Softmax-function.md 4/13/2020

Softmax function in output layer

Reference

https://en.wikipedia.org/wiki/Softmax_function

Definition

the softmax function, also known as softargmax or normalized exponential function, is a function that **takes** as input a vector of K real numbers, and normalizes it into a probability distribution consisting of K probabilities proportional to the exponentials of the input numbers.

Motivation

Prior to applying softmax, some vector components could be negative, or greater than one; and might not sum to 1; but after applying softmax, each component will be in the interval \$(0,1)\$, and the components will add up to 1, so that they can be interpreted as probabilities.

Furthermore, the larger input components will correspond to larger probabilities.

Applications

Softmax is often used in neural networks, to map the non-normalized output of a network to a probability distribution over predicted output classes.

Formula

The standard (unit) softmax function $s= R^{K} \simeq R^{K}$ is defined by the formula $s= z_i = \frac{e^{z_i}}{\sum_{j}}$ where i=1,2,...,K and $z=(z_1,z_2,z_3,...,z_K)$ R^{K}.

Neural Network

Generally, it is written as

$$P(y=j|x) = rac{\exp(z_j)}{\sum_{k=1}^K \exp(z_k)}$$

where \$j\$ is the \$j^{th}\$ class and \$x\$ is the input sample.

$$P(y=j|x) = \frac{(x_j)-x^}{x^+ \log(\exp(x_1 - x^+)) + ... + \log(\exp(x_n - x^+))}$$

Multiclass cross-entropy loss function

\$\$

 $J = \frac{1}{m}\sum_{i=1}^{m}\sum_{c=1}^{C}[-y_{(c)} \log P(y_{(c)} | x^{(i)})]$

Softmax-function.md 4/13/2020

\$\$ where C is the ground true label, m is the number of input samples, and \$y_{(c)}\$ is the corresponding ground true.

Example

Classification:

- Dog: class 1;
- Cat: class 2;
- Baby: class 3.
- Tiger: class 4.

A softmax output layer of a neural network is a 4 by 1 matrix.

The layer before a softmax, for instance, could be:

$$z = [52 - 13]$$

Then, the softmax would be:

$$\sigma = [\,0.842\ 0.042\ 0.002\ 0.114\,]$$

The ground true label may be:

$$y_{(c)} = [\, 1 \ 0 \ 0 \ 0\,]$$

log-sum-exp operation

https://en.wikipedia.org/wiki/LogSumExp

Softmax cross entropy loss involves the log-sum-exp operation. This can result in numerical underflow/overflow. Read about the solution in the link, and try to understand the calculation of loss in the code.

 $LSE(x_1, x_2, ..., x_n) = x^* + log(exp(x_1 - x^)) + \cdot cdot \cdot cdot \cdot cdot + log(exp(x_n - x^))$ \$\$ where \$x^* = max{x_1, x_2, ..., x_n}\$.

Derivative of softmax

$$P(y=j|x) = rac{\exp(z_j)}{\sum_{k=1}^K \exp(z_k)} \ rac{\partial P}{\partial z_j} = rac{exp(z_j)' \sum_{k=1}^K \exp(z_k) - [\sum_{k=1}^K \exp(z_k)]' exp(z_j)}{[\sum_{k=1}^K \exp(z_k)]^2} \ = rac{exp(z_j) (\sum_{k=1}^K \exp(z_k) - exp(z_j))}{[\sum_{k=1}^K \exp(z_k)]^2}$$

Therefore,

$$rac{\partial P}{\partial z_j} = P(y=j|x)(1-P(y=j|x))$$

Softmax-function.md 4/13/2020