思考题

- 1. 什么是系统, 控制体? 系统与控制体有何区别和联系?
- 2. 以系统为对象研究流动过程时有何不便之处?
- 3. 以控制体为对象研究流动过程时,为什么需要建立 雷诺输运定理(输运公式)?
- 4. 雷诺输运定理(输运公式)有何意义?
- 5. 流体以速度 \vec{v} 进入或输出控制面时,若控制面的单位外法向量是 \vec{n} ,则 $(\vec{v} \cdot \vec{n})$ 的意义是什么? $(\vec{v} \cdot \vec{n})$ 的正负号说明什么问题?

- ◆ 下面关于流线的描述不正确的是
- a.流线和迹线重合;
- b.流体质点不能穿越流线:
- c.不可压缩流动的流线是流场空间内的一条光滑曲线;
- d.流场内两条流线通常不能相交:
- ◆ 表达式 $\frac{d\vec{V}}{dt} = \frac{\partial \vec{V}}{\partial t} + (\vec{V} \cdot \nabla)\vec{V}$ 中右边第二项是_____,反映了 速度场的
- a. 局部加速度; 不稳定性;
- b. 加速度; 不均匀性;
- c. 迁移加速度; 不均匀性;
- d. 迁移加速度; 不稳定性
- ◆ 如右图,底面积相同的盛水容器 A和B,其中盛水的深度相同,作用 在容器底上的压强和力满足

a.
$$P_{A} = P_{B}, F_{A} > F_{B}$$

a.
$$P_A = P_B, F_A > F_B$$
 b. $P_A > P_B, F_A > F_B$

c.
$$P_A > P_B$$
, $F_A > F_B$

c.
$$P_{A} > P_{B}$$
 , $F_{A} > F_{B}$ d. $P_{A} = P_{B}$, $F_{A} = F_{B}$

 ↑ 流动满足二维不可压缩流体的质量守恒 A. u=x, v=y B. u=xy+y²t, v=xy+x²t C. u=3x²y², v=-2xy³ D. u=4x, v=3xy 	
◆ 与牛顿内摩擦定律直接有关的因素是:。 A.切应力和压强 B.切应力和流线法向速度梯度 C.切应力和流速 D.切应力和流线切向速度梯度	
◆ 按连续介质的概念,流体质点是指 A 流体的分子	ŝ
◆ 静止流体中存在:。▲ 压应力	

- ◆ 下列关于理想流体的说法,正确的是: ____。
- A 理想流体流动中没有能量损失 (???)
- B理想流体没有粘性但有导热特性
- C理想流体必定是无旋流体
- D以上说法均错
- ◆ 下列关于迹线的说法,错误的是: ____。
- A 迹线是流体质点的运动轨迹线;
- B 迹线是可以相交的;
- C 迹线有可能与流线重合;
- D 迹线是 "Euler" 观点的物理量

◆ 流线方程是 ____.

a.
$$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} = dt$$

b.
$$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$$

c.
$$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w} = \frac{1}{dt}$$

d.
$$\frac{du}{u} = \frac{dv}{v} = \frac{dw}{w}$$

- ◆ 在处于相对静止的不可压均质流体中, ____。
- a.等压面一定与质量力矢量垂直
- b.等压面一定与加速度方向垂直
- c. 等压面一定由位于相同水平高度的点组成
- d.上述三种说法都对
- ◆ 已知宽为2m的弧型门AB剖面曲线为x=z²/9,如图所示。设水位高为3m。求水作用在该闸门上的水平力,画出垂直力的压力体并计算垂直力的大小。

