Report for lab number 1 Data Structure Topic:

Difference between various sorting algorithms regarding time of execution

By students:

Yassin Medhat Helmi 7574 Hana Waleed Farouk 7599 Fady Sarwat Farouk 7432 In this lab assignment we were asked to implement the following sorting algorithms and compare their execution time:

Merge sort algorithm O(nLogn)

Quick Sort algorithm O(nLogn)

Hybrid sort (mix between selection and merge sort) algorithm O(nLogn)

Heap sort algorithm O(nLogn)

Selection sort algorithm $O(n^2)$

Insertion sort algorithm $O(n^2)$

The time vs size of array plots:

Data of plot written:

Algorithm/	1000	25,000	50,000	100,000	250,000
Size	elements	elements	elements	element	element
	150.9611	110699.5	414248.583	1736509.9	8826843.53
Insertion	msec	msec	msec	msec	msec
	66.00594	51184.24	184964.542	794351.9	6500574.18
Selection	msec	msec	msec	msec	msec
	3.02814	660.0003	1500.552	3108.948	8725.730
Merge	msec	msec	msec	msec	msec
	2.00104	470.0036	1076.557	3136.818	7515.399
Quick	msec	msec	msec	msec	msec
	3.97086	1026.386	3049.51882	6279.012	10391.18
Heap	msec	msec	msec	msec	msec
	2.00390	359.0977	1631.161	2838.948	8570.226
Hybrid	msec	msec	msec	msec	msec

As shown in the table below the worst-case algorithm is the Insertion sort

Also you can notice how Merge, Quick, Heap, Hybrid sort Algorithms are all with complexity O(nLogn) and still score differently from each other

that is because of the difference in their best cases and the conditions of the array e.g., repetition in numbers.

In addition, the quick sort is shown to be working efficiently BUT we shouldn't forget that it is unstable and can break down in some cases with complexity of $O(n^2)$

IN CONCLUSION:

All sorting algorithms are efficient in their own way and has benefits in their best environment, the key is to know which one to use regarding the conditions of the data you are dealing with.