EPITA / InfoS2	
	Mai 2022
NOM : Prénom :	Groupe:

Partiel Electronique - CORRIGE

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

Exercice 1. QCM (8 points – pas de point négatif)

Soit le circuit ci-dessous. L'interrupteur est ouvert et le courant dans la bobine est nul.

- 1. Il y a continuité du courant dans la bobine.
 - (a) VRAI

- b. FAUX
- 2. A t=0, on ferme l'interrupteur K. Remplir le tableau suivant. Vous exprimerez vos réponses en fonction de E,R et r.

	i ₁	i_2	u_L
$t = 0^+$	ER	0	E
$t \to \infty$	ER	E C	0

Une fois le régime permanent établi, on ouvre l'interrupteur.

3. On pose alors t'=0.Remplir le tableau suivant. Vous exprimerez vos réponses en fonction de E, R et r.

	i_1	i_2	u_L
$t'=0^+$	- 10	EC	- Rtr E

- 4. Quelle est l'unité du produit $L\omega$?
 - a. Des Siemens
- b. Des Hertz
- c. Des Ampères
- (d.) Des Ohms
- 5. Que représente le module d'une impédance complexe d'un dipôle, si on note u la tension à ses bornes et i, l'intensité du courant que le traverse?
 - (a.) Le quotient de la valeur efficace de u sur la valeur efficace de i.
 - b. Le déphasage de u par rapport à i.

Soit le filtre ci-contre (Questions 6 à 10) :

6. De quel type de filtre s'agit-il??

- c. Le déphasage de i par rapport à u.
- d. La phase à l'origine

- c. Passe-Bande

- (a.) Passe-Bas
- b. Passe-Haut

- d. Ca dépend des valeurs de R_1 et de R_2
- 7. Quel est son gain en décibel en très hautes fréquences ?
 - a. 0
 - b. $\frac{2}{3}$

- d. $20 \log \left(\frac{2}{3}\right)$
- 8. Quel est son amplification en très basses fréquences ?
 - a. 0

(b) $\frac{2}{3}$

- d. $20 \log \left(\frac{2}{3}\right)$
- 9. Quelle est l'expression de sa fonction de transfert ?
 - a. $\underline{T}(\omega) = \frac{4R}{6R + 8jRC\omega}$

 $\underline{C} \quad \underline{T}(\omega) = \frac{2R}{3R + 4jR^2C\omega}$

b. $\underline{T}(\omega) = \frac{2R}{6R + 8jR^2C\omega}$

- d. $\underline{T}(\omega) = \frac{1}{6R + 8iR^2C\omega}$
- 10. Quel filtre obtient-on si on remplace R_2 par une bobine?
 - a. Passe-Bas

c. Coupe-Bande

(b) Passe-Bande

d. Passe-Haut

Exercice 2. Régime sinusoïdal forcé : Etude d'un filtre (10 points)

Soit le circuit suivant :

1. Etude Qualitative:

a. Donner un schéma équivalent en très basse fréquence (TBF) de ce filtre. En déduire la limite du gain en décibel de ce filtre en TBF.

Ver
$$N_s \rightarrow \frac{2}{3}$$
 Se.

A $\rightarrow \frac{2}{3}$

G $\rightarrow 20 \log(\frac{2}{3})$

b. Donner un schéma équivalent en très haute fréquence (THF) de ce filtre. En déduire la limite du gain en décibel de ce filtre en THF.

$$\begin{array}{c|c}
 & & & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & & \\
\hline
 & & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & & \\
\hline
 & & & & & \\
\hline
 & & & & & \\
\hline
 & & & &$$

c. Conclure sur la nature et l'ordre de ce filtre.

d. Quel type de filtre obtient-on si on inverse la bobine et le condensateur ? Justifiez votre réponse.

Les comportements des condensateurs et bobines étant inverses on TBF et THF, on obtiendrait, en inversant condensateur et bobine, un filtre passe-hant du 2º ordre.

2. Etude quantitative:

a. Déterminer $\underline{E_{th}}$ et $\underline{Z_{th}}$ pour que le circuit précédent (Figure 1) soit équivalent à celuici-dessous. Détaillez votre raisonnement.

 $Rq: \underline{Z_C}$ représente l'impédance complexe du condensateur.

b. Exprimer l'amplitude complexe $\underline{V_S}$ associée à la tension $v_S(t)$ en fonction de R, L, C, ω et $\underline{V_E}$. En déduire la fonction de transfert du filtre, ainsi que son amplification $A(\omega)$.

En whilisant la formule du PDT, on a:

$$Vs = \frac{1}{j^2 \omega} \frac{2}{3}V = \frac{2}{3(1 + \frac{2}{3}jR\omega - LC\omega^2)}V = \frac{1}{j^2 \omega} \frac{1}{3}V = \frac{2}{3(1 + \frac{2}{3}jR\omega - LC\omega^2)}V = \frac{1}{j^2 \omega} \frac{1}{3}V = \frac{1}{3(1 + \frac{2}{3}jR\omega - LC\omega^2)}V = \frac{1}{j^2 \omega} \frac{$$

BONUS: Mettre la fonction de transfert sous sa forme normalisée et en déduire la pulsation propre ω_0 ainsi que le coefficient d'amortissement σ . Vous trouverez en annexe les formes normalisées des fonctions de transfert.

Annexe Formes normalisées des fonctions de transfert

Type de filtre	Ordre 1	Ordre 2
Passe-Bas	$\underline{T}(\omega) = A_{Max} \cdot \frac{1}{1 + j\frac{\omega}{\omega_c}}$ avec : $A_{Max} = A_{TBF}$ $\omega_c = \text{Pulsation de coupure}$	$\underline{T}(\omega) = A_0. \frac{1}{1 + 2j\sigma \frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ $\text{avec} : A_0 = A_{TBF}$
Passe-Haut	$\underline{T}(\omega) = A_{Max} \cdot \frac{j \frac{\omega}{\omega_c}}{1 + j \frac{\omega}{\omega_c}}$ $\text{avec} : A_{Max} = A_{THF}$ $\omega_c = \text{Pulsation de coupure}$	$\underline{T}(\omega) = A_0. \frac{-\left(\frac{\omega}{\omega_0}\right)^2}{1 + 2j\sigma\frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ $\text{avec}: A_0 = A_{THF}$
Passe-Bande		$\underline{T}(\omega) = A_0. \frac{2j\sigma\frac{\omega}{\omega_0}}{1 + 2j\sigma\frac{\omega}{\omega_0} - \left(\frac{\omega}{\omega_0}\right)^2}$ $\text{avec}: A_0 = A_{Max}$

Rappel: TBF = Très basses fréquences $(f \to 0)$ THF = Très hautes fréquences $(f \to \infty)$

BONNES VACINCES!

