多元函数积分学

Didnelpsun

目录

1	二重积分					1
	1.1	交换积	分次序			1
		1.1.1	直角坐标系 .			1
		1.1.2	极坐标系			1
	1.2	极直互	化			1

1 二重积分

1.1 交换积分次序

1.1.1 直角坐标系

例题: 交换积分次序 $\int_0^1 \mathrm{d}x \int_0^{x^2} f(x,y) \, \mathrm{d}y + \int_1^3 \mathrm{d}x \int_0^{\frac{1}{2}(3-x)} f(x,y) \, \mathrm{d}y$ 。解:已知积分区域分为两个部分。将 X 型变为 Y 型。画出图形可以知道 $y \in (0,1)$,x 的上下限由 $y = x^2$ 和 $y = \frac{1}{2}(3-x)$ 转化为 \sqrt{y} 和 3-2y。所以转换为 $\int_0^1 \mathrm{d}y \int_{\sqrt{y}}^{3-2y} f(x,y) \, \mathrm{d}x$ 。

1.1.2 极坐标系

1.2 极直互化

例题:将 $I = \int_0^{\frac{\sqrt{2}}{2}R} e^{-y^2} dy \int_0^y e^{-x^2} dx + \int_{\frac{\sqrt{2}}{2}R}^R e^{-y^2} dy \int_0^{\sqrt{R^2-y^2}} e^{-x^2} dx$ 转换为极坐标系并计算结果。

解: 首先根据积分上下限得到积分区域 $D = \left\{0 \leqslant y \leqslant \frac{\sqrt{2}}{2}R, 0 \leqslant x \leqslant y\right\} \cup \left\{\frac{\sqrt{2}}{2}R \leqslant y \leqslant R, 0 \leqslant x \leqslant \sqrt{R^2 - y^2}\right\}, D 为一个八分之一圆的扇形。$

根据
$$x = r \cos \theta$$
, $y = r \sin \theta$ 替换得到 $D = \left\{ (x, y) \middle| 0 \leqslant r \leqslant R, \frac{\pi}{4} \leqslant \theta \leqslant \frac{\pi}{2} \right\}$ 。
又 $e^{-y^2} \cdot e^{-x^2} = e^{-(x^2 + y^2)} = e^{-r^2}$ 。

$$\therefore I = \int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{R} e^{-r^2} r dr$$
。