

General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

GL.04
S9

"Made available under NASA sponsorship
in the interest of early and wide dis-
semination of Earth Resources Survey
Program information and without liability
for any use made thereof."

LANDSAT-D Investigations Workshop

May 13-14, 1982

Goddard Space Flight Center

E83-10242
TM-85275

Day 2

E83-21483
M833-21483
(E83-10242) LANDSAT-D INVESTIGATIONS
WORKSHOP (NASA) 265 P HC A12/EF A01
CSCL 05A
G3/43 00242
Unclass

Agenda

LANDSAT-D INVESTIGATIONS WORKSHOP

Friday, 14 May 1982

8:00 am	Informal Investigations Team Interaction	Barker
8:30 am	Introduction to TM Characterization	
	TM Radiometric Sensor Performance	
	● Spectral Information	
	● Absolute Calibration	
	● Ground Processing	
10:15 am	BREAK	
10:30 am	TM Geometric Sensor Performance	Engel
11:30 am	TM Geometric Processing – Flight Segment	Beyer
12:30 pm	Lunch and Informal Investigations Team Interaction	

Friday, 14 May 1982 (Cont.)

1:45 pm	TM Geometric Processing – Ground Segment	Beyer
3:00 pm	Early Access TM Processing	Fischel
3:45 pm	Wrap-Up Panel Discussion	Science Team
4:15 pm	Informal Investigations Team Interaction	

Introduction to TM Characterization

John Barker

Landsat-D Science Office

TM Characterization Objectives

- Characterize Accuracy and Precision of Imagery
- Characterize Accuracy and Precision of Derived Information
- Recommend Landsat-D System Improvements
- Communicate Capabilities to Research Community

Areas of Investigation

- Sensor and Spacecraft Performance
- Image Data Quality
- Applications Information

Support

- Applications Notice (AN) Investigations
- GSFC Support
 - Studies Discipline
 - Procedure and Performance Assessment (PAPA)
- Landsat-D Project
 - SBRC
 - GE
 - CSC
 - ORI

GSFC Support

- **TM Investigations Discipline Support**
 - Studies Planned to Complement AN Investigations
 - Scientific Representatives Support Individual ANs
- **Product and Procedure Assessment (PAPA)**
 - Collection of Interactive Image Analysis Software
 - Accepts Wide Variety of Image Format Inputs (ADT, CCT, IPF, VICAR, etc.)
 - Primarily for In-House Assessment of TM Products and Processing Techniques

Sensor and Spacecraft Performance Characterization

Radiometry of TM

ORIGINAL PAGE IS
OF POOR QUALITY

Radiometric Resolution	Spectral Matching	Filter Detectors	System	Absolute Integrating Sphere Calibration		Precision	Signal-to-Noise	Flood Lamp Calibration
				External Calibration	Internal Calibration			
Anuta					●		●	
Bender					●	●	●	
Slater					●	●	●	
Wrigley					●	●	●	
Ericsson					●	●	●	
Hovis					●	●	●	
Schott					●	●	●	
MacDonald					●	●	●	

Sensor and Spacecraft Performance Characterization Geometry of TM

ORIGINAL PAGE IS
OF POOR QUALITY

Geometry of Image		(Pixel Location)		Attitude		Ephemeris		Sensor Effects		Scan Profile, Reference Detector	
Everett											
Guerney	●										
Keffler	●	●									
Erickson			●								
Wrigley	●	●									
Bender	●	●									
Anuta	●	●	●								
Bernstein	●	●	●	●							
Colewell					●						

Sensor and Spacecraft Performance Characterization

Geometry of TM (con't)

ORIGINAL PAGE IS
OF POOR QUALITY

Geometry of Pixel	Rise Time & Delay Time	Bright Target Recovery Time	MTF (IFOV) or Frequency Response Time	Bowtie Scan Angle Effect	Altitude Effects
Colewell	●	●	●	●	●
Bernstein	●	●	●	●	●
Anuta	●	●	●	●	●
Wrigley			●		
Zobrist			●		●
Erickson			●		
Welch				●	

Image Data Quality Performance Characterization Radiometry of TM

ORIGINAL PAGE IS
OF POOR QUALITY

Spectral Information		Detector Replacement Algorithms		Band Compression Algorithms		Channel-to-Channel		Band-to-Band		Scene Histogram Calibration Algorithms (Radiometric Destriping)		Absolute Scene Radiance Calibration Algorithms		Reflective Band		Thermal Band		Noise Correction Algorithms	
Coleweil																			
Bernstein																			
Anuta			●																
Slater																			
Bender																			
Eriksson																			
Hovis																			
Schott																			
Everett																			
MacDonald																			

Image Data Quality Performance Characterization Geometry of TM

ORIGINAL PAGE IS
OF POOR QUALITY

Geometry of Image (Pixel Location)		Geometry of Image of Pixel		Ground IFOV		Systematic Correction		Geometric Correction with GCPs		Resampling	
MacDonald											
Everett				●	●			●			
Guerney				●	●				●	●	
Kieffer				●	●			●	●	●	
Erickson											●
Zobrist								●		●	●
Wrigley	●					●		●		●	●
Bender					●	●			●	●	●
Anuta		●		●				●			
Bernstein	●		●	●	●				●		

Applications Information – MSS & TM

ORIGINAL PAGE IS
OF POOR QUALITY

TM Radiometric Sensor Performance

- Spectral Information
- Absolute Calibration
- Ground Processing

John Barker

OVERVIEW OF PRESENTATION

- SPECTRAL INFORMATION
- ABSOLUTE CALIBRATION
 - DETECTORS
 - INTERNAL CALIBRATOR
- NOISE CHARACTERIZATION
- POST CALIBRATION SENSOR HISTORY
- VERIFICATION OF CALIBRATION SYSTEM
- POST-LAUNCH TM RADIOMETRIC PRE-PROCESSING PROCEDURES

TM/PF RADIOMETRY
SPECTRAL INFORMATION

- SPECIFICATIONS
- RESULTS
- CALCULATED SPECTRAL RESPONSE CURVES
- COMPARISON OF TM TO MSS
- CONCLUSIONS

TM/PF SPECTRAL PERFORMANCE SPECIFICATIONS

BAND LOCATIONS AND RANGE

<u>BAND</u>	<u>BAND EDGES AT HALF MAXIMUM</u>			<u>CALCULATED BANDWIDTH AT HALF MAXIMUM</u>
	<u>LOWER</u>	<u>UPPER</u>	$\Delta \lambda$	S
	λ_{LS} (nm)	λ_{US} (nm)	(nm)	(nm)
1	450 ± 10	520 ± 10	70 ± 20 *	
2	520 ± 10	600 ± 10	80 ± 20 *	
3	630 ± 20	690 ± 10	60 ± 30 *	
4	760 ± 20	900 ± 10	140 ± 30 *	
5	1550 ± 20	1750 ± 20	200 ± 40 *	
7	2080 ± 30	2350 ± 30	270 ± 60 *	
6 (μm)	10.4 ± .1	12.5 ± .1	2.1 ± .2 *	

ORIGINAL PAGE IS
OF POOR QUALITY

*BANDWIDTH WAS NOT IN SPECIFICATION

TUNER SPECTRAL PERFORMANCE

OBSERVED BAND LOCATIONS AND DIFFERENCES FROM SPECIFICATION

BAND	LOWER BAND EDGE AT HALF MAXIMUM		UPPER BAND EDGE AT HALF MAXIMUM		BANDWIDTH AT HALF MAXIMUM	
	OBSERVED λ_L (NM)	DIFFERENCE $\lambda_L - \lambda_{LS}$ (NM)	OBSERVED λ_U (NM)	DIFFERENCE $\lambda_U - \lambda_{US}$ (NM)	OBSERVED $\Delta\lambda$ (NM)	DIFFERENCE $\Delta\lambda - \Delta\lambda_S$ (NM)
1	452	2	518	-2	66	-4
2	529	9	610	10	81	1
3	624	-6	693	3	69	9
4	776	16	905	5	129	-11
5	1568	18	1784	34 *	216	16
7	2097	17	2347	-3	250	-20
6 (NM)	10,422	.022	11,661	-839 *	1,239	-.861

ORIGINAL PAGE IS
OF POOR QUALITY

*OUT OF SPECIFICATION CHARACTERISTICS

TM/PF SPECTRAL PERFORMANCE SPECIFICATIONS
BAND SHAPES FOR BAND 1, 2, 3 AND 4

BAND	MAXIMUM EDGE INTERVAL (SLOPE)				MINIMUM FLATNESS
	LOWER EDGE RISE FROM 20% TO 70% OF PEAK (NM)	FROM 5% TO 70% OF PEAK (NM)	FROM 70% TO 20% OF PEAK (NM)	FROM 70% TO 5% OF PEAK (NM)	
1	20	30	20	40	75
2	20	30	20	40	75
3	20	30	20	40	75
4	20	30	30	40	75

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF SPECTRAL PERFORMANCE

OBSERVED BAND SHAPES FOR BAND 1, 2, 3 AND 4

BAND	<u>MAXIMUM EDGE INTERVAL (SLOPE)</u>			<u>MINIMUM FLATNESS</u>		
	<u>LOWER EDGE RISE</u>	<u>FROM 20 % FROM 5%</u>	<u>FROM 70% TO 20%</u>	<u>UPPER EDGE FALLOFF</u>	<u>FROM /0% TO 5%</u>	<u>% OF BAND PASS WITHIN 10% OF PEAK</u>
	<u>OF PEAK (NM)</u>	<u>OF PEAK (NM)</u>	<u>OF PEAK (NM)</u>	<u>OF PEAK (NM)</u>	<u>UNCORRECTED (%)</u>	<u>CORRECTED (%)</u>
1	7	14	5	14	32	78
2	20	25	9	19	26	71 *
3	14	21	7	18	65	71 *
4	13	23	9	17	76	-

ORIGINAL PAGE IS
OF POOR QUALITY

* OUT OF SPECIFICATION CHARACTERISTICS

TM/PF SPECTRAL PERFORMANCE
BAND SHAPES FOR BANDS 5, 6 AND 7

BAND	MAXIMUM EDGE INTERVAL (SLOPE)		MINIMUM FLATNESS	
	LOWER EDGE RISE FROM 5% TO 75%	UPPER EDGE FALLOFF FROM 75% TO 5%	% OF BAND PASS WITHIN 10% OF PEAK (20% FOR TM6)	OBSERVED
5	50NM	32NM	50NM	42NM
7	80NM	75NM	80NM	37NM
6	.30 μ M	.25 μ M	.30 μ M	[1.01 μ M]*

* OUT OF SPECIFICATION CHARACTERISTICS

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF BAND 6 SPECTRAL PERFORMANCE

DETECTOR/ TEMPERATURE	BAND EDGES (μm) 50% RESPONSE POINTS	EDGE SLOPES (μm) LOWER IPPFR 5% - 75% 75% - 5%		FLATNESS % OF PASSBAND WITHIN 20% OF MAX
		LOWER	UPPER	
1 / 95 ⁰ K	10.422	[11.600]*	0.252	[1.058]* [67.6]*
2 / 95 ⁰ K	10.419	[11.639]*	0.247	[1.054]* [66.1]*
3 / 95 ⁰ K	10.421	[11.664]*	0.250	[0.997]* [68.7]*
4 / 95 ⁰ K	10.424	[11.740]*	0.257	[0.923]* [66.4]*
4 / 90 ⁰ K	10.424	[11.945]*	0.257	[0.709]* 78.6
4 / 105 ⁰ K **	10.411	[11.327]*	0.240	[1.225]* [70.3]*

ORIGINAL PAGE IS
OF POOR QUALITY

* OUT OF SPECIFICATION CHARACTERISTICS ARE BOXED

** PREDICTION BASED ON ESTABLISHED BEHAVIOR OF HG CD TE

ORIGINAL PAGE IS
OF POOR QUALITY

TM-PROTOFLIGHT BAND 1

ORIGINAL PAGE IS
OF POOR QUALITY

LANDSAT-4 MSS/PF SPECTRAL RESPONSE

BAND 1/CHANNEL 3
(SBRC - JUNE 18, 1981)

ORIGINAL PAGE IS
OF POOR QUALITY

TM-PROTOLIGHT BAND 3

LANDSAT-4 MSS/PF SPECTRAL RESPONSE

BAND 2/CHANNEL 9
(SBRCC - JUNE 18, 1981)

ORIGINAL PAGE IS
OF POOR QUALITY

LANDSAT-4 MSS/PF SPECTRAL RESPONSE
BAND 4/CHANNEL 23
(SBRC - JUNE 18, 1981)

ORIGINAL PAGE IS
OF POOR QUALITY

TM-PROTOLIGHT BAND 5

TM-PROTOFLIGHT BAND 7

ORIGINAL PAGE IS
OF POOR QUALITY

TM-PROTOFLIGHT BAND 6 DETECTOR 1

ORIGINAL PAGE IS
OF POOR QUALITY

**GROUND REFLECTANCE SPECTRA
WITH LANDSAT-4 TM/PF BAND LOCATIONS**

TM/PF RADIOMETRY
SPECTRAL INFORMATION
SUMMARY

SYSTEM LEVEL RSR CURVES WERE CALCULATED BY SBRC BASED ON MEASURED VALUES
AT THE COMPONENT LEVEL

ABSOLUTE CALIBRATION

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

REPRESENTATION OF TM TIME SEQUENCE

205-MIE-411

TYPICAL TM/PF CALIBRATION PULSE

**TM/PF INTERNAL CALIBRATOR LAMP SEQUENCE
SHOWING LAMP OVERSHOOT AND THERMAL RELAXATION**

ORIGINAL PAGE IS
OF POOR QUALITY

ABSOLUTE CALIBRATION
OVERVIEW OF PROCEDURE

DATES FOR THE 6 INTEGRATING SPHERE TESTS

TEST NUMBER	TIME	COMMENTS
-------------	------	----------

1	2300 PDT - 29 JUNE 1981	T(CFPA) = -179.8° CELSIUS
2	0600 PDT - 30 JUNE 1981	T(CFPA) = -168.5° CELSIUS
3	1500 EST - 3 NOVEMBER 1981	NO BANDS 5 AND 7 (HS236-7881)
4	1700 EST - 19 MARCH 1982	MIRROR LOCKED IC AUTO (ON)
5	1200 EST - 19 MARCH 1982	MIRROR SCANNING IC AUTO (ON)
6	1400 EST - 19 MARCH 1982	MIRROR SCANNING IC BACKUP

PF = PROTO FLIGHT UNIT

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF 122-cm INTEGRATING SPHERE SPECTRAL RADIANCE
FOR ABSOLUTE RADIOMETRIC CALIBRATION

ORIGINAL PAGE IS
OF POOR QUALITY

245-000E-441

**ILLUSTRATIVE TM/PF RADIOMETRIC ABSOLUTE
DETECTOR CALIBRATION FOR CHANNEL 9 OF BAND 3
(624-693nm)**

**ILLUSTRATIVE TM/PF RADIOMETRIC ABSOLUTE
DETECTOR CALIBRATION FOR CHANNEL 9 OF BAND 3
(624-693nm)**

INTEGRATING SPHERE SPECTRAL RADIANCE, L ($\text{mW cm}^{-2} \text{sr}^{-1} \mu\text{m}^{-1}$) 246-MIE-142a)

TYPICAL TM/PF DETECTOR RESPONSES (IN MUX UNITS) TEST NUMBER 5

RADIANCE LEVEL 13, 122CM INTEGRATING SPHERE

CHANNEL	TM1	TM2	TM3	TM4	TM5	TM7	BAND
1	24.40	26.92	53.00	76.02	220.43	134.63	
2	23.62	26.28	51.66	74.13	220.83	132.80	
3	24.10	26.06	51.96	75.57	*DEAD*	133.55	
4	24.53	26.42	51.12	74.12	223.32	133.70	
5	24.06	26.45	51.85	74.01	220.84	133.52	
6	23.81	26.52	51.98	74.95	221.13	132.86	
7	23.79	26.06	51.56	74.62	222.65	133.48	
8	24.08	26.25	51.08	74.35	222.07	131.57	
9	23.97	26.13	51.82	74.33	221.34	133.74	
10	24.01	26.15	51.35	77.10	221.28	131.13	
11	23.68	26.00	51.19	73.90	223.41	132.96	
12	24.16	26.03	51.77	74.61	223.55	134.05	
13	23.78	26.24	51.93	75.50	223.14	132.07	
14	23.62	26.43	51.99	74.80	222.16	133.87	
15	23.89	26.48	52.51	73.75	222.53	132.05	
16	23.70	26.03	51.16	74.36	223.59	134.47	
μ	23.95	26.28	51.75	74.76	222.15	133.15	
σ	0.27	0.25	0.52	0.89	1.11	1.02	
CV	1.11	0.94	1.00	1.20	0.50	0.76	
NOMINAL SPECTRAL RADIANCE (MW CM ⁻² SR ⁻¹ μ M ⁻¹)	1.48	3.22	4.92	6.89	2.78	0.88	

DEFINITION OF STATISTICAL QUANTITIES

$$\mu = \frac{\sum x_i}{N}$$

$$\sigma = \sqrt{\frac{(\sum x_i^2) - (\sum x_i)^2/N}{N-1}}$$

$$CV = \frac{\sigma}{\mu} \times 100 \text{ (IN PERCENT)}$$

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF DETECTOR OFFSETS (IN MUX UNITS) FOR BAND 7
ALL INTEGRATING SPHERE TESTS*

DETECTOR	TEST						BAND STATISTICS
	1	2	3	4	5	6	
1	3.83	3.95	--	3.67	3.70	3.72	
2	1.86	1.99	--	3.03	3.11	3.07	
3	3.10	3.21	--	3.06	3.12	3.13	
4	1.95	2.12	--	3.10	3.17	3.19	
5	3.11	3.26	--	2.93	3.02	3.03	
6	2.09	2.20	--	3.13	3.20	3.22	
7	3.86	3.50	--	2.90	3.03	3.05	
8	1.61	1.77	--	3.06	3.11	3.16	
9	2.88	3.04	--	3.00	3.09	3.07	
10	1.35	1.55	--	3.12	3.18	3.21	
11	3.07	3.19	--	2.97	3.06	3.05	
12	1.93	2.06	--	3.20	3.24	3.34	
13	2.83	2.89	--	2.81	2.90	2.88	
14	2.47	2.64	--	3.28	3.32	3.43	
15	2.86	3.02	--	2.79	2.89	2.88	
16	2.46	2.55	--	3.29	3.32	3.38	
							μ
							σ

*SPHERE RADIANCE IS ASSUMED TO BE CONSTANT FOR ALL TESTS

**ORIGINAL PAGE IS
OF POOR QUALITY**

OBJECTIVE

SUMMARIZE GAIN CALIBRATION OF
ALL 96 DETECTORS FOR LATEST DATE

TM/PF DETECTOR GAINS ($\text{WUX/MW cm}^{-2} \text{ sr}^{-1} \mu\text{m}^{-1}$) FOR BAND 1

ALL INTEGRATING SPHERE TESTS*

DETECTOR	TEST					
	1	2	3	4	5	6
1	16.490	16.473	15.750	15.962	15.640	15.635
2	16.405	16.497	15.880	15.891	15.755	15.733
3	16.770	16.762	16.060	16.057	15.921	15.912
4	16.721	16.712	16.070	16.093	15.921	15.982
5	16.612	16.612	15.950	15.910	15.803	15.798
6	16.490	16.468	15.900	15.862	15.726	15.701
7	16.481	16.469	15.870	15.798	15.678	15.671
8	16.567	16.545	15.960	15.896	15.748	15.752
9	16.645	16.643	16.040	15.936	15.817	15.814
10	16.645	16.640	16.080	16.008	15.852	15.861
11	16.526	16.514	15.910	15.814	15.679	15.882
12	16.596	16.590	16.010	15.950	15.808	15.837
13	16.546	16.531	15.920	15.821	15.687	15.682
14	16.492	16.489	15.960	15.857	15.751	15.729
15	16.647	16.633	16.030	15.936	15.775	15.777
16	16.674	16.656	16.060	15.985	15.365	15.820

BAND STATISTICS	\bar{x}	σ	CV	TEST	TEST	TEST
	16.588	0.090	0.543	16.577	15.966	15.910
				0.093	0.092	0.095
				0.561	0.576	0.597

ORIGINAL PAGE IS
OF POOR QUALITY

*SPHERE RADIANCE IS ASSUMED TO BE CONSTANT FOR ALL TESTS

TM/PF DETECTOR AVERAGE GAIN CHANGES*
 ALL INTEGRATING SPHERE TESTS

BAND		TEST					
		1	2	3	4	5	6
1	51	51	12	8	0	0	0
2	12	10	-12	-3	0	0	-6
3	8	5	-18	-3	0	0	-5
4	42	43	41	6	0	1	
5	24	17	--	-2	0	0	-1
7	21	25	--	0	0	0	-1

ORIGINAL PAGE IS
 OF POOR QUALITY

* GAIN CHANGES IN PARTS PER THOUSAND $\left(\frac{X_{OBS} - X_{REF}}{X_{REF}} \right)$
 REFERENCED TO TEST NUMBER 5
 SPHERE RADIANCE IS ASSUMED TO BE CONSTANT FOR ALL TESTS

TM/PF DETECTOR RADIOMETRIC GAINS ($\text{MW}/(\text{MW CM}^{-2} \text{ SR}^{-1} \mu\text{m}^{-1})$) FOR TEST NUMBER 5

RADIANCE SOURCE: 122CM INTEGRATING SPHERE

CHANNEL NUMBER	BAND					
	TM1	TM2	TM3	TM4	TM5	TM7
1	15.640	8.113	10.731	10.936	78.878	150.312
2	15.755	8.057	10.556	10.780	79.147	148.825
3	15.921	7.954	10.544	10.982	*DEAD*	149.762
4	15.921	8.083	10.486	10.795	80.042	149.792
5	15.803	8.135	10.578	10.776	79.122	149.798
6	15.726	8.122	10.617	10.896	79.207	148.744
7	15.678	7.996	10.536	10.778	79.747	149.886
8	15.748	8.018	10.480	10.842	79.494	147.385
9	15.817	8.015	10.599	10.824	79.287	149.982
10	15.852	8.032	10.521	11.253	79.280	146.774
11	15.679	7.938	10.495	10.717	80.008	149.034
12	15.808	7.954	10.597	10.864	80.100	150.005
13	15.687	8.053	10.638	11.018	79.894	148.192
14	15.751	8.080	10.593	10.875	79.588	149.837
15	15.775	8.133	10.722	10.735	79.641	148.247
16	15.865	7.920	10.439	10.792	80.087	150.572
NIS	20	20	17	14	8	11
μ	15.777	8.038	10.571	10.866	79.568	149.197
σ	0.086	0.071	0.082	0.134	0.412	1.395
CV	0.545	0.883	0.776	1.233	0.518	0.734

ORIGINAL PAGE IS
OF POOR QUALITY

NIS = NUMBER OF INTEGRATING SPHERE RADIANCE LEVELS USED FOR GAIN/OFFSET

OBJECTIVE

REPRODUCIBILITY OF ABSOLUTE CALIBRATION FOR ALL BANDS

CONCLUSIONS

- REPRODUCIBILITY OF MEASUREMENT OF GIVEN DATA IS BETTER THAN 1% FOR ALL BANDS
- DIFFERENCES FROM JUNE 81 TO MARCH 82 WERE:
 - 5% IN TM1
 - 4% IN TM4
 - 2% IN TM5 AND TM7
 - 1% IN TM2 AND TM3

TM/PF DETECTOR RADIOMETRIC OFFSETS (IN MUX UNITS) FOR TEST NUMBER 5

RADIANC SOURCE: 122CM INTEGRATING SPHERE

CHANNEL NUMBER	TM1	TM2	TM3	TM4	TM5	TM7
1	1.44	1.35	0.46	1.30	2.90	3.70
2	0.64	0.69	-0.06	0.73	2.56	3.11
3	0.88	0.79	0.26	0.73	*DEAD*	3.12
4	0.81	0.80	-0.16	0.61	2.47	3.17
5	0.91	0.78	-0.05	0.55	2.62	3.02
6	0.76	0.89	-0.02	0.73	2.65	3.20
7	0.84	0.70	-0.08	1.00	2.63	3.03
8	0.81	0.89	-0.09	0.61	2.76	3.11
9	0.88	0.76	-0.10	0.67	2.65	3.09
10	0.71	0.71	-0.14	0.47	2.54	3.18
11	0.78	0.75	-0.15	0.72	2.66	3.06
12	0.75	0.72	-0.15	0.57	2.50	3.24
13	0.82	0.74	-0.21	0.43	2.72	2.90
14	0.68	0.83	0.02	0.69	2.57	3.32
15	0.83	0.73	-0.13	0.49	2.76	2.90
16	0.61	0.82	0.02	0.78	2.59	3.32
NIS	20	17	14	8	11	
\bar{u}	0.82	0.81	-0.04	0.69	2.64	3.16
σ	0.19	0.16	0.17	0.22	0.11	0.19

NIS = NUMBER OF USEABLE INTEGRATING SPHERE RADIANCE LEVELS FOR GAIN/OFFSET DETERMINATION

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF CHANNEL OFFSET (DIGITAL COUNTS) STANDARD DEVIATIONS
 ALL INTEGRATING SPHERE TESTS*

BAND	TEST					
	1	2	3	4	5	6
1	0.342	0.340	--	0.188	0.187	0.184
2	0.165	0.167	--	0.152	0.157	0.161
3	0.199	0.198	--	0.240	0.172	0.194
4	0.220	0.212	--	0.211	0.215	0.217
5	1.084	1.046	--	0.101	0.113	0.094
7	0.745	0.683	--	0.213	0.192	0.215

* SPHERE RADIANCE IS ASSUMED TO BE CONSTANT FOR ALL TESTS

TM/PF INTERNAL TEMPERATURES DURING ABSOLUTE RADIOMETRIC CALIBRATION

	EVEN AMB PA TEMP	SI FPA TEMP	CAL LP FLT TEMP	CLD PAMP TEMP	CLD ST FPA TEMP	CLD ST TEST INDEX
TIME						
29 JUNE	23:32:04 23:39:41	30.18 33.92	21.22 21.89	17.14 17.45	17.45 18.07	-179.74 -179.94
30 JUNE	02:29:56 03:03:05 04:26:44 06:12:06 06:21:07 06:55:33 07:20:49	34.62 28.86 31.18 30.51 33.92 30.18 29.51	21.09 20.82 21.08 21.62 22.43 21.89 21.62	17.45 17.14 19.01 17.76 17.76 17.76 18.08	18.39 16.83 17.76 17.45 18.39 17.45 17.45	-177.24 -177.14 -177.24 -168.54 -168.44 -168.94 -169.24
19 MARCH	09:55:57 10:01:54 MIRROR SCANNING TEST 5	28.85 32.87 43.51 30.17 39.81	26.33 26.94 29.98 27.72 29.32	23.08 23.39 24.66 24.34 24.98	14.04 14.35 16.52 14.66 16.21	-177. -177. -177. -177. -178.

ORIGINAL PAGE IS
OF POOR QUALITY

TM INTERNAL CALIBRATION (IC) SYSTEM

- SCHEMATIC TM
- IC LAMPS AND FIBER OPTICS
- IC SHUTTER MECHANISM
- IC SHUTTER
- PRIMARY FOCAL PLANE GEOMETRY

ORIGINAL PAGE IS
OF POOR QUALITY

DETECTOR ORIENTATION AT PRIMARY FOCAL POINT

OVERVIEW OF THE INTERNAL CALIBRATOR

3 LAMPS, FILTERS
AND FOLDING
OPTICS

ORIGINAL PAGE IS
OF POOR QUALITY

DETAILS OF THE INTERNAL CALIBRATOR OPTICAL SYSTEM

**DETECTOR PROJECTION AT PRIME FOCAL PLANE
(NOT TO SCALE)**

BAND	SEPARA TION, IFOV	OFF-AXIS, DEGREES
6	34.75	0.2492 0.2322
5	25	0.14758
7	45	0.08427
4	25	0.02531
3	25	0.08618
2	25	0.14706
1	25	0.20793 0.21219
16		
2		

ORIGINAL PAGE IS
OF POOR QUALITY

ABSOLUTE CALIBRATION OF
INTERNAL LAMPS

**COMPARISON OF
CALIBRATION PROFILES BETWEEN CHANNELS**

**COMPARISON OF CALIBRATION PROFILES BETWEEN
FORWARD AND REVERSE SCANS**

SBRC CAL VALUE EXTRACTION ALGORITHM

- FIND PEAK VALUE WITHIN THE 160 PIXEL SEARCH WINDOW
- FIND FIRST AND LAST PIXELS WHOSE VALUE EXCEEDS 40 PERCENT OF PEAK VALUE
- DETERMINE PULSE CENTER AS MEAN OF THESE TWO PIXEL POSITIONS
- AVERAGE THE CENTRAL 31 PIXELS ABOUT THE PULSE CENTER

ORIGINAL PAGE IS
OF POOR QUALITY

**TM/PF CALIBRATION PULSE INTEGRATED VALUES
(IN MUX UNITS)**

245-NIE-102b)

ORIGINAL PAGE IS
OF POOR QUALITY

**TM/PF INTERNAL CALIBRATOR LAMP SEQUENCE
SHOWING LAMP TURNON OVERSHOOT**

2-66

SELF-CONSISTENCY CHECK OF DETECTOR CALIBRATION
 TRANSFERENCE TO IC LAMPS IN MUX UNITS
 FOR BAND 1, DETECTOR 9

	1	2	3	4	5	6	TEST
IC LAMP							
SUM CHECK							
SUM1	-1.632	-0.819	+0.222	+0.154	-0.151	+0.64	
SUM2	-0.090	+15.019	+0.044	+0.376	-0.900	-0.67	
SUM3	-0.216	+0.190	+0.780	+0.050	+1.014	+0.44	
							ORIGINAL PAGE IS OF POOR QUALITY
SUM1	= 110	- 100	- 010	+ 000	THREE EQUIVALENT		
SUM2	= 101	- 100	- 001	+ 000	METHODS OF		
SUM3	= 011	- 010	- 001	+ 000	CHECKING CONSISTENCY		

CONCLUSION:

IC CHECKS ARE CONSISTENT FOR TM1 TO WITHIN 1 DIGITAL COUNT EXCEPT IN JUNE 1981
 TESTS

OBJECTIVE:

ILLUSTRATIVE SUMMARY OF LAMP CALIBRATION DATA FOR 6 BANDS X 16 CHANNELS X 8
LAMP CONFIGURATIONS

NOTE:

IC ABSOLUTE CALIBRATION DATA WERE TAKEN SUBSEQUENT TO DETECTOR COLLECTS FROM
INTEGRATING SPHERE, THEREFORE, CALIBRATION OF LAMPS ASSUMES CONSTANCY OF
DETECTOR GAIN AND OFFSET.

TRANSFER OF TM/PF DETECTOR CALIBRATION TO INTERNAL CALIBRATOR (IC) LAMPS

(21:29 EST, 20 MARCH 1982)

DETECTOR 9

IC LAMP CONFIGURATION	TM1	TM2	TM3 BAND	TM4	TM5	TM7
100	6.629	12.462	8.509	8.375	0.549	0.374
110	10.851	22.124	14.639	14.639	1.052	0.672
010	4.312	9.824	6.358	8.721	0.504	0.294
011	7.161	15.494	9.916	12.809	0.790	0.506
111	13.659	27.624	18.085	20.746	1.3**	0.880
101	9.505	18.168	12.076	12.381	0.830	0.581
001	2.952	5.823	2.777	4.242	0.282	0.205
000	0.100	0.176	0.230	0.140	0.003	0.005

IC SPECTRAL RADIANCES (MW CM⁻² SR⁻¹ μM⁻¹) USING TEST 4 GAINS/OFFSETS

*LAMP CONFIGURATION INDICATES WHICH LAMPS ARE ON (E.G., 100 = LAMP A ON, LAMPS B, C OFF.)

ORIGINAL PAGE IS
OF POOR QUALITY

TRANSFER OF TM/PF DETECTOR CALIBRATION TO INTERNAL CALIBRATOR (IC) LAMPS
 (21:29 EST, 20 MARCH 1982)
 DETECTOR 12

IC LAMP CONFIGURATION	TM1	TM2	BAND	TM4	TM5	TM7
100	6.590	11.281	8.795	8.952	0.810	0.364
110	10.559	19.130	15.318	16.762	1.523	0.724
010	4.150	8.039	6.767	8.078	0.715	0.355
011	6.829	12.925	10.619	12.478	1.112	0.579
111	13.317	23.935	10.063	21.065	1.916	0.942
101	9.310	16.158	12.633	13.270	1.208	0.585
001	2.877	5.059	4.066	4.584	0.399	0.217
000	0.072	0.180	0.225	0.140	0.003	0.006

ORIGINAL PAGE IS
OF POOR QUALITY

IC SPECTRAL RADIANCES ($\text{MW cm}^{-2} \text{ sr}^{-1} \mu\text{m}^{-1}$) USING TEST 4 GAINS/OFFSETS

ASSUMPTIONS IN ABSOLUTE CALIBRATION PROCEDURE

ABSOLUTE SPHERE RADIANCE IS CONSTANT AND KNOWN

COLOR TEMPERATURE IS CONSTANT FOR ALL IS LEVELS

GAIN AND OFFSET OF DETECTORS ARE CONSTANT

- DURING INTEGRATING SPHERE COLLECTS
- BETWEEN DATES

PULSE SHAPE IS THE SAME IN AMBIENT AND VACUUM

SHUTTER BACKGROUND IS RANDOM

IMG THERMAL BAND ABSOLUTE CALIBRATION

DATA COLLECTED
MODELS AND CONSTANTS TO BE DETERMINED

PROTOLIGHT BAND 6
GAIN-LINEARITY DATA
FIGURE 2/96K CFP TEMP 24 AUG 1981

HUGHES

ORIGINAL PAGE IS
OF POOR QUALITY

810507-131

NOISE CHARACTERIZATION

OBJECTIVE:

CHARACTERIZE REPRODUCIBILITY OF NOISE AT MAXIMUM AND MINIMUM RADIANCE

CONCLUSION:

- REPRODUCIBLE ON DIFFERENT DATES (BASED ON TMI)
- NOISE WITHIN A BAND IS RELATIVE CONSTANT
- BAND HAS DIFFERENT AVERAGE NOISE

	1	2	3	4	5	7
LOW	1.0	.4	.6	.4	.9	1.0
HIGH	1.6	1.0	1.0	.7	1.4	1.1

**ILLUSTRATIVE TM/PF RADIOMETRIC ABSOLUTE DETECTOR
SIGNAL-TO-NOISE MEASUREMENTS FOR CHANNEL 9 OF BAND 3
(624-693nm)**

TM/PF HIGH SIGNAL NOISE VALUES* (IN MUX UNITS) FOR BAND 1
 ALL INTEGRATING SPHERE TESTS

CHANNEL NO.	TEST					
	1	2	3	4	5	6
1	1.87	1.82	--	1.66	1.68	1.61
2	1.80	1.78	--	1.62	1.75	1.72
3	1.54	1.53	--	1.65	1.54	1.53
4	1.64	1.56	--	2.04	1.84	1.92
5	1.57	1.56	--	1.46	1.42	1.48
6	1.67	1.71	--	1.51	1.51	1.60
7	1.62	1.61	--	1.46	1.48	1.45
8	1.63	1.73	--	1.64	1.60	1.60
9	1.57	1.61	--	1.43	1.29	1.45
10	1.55	1.55	--	1.69	1.51	1.52
11	1.72	1.71	--	1.47	1.49	1.47
12	1.63	1.63	--	1.86	1.64	1.60
13	1.71	1.65	--	1.39	1.40	1.44
14	1.72	1.74	--	1.52	1.55	1.41
15	1.63	1.71	--	1.61	1.48	1.63
16	1.73	1.73	--	1.78	1.74	1.78

BAND
STATISTICS

μ 1.66 1.66 -- 1.61 1.56 1.58
 σ 0.03 0.09 -- 0.17 0.13 0.14

*STANDARD DEVIATION OF HIGHEST OBSERVABLE RADIANCE (IN DIGITAL COUNTS)

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF LOW SIGNAL NOISE VALUES (IN MUX UNITS) FOR BAND 1

ALL INTEGRATING SPHERE TESTS

TEST	DETECTOR	TEST						BAND STATISTICS
		1	2	3	4	5	6	
1	1.11	1.07	--	1.09	1.12	1.11		μ
2	1.05	1.07	--	1.21	1.17	1.17		σ
3	0.88	0.95	--	0.94	0.93	0.92		
4	1.00	1.01	--	1.58	1.54	1.44		
5	0.84	0.90	--	0.90	0.86	0.91		
6	0.89	0.92	--	0.96	0.96	1.04		
7	0.82	0.90	--	0.98	0.88	0.91		
8	0.89	0.88	--	1.03	1.07	1.07		
9	0.88	0.93	--	0.90	0.89	0.89		
10	0.78	0.86	--	1.05	1.01	1.02		
11	1.02	0.99	--	0.98	1.03	0.93		
12	0.82	0.86	--	1.32	1.29	1.27		
13	0.88	0.87	--	0.85	0.86	0.89		
14	0.99	0.97	--	1.01	1.01	1.05		
15	1.03	1.01	--	1.02	1.02	1.05		
16	0.99	1.02	--	1.15	1.19	1.18		

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF HIGH SIGNAL NOISE VALUES (IN MUX UNITS) FOR TEST NUMBER 5

CHANNEL NO.	BAND					
	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
1	1.68	1.04	1.27	0.87	1.33	0.48
2	1.75	1.39	0.98	0.78	1.22	1.34
3	1.54	0.88	1.02	0.87	*DEAD*	0.87
4	1.84	1.96	0.96	0.80	1.45	0.90
5	1.42	1.05	0.99	0.72	1.40	0.87
6	1.51	1.02	0.87	0.70	1.29	1.32
7	1.48	0.77	0.99	0.70	1.62	1.63
8	1.60	0.67	0.82	0.65	1.30	1.33
9	1.39	0.75	0.85	0.72	1.29	0.84
10	1.51	0.77	0.93	0.64	1.26	1.54
11	1.49	0.95	0.93	0.64	1.47	1.28
12	1.64	0.93	0.96	0.68	1.45	0.92
13	1.40	0.81	0.91	0.87	1.44	1.27
14	1.55	0.99	0.89	0.55	1.33	1.01
15	1.48	1.11	1.15	0.67	1.43	1.29
16	1.74	0.93	0.93	0.80	1.42	0.49
*N	11.39	24.47	22.12	19.78	2.78	1.66
μ	1.56	1.00	0.97	0.73	1.38	1.09
σ	0.13	0.31	0.11	0.09	0.10	0.34

ORIGINAL PAGE IS
OF POOR QUALITY

*N IS SPECTRAL RADIANCE ($\text{MW CM}^{-2} \text{ SR}^{-1} \mu\text{M}^{-1}$) OF HIGHEST INTEGRATING SPHERE
LEVEL FOR WHICH THERE WAS DATA

TM/PF LOW SIGNAL NOISE VALUES (IN MUX UNITS) TEST NUMBER 5 (MAR 82)

CHANNEL NO.	TM 1	TM 2	TM 3	TM 4	TM 5	TM 7
1	1.12	0.50	0.53	0.42	0.91	0.92
2	1.17	1.06	0.53	0.45	0.84	1.01
3	0.93	0.40	0.56	0.25	*DEAD*	0.84
4	1.54	0.61	0.52	0.50	0.94	1.00
5	0.66	0.36	0.38	0.50	0.94	0.83
6	0.96	0.34	0.55	0.36	0.99	0.96
7	0.88	0.41	0.59	0.48	1.13	2.34
8	1.07	0.38	0.55	0.47	0.89	0.90
9	0.89	0.35	0.62	0.48	0.90	0.99
10	1.01	0.38	0.67	0.30	0.87	1.06
11	1.03	0.32	0.65	0.50	0.97	0.91
12	1.29	0.43	0.67	0.50	0.92	0.99
13	0.86	0.18	0.72	0.49	0.88	0.86
14	1.01	0.32	0.51	0.46	0.85	1.05
15	1.03	0.37	0.68	0.46	0.90	0.77
16	1.19	0.11	0.01	0.49	0.86	0.94

*N IS THE SPECTRAL RADIANCE ($\text{MW cm}^{-2} \text{ sr}^{-1} \mu\text{m}^{-1}$) OF LOWEST NON-DARK INTEGRATING SPHERE LEVEL FOR WHICH THERE WERE DATA

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF NOISE CHARACTERIZATION

BAND 1

CHANNEL NO.	MID-SCAN* RESPONSE	NOISE* PEAK-TO- PEAK RESPONSE			NOISE** PEAK-TO- PEAK RESPONSE	
		MEAN	STD. DEV.	TOTAL	32 KHz	6 KHz
1	66.47	+1.33		12	1.7	.9
2	65.73	+1.56		13	2.4	.3
3	67.00	+1.30		11	1.9	.6
4	66.48	+1.56		10	.9	.8
5	66.93	+1.26		11	1.9	.5
6	65.74	+1.52		11	2.7	.5
7	66.18	+1.20		10	1.5	.4
8	65.82	+1.37		10	2.2	.5
9	65.52	+1.15		9	1.3	.5
10	65.92	+1.24		10	1.0	.4
11	65.96	+1.33		11	2.0	.6
12	66.66	+1.45		12	1.1	.8
13	66.44	+1.25		10	1.8	.5
14	66.37	+1.46		11	2.5	.4
15	65.49	+1.32		11	2.0	.6
16	65.40	+1.81		14	3.7	.7

* 8MAR82 VERSION 325 FLOODING LAMP

** 8MAR82 DATA AT DIFFERENT TIME ANALYZED BY FAST FOURIER TRANSFORM

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF NOISE CHARACTERIZATION (DIGITAL COUNTS)

BAND 2

CHANNEL NO.	MID-SCAN* RESPONSE	NOISE* PEAK-TO- PEAK RESPONSE		TOTAL	32 KHz	6 KHz	NOISE** PEAK-TO- PEAK RESPONSE
		MEAN	STD. DEV.				
1	66.37	+ .37	.2	5	.2	.2	
2	68.20	+1.07	.2	10	.6	.2	
3	65.69	+ .55	.2	5	.2	.2	
4	65.69	+ .64	.2	6	.2	.0	
5	67.65	+ .61	.5	6	.5	.1	
6	66.29	+ .62	.7	6	.7	.1	
7	66.04	+ .54	.2	5	.2	.1	
8	65.13	+ .56	.2	4	.2	.2	
9	66.17	+ .55	.1	5	.1	.1	
10	64.90	+ .56	.3	5	.3	.1	
11	65.64	+ .55	.3	5	.3	.2	
12	64.78	+ .57	.6	6	.3	.2	
13	68.99	+ .52	.1	5	.1	.2	
14	65.44	+ .58	.2	6	.2	.1	
15	66.84	+ .74	.5	5	.2	.2	
16	63.54	+ .77	.7	6	.7	.2	

* 8MAR82 VERSION 3'25 FLOODING LAMP

**FAST FOURIER TRANSFORM OF 8MAR82 DATA AT DIFFERENT TIME

ORIGINAL PAGE IS
OF POOR QUALITY.

TM/PF NOISE CHARACTERIZATION
CONCLUSIONS

- SIGNAL-TO-NOISE EXCEEDS SPECIFICATIONS EXCEPT FOR CHANNEL 2 OF TM 2
- A SMALL FREQUENCY SPECIFIC COMPONENT OF NOISE HAS BEEN OBSERVED AND MEASURED IN BAND 1, 2, 3, AND 4

SENSOR HISTORY

**SUMMARY OF
EL SEGUNDO THERMAL-VACUUM BASELINE TEST
TEST OF DETECTOR AND EXTERNAL CALIBRATOR STABILITY**

ORIGINAL PAGE IS
OF POOR QUALITY

**SUMMARY OF
EL SEGUNDO THERMAL-VACUUM BASELINE TEST
TEST OF DETECTOR AND EXTERNAL CALIBRATOR STABILITY**

ORIGINAL PAGE IS
OF POOR QUALITY

245-NIE-(42a)

**SUMMARY OF
EL SEGUNDO THERMAL-VACUUM BASELINE TEST
TEST OF DETECTOR AND INTERNAL CALIBRATOR STABILITY**

ORIGINAL PAGE IS
OF POOR QUALITY.

**SUMMARY OF
EL SEGUNDO THERMAL-VACUUM BASELINE TEST
TEST OF DETECTOR AND INTERNAL CALIBRATOR STABILITY**

ORIGINAL PAGE IS
OF POOR QUALITY

245-NIE-1(2a)

**SUMMARY OF VALLEY FORGE
FLOODING LAMP TESTS**

AVERAGE RADIANCE FOR BAND 1 DETECTOR 1

**SUMMARY OF VALLEY FORGE THERMAL-VACUUM TEST
TEST OF DETECTOR AND FLOODING LAMP STABILITY**

ORIGINAL PAGE IS
OF POOR QUALITY

245-NIE-1(2)

JULIAN DAY OF YEAR 1982

DEMONSTRATION OF INTERNAL CALIBRATION (IC) SYSTEM

TM/PF RADIOMETRIC CALIBRATION OF FLOODING LAMP DATA
BAND 3, CHANNEL 9

VERSION	OBSERVED	DATA FROM IC			ADJUSTED*
		MID SCAN	GAIN	BIAS	
1982	AVERAGE	CHANGE	CHANGE		AVERAGE
THERMAL	OBS	ΔM	ΔFF		ADJ
VACUUM	(COUNTS)	(PPT)	(COUNTS)	(COUNTS)	(COUNTS)
250	114.73	9	.1	.1	115.86
255	114.62	12	.2	.2	116.20
260	113.44	16	.1	.1	115.36
277	111.79	21	.1	.1	114.24
301	112.31	20	.1	.1	114.65
315	111.69	20	.1	.1	114.02
317	112.62	9	.0	.0	113.63
<hr/>					
MEAN (COUNTS)	113.03				114.85
STANDARD DEV (COUNTS)	± 1.27				± 0.97

$$*ADJ = OBS * \left(1 + \frac{\Delta M}{1000}\right) + \Delta OFF$$

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

RADIOMETRIC CALIBRATION OF TM/PF FLOODING LAMP DATA

CHANNEL 9

BAND	OBSERVED	ADJUSTED	STANDARD DEVIATION	
	MEAN	MEAN	OBSERVER	AFTER ADJ
1	66.08	67.31	.79	.67
2	67.72	67.57	.83	.72
3	115.03	114.85	1.27	.97
4	73.17	75.03	.35	.36

NORMALIZE TO BAND 4

- FIND THE CORRELATIONS BETWEEN BANDS 1, 2, 3, & 4
- ESTIMATE A TRUE BAND 4 VALUE BASED ON AVERAGING OF OBSERVED AND THREE PREDICTED VALUES
- NORMALIZE BANDS 1, 2, & 3 BY CALCULATING THE DIFFERENCE OF THE AVERAGE BAND 4 FOR A PARTICULAR VERSION FROM THE AVERAGE FOR ALL VERSIONS

THE RESULTS ARE:

	TM1	TM2	TM3	TM4	TM5	TM7
TRUE MEAN	66.08	66.72	113.02	73.17	107.54	98.18
CV (%)	.08	.05	.13	.07	1.08	.32
	.13	.07	.12	.03	1.00	.33

ORIGINAL PAGE IS
OF POOR QUALITY

TM/PF CALIBRATION TRANSFER

INTERNAL CALIBRATOR CONSISTENCY CHECK*

CALIBRATION PULSE SUM (DIGITAL COUNTS)

(LAMP LEVELS 101-100-001+000)

BAND	1	2	3	4	5	7
TEST 1	-0.093	-0.033	-0.234	-0.881	+0.262	+0.231
TEST 4	+0.376	+0.316	+0.211	-1.044	+0.140	-0.305

* SPHERE RADIANCE IS ASSUMED TO BE CONSTANT FOR ALL TESTS

DETECTOR 9 IN EACH BAND HAS BEEN USED

CONCLUSION:

IC CHECKS ARE CONSISTENT FOR ALL BANDS TO WITHIN 1 DIGITAL COUNT

ORIGINAL PAGE IS
OF POOR QUALITY

TM RADIOMETRIC GROUND PROCESSING

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY.

REPRESENTATION OF TM TIME SEQUENCE

246-NIE-(41)

1 2

ORIGINAL PAGE IS
OF POOR QUALITY

TYPICAL TM/PF CALIBRATION PULSE

**TM/PF INTERNAL CALIBRATOR LAMP SEQUENCE
SHOWING LAMP OVERSHOOT AND THERMAL RELAXATION**

ORIGINAL PAGE IS
OF POOR QUALITY

245-RME-4(1)

FORWARD LINE SCAN NUMBER

2-99

TM RADIOMETRIC PRE-PROCESSING PROCEDURES (TIPS)

PURPOSE: CONVERT OBSERVED DIGITAL COUNTS INTO COUNTS WHICH ARE PROPORTIONAL TO SCENE RADIANCE BY USING RADIOMETRIC LOOK-UP TABLES (RLUTs)

STEPS:

- CREATE SCENE SEGMENTS
- CALCULATE BAND-NORMALIZED GAIN AND BIAS BY SEGMENT USING INTERNAL CALIBRATOR (IC)
- MODIFY GAIN AND BIAS USING SCENE HISTOGRAMS (OPTIONAL)
- GENERATE RLUT FOR EACH SUBSEGMENT BY BLENDING SEGMENT-LEVEL GAIN AND BIAS

CREATE TM/PF SCENE SEGMENTS

- DIVIDE EACH SCENE INTO
1, 2, 4 OR 8 SEGMENTS
(NOMINALLY 4)
- IDENTIFY CENTER LINE OF SEGMENT
- IDENTIFY 360 SCANS OF INTERNAL
CALIBRATION DATA AROUND CENTER
OF SEGMENT

CALCULATE SEGMENT-LEVEL GAIN AND BIAS
FROM INTERNAL CALIBRATION (IC) DATA

- CALCULATE AVERAGE IC PULSE VALUES, \bar{Q} , FOR EACH CHANNEL
- CALCULATE INITIAL GAIN (G) AND BIAS (B) FOR EACH CHANNEL
- IDENTIFY COMMON RADIANCE RANGE FOR EACH BAND
- CALCULATE A BAND AVERAGE GAIN (\bar{G}) AND BIAS (\bar{B})
- CALCULATE A BAND NORMALIZED GAIN (G') AND
BIAS (B') FOR EACH CHANNEL

ORIGINAL PAGE IS
OF POOR QUALITY

- CALCULATE EIGHT AVERAGE IC VALUES FOR EACH SEGMENT
- FOR EACH CHANNEL WITHIN A BAND AND USING AT LEAST 360 SCANS AROUND THE SEGMENT CENTER
 - EXTRACT IC PULSE DATA (160 SAMPLES) AND SHUTTER BACKGROUND DATA (50 SAMPLES)
 - FIND EDGE INDEX OF PULSE BY ONE OF THREE METHODS
 - FIND PULSE CENTER BY AVERAGING EDGES
 - SUM N SAMPLES, Q, AROUND PULSE CENTER TO GET SCAN-AVERAGED PULSE VALUE (QSC).
 $n=65$ GIVES SMALLER VARIATION THAN $n=31$
 - REJECT TRANSITION PULSES AND OUTLIERS
 - IDENTIFY LAMP CONFIGURATION FOR EACH PULSE VALUE
 - AVERAGE M VALUES, \bar{Q} , FOR EACH LAMP CONFIGURATION

FIND EDGE INDEX OF CALIBRATION PULSE

- THRESHOLD (THRESH, SIMPLEST AND INSENSITIVE TO NOISE)
 - FOR BOTH ENDS OF COLLECTION WINDOW, LOCATE FIRST BLOCK OF TEN ADJACENT SAMPLES ABOVE A THRESHOLD
- DIFFERENCES OF AVERAGES (DOA, LEAST SENSITIVE TO NOISE)
 - TRAVELING AVERAGE OF TWO ADJACENT BLOCKS OF TEN SAMPLES
- HUGHES ALGORITHM (PULSE, MOST SENSITIVE TO NOISE)

ORIGINAL PAGE IS
OF POOR QUALITY

CURRENT EDGE LOCATION PARAMETERS

THRESH AND DOA

<u>PARAMETER</u>	REFLECTIVE BANDS	THERMAL BAND
VALUES IN AVERAGE	1-5, 7	6
THRESHOLD	65	23
BLOCK SIZE	20	90

PULSE

<u>PARAMETER</u>	REFLECTIVE BANDS	THERMAL BAND
PERCENT OF PEAK	1-5, 7	6

80 %

CALCULATE INITIAL GAIN AND BIAS FOR EACH SEGMENT
SIX REFLECTIVE BANDS

SELECT ONE OF THREE MODES:

- A PRIORI GAIN AND BIAS (USE NOMINAL VALUES WITHOUT IC)
- COMPUTED GAIN AND BIAS (USE IC)
- COMPUTED BIAS ONLY (USE NOMINAL GAIN)

**ILLUSTRATIVE TM/PF CHANNEL CALIBRATION
FOR REFLECTIVE BANDS**

**DETECTOR 9
BAND 3
20 MARCH 1982
GE/VALLEY FORGE**

CALCULATE INITIAL GAIN AND BIAS FOR EACH SEGMENT
THERMAL BAND TM 6

$$F_{BB} = (CB-CS)/(NB-NS)$$

F_{BB} = BLACK BODY (BB) GAIN FUNCTION

CB = AVERAGE BB PULSE OVER SEGMENT

CS = AVERAGE SHUTTER BACKGROUND VALUE OVER SEGMENT

NB = EFFECTIVE SPECTRAL RADIANCE OF BB
DERIVED FROM OBSERVED BB TEMPERATURE (FROM TELEMETRY)
(NOMINALLY 24°, 30° OR 35°C)

NS = EFFECTIVE SPECTRAL RADIANCE OF SHUTTER
DERIVED FROM OBSERVED SHUTTER TEMPERATURE (FROM TELEMETRY)

$$\text{THERMAL GAIN} = GC = .725 F_{BB}$$

$$\text{THERMAL BIAS} = KC = (.9 * NS - .19) * F_{BB}$$

ORIGINAL PAGE IS
OF POOR QUALITY

IDENTIFY COMMON RADIANCE RANGE FOR DETECTORS WITH DIFFERENT SENSITIVITY
(TO AVOID STRIPPING)

FOR ALL CHANNELS WITHIN A BAND:

- LOCATE THE CHANNEL WITH THE HIGHEST SENSITIVITY AND CALCULATE ITS RADIANCE FOR A FULL SCALE DIGITAL VALUE OF VMAX

$$R_{MAX} = MIN \left[\frac{V_{MAX} - B}{G} \right]$$

- LOCATE THE CHANNEL WITH THE LOWEST BACKGROUND LEVEL AND CALCULATE ITS APPARENT RADIANCE FOR A ZERO SCALE DIGITAL VALUE OF VMIN

$$R_{MIN} = MAX \left[\frac{V_{MIN} - B}{G} \right]$$

ORIGINAL PAGE IS
OF POOR QUALITY

CALCULATE A BAND-AVERAGED GAIN AND BIAS FOR THE SEGMENT

$$\text{BAND-AVERAGED GAIN} = \bar{G} = \frac{V_{MAX}}{(R_{MAX} - R_{MIN})}$$

$$\text{BAND-AVERAGED BIAS} = \bar{B} = V_{MIN} - \bar{G} * R_{MIN}$$
$$= V_{MIN} - \frac{V_{MAX} * R_{MIN}}{(R_{MAX} - R_{MIN})}$$

ORIGINAL PAGE IS
OF POOR QUALITY

CALCULATE A BAND-NORMALIZED GAIN, BIAS AND RLUT
FOR EACH CHANNEL IN THE SEGMENT

$$\text{BAND-NORMALIZED GAIN} = G' = \frac{G}{\bar{G}}$$

$$\text{BAND NORMALIZED BIAS} = B' = B - G' * \bar{B}$$

CREATE 100 RLUTs OF DIMENSION 256 BY CALCULATING THE INTEGER VALUES
OF I' FROM 1:

$$(I'-1) = \text{INTEGER} \left[\frac{(I-1) - B'}{G'} + .5 \right]$$

WHERE I GOES FROM 1 THROUGH 256

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ASSUMPTIONS IN CALIBRATION PROCEDURE WITH IC

- INTERNAL CALIBRATION SYSTEM IS INVARIANT WITH TIME
- INTERNAL CALIBRATION IS MORE CONSTANT THAN DETECTORS
- AVERAGE VALUE IS INDEPENDENT OF TM CONFIGURATION OR ON-TIME
- BACKGROUND LEVEL IS CONSTANT
- RANDOM SHUTTER BACKGROUND
- BETWEEN BAND INFORMATION NOT NEEDED
- HISTORICAL BEHAVIOR NOT NEEDED

USE SCENE HISTOGRAMS TO MODIFY BAND-NORMALIZED GAIN AND BIAS

- COLLECT SCENE HISTOGRAMS OF RAW VIDEO VALUES WITHIN A SEGMENT DURING INITIAL INGEST OF RAW DATA
- CREATE CALIBRATION HISTOGRAMS BY APPLYING RLUTs TO RAW SCENE HISTOGRAMS

ORIGINAL PAGE IS
OF POOR QUALITY

HISTOGRAM NORMALIZATION (CONTINUED)

- CREATE A BAND-AVERAGED SCENE HISTOGRAM FROM THE HISTOGRAM OF ALL THE CHANNELS IN THAT BAND
- MODIFY EACH CHANNEL HISTOGRAM, R_H , SO THAT IT HAS THE SAME MEAN, $MEAN(R_H)$, AND STANDARD DEVIATION, $SD(R_H)$, AS THE BAND-AVERAGED HISTOGRAM, \bar{R}_H , USING THE FORMULA:

$$\bar{R}_H = G * R_H + B$$

AND $G = SD(\bar{R}_H) / SD(R_H)$

$$B = MEAN(\bar{R}_H) - G * MEAN(R_H)$$

- CALCULATE A HISTOGRAM-NORMALIZED GAIN, G'' , AND BIAS, B''
- $$G'' = G' / G$$
 AND $B'' = B' - G'' * B$

ORIGINAL PAGE IS
OF POOR QUALITY

ASSUMPTIONS IN CALIBRATION ADJUSTMENTS WITH SCENE HISTOGRAMS

- STATISTICALLY IDENTICAL SAMPLING FOR EACH CHANNEL
- CHANNEL RESPONSE IS LINEAR
- ROUNDING IN RLUTs NOT SIGNIFICANT

GENERATE THE RLUT FOR EACH SUBSEGMENT
BY BLENDING ADJACENT SEGMENT LEVEL GAINS AND BIASES

- NOMINAL NUMBER OF SEGMENTS IS 4
- NOMINAL NUMBER OF SUBSEGMENTS IS 3
- GAINS AND BIASES CAN BE EITHER BAND-NORMALIZED FROM IC DATA OR HISTOGRAM-NORMALIZED FROM SCENE DATA
- CREATE RLUT FOR EACH SUBSEGMENT BASED ON INTERPOLATED GAINS AND BIASES

TM Geometric Sensor Performance

Jack Engel

THE GEOMETRIC PROPERTIES OF THE THEMATIC MAPPER

S B R C

A SUBSIDIARY OF MURKIN'S AIRCRAFT COMPANY

DISCUSSION TOPICS

- INSTANTANEOUS FIELD OF VIEW SIZE**
- RISE TIME**
- DELAY TIME**
- MTF (SQUARE WAVE RESPONSE)**
- BRIGHT TARGET RECOVERY**
- ALTITUDE EFFECTS**
- BAND-TO-BAND REGISTRATION**
- SCAN PROFILE LINEARITY**

INSTANTANEOUS FIELD OF VIEW SIZE

SBR C

A SUBSIDIARY OF MURKIN'S AMERICAN COMPANY

SPATIAL COVERAGE
PROTOFLIGHT MODEL

S B R C
A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

COOLED FOCAL PLANE

ORIGINAL PAGE IS
OF POOR QUALITY

BAND	CHANNEL	LINE SPREAD FUNCTION TRACK	WIDTH (μrad) SPECIFIED
5	2	47.5	42.6
5	16	46.9	42.5
7	2	47.8	45.5
7	16	49.6	44.8
6	1	172.2	173.0
6	2	173.8	170.2
6	3	177.5	178.3
6	4	175.3	174.0

5/82

SPATIAL COVERAGE PROTOFLIGHT MODEL

PRIME FOCAL PLANE

ORIGINAL PAGE IS
OF POOR QUALITY

BAND	CHANNEL	LINE SPREAD FUNCTION TRACK SCAN	WIDTH (μ rad) SPECIFIED
1	2	44.4	≤ 43.2
1	16	43.4	42.3
2	1	44.8	44.9
2	15	---	---
3	2	45.5	45.1
3	16	43.9	44.9
4	2	44.0	44.1
4	16	43.1	44.5

5/82

ORIGINAL PAGE IS
OF POOR QUALITY

STEP RESPONSE CHARACTERISTICS

STEP RESPONSE BANDS 1 TO 5, & PROTOFLIGHT MODEL

S B R C

A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

ORIGINAL PAGE IS
OF POOR QUALITY

PARAMETER	SPECIFICATION	PERFORMANCE
OVERSHOOT	$\leq 10\%$	$\frac{<10\%}{3.5\% \text{ TYP, BANDS } 1-4}$ $\frac{8.0\% \text{ TYP, BANDS } 5,7}{}$
SETTLING TIMES	$\frac{<1.5\% \text{ ERROR}}{\text{AFTER } 30 \mu\text{SEC}}$ $\frac{<1.0\% \text{ ERROR}}{\text{AFTER } 60 \mu\text{SEC}}$	$\frac{<1.5\% \text{ AFTTFR } [35 \mu\text{SEC}]}{\text{BAND } 2 \text{ CHAN } 6 = 2.1\%}$ $\text{BAND } 3 \text{ CHAN } 2 = 1.8\%$ $\text{BAND } 3 \text{ CHAN } 2 = 1.8\%$ $\frac{<1.0\% \text{ EXCEPT}}{\text{BAND } 2 \text{ CHAN } 6 = 2.1\% \leq 1\% \text{ IN } 100 \mu\text{s}}$ $\text{CHAN } 8 = 1.1\% \leq 1\% \text{ IN } 100 \mu\text{s}$ $\text{BAND } 3 \text{ CHAN } 2 = 1.8\%$ $\text{CHAN } 8 = 1.1\%$ $\text{CHAN } 14 = 1.4\%$
RISETIME DROOP	$\frac{<20 \mu\text{SEC}}{\text{NO DATA}}$ $\frac{<0.5\%}{}$	$\frac{<17 \mu\text{SEC}}{\text{NO DATA}}$

5/82

S B R C

A SUBSIDIARY OF HUGHES AIRCRAFT COMPANY

**TYPICAL RESPONSE
TO A STEP OF
RADIANCE (BANDS 1-4)
(BAND 3 CHANNEL 7)**

**ORIGINAL PAGE IS
OF POOR QUALITY**

5/82

S B R C

A SUBSIDIARY OF HUGHES AIRCRAFT COMPANY

**TYPICAL RESPONSE
TO A STEP OF
RADIANCE BANDS 5 & 7
(BAND 5 CHANNEL 5)**

ORIGINAL PAGE IS
OF POOR QUALITY

5/82

STEP RESPONSE BAND 6 PROTOFLIGHT MODEL

SBRC

A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

ORIGINAL PAGE IS
OF POOR QUALITY

PARAMETER	SPECIFICATION	PERFORMANCE
OVERSHOOT	$\leq 10\%$	$\leq 3.8\%$
SETTLING TIMES	$\leq 1.5\%$ ERROR AFTER 120 μ SEC	$\leq 1.5\%$ ERROR AFTER 35 μ SEC
	$\leq 1.0\%$ ERROR AFTER 240 μ SEC	$\leq 1.0\%$ ERROR AFTER 65 μ SEC
RISETIME	$\leq 80 \mu$ SEC	$\leq 70 \mu$ SEC
DROOP	$\leq 0.5\%$	NO DATA

5/82

RESPONSE DELAY

S B R C

A SUBSIDIARY OF MURKIN'S MORTGAGE COMPANY

TYPICAL RESPONSE DELAY BANDS 1-4

ORIGINAL PAGE IS
OF POOR QUALITY

BAND 3
CHANNEL 9
DELAY TIME
11.4 μ sec

BAND 3
CHANNEL 9
DELAY TIME
11.6 μ sec

TYPICAL RESPONSE DELAY BANDS 5 & 7

S B R C

A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

ORIGINAL PAGE NO.
OF PAGE 11

BAND 5
CHANNEL 5
DELAY TIME
12.2 μ sec

BAND 5
CHANNEL 5
DELAY TIME
11.6 μ sec

S B R C

A SUBSIDIARY OF HUGHES AIRCRAFT COMPANY

**DYNAMIC
FORWARD SCAN
CHANNEL-TO-
CHANNEL OFFSETS
(REFERRED TO B4D9)
IFOV'S**

ORIGINAL PAGE IS
OF POOR QUALITY

BAND \\	CHANNEL /	1	2	3	4	7	5
1		+0.08	+0.09	+0.02	-0.03	+0.11	+0.17
2		+0.12	*	-0.02	-0.07	-0.02	+0.02
3		+0.04	+0.05	0.00	-0.04	+0.08	*
4		+0.01	*	-0.03	-0.03	-0.03	0.00
5		+0.03	+0.08	+0.02	-0.04	+0.09	+0.09
6		+0.02	+0.01	+0.03	-0.05	-0.02	+0.08
7		+0.04	+0.05	+0.02	-0.04	*	+0.02
8		-0.02	-0.03	+0.03	-0.02	0.00	+0.15
9		+0.02	+0.06	-0.06	REF	+0.05	+0.09
10		0.00	-0.01	-0.03	-0.04	-0.03	+0.02
11		0.00	+0.04	-0.02	-0.03	+0.08	+0.10
12		0.00	+0.01	+0.02	-0.04	-0.08	0.00
13		+0.05	+0.09	+0.01	+0.02	+0.06	+0.09
14		-0.01	+0.03	+0.04	+0.01	-0.09	+0.05
15		+0.02	+0.09	+0.05	-0.01	+0.09	+0.04
16		+0.03	+0.04	+0.06	+0.01	-0.11	+0.03

* DETECTOR NOT FUNCTIONAL

5/82

SBR

A SUBSIDIARY OF HUGHES AIRCRAFT COMPANY

**DYNAMIC
REVERSE SCAN
CHANNEL-TO-
CHANNEL OFFSETS
(REFERRED TO B4D9)
IFOV'S**

ORIGINAL PAGE IS
OF POOR QUALITY

CHANNEL \ BAND	1	2	3	4	7	5
1	+0.15	-0.01	+0.03	-0.02	-0.15	-0.08
2	+0.09	*	+0.01	-0.03	0.00	+0.05
3	+0.08	-0.04	-0.01	-0.03	-0.13	*
4	+0.09	*	-0.01	-0.01	-0.02	+0.02
5	+0.06	-0.01	+0.01	-0.04	-0.08	-0.07
6	+0.08	-0.05	+0.04	-0.03	-0.04	+0.11
7	**	-0.06	0.00	-0.04	*	-0.11
8	+0.07	-0.08	+0.04	0.00	+0.01	+0.20
9	+0.03	-0.04	-0.07	REF	-0.10	-0.02
10	+0.05	-0.07	-0.02	-0.02	-0.01	+0.09
11	+0.01	-0.05	-0.03	-0.03	-0.05	+0.02
12	+0.07	-0.06	+0.04	-0.02	-0.04	+0.10
13	+0.07	-0.05	-0.01	+0.02	-0.07	+0.02
14	+0.06	-0.04	+0.04	+0.02	0.00	+0.17
15	+0.03	-0.02	+0.02	-0.01	-0.05	-0.02
16	+0.09	-0.04	+0.07	+0.03	+0.03	+0.21

* DETECTOR NOT FUNCTIONAL

ORIGINAL PAGE IS
OF POOR QUALITY

NOMINAL BAND TO BAND SPACING

5/82

BAND	SEPARATION, IPDV	OFF-AXIS, DEGREES
		0.2402
		0.2722
	34.78	0.14768
		0.00427
		0.02631
		0.00018
		0.14708
		0.20703
		0.21216
1	*	
2	*	
3	?	
4	-	
5	-	
6	-	
7	-	
8	-	
9	-	
10	-	
11	-	
12	-	
13	-	
14	-	
15	-	
16	-	
17	-	
18	-	
19	-	
20	-	
21	-	
22	-	
23	-	
24	-	
25	-	
26	-	
27	-	
28	-	
29	-	
30	-	
31	-	
32	-	
33	-	
34	-	
35	-	
36	-	
37	-	
38	-	
39	-	
40	-	
41	-	
42	-	
43	-	
44	-	
45	-	
46	-	
47	-	
48	-	
49	-	
50	-	
51	-	
52	-	
53	-	
54	-	
55	-	
56	-	
57	-	
58	-	
59	-	
60	-	
61	-	
62	-	
63	-	
64	-	
65	-	
66	-	
67	-	
68	-	
69	-	
70	-	
71	-	
72	-	
73	-	
74	-	
75	-	
76	-	
77	-	
78	-	
79	-	
80	-	
81	-	
82	-	
83	-	
84	-	
85	-	
86	-	
87	-	
88	-	
89	-	
90	-	
91	-	
92	-	
93	-	
94	-	
95	-	
96	-	
97	-	
98	-	
99	-	
100	-	
101	-	
102	-	
103	-	
104	-	
105	-	
106	-	
107	-	
108	-	
109	-	
110	-	
111	-	
112	-	
113	-	
114	-	
115	-	
116	-	
117	-	
118	-	
119	-	
120	-	
121	-	
122	-	
123	-	
124	-	
125	-	
126	-	
127	-	
128	-	
129	-	
130	-	
131	-	
132	-	
133	-	
134	-	
135	-	
136	-	
137	-	
138	-	
139	-	
140	-	
141	-	
142	-	
143	-	
144	-	
145	-	
146	-	
147	-	
148	-	
149	-	
150	-	
151	-	
152	-	
153	-	
154	-	
155	-	
156	-	
157	-	
158	-	
159	-	
160	-	
161	-	
162	-	
163	-	
164	-	
165	-	
166	-	
167	-	
168	-	
169	-	
170	-	
171	-	
172	-	
173	-	
174	-	
175	-	
176	-	
177	-	
178	-	
179	-	
180	-	
181	-	
182	-	
183	-	
184	-	
185	-	
186	-	
187	-	
188	-	
189	-	
190	-	
191	-	
192	-	
193	-	
194	-	
195	-	
196	-	
197	-	
198	-	
199	-	
200	-	
201	-	
202	-	
203	-	
204	-	
205	-	
206	-	
207	-	
208	-	
209	-	
210	-	
211	-	
212	-	
213	-	
214	-	
215	-	
216	-	
217	-	
218	-	
219	-	
220	-	
221	-	
222	-	
223	-	
224	-	
225	-	
226	-	
227	-	
228	-	
229	-	
230	-	
231	-	
232	-	
233	-	
234	-	
235	-	
236	-	
237	-	
238	-	
239	-	
240	-	
241	-	
242	-	
243	-	
244	-	
245	-	
246	-	
247	-	
248	-	
249	-	
250	-	
251	-	
252	-	
253	-	
254	-	
255	-	
256	-	
257	-	
258	-	
259	-	
260	-	
261	-	
262	-	
263	-	
264	-	
265	-	
266	-	
267	-	
268	-	
269	-	
270	-	
271	-	
272	-	
273	-	
274	-	
275	-	
276	-	
277	-	
278	-	
279	-	
280	-	
281	-	
282	-	
283	-	
284	-	
285	-	
286	-	
287	-	
288	-	
289	-	
290	-	
291	-	
292	-	
293	-	
294	-	
295	-	
296	-	
297	-	
298	-	
299	-	
300	-	
301	-	
302	-	
303	-	
304	-	
305	-	
306	-	
307	-	
308	-	
309	-	
310	-	
311	-	
312	-	
313	-	
314	-	
315	-	
316	-	
317	-	
318	-	
319	-	
320	-	
321	-	
322	-	
323	-	
324	-	
325	-	
326	-	
327	-	
328	-	
329	-	
330	-	
331	-	
332	-	
333	-	
334	-	
335	-	
336	-	
337	-	
338	-	
339	-	
340	-	
341	-	
342	-	
343	-	
344	-	
345	-	
346	-	
347	-	
348	-	
349	-	
350	-	
351	-	
352	-	
353	-	
354	-	
355	-	
356	-	
357	-	
358	-	
359	-	
360	-	
361	-	
362	-	
363	-	
364	-	
365	-	
366	-	
367	-	
368	-	
369	-	
370	-	
371	-	
372	-	
373	-	
374	-	
375	-	
376	-	
377	-	
378	-	
379	-	
380	-	
381	-	
382	-	
383	-	
384	-	
385	-	
386	-	
387	-	
388	-	
389	-	
390	-	
391	-	
392	-	
393	-	
394	-	
395	-	
396	-	
397	-	
398	-	
399	-	
400	-	
401	-	
402	-	
403	-	
404	-	
405	-	
406	-	
407	-	
408	-	
409	-	
410	-	
411	-	
412	-	
413	-	
414	-	
415	-	
416	-	
417	-	
418	-	
419	-	
420	-	
421	-	
422	-	
423	-	
424	-	
425	-	
426	-	
427	-	
428	-	
429	-	
430	-	
431	-	
432	-	
433	-	
434	-	
435	-	
436	-	
437	-	
438	-	
439	-	
440	-	
441	-	
442	-	
443	-	
444	-	
445	-	
446	-	
447	-	
448	-	
449	-	
450	-	
451	-	
452	-	
453	-	
454	-	
455	-	
456	-	
457	-	
458	-	
459	-	
460	-	
461	-	
462	-	
463	-	
464	-	
465	-	
466	-	
467	-	
468	-	
469	-	
470	-	
471	-	
472	-	
473	-	
474	-	
475	-	
476	-	
477	-	
478	-	
479	-	
480	-	
481	-	
482	-	
483	-	
484	-	
485	-	
486	-	
487	-	
488	-	
489	-	
490	-	
491	-	
492	-	
493	-	
494	-	
495	-	
496	-	
497	-	
498	-	
499	-	
500	-	
501	-	
502	-	
503	-	
504	-	
505	-	
506	-	
507	-	
508	-	
509	-	
510	-	
511	-	
512	-	
513	-	
514	-	
515	-	
516	-	
517	-	
518	-	
519	-	
520	-	
521	-	

SQUARE WAVE MODULATION

S B R C

A SUBSIDIARY OF MICHAEL'S AIRCRAFT COMPANY

SQUARE WAVE MODULATION WAS MEASURED USING TWO TECHNIQUES

- PHASED KNIFE EDGE
 - THE THEMATIC MAPPER SCANS 10 KNIFE EDGES EACH OF WHICH IS SPACED BY 16.1 IFOVs FROM THE PRECEDING EDGE
 - AN EDGE RESPONSE IS CONSTRUCTED FROM THE 10 SAMPLES AND THE SWR IS GENERATED BY PASSING COMPUTER GENERATED BARS OF VARYING SPATIAL EXTENT THROUGH THE RESPONSE EDGE AND COMPUTING THE MAGNITUDE OF THE MODULATION
- SQUARE BAR PATTERNS OF VARYING SPATIAL EXTENT
 - THE THEMATIC MAPPER SCANS BARS OF 34M AND 500M EXTENT
 - THE RESPONSES ARE RATIOED TO EVALUATE THE 34M SWR

ORIGINAL PAGE IS
OF POOR QUALITY

PHASED KNIFE EDGE AND SQUARE BAR PATTERNS

SPECIAL 10 BAR RETICLE
FOR PHASED KNIFE EDGE
CONSTRUCTION

PHASED KNIFE EDGE
TARGET

ORIGINAL PAGE IS
OF POOR QUALITY

MEASURED PROTOFLIGHT
SQUARE WAVE RESPONSE (SWR)
(BAND AVERAGE)

ORIGINAL PAGE IS
OF POOR QUALITY

BAND	30 METER BAR		45 METER BAR		60 METER BAR		500 METER BAR	
	SWR	σ	SWR	σ	SWR	σ	SWR	σ
1	0.46	0.01	0.76	0.03	0.94	0.02	1.0	0.0
2	0.44	0.02	0.72	0.04	0.96	0.03	1.0	0.0
3	0.41	0.01	0.72	0.02	0.91	0.02	1.0	0.0
4	0.43	0.01	0.76	0.03	0.95	0.03	1.0	0.0
5	0.42	0.02	0.78	0.03	0.89	0.03	1.0	0.0
7	0.44	0.02	0.76	0.02	0.92	0.02	1.0	0.0
SPEC	0.35		0.70		0.85		1.0	
BAND	120 METER BAR		180 METER BAR		240 METER BAR		2000 METER BAR	
	SWR	σ	SWR	σ	SWR	σ	SWR	σ
6	0.44	0.04	0.78	0.01	0.94	0.00	1.0	0.0
SPEC	0.35		0.70		0.85		1.0	

TM PROTOFLIGHT/THERMAL VAC
9/15/81 COLLECTS

S B R C
A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

ORIGINAL PAGE IS
OF POOR QUALITY

BRIGHT TARGET RECOVERY

SBR

BRIGHT TARGET RECOVERY

A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

TABLE SHOWS IN BAND RADIANCES FOR WHICH A RECOVERY TIME OF LESS THAN
4 IFOV DWELL TIMES IS INSURED. RECOVERY FROM LARGER SIGNALS TAKES
10 IFOV DWELL TIMES (TYPICAL).

WORST CASE NUMBERS ARE BASED ON A THEORETICAL ANALYSIS OF THE
PREAMPLIFIER ELECTRONICS.

BAND	IN BAND BRIGHT TARGET RADIANCE (MW/CM ² /STER)		WORST CASE AT 12°C
	SPEC	TYPICAL AT 17°C	
1	2.0	7.9	6.0
2	4.5	6.2	4.7
3	2.9	4.6	3.5
4	5.0	5.1*	3.5*
5	1.3	14.2	10.7
6	330 K	—	500°K
7	0.8	8.5	6.4

*BASED ON PROTOFLIGHT
PREAMPLIFIER GAIN

5/82

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

ALTITUDE EFFECTS

ORIGINAL PAGE IS
OF POOR QUALITY

S B R C

A SUBSIDIARY OF MURRAY INDUSTRIAL COMPANY

GROUND TRACE
OVERLAP/UNDERLAP
AT 40° N DESIGN POINT

μrad

OVERLAP/UNDERLAP (μ RAD)

SOURCE	PROTOTIPLIGHT		
	UNDER	OVER	RANDOM*
NOMINAL ORBIT AND SCAN PARAMETERS**	3.4	-3.4	
BOW TIE EFFECT	0.0	6.5	
SMA			
SM CROSS AXIS MOTION	2.0	2.0	1.0†
SM PERIOD VARIATION	2.6	1.3	0.0
VIBRATION			0.5
RADIOMETER			
NON-IDEAL SLC SCAN	2.0	2.0†	0.2
EFL DEVIATION			
TELESCOPE	-1.0	1.0	
RELAY OPTICS	4.3††	4.3††	
DETECTORIFOV SIZE	-5.4††	+5.4††	
VIBRATION	-1.7††	+1.7††	1.4
TOTAL	PFPA CFPA	7.3 7.9	11.1 10.5
SPECIFICATION			8.5
EFFECT OF ORBITAL ALTITUDE VARIATIONS BETWEEN 45°N AND 45°S LATITUDES		22.0	15.7

ORIGINAL PAGE IS
OF POOR QUALITY

*1 SIGMA

**ALTITUDE = 112.5KM

VELOCITY = 6821 KM/SEC

SCAN PERIOD = 142.925 MSEC

† OVER FULL TEMPERATURE RANGE

†† AFFECTS COOLED FOCAL PLANE ONLY

††† AFFECTS PRIME FOCAL PLANE ONLY

BAND-TO-BAND REGISTRATION

**MAP OF TM FOCAL PLANE
REGISTRATION BANDS (1 TO 5, AND 7)
AS PROJECTED ON GROUND**

SBR

A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

ORIGINAL PAGE 19
OF POOR QUALITY

5/82

FORWARD SCAN (UNITS ARE RFOV)
Data taken 18 September 1981

	B2-B1	B3-B1	B4-B1	B7-B1	B9-B1
R/T	24.99	50.02	75.05	120.00	146.04
30	24.96	49.99	75.03	119.93	145.95
39	24.93	50.01	75.04	119.93	145.95
28	24.99	50.03	75.05	119.93	145.98
27	24.97	50.02	75.05	119.95	145.96
26	24.96	50.00	75.03	119.93	145.95
25	24.96	50.00	75.02	119.91	145.91
24	24.95	49.99	75.01	119.87	145.88
23	24.95	50.00	75.02	119.91	145.91
22	24.94	50.03	75.04	119.94	145.95
21	24.96	50.03	75.04	119.76	145.98
20	24.97	50.04	75.08	119.76	145.98
19	24.96	50.02	75.04	119.93	145.95
18	24.95	50.02	75.05	119.92	145.94
17	24.95	50.01	75.04	119.90	145.91
16	24.96	50.02	75.04	119.93	145.93
15	24.97	50.03	75.05	119.94	145.96
14	24.96	50.03	75.06	119.94	145.95
13	24.96	50.03	75.05	119.93	145.95
12	24.95	50.02	75.03	119.89	145.91
11	24.96	50.02	75.04	119.89	145.90
10	24.96	50.02	75.04	119.89	145.92
9	24.96	50.01	75.04	119.85	145.88
8	24.96	50.01	75.03	119.85	145.88
7	24.97	50.01	75.03	119.82	145.85
6	24.96	50.01	75.02	119.82	145.82
5	24.97	50.04	75.05	119.84	145.86
4	24.97	50.04	75.05	119.84	145.88
3	24.98	50.06	75.08	119.88	145.90
2	24.99	50.07	75.10	119.85	145.93
NOMINAL	25.00	50.07	75.00	120.00	146.00
AVERAGE	24.96	50.02	75.04	119.90	145.92
STD. DEV.	0.01	0.02	0.02	0.04	0.03

ORIGINAL PAGE IS
OF POOR QUALITY

SBRCC

A SUBSIDIARY OF HUGHES AIRCRAFT COMPANY

**BAND TO BAND
REGISTRATION -
ALONG SCAN**

5/82

REVERSE SCAN (UNITS ARE RFOV)
Data taken 18 September 1981

RT	B2-B1	B3-B1	B4-B1	B7-B1	B5-B1
2	-24. 96	-50. 03	-75. 10	-119. 99	-146. 11
3	-24. 88	-49. 95	-74. 98	-119. 86	-145. 93
4	-24. 91	-49. 98	-74. 95	-119. 64	-145. 91
5	-24. 94	-49. 98	-74. 95	-119. 63	-145. 91
6	-24. 87	-49. 93	-74. 92	-119. 80	-145. 88
7	-24. 87	-49. 94	-74. 93	-119. 79	-145. 87
8	-24. 83	-49. 93	-74. 92	-119. 77	-145. 86
9	-24. 83	-49. 93	-74. 92	-119. 79	-145. 86
10	-24. 89	-49. 92	-74. 90	-119. 79	-145. 85
11	-24. 90	-49. 94	-74. 91	-119. 80	-145. 87
12	-24. 92	-49. 95	-74. 95	-119. 86	-145. 93
13	-24. 90	-49. 94	-74. 94	-119. 85	-145. 92
14	-24. 87	-49. 93	-74. 92	-119. 83	-145. 89
15	-24. 91	-49. 95	-74. 94	-119. 86	-145. 91
16	-24. 89	-49. 91	-74. 90	-119. 80	-145. 87
17	-24. 89	-49. 92	-74. 92	-119. 83	-145. 90
18	-24. 91	-49. 94	-74. 92	-119. 83	-145. 90
19	-24. 91	-49. 93	-74. 92	-119. 83	-145. 89
20	-24. 87	-49. 92	-74. 90	-119. 81	-145. 86
21	-24. 83	-49. 91	-74. 89	-119. 79	-145. 84
22	-24. 87	-49. 92	-74. 90	-119. 83	-145. 88
23	-24. 90	-49. 92	-74. 90	-119. 82	-145. 87
24	-24. 85	-49. 86	-74. 85	-119. 76	-145. 81
25	-24. 87	-49. 92	-74. 88	-119. 81	-145. 83
26	-24. 89	-49. 92	-74. 88	-119. 77	-145. 81
27	-24. 91	-49. 92	-74. 89	-119. 78	-145. 82
28	-24. 87	-49. 86	-74. 86	-119. 77	-145. 80
29					
30	-24. 91	-49. 92	-74. 91	-119. 87	-145. 90
NOMINAL	-25. 00	-50. 00	-75. 00	-120. 00	-146. 00
AVERAGE	-24. 69	-49. 93	-74. 92	-119. 81	-145. 88
STD. DEV.	0. 02	0. 03	0. 04	0. 06	0. 06

ORIGINAL PAGE IS
OF POOR QUALITY

FORWARD SCAN (UNITS ARE RFOV)
Data taken 18 September 1981

	B2-B1	B3-B1	B4-B1	B7-B1	B5-B1
RT	-0.01	-0.09	-0.13	-0.30	-0.22
29	-0.00	-0.06	-0.08	-0.14	-0.23
28	-0.01	-0.07	-0.10	-0.14	-0.20
27	-0.01	-0.07	-0.09	-0.15	-0.19
26	-0.02	-0.08	-0.10	-0.15	-0.20
25	-0.03	-0.08	-0.10	-0.15	-0.23
24	-0.01	-0.08	-0.10	-0.15	-0.23
23	-0.03	-0.08	-0.10	-0.15	-0.22
22	-0.01	-0.06	-0.12	-0.20	-0.24
21	-0.02	-0.08	-0.10	-0.18	-0.24
20	-0.03	-0.08	-0.11	-0.14	-0.22
19	-0.03	-0.07	-0.10	-0.18	-0.25
18	-0.01	-0.08	-0.12	-0.17	-0.20
17	-0.01	-0.08	-0.12	-0.22	-0.24
16	-0.01	-0.08	-0.11	-0.14	-0.22
15	-0.01	-0.08	-0.10	-0.16	-0.21
14	-0.01	-0.08	-0.12	-0.18	-0.25
13	-0.02	-0.09	-0.12	-0.18	-0.26
12	-0.03	-0.09	-0.11	-0.20	-0.26
11	-0.03	-0.09	-0.11	-0.21	-0.25
10	-0.03	-0.08	-0.11	-0.16	-0.20
9	-0.03	-0.08	-0.13	-0.17	-0.23
8	-0.03	-0.07	-0.09	-0.25	-0.22
7	-0.03	-0.07	-0.11	-0.20	-0.23
6	-0.02	-0.08	-0.10	-0.15	-0.21
5	-0.01	-0.08	-0.12	-0.18	-0.23
4	-0.01	-0.08	-0.12	-0.17	-0.26
3	-0.02	-0.08	-0.12	-0.00	-0.23
2	-0.02	-0.08	-0.11	-0.17	-0.23
NOMINAL	0.00	0.00	0.00	0.00	0.00
AVERAGE	-0.02	-0.08	-0.11	-0.18	-0.23
STD. DEV.	0.01	0.01	0.01	0.03	0.02

ORIGINAL PAGE IS
OF POOR QUALITY

REVERSE SCAN (UNITS ARE RFOV)
Data taken 18 September 1981

RT	B2-B1	B3-B1	B4-B1	B7-B1	B5-B1
2	0.02	-0.09	-0.13	-0.34	-0.22
3	0.01	-0.04	-0.07	-0.17	-0.20
4	0.01	-0.06	-0.05	-0.16	-0.18
5	0.00	-0.04	-0.08	-0.15	-0.19
6	0.02	-0.04	-0.08	-0.17	-0.19
7	0.01	-0.07	-0.09	-0.26	-0.25
8	-0.03	-0.11	-0.15	-0.22	-0.27
9	-0.03	-0.07	-0.11	-0.12	-0.23
10	-0.01	-0.08	-0.09	-0.17	-0.21
11	-0.01	-0.06	-0.10	-0.18	-0.23
12	-0.01	-0.05	-0.08	-0.14	-0.23
13	0.01	-0.06	-0.09	-0.15	-0.22
14	0.01	-0.06	-0.11	-0.16	-0.24
15	-0.02	-0.07	-0.09	-0.16	-0.20
16	-0.01	-0.06	-0.09	-0.15	-0.18
17	0.01	-0.04	-0.09	-0.14	-0.18
18	0.03	-0.04	-0.06	-0.09	-0.23
19	-0.01	-0.06	-0.09	-0.16	-0.24
20	0.00	-0.05	-0.09	-0.18	-0.23
21	0.00	-0.04	-0.06	-0.14	-0.19
22	0.02	-0.04	-0.06	-0.15	-0.21
23	0.01	-0.07	-0.10	-0.16	-0.21
24	-0.01	-0.07	-0.10	-0.18	-0.21
25	-0.02	-0.04	-0.07	-0.13	-0.18
26	0.00	-0.04	-0.06	-0.12	-0.17
27	0.02	-0.05	-0.07	0.00	-0.18
28	0.01	-0.05	-0.07	0.00	-0.18
29					
30	0.03	-0.02	-0.05	-0.16	-0.19
NOMINAL	0.00	0.00	0.00	0.00	0.00
AVERAGE	0.00	-0.06	-0.09	-0.17	-0.21
STD. DEV.	0.02	0.02	0.02	0.04	0.03

S B R C

A SUBSIDIARY OF HUGHES AIRCRAFT COMPANY

BAND TO BAND REGISTRATION - CROSS SCAN

ORIGINAL PAGE IS
OF POOR QUALITY

5/82

FORWARD SCAN (UNITS ARE RFOV)
Data taken 18 September 1981

S B R C

A SUBSIDIARY OF MURKIN'S AIRCRAFT COMPANY

	B1	B2	B3	B4	B5	B6	B7
RT	3.0	1.98	1.97	2.00	2.00	1.86	1.97
	2.9	1.97	1.94	2.01	2.00	1.86	1.95
	2.8	1.97	1.95	2.02	2.00	1.87	1.95
	2.7	1.98	1.96	2.01	2.00	1.86	1.96
	2.6	1.98	1.96	2.01	2.00	1.88	1.96
	2.5	1.97	1.97	2.01	2.00	1.87	1.96
	2.4	1.97	1.97	2.01	2.00	1.86	1.96
	2.3	1.97	1.97	2.01	2.00	1.85	1.95
	2.2	1.97	1.96	2.01	2.00	1.87	1.95
	2.1	1.97	1.96	2.02	2.00	1.87	1.95
	2.0	1.96	1.98	2.01	2.00	1.86	1.96
	1.9	1.96	1.97	2.01	2.00	1.88	1.96
	1.8	1.96	1.98	2.01	2.00	1.87	1.96
	1.7	1.96	1.99	2.01	2.00	1.87	1.96
	1.6	1.96	1.97	2.01	2.00	1.86	1.96
	1.5	1.97	1.99	2.01	2.00	1.88	1.96
	1.4	1.97	1.98	2.01	2.00	1.87	1.96
	1.3	1.96	1.97	2.01	2.00	1.86	1.95
	1.2	1.96	1.96	2.01	2.00	1.87	1.96
	1.1	1.97	1.95	2.01	2.00	1.87	1.96
	1.0	1.97	1.97	2.01	2.00	1.87	1.96
	9	1.97	1.95	2.01	2.00	1.85	1.96
	8	1.97	1.95	2.01	2.00	1.86	1.96
	7	1.97	1.95	2.01	2.00	1.87	1.96
	6	1.98	1.95	2.01	2.00	1.88	1.96
	5	1.98	1.93	2.02	2.00	1.85	1.96
	4	1.98	1.95	2.02	2.00	1.80	1.96
	3	1.97	1.96	2.03	2.01	1.87	1.97
	2	1.98	1.95	2.03	2.00	1.80	1.96
NOMINAL	2.00	2.00	2.00	2.00	2.00	2.00	2.00
AVERAGE	1.97	1.96	2.01	2.00	1.87	1.96	
STD. DEV.	0.01	0.01	0.00	0.00	0.02	0.00	

ORIGINAL PAGE IS
OF POOR QUALITY

5/82

2-150

REVERSE SCAN (UNITS ARE RFOV)
Data taken 18 September 1981

RT	B1	B2	B3	B4	B5	B6	B7
2	-1.01	-3.00	-3.00	-2.99	-2.98	-2.97	-2.93
3	-3.00	-3.00	-3.00	-2.99	-2.98	-2.97	-2.94
4	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.85
5	-2.01	-1.99	-1.99	-1.98	-1.98	-1.97	-2.85
6	-2.98	-2.98	-2.98	-2.97	-2.97	-2.96	-2.84
7	-3.01	-2.99	-2.99	-2.98	-2.98	-2.97	-2.84
8	-3.01	-3.00	-3.00	-2.99	-2.99	-2.98	-2.84
9	-3.00	-3.01	-3.01	-2.99	-2.99	-2.98	-2.84
10	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.83
11	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.84
12	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.85
13	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.84
14	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.84
15	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.84
16	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.84
17	-2.98	-2.98	-2.98	-2.97	-2.97	-2.96	-2.84
18	-3.00	-3.00	-3.00	-2.99	-2.99	-2.98	-2.85
19	-3.00	-3.00	-3.00	-2.99	-2.99	-2.98	-2.85
20	-2.98	-2.98	-2.98	-2.97	-2.97	-2.96	-2.83
21	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.84
22	-2.98	-2.98	-2.98	-2.97	-2.97	-2.96	-2.84
23	-2.99	-2.99	-2.99	-2.98	-2.98	-2.97	-2.84
24	-3.00	-3.00	-3.00	-2.99	-2.99	-2.98	-2.83
25	-2.97	-2.97	-2.97	-2.97	-2.97	-2.96	-2.84
26	-3.02	-3.02	-3.02	-2.99	-2.99	-2.98	-2.85
27	-3.02	-3.02	-3.02	-2.97	-2.97	-2.96	-2.84
28	-2.99	-2.99	-2.99	-2.95	-2.95	-2.94	-2.84
29	-3.01	-3.01	-3.01	-2.99	-2.99	-2.93	-2.85
30	-3.01	-3.01	-3.01	-2.99	-2.99	-2.93	-2.85
NOMINAL	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00	-3.00
AVERAGE	-3.00	-3.01	-2.97	-2.97	-2.97	-2.91	-2.84
STD. DEV.	0.01	0.01	0.01	0.00	0.00	0.04	0.01

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

SCAN LINEARITY

S B R C

ALONG SCAN PROFILE

S B R C

A SUBSIDIARY OF Houghton Mifflin Company

FORWARD SCAN PROFILE SME-1 SAM MODE

REVERSE SCAN PROFILE SME-1 SAM MODE

5/82

2-155

QUALITY OF ALONG SCAN DATA FOR FULL BL19/20 COLLECT

- EACH DATA POINT IS THE AVERAGE OF FIVE SCANS
- SCAN TO SCAN REPEATABILITY (AFTER LINE LENGTH CORRECTION) IS $\pm 4 \mu\text{rad}$ RMS
- SCAN TO SCAN REPEATABILITY DOES NOT DEPEND ON POSITION WITHIN THE SCAN
- RESIDUAL BETWEEN AVERAGED DATA POINTS AND COMPUTED PROFILE IS $\pm 3 \mu\text{rad}$ RMS.

ORIGINAL PAGE IS
OF POOR QUALITY

PARAMETERS FOR COMPUTATION OF THE ALONG SCAN PROFILE

ORIGINAL PAGE IS
OF POOR QUALITY

FORWARD SCAN		REVERSE SCAN																
	a_p	a_0	a_1	a_2	a_3	a_4	a_5	ϕ_{PHI}	W_F	a_0	a_1	a_2	a_3	a_4	a_5	ϕ_{PHI}	W_R	K'_0
SME-1																		0.499933
SAM																		0.499911
MODE																		
SME-2																		
SAM																		
MODE																		

UNITS:

- a_i IN rad / (mf)
- ϕ_{PHI} , r_0 IN rad
- W_F , W_R IN rad / mf
- K'_0 IS A PURE NUMBER
- a_0 IS CHOSEN SO THAT THE FORWARD AND REVERSE SCAN ANGLES ARE CONSISTENT FOR BAND 4 CHANNEL 9
- THE DESIGN SCAN RATE IS $42.50E-6$ rad/MF

COMPUTATION OF THE ALONG SCAN PROFILE

S B R C

A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

FOR FORWARD SCANS

$$\theta(mf) = W_F \cdot mf^* + \sum_{i=0}^5 C_i (mf^*)^i + 4 \cdot \phi_{mid} \frac{mf^* (6320 - mf^*)}{6320^2}$$

FOR REVERSE SCANS

$$\theta(mf) = W_R \cdot (6320 - mf^*) + \sum_{i=0}^5 C_i (mf^*)^i + 4 \cdot \phi_{mid} \frac{mf^* (6320 - mf^*)}{6320^2}$$

WHERE

$$mf^* = \frac{mf}{1 + \frac{\Delta TSCAN}{TSCAN}}$$

ORIGINAL PAGE IS
OF POOR QUALITY

CROSS SCAN PROFILE

S B R C
A SUBSIDIARY OF NICHOLS AEROMARINE COMPANY

CROSS SCAN PROFILE NONLINEARITIES

S B R C
A SUBSIDIARY OF
HUGHES AIRCRAFT COMPANY

ORIGINAL PAGE IS
OF POOR QUALITY

CROSS SCAN PROFILE 5TH ORDER POLYNOMIAL COEFFICIENTS

	FORWARD SCAN	REVERSE SCAN
C ₀	-0. 000287	-0. 000276
C ₁	-1. 014827E-8	-1. 628688E-8
C ₂	4. 295777E-12	8. 563377E-12
C ₃	-7. 930246E-16	-2. 248363E-15
C ₄	4. 174148E-20	2. 998088E-19
C ₅	2. 675552E-24	-1. 531221E-23
W _C	9. 286E-8	9. 286E-8

ORIGINAL PAGE IS
OF POOR QUALITY

$$\phi_{CS} = \sum_{i=0}^5 c(i)M^i \quad \phi_{CS} \text{ (radians)}$$

$$W_C = 9.287E-8 \text{ rad/MF} = 9.66E-3 \text{ rad/sec}$$

$$IMF = 9.611 \mu\text{sec}$$

TM Geometric Processing – Flight Segment

Eric Beyer

GEOMETRIC CORRECTION OVERVIEW

- FLIGHT SEGMENT
 - ATTITUDE DEVIATIONS
 - THEMATIC MAPPER
 - DATA COORDINATION
- TM GROUND PROCESSING
 - PAYLOAD CORRECTION PROCESSING
 - CONTROL POINT PROCESSING
 - GEOMETRIC CORRECTION PROCESSING
 - GEOMETRIC CORRECTION PROCESSING (RESAMPLING)
- SYSTEM PERFORMANCE
- TM END-TO-END GEOMETRIC PERFORMANCE TEST

ORIGINAL PAGE IS
OF POOR QUALITY

UNITS

$$\text{TM PIXEL} = 42.5 \mu \text{RAD} = 8.77 \text{ ARC-SEC} \Rightarrow 30 \text{ METERS AT } 705.3 \text{ KM}$$

$$\text{MSS PIXEL} = 117.2 \mu \text{RAD} = 24.17 \text{ ARC-SEC} \Rightarrow 82.7 \text{ METERS AT } 705.3 \text{ KM}$$

$$1 \mu \text{ RAD} \Rightarrow .71 \text{ METER AT } 705.3$$

$$1 \text{ ARC-SEC} \Rightarrow 3.4 \text{ METER AT } 705.3$$

$$1 \text{ ARC-SEC} = 4.85 \mu \text{RAD}$$

$$\begin{aligned} \text{SINGLE SCENE ACCURACY REQUIREMENT} \\ 0.3 \text{ PIXEL TEMPORAL (90\%)} \times \frac{42.5 \mu \text{ RAD}}{\text{PIXEL}} \times \frac{(1\sigma)}{1.645(90\%)} \times \frac{\text{SINGLE SCENE}}{\sqrt{2} \text{ TEMPORAL}} = 5.48 \mu \text{RAD} = 1.13 \text{ ARC SEC (1}\sigma\text{)} \\ = 3.9 \text{ METER (1}\sigma\text{)} \\ \text{AT } 705.3 \text{ KM} \end{aligned}$$

GEOMETRIC CORRECTION

- CORRECTION DATA GENERATION
 - LOCATE TM DETECTOR SAMPLES ON THE OUTPUT PROJECTION SYSTEM
- PRODUCT GENERATION (RESAMPLING)
 - USING CORRECTION DATA TO RESAMPLE TM DETECTOR SAMPLES ONTO OUTPUT PROJECTION SYSTEM

WORLDWIDE REFERENCE SYSTEM

- WRS LAT., LONG FIXED

- TWO MAP PROJECTIONS

- SPACE OBLIQUE MERCATOR (SOM)
- UNIVERSAL TRANSVERSE MERCATOR (UTM)
- OR
- POLAR STEREOGRAPHIC

- OUTPUT PROJECTION SYSTEM

- FIXED ROTATION ANGLE FOR EACH WRS SCENE AND MAP PROJECTION
- INTEGER PIXEL HORIZONTAL SHIFT FOR EACH SCENE PASS

- STANDARD GEOID

FIGURE 1-1
CORRECTION DATA GENERATION CONCEPT

FIGURE 1-2
RESAMPLING CONCEPT

FIGURE 1-3 GEOMETRIC ACCURACY SPECIFICATIONS

GEOMETRIC CORRECTION REQUIREMENTS 90% OF THE TIME

GEODETIC	0.5 PIXEL
TEMPORAL	0.3 PIXEL (REGISTRANT TO REFERENCE)
BAND-TO-BAND	0.3 PIXEL (BETWEEN PRIMARY AND COLD FOCAL PLANES) 0.2 PIXEL (WITHIN EACH FOCAL PLANE)

SUMMARY OF KEY GEOMETRIC CORRECTION REQUIREMENTS (ACCURACY)

GEODETIC RECTIFICATION

- 0.5 PIXEL (90% OF THE TIME)
- REFERENCE TO STANDARD MAP
- ASSUME ACCURATE GROUND CONTROL POINTS
- ADEQUATE NUMBER OF GROUND CONTROL POINTS
- VERIFIED OVER AREAS WITH NO TOPOGRAPHICAL VARIATIONS

TEMPORAL REGISTRATION

- 0.3 PIXEL (90% OF THE TIME)
- ADEQUATE INSTRUMENT PERFORMANCE
- ADEQUATE NUMBER OF GROUND CONTROL POINTS

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 1-4
LANDSAT D TM GEOMETRIC CORRECTION SYSTEM OVERVIEW

FLIGHT SEGMENT

ATTITUDE DEVIATIONS

THEMATIC MAPPER

DATA COORDINATION

FIGURE 2-1
LANDSAT D FLIGHT SEGMENT

FIGURE 2-2
LANDSAT-D ORBIT

FIGURE 2-3

SYSTEM EPHEMERIS DATA FLOW FOR TM GEOMETRIC CORRECTION

EPHEMERIS ACCURACY AND VARIATION

ORBIT SUPPORT COMPUTING DIVISION EPHEMERIS ERROR	(1 st AFTER 2 DAYS)	POSITION (METERS)	VELOCITY (METERS/SEC)
ALONG TRACK	500*	500*	.163
CROSS TRACK	100	100	.065
RADIAL	33	33	.650*
* GSFC SPEC			

- VARIATION FROM NOMINAL

- ALTITUDE (705.3 KM ORBIT): 696 TO 741 KM OVER EARTH;
RANGE OF 19 KM OVER ANY FIXED LATITUDE
- CROSS TRACK: \pm 4 KM AT THE EQUATOR.
- INCLINATION: 98.21 \pm .045 DEGREES

- SPACECRAFT CLOCK ACCURACY \pm 20 MILLISECONDS

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 2-4
ATTITUDE CONTROL SUBSYSTEM (ACS)
NORMAL OPERATING MODE FUNCTIONAL BLOCK DIAGRAM

FIGURE 2-5
LOW FREQUENCY ATTITUDE ERROR DYNAMICS

FIGURE 2-6
SPACECRAFT ALIGNMENT DYNAMICS
(ACS TO TM OPTICAL AXIS)

FLIGHT SEGMENT ATTITUDE DEVIATIONS

ORIGINAL PAGE IS
OF POOR QUALITY

SPACECRAFT ATTITUDE DEVIATIONS
LANDSAT-D VEHICLE

TABLE 2-1
AMPLITUDES OF TM AND MSS SCAN MIRROR TORQUE COMPONENTS

TM		MSS	
FREQUENCY (Hz)	AMPLITUDE (IN-LBS)	FREQUENCY (Hz)	AMPLITUDE (IN-LBS)
7	43.343	13.620	40.398
21	41.543	40.860	39.507
35	39.106	68.100	37.770
49	33.341	95.340	35.269
63	27.663	122.580	32.122
77	21.547	149.820	28.476
91	15.476	177.060	24.494
105	9.8845	204.300	20.351
119	5.1200	231.540	16.217
		258.780	12.253
		286.020	8.601
		313.260	5.373
		340.50	2.651

ORIGINAL PAGE IS
OF POOR QUALITY.

ATTITUDE ERROR
(AT THE TM)

FREQUENCY RANGE	ERROR MAGNITUDE (ARC-SEC)	COMMENT
0 - 0.01 Hz	36 (1σ)	ALL AXES, ATTITUDE CONTROL ERROR
0.01 - 0.4 Hz	10 (1σ)	ALL AXES, TDRSS ANTENNA DRIVE ERROR
0.4 - 7 Hz	0.3 (1σ)	ALL AXES, TDRSS ANTENNA DRIVE ERROR
BASELINE MODEL (.01 DAMPING)	WORST CASE DESIGN	
>7 Hz	R 0.93 (1σ) P 0.20 (1σ) Y 0.30 (1σ)	20.0 (PEAK) 2.2 (PEAK) 16.8 (PEAK)
ADS CALIBRATION REQUIREMENT	3% ERROR	.5 ARC-SEC (1σ) LIMITS JITTER GAP TO LESS THAN ONE PIXEL
DRIRU CALIBRATION REQUIREMENT	3% ERROR	USED IN ERROR BUDGETS
ATTITUDE DATA PROCESSING REQUIREMENT	1% ERROR	

ORIGINAL PAGE IS
OF POOR QUALITY

ADS: ANGULAR DISPLACEMENT SENSOR
DRIRU: DRY ROTOR INERTIAL REFERENCE UNIT
TDRSS: TRACKING AND DATA RELAY SATELLITE SYSTEM

FIGURE 2-7

TYPICAL TDRSS AND SOLAR ARRAY INDUCED ATTITUDE DEVIATION
(RUNNING 30 SECONDS RMS ABOVE 0.01 Hz)

TDRSS AT 30 DEG.

CASE 2 - 6/17/81
LANDSAT-D NORMAL OPERATION PERFORMANCE

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 2-8
ANGULAR DISPLACEMENT SENSOR

THEMATIC MAPPER

SCAN PATTERN

SCAN PROFILE

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 2-9
THEMATIC MAPPER GEOMETRY

FIGURE 2-10
DETECTOR PROJECTION AT PRIME FOCAL PLANE

FIGURE 2-11
THEMATIC MAPPER SCANNING

FIGURE 2-12
THEMATIC MAPPER SCAN
IS AFFECTED BY ALTITUDE DEVIATION

- OVERLAP BETWEEN SCANS
 - ALTITUDE TOO HIGH

 - ORIGINAL PAGE IS OF POOR QUALITY
- SCAN SKEW
 - SCAN LINE CORRECTOR OVERCOMPENSATING FOR GROUND SPEED

- BOW TIE EFFECT
 - VARYING SLANT RANGE PRODUCES VARYING SCAN WIDTH

FIGURE 2-13
SCAN GAP ERROR**

<u>ALITUDE VARIATION</u>	<u>SPACECRAFT ATTITUDE DEVIATION</u>	<u>TM UNDERLAP/OVERLAP</u>
696 - 741 KM FOR 705.3 ORBIT 713 KM TM DESIGN ALTITUDE	LESS THAN 1 PIXEL	0.2 PIXEL (SPEC)
<u>WORST CASE END SCAN GAP : IN PIXELS*</u>		
EARTH LOCATION		<u>WORST CASE GAP RANGE</u>
NORTHERN HEMISPHERE	-0.7 TO 0.8	-2.8 TO 2.0
45°N	-0.4 TO 0.6	(WORST CASE TOTAL OF ALTITUDE VARIATION, JITTER, TM UNDERLAP/ OVERLAP EFFECTS)
EQUATOR	-0.2 TO 0.8	
45°S	-0.9 TO 0.1	
SOUTHERN HEMISPHERE	-1.6 TO 0.8	
*INCLUDES SCAN WIDTH, SCAN LINE CORRECTOR SKEW AND BOWTIE EFFECTS		
**GAP < 0 : OVERLAP = 0 : NOMINAL > 0 : UNDERLAP		

ORIGINAL PAGE IS
OF POOR QUALITY.

FIGURE 2-14
TM SCAN MIRROR PROFILE

FLIGHT SEGMENT DATA COORDINATION

32

2-193

FIGURE 2-15
ATTITUDE DATA AND SCAN START TIMING

MAJOR FRAME START TIME **TLM**

ADS: ANGULAR DISPLACEMENT SENSOR

A/D: ANALOG-TO-DIGITAL CONVERTER

DRIAU: DRY ROTOR INERII
D/C: DOWN COUNTER

D/C: DYNAMIC COMPUTATION
OBC: ON BOARD COMPUTER
T/C: TEST COMPUTER

TM Geometric Processing – Ground Segment

Eric Beyer

TM IMAGE GROUND PROCESSING

PAYOUTLOAD CORRECTION PROCESSING

CONTROL POINT PROCESSING

GEOMETRIC CORRECTION PROCESSING

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 1-4
LANDSAT TM GEOMETRIC CORRECTION SYSTEM OVERVIEW

SYSTEMATIC CORRECTION DATA

PURPOSE: PROVIDES MEANS TO LOCATE IMAGE DATA ON OUTPUT COORDINATES

BENCHMARK MATRIX

A 2-DIMENSIONAL GRID OF TM FOCAL PLANE BENCHMARKS ON OUTPUT COORDINATES.
COMPUTED ASSUMING PERFECT POINTING AND MIRROR PROFILES.

HIGH FREQUENCY MATRICES (ALONG- AND CROSS-SCAN)

CORRECTS BENCHMARKS FOR ATTITUDE DEVIATIONS AND MIRROR PROFILE
NON-LINEARITIES.

FOCAL PLANE GEOMETRY MATRICES

CORRECTS BENCHMARKS FOR DETECTOR POSITION RELATIVE TO FOCAL PLANE OPTICAL
AXIS.

PROCESSING PARAMETERS

NEEDED FOR THE RESAMPLING PROCESS

PAYOUT CORRECTION PROCESSING

ORIGINAL PAGE IS
OF POOR QUALITY

PAYOUT CORRECTION DATA PROCESSING

ADS: ANGULAR DISPLACEMENT SENSOR
DIRU: DRY ROTOR INERTIAL REFERENCE UNIT
PCD: PAYLOAD CORRECTION DATA

EPHEMERIS DATA PROCESSING

- PROVIDES EPHemeris WITH KNOWN ERROR DYNAMICS FOR CONTROL POINT PROCESSING

FUNCTIONS

- SMOOTH (GPS AND OBC DISCONTINUITIES)
- ELIMINATE BAD DATA (TELEMETRY TRANSMISSION ERRORS)
- INTERPOLATE
- SYNCHRONIZE WITH TELEMETRY MAJOR FRAME START TIME

ECI: EARTH-CENTERED INERTIAL COORDINATES
GPS: GLOBAL POSITIONING SYSTEM
OBC: ON-BOARD COMPUTER

FIGURE 3-2
ATTITUDE DATA PROCESSING

PAYLOAD CORRECTION PROCESSING

FIGURE 3-3
MIRROR SCAN CORRECTION DATA PROCESSING

TM MID SCAN CORRECTION

ORIGINAL PAGE IS
OF POOR QUALITY

FORWARD SCAN OFFSET ANGLE θ_{fi}

TAKING INTO ACCOUNT ACTIVE SCAN TIME (T_S)
AND SWEEP MIRROR RATIO (K_0')

$$\theta_{fi} = \left[T_1 (K_0' - 1) + T_2 (K_0') \right] \left[\frac{\theta_{f1} \theta_{f2} \theta_{f3}}{T_S} \right]$$

$$K_0' = \frac{\theta_{f1} \theta_{f2} \theta_{f3}}{\theta_{f1} \theta_{f2} \theta_{f3}}$$

$$T_1 = FHS\text{ REF} - FHSLR$$

$$T_2 = SHS\text{ REF} - SHSERR$$

$$T_3 = T_1 + T_2$$

FORWARD MIDSCAN CORRECTION SCAN

$$\Delta_{fi} = \phi_{fi} - \phi_{fo}$$

ORIGINAL PAGE IS
OF POOR QUALITY

PAYOUT LOAD CORRECTION PROCESSING

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 3-4
SYSTEMATIC CORRECTION DATA GENERATION

FIGURE 3-8
BENCHMARK MATRIX CONCEPT
(AN EXAMPLE)

BENCHMARK MATRIX CALCULATION

INPUT
SCENE CENTER PARAMETERS
TM-TO-POINTING AXIS ALIGNMENT
EPEHMERIS DATA
SCAN-START TIME DATA

ASSUMPTIONS

PERFECT POINTING

LINEAR MIRROR PROFILES

OUTPUT

p_0, y_0 — OPTICAL AXIS ORIGIN
 p_1, y_1 — CROSS-SCAN OFFSET

AT 64 POINTS -102.144 km +102.144 km

TM FRAME MOTION AND MIRROR
MOTION EFFECTS

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 3-9
ALONG SCAN HIGH-FREQUENCY MATRICES

FIGURE 3-5
SCD: OPTICAL AXIS POSITION ON THE OUTPUT
COORDINATE SYSTEM

SMA: SCAN MIRROR ASSEMBLY
 SLC: SCAN LINE CORRECTOR
 S/C: SPACECRAFT

FIGURE 3-6
SCD: OPTICAL AXIS TO DETECTOR SAMPLE LOCATION

ORIGINAL PAGE IS
OF POOR QUALITY

FIGURE 3-7
SCD: PROCESSING PARAMETERS

ORIGINAL PAGE IS
OF POOR QUALITY

SCAN LINE LENGTH

LL (j)

j = scan number = 1, . . . , 374

NUMBER OF COMPLETE IMAGING MINOR
FRAMES

DATA FORMATTER - PROCESSOR ODD
DETECTOR SAMPLE SHIFTS

N_d (m,k)

m = band number = 1, . . . , 7
k = scan direction index = 1, 2

LINE SHIFT INTRODUCED BY THE DFP
FOR ODD NUMBERED DETECTORS

GEOMETRIC ERROR IN SYSTEMATIC CORRECTION DATA (APPROXIMATE)

ERROR SOURCE	CROSS TRACK (METERS 1σ)	ALONG TRACK (METERS 1σ)
EPHEMERIS	100	500
TIME		80
ATTITUDE	123	123
ALIGNMENT	427*	855*
TOTAL (ROOT-SUM-SQUARE)	455 (25 PIXELS 90%)	1001 (55 PIXELS 90%)

ORIGINAL PAGE IS
OF POOR QUALITY

*SUBSTANTIAL REDUCTION WILL OCCUR AFTER POST LAUNCH
CALIBRATION

CONTROL POINT PROCESSING

- PURPOSE

- REMOVE BIAS AND DRIFT ERROR EFFECTS FROM SCD
 - ... EPHemeris
 - ... TIME
 - ... LOW FREQUENCY ATTITUDE
 - ... ALIGNMENT

FIGURE 3-10
CONTROL POINT CONCEPT

FIGURE 3-11
CONTROL POINT PROCESSING FLOW

CONTROL POINT PROCESSING ALONG TRACK ERROR SIMULATION ANALYSIS (1 SCENE INTERVAL)

CONTROL POINT PROCESSING
ALONG TRACK ERROR SIMULATION ANALYSIS

— 18 STATE VARIABLE PROCESSING
— 12 STATE VARIABLE PROCESSING

NUMBER OF
CONTROL
POINTS
PER
SCENE

ORIGINAL PAGE IS
OF POOR QUALITY

CONTROL POINT
PROCESSING REQUIREMENT

4.9M (90%)
3.0 (1₀)

EXPECTED CONTROL
POINT MEASUREMENT ERROR

CONTROL POINT MEASUREMENT ERROR (METERS 1₀)

TM GEOMETRIC CORRECTION PROCESSING

60

2-222

TM GEOMETRIC CORRECTION PROCESS OVERVIEW

FIGURE 3-1*c*

TWO-DIMENSIONAL CUBIC CONVOLUTION RESAMPLING

FIGURE 3-13

- X-RESAMPLING: GENERATE HYBRID PIXELS
- Y-RESAMPLING: GENERATE OUTPUT PIXELS

ONE-DIMENSIONAL CUBIC CONVOLUTION RESAMPLING

FIGURE 3-14

- $P = P_1W_1 + P_2W_2 + P_3W_3 + P_4W_4$
- 32 SETS OF WEIGHTING COEFFICIENTS (W_1, W_2, W_3, W_4) FOR 32 SUB-INTERVALS
- OUTPUT PIXEL LOCATION PRECISION TO $(1/64)$ PIXEL IN RESAMPLING COMPUTATION
- INPUT PIXELS MUST BE EQUALLY SPACED

SCAN GAP, GAP SKEW AND SCAN LINE SKEW

FIGURE 3-15

- SCAN GAP IS CAUSED PRIMARILY BY ALTITUDE VARIATION, SCAN LINE CORRECTOR SCAN RATE, SPACECRAFT PITCH AND YAW JITTER.
- GAP SIZE = (SPACING BETWEEN LINE 16 AND LINE 1) - LINE SPACING
- GAP SKEW =
$$\frac{\text{GAP SIZE } (X_2) - \text{GAP SIZE } (X_1)}{X_2 - X_1}$$
- SCAN LINE SKEW =
$$\frac{\Delta Y_2 - \Delta Y_1}{X_2 - X_1}$$
- X_1 , X_2 = LEFT, RIGHT SIDE OF OUTPUT SEGMENT
- $X_2 = X_1 + 128$

TABLE 3-1

GEOMETRIC CORRECTION OPERATOR (GCO) GAP HANDLING CAPABILITY

GAP SIZE	WORST CASE (IN PIXELS)	GCO CAPABILITY (IN PIXELS)
GAP SKEW OVER 128 OUTPUT PIXELS	-2.8 TO 2.0	-5 TO 3
TM SCAN LINE SKEW OVER 128 OUTPUT PIXELS	-0.42 TO 0.42	-2 TO 2
	-1.0 TO 1.0	-2 TO 2

ORIGINAL PAGE IS
OF POOR QUALITY

THREE - STEP RESAMPLING FOR GAP PROCESSING

ORIGINAL PAGE IS
OF POOR QUALITY

GENERATE SCAN EXTENSION LINE PIXELS

FIGURE 3-16

ORIGINAL PAGE IS
OF POOR QUALITY

- Δ HYBRID PIXEL
- EXTENSION PIXELS ARE GENERATED WITH TWO HYBRID PIXELS ABOVE AND TWO HYBRID PIXELS BELOW
- PIXEL LOCATION PRECISION TO (1/64) PIXEL IN RESAMPLING COMPUTATION

FIGURE 3-17

SPLINE INTERPOLATION FORMULA

● INPUT PIXEL LOCATION

▲ DESIRED PIXEL LOCATION

CUBIC CONVOLUTION WEIGHT FORMULAS		CUBIC SPLINE WEIGHT FORMULAS
w_1	$-d(1-d)^2$	$\frac{2a_1}{ch_1h_2} f_1 f_2 f_3 - \frac{1}{ch_1} g_1 g_2 g_3$
w_2	$(1-d)(1+d-d^2)$	$-\frac{1}{ch_1} f_1 f_2 f_3 \left(1 + \frac{2a_1}{h_2} + \frac{2a_1}{h_1} \right) + \frac{f_2}{h_2} + \frac{1}{c} g_1 g_2 g_3 \left(\frac{2a_0}{h_2^2} + \frac{1}{h_1} + \frac{1}{h_2} \right)$
w_3	$d(1+d-d^2)$	$\frac{1}{c} f_1 f_2 f_3 \left(\frac{2a_1}{h_2^2} + \frac{1}{h_2} + \frac{1}{h_3} \right) - \frac{1}{ch_2} \left(g_1 g_2 g_3 \right) \left(1 + \frac{2a_0}{h_2} + \frac{2a_0}{h_3} \right) + \frac{g_3}{h_2}$
w_4	$-d^2(1-d)$	$-\frac{1}{ch_3} f_1 f_2 f_3 + \frac{2a_0}{ch_2 h_3} g_1 g_2 g_3$

$$\begin{aligned}f_1 &= X_3 - X - h_2 \\f_2 &= X_3 - X + h_2 \\f_3 &= X_3 - X\end{aligned}$$

$$\begin{aligned}g_1 &= X - X_2 - h_2 \\g_2 &= X - X_2 + h_2 \\g_3 &= X - X_2\end{aligned}$$

$$\begin{aligned}h_1 &= X_2 - X_1 \\h_2 &= X_3 - X_2 \\h_3 &= X_4 - X_3\end{aligned}$$

$$\begin{aligned}a_0 &= h_1 + h_2 \\a_1 &= h_2 + h_3 \\c &= 4a_0^2 - h_2^2\end{aligned}$$

SYSTEM PERFORMANCE

TM SYSTEM GEOMETRIC ERRORS

ORIGINAL PAGE IS
OF POOR QUALITY

THEMATIC MAPPER SYSTEM TEMPORAL REGISTRATION ERROR BUDGET IN PIXEL (42.5 MICRORAD) 90%

<u>ERROR SOURCE</u>	<u>CROSS TRACK ERROR*</u>	<u>ALONG TRACK ERROR*</u>	<u>ITEM NUMBER (PREVIOUS CHART)</u>
• THEMATIC MAPPER			
- SCAN REPEATABILITY	.165 $\sqrt{2}$.165 $\sqrt{2}$	1
- BAND-TO-BAND	.048 $\sqrt{2}$.039 $\sqrt{2}$	2
• SPACECRAFT			
- HIGH FREQ. ATTITUDE DEVIATION	.094 $\sqrt{2}$.094 $\sqrt{2}$	3
- ATTITUDE, EPHemeris, ALIGNMENT, TIME RESIDUAL	.165	.165	4
• GROUND PROCESSING			
- SCAN NONLINEARITY CORRECTION	.082 $\sqrt{2}$	0	5
- SYSTEMATIC CORRECTION DATA GENERATION	.055 $\sqrt{2}$.055 $\sqrt{2}$	6
- CONTROL POINT PROCESSING	.055 $\sqrt{2}$.055 $\sqrt{2}$	7
- GCD INTERPOLATION	.065 $\sqrt{2}$.055 $\sqrt{2}$	8
- RESAMPLING LOCATION	.014 $\sqrt{2}$.014 $\sqrt{2}$	9
• TOTAL (ROOT-SUM-SQUARE)	.369	.348	
• SPECIFICATION	3	3	

**ORIGINAL PAGE IS
OF POOR QUALITY**

• RESIDUAL ERROR AFTER PROCESSING

TM END-TO-END GEOMETRIC PERFORMANCE TEST

PURPOSE: PRELAUNCH DEMONSTRATION OF FLIGHT HARDWARE AND PROCESSING SOFTWARE

**THEMATIC MAPPER
ANGULAR DISPLACEMENT SENSOR ASSEMBLY
PCD FORMATTER
ATTITUDE DATA PROCESSING
MIRROR SCAN CORRECTION DATA PROCESSING
SCD GENERATION
IMAGE RESAMPLING**

**ORIGINAL PAGE IS
OF POOR QUALITY**

END-TO-END TM GEOMETRIC
PERFORMANCE TEST DATA FLOW

ADP
ROLL
PITCH
YAW

PCD CYCLE #95 TM ON MSS ON
#MAGNITUDES IN MICRO-RADIANS

ORIGINAL PAGE IS
OF POOR QUALITY

ORIGINAL PAGE IS
OF POOR QUALITY

PCD CYCLE*95 TH ON MSS ON
*MAGNITUDES IN MICRO_RADIANS
END TO END

TM GEOMETRIC CORRECTION SYSTEM SUMMARY

- FLIGHT SEGMENT
 - ATTITUDE CONTROL
 - ... 0.01 DEGREE POINTING
 - ... SOLAR ARRAY CONTROL OPEN-LOOP
 - ... RANDOMIZED TORQUE ANTENNA CONTROL
 - ATTITUDE MEASUREMENTS
 - ... DTRU (0-2 Hz)
 - ... ADGA (2-125 Hz)
 - STRUCTURAL DYNAMICS CHARACTERIZED
 - THEMATIC MAPPER
 - ... DEMONSTRATED SCAM REPEATABILITY
- GROUND SEGMENT
 - ATTITUDE DATA PROCESSING
 - HIGH FREQUENCY ATTITUDE DEVIATION CORRECTION CAPABILITY
 - MIRROR SCAM DATA PROCESSING
 - MID-SCAM PROFILE CORRECTION
 - CONTROL POINT PROCESSING
 - MODELED SPACECRAFT ERROR DYNAMICS
 - GEOMETRIC CORRECTION PROCESSING
 - GAP RESAMPLING CAPABILITY
- PRELAUNCH PERFORMANCE SIMULATIONS AND TESTING
- POST LAUNCH CALIBRATION AND VALIDATION

ORIGINAL PAGE IS
OF POOR QUALITY

Early Access TM Processing

Dave Fischel

LAS Component Objectives

PRODUCT GENERATION

- ACQUIRE FROM ADDS ONE TM SCENE/DAY FOR
 - USE BY LAS PAPA
 - PRODUCTION OF FILM, HDT, CCT AT A AND P LEVELS

PRODUCTS AND PROCEDURES ANALYSIS (PAPA)

- DEVELOP AND EVALUATE A PRIORI GROUND PROCESSING PROCEDURE FOR RADIOMETRIC AND GEOMETRIC CORRECTION INCLUDING JITTER
- INSTITUTE AND EVALUATE INDICATED MODIFICATIONS TO A PRIORI PROCEDURE
- ISSUE REPORTS AND/OR RECOMMENDATIONS TO LANDSAT-D PROJECT IN RE PROCEDURE AND PRODUCT CHARACTERISTICS

TM Early Access Program Functional Data Flow

Overall Configuration

Data Flow

ORIGINAL PAGE IS
OF POOR QUALITY

*OR EQUIVALENT ESD 6268 BPI WITH VARIOUS RLUT OPTIONS

LEGEND

- IDOA - IMAGE DATA QUALITY ANALYSES
- PG - PRODUCT GENERATION
- PAPA - PRODUCT AND PROCEDURES ANALYSES
- CPL - CONTROL POINT LIBRARY

LAS Internal Data Flow

**ORIGINAL PAGE IS
OF POOR QUALITY**

iAS Functions

- Receive a Minimum of 10 and up to 21 TM Scenes Per Week in CCT-B Format
- Receive Corresponding Work Orders and Scene Priorities
- Apply Radiometric and Geometric Corrections to TM Data as Required to Produce CCT-A and P Products
- Produce TM P-Film Master and Associated Products for 7 Scenes Per Week
- Forward Standing Order Film Products and Updated Work Orders to Science Office
- Store Tape and Film Master in Respective Libraries
- Supply Film and Tape Masters to Products Support and Distribution Facility (According to Product Requests) for Preparation of Output Products
- Provide Science Office with Weekly Processing Summary Report

LAS Scrounge Operations Schedule

ORIGINAL PAGE IS
OF POOR QUALITY

"Scrounge" Data Flow

HAAT: HEADER, ANCILLARY, ANNOTATION AND TRAILER RECORDS

LAS Tape P Level Data Content

HAAT FILE

- Usual Scene Identifiers and Processing Flags
- Ephemeris Data for INTERVAL Containing Scene
- TM Housekeeping Data for INTERVAL Containing Scene
- OA Data for Attitude Sensors
- SCD (Systematic Correction Data) SOM/UTM
- Annotation Records and Tick Mark Data

IMAGE LABEL FILES (1 per band)

- Data Definition Record
- Processing History Records (Textual)

IMAGE FILES (1 per band)

- BSQ Image Data P Level Data

Vol. 1	Vol. 2	Vol. 3
HAAT	Band 3	Band 5
Band 1	Band 4	Band 6
Band 2		Band 7

LAS P Film Format

Looks Like the Familiar Format with Tick Marks Around the Outside, Annotation Lines and a Grey Scale Wedge.

Differs from (Probable) TIPS Format by

- No Registration Marks
- No Resolution Target
- No Image Overlap Marks
- Tick Marks are Straight Lines – Not Crosses
- Extra Annotation Line for Agency and Generation Date

Definition of Application Software Divisions

**MISSION
READINESS:**

- 1) DIRECT SUPPORT FOR PRODUCTION OF P LEVEL PRODUCTS
- 2) ANALYSIS OF CALIBRATION LAMP AND SYSTEMATIC CORRECTION DATA (SCD)

AT LAUNCH:

BASIC MAIN LINE IMAGE PROCESSING PROGRAMS;
ESPECIALLY SUPPORT OF PRODUCTS AND PROCEDURES
ANALYSIS (PAPA) TASKS

POST LAUNCH:

ALL REMAINING MAIN LINE IMAGE PROCESSING PROGRAMS
PLUS RESEARCH AND DEVELOPMENT ITEMS TO BE DEFINED BY
INVESTIGATORS (CROSS HATCHED IN DATA FLOW DIAGRAMS
THAT FOLLOW)

LAS In-Line and Post-Launch Applications Software

Preprocessing	Radiometry	Geometric	Image Manipulation	Display Manipulation	Interpretation and Analysis
REPLACE <u>TMHIST</u>	<u>CALAMP</u> <u>RLUT</u> <u>RADIOM</u>	TMA2P <u>JITTER</u> <u>SCDFT</u>		SETIAT LUTLOAD	
RLUT					
COPY					
LINEARPR	HISTEQ	EDGECORR*	STRETCH	(UTILITIES)	STATS
SEGMRPR		GEOM*	ZOOM	SITES	DROPSITE
DESPIKE		MSSA2P*	CONCAT	COLGEN	XFERSITE
FFT1		GCDG*	EDGE	LUTEDIT	EDITSITE
FFT1FL			CONVOLVE	LUTSAV	LISTSTAT
FFT2			UNARY (5)	GRAPHICS	RENCLS
FFT2FL			BINARY (7)	CHAROUT	COMBCLS
WTGEN			SCALE		DROPCLS
LIST			MEDFIL		BAYES
SHADE			FT2PIX		
FILM			FT2PIX		
CLASSMAP					

NAME Will Disappear After "SCROUNGE"
 NAME May Disappear, Be Modified and/or Have Low Usage
 NAME* Due About 3 Mos. After Launch (Many Others Not Listed)

INLINE

POST LAUNCH

Representative PAPA Data Flow(s)

ORIGINAL PAGE IS
OF POOR QUALITY

Science Team

Wrap-Up Panel Discussion

AAT	Archival Ancillary (Data) Tape	AT	Acceptance Test
ACCA	Automatic Cloud Cover Assessment	ATL	Applications Technology Laboratory
ACE	Altitude Control Electronics	ATH	Antenna Test Model
ACS	Attitude Control System	ATM	Apollo Telescope Mount
ACT	Application Concept Test	ATP	Acceptance Test Plan
A/D	Analog to Digital	ATS	Applications Technology Satellite
ADCP	See ANDP	AWG	American Wire Gauge
ADDs	Applications Developmental Data System	BARDJA	Boom Antenna Retention Deployment and Jettison Assembly
ADFS	Automated Digital Facsimile System	BAT	Bench Acceptance Test
ADL	Applications Development Laboratory	BB	Build Baseline
ADP	Automatic Data Processing Equipment	BCU	Bus Coupling Unit
ADPE	Automatic Data Processing Equipment	BDF	Block Data Format
ADS	Aerospace and Data Systems	BER	Bit Error Rate
ADS	Angular Displacement Sensor or Angle Detector Sensor	BESS	Biological Experiment Scientific Satellite
ADM	Ancillary Data Tape	BFR	Browse Film Recorder
AEM	Applications Exploratory Mission	BIC	Band Interleaved by Cylinder
AFGMC	Air Force Global Weather Central	BIL	Band Interleaved by Line
AFOS	Automation of Field Operations and Services	BIP	Band Interleaved by Pixel
AFFPRO	Air Force Plant Representative Office	BIM	Band Interleaved by Word
AG	Archive Generation	BOL	Beginning of Life
AGC	Automatic Gain Control	BOS	Beginning of Scan
AGE	Aerospace Ground Equipment	BOT	Beginning of Tape
AGS&PO	Aerospace Group Strategic Planning and Programs Office	BnP	Bid and Proposal
Ahr	Asperre - hour	BPA	Bus Protection Assembly
ALU	Algorithmic Logic Unit	bpi	Bits per Inch
AMS	Attitude Measurement System	bpI	Bytes per Inch
AN	Applications Notice	bps	Bits per Second
ANCP	See ANDP	BPS	Broadcast Satellite Experimental
ANDP	Ancillary Data Calculation Process	BSE	Band Sequential
ANSI	American National Standards Institute	BSQ	Back Surface Radiator
ANT	Ascending Node Table	BSR	Bench Test Cooler
AO	Announcement of Opportunity	BTC	Bench Test and Calibration Equipment
AOIPS	Astrographic and Oceanographic Image Processing System	BTCE	Bench Test Equipment
AOP	Advanced Onboard Processor	BTE	Backup
AOS	Acquisition of Signal	B/U	Black and White
AP	Applications Processor	B/W	
APFO	Aerial Photography Field Office	CAL	Configured Articles List
APL	Applied Physics Laboratory (John Hopkins Univ.)	CAL	Calibration
APS	Antenna Positioning System	CARETS	Central Atlantic Regional Ecological Test Site
ASCII	American Standard Code for Information Interchange	CASH	Catalog of Available and Standard Hardware
ASPR	Aerospace Strategic Programs Representation	CAT	Catalog
ASPR	Aerospace Services Procurement Regulations	CCA	Cloud Cover Assessment
ASR	Automatic Send/Receive	CCB	Configuration Control Board
AST	Asynchronous System Trap	CCC	Camera Controller Combiner
ASYT	Applications System Verification and Transfer Project	CCC	

ORIGINAL PAGE IS
OF POOR QUALITY

**ORIGINAL PAGE IS
OF POOR QUALITY**

CCD	Charge Coupled Device
CCL	Closed Circuit Loop
COM	Color Composite Master
CCN	Contract Change Notice
CCP	Cloud Cover Assessment Process
CCT	Computer Compatible Tape
CCT-A	CCT Containing Partially-Corrected Data
CCT-AH	CCT Containing Partially-Corrected MSS Sensor Data
CCT-AT	CCT Containing Partially-Corrected TM Sensor Data
CCT-B	CCT Produced by ADDS
CCT-P	CCT Containing Fully-Corrected Data
CCT-PM	CCT Containing Fully-Corrected MSS Sensor Data
CCT-PT	CCT Containing Fully-Corrected TM Sensor Data
CDR	Cartridge Removable Diablo Disk Drive
CDH	Command and Data Handling System
CDHS	Command and Data Handling System Simulator
CDISS	CDHSS Interface Unit
CDR	Conceptual Design Review
CDR	Critical Design Review
CDRB	Contractual Design Review Board
CDRL	Contract Data Requirements List
CEN	Controlled Environment Module
CFW	Clear Field-of-View
CG	Center of Gravity
CLD	Cloud
CLL	Corrected Line Length
CM	Center of Mass
CM	Configuration Management
CM	Command Memory Management
CM	Configuration Management Office
CM	Common Business Oriented Language
COMP	Computer
C.P.	Center of Pressure
CP	Communication Processor
CP	Control Point
CPC	Control Point Chip
CPC1	Computer Program Configuration Item
CPD	Control Point Directory
CPDS	Computer Program Design Specification
CPD-U	Control Point Directory (Candidate for Permanent File)
CPG	Correction and Product Generation Software
CPL	Control Point Library (Candidate for Permanent File)
CPL-U	Control Point Library (Candidate for Permanent File)
CPM	Cards per Minute
CPM	Computer Personality Module
CPN	Control Point Neighborhood
CPN-6	Control Point Neighborhood for Geodetic Corrections
CPN-L	Control Point Neighborhood for Library Maintenance
CPN-M	Control Point Neighborhood for MSS
CPN-T	Control Point Neighborhood for TH
CPPT	CPGS Preprocessor Performance Tape
CPR	Cloud Physics Radiometer
CPU	Central Processing Unit
CR	Card Reader
CRC	Cyclic Redundancy Check
CRIS	Cosmic Ray Ionization Spectrometer
CRT	Cathode Ray Tube
CSA	Cropping, Subsampling and Averaging
CSC	Computer Sciences Corporation
CSE	Contractor Supplied Equipment
CSF	Control and Simulation Facility
CSS	Coarse Sun Sensor
CU	Central Unit
CY	Calendar Year
CZS	Coastal Zone Color Scanner
DAA	Digital-to-Analog Subsystem
DAS	Data Base Administration Subsystem
DAS3	De-Centralized Automated Service Support System
DB	Data Base
DBIP	Data Base Interface Process
dB1	Antenna gain in decibels referenced to an Isotropic Antenna
dBm	Power in decibels referenced to one millimeter Data Base Management System
DBMS	DEC-10 System Software for Data Base Management
DBMS-10	DEC Current Data Collection Platform
DCP	DCS
DCS	Data Collection System
DCST	Data Collection System Tape
DOS	Digital Display Generator
DOI	Digital Data Interconnect
DDL	Data Description Language
DOP	Digital Data Processor
DOP-C	Controlled Environment Module DOP
DOP-H	Wire-Wrapped DOP
DOR	Detailed Design Review
DORB	Detailed Design Review Baseline
DEC	Digital Equipment Corporation
DEC-10	DEC-10 Computer
DEC-20	DEC-20 Computer
DECnet	Digital Equipment Corporation Communications Network
DECIM	Decommunator
DECIM	Decommutation Hardware Device
DEMUX	Demultiplexer
DEP	Data Formatter Processor
DES/ADFS	Digital Facsimile System/Automated Digital Facsimile System
DIAL	Digital Image Analysis Laboratory
DICOMED	Digital Image Data
DID	Digital Image Data
DIP	Dual In-Line Package
DIPS	Digital Image Processing System
DK10	Large Image Access Routines
D/L	Downlink
DMA	Direct Memory Access
DMF	Data Management Facility
DNL	Data Management Language
DNL	Data Manipulation Language
DNS	Data Management System

**ORIGINAL PAGE IS
OF POOR QUALITY.**

DNSP	Defense Meteorological Satellite Program	EIA	Electronic Industries Association
DOC	Data Operations Control	ELE	Elevation at Entry
DOO	Department of Defense	ELS	End-of-Line Sync
DOO	Depth of Discharge	ELX	Elevation at Exit
DOI	Department of the Interior	EMC	Electromagnetic Compatibility
DOI/FEUC	Department of the Interior/EROS Data Center	ENAI/DISA	Electromagnetic Interference
DONSAT	Domestic Communications Satellite	E08	Enable/Disable
DPM	Drafting Practices Manual	E0F	End-of-Buffer
DPR	Design Problem Report	EOL	End-of-File
DPS	Data Processing System	EOM	End-of-Life
DPS	DRATS Process Software	EOP	End-of-Mission
DPSE	DRATS Process Software Executive	EOP	Earth Observatory Program
DPU	Digital Processing Unit	EORT	End-of-Process
DR11C	Programmed Input Output Interface Device for DEC	EOS	End-of-Roll Target
Unibus		EOT	End-of-Scan
DR70	Direct Memory Access Interface Device for DEC	EOS	Earth Observations Systems
Massbus		EOS	Earth Observations Satellite
DR780	Direct Memory Access Interface Device for DEC	EOS	End-of-Set
VAX-11/780	VAX-11/780	EOS	Earth Observatory and Shuttle Programs
DRIRU	Dry Rotor Inertial Reference Unit	EOT	End-of-Tape
DRATS	Data Receive, Record and Transmit System	EOW	End-of-Volume
DS	Dimension (Telephone) System	EPA	Environmental Protection Agency
DSC	Data Collection System	EPC	Electric Power Conditioner
DSCS	Defense Satellite Communications System	EPI	Euler Parameter Integration
DSCS	Desk Side Computer System	EPS	Electrostatic Plotting Software
DSI	Digital Subsystem Interface Unit	ER	Equipment Room
DSL	Data Service Laboratory	EREP	Earth Resources Equipment Package
DSM	Downlink Synchronization Module	EROS	Earth Resources Observation System or Satellite
DSSCI	Data Stripper-Serial Controller Interface	ERS	Earth Resources Survey
DSU	Digital Switching Unit	ERTS	Earth Resources Technology Satellite
DTD	Digital Terrain Data	ESA	European Space Agency
DTM	Digital Terrain Map	ESR	Equipment Service Report
DTG	Digital Tape Generation	ESTEC	European Space Research and Technology Center
DTR	Daily Test Report	EU	Expander Unit
DTS	Digital Transmission System	EVA	Extra-Vehicular Activity
DW	Digital Voltmeter	EVAL	Earth Viewing Applications Laboratory
DX20	DEC Peripheral Interface Device	EVO	Engineering Work Order
DXFP	Data Extraction and Formatting Process		
EF/EE	Electrical Aerospace Ground Equipment	FAIRS	Full Aperture Infrared Source
EBCDC	Extended Binary Coded Decimal Interchange Code	FAAO	Financial and Administrative Operations
EBR	Electron Beam Recorder	FAS	Foreign Agricultural Service
EBRIC	Electronic Beam Recorder Image Correction	FCS	File Control Service
ECC	Error Correction Capability (HDR)	FDD	Fixed (Cartridge) Diablo Disk (Drive)
ECEF	Earth-Centered-Earth-Fixed	FDR	Final Design Review
ECI	Earth-Centred-Inertial	FEP	Federation of Functional Processors
ECL	Emitter Coupled Logic	FGS	Fine Guidance System
EDIPS	Electronic Digital Processing System	FHT	First-Head Star Tracker
EDIPS	EDC Digital Image Processing System	FID	Final Instrument Definition
EOP	Electronic Data (Digital) Processing	FIFO	First-In, First-Out
EDPPS	Electronic Data Processing System	FIPS	Federal Information Processing Standards
EED	Electro-Explosive Device	FM	Frequency Modulation
EF	Earth Fixed Coordinate System	FMA	Failure Mode and Effects Analysis
EBRET	Explorer Gamma Ray Experiment Telescope	FMS	Flight (Segment) Management Subsystem
EGSE	Electrical Government Supplied Equipment	FO	Flight Operations
EI	Engineering Instruction	FORTRAN	Faint Object Camera
			Formula Translation

ORIGINAL PAGE IS
OF POOR QUALITY

FOS	Field Operations Service	GMT	Greenwich Mean Time
FOS	Faint Operations Subsystem	GCS	Geostationary Operational Environmental Satellite
FOS	Faint Object Spectrograph	GPC	General Purpose Console
FOV	Field-of-View	GPT	Ground Processing Equipment
FPA	Focal Plane Assembly	GPIP	General Purpose Information Processor
FPG	Final Product Generation	GPT	Global Positioning System
FPP	Floating Point processor	GPT	General Purpose Transformation
FPS	Focal Plane Structure	GRE	Gamma Ray Explorer
FRD	Facilities Requirement Document	GFP	Graphite Filled Epoxy
FRS	Film Recorder System	GS	Ground Segment
FRUSA/HASP	Flexible Roll-up Solar Array/Hardened Solar Power System	GSE	Ground Support Equipment
FS	Flight Segment	GSFC	Goddard Space Flight Center
ESDN	Federal Supply Code For Manufacturers	GSSS	Ground Support System Software
FSMF	Flight Segment Development Facility	GSTM	Ground Spaceflight Tracking and Data Network
FSEC	Fairchild Space and Electronics Company	HAT	Header, Ancillary, Annotation, Trailer
FSK	Frequency Shift Keying	HAT-L	HATT for Library Maintenance
FSS	Flight Scheduling Subsystem	HAC	HDDR Assignment and Control
FSS	Flight Segment Simulator	HAT	Header Annotation, Trailer
FSS	Flight Support System	HAL	High-Order Aerospace Language
FSS	Fine Sun Sensor	HCPM	Heat Capacity Mapping Mission
FSS S/W	Flight Segment Simulator Software	HD	HDT Duplication
FT	Fourier Transform	HDR	High Density Digital Recorder
FTS	Federal Telephone System	HDT	High Density Digital Tape
FW	Fiscal Week	HDE	HDT-R Directory Extractor
FY	Fiscal Year	HDT	High Density Tape
FYI	For Your Information	HDT-A	HDT-Archive Format (Partially corrected radiometrically but not geometrically)
6/C	Geometric Correction Data or Geometric Correction Data	HDT-AM	HDT-A for MSS Sensor Data
6D0	Geometric Correction Data or Geometric Correction Data	HDT-AMC	Copy of HDT-A for TM Sensor Data
	Geometric Correction Data Generation	HDT-AT	HDT-A for TM Sensor Data
	Geometric Correction Matrices	HDT-ATC	Copy of HDT-A for TM Sensor Data
	Geometric Correction Matrix	HDT-I	HDT (Data) Interval
	Geometric Correction Operator	HDT-P	HDT-Product Format (Fully corrected)
	600 Verification System	HDT-PT	HDT-P for TM Sensor Data
	Geodetic Control Point	HDT-PTC	Copy of HDT-P for TM Sensor Data
	Ground Control Point	HDT-R	High Density Tape Recorder
	Ground Data Handling System	HDT-BM	HDT-R raw Data as recorded in DRITS
	Graphics Display Terminal	HDT-RT	HDT-R for MSS Sensor Data
	General Electric	HDT-S	HDT-R for TM Sensor Data
GE	GE Interface Device for DR780	HDT-SH	Mercury Cadmium Telluride
GECP	Geometric Correction Process	HDT-ST	Hierarchy Input Process Output
GEOREF	Geographic Reference	HgCdTe	High Resolution Film Recorder
GES	Ground Electronic Specification	HIPPO	High Speed Control Element
GETSOO	General Electric Technical Service Company	HRFR	High Speed Interface
GFE	Government Furnished Equipment	HSCE	Host Vehicle (Landsat-D)
GFTT	Goddard File Inventory Tape	HSI	Hardware
GFP	Government Furnished Property	IW	Hertz (cycles per second)
GHT	Goddard HDT Inventory Tape	Iz	Image Analyzer Console
GHZ	Gigahertz (10 ⁹)	IAC	Integrated Analysis Plan
GI	General Instruction	IAP	Image Analysis Terminal
GI	Government Inspection Agency	IAT	Image Annotation Tape
GM	General Manager	IAT	Integration Baseline
GMF	600 Microcode File	IAT	IS
GMP	Geometric Correction Matrix Calculation Process	IAT	
GS	Ground (Segment) Management Subsystem	IAT	

ORIGINAL PAGE IS
OF POOR QUALITY

IOD	Intensified Charge Coupled Device
ICD	Interface Control Document
ICS	Image Correction Support Software
ICS	Interactive Computer Simulator
ID	Identification
IDA	Image Data Acquisition
IDB	Identification Burst
IDBS	International Data Base Systems
IDS	Image Data System
IDT	Investigation Definition Team
IDT	Image Display Terminal
IDT	Industrial Data Terminal Corporation
IF	Image Data Transmission Interface
IFO	Intermediate Frequency
IGF	In-Flight Disconnect
IGS	Instantaneous Field-of-View
IGS	Initial Gap
IGF	Image Generation Facility
IGS	Initial Image Generation Subsystem
IRV	Improved Inter-Range Vectors
IS	International Imaging Systems
IS	Information Management
IN	Instrument Module
IPAC	Image Processing and Analysis Center
IPS	Information Management Subsystem
IPSC	Information Management Subsystem Computer
IPSC	Information Management Subsystem FFP Control Computer
IMU	Image Memory Unit
INS	Indium Antimonide
INTRALAB	Information Transfer Laboratory
I/O	Input/Output
IPC	Initial Product Creation
IPCS	Information Production Control System
IPD	Information Processing Division
IPF	Image Processing Facility
IPS	Inches per Second
IPS	Image Processing Subsystem
IPS-1	IPS String No. 1 Computers
IPS-2	IPS String No. 2 Computers
IPS	IPS Computer
IQ	Interactive Query Language
IR	Infrared
IRS	Integrated Requirements Board
IRD	Independent Research and Development
IRF	Interface Requirements Document
IRFPA	Integrated Focal Plane Assembly
IRG	Inter-Record Gap
IRIG	Inter-Range Instrumentation Group Time Code
IRP	Infrared Photometer
IRD	Interrupt Request
IRU	Inertial Reference Unit
IS	Input Subsystem
ISA	Instrument Standard of America
ISAM	Index Sequential Access Method
ISM	Interface Switching Module
IGS	Image Generation Facility Software Subset
ISU	Input Scanner Unit
IT	Integration Test
ITF	Integration and Test
ITD	Inception-to-Date
ITD	Incurved-to-Date
ITP	Integration Test Plan
IU	Interface Unit
IEE	International Ultraviolet Explorer
IUS	Interim Upper Stage
JPL	Jet Propulsion Laboratory
JSC	Johnson Space Center
K	A Thousand
K	1024 (Memory Usage Only)
KD	Kilobit
KB	Kilobyte
KPS	Kilobits per Second
KTC	Kilobytes per Second
KTR	Keyboard Cathode Ray Tube
KU	CPU for DEC-10 Computer
KM	Kilometer
KS	Key Station
KSA	Ku-band Single Access
KSC	Kennedy Space Center
KW	Kilowatts
LA	DEC Hardcopy Terminal
LAC	Large Area Crop Inventory Equipment
LANDSAT	Land Satellite
LRCC	Langley Research Center
LADS	Landsat-D Assessment System
Latitude	Latitude
LBP	Library Build Process
LBR	Laser Beam Recorder
LCF	Left-hand Circularly Polarized
LCD	Light-Emitting Diode
LCFC	Left-First Count
LIDU	Large Image Display Utility
LFO	Last-in First-out
LGL	Adjusted Line Length
LLC	Line Length Code
LMR	Library Maintenance
LMN	Line Monitor
LMSC	Landsat Mission Management
LSE	Lockheed Missle and Space Corporation
LSE	Level of Effort
LNG	Longitude
LOS	Line of Sight
LPC	Loss of Signal
LPM	Longitudinal Parity Check
LPM	Line Point Marker
LPM	Lines per Minute
LPM	Load Point Marker
LPA	Laser Retractor Array

**ORIGINAL PAGE IS
OF POOR QUALITY**

LRC	Longitudinal Redundancy Check	MNU	Memory Management Unit
LRD	Laser Retroradar	MFS	Minor Frame Synchronization
LSB	Least Significant Bit	MODEN	Maintenance and Operations
LSO	Lands at -0	MOI	Modulator/Demodulator
LS3	Lands at -3	MOL	Moment of Inertia
LTC	Light Transfer Characteristics	MOL	Manned Orbiting Laboratory
LTTS	Long-Term Tape Storage Facility	MOM	Mission Operations Manager
LTU	Line Test Unit	MOPS	Mega-Operations per Second
LUM	Logical Unit Number	MOR	Mission Operations Review
LV	Launch Vehicle	MOUR	Mourandum of Understanding
		MSS	MSS Preprocessor
M		MPS	Mission Planning System
		MPS	Modular Power Subsystem
		MPT	Maximum Power Tracker
		MPPV	Multiply
		MRAH	Maintenance Requirements Analysis
		MRAHM	Maintenance Requirements Analysis Matrix
		MRC	Master Reference Cube
		MRS	Mobile Reference System
		MRS	Mirror Sweep
		MSS	Most Significant Bit
		MSC	Manned Space Center
		MSS	Manned Spacecraft Correction Data
		MSD-H	MES Mirror Scan Correction Data
		MCD-1	Mission Support Coordination Office
		MCC	Matrix Switch Control
		MSEC	Millisecond
		MSFC	Marshall Space Flight Center
		MSR	Monthly Status Report
		MSS	Module Support Structure
		MSS	Multispectral Scanner
		MSSA	MSS Archive Data
		MSSW	Matrix Switch
		MT	Magnetic Tape
		MTBF	Mean Time Between Failures
		MTF	Modulation Transfer Function
		MTL	Material
		MTE	Mechanical Test Module
		MTP	MES Telemetry Processor
		MTA	Mean Time to Repair
		MTU	Magnetic Tape Unit
		MUX	Multiplexer
		MW	Megawords
		N	
		N2	Purified and Filtered Gaseous Nitrogen
		N/A	Not Applicable
		NAL	Negative Acknowledgement
		Nimbus/AEM Preprocessor System	National Aeronautics and Space Administration
		NISDM	NASA Communications Network
		NISTAN	NASA Structural Analysis System
		NISTR	Narrow Band Tape Recorder
		NOC	National Climatic Center
		NCC	Network Control Center
		NCDS	Network Control Center Subsystem
		NCICS	National Cartographic Information Center

ORIGINAL PAGE IS
OF POOR QUALITY

ND	Network Directorate
NDF	Natural Density Filter
NDAF	NASA Data Processing Facility
NDAS	Navigational Data Satellite
NDSS	Navigational Developmental Satellite
NESS	National Environmental Satellite Service
NMI	NASA Management Instructions
NOAA	National Oceanic and Atmospheric Administration
NOCC	Network Operations Control Center
NOSS	National Oceanographic Satellite System
NRC	Nuclear Regulatory Commission
NRZ	Non-Return to Zero
NRZ-L	Non-Return to Zero-Level
NSCI	NASA Serial Controller for Input (now PSD)
NSCO	NASA Serial Controller for Output (now PSD)
NSSE-1	NASA Standard Spacecraft Computer - Model 1
NSSSDC	National Space Science Data Center
NTR	New Technology Representative
NTSC	National Television System Committee
NTTF	Network Test and Training Facility
NTTF	NASA Tracking and Telemetry Facility
DAO	Orbital Astronomy Observatory
DAS	OAO Corporation
DAS	Orbit Adjust Subsystem
DBI	Onboard Computer
OBP	Onboard Processor
OCA	Operational Configuration Baseline
OCC	Operations Control Center
OCD	Operator Control and Display
OCE	Orbit Computations Group
OCR	Optical Character Recognition
ODF	Orbit Determination Facility
ODP	Online Display Process
ODT	On Line Debugging Tool
ODM	Operations and Maintenance
OFLS	Offline System
ONLS	On Line System
OPS	Operations Supervisor
O/S	Operating System
OSD	Critical Support Computing Division
OSD	Orbiting Solar Observatory
OSR	Optical Solar Reflector
OSS	Office of Space Science
OTS	Operating System Software
OTA	Optical Telescope Assembly
OTDA	Office of Tracking and Data Acquisition
PA	Public Address
PAO	Public Affairs Office
PAM	pulse Amplitude Modulation
PATH	Orbital Path
P/B	Playback
PBX	Private Branch Exchange
PC	Production Control
PCB	Program Counter
PCB	Printed Circuit Board
POD	Payload Correction Data
POD	Photon Counting Detector
POD-M	HSS Payload Correction Data
POD-T	TIN Payload Correction Data
PCE	Pipeline Control Executive
PCM	Pulse Code Modulated
PCP	Product Control Procure
PCP	Program Control Procedure
PCS	Payload Correction Subsystem
PCU	Power Control Unit
PD	Payload Disconnect
PF	Programmable Decommutator
PDF	Programmable Data Formatter
PL	Program Design Language
PPD	Programmable Digital Processor
PPD	Peripheral Data Product
PRD	Preliminary Design Review
PRD	Problem/Defect Report
POS	Precision Digital Sun Sensor
PTU	Power Distribution Unit
PE	Performance Evaluation
PE	Phase Encoded
PE	Plant and Equipment
PEES	Performance Evaluation Subsystem
PEI	Predicted Ephemeris Tape
PF	Protoflight
PFD	ProtoFlight and Flight
PF/F	Program Funding Instructions
PI	Product Generation CCT
PCOP	Output Process
PHIP	Product Generation HDT
PSH	Product Generation HDT-P Simulator
PLAOP	Product Generation LBR
PLASH	Product Generation LBR Simulator
PM	Program Manager
PMR	Product Generation Pipeline Monitor Process
PPC	Product Generation Process
PGS	Product Generation Subsystem
PI/I	Policy/Instruction
PI	Principal Investigator
PIF	Pseudo Image File
PIGP	Pseudo Image Generation Program
PIL	Pixel Interleaved by Line
PIO	Programmed Input Output
PIP	Peripheral Interchange Program
PIR	Program Information Request/Release
PIXEL	Picture Element
PKG	Package Design Specification
P/L	Payload
PLACE	Post Landsat-D Advanced Concepts Evaluation
PN	Preventive Maintenance
PN	Propulsion Module
PNB	Program Management Budget
PNB	Post-Norton Bump

**ORIGINAL PAGE IS
OF POOR QUALITY**

PW/FL	Performance Monitor/Fault Location
PIN	Program Maintenance Manual
PPP	Preemption Processor
PTT	Photomultiplier Tube
PW	Pseudo Noise
PO	Project Office
POD	Purchase Order
POCC	Payload Operations Control Center
POD	Project Operations Directors
POP	Project Operating Plan
PORTS	Proprietary Operations Requirements and Testing Support
POMD	Purchase Order Work Order
PPL	Photo Processing Lab
PPL	Preferred Parts List
PP0	Program Participation/Opportunities System
PPS	Photographic Processing Subsystem
PRMIS	Printing Resource Management Information
PRN	Payload Random Noise
PRO	Payload Receiving Operations
PRM	Programmable Read-Only Memory
PRP	Performance Recognition Program
PRU	Power Regulator Unit
PS	Polar Stereographic
PSD0	Parallel-to-Serial Data Output Device
PSF	Photo/Shipping Support Facility
PSK	Phase Shift Keying
PSN	Programmable Sync Module
PSR	Project Status Review
PSU	Power Supply Unit
PSV	Power Switching Unit
PSB	Pressure Vessel Spacecraft
PSB	Printed Wiring Board
PSW	Pulse Width Modulated
QA	Qualification and Acceptance
QAF	Quality Assurance/Assessment
QAP	Quality Assessment Film
QAP	Quality Assurance Procedure
QC	Qualification and Acceptance Program
QFP	Quality Assurance Film Generation Process
QIO	Queued Request for Input/Output
QIO	Queue Input/Output Process
QD	Quick Look Display
QIN	Quick-Look Monitor Unit
QLP	Quick-Look Processor
QLS	Quick-Look Processing System
QPSX	Quadrature Phase Shift Keyed
QMO	Quick-Reaction Work Order
QS	Quarter Scan Line
RAM	Formatting Auxiliary Annotation
RAM	Random Access Memory
REV	Return Beam Vidicon
REV	Radiometric Correction
R&D	Research and Development
R&CP	Radiometric Corrected Process
R&CP	Radiometric Function Calculation Process
R&D	Raw Data Tape
REC	Record
REC	Rocket Engine Module
RF	Radio Frequency
RF/C	Right-Fill Count
RF/H	Request for Hire
RF/OV	Resolution Field-of-View
RF/P	Request for Proposal
RF/780	RS232 Bus Adaptor for DEC VAX-11/780
RIO	Review Item Discrepancy
RIU	Remote Interface Unit
RJUT	Radiometric Lookup Table
RMC	Remote Manipulator System
RMS	Root Mean Square
RMS	Record Management Services
ROM	Read-Only Memory
ROR	Geographic Frame Reference
RPS	DEC 176 KB Disk or Removable Disk Storage Unit
RPS	DEC 283 KB Disk
RPA	Receiver/Processor Assembly (GPS)
RPA	Reliability and Product Assurance
RPM	Revolutions Per Minute
RPV	RGB Preprocessor
RPA	Reliability and Quality Assurance
RSE	Resolving Site Equipment
RSE	Remote Site Equipment
RSP-11M	Multi-Tasking Operating System Software
R/T	Real-Time
RTG	Radioisotope Thermoelectric Generator
RTS	Real-Time Test System
RX	Receive
SAC	Single Access
SAC	Solar Array
SAC	Solar Array Drive
SADAPTA	Solar Array Drive and Power Transfer Assembly
SAIL	Space Applications and Information Library
SAM	Solar Array Retention, Deployment and Jettison Assembly
SAS	Stage Baseline
SBC	Single Board Computer
SAL	Synchronous Backplane Interconnect
SAR	Santa Barbara Research Center
SAS	Space Background Simulator
SBC	Strategic Business Unit
SCC	Spacecraft
SCC	Signal Conditioning
SCA	Signal Conditional Assembly
SCA	SwiftLink, Conferencing and Monitoring Arrangement

ORIGINAL PAGE IS
OF POOR QUALITY

SCC#	Software Change Control Board	SPD	Site Preparation Requirements Document
SDD	Systematic Correction Data	SPS	Segment Processing Subsystem
SDHS	Spacecraft Hardware Simulator (MSS Simulator)	SPU	Scene Processing Unit
SCI	Serial Control Interface	SPA	Software Quality Assurance
SCI1	Serial Control Interface for Input (now SPDI)	SPDR	Software Requirements and Conceptual Design Review
SCI10	Serial Control Interface for Output (now PSDO)	SPROS	Software Requirements and Conceptual Design Specification
SQL	Subcontract Labor	SSR	System Requirements Review
SCW	Systematic Correction Matrix	SRS	Software Requirements Specification
SCP	Sun Calibration Process	SRS	System Requirement Specification
SCR	Scaler Control Register	SRT	Supporting Research and Technology
SCR	Software Change Request	SS	Seconds
SCASU	Signal Conditioning and Switching Unit (SU)	S/S	Subsystem
SCIT	System Control Terminal	S-Band	S-Band Single Access
SD	Space Division	SSA	Science Support Center
SDF	Software Development Facility	SSC	Sequential Similarity Detection Algorithm
SDHS	Satellite Data Handling System	SSDA	Support Systems Module
SDISS	Satellite Data Ingest and Storage Subsystem	SSH	Space System Operations
SDSB	Satellite Data Services Branch	SSR	Systems Software Requirements Review
SEAM	Software Engineering and Management Program	SST	Synchronous System Trap
Sec.	Seconds of Arc	ST	Space Telescope
SEC0	Secondary Electron Conduction Orthicon	STACC	Standard Telemetry and Command Components
SEOPS	Secondary Earth Observation Package Satellite	STACC-CU	STACC Central Unit
SI	Synchronous Earth Observation Satellite	STACC-STINT	STACC Interface Unit
SIAT	Science Instruments	STC	System Test Console
SICM	Special Image Annotation Tape	STD	System Test Director
SIDU	Science Instrument Central Module	STD	Standard
SIF	Small Image Display Utility	STDL	System Test and Operation Language
SIM	Simulation Image File	STM	Spaceflight Tracking and Data Network
SIP	Simulator	STEP	Space Technology Engineering Program
SIRD	System Image Preservation	STINT	Standard Interface for Onboard Computer
SIU	Support Instrumentation Requirement Document	STOCK	STACC Interface Unit
SIUT	Sectorizer Ingest Unit	STOL	Space Telescope Operations Control Center
SLAT	Spacecraft Location and Attitude Tape	STP	System Test and Operations Language
SLC	Scan Line Corrector	STR	Standard S/C Telemetry Recorder
SLER	Synch Loss Error Rate	STR	Standard Tape Recorder
SLP	Source Language Input Program	STR	System Test Review
SLS	Scan Line Sync	STS	Space Transportation System
SLS	Start-of-Line Sync	STSOC	Space Telescope Scientific Operations Center
SMA	S-Band Multiple Access	SU	Switching Unit
SMA	Scan Mirror Assembly	SVS	Space Vehicle Specification
SMM	Solar Maximum Mission	S/W	Software
SMD	Support Maintenance and Operations	SWG	Science Working Group
SMP	Scan Monitor Pulse	STCI	System Corrected Images
SAR	Software Modification Record	TA	Transistor Adaptor
SMSA	Standard Metropolitan Statistical Area	TAC	Telemetry and Command
S/N	Signal-to-Noise Ratio	TAC	TM Adaptive Capability
SAR	Signal-to-Noise Ratio	TAS	TM Archival Product Generation
SAR	Space Unique Mercator	TAM	Three Axis Magnetometer
SOP	Statement of Work	TAS	Tape Archive and Storage
SOP	Stack Pointer	TBA	To Be Announced
SP	Small Peripheral Controller	TBD	To Be Determined
SPC	DEC Software Product Description	TBD	To Be Defined
SPD	Serial-to-Parallel Data Input Device	TBC	To Be Resolved
SPM	Sub-Project Manager		
SPP	Special Purpose Processor		
SPR	Software Problem Report		

To Be Supplied	
TBV	To Be Verified
T/C	Time Code
TCC	Time Code Controller
TCG	Time Code Generator
TCI/DSC	Time Code In/Oscillator
TCOM	Army Test and Evaluation Command
TCO/PAN	Time Code Out/Panel
TCS	Thermal Control System
TCU	Time Code Unit
TED	Test and Diagnostic
TD	Test Directives
TDRS	Tracking and Data Relay Satellite
TDRSS	Tracking and Data Relay Satellite System
T/E	Test and Evaluation
TEP	Telemetry Extraction Process
TGS	Transportable Ground Station
TIPS	TM Image Processing System
TIROS-N	Television Infrared Observing System
TIS	Technical Information Series
TLM	Telemetry
TM	Thematic Mapper
TMV	Telemetry Volts
TOO	True-of-Date
TP	Telemetry Processor
TPG	Test Pattern Generator
TPL	Test Plan
TR	Tape Recorder
TRB	Test Review Board
TRF	Tracking and Receiving Facility
TRK	Track (HDR)
TRKG	Tracking
TRP	Technical Recognition Program
TRW	TRW Defense and Space Systems Group
T/S	Thermal Structural
TSIM	Test and Simulation Subsystem
TSSC	Technical Support Services Company
TSSF	Tape Staging and Storage Facility
TTA	Triangular Transition Adaptor
TT&C	Telemetry Tracking and Command
TIL	Transistor Logic Device
TTY	Teltype Operator Console
TUMS	1600 bpi Magnetic Tape Unit
TU72	6250 bpi Magnetic Tape Unit
TU78	6250 bpi Magnetic Tape Unit
TV	Television
TWT	Traveling Wave Tube
TWTA	Traveling Wave Tube Amplifier
TX	Transit
UARS	Upper Atmosphere Research Satellite
UBA	Universal Bus Adapter
UBC	Unit Block Controller
UDDP/M	Unload DDP Module
UDF	Unit Development Folder
UFID	User File Directory
UFIF	Ultra High Frequency
UIC	User Identification Code
U/L	Universal Bus
UNIBUS	Unbalanced Quadrature
USART	Universal Synchronous Asynchronous Receiver Transmitter
USB	Upper Side-Band
USA	United States Department of Agriculture
USGS	United States Geological Survey
UTC	Universal Time Coordinated
UTM	Universal Transverse Mercator
VAA	Value Analysis
VAC	Volts, Alternating Current
VAP	Verification Acceptance Program
VAX-11/780	Virtual Address Extension DEC Model Computer 11/780
VCO	Voltage-Controlled Oscillator
VCRI	Verification Cross-Reference Index
VDC	Volts, Direct Current
VE	Value Engineering
VHF	Very High Frequency
VHRR	Very High Resolution Radiometer
VICAR	Video Image Communication and Retrieval
VIP	Virtually Interfaced Peripheral
VM	Value Management
VMS	Virtual Memory (Operating) System
VPASS	Video Processor/Image Recorder
VRIR	Vacuum Thermal
V/T	Verification Test
VT	Intelligent CRT Terminal
VT78	Non-Intelligent CRT Terminal
VT100	Video Tape Recorder
VTR	Video Tape Recorder
WB	Wideband
WBW	Wideband Module
WBSS	Wideband Subsystem
WBVT	Wide Band Video Tape
WBVTR	Wide Band Video Tape Recorder
WCS	Writeable Control Store
WFC	Wide-Field Camera
WD	Word Order
WPC	Word Processor Center
WPW	Work Package Manager
WRS	World Reference System
WSMR	White Sands Missile Range
WTR	Western Test Range
XMIT	Transmit
XMTR	Transmitter
Z	Zulu Time (GMT)
ZTS	Zoom Transfer Scope
ZWC	Zero Word Count
μ	Micro-
μ m	Micro-meter (-10 ⁻⁶ Meter)
μ D	Microprocessor
μ S	Microsecond

LAS Software Functions (Partial Listing)

BAYES	Max. Likelihood Classification
BINARY	7 Functions: +, -, *, /, and, or, XOR
CALAMP	Analyze CAL Lamp Data
CANAL	Canonical Analysis
CHAROUT	Writes Annotation to Bit Plane
CLASSMAP	Generate Class Map Film Product
CLUSTER	Clustering
COLGEN	Generate Pseudo Color Table
COLSLIC	Movable Zero Band in Color LUT
COMBCLS	Combine Class
CONCAT	Concatenate Images
CONTOUR	Contour Image
CONVOLVE	Convolve Image (Smoothing)
COPY	Copy or Subset Image
COVAR	Covariance Matrix
CURSTRK	Figure Drawing with a Cursor (Graphics Proc.)
DESPKE	Remove Spikes
DISCRIM	Discriminant Analysis
DROPSLS	Delete Class
DROPSITE	Extract Edges in Image
EDGE CORR	Register Images by Edge Correlation
EDIT SITE	Edit Training Site Coordinates
FFT1	1-Dimensional Fourier Transform
FFT1FL	1-Dimensional Fourier Transform Filter
FFT2	2-Dimensional Fourier Transform
FFT2FL	2-Dimensional Fourier Transform Filter
FIGLPEN	Figure Drawing with a Light Pen (Graphics Proc.)
FILM	Generate Film Product
FIT	Scale Image by Histogram
FLICKER	Blink Mode Display
FROMTV	Quick Copy of IAT to Disk
FT2PIX	Generate 2-Dimensional Fourier Display
FT1PIX	Generate 1-Dimensional Fourier Display
GCDG	Generate Geometric Correction Data
GEOM	Perform Geometric Transformation (Rubber Sheet) for LAS
GRAPHICS	Graphic Functions Via Console Button
GREYREG	Register Images by Grey Level Correlation
GRSLIC	Movable Zero Band in LUT
HINDU	Histogram Inspired Clusters
HISTEQ	Histogram Equalization RLUT Generation
JITTER	Analyze Jitter Effects
KARLOW	Karhunen-Loeve Transform
LINE OFF	Line Offset Correction
LINEREP	Repair Bad Lines
LIST	List and Histogram Image Window
LISTSTAT	List Stats File
LUTEDT	Edits LUT File
LUTL0D	Load Specified LUT from LUT Disk File
LUTSAV	Save LUT on Disk File
MASKSTAT	Statistics of Mask Image
MEDFL	Perform Median Filtering
MINDIST	Minimum Distance Classification
MOSAIC	Mosaic Images
MSSA2P	Resample MSS A-Image to P-Image
PARALL	Parallel piped Classification
PFLM	Generate P-Type Film Product
POLYSITE	Polygonal Site Selections
PSEUDO	Load Pseudo Color Tables (LUTL0D Proc.)
RADIOM	Apply RLUT to Image
RECORD	Copies TV to TV (Thru LUT Optional)
RENCLS	Rename Class
RLUT	TM A-Priori RLUT Generation
SAVIAT	Saves IAT B/W Configuration
SCALE	Convert Halfword Image to BYTE Image
SCANNER	Read Scanner/Digitizer
CRAFT	Perform Fourier Analysis of SCD WFM
SL	Scroll Disk Image to IAT's
SEG	Segment Offset Correction
SEGMRPR	Repair Image Blotch
SETTV	Redefines IAT B/W Configuration
SHADE	Shade Plot of Image Window
SITES	Rectangular Site Selections
SPLIT	Split Screen Operation
STATS	Generate Stats File (Training Site)
STRETCH	Stretch Image Contrast
TESTGEN	Generate Test Images
TIPTS	Generate Control Grid for Resampling
TM2P	Resample TM A-Image to P-Image
TMHIST	Histograms of TM Image for RLUT
TOTV	Quick Copy of 'TV-SIZE' Image to IAT
TRANS4W	Transform Divergence
UMAP	Uniformity Mapping
UMARY	5 Functions: +, -, NOT, EXP, LOG
VEGIN	Vegitative Index
WTGEN	Weight Generator for FFT2FL
XFRSITE	Transfer Training Site
ZOOM	Enlarge or Reduce Image

ORIGINAL PAGE IS
OF POOR QUALITY