Αναγνώριση Προτύπων

Αξιολόγηση μοντέλων ταξινόμησης

Ανδρέας Λ. Συμεωνίδης

Αν. Καθηγητής

Τμήμα Ηλεκτρολόγων Μηχ/κών &

Μηχ/κών Υπολογιστών, Α.Π.Θ.

Email: asymeon@eng.auth.gr

Διάρθρωση διάλεξης

- Αξιολόγηση μοντέλων
- Σύγκριση μοντέλων/αλγορίθμων
- Υποεκπαίδευση/υπερεκπαίδευση/κόστος εκπαίδευσης

Αξιολόγηση Μοντέλων

- Μετρικές για την αξιολόγηση του μοντέλου
- Καθορισμός αξιόπιστων εκτιμήσεων
- Σύγκριση μοντέλων (σχετική επίδοση)

Μετρικές για την αξιολόγηση μοντέλων

- Στόχος η ικανότητα πρόβλεψης του μοντέλου (όχι η ταχύτητα κατασκευής μοντέλου ή ταξινόμησης, η κλιμάκωση κτλ)
- Confusion Matrix (Πίνακας Σύγχυσης):

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	а	b		
	Class=No	С	d		

a: TP (true positive)

b: FN (false negative)

c: FP (false positive)

d: TN (true negative)

Μετρικές για την αξιολόγηση μοντέλων

	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL CLASS	Class=Yes	a (TP)	b (FN)		
OL/100	Class=No	c (FP)	d (TN)		

Η πιο συνήθης μετρική – Ακρίβεια:

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+TN+FP+FN}$$

Α. Συμεωνίδης ΤΗΜΜΥ – ΑΠΘ

Περιορισμοί του Accuracy

- Θεωρήστε ένα πρόβλημα 2 κλάσεων:
 - Στιγμιότυπα που ανήκουν στην Class 0 = 9990
 - Στιγμιότυπα που ανήκουν στην Class 1 = 10
- Εάν το μοντέλο προβλέψει ότι όλες οι εγγραφές πρέπει να ανήκουν στην κλάση 0, τότε:

Πολύ καλή τιμή για Accuracy, πολύ κακό μοντέλο!!!

Πίνακας κόστους (Cost Matrix)

	PREDICTED CLASS			
	C(i j)	Class=Yes	Class=No	
ACTUAL	Class=Yes	C(Yes Yes)	C(No Yes)	
CLASS	Class=No	C(Yes No)	C(No No)	

C(i|j): Το κόστος λάθος ταξινόμησης μιας εγγραφής της κλάσης j ως κλάση i

Υπολογισμός του κόστους Ταξινόμησης

Cost Matrix	PREDICTED CLASS			
ACTUAL CLASS	C(i j)	+	-	
	+	-1	100	
OLAGO	-	1	0	

Model M ₁	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	150	40	
	-	60	250	

Model M ₂	PREDICTED CLASS			
		+	-	
ACTUAL CLASS	+	250	45	
	-	5	200	

Accuracy =
$$80\%$$

Cost = 3910

Accuracy =
$$90\%$$

Cost = 4255

Cost vs Accuracy

Count	PREDICTED CLASS			
		Class=Yes	Class=No	
ACTUAL	Class=Yes	а	р	
CLASS	Class=No	С	d	

Cost	PREDICTED CLASS				
		Class=Yes	Class=No		
ACTUAL	Class=Yes	р	q		
CLASS	Class=No	q	þ		

Το Accuracy είναι ανάλογο του κόστους εάν:

1.
$$C(Yes|No)=C(No|Yes) = q$$

2.
$$C(Yes|Yes)=C(No|No) = p$$

$$N = a + b + c + d$$

Accuracy = $(a + d)/N$

Cost = p (a + d) + q (b + c)
= p (a + d) + q (N - a - d)
= q N - (q - p)(a + d)
= N [q - (q-p)
$$\times$$
 Accuracy]

Μετρικές ευαίσθητες στο κόστος

Precision (p) =
$$\frac{a}{a+c}$$

Recall (r) =
$$\frac{a}{a+b}$$

F-measure (F) =
$$\frac{2rp}{r+p} = \frac{2a}{2a+b+c}$$

- To Precision είναι πολωμένο προς τα: C(Yes|Yes) & C(Yes|No)
- To Recall είναι πολωμένο προς τα: C(Yes|Yes) & C(No|Yes)
- Το F-measure είναι πολωμένο προς όλα εκτός από τα: C(No|No)

Weighted Accuracy =
$$\frac{w_1 a + w_4 d}{w_1 a + w_2 b + w_3 c + w_4 d}$$

Αξιόπιστες εκτιμήσεις επίδοσης

- Η επίδοση ενός μοντέλου μπορεί να εξαρτάται και από άλλες παραμέτρους πέρα από τον αλγόριθμο εκμάθησης:
 - Την κατανομή κλάσεων
 - Το κόστος λανθασμένης ταξινόμησης
 - Το μέγεθος του σετ εκπαίδευσης και του σετ ελέγχου

Καμπύλη εκμάθησης

- Η καμπύλη εκμάθησης δείχνει πώς αλλάζει το accuracy χρησιμοποιώντας διαφορετικά μεγέθη του σετ εκπαίδευσης
- Απαιτεί μια μεθοδολογία δειγματοληψίας:
 - Αριθμητική δειγματοληψία
 - Γεωμετρική δειγματοληψία
- Μικρό σετ δειγματοληψίας:
 - Πόλωση στην εκτίμηση
 - Διακύμανση στη δειγματοληψία

Μέθοδοι Εκτίμησης

- Παρακράτηση (Holdout)
 - Χρησιμοποίηση 2/3 για εκπαίδευση και 1/3 για έλεγχο
- Τυχαία υποδειγματοληψία
 - Επαναλαμβανόμενο holdout
- Cross validation!!!
 - Χώρισε το σετ δεδομένων σε k μη επικαλυπτόμενα τμήματα
 - k-fold: εκπαίδευσε σε k-1 τμήματα, έλεγξε με το εναπομείναν
- Στρωματοποιημένη δειγματοληψία (Stratified sampling)
 - oversampling vs undersampling
- Bootstrap
 - Δειγματοληψία με αντικατάσταση

Σύγκριση μοντέλων: ROC (Receiver Operating Characteristics)

- Εμφανίστηκαν στα 1950s στο χώρο του σήματος για την ανάλυση θορυβωδών σημάτων
 - Χαρακτηρίζει το συμβιβασμό ανάμεσα σε σωστές ταξινομήσεις (true positives) και λάθος αναφορές για σωστές ταξινομήσεις (false positives)
- Οι ROC καμπύλες αναπαριστούν τα TP (στον y-άξονα) σε σχέση με τα FP (στον x-άξονα)
- Η επίδοση ενός μοντέλου ταξινόμησης αναπαρίσταται ως ένα σημείο στη ROC καμπύλη
 - Αλλάζοντας τα κατώφλια ενός αλγορίθμου, το δείγμα εκπαίδευσης ή τον πίνακα κόστους αλλάζει και η θέση του σημείου

Καμπύλη ROC

- Έστω μονοδιάστατα δεδομένα που ταξινομούνται σε 2 κλάσεις (θετική και αρνητική)
 - Όσα σημεία βρίσκονται στο x > t ταξινομούνται ως θετικά

Καμπύλη ROC

(TP,FP):

- (0,0): δηλώνει ότι όλα ταξινομούνται στην αρνητική κλάση
- (1,1): δηλώνει ότι όλα ταξινομούνται στη θετική κλάση
- (0,1): ιδανικό
- Κύρια διαγώνιος:
 - Τυχαία ταξινόμηση
- Κάτω από την κύρια διαγώνιο:
 - Οι ταξινομήσεις είναι ανάποδα από την πραγματική κλάση

Χρήση της καμπύλης ROC για σύγκριση μοντέλων

- Κανένα δεν είναι καλύτερο από το άλλο
- •Το M₁ είναι καλύτερο για μικρές τιμές FPR
- •Το M₂ είναι καλύτερο για μεγάλες τιμές FPR
- •Κάτω από την καμπύλη
 - Ιδανικά:
 - Area = 1
 - Τυχαία ταξινόμηση:
 - Area = 0.5

Κατασκευή ROC καμπύλης

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Χρήση ενός ταξινομητή που παράγει posterior πιθανότητα για κάθε στιγμιότυπο P(+|A)
- Ταξινομήστε σε φθίνουσα σειρά τις P(+|A)
- Ξεκινήστε από κάτω
- Εφαρμόστε ένα κατώφλι για κάθε μοναδική τιμή για το P(+|A), ταξινομώντας όλα τα από πάνω στιγμιότυπα ως θετικά.
- Επιλέξτε το επόμενο σημείο και θεωρήστε όλα τα από πάνω του θετικά, και όλα τα από κάτω του αρνητικά
- Υπολογίστε τον αριθμό των ΤΡ, FP,
 ΤΝ, FN σε κάθε κατώφλι:
 - TP rate, TPR = TP/(TP+FN)
 - FP rate, FPR = FP/(FP + TN)

Κατασκευή ROC καμπύλης

	Class	+		+	-	-	-	+	_	+	+	
Threshold >	=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Καμπύλη:

ΤΗΜΜΥ - ΑΠΘ

Έλεγχος σημαντικότητας

- Δεδομένων 2 μοντέλων:
 - Μοντέλο M_1 : accuracy = 85%, έλεγχος σε 30 στιγμιότυπα
 - Μοντέλο Μ₂: accuracy = 75%, έλεγχος σε 5000 στιγμιότυπα
- Είναι το M₁ καλύτερο από το M₂;
 - Πόση εμπιστοσύνη έχουμε στο accuracy των M_1 και M_2 ;
 - Μπορεί η μετρική επίδοσης (accuracy score) να ερμηνευτεί ως τυχαία διακύμανση στο σετ ελέγχου;

Περιθώριο εμπιστοσύνης για το Accuracy

- Η πρόβλεψη μπορεί να θεωρηθεί ως μια δοκιμή Bernoulli
 - Μια δοκιμή Bernoulli έχει 2 πιθανά αποτελέσματα
 - Πιθανά αποτελέσματα για την πρόβλεψη της ταξινόμησης: σωστή ή λάθος
 - Η συλλογή των δοκιμών Bernoulli έχει πολυωνυμική κατανομή:
 - x ~ Bin(N, p), όπου x: αριθμός σωστός προβλέψεων
 - Π.χ.: Στρίψτε ένα κέρμα 50 φορές, πόσες φορές θα φέρει κορώνα?
 Αναμενόμενος αριθμός κορώνα = N×p = 50 × 0.5 = 25
- Άρα η κατανομή του x είναι κανονική με μέση τιμή $N \times p$ και τυπική απόκλιση $N \times p \times (1-p)$.
- Δεδομένου του x (# σωστών προβλέψεων) ή αντίστοιχα, acc=x/N, και N (# στιγμιοτύπων ελέγχου) μπορούμε να προβλέψουμε το p (την πραγματική ακρίβεια του μοντέλου);

Περιθώριο εμπιστοσύνης για το Accuracy

- Για μεγάλα σετ ελέγχου (N > 30),
 - acc έχει κανονική κατανομή με μέση τιμή p και διακύμανση p(1-p)/N, δηλ.

$$P(Z_{\alpha/2} < \frac{acc - p}{\sqrt{p(1-p)/N}} < Z_{1-\alpha/2})$$

$$= 1 - \alpha$$

 Το περιθώριο εμπιστοσύνης για το ρ είναι:

$$p = \frac{2 \times N \times acc + Z_{\alpha/2}^{2} \pm \sqrt{Z_{\alpha/2}^{2} + 4 \times N \times acc - 4 \times N \times acc^{2}}}{2(N + Z_{\alpha/2}^{2})}$$

Περιθώριο εμπιστοσύνης για το Accuracy

- Θεωρήστε ένα μοντέλο με accuracy 80%
 πάνω σε ένα τεστ ελέγχου 100 στιγμιοτύπων
 - N=100, acc = 0.8
 - Έστω 1- α = 0.95 (95% confidence)
 - Από τον πίνακα πιθανοτήτων, Z_{α/2}=1.96

N	50	100	500	1000	5000
p(lower)	0.670	0.711	0.763	0.774	0.789
p(upper)	0.888	0.866	0.833	0.824	0.811

1-α	$Z_{\alpha/2}$
0.99	2.58
0.98	2.33
0.95	1.96
0.90	1.65

Σύγκριση της επίδοσης 2 μοντέλων

- Δεδομένων 2 μοντέλων, M₁ και M₂, ποιο είναι καλύτερο;
 - Το M_1 ελέγχθηκε με το D_1 (μέγεθος= n_1), με ρυθμό σφάλματος* = e_1
 - Το M_2 ελέγχθηκε με το D_2 (μέγεθος= n_2), με ρυθμό σφάλματος = e_2
 - Έστω ότι D₁ και D₂ ανεξάρτητα
 - Εάν τα n₁ και n₂ είναι ικανά μεγάλα, τότε:

$$e_1 \sim N(\mu_1, \sigma_1)$$

 $e_2 \sim N(\mu_2, \sigma_2)$

*Ρυθμός σφάλματος: 1-accuracy

- Προσέγγιση: $\hat{\sigma}_i = \sqrt{\frac{e_i(1-e_i)}{n_i}}$

Σύγκριση της επίδοσης 2 μοντέλων

Έλεγχος εάν η διαφορά είναι στατιστικά σημαντική:

$$d = |e_1 - e_2|$$

- $d \sim N(d_t, \sigma_t)$, όπου d_t η πραγματική διαφορά
- Αφού D_1 και D_2 ανεξάρτητα, οι τυπικές τους αποκλίσεις αθροίζονται: $\sigma_t^2 = \sigma_1^2 + \sigma_2^2 \cong \hat{\sigma}_1^2 + \hat{\sigma}_2^2$ $= \frac{e_1(1-e_1)}{1+e_2(1-e_2)} + \frac{e_2(1-e_2)}{1+e_2(1-e_2)}$

Στο επίπεδο εμπιστοσύνης (1-α),

$$d_{t} = d \pm Z_{\alpha/2} \hat{\sigma}_{t}$$

Παράδειγμα

- Δεδομένα: M_1 : n_1 = 30, e_1 = 0.15 M_2 : n_2 = 5000, e_2 = 0.25
- $d = |e_2 e_1| = 0.1$ (2-sided test)

$$\hat{\sigma}_t = \frac{0.15(1 - 0.15)}{30} + \frac{0.25(1 - 0.25)}{5000} = 0.0043$$

Στο επίπεδο εμπιστοσύνης 95%, Z_{α/2}=1.96

$$d_{t} = 0.100 \pm 1.96 \times \sqrt{0.0043} = 0.100 \pm 0.128$$

=> Το διάστημα περιέχει το 0 => η διαφορά μπορεί να μην είναι στατιστικά σημαντική

Υπερεκπαίδευση (Παράδειγμα)

- 500 κυκλικά και 500 τριγωνικά σημεία.
- Για τα κυκλικά σημεία:
 0.5 ≤ sqrt($x_1^2 + x_2^2$) ≤ 1
- Για τα τριγωνικά σημεία:

$$sqrt(x_1^2+x_2^2) > 0.5 \, \acute{\eta}$$

 $sqrt(x_1^2+x_2^2) < 1$

Υπερεκπαίδευση

- Σφάλμα εκπαίδευσης
- Σφάλμα γενίκευσης

Υπερεκπαίδευση λόγω θορύβου

 Το όριο απόφασης παραμορφώνεται λόγω θορύβου

Υπερεκπαίδευση λόγω ανεπαρκούς αριθμού παραδειγμάτων

- Η έλλειψη σημείων στο κάτω μισό του διαγράμματος δεν επιτρέπει τη σωστή πρόβλεψη στην περιοχή εκείνη
- Ο ανεπαρκής αριθμός δεδομένων εκπαίδευσης οδηγεί το μοντέλο ταξινόμησης
 σε πρόβλεψη με βάση δεδομένα που δεν έχουν συνάφεια με την περιοχή εκείνη

Σχετικά με την υπερεκπαίδευση

- Όταν το μοντέλο είναι πιο πολύπλοκο από όσο χρειάζεται,
 τότε υπάρχει υπερεκπαίδευση.
- Στην περίπτωση αυτή το σφάλμα εκπαίδευσης δεν αποτελεί χρήσιμη μετρική στο πώς ακριβώς θα αποδόσει το μοντέλο σε νέα δεδομένα.
- Ανάγκη για νέες μεθόδους εκτίμησης σφαλμάτων

Occam's Razor

- Δεδομένων δυο μοντέλων με παρόμοια σφάλματα γενίκευσης, προτιμούμε το απλούστερο
- Στα πολύπλοκα μοντέλα υπάρχει μεγάλη πιθανότητα να έχουν υπερεκπαιδευτεί λόγω σφαλμάτων ή θορύβου στα δεδομένα

Σφάλματα Γενίκευσης

- Σφάλμα επαν-αντικατάστασης: σφάλμα στο σετ εκπαίδευσης (Σ e(t))
- Σφάλμα γενίκευσης: σφάλμα στο σετ ελέγχου (Σ e'(t))
- Μέθοδοι υπολογισμού του σφάλματος γενίκευσης (όπου μπορεί να εφαρμοστεί):
 - Αισιόδοξη προσέγγιση: e'(t) = e(t)
 - Απαισιόδοξη προσέγγιση:
 - Για κάθε τερματικό κόμβο: e'(t) = (e(t)+ξ) ξ: ποινή γενίκευσης (έστω 0.5)
 - Το συνολικό σφάλμα: e'(T) = e(T) + N × 0.5 (N: ο αριθμός των τερματικών κόμβων)
 - Π.χ. Για ένα δένδρο με 30 τερματικούς κόμβους και 10 σφάλματα στην εκπαίδευση (σε 1000 σημεία εκπαίδευσης):
 - Σφάλμα εκπαίδευσης= 10/1000 = 1%
 - Σφάλμα γενίκευσης= (10 + 30×0.5)/1000 = 2.5%
 - Ελατωμμένο σφάλμα μείωσης Reduced error pruning (REP):
 - χρησιμοποιεί ένα σετ επικύρωσης για τον υπολογισμό του σφάλματος γενίκευσης

Πηγές

Introduction to Data Mining, Tan, Steinbach, Kumar.