Lectures in Astroparticle Phenomenology I. Particle Cosmology

Pat Scott

McGill University / Imperial College London

Slides available from

www.physics.mcgill.ca/~patscott

Lecture Plan

Today: Particle Cosmology

- ACDM
- Power spectra of cosmological perturbations
- Reheating, Big Bang nucleosynthesis, cosmic strings

Tomorrow (SIfA Redfern): Dark Matter

- Theories
- Production
- Direct + indirect detection

Thursday (back here again): Global Fits

• Techniques, status and coming developments

Other cool stuff I won't be covering directly

(but that we can chat about at the end of one of lectures if you like)

- Neutrino mass models / GUTs and their observables
- Cosmic ray production + propagation
- Baryogenesis / leptogenesis
- Reionisation

Outline of Lecture 1

- Cosmological Models
 - General
 - ACDM
- Power spectra of cosmological perturbations
 - Background
 - Middle Universe observables
 - Rare objects
- 3 Specific particle/field processes (optional)
 - BBN
 - Cosmic strings
 - Phase transitions and reheating

Outline of Lecture 1

- Cosmological Models
 - General
 - ACDM
- Power spectra of cosmological perturbations
 - Background
 - Middle Universe observables
 - Rare objects
- 3 Specific particle/field processes (optional)
 - BBN
 - Cosmic strings
 - Phase transitions and reheating

Step 1.

Assume the Universe to be isotropic and homogeneous ⇒ Friedmann-Robertson Walker (FRW) metric:

$$g_{\mu\nu} x^{\mu} x^{\nu} = \mathrm{d}t^2 + R(t)^2 \left(\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \mathrm{d}\Omega^2 \right).$$
 (1)

- This is our distance measure in spacetime.
- Everything but R(t) is determined by isotropy & homogeneity.

Step 1.

Assume the Universe to be isotropic and homogeneous ⇒ Friedmann-Robertson Walker (FRW) metric:

$$g_{\mu\nu} x^{\mu} x^{\nu} = \mathrm{d}t^2 + R(t)^2 \left(\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \mathrm{d}\Omega^2 \right).$$
 (1)

- This is our distance measure in spacetime.
- Everything but R(t) is determined by isotropy & homogeneity.

Step 2.

Take the Einstein Field Equations from General Relativity:

$$G_{\mu
u} = 8\pi G T_{\mu
u} - \Lambda g_{\mu
u}.$$

Step 1.

Assume the Universe to be isotropic and homogeneous ⇒ Friedmann-Robertson Walker (FRW) metric:

$$g_{\mu\nu} x^{\mu} x^{\nu} = \mathrm{d}t^2 + R(t)^2 \left(\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \mathrm{d}\Omega^2 \right).$$
 (1)

- This is our distance measure in spacetime.
- Everything but R(t) is determined by isotropy & homogeneity.

Step 2.

Take the Einstein Field Equations from General Relativity:

geometry
$$\longrightarrow G_{\mu\nu} = 8\pi G T_{\mu\nu} - \Lambda g_{\mu\nu}$$
.

Step 1.

Assume the Universe to be isotropic and homogeneous ⇒ Friedmann-Robertson Walker (FRW) metric:

$$g_{\mu\nu} x^{\mu} x^{\nu} = \mathrm{d}t^2 + R(t)^2 \left(\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \mathrm{d}\Omega^2 \right).$$
 (1)

- This is our distance measure in spacetime.
- Everything but R(t) is determined by isotropy & homogeneity.

Step 2.

Take the Einstein Field Equations from General Relativity:

geometry
$$\longrightarrow G_{\mu\nu} = 8\pi G T_{\mu\nu} - \Lambda g_{\mu\nu}$$
. energy

Step 1.

Assume the Universe to be isotropic and homogeneous ⇒ Friedmann-Robertson Walker (FRW) metric:

$$g_{\mu\nu} x^{\mu} x^{\nu} = \mathrm{d}t^2 + R(t)^2 \left(\frac{\mathrm{d}r^2}{1 - kr^2} + r^2 \mathrm{d}\Omega^2 \right).$$
 (1)

- This is our distance measure in spacetime.
- Everything but R(t) is determined by isotropy & homogeneity.

Step 2.

Take the Einstein Field Equations from General Relativity:

geometry
$$\longrightarrow G_{\mu\nu} = 8\pi G T_{\mu\nu} - \Lambda g_{\mu\nu}$$
. energy

→ Tells us how geometry of space adjusts to mass/energy

Step 3.

Solve $\mu = 0, \nu = 0$ of Einstein Eq. \Longrightarrow *Friedmann Equation*:

$$H(t)^2 \equiv \left(\frac{\dot{R}(t)}{R(t)}\right)^2 = \frac{8\pi G}{3}\rho(t) - \frac{k}{R(t)^2}.$$
 (3)

Step 3.

Solve $\mu = 0, \nu = 0$ of Einstein Eq. \Longrightarrow *Friedmann Equation*:

$$H(t)^2 \equiv \left(\frac{\dot{R}(t)}{R(t)}\right)^2 = \frac{8\pi G}{3}\rho(t) - \frac{k}{R(t)^2}.$$
 (3)

Solving this gives Hubble parameter H(t) for some

- relationship between energy density and the scalefactor $R(t) = f[\rho(t)]$
- curvature $k \in \{+1, 0, -1\}$

Step 3.

Solve $\mu = 0, \nu = 0$ of Einstein Eq. \Longrightarrow *Friedmann Equation*:

$$H(t)^2 \equiv \left(\frac{\dot{R}(t)}{R(t)}\right)^2 = \frac{8\pi G}{3}\rho(t) - \frac{k}{R(t)^2}.$$
 (3)

Solving this gives Hubble parameter H(t) for some

- relationship between energy density and the scalefactor $R(t) = f[\rho(t)]$
- curvature $k \in \{+1, 0, -1\}$

H(t) encodes the dynamic evolution of the Universe

Step 3.

Solve $\mu = 0, \nu = 0$ of Einstein Eq. \Longrightarrow *Friedmann Equation*:

$$H(t)^2 \equiv \left(\frac{\dot{R}(t)}{R(t)}\right)^2 = \frac{8\pi G}{3}\rho(t) - \frac{k}{R(t)^2}.$$
 (3)

Solving this gives Hubble parameter H(t) for some

- relationship between energy density and the scalefactor $R(t) = f[\rho(t)]$
- curvature $k \in \{+1, 0, -1\}$

H(t) encodes the dynamic evolution of the Universe

Critical density:

For a flat Universe k = 0. This defines

critical density:
$$ho_{\rm C}=rac{3H(t)}{8\pi G}$$
 cosmological density: $\Omega_{\rm X}\equiv rac{
ho_{\rm X}}{
ho_{\rm C}}$

Equations of state

Equations of state:

1st law of thermodynamics ($\mu = 0$ in conservation of $T_{\mu\nu}$) is

$$d(\rho R^3) = -pd(R^3)$$
, i.e. $\Delta E = -p\Delta V$ (4)

with a constant equation of state $\rho = wp$, we get energy density-scalefactor relations

$$\rho \propto R^{-3(1+w)} \tag{5}$$

For different types of energy:

Matter:w = 0 \Rightarrow $\rho \propto R^{-3}$ Radiation:w = 1/3 \Rightarrow $\rho \propto R^{-4}$

Vacuum (\wedge **):** $w = -1 \implies \rho \propto constant$

This is basically enough to solve the Friedmann Equation.

Ingredients of ΛCDM

Ingredients required for a cosmological model

A theory of gravity

+ associated assumptions

Types of energy

their equations of state

their (self-)interactions

An initial spectrum of perturbations

Choices in ΛCDM

GR

+isotropy, homogeneity

radiation, matter, vacuum/dark energy

w = 1/3, 0, -1/other

photons, baryonic (SM) matter

+cold dark matter (CDM), ??

approximately scale invariant on large scales

Ingredients of ΛCDM

Ingredients required for a cosmological model

A theory of gravity
+ associated assumptions

Types of energy

their equations of state

their (self-)interactions

An initial spectrum of perturbations

Choices in ∧CDM

GR

+isotropy, homogeneity

radiation, matter, vacuum/dark energy

w = 1/3, 0, -1/other

photons, baryonic (SM) matter +cold dark matter (CDM), ??

approximately scale invariant on large scales

Cosmological probes & 'concordance cosmology'

0.0

0.5 Kowalski et al ApJ 2008

Joint fit to multiple cosmological observables gives a consistent set of parameter values:

$$egin{aligned} \Omega_{\Lambda} &pprox 0.73 \ \Omega_{ ext{matter}} &pprox 0.27 \ &= \ \Omega_{ ext{CDM}} &pprox 0.23 + \Omega_{ ext{baryons}} &pprox 0.04 \ & o & \wedge ext{CDM} \end{aligned}$$

Question

Isn't inflation part of the ACDM model?

Question

Isn't inflation part of the ACDM model?

Answer

Not really, no.

Question

Isn't inflation part of the ACDM model?

Answer

Not really, no.

Approximately scale-invariant spectrum of perturbations to start with, on CMB scales (small wavenumber k)? Yes. Due to inflation by definition? No.

$$\mathcal{P}_{\delta}(k) \propto \mathcal{P}_{\mathcal{R}}(k) \propto k^{n_{s}-1} \tag{6}$$

Question

Isn't inflation part of the ACDM model?

Answer

Not really, no.

Approximately scale-invariant spectrum of perturbations to start with, on CMB scales (small wavenumber k)? Yes.

Due to inflation by definition? No.

$$\mathcal{P}_{\delta}(\mathbf{k}) \propto \mathcal{P}_{\mathcal{R}}(\mathbf{k}) \propto \mathbf{k}^{n_{s}-1+\alpha \log k/k_{0}}$$
 (6)

Question

Isn't inflation part of the ACDM model?

Answer

Not really, no.

Approximately scale-invariant spectrum of perturbations to start with, on CMB scales (small wavenumber k)? Yes. Due to inflation by definition? No.

$$\mathcal{P}_{\delta}(\mathbf{k}) \propto \mathcal{P}_{\mathcal{R}}(\mathbf{k}) \propto \mathbf{k}^{n_{s}-1+\alpha \log k/k_{0}}$$
 (6)

ACDM does not *demand* inflation, just as it does not *demand* any particular CDM

Outline of Lecture 1

- Cosmological Models
 - General
 - ACDM
- Power spectra of cosmological perturbations
 - Background
 - Middle Universe observables
 - Rare objects
- 3 Specific particle/field processes (optional)
 - BBN
 - Cosmic strings
 - Phase transitions and reheating

During inflation (or its alternative), quantum fluctuations seed energy/density perturbations

on all length scales, e.g.

$$\mathcal{P}_{\delta}(k) \propto k^{n_{\delta}-1} \tag{7}$$

During inflation (or its alternative), quantum fluctuations seed energy/density perturbations

on all length scales, e.g.

$$\mathcal{P}_{\delta}(k) \propto k^{n_{\delta} - 1 + \alpha \log k / k_0} \tag{7}$$

During inflation (or its alternative), quantum fluctuations seed energy/density perturbations

on all length scales, e.g.

$$\mathcal{P}_{\delta}(k) \propto k^{n_{s}-1+\alpha \log k/k_{0}} \tag{7}$$

with some distribution of amplitudes – often assumed to be Gaussian:

$$pdf(\delta) = \frac{1}{\sqrt{2\pi}\sigma_{\chi,H}^2(z_X,R)} \exp\left(-\frac{\delta^2}{2\sigma_{\chi,H}^2(z_X,R)^2}\right)$$
(8)

During inflation (or its alternative), quantum fluctuations seed energy/density perturbations

on all length scales, e.g.

$$\mathcal{P}_{\delta}(k) \propto k^{n_{s}-1+\alpha \log k/k_{0}} \tag{7}$$

with some distribution of amplitudes – often assumed to be Gaussian:

$$pdf(\delta) = \frac{1}{\sqrt{2\pi}\sigma_{\chi,H}^2(z_X,R)} \exp\left(-\frac{\delta^2}{2\sigma_{\chi,H}^2(z_X,R)^2}\right)$$
(8)

Universe inflates \rightarrow causes perturbations to exit the horizon (move out of causal contact with each other)

During inflation (or its alternative), quantum fluctuations seed energy/density perturbations

on all length scales, e.g.

$$\mathcal{P}_{\delta}(k) \propto k^{n_{\delta} - 1 + \alpha \log k / k_0} \tag{7}$$

with some distribution of amplitudes – often assumed to be Gaussian:

$$pdf(\delta) = \frac{1}{\sqrt{2\pi}\sigma_{\chi,H}^2(z_X,R)} \exp\left(-\frac{\delta^2}{2\sigma_{\chi,H}^2(z_X,R)^2}\right)$$
(8)

Universe inflates \rightarrow causes perturbations to exit the horizon (move out of causal contact with each other)

Universe stops inflating, keeps expanding \rightarrow catches up with the perturbations

During inflation (or its alternative), quantum fluctuations seed energy/density perturbations

on all length scales, e.g.

$$\mathcal{P}_{\delta}(k) \propto k^{n_{s}-1+\alpha \log k/k_{0}} \tag{7}$$

with some distribution of amplitudes – often assumed to be Gaussian:

$$pdf(\delta) = \frac{1}{\sqrt{2\pi}\sigma_{\chi,H}^2(z_X,R)} \exp\left(-\frac{\delta^2}{2\sigma_{\chi,H}^2(z_X,R)^2}\right)$$
(8)

Universe inflates \rightarrow causes perturbations to exit the horizon (move out of causal contact with each other)

Universe stops inflating, keeps expanding \rightarrow catches up with the perturbations

Growth of perturbations

Post-inflation, Universe quickly becomes radiation-dominated

- ⇒ baryons + photons coupled by electromagnetism
- growth of perturbations damped by radiation free-streaming
- ⇒ growth of perturbations is logarithmic only

$$\delta \propto \log R$$
 (9)

At $z \sim 3000$, baryons kinetically decouple as Universe becomes matter-dominated

- ⇒ damping relieved
- ⇒ perturbations grow linearly, structure growth begins

$$\delta \propto R$$

Observation of perturbations

Essentially all cosmological observables depend on 2 things:

- The initial spectrum of perturbations = distribution of amplitudes over scales: $pdf(\delta, k)$, $\mathcal{P}_{\delta}(k)$
 - → this (mostly) comes from your theory of inflation
- How the perturbations + their consequences are processed
 - \rightarrow the geometry of the Universe over time: H(t)
 - \rightarrow the specific content of the Universe: $\mathcal{L}_{\text{SM+BSM}}$
 - new particles
 - exotic objects (e.g. cosmic strings)
 - specific processing events associated with the content (BBN, phase transitions, etc)
- \implies can use CMB, large scale structure, etc to test specific particle theories
- (not just how much stuff with each w and its impact on H(t))

The cosmic microwave background (CMB)

Key is to look at amount of power on different scales for info on primordial spectrum and processing physics

The CMB - inflation-like examples

- 2 Λ CDM + r + $dn_s/d\ln k$, Planck+WP
- ∧CDM + r. Planck+WP
- 4 ΛCDM, Planck+WP
- **6** ΛCDM + dn_s/dlnk, Planck+WP

Shandera, Erickcek, PS & Yana Galarza Phys. Rev. D 2013

Large scale structure (LSS)

- $\bullet \ \ \text{Density perturbations} \equiv \text{sound waves} \rightarrow \text{matter density oscillations}$
- Seen in CMB temperature, polarisation anisotropy at $z \sim 1100$
- Eventually grow to form galaxies, etc at $z \lesssim 20$

Some imprint of scales of density oscillations (=primordial spectrum) retained → Baryon Acoustic Oscillations

SDSS-III Data Release 9 MNRAS 2012

Large scale structure – neutrino mass example

Neutrinos are warm dark matter

- \implies large free-streaming length, depends on $m_
 u$
 - $\rightarrow \text{escape from small collapsing perturbations}$
- ⇒ Suppression in small-scale matter (processed) power spectrum

SNOWMASS 2013, arXiv:1309.5383

Rare objects: primordial black holes (PBHs)

Question

What is a primordial black hole?

- If density perturbations are big enough ($\delta > 0.3$), when they enter the horizon the whole thing collapses
 - → immediate black hole
- PBH mass is horizon mass at re-entry
- \implies number of PBHs with M_{PBH} maps directly to amplitude of perturbations on some scale k
 - For some distribution of perturbations $pdf(\delta)$

$$\beta_{\text{PBH}} \equiv \Omega_{\text{PBH}}/\Omega_0 = \int_{\delta_{\min}}^{\infty} \text{pdf}(\delta) \, d\delta$$
(11)

Can repeat at different k to get limits on primordial spectrum \rightarrow limits on inflationary theories

Rare objects: ultracompact minihalos (UCMHs)

Question

What is an ultracompact minihalo (UCMH)?

Rare objects: ultracompact minihalos (UCMHs)

Question

What is an ultracompact minihalo (UCMH)?

Answer

A DM halo that collapses shortly after matter-radiation equality prom a large amplitude density perturbation

Rare objects: ultracompact minihalos (UCMHs)

Question

What is an *ultracompact* minihalo (UCMH)?

Answer

A DM halo that collapses shortly after matter-radiation equality prom a large amplitude density perturbation

'Shortly' means z_{collapse} is O(100) or more

- ⇒ isolated collapse
- \implies formation by radial infall
- \implies very steep density profile $\rightarrow \rho \propto r^{-9/4}$
- ⇒ excellent indirect detection targets

PS & Sivertsson Phys. Rev. Lett. 2009 Lacki & Beacom ApJL 2010

Also good lensing prospects Ricotti & Gould ApJ 2009; Li et al Phys. Rev. D 2012

Rare objects: UCMH formation

Conditions for formation

- Seeded well before matter-radiation equality
- Requires $\delta \gtrsim \mathcal{O}(10^{-3})$ (compare with normal inflationary perturbations $\delta \sim 10^{-5}$)
- \longrightarrow much more likely than PBH formation ($\delta \gtrsim 0.3$)

Usefulness

- Like PBHs, UCMH mass set by horizon scale at time of horizon entry
- ⇒ specific UCMH mass ≡ specific cosmological scale
- \implies limit on abundance of specific mass halo \equiv limit on power on specific scale k

Rare objects: observational limits

PBHs: energetic particles from evaporation, lensing, binary

disruption

UCMHs: energetic particles from DM annihilation, lensing

Josan et al, *Phys. Rev. D* 2009 Carr et al, *Phys. Rev. D* 2010

Rare objects: comparative limits on power spectrum

Limits on \mathcal{P}_{δ} from UCMHs \sim 5 orders better than from PBHs \implies strong limits on inflationary models

Implications for inflation – slow-roll reconstruction

Impacts on slow-roll reconstruction grey: original dashed: $z_{\rm c}=200$ colours: $z_{\rm c}=50$ (but beware extrapolation of α from WMAP scales)

Outline of Lecture 1

- Cosmological Models
 - General
 - ACDM
- Power spectra of cosmological perturbations
 - Background
 - Middle Universe observables
 - Rare objects
- Specific particle/field processes (optional)
 - BBN
 - Cosmic strings
 - Phase transitions and reheating

Big Bang Nucleosynthesis (BBN)

locco et al (Phys. Repts. 2009)

- Light elements (H, He, Li, B, Be) form when Universe cools to T ~ a few MeV
- Relative amounts are sensitive to baryon-to-photon ratio η
 - \implies sensitive to Ω_b
- Can be messed up by additional energy injection from e.g.
 - Late-decaying or annihilating particles
 - Evaporation of PBHs

Cosmic strings

- Nothing (necessarily) to do with string theory
- 1D topological defect caused by field transition to different vacua in causally disconnected regions
- Breaking of any U(1) symmetry in the early Universe should produce cosmic strings
- Searches for presence of strings can constrain particle theories up the the GUT scale
- Crucial quantity is string tension G
 ω symmetry-breaking scale²
- Observational limits from
 - CMB position-space maps
 - 21 cm maps
 - pulsar timing
 - UCMH searches

Phase transitions and reheating

- As universe cools, vacuum goes through various phase transitions as symmetries break
 - Electroweak phase transition $\mathcal{O}(200 \, \text{GeV})$
 - QCD/chiral symmetry breaking 𝒪(200 MeV)
 - Breaking of symmetries associated with new physics
- Phase transitions may or may not produce:
 - defects like cosmic strings (depends on groups involved)
 - strong density perturbations at a particular k (depends on order of transition)
 - impacts on concurrent processes like kinetic decoupling of dark matter (more tomorrow)
- Drastic changes in field content have similar character
 - Reheating: mass in inflaton field at end of inflation converted into other particles, heating Universe
 - Particle genesis (baryo/lepto), creating matter asymmetry

Take-home points

- Cosmological observables are sensitive to
 - Initial distribution of density perturbations
 - Content of the Universe
- \implies they can be used to test
 - Theories for inflation
 - Theories for new symmetries + particles beyond the Standard Model
 - Inflation has few other observables to correlate this with
 - ... but many concrete Beyond Standard Model theories lead to correlated signals elsewhere → next 2 lectures

