Binomial Theorem

1	Pascal Triangle	1
		11
		121
		1331
		14641
		15101051

Observe Expansion

Power	Expand	Number of terms
$(a+b)^{0}$	1	1
$(a+b)^{1}$	a + b	2
$(a + b)^2$	$a^2 + 2ab + b^2$	3
$(a+b)^{3}$	$a^3 + 3a^2b + 3ab^2 + b^3$	4
$(a+b)^4$	$a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4$	5
$(a+b)^5$	$a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5$	6

Binomial Theorem General Formula

$$(a+b)^n =$$

$$nC_0 a^n + nC_1 a^{n-1}b^1 + nC_2 a^{n-2}b^2 + \dots + nC_r a^{n-r}b^r + \dots + nC_n b^n$$

 $nC_0 = nC_n = 1$, it will always be 1 as seen from pascal triangle

$$\therefore \ a^n + nC_1 \ a^{n-1}b^1 + nC_2 \ a^{n-2}b^2 + \dots + nC_r \ a^{n-r}b^r + \dots + \ b^n$$

1

What is nC_r ?

n = the power of expansion

r = which term of the pascal triangle of the power n

Example: $5\mathcal{C}_0=1$, $5\mathcal{C}_1=5$, $5\mathcal{C}_2=10$, $5\mathcal{C}_3=10$, $5\mathcal{C}_4=5$, $5\mathcal{C}_5=1$

How to calculate nC_r ?

Factorial Intro

$$1! = 1$$
 $2! = 2 * 1 = 2$
 $3! = 3 * 2 * 1 = 6$
 $4! = 4 * 3 * 2 * 1 = 24$

Factorial General Formula

$$n! = n(n-1)(n-2)...(1)$$

nC_r General Fomula

$$nC_r = \frac{n!}{r! (n-r)!}$$