Explaining Models with LIME

Alicia Wirth and Saba Mateen

Agenda

- 1. Basics
- 2. Image Data
 - 1. Use Case
 - 2. Implementation
- 3. Tabular Data
 - 1. Use Case
 - 2. Implementation
- 4. Comparison
- 5. Conclusion

Basics

• Objective: Comparison InterpretML and AIX360 using LIME

- Output is very fast
- Can be applied to any machine learning model
- Works for tabular, text and image data

Image Data Use Case

- Classification of images according to seven members of a korean band
- Obtained pre-trained model

Image data set size: ~2.000 Classification Method: ResNet

• Pickle file containing results

Image Data Use Case

Jungkook

- ⇒ Input: Image
- ⇒ Output: Predicted member the image portrays

Image Data Implementation

- Input image
- Load pre-trained model
- Transform image to Pytorch tensor
- Explaining classification using LimeImageExplainer()
 - Apply mask to visualize classification decisions
 - Show mask and probability for each member

Image Data **Implementation**

from aix360.algorithms.lime import LimeImageExplainer

explainer = Li explanation =

temp, mask = expranacion.yec_imaye_and_mask(expranacion.cop_rabers[v], posicive_only=True, num features=10, hide rest=False) plt.imshow(label2rgb(mask,temp, bg label = 0), interpolation = 'nearest')

Tabular Data Use Case

- Classification of images in form of tabular data according to seven members of a korean band
 - o using result file acquired from previous use case as base

Tabular data set size: ~2.000 Classification Method: Random Forest + PCA

```
0,20090.jpg,2,"[554, 445, 757, 975]",0.9999998807907104,"(690, 789)","(1034, 775)","(809, 982)","(726, 1156)","(1037, 1141)"
1,20098.jpg,2,"[772, 49, 819, 1182]",0.9998756647109985,"(876, 501)","(1236, 493)","(976, 709)","(901, 963)","(1124, 970)"
3,20108.jpg,2,"[971, 88, 668, 846]",0.9368537068367004,"(1207, 422)","(1426, 436)","(1276, 504)","(1224, 722)","(1390, 723)"
4,20111.jpg,2,"[996, 50, 576, 741]",0.9998229146003723,"(1079, 376)","(1326, 347)","(1165, 511)","(1135, 670)","(1313, 652)"
5,20117.jpg,2,"[1049, 151, 498, 649]",0.9997857213020325,"(1110, 410)","(1321, 413)","(1124, 531)","(1092, 692)","(1273, 699)"
```

Tabular Data Use Case

Hoseok

- **⇒** Input: Coordinates of facial features
- ⇒ Output: Predicted member corresponding to features

Tabular Data Implementation

- Transform pickle to csv and modify file
- Input encoded coordinates of facial features
- Train model with training data
- Use LIME's explanation methods for tabular data

Tabular Data Implementation

InterpretML

AIX360

explanation.show in notebook(show all=False)

Tabular Data Comparison

InterpretML	AIX360
Always selects the probability of the second class to display	Seems to select the correct probability
Unclear what exactly is displayed	Helpful captions
Can only be applied for tabular data	Can be applied to image, text and tabular data
Documentation not good	Lots of resources

Conclusion

- AIX360 offers better fundamentals and functionalities to work with
 - ⇒ easier for beginners
- InterpretML's LIME still seems to be in development
 - ⇒ lacks options to analyze models for different types of data

Sources

- Source Code: https://github.com/SabaMt/LIME-AIX-InterpretML.git
- https://www.onclick360.com/interpretable-machine-learning-with-lime-eli5-shap-interpret-ml/
- https://www.kaggle.com/choiseokhyeon/bts-crop2
- https://de.wikipedia.org/wiki/Datei:%E2%80%98LG_Q7_BTS_%EC%97%90%EB%94%94%EC %85%98%E2%80%99_%EC%98%88%EC%95%BD_%ED%8C%90%EB%A7%A4_%EC%8B %9C%EC%9E%91_(42773472410)_(cropped).jpg
- https://commons.wikimedia.org/wiki/File:Jeon_Jungkook_at_Golden_Disk_Awards,_5_January_2019_07.jpg