

Setting up your optimization problem

Gradient Checking

Gradient check for a neural network

Take $W^{[1]}$, $b^{[1]}$, ..., $W^{[L]}$, $b^{[L]}$ and reshape into a big vector θ . $\mathcal{J}(\omega^{(1)}, b^{(1)}, \dots, b^{(L)})^2 = \mathcal{J}(\theta)$

Take $dW^{[1]}$, $db^{[1]}$, ..., $dW^{[L]}$, $db^{[L]}$ and reshape into a big vector $d\theta$.

Is do the gradet of J(0)?

Gradient checking (Grad check)

Setting up your optimization problem

Gradient Checking implementation notes

Gradient checking implementation notes

- Don't use in training – only to debug

- If algorithm fails grad check, look at components to try to identify bug.

- Remember regularization.

- I(0) = \frac{1}{m} \gamma \left\{ \frac{1}{2} \cdots \cdots \left\{ \frac{1}{2} \cdots \cdots
- Doesn't work with dropout.
- Run at random initialization; perhaps again after some training.