

LPOO – Apresentação

Linguagem de Programação Orientada a Objetos

MSc. Olavo Ito

Disciplina

Linguagem de Programação Orientada a Objetos

Teoria 3^a feira quinzenal

Laboratório: 5^a Feira

EMENTA

Programação baseada no paradigma da orientação a objetos.

OBJETIVOS ESPECÍFICOS

 Disseminar os princípios da Orientação a Objetos, aplicando-os através de da linguagem de programação Java. Ao término desta disciplina o aluno deverá demonstrar compreensão dos aspectos fundamentais do paradigma.

COMPETÊNCIAS

Compreender os conceitos fundamentais da programação orientada a objetos. Apropriar-se dos recursos básicos da linguagem Java para implementar produtos de software utilizando a orientação a objetos. Entender a transposição de um algoritmo para uma ferramenta de implementação.

Conteúdo programático

- Introdução a orientação a objetos;
- Classe, Atributos e Métodos;
- Objetos;
- Encapsulamento;
- Herança;
- Método Construtor;
- Polimorfismo;
- Estruturas de Controle;
- Classe Abstrata;
- Interface;
- Exceções;
- Threads.

BIBLIOGRAFIA

Básica

- SANTOS, Rafael; Introdução à programação orientada a objetos usando Java / Campus; Rio de Janeiro, 2003.
- ALVES, William Pereira; Java 2 Programação Multiplataforma Ed. Érica, 2006.
- HORSTMANN, Cay; Conceitos de Computação com o Essencial de Java. Ed. Bookman Porto Alegre, 2005.

JAVA

- Java é uma linguagem de programação
- Java é um ambiente de desenvolvimento
- Java é uma completa plataforma de soluções para tecnologia

Vantagens do JAVA

- Editores e ambientes de produção gratuitos
- (NetBeans, Eclipse, Jcreator, etc)

- Servidores de Aplicação Gratuitos
- (TomCat, Jboss, Jetty, etc)

Vantagens do JAVA

Arquitetura

- Orientado a Objetos (OO)
 - A Linguagem segue o paradigma OO, o que a torna uma ferramenta extremamente poderosa.
- □ Multi-Threaded
 - Suporta processamento paralelo múltiplo.

Vantagens do JAVA

 O mesmo código Java roda em diversas plataformas sem a necessidade de alteração de código.

 As aplicações podem ser facilmente migradas entre servidores. Você não fica preso a somente um fabricante.

 Existem inúmeros JUGs (Java User Groups), que promovem eventos, disponibilizam material, artigos, revistas especializadas, fórum de discussões e etc.

Java – característica importante

- Portabilidade
- Segurança
- Ex: quando os arquivos bytecodes vão ser executadas numa máquina, a JVM verifica se o programa obedece aos critérios e restrições de segurança da linguagem,
- como, por exemplo, n\u00e3o provocar o acesso direto \u00e0 mem\u00f3ria do computador em programas baixados pela rede.
- Com isso um programa em Java nunca pode conter um vírus que possa deteriorar a máquina do usuário.

Eclipse

- IDE
- https://www.eclipse.org/downloads/packages/release/oxygen/3a/eclipse-ide-java-developers
- https://www.bluej.org/ Tem versão portátil
- https://www.greenfoot.org/download

<u>Linguagem</u>

Eclipse


```
public class aula01 {

public static void main(String[] args) {
    // TODO Auto-generated method stub
    System.out.print("Teste");

}
```


A linguagem

- A linguagem de programação, a linguagem JAVA é muito rígida na sua sintaxe.
 - Sintaxe são regras detalhadas para que um programa possa ser executado
- A sintaxe do JAVA pertence à família da linguagens C (C++, C# etc)
- A linguagem é case sensitive; isso quer dizer que as letras maiúsculas são diferentes das letras minúsculas, na identificação de comandos, variáveis e funções

Abacaxi ≠ abacaxi

Os comandos são separados por ponto e vírgula (";"), que deve ser usado com muito

cuidado, principalmente, antes de blocos de comandos

Tipos Primitivos

Tipo	Descrição	Tamanho ("peso")	
byte	Valor inteiro entre -128 e 127 (inclusivo)	1 byte	
short	Valor inteiro entre -32.768 e 32.767 (inclusivo)	2 bytes	
int	Valor inteiro entre -2.147.483.648 e 2.147.483.647 (inclusivo)	4 bytes	
long	Valor inteiro entre -	8 bytes	
	9.223.372.036.854.775.808 e 9.223.372.036.854.775.807		
	(inclusivo)		
	Valor com ponto flutuante entre 1, 40129846432481707 x 10-45 e 3,		
float	40282346638528860 × 10 ₃₈ (positivo ou nega- tivo)	4 bytes	
	Valor com ponto flutuante entre 4, 94065645841246544 × 10-324 e 1,		
double	79769313486231570 × 10 ₃₀₈ (positivo ou nega- tivo)	8 bytes	
boolean	true ou false	1 bit	
char	Um único caractere Unicode de 16 bits. Valor inteiro e positivo entre 0	2 bytes	
	(ou '\u0000') e 65.535 (ou '\uffff')		

Declaração

- Na linguagem de programação Java, as variáveis devem ser declaradas para que possam ser utilizadas.
- A declaração de uma variável envolve definir um nome único (identificador) dentro de um escopo e um tipo de valor.
- As variáveis são acessadas pelos nomes e armazenam valores compatíveis com o seu tipo
- Em geral, as linguagens de programação possuem convenções para definir os nomes das variáveis.
 - Essas convenções ajudam o desenvolvimento de um código mais legível.
 - Na convenção de nomes da linguagem Java, os nomes das variáveis devem seguir o padrão camel case com a primeira letra minúscula (lower camel case). Veja alguns exemplos:

nomeDoCliente numeroDeAprovados

Exemplo


```
1 public class aula01 {
      public static void main(String[] args) {
3∘
      // TODO Auto-generated method stub
          int numero = 12;
         Uso da variável
          System.out.println(numero);
8
         Outra Declaração com Inicialização double preco = 137. 6;
          double preco = 123.4;
          System.out.print(preco+" "+numero);
10
11
12
13 }
```

Operadores

- Aritmético (+, -, *, /, %)
- Atribuição (=, +=, -=, *=, /=, %=)
- Relacional (==, !=, <, <=, >, >=)
- Lógico (&&, ||, !) corresponde ao and, or e not do python

Cast

 Você pode converter os valores de um tipo para outro explicitamente usando o operador de conversão: (<tipo>) operação.

```
public class aula01 {

public static void main(String[] args) {
    int soma=17,qtd=5;
    double media;

media=soma/qtd;

system.out.println (media);

}

3.0
```

```
public class aula01 {

public static void main(String[] args) {
    int soma=17,qtd=5;
    double media;

media=(double)soma/qtd;
System.out.println (media);

y

3.4
```

Blocos

- No Python é determinado pela indentação
- No Java por meio de { }

Python	JAVA
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb	bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
ccccccc	CCCCCCCCC
	}

IF-ELSE


```
if (<condição>){
     condição verdadeira;
}
else{
     condição falsa;
}
```

Python

```
def main():
 numero=10
 if numero == 10:
   print("\n----\n")
   teste=numero*10
   print(teste)
 else:
   numero+=3
   if numero > 14:
       print("\n----\n")
       teste=numero*14
       print(teste)
   else:
       print("\n----\n")
       teste=numero*5
       print(teste)
```

JAVA

```
public static void main(String[] args) {
// TODO Auto-generated method stub
   int numero = 10;
   int teste;
   if (numero==10) {
       System.out.print("\n----\n");
       teste=numero*10;
       System.out.print(teste);
   else {
       numero+=3;
       if (numero>14) {
           System.out.print("\n----\n");
           teste=numero*14;
           System.out.print(teste);
       else {
           System.out.print("\n----\n");
           teste=numero*5;
           System.out.print(teste);
```

<u>switch</u>


```
switch ( expressao )
case opcao1:
... /* comandos executados se expr == opcao1 */
   break;
case opcao2:
... /* comandos executados se expr == opcao2 */
   break;
case opcao3:
... /* comandos executados se expr == opcao3 */
   break;
default:
... /* executados se expr for diferente de todos */
   break;
```

Pyt hon JAVA

```
public static void main(String[] args) {
   char op = '-';
   int num1 = 3, num2 = 6;
   switch (op) {
   case '+':
       System.out.println( num1 + num2);
       break;
   case '-':
        System.out.println( num1 - num2);
        break;
   case '*':
       System.out.println( num1 * num2);
        break;
   case '/':
        if (num2 != 0)
            System.out.println( num1 / num2);
        else
            System.out.println("divisao por zero\n");
        break;
   default:
        System.out.println("Operador invalido!\n");
        break;
```

WHILE


```
while (<condição>)
{
```

Python

```
contador = 0
while (contador < 5):
    print("L P 0 0 ",contador)
    contador=contador+1</pre>
```

JAVA

```
int contador = 0;
while ( contador < 5)
{
    System.out.println (" L P 0 0 "+contador);
    contador ++;
}</pre>
```

DO WHILE

Python JAVA do{ int contador = 0; do { } while (<condição>) System.out.println (" L P 0 0 "+contador); contador ++; }while (contador < 5);</pre>


```
for(varcontrole=<inicio>;<condição>;<incremento>){
}
```

Python	JAVA
<pre>for varAux in range(5): print("L P 0 0 ",varAux)</pre>	<pre>int varAux; for(varAux=0;varAux<5;varAux++) System.out.println (" L P 0 0 "+varAux);</pre>

<u>função</u>


```
<tipo de retorno> nome( <tipo1> var1, <tipo2> var2){
   Corpo da função;
   return retorno;
}
```

Python

JAVA

```
def areaTri(base, altura):
    area=base*altura/2
    return area

print(areaTri(5,1))
```

```
public static float areaTri(int base,int altura) {
    float area=(float)base*altura/2;
    return area;
}
public static void main(String[] args) {
    System.out.println(areaTri(5,1));
}
```

Leitura de dados (Classe Scanner)


```
import java.util.Scanner;
Scanner scan = new Scanner(System.in);
```

scan será o nome da instância de leitura

Python

```
nome=input("Informe o seu nome")
idade=int(input("Informe a sua idade"))
nota=float(input("Informe a sua nota"))
print("O nome digitado é:",nome)
print("A idade digitada é:",idade)
print("A idade digitada é:", nota)
```

JAVA

```
import java.util.Scanner;
public class aula01 {
    public static void main(String[] args) {
        Scanner scan = new Scanner(System.in);
        String nome;
        int idade;
        float nota;
        System.out.println("Informe o seu nome");
        nome = scan.next();
        System.out.println("Informe a sua idade");
        idade = scan.nextInt();
        System.out.println("Informe a sua nota");
        nota = scan.nextFloat();
        System.out.println("O nome digitado é:"+nome);
        System.out.println("A idade digitada é:"+idade);
        System.out.println("A nota digitada é:"+nota);
```


ATÉ A PRÓXIMA!