

Container Usage within CyberGIS

Jeff Terstriep^{1,3}, Yan Liu^{1,2,3} and Dandong Yin^{1,2,3}
¹CyberGIS Center for Advanced Digital and Spatial Studies
²Department of Geography and Geographic Information Science
³National Center for Supercomputing Applications (NCSA)
University of Illinois at Urbana-Champaign

Container Analysis Environments Workshop August 14, 2017, Urbana, IL

CyberGIS

- CyberGIS -- geographic information science and systems (GIS) based on advanced CI
 - Innovate new-generation GIS
 - Focus on computational and data-intensive geospatial problem-solving within various research and education domains
 - Bridge gaps between geospatial big data, software and applications through innovative cyberGIS supercomputer --**ROGER**

Wang, S. (2010) A CyberGIS Framework for the Synthesis of Cyberinfrastructure, GIS, and Spatial Analysis. Annals of the Association of American Geographers, 100(3): 535-557

CyberGIS Needs for Containers

- Gateway app development
 - Lower development cost
 - Help production deployment
- Cyberinfrastructure integration in containers
 - Big data access
 - Complex workflow execution
 - Transparent integration as a software as service solution
- Interactive analysis environment for geospatial studies
 - Geospatial computing environment in containers
 - Geo-visualization in containers
- Collaborative research and development
 - Methodology co-development, testing, validation, and result sharing
 - Faster turnaround time, more productive

Case Studies

- Gateway: web app and Jupyter
 - Analytical apps: web app vs. Jupyter-based app
 - Data apps: production data delivery environment vs. community engagement for further requirements
 - Containerization for both application development modes
- Collaborative research and development: National Flood Interoperability Experiment (NFIE)

Analysis Example: TauDEM

- High-performance hydrologic information analysis
- 30+ functions with dependencies
- Web app built
 - Computed on HPC
 - Input data: 700GB national elevation dataset
- Jupyter notebook built
 - Computed in container or on HPC
- Which one is better?
 - Owner with the with the with the contract of the with the with

Web app vs. Jupyter

Fan, Y., Liu, Y.Y., Wang, S., Tarboton, D., Yildirim, A., and Wilkins-Diehr, N. 2014. "Accelerating TauDEM as a Scalable Hydrological Terrain Analysis Service on XSEDE". Proceedings of the 2014 Annual Conference on Extreme Science and Engineering Discovery Environment (XSEDE'14), pages: 5:1-5:2. ACM Press. July 13-18. Atlanta, GA.

Data App: TopoLens

- End user-oriented national topographic data delivery service
- Web app built on microservices in containers
- Computation on HPC
- Value added services
 - Jupyter can help to gather community requirements

Collaborative Research: NFIE

- Build national flood inundation mapping framework for CONUS
 - 10m and higher resolution
 - Near real-time inundation forecast
- Co-development of methodologies
 - Hydrology community, NOAA, USGS, EPA

Containerized Collaboration

Collaboration Requirements	Current	Enhanced
Methodology development	 Writeups as shared document Communicated via emails, teleconf	 Methodology notebook Math formula Code snippets Sample results
Software development	 Source codes only; computing environment needs to be maintained and synchronized manually 	• Function notebooks with both source codes and computing environments effectively synchronized between researchers
Computation	• Conducted by a dedicated person, a bottleneck	 Notebook interface to workflow computation on ROGER Everyone can launch
Result validation	 Data: direct download or via iRODS Validation results: shared document in Google Drive 	• Integrated validation notebooks with reproducible input, statistics, and output
Visualization	 Local: download and use desktop GIS. Almost impossible for large outputs Online: Tile Map Service (TMS); webGIS. Only available for major output data 	 Integrated data, code and visualization notebooks Jupyter visualization libraries Jupyter map cells Jupyter IFrame cells

NFIE HAND notebook in CyberGIS-Jupyter

Yin, D., Liu, Y., Padmanabhan, A., Terstriep, J., Rush, J., and Wang, S. 2017. "A CyberGIS-Jupyter Framework for Geospatial Analytics at Scale". In: *Proceedings of the 2017 Practice & Experience in Advanced Research Computing (PEARC'17)*. July 9–13. New Orleans, LA.

Containerized Applications

- Simple Services
 - Web Servers
 - RESTful APIs
 - S3 Servers
 - Geoserver Farms
- Microservice Architectures
 - TopoLens
 - TERRA-REF
 - SKOPE
- JupyterHub
 - CyberGIS-Jupyter

CyberGIS-Jupyter

- An interactive scripting interface
- Declarative UI widgets
- Supports general computation and visualization
- Increasingly popular in data- and computational sciences

CyberGIS-Jupyter: Technologies

Architecture

On-going Issues

- Deploying VM Infrastructure
 - Ansible
- User Authentication and Authorization
 - PAM with LDAP + SSSD
- Container Orchestration
 - Dynamically scaling and load balancing
 - Recovering idle resources
- Remote Computation Management
 - Using qsub and qstat to control PBS jobs
- Logging and Monitoring
 - ELK stack
- Software and computing environment containerized
 - Can we use one Dockerfile to populate HPC nodes, OpenStack VMs, and docker instances?

Container Storage

- OpenStack Storage
 - Root disk
 - Cinder volumes
 - GPFS using NFS mounts
- Docker Volume Service
 - Docker-volume-netshare
- NFS auto-exporter
 - Listen to OpenStack service for changes to floating IP and automatically export appropriate directories based on groups

Acknowledgements

- This work is supported in part by the National Science Foundation (NSF) under grant numbers 1047916 and 1443080. The computational work used the NSF-supported ROGER supercomputer (1429699).
- This work is also supported in part by the ECSS program of XSEDE, which is supported by NSF grant number 1053575.