Table 1 Sufficient Conditions for Nondegenerate[‡] Solution

Consumption Model(s)	Conditions	Comments
$\bar{\mathbf{c}}(m)$: PF Unconstrained	RIC, FHWC°	$\text{RIC} \Rightarrow \mathbf{v}(m) < \infty; \text{ FHWC} \Rightarrow 0 < \mathbf{v}(m) $
$\underline{c}(m) = \underline{\kappa}m$		PF model with no human wealth $(h = 0)$
Section ??:		RICprevents $\bar{\mathbf{c}}(m) = \underline{\mathbf{c}}(m) = 0$
Section ??:		FHWC prevents $\bar{\mathbf{c}}(m) = \infty$
Eq (??):		$PF-FVAC+FHWC \Rightarrow RIC$
Eq (??):		$GIC+FHWC \Rightarrow PF-FVAC$
$\grave{\mathrm{c}}(m)$: PF Constrained	GIC, RIC	FHWC holds $(\Gamma < \mathbf{P} < R \Rightarrow \Gamma < R)$
Section ??:		$ \dot{c}(m) = \bar{c}(m) \text{ for } m > m_{\#} < 1 $
		(RHC would yield $m_{\#} = 0$ so $\grave{c}(m) = 0$)
Appendix ??:	GIC,RIC	$\lim_{m\to\infty} \dot{c}(m) = \bar{c}(m), \lim_{m\to\infty} \dot{\boldsymbol{k}}(m) = \underline{\kappa}$
		kinks where horizon to $b = 0$ changes*
Appendix ??:	GIC,RIC	$\lim_{m\to\infty} \grave{\boldsymbol{\kappa}}(m) = 0$
		kinks where horizon to $b = 0$ changes*
c(m): Friedman/Muth	Section ??,	$\underline{\mathbf{c}}(m) < \mathbf{c}(m) < \overline{\mathbf{c}}(m)$
	Section ??	$\underline{\mathbf{v}}(m) < \mathbf{v}(m) < \bar{\mathbf{v}}(m)$
Section ??:	FVAC, WRIC	Sufficient for Contraction
Section ??:		WRICis weaker than RIC
Figure ??:		FVACis stronger than PF-FVAC
Section ??:		EHWC+RIC \Rightarrow GIC, $\lim_{m\to\infty} \kappa(m) = \underline{\kappa}$
Section ??:		RHC \Rightarrow EHWC, $\lim_{m\to\infty} \kappa(m) = 0$
Section ??:		"Buffer Stock Saving" Conditions
Section ??:		$\mathrm{GIC}\Rightarrow\exists 0<\check{m}<\infty$
Section ??:		GIC-Nrm $\Rightarrow \exists 0 < \hat{m} < \infty$

[‡]For feasible m satisfying $0 < m < \infty$, a nondegenerate limiting consumption function defines a unique optimal value of c satisfying $0 < c(m) < \infty$; a nondegenerate limiting value function defines a corresponding unique value of $-\infty < \mathrm{v}(m) < 0$.

[°]RIC, FHWC are necessary as well as sufficient for the perfect foresight case. *That is, the first kink point in c(m) is $m_{\#}$ s.t. for $m < m_{\#}$ the constraint will bind now, while for $m > m_{\#}$ the constraint will bind one period in the future. The second kink point corresponds to the m where the constraint will bind two periods in the future, etc.

^{**}In the Friedman/Muth model, the RIC+FHWC are sufficient, but not necessary for nondegeneracy