

Na resposta aos itens de escolha múltipla, selecione a opção correta. Escreva na folha de respostas o número do item e a letra que identifica a opção escolhida.

Na resposta aos restantes itens, apresente todos os cálculos que tiver de efetuar e todas as justificações necessárias. Quando, para um resultado, não é pedida a aproximação, apresente sempre o valor exato.

1. Foram oferecidos 15 bilhetes para uma sessão de cinema a uma turma com 15 raparigas e 10 rapazes.

Para respeitar a proporção, ficou decidido que o grupo, que vai ao cinema, deve ser

formado por 9 raparigas e 6 rapazes.

De quantas maneiras diferentes se pode formar este grupo?

(A) 5215

(B) 10 430

(C) 1 051 050

(D) 2 102 100

2. Considere todos os números naturais de cinco algarismos, múltiplos de cinco, que se podem formar com os algarismos de 0 a 9.

Escolhe-se um desses números ao acaso.

Determine a probabilidade de esse número ser uma capicua.

Apresente o resultado na forma de fração irredutível.

Exercícios

de

MATEMÁTICA A

para preparar o

Exame Nacional de 2023

(inclui 3 provas modelo)

3. Uma partícula desloca-se sobre uma reta numérica, cuja unidade é o metro.

A abcissa da respetiva posição no instante t, em segundos, é dada por $p(t) = 2t^3 - 13t^2 + 18t$, com t > 0.

Sem usar a calculadora, determine a velocidade da partícula, em m/s, no instante em que passa na origem, entre os 3 e os 10 segundos após o início do movimento.

4. A nova caixa de comprimidos ACETILNINA C tem a forma de um prisma quadrangular, com comprimento x, largura y e altura z, que satisfazem as seguintes condições.

•
$$x = 4z$$
 cm;

5.

Seja V(x) o volume, em centímetros cúbicos, da caixa.

4.1. Mostre que
$$V(x) = 5x^2 - \frac{x^3}{4}$$
.

4.2. Utilizando métodos exclusivamente analíticos, determine o comprimento *x* da caixa de comprimidos ACETILNINA C para o qual o seu volume é máximo.

Apresente o valor em milímetros, arredondado às unidades.

Considere a função f, diferenciável em \mathbb{R} , definida por $f(x) = \sqrt{3x^2 + 9}$. Seja t a reta tangente ao gráfico de f no ponto de abcissa 3.

Sem usar a calculadora, escreva a equação reduzida de t.

6. Seja h uma função duas vezes diferenciável em \mathbb{R} .

Na figura, está representada parte do gráfico da função $\,h^{\, \text{\tiny "}}$, segunda derivada de $\,h$.

Sabendo que h'(2) = 0, pode concluir-se que:

(B)
$$h(2)$$
 é um mínimo relativo da função h .

- (C) 2 é a abcissa de um ponto de inflexão do gráfico de h.
- **(D)** 2 é um zero de h.

7. Considere os retângulos [ABCD] e [DEFG] da figura.

Sabe-se que, para um certo número real \boldsymbol{x} :

•
$$\overline{AB} = \operatorname{sen} x$$
;

•
$$\overline{AG} = \sqrt{2}$$
;

•
$$\overline{DE} = \cos x$$
;

ullet D é o ponto médio do segmento [AG].

Qual das expressões a seguir dá a soma das áreas dos dois retângulos?

$$(A) \cos\left(x + \frac{\pi}{4}\right)$$

(B)
$$\operatorname{sen}\left(\frac{3\pi}{4} + x\right)$$

(C)
$$\cos\left(x-\frac{\pi}{4}\right)$$

(D)
$$\operatorname{sen}\left(\frac{3\pi}{4} - x\right)$$

8. A Helena e o Samuel foram andar de baloiço no parque. Cada um deles escolheu um baloiço diferente.

A função H dá a distância, em decímetros, do baloiço da Helena ao chão t segundos após o início do movimento, e pode ser definida por

$$H(t) = 9 - 4\operatorname{sen}(0,625\pi t) \text{ com } t \in [0,18]$$

O argumento da função seno está em radianos.

Sabe-se que o Samuel e a Helena começaram a andar de baloiço com alguns segundos de diferença.

Admita que a distância, S, em decímetros, do baloiço do Samuel ao chão, t segundos depois de a Helena ter começado a andar de baloiço, é dada por

$$S(t) = H(t-12)$$
 com $t \in [12,30]$

- 8.1. De acordo com o modelo apresentado, qual é a distância, em decímetros e arredondado às centésimas, do baloiço do Samuel ao chão, 13 segundos depois de a Helena ter começado a andar de baloiço?
 - **(A)** 12,70
- **(B)** 10,53
- **(C)** 6,22
- **(D)** 5,30
- 8.2. Nos primeiros 5 segundos, a distância do baloiço da Helena ao chão foi superior a 12 dm durante algum tempo.

Determine, recorrendo à calculadora gráfica, os valores de t (em segundos) na forma de intervalo ou união de intervalos de números reais.

Na sua resposta, reproduza, num referencial, o(s) gráfico(s) da(s) função(ões) visualizado(s) na calculadora que lhe permite(m) resolver a inequação, e apresente as coordenadas do(s) ponto(s) relevante(s) arredondadas às centésimas.

Adaptado do Exame Nacional de Matemática B, 2.ª fase de 2015

Considere a função f, de domínio \mathbb{R} , definida por $f(x) = \begin{cases} \frac{\sin x}{x+\pi} & \text{se } x < -\pi \\ 2x^2 - \cos(2x) - 2\pi^2 & \text{se } x \ge -\pi \end{cases}$ 9.

Resolva os itens seguintes sem recorrer à calculadora.

- **9.1.** Estude a continuidade da função f em $x = -\pi$.
- **9.2.** A reta tangente ao gráfico de f no ponto de abcissa -2π interseta o eixo Ox no ponto de abcissa:
- (C) $-\frac{5\pi}{2}$
- **9.3.** Mostre que, no intervalo $]\pi, 2\pi[$, $f''(x) = 4 + 4\cos(2x)$, e estude a função f quanto ao sentido das concavidades e quanto à existência de pontos de inflexão do seu gráfico.

Na sua resposta, deve apresentar:

- o(s) intervalo(s) onde o gráfico de f tem a concavidade voltada para baixo;
- o(s) intervalo(s) onde o gráfico de f tem a concavidade voltada para cima;
- a(s) abcissa(s) do(s) ponto(s) de inflexão do gráfico de f, se existirem.
- Sejam f, g e h as funções, de domínio \mathbb{R} , definidas, respetivamente, por

$$f(x) = \cos x$$
, $g(x) = \sin x$ e $h(x) = \frac{x}{2}$

Resolva a equação $f(x) + (g \circ h)(x) = 1$.

11. Seja k um número real não nulo.

Seja
$$k$$
 um número real não nulo.
 Considere a função h , de domínio \mathbb{R} , definida por $h(x) = \begin{cases} \frac{k\cos(3x)}{3\pi-6x} & \text{se } x \neq \frac{\pi}{2} \\ \frac{4}{5} & \text{se } x = \frac{\pi}{2} \end{cases}$.

Determine, sem recorrer à calculadora, o valor de k, sabendo que existe $\lim_{x \to \frac{\pi}{2}} h(x)$.

FIM

Exercícios de MATEMÁTICA A para preparar o Exame Nacional de 2023 (inclui 3 provas modelo)

COTAÇÕES

	ltem														
	Cotação (em pontos)														
1.	2.	3.	4.1.	4.2.	5.	6.	7.	8.1.	8.2.	9.1.	9.2.	9.3.	10.	11.	
8	16	16	16	16	16	8	8	8	16	16	8	16	16	16	200

Formulário

Trigonometria

sen(a+b) = sen a cos b + sen b cos a

cos(a+b) = cos a cos b - sen a sen b

Limites notáveis

$$\lim_{x \to 0} \frac{\operatorname{sen} x}{x} = 1$$

Regras de derivação

$$(u+v)'=u'+v'$$

$$(uv)' = u' v + u v'$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv'}{v^2}$$

$$(u^n)' = n u^{n-1} u' \quad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cos u$$

$$(\cos u)' = -u' \operatorname{sen} u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$