Esercizi proposti – 11

Prima Parte

- 1. Sia $F = p \land q \to \neg p \lor r$ e \mathcal{M} l'interpretazione tale che $\mathcal{M}(p) = T$ e $\mathcal{M}(q) = \mathcal{M}(r) = F$. Determinare se $\mathcal{M} \models F$ oppure $\mathcal{M} \not\models F$, giustificando la risposta mediante la definizione ricorsiva di \models .
- 2. Sia $F = (p \to (q \land r)) \lor (q \to s)$. Definire interpretazioni \mathcal{M}_1 e \mathcal{M}_2 tali che $\mathcal{M}_1 \models F \in \mathcal{M}_2 \not\models F$, e giustificare la definizione delle interpretazioni utilizzando la definizione ricorsiva di \models .
- 3. Dimostrare mediante ragionamento semantico che:
 - (a) $q \to (p \to r), \neg r, q \models \neg p$
 - (b) $p \lor q, p \lor (q \land r) \models p \lor r$
 - (c) $\neg (p \rightarrow q), p \rightarrow r \lor q \models r$
- 4. Dimostrare mediante ragionamento semantico che:
 - (a) $p \to q \not\models \neg p \to \neg q$
 - (b) $p \land (q \lor r) \not\models \neg (q \to r)$

Seconda Parte

Per questo gruppo di esercizi si presuppone di aver definito il seguente tipo di dati per rappresentare formule della logica proposizionale (senza la doppia implicazione ≡):

```
type form =
True
| False
| Prop of string
| Not of form
| And of form * form
| Or of form * form
| Imp of form * form
```

- 1. La complessità di una formula è il numero di operatori logici $(\neg, \land, \lor \rightarrow)$ che contiene. Ad esempio, un atomo ha complessità 0, la formula $(p \land q) \rightarrow \neg r$ ha complessità 3. Definire una funzione complessita: form -> int che calcoli la complessità di una formula.
- 2. Definire una funzione mkand: form list -> form, che, data una lista di formule $[f_1; ...; f_n]$ ne riporti la congiunzione: $f_1 \wedge \wedge f_n$. L'ordine in cui si associano i congiunti è indifferente: la formula può essere $f_1 \wedge (f_2 \wedge (....(f_{n-1} \wedge f_n)...))$, oppure $((...(f_1 \wedge f_2).... \wedge f_{n-1}) \wedge f_n)$. Se la lista è vuota, la funzione riporterà \top .
- 3. Definire una funzione mkor: form list → form che, applicata a una lista di formule, riporti la disgiunzione di tutte le formule nella lista. Se la lista è vuota, la funzione riporta ⊥. Anche qui, l'ordine in cui si associano i disgiunti è indifferente.

- 4. Un letterale è un atomo o la negazione di un atomo. Il letterale complementare di un atomo p è ¬p; il complementare di ¬p è p; il complementare di ⊤ è ⊥, e viceversa. Scrivere una funzione complementare: form → form che, applicata a un letterale ne riporti il complementare. Se la formula non è un letterale solleverà un'eccezione.
- 5. Una formula si dice in forma normale negativa (NNF) se è ottenuta a partire da letterali applicando soltanto gli operatori \land e \lor . In altri termini, la formula contiene soltanto gli operatori \neg , \land e \lor e la negazione domina soltanto atomi. Ad esempio $p \to q$ e $\neg(p \land q)$ non sono in NNF, mentre lo sono $\neg p \lor q$ e $p \lor (\neg q \land \neg r)$. Scrivere una funzione test_nnf: form -> bool che verifichi se una formula è in NNF.
- 6. Se $F \in G$ sono formule in NNF, si dice che $F \in G$ sono duali l'una dell'altra se F si può ottenere da G sostituendo:
 - ogni \wedge con \vee ,
 - ogni \vee con \wedge ,
 - ogni letterale con il suo complementare.

Scrivere una funzione duale: form -> form che, data una formula in NNF, riporti la sua duale. Se la formula non è in NNF, la funzione solleverà un'eccezione.

- 7. Sia F una congiunzione di letterali, cioè una formula della forma $\ell_1 \wedge \wedge \ell_n$ dove ogni ℓ_i è un letterale. Scrivere una funzione and2list: form -> form list che, applicata a una congiunzione di letterali $\ell_1 \wedge \wedge \ell_n$ (dove le parentesi possono essere in qualunque modo), riporti la lista dei letterali che la compongono $[\ell_1;; \ell_n]$. Se la formula non è una congiunzione di letterali, la funzione solleverà un'eccezione.
- 8. Il controllo di soddifacibilità per congiunzioni di letterali è meno complesso del controllo di soddifacibilità per formule in generale: se $F = \ell_1 \land \land \ell_n$, F è soddisfacibile se e solo se l'insieme $\{\ell_1,, \ell_n\}$ non contiene alcuna coppia di letterali complementari (cioè se nessun ℓ_i è il complementare di qualche ℓ_j), e, ovviamente, nessun ℓ_i è \bot o $\neg \top$. Scrivere una funzione satxand_of_lits: form -> bool che, applicando questo metodo, controlli se una congiunzione di letterali è soddisfacibile o no. Se la formula cui viene applicata non è una congiunzione di letterali, la funzione solleverà un'eccezione.
- 9. A partire da un'interpretazione M si può costruire una congiunzione di letterali F che è vera in M e soltanto in M: per ogni atomo p del linguaggio, F contiene p se p è vera in M, e ¬p altrimenti. Diciamo in questo caso che F rappresenta M.

Rappresentiamo un'interpretazione mediante una lista associativa di tipo (string * bool) list: ad ogni atomo del linguaggio (identificato dalla stringa che è il suo "nome") è associato il suo valore di verità.

Dichiariamo dunque un tipo per rappresentare le interpretazioni:

type interpretation = (string * bool) list

Scrivere una funzione int2form: interpretation -> form che, data un'interpretazione così rappresentata, costruisca la formula che la rappresenta.

Ad esempio, il valore di int2form [("p",true); ("q", false); ("r",true)] sarà una form che rappresenta la formula $p \land \neg q \land r$ (dove l'ordine in cui si associano i congiunti è indifferente).

10. Definire una funzione dnf: form -> form, che trasformi una formula in una forma normale disgiuntiva (DNF) equivalente.

È possibile utilizzare uno degli algoritmi seguenti:

- una algoritmo analogo a quello utilizzato nell'implementazione della funzione cnf vista a lezione (si trasforma la formula in FNN e si applicano le leggi distributive).
- Costruire l'insieme delle interpretazioni in cui la formula è vera e, per ciascuna di esse, costruire la formula che la rappresenta; infine, costruire la disgiunzione dell'insieme di formule che si ottengono.
- Costruire un tableau completo per la formula data e collezionarne i rami aperti. Per ciascuno di essi, costruire la congiunzione dei letterali del ramo ed infine, costruire la disgiunzione di tali congiunzioni.
- 11. Una forma normale congiuntiva (CNF) di una formula F si può ottenere utilizzando il metodo dei tableaux: si raccolgono i complementi dei letterali dei rami aperti in un tableau completo per $\neg F$, ottenendo una lista di liste di letterali [flist₁;...;flist_n]; da ciascuna delle liste flist_i si ottiene la formula D_i costituita dalla disgiunzione dei letterali in flist_i; infine, si costruisce la congiunzione di tali disgiunzioni $D_1 \wedge ... \wedge D_n$.
 - Scrivere una funzione tab_cnf: form -> form che riporti la forma normale disgiuntiva di una formula seguendo tale metodo.
- 12. Utilizzando la funzione sat vista a lezione, scrivere una funzione logical_consequence: form list -> form -> bool che, applicata ad una lista di formule flist e una formula f, determini se f è una conseguenza logica di flist.