Vishay Beyschlag

Precision Flat Chip Resistors

Thin Film Flat Chip Resistors combine the proven reliability of the professional products with an advanced level of precision and stability. Therefore they are perfectly suited for applications in the fields of test and measuring equipment together with industrial and medical electronics. The latest member of this product family size 0402 follows the ongoing trend of miniaturisation and enables precision applications in micro circuit designs.

FEATURES

- Low TC: ± 10 to ± 25 ppm/K
- Precision tolerance of value: ± 0.1 and ± 0.25 %
- Superior overall stability: class 0.1 and 0.25
- Pure Sn termination on Ni barrier layer
- Compatible with lead (Pb)-free and lead containing soldering processes
- Lead (Pb)-free and RoHS compliant

APPLICATIONS

- Automotive
- Test and measuring equipment
- Medical equipment
- Industrial equipment

METRIC SIZE						
INCH:	0402	0603	0805	1206		
METRIC:	RR 1005M	RR 1608M	RR 2012M	RR 3216M		

TECHNICAL SPECIFICA	IIONS		ı						
DESCRIPTION	MCS	MCS 0402		MCT 0603		MCU 0805		MCA 1206	
Metric size	RR 1	005M	RR 1	608M	RR 2	012M	RR 3	216M	
Resistance range	100 Ω to	221 kΩ	39 Ω to	511 kΩ	39 Ω to	1.5 MΩ	39 Ω to	ο 2 ΜΩ	
Resistance tolerance				± 0.25 %	%; ± 0.1 %				
Temperature coefficient			± 25	ppm/K; ± 15	ppm/K; ± 10	ppm/K			
Operation mode	precision	standard	precision	standard	precision	standard	precision	standard	
Climatic category (LCT/UCT/days)	10/85/56	55/125/56	10/85/56	55/125/56	10/85/56	55/125/56	10/85/56	55/125/56	
Rated dissipation, P ₇₀ ¹⁾	0.016 W	0.063 W	0.032 W	0.1 W	0.050 W	0.125 W	0.1 W	0.25 W	
Operating voltage, U _{max} AC/DC	12.5 V	50 V	25 V	75 V	35 V	150 V	50 V	200 V	
Film temperature	85 °C	125 °C	85 °C	125 °C	85 °C	125 °C	85 °C	125 °C	
Max. resistance change at P ₇₀	100 Ω to	221 kΩ	39 Ω to 511 k Ω		39 Ω to 1.5 M Ω		39 Ω to 2 M Ω		
1000 h	≤ 0.1 %	≤ 0.2 %	≤ 0.1 %	≤ 0.2 %	≤ 0.1 %	≤ 0.2 %	≤ 0.05 %	≤ 0.1 %	
8000 h	≤ 0.2 %	≤ 0.4 %	≤ 0.2 %	≤ 0.4 %	≤ 0.2 %	≤ 0.4 %	≤ 0.1 %	≤ 0.25 %	
225000 h	≤ 0.5 %	≤ 1.0 %	≤ 0.5 %	≤ 1.0 %	≤ 0.5 %	≤ 1.0 %	≤ 0.25 %	≤ 0.5 %	
Specified lifetime	2250	000 h	225000 h		225000 h		225000 h		
Insulation voltage :									
1 minute; U _{ins} 75 V		5 V	100 V		200 V		300 V		
continuous	75	5 V	75 V		75 V		75 V		
Failure rate	≤ 2 x	10 ⁻⁹ /h	≤ 2 x	10 ⁻⁹ /h	≤ 2 x	10 ⁻⁹ /h	≤ 2 x	10 ⁻⁹ /h	

Note

^{1.} The power dissipation on the resistor generates a temperature rise against the local ambient, depending on the heat flow support of the printed-circuit board (thermal resistance). The rated dissipation applies only if the permitted film temperature is not exceeded.

Precision Flat Chip Resistors

Vishay Beyschlag

12NC INFORMATION

- The resistors have a 12-digit numeric code starting with 2312.
- The subsequent 4 digits indicate the resistor type, specification and packing; see the 12NC table.
- The remaining 4 digits indicate the resistance value:
 - The first 3 digits indicate the resistance value.
 - The last digit indicates the resistance decade in accordance with the 12NC Indicating Resistance Decade table.

Last Digit of 12NC Indicating Resistance Decade

RESISTANCE DECADE	LAST DIGIT
10 Ω to 99.9 Ω	9
100 Ω to 999 Ω	1
1 kΩ to 9.99 kΩ	2
10 k Ω to 99.9 k Ω	3
100 kΩ to 999 kΩ	4
1 M Ω to 9.99 M Ω	5

12NC Example

The 12 NC of a MCT 0603 resistor, value 47 k Ω and TC 25 with \pm 0.1 % tolerance, supplied in cardboard tape of 5000 units per reel is: 2312 216 74703.

12NC - res	istors type and	packing							
	DECODIDATION			ORDERING CODE 2312					
DESCRIPTION			CARDBOARD TAPE ON REEL						
TYPE	TYPE T.C.		P1 1 000 UNITS	P5 5 000 UNITS	PW 20 000 UNITS	E1 1 000 UNITS	E0 10 000 UNITS		
	± 25 ppm/K	± 0.25 %	-	-	-	261 6	276 6		
		± 0.1 %	-	-	-	261 7	276 7		
MCS 0402	02 ± 15 ppm/K ± 10 ppm/K	± 0.25 %	-	-	-	262 6	277 6		
WCS 0402		± 0.1 %	-	-	-	262 7	277 7		
		± 0.25 %	-	-	-	263 6	278 6		
	± 10 ppm/K	± 0.1 %	-	-	-	263 7	278 7		
	+ 25 nnm/K	± 0.25 %	201 6	216 6	206 6	-	-		
± 25 ppm/K	± 0.1 %	201 7	216 7	206 7	-	-			
MCT 0603	± 15 ppm/K	± 0.25 %	202 6	217 6	207 6	-	-		
WC1 0603		± 0.1 %	202 7	217 7	207 7	-	-		
	. 10//	± 0.25 %	203 6	218 6	208 6	-	-		
	± 10 ppm/K	± 0.1 %	203 7	218 7	208 7	-	-		
	. 05 nnm/V	± 0.25 %	241 6	256 6	246 6	-	-		
	± 25 ppm/K	± 0.1 %	241 7	256 7	246 7	-	-		
MCU 0805	. 15 nnm/l/	± 0.25 %	242 6	257 6	247 6	-	-		
IVICU 0805	± 15 ppm/K	± 0.1 %	242 7	257 7	247 7	-	-		
	± 10 ppm/K	± 0.25 %	243 6	258 6	248 6	-	-		
	± 10 ppm/K	± 0.1 %	243 7	258 7	248 7	-	-		
	± 25 ppm/K	± 0.25 %	381 6	396 6	386 6	-	-		
	± 25 ppiii/K	± 0.1 %	381 7	396 7	386 7	-	-		
MCA 1206	± 15 ppm/K	± 0.25 %	382 6	397 6	387 6	-	-		
IVICA 1200	± 15 ppm/K	± 0.1 %	382 7	397 7	387 7	-	-		
	± 10 ppm/K	± 0.25 %	383 6	398 6	388 6	-	-		
	± 10 ppiii/K	± 0.1 %	383 7	398 7	388 7	-	-		

Resistance ranges printed in bold are preferred T.C./tolerance combinations with optimized availability.

Vishay Beyschlag

Precision Flat Chip Resistors

Note

- 1. Products can be ordered using either the PRODUCT DESCRIPTION or the 12 NC.
- The PART NUMBER is shown to facilitate the introduction of a unified part numbering system. Currently, this PART NUMBER is applicable in the Americas only.
- 3. Please refer to table PACKING, page 151.

DIMENSIONS

DIMENSIONS - CHIP resistor types, mass and relevant physical dimensions									
TYPE	H (mm)	L (mm)	W (mm)	W _T (mm)	T ₁ (mm)	T ₂ (mm)	MASS (mg)		
MCS 0402	0.32 ± 0.05	1.0 ± 0.05	0.5 ± 0.05	> 75 % of W	0.2 + 0.1/- 0.15	0.2 ± 0.1	0.6		
MCT 0603	0.45 + 0.1/- 0.05	1.55 ± 0.05	0.85 ± 0.1	> 75 % of W	0.3 + 0.15/- 0.2	0.3 + 0.15/- 0.2	1.9		
MCU 0805	0.45 + 0.1/- 0.05	2.0 ± 0.1	1.25 ± 0.15	> 75 % of W	0.4 + 0.1/- 0.2	0.4 + 0.1/- 0.2	4.6		
MCA 1206	0.55 ± 0.1	3.2 + 0.1/- 0.2	1.6 ± 0.15	> 75 % of W	0.5 ± 0.25	0.5 ± 0.25	9.2		

For technical questions contact: <u>ff3aresistors@vishay.com</u>

Document Number: 28700
Revision: 28-Nov-05

Precision Flat Chip Resistors

Vishay Beyschlag

TEMPERATURE C	EMPERATURE COEFFICIENT AND RESISTANCE RANGE							
DESCR	RIPTION		RESISTANCE VALUE (1)					
T.C.	TOLERANCE	MCS 0402	MCT 0603	MCU 0805	MCA 1206			
. 25 ppm/V	± 0.25 %	100 Ω to 221 k Ω	39 Ω to 511 k Ω	39 Ω to 1.5 M Ω	39 Ω to 2 M Ω			
± 25 ppm/K	± 0.1 %	150 Ω to 221 k Ω	47 Ω to 511 k Ω	47 Ω to 1.5 M Ω	47 Ω to 2 M Ω			
± 15 ppm/K	± 0.25 %	100 Ω to 150 k Ω	39 Ω to 332 k Ω	39 Ω to 1 M Ω	39 Ω to 1.5 M Ω			
± 15 μμπ/κ	± 0.1 %	150 Ω to 150 k Ω	47 Ω to 332 k Ω	47 Ω to 1 M Ω	47 Ω to 1.5 M Ω			
. 10 nnm/k(2)	± 0.25 %	100 Ω to 130 k Ω	39 Ω to 221 k Ω	39 Ω to 511 k Ω	39 Ω to 1 M Ω			
± 10 ppm/K ⁽²⁾	± 0.1 %	150 Ω to 130 k Ω	47 Ω to 221 k Ω	47 Ω to 511 k Ω	47 Ω to 1 M Ω			

Note

- 1. Resistance values to be selected from E96 and E192 series, other values are available on request.
- 2. TC 10 is specified over the temperature range from 10 °C to 85 °C.

Resistance ranges printed in bold are preferred T.C./tolerance combinations with optimized availability.

PACKING					
	REEL				
MODEL	PIECES/ PAPER TAPE ON REEL	CODE			
MCS0402	1000	E1			
WC30402	10000	E0			
	1000	P1			
MCT0603	5000	P5			
	20000	PW			
	1000	P1			
MCU0805	5000	P5			
	20000	PW			
	1000	P1			
MCA1206	5000	P5			
	20000	PW			

Vishay Beyschlag

Precision Flat Chip Resistors

DESCRIPTION

Production is strictly controlled and follows an extensive set of instructions established for reproducibility. A homogeneous film of metal alloy is deposited on a super high grade (96 % Al_2O_3) ceramic substrate and conditioned to achieve the desired temperature coefficient. Specially designed inner contacts are deposited on both sides. A special laser is used to achieve the target value by smoothly fine trimming the resistive layer without damaging the ceramics. A further conditioning is applied in order to stabilize the trimming result. The resistor elements are covered by a blue protective coating designed for electrical, mechanical and climatic protection. The terminations receive a final pure tin on nickel plating.

The result of the determined production is verified by an extensive testing procedure and optical inspection performed on 100 % of the individual chip resistors. Only accepted products are laid directly into the paper tape in accordance with **EN 60286-3**.

ASSEMBLY

The resistors are suitable for processing on automatic SMD assembly systems and for automatic soldering using wave, reflow or vapour phase. The encapsulation is resistant to all cleaning solvents commonly used in the electronics industry, including alcohols, esters and aqueous solutions. The resistors are lead (Pb)-free, the pure tin plating provides compatibility with lead (Pb)-free and lead-containing soldering processes. The immunity of the plating against tin whisker growth has been proven under extensive testing. All products comply with the CEFIC-EECA-EICTA list of legal restrictions on hazardous substances.

This includes full compatibility with the following directives:

- 2000/53/EC End of Vehicle life Directive (ELV)
- 2000/53/EC Annex II to End of Vehicle Life Directive (ELV II)
- 2002/95/EC Restriction of the use of Hazardous Substances Directive (RoHS)
- 2002/96/EC Waste Electrical and Electronic Equipment Directive (WEEE)

Solderability is specified for 2 years after production or re-qualification. The permitted storage time is 20 years.

APPROVALS

The resistors are tested in accordance with EN 140401-801 (superseding CECC 40401-801) which refers to EN 60115-1 and EN 140400. Approval of conformity is indicated by the CECC logo on the package label.

Vishay BEYSCHLAG has achieved "Approval of Manufacturer" in accordance with EN 100114-1. The release certificate for "Technology Approval Schedule" in accordance with CECC 240001 based on EN 100114-6 is granted for the Vishay BEYSCHLAG manufacturing process.

SPECIALS

On request, resistors are available with established reliability in accordance with **EN 140 401-801 Version E**. Please refer to the special data sheet for information on failure rate level, available resistance ranges and order codes.

For technical questions contact: ff3aresistors@vishay.com

www.vishay.com

Precision Flat Chip Resistors

Vishay Beyschlag

FUNCTIONAL PERFORMANCE

Derating - Standard Operation

Derating - Precision Operation

Current Noise A₁

In accordance with IEC 60195

Resistance Value R

Vishay Beyschlag

Precision Flat Chip Resistors

TEST AND REQUIREMENTS

All tests are carried out in accordance with the following specifications:

EN 60115-1, Generic specification (includes tests)

EN 140 400, Sectional specification (includes schedule for qualification approval)

EN 140 401-801, Detail specification (includes schedule for conformance inspection)

The components are approved in accordance with the European CECC-system, where applicable. The following table contains only the most important tests. For the full test schedule refer to the documents listed above. The testing also covers most of the requirements specified by EIA/IS-703 and JIS-C-5202.

The tests are carried out in accordance with IEC 60068 and under standard atmospheric conditions in accordance with

IEC 60068-1, 5.3. Climatic category LCT/UCT/56 (rated temperature range: Lower Category Temperature, Upper Category Temperature; damp heat, long term, 56 days) is valid. Unless otherwise specified the following values apply:

Temperature: 15 °C to 35 °C Relative humidity: 45 % to 75 %

Air pressure: 86 kPa to 106 kPa (860 mbar to 1 060 mbar).

The components are mounted for testing on boards in accordance with EN 60115-1, 4.31 unless otherwise specified.

The parameters stated in the Test Procedures and Requirements table are based on the required tests and permitted limits of EN 140 401-801. However, some additional tests and a number of improvements against those minimum requirements have been included.

EN 60115-1	IEC 60068-2	2 TEST	PROCEDURE	REQUIREMENTS PERMISSIBLE CHANGE		
CLAUSE	TEST METHOD			STABILITY CLASS 0.1	STABILITY CLASS 0.25	
			stability for product types:			
			MCS 0402	470 Ω to 10 $k\Omega$	> 10 k Ω to 52.3 k Ω	
			MCT 0603	100 Ω to 10 k Ω	39Ω to < 100 Ω; > 10 kΩ to 511 kΩ	
			MCU 0805	100 Ω to 47.5 k Ω	39 Ω to < 100 Ω ; > 47.5 k Ω to 1.5 M Ω	
			MCA 1206	47 Ω to 332 k Ω	39Ω to < 47Ω ; > $332 k\Omega$ to $2 M\Omega$	
4.5	-	resistance		± 0.1 %; ± 0.25 %		
4.8.4.2	-	temperature coefficient	at 20 / - 10 / 20 °C and 20 / 85 / 20 °C	± 25 ppm/K; ± 15	ppm/K; ± 10 ppm/K	
4.25.1	_	endurance at 70 °C: precision operation mode	$U = \sqrt{P_{70} \times R} \text{ or}$ $U = \text{Umax; whichever is the}$ less severe; $1.5 \text{ h on; } 0.5 \text{ h off}$ $70 \text{ °C; } 1000 \text{ h}$ $70 \text{ °C; } 8000 \text{ h}$,	$(3 + 0.02 \Omega)^{1)}$ $(3 + 0.02 \Omega)^{1)}$	
	_	endurance at 70 °C: standard operation mode	$U = \sqrt{P_{70} \times R} \text{ or}$ $U = \text{Umax; whichever is the}$ $less \text{ severe;}$ $1.5 \text{ h on; } 0.5 \text{ h off}$ $1.5 \text{ h on; } 0.5 \text{ h off}$	_ (O.L /OT		
			70 °C; 1000 h	± (0.2 % F	$R + 0.02 \Omega)^{1)}$	
			70 °C; 8000 h	± (0.4 % F	$R + 0.05 \Omega)^{(1)}$	

For technical questions contact: ff3aresistors@vishay.com

www.vishay.com 154

Precision Flat Chip Resistors

Vishay Beyschlag

EN 60115-1	IEC 60068-2	TEST	PROCEDURE	REQUIRI PERMISSIBI	
CLAUSE	CLAUSE METHOD			STABILITY CLASS 0.1	STABILITY CLASS 0.25
			stability for product types:		
			MCS 0402	470 Ω to 10 k Ω	> 10 k Ω to 52.3 k Ω
			MCT 0603	100 Ω to 10 k Ω	39 Ω to < 100 Ω ; > 10 k Ω to 511 k Ω
			MCU 0805	100 Ω to 47.5 k Ω	39 Ω to < 100 Ω ; > 47.5 k Ω to 1.5 M Ω
			MCA 1206	47 Ω to 332 k Ω	39Ω to < 47Ω ; > $332 k\Omega$ to $2 M\Omega$
4.25.3	-	endurance at upper category temperature	85 °C; 1000h 125 °C; 1000h	± (0.1 % R + 0.02 Ω) ± (0.2 % R + 0.02 Ω)	± (0.2 % R + 0.02 Ω) ± (0.25 % R + 0.05 Ω)
4.24	78 (Cab)	damp heat, steady state	(40 ± 2) °C; 56 days; (93 ± 3) % RH	± (0.1 % R + 0.02 Ω)	± (0.25 % R + 0.05 Ω)
4.23		climatic sequence:			
4.23.2	2 (Ba)	dry heat	UCT; 16 h		
4.23.3	30 (Db)	damp heat, cyclic	55 °C; 24 h; > 90 % RH; 1 cycle		
4.23.4	1 (Aa)	cold	LCT; 2 h		
4.23.5	13 (M)	low air pressure	8.5 kPa; 2 h; 25 ± 10 °C		
4.23.6	30 (Db)	damp heat, cyclic	55 °C; 5 days; > 95 to 100 % RH; 5 cycles LCT = - 55 °C; UCT = 125 °C	± (0.1 % R + 0.02 Ω)	± (0.25 % R + 0.05 Ω)
-	1 (Aa)	cold	- 55 °C; 2h	± (0.05 % F	
4.19	14 (Na)	rapid change of temperature	30 minutes at LCT and 30 minutes at UCT; LCT = - 10 °C UCT = 85 °C; 5 cycles	± (0.05 % F no visible	R + 0.01 Ω)
			LCT = -55 °C; UCT = 125 °C; 1000 cycles	± (0.25 % F no visible	,
4.13	-	short time overload; precision operation mode	$U = 2.5 \times \sqrt{P_{70} \times R} \text{ or}$	± (0.05 % F	R + 0.01 Ω)
		short time overload; standard operation mode	U = 2 x U _{max} ; whichever is the less severe; 5s	± (0.05 % F	R + 0.01 Ω)
4.27	-	single pulse high voltage overload; standard operation mode	severity no. 4: $U = 10 \text{ x}$ $\overline{P_{70} \times R}$ or $U = 2 \text{ x}$ U_{max} ; whichever is the less severe; 10 pulses 10 µs/700 µs	± (0.5 % R no visible	
4.37	-	periodic electric overload; standard operation mode	U = or U = 2 x U _{max} ; whichever is the less severe; 0.1 s on; 2.5 s off; 1000 cycles	± (0.5 % R no visible	

Vishay Beyschlag

Precision Flat Chip Resistors

TEST P	ROCEDUR	ES AND RE	QUIREMENTS - continue	ed .	
EN 60115-1	IEC 60068-2 TEST	TEST	PROCEDURE _	REQUIRI PERMISSIBI	
CLAUSE	METHOD			STABILITY CLASS 0.1	STABILITY CLASS 0.25
			stability for product types:		
			MCS 0402	470 Ω to 10 k Ω	> 10 k Ω to 52.3 k Ω
			MCT 0603	100 Ω to 10 k Ω	39 Ω to < 100 Ω ; > 10 k Ω to 511 k Ω
			MCU 0805	100 Ω to 47.5 k Ω	39 Ω to < 100 Ω ; > 47.5 k Ω to 1.5 M Ω
			MCA 1206	47 Ω to 332 k Ω	39 Ω to < 47 Ω ; > 332 k Ω to 2 M Ω
4.22	6 (Fc)	vibration	endurance by sweeping;	± (0.05 % F	R + 0.01 Ω)
			10 to 2000 Hz; no resonance; amplitude \leq 1.5 mm or \leq 200 m/s ² ; 6 h	no visible	damage
4.17.2	58 (Td)	solderability	solder bath method; SnPb40; non-activated flux (215 ± 3) °C; (3 ± 0.3) s	good tinning (≥	95 % covered);
			solder bath method; SnAg3Cu0,5 or SnAg3,5; non-activated flux (235 ± 3) °C; (2 ± 0.2) s	no visible	damage
4.18.2	58 (Td)	resistance to soldering heat	solder bath method; (260 ± 5) °C; (10 ± 1) s	± (0.05 % F	R + 0.01 Ω)
4.29	45 (XA)	component solvent resistance	isopropyl alcohol + 50 °C; method 2	no visible	damage
4.32	21 (Ue ₃)	shear	RR 1005M and RR 1608M; 9 N		
			RR 2012M and RR 3216M; 45 N	no visible	damage
4.33	21 (Ue ₁)	substrate	depth 2 mm, 3 times	± (0.05 % F	R + 0.01 Ω)
		bending		no visible damage, no op	en circuit in bent position
4.7	-	voltage proof	Urms = U_{ins} ; $60 \pm 5 s$	no flashover o	or breakdown
4.35	-	flammability	IEC 60695-2-2, needle flame test; 10 s	no burning	after 30 s
Special requ	uirements for t	ype MCA 1206			
4.25.1	-	endurance at	$U = \sqrt{P_{70} \times R} \text{ or }$		
		70 °C:	$U = U_{max}$; whichever is the		
		precision	less severe		
		operation	70 °C; 1000 h	± (0.05 % F	R + 0.02 Ω)
		mode	70 °C; 8000 h	± (0.1 % R	
	-	endurance at	$U = \sqrt{P_{70} \times R} \text{ or }$		
		70 °C:	$U = U_{max}$; whichever is the		
		standard	less severe		
		operation mode	70 °C; 1000 h 70 °C; 8000 h	± (0.1 % R ± (0.25 % F	
	L	l .	70 0,000011	± (U.20 /0 F	1 1 0.00 32)

Note

- 1. See 4.25.1 (above): special requirements for type MCA 1206.
- The pulse load stability of professional MFC resistors applies for precision resistors also. However, severe pulse loads are likely to jeopardise precision stability requirements.

www.vishay.com 156

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

Document Number: 91000 www.vishay.com Revision: 08-Apr-05