Module 3-Contd

Algorithm:Relational Synthesis into 3NF with Dependency Preservation and Nonadditive Join Property

Input: A universal relation *R* and a set of functional dependencies *F* on the attributes of *R*.

- 1. Find a minimal cover *G* for *F*.
- 2. For each left-hand-side X of a functional dependency that appears in G, create a relation schema in D with attributes $\{X \cup \{A1\} \cup \{A2\} ... \cup \{Ak\}\}\}$, where $X \to A_1$, $X \to A_2$, dependencies in G with X on lefthand side(X is the key of this relation).
- 3. If none of the relation schemas in D contains a key of R, then create onemore relation schema in D that contains attributes that form a key of R.
- 4. Eliminate redundant relations from the resulting set of relations in the relational database schema. A relation R is considered redundant if R is a projection of another relation S in the schema; alternately, R is subsumed by S.

Example 1:

Consider U (Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation)

The following dependencies are present:

FD1: Emp_ssn \rightarrow {Esal, Ephone, Dno}

FD2: Pno \rightarrow { Pname, Plocation}

FD3: Emp_ssn, Pno → {Esal, Ephone, Dno, Pname, Plocation}

Example 2:

U (Property_id, County, Lot#, Area) with the following functional dependencies:

- FD1: Property_id → Lot#, County, Area
- FD2: Lot#, County → Area, Property_id
- FD3: Area → County

Ilustrations:

- It is possible to generate alternate 3NF designs by starting from the same set of FDs.
- It is conceivable that in some cases the algorithm actually produces relations that satisfy BCNF and may include relations that maintain the dependency preservation property as well.

Relational Decomposition into BCNF with non-additive join property

Input: A universal relation R and a set of functional dependencies F on the attributes of R.

```
Set D := {R};
While there is a relation schema Q in D that is not in BCNF do {
    choose a relation schema Q in D that is not in BCNF;
    find a functional dependency X → Y in Q that violates BCNF;
    replace Q in D by two relation schemas (Q - Y) and (X ∪ Y);
};
```

Problems with NULL Values

(a) EMPLOYEE

Ename	<u>Ssn</u>	Bdate	Address	Dnum
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1
Berger, Anders C.	999775555	1965-04-26	6530 Braes, Bellaire, TX	NULL
Benitez, Carlos M.	888664444	1963-01-09	7654 Beech, Houston, TX	NULL

DEPARTMENT

Dname	<u>Dnum</u>	Dmgr_ssn
Research	5	333445555
Administration	4	987654321
Headquarters	1	888665555

(b)

Ename	<u>Ssn</u>	Bdate	Address	Dnum	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555

(c)

Ename	<u>Ssn</u>	Bdate	Address	Dnum	Dname	Dmgr_ssn
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX	5	Research	333445555
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX	5	Research	333445555
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX	4	Administration	987654321
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX	4	Administration	987654321
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX	5	Research	333445555
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX	5	Research	333445555
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX	4	Administration	987654321
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX	1	Headquarters	888665555
Berger, Anders C.	999775555	1965-04-26	6530 Braes, Bellaire, TX	NULL	NULL	NULL
Benitez, Carlos M.	888665555	1963-01-09	7654 Beech, Houston, TX	NULL	NULL	NULL

DANGLING TUPLES

(a) EMPLOYEE_1

Ename	<u>Ssn</u>	Bdate	Address
Smith, John B.	123456789	1965-01-09	731 Fondren, Houston, TX
Wong, Franklin T.	333445555	1955-12-08	638 Voss, Houston, TX
Zelaya, Alicia J.	999887777	1968-07-19	3321 Castle, Spring, TX
Wallace, Jennifer S.	987654321	1941-06-20	291 Berry, Bellaire, TX
Narayan, Ramesh K.	666884444	1962-09-15	975 Fire Oak, Humble, TX
English, Joyce A.	453453453	1972-07-31	5631 Rice, Houston, TX
Jabbar, Ahmad V.	987987987	1969-03-29	980 Dallas, Houston, TX
Borg, James E.	888665555	1937-11-10	450 Stone, Houston, TX
Berger, Anders C.	999775555	1965-04-26	6530 Braes, Bellaire, TX
Benitez, Carlos M.	888665555	1963-01-09	7654 Beech, Houston, TX

(b) EMPLOYEE_2

<u>Ssn</u>	Dnum
123456789	5
333445555	5
999887777	4
987654321	4
666884444	5
453453453	5
987987987	4
888665555	1
999775555	NULL
888664444	NULL

(c) EMPLOYEE_3

<u>Ssn</u>	Dnum
123456789	5
333445555	5
999887777	4
987654321	4
666884444	5
453453453	5
987987987	4
888665555	1

Multivalued Dependencies and Fourth Normal Form (2)

Definition:

- A multivalued dependency (MVD) $X \longrightarrow Y$ specified on relation schema R, where X and Y are both subsets of R, specifies the following constraint on any relation state r of R: If two tuples t_1 and t_2 exist in r such that $t_1[X] = t_2[X]$, then two tuples t_3 and t_4 should also exist in r with the following properties, where we use Z to denote ($R_2(X \cup Y)$):
- \cdot $t_3[X] = t_4[X] = t_1[X] = t_2[X].$
- $\cdot t_3[Y] = t_1[Y] \text{ and } t_4[Y] = t_2[Y].$
- $\cdot t_3[Z] = t_2[Z] \text{ and } t_4[Z] = t_1[Z].$
- An MVD $X \rightarrow Y$ in R is called a **trivial MVD** if (a) Y is a subset of X, or (b) $X \cup Y = R$.

Multivalued Dependencies and Fourth Normal Form (3)

Inference Rules for Functional and Multivalued Dependencies:

IR1 (reflexive rule for FDs): If $X \supseteq Y$, then $X \multimap Y$.

IR2 (augmentation rule for FDs): $\{X \rightarrow Y\} \mid = XZ \rightarrow YZ$.

IR3 (transitive rule for FDs): $\{X \rightarrow Y, Y \rightarrow Z\} \mid = X \rightarrow Z$.

IR4 (complementation rule for MVDs): $\{X \longrightarrow Y\} \mid = X \longrightarrow (R - (X \cup Y))\}$.

IR5 (augmentation rule for MVDs): If $X \longrightarrow Y$ and $W \supseteq Z$ then $WX \longrightarrow YZ$.

IR6 (transitive rule for MVDs): $\{X ->> Y, Y ->> Z\} \mid = X ->> (Z)$.

IR7 (replication rule for FD to MVD): $\{X \longrightarrow Y\} \mid = X \longrightarrow Y$.

IR8 (coalescence rule for FDs and MVDs): If $X \longrightarrow Y$ and there exists W with the properties that (a) $W \cap Y$ is empty, (b) $W \longrightarrow Z$, and (c) $Y \supseteq Z$, then $X \longrightarrow Z$.

Multivalued Dependencies and Fourth Normal Form (6)

Lossless (Non-additive) Join Decomposition into 4NF Relations:

PROPERTY LJ1⁷

The relation schemas R_1 and R_2 form a lossless (non-additive) join decomposition of R with respect to a set F of functional and multivalued dependencies if and only if

$$(R_1 \cap R_2) \longrightarrow (R_1 - R_2)$$

or by symmetry, if and only if

$$(R_1 \cap R_2) \longrightarrow (R_2 - R_1)$$
.

Multivalued Dependencies and Fourth Normal Form (7)

Algorithm 11.5: Relational decomposition into 4NF relations with non-additive join property

Input: A universal relation R and a set of functional and multivalued dependencies F.

- 1. Set D := { R };
- While there is a relation schema Q in D that is not in 4NF do { choose a relation schema Q in D that is not in 4NF; find a nontrivial MVD X —>> Y in Q that violates 4NF; replace Q in D by two relation schemas (Q Y) and (X υ Y); };

(a) EMP

<u>Ename</u>	<u>Pname</u>	<u>Dname</u>
Smith	Χ	John
Smith	Υ	Anna
Smith	Х	Anna
Smith	Υ	John

(b) EMP_PROJECTS

<u>Ename</u>	<u>Pname</u>	
Smith	Χ	
Smith	Υ	

EMP_DEPENDENTS

Ename	<u>Dname</u>
Smith	John
Smith	Anna

4. Join Dependencies and Fifth Normal Form (1)

Definition:

• A join dependency (JD), denoted by JD(R₁, R₂, ..., R_n), specified on relation schema R, specifies a constraint on the states r of R. The constraint states that every legal state r of R should have a non-additive join decomposition into R₁, R₂, ..., R_n; that is, for every such r we have

*
$$(\pi_{R1}(r), \pi_{R2}(r), ..., \pi_{Rn}(r)) = r$$

Note: an MVD is a special case of a JD where n = 2.

• A join dependency $JD(R_1, R_2, ..., R_n)$, specified on relation schema R_i is a **trivial JD** if one of the relation schemas R_i in $JD(R_1, R_2, ..., R_n)$ is equal to R.

Join Dependencies and Fifth Normal Form (2)

Definition:

• A relation schema R is in **fifth normal form** (**5NF**) (or **Project-Join Normal Form** (**PJNF**)) with respect to a set F of functional, multivalued, and join dependencies if, for every nontrivial join dependency $JD(R_1, R_2, ..., R_n)$ in F^+ (that is, implied by F), every R_i is a superkey of R.