Дифференциальные уравнения и динамические системы

Алёшин Артём на основе лекций Пилюгина С. Ю. под редакцией @keba4ok

5 сентября 2021.

Содержание

Дифо	реренц	иаль	ные у	уран	вне	ния	a 1	- ГС	П	ops	іДІ	κa,	pa	зр	еш	е	HI	ы	O	гн	OC	CM.	ге	Л	ьн
роиз	водной	í																							
3	адача К	Соши																							
E	динстве	енност	ъ.																						
	[оле наг																								
	сновны	е теор	оемы					•						•											
[нте	грируе	мые :	гипы	ди	фф	ере	ені	циа	алн	ьнь	IX	уp	ав	неі	н	й	1-г	'O	пс	ps	ΙД	кa	ı		
	г рируе л Інтеграл					-						-								•					
	[иффер																								

Литература

- В. И. Арнольд Обыкновенные дифференциальные уравнения
- Ю. Н. Бибиков Общий курс дифференциальных уравнения
- С. Ю. Пилюгин Пространства динамических систем

Определение. Дифференциальное уравнение — уравнение от неизвествной фукции y(x), где $x \in \mathbb{R}$ — независимая переменная, вида

$$f(x,y,y',\ldots,y^{(n)})=0$$

Дифференциальные уравнения 1-го порядка, разрешенные относительно производной

Определение. Дифференциальное уравнение 1-го порядка, разрешенное относительно производной – уравнение вида $y' = f(x,y), f \in C(G)$, где G – область (открытое связное множество) в $\mathbb{R}^2_{x,y}$

Определение. $y:(a,b)\to\mathbb{R}$ – решение на (a,b), если

- у дифференцируема;
- $(x,(y(x)) \in G, x \in (a,b);$
- $y'(x) \equiv f(x,y(x))$ на (a,b).

Пример(ы).

- $y' = ky, k > 0G = \mathbb{R}^2$;
- $\forall c \in \mathbb{R} \ y(x) = ce^{kx}$ решение на \mathbb{R} .

Определение. Интегральная кривая – график решения.

Задача Коши

Определение. y(x) – решение задачи Коши с начальным условем (x_0,y_0) , если

- y(x) решение дифференциального уравнения на (a,b);
- $y(x_0) = y_0$.

Единственность

Определение. (x_0,y_0) – *точка единственности* для задачи Коши, если $\forall y_1,y_2$ – решения $\exists (\alpha,\beta) \ni x_0 : y_1|_{(\alpha,\beta)} = y_2|_{(\alpha,\beta)}$.

Пример(ы).

$$y' = 3\sqrt[3]{y^2}$$

Если $(x_0,y_0)=0$, то возможны следующие решения:

•

$$y_1 = 0$$

•

$$y_2 = \begin{cases} 0 & x \leqslant 0 \\ x^3 & x > 0 \end{cases}$$

•

$$y_3 = \begin{cases} x^3 & x \leqslant 0\\ 0 & x > 0 \end{cases}$$

Точка (0,0) не является точкой единственности, но при этом (1,1) уже будет точкой единственности

Поле направлений

Определение. Из уравнения y' = f(x,y) мы можем вычислить коэффициент наклона в каждой точке (x,y)

$$k = y'(x) = f(x,y)$$

Если в каждой точке (x,y) области G провести отрезок с угловым коэффициентом равным f(x,y), то получится *поле направлений*. Любая интегральная кривая в каждой своей точке касается соответствующего отрезка.

Основные теоремы

Теорема (*O существовании*). Если $y' = f(x,y), f \in C(G), mo \ \forall (x_0,y_0) \in G \ \exists \ решение задачи Коши с начальными данными <math>(x_0,y_0)$

G называется областью существования.

Теорема (*O единственности*). Если $y' = f(x,y), f, \frac{\partial f}{\partial y} \in C(G), mo \ \forall (x_0,y_0) \in G \ \exists \ единственное решение задачи Коши с начальными данными <math>(x_0,y_0)$

G называется областью единственности.

Интегрируемые типы дифференциальных уравнений 1-го порядка

Пример(ы). y' = f(x) – из анализа знаем, что единиственным решение при данном условии (x_0, y_0) будет

$$y(x) = y_0 + \int_{x_0}^x f(t)dt$$

Интеграл

Пусть $H \subset G$ – область

Определение. Функция $U \in C^1(H,\mathbb{R})$ называется *интегралом уравнения* y' = f(x,y) в H, если выполнены следующие условия:

- $\frac{\partial U}{\partial y} \neq 0$;
- если $y(x), x \in (a,b)$ решение с $(x,y(x)) \in H$, то U(x,y(x)) = const.

Теорема (Напоминание теоремы о неявной функции).

$$F: H \subset \mathbb{R}^2 \to \mathbb{R}, F \in C^1$$

Если

•

$$F(x_0, y_0) = 0$$

•

$$\left. \frac{\partial F}{\partial y} \right|_{(x_0, y_0)} \neq 0$$

тогда $\exists I, J$ – открытые интервалы $x_0 \in I, y_0 \in J, \exists z(x) \in C^1(I)$ такая, что

- $z(x_0) = y_0;$
- $F(x,y) = 0 \leftrightarrow y = z(x) \ npu \ (x,y) \in I \times J$.

Теорема (Об интеграле для дифференциальных уравнений первого порядка). Пусть U – интеграл y' = f(x,y) в $H \subset G$. Тогда $\forall (x_0,y_0) \in H \ \exists H_0 \subset H, H_0 = I \times J \ni (x_0,y_0)$ и $\exists y(x) \in C^1(I)$ такая что:

- ullet y(x) решение задачи Коши с начальными данными (x_0,y_0)
- $(x,y) \in H \ u \ U(x,y) = U(x_0,y_0) \Rightarrow y = y(x)$

Доказательство.

Фиксируем произвольную точку (x_0,y_0) . Рассмотрим $F(x,y) = U(x,y) - U(x_0,y_0)$.

F удовлетворяет условию теоремы о неявной функции, так как $\frac{\partial F}{\partial y} = \frac{\partial U}{\partial y} \neq 0$, поэтому существуют I_0, J_0 $I_0 \times J_0 \subset H$ и $\exists y(x) \in C^1(I_0), \ y(x_0) = y_0$.

По теореме существования \exists решение z(x) задачи Коши с начальными условиями (x_0,y_0) на некотором промежутке $I\ni x_0$ такое что $(x,z(x))\in I_0\times J_0$.

Тогда по определению интеграла $U(x,z(x))=\mathrm{const} \Rightarrow F(x,z(x))=0 \Rightarrow z(x)=y(x)$. \square

Дифференциальные уравнения с разделяющимися переменными

$$y' = m(x) \cdot n(y)$$

$$m \in C((a,b)), n \in C((\alpha,\beta))$$

$$G = (a,b) \times (\alpha,\beta)$$

• $y_0 \in (\alpha, \beta) n(y_0) = 0 \Rightarrow y \equiv y_0$

Проверяется подставнкой

• $I \subset (\alpha, \beta), n(y) \neq 0$ при $y \in I$

Подсказка:

Рассмотрим $y(x):(x,y(x))\in(a,b)\times I$ и отличную от 0 y'=m(x)n(y), на n(y) можно поделить

$$\frac{y'}{n(y(x))} = m(x), \int_{x_0}^x \frac{y'(t)dt}{n(y(t))} = \int_{x_0}^x m(t)dt.$$

Замена z = y(t)

$$\int_{y(x_0)}^{y(x)} \frac{dz}{n(z)} = \int_{x_0}^{x} m(t)dt,$$

Обозначим за N(y) и M(x) некоторые первообразные $\frac{1}{n(y)}$ и m(x) соответственно

$$N(y(x)) - N(y(x_0)) = M(x) - M(x_0)$$

 $U(x,y) := N(y) - M(x).$

Если y(x) – решение, то $U(x,y(x))=N(y(x_0))-M(x_0)$

$$\frac{\partial U}{\partial y} = \frac{1}{n(y)} \neq 0.$$

Поэтому U(x,y) – интеграл.

Предметный указатель

```
Дифференциальное уравнение, 3
1-го порядка, 3
Задача Коши, 3
Интеграл уравнения, 4
Интегральная кривая, 3
Коэффициент наклона, 4
Область
единственности, 4
существования, 4
Поле направлений, 4
Решение дифференциального уравнения, 3
Теорема
об интеграле для дифференциальных уравнений первого порядка, 5
Точка единственности, 3
```