Лекция №7.

Задача о загрузке рюкзака (задача о ранце).

<u>Постановка задачи.</u> Пусть имеются N видов грузов с номерами $j = \overline{1, N}$.

Единица груза j-го вида имеет вес a_j . Если груз j-го вида берется в количестве x_j , то его ценность в общем случае составляет $F_j(x_j)$. Имеется «рюкзак», грузоподъемность которого равна B. Требуется загрузить рюкзак имеющимися грузами таким образом, чтобы вес его был не больше заданного B, а ценность «рюкзака» была максимальной.

<u>Составим Мат. Модель</u> задачи. Пусть x_j – количество груза j-го вида, помещаемого в рюкзак. Тогда можно записать:

$$F = \sum_{j=1}^{N} F_j(x_j) \Longrightarrow \max$$
 (1)

$$\sum_{j=1}^{N} a_j x_j \le B \tag{2}$$

$$x_j \ge 0 \qquad (j = \overline{1, N}) \tag{3}$$

Здесь x_j могут быть и целыми числами. В общем случае это задача нелинейного программирования с сепарабельной целевой функцией, следовательно, она м.б. решена методом ДП.

Для этого погрузку «рюкзака» можно интерпретировать как N-этапный процесс принятия решений: на 1-м этапе принимается решение о том, сколько нужно взять груза 1-го вида, на 2-ом этапе — сколько груза 2-го вида и т.д. Такая интерпретация наталкивает на возможность применения для решения задачи (1) — (3) метода динамического программирования. Для этого приведем задачу (1) — (3) к виду (4) — (7) из предыдущей лекции.

Для этого введем обозначения: y_j – вес рюкзака перед погрузкой груза j-го вида или вес рюкзака после погрузки грузов видов 1, 2, ..., j-1. Очевидно, что

$$y_I = 0. (4)$$

Текущий вес рюкзака определяется выражением

$$y_{j+1} = y_j + a_j x_j$$
 $(j = \overline{1, N})$ (5)

Текущий вес рюкзака y_{j+1} в силу (2) удовлетворяет неравенству

$$y_{j+1} \le B. \tag{6}$$

Очевидно ограничения (4) - (6) эквивалентны ограничению (2), поэтому вместо модели (1) - (3) можно рассматривать модель (1), (3) - (6). Здесь ограничение (6) выводит эту модель за рамки модели (4) - (7) из предыдущей лекции. Для сведения задачи к общему виду задач динамич. программирования, запишем (6) с учетом (5):

$$y_j + a_j x_j \le B$$
 $(j = \overline{1, N}).$

Отсюда следует:

$$x_{j} \leq \frac{B - y_{j}}{a_{j}},$$

или окончательно с учетом (3):

$$0 \le x_{j} \le \frac{B - y_{j}}{a_{j}} \qquad (j = \overline{1, N})$$

$$y_{j} \in [0, B]$$

$$(7)$$

В результате исходная модель (1) – (3) свелась к эквивалентной модели вида

$$F = \sum_{j=1}^{N} F_j(x_j) \Longrightarrow \max$$
 (8)

$$y_{j+1} = y_j + a_j x_j$$
 $(j = \overline{1, N})$ (9)

$$0 \le x_j \le \frac{B - y_j}{a_j} \qquad (j = \overline{1, N}) \tag{10}$$

$$y_1 = 0 \tag{11}$$

ограничение (9) является рекуррентным и отражает процесс загрузки рюкзака, а неравенство (10) задает область возможных значений x_i .

Рассмотрим решение задачи (8)-(11) методом динамического программирования: 1 шаг. Вычисляется величина

$$f_N(y_N) = \max_{\substack{x_N \in \left[0, \frac{B - y_N}{a_N}\right] \\ \forall y_N \in [0, B] - \text{ фикс.}}} F_N(x_N)$$
(12).

В результате решения серии задач максимизации получаем точки максимума F_N $x_N^*(y_N)$ и значения $f_N(y_N) = F_N(x_N^*(y_N))$.

<u>S-тый шаг ($s = \overline{N-1,1}$)</u>. Вычисляются величины

$$f_{s}(y_{s}) = \max_{\substack{x_{s} \in \left[0, \frac{B-y_{s}}{a_{s}}\right] \\ \forall y_{s} \in [0, B] \text{-} \text{ фикс.}}} \left[F_{s}(x_{s}) + f_{s+1}(y_{s+1})|_{y_{s+1} = a_{s}x_{s} + y_{s}}\right]$$
(13)

В результате решения серии задач максимизации, получаем $x_s^*(y_s)$ и $f_s(y_s)$. При s=1 решается только одна задача на максимум, т.к. значение $y_1 = 0$ - задано.

Для определения безусловных точек максимума, т.е. решения исходной задачи, проводим обратное движение алгоритма:

$$x_1^* = x_1^*(y_1), f_1(y_1).$$

Отсюда:

$$y_2^* = y_1 + a_1 x_1^* \implies x_2^* = x_2^* (y_2)|_{y_2 = y_2^*}.$$

Далее: $y_3^* = y_2^* + a_2 x_2^* \implies x_3^* = x_3^*(y_3)|_{y_3 = y_3^*}$. И так далее $x_N^* = x_N^*(y_N)|_{y_N = y_N^*}$. Причем $f_1(y_1) = \sum_{j=1}^N F_j(x_j^*)$ есть максимальное значение целевой функции.

Наличие условия целочисленности переменных \mathbf{x}_j и a_j упрощает решение задачи. В этом случае $x_j \in \left\{0,1,...,\left[\frac{B-y_j}{a_j}\right]\right\}, y_j \in \left\{0,1,...,\left[B\right]\right\}$. Здесь [] указывает на то, что берется целая часть числа. Если a_j не целые, то $y_j \in \left\{0,B\right\}$.

Вычислительный процесс решения задачи о загрузке «рюкзака» методом динамического программирования можно организовать в противоположном

порядке, а именно, рекуррентные соотношения Беллмана составляются в таком виде, что они решаются в порядке $s=1,\ 2,\ ...,\ N-1,\ N$ и далее обратным ходом в порядке $s=N,\ N-1,\ ...$ определяются оптимальные значения x_s^* .

Процесс загрузки «рюкзака» интерпретируем как N шаговый. На 1-ом шаге в рюкзак помещается груз вида N, далее — груз вида N-1 и т. д. Необходимо выбрать такой параметр, характеризующий текущее состояние «рюкзака», значение которого перед загрузкой рюкзака было бы известным.

Пусть z_{j+1} — неиспользованный вес рюкзака перед загрузкой его грузом вида j или, что то же самое, после погрузки в «рюкзак» грузов вида $N, N-1, \ldots, j+1$.

Тогда справедливы соотношения

$$z_{j} = z_{j+1} - a_{j}x_{j}$$
 $(j = N, N-1,...,1)$ (14)
 $z_{n+1} = B$

Из (14), а также из условия $z_j \ge 0$, следует:

$$z_{j+1} - a_j x_j \ge 0 \quad (j = \overline{1, N})$$

Отсюда с учетом условия z_i≥0 получается область изменения x_i:

$$0 \le x_j \le \frac{z_{j+1}}{a_j} \qquad (j = \overline{1, N})$$
 (15)

Теперь модель задачи о загрузке «рюкзака» запишется:

$$\sum_{j=1}^{N} F_j(x_j) \Rightarrow \max$$
 (16)

$$z_{j} = z_{j+1} - a_{j}x_{j}$$
 $(j = N, N-1,...,1)$ (17)

$$0 \le x_j \le \frac{z_{j+1}}{a_j} \qquad (j = \overline{1, N})$$
 (18)

$$z_{N+1} = B \tag{19}$$

Рекуррентные уравнения Беллмана для задачи (16) – (19) будут иметь вид:

$$\lambda_{1}(z_{2}) = \max_{\substack{x_{1} \in \left[0, \frac{z_{2}}{a_{1}}\right] \\ \forall z_{2} \in [0, B] - \phi.}} F_{1}(x_{1})$$
(20)

$$k = \overline{2, N-1}: \lambda_{k}(z_{k+1}) = \max_{\substack{x_{k} \in \left[0, \frac{z_{k+1}}{a_{k}}\right] \\ \forall z_{k+1} \in \left[0, B\right] - \phi}} \left[F_{k}(x_{k}) + \lambda_{k-1}(z_{k}) \big|_{z_{k} = z_{k+1} - a_{k}x_{k}}\right]$$
(21)

$$\lambda_{N}(z_{N+1}) = \max_{\substack{x_{N} \in \left[0, \frac{z_{N+1}}{a_{N}}\right] \\ z_{N+1} = B}} \left[F_{N}(x_{N}) + \lambda_{N-1}(z_{N}) \right]_{z_{N} = z_{N+1} - a_{N}x_{N}}$$
(22)

Решение задачи (16) — (19) получается путем последовательной оптимизации (20) —(22). В результате находятся условные точки максимума $x_j^*(z_{j+1})$. Так как $z_{N+1}=B$, то в результате обратного движения определяются оптимальные значения x_j^* на цепочке $z_{N+1}=B \Rightarrow x_N^*=x_N^*(z_{N+1}) \Rightarrow z_N^*=z_{N+1}^*-a_Nx_N^* \Rightarrow x_{N-1}^*=x_{N-1}^*(z_N^*) \Rightarrow \dots \Rightarrow x_1^*(z_2^*)$. При этом значение целевой функции совпадет со значением $\lambda_N(z_{N+1})$:

$$\lambda_{N}(z_{N+1}) = \sum_{j=1}^{N} F_{j}(x_{j}^{*}).$$

Пример:

Постановка задачи:

Имеется свободный капитал в размере 4 млн. у.е. Этот капитал может быть распределен между 4-мя предприятиями, причем распределение осуществляется только целыми частями (0, 1, 2, 3 или 4 млн. у.е.). Прибыль, получаемая каждым предприятием при инвестировании в него определенной суммы, указана в таблице.

Капитал Предпр.	0 млн. у.е.	1 млн. у.е.	2 млн. у.е.	3 млн. у.е.	4 млн. у.е.
1-е предпр.	0	10	17	25	36
2-е предпр.	0	11	16	25	35
3-е предпр.	0	10	18	24	34
4-е предпр.	0	9	19	26	35

Требуется распределить инвестиции между предприятиями из условия максимальной общей прибыли.

Построение ММ.

Обозначим: x_j - количество капиталовложений, выделенных j-тому предприятию ($j=\overline{1,4}$). Тогда прибыль, записанная в таблице, можно обозначить как $F_j(x_j)$ ($j=\overline{1,4}$). Например, $F_1(0)=0$; $F_1(1)=10$; $F_1(2)=17$ и т.д. $F_2(0)=0$; $F_2(1)=11$; $F_4(4)=35$.

Тогда математическая модель примет вид:

$$\sum_{j=1}^4 F_j(x_j) \Longrightarrow \max$$
 $\sum_{j=1}^4 x_j \le 4$ $x_j \ge 0$ — целые, ($j = \overline{1,4}$)

Данная модель является частным случаем задачи о загрузке рюкзака, где N=4, B=4, a_j =1 ($j=\overline{1,4}$). Введя новую переменную y_j - израсходованные средства до выделения капиталовложений j-тому предприятию, приведем исходную модель к виду ЗДП:

$$\sum_{j=1}^{4} F_j(x_j) \Rightarrow \max$$

$$y_{j+1} = y_j + x_j; (j = \overline{1,4})$$

$$y_l = 0;$$

$$x_j \in |0;4 - y_j|; (j = \overline{1,4})$$

Решение задачи проведем в соответствии с алгоритмом динамического программирования:

1 шаг.

$$f_4(y_4) = \max_{\substack{x_4 \in [0, 4-y_4] \\ \forall y_4 \in [0, 4] - \text{ фикс.}}} F_4(x_4)$$

- 1) Зафиксируем y_4 =0. Тогда допустимые значения $x_4 \in [0, 4-0] = [0,1,2,3,4]$.
 - 1.1) $x_4=0$. Тогда $F_4(0)=0$.
 - 1.2) $x_4=1$. $F_4(1)=9$.
 - 1.3) $x_4=2$. $F_4(2)=19$.
 - 1.4) $x_4=3$. $F_4(3)=26$
 - 1.5) $x_4=4$. $F_4(4)=35$.

Максимальное значение $f_4(0) = 35$, и достигается оно при x_4 =4. Таким образом, заполняется первая строчка таблицы.

2) Зафиксируем $y_4=1$. Тогда допустимые значения $x_4 \in [0, 4-1] = [0,1,2,3]$.

- 2.1) $x_4=0$. Тогда $F_4(0)=0$.
- 2.2) $x_4=1. F_4(1)=9.$
- 2.3) $x_4=2$. $F_4(2)=19$.
- 2.4) $x_4=3$. $F_4(3)=26$

Максимальное значение $f_4(1) = 26$, и достигается оно при x_4 =3. Таким образом, заполняется вторая строка таблицы.

Далее аналогично фиксируем y_4 =2, y_4 =3, y_4 =4. Заполняем оставшиеся строки таблицы.

Таблица шага №1.

y_4 x_4	0	1	2	3	4	$f_4(y_4)$	$x_4(y_4)$
0	0	9	19	26	35	35	4
1	0	9	19	26	-	26	3
2	0	9	19	-	-	19	2
3	0	9	-	-	-	9	1
4	0	-	-	-	-	0	0

2 шаг.

$$f_3(y_3) = \max_{\substack{x_3 \in [0, 4 - y_3] \\ \forall y_3 \in [0, 4] - \text{фикс.}}} \left[F_3(x_3) + f_4(y_4) \right|_{y_4 = y_3 + x_3} \right]$$

- 1) Зафиксируем y_3 =0. Тогда допустимые значения $x_3 \in [0, 4\text{-}0] = [0, 1, 2, 3, 4]$.
 - 1.1) х₃=0. Тогда $F_3(0)$ =0. Определим значение второго слагаемого: $f_4(y_4)|_{y_4=x_3+y_3}$ при y_3 =0 и х₃=0. Найдем y_4 =0+0=0. Тогда, обратившись к таблице шага 1, увидим, что $f_4(0)$ = 35. Следовательно, $F_3(0)$ + $f_4(0)$ =0+35=35. Этот результат заносим в таблицу шага 2 в ячейку, соответствующую y_3 =0 и х₃=0.
 - 1.2) x_3 =1. Аналогично: $F_3(1)$ =10. Найдем y_4 = y_3 + x_3 =0+1=1. Из таблицы шага 1 определим: $f_4(y_4)|_{y_4=x_3+y_3}=f_4(1)=26$. Сумма $F_3(1)+\ f_4(1)=10+26=36.$

1.3)
$$x_3=2$$
. $F_3(2)=18$. $y_4=0+2=2$. \Rightarrow $f_4(y_4)|_{y_4=x_3+y_3}=f_4(2)=19$. Тогда $F_3(2)+$ $f_4(2)=18+19=37$.

1.4)
$$x_3=3$$
. $F_3(3)=24$, $y_4=0+3=3$. $\Rightarrow f_4(y_4)|_{y_4=x_3+y_3}=f_4(3)=9$. Тогда $F_3(3)+f_4(3)=24+9=33$.

1.5)
$$x_3$$
=4. $F_3(4)$ =34. y_4 =0+4=4. $\Rightarrow f_4(y_4)|_{y_4=x_3+y_3} = f_4(4)$ =0. Тогда $F_3(4)+f_4(4)=34+0=34.$

Максимальное значение $f_3(0)=37$, и достигается оно при $x_3=2$. Первая строчка таблицы заполнена.

- 2) Зафиксируем $y_3=1$. Тогда допустимые значения $x_3 \in [0, 4-1] = [0,1,2,3]$.
 - 2.1) $x_3=0$. $F_3(0)=0$. $y_4=1+0=1$. $\Rightarrow f_4(y_4)|_{y_4=x_3+y_3}=f_4(1)=26$. Тогда $F_3(0)+f_4(1)=0+26=26$.
 - 2.2) $x_3=1$. $F_3(1)=10$. $y_4=1+1=2$. $\Rightarrow f_4(y_4)|_{y_4=x_3+y_3}=f_4(2)=19$. Тогда $F_3(1)+f_4(2)=10+19=29$.
 - 2.3) $x_3=2$. $F_3(2)=18$. $y_4=1+2=3$. $\Rightarrow f_4(y_4)|_{y_4=x_3+y_3}=f_4(3)=9$. Тогда $F_3(2)+f_4(3)=18+9=27$.
 - 2.4) $x_3=3$. $F_3(3)=24$ $y_4=1+3=4$. $\Rightarrow f_4(y_4)|_{y_4=x_3+y_3}=f_4(4)=0$. Тогда $F_3(3)+f_4(4)=24+0=24$.

Максимальное значение $f_3(1) = 29$, и достигается оно при $x_3 = 1$. Таким образом, заполняется вторая строка таблицы.

3) Зафиксируем y_3 =2. Тогда допустимые значения $x_3 \in [0, 4-2] = [0,1,2]$.

3.1)
$$x_3=0$$
. $F_3(0)=0$. $y_4=2+0=2$. $\Rightarrow f_4(2)=19$. $F_3(0)+f_4(2)=0+19=19$.

3.2)
$$x_3=1$$
. $F_3(1)=10$. $y_4=2+1=3$. $\Rightarrow f_4(3)=9$. $F_3(1)+f_4(3)=10+9=19$.

3.3)
$$x_3=2$$
. $F_3(2)=18$. $y_4=2+2=3$. $\Rightarrow f_4(4)=0$. $F_3(2)+f_4(4)=18+0=18$.

Максимальное значение $f_3(2) = 19$ достигается при двух возможных значениях x_3 : $x_3 = 1$ и $x_3 = 0$. В таблицу можно занести любое из них. Таким образом, заполняется третья строка таблицы.

Далее аналогично фиксируем $y_3=3$, $y_3=4$. Заполняем оставшиеся строки таблицы.

Таблица шага №2.

y_3 x_3	0	1	2	3	4	$f_3(y_3)$	$x_3(y_3)$
0	35	36	37	33	34	37	2
1	26	29	27	24	-	29	1
2	19	19	18	1	-	19	0 (или 1)
3	9	10	1	1	-	10	1
4	0	-	-	-	-	0	0

3 шаг.

$$f_2(y_2) = \max_{\substack{x_2 \in [0,4-y_2] \\ \forall y_2 \in [0,4] \text{-фикс.}}} \left[F_2(x_2) + f_3(y_3) \right]_{y_3 = y_2 + x_2}$$

Все вычисления производятся аналогично шагу 2. Не останавливаясь более подробно на этапах решения подзадачи данного шага, приведем получившуюся в результате таблицу.

Таблица шага №3.

y_2 x_2	0	1	2	3	4	$f_2(y_2)$	$x_2(y_2)$
0	37	40	35	35	35	40	1
1	29	30	26	25	-	30	1
2	19	21	16	-	-	21	1
3	10	11	-	-	-	11	1
4	0	-	-	-	-	0	0

4 шаг.

$$f_1(y_1) = \max_{\substack{x_2 \in [0, 4-y_1] \\ y_1 = 0}} \left[F_1(x_1) + f_2(y_2) \right]_{y_2 = y_1 + x_1}$$

Последний шаг интересен тем, что здесь решается единственная задача максимизации при заданном y_1 =0.

 y_1 =0. Следовательно x_1 \in [0, 4-0]= [0,1,2,3,4]. Выполняя все действия, аналогично предыдущим шагам, получим таблицу последнего шага, состоящую из единственной строки, соответствующей y_1 =0.

Таблица шага №4.

y_1 x_1	0	1	2	3	4	$f_1(y_1)$	$x_1(y_1)$
0	40	40	38	36	36	40	0 (или 1)

Далее проводим обратное движение алгоритма:

- 1) $y_1=0$, $x_1*=0$, $\Rightarrow y_2*=y_1+x_1*=0+0=0$.
- 2) Определяем значение x_2^* из таблицы шага № 3 по найденному $y_2^*=0$. Значению $y_2=y_2^*=0$ соответствует значение $x_2(y_2)=1$. Следовательно, $x_2^*=1$. Далее можно определить $y_3^*=y_2^*+x_2^*=0+1=1$.
- 3) Аналогично, обращаясь к таблице шага №2, найдем: $x_3*=x_3(1)=1$, \Rightarrow $y_4*=y_3*+x_3*=1+1=2$.
- 4) Из таблицы шага №1 : х₄*= х₄(2)=2.

Окончательно имеем: первому предприятию средства не выделяются $(x_1^*=0)$, второму выделяется 1 млн. у.е. $(x_2^*=1)$, третьему предприятию – 1 млн. у.е. $(x_3^*=1)$, и четвертому – 2 млн. у.е. $(x_4^*=2)$. При этом значение целевой функции (общая прибыль по всем 4-м предприятиям) составит:

$$\sum_{j=1}^{4} F_j(x_j^*) = f_1(y_1) = 40.$$