Table of Laplace Transforms

f(t)	$\mathcal{L}\{f(t)\} = F(s)$	
g(t)	$\mathcal{L}\{f(t)\} = F(s)$ $\mathcal{L}\{g(t)\} = G(s)$	
1	$\frac{1}{s}$	
-	1	
e^{at}	S - C	
t^n	$\frac{n!}{s^{n+1}}$, <i>n</i> a positive integer	
sin kt	$\frac{k}{s^2 + k^2}$	
cos kt	$\frac{s}{s^2 + k^2}$	
$e^{at}f(t)$	F(s-a)	7.3.1
u(t-a)	$\frac{e^{-as}}{s}$	7.3.2
$f(t-a)\mathcal{U}(t-a)$	$e^{-as}F(s)$	7.3.2
Alternative $g(t)\mathcal{U}(t-a)$	$e^{-as}\mathcal{L}\left\{g\left(t+a\right)\right\}$	7.3.2
$\int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)	7.4.2
$\delta(t-t_0)$	e^{-st_0}	7.5
$f^{(n)}(t)$	$s^{n}F(s)-s^{n-1}f(0)-s^{n-2}f'(0)-\cdots-f^{(n-1)}(0)$	