

Static Optimization

The Inverse Problem

Static Optimization

Inverse Dynamics

Inverse Kinematics

 Use musculoskeletal geometry and assumptions about force distribution to estimate individual muscle forces

Key Concepts

Kinematics coordinates and their velocities and accelerations

• **Kinetics** muscle forces

Muscle muscle activation-contraction dynamics and force-length-velocity relations

Dynamics equations of motion

Musculoskeletal muscle moment arm geometry

Optimization the "distribution" problem

Kinetics: Muscle Forces

- Kinetics
 - Muscle forces cause the model to accelerate
- Muscle force
 - Applied between origin and insertion points

Muscle Physiology: Muscle Activation-Contraction and Force-Length-Velocity Relations

- Muscle activation-contraction
 - Biochemical reaction that causes a muscle's fibers to contract which produces force

Musculoskeletal Geometry: Muscle Moment

<u>Arm</u>

- Muscle moment arm
 - The perpendicular distance from the line of action of a muscle to the joint center of rotation
 - Transformation from linear force of muscle to angular moment about a joint center

$$ma_{x} = \frac{\vec{r} \times \vec{F}}{|\vec{F}|} \cdot \hat{x}$$

ma

Static Optimization

- Determines the "best" set of muscle forces that
 - Produce net joint moments at a discrete time
 - Do not violate muscle force limits
 - Optimize a performance criterion
- Performance criterion attempts to capture the goal of the neural control system
 - Minimize muscle force?
 - Minimize muscle stress?

The Muscle Force Distribution Problem

flexion moment extension moment

Major flexors

<u>Ankle example</u>

$$M_a = (F_{ta}r_{ta} + F_{ed}r_{ed}) - (F_gr_g + F_sr_s + F_{tp}r_{tp})$$

How can we solve this?

 $\frac{\text{Major extensors}}{\text{Soleus}}$ $\frac{\text{Tibialis}}{\text{Soleus}}$ $\frac{\text{Extensor}}{\text{digitorum}}$ $\frac{\text{Net ankle}}{\text{moment}}$ $\frac{M}{a}$

Static Optimization Formulation

minimize
$$f(F_m)$$
 Function of muscle forces

subject to
$$M_a(t) = [F_{ta}(t)r_{ta}(t) + F_{ed}(t)r_{ed}(t)] - [F_g(t)r_g(t) + F_s(t)r_s(t) + F_{tp}(t)r_{tp}(t)]$$

$$F_{ta}(t) \le 900 \text{N}$$
$$F_{ed}(t) \le 800 \text{N}$$

$$F_g(t) \le 1500 \mathrm{N}$$

$$F_s(t) \le 2500$$
N

$$F_{tp}(t) \leq 1500 \mathrm{N}$$

Example Performance Criteria

$$f(F_m) = \sum_{m=1}^{nm} F_m$$

Muscle force

Difficult to define and validate a good criterion

$$f(F_m) = \sum_{m=1}^{nm} \left(\frac{F_m}{PCSA_m} \right)^3$$

$$f(F_m) = \sum_{m=1}^{nm} \left(\frac{F_m}{PCSA_m}\right)^3 \qquad \text{(Muscle stress)}^3 \sim N$$

$$f(F_m) = \sum_{m=1}^{nm} \left(k \frac{F_m}{PCSA_m}\right)^2 \approx \sum_{m=1}^{nm} (a_m)^2 \qquad \text{(Muscle activation)}^2$$

(Muscle stress) $^3 \sim \text{Metabolic energy}$

Major flexors

Possible validations

- Use output to drive a forward dynamic simulation
- Compare qualitatively to experimental EMG
- Compare to measured forces (instrumented hip implant, buckle transducer in tendon)

Major extensors Gastrocnemius Tibialis Soleus anterior Extensor **Tibialis** digitorum posterior Net ankle moment

1. Given that the rectus femoris muscle has a peak isometric force of 1169 N and it is at its optimal fiber length and zero velocity, what is the force generated for an activation of 0.86?

A. 164 N

B. 952 N

C. 1005 N

D. 1058 N

2. For the model shown on the right, which muscle has the largest moment arm about the **ankle** joint?

A. 1

B. 2

C. Neither (are identical)

3. For the model shown on the right, which muscle has the largest moment arm about the **knee** joint?

A. 1

B. 2

C. Neither (are identical)

4. For the model shown on the right, muscle 1 and 2 have the following properties

Muscle	Peak Isometric	Moment Arm (cm)
	Force (N)	
1	905	3.6
2	512	3.0

To solve the "distribution" problem minimizing the sum of squared activations, which muscle would be activated more for a given dorsiflexion moment?

B. 2

C. Neither (are identical)

Static Optimization in OpenSim

Static Optimization

TIPS & TRICKS

Inputs: Can use kinematics from IK or RRA. If using IK, need to filter kinematics

Residuals: Add residual actuators to pelvis

Reserves: Add reserve torque actuators to trouble-shoot a weak model

Minimizing residuals & reserves: Increase maximum control value (default = 1) and lower the maximum force → penalizes activity

Command Line: analyze –S setup_file.xml