Problem formulation and contributions General setting for direct influence inference methods Results

Robust reconstruction of sparse network dynamics

November 14, 2014

- Problem formulation and contributions
- General setting for direct influence inference methods
- Results

Problem formulation and contributions

- 2 General setting for direct influence inference methods
- Results

Problem formulation and contributions

- Problem: Direct causal inference using noisy transient time series data
- Contributions:
 - A method to reconstruct dynamical system from transient time series that has the following that guarantee sparsity, robust to noise.
 - Analytical bounds on constraints of the I₁ min formulation, make use of standard solvers.

- Problem formulation and contributions
- 2 General setting for direct influence inference methods
- Results

Summary of three direct influence inference methods

• Feizi et. al. (Nature 1):

$$S(I+G)=G\tag{1}$$

S: direct influence

G: total influence, observable/computable

• Barabasi (Nature 2): $dx_i/dt = f(x_1,...,x_N)$, consider at local of equilibrium, compute $(S = \partial x_i/\partial x_j)$?

$$SG = G - I + \mathcal{D}(SG) \tag{2}$$

Sontag:

$$dx/dt = f(x, p), (3)$$

$$P = SR \tag{4}$$

$$R_{ij}(t) \approx x_i(t, p_j + \Delta p_j) - x_i(t, p_j)$$

 $P_{ij}(t) \approx (R_{ij}(t + \Delta t) - R_{ij}(t))/\Delta t$

Relaxation

$$S = \arg\min_{S} ||S||_{I_1} \text{ s.t } ||SB - C||_F \le \varepsilon$$
 (5)

- Feizi et. al (nature 1): B = (I + G), C = G
- Barabasi (nature 2): B = C = G for off diagonal elements
- Sontag: B = R, C = P
- 1. Can solution of (5) solve (2-4)?
- 2. Estimate ε when known noise bound of the perturbation/quantization error on B, C?

Problem formulation and contributions

- 2 General setting for direct influence inference methods
- Results

Relaxation - deconvolution

$$S^{0}(I+G^{0}) = G^{0} (6)$$

ullet Noise, quantization error, limit data size: $G=G+\Delta G o \Delta S$

$$(S^0 + \Delta S)(G^0 + \Delta G + I) = G \tag{7}$$

$$\Rightarrow S^0(G+I)-G = -\Delta SG - \Delta S \tag{8}$$

• In general $S^0(G+I)-G\neq 0$

$$\min |S|_{l_1} s.t. ||S(G+I) - G||_F \le \varepsilon \tag{9}$$

or equivalently

$$\min_{\boldsymbol{s}_i} ||\boldsymbol{s}_i||_1 \text{ s.t } ||(G+I)^T \boldsymbol{s}_i - \boldsymbol{g}_i||_2 \le \varepsilon$$
 (10)

Constraint bounds

Representation using rows

$$\varepsilon_{i} = (||\Delta G \mathbf{s}_{i}^{0}||_{2} + ||\mathbf{g}_{i} - \mathbf{g}_{i}^{0}||_{2})^{2} \leq 2(||(\Delta G)_{i}||_{2}^{2} + (||\Delta G||_{F} \frac{1}{\sqrt{1 - \delta_{K}}}||\mathbf{g}_{i}^{0}||_{2})^{2})$$
(11)

- Representation using matrices
 - **1** Let γ be the largest eigenvalue of ΔG

$$||\Delta SG + \Delta S||_F \le \varepsilon_1 = (1 + ||G||_F)\gamma$$
 (12)

② If
$$1-||G||_F-||\Delta G||_F>0$$
 and $1-||G||_F>0$

$$||\Delta SG + \Delta S||_2 \le \varepsilon_2 = (1 + ||G||_F) \frac{||\Delta G||_F}{(1 - ||G||_F - ||\Delta G||_F)(1 - ||G||_F)}$$
(13)

Robustness of the l_1 — min method

Theorem

The error of the l_1 - min approach is bounded by

$$||S_{l_1} - S^0||_F^2 \le C_1 \mathscr{E} \tag{14}$$

where $\mathscr E$ is an upper bound of the total perturbation estimated by any of (11),(12),(13)

Compare l_1 — min using different bounds and network deconvolution

Figure: Reconstruction error

Compare l_1 — min using different bounds and network deconvolution

Compare l_1 — min using different bounds and network deconvolution

• Error rate: $\frac{||\hat{S}-S^0||_F}{||S^0||_F}$ where \hat{S} is computed using different methods.

Method	ε	Mean	Var
$I_1 - \min$	$\varepsilon_0 = (G+I)^T \boldsymbol{s}_i^0 - \boldsymbol{g}_i _2$	0.111	1.62×10^{-4}
I_1 — min	$arepsilon = arepsilon_1(Eq.\ 12)$	0.135	0.002
$I_1 - \min$	$arepsilon=arepsilon_2$ (Eq. 13)	0.73	0.97
Network	deconvolution	0.203	0.016

Table: Performance comparision

Compare l_1 — min using different bounds and Network deconvolution

Figure: Reconstruction error trends linearly with arepsilon

- ullet $rac{arepsilon}{arepsilon_0}>1$: the reconstruction error trends linearly with arepsilon.
- $\frac{\varepsilon}{\varepsilon_0}$ < 1, as it decreases toward 0, the reconstruction error increases. When it approaches 0, the model is overfitted.

Effect of training data size to I_1 — min problem

	$arepsilon_0$	$2\varepsilon_0$	$0.5arepsilon_0$	$0.1arepsilon_0$
50	2.10	2.11	2.24	2.48
60	1.71	1.78	1.89	2.15
70	1.46	1.59	1.65	2.00
80	1.21	1.42	1.43	1.86
90	0.89	1.21	1.11	1.54
100	0.42	0.96	0.64	1.36

Table: The dependence of accuracy $||S-S^0||_{\mathcal{F}}$ on training data length

- The average of the error $||S S^0||_F$ of the NDM is 1.55
- Do not need full total influence matrix G to get a good approximation of the network.
- Example: $\varepsilon = \varepsilon_0$, we only need 70% of the total influence matrix G to get an equivalent accuracy with the NDM.

Dynamical network: Kuramoto model on scale free network

$$\dot{x}_i(t) = w_i + \sum_j a_{ij} \sin(x_j - x_i), i = 1..n$$
 (15)

$$\dot{x}_i(t) = f_i(\mathbf{x}, \mathbf{p}_i), i = 1..n \tag{16}$$

Corollary

$$(\Delta G)_{ij}(t) = (e_{ij}^{(1)}(t) - e_{ij}^{(2)}(t))_{n \times n}$$
(17)

$$(\Delta P)_{ij}(t) = (e_{ij}^{(1)}(t) - e_{ij}^{(2)}(t))_{n \times n}/\Delta t$$
 (18)

where $e_{ij}^{(1)}(t), e_{ij}^{(2)}(t)$ are error incurred when measuring $x_i^0(t, p_j), x_i^0(t, p_j + \Delta p_j)$ respectively.

$$P = SR \tag{19}$$

Problems to solve

- Robust analysis for general setting
- Robustness with respect to x_i in general case when G is computed from x_i .
- Kuramoto model:
 - Computing $\frac{\partial f_i}{\partial x_i}$ is imprecise, most of the case equal to 0.
 - Evaluate the performance: compare $S_{l_1}(t), S_{decolvo}(t)$ with $S^0(t)$?