MECÁNICA JUEVES 04	CONT			FACULTAD DE CIENCIAS INSTITUTO DE FISICA y ASTRONOM											de V	alparaí c н i	
APELLIDO PATERN	0			A	P.MAT.		NOMB	RE									

Universidad

- 1.-Una partícula de masa m= 0,80[g]gira en un plano vertical atada a una cuerda de 0,50[m] de largo. Si la Tensión de la cuerda en el punto más alto de su trayectotia es T=2mg, determine:
 - A) La velocidad de la partícula en el punto más alto de su trayectoria.
 - B) La velocidad de la partícula en el punto más bajo de su trayectoria.
 - C) La tensión de la cuerda en el punto más bajo de su trayectoria.

MECÁNICA JUEVES 04	CONT NOVII			FACULTAD DE CIENCIAS INSTITUTO DE FISICA y ASTRONOMI												Universidad deValparaíso CHILE			
APELLIDO PATERN	Ю	U	A	P.MA	Γ.	NON	/BRE												

- 2.-Dos partículas, de masas $m_1 = 1,0[kg]$ y $m_2 = 2,0[kg]$, chocan elásticamente y **después del choque** sus velocidades son: $\vec{v}'_1 = 2,0(-\hat{\imath})[\frac{m}{s}]$ y $\vec{v}'_2 = 1,0(-\hat{\imath})[\frac{m}{s}]$, determine :
- A) El Momento Lineal del Sistema.
- B) La Energía Cinética del Sistema.
- C) La Velocidad de cada partícula antes del choque.

MECANICA JUEVES 04	CON NOV	_			ACU ISTI	NOM	ИIA									
APELLIDO PATERNO							`.	NOM	1BRE							

3.-De una polea fija (M=40[g], R=10[cm], I_0 =0,002[kg·m²]), cuelga una objeto de masa m=0,6[kg] a traves de una cuerda ideal. Determinar la aceleración con que desciende el objeto y la tensión de la cuerda. $\left(I_0 = \frac{1}{2}MR^2\right)$

Universidad deValparaíso

MECÁNICA	CONTROL N°2
JUEVES 04	NOVIEMBRE 202

FACULTAD DE CIENCIAS INSTITUTO DE FISICA y ASTRONOMIA

							l		l						
APELI	JDO I	PATE	NO			Α	P.MAT	Γ.	NOM	1BRE					

4.- Una cruz formada por tres varillas (M,L) y una varilla (2M,2L) tal como se muestra en la figura, gira respecto a un eje Z, perpendicular al plano de rotación, con velocidad angular: $\vec{\omega}$. Si el momento de inercia de cada varilla respecto a un eje ($\frac{1}{2}$ a ellas) que pasa por su extremo es $I_E = \frac{1}{3}ml^2$,

con m masa de la varilla y l largo de ella Determine:

- A) El momento de inercia de la cruz respecto a E.
- B) El Momento Lineal de la cruz, en el instante mostrado en la figura.
- C) La Energía cinética de la cruz.

