CUÁDRICAS

$$Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Mx + Ny + Qz + S = 0$$

Cuádricas centrales:

Esfera
Elipsoide
Hiperboloide de 1 hoja
Hiperboloide de 2 hojas

Cuádricas no centrales:

Paraboloide eliptico

Paraboloide hiperbólico (Silla de Montar)

CUÁDRICAS CENTRALES

CUÁDRICAS NO CENTRALES

Paraboloide elíptico

ESFERA Y ELIPSOIDE $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$

·Si a=b=c ESFERA

·Si a ¥ b ¥ c ELIPSOIDE

- · Si existen dos coeficientes iguales Elipsoide de revolución
 - Si a = b + c alargado
 - Si a ¥ b = c achatado

ESFERA

Ecuación explícita

$$x^2 + y^2 + z^2 = a^2$$

Unas ecuaciones paramétricas:

$$-\pi/2 < u < \pi/2$$

0 < v < 2 π

Corte con los planos del triedro:

Plano XY: $x^2 + y^2 = 1$ Circunferencia

Plano XZ: $x^2 + z^2 = 1$ Circunferencia

Plano YZ: $y^2 + z^2 = 1$ Circunferencia

ELIPSOIDE

z = c sen u

$$x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$$
 a,b,c > 0

Unas ecuaciones paramétricas:

$$-\pi/2 < u < \pi/2$$

0 < v < 2 π

Corte con los planos del triedro:

Plano XY: $x^2/a^2 + y^2/b^2 = 1$ Elipse

Plano XZ: $x^2/a^2 + z^2/c^2 = 1$ Elipse

Plano YZ: $y^2/b^2 + z^2/c^2 = 1$ Elipse

HIPERBOLOIDE DE UNA HOJA

Ecuación explícita

$$x^2/a^2 + y^2/b^2 - z^2/c^2 = 1$$
 a,b,c > 0
Si a = b Hiperboloide de revolución de una hoja

Unas ecuaciones paramétricas:

$$X = a \cosh u \cos v$$

y = b cosh u sen v

z = c senh u

 $0 < v < 2 \pi$

Corte con los planos del triedro:

Es simétrico respecto a los planos coordenados, con respecto a los ejes y respecto al origen.

Plano XY: $x^2/a^2 + y^2/b^2 = 1$ Elipse

Plano XZ: $x^2/a^2 - z^2/c^2 = 1$ Hipérbola

Plano YZ: $y^2/b^2 - z^2/c^2 = 1$ Hipérbola

HIPERBOLOIDE DE DOS HOJAS

Ecuación explícita

$$x^2/a^2 - y^2/b^2 - z^2/c^2 = 1$$
 a,b,c > 0
Si a = b Hiperboloide de revolución de una hoja

Unas ecuaciones paramétricas:

x = a senh u cos v

y = b senh u sen v

 $z = c \cosh u$

0 < u < Φ

 $0 < v < 2 \pi$

Corte con los planos del triedro:

Es simétrico respecto a los planos coordenados, con respecto a los ejes y respecto al origen.

Plano XY: $x^2/a^2 - y^2/b^2 = 1$ Hipérbola

Plano XZ: $x^2/a^2 - z^2/c^2 = 1$ Hipérbola

Plano YZ: Si x<a es imaginaria Si x=a es un punto Si x>a es una elipse

PARABOLODIDE ELÍPTICO

Ecuación explícita

$$x^2/a^2 + y^2/b^2 = cz$$
 a,b > 0

Si C > 0 se abre según el eje z positivo

Si C > 0 se abre según el eje z negativo

Unas ecuaciones paramétricas:

$$X = au \cos v$$

 $y = bu \sin v$
 $z = u^2$

$$0 < v < 2 \pi$$

Corte con los planos del triedro:

Plano XY: $x^2/a^2 + y^2/b^2 = 1$ Elipse

en el lado en el que existe paraboloide

Plano XZ: $x^2/a^2 = cz$ Parábola

Plano YZ: $y^2/b^2 = cz$ Parábola

PARABOLOIDE HIPERBÓLICO

Silla de montar

Ecuación explícita
$$x^2/a^2 - y^2/b^2 = cz$$
 a,b > 0

Unas ecuaciones paramétricas:

$$x = au$$
$$y = bv$$
$$z = u^2 - v^2$$

Corte con los planos del triedro:

Plano XY: x/a + y/b = 0 2 Rectas

x/a - y/b = 0

Plano XZ: $x^2/a^2 = cz$ Parábola

Plano YZ: $y^2/b^2 = -cz$ Parábola

CILINDRO

Ecuación explícita $x^2 + y^2 = 1$

$$x^2 + y^2 = 1$$

Unas ecuaciones paramétricas:

$$x = a \cos u$$

 $y = a \sin v$

$$0 < v < 2\pi$$

Corte con los planos del triedro:

Plano XY: $x^2 + y^2 = a^2$ Circunferencia

Plano XZ: x = a + 2 Rectas

x = -a

Plano YZ: y = a 2 Rectas

CONO

Ecuación explícita

$$x^2/a^2 + y^2/b^2 - z^2/c^2 = 0$$

Si a = b CONO CIRCULAR RECTO Si a ¥ b CONO ELÍPTI CO

Unas ecuaciones paramétricas:

 $0 < v < 2\pi$

Corte con los planos del triedro:

Plano XY: $x^2 + y^2 = a^2$ Circunferencia

 $x^2/a^2 + y^2/b^2 = 1$ Elipse

Plano XZ: x/a = z/c 2 Rectas

x/a = -z/c

Plano YZ: y/b = z/c 2 Rectas

y/b = -z/c

OTRAS SUPERFICIES

·Superficies de REVOLUCIÓN

Superficies de TRASLACIÓN

Superficies REGLADAS

SUPERFICIES DE REVOLUCIÓN

Superficie engendrada por una <u>curva</u> que gira alrededor de un recta denominada <u>eje de revolución</u>

CURVA $f_1(x,y,z)$ $f_2(x,y,z)$ EJE DE REVOLUCIÓN pasa por $P(x_0,y_0,z_0)$ con vector director $v=(v_1,v_2,v_3)$

En los planos perpendiculares al eje, la curva describe una circunferencia: PARALELOS

La intersección con los planos que contienen al eje reciben el nombre de MERIDIANOS

SUPERFICIES DE TRASLACIÓN

Superficie engendrada por todas las curvas que se obtienen al trasladar la generatriz C₂ paralelamente a sí misma, cuando el punto P₀ describe la directriz C_{1.}

DOS CURVAS C₁ curva directriz

C₂ curva generatriz

PUNTO COMÚN $P_0 = (x_0, y_0, z_0)$

SUPERFICIES REGLADAS

Superficie engendrada por rectas denominadas generatrices, que se apoyan en una curva llamada directriz

