

Disciplina: Sistemas Distribuídos

Sistemas de Informação 8º Período

Prof. Cristiano Vieira 2020

Introdução aos Sistemas Distribuídos

AULA 1

Definição

Sloman, 1987

"Um sistema de processamento distribuído é tal que, vários processadores e dispositivos de armazenamento de dados, comportando processos e/ou bases de dados, interagem cooperativamente para alcançar um objetivo comum. Os processos coordenam suas atividades e trocam informações por passagem de mensagens através de uma rede de comunicação"

Definição

Andrew Tanenbaum

"Coleção de computadores independentes que se apresenta ao usuário como um sistema único e consistente (coerente)"

Coulouris

"Coleção de computadores autônomos interligados através de uma rede de computadores e equipados com software que permita o compartilhamento dos recursos do sistema: hardware, software e dados"

Principais implicações das definições

- Concorrência: Execução de programas (processos) de forma concorrente com possível acesso a recursos compartilhados.
- Ausência de relógio global: Os processos cooperam por meio de troca de mensagens e assim necessitam de uma noção compartilhada de tempo, embora não seja possível utilizar um relógio único. A depender do ambiente, relógios podem ser sincronizados entre si, mas há limites de precisão (distorção entre relógios) obtida pela sincronização.
- Falhas independentes: Qualquer componente do sistema pode falhar. As falhas podem ocorrer de forma independente (sem correlação entre si), se a infraestrutura subjacente (e.g. nós processadores, sistema de alimentação, rede etc.) for independente. Falhas não são imediatamente percebidas pelos demais componentes.

Motivação

- Crescente dependência por parte dos usuários
- Demanda maior que avanços combinados de hardware e software centralizados
- Características inexistentes em sistemas centralizados como tolerância a falhas (fault tolerance)

O que é um Sistema Distribuído?

Um sistema distribuído é uma coleção de *hosts* autônomos, conectados através de uma rede de computadores. Cada *host* executa componentes e opera um middleware de distribuição, o qual habilita os componentes a coordenarem suas atividades de tal forma que usuários percebam o sistema como um ambiente computacional único e integrado.

Características de Sistemas Centralizados

- Um componente, com partes não autônomas
- Componentes são compartilhados por todos os usuários durante todo o tempo
- Todos os recursos acessíveis (tipicamente)
- Software 'roda' em um único processo
- Ponto de controle único
- Ponto de falha único

Características de Sistemas Distribuídos

- Múltiplos componentes autônomos
- Componentes não são compartilhados por todos os usuários
- Recursos podem não ser acessíveis
- Software 'roda' em processos concorrentes e em processadores distintos
- Múltiplos pontos de controle
- Múltiplos pontos de falha (!!!)

Um sistema distribuído

O que é um Sistema Distribuído?

Infraestrutura do Setor Bancário

Requisitos

- Tempo para se chegar ao mercado
 - Desenvolvimento de novas aplicações com tecnologia recente
 - Integração de novas aplicações tem se tornado cada vez mais difícil
- Escalabilidade
 - Administração de milhões de contas e clientes
 - Milhares de usuários concorrentes
- Confiabilidade

Requisitos (cont.)

- Heterogeneidade de Hardware
 - Mainframes (Unisys, IBM, etc.)
 - Servidores SUN SPARC
 - PCs
- Heterogeneidade de Sistema Operacional
 - VMs, UNIX, Linux, Windows, OSX
- Heterogeneidade de Linguagem de Programação
 - PHP, C/C++, Visual Basic, Java

Tecnologia de Objetos Distribuídos

- Componentes de prateleira encapsulam a funcionalidade da aplicação
- Resolvendo o problema de distribuição em um nível mais elevado de abstração
- Resolvendo o problema da heterogeneidade
- Escalabilidade da solução

Por que Tecnologia de Objetos Distribuídos

- Permite uma visão uniforme de todos os serviços da empresa e de como acessá-los
- Provê um nível apropriado de abstração
- Preserva o investimento encapsulando aplicações legadas
- Permite explorar as vantagens da tecnologia de objetos em novos projetos
- Uma forma natural de resolver:
 - distribuição
 - heterogeneidade

Compartilhamento de Recursos

- Habilidade de usar qualquer hardware, software ou dados em qualquer lugar do sistema
- Gerenciador de recursos
 - Controla o acesso aos recursos
 - Provê um esquema de nomes para os recursos
 - Controla acessos concorrentes aos recursos

Compartilhamento de Recursos (2)

- Modelo de compartilhamento
 - Cliente / Servidor
 - Baseado em objetos
- Define:
 - a forma pela qual recursos são providos
 - formas de uso dos recursos
 - como o provedor do recurso e os usuários interagem entre si e com o gerenciador

Cases

Case 1: Gerência de Configuração Boeing 777

Problemas a serem resolvidos

Escala

- 3.000.000 de peças por aeronave
- A configuração de cada aeronave é diferente
- Regulamentos demandam que registros sejam mantidos para cada peça de uma aeronave
- Aeronave evolui durante manutenções
- Produção de 500 aeronaves por ano
- Banco de dados de configuração cresce 1,5 bilhão de partes a cada ano
- Tempo de vida de uma aeronave: 30 anos
- 45.000 engenheiros necessitam acesso on-line aos dados de configurações

Problemas a serem resolvidos (cont.)

- Integração de componentes de prateleira
 - Infra-estrutura de TI se tornou inadequada
 - Mas a empresa não podia se dar ao luxo de reconstruir toda a sua infra-estrutura de TI
 - Componentes foram comprados de diversos fabricantes especializados
 - Banco de dados relacional
 - Planejamento de recursos da empresa (ERP)
 - Planejamento de projetos auxiliado por computador
 - Componentes precisavam ser integrados

Problemas a serem resolvidos (cont.)

- Heterogeneidade
 - 20 máquinas de banco de dados Sequent para gerenciar os dados de configuração de aviões
 - 200 servidores de applicações UNIX
 - Estações de trabalho NT e UNIX para os engenheiros

Case 2: Napster

Outros Exemplos Similares

- Similares ao NAPSTER
 - EMULE
 - BITORRENT
 - SKYPE (VoIP)
 - MSN MESSENGER, YAHOO
- Outros
 - APLICAÇÕES DE MULTIMÍDIA
 - WEB conferência
 - Difusão de streams on-line (voz, vídeo)

Case 3: Cluster (JAGUAR)

JAGUAR

Cluster de máquinas do Oak Ridge National Laboratory (EUA)

Primeiro da lista dos TOP 500 SUPERCOMPUTERS INSTALADO EM 2009 224.162 CORES 1.759.000 Gflops

FONTE http://www.top500.org/list/2010/06/100

Solução: agrupamento físico de máquinas de menor porte = cluster:

- Mesmo espaço geográfico
- ·Normalmente dentro da mesma organização, com software/hardware homogêneos
- Softwares: OpenMosix, Condor eOscar

Cluster atual:

https://tecnoblog.net/104684/ib m-sequoia-supercomputador/

http://www.top500.org/list

Case: Cluster

CLUSTERS ou AGRUPAMENTOS

- Máquinas conectadas por rede de alta velocidade
- Necessidade de alto desempenho computacional
- Evitar custo de máquinas de alto desempenho
- Objetivo: compartilhar recursos computacionais
 - De processamento
 - De armazenamento
 - De memória
 - Outros

Cluster

Clusters são utilizados para...

- Aumentar a disponibilidade de serviço
 - se um nodo falha, outro assume
- Equilibrar carga de trabalho
 - um ou mais computadores do cluster atuam como distribuidores da carga entre os demais
- Alto desempenho
 - Para resolver tarefas complexas que podem ser decompostas em sub-tarefas, cada uma rodando num nodo do cluster.
 - Implementação mais comum: LINUX e software livre para implementar paralelismo = Beowulf cluster

Escalabilidade –

O sistema distribuído permanece eficiente quando há um aumento significativo no número de recursos e no número de usuários.

Date	Computers	Web servers
1979, Dec.	188	0
1989, July	130,000	0
1999, July	56,218,000	5,560,866
2003, Jan.	171,638,297	35,424,956

Computadores (com endereços IP registrados) na Internet.

- A heterogeneidade implica em diferentes mecanismos e formatos de dados:
 - Tipos de dados podem ser armazenados de formas diferentes, o que requer negociar formatos padronizados para a comunicação.
 - Linguagens de programação diferentes também utilizam diferentes formatos para armazenar estruturas de dados.
 - Chamadas para comunicação podem ser diferentes em sistemas operacionais distintos, como Windows e Linux, o que pode ser um desafio em ambientes multiplataforma.

- Abordagens para heterogeneidade:
 - Middleware: camada de software que provêm uma abstração determinando um modo de programação que pode ser utilizado para mascarar a heterogeneidade de plataformas
 - Diferentes middlewares serão abordados no curso.
 - Em ambientes com migração de código (código móvel, que pode ser enviado de um computador para outro, não necessariamente de mesma plataforma - applets), uma máquina virtual pode ser necessária para prover o ambiente de execução do código móvel, provendo inclusive isolamento do ambiente local.

- Sistemas abertos
 - Pode ser estendido e reimplementado de várias maneiras;
 - Definido na especificação e documentação principais interfaces são publicadas;
 - Entender a complexidade dos sistemas distribuídos, formados por muitos componentes;
 - Padronização de protocolos
 - Exemplo para a Internet RFCs;
 - Sistemas distribuídos abertos projetados a partir de padrões públicos; podem ser construídos a partir de software e hardware heterogêneos.

- Aspectos de segurança (security) devem ser considerados:
 - Confidencialidade proteção contra exposição para pessoas não autorizadas;
 - Integridade proteção contra alteração ou dano;
 - Disponibilidade proteção contra interferência com os meios de acesso aos recursos;
 - Autenticidade garantia de identidade de quem acessa.

- Tratamento de falhas
 - Componentes (software e hardware) de um sistema distribuído podem falhar, podendo gerar erros nos resultados do sistema.

■ Técnicas:

- Detecção de falhas: algumas falhas podem ser detectadas (ex. paridade); gerenciar falhas que não podem ser detectadas mas que podem ser suspeitas (sistemas assíncronos);
- Mascaramento de falhas: ocultar falhas (ex. retransmitir mensagens perdidas/ replicar dados); nem sempre é possível;

Concorrência –

- Solicitações concorrentes a recursos compartilhados devem ser atendidas de forma concorrente, sem gerar conflitos ou resultados inconsistentes;
- Utilizar diferentes fluxos de execução (threads) nos servidores para atender a cada solicitação;
- Sincronização da execução concorrente: uso de técnicas como semáforos ou monitores.

A evolução dos sistemas distribuídos

principais eventos

Breve Histórico

- Apareceu no fim da década de 60 dentro do contexto de Sistemas Operacionais.
- A motivação foi a criação de unidades de hardware denominadas canais ou dispositivos de controle.
- Estes dispositivos funcionavam independente de um processador de controle e podiam fazer operações de E/S concorrentemente com a execução de um programa.

Breve Histórico (2)

- Um canal que comunicava-se com o processador central através de uma interrupção.
- Com a introdução dos canais, partes de um programa poderiam funcionar de forma imprevisível.
- Logo após o aparecimento dos canais, foram desenvolvidos as máquinas multiprocessadas.
- Estas máquinas permitiam que aplicações diferentes pudessem ser executadas em processadores diferentes ao mesmo tempo.

Breve Histórico (3)

 Permitiam também que uma aplicação pudesse ser executada mais rapidamente se fosse reescrita de forma a utilizar múltiplos processadores.

ARPANet

- Advanced Research Projects Agency Network 1969
- Departamento de Defesa dos EUA
 - bases militares e departamentos de pesquisa do governo
 - universidades e outras instituições que faziam trabalhos envolvidos à defesa
- primeira rede à base de comutação de pacotes
 - backbone subterrâneo
 - mainframes
 - NCP (Network Control Protocol)
 - compartilhamento de arquivos, acesso remoto, correio eletrônico
- precursora da Internet
 - ARPANet (academia) e MILNET (militar)
 - TCP/IP (Transfer Control Protocol/Internet Protocol) 1983

Ethernet

- Protocolo para rede local de computadores
- Camadas física (1) e de enlace (3) da rede
- Xerox PARC, 1973, Robert Metcalfe
- inspirado na ALOHAnet: rede por rádio, Hawaii, anos 60
- padrão de fato: DEC, Intel e Xerox, 1980
- produção em escala: baixo custo
- computadores pessoais

Internet

- DNS (Domain Name System) 1984
- FTP (File Transfer Protocol) 1985
- SNMP (Simple Mail Transfer Protocol)
- POP3 (Post Office Protocol)
- IMAP (Internet Message Access Protocol)
- SSH (Secure Shell)
- VNC (Virtual Network Computing)
- computadores pessoais

World Wide Web – WWW

- CERN (Suíça)
- Tim Berners-Lee
- 1980: ENQUIRE
 - compartilhamento de informações sobre pesquisa
 - sistema de hipertexto (origem em 1960: Projeto Xanadu)
- 1990: World Wide Web
 - união com a Internet
 - sistema cliente-servidor
 - HTTP (HyperText Transfer Protocol)
 - HTML (HyperText Markup Language)
 - URI (Uniform Resource Identifier)
- **1993**:
 - CERN libera a WWW
 - Navegador Mosaic, precursor do Netscape

Motores de Busca

- Information Retrieval
 - início:1970 (aprox.)
 - formalização do conceito de hipertexto: 1972
 - consolidação: 1978 (aprox.)
 - modelos probabilísticos
- Yahoo!
- Altavista
- Google:
 - alta disponibilidade
 - desempenho
 - escalabilidade
 - baixo custo operacional

Colaboração na Internet

- Mensagem instantânea (síncronos)
- Chats (assíncronos)
- Vídeoconferência (streams)
- Redes sociais
- Wiki

Transmissão de Mídia

- canais de rádio e TV
- podcast
- voz/telefonia sobre IP (redes convergentes)
- Napster (1999 2002)
- BitTorrent 2003 (Peer-to-Peer)
- eDonkey 2000
- KaZaA 2002

Internet – Número de Hosts

Internet Domain Survey Host Count

Internet – Número de Servidores Web

Internet – Mercado de Servidores Web

Os benefícios de sistemas distribuídos

Benefícios

- Comunicação de dados
- Compartilhamento de recursos
- Integração e cooperação
- Confiabilidade e disponibilidade
- Crescimento gradativo do poder computacional
- Relação custo/benefício
- Implantação de aplicações

Os problemas em sistemas distribuídos

Paradigma de programação

- processos e mensagens
- chamada remota de procedimento
- memória compartilhada distribuída
- eventos (publish/subscribe)

Depuração de aplicações distribuídas

- difícil reprodução de erros
- teste isolados e testes de integração
- ambientes de simulação
- alto custo de desenvolvimento
- alto custo de manutenção

Confiabilidade e disponibilidade do meio

- falhas de rede
- falhas de processadores
- falhas
 - fail-silent
 - bizantinas
- redundância: alto custo
 - física
 - lógica

Tipos de falhas

Classe da falha	Afeta	Descrição
Parada por falha	Processo	O processo pára e permanece parado. Outros processos podem detectar esse estado.
Colapso	Processo	O processo pára e permanece parado. Outros processos podem não detectar esse estado.
Omissão	Canal	Uma mensagem inserida em um <i>buffer</i> de envio nunca chega no <i>buffer</i> de recepção do destinatário.
Omissão de envio	Processo	Um processo conclui um envio, mas a mensagem não é colocada em seu <i>buffer</i> de envio.
Omissão de recepção	Processo	Uma mensagem é colocada no <i>buffer</i> de recepção de um processo, mas esse processo não a recebe efetivamente.
Arbitrária (bizantina)	Processo ou canal	O processo/canal exibe comportamento arbitrário: ele pode enviar/transmitir mensagens arbitrárias em qualquer momento, cometer omissões; um processo pode parar ou realizar uma ação incorreta.

Segurança do meio

- ataques
 - acessam serviços que atendem via rede
 - exploram fragilidades de código
 - alteram o código do serviço
 - instalam código "maléfico" ao sistema
 - fazem sobrecarga de requisições
- criptografia
- assinatura digital
- autenticação
- autorização
- firewalls

Desempenho das aplicações

- latência
- não-determinismo
- exigências de tempo real
 - sincronismo de eventos

Consistência das aplicações

- sincronismo de relógios físicos
- sincronismo de eventos (relógios lógicos)
- atomicidade no envio de mensagens
- acesso concorrente
 - compartilhamento de recursos
 - servidores multi-threaded
- transação distribuída
- tolerância a falhas
 - backward recovery
 - forward recovery

Escalabilidade dos sistemas

- desempenho estável
 - crescimento no número de usuários
 - crescimento no volume de dados
 - crescimento no volume de requisições
- técnicas básicas
 - replicação
 - cache

Gerações de Sistemas Distribuidos

Sistemas distribuídos	Primitivos	Adaptados para Internet	Contemporâneos
Escala	Pequenos	Grandes	Ultragrandes
Heterogeneidade	Limitada (normalmente, configurações relativamente homogêneas)	Significativa em termos de plataformas, linguagens e <i>middleware</i>	Maiores dimensões introduzida incluindo estilos de arquitetura radicalmente diferentes
Sistemas abertos	Não é prioridade	Prioridade significativa, com introdução de diversos padrões	Grande desafio para a pesquisa, com os padrões existentes ainda incapazes de abranger sistemas complexos
Qualidade de serviço	lualidade de serviço Em seu início		Grande desafio para a pesquisa, com os serviços existentes ainda incapazes de abranger sistemas complexos

Heteregoneidade

- protocolos de rede
- sistemas operacionais
- linguagens de programação

Transparência

- acesso
- localização
- falha
- replicação
- migração
- concorrência
- desempenho
- paralelismo
- escalabilidade
- persistência
- transação

Transparência

- Um sistema distribuído deve ser percebido por seus usuários e pelos programadores de aplicações como um sistema único e coeso
 - ao invés de uma coleção de máquinas separadas
- Várias dimensões de transparência identificadas pelo modelo ISO RM-ODP
 - Modelo de Referência para Sistemas Distribuídos Abertos
- Representam as diversas propriedades que um sistema distribuído deve possuir

Transparências de Distribuição

Transparência de Acesso

- Permite que objetos e informações remotas sejam acessados usando operações idênticas
- Mascara as diferentes formas de acesso empregadas por cada tecnologia utilizada
- Exemplos:
 - Operações de acesso a um sistema de arquivos distribuído com NFS (Network File System)
 - Navegação na WEB
 - Consultas em SQL

Transparência de Localização

- Permite que objetos e informações sejam acessados sem o conhecimento de sua localização
- Exemplos:
 - Arquivos acessados via NFS
 - Páginas na WEB (*)
 - Tabelas em um banco de dados distribuído

Transparência de Concorrência

- Permite que vários processos operem concorrentemente usando objetos de informação compartilhados sem interferirem entre si
- Exemplos:
 - NFS
 - Caixa eletrônico
 - Sistema gerenciador de bancos de dados (SGBD)

Transparência de Replicação

- Permite que múltiplas instâncias de objetos de informação sejam usados para melhorar o desempenho e a confiabilidade
- Sem que os usuários ou programadores de aplicações tomem conhecimento da existência das réplicas
- Exemplos:
 - SGBD distribuído
 - Espelhamento de páginas WEB

Transparência de Falhas

- Mascara a ocorrência de falhas
- Permite que usuários e aplicações completem suas tarefas normalmente a despeito de falhas em alguns componentes do sistema
- Exemplo:
 - Transações em um SGBD

Transparência de Migração

- Permite a movimentação de um objeto dentro do sistema distribuído sem afetar as operações dos usuários ou dos programas de aplicação
- Duas variantes:
 - Migração propriamente dita: com relação ao objeto migrado
 - Relocação: com relação a outros objetos no sistema
- Exemplos:
 - NFS
 - Páginas WEB

Transparência de Desempenho

- Permite que o sistema distribuído seja reconfigurado para melhorar o desempenho para refletir mudanças na carga de processamento
- Através de replicação e migração
- Exemplo:
 - Utilitário make distribuído
 - Programa é compilado em várias máquinas em paralelo, transparentemente para o usuário

Transparência de Escala

- Permite que o sistema e as aplicações possam ser expandidos em escala sem a necessidade de mudanças em sua estrutura ou nos algoritmos utilizados
- Exemplo:
 - WWW
 - Bancos de dados distribuídos

Pontos-Chave

- O que é um Sistema Distribuído
- Adoção de sistemas distribuídos é regida por requisitos não-funcionais
- Necessidades de distribuição são transparentes aos usuários e projetistas de aplicações
- Várias dimensões de transparência
- Dimensões de transparência dependem entre si