Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 763 532 A2

(12)

EUROPEAN PATENT APPLICATION

(43) Date of publication: 19.03.1997 Bulletin 1997/12

- (51) Int. CI.⁶: **C07D 277/66**, C09K 19/34, G02F 1/13
- (21) Application number: 96113638.9
- (22) Date of filing: 26.08.1996
- (84) Designated Contracting States: DE FR GB
- (30) Priority: 25.08.1995 JP 239037/95 25.08.1995 JP 239038/95 25.03.1996 JP 93044/96 25.03.1996 JP 93045/96
- (71) Applicant: DAI NIPPON PRINTING CO., LTD. Shinjuku-ku, Tokyo-to (JP)
- (72) Inventors:
 - Hanna, Junichi Yokohama-shi, Kanagawa-ken (JP)
 - Funabashi, Masahiro Yokohama-shi, Kanagawa-ken (JP)

- Akada, Masanori,
 c/o Dai Nippon Printing Co., Ltd.
 Shinjuku-ku, Tokyo-to (JP)
- Ando, Masayuki,
 c/o Dai Nippon Printing Co., Ltd.
 Shinjuku-ku, Tokyo-to (JP)
- Kosaka, Yozo,
 c/o Dai Nippon Printing Co., Ltd.
 Shinjuku-ku, Tokyo-to (JP)
- (74) Representative: Müller-Boré & Partner Patentanwälte Grafinger Strasse 2 81671 München (DE)
- (54) Liquid crystalline compound and use thereof
- (57) A process for producing a liquid crystalline compound represented by the following general formula (A):

FIG. I

Description

The present invention relates to a liquid crystalline compound and use thereof. More particularly, the present invention relates to a process for producing a novel liquid crystalline compound, which exhibits liquid crystallinity and, in addition, photoconductivity and fluorescence, and use of the liquid crystallinic compound in a liquid crystalline charge transport material.

Liquid crystalline compounds having various structures are known in the art and have been extensively used as a liquid crystal display material.

Materials, wherein a charge transport molecule which serves as a charge transport site are dissolved or dispersed in a matrix material, such as a polycarbonate resin, or materials, wherein a charge transport molecule structure pends as a pendant on a polymer backbone, such as polyvinyl carbazole, are known in the art. These materials have been extensively used as materials for photoconductors in copying machines, printers and the like.

For the above conventional charge transport materials, in the case of dispersive charge transport materials, that the charge transport molecule has high solubility in the polymer as a matrix is preferred from the viewpoint of improving the charge transport capability. In fact, however, bringing the charge transport molecule to a high concentration in the matrix leads to crystallization of the charge transport molecule in the matrix, and, for this reason, the upper limit of the concentration of the charge transport molecule is generally 20 to 50% by weight although it varies depending upon the kind of the charge transport molecule. This means that the matrix not having charge transport capability occupies not less than 50% by weight of the whole material. This in turn raises a new problem that the charge transport capability and response speed of a film formed from the material are limited by the excess matrix present in the material.

On the other hand, in the case of the pendant type charge transport polymer, the proportion of the pendant having charge transport capability can be increased. This polymer, however, involves many practical problems associated with mechanical strength, environmental stability and durability of the formed film, film-forming properties and the like. In this type of charge transport material, the charge transport pendants are locally located in close proximity, and the local proximity portion serves as a stable site in hopping of charges and functions as a kind of trap, unfavorably resulting in lowered charge mobility.

For all the above charge transport materials, electrical properties of such amorphous materials raise a problem that, unlike crystalline materials, the hopping site fluctuates in terms of space, as well as In terms of energy. For this reason, the charge transport depends greatly upon the concentration of the charge transport site, and the mobility is generally about 10⁻⁶ to 10⁻⁵ cm²/V.sec which is much smaller than that of the molecular crystal, 0.1 to 1 cm²/V.sec. Further, the amorphous materials have an additional problem that the charge transport properties depend greatly upon temperature and field strength. This is greatly different from the crystalline charge transport materials.

A polycrystalline charge transport material is a promissing material in applications where a charge transport layer having a large area is necessary, because it can form an even charge transport film having a large area. The polycrystalline material, however, is inherently an uneven material from the microscopic viewpoint and involves a problem that a defect formed in the interface of particles should be inhibited.

Accordingly, the present invention aims to solve the above problems of the prior art and to provide a novel charge transport material which simultaneously realizes advantages of the amorphous materials, that is, structural flexibility and evenness in a large area, and advantages of the crystalline materials having molecular orientation and is excellent in high-quality charge transport capability, thin film-forming properties, various types of durability and the like.

An object of the present invention is to provide a novel liquid crystalline compound which exhibits liquid crystallinity and, in addition, photoconductivity and fluorescence and a process for producing the same.

Another object of the present invention is to provide a novel charge transport material which simultaneously realizes advantages of the amorphous materials, that is, structural flexibility and evenness in a large area, and advantages of the crystalline materials having molecular orientation and is excellent in high-quality charge transport capability, thin film-forming properties, various types of durability and the like.

According to one aspect of the present invention, there is provided a process for producing a liquid crystalline compound represented by the general formula (A) described below, comprising the steps of: reacting a compound represented by the general formula (1), described below, with a compound represented by the general formula (2) described below; brominating the reaction product to give a compound represented by the general formula (3) described below; and substituting the bromine atom with an R₂ group.

According to another aspect of the present invention, there is provided a process for producing a liquid crystalline compound represented by the general formula (B) described below, comprising the step of: reacting a compound represented by the general formula (4), described below, with a compound represented by the general formula (5) described below.

According to a further aspect of the present invention, ther is provided a process for producing a liquid crystalline compound represented by the general formula (C) described below, comprising the step of: reacting two moles of a compound represented by the general formula (6), described below, with one moles of a compound represented by the general formula (7) described below.

According to a yet further aspect of the present invention, there is provided a process for producing a liquid crystalline compound represented by the general formula (D) described below, comprising the step of: reacting two moles of a compound represented by the general formula (8), described below, with one mole of a compound represented by the general formula (9) described below.

According to a yet further aspect of the present invention, there is provided a liquid crystalline charge transport material which exhibits smectic liquid crystallinity and has a reduction potential relative to a standard reference electrode (SCE) in the range of from - 0.3 to -0.6 (V vs. SCE).

According to a yet further aspect of the present invention, there is provided a liquid crystalline charge transport material which exhibits smectic liquid crystallinity and has an oxidation potential relative to a standard reference electrode (SCE) in the range of from 0.2 to 1.3 (V vs. SCE).

Figs. 1, 2, 3 and 4 are cross-sectional views of embodiments where the crystalline charge transport material according to the present invention has been applied to a charge transport layer in an image recording device:

Fig. 5 is a cross-sectional view of an embodiment where the liquid crystalline charge transport material has been applied to a space light modulating device; and

Fig. 6 is a cross-sectional view of an embodiment where the liquid crystalline charge transport material according to the present invention has been applied to a thin film transistor.

Process for producing liquid crystalline compound

¢

5

10

15

20

25

30

35

40

45

50

55

The first aspect of the present invention relates to a process for producing a liquid crystalline compound represented by the general formula (A), comprising the steps of: reacting a compound represented by the general formula (1) with a compound represented by the general formula (2); brominating the reaction product to give a compound represented by the general formula (3); and substituting the bromine atom of the compound (3) with an R₂ group:

$$H_2N$$
 (2)

$$R_1 \longrightarrow N$$
 (A)

wherein R_1 and R_2 represent (a) a cyano group, (b) a nitro group, (c) a fluorine atom, or (d) a C_1 - C_{22} straight-chain or branched, saturated or unsaturated, alkyl or alkoxy group attached to the aromatic ring through an oxygen atom, or a sulfur atom, provided that at least one of R_1 and R_2 represents said alkyl or alkoxy group.

The second aspect of the present invention relates to a process for producing a liquid crystalline compound represented by the general formula (B), comprising the step of: reacting a compound represented by the general formula (4) with a compound represented by the general formula (5):

$$R_1$$
 Z R_2 R_2 R_2 R_3

wherein R_1 and R_2 represent (a) a cyano group, (b) a nitro group, (c) a fluorin atom, or (d) a C_1 - C_{22} straight-chain or branched, saturated or unsaturated, alkyl or alkoxy group attached to the aromatic ring through an oxygen atom, or a sulfur atom, provided that at least one of R_1 and R_2 represents said alkyl or alkoxy group; and X and Y are respectively groups which are reacted with each other to form Z selected from a -COO-, -OCO-, -N=N-, -CH=N-, -N=N-, -CH₂S-, -CH=CH-, or acetylene group.

The third aspect of the present invention relates to a process for producing a liquid crystalline compound represented by the general formula (C), comprising the step of: reacting 2 moles of a compound represented by the general formula (6) with one mole of a compound represented by the general formula (7):

$$H_2N$$
 NH_2
 SH
 (7)

$$R_1 \longrightarrow R_1$$
 (C)

wherein R_1 is a C_1 - C_{22} straight-chain or branched saturated or unsaturated alkyl or alkoxy group attached to the aromatic ring through an oxygen or sulfur atom.

The fourth aspect of the present invention relates to a process for producing a liquid crystalline compound represented by the general formula (D), comprising the step of: reacting two moles of a compound represented by the general formula (8) with one mole of a compound represented by the general formula (9):

5

10

15

20

25

35

45

wherein R_1 is a C_1 - C_{22} straight-chain or branched saturated or unsaturated alkyl or alkoxy group attached to the aromatic ring through an oxygen or sulfur atom; and X and Y are respectively groups which are reacted with each other to form Z selected from a -COO-, -OCO-, -N=N-, -CH=N-, - N=N-, -CH₂S-, -CH=CH-, or acetylene group.

According to a specific one embodiment of the present invention, there is provided a process for producing a liquid crystalline compound represented by the following general formula (I), comprising the steps of: reacting a 4-alkoxyben-zaldehyde with o-aminobenzenethiol to synthesize a 2-(4'-alkoxyphenyl)benzothiazole; brominating the 2-(4'-alkoxyphenyl)benzothiazole to synthesize a 2-(4'-alkoxyphenyl)-6-bromobenzothiazole; and reacting the resultant bromide with an alkanethiol:

$$RO \longrightarrow SR'$$
 (I)

wherein R represents a C_4 - C_{20} alkyl group; and R' represents a C_4 - C_{20} alkyl group, provided that the total number of carbon atoms contained in R and R' is 10 or more.

A further preferred embodiment of the production process will be described.

According to the present invention, a 4-alkoxybenzaldehyde is reacted with 1 mole or more, preferably 1.1 to 1.5 moles or more, based on one mole of the 4-alkoxybenzaldehyde, of o-aminobenzenethiol in a solvent suitable for a dehydration reaction (oxidative cyclization), preferably dimethylsulfoxide, at a temperature of 100°C or above, preferably 120 to 160°C, for about 30 min to 2 hr.

In this reaction, the aldehyde group, the amino group, and the thiol group are combined together to form a thiazole ring, thus giving a 2-(4'-alkoxyphenyl)benzothiazole as an intermediate. This reaction can be easily achieved, and the intermediate is produced in a high yield of not less than 90%. The intermediate may be purified before use in the subsequent step or alternatively used in the subsequent step without purification.

The 2-(4'-alkoxyphenyl)benzothiazole is then brominated. In the bromination, the 2-(4'-alkoxyphenyl)benzothiazole is dissolved in a suitable solvent, such as glacial acetic acid, and bromine in an equimolar or slightly excessive molar amount is dropwise added thereto. In this reaction, bromine is easily substituted in the 6-position of the benzothiazole ring to give a 2-(4'-alkoxyphenyl)-6-bromobenzothiazole, and the reaction under mild conditions with heating can give the bromide in a yield of not less than 60%. When this intermediate contains a dibromination product and/or a substance remaining unreacted as impurities, it is preferably purified by recrystallization before use in the subsequent step.

Finally, the above bromide is reacted with an alkanethiol to give a liquid crystalline compound according to the present invention. Since this reaction is an aromatic nucleophilic displacement reaction by taking advantage of a thiolate anion, it is preferably performed in an alkaline atmosphere. For example, a liquid crystalline compound represented by the general formula (I) is produced by suspending an oil dispersion of sodium hydride in an ether, dropwise adding a corresponding alkanethiol to the suspension to produce a sodium salt of the alkanethiol, and reacting this sodium salt with the above bromide in a suitable solvent at a temperature of about 30 to 100°C for 30 min to 2 hr.

According to the process of the present invention, the number of carbon atoms of the alkyl group in the 4-alkoxybenzaldehyde and the alkanethiol is important, and the number of carbon atoms of the alkyl group is preferably not less than 4, preferably 4 to 20 from the viewpoint of developing excellent liquid crystallinity. For the alkanethiol, the number

of carbon atoms of the alkyl group is 4 or more, preferably 4 to 20. These alkyl groups may be somewhat branched. However, in order to develop excellent liquid crystallinity, the alkyl group is more preferably linear with the total number of carbon atoms of R and R' being 10 or more, preferably 12 to 40.

Further, liquid crystalline compounds represented by the following general formula (II) also fall within the scope of the present invention:

wherein R represents C_7H_{15} and R' represents C_6H_{13} , C_8H_{17} , $C_{10}H_{21}$ or $C_{12}H_{25}$.

The above liquid crystalline compounds according to the present invention can be produced in a high yield from a p-alkoxybenzaldehyde, for example, by the following reaction scheme:

wherein R and R' are as defined above and DMI represents N,N'-dimethylimidazolidinone.

The present invention provides a novel liquid crystalline compound which exhibits liquid crystallinity and, in addition, photoconductivity and fluorescence. The novel liquid crystalline compound is useful as a material for a liquid crystal display, a photosensitive material for electrophotography and the like. In particular, the liquid crystalline compound of the present invention has strong fluorescence and, hence, when used as a material for a color liquid crystal display or used in combination with a dichroic dye, can effectively utilize an ultraviolet portion in a backlight source, offering a display image having excellent sharpness and brightness.

45 Liquid crystalline charge transport material

10

15

According to a further aspect of the present invention, there is provided a liquid crystalline charge transport material which exhibits smectic liquid crystallinity and has a reduction potential relative to a standard reference electrode (SCE) in the range of from - 0.3 to -0.6 (V vs. SCE). According to a further aspect of the present invention, there is provided a liquid crystalline charge transport material which exhibits smectic liquid crystallinity and has an oxidation potential relative to a standard reference electrode (SCE) in the range of from 0.2 to 1.3 (V vs. SCE).

A liquid crystalline molecule, by virtue of its molecular structure, has self-orientation, and, in the case of charge transport utilizing this molecule as a hopping site, unlike the above molecule dispersive material, the spacial and energy scattering of the hopping site is inhibited, enabling a band-like transport property such as found in a molecular crystal to be realized. This enables a mobility of about 10⁻³ to 10⁻² cm²/V.sec, that is, a larger mobility than that in the conventional molecular dispersive material, to be realized, and, in addition, the charg transport properties do not depend upon electric field.

In order that the material serves as a hole transport material, the molecule should have a low ionization potential, and, hence, the oxidation potential should be in the range of from 0.2 to 1.3 (V vs. SCE) relative to a standard reference

electrode (SCE). Further, in order that the material serves as an electron transport material, the molecule should have high electron affinity, and, hence, the reduction potential should be in the range of from -0.3 to -0.6 (V vs. SCE). The abover requirements are the same as the well known requirements for a charge transport molecule used in the conventional molecule dispersive material.

Preferred liquid crystalline charge transport materials of the present invention will be listed in Tables 1 to 71. Among the charge transport materials listed in these tables, more preferred materials are those which satisfy the above requirements, have (aromatic ring of 6 π electron system) n (wherein n is an integer of 1 to 4) cores and exhibit smectic liquid crystallinity, those wherein the aromatic ring of 6 π electron system is linked through a carbon-carbon double bond or a carbon-carbon triple bond, and those which has a core of a benzothiazole ring, a benzoxazole ring, a benzimidazole ring, a naphthalene ring, or other aromatic ring of 10 π electron system and exhibit smectic liquid crystallinity.

The liquid crystalline charge transport materials according to the present invention are useful for various applications such as photosensors, electroluminescence devices, photoconductors, space modulating devices, and thin film transistors.

The liquid crystalline charge transfer materials according to the present invention can realize high-speed mobility and inhibition of the creation of structural traps. Therefore, high-speed response photosensors may be mentioned as the first application thereof. Next, by virtue of excellent charge transport properties, the liquid crystalline charge transfer materials according to the present invention can be used as a charge transfer layer in electroluminescence devices. Further, since electric field orientation and photoconductivity can be simultaneously switched, they can be used in image display devices.

The application to image display devices will be described as a representative example. In an image display device, when a device comprising a transparent substrate, such as glass, a transparent electrode, such as ITO (indium-tinoxide), a charge generating layer capable of generating carriers according to exposure, the liquid crystalline charge transport material of the present invention, and a counter electrode (such as a gold electrode) laminated in that order is subjected to imagewise exposure (input image) through the bottom of the device as shown in the schematic diagram, the liquid crystalline charge transport material is aligned according to the exposure, resulting in flow of carriers in the counter electrode (gold electrode). The input image can be reproduced by optical reading of the alignment of the liquid crystal. The larger the smectic properties of the liquid crystal, the longer the storage time of the alignment of the liquid crystal and the longer the storage time of the input information.

Figs. 1 to 3 are explanatory diagrams of embodiments where the liquid crystalline charge transport material according to the present invention has been applied to a charge transport layer in an image recording device. Fig. 1 is a schematic view of a photosensor, an embodiment where the liquid crystalline charge transport material according to the present invention has been applied to a charge transport layer. Use of the photosensor will be described in more detail. As shown in Fig. 3, the device is subjected to pattern exposure from the direction of the above in the drawing while applying a voltage across the upper and lower electrodes 15. Carriers are generated in a pattern form in 14', and charges transported by a charge transport layer 14" are discharged in a space 19 and reach the surface of an information recording layer 11.

The information recording layer is, for example, a liquid crystal/polymer composite layer formed of a composite of a smectic liquid crystal and a polymer. The liquid crystal is aligned in a pattern form in an electric field of accumulated charges and accumulated, enabling optical recording to be performed.

In the embodiment shown in Fig. 4, exposure with a voltage being applied may be carried out in the same manner as described above in connection with the embodiment shown in Fig. 3. The generated charges (image) are accumulated on the top surface of a dielectric layer 20, and the liquid crystal is aligned in a pattern form in an electric field of charges accumulated in the same manner as described above in connection with the embodiment shown in Fig. 3 and accumulated, enabling optical reading to be performed.

Further, the liquid crystalline charge transport material according to the present invention can be used also in a pace optical light modulating device schematically shown in Fig. 5. Furthermore, the liquid crystalline charge transport materials of the present invention can also be used as an active layer of a thin film transistor. For example, as shown in Fig. 6, the liquid crystalline material may be disposed on a substrate having thereon source, drain, and gate electrodes.

Thus, the liquid crystalline charge transport materials according to the present invention are useful for various applications such as photosensors, electroluminescence devices, photoconductors, space modulating devices, and thin film transistors.

TABLE 1

 $L - \left(\begin{array}{c} \\ \\ \end{array} \right) - N - R$

	No	L	R	Cr	l rel
	7109	0 ₂ N-	-CO-C10H20-Si4O4Me2-cy	K?	A58 1
15	7122	NC-CH=CH-	-C.H.	K61. 1	A57. 7 N113. 8 I
	7123	NC-CH=CH	-CsH ₁₁	K61.8	A93. 3 N122. 2 I
	7124	NC-CH=CH-	-CaH13	K79. 7	A113 N120.6 I
	7125	NC-CH=CH-	-C,H,,	K70. 2	A125 1
20	7126	NC-CH=CH-	-C.H.,	K59. 3	A127. 4 1
20	7127	NC-CH=CH-	-C ₉ H ₁ ,	K55	A131 I
	7130	C5H13-	-CaHia	K42. 5	B65. 5 1
	7131	C7H1 =-	-C7H15	K52. 5	B68 1
	7132	C2H5-00C-CH=CH-	-C.H.	K96. 3	S104 S153.9 I
25	7133	C2H3-00C-CH=CH-	-C ₅ H, ,	K88. 8	S88. 5 S149. 1 I
	7134	C2H5-00C-CH=CH-	-C.H.,	K74. 2	S81 S146.2 I
	7135	C2H3-00C-CH=CH-	-C,H,,	K61	S74 S142.5 I
	7136	C2H3-00C-CH=CH-	-C.H. 7	K62	S75 S143 I
	7137	C2H3-00C-CH=CH-	-C•H1•	K60	S73 S141, 4 1
30	7138	CH3-0-	-C ₃ H ₇	K51. 9	S27. 9 A33. 6 I
	7139	CH3-0-	-C4H9	K38. 7	S26. 2 A36. 7 I
	7140	CH3-0-	-C _s H,,	K38	S23. 5 A31. 2 I
	7141	CH3-0-	-C.H.,	K31. 6	S14 A28. 7 I
35	7142	CH3-0-	-C,H,s	K36. 1	S23. 8 A27. 7 N33. 6 1
-	7148	C2H5-0-	-C.H.	K49. 3	A67, 1 I
	7149	C.H0-	-C,H,	K7.4	S76 A96.2 I
	7150	C4H9-O-	-C ₅ H ₁₁	K11. 3	\$53.4 1
	7151	C4H9-0-	-C.H.s	K20. 8	S54. 5 A83. 4 I
40	i i	C ₅ H ₁ ,-0-	-C ₃ H ₇	K36. 5	S74 S76.5 I
	7153	CsH, 1-0-	-C.H.	K59. 5	S61. 5 S81. 2 I
	7154	CsH1-0-	-C ₅ H _{1 1}	K39. 5	S54 S84. 8 1
	7155	CsH, 1-0-	-C ₆ H ₁₃	K40. 5	S46. 5 S85. 5 I
		•			

ą i

5

TABLE 2

No	L	R		Cr	LC
7156	CsH11-0-	-C7H15		K35. 4	S84, 8 I
7157	CsH, 1-0-	-C.H.,	İ	K39. 5	S84 I
7158	CsH, ,-0-	-CaHia	.] .	K42. 5	S82. 5 I
7159	C.H. 3-0-	-C.H.	[K18. 2	S43. 4 A74. 1 I
7160	C6H13-0-	-C ₉ H ₁₉		K35	B87 I
7161	C7H15-0-	-C₃H,	l	K47	B72 I
7162	C, H, s-0-	-C,H,s	i	K53. 5	885, 5 1
7163	CsH, ,-CO-	-C₅H,,	i	K75. 5	\$104.5 1
7164	CsH, ,-CO-	-C ₆ H ₁ ,	l	K80. 5	S102 S103 I
7165	CsH,,-CO-	-C7H15		K71	S95 S101 I
7166	CsH, ,-CO-	-C.H.,		K87	S95. 3 S98 I
7167	CsH, ,-CO-	-C.H.,		K84. 5	S93. 8 S99. 6 I
7168	C.H. 3-CO-	-C.H.,		K72	S101.8 S105.8 I
7169	C7H15-CO-	-C.H.,		K86. 6	S97 S104.5 1

TABLE 3

 $L - \bigcirc N - \bigcirc N - \bigcirc R$

No	<u> </u> L	R	Cr	LC
26206	C3H7-	-C ₃ H ₂	K90	P120 P190 I
26207	C4H9-	-C ₄ H ₉	K57	P119 P190 I
26208	C5H11-	-CsH.	K41	P114 P190 I
26209	C6H13-	-C ₆ H ₁₃	K55	P184 I
26210	C7H15-	-C,H,s	K28	P180 I
26211	C.H.,-	-C.H.,	К39	P173 1
26212	C ₉ H ₁₉ -	-C,H,,	K45	P165 I
26213	C10H21-	-C10H21	K62	P160 I
26217	C ₂ H ₅ -	-0-C2H5	K166	S182 I
26221	C3H7-0-	-0-C ₃ H,	K210	P215 I
26222	C.HO-	-0-C.H,	K197	P227 1
26223	CsH; , -0-	-0-CsH11	K185	P218 I
26224	C ₆ H, ₃ -O-	-0-C ₆ H _{1.3}	K172	P218 I
26225	C7H15-0-	-0-C,H, 5	K166	P209 I
26226	C.H. 7-0-	-0-C.H.,	K163	P203 1
26227	C, H, , -O-	-O-C ₉ H,,	K162	P194 1
26228	C10H21-0-	-0-C, oHz,	K161	P189 1
26230	CH3-0-	-00C-C2H5	K148	S155 N193 I

No		R	Cr	LC
28692	C ₃ H ₇ -	-C ₃ H ₇	K163. 3	B171.5
28693	C ₄ H ₉ -	-C ₄ H ₉	K36. 3	E106.9 S113.4 B179.5
28694	C ₅ H ₁ -	-C ₅ H ₁ ,	K50	B155.9 U
28695	C ₆ H ₁ 3 -	-C ₆ H _{1,2}	K30	E76.7 S107.9 B182.8
28696	C ₇ H ₁ 5 -	-C ₇ H _{1,5}	K27. 7	E82 S100.4 B175.5
28697	C ₈ H ₁ 7 -	-C ₈ H _{1,7}	K58. 1	E64.5 S93.4 B178.3
28698	C ₉ H ₁ 9 -	-C ₉ H _{1,9}	K52. 6	E75.3 S87.3 B174.1

TABLE 4

5

5

No	L	R		Cr	LC
	C ₆ H ₁₃ -CHMe-00C- C ₂ H ₅ -CHMe-CH ₂ -00C-	-0-C, oH2;	1	K? K22	A? 1 A48 I
	Cally a-CHCFy-OOC-	-0-CH	1	K-13	A-6 1

L-()-R

No L R Cr LC 8085 C₈H_{1,7}-O- -C₅H_{1,1} K36 C44.5 A75 N83.5 I

TABLE 5

5

Cr

K83. 1

K81

K73

K70

K82

K85. 1

K88. 9

K82. 5

K90.4

K84.7

K85. 5

K90

K83. 1

-C, H, s

-CsH,,

-C,H,,

-0-C,H,s

-0-C₆H₁₃

-0-C,H,s

-0-CaH,,

-0-C,H,s

-0-C.H.,

-0-C₉H₁,

-0-C,H,s

LC

C58 N109.5 |

C58 N109.5 I

C73 N109 I

A106.1 N111.3 I

C88. 4 N133. 4 I

C89. 1 N133. 3 I

C94. 7 A105. 5 N129. 8 I

C103. 8 A110. 7 N132. 2 I

C93. 8 A115. 7 N129. 7 |

C101.8 A119.8 N131 I

C104. 2 A122. 4 N131. 8 I

C103 A113. 8 N128 I

A85 N120 I

10

15

No

22305

22307

22309

22317

22318

22320

22321

22322

22323

22324

L

C7H15-

CaH13-0-

C.H.,-0-

C7H15-

C.H. ,-

C₆H_{1 3}-O-

C₆H_{1,3}-0-

C7H15-0-

C7H15-0-

C, H, 5-0-

22326 | C.H., -O- | -O-C.H.,

22327 | C.H. 7-0- | -0-C.H. 9

22325 | C.H.,-O-

20

25

30

35

40

45

50

55

TABLE 6

15	No.	L	R		Cr	LC
	22328	C.H., -O-	-0-C•H17		K87	C106. 3 A122. 5 N129. 8 1
	22329	C ₉ H _{1,9} -O-	-0-C ₉ H ₁ ,		K89. 4	C115. 5 A125. 7 N128. 4 1
	22333	C₄H•-	-CO-C4H.		K116	S120 N130 I
20	22334	C, oH2, -O-	-C00-CH(C ₃ H ₆ -/-C ₂ H ₅) ₂	R	K<30	A25 I
	22337	C.H.,-0-	-COO-CHMe-CeHiz	R	K69. 3	A62. 1 I
	22338	C10H21-0-	-COO-CHMe-CeHia	R	K60	A20 U
	22341	C, oH2, -0-	-COO-CH2-CHMe-C2Hs	1	K85. 2	A103. 6 I
	22342	C ₂ H _{1,2} -0-	-CH=CH-COO-CHCF3-CaH13	R	K51	CA63 A69 I
<i>2</i> 5	22343	C10H21-0-	-CH=CH-COO-CHCF3-CeH13	R	K50	CA56 A66 I
	22344	C, 1H23-0-	-CH=CH-COO-CHCF3-CaH13	R	K45	CA52 A61 I
	22345	C10H21-0-	-COO-CHCF3-CeH13	1	K<-30	A25 I
	22346	C10H21-0-	-C00-CHCF3-CeH17	1	K?	S6 A13.3 I
30	22347	C, oH2, -0-	-COO-CHCF3-C6H13	2	K52	A61 I

TABLE 7

	No	L	R		Cr	l rc
15	25.170			 	·	
•	35478	C4H9-0-	-CN	Į	K158	N>300 Z
	35479	C2H12-0-	-CN	l	K132	N292 Z
	35481	C ₈ H ₁ , -O-	-CHMe-COS-C ₆ H ₁₃	1	K89. 2	C*120 A140.7 I
	35482	C.H.,O-	-CHMe-COS-C.H.,	1	K86. 7	C*125. 3 A135. 7 1
20	35483	C10H21-O-	-CHMe-COS-C ₆ H _{1.2}	1	K85. 4	C*127. 5 A133. 6 I
	35484	C1 1H23-0-	-CHMe-COS-C.H.,	1	K83. 3	S112.8 C*128.2 A131.1 1
	35485	C12H25-0-	-CHMe-COS-C.H.,	1	K86. 9	S104.8 C*128.6 A129.1 I
	35486	C13H27-0-	-CHMe-COS-CaH13	1	K81. 9	S102.6 C*128.8 I
	35487	C1.H20-	-CHMe-COS-C.H.,	i	K77. 4	S103 C*124, 4 I
25	35488	C,H, ,-0-	-CHMe-COO-CHMe-C ₃ H ₇	5	K98	C*100. 8 A141. 8 N*151 I
	35489	CaH17-0-	-CHMe-COO-CHMe-C ₂ H ₇	5	K94. 1	C*101.6 A139.1 N*147.9
	35490	C ₉ H _{1.9} -O-	-CHMe-COO-CHMe-C ₃ H ₇	5	K79. 1	
	35491	C10H21-0-	-CHMe-COO-CHMe-C ₃ H ₇	5	K66. 9	C*105.9 A134.1 A#? N*142.8 I
30	35492	C11H23-0-	-CHMe-COO-CHMe-C ₃ H ₇	~ i		C*108. 4 A#138. 6 N*147. 9
30	35493	C12H25-0-		5	K73. 3	C*114. 1 A#127. 5 N*134. 3 I
			-CHMe-COO-CHMe-C3H7	5	K69	C*113. 4 A#126. 4 N*132. 6 I
	35494	C13H27-0-	-CHMe-COO-CHMe-C ₃ H ₁	5	K68. 6	C*119.7 A#133.7 N*138.5 I
	35495	C14H29-O-	-CHMe-COO-CHMe-C3H1	5	K71.7	C*119. 4 A#132. 8 N*136. 5 1
0.5	35496	C _e H ₁ ,-O-	-C00-CHCF3-C4H13	1	K93. 5	S147. 4 C*150. 7 A176. 4 I
<i>35</i>	35497	C ₈ H ₁ , -D-	-COO-CHCF,-C.H.,	1.	K84	S133 C*135. 6 A163. 8 I
	35498	C ₆ H _{1.3} -CHCF ₃ -00C-	-0-C _{1 e} H _{2 1}	1	K?	S10 S75 C*106 A150.5 1

TABLE 8

10 No L R Cr LC LC 46421 C_aH_{1,7} - C_sH_{1,1} K54 S142.5 N178 I

No LC 35500 C, H, 5--F K114.9 S187.9 N229.7 1 35501 C, H, 5-0--CN K136 N304 Z 30 35502 H2C=CH-C00-C6H12-0--NO₂ K134 S>180 Z 35503 C.H. 3-CHCF3-00C--C. . H. . 1 K49. 5 A127.7 I 35504 | C.H. 3-CHCF3-00C--0-C10H21 1 K35 S100. 4 C*124. 5 A152. 5 I 35505 | C.H., -CHCF, -OOC--C00-C10H21 1 K40 S96 C*97.7 A123.7 I 35506 | C.H. 3-CHCF3-DOC--00C-C: . H2 1 1 K75 S120 C*156.9 A184.2 I 35 35507 | C. . Hz. - O--COO-CHCF,-C.H., 1 K? S97 C*120 A151.9 I 35508 | C₈H₁, -00C--COO-CHCF3-C.H.3 1 K? S64.1 C*66 A108.4 I

No	L	R		Cr	LC
	C ₅ F ₁₁ -CH ₂ -O- C ₅ F ₁₁ -CH ₂ -O-	-0-C ₈ H ₁₇ -0-C ₃ H ₄ -CHMe-C ₂ H ₅	1	K? K?	A92 1 C*37 A80 I

55

20

*2*5

40

TABLE 9

5

 $L = \bigcup_{i=1}^{n} \bigcup_{i=1}^{n} R$

R |

 Cr

K39. 9

K68. 7

LC

C23 A25.5 1

C45. 1 A55. 8 I

10

7534 C₈H_{1,7}- - -C₆H_{1,3}
7538 C₆H_{1,3}-O- -C₄H₉
7539 C_{1,0}H_{2,1}-O- -C₈H_{1,7}
7542 C_{1,0}H_{2,1}-O- -O-C₈H_{1,7}
7543 C₈H_{1,7}-O- -CO-C_{1,0}H_{2,1}

| L

No

20

K57.7 C71.5 A77.3 I -0-CaH17 K60. 1 C81.7 A89.1 I -CO-C, oH2, K106.9 C103. 8 A120. 4 I 7545 C10H21-0--C00-CaH17 K103.6 A88.2 1 7548 C₆H_{1.3}-COO--C.H.7 K51.8 A64.3 N49.8 U 7549 | C₆H_{1.3}-CHF-CH₂-0-K77.9 -CaH17 A69.6 I

25

30

35

No	L	R	Cr	LC	ı
8788	C, oH2, -0-	-C₄H₃	K90. 1	A109.9 I	

40

45

No	L	R	Cr	rc
27629	CaH ₁₇ -	-C, 2H25	K76. 6	C99. 4 N128. 2 1

50

TABLE 10

 $L - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc R$

No L R Cr LC

28106 C₈H₁₇- -C₈H₁₇ K77.8 C101.4 N121.8 I

5

No	L	R	Cr	LC
26603 26604	C10H21-	-C ₈ H ₁ ,	K77. 5 K92. 2	C114. 9 N123. 8 I C132. 8 A135. 9 N143. 4 I

$$L - \bigcirc \bigvee_{0}^{N} \bigvee_{0}^{N} R$$

No	L	R	Cr	LC	
8726	C4H9-	-C ₆ H ₁₃	K90	A96 N106 I	

TABLE 11

 $L - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc R$

No	L	R	Cr	LC
27356 27357	H- H-	-0-C4H,	K211 K183	A207 N240 I B225 A228 U

 $\mathsf{L} - \bigcirc \mathsf{N} - \bigcirc \mathsf{R}$

No	L	R		Cr	LC L
27633	C.H	-н		K75	S96 I
27634	CsH11-	- H		K65	S106 1
27635	C.H. 3-	-H	l	K55	S103 1
27636	C,H,s-	-#	l	K48	S100 S103 S107 I
27637	C.H.,-	-#	l	K42	S102 I
27638	C.H0-	-H	l	K106	S136 I
27639	C5H11-0-	-H	l	K62	S133 I
27640	C.H.,-0-	-н		K76	S133 I
27641	C7H15-0-	-H		K63	S136 I
27642	C.H.,-0-	-н		K54	S137 I

No	L	R	Cr	LC
8268	C4H3-S-	-Br	K?	
8269	CaHs-S-	-CN	K30. 3	N-63 E
8270	C,H,s-	-C,H,,	K56	1
8278	C,H,s-	-C00-C2H5	K84	S47 I
8279	C4H3-0-	-C00-C2H,	K87	S86 I
8280	CsH,,-0-	-C00-C2H3	K72	S90 I
8281	CeH, 3-0-	-C00-C2H3	K60	S82 I
8282	C,H,s-0-	-C00-C2H5	K86	S82 I
8283	C.H.,-0-	-C00-C2H5	K72	S84 I

5

TABLE 12

L-{}-R

No	L	R	Cr	LC
29065	C ₃ H,-	-C ₂ H,	K50	S74 I
29066	C.H	-C4H.	K50	S75 I
29067	CsH, ,-	-CsH.	K53	\$77 1
29068	C.H. 3-	-CsH(3	K51	582 1
29069	C+H1 5-	-C,H,s	K55	G78 F83 C89 I
29070	C.H. 7-	-CaHir	K65	G72 F87 C91 I
29071	CoHio-	-CaHia	K64	G62 F91 C95 I
29072	C10H21-	-C1 eH21	K71	F95 C96 I
29074	CaHa-	-CO-C3H7	K148. 3	A155.7 I
29075	CsH11-	-CO-C4H.	K137. 2	A163 I
29076	CeH13-	-CO-C ₅ H,	K138. 4	A162 I
29077	C7H15-	-CO-C.H.,	K132	C138. 9 A161. 8
29078	CaH17-	-CO-C7H15	K133	C151 A159.7 I
29079	C ₂ H ₁ ₂ -	-CO-C.H.,	K129. 4	C154. 2 A158. 7 I
29080	C10H21-	-CO-C ₂ H ₁₉	K127	C152 I

r -{O}-		R
(-(0)	حر ب	F

No	L	R	Cr	rc
5713	Br-	-CO-C,H,s	K116. 1	A123. 8 1
5719	NC-	-C.H.,	K49. 9	A20.8 N22.2 1
5723	NC-	-S-C.H.	K32, 6	N-52 E
5727	CaHaSiMez-CaHa-D-	-C1 .H21	K57	S43 I
5730	C4H9-S-	-CN	K55. 7	NS E
5732	C2H5-0-	-CO-C,H,s	K120. 8	A123, 1 L
5733	C3H7-0-	-CO-C,H,s	K124.4	A122.8 I
5734	C.HO-	-CO-C,H,s	K127. 6	A130.9 I
5735	C ₅ H ₁ ,-O-	-CO-C,H,s	K120. 5	A127, 4 I
5736	C ₆ H _{1 3} -O-	-CO-C,H,s	K120	A129.8 I
5737	C, H, s-0-	-CO-C,H,5	K113	A127.4 I
5738	CaH17-0-	-CO-C,H,s	K109. 5	A126. 2
5739	C ₉ H ₁ , -O-	-CO-C,H, s	K107. 5	A123. 8 1
5740	C12H25-0-	-CO-C,H,s	K100. 6	S93. 8 A122. 2 1

TABLE 13

5

10

15

20

25

30

35

40

50

45

36005	1
36006	I
36007	ı
.36008	l
36009	l
	•

No Cr LC | 36004 CsH. .--CsH., K21.5 B88. 4 A96. 7 I CaH, 3--CsH11 K22. 5 B94. 7 A97. 2 I B96. 2 A99. 8 I B96. 8 A99. 1 I C, H, 5--CsH11 K20. 5 C.H.,--CsH₁₁ K21 C.H.,--CsH,, K23. 7 B97. 2 A100. 1 I C10H21--CsH11 K55 B98.4 I

	No	L	R	Cr	LC LC
_	27649 27650	C ₆ H ₁₃ - C ₄ H ₂ -O-	-C2Hs -C2Hs	K56 K102	S155 I

$$L - O - O - R$$

No Cr LC 27643 CsH. . --CsH11 K42. 4 C47. 9 A62 N97. 8 I 27644 CsH11--CO-C.H. K74.9 A186. 8

TABLE 14

$$L- \overbrace{\bigcirc} - R$$

No	L	R	Cr	LC
25783	C ₆ H ₃ -	-0-C ₆ H ₁₃	K148	A152 N155 I

$$L - \bigcirc - \bigcirc - R$$

5

No	L	R	Cr	LC
25800	C ₆ H _{1,3} -0-	-0-C ₆ H ₁₃	K110.8	C130, 6 N161 I
25801	C, H, s-0-	-0-C,H,,	K109.8	C139, 4 N155, 8 I
25802	C.H. 7-0-	-0-C _a H,,	K107.3	C149 N157.3 I
25803		-0-C, oH2,	K98. 6	C147.4 I
	H2C=CH-C1H1-O-	-0-C4He-CH=CH2	K99	A114 N144 I
25806	H2C=CH-C9H18-O-	-0-C9H18-CH=CH2	K92	A145 I

$$-\sqrt{S}$$

No	L	R	Cr	LC
25816	Me 3 Si - C3 H5 - O-	-C ₆ H ₁₃	K96	C109 I
25817	C.H.SiMez-C3H6-C00-	-C ₆ H ₁₃	K51	C90 1
25818	C.H. 3-	-C ₆ H _{1,3}	K68. 8	A116, 5 N120, 1 1
25819	C ₉ H ₁ , -	-C ₆ H _{1.3}	K61	C72. 2 A126. 8 I
25828	C3H7-0-	-C6H13	K79	C70 A101 N147.5 I
25841	C3H7-0-	-0-C.H.,	K78	C98 N161 I
25842	C.HCOO-	-C ₆ H _{1,3}	K101.9	C128.5 N149 4 I

TABLE 15

No R Cr LC 25843 | C₆H_{1.3}-COO--C6H13 K73. 1 S83. 2 C139. 3 N148. 7 1 25844 CaH, ,-COO-S75. 8 C146. 4 N148. 1 | -C₆H₁₃ K58 25845 CaH.,-COO--C.H., K59. 4 S74. 5 S78. 5 C148. 5 I 25846 | C. . Hz. -COO--C.H., S86. 2 C147 I K74.9

 $L - \left(\begin{array}{c} \\ \\ \\ \end{array} \right) - \left($

 $L-\bigcirc$

No	L	R	Cr	LC
26980	C₄H₃-	-C,H,,	K76	S130 N137 I

 $L-\langle O \rangle - \langle O \rangle - R$

No L R Cr LC 25848 C10H21--0-CH₃ K95 N154 U 25849 | C, oH2, --0-C₆H₁₃ K43 C53 A142 U 25850 C, oH2, --0-C,H,s K54 B64 C110 A143 U 25851 -0-CaH17 C10H21-B73 C120 A146 U K59 25852 | C10H21--0-C10H21 K66 B84 C137 A144.6 I

55

50

5

10

15

20

*2*5

30

35

40

TABLE 16

5

L - C - R

-C.H.,

-C,H:,

-0-C.H.,

-00C-CH=CH-CH3

-DOC-CH=CH-C2H5

Cr

K48

K44

K85

K139

K113

LC |

A91. 5 N113 I A95 N104 I

A94 N140 I

N259 Z

N229 Z

10

15

No

7226

7227

7235

7243

7244 NC-

L

NC-

NC-

NC-

NC-

20

25

r-{O}	R
<u></u>	R

30

35

40

45

50

		R		Cı	LC
8776	CsH,,-	-C ₅ H ₁₁		K146.5	E145.5 A163.5 N171.5 I
8777	C6H13-	-C ₆ H ₁₃		K138	E135. 5 A156. 5 I
8778	C7H15-	-C,H,s		K125.5	E135. 5 A163 I
8779	C.H.,-	-C.H.,		K123	E129 A156.5 1
8780	C ₉ H ₁₉ -	-C,H,,		K113.5	E110 A148 I
8783	C3H7-0-	-O-C₃H,	1	K194	A237 N278 I
8784	C4H9-0-	-O-C,H,	ĺ	K136	E190 A241 N256 I
8785	C5H11-0-	-0-CsH,,		K136	E178 A236 N244 I
8786	C6H13-O-	-0-C ₆ H ₁₃		K141	E170 A229 I
8787	C1H15-0-	-0-C,H,s		K130	E163 N225 1

TABLE 17

$$\mathsf{L} - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \mathsf{R}$$

No L R Cr LC 22138 NC--0-C.H., K128 A122 N156 I -0-C.H.. 22139 NC-K125 A140 N152 ! 22140 NC--0-C10H21 K125 A146 N149 I - 22141 NC--0-C,,H23 K122.5 A149 I 22142 NC--0-C12H25 K123 A151 I 22146 02N--O-C.H., A109 N136 I K98 22147 -0-C,H,, 02 N-K94 A127. 5 N135 I 22148 02N--0-C10H21 K93 A135 N135.5 I 22149 0, N--0-C11H23 K92 A136.5 I 22150 | D2N--0-C, 2H25 K92 A136.5 I 22161 | C.H. .--CN K74 A105. 9 N131. 11

30

5

10

15

20

25

35

35	No	L	R		Cr	LC
	22168	C, oH2, -O-	-CN		K78	R72 A139 N152 I
	22169	C, 1H23-0-	-CN		K79	A146 N149.5 I
40	22172	C.H.,-S-	-CN		K99	A109. 5 N129. 5 I
	22173	CaH, a-S-	-CN		K107	A122 N127 I
	22174	C10H21-S-	-CN		K100	A128. 5 I
	22175	C, ,H,,,-S-	-CN		K100	A130. 5 I
	22176	C12H25-S-	-CN		K104	A133 I
45	22181	C2H5-CHMe-C5H10-O-	-CN	S	K80	A122 N°135 I
	22182	C ₉ H ₁₉ -0-	-COO-C3H4-SiMe2C4H9	Ů	K48	C67 A81 I
	22184	C ₆ H _{1,3} -O-	-C _s H _{1.1}		K81	A84. 9 N120 I
	22185	CaH17-0-	-C,H,s		K73	A106. 1 N111. 3 I
50	22186	C, oH2, -0-	-CaHa-CHMe-OOC-CaHa	1	K22. 1	A9.1 1
30	22187	C10H21-0-	-0-C ₂ H ₄ -0-C ₄ H ₉	•	K63	C72, 3 N98, 3 I
	22188	C10H2:-D-	-0-CH ₂ -CHMe-0-C ₂ H ₅	1	K49	C*59 A64 N*73 I

TABLE 18

$$\begin{array}{c|c} C & O & O \\ \hline & O & \hline \\ \hline & O & \hline & O \\ \hline & O & \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \\ \hline \\ \hline \hline \\$$

ŀ	No	L	R		Cr	rc
	22305	C2H15-	-C7H15		K83. 1	C58 N109.5 I
2	22307	C ₆ H _{1,3} -0-	-CsH.		K81	A85 N120 I
	22309	C.H.,-0-	-C7H15		K73	A106, 1 N111, 3 I
	22317	CzHLs-	-0-C7H15		K83. 1	C58 N109. 5 I
	22318	C.H. 7-	-0-C ₆ H; 3		K70	C73 N109 I
	22320	C.H. 1-0-	-0-C2H15		K82	C88, 4 N133, 4 I
	22321	CsH13-0-	-0-CaH17		K85. 1	C89. 1 N133. 3 1
	22322	C2H15-0-	-0-C2H15		K88. 9	C94.7 A105.5 N129.8 I
	22323	C,H, s-0-	-0-C.H.,		K82. 5	C103.8 A110.7 N132.2 I
	22324	C ₇ H ₁ s-0-	-0-C ₂ H _{1.9}		K90. 4	C103 A113.8 N128 I
	22325	CaH, 7-0-	-D-C ₇ H _{1.5}		K84. 7	C93.8 A115.7 N129.7
	22326	C.H.,-0-	-0-C ₆ H ₁₇		K85. 5	C101.8 A119.8 N131 I
		C-HU-	•	'	K90	C104 2 A122 4 N131 8 1

40	No	L	R		Cr	LC
	35500	C ₂ H _{1.5} -	-F		K114.9	S187.9 N229.7 I
	35502	H2C=CH-COO-C5H12-O-	-NO ₂		K134	S>180 Z
	35503	C ₆ H _{1.3} -CHCF ₃ -00C-	-C10H21	1	K49. 5	A127.7 l
45	35504	C6H13-CHCF3-00C-	-0-C, oH2,	1	K35	S100. 4 C* 124. 5 A152. 5 I
	35505	1	-CBO-C10H21	1	K40	S96 C'97.7 A123.7 I
	35506	C ₆ H ₁₃ -CHCF ₃ -00C-	-00C-C10H21	1	K75	S120 C* 156. 9 A184. 2 I
	35507	C10H21-O-	-COO-CHCF3-C6H13	1	K?	S97 C*120 A151.9 I
50	35508		-C00-CHCF3-C6H13	1	K?	S64.1 C*66 A108.4 I

TABLE 19

r-(O)	0 0-{\bigc\}-R
	\\ \

No	L	R	Cr	LC
24420 24421	CaH ₁₇ -	-C ₅ H _{1 1} -C ₆ H _{1 3}	K44. 5 K46. 5	S65 N84 I S36, 5 N69, 5 I

No	L	R	Cr	LC
	C ₆ H ₁₃ -	-0-C ₆ H _{1.3}	K107.4	C114.1 I
	C ₆ H ₁₃ -	-0-C10H21	K92. 8	C116.5 I
8291	C ₆ H ₁₃ -	-00C-CeH13	K81. 7	C106.7 A110.9 I

$$L \longrightarrow \begin{array}{c} N - N \\ S \end{array}$$

No	L	R	Cr	LC
	C ₆ H ₁₃ -	-0-C4H9	K79. 5	C155. 1 N230. 7 I
28263	C.oHz.	-0-C, oH2,	K80. 3	C198.2 I
28265	C ₆ H _{1 2} -	-00C-C ₆ H ₁₃	K82. 3	C199. 4 N225. 2 I

TABLE 20

 $L \xrightarrow{N-N} C \xrightarrow{R}$

No	L	R	Cr	LC
8292 8293	C ₆ H ₁₃ -	-CaH17 -CaH17	K87. 3 K82. 4	S118. 6 A186. 4 I S92. 7 C149 A181. 2 I

5

No	L	R		Cr	LC		
8294 8295	C ₆ H ₁₃ -	-CaH ₁₇ -CaH ₁₇		K84. 6 K34. 8	S119.5 A147.5 I S117.5 A155.2 I		

TABLE 21

 $L = \left(\begin{array}{c} N - N \\ S \end{array} \right) = \left(\begin{array}{c} R \\ S \end{array} \right)$

_	No	L	R·	Cr	rcl
15	25914	C5H11-	-н	K76	N56 U
	25915	CsH1 3-	H-	K75	S60 N80 I
	25916	C7H15-	-H	K79	S64 N86 1
	25917	C12H25-	-н]	K84	A95 I
	25918	C2H5-O-	-н	K120	N165 U
20	25919	C3H,-O-	-H	K110	N101 U
:	25920	C4H3-0-	-H	K84	N140 U
	25921	CsH11-0-	-н	K80	N134 U
:	25922	C.H. 3-0-	-н	K80. 5	N134 U
25	25923	C7H15-0-	-H	K73. 5	N149.5 U
:	25924	C.H.,-0-	-H	K83	N142.5 U
2	25925	C.H0-	-#	K96	A126 I
	25926	C, oH2, -O-	-н	K99	A126 I
7	25931	C6H13-0-	-F	K97	A198 I
	25932	C6H13-O-	-CI	K132	A244 I
	25933	C6H13-0-	-Br	K135	A239 I
	25934	C6H13-	-CN	K118	A220 N233 1
	25935	C5H11-0-	-CN	K142	A246 N265 1
05	25936	C6H13-0-	-CN	K146	A258 N264 I
4	25937	C*H13-0-	-NO₂	K123	A241 I
	25938	C14H21-	-O-C4H6-SiMe2C4H9	K46	C122 E
	25943	CsH11~	-C ₅ H ₁₁	K93	C123 N164 I
	25944	C ₆ H ₁₃ -	-CeH13	K89	C137 N154 B
40	25945	C6H13-	-C10H21	K66	C168 N172.9 I
	5946	C7H15-	-C7H15	K81	C149 N158 I
2	5947	CaH ₁ ,-	-C _s H ₁ ,	K78	C151 N152 B

TABLE 22

	No	L ·	R		Cr	LC
15	25949	C ₂ H ₅ -	-0-C,H,s		K67	A142 N178 I
	25952	CsH11-	-0-CeH13		K55	C158 N186 I
	25953	·CsHL1-	-0-CaH,,		K80	C167 N182 I
	25954	C6H13-	-0-C,H,		K80.6	C141 N183.5 I
20	25955	C ₆ H ₁₃ -	-0-C7H15		K69	A166 N179 I
	25956	C6H13-	-0-C ₉ H ₁₉		K77	C171 N175 I
	25957	C7H15-	-0-C ₈ H ₁ ,		K79	C174 N178 I
	25958	C.H.,-	-0-C,H,s	ł	K72	A170 N177 I
25	25960	C10H21-	-0-C7H15		K76	C171 N181 B
20	25961	C, oH2,-	-0-C _e H ₁₇		K79	C173 I
	25962	C10H21-	-0-C, oH2,	İ	K78	A154 I
	25963	C12H25-	-O-C _s H ₁ ,	1	K74	C169 I
	25965	C, oHz,-	-COO-CH ₃		K140	A224 I
30	25966	C ₆ H ₁₃ -	-00C-CaH17		K58. 2	S68.1 C172.6 N176.1 1
	25967	C10H21-	-00C-CH ₃		K117	C134 N183 I
	25968	C10H21-	-00C-C ₂ H _s		K107	C153 N181 I
	25969	C10H21-	-OOC-CHMe-O-CH3	1	K108	C*139 N*140 I
oe.	25970	C10H21-	-00C-CHMe-0-C ₆ H ₁₃	1	K110	C*121 I
35	25971	C10H21-	-0C00-C.H.		K64	C146 A147 N166 I
	25972	CioHzi-	-OCOO-C7H15		K80	C153 N157 I
	25974	CH3-0-	-O-C ₆ H ₁₃		K93	A109 N215 1
	25977	C4H9-0-	-0-C4H•		K145	A156 N222 I

TABLE 23

No	L	R		Cr	l rc
27803	NC-	-C ₆ H ₁₃		K128	A169 N199 I
27804	C.H	-C,H,		K76	A96 N150 I
27805	C4H9-	-C.H.		K71	A120 N146 I
27806	C4H9-	-CsH,	1	K52	A115 N138 I
27807	C4H9-	-C.H.,		K58	A117 N151 I
27808	C6H13-	-C2H5	į	K50	A77 N115 1
27809	CsH ₁₃ -	-C3H,	ĺ	K61	A126 N146 1
27810	C6H13-	-C.H.	l	K47	A133 N139
27811	CsH13-	-CsH.		K50	A148 N150 I
27812	C ₈ H ₁₃ -	-C ₆ H ₁ ,		K50	A145
27815	CaH, a-0-	-C.H,		K111	A166 N167 I
27816	C ₉ H _{1 9} -0-	-C ₆ H ₁ ,		K108	C130 N169 I
27817	C, oH2, -0-	-C ₆ H ₁ ,	ĺ	K105	C122 N165 I
27818	C10H21-0-	-C,H,,		K87	C143 A169 I
27819	C12H25-0-	-C ₆ H ₁₃		K58	C136 A146 I
27820	C4H9-CMe2-C4H9-O-	-C ₆ H ₁ ;		K93	C101 A111 N112 I
27821	C4H3-CMe2-C6H12-0-	-C ₆ H ₁₃		K90	C117 A129 N129
27823	C.H. 3-0-CHMe-COO-	-C2H5	1	K75	A61 I
27824	H2C/CH2\CH-C11H22-0-		Ů	K111	C113 A156 N157 I

$$L-\bigcirc$$

No	L	R	Cr	LC
28263	C ₆ H ₁₃ -	-0-C, H,	K79. 5 K80. 3	C155. 1 N230. 7 1 C198. 2 1
28265	C ₈ H _{1.3} -	-00C-C ₆ H ₁₃	K82. 3	C199. 4 N225. 2

TABLE 24

5

|--|

Cr

15

10

32163 -0-C.H., K105 S126 I 32165 S115 N165 I S167 N177 I C.H. 3--0-C.H. K68 32166 C₆H₁₃--O-C₂H₁, K83 32167 C4H3-0--0-C.H. K103 S117 N210 I 32168 C.H.-O-S141 N195 I S145 N199 I -0-C,H,, K105 32170 | C.H. 3-0- | -0-C.H. K95

No

25

20

$$\begin{array}{c|c} & & & \\ & & \\ & & & \\ & &$$

30

35

No	L	R	Cr	LC
32162	C ₆ H ₁₃ -	-C₄H₃	K56	C89 A123 I

40

$$L - \bigcirc \qquad \bigvee_{S} \stackrel{N-N}{\searrow}_{R}$$

45

50

No	L	R		Cr	LC	
27672	C ₆ H ₁₃ - C ₆ H ₁₃ -0-	-H -H	i .	ī	S128 I S152 I	
27673	C4H9-	-CsH,,		K47	S143 I	

TABLE 25

 $L \xrightarrow{N-N} -R$

 No
 L
 R
 Cr
 LC

 8296
 C₈H_{1.3} -C₈H_{1.7}
 K50.9
 A126.6 I

 8297
 C_{1.0}H_{2.1} -C₈H_{1.7}
 K37.1
 A128.7 I

 8299
 C₆H_{1.3}-CHF -C₈H_{1.7}
 1 K63.4
 A132.9 I

NC	0	L	R		Cr	LC
37	7286	C ₃ H ₇ -	-C7H15		K95. 5	S88 G99. 5 C118 A154 N174, 5 I
37	7287	C3H7-	-C10H21		K76.5	S94. 5 S95. 5 C120. 9 A159. 7 N164. 4 I
37	7288	C.H	-C ₉ H ₁₉		K81	S87 S98 C102 A103 N164 I
37	7289	CsH ₁₁ -	-C7H15		K50	G101 C105 A173 N176 I
37	7290	CsH ₁₁ -	-C.oHz.		K69. 2	S98. 4 S107. 3 S119. 9 S170. 6 I
37	7291	C ₆ H _{1 3} -	-C7H15		K52	G83 C126 A159 N166 I
37	7292	C, H, 5-	-C7H15	,	K50	G101 B133 A173 I
37	7293	C.H. 7-	-C7H15		K62	G94 B134 A172 I
37	7294	C ₅ H ₁₁ -	-CHMe-C2H5	2	K55. 1	S103. 8 A114. 7 N120. 6 I

TABLE 26

L — N	0 - ()	S > R
		// // ··

	<u> </u>	K	Cr	LC
36950 36951	C ₃ H ₇ -O- C ₄ H ₉ -O- C ₄ H ₉ -O- C ₆ H ₁ ₃ -O-	-C7H15 -C7H15 -C11H23 -C1H15	K94 K68 K90 K68	C136 A144 N153 C144 A147 N154 C145 A155 C103 A171

$$L \longrightarrow \bigcup_{0} \bigvee_{N-N} \bigvee_{R}$$

_	NO	L 	R		Cr	LC
	37297	C3H,-	-C ₉ H ₁₉ -C ₉ H ₁₉ -C ₉ H ₁₉		K76 K83 K72	G94 C117 A124 I G105 C112 A130 I G110 C119 A142 I

No .	L	R	Cr	LC
26652	C ₁ H ₁₇ -O-	-0-C ₈ H ₁ ,	K?	G259 C339. 5 N344
	C ₁₂ H ₂₅ -O-	-0-C ₁₂ H ₂₅	K?	H235 C308
	C ₁₆ H ₂₃ -O-	-0-C ₁₆ H ₃₃	K?	H229 F272 C290

TABLE 27

	/N > S \	
r-(())-	$\langle \downarrow \downarrow \rangle$	$-\langle \bigcirc \rangle - R$

5

No	L	R	Cr	LC
26625	CI-	-CI	K298	C258 N313 I
26628	C4H3-	-C.H.	K145	C166 N244 I
26629	CsH13-	-C6H13	K142	E135 C194 N225 I
26633	C4H3-0-	-0-C,H,	K197.7	C210. 6 N294. 2 I
26634	C ₅ H ₁ , -0-	-0-CsH.,	K179.8	1224. 1 C270. 7 I
26635	C6H13-0-	-0-C6H13	K167.4	1232. 6 C262. 7 1
26636	C7H15-0-	-0-C7H15	K160.7	1236. 1 C250. 3 I
26637	C.H., 7-0-	-0-с∎н,,	K153. 1	1237. 1 C244 I
26638	C ₉ H ₁₉ -O-	-0-C ₂ H ₁ ,	K147.6	1233.7 1
26639	C10H21-0-	-0-C, oH2,	K140.6	1226.8 1
26640	C12H25-0-	-0-C12H25	K129	1221. 1 I

No	L	R	Cr	LC
43323	C4H9-	-C₄H₃	K319	S340 A? Z

TABLE 28

 $L \longrightarrow N \longrightarrow R$

	No	L	R		Cr	l rc
15	3978	C ₆ H ₁₃ -0-	-S-C ₅ H ₁ ,		K24	A71.5 I
	3979	C.H. 3-0-	-S-C ₆ H ₁ ,	ĺ	K30	A74.5 I
	3980	C.H. 3-0-	-S-C, H, s		K39. 5	A72.5 I
	3981	C4H13-0-	-S-C.H.,	l	K27	A73 I
	3982	C.H.3-0-	-S-C,H,,		K42. 5	A72 I
20	3983	C ₆ H ₁₃ -0-	-S-C, oH,		K31.5	A71.5 I
	3984	C7H15-0-	-S-CH₃		K62. 5	A73 I
	3985	C7H15-0-	-S-C.H.3	İ	K40	A74.5 I
	3986	C,H, 5-0-	-S-C, H, s		K41	C42 A73 I
25	3987	C7H15-0-	-S-C, oH2,		K53	A71 I
20	3988	C,H,s-0-	-S-C, 1H23	ł	K61	A69.5 1
	3989	C.H.,-0-	-S-C ₆ H ₁₃	l	K47	A76 I
	3990	C.H.,-0-	-S-C7H15		K39	G34 C51 A75 I
	3991	C.H.,-0-	-S-C ₈ H ₁₇		K51	G40 C55 A75 I
30	3992	C.H.,-0-	-S-C ₉ H, 9		K47. 6	G40.5 C54.5 A74.1 I
	3993	C.H.,-0-	-S-C10H21		K54. 8	G42. 2 C59. 7 A74 I
	3994	C.H.,-0-	-S-C11H23		K61.4	C53. 4 A74. 5 1
	3995	C,H,,-0-	-S-CH ₃		K73	A77.5 I
	3996	C,H,,-0-	-S-C6H13		K48	A76 I
35	3997	C.H0-	-S-C.H.,		K52	G38. 1 C58 A75. 8 I
	3998	C,H,,-0-	-S-C ₉ H ₁		K48. 5	G38. 5 C57 A74. 8 I
	3999	-0-e,He	-S-C, oH2,		K54. 7	G42. 2 C59. 7 A73. 9 1
	4000	C,H,,-O-	-S-C, 1H23		K60	C54. 7 A73. 4 I
40	4001	C, oH2, -0-	-S-C.H. 3		K56	A76.5 I
	4002	C, oH, ,-0-	-S-C ₉ H ₁₉		K58. 8	G54 C69. 3 A75. 7 1
	4003	C, oH2, -O-	-S-C10H21		K62. 1	G57. 8 C71 A75 I
	4004	C, oH, ,-0-	-0-C11H23		K62	S58. 6 C70. 9 A74. 8 1
	4005	C11H23-0-	-S-C, 0H2,	į	K64. 5	G61. 8 C73. 9 A75 I
45	4006	C11H23-0-	-0-C,,H ₂₃		K65	S63 C74. 2 A74. 7 1
	4016	C.H. 3-S-	-C ₆ H ₁₃		K50	A57.5 1

TABLE 29

 $L \longrightarrow N \longrightarrow R$

5

10

50

55

No 1L Cr LC 15 4017 C4H9-S--S-C.H, 3 K42.5 A42 I 4018 C.H. 3-S--S-C.H. K40 A48. 5 I 4019 CH3-CMe2-C5H10-O-**K73** C64 A71 W -C.H., CH2-CMe2-C5H10-O-4020 -O-C,H,, **K86** C80 A82 W 20 CH3-CMe2-C5H10-O-4021 -S-C, oH2, K60 C53 A55 W C6H13-0-C2H4-0-C2H4-0-4023 -0-C₉H₁ K48 A44-1 4028 CsH11-000-K79 B85. 5 A95 (-C6H13 4030 C, oH2, -O-K63 -0-CH2-CHMe-C2H5 S A69 I -O-C3H8-CHMe-C2H5 4031 C.H. 7-K51.8 A55 1 25 4032 C10H21-0--O-C3H6-CHMe-C2H5 C*57.5 A82 ! K63 C10H21-0-4033 -O-C2H4-CHMe-C3H8-CHMe-CH3 K45 C*37 A58 I 4034 CaH. ,--O-CsH10-CHMe-C2Hs K46 C*35 A60 I 1 4035 C.H., -0--CsH10-CHMe-C2H5 S K36 S46 C'55 A71 I 4036 C, oH2, -0--O-CsH10-CHMe-C2Hs **K77** 30 1 C'76 A86 I CaH17-0-4037 -S-CsH10-CHMe-C2H5 K55.8 S S24 C*55.6 A64.3 I 4041 CsHi --S-CF, H K50.8 N-17 E C, oH, ,-0-4042 -0-C3H13-CH/CH2/CH2 **K88** S70.6 C84 A87.6 I 4049 CH3-CHMe-CHF-COO-S -0-C3H13-CH/CH3/CH3 K78 A64 I 35 C2H5-CHMe-CH2-O-4051 -CaH, 7 1 K51 A66 I 4053 C2H3-CHMe-CH2-O--O-C, oH2, 1 **K82** A63 1 4055 C2H5-CHMe-C3H6-O--C, 2H25 1 K46 A62 I C2H5-CHMC-C3H6-O-4056 -S-CBH17 2 K24 C36 A49, 8 I 4058 C2H3-CHMe-C5H10-O--C₈H₁, K40. 2 6°43, 4 C°57, 8 A72, 3 1 S 40 4059 | C2H5-CHMe-C5H10-O--C12H25 1 K57.1 C*58 A68 I 4060 C2Hs-CHMe-CsH10-0-C*78 A86 I -0-CaH17 1 **K73** 4061 C2H5-CHMe-C5H10-O--0-C,H,, S K77: 7 C*79. 2 A84. 7 I 4062 C2H5-CHMe-C5H10-O--S-C₆H₁₃ S K46 C*51.5 A63 I 4063 | C2H3-CHMe-C3H10-0-45 -S-C7H15 S K44. 6 C*52.5 A59.8 I 4064 | C₂H₅-CHMe-C₅H₁₀-O--S-C8H17 K43 C*55 A60 I 1 4065 | C2H5-CHe-C5H10-0--S-C,H,, S K28. 1 C*53.5 A60.5 I

TABLE 30

 $L = \bigcup_{N \to \infty} R$

1	u

	No	L	R	Cr	LC
15	4178	Me ₃ Si-C ₅ H ₁₀ -O-	-0-C ₀ H ₁ ,	K69	C88 A93 E
.5	4179	Me ₃ Si-C ₆ H ₁₂ -O-	-C.H.,	K25	C47 A56.6 1
	4180	Me3Si-CiaHza-O-	-0-C.H.,	K41	C84 A92 E
	4181	Me,Si-C,,H2,-0-	-C.H.,	K56. 7	C63. 8 I
	4182	Me3Si-C,1H22-O-	-0-C.H.,	K70	C92 E
20	4183	C4H9SiMe2-C3H6-0-	-0-C.H.,	K45	C65 A68 E
	4184	C4H3SiMe2-C4H8-O-	-C.H.,	K16. 7	C22. 3 A25. 9 I
	4185	C4H9SiMe2-C4H8-O-	-0-C.H.,	K16. 5	C63. 1 A64 I
	4186	C.H.SiMez-CsH.o-O-	-0-C.H.,	K38	C74 A82 E
	4187	C4H3SiMe2-C6H12-O-	-0-C.H.,	K22	C72 A78.5 E
25	4188	EtMe ₂ Si-C ₄ H ₈ -O-	-C.H.,	K35. 2	C30. 6 A32. 3 I
	4189	EtMe ₂ Si-C ₄ H ₈ -O-	-0-C.H.,	K49. 4	C71 A71, 3 1
	4190	EtMezSi-C ₆ H ₁₂ -O-	-C.H.,	K22. 6	C41. 6 A50. 4 1
	4191	EtMe2Si-C6H12-0-	-0-C.H.,	K38. 6	C78 A84 I
30	4192	EtMezSi-C11Hzz-O-	-C.H.,	K45. 7	C58. 6 A58. 9 1
	4211	CsH ₁₁ -	-CN	K94	A93.5 N109 I
	4212	C ₆ H ₁₃ -	-CN	K86. 5	A101.5 N103 I
	4213	C7H15-	-CN	K96. 5	A109 I
	4214	CoHio-	-CN	K90	A107 I
35	4219	CsH, 1-0-	-CN	K97	A102.5 N133 I
	4220	C ₆ H ₁₃ -0-	-CN	K93. 5	A121 N134 I
	4221	C1H15-0-	-CN	K102.5	A127 N129.5 1
	4222	CaH17-0-	-CN	K102	A133 I
40	4223	C ₂ H ₁ ₂ -0-	-CN	K?	X? I

TABLE 31

5

 $L - \left(\bigcirc \right) - \left(\bigcap_{N} - \bigcap_{N} - R \right)$

10

	No	L	R	Cr	LC
15	4229	C ₆ H _{1.3} -0C00-	-CN	K83	A96 N121 I
	4230	C.H. 7-0-	-0-C4H12-SiMe3	K38. 7	C64. 5 1
	4231	CaH17-0-	-0-C,,H ₂₂ -SiMe,	K69. 4	C92 1
	4232	C12H25-0-	-0-C,,H ₂₂ -SiMe,	K81.6	C89. 9 1
	4233	CBH, 7-0-	-O-C4H2-SiMe2C4H9	K36. 4	A30. 6 N30. 7 I
20	4234	C ₈ H ₁ ,-O-	-O-C ₆ H ₁₂ -SiMe ₂ Et	K28. 7	C56 I
	4235	C12H25~D-	-0-C11H22-SiMe2Et	K75. 4	C84. 9 1
	4236	CsH ₁₁ -	-C.H.	K10	A26. 5 1
	4237	C ₅ H _{1 1} -	-C7H15	K30. 6	S47.7 I
25	4239	C ₆ H ₁₃ -	-C7H15	K21. 1	A47.3 1
25	4240	CaHis-	-CaHi,	K20. 5	A48. 4 1
	4241	C,H,s-	-C6H13	K15	A29 I
	4242	C7H15-	-CaH, 7	K23. 4	A50. 3 1
	4243	C7H15-	-C ₉ H ₁ ,	K41. 1	F24 A59.7 1
30	4244	C,His-	-C, oH2,	K29. 8	F33. 8 C43. 3 A60. 6 I
	4245	C7H15-	-C11H23	K39. 2	F48. 4 C53. 5 A64. 7 1
	4246	C7H15-	-C, 2H25	K41. 4	F53. 8 C58 A65. 2 I
	4247	C7H15-	-C14H29	K38. 5	F62. 7 A67. 2 I
35	4248	C.H., 7-	-CsH13	K18	A29.5 I
35	4249	C.H. 7-	-C,H,s	K18. 5	A48.1 I
	4250	C.H.,-	-CaHi,	K31.5	A50. 2 1
	4251	CaH11-	-C _e H _e	K29	F24. 6 A59. 8 1
	4252	C.H.,-	-C10H21	K33. 6	F36.7 C46.2 A59.8 I
40	4253	C.H., ,-	-C11H23	K41	F50. 8 C55. 4 A64. 2 I
		CaH17-	-C12H25	K47. 5	F55. 6 C62. 2 A64. 2 I
	4255	CaHir-	-C14H29	K57. 7	F64. 5 C66. 3 I

45

50

. 55

TABLE 32

 $L \longrightarrow N \longrightarrow R$

L No Cr LC -C16H33 4256 C.H. 7-**K56** F67 J 15 4257 C.H. .-K23. 5 A30.5 N33 I -C.H. 3 4258 C. H. . --C.H., K27.3 A51, 2 I C.H. .-4259 -C10H21 K32.5 F36.5 C44 A60.7 1 4260 CoHio--C12H25 K41 F56. 8 C63. 2 A65. 6 1 20 4261 C10H21--C₆H₁₃ K31 A29.3 N31 I 4262 C10H21--C.H.7 K35. 5 A49.7 1 4263 C10H21-C45 A59.8 I -C, oH2, K46.3 4264 C10H21--C, 1H23 K41.2 F52.6 C54.8 A64.6 I 4265 C10H21--C12H25 K48.8 F58 C64 A65 1 25 4266 C1 2H2 5--C.H., K46.8 A48.3 I C12H25-4267 -C, ,H23 K52. 9 F52. 2 A63. 6 1 4268 C12H25-K59.9 F59.7 C64 A64.7 I -C12H25 -0-C₅H₁₃ 4269 C4H9-K42 A72 I C6H13-4271 -0-C4H9 K40 A56.5 N60.5 I 30 4272 C6H, 3--0-CsH11 K48 A62 I A77 1 4273 C6H13--O-C6H13 **K49** 4274 C.H. 3--0-C,H,s K32.5 C50.6 A76.6 I 4275 C6H13--O-C.H., **K29** C68 A85 I 35 4276 C6H13--0-C9H19 K47.7 C77.2 A83.6 I 4277 C6H13--0-C, oH2, K38 S35 C82 A87 I 4278 C6H13-K38. 8 -D-C, 1H23 S42.3 C84.3 A86.4 I 4279 C.H. 3--0-C, 2H25 **K35** S47.4 C85.6 A87.1 1 4280 C6H13-K34.4 S54.9 C85.2 A86.6 1 -0-C, 4H2, 40 C6H13-4281 -0-C, sH3, K49.9 S56.7 C83.3 A85.2 1 4283 C7H15--0-CsH,, K46 A64 N66 1 4284 C,H,s--0-C.H., K51 A78 I 4285 | C7H15--0-C7H15 K32. 2 C45 A77.5 I

5

10

45

50

55

TABLE 33

	No L		R	Cr	l rcl
15		7H15-	-0-CaH17	K32	C64 A87 1
		7H, 5-	-0-C,H,,	K34. 2	C76. 3 A85. 1 I
		2H15-	-0-C, eH2,	K32	S33 C83 A88 I
		7H15-	-0-C11H23	K38. 7	S45. 2 C86. 8 A88. 6 I
	4290 C	7H15-	-0-C, 2H2 s	K46	S54 C88 A89 I
20)	₄H₁,-	-0-CsH,	K47	A61 I
		∎H₁ 7-	-0-C.H.,	K46	A76 I
	4294 C	•H _{1.7} -	-0-C,H,s	K46. 5	C39 A77.5 1
	4295 C	H, ,-	-0-C.H.,	K39	C58 A84 I
25		H, ,-	-0-C ₉ H ₁₉	K40. 5	C76 A84.6 I
23	4297 C	H, ,-	-0-C, oH2,	K42	C84 A88 I
		H17-	-0-C ₁₁ H ₂₃	K54. 3	C87. 2 I
		H, ,-	-0-C ₁₂ H ₂₅	K57	S58 C89 I
		H.,-	-0-C14H29	K59. 8	S67. 2 C88. 3 1
30		H _{1.2} -	-0-C, sH3,	K57. 9	S69. 6 C87. 5 1
		H, ,-	-0-CsH,,	K49	A62 N63 1
		H, 9-	-0-C.H.,	K48	A77 I
	4305 C,	H ₁₉ -	-0-C,H,s	K40	A78 1
	4306 C _s	H1 9-	-0-C.H.,	K36	C53 A85 1
35	4307 C ₉	H19-	-0-C,H,,	К39	C73. 9 A84. 9 I
	4308 C ₉	H, 9-	-0-C, oH2,	K37	S32 C83 A87 I
	4309 C.	H ₁₉ -	-0-C11H23	K45	S46 C87 I
	4310 C ₉ 1	H, ,-	-0-C, 2H25	K47	S59 C89 I
40	4311 C.	oH ₂₁ -	-0-C,H,,	K46. 6	C71.4 A83.8 I
	4312 C,	oH21-	-0-C11H23	K51.4	S47 C86.5 1
	4326 C.I	H, ,-	-00C-C7H15	K79.4	A74.4 I
		H,-0-CsH,o-	-0-C.H.,	K8	C47 A69 I
		H,-0-CsH,	-00C-C1H15	K70	071 NO3 1
45		- •	1	1	. '1

TABLE 34

 $L \longrightarrow R$

	No	L	R		Cr	LC
15	4336	C ₆ H _{1 3} -O-CHMe-	-0-C10H21	1	K<-40	C*-40 A-23 I
	4337	C2H3-O-CHMe-C3H10-	-0-C ₆ H, 3	1	K-22	C*-21 A48 I
	4338	C2H5-O-CHMe-C5H10-	-0-C.H.,	1	K?	S8 C*49 A55 1
	4339	C2Hs-O-CHMe-CsH10-	-0-C, oH2,	1	K?	S10 C*55 1
20	4340	C2H5-O-CHMe-C5H10-	-0-C11H23	1	K27	C* 56 1
20	4341	C2Hs-O-CHMe-C5H10-	-0-C, 2H2 5	1	K13	C*56 I
	4342	C3H7-0-CHMe-C5H10-	-0-C.H.,	1	K?	S-6 C*46 A52 1
	4343	CsH,,-O-CHMe-CsH,o-	-0-C.H.,	1	K?	S-4 C°37 A44 I
	4346	CH3-O-	-C,H,,		K40	S31 N41 1
25	4349	C2H5-0-	-C.H.,		K42.5	A43. 5 N58. 5 I
	4353	C3H7-0-	-C7H15		K42	A43. 5 N52 1
	4354	C3H7-0-	-CaH17		K45	A49. 5 1
	4358	C.H0-	-C7H15		K40.5	A42 N64 I
	4359	C.H0-	-C.H.,		K35	A53, 5 N60 I
30	4363	CsH, 1-0-	-C,H,s		K49	C48. 5 A52 N66 I
	4364	C ₅ H ₁₁ -0-	-C.H.,		K38	A54 N58 I
	4365	CsH,,-0-	-C _a H _a		K41	A65. 5 1
	4366	Cs H1 1-0-	-C10H21		K47. 5	A67 I

5

TABLE 35

 $L \longrightarrow N \longrightarrow R$

15		
20		
25		
30		

No	L	R		Cr	LC
4370	C ₆ H ₁₃ -0-	-C,H,s		K45. 5	A33 N69. 5 1
4371	C6H13-0-	-C.H.,		K27. 5	C44. 5 A57. 5 N65 1
4372	C ₆ H _{1 3} -0-	-C,H,,		K33. 5	C49. 5 A71 N71. 5 I
4373	C6H13-0-	-C, oH2,	ŀ	K32. 5	C62 A74.5 I
4377	C, H, s-0-	-C7H15		K44	C44 A49 N68 I
4378	C7H15-0-	-C.H.,		K46	C49 A61 N66 I
4379	C7H15-0-	-C _s H _{1s}		K35	C51. 5 A71. 5 I
4380	C7H15-0-	-C, oH2,		K46	C62. 5 A72 1
4384	C.H.,-0-	-C7H15		K49	A44 N69. 5 1
4385	C.H., -0-	-C.H.,		K35	C57 A64 N70 I
4386	C.H.,-0-	-C _s H ₁ ,		K33	C60 A74.5 I
4387	C.H.,-0-	-C, oH2,	i	K37	C68. 5 A73. 5 I
4391	C ₉ H _{1 9} -0-	-C7H15		K48	C51 A57 N70 I
4392	C ₉ H _{1 9} -O-	-CaH.,		K33	C56 A65 N68.5 I
4393	C ₉ H, ₉ -O-	-C,H,,		K34	C61 A75 I
4394 -		-C11H23		K45	C78 A80 I
4397	C10H21-0-	-C,H,s		K53	A54.5 N71.5 I

TABLE 36

	No	L	R	· 	Cr	rcl
15	4398	C. oH2O-	-CaH17		K32	C59. 5 A65. 5 N69. 5 I
	4399	C, oH2, -0-	-C, oH2,	1	K41	C74 A77 1
	4401	C, ,H,,,-0-	-C,H,s	l	K55	C54. 5 A62. 5 N70 I
	4402	€,,H23-0-	-CeH17		K44. 5	C60 A67 N69 1
	4405	C12H25-0-	-C7H15		K59. 5	C57. 5 A63 N71 I
20	4406	C12H25-0-	-C.H.,		K42	C61. 5 A68. 5 N70 I
	4408	C10H21-0-	-CsH10-CHMe-O-C2Hs	1	K43	C*13 N*27 1
	4409	C3H7-0-	-0-C7H15	l	K68. 6	C65 A78. 7 N83. 6 I
	4410	C3H7-0-	-0-CaH,,	i	K49.8	C70. 5 A88. 2 N88. 7 1
25	4411	C3H7-O-	-0-C ₉ H ₁ ,	ľ	K43.7	C72 A89. 4 I
23	4412	C3H7-0-	-0-C10H21	ľ	K45. 6	C71 A92.6 I
	4413	C3H7-0-	-0-C11H23		K41.9	C68 A93 I
	4414	C ₃ H ₇ -0-	-0-C12H25		K43. 4	C61. 6 A94. 1 I
	4415	C4H9-0-	-0-C7H15		K53. 4	C75. 1 A82. 4 N92. 1 I
30	4416	C4H9-0-	-0-CaH17		K54. 4	C84 A94.7 N96.6 I
	4417	C4H9-0-	-0-C ₅ H ₁ ,		K44. 4	C87. 7 A96. 6 I
	4418	C4H2-0-	-0-C10H21		K41.8	C90 A99.4 I
	4419	C4H9-0-	-0-C, 1H23		K42. 3	C89 A99.8 I
	4420	C4H9-0-	-0-C, 2H25		K41.8	C88, 4 A101 I
35	4422	C ₅ H _{1 1} -0-	-0-CeH13		K62	C65. 9 A76. 6 N92. 7 1
	4423	CsH11-0-	-0-C,H,s		K54. 4	C77. 4 A84. 2 N91. 3 I
	4424	C5H11-0-	-0-C ₈ H ₁ ,		K50. 2	C85. 9 A93. 9 N94. 8 I
	4425	CsH11-0-	-0-C ₉ H,,	İ	K66. 7	C90 A95 I
40	4426	CsH11-0-	-0-C10H21		K41.4	C93. 9 A97. 2 I
	4427	CsH11-0-	-0-C11H23]	K51.4	C95. 9 A98. 2 I
	4428	CsH,,-0-	-0-C12H25		K41.7	C96. 2 A98. 6 I

TABLE 37

 $L \longrightarrow N \longrightarrow R$

	No	L	R	Cr	LC
15	4429	C ₆ H _{1 3} -0-	-0-C ₆ H ₁₃	K62	A68 N69 I
	4430	C ₆ H _{1 3} -0-	-0-C,H,s	K45. 8	C80. 6 A84. 7 N94. 9 1
	4431	C ₆ H _{1.3} -O-	-0-C.H.,	K42. 6	C89. 8 A96. 6 N98. 7 I
	4432	C ₆ H _{1 3} -O-	-0-C ₉ H _{1.9}	K49. 9	C94. 4 A97. 9 1
	4433	C.H. 3-0-	-0-C, oH2,	K43. 8	C98. 7 A100. 3 1
20	4434	C.H. 3-0-	-0-C11H23	K55. 4	C100. 4 A101 1
	4435	C.H. 3-0-	-0-C, 2H25	K52. 2	C102. 2 1
	4436	C7H15-0-	-0-C.H.,	K60. 8	C68. 2 A79. 4 N94. 6 1
	4437	C,H, 5-0-	-0-C7H,5	K59. 2	C79. 9 A87. 6 N93. 6 1
25	4438	C, H, 5-0-	-0-C _a H ₁ ,	K51. 6	C87. 2 A96. 4 N97. 1 1
	4439	C7H15-0-	-0-C,H,,	K56	C94. 9 A97. 8 I
	4440	C, H, s-0-	-0-C, H2,	K55. 6	C99. 6 A100. 3 I
	4441	C7H15-0-	-0-C11H23	K67. 4	C100, 1 1
	4442	C7H15-0-	-0-C12H25	K54. 8	C100.3 I
30	4444	C.H.,-O-	-0-CsH13	K59. 3	C73 A80 N96.2 I
	4445	C.H.,-0-	-0-C,H,s	K53. 4	C81. 5 A88. 3 N95. 4 I
	4446	C.H.,-0-	-0-C.H.,	K51	C92. 3 A99. 5 N100. 3 I
	4447	C.H.,-O-	-0-C ₉ H ₁ ,	K48. 2	C96. 4 A99 1
35	4448	C.H.,-0-	-0-C, oH2,	K51.7	C101. 7 A102. 1 1
	4449	CaH,,-0-	-0-C,,H2,	K59. 9	C101.7 I
	4450	C.H.,-0-	-0-C12H25	K57. 1	C102.9 1
	4451	C9H19-0-	-0-C.H.3	K61.6	C68. 9 A83. 2 N93. 7 1
	4452	C ₉ H ₁ ,-O-	-0-C,H,,	K55. 2	C78. 7 A89. 6 N93. 6 1
40	4453	C,H,,-0-	-0-C.H.,	K55. 1	C87. 5 A96. 2 1
	4454	C _e H _e -O-	-O-C.H.,	K65	C97 A101 I
	4455	C ₂ H _{1 2} -0-	-0-C, oH2,	K52. 5	C101.1 I
	4456	C,H,,-O-	-0-C,,H23	K62	C101 1
	4457	C,H,,-O-	-0-C, 2H25	K60. 3	C100. 3 1
45	4458	C, oH2, -O-	-0-C ₆ H ₁₃	K62. 3	C71.6 A83.8 N93.6 I

TABLE 38

 $L \longrightarrow N \longrightarrow R$

	No	L	R	Cr	LC
15	4459	CH0-	-0-C7H15	K50. 4	C79. 7 A90. 1 N93. 6 I
	4460	CH20-	-0-C _a H ₁₇	K50	C89 A99. 6 I
	4461	C10H21-0-	-0-C.H.,	K52. 3	C96. 2 A99 I
	4462	C, aH2, -0-	-0-C, oH2,	K52. 7	C101. 4 1
	4463	C10H21-0-	-0-C, ,H23	K62. 9	C101.2 I
20	4464	C, oH2, -0-	-0-C12H25	K65. 4	C102. 8 I
	4465	C10H21-0-	-0-C14H29	K67	C103 I
	4466	C11H23-0-	-0-C ₆ H ₁₃	K69. 3	C69 A86. 2 N91. 8 I
	4467	C, 1H, 3-0-	-0-C,H,s	K58. 2	C77 A90.1 N91.9
25	4468	C11H23-0-	-0-C ₈ H ₁ ,	K56	C84. 9 A97. 1 I
20	4469	C11H23-0-	-0-C ₉ H, 9	K56. 2	C92. 7 A96. 1 I
	4470	C11H23-0-	-0-C, oH2,	K53. 1	C100. 6 1
	4471	C1 1H23-0-	-0-C,,H23	K69. 8	C99, 8 1
	4472	C1 1H23-0-	-0-C, 2H2 s	K65. 6	C101 I
30	4473	C11H23-0-	-0-C, 6H33	K71. 3	S75. 6 C100. 9 1
	4474	C1 2H25-0-	-0-C ₆ H, 3	K70. 3	C70. 7 A86. 2 N91. 4 I
	4475	C, 2H25-0-	-0-C,H,s	K57. 1	C77. 2 A89. 4 N90. 9 1
	4476	C12H25-0-	-0-C ₈ H ₁₇	K50	C86 A98 1
0.5	4477	C12H25-0-	-0-C ₂ H ₁ ,	K53. 8	C93. 5 A96. 9 I
35	4478	C1 2H25-0-	-0-C; oH2;	K54. 6	C100.3 I
	4479	C, 2H25-0-	-0-C,,H2,	K59. 5	C100.7 I
	4480	C12H25-0-	-0-C, 2H25	K63. 7	C104. 3 1
	4481	C12H25-0-	-0-C, 6H33	K71.2	S73. 7 C99 1
40	4484	C.H.,-0-	-0-C4H8-CMe2-C4H9	K54	C34 N37 I
	4485	C.H., -0-	-0-C ₆ H ₁₂ -CMe ₂ -C ₄ H ₉	K43	C55 I
	4498	C,H,s-0-	-00C-C ₆ H ₁₃	K64.9	C66, 2 N85, 8 I
	4499	C, H, s-0-	-00C-C ₉ H ₁ ,	K74.8	C96. 5 1
	· 4500	C7H15-0-	-00C-C13H27	K81	S73 C101 I
45	4501	C.H.,-O-	-00C-C6H13	K63. 4	C69.7 N89.7 I
	4502	CaH17-0-	-00C-C7H15	K75	C74. 4 N91. 3 I

TABLE 39

 $L - \bigcirc N = R$

	No	L	R	l	Cr	LC
·15	4614	C7H15-C00-	-C7H15		K54	A40 N57 I
	4615	C7H15-COO-	-CeH17		K51	C52 A54 N56 I
	4616	C7H15-COO-	-C ₉ H ₁₉	1	K53	C64 A65 1
	4619	CaH17-COO-	-C ₈ H ₁₇		K49	C53. 5 A54. 8 N56. 5 1
	4620	C.H. 7-COO-	-C1 0H2 1	1	K53	1
20	4623	C ₉ H ₁ , -COO-	-C.H.,		K42	S50 C70 1
	4626	C10H21-C00-	-CaH,,		K57	C55. 5 N59. 8 1 C56. 5 A56. 7 N59 1
	4629	C11H23-COO-	-C.H.,	ļ	K56	
	4630	C7H15-C00-	-0-C _a H ₁ ,		K73	C57. 5 N60. 8 I
	4636	C4H3-CMe2-CH2-COO-	-0-C ₄ H ₁ ,		K53	C89 A92 N93 I
25	4637	C ₆ H ₁₃ -CMe ₂ -CH ₂ -COO-	-0-C ₈ H ₁ ,		K45	C49 N50 I
	4643	C ₅ H _{1,1} -0C00-	-C ₁₂ H ₂ s			C42 N46 I
	4645	C ₉ H _{1.9} -0C00-	1		K48	A52 I
	4647	C12H25-0C00-	-C ₁₂ H ₂₅		K46	C59 I
30	4661	C ₈ H _{1 7} -0-	-C12H25		K57	C60 I
30	4662	C ₉ H ₁ ₉ -0-	-C ₃ H ₆ -CHMe-C ₂ H ₅	1	K33. 5	N*19U
	4663	C10H21-O-	-C ₃ H ₆ -CHMe-C ₂ H ₅	1	K35	N°20U
	4664		-C ₃ H ₈ -CHMe-C ₂ H ₅	1	K38	N*21.5U
	4665	C12H25-0-	-C3H6-CHMe-C2H5	1	K43. 5	N°40. 5U
35		CaH; ,-	-O-CsH10-CHMe-C2Hs	1	K-13	S10 S18 C*51 A51.4
	4666	C.H. 7-	-O-CsH10-CHMe-CzHs	2	K16	C57.5 A59 I

TABLE 40

 $L - \bigcirc \bigcirc R = \bigcirc R$

	No.	L	R		Cr	LC
15	4697	C.H.,-0-	-0-CH2-CHF-C8H17	1	K62. 5	C*92 A97 I
	4698	C,H,,-O-	-0-CH2-CHF-C6H13	1	K61	C*90. 3 A96. 2 I
	4699	C, oH2, -O-	-0-CH2-CHF-C6H13	1	K47	C*90 A97 1
	4700	C1 2H2 5-0-	-0-CH2-CHF-C6H,3	1	K66	C*89 A96 I
	4701	CaH17-	-C2H4-CHF-C6H13	1	K31	C*25 A62 I
20	4702	C.H.,-0-	-C2H4-CHF-C6H13	S	K74	A82 I
	4703	C10H21-0-	-C2H4-CHF-C6H13	1	K71	C*69 A82 1
	4704	C1 0H21-0-	-C2H4-CHF-CBH17	s	K85	C*84 A86 I
	4705	C12H25~0-	-C2H4-CHF-C6H13	S	K74	A82 1
25	4706	C1 0H21-0-	-0-C2H4-CHF-C6H13	1	K50	C*96 N*97 I
	4707	C1 0H21-0-	-0-C3H6-CHF-C6H13	1	K61	C* 102 A103 I
	4715	C3H7-0-C5H10-	-00C-CH=CH-C7H15		K63	C61 N69 I
	4716	C3H7-0-C5H10-	-00C-CH=CH-C.H.,		K53	C62 A64 N68 I
	4717	C3H7-0-C5H10-	-00C-CH=CH-C,H,,	,	K63	C73 I
30	4718	C6H13-	-O-CH2-CH=CH-C2H5		K57	A63 I
	4719	C ₆ H ₁₃ -	-0-CH₂-CH=CH-C₃H,		K67	A76 I
	4720	C6H13-	-0-CH2-CH=CH-C1H9		K62	C65 A71 I
	4721	C ₆ H ₁₃ -	-O-CH2-CH=CH-C3H11		K61	C76 A80 I
35	4722	C6H13-	-O-CH2-CH-CH-C6H13		K74	C78 I
35	4723	C6H13-	-O-CH2-CH=CH-C7H15		K65	C82 I
	4724	C ₅ H ₁₃ -	-O-CH2-CH=CH-C8H17		K73	C82 I
	4725	C ₆ H ₁₃ -	-0-CH2-CH=CH-C9H19	.	K56	S72 C84 1
	4726	C7H15-	-O-CH2-CH=CH-C2H5		K53	A66 I
40	4727	C, H, 5-	-O-CH2-CH=CH-C3H7		K69	A78 I
	4728	C7H15-	-O-CH2-CH=CH-C1H9		K60	C61 A73 1
	4729	C7H15-	-O-CH2-CH=CH-C5H11		K59	C75 A82 I
	4730	C7H15-	-O-CH2-CH=CH-C6H13		K67	C80 I

TABLE 41

	No	L	R	Cr	LC
15	4731	C7H15-	-0-CH2-CH=CH-C7H15	K64	C86 1
	4732	C7H15-	-O-CH2-CH-CH-C.H.,	K72	C85 I
	4733	C7H15-	-O-CH2-CH=CH-C9H19	K67	S74 C87 I
	4734	CaH ₁₇ -	-O-CH2-CH=CH-C2H5	K53	A65 I
20	4735	CeH17-	-0-CH2-CH=CH-C3H7	K68	A77 I
	4736	C.H., ,-	-O-CH2-CH=CH-C4H3	K57	A73 I
	4737	CaH17-	-O-CH2-CH=CH-C5H11	K56	C69. 5 A81 I
	4738	CaH ₁₇ ~	-O-CH2-CH=CH-C6H13	K67	C79 I
	4739	CaH, 7-	-O-CH2-CH=CH-C7H15	K39	S62 C84 1
25	4740	C.H.,-	-O-CH2-CH=CH-C8H1,	K51	S67 C85 1
	4741	C ₈ H ₁₇ -	-O-CH2-CH=CH-C3H13	K66	S74 C86 I
	4742	C ₉ H ₁₉ -	-0-CH2-CH=CH-C2H5	K57	A66 I
	4743	C ₉ H ₁₉ -	-O-CH2-CH=CH-C3H,	K70	A77 I
30	4744	C ₉ H _{1 9} -	-0-CH2-CH=CH-C4H9	K57	C48 A73 I
	4745	C ₉ H ₁₉ ~	-O-CH2-CH=CH-C5H11	K56	C65 A82 I
	4746	C ₉ H ₁₉ -	-O-CH2-CH=CH-C6H13	K62	C78 A80 I
	4747	C ₂ H _{1.9} ~	-0-CH2-CH=CH-C7H15	K60	S58 C84 I
	4748	C ₉ H ₁₉ -	-O-CH2-CH=CH-C.H.,	K50	S63 C86 I
35	4749	C ₉ H ₁₉ -	-O-CH2-CH=CH-C9H19	K61	S74 C87 1
	4750	C3H7-O-C5H10-	-O-CH2-CH=CH-C3H,	K47	A56 I
	4751	C3H7-0-C5H10-	-O-CH2-CH=CH-C1H3	K20	A41 I
	4752	C3H7-0-C5H10-	-O-CH2-CH=CH-C5H11	K36	C58 A63 I
40	4753	C3H1-0-C5H10-	-O-CH2-CH=CH-C6H13	K51	C60 I
40	4754	C3H7-0-C5H10-	-D-CH2-CH=CH-C7H15	K44	C65 I
	4755	C3H7-O-C5H10-	-O-CH2-CH=CH-C8H1,	K50	S49 C68 I
	4756	C3H7-0-C5H10-	-O-CH2-CH=CH-C9H19	K53	S59 C71 I
	4760	C ₆ H _{1 3} -	-0-C3H6-CH=CH2	К39	A69 I
45	4761	C6H13-	-O-C3H6-CH=CH-C3H,	K57	C68 A80 I
	4762	C, H, s-	-0-C ₃ H ₆ -CH=CH ₂	K48	A72 I

TABLE 42

$$L \longrightarrow N \longrightarrow R$$

	No	L	R	Cr	LC
15	4763	C7H15-	-0-C3H6-CH=CH-C3H7	K57	C66 A82 I
	. 4764	CaH, 7-	-0-C3He-CH=CH2	K43	A69 I
	4765	CaH ₁₇ ~	-O-C3H6-CH=CH-C3H7	K53	C55 A82 I
	4766	C,H,,-	-0-C3H6-CH=CH2	K50	A70 I
20	4767	C ₉ H _{1 9} -	-O-C3H6-CH=CH-C3H7	K47	C52 A82 I
20	4769	C6H13-	-0-C'H*-CH=CH3	K35	A64 I
	4770	C7H15-	-0-C4H8-CH=CH2	K37	A67 I
	4771	CaH1 ,-	-O-C'H8-CH=CH5	K33	A64 I
	4772	C ₂ H _{1 9} -	-0-C4H8-CH=CH2	K33	A65 I
25	4774	C3H7-0-C5H10-	-O-C4H8-CH=CH2	K18	A55 I
	4776	C ₆ H ₁₃ -	-O-CsH10-CH=CH2	K34	A79 I
	4777	C ₆ H ₁₃ -	-O-CsH10-CH=CH-CH3	K45	C50 A85 I
	4778	C7H15-	-O-C5H10-CH=CH2	K35	A81 I
	4779	C7H15-	-O-C₃H₁₀-CH=CH-CH₃	K48	A87 I
30	4780	C ₈ H ₁ ,-	-0-CsH: 0-CH=CH2	K37	1 08A
	4781	C ₈ H _{1.7} -	-O-C ₅ H ₁₀ -CH=CH-CH ₃	K44	A85 I
	4782	C ₉ H _{1 9} -	-0-C ₅ H ₁₀ -CH=CH ₂	K38	A81 I
	4783	C ₉ H ₁₉ -	-O-C5H10-CH=CH-CH3	K51	A86 I
35		C3H7-0-C5H,0-	-O-CsH10-CH=CH2	K10	A59 I
		C3H7-0-C5H10-	-O-CsH10-CH=CH-CH3	K21	A70 I
	1	C ₆ H ₁₃ -	-0-C6H12-CH2CH2	K26	C54 A75 I
		C, H, s-	-0-C6H12-CH=CH2	K24	C50 A78 I
	1	CaH17-	-0-C6H12-CH2CH2	K42	C43 A76 1
40		C ₉ H ₁ ₉ -	-0-C6H12-CH=CH2	K34	C38 A77 I
	T I	C3H,-O-C5H,0-	-0-C ₆ H ₁₂ -CH=CH ₂	K15	C35 A60 I
		C ₆ H ₁₃ -	-0-C, H, 4-CH=CH2	K20	C65 A81 I
		C,H,s-	-O-C,H,,-CH=CH,	K16	S23 C62 A84 I
45		C.H.,-	-0-C,H,,-CH=CH,	K20	C60 A83 1
₩		C,H,,-	-0-C, H, 4-CH=CH2	K30	C53 A84 1
	4797	C3H7-0-C5H10-	-0-C, H, 4-CH=CH,	K-30	C30 A61 I

TABLE 43

 $L \longrightarrow N \longrightarrow R$

Мо L Cr LC 4798 C.H. 3--0-C.H. .-CH=CH2 **K33** S35 C73 A80 I 15 4799 C7H15--0-C.H. .-CH=CH2 K32 S33 C72 A82 I 4800 C. H. 7--0-C.H. .-CH=CH2 K36 C72 A81 I 4801 CoHio--0-C.H. .-CH=CH2 **K35** C71 A82 I 4802 C3H7-0-C5H10--O-CaH, a-CH=CH, K-3 C57 A64 I 20 4803 C.H. 3--0-C.H. a-CH=CH2 **K29** S28 C76 A82 1 4804 C6H13--0-C, 0H20-CH=CH2 **K33** S35- C76 A81 I 4805 C7H15--0-C.H. .-CH=CH2 **K28** S29 C77 A85 I 4806 C7H15--0-C10H20-CH=CH2 **K38** S40 C79 A84 I 4807 C.H. 7--0-C.H. .-CH=CH2 **K38** C78 A84 I 25 4808 C.H.,--0-C, oH2 o-CH=CH2 K43 C80 A82 I 4809 C.H. .--0-C, H, .-CH=CH2 **K38** C78 A85 ! 4810 C. H. . --0-C, oH2 o-CH=CH2 K43 C82 A83 4811 C3H7-0-C5H10--0-C9H19-CH=CH2 ΚO C55 A65 I 4812 C3H7-0-C5H10--0-C10H20-CH=CH2 K19 S36 S59 C70 I 30 4817 C. H. 7--O-C2H4-CHXCH-C4H9 A43 I K52 4818 C.H. . --O-C2H4-CHXCH-C4H9 K52 A44 I 4822 C.H. . --O-C4H8-CHXCH-C2H5 K45 C52 A55 I 4823 C7H15--O-C4H8-CHXCH-C2H5 K42 C52 A55 I 35 4824 C.H. 7--O-C.H.-CHXCH-C.H. K38 C46 A57 I 4825 C₉H₁₉--O-C4Ha-CH%CH-C2Hs K38 C44 A58 I 4826 C3H7-0-C5H10--O-C.H.-CHXCH-C.H. K10 C33 A37 I 4828 -0-C4H4-0-CH2-CH/CH2\CH2 C.H. . -0-K72.4 C58. 4 N72 I 4829 C6H13-0--0-C.H.-CH/CH2\CH2 K64 C48 N88 U 40 4830 C4H9-0-C4H8-0--0-C4H8-CH/CH2\CH2 K42 C45 A47 N64 I 4831 C₆H_{1 3}-0--0-CsH10-CH/CH2\CH2 **K53** C73 A75 N86 I C4H9-0-C4H8-0-4832 -0-C3H10-CH/CH2\CH2 K39 C63 A65 N67 I 4833 CaH, ,-0--0-C6H12-CH/CH2\CH2 K56 C78 A84 N89 I 45 4834 | C.H. . -0--0-C₆H₁₂-CH/CH₂\CH₂ K56. 5 C79 A85 N89.5 I

50

50

5

10

TABLE-44

$$L \longrightarrow N \longrightarrow R$$

	No	L	j F	ì j	Cr	[LC]
15	4835	C11H23-0-	-U-C H - M/M / M	\dagger	VE2 5	
	4836		-0-C ₆ H _{1.2} -CH/CH ₂ \CH ₂		K57. 5	C76. 5 A86. 7 N87 1
	4837	C.H0-C.H0-	-0-C ₆ H ₁ ₂ -CH/CH ₂ \CH ₂		K61	©70 A87 I
	4838	C.H. 3-0-	-0-C*H' 5-CH/CH5/CH5		K46	C66 A67 N69 I
20	4839	C ₃ H _{1,3} -O-	-0-C,H, 4-CH/CH2/CH2		K51.8	C86. 5 A89. 6 N89. 8 1
	4840	C10H21-0-	-0-C1H11-CH/CH2/CH2		K60	C87. 9 A90. 4 1
	4841	C1.H23-0-	-0-C,H, 4-CH/CH2/CH2	1	K55. 7	C90 A92.5 1
	4842	C12H25-0-	-0-C'H' '-CH\CH\$/CH5		K53. 4	C87. 6 A90. 5 I
•	4843	C4H9-0-C4H2-0-	-0-C ₇ H ₁₄ -CH/CH ₂ \CH ₂	1	K67. 4	C86. 1 A90. 5 I
25	4844	C4H9-0-	-0-C1H14-CH/CH2\CH2	1	K43	C73 1
	4845	C ₆ H _{1.3} -0-	-0-C ₆ H _{1 6} -CH/CH ₂ \CH ₂		K55. 4	C81 A87.8 I
	4846	C _e H ₁₇ -0-	-0-C ₈ H _{1.6} -CH/CH ₂ \CH ₂	1	K54. 1	C88. 2 A90. 8 I
	4847	C ₉ H _{1,9} -0-	-0-C ₈ H ₁ a-CH/CH ₂ \CH ₂		K56. 4	C91. 7 A92. 9 I
	4848	C10H21-0-	-0-C*H**-CH/CH*/CH*		K56. 2	C91. 8 A93 I
30	4849	C1 1H23-0-	-0-C ₈ H ₁₈ -CH/CH ₂ \CH ₂		K58. 5	C91. 6 A92 I
	4850	C12H25-0-	-0-C ₈ H _{1.6} -CH/CH ₂ \CH ₂		K53. 6	C92. 3 A93. 1 1
	4851	C7H15-0-	-0-C ₈ H _{1.6} -CH/CH ₂ \CH ₂		K54. 9	C92. 3 A93 I
	4852	C ₂ H ₁ 7-0-	-0-C3H13-CH/CH2/CH2		K64. 7	C91 I
35	4853		-0-C.HCH/CH. \CH.		K63. 7	C93. 2 1
	4854	C ₁₂ H ₂₅ -0- C ₂ H ₁₇ -	-0-C11H22-CH/CH2\CH2		K64. 6	C73. 8 I
	4855		-0-CH ₂ -CH/O\CH(t)-C ₃ H,	1	K55	B90 A102 I
	4857	Call of an a	-0-CH2-CH/0/CH(t)-C3H11	1	K70	F"101 A104 1
		C ₂ H ₅ -CMe ₂ -C ₄ H ₈ -O-	-0-CH2-CH/O\CH(t)-C4H3	1	K83	S87 A92 1
40	[C2H5-CMe2-C6H12-O-	-0-CH2-CH/O/CH(t)-C4H3	1	K90	C*96 A106 1
		C ₂ H ₅ -CHMe-0-CH ₂ -	-C1 eH21	1	K15. 6	\$15.2 1
		C ₆ H ₁₃ -CHMe-O-CH ₂ -	-C₁₀H₂₁	2	K16. 9	A-8.5 I
		C ₂ H ₅ -CHMe-COO-	-C11H23	S	K52. 2	S40.7 I
		C ₂ H ₅ -CHMe-COO-	-O-C•H₁,	S	K66	C*62. 2 1
45		C ₂ H ₅ -CHMe-COO-	-0-C, ,H2,	S	K43	C*64.1 S67.2 I
		CH3-CHMe-CHC1-COO-	-C,H,s	S	K64	X-10 I
	4875	C2H3-CHMe-CHC1-COO-	-C7H15	3	K59	X-20 I

TABLE 45

LC

10 No L R Cr 4919 C2H5-CHMe-C3H6-O--CaHL: S K31.2 B16. 8 C* 46. 8 A50. 8 I 15 4920 C2H5-CHMe-C3H6-O--C.H., S **K23** S28 C*30 A51, 5 N*52 | 4921 C2H5-CHMe-C3H6-O--C. .Hz. S **K33** S38. 5 C*58 I

5

4922 C2H5-CHMe-C3H6-O--C, 1H23 S K35.9 C. 60 1 4923 C2H5-CHNe-C3H6-O--C12H25 S K41 S23. 8 C*62. 2 I 20 4924 C2H5-CHMe-C3H6-O--C14H29 S K32 B45 C*59.8 I 4925 C3H7-CHMe-C3H6-O--C.H., 2 K15.5 C44.5 A54.5 I 4926 CsH, 1-CHMe-C3H6-0--C.H., 2 **K15** C9 A42.5 I 4927 C2H5-CHNe-C3H6-CHMe-CH2-O--C.H., 7 **K37** A34 I 4928 CH3-CHMe-C3H5-CHMe-C3H4-D--C.H.s S **K27** A40 1 25 CH3-CHMe-C3H5-CHMe-CH2-C00-4931 -C.H., S K44 C* <7 |

4932 C2H5-CHMe-C4H8-0--C6H13 S K~5 A27 Nº 42 I 4933 C2H5-CHMe-C4H3-O--C7H15 S K-6 A46.3 Nº 49 1 4934 C2H5-CHMe-C4H8-0--CaHir S **K12** C*34.7 A49.5 I 4935 C2H5-CHMe-C4H1-0-30 -C,H,, S K10 C*46 A59 I 4936 C2H5-CHMe-C4H8-O--C, oH2, S **K17** C°53.8 A63 1 4937 C2H5-CHMe-C4H2-O-

-C11H23 S K20 C* 59 1 4938 C2H5-CHMe-C4H2-O--C12H25 S **K23** S16 C*61.5 1 4939 C3H7-CHMe-C4H4-O--C.H. 7 2 K3.5 S31.5 A47.5 I 35 4940 C2H5-CHMe-C4Ha-CO--C.H. S K67 C*69 A79.3 I 4941 C2H5-CHMe-C4Ha-COO--C.H.7 K38.5 S24 C* 44.8 1 4942 C2H5-CHMe-C4Ha-COO--C, 1H23 K62. 3 S S46.5 C*60 I 4943 C2H5-CHMe-C4H4-COO-

-C14H29 K46 S50 C*62.8 I S 4944 C2H3-CHMe-C4H8-C00--0-C.H., S **K76** C*79.5 I 40 4945 C2H5-CHMe-C5H10-O--C.H.3 S K12 C° 23. 8 N° 45. 6 1 4946 C2H5-CHMe-C5H10-O--C7H15 S K10 S16 C*39 A54 N*61 I 4947 C2H5-CHMe-C5H10-0--C.H., S K3 B14. 2 C* 48. 6 A56. 3 1 4948 CzHs-CHMe-CsH10-0-C* 49. 1 A61 I -C,H,, S K16

45 4949 C2H5-CHMe-C5H16-0--C10H21 S K41 S<? C*61 | 4950 | C2Hs-CHMe-C5H10-O-S | K? -C11H23 B36.7 C*68 1

50

55

TABLE 46

 $L - \bigcirc N = R$

	No	L	R		Cr	rc
15	4951	C ₂ H ₅ -CHMe-C ₅ H ₁₀ -O-	-C12H25	S	K40. 5	C*70 I
	4952	C2Hs-CHMe-CsH10-O-	-C14H29	S	K43	B45 C*66 I
	4953	C ₂ H ₅ -CHMe-C ₅ H ₁₀ -O-	-C ₈ H ₁ ,	2	К3	C47.5 A58 I
	4954	C2Hs-CHMe-C5H10-O-	-0-C ₈ H ₁₇	S	K40. 7	C* 82. 8 A89. 1 I
	4955	C2Hs-CHMe-C5H10-O-	-C00-C ₈ H ₁₇	S	K76. 5	C* 79. 7 I
20	4956	CH3-CHMe-C6H12-	-C _e H _e O-		K29. 5	F31 A58.2 I
	4957	CH3-CHMe-C6H12-	-C, oH2,		K38. 6	F41.3 C51.4 A58.4 I
	4962	C2H5-CHF-COO-	-C _a H ₁	1	K70	S58 I
	4964	C2H3-CHF-COO-	-C12H25	1	K69	A59 I
25	4965	C4H9-CHF-COO-	-C, oH2,	S	K46	S30 A49 I
25	4966	C4H9-CHF-COO-	-C, 2H2 s	S	K59	C* 45 A52 I
	4968	CsH: 1-CHF-COO-	-C12H25	S	K14	S? A50 I
	4969	C6H13-CHF-COO-	-C ₈ H ₁₇	1	K56	A38 I
	4970	C ₆ H ₁₃ -CHF-COO-	-C _e H ₁ e	1	K53	A46 I
30	4971	C ₆ H _{1 3} -CHF-COO-	-C10H21	1	K57	\$32 C*45 I
	4972	C ₆ H ₁₃ -CHF-COO-	-C, 2H2 5	1	K62	C*52 1
	4973	C7H15-CHF-COO-	-C, oH2,	S	K59	A46 I
	4974	C7H15-CHF-COO-	-C, 2H25	S	K22	S? A61 I
	4976	CaHir-CHF-COO-	-C _a H _e g-	1	K64	A46 I
35	4977	CaH,,-CHF-COO-	-C, oH2,	1	K59	C*43 A46 N*48 I
	4978	CaH _{1.7} -CHF-COO-	-C ₁₂ H ₂₅	S	K23	S87 I
	4979	C4H9-CHF-CH2-O-	-C, oH2,	S	K48	C* 43 A66 I
	4980	C4H3-CHF-CH2-0-	-C, 2H2 s	S	K59	S37 S39 C*43 A71 I
40	4981	CsH11-CHF-CH2-O-	-C₃H₁,	S	K24	A35 I
	4982	CsH:1-CHF-CH2-0-	-C, oH2,	s	K49	C*60 A66 1
	4983	CsH11-CHF-CH2-O-	-C12H25	s	K60	S49 C*61 A72 I
	4984	C6H13-CHF-CH2-O-	~C ₈ H ₁ ,	s	K62	A59 I
	4985	C6H13-CHF-CH2-O-	-C₃H₁ş	s	K63	A67 1
45	4986	CeH13-CHF-CH2-O-	-C, oH2,	S	K61	S49 C 62 A71 I
	4987	C ₆ H ₁₃ -CHF-CH ₂ -O-	-C, 2H25	S	K56	C°70 A74 1

TABLE 47

 $L \longrightarrow N \longrightarrow R$

No IL R Cr LC CF3-0-5039 -C₃H₇ K43. 1 S48.2 N-17 E 15 5040 CF3-0--CsH., K32 A45. 2 N-6 5041 CF3-0--C,H,s K25 A34 N-20 E 5042 C.F. . -0--C.H., K65. 1 A115.1 I 5043 C3F1-CH2-0--C, oH2, K36 C52 A64 I 5044 20 CsF11-CH2-0--C10H21 K47 C73 A84 I 5045 CaF13-CH3-0--CiHis K? C? A? I 5046 C7F15-CH2-0--C6H13 K50 C56 A133 I 5047 C, F, 5-CH2-0--C7H15 K54 C67 A125 I 5048 C, F, s-CH2-0--CaH., C80 A117 I K71 25 5049 C7F15-CH2-0--C,H,, K71 C85 A112 I 5050 C7F15-CH2-0--CioHzi K75 C87 A104 I 5051 CaF, ,-CH2-0--C7H15 K? C? A? I 5052 CgF1g-CH2-0--C,H,, K? C? A? I 5053 C10F21-CH2-0--C3H7 K? C? A? I 30 5054 C10F21-CH2-0--CsHii K? C? A? I 5055 C6F13-C3H6-0--C.H., K63 C95 A132 I 5056 C.F.-C.H.-0--C.H., K66 A114 I 5057 C4F3-C4H3-0--CiaHzi K58 C80 A106 I 35 5061 H-CF2-0--C3H7 K41 NO E 5062 H-CF2-0--CsH,, K21 A26 NO E 5063 H-CF2-0--C7H15 **K26** A32 NO E 5064 H-CF2-0--C.H., K26.3 S31.6 N-3 E 5065 H-C2F4-0--C,H,s K46 X43 I 40 5066 H-CF2-S--C3H1 K53. 2 N-16 E 5067 H-CF2-S--CsH., K43.1 N-16 E 5068 C6H13-CHCF3-0-CH2--C, oH2, K56.8 S18.4 I 5070 C4H3-CHCF3-CH2-COO--C10H21 1 K28 S1 S7 I 45 5072 | H2C=CH-COO-C6H12-O--C.H., S52.5 N53 1 K50

5

10

50

55

TABLE 48

L - () - R

	No	L	R	Cr	LC
15	5106	CH3-CH=CH-CH3-0-	-C,H,,	K59	A65 N75 I
	5107	C2H3-CH=CH-CH2-O-	-C,H, s	K31	C30 N62 I
	5108	C2H3-CH=CH-CH2-O-	-C.H.,	K53	C49 A55 N61 1
	5109	C2H3-CH=CH-CH2-O-	-C _s H ₁ ,	K56	C42 A68 1
	5111	C3H7-CH=CH-CH3-O-	-C.H.,	K43	C51 N66 1
20	5112	C3H1-CH=CH-CH2-O-	-C,H,,	K49	C63 A70 N72 I
	5113	C3H1-CH=CH-CH2-O-	-C. aHz,	K30	C53 A65. 5 I
	5114	C4H3-CH=CH-CH2-O-	-C,H,s	K22	C33 N63 I
	5115	C+H3-CH=CH-CH2-O-	-C.H.,	K30	C55 N64 I
25	5116	C&H3-CH=CH-CH2-O-	-C,H,,	K46	C66 A70 1
29	5117	C ₅ H ₁₁ -CH=CH-CH ₂ -O-	-C7H15	K38	C35 N68 I
	5118	CsH11-CH=CH-CH2-O-	-C.H.,	K24	C56 N68 I
•	5119	CsH11-CH=CH-CH2-0-	-C,H,,	K42	C70 A72 N73 1
	5120	C ₆ H ₁ ₃ -CH=CH-CH ₂ -O-	-C,H,s	K40	C41 N66 1
30	5121	CeH13-CH=CH-CH2-O-	-CaH17	K29	C58 N66 I
	5122	C6H13-CH=CH-CH2-O-	-CeHie	K20	C70 A71 N72 I
	5123.	C, H, s-CH=CH-CH2-O-	-C,H,s	K49	C42 N68 1
	5124	C7H15-CH=CH-CH2-O-	-C.H.7	K31	C59 N68 1
	5125	C,H,s-CH=CH-CH2-O-	-C,H,,	K37	C72 A73 N74 I
35	5126	CaH17-CH=CH-CH2-O-	-C,His	K43	C47 N66 I
	5127	CaH17-CH=CH-CH2-O-	-C.H.,	K40	C60 N66 1
	5128	C.H.,-CH=CH-CH2-0-	-C.H.	K36	C72 A73 I
	5129	C9H19-CH=CH-CH2-0-	-C2H15	K55	C49 N68 I
40	5130	C, H, ,-CH=CH-CH,-O-	-C.H.,	K44	C62 N68 I
40	5131	C ₉ H _{1,9} -CH=CH-CH ₂ -O-	-C _e H ₁ ,	K42	C74 1
	5132	H2C=CH-C2H1-0-	-C.H.	K37. 3	N12.5 U
	5133	H ₂ C=CH-C ₂ H ₄ -O-	-C,H,s	K38	A41 N49 I
	5134	H2C=CH-C2H4-O-	-CaH,,	K34	A46 I
45	5135	H2C=CH-C2H4-0-	-C ₉ H ₁ 9	K55	A56 I

TABLE 49

	No	L	R		Cr	LC
15	5139	C3H,-CH=CH-C2H4-COO-	-C.H.,		K54	A45 N50 I
	5140	C3H7-CH=CH-C2H4-COO-	-C,H,,		K67	A61 I
	5142	H2C=CH-C3H6-0-	-C,H,s		K46	A45 N63 1
	5143	H2C=CH-C3H6-O-	-C ₈ H ₁ ,	ļ	K38	A54 N58 I
	5144	H2C=CH-C3H6-0-	-C ₂ H ₁ ,	ļ	K40	A65 I
20	5145	CH3-CH=CH-C3H6-O-	-CaHia	1	K48	C35 A70 N72 1
	5146	C3H7-CH=CH-C3H6-O-	-C,H,s		K39	C45 N65 1
	5147	C3H7-CH=CH-C3H6-O-	-C.H.,	l	K32	C56 A59 N63 I
	5148	C3H7-CH=CH-C3H6-O-	-C,H,,		K42	C64 A73 I
~ =	5151	H2C=CH-C4H8-0-	-C,H,,		K27	A43 N57 I
25	5152	H2C=CH-C4H8-O-	-CaH17		K44	A51 N55 I
	5153	H2C=CH-C4H8-O-	-C,H,,	ŀ	K48	A62 I
	5154	H ₂ C=CH-C ₄ H ₈ -O-	-C, oH2,	İ	K55. 5	C33 A62 I
	5155	CH3-CH=CH-C4H8-COO-	-C,H15		K51	A34 N55 I
30	5156	CH3-CH=CH-C4H8-C00-	-C ₈ H ₁ ,		K48	C39 A46 N52 I
	5157	CH3-CH=CH-C4H8-C00-	-C,H, 9		K56	C48 A60 I
	5160	H2C=CH-C5H10-0-	-C, H, s		K56	C34 A47 N67 1
	5161	H2C=CH-C5H10-0-	-C.H.,		K37	C30 A58 N64 I
	5162	H2C=CH-C5H10-0-	-C ₂ H ₁ 9		K31	A69 I
35	5163	CH3-CH=CH-C5H10-O-	-C,H,s		K39	C45 A65 I
	5164	CH3-CH=CH-C5H10-O-	-C _a H ₁₇		K40	C52 A57 N67 I
	5165	CH3-CH=CH-C5H10-O-	-C ₉ H ₁ ,		K39	C53 A71 N72 I
•	5166	H2 C=CH-C5H10-COO-	-C2H15		K43	A36 N46 I
40	5167	H2C=CH-C5H10-C00-	-C.H.,		K37	C34 A43 N44 I
40	5168	H2C=CH-C5H10-C00-	-C ₉ H ₁ ,		K48	C42 A56 I
	5169	H2C=CH-C5H10-O-	-C.HCHMe-C.H.	S	K35	C*29 N*46 I
	5170	H2C=CH-C5H10-0-	-CsH10-CHMe-C2Hs	S	K7	C*19 N*39 I

TABLE 50

L - R

1	Ć)

5

	No	L	R		Cr	rc
15	5171	H ₂ C=CH-C ₆ H ₁₂ -O~	-C7H15		K36	C33 A48 N62 I
.0	5172	H2C=CH-C6H12-O-	-C.H., 7		K19. 2	C33. 3 A56. 1 N60. 2 I
	5173	H2C=CH-C6H12-O-	-C ₉ H ₁ 9		K37	A67 I
	5174	H2C=CH-C8H12-O-	-C10H21		K38. 2	C49. 6 A67. 9 I
	5175	H2C=CH-C6H12-O-	-O-C _e H ₁ ,		K48. 5	C76.3 A92 N92.6 I
20	5176	H2C=CH-C6H12-O-	-C4H8-CHMe-C2H5	S	K29	C*28 N*40 !
	5177	H2C=CH-C6H12-O-	-CsH10-CHMe-C2Hs	S	K4	C*15 N*32
	5178	H2C=CH-C7H14-0-	-C,H15		K52	C43 A54 N67 I
	5179	H2C=CH-C7H14-O-	-CaH ₁₇		K27	C45 A62 N66 I
~	5180	H2C=CH-C7H14-O-	-C _e H _e g-		K19	C39 A71 I
25	5181	H2C=CH-C7H14-O-	-C10H21		K32. 5	C55 A72 I
	5182	H2C=CH-C7H14-O-	-CaHa-CHMe-CaHs	S	K16	C*35 N*48 I
	5183	H2C=CH-C7H14-O-	-CsH10-CHMe-C2Hs	S	K-1	C*28 N*42 I
	5184	H ₂ C=CH-C ₈ H ₁₆ -O-	-C7H15		K43	C42 A55 N64 I
30	5185	H2C=CH-C8H16-O-	-C:H:1		K24	C46 A60 N63 I
	5186	H2C=CH-C8H15-O-	-C _a H ₁ s		K35	C45 A70 I
	5187	H2C=CH-C8H16-O-	-C1 oH2 1		K33	C57 A70 I
	5188	H2C=CH-CaH16-O-	-C.HCHMe-C.Hs	S	K17	C*34 N*44 I
	5189	H2C=CH-C0H16-O-	-CsH10-CHMe-C2Hs	S	K12	C*27 N*38
35	5191	H2C=CH-C9H18-O-	-C2H15		K49	C46 A59 N67 I
	5192	H2C=CH-C9H18-O-	-C.H.,		K33. 9	C53 A64.4 N66.2 1
	5193	H2C=CH-C9H18-0-	-C ₉ H _e O-		K31.3	C52.8 A71.7 I
	5194	H2C=CH-C9H18-O-	-C10H21		K39. 9	C65.2 A72.5 I
40	5195	H2C=CH-C9H18-O-	-C12H25		K45. 9	C75.5 A76.5
	5196	H2C=CH-C10H20-O-	-C7H15		K50	C45 A60 N65 I
	5197	H2C=CH-C16H20-0-	-C ₈ H ₁₇		K36	C50 A63 N64 I
	5198	H2C=CH-C10H20-0-	-CaH.s		K46	C50 A70 I
	5199	H2C=CH-C9H10-O-	-0-C:H:7		K44. 1	C78.5 A94.5 I
45	5200	H2C=CH-C9H18-O-	-C₄H₃-CHMe-C₂Hs	S	K20	C*40 N*49 1
	5201	H2C=CH-C10H20-0-	-C4H8-CHMe-C2H5	S	K35	C*40 N*47 I

50

TABLE 51

 $L \longrightarrow R$

	No	L	R		Cr	LC
15	5202	H ₂ C=CH-C ₉ H ₁₈ -O-	-C ₅ H ₁₀ -CHMe-C ₂ H ₅	s	K17	C*36 N*45 I
	5203	H2C=CH-C10H20-0-	-CsH10-CHMe-C2Hs	S	K33	C*37 N*43 1
	5204	C3H7-CHXCH-CH2-O-	-C,H,,		K32	A17 I
	5208	·CH3-CHXCH-C2H4-O-	-C7H15		K45	A41 N47 I
	5209	CH3-CHXCH-C2H4-O-	-C.H.,		K34	A45 I
20	5210	CH3-CHXCH-C2H4-O-	-C,H,,		K48	C25 A55 I
	5211	C2H5-CHXCH-C2H4-O-	-C7H15		K43	A45 N48 I
	5212	C2H3-CHXCH-C2H4-O-	-C.H.,		K42	C32 A47 I
	5213	C2H5-CHXCH-C2H4-O-	-C ₉ H ₁₉		K58	C41 A56 I
0.5	5214	C3H7-CHXCH-C2H4-0-	-C,H15		K20	A44 1
25	5215	C3H7-CHXCH-C2H4-O-	-C.H.,		K33	C35 A46 I
	5216	C3H7-CHXCH-C2H4-0-	-C ₉ H _{1.9}		K34	C45 A54 I
	5217	C4H9-CH%CH-C2H4-0-	-C7H15		K28	A43 N44 I
	5218	C4H3-CH%CH-C2H4-O-	-C.H.,		K25	C34 A46 I
30	5219	C4H9-CHXCH-C2H4-O-	-C ₉ H ₁₉		K24	C43 A54 I
	5220	CsH11-CHXCH-C2H4-O-	-C,H,s		K25	. A40 I
	5221	CsH1:-CHXCH-CzH4-O-	-CaHir		K12	C30 A42 1
	5222	CsH11-CHXCH-C2H4-O-	-C.H.,		K6	C38 A51 I
	5223	CeH13-CHXCH-C2H4-O-	-C,H,s	l	K33	A39 I
35	5224	C&H13-CHXCH-C2H4-O-	-C.H.,	Į	K22	C25 A41 I
	5225	CaH13-CHXCH-C2H4-O-	-C.H.,	ı	K19	C34 A49 I
	5226	C, H, 5-CH%CH-C2H4-O-	-C7H1s	ŀ	K40	A37 I
	5227	C, H, s-CHXCH-C2H4-O-	-C.H.,	- 1	K30	C20 A39 I
40	5228	C7H15-CH%CH-C2H4-O-	-C.H.	ı	K26	C24 A47 1
	5229	CaH17-CHXCH-C2H4-O-	-C,H,5		K31	A35 I
	5230	C. H. , -CHXCH-C. HO-	-C.H.,		K32	C14 A41 I
	5231	C.H., CHXCH-C.HO-	-C ₉ H ₁ ,		K29	C14 A50 I
	5232	CH3-CHXCH-C3H6-O-	-C,H,,		K22	A46 I
45	5233	C2H5-CHXCH-C3H6-COO-	-CiHis	ŀ	K26	A31 I

TABLE 52

 $L \xrightarrow{N} R$

	No	L	R	1	Cr	LC
15	27740	CI-CF2-0-	-C4H,		K30	S130. 6 N135. 2 1
	27749	NC-	-C,H,,		K82	A158 N223 I
	27750	NC-	-0-C2H3		K144.5	N232 B
	27751	NC-	-0-C3H7	i	K114.5	N223. 5 B
	27752	NC-	-0-C ₅ H ₁ ,	l	K93	N205 B
20	27753	NC-	-CH2-CHMe-C2H5	1	K76	S125 N°178 I
	27754	NC-	-C2H4-CHMe-C2H5	1	K101	S159 N*189. 5 1
	27755	C2Hs-	-C,H,,		K68	S179 N182 I
	27756	C3H7-	-C2Hs	ŀ	K125.5	S128. 5 N167 I
25	27757	C3H1-	-CaH ₁		K116.5	S175 N194.5 1
25	27758	C3H7-	-CsH, 1		K51	S190 I
	27759	CaHs-	-C2H3		K108.5	S140 N163.5 J
	27760	C.H	-CsH,,		K37. 5	S187 I
	27761	C5H11-	-C ₂ H ₅		K101	S139 N167 I
30	27762	CsH11-	-C,H,		K93. 5	S179 N190 1
	27763	CsH11-	-C ₅ H ₁ ,		K39. 5	S189. 2 I
	27764	CsH11-	-C,H,,		K122.5	S186. 5 I
	27765	C7H15-	-C2Hs		K80	S136. 5 N157 I
	27768	C ₆ H _{1 3} -CHMe-O-CH ₂ -	-C7Hes	1	K36. 5	A98. 4 1
35	27769	C2H5-CHMe-CH2-O-	-0-C.H.,	S	K64. 6	B104. 9 A160. 5 I
	27770	C ₂ H ₅ -CHMe-CH ₂ -O-	-0-C ₉ H _{1.9}	S	K61.7	B108. 2 A156 I
	27771	C2H5-CHMe-C3H6-O-	-0-C.H.,	S	K68	B101 A160.9 1
	27772	C ₂ H ₅ -CHMe-C ₃ H ₅ -O-	-O-C ₉ H,,	S	K63. 5	B103 A157.4 I
	I.					: !

TABLE 53

$$L \longrightarrow \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc R$$

	No	L	R		Cr	LC
15	28508	CsH: 1-	-00C-C10H21		K118	C133 N172 I
	28509	CsH11-	-00C-C11H23		K120	C138 N169 I
	28510	CaHs-CHF-COO-	-C ₆ H _{1 3}	S	K34	B98 A137 I
	28511	C.HCHF-COO-	-C7H15	S	K53	B101 A143 I
	28512	C4H9-CHF-COO-	-CaH17	S	K41	B109 A143 I
20	28513	C4H9-CHF-COO-	-C ₉ H ₁ 9	S	K49	B113 A145 I
	28514	C4H9-CHF-COO-	-C, oH2,	S	K48	B116 A145 I
	28515	C4H9-CHF-COO-	-0-C ₆ H, 3	R	K58	C'81 A161 N'165 I
	28516	C4H9-CHF-COO-	-0-C7H15	R	K44	B78 C'95 A162 N'163 I
25	28517	C4H9-CHF-COO-	-0-C ₈ H ₁₇	R	K53	B88 C*102 A162 I
	28518	C4H9-CHF-COO-	-0-C ₉ H ₁₉	R	K60	892 C*106 A163 I
	28519	C4H9-CHF-COO-	-0-C, oH2,	R	K35	S70 B98 C*108 A165 I
	28522	CsH, ,-	-0-CH2-CH=CH-C3H11		K97	C115 N176 1
	28523	CsH ₁₁ -	-0-CH2-CH=CH-C8H13		K94	C125 N170 I
30	28524	CsHt 17	-O-CH2-CH=CH-C7H15		K86	C135 N167 I
	28525	CsH11-	-O-CH2-CH=CH-CaH17		K93	C140 N163 I
	28526	CsHt 1-	-0-C3H5-CH=CH-C3H7		K87	C93 N184 I
	28528	CsH, 1-	-O-CsH10-CH=CH2		K55	C65 A112 N185 I
35	28529	C ₅ H _{1 1} -	-O-CsH10-CH=CH-CH3		K81	C111 A130 N185 I
35	28530	CsH ₁₁ -	-0-C6H12-CH=CH2		K67	C96 A121 N176 I
	28531	CsH11-	-0-C1H14-CH=CH2		K59	C91 A142 N176 I
	28532	CsH ₁₁ -	-0-C ₈ H ₁₆ -CH=CH ₂		K55	C103 A145 N169 I
	28533	CsH11-	-0-C9H, 8-CH=CH2		K57	C97 A151 N168 I
40	28535	C5H11-	-O-C4H8-CH%CH-C2H3		K86	C85 N168 I
	28536	CsHLI-	-O-C4H8-CH/CH2\CH2		K81	S75 N180 I
	28537	C3H7-	-O-C ₆ H _{1,2} -CH/CH ₂ \CH ₂		K80	S70 C84 N174 I

TABLE 54

$$L \longrightarrow \begin{array}{c} N \\ N \\ N \end{array}$$

No	L	R	Cr	LC
28896	C5H11-	-CsH11	K33. 4	S121. 2 I

5

No	L	R	Cr	LC	
28548	C ₈ H ₁₇ -0-	-CaHi,	K51	C63 A113 N121 I	

$$L \longrightarrow 0 \longrightarrow N \longrightarrow R$$

No	L	R	Cr	LC
33521	CsH11-	-C ₆ H ₁₃	K72	S65 N104 I
33522	C5H11-	-C7H15	K76	S86 N109 I
33523	C5H11-	-C _e H _e g-	K52	S107 N113 I
33524	C6H13-	-C ₆ H ₁₃	K61	S76 N100.8 I
33525	C6H13-	-C7H15	K48	S92 N107 1
33526	C6H13-	-CoHio	K66	S109 N110 1
33527	C ₈ H ₁₃ -	~CaHi7	K73	F66 C103.5 1

TABLE 55

r{-}	0	N _	}_R
		/	γ"

	No	L	R		Cr	LC
15	33600	C4H3-0-CHMe-COO-	-C _a H ₁₇	S	K44	C*60 N*96 I
	33601	C4H9-O-CHMe-COO-	-0-C ₈ H ₁₇	S	K68	C*103 N*138 I
	33603	C ₆ H _{1.3} -O-	-C4H8-CHMe-C2H5	S	K56	C*54 N*152 1
	33604	C7H15-0-	-C.HCHMe-C.Hs	S	K64	C*65 N*148 1
20	33605	CaH17-0-	-CaHa-CHMe-CaHs	S	K71	C°70 N°142 I
	33606	C ₉ H ₁₉ -0-	-C4H3-CHMe-C2H5	S	K78	C*77 N*142 I
	33607	C1 oH21-0-	-CaHa+CHMe-CaHa	S	K74	C*82 N*141 I
	33608	C11H23-0-	-C4Ha-CHMe-C2Hs	S	K78	C*85 N*136 I
25	33609	C12H25-0-	-C4H4-CHMe-C2H5	S	K83	C*8B N*133 I
25	33610	C ₆ H ₁₃ -0-	-CsH10-CHMe-C2H5	S	K72	C*50 N*148 I
	33611	C7H15-0-	-CsH10-CHMe-C2Hs	S	K56	C*64 N*144 I
	33612	C.H.,-0-	-CsH10-CHMe-C2H5	S	K56	C*72 N*142 I
	33613	C ₉ H ₁₉ -0-	-CsH10-CHMe-C2Hs	S	K68	C*80 N*138 I
30	33614	C, oH2, -0-	-CsH10-CHMe-C2Hs	S	K86	C*84 N*137 I
	33615	C1 : H23-0-	-CsH,o-CHMe-C2Hs	S	K83	C*90 N*132 I
	33616	C12H25-0-	-CsH10-CHMe-C2Hs	S	K69	C*94 N*132 I
	33618	C ₆ H ₁₃ -CHMe-O-	-0-CaH17	1	K72	C*48 N*115 1
	33620	CH3-CHMe-CHC1-COO-	-C, H, s	S	K70	C*96 N*202 I
35	33621	CH3-CHMe-CHC1-COO-	-C,H,,	S	K62	C*69 N*157 I
	33622	C ₂ H ₅ -CHMe-CHC1-COO-	-C ₈ H ₁₇	3	K?	C"77 N"124 I

TABLE 56

$ \begin{array}{c c} & 0 \\ & & \\$

No	L	R		Cr	LC
36376	C.H	-0-C,H,,	2	K66	S190 I

$$L \longrightarrow 0$$

$$0$$

$$N \longrightarrow R$$

	No 	L	R	Cr	rc
	37030	C2Hs-	-CN	K137	S136 N243 I
30	37031	C5H11-	-CN	K117	S192 N248 I
	37033	CH₃-	-C, oH2,	K76	C77 N124 I
	37035	C ₂ H ₅ -	-C, 0H2,	K82	C82 N142 I
	37038	C3H1-	-C, 0H2,	K76	C89 N161 I
	37039	C3H7-	-C12H25	K64. 9	S76. 3 C108. 1 N152. 8 I
35	37041	C4H9-	-C10H21	K40	B82 C99 N160 I
	37042	C ₄ H ₉ -	-C, 2H2 5	K80	S82 S83.8 C115.3 N152.7 I
	37046	CsH, , -	-C, oH2,	K64	B85 C104 N161 1
	37047	CsH,,-	-C11H23	K70	S80 S82.7 C114.5 N160.5 I
40	37048	CsH, ,-	-C12H25	K67	S83 S87. 2 C121. 5 N156 I
	37051	C, H, 5-	-C, 0H2,	K78	B89 C116 N158 I
	37052	C,H,,-	-C10H21	K77	S85 C123 N153 I
	37053	C10H21-	-C10H21	K77	S87 C125 N150 I
	37054	CsH, , -	-0-CaH, 7	K72. 1	S68 S74 C100 N193 I
45	37055	CsH11-	-0-C ₉ H ₁₉	K74.3	G69 C117.7 N189 I
	37056	C ₅ H _{1 1} -	-0-C10H21	K74. 7	G72. 5 C129. 8 N186. 5 1
	37058	H ₂ C=CH-C ₂ H ₄ -	-C, aH2,	K71	C92 N162 I
	37059	CH3-CH=CH-C2H4-	-C10H21	3 1	I
	3,400	3113 311 311 67114	0101151	K52	S56 S64 S69 C92 N170 I

TABLE 57

$$\begin{array}{c} L \longrightarrow \begin{array}{c} 0 \\ 0 \longrightarrow \\ \end{array} \begin{array}{c} N \longrightarrow R \end{array}$$

No	L	R		Cr	LC
37078 37079	(Me) ₂ C=CH-C ₂ H ₄ - (Me) ₂ C=CH-C ₂ H ₄ -	-C, oH, ,		K40 K82	C83 N106 I C112 N138 I
37080	CH3-	-C, oH2,	2	K50	S54 C68 N107 1

NO	L	R		Cr	LC
37109	H-	-C ₆ H ₁₃		K44	N53 W
37110	H-	-C.H.,		K41.3	C51 A57.6 N60.2 W
37111	H-	-C,H,,		K52. 8	C56.8 A67.2 W
37112	H-	-C, oH2,		K44	C64.9 A67.7 W
37113	H-	-C, , H _{2 3}		K48	C70. 2 A71. 6 W
37114	H-	-C, 2H2 s		K52	C72.3 W
37115	H-	-0-C,H,s		K56. 4	C71. 3 A83. 4 N85. 1 W
37116	H-	-O-C _t H,,		K69. 2	C75. 8 A90. 2 W
37117	H-	-0-C,,H23		K68	C95 W
37118	C2H5-00C-	-C ₈ H ₁₇	1	K38	C* 36 1

TABLE 58

$$L - \left\langle \bigcirc \right\rangle - \equiv - \left\langle \bigcirc \right\rangle - R$$

No	L	R		Cr	LC
9165	C ₂ H ₅ -CHMe-CH ₂ -OOC-	-0-C11H22-0-H	S	K80	C*58. 9 A72. 8 I
9179	CsH11-	-CI		K69	N37 E
9182	C10H21-0-	-C1		K85. 5	C86. 5 I
9200	CH ₃ -	-CN		K160	N65 E
9201	C ₂ H ₅ -	-CN		K110	N62 E
9209	C10H21-	-CN		K64. 4	A47. 9 N62. 1 B
9210	C11H23-	-CN		K64	A61. 4 N66. 7 I
9211	C12H25-	-CN	ĺ	K72	A64.7 N66 I
9221	C14H29-0-	-CN		K96	A91 I
9226	C7H15-	-0-C3H8-CN	ļ	K85. 5	A70 N77 1

$$L - \bigcirc \longrightarrow R$$

AΩ

No	l r	R		Cr	LC
9227	C7H15-0-	-0-C ₃ H ₆ -CN		K105.5	N102.5 U
9228	CsH11-	-0-CsH10-CN		K63. 4	A53 N70 I
9230	C2H5-CHMe-C2H4-	-CN	S	K81	N° 23. 5 B
9237	H2C=CH-CH2-0-	-CN		K115. 2	N104, 1 I
9243	CH3-NMe-	-NO ₂		K217	X220 Z
9256	C4H9-	-C, H, s		K6. 2	S-2.5 N17.5 I
9257	C4H9-	-CaH17		K14. 2	S10.3 N16.5 I
9258	C4H9-	-C ₂ H ₁ ,		K30	S20. 5 N27 I
9259	CsH _{1.1} -	-C ₆ H ₁₃		K31. 2	S21 I
9260	CsH11-	-C7H15		K27. 3	S17. 5 N39. 1 I
9261	CsH, ,-	-C ₈ H ₁ ,		K8. 6	S30. 5 N33. 7 1
9262	C5H11-	-C,H,,		K28	S37 N44.9 I
9263	C ₆ H ₁₃ -	-C7H15		K19. 3	S20 N30 I
9264	C6H13-	-C.H.,	l	K22. 2	S27, 8 I
9265	CaH ₁₃ -	-C ₉ H ₁ ,		K23. 7	S31.7 I
9266	C7H15-	-C7H15		K41.6	S35. 2 N40. 8 1
9267	C7H15-	-C ₉ H ₁ ,		K20	S43. 8 1
9271	CH3-	-0-сн,		K124.8	N32.1 E

TABLE 59

	No	L	R	1	Cr	LC
15	5352	C12H25-	-CN		K87	A81 I
	5353	C13H27-	-CN	ĺ	K87	S80 B
	5355	C.H. 7-0-	-CN		K84	A112 I
	5356	C10H21-0-	-CN	l	K70	A111 I
	5357	C, 2H25-0-	-CN	ŀ	K85	A111 I
20	5358	C12H25-	-O-C.H.		K48	S43 I
	5360	CH3-0-	-C.H.,		K68	A63 I
	5361	CH3-0-	-C12H25		K90	- A83 1
	5362	C ₈ H _{1.7} -0-	-C.H.,		K65	C64 A79 I
	5367	C12H25-0-	-O-CH2-CHMe-C2H5	s	K63€	
25	5369	C ₈ H ₁ , -0-	-COO-CH2-CHMe-C2H5	s	K41	S52 A60 I
	5370	C12H25-0-	-COO-CH2-CHMe-C2H5	S	K42	A60 1
	5371	CaH17-0-	-O-C3H6-CHMe-C2H6	S	K42	C*61 A66 I
	5372	C, 2H25-0-	-O-C3H8-CHMe-C2H5	S	K50	C*63 A72 1
30	5374	C2H3-CHMe-CH2-O-	-0-C ₁₂ H ₂₅	S	K56	A46 1
50	5376	C ₂ H ₅ -CHMe-CH ₂ -OOC-	-0-C ₁₂ H ₂₅	S	K58	C*45 A49 I
	5377	C2H5-CHMe-C3H5-OOC-	-0-C ₁₂ H ₂₅	1	K?	A </td
	5378	C3H7-CHMe-C4H8-O-	-CaH17	2	K48	C56, 5 1
	5379	C2H5-CHMe-C5H10-O-	-C ₈ H ₁₇	2	K49	C62 I
35	'			- 1	ı 	'

	σ	- N
$-/\bigcirc$	_//	// 0
	_γ	y— K
	N =	= /

No	L	R	Cr	LC
5381	C ₅ H ₁₁ -CH=CH-CH ₂ -O-	-CaH17	K48	C77 I

TABLE 60

 $L \longrightarrow N \longrightarrow R$

	NO	L	к		Cr	[
15	5352	C12H25-	-CN		K87	A81 J
15	5353	C13H27-	-CN		K87	S80 B
	5355	CaH17-0-	-CN		K84	A112 I
	5356	C, oH2, -0-	-CN		K70	A111 I
	5357	C12H25-0-	-CN		K85	A111 I
20	5358	C12H25-	-0-C.H.		K48	S43 1
	5360	CH3-0-	-CaH17		K68	A63 I
	5361	CH3-0-	-C12H25		K90	A83 I
	5362	C.H., 7-0-	-C ₈ H ₁₇		K65	C64 A79 I
	5367	C12H25-0-	-0-CH2-CHMe-C2H5	S	K63	A45 I
<i>2</i> 5	5369	C.H.,-0-	-COO-CH2-CHMe-C2H3	S	K41	S52 A60 I
	5370	C12H25-0-	-COO-CH2-CHMe-C2H5	S	K42	A60 I
	5371	C ₈ H _{1.7} ~0~	-0-C3H6-CHMe-C2H5	S	K42	C*61 A66 I
	5372	C12H25-0-	-O-C3H8-CHMe-C2H5	S	K50	C*63 A72 I
30	5374	C2Hs-CHMe-CH2-O-	-0-C1 2H2 5	S	K56	A46 I
	5376	CzHs-CHMe-CHz-OOC-	-0-C _{1 2} H _{2 5}	S	K58	C*45 A49 I
	5377	C2H5-CHMe-C3H6-OOC-	-0-C ₁₂ H ₂₅	1	K?	A </td
	5378	C3H7-CHMe-C4H8-O-	-CeHi7	2	K48	C56. 5 I
	5379	C ₂ H ₅ -CHMe-C ₅ H ₁₀ -O-	-CaH17	2	K49	C62 I

TABLE 61

No	L	R		Cr	LC
15 25427	CH ₃ -	-CN	K	(196	A221 N296 I
25428	C2H5-	-CN	K	(190	A197 N278 I
25429	C3H7-	-CN	K	(169	A179 N277 I
25430	C4H9-	-CN	K	(129	A139 N256 I
25431	C5H11-	-CN	K	(131	A140 N263 I
<i>20</i> 25432	C ₆ H ₁₃ -	-CN	K	(107	A125 N225 U
25433	C7H15-	-CN	K	(110	A132 N242 I
25434	CaH11-	-CN	K	(125	A133 N240 I
25435	C ₉ H ₁₉ -	-CN	K	(105	A107 N232 I
25436	C12H25-	-CN	ĸ	109	C119 A227 I
25437	C15H33-	-CN	K	106	C119 A221 I
25438	CH₃-0-	-CN	K	182	S169 N321 I
25439	C+H+5-0-	-CN	l k	.97	X267 I
25440	C.H., ,-0-	-CN	l k	96	X270 I
30 25441	C ₉ H _{1,9} -0-	-CN	K	102	X263 1
25442	C10H21-O-	-CN	K	104	X252 I
25443	C11H23-D-	-CN	K	109	X263 I
. 25444	C12H25-0-	-CN	K	105	X252 I
25445	C13H27-0-	-CN	K	103	X246 I
<i>35</i> 25450	C4H9-	-C₄H,	K	161.3	C166.4 N181.9 I
25451	CsH11-	-C₅H,,	K	134.3	C173.6 A182.2 N191.3 I
25452	C ₆ H ₁₃ -	-C6H13	K	116.1	C172.3 A179.2 I

TABLE 62

 $L \longrightarrow N$

	No	L	R		Cr	LC
15	25453	C7H15-	-C, H, s		K109.6	C175 A187 I
	25454	CaH17-	-C.H.,		K104.6	C178 A187 I
	25455	C _e H _e -	-C ₉ H ₁₉		K108.8	- C177 1
	25456	C, ,H,,-	-C, 0H21		K112	S106 C170.5 I
	25458	C2Hs-	-O-CH ₃		K162	A163 N229
20	25460	C.H	-0-CH ₃		K138	A139 N230 I
	25462	C ₆ H ₁₃ -	-0-CH ₃		K137	A138 N206 U
	25464	CaH17-	-0-CH ₃		K135	A136 N225 U
	25466	C12H25-	-0-CH ₃		K131	A169 N180 I
	25467	C16H33-	-0-CH ₃		K127	A175 I
25	25469	C ₅ H _{1.1} -	-00C-C ₃ H ₁		K158	S200 N219 I
	25473	C.H O-	-0-C4H9		K170.3	C218 N246 I
	25474	CsH11-0-	-0-CsH11	İ	K153.4	C211 N224 1
	25475	C ₆ H _{1 3} -O-	-0-C ₆ H _{1 3}	i	K135.7	B139.6 C212 N220 I
30	25476	C, H, s-0-	-0-C,H,s		K126	B128.5 C211 N212 1
	25477	CaH, 7-0-	-0-C ₈ H ₁₇		K118.8	B121.1 C209 1
	25478	C, H, , -O-	-0-C ₂ H ₁₉		K118.7	C204 I
	25479	C10H21-0-	-0-C, oH2,		K113	C201 I
	25481	C.H.,-0-	-COO-CHMe-C2H5	1	K11	C*161 A184 I
35	25482	C10H21-0-	-C00-CHMe-C ₆ H ₁₃	1	K138	C*139 A162 I

TABLE 63

$$L \longrightarrow N$$

No	L	R		Cr	LC
25483	C12H25-	-O-CH2-CHMe-C2H5	S	K67	S100 C*155 A157 I
25484	C, oH2,-	-COO-CH2-CHMe-C2H5	S	K85	C*120 A166 I
25485	C12H25-	-COO-CH2-CHMe-C2H5	S	K95	C*130 A162 I
25486	C1 6H23-	-COO-CH2-CHMe-C2H5	S	K95	C*100 A165 I
25487	C, H, s-0-	-COO-CH2-CHMe-C2H5	S	K126	C*175 A200 I
25488	CaH17-0-	-COO-CH2-CHMe-C2H5	S	K109	C*131 A182 I
25489	C ₉ H _{1,9} -O-	-COO-CH2-CHMe-C2H5	S	K113	C*171 A199 I
25490	C10H21-0-	-COO-CH2-CHMe-C2H5	S	K98	C*168 A187 I
25491	C11H23-0-	-COO-CH2-CHMe-C2H5	S	K90	C*160 A193 I
25492	C12H25-0-	-COO-CH2-CHMe-C2H5	S	K110	C*166 A186 I
25493	C13H27-0-	-COO-CH2-CHMe-C2H5	S	K100	C*160 A185 I
25494	C10H21-0-	-COO-C3H6-CHMe-C2H5	S	K68	C*168 A199 I

L-(()	-{0}-	_{	N P R
		`N =	- /

No	L	R	Cr	LC
26944	F-	-0-C4H9	K118.7	A202. 3 1
26945	F-	-0-CsH11	K120	A204 I
26946	F-	-0-C6H13	K110.5	A195.5 1
26947	F-	-0-C,H,s	K117. 1	A191.1
26948	F-	-0-C.H.,	K115.6	A188 I
26949	F-	-0-C ₉ H ₁ ,	K116. 2	A179. 4 I
26950	F-	-0-C, oH2,	K117.1	A178.6 I
26951	F-	-0-C, zH2 s	K121.3	A170.5 I
26952	C3H7-	-0-C4H9	K91.7	E149. 2 B161 A198. 7 N201. 3 I
26953	C ₃ H ₇ -	-0-CsH,,	K92. 4	E143 B156 A191.2 N192.5 I
26954	C ₂ H ₂ -	-0-C ₆ H, 3	K92. 6	E135. 9 B149. 8 A191. 4 N192. 1 I
26955	C3H,-	-0-C,H,s	K77. 3	E132.7 B147.8 A187.9 I
26956	C3H7-	-0-C ₈ H ₁ ,	K86. 8	E130.5 B149.9 A198.5 U
26957	C3H,-	-0-C ₉ H ₁₉	K91.8	E120.7 B138.3 N180.5 I
26958	C3H7-	-0-C, 0H2,	K93. 2	E118 B135 N181 I
26959	C3H7-	-0-C, 2H2 5	K105. 4	E108 B128.4 N171.7 I
		1 1		1

TABLE 64

	No	L	R	Cr	LC
15	5543	C4H9-	-C ₅ H ₁₃	K57. 5	A56. 5 1
	5544	C.H. 3-	-C₄H₃	K45	A61.5 I
	5545	C6H13-	-C5H11	K31	A68 1
	5546	CsH13-	-C ₆ H ₁₃	K44	A68 I
	5547	C6H13-	-C,H,s	K43	A69. 5 I
20	5548	C7H15-	-C,H,s	K41	A72 1
	5549	C.H.,-	-C₄H,	K36. 5	A64.5 1
	5550	C.H.,-	-CsH11	K37	B46 A71 I
	5551	CaH17-	-C ₆ H,,	K44	B49 A72 I
25	5552	CaH17-	-C7H15	K50	B51.5 A73.5 I
	5553	CoHio-	-C.H.	K37	A63. 5 I
	5554	C ₂ H ₁ ₂ -	-CsH11	K42	A78 I
	5555	C ₉ H ₁ ₉ -	-C.H.3	K34	A73 1
	5556	C, H, ,-	-C,H,s	K44	A73 I
30	5560	CsH, , -0-	-C.H.	K55	A101 I
	5561	CsH,,-0-	-C ₆ H ₁₃	K58	A103 I
	5562	C6H13-0-	-CH ₃	K99	A101 I
•	5563	C6H13-0-	-C₄H₃	K57	A100 I
35	5564	C ₆ H ₁₃ -0-	-C ₆ H ₁₃	K55	A103 I

TABLE 65

No	L	R		Cr	LC
5567	C ₂ H ₅ -CHMe-CH ₂ -O-	-C.H.,	S	K57. 8	A53, 9 1
5568	C ₂ H ₅ -CHMe-C ₃ H ₆ -O-	-C₄H₃	S	K42. 5	C*66. 2 A77. 3 1
5569	C ₂ H ₅ -CHMe-C ₃ H ₆ -O-	-C₅Hıı	S	K50. 5	C*76. 5 A82 1
5570	C ₂ H ₅ -CHMe-C ₃ H ₆ -O-	-C ₆ H ₁₃	S	K49	C* 75. 1 A80. 1 I
5571	C ₂ H ₅ -CHMe-C ₃ H ₆ -O-	-C7H15	S	K55	C*77.1 A82 I
5572	C2H5-CHMe-C3H6-O-	-C.H.,	S	K48	C*72.1 A76.9 1
5573	C ₂ H ₅ -CHMe-C ₄ H ₈ -O-	-C ₆ H ₁₃	\$	K34. 5	C* 70. 7 A78. 1 I
5574	C ₂ H ₅ -CHMe-C ₄ H ₈ -O-	-C.H.,	S	K52. 5	C*70 A73 I
5575	C ₂ H ₅ -CHMe-C ₄ H ₈ -COO-	-C ₈ H ₁ ,	S	K68	C* 79. 6 A80. 8 I
5576	C ₂ H ₅ -CHMe-C ₅ H ₁₀ -0-	-C₂Hs	S	K33	A85. 4 I
5577	C ₂ H ₅ -CHMe-C ₅ H ₁₀ -O-	-C₃H₁	S	K34. 5	A93. 4 I
5578	CzHs-CHMe-CsH10-O-	-C4H9	S	K29. 8	C* 57. 1 A85 1
5579	C2H5-CHMe-C5H10-O-	-CsH.,	S	K44	C* 76. 5 A89. 5 I
5580	C2Hs-CHMe-CsH10-0-	-C ₆ H ₁₃	S	K37	C* 79. 3 A85. 7 I
5581	C ₂ H ₅ -CHMe-C ₅ H ₁₀ -O-	-C7H15	S	K50. 5	C*86. 9 A88. 8 I
5582	C2H5-CHMe-C5H10-O-	-C.H.,	S	K44. 5	C*81.2 A84.6 1
5583	CzHs-CHMe-CsH10-0-	-C _e H _e g-	S	K59. 5	C*86 1
5584	CzHs-CHMe-CsH10-0-	-C, 6H2,	S	K51.5	C*81.2 I

TABLE 66

 $L - \left\langle \begin{array}{c} N - N \\ N - N \end{array} \right\rangle - R$

No	L	R	Cr	l rc
5654	C ₅ H _{1 1} -0-	-C.H.,	K65	C58. 5 1
5655	CsH, 1-0-	-C,H,s	K49	C52.5 N63 1
5656	CeH13-0-	-CsH.	K55	A68 I
5657	C6H13-O-	-C7H15	K58	C67 A74 N76 I
5658	C4H9-0-	-0-C.H.	K75. 5	S57.5 N74 I
5659	C4H3-0-	-D-C ₆ H ₁₃	K70	S68.5 N80 1
5660	CsH,,-0-	-0-C4H9	K53. 5	. S61 N71 i
5661	CsH::-0-	-0-C.H.3	K55. 5	S70 S72.5 N82 I
5676	C7H15-COO-	-C.H.3	K56	C50. 5 A65 I

 $L \longrightarrow N \longrightarrow F$

No	L	R	Cr	LC
7081	O ₂ N-	-00C-C10H20-Si404Me7-cy	K?	A50 I
7083	F-	-C ₂ H ₅	K<20	N-36.2 I
7084	F-	-CaH,	K<20	N-14.6 I
7089	NC-	-C ₆ H _{1.3}	K29. 7	N14.5 I
7097	C₄H₃-	-CeH13	K20	B44 I
7098	C.HO-	-C ₆ H ₁₃	K40	B78 I
7099	CH3-00C-	-C ₅ H _{1 1}	K86. 5	A90.5 1
7100	C3H7-00C-	-CsH11	K37.8	A68 I
7101	C.H00C-	-CsH11	K42	A57.8 I
7102	CsH11-00C-	-CsH11	K45. 5	A59 I

TABLE 67

L-()-R

LC |

7260	CsH ₁₁ -	-0-C.H.,	K72	A114 I
7261	C4H3-0-	-C4H9	K79	C96 N108 I
7262	CsH11-0-	-C4Hs	K86	C101 N106.5 1
7264	C4H3-0-	-0-C4H9	K104	C112 N142 N150 I
7265	C.H0-	-0-C:H:7	K92	C95 A140 N142.5 I
7266	C ₉ H ₁ ₉ -0-	-0-CH ₃	K99	A116 N127 I
7267	C ₉ H ₁ ₉ -0-	-0-C.H.,	K74. 5	C135. 5 A144 I
7268	C4H9-S-	-0-C.H.,	K71.8	A119 I
	. '		•	'

TABLE 68

L-()-(N-()-

5

No	L	R	Cr	LC
7276	C2H5-0-	-CN	K150	S144 N189 I
7277	C.H.,-	-C6H13	K68	C106 N116 I
7281	CsH	-0-C4Hs	K77	S76 N118 I
7285	CsH.,-0-	-C₅H₁₁	K73	C77 N118 I
7286	C5H11-0-	-C ₆ H ₁₃	K73	C88 N114 I
7287	CsH11-0-	-C,H,s	K71	C96 A98 N118 I
7288	CsH11-0-	-CaHı,	K73	C92 A105 N112 I
7289	C6H13-0-	-C₅Hı,	K68	C93 N125 I
7290	C ₆ H, 3-0-	-C ₆ H ₁₃	K66	C98 N117 I
7291	CsH13-0-	-C,H,s	K65	C104 A106 N121 I
7292	C6H13-0-	-C.H.,	K69	C104 A113 N117 I
7293	C, H, s-0-	-CsH11	K73	C98 N121 I
7294	C7H15-0-	-C6H13	K70	C105 N116 I
7295	C7H15-0-	-C,H,s	K70	C109 A113 N120 1
7296	C7H15-0-	-C.H.,	K71	C109 A115 N116 I
7297	C ₈ H ₁ ,-0-	-CsHii	K72	C104 N120 I
7298	C ₈ H ₁ ,-0-	-CeHis	K68	C106 N116 I
7299	CaH,,-0-	-C,H,s	K70	C109 A117 N120 I

No	L	R	Cr	LC
7260	C5H11-	-0-C ₁ H ₁ ,	K72	A114 I
7261	-0- eH, C	-C,H,	K79	C96 N108 I
7262	C5H11-0-	-C4H9	K86	C101 N106.5 I
7264	C.HO-	-0-C.H.	K104	C112 A142 N150 I
7265	C.H0-	-0-C,H,,	K92	C95 A140 N142.5 I
7266	C,H,,-0-	-0-CH3	К99	A116 N127 I
7267	C ₉ H ₁ ,-0-	-0-C.H.,	K74.5	C135. 5 A144 1
7268	C.HS-	-0-C.H.,	K71.8	A119 I

TABLE 69

r-{\rightarrow}-

	No	L	R		Cr	LC
	7300	C.H.,-0-	-CaH17		K69	C113 A118 I
15	7301	C,H,,-O-	-CsH11		K76	C107 A109 N118 I
	7302	C, H, , -O-	-C₅H₁₃		K76	C111 A113 N116
	7303	C ₉ H ₁ ,-O-	-C,H,s		K76	C113 A119 I
	7304	C, H, , -O-	-C ₈ H ₁ ,		K75	C114 A117 I
	7305	C, oH, ,-D-	-CsHii		K77	C107 A113 N118 I
20	7306	C10H21-0-	-C6H13		K75	C110 A114 N116 I
	7307	C10H21-0-	-C7H15		K74	C114 A119 I
•	7308	C, oH2, -0-	-C ₈ H ₁₇		K68	C114 A116 I
	7309	C, 1H23-0-	-CsH11		K83	C105 A114 N116
	7310	C, 1H23-0-	-C ₆ H ₁₃		K82	C110 A115 I
25	7311	C, ,H23-0-	-C,H,,		K81	C113 A118 I
	7312	C11H23-0-	-C.H.,		K80	C115 A117 I
	7313	C12H25-0-	-CsH:;		K83	C104 A114 N116 I
	7314	C1 2H25-0-	-C6H13		K103	C108 A113 I
30	7315	C1 2H25-0-	-C,H,5		K79	C112 A118 I
	7316	C, 2H25-0-	-C.H.,		K79	C113 A115 I
	7317	CsHii-CFMe-COO-	-C:H:,	1	K65. 3	S63.5 I

TABLE 70

 $L - \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc R$

	No	L	R		Cr	LC
15	27333	CH ₃ -	-н		K153	A151.5 N163.5 I
	27334	C2H5-	-H	1	K142	A164 I
	27335	C ₃ H ₇ -	-H		K125	A175.5 I
	27336	C ₄ H ₉ -	-H	1	K120.5	A170 I
	27337	CsH ₁₁ -]-н		K113	A175 I
20	27338	C6H13-	-H		K99. 5	A176 I
	27339	C7H15-	-H		K86	E88 A170 1
	27340	CaH17-	-H		K60	E82 A176 I
	27341	C ₉ H ₁₉ -	- H		K61	S82 A173 I
~-	27342	C1 0H21-	-H		K53	E83 A171 I
25	27343	CH3-0-	-H		K169	A163 N203 I
	27344	C2H5-0-	- H		K175	A202 N216 J
	27345	C ₂ H ₇ -O-	-H		K157	A204 1
	27346	CsH11-0-	-н		K145	E130 A206 I
30	27347	C ₈ H _{1.7} -0-	-н		K96	E115 A195 I
	27348	C10H21-0-	-н		K98	E120 A194 I
	27349	C16H33-0-	-H		K109	E106 A182.5 I
	27351	C ₅ H ₁₁ -Oxazolldinyl-N-oxy-C ₄ H ₈ -O-	-н	2	K118	C101 A108 I
	27352	C ₈ H _{1.7} -Oxazolldinyl-N-oxy-C ₇ H _{1.4} -O-	-H	2	K79	E99 C119 A134 I
<i>3</i> 5	27353	CH ₃ -0xazolldinyl-N-oxy-C ₈ H ₁₆ -0-	-н	2	K113	C123 A158.5 I

 $L = \bigcup_{N} \bigcup_{N} \bigcap_{R} R$

No L R Cr LC 8797 C₆H_{1,3}- -C₆H_{1,3} K170 S172 A236 I

55

45

50

TABLE 71

L-(()	<u></u>	$\binom{s}{N}$
		••

No	L	R	<u> </u>	Cr	LC
8797	CaH13-	-C ₆ H ₁₃		K170	S172 A236 I

5

No	L	R	Cr	LC
28635	CsH ₁ -	-C ₆ H ₁₃	K67	S125 A204 N214 I

$$r - r$$

No	L	R	Cr	LC
7557	C.H.,-0-	-F	K71.5	A128.5 I
7558	CaH, 7-0-	-cı	K72	E94. 5 A164 I
7559	CaH, ,-0-	-Br	K75. 5	E107. 5 A149. 5 I
7561	C6H13-	-C6H13	K54	A45 N56 I
7562	C.H.,-	-CaHia	K62	A69 I
7563	CaH, 7-0-	-CaH, s	K55	C106 I
7570	C ₈ H _{1.7} -0-	-0-C.H.	K70. 8	S99. 8 N123. 1 1
7572	CHO-	-n-cu. l	K90 7	S96 9 N113 4 I

5 Example A1

44.6 g (0.34 mol) of 4-cyanobenzaldehyd and 54.4 g (0.64 mol) of o-aminobenzenethiol wer dissolved in 300 ml of dimethyl sulfoxide, and the t mperature of the solution was raised to 140°C . The produced water and the dimethyl sulfoxide were distilled off. After heating for one hr, the residue was cooled, water was added thereto, and the resultant

precipitate was collected by filtration and washed with ethanol. The crude crystal thus obtained was recrystallized from ethyl acetate to give 2-(4'-cyanophenyl)benzothiazole. 22.4 g (0.095 mol) of the compound was dissolved in 250 ml of acetic acid, and 18.6 g (0.116 mol) of bromine was dropwise added thereto. As soon as bromine was added, a yellow bromine adduct was produced. Subsequently, 150 ml of water was added, and the mixture was stirred at 80°C for 2 hr. It was then cooled, and the resultant precipitate was collected by filtration and washed with ethanol. The crude product thus obtained was recrystallized from ethyl acetate.

A 60 % by weight dispersion of 0.8 g (0.02 mol) of sodium hydride in an oil was suspended in 50 ml of ether, 3.22 g (0.022 mol) of 1-octanethiol was dropwise added thereto, and the mixture was refluxed for 30 min. Thereafter, the ether was distilled off, 50 ml of N,N-dimethylimidazolidinone was added to the residue, and the temperature of the system was raised to 60°C. 0.01 mol of 2-(4'-cyanophenyl)-6-bromobenzothiazole was added to the solution, and stirring was continued for one hr. The solution was cooled, water was added thereto, and the resultant precipitate was collected by filtration and washed with ethanol. The product thus obtained was recrystallized from a hexane/ethyl acetate mixed solution to give a compound represented by the following formula:

Example A2

15

20

25

30

35

1.31 g (0.01 mol) of 4-cyanobenzaldehyde, 2.5 g (0.01 mol) of 2-amino-6-hexyloxybenzothiazole, and 30 ml of ethanol were heated at 70°C for 2 hr. The reaction mixture was then cooled to room temperature, and the resultant solid matter was collected by filtration and recrystallized from ethanol to give a compound represented by the following formula:

40 Example A3

2.21 g (0.01 mol) of 2,5-diamino-1,4-benzenedithiol/dihydrochloric acid adduct, 5.34 g (0.024 mol) of 4-hexyloxy-benzoic acid, 3 g of phosphorus pentaoxide, and 50 ml of methanesulfonic acid were allowed to react at 90°C for one hr and then heated at 80°C for 5 hr. The resultant product was collected by filtration and recrystallized from N-methyl-pyrrolidone to give a compound represented by the following formula:

Example A4

55

2.56 g (0.01 mol) of 2,6-dimercaptobenzo(1,2-d: 5,6-d')bisthiazole, 4.54 g (0.02 mol) of 4-hexyloxybenzyl chloride, 1.2 g of potassium carbonate, and 15 ml of N-methylpyrrolidone were heated at 80°C for 3 hr. The reaction mixture was

poured into water, and the resultant solid matter was collected by filtration and washed with water, methanol, and chloroform. It was then recrystallized from benzene to give a compound represented by the following formula:

$$R \longrightarrow CH_2S \longrightarrow SCH_2 \longrightarrow R$$

wherein R=CH₃(CH₂)₅O.

Example A5

10

15

20

25

30

35

40

45

50

The procedure of Example A1 was repeated to prepare liquid crystalline compounds represented by the general formula (A) wherein R_1 and R_2 represent the following groups. The liquid crystalline compounds thus obtained had the same properties as the liquid crystalline compound prepared in Example A1.

Example	R ₁	R ₂
A5-1	CH ₃ (CH ₂) ₉ O	CN
A5-2	CH ₃ CH ₂ C*H(CH ₃)CH ₂ O	CN
A5-3	CH ₃ (CH ₂) ₅ O	O(CH ₂) ₉ CH ₃
A5-4	NO ₂	S(CH ₂) ₇ CH ₃
A5-5	NO ₂	O(CH ₂) ₇ CH ₃
A5-6	F	O(CH ₂) ₉ CH ₃

Example A6

The procedure of Example A2 was repeated to prepare liquid crystalline compounds represented by the general formula (B) wherein R_1 and R_2 represent the following groups. The liquid crystalline compounds thus obtained had the same properties as the liquid crystalline compound prepared in Example A2.

Example	R ₁	R ₂	Z
A6-1	NO ₂	O(CH ₂) ₉ CH ₃	CH=N
A6-2	CH ₃ (CH ₂) ₅ O	O(CH ₂) ₅ CH ₃	COO
A6-3	CH ₃ CH ₂ C*H(CH ₃)CH ₂ O	O(CH ₂) ₇ CH ₃	CH=CH
A6-4	CN	O(CH ₂) ₈ CH ₃	CH=CH
A6-5	CH ₃ (CH ₂) ₉ O	O(CH ₂) ₃ CH ₃	C=C
A6-6	CH ₃ (CH ₂) ₅ O	O(CH ₂) ₅ CH ₃	N=N

55 Example A7

The procedure of Example A3 was repeated to prepare liquid crystalline compounds represented by the general formula (C) wherein R₁ represents the following groups. The liquid crystalline compounds thus obtained had the same properties as the liquid crystalline compound prepared in Example A3.

Example	R ₁	
A7-1	CH ₃ (CH ₂) ₉ O	
A7-2	CH ₃ (CH ₂) ₉	
A7-3	CH ₃ (CH ₂) ₉ S	
A7-4	CH ₃ (CH ₂) ₅ S	
A7-5	A7-5 CH ₃ (CH ₂) ₈ S	
A7-6	CH ₃ CH ₂ C*H(CH ₃)CH ₂ O	

15

5

10

Example A8

The procedure of Example A3 was repeated to prepare liquid crystalline compounds represented by the general formula (D) wherein R₁ represents the following group. The liquid crystalline compounds thus obtained had the same properties as the liquid crystalline compound prepared in Example A4.

25

30

35

Example	R ₁	Z
A8-1	CH ₃ (CH ₂) ₅ O	coo
A8-2	CH ₃ (CH ₂) ₅ O	CH=N
A8-3	CH ₃ CH ₂ C*H(CH ₃)CH ₂ O	CH=CH
A8-4	CH ₃ (CH ₂) ₅ S	CH=N
A8-5	CH ₃ (CH ₂) ₃ O	N=N
A8-6	CH ₃ (CH ₂) ₉ O	coo

According to the present invention, novel liquid crystalline compounds are provided which exhibit liquid crystallinity and, in addition, photoconductivity and fluorescence. The novel liquid crystalline compounds are useful as materials for liquid crystal displays, photosensitive materials for electrophotography and the like.

Example B

[Synthesis of 2-(4'-heptyloxyphenyl)benzothiazole]

74.2 g (0.34 mol) of 4-heptyloxybenzaldehyde and 54.4 g (0.46 mol) of o-aminobenzenethiol were dissolved in 300 ml of dimethyl sulfoxide, and the temperature of the solution was raised to 140°C. The produced water and the dimethyl sulfoxide were distilled off. After heating for one hr, the residue was cooled, water was added thereto, and the resultant precipitate was collected by filtration and washed with ethanol. The crude crystal thus obtained was recrystallized from ethyl acetate. The yield was 90%.

The above compound exhibited the following peaks in NMR spectrum: $^1\text{H NMR (CDCl}_2)$

 δ = 0.90 (3H, t, J = 6.6 Hz), 1.25-1.47 (8H, m), 1.81 (2H, quint, J = 6.6 Hz), 4.01 (2H, t, J = 6.5 Hz), 6.97 (2H, d, J = 8.5 Hz), 7.33 (1H, d, J = 8.9 Hz), 7.45 (1H, t, J = 8.5 Hz), 7.86 (1H, d, J = 7.9 Hz), 8.01 (1H, d, J = 8.9 Hz), 8.02 (2H, d, J = 8.5 Hz)

Further, it exhibited the following peaks in IR (KBr disc) spectrum: 506, 568, 622, 648, 698, 730, 968, 1010, 1037, 1300, 1316, 1394, 1417, 1441, 1470, 1483, 1520, 1603, 2852, 2912 cm⁻¹

[Synthesis of 2-(4'-heptyloxyphenyl)-6-bromobenzothiazole]

31.0 g (0.095 mol) of 2-(4'-heptyloxyphenyl)benzothiazole was dissolved in 250 ml of acetic acid, and 18.6 g (0.116 mol) of bromine was dropwise added thereto. As soon as bromine was added, a yellow bromine adduct was produced. Subsequently, 150 ml of water was added, and the mixtur was stirred at 80°C for 2 hr. It was then cooled, and the resultant precipitate was collected by filtration and washed with ethanol. The crude product thus obtained was recrystallised from ethyl acetate. The yield was 68%.

The above compound exhibited the following peaks in NMR spectrum:

¹H NMR (CDC1₃) δ = 0.90 (3H, t, J = 6.6 Hz), 1.33-1.50 (8H, m), 1.81 (2H, quint, J = 6.6 Hz), 4.03 (2H, t, J = 6.6 Hz), 6.98 (2H, d, J = 8.6 Hz), 7.55 (1H, dd, J1 = 2.0 and J2 = 8.6 Hz), 7.85 (1H, d, J = 8.6 Hz), 7.98 (1H, d, J = 2.0 Hz), 7.99 (2H, d, J = 8.6 Hz)

Further, it exhibited the following peaks in IR (KBr disc) spectrum: 520, 563, 622, 666, 695, 723, 748, 859, 1015, 1040, 1090, 1115, 1224, 1393, 1438, 1474, 1488, 1520, 1541, 2855, 2922, 2937 cm⁻¹

[General process for synthesizing 2-(4'-alkoxyphenyl)-6-alkylthiobenzothiazole derivatives]

A 60 % by weight dispersion of 0.8 g (0.02 mol) of sodium hydride in an oil was suspended in 50 ml of ether, 0.022 mol of a corresponding alkanethiol was dropwise added thereto, and the mixture was refluxed for 30 min. Thereafter, the ether was distilled off, 50 ml of N,N'-dimethylimidazolidinone was added to the residue, and the temperature of the system was raised to 60°C. 0.01 mol of 2-(4'-heptyloxyphenyl)-6-bromobenzothiazole was added to the solution, and stirring was continued for one hr. The solution was cooled, water was added thereto, and the resultant precipitate was collected by filtration and washed with ethanol. The crude product thus obtained was recrystallized from hexane.

2-(4'-alkoxyphenyl)-6-alkylthiobenzothiazole, having the same R (heptyl group) and different R', had the following properties.

[2-(4'-heptyloxyphenyl)-6-hexylthiobenzothiazole] (yield 65%):

15

50

¹H NMR (CDC1₃) δ = 0.89 (3H, t, J = 6.6 Hz), 0.90 (3H, t, J = 6.6 Hz), 1.27-1.47 (14H, m), 1.67 (2H, quint, J = 7.2 Hz), 1.82 (2H, quint, J = 6.6 Hz), 2.98 (2H, t, J = 7.2 Hz), 4.02 (2H, t, J = 6.6 Hz), 6.98 (2H, d, J = 8.6 Hz), 7.43 (1H, dd, J1 = 1.7 and J2 = 8.3 Hz), 7.82 (1H, d, J = 1.7 Hz), 7.91 (1H, d, J = 8.3 Hz), 7.99 (2H, d, J = 8.6 Hz) IR (KBr disc)

520, 570, 621, 701, 727, 966, 1010, 1040, 1112, 1276, 1306, 1396, 1418, 1441, 1474, 1485, 1520, 1543, 1575, 1606, 2855, 2956 cm⁻¹

35 Heating: Cryst (80.5°C) - SmA (103.7°C) - iso (2°C/min) Cooling: Iso (103.2°C) - SmA (83.9°C) - Cryst (5°C/min)

[2-(4'-heptyloxyphenyl)-6-octylthiobenzothiazole] (yield 54%):

⁴⁰ ¹H NMR (CDC1₃) δ = 0.87 (3H, t, J = 6.9 Hz), 0.90 (3H, t, J = 6.6 Hz), 1.18-1.47 (18H, m), 1.67 (2H, quint, J = 7.3 Hz), 1.81 (2H, quint, J = 6.6 Hz), 2.97 (2H, t, J = 7.3 Hz), 4.02 (2H, t, J = 6.6 Hz), 6.98 (2H, d, J = 8.9 Hz), 7.42 (1H, dd, J1 = 1.6 and J2 = 8.6 Hz), 7.81 (1H, d, J = 1.6 Hz), 7.90 (1H, d, J = 8.6 Hz), 7.98 (2H, d, J = 8.9 Hz) IR (KBr disc)

520, 570, 621, 702, 727, 774, 843, 967, 1017, 1041, 1112, 1176, 1276, 1306, 1396, 1441, 1474, 1486, 1520, 1543, 1575, 1607, 2855, 2956 cm⁻¹

Heating: Cryst (94.0°C) - SmA (102.0°C) - iso (2°C/min)

Cooling: Iso (100.3°C) - SmA (89.8°C) - Sm? (78.2°C) - Cryst (5°C/min)

[2-(4'-heptyloxyphenyl)-6-decytthiobenzothiazole] (yield 63%):

 ^{1}H NMR (CDC13) δ = 0.87 (3H, t, J = 6.9 Hz), 0.90 (3H, t, J = 6.6 Hz), 1.25-1.47 (22H, m), 1.66 (2H, quint, J = 7.3 Hz), 1.81 (2H, quint, J = 6.6 Hz), 2.96 (2H, t, J = 7.3 Hz), 4.02 (2H, t, J = 6.6 Hz), 6.97 (2H, d, J = 8.9 Hz), 7.43 (1H, dd, J1 = 2.0 and J2 = 8.6 Hz), 7.81 (1H, d, J = 2.2 Hz), 7.89 (1H, d, J = 8.6 Hz), 7.98 (2H, d, J = 8.9 Hz) IR (KBr disc)

55 570, 812, 842, 967, 1018, 1041, 1112, 1177, 1306, 1393, 1441, 1474, 1485, 1519,1575, 1607, 2853, 2957 cm⁻¹ Heating: Cryst (95.5°C) - SmA (100.9°C) -iso (2°C/min) Cooling: Iso (100.6°C) -SmA (93.1°C) -Cryst (5°C/min)

[2-(4'-heptyloxyphenyl)-6-dodecylthiobenzothiazole] (yield 67%):

¹H NMR (CDC1₃) δ = 0.87 (3H, t, J = 7.0 Hz), 0.90 (3H, t, J = 6.6 Hz), 1.28-1.46 (26H, m), 1.62(2H, quint, J = 7.6 Hz), 1.78 (2H, quint, J = 7.6 Hz), 2.97 (2H, t, J = 7.6 Hz), 4.02 (2H, t, J = 6.6 Hz), 6.97 (2H, d, J = 8.6 Hz), 7.42 (1H, dd, J1 = 2.0 and J2 = 8.6 Hz), 7.81 (1H, d, J = 2.0 Hz), 7.90 (1H, d, J = 8.6 Hz), 7.98 (2H, d, J = 8.6 Hz) IR (KBr disc)

571, 812, 841, 967, 1018, 1111, 1178, 1306, 1395, 1474, 1486, 1519, 1607, 2852, 2920, 2956 cm $^{\text{-}1}$ Heating: Cryst (90.0°C) - SmA (98.0°C) - iso (2°C/min)

Cooling: Iso (96.1°C) -SmA (85.7°C) - Cryst (5°C/min)

10 UV - VIS λmax = 327 nm (10⁻⁶M in CC1₃)

PL (He - Cd Laser 324 nm) \(\lambda \text{max} = 420, 438 nm \)

Example C

15 Synthesis Example 1 of Intermediate

[Synthesis of 2-(4'-heptyloxyphenyl)benzothiazole]

74.2 g (0.34 mol) of 4-heptyloxybenzaldehyde and 54.4 g (0.46 mol) of o-aminobenzenethiol were dissolved in 300 ml of dimethyl sulfoxide, and the temperature of the solution was raised to 140°C. The produced water and the dimethyl sulfoxide were distilled off. After heating for one hr, the residue was cooled, water was added thereto, and the resultant precipitate was collected by filtration and washed with ethanol. The crude crystal thus obtained was recrystallized from ethyl acetate. The yield was 90%.

The above compound exhibited the following peaks in NMR spectrum:

1H NMR (CDCl₃)

 δ = 0.90 (3H, t, J = 6.6 Hz), 1.25-1.47 (8H, m), 1.81 (2H, quint, J = 6.6 Hz), 4.01 (2H, t, J = 6.5 Hz), 6.97 (2H, d, J = 8.5 Hz), 7.33 (1H, d, J = 8.9 Hz), 7.45 (1H, t, J = 8.5 Hz), 7.86 (1H, d, J = 7.9 Hz), 8.01 (1H, d, J = 8.9 Hz), 8.02 (2H, d, J = 8.5 Hz)

Further, it exhibited the following peaks in IR (KBr disc) spectrum:

506, 568, 622, 648, 698, 730, 968, 1010, 1037, 1300, 1316, 1394, 1417, 1441, 1470, 1483, 1520, 1603, 2852, 2912 cm⁻¹

Synthesis Example 2 of Intermediate

35 [Synthesis of 2-(4'-heptyloxyphenyl)-6-bromobenzothiazole]

31.0 g (0.095 mol) of 2-(4'-heptyloxyphenyl)benzothiazole was dissolved in 250 ml of acetic acid, and 18.6 g (0.116 mol) of bromine was dropwise added thereto. As soon as bromine was added, a yellow bromine adduct was produced. Subsequently, 150 ml of water was added, and the mixture was stirred at 80°C for 2 hr. It was then cooled, and the resultant precipitate was collected by filtration and washed with ethanol. The crude product thus obtained was recrystallized from ethyl acetate. The yield was 68%.

The above compound exhibited the following peaks in NMR spectrum:

¹H NMR (CDC1₃) δ = 0.90 (3H, t, J = 6.6 Hz), 1.33-1.50 (8H, m), 1.81 (2H, quint, J = 6.6 Hz), 4.03 (2H, t, J = 6.6 Hz), 6.98 (2H, d, J = 8.6 Hz), 7.55 (1H, dd, J1 = 2.0 and J2 = 8.6 Hz), 7.85 (1H, d, J = 8.6 Hz), 7.98 (1H, d, J = 2.0 Hz), 7.99 (2H, d, J = 8.6 Hz)

Further, it exhibited the following peaks in IR (KBr disc) spectrum: 520, 563, 622, 666, 695, 723, 748, 859, 1015, 1040, 1090, 1115, 1224, 1393, 1438, 1474, 1488, 1520, 1541, 2855, 2922, 2937 cm⁻¹

50 Examples C1 to C4

[General process for synthesizing 2-(4'-alkoxyphenyl)-6-alkylthiobenzothiazole derivatives]

A 60 % by weight dispersion of 0.8 g (0.02 mol) of sodium hydride in an oil was suspended in 50 ml of ether, 0.022 mol of a corresponding alkanethiol was dropwise added thereto, and the mixture was refluxed for 30 min. Thereafter, the ether was distilled off, 50 ml of N,N'-dimethylimidazolidin ne was added to the residue, and the temperature of th syst m was raised to 60°C. 0.01 mol of 2-(4'-heptyloxyphenyl)-6-bromobenzothiazole was added to the solution, and stirring was continued for one hr. The solution was cooled, water was added thereto, and the resultant precipitate was collected by filtration and washed with ethanol. The crude product thus obtained was recrystallized from hexane.

2-(4'-alkoxyphenyl)-6-alkylthiobenzothiazole, having the same R (heptyl group) and different R', had the following properties.

Example C1

5

20

[2-(4'-heptyloxyphenyl)-6-hexylthiobenzothiazole] (yield 65%):

¹H NMR (CDC1₃) δ = 0.89 (3H, t, J = 6.6 Hz), 0.90 (3H, t, J = 6.6 Hz), 1.27-1.47 (14H, m), 1.67 (2H, quint, J = 7.2 Hz), 1.82 (2H, quint, J = 6.6 Hz), 2.98 (2H, t, J = 7.2 Hz), 4.02 (2H, t, J = 6.6 Hz), 6.98 (2H, d, J = 8.6 Hz), 7.43 (1H, dd, J1 = 1.7 and J2 = 8.3 Hz), 7.82 (1H, d, J = 1.7 Hz), 7.91 (1H, d, J = 8.3 Hz), 7.99 (2H, d, J = 8.6 Hz) IR (KBr disc)

 $520, 570, 621, 701, 727, 966, 1010, 1040, 1112, 1276, 1306, 1396, 1418, 1441, 1474, 1485, 1520, 1543, 1575, 1606, 2855, 2956 \,\mathrm{cm}^{-1}$

Heating: Cryst (80.5°C) - SmA (103.7°C) - iso (2°C/min)

15 Cooling: Iso (103.2°C) - SmA (83.9°C) - Cryst (5°C/min)

Example C2

[2-(4'-heptyloxyphenyl)-6-octylthiobenzothiazole] (yield 54%):

 1 H NMR (CDC1 $_{3}$) δ = 0.87 (3H, t, J = 6.9 Hz), 0.90 (3H, t, J = 6.6 Hz), 1.18-1.47 (18H, m), 1.67 (2H, quint, J = 7.3 Hz), 1.81 (2H, quint, J = 6.6 Hz), 2.97 (2H, t, J = 7.3 Hz), 4.02 (2H, t, J = 6.6 Hz), 6.98 (2H, d, J = 8.9 Hz), 7.42 (1H, dd, J1 = 1.6 and J2 = 8.6 Hz), 7.81 (1H, d, J = 1.6 Hz), 7.90 (1H, d, J = 8.6 Hz), 7.98 (2H, d, J = 8.9 Hz) IR (KBr disc)

²⁵ 520, 570, 621, 702, 727, 774, 843, 967, 1017, 1041, 1112, 1176, 1276, 1306, 1396, 1441, 1474, 1486, 1520, 1543, 1575, 1607, 2855, 2956 cm⁻¹

Heating: Cryst (94.0°C) - SmA (102.0°C) - iso (2°C/min)

Cooling: Iso (100.3°C) - SmA (89.8°C) - Sm? (78.2°C) - Cryst (5°C/min)

30 Example C3

[2-(4'-heptyloxyphenyl)-6-decylthiobenzothiazole] (yield 63%):

¹H NMR (CDC1₃) δ = 0.87 (3H, t, J = 6.9 Hz), 0.90 (3H, t, J = 6.6 Hz), 1.25-1.47 (22H, m), 1.66 (2H, quint, J = 7.3 Hz), 1.81 (2H, quint, J = 6.6 Hz), 2.96 (2H, t, J = 7.3 Hz), 4.02 (2H, t, J = 6.6 Hz), 6.97 (2H, d, J = 8.9 Hz), 7.43 (1H, dd, J1 = 2.0 and J2 = 8.6 Hz), 7.81 (1H, d, J = 2.2 Hz), 7.89 (1H, d, J = 8.6 Hz), 7.98 (2H, d, J = 8.9 Hz) IR (KBr disc)

570, 812, 842, 967, 1018, 1041, 1112, 1177, 1306, 1393, 1441, 1474, 1485, 1519,1575, 1607, 2853, 2957 cm⁻¹ Heating: Cryst (95.5°C) - SmA (100.9°C) -iso (2°C/min)

40 Cooling: Iso (100.6°C) -SmA (93.1°C) -Cryst (5°C/min)

Example C4

45

55

[2-(4'-heptyloxyphenyl)-6-dodecylthiobenzothiazoie](yield 67%):

¹H NMR (CDC1₃) δ = 0.87 (3H, t, J = 7.0 Hz), 0.90 (3H, t, J = 6.6 Hz), 1.28-1.46 (26H, m), 1.62(2H, quint, J = 7.6 Hz), 1.78 (2H, quint, J = 7.6 Hz), 2.97 (2H, t, J = 7.6 Hz), 4.02 (2H, t, J = 6.6 Hz), 6.97 (2H, d, J = 8.6 Hz), 7.42 (1H, dd, J1 = 2.0 and J2 = 8.6 Hz), 7.81 (1H, d, J = 2.0 Hz), 7.90 (1H, d, J = 8.6 Hz), 7.98 (2H, d, J = 8.6 Hz) IR (KBr disc)

50 571, 812, 841, 967, 1018, 1111, 1178, 1306, 1395, 1474, 1486, 1519, 1607, 2852, 2920, 2956 cm⁻¹ Heating: Cryst (90.0°C) - SmA (98.0°C) - iso (2°C/min)

Cooling: Iso (96.1°C) -SmA (85.7°C) - Cryst (5°C/min)

UV - VIS λ max = 327 nm (10⁻⁶M in CC1₃)

PL (He - Cd Laser 324 nm) λmax = 420, 438 nm

Examples C5 to C10

Liquid crystalline compounds represented by the above general formula wherein R and R' represent the following groups were prepared in the same manner as in the above examples and comparative examples. All the liquid crystal-

line compounds thus obtained had the same properties as those prepared in Examples C1 to C4.

Example	R	R'
Example C5	Hexyl group	Heptyl group
Example C6	Octyl group	Nonyl group
Example C7	Hexyl group	Undecynyl group
Example C8	Decyl group	Tetradecyl group
Example C9	Amyl group	Tridecyl group
Example C10	Dodecyl group	Heptyl group

15

20

25

30

35

40

45

50

55

5

10

According to the present invention, novel liquid crystalline compounds which exhibit liquid crystallinity and, in addition, photoconductivity and fluorescence. The novel liquid crystalline compounds are useful as materials for liquid crystal displays, photosensitive materials for electrophotography and the like.

Claims

A process for producing a liquid crystalline compound represented by the general formula (A), comprising the steps
of: reacting a compound represented by the general formula (1) with a compound represented by the general formula (2); brominating the reaction product to give a compound represented by the general formula (3); and substituting the bromine atom of the compound (3) with an R₂ group to obtain the liquid crystalline compound (A):

$$H_2N$$
 (2)

$$R_1 \longrightarrow N_{S} \longrightarrow N_{R_r}$$
 (3)

$$R_1 \longrightarrow N$$
 R_2
(A)

wherein R_1 and R_2 represent (a) a cyano group, (b) a nitro group, (c) a fluorine atom, or (d) a C_1 - C_{22} straight-chain or branched, saturated or unsaturated, alkyl or alkoxy group attached to the aromatic ring through an oxygen atom, or a sulfur atom, provided that at least one of R_1 and R_2 represents said alkyl or alkoxy group.

A process for producing a liquid crystallin compound represented by the general formula (B), comprising the step of: reacting a compound represented by the general formula (4) with a compound represented by the general formula

mula (5) to obtain the liquid crystalline compound (B):

5

10

15

20

25

35

40

45

50

55

$$Y \longrightarrow \mathbb{R}_2$$
 (5)

$$R_1 \longrightarrow Z \longrightarrow R_2$$
 (B)

wherein R_1 and R_2 represent (a) a cyano group, (b) a nitro group, (c) a fluorine atom, or (d) a C_1 - C_{22} straight-chain or branched saturated or unsaturated, alkyl or alkoxy group attached to the aromatic ring through an oxygen atom, or a sulfur atom, provided that at least one of R_1 and R_2 represents said alkyl or alkoxy group; and X and Y are respectively groups which are reacted with each other to form Z selected from a -COO-, -OCO-, -N=N-, -CH=N-, -N=N-, -CH₂S-, -CH=CH-, or -C=C- group.

3. A process for producing a liquid crystalline compound represented by the general formula (C), comprising the step of: reacting 2 moles of a compound represented by the general formula (6) with one mole of a compound represented by the general formula (7) to obtain the liquid crystalline compound (C):

$$R_1$$
 R_1

wherein R_1 is a C_1 - C_{22} straight-chain or branched saturated or unsaturated alkyl or alkoxy group attached to the aromatic ring through an oxygen or sulfur.

4. A process for producing a liquid crystalline compound represented by the general formula (D), comprising the step of: reacting two moles of a compound represented by the general formula (8) with one mole of a compound represented by the general formula (9) to obtain the liquid crystalline compound (D):

$$Y \longrightarrow S \longrightarrow Y$$
 (9)

5

10

25

30

40

45

50

$$R_1$$
 R_1

wherein R₁ is a C₁ - C₂₂ straight-chain or branched saturated or unsaturated alkyl or alkoxy group attached to the aromatic ring through an oxygen or sulfur group; and X and Y are respectively groups which are reacted with each other to form Z selected from a -COO-, -OCO-, -N=N-, -CH=N-, - N=N-, -CH₂S-, -CH=CH-, or -C=C- group.

5. A process for producing a liquid crystalline compound represented by the following general formula (I), comprising the steps of: reacting a 4-alkoxybenzaldebyde with o-aminobenzenethiol to synthesize a 2-(4'-alkoxyphenyl)benzothiazole; brominating the 2-(4'-alkoxyphenyl)benzothiazole to synthesize a 2-(4'-alkoxyphenyl)-6-bromobenzothiazole; and reacting the resultant bromide with an alkanethiol to obtain the liquid crystalline compound (I):

$$RO \longrightarrow N \longrightarrow SR'$$
 (1)

wherein R represents a C₄ - C₂₀ alkyl group; and R' represents a C₄ - C₂₀ alkyl group, provided that the total number of carbon atoms contained in R and R' is 10 or more.

6. A liquid crystalline compound represented by the following general formula (II):

wherein R represents C_7H_{15} and R' represents C_6H_{13} , C_9H_{17} , $C_{10}H_{21}$ or $C_{12}H_{25}$.

- A liquid crystalline charge transport material which exhibits smectic liquid crystallinity and has a reduction potential relative to a standard reference electrode (SCE) in the range of from -0.3 to -0.6 (V vs. SCE).
- 8. A liquid crystalline charge transport material which exhibits smectic liquid crystallinity and has an oxidation potential relative to a standard reference electrode (SCE) in the range of from 0.2 to 1.3 (V vs. SCE).
- 9. The liquid crystalline charge transport material according to claim 7 or 8 which has (aromatic ring of 6 π electron system) n (wherein n is an integer of 1 to 4) cores and exhibits smectic liquid crystallinity.
 - 10. The liquid crystalline charge transport material according to claim 9, wherein the are matic ring of 6π electron system is linked through a carbon-carbon double bond or a carbon-carbon triple bond.

- 11. The liquid crystalline charge transport material according to claim 7 or 8 which has a core of an aromatic ring of 10 π electron system and exhibits smectic liquid crystallinity.
- 12. An image display device comprising the material according to claim 7 or 8 in a drive path.
- 13. An electroluminescence device comprising the material according to claim 7 or 8 in a drive path.
- 14. A photoconductor comprising the material according to claim 7 or 8 in a drive path.

5

20

25

30

35

40

45

50

- 10 15. A space light modulating device comprising the material according to claim 7 or 8 in a drive path.
 - 16. A thin film transistor comprising the material according to claim 7 or 8 in a drive path.
- 17. A liquid crystalline charge transport material comprising a liquid crystalline compound produced by the process according to any one of claims 1 to 4.

FIG. I

FIG. 2

FIG. 5

FIG. 6