ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

1. Generator drgań wywołujących falę mechaniczną rozchodzącą się z prędkością V=300 m/s, wykonuje drgania opisane równaniem $y(t)=0.004\sin(600\pi t)$. Podaj równanie fali, okres oraz wychylenie z położenia równowagi punktu będącego w odległości x=0.75 m. od źródła drgań, po czasie t=0.01 s.

"latex article amsmath

Dane wejściowe:

$$V = 300 \text{ m/s}$$

 $y(t) = 0.004 \sin(600\pi t)$
 $x = 0.75 \text{ m}$
 $t = 0.01 \text{ s}$

1. Równanie fali:

Ogólne równanie fali:

$$y(x,t) = A\sin(2\pi ft - kx) \tag{1}$$

gdzie:

$$A=0.004$$

$$f=300\,\mathrm{Hz}\quad (\mathrm{wyznaczone}\ \mathrm{z}\ 600\pi=2\pi f,\,\mathrm{wiec}\ f=300)$$

$$k=\frac{2\pi}{\lambda}$$

$$\lambda=\frac{V}{f}=\frac{300}{300}=1\,\mathrm{m}$$

Podstawiamy wartości:

$$y(x,t) = 0.004\sin(2\pi \times 300 \times t - \frac{2\pi}{1} \times x)$$
 (2)

2. Okres fali:

Ze wzoru na czestotliwość:

$$T = \frac{1}{f} = \frac{1}{300} \,\mathrm{s} \approx 0.00333 \,\mathrm{s} \tag{3}$$

3. Wychylenie z położenia równowagi w punkcie $x=0.75~\mathrm{m}$ po czasie $t=0.01~\mathrm{s}$:

Stosujemy równanie fali:

$$y(0.75, 0.01) = 0.004 \sin(2\pi \times 300 \times 0.01 - 2\pi \times 0.75)$$
$$= 0.004 \sin(6\pi - 1.5\pi)$$
$$= 0.004 \sin(4.5\pi)$$

Ponieważ $\sin(4.5\pi) = \sin(\pi + 1.5\pi) = -\sin(1.5\pi)$, wiec:

$$y(0.75, 0.01) = 0.004 \times (-1)$$

= -0.004

$$y(0.75, 0.01) = -0.004 \,\mathrm{m} \tag{4}$$