(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 29 November 2001 (29.11.2001)

PCT

(10) International Publication Number WO 01/90334 A2

(51) International Patent Classification?:		C12N 9/00
(21) International Application N	umber:	PCT/US01/17150
(22) International Filing Date:	25 May	2001 (25.05.2001)

(25) Filing Language: English

(26) Publication Language: English

(30) Priority Data:

60/207,901	25 May 2000 (25.05.2000)	US
60/208,983	1 June 2000 (01.06.2000)	US
60/209,861	7 June 2000 (07.06.2000)	US
60/211,825	15 June 2000 (15.06.2000)	US
60/213,744	22 June 2000 (22.06.2000)	US

(71) Applicant (for all designated States except US): INCYTE GENOMICS, INC. [US/US]; 3160 Porter Drive, Palo Alto, CA 94304 (US).

(72) Inventors; and

(75) Inventors/Applicants (for US only): YUE, Henry [US/US]; 826 Lois Avenue, Sunnyvale, CA 94087 (US). SANJANWALA, Madhu, S. [US/US]; 210 Sylvia Court, Los Altos, CA 94024 (US). BAUGHN, Mariah, R. [US/US]; 14244 Santiago Road, San Leandro, CA 94577 (US). GANDHI, Ameena, R. [US/US]; 837 Roble Avenue #1, Menlo Park, CA 94025 (US). RING, Huijun, Z. [US/US]; 625 Orange Avenue, Los Altos, CA 94022 (US). ELLIOTT, Vicki [US/US]; 3770 Polton Place Way, San Jose, CA 95121 (US). WALIA, Narinder, K. [US/US]; 890 Davis Street #205, San Leandro, CA 94577 (US). YANG, Junming [CN/US]; 7125 Bark Lane, San Jose, CA 95129 (US). KHAN, Farrah, A. [IN/US]; 3617 Central Road #102, Glenview, IL 60025 (US). RAMKUMAR, Jaya [IN/US]; 34359 Maybird Circle, Fremont, CA 94555 (US). TANG, Y., Tom [US/US]; 4230 Ranwick Court, San Jose, CA 95118 (US). HAFALIA, April [US/US]; 2227 Calle de Primavera, Santa Clara, CA 95054 (US). LAL, Preeti [IN/US]; P.O. Box 5142, Santa Clara, CA 95056 (US). NGUYEN, Danniel, B. [US/US]; 1403 Ridgewood

Drive, San Jose, CA 95118 (US). YAO, Monique, G. [US/US]; 111 Frederick Court, Mountain View, CA 94043 (US). LEE, Ernestine, A. [US/US]; 624 Kains Street, Albany, CA 94706 (US). TRIBOULEY, Catherine, M. [FR/US]; 1121 Tennessee Street #5, San Francisco, CA 94107 (US). PATTERSON, Chandra [US/US]; 490 Sherwood Way #1, Menlo Park, CA 94025 (US). LU, Yan [CN/US]; 3885 Corrina Way, Palo Alto, CA 94303 (US). BURFORD, Neil [GB/US]; 105 Wildwood Circle, Durham, CT 06422 (US). DING, Li [CN/US]; 3353 Alma Street #146, Palo Alto, CA 94306 (US). BRUNS, Christopher, M. [US/US]; 575 S. Rengstorff Avenue #126, Mountain View, CA 94040 (US). KEARNEY, Liam [US/US]; 50 Woodside, San Francisco, CA 94127 (US). REDDY, Roopa [IN/US]; 1233 W. McKinley Avenue #3, Sunnyvale, CA 94086 (US).

- (74) Agents: HAMLET-COX, Diana et al.; Incyte Genomics Inc., 3160 Porter Drive, Palo Alto, CA 94304 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: DRUG METABOLIZING ENZYMES

(57) Abstract: The invention provides human drug metabolizing enzymes (DME) and polynucleotides which identify and encode DME. The invention also provides expression vectors, host cells, antibodies, agonists, and antagonists. The invention also provides methods for diagnosing, treating or preventing disorders associated with aberrant expression of DME.

EI

DRUG METABOLIZING ENZYMES

TECHNICAL FIELD

This invention relates to nucleic acid and amino acid sequences of drug metabolizing enzymes and to the use of these sequences in the diagnosis, treatment, and prevention of autoimmune/inflammatory, cell proliferative, developmental, endocrine, eye, metabolic, and gastrointestinal disorders, including liver disorders, and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of drug metabolizing enzymes.

10 BACKGROUND OF THE INVENTION

20

25

30

The metabolism of a drug and its movement through the body (pharmacokinetics) are important in determining its effects, toxicity, and interactions with other drugs. The three processes governing pharmacokinetics are the absorption of the drug, distribution to various tissues, and elimination of drug metabolites. These processes are intimately coupled to drug metabolism, since a variety of metabolic modifications alter most of the physicochemical and pharmacological properties of drugs, including solubility, binding to receptors, and excretion rates. The metabolic pathways which modify drugs also accept a variety of naturally occurring substrates such as steroids, fatty acids, prostaglandins, leukotrienes, and vitamins. The enzymes in these pathways are therefore important sites of biochemical and pharmacological interaction between natural compounds, drugs, carcinogens, mutagens, and xenobiotics.

It has long been appreciated that inherited differences in drug metabolism lead to drastically different levels of drug efficacy and toxicity among individuals. For drugs with narrow therapeutic indices, or drugs which require bioactivation (such as codeine), these polymorphisms can be critical. Moreover, promising new drugs are frequently eliminated in clinical trials based on toxicities which may only affect a segment of the patient group. Advances in pharmacogenomics research, of which drug metabolizing enzymes constitute an important part, are promising to expand the tools and information that can be brought to bear on questions of drug efficacy and toxicity (See Evans, W.E. and R.V. Relling (1999) Science 286:487-491).

Drug metabolic reactions are categorized as Phase I, which functionalize the drug molecule and prepare it for further metabolism, and Phase II, which are conjugative. In general, Phase I reaction products are partially or fully inactive, and Phase II reaction products are the chief excreted species. However, Phase I reaction products are sometimes more active than the original administered drugs; this metabolic activation principle is exploited by pro-drugs (e.g. L-dopa). Additionally, some nontoxic compounds (e.g. aflatoxin, benzo[a]pyrene) are metabolized to toxic intermediates through these

٨

10

15

20

30

pathways. Phase I reactions are usually rate-limiting in drug metabolism. Prior exposure to the compound, or other compounds, can induce the expression of Phase I enzymes however, and thereby increase substrate flux through the metabolic pathways. (See Klaassen, C.D., Amdur, M.O. and J. Doull (1996) Casarett and Doull's Toxicology: The Basic Science of Poisons, McGraw-Hill, New York, NY, pp. 113-186; B.G. Katzung (1995) Basic and Clinical Pharmacology, Appleton and Lange, Norwalk, CT, pp. 48-59; G.G. Gibson and P. Skett (1994) Introduction to Drug Metabolism, Blackie Academic and Professional, London.)

Drug metabolizing enzymes (DMEs) have broad substrate specificities. This can be contrasted to the immune system, where a large and diverse population of antibodies are highly specific for their antigens. The ability of DMEs to metabolize a wide variety of molecules creates the potential for drug interactions at the level of metabolism. For example, the induction of a DME by one compound may affect the metabolism of another compound by the enzyme.

DMEs have been classified according to the type of reaction they catalyze and the cofactors involved. The major classes of Phase I enzymes include, but are not limited to, cytochrome P450 and flavin-containing monooxygenase. Other enzyme classes involved in Phase I-type catalytic cycles and reactions include, but are not limited to, NADPH cytochrome P450 reductase (CPR), the microsomal cytochrome b5/NADH cytochrome b5 reductase system, the ferredoxin/ferredoxin reductase redox pair, aldo/keto reductases, and alcohol dehydrogenases. The major classes of Phase II enzymes include, but are not limited to, UDP glucuronyltransferase, sulfotransferase, glutathione S-transferase, N-acyltransferase, and N-acetyl transferase.

Cytochrome P450 and P450 catalytic cycle-associated enzymes

Members of the cytochrome P450 superfamily of enzymes catalyze the oxidative metabolism of a variety of substrates, including natural compounds such as steroids, fatty acids, prostaglandins, leukotrienes, and vitamins, as well as drugs, carcinogens, mutagens, and xenobiotics. Cytochromes P450, also known as P450 heme-thiolate proteins, usually act as terminal oxidases in multi-component electron transfer chains, called P450-containing monooxygenase systems. Specific reactions catalyzed include hydroxylation, epoxidation, N-oxidation, sulfooxidation, N-, S-, and O-dealkylations, desulfation, deamination, and reduction of azo, nitro, and N-oxide groups. These reactions are involved in steroidogenesis of glucocorticoids, cortisols, estrogens, and androgens in animals; insecticide resistance in insects; herbicide resistance and flower coloring in plants; and environmental bioremediation by microorganisms. Cytochrome P450 actions on drugs, carcinogens, mutagens, and xenobiotics can result in detoxification or in conversion of the substance to a more toxic product. Cytochromes P450 are abundant in the liver, but also occur in other tissues; the enzymes are located in microsomes. (See ExPASY ENZYME EC 1.14.14.1; Prosite PDOC00081 Cytochrome P450 cysteine

heme-iron ligand signature; PRINTS EP450I E-Class P450 Group I signature; Graham-Lorence, S. and Peterson, J.A. (1996) FASEB J. 10:206-214.)

Four hundred cytochromes P450 have been identified in diverse organisms including bacteria, fungi, plants, and animals (Graham-Lorence, <u>supra</u>). The B-class is found in prokaryotes and fungi, while the E-class is found in bacteria, plants, insects, vertebrates, and mammals. Five subclasses or groups are found within the larger family of E-class cytochromes P450 (PRINTS EP450I E-Class P450 Group I signature).

All cytochromes P450 use a heme cofactor and share structural attributes. Most cytochromes P450 are 400 to 530 amino acids in length. The secondary structure of the enzyme is about 70% alpha-helical and about 22% beta-sheet. The region around the heme-binding site in the C-terminal part of the protein is conserved among cytochromes P450. A ten amino acid signature sequence in this heme-iron ligand region has been identified which includes a conserved cysteine involved in binding the heme iron in the fifth coordination site. In eukaryotic cytochromes P450, a membrane-spanning region is usually found in the first 15-20 amino acids of the protein, generally consisting of approximately 15 hydrophobic residues followed by a positively charged residue. (See Prosite PDOC00081, supra; Graham-Lorence, supra.)

Cytochrome P450 enzymes are involved in cell proliferation and development. The enzymes have roles in chemical mutagenesis and carcinogenesis by metabolizing chemicals to reactive intermediates that form adducts with DNA (Nebert, D.W. and Gonzalez, F.J. (1987) Ann. Rev. Biochem. 56:945-993). These adducts can cause nucleotide changes and DNA rearrangements that lead to oncogenesis. Cytochrome P450 expression in liver and other tissues is induced by xenobiotics such as polycyclic aromatic hydrocarbons, peroxisomal proliferators, phenobarbital, and the glucocorticoid dexamethasone (Dogra, S.C. et al. (1998) Clin. Exp. Pharmacol. Physiol. 25:1-9). A cytochrome P450 protein may participate in eye development as mutations in the P450 gene CYP1B1 cause primary congenital glaucoma (Online Mendelian Inheritance in Man (OMIM) *601771 Cytochrome P450, subfamily I (dioxin-inducible), polypeptide 1; CYP1B1).

Cytochromes P450 are associated with inflammation and infection. Hepatic cytochrome P450 activities are profoundly affected by various infections and inflammatory stimuli, some of which are suppressed and some induced (Morgan, E.T. (1997) Drug Metab. Rev. 29:1129-1188). Effects observed in vivo can be mimicked by proinflammatory cytokines and interferons. Autoantibodies to two cytochrome P450 proteins were found in patients with autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy (APECED), a polyglandular autoimmune syndrome (OMIM *240300 Autoimmune polyenodocrinopathy-candidiasis-ectodermal dystrophy).

30

Mutations in cytochromes P450 have been linked to metabolic disorders, including congenital

۸

15

20

25

30

adrenal hyperplasia, the most common adrenal disorder of infancy and childhood; pseudovitamin D-deficiency rickets; cerebrotendinous xanthomatosis, a lipid storage disease characterized by progressive neurologic dysfunction, premature atherosclerosis, and cataracts; and an inherited resistance to the anticoagulant drugs coumarin and warfarin (Isselbacher, K.J. et al. (1994) Harrison's Principles of
Internal Medicine, McGraw-Hill, Inc. New York, NY, pp. 1968-1970; Takeyama, K. et al. (1997)
Science 277:1827-1830; Kitanaka, S. et al. (1998) N. Engl. J. Med. 338:653-661; OMIM *213700
Cerebrotendinous xanthomatosis; and OMIM #122700 Coumarin resistance). Extremely high levels of expression of the cytochrome P450 protein aromatase were found in a fibrolamellar hepatocellular carcinoma from a boy with severe gynecomastia (feminization) (Agarwal, V.R. (1998) J. Clin.
Endocrinol, Metab. 83:1797-1800).

The cytochrome P450 catalytic cycle is completed through reduction of cytochrome P450 by NADPH cytochrome P450 reductase (CPR). Another microsomal electron transport system consisting of cytochrome b5 and NADPH cytochrome b5 reductase has been widely viewed as a minor contributor of electrons to the cytochrome P450 catalytic cycle. However, a recent report by Lamb, D.C. et al. (1999; FEBS Lett. 462:283-288) identifies a Candida albicans cytochrome P450 (CYP51) which can be efficiently reduced and supported by the microsomal cytochrome b5/NADPH cytochrome b5 reductase system. Therefore, there are likely many cytochromes P450 which are supported by this alternative electron donor system.

Cytochrome b5 reductase is also responsible for the reduction of oxidized hemoglobin (methemoglobin, or ferrihemoglobin, which is unable to carry oxygen) to the active hemoglobin (ferrohemoglobin) in red blood cells. Methemoglobinemia results when there is a high level of oxidant drugs or an abnormal hemoglobin (hemoglobin M) which is not efficiently reduced. Methemoglobinemia can also result from a hereditary deficiency in red cell cytochrome b5 reductase (Reviewed in Mansour, A. and Lurie, A.A. (1993) Am. J. Hematol. 42:7-12).

Members of the cytochrome P450 family are also closely associated with vitamin D synthesis and catabolism. Vitamin D exists as two biologically equivalent prohormones, ergocalciferol (vitamin D_2), produced in plant tissues, and cholecalciferol (vitamin D_3), produced in animal tissues. The latter form, cholecalciferol, is formed upon the exposure of 7-dehydrocholesterol to near ultraviolet light (i.e., 290-310 nm), normally resulting from even minimal periods of skin exposure to sunlight (reviewed in Miller, W.L. and Portale, A.A. (2000) Trends Endocrinol. Metab. 11:315-319).

Both prohormone forms are further metabolized in the liver to 25-hydroxyvitamin D (25(OH)D) by the enzyme 25-hydroxylase. 25(OH)D is the most abundant precursor form of vitamin D which must be further metabolized in the kidney to the active form, 1α ,25-dihydroxyvitamin D (1α ,25(OH)₂D), by the enzyme 25-hydroxyvitamin D 1α -hydroxylase (1α -hydroxylase). Regulation of

1α,25(OH)₂D production is primarily at this final step in the synthetic pathway. The activity of 1α-hydroxylase depends upon several physiological factors including the circulating level of the enzyme product (1α,25(OH)₂D) and the levels of parathyroid hormone (PTH), calcitonin, insulin, calcium, phosphorus, growth hormone, and prolactin. Furthermore, extrarenal 1α-hydroxylase activity has been reported, suggesting that tissue-specific, local regulation of 1α,25(OH)2D production may also be biologically important. The catalysis of 1α,25(OH)₂D to 24,25-dihydroxyvitamin D (24,25(OH)₂D), involving the enzyme 25-hydroxyvitamin D 24-hydroxylase (24-hydroxylase), also occurs in the kidney. 24-hydroxylase can also use 25(OH)D as a substrate (Shinki, T. et al. (1997) Proc. Natl. Acad. Sci. U.S.A. 94:12920-12925; Miller, W.L. and Portale, A.A. supra; and references within).

Vitamin D 25-hydroxylase, 1α-hydroxylase, and 24-hydroxylase are all NADPH-dependent, type I (mitochondrial) cytochrome P450 enzymes that show a high degree of homology with other members of the family. Vitamin D 25-hydroxylase also shows a broad substrate specificity and may also perform 26-hydroxylation of bile acid intermediates and 25, 26, and 27-hydroxylation of cholesterol (Dilworth, F.J. et al. (1995) J. Biol. Chem. 270:16766-16774; Miller, W.L. and Portale, A.A. supra; and references within).

10

20

25

30

The active form of vitamin D (1α,25(OH)₂D) is involved in calcium and phosphate homeostasis and promotes the differentiation of myeloid and skin cells. Vitamin D deficiency resulting from deficiencies in the enzymes involved in vitamin D metabolism (e.g., 1α-hydroxylase) causes hypocalcemia, hypophosphatemia, and vitamin D-dependent (sensitive) rickets, a disease characterized by loss of bone density and distinctive clinical features, including bandy or bow leggedness accompanied by a waddling gait. Deficiencies in vitamin D 25-hydroxylase cause cerebrotendinous xanthomatosis, a lipid-storage disease characterized by the deposition of cholesterol and cholestanol in the Achilles' tendons, brain, lungs, and many other tissues. The disease presents with progressive neurologic dysfunction, including postpubescent cerebellar ataxia, atherosclerosis, and cataracts. Vitamin D 25-hydroxylase deficiency does not result in rickets, suggesting the existence of alternative pathways for the synthesis of 25(OH)D (Griffin, J.E. and Zerwekh, J.E. (1983) J. Clin. Invest. 72:1190-1199; Gamblin, G.T. et al. (1985) J. Clin. Invest. 75:954-960; and W.L. and Portale, A.A. supra).

Ferredoxin and ferredoxin reductase are electron transport accessory proteins which support at least one human cytochrome P450 species, cytochrome P450c27 encoded by the CYP27 gene (Dilworth, F.J. et al. (1996) Biochem. J. 320:267-71). A <u>Streptomyces griseus</u> cytochrome P450, CYP104D1, was heterologously expressed in <u>E. coli</u> and found to be reduced by the endogenous ferredoxin and ferredoxin reductase enzymes (Taylor, M. et al. (1999) Biochem. Biophys. Res. Commun. 263:838-42), suggesting that many cytochrome P450 species may be supported by the

ferredoxin/ferredoxin reductase pair. Ferredoxin reductase has also been found in a model drug metabolism system to reduce actinomycin D, an antitumor antibiotic, to a reactive free radical species (Flitter, W.D. and Mason, R.P. (1988) Arch. Biochem. Biophys. 267:632-639).

Flavin-containing monooxygenase (FMO)

0

5

10

15

25

30

Flavin-containing monooxygenases oxidize the nucleophilic nitrogen, sulfur, and phosphorus heteroatom of an exceptional range of substrates. Like cytochromes P450, FMOs are microsomal and use NADPH and O_2 ; there is also a great deal of substrate overlap with cytochromes P450. The tissue distribution of FMOs includes liver, kidney, and lung.

There are five different known isoforms of FMO in mammals (FMO1, FMO2, FMO3, FMO4, and FMO5), which are expressed in a tissue-specific manner. The isoforms differ in their substrate specificities and other properties such as inhibition by various compounds and stereospecificity of reaction. FMOs have a 13 amino acid signature sequence, the components of which span the N-terminal two-thirds of the sequences and include the FAD binding region and the FATGY motif which has been found in many N-hydroxylating enzymes (Stehr, M. et al. (1998) Trends Biochem. Sci. 23:56-57; PRINTS FMOXYGENASE Flavin-containing monooxygenase signature).

Specific reactions include oxidation of nucleophilic tertiary amines to N-oxides, secondary amines to hydroxylamines and nitrones, primary amines to hydroxylamines and oximes, and sulfur-containing compounds and phosphines to S- and P-oxides. Hydrazines, iodides, selenides, and boron-containing compounds are also substrates. Although FMOs appear similar to cytochromes P450 in their chemistry, they can generally be distinguished from cytochromes P450 in vitro based on, for example, the higher heat lability of FMOs and the nonionic detergent sensitivity of cytochromes P450; however, use of these properties in identification is complicated by further variation among FMO isoforms with respect to thermal stability and detergent sensitivity.

FMOs play important roles in the metabolism of several drugs and xenobiotics. FMO (FMO3 in liver) is predominantly responsible for metabolizing (S)-nicotine to (S)-nicotine N-1'-oxide, which is excreted in urine. FMO is also involved in S-oxygenation of cimetidine, an H₂-antagonist widely used for the treatment of gastric ulcers. Liver-expressed forms of FMO are not under the same regulatory control as cytochrome P450. In rats, for example, phenobarbital treatment leads to the induction of cytochrome P450, but the repression of FMO1.

Endogenous substrates of FMO include cysteamine, which is oxidized to the disulfide, cystamine, and trimethylamine (TMA), which is metabolized to trimethylamine N-oxide. TMA smells like rotting fish, and mutations in the FMO3 isoform lead to large amounts of the malodorous free amine being excreted in sweat, urine, and breath. These symptoms have led to the designation fish-odor syndrome (OMIM 602079 Trimethylaminuria).

Lysyl oxidase:

Lysyl oxidase (lysine 6-oxidase, LO) is a copper-dependent amine oxidase involved in the formation of connective tissue matrices by crosslinking collagen and elastin. LO is secreted as a Nglycosylated precuror protein of approximately 50 kDa Levels and cleaved to the mature form of the enzyme by a metalloprotease, although the precursor form is also active. The copper atom in LO is involved in the transport of electron to and from oxygen to facilitate the oxidative deamination of lysine residues in these extracellular matrix proteins. While the coordination of copper is essential to LO activity, insufficient dietary intake of copper does not influence the expression of the apoenzyme. However, the absence of the functional LO is linked to the skeletal and vascular tissue disorders that are associated with dietary copper deficiency. LO is also inhibited by a variety of semicarbazides, hydrazines, and amino nitrites, as well as heparin. Beta-aminopropionitrile is a commonly used inhibitor. LO activity is increased in response to ozone, cadmium, and elevated levels of hormones released in response to local tissue trauma, such as transforming growth factor-beta, platelet-derived growth factor, angiotensin II, and fibroblast growth factor. Abnormalities in LO activity has been linked to Menkes syndrome and occipital horn syndrome. Cytosolic forms of the enzyme hae been implicated in abnormal cell proliferation (reviewed in Rucker, R.B. et al. (1998) Am. J. Clin. Nutr. 67:996S-1002S and Smith-Mungo, L.I. and Kagan, H.M. (1998) Matrix Biol. 16:387-398). Dihydrofolate reductases

Dihydrofolate reductases (DHFR) are ubiquitous enzymes that catalyze the NADPH-dependent reduction of dihydrofolate to tetrahydrofolate, an essential step in the de novo synthesis of glycine and purines as well as the conversion of deoxyuridine monophosphate (dUMP) to deoxythymidine monophosphate (dTMP). The basic reaction is as follows:

7,8-dihydrofolate + NADPH \rightarrow 5,6,7,8-tetrahydrofolate + NADP+

25

The enzymes can be inhibited by a number of dihydrofolate analogs, including trimethroprim and methotrexate. Since an abundance of TMP is required for DNA synthesis, rapidly dividing cells require the activity of DHFR. The replication of DNA viruses (i.e., herpesvirus) also requires high levels of DHFR activity. As a result, drugs that target DHFR have been used for cancer chemotherapy and to inhibit DNA virus replication. (For similar reasons, thymidylate synthetases are also target enzymes.) Drugs that inhibit DHFR are preferentially cytotoxic for rapidly dividing cells (or DNA virus-infected cells) but have no specificity, resulting in the indiscriminate destruction of dividing cells. Furthermore, cancer cells may become resistant to drugs such as methotrexate as a result of acquired transport defects or the duplication of one or more DHFR genes (Stryer, L. (1988) Biochemistry. W.H Freeman

and Co., Inc. New York. pp. 511-5619).

Aldo/keto reductases

(1

10

15

20

25

30

Aldo/keto reductases are monomeric NADPH-dependent oxidoreductases with broad substrate specificities (Bohren, K.M. et al. (1989) J. Biol. Chem. 264:9547-9551). These enzymes catalyze the reduction of carbonyl-containing compounds, including carbonyl-containing sugars and aromatic compounds, to the corresponding alcohols. Therefore, a variety of carbonyl-containing drugs and xenobiotics are likely metabolized by enzymes of this class.

One known reaction catalyzed by a family member, aldose reductase, is the reduction of glucose to sorbitol, which is then further metabolized to fructose by sorbitol dehydrogenase. Under normal conditions, the reduction of glucose to sorbitol is a minor pathway. In hyperglycemic states, however, the accumulation of sorbitol is implicated in the development of diabetic complications (OMIM *103880 Aldo-keto reductase family 1, member B1). Members of this enzyme family are also highly expressed in some liver cancers (Cao, D. et al. (1998) J. Biol. Chem. 273:11429-11435). Alcohol dehydrogenases

Alcohol dehydrogenases (ADHs) oxidize simple alcohols to the corresponding aldehydes. ADH is a cytosolic enzyme, prefers the cofactor NAD⁺, and also binds zinc ion. Liver contains the highest levels of ADH, with lower levels in kidney, lung, and the gastric mucosa.

Known ADH isoforms are dimeric proteins composed of 40 kDa subunits. There are five known gene loci which encode these subunits (a, b, g, p, c), and some of the loci have characterized allelic variants (b₁, b₂, b₃, g₁, g₂). The subunits can form homodimers and heterodimers; the subunit composition determines the specific properties of the active enzyme. The holoenzymes have therefore been categorized as Class I (subunit compositions aa, ab, ag, bg, gg), Class II (pp), and Class III (cc). Class I ADH isozymes oxidize ethanol and other small aliphatic alcohols, and are inhibited by pyrazole. Class II isozymes prefer longer chain aliphatic and aromatic alcohols, are unable to oxidize methanol, and are not inhibited by pyrazole. Class III isozymes prefer even longer chain aliphatic alcohols (five carbons and longer) and aromatic alcohols, and are not inhibited by pyrazole.

The short-chain alcohol dehydrogenases include a number of related enzymes with a variety of substrate specificities. Included in this group are the mammalian enzymes D-beta-hydroxybutyrate dehydrogenase, (R)-3-hydroxybutyrate dehydrogenase, 15-hydroxyprostaglandin dehydrogenase, NADPH-dependent carbonyl reductase, corticosteroid 11-beta-dehydrogenase, and estradiol 17-beta-dehydrogenase, as well as the bacterial enzymes acetoacetyl-CoA reductase, glucose 1-dehydrogenase, 3-beta-hydroxysteroid dehydrogenase, 20-beta-hydroxysteroid dehydrogenase, ribitol dehydrogenase, 3-oxoacyl reductase, 2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase, sorbitol-6-phosphate 2-dehydrogenase, 7-alpha-hydroxysteroid dehydrogenase, cis-1,2-dihydroxy-3,4-cyclohexadiene-1-

carboxylate dehydrogenase, *cis*-toluene dihydrodiol dehydrogenase, *cis*-benzene glycol dehydrogenase, biphenyl-2,3-dihydro-2,3-diol dehydrogenase, N-acylmannosamine 1-dehydrogenase, and 2-deoxy-D-gluconate 3-dehydrogenase (Krozowski, Z. (1994) J. Steroid Biochem. Mol. Biol. 51:125-130; Krozowski, Z. (1992) Mol. Cell Endocrinol. 84:C25-31; and Marks, A.R. et al. (1992) J. Biol. Chem. 267:15459-15463).

UDP glucuronyltransferase

10

15

20

25

30

Members of the UDP glucuronyltransferase family (UGTs) catalyze the transfer of a glucuronic acid group from the cofactor uridine diphosphate-glucuronic acid (UDP-glucuronic acid) to a substrate. The transfer is generally to a nucleophilic heteroatom (O, N, or S). Substrates include xenobiotics which have been functionalized by Phase I reactions, as well as endogenous compounds such as bilirubin, steroid hormones, and thyroid hormones. Products of glucuronidation are excreted in urine if the molecular weight of the substrate is less than about 250 g/mol, whereas larger glucuronidated substrates are excreted in bile.

UGTs are located in the microsomes of liver, kidney, intestine, skin, brain, spleen, and nasal mucosa, where they are on the same side of the endoplasmic reticulum membrane as cytochrome P450 enzymes and flavin-containing monooxygenases, and therefore are ideally located to access products of Phase I drug metabolism. UGTs have a C-terminal membrane-spanning domain which anchors them in the endoplasmic reticulum membrane, and a conserved signature domain of about 50 amino acid residues in their C terminal section (Prosite PDOC00359 UDP-glycosyltransferase signature).

UGTs involved in drug metabolism are encoded by two gene families, UGT1 and UGT2. Members of the UGT1 family result from alternative splicing of a single gene locus, which has a variable substrate binding domain and constant region involved in cofactor binding and membrane insertion. Members of the UGT2 family are encoded by separate gene loci, and are divided into two families, UGT2A and UGT2B. The 2A subfamily is expressed in olfactory epithelium, and the 2B subfamily is expressed in liver microsomes. Mutations in UGT genes are associated with hyperbilirubinemia (OMIM #143500 Hyperbilirubinemia I); Crigler-Najjar syndrome, characterized by intense hyperbilirubinemia from birth (OMIM #218800 Crigler-Najjar syndrome); and a milder form of hyperbilirubinemia termed Gilbert's disease (OMIM *191740 UGT1).

Sulfotransferase

Sulfate conjugation occurs on many of the same substrates which undergo O-glucuronidation to produce a highly water-soluble sulfuric acid ester. Sulfotransferases (ST) catalyze this reaction by transferring SO₃⁻ from the cofactor 3'-phosphoadenosine-5'-phosphosulfate (PAPS) to the substrate. ST substrates are predominantly phenols and aliphatic alcohols, but also include aromatic amines and aliphatic amines, which are conjugated to produce the corresponding sulfamates. The products of these

reactions are excreted mainly in urine.

STs are found in a wide range of tissues, including liver, kidney, intestinal tract, lung, platelets, and brain. The enzymes are generally cytosolic, and multiple forms are often co-expressed. For example, there are more than a dozen forms of ST in rat liver cytosol. These biochemically characterized STs fall into five classes based on their substrate preference: arylsulfotransferase, alcohol sulfotransferase, estrogen sulfotransferase, tyrosine ester sulfotransferase, and bile salt sulfotransferase.

ST enzyme activity varies greatly with sex and age in rats. The combined effects of developmental cues and sex-related hormones are thought to lead to these differences in ST expression profiles, as well as the profiles of other DMEs such as cytochromes P450. Notably, the high expression of STs in cats partially compensates for their low level of UDP glucuronyltransferase activity.

Several forms of ST have been purified from human liver cytosol and cloned. There are two

phenol sulfotransferases with different thermal stabilities and substrate preferences. The thermostable enzyme catalyzes the sulfation of phenols such as para-nitrophenol, minoxidil, and acetaminophen; the thermolabile enzyme prefers monoamine substrates such as dopamine, epinephrine, and levadopa. Other cloned STs include an estrogen sulfotransferase and an N-acetylglucosamine-6-O-sulfotransferase. This last enzyme is illustrative of the other major role of STs in cellular biochemistry, the modification of carbohydrate structures that may be important in cellular differentiation and maturation of proteoglycans. Indeed, an inherited defect in a sulfotransferase has been implicated in macular corneal dystrophy, a disorder characterized by a failure to synthesize mature keratan sulfate

proteoglycans (Nakazawa, K. et al. (1984) J. Biol. Chem. 259:13751-13757; OMIM *217800 Macular dystrophy, corneal).

Galactosyltransferases

10

20

25

Galactosyltransferases are a subset of glycosyltransferases that transfer galactose (Gal) to the terminal N-acetylglucosamine (GlcNAc) oligosaccharide chains that are part of glycoproteins or glycolipids that are free in solution (Kolbinger, F. et al. (1998) J. Biol. Chem. 273:433-440; Amado, M. et al. (1999) Biochim. Biophys. Acta 1473:35-53). Galactosyltransferases have been detected on the cell surface and as soluble extracellular proteins, in addition to being present in the Golgi. β 1,3-galactosyltransferases form Type I carbohydrate chains with Gal (β 1-3)GlcNAc linkages. Known human and mouse β 1,3-galactosyltransferases appear to have a short cytosolic domain, a single transmembrane domain, and a catalytic domain with eight conserved regions. (Kolbinger, F., supra and Hennet, T. et al. (1998) J. Biol. Chem. 273:58-65). In mouse UDP-galactose: β -N-acetylglucosamine β 1,3-galactosyltransferase-I region 1 is located at amino acid residues 78-83, region 2 is located at amino acid residues 93-102, region 3 is located at amino acid residues 116-119, region 4 is located at amino acid residues 147-158, region 5 is located at amino acid residues 172-183, region 6 is located at

amino acid residues 203-206, region 7 is located at amino acid residues 236-246, and region 8 is located at amino acid residues 264-275. A variant of a sequence found within mouse UDP-galactose:β-N-acetylglucosamine β1,3-galactosyltransferase-I region 8 is also found in bacterial galactosyltransferases, suggesting that this sequence defines a galactosyltransferase sequence motif (Hennet, T. supra). Recent work suggests that brainiac protein is a β1,3-galactosyltransferase (Yuan, Y. et al. (1997) Cell 88:9-11; and Hennet, T. supra).

UDP-Gal:GlcNAc-1,4-galactosyltransferase (-1,4-GalT) (Sato, T. et al., (1997) EMBO J. 16:1850-1857) catalyzes the formation of Type II carbohydrate chains with Gal (β 1-4)GlcNAc linkages. As is the case with the β 1,3-galactosyltransferase, a soluble form of the enzyme is formed by cleavage of the membrane-bound form. Amino acids conserved among β 1,4-galactosyltransferases include two cysteines linked through a disulfide-bonded and a putative UDP-galactose-binding site in the catalytic domain (Yadav, S. and Brew, K. (1990) J. Biol. Chem. 265:14163-14169; Yadav, S.P. and Brew, K. (1991) J. Biol. Chem. 266:698-703; and Shaper, N.L. et al. (1997) J. Biol. Chem. 272:31389-31399). β 1,4-galactosyltransferases have several specialized roles in addition to synthesizing carbohydrate chains on glycoproteins or glycolipids. In mammals a β 1,4-galactosyltransferase, as part of a heterodimer with α-lactalbumin, functions in lactating mammary gland lactose production. A β 1,4-galactosyltransferase on the surface of sperm functions as a receptor that specifically recognizes the egg. Cell surface β 1,4-galactosyltransferases also function in cell adhesion, cell/basal lamina interaction, and normal and metastatic cell migration. (Shur, B. (1993) Curr. Opin. Cell Biol. 5:854-863; and Shaper, J. (1995) Adv. Exp. Med. Biol. 376:95-104). Glutathione S-transferase

The basic reaction catalyzed by glutathione S-transferases (GST) is the conjugation of an electrophile with reduced glutathione (GSH). GSTs are homodimeric or heterodimeric proteins localized mainly in the cytosol, but some level of activity is present in microsomes as well. The major isozymes share common structural and catalytic properties; in humans they have been classified into four major classes, Alpha, Mu, Pi, and Theta. The two largest classes, Alpha and Mu, are identified by their respective protein isoelectric points; pI ~ 7.5-9.0 (Alpha), and pI ~ 6.6 (Mu). Each GST possesses a common binding site for GSH and a variable hydrophobic binding site. The hydrophobic binding site in each isozyme is specific for particular electrophilic substrates. Specific amino acid residues within GSTs have been identified as important for these binding sites and for catalytic activity. Residues Q67, T68, D101, E104, and R131 are important for the binding of GSH (Lee, H.-C. et al. (1995) J. Biol. Chem. 270:99-109). Residues R13, R20, and R69 are important for the catalytic activity of GST (Stenberg, G. et al. (1991) Biochem. J. 274:549-555).

In most cases, GSTs perform the beneficial function of deactivation and detoxification of

potentially mutagenic and carcinogenic chemicals. However, in some cases their action is detrimental and results in activation of chemicals with consequent mutagenic and carcinogenic effects. Some forms of rat and human GSTs are reliable preneoplastic markers that aid in the detection of carcinogenesis. Expression of human GSTs in bacterial strains, such as Salmonella typhimurium used in the well-known Ames test for mutagenicity, has helped to establish the role of these enzymes in mutagenesis. Dihalomethanes, which produce liver tumors in mice, are believed to be activated by GST. This view is supported by the finding that dihalomethanes are more mutagenic in bacterial cells expressing human GST than in untransfected cells (Thier, R. et al. (1993) Proc. Natl. Acad. Sci. USA 90:8567-8580). The mutagenicity of ethylene dibromide and ethylene dichloride is increased in bacterial cells expressing the human Alpha GST, A1-1, while the mutagenicity of aflatoxin B1 is substantially reduced by enhancing the expression of GST (Simula, T.P. et al. (1993) Carcinogenesis 14:1371-1376). Thus, control of GST activity may be useful in the control of mutagenesis and carcinogenesis.

GST has been implicated in the acquired resistance of many cancers to drug treatment, the phenomenon known as multi-drug resistance (MDR). MDR occurs when a cancer patient is treated with a cytotoxic drug such as cyclophosphamide and subsequently becomes resistant to this drug and to a variety of other cytotoxic agents as well. Increased GST levels are associated with some of these drug resistant cancers, and it is believed that this increase occurs in response to the drug agent which is then deactivated by the GST catalyzed GSH conjugation reaction. The increased GST levels then protect the cancer cells from other cytotoxic agents which bind to GST. Increased levels of A1-1 in tumors has been linked to drug resistance induced by cyclophosphamide treatment (Dirven H.A. et al. (1994) Cancer Res. 54: 6215-6220). Thus control of GST activity in cancerous tissues may be useful in treating MDR in cancer patients.

Gamma-glutamyl transpeptidase

Gamma-glutamyl transpeptidases are ubiquitously expressed enzymes that initiate extracellular glutathione (GSH) breakdown by cleaving gamma-glutamyl amide bonds. The breakdown of GSH provides cells with a regional cysteine pool for biosynthetic pathways. Gamma-glutamyl transpeptidases also contribute to cellular antioxidant defenses and expression is induced by oxidative steress. The cell surface-localized glycoproteins are expressed at high levels in cancer cells. Studies have suggested that the high level of gamma-glutamyl transpeptidases activity present on the surface of cancer cells could be exploited to activate precursor drugs, resulting in high local concentrations of anticancer therapeutic agents (Hanigan, M.H. (1998) Chem. Biol. Interact. 111-112:333-42; Taniguchi, N. and Ikeda, Y. (1998) Adv. Enzymol. Relat. Areas Mol. Biol. 72:239-78; Chikhi, N. et al. (1999) Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 122:367-380).

<u>Acvltransferase</u>

N-acyltransferase enzymes catalyze the transfer of an amino acid conjugate to an activated carboxylic group. Endogenous compounds and xenobiotics are activated by acyl-CoA synthetases in the cytosol, microsomes, and mitochondria. The acyl-CoA intermediates are then conjugated with an amino acid (typically glycine, glutamine, or taurine, but also ornithine, arginine, histidine, serine, aspartic acid, and several dipeptides) by N-acyltransferases in the cytosol or mitochondria to form a metabolite with an amide bond. This reaction is complementary to O-glucuronidation, but amino acid conjugation does not produce the reactive and toxic metabolites which often result from glucuronidation.

One well-characterized enzyme of this class is the bile acid-CoA:amino acid N-acyltransferase (BAT) responsible for generating the bile acid conjugates which serve as detergents in the gastrointestinal tract (Falany, C.N. et al. (1994) J. Biol. Chem. 269:19375-19379; Johnson, M.R. et al. (1991) J. Biol. Chem. 266:10227-10233). BAT is also useful as a predictive indicator for prognosis of hepatocellular carcinoma patients after partial hepatectomy (Furutani, M. et al. (1996) Hepatology 24:1441-1445).

15 Acetyltransferases

10

25

30

Acetyltransferases have been extensively studied for their role in histone acetylation. Histone acetylation results in the relaxing of the chromatin structure in eukaryotic cells, allowing transcription factors to gain access to promoter elements of the DNA templates in the affected region of the genome (or the genome in general). In contrast, histone deacetylation results in a reduction in transcription by closing the chromatin structure and limiting access of transcription factors. To this end, a common means of stimulating cell transcription is the use of chemical agents that inhibit the deacetylation of histones (e.g., sodium butyrate), resulting in a global (albeit artifactual) increase in gene expression. The modulation of gene expression by acetylation also results from the acetylation of other proteins, including but not limited to, p53, GATA-1, MyoD, ACTR, TFIIE, TFIIF and the high mobility group proteins (HMG). In the case of p53, acetylation results in increased DNA binding, leading to the stimulation of transcription of genes regulated by p53. The prototypic histone acetylase (HAT) is Gcn5 from Saccharomyces cerevisiae. Gcn5 is a member of a family of acetylases that includes Tetrahymena p55, human Gcn5, and human p300/CBP. Histone acetylation is reviewed in (Cheung, W.L. et al. (2000) Curr. Opin. Cell Biol. 12:326-333 and Berger, S.L (1999) Curr. Opin. Cell Biol. 11:336-341). Some acetyltransferase enzymes posses the alpha/beta hydrolase fold (Center of Applied Molecular Engineering Inst. of Chemistry and Biochemistry - University of Salzburg, http://predict.sanger.ac.uk/irbm-course97/Docs/ms/) common to several other major classes of enzymes, including but not limited to, acetylcholinesterases and carboxylesterases (Structural Classification of Proteins, http://scop.mrc-lmb.cam.ac.uk/scop/index.html).

N-acetyltransferase

10

15

20

30

Aromatic amines and hydrazine-containing compounds are subject to N-acetylation by the N-acetylatransferase enzymes of liver and other tissues. Some xenobiotics can be O-acetylated to some extent by the same enzymes. N-acetyltransferases are cytosolic enzymes which utilize the cofactor acetyl-coenzyme A (acetyl-CoA) to transfer the acetyl group in a two step process. In the first step, the acetyl group is transferred from acetyl-CoA to an active site cysteine residue; in the second step, the acetyl group is transferred to the substrate amino group and the enzyme is regenerated.

In contrast to most other DME classes, there are a limited number of known N-acetyltransferases. In humans, there are two highly similar enzymes, NAT1 and NAT2; mice appear to have a third form of the enzyme, NAT3. The human forms of N-acetyltransferase have independent regulation (NAT1 is widely-expressed, whereas NAT2 is in liver and gut only) and overlapping substrate preferences. Both enzymes appear to accept most substrates to some extent, but NAT1 does prefer some substrates (para-aminobenzoic acid, para-aminosalicylic acid, sulfamethoxazole, and sulfamilamide), while NAT2 prefers others (isoniazid, hydralazine, procainamide, dapsone, aminoglutethimide, and sulfamethazine).

Clinical observations of patients taking the antituberculosis drug isoniazid in the 1950s led to the description of fast and slow acetylators of the compound. These phenotypes were shown subsequently to be due to mutations in the NAT2 gene which affected enzyme activity or stability. The slow isoniazid acetylator phenotype is very prevalent in Middle Eastern populations (approx. 70%), and is less prevalent in Caucasian (approx. 50%) and Asian (<25%) populations. More recently, functional polymorphism in NAT1 has been detected, with approximately 8% of the population tested showing a slow acetylator phenotype (Butcher, N. J. et al. (1998) Pharmacogenetics 8:67-72). Since NAT1 can activate some known aromatic amine carcinogens, polymorphism in the widely-expressed NAT1 enzyme may be important in determining cancer risk (OMIM *108345 N-acetyltransferase 1).

25 Aminotransferases

Aminotransferases comprise a family of pyridoxal 5'-phosphate (PLP) -dependent enzymes that catalyze transformations of amino acids. Aspartate aminotransferase (AspAT) is the most extensively studied PLP-containing enzyme. It catalyzes the reversible transamination of dicarboxylic L-amino acids, aspartate and glutamate, and the corresponding 2-oxo acids, oxalacetate and 2-oxoglutarate. Other members of the family included pyruvate aminotransferase, branched-chain amino acid aminotransferase, tyrosine aminotransferase, aromatic aminotransferase, alanine:glyoxylate aminotransferase (AGT), and kynurenine aminotransferase (Vacca, R.A. et al. (1997) J. Biol. Chem. 272:21932-21937).

Primary hyperoxaluria type-1 is an autosomal recessive disorder resulting in a deficiency in the

liver-specific peroxisomal enzyme, alanine:glyoxylate aminotransferase-1. The phenotype of the disorder is a deficiency in glyoxylate metabolism. In the absence of AGT, glyoxylate is oxidized to oxalate rather than being transaminated to glycine. The result is the deposition of insoluble calcium oxalate in the kidneys and urinary tract, ultimately causing renal failure (Lumb, M.J. et al. (1999) J. Biol. Chem. 274:20587-20596).

Kynurenine aminotransferase catalyzes the irreversible transamination of the L-tryptophan metabolite L-kynurenine to form kynurenic acid. The enzyme may also catalyzes the reversible transamination reaction between L-2-aminoadipate and 2-oxoglutarate to produce 2-oxoadipate and L-glutamate. Kynurenic acid is a putative modulator of glutamatergic neurotransmission, thus a deficiency in kynurenine aminotransferase may be associated with pleotrophic effects (Buchli, R. et al. (1995) J. Biol. Chem. 270:29330-29335).

Catechol-O-methyltransferase

Catechol-*O*-methyltransferase (COMT) catalyzes the transfer of the methyl group of *S*-adenosyl-L-methionine (AdoMet; SAM) donor to one of the hydroxyl groups of the catechol substrate (e.g., L-dopa, dopamine, or DBA). Methylation of the 3'-hydroxyl group is favored over methylation of the 4'-hydroxyl group and the membrane bound isoform of COMT is more regiospecific than the soluble form. Translation of the soluble form of the enzyme results from utilization of an internal start codon in a full-length mRNA (1.5 kb) or from the translation of a shorter mRNA (1.3 kb), transcribed from an internal promoter. The proposed S_N2-like methylation reaction requires Mg⁺⁺ and is inhibited by Ca⁺⁺. The binding of the donor and substrate to COMT occurs sequentially. AdoMet first binds COMT in a Mg⁺⁺-independent manner, followed by the binding of Mg⁺⁺ and the binding of the catechol substrate.

The amount of COMT in tissues is relatively high compared to the amount of activity normally required, thus inhibition is problematic. Nonetheless, inhibitors have been developed for in vitro use (e.g., gallates, tropolone, U-0521, and 3',4'-dihydroxy-2-methyl-propiophetropolone) and for clinical use (e.g., nitrocatechol-based compounds and tolcapone). Administration of these inhibitors results in the increased half-life of L-dopa and the consequent formation of dopamine. Inhibition of COMT is also likely to increase the half-life of various other catechol-structure compounds, including but not limited to epinephrine/norepinephrine, isoprenaline, rimiterol, dobutamine, fenoldopam, apomorphine, and α -methyldopa. A deficiency in norepinephrine has been linked to clinical depression, hence the use of COMT inhibitors could be usefull in the treatment of depression. COMT inhibitors are generally well tolerated with minimal side effects and are ultimately metabolized in the liver with only minor accumulation of metabolites in the body (Männistö, P.T. and Kaakkola, S. (1999) Pharmacol. Rev. 51:593-628).

Copper-zinc superoxide dismutases

0

15

20

30

Copper-zinc superoxide dismutases are compact homodimeric metalloenzymes involved in cellular defenses against oxidative damage. The enzymes contain one atom of zinc and one atom of copper per subunit and catalyze the dismutation of superoxide anions into O_2 and H_2O_2 . The rate of dismutation is diffusion-limited and consequently enhanced by the presence of favorable electrostatic interactions between the substrate and enzyme active site. Examples of this class of enzyme have been identified in the cytoplasm of all the eukaryotic cells as well as in the periplasm of several bacterial species. Copper-zinc superoxide dismutases are robust enzymes that are highly resistant to proteolytic digestion and denaturing by urea and SDS. In addition to the compact structure of the enzymes, the presence of the metal ions and intrasubunit disulfide bonds is believed to be responsible for enzyme stability. The enzymes undergo reversible denaturation at temperatures as high as 70° C (Battistoni, A. et al. (1998) J. Biol. Chem. 273:5655-5661).

Overexpression of superoxide dismutase has been implicated in enhancing freezing tolerance of transgenic Alfalfa as well as providing resistance to environmental toxins such as the diphenyl ether herbicide, acifluorfen (McKersie, B.D. et al. (1993) Plant Physiol. 103:1155-1163). In addition, yeast cells become more resistant to freeze-thaw damage following exposure to hydrogen peroxide which causes the yeast cells to adapt to further peroxide stress by upregulating expression of superoxide dismutases. In this study, mutations to yeast superoxide dismutase genes had a more detrimental effect on freeze-thaw resistance than mutations which affected the regulation of glutathione metabolism, long suspected of being important in determining an organisms survival through the process of cryopreservation (Jong-In Park, J.-I. et al. (1998) J. Biol. Chem. 273:22921-22928).

Expression of superoxide dismutase is also associated with <u>Mycobacterium tuberculosis</u>, the organism that causes tuberculosis. Superoxide dismutase is one of the ten major proteins secreted by <u>M. tuberculosis</u> and its expression is upregulated approximately 5-fold in response to oxidative stress. <u>M. tuberculosis</u> expresses almost two orders of magnitude more superoxide dismutase than the nonpathogenic mycobacterium <u>M. smegmatis</u>, and secretes a much higher proportion of the expressed enzyme. The result is the secretion of ~350-fold more enzyme by <u>M. tuberculosis</u> than <u>M. smegmatis</u>, providing substantial resistance to oxidative stress (Harth, G. and Horwitz, M.A. (1999) J. Biol. Chem. 274:4281-4292).

The reduced expression of copper-zinc superoxide dismutases, as well as other enzymes with anti-oxidant capabilities, has been implicated in the early stages of cancer. The expression of copper-zinc superoxide dismutases has been shown to be lower in prostatic intraepithelial neoplasia and prostate carcinomas, compared to normal prostate tissue (Bostwick, D.G. (2000) Cancer 89:123-134). Phosphodiesterases

Phosphodiesterases make up a class of enzymes which catalyze the hydrolysis of one of the two ester bonds in a phosphodiester compound. Phosphodiesterases are therefore crucial to a variety of cellular processes. Phosphodiesterases include DNA and RNA endonucleases and exonucleases, which are essential for cell growth and replication, and topoisomerases, which break and rejoin nucleic acid strands during topological rearrangement of DNA. A Tyr-DNA phosphodiesterase functions in DNA repair by hydrolyzing dead-end covalent intermediates formed between topoisomerase I and DNA (Pouliot, J.J. et al. (1999) Science 286:552-555; Yang, S.-W. (1996) Proc. Natl. Acad. Sci. USA 93:11534-11539).

Acid sphingomyelinase is a phosphodiesterase which hydrolyzes the membrane phospholipid sphingomyelin to produce ceramide and phosphorylcholine. Phosphorylcholine is used in the synthesis of phosphatidylcholine, which is involved in numerous intracellular signaling pathways, while ceramide is an essential precursor for the generation of gangliosides, membrane lipids found in high concentration in neural tissue. Defective acid sphingomyelinase leads to a build-up of sphingomyelin molecules in lysosomes, resulting in Niemann-Pick disease (Schuchman, E.H. and S.R. Miranda (1997) Genet. Test. 1:13-19).

10

15

25

30

Glycerophosphoryl diester phosphodiesterase (also known as glycerophosphodiester phosphodiesterase) is a phosphodiesterase which hydrolyzes deacetylated phospholipid glycerophosphodiesters to produce sn-glycerol-3-phosphate and an alcohol. Glycerophosphocholine, glycerophosphoethanolamine, glycerophosphoglycerol, and glycerophosphoinositol are examples of substrates for glycerophosphoryl diester phosphodiesterases. A glycerophosphoryl diester phosphodiesterase from <u>E. coli</u> has broad specificity for glycerophosphodiester substrates (Larson, T.J. et al. (1983) J. Biol. Chem. 248:5428-5432).

Cyclic nucleotide phosphodiesterases (PDEs) are crucial enzymes in the regulation of the cyclic nucleotides cAMP and cGMP. cAMP and cGMP function as intracellular second messengers to transduce a variety of extracellular signals including hormones, light, and neurotransmitters. PDEs degrade cyclic nucleotides to their corresponding monophosphates, thereby regulating the intracellular concentrations of cyclic nucleotides and their effects on signal transduction. Due to their roles as regulators of signal transduction, PDEs have been extensively studied as chemotherapeutic targets (Perry, M.J. and G.A. Higgs (1998) Curr. Opin. Chem. Biol. 2:472-481; Torphy, J.T. (1998) Am. J. Resp. Crit. Care Med. 157:351-370).

Families of mammalian PDEs have been classified based on their substrate specificity and affinity, sensitivity to cofactors, and sensitivity to inhibitory agents (Beavo, J.A. (1995) Physiol. Rev. 75:725-748; Conti, M. et al. (1995) Endocrine Rev. 16:370-389). Several of these families contain distinct genes, many of which are expressed in different tissues as splice variants. Within PDE

families, there are multiple isozymes and multiple splice variants of these isozymes (Conti, M. and S.-L.C. Jin (1999) Prog. Nucleic Acid Res. Mol. Biol. 63:1-38). The existence of multiple PDE families, isozymes, and splice variants is an indication of the variety and complexity of the regulatory pathways involving cyclic nucleotides (Houslay, M.D. and G. Milligan (1997) Trends Biochem. Sci. 22:217-224).

5

10

15

20

Type 1 PDEs (PDE1s) are Ca²⁺/calmodulin-dependent and appear to be encoded by at least three different genes, each having at least two different splice variants (Kakkar, R. et al. (1999) Cell Mol. Life Sci. 55:1164-1186). PDE1s have been found in the lung, heart, and brain. Some PDE1 isozymes are regulated in vitro by phosphorylation/dephosphorylation. Phosphorylation of these PDE1 isozymes decreases the affinity of the enzyme for calmodulin, decreases PDE activity, and increases steady state levels of cAMP (Kakkar, supra). PDE1s may provide useful therapeutic targets for disorders of the central nervous system, and the cardiovascular and immune systems due to the involvement of PDE1s in both cyclic nucleotide and calcium signaling (Perry, M.J. and G.A. Higgs (1998) Curr. Opin. Chem. Biol. 2:472-481).

PDE2s are cGMP-stimulated PDEs that have been found in the cerebellum, neocortex, heart, kidney, lung, pulmonary artery, and skeletal muscle (Sadhu, K. et al. (1999) J. Histochem. Cytochem. 47:895-906). PDE2s are thought to mediate the effects of cAMP on catecholamine secretion, participate in the regulation of aldosterone (Beavo, supra), and play a role in olfactory signal transduction (Juilfs, D.M. et al. (1997) Proc. Natl. Acad. Sci. USA 94:3388-3395).

PDE3s have high affinity for both cGMP and cAMP, and so these cyclic nucleotides act as competitive substrates for PDE3s. PDE3s play roles in stimulating myocardial contractility, inhibiting platelet aggregation, relaxing vascular and airway smooth muscle, inhibiting proliferation of T-lymphocytes and cultured vascular smooth muscle cells, and regulating catecholamine-induced release of free fatty acids from adipose tissue. The PDE3 family of phosphodiesterases are sensitive to specific inhibitors such as cilostamide, enoximone, and lixazinone. Isozymes of PDE3 can be regulated by cAMP-dependent protein kinase, or by insulin-dependent kinases (Degerman, E. et al. (1997) J. Biol. Chem. 272:6823-6826).

PDE4s are specific for cAMP; are localized to airway smooth muscle, the vascular endothelium, and all inflammatory cells; and can be activated by cAMP-dependent phosphorylation. Since elevation of cAMP levels can lead to suppression of inflammatory cell activation and to relaxation of bronchial smooth muscle, PDE4s have been studied extensively as possible targets for novel anti-inflammatory agents, with special emphasis placed on the discovery of asthma treatments. PDE4 inhibitors are currently undergoing clinical trials as treatments for asthma, chronic obstructive pulmonary disease, and atopic eczema. All four known isozymes of PDE4 are susceptible to the

inhibitor rolipram, a compound which has been shown to improve behavioral memory in mice (Barad, M. et al. (1998) Proc. Natl. Acad. Sci. USA 95:15020-15025). PDE4 inhibitors have also been studied as possible therapeutic agents against acute lung injury, endotoxemia, rheumatoid arthritis, multiple sclerosis, and various neurological and gastrointestinal indications (Doherty, A.M. (1999) Curr. Opin. Chem. Biol. 3:466-473).

PDE5 is highly selective for cGMP as a substrate (Turko, I.V. et al. (1998) Biochemistry 37:4200-4205), and has two allosteric cGMP-specific binding sites (McAllister-Lucas, L.M. et al. (1995) J. Biol. Chem. 270:30671-30679). Binding of cGMP to these allosteric binding sites seems to be important for phosphorylation of PDE5 by cGMP-dependent protein kinase rather than for direct regulation of catalytic activity. High levels of PDE5 are found in vascular smooth muscle, platelets, lung, and kidney. The inhibitor zaprinast is effective against PDE5 and PDE1s. Modification of zaprinast to provide specificity against PDE5 has resulted in sildenafil (VIAGRA; Pfizer, Inc., New York NY), a treatment for male erectile dysfunction (Terrett, N. et al. (1996) Bioorg. Med. Chem. Lett. 6:1819-1824). Inhibitors of PDE5 are currently being studied as agents for cardiovascular therapy (Perry, M.J. and G.A. Higgs (1998) Curr. Opin. Chem. Biol. 2:472-481).

PDE6s, the photoreceptor cyclic nucleotide phosphodiesterases, are crucial components of the phototransduction cascade. In association with the G-protein transducin, PDE6s hydrolyze cGMP to regulate cGMP-gated cation channels in photoreceptor membranes. In addition to the cGMP-binding active site, PDE6s also have two high-affinity cGMP-binding sites which are thought to play a regulatory role in PDE6 function (Artemyev, N.O. et al. (1998) Methods 14:93-104). Defects in PDE6s have been associated with retinal disease. Retinal degeneration in the rd mouse (Yan, W. et al. (1998) Invest. Opthalmol. Vis. Sci. 39:2529-2536), autosomal recessive retinitis pigmentosa in humans (Danciger, M. et al. (1995) Genomics 30:1-7), and rod/cone dysplasia 1 in Irish Setter dogs (Suber, M.L. et al. (1993) Proc. Natl. Acad. Sci. USA 90:3968-3972) have been attributed to mutations in the PDE6B gene.

25

The PDE7 family of PDEs consists of only one known member having multiple splice variants (Bloom, T.J. and J.A. Beavo (1996) Proc. Natl. Acad. Sci. USA 93:14188-14192). PDE7s are cAMP specific, but little else is known about their physiological function. Although mRNAs encoding PDE7s are found in skeletal muscle, heart, brain, lung, kidney, and pancreas, expression of PDE7 proteins is restricted to specific tissue types (Han, P. et al. (1997) J. Biol. Chem. 272:16152-16157; Perry, M.J. and G.A. Higgs (1998) Curr. Opin. Chem. Biol. 2:472-481). PDE7s are very closely related to the PDE4 family; however, PDE7s are not inhibited by rolipram, a specific inhibitor of PDE4s (Beavo, supra).

PDE8s are cAMP specific, and are closely related to the PDE4 family. PDE8s are expressed

r

10

15

20

30

in thyroid gland, testis, eye, liver, skeletal muscle, heart, kidney, ovary, and brain. The cAMP-hydrolyzing activity of PDE8s is not inhibited by the PDE inhibitors rolipram, vinpocetine, milrinone, IBMX (3-isobutyl-1-methylxanthine), or zaprinast, but PDE8s are inhibited by dipyridamole (Fisher, D.A. et al. (1998) Biochem. Biophys. Res. Commun. 246:570-577; Hayashi, M. et al. (1998) Biochem. Biophys. Res. Commun. 250:751-756; Soderling, S.H. et al. (1998) Proc. Natl. Acad. Sci. USA 95:8991-8996).

PDE9s are cGMP specific and most closely resemble the PDE8 family of PDEs. PDE9s are expressed in kidney, liver, lung, brain, spleen, and small intestine. PDE9s are not inhibited by sildenafil (VIAGRA; Pfizer, Inc., New York NY), rolipram, vinpocetine, dipyridamole, or IBMX (3-isobutyl-1-methylxanthine), but they are sensitive to the PDE5 inhibitor zaprinast (Fisher, D.A. et al. (1998) J. Biol. Chem. 273:15559-15564; Soderling, S.H. et al. (1998) J. Biol. Chem. 273:15553-15558).

PDE10s are dual-substrate PDEs, hydrolyzing both cAMP and cGMP. PDE10s are expressed in brain, thyroid, and testis. (Soderling, S.H. et al. (1999) Proc. Natl. Acad. Sci. USA 96:7071-7076; Fujishige, K. et al. (1999) J. Biol. Chem. 274:18438-18445; Loughney, K. et al (1999) Gene 234:109-117).

PDEs are composed of a catalytic domain of about 270-300 amino acids, an N-terminal regulatory domain responsible for binding cofactors, and, in some cases, a hydrophilic C-terminal domain of unknown function (Conti, M. and S.-L.C. Jin (1999) Prog. Nucleic Acid Res. Mol. Biol. 63:1-38). A conserved, putative zinc-binding motif, HDXXHXGXXN, has been identified in the catalytic domain of all PDEs. N-terminal regulatory domains include non-catalytic cGMP-binding domains in PDE1s; and domains containing phosphorylation sites in PDE3s and PDE4s. In PDE5, the N-terminal cGMP-binding domain spans about 380 amino acid residues and comprises tandem repeats of the conserved sequence motif N(R/K)XnFX₃DE (McAllister-Lucas, L.M. et al. (1993) J. Biol. Chem. 268:22863-22873). The NKXnD motif has been shown by mutagenesis to be important for cGMP binding (Turko, I.V. et al. (1996) J. Biol. Chem. 271:22240-22244). PDE families display approximately 30% amino acid identity within the catalytic domain; however, isozymes within the same family typically display about 85-95% identity in this region (e.g. PDE4A vs PDE4B). Furthermore, within a family there is extensive similarity (>60%) outside the catalytic domain; while across families, there is little or no sequence similarity outside this domain.

Many of the constituent functions of immune and inflammatory responses are inhibited by agents that increase intracellular levels of cAMP (Verghese, M.W. et al. (1995) Mol. Pharmacol. 47:1164-1171). A variety of diseases have been attributed to increased PDE activity and associated with decreased levels of cyclic nucleotides. For example, a form of diabetes insipidus in mice has been

associated with increased PDE4 activity, an increase in low- K_m cAMP PDE activity has been reported in leukocytes of atopic patients, and PDE3 has been associated with cardiac disease.

Many inhibitors of PDEs have been identified and have undergone clinical evaluation (Perry, M.J. and G.A. Higgs (1998) Curr. Opin. Chem. Biol. 2:472-481; Torphy, T.J. (1998) Am. J. Respir. Crit. Care Med. 157:351-370). PDE3 inhibitors are being developed as antithrombotic agents, antihypertensive agents, and as cardiotonic agents useful in the treatment of congestive heart failure. Rolipram, a PDE4 inhibitor, has been used in the treatment of depression, and other inhibitors of PDE4 are undergoing evaluation as anti-inflammatory agents. Rolipram has also been shown to inhibit lipopolysaccharide (LPS) induced TNF-a which has been shown to enhance HIV-1 replication in vitro. Therefore, rolipram may inhibit HIV-1 replication (Angel, J.B. et al. (1995) AIDS 9:1137-1144). Additionally, rolipram, based on its ability to suppress the production of cytokines such as TNF-a and b and interferon g, has been shown to be effective in the treatment of encephalomyelitis. Rolipram may also be effective in treating tardive dyskinesia and was effective in treating multiple sclerosis in an experimental animal model (Sommer, N. et al. (1995) Nat. Med. 1:244-248; Sasaki, H. et al. (1995) Eur. J. Pharmacol. 282:71-76).

Theophylline is a nonspecific PDE inhibitor used in the treatment of bronchial asthma and other respiratory diseases. Theophylline is believed to act on airway smooth muscle function and in an anti-inflammatory or immunomodulatory capacity in the treatment of respiratory diseases (Banner, K.H. and C.P. Page (1995) Eur. Respir. J. 8:996-1000). Pentoxifylline is another nonspecific PDE inhibitor used in the treatment of intermittent claudication and diabetes-induced peripheral vascular disease. Pentoxifylline is also known to block TNF-a production and may inhibit HIV-1 replication (Angel et al., supra).

PDEs have been reported to affect cellular proliferation of a variety of cell types (Conti et al. (1995) Endocrine Rev. 16:370-389) and have been implicated in various cancers. Growth of prostate carcinoma cell lines DU145 and LNCaP was inhibited by delivery of cAMP derivatives and PDE inhibitors (Bang, Y.J. et al. (1994) Proc. Natl. Acad. Sci. USA 91:5330-5334). These cells also showed a permanent conversion in phenotype from epithelial to neuronal morphology. It has also been suggested that PDE inhibitors have the potential to regulate mesangial cell proliferation (Matousovic, K. et al. (1995) J. Clin. Invest. 96:401-410) and lymphocyte proliferation (Joulain, C. et al. (1995) J. Lipid Mediat. Cell Signal. 11:63-79). A cancer treatment has been described that involves intracellular delivery of PDEs to particular cellular compartments of tumors, resulting in cell death (Deonarain, M.P. and A.A. Epenetos (1994) Br. J. Cancer 70:786-794).

Phosphotriesterases (PTE, paraoxonases) are enzymes that hydrolyze toxic organophosphorus

compounds and have been isolated from a variety of tissues. The enzymes appear to be lacking in birds and insects and abundant in mammals, explaining the reduced tolerance of birds and insects to organophosphorus compound (Vilanova, E. and Sogorb, M.A. (1999) Crit. Rev. Toxicol. 29:21-57). Phosphotriesterases play a central role in the detoxification of insecticides by mammals.

Phosphotriesterase activity varies among individuals and is lower in infants than adults. Knockout mice are markedly more sensitive to the organophosphate-based toxins diazoxon and chlorpyrifos oxon (Furlong, C.E., et al. (2000) Neurotoxicology 21:91-100). PTEs have attracted interest as enzymes capable of the detoxification of organophosphate-containing chemical waste and warfare reagents (e.g., parathion), in addition to pesticides and insecticides. Some studies have also implicated phosphotriesterase in atherosclerosis and diseases involving lipoprotein metabolism.

Thioesterases

15

20

30

Two soluble thioesterases involved in fatty acid biosynthesis have been isolated from mammalian tissues, one which is active only toward long-chain fatty-acyl thioesters and one which is active toward thioesters with a wide range of fatty-acyl chain-lengths. These thioesterases catalyze the chain-terminating step in the *de novo* biosynthesis of fatty acids. Chain termination involves the hydrolysis of the thioester bond which links the fatty acyl chain to the 4'-phosphopantetheine prosthetic group of the acyl carrier protein (ACP) subunit of the fatty acid synthase (Smith, S. (1981a) Methods Enzymol. 71:181-188; Smith, S. (1981b) Methods Enzymol. 71:188-200).

<u>E. coli</u> contains two soluble thioesterases, thioesterase I which is active only toward long-chain acyl thioesters, and thioesterase II (TEII) which has a broad chain-length specificity (Naggert, J. et al. (1991) J. Biol. Chem. 266:11044-11050). <u>E. coli</u> TEII does not exhibit sequence similarity with either of the two types of mammalian thioesterases which function as chain-terminating enzymes in *de novo* fatty acid biosynthesis. Unlike the mammalian thioesterases, <u>E. coli</u> TEII lacks the characteristic serine active site gly-X-ser-X-gly sequence motif and is not inactivated by the serine modifying agent diisopropyl fluorophosphate. However, modification of histidine 58 by iodoacetamide and diethylpyrocarbonate abolished TEII activity. Overexpression of TEII did not alter fatty acid content in <u>E. coli</u>, which suggests that it does not function as a chain-terminating enzyme in fatty acid biosynthesis (Naggert et al., <u>supra</u>). For that reason, Naggert et al. (<u>supra</u>) proposed that the physiological substrates for <u>E. coli</u> TEII may be coenzyme A (CoA)-fatty acid esters instead of ACP-phosphopanthetheine-fatty acid esters.

<u>Carboxylesterases</u>

Mammalian carboxylesterases constitute a multigene family expressed in a variety of tissues and cell types. Isozymes have significant sequence homology and are classified primarily on the basis of amino acid sequence. Acetylcholinesterase, butyrylcholinesterase, and carboxylesterase are grouped

into the serine super family of esterases (B-esterases). Other carboxylesterases included thyroglobulin, thrombin, Factor IX, gliotactin, and plasminogen. Carboxylesterases catalyze the hydrolysis of esterand amide- groups from molecules and are involved in detoxification of drugs, environmental toxins, and carcinogens. Substrates for carboxylesterases include short- and long-chain acyl-glycerols, acylcarnitine, carbonates, dipivefrin hydrochloride, cocaine, salicylates, capsaicin, palmitoyl-coenzyme A, imidapril, haloperidol, pyrrolizidine alkaloids, steroids, p-nitrophenyl acetate, malathion, butanilicaine, and isocarboxazide. The enzymes often demonstrate low substrate specificity. Carboxylesterases are also important for the conversion of prodrugs to their respective free acids, which may be the active form of the drug (e.g., lovastatin, used to lower blood cholesterol) (reviewed in Satoh, T. and Hosokawa, M. (1998) Annu. Rev. Pharmacol. Toxicol.38:257-288).

Neuroligins are a class of molecules that (i) have N-terminal signal sequences, (ii) resemble cell-surface receptors, (iii) contain carboxylesterase domains, (iv) are highly expressed in the brain, and (v) bind to neurexins in a calcium-dependent manner. Despite the homology to carboxylesterases, neuroligins lack the active site serine residue, implying a role in substrate binding rather than catalysis (Ichtchenko, K. et al. (1996) J. Biol. Chem. 271:2676-2682).

Squalene epoxidase

Squalene epoxidase (squalene monooxygenase, SE) is a microsomal membrane-bound, FAD-dependent oxidoreductase that catalyzes the first oxygenation step in the sterol biosynthetic pathway of eukaryotic cells. Cholesterol is an essential structural component of cytoplasmic membranes acquired via the LDL receptor-mediated pathway or the biosynthetic pathway. In the latter case, all 27 carbon atoms in the cholesterol molecule are derived from acetyl-CoA (Stryer, L., supra). SE converts squalene to 2,3(S)-oxidosqualene, which is then converted to lanosterol and then cholesterol. The steps involved in cholesterol biosynthesis are summarized below (Stryer, L (1988) Biochemistry. W.H Freeman and Co., Inc. New York. pp. 554-560 and Sakakibara, J. et al. (1995) 270:17-20): acetate (from Acetyl-CoA) \rightarrow 3-hydoxy-3-methyl-glutaryl CoA \rightarrow mevalonate \rightarrow 5-phosphomevalonate \rightarrow 5-pyrophosphomevalonate \rightarrow isopentenyl pyrophosphate \rightarrow dimethylallyl pyrophosphate \rightarrow geranyl pyrophosphate \rightarrow farnesyl pyrophosphate \rightarrow squalene epoxide \rightarrow lanosterol \rightarrow cholesterol

While cholesterol is essential for the viability of eukaryotic cells, inordinately high serum cholesterol levels results in the formation of atherosclerotic plaques in the arteries of higher organisms. This deposition of highly insoluble lipid material onto the walls of essential blood vessels (e.g., coronary arteries) results in decreased blood flow and potential necrosis of the tissues deprived of adequate blood flow. HMG-CoA reductase is responsible for the conversion of 3-hydroxyl-3-methyl-glutaryl CoA (HMG-CoA) to mevalonate, which represents the first committed step in cholesterol biosynthesis. HMG-CoA is the target of a number of pharmaceutical compounds designed to lower

plasma cholesterol levels. However, inhibition of MHG-CoA also results in the reduced synthesis of non-sterol intermediates (e.g., mevalonate) required for other biochemical pathways. SE catalyzes a rate-limiting reaction that occurs later in the sterol synthesis pathway and cholesterol in the only end product of the pathway following the step catalyzed by SE. As a result, SE is the ideal target for the design of anti-hyperlipidemic drugs that do not cause a reduction in other necessary intermediates (Nakamura, Y. et al. (1996) 271:8053-8056).

Epoxide hydrolases

10

20

25

Epoxide hydrolases catalyze the addition of water to epoxide-containing compounds, thereby hydrolyzing epoxides to their corresponding 1,2-diols. They are related to bacterial haloalkane dehalogenases and show sequence similarity to other members of the α/β hydrolase fold family of enzymes (e.g., bromoperoxidase A2 from Streptomyces aureofaciens, hydroxymuconic semialdehyde hydrolases from Pseudomonas putida, and haloalkane dehalogenase from Xanthobacter autotrophicus). Epoxide hydrolases are ubiquitous in nature and have been found in mammals, invertebrates, plants, fungi, and bacteria. This family of enzymes is important for the detoxification of xenobiotic epoxide compounds which are often highly electrophilic and destructive when introduced into an organism. Examples of epoxide hydrolase reactions include the hydrolysis of cis-9,10-epoxyoctadec-9(Z)-enoic acid (leukotoxin) to form its corresponding diol, threo-9,10-dihydroxyoctadec-12(Z)-enoic acid (leukotoxin diol), and the hydrolysis of cis-12,13-epoxyoctadec-9(Z)-enoic acid (isoleukotoxin) to form its corresponding diol threo-12,13-dihydroxyoctadec-9(Z)-enoic acid (isoleukotoxin diol). Leukotoxins alter membrane permeability and ion transport and cause inflammatory responses. In addition, epoxide carcinogens are known to be produced by cytochrome P450 as intermediates in the detoxification of drugs and environmental toxins.

The enzymes possess a catalytic triad composed of Asp (the nucleophile), Asp (the histidine-supporting acid), and His (the water-activating histidine). The reaction mechanism of epoxide hydrolase proceeds via a covalently bound ester intermediate initiated by the nucleophilic attack of one of the Asp residues on the primary carbon atom of the epoxide ring of the target molecule, leading to a covalently bound ester intermediate (Michael Arand, M. et al. (1996) J. Biol. Chem. 271:4223-4229; Rink, R. et al. (1997) J. Biol. Chem. 272:14650-14657; Argiriadi, M.A. et al. (2000) J. Biol. Chem. 275:15265-15270).

30 Enzymes involved in tyrosine catalysis

The degradation of the amino acid tyrosine to either succinate and pyruvate or fumarate and acetoacetate, requires a large number of enzymes and generates a large number of intermediate compounds. In addition, many xenobiotic compounds may be metabolized using one or more reactions that are part of the tyrosine catabolic pathway. While the pathway has been studied primarily in

bacteria, tyrosine degradation is known to occur in a variety of organisms and is likely to involve many of the same biological reactions.

The enzymes involved in the degradation of tyrosine to succinate and pyruvate (e.g., in *Arthrobacter* species) include 4-hydroxyphenylpyruvate oxidase, 4-hydroxyphenylacetate 3-hydroxylase, 3,4-dihydroxyphenylacetate 2,3-dioxygenase, 5-carboxymethyl-2-hydroxymuconic semialdehyde dehydrogenase, *trans,cis*-5-carboxymethyl-2-hydroxymuconate isomerase, homoprotocatechuate isomerase/decarboxylase, *cis*-2-oxohept-3-ene-1,7-dioate hydratase, 2,4-dihydroxyhept-*trans*-2-ene-1,7-dioate aldolase, and succinic semialdehyde dehydrogenase.

The enzymes involved in the degradation of tyrosine to fumarate and acetoacetate (e.g., in *Pseudomonas* species) include 4-hydroxyphenylpyruvate dioxygenase, homogentisate 1,2-dioxygenase, maleylacetoacetate isomerase, and fumarylacetoacetase. 4-hydroxyphenylacetate 1-hydroxylase may also be involved if intermediates from the succinate/pyruvate pathway are accepted.

Additional enzymes associated with tyrosine metabolism in different organisms include 4-chlorophenylacetate-3,4-dioxygenase, aromatic aminotransferase,

10

20

25

30

5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase, 2-oxo-hept-3-ene-1,7-dioate hydratase, and
 5-carboxymethyl-2-hydroxymuconate isomerase (Ellis, L.B.M. et al. (1999) Nucleic Acids Res.
 27:373-376; Wackett, L.P. and Ellis, L.B.M. (1996) J. Microbiol. Meth. 25:91-93; and Schmidt, M. (1996) Amer. Soc. Microbiol. News 62:102).

In humans, acquired or inherited genetic defects in enzymes of the tyrosine degradation pathway may result in hereditary tyrosinemia. One form of this disease, hereditary tyrosinemia 1 (HT1) is caused by a deficiency in the enzyme fumarylacetoacetate hydrolase, the last enzyme in the pathway in organisms that metabolize tyrosine to fumarate and acetoacetate. HT1 is characterized by progressive liver damage beginning at infancy, and increased risk for liver cancer (Endo, F. et al. (1997) J. Biol. Chem. 272:24426-24432).

The discovery of new drug metabolizing enzymes and the polynucleotides encoding them satisfies a need in the art by providing new compositions which are useful in the diagnosis, prevention, and treatment of autoimmune/inflammatory, cell proliferative, developmental, endocrine, eye, metabolic, and gastrointestinal disorders, including liver disorders and in the assessment of the effects of exogenous compounds on the expression of nucleic acid and amino acid sequences of drug metabolizing enzymes.

SUMMARY OF THE INVENTION

The invention features purified polypeptides, drug metabolizing enzymes, referred to collectively as "DME" and individually as "DME-1," "DME-2," "DME-3," "DME-4," "DME-5,"

"DME-6," "DME-7," "DME-8," "DME-9," "DME-10," "DME-11," "DME-12," and "DME-13." In one aspect, the invention provides an isolated polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. In one alternative, the invention provides an isolated polypeptide comprising the amino acid sequence of SEQ ID NO:1-13.

10

15

20

25

30

The invention further provides an isolated polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. In one alternative, the polynucleotide encodes a polypeptide selected from the group consisting of SEQ ID NO:1-13. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:1-13. In another alternative, the polynucleotide is selected from the group consisting of SEQ ID NO:1-26.

Additionally, the invention provides a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. In one alternative, the invention provides a cell transformed with the recombinant polynucleotide. In another alternative, the invention provides a transgenic organism comprising the recombinant polynucleotide.

The invention also provides a method for producing a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group

consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. The method comprises a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide encoding the polypeptide, and b) recovering the polypeptide so expressed.

Additionally, the invention provides an isolated antibody which specifically binds to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13.

10

20

30

The invention further provides an isolated polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ 15 ID NO:14-26, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). In one alternative, the polynucleotide comprises at least 60 contiguous nucleotides.

Additionally, the invention provides a method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and b) detecting the presence or absence of said hybridization complex, and optionally, if present, the amount thereof. In one alternative, the probe comprises at least 60 contiguous nucleotides.

The invention further provides a method for detecting a target polynucleotide in a sample, said

target polynucleotide having a sequence of a polynucleotide selected from the group consisting of a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, c) a polynucleotide complementary to the polynucleotide of a), d) a polynucleotide complementary to the polynucleotide of b), and e) an RNA equivalent of a)-d). The method comprises a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.

10

15

20

30

The invention further provides a composition comprising an effective amount of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and a pharmaceutically acceptable excipient. In one embodiment, the composition comprises an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. The invention additionally provides a method of treating a disease or condition associated with decreased expression of functional DME, comprising administering to a patient in need of such treatment the composition.

The invention also provides a method for screening a compound for effectiveness as an agonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting agonist activity in the sample. In one alternative, the invention provides a composition comprising an agonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with decreased expression of functional DME, comprising administering to a patient in need of such treatment the composition.

Additionally, the invention provides a method for screening a compound for effectiveness as an antagonist of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. The method comprises a) exposing a sample comprising the polypeptide to a compound, and b) detecting antagonist activity in the sample. In one alternative, the invention provides a composition comprising an antagonist compound identified by the method and a pharmaceutically acceptable excipient. In another alternative, the invention provides a method of treating a disease or condition associated with overexpression of functional DME, comprising administering to a patient in need of such treatment the composition.

10

20

30

The invention further provides a method of screening for a compound that specifically binds 15 to a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. The method comprises a) combining the polypeptide with at least one test compound under suitable conditions, and b) detecting binding of the polypeptide to the test compound, thereby identifying a compound that specifically binds to the polypeptide.

The invention further provides a method of screening for a compound that modulates the activity of a polypeptide selected from the group consisting of a) a polypeptide comprising an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13. The method comprises a) combining the polypeptide with at least one test compound under conditions permissive for the activity of the polypeptide, b) assessing the activity of the polypeptide in the presence of the test compound, and c) comparing the activity of the polypeptide in the presence of the test compound with the activity of the polypeptide in the

absence of the test compound, wherein a change in the activity of the polypeptide in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide.

The invention further provides a method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence selected from the group consisting of SEQ ID NO:14-26, the method comprising a) exposing a sample comprising the target polynucleotide to a compound, and b) detecting altered expression of the target polynucleotide.

10

15

30

35

The invention further provides a method for assessing toxicity of a test compound, said method comprising a) treating a biological sample containing nucleic acids with the test compound; b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEO ID NO:14-26, ii) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, iii) a polynucleotide having a sequence complementary to i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Hybridization occurs under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide selected from the group consisting of i) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, ii) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26, iii) a polynucleotide complementary to the polynucleotide of i), iv) a polynucleotide complementary to the polynucleotide of ii), and v) an RNA equivalent of i)-iv). Alternatively, the target polynucleotide comprises a fragment of a polynucleotide sequence selected from the group consisting of i)-v) above; c) quantifying the amount of hybridization complex; and d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test compound.

BRIEF DESCRIPTION OF THE TABLES

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the present invention.

Table 2 shows the GenBank identification number and annotation of the nearest GenBank homolog for polypeptides of the invention. The probability score for the match between each polypeptide and its GenBank homolog is also shown.

Table 3 shows structural features of polypeptide sequences of the invention, including predicted motifs and domains, along with the methods, algorithms, and searchable databases used for analysis of the polypeptides.

Table 4 lists the cDNA and/or genomic DNA fragments which were used to assemble polynucleotide sequences of the invention, along with selected fragments of the polynucleotide sequences.

Table 5 shows the representative cDNA library for polynucleotides of the invention.

Table 6 provides an appendix which describes the tissues and vectors used for construction of the cDNA libraries shown in Table 5.

Table 7 shows the tools, programs, and algorithms used to analyze the polynucleotides and polypeptides of the invention, along with applicable descriptions, references, and threshold parameters.

DESCRIPTION OF THE INVENTION

Before the present proteins, nucleotide sequences, and methods are described, it is understood that this invention is not limited to the particular machines, materials and methods described, as these may vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to limit the scope of the present invention which will be limited only by the appended claims.

It must be noted that as used herein and in the appended claims, the singular forms "a," "an," and "the" include plural reference unless the context clearly dictates otherwise. Thus, for example, a reference to "a host cell" includes a plurality of such host cells, and a reference to "an antibody" is a reference to one or more antibodies and equivalents thereof known to those skilled in the art, and so forth.

Unless defined otherwise, all technical and scientific terms used herein have the same meanings as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any machines, materials, and methods similar or equivalent to those described herein can be used to practice or test the present invention, the preferred machines, materials and methods are now described. All publications mentioned herein are cited for the purpose of describing and disclosing the cell lines, protocols, reagents and vectors which are reported in the publications and which might be used in connection with the invention. Nothing herein is to be construed as an admission that the invention is not entitled to antedate such disclosure by virtue of prior invention.

DEFINITIONS

10

15

25

"DME" refers to the amino acid sequences of substantially purified DME obtained from any species, particularly a mammalian species, including bovine, ovine, porcine, murine, equine, and

human, and from any source, whether natural, synthetic, semi-synthetic, or recombinant.

The term "agonist" refers to a molecule which intensifies or mimics the biological activity of DME. Agonists may include proteins, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of DME either by directly interacting with DME or by acting on components of the biological pathway in which DME participates.

An "allelic variant" is an alternative form of the gene encoding DME. Allelic variants may result from at least one mutation in the nucleic acid sequence and may result in altered mRNAs or in polypeptides whose structure or function may or may not be altered. A gene may have none, one, or many allelic variants of its naturally occurring form. Common mutational changes which give rise to allelic variants are generally ascribed to natural deletions, additions, or substitutions of nucleotides. Each of these types of changes may occur alone, or in combination with the others, one or more times in a given sequence.

10

15

20

"Altered" nucleic acid sequences encoding DME include those sequences with deletions, insertions, or substitutions of different nucleotides, resulting in a polypeptide the same as DME or a polypeptide with at least one functional characteristic of DME. Included within this definition are polymorphisms which may or may not be readily detectable using a particular oligonucleotide probe of the polynucleotide encoding DME, and improper or unexpected hybridization to allelic variants, with a locus other than the normal chromosomal locus for the polynucleotide sequence encoding DME. The encoded protein may also be "altered," and may contain deletions, insertions, or substitutions of amino acid residues which produce a silent change and result in a functionally equivalent DME. Deliberate amino acid substitutions may be made on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues, as long as the biological or immunological activity of DME is retained. For example, negatively charged amino acids may include aspartic acid and glutamic acid, and positively charged amino acids may include lysine and arginine. Amino acids with uncharged polar side chains having similar hydrophilicity values may include: asparagine and glutamine; and serine and threonine. Amino acids with uncharged side chains having similar hydrophilicity values may include: leucine, isoleucine, and valine; glycine and alanine; and phenylalanine and tyrosine.

The terms "amino acid" and "amino acid sequence" refer to an oligopeptide, peptide, polypeptide, or protein sequence, or a fragment of any of these, and to naturally occurring or synthetic molecules. Where "amino acid sequence" is recited to refer to a sequence of a naturally occurring protein molecule, "amino acid sequence" and like terms are not meant to limit the amino acid sequence to the complete native amino acid sequence associated with the recited protein molecule.

"Amplification" relates to the production of additional copies of a nucleic acid sequence.

Amplification is generally carried out using polymerase chain reaction (PCR) technologies well known in the art.

The term "antagonist" refers to a molecule which inhibits or attenuates the biological activity of DME. Antagonists may include proteins such as antibodies, nucleic acids, carbohydrates, small molecules, or any other compound or composition which modulates the activity of DME either by directly interacting with DME or by acting on components of the biological pathway in which DME participates.

The term "antibody" refers to intact immunoglobulin molecules as well as to fragments thereof, such as Fab, F(ab')₂, and Fv fragments, which are capable of binding an epitopic determinant. Antibodies that bind DME polypeptides can be prepared using intact polypeptides or using fragments containing small peptides of interest as the immunizing antigen. The polypeptide or oligopeptide used to immunize an animal (e.g., a mouse, a rat, or a rabbit) can be derived from the translation of RNA, or synthesized chemically, and can be conjugated to a carrier protein if desired. Commonly used carriers that are chemically coupled to peptides include bovine serum albumin, thyroglobulin, and keyhole limpet hemocyanin (KLH). The coupled peptide is then used to immunize the animal.

10

15

20

25

The term "antigenic determinant" refers to that region of a molecule (i.e., an epitope) that makes contact with a particular antibody. When a protein or a fragment of a protein is used to immunize a host animal, numerous regions of the protein may induce the production of antibodies which bind specifically to antigenic determinants (particular regions or three-dimensional structures on the protein). An antigenic determinant may compete with the intact antigen (i.e., the immunogen used to elicit the immune response) for binding to an antibody.

The term "antisense" refers to any composition capable of base-pairing with the "sense" (coding) strand of a specific nucleic acid sequence. Antisense compositions may include DNA; RNA; peptide nucleic acid (PNA); oligonucleotides having modified backbone linkages such as phosphorothioates, methylphosphonates, or benzylphosphonates; oligonucleotides having modified sugar groups such as 2'-methoxyethyl sugars or 2'-methoxyethoxy sugars; or oligonucleotides having modified bases such as 5-methyl cytosine, 2'-deoxyuracil, or 7-deaza-2'-deoxyguanosine. Antisense molecules may be produced by any method including chemical synthesis or transcription. Once introduced into a cell, the complementary antisense molecule base-pairs with a naturally occurring nucleic acid sequence produced by the cell to form duplexes which block either transcription or translation. The designation "negative" or "minus" can refer to the antisense strand, and the designation "positive" or "plus" can refer to the sense strand of a reference DNA molecule.

The term "biologically active" refers to a protein having structural, regulatory, or biochemical functions of a naturally occurring molecule. Likewise, "immunologically active" or "immunogenic"

refers to the capability of the natural, recombinant, or synthetic DME, or of any oligopeptide thereof, to induce a specific immune response in appropriate animals or cells and to bind with specific antibodies.

"Complementary" describes the relationship between two single-stranded nucleic acid sequences that anneal by base-pairing. For example, 5'-AGT-3' pairs with its complement, 3'-TCA-5'.

A "composition comprising a given polynucleotide sequence" and a "composition comprising a given amino acid sequence" refer broadly to any composition containing the given polynucleotide or amino acid sequence. The composition may comprise a dry formulation or an aqueous solution.

10 Compositions comprising polynucleotide sequences encoding DME or fragments of DME may be employed as hybridization probes. The probes may be stored in freeze-dried form and may be associated with a stabilizing agent such as a carbohydrate. In hybridizations, the probe may be deployed in an aqueous solution containing salts (e.g., NaCl), detergents (e.g., sodium dodecyl sulfate; SDS), and other components (e.g., Denhardt's solution, dry milk, salmon sperm DNA, etc.).

"Consensus sequence" refers to a nucleic acid sequence which has been subjected to repeated DNA sequence analysis to resolve uncalled bases, extended using the XL-PCR kit (Applied Biosystems, Foster City CA) in the 5' and/or the 3' direction, and resequenced, or which has been assembled from one or more overlapping cDNA, EST, or genomic DNA fragments using a computer program for fragment assembly, such as the GELVIEW fragment assembly system (GCG, Madison WI) or Phrap (University of Washington, Seattle WA). Some sequences have been both extended and assembled to produce the consensus sequence.

15

25

"Conservative amino acid substitutions" are those substitutions that are predicted to least interfere with the properties of the original protein, i.e., the structure and especially the function of the protein is conserved and not significantly changed by such substitutions. The table below shows amino acids which may be substituted for an original amino acid in a protein and which are regarded as conservative amino acid substitutions.

	Original Residue	Conservative Substitution
	Ala	Gly, Ser
30	Arg	His, Lys
	Asn	Asp, Gln, His
	Asp	Asn, Glu
	Cys	Ala, Ser
35	Gln	Asn, Glu, His
	Glu	Asp, Gln, His
	Gly	Ala
	His	Asn, Arg, Gln, Glu
	Ile	Leu, Val

	Leu	Ile, Val	
	Lys	Arg, Gln, Glu	
	Met	Leu, Ile	
	Phe	His, Met, Leu, Trp, Tyr	
5	Ser	Cys, Thr	
	Thr	Ser, Val	
•	Trp	Phe, Tyr	
	Tyr	His, Phe, Trp	
	Val	Ile, Leu, Thr	

10

15

20

25

30

Conservative amino acid substitutions generally maintain (a) the structure of the polypeptide backbone in the area of the substitution, for example, as a beta sheet or alpha helical conformation, (b) the charge or hydrophobicity of the molecule at the site of the substitution, and/or (c) the bulk of the side chain.

A "deletion" refers to a change in the amino acid or nucleotide sequence that results in the absence of one or more amino acid residues or nucleotides.

The term "derivative" refers to a chemically modified polynucleotide or polypeptide.

Chemical modifications of a polynucleotide can include, for example, replacement of hydrogen by an alkyl, acyl, hydroxyl, or amino group. A derivative polynucleotide encodes a polypeptide which retains at least one biological or immunological function of the natural molecule. A derivative polypeptide is one modified by glycosylation, pegylation, or any similar process that retains at least one biological or immunological function of the polypeptide from which it was derived.

A "detectable label" refers to a reporter molecule or enzyme that is capable of generating a measurable signal and is covalently or noncovalently joined to a polynucleotide or polypeptide.

"Differential expression" refers to increased or upregulated; or decreased, downregulated, or absent gene or protein expression, determined by comparing at least two different samples. Such comparisons may be carried out between, for example, a treated and an untreated sample, or a diseased and a normal sample.

A "fragment" is a unique portion of DME or the polynucleotide encoding DME which is identical in sequence to but shorter in length than the parent sequence. A fragment may comprise up to the entire length of the defined sequence, minus one nucleotide/amino acid residue. For example, a fragment may comprise from 5 to 1000 contiguous nucleotides or amino acid residues. A fragment used as a probe, primer, antigen, therapeutic molecule, or for other purposes, may be at least 5, 10, 15, 16, 20, 25, 30, 40, 50, 60, 75, 100, 150, 250 or at least 500 contiguous nucleotides or amino acid residues in length. Fragments may be preferentially selected from certain regions of a molecule. For example, a polypeptide fragment may comprise a certain length of contiguous amino acids selected from the first 250 or 500 amino acids (or first 25% or 50%) of a polypeptide as shown in a certain

defined sequence. Clearly these lengths are exemplary, and any length that is supported by the specification, including the Sequence Listing, tables, and figures, may be encompassed by the present embodiments.

A fragment of SEQ ID NO:14-26 comprises a region of unique polynucleotide sequence that specifically identifies SEQ ID NO:14-26, for example, as distinct from any other sequence in the genome from which the fragment was obtained. A fragment of SEQ ID NO:14-26 is useful, for example, in hybridization and amplification technologies and in analogous methods that distinguish SEQ ID NO:14-26 from related polynucleotide sequences. The precise length of a fragment of SEQ ID NO:14-26 and the region of SEQ ID NO:14-26 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

10

15

20

A fragment of SEQ ID NO:1-13 is encoded by a fragment of SEQ ID NO:14-26. A fragment of SEQ ID NO:1-13 comprises a region of unique amino acid sequence that specifically identifies SEQ ID NO:1-13. For example, a fragment of SEQ ID NO:1-13 is useful as an immunogenic peptide for the development of antibodies that specifically recognize SEQ ID NO:1-13. The precise length of a fragment of SEQ ID NO:1-13 and the region of SEQ ID NO:1-13 to which the fragment corresponds are routinely determinable by one of ordinary skill in the art based on the intended purpose for the fragment.

A "full length" polynucleotide sequence is one containing at least a translation initiation codon (e.g., methionine) followed by an open reading frame and a translation termination codon. A "full length" polynucleotide sequence encodes a "full length" polypeptide sequence.

"Homology" refers to sequence similarity or, interchangeably, sequence identity, between two or more polynucleotide sequences or two or more polypeptide sequences.

The terms "percent identity" and "% identity," as applied to polynucleotide sequences, refer to the percentage of residue matches between at least two polynucleotide sequences aligned using a standardized algorithm. Such an algorithm may insert, in a standardized and reproducible way, gaps in the sequences being compared in order to optimize alignment between two sequences, and therefore achieve a more meaningful comparison of the two sequences.

Percent identity between polynucleotide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program. This program is part of the LASERGENE software package, a suite of molecular biological analysis programs (DNASTAR, Madison WI). CLUSTAL V is described in Higgins, D.G. and P.M. Sharp (1989) CABIOS 5:151-153 and in Higgins, D.G. et al. (1992) CABIOS 8:189-191. For pairwise alignments of polynucleotide sequences, the default parameters are set as follows: Ktuple=2, gap penalty=5, window=4, and "diagonals saved"=4. The "weighted"

residue weight table is selected as the default. Percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polynucleotide sequences.

Alternatively, a suite of commonly used and freely available sequence comparison algorithms is provided by the National Center for Biotechnology Information (NCBI) Basic Local Alignment

Search Tool (BLAST) (Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410), which is available from several sources, including the NCBI, Bethesda, MD, and on the Internet at http://www.ncbi.nlm.nih.gov/BLAST/. The BLAST software suite includes various sequence analysis programs including "blastn," that is used to align a known polynucleotide sequence with other polynucleotide sequences from a variety of databases. Also available is a tool called "BLAST 2 Sequences" that is used for direct pairwise comparison of two nucleotide sequences. "BLAST 2 Sequences" can be accessed and used interactively at http://www.ncbi.nlm.nih.gov/gorf/bl2.html. The "BLAST 2 Sequences" tool can be used for both blastn and blastp (discussed below). BLAST programs are commonly used with gap and other parameters set to default settings. For example, to compare two nucleotide sequences, one may use blastn with the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Reward for match: 1

Penalty for mismatch: -2

Open Gap: 5 and Extension Gap: 2 penalties

 $Gap \ x \ drop-off: 50$

Expect: 10

Word Size: 11

Filter: on

Percent identity may be measured over the length of an entire defined sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined sequence, for instance, a fragment of at least 20, at least 30, at least 40, at least 50, at least 70, at least 100, or at least 200 contiguous nucleotides. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures, or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

Nucleic acid sequences that do not show a high degree of identity may nevertheless encode similar amino acid sequences due to the degeneracy of the genetic code. It is understood that changes in a nucleic acid sequence can be made using this degeneracy to produce multiple nucleic acid sequences that all encode substantially the same protein.

The phrases "percent identity" and "% identity," as applied to polypeptide sequences, refer to the percentage of residue matches between at least two polypeptide sequences aligned using a standardized algorithm. Methods of polypeptide sequence alignment are well-known. Some alignment methods take into account conservative amino acid substitutions. Such conservative substitutions, explained in more detail above, generally preserve the charge and hydrophobicity at the site of substitution, thus preserving the structure (and therefore function) of the polypeptide.

Percent identity between polypeptide sequences may be determined using the default parameters of the CLUSTAL V algorithm as incorporated into the MEGALIGN version 3.12e sequence alignment program (described and referenced above). For pairwise alignments of polypeptide sequences using CLUSTAL V, the default parameters are set as follows: Ktuple=1, gap penalty=3, window=5, and "diagonals saved"=5. The PAM250 matrix is selected as the default residue weight table. As with polynucleotide alignments, the percent identity is reported by CLUSTAL V as the "percent similarity" between aligned polypeptide sequence pairs.

Alternatively the NCBI BLAST software suite may be used. For example, for a pairwise comparison of two polypeptide sequences, one may use the "BLAST 2 Sequences" tool Version 2.0.12 (April-21-2000) with blastp set at default parameters. Such default parameters may be, for example:

Matrix: BLOSUM62

Open Gap: 11 and Extension Gap: 1 penalties

Gap x drop-off: 50

20 Expect: 10

10

15

25

30

Word Size: 3

Filter: on

Percent identity may be measured over the length of an entire defined polypeptide sequence, for example, as defined by a particular SEQ ID number, or may be measured over a shorter length, for example, over the length of a fragment taken from a larger, defined polypeptide sequence, for instance, a fragment of at least 15, at least 20, at least 30, at least 40, at least 50, at least 70 or at least 150 contiguous residues. Such lengths are exemplary only, and it is understood that any fragment length supported by the sequences shown herein, in the tables, figures or Sequence Listing, may be used to describe a length over which percentage identity may be measured.

"Human artificial chromosomes" (HACs) are linear microchromosomes which may contain DNA sequences of about 6 kb to 10 Mb in size and which contain all of the elements required for chromosome replication, segregation and maintenance.

The term "humanized antibody" refers to an antibody molecule in which the amino acid sequence in the non-antigen binding regions has been altered so that the antibody more closely

resembles a human antibody, and still retains its original binding ability.

15

25

"Hybridization" refers to the process by which a polynucleotide strand anneals with a complementary strand through base pairing under defined hybridization conditions. Specific hybridization is an indication that two nucleic acid sequences share a high degree of complementarity. Specific hybridization complexes form under permissive annealing conditions and remain hybridized after the "washing" step(s). The washing step(s) is particularly important in determining the stringency of the hybridization process, with more stringent conditions allowing less non-specific binding, i.e., binding between pairs of nucleic acid strands that are not perfectly matched. Permissive conditions for annealing of nucleic acid sequences are routinely determinable by one of ordinary skill in the art and may be consistent among hybridization experiments, whereas wash conditions may be varied among experiments to achieve the desired stringency, and therefore hybridization specificity. Permissive annealing conditions occur, for example, at 68°C in the presence of about 6 x SSC, about 1% (w/v) SDS, and about 100 μg/ml sheared, denatured salmon sperm DNA.

Generally, stringency of hybridization is expressed, in part, with reference to the temperature under which the wash step is carried out. Such wash temperatures are typically selected to be about 5° C to 20° C lower than the thermal melting point (T_{m}) for the specific sequence at a defined ionic strength and pH. The T_{m} is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. An equation for calculating T_{m} and conditions for nucleic acid hybridization are well known and can be found in Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2^{nd} ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; specifically see volume 2, chapter 9.

High stringency conditions for hybridization between polynucleotides of the present invention include wash conditions of 68°C in the presence of about 0.2 x SSC and about 0.1% SDS, for 1 hour. Alternatively, temperatures of about 65°C, 60°C, 55°C, or 42°C may be used. SSC concentration may be varied from about 0.1 to 2 x SSC, with SDS being present at about 0.1%. Typically, blocking reagents are used to block non-specific hybridization. Such blocking reagents include, for instance, sheared and denatured salmon sperm DNA at about 100-200 µg/ml. Organic solvent, such as formamide at a concentration of about 35-50% v/v, may also be used under particular circumstances, such as for RNA:DNA hybridizations. Useful variations on these wash conditions will be readily apparent to those of ordinary skill in the art. Hybridization, particularly under high stringency conditions, may be suggestive of evolutionary similarity between the nucleotides. Such similarity is strongly indicative of a similar role for the nucleotides and their encoded polypeptides.

The term "hybridization complex" refers to a complex formed between two nucleic acid sequences by virtue of the formation of hydrogen bonds between complementary bases. A

hybridization complex may be formed in solution (e.g., C_0 t or R_0 t analysis) or formed between one nucleic acid sequence present in solution and another nucleic acid sequence immobilized on a solid support (e.g., paper, membranes, filters, chips, pins or glass slides, or any other appropriate substrate to which cells or their nucleic acids have been fixed).

The words "insertion" and "addition" refer to changes in an amino acid or nucleotide sequence resulting in the addition of one or more amino acid residues or nucleotides, respectively.

5

10

15

20

25

30

"Immune response" can refer to conditions associated with inflammation, trauma, immune disorders, or infectious or genetic disease, etc. These conditions can be characterized by expression of various factors, e.g., cytokines, chemokines, and other signaling molecules, which may affect cellular and systemic defense systems.

An "immunogenic fragment" is a polypeptide or oligopeptide fragment of DME which is capable of eliciting an immune response when introduced into a living organism, for example, a mammal. The term "immunogenic fragment" also includes any polypeptide or oligopeptide fragment of DME which is useful in any of the antibody production methods disclosed herein or known in the art.

The term "microarray" refers to an arrangement of a plurality of polynucleotides, polypeptides, or other chemical compounds on a substrate.

The terms "element" and "array element" refer to a polynucleotide, polypeptide, or other chemical compound having a unique and defined position on a microarray.

The term "modulate" refers to a change in the activity of DME. For example, modulation may cause an increase or a decrease in protein activity, binding characteristics, or any other biological, functional, or immunological properties of DME.

The phrases "nucleic acid" and "nucleic acid sequence" refer to a nucleotide, oligonucleotide, polynucleotide, or any fragment thereof. These phrases also refer to DNA or RNA of genomic or synthetic origin which may be single-stranded or double-stranded and may represent the sense or the antisense strand, to peptide nucleic acid (PNA), or to any DNA-like or RNA-like material.

"Operably linked" refers to the situation in which a first nucleic acid sequence is placed in a functional relationship with a second nucleic acid sequence. For instance, a promoter is operably linked to a coding sequence if the promoter affects the transcription or expression of the coding sequence. Operably linked DNA sequences may be in close proximity or contiguous and, where necessary to join two protein coding regions, in the same reading frame.

"Peptide nucleic acid" (PNA) refers to an antisense molecule or anti-gene agent which comprises an oligonucleotide of at least about 5 nucleotides in length linked to a peptide backbone of amino acid residues ending in lysine. The terminal lysine confers solubility to the composition. PNAs

preferentially bind complementary single stranded DNA or RNA and stop transcript elongation, and may be pegylated to extend their lifespan in the cell.

"Post-translational modification" of an DME may involve lipidation, glycosylation, phosphorylation, acetylation, racemization, proteolytic cleavage, and other modifications known in the art. These processes may occur synthetically or biochemically. Biochemical modifications will vary by cell type depending on the enzymatic milieu of DME.

"Probe" refers to nucleic acid sequences encoding DME, their complements, or fragments thereof, which are used to detect identical, allelic or related nucleic acid sequences. Probes are isolated oligonucleotides or polynucleotides attached to a detectable label or reporter molecule. Typical labels include radioactive isotopes, ligands, chemiluminescent agents, and enzymes. "Primers" are short nucleic acids, usually DNA oligonucleotides, which may be annealed to a target polynucleotide by complementary base-pairing. The primer may then be extended along the target DNA strand by a DNA polymerase enzyme. Primer pairs can be used for amplification (and identification) of a nucleic acid sequence, e.g., by the polymerase chain reaction (PCR).

10

15

Probes and primers as used in the present invention typically comprise at least 15 contiguous nucleotides of a known sequence. In order to enhance specificity, longer probes and primers may also be employed, such as probes and primers that comprise at least 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, or at least 150 consecutive nucleotides of the disclosed nucleic acid sequences. Probes and primers may be considerably longer than these examples, and it is understood that any length supported by the specification, including the tables, figures, and Sequence Listing, may be used.

Methods for preparing and using probes and primers are described in the references, for example Sambrook, J. et al. (1989) Molecular Cloning: A Laboratory Manual, 2nd ed., vol. 1-3, Cold Spring Harbor Press, Plainview NY; Ausubel, F.M. et al. (1987) Current Protocols in Molecular Biology, Greene Publ. Assoc. & Wiley-Intersciences, New York NY; Innis, M. et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, San Diego CA. PCR primer pairs can be derived from a known sequence, for example, by using computer programs intended for that purpose such as Primer (Version 0.5, 1991, Whitehead Institute for Biomedical Research, Cambridge MA).

Oligonucleotides for use as primers are selected using software known in the art for such purpose. For example, OLIGO 4.06 software is useful for the selection of PCR primer pairs of up to 100 nucleotides each, and for the analysis of oligonucleotides and larger polynucleotides of up to 5,000 nucleotides from an input polynucleotide sequence of up to 32 kilobases. Similar primer selection programs have incorporated additional features for expanded capabilities. For example, the PrimOU primer selection program (available to the public from the Genome Center at University of Texas

South West Medical Center, Dallas TX) is capable of choosing specific primers from megabase sequences and is thus useful for designing primers on a genome-wide scope. The Primer3 primer selection program (available to the public from the Whitehead Institute/MIT Center for Genome Research, Cambridge MA) allows the user to input a "mispriming library," in which sequences to avoid as primer binding sites are user-specified. Primer3 is useful, in particular, for the selection of oligonucleotides for microarrays. (The source code for the latter two primer selection programs may also be obtained from their respective sources and modified to meet the user's specific needs.) The PrimeGen program (available to the public from the UK Human Genome Mapping Project Resource Centre, Cambridge UK) designs primers based on multiple sequence alignments, thereby allowing selection of primers that hybridize to either the most conserved or least conserved regions of aligned nucleic acid sequences. Hence, this program is useful for identification of both unique and conserved oligonucleotides and polynucleotide fragments. The oligonucleotides and polynucleotide fragments identified by any of the above selection methods are useful in hybridization technologies, for example, as PCR or sequencing primers, microarray elements, or specific probes to identify fully or partially complementary polynucleotides in a sample of nucleic acids. Methods of oligonucleotide selection are not limited to those described above.

10

15

25

30

A "recombinant nucleic acid" is a sequence that is not naturally occurring or has a sequence that is made by an artificial combination of two or more otherwise separated segments of sequence. This artificial combination is often accomplished by chemical synthesis or, more commonly, by the artificial manipulation of isolated segments of nucleic acids, e.g., by genetic engineering techniques such as those described in Sambrook, <u>supra</u>. The term recombinant includes nucleic acids that have been altered solely by addition, substitution, or deletion of a portion of the nucleic acid. Frequently, a recombinant nucleic acid may include a nucleic acid sequence operably linked to a promoter sequence. Such a recombinant nucleic acid may be part of a vector that is used, for example, to transform a cell.

Alternatively, such recombinant nucleic acids may be part of a viral vector, e.g., based on a vaccinia virus, that could be use to vaccinate a mammal wherein the recombinant nucleic acid is expressed, inducing a protective immunological response in the mammal.

A "regulatory element" refers to a nucleic acid sequence usually derived from untranslated regions of a gene and includes enhancers, promoters, introns, and 5' and 3' untranslated regions (UTRs). Regulatory elements interact with host or viral proteins which control transcription, translation, or RNA stability.

"Reporter molecules" are chemical or biochemical moieties used for labeling a nucleic acid, amino acid, or antibody. Reporter molecules include radionuclides; enzymes; fluorescent, chemiluminescent, or chromogenic agents; substrates; cofactors; inhibitors; magnetic particles; and

other moieties known in the art.

10

15

20

25

30

An "RNA equivalent," in reference to a DNA sequence, is composed of the same linear sequence of nucleotides as the reference DNA sequence with the exception that all occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The term "sample" is used in its broadest sense. A sample suspected of containing DME, nucleic acids encoding DME, or fragments thereof may comprise a bodily fluid; an extract from a cell, chromosome, organelle, or membrane isolated from a cell; a cell; genomic DNA, RNA, or cDNA, in solution or bound to a substrate; a tissue; a tissue print; etc.

The terms "specific binding" and "specifically binding" refer to that interaction between a protein or peptide and an agonist, an antibody, an antagonist, a small molecule, or any natural or synthetic binding composition. The interaction is dependent upon the presence of a particular structure of the protein, e.g., the antigenic determinant or epitope, recognized by the binding molecule. For example, if an antibody is specific for epitope "A," the presence of a polypeptide comprising the epitope A, or the presence of free unlabeled A, in a reaction containing free labeled A and the antibody will reduce the amount of labeled A that binds to the antibody.

The term "substantially purified" refers to nucleic acid or amino acid sequences that are removed from their natural environment and are isolated or separated, and are at least 60% free, preferably at least 75% free, and most preferably at least 90% free from other components with which they are naturally associated.

A "substitution" refers to the replacement of one or more amino acid residues or nucleotides by different amino acid residues or nucleotides, respectively.

"Substrate" refers to any suitable rigid or semi-rigid support including membranes, filters, chips, slides, wafers, fibers, magnetic or nonmagnetic beads, gels, tubing, plates, polymers, microparticles and capillaries. The substrate can have a variety of surface forms, such as wells, trenches, pins, channels and pores, to which polynucleotides or polypeptides are bound.

A "transcript image" refers to the collective pattern of gene expression by a particular cell type or tissue under given conditions at a given time.

"Transformation" describes a process by which exogenous DNA is introduced into a recipient cell. Transformation may occur under natural or artificial conditions according to various methods well known in the art, and may rely on any known method for the insertion of foreign nucleic acid sequences into a prokaryotic or eukaryotic host cell. The method for transformation is selected based on the type of host cell being transformed and may include, but is not limited to, bacteriophage or viral infection, electroporation, heat shock, lipofection, and particle bombardment. The term "transformed

cells" includes stably transformed cells in which the inserted DNA is capable of replication either as an autonomously replicating plasmid or as part of the host chromosome, as well as transiently transformed cells which express the inserted DNA or RNA for limited periods of time.

5

10

15

20

A "transgenic organism," as used herein, is any organism, including but not limited to animals and plants, in which one or more of the cells of the organism contains heterologous nucleic acid introduced by way of human intervention, such as by transgenic techniques well known in the art. The nucleic acid is introduced into the cell, directly or indirectly by introduction into a precursor of the cell, by way of deliberate genetic manipulation, such as by microinjection or by infection with a recombinant virus. The term genetic manipulation does not include classical cross-breeding, or <u>in vitro</u> fertilization, but rather is directed to the introduction of a recombinant DNA molecule. The transgenic organisms contemplated in accordance with the present invention include bacteria, cyanobacteria, fungi, plants and animals. The isolated DNA of the present invention can be introduced into the host by methods known in the art, for example infection, transfection, transformation or transconjugation. Techniques for transferring the DNA of the present invention into such organisms are widely known and provided in references such as Sambrook et al. (1989), <u>supra</u>.

A "variant" of a particular nucleic acid sequence is defined as a nucleic acid sequence having at least 40% sequence identity to the particular nucleic acid sequence over a certain length of one of the nucleic acid sequences using blastn with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of nucleic acids may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 85%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length. A variant may be described as, for example, an "allelic" (as defined above), "splice," "species," or "polymorphic" variant. A splice variant may have significant identity to a reference molecule, but will generally have a greater or lesser number of polynucleotides due to alternative splicing of exons during mRNA processing. The corresponding polypeptide may possess additional functional domains or lack domains that are present in the reference molecule. Species variants are polynucleotide sequences that vary from one species to another. The resulting polypeptides will generally have significant amino acid identity relative to each other. A polymorphic variant is a variation in the polynucleotide sequence of a particular gene between individuals of a given species. Polymorphic variants also may encompass "single nucleotide polymorphisms" (SNPs) in which the polynucleotide sequence varies by one nucleotide base. The presence of SNPs may be indicative of, for example, a certain population, a disease state, or a propensity for a disease state.

A "variant" of a particular polypeptide sequence is defined as a polypeptide sequence having at least 40% sequence identity to the particular polypeptide sequence over a certain length of one of the polypeptide sequences using blastp with the "BLAST 2 Sequences" tool Version 2.0.9 (May-07-1999) set at default parameters. Such a pair of polypeptides may show, for example, at least 50%, at least 60%, at least 70%, at least 80%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% or greater sequence identity over a certain defined length of one of the polypeptides.

THE INVENTION

10

15

20

30

The invention is based on the discovery of new human drug metabolizing enzymes (DME), the polynucleotides encoding DME, and the use of these compositions for the diagnosis, treatment, or prevention of autoimmune/inflammatory, cell proliferative, developmental, endocrine, eye, metabolic, and gastrointestinal disorders, including liver disorders.

Table 1 summarizes the nomenclature for the full length polynucleotide and polypeptide sequences of the invention. Each polynucleotide and its corresponding polypeptide are correlated to a single Incyte project identification number (Incyte Project ID). Each polypeptide sequence is denoted by both a polypeptide sequence identification number (Polypeptide SEQ ID NO:) and an Incyte polypeptide sequence number (Incyte Polypeptide ID) as shown. Each polynucleotide sequence is denoted by both a polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and an Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) as shown.

Table 2 shows sequences with homology to the polypeptides of the invention as identified by BLAST analysis against the GenBank protein (genpept) database. Columns 1 and 2 show the polypeptide sequence identification number (Polypeptide SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for polypeptides of the invention. Column 3 shows the GenBank identification number (Genbank ID NO:) of the nearest GenBank homolog. Column 4 shows the probability score for the match between each polypeptide and its GenBank homolog. Column 5 shows the annotation of the GenBank homolog along with relevant citations where applicable, all of which are expressly incorporated by reference herein.

Table 3 shows various structural features of the polypeptides of the invention. Columns 1 and 2 show the polypeptide sequence identification number (SEQ ID NO:) and the corresponding Incyte polypeptide sequence number (Incyte Polypeptide ID) for each polypeptide of the invention. Column 3 shows the number of amino acid residues in each polypeptide. Column 4 shows potential phosphorylation sites, and column 5 shows potential glycosylation sites, as determined by the MOTIFS program of the GCG sequence analysis software package (Genetics Computer Group, Madison WI).

Column 6 shows amino acid residues comprising signature sequences, domains, and motifs. Column 7 shows analytical methods for protein structure/function analysis and in some cases, searchable databases to which the analytical methods were applied.

Together, Tables 2 and 3 summarize the properties of polypeptides of the invention, and these 5 properties establish that the claimed polypeptides are drug metabolizing enzymes. For example, the polypeptide of SEQ ID NO:1 shows a number of structural characteristics that strongly identify it as an alcohol dehydrogenase enzyme, particularly a short-chain alcohol dehydrogenase (see Tables 2 and 3). Analysis by BLAST_DOMO, BLIMPS_PRINTS and HMMER_PFAM show the polypeptide of SEQ ID NO:1 to be a short-chain alcohol dehydrogenase. HMMER analysis identifies the molecule as 10 having the transmembrane domain M1-A19 characteristic of an alcohol dehydrogenase. In an alternative example, the polypeptide of SEQ ID NO:2 shows a number of structural characteristics that identify it as an acetyltransferase enzyme (see Tables 2 and 3). Analysis by BLAST_DOMO, BLAST_PRODOM and HMMER_PFAM show the polypeptide of SEQ ID NO:2 to be an acetyltransferase. HMMER, MOTIFS and SPSCAN analysis identify the molecule as having various 15 motifs characteristic of an acetyltransferase. In an alternative example, the polypeptide of SEQ ID NO:3 shows a number of structural characteristics that very strongly identify it as a cytochrome P450 enzyme (see Tables 2 and 3). Analysis by BLAST_DOMO, BLAST_PRODOM, BLIMPS_PRINTS and HMMER_PFAM show the polypeptide of SEQ ID NO:3 to be a cytochrome P450. BLASTX analysis shows that the polypeptide of SEQ ID NO:3 shows similarity to a leukotriene-B4 omegahydroxylase enzyme (which is a cytochrome P450). SEQ ID NO:3 is 76% identical to human leukotriene B4 omega-hydroxylase (cytochrome P450) (GenBank ID g1857022) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 8.8e-199, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:3 also contains a cytochrome P450 signature domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLIMPS and BLAST analyses of protein signature databases provide further corroborative evidence that SEQ ID NO:3 is a cytochrome P450. In an alternative example, SEQ ID NO:4 is 52% identical to rat retinol dehydrogenase type I (GenBank ID g841197) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 5.3e-89, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:4 also contains an short-chain alcohol dehydrogenase active site domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from BLAST, BLIMPS, MOTIFS, PROFILESCAN, and SPSCAN

analyses provide further corroborative evidence that SEQ ID NO:4 is an alcohol dehydrogenase. In an alternative example, SEQ ID NO:5 is 40% identical to human heparan sulfate 3-O-sulfotransferase-1 precursor (GenBank ID g2618973) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 1.0e-76, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. Data from a BLAST comparison to the sulfotransferase signature sequence in the PRODOM database of protein signature sequences, as well as an SPSCAN analysis provide further corroborative evidence that SEQ ID NO:5 is a sulfotransferase. In an alternative example, SEQ ID NO:8 is 28% identical to mouse chondroitin 4sulfotranferase (GenBank ID g7340847) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 3.1e-45, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID NO:8 also contains a sulfotransferase active site domain as determined by searching for matches in the protein signature sequence database PRODOM. (See Table 3.) In an alternative example, SEQ ID NO:13 is 83% identical to a human cytochrome P450 (GenBank ID g5733409) as determined by the Basic Local Alignment Search Tool (BLAST). (See Table 2.) The BLAST probability score is 9.8e-168, which indicates the probability of obtaining the observed polypeptide sequence alignment by chance. SEQ ID-NO:13 also contains a cytochrome P450 active site domain as determined by searching for statistically significant matches in the hidden Markov model (HMM)-based PFAM database of conserved protein family domains. (See Table 3.) Data from PRODOM, DOMO, BLIMPS, MOTIFS, and PROFILESCAN analyses provide further corroborative evidence that SEQ ID NO:13 is a cytochrome P450. SEQ ID NO:6, 7, and 9-12 were analyzed and annotated in a similar manner. The algorithms and parameters for the analysis of SEQ ID NO:1-13 are described in Table 7.

10

15

20

25

As shown in Table 4, the full length polynucleotide sequences of the present invention were assembled using cDNA sequences or coding (exon) sequences derived from genomic DNA, or any combination of these two types of sequences. Columns 1 and 2 list the polynucleotide sequence identification number (Polynucleotide SEQ ID NO:) and the corresponding Incyte polynucleotide consensus sequence number (Incyte Polynucleotide ID) for each polynucleotide of the invention. Column 3 shows the length of each polynucleotide sequence in basepairs. Column 4 lists fragments of the polynucleotide sequences which are useful, for example, in hybridization or amplification technologies that identify SEQ ID NO:14-26 or that distinguish between SEQ ID NO:14-26 and related polynucleotide sequences. Column 5 shows identification numbers corresponding to cDNA sequences, coding sequences (exons) predicted from genomic DNA, and/or sequence assemblages comprised of both cDNA and genomic DNA. These sequences were used to assemble the full length polynucleotide sequences of the invention. Columns 6 and 7 of Table 4 show the nucleotide start (5')

and stop (3') positions of the cDNA and/or genomic sequences in column 5 relative to their respective full length sequences.

The identification numbers in Column 5 of Table 4 may refer specifically, for example, to Incyte cDNAs along with their corresponding cDNA libraries. For example, 6340564H1 is the identification number of an Incyte cDNA sequence, and BRANDIN01 is the cDNA library from which it is derived. Incyte cDNAs for which cDNA libraries are not indicated were derived from pooled cDNA libraries (e.g., 71515563V1). Alternatively, the identification numbers in column 5 may refer to GenBank cDNAs or ESTs (e.g., g1515628) which contributed to the assembly of the full length polynucleotide sequences. Alternatively, the identification numbers in column 5 may refer to coding regions predicted by Genscan analysis of genomic DNA. For example, GNN.g6693604_008 is the identification number of a Genscan-predicted coding sequence, with g6693604 being the GenBank identification number of the sequence to which Genscan was applied. The Genscan-predicted coding sequences may have been edited prior to assembly. (See Example IV.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon stitching" algorithm. For example, FL_2268938CB1_00001 represents a "stitched" sequence in which 2268938CB1 is the identification number of the cluster of sequences to which the algorithm was applied, and 00001 is the number of the prediction generated by the algorithm. (See Example V.) Alternatively, the identification numbers in column 5 may refer to assemblages of both cDNA and Genscan-predicted exons brought together by an "exon-stretching" algorithm. For example, FL3251523_g7458736_000008_g1146438 is the identification number of a "stretched" sequence, with 3251523 being the Incyte project identification number, g7458736 being the GenBank identification number of the human genomic sequence to which the "exon-stretching" algorithm was applied, and g1146438 being the GenBank identification number of the nearest GenBank protein homolog. (See Example V.) In some cases, Incyte cDNA coverage redundant with the sequence coverage shown in column 5 was obtained to confirm the final consensus polynucleotide sequence, but the relevant Incyte cDNA identification numbers are not shown.

10

15

20

25

30

Table 5 shows the representative cDNA libraries for those full length polynucleotide sequences which were assembled using Incyte cDNA sequences. The representative cDNA library is the Incyte cDNA library which is most frequently represented by the Incyte cDNA sequences which were used to assemble and confirm the above polynucleotide sequences. The tissues and vectors which were used to construct the cDNA libraries shown in Table 5 are described in Table 6.

The invention also encompasses DME variants. A preferred DME variant is one which has at least about 80%, or alternatively at least about 90%, or even at least about 95% amino acid sequence identity to the DME amino acid sequence, and which contains at least one functional or structural

characteristic of DME.

The invention also encompasses polynucleotides which encode DME. In a particular embodiment, the invention encompasses a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:14-26, which encodes DME. The polynucleotide sequences of SEQ ID NO:14-26, as presented in the Sequence Listing, embrace the equivalent RNA sequences, wherein occurrences of the nitrogenous base thymine are replaced with uracil, and the sugar backbone is composed of ribose instead of deoxyribose.

The invention also encompasses a variant of a polynucleotide sequence encoding DME. In particular, such a variant polynucleotide sequence will have at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to the polynucleotide sequence encoding DME. A particular aspect of the invention encompasses a variant of a polynucleotide sequence comprising a sequence selected from the group consisting of SEQ ID NO:14-26 which has at least about 70%, or alternatively at least about 85%, or even at least about 95% polynucleotide sequence identity to a nucleic acid sequence selected from the group consisting of SEQ ID NO:14-26. Any one of the polynucleotide variants described above can encode an amino acid sequence which contains at least one functional or structural characteristic of DME.

It will be appreciated by those skilled in the art that as a result of the degeneracy of the genetic code, a multitude of polynucleotide sequences encoding DME, some bearing minimal similarity to the polynucleotide sequences of any known and naturally occurring gene, may be produced. Thus, the invention contemplates each and every possible variation of polynucleotide sequence that could be made by selecting combinations based on possible codon choices. These combinations are made in accordance with the standard triplet genetic code as applied to the polynucleotide sequence of naturally occurring DME, and all such variations are to be considered as being specifically disclosed.

Although nucleotide sequences which encode DME and its variants are generally capable of hybridizing to the nucleotide sequence of the naturally occurring DME under appropriately selected conditions of stringency, it may be advantageous to produce nucleotide sequences encoding DME or its derivatives possessing a substantially different codon usage, e.g., inclusion of non-naturally occurring codons. Codons may be selected to increase the rate at which expression of the peptide occurs in a particular prokaryotic or eukaryotic host in accordance with the frequency with which particular codons are utilized by the host. Other reasons for substantially altering the nucleotide sequence encoding DME and its derivatives without altering the encoded amino acid sequences include the production of RNA transcripts having more desirable properties, such as a greater half-life, than transcripts produced from the naturally occurring sequence.

The invention also encompasses production of DNA sequences which encode DME and DME

derivatives, or fragments thereof, entirely by synthetic chemistry. After production, the synthetic sequence may be inserted into any of the many available expression vectors and cell systems using reagents well known in the art. Moreover, synthetic chemistry may be used to introduce mutations into a sequence encoding DME or any fragment thereof.

Also encompassed by the invention are polynucleotide sequences that are capable of hybridizing to the claimed polynucleotide sequences, and, in particular, to those shown in SEQ ID NO:14-26 and fragments thereof under various conditions of stringency. (See, e.g., Wahl, G.M. and S.L. Berger (1987) Methods Enzymol. 152:399-407; Kimmel, A.R. (1987) Methods Enzymol. 152:507-511.) Hybridization conditions, including annealing and wash conditions, are described in "Definitions."

5

10

15

25

Methods for DNA sequencing are well known in the art and may be used to practice any of the embodiments of the invention. The methods may employ such enzymes as the Klenow fragment of DNA polymerase I, SEQUENASE (US Biochemical, Cleveland OH), Taq polymerase (Applied Biosystems), thermostable T7 polymerase (Amersham Pharmacia Biotech, Piscataway NJ), or combinations of polymerases and proofreading exonucleases such as those found in the ELONGASE amplification system (Life Technologies, Gaithersburg MD). Preferably, sequence preparation is automated with machines such as the MICROLAB 2200 liquid transfer system (Hamilton, Reno NV), PTC200 thermal cycler (MJ Research, Watertown MA) and ABI CATALYST 800 thermal cycler (Applied Biosystems). Sequencing is then carried out using either the ABI 373 or 377 DNA sequencing system (Applied Biosystems), the MEGABACE 1000 DNA sequencing system (Molecular Dynamics, Sunnyvale CA), or other systems known in the art. The resulting sequences are analyzed using a variety of algorithms which are well known in the art. (See, e.g., Ausubel, F.M. (1997) Short Protocols in Molecular Biology, John Wiley & Sons, New York NY, unit 7.7; Meyers, R.A. (1995) Molecular Biology and Biotechnology, Wiley VCH, New York NY, pp. 856-853.)

The nucleic acid sequences encoding DME may be extended utilizing a partial nucleotide sequence and employing various PCR-based methods known in the art to detect upstream sequences, such as promoters and regulatory elements. For example, one method which may be employed, restriction-site PCR, uses universal and nested primers to amplify unknown sequence from genomic DNA within a cloning vector. (See, e.g., Sarkar, G. (1993) PCR Methods Applic. 2:318-322.)

Another method, inverse PCR, uses primers that extend in divergent directions to amplify unknown sequence from a circularized template. The template is derived from restriction fragments comprising a known genomic locus and surrounding sequences. (See, e.g., Triglia, T. et al. (1988) Nucleic Acids Res. 16:8186.) A third method, capture PCR, involves PCR amplification of DNA fragments adjacent to known sequences in human and yeast artificial chromosome DNA. (See, e.g., Lagerstrom, M. et al.

(1991) PCR Methods Applic. 1:111-119.) In this method, multiple restriction enzyme digestions and ligations may be used to insert an engineered double-stranded sequence into a region of unknown sequence before performing PCR. Other methods which may be used to retrieve unknown sequences are known in the art. (See, e.g., Parker, J.D. et al. (1991) Nucleic Acids Res. 19:3055-3060).

Additionally, one may use PCR, nested primers, and PROMOTERFINDER libraries (Clontech, Palo Alto CA) to walk genomic DNA. This procedure avoids the need to screen libraries and is useful in finding intron/exon junctions. For all PCR-based methods, primers may be designed using commercially available software, such as OLIGO 4.06 primer analysis software (National Biosciences, Plymouth MN) or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the template at temperatures of about 68°C to 72°C.

When screening for full length cDNAs, it is preferable to use libraries that have been size-selected to include larger cDNAs. In addition, random-primed libraries, which often include sequences containing the 5' regions of genes, are preferable for situations in which an oligo d(T) library does not yield a full-length cDNA. Genomic libraries may be useful for extension of sequence into 5' non-transcribed regulatory regions.

Capillary electrophoresis systems which are commercially available may be used to analyze the size or confirm the nucleotide sequence of sequencing or PCR products. In particular, capillary sequencing may employ flowable polymers for electrophoretic separation, four different nucleotide-specific, laser-stimulated fluorescent dyes, and a charge coupled device camera for detection of the emitted wavelengths. Output/light intensity may be converted to electrical signal using appropriate software (e.g., GENOTYPER and SEQUENCE NAVIGATOR, Applied Biosystems), and the entire process from loading of samples to computer analysis and electronic data display may be computer controlled. Capillary electrophoresis is especially preferable for sequencing small DNA fragments which may be present in limited amounts in a particular sample.

In another embodiment of the invention, polynucleotide sequences or fragments thereof which encode DME may be cloned in recombinant DNA molecules that direct expression of DME, or fragments or functional equivalents thereof, in appropriate host cells. Due to the inherent degeneracy of the genetic code, other DNA sequences which encode substantially the same or a functionally equivalent amino acid sequence may be produced and used to express DME.

25

30

The nucleotide sequences of the present invention can be engineered using methods generally known in the art in order to alter DME-encoding sequences for a variety of purposes including, but not limited to, modification of the cloning, processing, and/or expression of the gene product. DNA shuffling by random fragmentation and PCR reassembly of gene fragments and synthetic

oligonucleotides may be used to engineer the nucleotide sequences. For example, oligonucleotidemediated site-directed mutagenesis may be used to introduce mutations that create new restriction sites, alter glycosylation patterns, change codon preference, produce splice variants, and so forth.

The nucleotides of the present invention may be subjected to DNA shuffling techniques such as MOLECULARBREEDING (Maxygen Inc., Santa Clara CA; described in U.S. Patent Number 5,837,458; Chang, C.-C. et al. (1999) Nat. Biotechnol. 17:793-797; Christians, F.C. et al. (1999) Nat. Biotechnol. 17:259-264; and Crameri, A. et al. (1996) Nat. Biotechnol. 14:315-319) to alter or improve the biological properties of DME, such as its biological or enzymatic activity or its ability to bind to other molecules or compounds. DNA shuffling is a process by which a library of gene variants is produced using PCR-mediated recombination of gene fragments. The library is then subjected to selection or screening procedures that identify those gene variants with the desired properties. These preferred variants may then be pooled and further subjected to recursive rounds of DNA shuffling and selection/screening. Thus, genetic diversity is created through "artificial" breeding and rapid molecular evolution. For example, fragments of a single gene containing random point mutations may be recombined, screened, and then reshuffled until the desired properties are optimized. Alternatively, fragments of a given gene may be recombined with fragments of homologous genes in the same gene family, either from the same or different species, thereby maximizing the genetic diversity of multiple naturally occurring genes in a directed and controllable manner.

10

20

30

In another embodiment, sequences encoding DME may be synthesized, in whole or in part, using chemical methods well known in the art. (See, e.g., Caruthers, M.H. et al. (1980) Nucleic Acids Symp. Ser. 7:215-223; and Horn, T. et al. (1980) Nucleic Acids Symp. Ser. 7:225-232.)

Alternatively, DME itself or a fragment thereof may be synthesized using chemical methods. For example, peptide synthesis can be performed using various solution-phase or solid-phase techniques. (See, e.g., Creighton, T. (1984) Proteins, Structures and Molecular Properties, WH Freeman, New York NY, pp. 55-60; and Roberge, J.Y. et al. (1995) Science 269:202-204.) Automated synthesis may be achieved using the ABI 431A peptide synthesizer (Applied Biosystems). Additionally, the amino acid sequence of DME, or any part thereof, may be altered during direct synthesis and/or combined with sequences from other proteins, or any part thereof, to produce a variant polypeptide or a polypeptide having a sequence of a naturally occurring polypeptide.

The peptide may be substantially purified by preparative high performance liquid chromatography. (See, e.g., Chiez, R.M. and F.Z. Regnier (1990) Methods Enzymol. 182:392-421.) The composition of the synthetic peptides may be confirmed by amino acid analysis or by sequencing. (See, e.g., Creighton, supra, pp. 28-53.)

In order to express a biologically active DME, the nucleotide sequences encoding DME or derivatives thereof may be inserted into an appropriate expression vector, i.e., a vector which contains the necessary elements for transcriptional and translational control of the inserted coding sequence in a suitable host. These elements include regulatory sequences, such as enhancers, constitutive and inducible promoters, and 5' and 3' untranslated regions in the vector and in polynucleotide sequences encoding DME. Such elements may vary in their strength and specificity. Specific initiation signals may also be used to achieve more efficient translation of sequences encoding DME. Such signals include the ATG initiation codon and adjacent sequences, e.g. the Kozak sequence. In cases where sequences encoding DME and its initiation codon and upstream regulatory sequences are inserted into the appropriate expression vector, no additional transcriptional or translational control signals may be needed. However, in cases where only coding sequence, or a fragment thereof, is inserted, exogenous translational control signals including an in-frame ATG initiation codon should be provided by the vector. Exogenous translational elements and initiation codons may be of various origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of enhancers appropriate for the particular host cell system used. (See, e.g., Scharf, D. et al. (1994) Results Probl. Cell Differ. 20:125-162.)

Methods which are well known to those skilled in the art may be used to construct expression vectors containing sequences encoding DME and appropriate transcriptional and translational control elements. These methods include <u>in vitro</u> recombinant DNA techniques, synthetic techniques, and <u>in vivo</u> genetic recombination. (See, e.g., Sambrook, J. et al. (1989) <u>Molecular Cloning, A Laboratory Manual</u>, Cold Spring Harbor Press, Plainview NY, ch. 4, 8, and 16-17; Ausubel, F.M. et al. (1995) <u>Current Protocols in Molecular Biology</u>, John Wiley & Sons, New York NY, ch. 9, 13, and 16.)

20

25

30

A variety of expression vector/host systems may be utilized to contain and express sequences encoding DME. These include, but are not limited to, microorganisms such as bacteria transformed with recombinant bacteriophage, plasmid, or cosmid DNA expression vectors; yeast transformed with yeast expression vectors; insect cell systems infected with viral expression vectors (e.g., baculovirus); plant cell systems transformed with viral expression vectors (e.g., cauliflower mosaic virus, CaMV, or tobacco mosaic virus, TMV) or with bacterial expression vectors (e.g., Ti or pBR322 plasmids); or animal cell systems. (See, e.g., Sambrook, supra; Ausubel, supra; Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509; Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945; Takamatsu, N. (1987) EMBO J. 6:307-311; The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196; Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659; and Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.) Expression vectors

derived from retroviruses, adenoviruses, or herpes or vaccinia viruses, or from various bacterial plasmids, may be used for delivery of nucleotide sequences to the targeted organ, tissue, or cell population. (See, e.g., Di Nicola, M. et al. (1998) Cancer Gen. Ther. 5(6):350-356; Yu, M. et al. (1993) Proc. Natl. Acad. Sci. USA 90(13):6340-6344; Buller, R.M. et al. (1985) Nature 317(6040):813-815; McGregor, D.P. et al. (1994) Mol. Immunol. 31(3):219-226; and Verma, I.M. and N. Somia (1997) Nature 389:239-242.) The invention is not limited by the host cell employed.

In bacterial systems, a number of cloning and expression vectors may be selected depending upon the use intended for polynucleotide sequences encoding DME. For example, routine cloning, subcloning, and propagation of polynucleotide sequences encoding DME can be achieved using a multifunctional E. coli vector such as PBLUESCRIPT (Stratagene, La Jolla CA) or PSPORT1 plasmid (Life Technologies). Ligation of sequences encoding DME into the vector's multiple cloning site disrupts the *lacZ* gene, allowing a colorimetric screening procedure for identification of transformed bacteria containing recombinant molecules. In addition, these vectors may be useful for in vitro transcription, dideoxy sequencing, single strand rescue with helper phage, and creation of nested deletions in the cloned sequence. (See, e.g., Van Heeke, G. and S.M. Schuster (1989) J. Biol. Chem. 264:5503-5509.) When large quantities of DME are needed, e.g. for the production of antibodies, vectors which direct high level expression of DME may be used. For example, vectors containing the strong, inducible SP6 or T7 bacteriophage promoter may be used.

Yeast expression systems may be used for production of DME. A number of vectors containing constitutive or inducible promoters, such as alpha factor, alcohol oxidase, and PGH promoters, may be used in the yeast <u>Saccharomyces cerevisiae</u> or <u>Pichia pastoris</u>. In addition, such vectors direct either the secretion or intracellular retention of expressed proteins and enable integration of foreign sequences into the host genome for stable propagation. (See, e.g., Ausubel, 1995, <u>supra</u>; Bitter, G.A. et al. (1987) Methods Enzymol. 153:516-544; and Scorer, C.A. et al. (1994) Bio/Technology 12:181-184.)

Plant systems may also be used for expression of DME. Transcription of sequences encoding DME may be driven by viral promoters, e.g., the 35S and 19S promoters of CaMV used alone or in combination with the omega leader sequence from TMV (Takamatsu, N. (1987) EMBO J. 6:307-311). Alternatively, plant promoters such as the small subunit of RUBISCO or heat shock promoters may be used. (See, e.g., Coruzzi, G. et al. (1984) EMBO J. 3:1671-1680; Broglie, R. et al. (1984) Science 224:838-843; and Winter, J. et al. (1991) Results Probl. Cell Differ. 17:85-105.) These constructs can be introduced into plant cells by direct DNA transformation or pathogen-mediated transfection. (See, e.g., The McGraw Hill Yearbook of Science and Technology (1992) McGraw Hill, New York NY, pp. 191-196.)

In mammalian cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, sequences encoding DME may be ligated into an adenovirus transcription/translation complex consisting of the late promoter and tripartite leader sequence. Insertion in a non-essential E1 or E3 region of the viral genome may be used to obtain infective virus which expresses DME in host cells. (See, e.g., Logan, J. and T. Shenk (1984) Proc. Natl. Acad. Sci. USA 81:3655-3659.) In addition, transcription enhancers, such as the Rous sarcoma virus (RSV) enhancer, may be used to increase expression in mammalian host cells. SV40 or EBV-based vectors may also be used for high-level protein expression.

Human artificial chromosomes (HACs) may also be employed to deliver larger fragments of DNA than can be contained in and expressed from a plasmid. HACs of about 6 kb to 10 Mb are constructed and delivered via conventional delivery methods (liposomes, polycationic amino polymers, or vesicles) for therapeutic purposes. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355.)

For long term production of recombinant proteins in mammalian systems, stable expression of DME in cell lines is preferred. For example, sequences encoding DME can be transformed into cell lines using expression vectors which may contain viral origins of replication and/or endogenous expression elements and a selectable marker gene on the same or on a separate vector. Following the introduction of the vector, cells may be allowed to grow for about 1 to 2 days in enriched media before being switched to selective media. The purpose of the selectable marker is to confer resistance to a selective agent, and its presence allows growth and recovery of cells which successfully express the introduced sequences. Resistant clones of stably transformed cells may be propagated using tissue culture techniques appropriate to the cell type.

15

25

30

Any number of selection systems may be used to recover transformed cell lines. These include, but are not limited to, the herpes simplex virus thymidine kinase and adenine phosphoribosyltransferase genes, for use in *tk* and *apr* cells, respectively. (See, e.g., Wigler, M. et al. (1977) Cell 11:223-232; Lowy, I. et al. (1980) Cell 22:817-823.) Also, antimetabolite, antibiotic, or herbicide resistance can be used as the basis for selection. For example, *dhfr* confers resistance to methotrexate; *neo* confers resistance to the aminoglycosides neomycin and G-418; and *als* and *pat* confer resistance to chlorsulfuron and phosphinotricin acetyltransferase, respectively. (See, e.g., Wigler, M. et al. (1980) Proc. Natl. Acad. Sci. USA 77:3567-3570; Colbere-Garapin, F. et al. (1981) J. Mol. Biol. 150:1-14.) Additional selectable genes have been described, e.g., *trpB* and *hisD*, which alter cellular requirements for metabolites. (See, e.g., Hartman, S.C. and R.C. Mulligan (1988) Proc. Natl. Acad. Sci. USA 85:8047-8051.) Visible markers, e.g., anthocyanins, green fluorescent proteins (GFP; Clontech), ß glucuronidase and its substrate ß-glucuronide, or luciferase and its substrate

luciferin may be used. These markers can be used not only to identify transformants, but also to quantify the amount of transient or stable protein expression attributable to a specific vector system. (See, e.g., Rhodes, C.A. (1995) Methods Mol. Biol. 55:121-131.)

Although the presence/absence of marker gene expression suggests that the gene of interest is also present, the presence and expression of the gene may need to be confirmed. For example, if the sequence encoding DME is inserted within a marker gene sequence, transformed cells containing sequences encoding DME can be identified by the absence of marker gene function. Alternatively, a marker gene can be placed in tandem with a sequence encoding DME under the control of a single promoter. Expression of the marker gene in response to induction or selection usually indicates expression of the tandem gene as well.

10

25

30

In general, host cells that contain the nucleic acid sequence encoding DME and that express DME may be identified by a variety of procedures known to those of skill in the art. These procedures include, but are not limited to, DNA-DNA or DNA-RNA hybridizations, PCR amplification, and protein bioassay or immunoassay techniques which include membrane, solution, or chip based technologies for the detection and/or quantification of nucleic acid or protein sequences.

Immunological methods for detecting and measuring the expression of DME using either specific polyclonal or monoclonal antibodies are known in the art. Examples of such techniques include enzyme-linked immunosorbent assays (ELISAs), radioimmunoassays (RIAs), and fluorescence activated cell sorting (FACS). A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering epitopes on DME is preferred, but a competitive binding assay may be employed. These and other assays are well known in the art. (See, e.g., Hampton, R. et al. (1990) Serological Methods, a Laboratory Manual, APS Press, St. Paul MN, Sect. IV; Coligan, J.E. et al. (1997) Current Protocols in Immunology, Greene Pub. Associates and Wiley-Interscience, New York NY; and Pound, J.D. (1998) Immunochemical Protocols, Humana Press, Totowa NJ.)

A wide variety of labels and conjugation techniques are known by those skilled in the art and may be used in various nucleic acid and amino acid assays. Means for producing labeled hybridization or PCR probes for detecting sequences related to polynucleotides encoding DME include oligolabeling, nick translation, end-labeling, or PCR amplification using a labeled nucleotide. Alternatively, the sequences encoding DME, or any fragments thereof, may be cloned into a vector for the production of an mRNA probe. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes <u>in vitro</u> by addition of an appropriate RNA polymerase such as T7, T3, or SP6 and labeled nucleotides. These procedures may be conducted using a variety of commercially available kits, such as those provided by Amersham Pharmacia Biotech, Promega (Madison WI), and US Biochemical. Suitable reporter molecules or labels which may be used for ease of detection include

radionuclides, enzymes, fluorescent, chemiluminescent, or chromogenic agents, as well as substrates, cofactors, inhibitors, magnetic particles, and the like.

Host cells transformed with nucleotide sequences encoding DME may be cultured under conditions suitable for the expression and recovery of the protein from cell culture. The protein produced by a transformed cell may be secreted or retained intracellularly depending on the sequence and/or the vector used. As will be understood by those of skill in the art, expression vectors containing polynucleotides which encode DME may be designed to contain signal sequences which direct secretion of DME through a prokaryotic or eukaryotic cell membrane.

In addition, a host cell strain may be chosen for its ability to modulate expression of the inserted sequences or to process the expressed protein in the desired fashion. Such modifications of the polypeptide include, but are not limited to, acetylation, carboxylation, glycosylation, phosphorylation, lipidation, and acylation. Post-translational processing which cleaves a "prepro" or "pro" form of the protein may also be used to specify protein targeting, folding, and/or activity. Different host cells which have specific cellular machinery and characteristic mechanisms for post-translational activities (e.g., CHO, HeLa, MDCK, HEK293, and WI38) are available from the American Type Culture Collection (ATCC, Manassas VA) and may be chosen to ensure the correct modification and processing of the foreign protein.

10

20

In another embodiment of the invention, natural, modified, or recombinant nucleic acid sequences encoding DME may be ligated to a heterologous sequence resulting in translation of a fusion protein in any of the aforementioned host systems. For example, a chimeric DME protein containing a heterologous moiety that can be recognized by a commercially available antibody may facilitate the screening of peptide libraries for inhibitors of DME activity. Heterologous protein and peptide moieties may also facilitate purification of fusion proteins using commercially available affinity matrices. Such moieties include, but are not limited to, glutathione S-transferase (GST), maltose binding protein (MBP), thioredoxin (Trx), calmodulin binding peptide (CBP), 6-His, FLAG, c-myc, and hemagglutinin (HA). GST, MBP, Trx, CBP, and 6-His enable purification of their cognate fusion proteins on immobilized glutathione, maltose, phenylarsine oxide, calmodulin, and metal-chelate resins, respectively. FLAG, c-myc, and hemagglutinin (HA) enable immunoaffinity purification of fusion proteins using commercially available monoclonal and polyclonal antibodies that specifically recognize these epitope tags. A fusion protein may also be engineered to contain a proteolytic cleavage site located between the DME encoding sequence and the heterologous protein sequence, so that DME may be cleaved away from the heterologous moiety following purification. Methods for fusion protein expression and purification are discussed in Ausubel (1995, supra, ch. 10). A variety of commercially available kits may also be used to facilitate expression and purification of fusion proteins.

In a further embodiment of the invention, synthesis of radiolabeled DME may be achieved <u>in vitro</u> using the TNT rabbit reticulocyte lysate or wheat germ extract system (Promega). These systems couple transcription and translation of protein-coding sequences operably associated with the T7, T3, or SP6 promoters. Translation takes place in the presence of a radiolabeled amino acid precursor, for example, ³⁵S-methionine.

DME of the present invention or fragments thereof may be used to screen for compounds that specifically bind to DME. At least one and up to a plurality of test compounds may be screened for specific binding to DME. Examples of test compounds include antibodies, oligonucleotides, proteins (e.g., receptors), or small molecules.

10

15

20

25

35

In one embodiment, the compound thus identified is closely related to the natural ligand of DME, e.g., a ligand or fragment thereof, a natural substrate, a structural or functional mimetic, or a natural binding partner. (See, e.g., Coligan, J.E. et al. (1991) Current Protocols in Immunology 1(2): Chapter 5.) Similarly, the compound can be closely related to the natural receptor to which DME binds, or to at least a fragment of the receptor, e.g., the ligand binding site. In either case, the compound can be rationally designed using known techniques. In one embodiment, screening for these compounds involves producing appropriate cells which express DME, either as a secreted protein or on the cell membrane. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli. Cells expressing DME or cell membrane fractions which contain DME are then contacted with a test compound and binding, stimulation, or inhibition of activity of either DME or the compound is analyzed.

An assay may simply test binding of a test compound to the polypeptide, wherein binding is detected by a fluorophore, radioisotope, enzyme conjugate, or other detectable label. For example, the assay may comprise the steps of combining at least one test compound with DME, either in solution or affixed to a solid support, and detecting the binding of DME to the compound. Alternatively, the assay may detect or measure binding of a test compound in the presence of a labeled competitor. Additionally, the assay may be carried out using cell-free preparations, chemical libraries, or natural product mixtures, and the test compound(s) may be free in solution or affixed to a solid support.

DME of the present invention or fragments thereof may be used to screen for compounds that modulate the activity of DME. Such compounds may include agonists, antagonists, or partial or inverse agonists. In one embodiment, an assay is performed under conditions permissive for DME activity, wherein DME is combined with at least one test compound, and the activity of DME in the presence of a test compound is compared with the activity of DME in the absence of the test compound. A change in the activity of DME in the presence of the test compound is indicative of a compound that modulates the activity of DME. Alternatively, a test compound is combined with an in

<u>vitro</u> or cell-free system comprising DME under conditions suitable for DME activity, and the assay is performed. In either of these assays, a test compound which modulates the activity of DME may do so indirectly and need not come in direct contact with the test compound. At least one and up to a plurality of test compounds may be screened.

5

10

15

20

25

30

In another embodiment, polynucleotides encoding DME or their mammalian homologs may be "knocked out" in an animal model system using homologous recombination in embryonic stem (ES) cells. Such techniques are well known in the art and are useful for the generation of animal models of human disease. (See, e.g., U.S. Patent Number 5,175,383 and U.S. Patent Number 5,767,337.) For example, mouse ES cells, such as the mouse 129/SvJ cell line, are derived from the early mouse embryo and grown in culture. The ES cells are transformed with a vector containing the gene of interest disrupted by a marker gene, e.g., the neomycin phosphotransferase gene (neo; Capecchi, M.R. (1989) Science 244:1288-1292). The vector integrates into the corresponding region of the host genome by homologous recombination. Alternatively, homologous recombination takes place using the Cre-loxP system to knockout a gene of interest in a tissue- or developmental stage-specific manner (Marth, J.D. (1996) Clin. Invest. 97:1999-2002; Wagner, K.U. et al. (1997) Nucleic Acids Res. 25:4323-4330). Transformed ES cells are identified and microinjected into mouse cell blastocysts such as those from the C57BL/6 mouse strain. The blastocysts are surgically transferred to pseudopregnant dams, and the resulting chimeric progeny are genotyped and bred to produce heterozygous or homozygous strains. Transgenic animals thus generated may be tested with potential therapeutic or toxic agents.

Polynucleotides encoding DME may also be manipulated <u>in vitro</u> in ES cells derived from human blastocysts. Human ES cells have the potential to differentiate into at least eight separate cell lineages including endoderm, mesoderm, and ectodermal cell types. These cell lineages differentiate into, for example, neural cells, hematopoietic lineages, and cardiomyocytes (Thomson, J.A. et al. (1998) Science 282:1145-1147).

Polynucleotides encoding DME can also be used to create "knockin" humanized animals (pigs) or transgenic animals (mice or rats) to model human disease. With knockin technology, a region of a polynucleotide encoding DME is injected into animal ES cells, and the injected sequence integrates into the animal cell genome. Transformed cells are injected into blastulae, and the blastulae are implanted as described above. Transgenic progeny or inbred lines are studied and treated with potential pharmaceutical agents to obtain information on treatment of a human disease. Alternatively, a mammal inbred to overexpress DME, e.g., by secreting DME in its milk, may also serve as a convenient source of that protein (Janne, J. et al. (1998) Biotechnol. Annu. Rev. 4:55-74). THERAPEUTICS

Chemical and structural similarity, e.g., in the context of sequences and motifs, exists between regions of DME and drug metabolizing enzymes. In addition, the expression of DME is closely associated with pineal gland, small intestine, stomach, breast skin and fetal skin, adult brain and fetal brain, prostate epithelial, ovarian, prostate tumor, ureter tumor, breast tumor, esophageal, and seminal vesicle tissues, and a hepatocyte cell line. Therefore, DME appears to play a role in autoimmune/inflammatory, cell proliferative, developmental, endocrine, eye, metabolic, and gastrointestinal disorders, including liver disorders. In the treatment of disorders associated with increased DME expression or activity, it is desirable to decrease the expression or activity of DME. In the treatment of disorders associated with decreased DME expression or activity, it is desirable to increase the expression or activity of DME.

10

15

20

25

Therefore, in one embodiment, DME or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of DME. Examples of such disorders include, but are not limited to, an autoimmune/inflammatory disorder, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a developmental disorder, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy,

gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; an endocrine disorder, such as disorders of the hypothalamus and pituitary resulting from lesions such as primary brain tumors, adenomas, infarction associated with pregnancy, hypophysectomy, aneurysms, vascular malformations, thrombosis, infections, immunological disorders, and complications due to head trauma; disorders associated with hypopituitarism including hypogonadism, Sheehan syndrome, diabetes insipidus, Kallman's disease, Hand-Schuller-Christian disease, Letterer-Siwe disease, sarcoidosis, empty sella syndrome, and dwarfism; disorders associated with hyperpituitarism including acromegaly, giantism, and syndrome of inappropriate antidiuretic hormone (ADH) secretion (SIADH) often caused by benign adenoma; disorders associated with hypothyroidism including goiter, myxedema, acute thyroiditis associated with bacterial infection, subacute thyroiditis associated with viral infection, autoimmune thyroiditis (Hashimoto's disease), and cretinism; disorders associated with hyperthyroidism including thyrotoxicosis and its various forms, Grave's disease, pretibial myxedema, toxic multinodular goiter, thyroid carcinoma, and Plummer's disease; disorders associated with hyperparathyroidism including Conn disease (chronic hypercalemia); pancreatic disorders such as Type I or Type II diabetes mellitus and associated complications; disorders associated with the adrenals such as hyperplasia, carcinoma, or adenoma of the adrenal cortex, hypertension associated with alkalosis, amyloidosis, hypokalemia, Cushing's disease, Liddle's syndrome, and Arnold-Healy-Gordon syndrome, pheochromocytoma tumors, and Addison's disease; disorders associated with gonadal steroid hormones such as: in women, abnormal prolactin production, infertility, endometriosis, perturbations of the menstrual cycle, polycystic ovarian disease, hyperprolactinemia, isolated gonadotropin deficiency, amenorrhea, galactorrhea, hermaphroditism, hirsutism and virilization, breast cancer, and, in post-menopausal women, osteoporosis; and, in men, Leydig cell deficiency, male climacteric phase, and germinal cell aplasia, hypergonadal disorders associated with Leydig cell tumors, androgen resistance associated with absence of androgen receptors, syndrome of 5 α-reductase, and gynecomastia; an eye disorder, such as conjunctivitis, keratoconjunctivitis sicca, keratitis, episcleritis, iritis, posterior uveitis, glaucoma, amaurosis fugax, ischemic optic neuropathy, optic neuritis, Leber's hereditary optic neuropathy, toxic optic neuropathy, vitreous detachment, retinal detachment, cataract, macular degeneration, central serous chorioretinopathy, retinitis pigmentosa, melanoma of the choroid, retrobulbar tumor, and chiasmal

10

15

20

25

tumor; a metabolic disorder, such as Addison's disease, cerebrotendinous xanthomatosis, congenital

adrenal hyperplasia, coumarin resistance, cystic fibrosis, diabetes, fatty hepatocirrhosis, fructose-1,6-diphosphatase deficiency, galactosemia, goiter, glucagonoma, glycogen storage diseases, hereditary fructose intolerance, hyperadrenalism, hypoadrenalism, hyperparathyroidism, hypoparathyroidism, hypercholesterolemia, hyperthyroidism, hypoglycemia, hypothyroidism, hyperlipidemia, hyperlipemia, lipid myopathies, lipodystrophies, lysosomal storage diseases, Menkes syndrome, occipital horn syndrome, mannosidosis, neuraminidase deficiency, obesity, pentosuria phenylketomuria, pseudovitamin D-deficiency rickets; hypocalcemia, hypophosphatemia, and postpubescent cerebellar ataxia, tyrosinemia, and a gastrointestinal disorder, such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, 10 abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, hereditary hyperbilirubinemia, cirrhosis, passive congestion of the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel 15 syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, acquired immunodeficiency syndrome (AIDS) enteropathy, jaundice, hepatic encephalopathy, hepatorenal syndrome, hepatic steatosis, hemochromatosis, Wilson's disease, alpha₁-antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, 20 eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas.

In another embodiment, a vector capable of expressing DME or a fragment or derivative thereof may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of DME including, but not limited to, those described above.

25

30

In a further embodiment, a composition comprising a substantially purified DME in conjunction with a suitable pharmaceutical carrier may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of DME including, but not limited to, those provided above.

In still another embodiment, an agonist which modulates the activity of DME may be administered to a subject to treat or prevent a disorder associated with decreased expression or activity of DME including, but not limited to, those listed above.

In a further embodiment, an antagonist of DME may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of DME. Examples of such

disorders include, but are not limited to, those autoimmune/inflammatory, cell proliferative, developmental, endocrine, eye, metabolic, and gastrointestinal disorders, including liver disorders described above. In one aspect, an antibody which specifically binds DME may be used directly as an antagonist or indirectly as a targeting or delivery mechanism for bringing a pharmaceutical agent to cells or tissues which express DME.

In an additional embodiment, a vector expressing the complement of the polynucleotide encoding DME may be administered to a subject to treat or prevent a disorder associated with increased expression or activity of DME including, but not limited to, those described above.

10

20

25

30

In other embodiments, any of the proteins, antagonists, antibodies, agonists, complementary sequences, or vectors of the invention may be administered in combination with other appropriate therapeutic agents. Selection of the appropriate agents for use in combination therapy may be made by one of ordinary skill in the art, according to conventional pharmaceutical principles. The combination of therapeutic agents may act synergistically to effect the treatment or prevention of the various disorders described above. Using this approach, one may be able to achieve therapeutic efficacy with lower dosages of each agent, thus reducing the potential for adverse side effects.

An antagonist of DME may be produced using methods which are generally known in the art. In particular, purified DME may be used to produce antibodies or to screen libraries of pharmaceutical agents to identify those which specifically bind DME. Antibodies to DME may also be generated using methods that are well known in the art. Such antibodies may include, but are not limited to, polyclonal, monoclonal, chimeric, and single chain antibodies, Fab fragments, and fragments produced by a Fab expression library. Neutralizing antibodies (i.e., those which inhibit dimer formation) are generally preferred for therapeutic use.

For the production of antibodies, various hosts including goats, rabbits, rats, mice, humans, and others may be immunized by injection with DME or with any fragment or oligopeptide thereof which has immunogenic properties. Depending on the host species, various adjuvants may be used to increase immunological response. Such adjuvants include, but are not limited to, Freund's, mineral gels such as aluminum hydroxide, and surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, KLH, and dinitrophenol. Among adjuvants used in humans, BCG (bacilli Calmette-Guerin) and Corynebacterium parvum are especially preferable.

It is preferred that the oligopeptides, peptides, or fragments used to induce antibodies to DME have an amino acid sequence consisting of at least about 5 amino acids, and generally will consist of at least about 10 amino acids. It is also preferable that these oligopeptides, peptides, or fragments are identical to a portion of the amino acid sequence of the natural protein. Short stretches of DME amino acids may be fused with those of another protein, such as KLH, and antibodies to the chimeric

molecule may be produced.

10

Monoclonal antibodies to DME may be prepared using any technique which provides for the production of antibody molecules by continuous cell lines in culture. These include, but are not limited to, the hybridoma technique, the human B-cell hybridoma technique, and the EBV-hybridoma technique. (See, e.g., Kohler, G. et al. (1975) Nature 256:495-497; Kozbor, D. et al. (1985) J. Immunol. Methods 81:31-42; Cote, R.J. et al. (1983) Proc. Natl. Acad. Sci. USA 80:2026-2030; and Cole, S.P. et al. (1984) Mol. Cell Biol. 62:109-120.)

In addition, techniques developed for the production of "chimeric antibodies," such as the splicing of mouse antibody genes to human antibody genes to obtain a molecule with appropriate antigen specificity and biological activity, can be used. (See, e.g., Morrison, S.L. et al. (1984) Proc. Natl. Acad. Sci. USA 81:6851-6855; Neuberger, M.S. et al. (1984) Nature 312:604-608; and Takeda, S. et al. (1985) Nature 314:452-454.) Alternatively, techniques described for the production of single chain antibodies may be adapted, using methods known in the art, to produce DME-specific single chain antibodies. Antibodies with related specificity, but of distinct idiotypic composition, may be generated by chain shuffling from random combinatorial immunoglobulin libraries. (See, e.g., Burton, D.R. (1991) Proc. Natl. Acad. Sci. USA 88:10134-10137.)

Antibodies may also be produced by inducing <u>in vivo</u> production in the lymphocyte population or by screening immunoglobulin libraries or panels of highly specific binding reagents as disclosed in the literature. (See, e.g., Orlandi, R. et al. (1989) Proc. Natl. Acad. Sci. USA 86:3833-3837; Winter, G. et al. (1991) Nature 349:293-299.)

Antibody fragments which contain specific binding sites for DME may also be generated. For example, such fragments include, but are not limited to, $F(ab')_2$ fragments produced by pepsin digestion of the antibody molecule and Fab fragments generated by reducing the disulfide bridges of the $F(ab')_2$ fragments. Alternatively, Fab expression libraries may be constructed to allow rapid and easy identification of monoclonal Fab fragments with the desired specificity. (See, e.g., Huse, W.D. et al. (1989) Science 246:1275-1281.)

Various immunoassays may be used for screening to identify antibodies having the desired specificity. Numerous protocols for competitive binding or immunoradiometric assays using either polyclonal or monoclonal antibodies with established specificities are well known in the art. Such immunoassays typically involve the measurement of complex formation between DME and its specific antibody. A two-site, monoclonal-based immunoassay utilizing monoclonal antibodies reactive to two non-interfering DME epitopes is generally used, but a competitive binding assay may also be employed (Pound, supra).

Various methods such as Scatchard analysis in conjunction with radioimmunoassay techniques

may be used to assess the affinity of antibodies for DME. Affinity is expressed as an association constant, K_a , which is defined as the molar concentration of DME-antibody complex divided by the molar concentrations of free antigen and free antibody under equilibrium conditions. The K_a determined for a preparation of polyclonal antibodies, which are heterogeneous in their affinities for multiple DME epitopes, represents the average affinity, or avidity, of the antibodies for DME. The K_a determined for a preparation of monoclonal antibodies, which are monospecific for a particular DME epitope, represents a true measure of affinity. High-affinity antibody preparations with K_a ranging from about 10^9 to 10^{12} L/mole are preferred for use in immunoassays in which the DME-antibody complex must withstand rigorous manipulations. Low-affinity antibody preparations with K_a ranging from about 10^6 to 10^7 L/mole are preferred for use in immunopurification and similar procedures which ultimately require dissociation of DME, preferably in active form, from the antibody (Catty, D. (1988) Antibodies, Volume I: A Practical Approach, IRL Press, Washington DC; Liddell, J.E. and A. Cryer (1991) A Practical Guide to Monoclonal Antibodies, John Wiley & Sons, New York NY).

10

25

The titer and avidity of polyclonal antibody preparations may be further evaluated to

determine the quality and suitability of such preparations for certain downstream applications. For
example, a polyclonal antibody preparation containing at least 1-2 mg specific antibody/ml, preferably
5-10 mg specific antibody/ml, is generally employed in procedures requiring precipitation of DMEantibody complexes. Procedures for evaluating antibody specificity, titer, and avidity, and guidelines
for antibody quality and usage in various applications, are generally available. (See, e.g., Catty,

supra, and Coligan et al. supra.)

In another embodiment of the invention, the polynucleotides encoding DME, or any fragment or complement thereof, may be used for therapeutic purposes. In one aspect, modifications of gene expression can be achieved by designing complementary sequences or antisense molecules (DNA, RNA, PNA, or modified oligonucleotides) to the coding or regulatory regions of the gene encoding DME. Such technology is well known in the art, and antisense oligonucleotides or larger fragments can be designed from various locations along the coding or control regions of sequences encoding DME. (See, e.g., Agrawal, S., ed. (1996) Antisense Therapeutics, Humana Press Inc., Totawa NJ.)

In therapeutic use, any gene delivery system suitable for introduction of the antisense sequences into appropriate target cells can be used. Antisense sequences can be delivered intracellularly in the form of an expression plasmid which, upon transcription, produces a sequence complementary to at least a portion of the cellular sequence encoding the target protein. (See, e.g., Slater, J.E. et al. (1998) J. Allergy Cli. Immunol. 102(3):469-475; and Scanlon, K.J. et al. (1995) 9(13):1288-1296.) Antisense sequences can also be introduced intracellularly through the use of viral vectors, such as retrovirus and adeno-associated virus vectors. (See, e.g., Miller, A.D. (1990)

Blood 76:271; Ausubel, <u>supra</u>; Uckert, W. and W. Walther (1994) Pharmacol. Ther. 63(3):323-347.) Other gene delivery mechanisms include liposome-derived systems, artificial viral envelopes, and other systems known in the art. (See, e.g., Rossi, J.J. (1995) Br. Med. Bull. 51(1):217-225; Boado, R.J. et al. (1998) J. Pharm. Sci. 87(11):1308-1315; and Morris, M.C. et al. (1997) Nucleic Acids Res. 25(14):2730-2736.)

In another embodiment of the invention, polynucleotides encoding DME may be used for somatic or germline gene therapy. Gene therapy may be performed to (i) correct a genetic deficiency (e.g., in the cases of severe combined immunodeficiency (SCID)-X1 disease characterized by X-linked inheritance (Cavazzana-Calvo, M. et al. (2000) Science 288:669-672), severe combined immunodeficiency syndrome associated with an inherited adenosine deaminase (ADA) deficiency 10 (Blaese, R.M. et al. (1995) Science 270:475-480; Bordignon, C. et al. (1995) Science 270:470-475), cystic fibrosis (Zabner, J. et al. (1993) Cell 75:207-216; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:643-666; Crystal, R.G. et al. (1995) Hum. Gene Therapy 6:667-703), thalassamias, familial hypercholesterolemia, and hemophilia resulting from Factor VIII or Factor IX deficiencies 15 (Crystal, R.G. (1995) Science 270:404-410; Verma, I.M. and N. Somia (1997) Nature 389:239-242)), (ii) express a conditionally lethal gene product (e.g., in the case of cancers which result from unregulated cell proliferation), or (iii) express a protein which affords protection against intracellular parasites (e.g., against human retroviruses, such as human immunodeficiency virus (HIV) (Baltimore, D. (1988) Nature 335:395-396; Poeschla, E. et al. (1996) Proc. Natl. Acad. Sci. USA. 93:11395-11399), hepatitis B or C virus (HBV, HCV); fungal parasites, such as Candida albicans and Paracoccidioides brasiliensis; and protozoan parasites such as Plasmodium falciparum and Trypanosoma cruzi). In the case where a genetic deficiency in DME expression or regulation causes disease, the expression of DME from an appropriate population of transduced cells may alleviate the clinical manifestations caused by the genetic deficiency.

In a further embodiment of the invention, diseases or disorders caused by deficiencies in DME are treated by constructing mammalian expression vectors encoding DME and introducing these vectors by mechanical means into DME-deficient cells. Mechanical transfer technologies for use with cells <u>in vivo</u> or <u>ex vitro</u> include (i) direct DNA microinjection into individual cells, (ii) ballistic gold particle delivery, (iii) liposome-mediated transfection, (iv) receptor-mediated gene transfer, and (v) the use of DNA transposons (Morgan, R.A. and W.F. Anderson (1993) Annu. Rev. Biochem. 62:191-217; Ivics, Z. (1997) Cell 91:501-510; Boulay, J-L. and H. Récipon (1998) Curr. Opin. Biotechnol. 9:445-450).

25

Expression vectors that may be effective for the expression of DME include, but are not limited to, the PCDNA 3.1, EPITAG, PRCCMV2, PREP, PVAX vectors (Invitrogen, Carlsbad CA),

PCMV-SCRIPT, PCMV-TAG, PEGSH/PERV (Stratagene, La Jolla CA), and PTET-OFF, PTET-ON, PTRE2, PTRE2-LUC, PTK-HYG (Clontech, Palo Alto CA). DME may be expressed using (i) a constitutively active promoter, (e.g., from cytomegalovirus (CMV), Rous sarcoma virus (RSV), SV40 virus, thymidine kinase (TK), or β-actin genes), (ii) an inducible promoter (e.g., the tetracycline-regulated promoter (Gossen, M. and H. Bujard (1992) Proc. Natl. Acad. Sci. USA 89:5547-5551; Gossen, M. et al. (1995) Science 268:1766-1769; Rossi, F.M.V. and H.M. Blau (1998) Curr. Opin. Biotechnol. 9:451-456), commercially available in the T-REX plasmid (Invitrogen)); the ecdysone-inducible promoter (available in the plasmids PVGRXR and PIND; Invitrogen); the FK506/rapamycin inducible promoter; or the RU486/mifepristone inducible promoter (Rossi, F.M.V. and Blau, H.M. supra)), or (iii) a tissue-specific promoter or the native promoter of the endogenous gene encoding DME from a normal individual.

Commercially available liposome transformation kits (e.g., the PERFECT LIPID TRANSFECTION KIT, available from Invitrogen) allow one with ordinary skill in the art to deliver polynucleotides to target cells in culture and require minimal effort to optimize experimental parameters. In the alternative, transformation is performed using the calcium phosphate method (Graham, F.L. and A.J. Eb (1973) Virology 52:456-467), or by electroporation (Neumann, E. et al. (1982) EMBO J. 1:841-845). The introduction of DNA to primary cells requires modification of these standardized mammalian transfection protocols.

In another embodiment of the invention, diseases or disorders caused by genetic defects with respect to DME expression are treated by constructing a retrovirus vector consisting of (i) the polynucleotide encoding DME under the control of an independent promoter or the retrovirus long terminal repeat (LTR) promoter, (ii) appropriate RNA packaging signals, and (iii) a Rev-responsive element (RRE) along with additional retrovirus cis-acting RNA sequences and coding sequences required for efficient vector propagation. Retrovirus vectors (e.g., PFB and PFBNEO) are commercially available (Stratagene) and are based on published data (Riviere, I. et al. (1995) Proc. Natl. Acad. Sci. USA 92:6733-6737), incorporated by reference herein. The vector is propagated in an appropriate vector producing cell line (VPCL) that expresses an envelope gene with a tropism for receptors on the target cells or a promiscuous envelope protein such as VSVg (Armentano, D. et al. (1987) J. Virol. 61:1647-1650; Bender, M.A. et al. (1987) J. Virol. 61:1639-1646; Adam, M.A. and A.D. Miller (1988) J. Virol. 62:3802-3806; Dull, T. et al. (1998) J. Virol. 72:8463-8471; Zufferey, R. et al. (1998) J. Virol. 72:9873-9880). U.S. Patent Number 5,910,434 to Rigg ("Method for obtaining retrovirus packaging cell lines producing high transducing efficiency retroviral supernatant") discloses a method for obtaining retrovirus packaging cell lines and is hereby incorporated by reference. Propagation of retrovirus vectors, transduction of a population of cells (e.g., CD4⁺ T-cells), and the

return of transduced cells to a patient are procedures well known to persons skilled in the art of gene therapy and have been well documented (Ranga, U. et al. (1997) J. Virol. 71:7020-7029; Bauer, G. et al. (1997) Blood 89:2259-2267; Bonyhadi, M.L. (1997) J. Virol. 71:4707-4716; Ranga, U. et al. (1998) Proc. Natl. Acad. Sci. USA 95:1201-1206; Su, L. (1997) Blood 89:2283-2290).

5

10

15

20

25

30

In the alternative, an adenovirus-based gene therapy delivery system is used to deliver polynucleotides encoding DME to cells which have one or more genetic abnormalities with respect to the expression of DME. The construction and packaging of adenovirus-based vectors are well known to those with ordinary skill in the art. Replication defective adenovirus vectors have proven to be versatile for importing genes encoding immunoregulatory proteins into intact islets in the pancreas (Csete, M.E. et al. (1995) Transplantation 27:263-268). Potentially useful adenoviral vectors are described in U.S. Patent Number 5,707,618 to Armentano ("Adenovirus vectors for gene therapy"), hereby incorporated by reference. For adenoviral vectors, see also Antinozzi, P.A. et al. (1999) Annu. Rev. Nutr. 19:511-544 and Verma, I.M. and N. Somia (1997) Nature 18:389:239-242, both incorporated by reference herein.

In another alternative, a herpes-based, gene therapy delivery system is used to deliver polynucleotides encoding DME to target cells which have one or more genetic abnormalities with respect to the expression of DME. The use of herpes simplex virus (HSV)-based vectors may be especially valuable for introducing DME to cells of the central nervous system, for which HSV has a tropism. The construction and packaging of herpes-based vectors are well known to those with ordinary skill in the art. A replication-competent herpes simplex virus (HSV) type 1-based vector has been used to deliver a reporter gene to the eyes of primates (Liu, X. et al. (1999) Exp. Eye Res. 169:385-395). The construction of a HSV-1 virus vector has also been disclosed in detail in U.S. Patent Number 5,804,413 to DeLuca ("Herpes simplex virus strains for gene transfer"), which is hereby incorporated by reference. U.S. Patent Number 5,804,413 teaches the use of recombinant HSV d92 which consists of a genome containing at least one exogenous gene to be transferred to a cell under the control of the appropriate promoter for purposes including human gene therapy. Also taught by this patent are the construction and use of recombinant HSV strains deleted for ICP4, ICP27 and ICP22. For HSV vectors, see also Goins, W.F. et al. (1999) J. Virol. 73:519-532 and Xu, H. et al. (1994) Dev. Biol. 163:152-161, hereby incorporated by reference. The manipulation of cloned herpesvirus sequences, the generation of recombinant virus following the transfection of multiple plasmids containing different segments of the large herpesvirus genomes, the growth and propagation of herpesvirus, and the infection of cells with herpesvirus are techniques well known to those of ordinary skill in the art.

In another alternative, an alphavirus (positive, single-stranded RNA virus) vector is used to

deliver polynucleotides encoding DME to target cells. The biology of the prototypic alphavirus, Semliki Forest Virus (SFV), has been studied extensively and gene transfer vectors have been based on the SFV genome (Garoff, H. and K.-J. Li (1998) Curr. Opin. Biotechnol. 9:464-469). During alphavirus RNA replication, a subgenomic RNA is generated that normally encodes the viral capsid proteins. This subgenomic RNA replicates to higher levels than the full length genomic RNA, resulting in the overproduction of capsid proteins relative to the viral proteins with enzymatic activity (e.g., protease and polymerase). Similarly, inserting the coding sequence for DME into the alphavirus genome in place of the capsid-coding region results in the production of a large number of DMEcoding RNAs and the synthesis of high levels of DME in vector transduced cells. While alphavirus infection is typically associated with cell lysis within a few days, the ability to establish a persistent infection in hamster normal kidney cells (BHK-21) with a variant of Sindbis virus (SIN) indicates that the lytic replication of alphaviruses can be altered to suit the needs of the gene therapy application (Dryga, S.A. et al. (1997) Virology 228:74-83). The wide host range of alphaviruses will allow the introduction of DME into a variety of cell types. The specific transduction of a subset of cells in a population may require the sorting of cells prior to transduction. The methods of manipulating infectious cDNA clones of alphaviruses, performing alphavirus cDNA and RNA transfections, and performing alphavirus infections, are well known to those with ordinary skill in the art.

Oligonucleotides derived from the transcription initiation site, e.g., between about positions -10 and +10 from the start site, may also be employed to inhibit gene expression. Similarly, inhibition can be achieved using triple helix base-pairing methodology. Triple helix pairing is useful because it causes inhibition of the ability of the double helix to open sufficiently for the binding of polymerases, transcription factors, or regulatory molecules. Recent therapeutic advances using triplex DNA have been described in the literature. (See, e.g., Gee, J.E. et al. (1994) in Huber, B.E. and B.I. Carr, Molecular and Immunologic Approaches, Futura Publishing, Mt. Kisco NY, pp. 163-177.) A complementary sequence or antisense molecule may also be designed to block translation of mRNA by preventing the transcript from binding to ribosomes.

25

Ribozymes, enzymatic RNA molecules, may also be used to catalyze the specific cleavage of RNA. The mechanism of ribozyme action involves sequence-specific hybridization of the ribozyme molecule to complementary target RNA, followed by endonucleolytic cleavage. For example, engineered hammerhead motif ribozyme molecules may specifically and efficiently catalyze endonucleolytic cleavage of sequences encoding DME.

Specific ribozyme cleavage sites within any potential RNA target are initially identified by scanning the target molecule for ribozyme cleavage sites, including the following sequences: GUA, GUU, and GUC. Once identified, short RNA sequences of between 15 and 20 ribonucleotides,

corresponding to the region of the target gene containing the cleavage site, may be evaluated for secondary structural features which may render the oligonucleotide inoperable. The suitability of candidate targets may also be evaluated by testing accessibility to hybridization with complementary oligonucleotides using ribonuclease protection assays.

5

10

15

20

25

30

Complementary ribonucleic acid molecules and ribozymes of the invention may be prepared by any method known in the art for the synthesis of nucleic acid molecules. These include techniques for chemically synthesizing oligonucleotides such as solid phase phosphoramidite chemical synthesis. Alternatively, RNA molecules may be generated by <u>in vitro</u> and <u>in vivo</u> transcription of DNA sequences encoding DME. Such DNA sequences may be incorporated into a wide variety of vectors with suitable RNA polymerase promoters such as T7 or SP6. Alternatively, these cDNA constructs that synthesize complementary RNA, constitutively or inducibly, can be introduced into cell lines, cells, or tissues.

RNA molecules may be modified to increase intracellular stability and half-life. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends of the molecule, or the use of phosphorothioate or 2' O-methyl rather than phosphodiesterase linkages within the backbone of the molecule. This concept is inherent in the production of PNAs and can be extended in all of these molecules by the inclusion of nontraditional bases such as inosine, queosine, and wybutosine, as well as acetyl-, methyl-, thio-, and similarly modified forms of adenine, cytidine, guanine, thymine, and uridine which are not as easily recognized by endogenous endonucleases.

An additional embodiment of the invention encompasses a method for screening for a compound which is effective in altering expression of a polynucleotide encoding DME. Compounds which may be effective in altering expression of a specific polynucleotide may include, but are not limited to, oligonucleotides, antisense oligonucleotides, triple helix-forming oligonucleotides, transcription factors and other polypeptide transcriptional regulators, and non-macromolecular chemical entities which are capable of interacting with specific polynucleotide sequences. Effective compounds may alter polynucleotide expression by acting as either inhibitors or promoters of polynucleotide expression. Thus, in the treatment of disorders associated with increased DME expression or activity, a compound which specifically inhibits expression of the polynucleotide encoding DME may be therapeutically useful, and in the treatment of disorders associated with decreased DME expression or activity, a compound which specifically promotes expression of the polynucleotide encoding DME may be therapeutically useful.

At least one, and up to a plurality, of test compounds may be screened for effectiveness in altering expression of a specific polynucleotide. A test compound may be obtained by any method commonly known in the art, including chemical modification of a compound known to be effective

in altering polynucleotide expression; selection from an existing, commercially-available or proprietary library of naturally-occurring or non-natural chemical compounds; rational design of a compound based on chemical and/or structural properties of the target polynucleotide; and selection from a library of chemical compounds created combinatorially or randomly. A sample comprising a polynucleotide encoding DME is exposed to at least one test compound thus obtained. The sample may comprise, for example, an intact or permeabilized cell, or an in vitro cell-free or reconstituted biochemical system. Alterations in the expression of a polynucleotide encoding DME are assayed by any method commonly known in the art. Typically, the expression of a specific nucleotide is detected by hybridization with a probe having a nucleotide sequence complementary to the sequence of the polynucleotide encoding DME. The amount of hybridization may be quantified, thus forming the basis for a comparison of the expression of the polynucleotide both with and without exposure to one or more test compounds. Detection of a change in the expression of a polynucleotide exposed to a test compound indicates that the test compound is effective in altering the expression of the polynucleotide. A screen for a compound effective in altering expression of a specific polynucleotide can be carried out, for example, using a Schizosaccharomyces pombe gene expression system (Atkins, D. et al. (1999) U.S. Patent No. 5,932,435; Arndt, G.M. et al. (2000) Nucleic Acids Res. 28:E15) or a human cell line such as HeLa cell (Clarke, M.L. et al. (2000) Biochem. Biophys. Res. Commun. 268:8-13). A particular embodiment of the present invention involves screening a combinatorial library of oligonucleotides (such as deoxyribonucleotides, ribonucleotides, peptide nucleic acids, and modified oligonucleotides) for antisense activity against a specific polynucleotide sequence (Bruice, T.W. et al. (1997) U.S. Patent No. 5,686,242; Bruice, T.W. et al. (2000) U.S. Patent No. 6,022,691).

15

20

30

Many methods for introducing vectors into cells or tissues are available and equally suitable for use <u>in vivo</u>, <u>in vitro</u>, and <u>ex vivo</u>. For <u>ex vivo</u> therapy, vectors may be introduced into stem cells taken from the patient and clonally propagated for autologous transplant back into that same patient. Delivery by transfection, by liposome injections, or by polycationic amino polymers may be achieved using methods which are well known in the art. (See, e.g., Goldman, C.K. et al. (1997) Nat. Biotechnol. 15:462-466.)

Any of the therapeutic methods described above may be applied to any subject in need of such therapy, including, for example, mammals such as humans, dogs, cats, cows, horses, rabbits, and monkeys.

An additional embodiment of the invention relates to the administration of a composition which generally comprises an active ingredient formulated with a pharmaceutically acceptable excipient.

Excipients may include, for example, sugars, starches, celluloses, gums, and proteins. Various

formulations are commonly known and are thoroughly discussed in the latest edition of <u>Remington's Pharmaceutical Sciences</u> (Maack Publishing, Easton PA). Such compositions may consist of DME, antibodies to DME, and mimetics, agonists, antagonists, or inhibitors of DME.

The compositions utilized in this invention may be administered by any number of routes including, but not limited to, oral, intravenous, intramuscular, intra-arterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intranasal, enteral, topical, sublingual, or rectal means.

Compositions for pulmonary administration may be prepared in liquid or dry powder form. These compositions are generally aerosolized immediately prior to inhalation by the patient. In the case of small molecules (e.g. traditional low molecular weight organic drugs), aerosol delivery of fast-acting formulations is well-known in the art. In the case of macromolecules (e.g. larger peptides and proteins), recent developments in the field of pulmonary delivery via the alveolar region of the lung have enabled the practical delivery of drugs such as insulin to blood circulation (see, e.g., Patton, J.S. et al., U.S. Patent No. 5,997,848). Pulmonary delivery has the advantage of administration without needle injection, and obviates the need for potentially toxic penetration enhancers.

Compositions suitable for use in the invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose. The determination of an effective dose is well within the capability of those skilled in the art.

15

20

30

Specialized forms of compositions may be prepared for direct intracellular delivery of macromolecules comprising DME or fragments thereof. For example, liposome preparations containing a cell-impermeable macromolecule may promote cell fusion and intracellular delivery of the macromolecule. Alternatively, DME or a fragment thereof may be joined to a short cationic N-terminal portion from the HIV Tat-1 protein. Fusion proteins thus generated have been found to transduce into the cells of all tissues, including the brain, in a mouse model system (Schwarze, S.R. et al. (1999) Science 285:1569-1572).

For any compound, the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., of neoplastic cells, or in animal models such as mice, rats, rabbits, dogs, monkeys, or pigs. An animal model may also be used to determine the appropriate concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.

A therapeutically effective dose refers to that amount of active ingredient, for example DME or fragments thereof, antibodies of DME, and agonists, antagonists or inhibitors of DME, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity may be determined by standard pharmaceutical procedures in cell cultures or with experimental animals, such as by

calculating the ED_{50} (the dose therapeutically effective in 50% of the population) or LD_{50} (the dose lethal to 50% of the population) statistics. The dose ratio of toxic to therapeutic effects is the therapeutic index, which can be expressed as the LD_{50}/ED_{50} ratio. Compositions which exhibit large therapeutic indices are preferred. The data obtained from cell culture assays and animal studies are used to formulate a range of dosage for human use. The dosage contained in such compositions is preferably within a range of circulating concentrations that includes the ED_{50} with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, the sensitivity of the patient, and the route of administration.

The exact dosage will be determined by the practitioner, in light of factors related to the subject requiring treatment. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Factors which may be taken into account include the severity of the disease state, the general health of the subject, the age, weight, and gender of the subject, time and frequency of administration, drug combination(s), reaction sensitivities, and response to therapy. Long-acting compositions may be administered every 3 to 4 days, every week, or biweekly depending on the half-life and clearance rate of the particular formulation.

Normal dosage amounts may vary from about $0.1~\mu g$ to $100,000~\mu g$, up to a total dose of about 1 gram, depending upon the route of administration. Guidance as to particular dosages and methods of delivery is provided in the literature and generally available to practitioners in the art. Those skilled in the art will employ different formulations for nucleotides than for proteins or their inhibitors. Similarly, delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.

DIAGNOSTICS

10

15

30

In another embodiment, antibodies which specifically bind DME may be used for the diagnosis of disorders characterized by expression of DME, or in assays to monitor patients being treated with DME or agonists, antagonists, or inhibitors of DME. Antibodies useful for diagnostic purposes may be prepared in the same manner as described above for therapeutics. Diagnostic assays for DME include methods which utilize the antibody and a label to detect DME in human body fluids or in extracts of cells or tissues. The antibodies may be used with or without modification, and may be labeled by covalent or non-covalent attachment of a reporter molecule. A wide variety of reporter molecules, several of which are described above, are known in the art and may be used.

A variety of protocols for measuring DME, including ELISAs, RIAs, and FACS, are known in the art and provide a basis for diagnosing altered or abnormal levels of DME expression. Normal or standard values for DME expression are established by combining body fluids or cell extracts taken from normal mammalian subjects, for example, human subjects, with antibodies to DME under

conditions suitable for complex formation. The amount of standard complex formation may be quantitated by various methods, such as photometric means. Quantities of DME expressed in subject, control, and disease samples from biopsied tissues are compared with the standard values. Deviation between standard and subject values establishes the parameters for diagnosing disease.

In another embodiment of the invention, the polynucleotides encoding DME may be used for diagnostic purposes. The polynucleotides which may be used include oligonucleotide sequences, complementary RNA and DNA molecules, and PNAs. The polynucleotides may be used to detect and quantify gene expression in biopsied tissues in which expression of DME may be correlated with disease. The diagnostic assay may be used to determine absence, presence, and excess expression of DME, and to monitor regulation of DME levels during therapeutic intervention.

5

10

20

In one aspect, hybridization with PCR probes which are capable of detecting polynucleotide sequences, including genomic sequences, encoding DME or closely related molecules may be used to identify nucleic acid sequences which encode DME. The specificity of the probe, whether it is made from a highly specific region, e.g., the 5' regulatory region, or from a less specific region, e.g., a conserved motif, and the stringency of the hybridization or amplification will determine whether the probe identifies only naturally occurring sequences encoding DME, allelic variants, or related sequences.

Probes may also be used for the detection of related sequences, and may have at least 50% sequence identity to any of the DME encoding sequences. The hybridization probes of the subject invention may be DNA or RNA and may be derived from the sequence of SEQ ID NO:14-26 or from genomic sequences including promoters, enhancers, and introns of the DME gene.

Means for producing specific hybridization probes for DNAs encoding DME include the cloning of polynucleotide sequences encoding DME or DME derivatives into vectors for the production of mRNA probes. Such vectors are known in the art, are commercially available, and may be used to synthesize RNA probes <u>in vitro</u> by means of the addition of the appropriate RNA polymerases and the appropriate labeled nucleotides. Hybridization probes may be labeled by a variety of reporter groups, for example, by radionuclides such as ³²P or ³⁵S, or by enzymatic labels, such as alkaline phosphatase coupled to the probe via avidin/biotin coupling systems, and the like.

Polynucleotide sequences encoding DME may be used for the diagnosis of disorders associated with expression of DME. Examples of such disorders include, but are not limited to, an autoimmune/inflammatory disorder, such as acquired immunodeficiency syndrome (AIDS), Addison's disease, adult respiratory distress syndrome, allergies, ankylosing spondylitis, amyloidosis, anemia, asthma, atherosclerosis, autoimmune hemolytic anemia, autoimmune thyroiditis, autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), bronchitis, cholecystitis, contact

dermatitis, Crohn's disease, atopic dermatitis, dermatomyositis, diabetes mellitus, emphysema, episodic lymphopenia with lymphocytotoxins, erythroblastosis fetalis, erythema nodosum, atrophic gastritis, glomerulonephritis, Goodpasture's syndrome, gout, Graves' disease, Hashimoto's thyroiditis, hypereosinophilia, irritable bowel syndrome, multiple sclerosis, myasthenia gravis, myocardial or pericardial inflammation, osteoarthritis, osteoporosis, pancreatitis, polymyositis, psoriasis, Reiter's syndrome, rheumatoid arthritis, scleroderma, Sjögren's syndrome, systemic anaphylaxis, systemic lupus erythematosus, systemic sclerosis, thrombocytopenic purpura, ulcerative colitis, uveitis, Werner syndrome, complications of cancer, hemodialysis, and extracorporeal circulation, viral, bacterial, fungal, parasitic, protozoal, and helminthic infections, and trauma; a cell proliferative disorder, such as actinic keratosis, arteriosclerosis, atherosclerosis, bursitis, cirrhosis, hepatitis, mixed connective tissue disease (MCTD), myelofibrosis, paroxysmal nocturnal hemoglobinuria, polycythemia vera, psoriasis, primary thrombocythemia, and cancers including adenocarcinoma, leukemia, lymphoma, melanoma, myeloma, sarcoma, teratocarcinoma, and, in particular, cancers of the adrenal gland, bladder, bone, bone marrow, brain, breast, cervix, gall bladder, ganglia, gastrointestinal tract, heart, kidney, liver, lung, muscle, ovary, pancreas, parathyroid, penis, prostate, salivary glands, skin, spleen, testis, thymus, thyroid, and uterus; a developmental disorder, such as renal tubular acidosis, anemia, Cushing's syndrome, achondroplastic dwarfism, Duchenne and Becker muscular dystrophy, epilepsy, gonadal dysgenesis, WAGR syndrome (Wilms' tumor, aniridia, genitourinary abnormalities, and mental retardation), Smith-Magenis syndrome, myelodysplastic syndrome, hereditary mucoepithelial dysplasia, hereditary keratodermas, hereditary neuropathies such as Charcot-Marie-Tooth disease and neurofibromatosis, hypothyroidism, hydrocephalus, seizure disorders such as Syndenham's chorea and cerebral palsy, spina bifida, anencephaly, craniorachischisis, congenital glaucoma, cataract, and sensorineural hearing loss; an endocrine disorder, such as disorders of the hypothalamus and pituitary resulting from lesions such as primary brain tumors, adenomas, infarction associated with pregnancy, hypophysectomy, aneurysms, vascular malformations, thrombosis, infections, immunological disorders, and complications due to head trauma; disorders associated with hypopituitarism including hypogonadism, Sheehan syndrome, diabetes insipidus, Kallman's disease, Hand-Schuller-Christian disease, Letterer-Siwe disease, sarcoidosis, empty sella syndrome, and dwarfism; disorders associated with hyperpituitarism including acromegaly, giantism, and syndrome of inappropriate antidiuretic hormone (ADH) secretion (SIADH) often caused by benign adenoma; disorders associated with hypothyroidism including goiter, myxedema, acute thyroiditis associated with bacterial infection, subacute thyroiditis associated with viral infection, autoimmune thyroiditis (Hashimoto's disease), and cretinism; disorders associated with hyperthyroidism including thyrotoxicosis and its various forms, Grave's disease, pretibial myxedema, toxic multinodular goiter, thyroid carcinoma, and Plummer's

10

15

20

30

disease; disorders associated with hyperparathyroidism including Conn disease (chronic hypercalemia); pancreatic disorders such as Type I or Type II diabetes mellitus and associated complications; disorders associated with the adrenals such as hyperplasia, carcinoma, or adenoma of the adrenal cortex, hypertension associated with alkalosis, amyloidosis, hypokalemia, Cushing's disease, Liddle's syndrome, and Arnold-Healy-Gordon syndrome, pheochromocytoma tumors, and Addison's disease; disorders associated with gonadal steroid hormones such as: in women, abnormal prolactin production, infertility, endometriosis, perturbations of the menstrual cycle, polycystic ovarian disease, hyperprolactinemia, isolated gonadotropin deficiency, amenorrhea, galactorrhea, hermaphroditism, hirsutism and virilization, breast cancer, and, in post-menopausal women, osteoporosis; and, in men, 10 Leydig cell deficiency, male climacteric phase, and germinal cell aplasia, hypergonadal disorders associated with Leydig cell tumors, androgen resistance associated with absence of androgen receptors, syndrome of 5 α-reductase, and gynecomastia; an eye disorder, such as conjunctivitis, keratoconjunctivitis sicca, keratitis, episcleritis, iritis, posterior uveitis, glaucoma, amaurosis fugax, ischemic optic neuropathy, optic neuritis, Leber's hereditary optic neuropathy, toxic optic neuropathy, vitreous detachment, retinal detachment, cataract, macular degeneration, central serous 15 chorioretinopathy, retinitis pigmentosa, melanoma of the choroid, retrobulbar tumor, and chiasmal tumor; a metabolic disorder, such as Addison's disease, cerebrotendinous xanthomatosis, congenital adrenal hyperplasia, coumarin resistance, cystic fibrosis, diabetes, fatty hepatocirrhosis, fructose-1,6-diphosphatase deficiency, galactosemia, goiter, glucagonoma, glycogen storage diseases, hereditary fructose intolerance, hyperadrenalism, hypoadrenalism, hyperparathyroidism, 20 hypoparathyroidism, hypercholesterolemia, hyperthyroidism, hypoglycemia, hypothyroidism, hyperlipidemia, hyperlipemia, lipid myopathies, lipodystrophies, lysosomal storage diseases, Menkes syndrome, occipital horn syndrome, mannosidosis, neuraminidase deficiency, obesity, pentosuria phenylketonuria, pseudovitamin D-deficiency rickets; hypocalcemia, hypophosphatemia, and postpubescent cerebellar ataxia, tyrosinemia, and a gastrointestinal disorder, such as dysphagia, peptic esophagitis, esophageal spasm, esophageal stricture, esophageal carcinoma, dyspepsia, indigestion, gastritis, gastric carcinoma, anorexia, nausea, emesis, gastroparesis, antral or pyloric edema, abdominal angina, pyrosis, gastroenteritis, intestinal obstruction, infections of the intestinal tract, peptic ulcer, cholelithiasis, cholecystitis, cholestasis, pancreatitis, pancreatic carcinoma, biliary tract disease, hepatitis, hyperbilirubinemia, hereditary hyperbilirubinemia, cirrhosis, passive congestion of 30 the liver, hepatoma, infectious colitis, ulcerative colitis, ulcerative proctitis, Crohn's disease, Whipple's disease, Mallory-Weiss syndrome, colonic carcinoma, colonic obstruction, irritable bowel syndrome, short bowel syndrome, diarrhea, constipation, gastrointestinal hemorrhage, acquired immunodeficiency syndrome (AIDS) enteropathy, jaundice, hepatic encephalopathy, hepatorenal

syndrome, hepatic steatosis, hemochromatosis, Wilson's disease, alpha; antitrypsin deficiency, Reye's syndrome, primary sclerosing cholangitis, liver infarction, portal vein obstruction and thrombosis, centrilobular necrosis, peliosis hepatis, hepatic vein thrombosis, veno-occlusive disease, preeclampsia, eclampsia, acute fatty liver of pregnancy, intrahepatic cholestasis of pregnancy, and hepatic tumors including nodular hyperplasias, adenomas, and carcinomas. The polynucleotide sequences encoding DME may be used in Southern or northern analysis, dot blot, or other membrane-based technologies; in PCR technologies; in dipstick, pin, and multiformat ELISA-like assays; and in microarrays utilizing fluids or tissues from patients to detect altered DME expression. Such qualitative or quantitative methods are well known in the art.

In a particular aspect, the nucleotide sequences encoding DME may be useful in assays that detect the presence of associated disorders, particularly those mentioned above. The nucleotide sequences encoding DME may be labeled by standard methods and added to a fluid or tissue sample from a patient under conditions suitable for the formation of hybridization complexes. After a suitable incubation period, the sample is washed and the signal is quantified and compared with a standard value. If the amount of signal in the patient sample is significantly altered in comparison to a control sample then the presence of altered levels of nucleotide sequences encoding DME in the sample indicates the presence of the associated disorder. Such assays may also be used to evaluate the efficacy of a particular therapeutic treatment regimen in animal studies, in clinical trials, or to monitor the treatment of an individual patient.

10

20

30

In order to provide a basis for the diagnosis of a disorder associated with expression of DME, a normal or standard profile for expression is established. This may be accomplished by combining body fluids or cell extracts taken from normal subjects, either animal or human, with a sequence, or a fragment thereof, encoding DME, under conditions suitable for hybridization or amplification. Standard hybridization may be quantified by comparing the values obtained from normal subjects with values from an experiment in which a known amount of a substantially purified polynucleotide is used. Standard values obtained in this manner may be compared with values obtained from samples from patients who are symptomatic for a disorder. Deviation from standard values is used to establish the presence of a disorder.

Once the presence of a disorder is established and a treatment protocol is initiated, hybridization assays may be repeated on a regular basis to determine if the level of expression in the patient begins to approximate that which is observed in the normal subject. The results obtained from successive assays may be used to show the efficacy of treatment over a period ranging from several days to months.

With respect to cancer, the presence of an abnormal amount of transcript (either under- or

overexpressed) in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.

Additional diagnostic uses for oligonucleotides designed from the sequences encoding DME may involve the use of PCR. These oligomers may be chemically synthesized, generated enzymatically, or produced in vitro. Oligomers will preferably contain a fragment of a polynucleotide encoding DME, or a fragment of a polynucleotide complementary to the polynucleotide encoding DME, and will be employed under optimized conditions for identification of a specific gene or condition. Oligomers may also be employed under less stringent conditions for detection or quantification of closely related DNA or RNA sequences.

10

15

20

30

In a particular aspect, oligonucleotide primers derived from the polynucleotide sequences encoding DME may be used to detect single nucleotide polymorphisms (SNPs). SNPs are substitutions, insertions and deletions that are a frequent cause of inherited or acquired genetic disease in humans. Methods of SNP detection include, but are not limited to, single-stranded conformation polymorphism (SSCP) and fluorescent SSCP (fSSCP) methods. In SSCP, oligonucleotide primers derived from the polynucleotide sequences encoding DME are used to amplify DNA using the polymerase chain reaction (PCR). The DNA may be derived, for example, from diseased or normal tissue, biopsy samples, bodily fluids, and the like. SNPs in the DNA cause differences in the secondary and tertiary structures of PCR products in single-stranded form, and these differences are detectable using gel electrophoresis in non-denaturing gels. In fSCCP, the oligonucleotide primers are fluorescently labeled, which allows detection of the amplimers in high-throughput equipment such as DNA sequencing machines. Additionally, sequence database analysis methods, termed in silico SNP (isSNP), are capable of identifying polymorphisms by comparing the sequence of individual overlapping DNA fragments which assemble into a common consensus sequence. These computerbased methods filter out sequence variations due to laboratory preparation of DNA and sequencing errors using statistical models and automated analyses of DNA sequence chromatograms. In the alternative, SNPs may be detected and characterized by mass spectrometry using, for example, the high throughput MASSARRAY system (Sequenom, Inc., San Diego CA).

Methods which may also be used to quantify the expression of DME include radiolabeling or biotinylating nucleotides, coamplification of a control nucleic acid, and interpolating results from standard curves. (See, e.g., Melby, P.C. et al. (1993) J. Immunol. Methods 159:235-244; Duplaa, C. et al. (1993) Anal. Biochem. 212:229-236.) The speed of quantitation of multiple samples may be

accelerated by running the assay in a high-throughput format where the oligomer or polynucleotide of interest is presented in various dilutions and a spectrophotometric or colorimetric response gives rapid quantitation.

In further embodiments, oligonucleotides or longer fragments derived from any of the polynucleotide sequences described herein may be used as elements on a microarray. The microarray can be used in transcript imaging techniques which monitor the relative expression levels of large numbers of genes simultaneously as described below. The microarray may also be used to identify genetic variants, mutations, and polymorphisms. This information may be used to determine gene function, to understand the genetic basis of a disorder, to diagnose a disorder, to monitor progression/regression of disease as a function of gene expression, and to develop and monitor the activities of therapeutic agents in the treatment of disease. In particular, this information may be used to develop a pharmacogenomic profile of a patient in order to select the most appropriate and effective treatment regimen for that patient. For example, therapeutic agents which are highly effective and display the fewest side effects may be selected for a patient based on his/her pharmacogenomic profile.

10

15

20

25

30

In another embodiment, DME, fragments of DME, or antibodies specific for DME may be used as elements on a microarray. The microarray may be used to monitor or measure protein-protein interactions, drug-target interactions, and gene expression profiles, as described above.

A particular embodiment relates to the use of the polynucleotides of the present invention to generate a transcript image of a tissue or cell type. A transcript image represents the global pattern of gene expression by a particular tissue or cell type. Global gene expression patterns are analyzed by quantifying the number of expressed genes and their relative abundance under given conditions and at a given time. (See Seilhamer et al., "Comparative Gene Transcript Analysis," U.S. Patent Number 5,840,484, expressly incorporated by reference herein.) Thus a transcript image may be generated by hybridizing the polynucleotides of the present invention or their complements to the totality of transcripts or reverse transcripts of a particular tissue or cell type. In one embodiment, the hybridization takes place in high-throughput format, wherein the polynucleotides of the present invention or their complements comprise a subset of a plurality of elements on a microarray. The resultant transcript image would provide a profile of gene activity.

Transcript images may be generated using transcripts isolated from tissues, cell lines, biopsies, or other biological samples. The transcript image may thus reflect gene expression <u>in vivo</u>, as in the case of a tissue or biopsy sample, or <u>in vitro</u>, as in the case of a cell line.

Transcript images which profile the expression of the polynucleotides of the present invention may also be used in conjunction with <u>in vitro</u> model systems and preclinical evaluation of pharmaceuticals, as well as toxicological testing of industrial and naturally-occurring environmental

compounds. All compounds induce characteristic gene expression patterns, frequently termed molecular fingerprints or toxicant signatures, which are indicative of mechanisms of action and toxicity (Nuwaysir, E.F. et al. (1999) Mol. Carcinog. 24:153-159; Steiner, S. and N.L. Anderson (2000) Toxicol. Lett. 112-113:467-471, expressly incorporated by reference herein). If a test compound has a signature similar to that of a compound with known toxicity, it is likely to share those toxic properties. These fingerprints or signatures are most useful and refined when they contain expression information from a large number of genes and gene families. Ideally, a genome-wide measurement of expression provides the highest quality signature. Even genes whose expression is not altered by any tested compounds are important as well, as the levels of expression of these genes are used to normalize the rest of the expression data. The normalization procedure is useful for comparison of expression data after treatment with different compounds. While the assignment of gene function to elements of a toxicant signature aids in interpretation of toxicity mechanisms, knowledge of gene function is not necessary for the statistical matching of signatures which leads to prediction of toxicity. (See, for example, Press Release 00-02 from the National Institute of Environmental Health Sciences, released February 29, 2000, available at http://www.niehs.nih.gov/oc/news/toxchip.htm.) Therefore, it is important and desirable in toxicological screening using toxicant signatures to include all expressed gene sequences.

10

20

25

In one embodiment, the toxicity of a test compound is assessed by treating a biological sample containing nucleic acids with the test compound. Nucleic acids that are expressed in the treated biological sample are hybridized with one or more probes specific to the polynucleotides of the present invention, so that transcript levels corresponding to the polynucleotides of the present invention may be quantified. The transcript levels in the treated biological sample are compared with levels in an untreated biological sample. Differences in the transcript levels between the two samples are indicative of a toxic response caused by the test compound in the treated sample.

Another particular embodiment relates to the use of the polypeptide sequences of the present invention to analyze the proteome of a tissue or cell type. The term proteome refers to the global pattern of protein expression in a particular tissue or cell type. Each protein component of a proteome can be subjected individually to further analysis. Proteome expression patterns, or profiles, are analyzed by quantifying the number of expressed proteins and their relative abundance under given conditions and at a given time. A profile of a cell's proteome may thus be generated by separating and analyzing the polypeptides of a particular tissue or cell type. In one embodiment, the separation is achieved using two-dimensional gel electrophoresis, in which proteins from a sample are separated by isoelectric focusing in the first dimension, and then according to molecular weight by sodium dodecyl sulfate slab gel electrophoresis in the second dimension (Steiner and Anderson, supra). The proteins

are visualized in the gel as discrete and uniquely positioned spots, typically by staining the gel with an agent such as Coomassie Blue or silver or fluorescent stains. The optical density of each protein spot is generally proportional to the level of the protein in the sample. The optical densities of equivalently positioned protein spots from different samples, for example, from biological samples either treated or untreated with a test compound or therapeutic agent, are compared to identify any changes in protein spot density related to the treatment. The proteins in the spots are partially sequenced using, for example, standard methods employing chemical or enzymatic cleavage followed by mass spectrometry. The identity of the protein in a spot may be determined by comparing its partial sequence, preferably of at least 5 contiguous amino acid residues, to the polypeptide sequences of the present invention. In some cases, further sequence data may be obtained for definitive protein identification.

A proteomic profile may also be generated using antibodies specific for DME to quantify the levels of DME expression. In one embodiment, the antibodies are used as elements on a microarray, and protein expression levels are quantified by exposing the microarray to the sample and detecting the levels of protein bound to each array element (Lueking, A. et al. (1999) Anal. Biochem. 270:103-111; Mendoze, L.G. et al. (1999) Biotechniques 27:778-788). Detection may be performed by a variety of methods known in the art, for example, by reacting the proteins in the sample with a thiol- or amino-reactive fluorescent compound and detecting the amount of fluorescence bound at each array element.

10

15

25

Toxicant signatures at the proteome level are also useful for toxicological screening, and should be analyzed in parallel with toxicant signatures at the transcript level. There is a poor correlation between transcript and protein abundances for some proteins in some tissues (Anderson, N.L. and J. Seilhamer (1997) Electrophoresis 18:533-537), so proteome toxicant signatures may be useful in the analysis of compounds which do not significantly affect the transcript image, but which alter the proteomic profile. In addition, the analysis of transcripts in body fluids is difficult, due to rapid degradation of mRNA, so proteomic profiling may be more reliable and informative in such cases.

In another embodiment, the toxicity of a test compound is assessed by treating a biological sample containing proteins with the test compound. Proteins that are expressed in the treated biological sample are separated so that the amount of each protein can be quantified. The amount of each protein is compared to the amount of the corresponding protein in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample. Individual proteins are identified by sequencing the amino acid residues of the individual proteins and comparing these partial sequences to the polypeptides of the present invention.

In another embodiment, the toxicity of a test compound is assessed by treating a biological

sample containing proteins with the test compound. Proteins from the biological sample are incubated with antibodies specific to the polypeptides of the present invention. The amount of protein recognized by the antibodies is quantified. The amount of protein in the treated biological sample is compared with the amount in an untreated biological sample. A difference in the amount of protein between the two samples is indicative of a toxic response to the test compound in the treated sample.

Microarrays may be prepared, used, and analyzed using methods known in the art. (See, e.g., Brennan, T.M. et al. (1995) U.S. Patent No. 5,474,796; Schena, M. et al. (1996) Proc. Natl. Acad. Sci. USA 93:10614-10619; Baldeschweiler et al. (1995) PCT application WO95/251116; Shalon, D. et al. (1995) PCT application WO95/35505; Heller, R.A. et al. (1997) Proc. Natl. Acad. Sci. USA 94:2150-2155; and Heller, M.J. et al. (1997) U.S. Patent No. 5,605,662.) Various types of microarrays are well known and thoroughly described in DNA Microarrays: A Practical Approach, M. Schena, ed. (1999) Oxford University Press, London, hereby expressly incorporated by reference.

In another embodiment of the invention, nucleic acid sequences encoding DME may be used to generate hybridization probes useful in mapping the naturally occurring genomic sequence. Either coding or noncoding sequences may be used, and in some instances, noncoding sequences may be preferable over coding sequences. For example, conservation of a coding sequence among members of a multi-gene family may potentially cause undesired cross hybridization during chromosomal mapping. The sequences may be mapped to a particular chromosome, to a specific region of a chromosome, or to artificial chromosome constructions, e.g., human artificial chromosomes (HACs), yeast artificial chromosomes (YACs), bacterial artificial chromosomes (BACs), bacterial P1 constructions, or single chromosome cDNA libraries. (See, e.g., Harrington, J.J. et al. (1997) Nat. Genet. 15:345-355; Price, C.M. (1993) Blood Rev. 7:127-134; and Trask, B.J. (1991) Trends Genet. 7:149-154.) Once mapped, the nucleic acid sequences of the invention may be used to develop genetic linkage maps, for example, which correlate the inheritance of a disease state with the inheritance of a particular chromosome region or restriction fragment length polymorphism (RFLP). (See, for example, Lander, E.S. and D. Botstein (1986) Proc. Natl. Acad. Sci. USA 83:7353-7357.)

20

25

30

Fluorescent <u>in situ</u> hybridization (FISH) may be correlated with other physical and genetic map data. (See, e.g., Heinz-Ulrich, et al. (1995) in Meyers, <u>supra</u>, pp. 965-968.) Examples of genetic map data can be found in various scientific journals or at the Online Mendelian Inheritance in Man (OMIM) World Wide Web site. Correlation between the location of the gene encoding DME on a physical map and a specific disorder, or a predisposition to a specific disorder, may help define the region of DNA associated with that disorder and thus may further positional cloning efforts.

<u>In situ</u> hybridization of chromosomal preparations and physical mapping techniques, such as linkage analysis using established chromosomal markers, may be used for extending genetic maps.

Often the placement of a gene on the chromosome of another mammalian species, such as mouse, may reveal associated markers even if the exact chromosomal locus is not known. This information is valuable to investigators searching for disease genes using positional cloning or other gene discovery techniques. Once the gene or genes responsible for a disease or syndrome have been crudely localized by genetic linkage to a particular genomic region, e.g., ataxia-telangiectasia to 11q22-23, any sequences mapping to that area may represent associated or regulatory genes for further investigation. (See, e.g., Gatti, R.A. et al. (1988) Nature 336:577-580.) The nucleotide sequence of the instant invention may also be used to detect differences in the chromosomal location due to translocation, inversion, etc., among normal, carrier, or affected individuals.

In another embodiment of the invention, DME, its catalytic or immunogenic fragments, or oligopeptides thereof can be used for screening libraries of compounds in any of a variety of drug screening techniques. The fragment employed in such screening may be free in solution, affixed to a solid support, borne on a cell surface, or located intracellularly. The formation of binding complexes between DME and the agent being tested may be measured.

10

15

20

25

30

Another technique for drug screening provides for high throughput screening of compounds having suitable binding affinity to the protein of interest. (See, e.g., Geysen, et al. (1984) PCT application WO84/03564.) In this method, large numbers of different small test compounds are synthesized on a solid substrate. The test compounds are reacted with DME, or fragments thereof, and washed. Bound DME is then detected by methods well known in the art. Purified DME can also be coated directly onto plates for use in the aforementioned drug screening techniques. Alternatively, non-neutralizing antibodies can be used to capture the peptide and immobilize it on a solid support.

In another embodiment, one may use competitive drug screening assays in which neutralizing antibodies capable of binding DME specifically compete with a test compound for binding DME. In this manner, antibodies can be used to detect the presence of any peptide which shares one or more antigenic determinants with DME.

In additional embodiments, the nucleotide sequences which encode DME may be used in any molecular biology techniques that have yet to be developed, provided the new techniques rely on properties of nucleotide sequences that are currently known, including, but not limited to, such properties as the triplet genetic code and specific base pair interactions.

Without further elaboration, it is believed that one skilled in the art can, using the preceding description, utilize the present invention to its fullest extent. The following embodiments are, therefore, to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever.

The disclosures of all patents, applications, and publications mentioned above and below,

including U.S. Ser. No. 60/207,901, U.S. Ser. No. 60/208,983, U.S. Ser. No. 60/209,861, U.S. Ser. No. 60/211,825, and U.S. Ser. No. 60/213,744, are hereby expressly incorporated by reference.

EXAMPLES

5 I. Construction of cDNA Libraries

10

Incyte cDNAs were derived from cDNA libraries described in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA) and shown in Table 4, column 5. Some tissues were homogenized and lysed in guanidinium isothiocyanate, while others were homogenized and lysed in phenol or in a suitable mixture of denaturants, such as TRIZOL (Life Technologies), a monophasic solution of phenol and guanidine isothiocyanate. The resulting lysates were centrifuged over CsCl cushions or extracted with chloroform. RNA was precipitated from the lysates with either isopropanol or sodium acetate and ethanol, or by other routine methods.

Phenol extraction and precipitation of RNA were repeated as necessary to increase RNA purity. In some cases, RNA was treated with DNase. For most libraries, poly(A)+ RNA was isolated using oligo d(T)-coupled paramagnetic particles (Promega), OLIGOTEX latex particles (QIAGEN, Chatsworth CA), or an OLIGOTEX mRNA purification kit (QIAGEN). Alternatively, RNA was isolated directly from tissue lysates using other RNA isolation kits, e.g., the POLY(A)PURE mRNA purification kit (Ambion, Austin TX).

In some cases, Stratagene was provided with RNA and constructed the corresponding cDNA libraries. Otherwise, cDNA was synthesized and cDNA libraries were constructed with the UNIZAP vector system (Stratagene) or SUPERSCRIPT plasmid system (Life Technologies), using the recommended procedures or similar methods known in the art. (See, e.g., Ausubel, 1997, supra, units 5.1-6.6.) Reverse transcription was initiated using oligo d(T) or random primers. Synthetic oligonucleotide adapters were ligated to double stranded cDNA, and the cDNA was digested with the appropriate restriction enzyme or enzymes. For most libraries, the cDNA was size-selected (300-1000 bp) using SEPHACRYL S1000, SEPHAROSE CL2B, or SEPHAROSE CL4B column chromatography (Amersham Pharmacia Biotech) or preparative agarose gel electrophoresis. cDNAs were ligated into compatible restriction enzyme sites of the polylinker of a suitable plasmid, e.g., PBLUESCRIPT plasmid (Stratagene), PSPORT1 plasmid (Life Technologies), PCDNA2.1 plasmid (Invitrogen, Carlsbad CA), PBK-CMV plasmid (Stratagene), or pINCY (Incyte Genomics, Palo Alto CA), or derivatives thereof. Recombinant plasmids were transformed into competent E. coli cells including XL1-Blue, XL1-BlueMRF, or SOLR from Stratagene or DH5α, DH10B, or ElectroMAX DH10B from Life Technologies.

II. Isolation of cDNA Clones

Plasmids obtained as described in Example I were recovered from host cells by <u>in vivo</u> excision using the UNIZAP vector system (Stratagene) or by cell lysis. Plasmids were purified using at least one of the following: a Magic or WIZARD Minipreps DNA purification system (Promega); an AGTC Miniprep purification kit (Edge Biosystems, Gaithersburg MD); and QIAWELL 8 Plasmid, QIAWELL 8 Plasmid purification systems or the R.E.A.L. PREP 96 plasmid purification kit from QIAGEN. Following precipitation, plasmids were resuspended in 0.1 ml of distilled water and stored, with or without lyophilization, at 4°C.

Alternatively, plasmid DNA was amplified from host cell lysates using direct link PCR in a high-throughput format (Rao, V.B. (1994) Anal. Biochem. 216:1-14). Host cell lysis and thermal cycling steps were carried out in a single reaction mixture. Samples were processed and stored in 384-well plates, and the concentration of amplified plasmid DNA was quantified fluorometrically using PICOGREEN dye (Molecular Probes, Eugene OR) and a FLUOROSKAN II fluorescence scanner (Labsystems Oy, Helsinki, Finland).

III. Sequencing and Analysis

15

20

30

Incyte cDNA recovered in plasmids as described in Example II were sequenced as follows. Sequencing reactions were processed using standard methods or high-throughput instrumentation such as the ABI CATALYST 800 (Applied Biosystems) thermal cycler or the PTC-200 thermal cycler (MJ Research) in conjunction with the HYDRA microdispenser (Robbins Scientific) or the MICROLAB 2200 (Hamilton) liquid transfer system. cDNA sequencing reactions were prepared using reagents provided by Amersham Pharmacia Biotech or supplied in ABI sequencing kits such as the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems). Electrophoretic separation of cDNA sequencing reactions and detection of labeled polynucleotides were carried out using the MEGABACE 1000 DNA sequencing system (Molecular Dynamics); the ABI PRISM 373 or 377 sequencing system (Applied Biosystems) in conjunction with standard ABI protocols and base calling software; or other sequence analysis systems known in the art. Reading frames within the cDNA sequences were identified using standard methods (reviewed in Ausubel, 1997, supra, unit 7.7). Some of the cDNA sequences were selected for extension using the techniques disclosed in Example VIII.

The polynucleotide sequences derived from Incyte cDNAs were validated by removing vector, linker, and poly(A) sequences and by masking ambiguous bases, using algorithms and programs based on BLAST, dynamic programming, and dinucleotide nearest neighbor analysis. The Incyte cDNA sequences or translations thereof were then queried against a selection of public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases, and BLOCKS, PRINTS, DOMO, PRODOM, and hidden Markov model (HMM)-based protein family databases such as

PFAM. (HMM is a probabilistic approach which analyzes consensus primary structures of gene families. See, for example, Eddy, S.R. (1996) Curr. Opin. Struct. Biol. 6:361-365.) The queries were performed using programs based on BLAST, FASTA, BLIMPS, and HMMER. The Incyte cDNA sequences were assembled to produce full length polynucleotide sequences. Alternatively, GenBank cDNAs, GenBank ESTs, stitched sequences, stretched sequences, or Genscan-predicted coding sequences (see Examples IV and V) were used to extend Incyte cDNA assemblages to full length. Assembly was performed using programs based on Phred, Phrap, and Consed, and cDNA assemblages were screened for open reading frames using programs based on GeneMark, BLAST, and FASTA. The full length polynucleotide sequences were translated to derive the corresponding full length polypeptide sequences. Alternatively, a polypeptide of the invention may begin at any of the 10 methionine residues of the full length translated polypeptide. Full length polypeptide sequences were subsequently analyzed by querying against databases such as the GenBank protein databases (genpept), SwissProt, BLOCKS, PRINTS, DOMO, PRODOM, Prosite, and hidden Markov model (HMM)-based protein family databases such as PFAM. Full length polynucleotide sequences are also analyzed using MACDNASIS PRO software (Hitachi Software Engineering, South San Francisco 15 CA) and LASERGENE software (DNASTAR). Polynucleotide and polypeptide sequence alignments are generated using default parameters specified by the CLUSTAL algorithm as incorporated into the MEGALIGN multisequence alignment program (DNASTAR), which also calculates the percent identity between aligned sequences.

Table 7 summarizes the tools, programs, and algorithms used for the analysis and assembly of Incyte cDNA and full length sequences and provides applicable descriptions, references, and threshold parameters. The first column of Table 7 shows the tools, programs, and algorithms used, the second column provides brief descriptions thereof, the third column presents appropriate references, all of which are incorporated by reference herein in their entirety, and the fourth column presents, where applicable, the scores, probability values, and other parameters used to evaluate the strength of a match between two sequences (the higher the score or the lower the probability value, the greater the identity between two sequences).

The programs described above for the assembly and analysis of full length polynucleotide and polypeptide sequences were also used to identify polynucleotide sequence fragments from SEQ ID NO:14-26. Fragments from about 20 to about 4000 nucleotides which are useful in hybridization and amplification technologies are described in Table 4, column 4.

IV. Identification and Editing of Coding Sequences from Genomic DNA

20

2.5

30

Putative drug metabolizing enzymes were initially identified by running the Genscan gene identification program against public genomic sequence databases (e.g., gbpri and gbhtg). Genscan is

a general-purpose gene identification program which analyzes genomic DNA sequences from a variety of organisms (See Burge, C. and S. Karlin (1997) J. Mol. Biol. 268:78-94, and Burge, C. and S. Karlin (1998) Curr. Opin. Struct. Biol. 8:346-354). The program concatenates predicted exons to form an assembled cDNA sequence extending from a methionine to a stop codon. The output of Genscan is a FASTA database of polynucleotide and polypeptide sequences. The maximum range of sequence for Genscan to analyze at once was set to 30 kb. To determine which of these Genscan predicted cDNA sequences encode drug metabolizing enzymes, the encoded polypeptides were analyzed by querying against PFAM models for drug metabolizing enzymes. Potential drug metabolizing enzymes were also identified by homology to Incyte cDNA sequences that had been 10 annotated as drug metabolizing enzymes. These selected Genscan-predicted sequences were then compared by BLAST analysis to the genpept and gbpri public databases. Where necessary, the Genscan-predicted sequences were then edited by comparison to the top BLAST hit from genpept to correct errors in the sequence predicted by Genscan, such as extra or omitted exons. BLAST analysis was also used to find any Incyte cDNA or public cDNA coverage of the Genscan-predicted sequences, thus providing evidence for transcription. When Incyte cDNA coverage was available, this information was used to correct or confirm the Genscan predicted sequence. Full length polynucleotide sequences were obtained by assembling Genscan-predicted coding sequences with Incyte cDNA sequences and/or public cDNA sequences using the assembly process described in Example III. Alternatively, full length polynucleotide sequences were derived entirely from edited or unedited Genscan-predicted coding sequences.

V. Assembly of Genomic Sequence Data with cDNA Sequence Data "Stitched" Sequences

15

Partial cDNA sequences were extended with exons predicted by the Genscan gene identification program described in Example IV. Partial cDNAs assembled as described in Example III were mapped to genomic DNA and parsed into clusters containing related cDNAs and Genscan exon predictions from one or more genomic sequences. Each cluster was analyzed using an algorithm based on graph theory and dynamic programming to integrate cDNA and genomic information, generating possible splice variants that were subsequently confirmed, edited, or extended to create a full length sequence. Sequence intervals in which the entire length of the interval was present on more than one sequence in the cluster were identified, and intervals thus identified were considered to be equivalent by transitivity. For example, if an interval was present on a cDNA and two genomic sequences, then all three intervals were considered to be equivalent. This process allows unrelated but consecutive genomic sequences to be brought together, bridged by cDNA sequence. Intervals thus identified were then "stitched" together by the stitching algorithm in the order that they appear along

their parent sequences to generate the longest possible sequence, as well as sequence variants.

Linkages between intervals which proceed along one type of parent sequence (cDNA to cDNA or genomic sequence) were given preference over linkages which change parent type (cDNA to genomic sequence). The resultant stitched sequences were translated and compared by BLAST analysis to the genpept and gbpri public databases. Incorrect exons predicted by Genscan were corrected by comparison to the top BLAST hit from genpept. Sequences were further extended with additional cDNA sequences, or by inspection of genomic DNA, when necessary.

"Stretched" Sequences

10

20

25

30

Partial DNA sequences were extended to full length with an algorithm based on BLAST analysis. First, partial cDNAs assembled as described in Example III were queried against public databases such as the GenBank primate, rodent, mammalian, vertebrate, and eukaryote databases using the BLAST program. The nearest GenBank protein homolog was then compared by BLAST analysis to either Incyte cDNA sequences or GenScan exon predicted sequences described in Example IV. A chimeric protein was generated by using the resultant high-scoring segment pairs (HSPs) to map the translated sequences onto the GenBank protein homolog. Insertions or deletions may occur in the chimeric protein with respect to the original GenBank protein homolog. The GenBank protein homolog, the chimeric protein, or both were used as probes to search for homologous genomic sequences from the public human genome databases. Partial DNA sequences were therefore "stretched" or extended by the addition of homologous genomic sequences. The resultant stretched sequences were examined to determine whether it contained a complete gene.

VI. Chromosomal Mapping of DME Encoding Polynucleotides

The sequences which were used to assemble SEQ ID NO:14-26 were compared with sequences from the Incyte LIFESEQ database and public domain databases using BLAST and other implementations of the Smith-Waterman algorithm. Sequences from these databases that matched SEQ ID NO:14-26 were assembled into clusters of contiguous and overlapping sequences using assembly algorithms such as Phrap (Table 7). Radiation hybrid and genetic mapping data available from public resources such as the Stanford Human Genome Center (SHGC), Whitehead Institute for Genome Research (WIGR), and Généthon were used to determine if any of the clustered sequences had been previously mapped. Inclusion of a mapped sequence in a cluster resulted in the assignment of all sequences of that cluster, including its particular SEQ ID NO:, to that map location.

Map locations are represented by ranges, or intervals, of human chromosomes. The map position of an interval, in centiMorgans, is measured relative to the terminus of the chromosome's parm. (The centiMorgan (cM) is a unit of measurement based on recombination frequencies between chromosomal markers. On average, 1 cM is roughly equivalent to 1 megabase (Mb) of DNA in

humans, although this can vary widely due to hot and cold spots of recombination.) The cM distances are based on genetic markers mapped by Généthon which provide boundaries for radiation hybrid markers whose sequences were included in each of the clusters. Human genome maps and other resources available to the public, such as the NCBI "GeneMap'99" World Wide Web site (http://www.ncbi.nlm.nih.gov/genemap/), can be employed to determine if previously identified disease genes map within or in proximity to the intervals indicated above.

VII. Analysis of Polynucleotide Expression

Northern analysis is a laboratory technique used to detect the presence of a transcript of a gene and involves the hybridization of a labeled nucleotide sequence to a membrane on which RNAs from a particular cell type or tissue have been bound. (See, e.g., Sambrook, <u>supra</u>, ch. 7; Ausubel (1995) <u>supra</u>, ch. 4 and 16.)

Analogous computer techniques applying BLAST were used to search for identical or related molecules in cDNA databases such as GenBank or LIFESEQ (Incyte Genomics). This analysis is much faster than multiple membrane-based hybridizations. In addition, the sensitivity of the computer search can be modified to determine whether any particular match is categorized as exact or similar. The basis of the search is the product score, which is defined as:

BLAST Score x Percent Identity 5 x minimum {length(Seq. 1), length(Seq. 2)}

20

10

15

The product score takes into account both the degree of similarity between two sequences and the length of the sequence match. The product score is a normalized value between 0 and 100, and is calculated as follows: the BLAST score is multiplied by the percent nucleotide identity and the product is divided by (5 times the length of the shorter of the two sequences). The BLAST score is calculated by assigning a score of +5 for every base that matches in a high-scoring segment pair (HSP), and -4 for every mismatch. Two sequences may share more than one HSP (separated by gaps). If there is more than one HSP, then the pair with the highest BLAST score is used to calculate the product score. The product score represents a balance between fractional overlap and quality in a BLAST alignment. For example, a product score of 100 is produced only for 100% identity over the entire length of the shorter of the two sequences being compared. A product score of 70 is produced either by 100% identity and 70% overlap at one end, or by 88% identity and 100% overlap at the other. A product score of 50 is produced either by 100% identity and 50% overlap at one end, or 79% identity and 100% overlap.

Alternatively, polynucleotide sequences encoding DME are analyzed with respect to the tissue

sources from which they were derived. For example, some full length sequences are assembled, at least in part, with overlapping Incyte cDNA sequences (see Example III). Each cDNA sequence is derived from a cDNA library constructed from a human tissue. Each human tissue is classified into one of the following organ/tissue categories: cardiovascular system; connective tissue; digestive system; embryonic structures; endocrine system; exocrine glands; genitalia, female; genitalia, male; germ cells; hemic and immune system; liver; musculoskeletal system; nervous system; pancreas; respiratory system; sense organs; skin; stomatognathic system; unclassified/mixed; or urinary tract. The number of libraries in each category is counted and divided by the total number of libraries across all categories. Similarly, each human tissue is classified into one of the following disease/condition categories: cancer, cell line, developmental, inflammation, neurological, trauma, cardiovascular, pooled, and other, and the number of libraries in each category is counted and divided by the total number of libraries across all categories. The resulting percentages reflect the tissue- and disease-specific expression of cDNA encoding DME. cDNA sequences and cDNA library/tissue information are found in the LIFESEQ GOLD database (Incyte Genomics, Palo Alto CA).

15 VIII. Extension of DME Encoding Polynucleotides

10

25

30

Full length polynucleotide sequences were also produced by extension of an appropriate fragment of the full length molecule using oligonucleotide primers designed from this fragment. One primer was synthesized to initiate 5' extension of the known fragment, and the other primer was synthesized to initiate 3' extension of the known fragment. The initial primers were designed using OLIGO 4.06 software (National Biosciences), or another appropriate program, to be about 22 to 30 nucleotides in length, to have a GC content of about 50% or more, and to anneal to the target sequence at temperatures of about 68°C to about 72°C. Any stretch of nucleotides which would result in hairpin structures and primer-primer dimerizations was avoided.

Selected human cDNA libraries were used to extend the sequence. If more than one extension was necessary or desired, additional or nested sets of primers were designed.

High fidelity amplification was obtained by PCR using methods well known in the art. PCR was performed in 96-well plates using the PTC-200 thermal cycler (MJ Research, Inc.). The reaction mix contained DNA template, 200 nmol of each primer, reaction buffer containing Mg²⁺, (NH₄)₂SO₄, and 2-mercaptoethanol, Taq DNA polymerase (Amersham Pharmacia Biotech), ELONGASE enzyme (Life Technologies), and Pfu DNA polymerase (Stratagene), with the following parameters for primer pair PCI A and PCI B: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times; Step 6: 68°C, 5 min; Step 7: storage at 4°C. In the alternative, the parameters for primer pair T7 and SK+ were as follows: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 57°C, 1 min; Step 4: 68°C, 2 min; Step 5: Steps 2, 3, and 4 repeated 20 times;

Step 6: 68°C, 5 min; Step 7: storage at 4°C.

10

20

30

The concentration of DNA in each well was determined by dispensing 100 μ l PICOGREEN quantitation reagent (0.25% (v/v) PICOGREEN; Molecular Probes, Eugene OR) dissolved in 1X TE and 0.5 μ l of undiluted PCR product into each well of an opaque fluorimeter plate (Corning Costar, Acton MA), allowing the DNA to bind to the reagent. The plate was scanned in a Fluoroskan II (Labsystems Oy, Helsinki, Finland) to measure the fluorescence of the sample and to quantify the concentration of DNA. A 5 μ l to 10 μ l aliquot of the reaction mixture was analyzed by electrophoresis on a 1% agarose gel to determine which reactions were successful in extending the sequence.

The extended nucleotides were desalted and concentrated, transferred to 384-well plates, digested with CviJI cholera virus endonuclease (Molecular Biology Research, Madison WI), and sonicated or sheared prior to religation into pUC 18 vector (Amersham Pharmacia Biotech). For shotgun sequencing, the digested nucleotides were separated on low concentration (0.6 to 0.8%) agarose gels, fragments were excised, and agar digested with Agar ACE (Promega). Extended clones were religated using T4 ligase (New England Biolabs, Beverly MA) into pUC 18 vector (Amersham Pharmacia Biotech), treated with Pfu DNA polymerase (Stratagene) to fill-in restriction site overhangs, and transfected into competent <u>E. coli</u> cells. Transformed cells were selected on antibiotic-containing media, and individual colonies were picked and cultured overnight at 37°C in 384-well plates in LB/2x carb liquid media.

The cells were lysed, and DNA was amplified by PCR using Taq DNA polymerase (Amersham Pharmacia Biotech) and Pfu DNA polymerase (Stratagene) with the following parameters: Step 1: 94°C, 3 min; Step 2: 94°C, 15 sec; Step 3: 60°C, 1 min; Step 4: 72°C, 2 min; Step 5: steps 2, 3, and 4 repeated 29 times; Step 6: 72°C, 5 min; Step 7: storage at 4°C. DNA was quantified by PICOGREEN reagent (Molecular Probes) as described above. Samples with low DNA recoveries were reamplified using the same conditions as described above. Samples were diluted with 20% dimethysulfoxide (1:2, v/v), and sequenced using DYENAMIC energy transfer sequencing primers and the DYENAMIC DIRECT kit (Amersham Pharmacia Biotech) or the ABI PRISM BIGDYE Terminator cycle sequencing ready reaction kit (Applied Biosystems).

In like manner, full length polynucleotide sequences are verified using the above procedure or are used to obtain 5' regulatory sequences using the above procedure along with oligonucleotides designed for such extension, and an appropriate genomic library.

IX. Labeling and Use of Individual Hybridization Probes

Hybridization probes derived from SEQ ID NO:14-26 are employed to screen cDNAs, genomic DNAs, or mRNAs. Although the labeling of oligonucleotides, consisting of about 20 base

pairs, is specifically described, essentially the same procedure is used with larger nucleotide fragments. Oligonucleotides are designed using state-of-the-art software such as OLIGO 4.06 software (National Biosciences) and labeled by combining 50 pmol of each oligomer, 250 μ Ci of [γ - 32 P] adenosine triphosphate (Amersham Pharmacia Biotech), and T4 polynucleotide kinase (DuPont NEN, Boston MA). The labeled oligonucleotides are substantially purified using a SEPHADEX G-25 superfine size exclusion dextran bead column (Amersham Pharmacia Biotech). An aliquot containing 10^7 counts per minute of the labeled probe is used in a typical membrane-based hybridization analysis of human genomic DNA digested with one of the following endonucleases: Ase I, Bgl II, Eco RI, Pst I, Xba I, or Pvu II (DuPont NEN).

The DNA from each digest is fractionated on a 0.7% agarose gel and transferred to nylon membranes (Nytran Plus, Schleicher & Schuell, Durham NH). Hybridization is carried out for 16 hours at 40°C. To remove nonspecific signals, blots are sequentially washed at room temperature under conditions of up to, for example, 0.1 x saline sodium citrate and 0.5% sodium dodecyl sulfate. Hybridization patterns are visualized using autoradiography or an alternative imaging means and compared.

X. Microarrays

10

15

The linkage or synthesis of array elements upon a microarray can be achieved utilizing photolithography, piezoelectric printing (ink-jet printing, See, e.g., Baldeschweiler, <u>supra.</u>), mechanical microspotting technologies, and derivatives thereof. The substrate in each of the aforementioned technologies should be uniform and solid with a non-porous surface (Schena (1999), <u>supra</u>). Suggested substrates include silicon, silica, glass slides, glass chips, and silicon wafers. Alternatively, a procedure analogous to a dot or slot blot may also be used to arrange and link elements to the surface of a substrate using thermal, UV, chemical, or mechanical bonding procedures. A typical array may be produced using available methods and machines well known to those of ordinary skill in the art and may contain any appropriate number of elements. (See, e.g., Schena, M. et al. (1995) Science 270:467-470; Shalon, D. et al. (1996) Genome Res. 6:639-645; Marshall, A. and J. Hodgson (1998) Nat. Biotechnol. 16:27-31.)

Full length cDNAs, Expressed Sequence Tags (ESTs), or fragments or oligomers thereof may comprise the elements of the microarray. Fragments or oligomers suitable for hybridization can be selected using software well known in the art such as LASERGENE software (DNASTAR). The array elements are hybridized with polynucleotides in a biological sample. The polynucleotides in the biological sample are conjugated to a fluorescent label or other molecular tag for ease of detection. After hybridization, nonhybridized nucleotides from the biological sample are removed, and a fluorescence scanner is used to detect hybridization at each array element. Alternatively, laser

describtion and mass spectrometry may be used for detection of hybridization. The degree of complementarity and the relative abundance of each polynucleotide which hybridizes to an element on the microarray may be assessed. In one embodiment, microarray preparation and usage is described in detail below.

Tissue or Cell Sample Preparation

Total RNA is isolated from tissue samples using the guanidinium thiocyanate method and poly(A)⁺ RNA is purified using the oligo-(dT) cellulose method. Each poly(A)⁺ RNA sample is reverse transcribed using MMLV reverse-transcriptase, 0.05 pg/µl oligo-(dT) primer (21mer), 1X first strand buffer, 0.03 units/ μ l RNase inhibitor, 500 μ M dATP, 500 μ M dGTP, 500 μ M dTTP, 40 μM dCTP, 40 μM dCTP-Cy3 (BDS) or dCTP-Cy5 (Amersham Pharmacia Biotech). The reverse 10 transcription reaction is performed in a 25 ml volume containing 200 ng poly(A)+ RNA with GEMBRIGHT kits (Incyte). Specific control poly(A)+ RNAs are synthesized by in vitro transcription from non-coding yeast genomic DNA. After incubation at 37°C for 2 hr, each reaction sample (one with Cy3 and another with Cy5 labeling) is treated with 2.5 ml of 0.5M sodium hydroxide and incubated for 20 minutes at 85°C to the stop the reaction and degrade the RNA. Samples are purified using two successive CHROMA SPIN 30 gel filtration spin columns (CLONTECH Laboratories, Inc. (CLONTECH), Palo Alto CA) and after combining, both reaction samples are ethanol precipitated using 1 ml of glycogen (1 mg/ml), 60 ml sodium acetate, and 300 ml of 100% ethanol. The sample is then dried to completion using a SpeedVAC (Savant Instruments Inc., Holbrook NY) and resuspended in 14 µl 5X SSC/0.2% SDS.

Microarray Preparation

Sequences of the present invention are used to generate array elements. Each array element is amplified from bacterial cells containing vectors with cloned cDNA inserts. PCR amplification uses primers complementary to the vector sequences flanking the cDNA insert. Array elements are amplified in thirty cycles of PCR from an initial quantity of 1-2 ng to a final quantity greater than 5 µg. Amplified array elements are then purified using SEPHACRYL-400 (Amersham Pharmacia Biotech).

Purified array elements are immobilized on polymer-coated glass slides. Glass microscope slides (Corning) are cleaned by ultrasound in 0.1% SDS and acetone, with extensive distilled water washes between and after treatments. Glass slides are etched in 4% hydrofluoric acid (VWR Scientific Products Corporation (VWR), West Chester PA), washed extensively in distilled water, and coated with 0.05% aminopropyl silane (Sigma) in 95% ethanol. Coated slides are cured in a 110°C oven.

Array elements are applied to the coated glass substrate using a procedure described in US

Patent No. 5,807,522, incorporated herein by reference. 1 µl of the array element DNA, at an average

concentration of 100 ng/µl, is loaded into the open capillary printing element by a high-speed robotic apparatus. The apparatus then deposits about 5 nl of array element sample per slide.

Microarrays are UV-crosslinked using a STRATALINKER UV-crosslinker (Stratagene). Microarrays are washed at room temperature once in 0.2% SDS and three times in distilled water. Non-specific binding sites are blocked by incubation of microarrays in 0.2% casein in phosphate buffered saline (PBS) (Tropix, Inc., Bedford MA) for 30 minutes at 60°C followed by washes in 0.2% SDS and distilled water as before.

Hybridization

Hybridization reactions contain 9 µl of sample mixture consisting of 0.2 µg each of Cy3 and Cy5 labeled cDNA synthesis products in 5X SSC, 0.2% SDS hybridization buffer. The sample mixture is heated to 65°C for 5 minutes and is aliquoted onto the microarray surface and covered with an 1.8 cm² coverslip. The arrays are transferred to a waterproof chamber having a cavity just slightly larger than a microscope slide. The chamber is kept at 100% humidity internally by the addition of 140 µl of 5X SSC in a corner of the chamber. The chamber containing the arrays is incubated for about 6.5 hours at 60°C. The arrays are washed for 10 min at 45°C in a first wash buffer (1X SSC, 0.1% SDS), three times for 10 minutes each at 45°C in a second wash buffer (0.1X SSC), and dried.

Detection

20

25

Reporter-labeled hybridization complexes are detected with a microscope equipped with an Innova 70 mixed gas 10 W laser (Coherent, Inc., Santa Clara CA) capable of generating spectral lines at 488 nm for excitation of Cy3 and at 632 nm for excitation of Cy5. The excitation laser light is focused on the array using a 20X microscope objective (Nikon, Inc., Melville NY). The slide containing the array is placed on a computer-controlled X-Y stage on the microscope and raster-scanned past the objective. The 1.8 cm x 1.8 cm array used in the present example is scanned with a resolution of 20 micrometers.

In two separate scans, a mixed gas multiline laser excites the two fluorophores sequentially. Emitted light is split, based on wavelength, into two photomultiplier tube detectors (PMT R1477, Hamamatsu Photonics Systems, Bridgewater NJ) corresponding to the two fluorophores. Appropriate filters positioned between the array and the photomultiplier tubes are used to filter the signals. The emission maxima of the fluorophores used are 565 nm for Cy3 and 650 nm for Cy5. Each array is typically scanned twice, one scan per fluorophore using the appropriate filters at the laser source, although the apparatus is capable of recording the spectra from both fluorophores simultaneously.

The sensitivity of the scans is typically calibrated using the signal intensity generated by a cDNA control species added to the sample mixture at a known concentration. A specific location on

the array contains a complementary DNA sequence, allowing the intensity of the signal at that location to be correlated with a weight ratio of hybridizing species of 1:100,000. When two samples from different sources (e.g., representing test and control cells), each labeled with a different fluorophore, are hybridized to a single array for the purpose of identifying genes that are differentially expressed, the calibration is done by labeling samples of the calibrating cDNA with the two fluorophores and adding identical amounts of each to the hybridization mixture.

The output of the photomultiplier tube is digitized using a 12-bit RTI-835H analog-to-digital (A/D) conversion board (Analog Devices, Inc., Norwood MA) installed in an IBM-compatible PC computer. The digitized data are displayed as an image where the signal intensity is mapped using a linear 20-color transformation to a pseudocolor scale ranging from blue (low signal) to red (high signal). The data is also analyzed quantitatively. Where two different fluorophores are excited and measured simultaneously, the data are first corrected for optical crosstalk (due to overlapping emission spectra) between the fluorophores using each fluorophore's emission spectrum.

A grid is superimposed over the fluorescence signal image such that the signal from each spot is centered in each element of the grid. The fluorescence signal within each element is then integrated to obtain a numerical value corresponding to the average intensity of the signal. The software used for signal analysis is the GEMTOOLS gene expression analysis program (Incyte).

XI. Complementary Polynucleotides

15

20

25

30

Sequences complementary to the DME-encoding sequences, or any parts thereof, are used to detect, decrease, or inhibit expression of naturally occurring DME. Although use of oligonucleotides comprising from about 15 to 30 base pairs is described, essentially the same procedure is used with smaller or with larger sequence fragments. Appropriate oligonucleotides are designed using OLIGO 4.06 software (National Biosciences) and the coding sequence of DME. To inhibit transcription, a complementary oligonucleotide is designed from the most unique 5' sequence and used to prevent promoter binding to the coding sequence. To inhibit translation, a complementary oligonucleotide is designed to prevent ribosomal binding to the DME-encoding transcript.

XII. Expression of DME

Expression and purification of DME is achieved using bacterial or virus-based expression systems. For expression of DME in bacteria, cDNA is subcloned into an appropriate vector containing an antibiotic resistance gene and an inducible promoter that directs high levels of cDNA transcription. Examples of such promoters include, but are not limited to, the *trp-lac* (*tac*) hybrid promoter and the T5 or T7 bacteriophage promoter in conjunction with the *lac* operator regulatory element. Recombinant vectors are transformed into suitable bacterial hosts, e.g., BL21(DE3). Antibiotic resistant bacteria express DME upon induction with isopropyl beta-D-thiogalactopyranoside

(IPTG). Expression of DME in eukaryotic cells is achieved by infecting insect or mammalian cell lines with recombinant Autographica californica nuclear polyhedrosis virus (AcMNPV), commonly known as baculovirus. The nonessential polyhedrin gene of baculovirus is replaced with cDNA encoding DME by either homologous recombination or bacterial-mediated transposition involving transfer plasmid intermediates. Viral infectivity is maintained and the strong polyhedrin promoter drives high levels of cDNA transcription. Recombinant baculovirus is used to infect Spodoptera frugiperda (Sf9) insect cells in most cases, or human hepatocytes, in some cases. Infection of the latter requires additional genetic modifications to baculovirus. (See Engelhard, E.K. et al. (1994) Proc. Natl. Acad. Sci. USA 91:3224-3227; Sandig, V. et al. (1996) Hum. Gene Ther. 7:1937-1945.)

In most expression systems, DME is synthesized as a fusion protein with, e.g., glutathione Stransferase (GST) or a peptide epitope tag, such as FLAG or 6-His, permitting rapid, single-step, affinity-based purification of recombinant fusion protein from crude cell lysates. GST, a 26-kilodalton enzyme from Schistosoma japonicum, enables the purification of fusion proteins on immobilized glutathione under conditions that maintain protein activity and antigenicity (Amersham Pharmacia Biotech). Following purification, the GST moiety can be proteolytically cleaved from DME at specifically engineered sites. FLAG, an 8-amino acid peptide, enables immunoaffinity purification using commercially available monoclonal and polyclonal anti-FLAG antibodies (Eastman Kodak). 6-His, a stretch of six consecutive histidine residues, enables purification on metal-chelate resins (QIAGEN). Methods for protein expression and purification are discussed in Ausubel (1995, supra, ch. 10 and 16). Purified DME obtained by these methods can be used directly in the assays shown in Examples XVI, XVII, and XVIII where applicable.

XIII. Functional Assays

10

DME function is assessed by expressing the sequences encoding DME at physiologically elevated levels in mammalian cell culture systems. cDNA is subcloned into a mammalian expression vector containing a strong promoter that drives high levels of cDNA expression. Vectors of choice include PCMV SPORT (Life Technologies) and PCR3.1 (Invitrogen, Carlsbad CA), both of which contain the cytomegalovirus promoter. 5-10 μ g of recombinant vector are transiently transfected into a human cell line, for example, an endothelial or hematopoietic cell line, using either liposome formulations or electroporation. 1-2 μ g of an additional plasmid containing sequences encoding a marker protein are co-transfected. Expression of a marker protein provides a means to distinguish transfected cells from nontransfected cells and is a reliable predictor of cDNA expression from the recombinant vector. Marker proteins of choice include, e.g., Green Fluorescent Protein (GFP; Clontech), CD64, or a CD64-GFP fusion protein. Flow cytometry (FCM), an automated, laser optics-based technique, is used to identify transfected cells expressing GFP or CD64-GFP and to evaluate the

apoptotic state of the cells and other cellular properties. FCM detects and quantifies the uptake of fluorescent molecules that diagnose events preceding or coincident with cell death. These events include changes in nuclear DNA content as measured by staining of DNA with propidium iodide; changes in cell size and granularity as measured by forward light scatter and 90 degree side light scatter; down-regulation of DNA synthesis as measured by decrease in bromodeoxyuridine uptake; alterations in expression of cell surface and intracellular proteins as measured by reactivity with specific antibodies; and alterations in plasma membrane composition as measured by the binding of fluorescein-conjugated Annexin V protein to the cell surface. Methods in flow cytometry are discussed in Ormerod, M.G. (1994) Flow Cytometry, Oxford, New York NY.

The influence of DME on gene expression can be assessed using highly purified populations of cells transfected with sequences encoding DME and either CD64 or CD64-GFP. CD64 and CD64-GFP are expressed on the surface of transfected cells and bind to conserved regions of human immunoglobulin G (IgG). Transfected cells are efficiently separated from nontransfected cells using magnetic beads coated with either human IgG or antibody against CD64 (DYNAL, Lake Success NY). 15 mRNA can be purified from the cells using methods well known by those of skill in the art. Expression of mRNA encoding DME and other genes of interest can be analyzed by northern analysis or microarray techniques.

XIV. Production of DME Specific Antibodies

10

20

DME substantially purified using polyacrylamide gel electrophoresis (PAGE; see, e.g., Harrington, M.G. (1990) Methods Enzymol. 182:488-495), or other purification techniques, is used to immunize rabbits and to produce antibodies using standard protocols.

Alternatively, the DME amino acid sequence is analyzed using LASERGENE software (DNASTAR) to determine regions of high immunogenicity, and a corresponding oligopeptide is synthesized and used to raise antibodies by means known to those of skill in the art. Methods for selection of appropriate epitopes, such as those near the C-terminus or in hydrophilic regions are well described in the art. (See, e.g., Ausubel, 1995, supra, ch. 11.)

Typically, oligopeptides of about 15 residues in length are synthesized using an ABI 431A peptide synthesizer (Applied Biosystems) using FMOC chemistry and coupled to KLH (Sigma-Aldrich, St. Louis MO) by reaction with N-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) to increase immunogenicity. (See, e.g., Ausubel, 1995, supra.) Rabbits are immunized with the oligopeptide-KLH complex in complete Freund's adjuvant. Resulting antisera are tested for antipeptide and anti-DME activity by, for example, binding the peptide or DME to a substrate, blocking with 1% BSA, reacting with rabbit antisera, washing, and reacting with radio-iodinated goat anti-rabbit IgG.

XV. Purification of Naturally Occurring DME Using Specific Antibodies

Naturally occurring or recombinant DME is substantially purified by immunoaffinity chromatography using antibodies specific for DME. An immunoaffinity column is constructed by covalently coupling anti-DME antibody to an activated chromatographic resin, such as .

CNBr-activated SEPHAROSE (Amersham Pharmacia Biotech). After the coupling, the resin is

Media containing DME are passed over the immunoaffinity column, and the column is washed under conditions that allow the preferential absorbance of DME (e.g., high ionic strength buffers in the presence of detergent). The column is eluted under conditions that disrupt antibody/DME binding (e.g., a buffer of pH 2 to pH 3, or a high concentration of a chaotrope, such as urea or thiocyanate ion), and DME is collected.

XVI. Identification of Molecules Which Interact with DME

10

20

25

30

blocked and washed according to the manufacturer's instructions.

DME, or biologically active fragments thereof, are labeled with ¹²⁵I Bolton-Hunter reagent. (See, e.g., Bolton A.E. and W.M. Hunter (1973) Biochem. J. 133:529-539.) Candidate molecules previously arrayed in the wells of a multi-well plate are incubated with the labeled DME, washed, and any wells with labeled DME complex are assayed. Data obtained using different concentrations of DME are used to calculate values for the number, affinity, and association of DME with the candidate molecules.

Alternatively, molecules interacting with DME are analyzed using the yeast two-hybrid system as described in Fields, S. and O. Song (1989) Nature 340:245-246, or using commercially available kits based on the two-hybrid system, such as the MATCHMAKER system (Clontech).

DME may also be used in the PATHCALLING process (CuraGen Corp., New Haven CT) which employs the yeast two-hybrid system in a high-throughput manner to determine all interactions between the proteins encoded by two large libraries of genes (Nandabalan, K. et al. (2000) U.S. Patent No. 6,057,101).

XVII. Demonstration of DME Activity

Cytochrome P450 activity of DME is measured using the 4-hydroxylation of aniline. Aniline is converted to 4-aminophenol by the enzyme, and has an absorption maximum at 630 nm (Gibson and Skett, <u>supra</u>). This assay is a convenient measure, but underestimates the total hydroxylation, which also occurs at the 2- and 3- positions. Assays are performed at 37°C and contain an aliquot of the enzyme and a suitable amount of aniline (approximately 2 mM) in reaction buffer. For this reaction, the buffer must contain NADPH or an NADPH-generating cofactor system. One formulation for this reaction buffer includes 85 mM Tris pH 7.4, 15 mM MgCl₂, 50 mM nicotinamide, 40 mg trisodium isocitrate, and 2 units isocitrate dehydrogenase, with 8 mg NADP+ added to a 10 mL reaction buffer

stock just prior to assay. Reactions are carried out in an optical cuvette, and the absorbance at 630 nm is measured. The rate of increase in absorbance is proportional to the enzyme activity in the assay. A standard curve can be constructed using known concentrations of 4-aminophenol.

1a,25-dihydroxyvitamin D 24-hydroxylase activity of DME is determined by monitoring the conversion of ³H-labeled 1a,25-dihydroxyvitamin D (1a,25(OH)₂D) to 24,25-dihydroxyvitamin D $(24,25(OH)_2D)$ in transgenic rats expressing DME. 1 µg of 1α ,25(OH)₂D dissolved in ethanol (or ethanol alone as a control) is administered intravenously to approximately 6-week-old male transgenic rats expressing DME or otherwise identical control rats expressing either a defective variant of DME or not expressing DME. The rats are killed by decapitation after 8 hrs, and the kidneys are rapidly removed, rinsed, and homogenized in 9 volumes of ice-cold buffer (15 mM Tris-acetate (pH 7.4), 0.19 M sucrose, 2 mM magnesium acetate, and 5 mM sodium succinate). A portion (e.g., 3 ml) of each homogenate is then incubated with 0.25 nM 1\,\alpha,25(OH)_2[1-3H]D, with a specific activity of approximately 3.5 GBq/mmol, for 15 min at 37 °C under oxygen with constant shaking. Total lipids are extracted as described (Bligh, E.G. and W.J. Dyer (1959) Can. J. Biochem. Physiol. 37: 911-917) and the chloroform phase is analyzed by HPLC using a FINEPAK SIL column (JASCO, Tokyo, Japan) with a n-hexane/chloroform/methanol (10:2.5:1.5) solvent system at a flow rate of 1 ml/min. In the alternative, the chloroform phase is analyzed by reverse phase HPLC using a J SPHERE ODS-AM column (YMC Co. Ltd., Kyoto, Japan) with an acetonitrile buffer system (40 to 100%, in water, in 30 min) at a flow rate of 1 ml/min. The eluates are collected in fractions of 30 seconds (or less) and the amount of ³H present in each fraction is measured using a scintillation counter. By comparing the chromatograms of control samples (i.e., samples comprising 1a,25-dihydroxyvitamin D or 24,25-dihydroxyvitamin D (24,25(OH)₂D), with the chromatograms of the reaction products, the relative mobilities of the substrate $(1\alpha,25(OH)_2[1-^3H]D)$ and product $(24,25(OH)_2[1-^3H]D)$ are determined and correlated with the fractions collected. The amount of 24,25(OH)₂[1-3H]D produced in control rats is subtracted from that of transgenic rats expressing DME. The difference in the production of 24,25(OH)₂[1-3H]D in the transgenic and control animals is proportional to the amount of 25-hydrolase activity of DME present in the sample. Confirmation of the identity of the substrate and product(s) is confirmed by means of mass spectroscopy (Miyamoto, Y. et al. (1997) J. Biol. Chem. 272:14115-14119).

15

20

25

30

Flavin-containing monooxygenase activity of DME is measured by chromatographic analysis of metabolic products. For example, Ring, B.J. et al. (1999; Drug Metab. Dis. 27:1099-1103) incubated FMO in 0.1 M sodium phosphate buffer (pH 7.4 or 8.3) and 1 mM NADPH at 37°C, stopped the reaction with an organic solvent, and determined product formation by HPLC. Alternatively, activity is measured by monitoring oxygen uptake using a Clark-type electrode. For

example, Ziegler, D.M. and Poulsen, L.L. (1978; Methods Enzymol. 52:142-151) incubated the enzyme at 37°C in an NADPH-generating cofactor system (similar to the one described above) containing the substrate methimazole. The rate of oxygen uptake is proportional to enzyme activity.

UDP glucuronyltransferase activity of DME is measured using a colorimetric determination of free amine groups (Gibson and Skett, <u>supra</u>). An amine-containing substrate, such as 2-aminophenol, is incubated at 37°C with an aliquot of the enzyme in a reaction buffer containing the necessary cofactors (40 mM Tris pH 8.0, 7.5 mM MgCl₂, 0.025% Triton X-100, 1 mM ascorbic acid, 0.75 mM UDP-glucuronic acid). After sufficient time, the reaction is stopped by addition of ice-cold 20% trichloroacetic acid in 0.1 M phosphate buffer pH 2.7, incubated on ice, and centrifuged to clarify the supernatant. Any unreacted 2-aminophenol is destroyed in this step. Sufficient freshly-prepared sodium nitrite is then added; this step allows formation of the diazonium salt of the glucuronidated product. Excess nitrite is removed by addition of sufficient ammonium sulfamate, and the diazonium salt is reacted with an aromatic amine (for example, N-naphthylethylene diamine) to produce a colored azo compound which can be assayed spectrophotometrically (at 540 nm for the example). A standard curve can be constructed using known concentrations of aniline, which will form a chromophore with similar properties to 2-aminophenol glucuronide.

10

15

20

25

Glutathione S-transferase activity of DME is measured using a model substrate, such as 2,4-dinitro-1-chlorobenzene, which reacts with glutathione to form a product, 2,4-dinitrophenyl-glutathione, that has an absorbance maximum at 340 nm. It is important to note that GSTs have differing substrate specificities, and the model substrate should be selected based on the substrate preferences of the GST of interest. Assays are performed at ambient temperature and contain an aliquot of the enzyme in a suitable reaction buffer (for example, 1 mM glutathione, 1 mM dinitrochlorobenzene, 90 mM potassium phosphate buffer pH 6.5). Reactions are carried out in an optical cuvette, and the absorbance at 340 nm is measured. The rate of increase in absorbance is proportional to the enzyme activity in the assay.

N-acyltransferase activity of DME is measured using radiolabeled amino acid substrates and measuring radiolabel incorporation into conjugated products. Enzyme is incubated in a reaction buffer containing an unlabeled acyl-CoA compound and radiolabeled amino acid, and the radiolabeled acyl-conjugates are separated from the unreacted amino acid by extraction into n-butanol or other appropriate organic solvent. For example, Johnson, M.R. et al. (1990; J. Biol. Chem. 266:10227-10233) measured bile acid-CoA:amino acid N-acyltransferase activity by incubating the enzyme with cholyl-CoA and ³H-glycine or ³H-taurine, separating the tritiated cholate conjugate by extraction into n-butanol, and measuring the radioactivity in the extracted product by scintillation. Alternatively, N-acyltransferase activity is measured using the spectrophotometric determination of reduced CoA

(CoASH) described below.

10

15

20

25

30

N-acetyltransferase activity of DME is measured using the transfer of radiolabel from [14C]acetyl-CoA to a substrate molecule (for example, see Deguchi, T. (1975) J. Neurochem. 24:1083-5). Alternatively, a spectrophotometric assay based on DTNB (5,5'-dithio-bis(2-nitrobenzoic acid; Ellman's reagent) reaction with CoASH may be used. Free thiol-containing CoASH is formed during N-acetyltransferase catalyzed transfer of an acetyl group to a substrate. CoASH is detected using the absorbance of DTNB conjugate at 412 nm (De Angelis, J. et al. (1997) J. Biol. Chem. 273:3045-3050). Enzyme activity is proportional to the rate of radioactivity incorporation into substrate, or the rate of absorbance increase in the spectrophotometric assay.

Protein arginine methyltransferase activity of DME is measured at 37 °C for various periods of time. S-adenosyl-L-[methyl-³H]methionine ([³H]AdoMet; specific activity = 75 Ci/mmol; NEN Life Science Products) is used as the methyl-donor substrate. Useful methyl-accepting substrates include glutathione S-transferase fibrillarin glycine-arginine domain fusion protein (GST-GAR), heterogeneous nuclear ribonucleoprotein (hnRNP), or hypomethylated proteins present in lysates from adenosine dialdehyde-treated cells. Methylation reactions are stopped by adding SDS-PAGE sample buffer. The products of the reactions are resolved by SDS-PAGE and visualized by fluorography. The presence of ³H-labeled methyl-donor substrates is indicative of protein arginine methyltransferase activity of DME (Tang, J. et al. (2000) J. Biol. Chem. 275:7723-7730 and Tang, J. et al. (2000) J. Biol. Chem. 275:19866-19876).

Catechol-*O*-methyltransferase activity of DME is measured in a reaction mixture consisting of 50 mM Tris-HCl (pH 7.4), 1.2 mM MgCl₂, 200 µM SAM (*S*-adenosyl-L-methionine) iodide (containing 0.5 µCi of methyl-[H³]SAM), 1 mM dithiothreitol, and varying concentrations of catechol substrate (e.g., L-dopa, dopamine, or DBA) in a final volume of 1.0 ml. The reaction is initiated by the addition of 250-500 µg of purified DME or crude DME-containing sample and performed at 37 °C for 30 min. The reaction is arrested by rapidly cooling on ice and immediately extracting with 7 ml of ice-cold n-heptane. Following centrifugation at 1000 x g for 10 min, 3-ml aliquots of the organic extracts are analyzed for radioactivity content by liquid scintillation counting. The level of catechol-associated radioactivity in the organic phase is proportional to the catechol-*O*-methyltransferase activity of DME (Zhu, B.T. and J.G. Liehr (1996) 271:1357-1363).

DHFR activity of DME is determined spectrophotometrically at 15 °C by following the disappearance of NADPH at 340 nm (ϵ_{340} = 11,800 M⁻¹·cm⁻¹). The standard assay mixture contains 100 μ M NADPH, 14 mM 2-mercaptoethanol, MTEN buffer (50 mM 2-morpholinoethanesulfonic acid, 25 mM tris(hydroxymethyl)aminomethane, 25 mM ethanolamine, and 100 mM NaCl, pH 7.0), and DME in a final volume of 2.0 ml. The reaction is started by the addition of 50 μ M dihydrofolate

(as substrate). The oxidation of NADPH to NADP+ corresponds to the reduction of dihydrofolate in the reaction and is proportional to the amount of DHFR activity in the sample (Nakamura, T. and Iwakura, M. (1999) J. Biol. Chem. 274:19041-19047).

Aldo/keto reductase activity of DME is measured using the decrease in absorbance at 340 nm as NADPH is consumed. A standard reaction mixture is 135 mM sodium phosphate buffer (pH 6.2-7.2 depending on enzyme), 0.2 mM NADPH, 0.3 M lithium sulfate, 0.5-2.5 mg enzyme and an appropriate level of substrate. The reaction is incubated at 30°C and the reaction is monitored continuously with a spectrophotometer. Enzyme activity is calculated as mol NADPH consumed / mg of enzyme.

Alcohol dehydrogenase activity of DME is measured using the increase in absorbance at 340 nm as NAD+ is reduced to NADH. A standard reaction mixture is 50 mM sodium phosphate, pH 7.5, and 0.25 mM EDTA. The reaction is incubated at 25 °C and monitored using a spectrophotometer. Enzyme activity is calculated as mol NADH produced / mg of enzyme.

10

15

20

Carboxylesterase activity of DME activity is determined using 4-methylumbelliferyl acetate as a substrate. The enzymatic reaction is initiated by adding approximately 10 μ l of DME-containing sample to 1 ml of reaction buffer (90 mM KH₂PO₄, 40 mM KCl, pH 7.3) with 0.5 mM 4-methylumbelliferyl acetate at 37°C. The production of 4-methylumbelliferone is monitored with a spectrophotometer ($\varepsilon_{350} = 12.2 \text{ mM}^{-1} \text{ cm}^{-1}$) for 1.5 min. Specific activity is expressed as micromoles of product formed per minute per milligram of protein and corresponds to the activity of DME in the sample (Evgenia, V. et al. (1997) J. Biol. Chem. 272:14769-14775).

In the alternative, the cocaine benzoyl ester hydrolase activity of DME is measured by incubating approximately 0.1 ml of enzyme and 3.3 mM cocaine in reaction buffer (50 mM NaH₂PO₄, pH 7.4) with 1 mM benzamidine, 1 mM EDTA, and 1 mM dithiothreitol at 37°C. The reaction is incubated for 1 h in a total volume of 0.4 ml then terminated with an equal volume of 5% trichloroacetic acid. 0.1 ml of the internal standard 3,4-dimethylbenzoic acid (10 μ g/ml) is added. Precipitated protein is separated by centrifugation at 12,000 × g for 10 min. The supernatant is transferred to a clean tube and extracted twice with 0.4 ml of methylene chloride. The two extracts are combined and dried under a stream of nitrogen. The residue is resuspended in 14% acetonitrile, 250 mM KH₂PO₄, pH 4.0, with 8 μ l of diethylamine per 100 ml and injected onto a C18 reverse-phase HPLC column for separation. The column eluate is monitored at 235 nm. DME activity is quantified by comparing peak area ratios of the analyte to the internal standard. A standard curve is generated with benzoic acid standards prepared in a trichloroacetic acid-treated protein matrix (Evgenia, V. et al. (1997) J. Biol. Chem. 272:14769-14775).

In another alternative, DME carboxyl esterase activity against the water-soluble substrate

para-nitrophenyl butyric acid is determined by spectrophotometric methods well known to those skilled in the art. In this procedure, the DME-containing samples are diluted with 0.5 M Tris-HCl (pH 7.4 or 8.0) or sodium acetate (pH 5.0) in the presence of 6 mM taurocholate. The assay is initiated by adding a freshly prepared para-nitrophenyl butyric acid solution (100 μ g/ml in sodium acetate, pH 5.0).

Carboxyl esterase activity is then monitored and compared with control autohydrolysis of the substrate using a spectrophotometer set at 405 nm (Wan, L. et al. (2000) J. Biol. Chem. 275:10041-10046).

Sulfotransferase activity of DME is measured using the incorporation of ³⁵S from [³⁵S]PAPS into a model substrate such as phenol (Folds, A. and J.L. Meek (1973) Biochim. Biophys. Acta 327:365-374). An aliquot of enzyme is incubated at 37°C with 1 mL of 10 mM phosphate buffer, pH 6.4, 50 mM phenol, and 0.4-4.0 mM [³⁵S]PAPS. After sufficient time for 5-20% of the radiolabel to be transferred to the substrate, 0.2 mL of 0.1 M barium acetate is added to precipitate protein and phosphate buffer. Then 0.2 mL of 0.1 M Ba(OH)₂ is added, followed by 0.2 mL ZnSO₄. The supernatant is cleared by centrifugation, which removes proteins as well as unreacted [³⁵S]PAPS. Radioactivity in the supernatant is measured by scintillation. The enzyme activity is determined from the number of moles of radioactivity in the reaction product.

15

30

Heparan sulfate 6-sulfotransferase activity of DME is measured <u>in vitro</u> by incubating a sample containing DME along with 2.5 µmol imidazole HCl (pH 6.8), 3.75 µg of protamine chloride, 25 nmol (as hexosamine) of completely desulfated and N-resulfated heparin, and 50 pmol (about 5 x 10⁵ cpm) of [³⁵S] adenosine 3'-phosphate 5'-phosphosulfate (PAPS) in a final reaction volume of 50 µl at 37°C for 20 min. The reaction is stopped by immersing the reaction tubes in a boiling water bath for 1 min. 0.1 µmol (as glucuronic acid) of chondroitin sulfate A is added to the reaction mixture as a carrier. ³⁵S-Labeled polysaccharides are precipitated with 3 volumes of cold ethanol containing 1.3% potassium acetate and separated completely from unincorporated [³⁵S]PAPS and its degradation products by gel chromatography using desalting columns. One unit of enzyme activity is defined as the amount required to transfer 1 pmol of sulfate/min., determined by the amount of [³⁵S]PAPS incorporated into the precipitated polysaccharides (Habuchi, H. et al. (1995) J. Biol. Chem. 270:4172-4179).

In the alternative, heparan sulfate 6-sulfotransferase activity of DME is measured by extraction and renaturation of enzyme from gels following separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Following separation, the gel is washed with buffer (0.05 M Tris-HCl, pH 8.0), cut into 3-5 mm segments and subjected to agitation at 4 °C with 100 μ l of the same buffer containing 0.15 M NaCl for 48 h. The eluted enzyme is collected by centrifugation and assayed for the sulfotransferase activity as described above (Habuchi, H. et al. (1995) J. Biol. Chem. 270:4172-4179).

In another alternative, DME sulfotransferase activity is determined by measuring the transfer of [35 S]sulfate from [35 S]PAPS to an immobilized peptide that represents the N-terminal 15 residues of the mature P-selectin glycoprotein ligand-1 polypeptide to which a C-terminal cysteine residue is added. The peptide spans three potential tyrosine sulfation sites. The peptide is linked via the cysteine residue to iodoacetamide-activated resin at a density of 1.5-3.0 µmol peptide/ml of resin. The enzyme assay is performed by combining 10 µl of peptide-derivitized beads with 2-20 µl of DME-containing sample in 40 mM Pipes (pH 6.8), 0.3 M NaCl, 20 mM MnCl₂, 50 mM NaF, 1% Triton X-100, and 1 mM 5'-AMP in a final volume of 130 µl. The assay is initiated by addition of 0.5 µCi of [35 S]PAPS (1.7 µM; 1 Ci = 37 GBq). After 30 min at 37°C, the reaction beads are washed with 6 M guanidine at 65°C and the radioactivity incorporated into the beads is determined by liquid scintillation counting. Transfer of [35 S]sulfate to the bead-associated peptide is measured to determine the DME activity in the sample. One unit of activity is defined as 1 pmol of product formed per min (Ouyang, Y.-B. et al. (1998) Biochemistry 95:2896-2901).

10

15

25

In another alternative, DME sulfotransferase assays are performed using [35S]PAPS as the sulfate donor in a final volume of 30 μl, containing 50 mM Hepes-NaOH (pH 7.0), 250 mM sucrose, 1 mM dithiothreitol, 14 μM[35S]PAPS (15 Ci/mmol), and dopamine (25 μM), *p*-nitrophenol (5 μM), or other candidate substrates. Assay reactions are started by the addition of a purified DME enzyme preparation or a sample containing DME activity, allowed to proceed for 15 min at 37°C, and terminated by heating at 100°C for 3 min. The precipitates formed are cleared by centrifugation. The supernatants are then subjected to the analysis of 35S-sulfated product by either thin-layer chromatography or a two-dimensional thin layer separation procedure. Appropriate standards are run in parallel with the supernatants to allow the identification of the 35S-sulfated products and determine the enzyme specificity of the DME-containing samples based on relative rates of migration of reaction products (Sakakibara, Y. et al. (1998) J. Biol. Chem. 273:6242-6247).

Squalene epoxidase activity of DME is assayed in a mixture comprising purified DME (or a crude mixture comprising DME), 20 mM Tris-HCl (pH 7.5), 0.01 mM FAD, 0.2 unit of NADPH-cytochrome C (P-450) reductase, 0.01 mM [¹⁴C]squalene (dispersed with the aid of 20 µl of Tween 80), and 0.2% Triton X-100. 1 mM NADPH is added to initiate the reaction followed by incubation at 37 °C for 30 min. The nonsaponifiable lipids are analyzed by silica gel TLC developed with ethyl acetate/benzene (0.5:99.5, v/v). The reaction products are compared to those from a reaction mixture without DME. The presence of 2,3(S)-oxidosqualene is confirmed using appropriate lipid standards (Sakakibara, J. et al. (1995) 270:17-20).

Epoxide hydrolase activity of DME is determined by following substrate depletion using gas chromatographic (GC) analysis of ethereal extracts or by following substrate depletion and diol

production by GC analysis of reaction mixtures quenched in acetone. A sample containing DME or an epoxide hydrolase control sample is incubated in 10 mM Tris-HCl (pH 8.0), 1 mM ethylenediaminetetraacetate (EDTA), and 5 mM epoxide substrate (e.g., ethylene oxide, styrene oxide, propylene oxide, isoprene monoxide, epichlorohydrin, epibromohydrin, epifluorohydrin, glycidol,
1,2-epoxybutane, 1,2-epoxyhexane, or 1,2-epoxyoctane). A portion of the sample is withdrawn from the reaction mixture at various time points, and added to 1 ml of ice-cold acetone containing an internal standard for GC analysis (e.g., 1-nonanol). Protein and salts are removed by centrifugation (15 min, 4000 × g) and the extract is analyzed by GC using a 0.2 mm × 25-m CP-Wax57-CB column (CHROMPACK, Middelburg, The Netherlands) and a flame-ionization detector. The identification of GC products is performed using appropriate standards and controls well known to those skilled in the art. 1 Unit of DME activity is defined as the amount of enzyme that catalyzes the production of 1 μmol of diol/min (Rink, R. et al. (1997) J. Biol. Chem. 272:14650-14657).

Aminotransferase activity of DME is assayed by incubating samples containing DME for 1 hour at 37°C in the presence of 1 mM L-kynurenine and 1 mM 2-oxoglutarate in a final volume of 200 μ l of 150 mM Tris acetate buffer (pH 8.0) containing 70 μ M PLP. The formation of kynurenic acid is quantified by HPLC with spectrophotometric detection at 330 nm using the appropriate standards and controls well known to those skilled in the art. In the alternative, L-3-hydroxykynurenine is used as substrate and the production of xanthurenic acid is determined by HPLC analysis of the products with UV detection at 340 nm. The production of kynurenic acid and xanthurenic acid, respectively, is indicative of aminotransferase activity (Buchli, R. et al. (1995) J. Biol. Chem. 270:29330-29335).

15

20

30

In another alternative, aminotransferase activity of DME is measured by determining the activity of purified DME or crude samples containing DME toward various amino and oxo acid substrates under single turnover conditions by monitoring the changes in the UV/VIS absorption spectrum of the enzyme-bound cofactor, pyridoxal 5'-phosphate (PLP). The reactions are performed at 25°C in 50 mM 4-methylmorpholine (pH 7.5) containing 9 µM purified DME or DME containing samples and substrate to be tested (amino and oxo acid substrates). The half-reaction from amino acid to oxo acid is followed by measuring the decrease in absorbance at 360 nm and the increase in absorbance at 330 nm due to the conversion of enzyme-bound PLP to pyridoxamine 5' phosphate (PMP). The specificity and relative activity of DME is determined by the activity of the enzyme preparation against specific substrates (Vacca, R.A. et al. (1997) J. Biol. Chem. 272:21932-21937).

Superoxide dismutase activity of DME is assayed from cell pellets, culture supernatants, or purified protein preparations. Samples or lysates are resolved by electrophoresis on 15% non-denaturing polyacrylamide gels. The gels are incubated for 30 min in 2.5 mM nitro blue tetrazolium, followed by incubation for 20 min in 30 mM potassium phosphate, 30 mM TEMED, and

 $30 \,\mu\text{M}$ riboflavin (pH 7.8). Superoxide dismutase activity is visualized as white bands against a blue background, following illumination of the gels on a lightbox. Quantitation of superoxide dismutase activity is performed by densitometric scanning of the activity gels using the appropriate superoxide dismutase positive and negative controls (e.g., various amounts of commercially available <u>E. coli</u> superoxide dismutase (Harth, G. and Horwitz, M.A. (1999) J. Biol. Chem. 274:4281-4292).

Sulfotransferase activity of DME is measured using the incorporation of ³⁵S from [³⁵S]PAPS into a model substrate such as phenol (Folds, A. and Meek, J. L. (1973) Biochim. Biophys. Acta 327:365-374). An aliquot of enzyme is incubated at 37 °C with 1 mL of 10 mM phosphate buffer pH 6.4, 50 µM phenol, 0.4-4.0 µM [³⁵S]PAPS. After sufficient time for 5-20% of the radiolabel to be transferred to the substrate, 0.2 mL of 0.1 M barium acetate is added to precipitate protein and phosphate buffer. Then 0.2 mL of 0.1 M Ba(OH)₂ is added, followed by 0.2 mL ZnSO₄. The supernatant is cleared by centrifugation, which removes proteins as well as unreacted [³⁵S]PAPS. Radioactivity in the supernatant is measured by scintillation. The enzyme activity is determined from the number of moles of radioactivity in the reaction product.

15 XVIII. Identification of DME Inhibitors

10

20

Compounds to be tested are arrayed in the wells of a multi-well plate in varying concentrations along with an appropriate buffer and substrate, as described in the assays in Example XVII. DME activity is measured for each well and the ability of each compound to inhibit DME activity can be determined, as well as the dose-response profiles. This assay could also be used to identify molecules which enhance DME activity.

Various modifications and variations of the described methods and systems of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention.

25 Although the invention has been described in connection with certain embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. Indeed, various modifications of the described modes for carrying out the invention which are obvious to those skilled in molecular biology or related fields are intended to be within the scope of the following claims.

Table 1

7473879CB1	26	7473879CD1	13	7473879
5684625CB1	25	5684625CD1	12	5684625
3251523CB1	24	3251523CD1	11	3251523
1946084CB1	23	1946084CD1	10	1946084
7472582CB1	22	7472582CD1	9	74.7282
2779244CB1	7.7	2119644CDT	0	##9C119
4/330TOCDT	24	TOPOTOGO		7770077
2753818CB1	20	2753818CD1	7	2753818
1799250CB1	19	1799250CD1	9	1799250
5924683CB1	18	5924683CD1	5	5924683
6217152CB1	17	6217152CD1	4	6217152
7474436CB1	16	7474436CD1	3	7474436
7651096CB1	15	7651096CD1	2	7651096
3403225CB1	14	3403225CD1	1	3403225
Polynucleotide ID	SEQ ID NO:	Polypeptide ID	SEQ ID NO:	Project ID
Incyte	Polymucleotide	Incyte	Polypeptide	Incyte

							Π	_	•			٦		<u> </u>			*		_			
GenBank Homolog	androgen-regulated short-chain dehydrogenase/reductase 1 [Homo sapiens]	Lin, B. et al. (2001) Cancer Res. 61, 1611-1618	oxidoreductase, short-chain dehydrogenase/reductase family [Deinococcus radiodurans]	similar to 1-acyl-glycerol-3- phosphate acyltransferases	[Caenorhabditis elegans]	acyl-CoA:1-acylglycerol-3-phosphate	leukotriene B4 omega-hydroxylase	[Homo sapiens]	retinol dehydrogenase type I [Rattus norvegicus]	ns] heps	sulfotransferase-1 precursor	PAN2 [Homo sapiens]	[Arabidopsis thaliana] putative oxidoreductage	[Bacillus subtilis] aldehyde dehydrogenase	[Mus musculus] chondroitin 4-	[Homo sapiens] 1-acylglycerol-3-	phosphate O-acyltransferase 3 (new)	[Brassica napus] acyl-CoA:1-	acylglycerol-3-phosphate acyltransferase	[Oryctolagus cuniculus] cytochrome	P-450p-2	Matsubara, S. et al. (1987) J. Biol.
Probability score	1.00e-129		3.4e-68	2.5e-66		1.4e-26	8.8e-199		5.3e-89	1.0e-76	100	1.00E-46	2.3e-40	2.1e-41	3.1e-45	0		1.7e-60		5.5e-142		
GenBank ID NO:	g9622124		g6460419	g2315510		g4583544	g1857022		9841197	g2618973	0 10 0 0 0	g10039619	g3236237	g2619016	97340847	g11611541		g4583544		9164981		
Incyte Polypeptide ID	3403225CD1			7651096CD1			7474436CD1		6217152CD1	5924683CD1	1 1 0 0 0 1 1	1/99250CD1		2753818CD1	2779244CD1	7472582CD1				1946084CD1		
Polypeptide SEQ ID NO:	т.			2			3		4	5		Φ		7	8	6				10		

Table 2 (cont.)

	Bylund, J. et al. (1999) Biochem. Biophys. Res. Commun. 261:169-74.				
	[Homo sapiens] cytochrome P450	9.8e-168	g5733409	7473879CD1	13
	Habuchi, H. et al. (2000) J. Biol. Chem. 275:2859-68.				
	[Mus musculus] heparan sulfate 6- sulfotransferase 2	1.7e-236	g6683558	5684625CD1	12
	Kikuta, Y. et al. (1994) FEBS Lett. 348:70-74.				
	[Homo sapiens] leukotriene B4 omega- hydroxylase	3.9e-164	g1857022	3251523CD1	11

SEQ	Incyte	Amino	Potential	Potential	Signature Sequences,	Analytical
£ £	Polypeptide Acid	Acid	Phosphorylation	Glycosylation	Phosphorylation Glycosylation Domains and Motifs	Methods and
NO:	Ωī	idues	Sites	Sites		Databases
н	3403225CD1	316	S104 S190 S195 S21 S278 S291	N172 N297 N305	SHORT-CHAIN ALCOHOL DEHYDROGENASE FAMILY DM00034 S42651 28-318:V43-L311	BLAST_DOMO
			T257 T55		Alcohol dehydrogenase superfamily:	BLIMPS_PRINTS
					PRO0080A:K117-V128 PRO0080B:A168-V176	
	-				PR00080C: Y200-Q219	
					Glucose/ribitol dehydrogenase:	BLIMPS_PRINTS
					PR00081A:V41-E58	
					PR00081B:K117-V128	
					PR00081C:L162-H178	
					PR00081D:Y200-Q219	
					PR00081E:T221-V238	
				_	transmembrane domain: M1-A19	HMMER
					short chain dehydrogenase adh_short:K40- E236	HMMER_PFAM
12	7651096CD1	376	S114 S142 S230		ACYLTRANSFERASE:	BLAST DOMO
-			S258 S3 S372		DM08356 S52645 8-320:G6-L277	
-			T257 T87		ACYLTRANSFERASE:	BLAST_PRODOM
					PD017413:E77-E209	
					signal_peptide:M1-S21	HMMER
					transmembrane domain: K5-F28, L324-L345	HMMER
					Acyltransferase:D71-D261	HMMER_PFAM
					Leucine_Zipper L310-L331	MOTIFS
			!		signal cleavage: M1-G20	SPSCAN

tical	Methods and	ases	ОМОО		BLAST_PRODOM	BLAST_PRODOM BLIMPS_PRINTS	_PRODOM S_PRINTS	_PRODOM	_PRODOM S_PRINTS	_PRODOM	_PRODOM	BLAST_PRODOM BLIMPS_PRINTS BLIMPS_PRINTS	S_PRINTS	S_PRINTS	S_PRINTS	S_PRINTS S_PRINTS	S_PRINTS	S_PRINTS	S_PRINTS	S_PRINTS S_PRINTS N N -PFAM DOMO	S_PRINTS S_PRINTS N	BLIMPS_PRINTS BLIMPS_PRINTS BLIMPS_PRINTS SPSCAN HMMER HMMER HMMER_PFAM BLAST_DOMO BLAST_PRODOM	S_PRINTS S_PRINTS N N N N PFAM DOMO DOMO PRODOM	BLAST_PRODOM BLIMPS_PRINTS BLIMPS_PRINTS SPSCAN HMMER HMMER HMMER_PFAM BLAST_DOMO BLAST_PRODOM BLAST_PRODOM	S_PRINTS S_PRINTS N N N PFAM DOMO PRODOM	S_PRINTS S_PRINTS NA	S_PRINTS S_PRINTS NA DOMO PRODOM S_BLOCKS	BLAST_PRODOM BLIMPS_PRINTS SPSCAN HMMER_PFAM HMMER_PFAM BLAST_DOMO BLAST_PRODOM BLAST_PRODOM BLAST_PRODOM	S_PRINTS S_PRINTS NAMEDOMO DOMO PRODOM S_BLOCKS S_PRINTS
Analytical	Metho	Databases	BLAST_DOMO		BLAST	BLAST	BLAST	BLAST	BLAST	BLAST BLIMP	BLIMP	BLAST BLIMP BLIMP	BLAST. BLIMP	BLAST BLIMP BLIMP	BLAST BLIMP BLIMP	BLAST BLIMP BLIMP SPSCA	BLIMPS BLIMPS BLIMPS SPSCAN HMMER	BLIMPS_PRI BLIMPS_PRI BLIMPS_PRI SPSCAN HMMER HMMER	BLAST BLIMP BLIMP SPSCA HWMER HWMER	BLIMPS_PRI BLIMPS_PRI BLIMPS_PRI SPSCAN HMMER HMMER BLAST_DOMO	BLIMP BLIMP SPSCA HIMMER HIMMER BLAST	BLIMP BLIMP SPSCA HWMER HWMER BLAST	BLIMP BLIMP SPSCA HWMER HWMER HWMER BLAST	BLIMP BLIMP SPSCA HWMER HWMER HWER BLAST	BLIMP BLIMP SPSCA HWMER HWMER HWER BLAST	BLIMP BLIMP SPSCA HWMER HWMER BLAST BLAST	BLAST BLIMP SPSCA HWMER HWMER BLAST BLAST BLAST	BLIMP BLIMP SPSCA HWMER HWMER BLAST BLAST	BLIMP BLIMP SPSCA HWMER HWER BLAST BLAST
Signature Sequences,	Domains and Motifs		CYTOCHROME P450: DM00022 Q08477 108-511:A113-F444		CYTOCHROME P450: PD008467:M1-L74	CYTOCHROME P450: PD008467:M1-L74 E-class P450 group II signature:	II	Ħ	ij	H	II	II	III	III	III Single	sig				CYTOCHROME P450: PD008467:M1-L74 E-class P450 group II signature: PR00464A:G141-K161 PR00464B:L197-Q215 PR00464E:L317-A345 PR00464E:Q377-F397 PR00464E:Q377-F397 PR00464E:G417-T432 Mitochondrial P450 signature: PR00408E:R346-Q359 PR00408E:R346-Q359 PR00408F:A376-P394 Signal_cleavage:M1-A32 transmembrane domain:M16-L35 Cytochrome P450: p450:P52-V439			re:	II signature: signature: -A32 in:M16-L35 L DEHYDROGENASE 284:V20-G280 ogenase:	re:	re:	re:	II signature: signature: signature: in:M16-L35 in:M16-L35 in:M16-L35 cogenase: cogenase:	re: OGENASE G280 rfamily:
paramarar r	horylation Glycosylation Domains and Motifs			CYTOCHROME P4 PD008467:M1-L		E-class P450	E-class P450 PR00464A:G141	E-class P450 PR00464A:G141 PR00464B:L1977 PR00464C:D3177	E-class P450 PR00464A:G141. PR00464B:L197. PR00464C:D317. PR00464D:R346	E-class P450 PR00464A:G141. PR00464B:L197. PR00464C:D317. PR00464D:R346.	E-class P450 PR00464A:G141 PR00464B:L197- PR00464C:D317- PR00464E:Q377- PR00464E:Q377-	E-class P450 PR00464A:G141 PR00464E:L197 PR00464C:D317 PR00464D:R346 PR00464E:Q377 PR00464E:G417 Mitochondrial	E-class P450 PR00464A:G141 PR00464B:L1977 PR00464C:D3177 PR00464E:Q3777 PR00464E:G4177 Mitochondrial PR00408D:G328	E-class P450 PR00464A:G141 PR00464B:L197 PR00464C:D3177 PR00464E:Q3777 PR00464F:G4177 PR00464F:G4177 PR00408D:G328	E-class P450 PR00464A:G141 PR00464B:L197 PR00464C:D3177 PR00464E:Q3777 PR00464E:G4177 Mitochondrial PR00408E:R3466 PR00408E:R3466	E-class P450 PR00464A:G141 PR00464E:L197 PR00464E:Q377 PR00464E:Q377 PR00464F:G417 Mitochondrial PR00408E:R346 PR00408E:R346 PR00408E:R346 Signal_cleavag	E-class P450 PR00464A:G141 PR00464E:L197 PR00464E:Q377 PR00464E:Q377 PR00464E:Q377 PR00468E:R346 PR00408E:R346 PR00408E:R346	E-class P450 PR00464A:G141 PR00464B:L197 PR00464C:D3177 PR00464E:Q3777 PR00464E:Q3777 PR00408D:G328 PR00408E:R346 PR00408E:R3466	E-class P450 PR00464A:G141 PR00464B:L197 PR00464D:R346 PR00464E:G377 PR00464F:G417 Mitochondrial PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R376 PR00408E:R376	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:L197 PR00464E:Q377 PR00464F:G417 Mitochondrial PR00408B:R346 PR00408B:R346 PR00408B:R346 PR00408B:R346 PR00408F:R346 PR0	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:L197 PR00464E:Q377 PR00464F:G417 Mitochondrial PR00408E:R346	E-class P450 PR00464A:G141 PR00464B:L197 PR00464C:D3177 PR00464E:Q3777 PR00464E:Q3777 PR00464E:Q3777 PR00408E:R346 PR00034 P50:B51	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:D3177 PR00464E:Q3777 PR00464E:Q3777 PR00408E:R346 PR00034 P50169 PR0002736:I209-Short-chain de	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:D3177 PR00464E:Q3777 PR00464E:Q3777 PR00408E:R346- PR00034 P50169- PR0002736:I209- Short-chain de	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:D3177 PR00464E:Q3777 PR00464E:Q3777 PR00408E:R346- PR00034 P50169- PR0002736:I209- Short-chain de BL00061A:Q100- BL00061A:Q100-	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:D3177 PR00464E:Q3777 PR00464E:Q3777 PR00408E:R346- PR00034 P50169- PR0002736:I209- Short-chain de BL00061A:Q100- BL00061B:R152- BL00061B:R152-	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:L197 PR00464E:G316 PR00464E:G317 PR00464E:G317 Mitochondrial PR00408E:R346 PR00618:R152-R100 PR00618:R152-BL00061B:R152 PL00061B:R152-BL00061B:R152-	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:L377 PR00464E:Q3777 PR00464E:Q3777 PR00464E:Q3736 PR00408E:R346 PR00034 P50169 PROTCHAIN ALTANARY	E-class P450 PR00464A:G141 PR00464B:L197 PR00464E:L377 PR00464E:Q377 PR00464E:Q377 PR00464E:Q377 PR00464E:Q377 PR00468E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00408E:R346 PR00034 P50169 PR00034 P50169 PR00061A:Q100 PL00061A:Q100 PL00080A:Q100 PR00080A:Q100
Potential	Glycosylat	Sites	N112 N168																	N157 N22	N157 N22	N157 N22	N157 N22	N157 N22	N157 N22	N157 N22	N157 N22	N157 N22	N157 N22
Potential	Phosp	Sares	S139 S186 S187 S305 S314 S388	T106 T224 T277 T68	-															S233 S24	S S233 S24	S233 S24 S62 S70 F122 T243	S233 S24 S62 S70 F122 T243	S233 S24 S62 S70 F122 T243	S233 S24 S62 S70 F122 T243 F76 T81 Y71	S233 S24 S62 S70 F122 T243 F76 T81 Y71	S233 S24 S62 S70 F122 T243 F76 T81 Y71	S233 S24 S62 S70 F122 T243 F76 T81 Y71	S233 S24 S62 S70 F122 T243 F76 T81 Y71
	Acid	Aes Tones	463		_															313									
	Polypeptide A	1440,000	/4/4436CD1																	6217152CD1 3									
Oi	9 9		ກ			-														4									

SEQ ID NO:	Incyte Amin Polypeptide Acid ID Resi	Amino Acid Residues		Potential Glycosylation Sites	Potential Potential Signature Sequences, Phosphorylation Glycosylation Domains and Motifs Sites Sites	Analytical Methods and Databases
					Glucose/ribitol dehydrogenase: PR00081A:Y27-Q44 PR00081B:Q100-V111 PR00081C:M147-G163 PR00081D:Y172-Y191 PR00081E:F193-L210	BLIMPS_PRINTS
					Short-chain alcohol dehydrogenase family signature: adh_short.prf:A151-G203	ProfileScan
					short chain dehydrogenase: adh_short:K26-A208	HMMER_PFAM
					Adh_Short:S159-R187	MOTIFS
					Signal_Cleavage:Ml=S62	SPSCAIN
2	5924683CD1	340	S150 S2 T161 T27 T314	N148 N179 N262 N50	Sulfotransferase: PD007660:169-P251	BLAST_PRODOM
					signal_cleavage:M1-L22	SPSCAN
φ	1799250CD1	263	S108 S41 T202 T24 T98	6N	SHORT-CHAIN ALCOHOL DEHYDROGENASE FAMILY: DM00034 S42651 28-318:H2-M255	BLAST_DOMO
					Short-chain dehydrogenase: BL00061A:154-G64 BL00061B:V121-L158 BL00061C:H165-G174	BLIMPS_BLOCKS
					Alcohol dehydrogenase superfamily: PR00080A:154-V65	BLIMPS_PRINTS
					PR00080B:A109-A117 PR00080C:Y141-A160	
					Glucose/ribitol dehydrogenase: PR00081B:154-V65	BLIMPS_PRINTS
					PR00081C:G103-H119	
					PR00081D:Y141-A160 PR00081E:S164-Y181	
					Short-chain alcohol dehydrogenase family	ProfileScan
					signature: adh_short.prf:A109-G174	

SEQ	Incyte	Amino	Potential	Potential	Signature Semionres		
CI.	Polypeptide Acid	Acid	Phosphorylation	Glycocy lation	hory ation (1) veces at the management of the second	Analytical	_
NO:	· 日	Residues	21.12	Giftesy tacton	Domains and Moties	Methods and	
						Databases	
					short chain dehydrogenase: adh_short:H2-D179	HMMER_PFAM	
					Adh_Short D128-Q156	MOTIFS	
-							,
	2753818CD1	751	S178	-3 -7	ALDEHYDE DEHYDROGENASES GLUTAMIC ACID: DM00100 A42597 16-474:H42-Q261	BLAST_DOMO	-
		_	S492 S553 S557 S576 T127 T15		DEHYDROGENASE: PD000218:S499-G719	BLAST_PRODOM	
			T:360	· 7 P	Aldehyde dehydrogenases:	BLIMPS_BLOCKS	
				- PA	BL00687E:R326-G375		
				<u></u>	BL00687F:P412-S422		
				<u> </u>	BL00687A:W529-A546		
				1	BLUU68/B:E608-P649		
				ru, 10	Aldehyde dehydrogenase family: aldedh:K47-L443	HMMER_PFAM	
<u> </u>	2779244CD1	376	T112 S144	N110 N368 le	cimpi diceraciminas		
			T250		argirar_creavage:Mt-Aoo	SPScan	
			1	<u>- </u>	cransmem_domain:L39-M59	HMMER	
				O) PA	SULFOTRANSFERASE: PD041629:K89-N368	BLAST_PRODOM	
ō	74775030777		3				
1		9/5	X117 X163 X69 T107 T154 T359	<u>kr. C.</u>	ACYLTRANSFERASE: DM08356185264518-320.115-1230	BLAST_DOMO	
			Y168	14	ACYL WRANSPERASE.		
				<u>. m</u>	PD017413:L64-R219	BLAST_PRODOM	
				<u> </u>	ł	HMMER	
				<u>. 1</u>	transmem_domain:T9-N29, L327-G346		
				<u> </u>		HMMER PFAM	
				A	Acyltransferase:V82-Q285		

SEQ	Incyte	Amino	Potential	Potential	Signature Sequences,	Analytical
ព	Polypeptide	Acid	Phosphorylation Glycosylation Domains	Glycosylation	Domains and Motifs	Methods and
NO:	ΙD	idues	Sites	Sites		Databases
10	1946084CD1	505	159 8175	N145 N217	CYTOCHROME P450:	BLAST_DOMO
		_	S206 S267 S290	N381	DM00022 P10611 120-497:W120-1497	
	,		S434 T277		CYTOCHROME P450: PD000021:M155-S383	BLAST_PRODOM
					P450 superfamily signature:	BLIMPS PRINTS
					85 <u>A</u> :A314-A <u>3</u> 3	
					PR00385B:K332-R345	
		_			PR00385C:M367-P378	
	-2				PR00385D:1443-C452	
					PR00385E:C452-K463	
					Mitochondrial P450 signare:	BLIMPS_PRINTS
					PR00408B:L128-Q138	
					PR00408D:A314-A331	
	_				PR00408E:K332-R345	
	-				PR00408F:S360~P378	
					PR00408H:I443-C452	
					E-class P450 group II signature:	BLIMPS PRINTS
					PR00464A:G130-K150	
					PR00464B:L185-Q203	
					PR00464C:D303-A331	
					PR00464D:K332-G349	
					PR00464E:Q361-N381	
					PR00464F:G401-Y416	
					PR00464G:F417-E432	
					PR00464H:P439-C452	
					PR004641:C452-L475	
	-				signal_peptide:M1-R31	HMMER
					signal_cleavage:M1-F27	SPSCAN
					transmem_domain:F14-Y33	HMMER
					Cytochrome P450 cysteine heme-iron ligand	ProfileScan
					signature:	
					cytochrome_p450.prf:F424-R472	
					Cytochrome P450:	HMMER_PFAM
				-	p450:F46-A501	

יכ	Incyte Amino	Potential	Potential	Signature Sequences,	Analytical
ויי	Residues		Gites	Findspiolytation Gifes Sites Sites	Methods and
1				Cytochrome_P450; F445-G454	MOTIFS
8					
3251523CD1	545	1	9 <i>L</i> İN	CYTOCHROME P450: DM00022 Q08477 108-511:K116-L534	BLAST_DOMO
		T474 T5 T517 T52		CYTOCHROME P450: PD000021:R262-I413	BLAST_PRODOM
				P450 superfamily signature: PR00385A:E335-A352	BLIMPS_PRINTS
			·	PR00385B: K353-Q366	
				PR00385C:M390-P401 PR00385E:C489-R500	
				E-class P450 group I:	BLIMPS_PRINTS
				PK00463E:1344-K370 PR004631:C489-L512	
				E-class P450 group II signature: PR00464A:G149-K169	BLIMPS_PRINTS
				PR00464B:L205-Q223	
				PR00464C:D324-A352	
				PR00464D:K353-K370	
				PRO0464B;Q384-L404 DD00047-0400 7513	
				signal cleavage:M1-R41	איניססט
				transmem_domain:F19-L43	HMMER
				Cytochrome P450:	HMMER PFAM
				p450:P60-G424 R487-L541	
5684625CDI	459	274 S319 431 S436	N314 N410	SULFOTRANSFERASE; PD139786:M1-R372	BLAST_PRODOM
		S55 T120	N443	signal peptide:M1-Q24	HMMER
		19 / TZIL	N446 N63	signal_cleavage:M1-Q24	SPSCAN
		Y237		rransmembrane_domain:L8-Y25	HMMER

SEO	Incyte	Amino	Potential	Potential	Simature Semionres	Lantyrical
<u> </u>	Polymentide Arid	טיטע	Phoenhorylation	מסיום (אפטטעום		Mothode and
9 6	37 - 17 February	3170	3	מדאכרסאל דמרדסזז	חסווים דווס שוות הסכדום	Mecilons aild
2	77	Sunot		Sires		Databases
13	7473879CD1	370	S164 S238 S69	•	CYTOCHROME P450:	BLAST_DOMO
			T127 Y97		DM00022 Q08477 108-511:V54-L362	
					CYTOCHROME P450:	BLAST_PRODOM
					PD000021:I121-A249	
					Mitochondrial P450 signature:	BLIMPS_PRINTS
_						
					PR00408E:R196-Q209	
-					PR00408F; A226-P244	
					PR00408H:1309-C318	
					PR00408I:C318-K329	
, , ; , , , , , , , , , , , , , , , , ,					E-class P450 group II signature:	BLIMPS_PRINTS
				-		
					PR00464D:R196-K213	
					PR00464E:0227~T247	
					PR00464F:G267-S282	
					PR00464G:V283-E298	•
					PR00464H: P305-C318	
··					PR004641:C318-I341	
					E-class P450 group IV signature:	BLIMPS_PRINTS
					PR00465D:L228-P244	
					PR00465F:H278-D296	
					PR00465G:K302-C318	
				•	PR00465H:C318-L336	
					Cytochrome P450 cysteine heme-iron ligand	ProfileScan
				-	signature:	
					cytochrome_p450.prf:Y290-R338	
					Cytochrome P450:	HMMER_PFAM
					p450:D94-L369	
					Cytochrome_P450:	MOTIFS
					F311-G320	

			÷				_		~			,																r	.T/	U3	01/	11/	19	IJ
3' Position	1304	1411	1673	677	1612	753	994	271	1944	1888	1324	1875	1343	720	2305	410	1031	1734	1173	1824	2115	1610	1192	780	1309	1287	204	500	783	2453	2081	2033	504	1003
5' Position	633	725	1319	H	893	5	420	-1	1386	1343	634	1263	746	1	1693	1	371	1106	541	1178	1411	923	623	1	936	671	-1	16	216	2234	1214	1052	7	584
Sequence Fragments	71515563V1	71515223V1	6340564H1 (BRANDIN01)	71519447V1	6782387R8 (OVARDIR01)	7039679R8 (UTRSTMR02)	70732558V1			- 1	6935947F8 (SINTTMR02)	2925646T6 (SININOT04)	71129055V1	6899932F9 (LIVRTMR01)	71758256V1	71757842V1	71753623V1	71757954V1	71755138V1	71754754V1	ᆌ	1	- 1		- 1		- 1		\neg	2715134H1 (THYRNOT09)	7 <u>18</u> 26828V1		2489244R6 (BRAVUNT02)	2753818R7 (THP1AZS08)
Selected Fragment(s)	36-75, 473-				1916-1944, 1-	119, 1182-	1218, 1266-	18/1	- 1	1358-1557, 1-	787				-1235, 1-		/68-940				1-870, 2022-	STTZ	1		T-63		!.	!	1	1322-1869,		_1	<u> </u>	
Length	1673				1944				000	888				1	2305					7 7 7	STTZ			0000	1303				24.53		-			
Incy ce Polynucleotide ID	3403225CB1				/esingecel				140264474	7470CBT				C0171 F0001	941/134CB1					F024602450	7784007001			1700250001	TOOCOCCIT				2753210CD1	700000000000000000000000000000000000000				
SEQ ID NO:	14			1.0	C-				16	2				17						18	<u>:</u>			19					20					

Table 4 (cont.)

SEQ_ID NO: Polymucleotide Inengt 21 2779244CB1 2037 23 1946084CB1 2015 24 3251523CB1 1790 25 5684625CB1 2014 26 7473879CB1 2609	ч	Fragment(s)			
2779244CB1 1946084CB1 3251523CB1 5684625CB1					
2779244CB1 1946084CB1 3251523CB1 5684625CB1			7665864H1 (SPLNFEC01)	371	006
2779244CB1 1946084CB1 3251523CB1 5684625CB1			71697169V1	1907	2453
1946084CB1 3251523CB1 5684625CB1	<u>···</u>	1-412, 1944-	g1515628	1474	1961
1946084CB1 3251523CB1 5684625CB1		2037	8036011H1 (SMCRUNE01)	1612	1958
1946084CB1 3251523CB1 5684625CB1			FL2268938CB1_00001	1	1945
1946084CB1 3251523CB1 5684625CB1	_		GNN.g6693604_008	78	1262
1946084CB1 3251523CB1 5684625CB1	_		8045529J1 (OVARTUE01)	1105	1960
1946084CB1 3251523CB1 5684625CB1			92064109	1	390
3251523CB1 5684625CB1 7473879CB1		1-607, 821-	70280701V1	1	538
3251523CB1 5684625CB1 7473879CB1		1276	2743169T6 (BRSTTUT14)	1405	2015
3251523CB1 5684625CB1			4187166T6 (BRSTNOT31)	1312	2004
3251523CB1 5684625CB1			70211584V1	841	1335
3251523CB1 5684625CB1			70278906V1	511	1165
5684625CB1		701-746, 1710-1790,	FL3251523_g7458736_000008_g 1146438	149	1790
5684625CB1		827-1067, 1-	7256116H2 (SKIRTDC01)	-	635
5684625CB1		545, 1424-			
5684625CB1 7473879CB1		1609, 1155- 1183			
7473879CB1		1-305, 1889-	7177841H1 (BRAXDIC01)	1218	1805
7473879CB1		2014	55046165J2 (FLP300013)	557	1409
7473879CB1			5626585H1 (PLACFER01)	1349	2014
7473879CB1			55046109H1 (FLP300013)	1	861
_		1-378, 2457-	5721562F7 (SEMVNOT05)	569	1265
	<u> </u>	2609, 946-	7647520J1 (UTRSTUE01)	1867	2609
	•	1264, 734-	7638882H1 (SEMVTDE01)	1327	2021
		771, 627–667	7640315H2 (SEMVTDE01)	482	1091
			70817240V1	1	518
			7641305J1 (SEMVTDE01)	1241	1928

Polynucleotide	Incyte	Representative Library
	Project ID	
	3403225CB1	BRANDIN01
	7651096CB1	OVARDIR01
	7474436CB1	SINTNOR01
	6217152CB1	SKINTDT01
	5924683CB1	BRAIHCT01
	1799250CB1	OVARNOT07
	2753818CB1	BRAVUNT02
	2779244CB1	PROSTUS23
	7472582CB1	EPIPNON05
	1946084CB1	BRSTTUT14
	3251523CB1	ESOGTME01
	5684625CB1	PROSTUT05
	7473879CB1	SEMVTDE01

1 - 1 200	1700tox	ľ
Library	vector	71
BRAIHCT01	pINCY	Library was constructed using RNA isolated from diseased occipital lobe tissue removed from the brain of a 57-year-old Caucasian male, who died from a cerebrovascular
		accident. Fatient nistory included Huntington's disease and empnysema.
BRANDIN01	PINCY	This normalized pineal gland tissue library was constructed from 4 x 10e5 independent
		clones from a pineal gland tissue library from two different donors. Starting RNA was
		(donor A) who died from congestive heart failure and a 79-year-old (donor B) who died
		from pneumonia. Neuropathology for donor A indicated mild to moderate Alzheimer disease,
		Alzheimer disease, arteriolosclerosis, cerebral amyloid angiopathy and multiple
		infarctions. There were diffuse and neuritic amyloid plaques and neurofibrillary tangles
		throughout the brain sections examined in both donors. Patient history included diabetes
		mellitus, rheumatoid arthritis, hyperthyroidism, amyloid heart disease, and dementia in
		donor A; and pseudophakia, gastritis with bleeding, glaucoma, peripheral vascular
		disease, COPD, delayed onset tonic/clonic seizures, and transient ischemic attack in
		donor B. The library was normalized in one round using conditions adapted from Soares et
		al., PNAS (1994) 91:9228-9232 and Bonaldo et al., Genome Research 6 (1996):791, except
BRAVUNT02	PSPORT1	Library was constructed using RNA isolated from separate populations of unstimulated
		98.
BRSTTUT14	pINCY	Library was constructed using RNA isolated from breast tumor tissue removed from a 62-
		Year-old Caucasian female during a unilateral extended simple mastectomy. Pathology
		indicated an invasive grade 3 (of 4), nuclear grade 3 (of 3) adenocarcinoma, ductal
		type. Ductal carcinoma in situ, comedo type, comprised 60% of the tumor mass. Metastatic
		adenocarcinoma was identified in one (of 14) axillary lymph nodes with no perinodal
		extension. Tumor cells were strongly positive for estrogen receptors and weakly positive
		for progesterone receptors. Patient history included benign colon neoplasm,
		hyperlipidemia, cardiac dysrhythmia, and obesity. Family history included
		atherosclerotic coronary artery disease, myocardial infarction, colon cancer, ovarian
		cancer, lung cancer, and cerebrovascular disease.
EPIPNON05	pincy	This normalized prostate epithelial cell tissue library was constructed from 2.36
		was made from untreated prostatic epithelial cell issue removed from a 17-year-old
		Hispanic male. The library was normalized in two rounds using conditions adapted from
-		Soares et al., PNAS (1994) 91:9228 and Bonaldo et al., Genome Research (1996) 6:791,
		except that a significantly longer (48 -hours/round) reannealing hybridization was used.

ESOCTME01	PSPORm1	This El bishood washed dillers.
		н or
		- m
-		Ξ
		ڀ
		sophagus, 2 cm from the gastroesophageal ju
		margin. The tumor invaded through the muscularis propria into the adventitial soft
·		w
		membranous nephritis, hyperlipidemia, benign hypertension, and anxiety state. Previous
		surgeries included an adenotonsillectomy, appendectomy, and inguinal hernia repair. The
		patient was not taking any medications. Family history included atherosclerotic coronary
		disease, alcoholic cirrhosis, alcohol abuse, and an abdominal aortic aneu
		rupture in the father; breast cancer in the mother; a myocardial infarction and
		atherosclerotic coronary artery disease in the sibling(s); and myocardial infarction and
OVARDIR01	PCDNA2.1	colonally altery disease in the grandparent(s).
		removed from a 45-vear-old Cancasian female during the labeled from a specific overly clasue
	-	bilateral salpingo-oophorectomy, vaqinal suspension and fixation and incidental
		appendectomy. Pathology indicated stromal hyperthecosis of the right and left ovaries
		ogy for
		in the left ovary. Multiple (3) intramural leiomyomata were identified. The cervix
		showed squamous metaplasia. Patient history included metrorrhagia, female stress
		anemla, Family history included benign hypertension, atherosclerotic coronary artery
		disease, hyperlipidemia, and primary tuberculous complex.
		of pincy Library was constructed using RNA isolated from left ovariar
		Ved
		Libbian tubes and ovaries. The tissue was associated with multiple folli
		cysts, endometrium in a weakly proliterative phase, and chronic cervicitis of the cervix
		wich squamous mecapiasia, family history included benign hypertension, hyperlipidemia, and atherosclerotic coronary artery discas
OVARNOT07	pINCY	Library was constructed using RNA isolated from left ovarian tissue removed from a 28-
		year-old Caucasian female during a vaginal hysterectomy and removal of the fallonian
~		tubes and ovaries. The tissue was associated with multiple follicular cysts, endometrium
•		in a weakly proliferative phase, and chronic cervicitis of the cervix with squamous
		metaplasia. Family history included benign hypertension, hyperlipidemia, and
Commoded	177.01	atheroscierotic coronary artery disease.
FROSTOSES	PINCY	prostate tumor library was constructed using 10
		poored prostate tumor library that was subjected to 2 rounds of subtractive

		N
		library for subtraction was constructed by pooling equal numbers of clones from 4 prostate tumor libraries using mRNA isolated from prostate tumor removed from Caucasian
		ages 58 (A), 61 (B), 66 (C), and 68 (D) during prostatectomy wit
•••		excision. Pathology indicated adenocarcinoma in all donors. History included elevated
		PSA, induration and tobacco abuse in donor A; elevated PSA, induration, prostate homeralseis rens feiling octeosorthritic rens artem, atomoris homism umw
		hyperprasts, remai railure, osceoarchiltrs, remai arcery scenosis, benigh min, thrombocytopenia, hyperlipidemia, tobacco/alcohol abuse and hepatitis C (carrier) in
÷		•
	,	
		probe for subtraction was constructed by pooling equal numbers of cDNA clones from 3
		prostate tissue libraries derived from prostate tissue, prostate epithelial cells, and
		fibroblasts from prostate stroma from 3 different donors. Subtractive hybridization
		ns were
T Omranio Orac	- muchon	, et al. Genome Research 6 (1996):791.
PROSTOTOS	FSFORT	LIDIALY WAS CONSTINCTED USING KNA 1SOLATED IFOM Prostate tumor tissue removed irom a 69-
-		year-old Caucasian male during a radical prostatectomy. Pathology indicated
		(Gleason grade 3+4). Adenofibromatous hyperplasia was also present.
		Family history included congestive heart failure, multiple myeloma, hyperlipidemia, and
		വ
SEMVTDE01	PCDNA2.1	
		radical prostatectomy, and regional lymph node excision. Pathology for the associated
		tumor tissue indicated Gleason grade 2+3 adenocarcinoma in the right side of the
		prostate. Adenofibromatous hyperplasia was present. The patient presented with prostate
		cancer, elevated prostate specific antigen and prostatic hyperplasia. Patient history
		ਲ
-		tobacco abuse in remission. Previous surgeries included adenotonsillectomy. Patient
·	_	ons included Ventolin and Vanceril. Family history
		coronary artery disease and acute myocardial infarction in the mother; atherosclerotic
		coronary artery disease and acute myocardial infarction in the father; and stomach
		cancer and extrinsic asthma in the grandparent(s).
SINTNORO1	PCDNA2.1	This random primed library was constructed using RNA isolated from small intestine
		tissue removed from a 31-year-old Caucasian female during Roux-en-Y gastric bypass.
		Patient history included clinical obesity.
		TDT01 pINCY Library was constructed using two
		was constructed using RNA isolated from breast skin tissue removed from a 46-year-old
-		Pathology for the non-tumorous breast tissue indicated mildly proliferative fibrocystic
		changes. Pathology for the associated breast tumor tissue indicated indraductal

		carcinoma and multifocal ductal carcinoma in situ, both comedo and non comedo types with
		extensive intraductal calcifications. Patient history included deficiency anemia,
_		chronic sinusitis, extrinsic asthma, kidney infection, and a normal delivery. Family
		history included diabetes type II, benign hypertension, cerebrovascular accident,
		malignant neoplasm of the skin, and hyperlipidemia. The second library was constructed
-		in the same manner using RNA isolated from the skin of a 20-week-old Caucasian fetus who
		died from Patau's Syndrome.
SKINTDT01 DINCY	PINCY	Library was constructed using two pooled libraries. The first library was constructed
		_
		during breast biopsy and unilateral extended simple mastectomy. Pathology for the non-
		tumorous breast tissue indicated mildly proliferative fibrocystic changes. Pathology
		for the associated breast tumor tissue indicated indraductal carcinoma and multifocal
		ductal carcinoma in situ, both comedo and non comedo types with extensive intraductal
		calcifications. Patient history included deficiency anemia, chronic sinusitis,
		c asthma,
		diabetes type II, benign hypertension, cerebrovascular accident, malignant neoplasm of
		the skin, and hyperlipidemia. The second library was constructed in the same manner
		using RNA isolated from the skin of a 20-week-old Caucasian fetus who died from Patau's
		Syndrome

Program .	Description	Reference	Parameter Threshold
ABI FACTURA	A program that removes vector sequences and masks ambiguous bases in nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
ABIPARACEL FDF	A Fast Data Finder useful in comparing and annotating amino acid or nucleic acid sequences.	Applied Biosystems, Foster City, CA; Paracel Inc., Pasadena, CA.	Mismatch <50%
ABI AutoAssembler	A program that assembles nucleic acid sequences.	Applied Biosystems, Foster City, CA.	
BLAST	A Basic Local Alignment Search Tool useful in sequence similarity search for amino acid and nucleic acid sequences. BLAST includes five functions: blastp, blastn, thlastn, and thlastx.	Altschul, S.F. et al. (1990) J. Mol. Biol. 215:403-410; Altschul, S.F. et al. (1997) Nucleic Acids Res. 25:3389-3402.	ESTs: Probability value= 1.0E-8 or less Full Length sequences: Probability value= 1.0E-10 or less
FASTA	A Pearson and Lipman algorithm that searches for similarity between a query sequence and a group of sequences of the same type. FASTA comprises as least five functions: fasta, fasta, fastx, and ssearch.	Pearson, W.R. and D.J. Lipman (1988) Proc. Natl. Acad Sci. USA 85:2444-2448; Pearson, W.R. (1990) Methods Enzymol. 183:63-98; and Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489.	ESTs: fasta E value=1.06E-6 Assembled ESTs: fasta Identity= 95% or greater and Match length=200 bases or greater; fastx E value=1.0E-8 or less Full Length sequences: fastx score=100 or greater
BLIMPS	A BLocks IMProved Searcher that matches a sequence against those in BLOCKS, PRINTS, DOMO, PRODOM, and PFAM databases to search for gene families, sequence homology, and structural fingerprint regions.	Henikoff, S. and J.G. Henikoff (1991) Nucleic Acids Res. 19:6565-6572; Henikoff, J.G. and S. Henikoff (1996) Methods Enzymol. 266:88-105; and Attwood, T.K. et al. (1997) J. Chem. Inf. Comput. Sci. 37:417-424.	Probability value= 1.0E-3 or less
HMMER	An algorithm for searching a query sequence against hidden Markov model (HMM)-based databases of protein family consensus sequences, such as PFAM.	Krogh, A. et al. (1994) J. Mol. Biol. 235:1501-1531; Sonnhammer, E.L.L. et al. (1988) Nucleic Acids Res. 26:320-322; Durbin, R. et al. (1998) Our World View, in a Nutshell, Cambridge Univ. Press, pp. 1-350.	PFAM hits: Probability value=1.0B-3 or less Signal peptide hits: Score=0 or greater

Program	Description	Reference	Parameter Threshold
ProfileScan	An algorithm that searches for structural and sequence motifs in protein sequences that match sequence patterns defined in Prosite.	Gribskov, M. et al. (1988) CABIOS 4:61-66; Gribskov, M. et al. (1989) Methods Enzymol. 183:146-159; Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221.	Normalized quality scorez GCG-specified "HIGH" value for that particular Prosite motif. Generally, score=1.4-2.1.
Phred	A base-calling algorithm that examines automated sequencer traces with high sensitivity and probability.	Ewing, B. et al. (1998) Genome Res. 8:175-185; Ewing, B. and P. Green (1998) Genome Res. 8:186-194.	
Рікар	A Phils Revised Assembly Program including SWAT and CrossMatch, programs based on efficient implementation of the Smith-Waterman algorithm, useful in searching sequence homology and assembling DNA sequences.	Smith, T.F. and M.S. Waterman (1981) Adv. Appl. Math. 2:482-489; Smith, T.F. and M.S. Waterman (1981) J. Mol. Biol. 147:195-197; and Green, P., University of Washington, Seattle, WA.	Score= 120 or greater; Match length= 56 or greater
Consed	A graphical tool for viewing and editing Phrap assemblies.	Gordon, D. et al. (1998) Genome Res. 8:195-202.	
SPScan	A weight matrix analysis program that scans protein sequences for the presence of secretory signal peptides.	Nielson, H. et al. (1997) Protein Engineering 10:1-6; Claverle, J.M. and S. Audic (1997) CABIOS 12:431-439.	Score=3,5 or greater
TMAP	A program that uses weight matrices to delineate transmembrane segments on protein sequences and determine orientation.	Persson, B. and P. Argos (1994) J. Mol. Biol. 237:182-192; Persson, B. and P. Argos (1996) Protein Sci. 5:363-371.	
TMHMMER	A program that uses a hidden Markov model (HMM) to delineate transmembrane segments on protein sequences and determine orientation.	Sonnhammer, E.L. et al. (1998) Proc. Sixth Intl. Conf. on Intelligent Systems for Mol. Biol., Glasgow et al., eds., The Am. Assoc. for Artificial Intelligence Press, Menlo Park, CA, pp. 175-182.	
Motifs	A program that searches amino acid sequences for patterns that matched those defined in Prosite.	Bairoch, A. et al. (1997) Nucleic Acids Res. 25:217-221; Wisconsin Package Program Manual, version 9, page M51-59, Genetics Computer Group, Madison, WI.	-221; 3e

What is claimed is:

15

25

- 1. An isolated polypeptide selected from the group consisting of:
- a) a polypeptide comprising an amino acid sequence selected from the group consisting of
 SEQ ID NO:1-13,
 - b) a naturally occurring polypeptide comprising an amino acid sequence at least 90% identical to an amino acid sequence selected from the group consisting of SEQ ID NO:1-13,
 - c) a biologically active fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, and
- d) an immunogenic fragment of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13.
 - An isolated polypeptide of claim 1 selected from the group consisting of SEQ ID NO:1 13.

3. An isolated polynucleotide encoding a polypeptide of claim 1.

- 4. An isolated polynucleotide encoding a polypeptide of claim 2.
- An isolated polynucleotide of claim 4 selected from the group consisting of SEQ ID NO:14-26.
 - 6. A recombinant polynucleotide comprising a promoter sequence operably linked to a polynucleotide of claim 3.
 - 7. A cell transformed with a recombinant polynucleotide of claim 6.
 - 8. A transgenic organism comprising a recombinant polynucleotide of claim 6.
- 9. A method for producing a polypeptide of claim 1, the method comprising:
 - a) culturing a cell under conditions suitable for expression of the polypeptide, wherein said cell is transformed with a recombinant polynucleotide, and said recombinant polynucleotide comprises a promoter sequence operably linked to a polynucleotide encoding the polypeptide of claim 1, and
- b) recovering the polypeptide so expressed.

10. An isolated antibody which specifically binds to a polypeptide of claim 1.

- 11. An isolated polynucleotide selected from the group consisting of:
- a) a polynucleotide comprising a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26.
 - b) a naturally occurring polynucleotide comprising a polynucleotide sequence at least 90% identical to a polynucleotide sequence selected from the group consisting of SEQ ID NO:14-26,
 - c) a polynucleotide complementary to a polynucleotide of a),
 - d) a polynucleotide complementary to a polynucleotide of b), and
- e) an RNA equivalent of a)-d).
 - 12. An isolated polynucleotide comprising at least 60 contiguous nucleotides of a polynucleotide of claim 11.
- 13. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
 - a) hybridizing the sample with a probe comprising at least 20 contiguous nucleotides comprising a sequence complementary to said target polynucleotide in the sample, and which probe specifically hybridizes to said target polynucleotide, under conditions whereby a hybridization complex is formed between said probe and said target polynucleotide or fragments thereof, and
 - b) detecting the presence or absence of said hybridization complex, and, optionally, if present, the amount thereof.
 - 14. A method of claim 13, wherein the probe comprises at least 60 contiguous nucleotides.
 - 15. A method for detecting a target polynucleotide in a sample, said target polynucleotide having a sequence of a polynucleotide of claim 11, the method comprising:
 - a) amplifying said target polynucleotide or fragment thereof using polymerase chain reaction amplification, and
- 30 b) detecting the presence or absence of said amplified target polynucleotide or fragment thereof, and, optionally, if present, the amount thereof.
 - 16. A composition comprising a polypeptide of claim 1 and a pharmaceutically acceptable excipient.

20

25

17. A composition of claim 16, wherein the polypeptide has an amino acid sequence selected from the group consisting of SEO ID NO:1-13.

- 18. A method for treating a disease or condition associated with decreased expression of
 functional DME, comprising administering to a patient in need of such treatment the composition of
 claim 16.
 - 19. A method for screening a compound for effectiveness as an agonist of a polypeptide of claim 1, the method comprising:
 - a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 - b) detecting agonist activity in the sample.

10

15

20. A composition comprising an agonist compound identified by a method of claim 19 and a pharmaceutically acceptable excipient.

21. A method for treating a disease or condition associated with decreased expression of functional DME, comprising administering to a patient in need of such treatment a composition of claim 20.

- 22. A method for screening a compound for effectiveness as an antagonist of a polypeptide of claim 1, the method comprising:
 - a) exposing a sample comprising a polypeptide of claim 1 to a compound, and
 - b) detecting antagonist activity in the sample.
- 25 23. A composition comprising an antagonist compound identified by a method of claim 22 and a pharmaceutically acceptable excipient.
- 24. A method for treating a disease or condition associated with overexpression of functional DME, comprising administering to a patient in need of such treatment a composition of
 30 claim 23.
 - 25. A method of screening for a compound that specifically binds to the polypeptide of claim 1, said method comprising the steps of:
- a) combining the polypeptide of claim 1 with at least one test compound under suitable
 conditions, and

b) detecting binding of the polypeptide of claim 1 to the test compound, thereby identifying a compound that specifically binds to the polypeptide of claim 1.

- 26. A method of screening for a compound that modulates the activity of the polypeptide ofclaim 1, said method comprising:
 - a) combining the polypeptide of claim 1 with at least one test compound under conditions permissive for the activity of the polypeptide of claim 1,
 - b) assessing the activity of the polypeptide of claim 1 in the presence of the test compound, and
- c) comparing the activity of the polypeptide of claim 1 in the presence of the test compound with the activity of the polypeptide of claim 1 in the absence of the test compound, wherein a change in the activity of the polypeptide of claim 1 in the presence of the test compound is indicative of a compound that modulates the activity of the polypeptide of claim 1.
- 27. A method for screening a compound for effectiveness in altering expression of a target polynucleotide, wherein said target polynucleotide comprises a sequence of claim 5, the method comprising:
 - a) exposing a sample comprising the target polynucleotide to a compound, under conditions suitable for the expression of the target polynucleotide,
 - b) detecting altered expression of the target polynucleotide, and

20

25

30

- c) comparing the expression of the target polynucleotide in the presence of varying amounts of the compound and in the absence of the compound.
 - 28. A method for assessing toxicity of a test compound, said method comprising:
- a) treating a biological sample containing nucleic acids with the test compound;
- b) hybridizing the nucleic acids of the treated biological sample with a probe comprising at least 20 contiguous nucleotides of a polynucleotide of claim 11 under conditions whereby a specific hybridization complex is formed between said probe and a target polynucleotide in the biological sample, said target polynucleotide comprising a polynucleotide sequence of a polynucleotide of claim 11 or fragment thereof;
 - c) quantifying the amount of hybridization complex; and
- d) comparing the amount of hybridization complex in the treated biological sample with the amount of hybridization complex in an untreated biological sample, wherein a difference in the amount of hybridization complex in the treated biological sample is indicative of toxicity of the test

compound.

29. A diagnostic test for a condition or disease associated with the expression of DME in a biological sample comprising the steps of:

- a) combining the biological sample with an antibody of claim 10, under conditions suitable for the antibody to bind the polypeptide and form an antibody:polypeptide complex; and
 - b) detecting the complex, wherein the presence of the complex correlates with the presence of the polypeptide in the biological sample.
- 10 30. The antibody of claim 10, wherein the antibody is:
 - a) a chimeric antibody,
 - b) a single chain antibody,
 - c) a Fab fragment,
 - d) a F(ab')₂ fragment, or
- e) a humanized antibody.
 - 31. A composition comprising an antibody of claim 10 and an acceptable excipient.
- 32. A method of diagnosing a condition or disease associated with the expression of DME20 in a subject, comprising administering to said subject an effective amount of the composition of claim 31.
 - 33. A composition of claim 31, wherein the antibody is labeled.
- 25 34. A method of diagnosing a condition or disease associated with the expression of DME in a subject, comprising administering to said subject an effective amount of the composition of claim 33.
- 35. A method of preparing a polyclonal antibody with the specificity of the antibody of claim 10 comprising:
 - a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, or an immunogenic fragment thereof, under conditions to elicit an antibody response;
 - b) isolating antibodies from said animal; and

c) screening the isolated antibodies with the polypeptide, thereby identifying a polyclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13.

- 5 36. An antibody produced by a method of claim 35.
 - 37. A composition comprising the antibody of claim 36 and a suitable carrier.
- 38. A method of making a monoclonal antibody with the specificity of the antibody of claim 10 comprising:
 - a) immunizing an animal with a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13, or an immunogenic fragment thereof, under conditions to elicit an antibody response;
 - b) isolating antibody producing cells from the animal;
 - c) fusing the antibody producing cells with immortalized cells to form monoclonal antibody-producing hybridoma cells;
 - d) culturing the hybridoma cells; and

15

20

30

e) isolating from the culture monoclonal antibody which binds specifically to a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13.

39. A monoclonal antibody produced by a method of claim 38.

- 40. A composition comprising the antibody of claim 39 and a suitable carrier.
- 25 41. The antibody of claim 10, wherein the antibody is produced by screening a Fab expression library.
 - 42. The antibody of claim 10, wherein the antibody is produced by screening a recombinant immunoglobulin library.
 - 43. A method for detecting a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13 in a sample, comprising the steps of:
 - a) incubating the antibody of claim 10 with a sample under conditions to allow specific binding of the antibody and the polypeptide; and

b) detecting specific binding, wherein specific binding indicates the presence of a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13 in the sample.

- 5 44. A method of purifying a polypeptide having an amino acid sequence selected from the group consisting of SEQ ID NO:1-13 from a sample, the method comprising:
 - a) incubating the antibody of claim 10 with a sample under conditions to allow specific binding of the antibody and the polypeptide; and
- b) separating the antibody from the sample and obtaining the purified polypeptide having an
 amino acid sequence selected from the group consisting of SEQ ID NO:1-13.
 - 45. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:1.
 - 46. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:2.
 - 47. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:3.
 - 48. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:4.
- 20 49. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:5.

15

25

- 50. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:6.
- 51. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:7.
- 52. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:8.
- 53. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:9.
- 30 54. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:10.
 - 55. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:11.
 - 56. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:12.

57. A polypeptide of claim 1, comprising the amino acid sequence of SEQ ID NO:13.

58. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:14.

5

- 59. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:15.
- 60. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:16.
 - 61. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:17.
- 62. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ IDNO:18.
 - 63. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:19.

20

- 64. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:20.
- 65. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:21.
 - 66. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:22.
- 30 67. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:23.
 - 68. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:24.

 $\,$ 69. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ ID NO:25.

70. A polynucleotide of claim 11, comprising the polynucleotide sequence of SEQ IDNO:26.

```
<110> INCYTE GENOMICS, INC.
      YUE, Henry
      SANJANWALA, Madhu S.
      BAUGHN, Mariah R.
      GANDHI, Ameena R.
      RING, Huijun Z.
      ELLIOTT, Vicki S.
      WALIA, Narinder K.
      YANG, Junming
KHAN, Farrah A.
      RAMKUMAR, Jaya
      TANG, Y. Tom
HAFALIA, April
      LAL, Preeti
      NGUYEN, Danniel B.
      YAO, Monique G.
      LEE, Ernestine A.
      TRIBOULEY, Catherine M. PATTERSON, Chandra
      LU, Yan
      BURFORD, Neil
      DING, Li
      BRUNS, Christopher M.
      KEARNEY, Liam
      REDDY, Roopa
<120> DRUG METABOLIZING ENZYMES
<130> PI-0102 PCT
<140> To Be Assigned
<141> Herewith
<150> 60/207,901; 60/208,983; 60/209,861; 60/211,825; 60/213,744
<151> 2000-05-25; 2000-06-01; 2000-06-07; 2000-06-15; 2000-06-22
<160> 26
<170> PERL Program
<210> 1
<211> 316
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 3403225CD1
<400> 1
Met Leu Val Thr Leu Gly Leu Leu Thr Ser Phe Phe Ser Phe Leu
  1
                                       10
                                                            15
Tyr Met Val Ala Pro Ser Ile Arg Lys Phe Phe Ala Gly Gly Val
                  20
                                       25
Cys Arg Thr Asn Val Gln Leu Pro Gly Lys Val Val Ile Thr
                  35
                                       40
                                                            45
Gly Ala Asn Thr Gly Ile Gly Lys Glu Thr Ala Arg Glu Leu Ala
                  50
                                       55
                                                            .60
Ser Arg Gly Ala Arg Val Tyr Ile Ala Cys Arg Asp Val Leu Lys
                  65
                                       70
Gly Glu Ser Ala Ala Ser Glu Ile Arg Val Asp Thr Lys Asn Ser
                  80
                                       85
Gln Val Leu Val Arg Lys Leu Asp Leu Ser Asp Thr Lys Ser Ile
                  95
                                      100
                                                           105
Arg Ala Phe Ala Glu Gly Phe Leu Ala Glu Glu Lys Gln Leu His
                 110
                                      115
                                                           120
Ile Leu Ile Asn Asn Ala Gly Val Met Met Cys Pro Tyr Ser Lys
                 125
                                      130
                                                           135
```

```
Thr Ala Asp Gly Phe Glu Thr His Leu Gly Val Asn His Leu Gly
                140
                                     145
                                                          150
His Phe Leu Leu Thr Tyr Leu Leu Leu Glu Gln Leu Lys Val Ser
                                                          165
                                     160
                155
Ala Pro Ala Arg Val Val Asn Val Ser Ser Val Ala His His Ile
                                     175
                170
                                                          180
Gly Lys Ile Pro Phe His Asp Leu Gln Ser Glu Lys Arg Tyr Ser
                185
                                     190
                                                          195
Arg Gly Phe Ala Tyr Cys His Ser Lys Leu Ala Asn Val Leu Phe
                200
                                     205
                                                          210
Thr Arg Glu Leu Ala Lys Arg Leu Gln Gly Thr Gly Val Thr Thr
                215
                                     220
                                                          225
Tyr Ala Val His Pro Gly Val Val Arg Ser Glu Leu Val Arg His
                                     235
                230
                                                          240
Ser Ser Leu Leu Cys Leu Leu Trp Arg Leu Phe Ser Pro Phe Val
                                     250
                                                          255
                245
Lys Thr Ala Arg Glu Gly Ala Gln Thr Ser Leu His Cys Ala Leu
                                     265
                                                          270
                260
Ala Glu Gly Leu Glu Pro Leu Ser Gly Lys Tyr Phe Ser Asp Cys
                                     280
                                                          285
                275
Lys Arg Thr Trp Val Ser Pro Arg Ala Arg Asn Asn Lys Thr Ala
                                     295
                                                          300
                290
Glu Arg Leu Trp Asn Val Ser Cys Glu Leu Leu Gly Ile Arg Trp
                305
                                     310
Glu
<210> 2
<211> 376
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7651096CD1
Met Val Ser Trp Lys Gly Ile Tyr Phe Ile Leu Thr Leu Phe Trp
                                      10
Gly Ser Phe Phe Gly Ser Ile Phe Met Leu Ser Pro Phe Leu Pro
                                      25
                 20
Leu Met Phe Val Asn Pro Ser Trp Tyr Arg Trp Ile Asn Asn Arg
Leu Val Ala Thr Trp Leu Thr Leu Pro Val Ala Leu Leu Glu Thr
                 50
                                      55
Met Phe Gly Val Lys Val Ile Ile Thr Gly Asp Ala Phe Val Pro
                 65
Gly Glu Arg Ser Val Ile Ile Met Asn His Arg Thr Arg Met Asp
                 80
                                      85
                                                           90
Trp Met Phe Leu Trp Asn Cys Leu Met Arg Tyr Ser Tyr Leu Arg
                 95
                                     100
                                                          105
Leu Glu Lys Ile Cys Leu Lys Ala Ser Leu Lys Gly Val Pro Gly
                110
                                     115
                                                          120
Phe Gly Trp Ala Met Gln Ala Ala Ala Tyr Ile Phe Ile His Arg
                                                          135
                125
                                     130
Lys Trp Lys Asp Asp Lys Ser His Phe Glu Asp Met Ile Asp Tyr
                140
                                     145
                                                          150
Phe Cys Asp Ile His Glu Pro Leu Gln Leu Leu Ile Phe Pro Glu
                155
                                     160
                                                          165
Gly Thr Asp Leu Thr Glu Asn Ser Lys Ser Arg Ser Asn Ala Phe
                170
                                     175
                                                          180
Ala Glu Lys Asn Gly Leu Gln Lys Tyr Glu Tyr Val Leu His Pro
                                                          195
                185
                                     190
Arg Thr Thr Gly Phe Thr Phe Val Val Asp Arg Leu Arg Glu Gly
                                                          210
                200
                                     205
Lys Asn Leu Asp Ala Val His Asp Ile Thr Val Ala Tyr Pro His
                215
                                     220
```

```
Asn Ile Pro Gln Ser Glu Lys His Leu Leu Gln Gly Asp Phe Pro
                 230
                                      235
    Glu Ile His Phe His Val His Arg
                                      Tyr Pro Ile Asp Thr Leu
                 245
                                      250
                                                           255
Pro Thr Ser Lys Glu Asp Leu Gln Leu Trp Cys His Lys Arg
                                                          Tro
                 260
                                      265
                                                          270
Glu Glu Lys Glu Glu Arg Leu Arg Ser Phe Tyr Gln Gly Glu Lys
                 275
                                      280
                                                          285
Asn Phe Tyr Phe Thr Gly Gln Ser Val Ile Pro Pro Cys Lys Ser
                 290
                                      295
                                                          300
Glu Leu Arg Val Leu Val Val Lys Leu Leu Ser Ile Leu Tyr
                                                          Trp
                 305
                                      310
                                                          315
Thr Leu Phe Ser Pro Ala Met Cys Leu Leu Ile Tyr Leu Tyr Ser
                 320
                                      325
                                                          330
Leu Val Lys Trp Tyr Phe Ile Ile Thr Ile Val Ile Phe Val Leu
                 335
                                      340
Gln Glu Arg Ile Phe Gly Gly Leu Glu Ile Ile Glu Leu Ala Cys
                 350
                                      355
                                                          360
Tyr Arg Leu Leu His Lys Gln Pro His Leu Asn Ser Lys Lys Asn
                 365
                                                          375
Glu
<210> 3
<211> 463
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7474436CD1
<400> 3
Met Ser Leu Ser Leu Pro Trp Leu Gly Leu Arg Leu Val Ala
                   -5
                                      10
Met Ser Pro Trp Leu Leu Leu Leu Val Val Gly Ser Trp Leu
                  20
                                      25
Leu Ala Arg Ile Leu Ala Trp Thr Tyr Ala Phe Tyr Asn Asn Cys
                  35
                                      40
Arg Arg Leu Gln Cys Phe Pro Gln Pro Pro Lys Arg Asn Trp Phe
                  50
                                      55
                                                           60
Trp Gly His Leu Gly Leu Ile Thr Pro Thr Glu Glu Gly Leu Lys
                  65
                                      70
Asp Ser Thr Gln Met Ser Ala Thr Tyr Ser Gln Gly Phe Thr Val
                 80
                                      85
Trp Leu Gly Pro Ile Ile Pro Phe Ile Val Leu Cys His Pro Asp
                  95
                                     100
                                                          105
Thr Ile Arg Ser Ile Thr Asn Ala Ser Ala Ala Ile Ala Pro Lys
                 110
                                     115
                                                          120
Asp Asn Leu Phe Ile Arg Phe Leu Lys Pro Trp Leu Gly Glu Gly
                 125
                                     130
                                                          135
Ile Leu Leu Ser Gly Gly Asp Lys Trp Ser Arg His Arg Arg Met
                140
                                     145
Leu Thr Pro Ala Phe His Phe Asn Ile Leu Lys Ser Tyr Ile Thr
                155
                                     160
                                                          165
Ile Phe Asn Lys Ser Ala Asn Ile Met Leu Asp Lys Trp Gln His
                170
                                     175
Leu Ala Ser Glu Gly Ser Ser Arg Leu Asp Met Phe Glu His Ile
                185
                                     190
                                                          195
Ser Leu Met Thr Leu Asp Ser Leu Gln Lys Cys Ile Phe Ser Phe
                200
                                     205
                                                          210
Asp Ser His Cys Gln Glu Arg Pro Ser Glu Tyr Ile Ala Thr Ile
                215
                                     220
                                                          225
Leu Glu Leu Ser Ala Leu Val Glu Lys Arg Ser Gln His Ile Leu
                230
                                     235
                                                          240
Gln His Met Asp Phe Leu Tyr Tyr Leu Ser His Asp Gly Arg Arg
                245
                                     250
                                                          255
```

Phe His Arg Ala Cys Arg Leu Val His Asp Phe Thr Asp Ala Val

```
260
                                    265
Ile Arg Glu Arg Arg Arg Thr Leu Pro Thr Gln Gly Ile Asp Asp
                275
                                    280
                                                         285
Phe Phe Lys Asp Lys Ala Lys Ser Lys Thr Leu Asp Phe Ile Asp
                290
                                    295
Val Leu Leu Ser Lys Asp Glu Asp Gly Lys Ala Leu Ser Asp
                                     310
                                                         315
                305
Glu Asp Ile Arg Ala Glu Ala Asp Thr Phe Met Phe Gly Gly His
                320
                                    325
                                                         330
Asp Thr Thr Ala Ser Gly Leu Ser Trp Val Leu Tyr Asn Leu Ala
                335
                                     340
Arg His Pro Glu Tyr Gln Glu Arg Cys Arg Gln Glu Val Gln Glu
                350
                                    355
                                                         360
Leu Leu Lys Asp Arg Asp Pro Lys Glu Ile Glu Trp Asp Asp Leu
                                     370
                                                         375
                365
Ala Gln Leu Pro Phe Leu Thr Met Cys Val Lys Glu Ser Leu Arg
                                    385
                                                         390
                380
Leu His Pro Pro Ala Pro Phe Ile Ser Arg Cys Cys Thr Gln Asp
                                     400
                                                         405
                395
Ile Val Leu Pro Asp Gly Arg Val Ile Pro Lys Gly Ile Thr Cys
                410
                                    415
                                                         420
Leu Ile Asp Ile Ile Gly Val His His Asn Pro Thr Val Trp Pro
                425
                                     430
                                                         435
Asp Pro Glu Val Leu Pro Ser Pro Phe Thr Thr Thr Pro Ile
                440
                                    445
                                                         450
Leu Tyr Phe Cys Val Cys Val Cys Glu Phe Gln Gly Ser
                455
                                    460
<210> 4
<211> 313
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 6217152CD1
<400> 4
Met Ala Ala Leu Thr Asp Leu Ser Phe Met Tyr Arg Trp Phe Lys
                                     10
Asn Cys Asn Leu Val Gly Asn Leu Ser Glu Lys Tyr Val Phe Ile
                 20
                                     25
Thr Gly Cys Asp Ser Gly Phe Gly Asn Leu Leu Ala Lys Gln Leu
                 35
                                     40
Val Asp Arg Gly Met Gln Val Leu Ala Ala Cys Phe Thr Glu Glu
                 50
                                     55
Gly Ser Gln Lys Leu Gln Arg Asp Thr Ser Tyr Arg Leu Gln Thr
                                     70
                 65
Thr Leu Leu Asp Val Thr Lys Ser Glu Ser Ile Lys Ala Ala Ala
                 80
                                     85
Gln Trp Val Arg Asp Lys Val Gly Glu Gln Gly Leu Trp Ala Leu
                 95
                                    100
                                                         105
Val Asn Asn Ala Gly Val Gly Leu Pro Ser Gly Pro Asn Glu Trp
                                                         120
                110
                                    115
Leu Thr Lys Asp Asp Phe Val Lys Val Ile Asn Val Asn Leu Val
                                     130
                                                         135
                125
Gly Leu Ile Glu Val Thr Leu His Met Leu Pro Met Val Lys Arg
                                     145
                                                         150
                140
Ala Arg Gly Arg Val Val Asn Met Ser Ser Gly Gly Arg Val
                155
                                     160
                                                         165
Ala Val Ile Gly Gly Tyr Cys Val Ser Lys Phe Gly Val Glu
                170
                                     175
                                                         180
Ala Phe Ser Asp Ser Ile Arg Arg Glu Leu Tyr Tyr Phe Gly Val
                185
                                     190
Lys Val Cys Ile Ile Glu Pro Gly Asn Tyr Arg Thr Ala Ile Leu
```

```
Gly Lys Glu Asn Leu Glu Ser Arg Met Arg Lys Leu Trp Glu Arg
                 215
                                      220
Leu Pro Gln Glu Thr Arg Asp Ser Tyr Gly Glu Asp Tyr Phe Arg
                 230
                                      235
                                                          240
Ile Tyr Thr Asp Lys Leu Lys Asn Ile Met Gln Val Ala Glu Pro
                 245
                                      250
                                                          255
Arg Val Arg Asp Val Ile Asn Ser Met Glu His Ala Ile Val Ser
                 260
                                      265
                                                          270
Arg Ser Pro Arg Ile Arg Tyr Asn Pro Gly Leu Asp Ala Lys
                                                          Leu
                 275
                                      280
Leu Tyr Ile Pro Leu Ala Lys Leu Pro
                                     Thr Pro Val Thr Asp Phe
                 290
                                      295
Ile Leu Ser Arg Tyr Leu Pro Arg Pro Ala Asp Ser Val
                 305
                                     310
<210> 5
<211> 340
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 5924683CD1
<400> 5
Met Ser Leu Lys Cys Leu Cys Leu Ala Cys Arg Leu Gln Pro Ile
                                      10
                                                           15
    Pro Ile Glu Gly Arg Leu Gly Gly Ala Arg Thr Gln Ala Glu
                  20
                                      25
Phe Pro Leu Arg Ala Leu Gln Phe Lys Arg Gly Leu Leu His Glu
                  35
                                      40
Phe Arg Lys Gly Asn Ala Ser Lys Glu Gln Val Arg Leu His Asp
                  50
                                      55
Leu Val Gln Gln Leu Pro Lys Ala Ile Ile Gly Val Arg Lys
                  65
                                      70
Gly Gly Thr Arg Ala Leu Leu Glu Met Leu Asn Leu His Pro Ala
                                      85
                                                           90
Val Val Lys Ala Ser Gln Glu Ile His Phe Phe Asp Asn Asp Glu
                 95
                                     100
Asn Tyr Gly Lys Gly Ile Glu Trp Tyr Arg Lys Lys Met Pro Phe
                 110
                                     115
                                                          120
Ser Tyr Pro Gln Gln Ile Thr Ile Glu Lys Ser Pro Ala Tyr Phe
                 125
                                     130
                                                          135
Ile Thr Glu Glu Val Pro Glu Arg Ile Tyr Lys Met Asn Ser Ser
                 140
                                     145
                                                          150
Ile Lys Leu Leu Ile Ile Val Arg Glu Pro Thr Thr Arg Ala Ile
                 155
                                     160
                                                          165
Ser Asp Tyr Thr Gln Val Leu Glu Gly Lys Glu Arg Lys Asn Lys
                 170
                                     175
                                                          180
Thr Tyr Tyr Lys Phe Glu Lys Leu Ala Ile Asp Pro Asn Thr Cys
                 185
                                     190
                                                          195
Glu Val Asn Thr Lys Tyr Lys Ala Val Arg Thr Ser Ile Tyr Thr
                 200
                                     205
                                                          210
Lys His Leu Glu Arg Trp Leu Lys Tyr Phe Pro Ile Glu Gln Phe
                 215
                                     220
                                                          225
His Val Val Asp Gly Asp Arg Leu Ile Thr Glu Pro Leu Pro Glu
                230
                                     235
                                                          240
Leu Gln Leu Val Glu Lys Phe Leu Asn Leu Pro Pro Arg Ile Ser
                245
                                     250
                                                          255
Gln Tyr Asn Leu Tyr Phe Asn Ala Thr Arg Gly Phe Tyr Cys Leu
                260
                                     265
                                                          270
Arg Phe Asn Ile Ile Phe Asn Lys Cys Leu Ala Gly Ser Lys Gly
                275
                                     280
                                                          285
Arg Ile His Pro Glu Val Asp Pro Ser Val Ile Thr Lys Leu Arg
                290
                                     295
                                                          300
Lys Phe Phe His Pro Phe Asn Gln Lys Phe Tyr Gln Ile Thr Gly
```

```
Arg Thr Leu Asn Trp Pro Lys Ile Ile Cys His Thr Thr Leu Cys
                                    325
                320
Val Val Pro Gly Asp Thr Gln Cys Leu Leu
<210> 6
<211> 263
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 1799250CD1
<400> 6
Met His Val Ile Ile Ala Gly Asn Asn Asp Ser Lys Ala Lys Gln
                                      10
Val Val Ser Lys Ile Lys Glu Glu Thr Leu Asn Asp Lys Val Glu
                 20
                                      25
                                                          30
Phe Leu Tyr Cys Asp Leu Ala Ser Met Thr Ser Ile Arg Gln Phe
                 35
                                      40
Val Gln Lys Phe Lys Met Lys Lys Ile Pro Leu His Val Leu Ile
                 50
                                      55
Asn Asn Ala Gly Val Met Met Val Pro Gln Arg Lys Thr Arg Asp
                                      70
                 65
Gly Phe Glu Glu His Phe Gly Leu Asn Tyr Leu Gly His Phe Leu
                                      85
                 80
Leu Thr Asn Leu Leu Leu Asp Thr Leu Lys Glu Ser Gly Ser Pro
                                     100
                                                          105
                 95
Gly His Ser Ala Arg Val Val Thr Val Ser Ser Ala Thr His Tyr
                                     115
                                                          120
                110
Val Ala Glu Leu Asn Met Asp Asp Leu Gln Ser Ser Ala Cys
                                                         Tyr
                                     130
                125
Ser Pro His Ala Ala Tyr Ala Gln Ser Lys Leu Ala Leu Val Leu
                                     145
                140
Phe Thr Tyr His Leu Gln Arg Leu Leu Ala Ala Glu Gly Ser His
                155
                                     160 -
Val Thr Ala Asn Val Val Asp Pro Gly Val Val Asn Thr Asp Leu
                170
                                     175
                                                          180
Tyr Lys His Val Phe Trp Ala Thr Arg Leu Ala Lys Lys Leu Leu
                185
                                     190
                                                          195
Gly Trp Leu Leu Phe Lys Thr Pro Asp Glu Gly Ala Trp Thr Ser
                200
                                     205
                                                          210
Ile Tyr Ala Ala Val Thr Pro Glu Leu Glu Gly Val Gly Gly Arg
                215
                                     220
                                                          225
Tyr Leu Tyr Asn Glu Lys Glu Thr Lys Ser Leu His Val Thr
                                                          Tyr
                                     235
                                                          240
                230
Asn Gln Lys Leu Gln Gln Gln Leu Trp Ser Lys Ser Cys Glu Met
                                     250
                245
Thr Gly Val Leu Asp Val Thr Leu
                260
<210> 7
<211> 751
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 2753818CD1
<400> 7
Met Ala Ala Thr Arg Ala Gly Pro Arg Ala Arg Glu Ile Phe Thr
                                      10
Ser Leu Glu Tyr Gly Pro Val Pro Glu Ser His Ala Cys Ala Leu
                 20
                                      25
Ala Trp Leu Asp Thr Gln Asp Arg Cys Leu Gly His Tyr Val Asn
```

```
35
                                       40
Gly Lys Trp Leu Lys Pro Glu His Arg Asn Ser Val Pro Cys Gln
                  50
                                       55
Asp Pro Ile Thr Gly Glu Asn Leu Ala Ser Cys Leu Gln Ala Gln
                  65
                                       70
Ala Glu Asp Val Ala Ala Ala Val Glu Ala Ala Arg Met Ala Phe
                  80
                                       ឧទ
Lys Gly Trp Ser Ala His Pro Gly Val Val Arg Ala Gln His Leu
                  95
                                      100
Thr Arg Leu Ala Glu Val Ile Gln Lys His Gln Arg Leu Leu Trp
                 110
                                      115
                                                          120
Thr Leu Glu Ser Leu Val Thr Gly Arg Ala Val Arg Glu Val Arg
                 125
                                      130
                                                          135
Asp Gly Asp Val Gln Leu Ala Gln Gln Leu Leu His Tyr His Ala
                 140
                                      145
                                                          150
Ile Gln Ala Ser Thr Gln Glu Glu Ala Leu Ala Gly Trp Glu Pro
                 155
                                      160
Met Gly Val Ile Gly Leu Ile Leu Pro Pro Thr Phe Ser Phe Leu
                 170
                                      175
                                                          180
Glu Met Met Trp Arg Ile Cys Pro Ala Leu Ala Val Gly Cys Thr
                 185
                                      190
                                                          195
Val Val Ala Leu Val Pro Pro Ala Ser Pro Ala Pro Leu Leu
                 200
                                      205
                                                          210
Ala Gln Leu Ala Gly Glu Leu Gly Pro Phe Pro Gly Ile Leu Asn
                 215
                                      220
                                                          225
Val Leu Ser Gly Pro Ala Ser Leu Val Pro Ile Leu Ala Ser Gln
                 230
                                     235
                                                          240
Pro Gly Ile Arg Lys Val Ala Phe Cys Gly Ala Pro Glu Gly Gly
                 245
                                      250
                                                          255
Leu Arg Leu Leu Ile Gln Glu Ser Val Trp Asp Glu Ala Met Arg
                 260
                                      265
Arg Leu Gln Glu Arg Met Gly Arg Leu Arg Ser Gly Arg Gly Leu
                 275
                                      280
                                                          285
Asp Gly Ala Val Asp Met Gly Ala Arg Gly Ala Ala Ala Cys Asp
                 290
                                     295
Leu Val Gln Arg Phe Val Arg Glu Ala Gln Ser Gln Gly Ala Gln
                 305
                                     310
Val Phe Gln Ala Gly Asp Val Pro Ser Glu Arg Pro Phe Tyr Pro
                320
                                     325
Pro Thr Leu Val Ser Asn Leu Pro Pro Ala Ser Pro Cys Ala Gln
                335
                                     340
                                                          345
Val Glu Val Pro Trp Pro Val Val Val Ala Ser Pro Phe Arg Thr
                 350
                                     355
                                                          360
Ala Lys Glu Ala Leu Leu Val Ala Asn Gly Thr Pro Arg Gly Gly
                365
                                     370
                                                          375
Ser Ala Ser Val Trp Ser Glu Arg Leu Gly Gln Ala Leu Glu Leu
                 380
                                     385
                                                          390
Gly Tyr Gly Leu Gln Val Gly Thr Val Trp Ile Asn Ala His Gly
                395
                                     400
                                                          405
Leu Arg Asp Pro Ser Val Pro Thr Gly Gly Cys Lys Glu Ser Gly
                 410
                                     415
                                                          420
Cys Ser Trp His Gly Gly Pro Asp Gly Leu Tyr Glu Tyr Leu Arg
                425
                                     430
                                                          435
Pro Ser Gly Thr Pro Ala Arg Leu Ser Cys Leu Ser Lys Asn Leu
                440
                                     445
                                                          450
Asn Tyr Asp Thr Phe Gly Leu Ala Val Pro Ser Thr Leu Pro Ala
                455
                                     460
                                                          465
Gly Pro Glu Ile Gly Pro Ser Pro Ala Pro Pro Tyr Gly Leu Phe
                470
                                                          480
Val Gly Gly Arg Phe Gln Ala Pro Gly Ala Arg Ser Ser Arg Pro
                485
                                     490
                                                          495
Ile Arg Asp Ser Ser Gly Asn Leu His Gly Tyr Val Ala Glu Gly
                500
                                     505
                                                          510
Gly Ala Lys Asp Ile Arg Gly Ala Val Glu Ala Ala His Gln Ala
                515
                                     520
Phe Pro Gly Trp Ala Gly Gln Ser Pro Gly Ala Arg Ala Ala Leu
                                     535
```

```
Leu Trp Ala Leu Ala Ala Leu Glu Arg Arg Lys Ser Thr Leu
                                     550
                545
Ala Ser Arg Leu Glu Arg Gln Gly Ala Glu Leu Lys Ala Ala Glu
                                     565
                                                         570
                560
Ala Glu Val Glu Leu Ser Ala Arg Arg Leu Arg Ala Trp Gly Ala
                575
                                     580
                                                         585
Arg Val Gln Ala Gln Gly His Thr Leu Gln Val Ala Gly Leu Arg
                                                         600
                590
                                     595
Gly Pro Val Leu Arg Leu Arg Glu Pro Leu Gly Val Leu Ala Val
                605
                                     610
                                                         615
Val Cys Pro Asp Glu Trp Pro Leu Leu Ala Phe Val Ser Leu Leu
                                     625
                620
Ala Pro Ala Leu Ala Tyr Gly Asn Thr Val Val Met Val Pro Ser
                635
                                     640
                                                         645
Ala Ala Cys Pro Leu Leu Ala Leu Glu Val Cys Gln Asp Met Ala
                                     655
                650
                                                         660
Thr Val Phe Pro Ala Gly Leu Ala Asn Val Val Thr Gly Asp Arg
                                     670
                                                         675
                665
Asp His Leu Thr Arg Cys Leu Ala Leu His Gln Asp Val Gln Ala
                                     685
                680
Met Trp Tyr Phe Gly Ser Ala Gln Gly Ser Gln Phe Val Glu Trp
                                     700
                                                         705
                695
Ala Ser Ala Gly Asn Leu Lys Pro Val Trp Ala Ser Arg Gly Cys
                                                          720
                710
                                     715
Pro Arg Ala Trp Asp Gln Glu Ala Glu Gly Ala Gly Pro Glu Leu
                                     730
                725
Gly Leu Arg Val Ala Arg Thr Lys Ala Leu Trp Leu Pro Met Gly
                                     745
Asp
<210> 8
<211> 376
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 2779244CD1
<400> 8
Met Phe Pro Arg Pro Leu Thr Pro Leu Ala Ala Pro Asn Gly Ala
                                      10
Glu Pro Leu Gly Arg Ala Leu Arg Arg Ala Pro Leu Gly Arg Ala
                 20
                                      25
                                                          30
Arg Ala Gly Leu Gly Gly Pro Pro Leu Leu Pro Ser Met Leu
                                      40
                                                          45
Met Phe Ala Val Ile Val Ala Ser Ser Gly Leu Leu Met Ile
                 50
                                      55
                                                          60
Glu Arg Gly Ile Leu Ala Glu Met Lys Pro Leu Pro Leu His Pro
                 65
                                      70
Pro Gly Arg Glu Gly Thr Ala Trp Arg Gly Lys Ala Pro Lys Pro
                 80
                                      85
Gly Gly Leu Ser Leu Arg Ala Gly Asp Ala Asp Leu Gln Val Arg
                 95
                                     100
                                                         105
Gln Asp Val Arg Asn Arg Thr Leu Arg Ala Val Cys Gly Gln Pro
                110
                                     115
                                                         120
Gly Met Pro Arg Asp Pro Trp Asp Leu Pro Val Gly Gln Arg Arg
                                     130
                                                          135
                125
Thr Leu Leu Arg His Ile Leu Val Ser Asp Arg Tyr Arg Phe Leu
                                     145
                140
                                                          150
Tyr Cys Tyr Val Pro Lys Val Ala Cys Ser Asn Trp Lys Arg Val
                                                         165
                                     160
                155
Met Lys Val Leu Ala Gly Val Leu Asp Ser Val Asp Val Arg Leu
                                                         180
                                     175
                170
Lys Met Asp His Arg Ser Asp Leu Val Phe Leu Ala Asp Leu Arg
                                     190
                185
```

```
Pro Glu Glu Ile Arg Tyr Arg Leu Gln His Tyr Phe Lys Phe Leu
                200
                                     205
                                                          210
Phe Val Arg Glu Pro Leu Glu Arg Leu Leu Ser Ala Tyr Arg Asn
                215
                                     220
                                                          225
Lys Phe Gly Glu Ile Arg Glu Tyr Gln Gln Arg Tyr Gly Ala Glu
                230
                                     235
                                                          240
Ile Val Arg Arg Tyr Arg Ala Gly Ala Gly Pro Ser Pro Ala Gly
                245
                                     250
                                                         255
Asp Asp Val Thr Phe Pro Glu Phe Leu Arg Tyr Leu Val Asp Glu
                260
                                     265
                                                          270
Asp Pro Glu Arg Met Asn Glu His Trp Met Pro Val Tyr His Leu
                275
                                     280
                                                          285
Cys Gln Pro Cys Ala Val His Tyr Asp Phe Val Gly Ser Tyr Glu
                290
                                     295
                                                          300
Arg Leu Glu Ala Asp Ala Asn Gln Val Leu Glu Trp Val Arg Ala
                305
                                     310
                                                          315
Pro Pro His Val Arg Phe Pro Ala Arg Gln Ala Trp Tyr Arg Pro
                320
                                     325
                                                          330
Ala Ser Pro Glu Ser Leu His Tyr His Leu Cys Ser Ala Pro Arg
                335
                                     340
                                                          345
Ala Leu Leu Gln Asp Val Leu Pro Lys Tyr Ile Leu Asp Phe Ser
                350
                                     355
                                                         360
Leu Phe Ala Tyr Pro Leu Pro Asn Val Thr Lys Glu Ala Cys Gln
                365
                                     370
                                                         375
Gln
<210> 9
<211> 376
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7472582CD1
<400> 9
Met Gly Leu Leu Ala Phe Leu Lys Thr Gln Phe Val Leu His Leu
                                      10
Leu Val Gly Phe Val Phe Val Val Ser Gly Leu Val Ile Asn Phe
                 20
                                      25
Val Gln Leu Cys Thr Leu Ala Leu Trp Pro Val Ser Lys Gln Leu
                 35
                                      40
                                                           45
Tyr Arg Arg Leu Asn Cys Arg Leu Ala Tyr Ser Leu Trp Ser Gln
                                      55
Leu Val Met Leu Leu Glu Trp Trp Ser Cys Thr Glu Cys Thr Leu
                 65
                                      70
Phe Thr Asp Gln Ala Thr Val Glu Arg Phe Gly Lys Glu His Ala
                 80
                                      85
Val Ile Ile Leu Asn His Asn Phe Glu Ile Asp Phe Leu Cys Gly
                 95
                                     100
                                                          105
Trp Thr Met Cys Glu Arg Phe Gly Val Leu Gly Ser Ser Lys Val
                110
                                     115
                                                          120
Leu Ala Lys Lys Glu Leu Leu Tyr Val Pro Leu Ile Gly Trp Thr
                125
                                     130
                                                          135
Trp Tyr Phe Leu Glu Ile Val Phe Cys Lys Arg Lys Trp Glu Glu
                140
                                     145
                                                          150
Asp Arg Asp Thr Val Val Glu Gly Leu Arg Arg Leu Ser Asp Tyr
                155
                                     160
                                                          165
Pro Glu Tyr Met Trp Phe Leu Leu Tyr Cys Glu Gly Thr Arg Phe
                170
                                     175
                                                          180
Thr Glu Thr Lys His Arg Val Ser Met Glu Val Ala Ala Ala Lys
                185
                                     190
                                                          195
Gly Leu Pro Val Leu Lys Tyr His Leu Leu Pro Arg Thr Lys
                                                         Gly
                200
                                     205
                                                          210
Phe Thr Thr Ala Val Lys Cys Leu Arg Gly Thr Val Ala Ala Val
                215
                                     220
```

```
Tyr Asp Val Thr Leu Asn Phe Arg Gly Asn Lys Asn Pro Ser Leu
                                    235
                230
Leu Gly Ile Leu Tyr Gly Lys Lys Tyr Glu Ala Asp Met Cys Val
                                    250
                                                         255
                245
Arg Arg Phe Pro Leu Glu Asp Ile Pro Leu Asp Glu Lys Glu Ala
                260
                                    265
                                                         270
Ala Gln Trp Leu His Lys Leu Tyr Gln Glu Lys Asp Ala Leu Gln
                                    280
                275
                                                         285
Glu Ile Tyr Asn Gln Lys Gly Met Phe Pro Gly Glu Gln Phe Lys
                                    295
                290
Pro Ala Arg Arg Pro Trp Thr Leu Leu Asn Phe Leu Ser Trp Ala
                                    310
                                                         315
                305
Thr Ile Leu Leu Ser Pro Leu Phe Ser Phe Val Leu Gly Val Phe
                320
                                    325
                                                         330
Ala Ser Gly Ser Pro Leu Leu Ile Leu Thr Phe Leu Gly Phe Val
                335
                                    340
                                                         345
Gly Ala Ala Ser Phe Gly Val Arg Arg Leu Ile Gly Val Thr Glu
                                    355
                350
                                                         360
Ile Glu Lys Gly Ser Ser Tyr Gly Asn Glu Phe Lys Lys
                365
                                    370
Glu
<210> 10
<211> 505
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 1946084CD1
<400> 10
Met Glu Pro Ser Trp Leu Gln Glu Leu Met Ala His Pro Phe Leu
                                     10
Leu Leu Ile Leu Cys Met Ser Leu Leu Phe Gln Val Ile
                 20
                                     25
Arg Leu Tyr Gln Arg Arg Trp Met Ile Arg Ala Leu His Leu
                                     40
Phe Pro Ala Pro Pro Ala His Trp Phe Tyr Gly His Lys Glu Phe
                 50
                                     55
Tyr Pro Val Lys Glu Phe Glu Val Tyr His Lys Leu Met Glu Lys
                                     70
Tyr Pro Cys Ala Val Pro Leu Trp Val Gly Pro Phe Thr Met Phe
                 80
                                     85
                                                          90
Phe Ser Val His Asp Pro Asp Tyr Ala Lys Ile Leu Leu Lys Arg
                 95
                                    100
                                                         105
Gln Asp Pro Lys Ser Ala Val Ser His Lys Ile Leu Glu Ser Trp
                110
                                    115
                                                         120
Val Gly Arg Gly Leu Val Thr Leu Asp Gly Ser Lys Trp Lys Lys
                                                         135
                125
                                    130
His Arg Gln Ile Val Lys Pro Gly Phe Asn Ile Ser Ile Leu Lys
                                    145
                                                         150
                140
Ile Phe Ile Thr Met Met Ser Glu Ser Val Arg Met Met Leu Asn
                155
                                    160
Lys Trp Glu Glu Arg Ile Ala Gln Asn Ser Arg Leu Glu Leu Phe
                170
                                    175
                                                         180
Gln His Val Ser Leu Met Thr Leu Asp Ser Ile Met Lys Cys Ala
                185
                                    190
                                                         195
Phe Ser His Gln Gly Ser Ile Gln Leu Asp Ser Thr Leu Asp Ser
                200
                                    205
                                                         210
Tyr Leu Lys Ala Val Phe Asn Leu Ser Lys Ile Ser Asn Gln Arg
                                                         225
                215
                                    220
Met Asn Asn Phe Leu His His Asn Asp Leu Val Phe Lys Phe Ser
                                                         240
                230
                                    235
Ser Gln Gly Gln Ile Phe Ser Lys Phe Asn Gln Glu Leu His Gln
                                    250
                245
```

```
Phe Thr Glu Lys Val Ile Gln Asp Arg Lys Glu Ser Leu Lys Asp
                 260
                                      265
Lys Leu Lys Gln Asp Thr Thr Gln Lys Arg Arg Trp Asp Phe Leu
                 275
                                      280
                                                           285
Asp Ile Leu Leu Ser Ala Lys Ser Glu Asn Thr Lys Asp Phe Ser
                 290
                                      295
                                                          300
Glu Ala Asp Leu Gln Ala Glu Val Lys Thr Phe Met Phe Ala Gly
                 305
                                      310
                                                          315
His Asp Thr Thr Ser Ser Ala Ile Ser Trp Ile Leu Tyr Cys Leu
                 320
                                      325
                                                          330
Ala Lys Tyr Pro Glu His Gln Gln Arg Cys Arg Asp Glu Ile Arg
                 335
                                      340
                                                          345
Glu Leu Leu Gly Asp Gly Ser Ser Ile Thr Trp Glu His Leu Ser
                 350
                                      355
                                                          360
Gln Met Pro Tyr Thr Thr Met Cys Ile Lys Glu Cys Leu Arg Leu
                 365
                                      370
Tyr Ala Pro Val Val Asn Ile Ser Arg Leu Leu Asp Lys Pro Ile
                 380
                                      385
                                                          390
Thr Phe Pro Asp Gly Arg Ser Leu Pro Ala Gly Ile Thr Val Phe
                 395
                                      400
                                                          405
Ile Asn Ile Trp Ala Leu His His Asn Pro Tyr Phe Trp Glu Asp
                 410
                                      415
                                                          420
Pro Gln Val Phe Asn Pro Leu Arg Phe Ser Arg Glu Asn Ser Glu
                 425
                                      430
                                                          435
Lys Ile His Pro Tyr Ala Phe Ile Pro Phe Ser Ala Gly Leu Arg
                 440
                                      445
                                                          450
Asn Cys Ile Gly Gln His Phe Ala Ile Ile Glu Cys Lys Val Ala
                 455
                                      460
                                                          465
Val Ala Leu Thr Leu Leu Arg Phe Lys Leu Ala Pro Asp His Ser
                 470
                                      475
                                                          480
Arg Pro Pro Gln Pro Val Arg Gln Val Val Leu Lys Ser Lys Asn
                 485
                                      490
Gly Ile His Val Phe Ala Lys Lys Val Cys
                 500
<210> 11
<211> 545
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 3251523CD1
<400> 11
Met Leu Pro Ile Thr Asp Arg Leu Leu His Leu Leu Gly Leu Glu
                                      10
Lys Thr Ala Phe Arg Ile Tyr Ala Val Ser Thr Leu Leu Leu Phe
                  20
                                      25
Leu Leu Phe Phe Leu Phe Arg Leu Leu Arg Phe Leu Arg Leu
                                      40
                                                           45
Cys Arg Ser Phe Tyr Ile Thr Cys Arg Arg Leu Arg Cys Phe Pro
                  50
                                      55
                                                           60
Gln Pro Pro Arg Arg Asn Trp Leu Leu Gly His Leu Gly Met Tyr
                  65
                                      70
Leu Pro Asn Glu Ala Gly Leu Gln Asp Glu Lys Lys Val Leu Asp
                 ឧ೧
                                      85
                                                           90
Asn Met His His Val Leu Leu Val Trp Met Gly Pro Val Leu Pro
                 95
                                     100
                                                          105
Leu Leu Val Leu Val His Pro Asp Tyr Ile Lys Pro Leu Leu Gly
                 110
                                     115
                                                          120
Ala Thr Ala Ala Ile Ala Pro Lys Asp Asp Leu Phe Tyr Gly Phe
                125
                                     130
                                                          135
Leu Lys Pro Trp Leu Gly Asp Gly Leu Leu Leu Ser Lys Gly Asp
                 140
                                     145
                                                          150
Lys Trp Ser Arg His Arg Arg Leu Leu Thr Pro Ala Phe His Phe
                 155
                                     160
```

```
Asp Ile Leu Lys Pro Tyr Met Lys Ile Phe Asn Gln Ser Ala Asp
                170
                                    175
                                                         180
Ile Met His Ala Lys Trp Arg His Leu Ala Glu Gly Ser Ala Val
                                    190
                                                         195
                185
Ser Leu Asp Met Phe Glu His Ile Ser Leu Met Thr Leu Asp Ser
                200
                                    205
                                                         210
Leu Gln Lys Cys Val Phe Ser Tyr Asn Ser Asn Cys Gln Glu Lys
                215
                                    220
                                                         225
Met Ser Asp Tyr Ile Ser Ala Ile Ile Glu Leu Ser Ala Leu Ser
                230
                                    235
                                                         240
Val Arg Arg Gln Tyr Arg Leu His His Tyr Leu Asp Phe Ile Tyr
                245
                                    250
                                                         255
Tyr Arg Ser Ala Asp Gly Arg Arg Phe Arg Gln Ala Cys Asp Met
                                    265
                                                         270
                260
Val His His Phe Thr Thr Glu Val Ile Gln Glu Arg Arg Ala
                275
                                    280
                                                         285
Leu Arg Gln Gln Gly Ala Glu Ala Trp Leu Lys Ala Lys Gln Gly
                290
                                    295
                                                         300
Lys Thr Leu Asp Phe Ile Asp Val Leu Leu Ala Arg Asp Glu
                305
                                    310
                                                         315
Asp Gly Lys Glu Leu Ser Asp Glu Asp Ile Arg Ala Glu Ala Asp
                320
                                     325
                                                         330
Thr Phe Met Phe Glu Gly His Asp Thr Thr Ser Ser Gly Ile Ser
                335
                                    340
                                                         345
Trp Met Leu Phe Asn Leu Ala Lys Tyr Pro Glu Tyr Gln Glu Lys
                350
                                    355
                                                         360
Cys Arg Glu Glu Ile Gln Glu Val Met Lys Gly Arg Glu Leu Glu
                365
                                     370
Glu Leu Glu Trp Asp Asp Leu Thr Gln Leu Pro Phe Thr Thr Met
                380
                                     385
Cys Ile Lys Glu Ser Leu Arg Gln Tyr Pro Pro Val Thr Leu Val
                395
                                     400
                                                         405
Ser Arg Gln Cys Thr Glu Asp Ile Lys Leu Pro Asp Gly Arg Ile
                410
                                     415
                                                         420
Ile Pro Lys Gly Ala Tyr His Val Val Thr Leu Ile Glu Arg Ser
                425
                                     430
                                                         435
Val Gly Ser His Phe Asn Pro His Pro Ala Trp Gly Phe Thr Leu
                                     445
                440
                                                         450
Thr Leu Ser Gln Pro Arg Met Leu Ala Ser Phe Ser Lys Glu Ala
                455
                                     460
                                                         465
Cys Asp Pro Arg Gly Pro Val Leu Thr Gln Lys Leu Gly Leu Ser
                                     475
                                                         480
                470
Pro Val Pro Ser Ser Ser Arg Asn Cys Ile Gly Gln Ser Phe Ala
                                     490
                                                         495
                485
Met Ala Glu Leu Arg Val Val Val Ala Leu Thr Leu Leu Arg Phe
                500
                                     505
                                                         510
Arg Leu Ser Val Asp Arg Thr Arg Lys Val Arg Arg Lys Pro Glu
                                     520
                                                         525
                515
Leu Ile Leu Arg Thr Glu Asn Gly Leu Trp Leu Lys Val Glu Pro
                530
Leu Pro Pro Arg Ala
<210> 12
<211> 459
<212> PRT
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 5684625CD1
<400> 12
Met Asp Glu Lys Ser Asn Lys Leu Leu Leu Ala Leu Val Met Leu
                                     10
Phe Leu Phe Ala Val Ile Val Leu Gln Tyr Val Cys Pro Gly Thr
```

```
Glu Cys Gln Leu Leu Arg Leu Gln Ala Phe Ser Ser Pro Val Pro
                                       40
Asp Pro Tyr Arg Ser Glu Asp Glu Ser Ser Ala Arg Phe Val Pro
                  50
                                       55
Arg Tyr Asn Phe Thr Arg Gly Asp Leu Leu Arg Lys Val Asp Phe
                                       70
Asp Ile Lys Gly Asp Asp Leu Ile Val Phe Leu His Ile Gln Lys
                  80
                                       85
Thr Gly Gly Thr Thr Phe Gly Arg His Leu Val Arg Asn Ile Gln
                  95
                                      100
                                                          105
Leu Glu Gln Pro Cys Glu Cys Arg Val Gly Gln Lys Lys Cys Thr
                 110
                                      115
                                                          120
Cys His Arg Pro Gly Lys Arg Glu Thr Trp Leu Phe Ser Arg Phe
                 125
                                      130
                                                          135
Ser Thr Gly Trp Ser Cys Gly Leu His Ala Asp Trp Thr Glu Leu
                 140
                                      145
                                                          150
Thr Ser Cys Val Pro Ser Val Val Asp Gly Lys Arg Asp Ala Arg
                 155
                                      160
                                                          165
Leu Arg Pro Ser Arg Asn Phe His Tyr Ile Thr Ile Leu Arg Asp
                 170
                                     175
                                                          180
Pro Val Ser Arg Tyr Leu Ser Glu Trp Arg His Val Gln Arg Gly
                 185
                                      190
                                                          195
Ala Thr Trp Lys Ala Ser Leu His Val Cys Asp Gly Arg Pro Pro
                 200
                                      205
                                                          210
Thr Ser Glu Glu Leu Pro Ser Cys Tyr Thr Gly Asp Asp Trp Ser
                 215
                                      220
Gly Cys Pro Leu Lys Glu Phe Met Asp Cys Pro Tyr Asn Leu Ala
                 230
                                      235
Asn Asn Arg Gln Val Arg Met Leu Ser Asp Leu Thr Leu Val Gly
                 245
                                     250
                                                          255
Cys Tyr Asn Leu Ser Val Met Pro Glu Lys Gln Arg Asn Lys Val
                 260
                                     265
                                                          270
Leu Leu Glu Ser Ala Lys Ser Asn Leu Lys His Met Ala Phe Phe
                 275
                                     280
                                                          285
Gly Leu Thr Glu Phe Gln Arg Lys Thr Gln Tyr Leu Phe Glu Lys
                 290
                                      295
                                                          300
Thr Phe Asn Met Asn Phe Ile Ser Pro Phe Thr Gln Tyr Asn Thr
                 305
                                     310
                                                          315
Thr Arg Ala Ser Ser Val Glu Ile Asn Glu Glu Ile Gln Lys Arg
                 320
                                      325
                                                          330
Ile Glu Gly Leu Asn Phe Leu Asp Met Glu Leu Tyr Ser Tyr Ala
                335
                                     340
                                                          345
Lys Asp Leu Phe Leu Gln Arg Tyr Gln Phe Met Arg Gln Lys Glu
                350
                                     355
His Gln Glu Ala Arg Arg Lys Arg Gln Glu Gln Arg Lys Phe Leu
                 365
                                     370
                                                          375
Lys Gly Arg Leu Leu Gln Thr His Phe Gln Ser Gln Gly Gln Gly
                380
                                     385
                                                          390
Gln Ser Gln Asn Pro Asn Gln Asn Gln Ser Gln Asn Pro Asn Pro
                                     400
                                                          405
Asn Ala Asn Gln Asn Leu Thr Gln Asn Leu Met Gln Asn Leu Thr
                410
                                     415
Gln Ser Leu Ser Gln Lys Glu Asn Arg Glu Ser Pro Lys Gln Asn
                 425
                                     430
                                                          435
Ser Gly Lys Glu Gln Asn Asp Asn Thr Ser Asn Gly Thr Asn Asp
                440
                                     445
                                                          450
Tyr Ile Gly Ser Val Glu Lys Trp Arg
                455
<210> 13
<211> 370
<212> PRT
<213> Homo sapiens
<220>
<221> misc feature
```

<223> Incyte ID No: 7473879CD1

<400> 13

```
Met Pro Met Met Ala Lys Leu Cys Pro Gly Asp Leu Gly Gln Glu
                                      10
Ala Ala His Arg Glu Trp Glu Ala Glu Ser Glu Val Arg Leu Gln
                                      25
                                                          30
Asp Thr Pro Phe Cys Met Glu Cys Gly Pro Gly Ile Leu Ala Gly
                 35
                                      40
                                                           45
Arg Cys Ser Gln Ala Phe Met Trp Val Arg Ser Cys Phe Leu Ser
                                                          60
                 50
                                      55
Leu Asp Trp Pro Cys Arg Lys Pro Ser Glu Tyr Ile Thr Ala Ile
                                                          75
                 65
                                      70
Met Glu Leu Ser Ala Leu Val Val Lys Arg Asn Asn Gln Phe Phe
                 80
                                      85
                                                          90
Arg Tyr Lys Asp Phe Leu Tyr Phe Leu Thr Pro Cys Gly Arg Arg
                                                          105
                 95
                                     100
Phe His Arg Ala Cys Arg Leu Val His Asp Phe Thr Asp Ala Val
                                                         120
                110
                                     115
Ile Gln Glu Arg Arg Arg Thr Leu Thr Ser Gln Gly Val Asp Asp
                                                         135
                125
                                     130
Phe Leu Gln Ala Lys Ala Lys Ser Lys Thr Leu Asp Phe Ile Asp
                140
                                     145
                                                          150
Val Leu Leu Ser Glu Asp Lys Asn Gly Lys Glu Leu Ser Asp
                                                          165
                155
                                     160
Glu Asp Ile Arg Ala Glu Ala Asp Thr Phe Met Phe Gly Gly His
                                                          180
                170
                                     175
Asp Thr Thr Ala Ser Gly Leu Ser Trp Val Leu Tyr Asn Leu Ala
                                                          195
                                     190
                185
Arg His Pro Glu Tyr Gln Glu Arg Cys Arg Gln Glu Val Gln Glu
                                     20Š
                                                          210
                200
Leu Leu Lys Asp Arg Glu Pro Lys Glu Ile Glu Trp Asp Asp Leu
                                                          225
                                     220
                215
Ala Gln Leu Pro Phe Leu Thr Met Cys Leu Lys Glu Ser Leu Arg
                                     235
                                                          240
                230
Leu His Pro Pro Ile Pro Thr Phe Ala Arg Gly Cys Thr Gln Asp
                245
                                     250
                                                          255
Val Val Leu Pro Asp Ser Arg Val Ile Pro Lys Gly Asn Val Cys
                260
                                     265
                                                          270
Asn Ile Asn Ile Phe Ala Ile His His Asn Pro Ser Val Trp Pro
                                     280
                                                          285
                275
Asp Pro Glu Val Tyr Asp Pro Phe Arg Phe Asp Pro Glu Asn Ala
                290
                                     295
                                                          300
Gln Lys Arg Ser Pro Met Ala Phe Ile Pro Phe Ser Ala Gly Pro
                305
                                     310
                                                          315
Arg Asn Cys Ile Gly Gln Lys Phe Ala Met Ala Glu Met Lys Val
                320
                                     325
                                                          330
Val Leu Ala Leu Thr Leu Leu Arg Phe Arg Ile Leu Pro Asp His
                                                          345
                335
                                     340
Arg Glu Pro Arg Arg Thr Pro Glu Ile Val Leu Arg Ala Glu Asp
                                     355
                                                          360
                350
Gly Leu Trp Leu Arg Val Glu Pro Leu Gly
                365
<210> 14
<211> 1673
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 3403225CB1
<400> 14
agcagaagca gccaagagct ggagccagac caggaacctg agccagagct ggggttgaag 60
ctggagcagc agcaaaagca acagcagcta cagaagttgg aacgatgctg gtcaccttgg 120
gactgeteae etecttette tegiteetgt atatggtage tecatecate aggaagttet 180
ttgctggtgg agtgtgtaga acaaatgtgc agcttcctgg caaggtagtg gtgatcactg 240
```

gcgccaacac gggcattggc aaggagacgg ccagagagct cgctagccga ggagcccgag 300

```
tctatattgc ctgcagagat gtactgaagg gggagtctgc tgccagtgaa atccgagtgg 360
 atacaaagaa ctcccaggtg ctggtgcgga aattggacct atccgacacc aaatctatcc 420
 gageettige tgagggetti etggeagagg aaaageaget ecatattetg atcaacaatg 480
 cgggagtaat gatgtgtcca tattccaaga cagctgatgg ctttgaaacc cacctgggag 540 tcaaccacct gggccacttc ctcctcacct acctgctcct ggagcagcta aaggtgtctg 600
 cccctgcacg ggtggttaat gtgtcctcgg tggctcacca cattggcaag attcccttcc 660
 acgaceteca gagegagaag egetacagea ggggttttge etattgecae ageaagetgg 720
 ccaatgtgct ttttactcgt gagctggcca agaggctcca aggcaccggg gtcaccacct 780
acgcagtgca cecaggcgtc gtccgctctg agctggtccg gcactcctcc ctgctctgcc 840 tgctctggcg gctcttctcc ccctttgtca agacggcacg ggagggggcg cagaccagcc 900
 tgcactgcgc cctggctgag ggcctggagc ccctgagtgg caagtacttc agtgactgca 960
agaggacctg ggtgtctcca agggcccgaa ataacaaaac agctgagcgc ctatggaatg 1020
tcagctgtga gcttctagga atccggtggg agtagctggt ggaagagctg cagctttatc 1080
aggeccaate catgecataa tgaacaggga ccaaggagaa ggecaaceet aaaggattgt 1140
cetettggee agetggtget gegaateetg cetgetetga teetettgae eettetggga 1200
atgtttgcac acctgacact cttgtgagac tggcttatgg catgagttgt ggacacctat 1260
agagtgttet tetetaagae etggaaagte ageaaceete tggggggeage aggaetggge 1320
agateceagg etgggeatgg gggtggeaga agageeegag aaattgggte agtteeetea 1380
tcagcaccag aggctcagct gaggcaagaa gagcaccatc actgcctatt tctaggggct 1440
atacactcca actettggtt gatetettte tttttaaaaa tatttgccac caccetggag 1500
tctagaccaa cacacaaaga tcctggctaa ccctggccta tttagattcc ttcctctcac 1560
ctggaccttc ccatttcaat catgcagatg gtttctttt gtaaagagtt ccgtttgcct 1620
ttcaattttt agagaaaata aagactgcat tcatctaaaa aaaaaaaaa agg 1673
<210> 15
<211> 1944
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7651096CB1
cgccggacgc ctccgcgtta cgggatgaat taacggcggg ttccgcacgg aggttgtgac 60
ccctacggag ccccagettg cccacgcacc ccactcggcg tcgcgcggcg tgccctgctt 120
gtcacagaat catggtgtca tggaaaggga tttactttat actgactctg ttttggggaa 180
gettttttgg aageatitte atgetgagte cetttttace tttgatgttt gtaaacceat 240
cttggtatcg ctggatcaac aaccgccttg tggcaacatg gctcacccta cctgtggcat 300 tattggagac catgtttggt gtaaaagtga ttataactgg ggatgcattt gttcctggag 360
aaagaagtgt cattatcatg aaccatcgga caagaatgga ctggatgttc ctgtggaatt 420 gcctgatgcg atatagctac ctcagattgg agaaaatttg cctcaaagcg agtctcaaag 480 gtgttcctgg atttggttgg tgg ctgctgccta tatcttcatt cataggaaat 540
ggaaggatga caagagccat ttcgaagaca tgattgatta cttttgtgat attcacgaac 600
cacticaact ceteatatte ecagaaggga etgateteae agaaaacage aagtetegaa 660
gtaatgcatt tgctgaaaaa aatggacttc agaaatatga atatgtttta catccaagaa 720
ctacaggett tactittgtg gtagacegte taagagaagg taagaacett gatgetgtee 780
atgatatcac tgtggcgtat cctcacaaca ttcctcaatc agagaagcac ctcctccaag 840
gagactttcc cagggaaatc cactttcacg tccaccggta tccaatagac accctcccca 900
catccaagga ggacettcaa ctetggtgee acaaacggtg ggaagagaaa gaagagagge 960
tgcgttcctt ctatcaaggg gagaagaatt tttattttac cggacagagt gtcattccac 1020
cttgcaagtc tgaactcagg gtccttgtgg tcaaattgct ctctatactg tattggaccc 1080 tgttcagccc tgcaatgtgc ctactcatat atttgtacag tcttgttaag tggtatttta 1140 taatcaccat tgtaatcttt gtgctgcaag agagaatatt tggtggactg gagatcatag 1200 aacttgcatg ttaccgactt ttacaccaaac agccacattt aaattcaaag aaaaatgagt 1260
aagattataa ggtttgccat gtgaaaacct agagcatatt ttggaaatgt tctaaacctt 1320
tctaagctca gatgcatttt tgcatgacta tgtcgaatat ttcttactgc catcattatt 1380
tgttaaagat attitgcact taattitgtg ggaaaaatat tgctacaatt ttttttaatc 1440
tctgaatgta atttcgatac tgtgtacata gcagggagtg atcggggtga aataacttgg 1500 gccagaatat tattaaacaa tcatcaggct tttagcgaca aggaacacac acatttttct 1560
taaaggccca atcctaacag actccccgta ccagaggcag atctggaact cgtcaacaac 1620
ageceggate acatgetgtt actggactge ceaggteace teattgaggt gagegetgte 1680
ccctccaagg gtatcaggca agtggtgccc aggctccctc cccttggcgt ccttcttcct 1740
ggggcaaaac ccatctcatc tttaagatca ggaaatggca ccccctttgg cgtgaaaccg 1800
ttaagcattt ggacaggaag cettteatta tteattaaca ttggatgetg accaagaegg 1860
cagaaggcca cctgtgcccc tttctcctcg gggaagataa acctgggact cagggggaaa 1920
ccaaggtttt ccactttgga atta
                                                                                1944
```

```
<210> 16
<211> 1888
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7474436CB1
<400> 16
ggagaagagg ttgtgtggga caagctgctc ccgacagaag gatgtcgctg ctgagcctgc 60
cetggetggg ceteagactg gtggcaatgt ceceatgget acteetgetg etggttgtgg 120
geteetgget actegeeege atcetggett ggacetatge ettetataac aactgeegee 180
ggctccagtg tttcccacag cccccaaaac ggaactggtt ttggggtcac ctgggcctga 240 tcactcctac agaggaggc ttgaaggact cgacccagat gtcggccacc tattcccagg 300 gctttacggt atggctggt cccatcatcc ccttcatcgt tttatgccac cctgacacca 360
teeggtetat caccaatgee teagetgeea ttgcacceaa ggataatete ttcatcaggt 420
tcctgaagcc ctggctggga gaagggatac tgctgagtgg cggtgacaag tggagccgcc 480 accgtcggat gctgacgcc gccttccatt tcaacatcct gaagtcctat ataacgatct 540
tcaacaagag tgcaaacatc atgcttgaca agtggcagca cctggcctca gagggcagca 600
gtcgtctgga catgtttgag cacatcagcc tcatgacctt ggacagtcta cagaaatgca 660
tetteagett tgacagecat tgteaggaga ggeecagtga atatattgee accatettgg 720 ageteagtge cettgtagag aaaagaagee ageatateet ecageacatg gaetttetgt 780
attacetete ceatgacggg eggegettee acagggeetg eegeetggtg catgacttea 840
cagacgetgt cateegggag eggegtegea eceteeceae teagggtatt gatgattttt 900
tcaaagacaa agccaagtcc aagactttgg atttcattga tgtgcttctg ctgagcaagg 960 atgaagatgg gaaggcattg tcagatgagg atataagagc agaggctgac accttcatgt 1020 ttggaggcca tgacaccacg gccagtggcc tctcctgggt cctgtacaac cttgcgaggc 1080
accagaata ccaggagege tgccgacagg aggtgcaaga gettetgaag gaccgegate 1140 ctaaagagat tgaatgggae gacctggece agetgeeett cetgaceatg tgcgtgaagg 1200 agageetgag gttacatece ccageteeet teateteeg atgetgeaec caggacattg 1260
tteteccaga tggeegagte atececaaag geattacetg ceteategat attatagggg 1320
tccatcacaa cccaactgtg tggccggatc ctgaggtgct gccttcccca ttcaccacca 1380 ccacccccat cctctacttt tgtgtgtgt tgtgtgaatt ccaaggttcc tagtggaggg 1440 ggcagggttt tgatgaggaa aatccaacat cacctcaccc caaaacacac acaagtgtct 1500
ctccaagget getggacata ggaaateeca etggcaaace ttetttgtet cacetgcagg 1560
tetacgaece etteegettt gacceagaga acageaaggg gaggteacet etggetttta 1620
tteetttete egeagggee aggaactgea tegggeagge gttegeeatg geggagatga 1680
aagtggteet ggegttgatg etgetgeact teeggtteet geeagaceae actgageeee 1740
geaggaaget ggaattgate atgegegeeg agggeggget ttggetgegg gtggageeee 1800
tgaatgtagg cttgcagtga ctttctgacc catccacctg tttttttgca gattgtcatg 1860 aataaaacgg tgctgtccaa aaaaaaaa 1888
<210> 17
<211> 2305
<212> DNA
<213> Homo sapiens
<220>
<221> misc feature
<223> Incyte ID No: 6217152CB1
actgaggagg gatcccagaa acttccgcgg gatacctcct atcggctgca gaccacccta 60
ctggatgtca ccaagagcga aagcatcaag gcggcggccc agtgggtgag ggacaaagtg 120
ggcgaacaag gcctctgggc cctggtgaac aatgctggtg tgggcctgcc cagtggtccc 180
aacgaatggc tgaccaagga tgactttgtg aaggtgatta atgtgaacct ggtgggactg 240
ategaagtga ceetteacat getgeecatg gteaagagag ceeggggeag ggttgteaac 300
atgtccaget etggtggtcg tgtggetgte attggtggtg getactgegt etccaagttt 360
ggcgttgagg ccttctctga cagcataagg cgtgagctct actactttgg ggtgaaagtc 420
tgcatcattg agccagggaa ctatcggaca gccattctcg gcaaggagaa cctggagtca 480
cgcatgcgaa agctttggga gaggctgcct caggagaccc gggacagcta cggagaggat 540
tatttccgca tctatactga caagttaaaa aacataatgc aggtggcaga gcccagagtc 600
agagatgtca tcaacagcat ggagcatgct attgtttccc ggagccctcg catccgctac 660 aaccctggcc tggatgccaa actcctctac atccctctgg ctaagttgcc cacccctgtg 720
acagattica teetaageeq qtaeetteea aqqeeaqegq acagtqteta aactggggag 780
gatcaatggg tcagtggagc ctagaagtgg gggaggaagg agagttette ttccaggtgg 840
```

```
ttteetgeag actgeetget agggeteaga ggaceagett etteeetget gteteetgag 900
eccagtecet ettggecate acatteceet tgeeetatgg eggeeeteac agacetetea 960
tttatgtatc gctggttcaa gaactgcaat ctggttggca acctctcaga gaagtacgtc 1020
ttcatcacag getgtgacte tggetteggg aacetgetgg ccaaacaget ggttgategg 1080
ggcatgcagg tgctggctgc ttgcttcact gaggagggat cccagaaact tcagcgggat 1140
acctectate ggetgeagae caccetactg gatgteacea agagegaaag cateaaggeg 1200
gcggcccagt gggtgaggga caaagtgggc gaacaaggcc tctgggccct ggtgaacaat 1260
gctggtgtgg gcctgcccag tggtcccaac gaatggctga ccaaggatga ctttgtgaag 1320
gtgattaatg tgaacctggt gggactgatc gaagtgaccc ttcacatgct gcccatggtc 1380
aagagagece ggggeagggt tgtcaacatg tccagetetg gtggtegtgt ggetgtcatt 1440 ggtggtgget actgegtete caagtttgge gttgaggeet tetetgacag cataaggegt 1500
gagetetaet aetitggggt gaaagtetge atcattgage cagggaacta teggacagee 1560
atteteggea aggagaaeet ggagteaege atgegaaage tttgggagag getgeeteag 1620
gagacccggg acagctacgg agaggattat ttccgcatct atactgacaa gttaaaaaac 1680 ataatgcagg tggcagagcc cagagtcaga gatgtcatca acagcatgga gcatgctatt 1740
cctctggcta agttgcccac ccctgtgaca gatttcatcc taagccggta ccttccaagg 1860
ccagcggaca gtgtctaaac tggggaggat caatgggtca gtggagccta gaagtggggg 1920
aggaaggaag gaccgtgggg tcacaaaagg tggtatcggt tatcctgggg gcattggctg 1980 caaaggaagc ttggctcagc tgacacccac tgctgtcgaa tttaccagta acttctaaca 2040
gaaggtgaat gcctcttccc accctctggg accccacaga aacctgaggt ggtctttgca 2100
ggttcagcga tctgcagcaa tagctccaag gacgtctgtc acccaatcag gatacagctt 2160
tttctggtcc tggaaaagtc atggagaaga aaaccagctc ctgtggaatc atgagcccct 2220
ttcagttatc actgccactg agaaatactg tgggataatc ttgcctccag gagaatctaa 2280
ccaccttcct aatgggtccc tcaat
<210> 18
<211> 2115
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 5924683CB1
ctatcctgta ctagcaaaca gaagtacacg ccgtcagtca attaagtgct tggagaataa 60
aaaattttaa ggagcactaa taaaaaaatt catcaattat gtgtgctcca tttaatacat 120
ggttgcttaa aataaaattt cccaaacata tgttcattat ggattgcagc aggctgggaa 180
ccagtggett tatttatgea tttaaagtet tggtetgaet ggggaaccag aaaaatgaaa 240
agttagttgc aatgagetta aagtgtetet gtettgettg caggetacaa cccatttgcc 300
ccattgaagg togactgggt ggagcccgca ctcaggctga attcccactt cgcgccctgc 360
agtttaagcg tggcctgctg cacgagttcc ggaagggcaa cgcttccaag gagcaggttc 420
gcctccatga cctggtccag cagctcccca aggccattat cattggggtg aggaaaggag 480
gcacaagggc cctgcttgaa atgctgaacc tacatccggc agtagtcaaa gcctctcaag 540
aaatccactt ttttgataat gatgagaatt atggtaaggg cattgagtgg tataggaaaa 600
agatgeettt tteetaeeet cageaaatea caattgaaaa gageecagea tattttatea 660
cagaggaggt tecagaaagg atttacaaaa tgaactcate catcaagttg ttgatcattg 720 tcagggagcc aaccacaaga gctatttetg attatactca ggtgctagag gggaaggaga 780
ggaagaacaa aacttattac aagtttgaga agctggccat agaccctaat acatgcgaag 840
tgaacacaaa atacaaagca gtaagaacca gcatctacac caaacatctg gaaaggtggt 900
tgaaatactt tccaattgag caatttcatg tcgtcgatgg agatcgcctc atcacggaac 960
ctetgecaga actteagete gtggagaagt teetaaatet geeteeaagg ataagteaat 1020
acaatttata cttcaatget accagagggt tttactgett geggtttaat attatettta 1080
ataagtgcct ggcgggcagc aaggggcgca ttcatccaga ggtggacccc tctgtcatta 1140 ctaaattgcg caaattcttt catcctttta atcaaaaatt ttaccagatc actgggagga 1200
cattgaactg gcccaaaata atatgtcata caacactatg tgttgtgcct ggagacacac 1260
aatgteteet gtagattaaa atatgeaett tteetaggea gagetateea agteattttt 1320
ccatgtatat ttgtacatac gcagtgtgtg accaaatata agatcagttc tttttctact 1380
gaaaatttac gaaaaaaaa aaattgctgt ctgcatagtc gcatccttta agctatttac 1440
aaaagagaag aggtggtggt attgggggaa agtgactica gctattctca aagagttagt 1500
cttcctttga ttcagaattt gtcacccgcc attttcatag atttaagcca aaagataaat 1560
gtgtgaaaat gtaccaatgg ctgcgaagct tcaggaagta gaggatccag tgatgcattt 1620
tttttttcct aagggaaage tggetettta atteagatge tgaattggtg ccatgaaaac 1680
agaaaatgct attitcttat tatttaaaag aacgtcttat ctcataaaat tgacattgtt 1740
ccaaagttct tgtggtgatt ttgcactatt gttttctcgt atggaccatg gtgtcacttg 1800 tagcatgtca atcacacatt ggaaagtcaa gtccttttac ttccatgttg tatgtcaaca 1860
```

```
qaqaqaaatq tcatqtacat aatqtatatt qttqtaaata ctggtttcac actaagtaat 1920
tctattttgt aaactgaata tggctattta atttattgtg aaaattcaat ttattgtggt 1980
atttacaaat ggaatggatt aaattactct atgtgcaatt tggacagaac acacattaat 2040
tcaacgtgcc ctgctggttt caagatggaq tgtcacggct ataaagctgg aaaatgtctc 2100
ccgcggattt gaccg
                                                                         2115
<210> 19
<211> 1309
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 1799250CB1
cgcggcggcg gcgcgccgg ggcagccatg tcgccattgt ctgcggcgcg ggcggccctg 60
cgggtetacg cggtaggcgc cgcggtgatc ctggcgcact gctgcggcgc tgccgcgggg 120
getteetgga gecagtitte ecceacgae etgacegtgt egetatagtg aegggaggga 180
cagatggcat tggctattct acagcgaaca tctggcgaga cttggcatgc atgttatcat 240
agctggaaat aatgacagca aagccaaaca agttgtaagc aaaataaaag aagaaacctt 300
gaacgacaaa gtggaatttt tatactgtga cttggcttcc atgacttcca tccggcagtt 360
tgtgcagaag ttcaagatga agaagattcc tctccatgtc ctgatcaaca atgctggggt 420
gatgatggtc cctcagagga aaaccagaga tggattcgaa gaacatttcg gcctgaacta 480
cctagggcac ttcctgctga ccaaccttct cttggatacg ctgaaagagt ctgggtcccc 540
tggccacagt gcgagggtgg tcaccgtctc ctctgccacc cattacgtcg ctgagctgaa 600
catggatgac cttcagagca gtgcctgcta ctcaccccac gcagcctacg cccagagcaa 660
gctggccctt gtcctgttca cctaccacct ccagcggctg ctggcggctg agggaagcca 720
cgtgaccgcc aacgtggtgg accccggggt ggtcaacacg gacctctaca agcacgtgtt 780
ctgggccacc cgtctggcga agaagcttct cggctggttg cttttcaaga cccccgatga 840
aggagegtgg acttecatet aegeageagt caceceagag etggaaggag ttggtggeeg 900
ttacctatac aacgagaaag agaccaagtc cctccacgtc acctacaacc agaaactgca 960
geageagetg tqqtetaaqa qttqtgaqat qaetggggte ettgatgtga eeetgtgata 1020
tectgtetea ggatagetge tgeeceaaga aacacattge acetgeeaat agettgtggg 1080
tetgtgaaga etgeggtgtt tgagtttete acaeceacet geecacaggg etetgteete 1140
tagttttgag acagetgeet caacetetge agaactteaa gaageeaaat aaacattttg 1200
gaggataatc accccaagtg gtcttcaacc ataaactttg tgattccaaa gtgcccagtt 1260
<210> 20
<211> 2453
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 2753818CB1
<400> 20
eggacgegtg ggttaacaca gagegeeeeg cagtettege ggaaagegtt eggggtagge 60
gatggctgcg acgcgtgcag ggccccgcgc ccgcgagatc ttcacctcgc tggagtacgg 120
accggtgccg gagagccacg catgcgcact ggcctggctg gacacccagg accggtgctt 180 gggccactat gtgaatggga agtggttaaa gcctgaacac agaaattcag tgccttgcca 240 ggatcccatc acaggagaga acttggccag ttgcctgcag gcacaggccg aggatgtggc 300
tgcagccgtg gaggcagcca ggatggcatt taagggctgg agtgcgcacc ccggcgtcgt 360
cegggeceag cacetgacea ggetggeega ggtgateeag aageaceage ggetgetgtg 420
gaccetggaa teeetggtga etgggeggge tgttegagag gttegagaeg gggaegteea 480 getggeeeag eagetgetee actaceatge aateeaggea teeaceeagg aggaggeaet 540
ggcaggctgg gagcccatgg gagtaattgg cctcatcctg ccacccacat tctccttcct 600
tgagatgatg tggaggattt geeetgeeet ggetgtggge tgeaeegtgg tggeeetegt 660
geceeeggee teceeggege eceteeteet ggeeeagetg gegggggage tgggeeett 720 eeegggaate etgaatgtee teagtggeee tgegteeetg gtgeeeatee tggeeteeea 780
gcctggaatc cggaaggtgg ccttctgcgg agccccggag ggtggcctca ggctcctcat 840
ccaggagtct gtgtgggatg aagccatgag acggctgcag gagcggattgg ggcggcttcg 900
gagtggccga gggctggatg gggccgtgga catgggggcc cgggggggctg ccgcatgtga 960 cctggtccag cgctttgtgc gtgaggccca gagccagggt gcacaggtgt tccaggctgg 1020
tgatgtgcct teggaacgce cattetatec eccaacettg gtetecaace tgeceecage 1080
```

```
ctccccatgt gcccaggtgg aggtgccgtg gcctgtggtc gtggcctccc ccttccgcac 1140
 agccaaggag gcactgttgg tggccaacgg gacgccccgc gggggcagcg ccagtgtgtg 1200
 gagegagagg ctggggcagg egetggaget gggetatggg etecaggtgg geactgtetg 1260
 gateaacgcc cacgggctca gagaccette ggtgcccaca ggcggctgca aggagagtgg 1320 gtgttcctgg cacgggggcc cagacgggct gtatgagtat ctgcggccct cagggaccc 1380
 tgcccggctg tectgcctct ccaagaacct gaactatgac acctttggcc tcgctgtgcc 1440
 ctcaaccetg ccggctgggc ctgaaatagg gcccagccca gcaccccct atgggctctt 1500 cgttgggggc cgtttccagg ctcctggggc ccgaagctcc aggcccatcc gggattcgtc 1560
 tggcaatete catggetacg tggctgaggg tggagccaag gacatecgag gtgctgtgga 1620
 ggccgctcac caggctttcc ctggctgggc gggccagtcc ccaggagccc gggcagccct 1680
 getgtgggee etggeggetg caetggageg eeggaagtet accetggeet egaggetgga 1740
 gaggcaggga gcggagctca aggctgcgga ggcggaggtg gagctgagcg caagacgact 1800
 tegggegtgg ggggeeeggg tgeaggeeea aggeeacace etgeaggtag eegggetgag 1860
 aggeeetgtg etgegeetge gggageeget gggtgtgetg getgtggtgt gteeggaega 1920
 gtggcccctg cttgccttcg tgtccctgct ggctcccgcc ctggcctacg gcaacactgt 1980 ggtcatggtg cccagtgcgg cctgtcctct gctggccctg gaggtctgcc aggacatggc 2040
 caccgtgttc ccagcaggcc tggccaacgt ggtgacagga gaccgggacc atctgacccg 2100 ctgcctggcc ttgcaccaag acgtccaggc catgtggtat ttcggatcag cccagggttc 2160
 ccagtttgtc gagtgggcct cggcaggaaa cctcaaaccg gtgtgggcga gcaggggctg 2220
 cccgcgggcc tgggaccagg aggccgaggg ggcaggccca gagctggggc tgcgagtggc 2280
 geggaceaag geeetgtgge tgeetatggg ggaetgatge etgagegeea eetaetgeat 2340
 <210> 21
 <211> 2037
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> misc_feature
 <223> Incyte ID No: 2779244CB1
 atgttccccc gcccgctgac cccgctggcg gccccaaatg gcgccgagcc cctgggccgg 60
gegetgagge gggeceetet gggcaggge egggegggge tgggtggge geceetgetg 120 etgeegteca tgetgatgtt tgeggtgate gtggeeteca geggetget geteatgate 180 gageggggea teetggeega gatgaagee etgeeeetge accegeegg cegegaggge 240
 acagectgge gegggaaage ceccaageet gggggeetgt cectcaggge tggggaegeg 300
gacttgcaag tgcggcagga cgtccggaac aggaccctge gggcggtgtg cggacagcca 360 ggcatgcccc gggacccctg ggacttgccg gtggggcage ggcgcaccct gctgcgccac 420 atcctcgtaa gtgaccgtta ccgcttcctc tactgctacg tccccaaggt ggcctgctct 480
aactggaage gggtgatgaa ggtgetggea ggegteetgg acagegtgga cgteegeete 540
aagatggacc accgcagtga cctggtgttc ctggccgacc tgcggcctga ggagattcgc 600
taccgcctgc agcactactt taagttcctg tttgtgcggg agcccttgga acgcctcctc 660
tetgeetace gcaacaagtt tggegagate cgagagtace agcaacgeta tggggetgag 720
atagtgagge ggtacaggge tggagegggg eccageeetg eaggegaega tgtcacatte 780
cccgagttcc tgagatacct ggtggatgag gaccctgagc gcatgaatga gcattggatg 840 cccgtgtacc acctgtgcca gccttgtgcc gtgcactatg actttgtggg ctcctatgag 900
aggetggagg etgatgeaaa teaggtgetg gagtgggtae gggeaecaee teaegteega 960
tttccagctc gccaggcctg gtaccggcca gccagccccg aaagcctgca ttaccacttg 1020 tgcagtgccc cccgggccct gctgcaggat gtgctgccta agtatatcct ggacttctcc 1080
ctetttgeet acceaetgee taatgteace aaggaggegt gteageagtg accatgagtg 1140
tggggccage agetggtggg gaetggttte aacgecaget ttetgtgett etgeetgtea 1200 tteggagaaa etetggetet ggggettggg getteteagg ateetggatg geagagaetg 1260 eeeteagaag tteettgtee agggtgggea eeeacagtga eteagaggae agggetagge 1320
aggagacetg etgeteetea ttggggggat etettggggg geagacacea gtttgecaat 1380
gaagcaacac atctgatcta aagactggct ccagaccccg ggctgccagg attatgcagt 1440
ccacttggtc taccttaatt taacctgtgg ccaaactcag agatggtacc agccaggggc 1500
aagcatgacc agagccaggg accetgtggc tetgatecec catttateca ecceatgtge 1560
ctcaggacta gagtgagcaa tcatacctta taaatgactt ttgtgccttt ctgctccagt 1620
agggttettg cetggtaget ceaggaceca getetgeagg cacecaaaga ceetetgtge 1740 ceagcetett cettgagtte teggaacete etecetaatt etecetteet teeceacaag 1800
geetttgagg ttgtgaetgt ggetggtata tetggetgee atttttetga tgcatttatt 1860
taaaatttgt acttittgat agaaccettg taagggettt gtttteetaa tagetgaett 1920
```

2037

aaaaaaaaa agaaaaaaa aaaaataaaa aaagataaag gggcggccgt tttgggg <210> 22 <211> 1960 <212> DNA <213> Homo sapiens <220> <221> misc feature <223> Incyte ID No: 7472582CB1 <400> 22 ctcgaatttc attcctggaa atccagggtc tatgaaccca acatacatgg cgttgcatca 60 cagttggagt cagatgtgga geeggaggge aggtgtetgg ettgtecage eggaaegeet 120 gagggeaget gttcccaetg getetgetga cettgtgeet tggaeggetg teetcagega 180 ggggeegtge accegeteet gageagegee atgggeetge tggeetteet gaagaeceag 240 ttogtgotgo acctgotggt oggotttgto ttogtggtga gtggtotggt catcaactto 300 gtccagctgt gcacgctggc gctctggccg gtcagcaagc agctctaccg ccgcctcaac 360 tgccgcctcg cctactcact ctggagccaa ctggtcatgc tgctggagtg gtggtcctgc 420 acggagtgta cactgttcac ggaccaggcc acggtagagc gctttgggaa ggagcacgca 480 gtcatcatcc tcaaccacaa cttcgagatc gacttcctct gtgggtggac catgtgtgag 540 cgcttcggag tgctggggag ctccaaggtc ctcgctaaga aggagctgct ctacgtgccc 600 ctcatcggct ggacgtggta ctttctggag attgtgttct gcaagcggaa gtgggaggag 660 gaccgggaca ccgtggtcga agggctgagg cgcctgtcgg actaccccga gtacatgtgg 720 ttteteetgt actgegaggg gaegegette aeggagaeca ageaeegegt tageatggag 780 gtggeggetg ctaagggget teetgteete aagtaeeaee tgetgeegeg gaecaaggge 840 ttcaccaccg cagtcaagtg cctccggggg acagtcgcag ctgtctatga tgtaaccctg 900 aacttcagag gaaacaagaa cccgtccctg ctgggggatcc tctacgggaa gaagtacgag 960 geggacatgt gegtgaggag attiectetg gaagacatee egetggatga aaaggaagea 1020 getcagtgge ttcataaact gtaccaggag aaggacgege tccaggagat atataatcag 1080 aagggeatgt ttccagggga geagtttaag cetgecegga ggeegtggae ceteetgaac 1140 tteetgteet gggecaccat teteetgtet eeeetettea gttttgtett gggegtettt 1200 gccagcggat cacctetect gateetgact ttettggggt ttgtgggage agetteettt 1260 ggagttegea gaetgatagg agtaactgag atagaaaaag geteeageta eggaaaceaa 1320 gagtttaaga aaaaggaata attaatgget gtgaetgaac acaegeggee etgaeggtgg 1380 tatccagtta actcaaaacc aacacacaga qtgcaggaaa agacaattag aaactatttt 1440 tottattaac tggtgactaa tattaacaaa acttgagcca agagtaaaga attcagaagg 1500 cetgtcaggt gaagtettca geeteecaca gegeagggte ceagcatete cacgegegee 1560 cgtgggaggt gggtccggcc ggagaggcct cccgcggacg ccgtctctcc agaactccgc 1620 ttccaagagg gagcetttgg etgetttete teettaaact tagatcaaat tttttggttt 1680 ttaatcagtt atcttgggaa cttaacctgg cccctcacct cttctgcacc ccccgccccc 1740 gaaactgtct cgtaatgaat ttctgctgtc ctcctgggag tggacggccg ggtcccgtcc 1800 cccgggagca tcgctcggct cagcaccttg gctcccagtg ggggccccgt ggagggcgcc 1860 cgtagtgata agcacaccgg cacgaacgtc aggtccattc ctcgaagtcg gagccctcac 1920 tetgeeetgt etgaeggete ttgteeagea caetgegtee <210> 23 <211> 2015 <212> DNA <213> Homo sapiens <220> <221> misc_feature <223> Incyte ID No: 1946084CB1 <400> 23 ggcattttga aagcccagtg ttgcccaggg ggcatctcct ttgtgtttat gagagacctg 60 cattctcct ggctcagttc tctcaggctc tccagagctc aggacctctg agaagaatgg 120 ageceteetg getteaggaa eteatggete acceettett getgetgate eteetetgea 180 tgtetetget getgttteag gtaateaggt tgtaceagag gaggagatgg atgateagag 240 ceetgeacet gttteetgea eeceetgee aetggtteta tggeeacaag gagttttace 300 cagtaaagga gtttgaggtg tatcataagc tgatggaaaa atacccatgt gctgttccct 360 tgtgggttgg accetttacg atgttettea gtgteeatga cecagactat gecaagatte 420 tcctgaaaag acaagatccc aaaagtgctg ttagccacaa aatccttgaa tcctgggttg 480 gtcgaggact tgtgaccctg gatggttcta aatggaaaaa gcaccgccag attgtgaaac 540 ctggcttcaa catcagcatt ctgaaaatat tcatcaccat gatgtctgag agtgttcgga 600 tgatgetgaa caaatgggag gaacgcattg cccaaaactc acgtetggag ctctttcaac 660

```
atgtctccct gatgaccctg gacagcatca tgaagtgtgc cttcagccac cagggcagca 720
tecagttgga cagtaceetg gaeteatace tgaaageagt gtteaacett ageaaaatet 780 ecaaceageg catgaacaat tttetacate acaaegacet ggtttteaaa tteagetete 840
aaggccaaat cttttctaaa tttaaccaag aacttcatca gttcacagag aaagtaatcc 900
aggaccggaa ggagtetett aaggataage taaaacaaga tactactcag aaaaggeget 960
gggattttct ggacatactt ttgagtgcca aaagcgaaaa caccaaagat ttctctgaag 1020
cagateteca ggetgaagtg aaaaegttea tgtttgeagg acatgacace acateeagtg 1080
ctateteetg gateetttae tgettggeaa agtaceetga geateageag agatgeegag 1140
atgaaatcag ggaactccta ggggatgggt cttctattac ctgggaacac ctgagccaga 1200
tgccttacac cacgatgtgc atcaaggaat gcctccgcct ctacgcaccg gtagtaaaca 1260 tatcccggtt actcgacaaa cccatcacct ttccagatgg acgctcctta cctgcaggaa 1320
taactgtgtt tatcaatatt tgggctcttc accacaaccc ctatttctgg gaagaccctc 1380
aggtetttaa eeeettgaga tteteeaggg aaaattetga aaaaatacat eeetatgeet 1440
tcataccatt ctcagctgga ttaaggaact gcattgggca gcattttgcc ataattgagt 1500
gtaaagtggc agtggcatta actctgctcc gcttcaagct ggctccagac cactcaaggc 1560
ctccccagcc tgttcgtcaa gttgtcctca agtccaagaa tggaatccat gtgtttgcaa 1620
aaaaagtttg ctaattttaa gteetttegt ataagaatta atgagacaat ttteetacca 1680
aaggaagaac aaaaggataa atataataca aaatatatgt atatggttgt ttgacaaatt 1740
atataactta ggatacttct gactggtttt gacatccatt aacagtaatt ttaatttctt 1800
tgctgtatct ggtgaaaccc acaaaaacac ctgaaaaaac tcaagctgac ttccactgcg 1860
aagggaaatt attggtttgt gtaactagtg gtagagtggc tttcaagcat agtttgatca 1920
aaactccact cagtatctgc attactttta tctctgcaaa tatctgcatg atagctttat 1980
tctcagttat ctttccccaa taataaaaaa tagct
<210> 24
<211> 1790
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 3251523CB1
gcgccggtgg atccggatcg agggcaggag gctgagaccc gcgggagctg gccctaaagc 60
aaggacctga gtgcaagtaa tttttttggg aagtaataac agaaaatacc agcaaggaag 120
aagacagtga acccaaaaga attgaaaaca ggatgctgcc catcacagac cgcctgctgc 180
acctcctggg gctggagaag acggcgttcc gcatatacgc ggtgtccacc cttctcctct 240
teetgetett etteetgtte egeetgetge tgeggtteet gaggetetge aggagettet 300
acatcacctg ccgccggctg cgctgcttcc cccagcctcc ccggcgcaac tggctgctgg 360 gccacctggg catgtacctt ccaaatgagg cgggccttca agatgagaag aaggtactgg 420
acaacatgca ccatgtactc ttggtatgga tgggacctgt cctgccgctg ttggttctgg 480
tgeaccetga ttacatcaaa cccettttgg gagccacage tgecategee cecaaggatg 540 acetetteta tggetteeta aaacettgge taggtgatgg getgetgete agcaaaggtg 600 acaagtggag ceggcacegt egectgetga caceegeett ecaetttgae ateetgaage 660
cttacatgaa gatettcaac cagagegetg acattatgca tgctaaatgg eggcatetgg 720
cagagggete ageggtetee ettgatatgt ttgageatat cageeteatg accetggaca 780
gtetteagaa atgtgtette agetacaaca geaactgeca agagaagatg agtgattata 840 teteegetat cattgaactg agegetetgt etgteeggeg eeagtatege ttgcaccact 900
acctcgactt catttactac cgctcggcgg atgggcggag gttccggcag gcctgtgaca 960
tggtgeacca etteaccact gaagteatee aggaaeggeg gegggeaetg egteageagg 1020 gggeegagge etggettaag geeaageagg ggaagaeett ggaetttatt gatgtgetge 1080 teetggeeag ggatgaagat ggaaaggaac tgteagaega ggatateega geegaageag 1140
acacetteat gtttgagggt caegacaeaa catecagtgg gatetettgg atgetgttea 1200
atttggcaaa gtatccggaa taccaggaga aatgccgaga agagattcag gaagtcatga 1260
aaggeeggga getggaggag etggagtggg acgatetgae teagetgeee titacaacta 1320
tgtgcattaa ggagagcetg cgccagtacc cacctgtcac tcttgtctct cgccaatgca 1380
cggaggacat caageteeca gatgggegea teateeceaa aggtgeetae catgtggtea 1440
cattaattga gcgatccgtg gggtctcact ttaaccctca cccagcgtgg ggtttcactt 1500
taaccctcag ccagcccagg atgettgett cattttcaaa ggaggcatgt gacccccggg 1560
gaccagtgct cacacagaag ctgggcctga gccctgtccc ctcttcctcc aggaattgca 1620
teggacagag ettegecatg geegagttge gegtggttgt ggeactaaca etgetaegtt 1680
teegeetgag egtggaeega aegegeaagg tgeggeggaa geeggagete ataetgegea 1740
eggagaacgg getetggete aaggtggage egetgeetee gegggeetga
<210> 25
<211> 2014
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 5684625CB1
<400> 25
agtgtgcggg aaagcggctc attcccccag gtaactctga gcccccggct ccgagctccc 60
tegaggeege ctacegggtg ggeaageggg egegggegee ggeaaaagga gggetteggg 120
gcatgcgggg agaaacccgg acagagcgtc gggaacatgg atgagaaatc caacaagctg 180
ctgctagett tggtgatget ettectattt geegtgateg teeteeaata egtgtgeeee 240 ggeacagaat geeageteet eegeetgeag gegtteaget eeeeggtgee ggaceegtae 300 egeteggagg atgagagete egeeaggtte gtgeeeeget acaattteae eegeggegae 360
ctcctgcgca aggtagactt cgacatcaag ggcgatgacc tgatcgtgtt cctgcacatc 420
cagaagaccg ggggcaccac tttcggccgc cacttggtgc gtaacatcca gctggagcag 480 ccgtgcgagt gccgcgtggg tcagaagaaa tgcacttgcc accggccggg taagcggggaa 540 acctggctct tctccaggtt ctccacgggc tggagctgcg ggttgcacgc cgactggacc 600
gageteacea getgtgtgee etecgtggtg gaeggeaage gegaegeeag getgagaeeg 660 tecaggaact tecaetacat caccatecte egagaeeceag tgteeeggta ettgagtgag 720 tggaggeatg tecagagagg ggeaacatgg aaageateee tgeatgtetg egatggaagg 780 cetecaacet eegaagaget geeeagetge tacaetggeg atgaetggte tggetgeeee 840
ctcaaagagt ttatggactg tccctacaat ctagccaaca accgccaggt gcgcatgctc 900
tecgaeetga eeetggtagg etgetaeaac etetetgtea tgeetgaaaa geaaagaaac 960 aaggteette tggaaagtge eaagteaaat etgaageaca tggegttett eggeeteact 1020
gagtttcagc ggaagaccca atatctgttt gagaaaacct tcaacatgaa ctttatttcg 1080
ccatttaccc agtataatac cactagggcc tctagtgtag agatcaatga ggaaattcaa 1140
aagegtattg agggactgaa ttttctggat atggagttgt acagctatgc caaagacctt 1200
tttttgcaga ggtatcagtt tatgaggcag aaagagcatc aggaggccag gcgaaagcgt 1260
caggaacaac gcaaatttct gaagggaagg ctccttcaga cccatttcca gagccagggt 1320
cagggccaga gccagaatcc gaatcagaat cagagtcaga acccaaatcc gaatgccaat 1380
cagaacctga ctcagaatct gatgcagaat ctgactcaga gtttgagcca gaaggagaac 1440
cgggaaagcc cgaagcagaa ctcaggcaag gagcagaatg ataacaccag caatggcacc 1500
aacgactaca taggcagtgt agagaaatgg cgttaaatgg ctcaaaaaagg cctgtacata 1560
cttctcccaa agcgccactg aaaagatggc atagcttaaa agatgaaagt gtccaaacac 1620 atcctgcttc cttcattggg gaagttttaa aaaaaagttt agatgttgcc tttacagttg 1680
cettteaatt eagtgttata etgtgtgtag gtaaaacaaa teteaatatg gaattaaatt 1740 gtetttttgg ggttggacta aatatgaaat eegaaageea aaccagaete accagaaatt 1800
gctgtttaga tattttaaga agttcttaaa ttagttatgg agacaaagtg aaaacataaa 1860
atgtgaccat ttaacttatg gctaagaatg actttaatat cagatacatg taaacccatc 1920
tgatcaaatt ttcaggtgat aagtacatag acaatgctac ctactgcctg taagcgttaa 1980
aacacgggct cgtgaaaccc cggccatccc gtgc
<210> 26
<211> 2609
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<223> Incyte ID No: 7473879CB1
<400> 26
tttcccaagt tcacccagct tgtcagtgag tctaagagtg ggggaaaagg ggttctagcc 60
tggctccctg gcatcaaagc aggtcatctt gattgctatt gaggatttga caggtgagac 120
ctagaggagg gctgtgagtt gaccaagggt acacacagct taggaatcac agctggggct 180
tgaacccage catgggatet teateteeta atagtaacag ettecaetet eacccaageg 240 tagteetee tgaggatggg ggtetgggae agaaaaccag gageatgeet etgggggagt 300 ceateetggt ggttggggtt geagggggae teagaggage caaggeetgg ecceageet 360
getecettet etggeeagge caagtggeaa egeetggeea tggagggeag caeetgtetg 420
gatgtgtttg agcacatcag cettatgace etggacagte tgcagaaatg catettcage 480
tttgacagca attgtcagga gtgagttett geecagggee tgggaacatg ggatggagtg 540
ggggggtggg tgtggggaga gcaaagccca gggagacaag aagagccttc ctggagagat 600
gatgagaact aggcattgaa ggacaaagaa ggagagaagg agagagagag agagcgagag 660
aaagagaagt ttcctccaaa caagtggaac tgtttgggtc aaggcaagga ggctaagatg 720 aacagagcat gtgcaacagg cagttgggag acacttggaa atgaaggtgg aggggttggc 780
agttaactag atcttaagga tcttgaaaag tcagacaaag ggagatgcat tttatccaag 840
```

gacactggac gatgccaggg gagtaataat ccaagctgtg gtgaagtgcg gaaggtgctc gcaggaagcc ggaataacca gcttccacag gccgcaccct ctttggactt atgaggacat gtggcctctc ggcaggaggt tccctacatt ccaaagggaa ccataggctg tcgcaggagt tccctacatt ccaaagggaa ccataggctt tggcagagac ctatggcttt tggcagagac ctatggcttt tggcagagac ctatggcttt	tctatgggac agaggaggtc aggcaggagc cctggggac cttgcaggac ccaggettc cagtgatta gtcttccgg ggcctgcaga cactagccag tattgatgtg aagagcagaa ctgggtcttg gcaagagctt gcccttcctg cgcccgggc tgtctgtaac ggtctgtaac ggtctatgac ggtctettac gaaggtggtc acgcaggacg catgggtct	tctatggaag tgagtttggt agatgttta ctggggcagg accccttct atgtgggtaa attactgcga tacaaggact ctggtgcacg ggtgttgatg ctcctgctga gctgacactt tacaacctcg ctgaaggacc accatgtgcc tgcacccagg atcaacatct cccttccggtg ctcgggggc ctgggggtcacg ctgggggtcacg accatgtgcc tccgtcggggc ctgggggtcacccagg atcaacatct cccttccggt ctgggggtcaccccagg accatgtgccctcacccagg accatgtgccctcacccagg accatgtgcgctcacccggagattg ggcctgcagt cagatttccg	attgactgtc ggagaaaatg taagacagag aggcagctca gcatggaatg ggagctgctt tcatggagct tcctgtactt acttcacaga acttcctcca gcgaggataa tcatgtttgg cgaggcaccc gtgagcctaa tgaaggagag acgtggtgct tcgcaatcca tcgagcaccg ccagcaccga ccagcaccga cctgctgctgc gtacccacca gtaataaatc	atgtagacac gggcagattt agaggagatg cagagagtgg tggtcctggg cctctctctg cagtgccett cctcactccc tgccgtcatc agccaaggcc aaatggtaaa aggccatgac agaataccaa agagattgaa cctgcggttg cccagacagc tcacaaccca aaacgccag cttccgcatc ggaggacgga cctacetttg tgtgttggcc	cccatgatgg gaggcagaga attetggetg gactggecet gtagtgaaae tgtggaegge aagtecaaga gagttgteag accaeggeea gaacgetgee tgggaegaee cateeceaa egagteatee teagtetgge aagtegea aagtegega etagtegea categegae etttggetge cateacetae cettggetge	960 1020 1080 1140 1200 1320 1380 1500 1560 1620 1680 1740 1800 1920 1920 2100 2210 2220 2280
acagggagce gagtagaace ctttgcacca agtcccacgg gaagaggegg gagccccgtg ataattgtgt tgcatagcag	acgcaggacg cctgggctga attacctttt atggccagta ggagatgtct ctgagggtgg attctgatat	ccggagattg ggcctgcagt cagatttccg gggggcgctg ctgtgcccaa gatctcccag aaatttttgc agatcacatt	ttttgcgtgc gacccaccca gtaataaatc gaggactgcg gatactcact agtctaagta caatttagaa	ggaggacgga cctacctttg tgtgttggcc gggatctagg gcctctctgg aagacttttt tcccctgttt	ctttggctgc catcacctac cctgtgcctg gcctggctgg gtgagcacag ccccccaaaa tttagctagg	2160 2220 2280 2340 2400

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.

THIS PAGE BLANK (USPTO)