3.6.2

Theorem. There is a unique $x \in \mathbb{R}$ such that for all $y \in \mathbb{R}$, xy + x - 4 = 4y.

Proof. First we prove existence. Let x=4 and suppose y is an arbitrary real number. Then we have 4y+4-4=4y+0=4y, as desired. To prove uniqueness suppose a and b are arbitrary real numbers and that ay+a-4=4y and that by+b-4=4b. For ay+a-4=4y, let y=b and we have ab+a-4=4b. For by+b-4=4y, let y=a and we have ba+b-4=4a. Now subtracting both sides of ab+a-4=4b from ba+b-4=4a we have

$$ba + b - 4 - (ab + a - 4) = 4a - 4b$$

$$ba + b - 4 - ab - a + 4 = 4a - 4b$$

$$b - a = 4a - 4b$$

$$b + 4b = 4a + a$$

$$5b = 5a$$

$$b = a$$

Therefore, if ay + a - 4 = 4y and by + b - 4 = 4y, then a = b.

3.6.3

Theorem. $\forall x \in \mathbb{R}[(x \neq 0 \land x \neq 1) \implies \exists ! y \in \mathbb{R}(y/x = y - x)]$

Proof. Suppose x is an arbitrary real number, $x \neq 0$, and $x \neq 1$. Let $y = x^2/(x-1)$, which is defined because $x \neq 1$. Then

$$\frac{y}{x} = \frac{\frac{x^2}{x-1}}{x} = \frac{x^2}{x-1} \cdot \frac{1}{x} = \frac{x^2}{x(x-1)} = \frac{x}{x-1}$$

$$= \frac{x^2 - x^2 + x}{x-1}$$

$$= \frac{x^2 - x(x-1)}{x-1}$$

$$= \frac{x^2 - x(x-1)}{x-1} = \frac{x^2}{x-1} - x = y - x$$

3.6.4

Theorem. $\forall x \in \mathbb{R} (x \neq 0 \implies \exists ! y \in \mathbb{R} \forall z \in \mathbb{R} (zy = z/x)).$

Proof. Let x be an arbitrary real number. To prove existence, suppose $x \neq 0$ and y = 1/x. Then zy = z(1/x) = z/x. To prove uniqueness let a and b be arbitrary real numbers and suppose za = z/x and zb = z/x. For za = z/x let z = b and we have ba = bx, which can be rearranged as xba = b. For zb = z/x let z = a and we have ab = a/x, which can be rearranged as xab = a. Subtracting both sides of xab = b from xab = a we have xab - xab = a - b and so a - b = 0 or a = b.

3.6.5

If \mathcal{F} is a family of sets, then $\cup \mathcal{F} = \{x | \exists A (A \in \mathcal{F} \land x \in A)\}$. Define a new set $\cup !\mathcal{F}$ by the formula $\cup !\mathcal{F} = \{x | \exists !A (A \in \mathcal{F} \land x \in A)\}$.

(a)

Theorem. $\forall \mathcal{F}(\cup ! \mathcal{F} \subseteq \cup F)$

Proof. Suppose \mathcal{F} is and arbitrary family of sets. Let x be arbitrary and suppose $x \in \cup !\mathcal{F}$. This means $\exists !A \in \mathcal{F}(x \in A)$. Since $A \in \mathcal{F}$ and $x \in A$ then we can concluded that $x \in \cup \mathcal{F}$. Since x was arbitrary then $\cup !\mathcal{F} \subseteq \cup \mathcal{F}$, and since \mathcal{F} was arbitrary we can conclude for all $\mathcal{F}, \cup !\mathcal{F} \subseteq \cup \mathcal{F}$.

(b)

Theorem. $\forall \mathcal{F}(\cup!\mathcal{F} = \cup \mathcal{F} \text{ iff } \mathcal{F} \text{ is pairwise disjoint}).$

Note that pairwise disjoint means that $\forall A \in \mathcal{F} \forall B \in \mathcal{F} (A \neq B \implies A \cap B = \varnothing).$

Proof. Let \mathcal{F} be an arbitrary family of sets.

- (\rightarrow) Suppose $\cup !\mathcal{F} = \cup \mathcal{F}$. We will prove the contrapositive. Let A and B be arbitrary, suppose $A \in \mathcal{F}$, $B \in \mathcal{F}$, and A and B are not disjoint. Then there is an element x such that $x \in A \cap B$. Since $A \in \mathcal{F}$ and $B \in \mathcal{F}$ then $x \in \cup \mathcal{F}$ and it follows by assumption that $x \in \cup !\mathcal{F}$. Since $x \in \cup !\mathcal{F}$ then there is a unique set $X \in \mathcal{F}$ such that $x \in X$ and so $x \in A = X$ and $x \in B = X$. Therefore A = B.
- (\leftarrow) Now suppose that \mathcal{F} is pairwise disjoint. We need to show that $\cup !\mathcal{F} = \cup \mathcal{F}$, which means $\cup !\mathcal{F} \subseteq \cup \mathcal{F}$ and $\cup \mathcal{F} \subseteq \cup !\mathcal{F}$.

To see that $\cup !\mathcal{F} \subseteq \cup \mathcal{F}$, let y be arbitrary and suppose $y \in \cup !\mathcal{F}$. Then there is a unique set $Y \in \mathcal{F}$ such that $y \in Y$ and therefore $y \in \cup \mathcal{F}$. Since y was arbitrary, this shows that $\cup !\mathcal{F} \subseteq \cup \mathcal{F}$.

To see that $\cup \mathcal{F} \subseteq \cup !\mathcal{F}$, now suppose $y \in \cup \mathcal{F}$. Then there is a set $Y \in \mathcal{F}$ such that $y \in Y$. To see that Y is unique, suppose there is another set $Z \in \mathcal{F}$ such that $y \in Z$. By assumption, \mathcal{F} is pairwise disjoint and since $y \in Y$ and $y \in Z$, it follows that Y = Z. Thus there is a unique set $Y \in \mathcal{F}$ such that yinY and therefore $y \in \cup !\mathcal{F}$. Since y was arbitrary this shows that $\cup \mathcal{F} \subseteq \cup !\mathcal{F}$.

We have shown that $\cup !\mathcal{F} \subseteq \cup F$ and $\cup \mathcal{F} \subseteq \cup !\mathcal{F}$ and therefore $\cup !\mathcal{F} = \cup \mathcal{F}$. \square

3.6.6

Let U be any set.

(a)

Theorem. There is a unique $A \in \mathscr{P}(U)$ such that for every $B \in \mathscr{P}(U)$, $A \cup B = B$.

Proof. First we prove existence. Let $A=\varnothing$. Let B be arbitrary and suppose $B\in\mathscr{P}(U)$. To see that $A\cup B\subseteq B$, let x be arbitrary and suppose $x\in A\cup B$. Since $A=\varnothing$ then $x\notin A$ and therefore it must be that $x\in B$. Since x was arbitrary then $A\cup B\subseteq B$. Now to see that $B\subseteq A\cup B$, suppose $x\in B$. It follows that $x\in A\cup B$ and therefore $B\subseteq A\cup B$. Since $A\cup B\subseteq B$ and $B\subseteq A\cup B$, then $A\cup B=B$. Since B was arbitrary this shows that there exists an $A\in\mathscr{P}(U)$ such that for every $B\in\mathscr{P}(U)$, $A\cup B=B$.

Too prove that A is unique, suppose C is arbitrary and for all $B \in \mathscr{P}(U)$, $C \cup B = B$. In particular, let $B = \varnothing$, then $C \cup \varnothing = \varnothing$. But we also have that $C \cup \varnothing = C$ and therefore $C = \varnothing = A$.