1 Allocate array

Description

Write a program that allocates an array of N integers, initializes each element by its index multiplied by 5 and then prints the obtained array on the console.

Input

• On the only line you will receive the number N

Output

- Print the obtained array on the console.
 - o Each number should be on a new line

Constraints

- 1 <= N <= 20
- N will always be a valid integer number
- Time limit: 0.1s
- Memory limit: 16MB

Input	Output
5	0 5 10 15 20

2 Compare arrays

Description

Write a program that reads two integer arrays of size N from the console and compares them element by element.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the first array will be given
- On the next N lines the numbers of the second array will be given

Output

Print Equal if the two arrays are the same and Not equal if they are not

Constraints

- 1 <= N <= 20
- N will always be a valid integer number
- Time limit: 0.1s
- Memory limit: 16MB

Input	Output
3	Equal
1	
2	
3	
1	
2	
3	

3	Not equal
1	
1	
1	
2	
2	
2	

3 Compare char arrays

Write a program that compares two char arrays lexicographically (letter by letter).

Input

- On the first line you will receive the first char array as a string
- On the second line you will receive the second char array as a string

Output

- Print < if the first array is lexicographically smaller
- Print > if the second array is lexicographically smaller
- Print = if the arrays are equal

Constraints

- 1 <= size of arrays <= 128
- Time limit: 0.1s
- Memory limit: 16MB

Sample tests

Input Output

hello halo	>
food food	=

4 Maximal sequence

Description

Write a program that finds the length of the maximal sequence of equal elements in an array of N integers.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given

Output

• Print the length of the maximal sequence

Constraints

- 1 <= N <= 1024
- Time limit: 0.1s
- Memory limit: 16MB

10 2	3
1	
1	
2	
2 3 3 2 2 2	
3	
2	
2	
2	
1	

5 Maximal increasing sequence

Description

Write a program that finds the length of the maximal increasing sequence in an array of N integers.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given

Output

• Print the length of the maximal increasing sequence

Constraints

• 1 <= N <= 1024

• Time limit: 0.1s

• Memory limit: 16MB

Sample tests

Input	Output
8	3
7	
3	
2	
3	
4	
2	
2	
4	

6 Maximal K sum

Description

Write a program that reads two integer numbers N and K and an array of N elements from the console. Find the maximal sum of K elements in the array.

Input

- On the first line you will receive the number N
- On the second line you will receive the number K
- On the next N lines the numbers of the array will be given

Output

• Print the maximal sum of K elements in the array

Constraints

• 1 <= N <= 1024

• 1 <= K <= N

• Time limit: 0.1s

• Memory limit: 16MB

Sample tests

Input	Output
8	16
3	
3	
2	
3	
-2	
5	
4	
2	
7	

7 Selection sort

Description

Sorting an array means to arrange its elements in increasing order. Write a program to sort an array. Use the Selection sort algorithm: Find the smallest element, move it at the first position, find the smallest from the rest, move it at the second position, etc.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given

Output

- Print the sorted array
 - o Each number should be on a new line

Constraints

• 1 <= N <= 1024

• Time limit: 0.1s

• Memory limit: 16MB

Sample tests

Input	Output
6	1
3	2
4	3
1	4
5	5
2	6
6	
10	1
36	10
10	20
1	27
34	28
28	30
38	31
31	34
27	36
30	38
20	

8 Maximal sum

Description

Write a program that finds the maximal sum of consecutive elements in a given array of N numbers.

• Can you do it with only one loop (with single scan through the elements of the array)?

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given

Output

• Print the maximal sum of consecutive numbers

Constraints

• 1 <= N <= 1024

• Time limit: 0.1s

• Memory limit: 16MB

Input	Output
10	11
2	
3	
-6	
-1	
2	
-1	
6	
4	
-8	
8	

9 Frequent number

Description

Write a program that finds the most frequent number in an array of N elements.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given

Output

- Print the most frequent number and how many time it is repeated
 - Output should be REPEATING_NUMBER (REPEATED_TIMES times)

Constraints

- 1 <= N <= 1024
- 0 <= each number in the array <= 10000
- There will be only one most frequent number
- Time limit: 0.1s
- Memory limit: 16MB

Sample tests

Input Output

13	4 (5
4	times)
1	
1	
4	
2	
3	
4	
4	
1	
2	
4	
9	
3	

10 Find sum in array

Description

Write a program that finds in a given array of integers with length N a sequence of given sum s (if present).

Input

- On the first line you will receive the number N
- On the second line you will receive the number S
- On the next N lines the numbers of the array will be given

Output

- Print the sequence. Each element on a new line
- Print "No Subset Adds To Sum" if there is no subset that adds up to the requested sum

Constraints

• 1 <= N <= 1024

• 0 <= each number in the array <= 10000

• Only 1 sequence in the array should add up to the required sum

• Time limit: 0.1s

• Memory limit: 16MB

array	result
7 11 4 3 1 4 2 5	4 2 5
7 11 6 3 1 3 2 4	No Subset Adds To Sum

11 Binary search

Description

Write a program that finds the index of given element X in a sorted array of N integers by using the Binary search algorithm.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given
- On the last line you will receive the number X

Output

- Print the index where X is in the array
 - o If there is more than one occurence print the first one
 - If there are no occurrences print -1

Constraints

- 1 <= N <= 1024
- Time limit: 0.1s
- Memory limit: 16MB

Sample tests

Input Output

10	6
1	
2	
4	
8	
16	
31	
32	
64	
77	
99	
32	

12 Index of letters

Description

Write a program that creates an array containing all letters from the alphabet (a-z). Read a word from the console and print the index of each of its letters in the array.

Input

• On the first line you will receive the word

Output

- Print the index of each of the word's letters in the array
 - o Each index should be on a new line

Constraints

- 1 <= word length <= 128
- Word is consisted of lowercase english letters
- Time limit: 0.1s

• Memory limit: 16MB

Sample tests

Input	Output
telerikacademy	19
	4
	11
	4
	17
	8
	10
	0
	2
	0
	3
	4
	12
	24

13 Merge sort

Description

Write a program that sorts an array of integers using the Merge sort algorithm.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given

Output

- Print the sorted array
 - o Each number should be on a new line

Constraints

• 1 <= N <= 1024

• Time limit: 0.1s

• Memory limit: 16MB

Sample tests

Input	Output
6	1
3	2
4	3
1	4
5	5
2	6
6	
10	1
36	10
10	20
1	27
34	28
28	30
38	31
31	34
27	36
30	38
20	

14 Quick sort

Description

Write a program that sorts an array of integers using the Quick sort algorithm.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given

Output

- Print the sorted array
 - o Each number should be on a new line

Constraints

- 1 <= N <= 1024
- Time limit: 0.1s
- Memory limit: 16MB

Input	Output
6	1
3	2
4	3
1	4
5	5
2	6
6	

10	1
36	10
10	20
1	27
34	28
28	30
38	31
31	34
27	36
30	38
20	

15 Prime numbers

Description

Write a program that finds all prime numbers in the range [1 ... N]. Use the Sieve of Eratosthenes algorithm. The program should print the biggest prime number which is <= N.

Input

• On the first line you will receive the number N

Output

 \bullet Print the biggest prime number which is <= N

Constraints

• 2 <= N <= 10 000 000

• Time limit: 0.3s

• Memory limit: 64MB

Sample tests

Input	Output
13	13
126	113
26	23

16 Remove elements from array

Description

Write a program that reads an array of integers and removes from it a minimal number of elements in such a way that the remaining array is sorted in increasing order. Print the minimal number of elements that need to be removed in order for the array to become sorted.

Input

- On the first line you will receive the number N
- On the next N lines the numbers of the array will be given

Output

Print the minimal number of elements that need to be removed.

Constraints

- 1 <= N <= 1024
- Time limit: 0.1s
- Memory limit: 16MB

Input	Output
8 1 4 3 3	3
6 3 2 3	
10 14 2 9 8 3 13 17 19 30 1	4