МИНОБРНАУКИ РОССИИ

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА)

Кафедра робототехники и автоматизации производственных систем (РАПС)

Пояснительная записка к Курсовой работе по дисциплине "Информатика"

Подп. и дата						
Инв. № дубл.						
Взам. инв. №						
Подп. и дата						Санкт-Петербург 2018
проп	Изм	Лист	№ докум.	Подп.	Дата	Вариант N23
Инв. № подл.	Разр Прон	3.	Рахманов М. Прокшин А. I			Лит. Лист Листов 1 1 12
$M_{\rm HB}$.	Н. ко Утв.	онтр.				

Содержание 1. Цель и тема курсовой работы 2. Задание на курсовую работу 3. Введение 4. Исследование функции 5. Исследование кубического сплайна 6. Задача оптимального распределения неоднородных ресурсов 7. Список литературы Лист Вариант N23 № докум. Подп. Изм Лист Дата

Взам. инв. №

Инв. № подл.

		Цель ку	рсовой	i pa	боты: уметь применять персональный компьютер	и с
	матем	атические	пакеть	і при	кладных программ в инженерной деятельности.	
		Тема ку	рсовой	i pat	боты: решение математических задач с использо	ва-
	нием м	математич	еского	пакет	ra "Scilab"или "Reduce-algebra".	
цата						
Подп. и дата						
Под						
76л.						
$N^{\underline{o}}$ A)						
Инв. № дубл.						
$\mathcal{N}^{\underline{o}} \mid L$						
Взам. инв.						
B38						
~						
Подп. и дата						
ш. и						
Под						
одл.						
Инв. № подл.					D	Лис
Инв.	Изм. Лист	№ докум.	Подп.	Дата	Вариант N23	3
	 	/ 1 /	/ 1	7 1		

а)Решить уравнение f(x)=g(x).

б)Исследовать функцию h(x)=f(x)-g(x) на промежутке $[0;\frac{5\pi}{6}]$

2. Найти коэффициенты кубического сплайна, интерполирующего данные, представленные в векторах:

 $V_x = [0, 1.25, 2, 2.625, 4.25]$ $V_y = [4, 3.925, 4.675, 4.8, 4.956]$

Построить на графике функции f(x),полученную после нахождения коэффициентов кубического сплайна.

Представить графическое изображение результатов интерполяции исходных данных различными методами с использованием встроенных функций splin(x,y,"natural"), splin(x,y,"clamped"), splin(x,y,"not a knot"), splin(x,y, "fast"), splin(x,y,"monotone"), interp(xx,x,y,d)

3. Решить задачу оптимального распределения неоднородных ресурсов. Требуется решить следующую задачу оптимального распределения неоднородных ресурсов. Пусть в распоряжении завода железобетонных изделий (ЖБИ) имеется т видов сырья (песок, щебень, цемент) в объемах a_i . Требуется произвести продукцию п видов. Дана технологическая норма $c_i j$ требления отдельного і-го вида сырь для изготовления единицы продукции каждого ј-го вида. Известна прибыль π_i получаема от выпуска единицы продукции j-го вида. Требуется определить, какую продукцию и в каком количестве должен производить завод ЖБИ, чтобы получить максимальную прибыль.

Таблица 1.23

Используемые	Изп	отавлив	Наличие		
ресурсы $\mathbf{a_i}$	И1	И2	И3	И4	ресурсов, $\mathbf{a_i}$
Песок	8	5	8	7	20
Щебень	6	6	6	5	10
Цемент	9	6	4	9	35
Прибыль, Π_j	44	54	40	30	

Взам. инв. №

Инв. № подл.

Изм	Лист	№ докум.	Подп.	Дата

Вариант N23

3. Введение

В современном мире технологие неудержимо летят вперед, с каждым годом электронно вычеслительная техника становиться мощьнее, компактнее и сложнее, а людям приходиться решать все более сложные задачи. С этим людям стали помогать математические пакеты и системы компьютерной алгебры, которые во много раз сокращают время на решение сложнейших задачь, с безчисленым количеством чисел, сейчас такие программы доступны каждому хоть и не все они бесплатные.

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл.	 <i>Лист</i> 5

4. Исследование функции

1. Даны функции:

$$f(x) = \sqrt{3}sin(x) + cos(x)$$

$$g(x) = \cos(2x + \frac{\pi}{3}) - 1$$

- а) Решить уравнение f(x)=g(x).
- б) Исследовать функцию h(x)=f(x)-g(x) на промежутке $[0;\frac{5\pi}{6}]$

-19.3732 -16.2316

Решение уравнения.

$$f(x)=g(x)=f(x)-g(x)=0$$

Взам. инв. №

Hнв. $\mathcal{N}^{\underline{o}}$ подл.

Изм	Лист	№ докум.	Подп.	Дата

4. Исследование функции

Корни функции f(x)=g(x) совпадают с корнями иследуемой функции h(x)=f(x)g(x) и представлены выше.

h(x)=f(x)-g(x)

№ докум.

Изм Лист

Подп.

Дата

Лист

Вариант N23

5. Исследование кубического сплайна.

Найти коэффициенты кубического сплайна, интерполирующего данные, представленные в векторах:

$$V_x = [0, 1.25, 2, 2.625, 4.25]$$
 $V_y = [4, 3.925, 4.675, 4.8, 4.956]$

Построить на графике функции f(x),полученную после нахождения коэффициентов кубического сплайна.

Оценить погрешность интерполяции в точке x=3.1. Вычеслить значение функции в точке x=2.1

Представить графическое изображение результатов интерполяции исходных данных различными методами с использованием встроенных функций $\mathrm{splin}(x,y,\text{``natural''}), \mathrm{splin}(x,y,\text{``clamped''}), \mathrm{splin}(x,y,\text{``not}_a_k\mathrm{not''}), \mathrm{splin}(x,y,\text{``fast''}), \mathrm{splin}(x,y,\text{``monotone''}), \mathrm{interp}(xx,x,y,d)$

Подп. и дата		
Инв. № дубл.		
Взам. инв. №		
Подп. и дата		
Инв. № подл.	Вариант N23 Изм Лист № докум. Подп. Дата	<i>Лист</i> 8

Нахождение коэффициентов кубического сплайна.

Найдем уравнение сплайна проходящего через пять точкек (x_1, y_1) , $(x_2, y_2), (x_3, y_3)(x_4, y_4)$. Для того чтобы потенциальная энергия изогнутой металлической линейки(сплайна) принимала минимальное значение, производная четвертого порядка должна быть равна нулю, значит мы можем представить сплайн полиномом третьей степени на каждом отрезке $[x_i, x_{i+1}]$

$$F_i(x) = A_{i0} + A_{i1}x + A_{i2}x^2 + A_{i3}x^3, x \in [x_i, x_{i+1}]$$

По такому же принципу состовляем 8 уровнений, по два на каждый участок кривой.

y1 := A	10 + A	11 · X1	+ A	12 · X1	2 + A	13	х1 ³
y2 := A	10 + A	11 · X2	2 + A	12 · X2	2 + A	13	X2 3
y2 := A	20 + A	21 · X2	2 + A	22 · X2	2 + A	23	<i>X2</i> 3
у3 := A	20 + A	21 · X3	3 + A	22 · X3	3 ² + A	23	<i>хз</i> ³
у3 := A	30 + A	31 · X3	3 + A	32 · <i>X</i> 3	3 ² + A	33	<i>хз</i> ³
y4 := A	30 + A	31 · X4	4 + A	32 · <i>X</i> 4	2 + A	33	X4 3
y4 := A	40 + A	41 · X4	4 + A	42 · X4	2 + A	43	X4 3
y5 := A	40 + A	41 · X5	5 + A	42 · X5	² + A	43	X5 3

	Подп. и дата	
	Инв. № дубл.	
	$B3a_M$. $N^{\underline{o}}$	
ı		

Инв. № подл.

Для того что бы не было излома сплайна, добавляем три уровнения с производными певого порядка, по одному на каждое соединение.

Для получения одинакового изгиба с каждой стороны стыков, добавляем три уровнения с производными второго порядка.

$$2 \cdot A_{12} + 6 \cdot A_{13} \cdot X_{2} := 2 \cdot A_{22} + 6 \cdot A_{23} \cdot X_{2}$$
 $2 \cdot A_{22} + 6 \cdot A_{23} \cdot X_{3} := 2 \cdot A_{32} + 6 \cdot A_{33} \cdot X_{3}$
 $2 \cdot A_{32} + 6 \cdot A_{33} \cdot X_{4} := 2 \cdot A_{42} + 6 \cdot A_{43} \cdot X_{4}$

Добавим уровнения отвечающие за положение концов сплайна, в нашем случае они оставлены свободно.

2 · A 12 + 6 · A 13	· x 1 := 0
2 · A 42 + 6 · A 43	· x 5 := -0

Подп.	
Инв. № дубл.	
B3am. инв. $N^{\underline{o}}$	
Подп. и дата	
$\mathcal{N}^{\underline{o}}$ подл.	

Изм	Лист	№ докум.	Подп.	Дата

Таким образов были найдены 16 уровнений из которых можно составить матрицу размерностью 16х16. С ее помощью, решая матричное уровнение, находим коофиценты кубического сплайна.

																-1				
1	X1	X1 2	X1 3	0	0	0	0	0	0	0	0	0	0	0	0					
1	Х2	X2 2	X2 3	0	0	0	0	0	0	0	0	0	0	0	0					
0	1	2 · <i>X2</i>	3 · X2 2	0	-1	-2· <i>X2</i>	-3·X2 ²	0	0	0	0	0	0	0	0	1 1	Y1 Y2		4 -0.4827	
	0		6 · X2			-2	- 6 · X2			0	0	0	0	0	0		0		0.4627	
0	0	0	0	1	<i>X2</i>	X2 2	X2 3	0	0	0	0	0	0	0	0		0		0.2705	
							<i>X3</i> 3				0	0	0	0	0	1 1	Y2 Y3		6.4252 -6.3031	
0	0	0	0	0	1	2 · <i>X3</i>	3 · <i>X3</i> ²	0	-1	-2· <i>X3</i>	-3·X3 ²	0	0	0	0		0		4.6563	
0	0	0	0	0	0	2	6 · X3	0	0	-2	- 6 · X3	0	0	0	0		0	_	-0.9711	
0	0	0	0	0	0	0	0	1	хз	хз ²	<i>хз</i> ³	0	0	0	0	1 1	Y3 Y4		-6.7365 13.4393	
0	0	0	0	0	0	0	0	1	X4	X4 2	X4 3	0	0	0	0		0		-5.2149	
0	0	0	0	0	0	0					3 · X4 2			-2·X4	-3·X4 ²		0 Y4		0.6741 5.8017	
0	0	0	0	0	0	0	0	0	0	2	6 · X4	0	0	-2		1 1	Y5		-0.89	
0	0	0	0	0	0	0	0	0	0	0	0	1	X4	X4 2	X4 3	1 1	0		0.2439	
0	0	0	0	0	0	0	0	0	0	0	0			_{X5} ²	<i>X</i> 5 ³		0		-0.0191	
0	0	2	6 · X1	0	0	0	0	0	0	0	0	0	0	0	0					
0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	6 · X5					

Получаем окончательное уровнение сплайна.

F1 :=
$$0.2705 \cdot x^3 + 0 - 0.4827 \cdot x + 4$$

F2 := $-0.9711 \cdot x^3 + 4.6563 \cdot x^2 - 6.3031 \cdot x + 6.4252$
F3 := $0.6741 \cdot x^3 - 5.2149 \cdot x^2 + 13.4393 \cdot x - 6.7365$
F4 := $-0.0191 \cdot x^3 + 0.2439 \cdot x^2 - 0.89 \cdot x + 5.8017$

Взам. и				
Подп. и дата				
Инв. № подл.	Изм	Лист	№ Д	цокум.

Подп.

Дата

