Engineering Circuits Analysis (ICE2002) Chapter 6. Inductance, Capacitance, and Mutual Inductance - Part1/2/3

Contents

- The inductor
- The capacitor
- Series-Parallel Combinations of Inductance and Capacitance
- Mutual Inductance (skip)

Circuit Elements

Voltage sources

Voltage & current sources

Resistors

Capacitors

Inductors

Circuit Elements

5 ideal basic circuit elements

- Voltage source
- Current source
- Resistor
- Inductor
- Capacitor

Active elements,

capable of generating electric energy

Passive elements,

incapable of generating electric energy

In Chapter 6,

 AC voltage sources, current sources, and inductors/capacitors can be described by plotting the voltage (v)/ current (i) as a function of current (i)/ voltage (v).

Review Chapter 2: Resistor and Ohm's Law

Ohm's law establishes the proportionality of voltage and current in a resistor. It states that the voltage across a resistor is directly proportional to the current I flowing through the resistor.

where v = Ri v =the voltage in volts, i =the current in amperes, v = the voltage in volts, R =the resistance in ohms.

Inductor

- An inductor is a passive element designed to store energy in its magnetic field.
- It is a coil of wire wound around supporting magnetic/or nonmagnetic core material.

바막타입 권선타입 3 Wetal Composite ② Cu Plated Coil ③ Cu Wire Coil ④ PCB Substrate ⑤ External Electrode Ni/Sn Plating SAMSUNG 삼성전기

Ref) https://www.electronics-tutorials.ws/inductor/inductor.html

Inductor

 Inductance is a linear circuit parameter that relates the voltage induced by a time-varying magnetic field to the current producing the field.

The graphic symbol for an inductor with an inductance of henrys [H].

(b)

Assigning reference voltage and current to the inductor following the passive sign convention.

Where

v is measured in volts [V], L in henrys [H],i in amperes [A], and t in seconds [s].

Q. The independent current source in the circuit generates the pulse current.

$$i = 0, t < 0$$

$$i = 10te^{-5t}A, t > 0$$

Current waveform

Voltage waveform

Voltage, Current, Power, Energy in an Inductor

Inductor I (current) - V (voltage) equation

$$v = L \frac{di}{dt}$$

where v is measured in volts [V], L in henrys [H], i in amperes [A], and t in seconds [s].

$$i(t) = \frac{1}{L} \int_{t_0}^t v dt + i(t_0)$$

where $i(t_0)$ is the value of the inductor current at the

time when we initiate the integration, namely, t_0 .

Q. The independent voltage source in the circuit below generates the voltage pulse.

$$v = 0, t < 0$$

$$v = 20te^{-10t} \text{ V}, \quad t > 0$$

Voltage waveform

Current waveform

Q. The independent voltage source in the circuit below generates the voltage pulse.

Voltage waveform

Current waveform

Voltage, Current, Power, Energy in an Inductor

Power (P) and Energy (w) in an Inductor

$$P = \left(L\frac{di}{dt}\right)i \quad [W]$$

$$P = \left(L\frac{di}{dt}\right)i \quad [W] \qquad P = v\left(\frac{1}{L}\int_{t0}^{t}vd\tau + i(t0)\right) \quad [W]$$

$$w = \frac{1}{2}Li^2 \qquad [J]$$

Q. Find i, v, P and w of the circuit below

$$i = 0, t < 0$$

$$i = 10te^{-5t}A, t > 0$$

Current waveform

Voltage waveform

Q. Find i, v, P and w of the circuit below

Capacitor

- A capacitor is a passive element designed to store energy in its electric field.
- It consists of two conducting plates separated by an insulator (or dielectric).

$$q = C v$$
 and $C = \frac{\varepsilon A}{d}$

- where
 - ε is the permittivity of the dielectric material between the plates,
 - A is the surface area of each plate,
 - <u>d</u> is the distance between the plates.
- Unit: F, pF (10⁻¹²), nF (10⁻⁹), and μF (10⁻⁶)

Capacitor

 Capacitance is a linear circuit parameter that relates the current induced by a time-varying electric field to the voltage producing the field.

The graphic symbol for a capacitor with a capacitance of farads [F].

Assigning reference voltage and current to the capacitor, following the passive sign convention.

where

i in amperes [A], *C* in farads [F], *v* is measured in volts [V], and t in seconds [s].

Voltage, Current, Power, Energy in a Capacitor

Capacitor I (current) - V (voltage) equation

$$i = C \frac{dv}{dt}$$

where i in amperes [A], C in farads [F],v is measured in volts [V], and t in seconds [s].

$$v(t) = \frac{1}{C} \int_{t_0}^t idt + v(t_0)$$

 $v(t) = \frac{1}{C} \int_{t_0}^{t} idt + v(t_0)$ where $v(t_0)$ is the value of the capacitor voltage at the time when we initiate the integration namely to time when we initiate the integration, namely, t_0 .

Voltage, Current, Power, Energy in an Inductor

Power (P) and Energy (w) in an Inductor

$$\frac{v}{i}$$

$$P = v \left(C \frac{dv}{dt} \right) \quad [W]$$

$$P = v\left(C\frac{dv}{dt}\right) \quad [W] \quad P = \left(\frac{1}{C}\int_{t_0}^t id\tau + v(t_0)\right)i \quad [W]$$

$$w = \frac{1}{2}Cv^2 \qquad [J]$$

Q. The voltage across the terminals of a 0.5 μ F capacitor is:

$$= 0[V] t \le 0s$$

$$v(t) = 4t[V] 0s \le t \le 1s$$

$$= 4e^{-(t-1)}[V] t \ge 1s$$

Q. The voltage across the terminals of a 0.5 μ F capacitor is:

$$= 0[V] t \le 0s$$

$$v(t) = 4t[V] 0s \le t \le 1s$$

$$= 4e^{-(t-1)}[V] t \ge 1s$$

Q. The current across the terminals of a 0.2 μ F capacitor is:

$$= 0[A] t \le 0$$

$$i(t) = 5000t[A] 0s \le t \le 20\mu s$$

$$= 0.2 - 5000t[A] 20\mu s \le t \le 40\mu s$$

$$= 0[A] t \ge 40\mu s$$

Q. The current across the terminals of a 0.2 μ F capacitor is:

$$= 0[A] t \le 0$$

$$i(t) = 5000t[A] 0s \le t \le 20\mu s$$

$$= 0.2 - 5000t[A] 20\mu s \le t \le 40\mu s$$

$$= 0[A] t \ge 40\mu s$$

V, I, P, W in an Inductor

Inductor I (current) - V (voltage) equation

$$v = L \frac{di}{dt}$$

where v is measured in volts [V], L in henrys [H], i in amperes [A], and t in seconds [s].

$$i(t) = \frac{1}{L} \int_{t_0}^t v dt + i(t_0)$$

where $i(t_0)$ is the value of the inductor current at the

 $I(t_0)$ is the value of the inductor current at the time when we initiate the integration, namely, t_0 .

V, I, P, W in an Inductor

Power (P) and Energy (w) in an Inductor

$$P = \left(L\frac{di}{dt}\right)i \quad [W]$$

$$P = \left(L\frac{di}{dt}\right)i \quad [W] \qquad P = v\left(\frac{1}{L}\int_{t0}^{t}vd\tau + i(t0)\right) \quad [W]$$

$$w = \frac{1}{2}Li^2 \qquad [J]$$

V, I, P, W in a Capacitor

Capacitor I (current) - V (voltage) equation

$$i = C \frac{dv}{dt}$$

where i in amperes [A], C in farads [F], v is measured in volts [V], and t in seconds [s].

$$v(t) = \frac{1}{C} \int_{t_0}^t idt + v(t_0)$$

 $v(t) = \frac{1}{C} \int_{t_0}^{t} idt + v(t_0)$ where $v(t_0)$ is the value of the capacitor voltage at the time when we initiate the integration namely to time when we initiate the integration, namely, t_0 .

V, I, P, W in a Capacitor

Power (P) and Energy (w) in a capacitor

$$\frac{}{v}$$

$$P = v \left(C \frac{dv}{dt} \right) \quad [W]$$

$$P = v \left(C \frac{dv}{dt} \right) \quad [W] \quad P = \left(\frac{1}{C} \int_{t_0}^t i d\tau + v(t_0) \right) i \quad [W]$$

$$w = \frac{1}{2}Cv^2 \qquad [J]$$

Series-Parallel Combinations of L and C

Series-parallel combinations of inductors or capacitors can be reduced to a single inductor or capacitor.

Inductors in Series and Parallel

Inductors in series

$$v = v_1 + v_2 + v_3$$

$$v_1 = L_1 \frac{di}{dt}$$
 $v_2 = L_2 \frac{di}{dt}$ $v_3 = L_3 \frac{di}{dt}$

Combining inductors in series

Inductors in Series and Parallel

Inductors in parallel

$$i = i_1 + i_2 + i_3$$

$$i_1 = \frac{1}{L_1} \int_{t_0}^{t} v dt + i_1(t_0)$$

$$i_2 = \frac{1}{L_2} \int_{t_2}^{t} v dt + i_2(t_0)$$

$$i_{2} = \frac{1}{L_{2}} \int_{t_{0}}^{t} v dt + i_{2}(t_{0})$$

$$i_{3} = \frac{1}{L_{3}} \int_{t_{0}}^{t} v dt + i_{3}(t_{0})$$

Combining inductors in parallel

$$\frac{1}{L_{\text{eq}}} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$$

$$i(t_0) = i_1(t_0) + i_2(t_0) + i_3(t_0)$$

$$\frac{1}{L_{eq}} = \sum_{i=1}^{n} \frac{1}{L_i}$$

$$i(t_0) = \sum_{j=1}^{n} i_j(t_0)$$

Inductors in Series and Parallel

Example

$$(1) L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$$

$$(2) i_1 = \frac{L_2}{L_1 + L_2} i$$

$$(3) L_i = L_i$$

Assume that $L_1 = 3$ [mH], $L_2 = 2$ [mH], i=10[A], find i_1 in the given circuit.

$$i_1 = \frac{2}{3+2} \times 10 = 4 [A]$$

Capacitors in series

$$v = v_{1} + v_{2} + v_{3}$$

$$v_{1}(t) = \frac{1}{C_{1}} \int_{t_{0}}^{t} idt + v_{1}(t_{0})$$

$$v_{2}(t) = \frac{1}{C_{2}} \int_{t_{0}}^{t} idt + v_{2}(t_{0})$$

$$v_{3}(t) = \frac{1}{C_{3}} \int_{t_{0}}^{t} idt + v_{3}(t_{0})$$

Combining Capacitors in series

$$\frac{1}{C_{eq}} = \sum_{i=1}^{n} \frac{1}{C_i}$$

$$v(t_0) = \sum_{j=1}^{n} v_j(t_0)$$

Capacitors in parallel

$$i = i_1 + i_2 + i_3$$

$$i_1 = C_1 \frac{dv}{dt}$$
 $i_2 = C_2 \frac{dv}{dt}$ $i_3 = C_3 \frac{dv}{dt}$

Combining Capacitors in parallel

$$C_{eq} = \sum_{i=1}^{n} C_i$$

Example

Assume that $C_1 = 3 \ [\mu F]$, $C_2 = 2 \ [\mu F]$, $V_1 = 10 \ [V]$, find V_2 and V in the given circuit.

$$v_2 = \frac{C_1}{C_2} v_1 = \frac{3}{2} \times 10 = 15 [V]$$

$$v = v_1 + v_2 = 10 + 15 = 25 [V]$$

Example

$$(1) C_{eq} = C_1 + C_2$$

$$(2) i_1 = \frac{C_1}{C_1 + C_2} i$$

$$(3) C_1 i_2 = C_2 i_1$$

Assume that $C_1 = 3 [\mu F]$, $C_2 = 2 [\mu F]$, $i_1 = 6[A]$, find i in the given circuit.

$$i = \frac{C_1 + C_2}{C_1}i_1 = \frac{3+2}{3} \times 6 = 10[A]$$

Q. Find the equivalent inductance, L_{eq} . Find the initial current in the equivalent inductor.

Q. Find the equivalent inductance, L_{eq} . Find the initial current in the equivalent inductor.

Q. Find the equivalent Capacitance, C_{eq} . Find the initial voltage across the equivalent capacitor.

Q. Find the equivalent Capacitance, C_{eq} . Find the initial voltage across the equivalent capacitor.

Summary

- Inductor & Capacitor
 - IV equation
 - power and energy
- Series-Parallel Combinations of Inductance and Capacitance
- >> Summarized in Table 6.1

Table 6.1

	Inductors	Capacitors
Primary v-i equation	$v(t) = L \frac{di(t)}{dt}$	$i(t) = C \frac{dv(t)}{dt}$
Alternate v-i equation	$i(t) = \frac{1}{L} \int_{t_0}^t v(\tau) d\tau + i(t_0)$	$v(t) = \frac{1}{C} \int_{t_0}^{t} i(\tau) d\tau + v(t_0)$
Initial condition	$i(t_0)$	$v\left(t_{0} ight)$
Behavior with a constant source	If $i(t) = I, v(t) = 0$ and the inductor behaves like a short circuit	If $v(t) = V$, $i(t) = 0$ and the capacitor behaves like an open circuit
Continuity requirement	i(t) is continuous for all time so $v(t)$ is finite	v(t) is continuous for all time so $i(t)$ is finite
Power equation	$p(t) = v(t)i(t) = Li(t)\frac{di(t)}{dt}$	$p(t) = v(t)i(t) = Cv(t)\frac{dv(t)}{dt}$
Energy equation	$w(t) = \frac{1}{2} Li(t)^2$	$w(t) = \frac{1}{2} Cv(t)^2$
Series-connected equivalent	$L_{eq} = \sum_{j=1}^{n} L_{j}$ $i_{eq}(t_{0}) = i_{j}(t_{0}) \text{ for all } j$	$rac{1}{C_{ m eq}} = \sum_{j=1}^{n} rac{1}{C_j}$ $v_{ m eq}(t_0) = \sum_{j=1}^{n} v_j(t_0)$
Parallel-connected equivalent	$\frac{1}{L_{\text{eq}}} = \sum_{j=1}^{n} \frac{1}{L_{j}}$ $i_{\text{eq}}(t_{0}) = \sum_{j=1}^{n} i_{j}(t_{0})$	$C_{\text{eq}} = \sum_{j=1}^{n} C_j$ $v_{\text{eq}}(t_0) = v_j(t_0)$ for all j