metR - Visualización y manejo de datos meteorológicos

Elio Campitelli

Centro de Investigaciones del Mar y la Atmósfera - CONICET elio.campitelli@cima.fcen.uba.ar

Keywords: meteorología · tidy data · visualización de datos

1. Introducción

Gran parte de la investigación en ciencias de la atmósfera consiste en el análisis y visualización de datos. Uno de los softwares de visualización de datos más utilizado por la comunidad meteorológica y oceanográfica es GrADS (Grid Analysis and Display System), el cual permite leer y graficar campos escalares y vectoriales con gran facilidad. Sin embargo, su lenguaje de scripting es muy limitado, carece de capacidades estadísticas nativas y no existen muchas extensiones que las implementen. R, en cambio, posee implementaciones de virtualmente cualquier tratamiento estadístico usado en ciencias de la atmósfera. Sin embargo, con el paquete raster[3] –el más usado para leer y graficar datos geográficoslos datos quedan relativamente ocultos detrás de una estructura opaca que no facilita la interacción con otros paquetes; en particular, no es posible graficarlos utilizando ggplot2[4].

2. Descripción del paquete

La finalidad de metR[1] es proveer facilidades en la lectura, manejo y visualización de datos meteorológicos en R utilizando estructuras comunes soportadas por la mayoría de los paquetes, de manera de poder beneficiarse de los aportes de la comunidad. Hace fuerte uso de data.table[2] por su velocidad y eficiencia en el uso de memoria (importante dada la gran cantidad de datos que suelen usarse en meteorología), y en ggplot2 por su flexibilidad y facilidad en la creación de gráficos.

En su extensión de ggplot2, metR provee geoms para graficar contornos llenos, contornos de Tanaka, líneas de corriente, vectores y mapas de relieve, y escalas específicas que facilitan la creación de mapas y cortes verticales. En lo que refiere a manejo de datos, provee funciones para lectura datos desde archivos NetCDF directamente en data.frames, cálculo de componentes principales, imputación de datos faltantes, transformada de Fourier y derivadas. Además, tiene funciones específicas de física atmosférica, como la ley de gases ideales, relaciones de procesos adiabáticos, presión de saturación del vapor de agua, fuerza de coriolis y otros.

metR está en estado experimental y de activo desarrollo, tanto en crecimiento de funcionalidad como en refinamiento de interfaces y corrección de errores. Como todo proyecto de código abierto, es deseable además que, a medida que sea adoptado por la comunidad, surjan nuevos casos de uso que incentiven su evolución más allá de las necesidades personales de un sólo desarrollador.

Ejemplo. Se calculan las anomalías temporales de altura geopotencial para cada punto de grilla y luego se obtiene el campo asociado a la primera componente principal para cada mes. Finalmente, se calcula el viento geostrófico correspondiente a ese campo. Todo este proceso toma unas pocas líneas de código y se integra sin esfuerzo en el workflow de data.table.

Luego, se grafica el campo de geopotencial con contornos llenos y el campo de movimiento en líneas de corriente. Las etiquetas en la escala de colores se marcan con el mismo intervalo usado en la discretización de los contornos.

Referencias

- [1] Elio Campitelli. metR: Tools for Easier Analysis of Meteorological Fields. R package version 0.1.9001. 2018. URL: https://github.com/eliocamp/metR.
- [2] Matt Dowle y Arun Srinivasan. data.table: Extension of 'data.frame'. R package version 1.11.5. 2018. URL: http://r-datatable.com.
- [3] Robert J. Hijmans. raster: Geographic Data Analysis and Modeling. R package version 2.6-7. 2017. URL: https://CRAN.R-project.org/package=raster.
- [4] Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016. ISBN: 978-3-319-24277-4. URL: http://ggplot2.org.

 ${\bf Figura\,1.}\ {\bf Anomal\'{(}a\ de\ altura\ geopotencial\ media\ en\ contornos\ llenos\ (mgp)\ y\ viento\ geostr\'{o}fico\ en\ l\'{(}neas\ de\ corriente.}$