

WE CLAIM:

1. A process for the preparation of a compound of Formula (IV):

comprising:

- (1) contacting a compound of Formula (I):

with an acyl halide of Formula $\text{Q}-\text{C}(=\text{O})\text{X}$, wherein:

Q is $2-(\text{R}^1\text{CH}_2\text{CO}_2)\text{phenyl-}$, R^1CH_2- , or $\text{R}^1\text{CH}_2\text{C}(=\text{O})\text{OC}(\text{R}^2)_2-$;

X is Cl, Br, or I;

R^1 is H or C_1-C_6 alkyl;

R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl;

in a suitable polar aprotic solvent to form a compound of Formula (II), a

compound of Formula (II*), or a mixture of compounds of Formula (II) and (II*):

wherein R^3 is X ; and R^4 is $\text{R}^1\text{CH}_2\text{C}(=\text{O})\text{O}-$;

(2) contacting the compound of Formula (II), the compound of Formula (II*), or the mixture of compounds of Formula (II) and (II*); with a suitable reducing agent in a suitable polar solvent, optionally in the presence of a suitable acid catalyst, to form a compound of Formula (III):

(III); and

(3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

2. The process of Claim 1 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the suitable reducing agent is selected from the group consisting of:

Fe, Zn-Cu couple and Zn;

in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate,

butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

3. The process according to Claim 1, for the preparation of a compound of Formula (IV):

comprising:

- (1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(II-a)

(II*-a)

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with a suitable reducing agent in a suitable polar solvent, optionally in the presence of a suitable acid catalyst, to form a compound of Formula (III-a):

(III-a); and

(3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

4. The process of Claim 3 for the preparation of a compound of Formula (IV), wherein:
- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate,

sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

5. The process of Claim 4 for the preparation of a compound of Formula (IV), wherein:
- in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;
- in step (2), the suitable reducing agent is Zn-Cu couple;
- in step (2), the suitable acid catalyst, when present, is acetic acid;
- in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and
- in step (3) the suitable base is sodium methoxide.
6. The process according to Claim 5, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a), a

compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(II-a)

(II*-a)

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (III-a):

(III-a); and

(3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

7. The process of Claim 1 for the preparation of a compound of Formula (IV):

(IV)

comprising:

(1) contacting a compound of Formula (I):

(I)

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is $R^1\text{CH}_2\text{C}(=\text{O})\text{OC}(R^2)_2-$;

X is Cl, Br, or I;

R^1 is H, CH₃, CH₂CH₃, or CH₂CH₂CH₃;

R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl;

in a suitable polar aprotic solvent to form a compound of Formula (II) or a

compound of Formula (II*):

(II)

(II*)

wherein R^3 is X; and R^4 is $R^1\text{CH}_2\text{C}(=\text{O})\text{O}-$;

(2) contacting the compound of Formula (II) or the compound of Formula (II*) with a suitable reducing agent in a suitable polar solvent, optionally in the presence of a suitable acid catalyst, to form a compound of Formula (III):

(III); and

(3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

8. The process of Claim 7 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises

one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the suitable reducing agent is selected from the group consisting of:

Fe, Zn-Cu couple and Zn;

in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises

one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and

in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

9. The process according to Claim 7, for the preparation of a compound of Formula (IV):

comprising:

- (1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a) or a compound of Formula (II*-a):

(II-a)

(II*-a)

- (2) contacting the compound of Formula (II-a) or the compound of Formula (II*-a) with a suitable reducing agent in a suitable polar solvent, optionally in the presence of a suitable acid catalyst, to form a compound of Formula (III-a):

(III-a); and

- (3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).
10. The process of Claim 9 for the preparation of a compound of Formula (IV), wherein:
- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
- in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.
11. The process of Claim 10 for the preparation of a compound of Formula (IV), wherein:
- in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;
- in step (2), the suitable reducing agent is Zn-Cu couple;
- in step (2), the suitable acid catalyst, when present, is acetic acid;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and
in step (3) the suitable base is sodium methoxide.

12. The process according to Claim 11, for the preparation of a compound of Formula (IV):

comprising:

- (1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a) or a compound of Formula (II*-a):

(II-a)

(II*-a)

- (2) contacting the compound of Formula (II-a) or the compound of Formula (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of

methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (III-a):

(III-a); and

(3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

13. The process of Claim 1 for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is $R^1CH_2C(=O)OC(R^2)_2-$;

X is Cl, Br, or I;

R^1 is H, CH₃, CH₂CH₃, or CH₂CH₂CH₃;

R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl;

in a suitable polar aprotic solvent to form a mixture of compounds of Formula (II) and (II*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the mixture of compounds of Formula (II) and (II*) with a suitable reducing agent in a suitable polar solvent, optionally in the presence of a suitable acid catalyst, to form a compound of Formula (III):

(III); and

(3) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

14. The process of Claim 13 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the suitable reducing agent is selected from the group consisting of:

Fe, Zn-Cu couple and Zn;

in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and

in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

15. The process according to Claim 13, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the mixture of compounds of Formula (II-a) and (II*-a) with a suitable reducing agent in a suitable polar solvent, optionally in the presence of a suitable acid catalyst, to form a compound of Formula (III-a):

(3) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

16. The process of Claim 15 for the preparation of a compound of Formula (IV), wherein:
- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and

in step (3) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

17. The process of Claim 16 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;

in step (2), the suitable reducing agent is Zn-Cu couple;

in step (2), the suitable acid catalyst, when present, is acetic acid;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate; and

in step (3) the suitable base is sodium methoxide.

18. The process according to Claim 17, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (I):

(I)

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a mixture of compounds of Formula (II-a) and (II*-a):

(II-a)

(II*-a)

(2) contacting the mixture of compounds of Formula (II-a) and (II*-a) with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (III-a):

(III-a); and

(3) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

19. A process for the preparation of a compound of Formula (III):

wherein:

Q is $2-(\text{R}^1\text{CH}_2\text{CO}_2)\text{phenyl-}$, R^1CH_2- , or $\text{R}^1\text{CH}_2\text{C}(=\text{O})\text{OC}(\text{R}^2)_2-$;

R^1 is H or C₁-C₆ alkyl;

R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl;

comprising:

(1) contacting a compound of Formula (I):

(I)

with an acyl halide of Formula $\text{Q}-\text{C}(=\text{O})\text{X}$, wherein:

Q is $2-(\text{R}^1\text{CH}_2\text{CO}_2)\text{phenyl-}$, R^1CH_2- , or $\text{R}^1\text{CH}_2\text{C}(=\text{O})\text{OC}(\text{R}^2)_2-$;

X is Cl, Br, or I;

R^1 is H or C₁-C₆ alkyl;

R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl;

in a suitable polar aprotic solvent to form a compound of Formula (II), a

compound of Formula (II*), or a mixture of compounds of Formula (II) and (II*):

(II)

(II*)

- wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-; and
(2) contacting the compound of Formula (II), the compound of Formula (II*), or the mixture of compounds of Formula (II) and (II*); with a suitable reducing agent in a suitable polar solvent, optionally in the presence of a suitable acid catalyst, to form a compound of Formula (III).
20. The process of Claim 19 for the preparation of a compound of Formula (III), wherein:
in step (1) the acyl halide of Formula Q-C(=O)X comprises:
2-acetoxy-2-methyl-propionyl bromide, 2-(acetoxy)-2-methyl-butanoyl bromide, 2-(acetoxy)-2-ethyl-butanoyl bromide, or 2-(acetoxy)-2-methyl-pentanoyl bromide;
in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄; and
in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether.
21. The process according to Claim 19, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (I):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with a suitable reducing agent in a suitable polar solvent, optionally in the presence of a suitable acid catalyst, to form a compound of Formula (III-a).

22. The process of Claim 21 for the preparation of a compound of Formula (III-a), wherein:
in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl

- methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the suitable reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the suitable acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄; and
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether.
23. The process of Claim 22 for the preparation of a compound of Formula (III-a), wherein:
- in step (1), the suitable polar aprotic solvent comprises a combination of acetonitrile and ethyl acetate;
- in step (2), the suitable reducing agent is Zn-Cu couple;
- in step (2), the suitable acid catalyst, when present, is acetic acid; and
- in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate.
24. The process according to Claim 23, for the preparation of a compound of Formula (III-a):

(III-a)

comprising:

(1) contacting a compound of Formula (I):

(I)

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent comprising a combination of acetonitrile and ethyl acetate, wherein the ratio of acetonitrile to ethyl acetate is 1:4; to form a compound of Formula (II-a), a compound of Formula (II*-a), or a mixture of compounds of Formula (II-a) and (II*-a):

(II-a)

(II*-a)

(2) contacting the compound of Formula (II-a), the compound of Formula (II*-a), or the mixture of compounds of Formula (II-a) and (II*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (III-a).

25. A compound of Formula (II) or (II*):

(II)

(II*)

or a pharmaceutically acceptable salt thereof, wherein:

Q is R^1CH_2- or $R^1CH_2C(=O)OC(R^2)_2-$;

R¹ is H or C₁-C₆ alkyl;

R^2 is independently selected from methyl, ethyl, and propyl;

R^3 is Cl, Br, or I; and

R^4 is $R^1CH_2C(=O)O-$.

26. A compound of Claim 25 of Formula (II-a) or (II*-a):

(III-a)

(II*-a)

or a pharmaceutically acceptable salt thereof.

- ### 27. A compound of Formula (III):

(III)

or a pharmaceutically acceptable salt thereof, wherein:

Q is R^1CH_2- or $R^1CH_2C(=O)OC(R^2)_2-$;

R¹ is H or C₁-C₆ alkyl; and

R^2 is independently selected from methyl, ethyl, and propyl.

28. A compound of Claim 27 of Formula (III-a):

(III-a)

or a pharmaceutically acceptable salt thereof.

29. A process for the preparation of a compound of Formula (IV):

(IV)

comprising:

- (1) contacting a compound of Formula (IV):

(V)

with an acyl halide of Formula $\text{Q}-\text{C}(=\text{O})\text{X}$, wherein:

Q is $2-(\text{R}^1\text{CH}_2\text{CO}_2)\text{phenyl-}$, R^1CH_2- , or $\text{R}^1\text{CH}_2\text{C}(=\text{O})\text{OC}(\text{R}^2)_2-$;

X is Cl , Br , or IV ;

R^1 is H or $\text{C}_1\text{-C}_6$ alkyl;

R^2 , at each occurrence, is independently selected from methyl, ethyl, and propyl;

in a suitable polar aprotic solvent to form a compound of Formula (VI), a

compound of Formula (VI*), or a mixture of compounds of Formula (VI) and

(VI*):

(VI)

(VI*)

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the compound of Formula (VI), the compound of Formula (VI*), or the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, optionally in the presence of an acid catalyst, to form a compound of Formula (VII):

(VII);

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

(VIII)

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III),

; and

(III)

(4) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

30. The process of Claim 29 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

- 2-acetoxy-2-methyl-propionyl bromide,
- 2-(acetoxy)-2-methyl-butanoyl bromide,
- 2-(acetoxy)-2-ethyl-butanoyl bromide, or
- 2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents, and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

in step (3a) the activating agent is selected from the group consisting of:
methanesulfonyl chloride, trifluoromethyl sulfonyl chloride,
ethanesulfonyl chloride, benzenesulfonyl chloride,
p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of:
triethylamine, tributylamine,
N-methylmorpholine, N,N-diisopropyl-ethylamine,
N,N-dimethylcyclohexylamine,
N,N-diethylcyclohexylamine,
N,N-dimethyloctylamine, tetramethylethylenediamine,
pyridine, N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane,
1,8-diazabicyclo[5.4.0]undec-7-ene, and
1,5-diazabicyclo[4.3.0]non-5-ene;

in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;

in step (3b) the aminating agent is selected

from the group consisting of: NH₃, ammonium hydroxide, and ammonium carbonate; and

in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

31. The process according to Claim 29, for the preparation of a compound of Formula (IV):

comprising:

- (1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(VI-a)

(VI*-a)

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, optionally in the presence of an acid catalyst, to form a compound of Formula (VII-a):

(VII-a);

(3a) contacting the compound of Formula (VII-a) with an activating agent selected from the group consisting of:

- i) an aryl sulfonyl halide,
- ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride;

in the presence of an amine base, to form a compound of Formula (VIII-a);

(VIII-a)

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a),

and

(4) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

32. The process of Claim 31 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

in step (3a) the activating agent is selected from the group consisting of: methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride,

p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of:

triethylamine, tributylamine,

N-methylmorpholine, N,N-diisopropyl-ethylamine,

tetramethylethylenediamine, pyridine,

N,N-dimethyl-aminopyridine,

1,4-diazabicyclo[2.2.2]octane, and

1,8-diazabicyclo[5.4.0]undec-7-ene;

in step (3a) the leaving group LG is selected from the group consisting of

methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy,

benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;

in step (3b) the aminating agent is selected

from the group: NH₃, ammonium hydroxide, and ammonium carbonate;

and

in step (4) the suitable base is selected from the group consisting of: sodium

hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate,

sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine,

ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

33. The process of Claim 32 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile;

in step (2), the reducing agent is Zn-Cu couple;

in step (2), the acid catalyst, when present, is acetic acid;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;

in step (3a) the activating agent is triazole/phosphorus oxychloride;

in step (3a) the amine base is triethylamine;

in step (3a) the leaving group LG is triazolyl;

in step (3b), the aminating agent is NH₃; and

in step (4) the suitable base is sodium methoxide.

34. The process according to Claim 33, for the preparation of a compound of Formula (IV):

comprising:

- (1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

- (2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (VII-a):

(VII-a);

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

(VIII-a);

(3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of Formula (III-a), and

(4) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

35. The process of Claim 29 for the preparation of a compound of Formula (IV):

(IV)

comprising:

(1) contacting a compound of Formula (V):

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2-(R¹CH₂CO₂)phenyl-, R¹CH₂-; or R¹CH₂C(=O)OC(R²)₂-;

X is Cl, Br, or IV;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl; in a suitable polar aprotic solvent to form a mixture of compounds of Formula (VI) and (VI*):

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, optionally in the presence of an acid catalyst, to form a compound of Formula (VII):

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III),

(III)

(4) contacting the compound of Formula (III) with a suitable base to form the compound of Formula (IV).

- 36.** The process of Claim 35 for the preparation of a compound of Formula (IV), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,
2-(acetoxy)-2-methyl-butanoyl bromide,
2-(acetoxy)-2-ethyl-butanoyl bromide, or
2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents, and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

in step (3a) the activating agent is selected from the group consisting of:
methanesulfonyl chloride, trifluoromethyl sulfonyl chloride,
ethanesulfonyl chloride, benzenesulfonyl chloride,
p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of:
triethylamine, tributylamine,
N-methylmorpholine, N,N-diisopropyl-ethylamine,
N,N-dimethylcyclohexylamine,
N,N-diethylcyclohexylamine,
N,N-dimethyloctylamine, tetramethylethylenediamine,
pyridine, N,N-dimethyl-aminopyridine,
1,4-diazabicyclo[2.2.2]octane,
1,8-diazabicyclo[5.4.0]undec-7-ene, and
1,5-diazabicyclo[4.3.0]non-5-ene;

in step (3a) the leaving group LG is selected from the group consisting of
methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy,
benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;

in step (3b) the aminating agent is selected from the group consisting of: NH₃, ammonium hydroxide, and ammonium carbonate; and

in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

37. The process according to Claim 35, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a mixture of compounds of Formula (VI-a) and (VI*-a):

(2) contacting the mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, optionally in the presence of an acid catalyst, to form a compound of Formula (VII-a):

(VII-a);

(3a) contacting the compound of Formula (VII-a) with a activating agent selected from the group consisting of:

- i) an aryl sulfonyl halide,
- ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride;

in the presence of an amine base, to form a compound of Formula (VIII-a);

(VIII-a)

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a),

(III-a)

and

(4) contacting the compound of Formula (III-a) with a suitable base to form the compound of Formula (IV).

38. The process of Claim 37 for the preparation of a compound of Formula (IV), wherein:
- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
- in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
- in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
- in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;
- in step (3a) the activating agent is selected from the group consisting of: methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride, p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and triazole/diphenyl chloro-phosphate;
- in step (3a) the amine base is selected from the group consisting of: triethylamine, tributylamine, N-methylmorpholine, N,N-diisopropyl-ethylamine, tetramethylethylenediamine, pyridine, N,N-dimethyl-aminopyridine, 1,4-diazabicyclo[2.2.2]octane, and 1,8-diazabicyclo[5.4.0]undec-7-ene;
- in step (3a) the leaving group LG is selected from the group consisting of methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy, benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;

in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate; and

in step (4) the suitable base is selected from the group consisting of: sodium hydroxide, lithium hydroxide, potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, C₃-C₆ alkyl primary amine, ammonium hydroxide, and ammonium C₁-C₆ alkoxide.

39. The process of Claim 38 for the preparation of a compound of Formula (IV), wherein:

in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile;

in step (2), the reducing agent is Zn-Cu couple;

in step (2), the acid catalyst, when present, is acetic acid;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;

in step (3a) the activating agent is triazole/phosphorus oxychloride;

in step (3a) the amine base is triethylamine;

in step (3a) the leaving group LG is triazolyl;

in step (3b), the aminating agent is NH₃; and

in step (4) the suitable base is sodium methoxide.

40. The process according to Claim 39, for the preparation of a compound of Formula (IV):

comprising:

(1) contacting a compound of Formula (V):

(V)

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a mixture of compounds of Formula (VI-a) and

(VI*-a):

(VI-a)

(VI*-a)

(2) contacting the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (VII-a):

(VII-a);

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

(3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of Formula (III-a), and

(4) contacting the compound of Formula (III-a) with sodium methoxide to form the compound of Formula (IV).

41. A process for the preparation of a compound of Formula (III):

wherein:

Q is 2-(R¹CH₂CO₂)phenyl-, R¹CH₂- or R¹CH₂C(=O)OC(R²)₂-;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl;
comprising:

(1) contacting a compound of Formula (V):

(V)

with an acyl halide of Formula Q-C(=O)X, wherein:

Q is 2-(R¹CH₂CO₂)phenyl-, R¹CH₂-; or R¹CH₂C(=O)OC(R²)₂-;

X is Cl, Br, or IV;

R¹ is H or C₁-C₆ alkyl;

R², at each occurrence, is independently selected from methyl, ethyl, and propyl;

in a suitable polar aprotic solvent to form a compound of Formula (VI), a

compound of Formula (VI*), or a mixture of compounds of Formula (VI) and

(VI*):

(VI)

(VI*)

wherein R³ is X; and R⁴ is R¹CH₂C(=O)O-;

(2) contacting the compound of Formula (VI), the compound of Formula (VI*), or the mixture of compounds of Formula (VI) and (VI*); with a reducing agent in a suitable polar solvent, optionally in the presence of an acid catalyst, to form a compound of Formula (VII):

(VII);

(3a) contacting the compound of Formula (VII) with an activating agent in the presence of an amine base, to form a compound of Formula (VIII):

(VIII)

wherein LG is a leaving group derived from the activating agent;

(3b) contacting the compound of Formula (VIII) with an aminating agent to form a compound of Formula (III).

42. The process of Claim 41 for the preparation of a compound of Formula (III), wherein:

in step (1) the acyl halide of Formula Q-C(=O)X comprises:

2-acetoxy-2-methyl-propionyl bromide,

2-(acetoxy)-2-methyl-butanoyl bromide,

2-(acetoxy)-2-ethyl-butanoyl bromide, or

2-(acetoxy)-2-methyl-pentanoyl bromide;

in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;

in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;

in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;

in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group

consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether;

in step (3a) the activating agent is selected from the group consisting of:

methanesulfonyl chloride, trifluoromethyl sulfonyl chloride,
ethanesulfonyl chloride, benzenesulfonyl chloride,
p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and
triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of:

triethylamine, tributylamine,
N-methylmorpholine, N,N-diisopropyl-ethylamine,
N,N-dimethylcyclohexylamine,
N,N-diethylcyclohexylamine,
N,N-dimethyloctylamine, tetramethylethylenediamine,
pyridine, N,N-dimethyl-aminopyridine,
1,4-diazabicyclo[2.2.2]octane,
1,8-diazabicyclo[5.4.0]undec-7-ene, and
1,5-diazabicyclo[4.3.0]non-5-ene;

in step (3a) the leaving group LG is selected from the group consisting of

methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy,
benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl;

in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate.

43. The process according to Claim 41, for the preparation of a compound of Formula (III-a):

comprising:

- (1) contacting a compound of Formula (V):

(V)

with 2-acetoxy-2-methyl-propionyl bromide in a suitable polar aprotic solvent to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(VI-a)

(VI*-a)

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with a reducing agent in a suitable polar solvent, optionally in the presence of an acid catalyst, to form a compound of Formula (VII-a);

(VII-a);

(3a) contacting the compound of Formula (VII-a) with a activating agent selected from the group consisting of:

- i) an aryl sulfonyl halide,
- ii) an alkyl sulfonyl halide, and
- iii) 1,2,4-triazole in the presence of a phosphorus chloride;

in the presence of an amine base, to form a compound of Formula (VIII-a):

(VIII-a)

wherein LG is a leaving group derived from the activating agent; and

(3b) contacting the compound of Formula (VIII-a) with an aminating agent to form a compound of Formula (III-a).

- 44.** The process of Claim 43 for the preparation of a compound of Formula (III-a), wherein:
- in step (1), the suitable polar aprotic solvent comprises one polar aprotic solvent or a combination of two or more polar aprotic solvents; and is selected from the group consisting of: methylene chloride, tetrahydrofuran, t-butyl methyl ether, dimethoxy ethane, 2-methoxyethyl ether, dimethylformamide, dimethylacetamide, acetonitrile, ethyl acetate, and isopropyl acetate;
 - in step (2), the reducing agent is selected from the group consisting of: Fe, Zn-Cu couple and Zn;
 - in step (2), the acid catalyst, when present, is selected from the group consisting of: acetic acid, propanoic acid, butyric acid, benzoic acid, toluene sulfonic acid, HCl, HBr, HI, and H₂SO₄;
 - in step (2), the suitable polar solvent comprises one polar solvent or a combination of two or more polar solvents; and is selected from the group consisting of: methanol, ethanol, propanol, ethyl acetate, propyl acetate, butyl acetate, isopropyl acetate, acetonitrile, tetrahydrofuran, dimethoxy ethane, and 2-methoxyethyl ether; and
 - in step (3a) the activating agent is selected from the group consisting of: methanesulfonyl chloride, trifluoromethyl sulfonyl chloride, ethanesulfonyl chloride, benzenesulfonyl chloride, p-toluene-sulfonyl chloride, triazole/phosphorus oxychloride and triazole/diphenyl chloro-phosphate;

in step (3a) the amine base is selected from the group consisting of:

triethylamine, tributylamine,
N-methylmorpholine, N,N-diisopropyl-ethylamine,
tetramethylethylenediamine, pyridine,
N,N-dimethyl-aminopyridine,
1,4-diazabicyclo[2.2.2]octane, and
1,8-diazabicyclo[5.4.0]undec-7-ene;

in step (3a) the leaving group LG is selected from the group consisting of

methanesulfonyloxy, trifluoromethyl-sulfonyloxy, ethanesulfonyloxy,
benzenesulfonyloxy, toluenesulfonyloxy, and triazolyl; and

in step (3b) the aminating agent is selected from the group: NH₃, ammonium hydroxide, and ammonium carbonate.

- 45.** The process of Claim 44 for the preparation of a compound of Formula (III-a), wherein:

in step (1), the suitable polar aprotic solvent comprises one solvent which is acetonitrile;

in step (2), the reducing agent is Zn-Cu couple;

in step (2), the acid catalyst, when present, is acetic acid;

in step (2), the suitable polar solvent comprises a combination of methanol and ethyl acetate;

in step (3a) the activating agent is triazole/phosphorus oxychloride;

in step (3a) the amine base is triethylamine;

in step (3a) the leaving group LG is triazolyl; and

in step (3b), the aminating agent is NH₃.

- 46.** The process according to Claim 45, for the preparation of a compound of Formula (III-a):

comprising:

(1) contacting a compound of Formula (V):

(V)

with 2-acetoxy-2-methyl-propionyl bromide in acetonitrile to form a compound of Formula (VI-a), a compound of Formula (VI*-a), or a mixture of compounds of Formula (VI-a) and (VI*-a):

(VI-a)

(VI*-a)

(2) contacting the compound of Formula (VI-a), the compound of Formula (VI*-a), or the mixture of compounds of Formula (VI-a) and (VI*-a); with Zn-Cu couple in a suitable polar solvent comprising a combination of methanol and ethyl acetate, wherein the ratio of methanol to ethyl acetate is in the range of 1:2 to 1:4; optionally in the presence of acetic acid, to form a compound of Formula (VII-a):

(VII-a);

(3a) contacting the compound of Formula (VII-a) with 1,2,4-triazole/phosphorus oxychloride, in the presence of triethylamine, to form a compound of Formula (VIII-a):

(VIII-a);

and

(3b) contacting the compound of Formula (VIII-a) with NH₃, to form a compound of Formula (III-a).

47. A compound of Formula (VI) or (VI*):

(VI)

(VI*)

or a pharmaceutically acceptable salt thereof, wherein:

Q is R¹CH₂- or R¹CH₂C(=O)OC(R²)₂;

R¹ is H or C₁-C₆ alkyl;

R² is independently selected from methyl, ethyl, and propyl;

R³ is Cl, Br, or IV; and

R⁴ is R¹CH₂C(=O)O-.

48. A compound of Claim 47 of Formula (VI-a) or (VI*-a):

(VI-a)

(VI*-a)

or a pharmaceutically acceptable salt thereof.

49. A compound of Formula (VII):

(VII)

or a pharmaceutically acceptable salt thereof, wherein:

Q is R¹CH₂- or R¹CH₂C(=O)OC(R²)₂-;

R¹ is H or C₁-C₆ alkyl; and

R² is independently selected from methyl, ethyl, and propyl.

50. A compound of Claim 49 of Formula (VII-a):

(VII-a)

or a pharmaceutically acceptable salt thereof.

51. A process for the preparation of a β-D- and β-L-2',3'-dideoxy-2',3'-dihydro-nucleoside comprising:
a) activating a compound of structure (1)

(1)

wherein B is a pyrimidine or purine base; and

Y is O, S or CH₂,

with an acyl halide of the formula X-C(=O)R¹, X-C(=O)C(R¹)₂OC(=O)R¹ or X-C(=O)phenylC(=O)OR¹;

wherein X is a halogen (F, Cl, Br or I), and

each R¹ is independently hydrogen, lower alkyl, alkyl, aryl or phenyl;
to form a compound of structure (2)

wherein R' is R¹, -C(R¹)₂OC(=O)R¹ or -phenylC(=O)OR¹; and

at least one R is halogen (F, Cl, Br or I), and at least one R is an acyl of the formula -OC(=O)R¹; and then

- reducing the compound of structure (2) with a reducing agent to form a 2',3'-dideoxy-2',3'-didehydro-nucleoside of structure (3)

- optionally deprotecting the nucleoside if necessary.

52. The process of Claim 51, wherein B is 5-fluorouracil or 5-fluorocytosine.

53. The process of Claim 51, wherein Y is O.

54. The process of Claim 51, wherein the β -D- and β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside is D4FC.

55. The process of Claim 51, wherein the β -D- and β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside is β -D-D4FC.

56. The process of Claim 51, wherein the β -D- and β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside is β -D-D4FC.

57. The process of Claim 51, further comprising reducing the β -D or β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside into a β -D or β -L-2'- or 3'-deoxyribo-nucleoside.
58. The process of Claim 51, further comprising converting the β -D or β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside bearing a different nucleobase.
59. The process of Claim 58, wherein the β -D or β -L-2',3'-dideoxy-2',3'-didehydro-nucleoside is β -D or β -L-2',3'-dideoxy-2',3'-didehydro-5-fluorouridine which is converted to a β -D or β -L-2',3'-dideoxy-2',3'-didehydro-5-fluorocytidine.