Langages Formels

Anne Grazon

- tel 02 23 23 **39 35**
- bureau D174 niveau orange

Gilles Lesventes

- tel 02 23 23 **39 39**
- bureau de la direction ISTIC

Catherine Belleannée

- tel 02 99 84 **73 20**
- bureau A106 niveau orange

- 10 séances de CM et 10 séances de TD
- Ce cours est un "prérequis" à
 - Compilation (licence L3 au S6)
 - Compilation (Master 1)
- Il est relativement lié à LOG (L3 au S6)
- Il est relativement lié à AGR1 (L3 en ce moment)

Documents à disposition (dont syllabus, diapos de cours)

- depuis une salle de TP de l'Istic : /share/l3info/lf
- de l'extérieur : http://etudiant.istic.univ-rennes1.fr/current/l3info/lf

Évaluation

Contrôle continu (CC)

sans document, a priori séances 4 et 8 de TD

Terminal (T)

documents de cours et TD autorisés exclusivement, dont le poly n°94 (gratuit, pdf en ligne : http://ndc.istic.univ-rennes1.fr/)

Session 1

$$(2*T + CC)/3$$

Session 2

MAX(T, (2*T + CC)/3)

Prérequis mathématiques

- ensembles
- produit cartésien
- union
- intersection
- relations (relations d'ordre et relations d'équivalence)
- raisonnement par récurrence (on fera un rappel)

Lettres et mots

des lettres, lexèmes	des mots
le symbole ' '	,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9	578 , 00002013
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 et le symbole ', '	3,14116
0,, 9 et les symboles <, >, +, /, = , ,	3 < 5+5 , 3 > 5+5
•, – et le symbole espace	• • • (anne)
-,-,-	
e, i, f, l, s, (,), {, }	if () { if () { } else { } }
if, else, (,), {, }	if () { if () { } else { } }

Mots et langages

des mots	des langages
	l'ensemble des suites non vides de bâtons (B)
578 , 00002013	l'ensemble des entiers naturels (du moins un codage des entiers) (IN)
3,14116	l'ensemble des nombres décimaux (ID)
3 < 5+5 , 3 > 5+5	l'ensemble des inégalités arithmétiques (I)
• • •	le Morse (M)
	"les drapeaux en couleurs" (C)
if() { if() { } else { } }	l'ensemble des programmes Java syntaxiquement corrects (J)

2 mécanismes (a) engendrer un langage : grammaire

Une grammaire

```
<phrase> → <groupe-nominal> <verbe> <groupe-nominal>
<groupe-nominal>
<groupe-nominal> → <déterminant> <nom>
<déterminant> \rightarrow le | la | un | une
<nom> \rightarrow chat | souris | balle
<verbe> → mange | regarde | frappe
                          <phrase>
         <groupe-nominal> <verbe>
                                  <groupe-nominal>
   <déterminant>
                                     <déterminant> <nom>
                          mange
                 <nom>
     la
                                       le
                 SOUTIS
```

Le chat mange la souris qui regarde une balle

2 mécanismes (b) reconnaître un langage : automate

Un automate

le chat regarde la souris : correct

la balle mange le souris qui frappe la chat : correct

chat regarde souris : incorrect le chat mange : incorrect

le chat regarde le chat qui regarde le chat qui regarde le chat : incorrect

Rq: c'est le même langage que dans l'exemple précédent

Campagne de lutte contre l'homophobie par le ministère de l'enseignement supérieur

Attention : choix de l'alphabet à revoir

Chomsky: quatre types de langages...

Quelques définitions

- alphabet
- mot
- longueur
- mot vide
- X*
- concaténation, facteur
- monoïde

Fait fondamental

(définit l'égalité dans le monoïde libre)

• Soient $u=a_1 a_2 ... a_p$ et $v=b_1 b_2 ... b_q$ deux mots de X^* , où les a_i et les b_j sont des **lettres** de X,

on a $\mathbf{u} = \mathbf{v}$ si et seulement si $-\mathbf{p} = \mathbf{q}$ et

- pour tout $i \in \{1, 2, ..., p\}, a_i = b_i$

• ce fait découle immédiatement de la définition d'un mot.

Quelques définitions

- facteur
- facteur gauche, droit
- facteur propre
- factorisation
- occurrence

Factorisations de abaab

- le mot abaab admet 6 factorisations de la forme u.v :
 - E. abaab
 - a . baab
 - ab . aab
 - aba . ab
 - abaa . b
 - abaab . E
- le mot abaab admet
 - 6 facteurs gauches: **E**, a, ab,...
 - 12 facteurs: ${\bf E}$, a , b , aa , ab, ba , aab , aba , baa , abaa , baab , abaab
- ba est facteur de abaab, mais ni facteur droit, ni facteur gauche.
- $|abaab|_a = 3$ et |abaab| = 5

Opérations sur les langages

• un langage est un ensemble fini ou infini de mots sur un alphabet X

• union

 $L \cup M$

• intersection

 $L \cap M$

• complémentation

 $X^* \setminus L$ ou \overline{L}

• produit

L.M

• étoile

L *

cas particulier L=X

• étoile propre

 L^+

Propriétés des opérations sur les langages

•
$$\emptyset$$
* = { ϵ }

- élément neutre : $\{ \boldsymbol{\mathcal{E}} \} . L = L . \{ \boldsymbol{\mathcal{E}} \} = L$
- élément absorbant : \emptyset . L = L . \emptyset = \emptyset
- idempotence de l'étoile : $(L^*)^* = L^*$
- distributivité:

L.
$$(M \cup N) = (L . M) \cup (L . N)$$

 $(L \cup M) . N = (L . N) \cup (M . N)$

• etc...

Grammaire algébrique (ou de type 2)

- Une grammaire algébrique est un quadruplet $G = \langle X, V, S, P \rangle$ où :
 - X est un alphabet, dit terminal
 - V est un alphabet disjoint de X, dit non-terminal
 - $-S \in V$ est l'axiome de G
 - $P \subset V \times (X \cup V)^*$ est l'ensemble (toujours **fini**) des règles de production

Exemple de grammaire algébrique

•
$$G_1 = \langle X, V, S, P \rangle$$
 avec:

$$-X = \{ a, b \}$$

$$-V = \{ S, T \}$$

$$-P = \{ (S, aSb), (S, aT), (T, b) \}$$

Autre notation pour P:

$$S \rightarrow aSb$$

$$S \rightarrow aT$$

$$T \rightarrow b$$

ou encore:

$$S \rightarrow aSb + aT$$

$$T \rightarrow b$$

Grammaires linéaires

• Une grammaire algébrique < X , V , S , P > est dite :

```
- linéaire si P \subset V \times (X^*V X^* \cup X^*)
exemple : G_1 avec P = \{ (S, aSb), (S, aT), (T, b) \}
```

- linéaire droite si $P \subset V \times (X^*V \cup X^*)$
- linéaire gauche si $P \subset V \times (VX^* \cup X^*)$

Dérivations dans une grammaire algébrique

- la relation "... se dérive directement en ..."
 - sur $(X \cup V)^*$, on définit $f \to h$ ssi f = u g v, h = u d v et $(g, d) \in P$

- la relation "... se dérive en..."
 - \rightarrow^* est la fermeture réflexive et transitive de \rightarrow
- notation $f \rightarrow^{\mathbf{n}} h$ (n est l'ordre de dérivation)

• remarque: $f \rightarrow 0$ f et donc $f \rightarrow f$

Langage engendré par une grammaire algébrique

soit
$$G = \langle X, V, S, P \rangle$$

$$-L_G(S) = \{ f \in X^*, S \rightarrow^* f \}$$

- langage élargi :
$$\widetilde{L}_{G}(S) = \{ f \in (X \cup V)^*, S \rightarrow^* f \}$$

- langage algébrique
- famille des langages algébriques : Alg(X*) et Alg

Lemme fondamental (v1)

• Soit $G = \langle X, V, S, P \rangle$ une grammaire algébrique et $f \in (X \cup V)^*$.

Si l'on factorise f en

$$\mathbf{f} = \mathbf{f_0} \mathbf{S_1} \mathbf{f_1} \mathbf{S_2} ... \mathbf{f_{k-1}} \mathbf{S_k} \mathbf{f_k}$$
, $k \ge 1$, avec \forall i, $\mathbf{f_i} \in X * \text{et } \mathbf{S_i} \in V$,

alors pour tout mot $g \in (X \cup V)^*$,

 $f \rightarrow *g$ si et seulement si il existe des mots $h_1, h_2, ..., h_k \in (X \cup V)^*$ tels que

$$g = f_0 h_1 f_1 h_2 ... f_{k-1} h_k f_k$$
, avec $\forall i, 1 \le i \le k$, $S_i \rightarrow h_i$

Lemme fondamental (v2)

Soit G = <X,V, S, P> une grammaire algébrique et f ∈ (X ∪ V)*.
 Si l'on factorise f en

$$\mathbf{f} = \mathbf{f_0} \mathbf{S_1} \mathbf{f_1} \mathbf{S_2} ... \mathbf{f_{k-1}} \mathbf{S_k} \mathbf{f_k}, \ k \ge 1, \ \text{avec} \ \forall \ i, \ f_i \in X *, \ S_i \in V, \ \text{alors}$$

pour tout entier n≥0 et pour tout mot $g \in (X \cup V)^*$,

 $f \rightarrow^n g$ si et seulement si il existe des entiers $n_1, n_2, ..., n_k \ge 0$ et des mots $h_1, h_2, ..., h_k \in (X \cup V)^*$ tels que $n = n_1 + n_2 + ... + n_k$, $g = f_0 h_1 f_1 h_2 ... f_{k-1} h_k f_k$ et \forall i, $1 \le i \le k$, $S_i \rightarrow^{n_i} h_i$.

• ce lemme se montre par récurrence sur n

