#### THUẬT TOÁN ỨNG DỤNG

CHIA ĐỂ TRỊ

Phạm Quang Dũng Bộ môn KHMT dungpq@soict.hust.edu.vn

#### NộI dung

- Tổng quan chia để trị
- Ví dụ minh họa
- Độ phức tạp chia để trị
- Giảm để trị

#### Tổng quan chia để trị

- Chia bài toán cần giải ban đầu thành các bài toán con độc lập nhau
- Giải (trị) các bài toán con
- Tổng hợp lời giải của các bài toán con để dẫn ra lời giải của bài toán xuất phát

- Bài toán dãy con dài nhất: cho dãy số nguyên a = a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>n</sub>. Tìm dãy con gồm một số liên tiếp các phần tử có tổng lớn nhất
- Phân chia: ký hiệu P(i, j) là lời giải của bài toán tìm dãy con liên tiếp của dãy a<sub>i</sub>, a<sub>i+1</sub>,..., a<sub>i</sub> có tổng cực đại
- Tổng hợp lời giải
  - Ký hiệu PL(i, j) là lời giải của bài toán tìm dãy con liên tiếp của dãy a<sub>i</sub>, a<sub>i+1</sub>,..., a<sub>j</sub> sao cho phần tử cuối cùng là a<sub>j</sub> có tổng cực đại
  - Ký hiệu PR(i, j) là lời giải của bài toán tìm dãy con liên tiếp của dãy a<sub>i</sub>, a<sub>i+1</sub>,..., a<sub>j</sub> sao cho phần tử đầu tiên là a<sub>i</sub> có tổng cực đại

- Xét đoạn [/,/+1,...,r]. Ký hiệu m = (/+r)/2
- $P(I,r) = MAX\{P(I, m), P(m+1,r), PL(I,m) + PR(m+1,r)\}$



```
#include <bits/stdc++.h>
using namespace std;
#define INF 1e9
#define MAX 1000000

int a[MAX];
int n;
void input(){
    cin >> n;
    for(int i = 0; i < n; i++) cin >> a[i];
}
```

```
int PL(int 1, int r){
    int rs = -INF;
   int s = 0;
    for(int i = r; i >= 1; i--){
        s += a[i];
       rs = max(rs,s);
    return rs;
}
int PR(int 1, int r){
    int rs = -INF;
    int s = 0;
    for(int i = 1; i <= r; i++){
        s += a[i];
       rs = max(rs,s);
    return rs;
```

```
int P(int 1, int r){
    if(1 == r) return a[r];
    int m = (1+r)/2;
    return max(max(P(1,m),P(m+1,r)), PL(1,m)+PR(m+1,r));
}
void solve(){
    cout << P(0,n-1);
}
int main(){
    input();
    solve();
}</pre>
```

#### Độ phức tạp tính toán

- Chia bài toán xuất phát thành a bài toán con, mỗi bài toán con kích thước n/b
- T(n): thời gian của bài toán kích thước n
- Thời gian phân chia (dòng 4): D(n)
- Thời gian tổng hợp lời giải (dòng 6):
   C(n)
- Công thức truy hồi:

```
T(n) = \begin{cases} \Theta(1), & n \le n0 \\ aT\left(\frac{n}{b}\right) + C(n) + D(n), & n > n0 \end{cases}
```

```
procedure D-and-C(n) {
1. if (n \leq n0)
  xử lý trực tiếp
3. else{
     chia bài toán xuất phát
thành a bài toán con kích thước
n/b
5. gọi đệ quy a bài toán con
     tổng hợp lời giải
7. }
```

#### Độ phức tạp tính toán

- Độ phức tạp của thuật toán chia để trị (định lí thợ)
- Công thức truy hồi:

```
T(n) = aT(n/b) + cn^k, với các hằng số a \ge 1, b > 1, c > 0
```

- Nếu  $a > b^k$  thì  $T(n) = \Theta(n^{\log_b a})$
- Nếu  $a = b^k$  thì  $T(n) = \Theta(n^k \log n)$  với  $\log n = \log_2 n$
- Nếu a <  $b^k$  thì  $T(n) = \Theta(n^k)$

#### Độ phức tạp tính toán

- Độ phức tạp của thuật toán chia để trị (định lí thợ)
- Công thức truy hồi:

```
T(n) = aT(n/b) + cn^k, với các hằng số a \ge 1, b > 1, c > 0
```

- Nếu  $a > b^k$  thì  $T(n) = \Theta(n^{\log_b a})$
- Nếu  $a = b^k$  thì  $T(n) = \Theta(n^k \log n)$  với  $\log n = \log_2 n$
- Nếu a <  $b^k$  thì  $T(n) = \Theta(n^k)$
- → Thuật toán chia để trị giải bài toán tổng con cực đại có độ phức tạp là O(nlogn)

- Phân chia: Chia dãy  $a_1, ..., a_n$  thành 2 dãy con có độ dài bằng nhau
- Trị đệ quy: Sắp xếp 2 dãy con bằng thuật toán sắp xếp trộn
- Tổng hợp: Trộn 2 dãy con đã được sắp với nhau để thu được dãy ban đầu được sắp thứ tự

















 Trộn hai dãy đã được sắp xếp thành dãy mới được sắp xếp



ta 1 3 4 5



 Trộn hai dãy đã được sắp xếp thành dãy mới được sắp xếp



ta 1 3 4 5 8 9















 Trộn hai dãy đã được sắp xếp thành dãy mới được sắp xếp

 a
 1
 3
 4
 5
 8
 9
 10
 11
 20
 23

ta 1 3 4 5 8 9 10 11 20 23

```
#include <bits/stdc++.h>
using namespace std;
#define MAX 1000000
int a[MAX];
int n;
int ta[MAX];
void input(){
    cin >> n;
    for(int i = 0; i < n; i++) cin>> a[i];
}
void print(){
    for(int i = 0; i < n; i++) cout << a[i] << " ";
}
```

```
void merge(int b, int m, int e){
    int i = b;
    int j = m+1;
    for(int k = b; k <= e; k++){
        if(i > m){ ta[k] = a[j]; j++; }
        else if(j > e){ta[k] = a[i]; i++;}
        else{
            if(a[i] > a[j])\{ta[k] = a[j]; j++;\}
            else{ta[k] = a[i]; i++;}
    for(int k = b; k <= e; k++) a[k] = ta[k];
}
```

```
void mergeSort(int b, int e){
    if(b == e) return;
    int m = (b+e)/2;
   mergeSort(b,m);
    mergeSort(m+1,e);
    merge(b,m,e);
}
int main(){
    input();
    mergeSort(0,n-1);
    print();
    return 0;
}
```

#### Giảm để trị

- Chia bài toán (chia theo dữ liệu) xuất phát thành các bài toán con
- Giải 1 bài toán con và dẫn ra lời giải của bài toán xuất phát (các bài toán con khác không cần giải -> tránh dư thừa)
  - Tìm kiếm nhị phân
  - Tính lũy thừa

#### Tìm kiếm nhị phân

# Mã giả bSearch(a,left, right, x){ if left = right then{ if a[left] = x return left; else return NOT\_FOUND; } mid = (left + right)/2; if a[mid] = x then return mid;

if a[mid] < x return bSearch(a,mid+1, right, x);</pre>

else return bSearch(a,left, mid-1, x);

Độ phức tạp O(logn), với n là độ dài dãy từ chỉ số left đến chỉ số right

#### Tính x<sup>n</sup>

```
Mã giả
exp(x,n){
  if n = 1 then return x;
  n2 = n/2;
  a = exp(x,n2);
  if n \mod 2 = 0 then
    return a*a;
  else
    return a*a*x;
```

Độ phức tạp O(logn)

#### Bài tập ví dụ

#### EXPMOD

• Cho số nguyên dương x và N, hãy tính  $x^N$  mod  $10^9+7$ 

#### TRIPLE

Cho dãy N số nguyên dương a<sub>1</sub>, a<sub>2</sub>, ..., a<sub>N</sub> và số nguyên dương K. Hãy đếm xem có bao nhiêu bộ chỉ số (i,j,k) sao cho 1 ≤ i < j < k ≤ N và a<sub>i</sub> + a<sub>j</sub> + a<sub>k</sub> = K