## Simple Production System

- Handles MTS and (with FGI = 0) service and MTO
- Producer makes two decisions:
  - 1. Production rate
  - 2. Maximum finished goods inventory (FGI) level
- Control logic for producer:
  - If customer order is waiting, produce;
    else, if FGI level < max level, produce;</li>
    otherwise, shutdown production.
- Customer fulfilment process:
  - If FGI level > 0, fulfill from FGI;
    else, wait for order to be produced
    (getting a discount in price based on wait time)

## **Production System Design Model**

$$\max_{r_e,q_{FG}^{\max}} TP = (p-c) \left[ 1 - \pi_0 + \pi_0 \left( 1 - gt_{CT} \right) \right] r_d - (k+c)hq_{FG} - kr_e \right]$$
 where 
$$r_e = \text{capacity of production system}$$
 where 
$$r_e = \text{capacity of production system}$$
 
$$q_{FG}^{\max} = \text{maximum FGI held}$$
 
$$p = \text{unit sales price}$$
 
$$c = \text{unit operating cost}$$
 
$$\pi_0(r_e, q_{FG}^{\max}) = \text{probability out of (FGI) stock}$$
 
$$g = \text{delay discount factor}$$
 
$$t_{CT}(r_e) = \text{cycle time of production system}$$
 
$$r_d = \text{departure rate}$$
 
$$k = \text{capital cost per unit of capacity}$$
 
$$h = \text{inventory carrying rate}$$
 
$$q_{FG}(r_e, q_{FG}^{\max}) = \text{average FGI level}$$

## **Poisson FG Inventory Model**

- Finite birth-death process
  - production = birth
  - demand = death
  - birth (production) > death (demand)
- Poisson demand and production

$$\pi_0(r_e, q_{FG}^{\max}) = \frac{1 - \frac{r_e}{r_d}}{1 - \left(\frac{r_e}{r_d}\right)^{q_{FG}^{\max} + 1}}$$

$$\pi_n = \pi_0 \left(\frac{r_e}{r_d}\right)^n$$
, prob.  $n$  units FGI

$$q_{FG}(r_e, q_{FG}^{\text{max}}) = \sum_{i=1}^{q_{FG}^{\text{max}}} i \, \pi_i = \pi_0 \sum_{i=1}^{q_{FG}^{\text{max}}} i \left(\frac{r_e}{r_d}\right)^i$$



## Single-Machine Poisson Model

• Note: all costs p, c, and k are independent of  $r_d$  and  $r_e$ 

$$\max_{r_e, q_{FG}^{\max}} TP = (p - c) [1 - \pi_0 + \pi_0 (1 - gt_{CT})] r_d - (k + c) h q_{FG} - k r_e$$

where 
$$\pi_0(r_e, q_{FG}^{\text{max}}) = \frac{1 - \frac{r_e}{r_d}}{1 - \left(\frac{r_e}{r_d}\right)^{q_{FG}^{\text{max}} + 1}}, \quad [0, 1]$$

$$t_{CT}(r_e) = \left(\frac{r_a}{r_e - r_a}\right) \left(\frac{1}{r_e}\right) + \left(\frac{1}{r_e}\right)$$

$$q_{FG}(r_e, q_{FG}^{\max}) = \pi_0 \sum_{i=1}^{q_{FG}^{\max}} i \left(\frac{r_e}{r_d}\right)^i$$

• Since  $r_e > r_a$  and assuming  $r_a = r_d$ ,  $k r_e > k r_d$  in  $TP \implies TP_{UB} = (p - c - k) r_d$ 

# **Example of Model**

Both production rate and max FGI can be optimized

|                           |                                    | Base     | Opt FGI  | Opt Cap  | Opt      |
|---------------------------|------------------------------------|----------|----------|----------|----------|
| Unit Sales Price          | ( p, \$/q)                         | 70       | 70       | 70       | 70       |
| Unit Operating Cost       | ( c, \$/q)                         | 50       | 50       | 50       | 50       |
| Unit Capital Cost         | ( k, \$/q)                         | 1        | 1        | 1        | 1        |
| Discount Factor           | (g)                                | 0.2      | 0.2      | 0.2      | 0.2      |
| Inventory Carrying Rate   | ( h )                              | 0.01     | 0.01     | 0.01     | 0.01     |
| Demand Rate               | $(r_f, q/hr)$                      | 10       | 10       | 10       | 10       |
| Effective Production Rate | ( $r_{\rm e}$ , q/hr)              | 15       | 15       | 10.7825  | 12.0739  |
| Maximum FGI               | ( q <sup>max</sup> <sub>FG</sub> ) | 20       | 3        | 20       | 6        |
| Probability Out of FGI    | $(\pi_0)$                          | 0.0001   | 0.123077 | 0.020244 | 0.075675 |
| Cycle Time                | ( t ct)                            | 0.2      | 0.2      | 1.277955 | 0.482183 |
| Average FGI Level         | ( q <sub>FG</sub> )                | 18.00421 | 1.984615 | 12.65341 | 3.732418 |
| Total Profit              | ( TP, \$)                          | 175.8171 | 183.0032 | 181.7294 | 184.563  |
| Upper Bound on TP         | ( TP <sub>UB</sub> , \$)           | 190      | 190      | 190      | 190      |
| Utilization               | ( u )                              | 0.666667 | 0.666667 | 0.927429 | 0.828233 |
| Throughput                | $(r_d, q/hr)$                      | 10       | 10       | 10       | 10       |
| WIP                       | ( q <sub>WIP</sub> )               | 2        | 2        | 12.77955 | 4.821833 |

## **Example: Impact of Buffering Cost**

|                           |                                | Buffering Cost: High/Low Capacity-Time-Inventory $(k,g,h)$ |          |          |          |          |          |          |          |  |
|---------------------------|--------------------------------|------------------------------------------------------------|----------|----------|----------|----------|----------|----------|----------|--|
|                           |                                | LLL                                                        | LLH      | LHL      | LHH      | HLL      | HLH      | HHL      | ННН      |  |
| Unit Sales Price          | (p, \$/q)                      | 70                                                         | 70       | 70       | 70       | 70       | 70       | 70       | 70       |  |
| Unit Operating Cost       | ( c, \$/q)                     | 50                                                         | 50       | 50       | 50       | 50       | 50       | 50       | 50       |  |
| Unit Capital Cost         | ( k, \$/q)                     | 1                                                          | 1        | 1        | 1        | 5        | 5        | 5        | 5        |  |
| Discount Factor           | (g)                            | 0.01                                                       | 0.01     | 0.7      | 0.7      | 0.01     | 0.01     | 0.7      | 0.7      |  |
| Inventory Carrying Rate   | (h)                            | 0.00015                                                    | 0.3      | 0.00015  | 0.3      | 0.00015  | 0.3      | 0.00015  | 0.3      |  |
| Demand Rate               | ( <i>r<sub>a</sub></i> , q/hr) | 10                                                         | 10       | 10       | 10       | 10       | 10       | 10       | 10       |  |
| Effective Production Rate | ( $r_e$ , q/hr)                | 10.1896                                                    | 11.4127  | 10.3923  | 19.0637  | 10.062   | 10.629   | 10.0377  | 13.0747  |  |
| Maximum FG Inventory      | $(q^{max}_{FG})$               | 44                                                         | 0        | 97       | 1        | 81       | 0        | 201      | 2        |  |
| Probability Out of FGI    | (π <sub>0</sub> )              | 0.014272                                                   | 1        | 0.000925 | 0.344072 | 0.009394 | 1        | 0.003311 | 0.248945 |  |
| Cycle Time                | ( t ct)                        | 5.274262                                                   | 0.707864 | 2.54907  | 0.11033  | 16.12903 | 1.589825 | 26.5252  | 0.325235 |  |
| Average FGI Level         | ( q <sub>FG</sub> )            | 25.13087                                                   | 0        | 73.81924 | 0.655928 | 43.94809 | 0        | 113.1733 | 1.176621 |  |
| Total Profit              | ( TP, \$)                      | 189.4746                                                   | 187.1695 | 188.8777 | 162.5376 | 149.0792 | 143.6847 | 148.3004 | 100.8451 |  |
| Upper Bound on TP         | ( TP <sub>UB</sub> , \$)       | 190                                                        | 190      | 190      | 190      | 150      | 150      | 150      | 150      |  |
| Utilization               | ( u )                          | 0.981393                                                   | 0.876217 | 0.962251 | 0.524557 | 0.993838 | 0.940822 | 0.996244 | 0.764836 |  |

- Both  $r_e$  and  $q^{\max}_{FG}$  selected to maximize TP
- $q^{\max}_{FG}$  restricted to non-negative integers

### **Inventory Carrying Rate**

- Rate (h) = sum of interest + warehousing + obsolescence rate
- Interest: 5% per Total U.S. Logistics Costs
- Warehousing: 6% per Total U.S. Logistics Costs
- Obsolescence: default rate  $h_{\rm annual} = 0.3 \Rightarrow h_{\rm obs} \approx 0.2$ 
  - Low FGI cost (hr):  $h = h_{annual}/H = 0.3/2000 = 0.00015$  (H = oper. hr/yr)
  - High FGI cost (hr):  $h = h_{obs}$ , can ignore interest & warehousing
  - Estimate  $h_{\text{obs}}$  using "percent-reduction interval" method: given time  $t_h$  when product loses  $x_h$ -percent of its original value v, find h ( $h_{\text{obs}} \approx h$ )

$$ht_h v = x_h v \Rightarrow ht_h = x_h \Rightarrow ht_h = \frac{x_h}{t_h}, \quad \text{and} \quad t_h = \frac{x_h}{h}$$

– Example: If a product loses 80% of its value after 2 hours 40 minutes:

$$t_h = 2 + \frac{40}{60} = 2.67 \text{ hr} \Rightarrow h = \frac{x_h}{t_h} = \frac{0.8}{2.67} = 0.3$$

- Important:  $t_h$  should be in same time units as  $t_{CT}$ 

#### **Extensions**

- Extensions to the basic model allow it to handle more realistic production scenarios:
  - Multiple identical machines
  - Non-Poisson demand and production
  - Serial production lines