Classical Planning

Air Cargo Problem 1

Algorithm	Actions	Expansions	Goal Tests	New Nodes	Planned length	Elapsed Time
breadth_first_search	20	43	56	178	6	0.0165736
depth_first_graph_search	20	21	22	84	20	0.004053817
uniform_cost_search	20	60	62	240	6	0.011663013
greedy_best_first h_unmet_goals	20	7	9	29	6	0.00162189900
greedy_best_first h_pg_levelsum	20	6	8	28	6	0.221448701
greedy_best_first h_pg_maxlevel	20	6	8	24	6	0.085398933
greedy_best_first h_pg_setlevel	20	6	8	28	6	0.305025476
astar_search h_unmet_goals	20	50	52	206	6	0.011085351
astar_search h_pg_levelsum	20	28	30	122	6	0.150917725
astar_search h_pg_maxlevel	20	43	45	180	6	0.107758392
astar_search h_pg_setlevel	20	33	35	138	6	0.312191374

Expansions

Elapsed Time (in s)

Planned Length

Analysis:

- Greedy-search had the feast expansion of new nodes
- Uninformed search had the best performance
- Except for depth-first search, all algorithms had the same planned length

Air Cargo Problem 2

Algorithm	Actions	Expansions	Goal Tests	New Nodes	Planned length	Elapsed Time
breadth_first_search	72	3343	4609	30503	9	0.236146225
depth_first_graph_searc	72	624	625	5602	619	0.392530226
uniform_cost_search	72	5154	5154	46618	9	0.523219102
greedy_best_first h_unmet_goals	72	17	19	170	9	0.01980807
greedy_best_first h_pg_levelsum	72	9	11	86	9	0.431646128

greedy_best_first h_pg_maxlevel	72	27	29	249	9	0.853740974
greedy_best_first h_pg_setlevel	72	9	11	84	9	1.278744719
astar_search h_unmet_goals	72	2467	2469	22522	9	0.518309286
astar_searchh_pg_levelsum	72	357	359	3426	9	10.81807984
astar_searchh_pg_maxlevel	72	2887	2889	26594	9	59.46431371
astar_search h_pg_setlevel	72	1037	1039	9605	9	91.89364934

Expansions

Elapsed Time (in s)

Planned Length

Analysis:

- Again, Greedy-search had (by far) the feast expansion of new nodes
- A-Star search had the worst performance. Uninformed and Greedy search had similar results
- Again, Except for depth-first search, all algorithms had the same planned length

Air Cargo Problem 3

Algorithm	Actions	Expansions	Goal Tests	New Nodes	Planned length	Elapsed Time
breadth_first_search	88	14663	18098	129625	12	0.678347079
depth_first_graph_search	88	408	409	3364	392	0.186356142
uniform_cost_search	88	18510	18512	161936	12	1.116633169
greedy_best_first h_unmet_goals	88	25	27	230	15	0.023515381
greedy_best_first h_pg_levelsum	88	14	16	126	14	1.336863622
astar_search h_unmet_goals	88	7388	7390	65711	12	0.980664153
astar_search h_pg_levelsum	88	369	371	3403	12	17.00977376

Expansions

Elapsed Time (in s)

Planned Length

Analysis:

- Again, Greedy-search had the fewest expansion of new nodes. Uninformed search had by far the most overhead
- Greedy-search (h_unmet_goals) had the best performance. A-Star (h_pg_levelsum) by far the worst
- Again, except for depth-first search, all algorithms had similar planned length with Greedy-search falling behind

Air Cargo Problem 4

Algorithm	Actions	Expansions	Goal Tests	New Nodes	Planned length	Elapsed Time
breadth_first_search	104	99736	114953	944130	15	4.664306404
depth_first_graph_search	104	25174	25175	228849	24132	827.7768067
uniform_cost_search	104	113339	113341	1066413	14	7.138468767
greedy_best_first h_unmet_goals	104	29	31	280	18	0.015185867
greedy_best_first h_pg_levelsum	104	17	19	165	17	1.602999661
astar_search h_unmet_goals	104	34330	34332	328509	14	3.331251817
astar_search h_pg_levelsum	104	1208	1210	12210	15	92.18001484

Expansions

Elapsed Time (in s)

Planned Length

Analysis:

- Again, Greedy-search had the fewest expansion of new nodes. Uninformed search overhead increases
- Greedy-search (h_unmet_goals) had the best performance. Depth-first by far the worst

- Breadth-first, Uniform-cost and A-Star search had the best planned length results

Additional Questions

- Which algorithm or algorithms would be most appropriate for planning in a very restricted domain (i.e., one that has only a few actions) and needs to operate in real time?
 - → To meet the requirements of good performance and only few actions, greedy-best-first with h-unmet-goals would be the best match. Depending on the restriction of the domain, uninformed search can be a good choice too.
- Which algorithm or algorithms would be most appropriate for planning in very large domains (e.g., planning delivery routes for all UPS drivers in the U.S. on a given day)
 - ➡ With informed search planning time and computation can rise exponentially with additional complexity. Therefore, it is vitally important to keep planning in very large domains as simple as possible. Greedy-best-first with h-unmet-goals delivers good results as the heuristic is very simple.
 Depending on the domain, uninformed search can be a good choice. However, uninformed search can also result in a considerable amount of useless actions.
- Which algorithm or algorithms would be most appropriate for planning problems where it is important to find only optimal plans?
 - → If optimal planning matters the most, A-Star would be the best choice as it delivers the most reliable results.