15. Аксонометрия

Проекционният апарат на метода аксонометрия се състои от:

- 1. Проекционна равнина π ;
- 2. Ортонормирана координатна ситема $\overline{K} = \{\overline{O}, \overline{e}_1, \overline{e}_2, \overline{e}_3\}$;
- 3. Проекционен център безкрайна точка U_s , нележаща в π и в никоя от координатните равнини на $\overline{K} = \{\overline{O}, \overline{e_1}, \overline{e_2}, \overline{e_3}\}$.

Означаваме с $\psi_{\pi}^{U_s}$ успоредното проектиране от U_s в π . Нека $\overline{O} \xrightarrow{\psi_{\pi}^{U_s}} O$, $\overline{OE}_i = \overline{e}_i$, $(O = \overline{O}U_S \cap \pi)$, $E_i = \overline{E}_i U_S \cap \pi$, i = 1, 2, 3.

Множеството $K = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$, където $\vec{e}_i = \overrightarrow{OE}_i$, i = 1, 2, 3, наричаме аксонометрична координатна система. Никои два от векторите $\vec{e}_1, \vec{e}_2, \vec{e}_3$ не са колинеарни, тъй като никои два от векторите $\overline{e}_1, \overline{e}_2, \overline{e}_3$ не са колинеарни. Осите $O\vec{e}_1, O\vec{e}_2, O\vec{e}_3$ наричаме аксонометрични оси, а дължините на векторите върху аксонометричните оси $p = |\vec{e}_1|, q = |\vec{e}_2|, r = |\vec{e}_3|$ наричаме коефициенти на изменение.

1. Изобразяване на точки.

Нека \overline{A} е точка, а \overline{A}_1 е ортогоналната \overline{L} проекция в равнината $(O, \overline{e}_1, \overline{e}_2)$; $(\overline{A}\overline{A}_1 \bot (\overline{O}, \overline{e}_1, \overline{e}_2), \ \overline{A}_1 \in (\overline{O}, \overline{e}_1, \overline{e}_2)).$

Точката $A=\overline{A}U_s\cap\pi$, т.е. $A=\psi_\pi^{U_s}(\overline{A})$ се нарича *аксонометрична проекция* на точката \overline{A} .

Точката $A_1=\overline{A}_1U_s\cap\pi$, т.е. $A_1=\psi_\pi^{U_s}(\overline{A}_1)$ се нарича *първа вторична проекция* на точката \overline{A} .

Да отбележим, че $A\overline{A}\parallel s$ и $A_1\overline{A}_1\parallel s$.

В аксонометрия точка \overline{A} се задава от наредената двойка точки (A, A_1) . Бележим $\overline{A}(A, A_1)$.

Тъй като при успоредно проектиране успоредни прави се изобразяват в успоредни прави, то: $AA_1 \parallel OE_3$, защото $\overline{AA_1} \parallel \overline{OE_3}$. Точката \overline{A} определя еднозначно двойката (A,A_1) и обратно наредената двойка (A,A_1) , $AA_1 \parallel OE_3$, определя еднозначно \overline{A} , тъй като $A_1U_S \cap (\overline{Oe_1e_2}) = \overline{A_1}$ и ако a е правата през $\overline{A_1}$, $a \perp (\overline{Oe_1e_2})$, то $a \cap AU_S = \overline{A}$. Аксонометрична проекция на една фигура намираме като намерим аксонометричните проекции на всички нейни точки.

Нека спрямо \overline{K} точката \overline{A} има координати $\overline{A}(x_{\overline{A}},y_{\overline{A}},z_{\overline{A}})$. Ако $\overline{A}_x \in \overline{O}\overline{e}_1$, $\overline{O}\overline{A}_x = x_{\overline{A}}\overline{e}_1$, $\overline{A}_y \in \overline{O}\overline{e}_2$, $\overline{O}\overline{A}_y = y_{\overline{A}}\overline{e}_2$ и $\overline{A}_1\overline{A} = z_{\overline{A}}\overline{e}_3$, то $\overline{A}_1\overline{A}_x \parallel \overline{O}\overline{E}_2$ и $\overline{A}_1\overline{A}_y \parallel \overline{O}\overline{E}_1$. Нека $\overline{A}_x \xrightarrow{\psi_x^{U_S}} A_x$ и $\overline{A}_y \xrightarrow{\psi_x^{U_S}} A_y$. От свойствата на успоредното проектиране имаме: $A_x \in O\overline{e}_1$, $A_y \in O\overline{e}_2$, $A_1A_x \parallel OE_2$, $A_1A_y \parallel OE_1$.

От теоремата на Талес следва, че при успоредно проектиране, отношението на колинеарни вектори се запазва, от където имаме: $\overrightarrow{OA_x} = x_{\vec{A}} \vec{e}_1$, $\overrightarrow{OA_y} = y_{\vec{A}} \vec{e}_2$, $\overrightarrow{A_1 A} = z_{\vec{A}} \vec{e}_3$.

Тогава, ако в π е зададена аксонометрична координатна система $K = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ и знаем координатите $(x_{\overline{A}}, y_{\overline{A}}, z_{\overline{A}})$ на \overline{A} спрямо \overline{K} , можем да намерим (A, A_1) .

Естествено възниква въпросът: До колко произволно можем да изберем в π началото O и координатните вектори $\vec{e}_1, \vec{e}_2, \vec{e}_3$ на аксонометричната координатна система?

Според теоремата на Полке-Шварц за равнинния четириъгълник $OE_1E_2E_3$ от равнината π и за тетраедъра $\overline{OE}_1\overline{E}_2\overline{E}_3$ съществуват равнина π' и безкрайна точка U_S , така че проекцията на $\overline{OE}_1\overline{E}_2\overline{E}_3$ от U_S в π' е четириъгълник $O'E_1'E_2'E_3'$, подобен на $OE_1E_2E_3$.

Тъй като подобните фигури дават една и съща представа за изобразявания обект, то можем да считаме $OE_1E_2E_3$ за успоредна проекция на координатната система $\overline{OE}_1\overline{E}_2\overline{E}_3$. Този резултат формулираме като:

Основна теорема на аксонометрията: Началото O и координатните вектори $\vec{e}_1, \vec{e}_2, \vec{e}_3$ на аксонометричната координатна система $K = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ могат да бъдат избрани произволно при условието никои два от векторите $\vec{e}_1, \vec{e}_2, \vec{e}_3$ да не са колинеарни.

Видове аксонометрични проекции.

- I. Според направлението на проектиране, аксонометричните проекции биват два вида:
 - 1) правоъгълна аксонометрия $U_s \perp \pi \ (s \perp \pi)$;
 - 2) наведена аксонометрия $U_S \perp \pi \ (s \perp \pi)$.

Тук $U_{\scriptscriptstyle S}$ е проекционният център, а π е проекционната равнина.

II. Според коефициентите на изменение различаваме:

Ако $K = \{O, \vec{e}_1, \vec{e}_2, \vec{e}_3\}$ е аксонометричната координатна система и $p = |\vec{e}_1|, q = |\vec{e}_2|, r = |\vec{e}_3|$

- 1) изометрия p = q = r;
- 2) диметрия $p = q \neq r$;
- 3) триметрия $p \neq q \neq r \neq p$.