INSTITUTO DE DESARROLLO ECONÓMICO E INNOVACIÓN

Año: 2022

PROGRAMA DE LA ASIGNATURA:

Elementos de Lógica y Matemática Discreta

(MA008)

CÓDIGO: MA008

AÑO DE UBICACIÓN EN EL PLAN DE ESTUDIOS:

1 año

FECHA ULTIMA REVISIÓN DE LA ASIGNATURA:

2022-06-28

CARRERA/S: Licenciatura en Sistemas 049/2017,

Analista Universitario de Sistemas 050/2017,

CARÁCTER: CUATRIMESTRAL (2do)

TIPO: OBLIGATORIA NIVEL: GRADO

MODALIDAD DEL DICTADO: PRESENCIAL (EN

LÍNEA)

MODALIDAD PROMOCION DIRECTA: SI CARGA HORARIA SEMANAL: 8 HS CARGA HORARIA TOTAL: 120 HS

EQUIPO DOCENTE

Nombre y Apellido	Cargo	e-mail					
Lucas Romano	Profesor Adjunto	Iromano@untdf.edu.ar					
Nadia Ramos	I nnramos@untdt edu ai						

1. FUNDAMENTACION

En la primera parte de la asignatura se introduce al alumno en el método demostrativo de la Lógica Matemática moderna, a un nivel que, aun siendo riguroso, sea lo suficientemente sencillo y que permita una fácil comprensión. El desarrollo de la destreza para resolver razonamientos deductivos le proporcionará a los alumnos una base para poder abordar, en mejores condiciones, estudios más profundos, tanto en esta ciencia como en otras.

En la segunda parte, se han seleccionado una serie de conceptos de la Matemática Discreta, que los alumnos aplicarán para resolver problemas tanto en otras asignaturas como en su vida profesional. Se pretende que el alumno aprenda un conjunto particular de realidades matemáticas y cómo aplicarlas.

Se espera que logre mejorar su capacidad para resolver problemas, implementando procedimientos matemáticos de aplicación, que le serán útiles tanto en otras asignaturas como en su desarrollo profesional, como así también, profundizar sus conocimientos en matemática y poder descubrir las

aplicaciones concretas en la Ciencia que estudia.

2. OBJETIVOS

a) OBJETIVOS GENERALES

- Contribuir a desarrollar en el alumno la capacidad para razonar deductivamente.
- Conocer los conceptos de Matemática Discreta aplicables en las ciencias de la Computación (tanto en la fundamentación teórica como en sus aplicaciones).

b) OBJETIVOS ESPECIFICOS

- Mejorar su capacidad para resolver problemas, implementando procedimientos matemáticos de aplicación, que le serán útiles tanto en otras asignaturas como en su desarrollo profesional.
- Profundizar sus conocimientos en matemática y poder descubrir las aplicaciones concretas en la Ciencia que estudia.

3. CONDICIONES DE REGULARIDAD Y APROBACION DE LA ASIGNATURA

Para aprobar el cursado de la asignatura los alumnos deberán aprobar dos parciales con contenido netamente práctico. Para la aprobación de los mismos es necesario que los alumnos resuelvan correctamente al menos el 60% de los temas solicitados. Cada parcial tendrá su respectivo recuperatorio. Las notas aprobar el parcial, serán entre 4 y 10 puntos.

Para los alumnos que cursen por régimen con examen final, una vez obtenida la cursada y aprobadas las correlativas, estarán en condiciones de rendir el examen final en algunas de las fechas establecidas en el Calendario Académico, y por el período establecido en el Reglamento de Estudios de Grado y Posgrado

Para rendir en calidad de alumno libre, en la fecha establecida para rendir el final, el alumno deberá aprobar el examen escrito, de carácter teórico - práctico que se plantee, en las condiciones que se establecen en el Reglamento de Estudios de Grado y Posgrado. El contenido del examen

se basará en los contenidos del programa de la asignatura vigente para ese ciclo lectivo.

Régimen de Promoción sin examen final

La asignatura tiene establecido el siguiente régimen de promoción:

Para aprobar la asignatura bajo este régimen el alumno deberá: 1- Aprobar los dos parciales prácticos, resolviendo correctamente al menos un 70% de los temas planteados, nota entre 7 y 10 puntos (no se tendrán en cuenta las fechas de los exámenes recuperatorios para la opción de promoción).

2- Los alumnos que cumplan con lo estipulado anteriormente deberán rendir un parcial integrador finalizando la cursada, cuyo contenido tendrá fundamentos teórico-prácticos. Este parcial no posee recuperatorio, y será aprobado cuando el alumno haya desarrollado correctamente al menos un 70% de los temas planteados (nota entre 7 y 10 puntos).

Si por alguna circunstancia el alumno pierde el régimen de promoción queda automáticamente incorporado al régimen regular. Y deberán rendir examen final.

4. CONTENIDOS DE LA ASIGNATURA

Contenidos Mínimos

- Elementos de la lógica formal.
- Lógica proposicional y de primer orden: enfoque sintáctico y semántico.
- Lógica de términos y predicados.
- Teoría de las estructuras discretas. Definiciones y pruebas estructurales.
- Estructura de pruebas formales.
- Conjuntos parcialmente ordenados.
- Reticulados.
- Álgebras booleanas.

Programa Analítico

1)LOGICA

- 01.01 Concepto Definición
- 01.02 Su clasificación
- 01.03 Verdad y validez
- 01.04 Lógica simbólica. Su clasificación

2)LOGICA PROPOSICIONAL

- 02.01 Concepto- definición
- 02.02 Proposiciones Atómicas y Moleculares
- 02.03 Simbolización de proposiciones
- 02.04 Términos de enlace
- 02.05 Razonamiento. Concepto. Definición
- 02.06 Razonamiento deductivos. estructuras válidas y no válidas.
- 02.07 Reglas de inferencia y demostración (Modus Ponendo Ponens- Modus Tollendo Tollens-

Doble Negación- Modus Tollendo Ponens- Adjunción y simplificación - Adición- Silogismo-

Hipotético y Disyuntivo- Simplificación - Leyes Conmutativas- Leyes de Morgan- Demostración condicional-Demostración por el absurdo.

- 02.08 Asignación de Certeza.
- 02.09 Consistencia e inconsistencia de premisas.
- 02.10 Tablas de verdad.
- 02.11 Tautologías- Contradicciones Contingencias.
- 02.12 Implicación y equivalencia tautológica.

3)LOGICA DE TERMINOS, PREDICADOS Y CUANTIFICADORES

- 03.01 Término- Definición
- 03.02 Predicado- Definición
- 03.03 Predicados monádicos y poliádicos
- 03.04 Variables y constantes
- 03.05 Función proposicional
- 03.06 Cuantificadores Universales y Existenciales
- 03.07 Proposiciones Categóricas y no Categóricas.
- 03.08 Formas de transformación de una función proposi-cional en una proposición.
- 03.09 Leyes de intercambio de cuantificadores.
- 03.10 Identidades y Certezas Lógicas
- 03.11 Dos o más cuantificadores.
- 03.12 Identidades y Certezas Lógicas.
- 03.12 Dos o más cuantificadores

4) ESTRUCTURAS DISCRETAS: CONJUNTOS - RELACIONES - RETÍCULAS.

- 04.01 Conjuntos y operaciones de conjuntos
- 04.01.01 Introducción. Los conjuntos y sus elementos. Subconjuntos
- 04.01.02 Subconjuntos. Intersecciones, uniones, diferencias y complementos.
- 04.01.03 Expresiones que involucran. Conjuntos.
- 04.02 Tuplas, sucesiones y conjuntos potencia
- 04.02.01 Tuplas y productos cartesianos.
- 04.02.02 Sucesiones y cadenas.
- 04.02.03 Conjuntos potencia.
- 04.03 Relaciones
- 04.03.01 Introducción
- 04.03.02 Relaciones y su representación

- 04.03.03 Dominios y Rangos. Operaciones de relaciones.
- 04.03.04 Composición de relaciones.
- 04.04 Propiedades de las relaciones
- 04.04.01 Relaciones sobre un conjunto
- 04.04.02 Relaciones reflexivas. Relaciones simétricas. Transitividad.
- 04.04.03 Cierres.
- 04.04.04 Relaciones de equivalencia.
- 04.04.05 Ordenes parciales
- 04.04.06 Diagramas de Hasse.
- 04.04.07 Elementos extremos de conjuntos parcialmente ordenados.
- 04.04.08 Retículas.
- 04.04.09 Propiedades y tipos de retículas.

5) ALGEBRAS BOOLEANAS FINITAS

- 05.01 Definición y propiedades
- 05.02 Variables lógicas o booleanas.
- 05.03 Compuertas lógicas
- 05.04 Funciones Booleanas.
- 05.05 Minimización de funciones booleanas.
- 05.06 El método de Shanon.
- 05.07 Diagrama de Karnaugh.
- 05.08 Aplicaciones a circuitos de distribución.

5. RECURSOS NECESARIOS

Proyector

6. PROGRAMACIÓN SEMANAL

Semana	Unidad / Módulo	Descripción	Bibliografía
1	Presentación de la asignatura. Formas de evaluación y acreditación. Diagnóstico inicial Unidad I	Comprender el alcance de la materia. Conocer el nivel del grupo. Comprender y aplicar los conceptos desarrollados en la Unidad	Introducción a la Lógica Simbólica
2	Unidad II	Aprender a utilizar las leyes lógicas	Introducción a la Lógica Simbólica
3	Unidad II	Deducción de razonamientos válidos e inválidos	Introducción a la Lógica Simbólica
4	Unidad III	Introducción a la lógica de términos y predicados	Introducción a la Lógica Simbólica
5	Unidad III	Utilización del método demostrativo	Introducción a la lógica simbólica
6	Unidades I,II,III	Clase de repaso. Parcial	Introducción a la lógica simbólica
7	Unidad IV	Conjuntos. Relaciones	Introducción a la lógica simbólica
8	Unidades I,II,III	Repaso. Recuperatorio.	Introducción a la lógica simbólica
9	Unidad IV	Propiedades de las relaciones. Relación de equivalencia.	Introducción a la lógica simbólica

10	Unidad IV	Conjunto parcialmente ordenado. Retículas	Matemática discretay lógica
11	Unidad V	Introducción a las algebras booleanas. Propiedades.	Matemática discreta y lógica
12	Unidad V	Compuertas lógicas. Métodos de simplificación	Estructuras de matemáticas discretas para la computación
13	Unidades IV, V	Clases de repaso de las unidades.	Estructuras de matemáticas discretas para la computación
14	Unidades IV, V	Clases de consulta . Segundo Parcial	Estructuras de matemáticas discretas para la computación
15	Unidades IV, V	Recuperatorio. Parcial integrador	Estructuras de matemáticas discretas para la computación
16	Unidades IV, V	Entrega de notas. Clases de consulta para exámenes finales	Estructuras de matemáticas discretas para la computación
17	Unidades I,II,III,IV,V	Evaluación por parte de la Cátedra de los resultados obtenidos por los alumnos en los procesos de enseñanza y de aprendizaje - Informe final de la asignatura	Estructuras de matemáticas discretas para la computación

7. BIBLIOGRAFIA DE LA ASIGNATURA

Autor	Año	Título	Capítulo/s	Lugar de la Edición	Editor / Sitio Web
P. Suppes	1980	Introducción a la lógica simbólica		CECSA	
P. Suppes - H. Hill	1982	Introducción a la lógica matemática		REVERTE	
R. Korfhage	1978	Lógica y Algoritmos		LIMUSA	
I. Copy	1995	Lógica Simbólica		EUDEBA	
W. Grassman - J. Tremblay	1996	Matemática discreta y lógica		Prentice Hall	
Kolman - Busby - Ross	1995	Estructuras de matemáticas discretas para la computación		Prentice Hall	

Rosen Kenneth	2005	Matemática discreta y sus aplicaciones 5º edición	Mc Graw - Hill	
R. Grimaldi	1994	Matemáticas discretas y combinatoria	Addison - Wesley	
J. Bosh	1973	Introducción al simbolismo lógico	EUDEBA	
І. Сору	1992	Introducción a la lógica	EUDEBA	
Félix García Merayo	2005	Matemática discreta	THOMSON	

_	_	_	_			_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
		Fi	rm	na	de) (dc	C	er	nte	e-	in	V	es	ti	ga	ad	or	r	e	sp	0	ns	sa	bl	е		

VISADO								
COORDINADOR DE LA CARRERA	DIRECTOR DEL INSTITUTO	SECRETARIO ACADEMICO UNTDF						
Fecha:	Fecha:							