Chapitre 11: Fonction exponentielle (correction)

Compétence: Propriétés algébriques

Exercice 1 : Propriétés algébriques

Dans chaque cas, écrire l'expression donnée sous la forme $\exp(A(x))$ où A(x) est une expression et x un réel.

a) $\exp(x) \times \exp(x)$	b) $\exp(-1) \times \exp(x)$	c) $\exp(-x) \times \exp(x)$	d) $\exp(1) \times \exp(x)$
$=\exp(2x)$	$= \exp(x-1)$	= 1	$= \exp(x+1)$
$=e^{2x}$	$=e^{x-1}$		$=e^{x+1}$

Exercice 2 : Propriétés algébriques

Dans chaque cas, écrire les réels donnés sous la forme e^k où k est un entier

a) $e^{-7} \times e^{3}$ b) $e^{-1} \times e^{-5}$ c) $e^{2} \times e$ $= e^{-7+3}$ $= e^{-1}$ $= e^{-6}$ d) $\frac{1}{e}$ e) $\frac{1}{e^{-1}}$ f) $\frac{1}{e^{2}}$ $= e^{-1}$ $= e$ $= e^{-2}$		iles sous la forme e du k est un entre	1.
	a) $e^{-7} \times e^3$	b) $e^{-1} \times e^{-5}$	c) $e^2 \times e$
	$=e^{-7+3}$	$=e^{-1-5}$	$=e^3$
d) $\frac{1}{e}$ e) $\frac{1}{e^{-1}}$ f) $\frac{1}{e^2}$	$=e^{-4}$	$=e^{-6}$	
_1 _1	d) $\frac{1}{e}$	e) $\frac{1}{e^{-1}}$	f) $\frac{1}{e^2}$
$ =e^{-1}$ $ =e^{-2}$	$=e^{-1}$	=e	$=e^{-2}$
g) $\frac{e^{-3}}{e^2}$ h) $\frac{e}{e^{-1}}$ i) $\frac{e^{-2}}{e}$ $= e^{-3-2}$ $= e^{-5}$	g) $\frac{e^{-3}}{e^2}$	$h) \frac{e}{e^{-1}}$	i) $\frac{e^{-2}}{e}$
$= e^{-3-2} \qquad = e^2 \qquad = e^{-3}$	$=e^{-3-2}$	$=e^2$	$=e^{-3}$
$=e^{-5}$	$=e^{-5}$		
j) $(e^2)^3$ l) $(e^{-1})^6$	j) $(e^2)^3$	k) $(e^3)^2$	I) $(e^{-1})^6$
$= e^{2\times 3} \qquad = e^6 \qquad = e^{-6}$	$=e^{2\times3}$	$=e^6$	$=e^{-6}$
$=e^6$	$=e^6$		
	$m) \frac{e^2 \times e^{-3}}{e^5}$		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$=e^{2-3-5}$	$=e^{1-3}$	
m) $\frac{e^5}{e^5}$ $= e^{2-3-5}$ $= e^{-6}$ $= e^{-2}$	$=e^{-6}$	$=e^{-2}$	

Exercice 3: Propriétés algébriques

Dans chaque cas, compléter avec le nombre qui convient.

a)
$$e^{12} \times e^{6} = e^{18}$$
 b) $e^{-1} \times e^{9} = (e^{4})^{2}$ c) $\frac{e^{14,5}}{e^{1,5} \times e^{3}} = e^{10}$ d) $e \times \frac{1}{e^{1,5}} = e^{-0,5}$

Exercice 4 : Propriétés algébriques

Dans chaque cas, écrire l'expression donnée sous la forme $e^{A(x)}$ où A(x) est une expression et x un réel.

a) $e^x \times e^5$	b) $e^{-x} \times e^2$	c) $e^{-2x} \times e^{-1}$
$=e^{x+5}$	$=e^{-x+2}$	$=e^{-2x-1}$
d) $e^x \times e^x$	e) $e^x \times e^{-x}$	f) $e^{1-x} \times e^{1-x}$
$=e^{2x}$	= 1	$=e^{2-2x}$
g) $(e^x)^4$	h) $(e^{2x})^{-1}$	i) $(e^{-x+1})^2$
$=e^{4x}$	$=e^{-2x}$	$=e^{2(-x+1)}$
		$=e^{-2x+2}$
j) $\frac{e^x}{e^{0,1}}$	$k) \frac{e^x}{e^{0,1x}}$	I) $\frac{e^{2x+1}}{e^{x-1}}$
$=e^{x-0.1}$	$=e^{x-0.1x}$	$=e^{2x+1-(x-1)}$
	$\begin{vmatrix} = e^{x-0.1x} \\ = e^{0.9x} \end{vmatrix}$	$=e^{x+2}$

Exercice 5 : Propriétés algébriques

Dans chaque cas, écrire l'expression donnée sous la forme $e^{A(x)}$ où A(x) est une expression et x un réel.

a) $e^{1+x} \times e^x$	b) $e^{2-x} \times e^{3-x}$
$=e^{2x+1}$	$=e^{-2x+5}$
c) $(e^{1+x})^2 \times e^{-x}$	d) $e \times e^{5-0.1x}$
$=e^{2+2x-x}$	$=e^{6-0.1x}$
$=e^{x+2}$	
e) $\frac{1}{e^{-7+0.2x}}$	e^{2x-5}
$\frac{e}{e^{-7+0.2x}}$	(x+5)
$=e^{7-0.2x}$	$=e^{2x-5-x-5}$
	$=e^{x-10}$
g) $\frac{e^{-x+1}}{e^{x-3}}$	$e^{\times e^{3x-1}}$
g) ${e^{x-3}}$	$\rho x+1$
$=e^{-x+1-x+3}$	$=e^{1+3x-1-x-1}$
$=e^{-2x+4}$	$=e^{2x-1}$
$e^x \times e^{x+1}$	$e^{2-x} \times (e^{2x+1})^3$
$i) \frac{e^x \times e^{x+1}}{e^{x-1}}$	j) $\frac{e^{2-x} \times (e^{2x+1})^3}{e^{-x-1} \times e^{2x}}$
$=e^{x+x+1-x+1}$	$=e^{2-x+6x+3+x+1-2x}$
$=e^{x+2}$	$=e^{4x+6}$

Exercice 6 : Propriétés algébriques

t désigne un nombre réel.

Développer et réduire chaque expression.

1.
$$A = (e^t - 1)^2$$

$$A = (e^t)^2 - 2e^t + 1$$

$$A = e^{2t} - 2e^t + 1$$

2.
$$B = e^{2t}(e^t - e^{-2t})$$

$$B = e^{2t}e^t - e^{2t}e^{-2t}$$

$$B=e^{3t}-1$$

3.
$$C = 3e^t(e^t - e^{-t}) - 5e^{2t}$$

$$C = 3(e^t)^2 - 3e^t e^{-t} - 5e^{2t}$$

$$C = 3e^{2t} - 3 - 5e^{2t}$$

$$C = -2e^{2t} - 3$$

Exercice 7 : Propriétés algébriques

Démontrer les égalités suivantes pour tout réel x:

1.
$$3e^{2x} - 8e^x - 3 = (1 + 3e^x)(e^x - 3)$$

 $(1 + 3e^x)(e^x - 3) = e^x - 3 + 3e^x \times e^x - 9e^x$
 $= e^x - 3 + 3e^{2x} - 9e^x$
 $= 3e^{2x} - 8e^x - 3$

2.
$$\frac{1+e^{2x}}{1+e^{x}} = \frac{e^{-x}+e^{x}}{e^{-x}+1}$$

$$\frac{1+e^{2x}}{1+e^{x}} = \frac{(1+e^{2x})\times e^{-x}}{(1+e^{x})\times e^{-x}}$$

$$= \frac{e^{-x}+e^{2x}\times e^{-x}}{e^{-x}+e^{x}\times e^{-x}}$$

$$= \frac{e^{-x}+e^{x}}{e^{-x}+e^{x}}$$

3.
$$\frac{e^{1+2x}}{1+e^{2x}} = \frac{e^{1+x}}{e^{-x}+e^{x}}$$
$$\frac{e^{1+2x} \times e^{-x}}{(1+e^{2x}) \times e^{-x}} = \frac{e^{1+x}}{e^{-x}+e^{2x} \times e^{-x}}$$
$$= \frac{e^{1+x}}{e^{-x}+e^{x}}$$

4.
$$\frac{e^{x+1}}{e+e^{x+1}} = \frac{e^x}{1+e^x}$$

$$\frac{e^{x+1}}{e+e^{x+1}} = \frac{e^{x+1} \times e^{-1}}{(e+e^{x+1}) \times e^{-1}}$$

$$= \frac{e^x}{e \times e^{-1} + e^{(x+1)} \times e^{-1}}$$

$$= \frac{e^x}{1+e^x}$$

5.
$$1 - \frac{e^{-x}}{1 + e^{-x}} = \frac{e^{x}}{1 + e^{x}}$$

$$1 - \frac{e^{-x}}{1 + e^{-x}} = \frac{1 + e^{-x}}{1 + e^{-x}} - \frac{e^{-x}}{1 + e^{-x}}$$

$$= \frac{1}{1 + e^{-x}}$$

$$= \frac{1}{1 + e^{-x}}$$

$$= \frac{1 \times e^{x}}{(1 + e^{-x}) \times e^{x}}$$

$$= \frac{e^{x}}{e^{x} + e^{-x} e^{x}}$$

$$= \frac{e^{x}}{1 + e^{x}}$$

Compétence : Signe d'expressions avec des exponentielles

Exercice 8: Signe

Déterminer le signe des expressions données sur \mathbb{R} .

a) $A(x) = 0.5 + e^x$	b) $B(x) = 1 + 0.5e^x$
Pour tout réel x :	Pour tout réel x :
$e^x > 0$	$e^x > 0$
$0,5+e^x>0,5>0$	$0,5e^x>0$
A(x) > 0	$1+0,5e^x>1>0$
	B(x) > 0
c) $C(x) = -10e^x$	d) $D(x) = -1 - e^x$
Pour tout réel x :	Pour tout réel x :
$e^x > 0$	$e^x > 0$
$-10e^x < 0$ car $-10 < 0$	$-e^x < 0$ car $-1 < 0$
C(x) < 0	$-1-e^x<-1<0$

$e) E(x) = \frac{e^x}{e^x + 1}$	f) $F(x) = e^x(2 + e^x)$
Pour tout réel x :	Pour tout réel x :
$e^x > 0$ et $e^x + 1 > 0$	$e^x > 0$ et $e^x + 2 > 0$
E(x) > 0 (quotient)	F(x) > 0 (produit)
g) $G(x) = -2e^{-x-1}$	h) $H(x) = 0.3e^{1-0.7x}$
Pour tout réel x :	Pour tout réel x :
$e^{-x-1}>0$	$e^{1-0.7x}>0$
$-2e^{-x-1} < 0$ car $-2 < 0$	$0,3e^{1-0,7x}>0$
G(x) < 0	H(x) > 0
	·

Exercice 9: Signe

Déterminer le signe des expressions données sur \mathbb{R} .

a)
$$A(x) = 5e^x - xe^x$$

 $A(x) = e^x(5-x)$
Comme pour tout réel $x, e^x > 0$

Comme pour tout réel x, $e^x > 0$ alors A(x) est du signe de 5-x.

$$5 - x = 0$$
$$x = 5$$

x	$-\infty$	5	$+\infty$
5-x	+	Ó	-
A(x)	+	Ó	_

D(x) < 0

Signe de m=-1<0 à droite du « zéro ».

$$b) \quad B(x) = x^2 e^x - x e^x$$

$$B(x) = e^x(x^2 - x)$$

Comme pour tout réel x, $e^x > 0$ alors B(x) est du signe de $x^2 - x$.

$$x^{2} - x = 0$$

 $x(x - 1) = 0$
 $x = 0$ ou $x - 1 = 0$
 $x = 0$ ou $x = 1$

	x	$-\infty$	0		1	$+\infty$
4	x^2-x	+	þ	-	þ	+
	B(x)	+	þ	_	þ	+

Signe de a = 1 > 0 à l'extérieur des racines.

c)
$$C(x) = e^x - 2xe^x$$

$$C(x) = e^x(1-2x)$$

Comme pour tout réel x, $e^x > 0$ alors $\mathcal{C}(x)$ est du signe de 1 - 2x.

$$1 - 2x = 0$$
$$-2x = -1$$
$$x = \frac{1}{2}$$

$$\begin{array}{c|cccc} x & -\infty & \frac{1}{2} + \infty \\ \hline 1 - 2x & + & 0 & - \\ \hline C(x) & + & 0 & - \\ \hline \end{array}$$

Signe de m=-2<0 à droite du « zéro ».

d)
$$D(x) = xe^{-x} - x^2e^{-x}$$

$$D(x) = e^{-x}(x - x^2)$$

Comme pour tout réel x, $e^{-x} > 0$ alors D(x) est du signe de $x - x^2$.

$$x - x^2 = 0$$

 $x(1 - x) = 0$
 $x = 0$ ou $1 - x = 0$
 $x = 0$ ou $x = 1$

x	-	$-\infty$	0		1	$+\infty$
x -	x^2	_	þ	+	Ó	_
D(x)	r)	_	þ	+	Ó	_

Signe de a = -1 < 0 à l'extérieur des racines.

e)
$$E(x) = 4e^{-x} - x^2e^{-x}$$

$$E(x) = e^{-x}(4-x^2)$$

Comme pour tout réel x, $e^{-x} > 0$ alors E(x) est du signe de $4 - x^2$.

$$4 - x^2 = 0$$

 $x^2 = 4$
 $x = -2$ ou $x = 2$

x	$-\infty$	-2		2	$+\infty$
$4 - x^2$	_	þ	+	þ	-
E(x)	_	þ	+	þ	-

Signe de a = -1 < 0 à l'extérieur des racines.

$$f) \quad F(x) = xe^x - e^{x+2}$$

$$F(x) = xe^x - e^x e^2 = e^x (x - e^2)$$

Comme pour tout réel x, $e^x > 0$ alors F(x) est du signe de $x - e^2$.

$$x - e^2 = 0$$
$$x = e^2$$

x	$-\infty$	e^2	$+\infty$
$x-e^2$	_	Ó	+
F(x)	_	0	+

Signe de m=1<0 à droite du « zéro ».

g)
$$G(x) = x^2 e^x - e^{x+2}$$

$$G(x) = x^2 e^x - e^x e^2 = e^x (x^2 - e^2)$$

Comme pour tout réel x, $e^x > 0$ alors G(x) est du signe de $x^2 - e^2$.

$$x^{2} - e^{2} = 0$$

$$x^{2} = e^{2}$$

$$x = -\sqrt{e^{2}} \text{ ou } x = \sqrt{e^{2}}$$

x = -e ou x = e

x	$-\infty$	-e		e	$+\infty$
$x^2 - e^2$	+	þ	_	Ó	+
G(x)	+	þ	-	0	+

Signe de a = 1 > 0 à l'extérieur des racines.

$$h) \quad H(x) = \frac{e^x - xe^x}{e^x + 1}$$

h)
$$H(x) = \frac{e^x - xe^x}{e^x + 1}$$

$$H(x) = \frac{e^x - xe^x}{e^x + 1} = \frac{e^x(1-x)}{e^x + 1}$$

Comme pour tout réel x, $e^x > 0$ et $e^x + 1 > 0$ alors H(x) est du signe de 1-x.

$$1 - x = 0$$
$$x = 1$$

x	$-\infty$	1	$+\infty$
1-x	+	Ó	_
H(x)	+	Ó	_

Signe de m = -1 < 0 à droite du « zéro ».

Compétence: Equation ou inéquation

Exercice 10: Equation

Résoudre dans \mathbb{R} .

- a) $e^{2x} = e^5$ b) $e^x = e$ 2x = 5x = 1 $x=\frac{5}{2}$ $S = \{1\}$ d) $e^x = 1$
- x = 0x = -x2x = 0 $S = \{0\}$ x = 0 $S = \{0\}$
- e) $e^{-x} = 1$ f) $e^{2-x} = 1$ $e^{2-x}=e^0$ x = 0 $S = \{0\}$ 2 - x = 0x = 2 $S = \{2\}$ h) $e^{x+1} = -1$ g) $e^x = 0$
- Impossible car $e^x > 0$ Impossible car $e^{x+1} > 0$ pour tout réel. pour tout réel. $S = \emptyset$ $S = \emptyset$

Exercice 11: Equation

Résoudre dans \mathbb{R} .

- a) $e^{x^2} = e^x$ $x^2 = x$ b) $e^{-2x} - 1 = 0$ $e^{-2x}=1$ $x^2 - x = 0$ $e^{-2x} = e^0$ x(x-1)=0-2x = 0x = 0 ou x - 1 = 0x = 0x = 0 ou x = 1 $S = \{0\}$ $S = \{0; 1\}$
- c) $e^{5x+1} = e \times e^{2x}$ d) $(e^x - e^2)(e^{-x} + 5) = 0$ $e^x - e^2 = 0$ ou $e^{-x} + 5 = 0$ $e^{5x+1} = e^{2x+1}$ $e^x = e^2$ ou $e^{-x} = -5 < 0$ 5x + 1 = 2x + 13x = 0x = 2 ou impossible x = 0 $S = \{2\}$ $S = \{0\}$ e) $3e^{3x-42} + 1 = 4$
- f) $e^{5x} =$ $e^{5x} = e^{-x-1}$ $3e^{3x-42}=3$ $e^{3x-42}=1$ 5x = -x - 1 $e^{3x-42}=e^0$ 6x = -13x - 42 = 0 $x = -\frac{1}{6}$ $S = \left\{-\frac{1}{6}\right\}$ 3x = 42x = 14 $S = \{14\}$

Exercice 12: Equation

1. Résoudre dans \mathbb{R} l'équation $X^2 + 6X - 7 = 0$.

```
Posons P(x) = X^2 + 6X - 7

a = 1; b = 6 et c = -7

\Delta = b^2 - 4ac

= 6^2 - 4 \times 1 \times (-7)

= 64

Et \sqrt{\Delta} = 8

X_1 = \frac{-b - \sqrt{\Delta}}{2a}

X_1 = \frac{-6 - 8}{2}

X_1 = -7

X_2 = \frac{-b + \sqrt{\Delta}}{2a}

X_2 = \frac{-6 + 8}{2}

X_2 = 1

X_3 = 1
```

2. En déduire la résolution dans \mathbb{R} de l'équation :

$$e^{2x} + 6e^x - 7 = 0$$

Posons
$$X=e^x$$
 alors $X^2=(e^x)^2=e^{2x}$
On remarque ainsi que : $e^{2x}+6e^x-7=0\Leftrightarrow X^2+6X-7=0$
Ainsi on obtient : $e^x=-7<0$ (impossible) ou $e^x=1$
 $e^x=-7$ (impossible) ou $x=0$

Exercice 13: Equation

1. Démontrer que l'équation $e^x - 2e^{-x} + 1 = 0$ est équivalente à l'équation $(e^x)^2 + e^x - 2 = 0$.

$$e^{x} - 2e^{-x} + 1 = 0 \Leftrightarrow$$

$$e^{x}(e^{x} - 2e^{-x} + 1) = e^{x} \times 0 \Leftrightarrow$$

$$(e^{x})^{2} - 2e^{x}e^{-x} + e^{x} = 0 \Leftrightarrow$$

$$(e^{x})^{2} - 2 + e^{x} = 0 \Leftrightarrow$$

$$(e^{x})^{2} + e^{x} - 2 = 0$$

2. Résoudre dans \mathbb{R} l'équation $e^x - 2e^{-x} + 1 = 0$.

Posons
$$X = e^x$$
 alors $X^2 = (e^x)^2 = e^{2x}$
On remarque ainsi que : $(e^x)^2 + e^x - 2 = 0 \Leftrightarrow X^2 + X - 2 = 0$
Posons $P(x) = X^2 + X - 2$
 $a = 1$; $b = 1$ et $c = -2$
 $\Delta = b^2 - 4ac$
 $= 1^2 - 4 \times 1 \times (-2)$
 $= 9$
Et $\sqrt{\Delta} = 3$
 $X_1 = \frac{-b - \sqrt{\Delta}}{2a}$ $X_2 = \frac{-b + \sqrt{\Delta}}{2a}$
 $X_1 = \frac{-1 - 3}{2}$ $X_2 = \frac{-1 + 3}{2}$
 $X_1 = -2$ $X_2 = 1$
impossible $x_2 = 0$
 $x_2 = 0$

Exercice 14: Inéquation

Résoudre dans \mathbb{R} les inéquations suivantes :

a)
$$e^{x+1} \le e^5$$

b)
$$e^{3-x} > e^2$$

c)
$$e^{-x} < e^4$$

$$\begin{vmatrix} x+1 \le 5 \\ x \le 4 \\ S =]-\infty; 4$$

$$3-x>2$$

$$-x>-1$$

$$x<1$$

$$S=|-\infty;1[$$

$$-x < 4$$

$$x > -4$$

$$S =] -4; +\infty[$$

d)
$$1 \le e^{3x}$$

f)
$$e^{x+3} \ge \frac{1}{e}$$

$$\begin{aligned}
e^{3x} &\ge e^0 \\
3x &\ge 0 \\
x &\ge 0
\end{aligned}$$

$$e^{x+3} \ge e^{-1}$$

$$x+3 \ge -1$$

$$x \ge -4$$

$$S = [0; +\infty]$$

e) $e^{-x^2} - e \times e^{7x-9} \le 0$

$$S = [-4; +\infty[$$

e)
$$e^{-x^2} - e \times e^{7x-9} \le 0$$

g)
$$1 - e^{x^2 - 1} \ge 0$$

$$\begin{vmatrix} e^{-x^2} - e^{7x-8} \le 0 \\ e^{-x^2} \le e^{7x-8} \\ -x^2 \le 7x - 8 \\ -x^2 - 7x + 8 \le 0 \end{vmatrix}$$

$$1 - e^{x^{2}-1} \ge 0$$

$$-e^{x^{2}-1} \ge -1$$

$$e^{x^{2}-1} \le 1$$

$$e^{x^{2}-1} \le e^{0}$$

$$x^{2} - 1 \le 0$$

Posons $P(x) = x^2 - 1$

Posons
$$P(x) = -x^2 - 7x + 8$$

 $a = -1$; $b = -7$ et $c = 8$

$$\Delta = b^{2} - 4ac$$

$$= (-7)^{2} - 4 \times (-1) \times 8$$

$$= (-7)^2 - 4 \times (-1) \times 8$$

$$= 81$$
 Et $\sqrt{\Delta} = 9$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ $x_1 = \frac{7 - 9}{-2}$ $x_2 = \frac{7 + 9}{-2}$ $x_2 = -8$

l	P(x) = (x+1)(x-1)					
	x	$-\infty$	-1		1	$+\infty$
	P(x)	+	Ó	_	þ	+

Signe de a = 1 > 0 à l'extérieur des racines S = [-1; 1]

Signe de a = -1 < 0 à l'extérieur des racines $S =]-\infty; -8] \cup [1; +\infty[$

Exercice 15: Inéquation

1. Justifier que $e^{2x} - e^x$ est du signe de $e^x - 1$.

$$e^{2x} - e^x = e^x(e^x - 1)$$

Comme pour tout réel x , $e^x > 0$ alors $e^{2x} - e^x$ est du signe de $e^x - 1$.

2. Résoudre dans \mathbb{R} l'inéquation $e^x - 1 \ge 0$

$$e^{x} \ge 1$$

$$e^{x} \ge e^{0}$$

$$x \ge 0$$

$$S = [0; +\infty[$$

3. En déduire le signe de $e^{2x} - e^x$ sur \mathbb{R} .

Pour
$$x \ge 0$$
 on a d'après 2) : $e^x - 1 \ge 0$
Et d'après 1) on a : Pour $x \ge 0$, $e^{2x} - e^x \ge 0$.
De la même manière : Pour $x \le 0$, $e^{2x} - e^x \le 0$.

Exercice 16: Inéquation

1. Résoudre dans \mathbb{R} l'inéquation $e^{-x} - e^x > 0$.

 $e^{-x} > e^x$ -x > x2x < 0x < 0 $S =]-\infty;0[$

2. En déduire le signe de
$$1 - \frac{1 + e^x}{1 + e^{-x}}$$
 sur \mathbb{R} .
$$1 - \frac{1 + e^x}{1 + e^{-x}} = \frac{1 + e^{-x}}{1 + e^{-x}} - \frac{1 + e^x}{1 + e^{-x}} = \frac{e^{-x} - e^x}{1 + e^{-x}}$$

Comme sur \mathbb{R} , $1 + e^{-x} > 0$ alors $\frac{e^{-x} - e^x}{1 + e^{-x}}$ est du signe de $e^{-x} - e^x$.

D'après 1) : Sur $]-\infty$; 0[on a : $e^{-x}-e^x>0$. Par déduction : Sur $[0; +\infty[$ on a : $e^{-x} - e^x \le 0$.

Exercice 17: Inéquation

1. Factoriser le polynôme du second degré :

$$-5X^{2} + 3X + 2$$
Posons $P(x) = -5X^{2} + 3X + 2$
 $a = -5$; $b = 3$ et $c = 2$

$$\Delta = b^{2} - 4ac$$

$$= 3^{2} - 4 \times (-5) \times 2$$

$$= 49$$
Et $\sqrt{\Delta} = 7$

$$X_{1} = \frac{-b - \sqrt{\Delta}}{2a} \qquad X_{2} = \frac{-b - \sqrt{\Delta}}{2a}$$

$$X_{1} = \frac{-3 - 7}{-10} \qquad X_{2} = \frac{-3 + 7}{-10}$$

$$X_{1} = 1 \qquad X_{2} = -\frac{2}{5}$$

$$P(X) = -5(X - 1) \left(X + \frac{2}{5}\right)$$

2. En déduire une factorisation de $-5e^{2x} + 3e^x + 2$.

Posons
$$X = e^x$$
 ainsi $X^2 = (e^x)^2 = e^{2x}$
 $-5e^{2x} + 3e^x + 2 = -5(e^x - 1)\left(e^x + \frac{2}{5}\right)$

3. Etudier le signe de $-5e^{2x} + 3e^x + 2$ sur \mathbb{R} .

• Comme sur
$$\mathbb{R}$$
 on a $e^x + \frac{2}{5} > 0$ alors :
$$-5(e^x - 1)\left(e^x + \frac{2}{5}\right) \text{ est du signe de } -5(e^x - 1)$$

• -5 < 0

Etudions le signe de $e^x - 1$:

$$e^x - 1 > 0$$

$$e^x > 1$$

$$x > 0$$

x	$-\infty$	$0 + \infty$
$e^{x}+\frac{2}{5}$	+	+
-5	_	_
e^x-1	_	+
$-5e^{2x}+3e^{x}+2$	+	-

Sur $]-\infty$; 0] on a $-5e^{2x}+3e^x+2\geq 0$ Sur $[0; +\infty[$ on a $-5e^{2x} + 3e^x + 2 \le 0]$

Exercice 18: Inéquation

1. Démontrer que pour tout réel x,

$$-2e^{2x} + e^x + 1 = (2e^x + 1)(1 - e^x)$$

$$-2e^{2x} + e^{x} + 1 = (2e^{x} + 1)(1 - e^{x})$$

$$(2e^{x} + 1)(1 - e^{x}) = 2e^{x} - 2e^{x}e^{x} + 1 - e^{x}$$

$$= e^{x} - 2e^{2x} + 1$$

$$= -2e^{2x} + e^{x} + 1$$
2. En déduire le signe de $-2e^{2x} + e^{x} + 1$ sur \mathbb{R} .

2. En deddire le signe de 20 0 1 sui	12.
Comme sur $\mathbb R$ on a $2e^x+1>0$ alors :	Conclusion:
$-2e^{2x}+e^x+1$ est du signe de $1-e^x$	
On résout alors :	Sur $]-\infty$; $0[$ on a $:-2e^{2x}+e^x+1>0$
$1-e^x>0$	Par déduction : Sur $[0; +\infty[$ on a : $-2e^{2x}+e^x+1<0$
$e^x < 1$	· ·
x < 0	

Compétence Dérivée et fonction exponentielle

Exercice 19 : Dérivée et fonction exponentielle

Déterminer les dérivées des fonctions suivantes sur $\mathbb R$:

a) $f(x) = e^x + 4$	b) $g(x) = 2.7e^x + 8$
$f'(x)=e^x$	$g'(x) = 2,7e^x$
c) $h(x) = 5e^x + x$	d) $k(x) = 3x - 3e^x$
$h'(x) = 5e^x + 1$	$k'(x) = 3 - 3e^x$
e) $l(x) = 5x^3 - 9e^x$	$f) m(x) = e - e^x$
$l'(x) = 15x^2 - 9e^x$	$m'(x) = -e^x$

Exercice 20 : Dérivée et fonction exponentielle

Déterminer les dérivées des fonctions suivantes sur $\mathbb R$:

Produit:

a)
$$f(x) = (2x - 7)e^x = u(x)v(x)$$

Avec
$$u(x) = 2x - 7$$
 donc $u'(x) = 2$

$$v(x) = e^x \operatorname{donc} v'(x) = e^x$$

$$f'(x) = u'(x)v(x) + v'(x)u(x)$$

$$f'(x) = 2e^x + e^x(2x - 7)$$

$$f'(x) = 2e^x + 2xe^x - 7e^x$$

$$f'(x) = 2xe^x - 5e^x$$

$$f'(x) = e^x(2x - 5)$$

b)
$$g(x) = (1 - x)e^x = u(x)v(x)$$

Avec
$$u(x) = 1 - x$$
 donc $u'(x) = -1$

$$v(x) = e^x \operatorname{donc} v'(x) = e^x$$

$$g'(x) = u'(x)v(x) + v'(x)u(x)$$

$$g'(x) = -e^x + e^x(1-x)$$

$$g'(x) = -e^x + e^x - xe^x$$

$$g'(x) = -xe^x$$

c)
$$h(x) = xe^x = \boldsymbol{u}(x)\boldsymbol{v}(x)$$

Avec
$$u(x) = x \text{ donc } u'(x) = 1$$

$$v(x) = e^x \operatorname{donc} v'(x) = e^x$$

$$h'(x) = u'(x)v(x) + v'(x)u(x)$$

$$h'(x) = 1 \times e^x + e^x \times x$$

$$h'(x) = e^x + xe^x$$

$$h'(x) = e^x(1+x)$$

d)
$$k(x) = (3x^2 - 2)e^x = u(x)v(x)$$

Avec
$$u(x) = 3x^2 - 2$$
 donc $u'(x) = 6x$

$$v(x) = e^x \operatorname{donc} v'(x) = e^x$$

$$k'(x) = u'(x)v(x) + v'(x)u(x)$$

$$k'(x) = 6x \times e^x + e^x \times (3x^2 - 2)$$

$$k'(x) = 6xe^x + 3x^2e^x - 2e^x$$

$$k'(x) = e^x(6x + 3x^2 - 2)$$

e)
$$l(x) = (x^2 - 2x)e^x = u(x)v(x)$$

Avec $u(x) = x^2 - 2x$ donc $\overline{u'(x) = 2x - 2}$

$$v(x) = e^x \operatorname{donc} v'(x) = e^x$$

$$l'(x) = u'(x)v(x) + v'(x)u(x)$$

$$l'(x) = (2x - 2) \times e^x + e^x \times (x^2 - 2x)$$

$$l'(x) = \frac{2xe^x}{2} - 2e^x + x^2e^x - \frac{2xe^x}{2}$$

$$l'(x) = e^x(x^2 - 2)$$

f)
$$m(x) = e^x(e^x - 2) = u(x)v(x)$$

Avec
$$u(x) = e^x$$
 donc $u'(x) = e^x$

$$v(x) = e^x - 2$$
 donc $v'(x) = e^x$

$$m'(x) = u'(x)v(x) + v'(x)u(x)$$

$$m'(x) = e^x(e^x - 2) + e^x \times e^x$$

$$m'(x) = e^{2x} - 2e^x + e^{2x}$$

$$m'(x) = 2e^{2x} - 2e^x$$

$$m'(x) = 2e^x(e^x - 1)$$

Quotient:

a)
$$f(x) = \frac{e^x}{x} = \frac{u(x)}{v(x)}$$

Avec
$$u(x) = e^x$$
 donc $u'(x) = e^x$

$$v(x) = x \text{ donc } v'(x) = 1$$

$$f'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v^2(x)}$$

$$f'(x) = \frac{e^x x - 1e^x}{x^2}$$

$$f'(x) = \frac{x^2}{x^2}$$

b)
$$g(x) = \frac{x}{e^x} = \frac{u(x)}{v(x)}$$

Avec u(x) = x donc u'(x) = 1

$$v(x) = e^x \operatorname{donc} v'(x) = e^x$$

$$g'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v^{2}(x)}$$

$$g'(x) = \frac{e^{x} - xe}{(e^x)^2}$$

$$g'(x) = \frac{e^{x(1-x)}}{e^{2x}}$$

c)
$$h(x) = \frac{3x+1}{e^x}$$

Avec u(x) = 3x + 1 donc u'(x) = 3

$$v(x) = e^x \operatorname{donc} v'(x) = e^x$$

$$h'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v^2(x)}$$

$$h'(x) = \frac{3e^x - e^x(3x+1)}{(e^x)^2}$$

$$h'(x) = \frac{(e^x)^2}{(e^x)^2}$$

 $h'(x) = \frac{3e^x - 3xe^x - e^x}{e^{2x}}$

$$n(x) = \frac{e^{2x}}{e^{2x}}$$

$$h'(x) = \frac{e^{2x}}{e^{2x}}$$

$$h'(x) = \frac{e^{2x}}{e^{2x}}$$

d)
$$k(t) = \frac{1+e^t}{e^t}$$
Avec $u(t) = 1 + e^t$ donc $u'(t) = e^t$

$$v(t) = e^t \operatorname{donc} v'(t) = e^t$$

$$k'(t) = e^{-t} \operatorname{donc} v'(t) = e^{-t}$$

 $k'(t) = \frac{u'(t)v(t) - v'(t)u(t)}{v^2(t)}$

$$k'(t) = \frac{v^2(t)}{v^2(t)}$$
 $k'(t) = \frac{e^t e^t - e^t (1 + e^t)}{e^{2t}}$

$$\begin{array}{ccc} & e^{2t} \\ & e^t e^t - e^t - e^t e^t \end{array}$$

$$k'(t) = \frac{e^t e^t - e^t - e^t e^t}{e^{2t}}$$

$$k'(t) = \frac{-e^t}{e^{2t}}$$

Exercice 21 : Dérivées de $x \mapsto e^{ax+b}$

Déterminer les dérivées des fonctions suivantes sur $\mathbb R$:

1.
$$f(x) = e^{2x+5}$$

$$f(x) = e^{u(x)}$$

$$u(x) = 2x + 5$$

u'(x)=2

$$f'(x) = u'(x)e^{u(x)}$$

 $f'(x) = 2e^{2x+5}$

$$2. \quad f(x) = e^{-x}$$

$$\frac{u(x)}{u(x)} = e^{-xx}$$

$$f(x)=e^{u(x)}$$

$$u(x) = -x$$

$$u'(x) = -1$$

$$f'(x) = u'(x)e^{u(x)}$$

$$f'(x) = u'(x)e^{-x}$$
$$f'(x) = -e^{-x}$$

3.
$$f(x) = 3e^{-2x}$$

$$f(x) = 3e^{u(x)}$$

$$u(x) = -2x$$

$$u'(x) = -2$$

$$f'(x) = 3u'(x)e^{u(x)}$$

$$f'(x) = 3 \times -2e^{-2x}$$

$$f'(x) = -6e^{-2x}$$

4.
$$f(x) = 2x - e^{-5x}$$

$$f(x) = 2x - e^{u(x)}$$

$$u(x) = -5x$$

$$u'(x) = -5$$

$$f'(x) = 2 - u'(x)e^{u(x)}$$

$$f'(x) = 2 - u(x)e^{-5x}$$

$$f'(x) = 2 + 5e^{-5x}$$

Compétence : Fonctions $t\mapsto e^{kt}$ et $t\mapsto e^{-kt}$

Exercice 22 : Fonctions $t \mapsto e^{kt}$ et $t \mapsto e^{-kt}$

On considère les fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = e^{0.8x}$$
 et $g(x) = e^{-1.5x}$.

On a représenté ci-contre ces deux fonctions.
Associer à chaque fonction sa courbe représentative.

0,8>0 ainsi la fonction f est croissante : \mathcal{C}_1 .

-1, 5 < 0 ainsi la fonction g est décroissante : \mathcal{C}_2 .

Exercice 23 : Fonctions $t \mapsto e^{kt}$ et $t \mapsto e^{-kt}$

- 1. Soit f la fonction définie sur \mathbb{R} par : $f(x) = e^{2,2x}$ et C_f sa courbe représentative.
 - a) Exprimer f'(x) en fonction de x.

$$f'(x) = 2, 2e^{2,2x}$$

b) Déterminer le sens de variation de la fonction f.

Comme pour tout réel, $e^{2,2x} > 0$ ainsi f'(x) est du signe de 2,2>0 ainsi la fonction f est strictement croissante sur \mathbb{R} .

- c) Dans un repère, tracer la courbe C_f .
- 2. Reprendre la question précédente avec la fonction f définie sur \mathbb{R} par $f(x) = e^{-0.3x}$.

$$f'(x) = -0.3e^{-0.3x}$$

Comme pour tout réel, $e^{-0.3x} > 0$ ainsi f'(x) est du signe de-0.3 < 0 ainsi la fonction f est strictement décroissante sur \mathbb{R} .

Compétence : Suite géométrique

Exercice 24 : Suite géométrique

 (u_n) est la suite définie, pour nombre n de \mathbb{N} , par $u_n = -3e^{1,1n}$.

Démontrer que la suite (u_n) est géométrique.

Préciser sa raison et son premier terme u_0 .

Pour tout entier naturel n, on a :

$$u_n = -3e^{1,1n} = -3 \times (e^{1,1})^n = u_0q^n$$

Ainsi (u_n) est une suite géométrique de premier terme $u_0=-3$ et de raison $q=e^{1,1}$

Exercice 25 : Suite géométrique

 (v_n) est la suite définie, pour nombre n de \mathbb{N} , par $v_n = \frac{1}{3}e^{5-0.6n}$.

La suite (v_n) est-elle géométrique ?

Justifier.

Pour tout entier naturel n, on a :

$$v_n = \frac{1}{3}e^{5-0.6n} = \frac{1}{3}e^5e^{-0.6n} = \frac{e^5}{3}(e^{-0.6})^n = v_0q^n$$

.Ainsi (v_n) est une suite géométrique de premier terme $v_0=rac{e^5}{2}$ et de raison $q=e^{-0.6}$

Compétence: Etude de fonction exponentielle (après le chapitre 10: Dérivation (3) - Variations)

Exercice 26: Etude de fonction exponentielle

f est la fonction définie sur \mathbb{R} par :

$$f(x) = (x^2 - 4)e^x$$

Dresser le tableau de variations de f.

Pour tout réel x,

$$f(x) = u(x)v(x)$$

Avec
$$u(x) = x^2 - 4$$
 ainsi $u'(x) = 2x$

$$v(x) = e^x$$
 ainsi $v'(x) = e^x$

$$f'(x) = u'(x)v(x) + v'(x)u(x)$$

$$f'(x) = 2xe^x + e^x(x^2 - 4)$$

$$f'(x) = e^x(2x + x^2 - 4)$$

$$f'(x) = e^x(x^2 + 2x - 4)$$

Comme pour tout réel $e^x > 0$ ainsi f'(x) est du signe de $x^2 + 2x - 4$

$$a = 1$$
; $b = 2$ et $c = -4$

$$\Delta = b^2 - 4ac$$

$$= 2^2 - 4 \times 1 \times -4$$

$$= 20 > 0$$

Et
$$\sqrt{\Delta} = 2\sqrt{5}$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$

$$x_1 = \frac{-2-2\sqrt{5}}{2}$$

$$r_1 = \frac{2}{\sqrt{5}}$$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a}$$
 $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ $x_1 = \frac{-2 - 2\sqrt{5}}{2}$ $x_2 = \frac{-2 + 2\sqrt{5}}{2}$ $x_2 = -1 + \sqrt{5}$

$$x_2 = \frac{2+2\sqrt{3}}{2}$$

$$x_2 = -1 + \sqrt{5}$$

x	$-\infty$	$-\sqrt{5}-1$		$\sqrt{5} - 1$	$+\infty$
f'(x)	+	0	_	0	+
f(x)	0 /2	$\cdot\sqrt{5}\cdot e^{-\sqrt{5}-1} + 2\cdot e^{-}$	$2 \cdot e^{\sqrt{5}-1}$	$\sqrt{5}-1-2\cdot\sqrt{5}\cdot e^{\sqrt{5}}$	$\overline{5}$ -1 \rightarrow $+\infty$

Exercice 28: Etude de fonction exponentielle

f est la fonction définie sur [1;3] par :

$$f(x) = \frac{e^{x}}{2x}$$

Dresser le tableau de variations de f.

Pour tout réel x appartenant à [1;3],

$$f(x) = \frac{u(x)}{v(x)}$$

Avec $u(x) = e^x$ ainsi $u'(x) = e^x$

v(x) = 2x ainsi v'(x) = 2

$$f'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v^{2}(x)}$$
$$f'(x) = \frac{e^{x}2x - 2e^{x}}{(2x)^{2}}$$

$$f'(x) = \frac{e^{x}2x-2e^{x}}{(2x)^2}$$

$$f'(x) = \frac{e^{x}(2x-2)}{(2x)^2}$$

Comme pour tout réel appartenant à [1;3], $e^x > 0$ et $(2x)^2 > 0$ ainsi f'(x) est du signe de 2x - 2.

On résout
$$2x - 2 = 0$$

$$x = 1$$

3 f'(x)|0 +

Exercice 27: Etude de fonction exponentielle

g est la fonction définie sur \mathbb{R} par :

$$g(x) = 5e^{-4.5x} + 6$$

$$g(x) = 5e^{-4.5x} + 6$$

Démontrer que la fonction g est décroissante sur \mathbb{R} .

Pour tout réel x,

$$g(x) = 5e^{u(x)} + 6$$

Avec
$$u(x) = -4,5x$$
 ainsi $u'(x) = -4,5$

$$g'(x) = 5u'(x)e^{u(x)} + 0$$

$$g'(x) = 5 \times -4, 5e^{-4,5x}$$

$$g'(x) = -22, 5e^{-4,5x}$$

Comme pour tout réel, $e^{-4.5x} > 0$ ainsi g'(x) est du signe de -22,5 < 0 ainsi la fonction g est strictement décroissante sur R.

Exercice 29: Etude de fonction exponentielle

g est la fonction définie sur \mathbb{R} par :

$$g(x) = \frac{x^2 + 2x}{e^x}$$

Dresser le tableau de variations de g.

Pour tout réel x,

$$g(x) = \frac{u(x)}{v(x)}$$

Avec
$$u(x) = x^2 + 2x$$
 ainsi $u'(x) = 2x + 2$

$$v(x) = e^x$$
 ainsi $v'(x) = e^x$

$$g'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v^{2}(x)}$$

$$(2x+2)e^{x} - e^{x}(x^{2}+2x)$$

$$a'(x) = \frac{(2x+2)e^x - e^x(x^2 + 2x)}{2}$$

$$g'(x) = \frac{v^{2}(x)}{(e^{x})^{2}}$$

$$g'(x) = \frac{(2x+2)e^{x} - e^{x}(x^{2}+2x)}{(e^{x})^{2}}$$

$$g'(x) = \frac{e^{x}(2x+2-(x^{2}+2x))}{e^{2x}}$$

$$g'(x) = \frac{e^{x}(2x+2-x^{2}-2x)}{e^{2x}}$$

$$g'(x) = \frac{e^{x}(2-x^{2})}{e^{2x}}$$

$$a'(x) = \frac{e^{x}(2x+2-x^2-2x)}{e^{x}(2x+2-x^2-2x)}$$

$$g'(x) = \frac{e^{x}(2-x^2)}{e^{2x}}$$

Comme pour tout réel, $e^x > 0$ et $e^{2x} > 0$ ainsi g'(x)est du signe de $2 - x^2$.

On résout
$$2 - x^2 = 0$$

$$x^2 = 2$$

$$x = -\sqrt{2}$$
 ou $x = \sqrt{2}$

x	$-\infty$	$-\sqrt{2}$		$\sqrt{2}$	+∞
f'(x)	_	0	+	0	_
f(x)	+∞ ✓	$2 \cdot e^{\sqrt{2}} - 2^{\frac{3}{2}} \cdot e$	$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$	$\cdot e^{-\sqrt{2}} + 2 \cdot e^{-}$	0

Exercice 30 : Etude de fonction exponentielle et courbe

f est la fonction définie sur [-3;3] par :

$$f(x) = e^{0.82x}$$

1. Dresser le tableau de variations de f.

Méthode 1 :

Comme 0.82 > 0, la fonction f est strictement croissante sur [-3;3].

Méthode 2 :

$$f'(x) = 0,82e^{0,82x} > 0$$

x	-3	3
f'(x)		+
f(x)	$e^{-2,46}$	$e^{2,46}$

2. A l'aide d'un tableau de valeur allant de -3 à 3 avec un pas de 1, tracer la courbe représentative de f.

Exercice 31 : Etude de fonction exponentielle et courbe

f est la fonction définie sur [-3;1] par :

$$f(x) = (5 - 4x)e^x$$

1. Dresser le tableau de variations de f.

Pour tout réel x,

$$f(x) = u(x)v(x)$$

Avec
$$u(x) = 5 - 4x$$
 ainsi $u'(x) = -4$

$$v(x) = e^x$$
 ainsi $v'(x) = e^x$

$$f'(x) = u'(x)v(x) + v'(x)u(x)$$

$$f'(x) = -4\frac{e^x}{e^x} + \frac{e^x}{e^x}(5 - 4x)$$

$$f'(x) = e^x(-4+5-4x)$$

$$f'(x) = e^x(-4x+1)$$

Comme pour tout réel appartenant à [-3;1] $e^x > 0$ ainsi f'(x) est du signe de -4x + 1

On résout

$$-4x + 1 = 0$$
$$x = \frac{1}{4}$$

2. A l'aide d'un tableau de valeur allant de -3 à 1 avec un pas de 1, tracer la courbe représentative de f.

Compétence : Modélisation à l'aide d'une fonction exponentielle (après le chapitre 10 : Dérivation (3) – Variations)

Exercice 32 : Modélisation à l'aide d'une fonction exponentielle

On considère deux fonctions f et g définies sur $\mathbb R$ par :

$$f(x) = (2 + x)e^x$$
 et $g(x) = 2x e^x$.

On a tracé, ci-contre, trois courbes C₁, C₂ et C₃.

Parmi elles figure la représentation graphique de chacune des fonctions f et g.

1) f (0) est égal à :

$$-2$$

$$f(0) = (2+0)e^0 = 2 \times 1 = 2$$

2) La représentation graphique de la fonction g est :

La représentation graphique n'est pas une droite ; la seule courbe contenant le point O est C1. (g(0) = 0)

3) Pour tout nombre réel x, g'(x) est égal à :

a)
$$2e^x$$

b)
$$(2x+2)e^{x}$$

c)
$$2 + e^x$$

D'après la formule, dérivée d'un produit : $g(x) = 2xe^x = u(x)v(x)$ avec u(x) = 2x ainsi u'(x) = 2 et $v(x) = e^x$ ainsi $v'(x) = e^x$ donc : $g'(x) = 2e^x + e^x 2x = (2 + 2x)e^x$

4) La fonction f est :

a) croissante sur \mathbb{R} b) décroissante sur \mathbb{R} c) ni décroissante ni croissante sur \mathbb{R}

D'après la formule, dérivée d'un produit : $f(x) = (2 + x)e^x = u(x)v(x)$

avec
$$u(x) = 2 + x$$
 ainsi $u'(x) = 1$ et $v(x) = e^x$ ainsi $v'(x) = e^x$ donc : $f'(x) = 1e^x + e^x(2 + x) = (3 + x)e^x$ est du signe de $3 + x$

Pour x < -3, f'(x) < 0: la fonction est décroissante ;

Pour x > -3, f'(x) > 0: la fonction est croissante.

Exercice 33: Modélisation à l'aide d'une fonction exponentielle

Dans tout l'exercice, on désigne par $\mathbb R$ l'ensemble des nombres réels.

On donne ci-contre une petite partie de la courbe représentative C_f d'une fonction f définie et dérivable sur $\mathbb R$, dans un repère orthonormé du plan.

On note f ' la fonction dérivée de f.

La courbe C_f passe par le point A (0; 5) et par le point B d'abscisse 2.

La tangente T_A à la courbe au point A passe par le point C (1; 1) et la tangente T_B au point B est horizontale.

Dans ce questionnaire à choix multiples, aucune justification n'est demandée.

Pour chacune des questions, une seule des réponses proposées est correcte.

1) La valeur de f(0) est :

- a) -4
- b) 4
- c) 1,2
- d) autre réponse

A(0;5)

2) La valeur de f'(0) est :

- a) -4
- b) 4
- c) 1,2
- d) autre réponse

f'(0) est le coefficient directeur de la droite T_A (tangente en 0 de la courbe).

Par lecture graphique on lit : f'(0) = -4

3) La valeur de f'(2) est :

- a) 0
- b) 2,1
- c) 3
- d) autre réponse

f'(2) est le coefficient directeur de la droite T_B (tangente en 2 de la courbe).

Par lecture graphique on lit : f'(2) = 0 (droite horizontale)

PARTIE B : La fonction f représentée dans la PARTIE A est définie sur $\mathbb R$ par :

$$f(x) = (-x^2 - 2x + 2)e^{-x} + 3$$

On désigne par f ' la fonction dérivée de la fonction f et on admet que pour tout nombre réel x appartenant à \mathbb{R} , :

$$f'(x) = (x^2 - 4)e^{-x}$$

1. Étudier le signe de f'(x) suivant les valeurs de x.

Sur \mathbb{R} , $e^{-x} > 0$ ainsi f'(x) est du signe de $x^2 - 4$.

$$x^2 - 4 = 0 \Leftrightarrow x^2 = 4 \Leftrightarrow x = -2 \text{ ou } x = 2$$

On met le signe de "a" = 1 à l'extérieur des racines.

2. En déduire le tableau de variation de la fonction f.

Exercice 34: Modélisation à l'aide d'une fonction exponentielle

Sur le graphique ci-dessous, C_f est la courbe représentative, dans le repère orthonormé $(0; \vec{\iota}, \vec{j})$, d'une fonction fdéfinie sur \mathbb{R} .

Partie A - Étude graphique

La droite T est tangente à C_f au point A(2,5; 1,5) et d'ordonnée à l'origine 2,75.

Déterminer graphiquement et indiquer sur votre copie

$$f(1) = 0$$

2.
$$f'(2,5)$$

f'(2,5) est le coefficient directeur de la droite T_A (tangente en 2,5 de la courbe).

Par lecture graphique on lit : $f'(2,5) = -\frac{1}{2}$

3. Une équation de la tangente T;

On lit par lecture graphique que l'ordonnée à l'origine vaut : 2,75

Le coefficient directeur de T vaut -0, 5 (voir question précédente).

$$T: y = -0, 5x + 2, 75$$

Partie B - Étude algébrique

On admet que pour tout réel x, $f(x) = (x - 1)e^{-x+2.5}$.

1. Montrer que pour tout réel
$$x$$
, $f(x) = e^{2.5} \left(\frac{x}{e^x} - \frac{1}{e^x} \right)$.

$$e^{2.5} \left(\frac{x}{e^x} - \frac{1}{e^x} \right) = \frac{xe^{2.5}}{e^x} - \frac{e^{2.5}}{e^x} = xe^{2.5-x} - e^{2.5-x} = (x-1)e^{-x+2.5} = f(x)$$

2. a. Calculer f'(x) pour tout réel x.

$$f(x) = u(x)v(x)$$

Avec
$$u(x) = x - 1$$
 donc $u'(x) = 1$

Et $v(x) = e^{-x+2.5}$ donc $v'(x) = -e^{-x+2.5}$ (il faut penser à dériver $x \mapsto -x+2.5$)

$$f'(x) = u'(x)v(x) + v'(x)u(x)$$

$$f'(x) = 1e^{-x+2.5} - e^{-x+2.5}(x-1)$$

$$f'(x) = e^{-x+2.5}(1-(x-1))$$

$$f'(x) = e^{-x+2.5}(1-x+1)$$

$$f'(x) = e^{-x+2.5}(-x+2)$$

b. Étudier le signe de f' et en déduire le tableau des variations de la fonction f.

$$e^{-x+2.5} > 0$$
 ainsi $f'(x)$ est du signe de $-x+2$.
 $-x+2 > 0 \Leftrightarrow -x > -2 \Leftrightarrow x < 2$

Exercice 35: Modélisation à l'aide d'une fonction exponentielle

On procède, chez un sportif, à l'injection intramusculaire d'un produit. Celui-ci se diffuse progressivement dans le sang. On admet que la concentration de ce produit dans le sang (exprimée en mg/L = milligramme par litre) peut être modélisée par la fonction f, définie sur l'intervalle [0; 10] par :

 $f(x) = \frac{6x}{e^x}$ où x est le temps exprimé en heure.

Sa courbe représentative \boldsymbol{c} est donnée ci-dessous dans un repère orthonormé du plan.

1. Montrer que pour tout $x \in [0; 10]$, la fonction dérivée de f, notée f', a pour expression :

$$f'(x) = \frac{6 - 6x}{e^x}.$$

$$f(x) = \frac{u(x)}{v(x)}$$

$$u(x) = 6x v(x) = e^{x}$$

$$u'(x) = 6 v'(x) = e^{x}$$

$$f'(x) = \frac{u'(x)v(x) - v'(x)u(x)}{v^{2}(x)}$$

$$f'(x) = \frac{6e^{x} - e^{x} \times 6x}{(e^{x})^{2}}$$

$$f'(x) = \frac{e^{x}(6 - 6x)}{(e^{x})^{2}}$$

$$f'(x) = \frac{6 - 6x}{e^{x}}$$

2. Étudier le signe de f' sur [0; 10] puis en déduire le tableau de variations de f sur [0; 10].

3. Quelle est la concentration maximale du médicament dans le sang ? (on donnera la valeur exacte et une valeur approchée à 10^{-1} près). Au bout de combien de temps est-elle atteinte ?

La concentration maximale du médicament dans le sang est $\frac{6}{e} \approx 2$, 2 mg/L. Elle est atteinte au bout d'une heure.

4. Ce produit fait l'objet d'une réglementation par la fédération sportive : un sportif est en infraction si, au moment du contrôle, la concentration dans son sang du produit est supérieure à 2 mg/L.

Le sportif peut-il être contrôlé à tout moment après son injection ? Expliquer votre raisonnement en vous basant sur l'étude de la fonction et/ou une lecture graphique sur la courbe *C*.

On a f(1) > 2. Le sportif peut donc être en infraction.

Graphiquement, on constate que f(x) > 2 sur l'intervalle [0, 6; 1, 5] (valeurs approchées).

Le sportif ne peut donc pas être contrôle à tout moment.

Exercice 36: Modélisation à l'aide d'une fonction exponentielle

Dans le repère ci-dessous, on note C_f la courbe représentative d'une fonction f définie sur l'intervalle [-10; 2]. On a placé dans ce repère les points A(0; 2), B(2; 0) et C(-2; 0).

On dispose des renseignements suivants :

- Le point B appartient à la courbe C_f .
- La droite (AC) est tangente en A à la courbe C_f .
- La tangente à la courbe C_f au point d'abscisse 1 est une droite parallèle à l'axe des abscisses.

1. Déterminer la valeur de f'(1).

La tangente à la courbe C_f au point d'abscisse 1 est une droite horizontale. donc f'(1)=0

2. Donner une équation de la tangente à la courbe C_f au point A.

Graphiquement on lit: y = x + 2

On admet que cette fonction f est définie sur [-10;2] par $f(x)=(2-x)e^x$.

3. Montrer que pour tout réel x appartenant à l'intervalle [-10; 2],

$$f'(x) = (-x+1)e^x.$$

$$f(x) = u(x)v(x)$$

$$u(x) = 2 - x \qquad v(x) = e^x$$

$$u'(x) = -1$$

$$v'(x) = e^x$$

$$f'(x) = u'(x)v(x) + v'(x)u(x)$$

$$f'(x) = -e^x + e^x(2-x)$$

$$f'(x) = e^x(-1+2-x)$$

$$f'(x) = (-x+1)e^x$$

4. En déduire le tableau de variations de la fonction f sur l'intervalle [-10; 2].

Sur [-10; 2], $e^x > 0$ ainsi f'(x) est du signe de -x+1

$$-x+1=0$$

$$x = 1$$

5. Déterminer une équation de la tangente à la courbe C_f au point B.

$$f(2) = 0$$

$$f'(2) = (-2+1)e^2 = -e^2$$

$$T: y = f'(2)(x-2) + f(2)$$

$$y = -e^2(x-2)$$

$$y = -e^2x + 2e^2$$

Exercice 37: Modélisation à l'aide d'une fonction exponentielle

La concentration d'un médicament dans le sang en mg.L⁻¹ au cours du temps t, exprimé en heure, est modélisée par la fonction f définie sur $[0; +\infty[$ par : $f(t) = te^{-0.5t}$ dont la représentation graphique est donnée ci-dessous.

1. Calculer la valeur exacte de f(4) et interpréter le résultat dans le contexte de l'exercice.

$$f(4) = 4e^{-0.5 \times 4} = 4e^{-2}$$

La concentration du médicament dans le sang au bout de 4 heures est égale à $4e^{-2}\ mg$. L^{-1}

2. On note f' la fonction dérivée de f. Montrer que pour tout $t \in [0; +\infty[, f'(t) = (1-0.5t)e^{-0.5t}]$.

$$f(t) = u(t)v(t)$$

$$u(t) = t$$

$$v(t) = e^{-0.5t}$$

$$u'(t) = 1$$

$$v'(t) = -0.5e^{-0.5t}$$

$$f'(t) = u'(t)v(t) + v'(t)u(t)$$

$$f'(t) = e^{-0.5t} - 0.5e^{-0.5t}t$$

$$f'(t) = (1 - 0.5t)e^{-0.5t}$$

3. Étudier le signe de f'(t) sur $[0; +\infty[$.

Sur $[0; +\infty[$ on a $:e^{-0.5t}>0$ ainsi f'(t) est du signe de 1-0.5t

On résout 1-0,5t=0 et on sait que f'(t) sera du signe de m=-0,5<0 à droite de la solution de l'équation.

$$1 - 0.5t = 0$$

$$0,5t=1$$

$$t = \frac{1}{0.5}$$

$$t=2$$

4. Déduire de la question précédente le tableau de variations de la fonction f sur $[0; +\infty[$.

5. Quelle est la concentration maximale du médicament dans le sang ? On donnera la valeur exacte, puis une valeur approchée à 10^{-2} près.

La concentration maximale est atteinte au bout de 2 heures et vaut $2e^{-1} \approx 0,74 \ mg.\ L-1$.