Problem 1

Problem 1. Let $A = \{a, b, c, d\}$, $B = \{a, b, c\}$, and $C = \{s, t, u, v\}$. Draw an arrow diagram of a function for each of the following descriptions. If no such function exists, briefly explain why.

- (a) A function $f: A \to C$ whose range is the set C.
- (b) A function $q: B \to C$ whose range is the set C.
- (c) A function $q: B \to C$ that is injective.
- (d) A function $j: A \to C$ that is not bijective.

Solution:

$$b \longrightarrow t$$

$$d \longrightarrow v$$

Diagram for (b): $g: B \to C$ (Range = C) - No such function exists

Explanation: The domain B has only three elements, but C has four elements. Therefore, there is no way to map all elements of C (to cover its range) from B.

Diagram for (c): $g: B \to C$ (Injective)

Diagram for (d): $j:A\to C$ (Not Bijective)

Problem 2

Problem 2. Determine whether each function is an injection **and** determine whether each is a surjection. You do not need formal proofs, but you must clearly justify your conclusion and show neat (and mathematically accurate) supporting work.

- (a) $f: \mathbb{Z}_6 \to \mathbb{Z}_6$ defined by $f(x) = x^2 + 4 \pmod{6}$.
- (b) $g: \mathbb{Z}_5 \to \mathbb{Z}_5$ defined by $g(x) = x^2 11 \pmod{5}$.
- (c) $h: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ defined by h(x, y) = x + 2y.
- (d) $j: \mathbb{R} \{3\} \to \mathbb{R}$ defined by $j(x) = \frac{4x}{x-3}$.

Solution:

(a) In $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$:

$$f(0) = 4$$
, $f(1) = 5$, $f(2) = 2$, $f(3) = 1$, $f(4) = 2$, $f(5) = 5$.

Since f(2) = f(4) and f(1) = f(5), f is not injective. The range is $\{1, 2, 4, 5\}$, not all of \mathbb{Z}_6 , so it is not surjective.

(b) In $\mathbb{Z}_5 = \{0, 1, 2, 3, 4\}$, note that $-11 \equiv 4 \pmod{5}$. Thus:

$$g(x) = x^2 + 4 \pmod{5}$$
.

Check values:

$$g(0) = 4$$
, $g(1) = 0$, $g(2) = 3$, $g(3) = 3$, $g(4) = 0$.

Not injective since g(1) = g(4) and g(2) = g(3). The range is $\{0, 3, 4\}$, not all of \mathbb{Z}_5 , so not surjective.

(c) Consider h(x,y) = x + 2y on integers. To check injectivity:

$$h(0,0) = 0, \quad h(2,-1) = 0.$$

Different inputs map to the same output, so not injective. For surjectivity, given any integer z, choose x=z,y=0, so h(x,y)=z. Thus h is surjective.

(d) For $j(x) = \frac{4x}{x-3}$, if $j(x_1) = j(x_2)$:

$$\frac{4x_1}{x_1 - 3} = \frac{4x_2}{x_2 - 3}.$$

Cross-multiplying shows $x_1 = x_2$. Thus j is injective. For surjectivity, set $y = \frac{4x}{x-3}$. Solve for x:

$$y(x-3) = 4x \implies yx - 4x = 3y \implies x(y-4) = 3y \implies x = \frac{3y}{y-4}.$$

This works for all $y \neq 4$. When y = 4, no solution exists. Not all real numbers are attained, so not surjective.

Problem 3

Problem 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 + 5$.

- (a) Determine if f is injective. If so, write a formal proof. If not, write a counterexample.
- (b) Determine if f is surjective. If so, write a formal proof. If not, write a counterexample.
- (c) Based upon (a) and (b), is f bijective?

Solution:

(a) *Injectivity:* Suppose f(a) = f(b). Then:

$$a^{3} + 5 = b^{3} + 5 \implies a^{3} = b^{3} \implies a = b.$$

Thus, f is injective.

(b) *Surjectivity:* For any $y \in \mathbb{R}$, let:

$$x = \sqrt[3]{y - 5}.$$

Then:

$$f(x) = x^3 + 5 = (y - 5) + 5 = y.$$

Thus, f is surjective.

(c) Since f is both injective and surjective, f is bijective.