Table 1: SUSPICIOUSNESS FORMULAE FOR SBFL and MBFL.

	Table 1: SUSFICIOUSNESS FORMULAE					
Name	SBFL-Formula $(Sus(e))$			MBFL-Formula $(Sus(m))$		
Tarantula	$\frac{\frac{a_{ef}}{a_{ef}+a_{ep}}}{\frac{a_{ef}}{a_{ef}+a_{nf}}+\frac{a_{ep}}{a_{ep}+a_{np}}}$			$\frac{\frac{a_{kf}}{a_{kf}+a_{kp}}}{\frac{a_{kf}}{a_{kf}+a_{nf}}+\frac{a_{kp}}{a_{kp}+a_{np}}}$		
Op2	$ef - \frac{a_{ep}}{a_{ep} + a_{np} + 1}$			$a_{kf} - \frac{a_{kp}}{a_{kp} + a_{np} + 1}$		
Jaccard	$\frac{a_{ef}}{a_{ef} + a_{nf} + a_{np}}$			$\frac{a_{kf}}{a_{kf} + a_{nf} + a_{np}}$		
Ochiai	$\frac{a_{ef}}{\sqrt{(a_{ef} + a_{nf}) * (a_{ef} + a_{ep})}}$			$\frac{a_{kf}}{\sqrt{(a_{kf}+a_{nf})*(a_{kf}+a_{kp})}}$		
$\mathrm{ER1}_a$	$\begin{cases} \frac{a_{ef}}{\sqrt{(a_{ef} + a_{nf}) * (a_{ef} + a_{ep})}} \\ -1 & if \ a_{nf} > 0 \\ a_{np} & otherwise \end{cases}$			$\begin{cases} \frac{a_{kf}}{\sqrt{(a_{kf} + a_{nf}) * (a_{kf} + a_{kp})}} \\ -1 & if \ a_{nf} > 0 \\ a_{np} & otherwise \end{cases}$		
a a	$\left(\begin{array}{cc} \mathbf{a}_{np} & otherwise \end{array}\right)$					
$\mathrm{ER5}_a$	$\begin{cases} a_{ef} - \frac{a_{ef}}{a_{ep} + a_{np} + 1} \\ 0 if \ a_{ef} < F \\ 1 otherwise \end{cases}$			$a_{kf} - \frac{a_{kf}}{a_{kp} + a_{np} + 1}$		
$\mathrm{ER5}_c$	$\begin{cases} 0 & if \ a_{ef} < F \end{cases}$			$\begin{cases} a_{kf} - \frac{a_{kf}}{a_{kp} + a_{np} + 1} \\ 0 if \ a_{kf} < F \\ 1 otherwise \end{cases}$		
C	igg(1 otherwise			igl(1 otherwise igl)		
AMPLE		$\left rac{a_{ef}}{F} - rac{a_{ep}}{P} \right $		$\left rac{a_{kf}}{F}-rac{a_{kp}}{P} ight $		
Hamann	$\frac{a_{ef} + a_{np} - a_{ep} - a_{nf}}{P + F}$			$\frac{a_{kf} + a_{np} - a_{kp} - a_{nf}}{P + F}$		
Dice	$\frac{2a_{ef}}{a_{ef} + a_{ep} + a_{nf}}$			$\frac{2a_{kf}}{a_{kf} + a_{kp} + a_{nf}}$		
M1	$\frac{a_{ef} + a_{np}}{a_{nf} + a_{ep}}$			$\frac{a_{kf} + a_{np}}{a_{nf} + a_{kp}}$		
M2	$\frac{a_{ef}}{a_{ef} + a_{np} + 2a_{nf} + 2a_{ep}}$			$\frac{a_{kf}}{a_{kf} + a_{np} + 2a_{nf} + 2a_{kp}}$		
Hamming	$a_{ef} + a_{np}$			$a_{kf} + a_{np}$		
Goodman	$\frac{2a_{ef} - a_{nf} - a_{ep}}{2a_{ef} + a_{nf} + a_{ep}}$			$\frac{2a_{kf}-a_{nf}-a_{kp}}{2a_{kf}+a_{nf}+a_{kp}}$		
Euclid	$\sqrt{a_{ef} + a_{np}}$			$\sqrt{a_{kf} + a_{np}}$		
Wong1	a_{ef}			a_{kf}		
Wong2	$a_{ef} - a_{ep}$			$a_{kf} - a_{kp}$		
Wong3		a_{ep}	$if \ a_{ep} \leq 2$		a_{kp}	$if \ a_{kp} \le 2$
	$a_{ef} - h, h = $	$2 + 0.1(a_{ep} - 2)$	$if \ 2 < a_{ep} \le 10$	$a_{ef} - h, h = \langle$	$2 + 0.1(a_{kp} - 2)$	$if \ 2 < a_{kp} \le 10$
	$2.8 + 0.001(a_{ep} - 10) if \ a_{ep} > 10$			$a_{ef} - h, h = \begin{cases} a_{kp} & \text{if } a_{kp} \le 2\\ 2 + 0.1(a_{kp} - 2) & \text{if } 2 < a_{kp} \le 10\\ 2.8 + 0.001(a_{kp} - 10) & \text{if } a_{kp} > 10 \end{cases}$		
Ochiai2	$\frac{a_{ef}a_{np}}{\sqrt{(a_{ef} + a_{ep})(a_{nf} + a_{np})(a_{ef} + a_{nf})(a_{ep} + a_{np})}}$			$\frac{a_{kf}a_{np}}{\sqrt{(a_{kf}+a_{kp})(a_{nf}+a_{np})(a_{kf}+a_{nf})(a_{kp}+a_{np})}}$		
Zoltar	$\frac{a_{ef}}{a_{ef} + a_{ep} + a_{nf} + \frac{10000a_{nf}a_{ep}}{a_{ef}}}$			$\frac{a_{kf}}{a_{kf} + a_{kp} + a_{nf} + \frac{10000a_{nf}a_{kp}}{a_{kf}}}$		
$\mathrm{ER1}_{b}$	$a_{ef} - rac{a_{ep}}{a_{ep} + a_{np} + 1}$			$a_{kf}-rac{a_{kp}}{a_{kp}+a_{np}+1}$		
$\mathrm{ER5}_{b}$	$\frac{a_{ef}}{a_{ef} + a_{nf} + a_{ep} + a_{np}}$			$\frac{a_{kf}}{a_{kf} + a_{nf} + a_{kp} + a_{np}}$		
GP_2	$2(a_{ef} + \sqrt{a_{np}}) + \sqrt{a_{ep}}$			$2(a_{kf} + \sqrt{a_{np}}) + \sqrt{a_{kp}}$		
GP_3	$\sqrt{ a_{ef}^2-\sqrt{a_{ep}} }$			$\sqrt{ a_{kf}^2 - \sqrt{a_{kp}} }$		
GP_{13}	$a_{ef}(1+\tfrac{1}{2a_{ep}+a_{ef}})$			$a_{kf}(1+\frac{1}{2a_{kp}+a_{kf}})$		
GP_{19}	$a_{ef}\sqrt{ a_{ep}-a_{ef}+a_{nf}+a_{np} }$			$a_{kf}\sqrt{ a_{kp}-a_{kf}+a_{nf}+a_{np} }$		
RusselRao	$\frac{a_{ef}}{a_{ep} + a_{ef} + a_{np} + a_{nf}}$			$\frac{a_{kf}}{a_{kp} + a_{kf} + a_{np} + a_{nf}}$		
SorensenDice	$\frac{2a_{ef}}{2a_{ef} + a_{ep} + a_{nf}}$			$\frac{2a_{kf}}{2a_{kf}+a_{kp}+a_{nf}}$		
Kulczynski1	$rac{a_{ef}}{a_{nf}+a_{ep}}$			$\frac{a_{kf}}{a_{nf} + a_{kp}}$		
Kulczynski2		$\frac{1}{2}\left(\frac{a_{ef}}{a_{ef}+a_{nf}}+\frac{a_{ef}}{a_{ef}+a_{ep}}\right)$)	$\frac{1}{2}\left(\frac{a_{kf}}{a_{kf}+a_{nf}}+\frac{a_{kf}}{a_{kf}+a_{kp}}\right)$		
SimpleMatching		$\frac{a_{ef} + a_{np}}{a_{ep} + a_{ef} + a_{np} + a_{nf}}$	1	$\frac{a_{kf} + a_{np}}{a_{kp} + a_{kf} + a_{np} + a_{nf}}$		
RogersTanimoto	$\frac{a_{ef} + a_{np}}{a_{ef} + a_{np} + 2a_{nf} + 2a_{ep}}$			$\frac{a_{kf} + a_{np}}{a_{kf} + a_{np} + 2a_{nf} + 2a_{kp}}$		
Sokal	$\frac{2a_{ef} + 2a_{np}}{2a_{ef} + 2a_{np} + a_{nf} + a_{ep}}$			$\frac{2a_{kf} + 2a_{np}}{2a_{kf} + 2a_{np} + a_{nf} + a_{kp}}$		
Anderberg	$\frac{a_{ef}}{a_{ef} + 2a_{ep} + 2a_{nf}}$			$\frac{a_{kf}}{a_{kf} + 2a_{kp} + 2a_{nf}}$		