Kegg-Reactome-Biocarta-hallmark Stage IV-Stage I Regulation_Grouping_2 MDE&TMDS TPDE&TMDS TPDS TMDS TPDE MDE MDS&TMDE TPDS&TMDE TMDE MDS Genes detected of pathway [%]

NES

REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPLING_AND_REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPLING_AND_REACTOME_REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPLING_AND_REACTOME_REACTOME_RESPIRATORY_ELECTRON_TRANSPORT_ATP_SYNTHESIS_BY_CHEMIOSMOTIC_COUPLING_AND_REACTOME_REAC

REACTOME_TCA_CYCLE_AND_R

REACTOMEREARING

REACTOME_AMINO_ACID_TRANSPORT_ACROSS
REACTOME_THROW REACTOME_TRANSPORT_ACROSS
REACTOME_THROW REACTOME_AMINO_ACID_TRANSPORT_ACROSS
REACTOME_THROW REACTOME_TH

REACTOME PASSIFIED REACTOME FACILITATIVE NATIONAL REACTOME FACILITATIVE NATIONAL REACTOME PASSIFIED PASSIFIED

REACTOME REACTOME PLATE TO THE REACTOME PLATE TO THE PARTY OF THE PART

REACTOME_POST (516)

REACTOME_INLHEHRANGELYANTOSELITATERDSECTED TO THE TENDER OF THE PROPERTY OF TH

REACTOME_TRANSPORT_OF_INORGANIC_CATIONS_AND REACTOME_ACTIVATION OF TATRE NOR BEACTOME ACTIVATION OF TATRE NOR BEACTOME ACTION OF TATRE NOR BEACTOME ACTION OF TATRE NOR BEACTOME ACTION OF TATRE NOR BEACTOME REGULATION OF TATRESPORTED ACTION OF TATROCTOR OT TATROCTOR OF TATROCTOR

REACTOME_P130G

REACTOME_TGF_BETA_RECEPTOR_SIGNALHNG_IN

REACTOME REMOVE RECEDITION OF MICE OF THE RESERVE OF THE RESERVE OF THE REACTOME. REACTOME. G. BETA. OF THE REACTOME. G. BETA. OF THE REACTOME. G. BETA. OF THE REACTOME.

REACTOME_OXYGEN_DEPENDENT_PROP

REACTOME_NUCLEOTIDE_BINDING_DOMAIN_LEUCINE_RICH_REPEAT

REACTOME_TRANSFERRING
REACTOME_RECEPTOR_LIGAND_BINDING_INITIATES_THERESECTIONS

REACTOME_LATENT_INFECTION_OF_HOME_SAFERS WARE AND REACTOME_LATENT_INFECTION_OF_HOME_SAFERS WARE AND REACTOME_RESENTATION_FOLDING_ASSEMBLY_REACTOME_REGULATION_OF_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_BY_INSULIN_LIKE_GROWTH_FACTOR_IGF_ACTIVITY_FACTOR_IGF_ACTIVITY_FACTOR_IGF_ACTIVITY_FACTOR_IGF_ACTIVITY_FACTOR_IGF_ACTIVITY_FACTOR_IGF_ACTIVITY_FACTOR_IGF_ACTIVITY_FACTOR_IGF_ACTIVITY_FACTOR_IGF_ACTIVITY_FACTOR_I

REACTOME_TRANSPORT_OF_GLUCOSE_AND_OTHER_SUGARS_BILE_SALTS_REACTOME_TAGES TO THE REACTOME.

REACTOME_IMMUNOREGULATORY_RF1PGTQNGREEHWEELF

REACTOME_ORGANIC_CATION_AN

*Threshold: p.val<0.25 & Genes detected of pathway > 10%