Name: Pranay Rokade

Machine Learning Mini Project

Aim:

Choose a dataset of your preference.

Perform the EDA

Apply a variety of classification algorithms, including Logistic Regression (LR), Naive Bayes (NB), K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), and K-means.

Assess their performance using classification metrics.

Compare the performance of the entire classification algorithm.

```
In [1]:
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from sklearn.model_selection import train_test_split
         from sklearn.preprocessing import StandardScaler
         from sklearn.metrics import precision score, recall score, f1 score, accuracy sc
         from sklearn.metrics import classification report
         from sklearn.model selection import GridSearchCV
         import warnings
         warnings.filterwarnings('ignore')
In [2]: df = pd.read_csv('Heart Attack Data Set.csv')
        df.head()
In [3]:
Out[3]:
                      cp trestbps
                                   chol fbs restecg thalach exang oldpeak slope
                                                                                         thal
            age sex
                                                                                     ca
         0
                       3
                              145
                                                   0
                                                          150
                                                                                       0
             63
                   1
                                    233
                                           1
                                                                   0
                                                                           2.3
                                                                                    0
                                                                                             1
                                    250
                                           0
                                                          187
                                                                   0
                                                                           3.5
                                                                                       0
                                                                                             2
         1
             37
                   1
                              130
                                                                                   0
                                                   0
                                    204
                                           0
                                                                   0
                                                                                       0
                                                                                             2
         2
             41
                   0
                       1
                              130
                                                          172
                                                                           1.4
                                                                                    2
                                                          178
                                                                   0
                                                                           8.0
                                                                                       0
                                                                                             2
         3
             56
                              120
                                    236
                                           0
                                                                                    2
             57
                   0
                       0
                              120
                                    354
                                           0
                                                    1
                                                          163
                                                                   1
                                                                           0.6
                                                                                    2
                                                                                       0
                                                                                             2
        df.tail()
In [4]:
```

Out[4]:		age	sex	ср	trestbps	chol	fbs	re	stecg	thalac	h exang	ole	dpeak	slop	e	ca	tl
	298	57	0	0	140	241	0		1	12	3 1		0.2		1	0	
	299	45	1	3	110	264	0		1	13	2 0		1.2		1	0	
	300	68	1	0	144	193	1		1	14	1 0		3.4		1	2	
	301	57	1	0	130	131	0		1	11	5 1		1.2		1	1	
	302	57	0	1	130	236	0		0	17	4 0		0.0		1	1	
	4															ا	•
In [5]:	df.de:	scri	be()														
Out[5]:			а	ge	sex	(ср	tre	estbps	ch	ol		fbs		res	ste
	count	303	3.0000	000	303.000000	303	3.0000	00	303.0	00000	303.0000	00	303.000	0000	30	3.00)0(
	mean	54	4.3663	337	0.683168	3 ().9669	97	131.6	23762	246.2640	26	0.148	8515	(0.52	280
	std		9.0821	01	0.466011	l 1	1.0320	52	17.5	38143	51.8307	51	0.356	6198		0.52	258
	min	29	9.0000	000	0.000000) (0.000	00	94.0	00000	126.0000	00	0.000	0000		0.00)0(
	25%	4	7.5000	000	0.000000) (0.000	00	120.0	00000	211.0000	00	0.000	0000	(0.00)0(
	50%	5	5.0000	000	1.000000) 1	0000.1	00	130.0	00000	240.0000	00	0.000	0000		1.00)0(
	75%	6	1.0000	000	1.000000) 2	2.0000	00	140.0	00000	274.5000	00	0.000	0000		1.00)0(
	max	7	7.0000	000	1.000000) 3	3.0000	00	200.0	00000	564.0000	00	1.000	0000		2.00)0(
	4															ا	•
In [6]:	df.sha	ape															
Out[6]:	(303,	14)															
In [7]:	missi				df.isnull().sun	n()										
Out[7]:	age sex cp trest chol fbs reste thala exang oldpe slope ca thal targe dtype	cg ch ak t			:\n", df.d												

```
Duplicates:
        1
 In [9]: df.drop_duplicates(inplace=True)
In [10]: print("Duplicates:\n", df.duplicated().sum())
       Duplicates:
        0
In [11]:
        df.columns
Out[11]: Index(['age', 'sex', 'cp', 'trestbps', 'chol', 'fbs', 'restecg', 'thalach',
                'exang', 'oldpeak', 'slope', 'ca', 'thal', 'target'],
              dtype='object')
In [12]: df.info()
       <class 'pandas.core.frame.DataFrame'>
       Int64Index: 302 entries, 0 to 302
       Data columns (total 14 columns):
           Column
                    Non-Null Count Dtype
        0 age
                    302 non-null
                                    int64
                    302 non-null int64
        1 sex
        2
           ср
                     302 non-null
                                   int64
        3 trestbps 302 non-null int64
                   302 non-null int64
        4 chol
        5 fbs
                    302 non-null
                                   int64
        6 restecg 302 non-null int64
        7 thalach 302 non-null int64
        8 exang
                   302 non-null
                                   int64
        9 oldpeak
                     302 non-null
                                   float64
        10 slope
                     302 non-null
                                   int64
        11 ca
                     302 non-null
                                   int64
        12 thal
                     302 non-null
                                    int64
        13 target
                    302 non-null
                                    int64
       dtypes: float64(1), int64(13)
       memory usage: 35.4 KB
In [13]: df.hist(figsize=(15,12),bins = 15, color = "blue")
         plt.title("Features Distribution")
         plt.show()
```


In [14]: plt.figure(figsize=(15,15))
 p=sns.heatmap(df.corr(), annot=True,cmap='YlGnBu',center=0)


```
In [15]: X = df.drop('target', axis=1) # Features
    y = df['target'] # Target (whether an individual defaults)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_

In [16]: X_train.shape, X_test.shape

Out[16]: ((241, 13), (61, 13))

In [17]: scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.fit_transform(X_test)
```

Logistic Regression

```
In [18]: from sklearn.linear_model import LogisticRegression
    log_reg = LogisticRegression()
    log_reg.fit(X_train, y_train)
```

```
Out[18]: 

LogisticRegression 

LogisticRegression()
```

```
In [19]: y_pred_log = log_reg.predict(X_test)

accuracy_log = accuracy_score(y_test, y_pred_log)
precision_log = precision_score(y_test, y_pred_log)
recall_log = recall_score(y_test, y_pred_log)
f1_log = f1_score(y_test, y_pred_log)

print("Logistic Regression Performance:")
print("Accuracy:", accuracy_log)
print("Precision:", precision_log)
print("Recall:", recall_log)
print("F1 Score:", f1_log)

Logistic Regression Performance:
Accuracy: 0.8688524590163934
Precision: 0.8529411764705882
Recall: 0.90625
```

F1 Score: 0.87878787878788

```
In [20]: print(classification_report(y_test,y_pred_log))
```

	precision	recall	f1-score	support
0	0.89	0.83	0.86	29
1	0.85	0.91	0.88	32
accuracy			0.87	61
macro avg	0.87	0.87	0.87	61
weighted avg	0.87	0.87	0.87	61

```
In [21]: from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_log)
print('Confusion Matrix:\n', cm)
```

Confusion Matrix:

[[24 5] [3 29]]

```
In [22]: p = sns.heatmap(pd.DataFrame(cm), annot=True, cmap="YlGnBu" ,fmt='g')
    plt.title('Confusion matrix', y=1.1)
    plt.ylabel('Actual label')
    plt.xlabel('Predicted label')
```

Out[22]: Text(0.5, 23.52222222222, 'Predicted label')

Naive Bayes Classifier

```
In [24]: y_pred_nb = gnb.predict(X_test)

accuracy_nb = accuracy_score(y_test, y_pred_nb)
precision_nb = precision_score(y_test, y_pred_nb)
recall_nb = recall_score(y_test, y_pred_nb)
f1_nb = f1_score(y_test, y_pred_nb)

print("Accuracy: ",accuracy_nb)
print("Precision: ",precision_nb)
print("Recall: ",recall_nb)
print("F1 Score: ",f1_nb)
```

Accuracy: 0.8852459016393442 Precision: 0.9032258064516129

Recall: 0.875

GaussianNB()

```
print(classification_report(y_test,y_pred_nb))
In [25]:
                      precision
                                   recall f1-score
                                                       support
                                      0.90
                   0
                           0.87
                                                0.88
                                                            29
                   1
                           0.90
                                      0.88
                                                0.89
                                                            32
                                                0.89
                                                            61
            accuracy
                                      0.89
                                                0.89
                                                            61
           macro avg
                           0.88
        weighted avg
                           0.89
                                      0.89
                                                0.89
                                                            61
In [26]: from sklearn.metrics import confusion_matrix
         cm = confusion_matrix(y_test, y_pred_nb)
         print('Confusion Matrix:\n', cm)
        Confusion Matrix:
         [[26 3]
         [ 4 28]]
In [27]: p = sns.heatmap(pd.DataFrame(cm), annot=True, cmap="YlGnBu",fmt='g')
         plt.title('Confusion matrix', y=1.1)
         plt.ylabel('Actual label')
         plt.xlabel('Predicted label')
```

Out[27]: Text(0.5, 23.52222222222, 'Predicted label')

KNN Classifier

```
In [28]: from sklearn.neighbors import KNeighborsClassifier
         knn = KNeighborsClassifier(n_neighbors=20)
         knn.fit(X_train, y_train)
Out[28]:
                 KNeighborsClassifier
         KNeighborsClassifier(n_neighbors=20)
In [29]: y_pred_knn = knn.predict(X_test)
         accuracy_knn = accuracy_score(y_test, y_pred_knn)
         precision_knn = precision_score(y_test, y_pred_knn)
         recall_knn = recall_score(y_test, y_pred_knn)
         f1_knn = f1_score(y_test, y_pred_knn)
         print("KNN Performance:")
         print("Accuracy:", accuracy_knn)
         print("Precision:", precision_knn)
         print("Recall:", recall_knn)
         print("F1 Score:", f1_knn)
        KNN Performance:
        Accuracy: 0.8524590163934426
        Precision: 0.8285714285714286
        Recall: 0.90625
        F1 Score: 0.8656716417910447
In [30]: print(classification_report(y_test,y_pred_knn))
                      precision recall f1-score
                                                      support
                   0
                           0.88
                                     0.79
                                               0.84
                                                           29
                   1
                           0.83
                                     0.91
                                               0.87
                                                           32
                                                           61
                                               0.85
            accuracy
           macro avg
                           0.86
                                     0.85
                                               0.85
                                                           61
        weighted avg
                           0.86
                                     0.85
                                               0.85
                                                           61
In [31]: from sklearn.metrics import confusion matrix
         cm = confusion_matrix(y_test, y_pred_knn)
         print('Confusion Matrix:\n', cm)
        Confusion Matrix:
         [[23 6]
         [ 3 29]]
In [32]: p = sns.heatmap(pd.DataFrame(cm), annot=True, cmap="YlGnBu", fmt='g')
         plt.title('Confusion matrix', y=1.1)
         plt.ylabel('Actual label')
         plt.xlabel('Predicted label')
Out[32]: Text(0.5, 23.52222222222, 'Predicted label')
```


Decision Tree Classifier

```
In [33]: from sklearn.tree import DecisionTreeClassifier
         dt = DecisionTreeClassifier()
         dt.fit(X_train, y_train)
Out[33]:
             DecisionTreeClassifier •
         DecisionTreeClassifier()
In [34]: y_pred_dt = dt.predict(X_test)
         accuracy_dt = accuracy_score(y_test, y_pred_dt)
         precision_dt = precision_score(y_test, y_pred_dt)
         recall_dt = recall_score(y_test, y_pred_dt)
         f1_dt = f1_score(y_test, y_pred_dt)
         print("Decision Tree Performance:")
         print("Accuracy:", accuracy_dt)
         print("Precision:", precision_dt)
         print("Recall:", recall_dt)
         print("F1 Score:", f1_dt)
```

Decision Tree Performance: Accuracy: 0.7868852459016393 Precision: 0.8518518518518519

Recall: 0.71875

F1 Score: 0.7796610169491526

```
In [35]: print(classification_report(y_test,y_pred_knn))
```

```
precision
                           recall f1-score
                                               support
           0
                   0.88
                             0.79
                                       0.84
                                                   29
           1
                   0.83
                             0.91
                                       0.87
                                                   32
    accuracy
                                       0.85
                                                   61
                                       0.85
   macro avg
                   0.86
                             0.85
                                                   61
weighted avg
                   0.86
                             0.85
                                       0.85
                                                   61
```

```
In [36]: from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_dt)
print('Confusion Matrix:\n', cm)
```

Confusion Matrix:

[[25 4] [9 23]]

```
In [37]: p = sns.heatmap(pd.DataFrame(cm), annot=True, cmap="YlGnBu",fmt='g')
    plt.title('Confusion matrix', y=1.1)
    plt.ylabel('Actual label')
    plt.xlabel('Predicted label')
```

Out[37]: Text(0.5, 23.52222222222, 'Predicted label')

Random Forest Classifier

```
In [38]:
        from sklearn.ensemble import RandomForestClassifier
         rf_model = RandomForestClassifier(random_state=42)
         rf_model.fit(X_train, y_train)
Out[38]:
                 RandomForestClassifier
         RandomForestClassifier(random_state=42)
In [39]: y_pred_rf = rf_model.predict(X_test)
         accuracy_rf = accuracy_score(y_test, y_pred_rf)
         precision_rf = precision_score(y_test, y_pred_rf)
         recall_rf = recall_score(y_test, y_pred_rf)
         f1_rf = f1_score(y_test, y_pred_rf)
         print("Accuracy: ",accuracy_rf)
         print("Precision: ",precision_rf)
         print("Recall: ",recall_rf)
         print("F1 Score: ",f1_rf)
```

Accuracy: 0.8688524590163934

Precision: 0.9 Recall: 0.84375

F1 Score: 0.8709677419354839

In [40]: print(classification_report(y_test,y_pred_rf))

	precision	recall	f1-score	support
0	0.84	0.90	0.87	29
1	0.90	0.84	0.87	32
accuracy			0.87	61
macro avg	0.87	0.87	0.87	61
weighted avg	0.87	0.87	0.87	61

```
In [41]: from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred_rf)
print('Confusion Matrix:\n', cm)
```

Confusion Matrix:

[[26 3] [5 27]]

```
In [42]: p = sns.heatmap(pd.DataFrame(cm), annot=True, cmap="YlGnBu",fmt='g')
    plt.title('Confusion matrix', y=1.1)
    plt.ylabel('Actual label')
    plt.xlabel('Predicted label')
```

Out[42]: Text(0.5, 23.52222222222, 'Predicted label')

Confusion matrix

Kmeans Clustering

```
In [43]: XY = df[['trestbps', 'thalach']]
```

Out[43]: trestbps thalach

302 rows × 2 columns

```
In [44]: sns.relplot( x="trestbps", y="thalach", data=df, color="blue")
```

Out[44]: <seaborn.axisgrid.FacetGrid at 0x25f9f68f090>


```
In [45]:
        from sklearn.cluster import KMeans
         # Generate the elbow curve
         wcss = []
         for i in range(1, 11):
             kmeans = KMeans(n_clusters=i, random_state=0)
             kmeans.fit(XY)
             wcss.append(kmeans.inertia_)
         # Plot the elbow curve
         plt.figure(figsize=(10, 6))
         plt.plot(range(1, 11), wcss, marker='o', color='blue')
         plt.title('Elbow Method for Optimal K')
         plt.xlabel('Number of clusters (K)')
         plt.ylabel('WCSS')
         plt.xticks(range(1, 11))
         plt.grid()
         plt.show()
```



```
In [46]:
      kmeans = KMeans(n_clusters=3, random_state=0)
      label = kmeans.fit_predict(XY)
      print(label)
      1011111111011110210211111100000111000211
      \begin{smallmatrix} 0 & 0 & 1 & 1 & 0 & 0 & 0 & 2 & 1 & 2 & 2 & 1 & 0 & 1 & 1 & 0 & 0 & 2 & 2 & 1 & 0 & 2 & 0 & 1 & 1 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 1 & 2 & 0 & 1 \\ \end{smallmatrix}
      0 0 0 2 0 1]
In [47]: print(kmeans.cluster centers )
      [[126.36734694 124.45918367]
      [126.27922078 166.13636364]
      [158.26
                147.76
                         ]]
In [48]: import matplotlib.pyplot as plt
      plt.scatter(XY.loc[label == 0, 'trestbps'], XY.loc[label == 0,
                     'thalach'],
               s=80, c='red', label='Cluster 1')
      plt.scatter(XY.loc[label == 1, 'trestbps'], XY.loc[label == 1, 'thalach'], s=80,
      plt.scatter(XY.loc[label == 2, 'trestbps'], XY.loc[label == 2, 'thalach'], s=80,
      plt.scatter(kmeans.cluster_centers_[:, 0], kmeans.cluster_centers_[:, 1], s=100,
               c='black', label='Centroids')
      plt.title('Clusters of customers')
      plt.legend()
      plt.show()
```

Clusters of customers


```
In [49]: true_labels = df['target']

accuracy_kmeans = accuracy_score(true_labels, label)
precision_kmeans = precision_score(true_labels, label, average='weighted')
recall_kmeans = recall_score(true_labels, label, average='weighted')
f1_kmeans = f1_score(true_labels, label, average='weighted')
print("Accuracy: ",accuracy_kmeans)
print("Precision: ",precision_kmeans)
print("Recall: ",recall_kmeans)
print("F1 Score: ",f1_kmeans)
```

Accuracy: 0.6059602649006622 Precision: 0.7237280222143042 Recall: 0.6059602649006622 F1 Score: 0.6565556983927636

In [50]: report = classification_report(true_labels, label)
 print(report)

support	f1-score	recall	precision	
138	0.58	0.50	0.70	0
164	0.72	0.70	0.74	1
0	0.00	0.00	0.00	2
302	0.61			accuracy
302	0.43	0.40	0.48	macro avg
302	0.66	0.61	0.72	weighted avg

```
In [51]: from sklearn.metrics import confusion_matrix

confusion_mat = confusion_matrix(true_labels, label)
print('Confusion Matrix:\n', confusion_mat)
```

```
Confusion Matrix:

[[ 69 40 29]

[ 29 114 21]

[ 0 0 0]]
```

```
In [52]: confusion_mat = confusion_matrix(true_labels, label)
  plt.figure(figsize=(8, 6))
  p = sns.heatmap(pd.DataFrame(confusion_mat), annot=True, cmap="YlGnBu", fmt='g')
  plt.title('Confusion Matrix', y=1.1)
  plt.ylabel('Actual Label')
  plt.xlabel('Predicted Label')
  plt.show()
```


Comparision Between Models

```
In [53]: # Compare performance across models
models = ['Logistic Regression', 'Naive Bayes', 'K-Nearest Neighbors', 'Decision
accuracies = [accuracy_log, accuracy_nb, accuracy_knn, accuracy_dt, accuracy_rf,
precisions = [precision_log, precision_nb, precision_knn, precision_dt, precisio
recalls = [recall_log, recall_nb, recall_knn, recall_dt, recall_rf, recall_kmean
f1_scores = [f1_log, f1_nb, f1_knn, f1_dt, f1_rf, f1_kmeans]

performance_df = pd.DataFrame({
    'Model': models,
    'Accuracy': accuracies,
    'Precision': precisions,
    'Recall': recalls,
```

```
'F1 Score': f1_scores
})
print(performance_df)
```

```
ModelAccuracyPrecisionRecallF1 Score0Logistic Regression0.8688520.8529410.906250.8787881Naive Bayes0.8852460.9032260.875000.8888892K-Nearest Neighbors0.8524590.8285710.906250.8656723Decision Tree (DT)0.7868850.8518520.718750.7796614Random Forest0.8688520.9000000.843750.8709685Kmeans0.6059600.7237280.605960.656556
```