Spline Egrileri

Diyelim ki elimizde $4 x_i, y_i$ noktasi var, ve bu noktalardan gecen (bu onemli, tum noktalardan kesinlikle gecen) yaklasiksal bir egri olusturmak istiyoruz. Spline yontemi her iki nokta arasini farkli bir kupsel (ucuncu derece) polinom ile temsil etmektir. Tekrar dikkat: tum noktalari temsile edebilecek farkli polinomlari toplamiyoruz, her aralikta baska bir polinom fonksiyonunu devreye sokuyoruz. Peki parcalar niye kupsel? Cunku kupsel bir egri yeterince kavis saglayabilir ve ayni zamanda cok fazla inisli cikisli, sivri degildir.

Her i = 0, ..., n - 1 icin

$$p(x) = s_i(x) = a_i + b_i(x - x_i) + c_i(x - x_i)^2 + d_i(x - x_i)^3$$

kullanalim. Noktalar x_i olarak gosteriliyor, ve her noktada aktif olan bir p_i spline olacak, o noktadan bir sonrakine kadar egriyi bu s_i tanımlayacak. Peki her spline bir kubik polinom ise niye bu kubik polinomu en basit sekliyle

$$p(x) = a_i + b_i x + c_i x^2 + d_i x^3$$

olarak tanimlamadik? Cunku iki ustteki form ile calismak daha rahat. Mesela, eger x icin x_i degrini verirsek, ki bu x_1 ya da x_2 olabilirdi, o zaman parantez icinde $x_i - x_i$ sayesinde tum terimler sifir oluyor, geriye sadece a_i kaliyor.

Parcalarin uclarinin birbirini tutmasi, ve tum seklin surekli, akiskan bir sekilde gozukmesi icin ise birkac kosulu bizim tanimlamamiz, ve zorlamamiz gerekli. Once en basit olani: bir onceki parca ile bir sonraki parca orta nokta uzerinde ayni degere sahip olmali. i = 1, ..., n + 1 icin

$$p_i(x_{i+1}) = p_{i+1}(x_{i+1})$$

Bir diger basit gereklilik, her x_i 'ye tekabul eden spline fonksiyonun elimizdeki y_i degerini vermesi,

$$p_i(x_i) = y_i$$

"Tum noktalardan kesinlikle gecmeli" demistik. Son parca bir istisna olusturuyor, o hem son nokta, hem de ondan bir onceki nokta icin gecerli olmali

$$p_{n-1}(x_n) = y_n$$

Genel yaklasim soyle, (1)'deki formulu ustteki gordugumuz her $p_i(x)$ 'in yerine geciririz, bunu yapinca elimize bir lineer sistem gecer, 4n tane denklem ve 4n tane bilinmez

degiskenin oldugu bir denklem sistemi olur bu, ve boyle bir sistemin cozumu vardir.

Sistemi daha detayli olarak gormek gerekirse..

Indisleri i = 1, ..., n + 1 olarak tasarlayalim. Tum denklemleri yazarsak,

$$p_1(x) = s_1(x) = a_1 + b_1(x - x_1) + c_1(x - x_1)^2 + d_1(x - x_1)^3$$

$$p_2(x) = s_2(x) = a_2 + b_2(x - x_2) + c_2(x - x_2)^2 + d_1(x - x_2)^3$$

:

$$p_3(x) = s_3(x) = a_3 + b_3(x - x_3) + c_3(x - x_2)^2 + d_3(x - x_2)^3$$

Uc noktali soyle bir grafik dusunelim,

Ustte bahsettigimiz gibi, $p_1(x_1) = a_1 = y_1$ olacak, ve tum indisler icin bu gecerli. Ayrica x_2 noktasinda bir onceki parca ve sonraki parca ayni degere sahip olmali demistik, yani mesela p_1 'in sonunda (ustteki ilk parca) x_2 noktasi vardir, ve ayni noktada p_2 baslayacaktir, o noktada

$$p_1(x_2) = a_1 + b_1 h_1 + c_1 h_1^2 + d_1 h_1^3$$

ve bu denklem $p_2(x_2)=a_2=y_2$ 'ye esit. Bir de, daha once gorduk, $a_1=y_1$ ise, o zaman

$$y_2 = p_1(x_2) = a_1 + b_1h_1 + c_1h_1^2 + d_1h_1^3$$

haline gelir. Kisaca

$$y_2 = y_1 + b_1 h_1 + c_1 h_1^2 + d_1 h_1^3$$

Hepsini birarada yaziyoruz, tek basina olan y'yi sag tarafa aliyoruz

$$y_1 + b_1 h_1 + c_1 h_1^2 + d_1 h_1^3 = y_2$$

$$y_2 + b_2 h_2 + c_2 h_2^2 + d_2 h_2^3 = y_3$$

:

$$y_n + b_n h_n + c_n h_n^2 + d_n h_n^3 = y_n$$

ki $h_1 \equiv x_2 - x_1$, $h_2 \equiv x_3 - x_2$ olarak tanimladik. Yani bir tur kisaltma olarak h harfini kullaniyoruz.

Fakat kesintisizlik icin parcalarin uclarinin bitismesi yeterli degil. Mesela alttaki figur de uclari birlesik halde

Demek ki ek bazi sartlar lazim. Bu ek sart "sureklilik" olabilir. Ya da "turevi alinabilir" olma sarti. Mesela altta koyu yuvarlakli gosterilen noktada fonksiyonun turevi alinamaz.

Ya da surekli olmayan baska bir absurt cozum

O zaman sarti koyalim: fonksiyonun tamami her noktada iki kere turevi alinabilir olmali. Simdi bunun ne demek olduguna bakalim.

 $http://spartan.ac.brocku.ca/\ jvrbik/MATH2P20/notes.pdf$

http://www.youtube.com/watch?v=3rHBCglD1LQ

http://www.youtube.com/watch?v=nA0YpqraP9A