Notatki do Metod Programowania

Michał Bronikowski 24 lutego 2017

Spis treści

1	$\mathbf{W}\mathbf{s}$	tęp do Prologa	
	1.1	Kompilowanie	
	1.2	Fakty,Zmienne,Koniunkcje	
	1.3	Reguly	
	1.4	Struktury	
	1.5	Operatory	
	1.6	Listy	

1 Wstęp do Prologa

1.1 Kompilowanie

Kompilator SWI-PROLOG. W terminalu komenda:

• swipl lub prolog

```
?- //Działa
Kompilacja:
Pliki zapisuję z rozszerzeniem .pl. W otwartej "maszynie" prologa wpisuję:
?- [p1]. //p1 - nazwa pliku
```

1.2 Fakty, Zmienne, Koniunkcje

lubi(jan,maria).

- Fakt musi się kończyć kropką
- lubi(jan,_) chodzi nam tylko o odpowiedź nie true oe false
- po uzyskaniu odpowiedźi jak klikniemy ';' to uzyskamy kolejną o ile istnieje kończymy Enterem
- koniunkcje oznaczamy ','

Przykład: Plik p1.pl

```
lubi (jan, reksio).
lubi (reksio, bartek).
lubi (jan, szklanka).
lubi (jan, beata).
```

Przykład: Działanie

```
?- [p1].
?- lubi(jan ,beata) , lubi(reksio ,bartek).
true
```

1.3 Reguly

W prologu reguł używa się do zapisania, że fakt zależy od grupy innych faktów.(W języku polskim do stosowania reguł używa się "jeśli").

Przykład: Kot lubi każdego kto lubi mleko

```
czyli:
Kot lubi wszystko, jesli to lubi mleko,
Kot lubi X, jesli X lubi mleko.

lubi(kot,X): - lubi(X, mleko).
```

1.4 Struktury

Struktury w Prologu zapisujemy podając funktor oraz jego składniki. Nazwa funktor odpowiada typom z tradycyjnych języków programowania. Składniki ujęte są w nawiasach okrągłych i oddzielone od siebie przecinkami. Funktor umieszcza się przed nawiasem otwierającym.

Przykład: Strukturę można rozbudowywać

```
posiada (jan, rower (wigry (niebieski), 1991).
```

Jan posiada rower marki wigry koloru niebieskiego z 1991 roku

1.5 Operatory

Operatory nie powodują wykonanai jakichkolwiek obliczeń 3+4 to nie 7 to term +(3,4).

- $\bullet~$ X =:= X X i Y są tę samą liczbą
- X = \= X X i Y są różnymi liczbami
- X < Y X jest mniejsze od Y
- X > Y X jest większe od Y
- X =< Y X jest mniejsze równe Y
- X >= Y X jest większe równe Y

Operator is operator infiksowy jego prawy argument jest termem, który ma być zinterpretowany jako wyrażenie arytmetyczne. Aby uzgodnic wyrażenie Prolog najpierw oblicza wyrażenie arytmetyczne, a wynik dopasowuje do lewego argumentu

Przykład: Operator "is"

```
?- X is 2+5. X = 5
```

Po prawej stronie operatora is można używac takich wyrażeń jak:

• +

• -

• *

- \bullet / iloraz
- \bullet // całkowity iloraz
- mod reszta z dzielenia

Przykład: Dodawanie

```
\begin{array}{l} {\rm dodaj}\,(X,Y,Z) \ :-Z \ is \ X\,+\,Y. \\ //// \\ ?- \ {\rm dodaj}\,(2\,,3\,,A)\,. \\ A{=}5. \end{array}
```

1.6 Listy

Lista to struktura danych, która jest ciągiem uporządkowanych elementów
(dowolne termy). Głowa listy to pierwszy element, ogon to całą reszta. Zapi
s ${\tt [X|Y]}$ utożsama
ia X z głową listy a Y z ogonem.

Przykład: Utożsamianie głowy i ogona

```
\begin{array}{l} a \, ([\, 1 \,\,, 2 \,\,, 3\,]\,) \,. \\ \hbox{$\scriptstyle ?-$ p \, ([X \,\,|\,\, Y]\,) \,.} \\ \hbox{$X=1$} \quad Y = [\, 2 \,\,, 3\,] \,. \end{array}
```