1.利用 Weka 對 CardiologyCategorical.csv 進行 Unsupervised Clustering。 使用 Simple K-Means 演算法做分群,其產生的群不能大於六群。調整群的樹木或刪除較不重要的屬性或是調整群的初始中心,再進行一次分群動作,直到找出最好的分群模型為止,再根據產生的結果進行分析:

(a)最好的分群模型判斷條件為何?列出使用了那些屬性、初始中心為多少等等。 (10%)

The smaller value of sum of squared errors it is, the better the cluster model is.

NumCluster = Within cluster sum of squared errors: 903.5806368731734

Seed = 10

DistanceFunction = EuclideanDistance

NumCluster = 3 Within cluster sum of squared errors: 632.1992389086358

Seed = 10

DistanceFunction = EuclideanDistance

NumCluster = 4 Within cluster sum of squared errors: 589.8257599289915

Seed = 10

DistanceFunction = EuclideanDistance

NumCluster = Within cluster sum of squared errors: 553.4896470752894

Seed = 10

DistanceFunction = EuclideanDistance

This is the smallest value.

NumCluster = 6 Within cluster sum of squared errors 531.1182943548731

Seed = 10

DistanceFunction = EuclideanDistance

NumCluster = Within cluster sum of squared errors: 598.0254236996501

Seed = 100

DistanceFunction = EuclideanDistance

Ignore: Sex

NumCluster = Sum of within cluster distances: 868.6928788183081

Seed = 100

DistanceFunction = ManhattanDistance

Final cluster centroids:							
		Cluster#					
Attribute	Full Data	0	1	2	3	4	5
	(303.0)	(59.0)	(85.0)	(22.0)	(65.0)	(43.0)	(29.0)
age	54.3663	49.9492	52,9412	58.6818	55.4462	60,8837	52.1724
sex	Male	Male	Female	Male	Male	Male	Male
chest pain type	Asymptomatic Abr	normal Angina	NoTang	Angina	Asymptomatic	Asymptomatic	Asymptomatic
blood pressure	131.6238	131.6102	128.7529	136.6364	133.6308	137.5814	122.931
cholesterol	246.264	242.6441	244.9059	260.5909	246.6	258.093	228.4483
Fasting blood sugar <120	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE
resting ecg	Normal	Hyp	Normal	Hyp	Normal	Нур	Normal
maximum heart rate	149.6469	164.5424	156.4471	157.5	127.6462	139.1628	158.3103
angina	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE	FALSE
peak	1.0396	0.3593	0.5459	1.2	1.7938	2.1814	0.3655
slope	Up	Up	Up	Flat	Flat	Flat	Up
#colored vessels	0.6667	0.3051	0.2706	0.2273	0.6769	2.0233	0.8621
thal	Normal	Normal	Normal	Rev	Rev	Rev	Rev
class	Healthy	Healthy	Healthy	Healthy	Sick	Sick	Sick

(b)承上題設定,此結果分了幾群?試著說明各群所代表之意義、特色為何?(10%)

Total 6 clusters.

Which respectively are:

<Class = Healthy>

Cluster0 which includes 59 instances.

Cluster1 which includes 85 instances.

Cluster2 which includes 22 instances.

<Class = Sick>

Cluster3 which includes 65 instances.

Cluster4 which includes 43 instances.

Cluster5 which includes 29 instances.

2.將 CardiologyCategorical.csv 分割成 training data: 203 筆,test data: 100 筆。使用上一題的 input attributes,並將 Attribute: class 設定為 output,利用 Naïve Bayes 進行 supervised learning:

(a)請說明如何將 CardiologyCategorical.csv 分割成訓練集和測試集。(5%)

Take advantage of Percentage Split, in order to split all instances into training data and test data. The former includes 203 instances and stands 67% of the whole data set, the latter includes 100 instances which stands for 33% of the whole data set.

(b)觀察訓練出來的模型,屬於 class = sick 及 class = healthy 的 instance 各 有何特色 ?與第一題(b)比較有何相同或相異 ?(15%)

	Class		cholesterol					
Attribute	Sick	Healthy	mean	251.1385	242.1789	peak		
	(0.46)	(0.54)	std. dev.	49.3271	53.384	mean	1.5932	0.5868
			weight sum	138	165	std. dev.	1.2957	0.7744
age			precision	2.9007	2.9007	weight sum	138	165
mean		52.4655						
std. dev.	7.9344		Fasting blood sugar <120			precision	0.159	0.159
weight sum	138	165	FALSE	117.0	143.0			
precision	1.2	1.2	TRUE	23.0	24.0	slope		
			[total]	140.0	167.0	Flat	92.0	50.0
sex						Up	36.0	108.0
Male	115.0	94.0	resting ecg			Down	13.0	10.0
Female	25.0	73.0	Нур	80.0	69.0	[total]	141.0	168.0
[total]	140.0	167.0	Normal	57.0	97.0	[cocar]	141.0	100.0
			Abnormal	4.0	2.0	is market to the production of		
chest pain type			[total]	141.0	168.0	#colored vessels		
Asymptomatic	105.0	40.0		00000	1000 071201130	mean	1.1449	0.2667
Abnormal Angina	10.0	42.0	maximum heart rate		`	std. dev.	1.0112	0.6241
Angina	8.0	17.0	mean	139.1005	158.4174	weight sum	138	165
NoTang	19.0	70.0	std. dev.	22.5146	19.0916	precision	1	1
[total]	142.0	169.0	weight sum	138	165	•		
			precision	1.4556	1.4556	thal		
blood pressure			**************************************					
mean	134.3723	129.1273	angina			Rev	91.0	29.0
std. dev.	18.6815	16.0421	TRUE	77.0	24.0	Normal	37.0	132.0
weight sum	138	165	FALSE	63.0	143.0	Fix	13.0	7.0
precision	2.2083	2.2083	[total]	140.0	167.0	[total]	141.0	168.0

Take <maximum

heart rate> for example.

Cluster	results	Cluster v.s Naïve Bayes	
Cluster0: 131.6102	Healthy	129.1273	same
Cluster1: 128.7529	Healthy	129.1273	same
Cluster2: 136.6364	Healthy	134.3723	Not same
Cluster3: 133.6308	Sick	134.3723	same

Cluster4: 137.5814	Sick	134.3723	same
Cluster5: 122.931	Sick	129.1273	Not same

Take <Blood pressure> for example.

· · · · · · · · · · · · · · · · · · ·	1	,	1
Cluster	results	Cluster v.s	
		Naïve	
		Bayes	
Cluster0:	Healthy	158.4714	same
164.5424			
Cluster1:	Healthy	158.4714	Same
156.4471			
Cluster2: 157.5	Healthy	158.4714	Same
Cluster3:	Sick	139.1105	Same
127.6462			
Cluster4:	Sick	139.1105	ame
139.1628			
Cluster5:	Sick	158.4714	Not same
158.3103			
L		1	

(c)Test data 正確率為多少?預測兩個 class 的 F-Measure 各為多少?(截圖即可,不用計算過程)(10%)

(d)第 100 筆 test data 透過此 model 的預測 class 為 Sick 還是 Healthy?

它的 Probability distribution 各為多少?(請列出算式) (20%)

No.	100	instance	1:	Sick		1:Sick	0.896	Pre	edict as	Sick.
56	5 Male	Asymptomatic	125	249	TRUE	Нур	144 TRUE	1.2 Flat	1 Normal	Sick
Age:	_	$\frac{1}{2\pi * 9.082} \epsilon$	$\frac{-(56-1)}{2*9}$	54.366 9.082 ²) ² =	0.0433	91			

Sex:

Male: Output=Sick: 144 instances. $P = \frac{114}{138}$

Chest pain type:

Asymptomatic: Output=Sick: 104 instances. $P = \frac{104}{138}$

Blood pressure:
$$\frac{1}{\sqrt{2\pi}*17.538}e^{-\frac{(125-131.624)^2}{2*17.538^2}} = 0.0215$$
 Cholesterol:
$$\frac{1}{\sqrt{2\pi}*51.831}e^{-\frac{(249-246.264)^2}{2*51.831^2}} = 0.007691$$

Fasting blood sugar<120:

TRUE: Output=Sick: 22 instances. $P = \frac{22}{138}$

Resting ecg:

Hyper: Output=Sick: 79 instances. $P = \frac{79}{138}$

Maximum: $\frac{1}{\sqrt{2\pi} * 22.905} e^{\frac{-(144-149.647)^2}{2*22.905^2}} = 0.01702$

True: Output=Sick: 76 instances. $P = \overline{138}$

 $\frac{1}{\sqrt{2\pi} * 1.161} e^{-\frac{(1.2 - 1.04)^2}{2 * 1.161^2}} = 0.341195$ Peak:

Slope:

Flat: Output=Sick: 91 instances. $P = \overline{138}$

 $\frac{1}{\sqrt{2\pi} * 0.934} e^{-\frac{(0.667-1)^2}{2*0.934^2}} = 0.40671 \text{ vessels:}$ colored

Thal:

36 Normal: Output=Sick: 36 instances. $P = \overline{138}$

- 3.利用 Weka 對 diabetes.arff 進行分類。請比較該資料集利用 J48 與 Naïve Bayes 的分類運算下,有無明顯的優劣差別。
- (a) 載入 diabetes.arff 並在前處理隨機抽樣(Resample)10%的資料集來做分類 (sampleSizePercent = 10)

Choose>filters>supervised>instance>resample>set SampleSizePercent =10

(b)採用同樣 10 取樣的資料集,Test options 選擇 Cross-validation,並錄 J48 和 Naïve Bayes 分類後的正確率 (請將 10 次結果都截圖)

J48:

```
1 1:tested negative 1:tested negative
                                          0.946
                                                  1 1:tested negative 1:tested negative
                                                                                              1
2 1:tested_negative 1:tested_negative
                                                   2 1:tested negative 1:tested negative
3 1:tested negative 1:tested negative
                                          0.946
                                                  3 1:tested negative 1:tested negative
4 1:tested negative 1:tested negative
                                          0.946
                                                   4 1:tested negative 1:tested negative
                                                                                              1
5 1:tested_negative 1:tested_negative
                                          0.946
                                                   5 1:tested_negative 2:tested_positive
                                                                                              0.75
6 2:tested_positive 2:tested_positive
                                          0.929
                                                   6 2:tested_positive 2:tested_positive
                                                                                              0.75
7 2:tested positive 1:tested negative + 1
                                                   7 2:tested_positive 1:tested_negative
8 2:tested_positive 1:tested_negative + 0.946 8 2:tested_positive 1:tested_negative +
1 1:tested_negative 1:tested_negative
                                          0.946 1 1:tested negative 1:tested negative
2 1:tested negative 1:tested negative
                                          0.946
                                                  2 1:tested_negative 2:tested_positive +
                                                                                             0.875
3 1:tested_negative 1:tested_negative
                                          0.946 3 1:tested_negative 2:tested_positive +
                                                                                             0.875
4 1:tested_negative 1:tested_negative
                                          1
                                                  4 1:tested negative 1:tested negative
                                                                                             0.974
5 1:tested negative 1:tested negative
                                          0.946 5 1:tested_negative 1:tested_negative
                                                                                             0.974
6 2:tested positive 1:tested negative +
                                          1
                                                  6 2:tested positive 2:tested positive
                                                                                             0.875
                                          0.946 7 2:tested_positive 2:tested_positive
7 2:tested positive 1:tested negative +
                                                                                             1
8 2:tested_positive 2:tested_positive
                                          0.929 8 2:tested_positive 2:tested_positive
                                                                                             0.875
                                          0.972 1 1:tested negative 1:tested negative
                                                                                             1
1 1:tested negative 1:tested negative
                                          0.972 2 1:tested negative 1:tested negative
2 1:tested_negative 1:tested_negative
                                                                                             1
                                          0.972 3 1:tested negative 1:tested negative
3 1:tested negative 1:tested negative
                                          0.972 4 1:tested negative 1:tested negative
4 1:tested negative 1:tested negative
                                                  5 1:tested_negative 1:tested_negative
                                                                                             0.667
5 1:tested_negative 1:tested_negative
                                          1
6 2:tested_positive 2:tested_positive
                                                  6 2:tested positive 2:tested positive
                                                                                             0.929
                                          1
                                                  7 2:tested_positive 1:tested_negative
7 2:tested_positive 2:tested_positive
                                                  8 2:tested_positive 1:tested_negative +
8 2:tested_positive 1:tested_negative + 1
                                                                                             1
1 1:tested_negative 1:tested_negative
                                          1
                                                 1 1:tested_negative 1:tested negative
                                                                                             0.947
                                          0.973 2 1:tested_negative 1:tested_negative
0.973 3 1:tested_negative 1:tested_negative
2 1:tested_negative 1:tested_negative
                                                                                             0.947
3 1:tested negative 1:tested negative
                                                                                             0.947
4 1:tested_negative 1:tested_negative
                                          0.973
                                                 4 1:tested negative 2:tested positive
                                          0.973 5 1:tested_negative 2:tested_positive
5 1:tested_negative 1:tested_negative
                                                                                            1
6 2:tested positive 1:tested negative + 0.973
                                                 6 2:tested positive 1:tested negative +
                                                                                            0.947
7 2:tested_positive 2:tested_positive
                                          1
                                                 7 2:tested_positive 2:tested_positive
```

```
1 1:tested_negative 2:tested_positive + 1 1:tested_negative 1:tested_negative 0.967 2 1:tested_negative 1:tested_negative 0.889 3 1:tested_negative 1:tested_negative 1 3 1:tested_negative 2:tested_positive + 0.923 4 1:tested_negative 1:tested_negative 0.967 4 1:tested_negative 1:tested_negative 0.889 5 1:tested_negative 1:tested_negative 1 5 1:tested_negative 2:tested_positive + 1 6 2:tested_positive 1:tested_negative + 1 6 2:tested_positive 1:tested_negative 1 0.923 7 2:tested_positive 1:tested_negative + 0.967 7 2:tested_positive 2:tested_positive 0.923
```

Correctly Classified Instances 55

72.3684 %

Naïve Bayes:

	•								
1	1:tested_negative	1:tested_negative		1	1	1:tested_negative	1:tested_negative		0.995
2	l:tested_negative	1:tested_negative		0.502	2	1:tested_negative	1:tested_negative		0.856
3	1:tested_negative	1:tested_negative		0.988	3	l:tested_negative	1:tested_negative		0.867
4	1:tested_negative	1:tested_negative		0.994	4	l:tested_negative	1:tested_negative		1
5	1:tested_negative	1:tested_negative		1	5	1:tested_negative	1:tested_negative		0.765
6	2:tested_positive	2:tested_positive		0.951	6	2:tested_positive	2:tested_positive		0.972
7	2:tested_positive	1:tested_negative	+	0.587	7	2:tested_positive	1:tested_negative	+	0.862
8	2:tested_positive	1:tested_negative	+	0.994	8	2:tested_positive	1:tested_negative	+	0.816
1	l:tested_negative	l:tested_negative		0.963	1	1:tested_negative	1:tested_negative		0.977
2	1:tested_negative	1:tested_negative		0.997		1:tested_negative		+	0.999
3	1:tested_negative	1:tested_negative		0.554	3	l:tested_negative	2:tested_positive	+	0.999
4	1:tested_negative	1:tested_negative		0.692	4	1:tested_negative	1:tested_negative		0.984
5	1:tested_negative	1:tested_negative		0.956	5	1:tested_negative	1:tested_negative		0.989
6	2:tested_positive	1:tested_negative	+	0.969	6	2:tested_positive	2:tested_positive		0.999
7	2:tested_positive	2:tested_positive		0.871		2:tested_positive			0.869
8	2:tested_positive	2:tested_positive		0.902	8	2:tested_positive	2:tested_positive		0.998
1	1:tested_negative	2:tested_positive	+	0.51	1	1:tested_negative	1:tested_negative		0.986
2	1:tested_negative	1:tested_negative		0.972	2	1:tested_negative	1:tested_negative		0.89
3	1:tested_negative	2:tested_positive	+	0.714	3	l:tested_negative	1:tested_negative		0.925
4	1:tested_negative	1:tested_negative		0.98	4	l:tested_negative	1:tested_negative		0.777
5	1:tested_negative	1:tested_negative		0.933	5	1:tested_negative	1:tested_negative		0.95
6	2:tested_positive	2:tested_positive		0.969	6	2:tested_positive	2:tested_positive		0.66
7	2:tested_positive	2:tested_positive		0.517		2:tested_positive			0.995
8	2:tested_positive	l:tested_negative	+	1	8	2:tested_positive	2:tested_positive		0.805
1	1:tested_negative	1:tested_negative		0.739	1	1:tested_negative	1:tested_negative		0.991
2	1:tested_negative	1:tested_negative		0.92	2	1:tested_negative	1:tested_negative		0.971
3	1:tested_negative	1:tested_negative		0.974	3	l:tested_negative	1:tested_negative		0.993
4	l:tested_negative	1:tested_negative		0.971	4	l:tested_negative	2:tested_positive	+	0.877
5	1:tested_negative	1:tested_negative		0.987	5	1:tested_negative	2:tested_positive	+	0.76
6	2:tested_positive	1:tested_negative	+	0.565	6	2:tested_positive	1:tested_negative	+	0.602
7	2:tested positive	2:tested positive		0.974	7	2:tested positive	2:tested positive		0.59
	1:tested_negative	100 A		0.924	1	1:tested_negative	1:tested_negative		0.993
	1:tested_negative	7757	+	0.889	2	1:tested_negative	1:tested_negative		0.92
	1:tested_negative			0.604	3	1:tested_negative	2:tested_positive	+	0.505
	1:tested_negative	성입하다. (10명 : 10명 : 1		0.929	4	1:tested_negative	1:tested_negative		1
	1:tested_negative			0.83	5	1:tested_negative	1:tested_negative		0.945
	2:tested_positive			0.992	6	2:tested_positive	2:tested_positive		1
7	2:tested_positive	2:tested_positive		0.677	7	2:tested_positive	2:tested_positive		0.964

(c)重複 10 次不同的取樣,每一次取樣都要改變 randomSeed,使每次 10%的 取樣得到不同的 instance (a)~(c) 配分 10%

RandomSeed = 10

(d)請計算 10 次取樣中,兩分類器的平均正確率、變異數等,假設信心水準 99% 的情況下,兩分類器有無明顯的差別! (請用統計的觀點證明) (20%)

naïve	J48
0.710526	0.78947
0.710526	0.69737
0.842105	0.81579
0.736842	0.68421
0.75	0.75
0.75	0.75
0.710526	0.67105
0.815789	0.76316
0.657895	0.72368
0.723684	0.64474
0.7407893	0.72895
0.05007710	0.0517
0.00097719	0.0517
0.002598674	0.00267
	0.710526 0.710526 0.842105 0.736842 0.75 0.75 0.710526 0.815789 0.657895 0.723684 0.7407893 0.05097719

Make an hypothesis that:

H0: d = 0

H1: d!=0

When confidence level at 99%, degree = 10-1=9, z = 3.25

 $\frac{\sqrt{\sigma}}{10} < 3.25$ If $-3.25 < \sqrt{\frac{\sigma}{10}}$, there is no difference between them.

 σ^2 =0.002887/10+0.00297/10=0.0005857

$$\frac{0^{-0.002887710+0.002}}{\frac{740789-0.728947}{\boxed{0.0005857}}}=1.5473$$

not in the interval (-3.25, 3.25)

Which indicates two classifier have vast difference.