HW1 Econometrics 3

$Matthew\ Aaron\ Looney$ 9/11/2017

OLS

 ${\bf Table\ 1:\ Summary\ Statistics}$

Statistic	N	Mean	St. Dev.	Min	Max
beta_0_ols	100	9.590	9.716	-13.569	35.337
beta_1_ols	100	0.971	0.520	-0.481	2.243
$beta_2_ols$	100	1.050	0.386	0.344	1.896
var_b0_ols	100	70.313	35.817	17.030	193.850
var_b1_ols	100	0.203	0.103	0.049	0.559
var_b2_ols	100	0.145	0.074	0.035	0.399
se_b0_ols	100	8.139	2.029	4.127	13.923
se_b1_ols	100	0.437	0.109	0.222	0.748
se_b2_ols	100	0.369	0.092	0.187	0.632
$t_val_b0_ols$	100	1.262	1.271	-1.565	5.098
$t_val_b1_ols$	100	2.335	1.219	-0.644	5.307
$t_val_b2_ols$	100	3.038	1.401	0.665	7.349
$BP_testStat_ols$	100	6.292	4.894	0.061	20.898
$GV_HET_Test_ols$	100	4.797	3.828	0.001	16.076

 $good\ 1 = meats$

good 2 = dairy

good 3 = beans

\mathbf{FGLS} Estimate the model using FGLS techniques Assume multiplicative hetero. . .

Table 2: Summary Statistics

Statistic	N	Mean	St. Dev.	Min	Max		
$beta_0_ols$	100	9.590	9.716	-13.569	35.337		
$beta_1_ols$	100	0.971	0.520	-0.481	2.243		
$beta_2_ols$	100	1.050	0.386	0.344	1.896		
var_b0_ols	100	70.313	35.817	17.030	193.850		
var_b1_ols	100	0.203	0.103	0.049	0.559		
var_b2_ols	100	0.145	0.074	0.035	0.399		
se_b0_ols	100	8.139	2.029	4.127	13.923		
se_b1_ols	100	0.437	0.109	0.222	0.748		
se_b2_ols	100	0.369	0.092	0.187	0.632		
$t_val_b0_ols$	100	1.262	1.271	-1.565	5.098		
$t_val_b1_ols$	100	2.335	1.219	-0.644	5.307		
$t_val_b2_ols$	100	3.038	1.401	0.665	7.349		
$beta_0_fgls$	100	9.836	7.165	-6.479	29.558		
$beta_1_fgls$	100	0.965	0.385	-0.008	1.857		
$beta_2_{fgls}$	100	1.044	0.369	0.022	1.865		
$alpha_0_fgls$	100	-2.100	2.320	-7.556	3.861		
alpha_1_fgls	100	0.192	0.113	-0.157	0.452		
var_b0_fgls	100	21.369	20.497	4.819	100.744		
var_b1_fgls	100	0.052	0.046	0.013	0.225		
var_b2_fgls	100	0.022	0.013	0.008	0.096		
se_b0_fgls	100	4.272	1.774	2.195	10.037		
se_b1_fgls	100	0.214	0.082	0.115	0.474		
se_b2_fgls	100	0.142	0.038	0.088	0.309		
$t_val_b0_fgls$	100	2.573	2.236	-2.263	10.344		
$t_val_b1_fgls$	100	4.911	2.391	-0.045	12.458		
$t_val_b2_fgls$	100	7.864	3.571	0.168	18.313		
$var_b0_HCCM_0$	100	73.048	62.861	8.697	357.686		
$var_b1_HCCM_0$	100	0.233	0.196	0.031	1.094		
$var_b2_HCCM_0$	100	0.085	0.049	0.024	0.280		
$var_b0_HCCM_3$	100	126.622	115.448	12.261	645.598		
$var_b1_HCCM_3$	100	0.395	0.358	0.048	2.010		
$\underline{\text{var_b2_HCCM_3}}$	100	0.164	0.123	0.038	0.704		

 $^{{\}rm good}\ 1 = {\rm meats}$

good 2 = dairy

good 3 = beans

\mathbf{MLE}

$$\ln L = -0.5n \log(2\pi) - 0.5 \sum_{\alpha} (\sigma^2) - 0.5 \sum_{\beta} \left[\frac{(y - X'\beta)^2}{\sigma^2} \right]$$
 (1)

where,

 $\sigma^2 \simeq \exp(\alpha_0 + \alpha_1 x_1)$

[1] 0.7758764 [1] 19.19565