[ELECTROCHEMISTRY]

Inside the Chapter.....

- 3.1 धात्विक और विद्युत अपघटनी चालक
 - 3.1.1 धात्विक अथवा इलेक्ट्रॉनिक चालक
 - 3.1.2 वैद्युत अपघटनी चालक
 - 3.1.3 धात्विक और विद्युत अपघटनी चालकों में अन्तर
- 3.2 विद्युत अपघट्यों का वर्गीकरण
 - 3.2.1 प्रबल विद्युत अपघट्य
 - 3.2.2 दुर्बल विद्युत अपघर्य
 - 3.2.3 विद्युत अपषट्यों की चालकता प्रभावित करने वाले कारक
 - 3.2.4 विद्युत अपषट्न की क्रियाविधि
 - 3.2.5 विद्युत अपधट्न के नियम
- 3.3 विद्युत अपघटनी चालकों में चालकत्व और चालकता
 - 3.3.1 सैल स्थिरांक
 - 3.3.2 आयनिक विलयनों की चालकता का मापन
 - 3.3.3 तुल्यांकी चालकता
 - 3.3.4 मोलर चालकता
 - 3.3.5 चालकता (विशिष्ट चालकत्व) पर तनुता का प्रभाव

- 3.3.6 कोलराऊश नियम
- 3.3.7 कोलराऊश नियम के अनुप्रयोग
- 3.4 विद्युत रासायनिक सैल
 - 3.4.1 गैल्वनी सैलों को व्यक्त करना
 - 3.4.2 सैल का विद्युत वाहक बल अथवा सैल विभव
 - 3.4.3 इलेक्ट्रोड विभव या अर्द्ध सैल विभव की उत्पत्ति
 - 3.4.4 इलेक्ट्रोड विभव का मापन
 - 3.4.5 सैल के विद्युत वाहक बल का मापन
 - 3.4.6 विद्युत वाहक बल और गिब्ज ऊर्जा
 - 3.4.7 नेनर्स्ट समीकरण
- 3.5 बैटरियाँ
- 3.6 ईंधन सैल
- 3.7 संक्षारण
- 3.8 पाठ्यपुस्तक के प्रश्न एवं उत्तर
- 3.9 अन्य महत्त्वपूर्ण प्रश्न एवं उत्तर

भूमिका

- वैद्युतरसायन रसायन विज्ञान की वह शाखा है जिसमें स्वत: प्रवर्तित रासायनिक अभिक्रियाओं में उत्पन्न हुई ऊर्जा को विद्युत ऊर्जा में परिवर्तित किया जाता है। इसी प्रकार स्वत: अप्रवर्तित रासायनिक अभिक्रियाओं को विद्युत ऊर्जा द्वारा सम्पन्न कराया जाता है।
- वैद्युत रसायन का मुख्य आधार उपापचयन (Redox) अभिक्रियाएँ हैं। वैद्युत रसायन का प्रायोगिक पक्ष उद्योगों के लिये महत्वपूर्ण है अनेक रासायनिक एवं जैविक अभिक्रिया भी उपाचयन (Redox) अभिक्रिया होती है जबिक सैद्धान्तिक पक्ष अनुसंधानकर्ताओं ओर वैज्ञानिकों के लिये महत्वपूर्ण है अनेक सिक्रय धातुओं जैसे Na. Mg, Al आदि के धातुकर्म, NaOH, Cl2, F2 आदि के निर्माण में वैद्युत रासायनिक विधियों का उपयोग होता है बैटरी, ईंधन सैल आदि को ऊर्जा के लिये उपयोग किया जाता है। जिनका विभिन्न उपकरणों एवं युक्तियों में प्रयोग होता है, इन सैलों के उपयोग से वातावरण अधिक प्रदूषित नहीं होता है, कोशिका से मस्तिष्क या मस्तिष्क के कोशिकाओं की ओर संवेदी संकेता का संचरण, एवं कोशिकाओं के मध्य संचार का मूल आधार वैद्युतरसायन ही है। इस अध्याय में हम कुछ महत्वपूर्ण प्रारम्भिक पहलुओं का अध्ययन करेंगे।

3.1 Metallic and Pleastolytic Conductors

जैसा कि हतें ज्ञात है कि सभी पदार्थ विद्युत चालक नहीं होते। वे पदार्थ जिनमें विद्युत धारा प्रवाहित होती है चालक कहलाते हैं। उदाहरण के लिए धातुओं में विद्युत धारा प्रवाहित होती है, जैसे Cu, Ag, Al, Sn आदि। इन्हें धात्विक चालक (Metallic Conductors) कहते हैं। क्रक आयिनक पदार्थ अपनी संगलित अवस्था और जलीय विलयन में विद्युत धारा प्रवाहित होती है। उदाहरण के लिए NaCl, KCl, AlCl, आदि इन्हें वैद्युत अपघटनी चालक (Electrolytic Conductors) कहते हैं। इनके विषय में हम विस्तार से चर्चा करेंगे। वे पदार्थ जिनमें विद्युत धारा प्रवाहित नहीं होती है, कुचालक या अचालक (Non-Conductors) कहते है जैसे काँच, प्लास्टिक, रबर रेजिन आदि।

वे पदार्थ जो विद्युत धारा का आंशिक रूप से चालन करते है अर्द्धचालक (Semi-Conductors) कहलाते हैं। जैसे, Si, Ge आदि चालक पदार्थों को दो भागों में बाँटा जाता है।

ा । धारिक अथवा इतकानिक चालक (Metallic or Electronic Conductors)

सभी धातुऐं विद्युत धारा की चालक होती हैं। विद्युत चालकन के दौरान इनमें कोई रासायनिक परिवर्तन नहीं होता है। धातुओं के अतिरिक्त मिश्र धातुएँ भी इसी प्रकार के चालक हैं।

इन चालकों में विद्युत धारा का प्रवाह इलेक्ट्रॉनों द्वारा होता है। कुछ अधातुएँ भी इस प्रकार की चालकता प्रदर्शित करती हैं, इसका प्रमुख *उदाहरण ग्रेफाइट है।*

धात्विक चालकों की चालकता प्रभावित करने वाले कारक

- (1) धातु में प्रति परमाणु संयोजकता इलेक्ट्रॉनों की संख्या
- (2) धातु का घनत्व
- (3) धातु की संरचना

3.1.2 वेब्रुत अप्रवेशनी पालक (Electrolytic Conductors)

वे पदार्थ जो संगलित (पिघली) अवस्था तथा जलीय विलयन में विद्युत धारा प्रवाहित करते हैं, वैद्युत अपघटनी चालक कहलाते हैं। ये पदार्थ आयनिक यौगिक होते हैं। इनमें विद्युत का प्रवाह आयनों द्वारा होता है। इन पदार्थों में विद्युत धारा का प्रवाह तब ही संभव होता है जबिक आयन गित करने के लिए स्वतंत्र हों। अत: ये पदार्थ ठोस अवस्था में विद्युत का चालन नहीं करते। इन पदार्थों को वैद्युत अपघट्य कहा जाता है। उदाहरण के लिए NaCl, KCl आदि ठोस अवस्था में विद्युत का चालन नहीं करते है, परन्तु ये संगलित अवस्था और जलीय विलयन में विद्युत धारा प्रवाहित करते है।

इनके विपरीत कुछ ऐसे पदार्थ भी होते हैं जो न तो ठोस अवस्था और न हो जलीय विलयन में विद्युत धारा का चालन नहीं करते है। उदाहरण के लिए शर्करा, यूरिया, एथेनॉल, ग्लूकोज आदि। इस प्रकार के पदार्थों को विद्युत अनअपघट्य कहा जाता है।

3.1.3 धात्विक चालक और विद्युत अपघटनी चालकों में अन्तर-Difference between Metallic and Electrolytic Conductors धात्विक और वैद्युत अपघटनी चालकों में प्रमुख अन्तर निम्न सारणी में दिये गये हैं।

भरणी 3.1 धात्विक और वैद्यत अपघटनी चालको में एमाव अन्तर

		<u>चंद्रगा चालका म प्रमुख अन्तर</u>
फ सं.	धात्विक चालक	वैद्युत अपघटनीय चालक
1.	विद्युत धारा का प्रवाह	विद्युत थारा का प्रवाह आयनों
	इलेक्ट्रॉनों के द्वारा से होता है	के द्वारा होता है।
2.	इन चालकों में विद्युत प्रवाह	इन चालकों में विद्युत प्रवाह से
	कोई रासायनिक परिवर्तन	से रासायनिक परिवर्तन होता
	नहीं होता है।	है, अर्थात् इनका अपघटन हो जाता
<u></u>		है।
3.	ये चालक ठोस अवस्था और	ये चालक ठोस अवस्था में पिघली
	अवस्था, दोनों में ही विद्युत	का चालन नहीं करते। विद्युत
	का चालन करते हैं।	परन्तु पिघली अवस्था और जलीय
		विलयन में वैद्युत का चालन करते हैं।
4.	ताप बढ़ाने से इन चालकों	ताप बढ़ाने से पदार्थ के वियोजन
	की चालकता घटती है।	की मात्रा बढ़ने लगती है, जिससे
		वैद्युत चालकता भी बढ़ती है।
 -	<u></u>	

3.2 विद्युत अपघट्यों का वर्गीकरण (Classification of Electrolytic)

सभी विद्युत अपघटय समान मात्रा में वियोजित नहीं होते। अतः वियोजन (आयनन) की मात्रा के आधार पर इन्हें दो भागों में वर्गीकृत किया गया है।

- प्रबल विद्युत अपघट्य (Strong Electrolyte)
- 2. दुर्बल विद्युत अपघट्य (Weak Electrolyte)

3.2.1 प्रबल विद्युत अपघट्य (Strong Electrolyte)

वे पदार्थ जिनकी जलीय विलयन में वियोजन की मात्रा अधिक होती है, प्रबल विद्युत अपघट्य कहलाते हैं। जलीय विलयन में इन्हें लगभग पूर्णत: वियोजित अथवा पूर्णत: आयिनक माना जाता है। इस श्रेणी में प्रबल अम्ल (HCl. H.SO.) आदि, प्रबल क्षार (NaOH, KOH), प्रबल अम्ल और प्रबल क्षार से बने लवण (NaCl. K.SO.), प्रबल अम्ल और दुर्वल क्षार से बने लवण (NH.Cl) तथा दुर्बल अम्ल और प्रबल क्षार से बने लवण (NH.Cl) तथा दुर्बल अम्ल और प्रबल क्षार से बने लवण (NH.Cl) तथा दुर्बल अम्ल और प्रबल क्षार से बने लवण (CH,COONa) आदि आते है।

3.2.2 दुर्बल विद्युत अपघट्य (Weak Electrolyte)

वे पदार्थ जिनके आयनन की मात्रा कम होती है दुर्बल विद्युत अपघट्य कहलाते हैं। प्रवल विद्युत अपघट्यों के समान ये जलीय विलयन में पूर्णत: वियोजित या आयनित नहीं होते हैं। विलयन का तनुकरण करने पर इनके वियोजन की मात्रा बढ़ती है। इस श्रेणी में दुर्बल अम्ल (CH₃COOH, H₂CO₃ आदि), दुर्बल क्षार (NH₃OH, Al(OH₃) आदि) दुर्बल अम्ल और दुर्बल क्षार से बने लवण (CH₃COONH₄, (NH₃), CO₃ आदि) आते हैं।

3.2.3 विद्युत अपघट्यों की चालकता का प्रभावित करने वाले कारक Factors Affecting the conductivity of Electrolyte

- 1. अन्तर आयनिक आकर्षण (Inter Ionic Attraction) जिन पदार्थों में आयनों के मध्य आकर्षण बल अधिक होते हैं तो विलायक के अणु उस आकर्षण बल को पूर्ण रूप से निरस्त नहीं कर पाते हैं। पिरणाम स्वरूप पदार्थ का वियोजन कम होता है। पदार्थ में आयन जिस आकर्षण बल से बंधे रहते हैं वह उस पदार्थ को जालक ऊर्जा (Lattice Energy) कहलाती है। आयन-विलायक अन्त: क्रिया से उत्पन्न ऊर्जा को विलायकीकरण ऊर्जा (Solvation Energy) कहते हैं। यदि जल विलायक हो तो यह जलयोजन ऊर्जा (Hydration Energy) कहलाती है। अत: आयन- आयन आकर्षण ऊर्जा की मात्रा, आयन विलायक आकर्षण से अधिक हो तो विद्युत अपघट्य वियोजित नहीं हो पाता। इस प्रकार के विद्युत अपघट्य दुर्बल अपघट्य होते हैं।
- 2. आयनों का विलायकीकरण (Solvation of lons) यदि आयनों और विलायन अणुओं के मध्य आकर्षण अर्थात आयन विलायक अन्तः क्रियाऐं प्रबल हों तो आयन सरलता से विलायकीकृत हो जाता है। अर्थात आयन से विलायक के अणु जुड़ जाते हैं। परिणाम स्वरूप आयन का आकार बढ़ जाता है और विलयन में उसकी गति कम हो जाती है, अत: चालकता घट जाती है।

- 3. विलायक की श्यानता (विस्कासिता) (Viscosity of the Solvent) - यदि विलायक के अणुओं के मध्य आकर्षण अधिक होता है तो उसकी विस्कासिता बढ़ जाती है जो कि आयनों को सरलता से इलेक्ट्रॉड की ओर गति करने में बाधा उत्पन्न करती है। अतः चालकता घटती है।
- 4. विलयन की सान्द्रता (Concentration of Solution) यदि विद्युत अपघट्य के विलयन की सान्द्रता अधिक होती है तो उसकी वियोजन की मात्रा कम होती है अर्थात् चालकता भी कम होती है। विलयन को तनु करने पर वियोजन की मात्रा बढ़ती है और विलयन की चालकता बढ़ती है।
- 5. ताप (Temperature) ताप बढ़ाने पर विद्युत अपघट्य के आयनन की मात्रा बढ़ती है, अत: ताप बढ़ाने पर विलयन की चालकता भी बढ़ती है। विद्युत अपघटनी चालकों का यह व्यवहार धात्विक चालकों के व्यवहार के विपरीत है, क्योंकि धात्त्रिक चालकों की चालकता ताप बढाने से घटती है।

3.2.4 वैद्युत अपघटन की क्रिया विधि (Mechanism of Electrolysis)

वैद्युत अपघटनी प्रक्रमां में वैद्युत ऊर्जा को रासायनिक ऊर्जा में परिवर्तन किया जाता है अर्थात् रासायनिक अभिक्रियाओं को विद्युत ऊर्जा के व्यय से सम्पन्न कराया जाता है। वैद्युत अपघटन की प्रक्रिया जिस पात्र में सम्पन्न की जाती है। उसे वैद्युत अपघटनी सैल या वोल्टामीटर कहते हैं। इस सैल में होने वाली ऑक्सीकरण अपचयन (रेडॉक्स) अभिक्रिया स्वत: अप्रवर्तित प्रकृति की होती है जिसे वैद्युत ऊर्जा से सम्पन्न कराया जाता है। चित्र 3.1 में एक विद्युत अपघटनी सैल का रेखा चित्र दिया है।

उपरोक्त सैल में विद्युत अपघट्य का जलीय विलयन लिया जाता है, जिसमें धातु की दो छड़े जिन्हें इलेक्ट्रोड कहते है, डूबी हुई है इन इलेक्ट्रोडों को बैटरी के दोनों टर्मिनल से जोड़ देते है। बैटरी के घन टर्मिनल से जुड़े इलेक्ट्रोड को एनोड (धनाग्र) एवं ऋण टर्मिनल से जुड़े इलेक्ट्रोड को कैथोड (ऋणाग्र) कहते हैं। एनोड (Anode) पर ऋणायन (Anion) और कैथोड (Cathode) पर घन आयन विसर्जित होते है।

माना कि हम HCl का विलयन लेते है। विलयन में HCl का वियोजन इस प्रकार होता है।

परिपथ स्थापित होने पर \mathbf{H}^+ आयन कैथोड की ओर तथा $\mathbf{C}\mathbf{I}^-$ आयन एनोड की ओर गित करने लगते हैं। कैथोड़ पर अपचयन और एनोड़ पर ऑक्सीकरण अभिक्रिया होती है।

कैथोड पर
$$H^+ + e^- \rightarrow \frac{1}{2} H_{_{2(g)}}$$
 (अपचयन)

एनोड़ पर
$$\operatorname{Cl}^- o rac{1}{2}\operatorname{Cl}_{2(g)} + e^-$$
 ऑक्सीकरण

कैथोड से $\mathbf{H}_{2(g)}$ और एनोड़ से $\mathbf{Cl}_{2(g)}$ मुक्त होती है। विद्युत अपघट्य का विलयन उदासीन ही बना रहता है।

इसी प्रकार के लिये यदि गलित NaCl में विद्युत धारा Pt इलेक्ट्रोड लगा कर प्रवाहित की जाए तो इलेक्ट्रोडों पर निम्न अभिक्रियायें होती हैं।

गलित अवस्था में

$$NaCl \implies Na^+ + Cl^-$$

इस गलित NaCl में विद्युत धारा प्रवाहित करने पर Na † कैथोड़ ($-{
m ve}$ इलेक्ट्रोड) और CI⁻एनोड (+ ve इलेक्ट्रोड) की ओर गमन करते ह___

कैथोड़ पर $Na^+ + e \rightarrow Na_{(l)}$

 Na^{+} अपचिंयत होकर $Na_{(l)}$ के रूप में निक्षेपित होता है।

एनोड पर $C\Gamma \rightarrow CI + e^{-}$

$$CI + CI \rightarrow Cl_{2(g)}$$

 CI^- ऑक्सीकृत होकर CI_2 गैस बनाता है अत: सैल में कैथोड़ पर $\mathrm{Na}_{(0)}$ और एनोड पर Cl2 गैस प्राप्त होती है।

ये दोनों प्रक्रम **वैद्युत अपघटन** (Electrolysis) कहलाता है।

3.2.5 वैद्युत अपघटन के नियम (Laws of Electrolysis)

फैराडे ने विद्युत अपघटन के मात्रात्मक पक्ष का अध्ययन करके दो महत्वपूर्ण नियम प्रतिपादित किये।

फैराडे का विद्युत अपघटन का प्रथम नियम : विद्युत अपघट्न के दौरान किसी इलेक्ट्रॉड पर मुक्त हुई पदार्थ की मात्रा, प्रवाहित होने वाली विद्युत धारा की मात्रा के समानुपाती होती है। यह फैराडे का प्रथम नियम कहलाता है।

अतः W ∞ O

यहां W मुक्त पदार्थ का भार ग्राम में और Q प्रवाहित विद्युत धारा (कूलाम्ब में) की मात्रा है।

 \cdot Q = I × t (I = ऐम्पियर में धारा और t सेकण्ड में समय है)

∴ W ∝ I × t

या W = Zlt यहां Z एक नियतांक है।

इसे मुक्त हुए आयन का विद्युत रासायनिक तुल्यांक कहते है। यदि l=1 ऐम्पियर और t=1 सेकण्ड तो Q=[t=1] कूलॉम

$$\therefore W = Z$$

अतः किसी विद्युत अपघट्य के विलयन में एक ऐम्पियर धारा, एक सेकण्ड तक (एक कूलाम्ब आवेश) प्रवाहित करने पर, इलेक्ट्रॉड पर मुक्त पदार्थ की मात्रा, उस पदार्थ का विद्युत रासायनिक तुल्यांक कहलाती है।

Z के मात्रक

$$Z = \frac{W}{It}$$

= ग्राम एम्पीयर-१ सेकण्ड-१

 $= g amp^{-1} s^{-1}$

2. फैराडे का विद्युत अपघटन का द्वितीय नियम : विभिन्न विद्युत अपघट्यों के विलयनों में समान विद्युत धारा, समान समय तक प्रवाहित करने पर, इलेक्ट्रोडों पर मुक्त हुए भिन्न-भिन्न पदार्थों की मात्राएं, उनके तुल्यांकी भारों के समानुपाती होती है। इसे फैराडे का विद्युत अपघटन का दितीय नियम कहते हैं। फैराडे के प्रथम नियम से-

$$W = Z \times Q$$

समान विद्युत धारा समान समय तक प्रवाहित करने पर-प्रथम वैद्युत अपघट्य के लिए $\mathbf{W}_1 = \mathbf{Z}_1 \times \mathbf{Q}$ द्वितीय वैद्युत अपघट्य के लिए $W_2 = Z_2 \times Q$...(2) समीकरण (1) में समीकरण (2) का भाग देने पर

$$\frac{W_1}{W_2} = \frac{Z_1}{Z_2} = \frac{E_1/96500}{E_2/96500} = \frac{E_1}{E_2}$$
 ...(3)

$$\frac{W_1}{W_2} = \frac{E_1}{E_2} \qquad ...(4)$$

उदाहरण के लिए CuSO4 ओर AgNO3 के विलयनों में समान मात्रा में प्रवाहित किया जाये तो कैथोड पर निक्षेपित Cu और Ag की मात्रायें उनके तुल्यांकी भारों के अनुपात में होती है।

अर्थात् निक्षेपित Cu का भार निक्षेपित Ag का भार

$$=rac{\mathrm{Cu}}{\mathrm{Ag}}$$
 का तुल्यांकी भार

अतः समीकरण (3) व (4) से $\mathbf{W} \propto \mathbf{E}$ और $\mathbf{E} \propto \mathbf{Z}$

अतः किसी पदार्थ का विद्युत रासायनिक तुल्यांक, उसके तुल्यांकी भार के समानुपाती होता है।

- आधुनिक परिपाटी के अनुसार तुल्यांकी द्रव्यमान (भार) का उपयोग नहीं किया जाता। रासायनिक अभिक्रिया में (रेडॉक्स अभिक्रिया) जितने मोल इलेक्ट्रोड का आदान प्रदान होता है, के आधार पर फैराडे नियम को व्यक्त किया जाता है।
- किसी इलेक्ट्रोड पर निक्षेपित पदार्थ के मोलों की संख्या, अभिक्रिया में विनिमय किये गये इलेक्ट्रोनों के मोलों की संख्या के समानुपाती होती है।
- अतः प्रवाहित विद्युत धारा की मात्रा के आधार पर इलेक्ट्रोड़ों पर निक्षेपित पदार्थ की मात्रा ज्ञात की जा सकती है। उदाहरण के लिये निम्न अभिक्रिया में---

$$Ag_{(aq)}^+ + e \rightarrow Ag_{(s)}$$

सिल्वर आयनों के 1 मोल के अपचयन के लिये 1 मोल इलेक्ट्रोनों की आवश्यकता होती है।

एक इलेक्ट्रॉन पर आवेश = 1.6021×10^{-19} C अतः 1 मोल इलेक्ट्रोनों पर आवेश= $1.6021 \times 10^{-19} \times 6.02 \times 10^{23}$ $= 96487 \text{C mol}^{-1}$

- आवेश की इस मात्रा को 1 फेराडे कहते हैं। और इसे 'F' द्वारा प्रदर्शित करते हैं। सन्निकट गणना के लिये 1F को 96500C mol-1 के बराबर लिया जाता है।
- अत: 1F आवेश द्वारा 1 मोल $Ag_{(s)}$ इलेक्ट्रोड पर निक्षेपित होगी। इसी प्रकार निम्न अभिक्रियाओं से स्पष्ट है कि

$$Ca^{2+} + 2e^- \rightarrow Ca_{(s)}$$

 $Al^{3+} + 3e^- \rightarrow Al_{(s)}$

एक मोल Ca²+ और एक मोल Al³+ के अपचयन के लिए क्रमश: 2F एवं 3F आवेश की आवश्यकता होगी।

विद्युत रासायनिक तुल्यांक का मान ज्ञात करना

1F = 96500C आवेश पर धातु की मात्रा $\frac{M}{n} = \frac{1}{3}$ लुल्यांकी भार (E)

M = निक्षेपित पदार्थ का मोलर द्रव्यमान n = एक मोल पदार्थ को निक्षेपित करने के लिए प्रयुक्त इलेक्ट्रॉन की संख्या

 $\therefore 1C$ आवेश पर धातु की मात्रा = $\frac{M}{n} \times \frac{1}{96500}$

$$Z = \frac{M}{nF} = \frac{M}{n \times 96500}$$

इसी प्रकार विद्युत प्रवाह के कारण किसी इलेक्ट्रोड पर एकत्रित पदार्थ को मात्रा W को परिकलित किया जा सकता है।

हम जानते हैं
$$W = ZQ$$
 $W = \frac{M}{nF} \times Q$ $Q = It$ $Z = \frac{M}{nF}$ $Q = \frac{nF \times W}{M}$ $W = \frac{M}{nF} \times It$

W = इलेक्ट्रोड पर एकत्रित पदार्थ की मात्रा ग्राम में

F = फैराडे

 ${f n}=$ त्यागे अथवा ग्रहण किसे गये ${f e}^-$ की संख्या

T = **धारा** ऐम्पियर में

t = समय सेकण्ड में ।

नोट- समय मिनट या घंटों में दिया हो तो उसे सैकण्ड में परिवर्तित कर लेना चाहिए।

उदा.1 $Al^{3+} + 3e \rightarrow Al_{(s)}$ अभिक्रिया में 40.5 gm Al मुक्त करने के लिये कितने कूलाम की आवश्यकता होगी।

3 मोल इलेक्ट्रॉनों पर आवेश = 3F

A1 का परमाणु द्रव्यमान = 27

अत: 27 gm $Al_{(s)}$ निक्षेपित होता है = 289500 C

40.5 gm Al निक्षेपित होगा

$$= \frac{289500 \times 40.5}{27}$$
$$= 4.342 \times 10^{5}$$
कूलॉम

उदा.2 1 amp विद्युत धारा 15 min तक गलित NaCl विलयन में प्रवाहित करने पर कितने ग्राम Cl₂ मुक्त होगी?

हल- Cl2 गैस एनोड़ पर मुक्त होती है।

$$2Cl^{-} \rightarrow Cl_2 + 2e^{-}$$

अर्थात् 1 मोल Cl2 प्राप्त करने के लिये

2 मोल इलेक्ट्रॉन अर्थात 2F आवेश की आवश्यकता होगी।

आवेश की मात्रा Q = I. t

$$Q = 1 \times 15 \times 60C$$
$$= 900 C$$

 \cdot 2 × 96500 C से मुक्त होती है Cl_2 = 71 gm

 $\therefore 900 \text{ C}$ से मुक्त होती है $\text{Cl}_2 = \frac{71 \times 90}{2 \times 965}$

$$= 0.331 \text{ gm}$$

उदा.3 यदि एक धात्विक तार में 0.5 एम्पीयर धारा 2 घंटों के लिये प्रवाहित होती है तो तार में से कितने इलेक्ट्रॉन प्रवाहित होंगे।

हल- समय = $2 \times 60 \times 60 \text{ s}$.

धारा = 0.5 amp

आवेश की मात्रा Q = I.t

$$Q = 2 \times 60 \times 60 \times 0.5 C$$

= 3600 C

चूँकि 96500 C आवेश = 1 मोल इलेक्ट्रोन

$$\therefore 3600 \text{ C आवेश} = \frac{6.023 \times 10^{23}}{96500} \times 3600$$

$$= 2.246 \times 10^{23}$$
 इलेक्ट्रॉन

उदा.4 निम्नितिखत अभिक्रिया में Cr_2O_7 आयनों के एक मोल के अपचयन के लिये कूलाम में विद्युत की कितनी मात्रा की आवश्यकता होगी?

$$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$$

हल- समीकरण की स्टाइक्योमीट्री द्वारा Imol $Cr_2O_7^{2-}$ को अपचितत करने के लिये 6 mol इलेक्ट्रॉन की आवश्यकता होगी। \therefore 1 mol इलेक्ट्रॉन =96500 C

उदा.5 10 CuSO₄ के विलयन के 1.5 एम्पीयर धारा से 10 Min. तक विद्युत अपघटित किया गया कैथोड़ पर निश्लेपित Cu का द्रव्यमान क्या होगा।

हल- Cu का निक्षेपण निम्न अभिक्रिया के अनुसार होगा-

$$Cu^{2+} + 2e \rightarrow Cu_{(s)}$$

अर्थात् 1 मोल Cu (63.5 gm) निक्षेपित करने के लिये 2F या 2 × 96500 कुलाम आवेश की आवश्यकता है। दिया हुआ आवेश

=900 C

अत: 900 C द्वारा निक्षेपित Cu की मात्रा

$$= \frac{63.5 \times 900}{2 \times 96500}$$

= 0.296 gm

3.3 Capa (Appen) and Carlotter by Electropist Conduction

धात्विक चालकों के समान ही विद्युत अपघटनी चालक ओम (Ohm) के नियम का पालन करते है। ओम नियम के अनुसार किसी चालक से प्रवाहित होने वाली विद्युत धारा (I), उस पर प्रयुक्त वोल्टता (V) एवं चालक द्वारा उत्पन्न हुये प्रतिरोध (R) के अनुपात के तुल्य होती है

अत:
$$I = \frac{V}{R}$$

विद्युत अपघटनी चालकों में प्रतिरोध की अपेक्षा उनका चालकत्व (Conductance) मापा जाता है, क्योंकि इन विलयनों का प्रतिरोध, धात्विक चालकों के प्रतिरोध अपेक्षाकृत बहुत अधिक होता है। चालकत्व प्रतिरोध का व्युत्क्रम होता है। चालकत्व को C द्वारा प्रदर्शित किया जाता है

अतः
$$C = \frac{1}{R}$$

चालकत्व की इकाई mho या ohm $^{-1}$ हैं + SI इकाई में चालकत्व की सीमेन्स (s) होती है।

एक धात्मिक चालक का विद्युतीय प्रतिरोध R उसकी लम्बाई के अनुक्रमानुपाती और अनुप्रस्थ काट के व्युक्तमानुपाती (प्रतिलोमानुपाती) होता है। अर्थात-

$$\mathbf{R} \propto l$$

$$R \propto \frac{l}{A}$$

या
$$R \propto \frac{l}{A}$$

या
$$R = \rho \frac{l}{\Delta}$$
 ...(i)

ρ(Rho) एक समानुपाती स्थिरांक है जो विशिष्ट प्रतिरोध (Specifice Resistance) या प्रतिरोधकता (Resistivity) कहलाती है। विद्युत अपघंटनी चालकों में विशिष्ट प्रतिरोध के स्थान पर विशिष्ट चालकत्व (Specific Conductance) मापा जाता है। इसे κ (Kappa) से प्रदर्शित करते हैं जोकि विशिष्ट प्रतिरोध का व्युत्क्रम होता है। विशिष्ट प्रतिरोध को चालकता (Conductivity) कहते हैं।

$$\kappa = \frac{1}{p}$$

समीकरण (i) का व्युत्क्रभ लेने पर

$$\frac{1}{R} = \frac{1}{p} \cdot \frac{A}{l}$$

अत:
$$C = \kappa \cdot \frac{A}{I}$$
 ...(ii)

या
$$k = C.\frac{l}{A}$$
 ...(iii)

यहाँ l= दो इलेक्ट्रोडों के बीच की दूरी जो कि विद्युत अपध्य्य के विलयन में डूबे हुये हैं तथा A= इलेक्ट्रॉडों का अनुप्रस्थ काट है। विशिष्ट चालकत्व या चालकता को परिभाषित करने के लिए माना कि $l=1 \mathrm{cm}$ तथा $A=1 \mathrm{cm}^2$ है।

समीकरण (iii) में ये मान रखने पर

 $\kappa = C$

अत: विशिष्ट चालकत्व उस विलयन की चालकत्व है जो कि 1 cm² के दो इलेक्ट्रोडों जिनके बीच की दूरी 1 cm है के मध्य उपस्थित है। अर्थात् (1 c.c. या 1mL) विलयन का चालकत्व विशिष्ट चालकत्व अथवा चालकता कहलाती है।

विशिष्ट चालकत्व की इकाई-

$$\kappa = C. \frac{l}{A}$$

$$= Ohm^{-1} \frac{cm}{cm^{2}} = Ohm^{-1} cm^{-1}$$

3.3.1 रील स्थिरांक (Cell Constant)

उपरोक्त चित्र में दिखाया गया सैल विशिष्ट चालकत्व के सिद्धांत को समझने के लिए उपयोगी, परन्तु प्रायोगिक कार्यों हेतु इस प्रकार का सैल बनाना संभव नहीं होता है। वास्तविक सैल आकार में बड़े बनाये जाते हैं।

यदि l = इलेक्ट्रोडों के बीच की दूरी तथा A = प्रयुक्त इलेक्ट्रोडों का अनुप्रस्थ काट (Area of Crossection) हो तो इनका अनुपात सैल स्थिरांक कहलाता है।

अत:
$$x = \frac{l}{A} (x = सैल स्थिरांक)$$

समीकरण (iii) के अनुसार

$$K = C.x$$
 (iv)

या विशिष्ट चालकत्व = चालकत्व × सैल स्थिरांक सैल स्थिरांक (x) की इकाई

$$x = \frac{l}{A} = \frac{cm}{cm^2} = cm^{-1}$$

3.3.2 आसनिक विलयनों की चालकता का मापन (Measurement of conductivity of Ionic Solutions)

किसी आयनिक यौगिक के विलयन की चालकता का सही मापन उसके प्रतिरोध का मापन करके किया जाता है। प्रतिरोध का मापन ह्वीटस्टोन ब्रिज (Wheatstone bridge) द्वारा किया जाता है। प्रतिरोध को फिर चालकत्व और चालकता में परिवर्तित किया जाता है। इस प्रकार प्रतिरोध के मापन में कुछ कठिनाईयाँ आती हैं। प्रथम यह कि दिष्टधारा (DC) प्रवाहित करने पर विलयन का संघटन (सान्द्रता) बदल जाती है। इस कठिनाई को दूर करने के लिये AC (प्रत्यावर्ती धारा) का प्रयोग किया जाता है तथा गेल्वनोमीटर के स्थान पर हैडफोन (Head phone) का संसूचक (detector) के रूप में उपयोग किया जाता है।

चालकता मापन में सबसे पहले काम में लिए जाने वाले चालकता सैल का सैल स्थिरांक ज्ञात किया जाता है। इसके लिए किसी ज्ञात चालकता के विलयन को उस सैल में भर कर उसके प्रतिरोध को मापा जाता है।

सामान्यतया इस कार्य के लिये KCI विलयन का उपयोग किया जाता है। जिसकी चालकता विभिन्न सान्द्रताओं एवं ताप पर परिशुद्धता से ज्ञात होती है। सारणी 3.2 में KCI के कुछ विलयनों के चालकता के मान दिये हुये हैं।

चित्र 3.3 में दो चालकता सैल दर्शाये गये हैं।

सारणी 3.2 298.15K पर KCI विलयन की चालकता

सान्द्र	<u> </u>	चालक	ता
mol L ⁻¹	mol m ⁻³	S cm ⁻¹	S m ⁻¹
1.000	1000	0.1113	11.13
0.100	100	0.0129	1.24
0.0100	10	0.00141	0.141

सैल स्थिरांक = विशिष्ट चालकत्व / चालकत्व = विशिष्ट चालकत्व × प्रतिरोध

3.3.3 तुल्यांकी चालकता Equivalent Conductivity

विलयन की चालकता अथवा चालकत्व उसमें उपस्थित आयनों की संख्या अर्थात् विलयन की सान्द्रता पर निर्भर करती है। इसके लिए अपघट्यों के तुल्यांकी भारो या अणुभारों के सन्दर्भ में विलयनों का अध्ययन किया जाता है, जहाँ ये क्रमश: तुल्यांकी या मोलर चालकताएँ कहलाती है।

तुल्यांकी चालकता - किसी विद्युत अपघट्य के एक ग्राम तुल्यांकी भार द्वारा विलयन में दिये गये कुल आयनों की चालकता को उसकी तुल्यांकी चालकता (Equivalent Conductivity) कहते है। इसे λ (Lambda) द्वारा व्यक्त किया जाता है।

माना कि एक ग्राम तुल्यांक विद्युत अपघट्य VmL विलयन में घुला हुआ है।

चूँकि । mL विलयन के चालकत्व को चालकता परिभाषित किया गया है। अतः

तुल्यांकी चालकता = चालकता
$$\times$$
 \mathbf{V} : या $\lambda = \kappa \, \mathbf{V}$

V mL विलयन का वह आयतन है जिसमें 1 ग्राम तुल्यांक विद्युत अपघट्य घुला हुआ है।

यदि विलयन की सान्द्रता C ग्राम तुल्यांक प्रति लीटर हो तो

$$V = \frac{1000}{C}$$

चूँकि विलयन की नार्मलता (N) = विद्युत अपघट्य के ग्राम तुल्यांक प्रति लीटर

$$V = \frac{1000}{N} = \frac{1000}{\text{aee्an की नार्मens}}$$

$$\lambda = \frac{\kappa \times 1000}{N} \cdots$$

तुल्यांकी चालकता के मात्रक

$$\lambda = \frac{Ohm^{-1}cm^{-1}}{\text{ग्राम तुल्यांक $\times \text{ offex}^{-1}} = \frac{Ohm^{-1}cm^{-1}}{Equi. \times cm^{-3}}$$$

 $=\mathrm{Ohm}^{-1}\mathrm{cm}^{2}\mathrm{equi}^{-1}$

= ओम⁻¹ सेमी² तुल्यांक⁻¹

३३,४ पोलर जलकता (Molar Conductivity)

किसी विद्युत अपघट्य के एक मोल (1 ग्राम अणु) द्वारा विलयन में दिये गये आयनों की कुल चालकता विलयन की मोलर चालकता कहलाती है इसे λ_m द्वारा व्यक्त करते हैं। यदि VmL वह आयतन है जिसमें विद्युत अपघट्य के एक मोल घुले हैं तो

$$\lambda_{m} = \kappa \times V$$

यदि विलयन की मोलरता M मोल प्रति लीटर हो तो

$$V = \frac{1000}{M}$$

अतः
$$\lambda_m = \frac{\kappa \times 1000}{M}$$

मोलर चालकता के मात्रक = Ohm^{-1} cm² mol^{-1}

= ओम⁻¹ सेमी² मोल⁻¹

चालकत्व सम्बन्धी कुछ पद और उनकी इकाई सारणी 3.3 में संकलित की गई हैं।

सारणी 3.3

	· · · · · · · · · · · · · · · · · · ·	
पद (Term)	इकाई (Units)	SI पद्धति में इकाई (SI Units)
चालकत्व (G)	ohm ⁻¹ (mho)	S
सैल स्थिरांक $\frac{l}{A}$	cm ⁻¹	m ⁻¹
चालकता (k)	$\mathrm{ohm}^{-1}\mathrm{cm}^{-1}$	Sm ⁻¹
मोलर चालकता (λπ)	ohm ⁻¹ cm ² mol ⁻¹	S m ² mol ⁻¹
तुल्यांकी चालकता	ohm ⁻¹ cm ² equi ⁻¹	S m ² mol ⁻¹

उदा.6 एक चालकता सैल जिसमें 0.001M KCl विलयन है का 25°C पर प्रतिरोध 1500 ohm है। यदि 0.001 M KCl की चालकता 0.146× 10⁻³ S cm⁻¹ हो तो सैल के सैल स्थिरांक की गणना कीजिए।

हल – सैल स्थिरांक
$$(x) = \frac{\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}}{\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}}$$

$$\kappa = 0.146 \times 10^{-3} \,\mathrm{S} \,\mathrm{cm}^{-1}, \qquad C = \frac{1}{R} = \frac{1}{1500} \,\mathrm{ohm}^{-1}(\mathrm{S})$$

স্তার:
$$x = \frac{0.146 \times 10^{-3} \text{ S cm}^{-1}}{\frac{1}{1500} \text{ S}}$$
$$= 0.146 \times 10^{-3} \times 1500 \text{ cm}^{-1} = 0.219 \text{ cm}^{-1}$$

उदा.7 0.05 M विद्युत अपघट्य के विलयन की विशिष्ट चालकत्व 298 K पर 0.001 ohm⁻¹ cm⁻¹ है। मोलर चालकता ज्ञात करो।

For:
$$\lambda_{\rm m} = \frac{1000}{M} \times \kappa$$

$$\lambda_{\rm m} = \frac{1000}{0.05} \times 0.001$$

$$= 20 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$$

उदा.8 0.05 M NaOH विलयन का प्रतिरोध 31.6 Ω हैं। इसका सैल स्थिरांक 0.357 cm⁻¹ है। इसकी चालकता और मोलर चालकता ज्ञात करो।

ਵਰ: N = .05, R = 31.6 Ω,

सैल स्थिरांक =
$$\frac{l}{A}$$
 = 0.357 cm⁻¹ चालकता (κ) = चालकत्व × सैल स्थिरांक = $\frac{1}{31.6} \times 0.357$ = 0.0113 ohm⁻¹ cm⁻¹ $\frac{1}{31.6} \times 0.357$ = 0.0113 ohm⁻¹ cm⁻¹ $\frac{1}{31.6} \times 0.357$ = $\frac{0.0113 \times 1000}{0.05}$ = $\frac{0.0113 \times 1000}{0.05}$ $\frac{1}{226} \times 0.05$ = 226 ohm⁻¹ cm² equi⁻¹.

3.3.5 चालकता (विशिष्ट चालकत्व) पर तनुता का प्रभाव (Effect of Dilution on Conductivity (Specific Conductance)

जैसा कि हमें विदित है, तनुकरण से विद्युत अपघट्य का आयनन (वियोजन) बढ़ता है, परिणाम स्वरूप विलयन में आयनों की संख्या में वृद्धि होती है और चालकत्व में भी वृद्धि होती है परन्तु चालकता में कमी होती है।

चालकता वास्तव में इकाई आयतन में उपस्थित आयनों की संख्या पर निर्भर करती है। तनुकरण करने पर प्रति इकाई आयन में विद्युत धारा ले जाने वाले आयनों की संख्या घटती है अत: चालकता (विशिष्ट चालकत्व) भी घटती है।

तुल्यांकी चालकता और मोलर चालकता पर तनुता का प्रभाव

विलयन का तनुकरण करने पर तुल्यांकी चालकता और मोलर चालकता दोनों के मान बढ़ते हैं।

हमें विदित है कि

 $\lambda = \kappa \times V$ (V = 1ग्राम तुल्यांक घुले पदार्थ के विलयन का आयतन) तथा $\lambda_n = \kappa \times V$ (V = 1 ग्राम मोल घुले पदार्थ के विलयन का आयतन V का मान बढ़ने से λ और λm दोनों के हो मान बढ़ते है। यद्यपि चालकता (κ) का मान घटता है, परन्तु आयतन (V) बढ़ता है। परन्तु आयतन में वृद्धि चालकता में कमी की अपेक्षा अधिक होती है। सारणी 3.4 से स्पष्ट है कि आयतन में वृद्धि, चालकता में कमी की

वैद्युत रसायन

तुलना में कम घटती है। सारणी में KCl विलयन की सान्द्रताएें, चालकता और तुल्यांक चालकताएें दी हुई है। KCl का तुल्यांकी भार और अणुभार अर्थात् उसकी नार्मलता और मोलरता समान होती है अत: सान्द्रता को नार्मलता और मोलरता दोनों में ही व्यक्त किया जा सकता है।

सारणी 3.4

सान्द्रता ग्राम	तुकरण से एक ग्राम तुल्यांक	तुस्यांकी चालकता	बिशिष्ट चालकता
तुल्यांक लीटर ^{-!}	विद्युत अपघटय का कुल आयतन	$\lambda = ohm^{-1}em^{2}equi^{-1}$	$\kappa = ohm^{-1}em^{-1}$
1.000 N	1,000 ml	111.90	0.1119000
0.100 N	10,000 ml	128.96	0.0128960
0.010 N	100,000 ml	141.27	0.0014127
0.001N	1000,000 ml	146.95	0.0001469

सारणी के अवलोकन से ज्ञात होता है कि λ और λ_m दोनों के मान विलयन को तनु करने पर बढ़ते हैं, परन्तु एक निश्चित तनुता पर जाकर लगभग स्थिर हो जाते हैं। इस तनुता को अनन्त तनुता (Infinite Dilution) कहते है। इस तनुता पर तुल्यांकी चालकता को अनन्त तनुता पर तुल्यांकी चालकता (Equivatent Conductivity at Infinite Dilution) है, इसे λ^∞ से व्यक्त करते हैं।

इसी प्रकार अनन्त तनुता पर मोलर चालकता होती है, इसे λ_m^{**} द्वारा व्यक्त करते है।

अनन्त तनुता वह तनुता मानी जाती है, जिस पर विद्युत अपघट्य का पूर्ण वियोजन (100% वियोजन) हो जाता है। तुल्यांकी चालकताओं के मान के आधार पर विद्युत अपघट्यों को दुर्बल और प्रबल विद्युत अपघट्यों में बाँटा जा सकता है।

प्रबल विद्युत अपघट्यों की तुल्यांकी चालकता अधिक होती है। तनुता से उनकी तुल्यांकी चालकता बढ़ती है। परन्तु उसमें अधिक वृद्धि नहीं होती है क्योंकि प्रबल विद्युत अपघट्य सभी तनुता पर लगभग पूर्ण आयनित होते हैं। उदाहरण के लिए NaOH, NaCl, CH, COONa, NH, Cl आदि प्रबल विद्युत अपघट्य है।

दुर्बल विद्युत अपघट्यों की तुल्यांकी चालकता कम होती है। तनुता के साथ उनकी तुल्यांकी चालकता में वृद्धि अधिक होती है, क्योंकि तनुता बढ़ने से उनकी आयनन की मात्रा तेजी से बढ़ती है। उदाहरण के लिए CH,COOH, NH₄OH आदि

3,3,6 कोलराऊश नियम Kohirausch's Law

कोलराऊश ने प्रबल विद्युत अपघट्यों और दुर्बल अपघट्यों की सान्द्रता परिवर्तन के साथ तुल्यांकी चालकताओं में परिवर्तन का अध्ययन किया। उन्होंने विद्युत अपघट्यों की तुल्यांकी चालकता और सान्द्रता के वर्गमूल के मध्य आरेख खींचे जो कि चित्र 3.4 में दिखाये गये हैं।

दुर्बल विद्युत अपघट्यों की तुल्यांकी चालकता पर तनुता का प्रभाव : दुर्बल विद्युत अपघट्य का आयनन कम होता है अतः उसकी तुल्यांकी चालकता का मान प्रबल विद्युत अपघट्य की अपेक्षा कम होता है। तनुता के साथ मोलर चालकता में अधिक परिवर्तन होता है और λ^{∞} का मान \sqrt{c} और $\lambda_{\rm m}$ के आरेख के बहिर्वेशन द्वारा प्राप्त नहीं किया जा सकता चित्र में CH_3COOH के λ का \sqrt{c} के साथ आरेख दिखाया गया है।

KCl का वक्र लगभग एक सरल रेखा है जिसका ढाल (slope) A है तथा y अक्ष पर अन्त: खण्ड χ∞ है।

उक्त आरेखों के आधार पर कोलराऊश ने प्रायोगिक प्रेक्षणों को निम्न सूत्र से प्रदर्शित किया

$$\lambda = \lambda^{\circ} - A\sqrt{C} \qquad(i)$$

यहाँ A स्थिरांक है जो कि प्रबल विद्युत अपघट्यों के लिए प्राप्त सरल रेखा का ढ़ाल है। A का मान विद्युत अपघट्य के प्रकार, आयनों पर उपस्थित आवेश पर निर्भर करता है।

डिवाई-हुकेल और ऑनसागर (Debye - Huckel and Onsagar) ने एक गणितीय आधार देकर उक्त समीकरण में संशोधन करते हुए विस्तृत रूप में निम्न प्रकार से दिया, जो कि प्रबल विद्युत अपघट्यों के लिए मान्य है।

$$\lambda = \lambda^{-} - \left[\frac{82.4}{(DT)^{1/2} \eta} + \frac{8.20 \times 10^{5}}{(DT)^{1/2}} . \lambda^{\alpha} \right] \sqrt{C}$$
(ii)

D = विलायक का परावैद्युतांक, η = विलायक की विष्कासिता, T = ताप एक निश्चित ताप और निश्चित विलायक के लिए इस समीकरण को इस रूप में लिखा गया है।

$$\lambda = \lambda^{\infty} \left[A + B\lambda^{\infty} \right] \sqrt{C}$$
(iii)

समीकरण में स्थिरांक समूहों को क्रमश: A और B द्वारा प्रदर्शित किया गया है। चित्र 3.4 से यह स्पष्ट है कि-

(1) प्रबल विद्युत अपघट्यों के लिए λ और \sqrt{C} के मध्य वक्र एक सरल रेखा है। इन सरल रेखाओं पर शून्य सान्द्रता $\left(\sqrt{C}=0\right)$ तक वर्हिवैशित (Extrapolation) किया जा सकता है। शून्य सान्द्रता पर प्राप्त λ का मान अनन्त तनुता पर तुल्यांकी चालकता $\left(\lambda^{\infty}\right)$ के तुल्य होता है।

अत: प्रबल विद्युत अपघट्यों की λ^* आरेख द्वारा ज्ञात की जा सकती है। प्रत्येक विद्युत अपघट्य के लिए एक निश्चित ताप पर λ^* का मान स्थिरांक होता है।

(2) दुर्बल विद्युत अपघट्यों के आरेख रेखीय नहीं होते हैं अत: उनके बहिंवेशन से त्रै का मान ज्ञात नहीं किया जा सकता। इनके त्रै के मान ज्ञात करने के लिए कोलराऊश ने आयनों के स्वतंत्र अभिगमन (Independent Migration of Ions)

कोलराऊश का आयनों के स्वतंत्र अभिगमन का नियम

इस वैज्ञानिक ने एक निश्चित ताप पर कुछ वैद्युत अपघट्यों के युग्मों (जिनमें एक आयन समान हों) कि अनन्त तनुता पर तुल्यांकी चालकतायें ज्ञात की।

विद्युत अपघट्य ऋणायन समान	λ [∞] S cm²equi ⁻¹	अन्तर
KCI NaCI	149.86 126.45	23.41
KBr NaBr	151.91 128.51	23.41
विद्युत अपघट्य धनायन समान	λ~	अन्तर
KBr KCl	151.92 149.86	2.06
NaBr NaCl	128.51 126.45	2,06

- उपर्युक्त तालिका से स्पष्ट है कि समान आयन रखने वाले अपघट्यों की अनन्त तनुता पर तुल्यांकी चालकताओं (χ^{∞}) का अन्तर हमेशा निश्चित होता है।
- उपर्युक्त प्रेक्षणों के आधार पर वैज्ञानिक कोलराऊश ने निष्कर्ष निकाला की, अनन्त तनुता पर किसी विद्युत अपघट्य के विलयन की कुल तुल्यांकी चालकता में प्रत्येक आयन का योगदान निश्चित होता है तथा यह सहमाजिता आयन की प्रकृति पर निर्भर नहीं करता है तथा इससे स्वतंत्र होता है।
- प्रत्येक आयन का व्यक्तिगत कुल तुल्यांकी चालकता में योगदान,
 उस आयन की तुल्यांकी आयनिक चालकता कहलाती है।
- इस आधार पर इस वैज्ञानिक ने नियम प्रतिपादित किया जिसे कोलराकश का स्वतंत्र अभिगमन नियम कहते है।
- अनन्त तनुता पर, किसी विद्युत अपघट्य की तुल्यांकी चालकता,
 उस विद्युत अपघट्य के धनायन और ऋणायन की तुल्यांकी
 आयनिक चालकताओं के योग के बराबर होती है।

$$\lambda^\infty = \lambda_+^\infty + \lambda_-^\infty$$

यहाँ पर λ_+^{∞} एवं λ_-^{∞} क्रमशः धनायन एवं ऋणायन की अनन्त तनुता पर तुल्यांकी आयनिक चालकता के मान है। इन्हें सीमान्त तुल्यांकी चालकता भी कहते हैं।

 यदि विद्युत अपघट्य में धनायनों और ऋणायनों की संख्यां एक से अधिक होती है तो—

$$\lambda^{\infty} = \upsilon_{+}\lambda_{+}^{\infty} + \upsilon_{-}\lambda_{-}^{\infty}$$

यहाँ v. व v_ क्रमशः धनायनों व ऋणायनों की संख्या है, जो उस विद्युत अपधट्य के वियोजन से प्राप्त होते है।
 उदाहरण के लिये NaCl में v₊ = v₋ =1 है MgCl₂ में v₊ = 1 तथा v₋ = 2 है।

अतः NaCl के लिये
$$\lambda^{\infty}_{(\mathrm{NaC}l)} = \lambda^{0}_{Na^{+}} + \lambda^{0}_{Cl}$$

$$KNO_3$$
 के लिये $\lambda_{(KNO_3)}^{\infty} = \lambda_{\kappa^+}^{\infty} + \lambda_{NO_3}^{\infty}$

$$MgCl_2$$
 के लिये $\lambda^{\infty}_{(MgCl_2)} = \lambda^{\infty}_{Mg^{2+}} + 2\lambda^{\infty}_{Cl^{-}}$

$$Al_2 (SO_4)_3$$
 के लिये $\lambda^{\infty}_{[Al_2(SO_4)_5]} = 2\lambda^0_{Al^{3+}} + 3\lambda^0_{SO_4^{2-}}$

कुछ धनायनों एवं ऋणायनों की सीमान्त मोलर चालकतायें सारणी में दी गई हैं-

सारणी 3.4 298 K पर कुछ धनायनों एवं ऋणायनों की सीमान्त मोलर चालकताएँ

	का सामा	न्ति मालर घालकताए	
आयन	λ^0 Scm 2 mol $^{-1}$	आयन	λ ⁰ Scm ² mol ⁻¹
\mathbf{H}^{+}	349.6	OH-	199.1
Na"	50.1	Cl ⁻ ,	76,3
K-	73,5	Br ⁻	78.1
K ⁺ Ca ²⁺ Mg ²⁺	119.0	CH₃COO~	40.9
Mg ²⁺	106,0	CH ₃ COO SO ₄ ²	160.0
<u> </u>	i		

नोट:आयिनक तुल्यांकी चालकता और आयिनक मोलर चालकता में सम्बन्ध यदि किसी आयन की आयिनक मोलर चालकता दी हो तो उसमें उस आयन की संयोजकता का भाग देकर आयिनक तुल्यांकी चालकता का मान ज्ञात किया जा सकता है।

उदाहरण के लिए सारणी 3-5.... में $\lambda_{mg^2}^{\infty}$ = $106 \, \mathrm{s} \, \, \mathrm{cm}^2 \mathrm{mol}^{-1} \, \, \frac{1}{8} \, \mathrm{J}$

अत:
$$\lambda^{\infty} = \frac{106}{2} = 53 \,\mathrm{Scm}^2 \,\mathrm{equi}^{-1}$$
 है।

कॉलराऊश का नियम तुल्यांकी चालकता और मोलर चालकता दोनों में समान रूप से लागू होता है।

अत:
$$\lambda_m^\infty = \lambda_{m(+)}^\infty + \lambda_{m(-)}^\infty$$

 $\lambda_{m(+)}^{\infty}$ और $\lambda_{m(-)}^{\infty}$ क्रमश: धनायन और ऋणायन की मोलर आयिनक चालकता है। एक-एक संयोजी विद्युत अपघट्यों, के लिए आयिनक, तुल्यांकी और मोलर चालकताऐं समान होती है।

उदा.9 सारणी 3.4 में दिये गये आंकड़ों की सहायता से $CaCl_2$ एवं $MgSO_4$ के λ_m^∞ और λ^∞ के मानों का परिकलन कीजिए।

$$\lambda_{m(CaCl_{2})}^{\infty} = \lambda_{Ca}^{\infty} + 2\lambda_{Cl}^{\infty}$$

$$= 119.0 + 2 \times 76.3$$

$$\lambda_{m(CaCl_{2})}^{\infty} = (119.0 + 152.6) S cm^{2} mol^{-1}$$

$$\chi_{m(CaCl_{2})}^{\infty} = 271.6 S cm^{2} mol^{-1}$$

$$\lambda_{m(MgSO_{4})}^{\infty} = \lambda_{Mg}^{0} + \lambda_{SO_{4}^{2}}^{0}$$

$$= (106.0 + 160) S cm^{2} mol^{-1}$$

= 266.0 S cm² mol⁻¹ CaCl, की अनन्त तनुता पर तुल्यांकी चालकता

$$= \lambda_{(CaCl_2)}^{\infty} = \frac{271.6}{2} \text{ s cm}^2 \text{mol}^{-1}$$
$$= 135.8 \text{ s cm}^2 \text{equi}^{-1}$$

इसी प्रकार
$$\lambda_{(MgSo_4)}^{\infty} = \frac{266.0}{2} \text{s cm}^2 \text{mol}^{-1}$$
$$= 133.0 \text{s cm}^2 \text{equi}^{-1}$$

उदा.10 KNO $_3$ और LiNO $_3$ की अनन्त तनुता पर मोलर चालकताएँ क्रमशः 145.0 और 110.1 S cm 2 mol $^{-1}$ है। यदि K $^+$ आयन की मोलर आयनिक चालकता 73.5 S cm 2 mol $^{-1}$ है तो Li $^+$ की मोलर आयनिक चालकता ज्ञात कीजिए।

हल: दिया हुआ है-
$$\lambda_{\rm m}^{\infty}({\rm KNO_3}) = 145.0~{\rm S~cm^2~mol^{-1}}$$

$$\lambda_{\rm m}^{\infty}({\rm LiNO_3}) = 110.1~{\rm S~cm^2~mol^{-1}}$$

$$\lambda^{\infty}({\rm K}^+) = 73.5~{\rm S~cm^2~mol^{-1}}$$

$$\lambda^{\infty}({\rm NO_3}) = \lambda_{\rm m}^{\infty}({\rm KNO_3}) - \lambda^{\infty}({\rm K}^+)$$

$$= 145.0 - 73.5 = 71.5~{\rm S~cm^2~mol^{-1}}$$

$$\lambda^{\infty}({\rm Li}^+) = \lambda_{\rm m}^{\infty}({\rm LiNO_3}) - \lambda^{\infty}({\rm NO_3})$$

$$= 110.1 - 71.5 = 38.6~{\rm S~cm^2~mol^{-1}}$$

3,3.7 क्लिसाइ.श नियम के अनुप्रयोग (Applications of Kohlransch's Law)

(1) दुर्बल विद्युत अपघट्य के आयनन की मात्रा (a) और आयनन स्थिरांक (K) ज्ञात करना— किसी विद्युत अपघट्य विलयन की मोलर चालकता, उनके आयनन की मात्रा पर निर्भर करती हैं। तनुता बढ़ने पर आयनन की मात्रा और मोलर चालकता बढ़ती है। अनन्त तनुता पर आयनन की मात्रा 1 अर्थात् आयनन पूर्ण हो जाता है।

यदि λ = सान्द्रता C पर तुल्यांकी चालकता

और χ^0 = अनन्त तनुता पर तुल्यांकी चालकता

तो आयनन की मात्रा
$$\alpha = \frac{\lambda}{\lambda^0}$$

$$\lambda = \frac{\kappa \times 1000}{c}$$
 एवं कोलराऊश नियमानुसार
$$\lambda^{\infty} = \lambda^{\infty}_{(+)} + \lambda^{\infty}_{(-)}$$
$$= \frac{\kappa \times 1000}{c[\lambda^{\infty}_{(+)} + \lambda^{\infty}_{(-)}]}$$

 आयनन स्थिरांक की गणना के लिये हम दुर्बल अम्ल (CH₃COOH) का उदाहरण लेते हैं।

$$K = \frac{[CH_3COO^-][H^+]}{[CH_3COOH]}$$

मान रखने पर $K = \frac{C\alpha \times C\alpha}{C(1-\alpha)} = \frac{C\alpha^2}{(1-\alpha)}$

 α हम ऊपर ज्ञात कर चुके हैं। अतः अम्ल का आयनन स्थिरांक K ज्ञात कर सकते हैं।

(2) दुर्बल विद्युत अपघट्यों की अनन्त तनुता पर मोलर चालकता ज्ञात करना—

माना कि CH₃COOH की मोलर चालकता अनन्त तनुता पर ज्ञात करनी है।

नोट-हमें जिस दुर्बल विद्युत अपघटय की मोलर चालकता ज्ञात करनी होती है। इसके लिये हमें तीन प्रबल विद्युत अपघटय पदार्थ लेने होते हैं-

$$CH_3COOH \rightleftharpoons CH_3COO^+ + H^+$$

दो प्रबल विद्युत अपघट्य पदार्थ, दुर्बल विद्युत अपघटय पदार्थ से प्राप्त आयनों [CH3COO], H⁺) के आधार पर लेते है जो CH3COONa व HCl होंगे, तीसरा प्रबल विद्युत अपघटय पदार्थ NaCl होगा।

प्रबल विद्युत अपघट्य HCl, CH3COONa और NaCl की मोलर चालकताओं के मानों के आधार पर, निम्न प्रकार से ज्ञात कर सकते हैं—

$$\lambda^{\infty}(CH_3COOH) = \lambda^{\infty}(CH_3COO^{-}) + \lambda^{\infty}(H^{+}) \dots (1)$$

CH₃COONa की तुल्यांकी चालकता निम्न है–

$$\lambda^{\infty}(CH_3COONa) = \lambda^{\infty}(CH_3COO^-) + \lambda^{\infty}(Na^+) \dots (2)$$

• HCI की तुल्यांकी चालकता निम्न है-

$$\lambda^{\infty}(HCI) = \lambda^{\infty}(H^{+}) + \lambda^{\infty}(CI^{-}) \dots (3)$$

NaCl की तुल्यांकी चालकता निम्न है—

$$\lambda^{\infty}(NaCl) = \lambda^{\infty}(Na^{+}) + \lambda^{\infty}(Cl^{-}) \quad ...(4)$$

 उपरोक्त समीकरण (2) व समीकरण (3) को जोड़कर, समीकरण (4) को घटाने पर

$$\lambda^{\infty}(CH_3COONa) + \lambda^{\infty}(HCl) - \lambda^{\infty}(NaCl) = \lambda^{0}(CH_3COO^{-})$$

$$+\lambda^{\infty}(Na^{+}) + \lambda^{\infty}(H^{+}) + \lambda^{\infty}(Cl^{-}) - \lambda^{\infty}(Na^{+}) - \lambda^{\infty}(Cl^{-})$$

 $\lambda^{\infty}(CH_3COONa) + \lambda^{\infty}(HCl) - \lambda^{\infty}(NaCl)$ $= \lambda^{\infty}(CH_3COO^{+}) + \lambda^{\infty}(H^{+}) \dots (5)$

समीकरण (1) व (5) से

 $\lambda^0(CH_3COOH) = \lambda^0(CH_3COONa) + \lambda_m^0(HCl) - \lambda^0(NaCl)$ इस प्रकार दुर्बल विद्युत अपघट्य की अनन्त तनुता पर मोलर चालकता, कोलराऊश नियम के द्वारा ज्ञात की जाती है। दुर्बल विद्युत अपघट्यों की अनन्त तनुता पर तुल्यांकी चालकता, आयनों के अभिगमनांकों (Transport Number) द्वारा भी ज्ञात की जाती है।

अभिनमनांक = किसी आयन द्वारा विद्युत अपघटन में उसके द्वारा ले जायी गई विद्युत धारा की कुल मात्रा का अंश होता है।

अभिगमनांक - किसी आयन का अभिगमनांक, उसके द्वारा ले जायी गई विद्युत धारा की मात्रा और कुल प्रवाहित विद्युत धारा का अनुपात होता है। आयनों के द्वारा ले जायी गई विद्युत धारा की मात्रा उनके वेग की समानुपाती होती है।

अत: धनायन का अभिगमनांक $(n_{-}) = \frac{u_{+}}{u_{+} + u_{-}}$

यहाँ \mathbf{u}_{\perp} तथा \mathbf{u}_{\perp} क्रमशः धनायन और ऋणायन के वेग है।

इसी प्रकार ऋणायन का अभिगमनांक $(n_{\cdot}) = \frac{u}{u_{+} + u}$

क्योंकि अनन्त तनुता पर तुल्यांक चालकता आयनों के केग पर निर्भर करती है अत:

$$\begin{split} n_{+} &= \frac{\lambda_{+}^{\infty}}{\lambda_{-}^{\infty} + \lambda_{-}^{\infty}} \,, \qquad n_{-} &= \frac{\lambda_{-}^{\infty}}{\lambda_{-}^{\infty} + \lambda_{-}^{\infty}} \\ &= \frac{\lambda_{+}^{\infty}}{\lambda_{-}^{\infty}} \,, \qquad \qquad n_{-} &= \frac{\lambda_{-}^{\infty}}{\lambda_{-}^{\infty}} \end{split}$$

अतः
$$\lambda^{\infty} = \frac{\lambda_{\perp}^{\infty}}{n_{+}}$$
 तथा $\lambda^{\infty} = \frac{\lambda_{\perp}^{\infty}}{n}$

अत: अभिगमनांकों की सहायता से भी λ^{∞} के मान ज्ञात कर सकते हैं।

उदा.11HCl, CH_3COONa एवं NaCl की अनन्त तनुता पर मोलर चालकता के मान क्रमशः 426.1, 91.0 एवं 126.45 साइमन सेमी 2 मोल 1 हो तो अनन्त तनुता पर CH_3COOH की मोलर चालकता λ_m^0 ज्ञात कीजिये।

हलः दिया हुआ है--

 $\mathrm{CH_{3}COOH}$ मोलर चालकता और तुल्यांकी चालकता समान है।

$$\lambda_{(HC!)}^{\infty} = \lambda_{H^{+}}^{\infty} + \lambda_{Cl^{-}}^{\infty} = 426.1 \text{ S cm}^{2} \text{ mol}^{-1} \dots (1)$$

$$\lambda_{\text{CH}_3\text{COONa}}^{\infty} = \lambda_{\text{CH}_3\text{COO}^-}^{\infty} + \lambda_{\text{Na}^+}^{\infty} = 91.0 \text{ S cm}^2 \text{ mol}^{-1} \dots (2)$$

 $\lambda_{\rm NaCl}^{\infty} = \lambda_{\rm NaT}^{\infty} + \lambda_{\rm Cl}^{\infty} = 126.45~{\rm S~cm^2~mol^{-1}}...(3)$ समीकरण (1) व (2) को जोड़कर, समीकरण (3) को घटाने पर

$$\lambda_{\text{(CH}_3\text{COOH)}}^{\infty} = \lambda_{\text{(H}^+)}^{\infty} + \lambda_{\text{(CH}_3\text{COO}^-)}^{\infty}$$
= 426.1 + 91.0 - 126.45
= 390.65 S cm² mol⁻¹

चदा.12 $\,0.025\,$ mol $\,{
m L}^{-1}$ मेथेनोइक अम्ल की मोलर चालकता 46 S cm² mol $^{-1}$ है। इसके वियोजन की मात्रा व वियोजन स्थिरांक का परिकलन कीजिए। दिया गया है- $\,^{20}_{H^{+}}$ = 349.6 S cm²mol $^{-1}$

$$\lambda_{HCOO^{-}}^{0} = 54.6 \text{ S cm}^{2} \text{ mol}^{-1}$$

हल-
$$\lambda_{HCOOH}^{0} = \lambda_{H^{+}}^{0} + \lambda_{HCOO^{-}}^{0}$$

= 349.6 + 54.6
= 404.2 S cm² mol⁻¹

दिया हुआ है- $\lambda_{m(HCOOH)} = 46.1$

$$\alpha = \frac{\lambda_{m(HCOOH)}}{\lambda_{m(HCOOH)}^{0}}$$

$$= \frac{46.1}{404.2} = 0.114$$

$$K = \frac{\alpha^{2}}{1-\alpha}C$$

$$= \frac{.025 \times (0.114)^{2}}{1-0.114}$$

 $K = 3.67 \times 10^{-4} \, \text{mol L}^{-1}$

अभ्यास- 3.1

- प्र.1. चालकत्व और चालकता की इकाईयाँ क्या हैं?
- प्र.2. मोलर चालकता की परिभाषा लिखिए।
- प्र.3. मोलर चालकता की इकाईयाँ क्या हैं?
- प्र.4. एक सैल का सैल स्थिरांक 0.5 cm⁻¹ है। इस सैल में 1.0M विलयन भरे जाने पर विलयन का प्रतिरोध 50 ohm पाया गया। इस विलयन की मोलर चालकता ज्ञात कीजिए।
- प्र.5. एक चालकता सैल जिसमें 7.5 × 10⁻³ M KCl विलयन 25°C पर था। इस विलयन का प्रतिरोध 1005 ohm है। सैल स्थिरांक 1.25 cm⁻¹ हो तो विलयन की चालकता और मोलर चालकता ज्ञात कीजिए।
- प्र.6. चालकत्व मापन में दिष्ट धारा (D.C.) के स्थान पर प्रत्यावर्ती धारा (A.C.) का उपयोग करते हैं, क्यों?
- प्र.7. $0.1 \mathrm{M~HNO_3}$ और $0.1 \mathrm{M~NaNO_3}$ में से किस विलयन का λ_m^{-0} अधिक होगा।
- प्र.8. NaCl के जलीय विलयन विद्युतधारा प्रवाहित करने पर कैथोड़ और

एनोड पर मुक्त होने वाले पदार्थ कौन-कौनसे हैं?

- प्र.9. CuSO4 विलयन का विद्युत अपघटन Pt इलेक्ट्रोडों के मध्य करने पर प्राप्त उत्पाद कौन से हैं?
- प्र.10.फैराडे के विद्युत अपघट्य के प्रथम नियम का गणितीय रूप लिखिए।
- प्र.11.एक फैराडे आवेश किसके तुल्य होता है?
- प्र.12.एक फैराडे आवेश का अम्लीय जल, AgNO₃ विलयन और CuSO₄ विलयन में प्रवाहित करने पर कैथोड पर कौन-कौन से पदार्थ मुक्त होंगे और उनकी मात्राएँ कितनी-कितनी होंगी?
- प्र.13.CuSO₄ के जलीय विलयन में 24125 कूलॉम आवेश प्रवाहित करने पर कितने मोल Cu जमा होगा?
- प्र.14. Al^{3+} विलयन में विद्युत धारा प्रवाहित करने पर 4.5g एल्यूमिनियम जमा होता है। विद्युत धारा की समान मात्रा को H^- के विलयन में प्रवाहित करने पर मुक्त हुई H_2 का STP पर आयतन कितना होगा?
- प्र.15.0.5 amp धारा 30 मिनिट तक गलित NaCl में प्रवाहित करने पर कितने ग्राम Cl₂ मुक्त होगी?
- प्र.16.18°C ताप पर H^{-} और $CH_{3}COO^{-}$ की आयिनक चालकतायें क्रमशः 315 और 35 ohm^{-1} cm 2 mol $^{-1}$ है । अनन्त तनुता पर $CH_{3}COOH$ की मोलर चालकता क्या होगी?
- प्र.17.एक फैराडे आवेश को तनु जलीय NaCl विलयन में प्रवाहित करने पर कैथोड और एनोड पर निक्षेपित गैसों के आयतन क्या होंगे?

उत्तरमाला

- उ.1. चालकत्व की इकाई ohm⁻¹ या mho है। SI पद्धति में इसे सीमेन्ज 'S' द्वारा व्यक्त करते हैं। चालकता की इकाई ohm⁻¹ cm⁻¹ SI पद्धति में Sm⁻¹
- उ.2. एक मोल विद्युत अपघट्य को विलयन में घोलने पर उत्पन्न आयनों की चालकता उस विद्युत अपघट्य की मोलर चालकता (\(\lambda_m\)) कहलाती है।
- उ.3. मोलर चालकता $(\lambda_{\rm m})$ को ${
 m ohm^{-1}\,cm^2\,mol^{-1}}$ में अथवा ${
 m S\,cm^2\,mol^{-1}}$ में व्यक्त किया जाता है। ${
 m SI}$ पद्धति में $\lambda_{\rm m}$ को ${
 m S\,m^2\,mol^{-1}}$ में व्यक्त करते हैं।

$$\lambda_{\rm m} = \kappa \times \frac{1000}{M}$$

M = विलयन की मोलरता ($mol L^{-1}$)

और
$$\kappa = चालकत्व \times सैल स्थिराक$$

$$= \frac{1}{50} \times 0.5 = 0.01 \text{ ohm}^{-1} \text{ cm}^{-1}$$

$$\lambda = 0.01 \text{ ohm}^{-1} \text{ cm}^{-1} \times \frac{1000}{0.5 mol \ L^{-1}}$$
$$= 10 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$$

उ.5. चालकता
$$(\kappa) = \frac{1}{y_{\text{fit}} \ln (R)} \times \text{सैल स्थियांक}$$

$$\kappa = \frac{1}{1005ohm} \times 1.25 \text{ cm}^{-1}$$
$$= 1.2 \times 10^{-3} \text{ ohm}^{-1} \text{cm}^{-1}$$

मोलर चालकता (
$$\lambda_{\rm m}$$
) = चालकता (κ) × $\frac{1000}{\rm Him} (M)$

$$\lambda = 1.2 \times 10^{-3} \text{ ohm}^{-1} \text{ cm}^{-1} \times \frac{1000}{7.5 \times 10^{-3} \, mol \, cm^{-3}}$$

 $\lambda = 160 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$

- उ.6. चालकत्व मापन में यदि दिष्टधारा का उपयोग किया जाता है तो बैद्युत अपघट्य विलयन का विद्युत अपघटन होने लगता है, और इलेक्ट्रोडो के समीप विद्युत अपघट्य की सान्द्रता परिवर्तित हो जाती है। इसके परिणामस्वरूप विलयन का प्रतिरोध परिवर्तित हो जाता है।
- ड.7. 0.1 M HNO₃ के λ_m^0 का मान अधिक होगा क्योंकि H⁺ आयन का छोटा आकार होने के कारण इसकी आयनिक गतिशीलता Na⁺ आयन की आयनिक गतिशीलता की तुलना में अधिक होती है।
- उ.8. NaCl के जलीय विलयन में विद्युत धारा प्रवाहित करने पर-कथोड पर H₂ गैस और एनोड पर Cl₂ गैस मुक्त होती है।
- 3.9. CuSO4 के जलीय विलयन का Pt इलेक्ट्रोडों के मध्य विद्युत अपधटन करने पर-

कैथोड पर Cu धातु और एनोड पर O_2 गैस प्राप्त होती है।

उ.10. फैराडे के प्रथम नियम के अनुसार,

$$W = ZIt$$

W= इलेक्ट्रोडों पर मुक्त होने वाले पदार्थ की मात्रा,

[= एम्पीयर में धारा

(= समय सेकिण्ड में

Z = पदार्थ का विद्युत रासायनिक तुल्यांक

- 3.11.1 मोल इलेक्ट्रॉनों पर कुल आवेश को 1फैराडे के आवेश माना गया है। जिसका लगभग मान 96500 कुलॉम होता है।
- उ.12. कैथोड पर मुक्त होने वाले पदार्थ और उनकी मात्राएँ निम्नलिखित हैं-

अम्लीय जल – $\rm H_{2(g)}$, $\rm ~lg~$ या $\rm ~11.2L~(NTP)$ $\rm ~AgNO_3$ विलयन – $\rm ~Ag,~108~g$

$$CuSO_4$$
 विलयन - Cu , $\frac{63.5}{2} = 31.75g$

$$3.13. Cu_{(aq)}^{2+} + 2e^- \rightarrow Cu_{(s)}$$

 $(2 \times 96500 c)$ 1mol

2 × 96500 C आवेश से मुक्त होने वाले Cu की मात्रा = 1 मोल 24125 C आवेश से मुक्त होने वाले Cu की मात्रा

$$= \frac{24125}{2 \times 96500} = 0.125 \ mol$$

उ.14. मुक्त हुए AI के ग्राम तुल्यांक = $\frac{4.5}{9}$ = 0.5 ग्राम तुल्यांक

मुक्त हुई H_2 के ग्राम तुल्यांक = 0.5 = 0.5 g $2g H_2$ गैस का STP पर आयतन = 22.4

 0.5g H_2 गैस का STP पर आयतन = $\frac{22.4}{2} \times 0.5 = 5.6 L$

1 मोल (2 × 96500) कूलॉम

गिलत NaCl में प्रवाहित आवेश (Q) = धारा (I) \times समय (t) Q = 0.5 amp \times 30 \times 60 s = 900 C

 $2 \times 96500 \text{ C}$ से मुक्त होती है $\text{Cl}_2 = 71 \text{ g}$

900 C से मुक्त होती है $Cl_2 = \frac{71}{2 \times 96500} \times 900 = 0.331g$

इ.16.कोलराऊश नियम के अनुसार,

$$\lambda^0_{CH_3COOH} = \lambda^0_{H^+} + \dot{\lambda}^0_{CH_3COO}.$$

 $= 315 + 35 = 350 \text{ ohm}^{-1} \text{ cm}^2 \text{ mol}^{-1}$

उ.17. जलीय NaCl विलयन में विद्युत धारा प्रवाहित करने पर कैथोड़ ${
m ut}~H_{2(g)}$ और एनोड पर ${
m Cl}_{2(g)}$ मुक्त होती है।

 $2H^+ + 2e^- \rightarrow H_{2(g)}$

अत: 2F से मुक्त हुई $H_{2(g)} = 1$ मोल = 22.4L 1F से मुक्त हुई $H_{2(g)} = \frac{1}{2}$ मोल = 11.2L

$$2Cl^{-} \rightarrow Cl_{2(g)} + 2e^{-}$$

अत: 2F से मुक्त हुई $Cl_{2(g)} = 1$ मोल = 22.4L 1F से मुक्त हुई $Cl_{2(g)} = \frac{1}{2}$ मोल = 11.2 सभी आयतन मानक ताप और दाब (STP) पर हैं।

3.4

वैद्युत रासायनिक सेल को गेल्वनी या वोल्टीय सेल (Galvanic or Voltic cell) कहते हैं। यह वह युक्ति (Device) है जिसके द्वारा रासायनिक ऊर्जा को विद्युत ऊर्जा में परिवर्तित किया जाता है। इसका सरल उदाहरण डेनियल सेल है जिसकी संरचना और कार्य विधि का अध्ययन हम कक्षा XI में कर चुके हैं। परन्तु उसे यहां दोहरना आवश्यक है।

- गैल्वनी सैल की कार्यविधि को समझने के लिये डेनियल सैल का उदाहरण लेते हैं।
- इस सैल को बनाने के लिए Zn धातु. की एक छड़ ZnSO.4 विलयन में तथा Cu धातु की एक छड़ CuSO.4 विलयन में रखकर, दोनों विलयनों को लवण सेतु (KCl लवण सेतु) द्वारा जोड़ देते हैं। इस सैल का एक अर्द्ध सैल Zn / ZnSO.4 इलेक्ट्रॉड और दूसरा अर्द्ध सेल Cu / CuSO.4 इलेक्ट्रॉड है। इन दोनों अर्द्ध सैलों को KCl लवण सेतु द्वारा जोड़ने पर पूर्ण सैल बनता है।
- िकसी धातु तार से जोड़ने पर इलेक्ट्रान का प्रवाह Zn इलेक्ट्रॉड से बाह्म परिपथ के सहारे कॉपर इलेक्ट्रॉड पर होता है। अतः Zn इलेक्ट्रॉड के Zn परमाणु इलेक्ट्रॉन त्यागकर Zn⁺² आयनों के रूप में विलयन में जाने लगते हैं और विलयन के Cu⁺²

आयन कॉपर इलेक्ट्रॉड पर जमा होने लगते है। अतः दोनों अर्ख सैलों में निम्न क्रियाएँ होती है-

Zn इलेक्ट्रॉड पर $Zn_{(s)} \rightarrow Zn^{-2}_{(aq)} + 2e^{-}$ (ऑक्सीकरण क्रिया) Cu इलेक्ट्रॉड पर -

 $Cu^{+2}_{(aq)} \pm 2e^+ \rightarrow Cu_{(s)}$ (अपचयन क्रिया) इन्हें अर्द्ध सैल या एकल इलेक्ट्रॉड अभिक्रियाएं कहते हैं पूर्ण अभिक्रिया को सैल अभिक्रिया कहते हैं।

 $Zn_{(s)} + Cu^{+2}{}_{(aq)} \rightarrow Zn^{+2}{}_{(aq)} + Cu_{(s)}$ यहाँ $Z\mathbf{n}^{2^{-}}$ तथा $C\mathbf{u}^{2^{+}}$ आयनों की सान्द्रता 1 mol L^{-1} या 1 mol dm⁻³ है तथा इसका विद्युतीय विभव 1.1V होता है।

यहां जिंक इलेक्ट्रॉड एनोड कहलाता हैं, क्योंकि इस पर ऑक्सीकरण क्रिया होती है। जबकि Cu इलेक्ट्रॉड कैथोड कहलाता है, क्योंकि इस पर **अपचयन** क्रिया होती है।

3.4.1गैल्बनी सैलों को व्यक्त करना

कुछ नियम और परिपाटियाँ

गैल्वनी सेल में इलेक्ट्रोडों का निम्न प्रकार से व्यक्त किया जाता है।

 $Zn_{(s)}|Zn^{2+}_{(aq)}|$

जिंक इलेक्ट्रोड

 $Cu_{(s)}|Cu^{2^{+}}{}_{(ao)}$

कॉपर इलेक्ट्रोड

 $Ag_{(s)}|Ag^{2+}_{(aq)}|$

सिल्वर इलेक्ट्रोड

 $Pt|H_{2(g)}(1bar)|H^{+}_{(aq)}$ हाइड्रोजन इलेक्ट्रोड दो रासायनिक स्पीशीज के मध्य एक खड़ी रेखा उनके मध्य सीधे

सम्पर्क को प्रदर्शित करती है।

- सेल निरूपित करते समय एनोड को बाँयी ओर तथा कैथोड़ को 2. दाहिनी ओर लिखा जाता है।
- एनोड़ को दर्शाने के लिए पहले धातु तथा फिर विद्युत अपघट्न 3. से प्राप्त धातु आयन को लिखते हैं और दोनों को एक खड़ी रेखा या अर्द्ध विराम द्वारा पृथक करते है। जैसे— Zn|Zn⁺² या -Zn; Zn⁺²
- विलयन की मोलर सान्द्रता को आयन के सूत्र के पश्चात् कोष्टक में लिखते है। जैसे- Zn|Zn⁻²(1M) या Zn; Zn⁺²(1M)
- कैथोड़ को दर्शाने कें लिए पहले धातु आयन और फिर धातु 5, को लिखते है तथा इन्हें खड़ी रेखा या अर्द्धविराम द्वारा पृथक करते हैं। जैसे— Cu⁺²|Cu या Cu⁺²:Cu या Cu⁺² (1M)/Cu

वेद्युत रसायन

दोनों अर्द्ध सैलों को पृथक करने वाले लवण सेतु को दो समानान्तर खड़ी रेखाओं द्वारा दर्शाते है। उदाहरण के लिये डेनियल सेल को निम्न प्रकार दर्शाया जाता

 $Zn_{(s)} | \; Zn^{2^+}{}_{(aq)}(1M) \; | \; | \; Cu^{2^+}{}_{(aq)}(1M) | Cu_{(s)}$ नोट- डेनियल सेल को निम्न प्रकार भी दर्शाया जाता है। Left Side Right Side

Anode (Salt bridge) Oxidation

Cathode

Reduction यह सैल का सैल डायग्राम या सैल आरेख कहलाता है। सेल डायग्राम से सैल अभिक्रिया लिखी जा सकती है।

 $Zn_{(s)} \rightarrow Zn^{2-}_{(aq)} + 2e^{-}$ एनोड पर $Cu^{2+}_{(aq)} + 2e^- \rightarrow Cu_{(s)}$ कैथोड़ पर

 $Zn_{(s)} + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$ [नैट सैल अभिक्रिया] इसी प्रकार अन्य गैल्वनी सैल भी बनाये जा सकते हैं....

(1)

(2)

(3)उपरोक्त में से तीसरे सैल का उदाहरण लेते हैं-

 $H_{2(g)} \rightarrow 2H^{+}_{(aq)} + 2e^{-}$ एनोड पर $2Ag^+_{(aq)} + 2e^- \rightarrow 2Ag_{(s)}$ कैथोड पर

 $H_{2(g)} + 2Ag_{(aq)}^{-} \rightarrow 2H_{(aq)}^{-} + 2Ag_{(s)}^{-}$ (नैट सेल अभिक्रिया)

3.4.2 सैल का विद्युत बाहक बल अथवा सैल विभव Electromotive Force or Cell Potential of Cell

विद्युत रासायनिक सेलों में जब धातु इलेक्ट्रॉड को उसके लवण के विलयन में डुबोया जाता है धातु एवं विद्युत अपघट्य विलयन के संधि-पृष्ठ पर एक वैद्युत द्विक स्तर (Electrical double layer) उत्पन्न हो जाता है। इस कारण संधि पृष्ठ पर वैद्युत विभव उत्पन्न हो जाता है जिसे इलेक्ट्रॉड विभव या अर्द्ध सेल विभव कहते है। सम्पूर्ण सेल में दो इलेक्ट्रॉड होते है अर्थात् दो अर्द्धसेल विभव होते है। दोनों इलेक्ट्रेंड के मध्य विभव का वास्तविक अन्तर ही सेल विभव कहलाता है।

 $E_{\text{सैल}} = E_{\text{कथोड}} - E_{\text{एनोड़}}$ इन विभवों को ऑक्सीकरण विभव एवं अपचयन विभव कहा जा सकता है।

आक्सीकरण विभव (Oxidation Potential)

- किसी इलेक्ट्रोड की विलयन में इलेक्ट्रॉन त्यागने की प्रवृति का माप उस इलेक्ट्रोड का **ऑक्सीकरण विभव** कहलाता है।
- जिस इलेक्ट्रोड की इलेक्ट्रॉन त्यागने की प्रवृति अधिक होती है उसका ऑक्सीकरण विभव उच्च होता है।

 $M_{(s)} \iff M_{(aq)}^{n+} + ne^- \ Zn \iff Zn_{(aq)}^{2+} + 2e^-$

- अपचयन इलेक्ट्रोड विभवः Reduction Electrode Potential
- किसी इलेक्ट्रॉड की विलयन में इलेक्ट्रॉन ग्रहण करने की प्रवृति का माप उस इलेक्ट्रोड का अपचयन विभव कहलाता है।
- जिस इलेक्ट्रोड की इलेक्ट्रॉन ग्रहण करने की प्रवृति अधिक होती

है, उसका अपचयन विभव उच्च होता है।

 $M_{(aq)}^{n+} + ne^- \iff M_{(s)} \text{ arr } Cu_{(aq)}^{2+}, 2e^- \iff cu_{(s)}$

उपरोक्त से यह स्पष्ट है कि ऑक्सीकरण विभव, और अपचयन विभव एक दूसरे के विपरीत होते हैं। अर्थात इनके मान समान होते हैं, परन्तु चिन्ह विपरीत होते हैं। जैसे Cu का अपचयन विभव +0.34V है जबकि उसका ऑक्सीकरण विभव = 0.34V है; Zn का अपचयन विभव =0.76V है तथा ऑक्सीकरण विभव +0.76V है;

मानक इलेक्ट्रॉड विभव (Standard Electrode Potenital)

- एक अर्द्ध सैल में 298K पर 1 mol L 1 सान्द्रता के धातु आयन विलयन में इलेक्ट्रॉड का विभव, मानक इलेक्ट्रॉड विभव कहलाता है।
- इसे E° से व्यक्त क्रंरते है।
- यदि सैल की अर्द्ध अभिक्रिया को अपचयन के रूप में व्यक्त करें तो, इसे मानक अपचयन विभव (Standard Reduction Potential) कहते हैं इसे E^{o}_{red} से व्यक्त करते हैं।
- इसी प्रकार **मानक ऑक्सीकरण विभवं** को E_{ox}^{o} द्वारा लिखा जाता है।

विद्युत वाहक बल (Electromotive Force) - खुले परिपथ में जबिक सैल में कोई विद्युत धारा प्रवाहित न हो रही हो तो इलेक्ट्रोडों पर उत्पन्न विभवों के अन्तर को विद्युत वाहक बल (emf) कहते हैं।

E_{सैल} = E_{कैथोड} - E_{एनोड} E_{कैथोड} और E_{एनोड} क्रमश: कैथोड और एनोड के अपचयन इलेक्ट्रोड विभव है। मानक अवस्था में-

 $E^{0}_{\text{the}} = E^{0}_{\text{shalls}} + E^{0}_{\text{vols}}$ = $E^{0}_{\text{अपचयत}} - E^{0}_{\text{shallstv}}$

विभवान्तर (Potential Difference) – यदि परिपथ में विद्युत धारा प्रवाहित हो रही हो तो दोनों इलेक्ट्रॉडों के विभवों का अन्तर विभवान्तर कहलाता है।

मैल विभव और विभवानर में अन्हर

	सेल विभव और विभवान	तर में अन्तर
	सेल विभव	विभवान्तर
	1. दोनों इलेक्ट्रॉडों के मध्य	1. दोनों इलेक्ट्रोडो के मध्य विभवान्तर
1	विभवान्तर जबकि सेल में	जब सेल में कोई न कोई विद्युत
	कोई विद्युत धारा प्रवाहित	धारा प्रवाहित हो रही हो, विभवान्तर
1	न हो रही हो, सैल विभव	कहलाता है।
	कहलाता है।	·
	2. यह सेल के अधिकतम	2.यह सेल के अधिकतम विद्युत
	विद्युत वाहक बल के	वाहक बल से सदैव कम होता
	बराबर होता है।	है।
	3. वोल्टमीटर से इसका मापन	 इसका मापन वोल्टमीटर से किया
	संभव नहीं है क्योंकि परिपथ	र्ि जा सकता है।
ı	बन्द होते ही अल्प मात्रा	
	में विद्युत धारा प्रवाहित हो	
İ	जाती है। इसका मापन	
ļ	विभवमापी (Potentio-	
	meter) से किया जाता है	
	,	
- 1		<u> </u>

. अ. उ इलसहोड विभव या अब्दे रोस विभव की उत्पान

इलेक्ट्रोड विभव की उत्पत्ति का कारण समझने के लिए इलेक्ट्रोड पह होने वाली ऑक्सीकरण अपचयन अभिक्रियाओं पर विचार करते है। मानािक Zn के इलेक्ट्रोड को इसके आयनों के विलयन में रखा गया है तो निम्न तीन संभावनाएँ उत्पन्न हो सकती है।

- धातु आयन (Zu) इलेक्ट्रोड से टकराते है परन्तु उनमें कोई रासायनिक परिवर्तन नहीं होता है। ऐसा इलेक्ट्रोड शून्य इलेक्ट्रोड (Null Electrode) कहलाता है। स्थिति (b)
- 2. Zn परमाणु इलेक्ट्रॉड पर इलेक्ट्रॉन त्यागकर Zn2+ आयनों में परिवर्तित् हो जाते है अर्थात् ऑक्सीकृत हो जाते है। स्थिति (c)

$$Zn \to Zn^{2+} + 2e^-$$
 (ऑक्सीकरण)
त्यागे गये इलेक्ट्रॉन धातु पृष्ठ पर संग्रहित हो जायेंगे जिससे इलेक्ट्रॉड
स्वयं आंशिक ऋणावेशित हो जायेगा। ऐसी स्थिति में विलयन से कुट
 Zn^{2+} आयन धातु पृष्ठ पर उपस्थित इन इलेक्ट्रॉन को ग्रहण कर

ट्रान् जापन वातु पृष्ठ पर उपास्थत इन इलक्ट्रान का ग्रहण कर अपचियत हो जायेंगे। इस प्रक्रम में कुछ समय पश्चात् निम्न प्रकार साम्य स्थापित हो जायेगा।

$$Zn_{(s)} \rightleftharpoons Zn^{2+} + 2e^{-}$$

साम्य स्थापित होते ही धातु विलयन संधि पृष्ठ पर आवेश का विभाजन हो जायेगा अर्थात् विद्युत द्विस्तर का निर्माण होता है, परिणाम स्वरूप इलेक्ट्रोड पर विभव उत्पन्न हो जाता है, (स्थिति (a)): ये इलेक्ट्रोड एनोड होता है, जो कि ऋणात्मक इलेक्ट्रॉड है।

3. Zn^{2+} आयन इलेक्ट्रॉड से टकराते है और उससे इलेक्ट्रॉन ग्रहण करके $Zn_{(s)}$ धातु में परिवर्तित हो जाते है, अर्थात् Zn^{2+} आयनों का अपचयन होता है।

$$Zn^{2+}_{(aq)} + 2e^{-} \rightarrow Zn_{(s)}$$
 (अपचयन)

धातु के इलेक्ट्रोड द्वारा इलेक्ट्रॉन छोड़ने पर वह घन आवेशित हो जाती है। इस प्रकार निम्न साम्य स्थापित होता है।

$$Zn^{2+}_{(aq)} + 2e^{-} \rightleftharpoons Zn_{(a)}$$

साम्य स्थापित होने पर धातु-विलयन संधि पृष्ठ पर आवेश का विभाजन होता और एक विद्युत द्विस्तर बन जाता है। इसके परिणाम स्वरूप इलेक्ट्रोड पर विभव उत्पन्न होता है (स्थिति c) ये इलेक्ट्रोड कैथोड होता है जो कि धनात्मक इलेक्ट्रोड है। तीनो स्थितिओं चित्र 3.6 में दिखाया

र ६.४ इ.सेन्ट्र)ह सिंभर्यका भारत (Messurement of Electrode Patential)

अकेले इलेक्ट्रोड विभव या अर्द्धसेल विभव का मापन नहीं किया
 जा सकता परन्तु दो इलेक्ट्रोडों के विभव के अन्तर (विभवान्तर)

3.16

को मापा जाता है जिससे सेल विभव या सेल का emf प्राप्त होता है यदि दोनों में से एक इलेक्ट्रोड का विभव स्वेच्छा से निर्धारित कर लिया जाये तो दूसरे इलेक्ट्रोड का इलेक्ट्रोड विभव ज्ञात किया जा सकता है। जिस इलेक्ट्रोड का इलेक्ट्रोड विभव स्वेच्छा से निर्धारित करते हैं उसे सन्दर्भ इलेक्ट्रोड (Refrence Electrode) कहते हैं। परिपाटी के अनुसार मानक हाइड्रोजन इलेक्ट्रोड (Standard Hydrogen Electrode, SHE). को सन्दर्भ इलेक्ट्रोड के रूप में लिया जाता हे जिसका इलेक्ट्रोड विभव स्वेच्छा से शून्य (Zero volt) माना गया है।

मानक हाइड्रोजन इलेक्ट्रोड को निम्न प्रकार प्रदर्शित करते हैं। $Pt_{(s)}\mid H_{2(g)}\left(1bar\right)\mid H^{*}_{(aq)}\left(1M\right)$

 $E_{H^{+}/H_{2}}^{0} = 0.0 \text{ volt}$

इलेक्ट्रोड अभिक्रिया निम्न प्रकार होती है-

$$H_{(a4)}^+ + e^- \rightarrow \frac{1}{2} H_{2(g)}$$

मानक हाइड्रोजन इलेक्ट्रोड

(Standard Hydrogen Electrode [SHE])

- मानक हाइड्रोजन इलेक्ट्रॉड को चित्र (3.7) में दिखाया गया
- एक काँच की नली में एक प्लेटिनम तार सील करके, उसके एक सिरे पर सूक्ष्म विभाजित प्लेटिनम से लेपित प्लेटिनम पत्ती (foil) सील कर देते है।
- इस इलेक्ट्रॉड को एक बीकर में रखते हैं, जिसमे जलीय HCI का एक मोलर सांद्रता (1M) वाला विलयन भरा होता है।

298 K तथा 1 bar दांब पर, इसमें लगातार हाइंड्रोजन गैस

SHE में ऑक्सीकरण या अपचयन प्लेटिनम पर्णिका पर होता प्रवाहित करते हैं! है। अतः मानक हाइड्रोजन इलेक्ट्रॉड ऐनोड या कैथोड दोनों का कार्य कर सकता है।

जब यह SHE ऐनोड के रूप में प्रयुक्त होता है, तो इस पर ऑक्सीकरण होता है और अर्द्ध सैल अभिक्रिया निम्न प्रकार होती है-**(i)**

 $H_{2(g)} \to 2H_{(aq)}^+ + 2e^-$

जब यह SHE कैथोड़ के रूप में प्रयुक्त होता है तो इस पर अपचयन होता है और अर्द्ध सैल अमिक्रिया निम्न प्रकार होती (ii) है।

 $2H_{(aq)}^+ + 2e^- \rightarrow \mathrm{H}_{2(g)}$ इस अर्द्ध सैल को निम्न प्रकार प्रदर्शित करते है-

 $Pt_{(s)} \mid H_2(1bar) \mid H_{(aq)}^+(1M)$

298 K पर मानक हाइड्रोजन इलेक्ट्रॉड के इलेक्ट्रॉड विभव का मान शून्य माना जाता है। किसी अन्य इलेक्ट्रॉड का इलेक्ट्रॉड विभव ज्ञात करने के लिये उसे इसके साथ जोड़ देते हैं और प्राप्त सैल का emf माप लेते हैं, जो दूसरे सैल के इलेक्ट्रॉड विभव को प्रदर्शित करता है।

मानक दशाओं में हाइड्रोजन इलेक्ट्रॉड के इलेक्ट्रॉड विभव की तुलना में किसी अन्य इलेक्ट्रॉड का इलेक्ट्रॉड विभव मानक इलेक्ट्रोड विभव (Standard Electrode Potential) कहलाता है। इसे E° से व्यक्त करते हैं।

इलेक्ट्रॉड विभव का मापन:- किसी इलेक्ट्रॉड का विभव ज्ञात करना हो उसे मानक हाइड्रोजन इलेक्ट्रोड के साथ संयोजित कर सेल का निर्माण किया जाता है। उचित विधि से इस सेल का विभव जात कर लिया जाता है। जैसे चित्रानुसार Zn(s)/Zn⁻²(aq.) इलेक्ट्रॉड का विभव निम्न प्रकार ज्ञात कियाँ जा सकता है। चित्रानुसार सेल का समायोजन किया गया है।

इस सैल का सैल विभव 0.76V ज्ञात किया गया है। यहाँ Zn इलेक्ट्रोड कैथोड तथा मानक सै हाइड्रोजन इलेक्ट्रोड कैथोड है।

 $E_{\frac{a}{4}m}=E_{\frac{a}{4}}$ $=E_{\frac{a}{4}}$ $=E_{\frac{a}{4}}$

 $E_{\overline{\text{def}}} \equiv |E_0^{\mu_{\text{T}}/\mu_{\text{Z}}}| = E_{Z^{n^{2+}/Zn}}$

 $0.76 = 0 - E_{Zn^{2\tau}/Zn}$

या $E_{Zn^{2*}/Zn} = -0.76V$

मानक हाइड्रोजन इलेक्ट्रोड को बनाना कठिन होता है इसलिए इसके स्थान पर अन्य इलेक्ट्रोडों को संदर्भ इलेक्ट्रॉडों के रूप में काम में लेते हैं। इनमें प्रमुख है, संतृप्त केलोमल इलेक्ट्रोड (Saturated Calomel Electrode SCE) सिल्बर-सिल्बर क्लोराइड इलेक्ट्रोड। इन इलेक्ट्रोडों का मानकीकरण भी मानक हाइड्रोजन इलेक्ट्रोड द्वारा किया

जाता है। उपरोक्त विधि से प्राप्त Zn का इलेक्ट्रोड विभव उसका मानक इलेक्ट्रोड विभव होता है, क्योंकि उसका इलेक्ट्रॉड विभव मानक हाइड्रोजन इलेक्ट्रोड के सन्दर्भ में ज्ञात किया गया है।

इसी प्रकार अन्य धातुओं और अधातुओं के मानक इलेक्ट्रोड विभव भी ज्ञात किये गये हैं, इन्हें श्रेणीबद्ध किया गया है। यह श्रेणी विद्युत रासायनिक श्रेणी (Electro-Chemical Series) कहलाती है।

सारणी: 3.1 कुछ इलेक्ट्रोडों के मानक अपचयन विभव

		सारणी: 3.1 कुछ इलेक्ट्रोडी के मानक अपच Electrode Reaction	$E^{\Theta}(V)$
Eleme	ents		Form
		Oxidised Form + ne Reduced F	- 3.05
	**	$Li^+(aq) + e$ Li(s)	- 2.93
	Li	$K^+(aq) + e^- \longrightarrow K(s)$	- 2.90
	K	$Ba^{2+}(aq) + 2e^{-}$ Ba(s)	- 2.87
	Ba	$Ca^{2+}(aq) + 2e^-$ Ca(s)	- 2.31 - 2.71
	Ca	$Na^+(aq) + e^-$ Na(s)	-2.37
40	Na Ma	$Mg^{2+}(aq) + 2e^- \longrightarrow Mg(s)$	- 1.66
Increase	Mg Al	$Al^{3+}(aq) + 3e^ \longrightarrow$ $Al(s)$	-0.76
ĕ	Ai Zn	$Zn^{2}(aq)+2e^{-}$ $Zn(s)$	-0.74
2	Cr ·	$Cr^{3+}(aq) + 3e^{-}$ Cr(s)	0.44
	Fe	$Fe^{2+}(aq) + 2e^-$ Fe(s)	
1	rc	1	$g) + OH^{-}(aq)$ - 0.41
1		$H_2O(t) + e \longrightarrow \frac{1}{2}H_2(g)$	-0.40
1		$Cd^{2+}(aq) + 2e^{-}$ \longrightarrow $Cd(s)$	1
1	Cd	$PbSO_4(s) + 2e^ \longrightarrow$ $Pb(s) +$	$+ SO_4^{2-}$ (aq) -0.31 -0.28
1	Pb	$Co^{2^{+}}(aq) + 2e^{-} \qquad Co(s)$	
_	Co	$Ni^{2^+}(aq) + 2e^-$ Ni(s)	-0.14 §
mooc	Ni S	$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^- \longrightarrow \operatorname{Sn}(s)$	-0.13
n to C	Sn Dh	$Pb^{2+}(aq) + 2e^{-}$ Pb(s)	· · · · · · · · · · · · · · · · · · ·
(a) Tendency for oxidation to occur (b) Power as reducing agent	Pb		-0.25 -0.14 -0.13 +0.34 +0.54 +0.77
oxic			+0.34
y for s red	Cu	$Cu^{2+}(aq) + 2e$ Cu(s)) +0.54
dene ver a	I ₂	$I_2(s) + 2e^ 2I^-(a)$	+0.77 ?
Ten Pov	Fe	Fe^{3} (aq) + e ⁻ \rightarrow Fe^{2}	(aq) + 0.79
⊛⊕	Hg	$Hg_2^{2+}(aq) + 2e^-$ 2Hg(+ 0.80
1	Ag	$Ag^{-}(aq) + e^{-} \longrightarrow Ag(s)$	+ 0.85
1	Hg	$Hg^{2^{+}}(aq) + 2e^{-} \longrightarrow Hg(a)$	1) (a) + 3H O + 0.97
	N_2	NO ₃ 1 411	$f(g) + 2H_2O$ + 1.08
	Br ₂	$Br_2(aq)$, 20	r (aq) +1.23
	O ₂	$O_2(g) + 2H_3O^-(aq) + 2e^- \longrightarrow 3H_2$	$f(g) + 2H_2O$ + 0.97 f(aq) + 1.08 f(aq) + 1.23 f(aq) + 1.33 f(aq) + 1.33
	Or ,	$\operatorname{Cr}_{2}\operatorname{O}_{7}^{-}$ + 1411	+ 1.36
	Cl_2	C1 ₂ (g) 24	+ 1.42 1(s)
	Au	Au (aq)	$\ln^{(s)}$ + 1.51 $\ln^{2+}(aq) + 12H_2O(t)$
	Mn	$M_{\rm nO}$ (aq) + $\delta H_{\rm 2} \cup (aq)$	+2.87
	F_2	$F_2(g) + 2e^-$ 2F	

विद्युत वाहक बल (e.m.f.) को सीधे वोल्टमीटर से नहीं मापा जा सकता, क्योंकि वोल्टमीटर केवल विभवान्तर प्रदर्शित करता है। इसलिए किसी उचित युक्ति द्वारा हो सैल के e.m.f. का मापन किया जाना चाहिए। इस कार्य के लिए विभवमापी (Potentiometer) को काम में लेते है। इसमें पोगेन्दोर्प सम्पूरक सिद्धांत का उपयोग किया जाता है। इस सिद्धांत का उपयोग करने के लिए हमें एक मानक सैल की आवश्यकता होती है। एक मानक सैल में निम्नलिखित गुण होने आवश्यक है-

- मानक सैल एक स्थिर तथा पुन:रूत्पादनीय विद्युत वाहक बल दे सके।
- 2. मानक सैल पूर्ण रूप से उत्क्रमणीय हो।
- 3. सैल का ताप गुणांक बहुत कम हो। वैस्टन मानक सैल (कैडिमियम् सैल) में उपरोक्त वर्णित गुण पाये जाते है। अत: वैस्टन मानक सैल का उपयोग a के मापन में उपयोगी है। वैस्टन मानक सैल (Weston Standard Cell) – यह सैल काँच की a आकृति से बना पात्र होता है। (चित्र 3.9) जिसके नीचे के दोनों सिरों में Pt के तार लगाये गये है। दाहिनी और की नली में पहले Cd

- ${
m Hg}$ अमलगम फिर ठोस ${
m CdSO_4}, {8\over 4}{
m H_2O}$ और उसके ऊपर ${
m CdSO_4}$ का संतृप्त विलयन भरते हैं।

बाँयी और की नली में सबसे पहले Hg फिर उसके ऊपर Hg-Hg2SO4

का पेस्ट और फिर ${\rm CdSO_4}$ $\frac{8}{3}{\rm H_2O}$ और ${\rm CdSO_4}$ का संतृप्त विलयन भरा होता है। इसके पश्चात् पात्र के दोनों उपरी सिरों को सील कर देते हैं। दाहिनी ओर का सिरा एनोड और बांयी ओर का सिरा कैथोड़ का कार्य करता है। इलेक्ट्रोड सैल अभिक्रियाऐं निम्न प्रकार है।

एनोड़ पर $Cd_{(s)} \rightarrow Cd_{(sq)}^{2+} + 2e^{-}$ (ऑक्सीकरण)

कैथोड पर $Hg_2SO_4 + 2e^- \rightarrow 2Hg + SO_4^{2-}$ (अपचयन)

सैल अभिक्रिया $Cd_{(s)} + Hg_2SO_{4(s)} \rightarrow Cd^{2+} + SO_4^{2-} + 2Hg$

इस सैल का 298K पर वि.वा.ब. 1.0183V तथा ताप गुणांक 0.00005V है जो कि अत्यन्त कम है। इस सैल का वि. वा. बल स्थिर रहता है।

ायौगिक विधि- पोगेन्डार्प सम्पूरक सिद्धांत के अनुसार यदि किसी सैल के सैल विभव के बराबर विभव किसी अन्य सैल से विपरीत दिशा में लगाया जाए तो परिपथ में धारा प्रवाह रूक जाता है। ऐसी स्थिति में दोनों इलेक्ट्रोडों के मध्य विभवान्तर ही उस सैल का emf होता है। पोटेन्शियों मीटर और उसके परिपथ को चित्र 3.10 में दिखाया गया है। AB एक समान अनुप्रत्थ काट का एक मीटर लम्बा Pt - Ir मिश्रधातु का तार है जो कि एक बैटरी (सीसा संचालक सैंल) से जोड़ दिया गया है। बैटरी का विद्युत वाहक बल सैल के वि.वा.ब. से अधिक होना चाहिए। परिपथ स्थापित होने पर बैटरों C का वि.वा.बल सम्पूर्ण तार में समान रूप से विरित्त हो जाता है। अब मानक सैल S को परिपथ में लिया जाता है। सपी सम्पर्क का चला कर गैल्वनों मीटर में शून्य विश्लेप (deflection) D प्राप्त करते हैं। ऐसी स्थित में बैटरी C का विभवपात (Drop in Potential) लम्बाई AD तक मानक सैल S के विभव के बराबर होगा।

अतः $\mathbf{E}_{\mathbf{X}}$ लम्बाई \mathbf{AD} (i) ($\mathbf{E}_{\mathbf{S}}$ मानक सैल का वि.वा.ब.) इसी प्रकार अब अज्ञात सैल \mathbf{X} को परिपथ में लिया जाता है। गैल्वनोमीटर

चित्र 3.10 विभवमापी (Potentiometer) का रेखा चित्र में शून्य विक्षेप प्राप्त होने तक सपीं सम्पर्क को चलाते है, माना कि बिन्दु D¹ पर विक्षेप शून्य होता है तो

 $E_{\rm x} \, \propto \, {\rm AD}^1(ii)$ समीकरण (i) और (ii) से

$$\frac{E_x}{E_s} = \frac{AD^t}{AD}$$

$$E_{x} = \frac{AD^{1}}{AD} \times E_{s}$$

मानक सैल का विभव ज्ञात हो तो अज्ञात सैल का विभव $\mathbf{E}_{\mathbf{X}}$ की गणना सरलता से की जा सकती हैं।

उदा13. निम्न दो अर्द्ध सैलों को परस्पर जोड़ने पर होने वाली सैल अभिक्रिया लिखिए-

$$I_2 + 2e^- \rightarrow 2I^- (1 \text{ M})$$

$$E^0_{I^-/I_2} = + 0.54 \text{ V}$$

$$Br_2 + 2e^- \rightarrow 2 \text{ Br}^- (1 \text{ M})$$

$$E^0_{Br^-/Br_2} = + 1.08 \text{ V}$$

कम E° मान वाली अर्द्ध अभिक्रिया एनोड पर और अधिक E° मान वाली अर्द्ध अभिक्रिया कैथोड पर होती है। अतः

> एनोड पर- $2I^- = I_2 + 2e^-$ (ऑक्सीकरण) कैथोड पर– Br₂ + 2e⁻ → 2Br⁻ (अपचयन)

सैल अभिक्रिया— $2I^- + Br_2 \rightarrow I_2 + 2Br^-$ होगी |

उदा14. Cu छड़ को 1 M CuSO₄ और निकल छड़ को 1 M NiSO₄ विलयन में डुबाकर बनाये गये सैल में Cu और Ni के E° क्रमशः +0.34 V और - 0.25 V है। तो बताइये- (i) कौन से इलेक्ट्रांड एनोड और कैथोड का कार्य करेगें। (ii) सैल अभिक्रिया क्या होगी। (iii) सैल को कैसे प्रदर्शित करेगें। (iv) सैल का emf क्या होगा?

(i) कम E° मान वाली अर्द्ध अभिक्रिया एनोड पर और अधिक हलः E° मान वाली अर्द्ध अभिक्रिया कैथोड पर होती है। अतः Ni इलेक्ट्रॉड एनोड और Cu इलेक्ट्रॉड कैथोड का कार्य करेगा

सैल अभिक्रिया-एनोड पर- $Ni_{(s)} \rightarrow Ni^{+2}_{(aq)} + 2e^{-}$ कैथोड पर- $Cu^{+2}_{(aq)} + 2e^- \rightarrow Cu_{(s)}$ सैल अभिक्रिया— $Ni_{(s)} + Cu^{+2}_{(aq)} \rightarrow Ni^{+2}_{(aq)} + Cu_{(s)}$

(iii) सैल को प्रदर्शित करना-

$$Ni_{(s)} \mid Ni_{(aq)}^{2+} \parallel Cu_{(aq)}^{2+} \mid Cu_{(s)}$$

(iv) EMF of cell = $E^{\circ}_{\text{disis}} - E^{\circ}_{\text{vells}}$ = (+0.34) - (-0.25) = 0.59 V

उदा15. क्या FeSO₄ विलयन को Ni के पात्र में रखा जा सकता है? रखा जा सकता है क्योंकि Fe का मानक इलेक्ट्रोड विभव $(E_{r_0^{2+}/r_0}^0 = -0.44V)$ Ni के मानक इलेक्ट्रोड विभव $(E_{Ni^{2+}/Ni}^{0} = -0.25V)$ से कम होता है।

उदा16. क्या CuSO₄विलयन को Fe के पात्र में रखा जा सकता है?

नहीं रखा जा सकता क्योंकि Fe का $E^0(E^0_{Fe^{2+}/Fe} = -0.44V)$

Cu के $E^0(E^{0+}_{Cu^{2+}/Cu} = +0.34V)$ से कम है।

अतः Fe, Cu² को Cu में अपचयित कर देगा।

$$Fe_{(s)} + Cu_{(aq)}^{2+} \rightarrow Fe_{(aq)}^{2+} + Cu_{(s)}$$

उदा17. यदि CuSO4 के विलयन में Zn की छड़ डुबाई जाती है तो CuSO₄ का नीला रंग उड़ जाता है।

Zn का मानक अपचयन विभव कम होने के कारण यह Cu^{2+} हल: आयनों को Cu में अपच्चियत कर देता है। परिणामस्वरूप Cu²⁺ का नीला रंग पहले हल्का होता है, फिर रंग उड़ जाता है।

3.4.6 विद्युत वाहक बल और गिब्ज ऊर्जा

Electromotive Force and Gibbs Energy

विद्युत रासायनिक सैल में रासायनिक ऊर्जा को विद्युत ऊर्जा में परिवर्तित किया जाता है। इस प्रक्रम में सैल को कुछ कार्य करना पडता है। ऊष्मा गतिकी के अनुसार किसी सैल में अधिकतम कार्य करने के लिए सैल में अनन्त सुक्ष्म विद्युत धारा प्राप्त हो जो कि किसी उत्क्रमणीय प्रक्रम की आवश्यक शर्त है।

एक स्थिर ताप और दाब पर वैद्युत कार्य सैल द्वारा प्राप्त विद्युत धारा की मात्रा तथा सैल के विद्युत वाहक बल के गुणनफल के तुल्य होता है। एक सैल अभिक्रिया में माना कि n ग्राम तुल्यांक अभिकारक उत्पादों में परिवर्तित होते हैं अत: एक इलेक्ट्रोड पर मुक्त हुए अथवा अवशोषित हुए इलेक्ट्रॉनों की संख्या भी n होगी।

अत: विद्युत धारा की मात्रा = nF (F = फैराडे)

यदि सैल का वि.वा.बल E है तो

यह कार्य गिब्ज ऊर्जा (G) के व्यय से उत्पन्न होता है। अत: मुक्त ऊर्जा में कमी ($-\Delta G$) किये गये कार्य के बराबर होगी।

चुंकि ∆G का मान ऋणात्मक है अत: E का भान धनात्मक होता है। अर्थात् सैल अभिक्रिया एक स्वत: प्रवर्तित अभिक्रिया है। हमें ज्ञात है कि स्वत: अप्रवर्तित अभिक्रियों के लिए ΔG का मान धनात्मक और साम्य की स्थिति में ΔG का मान शून्य होता है। उदाहरण के लिए निम्न सैल पर विचार करते है।

$$Zn_{(s)} | Zn_{(aq)}^{2+} | | Cd_{(aq)}^{2+} | Cd_{(s)}$$

सैल अभिक्रिया $Zn_{(s)} + Cd_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+} + Cd_{(s)}$ यह अभिक्रिया स्वत: प्रवर्तित है अत: इसका $emf = \pm 0.3590V$ प्राप्त होता है और इसके ∆G का मान ऋणात्मक होगां। यदि उपरोक्त सैल का निम्न प्रकार प्रदर्शित किया जाए

$$Cd_{(s)} | Cd_{(sq)}^{2+} | | Zn_{(sq)}^{2+} | | Zn_{(s)}$$

तो इसका emf = -0.3590V होगा जो ऋणात्मक है। अत: गिब्ज ऊर्जा का मान धनात्मक होगा तथा सैल अभिक्रिया निम्न होगी जो कि स्वतः अप्रवर्तित है।

$$Cd_{(s)} + Zn_{(aq)}^{2-} \rightarrow Cd_{(aq)}^{2-} + Zn_{(s)}$$

समीकरण (ii) के अनुसार

$$E = -\frac{\Delta G}{nF}$$

यदि n का मान इकाई लिया जाए तो

$$E = -\frac{\Delta G}{v}$$
 या $E \alpha - \Delta G$

अर्थात् सैल का e.m.f. प्रति इलेक्ट्रॉन गिब्ज ऊर्जा में कमी के समानुपाती होता है। चूँकि $\frac{\Delta G}{R}$ एक मात्रा स्वतंत्र गुण है अतः सैल का c.m.f. भी एक मात्रा स्वतंत्र गुण है, अर्थात् विशिष्ट गुण धर्म है। मानक अवस्था में समीकरण (ii) को इस प्रकार लिखा जाता है।

$$\Delta G^0 = -nFE^0 \dots (iii)$$

यहाँ ΔG^0 मानक अवस्था में गिब्ज ऊर्जा परिवर्तन और E^o मानक अवस्था में सैल का वि.वा.बल है।

(3.4.7 नेन्स्ट समीकरण (Nernst's Equation)

उष्मागितक मान्यताओं के आधार पर नेन्स्ट में सैल विभव और सैल अभिक्रियाओं में अभिकारकों और उत्पादों की सान्द्रताओं (सिक्रयताओं) में एक सम्बन्ध स्थापित किया है जोकि नेन्स्ट समीकरण कहलाता है। एक उत्क्रमणीय सैल में माना कि सामान्य सैल अभिक्रिया निम्न है।

$$aA + bB \rightarrow cC + dD$$

द्रव्य अनुपाती क्रिया नियम के अनुसार

$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{n}[B]^{b}}$$
....(iv)

 $K_{\rm c}$ = साम्यवस्था स्थिरांक है।

[A], [B], [C] तथा [D] क्रमश: A, B, C और D के सिक्रय द्रव्यमान है जो कि मोलर सान्द्रताओं के समान हो माने जाते हैं। यद्यपि सिक्रय द्रव्यमान को सिक्रयता (Activity) कहते है इसे a द्वारा प्रदर्शित किया जाता है। सिक्रयता के रूप में समीकरण (i) को इस प्रकार लिखा जाता है

$$K_{c} = \frac{(a_{c})^{c}(a_{D})^{d}}{(a_{A})^{a}(a_{B})^{b}}$$

सामान्यतया गणनाओं में सिक्रियता के स्थान पर मोलर सान्द्रतओं का हो उपयोग किया जाता है।

गिब्ज ऊर्जा और साम्यवस्था स्थिरांक में ऊष्मागतिक सम्बन्ध निम्न है।

$$\Delta G = \Delta G^0 + RT \ln K_C \dots (v)$$

समीकरण (ii) और (iii) से ΔG और ΔG° के मान रखने पर

$$-nFE = -nFE^0 + RT \ln Kc$$

या
$$E = E^0 - \frac{RT}{nF} / n Kc$$

या
$$E = E^0 - \frac{2.303RT}{nF} \log Kc$$

उपरोक्त समीकरण में Kc का मान रखने पर

$$E = E^{0} - \frac{2.303RT}{nF} log \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \dots (vi)$$

समीकरण (vi) नेन्स्ट समीकरण का सामान्य रूप है।

चूँकि R = 8.3141K 1mol-1 (गैस नियतांक)

F = फैराडे = 96500 C mol⁻¹

T = केल्विन में ताप सामान्यतया 298 K लेते हैं।

n = सैल अभिक्रिया में प्रयुक्त इलेक्ट्रॉनों की संख्या इन मानों के आधार पर

$$\frac{2.303\text{RT}}{\text{F}} = \frac{2.303 \times 8.314 \times 298}{96500}$$
$$= 0.0591$$

अत:
$$E = E^0 - \frac{0.0591}{n} log \frac{[C]^c [D]^d}{[A]^n [B]^b}$$
(vii)

डेनियल सैल के लिए नेन्स्ट समीकरण सैल अभिक्रिया $Zn_{(s)}+Cu_{(aq)}^{2+}\to Zn_{(aq)}^{2+}+Cu_{(s)}$ यहाँ n=2 है।

नोट: यह ध्यान रखना आवश्यक है कि ठोस पदार्थों की सान्द्रता इकाई लेते है इसी प्रकार गैसे जो कि एक वायुमण्डल दाब (या I bar दाब) पर होती है तो सान्द्रताएं भी इकाई लेते है।

[ठोस] =
$$I$$
 [गैस $_{Iatm}$] = I

$$E = E^{0} - \frac{0.0591}{2} log \frac{[Zn^{2+}][Cu_{(s)}]}{[Zn_{(s)}][Cu^{2+}]}$$

चूँकि
$$\left[\operatorname{Cu}_{(s)}\right] = \left[\operatorname{Zn}_{(s)}\right] = 1$$

अत:
$$E = E^{0} - \frac{0.0591}{2} log \frac{\left[Zn^{2-}\right]}{\left[Cu^{2+}\right]}$$

उदा.18 निम्नलिखित सेल की अभिक्रिया लिखकर नेर्स्ट समीकरण द्वारा E_{रील} को व्यक्त कीजिए।

$$Ni_{(s)} \mid Ni_{(aq)}^{2+} \parallel Ag_{(aq)}^{+} \mid Ag_{(s)}$$

हल: उपरोक्त सैल में अर्द्ध सैल अभिक्रिया इस प्रकार हैं।

$$Ni_{(s)} \rightarrow Ni_{(aa)}^{2+} + 2e^{-}$$

$$2Ag_{(aq)}^{+} + 2e^{-} \rightarrow 2Ag_{(s)}$$

नैट सैल अभिक्रिया-

$$Ni_{(s)} + 2Ag^+_{(aq)} \to Ni^{2+}_{(aq)} + 2Ag(s)$$

नेर्न्स्ट समीकरण द्वारा

$$E_{\text{then}} = E_{\text{then}}^{\circ} - \frac{RT}{2F} ln \frac{[Ni^{2+}]}{[Ag^{+}]^{2}}$$

या
$$E_{\text{ther}} = E^{\circ}_{\text{ther}} = \frac{.0591}{2} log \frac{[\text{Ni}^{2+}]}{[\text{Ag}^{+}]^{2}}$$

उदा19. 298 K पर निम्न सैल का emf ज्ञात करो-

$$E^{\circ} (Ni^{+2} / Ni) = -0.25 V$$

 $E^{\circ} (Ag^{+} / Ag) = +0.80 V$

हलः ऐनोड पर

$$Ni_{(s)} \rightarrow Ni^{2+} + 2e^{-}$$

नैट सैल अभिक्रिया $Ni_{(s)} + 2Ag^+ \rightarrow Ni^{2+} + 2 Ag_{(s)}$ नैन्स्ट समीकरण के अनुसार

$$E_{\text{the}} = E^{\circ}_{\text{the}} - \frac{.059}{2} log \frac{[Ni^{2+}]}{[As^{+}]^{2}}$$

$$: [Ni_{(s)}] = 1$$
 तथा $[Ag_{(s)}] = 1$

$$\mathbf{E}_{\text{Reg}} = E^{\circ}_{Ag^{+}/Ag} - E^{\circ}_{Ni^{2+}/Ni} - \frac{.059}{2} log \frac{.01}{(.1)^{2}}$$

या

$$= 0.80 - (-0.25) - \frac{.059}{2} \log \frac{.01}{.01}$$

$$E_{\Re C} = 0.80 + 0.25$$

$$= 1.05 \text{ Volt}$$

नेर्स्ट समीकरण के अनुप्रयोग-

- 1.इस समीकरण की सहायता से किसी सैल का वि.वा. बल ज्ञात कर सकते हैं। उपरोक्त उदाहरण देखिए।
- 2. नेर्क्ट समीकरण को अर्द्ध सैल अभिक्रिया (इलेक्ट्रोड अभिक्रिया) पर भी लागू होती है। अत: इलेक्ट्रोड विभव का मान भी ज्ञात किया जा सकता है

माना कि इलेक्ट्रोड अभिक्रिया है-

$$M^{n^+}_{(\mathsf{dq})} + ne^- \to M_{(\mathsf{s})}$$

नेन्स्ट समीकरण के अनुसार

$$= E_{M^{t+}/M} = E_{M^{t+}/M}^{\theta} - \frac{0.0591}{n} log \frac{[M_{(t)}]}{[M^{n+}]}$$

चूँकि [M_(s)]=। अत:

$$E_{M^{n_{1}}/M} = E_{M^{n_{1}}/M}^{0} - \frac{0.0591}{n} log \frac{1}{[M^{n_{1}}]}$$

इस समीकरण द्वारा $\mathbf{E}_{\mathbf{M}^{\mathbf{M}}/\mathbf{M}}$ का मान ज्ञात किया जा सकता है। आगे उदाहरण दिये हुये है।

3. नेन्स्ट समीकरण द्वारा सैल अभिक्रिया का साम्यवस्था स्थिरांक (Kc) अथवा (Kp) ज्ञात किया जा सकता है। माना कि सैल अभिक्रिया

 $aA + bB \rightarrow cC + dD$ है। नेन्स्ट अभिक्रिया द्वारा

$$E_{\frac{\tilde{R}}{\tilde{R}}} = E^{0}_{\frac{\tilde{R}}{\tilde{R}}} - \frac{RT}{nF} ln \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

या
$$E_{\frac{\pi}{4}} = E_{\frac{\pi}{4}}^{o} - \frac{.0591}{n} log \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

उपरोक्त अभिक्रिया जैसे-जैसे साम्यावस्था की ओर बढ़ती है $E_{\frac{3}{4}}$ का मान कम होता जाता है। दूसरे शब्दों में अभिकारक और उत्पादों की सान्द्रतायें स्थिरता की ओर अग्रसर होती है। साम्यावस्था की स्थिति में $E_{\frac{3}{4}}$ ल हो जाता है, और उत्पादों और अभिकारकों की सान्द्रताओं का अनुपात स्थिर हो जाता है।

अर्थात्
$$\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} = K_{C}$$

ये शर्ते (Conditions) नेर्स्ट समीकरण में रखने पर-

$$0 = E^0 \frac{1}{4m} - \frac{.0591}{n} log K_c$$

या
$$E^0_{\frac{3}{400}} = \frac{.0591}{n} \log K_0$$

या
$$\log K_c = \frac{nE_{\text{des}}^0}{.0591}$$

उपरोक्त ब्यंजक द्वास \mathbf{K}_c का मान ज्ञात किया जा सकता है।

उदा.20 निम्नलिखित अभिक्रिया वाले सेल को निरूपित कीजिए।

 $Mg_{(s)} + 2Ag^{+}(0.0001M) \rightarrow Mg^{2+}(0.13M) + 2Ag_{(s)}$

इसके \mathbf{E}_{thm} का परिकलन कीजिये यदि $\mathbf{E}^0_{\text{thm}}$ = 3.17V हो।

हल: दी हुई अभिक्रिया द्वारा बना सेल

 $Mg_{(s)} \mid Mg^{2-}_{(aq)}$ (0.130M) \parallel $Ag^{+}_{(aq)}$ (0.0001M) \mid $Ag_{(s)}$ नेन्स्ट समीकरण द्वारा

$$E_{\frac{3}{310}} = E^{\circ}_{\frac{3}{310}} - \frac{.059}{2} log \frac{[Mg^{2+}]}{[Ag^{+}]^{2}}$$

$$= 3.17 - \frac{.059}{2} log \frac{0.130}{(0.0001)^{2}}$$

$$= 3.17 - \frac{.059}{2} log 1.3 \times 10^{7}$$

$$= 3.17 - 0.21$$

$$= 2.96 \text{ V}$$

उदा21. Cu का मानक अपचयन विभव +0.34V है। यदि Cu धातु 0.1M Cu²⁺ के सम्पर्क में हो तो इलेक्ट्रोड विभव क्या होगा। यदि Cu²⁺ की सान्द्रता परिवर्तित की जाती है तो इलेक्ट्रोड विभव में क्या परिवर्तन होता है।

हल: Cu इलेक्ट्रोड की अर्द्धसेल अभिक्रिया

$$Cu_{(aq)}^{2+} + 2e^{-} \rightarrow Cu_{(s)}$$

$$E_{Cu^{2-}/Cu} = E_{Cu^{2+}/Cu}^{0} - \frac{0.0591}{2} log \frac{1}{[Cu^{2+}]}$$

$$= +0.34 - \frac{0.0591}{2} log \frac{1}{0.1}$$

$$= +0.34 - \frac{.0591}{2} \times 1$$

$$= +0.34 - 0.0295$$

$$E_{Cu^{2+}/Cu} = +0.31V$$

 Cu^{2^+} की सान्द्रता घटाने से इलेक्ट्रोड विभव घटता है। उदा22. Zn की एक छड़ $ZnSO_4$ के 0.1M विलयन में डूबी हुई है,

यदि $E_{Zn^{2+}/Zn}^{0} = -0.76V$ हो और ताप 298K हो तो Zn इलेक्टोड का विभव ज्ञात कीजिये।

हल: इलेक्ट्रोड अभिक्रिया

$$Zn_{(aq)}^{2+} + 2e^- \rightarrow Zn_{(s)}$$

$$E_{Zn^{2-}/Zn} = E^{\circ}_{Zn^{2+}/Zn} - \frac{0.0591}{2} \log \frac{1}{0.1}$$

$$[\mathbf{Z}\mathbf{n}_{(s)}] = 1$$

तथा
$$Zn_{(ag)}^{2+} = 0.1 \text{ M}$$

$$E_{Zn^{2+}/Zn} = -0.76 - \frac{0.0591}{2} \log 10$$

$$= -0.76 - 0.0295$$

$$= -0.789 \text{ V}$$

उदा.23 डेनियल सेल के लिये मानक इलेक्ट्रोड विभव 1.1V है। निम्नलिखित अभिक्रिया के लिये मानक गिब्ज ऊर्जा का परिकलन कीजिए।

$$Zn_{(s)} + Cu_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+} + Cu_{(s)}$$

हल:

उपरोक्त समीकरण में n = 2

$$F = 96500 \text{ C mol}^{-1}$$
.

$$E^0 = 1.1V$$

$$\Delta_{r}G^{0} = -2 \times 96500 \times 1.1$$

 $= -212270 \text{ J mol}^{-1}$

$$\Delta_{\rm r} G^0 = -212.27 \text{ kJ mol}^{-1}$$

उदा 24 pH = 10 के विलयन के सम्पर्क में रखे हाइड्रोजन इलेक्ट्रोड के विभव का परिकलन कीजिये।

$$[\mathbf{H}^+] = 10^{-10}$$

इलेक्ट्रोड अभिक्रिया $m H^+ + e^+
ightarrow rac{1}{2} H_2$

$$E_{H^+/H_2} = E_{H^+/H_2}^0 - \frac{.0591}{1} log \frac{1}{[H^+]}$$

$$= 0 - 0.059 log \frac{1}{10^{-10}}$$

= -0.59 V

उदा.25 एक सैल के emf का परिकलन कीजिए जिसमें निम्नलिखित अभिक्रिया होती है।

$$E^0$$
 ਜ਼ਿੰਦਾ = 1.05 V

$$\begin{split} E^0_{\frac{1}{1000}} &= 1.05 \ V \\ Ni_{(s)} &+ 2Ag^+ \ (0.002M) \ \rightarrow \ Ni^{2+} \ (0.160M) \ + \ 2Ag_{(s)} \end{split}$$

ਵਰਾ:
$$E_{\text{ther}} = E^{\circ}_{\text{ther}} - \frac{.0591}{2} \log \frac{[Ni^{2+}]}{[\Delta \sigma^{+}]^{2}}$$

$$= 1.05 - \frac{.059}{2} \log \frac{0.160}{(0.002)^2}$$

$$E_{\frac{4}{300}} = 1.05 - \frac{0.059}{2} \times 4.602$$

= 1.05 - 0.14

= 0.91 V

उदा.26 एक सैल जिसमें निम्नलिखित अभिक्रिया होती है-

$$2Fe^{3+} + 2I^- \rightarrow 2Fe^{2+} + I_{2(s)}$$

वैद्युत रसायन

का 298K ताप पर $E^0_{\frac{1}{100}} = 0.236V$ है। सैल अभिक्रिया की मानक गिब्ज ऊर्जा और साम्य स्थिरांक का परिकलन कीजिए।

हल:

$$E^{0}_{\frac{1}{460}} = 0.236V$$

$$\Delta_{r}G^{0} = -nFE^{0}_{\frac{1}{460}}$$

$$= -2 \times 96500 \times 0.236$$

$$= -45548 J$$

$$\Delta_{r}G^{0} = -45.55 kJ$$

$$\Delta_{r}G^{0} = -2.303 RT \log K_{c}$$

$$-\log K_{c} = \frac{\Delta_{r}G^{0}}{2.303RT}$$

$$= \frac{-45.55}{-2.303 \times 8.314 \times 10^{-3} \times 298}$$

$$= 7.983$$

$$K_{c} = \text{antilog } 7.983$$

$$= 9.62 \times 10^{7}$$

अभ्यास- **3.2**ं

- प्र.1. वैद्युत रासायनिक सैल किसे कहते हैं?
- प्र.2. डेनियल सैल में इलेक्ट्रॉन का प्रवाह और धारा के प्रवाह की दिशा क्या होती है?
- प्र.3. गैल्वनी सैल का आधार उपापचयन (Redox) अभिक्रिया है। डेनियल सैल का उदाहरण लेते हुए समझाइए।
- प्र.4. सैल का विद्युतवाहक बल किसे कहते हैं?
- प्र.5.) मानक हाइड्रोजन इलेक्ट्रोड को कैसे प्रदर्शित करते हैं? इसका चित्र
- प्र.6. एक सामान्य अभिक्रिया n₁A_(s) + n₂B(aq) → m₁C_(s) + m₂D(aq) के लिए नेर्न्स्ट समीकरण लिखिए।
- प्र.7. मानक गिब्ज ऊर्जा और मानक सैल विभव में क्या सम्बन्ध है? प्रयुक्त पद क्या दर्शाते हैं?
- प्र.8. मानक सैल विभव द्वारा किसी अभिक्रिया के साम्यावस्था स्थिरांक का मान कैसे ज्ञात करते हैं?
- प्र.9. मानक अपचयन विभव द्वारा किसी धातु को अपचायक क्षमता को ज्ञात कैसे करते हैं?
- \mathtt{y} .10. यदि $\mathtt{CuSO_4}$ के विलयन में \mathtt{Zn} की छड़ डुबो दी जाती है तो शनै: शनै: CuSO₄ का नीला रंग उड़ता जाता है, क्यों?

उसरमाला

- उ.1. वह युक्ति जिसके द्वारा स्वतः प्रवर्तित रासायनिक अभिक्रिया की मुक्त ऊर्जा में कमी को वैद्युत ऊर्जा में परिवर्तित किया जाता है. वैद्युत रासायनिक सैल या गैल्वनी सैल या वोल्टिक सैल कहते हैं।
- उ.2. डेनियल सैल में इलेक्ट्रॉनों का प्रवाह Zn इलेक्ट्रोड से Cu इलेक्ट्रोड को ओर और धारा का प्रवाह Cu इलेक्ट्रोड से Zn- इलेक्ट्रोड की ओर होता है।

डेनियल सैल में एनोड पर ऑक्सीकरण अभिक्रिया

 $Zn_{(s)}
ightarrow Zn_{(aq)} + 2e^-$ तथा कैथोड पर अपचयन अभिक्रिया

 Cu^{2} " $_{(aq)}$ + 2e \to $Cu_{(s)}$ सम्पूर्ण उपापचयन अभिक्रिया है-

 $Zn(s) + Cu_{(aa)}^{2+} \rightarrow Zn_{(aa)}^{2+} + Cu_{(s)}$

- उ.4. किसी सैल के दो इलेक्ट्रोडों के मध्य विभवान्तर, जबकि सैल में कोई धारा प्रवाहित न हो रही हो, उस सैल का विद्युत वाहक बल कहलाता है।
- उ.5. मानक हाइड्रांजन इलेक्ट्रोड $Pt|H_{2(g)}(lbar)|H_{(aq)}^+(lM)$ चित्र के लिए पाइय सामग्री देखिए।
- उ.6. सामान्य अभिक्रिया $n_1A_{(s)} + n_2B(aq) \rightarrow m_1C_{(s)} + m_2D(aq)$ नेर्स्ट समीकरण के अनुसार

$$E_{\frac{4}{4400}} = E_{\frac{4}{4400}}^{0} - \frac{RT}{nF} \ln \frac{\left[C_{(s)}\right]^{m_1} \left[D_{(aq)}\right]^{m_2}}{\left[A_{(s)}\right]^{n_1} \left[B_{(aq)}\right]^{n_2}}$$

$$\mathbf{z}_{\Pi} \qquad E_{\frac{2}{100}} = E_{\frac{2}{100}}^{(1)} - \frac{RI}{nF} \ln \frac{[D_{(aq)}]^{m_2}}{[B_{(aq)}]^{n_2}}$$

(ठोस पदार्थ की सान्द्रता इकाई मानी जाती है।)

 $\Im . 7$. $\Delta G^{\circ} = -nFE_{\frac{2}{100}}^{\circ}$

n = सैल अभिक्रिया में प्रयुक्त इलेक्ट्रॉनों की संख्या

F = फैराडे = 96500 कुलॉम

∆G° = मानक गिब्ज ऊर्जा तथा

 $E_{\frac{2}{4m}}^{\circ}=$ सैल का मानक विभव या मानक वि.वा.बल है।

3.8. एक सामान्य अभिक्रिया

 $n_1 A + n_2 B \rightarrow m_1 C + m_2 D$ के लिए नेन्स्ट समीकरण

$$E_{\frac{2}{440}} = E_{\frac{2}{40}}^{0} - \frac{0.059}{n} \log \frac{[C]^{m_1} [D]^{m_2}}{[A]^{n_1} [B]^{n_2}}$$

साम्यावस्था पर E_{मैल}= 0 तथा

$$\log \frac{[C]^{m_1}[D]^{m_2}}{[A]^{m_1}[B]^{n_2}} = \log K_c \ (\text{साम्यस्थिरांक})$$

अत: $0 = E_{\frac{3}{310}}^0 - \frac{.059}{.000} \log K_c$

$$\log K_c = \frac{nE_{\frac{4}{100}}^0}{.059}$$

उपरोक्त सूत्र द्वारा Kूका मान ज्ञात किया जा सकता है।

- जिस धातु का मानक अपचयन विभव कम (अधिक ऋणात्मक) होता है वह प्रबल अपचायक होता है।
- उ.10. Zn का मानक अपचयन विभव कम (-.76V) होने के कारण यह Cu^2 आयनों को Cu में अपचियत कर देता है क्योंकि Cu का मानक अपचयन विभव अधिक (+0.34V) है। परिणामस्वरूप Cu²⁺ का नीला रंग पहले हल्का होता जाता है और फिर रंगहीन हो जाता है।

3.5 SEPU Batteries

- बैटरियां भी गैल्वनी सेल ही होती हैं जिनमें रेडॉक्स अभिक्रिया द्वारा विद्युत ऊर्जा उत्पन्न होती हैं। बैटरी में 2 या 2 से अधिक गैल्वनी सेल श्रेणीक्रम में जुड़े होते हैं जिससे अधिक विद्युत धारा प्राप्त की जा सकें।
- एक अच्छी बैटरी में निम्न गुण होने चाहिये।
 - (1) वजन में हल्की हो।
 - (2) स्थिर वोल्टता की विद्युतधारा दे सकें ।
 - (3) अधिक समय तक कर्जा दे सके।
 - (4) कम कीमत और आकार छोटा हो। बैटरियाँ मुख्यत: दो प्रकार की होती है---
 - (1) प्राथमिक बैटरियां (Primary Battery)
 - (2) द्वितीयक या संचायक बैटरियाँ (Secondary or Storage Battery)
- (1) प्राथमिक बैटरी या सैल- इन बैटरियों में रासायनिक अभिक्रिया केवल एक ही दिशा में होती है। जब अभिक्रिया पूर्ण हो जाती है तो विद्युत उत्पादन बन्द हो जाता है। इन अभिक्रिया को विद्युत धारा प्रवाहित करके विपरित दिशा में नहीं करवाया जा सकता है। अतः इन्हें पुनः चार्ज नहीं किया जा सकता है। उदाहरण – **शुष्क सेल, मर्करी**

शुष्क सेल (Dry Cell) (a)

- यह लेक्लांशे सैल पर आधारित है।
- यह सेल गोलाकार Zn धातु का बना सिलिंडर होता हैं, जो एनोड का कार्य करता है तथा इसके मध्य में ग्रेफाइट की छड़ होती है, जो कैथोड़ का कार्य करती है।
- ग्रेफाइट छड के पास कार्बन व MnO2 चूर्ण का गीला पेस्ट होता है तथा पात्र (Zn धातु सिलिंडर) की दीवारों के मध्य NH4Cl व ZnCl2का गीला पेस्ट भरा होता है।
- सेल के चारों ओर की दीवारों को विद्युत रोधी करने के लिए मोटे कागज का आवरण होता है।
- इस सेल को विद्युत परिपथ से जोड़ने पर, Zn इलेक्ट्रॉन त्याग कर Zn+2 आयनों में बदलती है। ये इलेक्ट्रोन बाह्य परिपथ से होते हुऐ कैथोड द्वारा ग्रहण होते हैं। कैथोड पर NH4 आयन इलेक्ट्रॉन ग्रहण कर उदासीन होते हैं तथा यहां MnO2 का भी अपचयन होता है।

चित्र 3.9: शुष्क सैल

 $Zn \rightarrow Zn^{-2} + 2e^{-}$

(एनोड पर ऑक्सीकरण अभिक्रिया) $2NH_4^+ + 2MnO_2 + 2e^- \rightarrow Mn_2O_3 + 2NH_3 + H_2O$ (कैथोड पर अपचयन अभिक्रिया)

इस प्रकार बनी NH_3 गैस, Zn^{+2} आयनों द्वारा अवशोषित होकर संकर आयन $[Zn(NH_3)_4]^{-2}$ बना देती है।

दोष -

इसमें NH₄Cl की अम्लीय प्रकृति के कारण, जब सेल को कार्य में नहीं ले रहे होते हैं, तब भी सेल की Zn की दीवार संक्षारित होती रहती है, जिससे दीवारों में छेद हो जाते हैं। जिससे रासायनिक यौगिक और विद्युत धारा रिस कर बाहर आने लगती हैं। इसे रोकने के लिए जिंक की दीवारों को धातु की पतली चद्दर से कवर कर दिया जाता है जो की अक्रिय होती है। ऐसे सेल को लीक पुफ सेल कहते हैं।

इन सैलों में 1.25 V से 1.5V विद्युत धारा स्थिर रूप से प्राप्त होती है।

(b) मर्करी सेल

- यह एक नये प्रकार का सेल है, जिसका उपयोग छोटे वैद्युत उपकरणों जैसे— सुनने वाली मशीन, घड़ी, केलकुलेटर, कैमरा आदि में किया जाता है।
- इसमें एनोड Zn धातु का और कैथोड ग्रेफाइट का होता है।
- दोनों इलेक्ट्रॉड़ों के मध्य HgO और KOH का गीला पेस्ट भर देते हैं, जो वैद्युत अपघट्य का कार्य करता है।
- एक सरन्ध्र कागज, वैद्युत अपघट्यं को Zn एनोड से अलग रखता है।
- इस सेल में निम्न रासायनिक क्रियाऐं होती हैं।
 एनोड़ पर- Zn + 2OH⁻ → ZnO + H₂O+2e⁻

(आक्सीकरण)

कैथोड़ पर-
$$\frac{HgO+H_2O+2e^-\to Hg+2OH^-}{Zn+HgO\to ZnO+Hg} \text{(अपचयन)}$$

- इस सेल में पूर्ण अभिक्रिया के दौरान आयनों की सान्द्रता में कोई परिवर्तन नहीं होता है। अतः यह सैल समाप्त होने तक लगातार 1.35 V स्थिर विद्युत देता है।
- यह सैल उपयोग में आने के बाद, इसे इस प्रकार खत्म करना चाहिये की प्रदूषण न हो। क्योंकि मर्करी यौगिक तीव्र विषाक्त होते हैं।

2, द्वितीयक सैल (Secondary Cell)

- इन सैलों में रासायनिक क्रिया दोनों तरफ होती है।
- इनमें क्रियाकारकों से उत्पाद बनते हैं तो विद्युत ऊर्जा प्राप्त होती है।
- जब क्रियाकारक पूर्ण रूप से उत्पाद में बदल जाते हैं तो विद्युत ऊर्जा प्राप्त होनी बन्द हो जातीं है। अतः बैटरी डिस्चार्ज हो जाती है।
- अब इसमें विद्युत धारा प्रवाहित करके उत्पाद को पुनः क्रिया कारकों में बदलते हैं तो बैटरी पुनः आवेशित हो जाती है। उदाहरण- लैड स्टोरेज सेल, निकल कैडिमियम स्टोरेज सेल आदि।

(a) लैंड - अम्ल स्टोरेज या सीसा संचायक बैटरी

- इन बैटिरियों का उपयोग मोटर गाड़ियों में किया जाता है। ये द्वितीयक प्रकार की बैटरी है! इन्हें निरावेशित होने के बाद पुनः आवेशित किया जा सकता है।
- इस प्रकार के एक सेल से 2 Volt विद्युत प्राप्त होती है, अतः 3 या 6 सेल को श्रेणीक्रम में जोड़कर 6 या 12 वोल्ट प्राप्त की जा सकती है। इसमें ऐनोड Pb का बना होता है। Pb - Sb मिश्र धातु की जाली में महीन चूर्ण किया हुआ स्पंजी लैड भरा रहता है। कैथोड के रूप में Pb - Sb की जाली में PbO₂ का महीन चूर्ण भरा होता है।
- इन कैथोड व एनोड की अनेकों प्लेटों को एकान्तर क्रम में व्यवस्थित किया होता है तथा इनके मध्य सरन्ध्रमय प्लास्टिक या फाइवर ग्लास की शीट लगी होती हैं। ये सभी प्लेटें तनु H₂SO₄(38% और धनत्व 1.30 gm/cc) में डूबी रहती है, जो सख्त रबड़ या प्लास्टिक के पात्र में भरा होता हैं। यहां H₂SO₄ विद्युत अपघट्य का कार्य करता है। बैटरी के डिस्चार्ज होते समय अर्थात् विद्युत धारा देते समय, सेल में निम्न अभिक्रियाएं सम्पन्न होती है।

एनोड पर $Pb_{(s)} + SO_{4(aq)}^{-2} \rightarrow PbSO_{4(s)} + 2e$ कैथोड पर $PbO_{2(s)} + SO_{4(aq)}^{2-} + 4H_{(aq)}^{+} + 2e$ $\rightarrow PbSO_{4(s)} + 2H_{2}O(l)$

सम्पूर्ण सैल अभिक्रिया-

 $Pb_{(s)} + PbO_{2(s)} + 2H_2SO_{4(cq)} \rightarrow 2PbSO_{4(s)} + 2H_2O(l)$ अतः बैटरी के डिस्चार्ज होते समय H_2SO_4 समाप्त होता जाता है। जिससे इसका घनत्व कम होता जाता है। जब घनत्व $1.20 {
m cm}^{-3}$ हो जाता है, तो बैटरी को चार्ज करने की आवश्यकता

होती है। जब बैटरी डिस्चार्ज हो जाती है तो दोनों इलेक्ट्रॉडों पर PbSO₄ जमा हो जाता है। बैटरी को चार्ज करते समय विद्युत धारा प्रवाहित करते हैं तो सेल में डिस्चार्ज की विपरीत अभिक्रिया होती है जो कि निम्न है—

$$PbSO_{4(s)} + 2e \rightarrow Pb_{(s)} + SO_{4(aq)}^{2-}$$
 (अपचयन)

$$PbSO_{4(s)} + 2H_2O \rightarrow PbO_{2(s)} + SO_{4(s)}^{2-} + 4H_{(\omega q)}^+$$
 (ऑक्सीकरण)

$$2PbSO_{4(s)} + 2H_2O \rightarrow Pb_{(s)} + PbO_{2(s)} + 2H_2SO_4$$

इस प्रकार रिचार्ज बैटरी से पुनः विद्युत धारा प्राप्त हो सकती है। अतः बैटरी बार—बार काम में आती रहती है।

सीसासंचायक सेल को निम्न प्रकार से निरूपित किया जाता
 है।

 $Pb_{(s)} | PbSO_4(s), H_2SO_4(aq.) | PbO_2(s) | Pb_{(s)}$

- दोष-सीसासंचायक सेल का मुख्य दोष यह है कि सेल को पुनः चार्ज करते समय PbSO₄ के जो क्रिस्टल पुनः Pb और PbO₂ में नहीं बदल पाते हैं, उन्हें यह सैल जमा करता रहता है। जिससे सेल की क्षमता समय के साथ - साथ घटती रहती है।
- विशेषता –
- (1) इस सेल का बार बार उपयोग किया जा सकता है।
- (2) सेल की दक्षता बहुत अधिक (80%) है।
- (3) सेल की आयु 2 से 3 साल तक होती हैं।

(b) निकल - कैडमियम बैटरी-

- यह एक द्वितीयक बैटरी है।
- इससे 1.4 Volt की विद्युत धारा प्राप्त होती है।
- इसका उपयोग फोन, पेजर, मोबाइल फोन आदि में होता है।
- इसमें Cd का एनोड होता है तथा NiO2 युक्त धात्विक जाली कैथोड होती है।
- इसमें विद्युत अपघट्य KOH होता है। इसके डिस्चार्ज के दौरान निम्न अभिक्रिया होती है।

एनोड पर-Cd + 2OH \rightarrow Cd (OH)₂ + 2e⁻ कथोड पर-NiO₂ + 2H₂O + 2e⁻ \rightarrow Ni(OH)₂ + 2OH⁻

- डिस्चार्ज से बने उत्पाद ठोस होते हैं तथा इलेक्ट्रॉड पर ही जमा रहते हैं अतः चार्ज करने पर अभिक्रिया विपरित दिशा में होती है!
- इस सैल के चार्ज व डिस्चार्ज के दौरान कोई गैस बाहर नहीं निकलती है, अतः इस सेल को सील बन्द किया जा सकता है।

3.6 ईंधन सैल (Fuel Cell)

- ईधन सैल में ईधन की ऊर्जा को, विद्युत ऊर्जा में बदला जाता
 है। ऐसे परिवर्तन संभव है क्योंकि दहन अभिक्रिया रिडॉक्स होती
 है।
- ईधन सैल की कार्य प्रणाली को $H_2 O_2$ सैल के द्वारा समझा जा सकता है।

- इसमें दो सरन्ध्रमय टाइटेनियम या कार्बन इलेक्ट्रॉड होते है।
- इन इलेक्ट्रॉडों में Pt का महीन चूर्ण भरा होता हैं, जो इलेक्ट्रॉड पर होने वाली अभिक्रियाओं के लिये उत्प्रेरक का कार्य करता है।
- दोनों इलेक्ट्रॉड के मध्य अम्लीय या क्षारीय जल भरा होता है,
 जो कि विद्युत अपघट्य का कार्य करता हैं।
- H_2 और O_2 गैस का उच्च दाब पर सरन्ध्र इलेक्ट्रॉडों द्वारा विद्युत अपघट्य में से प्रवाहित करते हैं।
- इलेक्ट्रॉडों पर निम्न अमिक्रिया होती है।

एनोड पर $2H_{2(g)} + 4OH_{(aq)} \rightarrow 4H_2O_{(l)} + 4c^-$ कैथोड पर $O_{2(g)} + 2H_2O_{(l)} + 4e^- \rightarrow 4OH_{(aq)}$ सैल अभिक्रिया $2H_{2(g)} + O_{2(g)} \rightarrow 2H_2O_{(l)}$

जल की बूंदे

सैल-

Pt, H₂ / NaOH/ O₂, Pt

- सैल में H₂ और O₂ का लगातार नियमित प्रवाह रखते हैं।
- ईधन सैल में लगातार H₂व O₂ प्रवाहित करने पर लम्बे समय तक विद्युत धारा मिलती रहती है तथा इससे प्रदूषण भी नहीं होता है।
- इस सेल का विभव 1.299 V होता है।
- जब इस प्रकार के (ईधन सेल) अनेकों सेल जोड़कर सेल की क्षमता बढ़ाई जा सकती है। इस सेल से 1 किलोवॉट ऊर्जा शक्ति तक की पूर्ति की जा सकती है।
- इस ईंधन सैल का उपयोग अपोलो अंतरिक्ष कार्यकम में विद्युत ऊर्जा प्राप्त करने के लिये किया गया था। अभिक्रिया के फलस्वरूप उत्पन्न जल वाष्प को संघितत करके अंतरिक्ष यात्रियों के लिये जल की व्यवस्था हुई थी।
- ईधन सैल का उपयोग दूरदर्शन प्रसारण केन्द्र में ऊर्जा शक्ति के लिये किया जा सकता है।
- इस सैल में H₂ के स्थान पर CH₄, C₂H₆, C₃H₈ आदि गैसों को भी ईधन के रूप में प्रयुक्त कर सकते हैं।

3.7 संक्षारण (Corresion)

 यदि धातुओं को वायुमंडल के सम्पर्क में रखा जाता है तो नमी ओर ऑक्सीजन की उपस्थिति के कारण ये धातुयें ऑक्साइड, हाइड्रॉक्साइड कार्बोनेट आदि में परिवर्तित हो जाती है और धीरे- धीरे नष्ट होने लगती है।

- ''अतः धातुओं का वायुमण्डल के सम्पर्क में धीरे धीरे अन्य अवाछित यौगिकों जैसे-ऑक्साइड, सल्फाइड, कार्बोनेट, सल्फेट आदि में परिवर्तन धातुओं का संक्षारण कहलाता है।"
- जंग लगने से विश्व के कुल उत्पादन का 15% लोहा प्रतिवर्ष नष्ट हो जाता है।
- संक्षारण की प्रक्रिया में ऊर्जा का उत्सर्जन होता है।
- मुख्यतः वायु में उपस्थित O_2 नमी एवं HCl, SO_3 , Cl_2 एवं H_2S आदि गैसें संक्षारण अभिकर्मक हैं।
- सक्षारण निम्न दो प्रकार होता है।
 - रासायनिक या शुष्क संक्षारण
 - विद्युत रासायनिक या नम संक्षारण
- **(1)** रासायनिक या शुष्क संक्षारण धातु का वायुमण्डल में उपस्थित एसों जैसे– HCl, SO_2 , Cl_2 , H_2S आदि के द्वारा संक्षारण होने को, रासायनिक या शुष्क संक्षारण कहते हैं। ये गैसें, धातु सतह से सीधे अभिक्रिया करके, धातु यौगिक बना देती हैं, जिससे धातु का क्षय होता रहता है। इन अभिक्रियाओं का वेग धातु की सक्रियता ताप और अभिक्रिया से बने उत्पाद पर निर्भर करता है।
- विद्युत रासायनिक या नम संक्षारण : धातुओं का नमी और **(2)** अशुद्धियों की उपस्थिति में संक्षारण तीवता से होता है। जिन धातुओं का मानक इलेक्ट्रोड विभव बहुत कम होता है जैसे-Fe, Zn आदि उनका संक्षारण आसानी से होता है।

संक्षारण की क्रियाविधि (लोहे के जंग लगना)

- लोहे के जंग लगना एक विद्युत रासायनिक क्रिया है।
- जंग लगने में लोहे की सतह पर एक विद्युत रासायनिक पदार्थ का निर्माण होता है।
- CO_2 व O_2 युक्त जल की बूंदें लोहे की सतह पर एक परत
- CO2 घुली होने के कारण जल की चालकता बढ़ जाती है और यह विद्युत अपघट्य विलयन का कार्य करती है।

- लोहे के परमाणु एनोड का कार्य करते हैं और अपचयन अर्द अभिक्रिया में भाग लेते हैं। इस प्रकार लोहे की सतह पर, एक छोटे विद्युत रासायनिक सेल का निर्माण हो जाता है।
- अम्लीय माध्यम होने पर लोहे के जंग लगने पर निम्न रासायनिक अभिक्रियाएं सम्पन्न होती हैं।
- एनोड पर- लोहे की सतह एनोड का कार्य करती हैं और यहां Fe का Fe⁺²में ऑक्सीकरण होता है।

$$2Fe_{(s)} \rightarrow 2Fe^{2+} + 4e^{-}$$
 $E_{Fe^{2+}/Fe}^{0} = -0.44V$

कैथोड पर-जल की बूंद में उपस्थित H' की उपस्थित में एनोड से मुक्त हुये इलेक्ट्रॉन ऑक्सीजन का अपचयन कहते हैं।

$$4H^+_{(aq)} + O_{2(g)} + 4e^- \rightarrow 2H_2O(l)$$
 $E^0_{H^+ + Q_2 + H_2O} = 1.23!$ सम्पूर्ण अभिक्रिया–

$$2Fe_{(s)} + O_{2(g)} + 4H_{(aq)}^+ \to 2Fe_{(aq)}^{2+} + 2H_2O(l)$$

$$E_{\text{flet}}^{\circ} = 1.23 - (-0.44) = 1.67V$$

 $E_{\rm flet}^{\circ}=1.23-(-0.44)=1.67V$ इस प्रकार सैल में बने ${\rm Fe^{2+}}$ आयन वायुमंडलीय ${\rm O}_2$ के द्वारा ${\rm Fe^{3-}}$ में ऑक्सीकृत होकर $\mathrm{Fe_2O_3}$ बनाते हैं, जो कि जलयोजित होकर जंग Fe2O3. xH2O लाल भूरा पाउडर बनाते हैं।

$$4Fe^{2+} + O_2 + 4H_2O \rightarrow 2Fe_2O_3 + 8II^+$$

 $Fe_2O_3 + xH_2O \rightarrow Fe_2O_3 \cdot xH_2O$

लाल भूरा पावडर (जंद)

जंग लगने की सम्पूर्ण अभिक्रिया को निम्न प्रकार लिखा जा सकता है---

एनोड पर $Fe_{(s)} \rightarrow Fe_{(aq)}^{2+} + 2e$ ऑक्सीकरण कैथोड पर $O_{2(g)} + 4H_{(aq)}^+ + 4e \rightarrow 2H_2O(l)$ वायुमंडलीय ऑक्सीकरण

$$2Fe_{(aq)}^{2+} + 2H_2O(l) + \frac{1}{2}O_{2(g)} \to F_{\alpha_2}O_{3(s)} + 4H^+$$

सक्षारण से बचाव

- उपयुक्त पदार्थ की परत चढ़ाकर— धातु सतह को जल के सम्पर्क में आने से रोकने के लिए निम्न उपाय किये जा सकते
 - (i) धातु सतह को चिकना रखकर
 - धातु सतह पर पेन्ट करके (ii)
 - तेल या ग्रीस की परत विछाकर
 - धातु पर संक्षारित न होने वाली धातुओं। जैसे- Cu. Ni, Cr. Al आदि की परत चढ़ाकर।
- बलिदानी सुरक्षा (Sacrificial Protection) : इस विधि मं श्रांतु 2. जैसे- लोहे की सतह पर अधिक सक्रिय ऐसी धातु की परत चढ़ाई जाती है, जो विद्युत रासायनिक श्रेणी में लोहे से ऊपर होती है। अधिक सक्रिय धातु स्वंय रिडोक्स अभिक्रिया में भार लेकर दूसरी धातु का बचाव करती है। उदाहरण के लिए लोहे को जंग लगने से रोकने के लिए, इसकी सतह पर Zn धातू की पतली परत चढ़ाई जाती है। यह प्रक्रिया गैल्वेनीकरण कहलाती है। जिंक, लोहे से अधिक सक्रिय होती है:
 - गैल्वेनीकृत लोहे में, लोहे के स्थान पर जिंक का संक्षारण होता हैं तथा यह ZnCO3. Zn (OH)2 (क्षारीय ज़िंक कार्बोनेट) में बदलती रहती हैं।
- विद्युत या कैथोड सुरक्षा- इस विधि का प्रयोग जल में डूबी 3. वस्तुओं जैसे- शिप और भूमिगत पाइपों, टैंक के बचाव के लिए किया जाता है। इस विधि में अधिक सक्रिय धातुओं जैसे - Mg, Zn या Al आदि का सम्बन्ध लोहे की पाइपों आदि से कर दिया जाता है। अधिक सक्रिय धातु एनोड का कार्य करती है और लोहे से पहले इलेक्ट्रॉन त्याग देती है। इस प्रकार Mg ब्लॉक से जूड़ी भूमिगत लोह की पाइप, टैंक आदि का सक्षारण, इसके

Mg से अधिक अपचयन विभव के कारण बाद में होता है। E° of Mg = -2.37 V. E° of Fe = -0.44 V

जंगरोधी पदार्थ- कुछ फॉस्फेट और क्रोमियम लवण जंग रोधी विलयन का कार्य करते हैं। उदाहरण के लिए सो, फास्फेट के उबलते सान्द्र विलयन में लोहे की वस्तु को डूबोने पर, इसके चारों ओर अविलेय आयरन फास्फेट की अविलेय सुरक्षा परत बन जाती है। विलयन की क्षारीय प्रकृति के कारण, यह परत H आयनों को आयरन के सम्पर्क में नहीं आने देती है, जो Fe का Fe^{+?} में ऑक्सीकरण करते हैं।

3.8 प्राठ्यपुस्तक के प्रश्न व अत्तर

बहुविकल्पीय प्रश्न

- निम्न में से कौन चालक नहीं है?
 - (a) Cu-धात्
- (b) NaCl (aq.)
- (c) NaCl (पिघला)
- (d) NaCl(s)
- यदि किसी सेल में चालकत्व एवं चालकता तुल्य है तो सेल स्थिरांक होगा-
 - (a) 1

(b) 0

(c) 10

- (d) 1000
- सेल स्थिरांक की इकाई है-
 - (a) ohm⁻¹ cm⁻¹
- (b)cm
- (c) ohm⁻¹ cm
- (d) cm⁻¹ 4. चालकता (विशिष्ट चालकत्व) की इकाई है-
- (a) ohm⁻¹
- (b) $ohm^{-1} cm^{-1}$
- (c) ohm⁻² cm² equvi⁻¹
- (d) $ohm^{-1} cm^2$
- यदि सेल में रेडॉक्स अभिक्रिया सम्पन्न हो रही है तो सेल का विद्युत वाहक बल (e.m.f.) होगा-
 - (a) धनात्मक
- (b) ऋणात्मक

(c) श्रून्य

- (d) एक
- वैद्युत रासायनिक श्रेणी के आधार पर बताइये कि जिंक एवं कॉपर से निर्मित सेल के लिए निम्न में से कौनसा कथन
 - (a) जिंक कथौड़ एवं कॉपर एनोड़ का कार्य करेंगे।
 - (b) जिंक एनोड़ एवं कॉपर कथौड़ का कार्य करेंगे।
 - (c) इलेक्ट्रानों का प्रवाह कॉपर से जिंक की ओर होता है।
 - (d) कॉपर इलेक्ट्रोड घुलने लगता है और जिंक इलेक्ट्रोड पर जिंक निक्षेपित होता है।
- एक मोल $m H_2O$ के $m O_2$ में ऑक्सीकृत होने के लिए कितन कूलाम्ब आवेश की आवश्यकता होगी।
 - (a) 1.93 X 10⁵ C
- (b) $9.65 \times 10^4 \text{ C}$
- (c) $6.023 \times 10^{23} \text{ C}$
- (d) $4.825 \times 10^4 \text{ C}$
- लोहे की सीट पर वैद्युत लेपन में किसकी परत चढ़ाई जाती 考---
 - (a) C

· (b) Cu

(c) Zn

- (d) Ni
- 9. जंग लगना निम्न में से किनका मिश्रण होता है-
 - (a) FeO एवं Fe (OH) ३
- (b) FeO एवं Fe (OH)2
- (c) Fe₂O₃ एव Fe (OH)₃
- (d) Fe₃O₄ एवं Fe (OH)₃
- 10. जब सीसा संचायक सेल विसर्जित (Discharge) होता है तो-
 - (a) SO₂ उत्पन्न होती है
- (b) PbSO4 नष्ट होता है
- (c) लेड बनता है
- (d) H₂SO₄ नष्ट होता है

उत्तर - 1 (d), 2 (a), 3 (d), 4 (b), 5 (a), 6 (b), 7 (b), 8 (c), 9 (c), 10 (d)

अतिलघुत्तरात्मक

- प्र.1 क्या आप एक जिंक के पात्र में CuSO, का विलयन रख सकते
- उत्तर-नहीं रख सकते क्योंकि जिंक का मानक अपचयन विभव कम (-0.76V) होता है। जबिक Cu का मानक अपचयन विभव अधिक (+0.34V) होता है। अत: Zn धातु Cu2 को उपचित्रत कर देगी।
- प्र.2 मानक इलेक्ट्रोड विभव की तालिका का निरीक्षण कर तीन ऐसे पदार्थ बताइए जो अनुकूल परिस्थितियों में फैरस आयनों को ऑक्सीकृत कर सकते हैं।
- उत्तर- Mn⁷⁴ (kMnO₄), Cr⁴⁶ (Cr₂O₇), NO₃ (HNO₃)
- प्र.3 किसी विलयन की चालकता तन्ता के साथ क्यों घटती है।
- उत्तर-विलयन को तनु करने पर बिलयन में उपस्थित विद्युत अपघट्य के आयनन की मात्रा बढ़ती है, आयनों की संख्या बढ़ती है अत: चालकता बढती है।
- प्र.4 उन धातुओं की सूची बनाइए जिनका विद्युत अपघटनी निष्कर्षण होता है।
- उत्तर-Na, K, Al, Li, Mg आदि
- प्र.5 हाइड्रोजन को छोड़ कर ईंधन सैलो में प्रयुक्त किये जा सकने वाले दो अन्य पदार्थ सुझाइए
- उत्तर-मीथेन (CH_1), प्रोपेन (C_3H_8)
- प्र.6 निम्नलिखित धातुओं को उस क्रम में व्यवस्थित कीजिए जिसमें वे एक दूसरे को उनके लवणों के विलयनों से प्रतिस्थापित कर सकती हैं Al, Cu, Fe, Mg एवं Zn
- उत्तर- Mg > Al > Zn > Fe > Cu
- (ख) लघुरात्मक
- प्र.1 निकाय Mg²⁺/Mg का मानक इलेक्ट्रोड विभव आप किस प्रकार ज्ञात करते है।
- उत्तर- $\mathbf{M}\mathbf{g}^{2+}/\mathbf{M}\mathbf{g}$ इलेक्ट्रोड को मानक हाइड्रोजन ($\mathrm{Pt}/\mathrm{H}_{2(\mathbf{g})}$ (latm)/H' के साथ जोड़कर सैल बनाते हैं।

$$Mg/Mg^{2+} || H^{-}(lm) | H_{2(a)}(latm) | Pt$$

$$E^0_{\frac{1}{4401}} = E^0_{H_2+H_1} - E^0_{Mg^{2+}-Mg}$$

चूँकि
$$E_{H_{*}/H^{*}}^{0} = 0$$
 अत:

$$E_{Mg^{2*}/Mg}^{\sigma} = -E_{\hat{\mathcal{H}}\hat{\mathcal{C}}}$$

अत: सैल का विभव ही इलेक्ट्रोड का मानक इलेक्ट्रोड विभव है।

- प्र.2 pH = 10 के विलयन के सम्पर्क वाले इलेक्ट्रोड के विभव का परिकलन कीजिए।
- उत्तर- उदाहरण 24 देखिए। (पेज सं. 3,22 देखें)
- प्र.3 एक सैल के emf का परिकलन कीजिए जिसमें निम्नलिखित अभिक्रिया होती है। दिया गया है \mathbf{E}_{tlm} = 1.05 \mathbf{V}

 $Ni_{(s)} + 2Ag^{+}(0.002M) \rightarrow Ni^{2+}(0.160M) + 2Ag_{(s)}$

- उत्तर- उदाहरण 25 देखिए (पेज सं. 3.22 देखें)
- प्र.4 एक सैल जिसमें निम्नलिखित अभिक्रिया होती है-

 $2Fe_{(aq)}^{3+} + 2I_{(aq)}^{-} \rightarrow 2Fe_{(aq)}^{2+} + I_{2(s)}$

का ताप 298 K पर E⁰मैल = 0.236V है। सैल की मानक

गिब्ज ऊर्जा और साम्य स्थिरांक की गणना कीजिए

उत्तर- उदाहरण 26 देखिए (पेज सं. 3.22 देखें)

प्र.5 जल का 🕍 ज्ञात करने का तरीका बताइए।

उत्तर- कोलराऊश नियम के अनुसार

$$H_2O \implies H' + OH'$$

$$\lambda_m^0 = \lambda_{H^*}^0 + \lambda_{OH^*}^0$$

 $\lambda_{\rm H^{-}}^{0}$ और $\lambda_{\rm oH}^{0}$ के मान जात होने पर $\lambda_{\rm m}^{0}$ जात किया जा सकता है।

$$\lambda_{H^{0}}^{0} = 349.8scm^{2}mol^{-1}, \ \lambda_{OH^{-}}^{0} = 198.5scm^{2}mol^{-1}$$

$$\lambda_{m(H_2O)}^0 = 349.8 + 198.5 = 548.3 \, s\, cm^2 mol^{-1}$$

प्र.6 $0.025 \text{ mol } L^{-1}$ मेथेनॉइक अम्ल की चालकता 46.1 s cm^2 mol^{-1} है। इसकी वियोजन मात्रा एवं वियोजन स्थिरांक का परिकलन की जिए। दिया गया है कि $\lambda^0(\text{H}^+) = 349.6 \text{S cm}^2 \text{mol}^{-1}$ एवं $\lambda^0(\text{HCOO}) = 54.6$ $\text{S cm}^2 \text{mol}^{-1}$

उत्तर-(पेज सं. 3.12 देखें)

प्र.7 उन धातुओं की एक सूची बनाइए जिनका विद्युत अपघटनी निष्कर्षण होता है।

उत्तर-Na, K, Al, Li, Mg आदि

प्र.8 निम्नलिखित अभिक्रिया में $Cr_2C_7^{2-}$ आयनों के एक मोल के अपचयन के लिए कूलॉम में विद्युत की कितनी मात्रा की आवश्यकता होगी?

$$Cr_2C_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{+3} + 7H_2O$$

उत्तर- अभिक्रिया $Cr_2O_7^{2-}+14H^7+6e^- \rightarrow 2Cr^{3-}+7H_2O$ में 6 इलेक्ट्रॉन प्रति एक मोल $Cr_2O_7^{2-}$ प्रयुक्त होते हैं। अत: विद्युत धारा की मात्रा = 6F चूँकि F=96500 कूलॉम अत: विद्युत धारा की मात्रा = 6×96500 कूलॉम

= 579000 कूलॉम

प्र.9 चार्जिंग के दौरान पयुक्त पदार्थों का विशेष उल्लेख करते हुए लेड संचायक सेल की चार्जिंग क्रियाविधि का वर्णन रासायनिक अभिक्रियाओं की सहायता से कीजिए।

उत्तर- प्रश्न संख्या 9 और 12 समान हैं।

दोनों के उत्तर के लिए पाठ्य सामग्री देखिए (पेज सं. 3.24 देखें)

प्र.10 नीचे दिये गए मानक इतैक्ट्रोड विभवों के आधार पर धातुओं को उनकी बढ़ती हुई अपचायक क्षमता के क्रम में व्यवस्थित कीजिए।

$$K^{+}/K = -2.93V, Ag^{+}/Ag = 0.80V$$

$$Hg^{2+}/Hg = 0.79V$$

$$Mg^{2+}/Mg = -2.37V, Cr^{3+}/Cr = -0.74V$$

 $\overline{3\pi 1}$ - $Ag^+/Ag < Hg^{2+}/Hg < Cr^{3+}/Cr < Mg^{2+}/Mg < K^-/K$

प्र.11 निम्नलिखित अभिक्रियाओं वाले गैल्वैनी सेन का मानक सेल-विभव परिकलित कीजिए। 1) $2Cr(s) + 3Cd^{-2}(aq) \rightarrow 2Cr^{+3}(aq) + 3Cd(s)$

2)
$$Fe^{+2}(aq) + Ag^{-}(aq) \rightarrow Fe^{+3}(aq) + Ag(s)$$

उत्तर-(1)
$$E^0_{\text{ then}} = E^0_{\text{ कैथोड}} - E^0_{\text{ एनोड}}$$

$$=E^0_{-cd^{2+}/cd}-E^0_{-cr^{3+}/cr}$$

(2) $\mathbf{E}^{0}_{\stackrel{\bullet}{\text{Hoff}}} = \mathbf{E}^{0}_{Ag^{+}/Ag} - \mathbf{E}^{0}_{Fe^{3+}/Fe^{2+}}$

अन्य कोई आँकडे दिये नहरें है-

(ग) निबन्धात्मक

प्र.13 समझाइए कि कैसे लोहे पर जंग लगने का कारण एक वैद्युत रासायनिक सेल बनना माना जाता है।

उत्तर-कृपया पाठ्य सामग्री देखिए

प्र.14 उस गैल्वैनी सेल को दर्शाइए जिसमें निम्नलिखित अभिक्रिया होती है।

 $Zn(s) + 2ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2Ag(s)$

1) कौन सा इलैक्ट्रोड ऋणात्मक आवेशित है?

2) सेल में विद्युत-धारा के वाहक कौन से है?

3) प्रत्येक इलेक्ट्रोड पर होने वाली अभिक्रिया क्या है?

उत्तर- $Zn_{(s)}$ | $Zn_{(aq)}^{2+}$ || $Ag_{(aq)}^{++}$ | $Ag_{(s)}$

(1) जिंक इलेक्ट्रोड ऋणात्मक आवेशित है।

(2) सैल में विद्युत धारा के वाहक इलेक्ट्रॉन हैं।

(3) एनोड अभिक्रिया $Zn_{(s)} \rightarrow Zn^{2+} + Ze^-$ (ऑक्सीकरण)

कैथोड अभिक्रिया $2Ag^+ + 2e^- \rightarrow 2Ag_{(s)}$ (अपचयन)

3.9 अभूख अभूत मुक्ता

प्र.1. चालकता और मोलर चालकता की इकाई SI पद्धिति में लिखिए।

उत्तर- चालकता = $S m^{-1}$

मोलर चालकता = $S m^2 mol^{-1}$

प्र.2. 1mol Al³⁺ को Al में अपचियत करने के लिये कितने कूलाम की आवश्यकता होगी।

उत्तर-
$$Al_{(aq)}^{3+} + 3e \rightarrow Al_{(s)}$$

1 मोल $Al_{(aq)}^{3+}$ का अपचियत करने के लिये 3 मोल इलेक्ट्रॉन के आवेश की आवश्यकता होगी।

1 मोल इलेक्ट्रॉन = 96500 C

3 मोल इलेक्ट्रॉन = 96500 × 3 C

= 289500 C

प्र.3. Fe पर जंग लगने से कैथोडिक सुरक्षा करने के लिये कोई दो धातुओं के नाम लिखिये।

उत्तर- मैग्नीशियम (Mg) और जिंक (Zn)

प्र.5. डेनियल सैल की अर्द्धसैल अभिक्रिया तथा सम्पूर्ण सैल अभिक्रिया लिखिए।

उत्तर- एनोड पर-
$$Zn_{(s)} \rightarrow Zn_{(aa)}^{2+} + 2e^{\Theta}$$

कैथोड पर $Cu_{(aq)}^{2+} + 2e^{\Theta} \rightarrow Cu_{(s)}$

सम्पूर्ण अभिक्रिया . $Zn_{(s)}+Cu_{(aq)}^{2+} \rightarrow Zn_{(aq)}^{2+}+Cu_{(s)}$

प्र.6. फैराडे का विद्युत अपघटन का द्वितीय नियम लिखिए।

उत्तर- विभिन्न विद्युत अपघट्यों के विलयन में विद्युत की समान मात्रा प्रवाहित करने पर निक्षेपित पदार्थ की मात्रा उनके रासायनिक तुल्यांकी द्रव्यमान के समानुपाती होती है।

प्र.7. किसी चालकता सैल का सैल स्थिरांक क्या होता है?

उत्तर- चालकता सैल के इलेक्ट्रोडों के बीच की दूरी और उनके क्षेत्रफल का अनुपात उसका सैल स्थिरांक कहलाता है।

$$* = \frac{l}{A}$$

प्र.8. मानक इलेक्ट्रोड विभव की परिभाषा लिखिए।

उत्तर- किसी धातु की छड़ को 25°C (298k) ताप पर 1M धातु आयन की सान्द्रता के विलयन में डुबोने पर, धातु और विलयन के अन्त:पृष्ठ पर जो विभवान्तर उत्पन्न होता है, इसे मानक इलेक्ट्रोड विभव कहते हैं।

प्र.9. दुर्बल विद्युत अपघट्य की वियोजन की मात्रा और उसकी मोलर चालकता में सम्बन्ध लिखिये।

$$\frac{\partial}{\partial x} = \frac{\lambda_m}{\lambda_m^0}$$

 $\alpha=$ वियोजन की मात्रा, $\lambda_{\rm m}=$ मोलर चालकता $\lambda_{\rm m}^{\rm o}=$ अनन्त तनुता पर मोलर चालकता।

प्र.10. NaCl जलीय विलयन का pH = 7 है यदि इस विलयन में विद्युत धारा प्रवाहित की जाये तो pH पर क्या असर होगा?

उत्तर- NaCl के विद्युत अपघटन से कैथोड़ पर $H_{2(g)}$ एनोड पर $Cl_{2(g)}$ तथा विलयन में NaOH बनता है। परिणामस्वरूप विलयन का pH सात से अधिक हो जाता है।

pH > 7 विलयन क्षारीय हो जाता है।

प्र.11. किसी अभिक्रिया की मानक मुक्त ऊर्जा ($\Delta_r G^0$) परिवर्तन उसके मानक विभव से किस प्रकार सम्बन्धित है?

उत्तर- $\Delta_r G^0 = -nFE^0_{\frac{1}{400}}$ n = 344 फिता में प्रयुक्त इलेक्ट्रॉनों की संख्या F =फैराडे = 96500 C

 $\mathbf{E}^{\mathrm{u}}_{\mathrm{the}}$ = अभिक्रिया से बनने वाले सैल का मानक emf

प्र.12. डेनियल सैल की अभिक्रिया लिखिये तथा नेन्स्ट समीकरण द्वारा इसके emf को व्यक्त कीजिये।

उत्तर- $Zn_{(s)} | Zn_{aq}^{2+} || Cu_{(aq)}^{2+} || Cu$ सैल अभिक्रिया

$$Zn_{(s)}+Cu_{(aq)}^{2+}\rightarrow Zn_{(aq)}^{2+}+Cu_{(s)}$$

$$E_{\overline{H}\overline{H}}^{\circ} = E_{\overline{H}\overline{H}}^{\circ} - \frac{RT}{nF} \cdot \ln \frac{[Zn_{(aq)}^{2+}]}{[Cu_{(aq)}^{2+}]}$$

$$= E_{\frac{1}{4}\frac{1}{6}}^{\circ} - \frac{2.303RT}{2F} \log \frac{[Zn_{(aq)}^{2+}}{[Cu_{aq}^{2+}]}]$$
$$= E_{\frac{1}{4}\frac{1}{6}}^{\circ} - \frac{.059}{2} \log \frac{[Zn_{(aq)}^{2+}}{[Cu_{aq}^{2+}]}$$

प्र.13. दो धातुओं A और B के मानक अपचयन विभव क्रमशः -0.42V और +0.24V हैं। इनमें से कौनसा धातु तनु H_2SO_4 के साथ क्रिया करके H_2 गैस उत्पन्न करेगा, और क्यों?

उत्तर- धातु A तनु H_2SO_4 के साथ H_2 गैस उत्पन्न करेगा। धातु A का मानक अपचयन विभव (-0.42V) हाइड्रोजन के मानक अपचयन विभव (0.0V) से कम होने के कारण यह H' आयन का अपचयन कर सकता है।

प्र.14. यदि रजत इलेक्ट्रोड जिसका मानक अपचयन विभव 0.8V है को मानक हाइड्रोजन इलेक्ट्रोड (SHE) के साथ युग्मित करके सैल बनाया जाये तो रजत इलेक्ट्रोड, ऐनोड का कार्य करेगा या कथोड़ का और क्यों?

उत्तर- रजत इलेक्ट्रोड कैथोड का कार्य करेगा। सैल में जिस इलेक्ट्रोड का मानक अपचयन विभव कम होता है, वह ऐनोड और जिसका मानक अपचयन विभव अधिक होता है, वह कैथोड़ होता है। यहाँ

$$E_{Ag^{+}/Ag}^{-} = 0.8V$$
 तथा $E_{H^{+}/H_{2}}^{0} = 0.0V$ कुं

प्र.15. जल में उपस्थित CO₂ गैस का आयरन के संक्षारण पर क्या प्रभाव होता है?

उत्तर- जल में CO₂ की उपस्थिति से आयनन पर जंग लगने की प्रक्रिया का वेग बढ़ जाता है। जल विद्युत अपघट्य की तरह कार्य करने लगता है। साथ ही Fe द्वारा लगाये गये इलेक्ट्रॉन को ग्रहण करने के लिए H[†] की उपलब्धता बढ़ जाती है।

प्र.16. किसी विद्युत अपघट्य के विलयन का चालकत्व मापन के लिए प्रत्यावर्ती धारा (A.C.) का उपयोग किया जाता है, क्यों?

उत्तर- विद्युत अपघट्य के विलयन का विद्युत विश्लेषण (Electrolysis) रोकने के लिए प्रत्यावर्ती धारा का उपयोग किया जाता है। विद्युत विश्लेषण से विलयन की सान्द्रता परिवर्तित हो सकती है।

प्र.17. MgCl₂ की अनन्त तनुता पर मोलर चालकता (λ⁰m) ज्ञात कीजिए। Mg²+ और Cl⁻ की मोलर आयनिक चालकताएँ क्रमशः 106.1 ohm⁻¹ cm² mol⁻¹ और 76.3 ohm⁻¹ cm² mol⁻¹ हैं।

उत्तर-
$$\lambda_{\rm m}^0({\rm MgCl_2}) = \lambda^{\rm o}({\rm Mg^{2+}}) + 2\lambda^{\rm o}({\rm Cl^-})$$

दिया हुआ है- $\lambda^{\rm o}({\rm Mg^{2+}}) = 106.1~{\rm ohm^{-1}~cm^2~mol^{-1}}$
 $\lambda^{\rm o}({\rm Cl^-}) = 76.3~{\rm ohm^{-1}~cm^2~mol^{-1}}$
Thus $\lambda_{\rm m}^0({\rm MgCl_2}) = 106.1 + 2 \times 76.3$
 $= 258.7~{\rm ohm^{-1}~cm^2~mol^{-1}}$