Chap. 5 Polynomials and Cyclic Codes

☐ Main topics

- Polynomial Representation
- Generator and Parity-check Polynomials
- Systematic Encoding of Cyclic Codes

Polynomial Representation

Any vector $c = (c_0, c_1, \dots, c_{n-1})$ is represented by a polynomial

$$c(x) = c_0 + c_1 x + \ldots + c_{n-1} x^{n-1} \triangleq \sum_{i=0}^{n-1} c_i x^i.$$

Example: \mathbb{F}_8 defined by $p(x) = x^3 + x + 1$.

Elements	Power of primitive element α	Binary representation
0	$\alpha^{-\infty}$	0 0 0
1	$lpha^0$	0 0 1
α	$lpha^1$	0 1 0
$lpha^2$	$lpha^2$	100
$\alpha + 1$	$lpha^3$	0 1 1
$\alpha^2 + \alpha$	$lpha^4$	1 1 0
$\alpha^2 + \alpha + 1$	$lpha^5$	111
α^2 + 1	$lpha^6$	101

Consider the [7,4] Hamming code whose parity check matrix is given by

$$\boldsymbol{H} = \begin{bmatrix} 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^0 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6 \end{bmatrix}.$$