A Tree Sampler for Bounded Context-Free Languages

Anonymous Author(s)

Abstract

The class of bounded context-free languages (BCFLs) consists of the subset of context-free languages which are finite. We provide a novel algorithm for sampling trees in BCFLs with and without replacement. Once the data structure is constructed, sampling trees is a straightforward matter of sampling integers uniformly without a replacement from a finite range. We demonstrate the utility of this technique on a dataset of Python statements.

1 Introduction

Recall that a CFG is a quadruple consisting of terminals (Σ) , nonterminals (V), productions $(P: V \to (V \mid \Sigma)^*)$, and a start symbol, (S). It is a well-known fact that every CFG is reducible to *Chomsky Normal Form*, $P': V \to (V^2 \mid \Sigma)$, in which every production takes one of two forms, either $w \to xz$, or $w \to t$, where w, x, z: V and $t: \Sigma$. For example, the CFG, $P:=\{S \to SS \mid (S) \mid ()\}$, corresponds to the CNF:

$$P' = \left\{ \; S \rightarrow QR \; | \; SS \; | \; LR, \quad L \rightarrow (, \quad R \rightarrow), \quad Q \rightarrow LS \; \right\}$$

Given a CFG, $\mathcal{G}': \langle \Sigma, V, P, S \rangle$ in CNF, we can construct a recognizer $R: \mathcal{G}' \to \Sigma^n \to \mathbb{B}$ for strings $\sigma: \Sigma^n$ as follows. Let 2^V be our domain, 0 be \emptyset , \oplus be \cup , and \otimes be defined as:

$$X \otimes Z := \left\{ w \mid \langle x, z \rangle \in X \times Z, (w \to xz) \in P \right\}$$
 (1)

If we define $\hat{\sigma}_r := \{ w \mid (w \to \sigma_r) \in P \}$, then initialize $M^0_{r+1=c}(\mathcal{G}', e) := \hat{\sigma}_r$ and solve for the fixpoint $M_\infty = M + M^2$,

we obtain the recognizer, $R(\mathcal{G}', \sigma) := S \in \Lambda_{\sigma}^*$? $\Leftrightarrow \sigma \in \mathcal{L}(\mathcal{G})$? Full details of the bisimilarity between parsing and matrix multiplication can be found in Valiant [4] and Lee [1], who shows its time complexity to be $\mathcal{O}(n^{\omega})$ where ω is the least matrix multiplication upper bound (currently, $\omega < 2.77$).

2 Method

We define the porous completion problem as follows:

Definition 2.1 (Completion). Let $\underline{\Sigma} := \Sigma \cup \{_\}$, where $\underline{}$ represents a hole. We denote $\underline{} : \Sigma^n \times \underline{\Sigma}^n$ as the relation $\{\langle \sigma', \sigma \rangle \mid \sigma_i : \Sigma \implies \sigma'_i = \sigma_i \}$ and the set $\{\sigma' : \Sigma^+ \mid \sigma' \sqsubseteq \sigma \}$ as $H(\sigma)$. Given $\sigma : \Sigma^+$ we want to sample $\sigma' \sim H(\sigma) \cap \ell$.

 $H(\sigma) \cap \ell$ is often a large-cardinality set, so we want a procedure which samples uniformly without replacement from the set, without enumerating the whole set and shuffling it.

We define an algebraic data type $\mathbb{T}_3 = (V \cup \Sigma) \to \mathbb{T}_2$ where $\mathbb{T}_2 = (V \cup \Sigma) \times (\mathbb{N} \to \mathbb{T}_2 \times \mathbb{T}_2)^1$. Morally, we can think of \mathbb{T}_2 as an implicit set of possible trees sharing the same root, and \mathbb{T}_3 as a dictionary of possible \mathbb{T}_2 values indexed by possible roots, given by a specific CFG under a finite-length porous string. We construct $\hat{\sigma}_r = \Lambda(\sigma_r)$ as follows:

$$\Lambda(s:\underline{\Sigma}) \mapsto \begin{cases} \bigoplus_{s \in \Sigma} \Lambda(s) & \text{if s is a hole,} \\ \left\{ \mathbb{T}_2 \big(w, \big[\langle \mathbb{T}_2(s), \mathbb{T}_2(\varepsilon) \rangle \big] \big) \mid (w \to s) \in P \right\} & \text{otherwise.} \end{cases}$$

We then compute the fixpoint M_{∞} by redefining \oplus , \otimes : $\mathbb{T}_3 \times \mathbb{T}_3 \to \mathbb{T}_3$ as follows:

$$X \oplus Z \mapsto \bigcup_{k \in \pi_1(X \cup Z)} \left\{ k \Rightarrow \mathbb{T}_2(k, x \cup z) \mid x \in \pi_2(X \circ k), z \in \pi_2(Z \circ k) \right\}$$

$$X \otimes Z \mapsto \bigoplus_{(w \to xz) \in P} \left\{ \mathbb{T}_2(w, \left[\langle X \circ x, Z \circ z \rangle \right]) \mid x \in \pi_1(X), z \in \pi_1(Z) \right\}$$

Decoding trees from $(\Lambda_{\sigma}^* \circ S) : \mathbb{T}_2$ becomes a straightforward matter of enumeration using a recursive choice function that emits a sequence of binary trees generated by the CFG. We define this construction more precisely in § 2.1.

In our experiments, we provide a comparison of the performance of the SAT algebra and these two semirings, evaluated on a dataset of Python statements.

¹Hereinafter, given a concrete $T: \mathbb{T}_2$, we shall refer to $\pi_1(T), \pi_2(T)$ as $\mathtt{root}(T)$ and $\mathtt{children}(T)$ respectively.

2.1 Sampling without replacement

The type \mathbb{T}_2 of all possible trees that can be generated by a CFG in Chomksy Normal Form are the fixpoints to the following recurrence:

$$L(p) = 1 + pL(p)$$
 $P(a) = V + aL(V^2P(a)^2)$

Given a $\sigma: \underline{\Sigma}^+$, we construct \mathbb{T}_2 from the bottom-up, and sample from the top-down. Illustrated below is a partial \mathbb{T}_2 , where red nodes are roots and blue nodes are children:

Figure 1. A partial \mathbb{T}_2 for the grammar with productions $P = \{S \to BC \mid \dots \mid AB, B \to RD \mid \dots, A \to QC \mid \dots \}$.

The number of binary trees inhabiting a single instance of \mathbb{T}_2 is sensititive to the number of nonterminals and rule expansions in the grammar. To obtain the total number of trees with breadth n, we can take the intersection between a CFG and the regular language, $\mathcal{L}(G^{\cap}) := \mathcal{L}(\mathcal{G}) \cap \Sigma^n$, abstractly parse the string containing all holes, let $T = \Lambda_{\underline{\sigma}}^* \circ S$, and compute the total number of trees using the recurrence:

$$|T:\mathbb{T}_2|\mapsto egin{cases} 1 & \text{if } T \text{ is a leaf,} \\ \sum_{\langle T_1,T_2
angle \in \mathsf{children}(T)} |T_1|\cdot |T_2| & \text{otherwise.} \end{cases}$$

To sample all trees in a given $T:\mathbb{T}_2$ uniformly without replacement, we first define a pairing function $\varphi:\mathbb{T}_2\to\mathbb{Z}_{|T|}\to \mathsf{BTree}$ as follows:

$$\varphi(T:\mathbb{T}_2,i:\mathbb{Z}_{|T|}) \mapsto \begin{cases} \left\langle \mathsf{BTree}\big(\mathsf{root}(T)\big),i\right\rangle & \text{if T is a leaf,} \\ \mathsf{Let} \ b = |\mathsf{children}(T)|, \\ q_1,r = \left\langle \lfloor \frac{i}{b}\rfloor,i \pmod{b}\right\rangle, \\ lb,rb = \mathsf{children}[r], \\ T_1,q_2 = \varphi(lb,q_1), \\ T_2,q_3 = \varphi(rb,q_2) \text{ in} \\ \left\langle \mathsf{BTree}\big(\mathsf{root}(T),T_1,T_2\big),q_3\right\rangle & \text{otherwise.} \end{cases}$$

Then, instead of sampling trees, we can simply sample integers uniformly without replacement from $\mathbb{Z}_{|T|}$ using the construction defined in § 2, and lazily decode them into trees.

3 Prior Work

Piantodosi define a similar construction, but it assumes the CFL is infinite and makes some additional assumptions about the CFG [3]. We provide a more general construction which works for any CFG. Sampling parse trees in CFGs can be viewed as sampling proofs in a weak kind of proof system [2].

4 Conclusion

We have presented a novel algorithm for sampling trees in bounded context-free languages with and without replacement. This technique has applications to code completion and program repair.

References

- Lillian Lee. 2002. Fast context-free grammar parsing requires fast boolean matrix multiplication. <u>Journal of the ACM (JACM)</u> 49, 1 (2002), 1–15. https://arxiv.org/pdf/cs/0112018.pdf
- [2] Andreas Opedal, Ran Zmigrod, Tim Vieira, Ryan Cotterell, and Jason Eisner. 2023. Efficient semiringweighted Earley parsing. In <u>Proceedings</u> of the 61st Annual Meeting of the Association for Computational Linguistics (ACL), Toronto, Canada.
- [3] Steven T. Piantadosi. 2023. How to enumerate trees from a context-free grammar. arXiv:2305.00522 [cs.CL]
- [4] Leslie G Valiant. 1975. General context-free recognition in less than cubic time. Journal of computer and system sciences 10, 2 (1975), 308–315. http://people.csail.mit.edu/virgi/6.s078/papers/valiant.pdf