Particle spectrograph

Wave operator and propagator

SO(3) irreps	Fundamental fields	Multiplicities
$\tau_{0^{+}}^{\#2} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == 0$	1
$\frac{\tau_{0^{+}}^{\#1} - 2 i k \sigma_{0^{+}}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} = \partial_{\beta}\partial^{\beta}\tau^{\alpha}_{\alpha} + 2\partial_{\chi}\partial^{\chi}\partial_{\beta}\sigma^{\alpha\beta}_{\alpha}$	1
$\frac{\tau_{1}^{\#2\alpha} + 2 ik\sigma_{1}^{\#2\alpha} == 0}{$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} = \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta} + 2\partial_{\delta}\partial^{\delta}\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi}$	3
$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	3
$\frac{\tau_{1+}^{\#1}\alpha\beta + i k \sigma_{1+}^{\#2}\alpha\beta}{== 0}$	$\partial_{\chi}\partial^{\alpha}\tau^{\beta\chi} + \partial_{\chi}\partial^{\beta}\tau^{\chi\alpha} + \partial_{\chi}\partial^{\chi}\tau^{\alpha\beta} +$	3
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi}\tau^{\beta\alpha} + 2\partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\tau_{2+}^{\#1\alpha\beta} - 2ik\sigma_{2+}^{\#1\alpha\beta} = 0$	$0 - i \left(4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \tau^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} \tau^{\chi} \right)$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} \tau^{\chi \beta} -$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} - 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$4 i k^{\chi} \partial_{\epsilon} \partial_{\chi} \partial^{\beta} \partial^{\alpha} \sigma^{\delta \epsilon}_{\delta} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} -$	
	$6 i k^{\chi} \partial_{\epsilon} \partial_{\delta} \partial_{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\alpha \delta \beta} +$	
	$6 i k^{\chi} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \sigma^{\beta \delta \alpha} -$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \tau^{\chi}_{\chi} -$	
	$4 i \eta^{\alpha\beta} k^{X} \partial_{\phi} \partial^{\phi} \partial_{\epsilon} \partial_{X} \sigma^{\delta\epsilon} \partial_{\delta}) == 0$	
Total constraints/ga	uge generators:	16

•	$\sigma_{1}^{\#1}{}_{\!$	$\sigma_{1}^{\#2}{}_{\alpha\beta}$	${\mathfrak r}_1^{\#1}$	$\sigma_{1}^{\#1}{}_{\alpha}$	$\sigma_{1}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1}^{\#2}{}_{\alpha}$
$r_{1}^{#1} + \alpha \beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
$r_1^{#2} + \alpha \beta$	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{-2k^2(2r_1+r_5)+t_1}{(1+k^2)^2t_1^2}$	$\frac{-2ik^3(2r_1+r_5)+ikt_1}{(1+k^2)^2t_1^2}$	0	0	0	0
${r_{1}^{\#1}} + ^{\alpha\beta}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{i(2k^3(2r_1+r_5)-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4(2r_1+r_5)+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#_{1}} +^{lpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$\frac{2ik}{t_1 + 2k^2t_1}$
$\sigma_1^{\#2} +^{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2 k^2 (r_1 + r_5) + t_1}{(t_1 + 2 k^2 t_1)^2}$	0	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$
$\tau_1^{\#_1} + ^{\alpha}$	0	0	0	0	0	0	0
$ au_1^{\#2} +^{lpha}$	0	0	0	$-\frac{2ik}{t_1+2k^2t_1}$	$\frac{i\sqrt{2} k(2k^2(r_1+r_5)-t_1)}{(t_1+2k^2t_1)^2}$	0	$\frac{-4 k^4 (r_1 + r_5) + 2 k^2 t_1}{(t_1 + 2 k^2 t_1)^2}$
uadra	itic (free	Quadratic (free) action					
== [[$\int \int (f^{\alpha\beta} t_c$	$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$				 I	$\dagger^{\alpha\beta}$
		$\frac{1}{2}t_1(2\mathcal{A}^{\alpha\prime})$	$(\alpha \mathcal{A}_{\alpha}^{\theta} - 4 \mathcal{A}_{\alpha}^{\theta} \partial_{\beta} f^{\alpha \prime} + 4 \mathcal{A}_{\beta}^{\theta} \partial^{\prime} f^{\alpha} - 6 \partial^{\prime} f^{\alpha} \partial^{\prime} f^$	$^{\prime\prime}$ + 4 $^{\prime\prime}$ $^{\prime\prime}$	$\partial' f^{\alpha}_{\alpha}$		$\sigma_{2^{+}\alpha}^{\#1}$ 2 $(1+2k^{2})$ 2 i $\sqrt{2}$ $(1+2k^{2})$ 0

	$+^{\alpha\beta}$ $+^{\alpha\beta}$ $+^{\alpha\beta\chi}$	$\sigma_{2}^{\#1}$ $\frac{2}{(1+2k^{2})^{2}}$ $\frac{2i\sqrt{3}}{(1+2k^{2})^{2}}$ 0	$\frac{2^{k}}{2^{2}}$	$ \tau_{2}^{\#1} \alpha_{1} $ $ \frac{2 i \sqrt{2}}{(1+2 k^{2})^{2}} $ $ \frac{4 k^{2}}{(1+2 k^{2})^{2}} $ $ 0 $	2 t ₁	$ \begin{array}{c} \sigma_2^{\#1} \alpha \beta \chi \\ 0 \\ 0 \\ \frac{2}{k^2 r_1 + t_1} \end{array} $	$\mathcal{R}_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#1}$ $f_{0^{+}}^{\#2}$ $\mathcal{R}_{0^{-}}^{\#1}$	+ - i	$\mathcal{A}_{0}^{#1}$ $-t_{1}$ $\sqrt{2} kt$ 0 0	$i\sqrt{2}$	$\frac{t^{*}_{0}^{+}}{2} kt_{1}$ $t^{*}_{0}^{+}$ $t^{*}_{0}^{+}$ $t^{*}_{0}^{+}$ $t^{*}_{0}^{+}$ $t^{*}_{0}^{+}$ $t^{*}_{0}^{+}$	f ₀ ^{#2} 0 0 0 0	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma_{0}^{\#1}$	- (1+	$\sigma_0^{\#1} + \frac{1}{(-2k^2)^2 t}$ $i \sqrt{2} k$ $-2k^2)^2 t$	$\begin{array}{c c} - & \hline \\ t_1 & \hline \\ - & - \\ t_1 & \hline \end{array}$	$\tau_{0+}^{\#1}$ $i \sqrt{2} k$ $+2 k^{2})^{2} t$ $2 k^{2}$ $+2 k^{2})^{2}$	t ₁
			θ'											$ au_{0^{+}}^{#2}$ $\sigma_{0^{-}}^{#1}$		0		0	
		, م	$\int_{\alpha}^{\theta} -2 \partial_{\alpha} f$	+ 10"		$\alpha^{-}(\partial_{\alpha}\mathcal{A}^{\alpha\prime\theta}-2\partial^{\theta}\mathcal{A}^{\alpha\prime}_{\ \alpha})$	'x dit							$f_1^{\#2}$	0	0	0	$\bar{l} k t_1$	
		, , , , , , , , , , , , , , , , , , ,	$f^{\alpha}_{\alpha}\partial_{\theta}f$	$f^{\alpha \beta f}$	$\alpha \beta \theta^{-}$	$(\alpha'^{\theta}-2$	zdyd							$\alpha f_{1^-}^{\#1} \alpha$	0	0	0	0	
		+ 4 B	+40'	, or r , +20	£'0+3	$-(\partial_{lpha}\mathcal{F})$	1, z]ď							$\mathcal{A}_{1}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	
		$_{\alpha}$ $\mathcal{A}_{\beta}^{\theta}$ -4 $\mathcal{A}_{\alpha}^{\theta}$ $\partial_{\beta}f^{\alpha\prime}$ +4 $\mathcal{A}_{\beta}^{\theta}$ $\partial_{\beta}f^{\alpha}$	$2\partial_i f^{\theta} \partial^j f^{\alpha} - 2\partial_i f^{\alpha i} \partial_{\theta} f_{\alpha}^{\theta} + 4\partial^j f^{\alpha} \partial_{\theta} f_{i}^{\theta} - 2\partial_{\alpha} f_{i\theta}$	$\partial_{z}f_{z} - \partial_{\alpha}f_{\theta_{I}}\partial_{z}f_{z} + \partial_{z}f_{\alpha\theta}\partial_{z}f_{z} + \partial_{\theta}f_{\alpha_{I}}\partial_{z}f_{z} + \partial_{\theta}f_{\alpha_{I}}\partial_{z}f_{z} + \partial_{\theta}f_{\alpha_{I}}\partial_{z}f_{z} + \partial_{\theta}f_{\alpha_{I}}\partial_{z}f_{\alpha$	$\frac{2}{3}r_1(2\partial_{\beta}\mathcal{A}_{\alpha\prime\theta}-\partial_{\beta}\mathcal{A}_{\alpha\theta\prime}+4\partial_{\beta}\mathcal{A}_{\prime\theta\alpha}+\partial_{\prime}\mathcal{A}_{\alpha\beta\theta}-$	$\partial_{ heta}\mathcal{A}_{lphaeta_{l}}$ - $\partial_{ heta}\mathcal{A}_{lpha_{l}eta_{l}}$) $\partial^{ heta}\mathcal{A}^{\mu ho_{l}}$ + r_{5} $(\partial_{l}\mathcal{A}_{eta_{l}}^{\ \ \ \ \ \ \ \ }$ $\partial^{ heta}\mathcal{A}_{lpha_{l}}^{\ \ \ \ \ \ \ \ \ \ \ \ }$ $\partial_{ heta}\mathcal{A}_{lpha_{l}}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$(\partial_{\kappa}\mathcal{A}_{,\;\;\theta}^{\;\;\kappa}-\partial_{\kappa}\mathcal{A}_{\theta\;\;,}^{\;\;\kappa})))[t,\;\kappa,\;y,\;z]dzdydxdt$							${\mathcal A}_{1^{\bar{-}}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 (r_1 + r_5) - \frac{t_1}{2}$	+1
	+	$\mathcal{A}^{\theta}_{,\theta}$	$\theta \partial' f^{\alpha}$	$-a_{\alpha f}$	$\mathcal{E}_{eta} e^{- heta_{l}}$	$\beta_{\beta} = \partial_{\theta} \beta_{\beta}$	A, B-0,							$f_1^{\#1}$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	
_	$^{\iota eta \chi} \; \sigma_{lpha eta \chi}$	$\frac{1}{2}t_1(2\mathcal{A}^{\alpha\prime}_{\alpha})$	20,5 ⁶	$\frac{\partial f}{\partial \theta f_{I\alpha}}$	$(2\partial_{eta}\mathcal{H}_{lpha}$	$\partial_{ heta}\mathcal{R}_{lpha f}$	$(\partial_{\kappa}\mathcal{J})$	${\mathscr A}_{2^{\bar{-}}}^{\#1}\alpha\beta\chi$	0	0	$k^2 r_1 + \frac{t_1}{2}$			${\mathscr A}_1^{\#_2^2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	
Quadratic (free) action	$S == \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \mathcal{A}^{\alpha\beta\chi} \sigma_{\alpha\beta\chi} +$	$\frac{1}{2}t_1$			$\frac{2}{3}r_1$	r ₅ (0		$\mathcal{A}_{2}^{\#1}$ $f_{2}^{\#1}$ 3	$\frac{t_1}{2} - \frac{i k t_1}{\sqrt{2}}$	$\frac{i k t_1}{\sqrt{2}} \qquad k^2 t_1$	0 0			${\mathscr A}_1^{\#1}_{+\alpha\beta}$	$q_1^{+1} + \alpha \beta k^2 (2 r_1 + r_5) - \frac{t_1}{2}$	$-\frac{t_1}{\sqrt{2}}$	$\frac{ikt_1}{\sqrt{2}}$	0	
Quadra	S == [[$A_{2}^{\#1} + \alpha \beta$	$\epsilon_2^{\#1} + \alpha \beta$	$_{2}^{*1}+^{\alphaeta\chi}$				${\mathfrak{l}}_1^{\#1} + {\mathfrak{a}}_{\beta}$	$4_1^{#2} + \alpha \beta$	$f_1^{#1} + \alpha \beta$	$\mathcal{A}_{1}^{\#1}\dagger^{lpha}$	

0

0

 $\frac{t_1}{\sqrt{2}}$ 0 $-\vec{l} k t_1$

0

0

0

0

 $\mathcal{A}_{1}^{\#2} \dagger^{\alpha}$

 $f_1^{#1} + \alpha \beta$

 $\mathcal{A}_{1}^{\#1} \dagger^{\alpha}$

0 0

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_1 < 0 \&\& t_1 > 0$