The University of Melbourne CVEN30008 Engineering Risk Analysis

Tutorial 8

Hypothesis Testing Part 1

- 1. An ultralow particulate air filter is used to maintain uniform airflow in production areas in a clean room. A simple random sample of 58 filters from a certain vendor was tested. The sample mean velocity was 39.6 cm/s, with a standard deviation of 7 cm/s. Let μ represent the mean air velocity obtained from filters supplied by this vendor.
 - Can you conclude that the mean velocity is less than 40 cm/s? (Assume a significant level of 0.05)
 - Use MATLAB to verify your results.

Answer:

 H_0 : $\mu \ge 40$ versus H_1 : $\mu < 40$

$$\bar{X} = 39.6, \, \mu_0 = 40, \, \sigma = 7, \, n = 58$$

Because the sample size is greater than 30, it is large-sample test (Z test).

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{39.6 - 40}{7 / \sqrt{58}} = -0.44$$

P value obtained from Z table for Z<-0.44:

Standard Normal Cumulative Probability Table

Cumulative probabilities for NEGATIVE z-values are shown in the following table:

Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
-3.4	0.0003	0.0003	0.0003	0.0003	0.0 003	0.0003	0.0003	0.0003	0.0003	0.0002	
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003	
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005	
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007	
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010	
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121	
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483	
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859	
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247	
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641	

Hence, P(Z < -0.44) = 0.33

Since the significant level $\alpha = 0.05$ which is smaller than 0.33.

Because $P > \alpha$.

We do not reject H_0 ,

Conclusion: we believe it is plausible that the mean velocity is at least 40 cm/s

MATLAB

Left tail test
p =
 0.3317

alpha =
 0.0500

Since p > alpha, Do not reject H_0

2. A sample of 18 pieces of laminate had a mean warpage of 1.88 mm and a standard deviation of 0.21 mm. Can it be concluded that the mean warpage for this type of laminate is less than 2 mm (assume the significant level is 0.05)? Use MATLAB to verify your results.

Answer:

 H_0 : $\mu \ge 2$ versus H_1 : $\mu < 2$

 $\bar{X} = 1.88, \, \mu_0 = 2, \, s = 0.21, \, n = 18, \, \text{degree of freedom} = n - 1 = 17$

Because the sample size is smaller than 30, it is small-sample test (*t* test).

$$t = \frac{\bar{X} - \mu_0}{s / \sqrt{n}} = \frac{1.88 - 2}{0.21 / \sqrt{18}} = -2.424$$

Take the absolute value of t, P value estimated from t table:

Degrees	Combined Area α in Two Tails										
of Freedom	0.250	0.100	0.050	0.025	0.010	0.005					
1	2.4142	6.3138	12.7062	25.4517	63.6567	127.3213					
2	1.6036	2.9200	4.3027	6.2053	9.9248	14.0890					
3	1.4226	2.3534	3.1824	4.1765	5.8409	7.4533					
4	1.3444	2.1318	2.7764	3.4954	4.6041	5.5976					
5	1.3009	2.0150	2.5706	3.1634	4.0321	4.7733					
6	1.2733	1.9432	2.4469	2.9687	3.7074	4.3168					
7	1.2543	1.8946	2.3646	2.8412	3.4995	4.0293					
8	1.2403	1.8595	2.3060	2.7515	3.3554	3.8325					
9	1.2297	1.8331	2.2622	2.6850	3.2498	3.6897					
10	1.2213	1.8125	2.2281	2.6338	3.1693	3.5814					
11	1.2145	1.7959	2.2010	2.5931	3.1058	3.4966					
12	1.2089	1.7823	2.1788	2.5600	3.0545	3.4284					
13	1.2041	1.7709	2.1604	2.5326	3.0123	3.3725					
14	1.2001	1.7613	2.1448	2.5096	2.9768	3.3257					
15	1.1967	1.7531	2.1314	2.4899	2.9467	3.2860					
16	1.1937	1.7459	2.1199	2.4729	2.9208	3.2520					
17	1.1910	1.7396	2.1098	2.4581	2.8982	3.2224					
18	1.1887	1.7341	2.1009	2.4450	2.8784	3.1966					
19	1.1866	1.7291	2.0930	2.4334	2.8609	3.1737					
20	1.1848	1.7247	2.0860	2.4231	2.8453	3.1534					

From the t table, for t = 2.1098, $P = \alpha/2 = 0.025$; for t = 2.4581, $P = \alpha/2 = 0.0125$. (Because it is two-tailed t table, while the question is one-tailed test, we need to divide the α value as shown in the second row by 2).

We know 2.1098 < t = 2.424 < 2.4581

Hence, 0.025 > P(t>2.424) > 0.0125.

Since P(t < -2.424) = P(t > 2.424),

0.025 > P(t < -2.424) > 0.0125

Because the significant level $\alpha = 0.05$ which is greater than P(t < -2.424).

 $P < \alpha$

We reject H_0 ,

We can conclude that the mean warpage for this type of laminate is less than 2 mm.

MATLAB

```
Command Window
Left tail test
p =
     0.0134

alpha =
     0.0500
Since p <= alpha, Reject H_0
fx >>
```

Note: Matlab verified that P = 0.0134. which is between 0.0125 and 0.025 as stated above