MAD – Data Analysis & Biostatistics in R Power - More Regression - Logistic Regression

James R. Hunter, Ph.D.

DIPA, EPM, UNIFESP

9 October 2020

Section 1

Statistical Power

- Statistical Power
- Polynomial Regression

- Statistical Power
- Polynomial Regression

- Statistical Power
- Polynomial Regression
- Regression and Analysis of Variance (ANOVA) Kissing Cousins

Section 2

Statistical Power

Conceptual Review

- Null Hypothesis (H_0): a parameter = some theoretical value
- Alternative Hypothesis (H_1) : \geq , \neq , \leq theoretical value (not H_0)
- \bullet Test statistic calculated from the data assuming H_0 is true
- p-value: probability of observing the theoretical value being tested or a more extreme value
- ullet Small p-vales provide evidence against the H_0
- Level of significance defines the limit of "how small is small enough" for a p-value
 - Notation: α

Power of a Statistical Test

- α provides an idea of the performance of the test across **multiple** samples
- If H_0 is true and $\alpha = 0.01$
 - ▶ In 1% of the **samples**, we would reject H_0 erroneously
 - ▶ In 99% of the **samples**, we would reject H_0 (correct decision)
- We want to reject H_0 when it is really false
- If α is too small, we can reject H_0 even if the correct value of the parameter is close to the value in H_0
- Power of a test is the probability of making a correct decision (i.e., reject H_0 when it is really false)
- Higher levels of power in a test mean that the test is more sensitive

Power - Definition

Power is the probability of correctly rejecting a false null hypothesis when the alternative hypothesis is correct

Power Analysis

- Allows us to determine the probability that a statistical significance test will reject a null hypothesis
- Permits the calculation of the number of cases (n) that would be necessary in a sample to achieve a given level of power
- Put more simply: allows us to determine *a priori* the probability that we make a correct decision

2 Types of Statistical Errors

- **Type I** Reject H_0 when it is **true**
 - lacktriangle Occurs with probability lpha
 - Condemning a person falsely of a crime
- **Type II** Not reject H_0 when it is **false**
 - Occurs with probability β
 - $\beta = 1$ power
 - A criminal freed in error

Possible Results of a Hypothesis Test

Conclusão do Teste	Estado de Natureza			
		Nula Verdadeira	Nula Falsa	
	Não rejeitar H _o	Correta p = 1 - α	Erro Tipo II p. = B	
	Rejeitar H _o	Erro Tipo <u>I</u>	Correta	
		$\mathbf{p} = \mathbf{a}$	p = 1 - B	

Factors in Calculating Power - BEAN

- **B**: β Error (Type II)
 - ▶ Probability that significance test will fail to reject H_0 when it is **false**
 - As β error increases, power decreases
- E: Effect Size
 - Magnitude of difference between real population mean and null hypothesized mean relative to standard deviation
 - $\qquad \qquad \frac{(\mu \mu_{H_0})}{\sigma}$
 - ► As effect size increases, power increases
- **A**: α Error (Type I)
 - Probability that statistical test will produce a significant finding when H₀ is true
 - ▶ If $\alpha = 0.05$ and H_0 true, false positive would be found in 5 samples out of 100
- N: Sample size

Calculating Power

- If you know three, you can calculate the fourth factor
- n and α are under your direct control

Power – Maximization

- Goal in determining power: maximize the power while maintaining the significance level and minimizing the sample size
- Maximize the probability of finding a true effect while minimizing the chance of finding an effect that does not exist
- Power calculations and sample sized calculated at beginning of project
 during planning
 - Not after already executed experiment. Cannot now try to add new cases

Effect Size

- Of these 4 factors, the most difficult to understand
- Requires some experience with research to apply well
- Table to help beginners use effect size
 - These are general indications
 - With experience you will get a better idea

Table of Effect Size

	Pequeno	Médio	Grande
teste - t	0,2	0,5	0,8
modelo linear	0,02	0,15	0,35
proporções	0,2	0,5	0,8
Qui-quadrado (χ²)	0,1	0,3	0,5

Section 3

How to Calculate Power

Data on Normal Human Temperature

Median

Q3

IOR

0.50 0.01

01

Mean

Std.Dev

Min

tempC 36.81 0.41 35.72 36.56 36.83 37.06 38.22

Power Calculations with the pwr Package

You can specify 3 of the 4 factors; function calculates the 4th

```
pwr.t.test(n = NULL, d = NULL, sig.level = 0.05, power = NULL,
    type = c("two.sample", "one.sample", "paired"),
    alternative = c("two.sided", "less", "greater"))
```

- d = effect size
- $sig.level = \alpha$
- You need to specify type and alternative

Execute pwr.t.test() Function

n = 130

d = 0.8

sig.level = 0.05 power = 1

alternative = two.sided

##

##

##

##

##

Conclusion about 130 Person Sample

- ullet Power = 1; Sample larger than necessary
- Test a sample of 10

sig.level = 0.05

alternative = two.sided

power = 0.6162328

##

##

##

How Many for a Power = 0.95?

- A sample of 23 would be sufficient to have a very high statistical power
- Tell your colleague that 23 cases would have been enough

Types of Tests Covered in pwr

- pwr.p.test: one-sample proportion test
- pwr.2p.test: two-sample proportion test
- pwr.2p2n.test: two-sample proportion test (unequal sample sizes)
- pwr.t.test: two-sample, one-sample and paired t-tests
- pwr.t2n.test: two-sample t-tests (unequal sample sizes)
- pwr.anova.test: one-way balanced ANOVA
- pwr.r.test: correlation test
- pwr.chisq.test: chi-squared test (goodness of fit and association)
- pwr.f2.test: test for the general linear model (logistic regression, etc.)

Section 4

Final Thoughts on Hypothesis Tests

- Be careful when you interpret a p-value
 - \triangleright p-value does not tell you if H_0 is true
 - \blacktriangleright What it says: how probable would be the data observed **if** H_0 were true
- Whow you collect the data is the key step in arriving at a correct conclusion
- Always use two-sided tests if you are not absolutely certain that one of the sides is totally uninteresting
- lacktriangle Statistical significance \neq practical significance \neq importance

Effect of Sample Size on p-value

ullet Three samples: flip a fair coin (p = 0.5); always have 60% heads

heads	trials	statistic	p_value
6 60	10 100	6 60	0.7539063 0.0568879
600	1000	600	0.0000000

- **5** Lack of significance does not mean that H_0 is true
 - Large p-values can occur because of
 - ★ Luck/chance
 - * Problems in data collection
 - ★ H₀ really false
- Specify your hypotheses before collecting data
- Proportion tests and tests of means require
 - Independence of observations
 - Distribution of the estimators approximately normal
- t-test very robust to outliers
 - Only the most extreme outliers can invalidate t-statistic and p-value

Section 5

Polynomial Regression

What Is Polynomial Regression

• A way to capture non-linear properties of a variable and retain the linearity of the overall function

Example: Start of COVID-19 Pandemic in Brazil

- Typical of the initial phase of a new infectious disease outbreak
- Deal with period from start of confirmed cases in February through start of April
- Data from Johns Hopkins COVID repository and dashboard

Data

Linear Regression of Cases on Dates

```
br_fit1 <- lm(cases ~ elapsed_date, data = br_cases)</pre>
summary(br fit1)
##
## Call:
## lm(formula = cases ~ elapsed date, data = br cases)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -2301.3 -1630.4 -617.5 1254.1 5277.5
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -2700.86 618.11 -4.370 8.29e-05 ***
## elapsed date 222.89 24.47 9.108 2.11e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1991 on 41 degrees of freedom
## Multiple R-squared: 0.6693, Adjusted R-squared: 0.6612
## F-statistic: 82.96 on 1 and 41 DF, p-value: 2.113e-11
```

Q-Q Plot of Linear Fit

car::qqPlot(br_fit1)

[1] 42 43

Create a Polynomial Model of the Data

 We know that the initial phases of a new infection follow an exponential curve

```
options(scipen = 1)
r < -2
times <- 14 #14 days = 2 weeks
x <- r^{(0:times)}
Х
    [1]
                               8
                                    16
                                          32
                                                 64
                                                      128
                                                            256
                                                                   512
                                                                        1024
                                                                              2048
   [13] 4096 8192 16384
```


Sort of Like This

I'M A HUGE FAN OF WEIRD GRAPHS, BUT EVEN I ADMIT SOME OF THESE CORONAVIRUS CHARTS ARE LESS THAN HELPFUL.

Create a Quadratic Regression of Elapsed Date

- "Quadratic" means 2nd degree polynomial
 - Will create an equation

$$\hat{Y}_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

- poly() function (base R) creates regression terms from power 1 up to power in command
 - poly(var, degree = 2, raw = FALSE)
 - degree = put the degree of the polynomial you want to calculate
 - ▶ raw = FALSE use orthogonal polynomials that is polynomials that will have no overlap

Quadratic Function for elapsed_date

```
br fit2 <- lm(cases~poly(elapsed date, 2, raw = TRUE), data = br cases)
summary(br fit2)
##
## Call:
## lm(formula = cases ~ poly(elapsed_date, 2, raw = TRUE), data = br_cases)
##
## Residuals:
       Min
                 1Q Median
                                  30
                                          Max
## -1297.27 -577.19 22.97 606.22 1502.25
##
## Coefficients:
##
                                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                    1640.0117 352.8630 4.648 3.61e-05 ***
## poly(elapsed_date, 2, raw = TRUE)1 -355.8911 36.9896 -9.621 5.81e-12 ***
## poly(elapsed date, 2, raw = TRUE)2 13.1542 0.8152 16.137 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 735.7 on 40 degrees of freedom
## Multiple R-squared: 0.956, Adjusted R-squared: 0.9538
## F-statistic: 434.1 on 2 and 40 DF, p-value: < 2.2e-16
```

Plot of Regression

Confirmed Cases — with Quadratic Regression Line 24 February – 6 April

Q-Q Plot of Quadratic Fit

car::qqPlot(br_fit2)

[1] 1 43

Cubic Regression of Date and Cases

- Still can be improved
- Try 3rd Degree Cubic Regression
- Can we remove the oscillation in the Q-Q graph?
- Can we reduce the regions of over- and under-estimation?

Calculating Cubic Regression

```
br fit3 <- lm(cases~polv(elapsed date, 3, raw = TRUE), data = br cases)
summary(br_fit3)
##
## Call:
## lm(formula = cases ~ poly(elapsed date, 3, raw = TRUE), data = br cases)
##
## Residuals:
##
      Min
               10 Median
                               30
                                      Max
## -781 37 -94 21 22 30 111 31 474 04
##
## Coefficients:
##
                                       Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                    -429.60935 141.41184 -3.038 0.00423 **
## poly(elapsed date, 3, raw = TRUE)1 178.10207 27.51443 6.473 1.14e-07 ***
## poly(elapsed_date, 3, raw = TRUE)2 -16.84034 1.44413 -11.661 2.77e-14 ***
## poly(elapsed date, 3, raw = TRUE)3 0.45446 0.02159 21.050 < 2e-16 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 211.9 on 39 degrees of freedom
## Multiple R-squared: 0.9964, Adjusted R-squared: 0.9962
```

F-statistic: 3636 on 3 and 39 DF, p-value: < 2.2e-16

Plot of Cubic Regression

```
br cases %>%
  mutate(fitted cubic = br fit3$fitted.values) %>%
  ggline(x = "date",
         y = "cases",
         color = "#8F3931FF".
         palette = "uchicago",
         title = "Confirmed Cases -- with Cubic Regression Line",
         subtitle = "24 February - 6 April".
         xlab = FALSE.
         vlab = "Total Confirmed Cases",
         ggtheme = theme grav()) +
  geom line(aes(y = fitted cubic), color = "#58593FFF", size = 1, show.legend = TRU
  geom_smooth(color = "#155F83FF", method = "lm", se = FALSE) +
  scale x date(date breaks = "7 days", date labels = "%m/%d")
```

Confirmed Cases -- with Cubic Regression Line 24 February - 6 April

Q-Q Plot of Cubic Fit

car::qqPlot(br_fit2)

[1] 1 43

Section 6

One-Way ANOVA - Regression's Kissing Cousin

Analysis of Variance - ANOVA

- Tool developed in 1920's by Sir Ronald Fisher
- Misnomer
 - Technique for comparing differences in means
 - Not variances
- Way to study groups
 - And how some outcome variable can depend on them
- Variety of ANOVA models
- Multiple comparison tests when we want to isolate certain differences
 - Correction for aggressive estimation of p-value
- Clinical trials
 - ► Go-to method of analyzing clinical trial data

Imaginary Clinical Trial of New Drug for COVID-19 Treatment

- New drug "Nontussis"
 - ▶ Directly attacks SARS-CoV-2 virus in respiratory system
- Trial will compare Nontussis to an imaginary version of HCQ and a placebo
- Trial will be double-blinded
- Patients will be divided between
 - ► Those on supplemental O₂ (50%)
 - ▶ Those with no supplemental O_2 (50%)
- Outcome measure is a scaled difference (between 1 and 10) of the difference between viral load at enrollment and viral load after 5 days of treatment

Load and View the Data

```
clin_trial <- read_rds(here("covid_clin_trial.rds"))
glimpse(clin_trial)

## Rows: 66

## Columns: 4

## $ pac_id <chr> "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12...

## $ drug <chr> "placebo", "placebo", "placebo", "placebo", "placebo", "placebo", "placebo", "placebo", "supp", "supp",
```

Table of the Data

```
clin_trial %>%
  group_by(drug, o2) %>%
  summarise(avg_score = mean(score)) %>%
  knitr::kable()
```

drug	o2	avg_score
hcq	no_supp	4.690909
hcq	supp	4.400000
nontussis	no_supp	6.236364
nontussis	supp	5.981818
placebo	no_supp	4.309091
placebo	supp	4.972727

Descriptive Statistics of Data – Supplemental Oxygen

```
clin trial %>%
 filter(o2 == "supp") %>%
 group by(drug, o2) %>%
descr(stats = c("mean", "sd", "min", "med", "max", "igr", "cv"),
     transpose = TRUE)
## Descriptive Statistics
## clin_trial$score
## Group: drug = hcg. o2 = supp
## N: 11
              Mean
                    Std.Dev Min
                                   Median
                                            Max
                       2.53 1.30 4.70 8.50 4.65 0.58
       score 4.40
##
## Group: drug = nontussis, o2 = supp
## N: 11
##
              Mean Std.Dev
                            Min Median Max
       score 5.98
                       2.29 2.80 5.90 9.20 3.70 0.38
## Group: drug = placebo, o2 = supp
##
              Mean
                    Std.Dev
                            Min Median
                                            Max
                                                   IOR
##
       score 4.97 2.36 1.40 4.70 8.20 3.55 0.47
```

Descriptive Statistics of Data - No Supplemental Oxygen

```
clin trial %>%
 filter(o2 == "no_supp") %>%
 group by(drug, o2) %>%
descr(stats = c("mean", "sd", "min", "med", "max", "igr", "cv"),
     transpose = TRUE)
## Descriptive Statistics
## clin_trial$score
## Group: drug = hcg. o2 = no supp
## N: 11
              Mean
                     Std.Dev
                            Min
                                    Median
                                             Max
                                                   IOR
       score 4.69 1.98 2.00 4.50 8.30 2.50 0.42
##
## Group: drug = nontussis. o2 = no supp
## N: 11
##
              Mean
                     Std.Dev
                            Min Median Max
                       2.06 3.10 6.10 8.50 3.35 0.33
       score 6.24
## Group: drug = placebo, o2 = no supp
##
              Mean
                     Std.Dev
                             Min
                                  Median
                                             Max
                                                   IOR
        score 4.31 1.69 2.00 4.10 7.20 1.80
```

Graph of Data

Graph of Viral Load Reduction Score Errors

Variance of Y (score)

- To understand how this works, need to review variance and sum of squares
- Variance is again based on deviation of individual point from a mean
 - lacktriangle Here, it is Y for each cell compared to the overall mean for Y (\bar{Y})
 - $(Y_{ik} \bar{Y})$ Note subscripts
- Subscripts (and cells) represent
 - ► Each group (k)
 - ► Each **member** within the group (i)
- Formula just assures you pick up all the cells of a cross table

$$Var(Y) = \frac{1}{N} \sum_{k=1}^{K} \sum_{i=1}^{N_k} (Y_{ik} - \bar{Y})^2$$

Variance Looks Like a Mean

- Because it is a mean
- Squared deviations divided by N
- Mean of the squared deviations

Variances and Sum of Squares

- ANOVA works with Total Sum of Squares (SST)
- SS_{tot} is variance not adjusted by N

$$SS_{tot} = \sum_{k=1}^{K} \sum_{i=1}^{N_k} (Y_{ik} - \bar{Y})^2$$

- Divides SST into 2 components
 - \triangleright SS_{betw} Sum of squares between groups
 - ► $SS_{w/in}$ Sum of squares within groups

SS_{betw} - Between groups

ullet Difference between group means $(ar{Y}_k)$ and overall mean $(ar{Y})$

$$SS_{betw} = \sum_{k=1}^K \sum_{i=1}^{N_k} (\bar{Y}_k - \bar{Y})^2$$

$SS_{w/in}$ - Within Groups

• Difference between the group means (\bar{Y}_k) and the individual values (Y_{ik})

$$SS_{w/in} = \sum_{k=1}^{K} \sum_{i=1}^{N_k} (Y_{ik} - \bar{Y}_k)^2$$

As with regression . . .

$$SS_{tot} = SS_{betw} + SS_{w/in}$$

Graphic Depiction of Variability within and between Groups

source: Navarro, Isr v.6, p.430.

Construct Null Hypothesis for the ANOVA

 Null hypothesis: there will be no difference among the drugs in the reduction of viral load

$$H_0$$
: $\mu_{placebo} = \mu_{hcq} = \mu_{nt}$

- Alternative hypothesis: at least one of the means of the drugs will be different than the others

$$H_1: \mu_{\it placebo}
eq \mu_{\it hcq}
eq \mu_{\it nt}$$

Testing the Hypothesis: The F Ratio

- Sums of Squares represent variability: differences of values and group means from other means
- The F ratio is a ratio of variances
- Remember that variances have a degree of freedom
- Here we are working with 2 variances: $SS_{w/in}$ and SS_{betw}
 - We use the sum of squares and not the variances because the N's cancel out
- ... we have two different degrees of freedom
 - $df_{betw} = K 1$ (number of groups less 1)
 - $df_{w/in} = N K$ (number in sample less the number of groups)

Calculate Mean Squares from Sum of Squares

Divide each type of sum of squares by its degrees of freedom

$$MS_{betw} = \frac{SS_{betw}}{df_{betw}}$$

$$MS_{w/in} = \frac{SS_{w/in}}{df_{w/in}}$$

F Ratio is Ratio of Mean Squares

$$F = \frac{MS_{betw}}{MS_{w/in}}$$

- Bigger the F: relatively bigger the separation between group peaks and narrower the curves
- F test statistic has 2 parameters: its 2 different degrees of freedom
- ullet F ratio must be larger than 1 to have any chance of rejecting H_0
 - ▶ Between groups variance needs to be greater than within group variance
 - If not, model contaminated by noise

Running ANOVA in R

- Basic command aov() with model specified with formula notation
 - As with regression
 - ► Assign to a model name
 - ▶ Use summary() to see full result

```
anova_mod1 <- aov(score~drug, data = clin_trial)
summary(anova_mod1)</pre>
```

```
## Df Sum Sq Mean Sq F value Pr(>F)
## drug 2 33.8 16.90 3.723 0.0296 *
## Residuals 63 286.0 4.54
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Review items in table

Same Information as Shown on Regression Output

lm() is the same operation as aov() behind the curtain

```
lm_mod1 <- lm(score~drug, data = clin_trial)</pre>
summary(lm_mod1)
##
## Call:
## lm(formula = score ~ drug, data = clin_trial)
##
## Residuals:
      Min
               10 Median
                                      Max
## -3.3091 -1.6205 -0.1091 1.8307 3.9545
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) 4.54545
                            0.45428 10.006 1.22e-14 ***
## drugnontussis 1.56364 0.64245
                                      2.434
                                             0.0178 *
## drugplacebo
                 0.09545 0.64245 0.149 0.8824
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.131 on 63 degrees of freedom
## Multiple R-squared: 0.1057, Adjusted R-squared: 0.0773
## F-statistic: 3.723 on 2 and 63 DF, p-value: 0.02964
```

Differences in Presentation of Results

- Drugs in lm() appear as dummy variables
- F statistic and df's the same
- p-value of model the same
- lm() estimates of line not useful to ANOVA
 - Interest in ANOVA is in differences in means

Effect Size (η^2) and Coefficient of Determination (R^2)

 Effect size: ratio of between-group sum of squares and total sum of squares

$$\eta^2 = \frac{SS_{betw}}{SS_{tot}}$$

- They measure equivalent ratios
 - ▶ How much of the variance does the model explain
 - Leaving the rest to the residuals
 - lacktriangleright 1sr package has a function that automatically calculates η^2
- $\eta^2 = 1sr::etaSquared(anova_mod1)$ \$eta.sq = 0.1056935, 0.1056935
- R² from lm() function = summary(lm_mod1)\$r.squared = 0.1056935

Multiple Comparison *post hoc* Tests

- If you have an ANOVA with more than two groups and a significant result . . .
 - ▶ Where did the significance come from?
 - ▶ Which comparison of means?
- Null hypothesis really has a 3-way claim:
 - ▶ Nontussis is no better than a placebo
 - ▶ HCQ is no better than a placebo
 - Nontussis is no better than HCQ
- Running multiple t-tests to find where the significance comes from is NOT the answer
- Likely to find significant results simply by chance
 - ▶ The whole hypothesis test system based on controlling Type I error rates

Adjustments (Corrections) When Making Multiple Comparison Tests

- Bonferroni Correction
 - ▶ If I am making m number of tests
 - ightharpoonup Multiply raw p-values times m and then compare to lpha
 - ▶ Very conservative will accept more *H*_Os than other methods
- Benjamini-Hochberg Method (False Discovery Rate)
 - Controls the expected proportion of false discoveries among the rejected H₀s
- Many more

Multiple Comparison in R

- Function pairwise.t.test() conducts pairwise tests and applies correction of your choice
- Feed it the dependent variable (score) and the grouping variable (drug)
- Choose an adjustment method (p.adjust.method)

With Benjamini-Hochberg Method

```
pairwise.t.test(x = clin_trial$score, g = clin_trial$drug, p.adjust.method = "BH")

##

## Pairwise comparisons using t tests with pooled SD

##

## data: clin_trial$score and clin_trial$drug

##

hcq nontussis

## nontussis 0.039 -

## placebo 0.882 0.039
```

P value adjustment method: BH

##

With Bonferroni Correction

##

```
pairwise.t.test(x = clin_trial$score, g = clin_trial$drug, p.adjust.method = "bonfe"

##
## Pairwise comparisons using t tests with pooled SD
##
## data: clin_trial$score and clin_trial$drug
##
hcq nontussis
## nontussis 0.053 -
## placebo 1.000 0.077
```

P value adjustment method: bonferroni

More on ANOVA

- clin_trial was a balanced design
 - All the groups were of the same size
- Unbalanced designs are possible
 - ▶ Calculation of SS_x , df_x more complicated
- Very sophisticated designs possible for multiple dimensional studies
- Non-parametric version using ranks
 - Kruskal-Wallis rank sum test
 - kruskal.test()
 - Use when normality of data and residuals or equality of variances is a problem
- Wide variety of test designs