Lista 3 (Análise Numérica)

Raphael F. Levy

September 26, 2022

1 Questão 6a:

Primeiramente, para a questão 6, os métodos do Ponto Fixo e Newton Ralphson foram implementados no notebook *Lista3_AN_Raphael_Levy.ipynb*. Também testei com o método de Regula-Falsi, para comparar os resultados obtidos.

Agora, irei demonstrar que o método sempre irá convergir a raiz se $x^{(0)} \in [1, 3]$:

Já que a função passada foi $f(x) = \ln(15 - \ln(x)) - x$, podemos considerar $x = g(x) = \ln(15 - \ln(x))$. Nos limites do intervalo, $g(1) \approx 2.7080502$ e $g(3) \approx 2.63198867$, portanto $\forall \ 1 \le x \le 3, \ 1 < g(x) < 3$. Ainda, se $1 \le x^{(0)} \le 3$, então $1 < x^{(k)} < 3$. Por definição, temos |g(x) - g(y)| = |g'(c)||x - y| para algum $c \in [1, \ 3]$. Portanto, vamos achar g'(x) para isso valer.

$$g(x) = \ln(15 - \ln(x)) \Rightarrow g'(x) = \frac{1}{x(\ln(x) - 15)}$$

Passando os valores limitantes do intervalo, $g'(1) \approx -0.0666666...$ e $g'(3) \approx -0.02397842$, e portanto $-1 < g'(x) < 0 \ \forall \ x \in [1, \ 3]$. Já que |g'(x)| < 1, sabemos que a função deverá convergir. Ainda, pela definição da função, $||g(x) - g(y)|| \le L||x - y||$. Portanto, fazendo L < 1, temos $g'(x) \le L < 1$.

$$\text{Agora, } \frac{x^{(n+1)}-x^{(n)}}{x^{(n)}-x^{(n-1)}} = \frac{g(x^{(n)})-g(x^{(n-1)})}{x^{(n)}-x^{(n-1)}} = g'(k) \text{ para algum } k \in (x^{(n-1)},\ x^{(n)})$$

pelo TVM. Pelo que definimos anteriormente,
$$|g'(k)| = \left| \frac{g(x^{(n)}) - g(x^{(n-1)})}{x^{(n)} - x^{(n-1)}} \right| =$$

$$|\frac{x^{(n+1)}-x^{(n)}}{x^{(n)}-x^{(n-1)}}| \leq L < 1 \Rightarrow |x^{(n+1)}-x^{(n)}| \leq L|x^{(n)}-x^{(n-1)}| \Rightarrow |x^{(n+1)}-x^{(n)}| \leq L|x^{(n)}-x^{(n-1)}| \Rightarrow |x^{(n+1)}-x^{(n)}| \leq L|x^{(n)}-x^{(n-1)}| = L|x^{(n)}-x^{(n)}| \leq L|x^{(n)}$$

Assim, quando n tende a infinito, $|x^{(n+1)}-x^{(n)}|$ tende a 0, já que L<1, e portanto a função converge. Assim, na convergência, $x^{(n)}=x^{(n+1)}$, portanto $x^{(n+1)}=g(x^{(n)}\Rightarrow x^*=g(x^*)=\ln(15-\ln(x))\Rightarrow \ln(15-\ln(x))-x=0\Rightarrow f(x^*)=0$, logo x^* é raiz da função f.

2 Questão 6b:

Utilizando o método do Ponto Fixo, utilizando $x^{(0)}=2$, valor médio do intervalo [1, 3], tive como resposta $x^*=2.6411123576$ e $g(x^*)=2.6411123469$, com uma tolerância de cinco casas decimais.

Também testei o método usando pontos iniciais e tolerâncias distintos, e o método sempre retornou uma raiz correta pelo menos até a quinta casa decimal ($x^* = 2.64111$), com uma exceção para $tol = 10^{-2}$, para a qual a raiz foi encontrada corretamente apenas até a segunda casa decimal.

3 Questão 6c:

Utilizando o método de Newton-Ralphson com $x^{(0)}=2$, obtive $x^*=2.6411123397$, com $f(x^*)=0.0000000077$.