	 Cross validation is a procedure for estimating the test-time performance of a given model. Cross validation does not need access to any test data. Instead, it works by holding out some of the training data and using if it were testing data. In this lab we will focus on K-fold cross validation, where the training data is divided into K equally-sized chunks and each chunk gets a turn "pretending" to be a test set. This will be explained. Model selection procedures try to select a "best" model from among many alternatives. The best model is usually the one that we can expect to have the best test-time performance. Since cross validation lets us estimate the test-time performance, many model selection procedures rely on cross validation as a subroutine. Hyperparameter search is a particular model selection procedure that focuses on selecting one model from a family of related
	models. Hyperparameter search can therefore be seen as a "model tuning" procedure. For example, we can define all DecisionTreeClassifiers with max_depth ∈ {1,,1000} as being a "family" with 1000 possible members to choose from. Hyperparameter search would find a particular setting for max_depth that is estimated to have the best possible test-time performance (not necessarily the best training performance). A good hyperparameter search procedure will find good hyperparameters (hyperparameters estimated to have good test-time performance) using very few "attempts", since each attempt requires performing cross validation and this can be computationally demanding. The goal is to understand what cross validation is, how it is used as a subroutine within a hyperparameter search procedure. You will be asked to try two different hyperparameter search procedures: grid search and random search.
In [1]:	<pre>import numpy as np import matplotlib.pyplot as plt import sklearn import sklearn.svm # For SVC import sklearn.tree # For DecisionTreeClassifier import sklearn.metrics # For accuracy_score import sklearn.model_selection # For cross_val_score, GridSearchCV, RandomizedSearchCV import scipy import scipy.stats # For reciprocal distribution</pre>
	1. Understanding Cross Validation Exercise 1.1–1.3 ask you to load and preprocess the training data (exercise1_train.csv), then split the data to training set and heldout test set (sklearn.model_selection.train_test_split), then finally compare how K-fold cross validation can estimate the held-out test performance of a model.
In [2]:	Run the code cell below to define some functions for plotting data and model. exercise1_extent = (-3, 4, -3, 4) def plot_decision_function(model): """ Plots the decision function of a model as a red-blue heatmap. The region evaluated, along with x and y axis limits, are determined by 'extent'. """ x1min, x1max ,x2min, x2max = exercise1_extent
	<pre>x1, x2 = np.meshgrid(np.linspace(x1min, x1max, 200), np.linspace(x2min, x2max, 200)) X = np.column_stack([x1.ravel(), x2.ravel()]) y = model.decision_function(X).reshape(x1.shape) plt.imshow(-y, extent=exercisel_extent, origin='lower', vmin=-1, vmax=1, cmap='bwr', alpha=0.5, interpolate if y.min() < 0 and y.max() > 0: plt.contour(x1, x2, y, levels=[0], colors=['k']) # Decision boundary plt.xlim([x1min, x1max]) plt.ylim([x2min, x2max]) def plot_data(X, y): """Plots the data from Exercise 1""" plt.scatter(*X[y==0].T, marker="x", c="r")</pre>
	plt.scatter(*X[y==1].T, marker="x", c="b") plt.xlim(exercise1_extent[:2]) plt.ylim(exercise1_extent[2:]) plt.gca().set_aspect('equal') Exercise 1.1 — Load, re-scale, and plot full data set Start by loading the data from exercise1_train.csv, then seperate the data and also pre-process the data to the right scale, and plot the data using plot_data() function.
In [3]:	<pre>Your plot should look like the figure below. # Your code here. Aim for 6-8 lines. data_train = np.loadtxt('exercise1.csv', delimiter=',', skiprows=1); X_set = data_train[:, :2].astype(np.float64).reshape(-1, 2); X_set = sklearn.preprocessing.StandardScaler().fit(X_set).transform(X_set) y_set = data_train[:, 2].astype(np.int32); plot data(X set, y set);</pre>
	4 3 2 1 0 -1
	Exercise 1.2 — Split data to training and testing In this exercise, you should use sklearn.model_selection.train_test_split to split the data from Exercise 1.1 to two groups: a training set, and a held-out test set. Use random_state=0. For this exercise, you should explicitly ask for a 70/30 split (70% training)
In [4]:	<pre>data, 30% testing data). Plot the two data sets side-by-side, using the subplot function of Matplotlib. # Your code here. Aim for 6-10 lines. (X_train, X_test, y_train, y_test) = sklearn.model_selection.train_test_split(X_set, y_set, random_state=0, te plt.figure(figsize=(8 ,4)); ax = plt.subplot(121); plot_data(X_train, y_train); ax.title.set_text('Training data'); ax = plt.subplot(122); plot_data(X_test, y_test);</pre>
	Training data Testing data
	Exercise 1.3 — Use K-fold cross-validation to estimate held-out performance As a rule, data marked as a "test set" should ALMOST NEVER be used for training, or even for model selection. All modeling choices (parameters, best model) must be made based on training data, ONLY. Otherwise you will very likely fool yourself, or others, into
	thinking your system will perform well on held-out data when it will not. "Peeking" at the test data, directly or indirectly, or even measuring the performance on test data too often, is even considered cheating. In fact, at least one well-known machine learning scientist was fired from his job for trying to tune hyperparameters directly to the test data. K-fold cross validation is a specific procedure for estimating held-out performance using only the training set. It creates <i>K</i> different (training, validation) splits and then averaging the validation performance measured on each one. (Beware that scikit-learn's desciption of cross validation sometimes refers to the <i>K</i> individual validation sets as "test sets" so this can be confusing since they
	are not really validation sets.) The <i>K</i> -fold cross validation procedure is depicted below. When there are <i>K</i> splits the result is <i>K</i> different performance estimates, one for each of the held-out folds. (Image source: https://scikit-learn.org/stable/modules/cross_validation.html) Note that the "test data" depicted above is not needed for the cross validation procedure itself, and is only used as an (optional) final performance evaluation, after the model selection procedure. Write a few lines of code to 1. train a <i>DecisionTreeClassifier</i> with <i>max_depth</i> =10
	2. print the accuracy on the training set and test set from Exercise 1.2 3. print the K -fold cross validation accuracy for each $K \in \{2, \ldots, 9\}$. Use the sklearn.metrics.accuracy_score function or, equivalently, the score method of your <i>DecisionTreeClassifier</i> to compute the training and testing accuracies. Use the sklearn.model_selection.cross_val_score function to do the cross validation. It will return an array of K values, so you need to average them to get an overall estimate.
	training accuracy: held-out accuracy (testing): held-out accuracy (2-fold): held-out accuracy (3-fold): held-out accuracy (4-fold): held-out accuracy (5-fold): held-out accuracy (5-fold): held-out accuracy (6-fold): held-out accuracy (6-fold): held-out accuracy (6-fold): held-out accuracy (7-fold): held-out accuracy (7-fold): held-out accuracy (8-fold):
In [80]:	<pre>held-out accuracy (8-fold): ??.?% held-out accuracy (9-fold): ??.?% # Your code here. Aim for 6-10 lines. decisionTree = sklearn.tree.DecisionTreeClassifier(random_state=0, max_depth=10).fit(X_train, y_train); predictionsTest = decisionTree.predict(X_test); predictionsTrain = decisionTree.predict(X_train); print(f'Training accuracy: {sklearn.metrics.accuracy_score(y_train, predictionsTrain) * 100: .1f}%'); print(f'Held-out accuracy (testing):{sklearn.metrics.accuracy_score(y_test, predictionsTest) * 100: .1f}%'); for i in range(2, 10): average=0; kFoldCrossVal = sklearn.model selection.cross val score(decisionTree ,X train, y train, cv= i);</pre>
	<pre>for score in kFoldCrossVal: average += score; average /= i; print(f'Held-out accuracy ({i}-Fold): {average * 100: .1f}%') Training accuracy:</pre>
	Held-out accuracy (6-Fold): 81.4% Held-out accuracy (7-Fold): 82.9% Held-out accuracy (8-Fold): 84.2% Held-out accuracy (9-Fold): 85.5% Ask yourself: are the K-fold cross validation accuracies a reasonable estimate of the testing accuracy? Are they at least a better estimate than training accuracy? 2. Hyperparameter search
	Hyperparameter search is a particular kind of model selection, where we tune the parameters that are normally considered "fixed" (constant) during training itself. Exercise 2.1 asks you to plot the SVM model with different hyperparameters, this would help you to visualize the grid of hyperparameters. Exercise 2.2 asks you to perform grid search using sklearn.model_selection.GridSearchCV Exercise 2.3 asks you to perform random hyperparameter search
	Exercise 2.4 asks you to evaluate the model selected from exercise 1.4 and 1.5 on the held-out test set Exercise 2.1 — Visualize a grid of hyperparameters In this exercise, you need to train an RBF SVM on the training data using different hyperparameter settings. The specific hyperparameters that you will inspect are <i>C</i> (the slack penalty) and the <i>gamma</i> (the RBF kernel spread). To specify a "grid" of values, it is enough to specify the specific "ticks" we'll enumerate along each dimension. For example, if we
	specified that C took values from $\{C_1,C_2\}$ and $gamma$ took values from $\{\gamma_1,\gamma_2,\gamma_3\}$ then we have specified the grid of hyperparameter values to try:
In [6]:	The values should be "logarithmically spaced", i.e., equally spaced on a logarithmic scale. Use numpy.logspace to do this. For example, if you choose C values to be taken from $[1,10,100,1000]$, these numbers are logarithmically spaced, not uniformly spaced. Why do we want logarithmic spacing? Because the C and G and G and G and G are sensitive over G and G and G are sensitive over G are sensitive over G and G are sensitive over G an
	Step 2. Print the training accuracy of an RBF SVM for each setting in the grid Use for-loops to train an RBF SVM for each combination of (<i>C</i> , <i>gamma</i>) in your grid, using the variables you already created in the previous code cell. Train the SVMs on the <i>X_train</i> and <i>y_train</i> data from exercise 1.2. The output of your code cell should be something like: 72.9% training accuracy for C=1.0 gamma=0.01 88.6% training accuracy for C=1.0 gamma=0.10
In [7]:	90.0% training accuracy for C=1.0 gamma=1.00 94.3% training accuracy for C=1.0 gamma=10.00 88.6% training accuracy for C=10.0 gamma=0.01 Based on your printed training accuracies, would you be able to guess which of these settings of (<i>C</i> , <i>gamma</i>) might work best on new test data? # Your code here. Aim for 6-10 lines. for i in range (4):
	<pre>currentC = c_params[i]; for j in range(4): currentG = g_params[j]; rbf_svm = sklearn.svm.SVC(kernel='rbf', C=currentC, gamma=currentG).fit(X_train, y_train); predictionsTrain = rbf_svm.predict(X_train); print(f'{sklearn.metrics.accuracy_score(y_train, predictionsTrain) * 100: .1f}% Training accuracy for 72.9% Training accuracy for C = 1.00 gamma = 0.01 88.6% Training accuracy for C = 1.00 gamma = 0.10 90.0% Training accuracy for C = 1.00 gamma = 1.00 94.3% Training accuracy for C = 1.00 gamma = 10.00 88.6% Training accuracy for C = 10.00 gamma = 0.01</pre>
	88.6% Training accuracy for C = 10.00 gamma = 0.10 92.9% Training accuracy for C = 10.00 gamma = 1.00 98.6% Training accuracy for C = 100.00 gamma = 10.00 87.1% Training accuracy for C = 100.00 gamma = 0.10 90.0% Training accuracy for C = 100.00 gamma = 0.10 92.9% Training accuracy for C = 100.00 gamma = 1.00 100.0% Training accuracy for C = 1000.00 gamma = 10.00 87.1% Training accuracy for C = 1000.00 gamma = 0.01 90.0% Training accuracy for C = 1000.00 gamma = 0.10 97.1% Training accuracy for C = 1000.00 gamma = 1.00 100.0% Training accuracy for C = 1000.00 gamma = 1.00
In [8]:	Repeat step 2 but instead of printing accuracies you should instead plot the data (use plot_data) and the decision function of the trained SVM model (use plot_decision_function). You must create a single figure with 16 subplots arranged in a 4x4 grid, one for each (<i>C</i> , gamma) hyperparameter setting. The top-left quadrant (the first 2x2 subplots) should look like the plot below.
	<pre># Your code here. Aim for 9-13 lines. pos = 1 fig, ax = plt.subplots(figsize = (13, 15), nrows=4, ncols=4); for i in range(4): currentC = c_params[i]; for j in range(4): currentG = g_params[j]; ax = plt.subplot(4, 4, pos); ax.set_aspect(1); plot_data(X_train, y_train) rbf_svm = sklearn.svm.SVC(kernel='rbf', C=currentC, gamma=currentG).fit(X_train, y_train); plot_decision_function(rbf_svm);</pre>
	ax.title.set_text(f'C = {c_params[i]} gamme={g_params[j]}'); pos+=1; C = 1.0 gamme=0.01 C = 1.0 gamme=1.0 C = 1.0 gamme=10.0 C = 1.0 gamme=10.0 C = 1.0 gamme=10.0
	-1 -2 -3 -2 0 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 4 -3 -2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	0 1 2 2 3 4 3 2 4 3 4 3
	C = 1000.0 gamme=0.01 C = 1000.0 gamme=0.1 C = 1000.0 gamme=1.0 C = 1000.0 gamme=1.0
	In this exercise, you should use the sklearn.model_selection.GridSearchCV function to perform a grid hyperparameter search (use the same grid of hyperparameters from Exercise 2.1) with the use of 3-fold cross validation. In particular, you should do the following: 1. Create an SVC object to serve as a prototype of the kind of model you wish to train. Make it an RBF SVM. 2. Define the param_grid argument to give GridSearchCV. This is a dictionary of the form { hyperparameter_name: array_of_possible_values }. For example you could make a variable param_grid = { 'C':, 'gamma':} where
In [21]:	 are the arrays of values you created early on in Exercise 2.1. 3. Create a GridSearchCV object, passing your prototype SVM object and your param_grid as arguments. Set verbose=1, this will tell the function to print out more information of the grid search, and helps you to understand. Use the cv parameter to specify 3-fold cross validation 4. Call fit on the GridSearchCV object to perform the grid search. This will perform 3-fold cross validation for every combination of (C, gamma) in the grid you specified. 5. Plot the data and the best SVM model from the grid search (use the GridSearchCV object's bestestimator attribute) # Your code here. Aim for 6-10 lines.
	<pre>rbf_svm = sklearn.svm.SVC(kernel='rbf'); param_grid = {'C': c_params, 'gamma':g_params}; gridSearch = sklearn.model_selection.GridSearchCV(estimator=rbf_svm, param_grid=param_grid, cv=3, verbose=1).f plot_data(X_train, y_train); plot_decision_function(gridSearch.best_estimator_); print(f'Validation score of best-performing hyperparameters {gridSearch.best_params_}): {gridSearch.best_score} Fitting 3 folds for each of 16 candidates, totalling 48 fits Validation score of best-performing hyperparameters {'C': 10.0, 'gamma': 0.01}): 87.14%</pre>
	3 -
	(Optional) You may also want to: • print the validation score (accuracy, by default) of the best-performing hyperparameters by printing the bestscore attribute, and • inspect the best parameters using the best attribute. Exercise 2.3 — Random hyperparameter search
	Grid hyperparameter search can be seen as an exhuastive search approach to find the best model congifuration. However, it is not necessar the best, especially in terms of computation efficiency. Thus, random hyperparameter search has been applied widely in various research studies. Random hyerperarameter search will accept a grid of values too, and will just randomly sample from the grid. But, random hyperparameter search also accepts statistical distributions from which it will sample. In this scenario, you can think of each distribution as defining an infinitely-dense grid dimension from which to sample. Choosing a distribution is more than choosing a min/max range. Just like listing grid values with linear spacing [1, 250, 500, 1000] or
	log spacing [1, 10, 100, 1000], different distributions offer different spacing. Other distributions, like Gaussian, don't even have a finite range when sampled. For example, if we sampled from a uniform distribution (scipy.stats.uniform) in range $[1,1000]$, there's only a 1\% chance that we'd sample a value between 1 and 10. Instead, we can sample from the <i>reciprocal</i> distribution (scipy.stats.reciprocal) which has logarithmic spacing between samples. A reciprocal distribution over range $[1,1000]$ has the same chance of drawing a sample in range $[1,10]$ as it does in range $[10,100]$ or in range $[100,1000]$. It is therefore also called a <i>log uniform</i> distribution.
In [20]:	<pre># Create two objects, each representing a different random distribution reciprocal_distribution = scipy.stats.reciprocal(1, 100) # Reciprocal distribution in range [0,100] uniform_distribution = scipy.stats.uniform(1, 100) # Uniform distribution in range [0,100] # Draw 100,000 samples from each of the distributions np.random.seed(0) reciprocal_samples = reciprocal_distribution.rvs(100000); uniform_samples = uniform_distribution.rvs(100000); # Plot the density of samples from each distribution. plt.hist(uniform samples, bins=50, label='uniform')</pre>
	<pre>plt.hist(reciprocal_samples, bins=50, label='reciprocal', alpha=0.8); plt.xticks([1, 10, 100]) plt.yticks([]) plt.xlabel('sampled value') plt.ylabel('density') plt.title("sample density of uniform vs reciprocal distributions") plt.legend();</pre> <pre>sample density of uniform vs reciprocal distributions</pre>
	reciprocal
	In the code cell below, use sklearn.model_selection.RandomizedSearchCV to do a random hyperparameter search. In particular, you should do the following steps: 1. Define the param_distribution argument of RandomizedSearchCV. This is similar to the param_grid you defined in Exercise 2.2 but, instead of specifying grid values, specify a reciprocal distribution to sample each hyperparameter from. 2. Use RandomizedSearchCV to perform random hyperparameter search with 3-fold cross validation. The RandomizedSearchCV object will then draw a sample from each of those distributions when evaluating the pext hyperparameters
	 object will then draw a sample from each of those distributions when evaluating the next hyperparameters. Use argument random_state=0, verbose=1 Set n_iter=16 in order to match the number of hyperparameters you evaluated with your 4x4 grid search. 3. Print the best hyperparameters you found. 4. Plot the data (use plot_data) and the best SVM model (use plot_decision_function). Your plot should look something like this: image If your decision boundary looks more complex than the above plot, try increasing the n_iter parameter, because 16 random
In [71]:	hyperparameter settings may not be enough to find a setting that has a good cross validation score. Supplementary exercise: After you have random search working with a reciprocal distribution, try changing the distribution to be uniform over the same range. Does this help or harm the ability of random search to find a good hyperparameter setting? # Your code here. Aim for 8-10 lines. rbf_svm = sklearn.svm.SVC(kernel='rbf'); reciprocal_dist= scipy.stats.reciprocal(0.01, 1000); param_grid = {'C': reciprocal_dist, 'gamma': reciprocal_dist}; randSearchCV = sklearn.model_selection.RandomizedSearchCV(rbf_svm, param_grid, random_state=0, cv=3, verbose=1
	randSearchCV.fit(X_train, y_train); plot_data(X_train, y_train); plot_decision_function(randSearchCV.best_estimator_); print(f'Validation score of best-performing hyperparameters (C: {randSearchCV.best_params_["C"]: .2f}, gamma: Fitting 3 folds for each of 50 candidates, totalling 150 fits Validation score of best-performing hyperparameters (C: 8.56, gamma: 0.01)): 88.53% 4 3
	2
	Exercise 2.4 — Evaluate hyperparameter performance on held-out test data After hyperparameter search is completed and the final hyperparameters are chosen, you can now do the final evaluation on the model performance using a held-out test set if one is available. You explicitly held out a test set ($\mathbf{X}_{\text{test}}, \mathbf{y}_{\text{test}}$) in Exercise 1.2, so use that data here. Using your <i>GridSearchCV</i> and <i>RandomSearchCV</i> objects from Exercises 2.2 and 2.3 respectively, print the training accuracy and test accuracy of the "best estimator" found by each.
	 Use the bestestimator attribute to retrive a model that was trained on all the training data using the best hyperparameters (the hyperparameters with best average validation performance). Use sklearn.metrics.accuracy_score or the score method on the search object (which uses the bestestimator) to compute the accuracy on the training data and on the test data. Your output should look like: grid search:
In [76]:	XX.X% train accuracy XX.X% test accuracy random search: XX.X% train accuracy XX.X% test accuracy XX.X% test accuracy Tip: Remember that if you want to print a % symbol when formatting a string, you must put %% in the original string so that Python knows it's not the start of a format specification (like %d or %.2f). # Your code here. Aim for 8-10 lines.
	<pre>print('grid search:'); print(f'{gridSearch.best_estimatorscore(X_train, y_train)*100: .2f} train accuracy'); print(f'{gridSearch.best_estimatorscore(X_test, y_test)*100: .2f} test accuracy'); print('random search:'); print(f'{randSearchCV.best_estimatorscore(X_train, y_train)*100: .2f} train accuracy'); print(f'{randSearchCV.best_estimatorscore(X_test, y_test)*100: .2f} test accuracy'); grid search:</pre>