$12a_{0717} (K12a_{0717})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{44} + u^{43} + \dots + 3u^2 - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 44 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{44} + u^{43} + \dots + 3u^2 - 1 \rangle$$

(i) Arc colorings

$$a_{7} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u \\ u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} u^{2} + 1 \\ -u^{4} - 2u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{3} - 2u \\ u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{6} - 3u^{4} - 2u^{2} + 1 \\ u^{6} + 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{9} + 4u^{7} + 5u^{5} - 3u \\ -u^{9} - 3u^{7} - 3u^{5} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{12} + 5u^{10} + 9u^{8} + 4u^{6} - 6u^{4} - 5u^{2} + 1 \\ -u^{12} - 4u^{10} - 6u^{8} - 2u^{6} + 3u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{15} - 6u^{13} - 14u^{11} - 12u^{9} + 6u^{7} + 16u^{5} + 4u^{3} - 4u \\ u^{15} + 5u^{13} + 10u^{11} + 7u^{9} - 4u^{7} - 8u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{34} + 13u^{32} + \dots - 3u^{2} + 1 \\ -u^{34} - 12u^{32} + \dots - 12u^{4} - u^{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{18} - 7u^{16} - 20u^{14} - 25u^{12} - u^{10} + 31u^{8} + 24u^{6} - 6u^{4} - 9u^{2} + 1 \\ u^{20} + 8u^{18} + 26u^{16} + 40u^{14} + 17u^{12} - 32u^{10} - 42u^{8} - 6u^{6} + 11u^{4} + 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $4u^{42} + 4u^{41} + \cdots + 16u + 6$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{44} + 19u^{43} + \dots + 6u + 1$
c_{2}, c_{7}	$u^{44} + u^{43} + \dots + 3u^2 - 1$
c_3, c_4, c_5 c_9, c_{10}	$u^{44} - u^{43} + \dots - 10u - 1$
c_6, c_{11}, c_{12}	$u^{44} + u^{43} + \dots + 3u^2 - 1$
c ₈	$u^{44} + 3u^{43} + \dots - 6u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{44} + 13y^{43} + \dots + 22y + 1$
c_2, c_7	$y^{44} - 19y^{43} + \dots - 6y + 1$
c_3, c_4, c_5 c_9, c_{10}	$y^{44} - 59y^{43} + \dots - 54y + 1$
c_6, c_{11}, c_{12}	$y^{44} + 33y^{43} + \dots - 6y + 1$
c ₈	$y^{44} - 7y^{43} + \dots - 82y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.082710 + 1.034130I	-1.54661 + 2.05611I	8.37488 - 3.95223I
u = 0.082710 - 1.034130I	-1.54661 - 2.05611I	8.37488 + 3.95223I
u = 0.936863 + 0.009278I	16.2934 + 1.8100I	14.1723 - 0.1493I
u = 0.936863 - 0.009278I	16.2934 - 1.8100I	14.1723 + 0.1493I
u = -0.935926 + 0.016671I	14.5097 - 7.3192I	11.79267 + 4.65141I
u = -0.935926 - 0.016671I	14.5097 + 7.3192I	11.79267 - 4.65141I
u = -0.922774	10.3646	8.49180
u = 0.334170 + 1.145250I	0.99109 - 2.19513I	8.38399 + 2.00652I
u = 0.334170 - 1.145250I	0.99109 + 2.19513I	8.38399 - 2.00652I
u = 0.111285 + 1.222780I	-3.02800 + 1.82177I	4.52707 - 4.00785I
u = 0.111285 - 1.222780I	-3.02800 - 1.82177I	4.52707 + 4.00785I
u = -0.332008 + 1.184600I	2.37614 - 2.74113I	10.71959 + 3.57074I
u = -0.332008 - 1.184600I	2.37614 + 2.74113I	10.71959 - 3.57074I
u = 0.735559 + 0.086101I	4.16453 + 6.09152I	11.57779 - 6.23652I
u = 0.735559 - 0.086101I	4.16453 - 6.09152I	11.57779 + 6.23652I
u = -0.737441 + 0.045521I	5.81912 - 1.13182I	14.6136 + 0.8297I
u = -0.737441 - 0.045521I	5.81912 + 1.13182I	14.6136 - 0.8297I
u = 0.254973 + 1.238130I	-2.72721 + 3.14387I	2.66290 - 3.97664I
u = 0.254973 - 1.238130I	-2.72721 - 3.14387I	2.66290 + 3.97664I
u = -0.052643 + 1.271300I	-6.04499 + 0.87730I	-2.26593 + 0.I
u = -0.052643 - 1.271300I	-6.04499 - 0.87730I	-2.26593 + 0.I
u = -0.125668 + 1.277410I	-5.21494 - 5.74437I	0. + 7.95874I
u = -0.125668 - 1.277410I	-5.21494 + 5.74437I	0 7.95874I
u = -0.317064 + 1.252810I	1.82759 - 4.91922I	6.00000 + 0.I
u = -0.317064 - 1.252810I	1.82759 + 4.91922I	6.00000 + 0.I
u = 0.310157 + 1.277730I	-0.05454 + 9.83837I	0 8.98455I
u = 0.310157 - 1.277730I	-0.05454 - 9.83837I	0. + 8.98455I
u = -0.463937 + 1.280720I	10.59120 + 2.33116I	0
u = -0.463937 - 1.280720I	10.59120 - 2.33116I	0
u = -0.447547 + 1.289390I	6.35891 - 4.89040I	0

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.447547 - 1.289390I	6.35891 + 4.89040I	0
u = 0.461829 + 1.286920I	12.32910 + 3.17505I	0
u = 0.461829 - 1.286920I	12.32910 - 3.17505I	0
u = 0.455030 + 1.300690I	12.21970 + 6.77393I	0
u = 0.455030 - 1.300690I	12.21970 - 6.77393I	0
u = -0.451869 + 1.305610I	10.3943 - 12.2700I	0
u = -0.451869 - 1.305610I	10.3943 + 12.2700I	0
u = 0.612221	1.07090	8.97140
u = -0.406842 + 0.274492I	-0.57374 - 3.95128I	7.80963 + 8.87694I
u = -0.406842 - 0.274492I	-0.57374 + 3.95128I	7.80963 - 8.87694I
u = -0.161520 + 0.396177I	-1.30168 + 1.57408I	3.52762 - 0.39378I
u = -0.161520 - 0.396177I	-1.30168 - 1.57408I	3.52762 + 0.39378I
u = 0.405167 + 0.094355I	0.790867 + 0.101940I	13.27829 - 1.93262I
u = 0.405167 - 0.094355I	0.790867 - 0.101940I	13.27829 + 1.93262I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{44} + 19u^{43} + \dots + 6u + 1$
c_2, c_7	$u^{44} + u^{43} + \dots + 3u^2 - 1$
c_3, c_4, c_5 c_9, c_{10}	$u^{44} - u^{43} + \dots - 10u - 1$
c_6, c_{11}, c_{12}	$u^{44} + u^{43} + \dots + 3u^2 - 1$
c ₈	$u^{44} + 3u^{43} + \dots - 6u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{44} + 13y^{43} + \dots + 22y + 1$
c_2, c_7	$y^{44} - 19y^{43} + \dots - 6y + 1$
c_3, c_4, c_5 c_9, c_{10}	$y^{44} - 59y^{43} + \dots - 54y + 1$
c_6, c_{11}, c_{12}	$y^{44} + 33y^{43} + \dots - 6y + 1$
c ₈	$y^{44} - 7y^{43} + \dots - 82y + 1$