1	Transformées de Laplace usu	elles			
	x(t)	X(s)		x(t)	X(s)
1	$\delta(t)$	1	21	$\left(1 - \frac{be^{-at} - ae^{-bt}}{b - a}\right) 1(t)$	$\frac{ab}{s(s+a)(s+b)}$
2	$\delta(t-T)$	e^{-sT}	22	$(e^{-at} - e^{-bt}(1 - (a - b)t))1(t)$	$\frac{(a-b)^2}{(s+a)(s+b)^2}$
3	1(t)	$\frac{1}{s}$	23	$(a-b(a-b)te^{-bt}-ae^{-at})1(t)$	$\frac{s(a-b)^2}{(s+a)(s+b)^2}$
4	t.1(t)	$\frac{1}{s^2}$	24	$((c-b)e^{-at} + (a-c)e^{-bt} + (b-a)e^{-ct}).1(t)$	$\frac{(a-b)(b-c)(c-a)}{(s+a)(s+b)(s+c)}$
5	$\frac{1}{2!}t^2.1(t)$	$\frac{1}{s^3}$	25	$(a(b-c)e^{-at} + b(c-a)e^{-bt} + c(a-b)e^{-ct}).1(t)$	$\frac{(a-b)(b-c)(c-a)s}{(s+a)(s+b)(s+c)}$
5	$\frac{1}{3!}t^3.1(t)$	$\frac{1}{s^4}$	26	$\sin(\omega t).1(t)$	$\frac{\omega}{s^2 + \omega^2}$
,	$\frac{1}{(n-1)!}t^{n-1}.1(t)$	$\frac{\frac{1}{s^4}}{\frac{1}{s^n}}$	27	$\cos(\omega t).1(t)$	$\frac{s}{s^2 + \omega^2}$
8	e^{-at} .1(t)	$\frac{1}{s+a}$	28	$sinh(\omega t).1(t)$	$\frac{\omega}{s^2 - \omega^2}$
,	$t.e^{-at}.1(t)$	$\frac{1}{(s+a)^2}$	29	cosh(@t).1(t)	$\frac{s}{s^2 - \omega^2}$
0	$\frac{1}{2}t^2e^{-at}.1(t)$	$\frac{1}{(s+a)^3}$	30	$e^{-at}.\sin(\omega t).1(t)$	$\frac{\omega}{(s+a)^2+\omega^2}$
1	$\frac{1}{(n-1)!}t^{n-1}e^{-at}.1(t)$	$\frac{1}{(s+a)^n}$	31	$e^{-at}.\cos(\omega t).1(t)$	$\frac{(s+a)}{(s+a)^2+\omega^2}$
2	$(1-e^{-at})1(t)$	$\frac{a}{s(s+a)}$	32	$e^{-at} \left(\cos(\omega t) - \frac{a}{\omega}\sin(\omega t)\right) \cdot 1(t)$	$\frac{s}{(s+a)^2+\omega^2}$
3	$\frac{1}{a} \left(at - 1 + e^{-at} \right) \mathfrak{1}(t)$	$\frac{a}{s^2(s+a)}$	33	$(\cosh(\omega t)-1).1(t)$	$\frac{\omega^2}{s(s^2-\omega^2)}$
4	$\frac{1}{a^2} \left(\frac{1}{2} (at)^2 - at + 1 - e^{-at} \right) \cdot \mathfrak{I}(t)$	$\frac{a}{s^3(s+a)}$	34	$(1-\cos(\omega t))1(t)$	$\frac{\omega^2}{s(s^2+\omega^2)}$
5	$(1-at)e^{-at}.1(t)$	$\frac{s}{(s+a)^2}$		$2e^{-\alpha t}(\alpha\cos(\omega t) + \beta\sin(\omega t)).1(t)$ = 1(t)	$\frac{\alpha+j\beta}{s+(a+j\omega)} + \frac{\alpha-j\beta}{s+(a-j\omega)}$
6	$t\left(1-\frac{at}{2}\right)e^{-at}.1(t)$	$\frac{s}{(s+a)^3}$	35	$2e^{-\alpha t}\sqrt{\alpha^2 + \beta^2} \sin\left(\alpha t + \arctan\frac{\alpha}{\beta}\right)$	$=2\frac{\alpha(s+a)+\beta\omega}{(s+a)^2+\omega^2}$
7	$\left(1 - e^{-at} \left(1 + at\right)\right) \mathbb{1}(t)$	$\frac{a^2}{s(s+a)^2}$	36	$\left(e^{-at} + \frac{a}{\omega}\sin(\omega t) - \cos(\omega t)\right).1(t)$	$\frac{a^2 + \omega^2}{(s+a)(s^2 + \omega^2)}$
8	$\left(b - be^{-at} + a.(a - b).t.e^{-at}\right)\mathbb{1}(t)$	$\frac{a^2(s+b)}{s(s+a)^2}$	37	$\left(1 - e^{-at} \left(\cos(\omega t) + \frac{a}{\omega} \sin(\omega t)\right)\right).1(t)$	$\frac{a^2 + \omega^2}{s((s+a)^2 + \omega^2)}$
9	$(e^{-at} - e^{-bt}) 1(t)$	$\frac{b-a}{(s+a)(s+b)}$	38	$(\sin(\omega t) - \omega t.\cos(\omega t)).1(t)$	$\frac{2\omega^3}{\left(s^2+\omega^2\right)^2}$
0	$\left(be^{-bt}-ae^{-at}\right)$ 1(t)	$\frac{(b-a)s}{(s+a)(s+b)}$	39	$t.\sin(\omega t).1(t)$	$\frac{2\omega s}{\left(s^2+\omega^2\right)^2}$