BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE – PILANI, HYDERABAD CAMPUS FIRST SEMESTER 2021 - 2022 COURSE HANDOUT

Date:20-08-2021

In addition to part I (General handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course Number : PHY F212, ECE F212, EEE F212, INSTR F212

Course Title : Electromagnetic Theory I Instructor-in-Charge : SARMISTHA BANIK

Instructors : Subhash Karbelkar, Prasant Samantray, Rahul Nigam,

Sankar Davuluri

Scope & Objective of the course:

Electromagnetic theory forms an important ingredient, along with the quantum theory, of the physics behind the technology we use and design today. Building on the electromagnetic theory, studied in the XII standard, this course augments students' understanding of electromagnetic fields to a level from where they can take up advanced learning in this field. Students are strongly advised to revise what they have learnt in XII using the textbook as it may lead to deeper/newer insights.

Text Book: Introduction to Electrodynamics, David J. Griffiths, Third Edition, Pearson

Education Inc., 1999.

Reference Books:

1. *The Feynman Lectures on Physics: Volume II*, Richard P. Feynman, Robert B. Leighton, Matthew Sands, The New Millennium Edition, Pearson Education Inc. 2013.

Learning Outcomes:

- 1. Ability to evaluate the Gradient, Curl and Divergence of Scalar and Vector Fields in Cartesian Coordinates, Cylindrical Polar Coordinates and Spherical Polar Coordinates.
- 2. Ability to deal with the Electric and Magnetic fields in space as well as in matter in static as well as time variable situations.
- 3. Ability to apply Maxwell's equations to a given problem.

COURSE HANDOUT

Lecture Number	Learning Objectives	Topics to be covered	Chapter in the Text Book
1	Relation of Electromagnetism to other areas of Physics	Introduction: The scope of EMT 1	CLASS LECTURE
2-8	Vector Analysis	Vector differential and integral calculus; Gradient, Curvilinear coordinates, Dirac Delta Function, Helmholtz theorem and	1.2-1.6

		potentials	
9-12	Electrostatics	Divergence and curl of electrostatic fields; electric potential, work and energy in electrostatics	2.2-2.5
13-16	Some special mathematical techniques	Method of images, Multipole expansion	3.2 and 3.4 (Exclude 3.3),
17-20	Electric Fields in Matter	Polarization, bound charges, electric displacement, Linear dielectrics.	4.1 - 4.4
21-25	Magnetostatics	Divergence and curl of B Magnetic vector potential.	5.1 - 5.4
26-29	Magnetic fields in Matter	Magnetization, the field of a magnetized object, Ampere's law in magnetized materials	6.1-6.3,
30-36	Electrodynamics	Maxwell's equations	7.3.1 to 7.3.5 exclude 7.3.4
37-40	Electromagnetic Waves	EM waves in vacuum	9.2

Evaluation Scheme:

EC	Evaluation	Duration	Weightage	Date, Time	Nature of
No.	Component		(%)		Component
1	Mid Sem Test	90 Min.	35	23/10/2021 11.00 - 12.30PM	Open Book
2	Quiz(2)	50 Min.	25	TBA	Open Book
3	Comprehensive Exam	120 Min.	40	27/12 FN	Open Book

Chamber Consultation Hour: To be announced later

Notices: Notices and solutions of Quizzes, Mid-Semester & Final Comprehensive Examination will be displayed on Google Classroom and CMS.

Make-up Policy: In case of all pre-compre evaluation components, make up will be granted only on production of evidential documents.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-Charge