

Informe Proyecto 2

El Problema de la Planificación de Unidades de Energía Térmica Análisis de Algoritmos II

Escuela de Ingeniería de Sistemas y Computación

Johan Sebastián Tombe Campo - 2110051 César Alejandro Grijalba Zuñiga - 2110035 Marcelo Alejandro García Millán - 1941427 Alejandro Chara García - 2010017

November 2023

1 ¿Entendimos el problema?

- Según la primera solución ofrecida:

	Período								
utpee	1	2	3						
1	150	350	320						
2		100	80						
3		50							

Efectivamente, cumple con todos los requisitos y su costo sería 191.

- Según la segundo solución ofrecida:

		-						
	Período							
utpee	1	2	3					
1	70	270	320					
2	80	180	80					
3		50						

Efectivamente, cumple con todos los requisitos y su costo es 202.

- y por ultimo tenemos esta posible solución:

		Período							
utpee	1	2	3						
1	70	350	320						
2	80	100	80						
3		50							

No cumple con la restricción del límite superior de ampliación, pues la UTPEE 1 del período 1 al 2 pasa de una potencia 70 a 350, teniendo un aumento de 280, lo cual supera los 200 que tenia definido como límite de ampliación.

2 El Modelo

Definimos el siguiente modelo para el problema de la planificación de unidades de la energía térmica (PUEnTe)

2.1 Parámetros

- J: representa el número de UTPEEs.
- K: representa el número de intervalos.
- E_j : representa el costo de encender la UTPEE j. $(\forall j \in \{1, ..., J\})$
- A_j : representa el costo de apagar la UTPEE j. $(\forall j \in \{1, ..., J\})$
- G_j : representa el indicador de si la UTPEE terminó generando energía o no en el ciclo anterior. j. $(\forall j \in \{1, ..., J\})$
- F_j : representa el costo fijo de la UTPEE j. $(\forall j \in \{1, \ldots, J\})$
- V_j : representa el costo variable j. $(\forall j \in \{1, ..., J\})$
- \underline{P}_{j} : representa el límite inferior de potencia de la UTPEE j. $(\forall j \in \{1, \dots, J\})$
- \overline{P}_{j} : representa el límite superior de potencia de la UTPEE j. $(\forall j \in \{1, \dots, J\})$
- Sup_j : representa el límite superior de ampliación de potencia de la UTPEE j. $(\forall j \in \{1, \dots, J\})$
- Inf_j : representa el límite inferior de la reducción de potencia de la UTPEE $j.~(\forall j \in \{1,\dots,J\})$
- P_i^0 : representa la potencia generada por la UTPEE j justo antes del primer período. $(\forall j \in \{1, \dots, J\})$
- D_k : representa la demanda global de energía para cada período k. $(\forall k \in \{1, \ldots, K\})$
- R_k : representa la reserva para cada período k. $(\forall k \in \{1, \dots, K\})$

2.2 Variables

- $P_{j,k}$: representa la energía que generó la UTPEE j en el período k. $(\forall j \in \{1, \dots, J\}, \forall k \in \{1, \dots, K\})$
- $On_{j,k}$: representa si la UTPEE j se encendió en el período k. $(\forall j \in \{1, ..., J\}, \forall k \in \{1, ..., K\})$
- $Off_{j,k}$: representa si la UTPEE j se apagó en el período k. $(\forall j \in \{1, \dots, J\}, \forall k \in \{1, \dots, K\})$
- $Gen_{j,k}$: representa si la UTPEE j generó energía en el período k. $(\forall j \in \{1, ..., J\}, \forall k \in \{1, ..., K\})$

- 2.3 Restricciones
- 2.3.1 No Negatividad

$$(P_{i,k} \ge 0), (\forall j \in \{1, \dots, J\}, \forall k \in \{1, \dots, K\})$$

2.3.2 Cuando una UTPEE está generando energía, la potencia generada no puede ser inferior a un mínimo permitido

$$(P_{j,k} \geq \underline{P}_j), (\forall j \in \{1,\ldots,J\}, \forall k \in \{1,\ldots,K\})$$

2.3.3 Cuando una UTPEE está generando energía, la potencia generada no puede ser superior a un máximo permitido

$$(P_{j,k} \leq \overline{P}_j), (\forall j \in \{1,\ldots,J\}, \forall k \in \{1,\ldots,K\})$$

2.3.4 Si la UTPEE j generó energía en períodos consecutivos, entonces el cambio de generación de potencia entre el período k-1 y el período k no puede ser superior a un límite de ampliación establecido

```
Require: \forall j \in \{1, \dots, J\}, \forall k \in \{2, \dots, K\}

if P_{j,k-1} > 0 \land P_{j,k} > 0 then

(P_{j,k} - P_{j,k-1}) \leq Sup_j

end if
```

```
Require: \forall j \in \{1, \dots, J\}, \forall k \in \{1, \dots, 1\} if P_j^0 > 0 \land P_{j,k} > 0 then (P_{j,k} - P_j^0) \leq Sup_j end if
```

2.3.5 Si la UTPEE j generó energía en períodos consecutivos, entonces el cambio de generación de potencia entre el período k-1 y el período k no puede ser inferior a un límite de reducción establecido

```
Require: \forall j \in \{1, \dots, J\}, \forall k \in \{2, \dots, K\}

if P_{j,k-1} > 0 \land P_{j,k} > 0 then

(P_{j,k-1} - P_{j,k}) \leq Inf_j

end if
```

```
Require: \forall j \in \{1, \dots, J\}, \forall k \in \{1, \dots, 1\} if P_j^0 > 0 \land P_{j,k} > 0 then (P_j^0 - P_{j,k}) \leq Inf_j end if
```

2.3.6 Si la UTPEE j NO generó energía en un período k-1 y SÍ generó energía en el período k, significa que la UTPEE j fue encendida en el período k

```
Require: \forall j \in \{1, \dots, J\}, \ \forall k \in \{2, \dots, K\}

if P_{j,k-1} = 0 \land P_{j,k} > 0 then

On_{j,k} = 1

else

On_{j,k} = 1

end if
```

```
Require: \forall j \in \{1, \dots, J\}, \ \forall k \in \{1, \dots, 1\} if P_j^0 = 0 \land P_{j,k} > 0 then On_{j,k} = 1 else On_{j,k} = 1 end if
```

2.3.7 Si la UTPEE j SÍ generó energía en un período k-1 y NO generó energía en el período k, significa que la UTPEE j fue apagada en el período k

```
 \begin{split} \mathbf{Require:} \ \forall j \in \{1, \dots, J\}, \, \forall k \in \{2, \dots, K\} \\ \mathbf{if} \ P_{j,k-1} > 0 \wedge P_{j,k} = 0 \ \mathbf{then} \\ Of f_{j,k} = 1 \\ \mathbf{else} \\ Of f_{j,k} = 1 \\ \mathbf{end} \ \mathbf{if} \end{split}
```

```
Require: \forall j \in \{1, \dots, J\}, \ \forall k \in \{1, \dots, 1\}

if P_j^0 > 0 \land P_{j,k} = 0 then

Off_{j,k} = 1

else

Off_{j,k} = 1

end if
```

2.3.8 Indicador de si la UTPEE j generó energía en el período k

```
Require: \forall j \in \{1, \dots, J\}, \forall k \in \{1, \dots, K\}

if P_{j,k} > 0 then

Gen_{j,k} = 1

else

Gen_{j,k} = 1

end if
```

2.3.9 La suma de la potencia de las UTPEEs en un período k debe ser igual a la demanda global de energía para ese período

$$\sum_{j=1}^{J} (P_{j,k}) = D_k, \forall k \in \{1, \dots, K\}$$

2.3.10 Indica la potencia total disponible en el período k

$$\sum_{j=1}^{J} (\overline{P}_j \times Gen_{j,k}) \ge (D_k + R_k), \forall k \in \{1, \dots, K\}$$

2.4 Función Objetivo

Se busca minimizar el costo de generación de energía respetando las restricciones anteriormente mencionadas

$$\sum_{j=1}^{J} \sum_{k=1}^{K} (F_j \times Gen_{j,k} + V_j \times P_{j,k} + E_j \times On_{j,k} + A_j \times Off_{j,k})$$

3 Pruebas

Se hizo uso de diferentes casos de prueba que definió el grupo con configuraciones que iban desde datos pequeños a otro de dimensión algo más grande, esto con el fin de evaluar el comportamiento del modelo y asegurar que los resultados arrojados eran correctos.

$$Entrada: J = 4, K = 10$$

Entrada: J=4, K=8

Table 1: Instancia 1 (J = 4, K = 8)

UTPEE j	1	2	3	4
E_j	10	48	50	25
A_j	0.5	0.24	0.25	0.48
G_j	0	0	0	0
F_j	5	10	6	3
V_j	0.5	0.1	0.6	0.3
P_j	20	40	50	25
\overline{P}_j	200	400	500	250
Sup_j	100	200	150	150
Inf_j	100	80	130	130
P_j^0	0	0	0	0

Período k	1	2	3	4	5	6	7	8
D_k	350	500	400	350	600	800	350	225
R_k	35	50	40	35	60	60	80	35

 $Salida: Costo = 821.73 \: (Soluci\'on\: \acute{O}ptima)$

Table 2: Instancia 2 (J = 4, K = 10)

UTPEE j	1	2	3	4
E_j	97	31	75	54
A_j	1.4	0.4	1.0	0.3
G_j	0	0	0	0
F_j	65	78	89	30
V_j	0.246	0.114	0.616	0.694
P_j	15	23	12	43
\overline{P}_j	337	452	379	372
Sup_j	388	390	130	248
Inf_j	101	50	107	162
P_j^0	0	0	0	0

Período k	1	2	3	4	5	6	7	8	9	10
D_k	873	358	424	746	372	363	872	380	788	655
R_k	33	116	91	103	120	23	39	115	45	53

 $Salida: Costo = 2951.892 \: (Soluci\'on\: \acute{O}ptima)$

Entrada: J=5, K=11

Table 3: Instancia 3 (J = 5, K = 11)

UTPEE j	1	2	3	4	5
E_j	60	120	38	95	50
A_j	1.8	0.6	0.8	1.9	0.8
G_j	0	0	0	0	
F_j	79	90	61	68	88
V_j	0.714	0.741	0.193	0.233	0.832
P_j	41	57	91	46	99
\overline{P}_j	588	565	256	396	270
Sup_j	72	290	383	128	188
Inf_j	222	104	180	142	159
P_j^0	0	0	0	0	

Período k	1	2	3	4	5	6	7	8	9	10	11
D_k	733	935	989	871	618	523	363	901	635	744	344
R_k	85	65	73	91	20	70	51	68	91	53	114

 $Salida: Costo = 4602.20 \; (Soluci\'on \, \acute{O}ptima)$

Entrada: J=7, K=15

Table 4: Instancia 4 (J = 7, K = 15)

UTPEE j	1	2	3	4	5	6	7
E_j	70	57	117	116	74	113	31
A_j	1.0	1.9	1.7	1.0	1.9	0.1	0.3
G_j	0	0	0	0	0	0	0
F_j	76	26	77	70	22	46	76
V_j	0.763	0.442	0.367	0.548	0.584	0.692	0.761
\underline{P}_j	41	50	85	53	54	64	93
$\left \begin{array}{c} \underline{P}_j \\ \overline{P}_j \end{array} \right $	169	383	287	408	353	555	429
Sup_j	385	349	261	82	230	200	365
Inf_j	215	254	56	177	114	89	258
P_j^0	0	0	0	0	0	0	0

Período k	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
D_k	840	839	850	445	761	960	987	366	823	726	852	759	407	901	711
R_k	76	31	45	53	30	47	53	115	35	41	23	59	48	100	58

 $Salida: Costo = 7240.983 \: (Soluci\'on\: \acute{O}ptima)$

Table 5: Instancia 5 (J = 18, K = 3)

UTPEE j	1	2	3	4	5	6	7	8	9
E_j	51	108	60	69	68	114	100	59	40
A_j	1.4	1.5	0.1	1.6	1.9	0.8	0.8	1.4	1.6
G_j	0	0	0	0	0	0	0	0	0
F_j	23	66	40	70	37	35	53	27	85
V_j	0.759	0.290	0.874	0.220	0.210	0.434	0.175	0.217	0.444
P_j	21	25	12	32	32	41	29	70	97
\overline{P}_j	529	522	196	163	235	183	317	193	371
Sup_j	225	302	213	281	381	265	80	60	276
Inf_j	284	299	187	166	218	118	138	104	161
P_j^0	0	0	0	0	0	0	0	0	0

UTPEE j	10	11	12	13	14	15	16	17	18
E_j	91	45	115	33	99	93	77	101	48
A_j	1.3	1.4	1.3	1.3	0.2	0.4	1.3	0.7	1.2
G_j	0	0	0	0	0	0	0	0	0
F_j	23	69	75	51	49	25	57	62	62
V_j	0.759	0.290	0.874	0.220	0.210	0.434	0.175	0.217	0.444
P_j	45	81	74	72	98	92	17	76	32
\overline{P}_j	527	378	286	422	419	521	550	223	401
Sup_j	178	110	95	294	55	233	328	229	367
Inf_j	228	95	192	77	79	192	269	191	204
P_j^0	0	0	0	0	0	0	0	0	0

Período k	1	2	3
D_k	958	570	787
R_k	115	63	93

 $Salida: Costo = 1256.705 \, (Soluci\'on \, \acute{O}ptima)$

4 Análisis de Resultados

Las pruebas realizaran arrojaron resultados óptimos, lo que demuestra que el modelo ha sido bien implementado, al ser un problema de programación lineal con variables enteras, tiene la limitación de que con entradas J y K muy grandes, no pueda encontrar solución en un tiempo factible.

5 Video Explicativo

El video explicativo se encuentra en el siguiente link: Link del Video

6 Conclusiones

En este proyecto hemos logrado desarrollar un modelo capaz de encontrar soluciones óptimas para diferentes instancias del problema, como se evidenció anteriormente en las salidas proporcionadas para diversas configuraciones de las UTPEEs y períodos.

Es claro que el punto clave en este modelo es la correcta implementación de restricciones que garanticen la viabilidad de las soluciones generadas y de acuerdo a las diferentes pruebas realizadas con los diferentes conjuntos de datos proporcionados en la Batería, logramos evidenciar que es posible garantizar soluciones optimas y eficientes con nuestro modelo.

Tambien se vale destacar que se logra comprender un modelo lo suficientemente flexible para adaptarse a instacias con amplia variacion en los parametros, que aunque en ocasiones pueda tomar tiempo esperar una respuesta, se logra quedar satisfecho.

En conclusión, se logró cumplir el objetivo de diseñar un modelo robusto y eficiente para abordar el problema de optimizacion en la generación de energía electrica, cabe aclarar que es importante continuar evaluando su desempeño y quizá lograr realizar mejores ajustes que permitan encontrar soluciones en mejores tiempos.