CISC 372 T2 Review

	name	age	state	num_children	num_pets
0	john	23	iowa	2	0
1	mary	78	dc	2	4
2	peter	22	california	0	0
3	jeff	19	texas	1	5
4	bill	45	washington	2	0
5	lisa	33	dc	1	0

wild DATAFRAME appeared!

IT IS REWIND TIME

Calculator with "log" function

The following models are recommended.

- CASIO
 - fx-100MS, fx-115MS,
 - fx-260, fx-570MS,
 - fx-991MS, fx-992S
- SHARP
 - EL-510, EL-520,
 - EL-531, EL-546
 - Models extensions are acceptab

- We don't need calculator any more in the second test
- But you can use one if you want

Test #1

Please return the Quiz

- If you want to keep you can take pictures
- I need to keep the HARD copy for two years..

• I won't enter your grade if you don't return the copy..

Association Rule Mining

Apriori Algorithm

Confidence vs. Support vs. Lift (interestingness)

NB – Naïve Bayesian

- Decision Boundary
- Generative model
 - Can be either Parametric or non-parametric
 - Depends on how one models the class conditional probability
- Advantage:
 - Interpretable prediction
 - In most cases work well with small dataset
- Disadvantage:
 - Assume variable independence

Naïve Bayesian Classifier

```
P(C<sub>i</sub>): P(buys_computer = "yes") = 9/14 = 0.643
P(buys_computer = "no") = 5/14 = 0.357
```

X = (age <= 30, income = medium, student = yes, credit_rating = fair)

Compute $P(X | C_i)$ for each class

```
P(age = "<=30" | buys_computer = "yes") = 2/9 = 0.222
P(age = "<= 30" | buys_computer = "no") = 3/5 = 0.6
P(income = "medium" | buys_computer = "yes") = 4/9 = 0.444
P(income = "medium" | buys_computer = "no") = 2/5 = 0.4
P(student = "yes" | buys_computer = "yes) = 6/9 = 0.667
P(student = "yes" | buys_computer = "no") = 1/5 = 0.2
P(credit_rating = "fair" | buys_computer = "yes") = 6/9 = 0.667
P(credit_rating = "fair" | buys_computer = "no") = 2/5 = 0.4
```

age	income	<mark>student</mark>	redit_rating	_com
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

```
P(X|C_i): P(X|buys\_computer = "yes") = 0.222 x 0.444 x 0.667 x 0.667 = 0.044 
 <math>P(X|buys\_computer = "no") = 0.6 x 0.4 x 0.2 x 0.4 = 0.019
```

$$P(X|C_i)*P(C_i): P(X|buys_computer = "yes") \times P(buys_computer = "yes") = 0.028$$

 $P(X|buys_computer = "no") \times P(buys_computer = "no") = 0.007$

Naïve Bayesian – Decision Boundary

NB – Naïve Bayesian

- Decision Boundary
- Generative model
 - Can be either Parametric or non-parametric
 - Depends on how one models the class conditional probability
- Calculation

Clustering

- Partitioning Methods vs Hierarchical Methods
 - Difference
 - K-mean/K-Medoids/AGNES/DIANA
- K-mean vs K-Medoids (PAM)
 - Outlier?
 - Complexity?
- Agglomerative vs Divisive method
- Density-based Clustering

Clustering

- Partitioning Methods vs Hierarchical Methods
 - Difference
 - K-mean/K-Medoids/AGNES/DIANA
- K-mean vs K-Medoids (PAM)
 - Outlier?
 - Complexity?
- Agglomerative vs Divisive method

Density-based Clustering

- Two parameters:
 - ε: Maximum radius of the neighbourhood
 - *MinPts*: Minimum number of points in an ε -neighbourhood of that point
- $N_{\varepsilon}(q)$: { $p \mid dist(p,q) <= \varepsilon$ }

- Concepts:
 - Core point
 - Directly density reachable
 - Density reachable
 - Density-connected

DBSCAN

- Can detect outliers
- Can detect arbitrary shape clusters
- Does not need to know the number of clusters
- Resistant to noise
- Efficient (a single pass over the data points)
- Problem: need to define density

Tuning

- Three typical ways:
 - Grid search global optimization
 - Random search local optimal
 - Bayesian optimization local optimal

Text Analytics

- Understand the problem:
 - Many-to-one
 - Many-to-Many
- Preprocessing
 - Stemming
 - Case normalization
 - Stop words & Punctuation removal

Text Analytics

- Models
 - BOW
 - N-gram model
 - character n-gram model
 - N-gram vs. n-perm

Representation

- Term frequency (TF)
- Term_frequency / document_frequency (TF-IDF)

RNN

- Compared to n-gram, why RNN??
- Issues in RNN:
 - Long dependency
 - Gradient Vanishing/Explosion
- Cell implementation:
 - Vanilla vs. GRU vs. Attention vs. Multi-head Attention
 - Difference in design and why

Language Model

- Why we need language model
 - Foundation of various down-stream tasks
 - (translation etc.)
 - Foundation of representation learning
 - Foundation of semi-supervised learning
- N-gram modeling
 - The longer the context, the more coherent
 - Problem?
- Word2Vec: CBOW vs Skipgram (design difference)

What is Transformer

The Transformer – Attention is all you need

