WHAT IS CLAIMED IS:

1	1. A mobile communication device comprising:
2	a plurality of signal detectors, each signal detector configured to provide a
3	respective detected signal having a desired component plus an undesired component; and
4	a noise suppression unit operatively coupled to the plurality of signal
5	detectors and configured to receive and digitally process the plurality of detected signals
6	from the plurality of signal detectors to provide an output signal having substantially the
7	desired component and large portion of the undesired component removed.
1	2. The device of claim 1, further comprising:
2	a first beam forming unit operatively coupled to the plurality of signal
3	detectors and configured to process the plurality of detected signals to form a first signal
4	having the desired component plus a portion of the undesired component; and
5	a second beam forming unit operatively coupled to the plurality of signal
6	detectors and configured to process the plurality of detected signals to form a second
7	signal having a large portion of the undesired component, and
8	wherein the noise suppression unit is operatively coupled to the first and
9	second beam forming units and configured to receive and digitally process the first and
10	second signals to provide the output signal.
1	3. The device of claim 2, wherein the first and second beam forming units
2	and the noise suppression unit are implemented within a digital signal processor (DSP).
1	4. The device of claim 1, wherein the signal detectors are microphones.
1	5. The device of claim 4 and comprising two microphones.
1	6. The device of claim 2, wherein the noise suppression unit is operative
2	to remove the undesired component in the first signal using spectrum modification.
1	7. The device of claim 2, wherein the noise suppression unit digitally
2	processes the first and second signals in the frequency domain.

1	8. The device of claim 7, wherein the noise suppression unit includes
2	a first transformer coupled to the first beam forming unit and configured to
3	receive and transform the first signal into a first transformed signal, and
4	a second transformer coupled to the second beam forming unit and
5	configured to receive and transform the second signal into a second transformed signal.
1	9. The device of claim 8, wherein the noise suppression unit further
2	includes
3	a multiplier configured to receive and scale the first transformed signal
4	with a set of coefficients.
1	10. The device of claim 9, wherein the set of coefficients are derived
2	based on spectrum subtraction.
1	11. The device of claim 9, wherein the noise suppression unit further
2	includes
3	a noise spectrum estimator operative to receive and process the second
4	transformed signal to provide a noise spectrum estimate, and
5	a gain calculation unit operative to receive the first transformed signal and
6	the noise spectrum estimate and provides the set of coefficients for the multiplier.
1	12. The device of claim 11, wherein the noise spectrum estimator is
2	operative to provide time-varying noise spectrum estimate.
1	13. The device of claim 2, wherein the noise suppression unit includes
2	an activity detector configured to receive the first and second signals and
3	provide a control signal indicative of active time periods whereby the first signal includes
4	predominantly the desired component.
1	14. The device of claim 13, wherein the first and second beam forming
2	units are adjusted based on the control signal from the activity detector.
1	15. The device of claim 1 and operative to receive and process far-field
2	sionals

1	16. The device of claim 1 and operative to receive and process near-field
2	signals.
1 -	17. The device of claim 2, wherein each of the first and second beam
2	forming units includes
3	at least one adaptive filter, each adaptive filter operative to receive and
4	process a signal from a respective signal detector to provide a corresponding filtered
5	signal.
1	18. The device of claim 17, wherein each adaptive filter implements a
2	least mean square (LMS) algorithm.
1 .	19. The device of claim 1, wherein the device is a cellular phone.
1	20. A wireless communication device comprising:
2	at least two microphones, each microphone configured to detect and
3	provide a respective signal having a desired component plus an undesired component; and
4	a signal processor coupled to the at least two microphones and configured
5	to receive and digitally process the detected signals from the microphones to provide an
6	output signal having substantially the desired component and large portion of the
7	undesired component removed.
1	21. The device of claim 20, wherein the signal processor digitally
2	processes the detected signals in the frequency domain.
1	22. The device of claim 20, wherein the signal processor digitally
2	processes the detected signals in the time domain.
_	P. C. C.
1	23. The device of claim 20, wherein the signal processor is operative to
2	remove the undesired component from the output signal using spectrum subtraction.
1	24. The device of claim 20, wherein the signal processor is further
2	configured to process the detected signals to provide a first signal having the desired

3	component plus a portion of the undesired component and a second signal having a large
4	portion of the undesired component.
1	25. The device of claim 20, wherein the signal processor is operative to
2	process far-field signals or near-field signals.
1	26. The device of claim 20, wherein the microphones are placed close to
2	each other relative to a wave-length of sound and not in an end-fire type of configuration.
1	27. A method for suppressing noise in a wireless communication device,
2	comprising:
3	detecting at least two signals via respective signal detectors, wherein each
4	detected signal includes a desired component plus an undesired component;
5	deriving, from the detected signals, a first signal having substantially the
6	desired component plus a portion of the undesired component;
7.,	deriving, from the detected signals, a second signal having a large portion
8	of the undesired component; and
9	digitally processing the first and second signals to provide an output signal
10	having substantially the desired component and large portion of the undesired component
11	removed.
1	28. The method of claim 27, wherein the digital processing includes
2	removing the undesired component from the output signal using spectrum
3	subtraction.
1	29. The method of claim 28, wherein the digital processing further
2	includes
3	estimating a noise spectrum of the undesired component based on the
4	second signal,
5	deriving a set of coefficients based on spectrum subtraction, and
6	scaling transformed representation of the first signal based on the set of
7	coefficients.

- 1 30. The method of claim 29, wherein the digital processing provides time-
- 2 varying noise spectrum estimate.