PRÁCTICA 3. DIODO. UNION PN

A) Polarización directa. Tensión umbral (V_g) y resistencia dinámica(rd)

DIODO:	V x (V) (polímetro)	V y(V) (osciloscopio)	Vd-max (V)	Id- max(mA)	rd(Ω)
Amarillo	1.714V	1.7V	2.18V	16.2mA	30 Ω
Infrarrojo	1.173V	1.175V	1.41V	21mA	11 Ω
Shockley	0.18V	0.175V	0.383V	27.4mA	7 Ω
Silicio	0.564V	0.575V	0.807V	24.7mA	9 Ω

B) Diodo sin polarización, funcionando como célula fotovoltaica

Utilizando el flash de un teléfono, consiguemos capturar el máximo V:

Teniendo este valor, calculo la potencia consumida en la resistencia ($R=1M\Omega$)

$$P=Vo^2/R=1.616^2/1000k\Omega=0.026W$$

¿Cuántos LED serían necesarios para hacer funcionar una bombilla de 40W?

Sabemos que $P=I*Vo = Vo^2/R$, en nuestro problema, además sabemos que $R=1M\Omega=1000K\Omega$

Por lo tanto, solo tenemos que despejar Vo, quedando:

$$Vo=sqrt(P*R) = sqrt(40*1000) = 200V$$

Necesitaríamos 200V para hacer funcionar una bombilla de 40W, utilizando el LED verde del laboratorio, sabiendo que un LED usa aproximadamente 1.616V:

$$200/1.616 = 123.7 = 124 \text{ LEDS}$$