STOCHASTIC VOLATILITY: LIKELIHOOD INFERENCE AND COMPARISON WITH ARCH MODELS (1998)

Sangjoon Kim Neil Shephard Siddhartha Chib

Replicado por: Franklin Oliveira

29 de novembro de 2019

Estatística Computacional - Mestrado em Matemática Aplicada - EMAp/FGV

Introdução

· **Motivação:** A variância dos retornos dos ativos tende a mudar com o tempo.

Introdução

- Motivação: A variância dos retornos dos ativos tende a mudar com o tempo.
- · Como modelar esse comportamento?
 - ARCH models¹: a variância condicional é função dos quadrados das observações e variâncias passadas.

$$y_{t} = \beta_{0} + \sum_{j=1}^{p} \beta_{j} y_{t-j} + \varepsilon_{t}$$

$$\varepsilon_{t} = \sigma_{t} z_{t}$$

$$\sigma_{t}^{2} = \alpha_{0} + \sum_{i=1}^{q} \alpha_{i} \varepsilon_{t-i}^{2}$$

¹ Saiba mais em: http://www.cmat.edu.uy/~mordecki/hk/engle.pdf

Introdução

- Motivação: A variância dos retornos dos ativos tende a mudar com o tempo.
- · Como modelar esse comportamento?
 - 1. ARCH models: a variância condicional é função dos quadrados das observações e variâncias passadas.
 - 2. **SV models:** a variância é especificada de forma a seguir um processo estocástico latente.

$$y_t = \beta \exp^{h_t/2} \varepsilon_t$$
, $t \ge 1$ (equação da média) $h_t = \mu + \phi(h_{t-1} - \mu) + \sigma \eta_t$ (mudança de estado)

Onde,

$$\begin{split} h_1 &\sim \mathcal{N}\left(\mu, \frac{\sigma^2}{1 - \phi^2}\right) \\ \varepsilon_t &\sim \mathcal{N}(\mu_\varepsilon, \sigma_\varepsilon^2) \ e \ \eta_t \sim \mathcal{N}(\mu_\eta, \sigma_\eta^2) \end{split}$$

$$y_t = \beta \exp^{h_t/2} \varepsilon_t, \ t \ge 1$$
 (equação da média)
$$h_t = \mu + \phi(h_{t-1} - \mu) + \sigma \eta_t \text{ (mudança de estado)}$$

Onde,

$$\begin{split} h_1 &\sim \mathcal{N}\left(\mu, \frac{\sigma^2}{1 - \phi^2}\right) \\ \varepsilon_t &\sim \mathcal{N}(\mu_\varepsilon, \sigma_\varepsilon^2) \ e \ \eta_t &\sim \mathcal{N}(\mu_\eta, \sigma_\eta^2) \end{split}$$

OBS: Antes de prosseguir, vamos fazer uma pequena modificação na equação da média...

$$\begin{aligned} y_t &= \beta \exp^{h_t/2} \varepsilon_t & \Rightarrow \\ &\Rightarrow y_t^2 = \beta^2 \exp^{h_t} \varepsilon_t^2 & \Rightarrow \\ &\Rightarrow \log y_t^2 = \log \beta^2 + h_t + \log \varepsilon_t^2 \end{aligned}$$

Com isso, o modelo passa a ser totalmente identificado por...

$$\log y_t^2 = \log \beta^2 + h_t + \log \varepsilon_t^2$$
 (equação da média)
 $h_t = \mu + \phi(h_{t-1} - \mu) + \sigma \eta_t$ (mudança de estado)

Onde,

$$\begin{split} h_1 &\sim \mathcal{N}\left(\mu, \frac{\sigma^2}{1 - \phi^2}\right) \\ \varepsilon_t &\sim \mathcal{N}(\mu_\varepsilon, \sigma_\varepsilon^2) \ e \ \eta_t \sim \mathcal{N}(\mu_\eta, \sigma_\eta^2) \end{split}$$

Parâmetros de interesse: $\theta = (\phi, \mu, \sigma_{\eta}^2)$

DEFINIÇÕES E PREMISSAS

· y_t : log-retornos corrigidos pela média.

$$y_t = 100 * \left\{ (\log r_t - \log r_{t-1}) - \frac{1}{n} \sum_{i=1}^n (\log r_i - \log r_{i-1}) \right\}$$

- · h_t : log-volatilidades de y.
- $\beta = \exp(\mu/2)$ pode ser interpretado como uma volatilidade modal instantânea.
- \cdot ϕ : persistência da volatilidade.
- · σ_{η} : volatilidade da log-volatilidade.

DEFINIÇÕES E PREMISSAS

Premissas:

- · h_t segue um processo estacionário, i.e., $|\phi| <$ 1.
- · $\varepsilon_t \sim \mathcal{N}(0,1)$ e $\eta_t \sim \mathcal{N}(0,1)$
- · Por razões de identificação, devemos ter $\beta=1$ ou $\mu=0$. No artigo, foi mostrado que é preferível tomar $\beta=1$.

ALGORITMO BASE - GIBBS SAMPLER

1. Inicializa h_t e $\theta = (\phi, \sigma_{\eta}^2, \mu)$.

valores iniciais: $\phi = 0.95$, $\beta = 1$, $\mu = 0$, $\sigma_{\eta}^2 = 0.02$ e $h_t = 0$, $\forall t$.

- 2. Amostra h_t de $h_t \mid h_{\setminus t}$, y, θ , t = 1, ..., n.
- 3. Amostra de $\sigma_n^2 \mid y. h, \phi, \mu, \beta$.
- 4. Amostra de $\phi \mid h, \mu, \beta, \sigma_n^2$
- 5. Amostra de $\mu \mid h, \ \phi, \ \sigma_{\eta}^2$.
- 6. Repete a partir do passo 2.

Passo 2. Amostrando de $h_t \mid h_{\setminus t}, y, \theta, t = 1, \dots, n$.

$$f(h_t \mid h_{\setminus t}, \theta, y) \propto f(h_t \mid h_{\setminus t}, \theta) f(y_t \mid h_t, \theta), \ t = 1, \dots, n.$$

Para amostrar dessa densidade, podemos usar um algoritmo de aceitação/rejeição:

- 1. Amostre $h_t \sim \mathcal{N}(\mu_t, v^2)$, onde $v^2 = \frac{\sigma_{\eta}^2}{1+\phi^2}$ e $\mu_t = h_t^* + \frac{v^2}{2} \left(y_t^2 \exp\{-h_t^*\} 1 \right)$, com $h_t^* = \mu + \frac{\phi\{(h_{t-1} \mu) + (h_{t+1} \mu)\}}{(1+\phi^2)}$.
- 2. Execute até aceitar h_t com probabilidade f^*/g^* , onde

$$\log f^*(y_t, h_t, \theta) = -\frac{1}{2}h_t - \frac{y_t^2}{2} \{ \exp(-h_t) \}$$

е

$$\log g^*(y_t, h_t, \theta, h_t^*) = -\frac{1}{2}h_t - \frac{y_t^2}{2} \left\{ \exp(-h_t^*)(1 + h_t^*) - h_t \exp(-h_t^*) \right\}$$

Passo 3. Amostrando de $\sigma_{\eta}^2 \mid y.\ h,\ \phi,\ \mu,\ \beta$

Tomando a priori conjugada

$$\sigma_{\eta}^2 \mid \phi, \mu \sim \mathcal{IG}(\sigma_r/2, S_{\sigma}/2)$$

 σ_{η}^2 pode ser amostrado diretamente de

$$\sigma_{\eta}^{2} \mid y, h, \phi, \mu \sim \mathcal{IG} \left\{ \frac{n + \sigma_{r}}{2}, \frac{S_{\sigma} + (h_{1} - \mu)^{2} + \sum_{t=1}^{n-1} [(h_{t+1} - \mu) - \phi(h_{t} - \mu)]^{2}}{2} \right\}$$

No artigo, são tomados os valores $\sigma_r = 5$ e $S_{\sigma} = 0.01 \cdot \sigma_r$.

Passo 4. Amostrando de $\phi \mid h, \ \mu, \ \beta, \ \sigma_{\eta}^2$

· Priori:

Tome $\phi^* = \frac{\phi+1}{2}$, onde $\phi^* \sim \mathcal{B}eta(\phi^{(1)}, \phi^{(2)})$. No artigo, temos $\phi^{(1)} = 20$ e $\phi^{(2)} = 1.5$.

· Condicional:

$$\pi(\phi)f(h \mid \mu, \phi, \sigma_{\eta}^2),$$

Onde

$$\log f(h \mid \mu, \phi, \sigma_{\eta}^{2}) \propto -\frac{(h_{1} - \mu)^{2}(1 - \phi^{2})}{2\sigma_{\eta}^{2}} + \frac{1}{2}\log(1 - \phi^{2})$$
$$-\frac{\sum_{t=1}^{n-1} \{(h_{t+1} - \mu) - \phi(h_{t} - \mu)\}^{2}}{2\sigma_{\eta}^{2}}$$

Passo 4. Amostrando de $\phi \mid h, \ \mu, \ \beta, \ \sigma_{\eta}^2$

Para amostrar dessa condicional, tome os seguintes passos:

1. Dado o valor atual $\phi^{(i-1)}$, amostre $\phi^* \sim \mathcal{N}(\hat{\phi}, V_{\phi})$, onde

$$V_{\phi} = \sigma_{\eta}^{2} \left\{ \sum_{t=1}^{n-1} (h_{t} - \mu)^{2} \right\}^{-1}$$

е

$$\hat{\phi} = \sum_{t=1}^{n-1} (h_{t+1} - \mu)(h_t - \mu) / \sum_{t=1}^{n-1} (h_t - \mu)^2$$

2. Defina $\phi^{(i)} = \phi^*$ com probabilidade $\exp \left\{ g(\phi^*) - g(\phi^{i-1}) \right\}$, onde

$$g(\phi) = \log \pi(\phi) - \frac{(h_1 - \mu)^2 (1 - \phi^2)}{2\sigma_\eta^2} + \frac{1}{2} \log(1 - \phi^2)$$

Caso contrário, tome $\phi^{(i)} = \phi^{(i-1)}$.

Passo 5. Amostrando de $\mu \mid h, \ \phi, \ \sigma_{\eta}^2$

- · Priori (difusa): $\mathcal{N}(0,10)$
- · μ pode ser amostrado diretamente da **condicional**:

$$\mu \mid h, \phi, \sigma_{\eta}^2 \sim \mathcal{N}(\hat{\mu}, \sigma_{\mu}^2),$$

onde

$$\hat{\mu} = \sigma_{\mu}^{2} \left\{ \frac{(1 - \phi^{2})}{\sigma_{\eta}^{2}} h_{1} + \frac{(1 - \phi)}{\sigma_{\eta}^{2}} \sum_{t=1}^{n-1} (h_{t+1} - \phi h_{t}) \right\}$$

е

$$\sigma_{\mu}^{2} = \sigma_{\eta}^{2} \left\{ (n-1)(1-\phi)^{2} + (1-\phi^{2}) \right\}^{-1}$$

OBS: Também podemos atualizar $\beta = \exp{\{\mu/2\}}$.

Cadeia de ϕ : ²

Original

Replicação

²Original: 1000 iterações atualizando apenas *h*, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão de iterações. Replicação: 1000 iterações atualizando apenas *h*; 5 mil atualizando *h* e os parâmetros; por fim, mais 120 mil iterações

Distribuição de ϕ : ³

³Original: 1000 iterações atualizando apenas *h*, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão de iterações. Replicação: 1000 iterações atualizando apenas *h*; 5 mil atualizando *h* e os parâmetros; por fim, mais 120 mil iterações

Autocorrelação de ϕ : 4

⁴Original: 1000 iterações atualizando apenas *h*, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão de iterações. Replicação: 1000 iterações atualizando apenas *h*; 5 mil atualizando *h* e os parâmetros; por fim, mais 120 mil iterações

Cadeia de σ_{η} : ⁵

Original

Replicação

⁵Original: 1000 iterações atualizando apenas *h*, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão

de iterações. Replicação: 1000 iterações atualizando apenas h; 5 mil atualizando h e os parâmetros; por fim, mais 120 mil iterações

Distribuição de σ_{η} : 6

Original

Replicação

⁶Original: 1000 iterações atualizando apenas *h*, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão

de iterações. **Replicação:** 1000 iterações atualizando apenas *h*; 5 mil atualizando *h* e os parâmetros; por fim, mais 120 mil iterações

Autocorrelação de σ_{η} : ⁷

Original: 1000 iterações atualizando apenas h, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão de iterações. Replicação: 1000 iterações atualizando apenas h; 5 mil atualizando h e os parâmetros; por fim, mais 120 mil iterações

Cadeia de β : ⁸

ginal Replicação

de iterações. Replicação: 1000 iterações atualizando apenas h; 5 mil atualizando h e os parâmetros; por fim, mais 120 mil iterações

⁸ Original: 1000 iterações atualizando apenas *h*, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão

Distribuição de β : 9

⁹ Original: 1000 iterações atualizando apenas h, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão de iterações. Replicação: 1000 iterações atualizando apenas h; 5 mil atualizando h e os parâmetros; por fim, mais 120 mil iterações

Autocorrelação de β : 10

¹⁰ Original: 1000 iterações atualizando apenas h, 50 mil iterações atualizando as log-volatilidades e os parâmetros; por fim, mais 1 milhão de iterações. Replicação: 1000 iterações atualizando apenas h; 5 mil atualizando h e os parâmetros; por fim, mais 120 mil iterações

	Original ¹¹				
	Mean	MC S.E.	Inefficiency		
$\phi \mid y$	0.97762	0.00013754	163.55		
$\sigma_{\eta} \mid y$	0.15820	0.00063273	386.80		
$\beta \mid y$	0.64884	0.00036464	12.764		
		Replicação ¹²			
	Mean	Replicação ¹² MC S.E.	Inefficiency		
	Mean 0.888850		Inefficiency		
${\left.\begin{array}{c c}\phi\mid y\\\sigma_{\eta}\mid y\end{array}\right.}$		MC S.E.	<u> </u>		

Tabela 1, p. 369

 $^{^{11}\!\}mathrm{As}$ métricas foram calculadas para os retornos diários da taxa de câmbio: Sterling / U.S. Dolar.

^{12&}lt;sub>Ac métricos foram calculadas para os los reternos do índico lbevesta</sub>

- · A distribuição do termo $log \varepsilon_t^2$ não é bem aproximada por uma normal. A ideia desse modelo é melhor aproximá-la por uma mistura de K=7 gaussianas.
- · Representação:

$$y_t^* = h_t + z_t$$
, onde $y_t^* = \log(y_t^2 + c)$ 13

е

$$f(z_t) = \sum_{i=1}^{K} q_i f_N(z_t \mid mi - 1.2704, v_i^2) \equiv$$

$$z_t \mid s_t = i \sim \mathcal{N}(m_i - 1.2704, v_i^2), \ P(s_t = i) = q_i$$

¹³ no artigo, é tomado c=0.001

• **Ganho:** é possível amostrar eficientemente de $h \mid y^*, s, \phi, \sigma_{\eta}, \mu$ (série temporal Gaussiana que pode ser colocada na forma espaço-estado associada ao filtro de Kalman)

ω	$P(\omega=i)$	m _i	σ_i^2
1	0.00730	-10.12999	5.79596
2	0.10556	-3.97281	2.61369
3	0.00002	-8.56686	5.17950
4	0.04395	2.77786	0.16735
5	0.34001	0.61942	0.64009
6	0.24566	1.79518	0.34023
7	0.25750	-1.08819	1.26261

Mistura de Gaussianas para aproximar $\log\chi_1^2$

 $Z_t \sim Gaussian Mixture$

 $\log\chi_1^2$

1. Inicializa s, ϕ , σ_n^2 e μ .

valores iniciais:
$$\phi = 0.95$$
, $\sigma_{\eta}^2 = 0.02$, $\mu = 0$ e $s \sim Cat((1, ..., 7), prob. = (q_1, ..., q_7))$

2. Amostra h de $h \mid y^*, s, \phi, \sigma^2_{\eta}, \mu$.

Aplicando o Gaussian Simulation Signal Smoother.

- 3. Amostra s de s $\mid y^*, h$.
- 4. Atualiza ϕ , σ_{η}^2 e μ da mesma forma do algoritmo base.
- 5. Executa novamente a partir do passo 2.

Passo 3. Amostrando de $s \mid y^*, h$

Amostramos cada \mathbf{s}_t independentemente usando a função massa de probabilidade

$$P(s_t = i \mid y_t^*, h_t) \propto q_i \cdot f_N(y_t^* \mid h_t + m_i - 1.2704, v_i^2), \ i \ge K.$$

Com isso, temos tudo o que precisamos para executar o algoritmo.

Cadeia de ϕ : ¹⁴

Replicação

¹⁴Original: 750 mil iterações. Replicação: 230 mil iterações, com 30 mil de *burn-in*.

Distribuição de ϕ : ¹⁵

¹⁵Original: 750 mil iterações. Replicação: 230 mil iterações, com 30 mil de *burn-in*.

Autocorrelação ϕ : ¹⁶

¹⁶Original: 750 mil iterações. Replicação: 230 mil iterações, com 30 mil de *burn-in*.

Cadeia de σ_{η} : ¹⁷

Replicação

¹⁷Original: 750 mil iterações. Replicação: 230 mil iterações, com 30 mil de *burn-in*.

Distribuição de σ_{η} : ¹⁸

Replicação

¹⁸Original: 750 mil iterações. **Replicação:** 230 mil iterações, com 30 mil de *burn-in*.

Autocorrelação σ_n : ¹⁹

¹⁹ **Original:** 750 mil iterações. **Replicação:** 230 mil iterações, com 30 mil de *burn-in*.

Cadeia de β : ²⁰

²⁰Original: 750 mil iterações. Replicação: 230 mil iterações, com 30 mil de *burn-in*.

Distribuição de β : ²¹

²¹Original: 750 mil iterações. Replicação: 230 mil iterações, com 30 mil de *burn-in*.

Autocorrelação de β : 22

²²Original: 750 mil iterações. Replicação: 230 mil iterações, com 30 mil de *burn-in*.

	Original ²³				
	Mean	MC S.E.	Inefficiency		
$\phi \mid y$	0.977780	6.7031e-5	9.9396		
$\sigma_{\eta} \mid y$	0.15832	0.00025965	16.160		
$\beta \mid y$	0.64767	0.00023753	1.4072		
	Replicação ²⁴				
		Replicação ²⁴			
	Mean	Replicação ²⁴ MC S.E.	Inefficiency		
φ <i>y</i>	Mean 0.9807277		Inefficiency 51.519		
$\frac{}{\phi \mid y} \\ \sigma_{\eta} \mid y$	1	MC S.E.	<u> </u>		

Tabela 6, p. 375

²³As métricas foram calculadas para os retornos diários da taxa de câmbio: *Sterling / U.S. Dolar.*

REFERÊNCIAS

- 1. CARTER, C. K. and KOHN, R. (1994). "On Gibbs sampling for state space models", *Biometrika*, 81, 541-553.
- 2. JACQUIER, E., POLSON, N.G., and ROSSI, P.E. (1994). "Bayesian analysis of stochastic volatility models (with discussion)". *Journal of Business and Economic Statistics*, 12, 371-417.
- 3. SCHOTMAN, P.C. and VAN DIJK, H.K. (1991), "A Bayesian analysis of the unit root in real exchange rates, *Journal of Econometrics*, 8, S135-S152.
- 4. SHEPHARD, N. (1993), "Fitting non-linear time series models, with applications to stochastic variance models", *Journal of Applied Econometrics*.

