17 Factorization of Polynomials

Definition 17.1. Irreducible Polynomial, Reducible Polynomial

Let D be an integral domain. A polynomial f(x) from D[x] that is neither the zero polynomial nor a unit in D[x] is said to be irreducible over D if, whenever f(x) is expressed as a product f(x) = g(x)h(x), with g(x) and h(x) from D[x], then g(x) or h(x) is a unit in D[x]. A nonzero, nonunit element of D[x] that is not irreducible over D is called reducible over D.

EXAMPLE 1 The polynomial $f(x) = 2x^2 + 4$ is irreducible over \mathbb{Q} but reducible over \mathbb{Z} , since $2x^2 + 4 = 2(x^2 + 2)$ and neither 2 nor $x^2 + 2$ is a unit in $\mathbb{Z}[x]$.

EXAMPLE 2 The polynomial $f(x) = 2x^2 + 4$ is irreducible over \mathbb{R} but reducible over \mathbb{C} .

EXAMPLE 3 The polynomial $x^2 - 2$ is irreducible over \mathbb{Q} but reducible over \mathbb{R} .

EXAMPLE 4 The polynomial $x^2 + 1$ is irreducible over \mathbb{Z}_3 but reducible over \mathbb{Z}_5 .

Theorem 17.1. Reducibility Test for Degrees 2 and 3

Let \mathbb{F} be a field. If $f(x) \in \mathbb{F}[x]$ and deg f(x) is 2 or 3, then f(x) is reducible over \mathbb{F} if and only if f(x) has a zero in \mathbb{F} .

Definition 17.2. Content at a Polynomial, Primitive Polynomial

The content of a nonzero polynomial $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_0$, where the a's are integers, is the greatest common divisor of the integers $a_n, a_{n-1}, \ldots, a_0$. A primitive polynomial is an element of $\mathbb{Z}[x]$ with content 1.

Lemma 17.1. Gauss's Lemma

The product of two primitive polynomials is primitive.

Theorem 17.2. Reducibility over \mathbb{Q} Implies Reducibility over \mathbb{Z}

Let $f(x) \in \mathbb{Z}[x]$. If f(x) is reducible over \mathbb{Q} , then it is reducible over \mathbb{Z} .

Theorem 17.3. Mod p Irreducibility Test

Let p be a prime and suppose that $f(x) \in \mathbb{Z}[x]$ with $deg(f(x)) \leq 1$.

Let $\bar{f}(x)$ be the polynomial in $\mathbb{Z}_p[x]$ obtained from f(x) by reducing

all the coefficients of f(x) modulo p. If $\bar{f}(x)$ is irreducible over \mathbb{Z}_p and degf(x) = degf(x) then f(x) is irreducible over \mathbb{Q} .

Theorem 17.4. Eisenstein's Criterion (1850)

Let $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0 \in \mathbb{Z}[x]$.

If there is a prime p such that $p \nmid a_n, p | a_{n-1}, \dots, p | a_0$ and $p^2 \nmid a_0$, then f(x) is irreducible over \mathbb{Q} .

Corollary 17.5. Irreducibility of pth Cyclotomic Polynomial

For any prime p, the pth cyclotomic polynomial

$$\Phi_p(x) = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1$$

is irreducible over \mathbb{Q} .

Theorem 17.6. $\langle p(x) \rangle$ is Maximal If and Only If p(x) is Irreducible Let \mathbb{F} be a field and let $p(x) \in \mathbb{F}[x]$. Then $\langle p(x) \rangle$ is a maximal ideal in $\mathbb{F}[x]$ if and only if p(x) is irreducible over \mathbb{F} .

Theorem 17.7. Unique Factorization in $\mathbb{Z}[x]$

Every polynomial in $\mathbb{Z}[x]$ that is not the zero polynomial or a unit in $\mathbb{Z}[x]$ can be written in the form $b_1b_2...b_sp_1(x)p_2(x)...p_m(x)$, where the b_i 's are irreducible polynomials of degree 0 and the pl(x)'s are irreducible polynomials of positive degree. Furthermore, if

$$b_1b_2 \dots b_s p_1(x)p_2(x) \dots p_m(x) = c_1c_2 \dots c_t q_1(x)q_2(x) \dots q_n(x),$$

where the b_i 's and c_i 's are irreducible polynomials of degree 0 and the $p_i(x)$'s and $q_i(x)$'s are irreducible polynomials of positive degree, then s = t, m = n, and, after renumbering the c's and q(x)'s, we have $b_i = \pm c_i$ for i = 1, ..., s and $p_i(x) = \pm q_i(x)$ for i = 1, ..., m.

- 2. Suppose that D is an integral domain and \mathbb{F} is a field containing D. If $f(x) \in D[x]$ and f(x) is irreducible over \mathbb{F} but reducible over D, what can you say about the factorization of f(x) over D?
- 4. Suppose that $f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_0 \in \mathbb{Z}[x]$. If r is rational and x r divides f(x), show that r is an integer.
- 7. Suppose there is a real number r with the property that r+1/r is an odd integer. Prove that r is irrational.
- 8. Show that the equation $x^2 + y^2 = 2003$ has no solutions in the integers.