

# Learning Transferable Visual Models From Natural Language Supervision

#### **Main presentation**

Alec Radford, Jong Wook Kim, Chris Hallacy, A. Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever, *OpenAI*, 2021.

Presenter: Diego Calanzone

Seminar: Learning with Limited Labeled Data

Academic year: **2021/2022** 





#### Overview

#### Natural Language Supervision: SoTA, ZS performance

- Mapping images to text embeddings
- Learning better image representations
- Exploiting large web data

#### CLIP: motivation, intuition

- Dataset & data pipeline
- Experimental setup, methodological components
- Scaling, data efficiency
- o Performance, robustness, bias
- Limitations and broader impacts

#### • CLIP "spin-offs":

- Multimodal neurons
- Zero-shot text generation: DALL-E









Zero-Shot Learning Through Cross-Modal Transfer R. Socher, M. Ganjoo, C. D. Manning, A. Y. Ng, 2013







Zero-Shot Learning Through Cross-Modal Transfer R. Socher, M. Ganjoo, C. D. Manning, A. Y. Ng, 2013

- <u>Training dataset</u>: CIFAR-100
- Key points: semantic embedding space, novelty detection
- ZS Class. Accuracy: **52.7%** (CIFAR-100, **6** novel classes)







# Zero-Shot Learning Through Cross-Modal Transfer R. Socher, M. Ganjoo, C. D. Manning, A. Y. Ng, 2013

- Training dataset: CIFAR-100
- Key points: semantic embedding space, novelty detection
- ZS Class. Accuracy: 52.7% (CIFAR-100, 6 novel classes)

Manifold of known classes

truck
horse
horse
from unknown

raining images

DeViSE: A Deep Visual-Semantic Embedding Model A. Frome, G. S. Corrado\*, J. Shlens., et al., 2013







# Zero-Shot Learning Through Cross-Modal Transfer R. Socher, M. Ganjoo, C. D. Manning, A. Y. Ng. 2013

- Training dataset: CIFAR-100
- Key points: semantic embedding space, novelty detection
- ZS Class. Accuracy: 52.7% (CIFAR-100, 6 novel classes)



# DeViSE: A Deep Visual-Semantic Embedding Model A. Frome, G. S. Corrado\*, J. Shlens., et al., 2013

- Training dataset: ILSVRC 2012 1K
- <u>Key points</u>: semantic vector prediction, language-model supervision
- ZS Class. Accuracy: 36.4%, ImageNet 2011 21K







Learning Visual N-Grams from Web Data A. Li, A. Jabri, A. Joulin, L. van der Maaten, 2017







### Learning Visual N-Grams from Web Data

A. Li, A. Jabri, A. Joulin, L. van der Maaten, 2017

- <u>Training dataset</u>: YFCC100M (image-comments)
- <u>Key points</u>: ImageNet fine-tuned, n-grams probability distribution, conditional probability
- ZS Classif. Accuracy: 11.5% (ImageNet-1K), 23.0% (SUN), 72.4% (Yahoo)







#### Learning Visual N-Grams from Web Data

A. Li, A. Jabri, A. Joulin, L. van der Maaten, 2017

- <u>Training dataset</u>: YFCC100M (image-comments)
- <u>Key points</u>: ImageNet fine-tuned, n-grams probability distribution, conditional probability
- ZS Classif. Accuracy: 11.5% (ImageNet-1K), 23.0% (SUN), 72.4% (Yahoo)

VirTex: Learning Visual Repr. from Text Annotations *K. Desai, J. Johnson, 2020* 









#### Learning Visual N-Grams from Web Data

A. Li, A. Jabri, A. Joulin, L. van der Maaten, 2017

- <u>Training dataset</u>: YFCC100M (image-comments)
- <u>Key points</u>: ImageNet fine-tuned, n-grams probability distribution, conditional probability
- ZS Classif. Accuracy: 11.5% (ImageNet-1K), 23.0% (SUN), 72.4% (Yahoo)

VirTex: Learning Visual Repr. from Text Annotations K. Desai, J. Johnson, 2020

- <u>Training dataset</u>: COCO-captions (train2017 split)
- <u>Key points</u>: transformer cross-attention with CNN encodings
- Classif. Accuracy: 88.7% (PASCAL VOC07), 53.8% (ImageNet-1K)









### Overview

- Natural Language Supervision: SoTA, ZS performance
  - Mapping images to text embeddings
  - Learning better image representations
  - Exploiting large web data
- CLIP: motivation, intuition
  - Dataset & data pipeline
  - Experimental setup, methodological components
  - Scaling, data efficiency
  - o Performance, robustness, bias
  - Limitations and broader impacts
- CLIP "spin-offs":
  - Multimodal neurons
  - Zero-shot text generation: DALL-E

#### Stanford Cars

correct label: 2012 Honda Accord Coupe correct rank: 1/196 correct probability: 63.30%









# Choice of data & pre-processing pipeline

- **Objective:** high performance in zero-shot and new downstream tasks MS-COCO, Visual Genome  $\rightarrow$  too **small**; YFCC100M  $\rightarrow$  **arguable** quality
- Choice: creating a new dataset "WIT: WebImageText" 400M
  - (image, text) pairs from a list of **500k queries**: words occurring >100 times on Wikipedia
  - Limit of 20k (img-txt) pairs / query
- **Prompt engineering + Ensembling:** tackling polysemy and averaging multiple prompts <u>ie:</u> "a boxer, a type of dog" <u>vs</u>. "a boxer, a type of athlete" Accuracy gain  $\rightarrow$  + ~5%
- **Data overlap analysis:** threshold on image distances in the embedding space → duplicate detection  $\rightarrow$  3.2% avg. overlap  $\rightarrow$  +0.6% accuracy gain





### The foundations of CLIP

#### Contrastive Learning of Medical Visual Representations from Paired Images and Text

Yuhao Zhang, Hang Jiang, Yasuhide Miura, Christopher D. Manning, Curtis P. Langlotz, 2020







### The foundations of CLIP

Image/text embedding vectors:

$$\mathbf{v} = g_v(f_v(\tilde{\mathbf{x}}_v)) \quad \mathbf{u} = g_u(f_u(\tilde{\mathbf{x}}_u))$$

Image → text contrastive loss:

$$\ell_i^{(v \mid u)} = -\log \frac{\exp(\langle \mathbf{v}_i, \mathbf{u}_i \rangle / \tau)}{\sum_{k=1}^{N} \exp(\langle \mathbf{v}_i, \mathbf{u}_k \rangle / \tau)}$$

• Text → image contrastive loss:

$$\ell_i^{(u \mid v)} = -\log \frac{\exp(\langle \mathbf{u}_i, \mathbf{v}_i \rangle / \tau)}{\sum_{k=1}^{N} \exp(\langle \mathbf{u}_i, \mathbf{v}_k \rangle / \tau)}$$

• Loss function:

$$\mathcal{L} = \frac{1}{N} \sum_{i=1}^{N} \left( \lambda \ell_i^{(v \mid u)} + (1 - \lambda) \ell_i^{(u \mid v)} \right)$$



# **Contrastive Language-Image Pretraining (CLIP)**

#### (1) Contrastive pre-training Pepper the Text aussie pup Encoder $T_2$ T<sub>3</sub> $I_1 \cdot T_1$ $I_1 \cdot T_2 \mid I_1 \cdot T_3$ $I_1 \cdot T_N$ $I_2 \cdot T_1$ $I_2 \cdot T_2 \mid I_2 \cdot T_3$ $I_2 \cdot T_N$ Image $I_3 \cdot T_1$ $I_3 \cdot T_2 \quad I_3 \cdot T_3$ $I_3 \cdot T_N$ Encoder

 $I_N \cdot T_1$ 

 $I_N \cdot T_2 \mid I_N \cdot T_3$ 

 $I_N \cdot T_N$ 

(2) Create dataset classifier from label text







### Training setup & choice of the architecture



• Optimizer: Adam+reg., mini-batch size: 32,768, epochs: 32



# Efficiency in scaling the dataset

 Data scaling: CLIP > VirTex, bag of words > sentences





### Efficiency in scaling the model

- Data scaling: CLIP > VirTex, bag of words > sentences
- Model scaling: up to 44x → smooth error decrease (like GPT). Scaling:
  - o img: width, depth, res.
  - txt: width







# Compared classification performance in scaling

- **Data scaling:** CLIP > VirTex, bag of words > sentences
- **Model scaling:** up to  $44x \rightarrow$ smooth error decrease (like GPT). Scaling:
  - img: width, depth, res.
  - txt: width
- Linear probe CLIP-ViT-L/14-336px outperforms the CNN-baseline







#### **Zero-shot Performance**

- <u>StanfordCars, STL10:</u> SoTA performance on datasets with few label examples and a lot of unlabeled data.
- Kinetics700, UCF101: NLS → better context with verbs
- <u>EuroSAT, PatchCamelyon:</u> fine-grained tasks, specific examples → weak

**Advantages with CLIP:** output dynamicity, better text-supervision, pre-trained once.



 aYahoo
 ImageNet
 SUN

 Visual N-Grams
 72.4
 11.5
 23.0

 CLIP
 98.4
 76.2
 58.5





#### Robustness with distributional shifts







• Required **1000x** scaling  $\rightarrow$  SOTA





- Required 1000x scaling → SOTA
- Poor performance in specific/more abstract tasks





- Required 1000x scaling → SOTA
- Poor performance in specific/more abstract tasks
- Underperforms with synthetic data → only 88%
   ZS acc. on MNIST!





- Required 1000x scaling → SOTA
- Poor performance in specific/more abstract tasks
- Underperforms with synthetic data → only 88%
   ZS acc. on MNIST!
- Unfiltered dataset → bias harm
- Inefficient few-shot performance wrt. humans

#### **Broader Impacts**

- "Roll your own classifier" without re-training
- <u>Surveillance</u>: face recognition, emotion recognition, action recognition, geo-localization



|          |                 | Accuracy | Majority Vote<br>on Full Dataset | Accuracy<br>on Guesses | Majority Vote<br>Accuracy<br>on Guesses |
|----------|-----------------|----------|----------------------------------|------------------------|-----------------------------------------|
| ſ        | Zero-shot human | 53.7     | 57.0                             | 69.7                   | 63.9                                    |
| L        | Zero-shot CLIP  | 93.5     | 93.5                             | 93.5                   | 93.5                                    |
| <b>V</b> | One-shot human  | 75.7     | 80.3                             | 78.5                   | 81.2                                    |
|          | Two-shot human  | 75.7     | 85.0                             | 79.2                   | 86.1                                    |





# "Spin-offs" of CLIP

- CLIP for Surveillance
  - Search through frames in video
  - "Roll your own classifier"
- <u>Multi-modal neurons</u> found in CLIP
  - Neurons that respond to particular inputs
  - Work similarly to the brain's neurons
  - They organize highly abstract concepts
- Zero-shot image generation: DALL-E
  - VQ-VAE + GPT-style Transformer
  - CLIP to rank generated images

#### Christmas









Any

Text

Face

Logo



# Thanks for listening!

#### Questions are welcome.

(More on DALL-E & multi-modal neurons in the Q&A if requested)

TEXT PROMPT

a store front that has the word 'openai' written on it. . . .

#### AI-GENERATED IMAGES









#### West Africa









Any

Text

ace

Logo

#### USA









Face

Logo



For notebook examples, further insights, sources, I made a repo!

https://github.com/halixness/understanding-CLIP





### Multimodal neurons in CLIP: visualizing concepts

By **optimization** (ie. with GANs/ AEs) → find images that **maximize the activation** of a component https://distill.pub/2017/feature-visualization/







#### Multimodal neurons in CLIP

#### heart







#### Multimodal neurons in CLIP

#### USA









Any

Text

Face

Logo









Architecture

Indoor

Nature

Pose





#### Multimodal neurons in CLIP



piggy bank



finance



dolls, toys

1.5



barn spider



Spider-Man



animal





# Zero-shot text generation: DALL-E







# Zero-shot text generation: DALL-E





# Zero-shot text generation: DALL-E

TEXT PROMPT

an armchair in the shape of an avocado. . . .

#### AI-GENERATED IMAGES



Edit prompt or view more images ↓

