6. Funciones compuestas e implícitas

- 01) Dadas f y g, analice en cada caso si quedan definidas $f \circ g$ y $g \circ f$. Además, para cada función generada mediante la composición, determine su dominio natural y obtenga su matriz jacobiana en algún punto interior al mismo.
 - a) $\bar{f}(x,y) = (xy, x-y)$, $\bar{g}(u,v) = (u^2, v-u)$.
 - b) $f(x,y) = x\sqrt{y}$, $\bar{g}(u) = (u, 2-u)$.
 - c) $\bar{f}(x,y) = (x-y, \sqrt{x+y}), \ \bar{g}(t) = (2-t, t-3).$
 - d) $\bar{f}(x,y) = (xy^2, y-x, x)$, $\bar{g}(u,v,w) = (u-v, w\sqrt{1-u})$.
- 02) Dada $h: D \subset \Re^2 \to \Re / h(x, y) = x \ln(1 xy)$ siendo D su dominio natural, defina dos funciones cuya composición genere h.
- 03) Si $z = 2uv 2\sqrt{v u}$ con $\begin{cases} u = x y^2 \\ v = x + 2xy 1 \end{cases}$, resulta z = h(x, y).
 - a) Reconozca las funciones f y g que generan h como $h = f \circ g$.
 - b) Calcule la derivada direccional de h en (2,1), en la dirección que va hacia el (5,5).
 - c) Sea n_0 la recta normal a la gráfica de h en $(2,1,z_0)$, exprese n_0 como la intersección de dos superficies.
 - d) Analice si la recta n_0 mencionada en "c)" tiene algún punto en común con el eje z.
- 04) Dada $w = u^3 xv^2$ con $u = x\sqrt{y-x} \wedge v = 2x + y^2$, resulta w = f(x,y). Aplicando la regla de derivación de funciones compuestas (sin realizar la composición), calcule $f'_x(0,1)$.
- 05) Dadas f(u,v) = |u-1|-v, $g(x,y) = (1+x^2,2y-1)$, demuestre que $h = f \circ g$ es derivable en (0,0). ¿Se puede aplicar la regla de la cadena?
- 06) Sea $z = f\left(\frac{x^2 y^2}{x^2 + y^2}\right)$ con f differenciable, calcule $x\frac{\partial z}{\partial x} + y\frac{\partial z}{\partial y}$ para todo $(x, y) \neq (0, 0)$.
- 07) Dada h(x, y) = f(2x/y) f(y/x) con $f \in C^1$, verifique que $x h'_x + y h'_y = 0$ para todo punto (x, y) tal que $xy \neq 0$.
- 08) Sean $f(x,y) = x^2 + y^2 + 1$ y $\overline{g}(x,y) = (x+y,ay)$, determine el valor de a para que $h = f \circ \overline{g}$ en (1,1) tenga máximo crecimiento en la dirección del vector $\overline{v} = (5,7)$.
- 09) La temperatura en cada punto (x, y) de una lámina metálica plana es $T = 3x/(x^2 + y^2)$.
 - a) Halle la línea de nivel (isoterma) que pasa por el punto $\overline{A} = (2, -1)$.
 - b) Halle la dirección de máximo crecimiento de la temperatura en $\overline{A} = (2,-1)$.
 - c) Halle el coeficiente de variación de temperatura, $f'(\overline{A}, \overline{r})$ con $\overline{A} = (2, -1)$, en la dirección de la bisectriz del 1° cuadrante con componente positiva según x.
 - d) Halle el coeficiente de variación de temperatura a lo largo de la curva C de ecuación $\overline{X} = (2\operatorname{sen}(t), \cos(t))$ con $t \in [0, 2\pi]$. Esto es dT/dt con $T = f(\overline{X})$ y $\overline{X} \in C$. (*)
 - e) Halle la cota de error relativo porcentual en el cálculo de T si se midieron x = 2 e y = -1 con cotas de errores relativos de 1% y 2% respectivamente.

Observe que esta derivada, para funciones diferenciables, coincide con $f'(\overline{X}, \check{r})$ para $\overline{X} \in C$ y \check{r} versor tangente a la curva orientado según lo impone la parametrización de la misma.

- 10) La ecuación $xy e^{z-x} = \ln(z)$ define implícitamente z = f(x, y), halle una expresión lineal que permita aproximar los valores de f en un entorno del punto (1,1).
- 11) La ecuación $z^3 + 2xz + yz x = 0$ define z = f(x, y) en un entorno del punto (1,-2).
 - a) Determine $\nabla f(1,-2)$.
 - b) Halle ecuaciones del plano tangente y la recta normal a la gráfica de f en $(1,-2,z_0)$.
 - c) Calcule las derivadas direccionales de f en (1,-2), en las direcciones que forman ángulos de $\pi/3$ y de $-\pi/3$ medidos en sentido trigonométrico respecto de x^+ .
- 12) Halle los puntos del hiperboloide de una hoja de ecuación $2x^2 2y^2 + z^2 = 1$ donde el plano tangente es paralelo al plano de ecuación z = x y.
- 13) Dada $f(x, y, z) = 8x^2 2xy$, calcule la derivada de f en (3,1,2), en la dirección a la normal "interior" a $x^2+y^2+z^2=14$ en dicho punto.
- 14) Dada $f: \Re^2 {\overline{0}} \to \Re$ / $f(x,y) = \ln(x^2 + y^2)$, calcule la derivada direccional de f en el punto (x_0, y_0) de su dominio natural, en la dirección normal exterior a la línea de nivel de f que pasa por dicho punto.
- 15) Sea \overline{A} un punto de una superficie de nivel del campo escalar f y π_0 el plano tangente a dicha superficie en \overline{A} . Demuestre que la derivada direccional de f en \overline{A} es siempre nula si se la calcula en la dirección que va desde \overline{A} hacia cualquier punto $\overline{X} \in \pi_0$.
- 16) Siendo C la curva intersección de las superficies: $x^2 y^2 = 12$ y $z = x + y^2$, analice si la recta tangente a C en $(4,2,z_0)$ corta a la superficie cilíndrica de ecuación $y = x^2$. (#)
- 17) Dada $z = u + v e^{u v}$ con $(u, v) = (f(x, y), y^2)$ resulta z = h(x, y). Halle las direcciones \breve{r} tales que $h'((2,1), \breve{r}) = 0$, si la función f queda definida implícitamente mediante la ecuación $2y ux \ln(u) = 0$.
- 18) Halle la ecuación cartesiana del plano normal a la curva C en $\overline{A} = (2,1,-4)$ si se sabe que los puntos de C pertenecen a la superficie de ecuación z = xy 3x, y que la proyección de C sobre el plano xy es la parábola definida por $y = x^2 3$ con z = 0.
- 19) Considere $h = f \circ \overline{g}$ con $\overline{g}(x) = (e^x, e^{x^2})$ y f(u, v) definida por $y 1 + \ln(yuv) = 0$. Demuestre que y = h(x) con h(0) = 1 satisface la ecuación (1 + y)y' + (1 + 2x)y = 0.
- 20) Verifique que z = f(x, y) definida implícitamente por $x + yz e^z = 0$ satisface la ecuación que $zz'_x z'_y = 0$.
- 21) Calcule la derivada direccional máxima de $h = f \circ \overline{g}$ en el punto (1,1) cuando f(u,v) queda definida por $z u^2 + v^2 + \ln(v + z) = 0$, siendo $\overline{g}(x,y) = (xy^2, y x^2)$.

^(@) Hacia afuera de la región acotada que la línea encierra.

^(#) Nota: Si $F, G \in C^1$ en un entorno de $\overline{A} \in \mathfrak{R}^3$, $F(\overline{A}) = 0$, $G(\overline{A}) = 0$ y el vector $\overline{d} = \nabla F(\overline{A}) \wedge \nabla G(\overline{A}) \neq \overline{0}$, la intersección de las superficies dadas implícitamente por F(x, y, z) = 0 y G(x, y, z) = 0 define una curva regular en un entorno de \overline{A} cuya recta tangente en este punto está dirigida por \overline{d} .

- 22) Dada $w = u^2 v + 3v^2 \operatorname{con} \begin{cases} u = x + y^2 \\ v = g(x, y) \end{cases}$, resulta w = h(x, y). Calcule approximadamente h(2.98, 2.01) sabiendo que g queda definida por $xv + \ln(v + y 2) 3 = 0$.
- 23) La ecuación $uy + x + e^{2u+y+x-5} 4 = 0$ define implícitamente u = f(x, y), sabiendo que los puntos (x, y) pertenecen a la curva de ecuación $\overline{X} = (t^2 3, 2 + \operatorname{sen}(t 2))$ resulta que u = h(t); verifique que h es decreciente en $t_0 = 2$.
- 24) Sea $f \in C^1$ con $\nabla f = (1,-1)$ constante, halle g derivable tal que h(x) = f(x g(x), g(x)) sea constante; suponga que la gráfica de g pasa por (3,1).
- 25) Halle f(u) tal que $y = x f(x^2 1)$ sea solución de la ecuación diferencial $x y' y = 2x^3$.

Cuestionario

- a) Indique condiciones para que f(x, y) = 0 defina una curva plana que pasa por \overline{A} , ¿puede asegurar que la curva es regular en dicho punto?.
- b) Sea $\nabla \varphi$ continuo en un entorno de \overline{A} y no nulo en \overline{A} ; demuestre que $\nabla \varphi(\overline{A})$ es normal al conjunto de nivel de φ que pasa por \overline{A} , y está orientado localmente hacia los conjuntos de nivel creciente.
- c) Sea S una superficie regular en \overline{A} y π_o su plano tangente en \overline{A} . Demuestre que π_o contiene a la recta tangente en \overline{A} a cualquier curva regular $C \subset S$ que pase por dicho punto.
- d) Proponga dos funciones discontinuas (no son continuas en todo punto) cuya composición genere una función continua y derivable en todo punto.