Derivatives

Common Derivatives

Name	Function	Derivative
Constant	c	0
Linear	x	1
	ax	a
Square	x^2	2x
Square Root	\sqrt{x}	$\frac{1}{2} \cdot x^{\frac{1}{2}}$
Exponential	e^x	e^x
	a^x	$\ln(a) a^x$
Logarithms	ln(x)	$\frac{1}{x}$
	$\log_a(x)$	$\frac{1}{x\ln(a)}$
Trigonometry	$\sin(x)$	$\cos(x)$
	$\cos(x)$	$-\sin(x)$
	tan(x)	$\sec^2(x)$
	$\cot(x)$	$-\csc^2(x)$
	sec(x)	$\sec(x)\tan(x)$

Special Derivative Rules

Rule	Function	Derivative
Multiply by Constant	cf	cf'
Power Rule	x^n	nx^{n-1}
Sum Rule	f + g	f'+g'
Product Rule	fg	fg' + gf'
Quotient Rule	$\frac{f}{g}$	$\frac{gf' - fg'}{g^2}$
Reciprocal Rule	$\frac{1}{f}$	$-\frac{f'}{f^2}$
Chain Rule (Notation 1)	$f\circ g$	$(f'\circ g)\cdot g'$
Chain Rule (Notation 2)	f(g(x))	$f'(g(x)) \cdot g'(x)$

Integration

Common Integrals

Integral	Function	Name
ax + C	$\int adx$	Constant
$\frac{x^2}{2} + C$	$\int x dx$	Variable
$\ln x + C$	$\int \frac{1}{x} dx$	Reciprocal
$e^x + C$	$\int e^x dx$	Exponential
$\sin(x) + C$	$\int \cos(x) dx$	Trig
$-\cos(x) + C$	$\int \sin(x) dx$	
$\tan(x) + C$	$\int \sec^2(x) dx$	

Integration by Parts

$$\int u \ dv = uv - \int v \ du$$

For Integration by Parts, Pick u and dv from your equation.

$$u = \underline{\hspace{1cm}} dv = \underline{\hspace{1cm}} \leftarrow \text{pick these.}$$
 $du = \underline{\hspace{1cm}} v = \underline{\hspace{1cm}} \leftarrow \text{derive from above.}$

Integration by Substitution

When you notice an equation that could be in the form:

$$\int f(g(x)) g'(x) dx$$

1. Choose a transformation

$$u = g(x)$$

2. Find its differential

$$du = g'(x) dx$$

3. Apply substitution

$$\int f(g(x)) g'(x) dx = \int f(u) du$$

4. Solve the Integral, and then replace u again.