Matemáticas/ Ingeniería Informática-Matemáticas

Estructuras Algebraicas

Segundo examen parcial. Martes 7 de diciembre de 2021.

Apellidos:		
Nombre:	DNI/NIE:_	GRUPO:

Ejercicio 1. (5 puntos) Sea G un grupo de orden 231 y $P \in Syl_{11}(G)$.

- (i) (1 punto) Prueba que $P \triangleleft G$.
- (ii) (1'5 puntos) Construye un homomorfismo $\alpha \colon G \to \operatorname{Aut}(P)$ con $\ker \alpha = \mathbf{C}_G(P)$.
- (iii) (1'5 puntos) Deduce que el orden del grupo $G/\mathbf{C}_G(P)$ divide a 10.
- (iv) (1 punto) Concluye que $C_G(P) = G$ y, por tanto, que $P \subseteq \mathbf{Z}(G)$.

Solución.

- (i) Tenemos que $|G| = 3 \cdot 7 \cdot 11$. Ahora $\nu_{11}(G) = |G: \mathbf{N}_G(P)| \equiv 1 \mod 11$ y además $\nu_{11}(G)$ divide a 21. Concluimos que $\nu_{11}(G)$ debe ser necesariamente $\nu_{11}(G) = 1$, es decir, $G = \mathbf{N}_G(P)$ y por tanto $P \triangleleft G$.
- (ii) Como $P \triangleleft G$ podemos definir $\alpha \colon G \to \operatorname{Aut}(P)$ de modo que $\alpha(g) = \alpha_g|_P$, donde α_g es el automorfismo de P inducido por la conjugación por g. Es decir $\alpha(g) = gxg^{-1}$ para cada $x \in P$. Como $gPg^{-1} = P$ para todo $g \in G$, tenemos que α está bien definido y además $\alpha(g)$ es un automorfismo de P, por ser la restricción de un automorfismo. La aplicación α es un homomorfismo pues $\alpha(gh)(x) = ghx(gh)^{-1} = ghxh^{-1}g^{-1} = g(hxh^{-1})g^{-1} = \alpha(g)(\alpha(h)(x)) = \alpha(g)\alpha(h)(x)$.

El núcleo de α es ker $\alpha = \{g \in G \mid \alpha(g)(x) = gxg^{-1} = x \ \forall x \in P\} = \mathbf{C}_G(P)$.

- (iii) Por el primer Teorema de Isomorfía tenemos que $G/\mathbf{C}_G(P)$ es isomorfo a un subgrupo de $\mathrm{Aut}(P)$. Como |P|=11, tenemos que $P\cong \mathsf{C}_{11}$ y $\mathrm{Aut}(P)\cong \mathrm{Aut}(\mathsf{C}_{11})$. En particular, por el Teorema de Lagrange $|G/\mathbf{C}_G(P)|$ divide $|\mathrm{Aut}(\mathsf{C}_{11})|=\phi(11)=10$.
- (iv) Tenemos que $|G/\mathbb{C}_G(P)|$ divide tanto a 10, por el apartado anterior, como a |G| = 231. Por tanto $|G/\mathbb{C}_G(P)|$ divide al $\operatorname{mcd}(10,231) = 1$. Esto fuerza que $|G/\mathbb{C}_G(P)| = 1$, es decir, $\mathbb{C}_G(P) = G$. En particular, $P \subseteq \mathbf{Z}(G)$ pues todo elemento de G conmuta con todo elemento de P.