1 Wykorzystane wzory

Niepewność pomiaru napięcia miernikiem Metex M-4630:

$$u(U) = 0.05\% \ rdg + 3 \cdot dgt \tag{1}$$

Wyznaczanie parametru ΔU_2 :

$$\Delta U_2 = |U_{2i} - U_{2i+1}|,\tag{2}$$

gdzie: U_{2_i} jest argumentem, dla którego funkcja $I_a(U_2)$ osiąga lokalne maksimum

Niepewność wyznaczonego parametru ΔU_2 :

$$u_C(\Delta U_2) = \sqrt{\left(\frac{\partial \Delta U_2}{\partial U_{2_i}}\right)^2 \cdot u^2(U_{2_i}) + \left(\frac{\partial \Delta U_2}{\partial U_{2_{i+1}}}\right)^2 \cdot u^2(U_{2_{i+1}})} = \sqrt{u^2(U_{2_i}) + u^2(U_{2_{i+1}})}$$
(3)

Energia wzbudzenia atomu:

$$E = e \cdot \Delta U_2 \tag{4}$$

Niepewność wyznaczonej energii wzbudzenia atomu:

$$u_C(E) = \left| \frac{\partial E}{\partial \Delta U_2} \cdot u_C(\Delta U_2) \right| = e \cdot u_C(\Delta U_2) \tag{5}$$

Długość fali fotonu emitowanego przy przejściu atomu ze stanu zbudzonego do podstawowego:

$$\lambda = \frac{h \cdot c}{E} \tag{6}$$

Niepewność wyznaczonej długości fali emitowanego fotonu:

$$u_C(\lambda) = \left| \frac{\partial \lambda}{\partial E} \cdot u_C(E) \right| = \frac{h \cdot c}{E^2} \cdot u_C(E) \tag{7}$$

2 Przykładowe obliczenia

Niepewność pomiaru napięcia miernikiem Metex M-4630:

$$u(25.15) = 0.05\% \cdot 25.15 + 3 \cdot 0.01 = 0.042575 = 0.043 [V]$$

Wyznaczanie parametru ΔU_2 :

$$\Delta U_2 = |19.03 - 36.04| = 17.01 \ [V]$$

Niepewność wyznaczonego parametru ΔU_2 :

$$u_C(37.97) = \sqrt{(0.04)^2 + (0.049)^2} = \sqrt{0.0016 + 0.002401} = 0.063253 = 0.064 [V]$$

Energia wzbudzenia atomu:

$$E = 1 \cdot 17.01 = 17.01 \ [eV]$$

Niepewność wyznaczonej energii wzbudzenia atomu:

$$u_C(17.01) = 1 \cdot 0.064 = 0.064 [eV]$$

Długość fali fotonu emitowanego przy przejściu atomu ze stanu zbudzonego do podstawowego:

$$\lambda = \frac{4.13 \cdot 10^{-15} \cdot 3 \cdot 10^8}{17.01} = 7.2839 \cdot 10^{-8} = 72.839 \ [nm]$$

Niepewność wyznaczonej długości fali emitowanego fotonu:

$$u_C(7.2839 \cdot 10^{-8}) = \frac{4.13 \cdot 10^{-15} \cdot 3 \cdot 10^8}{(17.01)^2} \cdot 0.064 = 0,00274 \cdot 10^{-7} = 2.8 \cdot 10^{-10} = 0.28 \ [nm]$$

3 Wyniki pomiarów i opracowanie

Tablica 1: Wyniki pomiarów napięcia przyspieszającego, odpowiadającego mu prądu anodowego oraz niepewności pomiarowe

$U_2[V]$	$u(U_2)$ $[V]$	$I_a [nA]$	$u(I_a)$ $[nA]$
0.00	0.03	3.625	0.032
1.010	0.031	3.626	0.032
2.000	0.031	3.628	0.032
3.000	0.032	3.645	0.032
4.000	0.032	3.615	0.032
5.000	0.033	3.675	0.032
6.000	0.033	3.676	0.032
7.000	0.034	3.680	0.032
8.000	0.034	3.700	0.032
9.040	0.035	3.701	0.032
10.080	0.036	3.712	0.032
11.060	0.036	3.716	0.032
12.000	0.036	3.719	0.032
13.190	0.037	3.725	0.032
14.190	0.038	3.729	0.032
15.040	0.038	3.763	0.032
16.130	0.039	3.807	0.032
16.990	0.039	3.813	0.032
18.10	0.04	3.827	0.032
19.03	0.04	3.833	0.032
20.080	0.041	3.825	0.032
20.960	0.041	3.824	0.032
21.980	0.041	3.814	0.032
23.190	0.042	3.803	0.032
24.180	0.043	3.792	0.032
25.150	0.043	3.849	0.032
25.900	0.043	3.876	0.032
27.170	0.044	3.932	0.032
28.070	0.045	3.990	0.032
29.070	0.045	4.035	0.033
30.020	0.046	4.224	0.033
31.020	0.046	4.369	0.033
31.960	0.046	4.386	0.033
32.900	0.047	4.401	0.033
33.910	0.047	4.521	0.033
34.940	0.048	4.643	0.033
36.040	0.049	4.752	0.033
37.160	0.049	4.602	0.033
38.03	0.05	4.629	0.033
38.94	0.05	4.562	0.033
40.070	0.051	4.495	0.033
40.890	0.051	4.404	0.033

$U_2[V]$	$u(U_2)$ $[V]$	$I_a [nA]$	$u(I_a)$ $[nA]$
42.100	0.052	4.265	0.033
43.110	0.052	4.172	0.033
43.940	0.052	4.183	0.033
44.970	0.053	4.235	0.033
46.130	0.054	4.350	0.033
46.970	0.054	4.483	0.033
48.110	0.055	4.651	0.033
49.110	0.055	4.839	0.033
50.010	0.056	4.987	0.033
51.020	0.056	5.252	0.033
52.090	0.057	5.506	0.033
53.030	0.057	5.723	0.033
54.000	0.057	5.881	0.033
54.910	0.058	6.004	0.034
56.000	0.058	6.085	0.034
57.000	0.059	6.132	0.034
57.980	0.059	6.056	0.034
58.98	0.06	6.043	0.034
59.91	0.06	5.884	0.033
61.040	0.061	5.758	0.033
61.850	0.061	5.695	0.033
62.860	0.062	5.669	0.033
64.010	0.063	5.682	0.033
64.910	0.063	5.703	0.033
65.960	0.063	5.793	0.033
67.000	0.064	5.924	0.033
68.050	0.065	6.138	0.034
69.170	0.065	6.413	0.034
70.060	0.066	6.651	0.034
71.070	0.066	6.954	0.034
71.950	0.066	7.238	0.034
73.080	0.067	7.590	0.034
74.050	0.068	8.129	0.035
75.050	0.068	8.722	0.035
75.960	0.068	9.195	0.035
77.010	0.069	9.618	0.035
77.870	0.069	9.987	0.035
78.74	0.07	10.370	0.036
79.52	0.07	10.717	0.036

Wykres zależności prądu anodowego od napięcia przyspieszającego 11 10 ΔU_2 ΔU_{2} Prąd anodowy [nA] 5 10 20 60 70 30 40 50 80

Rysunek 1: Wykres zależności prądu anodowego od napięcia przyspieszającego

Z wykresu można wnioskować, że funkcja posiada 3 maksima, kolejno dla wartości U_2 : 19.03, 36.04, 57. Na tej podstawie zostały wyznaczone wartości nazwane $\Delta U_{2_1} = (17.01 \pm 0.064)$ V oraz $\Delta U_{2_1} = (20.96 \pm 0.077) \text{ V}.$

Napięcie przyspieszające [V]

Jak widać wartości nie są zbieżne, a z teorii wynika, że $\Delta U_{2_1} = \Delta U_{2_2}$. Z tego powodu wyznaczona zostaje wartość średnia $\Delta U_2 = (19.0 \pm 0.2) \text{ V}.$

Na podstawie ΔU_2 obliczona zostaje energia wzbudzenia atomu E = (19 \pm 0.2) eV, która pozwala określić długość fali wyemitowanego fotonu $\lambda = (65.21 \ pm \ 0.69) \ nm.$

Wnioski 4

- ullet W doświadczeniu, zgodnie z opisem zasilacza przyjęto, że $I_A pprox U_A.$
- W okolicach drugiego maksimum na wykresie zaobserwowano pewne zaburzenia, które mogą mieć wpływ na wartości pomiaru, jednak trudno jest je oszacować.
- ullet Wyniki otrzymano przy napięciach $U_1=1.53~{
 m V}$ oraz $U_3=8.53~{
 m V}$
- Wartości szczytowe prądu to:
 - (3.833 \pm 0.032) nA przy napięciu (19.03 \pm 0.04) V,
 - (4.752 \pm 0.033) nA przy napięciu (36.040 \pm 0.049) V,
 - (6.132 \pm 0.034) nA przy napięciu (57.000 \pm 0.059) V.
- $\Delta U_2 = (19.0 \pm 0.2) \text{ V}.$
- ullet Energia wzbudzenia atomu neonu E = (19 \pm 0.2) eV
- Długość fali fotonu emitowanego przy przejściu atomu neonu ze stanu wzbudzonego do stanu podstawowego $\lambda = (65.21 \pm 0.69)$ nm - fala z dalekiego ultrafioletu, niewidoczna dla oka.
- Podczas eksperymentu udało zaobserwować się przewidywane trzy obszary świecące (rys. 2).

