Section 3: Theoretical questions

Question 1:

Туре	Usage	Space Complexity
ArrayDeque <object></object>	3 to 5 objects (nodes and enum – ImbalanceCases) are inserted, that are used to delete the node, and undo rotations (for each insertion)	heta(1) for each insertion

Question 2:

Operation	Number of repetitions	Total Time Complexity
Deletion	1	$\theta(1)$
Undo – Rotation (reverse side)	0 or 1 or 2	$\theta(1)$

Question 3:

Туре	Usage	Space Complexity
ArrayDeque <object></object>	For each insertion – up to $\log(n)$ 2-cell arrays were inserted to the deque, each first cell is the value of the inserted object, and the second is the value (if exists) of the median value of a split node. There could only be up to $\log(n)$ splits.	heta(h) for each insertion

Question 4:

Operation	Number of repetitions	Total Time Complexity
Deletion	1	$\theta(1)$
Merge	Up to $log(n)$	$\theta(h)$

Question 5:

The time complexity of Danny's implementation of the backtrack operation is $\theta(1)$ because he is simply using a single line assigning the copy's root to being the current root we have in the tree.

Question 6:

No, it is not, it's true that the time complexity of the backtrack operation is $\theta(1)$, but at the same time, he increased the time complexity of the insertion operation from $\theta(\log(n))$ to $\theta(n)$, and also his space complexity for the entire implementation went from $\theta(h)$ for each insertion, to $\theta(n)$.