ПРОГНОЗУВАННЯ ПЕРЕМОЖЦЯ У РАУНДІ НА ОСНОВІ ПОКАЗНИКІВ СТАНУ ІГРОВОГО ПОЛЯ У ГРІ COUNTER-STRIKE: GLOBAL OFFENSIVE

META

Знайти метод, який зможе найкраще прогнозувати переможця у раунді базуючись на інформації про стан ігрового поля.

План роботи

- 1. Проаналізувати предметну область;
- 2. Провести попередню роботу з даними;
- 3. Провести інтелектуальний аналіз даних;
- 4. Побудувати та проаналізувати моделі для прогнозування переможця у раунді на основі показників стану ігрового поля у грі Counter-Strike: Global Offensive;
- 5. Порівняти отримані результати;

ПЕРЕЛІК ЛІТЕРАТУРИ

6.

```
Pvthon. [Електронний ресурс] - URL: <a href="https://www.python.org/">https://www.python.org/</a>
1.
     Pandas. [Електронний ресурс] - URL:
     https://pandas.pydata.org/docs/
     Matplotlib. [Електронний ресурс] - URL:
3.
     https://matplotlib.org/stable/
     Sklearn. [Електронний ресурс] - URL:
4.
     https://devdocs.io/scikit_learn/
     Seaborn. [Електронний ресурс] - URL:
5.
     https://seaborn.pydata.org/
```

NumPy. [Електронний ресурс] - URL: https://numpy.org/

ПОРІВНЯННЯ КІЛЬКОСТІ ПЕРЕМОГ ЗА СТОРОНИ СТ ТА Т

РОЗПОДІЛ КІЛЬКОСТІ НАБОРІВ ДЛЯ ЗНЕШКОДЖЕННЯ ВИБУХІВКИ В ЗАЛЕЖНОСТІ ВІД ФАКТУ ПЕРЕМОГИ І ПОРАЗКИ СТОРОНИ СТ

РОЗПОДІЛ КІЛЬКОСТІ БРОНІ В ЗАЛЕЖНОСТІ ВІД ФАКТУ РЕЗУЛЬТАТУ РАУНДУ

МАТРИЦЯ ТОП КОРЕЛЯЦІЇ ДЛЯ ХАРАКТЕРИСТИК

ОБГРУНТУВАННЯ ОБРАНИХ МЕТОДІВ

Вибір методу Random Forest був зроблений із розрахунку на те, що даний алгоритм ефективно працює із невеликою кількістю класів і великою кількістю характеристик та знаходить найбільш інформативні з них для класифікації, що відповідає нашому випадку, оскільки у нас є багато характеристик в наборі даних, таких як кількість гравців, їхній стан здоров'я, наявність зброї тощо, а також лише два класи СТ та Т.

ОБГРУНТУВАННЯ ОБРАНИХ МЕТОДІВ

Вибір методу Decision Tree був зроблений із розрахунку, що він є простим і інтерпретованим алгоритмом, який може допомогти зрозуміти, які ознаки є найбільш важливими для класифікації. У нашому випадку такими ознаками є використання різного спорядження, факт про те, чи встановлено бомбу, кількість здоров'я та броні у гравців тощо. Дерево рішень може допомогти виявити ключові фактори, які впливають на переможця раунду.

ОБГРУНТУВАННЯ ОБРАНИХ МЕТОДІВ

Вибір методу K-Nearest Neighbors був зроблений із розрахунку, що даний алгоритм є простим алгоритмом, який використовує найближчих сусідів для класифікації нових прикладів. У нашому випадку, можна сподіватися, що стиль гри і тактика команди, що програє або перемагає, можуть мати подібні риси та характеристики. Використання k-Найближчих сусідів може допомогти знайти схожі групи прикладів і виробити прогнози на основі їхнього класу.

МОДЕЛЬ RANDOM FOREST

```
: rf classifier = RandomForestClassifier()
 rf grid search = GridSearchCV(rf classifier, param grid={'n estimators': [10, 50, 100, 200, 500]}, cv=5, scoring='accuracy')
 rf grid search.fit(X train, y train)
 rf model = rf grid search.best estimator
 Y pred = rf model.predict(X test)
  print("Random Forest Classifier")
  print('MSE: %.2f' % mean_squared_error(y_test, Y_pred))
  print('R2 score: %.2f' % r2 score(y test, Y pred))
  print('Accuracy score: %.2f' % accuracy score(y test, Y pred))
```

Random Forest Classifier

MSF: 0.12 R2 score: 0.53

Accuracy score: 0.88

МОДЕЛЬ RANDOM FOREST

МОДЕЛЬ RANDOM FOREST


```
dt_classifier = DecisionTreeClassifier()
dt_grid_search = GridSearchCV(dt_classifier, {'max_depth': [i for i in range(40, 50)]}, cv=5, scoring='accuracy')
dt_grid_search.fit(X_train, y_train)

dt_model = dt_grid_search.best_estimator_
Y_pred = dt_model.predict(X_test)

print("Decision Tree Classifier")
print('MSE: %.2f' % mean_squared_error(y_test, Y_pred))
print('R2 score: %.2f' % r2_score(y_test, Y_pred))
print('Accuracy score: %.2f' % accuracy_score(y_test, Y_pred))
```

Decision Tree Classifier MSE: 0.18 R2 score: 0.28 Accuracy score: 0.82

МОДЕЛЬ K-NEAREST NEIGHBORS

```
kn_model_classifier = KNeighborsClassifier()
kn_model_grid_search = GridSearchCV(kn_model_classifier, {'n_neighbors': [1, 5, 10, 15]}, cv=5, scoring='accuracy')
kn_model_grid_search.fit(X_train, y_train)
kn_model = kn_model_grid_search.best_estimator_
Y_pred = kn_model.predict(X_test)

print("K Neighbors Classifier")
print('K Neighbors Classifier")
print('MSE: %.2f' % mean_squared_error(y_test, Y_pred))
print('R2 score: %.2f' % r2_score(y_test, Y_pred))
print('Accuracy score: %.2f' % accuracy_score(y_test, Y_pred))
```

K Neighbors Classifier MSE: 0.18 R2 score: 0.26 Accuracy score: 0.82

МОДЕЛЬ K-NEAREST NEIGHBORS

Порівняння моделей

score/model	Random Forest	Decision Tree	K-Nearest Neighbors
MSE	0.12	0.18	0.18
R2	0.53	0.28	0.26
Accuracy	0.88	0.82	0.82

Порівняння моделей

score/model	Random Forest	Decision Tree	K-Nearest Neighbors
G	0.116494	0.180582	0.183849

BNCHOBOK

Отже, було проаналізовано предметну область, проведено попередню роботу з даними, проведено інтелектуальний аналіз даних, побудовано та проаналізовано моделі для прогнозування переможця у раунді на основі показників стану ігрового поля у грі Counter-Strike, також було визначено найкращу модель Random Forest за характеристиками MSE, Accuracy score та оцінкою G.

