Statistical Methods in Artificial Intelligence CSE471 - Monsoon 2016 : Lecture 15

Avinash Sharma CVIT, IIIT Hyderabad

Lecture Plan

- Revision from Previous Lecture
- Fisher's Linear Discriminant Analysis (LDA)
- Multiple Discriminant Analysis (MDA)
- Fisher Faces
 - Algorithm
 - Fisher-face Plots/Code
- Limitation of Fisher's LDA
- Support Vector Machine (Next Class)

Principal Component Analysis (PCA)

- Let data matrix $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_i, \dots, \mathbf{x}_n\}$ and $\mathbf{x}_i \in \mathbb{R}^d$.
- 1-dimensional representation: Let $\mathbf{x} = \mathbf{x}_0$

$$J_0(\mathbf{x}_0) = \sum_{i=1}^n \|\mathbf{x}_0 - \mathbf{x}_i\|^2$$
, $\mathbf{m} = \arg\min_{\mathbf{x}_0} J_0(\mathbf{x}_0) = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i$

• 2-dimensional representation: Let $\mathbf{x} = \mathbf{m} + a\mathbf{e}$

$$J_1(a_1, ..., a_n, \mathbf{e}) = \sum_{i=1}^n \|(\mathbf{m} + a_i \mathbf{e}) - \mathbf{x}_i\|^2, \qquad a_i = \mathbf{e}^T (\mathbf{x}_i - \mathbf{m})$$

$$J_1(\mathbf{e}) = -\mathbf{e}^T \mathbf{S} \mathbf{e}^T + \sum_{i=1}^n \|\mathbf{x}_i - \mathbf{m}\|^2, \qquad \mathbf{v} = \arg\min_{\mathbf{e}} J_1(\mathbf{e})$$

$$\mathbf{S} \mathbf{v} = \lambda \mathbf{v}, \qquad \|\mathbf{v}\| = 1 \text{ where } \mathbf{S} = \sum_{i=1}^n (\mathbf{x}_i - \mathbf{m}) (\mathbf{x}_i - \mathbf{m})^T$$

Principal Component Analysis (PCA)

• *k* -dimensional representation:

Let
$$\mathbf{x} = \mathbf{m} + \sum_{i=1}^{k} a_i \mathbf{e}_i$$

$$\mathbf{v}_{1}, \dots, \mathbf{v}_{k} = \arg \max_{\mathbf{e}_{1}, \dots, \mathbf{e}_{k}} J_{k} = \sum_{i=1}^{n} \left\| \left(\mathbf{m} + \sum_{j=1}^{k} a_{j} \mathbf{e}_{j} \right) - \mathbf{x}_{i} \right\|^{2},$$
for $k \ll d$

where,

$$\mathbf{S}\mathbf{v}_i = \lambda_i \mathbf{v}_i$$
 ,

$$\mathbf{v}_i \perp \mathbf{v}_j$$
, $\|\mathbf{v}_i\| = 1 \ \forall \ i, j \in \{1, ..., k\}$

PCA: Practical Example

Fisher's Linear Discriminant Analysis (LDA)

DA: Derivation

inter-class: $|\tilde{m}_1 - \tilde{m}_2| = |w^{T}(m_1 - m_2)|$

intra-class: $\tilde{s}_i^2 = \sum_i (y - \tilde{m}_i)^2$

$$y, \tilde{m}_1, \tilde{m}_2 : \begin{bmatrix} 1 \\ 1 \end{bmatrix} (w^{\mathrm{T}}x - w^{\mathrm{T}}m_i) : \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

want to maximize:
$$J(w) = \frac{|\tilde{m}_1 - \tilde{m}_2|^2}{\tilde{s}_1^2 + \tilde{s}_2^2}$$
 $x, w, m_1, m_2 : \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $S_B, S_w : \begin{bmatrix} 1 \\ D \end{bmatrix}$

$$\tilde{s}_{i}^{2} = \sum_{x \in D_{i}} (w^{T}x - w^{T}m_{i})(w^{T}x - w^{T}m_{i})^{T} = \sum_{x \in D_{i}} w^{T}(x - m_{i})(x - m_{i})^{T}w = w^{T}S_{i}w$$
$$\tilde{s}_{1}^{2} + \tilde{s}_{2}^{2} = w^{T}S_{1}w + w^{T}S_{2}w = w^{T}S_{w}w$$

$$|\tilde{m}_1 - \tilde{m}_2|^2 = (w^{\mathrm{T}} m_1 - w^{\mathrm{T}} m_2)^2 = w^{\mathrm{T}} (m_1 - m_2) (m_1 - m_2)^{\mathrm{T}} w = w^{\mathrm{T}} S_{\mathrm{B}} w$$

want to maximize:
$$J(w) = \frac{w^{T} S_{B} w}{w^{T} S_{w} w}$$

$$S_{\rm B}w = \lambda S_{\rm w}w$$

DF's for the Normal Density

• Case 2: Hyperellipsoidal Clusters ($\Sigma_i = \Sigma$)

$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) - \frac{d}{2} \ln 2\pi - \frac{1}{2} \ln |\boldsymbol{\Sigma}| + \ln P(\omega_i)$$
$$g_i(\mathbf{x}) = -\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_i)^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}_i) + \ln P(\omega_i)$$

Linear Discriminant Function for Two-category case:

$$\mathbf{w}^T(\mathbf{x} - \mathbf{x_0}) = 0$$
 where,
$$\mathbf{w} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$
 and
$$\mathbf{x_0} = \frac{1}{2}(\boldsymbol{\mu}_i + \boldsymbol{\mu}_j) - \frac{\ln\left[P(\omega_i)/P(\omega_j)\right]}{(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)^T \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)} \; (\boldsymbol{\mu}_i - \boldsymbol{\mu}_j)$$

Multiple Discriminant Analysis (MDA)

Multiple Discriminant Analysis (MDA)

$$S_{\mathrm{B}} = \sum_{i=1}^{c} N_{i} (m_{i} - m) (m_{i} - m)^{\mathrm{T}}$$

$$S_{\mathrm{w}} = \sum_{i=1}^{c} \sum_{x \in D_{i}} (x - m_{i}) (x - m_{i})^{\mathrm{T}}$$
N-c

$$S_{w} = \sum_{i=1}^{c} \sum_{x \in D_{i}} (x - m_{i})(x - m_{i})^{T}$$

want to maximize:
$$J(W) = \frac{|W^{T}S_{B}W|}{|W^{T}S_{w}W|}$$

with
$$W = [w_1 \ w_2 w_m]$$

$$S_{\rm B}w_i = \lambda_i S_{\rm w} w_i$$

$$m \le c - 1$$

Problem: $S_{\rm w}$ is always singular

$$S_{\mathrm{B}}, S_{\mathrm{w}}: \begin{bmatrix} 1 & W : \end{bmatrix}_{\mathrm{D}} W_{\mathrm{RCA}}: \begin{bmatrix} 1 & W : U \end{bmatrix}_{\mathrm{D}}$$

Fisherface solution:

$$W_{\text{PCA}} = \arg \max_{W} |W^{\text{T}} S_{\text{T}} W| \text{ where } S_{\text{T}} = \sum_{x} (x - m)(x - m)^{\text{T}}$$

$$W_{\text{FLD}} = \arg \max_{W} \frac{|W^{\text{T}} W_{\text{PCA}}^{\text{T}} S_{\text{B}} W_{\text{PCA}} W|}{|W^{\text{T}} W_{\text{PCA}}^{\text{T}} S_{\text{w}} W_{\text{PCA}} W|}$$

$$W_{\text{FLD}} = \arg \max_{W} \frac{|W^{\text{T}}W_{\text{PCA}}^{\text{T}}S_{\text{B}}W_{\text{PCA}}W|}{|W^{\text{T}}W_{\text{PCA}}^{\text{T}}S_{\text{w}}W_{\text{PCA}}W|}$$

Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection

P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman Journal of Cognitive Neuroscience, 3(1), pp. 71-86, 1991.

Algorithm to compute Fisherfaces:

- 1. Vectorize grey scale training images to $d \times 1$ vector (from $w \times h$ matrix)
- 2. Compute Scatter Matrix $(d \times d)$ using the Mean vector and all data points
- 3. Project each training & test image to (N-c) dimensional subspace using the (N-c) eigenvectors associated to largest eigenvalues of the Scatter matrix
- 4. Computer $(N-c) \times (N-c)$ (within and between class) Scatter Matrices S_W and S_B
- 5. Computer (c-1) Fisher vectors as the largest eigenvectors of $S_W^{-1}S_B$
- 6. Project each of the (N-c) dimensional train and test images (already projected in PCA space) to (c-1) dimensional Fisher space.

EigenFaces

- function [m_database V_PCA V_Fisher ProjectedImages_Fisher] = FisherfaceCore(T)
- % Original version by Amir Hossein Omidvarnia, October 2007
- % Email: aomidvar@ece.ut.ac.ir
- Class_number = (size(T,2))/2; % Number of classes (or persons)
- Class population = 2; % Number of images in each class
- P = Class_population * Class_number; % Total number of training images
- m_database = mean(T,2);
- %%%%%%%%% Calculating the deviation of each image from mean image
- A = T repmat(m_database,1,P);
- L = A'*A; % L is the surrogate of covariance matrix C=A*A'.
- [V D] = eig(L); % Diagonal elements of D are the eigenvalues for both L=A'*A and C=A*A'.
- %%%%%%%%%%%%%%Sorting and eliminating small eigenvalues
- L eig vec = [];
- for i = 1 : P-Class number
- L eig vec = [L eig vec V(:,i)];
- end
- %%%%%%%%% Calculating the eigenvectors of covariance matrix 'C'
- V PCA = A * L eig vec; % A: centered image vectors
- %%%%%%% Projecting centered image vectors onto eigenspace
- % Zi = V PCA' * (Ti-m database)
- ProjectedImages PCA = [];
- for i = 1 : P
- temp = V PCA'*A(:,i);
- ProjectedImages PCA = [ProjectedImages PCA temp];
- end

- m_PCA = mean(ProjectedImages_PCA,2); % Total mean in eigenspace
- m = zeros(P-Class_number,Class_number);
- %%%%%%%%%%%%%%%%%%Calculating Within and Between class scatter matrices
- Sw = zeros(P-Class_number,P-Class_number); % Initialization os Within Scatter Matrix
- Sb = zeros(P-Class_number,P-Class_number); % Initialization of Between Scatter Matrix
- for i = 1 : Class number
- m(:,i) = mean((ProjectedImages_PCA(:,((i-1)*Class_population+1):i*Class_population)), 2)';
 - S = zeros(P-Class_number,P-Class_number);
- for j = ((i-1)*Class_population+1) : (i*Class_population)
 - $S = S + (ProjectedImages_PCA(:,j)-m(:,i))*(ProjectedImages_PCA(:,j)-m(:,i))';$
 - end
- Sw = Sw + S; % Within Scatter Matrix
- Sb = Sb + (m(:,i)-m PCA) * (m(:,i)-m PCA)'; % Between Scatter Matrix
- End
- % We want to maximise the Between Scatter Matrix, while minimising the
- % Within Scatter Matrix.
- [J_eig_vec, J_eig_val] = eig(Sb,Sw); % Cost function J = inv(Sw) * Sb
- J eig vec = fliplr(J eig vec);
- for i = 1 : Class number-1
- V Fisher(:,i) = J eig vec(:,i); % Largest (C-1) eigen vectors of matrix J
- End
- %%%%%%%%%%%%%%%%%%%Projecting images onto Fisher linear space
- % Yi = V_Fisher' * V_PCA' * (Ti m_database)
- for i = 1 : Class number*Class population
- ProjectedImages Fisher(:,i) = V Fisher' * ProjectedImages PCA(:,i);
- end

Limitation of Fisher's LDA

• LDA produces at most c-1 feature projections

LDA is a parametric method since it assumes unimodal Gaussian

likelihoods

LDA will fail when the discriminatory information is not in the mean

but rather in the variance of the data

