

Improper Integrals

Introduction # Riemann Stieltjes integral
 $\int_a^b f(x) dx$ or Riemann integral $\int_a^b f(x) dx$ is defined under the restriction that both f , x are defined and bounded on a finite interval $[a, b]$. However, the symbol $\int_a^b f(x) dx$ may sometimes have meaning (i.e. denote a number), even when f is not bounded or when either a or b or both are infinite.

In such cases the symbol

$$\int_a^b f(x) dx$$

is called an improper or generalised or infinite integral. Thus the integrals with unbounded integrand or with unbounded interval of integration are improper integrals.

Note # For the sake of distinction an integral which is not improper will be called a proper integral:-

Improper Integral of First Kind

The integral $\int_a^b f(x) dx$ is called improper integral of 1st kind if the integrand remains unbounded but integration is unbounded.

Therefore $\int_0^\infty \frac{1}{x^2} dx$ an example

Def# Let f, d be defined on $[a, \infty)$.
 Suppose that $F \in R([d; a, t]) = R([a, t])$ for
 every $t \geq a$. Keeping f, d fixed define a
 function I on $[a, \infty)$ as

$$I(t) = \int_a^t f(x) dx \quad t \geq a.$$

The function $I(t)$ so defined is called an infinite integral (or an improper integral of 1st kind.) and is denoted by $\int_a^\infty f(x) dx$.

The integral $\int_a^\infty f(x) dx$ is said to converge or said to exist if

$$\lim_{t \rightarrow \infty} I(t) = \lim_{t \rightarrow \infty} \int_a^t f(x) dx \text{ exists (finite)}$$

Otherwise $\int_a^\infty f(x) dx$ is said to diverge or we say integral does not exist.

If $\lim_{t \rightarrow \infty} I(t)$ exists and equals A , then the number A is called value of the integral and we write.

$$\int_a^\infty f(x) dx = A$$

Similarly we define the improper integral $\int_{-\infty}^b f(x) dx$ as

$$\int_{-\infty}^b f(x) dx = \lim_{t \rightarrow -\infty} \int_t^b f(x) dx$$

3

Q # Check the Convergence and Divergence

$$\text{of } (1) \int_1^\infty \frac{1}{x} dx \quad (2) \int_1^\infty \frac{1}{x^2} dx.$$

$$\text{Sol } (1) \int_1^\infty \frac{1}{x} dx = \lim_{t \rightarrow \infty} \int_1^t \frac{1}{x} dx$$

$$= \lim_{t \rightarrow \infty} [\ln x]_1^t$$

$$= \lim_{t \rightarrow \infty} [\ln t - \ln 1]$$

$$= \lim_{t \rightarrow \infty} [\ln t] = \infty$$

$$\Rightarrow \int_1^\infty \frac{1}{x} dx \text{ diverges.}$$

$$(2) \int_1^\infty \frac{1}{x^2} dx = \lim_{t \rightarrow \infty} \int_1^t x^{-2} dx$$

$$= - \lim_{t \rightarrow \infty} \left[\frac{1}{x} \right]_1^t$$

$$= - \lim_{t \rightarrow \infty} \left[\frac{1}{t} - 1 \right] = 1.$$

Discussion # We note that $\lim_{n \rightarrow \infty} \frac{1}{n} = 0 = \lim_{n \rightarrow \infty} \frac{1}{n^2}$
i.e both functions die as $n \rightarrow \infty$ but we also note that

$$\lim_{n \rightarrow \infty} \frac{\left(\frac{1}{n^2}\right)}{\left(\frac{1}{n}\right)} = \lim_{n \rightarrow \infty} \frac{1}{n} = 0$$

$\frac{1}{n^2}$ dies faster than $\frac{1}{n}$ as $n \rightarrow \infty$
Therefore $\int_1^\infty \frac{1}{x^2} dx$ Converges.

4

We note that $\int x^2 dx$ diverges because while $f(n) = n^2 \rightarrow \infty$ as $n \rightarrow \infty$ i.e. does not die.

Thus when a function does not die its integral $\int_a^b f(x) dx$ does not converge but when a function dies as $n \rightarrow \infty$ we may expect its integral of type $\int_a^{\infty} f(x) dx$ to be convergent and we may equally expect

$\int_a^{\infty} \frac{1}{x^2} dx$ to be convergent as we have seen or above in case of integrals $\int_1^{\infty} \frac{1}{n^2} dn$ & $\int_1^{\infty} \frac{1}{x^2} dx$ are equal

$$\boxed{\text{Integral } \int_{-\infty}^c f(x) dx (x)}$$

If for some $c \in (a, \infty)$ $\int_c^{\infty} f(x) dx$ and $\int_a^{\infty} f(x) dx$ are both convergent, then $\int_a^{\infty} f(x) dx$ is $Cg + t$ and its value is defined to be $\int_a^{\infty} f(x) dx = \int_a^c f(x) dx + \int_c^{\infty} f(x) dx$.

$$\int_a^b f(x) dx \text{ or } \int_a^b f(x) dx = \lim_{t \rightarrow \infty} \int_a^t f(x) dx$$

5

Cauchy Principal Value of $\int f dx$

Consider integral $\int_{-\infty}^{\infty} x dx$
of $\sin x$ both diverge
the integral $\int_{-\infty}^{\infty} x dx$ diverges.
and hence the integral $\int_{-\infty}^{\infty} x dx$ diverges.

But

$\lim_{c \rightarrow \infty} \int_{-c}^c x dx = 0$. It is called Cauchy
principal value and it may exist even if the
integral $\int_{-\infty}^{\infty} f dx$ diverges as has been shown.

$$\begin{aligned} \text{Again } \int_{-\infty}^{\infty} \frac{1}{x^2} dx &= \lim_{t \rightarrow \infty} \int_{-t}^t \frac{1}{x^2} dx \\ &\quad + \int_0^{\infty} \frac{1}{x^2} dx + \int_{-\infty}^0 \frac{1}{x^2} dx. \end{aligned}$$

is divergent but

$$\begin{aligned} \lim_{c \rightarrow \infty} \int_{-c}^c \frac{1}{x^2} dx &= - \lim_{c \rightarrow \infty} \left[\frac{1}{x} \right]_c^c \\ &= - \lim_{c \rightarrow \infty} \left[\frac{1}{c} + \frac{1}{c} \right] = 0 \end{aligned}$$

$$\Rightarrow \text{p.v.} \int_{-\infty}^{\infty} \frac{1}{x^2} dx = 0$$

But $\int_{-\infty}^{\infty} f dx$ converges if converges to
its principal value i.e. for a convergent integral
value of the integral is same as principal value.

Note # If we know the convergence of integral $\int_a^{\infty} f dx$ in advance, we may find its value by finding the principal value.

Analogy Between Infinite Integral And Infinite Series

$$\int_a^{\infty} f dx$$

$$\sum_{n=1}^{\infty} a_n$$

Here, analogy is as

$$I(t) = \int_a^t f dx \text{ analogous to } \sum_{k=1}^n a_k = \text{partial sum}$$

$$\int_a^x f(x) dx \text{ is analogous to } \sum_{n=1}^{\infty} a_n$$

Corresponds to n .

x

↓

Varies continuously
on $[a, \infty)$

$$\sum_{n=1}^{\infty} a_n \text{ varies discretely
on } \{1, 2, \dots\}$$

Improper Integral of 2nd Kind

If in the definite integral $\int_a^b f dx$, interval of integration is finite but f has one or more points of infinite discontinuity i.e. f is not bounded on $[a, b]$, then $\int_a^b f dx$ is called an improper integral of 2nd kind

Similarly on $\int_a^{\infty} f dx$ define

$$\int_a^{\infty} f dx = \lim_{b \rightarrow \infty} \int_a^b f dx$$

$$C \cdot g \int_0^1 \frac{dx}{x}, \quad \int_1^2 \frac{dx}{2-x}$$

Improper Integral of 3rd kind.

If in definite integral $\int_a^b f dx$, the interval is unbounded and f is also un bounded, then it is called improper integral of 3rd kind.

$$\text{e.g. } \int_0^\infty \frac{e^{-x}}{\sqrt{x}} dx$$

Convergence of Divergence of Improper Integral of 2nd kind.

(a) Convergence at Left End Point

Let f be defined on $(a, b]$ and integrable (R_S or R) on $[t, b]$ $\forall t > a$ or on $[a, t]$, $t > a$ or $\forall \epsilon, 0 < \epsilon < b - a$, then $\int_a^b f dx$ is defined by

$$\int_a^b f dx = \lim_{\epsilon \rightarrow 0^+} I(\epsilon) = \lim_{\epsilon \rightarrow 0^+} \int_a^b f dx$$

$$= \lim_{t \rightarrow a^+} \int_a^t f dx$$

If this limit exist and is equal to a real number A , then improper integral converges to A otherwise diverges.

Note If $\lim_{x \rightarrow a^+} f(x)$ exists but f is discontinuous at a , then $\int_a^b f dx$ is considered as proper

and proper integral is always convergent

→ If f is continuous on $[a, b]$ except that $f(c^+) \neq f(c^-)$, $a < c < b$ i.e. f has a finite jump at c , then $\int_a^b f dx$ is considered as proper.

(b) Convergence at Right End Point

Let b be only point of infinite discontinuity and f is defined on (a, b) , $f \in R(a)$ or $(\frac{a}{2}, b)$ or on $[a, t] \setminus t < b$, $a \leq t < b$, then integral $\int_a^b f dx$ defined as limit $\int_a^{b-\epsilon} f dx$ as

$$\int_a^b f dx = \lim_{\epsilon \rightarrow 0^+} \int_a^{b-\epsilon} f dx. \quad a < t < b - \epsilon$$

$$= \lim_{t \rightarrow b^-} \int_a^t f dx \quad a < t < b - \epsilon.$$

If this limit exists, then the integral is c.g.t, otherwise.

c.g.t.

(c) Convergence at Interior Point

If an interior point c , $a < c < b$ is the only point of infinite discontinuity (i.e. f is unbounded)

$$\text{at } c, \text{ then } \int_a^c f dx + \int_c^b f dx = \int_a^b f dx$$

Integral is c.g.t. if both integrals on R.H.S are convergent otherwise is d.g.t.

~~Ex~~

8

(d) Convergence At Both End Points

If a & b are both points of infinite discontinuity, then for any c within the interval

$$[a, b] \quad \int_a^b f dx = \int_a^c f dx + \int_c^b f dx.$$

The integral exists if both integrals on R.H.S exist otherwise integral doesn't exist.

Example

Discuss the convergence and divergence of.

Integrals $\int_0^1 \frac{1}{x^p} dx$ (b) $\int_0^\infty \frac{1}{x^p} dx$ (c) $\int_0^\infty \frac{1}{x^p} dx$

Sol # (a) Function $f(x) = \frac{1}{x^p}$ is continuous in $(0, 1]$ irrespective of the value of p but is undefined at $x=0$ case 1 When $p > 0$, f is bounded in $(0, 1]$, so

we can extend the definition to $x=0$ by setting the value of f to be 0 at $x=0$.

If $p=0$, f is identically 1 through out $[0, 1]$. Thus for $p \leq 0$, f itself has a continuous extension to whole of $[0, 1]$ and is Riemann integrable there

Case II # If $p > 0$, $f(x) = \frac{1}{x^p}$ is unbounded at $x=0$ and integral is improper.

If $0 < p < 1$, then $1-p > 0$ and

$$\int_0^1 \frac{1}{x^p} dx = \lim_{t \rightarrow 0^+} \int_t^1 \frac{1}{x^p} dx = \dim_{t \rightarrow 0^+} \int_t^1 x^{-p} dx$$

$$= \lim_{t \rightarrow 0^+} \left[\frac{x^{1-p}}{1-p} \right]_t^1$$

$$= \lim_{t \rightarrow 0^+} \left(\frac{1}{1-p} - \frac{t^{1-p}}{1-p} \right)$$

$$= \frac{1}{1-p}$$

\Rightarrow Integral Converges to $\frac{1}{1-p}$

Case III # If $p > 1$, $1-p < 0$ and

$$\int_0^1 \frac{1}{x^p} dx = \lim_{t \rightarrow 0^+} \int_t^1 x^{-p} dx$$

By limit
and

$$\begin{aligned} &= \lim_{t \rightarrow 0^+} \left(\frac{1}{(1-p)x^{p-1}} \right)_t^1 \\ &= \lim_{t \rightarrow 0^+} \left(\frac{1}{1-p} - \frac{1}{(1-p)t^{p-1}} \right) \quad \text{never} \\ &= \lim_{t \rightarrow 0^+} \left[\frac{1}{1-p} + \frac{1}{(p-1)t^{p-1}} \right] \quad \text{exist} \end{aligned}$$

\Rightarrow Improper integral diverges.

Case IV # For $p = 1$ For the range

$$\int_0^1 \frac{1}{n} dx = \lim_{t \rightarrow 0^+} \int_t^1 \frac{1}{n} dx$$

$$\begin{aligned} &= \lim_{t \rightarrow 0^+} (\ln n) \Big|_t^1 \\ &= \lim_{t \rightarrow 0^+} (\ln 1 - \ln t) \end{aligned}$$

$$\begin{aligned} &= +\infty \quad \Rightarrow f \\ &\Rightarrow \text{Integral diverges for } p = 1 \end{aligned}$$

the

Similarly we write

$$\int_a^b f(x) dx = \int_{-\infty}^b f(x) dx - \int_{-\infty}^a f(x) dx$$

Result $\Rightarrow \int_0^\infty \frac{1}{x^p} dx$ is cgt if $p < 1$
dgt if $p \geq 1$

(b) $\int_1^\infty \frac{1}{x^p} dx = \lim_{t \rightarrow \infty} \int_1^t \frac{1-p}{x} dt$
 $= \lim_{t \rightarrow \infty} \left[\frac{x^{1-p}}{1-p} \right]_1^t$
 $= \lim_{t \rightarrow \infty} \left(\frac{t^{1-p}}{1-p} - \frac{1}{1-p} \right)$
 $= \begin{cases} \frac{1}{p-1} & \text{if } p > 1 \\ +\infty & \text{if } p \leq 1. \end{cases}$

For $p = 1$
 $\int_1^\infty \frac{1}{n} dn = \lim_{t \rightarrow \infty} \int_1^t \frac{1}{n} dn$
 $= \lim_{t \rightarrow \infty} [\ln(n)]_1^t = \lim_{t \rightarrow \infty} [\ln(t) - \ln(1)]$

Result $\Rightarrow \int_1^\infty \frac{1}{x^p} dx$ is cgt if $p > 1$
is dgt if $p \leq 1$.

(c) $\int_0^\infty \frac{1}{x^p} dx = \int_0^1 \frac{1}{x^p} dx + \int_1^\infty \frac{1}{x^p} dx$
For $p < 0$ I_1 is cgt, I_2 is dgt to ∞
For $p = 0$ I_1 is cgt, I_2 is dgt to ∞
For $0 < p < 1$ I_1 is cgt, I_2 is dgt to ∞
For $p = 1$ I_1 & I_2 both diverge to ∞

1.1

For $P > 1$, T_1 is abs. to ∞ if T_2 is cgt;

⇒ For any arbitrary P one of the integral diverges to ∞ . Hence the integral diverges to ∞ for all P .

Examples

Examine the Convergence and Divergence of

- (1) $\int_0^\infty e^{-mx} dx \quad (m > 0)$ (2) $\int_0^\infty \frac{x}{1+x^2} dx$
finite and
- (3) $\int_0^\infty \sin x dx$ (4) $\int_0^\infty \frac{dx}{(1+x)^3}$
converge
- (5) $\int_0^\infty \frac{dx}{x^2+4a^2}$ (6) $\int_3^\infty \frac{dx}{(x-2)x}$
exists (
- (7) $\int_0^\infty \frac{dx}{(1+x)^{2/3}}$ (8) $\int_{\pi/2}^\infty \frac{dx}{x\sqrt{x^2-1}}$
converge or
- (9) $\int_2^\infty \frac{2x^2}{x^4-1} dx$ (10) $\int_1^\infty \frac{x}{(1+x^2)^3} dx$
converge or

Solutions

$$\begin{aligned} \text{(1)} \quad \int_0^\infty e^{-mx} dx &= \lim_{t \rightarrow \infty} \int_0^t e^{-mx} dx \\ &= \lim_{t \rightarrow \infty} \left[\frac{-e^{-mx}}{m} \right]_0^t \\ &= -\frac{1}{m} \lim_{t \rightarrow \infty} [e^{-mt} - 1] \\ &= \frac{1}{m} [0 - 1] = \frac{1}{m}, \text{ which is finite.} \end{aligned}$$

⇒ Integral converges

Similarly as $\int_a^b f(x) dx = \int_a^b f(t) dt$

$$\int_a^b f(x) dx = \int_a^b f(t) dt$$

12

Result

$\int_0^\infty e^{-mx} dx$ converges for every $m > 0$

$$\begin{aligned}
 (2) \quad \int_0^\infty \frac{x}{1+x^2} dx &= \lim_{t \rightarrow \infty} \int_0^t \frac{x}{1+x^2} dx \\
 &= \lim_{t \rightarrow \infty} \left[\frac{1}{2} \log(1+t^2) - \log(1+\alpha^2) \right]_0^t \\
 &= \lim_{t \rightarrow \infty} \frac{1}{2} [\log(1+t^2) - \log(1+\alpha^2)] \\
 &= \infty
 \end{aligned}$$

\Rightarrow Integral diverges

$$\begin{aligned}
 (3) \quad \int_0^\infty \sin x dx &= \lim_{t \rightarrow \infty} \int_0^t \sin x dx \\
 &= -\lim_{t \rightarrow \infty} [\cos x]_0^t \\
 &= -\lim_{t \rightarrow \infty} [\cos t - \cos 0] \\
 &= \lim_{t \rightarrow \infty} [\cos t + 1], \text{ which} \\
 &\quad \text{does not exist because} \\
 &\quad \text{Cos oscillates between} \\
 &\quad -1 \text{ and } 1
 \end{aligned}$$

$\Rightarrow \int_0^\infty \sin x dx$ oscillates.

$$\begin{aligned}
 (4) \# \int_0^\infty \frac{dx}{(1+x)^3} &= \lim_{t \rightarrow \infty} \int_0^t \frac{1}{(1+x)^3} dx \\
 &= \lim_{t \rightarrow \infty} -\frac{1}{2} \left[\frac{1}{(1+t)^2} - 1 \right] \\
 &= -\frac{1}{2} (0) = \frac{1}{2}
 \end{aligned}$$

\Rightarrow Integral converges $\frac{1}{2}$ to $\frac{1}{2}$

$$(5) \quad \int_0^\infty \frac{dx}{x^2 + a^2} = \lim_{t \rightarrow \infty} \int_0^t \frac{dx}{x^2 + (2a)^2}$$
$$= \lim_{t \rightarrow \infty} \left[\frac{1}{2a} \tan^{-1} \frac{x}{2a} \right]_0^t$$
$$= \lim_{t \rightarrow \infty} \frac{1}{2a} \left[\tan^{-1} \frac{t}{2a} - \tan^{-1} 0 \right]$$
$$= \frac{1}{2a} \left[\frac{\pi}{2} \right] = \frac{\pi}{4a}, \text{ which is finite}$$

\Rightarrow Integral converges to $\frac{\pi}{4a}$

$$(6) \quad \int_0^\infty e^{2x} dx = \lim_{t \rightarrow \infty} \int_0^t e^{2x} dx$$
$$= \lim_{t \rightarrow \infty} \frac{1}{2} \left[e^{2x} \right]_0^t$$
$$= \lim_{t \rightarrow \infty} \frac{1}{2} [e^{2t} - e^0]$$

\Rightarrow Integral diverges to $+\infty$

Result

Note that $\lim_{n \rightarrow \infty} e^{2n} = \infty$ i.e. plus infinity does not die as $n \rightarrow \infty$ so integral diverges.

On the other hand $\int_0^\infty e^{-mx} dx$ converges for all $m > 0$. Here $\lim_{n \rightarrow \infty} e^{-mn} = 0$ if $m > 0$.

We may expect convergence which comes out.

* Knowledge non-negative and bounded is a great blessing of God,

$$(7) \# \int_3^{\infty} \frac{dx}{(n-2)^2} = \lim_{t \rightarrow \infty} \int_0^t (x-2)^{-2} dx$$

$$= \lim_{t \rightarrow \infty} \left[\frac{(x-2)^{-1}}{-1} \right]_0^t \\ = - \lim_{t \rightarrow \infty} \left[\frac{1}{t-2} - 1 \right] = -(0-1) = 1$$

\Rightarrow Integral Converges.

$$(8) \# \int_0^{\infty} \frac{dx}{(1+x)^{2/3}} = \lim_{t \rightarrow \infty} \int_0^t (1+x)^{-2/3} dx \\ = \lim_{t \rightarrow \infty} 3 \left[(1+x)^{1/3} \right]_0^t \\ = 3 \lim_{t \rightarrow \infty} \left[(1+t)^{1/3} - 1 \right]$$

$= +\infty$, Divergent

$$(9) \# \int_{\sqrt{2}}^{\infty} \frac{dx}{n \sqrt{n^2-1}} = \lim_{t \rightarrow \infty} \left[\sec^{-1} n \right]_{\sqrt{2}}^t \\ = \lim_{t \rightarrow \infty} \left[\sec^{-1} t - \sec^{-1} \sqrt{2} \right]$$

$$= \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4} \text{ which is finite.}$$

\Rightarrow Integral is Cgt.

$$(10) \# \int_2^{\infty} \frac{2x^2}{x^4+1} dx = \lim_{t \rightarrow \infty} \int_2^t \frac{(x^2+1)+(x^2-1)}{2(x^2+1)(x^2-1)} dx \\ = \lim_{t \rightarrow \infty} \int_2^t \left[\frac{1}{x^2-1} + \frac{1}{x^2+1} \right] dx \\ = \lim_{t \rightarrow \infty} \left[\frac{1}{2} \ln \left(\frac{x^2-1}{x^2+1} \right) + \tan^{-1} x \right]_2^t$$

15

$$\begin{aligned}
 &= \lim_{t \rightarrow \infty} \left[\frac{1}{2} \log \frac{t-1}{t+1} + \tan^{-1} t - \frac{1}{2} \log \frac{1}{3} - \tan^{-1} 2 \right] \\
 &= \frac{1}{2} \lim_{t \rightarrow \infty} \left(\frac{1 - \frac{1}{t}}{1 + \frac{1}{t}} \right) + \frac{\pi}{2} + \frac{1}{2} \log 3 - \tan^{-1} 2
 \end{aligned}$$

$$\begin{aligned}
 &= \frac{1}{2} \log 1 + \frac{\pi}{2} + \frac{1}{2} \log 3 - \tan^{-1} 2 \\
 &= \frac{\pi}{2} + \frac{1}{2} \log 3 - \tan^{-1} 2 \quad \text{which is finite.}
 \end{aligned}$$

\Rightarrow Integral Converges.

$$\begin{aligned}
 (11) \# \int_1^\infty \frac{x}{(1+2x)^3} dx &= \lim_{t \rightarrow \infty} \int_1^t \frac{x}{(1+2x)^3} dx \\
 &= \lim_{t \rightarrow \infty} \int_1^t \frac{\frac{1}{2}(1+2x)^{-\frac{1}{2}}}{(1+2x)^3} dx \\
 &= \lim_{t \rightarrow \infty} \int_1^t \left[\frac{1}{2} (1+2x)^{-2} - \frac{1}{2} (1+2x)^{-3} \right] dx \\
 &= \lim_{t \rightarrow \infty} \left[\frac{1}{2} \frac{(1+2x)^{-1}}{-1 \times 2} - \frac{1}{2} \frac{(1+2x)^0}{-2 \times 2} \right]_1^t \\
 &= \lim_{t \rightarrow \infty} \left[\frac{-1}{4(1+2x)} + \frac{1}{8(1+2x)^2} \right]_1^t \\
 &= \lim_{t \rightarrow \infty} \left[\frac{-1}{4(1+2t)} + \frac{1}{8(1+2t)^2} + \frac{1}{12} - \frac{1}{72} \right]
 \end{aligned}$$

$$\begin{aligned}
 &= \lim_{t \rightarrow \infty} \left[\frac{-1}{4(1+2t)} + \frac{1}{8(1+2t)^2} + \frac{1}{12} - \frac{1}{72} \right] = \frac{5}{72} \quad \text{which is finite.}
 \end{aligned}$$

\Rightarrow Integral Converges.

Next Do yourself.

$$\int_a^\infty f(x) dx = \int_a^\infty f(t) dt$$

16

Examples

Examine the Convergence or Divergence
of following integrals.

$$(1) \int_1^{\infty} x e^{-x} dx \quad (2) \int_0^{\infty} x^2 e^{-x} dx$$

$$(3) \int_0^{\infty} x e^{-x^2} dx \quad (4) \int_0^{\infty} x^3 e^{-x} dx$$

$$(5) \int_0^{\infty} x \sin x dx \quad (6) \int_0^{\infty} x e^{-x} dx = \lim_{t \rightarrow \infty} \int_0^t x e^{-x} dx$$

Solution# (1) $\int_0^{\infty} x e^{-x} dx = \lim_{t \rightarrow \infty} \left[-x e^{-x} - e^{-x} \right]_0^t$

$$= \lim_{t \rightarrow \infty} \left[-x e^{-x} - e^{-x} \right]_0^t = \lim_{t \rightarrow \infty} (-t e^{-t} - e^{-t})$$

$$= \lim_{t \rightarrow \infty} (-e^{-t}) - \lim_{t \rightarrow \infty} e^{-t} + \frac{2}{e}$$

$$= 0 + \frac{2}{e} = \frac{2}{e} \text{ which is finite.}$$

\Rightarrow Integral Converges

$$(2) \int_0^{\infty} x^2 e^{-x} dx = \lim_{t \rightarrow \infty} \int_0^t x^2 e^{-x} dx + \lim_{t \rightarrow \infty} \left[-x^2 e^{-x} - 2x e^{-x} - 2 e^{-x} \right]_0^t$$

$$= \lim_{t \rightarrow \infty} \left[-x^2 e^{-x} - 2x e^{-x} - 2 e^{-x} \right]_0^t + \lim_{t \rightarrow \infty} x^2 e^{-x}$$

= 0, which is finite

$$(3) \int_0^{\infty} x e^{-x^2} dx = \lim_{t \rightarrow \infty} \int_0^t x e^{-x^2} dx = -\frac{1}{2} \lim_{t \rightarrow \infty} \left[e^{-x^2} \right]_0^t = -\frac{1}{2} \lim_{t \rightarrow \infty} (e^{-t^2} - e^0) = -\frac{1}{2}(0 - 1) = \frac{1}{2}$$

$$\begin{aligned} \text{(4) } & \# \int_0^{\infty} x^3 e^{-x^2} dx = \dim_{t \rightarrow \infty} \int_0^t x \cdot x^2 e^{-x^2} dx \\ &= \dim_{t \rightarrow \infty} \left[-\frac{1}{2} x e^{-x^2} + \int \frac{1}{2} x^2 e^{-x^2} dx \right] \end{aligned}$$

$$\text{Let } x^2 = \beta \quad 2x dx = d\beta \quad x dx = \frac{1}{2} d\beta$$

Limits When $x = 0 \quad \beta = 0$

$$x = \infty \quad \beta = \infty$$

$$\begin{aligned} \int_0^{\infty} x^3 e^{-x^2} dx &= \frac{1}{2} \int_0^{\infty} \beta e^{-\beta} d\beta \\ &= \frac{1}{2} \lim_{t \rightarrow \infty} \int_0^t \beta e^{-\beta} d\beta \\ &= \frac{1}{2} \lim_{t \rightarrow \infty} \left[-\beta e^{-\beta} - e^{-\beta} \right]_0^t \\ &= \frac{1}{2} \lim_{t \rightarrow \infty} \left[-t e^{-t} - e^{-t} - 0 + e^0 \right] \\ &= \frac{1}{2} [0 + 0 + 1] = \frac{1}{2}, \text{ which is finite.} \end{aligned}$$

and

exists

for e^t

\Rightarrow Integral converges

(5) $\int_0^{\infty} x \sin x dx = \lim_{t \rightarrow \infty} \int_0^t x \sin x dx$

$$\begin{aligned} &= \lim_{t \rightarrow \infty} [-x \cos x + \sin x]_0^t \\ &= \lim_{t \rightarrow \infty} (-t \cos t + \sin t) \end{aligned}$$

Hence

$$= A$$

which oscillates b/w -1 and $+1$ as $t \rightarrow \infty$

Cost oscillates infinitely.

\Rightarrow Integral oscillates infinitely.

Similarly or $\int f dd = \int f d\lambda = \lim_{t \rightarrow \infty}$