Metagenome Assembled Genome Binning Methods With Short Reads Disproportionately Fail For Plasmids and Genomic Islands

Baofeng Jia^{1†}, Finlay Maguire^{2,3†}, Kristen L. Gray¹, Wing Yin Venus Lau¹, Robert G. Beiko², and Fiona S. L. Brinkman¹

† Authors contributed equally. 1. Department of Molecular Biology and Biochemistry, Simon Fraser University, Canada. 2. Faculty of Computer Science, Dalhousie University, Halifax, Canada. 3. Department of Community Health & Epidemiology, Faculty of Medicine, Dalhousie University

INTRODUCTION

- Metagenomic methods enable the simultaneous characterization of microbial communities without time-consuming and bias-inducing culturing.
- Metagenome-assembled genome (MAG) binning methods aim to reassemble individual genomes from this data.
- Recovery of mobile genetic elements (MGEs), such as plasmids and genomic islands (GIs), by binning has not been well characterized.
- GIs and plasmids have proven particularly difficult to assemble from short-read sequencing data¹.
- Given the association of antimicrobial resistance (AMR) genes and virulence factor (VF) genes with MGEs, studying their transmission is a public-health priority^{2,3}.

Hypothesis:

The variable copy number and sequence composition of MGEs makes them problematic for MAG binning methods and thus will not be correctly recovered.

RESULTS – MAGs Disproportionally Lose MGEs, AMR Genes and Virulence Factors⁴

MAGs Disproportionally Loses MGEs, AMR Genes and Virulence Factors

- A) Chromosomal coverage of most prevalent genome in each bin across tools. 100% indicate complete recovery of that species' genome.
- B) Distribution of bin purity, or number of species present at >5% coverage per bin across tools.
- C) The performance of metagenomic assembly and binning in recovery of plasmid sequences.
- D) The performance of metagenomic assembly and binning in recovery of genomic island sequences.
- E) Percent recovery of AMR genes across assemblers and binners.
- F) Percent of correctly binned AMR genes recovered by genomic context...

METHOD

 Chromosome, GI, and Plasmid recovery Prodigal Resistance Gene Identifier Virulence Factor Database Recovery Accuracy

Schematic of the Evaluation of Metagenome Assembled Genome Binning Methods

SUMMARY & FUTURE DIRECTIONS

- Short-read MAG-binning approaches provide a useful tool to study a bacterial species' core chromosomal elements. However, they have severe limitations in the recovery of MGEs.
- The majority of these MGEs will either fail to be assembled or be incorrectly binned.
- There is a disproportionate loss of key MGEassociated VF and AMR genes in clinically relevant pathogens.
- It is vital we utilize MAGs in conjunction with other methods (e.g. long-read sequencing, read-based sequence homology) before drawing most biological or epidemiological conclusions.

AMRTime: Read-Based AMR Gene Predictor

Recovery Accuracy of AMRTime for Detecting AMR genes in Metagenomic Datasets with Ground Truth Resistomes.

Funding & Acknowledgements

References

- 1. Williams KP. Nucleic Acids Res. 2002;30:866–875. doi: 10.1093/nar
- 2. Ho Sui SJ, et al. PLoS One. 2009;4:e8094. doi: 10.1371/journal.pone.0008094
- 3. Von Wintersdorff CJH, et al. Front Microbiol. 2016;7:173. fmicb.201
- 4. Maguire F. and Jia B. et al. Microb Genom. 2020 Oct; 6(10): mgen000436

