动性份额为: 其充值金额等价 eth 乘以 已存在的时长,用公式表示则为:

 $userLiquidityShare \equiv \frac{userEthBalance*(block.number-lastDepositBlockNumber)}{totalLiquidity}$

从公式可以看出:

*userEthBalance 表示该用户充值的流动性以 eth 计价的数量

*lastDepositBlockNumber 表示该用户充值流动性的区块高度

*block.number-lastDepositBlockNumber 表示该用户自上一次充值到当前时刻经历的区块数目

*TotalLiquidity 表示所有的用户 userLiquidity 之和(这里只是形象展示,实际代码实现见 3.3.2 章节):

$$total Liquidity \equiv \sum_{user1, user2...userN} userLiquidity$$

因此,某用户在流动性矿池中的 BT 余额为:

$$balance[user] \equiv \frac{\text{userLiquidity}}{totalLiquidity} * \text{totalLPSupply}$$

*totalLPSupply 表示当前 LPMiningPool 中 BT 总量。(每个区块产出固定数量,具体参见 3.1 节)

这里要注意的是,只有经过系统投票并通过的交易对,才会被计入有效的流动性挖矿池,并 分享流动性挖矿的收益;所有挖矿份额以 eth 计价。

同时,由于有些交易对比较冷门,换算成 eth 计价相对来说比较困难,也为了避免交易量过小但资金沉淀大导致被恶意挖矿,对其他矿工不公平的现象,btSwap 设置了一个预言机机制:也就是说,所有流动性以 eth 计价的价格由预言机更新,预言机价格和交易价格无关,

只影响挖矿,因此即使由于更新不及时,也不影响交易业务,对用户无感知和影响。

3.3.2 提供流动性(充值)

提供流动性时,会更新 lastDepositBlockNumber,而这会导致用户的 userLiquidity 变化(具体参见 3.3.1公式),因此会先触发"提取流动性"的提取 BT 动作,然后该用户当前所有的流动性分红已经提取,相当于本次为该用户第一次充值。

首先,提供流动性会触发交易合约 mint erc20 代币,这是其他 DEX 的一些本身逻辑,在这里不做重点讲述。

然后,如果不是第一次提供流动性,则给该用户计算其截至当前的分红并转账,计算公式见3.3.1章节的用户份额。同时由于该用户流动性份额已降为0(因为已进行分红并转账),因此需要同步扣减掉总的 totalLiquidity:

totalLiquidity = totalLiquidity - user*Liquidity*(提现用户)

再者,如前所述,提供流动性的同时,会将 lastDepositBlockNumber 更新为当前的区块高度 block.number。

最后就来到了计算环节:

1. 更新该用户的流动性余额(注意不是份额)userEthBalance 为本次充值金额;如果不是第一次充值,则 userEthBalance = balanceOf(pair)*Ratio,也就是交易对 eth 等

价金额乘以该用户在该交易对中的流动池比例;

2. 更新总的 totalLiquidity。这个计算会比较复杂,因为每一次充提流动性都会重新计算该值,也就是说,会保存上一次提供(或提取)流动性的区块高度和系统的总金额。根据 3.3.1 章节,可以得出其计算公式:

totalLiquidity = totalLiquidity + (block.number - lastDepositBlockNumber)*lastBlockTotalEthBalance
*lastBlockTotalEthBalance: 表示最近一次充提流动性时的系统以 eth 计价的流动性池总余额。

所以简单来讲,提供流动性逻辑主要干了两件事:

- 1. 如果不是第一次提供流动性,则给该用户计算出其之前流动性应得的 BT,并转账;
- 2. 更新 lastDepositBlockNumber 以及 totalLiquidity、lastBlockTotalEthBalance 等。

由于 btSwap 交易过程中,有手续费的累积并分散到用户的份额中,同时交易对价格持续在变化,因此用户的流动性余额是在变化的,而 userEthBalance 并没有更新记录,导致流动性余额不等于 userEthBalance 的情况,针对这种情况的处理如下:

1. 当用户提取流动性(包括提供流动性需要先提取再分红的逻辑)的时候,不管手续费如何,本质都是提取其中的份额,而我们处理时都会先把其份额清零再重新计算流动性,因此直接以用户 userEthBalance 计算份额分红即可。注意:此时的 userEthBalance 可能已经变化(因为价格变化),但对于流动性份额来说,还是使用之前的 userEthBalance;

2. 当分红完成后,可能此时交易对价格已经变化,那重新计算该用户的 userEthBalance

即可。所以虽然有手续费累计在份额中,但对计算没有影响;

3. 由于交易对价格的变化,会导致一定的套利空间,比如 一周前价格为 1eth:300token,

某用户充值了 1eth; 一周后, 价格变成了 1eth:1200token。根据 btswap 的公式 x*y=k

计算, 我们可以得知此时该用户在该交易对里面的实际余额为: 0.5eth:600token。因

此此时该用户的实际 userEthBalance 应该为 0.5eth, 但我们忽略这个逻辑, 依然以

1eth 计算(见第一条),但是如果充提了流动性,则会重新计算

举例来说明:

交易对: ETT/ ETH

初始价: 1ETH = 1000ETT

userA 在 7-25 日第一次充值了 1eth 和 1000ett 提供流动性, 此时 x*y=1*1000=1000(k)

userB 在 7-26 日卖了 1000 个 ett,则流动性池剩余 0.5eth 和 2000ett,

x*y=0.5*2000=1000(k)

假设 userA 在 7-27 日计划再次充值 1eth 和 4000ett 的流动性,则需要先分红,计算步骤:

1. userA 的 userEthBalance 在分红前为 1eth, lastBlockTotalEthBalance 也为 1eth。

但是要注意,在流动性 Pool 中,其实他只有 0.5eth 了,这是因为价格变化了,ett 跌

了一倍导致;

2. 根据第一条分红完成后,此时 userA 的流动性份额已经清零,因此重新计算其

19

userEthBalance = balanceOf(PairEthBalance)*Ratio,由于池中只有 A 用户 1 人,因此 Ratio=1,而 balanceOf(PairEthBalance)为交易对中 eth 余额,为 0.5+1=1.5eth;

3. lastBlockTotalEthBalance 此时也需要更新,先扣除 1eth,再加上 1.5eth。

根据示例,我们可以发现,如果该用户不充提流动性,对其是很有利的,因为他在流动性池中的余额已经只剩余 0.5eth,但是计算分红时,仍然以 1eth 计价。这也是合理的,因为该用户最初充值是 1eth,他是为流动池做了贡献的。

3.3.3 提取流动性(提现)

提取流动性为提供流动性的反函数, 会触发如下几个逻辑:

- 1. 计算截止到当前该用户所有应得分红
- 2. 给用户分红(转账)
- 3. 根据用户提取的金额,给用户转账对应代币或 eth,同时销毁其流动性份额
- 4. 根据用户提取的金额,计算该用户的最新流动性余额(不是份额)
- 5. 更新 lastDepositBlockNumber 以及 totalLiquidity 以及余额(方法同 3.3.2 章节)

这里的大部分步骤 3.3.2 章节都有提到,比如给用户分红的同时,需要扣减 totalLiquidity 等,这里不做重复。

4. 技术要点

4.1 恒定乘积 AMM 介绍

做市商(MM)是负责在交易所提供价格的实体,否则没有交易活动就会缺乏流动性。做市商 从自己的账户买入和卖出资产,最终目的是为了获利。他们的交易活动为其他交易者创造了 流动性,降低了交易的滑点。

自动做市商(AMM)使用算法 "Money Robots "来模拟 DeFi 等市场内的价格行为。虽然不同的去中心化交易所设计不同,但基于 AMM 的 DEX 一直以来都拥有最大的流动性和最高的日均交易量。

恒定乘积做市商(CPMM)基于函数 x*y=k, 该函数根据每个代币的可用数量(流动性)确定了两个代币的价格范围。当 X 的供应量增加时,Y 的供应量必须减少,反之亦然,以保持 k 的乘积不变。当绘制出曲线,结果是一个双曲线,其中流动性总是可用的,但当价格越来越高,两端将接近无穷。

从 Bancor 到 Uniswap 再到 Curve,以及到我们的 btSwap, AMM 技术正在为任何数字资产获取即时流动性提供新的可能性。AMM 不仅在以前缺乏流动性的市场中创造了价格,而且是以一种高度安全、可访问和非托管的方式进行的。

虽然 AMM 已经经历了爆发式增长,但围绕着更高的资本效率、多资产池和减轻暂时性亏损的创新,为吸引来自传统市场的更大的流动性提供者创造了必要的基础。

4.2 交易挖矿和流动性挖矿

目前 DeFi 的交易挖矿和流动性挖矿,主要是发生在以太坊区块链上的产品,它通过为以太坊上的 DeFi 产品提供流动性,从而获得收益。简单来说,存入某些代币资产就可以进行挖矿,之所以称为挖矿,也是沿用了比特币挖矿的行业说法。在 Compound 上进行流动性挖矿,主要是在上面进行存入代币或借出代币等操作,从而获得 COMP 治理代币的奖励。

在 Balancer 上进行流动性挖矿,则是为交易的代币池提供流动性,比如为 BAL-WETH 池

提供流动性,流动性提供者可以按照一定的比例(如 80:20)存入 BAL 和 WETH 代币,然后根据一定的规则,获得 BAL 代币和相关的交易费用。

这里,我们首先要明确在 btSwap 系统中,交易挖矿和流动性挖矿的区别:

交易挖矿: 给在 btSwap 系统中产生交易行为的交易员而奖励的代币, 相当于通过买卖产生 gas 费消耗从而获得的收益;

流动性挖矿: 给在 btSwap 系统中提供流动性的 LP 奖励的代币, 相当于通过提供代币资产, 从而获得收益;

因此,按照这个定义,上面的 compound 属于交易挖矿,而 Balancer 属于流动性挖矿。但 btSwap 属于两者的结合,并且没有预挖。

4.3 BT 挖矿套利

根据 3.2 章节我们可以得知,某用户在矿池中的 BT 余额是在持续变化的,而变化的因素主要是: 自己产生的交易和别人产生的交易(总交易量),以及总供应量(持续挖矿产出)。

因此, 我们可以得出如下几个情景:

- 1. 用户 A 产生一笔交易后,不再有新的交易。则如果没有新的用户产生交易,其矿池份 额保持不变,但 BT 余额持续增加(挖矿产出);
- 2. 如果有其他用户产生交易,但交易速率比挖矿产出慢,则该用户在矿池中的余额会增加;
- 3. 如果有其他用户产生交易,而且交易量增长很快、则该用户在矿池中的余额会变少。

因此,用户完全可以在交易量增长较慢的情况下,保持 BT 不提现让其增值,或者在交易量增长很快的场景下,快速体现,来保证自己收益的最大化。

反之,如果某用户发现交易矿池余额较多,可以发起大额交易迅速占领矿池中一定份额并提现,已实现利益最大化。

这些,都属于 BT 现存挖矿套利空间,具体由用户自行选择与处理。

4.4 链上预言机

区块链可以通过智能合约安全透明的进行链上交互。但是,区块链不是脱离现实的乌托邦,区块链终究需要和现实世界的数据进行交互。区块链上的很多场景,智能合约应用都必须要获取链外信息源,进行链内外数据交互,才能触发其逻辑判断。

Link 是目前预言机赛道的龙头大哥,客户包括谷歌、甲骨文等世界顶级互联网公司,以及众多圈内项目。它的运行机制是由 21 个链下节点提供报价,并把数据提交到链上的智能合约,在合约内进行数据的聚合,并获得最终的报价数据。因此它最大的问题可能就是由节点声誉和质押代币控制报价机制,容易被操纵。

另外一个出名的预言机项目是 NEST,可以把他理解为去中心化的利益博弈机制来实现报价。NEST 预言机方案采用了逆向验证的新思路,报价矿工要拿真金白银去参与报价,而不仅仅上传价格数据到链上合约中,因此更为去中心化,更不容易被操纵。

所以链上预言机的本质就是交易者之间博弈后的价格。从这一点来说,btSwap 是天然的价格预言机,可以提供非常实时准确的交易价格变化。

因此,btSwap 计划在流量聚集起来后,增加预言机功能,给链上需要报价的项目,提供真实及时有效的价格。

5. 结论

根据上述介绍,我们可以得知,用户在 btSwap 中的提现和 Uniswap 以及 Bancor 等没有区别,但是增加了交易挖矿和流动性挖矿功能,同时降低了手续费(初期为千分之二),因此用户更有动力来这里交易和提供流动性。

同时,项目方初期完全零预挖,所有 Token 通过挖矿缓慢产出。手续费比例也是通过后期的 Token 投票来预言机修正,使 Token 慢慢产生生态管理的价值。

整体来说,btSwap 是一个集合了目前市面上 DEX 的优势,并结合中心化交易所平台币等特点的极具革新意识的 DeFi 项目。

6. 免责说明

- 本文件中所有的数据、公示、收益和利润等的举例说明仅作为参考,或代表行业平均值, 并不构成对用户参与结果及投资的保证。
- 数字资产投资是一种新的投资模式,存在各种不同的风险,潜在投资者需谨慎评估投资
 风险,在自身风险的承受能力范围内参与,投资者一旦参与投资即表示了解并接受该项目风险,并愿意个人为此承担一切相应结果或后果。
- 本文件以及所提供的任何其他文件或资料只用于传达信息之用途,均不拟作为且不应被 视作任何投资决策的依据,或具体建议、咨询或招揽,不应被理解为任何出售、购买或 认购的邀请,且不得以此方式进行诠释。

7. 参考文献

- 1. Bitcoin 白皮书: https://bitcoin.org/bitcoin.pdf
- 2. Ethereum 白皮书: https://ethereum.org/en/whitepaper/
- 3. Uniswap 白皮书: https://uniswap.org/whitepaper.pdf
- 4. Bancor 白皮书:

 $\underline{https://storage.googleapis.com/website-bancor/2018/04/01ba8253-bancor_protocol_whitepaper_en.pdf}$

5. ampl 项目: https://www.ampleforth.org/