Ecuaciones en Derivadas Parciales y Series de Fourier

1 de febrero de $2022\,$

Índice general

1	Qué	e chuchas es una ecuación en derivadas parciales	3
	1.1	Introducción a EDP	3
	1.2	Ejemplos de EDPs	4
		1.2.1 Ecuación de ondas	4

En el caso de detección de errores o erratas, agradecemos el contacto a la dirección eduardo.belmonteg@um.es

CAPÍTULO 1

Qué chuchas es una ecuación en derivadas parciales

1.1 - Introducción a EDP

Hemos visto teoría sobre *Ecuaciones Diferenciales Ordinarias*. Su característica de *Ordinaria* es que sólo se deriva con respecto a una variable.

$$x'(t) = f(t) \rightarrow x(t) = \int f + K$$

La familia de soluciones en este caso depende de un parámetro real. Otros tipos de EDO's tienen otro métodos de resolución, como ya vimos.

Por contra, las ecuaciones en derivadas parciales tienen un aspecto distinto.

$$\frac{\partial u}{\partial x}(x,y) = f(x,y) \to \int f(x,y)dx + g(y)$$

La familia de soluciones depende en este caso de un parámetro que es una función.

La teoría de *Ecuaciones en Derivadas Parciales* consiste en el estudio de algunas funciones, que cumplen determinadas condiciones que nos facilitan su estudio. En muchas ocasiones, nos encontraremos con casos en los que no podamos determinar nada sobre la solución.

La teoría para ecuaciones en derivadas parciales de primer orden es bastante sencilla. Se reduce a un sistema de lineas a partir de las cuales se puede construir la superficie solución de la ecuación. Este caso de estudio es poco útil, por eso casi siempre nos encontraremos ecuaciones de orden dos o superior.

No vamos a representar en este texto la bonita charla que está dando Matías sobre la primera EDO de la historia y su relación con Sir Isaac Newton, Francisco Misco y el holocausto judío pero es bastante interesante.

1.2 - Ejemplos de EDPs

1.2.1. Ecuación de ondas

Nos está dando una bonita charla sobre muchas ecuaciones y todavía no ha hablado de ondas... Ya han pasado $25 \ \mathrm{minutos},$ auxilio.

Esta modelando como se deforma una cuerda en un punto cuando se le aplica una pequeña fuerza para ello coje un incremento en el eje x, (Δx) y calcula el angulo en el punto x y en $x + \Delta x$, y esto lo pone en funcion de la curva U(x,t):

$$tg(\alpha) = \frac{\partial u}{\partial x}(x + \Delta x, t)$$
 $tg(\beta) = \frac{\partial u}{\partial x}(x, t)$

Como trabajar con tangentes es muy complicado aproximamos la tangente mediante el angulo: $tg(\alpha) \sim \alpha$. Ahora simplemente restamos estos dos ángulos y multiplicamos por la tensión (T), y esto debe ser una fuerza que como sabemos es masa por aceleración. La masa viene dada por $\rho \Delta x$ donde ρ es la densidad de masa por longitud (constante). La aceleración es la derivada segunda de U(x,t) respecto de t quedando por tanto la siguiente ecuación:

$$T\left(\frac{\partial u}{\partial x}(x+\Delta x,t) - \frac{\partial u}{\partial x}(x,t)\right) = F = \rho \Delta x \frac{\partial^2 u}{\partial t^2}(x,t)$$

$$T\left(\frac{\frac{\partial u}{\partial x}(x+\Delta x,t) - \frac{\partial u}{\partial x}(x,t)}{\partial x}\right) = \rho \frac{\partial^2 u}{\partial t^2}(x,t)$$

Tomando el limite $\Delta x \to 0$

$$T\frac{\partial^2 u}{\partial x^2}(x,t) = \rho \frac{\partial^2 u}{\partial t^2}(x,t)$$

Llegamos a la ecuación de ondas:

$$\frac{\partial^2 u}{\partial x^2} - \frac{\rho}{T} \frac{\partial^2 u}{\partial t^2} = 0$$

Cuya solución podemos calcular haciendo $\rho/T=1/c^2$, la ecuación queda $\frac{\partial^2 u}{\partial x^2}-\frac{1}{c^2}\frac{\partial^2 u}{\partial t^2}=0$, entonces algunas soluciones son:

$$u(x,t) = f(x+ct)$$
 $\frac{\partial^2 u}{\partial x^2} = f''(x+ct)$ $\frac{\partial^2 u}{\partial t} = c^2 f''(x+ct)$

$$u(x,t) = f(x+ct) - q(x-ct)$$

Sabemos que u(0,t) = u(2,t) = 0 y entonces:

$$f(ct) + g(-ct) = 0 \forall t \implies f(x) = -g(-x) \ \forall x$$

$$f(1+ct) + g(1-ct) = 0 \forall t \implies f(x+2) = -g(-x) \ \forall x$$

Por tanto, f(x) = f(x+2) y f es 2-periódica.

Coje un muelle le pone una masa gorda al final, desde esa masa saca otro muelle hacia delante y le pone otra masa y asi continuamente, y llama al desplazamiento de la masa n U(n,t) donde la n es un

numero natural que indica cual de las masas estamos cogiendo y la t es como siempre el tiempo. Ahora cogemos y restamos una masa con la anterior para aplicar la ley de hook a un solo muelle entre dos masas "contiguas", $F = K \cdot x$, de forma que se nos queda la siguiente ecuacion:

$$k(U(n-1,t) - U(n,t)) - k(U(n,t).U(n+1,t)) = m\frac{\partial^2 u}{\partial t^2}(n,t)$$

donde la kes la constante del muelle, mes la masa y $\frac{\partial^2 u}{\partial t^2}(n,t)$ es la aceleracion.

$$U(n+1,t) - 2U(n,t) + U(n-1,t) = m\frac{\partial^2 u}{\partial t^2}(n,t)$$

Tomando límites, el primer miembro nos recuerda a la segunda derivada:

$$\lim_{h \to 0} \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} = \frac{f'(x+h) - f'(x-h)}{2h} = f''(x)$$

Volviendo a nuestra ecuación:

$$k\frac{\partial^2(x,t)}{\partial x^2}(\Delta x)^2 = \rho \Delta x \frac{\partial^2(x,t)}{\partial t^2}$$

La constante del muelle (k) depende de la longitud del muelle por tanto le afecta el incremento de x (Δx) :

$$\frac{k}{\Delta x} \frac{\partial^2 u(x,t)}{\partial x^2} (\Delta x)^2 = \rho \Delta x \frac{\partial^2 u(x,t)}{\partial t^2}$$

Con lo que nos queda la ecuación de ondas que vimos anteriormente.

Para ilustrar la ecuación de ondas que acabamos de estudiar creamos un modelo de un recipiente en el que se puede desplazar una barra. La P es la presión y V es el volumen del recipiente.

$$\not\!\!P = (P - \Delta P)(1 + x) = \not\!\!P - \Delta P + xP - \underbrace{\Delta P}_{\sim 0}$$

$$\Delta P = -xP$$

Seguimos con las introducciones físicas que no sabemos de dónde vienen ni a dónde van.

Tenemos un cilindro con un fluido, queremos calcular la presión en función de la altura de un fluido contenido en un cilindro vertical. Para ello calculamos las fuerzas que se ejercen. La primera es la generada por la presión atmosférica que se encuentra en el eje vertical, la segunda es (no se cual es la que va hacia arriba tiene que ser otra presión) y luego el peso del fluido. La suma de estas fuerzas

tiene que ser 0 pues el fluido esta en reposo por tanto tenemos que la diferencia de presión entre dos puntos $(z \ y \ \Delta z)$ multiplicada por la superficie del agua superficial (que nos da una fuerza), y el peso es $g\rho\Delta x$ donde g es la gravedad y ρ la densidad han de ser iguales.

$$p\omega = g\rho S\Delta z$$

$$(P(z) - P(z + \Delta z))\mathcal{S} = g\rho \mathcal{S}\Delta z$$

Si pasamos el Δx dividiendo y hacemos el limite obtenemos:

$$\frac{\partial p}{\partial x} = \frac{\partial p}{\partial y} = 0 \qquad \frac{\partial p}{\partial z} = \rho g$$
$$\nabla p = (0, 0, -\rho g)$$

Vamos a resolver la ecuacion:

$$\rho \sim cp$$

$$-\frac{\partial p}{\partial z} = cp(z)$$

$$-p'(z) = cp(z) \qquad \frac{p'}{p} = -c \qquad p(z) = p_0 \rho^{-cz}$$

Ecuación de los fluidos

Tenemos una corriente en un fluido no compresible y nos fijamos en una seccion (S) orientada (tenemos un vector normal) y queremos medir que cantidad de fluido atraviesa S. Tenemos que la velocidad del fluido (v) depende de la posicion (x,y,z) y del tiempo. Y para modelar la masa que atraviesa la seccion (masa saliente de la seccion) por unidad de tiempo hacemos este calculo:

$$\underbrace{\rho \overrightarrow{S} \overrightarrow{v} \Delta t}_{\text{masa saliente}} \to \underbrace{\iint_{\partial D} \rho \overrightarrow{v} d\overrightarrow{S}}_{\text{integral de flujo}}$$

Podemos aplicar el teorema de Gauss-Ostrogadsky para convertir esta integral en una integral triple.

$$\iint_{\partial D} \rho \overrightarrow{v} d\overrightarrow{S} = \iiint_{D} \rho dV$$