Stage 2: Conceptual and Logical Database Design

Due Mar 4, 2025

Team 099- BigBallers Rahul Reddy Jay Malavia Allen Kaile Yuan Yu Fu

ER Diagram (Revised Version)

Assumptions for each entity and relationship

User:

Each user has a unique ID with basic account info (nickname, email, password hash) and timestamps for creation/update.

TravelHistory:

Logs each trip taken by a user, capturing the trip's ID, date, and aggregated bus metrics (duration and distance), plus optional notes and ratings.

BusLeg:

Represents individual bus segments within a trip, detailing start/end times, duration, distance, departure/arrival locations, bus route, and an encoded polyline for mapping.

UserLevel:

Tracks a user's cumulative XP, their current level and title; each user has one level record that can be recalculated by joining with level configuration.

Level_Config:

Defines each level's number and title based on their XP thresholds, serving as a lookup table for the leveling system.

GTFS_Route & GTFS_Stop:

Static reference data from the GTFS feed used to display transit route and stop information.

Relationships & Cardinality:

User (1) \leftrightarrow (0..*) TravelHistory: One user can have many travel records.

TravelHistory (1) \leftrightarrow (0..*) BusLeg: Each trip may consist of several bus legs.

User (1) \leftrightarrow (1) UserLevel: Each user has exactly one level record.

UserLevel $(0..*) \leftrightarrow (1)$ Level_Config: A user's current level corresponds to a level configuration entry (many users can share the same level).

GTFS_Route & GTFS_Stop: Serve as static lookup tables for transit information.

Normalization (3NF) - Revised

- We noticed that the current database schema violated 3NF, due to transitive dependencies in the UserLevel table.
- Calculating information for relation **UserLevel** having attributes: **User_ID**, **TotalXP**, **Current_Level**, **Title**, **Updated_At**.
- Given input functional dependencies:
 - User_ID → TotalXP, Current_Level, Current_Level, Updated_At;
 - TotalXP → Current_Level, Title;
- We can see that TotalXP is not the primary key for the table (PK is User_ID), but is still able to uniquely identify Current_Level and Title.
- To normalize this, we split the relation UserLevel into these new relations.
 - User_Level (TotalXP, User_ID, Updated_At) having FD(s): User_ID → TotalXP; User_ID → Updated_At.
 - \circ Level_Tracking (TotalXP, Current_Level, Title) having FD(s): TotalXP \to Current_Level; TotalXP \to Title.
- Now, the relations **User_Level** and **Level_Tracking** are normalized.
- However, since Level_Tracking is very similar in purpose to Level_Config, we decided to drop it from our schema and
 instead add the table User_Level_Progress (to link User_Level with Level_Config).
- Normalization (3NF) proof for all tables is shown in the next slide.

Normalization - 3NF

Tables:

- User
 - FDs: User_ID (PK) -> Nickname, Email, Password_Hash, Created_At, Updated_At
 - Since User_ID is the **primary key**, and this is the only **FD**, **User** table is in **3NF**.
- GTFS_Route
 - FDs: Route_ID (PK) -> Agency_ID, Route_Short_Name, Route_Long_Name, Route_Color, Route_Text_Color
 - Since Route_ID is the primary key, and this is the only FD, GTFS_Route table is in 3NF.
- GTFS_Stop
 - FDs: Stop_ID (PK) -> Stop_Name, Latitude, Longitude
 - Since Stop_ID is the primary key, and this is the only FD, GTFS_Stop table is in 3NF.
- Travel_History
 - FDs: History_ID (PK) -> User_ID, Trip_ID, Travel_Date, Total_Bus_Duration, Total_Bus_Distance, Notes, Trip_Rating, Created_At, Updated_At
 - Since History_ID is the primary key, and this is the only FD, Travel_History table is in 3NF.
- Bus_Leg
 - FDs: Leg_ID (PK) -> History_ID, Mode, StartTime, EndTime, Duration, Distance, FromPlace, ToPlace, BusRoute, Polyline, Created_At, Updated_At
 - Since Leq_ID is the **primary key**, and this is the only **FD**, **Bus_Leg** table is in 3NF.
- User_Level
 - FDs: User_ID (PK) -> Total_XP, Updated_At
 - Since User_ID is the primary key, and this is the only FD, User_Level table is in 3NF. (Prior to normalization, TotalXP -> Current_Level, Title)
- User_Level_Progress
 - FDs: User_ID (PK) -> Level_Number, Updated_At
 - Since User_ID is the primary key, and this is the only FD, User_Level_Progress table is in 3NF.
- Level_Config
 - FDs: Level_Number -> Title, Min_XP, Max_XP
 - Since Level_Number is the primary key, and this is the only FD, Level_Config table is in 3NF.

Now, all tables are normalized i.e. adhere to 3NF.

FD: Functional Dependency & PK: Primary Key

Relational Schema

```
User(
User_ID: INT [PK],
 Nickname: VARCHAR(50),
 Email: VARCHAR(100) UNIQUE,
 Password_Hash: VARCHAR(255),
 Created_At: TIMESTAMP,
 Updated At: TIMESTAMP
TravelHistory(
History_ID: INT [PK],
User ID: INT [FK to User.User_ID],
 Trip_ID: VARCHAR(50) UNIQUE,
 Travel_Date: DATE,
 Total_Bus_Duration: INT,
 Total_Bus_Distance: DECIMAL(10,2),
 Notes: TEXT,
 Trip_Rating: DECIMAL(3,1),
 Created At: TIMESTAMP.
 Updated At: TIMESTAMP
BusLeg(
Leg_ID: INT [PK],
 History_ID: INT [FK to TravelHistory.History_ID],
 Mode: VARCHAR(20),
 StartTime: TIMESTAMP,
 EndTime: TIMESTAMP.
 Duration: INT.
Distance: DECIMAL(10,2),
 FromPlace: VARCHAR(100).
 ToPlace: VARCHAR(100),
 BusRoute: VARCHAR(20),
 Polyline: TEXT,
 Created_At: TIMESTAMP,
 Updated_At: TIMESTAMP
```

```
UserLevel(
User ID: INT [PK. FK to User.User ID].
Total XP: INT.
Updated_At: TIMESTAMP
UserLevelProgress(
User_ID: INT [PK, FK to UserLevel.User_ID],
Level Number: INT [FK to Level Level Number].
Updated_At: TIMESTAMP
Level_Config(
Level_Number: INT [PK],
Title: VARCHAR(50),
Min XP: INT.
Max XP: INT.
CHECK(Min_XP < Max_XP)
GTFS Route(
Route ID: VARCHAR(20) [PK].
Agency_ID: VARCHAR(20),
Route_Short_Name: VARCHAR(20)
Route_Long_Name: VARCHAR(100),
Route Color: VARCHAR(10).
Route Text Color: VARCHAR(10)
GTFS Stop(
Stop_ID: VARCHAR(20) [PK],
Stop_Name: VARCHAR(100),
Latitude: DECIMAL(10,6),
Longitude: DECIMAL(10,6)
```

Relational Schema Explanation

- Designed a relational schema to manage users, travel history, and transit data.
- Implemented foreign keys to link users with their trips and trip segments.
- Integrated GTFS transit data for routes and stops to enhance trip tracking.
- Used timestamps and ratings to analyze travel patterns and user experiences.