问题 1:

1 问题描述:

在一维模式特征空间的两类问题中,两类模式的概率密度分布函数分别为 $N(0,\sigma^2)$ 和

$$N(1,\sigma^2)$$
。 试证明最小平均风险的分类阈值为 $x_0 = \frac{1}{2} - \sigma_2 \ln \frac{C_{12} \Pr(\omega_2)}{C_{21} \Pr(\omega_1)}$, 其中假设

$$C_{11} = C_{22} = 0$$
.

2 证明:

设两类模式分别为 ω_1 和 ω_2 ,其概率密度分布函数分别为 $N(0,\sigma^2)$ 和 $N(1,\sigma^2)$,均满足正态分布。

由最小化贝叶斯风险决策规则:

Decide
$$x \in \omega_1$$
 if $\frac{p(x \mid w_1)}{p(x \mid w_2)} > \frac{(C_{12} - C_{22})}{(C_{21} - C_{11})} \cdot \frac{\Pr(\omega_2)}{\Pr(\omega_1)}$

可知当两边相等时求出的x即为最小平均风险的分类阈值 x_0 。

又根据正态分布的概率密度函数:

$$p(x \mid w_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp(-\frac{(x-\mu)^2}{2\sigma^2})$$

可得

$$\frac{p(x \mid w_1)}{p(x \mid w_2)} = \frac{(C_{12} - C_{22})}{(C_{21} - C_{11})} \cdot \frac{\Pr(\omega_2)}{\Pr(\omega_1)}$$

$$\frac{\frac{1}{\sqrt{2\pi\sigma}}\exp(-\frac{x^2}{2\sigma^2})}{\frac{1}{\sqrt{2\pi\sigma}}\exp(-\frac{(x-1)^2}{2\sigma^2})} = \frac{(C_{12} - C_{22})}{(C_{21} - C_{11})} \cdot \frac{\Pr(\omega_2)}{\Pr(\omega_1)}$$

由假设 $C_{11} = C_{22} = 0$,并两边取对数得

$$-\frac{x^2}{2\sigma^2} + \frac{(x-1)^2}{2\sigma^2} = \ln \frac{C_{12} \Pr(\omega_2)}{C_{21} \Pr(\omega_1)}$$

$$\frac{1-2x}{2\sigma^2} = \ln \frac{C_{12} \Pr(\omega_2)}{C_{21} \Pr(\omega_1)}$$

整理后

$$x_0 = \frac{1}{2} - \sigma_2 \ln \frac{C_{12} \Pr(\omega_2)}{C_{21} \Pr(\omega_1)}$$
 得证。

问题 2:

1 问题描述:

1. 生成两个各包含 N=1000 个二维随机矢量的数据集合 X 和 X'。数据集合中随机矢量来自于 三个分布模型,它们分别满足均值矢量 $m_1 = [1,1]^T$ 、 $m_2 = [4,4]^T$ 和 $m_3 = [8,1]^T$ 和协方差矩

阵 $S_1 = S_2 = S_3 = 2I$,其中 I 是 2×2 的单位矩阵。在生成数据集合 X 时,假设来自三个分布模型的先验概率相同;而在生成数据集合 X'时,先验概率分别为 0.6、0.3 和 0.1。

- 2. 画出所生成的两个数据集合中随机矢量的散布图。
- 3. 在两个数据集合上分别应用"似然率测试规则"、"贝叶斯风险规则"(其中

$$C_{12}=2, C_{13}=3, C_{23}=2.5, C_{11}=C_{22}=C_{33}=0, C_{21}=C_{31}=C_{32}=1)$$
、"最大后验概率规则" 和"最短欧氏距离规则"进行模式分类实验,给出实验过程设计和实验结果。

4. 对每个数据集合给出上述每种分类规则的分类错误率,分析结果并给出你的结论。

2 基本思路:

1. 生成数据集合 X:

来自三个分布模型的先验概率相同,来自三个分布模型的数据量相等,分别取 333,333,334. 生成数据集合 X':

先验概率分别为 0.6、0.3 和 0.1,来自三个分布模型的数据量分别取 600,300,100.

- 2. 画出数据集合 X 和 X'的散点图。
- 3. 在 d 维模式特征空间中, ω_i 类模式特征 x 的似然函数遵循多元正态概率密度分布函数:

$$p(x \mid \omega_i) = \frac{1}{(2\pi)^{d/2} |\Sigma_i|^{1/2}} \exp(-\frac{1}{2}(x - \mu_i)^T \sum_{i=1}^{-1} (x - \mu_i))$$

其中: ω_i 类样本的均值 μ_i , $d \times d$ 维协方差矩阵 Σ_i , $|\Sigma_i|$ 表示 Σ_i 的行列式。

4. 根据以下规则在三个分布模型下分别对数据集合 X 和 X'进行分类并统计错误率。似然率测试规则:

Decide
$$x \in \omega_i$$
 if $\Lambda(x) = \frac{p(x \mid w_i)}{p(x \mid w_i)} > \frac{\Pr(\omega_j)}{\Pr(\omega_i)}, \forall j \neq i$

其中: $p(x|w_i)$ 为数据 x 的似然函数, $Pr(\omega_i)$ 为类别 ω_i 的先验概率。

最小化贝叶斯风险决策规则:

Decide
$$x \in \omega_1$$
 if $\frac{p(x \mid w_1)}{p(x \mid w_2)} > \frac{(C_{12} - C_{22})}{(C_{21} - C_{11})} \cdot \frac{\Pr(\omega_2)}{\Pr(\omega_1)}$

最大后验概率决策规则:

Decide
$$x \in \omega_i$$
 if $Pr(\omega_i | x) > Pr(\omega_i | x), \forall j \neq i$

其中:
$$p(w_i | x)$$
 为类别 ω_i 的后验概率 $p(w_i | x) = \frac{p(x | \omega_i) \Pr(\omega_i)}{p(x)}$

最短欧氏距离规则:

$$\omega^* = \arg_{\omega_i} \min g_i(x)$$

其中, $g_i(x)$ 为数据 x 到类别 ω_i 的欧氏距离 $g_i(x) = (x - \mu_i)^T (x - \mu_i)$

3 算法

3.1 算法描述

- **1**. 用 numpy.random.multivariate_normal 在三类分布模型下按照相应数量随机生成正态分布矩阵,组成集合 X 和 X'。
- 2. 用 plot 函数画出数据集合 X 和 X'的散点图。
- 3. 设三个类别模式分别为 ω_1 , ω_2 , ω_3 ,

集合 X 中来自三个分布模型的先验概率相同,即 $Pr(\omega_1) = Pr(\omega_2) = Pr(\omega_3)$ 。

集合 X'中来自三个分布模型的先验概率分别为 0.6、0.3 和 0.1, 即 $Pr(\omega_1) = 0.6$,

$$Pr(\omega_2) = 0.3$$
, $Pr(\omega_3) = 0.1$.

"似然率测试规则"实验:

集合 X 只需要比较似然函数的大小即可。对集合 X 中的一个数据 x,分别计算在三类分布模型下的似然函数值 $p(x|\omega_1)$ 、 $p(x|\omega_2)$ 、 $p(x|\omega_3)$ 。若 $p(x|\omega_1) > p(x|\omega_2)$ 且

$$p(x|\omega_1) > p(x|\omega_3)$$
,则 x 属于 ω_1 ; 若 $p(x|\omega_2) > p(x|\omega_1)$ 且 $p(x|\omega_2) > p(x|\omega_3)$,则 x 属于 ω_2 ; 若 $p(x|\omega_3) > p(x|\omega_1)$ 且 $p(x|\omega_3) > p(x|\omega_2)$,则 x 属于 ω_3 。

对集合 X'中的一个数据 x', 分别计算在三类分布模型下的似然函数值 $p(x'|\omega_1)$ 、 $p(x'|\omega_2)$ 、

$$p(x'|\omega_3)$$
。若 $\frac{p(x'|w_1)}{p(x'|w_2)} > \frac{\Pr(\omega_2)}{\Pr(\omega_1)}$ 且 $\frac{p(x'|w_1)}{p(x'|w_3)} > \frac{\Pr(\omega_3)}{\Pr(\omega_1)}$,则 x'属于 ω_1 ;若

$$\frac{p(x'|w_2)}{p(x'|w_1)} > \frac{\Pr(\omega_1)}{\Pr(\omega_2)} \, \pm \, \frac{p(x'|w_2)}{p(x'|w_3)} > \frac{\Pr(\omega_3)}{\Pr(\omega_2)} \,, \quad \mathbb{M} \text{ x'属于 } \omega_2 \,; \quad \ddot{\pi} \, \frac{p(x'|w_3)}{p(x'|w_1)} > \frac{\Pr(\omega_1)}{\Pr(\omega_3)} \, \pm \, \frac{\Pr(\omega_1)}{\Pr(\omega_2)} \, \pm \, \frac{\Pr(\omega_2)}{\Pr(\omega_2)} \, + \, \frac{\Pr(\omega_1)}{\Pr(\omega_2)} \, + \, \frac{\Pr(\omega_2)}{\Pr(\omega_2)} \, + \, \frac{\Pr(\omega_2)}{\Pr(\omega_2$$

$$\frac{p(x'|w_3)}{p(x'|w_2)} > \frac{\Pr(\omega_2)}{\Pr(\omega_3)}$$
,则 x'属于 ω_3 。

5. "最小化贝叶斯风险决策规则"实验:

对集合X中的一个数据x,分别计算在三类分布模式下的条件风险

$$R_i = C_{i1} p(x \mid \omega_1) + C_{i2} p(x \mid \omega_2) + C_{i3} p(x \mid \omega_3)$$
, x属于条件风险最小的那一类。

对集合 X'中的一个数据 x',分别计算在三类分布模式下的条件风险

 $R_i = C_{i1}p(x'|\omega_1)\Pr(\omega_1) + C_{i2}p(x'|\omega_2)\Pr(\omega_2) + C_{i3}p(x'|\omega_3)\Pr(\omega_3)$,x'属于条件风险最小的那一类。

6. "最大后验概率决策规则"实验:

对集合 X 中的一个数据 x,分别计算在三类分布模型下的判别式函数值

$$g_i(x) = -\frac{1}{2}(x - \mu_i)^T \sum_{i=1}^{-1} (x - \mu_i) - \frac{1}{2} \ln(|\Sigma_i|) + \ln(\Pr(\omega_i))$$
 , x 属于函数值最大的那一类。

同理计算集合 X'中的数据 x'的函数值。

7. "最短欧氏距离规则"实验:

对集合 X 中的一个数据 x, 分别计算欧氏距离 $g_i(x) = (x - \mu_i)^T (x - \mu_i)$, x 属于距离最小的

那一类。对集合 X'中的一个数据 x',分别计算欧氏距离 $g_i(x) = (x'-\mu_i)^T(x'-\mu_i)$,x'属于距离最小的那一类。

8. 统计分类错误率:

在上述几种规则的实验中,对于类别模式 ω_1 中的数据 \mathbf{x} ,若被错误的归到类别模式 ω_2 或 ω_3 时 记 录 一 次 错 误 e_1 , 类 别 模 式 ω_2 和 ω_3 中 的 数 据 类 似 , 最 后 计 算 错 误 率

$$P(error) = \frac{e_1 + e_2 + e_3}{1000}$$
.

3.2 算法实现

1. 正态概率密度分布函数:

由于三个分布模式的协方差矩阵相同,所以在计算时省略前面的系数 $\frac{1}{(2\pi)^{d/2}|\Sigma_i|^{1/2}}$ 。

```
def gauss(x, m, s):
t = x - m
return np.exp(-1/2 * np.dot(np.dot(np.transpose(t), np.linalg.inv(s)), t))
```

2. 似然率测试规则:

3. 贝叶斯风险规则:

4. 最大后验概率规则:

5. 最短欧式距离规则:

完整代码见文件 p2. py。

4 结果与分析

4.1 实验步骤

按照要求生成数据集合 X 和 X',并画出散点图。在两个集合上分别使用"似然率测试规则"、 "贝叶斯风险规则"、"最大后验概率规则"和"最短欧氏距离规则"进行分类实验,并统 计每种规则的分类错误率。以上步骤重复5次,计算平均错误率。

4.2 实验结果

第一次实验生成的数据集合散点图如图 1 所示,各规则分类结果如图 2~图 5 所示。5 次实验 的错误率统计结果如表 1 所示。

图 1 数据集合 X 和 X'的散点图

图 2 似然率测试规则分类结果散点图

图 5 最短欧氏距离规则分类结果散点图

表 1 5 次实验的错误率统计结果

		6.1.6.b.→ 0ELL b			
分类错误率		似然率测试	贝叶斯风险	最大后验概	最短欧氏距
		规则	规则	率规则	离规则
数据集合 X	1	7.80%	7. 60%	7.80%	7. 80%
	2	8. 20%	8.30%	8. 20%	8. 20%
	3	6.60%	6.60%	6.60%	6.60%
	4	7. 10%	7. 90%	7. 10%	7. 10%
	5	6. 70%	7.30%	6.70%	6. 70%
	平均	7. 28%	7. 45%	7. 28%	7. 28%
数据集合 X'	1	7. 19%	7. 39%	7. 19%	7. 70%
	2	6.80%	7.39%	6.80%	7. 50%
	3	6. 10%	6. 20%	6. 10%	6. 10%
	4	7.39%	6.90%	7.39%	7.00%
	5	7. 19%	7.70%	7. 19%	7.80%
	平均	6. 93%	7. 12%	6. 93%	7. 22%

4.3 结果分析

数据集合 X 和 X'是随机生成的,因此每次实验的结果是不同的,整体错误率都在 6%~8% 之间。由表 1 实验结果可以看出,在先验概率不变的情况下,"似然率测试规则"和"最大后验概率规则"是等价的,因此错误率也相同,集合 X 和 X'分别为 7. 28%和 6. 93%。

因为集合 X 在三个分布模式下的先验概率和协方差矩阵均相同,所以"似然率测试规则"、"最大后验概率规则"和"最短欧氏距离规则"也是等价的。集合 X'在三个分布模式下虽然协方差矩阵均相同,但是先验概率不同,因此"最短欧氏距离规则"与"似然率测试规则"和"最大后验概率规则"的错误率不相同。

综合集合 X 和 X'的结果来看,"似然率测试规则"和"最大后验概率规则"的错误率是最优的。因为"贝叶斯风险规则"是追求风险最小,而不是错误次数最小,各类出错的代价不同,所以错误率会略大一些,集合 X 和 X'分别为 7.45%和 7.12%。

在代码方面,我的实现是一边判断每个数据的分类一边统计错误次数,若能采取先画出决策平面,在根据决策平面判断分类的方法可能会更好,但由于时间有限未能来得及实现。