

aula 1 / apresentação

190924

Sumário (TP+P)

Apresentação Estrutura, Programa e Objetivos da UC Metodologia e Avaliação

Revisões CAD (?) Formação de grupos e definição de fase 0 Escolha de projeto(s)

https://forms.office.com/e/fR29HVDxs2

Processo...

An Incomplete Manifesto for Growth

"

3. Process is more important than outcome. When the outcome drives the process we will only ever go to where we've already been. If process drives outcome we may not know where we're going, but we will know we want to be there.

...

Bruce Mau

Aulas

Tipologia(s) TP+P

- . 3h semanais.
- . 15 estudantes (?) / 5 equipas

Tipologia(s) TP+P

- . 3h semanais.
- . 15 estudantes (?) / 5 equipas

As aulas seguirão uma estrutura geral designada por **NOW**:

New / Início ativo da aula com apresentação dos novos desenvolvimentos do projeto, resultantes da semana de trabalho anterior. Estas apresentações devem incluir não só a evolução do projeto, mas também uma descrição geral do trabalho desenvolvido por cada elemento da equipa.

Open / fase mais TP da aula, com apresentação e discussão de elementos teóricos e técnicos relevantes para explorar os conteúdos programáticos. Esta fase poderá incluir casos de estudo para contextualização.

Work / fase mais P da aula, novamente centrada nos estudantes, onde as equipas devem iniciar a preparação do seu trabalho para a semana seguinte, com acompanhamento do docente.

Abordagem

aprendizagem ativa

- . equipas de 3 estudantes
- . projetos (3 fases)
- . trabalho desenvolve-se previamente, para discutir em aula

What is a portfolio in engineering?

"A portfolio in engineering is a visual album that showcases the technology or building projects you've worked on in the past. Its purpose is to exemplify your specialty as an engineer. For example, if you're a software specialist, then your portfolio may include the design and features of a mobile photo-editing application. If you're proficient in computer engineering, then you may demonstrate updates to an operating system. The album often overviews the objectives of the endeavor, the steps you took to reach your goals and the final results.

@indeed.com

Nº semanas aulas	15
Nº semanas do semestre, incluindo avaliações	17
ECTS da UC	6
Nº de horas de aulas TP por semana	3
Nº de horas de aulas PL por semana	0
Nº de horas de T por semana	0
Nº de horas Orientação tutorial semanais	0
Horas de momentos de avaliação (total extra aula)	0
Total horas Aulas teóricas por semestre	45
Total horas Aulas práticas por semestre	0
Total horas Laboratórios por semestre	0
Total Orientação tutorial	0
Horas de esforço semestral	162
HORAS DE CONTATO	45
HORAS DE TRABALHO AUTÓNOMO Como vou planificar a minha UC para respeitar estas horas? Como vou dividir esta carga de esforço pelas semanas?	117
Horas de trabalho semanal	9,529
Horas de trabalho autónomo semanal *	6,882
Horas de trabalho autónomo semana 38,5 *	4,714
Semana total se tudo contínuo	47,647
Semana total com época de exames	38,571
* Referência considerando total ECTS ** Referência considerando limite de horais semanais de 38,5h	

^{**} Referência considerando limite de horais semanais de 38,5h

YOUGET OUT WHAT YOU PUT IN'

Planeamento provisório

Aula	Data (2024/25)	FASE	Conteúdo	Deliverable
1	19-Sep	M0	Apresentação, Estrutura, Programa e Objetivos da Disciplina, Metodologia e Avaliação. Revisões CAD	
2	26-Sep	M0	Primitivas, superfícies. Modelação direta	Ai - apresentações semanais! Início de aula (SUM 10%)
3	03-Oct	M0	M0, Apresentações fase 0	M0_ Apresentação + entrega Projeto fase 0 (20%)
4	10-Oct	M1	Estratégias computacionais em modelação 3D	Ai - apresentações semanais! Início de aula (SUM 10%)
5	17-Oct	M1	Design paramétrico, algorítmico e generativo. Scripting em CAD	Ai - apresentações semanais! Início de aula (SUM 10%)
6	24-Oct	M1	Simulação numérica estrutural	Ai - apresentações semanais! Início de aula (SUM 10%)
7	31-Oct	M1	GD Autodesk	Ai - apresentações semanais! Início de aula (SUM 10%)
8	07-Nov	M1	M1, Apresentações fase 1	M1_ Apresentação + entrega Projeto fase 1 (30%)
9	14-Nov	M2	Fundamentos de otimização	Ai - apresentações semanais! Início de aula (SUM 10%)
10	21-Nov	M2	Otimização estrutural em engenharia	Ai - apresentações semanais! Início de aula (SUM 10%)
11	28-Nov	M2	Otimização topológica	Ai - apresentações semanais! Início de aula (SUM 10%)
12	05-Dec	M2	Otimização em estratégias generativas	Ai - apresentações semanais! Início de aula (SUM 10%)
13	12-Dec	M2	Pós-processamento de soluções	Ai - apresentações semanais! Início de aula (SUM 10%)
14	19-Dec	M2	Balanço da UC; M2, Apresentações Finais (fase 2)	M2_ Apresentação + entrega Projeto fase 2 (40%)

tipo > **contínua** componentes > 2 (teórico-prática e prática)

Esta UC tem duas componentes, TP e P. A abordagem projetual determina que ambas são integradas na aprendizagem ativa e na avaliação dos projetos, onde os conteúdos TP são aplicados na componente P e esta permite a consolidação do conhecimento associado à primeira. Apresenta-se com duas tipologias de avaliação possíveis.

A avaliação contínua é a tipologia de avaliação predefinida da UC. Ver guião para Avaliação Final

M0 – Modelação 3D assistida por computador (equipa); apresentação em aula e discussão; entrega de elementos CAD; criação de plataforma web, incluindo a memória descritiva relativamente à fase M0, e que será ampliada ao longo do semestre. Esta será pública, acessível também aos colegas.

M0 – Modelação 3D assistida por computador (equipa); apresentação em aula e discussão; entrega de elementos CAD; criação de plataforma web, incluindo a memória descritiva relativamente à fase M0, e que será ampliada ao longo do semestre. Esta será pública, acessível também aos colegas.

M1 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

M0 – Modelação 3D assistida por computador (equipa); apresentação em aula e discussão; entrega de elementos CAD; criação de plataforma web, incluindo a memória descritiva relativamente à fase M0, e que será ampliada ao longo do semestre. Esta será pública, acessível também aos colegas.

Fase 1

M1 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

M2 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

M0 – Modelação 3D assistida por computador (equipa); apresentação em aula e discussão; entrega de elementos CAD; criação de plataforma web, incluindo a memória descritiva relativamente à fase M0, e que será ampliada ao longo do semestre. Esta será pública, acessível também aos colegas.

Fase 1

M1 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

M2 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

Ai – apresentações de progresso semanal e discussão; progresso desde a semana anterior; tarefas de cada membro da equipa.

M0 – Modelação 3D assistida por computador (equipa); apresentação em aula e discussão; entrega de elementos CAD; criação de plataforma web, incluindo a memória descritiva relativamente à fase M0, e que será ampliada ao longo do semestre. Esta será pública, acessível também aos colegas.

Fase 1

M1 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

M2 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

Ai – apresentações de progresso semanal e discussão; progresso desde a semana anterior; tarefas de cada membro da equipa.

 $NF = 0,10 Ai + (0,20 M0 + 0,30 M1) \times ia1 + (0,40 M2) \times ia2$

M0 – Modelação 3D assistida por computador (equipa); apresentação em aula e discussão; entrega de elementos CAD; criação de plataforma web, incluindo a memória descritiva relativamente à fase M0, e que será ampliada ao longo do semestre. Esta será pública, acessível também aos colegas.

Fase 1

M1 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

Fase 2

M2 – Estratégias computacionais em modelação 3D (equipa); apresentação em aula e discussão; entrega de elementos CAD/CAE; atualização do espaço web, incluindo a memória descritiva relativa ao momento M1.

Ai – apresentações de progresso semanal e discussão; progresso desde a semana anterior; tarefas de cada membro da equipa.

 $NF = 0,10 Ai + (0,20 M0 + 0,30 M1) \times ia1 + (0,40 M2) \times ia2$

$$i = \sqrt{\frac{A_{\rm e}}{A_{\rm G}}}$$

Fase	0
1	7

M0 – modelação em SolidWorks, incluindo superfícies e modelação direta (engenharia inversa)

levantamento de forma

. primeira versão do **website**, incluindo memória descritiva do projeto

Fase 1

LPO

M1 – estratégias computacionais em CAD 3D (design computacional, descrição e comparação de

procedimentos, abordagens generativas, avaliação de soluções)

. atualização de website

Fase 2

M2 – otimização em engenharia

- . definição de problema de engenharia, otimização topológica, pós-processamento, integração em estratégias generativas
- . versão final de website, incluindo análise global do trabalho desenvolvido ao longo do semestre

Exemplo de projeto (abordagem contínua)

Fase 0

Modelar um avião RC (radio-controlo), começando pelo exterior, recorrendo a superfícies e estratégias de modelação direta. Investir na qualidade da geometria e na conversão em sólido. Estabelecer base para a fase 1.

Fase 1

Criar dependências entre modelação e variáveis de controlo. Estabelecer tabelas de design para variação de geometria. Automatizar geração de elementos estruturais e outras geometrias. Criar algoritmos de geração e abordar estratégias generativas. Comparar com estratégias generativas tipo AGD (Autodesk Generative Design). Simular soluções e avaliar desempenho estrutural.

Estabelecer estratégias de otimização estrutural (dimensional, de forma e paramétrica) em elementos estruturais. Desenvolver soluções ótimas e avaliar desempenho. Estabelecer estratégias consistentes de pós-processamento de soluções de otimização topológica para design de componentes fabricáveis.

Primeira coisa realmente importante... em que ponto estamos?

Tarefas para hoje, que gostaria de discutir

- . Constituição de equipa
- . Possíveis projetos
- . Bases CAD

Tarefas para esta semana

- . Fechar proposta de projeto Fase 0
- . Enviar constituição de grupo e descrição de projeto para jalex@ua.pt
- . Trabalhar na modelação
- . Começar website
- . Preparar "new" para apresentar na próxima semana

