# 机器学习实验二

姓名: 任薏霖

学号: 2011897

专业: 物联网工程

## 实验要求

题目:回归模型基本要求:

1. 构造线性回归模型,并采用批量梯度下降和随机梯度下降进行优化;输出训练集和测试集的均方误差 (MSE),画出MSE收敛曲线。

2. 对于批量梯度下降和随机梯度下降,采用不同的学习率并进行MSE曲线展示,分析选择最佳的学习率。

中级要求:探究回归模型在机器学习和统计学上的差异。

高级要求: 编程实现岭回归算法,求解训练样本的岭回归模型,平均训练误差和平均测试误差(解析法、批量梯度下降法和随机梯度下降法均可)。

## 导入需要的包

## In [1]:

```
#导入
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import copy
```

## 数据集预处理

## In [2]:

```
data = pd.read_csv("winequality-white.csv")
data
```

## Out[2]:

|      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density | рН   | sulphates | al |
|------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|---------|------|-----------|----|
| 0    | 7.0              | 0.27                | 0.36           | 20.7              | 0.045     | 45.0                      | 170.0                      | 1.00100 | 3.00 | 0.45      |    |
| 1    | 6.3              | 0.30                | 0.34           | 1.6               | 0.049     | 14.0                      | 132.0                      | 0.99400 | 3.30 | 0.49      |    |
| 2    | 8.1              | 0.28                | 0.40           | 6.9               | 0.050     | 30.0                      | 97.0                       | 0.99510 | 3.26 | 0.44      |    |
| 3    | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.99560 | 3.19 | 0.40      |    |
| 4    | 7.2              | 0.23                | 0.32           | 8.5               | 0.058     | 47.0                      | 186.0                      | 0.99560 | 3.19 | 0.40      |    |
|      |                  |                     |                |                   |           |                           |                            |         |      |           |    |
| 4893 | 6.2              | 0.21                | 0.29           | 1.6               | 0.039     | 24.0                      | 92.0                       | 0.99114 | 3.27 | 0.50      |    |
| 4894 | 6.6              | 0.32                | 0.36           | 8.0               | 0.047     | 57.0                      | 168.0                      | 0.99490 | 3.15 | 0.46      |    |
| 4895 | 6.5              | 0.24                | 0.19           | 1.2               | 0.041     | 30.0                      | 111.0                      | 0.99254 | 2.99 | 0.46      |    |
| 4896 | 5.5              | 0.29                | 0.30           | 1.1               | 0.022     | 20.0                      | 110.0                      | 0.98869 | 3.34 | 0.38      |    |
| 4897 | 6.0              | 0.21                | 0.38           | 0.8               | 0.020     | 22.0                      | 98.0                       | 0.98941 | 3.26 | 0.32      |    |

4898 rows × 12 columns

4

## In [3]:

```
#检查数据集中是否含有空值
print(data.isnull().sum())
```

```
fixed acidity
                        0
volatile acidity
                        0
citric acid
                        0
residual sugar
chlorides
                        0
free sulfur dioxide
                        0
total sulfur dioxide
                        0
density
                        0
рН
sulphates
                        0
                        0
alcohol
quality
                        0
dtype: int64
```

```
In [4]:
quality = data[['quality']]
#提取data数据的最后一列 quality
t = data.iloc[:, 0:11]
#对数据进行标准化
d = (t - t.min()) / (t.max() - t.min())
print(d)
      fixed acidity volatile acidity citric acid residual sugar
                                                                       chlorides \
0
           0.307692
                              0.186275
                                            0.216867
                                                             0.308282
                                                                        0.106825
1
           0.240385
                              0.215686
                                            0.204819
                                                             0.015337
                                                                        0.118694
2
           0.413462
                              0.196078
                                                             0.096626
                                                                        0.121662
                                            0.240964
3
           0.326923
                              0.147059
                                            0.192771
                                                             0.121166
                                                                        0.145401
4
           0.326923
                              0.147059
                                            0.192771
                                                             0.121166
                                                                        0.145401
4893
           0.230769
                              0.127451
                                            0.174699
                                                             0.015337
                                                                        0.089021
4894
           0. 269231
                              0. 235294
                                            0.216867
                                                             0.113497
                                                                        0.112760
                                                                        0.094955
4895
           0.259615
                              0.156863
                                            0.114458
                                                             0.009202
4896
           0.163462
                              0.205882
                                            0.180723
                                                             0.007669
                                                                        0.038576
4897
                              0.127451
                                            0.228916
                                                             0.003067
                                                                        0.032641
           0.211538
      free sulfur dioxide total sulfur dioxide
                                                    density
                                                                    рΗ
0
                  0.149826
                                         0.373550
                                                   0. 267785
                                                              0. 254545
                                         0. 285383
1
                  0.041812
                                                   0. 132832
                                                              0. 527273
                                                   0.154039
2
                  0.097561
                                         0.204176
                                                              0.490909
3
                  0.156794
                                         0.410673
                                                   0. 163678
                                                              0.427273
                                         0.410673
4
                  0.156794
                                                   0. 163678
                                                              0.427273
. . .
                      . . .
                                              . . .
                                                        . . .
                                                                   . . .
                  0.076655
                                         0.192575
                                                   0.077694
                                                              0.500000
4893
4894
                  0. 191638
                                         0.368910
                                                   0. 150183
                                                              0.390909
4895
                  0.097561
                                         0. 236659
                                                   0.104685
                                                              0. 245455
4896
                  0.062718
                                         0. 234339
                                                   0.030461
                                                              0.563636
4897
                                         0. 206497 0. 044342 0. 490909
                  0.069686
      sulphates
                  alcohol
0
```

```
0.267442
                  0.129032
1
       0.313953
                  0.241935
2
       0.255814
                  0.338710
3
       0.209302
                  0.306452
4
       0.209302
                  0.306452
            . . .
       0.325581
4893
                  0.516129
4894
       0.279070
                  0.258065
4895
                  0.225806
       0.279070
       0.186047
                  0.774194
4896
4897
       0.116279
                  0.612903
```

[4898 rows x 11 columns]

## In [5]:

```
#将标准化的特征值表与quality进行合并
data = pd.concat([d, quality], axis = 1)
pd.set_option('display.max_columns', 50)
pd.set_option('display.width', 1000)
data.to_csv('wine_data.csv') #将处理好的数据另存为新的csv文件
print(data)
```

```
fixed acidity volatile acidity citric acid residual sugar chlorides
                                                                                    free
sulfur dioxide total sulfur dioxide
                                         density
                                                         pH sulphates
                                                                          alcohol
                                                                                    quali
ty
0
           0.307692
                              0.186275
                                            0.216867
                                                             0.308282
                                                                         0.106825
0.149826
                       0. 373550 0. 267785
                                            0.254545
                                                        0. 267442 0. 129032
                                                                                    6
                                                             0.015337
           0.240385
                                            0.204819
                              0.215686
                                                                         0.118694
0.041812
                       0. 285383 0. 132832
                                            0.527273
                                                        0. 313953 0. 241935
                                                                                    6
2
           0.413462
                              0.196078
                                            0. 240964
                                                             0.096626
                                                                         0. 121662
0.097561
                       0. 204176 0. 154039
                                            0.490909
                                                        0. 255814 0. 338710
                                                                                    6
3
           0.326923
                              0.147059
                                            0.192771
                                                             0.121166
                                                                         0.145401
                                                        0. 209302 0. 306452
0.156794
                       0. 410673 0. 163678
                                            0.427273
                                                                                    6
           0.326923
                              0.147059
                                            0.192771
                                                             0.121166
                                                                         0.145401
0.156794
                       0. 410673 0. 163678
                                            0.427273
                                                        0. 209302 0. 306452
                                                                                    6
                                                                   . . .
. . .
                                 . . .
                                                                  . . .
                                                                            . . .
. . .
           0.230769
4893
                              0.127451
                                            0.174699
                                                             0.015337
                                                                         0.089021
0.076655
                       0. 192575 0. 077694
                                            0.500000
                                                        0. 325581 0. 516129
                                                                                    6
4894
           0.269231
                              0. 235294
                                            0.216867
                                                             0.113497
                                                                         0.112760
                       0.368910 0.150183
0.191638
                                            0.390909
                                                        0. 279070 0. 258065
                                                                                    5
           0.259615
                              0.156863
                                                             0.009202
                                                                         0.094955
4895
                                            0.114458
0.097561
                       0. 236659 0. 104685
                                            0. 245455
                                                        0. 279070 0. 225806
4896
           0.163462
                              0.205882
                                            0.180723
                                                             0.007669
                                                                         0.038576
0.062718
                       0. 234339 0. 030461
                                            0.563636
                                                        0. 186047 0. 774194
4897
           0.211538
                              0.127451
                                            0.228916
                                                             0.003067
                                                                         0.032641
0.069686
                       0. 206497 0. 044342 0. 490909
                                                        0.116279 0.612903
                                                                                    6
```

[4898 rows x 12 columns]

## In [6]:

```
df = pd.read_csv("wine_data.csv")
df = df.iloc[:, 1:13]
df
```

## Out[6]:

|      | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density  | pł       |
|------|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|----------|----------|
| 0    | 0.307692         | 0.186275            | 0.216867       | 0.308282          | 0.106825  | 0.149826                  | 0.373550                   | 0.267785 | 0.25454  |
| 1    | 0.240385         | 0.215686            | 0.204819       | 0.015337          | 0.118694  | 0.041812                  | 0.285383                   | 0.132832 | 0.52727  |
| 2    | 0.413462         | 0.196078            | 0.240964       | 0.096626          | 0.121662  | 0.097561                  | 0.204176                   | 0.154039 | 0.49090! |
| 3    | 0.326923         | 0.147059            | 0.192771       | 0.121166          | 0.145401  | 0.156794                  | 0.410673                   | 0.163678 | 0.42727  |
| 4    | 0.326923         | 0.147059            | 0.192771       | 0.121166          | 0.145401  | 0.156794                  | 0.410673                   | 0.163678 | 0.42727  |
|      |                  |                     |                |                   |           |                           |                            |          |          |
| 4893 | 0.230769         | 0.127451            | 0.174699       | 0.015337          | 0.089021  | 0.076655                  | 0.192575                   | 0.077694 | 0.50000  |
| 4894 | 0.269231         | 0.235294            | 0.216867       | 0.113497          | 0.112760  | 0.191638                  | 0.368910                   | 0.150183 | 0.39090! |
| 4895 | 0.259615         | 0.156863            | 0.114458       | 0.009202          | 0.094955  | 0.097561                  | 0.236659                   | 0.104685 | 0.24545  |
| 4896 | 0.163462         | 0.205882            | 0.180723       | 0.007669          | 0.038576  | 0.062718                  | 0.234339                   | 0.030461 | 0.56363  |
| 4897 | 0.211538         | 0.127451            | 0.228916       | 0.003067          | 0.032641  | 0.069686                  | 0.206497                   | 0.044342 | 0.49090! |
|      |                  |                     |                |                   |           |                           |                            |          |          |

4898 rows × 12 columns

4

In [7]:

from pandas.plotting import scatter\_matrix
scatter\_matrix(data, figsize = (12, 12));



## In [8]:

```
correlation_matrix = np.absolute(data.corr().round(2))
sns.set(rc = {'figure.figsize':(10, 10)})
ax = sns.heatmap(correlation_matrix, annot = True, cmap = 'Reds')
bottom, top = ax.get_ylim()
ax.set_ylim(bottom + 0.5, top - 0.5)
```

#### Out[8]:

(12.5, -0.5)



# 基本要求

# 分割数据集为训练集和测试集

```
In [9]:
```

```
# 这里注意一个小trick: 回归系数会比特征x多一维,为了向量相乘方便,可以在训练集X左侧添加全为1的一列data = pd.concat([pd.DataFrame(np.ones(data.shape[0]), columns=['x0']), data], axis=1) #分割训练集 train_data = data.sample(frac = 0.8, random_state = 0, axis = 0) #分割测试集 text_data = data[~data.index.isin(train_data.index)]
```

## In [10]:

```
train_x = train_data.iloc[:, :12]
train_y = train_data.iloc[:, 12:]

text_x = text_data.iloc[:, :12]
text_y = text_data.iloc[:, 12:]
```

#### In [11]:

train\_x

## Out[11]:

|      | x0  | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density  |     |
|------|-----|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|----------|-----|
| 2762 | 1.0 | 0.336538         | 0.235294            | 0.210843       | 0.012270          | 0.121662  | 0.020906                  | 0.357309                   | 0.102757 | 0.4 |
| 42   | 1.0 | 0.307692         | 0.225490            | 0.156627       | 0.104294          | 0.178042  | 0.090592                  | 0.350348                   | 0.159823 | 0.3 |
| 1419 | 1.0 | 0.365385         | 0.058824            | 0.445783       | 0.015337          | 0.091988  | 0.087108                  | 0.218097                   | 0.086563 | 0.3 |
| 3664 | 1.0 | 0.115385         | 0.205882            | 0.325301       | 0.078221          | 0.077151  | 0.181185                  | 0.338747                   | 0.051089 | 0.5 |
| 2125 | 1.0 | 0.211538         | 0.196078            | 0.132530       | 0.177147          | 0.115727  | 0.139373                  | 0.357309                   | 0.165606 | 0.4 |
|      |     |                  |                     |                |                   |           |                           |                            |          |     |
| 2845 | 1.0 | 0.259615         | 0.137255            | 0.174699       | 0.104294          | 0.056380  | 0.048780                  | 0.180974                   | 0.115674 | 0.3 |
| 3384 | 1.0 | 0.288462         | 0.147059            | 0.180723       | 0.097393          | 0.103858  | 0.139373                  | 0.394432                   | 0.144399 | 0.4 |
| 2056 | 1.0 | 0.288462         | 0.127451            | 0.162651       | 0.269172          | 0.097923  | 0.135889                  | 0.317865                   | 0.250434 | 0.5 |
| 4016 | 1.0 | 0.326923         | 0.313725            | 0.144578       | 0.121166          | 0.136499  | 0.149826                  | 0.329466                   | 0.176403 | 0.4 |
| 1622 | 1.0 | 0.259615         | 0.352941            | 0.295181       | 0.108896          | 0.106825  | 0.048780                  | 0.371230                   | 0.165606 | 0.3 |
|      |     |                  |                     |                |                   |           |                           |                            |          |     |

3918 rows × 12 columns

## In [12]:

 $text\_x$ 

## Out[12]:

|      | x0  | fixed<br>acidity | volatile<br>acidity | citric<br>acid | residual<br>sugar | chlorides | free<br>sulfur<br>dioxide | total<br>sulfur<br>dioxide | density  |     |
|------|-----|------------------|---------------------|----------------|-------------------|-----------|---------------------------|----------------------------|----------|-----|
| 0    | 1.0 | 0.307692         | 0.186275            | 0.216867       | 0.308282          | 0.106825  | 0.149826                  | 0.373550                   | 0.267785 | 0.2 |
| 7    | 1.0 | 0.307692         | 0.186275            | 0.216867       | 0.308282          | 0.106825  | 0.149826                  | 0.373550                   | 0.267785 | 0.2 |
| 21   | 1.0 | 0.250000         | 0.225490            | 0.228916       | 0.035276          | 0.086053  | 0.059233                  | 0.215777                   | 0.078851 | 0.4 |
| 24   | 1.0 | 0.269231         | 0.186275            | 0.246988       | 0.010736          | 0.127596  | 0.048780                  | 0.308585                   | 0.154039 | 0.6 |
| 25   | 1.0 | 0.307692         | 0.166667            | 0.192771       | 0.128834          | 0.109792  | 0.188153                  | 0.547564                   | 0.161751 | 0.4 |
|      |     |                  |                     |                |                   |           |                           |                            |          |     |
| 4877 | 1.0 | 0.201923         | 0.450980            | 0.000000       | 0.003067          | 0.068249  | 0.034843                  | 0.169374                   | 0.110854 | 0.4 |
| 4884 | 1.0 | 0.259615         | 0.245098            | 0.228916       | 0.118098          | 0.115727  | 0.229965                  | 0.382831                   | 0.150569 | 0.3 |
| 4885 | 1.0 | 0.269231         | 0.254902            | 0.240964       | 0.115031          | 0.109792  | 0.229965                  | 0.373550                   | 0.150954 | 0.3 |
| 4890 | 1.0 | 0.221154         | 0.254902            | 0.174699       | 0.024540          | 0.080119  | 0.080139                  | 0.211137                   | 0.043763 | 0.3 |
| 4895 | 1.0 | 0.259615         | 0.156863            | 0.114458       | 0.009202          | 0.094955  | 0.097561                  | 0.236659                   | 0.104685 | 0.2 |

980 rows × 12 columns

•

## In [13]:

```
train_x = train_x.to_numpy()
train_y = train_y.to_numpy()
text_x = text_x.to_numpy()
text_y = text_y.to_numpy()
```

```
In [14]:
```

## 随机梯度下降

#### In [15]:

```
#n epoch 训练次数
#1_rate 训练步长
def Random_grad(x, y, theta, alpha, iters):
   :param alpha: 梯度下降学习率/步长
   :param iters: 训练次数
   :param theta: 一般初始设置为[[0, 0, 0]], 初值对梯度下降收敛速度影响大
   :param x: 二维matrix, 特征向量集
   :param y: 二维matrix, 结果集
   :return:
   ept=0.001 #精度
   loss=1 #定义一个损失 方便进入循环体 后来表示两次迭代损失函数的差异
   i = 0
   numsSample = x. shape[0]
   while i < iters and loss > ept:
      t = np. random. randint (0, numsSample) #随机抽取一个样本
      # for t in range (numsSample): 这样其实也是遍历了所有数据
            partial=X[i:i+1,:]. T. dot((X[i:i+1,:]. dot(theta)-y[i,:]). reshape(1,1)) #损失函数关于the
            theta=theta-alpha*partial
      partial = x[t:t+1, :].T.dot((x[t:t+1, :].dot(theta) - y[t, :]).reshape(1, 1)) #损失函数
       theta = theta - alpha * partial
      i += 1
      loss = (1 / (2 * x. shape[0])) * np. sum((x. dot(theta) - y)**2) #计算两次迭代之间的差异(损失图
   return theta
```

4

```
#定义梯度下降学习率数组
alpha = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1]
for i in range(0, 6):
   theta = Random_grad(train_x, train_y, t_coef, alpha[i], 50)
   print("theta: ", theta.T)

theta: [[ 0.64117277    0.76951532 -0.32887876 -0.88875952    2.70617244 -1.13160216
```

theta:  $\begin{bmatrix} \begin{bmatrix} 0.64117277 & 0.76951532 & -0.32887876 & -0.88875952 & 2.70617244 & -1.13160216 \\ -1.17387405 & 1.6295605 & -0.36691614 & 0.01118072 & 1.90804008 & -0.58092432 \end{bmatrix} \end{bmatrix}$  theta:  $\begin{bmatrix} \begin{bmatrix} 1.0361759 & 0.88387187 & -0.24543832 & -0.80540513 & 2.74324197 & -1.08405337 \\ -1.12296383 & 1.7474914 & -0.30951146 & 0.17678115 & 2.04198457 & -0.43784596 \end{bmatrix} \end{bmatrix}$  theta:  $\begin{bmatrix} \begin{bmatrix} 2.04201411 & 1.1667543 & -0.04091602 & -0.60973334 & 2.80806197 & -0.97396596 \\ -1.01325458 & 2.05378787 & -0.19268649 & 0.66117554 & 2.32558568 & 0.00917404 \end{bmatrix} \end{bmatrix}$  theta:  $\begin{bmatrix} \begin{bmatrix} 2.77111459 & 1.39309478 & 0.0999471 & -0.43131788 & 2.87706751 & -0.90778103 \\ -0.93106209 & 2.23657804 & -0.10795136 & 0.88019252 & 2.61458475 & 0.38476068 \end{bmatrix} \end{bmatrix}$  theta:  $\begin{bmatrix} \begin{bmatrix} 3.35272691 & 1.46947834 & 0.31477483 & -0.43135669 & 2.96961774 & -0.72574218 \\ -0.91038727 & 2.34579119 & -0.07465442 & 1.08970173 & 2.70844453 & 0.96509797 \end{bmatrix} \end{bmatrix}$  theta:  $\begin{bmatrix} \begin{bmatrix} 4.19725614 & 1.69425041 & -0.12135489 & -0.46544628 & 2.92223825 & -0.94425512 \\ -0.76536505 & 2.42852127 & -0.1074964 & 1.44815032 & 2.06980816 & 1.40078086 \end{bmatrix}$ 

## 批量梯度下降

#### In [17]:

```
#n_epoch 训练次数
#1 rate 训练步长n
def Batch grad(x, y, theta, alpha, iters):
   :param alpha: 梯度下降学习率/步长
   :param iters: 训练次数
   :param theta: 一般初始设置为[[0, 0, 0]],初值对梯度下降收敛速度影响大
   :param x: 二维matrix, 特征向量集
   :param y: 二维matrix, 结果集
   :return:
   ept=0.001 #精度
   loss=1 #定义一个损失 方便进入循环体 后来表示两次迭代损失函数的差异
   i = 0
   while i < iters and loss > ept:
      partial = (1 / x. shape[0]) * x. T. dot(x. dot(theta) - y) #损失函数关于theta的偏导数
       theta = theta - alpha * partial
      i += 1
      loss = (1 / (2 * x. shape[0])) * np. sum((x. dot(theta) - y) ** 2)
   return theta
```

```
In [18]:
```

```
alpha = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1]
for i in range(0, 6):
   theta = Batch_grad(train_x, train_y, t_coef, alpha[i], 50)
   print("theta: ", theta.T)
```

theta:  $[[\ 0.65293635\ 0.76901197\ -0.32449091\ -0.88863515\ 2.70638815\ -1.13175642\ -1.17330259\ 1.63266506\ -0.36576376\ 0.01667554\ 1.91463586\ -0.57634773]]$  theta:  $[[\ 1.06236573\ 0.88793027\ -0.24648902\ -0.80619183\ 2.74000341\ -1.08822666\ -1.12672592\ 1.75090583\ -0.31451944\ 0.19186753\ 2.03974655\ -0.3982898\ ]]$  theta:  $[[\ 2.04701494\ 1.1723608\ -0.06118889\ -0.60827361\ 2.81829268\ -0.98442138\ -1.0156435\ 2.03055358\ -0.19447808\ 0.61240971\ 2.33557698\ 0.0396178\ ]]$  theta:  $[[\ 3.00908956\ 1.44100266\ 0.10613463\ -0.41693947\ 2.8797821\ -0.88810068\ -0.91252324\ 2.27597435\ -0.09600919\ 1.01854192\ 2.59458483\ 0.52422233]]$  theta:  $[[\ 3.21833119\ 1.45508138\ 0.07458012\ -0.38428264\ 2.82437719\ -0.88923779\ -0.91385811\ 2.19973977\ -0.16135535\ 1.08193584\ 2.50694989\ 0.88570875]]$  theta:  $[[\ 3.30437703\ 1.3603129\ -0.10948512\ -0.38442525\ 2.67124519\ -0.92031955\ -0.95014964\ 1.90506386\ -0.35685674\ 1.03539812\ 2.14718749\ 1.48555242]]$ 

## 预测函数

In [19]:

```
#row 输入数值
#coef 回归模型参数
def predict(x, theta):
    y = 0
    for i in range(len(x) - 1):
        y += float(theta[i]) * float(x[i])
    return y
```

# 均方误差

In [20]:

```
#计算均方误差
def MSE(theta, x, y):
    loss = 0
    for i in range(len(x)):
        temp = predict(x[i], theta) - y[i]
        loss += temp ** 2
    return loss / len(y)
```

# 可视化

#### In [21]:

```
#结果可视化--学习率
MSE_Random = []
MSE Descent= []
plt. style. use ('seaborn-ticks')
fig = plt.figure(figsize=(10,6))
#alpha = [0.001, 0.003, 0.01, 0.03, 0.1, 0.3, 1]
for i in range (0, 50):
   MSE_Random.append(MSE(Random_grad(train_x, train_y, t_coef, i / 40, 10), train_x, train_y))
    MSE Descent.append(MSE(Batch grad(train x, train y, t coef, i / 40, 10), train x, train y))
plt.xlabel('LearningRate:', fontsize=18)
plt.ylabel('MSE', fontsize=18)
x_major_locator = plt.MultipleLocator(1)
ax = plt. gca()
ax. xaxis. set_major_locator(x_major_locator)
plt. xlim(0, 50)
plt. ylim(0, 40)
plt.plot(range(0, 50), MSE_Random, 'r', label='s1', marker = "o", markeredgecolor = 'black', marker
plt.plot(range(0, 50), MSE_Descent, 'b', label='s2', marker = "o", markeredgecolor = 'black', marker
plt.legend()
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体,不然中文无法显示
#plt.rcParams['image.cmap'] = 'gray' # 设置 颜色 style
#plt.grid()
plt. title("不同回归模型-不同学习率对MSE的影响")
plt. show()
```



6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 LearningRate: 由上图可知,随着学习率的增大,批量梯度下降和随机梯度下降的回归模型的MSE值均有大幅度降低,并在一定程度内保持平衡,但是随机梯度下降法易出现抖动和噪音;当学习率>1时,每次迭代中目标函数可能不会减少,所以可能不会收敛。

因此,通过上图曲线,可以判断当学习率为0.3时,效果较好。

## In [22]:

```
#结果可视化--不同回归算法--学习率根据上问选择0.3
MSE_Random_train = []
MSE_Random_text = []
MSE Batch train= []
MSE Batch text= []
fig = plt. figure (figsize= (10, 6))
plt. style. use ('seaborn-ticks')
for i in range (0, 50):
    MSE_Random_train.append(MSE(Random_grad(train_x, train_y, t_coef, 0.3, i), train_x, train_y))
    MSE_Random_text.append(MSE(Random_grad(text_x, text_y, t_coef, 0.3, i), text_x, text_y))
    MSE_Batch_train.append(MSE(Batch_grad(train_x, train_y, t_coef, 0.3, i), train_x, train_y))
    MSE_Batch_text.append(MSE(Batch_grad(text_x, text_y, t_coef, 0.3, i), text_x, text_y))
plt. xlabel ('round:', fontsize=18)
plt.ylabel('MSE', fontsize=18)
x_major_locator = plt.MultipleLocator(1)
ax = plt. gca()
ax. xaxis. set_major_locator(x_major_locator)
plt. xlim(0, 15)
plt. ylim(0, 40)
plt.plot(range(0,50), MSE_Random_train, 'r', label='sl_train', marker = "o", markeredgecolor = 'whit
plt.plot(range(0,50), MSE_Random_text, 'darkred', label='sl_text', marker = "o", markeredgecolor =
plt.plot(range(0,50), MSE_Batch_train, 'b', label='s2_train', marker = "o", markeredgecolor = 'white
plt.plot(range(0,50), MSE_Batch_text, 'mediumblue', label='s2_text', marker = "o", markeredgecolor =
plt.legend()
plt.grid()
plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体,不然中文无法显示
plt.title("MSE收敛曲线")
plt. show()
```



# 中级要求

## 探究回归模型在机器学习和统计学的差异

- 1. 回归模型应用于机器学习:
  - 1) 机器学习的目的是构建一个可重复预测的模型,从而确定预测结果的可行性。
  - 2) 机器学习算法的评价准确性可通过测试数据集来验证。
- 3)机器学习不基于假设,机器学习没有连续性分割边界的限制。同样我们也并不需要假设自变量或因变量的分布。
- 2. 回归模型应用于统计学:
- 1)如果试图证明数据变量间的关系具有统计学意义,会使用统计模型,因为统计关系更易关注变量间关系,而非预测。
- 2)对于统计模型来说,基于置信区间的回归参数分析,重要性测试以及其他测试可以用于评价该模型的有效性。
- 3) 统计模型基于一系列的假设。例如线性回归模型假设: (1) 自变量和因变量线性相关; (2) 同方差;
- (3)波动均值为0; (4)观测样本相互独立; (5)波动服从正态分布。Logistics回归同样拥有很多的假设。即使是非线性回归也要遵守一个连续的分割边界的假设。

# 高级要求

# 岭回归算法

#### In [23]:

```
#岭回归算法
def Ridge(x, y, lam):# 可设置岭系数为0.2
    #lam 可初设为0.2
    xMat = np. mat(x)
    yMat = np. mat(y)

xTx = xMat.T * xMat # 矩阵乘法 xMat. shape
    rxTx = xTx + np. eye(xMat. shape[1]) * lam # 岭回归求解的括号的部分
    # 计算矩阵的值,如果值为0,说明该矩阵没有逆矩阵
    if np. linalg.det(rxTx) == 0.0:
        print("This matrix cannot do inverse")
        return
# xTx. I为xTx的逆矩阵
theta = rxTx.I * xMat.T * yMat
return theta
```

#### In [24]:

```
#计算平均误差

def avg_loss(theta, x, y):
    loss = 0
    for i in range(len(x)):
        temp = y[i] - predict(x[i], theta)
        loss += temp
    return loss / len(y)
```

#### In [25]:

```
# 生成50个值作为label的候选值,此处是alphas
# linspace默认生成50个值,若想生成100个,可以修改为(0.001,1,100)
alphas_to_test = np.linspace(0.001,1)
alphas_to_test
```

#### Out [25]:

```
array([0.001 , 0.02138776, 0.04177551, 0.06216327, 0.08255102, 0.10293878, 0.12332653, 0.14371429, 0.16410204, 0.1844898, 0.20487755, 0.22526531, 0.24565306, 0.26604082, 0.28642857, 0.30681633, 0.32720408, 0.34759184, 0.36797959, 0.38836735, 0.4087551, 0.42914286, 0.44953061, 0.46991837, 0.49030612, 0.51069388, 0.53108163, 0.55146939, 0.57185714, 0.5922449, 0.61263265, 0.63302041, 0.65340816, 0.67379592, 0.69418367, 0.71457143, 0.73495918, 0.75534694, 0.77573469, 0.79612245, 0.8165102, 0.83689796, 0.85728571, 0.87767347, 0.89806122, 0.91844898, 0.93883673, 0.95922449, 0.97961224, 1. ])
```

```
In [26]:
```

L 4 EEU20033 VOJ

```
avg_train_loss = []
for i in range (0, 50):
    thetas = Ridge(train_x, train_y, alphas_to_test[i])
   avg_train_loss = avg_loss(Ridge(train_x, train_y, alphas_to_test[i]), train_x, train_y)
   avg_text_loss = avg_loss(Ridge(text_x, text_y, alphas_to_test[i]), text_x, text_y)
   print("theta:", thetas)
    print("avg_train_loss:", avg_train_loss)
    print("avg_text_loss:", avg_text_loss)
theta: [[ 5.49449189]
 [ 0.62107259]
 [-1.97398603]
 [ 0.01209971]
 [ 5. 21492112]
 [ 0.05788709]
 [ 0.80887554]
 [ 0.01057385]
 [-7.43377416]
[ 0.72509743]
[ 0.56491596]
[ 1.28719773]]
avg_train_loss: [0.52247141]
avg_text_loss: [0.30246122]
theta: [[ 5.47480416e+00]
[ 5.61805448e-01]
 [-1.97802913e+00]
 [ 8.87293554e-03]
 [ 5.02563301e+00]
```

## In [27]:

```
avg_train_loss = []
for i in range(0, 50):
    loss = avg_loss(Ridge(train_x, train_y, alphas_to_test[i]), train_x, train_y)
    avg_train_loss.append(loss)
avg_train_loss
```

#### Out[27]:

array([0.82819621])]

```
[array([0.52247141]),
array([0.54356387]),
array([0.56266182]),
array([0.58003553]),
array([0.59590854]),
array([0.61046735]),
array([0.62386877]),
array([0.63624563]),
array([0.64771116]),
array([0.65836251]),
array([0.66828348]),
array([0.67754675]),
array([0.68621566]),
array([0.69434568]),
array([0.70198558]),
array([0.70917839]),
array([0.71596228]),
array([0.72237117]),
array([0.72843534]),
array([0.73418188]),
array([0.73963512]),
array([0.74481696]),
array([0.74974719]),
array([0.7544437]),
array([0.75892272]),
array([0.76319902]),
array([0.76728607]),
array([0.77119614]),
array([0.7749405]),
array([0.77852946]),
array([0.78197248]),
array([0.78527829]),
array([0.78845493]),
array([0.79150981]),
array([0.7944498]),
array([0.79728125]),
array([0.80001006]),
array([0.8026417]),
array([0.80518126]),
array([0.80763348]),
array([0.81000279]),
array([0.8122933]),
array([0.81450888]),
array([0.81665314]),
array([0.81872945]),
array([0.82074098]),
array([0.82269071]),
array([0.82458143]),
array([0.82641577]),
```

#### In [28]:

```
#确定准确率较高值所对应的岭回归系数
fig = plt.figure(figsize=(10,6))
plt. style. use('seaborn-ticks')
plt.xlabel('lam', fontsize=18)
plt.ylabel('loss', fontsize=18)
# x_major_locator = plt.MultipleLocator(1)
\# ax = plt. gca()
# ax. xaxis. set major locator(x major locator)
# plt. xlim(0, 15)
# plt. ylim(0, 40)
# plt.plot(range(0,50), MSE_Random_train, 'r', label='s1_train', marker = "o", markeredgecolor = 'wh
# plt.plot(range(0,50), MSE_Random_text, 'darkred', label='s1_text', marker = "o", markeredgecolor =
# plt.plot(range(0,50), MSE_Batch_train, 'b', label='s2_train', marker = "o", markeredgecolor = 'whi
# plt.plot(range(0,50), MSE_Batch_text, 'mediumblue', label='s2_text', marker = "o", markeredgecolor
#plt.legend()
plt.grid()
#plt.rcParams['font.sans-serif'] = ['SimHei'] # 设置字体,不然中文无法显示
#plt.title("岭回归系数曲线")
# plt. show()
plt.plot(alphas_to_test, avg_train_loss)
```

#### Out[28]:

[<matplotlib.lines.Line2D at 0x1b783a27850>]



## 通过上述图像,确定岭回归系数lam = 0.1

## In [29]:

```
theta = Ridge(train_x, train_y, 0.1) theta
```

## Out[29]:

## In [30]:

```
#岭回归模型下的平均训练误差和平均测试误差
avg_train_loss = avg_loss(Ridge(train_x, train_y, 0.1), train_x, train_y)
avg_text_loss = avg_loss(Ridge(text_x, text_y, 0.1), text_x, text_y)
print("avg_train_loss:", avg_train_loss, ", avg_text_loss:", avg_text_loss)
```

```
avg_train_loss: [0.60844357] , avg_text_loss: [0.6494829]
```