Prob 3 - C - (2)

Performances using different configurations

todo: past your performance v.s different network configurations in a table.

epoch = 30	conv layer	kernel size	stride	dilation	dropout	performance on cifar_test_loader
LeNet-5	2	5x5	1x1	1x1	0%	64.39%
model_1	2	3x3	1x1	1x1	30%	73.56%
model_2	9	3x3	1x1	1x1	30%	80.13%
model_3	2	5x5	1x1	1x1	0%	70.77%
model_4	5	3x3	1x1	1x1	0%	79.37%
model_5	5	3x3	1x1	1x1	30%	80.39%

LeNet-5 and model_3 has different architecture,

- 1. LeNet-5 has three fully connected layers and uses Sigmoid activation function
- 2. model_3 has two fully connected layers and uses ReLU activation function

Pab 3- (b) Dicussion

Discussion

- (1) Which framework can achieve higher accuracy, MLP or CNN? Briefly explain the reason.
- (2) Based on your experiments in Problem3, which parameter can potentially affect your performance most?
 - 1. CNNs generally achieve higher accuracy than MLPs in image recognition tasks because they can learn spatial features through convolutional layers and pooling operations. MLPs, on the other hand, treat input data as a flat vector and do not exploit the inherent spatial structure of images.
 - 2. the number of convolution layers affects the most

```
Prob 4-1.
\frac{\text{JE total}}{\text{JOUT.01}} = -\left(\text{targeto_1} - \text{OUto_1}\right) \quad \frac{\text{JE total}}{\text{JOUT.02}} = -\left(\text{targeto_2} - \text{OUto_2}\right)
3 E total = JE total x Jouton x Jouton x Jouton x Jouton x Jouton x Jouton x [Outon x (1-Outon)] x Outon
                                                                                       ±0,08217
\frac{\partial E total}{\partial W7} = \frac{\partial E total}{\partial OUto_2} \times \frac{\partial OUto_2}{\partial Neto_2} \times \frac{\partial Neto_2}{\partial W7} = -\left(\text{target}_{oz} - \text{Out}_{oz}\right) \times \left[\text{Out}_{oz} \times \left(|-\text{Out}_{oz}\right)\right] \times \text{Out}_{h_1}
                                                                                   = -0.022b
W_5^{\dagger} = W_5 - N \times \frac{\partial E \text{ total}}{\partial W_5} = 0.4 - 0.5 \times 0.08 = 17 = 0.3589
W_7^{\dagger} = W_7 - N \times \frac{\partial E \text{ total}}{\partial W_7} = 0.5 - 0.5 \times -0.0226 \Rightarrow 0.613
 \frac{\partial E}{\partial u + h} = \sum_{k=1}^{2} \frac{\partial E}{\partial u} \times \frac{\partial Ok}{\partial u + h} = \frac{\partial E}{\partial u} \times \frac{\partial Ol}{\partial u + h} + \frac{\partial E}{\partial u} \times \frac{\partial O_{2}}{\partial u + h}
                                                                     = 3Ex x 30uto1 x 3neto1 + 3Ex x 30uto2 x 3neto2 douto1
    = - (targeto<sub>1</sub> - Outo<sub>1</sub>) x Outo<sub>1</sub> x (1-Outo<sub>1</sub>) x W5 + [-(targeto<sub>2</sub>-Outo<sub>2</sub>) x [Outo<sub>2</sub> x (1-Outo<sub>2</sub>)]] x W7
     = 0.7414 \times 0.1868 \times 0.4 + (-0.21707) \times 0.1755 \times 0.5
      ≥ 0.037
Since Outh = 1+0-neth and Neth = W1 x 21 + W2 x 22 + b1 x
\Rightarrow \frac{\partial total}{\partial u} = \frac{\partial E total}{\partial \Omega(th)} \times \frac{\partial \Omega(th)}{\partial \Omega(th)} \times \frac{\partial \Omega(th)}{\partial \Omega(th)} = 0.037 \times \left[ \Omega(th) \times (1-00th) \right] \times \Omega(t_{12} = 0.008)
```

 $W_{2}^{+} = W_{2} - \eta \times \frac{\partial E total}{\partial x | d|_{2}} = 0.2 - 0.5 \times 0.00089 \stackrel{?}{=} 0.199555 \times 0.00089$

TYUNT Z						
layer	#filters	filter size	Weight	Tensor size	Bìas	Pavameters
Convl	128	1x)	1x1x192x128	2 f x 2 f x 12 f	128	24704
CONV2	32	x	X X 2} X32	28x2fx32	32	4128
Max Pool	X					
Conv 3	64	x	x x32x64	28x28x64	64	2112
Conv4	128	3x3	3x3x64x12f	28x28 x128	128	73856
Conv5	32	5×5	5x5x128x32	28x28x32	32	102432
Conv b	32	x	x x32x32	28x2fx32	32	1056
Pavameter	5 = 2470	+ + 4128 +	- 2112 + 7385	6 + 1024327	+ 1056=	20f 2ff *

Dine 1: ([X| X 192 X 64) X 256 = 3145728

Dine 7: (1x1x192x12f) + (3x3x12fx12f) = 172032

Line 3: (|x|x|92x32) + (5x5x32x32) = 31744

Line 4: 1x1x192x32 = 6144

Pun4-2

Connections = 3145728 + 172032 + 31744 + 6144 = 3355648*