Deterministic Optimization

Review of Mathematical Concepts

Shabbir Ahmed

Anderson-Interface Chair and Professor School of Industrial and Systems Engineering

Properties of Sets

Properties of Sets

Learning objectives:

- Recognize sets arising in optimization problems
- Recall some properties of sets

Sets in Optimization Problems

• Recall the generic optimization model

$$\min\{f(\mathbf{x}): \mathbf{x} \in X\}$$

- Here \mathbf{x} is the decision vectors whose values are constrained to be in the set X.
- Typically the constraint set is defined by domain restrictions on the variables and relationships between specified by inequalities or equalities, e.g.

$$X = \{ \mathbf{x} \in \mathbb{R}^n : g_i(\mathbf{x}) \le b_i \ i = 1, \dots, m \}$$

• Here X is the set of solutions to the specified inequalities.

Example

min
$$x + y^2$$

s.t. $x + y \ge 2$
 $x^2 + 2y^2 \le 8$

Example

min
$$x + y^2$$

s.t. $x + y \ge 2$
 $x^2 + 2y^2 \le 8$
 $x, y \in \mathbb{Z}$

Closed Set

- A set is closed if it includes its boundary points.
- Formally, a set X is closed if for any convergent sequence in X, its limit point also belongs to X, i.e. if $\{\mathbf{x}^i\} \in X$ and $\lim_{i \to \infty} \mathbf{x}^i = \mathbf{x}^0$ then $\mathbf{x}^0 \in X$.

o
$$X = \mathbb{R}^2$$
 is closed

o
$$X = \{x : 0 < x \le 1\}$$
 is not closed

- Intersection of closed sets is closed.
- Typically, if none of inequalities are strict, then the set is closed.

Bounded Set

- A set is bounded if it can be enclosed in a large enough (hyper)-sphere or a box.
- Formally, the set X is bounded if there exists $M \ge 0$ such that $||\mathbf{x}|| \le M$ for all $\mathbf{x} \in X$.
- A set that is both bounded and closed is called compact.

Examples

- $X = \mathbb{R}^2$ is closed but not bounded
- $X = \{(x,y): x^2 + y^2 < 1\}$ is bounded but not closed
- $X = \{(x,y) : x+y \ge 1\}$ is closed but not bounded
- $X = \{(x,y) : x^2 + y^2 \le 1\}$ is closed and bounded (compact)

Summary

- The decision variables of an optimization problem are constrained to be in a set.
- Such sets are defined by domain restrictions and inequalities/equalities
- Remember the definitions of closed, bounded and compact sets.

