

R4.A.12 – Automates et Langages

TD 1 : langages

Exercice 1: (Langages)

Soit $\Sigma = \{0, 1, 2\}.$

- 1. Rappelez la définition de langage construit sur un alphabet Σ .
- 2. Donnez en extension quelques langages construits sur Σ ayant pour cardinal 1, 2 et 3.
- 3. Quel est le plus petit et le plus gros langage (au sens de l'inclusion) que l'on peut construire sur Σ .
- 4. Soit L le langage composé des mots sur Σ qui ont un 0 en premier symbole et au moins deux 1 en fin de mot. Donnez quelques éléments de L. Que vaut $\operatorname{Card}(L)$? Peut-on donner une définition en extension de L? Donnez une définition en compréhension de L. Donnez tous les mots $\mathbf{w} \in L$, vérifiant $|\mathbf{w}| \leq 5$.

Exercice 2: (Récapitulons!)

1. Soit Σ un alphabet. Que peut désigner X dans les situations qui suivent (il peut y avoir parfois plusieurs réponses possibles) :

1. a. $X = \Sigma$	g. $X \in \Sigma^*$
b. $X = \Sigma$	h. $X = \Sigma^*$
c. $X \subseteq \Sigma$	i. $X \subseteq \Sigma^*$
d. $X \in \mathcal{P}(\Sigma)$	j. $X \in \mathcal{P}(\Sigma^*)$
e. $X = \mathcal{P}(\Sigma)$	k. $X = \mathcal{P}(\Sigma^*)$
f. $X \subseteq \mathcal{P}(\Sigma)$	l. $X \subseteq \mathcal{P}(\Sigma^*)$

2. On prend le cas du langage Python (cela marcherait avec JAVA, C, Lisp ...). Que valent, pour ce langage, les ensembles Σ , Σ^* et $\mathcal{P}(\Sigma^*)$ associés. On note P la syntaxe du langage Python. Quelles relations ensemblistes entretient P avec Σ^* et $\mathcal{P}(\Sigma^*)$. Donnez des mots \mathbf{w} et \mathbf{w}' vérifiant $\mathbf{w} \in P$ et $\mathbf{w}' \notin P$. Faites deux diagrammes de Venn représentant P, Σ , Σ^* et $\mathcal{P}(\Sigma^*)$.

Exercice 3 : (Opérateur de concaténation de langages)

Soit un alphabet $\Sigma = \{a,b,c\}$.

- 1. Soit $L = \{aa, b, bca\}$ et $L' = \{a, bbb, cba\}$ deux langages construits sur Σ . Donnez en extension L.L'. Que vaut Card (L.L')?
- 2. Soit $L = \{aa, a, b\}$ et $L = \{a, cb\}$. Donnez en extension L.L'. Que vaut Card(L.L')?
- 3. Soit $L = \{ab, a\}$ et $L' = \{c, bc\}$ Donnez en extension L.L'. Que vaut Card(L.L')?
- 4. Que peut-on en conclure sur le cardinal de la concaténation de deux langages ? Et quand un des langages est infini ?
- 5. Quel est l'élément neutre pour la concaténation de mots? Et pour la concaténation de langages?

Exercice 4: (Opérateurs ensemblistes sur les langages)

Soit un alphabet $\Sigma = \{a,b,c\}$. Soient $L = \{aaa,bb,c\}$, $L' = \{\varepsilon,a,b,c,ba,ab,bb,aa\}$, $L'' = \{c,bc,aa,bb\}$ trois langages sur Σ^* .

- 1. Calculez $L \cap L'$ et $L \cap L''$.
- 2. Calculez $L \cup L'$ et $L \cup L''$.
- 3. Calculez $L' \setminus L$ et $L'' \setminus L'$.
- 4. Calculez $L\Delta L'$ et $L'\Delta L''$.
- 5. Calculez $^{c}L'$ et ^{c}L (complémentaire dans Σ^{*}).

Exercice 5 : (Opérateurs de Kleene)

Soit un alphabet $\Sigma = \{a,b,c\}$. Soient $L = \{aaa,bb,c\}$, $L' = \{\varepsilon,a,b,c,ba,ab,bb,aa\}$, $L'' = \{c,bc,aa,bb\}$ trois langages sur Σ^* .

- 1. Donnez tous les mots de L^* de longueur inférieur ou égale à 4.
- 2. Montrez que $L'^* = \Sigma^*$. A-t-on le même résultat pour L et L''?
- 3. Démontrez que l'opérateur de Kleene est compatible avec l'inclusion $(L \subset L' \Rightarrow L^* \subset L'^*)$.
- 4. Démontrez que pour tout langage L on a : $L^*.L^* = L^*$
- 5. Démontrez que pour tout langage L on a : $(L^*)^* = L^*$
- 6. Si $L'^* = L^*$ que peut-on dire de L et L' (au sens de l'inclusion)? Justifiez votre réponse, utilisez des exemples si besoin.