Molecular Polarisability. Ellipsoids of Polarisability for Certain Fundamental Heterocycles.

By (Mrs.) C. G. Le Fèvre, R. J. W. Le Fèvre, B. Purnachandra Rao, and M. R. SMITH.

From the depolarisation factors for light scattered by solutions of pyridine, quinoline, isoquinoline, furan, thiophen, and pyrrole in carbon tetrachloride, together with electric double refraction and other measurements on the same systems, the molecular polarisability ellipsoids for these six solutes are specified. With the 5-ring structures a positive exaltation in polarisability is indicated only in the 2:5 (or 3:4) directions. Practical new data for pyridine, quinoline, and isoquinoline are supplied, but no essential alteration of earlier conclusions is necessitated.

THE polarisability ellipsoids for pyridine, quinoline, and isoquinoline published by Le Fèvre and Le Fèvre 1 were derived by making assumptions concerning the "anisotropy" terms 2 incorporated in their respective molar Kerr constants. For pyridine and quinoline, light-scattering observations on the vapours were used to calculate 01, while for isoquinoline (for which there were no such data) an approximation drawn from molecular dimensions was used. It has since been demonstrated 3 that with molar Kerr constants co (mK₂) measured at infinite dilution in carbon tetrachloride neither procedure is correct: the light scattering should be studied in the same solvent as that in which $_{\infty}(_{m}K_{2})$ is determined. This has now been done, with results as given below. Additionally, furan, thiophen, and pyrrole are now examined for the first time.

- Le Fèvre and Le Fèvre, J., 1955, 2750.
 Idem, Rev. Pure Appl. Chem., 1955, 5, 261.
 Le Fèvre and Purnachandra Rao, J., 1957, 3644.

Materials were purified as in refs. 1 and 3—6. Apparatus and methods have been described before (e.g., refs. 2, 7, 8). Experimental observations are listed in Tables 1—3, and lead to the information in Table 4. The symbols follow the definitions given in refs. 1—3, and 7—9.

Table 1. Electric double refractions of solutions in carbon tetrachloride * at 25°.

		Solute:	Furan			
$10^5 w_2$	658	2073	2115	2261	2398	3566
$10^7 \Delta B$	0.004	0.016_{5}	0.017	0.018	0.020	0.029
	whence	$10^7 \Delta B = 0.9$	$778w_2 + 1.2$	$21_5w_2^2$		
		Solute: The	hiophen			
$10^5 w_2$	2141	4708	4821	6517	7566	8657
$10^7 \Delta B$	0.026	0.056	0.057	0.070	0.082	0.102
	whence	$10^7 \Delta B = 1$	$16_7w_2-0.8$	$88_5w_2^2$		
		Solute: I	yrrole			
$10^5 w_2$	621	909	1019	1515	1835	2981
$10^7 \Delta B$	0.040	0.054	0.060	0.081	0.103	0.142
	whence	$10^7 \Delta B = 6$	$\cdot 40_8 w_2 - 54$	$\cdot 2w_2^2$		
	* B =	0.070×10	$^{-7}$ when w_2	= 0.		

Depolarisation factors for solutions in carbon tetrachloride.*

4	,	,			
		Solute: Fura	n		
$10^{5}f_{2}$	3638	7771	11386	15031.5	18541
$10^2\tilde{\Delta}_{12}$	6.286	9.441	$12 \cdot 21$	14.79	$17 \cdot 20$
	whence Δ	$\Delta_{12} = 0.7981f$	$\frac{1}{2} - 0.302 f_2^2$		
	9	Solute: Thiop	hen		
$10^{5}f_{2}$	5225	7503	11250	15021	19625
$10^{2}\tilde{\Delta}_{12}$	6.850	8.331	10.62	12.85	15.84
	whence Δ	$\Delta_{12} = 0.6484f$	$-0.104f_2^2$		
		Solute: Pyri	role		
$10^{5}f_{2}$	4485		13647	18327.5	20834
$10^2\Delta_{12}$	6.815	10.35	13.12	16.65	17.24
	whence Δ	$\Delta_{12}=0.7542f$	$f_2 - 0.356 f_2^2$		
	5	Solute: Pyrid	ine		
$10^5 f_2$	3170		8515	10293	16006
$10^{2}\Delta_{12}$	6.366	9.538	12.59	13.83	20.84
	whence Δ	$\Delta_{12} = 0.9106f$	$\frac{1}{2} + 1.106 f_2^2$		
	S	olute: Quino	line		
$10^{5}f_{2}$	2168	4020	5952	9109	11895.5
$10^{2}\bar{\Delta}_{12}$	7.627	11.08	14· 3 8	20.48	25.97
	whence Δ	$\Delta \Delta_{12} = 1.844 f_2$	$+ 0.358 f_2^2$		
	So	lute: isoQuin	oline		
$10^{5}f_{2}$	1747	3175	4745	6029	7518
$10^{2}\tilde{\Delta}_{12}$	8.122	12.03	16-21	19.70	23.96
		$\Delta \Delta_{12} = 2.647 f_2$			
	* A ₁	= 0.0346 for	$f_2 = 0$		

⁴ Buckingham, Chau, Freeman, Le Fèvre, Rao, and Tardif, J., 1956, 1405.

<sup>Harris, Le Fèvre, and Sullivan, J., 1935, 1622.
Buckingham, Harris, and Le Fèvre, J., 1953, 1626.</sup>

<sup>Le Fèvre and Le Fèvre, J., 1953, 4041.
Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, p. 45.
Le Fèvre, Le Fèvre, and Oh, Austral. J. Chem., 1957, 10, 218.</sup>

TABLE 3. Dielectric polarisation and refraction measurements in carbon tetrachloride at 25°.

			tetrachlorid	le at 25° .			
$10^5 w_2 \dots \dots$	0 n	D ²⁵	1.4575	d_4^{25}	. 1.58454	ε ²⁵	$2 \cdot 2270$
			Fur	an			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1·4	8451 1.	1564 57720 1 2544 2	$ 2115 14563 1.56161 2.2545 \Sigma w_2 = -1. $	2261 1.4562 1.56060 2.2551 115; $\sum \Delta \varepsilon / \sum$	2398 1.4561 1.55930 2.2557 $w_2 = 1.258$.	3566 1·4553 1·55780 2·2714
			Thion	hen			
$egin{array}{cccccccccccccccccccccccccccccccccccc$	156 — 1·58332 2·2282	2231 1·56732 2·2441	2671 1·4601 1·56388 2·2472	4320 1·4617 — 2·2602	4821 1·4621 —	5192 1·4624 1·54463 2·2667	8657 1·4661 —
v	whence $\sum \Delta$	$n/\sum w_2 = 0.0$	97; $\sum \Delta d/\sum$	$w_2 = -0.7$	71; $\sum \Delta \varepsilon / \sum u$	$v_2=0.765.$	
			Pyrr	ole			
ε ²⁵	621 1·57838 2·2842	909 1.57557 2.3117	1019 1.57448 2.3210	1515 1·56953 2·3648	1835 1·4595	2981 1·4605 —	3101 1·4608 —
,	whence $\sum \Delta$	$n/\sum w_2 = 0.1$	$.05; \sum \Delta d/\sum$	$w_2 = -0.9$	89; ΣΔε/Στ	$v_2 \Rightarrow 9.19_5$.	

TABLE 4. Calculations of dipole moments, molar Kerr constants, polarisability semi-axes, etc., for solutes in carbon tetrachloride at 25°.

Furan Thiophen Pyrrole	$egin{array}{l} lpha egin{array}{c} lpha egin{array}{c} 1 \cdot 25_8 \\ 0 \cdot 765 \\ 9 \cdot 19_5 \end{array}$	$eta \ -0.708 \ -0.487 \ -0.624$	$\begin{array}{c} \gamma \\ -0.039 \\ 0.067 \\ 0.072 \end{array}$	16.67		2 (c.c.) 30·4 29·7 85·3	19.6 a 23.8 a 20.8 b
Furan Thiophen Pyrrole Pyridine Quinoline isoQuinoline	••••••	$_{\infty}(_{\rm m}K_2) \times 10$ $_{6\cdot 2_{\rm g}}$ $_{11\cdot 1_{\rm g}}$ $_{44\cdot 5_{\rm g}}$ $_{150\cdot 0}$ $_{149\cdot 1}$ $_{571\cdot 7}$		$egin{array}{l} heta_2 ightarrow imes 10^{35} \ 1.48_8 \ 2.66_1 \ 10.6_0 \ 35.6_7 \ 35.4_6 \ 35.9_5 \end{array}$	32 37 44	$.7_{0}$ $.4_{9}$ $.6_{7}$ $.8_{9}$ $.4_{1}$	$_{\rm E}P$ (c.c.) $18\cdot 2_4^{\ d}$ $22\cdot 7_0^{\ d}$ $20\cdot 0_3^{\ d}$ $23\cdot 2_0^{\ d}$ $39\cdot 6_0^{\ d}$ $39\cdot 4_0^{\ d}$
Furan Thiophen Pyrrole Pyridine Quinoline isoQuinoline	2.6 2.3 2.1 4.1	b_3) $\times 10^{28}$ 6_9 69_9 88_2 70_9 68_5	$ heta_1 imes 10^{35} \\ ext{1.08}_4 \\ ext{1.34}_{25} \\ ext{1.19}_9 \\ ext{2.03}_0 \\ ext{11.65} \\ ext{16.49} ext{}$	μ (D) 0·72 0·54 1·78 2·37 • 2·27 •	$10^{23}b_1$ 0.74_3 1.01_5 0.86_9 1.07_2 $1.68.$ 1.99	$10^{28}b_2$ 0.88_9 1.01_4 0.93_3 1.04_3 2.07_4 1.91_4	$10^{23}b_{3}$ 0.53_{7} 0.67_{0} 0.57_{9} 0.64_{5} 0.94_{9} 0.77_{8}

From ref. 5.
 From ref. 6.
 From ref. 1.
 Extrapolated from refractions given in Landolt and Börnstein's "Tabellen," 1912 Edn., p. 1027.
 From ref. 4.

DISCUSSION

Pyridine, Quinoline, and isoQuinoline.—Values of θ_1 calculated from observations on solutions are smaller than those derived from the depolarisation factors of the gases, or from alternatives based on scale-drawings ¹ (Table 5). As expected, ¹ the magnitudes of b_1 are little changed by the use of the correct θ_1 but b_2 and b_3 are more affected.

Furan, Thiophen, and Pyrrole.—The dielectric polarisations of these solutes in carbon tetrachloride have not been previously recorded. The values now found for their dipole moments (0.72, 0.54, and 1.78 d) agree with those (0.715 \pm 0.02, 0.52 \pm 0.05, and

 1.80 ± 0.07) determined earlier ^{5,6} in benzene. Marinangeli ¹⁰ has since given $\mu = 1.74$ D for pyrrole in benzene.

Ingold ¹¹ has drawn attention to the fact that the mean polarisabilities of these three heterocycles show negative exaltations, thiophen more markedly than furan or pyrrole. Since the semi-axes of the bond ellipsoids are now available for the C-H,12 C-O,13 C-C,14 C-N, 15 N-H, 15 and C=C 16 links, the question as to whether the exaltation is a directional property can be investigated a priori. No measurements are yet to hand regarding the

Table 5. Effects of different θ_1 values on the semi-axes calculated therewith.

	Source of θ_1	$10^{35}\theta_{1}$	$10^{23}b_1$	$10^{23}b_2$	$10^{23}b_3$
Pyridine	$_{\infty}\delta_{2}^{2}$	2.03	1.07	1.04	0.64
	$\tilde{\Delta}_{ exttt{gas}}$	3.54	1.06	1.13	0.55
,,	Shape factors	4.08	1.06	$1.15_{\rm f}$	0.53
Quinoline	$_{\infty}$ δ_2^2	11·6 ₆	1.69	2.07^{-}	0.95
,,	Δ_{gas}	18.8	1.65	$2 \cdot 24$	0.79_{5}
,,	Shape factors	21.0	1.64	$2 \cdot 29$	0.76
isoQuinoline *	$_{\infty}\delta_{2}^{2}$	16.5	1.99	1.91	0.78
,,	Shape factors	17.2	2.00	1.91	0.75

* No Δ_{gas} value available.

C-S bond, but for an inter-centre distance of 1.8 Å, $b_L^{0.8}$ should ¹⁷ be $ca. 0.11 \times 10^{-23}$, so that, Vogel's ¹⁸ bond refractions being used, $b_{\rm T}^{\rm C-S}$ appears as ca. 0.22×10^{-23} c.c.

As a preliminary it may be noted that with $\hat{b}_{\rm L}^{\rm C-C}=0.098_6$, $b_{\rm T}^{\rm C-C}=0.027_4$, $b_{\rm L}^{\rm C-C}=$ 0.280, $b_{\rm T}^{0.00} = 0.077$, $b_{\rm V}^{0.00} = 0.073$, and $b_{\rm I}^{0.00} = 0.064$ (all $\times 10^{-23}$ c.c.), the calculated molecular semi-axes for benzene on a regular hexagonal model are: $10^{23}b_1 = 10^{23}b_2 = 1\cdot11$; $10^{23}b_3 = 0.68_5$. The corresponding found values are: $10^{23}b_1 = 10^{23}b_2 = 1.11$; $10^{23}b_3 = 0.73$. The near-agreement between these sets justifies similar calculations for furan, thiophen, and pyrrole. Using $b_1^{O-O} = 0.081$, $b_1^{O-O} = 0.039$, $b_1^{O-N} = 0.057$, $b_1^{O-N} = 0.069$, $b_1^{N-H} = 0.069$ 0.050, $b_{\rm T}^{\rm N-H} = 0.083$ and b's for other bonds as above, in conjunction with the valence angles given by Allen and Sutton, 19 we forecast semi-axes as follow:

		$10^{28}b_1$	$10^{28}b_{2}$	$10^{23}b_3$
Furan	calc	$0.9\overline{2}$	0.67	0.51
Furan			0.89	0.54
	(obs. — calc.	-0.18	+0.22	$+0.02_{5}$
	calc	1.11	0.89	0.88
Thiophen	obs	1.01	1.01	0.67
	obs. — calc.	-0.09°_{5}	+0.12	-0.21
	calc.	0.98°	0.75	0.67
Pyrrole	obs	0.87	0.93	0.58
Pyrrole	obs. — calc.	-0.11	+0.18	-0.09

In all three cases exaltations are predicted as positive in the b_2 direction, and as negative along b_1 . On the estimates just quoted, exaltations of mean polarisabilities should be most negative for thiophen, less so for pyrrole, and a little positive for furan and benzene. The change in algebraic sign is contrary to experience, since benzene and furan actually exhibit small negative exaltations (ref. 11, p. 184). Numerically however the discrepancies are slight; they are probably due to minor errors in the bond and geometrical data used for prediction.

Marinangeli, Ann. Chim. (Italy), 1954, 44, 211, 219.
 Ingold, "Structure and Mechanism in Organic Chemistry," Cornell Univ. Press, New York, 1953.

¹² Le Fèvre and Le Fèvre, Chem. and Ind., 1955, 1121.

¹³ Idem, J., 1956, 3549.

Idem, Chem. and Ind., 1956, 54.
 Aroney and Le Fèvre, J., 1958, 3002.

¹⁶ Bramley, Le Fèvre, Le Fèvre, and Rao, preceding paper.

<sup>Le Fèvre, Proc. Chem. Soc., 1958, 283.
Vogel, J., 1952, 514.</sup>

¹⁹ Allen and Sutton, Acta Cryst., 1950, 3, 46.

1192 Thomas: Studies in the

It is noteworthy that this work reveals one more point of resemblance between benzene and thiophen: the ratios of their semi-axes of polarisability are practically the same (1.52:1.52:1, and $1.51_5:1.51_3:1$ respectively).

The awards of research scholarships (to B. P. R.) by the Nuffield Foundation and (to M. R. S.) by the Australian Atomic Energy Commission are gratefully acknowledged.

UNIVERSITY	OF	SYDNEY.	N.S.W.	AUSTRALIA.

[Received, September 29th, 1958.]