Titanic Dataset - Exploratory Data Analysis (EDA) Report

1. Introduction

The purpose of this Exploratory Data Analysis (EDA) is to understand the Titanic dataset's structure, detect patterns, find anomalies, and extract useful insights.

We used **Python**, along with **Pandas**, **Matplotlib**, and **Seaborn** for data exploration and visualization.

2. Dataset Overview

• **Dataset:** Titanic - Machine Learning from Disaster

• Source: Kaggle Titanic Dataset

• **Rows:** 891

• Columns: 12

• Target Variable: Survived (0 = No, 1 = Yes)

3. Data Information

• Used .info(), .describe(), .isnull() .sum() to inspect data.

Key observations:

- Columns Age, Cabin, and Embarked have missing values.
- Survived, Pclass, Sex, Age, SibSp, Parch, Fare, Embarked are important for analysis.
- Name, Ticket, Cabin are textual and may need preprocessing if used later.

4. Univariate Analysis (Single Column)

4.1 Age Distribution

python

Copyedit

df['Age'].hist(bins=30)

Observation:

- Most passengers are between 20-40 years old.
- Age distribution is right-skewed.

• Some missing values.

4.2 Survival Count

python

CopyEdit

sns.countplot(x='Survived', data=df)

Observation:

• More passengers did not survive than those who survived.

4.3 Passenger Class Distribution

python

CopyEdit

sns.countplot(x='Pclass', data=df)

Observation:

• 3rd Class passengers are the majority.

5. Bivariate Analysis (Two Columns)

5.1 Survival by Gender

python

CopyEdit

sns.countplot(x='Survived', hue='Sex', data=df)

Observation:

• Females had a higher survival rate compared to males.

5.2 Survival by Passenger Class

python

CopyEdit

sns.countplot(x='Survived', hue='Pclass', data=df)

Observation:

• 1st Class passengers had higher survival rates.

5.3 Boxplot of Age vs Pclass

python

CopyEdit

sns.boxplot(x='Pclass', y='Age', data=df)

Observation:

• 1st class passengers were older on average than 3rd class passengers.

6. Multivariate Analysis (More than Two Columns)

6.1 Correlation Heatmap

python

CopyEdit

```
numeric_df = df.select_dtypes(include=['int64', 'float64'])
```

sns.heatmap(numeric df.corr(), annot=True, cmap='coolwarm')

Observation:

- Fare and Pclass are negatively correlated.
- Survival is moderately correlated with Fare and Pclass.

6.2 Pairplot

python

CopyEdit

sns.pairplot(df[['Survived', 'Age', 'Fare', 'Pclass']])

Observation:

- Higher fare passengers had better survival rates.
- Pclass and Fare are visibly related.

7. Key Findings and Summary

• Females and 1st class passengers had a much higher chance of survival.

- Passengers paying higher fares (1st class) had better survival rates.
- Age has a slight impact; young children and young adults survived better.
- There are missing values in Age, Cabin, and Embarked to be handled.
- Correlation between features is mostly low except between Pclass and Fare.