Mathematics in Computing 4COSC007C Proofs

Logic Engineering in Classical Propositional Logic (CPL)

To build a logic we must define:

- its syntax,
- its semantics,
- provide its proof theory,
- establish correctness of this construction

Logic Engineering in Classical Propositional Logic (CPL)

syntax

 This is where we define which expressions are acceptable and which are not

semantics

 This is where we define the meaning of acceptable expressions – logical formulae. In our case – meaning of logical formulae are their truth values – true or false.

proof theory

 This is where we define techniques to formally justify the expressions that are always true

correctness

 This where we justify that what we can only prove formulae that are always true

Syntax

Alphabet of logic

- a set, Prop, of atomic propositions:p, q, r . . . p1, q1, r1 . . .
- ullet a set, Log, of logical operators: $\neg, \wedge, \Longrightarrow, \lor$
- technical symbols().

Language of Propositional logic

Definition 1 [Well Formed Formulae (wff)]

- any atomic proposition is wff;
- if A and B are wff then $\neg A$, $A \wedge B$, $A \vee B$, $A \Longrightarrow B$ are wff;
- nothing else is a wff.

Note:

- Definition 1 is a recursive (or inductive) definition and iseffective for any object we have an effective procedure to determine if it is a wff.
- In Definition 1 letters A, B are expressions of the metalanguage serving to abbreviate expressions of the object language (CPL).

Satisfiability and Validity

Definition 2

- Formula A is satisfiable if there is an interpretation of its atomic propositions which makes A true.
- Alternatively, if no interpretation of atomic propositions makes A true then A is unsatisfiable

Definition 3

- Formula A is valid if every interpretation of its atomic propositions makes it true.
- |= notation is used to denote the fact that A is valid.

Logical Consequence

Definition 4

- Formula B is a logical consequence of a knowledge base $A_1, A_2, A_3, \dots A_n$ if the following formula is valid:
 - $(A1 \wedge (A2 \wedge A3 \wedge An))) \implies B$
 - $A_1, A_2, A_3, \dots A_n \models B$ is used to denote logical consequence of B.

Proof Strategies-Axiomatic Approach

- An axiom is a proposition formally accepted without demonstration, proof, or evidence as one of the starting points for the systematic derivation of an organized body of knowledge.
- From all valid formulae we choose a set of formulae and assume they do not need proofs.
- Next, we formulate the proof technique such that all other valid formulae can be proven from axioms using corresponding rules.

Axioms in CPL

Definition 5- [Logic CPLAx axiomatic formulation of CPL]

- $\bullet \ (p \implies (q \implies p))$
- $\bullet \ (p \Longrightarrow (q \Longrightarrow r)) \Longrightarrow ((p \Longrightarrow q) \Longrightarrow (q \Longrightarrow p))$
- $\bullet \ (\neg p \implies \neg q) \implies (q \implies p)$

Rules of Inference

- Substitution: Let A be a formula of CPL and p a propositional variable in A. Let A(p/B) be a result of substituting all occurrences of p in A by a formula B.
- Then the following rule can be carried out: If A then A(p/B)
- $\bullet \ (p \implies (q \implies r)) \implies ((p \implies q) \implies (p \implies r)) \qquad \text{Ax. 2}$
- $(s \Longrightarrow (q \Longrightarrow r)) \Longrightarrow ((s \Longrightarrow q) \Longrightarrow (s \Longrightarrow r))$ from 1, substitution p/s

Rules of Inference

Modus Ponens (Implication Elimination)

From A and A \implies B follows B

 It can be summarized as "P implies Q and P is asserted to be true, therefore Q must be true."

Searching for Proofs

Breadth-First Search

Here we explore the tree in order of levels

Level 1 – nodes 2 and 3

Level 2 – nodes 4, 5, 6

Level 3 – nodes 7, 8 and 9

Level 4 - nodes 10 and 11

Depth-First Search

Here we explore the tree in order of paths

Path 1 – nodes 1, 2, 3, 4

Path 2 – nodes 1, 2, 3, 5

Path 3 – nodes 1, 6, 7

Path 4 – nodes 1, 6, 8, 9, 10

Path 5 - nodes 1, 6, 8, 9, 11

Forward Chaining

- Match the FACTS contained in the knowledge base to left hand sides of rules
- Apply the rules and instantiate new (temporary) facts
- Repeat until: the goal is achieved or until no more rules fire
- Operates as a breadth first search

Forward Chaining

State-space Representation

Backward Chaining

- Match the GOAL to right hand side of rules
- Set up left side of rule as sub goals
- Repeat until: all sub goals match directly with known facts (goal is true) or some sub goals fail to match (goal is false)
- Backward chaining is usually implemented as depth first search

Backward Chaining

Rules

R1: $m \Rightarrow i$ R2: $b \Rightarrow a$ R3: $i \Rightarrow d$ R4: $j \Rightarrow e$ R5: $k \Rightarrow e$ R6: $g \& h \Rightarrow c$ R7: $e \& f \Rightarrow b$ R8: $c \& d \Rightarrow a$ R9: $l \Rightarrow i$

Initial facts Problem-space Representation

Proving validity by Contradiction

Consider Axiom 1. $p \implies (q \implies p)$

Goal: prove that $Axiom\ 1$ is valid but not by constructing the full truth table

- 1. Assume the contrary $p \implies (q \implies p)$ is not valid.
- 2. It should be the case then that p is true but $q \implies p$ is false
- 3. Since $q \implies p$ is false q should be true but p false
- 4. Contradiction:
- 5. Therefore our assumption that $p \implies (q \implies p)$ s not valid is wrong!
- 6. Therefore, $p \implies (q \implies p)$ is valid

Mathematics in Computing 4COSC007C Tableaux Technique

Signed Formulae

- Given a CPL formula A, let us abbreviate by T[A] the situation when A is true and by F[A] the situation when A is false.
- We will call the expressions T[A] and F[A] signed formulae.

α Formulae

- ullet For lpha formulae the conditions for being true or false are unique!
- $T[A \land B]$ this is only when T[A] AND T[B]
- F[A V B] this is only when F[A] AND F[B]
- $\bullet \ F[A \implies B] \ this \ is \ only \ when \ T[A] \ AND \ F[B]$
- $T[\neg A]$ this is only when F[A]
- $F[\neg A]$ this is only when T[A]

α Formulae

 \bullet For α formulae the conditions for being true or false are unique!

α	α_1	α_2
$T[A \land B]$ $F[A \lor B]$ $F[A \Rightarrow B]$ $T[\neg A]$ $F[\neg A]$	T[A], $F[A],$ $T[A],$ $F[A]$ $T[A]$	T[B] $F[B]$ $F[B]$

eta Formulae

- ullet For eta formulae the conditions for being true or false are not unique! Here we have options, or so called "branching conditions":
- T[A V B] this is when T[A] OR T[B]
- $F[A \land B]$ this is when F[A] OR F[B]
- $\bullet \ T[A \Longrightarrow B] \ this \ is \ when \ F[A] \ OR \ T[B]$

β Formulae

 \bullet For β formulae the conditions for being true or false are not unique! Here we have options, or so called "branching conditions":

β	β_1	('or') β_2
$T[A \lor B]$ $F[A \land B]$ $T[A \Rightarrow B]$	T[A] $F[A]$ $F[A]$	T[B] $F[B]$ $T[B]$

Construction of Tableau

- based on the $\alpha \beta$ rules.
- Sets of signed formulae are called configurations.
- Below we define tableau construction rules, so that a rule is applied to a signed formula in the configuration above the horizontal line and the rule's conclusion is a configuration(s) below the horizontal line.
- ullet Remember: in lpha rules, we have unique conditions for true and false, so rules simply transform some given configuration to a new one
- ullet Remember: in eta rules, we have branching conditions for true and false, so these rules transform some given configuration new configurations reflecting branches

Construction of Tableau

- We are ready to define the construction of the tableau for a formula
 A. The tableau is built as a labelled finite graph in other words,
 each node in a graph is labelled by a configuration.
 - 1). The initial node is labelled by F[A] itself (eg assume that A is false).
 - 2). The α and β expansion rules are applied to the formulae within labels of nodes of the graph.
 - 2.1). If an expansion rule applies to α -formula in a label of a node n_i then create a new node, n_{i+1} , the successor of n_i , and put both conclusions of the rule into the label of n_{i+1} .
 - 2.2). If an expansion rule applies to β -formula in a label of a node n_i then create two nodes $n_{i.1}$ and $n_{i.2}$, the children of n_i , and put the conclusions, $\beta 1$ and $\beta 2$ (of the rule being applied) into $n_{i.1}$ and $n_{i.2}$, respectively.
- 3). Apply 2.1 and 2.2 until:
 - 3.1). no expansion rule to a configuration label of a node is applicable; such a configuration is called completed.
 - 3.2). a derived configuration label of a node contains both T[B] and F[B], for some CPL formula B. Such a configuration is called closed.

Tableau as a graph

- Now a tableau is a graph G = (N,E,L), which satisfies the following conditions
- N is a set of those nodes in the construction above,
- E is a set of edges such that for n_i , $n_j \in N$, we have $E(n_i, n_i)$ if, and only if, n_j is an immediate successor of n_i , and
- L is a set of labels, so for $n_i \in N$, the label of n_i is $L(n_i)$. The labels of leafs of G are completed configurations or closed configurations

Reduced graph for a tableau

- Given a tableau G, apply repeatedly the following deletion rules.
- Delnode.1 Delete every node if is labelled by a closed configuration,
 e.g. the configuration contains both T[B] and F[B] for some formula
 B.
- Delnode.2 If all the successors of a node have been deleted then delete this node.
- The resulting graph is called the reduced graph.

Closed Tableau

- Let G be the initial graph representing a tableau and G' be a reduced graph. G' is empty if the initial node of G has been deleted.
- A tableau is called closed if its reduced graph is empty.
- Statement 1. For any CPL formula A, a tableau is closed, if and only if, A is unsatisfiable.
- Statement 2 [correctness of tableau for CPL]: A tableau constructed for the assumption F[A] is closed if, and only if A is valid.

- Consider Axiom 1. $p \implies (q \implies p)$
- \bullet Assuming F[p \implies (q \implies p)], we construct a tableau as follows: ...

$$\{F[p \stackrel{\bigstar}{\Rightarrow} (q \Rightarrow p)]\}$$

root node, node 1: negation of the formula.

By writing *above a signed formula in the configuration we mark the formula to which an expansion rule applies

Transitions are labelled by the name of the expansion rule applied with ★

we apply the α rule $F \Rightarrow$ to $F[p \Rightarrow (q \Rightarrow p)]$ constructing one children of configuration 1

we mark the formula to decompose and identify the rule, here the α rule $F \Rightarrow$

we apply the α rule $F \Rightarrow$ to $F[q \Rightarrow p]$ constructing one children of configuration 2

Configuration on step 3 is completed, hence, we stop the tableau construction as there are no more expansion rules applicable.

recap of building the tableau

In the configuration on step 3, we have T[p] and F[p], hence, this configuration is closed

we have T[p] and F[p], hence configuration in step 3 is closed so we delete the node 3 labelled by this configuration applying rule Delnode.1.

After we have deleted node 3 we have an edge from 2 leading to nowhere so we delete this edge

After we have deleted an edge from node 2 we have node 2 as the node with all its successors being deleted

Now, 2 is a node all of whose successors have been deleted so we delete 2 applying rule Delnode.2.

An edge leads from node 1 to nowhere so we delete this edge and then node 1 becomes the one whose successors have been deleted so we delete 3 applying rule Delnode.2., obtaining the empty reduced graph

$$\{F[p \Rightarrow (q \Rightarrow p)]\}$$

Now, we have obtained the empty reduced graph

$$\{F[p \Rightarrow (q \Rightarrow p)]\}$$

- · We have obtained the reduced graph.
- This graph is empty, so the tableau for given formula $p \Rightarrow (q \Rightarrow p)$ is closed hence we conclude $p \Rightarrow (q \Rightarrow p)$ is valid
 - NOTE THAT IN THE CONSTRUCTION ABOVE WE ONLY USED α rules
 - ALSO NOTE THAT WE CONSTRUCTED THE TABLEAU IN BREADTH-FIRST SEARCH

Consider Pierce law.

$$((p \implies q) \implies p) \implies p$$

• Assuming $F[((p \implies q) \implies p) \implies p]$, we construct a tableau as follows:

$$\{F[((p \Rightarrow q) \Rightarrow p) \Rightarrow p]\}$$

we apply the α rule $F \Rightarrow$ to $F[((p \Rightarrow q) \Rightarrow p) \Rightarrow p]$ constructing one children of configuration 1

we apply the β rule $T\Rightarrow$ to $T[(p\Rightarrow q)\Rightarrow p]$ constructing two children of configuration 2:

Configuration 2.2 is closed, we proceed with 2.1.

Below we represent the tableau as a tree:

$$\{F[((p \Rightarrow q) \Rightarrow p) \Rightarrow p]\}$$

$$\{T[(p \Rightarrow q) \Rightarrow p)], F[p]\}$$

$$\{F[p \Rightarrow q], F[p]\} \quad \{T[p], F[p]\}$$

$$\{T[p], F[q], F[p]\}$$

