Prop. 4.6.) If X and Y are connected topological spaces,

pf). Suppose $X \times Y = UUV$, U,V : disjoint open sets.

and $U \neq \phi$.

Want to show V = 4.

(because, If $V \neq \Phi$, XXY is disconnected).

Pick La, b) e U.

with subspace topology.

LX×161 (U), (X×161 (V): two open disjoint sets in X×161.

Gince X is connected and $X \times lbi$ is homeomorphic to $X \times lbi$ is connected.

La,b) ∈ X×161 ∩ U + Ø ⇒ X×161 ∩ V = Ø.

L: otherwise, X×163 is disconnected.).

:. Xx163 CU

For any $x \in X$, take $1x^2 \times Y$. (Note: $(x,b) \in U$). proceed as before $\Rightarrow 1x^2 \times Y \subset U$ (:: Y is connected). $\Rightarrow X \times Y = \sum_{x \in X} 1x^2 \times Y \subset U$

 $V = \phi$

:. XXY connected. []