EXERCISE-2

**1. If
$$\vec{A} = 3\hat{i} - 4\hat{j}$$
 and $\vec{B} = -\hat{i} - 4\hat{j}$,

, calculate the direction of $\vec{A} + \vec{B}$:**

- 1) $\tan^{-1}(4)$ with positive X-axis in clockwise
- ₂₎ $\tan^{-1}(4)$ with negative X-axis in clockwise
- $_{3)}\tan^{-1}(4)$ with positive X-axis in anticlockwise
- 4) $\tan^{-1}(4)$ with negative X-axis in anticlockwise

**2. Two vectors are given by
$$\vec{a}=-2\hat{i}+\hat{j}-3\hat{k}$$
 and $\vec{b}=5\hat{i}+3\hat{j}-2\hat{k}$. If $3\vec{a}+2\vec{b}-\vec{c}=0$, then the third vector \vec{c} is:**

1)
$$4\hat{i} + 9\hat{j} - 13\hat{k}$$

2)
$$-4\hat{i} - 9\hat{j} + 13\hat{k}$$

3)
$$-4\hat{i} - 9\hat{j} - 13\hat{k}$$

4)
$$2\hat{i} - 3\hat{j} + 13\hat{k}$$

- **3. The vector sum of two vectors of magnitudes 10 units and 15 units can never be:**
- 1) 28 units
- 2) 22 units
- 3) 18 units
- 4) 8 units
- **4. A car makes a displacement of 100 m towards east and then 200 m towards north. Find the magnitude and direction of the resultant:**
- 1) 223.7 m, tan-1(2), N of E
- 2) 223.7 m, tan⁻¹(2), E of N 3) 300 m, tan⁻¹(2), N of E
- 4) 100 m, tan-1(2), N of E

5. If a vector has an x-component of -25.0 units and a y-component of 40.0 units, then the magnitude and direction of this vector is:

1)
$$5\sqrt{89}$$
 units; $\sin^{-1}\frac{5}{\sqrt{89}}$ with -ve x-axis

2)
$$5\sqrt{89} \ units; \cos^{-1} \frac{5}{\sqrt{89}} \ with -ve x-axis$$

3) 45 *units*;
$$\cos^{-1} \frac{-5}{9}$$
 with x-axis

4) 45 *units*;
$$\sin^{-1} \frac{-5}{9}$$
 with x-axis

6. A force of 10 N is resolved into perpendicular components. If the first component makes 30° with the force, the magnitudes of the components are:

7. If the system is in equilibrium (cos 53° = $\frac{3}{5}$), then the value of 'P' is:

- 1) 16 N
- 2) 4 N
- 3) (208)¹/2 N
- 4) 232 N

8. Two billiard balls are moving on a table and the component velocities along the length and breadth are 5.5 ms^{-1} for one ball $2\sqrt{3}$, 2ms^{-1} for the other ball. The angle between the motion of balls is:

- 2) 60°
- 3) 40°
- 4) 15°

9. If $\vec{A}=2\hat{i}-3\hat{j}+4\hat{k}$, its components in the YZ-plane and ZX-plane are respectively:

- 1) $\sqrt{13}$ and $\sqrt{5}$
- 2) $\sqrt{5}$ and $2\sqrt{5}$
- 3) $2\sqrt{5}$ and $\sqrt{13}$
- 4) $\sqrt{13}$ and $\sqrt{29}$

**10. A car weighing 1000 kg is on a slope that makes an angle of 30° with the horizontal.

The component of the car's weight parallel to the slope is $(g = 10 \, \text{ms}^{-2})$:**

- 1) 500 N
- 2) 1000 N
- 3) 15,000 N
- 4) 20,000 N

11. A room has dimensions $3m \times 4m \times 5m$. A fly starting at one corner ends up at the diametrically opposite corner. The magnitude of the displacement of the fly is:

- 1) 12 m
- 2) 60 m
- 3) 2√5 m
- 4) 5√2 m

12. If $\vec{P} = 2\hat{i} + \hat{j} + 6\hat{k}$, its direction cosines are:

1)
$$\frac{1}{41}$$
, $\frac{2}{41}$ and $\frac{6}{41}$ 2) $\frac{1}{\sqrt{41}}$, $\frac{2}{\sqrt{41}}$ and $\frac{6}{\sqrt{41}}$

3)
$$\frac{3}{\sqrt{41}}$$
, $\frac{8}{\sqrt{41}}$ and $\frac{7}{\sqrt{41}}$ 4) 1, 2 and 6

EXERCISE-3

1. If $\vec{A} = 3\hat{i} - 4\hat{j}$ and $\vec{B} = -\hat{i} - 4\hat{j}$, calculate the direction of $\vec{A} - \vec{B}$.

- 1. along the positive x-axis
- 2. along the negative x-axis
- 3. along the positive y-axis

- 4. along the negative y-axis
- 2. The resultant of the forces $\vec{F_1} = 4\hat{i} 3\hat{j}$ and $\vec{F_2} = 6\hat{i} + 8\hat{j}$ is
- 2) $10\hat{i} 5\hat{j}$ 3) 125 4) $-2\hat{i} 3\hat{j}$
- 3. The vector sum of two vectors of magnitudes 10 units and 15 units can never be
 - 1. 20 units
 - 2. 22 units
 - 3. 18 units
 - 4. 3 units
- 4. A car moves 40 m due east and turns towards the north and moves 30 m, then turns 45° east of north and moves $20\sqrt{2}$ m. The net displacement of the car is (east is taken as the positive x-axis, north as the positive y-axis)
 - 1. $50\hat{i} + 60\hat{j}$
 - 2. $60\hat{i} + 50\hat{j}$
 - 3. $30\hat{i} + 40\hat{j}$
 - 4. $40\hat{i} + 30\hat{i}$
- 5. A bird moves in such a way that it has a displacement of 12 m towards the east, 5 m towards the north, and 9 m vertically upwards. Find the magnitude of its displacement.
 - 1. 5√2 m
 - 2. 5√10 m
 - 3. 5√5 m
 - 4.5 m
- 6. An aeroplane is heading northeast at a speed of $141.4\,\mathrm{ms}^{-1}$. The northward component of its velocity is
 - 1. 141.4 ms⁻¹
 - $2. 100 \, \text{ms}^{-1}$
 - 3. zero
 - 4. 50 ms⁻¹
- 7. The unit vector parallel to the resultant of the vectors

$$\vec{A} = 4\hat{i} + 3\hat{j} + 6\hat{k}$$

and

$$\vec{B} = -\hat{i} + 3\hat{j} - 8\hat{k}$$
 is

1)
$$\frac{1}{7} \left(3\hat{i} + 6\hat{j} - 2\hat{k} \right)$$
 2) $\frac{1}{7} \left(3\hat{i} + 6\hat{j} + 2\hat{k} \right)$ 3) $\frac{1}{49} \left(3\hat{i} + 6\hat{j} - 2\hat{k} \right)$ 4) $\frac{1}{49} \left(3\hat{i} - 6\hat{j} + 2\hat{k} \right)$

2)
$$\frac{1}{7} \left(3\hat{i} + 6\hat{j} + 2\hat{k} \right)$$

3)
$$\frac{1}{49} \left(3\hat{i} + 6\hat{j} - 2\hat{k} \right)$$

4)
$$\frac{1}{49} (3\hat{i} - 6\hat{j} + 2\hat{k})$$

8. The vector parallel to $4\hat{i} - 3\hat{j} + 5\hat{k}$ and whose length is the arithmetic mean of lengths of two vectors $2\hat{i}-4\hat{j}+4\hat{k}$ and $\hat{i}+\sqrt{6}\hat{j}+3\hat{k}$ is

1)
$$4\hat{i} - 3\hat{j} + 5\hat{k}$$

1)
$$4\hat{i} - 3\hat{j} + 5\hat{k}$$
 2) $(4\hat{i} - 3\hat{j} + 5\hat{k}) / \sqrt{3}$

3)
$$(4\hat{i}-3\hat{j}+5\hat{k})/\sqrt{2}$$
 4) $(4\hat{i}-3\hat{j}+5\hat{k})/\sqrt{5}$

4)
$$(4\hat{i} - 3\hat{i} + 5\hat{k}) / \sqrt{5}$$

9. The direction cosines of a vector A

$$\cos a = \frac{4}{5\sqrt{2}}$$
, $\cos b = \frac{1}{\sqrt{2}}$ and $\cos g = \frac{3}{5\sqrt{2}}$

1)
$$4\hat{i} + \hat{j} + 3\hat{k}$$

1)
$$4\hat{i} + \hat{j} + 3\hat{k}$$
 2) $4\hat{i} + 5\hat{j} + 3\hat{k}$

3)
$$4\hat{i} - 5\hat{j} - 3\hat{k}$$
 4) $\hat{i} + 5\hat{j} - \hat{k}$

4)
$$\hat{i} + 5 \hat{i} - \hat{k}$$

10. Given two vectors $\vec{A} = \hat{i} - 2\hat{j} - 3\hat{k}$ and

$$\vec{B} = 4\hat{i} - 2\hat{j} + 6\hat{k}$$
. The angle made by $(\vec{A} + \vec{B})$ with the X - axis is (2007 M)
1) 30^0 2) 45^0 3) 60^0 4) 90^0

11. To go from town A to town B, a plane must fly about 1780 km at an angle of 30° West of north. How far West of A is B?

- 1. 1542 km
- 2. 1452 km
- 3. 1254 km
- 4.890 km

12. A vector $\hat{i} + \sqrt{3}\hat{j}$ rotates about its tail through an angle 60° in clockwise direction then the new vector is

1)
$$\hat{i} + \sqrt{3} \hat{j}$$
 2) $3\hat{i} - 4\hat{j}$ 3) $2\hat{j}$ 4) $2\hat{i}$

EXERCISE-4

1. A man travels 1 mile due east, then 5 miles due south, then 2 miles due east, and finally 9 miles due north. His displacement is

- 1.3 miles
- 2.5 miles
- 3.4 miles
- 4. between 5 and 9 miles

2. Three forces $\vec{F}_1 = a(\hat{i} - \hat{j} + \hat{k})$, $\vec{F}_2 = 2\hat{i} - 3\hat{j} + 4\hat{k}$ and $\vec{F}_3 = 8\hat{i} - 7\hat{j} + 6\hat{k}$ act simultaneously on a particle. If the particle is in equilibrium, the 4) 2

- 3. If a particle is displaced from (0,0,0) to a point in the XY-plane which is at a distance of 4 units in a direction making an angle 60° clockwise with the negative x-axis, what is the final position vector of the particle?
 - 1) $-2\hat{i} + 2\sqrt{3}\hat{j}$ 2) $2\hat{i} + 2\sqrt{3}\hat{j}$
 - 3) $2\hat{j} + 2\sqrt{3}\hat{k}$ 4) $2\sqrt{3}\hat{j} + 2\hat{k}$
- 4. Cosines of angles made by a vector with the X, Y axes are $\frac{3}{5\sqrt{2}}$, $\frac{4}{5\sqrt{2}}$ respectively. If the magnitude of the vector is $10\sqrt{2}$, then that vector is
 - 1. $8\hat{i} + 6\hat{j} 10\hat{k}$
 - 2. $6\hat{i} 8\hat{j} 10\hat{k}$

 - 3. $6\hat{i} 8\hat{j} + 10\hat{k}$ 4. $6\hat{i} + 8\hat{j} + 10\hat{k}$
- 5. If a vector \vec{A} makes angles 45° and 60° with the x and y axes respectively, then the angle made by it with the z-axis is
 - 1. 30°
 - 2.60°
 - 3. 90°
 - 4. 120°
- 6. A vector \vec{Q} which has a magnitude of 8 is added to the vector \vec{P} which lies along the X-axis. The resultant of these two vectors is a third vector \vec{R} which lies along the Y-axis and has a magnitude twice that of \vec{P} . The magnitude of \vec{P} is

- 1) $\frac{6}{\sqrt{5}}$ 2) $\frac{8}{\sqrt{5}}$ 3) $\frac{12}{\sqrt{5}}$ 4) $\frac{16}{\sqrt{5}}$

2) 2 3) 1 4) 4 5) 2 1) 2 6)2

EXERCISE-5

- 1. A particle has a displacement of 12 m towards east, then 5 m towards north, and then 6 m vertically upwards. The resultant displacement is nearly
 - 1. 10.04 m
 - 2. 12.10 m
 - 3. 14.32 m
 - 4. 13.06 m
- 2. 2. Four co-planar concurrent forces are acting on a body as shown in the figure to keep it in equilibrium. Then the values of P and q are

- 1) $P = 4N \cdot q = 0^{0}$ 2) $P = 2N \cdot q = 90^{0}$
- 3) P = 2N, $q = 0^{\circ}$
- 4) P= 4N, $q = 90^{\circ}$
- 3. O is a point on the ground chosen as origin. A body first suffers a displacement of $10\sqrt{2}$ m North-East, next 10 m north, and finally $10\sqrt{2}$ m North-West. How far is it from the origin?
 - 1. 30 m north
 - 2. 30 m south
 - 3. 30 m west
 - 4. 30 m east
- 4. If the two directional cosines of a vector are $\frac{1}{\sqrt{2}}$ and $\frac{1}{\sqrt{3}}$, then the value of the third directional cosine is

- 1. $\frac{1}{\sqrt{6}}$ 2. $\frac{1}{\sqrt{5}}$ 3. $\frac{1}{\sqrt{7}}$ 4. $\frac{1}{\sqrt{10}}$

- 2) 2 3) 1 1) 3
- 4) 1