

	Loan So	hedule.		
t	Payment		Principal Repaid	Outstanding
0			7	Balance
1	(K)	$\int I_1 = i k a_{\overline{n}} = k(l)$	-lon) PR= K.Un	L=OB=Kan
2	K	72=1. Kam=K(1		OBI=Kan-K.Un =Kan-I
t	Ķ	$Zt = k(1 - 10^{n-t})$	PRt=KUn-4	$OB_{L} = K \underbrace{A_{n-2}}_{N-2}$ $OB_{t} = K \underbrace{A_{n-1}}_{N-1}$
n	. K.	7 = 10 (1)		r (an)
		In= K. (1-0)) PRn = K.V.	OBn= k(a7-10)
	r			= 0)
	5	$J_t = k \cdot (n-\alpha)$	a) £02 10	

$$\sum_{t=1}^{\infty} J_t = k \cdot (n - \alpha \pi) \sum_{t=1}^{n} F_{R_t} = k \alpha \pi$$

$$= L$$

payments made mithly.	
$a_{\overline{n}}^{(m)}$	
\$ L K K K K K K K K K K K K K K K K K K	
11xm payments.	
L=0B0 = Km. vm+ Km. vm. +Kn. vn.	
Kin = K. 10 m + 10. 10 m + Kwn.	
$= (m \cdot k) \cdot a \frac{(m)}{n7}$	
= KanxmJBn 7/3.	
FX: KKK KKK 12 13 14 2	(c).
T = 18.5% P.a.	
$900 = k \cdot 12 \cdot 0318.5\% \Rightarrow k = 32.13$	

 $= 12.03 \times 12$ $\vec{j} = (1+i)^{12} - 1$

$$\frac{E_{X}}{OB_{12}} = K \Omega_{n-t} = 32.13 \cdot \Omega_{3b-12}$$

$$= 32.13 \cdot \Omega_{3b-12}$$

$$= 32.13 \cdot \Omega_{3b-12}$$

$$= 32.13 \cdot \Omega_{3b-12}$$

$$= 669.25 - ...$$

$$\frac{7}{3} = 0B_{12} \times 3 = 669.25 \times j = 9.25.$$

$$j = (1+i)^{\frac{1}{2}} - 1$$

Capital Budgeting.

** Criteria: | O. Accumulated profit
| 2 NPV.
| 3 IRR.
| O. DPB. (1). Accumulated profit. Ct = It - Ot outgo - P(t) = P(t) - P(t)Cash Flow at t.

_

NPV(J)= ECt. (Hi) + Sop(t). (Hi) dt. Misk discount rate Ex: PV = -100 + 200. (1+1) 4 (000. (1+1) ds = -100+200(1+1)-4+1000. and anj So weds Inliti)

= -100 + 200(Hi) 4 + 1000 In (Hi)

2. NPUTO) =0 NPV>0? Tic To > NPV 70. profitable. NPVA(I) ? NPVBLI) hurdle rate; target rate 2 6% p.a Ex. a. 9%. P.a. NPVA(6%)=\$25/21 NPVA (9%) =\$9100 NPV B(9%)=56054 NPUB (6%) =\$29293 Reinvestment Rate \$17,000 \$17,000 \$17,000 \$100,000 \$17,000 \$17,00° \$17,000 P.a. reinvestment

=> IRR

$$NPV = -100,000 + 17,000. S7076.08 \times 1970 = 0.$$

AV $(H) = \sum_{h \in t} C_h \cdot (H_7)^{t-h} + \int_0^t P(s) (H_7)^{t-s} ds$ $NCF = (I_h - O_h).$

Smallest (t), AV(+)70.
D.P.B.