SIN 211 - Algoritmos e Estruturas de Dados

(Árvores Balanceadas)

Profo: Joelson Antônio dos Santos

Universidade Federal de Viçosa Instituto de Ciências Exatas e Tecnológicas Campus de Rio Paranaíba - MG

> ioelsonn.santos@gmail.com Sala: BBT 233

19 de junho de 2018

Aula de Hoje

- Árvores Balanceadas
 - Árvores n-árias
 - Árvore AVI

Arvores n-árias

- Em uma árvore *n*-ária, cada nó pode ter um número diferente de subárvores:
- Uma forma de implementação seria definir um número máximo fixo para o grau da árvore;
 - **Desvantagem:** Alguns ponteiros poderiam nunca ser utilizados; Qual a solução para isso?

Arvores n-árias

- Uma forma de solucionar esse problema é transformando uma árvore *n*-ária em uma árvore binária:
- Para isso os passos seguintes devem ser considerados:
 - O primeiro filho de um nó passa a ser o filho à esquerda na árvore binária.
 - Os demais filhos de um nó passam a ser filhos à direita do seu irmão imediato à esquerda.
 - O processo é repetido para cada nó da árvore.

Árvores n-árias

Conversão para árvore binária;

Arvores n-árias

 Para converter uma floresta basta considerar as raízes como nós irmãos;

- Uma árvore binária de pesquisa é sensível à ordem de inseção dos elementos;
- Diferentes árvores podem ser construídas dependendo da ordem de inserção, o que pode tornar a árvore eficiente ou não.
- **Exemplo:** Se fossem inseridos o conjunto de elementos $\{1, 2, 3, 4, 5, 6, 7\}$, como ficaria a árvore binária de pesquisa?

 E se fossem inseridos os elementos na ordem seguinte?

- E se fossem inseridos os elementos na ordem seguinte?
 - {4, 2, 6, 1, 3, 5, 7}

- E se fossem inseridos os elementos na ordem seguinte?
 - \bullet {4, 2, 6, 1, 3, 5, 7}

inserção: 1,2,3,4,5,6,7 inserção: 4,2,6,1,3,5,7

Arvores AVL

- A ideia é manter uma árvore sempre balanceada para qualquer nó da árvore;
- Dessa forma é evitado que a árvore utilize em excesso uma de suas subárvores:
- Manter a eficiência de operações sobre a estrutura da árvore:

Árvores AVL

- Criada por "A" delson-"V" elskii e "L" andis em 1962 e publicada no artigo "An algorithm for the organization of information".
- Também é conhecida como árvore balanceada pela altura.
- O balanceamento é feito ao executar uma operação de inserção ou remoção.

Arvores AVI

- Uma árvore AVL busca manter-se como uma árvore binária completa (ou quase completa), ou seja, os nós folha sempre estarão no último ou penúltimo nível
- Não é necessário balancear toda a árvore ao realizar uma operação, e sim na subárvore que ficar desbalanceada.

Arvores AVL

- Em uma árvore AVL, para todos os nós as alturas das suas duas subárvores diferem em, no máximo, uma unidade.
 - Exemplo:

Árvores AVL

- Para verificar se uma árvore está balanceada e respeita a restrição descrita anteriormente, é utilizado um conceito de fator de balanceamento (FB);
- O FB de um nó é calculado por:

$$FB = SAE - SAD \tag{1}$$

em que *SAE* é a altura da subárvore da esquerda e *SAD* é a altura da subárvore da direita;

Arvores AVL

- Se o FB de um nó possui o valor -1, 0 ou 1, o nó e suas subárvores estão balanceados:
- Qualquer nó folha possui FB igual à 0;
- Caso contrário, a árvore não é AVL e precisa ser balanceada:

Árvo<u>res AVL</u>

Qual o FB cada nó das árvores:

Árvo<u>res AVL</u>

• Qual o FB cada nó das árvores:

Árvores AVL - Inserção

Árvores AVL - Inserção

Operação de Balanceamento

Árvores AVL - Remoção

Inserção: 4, 6, 2 e 7.

Remoção: 2

Operação de Balanceamento

Árvores AVL

- Para manter uma árvore AVL, é necessário aplicar uma transformação na árvore que atenda às seguintes condições:
 - Percurso em-ordem na árvore transformada deve ser igual ao da árvore original.
 - A árvore transformada deve ser balanceada.
- O balanceamento é feito através de operações de rotação.

Árvores AVL - Inserção

- Inserir um novo nó na árvore.
 - Essa inserção pode ou não propriedade de balanceamento.
 - Caso não viole, operação finalizada.
 - Caso contrário, é necessário restaurar o balanço da árvore através de rotações.

• OBS: É necessário ter um algoritmo de ajusta a cada inserção feita para manter a árvore balanceada.

- Podemos dividir os problemas balanceamento em dois casos:
 - Caso 1: o nó raiz de uma sub árvore tem FB = +2 (-2) e tem um filho com FB = +1(-1).
 Ou seja, tanto o FB do pai quanto do filho tem mesmo sinal. Solução: rotação simples.
 - Caso 2: o nó raiz de uma sub árvore tem FB=+2 (-2) e tem um filho com FB = -1 (+1). Ou seja, os sinais dos FB do pai e do filho são opostos. Solução: rotação dupla.

- Quando FB do pai e filho possuem mesmo sinal, a solução utilizada é chamada de rotação simples sobre o nó que possui FB = +2 (ou -2).
 - Quando o FB é positivo, realizamos uma rotação à direita.
 - Quando o FB é negativo, realizamos uma rotação à esquerda.

Exemplo 1:

$$FB(8) = 1-3 = -2$$

$$FB(10) = -1$$

• Exemplo 2:

$$FB(8) = 3-1 = +2$$

$$FB(4) = +1$$

- Quando FB do pai e filho possuem sinais opostos, a solução utilizada é chamada de rotação dupla.
 - Primeiro é realizada uma rotação sobre o nó filho (FB = +1 ou -1) na direção apropriada:
 - Se FB negativo rotação à esquerda.
 - Se FB positivo rotação à direita.
 - Em seguida, a rotação acontece sobre o nó com FB = +2 (-2) na direção oposta.

Exemplo:

Exercícios

Balanceie a árvore:

Bibliografia Básica

- DROZDEK, Adam. Estrutura de Dados e Algoritmos em C++. Editora Pioneira Thomson Learning, 2005.
- Estrutura de dados descomplicada em linguagem C, CAPÍTULO 11 - André Ricardo Backes, https://www.evolution.com.br/epubreader/estruturade-dados-descomplicada-em-linguagem-c-1ed