CS 3500 AA – Numerical Methods I Fall 2015

Homework Problem Set #3

Due: 09/17/2015

Be sure to do all your work on separate paper, and include all steps where appropriate. All homework must follow the formatting rules posted on Blackboard.

- 1. Determine if the function is guaranteed to have at least one fixed-point on the indicated interval.
 - (a) $g(x) = \frac{1}{2}e^{x/2}$, [4,5]
 - (b) $g(x) = \frac{1}{5}\cos(x), [0, \pi/2]$
- 2. Show that there exists a unique fixed-point of $g(x) = \frac{1}{2}e^{0.5x}$ on [0,1].
- 3. Show that x = 1 is a root of $f(x) = (x 1)^2 \ln(x)$. What is the multiplicity of $\alpha = 1$?
- 4. Show that x = 1 is a root of $f(x) = x^4 x^3 3x^2 + 5x 2$ and determine its multiplicity. Find x_3 starting with $x_0 = 0.5$, using
 - (a) Newton's method.
 - (b) the first modification of Newton's method.
- 5. Suppose an iterative scheme is known to converge with order R = 2 and asymptotic error constant $\beta = 0.5$. If e_0 is known to be 0.25, estimate e_1 , e_2 , and e_3 .
- 6. The bisection method is used to generate a sequence of approximations, $\{x_n\}$, using a starting interval [1,4]. Give an error bound for the tenth iterate, x_{10} .
- 7. Determine the minimum number of iterations of the bisection method needed to approximate the unique zero of a continuous function, f(x), known to exist in the interval [-3, -2] to within
 - (a) 10^{-5}
- (b) 10^{-8}