

INSTITUTO POLITÉCNICO NACIONAL

CENTRO DE INVESTIGACIÓN Y DESARROLLO DE TECNOLOGÍA DIGITAL

MAESTRÍA EN CIENCIAS EN SISTEMAS DIGITALES

THESIS

MACHINE LEARNING LIBRARY TO SUPPORT APPLICATIONS WITH EMBEDDED SYSTEMS AND PARALLEL COMPUTING

TO OBTAIN THE DEGREE IN MAESTRÍA EN CIENCIAS EN SISTEMAS DIGITALES

PRESENTS

CÉSAR MIRANDA MEZA

UNDER THE DIRECTION OF

DR. JUAN JOSÉ TAPIA ARMENTA

MACHINE LEARNING LIBRARY TO SUPPORT APPLICATIONS WITH EMBEDDED SYSTEMS AND PARALLEL COMPUTING

Abstract

The currently available machine learning libraries have strongly addressed deep learning and parallel computing, but have neglected traditional machine learning methods and support for embedded systems in comparison. Therefore, in this thesis, a new machine learning library with a total of 53 functions has been developed and contributes with 6 new traditional machine learning methods, while supporting parallel computing and embedded systems. For a reference against which to validate and benchmark the developed library, the Dlib, PyTorch, scikit-learn and TensorFlow libraries were chosen as the main comparators. During the testing and validation process, several algorithms were developed in sequential mode: 6 for statistical methods; 6 for feature scaling methods; 9 for evaluation metric methods; 12 for regression methods; 12 for classification methods; and 2 for deep learning methods. Furthermore, additional algorithms were developed in order to parallelize the deep learning algorithms in CPU, single GPU and multiple GPU. However, only 36 of the sequential algorithms were compared with equivalent algorithms and the results indicate that about 83.33% of the library functions of this thesis were faster; 8.33% were equally fast; and another 8.33% were slower. Finally, some implementations were made on an Arduino UNO and STM32F446RE microprocessor to test the support of embedded systems with the developed library.

Keywords. Machine learning, library, embedded systems, parallel computing.

Contents

Resumen									
\mathbf{A}	Abstract								
Li	List of Figures								
Li	st of	Tables	xi						
Li	st of	Algorithms	iii						
1	Intr	roduction	1						
	1.1	Problem statement	3						
	1.2	Research questions	3						
	1.3	Justification	4						
	1.4	Hypothesis	5						
	1.5	General objective	5						
		1.5.1 Specific objectives	5						
	1.6	Organization of the thesis	6						
2	$Th\epsilon$	eoretical framework	7						
	2.1	Artificial intelligence	7						
	2.2	Machine learning	8						
		2.2.1 Machine learning algorithms	9						
		2.2.2 Machine learning libraries	10						
		2.2.3 General pipeline of machine learning applications	14						

	2.3	Paralle	el computing	15
		2.3.1	Performance analysis for parallel computing	15
		2.3.2	Parallel programming libraries	16
3	Mat	themat	ical formulations	18
	3.1	Statist	ical equations	20
		3.1.1	The mean of a sample set	20
		3.1.2	The median (second quartile) of a sample set	20
		3.1.3	The variance of a sample set	21
		3.1.4	The standard deviation of a sample set	21
		3.1.5	The mode of a sample set	22
		3.1.6	Mean intervals	22
	3.2	Featur	e scaling for machine learning	23
		3.2.1	Min max normalization	23
		3.2.2	L2 normalization	24
		3.2.3	Z score normalization (standardization)	24
	3.3	Formu	lations of machine learning algorithms	25
		3.3.1	Simple linear regression	25
		3.3.2	Multiple linear regression	30
		3.3.3	Polynomial regression	33
		3.3.4	Multiple polynomial regression (without interaction terms)	35
		3.3.5	Logistic regression	37
		3.3.6	Gaussian regression	40
		3.3.7	Linear logistic classification	42
		3.3.8	Simple linear machine classification	44
		3.3.9	Kernel machine classification	47
		3.3.10	Single neuron in Deep Neural Network	52
		3.3.11	Deep Neural Network with a single output	64
4	Met	thodolo	ogy	7 8
	4.1	Metho	ds	78

	4.2	Mater	ials	82		
		4.2.1	Hardware used	82		
		4.2.2	External libraries and packages used	83		
	4.3	Evalua	ation metrics for regression problems	83		
		4.3.1	Mean squared error	84		
		4.3.2	Coefficient of determination	84		
		4.3.3	Adjusted coefficient of determination	85		
	4.4	Evalua	ation metrics for classification problems	85		
		4.4.1	Cross entropy error function	85		
		4.4.2	Confusion matrix	86		
		4.4.3	Accuracy	86		
		4.4.4	Precision	86		
		4.4.5	Recall	87		
		4.4.6	F1 score	87		
	4.5	Evalua	ation of underfitting and overfitting in machine learning models	87		
5	Dog	ults		89		
J	5.1		tical functions	90		
	5.2					
	5.3					
	5.4		ine learning functions	99		
			Regression algorithms			
			(laggification algorithms	- 103		
		5.4.2	Classification algorithms			
		5.4.3	Deep learning algorithms	108		
		5.4.3 5.4.4	Deep learning algorithms	108 110		
	5.5	5.4.3 5.4.4	Deep learning algorithms	108 110		
6		5.4.3 5.4.4	Deep learning algorithms	108 110		
6		5.4.3 5.4.4 Result	Deep learning algorithms	108 110 114 116		
6	Disc	5.4.3 5.4.4 Result cussion Statis	Deep learning algorithms	108 110 114 116 116		

6.4 Machine learning functions					
		6.4.1	Regression algorithms	119	
		6.4.2	Classification algorithms	120	
		6.4.3	Deep learning algorithms	120	
		6.4.4	Parallel computing in deep learning algorithms	121	
	6.5	Result	s obtained in embedded systems	123	
7	$\mathbf{n}\mathbf{s}$	124			
8	Annexes				
	8.1	Detail	ed specifications of the computer system used	128	
Re	efere	nces		133	