A Book of Abstract Algebra (2nd Edition)

Chapter 16, Problem 7EN

Bookmark

Show all steps: (

ON

Problem

Let *G* be a finite group, and *K* a *p*-Sylow subgroup of *G*. Let *X* be the set of all the conjugates of *K*. See Exercise M2. If C_1 , $C_2 \in X$, let $C_1 \sim C_2$ iff $C_1 = aC_2a^{-l}$ for some $\alpha \in K$

Use parts 5 and 6 to prove that (G: K) is *not* a multiple of p.

Step-by-step solution

Step 1 of 3

Assume that G is a finite group and K a p-Sylow subgroup of G. Consider the set X as the set of all the conjugates of K. Define an equivalence relation as:

If $C_1, C_2 \in X$, let $C_1 \approx C_2$ if and only if $C_1 = aC_2a^{-1}$ for some $a \in K$.

Objective is to prove that (G:K) is not a multiple of p, where N=N(K).

Comment

Step 2 of 3

The order of quotient group G/K can be obtained as:

$$(G:K) = \left| \frac{G}{K} \right|$$
$$= \frac{|G|}{|K|}$$
$$= \frac{|G|}{|N|} \cdot \frac{|N|}{|K|}$$

The third step is so obtained because G/N and N/K both the groups are defined.

From the previous result, one knows that (G:N) and (N:K) both are not a multiple of p. That means, (G:K) is a product of numbers not divisible by p. Thus, (G:K) cannot be divisible by

Step 3 of 3	Comment		
		Sten 3 of 3	
		Step 3 of 3	
Hence, $(G:K)$ is not a multiple of p .	Hence, $(G:K)$ is not	a multiple of p.	