Taller métodos numéricos

1. Dada la siguiente ecuación

$$f(x) = x^3 - 10x - 5$$

Para encontrar las raíces, se utilizará el método de secante, que sigue la siguiente formula:

$$x_{i+2} = x_{i+1} - f(x_{i+1}) \left[\frac{x_{i+1} - x_i}{f(x_{i+1}) - f(x_i)} \right] : i = 0, 1, ..., N$$

Dado que requerimos la raíz positiva, tomaremos los valores iniciales de:

$$x_0 = 0 \quad y \quad x_1 = 10$$

Con 10 iteraciones encontramos:

i	x(i)	x(i+1)	f(x(i+1))	
_				
0	0	10	895	
1	10	0.05555555555556	-5.5553840877915	
2	0.05555555555556	0.116901264442248	-6.1674150827748	
3	0.116901264442248	-0.50127731368944	-0.113187297752048	
4	-0.50127731368944	-0.512834520532569	-0.00652988661501802	
5	-0.512834520532569	-0.513542087399864	-1.32572060796662e-05	
6	-0.513542087399864	-0.513543526849491	-1.57160996 4 51397e-09	
7	-0.513543526849491	-0.513543527020155	-3.78518223607127e-16	
8	-0.513543527020155	-0.513543527020155	-1.0807424101241e-26	
9	-0.513543527020155	-0.513543527020155	-7.43189584954146e-44	
10	-0.513543527020155	-0.513543527020155	-1.45919198795986e-71	

La cantidad de iteraciones con MS fueron: 10

La raiz por MS de la función en el intervalo dado es x = : -0.5135435270

Otro criterio para detener las iteraciones sería estableciendo un limite de tolerancia para la función, bien sea con la diferencia entre los resultados o la proximidad de la función a cero, es decir:

1)
$$|f(x_i)| < 1e - 10$$
 ó 2) $|x_{i+1} - x_i| < 1e - 10$

Tomando la condición número 1, encontramos:

i	x(i)	x(i+1)	f(x(i+1))
-			
0	0	10	895
1	10	0.05555555555556	-5.5553840877915
2	0.05555555555556	0.116901264442248	-6.1674150827748
3	0.116901264442248	-0.50127731368944	-0.113187297752048
4	-0.50127731368944	-0.512834520532569	-0.00652988661501802
5	-0.512834520532569	-0.513542087399864	-1.32572060796662e-05
6	-0.513542087399864	-0.513543526849491	-1.57160996451397e-09
7	-0.513543526849491	-0.513543527020155	-3.78518223607127e-16

La cantidad de iteraciones con MS fueron : 7

La raiz por MS de la función en el intervalo dado es x = : -0.5135435270

$$V = L * [0.5 * \pi * r^{2} - r^{2} * \arcsin(h/r) - h(r^{2} - h^{2})^{1/2}]$$

Figura 1: Recipiente

$$L = 10ft, r = 1ft, V = 12.4 ft^3$$

Vemos que la ecuación la podemos reescribir como:

$$V = L \left[0.5\pi r^2 - r^2 \arcsin\left(\frac{h}{r}\right) - h(r^2 - h^2)^{\frac{1}{2}} \right]$$

$$\to f(h) = V - \left[0.5\pi r^2 - r^2 \arcsin\left(\frac{h}{r}\right) - h(r^2 - h^2)^{\frac{1}{2}} \right] = 0$$

Tomando como criterio para las iteraciones la inecuación:

$$|f(x_i)| < 1e - 10$$

Y como puntos de partida vemos que para que la función tenga un dominio en los reales:

$$(r^2 - h^2)^{\frac{1}{2}} \rightarrow r^2 - h^2 > 0 \rightarrow h^2 < r^2$$

Y como $h \ge 0$, entonces $h \le r = 1$. Es decir que:

$$0 < h \le r = 1$$

Observamos que:

$$f(0) = -3.308$$
 y $f(1) = 12.400$

Hay un cambio de signo razón por lo cual resulta evidente que en este intervalo al menos hay una raíz, y se puede tomar estos valores como puntos de partida en los métodos numéricos de punto fijo y de secante, encontramos:

Método de punto fijo:

$$a = 0$$
 , $b = 1$

i	a	С	þ	f(a)	f(c)	f(b)
_	_					
0	0	0.210591482264199	1	-3.30796326794897	12.4	0.872524348438861
1	0	0.166638189560007	0.210591482264199	-3.30796326794897	0.872524348438861	0.00931144206607527
2	0	0.166170443598722	0.166638189560007	-3.30796326794897	0.00931144206607527	8.69528939084842e-05
3	0	0.166166075768735	0.166170443598722	-3.30796326794897	8.69528939084842e-05	8.10776828680989e-07
4	0	0.166166035041689	0.166166075768735	-3.30796326794897	8.10776828680989e-07	7.55983897073829e-09
5	0	0.166166034661942	0.166166035041689	-3.30796326794897	7.55983897073829e-09	7.04893822711319e-11

Método de secante:

$$x_0 = 0$$
 , $x_1 = 1$

Adquiriendo

i	x(i)	x(i+1)	f(x(i+1))
0	0	1	12.4
1	1	0.210591482264199	0.872524348438861
2	0.210591482264199	0.150840486173721	-0.302633080778113
3	0.150840486173721	0.166227895193865	0.00122000429605745
4	0.166227895193865	0.16616611301678	1.54538112094563e-06
5	0.16616611301678	0.166166034657954	-8.16919683505928e-12

La cantidad de iteraciones con MS fueron : 5

La raiz por MS de la función en el intervalo dado es x = : 0.1661660347 Método punto fijo

Cabe resaltar que, incluso si los dos métodos necesitaron solo 10 iteraciones para lograr el objetivo, el método de secante presentó una mayor aproximación a la raíz, alcanzando un valor en la función del orden de 10^-12 mientras que la de punto fijo alcanzó 10^-11. Con estos dos métodos se llega a la solución de que la altura tiene un valor de:

$$h \approx 0.1662 ft$$

3. Lo que haremos para determinar la primera raíz positiva, será calcular la ubicación de los mínimos y máximos de la función en ese intervalo. Una vez ubicados, se toma el punto medio entre cada una de estas coordenadas, convirtiéndolos en candidatos para valores iniciales de iteración y calcular la raíz más próxima a ellos. No obstante, teniendo en cuenta que solo queremos la primera raíz positiva, de este grupo de candidatos tomamos el valor mínimo positivo, siendo este el primer valor de iteración.

Encontrando:

i	x(i)	f(x(i))
-		
0	0.55	0.470236266477354
1	0.456561724523536	0.0184087830740905
2	0.452542929031911	5.39999786699219e-05
3	0.452531070551858	4.76932854320822e-10
4	0.452531070447121	-5.55111512312578e-17

La cantidad de iteraciones fueron : 4

La raiz de la función en el intervalo dado es x = : 0.452531

Gráficamente podemos evidenciar los mínimos y máximos y la raíz encontrada, con mayor facilidad:

