$$\frac{dy}{dt} = f(t, y(t)), \quad a \le t \le b, \quad y(a) = \alpha.$$

- Given tolerance ε
- Given variable-step method φ(t, w, h):

```
w_0 = \alpha.

for j = 0, 1, \cdots,

choose step-size h_j = t_{j+1} - t_j,

set w_{j+1} = w_j + h_j \phi \left( t_j, w_j, h_j \right)
```

$$\frac{dy}{dt} = f(t, y(t)), \quad a \le t \le b, \quad y(a) = \alpha.$$

- Given tolerance ε
- Given variable-step method φ(t, w, h):

```
 \begin{aligned} & w_0 = \alpha, \\ & \text{for } j = 0, 1, \cdots, \\ & \text{choose step-size } h_j = t_{j+1} - t_j, \\ & \text{set } w_{j+1} = w_j + h_j \ \phi \left( t_j, w_j, h_j \right) \end{aligned}
```

Goal: Adaptively choose h_j to satisfy tolerance ϵ

$$\frac{dy}{dt} = f(t, y(t)), \quad a \le t \le b, \quad y(a) = \alpha.$$

- Given tolerance ε
- Given variable-step method $\phi(t, w, h)$:

$$\begin{array}{l} w_0 = \alpha. \\ \text{for } j = 0, 1, \cdots, \\ \text{choose step-size } h_j = t_{j+1} - t_j, \\ \text{set} \quad w_{j+1} = w_j + h_j \ \phi \left(t_j, w_j, h_j\right) \end{array}$$

Goal: Adaptively choose h_i to satisfy tolerance ϵ

only consider local truncation error (LTE)

$$\tau_{j+1}(h) = \frac{y(t_{j+1}) - y(t_j)}{h} - \phi(t_j, y(t_j), h) = O(h^n)$$

Estimate largest h for which

$$|\tau_{j+1}(h)| \lesssim \epsilon.$$

$$\frac{dy}{dt} = f(t, y(t)), \quad a \le t \le b, \quad y(a) = \alpha.$$

- Given tolerance ε
- Given variable-step method $\phi(t, w, h)$:

$$\begin{array}{l} w_0 = \alpha. \\ \text{for } j = 0, 1, \cdots, \\ \text{choose step-size } h_j = t_{j+1} - t_j, \\ \text{set} \quad w_{j+1} = w_j + h_j \ \phi \left(t_j, w_j, h_j\right) \end{array}$$

Goal: Adaptively choose h_j to satisfy tolerance ϵ

only consider local truncation error (LTE)

$$\tau_{j+1}(h) = \frac{y(t_{j+1}) - y(t_j)}{h} - \phi(t_j, y(t_j), h) = O(h^n)$$

Estimate largest h for which

$$| au_{j+1}(h)| \lesssim \epsilon.$$

Approach: Estimate $au_{j+1}(h)$ with order-(n+1) method

$$\widetilde{w}_{j+1} = \widetilde{w}_j + h \widetilde{\phi}(t_j, \widetilde{w}_j, h), \text{ for } j \geq 0.$$

► Assume (only for estimating LTE)

$$w_j \approx y(t_j), \quad \widetilde{w}_j \approx y(t_j)$$
 (1)

► Assume (only for estimating LTE)

$$w_j \approx y(t_j), \quad \widetilde{w}_j \approx y(t_j)$$
 (1)

 $ightharpoonup \phi(t, w, h)$ is order-n method

$$\begin{aligned} \tau_{j+1}(h) & & \overset{\text{def}}{=} & & \frac{y(t_{j+1}) - y(t_j)}{h} - \phi\left(t_j, y(t_j), h\right) \\ & \overset{w_j \approx y(t_j)}{\approx} & & \frac{y(t_{j+1}) - \left(w_j + h \phi\left(t_j, w_j, h\right)\right)}{h} \\ & = & & \frac{y(t_{j+1}) - w_{j+1}}{h} = O\left(h^n\right). \end{aligned}$$

Assume (only for estimating LTE)

$$w_j \approx y(t_j), \quad \widetilde{w}_j \approx y(t_j)$$
 (1)

 $ightharpoonup \phi(t, w, h)$ is order-n method

$$\begin{split} \tau_{j+1}(h) & \stackrel{\text{def}}{=} & \frac{y(t_{j+1}) - y(t_j)}{h} - \phi\left(t_j, y(t_j), h\right) \\ & \stackrel{w_j \approx y(t_j)}{\approx} & \frac{y(t_{j+1}) - \left(w_j + h \phi\left(t_j, w_j, h\right)\right)}{h} \\ & = & \frac{y(t_{j+1}) - w_{j+1}}{h} = O\left(h^n\right). \end{split}$$

 $ightharpoonup \widetilde{\phi}(t,w,h)$ is order-(n+1) method,

$$\begin{split} \widetilde{\tau}_{j+1}(h) & \stackrel{\text{def}}{=} & \frac{y(t_{j+1}) - y(t_j)}{h} - \widetilde{\phi}\left(t_j, y(t_j), h\right) \\ \widetilde{w}_j &\approx y(t_j) & \frac{y(t_{j+1}) - \left(\widetilde{w}_j + h \, \widetilde{\phi}\left(t_j, \, \widetilde{w}_j, \, h\right)\right)}{h} \\ &= & \frac{y(t_{j+1}) - \widetilde{w}_{j+1}}{h} = O\left(h^{n+1}\right). \end{split}$$

Assume (only for estimating LTE)

$$w_j \approx y(t_j), \quad \widetilde{w}_j \approx y(t_j)$$
 (1)

 $ightharpoonup \phi(t, w, h)$ is order-n method

$$\begin{split} \tau_{j+1}(h) & \stackrel{def}{=} & \frac{y(t_{j+1}) - y(t_j)}{h} - \phi\left(t_j, y(t_j), h\right) \\ & \stackrel{w_j \approx y(t_j)}{\approx} & \frac{y(t_{j+1}) - \left(w_j + h \phi\left(t_j, w_j, h\right)\right)}{h} \\ & = & \frac{y(t_{j+1}) - w_{j+1}}{h} = O\left(h^n\right). \end{split}$$

 $ightharpoonup \widetilde{\phi}(t, w, h)$ is order-(n+1) method,

$$\begin{split} \widetilde{\tau}_{j+1}(h) & \stackrel{\text{def}}{=} & \frac{y(t_{j+1}) - y(t_j)}{h} - \widetilde{\phi}\left(t_j, y(t_j), h\right) \\ \widetilde{w}_j &\approx y(t_j) & \frac{y(t_{j+1}) - \left(\widetilde{w}_j + h \, \widetilde{\phi}\left(t_j, \, \widetilde{w}_j, \, h\right)\right)}{h} \\ &= & \frac{y(t_{j+1}) - \widetilde{w}_{j+1}}{h} = O\left(h^{n+1}\right). \end{split}$$

therefore, with assumption (1)

$$\begin{array}{rcl} w_{j+1} & \approx & y(t_j) + h \, \phi \, \left(t_j, y(t_j), h \right) \\ \tau_{j+1}(h) & \approx & \frac{y(t_{j+1}) - w_{j+1}}{h} \\ & = & \frac{y(t_{j+1}) - \widetilde{w}_{j+1}}{h} + \frac{\widetilde{w}_{j+1} - w_{j+1}}{h} \\ & = & O \left(h^{n+1} \right) + \frac{\widetilde{w}_{j+1} - w_{j+1}}{h} = O \left(h^n \right) \end{array}$$

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

LTE estimate: $au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

▶ Since $\tau_{i+1}(h) = O(h^n)$, assume

 $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^\mathit{n}$ where K is independent of h .

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

- Since $\tau_{i+1}(h) = O(h^n)$, assume
 - $au_{j+1}(h) pprox \mathit{K} h^n$ where K is independent of h.
- ► K should satisfy

$$Kh^n \approx \frac{\widetilde{w}_{j+1} - w_{j+1}}{h} \quad (1)$$

- Choose new step-size q h so LTE satisfies given tolerance ε:
- $| au_{j+1}(q h)| \leq \epsilon$
- Equation (1) implies

$$\left|q^n\frac{\widetilde{w}_{j+1}-w_{j+1}}{h}\right|\approx \left|K\left(q\,h\right)^n\right|\approx \left| au_{j+1}\left(q\,h\right)\right|\lesssim \epsilon$$

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

Since $\tau_{j+1}(h) = O(h^n)$, assume

 $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^\mathit{n}$ where K is independent of h .

K should satisfy

$$Kh^n pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$
 (1)

- Choose new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| \le \epsilon$
- ► Equation (1) implies

$$\left|q^{n} \frac{\widetilde{w}_{j+1} - w_{j+1}}{h} \right| \approx \left| K \left(q h \right)^{n} \right| \approx \left| \tau_{j+1}(q h) \right| \lesssim \epsilon$$

compute a <u>conservative</u> value for q:

$$q = \left| \frac{\epsilon h}{2 \left(\widetilde{w}_{j+1} - w_{j+1} \right)} \right|^{\frac{1}{n}}.$$

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

- Since $\tau_{i+1}(h) = O(h^n)$, assume
 - $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^\mathit{n}$ where K is independent of h .
- K should satisfy

$$Kh^n \approx \frac{\widetilde{w}_{j+1} - w_{j+1}}{h} \quad (1)$$

- Choose new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q | h)| \le \epsilon$
- ► Equation (1) implies

$$\left|q^{n} \frac{\widetilde{w}_{j+1} - w_{j+1}}{h} \right| \approx \left| K \left(q h \right)^{n} \right| \approx \left| \tau_{j+1} (q h) \right| \lesssim \epsilon$$

compute a <u>conservative</u> value for q:

$$q = \left| \frac{\epsilon h}{2 \left(\widetilde{w}_{j+1} - w_{j+1} \right)} \right|^{\frac{1}{n}}.$$

if q < 1, give up current w_{j+1} ; otherwise keep it and set j = j + 1.

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

- Since $\tau_{i+1}(h) = O(h^n)$, assume
 - $au_{j+1}(h) pprox K \, h^n \quad ext{where } K ext{ is independent of } h.$
- K should satisfy

$$Kh^n pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$
 (1)

- ► Choose new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- ► Equation (1) implies

$$\left|q^{n} \frac{\widetilde{w}_{j+1} - w_{j+1}}{h} \right| \approx \left| K \left(q h \right)^{n} \right| \approx \left| \tau_{j+1}(q h) \right| \lesssim \epsilon$$

compute a <u>conservative</u> value for *q*:

$$q = \left| \frac{\epsilon h}{2 \left(\widetilde{w}_{j+1} - w_{j+1} \right)} \right|^{\frac{1}{n}}.$$

- if q < 1, give up current w_{j+1} ; otherwise keep it
- and set j = j + 1.

 make restricted step-size change:

$$h = \begin{cases} 0.1 h, & \text{if } q \le 0.1, \\ 4 h, & \text{if } q \ge 4, \\ q h, & \text{if } 0.1 < q < 4. \end{cases}$$

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

- Since $\tau_{i+1}(h) = O(h^n)$, assume
 - $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^\mathit{n}$ where K is independent of h .
- K should satisfy

$$K h^n pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$
 (1)

- Choose new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- ► Equation (1) implies

$$\left|q^{n} \frac{\widetilde{w}_{j+1} - w_{j+1}}{h} \right| \approx \left| K \left(q h \right)^{n} \right| \approx \left| \tau_{j+1}(q h) \right| \lesssim \epsilon$$

compute a <u>conservative</u> value for *q*:

$$q = \left| \frac{\epsilon h}{2 \left(\widetilde{w}_{j+1} - w_{j+1} \right)} \right|^{\frac{1}{n}}.$$

- if q < 1, give up current w_{j+1} ; otherwise keep it
- and set j = j + 1.

 make restricted step-size change:

$$h = \begin{cases} 0.1 h, & \text{if } q \le 0.1, \\ 4 h, & \text{if } q \ge 4, \\ q h, & \text{if } 0.1 < q < 4. \end{cases}$$

step-size can't be too big: $h = \min(h, h_{\max})$

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

Since $\tau_{i+1}(h) = O(h^n)$, assume

 $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^\mathit{n}$ where K is independent of h .

K should satisfy

$$Kh^n pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$
 (1)

- Choose new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- Equation (1) implies

$$\left|q^{n} \frac{\widetilde{w}_{j+1} - w_{j+1}}{h}\right| \approx \left|K \left(q h\right)^{n}\right| \approx \left|\tau_{j+1}(q h)\right| \lesssim \epsilon$$

compute a <u>conservative</u> value for *q*:

$$q = \left| \frac{\epsilon h}{2 \left(\widetilde{w}_{j+1} - w_{j+1} \right)} \right|^{\frac{1}{n}}.$$

- if q < 1, give up current w_{j+1} ; otherwise keep it
- and set j = j + 1.

 make restricted step-size change:

$$h = \begin{cases} 0.1 h, & \text{if } q \le 0.1, \\ 4 h, & \text{if } q \ge 4, \\ q h, & \text{if } 0.1 < q < 4. \end{cases}$$

- step-size can't be too big: $h = \min(h, h_{max})$
- step-size can't be too small:

if $h < h_{\min}$ then declare failure.

LTE estimate:
$$au_{j+1}(h) pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$

- Since $\tau_{i+1}(h) = O(h^n)$, assume
 - $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^\mathit{n}$ where K is independent of h .
- ► K should satisfy

$$K h^n pprox rac{\widetilde{w}_{j+1} - w_{j+1}}{h}$$
 (1)

- **Choose** new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- Equation (1) implies

$$\left|q^{n} \frac{\widetilde{w}_{j+1} - w_{j+1}}{h}\right| \approx \left|K \left(q h\right)^{n}\right| \approx \left|\tau_{j+1}(q h)\right| \lesssim \epsilon$$

compute a conservative value for q:

$$q = \left| \frac{\epsilon h}{2 \left(\widetilde{w}_{j+1} - w_{j+1} \right)} \right|^{\frac{1}{n}}.$$

- if q < 1, give up current w_{j+1} ; otherwise keep it
- and set j = j + 1.

 make restricted step-size change:

$$h = \begin{cases} 0.1 h, & \text{if } q \le 0.1, \\ 4 h, & \text{if } q \ge 4, \\ q h, & \text{if } 0.1 < q < 4. \end{cases}$$

- step-size can't be too big: $h = \min(h, h_{max})$
- step-size can't be too small:

if $h < h_{\min}$ then declare failure.

Runge-Kutta-Fehlberg: 4th order method, 5th order estimate

$$\begin{array}{rcl} w_{j+1} & = & w_j + \frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5, \\ \widetilde{w}_{j+1} & = & w_j + \frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6, \quad \text{where} \end{array}$$

Runge-Kutta-Fehlberg: 4th order method, 5th order estimate

$$\begin{array}{lll} w_{j+1} & = & w_j + \frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5, \\ \widetilde{w}_{j+1} & = & w_j + \frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6, \quad \text{where} \\ k_1 & = & hf(t_i, w_i), \end{array}$$

Runge-Kutta-Fehlberg: 4th order method, 5th order estimate
$$w_{j+1} = w_j + \frac{25}{216}k_1 + \frac{1408}{2565}k_3 + \frac{2197}{4104}k_4 - \frac{1}{5}k_5,$$

$$\widetilde{w}_{j+1} = w_j + \frac{16}{135}k_1 + \frac{6656}{12825}k_3 + \frac{28561}{56430}k_4 - \frac{9}{50}k_5 + \frac{2}{55}k_6, \text{ where}$$

$$k_1 = hf(t_j, w_j),$$

$$k_2 = hf\left(t_j + \frac{h}{4}, w_j + \frac{1}{4}k_1\right),$$

$$k_3 = hf\left(t_i + \frac{3h}{4}, w_i + \frac{3}{4}k_1 + \frac{9}{4}k_2\right).$$

$$k_3 = hf\left(t_j + \frac{3h}{8}, w_j + \frac{3}{32}k_1 + \frac{9}{32}k_2\right),$$

$$k_4 = hf\left(t_j + \frac{12h}{13}, w_j + \frac{1932}{2107}k_1 - \frac{7200}{2107}k_1\right)$$

$$k_4 = h f \left(t_j + \frac{12h}{13}, w_j + \frac{1932}{2197} k_1 - \frac{7200}{2197} k_2 + \frac{7296}{2197} k_3 \right),$$

$$k_5 = h f \left(t_j + h, w_j + \frac{439}{216} k_1 - 8 k_2 + \frac{3680}{513} k_3 - \frac{845}{4104} k_4 \right),$$

$$k_6 = h f \left(t_j + \frac{h}{2}, w_j - \frac{8}{27} k_1 + 2 k_2 - \frac{3544}{2565} k_3 + \frac{1859}{4104} k_4 - \frac{11}{40} k_5 \right).$$

Runge-Kutta-Fehlberg: solution plots

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

Runge-Kutta-Fehlberg: solution plots

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

5th order method indeed more accurate at beginning

Runge-Kutta-Fehlberg: truncation errors

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

actual
$$\stackrel{def}{=} \left| \frac{y(t_j) - w_j}{h_i} \right|$$
, estimate $\stackrel{def}{=} \left| \frac{\widetilde{w}_j - w_j}{h_i} \right|$.

Runge-Kutta-Fehlberg: truncation errors

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

$$\mathbf{actual} \stackrel{def}{=} \left| \frac{y(t_j) - w_j}{h_j} \right|, \quad \mathbf{estimate} \stackrel{def}{=} \left| \frac{\widetilde{w}_j - w_j}{h_j} \right|.$$

Runge-Kutta-Fehlberg: truncation errors

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1$$
, $0 \le t \le 2$, $y(0) = 0.5$.

$$\mathbf{actual} \stackrel{def}{=} \left| \frac{y(t_j) - w_j}{h_j} \right|, \quad \mathbf{estimate} \stackrel{def}{=} \left| \frac{\widetilde{w}_j - w_j}{h_j} \right|.$$

No indication 5th order method \widetilde{w}_j stays more accurate over time

OdeDemo in matlab

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

► Choose positive integer *N*, and select mesh points

$$t_j = a + j h$$
, for $j = 0, 1, 2, \dots N$, where $h = (b - a)/N$.

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

► Choose positive integer *N*, and select mesh points

$$t_j = a + j h$$
, for $j = 0, 1, 2, \dots N$, where $h = (b - a)/N$.

▶ For each $0 \le j \le N - 1$, integrate ODE:

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} \left(\frac{dy}{dt}\right) dt = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt.$$

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

► Choose positive integer *N*, and select mesh points

$$t_j = a + j h$$
, for $j = 0, 1, 2, \cdots N$, where $h = (b - a)/N$.

▶ For each $0 \le j \le N-1$, integrate ODE:

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} \left(\frac{dy}{dt}\right) dt = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt.$$

- Approximate the integral with quadratures on function values
 - $ightharpoonup f(t_{j+1}, y(t_{j+1})),$
 - $\qquad \qquad f(t_j,y(t_j)),$
 - $ightharpoonup f(t_{j-1}, y(t_{j-1})),$
 - . :

Examples: Constant approximations

$$f(t, y(t)) \approx f(t_j, y(t_j)),$$
 so
$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx h f(t_j, y(t_j)),$$

leading to Euler's method (explicit)

$$\label{eq:wj+1} \textit{w}_{\textit{j}+1} = \textit{w}_{\textit{j}} + \textit{h}\,\textit{f}(\textit{t}_{\textit{j}}, \textit{w}_{\textit{j}}), \quad \text{for} \quad \textit{j} = 0, 1, \cdots$$

Examples: Constant approximations

$$f(t,y(t)) \approx \boxed{f(t_j,y(t_j)),}$$
 so
$$y(t_{j+1}) - y(t_j) = \int_{t_i}^{t_{j+1}} f(t,y(t)) dt \approx h f(t_j,y(t_j)),$$

leading to Euler's method (explicit)

$$\label{eq:wj+1} \textit{w_{j}} + \textit{h} \, \textit{$f(t_{j}, w_{j})$}, \quad \text{for} \quad \textit{$j = 0, 1, \cdots$}$$

$$f(t, y(t)) \approx \boxed{f(t_j, y(t_j)),} \text{ so } f(t, y(t)) \approx \boxed{f(t_{j+1}, y(t_{j+1})),} \text{ so }$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx h f(t_j, y(t_j)),$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx h f(t_{j+1}, y(t_{j+1})),$$

leading to backward Euler's method (implicit)

$$w_{j+1} = w_j + h f(t_{j+1}, w_{j+1}), \text{ for } j = 0, 1, \cdots$$

Both first order methods, but being implicit means much more work

Examples: Linear approximations

with points
$$f(t_j,y(t_j))$$
 and $\boxed{f(t_{j-1},y(t_{j-1}))}$
$$f(t,y(t)) \approx \frac{(t-t_{j-1})f(t_j,y(t_j))+(t_j-t)f(t_{j-1},y(t_{j-1}))}{h}$$

$$\implies y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt$$

$$\approx \frac{h}{2} \left(3f(t_j, y(t_j)) - f(t_{j-1}, y(t_{j-1})) \right)$$

leading to Adams-Bashforth two-step explicit method

$$w_{j+1} = w_j + \frac{h}{2} \left(3f(t_j, w_j) - f(t_{j-1}, w_{j-1}) \right)$$

for
$$j=1,2,\cdots$$

Examples: Linear approximations

with points
$$f(t_j, y(t_j))$$
 and $\left \lceil f(t_{j-1}, y(t_{j-1})) \right \rceil$

$$f(t, y(t)) \approx \frac{(t - t_{j-1})f(t_j, y(t_j)) + (t_j - t)f(t_{j-1}, y(t_{j-1}))}{h}$$

$$\implies y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt$$
$$\approx \frac{h}{2} \left(3f(t_j, y(t_j)) - f(t_{j-1}, y(t_{j-1})) \right)$$

leading to Adams-Bashforth two-step explicit method

$$w_{j+1} = w_j + \frac{h}{2} \left(3f(t_j, w_j) - f(t_{j-1}, w_{j-1}) \right)$$

for $j=1,2,\cdots$

with points
$$f(t_j, y(t_j))$$
 and $f(t_{j+1}, y(t_{j+1}))$

$$f(t,y(t)) \approx \frac{(t-t_j)f(t_{j+1},y(t_{j+1})) + (t_{j+1}-t)f(t_j,y(t_j))}{h}$$

$$\Rightarrow y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt$$
$$\approx \frac{h}{2} \left(f(t_j, y(t_j)) + f(t_{j+1}, y(t_{j+1})) \right)$$

leading to mid-point method (one-step implicit)

$$w_{j+1} = w_j + \frac{h}{2} \left(f(t_j, w_j) + f(t_{j+1}, w_{j+1}) \right)$$

Examples: Linear approximations

with points
$$f(t_j, y(t_j))$$
 and $\boxed{f(t_{j-1}, y(t_{j-1}))}$
$$f(t, y(t)) \approx \frac{(t - t_{j-1})f(t_j, y(t_j)) + (t_j - t)f(t_{j-1}, y(t_{j-1}))}{h}$$

$$\implies y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt$$

$$\approx \frac{h}{2} \left(3f(t_j, y(t_j)) - f(t_{j-1}, y(t_{j-1})) \right)$$

leading to Adams-Bashforth two-step explicit method

$$w_{j+1} = w_j + \frac{h}{2} \left(3f(t_j, w_j) - f(t_{j-1}, w_{j-1}) \right)$$

for
$$j = 1, 2, \cdots$$

with points
$$f(t_j,y(t_j))$$
 and $\boxed{f(t_{j+1},y(t_{j+1}))}$
$$f(t,y(t))\approx \frac{(t-t_j)f(t_{j+1},y(t_{j+1}))+(t_{j+1}-t)f(t_j,y(t_j))}{t}$$

$$\Rightarrow y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt$$
$$\approx \frac{h}{2} \left(f(t_j, y(t_j)) + f(t_{j+1}, y(t_{j+1})) \right)$$

leading to mid-point method (one-step implicit)

$$w_{j+1} = w_j + \frac{h}{2} \left(f(t_j, w_j) + f(t_{j+1}, w_{j+1}) \right)$$

or $i = 1, 2, \cdots$

Both 2nd order methods, but being implicit means much more work

m-th order Methods

explicit m-step

$$P(t)$$
 interpolates $f(t, y(t))$ at $f(t_j, y(t_j))$, $f(t_{j-1}, y(t_{j-1})), \cdots, f(t_{j-m+1}, y(t_{j-m+1}))$

$$\begin{split} y(t_{j+1}) - y(t_j) &= \int_{t_j}^{t_{j+1}} f(t, y(t)) \, dt \approx \int_{t_j}^{t_{j+1}} P(t) \, dt \\ &\stackrel{def}{=} h \left(b_{m-1} f(t_j, y(t_j)) + b_{m-2} f(t_{j-1}, y(t_{j-1})) \right) \\ &+ \dots + b_0 f(t_{j-m+1}, y(t_{j-m+1})) \end{split}$$

leading to *explicit m*-point method, $j = \text{m-1,m,m+1,} \cdots$

$$w_{j+1} = w_j + h \left(b_{m-1} f(t_j, w_j) + b_{m-2} f(t_{j-1}, w_{j-1}) + \dots + b_0 f(t_{j-m+1}, w_{j-m+1}) \right)$$

implicit (m-1)-step

$$P(t) \text{ interpolates } f(t, y(t)) \text{ at } \boxed{f(t_{j+1}, y(t_{j+1}))},$$

$$f(t_j, y(t_j)), \cdots, f(t_{j-m+2}, y(t_{j-m+2}))$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx \int_{t_j}^{t_{j+1}} P(t) dt$$

$$\stackrel{def}{=} h \left(b_m f(t_{j+1}, y(t_{j+1})) + b_{m-1} f(t_j, y(t_j)) + \cdots + b_0 f(t_{j-m+2}, y(t_{j-m+2})) \right)$$

implicit m-1-point method, $j = m-1, m, m+1, \cdots$

$$\begin{aligned} w_{j+1} &= w_j + h\left(b_{m-1}f(t_{j+1}, w_{j+1}) + b_{m-2}f(t_j, w_j)\right. \\ &+ b_{m-3}f(t_{j-1}, w_{j-1}) + \dots + b_0f(t_{j-m+2}, w_{j-m+2}) \end{aligned}$$

explicit m-step

$$P(t)$$
 interpolates $f(t, y(t))$ at $f(t_j, y(t_j))$, $f(t_{j-1}, y(t_{j-1}))$, ..., $f(t_{j-m+1}, y(t_{j-m+1}))$

$$\begin{split} y(t_{j+1}) - y(t_j) &= \int_{t_j}^{t_{j+1}} f(t, y(t)) \, dt \approx \int_{t_j}^{t_{j+1}} P(t) \, dt \\ &\stackrel{def}{=} h \left(b_{m-1} f(t_j, y(t_j)) + b_{m-2} f(t_{j-1}, y(t_{j-1})) \right. \\ &+ \dots + b_0 f(t_{j-m+1}, y(t_{j-m+1})) \end{split}$$

leading to explicit m-point method, $i = m-1, m, m+1, \cdots$

$$w_{j+1} = w_j + h (b_{m-1}f(t_j, w_j) + b_{m-2}f(t_{j-1}, w_{j-1}) + \dots + b_0f(t_{j-m+1}, w_{j-m+1}))$$

implicit (m-1)-step

$$P(t) \text{ interpolates } f(t, y(t)) \text{ at } \boxed{f(t_{j+1}, y(t_{j+1}))},$$

$$f(t_j, y(t_j)), \cdots, f(t_{j-m+2}, y(t_{j-m+2}))$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx \int_{t_j}^{t_{j+1}} P(t) dt$$

$$\stackrel{def}{=} h \left(b_m f(t_{j+1}, y(t_{j+1})) + b_{m-1} f(t_j, y(t_j)) + \cdots + b_0 f(t_{j-m+2}, y(t_{j-m+2})) \right)$$

implicit m-1-point method, $i = m-1, m, m+1, \cdots$

$$\begin{aligned} & _{1}f(t_{j}, w_{j}) + b_{m-2}f(t_{j-1}, w_{j-1}) \\ & + \cdots + b_{0}f(t_{j-m+1}, w_{j-m+1})) \end{aligned} \qquad \begin{aligned} & w_{j+1} = w_{j} + h\left(b_{m-1}f(t_{j+1}, w_{j+1}) + b_{m-2}f(t_{j}, w_{j}) + b_{m-3}f(t_{j-1}, w_{j-1}) + \cdots + b_{0}f(t_{j-m+2}, w_{j-m+2}) \end{aligned}$$

4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}=w_j+\frac{h}{24}\left(55f(t_j,w_j)-59f(t_{j-1},w_{j-1})+37f(t_{j-2},w_{j-2})-9f(t_{j-3},w_{j-3})\right).$$

$$P(t) \quad \text{interpolates} \quad f(t, y(t)) \quad \text{at} \quad f(t_j, y(t_j)), \\ f(t_{j-1}, y(t_{j-1})), \cdots, \boxed{f(t_{j-m+1}, y(t_{j-m+1}))}$$

$$\begin{split} P(t) & \text{ interpolates } & f(t,y(t)) & \text{ at } & f(t_j,y(t_j)), \\ f(t_{j-1},y(t_{j-1})), & \cdots, & \boxed{f(t_{j-m+1},y(t_{j-m+1}))} \\ \\ y(t_{j+1}) & - y(t_j) &= \int_{t_j}^{t_{j+1}} f(t,y(t)) \, dt \approx \int_{t_j}^{t_{j+1}} P(t) \, dt \\ &\stackrel{def}{=} h \left(b_{m-1} f(t_j,y(t_j)) + b_{m-2} f(t_{j-1},y(t_{j-1})) \\ & + \cdots + b_0 f(t_{i-m+1},y(t_{j-m+1})) \right) \end{split}$$

explicit m-step

$$\begin{split} &P(t) \quad \text{interpolates} \quad f(t,y(t)) \quad \text{at} \quad f(t_j,y(t_j)), \\ &f(t_{j-1},y(t_{j-1})), \, \cdots, \left\lceil f(t_{j-m+1},y(t_{j-m+1})) \right\rceil \\ &y(t_{j+1}) - y(t_j) = \int_{t_i}^{t_{j+1}} f(t,y(t)) \, dt \approx \int_{t_i}^{t_{j+1}} P(t) \, dt \end{split}$$

$$\stackrel{\text{def}}{=} h \left(b_{m-1} f(t_j, y(t_j)) + b_{m-2} f(t_{j-1}, y(t_{j-1})) + \dots + b_n f(t_{j-1}, y(t_{j-1})) \right)$$

$$+\cdots+b_0f(t_{j-m+1},y(t_{j-m+1})))$$

leading to <code>explicit m-point method</code>, $j = \text{m-1,m,m+1,} \cdot \cdot \cdot$

$$w_{j+1} = w_j + h \left(b_{m-1} f(t_j, w_j) + b_{m-2} f(t_{j-1}, w_{j-1}) + \dots + b_0 f(t_{i-m+1}, w_{i-m+1}) \right)$$

explicit m-step

$$P(t) \quad \text{interpolates} \quad f(t,y(t)) \quad \text{at} \quad f(t_j,y(t_j))$$

$$f(t_{j-1},y(t_{j-1})), \cdots, \boxed{f(t_{j-m+1},y(t_{j-m+1}))}$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx \int_{t_j}^{t_{j+1}} P(t) dt$$

$$\stackrel{\text{def}}{=} h \left(b_{m-1} f(t_j, y(t_j)) + b_{m-2} f(t_{j-1}, y(t_{j-1})) + \dots + b_0 f(t_{j-m+1}, y(t_{j-m+1})) \right)$$

leading to explicit m-point method, $j = \text{m-1,m,m+1,} \cdot \cdot \cdot$

$$w_{j+1} = w_j + h (b_{m-1}f(t_j, w_j) + b_{m-2}f(t_{j-1}, w_{j-1}) + \dots + b_0f(t_{j-m+1}, w_{j-m+1}))$$

$$P(t)$$
 interpolates $f(t,y(t))$ at $\boxed{f(t_{j+1},y(t_{j+1}))}$, $f(t_j,y(t_j)),\cdots,f(t_{j-m+2},y(t_{j-m+2}))$

explicit m-step

$$P(t) \quad \text{interpolates} \quad f(t,y(t)) \quad \text{at} \quad f(t_j,y(t_j))$$

$$f(t_{j-1},y(t_{j-1})), \cdots, \left \lceil f(t_{j-m+1},y(t_{j-m+1})) \right \rceil$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx \int_{t_j}^{t_{j+1}} P(t) dt$$

$$\stackrel{\text{def}}{=} h \left(b_{m-1} f(t_j, y(t_j)) + b_{m-2} f(t_{j-1}, y(t_{j-1})) + \dots + b_0 f(t_{j-m+1}, y(t_{j-m+1})) \right)$$

leading to explicit m-point method, j= m-1,m,m+1, $\cdot \cdot \cdot$

$$w_{j+1} = w_j + h \left(b_{m-1} f(t_j, w_j) + b_{m-2} f(t_{j-1}, w_{j-1}) + \dots + b_0 f(t_{j-m+1}, w_{j-m+1}) \right)$$

$$P(t) \text{ interpolates } f(t, y(t)) \text{ at } \boxed{f(t_{j+1}, y(t_{j+1}))},$$

$$f(t_j, y(t_j)), \cdots, f(t_{j-m+2}, y(t_{j-m+2}))$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx \int_{t_j}^{t_{j+1}} P(t) dt$$

$$\stackrel{\text{def}}{=} h \left(b_m f(t_{j+1}, y(t_{j+1})) + b_{m-1} f(t_j, y(t_j)) + \cdots + b_0 f(t_{j-m+2}, y(t_{j-m+2})) \right)$$

explicit m-step

$$P(t)$$
 interpolates $f(t, y(t))$ at $f(t_j, y(t_j))$, $f(t_{j-1}, y(t_{j-1})), \cdots, f(t_{j-m+1}, y(t_{j-m+1}))$

$$\begin{split} y(t_{j+1}) - y(t_j) &= \int_{t_j}^{t_{j+1}} f(t, y(t)) \, dt \approx \int_{t_j}^{t_{j+1}} P(t) \, dt \\ &\stackrel{def}{=} h \left(b_{m-1} f(t_j, y(t_j)) + b_{m-2} f(t_{j-1}, y(t_{j-1})) \right) \\ &+ \dots + b_0 f(t_{j-m+1}, y(t_{j-m+1})) \end{split}$$

leading to explicit m-point method, $i = m-1, m, m+1, \cdots$

$$w_{j+1} = w_j + h (b_{m-1}f(t_j, w_j) + b_{m-2}f(t_{j-1}, w_{j-1}) + \dots + b_0f(t_{j-m+1}, w_{j-m+1}))$$

implicit (m-1)-step

$$P(t) \text{ interpolates } f(t, y(t)) \text{ at } \boxed{f(t_{j+1}, y(t_{j+1}))}.$$

$$f(t_j, y(t_j)), \cdots, f(t_{j-m+2}, y(t_{j-m+2}))$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} f(t, y(t)) dt \approx \int_{t_j}^{t_{j+1}} P(t) dt$$

$$\stackrel{\text{def}}{=} h \left(b_m f(t_{j+1}, y(t_{j+1})) + b_{m-1} f(t_j, y(t_j)) + \cdots + b_0 f(t_{j-m+2}, y(t_{j-m+2})) \right)$$

implicit m-1-point method, i = m-1.m.m+1...

$$\begin{array}{ll} _{1}f(t_{j},w_{j}) + b_{m-2}f(t_{j-1},w_{j-1}) & w_{j+1} = w_{j} + h\left(b_{m-1}f(t_{j+1},w_{j+1}) + b_{m-2}f(t_{j},w_{j})\right) \\ + \cdots + b_{0}f(t_{j-m+1},w_{j-m+1})) & + b_{m-3}f(t_{j-1},w_{j-1}) + \cdots + b_{0}f(t_{j-m+2},w_{j-m+2})) \end{array}$$

4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

$$\begin{array}{c|cccc} P(t) & \text{interpolates} & f(t,y(t)) & \text{at} & f(t_j,y(t_j)), \\ f(t_{j-1},y(t_{j-1})), & \cdots, & f(t_{j-m+1},y(t_{j-m+1})) \end{array}$$

$$\begin{split} P(t) & \text{ interpolates } & f(t,y(t)) & \text{ at } & f(t_j,y(t_j)), \\ f(t_{j-1},y(t_{j-1})), & \cdots, & \boxed{f(t_{j-m+1},y(t_{j-m+1}))} \\ \\ f(t,y(t)) & = P(t) + R(t) \\ R(t) & = \frac{f^{(m)}\left(\xi_t,y(\xi_t)\right)}{m!} & \prod_{k=j-m+1}^{j} (t-t_k) \end{split}$$

$$\begin{split} &P(t) \quad \text{interpolates} \quad f(t,y(t)) \quad \text{at} \quad f(t_j,y(t_j)), \\ &f(t_{j-1},y(t_{j-1})), \cdots, \boxed{f(t_{j-m+1},y(t_{j-m+1}))} \\ & f(t,y(t)) = P(t) + R(t) \\ & R(t) = \frac{f^{(m)}\left(\xi_t,y(\xi_t)\right)}{m!} \quad \prod_{k=j-m+1}^{j} \left(t-t_k\right) \\ & y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} \left(P(t) + R(t)\right) \, dt \\ & \stackrel{\text{def}}{=} h\left(b_{m-1}f(t_j,y(t_j)) + b_{m-2}f(t_{j-1},y(t_{j-1})) + \cdots + b_0f(t_{j-m+1},y(t_{j-m+1}))\right) + \int_{t_j}^{t_{j+1}} R(t) \, dt \end{split}$$

$$\begin{split} P(t) & \text{ interpolates } & f(t,y(t)) & \text{ at } & f(t_j,y(t_j)), \\ f(t_{j-1},y(t_{j-1})), & \cdots, & f(t_{j-m+1},y(t_{j-m+1})) \\ \\ & f(t,y(t)) = P(t) + R(t) \\ & R(t) = \frac{f^{(m)}\left(\xi_t,y(\xi_t)\right)}{m!} & \prod_{k=j-m+1}^{j} \left(t-t_k\right) \\ & y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} \left(P(t) + R(t)\right) \, dt \\ & \stackrel{\text{def}}{=} h\left(b_{m-1}f(t_j,y(t_j)) + b_{m-2}f(t_{j-1},y(t_{j-1})) \right) \\ & + \cdots + b_0 f(t_{j-m+1},y(t_{j-m+1}))) + \int_{t_j}^{t_{j+1}} R(t) \, dt \\ \\ & \mathbf{LTE} \overset{\text{def}}{=} \tau_{j+1} \left(h\right) = \frac{1}{h} \int_{t_j}^{t_{j+1}} R(t) \, dt \\ & = \frac{1}{m!} \frac{1}{h} \int_{t_j}^{t_{j+1}} f^{(m)}\left(\xi_t,y(\xi_t)\right) \prod_{k=j-m+1}^{j} \left(t-t_k\right) \, dt \\ & = \frac{book}{m!} \frac{f^{(m)}\left(\xi,y(\xi)\right)}{m!} \int_{t_j}^{t_{j+1}} \prod_{k=j-m+1}^{j} \left(t-t_k\right) \, dt \end{split}$$

explicit m-step

$$\begin{split} P(t) & \text{ interpolates } & f(t,y(t)) & \text{ at } & f(t_j,y(t_j)), \\ f(t_{j-1},y(t_{j-1})), & \cdots, & f(t_{j-m+1},y(t_{j-m+1})) \\ \\ & f(t,y(t)) = P(t) + R(t) \\ & R(t) = \frac{f^{(m)}\left(\xi_t,y(\xi_t)\right)}{m!} \prod_{k=j-m+1}^{j} (t-t_k) \\ & y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} \left(P(t) + R(t)\right) \, dt \\ \\ & \stackrel{\text{def}}{=} h\left(b_{m-1}f(t_j,y(t_j)) + b_{m-2}f(t_{j-1},y(t_{j-1})) \\ & + \cdots + b_0f(t_{j-m+1},y(t_{j-m+1}))\right) + \int_{t_i}^{t_{j+1}} R(t) \, dt \end{split}$$

LTE
$$\stackrel{\text{def}}{=} \tau_{j+1}(h) = \frac{1}{h} \int_{t_j}^{t_{j+1}} R(t) dt$$

$$= \frac{1}{m! h} \int_{t_j}^{t_{j+1}} f^{(m)}(\xi_t, y(\xi_t)) \prod_{k=j-m+1}^{j} (t - t_k) dt$$

$$\stackrel{book}{=} \frac{f^{(m)}(\xi, y(\xi))}{m! h} \int_{t_j}^{t_{j+1}} \prod_{k=j-m+1}^{j} (t - t_k) dt$$

$$P(t) \quad \text{interpolates} \quad f(t,y(t)) \quad \text{at} \quad \boxed{f(t_{j+1},y(t_{j+1}))}, \\ f(t_j,y(t_j)), \, \cdots, \, f(t_{j-m+2},y(t_{j-m+2}))$$

explicit m-step

$$\begin{split} P(t) & \text{ interpolates } & f(t,y(t)) & \text{ at } & f(t_j,y(t_j)), \\ f(t_{j-1},y(t_{j-1})), & \cdots, & f(t_{j-m+1},y(t_{j-m+1})) \\ \\ & f(t,y(t)) = P(t) + R(t) \\ & R(t) = \frac{f^{(m)}\left(\xi_t,y(\xi_t)\right)}{m!} \prod_{k=j-m+1}^{j} (t-t_k) \\ & y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} \left(P(t) + R(t)\right) dt \\ & \stackrel{\text{def}}{=} h\left(b_{m-1}f(t_j,y(t_j)) + b_{m-2}f(t_{j-1},y(t_{j-1})) \\ & + \cdots + b_0f(t_{j-m+1},y(t_{j-m+1}))\right) + \int_{t_j}^{t_{j+1}} R(t) dt \end{split}$$

LTE
$$\stackrel{\text{def}}{=} \tau_{j+1}(h) = \frac{1}{h} \int_{t_j}^{t_{j+1}} R(t) dt$$

$$= \frac{1}{m! h} \int_{t_j}^{t_{j+1}} f^{(m)}(\xi_t, y(\xi_t)) \prod_{k=j-m+1}^{j} (t - t_k) dt$$

$$\stackrel{book}{=} \frac{f^{(m)}(\xi, y(\xi))}{m! h} \int_{t_j}^{t_{j+1}} \prod_{k=j-m+1}^{j} (t - t_k) dt$$

$$P(t) \text{ interpolates } f(t, y(t)) \text{ at } \boxed{f(t_{j+1}, y(t_{j+1}))}$$

$$f(t_j, y(t_j)), \dots, f(t_{j-m+2}, y(t_{j-m+2}))$$

$$f(t, y(t)) = P(t) + R(t)$$

$$R(t) = \frac{f^{(m)}(\xi_t, y(\xi_t))}{m!} \prod_{k=j-m+2}^{j+1} (t - t_k)$$

explicit m-step

$$\begin{split} P(t) & \text{ interpolates } & f(t,y(t)) & \text{ at } & f(t_j,y(t_j)), \\ f(t_{j-1},y(t_{j-1})), & \cdots, & \boxed{f(t_{j-m+1},y(t_{j-m+1}))} \\ \\ & f(t,y(t)) = P(t) + R(t) \\ & R(t) = \frac{f^{(m)}\left(\xi_t,y(\xi_t)\right)}{m!} \prod_{k=j-m+1}^{j} (t-t_k) \\ & y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} \left(P(t) + R(t)\right) dt \\ & \stackrel{def}{=} h\left(b_{m-1}f(t_j,y(t_j)) + b_{m-2}f(t_{j-1},y(t_{j-1})) \right) \\ & + \cdots + b_0f(t_{j-m+1},y(t_{j-m+1}))) + \int_{t_j}^{t_{j+1}} R(t) dt \end{split}$$

$$\begin{aligned} & \text{LTE} \stackrel{\text{def}}{=} \tau_{j+1}\left(h\right) = \frac{1}{h} \int_{t_j}^{t_{j+1}} R(t) \, dt \\ & = \frac{1}{m! \, h} \int_{t_j}^{t_{j+1}} f^{(m)}\left(\xi_t, y(\xi_t)\right) \prod_{k=j-m+1}^{j} \left(t - t_k\right) \, dt \\ & \stackrel{book}{=} \frac{f^{(m)}\left(\xi, y(\xi)\right)}{m! \, h} \int_{t_j}^{t_{j+1}} \prod_{k=j-m+1}^{j} \left(t - t_k\right) \, dt \end{aligned}$$

$$P(t) \text{ interpolates } f(t,y(t)) \text{ at } \boxed{f(t_{j+1},y(t_{j+1}))}.$$

$$f(t_j,y(t_j)),\cdots,f(t_{j-m+2},y(t_{j-m+2}))$$

$$f(t,y(t)) = P(t) + R(t)$$

$$R(t) = \frac{f^{(m)}(\xi_t,y(\xi_t))}{m!} \prod_{k=j-m+2}^{j+1} (t-t_k)$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} (P(t) + R(t)) dt$$

$$\stackrel{def}{=} h(b_{m-1}f(t_{j+1},y(t_{j+1})) + b_{m-2}f(t_j,y(t_j))$$

$$+\cdots + b_0f(t_{j-m+2},y(t_{j-m+2}))) + \int_{t_j}^{t_{j+1}} R(t) dt$$

explicit m-step

$$\begin{split} P(t) & \text{ interpolates } & f(t,y(t)) & \text{ at } & f(t_j,y(t_j)), \\ f(t_{j-1},y(t_{j-1})), & \cdots, & f(t_{j-m+1},y(t_{j-m+1})) \\ \\ & f(t,y(t)) = P(t) + R(t) \\ & R(t) = \frac{f^{(m)}\left(\xi_t,y(\xi_t)\right)}{m!} \prod_{k=j-m+1}^{j} \left(t-t_k\right) \\ & y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} \left(P(t) + R(t)\right) \, dt \\ \\ & \stackrel{def}{=} h\left(b_{m-1}f(t_j,y(t_j)) + b_{m-2}f(t_{j-1},y(t_{j-1})) \\ + \cdots + b_0f(t_{j-m+1},y(t_{j-m+1}))\right) + \int_{t_j}^{t_{j+1}} R(t) \, dt \\ \\ & \mathbf{LTE} \stackrel{def}{=} \tau_{j+1}\left(h\right) = \frac{1}{h} \int_{t_j}^{t_{j+1}} R(t) \, dt \\ \\ & = \frac{1}{m!} \int_{t_j}^{t_{j+1}} f^{(m)}\left(\xi_t,y(\xi_t)\right) \prod_{k=j-m+1}^{j} \left(t-t_k\right) \, dt \end{split}$$

 $\stackrel{book}{=} \frac{f^{(m)}(\xi, y(\xi))}{m! h} \int_{t_i}^{t_{j+1}} \prod_{k=i-m+1}^{j} (t-t_k) dt$

implicit (m-1)-step

$$P(t) \text{ interpolates } f(t, y(t)) \text{ at } \boxed{f(t_{j+1}, y(t_{j+1}))}$$

$$f(t_j, y(t_j)), \cdots, f(t_{j-m+2}, y(t_{j-m+2}))$$

$$f(t, y(t)) = P(t) + R(t)$$

$$R(t) = \frac{f^{(m)}(\xi_t, y(\xi_t))}{m!} \prod_{k=j-m+2}^{j+1} (t - t_k)$$

$$y(t_{j+1}) - y(t_j) = \int_{t_j}^{t_{j+1}} (P(t) + R(t)) dt$$

$$\stackrel{\text{def}}{=} h(b_{m-1}f(t_{j+1}, y(t_{j+1})) + b_{m-2}f(t_j, y(t_j))$$

$$+ \cdots + b_0 f(t_{j-m+2}, y(t_{j-m+2}))) + \int_{t_j}^{t_{j+1}} R(t) dt$$

$$= \frac{1}{m! h} \int_{t_j}^{t_{j+1}} f^{(m)}(\xi_t, y(\xi_t)) \prod_{k=j-m+2}^{j+1} (t - t_k) dt$$

LTE $\stackrel{\text{def}}{=} \tau_{j+1}(h) = \frac{1}{h} \int_{t}^{t_{j+1}} R(t) dt$

$$\stackrel{book}{=} \frac{f^{(m)}(\xi, y(\xi))}{m! \ h} \int_{t_j}^{t_{j+1}} \prod_{k=j-m+2}^{j+1} (t-t_k) \ dt$$

▶ 4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

► 4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right).$$

► 4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(9f(t_{j+1},w_{j+1})\!+\!19f(t_j,w_j)\!-\!5f(t_{j-1},w_{j-1})\!+\!f(t_{j-2},w_{j-2})\right).$$

Adams-Bashforth

LTE
$$\stackrel{\text{def}}{=} \frac{f^{(4)}(\xi, y(\xi))}{4! h} \int_{t_j}^{t_{j+1}} \prod_{k=j-3}^{j} (t - t_k) dt$$

$$= \frac{f^{(4)}(\xi, y(\xi))}{4! h} \int_{0}^{h} t(t + h)(t + 2 h)(t + 3 h) dt$$

$$= \frac{251}{720} f^{(4)}(\xi, y(\xi)) h^4$$

4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(9f(t_{j+1},w_{j+1})\!+\!19f(t_j,w_j)\!-\!5f(t_{j-1},w_{j-1})\!+\!f(t_{j-2},w_{j-2})\right).$$

Adams-Bashforth

$$\begin{aligned} \mathbf{LTE} & \stackrel{\text{def}}{=} \frac{f^{(4)}\left(\xi,y(\xi)\right)}{4! \ h} \int_{t_{j}}^{t_{j+1}} \prod_{k=j-3}^{j} \left(t-t_{k}\right) \ dt \\ & = \frac{f^{(4)}\left(\xi,y(\xi)\right)}{4! \ h} \int_{0}^{t} t \left(t+h\right) \left(t+2 \ h\right) \left(t+3 \ h\right) \ dt \\ & = \left[\frac{251}{720}\right] f^{(4)}\left(\xi,y(\xi)\right) \ h^{4} \end{aligned} \end{aligned} \\ = \frac{f^{(4)}\left(\xi,y(\xi)\right)}{4! \ h} \int_{0}^{t} \left(t-t_{k}\right) \ dt \\ & = -\left[\frac{19}{720}\right] f^{(4)}\left(\xi,y(\xi)\right) \ h^{4}$$

Adams-Moulton

LTE
$$\stackrel{def}{=} \frac{f^{(4)}(\xi, y(\xi))}{4! h} \int_{t_j}^{t_{j+1}} \prod_{k=j-2}^{j+1} (t - t_k) dt$$

$$= \frac{f^{(4)}(\xi, y(\xi))}{4! h} \int_0^h (t - h) t (t + h) (t + 2 h) dt$$

$$= - \boxed{\frac{19}{720}} f^{(4)}(\xi, y(\xi)) h^4$$

▶ 4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

▶ 4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

► 4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(9f(t_{j+1},w_{j+1})\!+\!19f(t_j,w_j)\!-\!5f(t_{j-1},w_{j-1})\!+\!f(t_{j-2},w_{j-2})\right).$$

Adams-Bashforth

LTE
$$\stackrel{def}{=} \frac{f^{(4)}(\xi, y(\xi))}{4! h} \int_{t_j}^{t_{j+1}} \prod_{k=j-3}^{j} (t - t_k) dt$$

$$= \frac{f^{(4)}(\xi, y(\xi))}{4! h} \int_{0}^{h} t(t + h)(t + 2 h)(t + 3 h) dt$$

$$= \boxed{\frac{251}{720}} f^{(4)}(\xi, y(\xi)) h^4$$

Adams-Moulton

LTE
$$\stackrel{def}{=} \frac{f^{(4)}(\xi, y(\xi))}{4! h} \int_{t_j}^{t_{j+1}} \prod_{k=j-2}^{j+1} (t - t_k) dt$$

$$= \frac{f^{(4)}(\xi, y(\xi))}{4! h} \int_0^h (t - h) t (t + h) (t + 2 h) dt$$

$$= - \boxed{\frac{19}{720}} f^{(4)}(\xi, y(\xi)) h^4$$

To be explicit or implicit?

- Explicit methods cheaper than implicit.
- Implicit methods smaller LTE and more reliable (more later)

► 4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

► 4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(a) = 0.5, \quad \text{for } N = 10, h = 0.2, t_j = 0.2j, 0 \le j \le N.$$

► 4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

► 4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(a) = 0.5, \quad \text{for } N = 10, h = 0.2, t_j = 0.2j, 0 \le j \le N.$$

► 4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(a) = 0.5, \quad \text{for } N = 10, h = 0.2, t_j = 0.2j, 0 \le j \le N.$$

Adams-Bashforth method:

4 initial values to start

► 4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!-\!59f(t_{j-1},w_{j-1})\!+\!37f(t_{j-2},w_{j-2})\!-\!9f(t_{j-3},w_{j-3})\right).$$

▶ 4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(9f(t_{j+1},w_{j+1})\!+\!19f(t_j,w_j)\!-\!5f(t_{j-1},w_{j-1})\!+\!f(t_{j-2},w_{j-2})\right).$$

$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(a) = 0.5, \quad \text{for } N = 10, h = 0.2, t_j = 0.2j, 0 \le j \le N.$$

Adams-Moulton method: 3 initial values to start

Adams-Bashforth method: 4 initial values to start

4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!-\!59f(t_{j-1},w_{j-1})\!+\!37f(t_{j-2},w_{j-2})\!-\!9f(t_{j-3},w_{j-3})\right).$$

4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(9f(t_{j+1},w_{j+1})\!+\!19f(t_j,w_j)\!-\!5f(t_{j-1},w_{j-1})\!+\!f(t_{j-2},w_{j-2})\right).$$

$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(a) = 0.5, \quad \text{for } N = 10, h = 0.2, t_j = 0.2j, 0 \le j \le N.$$

Adams-Moulton method:

Adams-Bashforth method:

4 initial values to start

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right)$$

4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!-\!59f(t_{j-1},w_{j-1})\!+\!37f(t_{j-2},w_{j-2})\!-\!9f(t_{j-3},w_{j-3})\right).$$

4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(9f(t_{j+1},w_{j+1})\!+\!19f(t_j,w_j)\!-\!5f(t_{j-1},w_{j-1})\!+\!f(t_{j-2},w_{j-2})\right).$$

$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(a) = 0.5, \quad \text{for } N = 10, h = 0.2, t_j = 0.2j, 0 \le j \le N.$$

Adams-Moulton method:

Adams-Bashforth method: 4 initial values to start

Adams-Month method:
3 initial values to start
$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right)$$

$$= \frac{1}{24} \left(\boxed{1.8w_{j+1}} + 27.8w_j - w_{j-1} + 0.2w_{j-2} - 0.192j^2 - 0.192j + 4.736 \right)$$

► 4th-order Adams-Bashforth method (explicit, 4-step)

$$w_{j+1}\!\!=\!\!w_j+\frac{h}{24}\left(55f(t_j,w_j)\!\!-\!\!59f(t_{j-1},w_{j-1})\!\!+\!\!37f(t_{j-2},w_{j-2})\!\!-\!\!9f(t_{j-3},w_{j-3})\right).$$

► 4th-order Adams-Moulton method (implicit, 3-step)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(a) = 0.5, \quad \text{for } N = 10, h = 0.2, t_j = 0.2j, 0 \le j \le N.$$

Adams-Moulton method:

3 initial values to start

Adams-Bashforth method: 4 initial values to start

$$\begin{aligned} w_{j+1} &= w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right) \\ &= \frac{1}{24} \left(\boxed{1.8w_{j+1}} + 27.8w_j - w_{j-1} + 0.2w_{j-2} - 0.192j^2 - 0.192j + 4.736 \right) \\ &\xrightarrow{\text{solve}} \frac{1}{22.2} \left(27.8w_j - w_{j-1} + 0.2w_{j-2} - 0.192j^2 - 0.192j + 4.736 \right) \end{aligned}$$

tj	Exact	Bashforth	Error	Moulton	Error
0.0	0.5				
0.2	0.8293				
0.4	1.2141				
0.6	1.6489			1.6489	6.5e - 06
0.8	2.1272	2.1273	8.28e - 05	2.1272	1.6e - 05
1.0	2.6409	2.6411	0.0002219	2.6408	2.93e - 05
1.2	3.1799	3.1803	0.0004065	3.1799	4.78e - 05
1.4	3.7324	3.7331	0.0006601	3.7323	7.31e - 05
1.6	4.2835	4.2845	0.0010093	4.2834	0.0001071
1.8	4.8152	4.8167	0.0014812	4.815	0.0001527
2.0	5.3055	5.3076	0.0021119	5.3053	0.0002132

tj	Exact	Bashforth	Error	Moulton	Error
0.0	0.5				
0.2	0.8293				
0.4	1.2141				
0.6	1.6489			1.6489	6.5e - 06
8.0	2.1272	2.1273	8.28e - 05	2.1272	1.6e - 05
1.0	2.6409	2.6411	0.0002219	2.6408	2.93e - 05
1.2	3.1799	3.1803	0.0004065	3.1799	4.78e - 05
1.4	3.7324	3.7331	0.0006601	3.7323	7.31e - 05
1.6	4.2835	4.2845	0.0010093	4.2834	0.0001071
1.8	4.8152	4.8167	0.0014812	4.815	0.0001527
2.0	5.3055	5.3076	0.0021119	5.3053	0.0002132

tj	Exact	Bashforth	Error	Moulton	Error
0.0	0.5				
0.2	0.8293				
0.4	1.2141				
0.6	1.6489			1.6489	6.5e - 06
8.0	2.1272	2.1273	8.28e - 05	2.1272	1.6e - 05
1.0	2.6409	2.6411	0.0002219	2.6408	2.93e - 05
1.2	3.1799	3.1803	0.0004065	3.1799	4.78e - 05
1.4	3.7324	3.7331	0.0006601	3.7323	7.31e - 05
1.6	4.2835	4.2845	0.0010093	4.2834	0.0001071
1.8	4.8152	4.8167	0.0014812	4.815	0.0001527
2.0	5.3055	5.3076	0.0021119	5.3053	0.0002132

§5.7 Predictor-Corrector Methods

4th-order Adams-Bashforth method (explicit, less accurate)

$$w_{j+1} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right).$$

4th-order Adams-Moulton method (implicit, more accurate)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

§5.7 Predictor-Corrector Methods

4th-order Adams-Bashforth method (explicit, less accurate)

$$w_{j+1} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right).$$

▶ 4th-order Adams-Moulton method (implicit, more accurate)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

Predictor-Corrector (PC)

 $\mathtt{Adams4PC} \stackrel{\textit{def}}{=} \underline{\mathsf{One}} \ \mathsf{fixed-point} \ \mathsf{iteration} \ \mathsf{on} \ \mathsf{Moulton}, \ \mathsf{with} \ \mathsf{Bashforth} \ \mathsf{initial} \ \mathsf{guess}$

§5.7 Predictor-Corrector Methods

4th-order Adams-Bashforth method (explicit, less accurate)

$$w_{j+1} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right).$$

4th-order Adams-Moulton method (implicit, more accurate)

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right).$$

Predictor-Corrector (PC)

 $\mathtt{Adams4PC} \stackrel{\textit{def}}{=} \underline{\mathsf{One}} \ \mathsf{fixed-point} \ \mathsf{iteration} \ \mathsf{on} \ \mathsf{Moulton}, \ \mathsf{with} \ \mathsf{Bashforth} \ \mathsf{initial} \ \mathsf{guess}$

- ▶ **Initialization**: 3 steps of 4-th order Runge-Kutta.
- Adams-Bashforth Predictor:

$$w_{j+1}^{\mathbf{p}} \stackrel{\text{def}}{=} w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right)$$

Adams-Moulton Corrector:

$$w_{j+1} \stackrel{\text{def}}{=} w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}^p) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right)$$

```
function [w.t] = Adams4PC(FunFcn, Intv. alpha, N)
    = Intv(1):
   = Intv(2):
    = (b-a)/N:
    = zeros(N+1,1);
    = a + h*(0:N)':
w(1) = alpha:
% RK4 for the first 3 steps
   = h/2:
h2
for i = 1:3
    k1 = h* FunFcn(t(i),w(i));
    k2 = h* FunFcn(t(i)+h2.w(i)+k1/2):
    k3 = h * FunFcn(t(i)+h2,w(i)+k2/2);
    k4 = h* FunFcn(t(i)+h,w(i)+k3);
   w(i+1) = w(i) + (k1+2*k2+2*k3+k4)/6:
end
% main loop
p = h*[-9/24 \ 37/24 \ -59/24 \ 55/24];
c = h*[1/24 - 5/24 19/24 9/24]:
f = FunFcn(t(1:4), w(1:4)):
for i = 4:N
   wp = w(i) + p*f:
         = FunFcn(t(i+1).wp):
   w(i+1) = w(i) + c *[f(2:end);fp];
           =[f(2:end): FunFcn(t(i+1),w(i+1))]:
end
```

Adaptive Error Control (I)

$$\frac{dy}{dt} = f(t, y(t)), \quad a \le t \le b, \quad y(a) = \alpha.$$

Variable-step method based on Adams4PC

Adaptive Error Control (I)

$$\frac{dy}{dt} = f(t, y(t)), \quad a \le t \le b, \quad y(a) = \alpha.$$

 $\label{thm:prop:prop:prop:prop:step} Variable\text{-step method based on $\mathtt{Adams4PC}$}$

Assumptions

- ▶ Given tolerance $\tau > 0$,
- $ightharpoonup w_i pprox y(t_i)$ for all $i \leq j$.

Adaptive Error Control (I)

$$\frac{dy}{dt} = f(t, y(t)), \quad a \le t \le b, \quad y(a) = \alpha.$$

Variable-step method based on Adams4PC

Assumptions

- ▶ Given tolerance $\tau > 0$,
- $w_i \approx y(t_i)$ for all $i \leq j$.

▶ Try to make sure LTE $| au_{j+1}(h_{j+1})| \lesssim au$

Adaptive Error Control (I)

$$\frac{dy}{dt} = f(t, y(t)), \quad a \leq t \leq b, \quad y(a) = \alpha.$$

Variable-step method based on Adams4PC

Assumptions

- ▶ Given tolerance $\tau > 0$,
- $ightharpoonup w_i pprox y(t_i)$ for all $i \leq j$.

Goal

▶ Try to make sure **LTE** $| au_{j+1}(h_{j+1})| \lesssim au$

for
$$j = 0, 1, \cdots$$
,

- ▶ run Runge-Kutta initially or if step-size changes,
- **reset** step-size $h_i = t_{i+1} t_i$ if tolerance requires,
- **compute** w_{j+1} with Adams4PC.

Adaptive Error Control (II)

▶ 4th-order Adams-Bashforth Predictor

$$w_{j+1}^{\mathbf{p}} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right) \approx y_{j+1} - \frac{251}{720} f^{(4)}(\xi, y(\xi)) h^5$$

▶ 4th-order Adams-Moulton method Corrector

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}^{\mathbf{p}}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right) \approx y_{j+1} + \frac{19}{720} f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi})) h^5$$

Assume
$$h^5 f^{(4)}(\xi, y(\xi)) \approx h^5 f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi}))$$

$$\frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h} \approx \frac{270}{720} f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi})) h^4$$

Adaptive Error Control (II)

▶ 4th-order Adams-Bashforth Predictor

$$w_{j+1}^{\mathbf{p}} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right) \approx y_{j+1} - \frac{251}{720} f^{(4)}(\xi, y(\xi)) h^5$$

▶ 4th-order Adams-Moulton method Corrector

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}^{\mathbf{p}}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right) \approx y_{j+1} + \frac{19}{720} f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi})) h^5$$

Assume
$$h^5 f^{(4)}(\xi, y(\xi)) \approx h^5 f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi}))$$

$$\frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h} \quad \approx \quad \frac{270}{720} f^{(4)}(\tilde{\xi}, y(\tilde{\xi})) \, h^4 \ \, \Longrightarrow \quad \frac{19}{720} f^{(4)}(\tilde{\xi}, y(\tilde{\xi})) \, h^4 \approx \frac{19}{270} \, \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h} \, ,$$

Adaptive Error Control (II)

▶ 4th-order Adams-Bashforth Predictor

$$w_{j+1}^{\mathbf{p}} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right) \approx y_{j+1} - \frac{251}{720} f^{(4)}(\xi, y(\xi)) h^5$$

▶ 4th-order Adams-Moulton method Corrector

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}^p) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right) \approx y_{j+1} + \frac{19}{720} f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi})) h^5$$

Assume
$$h^5 f^{(4)}(\xi, y(\xi)) \approx h^5 f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi}))$$

$$\frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h} \quad \approx \quad \frac{270}{720} f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi})) h^4 \implies \quad \frac{19}{720} f^{(4)}(\widetilde{\xi}, y(\widetilde{\xi})) h^4 \approx \frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h},$$

$$\tau_{j+1}(h) = \frac{y_{j+1} - w_{j+1}}{h} \approx -\frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}.$$

LTE estimate:
$$au_{j+1}(h) = rac{y_{j+1} - w_{j+1}}{h} pprox -rac{19}{270} rac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$

LTE estimate:
$$au_{j+1}(h) = rac{y_{j+1} - w_{j+1}}{h} pprox - rac{19}{270} \ rac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$

Since $\tau_{j+1}(h) = O(h^4)$, assume

 $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^4 \quad ext{where } \mathit{K} ext{ is independent of } \mathit{h}.$

LTE estimate:
$$au_{j+1}(h) = rac{y_{j+1} - w_{j+1}}{h} pprox -rac{19}{270} \, rac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$

Since $\tau_{j+1}(h) = O(h^4)$, assume

$$au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^4$$
 where K is independent of h .

► K should satisfy

$$K h^4 \approx -\frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$
 (1)

- **Choose** new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- ► Equation (1) implies

$$\left|q^{4} \frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}\right| \approx \left|K \left(q h\right)^{4}\right| \approx \left|\tau_{j+1}(q h)\right| \lesssim \epsilon$$

LTE estimate:
$$au_{j+1}(h) = rac{y_{j+1} - w_{j+1}}{h} pprox - rac{19}{270} \; rac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$

Since $\tau_{j+1}(h) = O(h^4)$, assume

 $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^4$ where K is independent of h .

► K should satisfy

$$K h^4 \approx -\frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$
 (1)

- **Choose** new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- ► Equation (1) implies

$$\left|q^{4} \frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}\right| \approx \left|K \left(q h\right)^{4}\right| \approx \left|\tau_{j+1}(q h)\right| \lesssim \epsilon$$

compute a <u>conservative</u> value for q:

$$q = 1.5 \left(\frac{\epsilon h}{\left| w_{j+1} - w_{j+1}^{\mathbf{p}} \right|} \right)^{\frac{1}{4}}.$$

LTE estimate:
$$au_{j+1}(h) = rac{y_{j+1} - w_{j+1}}{h} pprox - rac{19}{270} \; rac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$

Since $\tau_{i+1}(h) = O(h^4)$, assume

 $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^4$ where K is independent of h .

K should satisfy

$$K h^4 \approx -\frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$
 (1)

- **Choose** new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- ► Equation (1) implies

$$\left|q^4 \frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}\right| \approx \left|K \left(q h\right)^4\right| \approx \left|\tau_{j+1}(q h)\right| \lesssim \epsilon$$

compute a <u>conservative</u> value for q:

$$q = 1.5 \left(\frac{\epsilon h}{\left| w_{j+1} - w_{j+1}^{\mathbf{p}} \right|} \right)^{\frac{1}{4}}.$$

if q < 1, give up current w_{j+1}; otherwise keep it and set j = j + 1.

LTE estimate:
$$au_{j+1}(h) = rac{y_{j+1} - w_{j+1}}{h} pprox - rac{19}{270} \, rac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$

Since $\tau_{i+1}(h) = O(h^4)$, assume

 $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^4 \quad \text{where } \mathit{K} \text{ is independent of } \mathit{h}.$

K should satisfy

$$K h^4 \approx -\frac{19}{270} \frac{w_{j+1} - w_{j+1}^P}{h}$$
 (1)

- ► Choose new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- ► Equation (1) implies

$$\left| q^4 \frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h} \right| \approx \left| K \left(q h \right)^4 \right| \approx \left| \tau_{j+1}(q h) \right| \lesssim \epsilon$$

compute a <u>conservative</u> value for q:

$$q = 1.5 \left(\frac{\epsilon h}{\left| w_{j+1} - w_{j+1}^{\mathbf{p}} \right|} \right)^{\frac{1}{4}}.$$

- if q < 1, give up current w_{j+1} ; otherwise keep it and set j = j + 1.
- make restricted step-size change:

$$h = \left\{ \begin{array}{ll} \max(q,0.1) \ h, & \text{if} \ q < 1, \\ \min(q,4) \ h, & \text{if} \ q > 2, \\ h & \text{if} \ 1 \leq q \leq 2, \end{array} \right.$$

LTE estimate:
$$au_{j+1}(h) = rac{y_{j+1} - w_{j+1}}{h} pprox - rac{19}{270} \, rac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$

Since $\tau_{j+1}(h) = O(h^4)$, assume

 $au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^4 \quad \text{where } \mathit{K} \text{ is independent of } \mathit{h}.$

K should satisfy

$$K h^4 \approx -\frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h}$$
 (1)

- Choose new step-size q h so LTE satisfies given tolerance ϵ : $|\tau_{i+1}(q|h)| < \epsilon$
- ► Equation (1) implies

$$\left| q^4 \frac{19}{270} \frac{w_{j+1} - w_{j+1}^{\mathbf{p}}}{h} \right| \approx \left| K \left(q h \right)^4 \right| \approx \left| \tau_{j+1}(q h) \right| \lesssim \epsilon$$

compute a <u>conservative</u> value for q:

$$q = 1.5 \left(\frac{\epsilon h}{\left| w_{j+1} - w_{j+1}^{\mathbf{p}} \right|} \right)^{\frac{1}{4}}.$$

- ▶ if q < 1, give up current w_{j+1} ; otherwise keep it and set j = j + 1.
- make restricted step-size change:

$$h = \begin{cases} \max(q, 0.1) h, & \text{if } q < 1, \\ \min(q, 4) h, & \text{if } q > 2, \\ h & \text{if } 1 \le q \le 2, \end{cases}$$

step-size can't be too big: $h = \min(h, h_{\max})$

LTE estimate:
$$au_{j+1}(h) = rac{y_{j+1} - w_{j+1}}{h} pprox -rac{19}{270} \; rac{w_{j+1} - w_{j+1}^{ extsf{p}}}{h}$$

Since $\tau_{j+1}(h) = O(h^4)$, assume

$$au_{j+1}(\mathit{h}) pprox \mathit{K} \mathit{h}^4$$
 where K is independent of h .

K should satisfy

$$K h^4 \approx -\frac{19}{270} \frac{w_{j+1} - w_{j+1}^P}{h}$$
 (1)

- Choose new step-size q h so LTE satisfies given tolerance ϵ : $\left| au_{j+1}(q \ h) \right| \leq \epsilon$
- Equation (1) implies

$$\left|q^{4} \frac{19}{270} \frac{w_{j+1} - w_{j+1}^{p}}{h}\right| \approx \left|K\left(qh\right)^{4}\right| \approx \left|\tau_{j+1}(qh)\right| \lesssim \epsilon$$

compute a <u>conservative</u> value for q:

$$q = 1.5 \left(\frac{\epsilon h}{\left| w_{j+1} - w_{j+1}^{\mathbf{p}} \right|} \right)^{\frac{1}{4}}.$$

- if q < 1, give up current w_{j+1} ; otherwise keep it and set j = j + 1.
- make restricted step-size change:

$$h = \left\{ \begin{array}{ll} \max(q, 0.1) \ h, & \text{if } q < 1, \\ \min(q, 4) \ h, & \text{if } q > 2, \\ h & \text{if } 1 \leq q \leq 2, \end{array} \right.$$

- step-size can't be too big: $h = \min(h, h_{\max})$
- step-size can't be too small:

if $h < h_{\min}$ then declare failure.

cf. step-size selection

Adaptive Runger-Kutta

Summary: Adams 4th-order Predictor-Corrector Method

For each j,

compute 4th-order Adams-Bashforth Predictor

$$w_{j+1}^{\mathbf{p}} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right)$$

Summary: Adams 4th-order Predictor-Corrector Method

For each j,

compute 4th-order Adams-Bashforth Predictor

$$w_{j+1}^{\mathbf{p}} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right)$$

compute 4th-order Adams-Moulton method Corrector

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}^p) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right)$$

Summary: Adams 4th-order Predictor-Corrector Method

For each j,

compute 4th-order Adams-Bashforth Predictor

$$w_{j+1}^{\mathbf{p}} = w_j + \frac{h}{24} \left(55f(t_j, w_j) - 59f(t_{j-1}, w_{j-1}) + 37f(t_{j-2}, w_{j-2}) - 9f(t_{j-3}, w_{j-3}) \right)$$

compute 4th-order Adams-Moulton method Corrector

$$w_{j+1} = w_j + \frac{h}{24} \left(9f(t_{j+1}, w_{j+1}^{\mathbf{p}}) + 19f(t_j, w_j) - 5f(t_{j-1}, w_{j-1}) + f(t_{j-2}, w_{j-2}) \right)$$

new step-size q h should satisfy

$$q h \lesssim 1.5 h \left(\frac{\epsilon h}{\left| w_{j+1} - w_{j+1}^{\mathsf{p}} \right|} \right)^{\frac{1}{4}}.$$

- if q < 1, give up current w_{j+1} ; otherwise keep it and set j = j + 1.
- additional safeguards on step-size.

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5$$

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5$$

tj	hj	$y(t_j)$	w_j	LTE	$ y(t_j) - w_j $
0	0	0.5	0.5	0	0
0.1257	0.1257	0.70023	0.70023	4.051e - 05	5e — 07
0.2514	0.1257	0.9231	0.92309	4.051e - 05	1.1e - 06
0.37711	0.1257	1.1674	1.1674	4.051e - 05	1.7e - 06
0.50281	0.1257	1.4318	1.4317	4.051e - 05	2.2e - 06
0.62851	0.1257	1.7146	1.7146	4.61e - 05	2.8e - 06
0.75421	0.1257	2.0143	2.0143	5.21e - 05	3.5e - 06
0.87991	0.1257	2.3287	2.3287	5.913e - 05	4.3e - 06
1.0056	0.1257	2.6557	2.6557	6.706e - 05	5.4e - 06
1.1313	0.1257	2.9926	2.9926	7.604e - 05	6.6e — 06
1.257	0.1257	3.3367	3.3367	8.622e - 05	8e — 06
1.3827	0.1257	3.6845	3.6845	9.777e - 05	9.7e - 06
1.4857	0.10301	3.9698	3.9697	7.029e - 05	1.08e - 05
1.5887	0.10301	4.2528	4.2528	7.029e - 05	1.2e - 05
1.6917	0.10301	4.531	4.531	7.029e - 05	1.33e - 05
1.7948	0.10301	4.8017	4.8016	7.029e - 05	1.51e - 05
1.8978	0.10301	5.0616	5.0615	7.76e - 05	1.72e - 05
1.9233	0.025558	5.124	5.124	3.918e - 07	1.77e — 05
1.9489	0.025558	5.1855	5.1855	3.918e - 07	1.81e - 05
1.9744	0.025558	5.246	5.246	3.918e - 07	1.86e - 05
2.0	0.025558	5.3055	5.3055	3.918e - 07	1.91e - 05

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5$$

tj	hj	$y(t_j)$	wj	LTE	$ y(t_j) - w_j $
0	0	0.5	0.5	0	0
0.1257	0.1257	0.70023	0.70023	4.051e - 05	5e — 07
0.2514	0.1257	0.9231	0.92309	4.051e - 05	1.1e - 06
0.37711	0.1257	1.1674	1.1674	4.051e - 05	1.7e - 06
0.50281	0.1257	1.4318	1.4317	4.051e - 05	2.2e - 06
0.62851	0.1257	1.7146	1.7146	4.61e - 05	2.8e - 06
0.75421	0.1257	2.0143	2.0143	5.21e - 05	3.5e - 06
0.87991	0.1257	2.3287	2.3287	5.913e - 05	4.3e - 06
1.0056	0.1257	2.6557	2.6557	6.706e - 05	5.4e - 06
1.1313	0.1257	2.9926	2.9926	7.604e - 05	6.6e — 06
1.257	0.1257	3.3367	3.3367	8.622e - 05	8e — 06
1.3827	0.1257	3.6845	3.6845	9.777e - 05	9.7e - 06
1.4857	0.10301	3.9698	3.9697	7.029e - 05	1.08e - 05
1.5887	0.10301	4.2528	4.2528	7.029e - 05	1.2e - 05
1.6917	0.10301	4.531	4.531	7.029e - 05	1.33e - 05
1.7948	0.10301	4.8017	4.8016	7.029e - 05	1.51e - 05
1.8978	0.10301	5.0616	5.0615	7.76e - 05	1.72e - 05
1.9233	0.025558	5.124	5.124	3.918e - 07	1.77e — 05
1.9489	0.025558	5.1855	5.1855	3.918e - 07	1.81e — 05
1.9744	0.025558	5.246	5.246	3.918e - 07	1.86e - 05
2.0	0.025558	5.3055	5.3055	3.918e - 07	1.91e - 05

Initial Value ODE
$$\frac{dy}{dt} = y - t^2 + 1, \quad 0 \le t \le 2, \quad y(0) = 0.5$$

tj	hj	$y(t_j)$	wj	LTE	$ y(t_j) - w_j $
0	0	0.5	0.5	0	0
0.1257	0.1257	0.70023	0.70023	4.051e - 05	5e - 07
0.2514	0.1257	0.9231	0.92309	4.051e - 05	1.1e - 06
0.37711	0.1257	1.1674	1.1674	4.051e - 05	1.7e - 06
0.50281	0.1257	1.4318	1.4317	4.051e - 05	2.2e - 06
0.62851	0.1257	1.7146	1.7146	4.61e - 05	2.8e - 06
0.75421	0.1257	2.0143	2.0143	5.21e - 05	3.5e - 06
0.87991	0.1257	2.3287	2.3287	5.913e - 05	4.3e - 06
1.0056	0.1257	2.6557	2.6557	6.706e - 05	5.4e - 06
1.1313	0.1257	2.9926	2.9926	7.604e - 05	6.6e - 06
1.257	0.1257	3.3367	3.3367	8.622e - 05	8e - 06
1.3827	0.1257	3.6845	3.6845	9.777e - 05	9.7e - 06
1.4857	0.10301	3.9698	3.9697	7.029e - 05	1.08e - 05
1.5887	0.10301	4.2528	4.2528	7.029e - 05	1.2e - 05
1.6917	0.10301	4.531	4.531	7.029e - 05	1.33e - 05
1.7948	0.10301	4.8017	4.8016	7.029e - 05	1.51e - 05
1.8978	0.10301	5.0616	5.0615	7.76e - 05	1.72e - 05
1.9233	0.025558	5.124	5.124	3.918e - 07	1.77e - 05
1.9489	0.025558	5.1855	5.1855	3.918e - 07	1.81e - 05
1.9744	0.025558	5.246	5.246	3.918e - 07	1.86e - 05
2.0	0.025558	5.3055	5.3055	3.918e - 07	1.91e - 05

Initial Value ODE
$$\dfrac{dy}{dt} = y - t^2 + 1, \quad 0 \leq t \leq 2, \quad y(0) = 0.5$$

tj	hj	$y(t_j)$	wj	LTE	$ y(t_j) - w_j $
0	0	0.5	0.5	0	0
0.1257	0.1257	0.70023	0.70023	4.051e - 05	5e - 07
0.2514	0.1257	0.9231	0.92309	4.051e - 05	1.1e - 06
0.37711	0.1257	1.1674	1.1674	4.051e - 05	1.7e - 06
0.50281	0.1257	1.4318	1.4317	4.051e - 05	2.2e - 06
0.62851	0.1257	1.7146	1.7146	4.61e - 05	2.8e - 06
0.75421	0.1257	2.0143	2.0143	5.21e - 05	3.5e - 06
0.87991	0.1257	2.3287	2.3287	5.913e - 05	4.3e - 06
1.0056	0.1257	2.6557	2.6557	6.706e - 05	5.4e - 06
1.1313	0.1257	2.9926	2.9926	7.604e - 05	6.6e - 06
1.257	0.1257	3.3367	3.3367	8.622e - 05	8e - 06
1.3827	0.1257	3.6845	3.6845	9.777e - 05	9.7e - 06
1.4857	0.10301	3.9698	3.9697	7.029e - 05	1.08e - 05
1.5887	0.10301	4.2528	4.2528	7.029e - 05	1.2e - 05
1.6917	0.10301	4.531	4.531	7.029e - 05	1.33e - 05
1.7948	0.10301	4.8017	4.8016	7.029e - 05	1.51e - 05
1.8978	0.10301	5.0616	5.0615	7.76e - 05	1.72e - 05
1.9233	0.025558	5.124	5.124	3.918e - 07	1.77e - 05
1.9489	0.025558	5.1855	5.1855	3.918e - 07	1.81e - 05
1.9744	0.025558	5.246	5.246	3.918e - 07	1.86e - 05
2.0	0.025558	5.3055	5.3055	3.918e - 07	1.91e - 05

Multistep vs. Runge-Kutta

- ▶ Multistep methods cheaper than Runge-Kutta.
- Multistep methods require Runge-Kutta for every step-size change.

OdeDemo: matlab code on bcourses running different ODE solvers.

§5.9 Predator and Prey Model

Notation: $x \stackrel{def}{=}$ prey population, $y \stackrel{def}{=}$ predator population.

Dynamics: $x' = \alpha x - \beta x y$, $y' = -\gamma y + \delta x y$.

§5.9 Predator and Prey Model

Notation: $x \stackrel{def}{=}$ prey population, $y \stackrel{def}{=}$ predator population.

Dynamics: $x' = \alpha x - \beta x y$, $y' = -\gamma y + \delta x y$.

- prey population x increases when alone, decreases with predator
- predator population y increases with prey, decreases without

§5.9 Predator and Prey Model

Notation: $x \stackrel{def}{=}$ prey population, $y \stackrel{def}{=}$ predator population.

Dynamics: $x' = \alpha x - \beta x y$, $y' = -\gamma y + \delta x y$.

- prey population x increases when alone, decreases with predator
- predator population y increases with prey, decreases without

Circle of life: Boom and Bust dynamics

Circle of life from Canada

Hungry fox y catches squirrel x (best wildlife photo, 2019)

Lynx and Hare in the Canadian snow

System of ODEs

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

System of ODEs

single initial value ODE
$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

System of *m* first-order ODEs:

$$\frac{du_1}{dt} = f_1(t, u_1, u_2, \dots, u_m),$$

$$\frac{du_2}{dt} = f_2(t, u_1, u_2, \dots, u_m),$$

$$\vdots$$

$$\frac{du_m}{dt} = f_m(t, u_1, u_2, \dots, u_m), \quad a \le t \le b,$$

with m initial conditions

$$u_1(a) = \alpha_1, \quad u_2(a) = \alpha_2, \cdots, u_m(a) = \alpha_m.$$

$$\mathbf{u} \stackrel{def}{=} \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_m \end{array} \right), \quad \alpha \stackrel{def}{=} \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{array} \right).$$

$$\mathbf{f}(\mathbf{t}, \mathbf{u}) \stackrel{def}{=} \left(\begin{array}{c} f_1(\mathbf{t}, u_1, u_2, \cdots, u_m) \\ f_2(\mathbf{t}, u_1, u_2, \cdots, u_m) \\ \vdots \\ f_m(\mathbf{t}, u_1, u_2, \cdots, u_m) \end{array} \right)$$

System of *m* first-order ODEs:

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}), \quad a \le t \le b \quad (1)$$

with initial condition

$$\mathbf{u}\left(a\right)=\alpha\quad (2)$$

$$\mathbf{u} \stackrel{\text{def}}{=} \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_m \end{array} \right), \quad \alpha \stackrel{\text{def}}{=} \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{array} \right). \qquad \begin{cases} y^{(m)} = f\left(t,y,y',\cdots,y^{(m-1)}\right), \quad a \leq t \leq b \quad (3) \\ \text{for some } m > 1, \text{ with initial conditions} \end{cases}$$

$$y(a) = \alpha, \quad y'(a) = \alpha', \cdots, y^{(m-1)}(a) = \alpha^{(m-1)} \quad (4)$$

$$\mathbf{f}(t,\mathbf{u}) \stackrel{def}{=} \left(\begin{array}{c} f_1(t,u_1,u_2,\cdots,u_m) \\ f_2(t,u_1,u_2,\cdots,u_m) \\ \vdots \\ f_m(t,u_1,u_2,\cdots,u_m) \end{array} \right)$$

System of m first-order ODEs:

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}), \quad a \le t \le b \quad (1)$$

with initial condition

$$\mathbf{u}\left(a\right)=\alpha\quad (2)$$

Higher order ODEs

$$y^{(m)} = f(t, y, y', \dots, y^{(m-1)}), \quad a \le t \le b$$
 (3)

$$y(a) = \alpha, \quad y'(a) = \alpha', \dots, y^{(m-1)}(a) = \alpha^{(m-1)}$$
 (4)

$$\mathbf{u} \stackrel{def}{=} \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_m \end{array} \right), \quad \alpha \stackrel{def}{=} \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{array} \right). \quad \left(\begin{array}{c} y^{(m)} = f\left(t,y,y',\cdots,y^{(m-1)}\right), \quad a \leq t \leq b \quad (3) \\ \text{for some } m > 1, \text{ with initial conditions} \\ y(a) = \alpha, \quad y'(a) = \alpha', \cdots, y^{(m-1)}(a) = \alpha^{(m-1)} \quad (4) \end{array} \right)$$

$$\mathbf{f}(t, \mathbf{u}) \stackrel{\text{def}}{=} \begin{pmatrix} f_1(t, u_1, u_2, \cdots, u_m) \\ f_2(t, u_1, u_2, \cdots, u_m) \\ \vdots \\ f_m(t, u_1, u_2, \cdots, u_m) \end{pmatrix}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}), \quad a \le t \le b \quad (1)$$

with initial condition

$$\mathbf{u}\left(a\right)=\alpha\quad (2)$$

Higher order ODEs

$$y^{(m)} = f(t, y, y', \dots, y^{(m-1)}), \quad a \le t \le b$$
 (3)

$$y(a) = \alpha, \quad y'(a) = \alpha', \dots, y^{(m-1)}(a) = \alpha^{(m-1)}$$
 (4)

Magic: re-write problem $(3)+(4) \Longrightarrow (1)+(2)$:

$$\mathbf{f}\left(t,\mathbf{u}\right) \overset{def}{=} \left(\begin{array}{c} f_1(t,u_1,u_2,\cdots,u_m) \\ f_2(t,u_1,u_2,\cdots,u_m) \\ \vdots \\ f_m(t,u_1,u_2,\cdots,u_m) \end{array} \right)$$

$$\mathbf{System of } m \text{ first-order ODEs:}$$

$$\mathbf{Magic: re-write problem } (3)+(4) \Longrightarrow (1)+(2):$$

$$\mathbf{u} = \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_m \end{array} \right) \overset{def}{=} \left(\begin{array}{c} y \\ y' \\ \vdots \\ y^{(m-1)} \end{array} \right), \quad \alpha \overset{def}{=} \left(\begin{array}{c} \alpha \\ \alpha' \\ \vdots \\ \alpha^{(m-1)} \end{array} \right)$$

$$\mathbf{u} \stackrel{def}{=} \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_m \end{array} \right), \quad \alpha \stackrel{def}{=} \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{array} \right). \qquad \begin{cases} y^{(m)} = f\left(t,y,y',\cdots,y^{(m-1)}\right), \quad a \leq t \leq b \quad (3) \\ \text{for some } m > 1, \text{ with initial conditions} \end{cases}$$

$$y(a) = \alpha, \quad y'(a) = \alpha', \cdots, y^{(m-1)}(a) = \alpha^{(m-1)} \quad (4)$$

$$\mathbf{f}(t, \mathbf{u}) \stackrel{\text{def}}{=} \begin{pmatrix} f_1(t, u_1, u_2, \cdots, u_m) \\ f_2(t, u_1, u_2, \cdots, u_m) \\ \vdots \\ f_m(t, u_1, u_2, \cdots, u_m) \end{pmatrix}$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}), \quad a \le t \le b \quad (1)$$

with initial condition

$$\mathbf{u}(a) = \alpha$$
 (2)

Higher order ODEs

$$y^{(m)} = f(t, y, y', \dots, y^{(m-1)}), \quad a \le t \le b$$
 (3)

$$y(a) = \alpha, \quad y'(a) = \alpha', \dots, y^{(m-1)}(a) = \alpha^{(m-1)}$$
 (4)

Magic: re-write problem $(3)+(4) \Longrightarrow (1)+(2)$:

$$\mathbf{f}\left(\mathbf{t},\mathbf{u}\right) \overset{def}{=} \left(\begin{array}{c} f_{1}(\mathbf{t},u_{1},u_{2},\cdots,u_{m}) \\ f_{2}(\mathbf{t},u_{1},u_{2},\cdots,u_{m}) \\ \vdots \\ f_{m}(\mathbf{t},u_{1},u_{2},\cdots,u_{m}) \end{array} \right)$$

$$\mathbf{System of } m \text{ first-order ODEs:}$$

$$\mathbf{Magic: re-write problem } (3)+(4) \Longrightarrow (1)+(2):$$

$$\mathbf{u} = \left(\begin{array}{c} u_{1} \\ u_{2} \\ \vdots \\ u_{m} \end{array} \right) \overset{def}{=} \left(\begin{array}{c} y \\ y' \\ \vdots \\ y^{(m-1)} \end{array} \right), \quad \alpha \overset{def}{=} \left(\begin{array}{c} \alpha \\ \alpha' \\ \vdots \\ \alpha^{(m-1)} \end{array} \right)$$

$$\Rightarrow \frac{d\mathbf{u}}{dt} = \begin{pmatrix} y' \\ y'' \\ \vdots \\ y^{(m)} \end{pmatrix} = \begin{pmatrix} u_2 \\ u_3 \\ \vdots \\ f(t, u_1, u_2, \cdots, u_m) \end{pmatrix} \stackrel{def}{=} \mathbf{f}(t, \mathbf{u})$$

$$\Rightarrow u(a) = 0$$

$$\mathbf{u} \stackrel{def}{=} \left(\begin{array}{c} u_1 \\ u_2 \\ \vdots \\ u_m \end{array} \right), \quad \alpha \stackrel{def}{=} \left(\begin{array}{c} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_m \end{array} \right). \qquad \begin{cases} y^{(m)} = f\left(t,y,y',\cdots,y^{(m-1)}\right), \quad a \leq t \leq b \quad (3) \\ \text{for some } m > 1, \text{ with initial conditions} \end{cases}$$

$$y(a) = \alpha, \quad y'(a) = \alpha', \cdots, y^{(m-1)}(a) = \alpha^{(m-1)} \quad (4)$$

$$\mathbf{f}(\mathbf{t}, \mathbf{u}) \stackrel{def}{=} \left(\begin{array}{c} f_1(\mathbf{t}, u_1, u_2, \cdots, u_m) \\ f_2(\mathbf{t}, u_1, u_2, \cdots, u_m) \\ \vdots \\ f_m(\mathbf{t}, u_1, u_2, \cdots, u_m) \end{array} \right)$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}), \quad a \le t \le b \quad (1)$$

with initial condition

$$\mathbf{u}(a) = \alpha$$
 (2)

Higher order ODEs

$$y^{(m)} = f(t, y, y', \dots, y^{(m-1)}), \quad a \le t \le b$$
 (3)

$$y(a) = \alpha, \quad y'(a) = \alpha', \dots, y^{(m-1)}(a) = \alpha^{(m-1)}$$
 (4)

Magic: re-write problem $(3)+(4) \Longrightarrow (1)+(2)$:

$$\mathbf{f}(t,\mathbf{u}) \stackrel{def}{=} \begin{pmatrix} f_1(t,u_1,u_2,\cdots,u_m) \\ f_2(t,u_1,u_2,\cdots,u_m) \\ \vdots \\ f_m(t,u_1,u_2,\cdots,u_m) \end{pmatrix}$$

$$\mathbf{g}(t,\mathbf{u}) \stackrel{def}{=} \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix} \stackrel{def}{=} \begin{pmatrix} y \\ y' \\ \vdots \\ y^{(m-1)} \end{pmatrix}, \quad \alpha \stackrel{def}{=} \begin{pmatrix} \alpha \\ \alpha' \\ \vdots \\ \alpha^{(m-1)} \end{pmatrix}$$
System of m first-order ODEs:

$$\Rightarrow \frac{d\mathbf{u}}{dt} = \begin{pmatrix} y' \\ y'' \\ \vdots \\ y^{(m)} \end{pmatrix} = \begin{pmatrix} u_2 \\ u_3 \\ \vdots \\ u_m \\ f(t, u_1, u_2, \cdots, u_m) \end{pmatrix} \stackrel{def}{=} \mathbf{f}(t, \mathbf{u})$$

Every ODE = first order ODE

example

$$x'' = \alpha y - \beta x y,$$

$$y'' = -\gamma x + \delta x y.$$

example

$$x'' = \alpha y - \beta x y,$$

$$y'' = -\gamma x + \delta x y.$$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} \stackrel{def}{=} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}$$

example

$$x'' = \alpha y - \beta x y,$$

$$y'' = -\gamma x + \delta x y.$$

$$\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \end{pmatrix} \stackrel{def}{=} \begin{pmatrix} x \\ x' \\ y \\ y' \end{pmatrix}$$

$$\implies \frac{d\mathbf{u}}{dt} = \begin{pmatrix} x' \\ x'' \\ y' \\ y'' \end{pmatrix} = \begin{pmatrix} u_2 \\ \alpha u_3 - \beta u_1 u_3 \\ u_4 \\ -\gamma u_1 + \delta u_1 u_3 \end{pmatrix} \stackrel{def}{=} \mathbf{f}(t, \mathbf{u})$$

Vector Lipschitz condition (I)

Definition: The function
$$f(t, \mathbf{u})$$
 for $\mathbf{u} = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix} \in \mathbf{R}^m$ defined

on the set

$$\mathcal{D} \stackrel{def}{=} \{(t, \mathbf{u}) \mid a \leq t \leq b, -\infty < u_j < \infty, 1 \leq j \leq m.\}$$
 satisfies a Lipschitz condition on \mathcal{D} if

$$|f(t, \mathbf{u}) - f(t, \mathbf{z})| \le L \sum_{j=1}^{m} |u_j - z_j|, \quad \text{where} \quad z = \begin{pmatrix} z_1 \\ z_2 \\ \vdots \\ z_m \end{pmatrix},$$

for a constant L and all $(t, \mathbf{u}), (t, \mathbf{z}) \in \mathcal{D}$.

Vector Lipschitz condition (II)

$$\mathcal{D} \stackrel{\text{def}}{=} \{ (t, \mathbf{u}) \mid a \leq t \leq b, -\infty < u_j < \infty, 1 \leq j \leq m. \}$$

Theorem: $f(t, \mathbf{u})$ satisfies a Lipschitz condition with Lipschitz constant L on \mathcal{D} if

$$\left|\frac{\partial f}{\partial u_j}(t,\mathbf{u})\right| \leq L, \quad j=1,2,\cdots,m.$$

$$\mathcal{D} \stackrel{\text{def}}{=} \{ (t, \mathbf{u}) \mid a \leq t \leq b, -\infty < u_j < \infty, 1 \leq j \leq m. \}$$

System of *m* first-order ODEs:

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}), \quad a \le t \le b, \quad \text{with} \quad \mathbf{u}(a) = \alpha.$$

Theorem: Suppose that $f_j(t, \mathbf{u})$ satisfies a Lipschitz condition with Lipschitz constant L on \mathcal{D} for all $1 \leq j \leq m$. Then the system of initial value ODEs has a unique solution $\mathbf{u} = \mathbf{u}(t)$ for all $t \in [a, b]$.

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha$$

$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t, \mathbf{u}), \quad a \leq t \leq b, \quad \mathbf{u}(a) = \alpha$$

scalar initial value ODE
$$\frac{dy}{dt} = f(t,y), \quad a \leq t \leq b, \quad y(a) = \alpha$$
 vector initial value ODEs
$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t,\mathbf{u}), \quad a \leq t \leq b, \quad \mathbf{u}(a) = \alpha$$

scalar Runge-Kutta 4th order method:

- $\mathbf{v}_0 = \alpha$
- $\qquad \qquad \mathsf{for} \ j = 0, 1, \cdots$

$$\begin{array}{rcl} \mathbf{k}_1 & = & h \, \mathbf{f}(t_j, \, \mathbf{w}_j), \\ \\ \mathbf{k}_2 & = & h \, \mathbf{f}(t_j + \frac{h}{2}, \, \mathbf{w}_j + \frac{1}{2} \mathbf{k}_1), \\ \\ \mathbf{k}_3 & = & h \, \mathbf{f}(t_j + \frac{h}{2}, \, \mathbf{w}_j + \frac{1}{2} \mathbf{k}_2), \\ \\ \mathbf{k}_4 & = & h \, \mathbf{f}(t_{j+1}, \, \mathbf{w}_j + \mathbf{k}_3), \\ \\ \mathbf{w}_{j+1} & = & \mathbf{w}_j + \frac{1}{6} \, (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4) \end{array}$$

scalar initial value ODE
$$\frac{dy}{dt} = f(t,y), \quad a \leq t \leq b, \quad y(a) = \alpha$$
 vector initial value ODEs
$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t,\mathbf{u}), \quad a \leq t \leq b, \quad \mathbf{u}(a) = \alpha$$

scalar Runge-Kutta 4th order method:

- $\mathbf{w}_0 = \alpha$

$$\begin{array}{rcl} \mathbf{k}_1 & = & h \, \mathbf{f}(t_j, \mathbf{w}_j), \\ \mathbf{k}_2 & = & h \, \mathbf{f}(t_j + \frac{h}{2}, \mathbf{w}_j + \frac{1}{2} \mathbf{k}_1), \\ \mathbf{k}_3 & = & h \, \mathbf{f}(t_j + \frac{h}{2}, \mathbf{w}_j + \frac{1}{2} \mathbf{k}_2), \\ \mathbf{k}_4 & = & h \, \mathbf{f}(t_{j+1}, \mathbf{w}_j + \mathbf{k}_3), \\ \mathbf{w}_{j+1} & = & \mathbf{w}_j + \frac{1}{6} \left(\mathbf{k}_1 + 2 \mathbf{k}_2 + 2 \mathbf{k}_3 + \mathbf{k}_4 \right) \end{array}$$

vector Runge-Kutta 4th order method:

- $\mathbf{v}_0 = \alpha$
- for $i = 0, 1, \cdots$

or
$$j = 0, 1, \cdots$$

$$\mathbf{k}_1 = h \, \mathbf{f}(t_j, \mathbf{w}_j),$$

$$\mathbf{k}_2 = h \, \mathbf{f}(t_j + \frac{h}{2}, \mathbf{w}_j + \frac{1}{2}\mathbf{k}_1),$$

$$\mathbf{k}_3 = h \, \mathbf{f}(t_j + \frac{h}{2}, \mathbf{w}_j + \frac{1}{2}\mathbf{k}_2),$$

$$\mathbf{k}_4 = h \, \mathbf{f}(t_{j+1}, \mathbf{w}_j + \mathbf{k}_3),$$

$$\mathbf{w}_{j+1} = \mathbf{w}_j + \frac{1}{6} \, (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4)$$

scalar initial value ODE
$$\frac{dy}{dt} = f(t,y), \quad a \leq t \leq b, \quad y(a) = \alpha$$
 vector initial value ODEs
$$\frac{d\mathbf{u}}{dt} = \mathbf{f}(t,\mathbf{u}), \quad a \leq t \leq b, \quad \mathbf{u}(a) = \alpha$$

scalar Runge-Kutta 4th order method:

- $\mathbf{v}_0 = \alpha$

$$\begin{array}{rcl} \mathbf{k}_1 & = & h \, \mathbf{f}(\mathbf{t}_j, \, \mathbf{w}_j), \\ \\ \mathbf{k}_2 & = & h \, \mathbf{f}(\mathbf{t}_j + \frac{h}{2}, \, \mathbf{w}_j + \frac{1}{2} \mathbf{k}_1), \\ \\ \mathbf{k}_3 & = & h \, \mathbf{f}(\mathbf{t}_j + \frac{h}{2}, \, \mathbf{w}_j + \frac{1}{2} \mathbf{k}_2), \\ \\ \mathbf{k}_4 & = & h \, \mathbf{f}(\mathbf{t}_{j+1}, \, \mathbf{w}_j + \mathbf{k}_3), \\ \\ \mathbf{w}_{j+1} & = & \mathbf{w}_j + \frac{1}{6} \, (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4) \end{array}$$

vector Runge-Kutta 4th order method:

$$\mathbf{v}_0 = \alpha$$

$$ightharpoonup$$
 for $i = 0, 1, \cdots$

$$\begin{aligned} &\text{for } j = 0, 1, \cdots \\ &\mathbf{k}_1 &= h \, \mathbf{f}(t_j, \mathbf{w}_j), \\ &\mathbf{k}_2 &= h \, \mathbf{f}(t_j + \frac{h}{2}, \mathbf{w}_j + \frac{1}{2} \mathbf{k}_1), \\ &\mathbf{k}_3 &= h \, \mathbf{f}(t_j + \frac{h}{2}, \mathbf{w}_j + \frac{1}{2} \mathbf{k}_2), \\ &\mathbf{k}_4 &= h \, \mathbf{f}(t_{j+1}, \mathbf{w}_j + \mathbf{k}_3), \\ &\mathbf{w}_{j+1} &= \mathbf{w}_j + \frac{1}{6} \, (\mathbf{k}_1 + 2\mathbf{k}_2 + 2\mathbf{k}_3 + \mathbf{k}_4) \end{aligned}$$

Identical appearance!!!

example: Lotka-Volterra predator-prey model

matlab function lotka

$$x' = x - 0.01 x y,$$

 $y' = -y + 0.02 x y.$

matlab command

$$[t, y] =$$
ode45(@lotka, $[0, 40], [2, 1]$);

example: Lotka-Volterra predator-prey model

matlab function lotka

$$x' = x - 0.01 x y,$$

 $y' = -y + 0.02 x y.$

matlab command

$$[t, y] =$$
ode45(@lotka, $[0, 40], [2, 1]$);

Predator Prey dynamics: circle of life

example: Lotka-Volterra predator-prey model

matlab function lotka

$$x' = x - 0.01 x y,$$

 $y' = -y + 0.02 x y.$

▶ matlab command

$$[t, y] = ode45(@lotka, [0, 40], [2, 1]);$$

Predator Prey dynamics: circle of life

single initial value ODE
$$\frac{dy}{dt} = f(t,y), \quad a \leq t \leq b, \quad y(a) = \alpha.$$

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

- one-step method:
 - $ightharpoonup w_0 = \alpha$

$$w_{j+1}=w_j+h\,\phi(t_j,w_j,h).$$

$$\frac{dy}{dt} = f(t,y), \quad a \le t \le b, \quad y(a) = \alpha.$$

- one-step method:
 - $ightharpoonup w_0 = \alpha$
 - for $j = 0, 1, \cdots$

$$w_{j+1} = w_j + h \phi(t_j, w_j, h).$$

▶ LTE

$$\tau_j(h) = \frac{y(t_{j+1}) - y(t_j)}{h} - \phi(t_j, y(t_j), h).$$

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

- one-step method:
 - $ightharpoonup w_0 = \alpha$
 - for $j = 0, 1, \cdots$

$$w_{j+1} = w_j + h \phi(t_j, w_j, h).$$

▶ LTE

$$\tau_j(h) = \frac{y(t_{j+1}) - y(t_j)}{h} - \phi(t_j, y(t_j), h).$$

Definition: consistency

$$\lim_{h\to 0} \max_{0\leq j\leq N} |\tau_j(h)| = 0, \quad x_j = a+j h.$$

least of requirements of an ODE method:

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

- one-step method:
 - $ightharpoonup w_0 = \alpha$
 - $for j = 0, 1, \cdots$

$$w_{j+1}=w_j+h\,\phi(t_j,w_j,h).$$

▶ LTE

$$\tau_j(h) = \frac{y(t_{j+1}) - y(t_j)}{h} - \phi(t_j, y(t_j), h).$$

► Definition: consistency

$$\lim_{h\to 0} \max_{0\leq j\leq N} |\tau_j(h)| = 0, \quad x_j = a+j h.$$

least of requirements of an ODE method:

► Definition: convergent

$$\lim_{h\to 0} \max_{0\leq j\leq N} |y(t_j)-w_j|=0$$

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha \quad (1)$$

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha \quad (1)$$

for
$$h = (b-a)/N$$
, $t_j = a+j h$, $\phi(t_j, w_j, h) = f(t_j, w_j)$

$$v_0 = \alpha$$

$$w_{j+1}=w_j+h\,f(t_j,w_j).$$

LTE

$$\begin{aligned} \left| \tau_j(h) \right| &= \left| \frac{y(t_{j+1}) - y(t_j)}{h} - f(t_j, y(t_j)) \right| \\ &= \frac{h}{2} \left| \frac{df}{dt} \left(\widetilde{t}_j, y(\widetilde{t}_j) \right) \right| \xrightarrow{\text{consistency}} 0 \end{aligned}$$

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha \quad (1)$$

for
$$h = (b-a)/N$$
, $t_j = a+j h$, $\phi(t_j, w_j, h) = f(t_j, w_j)$

- $v_0 = \alpha$

$$w_{j+1}=w_j+h\,f(t_j,w_j).$$

LTE

$$\begin{aligned} \left| \tau_j(h) \right| &= \left| \frac{y(t_{j+1}) - y(t_j)}{h} - f(t_j, y(t_j)) \right| \\ &= \frac{h}{2} \left| \frac{df}{dt} \left(\widetilde{t}_j, y(\widetilde{t}_j) \right) \right| \xrightarrow{\text{consistency}} 0 \end{aligned}$$

Theorem I: Suppose that in the initial value ODE,

ightharpoonup f(t,y) is continuous, with Lipschitz condition

$$|f(t, y_1) - f(t, y_2)| \le L |y_1 - y_2|$$
 on domain $D = \{(t, y) \mid a \le t \le b, -\infty < y < \infty \}$

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha \quad (1)$$

for
$$h = (b-a)/N$$
, $t_j = a+j h$, $\phi(t_j, w_j, h) = f(t_j, w_j)$

- $v_0 = \alpha$

$$w_{j+1}=w_j+h\,f(t_j,w_j).$$

LTE

$$|\tau_{j}(h)| = \left| \frac{y(t_{j+1}) - y(t_{j})}{h} - f(t_{j}, y(t_{j})) \right|$$
$$= \frac{h}{2} \left| \frac{df}{dt} \left(\widetilde{t}_{j}, y(\widetilde{t}_{j}) \right) \right| \xrightarrow{\text{consistency}} 0$$

Theorem I: Suppose that in the initial value ODE,

ightharpoonup f(t, y) is continuous, with Lipschitz condition

$$|f(t, y_1) - f(t, y_2)| \le L |y_1 - y_2|$$
 on domain $D = \{(t, y) \mid a \le t \le b, -\infty < y < \infty \}$

Then for each $j = 0, 1, \cdots, N$,

$$|y(t_j) - w_j| \le \frac{hM}{2L} \left(e^{L(t_j - a)} - 1 \right) \xrightarrow{\text{convergent}} 0$$

where $M = \max_{t \in [a,b]} |y''(t)|$.

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha \quad (1)$$

for
$$h = (b-a)/N$$
, $t_j = a+j h$, $\phi(t_j, w_j, h) = f(t_j, w_j)$

- $v_0 = \alpha$

$$w_{j+1} = w_j + h f(t_j, w_j).$$

LTE

$$|\tau_{j}(h)| = \left| \frac{y(t_{j+1}) - y(t_{j})}{h} - f(t_{j}, y(t_{j})) \right|$$
$$= \frac{h}{2} \left| \frac{df}{dt} \left(\tilde{t}_{j}, y(\tilde{t}_{j}) \right) \right| \xrightarrow{\text{consistency}} 0$$

Theorem I: Suppose that in the initial value ODE,

ightharpoonup f(t, y) is continuous, with Lipschitz condition

$$|f(t, y_1) - f(t, y_2)| \le L |y_1 - y_2|$$
 on domain $D = \{(t, y) \mid a \le t \le b, -\infty < y < \infty \}$

Then for each $j = 0, 1, \cdots, N$

$$|y(t_j) - w_j| \le \frac{hM}{2L} \left(e^{L(t_j - a)} - 1 \right) \stackrel{\text{convergent}}{\Longrightarrow} 0$$

where $M = \max_{t \in [a,b]} |y''(t)|$.

DEFINITION: ODE is well-posed if

- A unique ODE solution exists, and
- Small changes (perturbation) to ODE imply small changes to solution.

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha \quad (1)$$

for
$$h = (b-a)/N$$
, $t_j = a+j h$, $\phi(t_j, w_j, h) = f(t_j, w_j)$

- $v_0 = \alpha$

$$w_{j+1}=w_j+h\,f(t_j,w_j).$$

LTE

$$|\tau_{j}(h)| = \left| \frac{y(t_{j+1}) - y(t_{j})}{h} - f(t_{j}, y(t_{j})) \right|$$
$$= \frac{h}{2} \left| \frac{df}{dt} \left(\widetilde{t}_{j}, y(\widetilde{t}_{j}) \right) \right| \xrightarrow{\text{consistency}} 0$$

Theorem I: Suppose that in the initial value ODE,

ightharpoonup f(t,y) is continuous, with Lipschitz condition

$$|f(t, y_1) - f(t, y_2)| \le L |y_1 - y_2|$$
 on domain $D = \{(t, y) \mid a \le t \le b, -\infty < y < \infty \}$

Then for each $j = 0, 1, \dots, N$

$$|y(t_j) - w_j| \le \frac{hM}{2L} \left(e^{L(t_j - a)} - 1 \right) \stackrel{\text{convergent}}{\Longrightarrow} 0$$

where $M = \max_{t \in [a,b]} |y''(t)|$.

DEFINITION: ODE is well-posed if

- A unique ODE solution exists, and
- Small changes (perturbation) to ODE imply small changes to solution.

Theorem II: Let f satisfy **Theorem I**, then ODE in (1) is well-posed.

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha \quad (1)$$

for
$$h = (b-a)/N$$
, $t_j = a+j h$, $\phi(t_j, w_j, h) = f(t_j, w_j)$

- $v_0 = \alpha$

$$w_{j+1} = w_j + h f(t_j, w_j).$$

LTE

$$|\tau_{j}(h)| = \left| \frac{y(t_{j+1}) - y(t_{j})}{h} - f(t_{j}, y(t_{j})) \right|$$

$$= \frac{h}{2} \left| \frac{df}{dt} \left(\widetilde{t}_{j}, y(\widetilde{t}_{j}) \right) \right| \xrightarrow{\text{consistency}} 0$$

Theorem I: Suppose that in the initial value ODE,

• f(t, y) is continuous, with Lipschitz condition

$$|f(t, y_1) - f(t, y_2)| \le L |y_1 - y_2|$$
 on domain $D = \{(t, y) \mid a \le t \le b, -\infty < y < \infty \}$

Then for each $j = 0, 1, \cdots, N$

$$|y(t_j) - w_j| \leq \frac{hM}{2L} \left(e^{L(t_j - a)} - 1 \right) \stackrel{\text{convergent}}{\Longrightarrow} 0$$

where $M = \max_{t \in [a,b]} |y''(t)|$.

DEFINITION: ODE is well-posed if

- A unique ODE solution exists, and
- Small changes (perturbation) to ODE imply small changes to solution.

Theorem II: Let f satisfy **Theorem I**, then ODE in (1) is well-posed.

DEFINITION: A method is stable if

 Small changes (perturbation) to ODE (due to the method) imply small changes to <u>numerical</u> solution

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Theorem: Suppose a one-step method with $w_0 = \alpha$,

$$ightharpoonup$$
 for $j=0,1,\cdots$

$$w_{j+1} = w_j + h \phi(t_j, w_j, h).$$

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Theorem: Suppose a one-step method with $w_0 = \alpha$,

$$w_{i+1} = w_i + h \phi(t_i, w_i, h).$$

Suppose that $\phi(t, w, h)$ is continuous and satisfies Lipschitz condition with Lipschitz constant L, for $0 < h < h_0$.

$$\mathcal{D} \stackrel{\text{def}}{=} \{ (t, w, h) \mid a \leq t \leq b, -\infty < w < \infty, 0 < h < h_0. \}$$

single initial value ODE

$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Theorem: Suppose a one-step method with $w_0 = \alpha$,

$$w_{i+1} = w_i + h \phi(t_i, w_i, h).$$

Suppose that $\phi(t, w, h)$ is continuous and satisfies Lipschitz condition with Lipschitz constant L, for $0 < h < h_0$.

$$\mathcal{D} \stackrel{\text{def}}{=} \{ (t, w, h) \mid a \leq t \leq b, -\infty < w < \infty, 0 < h < h_0. \}$$

Then

- ► The method is stable
- ightharpoonup The method is convergent \iff consistent \iff

$$\phi(t, y, 0) = f(t, y)$$
 $a \le t \le b$.

$$|y(t_j)-w_j|\leq \frac{\tau(h)}{l}\,e^{L(t_j-a)},\quad au(h)\stackrel{def}{=}\max_{0\leq j\leq N}| au_j(h)|\,.$$

EXAMPLE: Modified Euler's Method, assuming
$$\left|\frac{\partial f}{\partial y}\right| \leq \widehat{L}$$

$$\textit{w}_0 = \alpha$$
, and for $\textit{j} = 0, 1, \cdots$

$$w_{j+1} = w_j + \frac{h}{2} (f(t_j, w_j) + f(t_{j+1}, w_j + h f(t_j, w_j)))$$

EXAMPLE: Modified Euler's Method, assuming $\left|\frac{\partial f}{\partial y}\right| \leq \widehat{L}$

$$w_0=lpha$$
, and for $j=0,1,\cdots$
$$w_{j+1}=w_j+rac{h}{2}\left(f(t_j,w_j)+f(t_{j+1},w_j+h\,f(t_j,w_j))
ight)$$

Solution: For Modified Euler's Method,

$$\phi(t, w, h) = \frac{1}{2} (f(t, w) + f(t + h, w + h f(t, w))),$$

EXAMPLE: Modified Euler's Method, assuming $\left|\frac{\partial f}{\partial y}\right| \leq \widehat{L}$

$$w_0=lpha$$
, and for $j=0,1,\cdots$
$$w_{j+1}=w_j+rac{h}{2}\left(f(t_j,w_j)+f(t_{j+1},w_j+h\,f(t_j,w_j))
ight)$$

Solution: For Modified Euler's Method,

$$\phi(t, w, h) = \frac{1}{2} (f(t, w) + f(t + h, w + h f(t, w))),$$

$$\phi(t, w, h) - \phi(t, \widehat{w}, h) = \frac{1}{2} (f(t, w) - f(t, \widehat{w}))$$

$$+ \frac{1}{2} (f(t + h, w + h f(t, w)) - f(t + h, \widehat{w} + h f(t, \widehat{w})).$$

EXAMPLE: Modified Euler's Method, assuming $\left|\frac{\partial f}{\partial v}\right| \leq \widehat{L}$ $w_0 = \alpha$, and for $j = 0, 1, \cdots$

$$w_{j+1} = w_j + \frac{h}{2} \left(f(t_j, w_j) + f(t_{j+1}, w_j + h f(t_j, w_j)) \right)$$

$$\phi(t, w, h) = \frac{1}{2} \left(f(t, w) + f(t + h, w + h f(t, w)) \right),$$

$$\phi(t, w, h) = \phi(t, \widehat{w}, h) = \frac{1}{2} \left(f(t, w) - f(t, \widehat{w}) \right)$$

$$\phi(t, w, h) - \phi(t, \widehat{w}, h) = \frac{1}{2} \left(f(t, w) - f(t, \widehat{w}) \right)$$

$$\phi(t, w, h) - \phi(t, \widehat{w}, h) = \frac{1}{2} \left(f(t, w) - f(t, \widehat{w}) \right)$$
$$+ \frac{1}{2} \left(f(t + h, w + h f(t, w)) - f(t + h, \widehat{w} + h f(t, \widehat{w})) \right)$$

$$+\frac{1}{2}\left(f(t+h,w+hf(t,w))-f(t+h,\widehat{w}+hf(t,\widehat{w}))\right).$$

$$+\frac{1}{2}\left(f(t+h,w+hf(t,w))-f(t+h,\widehat{w}+hf(t,\widehat{w}))\right).$$

$$|\phi(t, w, h) - \phi(t, \widehat{w}, h)| \leq \frac{\widehat{L}}{2} |w - \widehat{w}|$$

$$|\phi(t,w,h) - \phi(t,\widehat{w},h)| \leq \frac{L}{2}|w - \widehat{w}|$$

$$+ \frac{\widehat{L}}{2}|w + hf(t,w) - \widehat{w} - hf(t,\widehat{w})|$$

 $+\frac{\widehat{L}}{2}|w+hf(t,w)-\widehat{w}-hf(t,\widehat{w})|$

 $\leq \left(\widehat{L} + \frac{1}{2}h\widehat{L}^2\right)|w - \widehat{w}| \stackrel{def}{=} L|w - \widehat{w}|$

Stability Analysis: multistep methods (I)

single ODE
$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Consider multistep method, $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for $j = m - 1, m, m + 1, \cdots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F(t_j, w_{j+1}, w_j, \dots, w_{j+1-m}), \quad x_j = a + j h.$$

Stability Analysis: multistep methods (I)

single ODE
$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Consider multistep method, $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for $j = m - 1, m, m + 1, \cdots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F(t_j, w_{j+1}, w_j, \dots, w_{j+1-m}), \quad x_j = a + j h.$$

local truncation error

LTE
$$\tau_{j+1}(h) \stackrel{\text{def}}{=} \frac{y(t_{j+1}) - (a_{m-1} y(t_j) + a_{m-2} y(t_{j-1}) + \dots + a_0 y(t_{j+1-m}))}{h} - F(t_i, y(t_{j+1}), y(t_i), \dots, y(t_{j+1-m})).$$

Stability Analysis: multistep methods (I)

single ODE
$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Consider multistep method, $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$

Consider multistep method,
$$w_0 = \alpha$$
, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$, for $j = m-1, m, m+1, \dots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F(t_i, w_{i+1}, w_i, \dots, w_{i+1-m}), \quad x_i = a + j h.$$

local truncation error

LTE
$$\tau_{j+1}(h) \stackrel{\text{def}}{=} \frac{y(t_{j+1}) - (a_{m-1} y(t_j) + a_{m-2} y(t_{j-1}) + \dots + a_0 y(t_{j+1-m}))}{h} - F(t_i, y(t_{i+1}), y(t_i), \dots, y(t_{i+1-m})).$$

Assumptions on F

- If $f \equiv 0$, then $F \equiv 0$
- $|F(t_i, u_{i+1}, u_i, \dots, u_{i+1-m}) F(t_i, \widehat{u}_{i+1}, \widehat{u}_i, \dots, \widehat{u}_{i+1-m})|$ $\leq L(|u_{i+1}-\widehat{u}_{i+1}|+\cdots+|u_{i+1-m}-\widehat{u}_{i+1-m}|)$

Stability Analysis: multistep methods (II)

► Definition: consistency

$$\mathbf{lim}_{h\to 0}\mathbf{max}_{m\le j\le N}\left|\tau_j(h)\right|=0,\quad \mathbf{lim}_{h\to 0}\mathbf{max}_{0\le j\le m-1}\left|y(t_j)-\alpha_j\right|=0.$$

Stability Analysis: multistep methods (II)

Definition: consistency

$$\mathbf{lim}_{h\to 0}\mathbf{max}_{m\le j\le N}\left|\tau_j(h)\right|=0,\quad \mathbf{lim}_{h\to 0}\mathbf{max}_{0\le j\le m-1}\left|y(t_j)-\alpha_j\right|=0.$$

► Definition: convergence

$$\lim_{h\to 0} \max_{0\leq j\leq N} |y(t_j)-w_j|=0$$

Both similar to single-step case.

Stability Analysis: multistep methods (II)

Definition: consistency

$$\lim_{h\to 0} \max_{m\le j\le N} |\tau_j(h)| = 0, \quad \lim_{h\to 0} \max_{0\le j\le m-1} |y(t_j) - \alpha_j| = 0.$$

► Definition: convergence

$$\lim_{h\to 0} \max_{0\leq j\leq N} |y(t_j)-w_j|=0$$

Both similar to single-step case.

But stability will be different and much bigger issue

Stability Analysis: multistep methods (III)

single ODE
$$\frac{dy}{dt} = f(t, y) = 0, \quad a \le t \le b, \quad y(a) = \alpha.$$

 $\text{Solution is } y \equiv \alpha.$

Stability Analysis: multistep methods (III)

single ODE
$$\frac{dy}{dt} = f(t,y) = 0, \quad a \le t \le b, \quad y(a) = \alpha.$$

Solution is $y \equiv \alpha$.

Multistep method with $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for $j = m - 1, m, m + 1, \cdots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F (t_j, w_{j+1}, w_j, \dots, w_{j+1-m}),$$

$$= a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m}. \quad (F \equiv 0)$$

Stability Analysis: multistep methods (III)

single ODE
$$\frac{dy}{dt} = f(t, y) = 0, \quad a \le t \le b, \quad y(a) = \alpha.$$

Solution is $y \equiv \alpha$.

Multistep method with $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for $j = m - 1, m, m + 1, \cdots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F (t_j, w_{j+1}, w_j, \dots, w_{j+1-m}),$$

= $a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m}.$ (F \equiv 0)

Assume $\alpha = \alpha_1 \cdots = \alpha_{m-1}$,

Stability Analysis: multistep methods (III)

single ODE
$$\frac{dy}{dt} = f(t, y) = 0, \quad a \le t \le b, \quad y(a) = \alpha.$$

Solution is $y \equiv \alpha$.

Multistep method with $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for $j = m - 1, m, m + 1, \cdots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F (t_j, w_{j+1}, w_j, \dots, w_{j+1-m}),$$

= $a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m}. \quad (F \equiv 0)$

Assume $\alpha = \alpha_1 \cdots = \alpha_{m-1}$,

Minimum requirements on method

- $w_{j+1} \equiv \alpha$ for all j.
- w_{j+1} remains close to α in finite precision.

Finite recurrence relations (I)

Given
$$w_0 = \alpha_0$$
, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,
• for $j = m - 1, m, m + 1, \dots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \cdots + a_0 w_{j+1-m}$$
 (1)

Finite recurrence relations (I)

Given
$$w_0 = \alpha_0$$
, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for $j = m - 1, m, m + 1, \cdots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \cdots + a_0 w_{j+1-m}$$
 (1)

ightharpoonup To solve for w_i for all j, assume

$$\frac{w_{k+1}}{w_k} = \lambda$$
 for all k (2)

Recurrence becomes

$$\mathbf{P}(\lambda) = 0, \quad \mathbf{P}(\mu) \stackrel{\text{def}}{=} \mu^m - (a_{m-1} \mu^{m-1} + a_{m-2} \mu^{m-2} + \dots + a_0).$$

- thus $\mu = \lambda$ must be a root of $\mathbf{P}(\mu) = 0$.
- $w_j \equiv 1$ satisfies $(1) \Longrightarrow \mu = 1$ should be a root of $\mathbf{P}(\mu) = 0$.

Finite recurrence relations (II)

► Recurrence relation

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \cdots + a_0 w_{j+1-m}.$$

characteristic polynomial

$$\mathbf{P}(\mu) \stackrel{\text{def}}{=} \mu^m - (a_{m-1} \mu^{m-1} + a_{m-2} \mu^{m-2} + \cdots + a_0).$$

▶ If $P(\mu)$ has m distinct roots μ_1, \dots, μ_m , then

$$w_j = c_1 \mu_1^j + c_2 \mu_2^j + \dots + c_m \mu_m^j, \quad j = 0, 1, \dots m - 1, m, \dots$$

for constants $c_1, c_2, \dots c_m$ determined by the equations for $0 \le j \le m-1$.

Finite recurrence relations (III)

► Example recurrence relation

$$w_{j+1} = 3 w_j - 2 w_{j-1}.$$
 $(m = 2.)$

characteristic polynomial

$$\mathbf{P}(\mu) = \mu^2 - 3\mu^1 + 2 = (\mu - 1)(\mu - 2).$$

- ▶ Roots of $P(\mu)$ are 1 and 2.
- recurrence solution

$$w_j = c_1 + c_2 2^j, \quad j = 0, 1, 2, 3, \cdots$$

where

$$w_0=c_1+c_2, \quad w_1=c_1+2\,c_2, \quad ext{or, equivalently}$$
 $c_1=2w_0-w_1, \quad c_2=w_1-w_0.$

Finite recurrence relations (IV)

Example recurrence relation

$$w_{j+1} = 2 w_j - 1 w_{j-1}.$$
 $(m = 2.)$

characteristic polynomial

$$\mathbf{P}(\mu) = \mu^2 - 2\mu^1 + 1 = (\mu - 1)^2.$$

- ▶ Roots of $P(\mu)$ are 1 and 1.
- recurrence solution

$$w_j = c_1 + j c_2, \quad j = 0, 1, 2, 3, \cdots$$

where

$$w_0 = c_1, \quad w_1 = w_1 - w_0.$$

Root conditions

Multistep method with $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for
$$j = m - 1, m, m + 1, \cdots$$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F(t_j, w_{j+1}, w_j, \dots, w_{j+1-m}),$$

$$\mathbf{P}(\mu) = \mu^m - (a_{m-1} \mu^{m-1} + a_{m-2} \mu^{m-2} + \dots + a_0).$$

Root conditions

Multistep method with $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for
$$j = m - 1, m, m + 1, \cdots$$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F (t_j, w_{j+1}, w_j, \dots, w_{j+1-m}),$$

$$\mathbf{P}(\mu) = \mu^m - (a_{m-1} \mu^{m-1} + a_{m-2} \mu^{m-2} + \dots + a_0).$$

root condition: every root μ_i of $\mathbf{P}(\mu)$ must satisfy $|\mu_i| \leq 1$

Assume multistep method satisfies root condition.

- **strongly stable**: $\mu = 1$ is only root of $P(\mu)$ with magnitude 1.
- weakly stable: $P(\mu)$ has more than one distinct root with magnitude 1.

Otherwise method is unstable.

Root conditions

Multistep method with $w_0 = \alpha$, $w_1 = \alpha_1, \dots, w_{m-1} = \alpha_{m-1}$,

▶ for
$$j = m - 1, m, m + 1, \cdots$$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F (t_j, w_{j+1}, w_j, \dots, w_{j+1-m}),$$

$$\mathbf{P}(\mu) = \mu^m - (a_{m-1} \mu^{m-1} + a_{m-2} \mu^{m-2} + \dots + a_0).$$

root condition: every root μ_i of $\mathbf{P}(\mu)$ must satisfy $|\mu_i| \leq 1$

Assume multistep method satisfies root condition.

- strongly stable: $\mu = 1$ is only root of $P(\mu)$ with magnitude 1.
- weakly stable: $P(\mu)$ has more than one distinct root with magnitude 1.

Otherwise method is unstable.

strongly stable:

weakly stable:

single ODE
$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Theorem: Assume multistep method with $w_0 = \alpha$,

$$w_1 = \alpha_1, \cdots, w_{m-1} = \alpha_{m-1},$$

▶ for $j = m - 1, m, m + 1, \cdots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F(t_j, w_{j+1}, w_j, \dots, w_{j+1-m}).$$

single ODE
$$\frac{dy}{dt} = f(t, y), \quad a \le t \le b, \quad y(a) = \alpha.$$

Theorem: Assume multistep method with $w_0 = \alpha$,

$$w_1 = \alpha_1, \cdots, w_{m-1} = \alpha_{m-1}$$
,

▶ for $j = m - 1, m, m + 1, \cdots$

$$w_{j+1} = a_{m-1} w_j + a_{m-2} w_{j-1} + \dots + a_0 w_{j+1-m} + h F(t_j, w_{j+1}, w_j, \dots, w_{j+1-m}).$$

Assume the method is consistent, then

▶ The method is $\underline{\text{stable}} \iff \text{it satisfies root condition} \iff \text{it is convergent.}$

4-step Adams-Bashforth

$$\begin{array}{rcl} w_{j+1} & = & w_j + h\,F\left(t_j,w_j,w_{j-1},w_{j-2},w_{j-3}\right) & \text{where} \\ \\ F\left(t_j,w_j,w_{j-1},w_{j-2},w_{j-3}\right) & = & \frac{h}{24}\left(55f(t_j,w_j)-59f(t_{j-1},w_{j-1})+37f(t_{j-2},w_{j-2})-9f(t_{j-3},w_{j-3})\right) \end{array}$$

4-step Milne's method

$$\begin{array}{rcl} w_{j+1} & = & w_{j-3} + h \, \widehat{F} \left(t_j, w_j, w_{j-1}, w_{j-2}, w_{j-3} \right) & \text{where} \\ \\ \widehat{F} \left(t_j, w_j, w_{j-1}, w_{j-2}, w_{j-3} \right) & = & \frac{4h}{3} \left(2f(t_j, w_j) - f(t_{j-1}, w_{j-1}) + 2f(t_{j-2}, w_{j-2}) \right) \end{array}$$

4-step Adams-Bashforth

$$\begin{array}{rcl} w_{j+1} & = & w_j + h\,F\left(t_j,w_j,w_{j-1},w_{j-2},w_{j-3}\right) & \text{where} \\ F\left(t_j,w_j,w_{j-1},w_{j-2},w_{j-3}\right) & = & \frac{h}{24}\left(55f(t_j,w_j)-59f(t_{j-1},w_{j-1})+37f(t_{j-2},w_{j-2})-9f(t_{j-3},w_{j-3})\right) \end{array}$$

4-step Milne's method

$$\begin{array}{rcl} w_{j+1} & = & w_{j-3} + h \, \widehat{F} \, \left(t_j, w_j, w_{j-1}, w_{j-2}, w_{j-3} \right) & \text{where} \\ \\ \widehat{F} \, \left(t_j, w_j, w_{j-1}, w_{j-2}, w_{j-3} \right) & = & \frac{4h}{3} \, \left(2 f(t_j, w_j) - f(t_{j-1}, w_{j-1}) + 2 f(t_{j-2}, w_{j-2}) \right) \end{array}$$

▶ 4-step Adams-Bashforth

$$P(\mu) = \mu^4 - \mu^3 = \mu^3 (\mu - 1).$$

Roots of $P(\mu)$ are 0, 0, 0, 1

- satisfies root condition
- strongly stable, just one root with magnitude 1

4-step Adams-Bashforth

$$\begin{array}{rcl} w_{j+1} & = & w_j + h\,F\left(t_j,w_j,w_{j-1},w_{j-2},w_{j-3}\right) & \text{where} \\ F\left(t_j,w_j,w_{j-1},w_{j-2},w_{j-3}\right) & = & \frac{h}{24}\left(55f(t_j,w_j)-59f(t_{j-1},w_{j-1})+37f(t_{j-2},w_{j-2})-9f(t_{j-3},w_{j-3})\right) \end{array}$$

4-step Milne's method

$$\begin{array}{rcl} w_{j+1} & = & w_{j-3} + h \, \widehat{F} \, (t_j, w_j, w_{j-1}, w_{j-2}, w_{j-3}) & \text{where} \\ \\ \widehat{F} \, (t_j, w_j, w_{j-1}, w_{j-2}, w_{j-3}) & = & \frac{4h}{3} \, \big(2f(t_j, w_j) - f(t_{j-1}, w_{j-1}) + 2f(t_{j-2}, w_{j-2}) \big) \end{array}$$

4-step Adams-Bashforth $P(\mu) = \mu^4 - \mu^3 = \mu^3 (\mu - 1).$

Roots of $P(\mu)$ are 0, 0, 0, 1

- satisfies root condition
- strongly stable, just one root with magnitude 1

Milne's method ${\bf P}(\mu) = \mu^4 - 1 = (\mu - 1)(\mu + 1)(\mu - \sqrt{-1})(\mu + \sqrt{-1}).$

4-step Adams-Bashforth

$$\begin{array}{rcl} w_{j+1} & = & w_j + h\,F\left(t_j,w_j,w_{j-1},w_{j-2},w_{j-3}\right) & \text{where} \\ F\left(t_j,w_j,w_{j-1},w_{j-2},w_{j-3}\right) & = & \frac{h}{24}\left(55f(t_j,w_j)-59f(t_{j-1},w_{j-1})+37f(t_{j-2},w_{j-2})-9f(t_{j-3},w_{j-3})\right) \end{array}$$

4-step Milne's method

$$\begin{array}{rcl} w_{j+1} & = & w_{j-3} + h \, \widehat{F} \left(t_j, w_j, w_{j-1}, w_{j-2}, w_{j-3} \right) & \text{where} \\ \\ \widehat{F} \left(t_j, w_j, w_{j-1}, w_{j-2}, w_{j-3} \right) & = & \frac{4h}{3} \left(2f(t_j, w_j) - f(t_{j-1}, w_{j-1}) + 2f(t_{j-2}, w_{j-2}) \right) \end{array}$$

4-step Adams-Bashforth $P(u) = u^4 - u^3 = u^3 (u - 1).$

Roots of $P(\mu)$ are 0, 0, 0, 1

- satisfies root condition
- strongly stable, just one root with magnitude 1

Milne's method $P(\mu) = \mu^4 - 1 = (\mu - 1)(\mu + 1)(\mu - \sqrt{-1})(\mu + \sqrt{-1}).$

Roots of $\mathbf{P}(\mu)$ are $\pm 1, \pm \sqrt{-1}$

- satisfies root condition
- weakly stable, all roots have magnitude 1