

DATA SCIENCE

MODULO 5

Series de Tiempo I

Series de Tiempo

- Introducir los datos de series temporales, entender el concepto de estacionariedad.
- Presentar modelos simples para datos de series temporales
- Comprender el esquema de validación cruzada a aplicar con datos de series temporales

Seasonal plots

Seasonal subseries plots

Patrones en series de tiempo

- El patrón de tendencia existe cuando a largo plazo hay un Incremento o disminución de los datos.
- El patrón estacional existe cuando una serie es influenciada por factores estacionales (por ejemplo, el trimestre del año, mes o día de la semana).
- Existe un **patrón cíclico** cuando los datos exhiben aumentos y caídas que no son de periodo fijo (duración normalmente de al menos 2 años).

Diferencias entre patrones en series de tiempo

- El patrón estacional tiene longitud constante mientras que el patrón cíclico tiene longitud variable
- La duración media del ciclo es más larga que la duración del patrón estacional.
- La magnitud de ciclo es más variable que la magnitud del patrón estacional
- El tiempo de los picos y valles es predecible con datos estacionales, pero impredecibles a largo plazo en el patrón cíclico.

$$Y_t = f(S_t, T_t, E_t)$$

 $Y_t = data at period t$

 S_t = seasonal component at period t

 $T_t =$ trend component at period t

 E_t = remainder (or irregular or error) component at

period t

Additive decomposition: $Y_t = S_t + T_t + E_t$.

STL decomposition

- Muy versátil y robusto.
- El componente estacional puede cambiar con el tiempo y la tasa de cambio es controlada por el usuario.
- Suavidad de tendencia-ciclo también controlado por el usuario.
- Robusto a los outliers
- Sólo aditivo.

- Las series temporales económicas a menudo son analizadas después de calcular sus logaritmos o las variaciones en sus logaritmos.
- Una razón para ello es que muchas series económicas, tales como el producto interior bruto (PIB), presentan un crecimiento que es aproximadamente exponencial, es decir, a largo plazo la serie tiende a crecer a un determinado porcentaje medio anual; si es así, el logaritmo de la serie crece de forma aproximadamente lineal.

Introducción a los datos de series temporales y correlación serial

- Otra razón es que la desviación típica de muchas series temporales económicas es aproximadamente proporcional a su nivel, es decir, la desviación típica se puede expresar correctamente un porcentaje del nivel de las series; si es así, entonces la desviación típica del logaritmo de la serie es aproximadamente constante.
- En cualquier caso, resulta útil transformar las series para que las variaciones en las series transformadas sean variaciones proporcionales (o porcentuales) de la serie original, y esto se logra tomando el logaritmo de las series.

 Covarianza y correlación: medida medida de la relación lineal entre dos variables (Y e X).

 Autocovarianza y autocorrelación: medida de la relación lineal entre los valores rezagados de una series de tiempo y.

$$c_k = \frac{1}{T} \sum_{t=k+1}^{T} (y_t - \bar{y})(y_{t-k} - \bar{y})$$

ck es la autocovarianza. Si dividimos por la varianza obtenemos las autocorrelaciones.

$$r_k = c_k/c_0$$

 Las autocovarianzas y autocorrelaciones j-ésimas poblacionales del pueden ser estimadas mediante las autocovarianzas y autocorrelaciones j-ésimas muestrales

 r1 indica cómo los valores sucesivos de y se relacionan con cada uno otro

 r2 indica cómo se relacionan los valores de y con dos periodos separados
 el uno del otro

rk es casi lo mismo que la correlación muestral entre yt y yt – k.

 Las autocorrelaciones en los lags 1,2.. forman la función de autocorrelación.

o ACF.

- El gráfico se conoce como correlograma.

Introducción a los datos de series temporales y correlación serial

Introducción a los datos de series temporales y correlación serial

¿Cuál es cual?

Introducción a los datos de series temporales y correlación serial.

- Otros ejemplos de series temporales económicas
 - el tipo de interés de los fondos federales en EE.UU.
 - el tipo de cambio entre el dólar y la libra esterlina
 - el logaritmo del producto interior bruto de Japón
 - la rentabilidad diaria en el índice del mercado de acciones Standard and Poor's 500 (S&P 500).

Introducción a los datos de series temporales y correlación serial.

(c) Logaritmo del PIB de Japón

(b) Tipo de cambio dólar EE.UU./libra esterlina

(d) Variación porcentual de los valores diarios del índice de acciones NYSE Composite

- Algunos métodos simples de forecasting
 - Average

$$\hat{y}_{T+h|T} = \bar{y} = (y_1 + \cdots + y_T)/T$$

Naive

$$\hat{y}_{T+h|T} = y_T$$

Seasonal naive

Forecasts:
$$\hat{y}_{T+h|T} = y_{T+h-km}$$
 where $m =$ seasonal period and $k = \lfloor (h-1)/m \rfloor + 1$.

- Algunos métodos simples de forecasting
 - Drift method

$$\hat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t - y_{t-1})$$
$$= y_T + \frac{h}{T-1} (y_T - y_1).$$

- ¿Qué características nos gustaría ver en los residuos?
- Usemos un modelo ingenuo para el Dow Jones

$$\hat{y}_{t|t-1} = y_{t-1}$$

$$e_t = y_t - y_{t-1}$$

Forecasting

38

$r_1 =$	0.013
$r_2 =$	-0.163
$r_3 =$	0.163
$r_4 =$	-0.259
$r_5 =$	-0.198
$r_6 =$	0.064
$r_7 =$	-0.139
$r_8 =$	-0.032
$r_9 =$	0.199
$r_{10} =$	-0.240

- Suponemos que los residuos son ruido blanco (no correlacionado, media cero, varianza constante).
- Si no lo son, entonces hay información que quede en los residuos que deben usarse en el forecast.
- En el ACF de los residuos de un método de forecast esperamos que estos se vean como ruido blanco.

Residuos Dow Jones

Parecen ruido blanco pero recuerde que ACF es un problema de multiple testing.

Test de Box Pierce

$$Q = T \sum_{k=1}^{h} r_k^2$$

donde h es el máximo rezago considerado y T es el tamaño muestral

Si los datos son ruido blanco entonces Q tiene distribución Chi Cuadrado con (h-K) grados de libertad, donde K es el número de parámetros del modelo. .

Forecast accuracy

$$\begin{aligned} \mathsf{MAE} &= T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| \\ \mathsf{MSE} &= T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2 \quad \mathsf{RMSE} \quad = \sqrt{T^{-1} \sum_{t=1}^{T} (y_t - \hat{y}_{t|t-1})^2} \\ \mathsf{MAPE} &= 100 T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}| / |y_t| \end{aligned}$$

Forecast accuracy

- MAE, MSE, RMSE son todos dependientes de la escala.
- MAPE es scale independent pero sólo es razonable si yt es positivo para todo t y si la serie tiene un cero natural.

Mean Absolute Scaled Error

MASE =
$$T^{-1} \sum_{t=1}^{T} |y_t - \hat{y}_{t|t-1}|/Q$$

Donde Q es una medida de la escala de la serie

Para series no estacionales

En series con

$$Q = (T-1)^{-1} \sum_{t=2}^{T} |y_t - y_{t-1}|$$

$$Q = (T-m)^{-1} \sum_{t=m+1}^{T} |y_t - y_{t-m}|$$

State space perspective

- Observed data: y_1, \ldots, y_T .
- Unobserved state: x₁,...,x_T.

Forecast
$$\hat{y}_{T+h|T} = \mathsf{E}(y_{T+h}|\boldsymbol{x}_T)$$

La varianza del forecast $(Var(y_{T+h}|x_T))$

Un intervalo de predicción o "interval forecast" es un rango de valores para y en T+h que tiene alta probabilidad

Simple Exponential Smoothing

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

$$\ell_{1} = \alpha y_{1} + (1 - \alpha)\ell_{0}$$

$$\ell_{2} = \alpha y_{2} + (1 - \alpha)\ell_{1} = \alpha y_{2} + \alpha(1 - \alpha)y_{1} + (1 - \alpha)^{2}\ell_{0}$$

$$\ell_{3} = \alpha y_{3} + (1 - \alpha)\ell_{2} = \sum_{j=0}^{2} \alpha(1 - \alpha)^{j}y_{3-j} + (1 - \alpha)^{3}\ell_{0}$$

$$\vdots$$

$$\ell_{t} = \sum_{j=0}^{t-1} \alpha(1 - \alpha)^{j}y_{t-j} + (1 - \alpha)^{t}\ell_{0}$$

Simple Exponential Smoothing

Forecast equation

$$\hat{y}_{t+h|t} = \sum_{j=1}^{t} \alpha (1-\alpha)^{t-j} y_j + (1-\alpha)^t \ell_0, \qquad (0 \le \alpha \le 1)$$

Observation	Weights ass $\alpha = 0.2$	igned to obse $lpha=$ 0.4	ervations for: $\alpha = 0.6$	$\alpha = 0.8$
Уt	0.2	0.4	0.6	0.8
y_{t-1}	0.16	0.24	0.24	0.16
y_{t-2}	0.128	0.144	0.096	0.032
y_{t-3}	0.1024	0.0864	0.0384	0.0064
y_{t-4}	$(0.2)(0.8)^4$	$(0.4)(0.6)^4$	$(0.6)(0.4)^4$	$(0.8)(0.2)^4$
<i>y</i> _{t−5}	$(0.2)(0.8)^5$	$(0.4)(0.6)^5$	$(0.6)(0.4)^5$	$(0.8)(0.2)^5$

Component form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation $\ell_t = \alpha y_t + (1-\alpha)\ell_{t-1}$

State Space form

Observation equation
$$y_t = \ell_{t-1} + e_t$$

State equation $\ell_t = \ell_{t-1} + \alpha e_t$

$$e_t = y_t - \ell_{t-1} = y_t - \hat{y}_{t|t-1}$$

Es el within sample one step forecast error

es el estado inobservable ℓ_{τ}

Necesitamos elegir valores par y

Busquemos esos valores minimizando MSE

$$\mathsf{MSE} = \frac{1}{T} \sum_{t=1}^T (y_t - \hat{y}_{t|t-1})^2 = \frac{1}{T} \sum_{t=1}^T e_t^2.$$

 A diferencia de regresión no hay solución de forma cerrada usamos optimización numérica.

Multistep forecast

$$\hat{y}_{T+h|T} = \hat{y}_{T+1|T}, \qquad h = 2, 3, \dots$$

Una función de pronóstico "plana".

 Recuerde, un pronóstico es una media estimada de un valor futuro así que sin tendencia, sin estacionalidad, y sin otros patrones los pronósticos son constantes.

- Holt extiende SES para forecasting de series con tendencias.
- Dos parámetros de smoothing alpha y beta, ambos entre 0 y 1.

$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1})$$

$$b_t = \beta^*(\ell_t - \ell_{t-1}) + (1 - \beta^*)b_{t-1}$$

El componente lt estima el nivel de la serie en el momento t

El componente bt estima la pendiente de la serie en el momento t

Holt's linear trend

Component form

Forecast
$$\hat{y}_{t+h|t} = \ell_t + hb_t$$

Level $\ell_t = \alpha y_t + (\mathbf{1} - \alpha)(\ell_{t-1} + b_{t-1})$
Trend $b_t = \beta^*(\ell_t - \ell_{t-1}) + (\mathbf{1} - \beta^*)b_{t-1}$

State Space form

Observation equation
$$y_t = \ell_{t-1} + b_{t-1} + e_t$$
 State equations $\ell_t = \ell_{t-1} + b_{t-1} + \alpha e_t$ $b_t = b_{t-1} + \beta e_t$

Holt's linear trend

$$eta = lpha eta^*$$
 $e_t = y_t - (\ell_{t-1} + b_{t-1}) = y_t - \hat{y}_{t|t-1}$

Necesito estimar $\alpha, \beta, \ell_0, b_0$

Multiplicative versión del método de Holt

- State Space form

Forecast equation
$$\hat{y}_{t+h|t} = \ell_t b_t^h$$

Observation equation $y_t = (\ell_{t-1} b_{t-1}) + e_t$
State equations $\ell_t = \ell_{t-1} b_{t-1} + \alpha e_t$
 $b_t = b_{t-1} + \beta e_t/\ell_{t-1}$

Multiplicative versión del método de Holt

- Gardner y McKenzie (1985) sugirieron que las tendencias deben ser "amortiguadas" para ser más conservadoras para horizontes de pronóstico más largos.
- Parámetro de amortiguamien $0 < \phi < 1$.

State Space form

Forecast equation
$$ilde{y}_{t+h|t} = \ell_t + (\phi + \phi^2 + \cdots + \phi^h) b_t$$
Observation equation $y_t = \ell_{t-1} + \phi b_{t-1} + e_t$
State equations $\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha e_t$
 $\ell_t = \ell_{t-1} + \beta e_t$

- Si $\frac{1}{d} = 1$ idéntico al Holt's linear trend
- Short run forecasts con tendencia, a largo plazo constantes

$$h \to \infty$$
, $\hat{y}_{T+h|T} \to \ell_T + \phi b_T/(1-\phi)$.

Holt-Winter additive method

- Holt y Winters extendieron el método de Holt para capturar estacionalidad
- Tres ecuaciones de suavizado: una para el nivel, una por tendencia, y una por estacionalidad.
- Parámetros : m es el período de la estacionalidad

$$0 \le \alpha \le 1$$
, $0 \le \beta^* \le 1$, $0 \le \gamma \le 1 - \alpha$

Holt-Winter additive method

- State Space form

$$\begin{split} \hat{y}_{t+h|t} &= \ell_t + hb_t + s_{t-m+h_m^+} \qquad h_m^+ = \lfloor (h-1) \mod m \rfloor + 1 \\ y_t &= \ell_{t-1} + b_{t-1} + s_{t-m} + e_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha e_t \\ b_t &= b_{t-1} + \beta e_t \\ s_t &= s_{t-m} + \gamma e_t. \end{split}$$

Holt-Winter damped method

State Space form

$$y_{t} = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + e_{t}$$

$$\ell_{t} = \ell_{t-1} + \phi b_{t-1} + \alpha e_{t} / s_{t-m}$$

$$b_{t} = \phi b_{t-1} + \beta e_{t} / s_{t-m}$$

$$s_{t} = s_{t-m} + \gamma e_{t} / (\ell_{t-1} + \phi b_{t-1}).$$

66

Criterio de Información de Akaike

$$AIC = -2 \log(Likelihood) + 2p$$

donde p es el número de parámetros estimados

Buscamos minimizar el AIC.

Criterio de Información de Akaike corregido por small sample bias

$$AIC_C = AIC + \frac{2(p+1)(p+2)}{n-p}$$

donde p es el número de parámetros estimados

Buscamos minimizar el AIC.

Criterio de Información Bayesiano (Schwartz)

$$BIC = AIC + p(\log(n) - 2)$$

- Aplique cada modelo que sea apropiado para el datos. Optimizar parámetros y valores iniciales utilizando MLE (o algún otro criterio).
- Seleccione el mejor método utilizando AICc:
- Producir pronósticos utilizando el mejor método.
- Obtener intervalos de predicción utilizando el modelo de espacio de estado subyacente.

Validación del modelo

Cross Validation

Cross Validation

Cross Validation

Anexo: más sobre smoothing

Taylor multiplicative dampening

$$\hat{y}_{t+h|t} = \ell_t b_t^{(\phi+\phi^2+\cdots+\phi^h)}$$

$$\ell_t = \alpha y_t + (1-\alpha)(\ell_{t-1}b_{t-1}^{\phi})$$

$$b_t = \beta^*(\ell_t/\ell_{t-1}) + (1-\beta^*)b_{t-1}^{\phi}$$

- Si $\overline{\phi = 1}$ exponential trend method
- Los forecast convergen $a_{\ell_T + b_T^{\phi/(1-\phi)}}$ cuando h se hace arbitrariamente grande.

Holt-Winter additive method

- Métodos de suavizado exponencial.
 - Algoritmos que devuelven las previsiones puntuales.
- Innovations State space models con innovaciones
 - Genera los mismos pronósticos puntuales pero también puede generar intervalos de forecast.
- Un proceso estocástico generador de datos que puede generar una distribución completa de forecasts.
- Permite una selección de modelo adecuada.

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
$\mathbf{A}_{\mathbf{d}}$	(Additive damped)	A _d ,N	A_d , A	A_d , M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M_d , M

General notation ETS: ExponenTial Smoothing

Error Trend Seasonal

		Seasonal Component		
Trend		N	Α	М
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M _d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

N,N: Simple exponential smoothing

A,N: Holt's linear method

A_d,N: Additive damped trend method

M,N: Exponential trend method

M_d,N: Multiplicative damped trend method

A,A: Additive Holt-Winters' method

A,M: Multiplicative Holt-Winters' method

Holt-Winter additive method

- Todos los modelos ETS pueden ser escritos en innovations state space form.
- Las versiones aditivas y multiplicativas dan los mismos point forecasts pero diferentes intervalos de predicción.

Observation equation
$$y_t = \ell_{t-1} + \varepsilon_t,$$
 State equation $\ell_t = \ell_{t-1} + \alpha \varepsilon_t$

$$e_t = y_t - \hat{y}_{t|t-1} = \varepsilon_t$$

$$\varepsilon_t \sim \text{NID}(0, \sigma^2)$$

Innovations State Space models

$$\mathbf{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$$
 $\varepsilon_t \stackrel{\mathsf{iid}}{\sim} \mathsf{N}(\mathsf{0}, \sigma^2)$

$$y_{t} = \underbrace{h(\mathbf{x}_{t-1})}_{\mu_{t}} + \underbrace{k(\mathbf{x}_{t-1})\varepsilon_{t}}_{e_{t}}$$
$$\mathbf{x}_{t} = f(\mathbf{x}_{t-1}) + g(\mathbf{x}_{t-1})\varepsilon_{t}$$

Innovations State Space models

Errores aditivos

$$k(x) = 1.$$
 $y_t = \mu_t + \varepsilon_t$

Errores multiplicativos

$$k(\mathbf{x}_{t-1}) = \mu_t$$
. $\mathbf{y}_t = \mu_t(\mathbf{1} + \varepsilon_t)$. $\varepsilon_t = (\mathbf{y}_t - \mu_t)/\mu_t$ is relative error.