la, leke linjart
b,
$$X_3$$
 [n] slacks of $(D_b = \pm \frac{3\pi}{4})$

$$\begin{aligned}
&+|(s) = \frac{1}{(s+2)(s+4)}, \quad X(s) = \frac{1}{s+2} \\
&+|(s) = \frac{1}{2} \cdot \frac{1}{(s+2)^2} - \frac{1}{4} \cdot \frac{1}{(s+2)} + \frac{1}{4} \cdot \frac{1}{(s+4)} \\
&+|(s) = \frac{1}{2} \cdot \frac{1}{(s+2)^2} - \frac{1}{4} \cdot \frac{1}{(s+2)} + \frac{1}{4} \cdot \frac{1}{(s+4)} \\
&+|(s) = \frac{1}{2} \cdot \frac{1}{(s+2)^2} - \frac{1}{4} \cdot \frac{1}{(s+2)} + \frac{1}{2} \cdot \frac{1}{(s+4)} \\
&+|(s) = \frac{1}{2} \cdot \frac{1}{(s+2)^2} - \frac{1}{4} \cdot \frac{1}{(s+2)} + \frac{1}{2} \cdot \frac{1}{(s+4)} \\
&+|(s) = \frac{1}{2} \cdot \frac{1}{(s+2)^2} - \frac{1}{4} \cdot \frac{1}{(s+2)} + \frac{1}{2} \cdot \frac{1}{(s+4)} \\
&+|(s) = \frac{1}{2} \cdot \frac{1}{(s+2)^2} - \frac{1}{4} \cdot \frac{1}{(s+2)} + \frac{1}{2} \cdot \frac{1}{(s+4)} \\
&+|(s) = \frac{1}{2} \cdot \frac{1}{(s+2)^2} - \frac{1}{2} \cdot \frac{1}{(s+2)^2} + \frac{1}{2} \cdot \frac{1}{(s+4)^2} + \frac{1}{2} \cdot \frac{1}{(s+4)^2} + \frac{1}{2} \cdot \frac{1}{(s+4)^2} \\
&+|(s) = \frac{1}{2} \cdot \frac{1}{(s+2)^2} - \frac{1}{2} \cdot \frac{1}{(s+2)^2} + \frac{1}{2} \cdot \frac{1}{(s+4)^2} + \frac{1}{2} \cdot \frac{1}{(s+4)^$$

$$\frac{3}{\sqrt{s(s)}} = \frac{z}{z-1} \cdot \frac{1}{z} \left(1 + \frac{z-1}{z-\frac{1}{3}} - \frac{z(z-1)}{z-\frac{1}{2}} \right)$$

$$\frac{1}{\sqrt{s(s)}} = \frac{z}{z-1} \cdot \frac{1}{\sqrt{z}} \left(1 + \frac{z-1}{z-\frac{1}{3}} - \frac{z(z-1)}{z-\frac{1}{2}} \right)$$

$$\frac{1}{\sqrt{s(s)}} = \frac{z}{z-1} \cdot \frac{1}{\sqrt{z}} \left(\frac{1}{z} \right)^n - \left(\frac{1}{3} \right)^n \right] u[n]$$

$$\frac{1}{\sqrt{s(s)}} = \frac{z}{z-1} \cdot \frac{1}{\sqrt{z}} \left(\frac{1}{z} \right)^n - \left(\frac{1}{3} \right)^n \right] u[n]$$

$$4/a$$
 k
 $N-k$
 b
 5
 5
 $17/0$
 5
 5
 1795
 5
 1795
 1795
 1847

5/
$$|\mathcal{B}_{1}^{Y}| = |\mathcal{B}_{1}^{X}| \cdot |\mathcal{G}(i\omega)|_{\omega = \omega_{0}} = \frac{Z}{\pi} \cdot 0.164$$

 $|\mathcal{B}_{2}^{Y}| = |\mathcal{B}_{2}^{X}| \cdot |\mathcal{G}(i\omega)|_{\omega = Z\omega_{0}} = \frac{1}{\pi} \cdot 1$
 $|\mathcal{B}_{3}^{Y}| = \frac{Z}{3\pi} \cdot 0.287$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$x(t) = \frac{1}{2}$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

$$|a| \quad X_{i}(t) = y(t-2\pi) - \frac{1}{2} \quad \forall t$$

by
$$X_2 [n+N] = 3 cos (\frac{(n+N)\#}{3} - 7) =$$

$$= 3 cos (\frac{n}{3} - 7 + \frac{N}{3})$$

Insignal	Utsignal
	X, [7n] = Y, [n]
a, x, [n]	$a_1x_1[7n] = a_1y_1[n]$
X ₂ [n]	X2[7n] = Y2[n]
$a_2 \times_2 [n]$	$a_2 \times 2[7n] = a_2 \times 2[n]$
X3 [n] =	
$= a_1 X_1[n] + a_2 X_2[n]$	$y_3[n] = x_3[7n] = a_1x_1[7n] + a_2x_2[7n] =$
	$= a_1 \times [n] + a_2 \times [n]$
	·

Linjart? Ja!

2/ de v. (e) 2 ctvete + 1 v. (t) = 1 v. (t)

Replace hereof.

So
$$V_{c}(s) + s$$
 $V_{c}(s) + 1$ $V_{c}(s) = 1$ $V_{c}(s)$

A $V_{c}(s) + s$ $V_{c}(s) + 1$ $V_{c}(s) = 1$ $V_{c}(s)$

A $V_{c}(s) + s$ $V_{c}(s) + 1$ $V_{c}(s) = 1$ $V_{c}(s)$

A $V_{c}(s) + s$ $V_{c}(s) + 1$ $V_{c}(s) = 1$ $V_{c}(s)$

A $V_{c}(s) + s$ $V_{c}(s) + 1$ $V_{c}(s) = 1$ $V_{c}(s)$

A $V_{c}(s) + s$ $V_{c}(s) + 1$ $V_{c}(s) = 1$ $V_{c}(s)$

B $V_{c}(s) + s$ $V_{c}(s) + s$ $V_{c}(s) + s$ $V_{c}(s) = 1$ $V_{c}(s)$

B $V_{c}(s) + s$ $V_{c}(s) + s$ $V_{c}(s) + s$ $V_{c}(s) = 1$ $V_{c}(s)$

B $V_{c}(s) + s$ $V_{c}(s$

$$\frac{3}{\sqrt{\frac{1}{1}}} \ln \frac{1}{3} \ln \frac{1}{1} + \frac{4}{2} \ln \frac{1}{2} \ln \frac{1}{2} = \frac{1}{2} \ln \frac{1}{3} \ln \frac{1}{3} + \frac{2}{2} \ln \frac{1}{3} + \frac{2}{3} \ln \frac{1}{3} + \frac{2}{$$

Ty Kausalt system samt polar till H(2) ligger innanför enhelscirkeln | Z/ 2 < 1 | 2/ 3 < 1

4,	Samplingsi ⇒ Samplin	nfervall T= 6,2 qs fireteners fs	25 ms = 160 Hz	
	DFT ,	N=64 punka	er X[k],	05 K N-1
:	Indax k	motswar fre	kvenson fr = k	fs
,	Vilket k	- värde mot.	svarar de angiv	na frekvenserna
	r	" K"	"N-k"	I Gur?
	+ [Hz]	fs N		
	16	64	57,6	Ja
	32	(12,8)	51,2	Ja
	48	19,2	44.8	Nej
	64	25,6	38,4	Ja
	80	32	32 Nej	=fs/2 ei i fiq wen tre toppan +fs/2 finns
Management of the second of th	96	38,4	(25,6)	Ja
	1.12.	44,8	19,2	Nej
	128	51,2	(12,8)	Ja
	144	57,6	(6,4)	Ja
	Carola	1 -11 >) 11 4 -	
<u> </u>	e recense	er med et i	nringat "k"-var nalen som san	rcle
<u>/</u>	on finnes 1	med i insign	Naven Som San	nplas.
			le till "k" han	
1	do IXLES	1 ett nogt va	àrde (en "topp"),

5.
$$\hat{X}(t) = A_0 + \sum_{n=1}^{\infty} (A_n \cos(n\omega t) + B_n \sin(n\omega t)) = \frac{2}{4\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin(n\frac{\pi}{L}t) \quad \Rightarrow \quad A_n = 0 \quad \forall n$$

$$B_n = \frac{2}{4\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \quad B_n = \frac{2}{4\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

$$B_1 = \frac{2}{4\pi} \quad B_2 = \frac{1}{4\pi} \quad B_3 = \frac{2}{3\pi} \quad \omega_0 = \frac{2\pi}{L} = \frac{2\pi}{L0} \quad S$$

$$Systemets \quad \text{frekvenssuar} \quad \omega_0 = \frac{2\pi}{L} = 10 \quad \text{r/s}$$

$$(q(j\omega)) = G(s)|_{s=j\omega} = \frac{400}{(j\omega+20)^2}$$

$$Amplitud \quad \text{kunicheristic} \quad |G(j\omega)| = \frac{400}{\omega^2 + 20^2}$$

$$Amplitud \quad \text{hos observal} \quad \text{(fre lögsta frekvensenna)}$$

$$[n=1] \quad \omega = \omega_0 = 10$$

$$B_1 = \frac{2}{4\pi} \quad B_1 = \frac{2}{L} \quad B_2 = \frac{2}{L} \quad B_3 = \frac{2}{L} \quad B_4 = \frac{2}{$$

$$|B_1^{Y} = |B_1| \cdot |G(j\omega_0)| = \frac{2}{4!} \cdot \frac{400}{10^2 + 20^2} = \frac{8}{4!} \cdot 0.8 = \frac{8}{5} \approx 0.509$$

$$|N = 2| \qquad \omega = 2\omega_0 = 20$$

$$|B_2^{Y} = |B_2| |G(j2\omega_0)| = \frac{1}{4!} \cdot \frac{400}{20^2 + 20^2} = \frac{1}{4!} \cdot \frac{1}{2} \approx 0.159$$

$$|n=3| \qquad \omega = 3\omega_0 = 30$$

$$|B_3| = |B_3| |G(j3\omega_0)| = \frac{2}{3\pi} \cdot \frac{400}{20^2 + 30^2} = \frac{2}{3\pi} \cdot \frac{4}{13} \approx 0.065$$

Transformer, Signalar & Syslem 454080 03 120829

Överlap börjar dä $T = -1 + t = 3 \Rightarrow t = 4$ Överlap avslulas dä $T = -2 + t = 5 \Rightarrow t = 7$ Överlap som ger max $X_i(t) * X_2(t) : T = -1 + t = 5 \Rightarrow t = 6$

Svar; ay 4<t<7 by t=6

2.
$$H(j\omega) = \frac{j\omega}{2\pi} \frac{T_0}{2\pi}$$

$$\left(\frac{1}{2\pi} \frac{T_0}{2\pi}\right)^2 + j\omega \frac{T_0}{2\pi} + 1$$

Periodfid

Grundvinkelhetu, wo=

$$H(j\omega) = \frac{j\omega_0}{1 - (\omega_0)^2 + j\omega_0}$$

$$\frac{1}{\sqrt{1+k^4-k^2}}$$

$$X(t) = \sum_{k=1,3,5,\dots}^{\infty} \frac{8}{(k\pi)^2} \cos(k\omega_0 t) \qquad \operatorname{arg}\{H_{ik}\omega_0\} = 90^{\circ} - \operatorname{arclam}\{\frac{k}{1-k^2}\}$$

tiltref (systemet) H paverkar amplifuel och fors hos

voije sinuspimed signal i XII) entist

$$y(t) = \frac{8}{2! (k\pi)^2! H(jkw_0)} \cos(kw_0 t + avg_0! H(jkw_0)})$$

$$k = 1,3,5,...$$

K	W	AŁ	₽ _k
	Wo	8 8 H2' 92	90° = anchum/" (") = 0
3	3 w	$\frac{8 \cdot 1^{2}}{9^{2} \cdot 3^{2}} \sqrt{1+3^{9}-3^{2}} = \frac{8}{9^{2}} \cdot 0.039$	90°-arcton (=8) = -69,4°
5	5 w	8, 1 5 = 8, 87.103 Hr 5 1 +5-5 H2 87.103	90° -arctan $\left(\frac{5}{-24}\right) = -78.2^{\circ}$

3,
$$\frac{d^{2}}{dt^{2}} + 3 \frac{dy_{1}(t)}{dt^{2}} + 2y_{1}(t) = 3x_{1}t + \frac{dy_{1}(t)}{dt^{2}}$$
 $\frac{d^{2}}{dt^{2}} + 3 \frac{dy_{1}(t)}{dt^{2}} + 2y_{1}(t) = 3x_{1}t + \frac{dy_{1}(t)}{dt^{2}}$
 $\frac{d^{2}}{dt^{2}} + 3x_{1}t + 2y_{1}(t) = 3x_{1}t + \frac{dy_{1}(t)}{dt^{2}}$
 $\frac{d^{2}}{dt^{2}} + 3x_{1}t + 2y_{1}(t) = 3x_{1}t + 2y_{1}t + 2y_{1$

AIL:
$$h_1(t) = J^{-1} \{ H_1(s) \}$$

 $h(t) = \int h_1(x) dx$

$$H(z) = \frac{V(z)}{Z(z)} = \frac{2+z^{-1}}{1+z^{-1}} = \frac{2z+1}{z+z^{-1}}$$

$$X[n] = (\frac{1}{2})^{n-1} U[n-1] \xrightarrow{Z} Z(2) = \frac{Z}{Z-\frac{1}{2}} = \frac{1}{Z-\frac{1}{2}}$$

$$Y(2) = H(2)X(2) = \frac{2z+1}{(z+\frac{1}{3})(z-\frac{1}{2})} = \frac{2z+1}{(z^2-\frac{7}{6}-\frac{1}{6})}$$

Teckna
$$\frac{Y(z)}{Z} = \frac{Zz+1}{Z(z+\frac{1}{2})(z-\frac{1}{2})}$$
 Partial brakes uppdelar

$$\frac{ZZ+1}{Z(Z+\frac{1}{2})(Z-\frac{1}{2})} \xrightarrow{A} \xrightarrow{B} C$$

$$2z+1 = A(2-2-6-6) + Bz(2-2) + Cz(2+\frac{1}{3})$$

$$z^{\circ}; 1 = A(-\frac{1}{6}) \Rightarrow A = -6$$

$$z'; 2 = -\frac{1}{6}A - \frac{1}{2}B + \frac{1}{3}C$$

$$z^{\circ}; 0 = A+B+C$$

$$C = -A-B=6-B$$

$$C = 4.8$$

$$\frac{Y(2) = -6 + 1.2 \frac{2}{z + 1/3} + 4.8 \frac{z}{z - \frac{1}{2}}}{[\text{nvers } z - \text{franof.} y[n] = -68[n] + [1.2(-\frac{1}{3}) + 4.8(\frac{1}{2})]} u[n]$$

Samplings fretuens (= 8000 Hz 5. Ws = ZAFF r/s To = 2t = 1 Sampelintervall DFT: N=256 punkler I[K], K=0,1,1,N-1 Index k motsvarar trekvensen Ur figurer ser vi att trå k-värden ger höga IXIKI K=25 → f= 25 1000 = 781 Hz Frekvensupplösning i DFT: of= +5 = 31,25 Hz Från tabellen ser vi alt bästa överens-Stämmelse fås för knapp "5", Stämmelse fås för knapp 781 ligger i internallet 770 ± of 344 -4- -4- 1336 ± of