Laboratório de Circuitos Elétricos - 02/2024 - Turma 05 **Experimento 9** 23/01/2025

Grupo 5:

Yuri Shumyatsky - 231012826 Vinicius de Melo Moraes - 231036274

1 Introdução

A análise de circuitos elétricos por meio da Série de Fourier é uma ferramenta essencial para representar sinais periódicos como somas de funções senoidais. No contexto do laboratório de circuitos elétricos, esse estudo permite compreender a decomposição espectral de sinais e sua resposta em sistemas lineares. O experimento visa demonstrar, na prática, a obtenção dos coeficientes da Série de Fourier e a reconstrução do sinal a partir de seus harmônicos, possibilitando a análise do comportamento de circuitos diante de diferentes componentes da frequência.

2 Materiais

- 1 capacitor de 100 nF
- 1 resistor de $1 \text{k}\Omega$
- National Instruments Elvis II (Elvis)

3 Procedimentos

Primeiro é feita a análise dos componentes usando o multímetro e medidor de impedância do Elvis. Os resultados são dispostos na Tabela 1.

Grandeza	Valor nominal	Valor medido	Erro (%)
R	$1 \mathrm{k}\Omega$	$0.989 \mathrm{k}\Omega$	1.1
С	100nF	107.3nF	7.3

Tabela 1: Valores dos componentes

Em seguida, esses componentes são usados para montar o circuito exposto na Figura 1.

Figura 1: Disposição do Circuito 1

O gerador de funções do Elvis é configurado para gerar uma onda triangular com $2V_{pp}$, offset zero e frequência de 1kHz. Assim, é gerada a onda do Gráfico 1.

Gráfico 1: Onda Triangular

Agora, sabendo que

$$v_0(t) = \begin{cases} 1 + 4f_0t, & -\frac{T}{2} < t \le 0\\ 1 - 4f_0t, & 0 < t \le \frac{T}{2} \end{cases}$$

com $f_0=1kHz$ e que a sua série de Fourier é

$$v_0(t) = \sum_{m=1}^{\infty} A_m cos(2\pi(2m-1)f_0t)$$

Nota-se que

$$a_n = \frac{2}{T} \int_{0}^{\frac{T}{2}} \left(1 - 4\frac{t}{T} \right) \cos\left(2\frac{\pi nt}{T}\right) dt + \frac{2}{T} \int_{-\frac{T}{2}}^{0} \left(\left(1 + 4\frac{t}{T}\right) \cos\left(2\frac{\pi nt}{T}\right) \right) dt$$

Resolvendo essa expressão, temos $a_n = \frac{4 - 4 cos(\pi n)}{\pi^2 n^2}$

$$b_n = \frac{2}{T} \int_0^{\frac{T}{2}} \left(1 - 4\frac{t}{T} \right) \sin\left(2\frac{\pi nt}{T}\right) dt + \frac{2}{T} \int_{-\frac{T}{2}}^0 \left(\left(1 + 4\frac{t}{T}\right) \sin\left(2\frac{\pi nt}{T}\right) \right) dt$$

Resolvendo a expressão, obtém-se que $b_n=0$

Sabemos que $A_n = \sqrt{a_n^2 + b_n^2}$, com $b_n = 0$

Além disso,

$$a_0 = \frac{1}{T} \left(\int_0^{\frac{T}{2}} 1 - 4f_0 t dt + \int_{-\frac{T}{2}}^0 1 + 4f_0 t dt \right) =$$

$$= \frac{1}{T} \left(T + \int_0^{\frac{T}{2}} 4f_0 t dt - \int_{-\frac{T}{2}}^0 4f_0 t dt \right) =$$

$$= \frac{1}{T} \left(T - \frac{T}{2} - \frac{T}{2} \right) = 0$$

Assim, a Fourier fica

$$v_0(t) = \sum_{m=1}^{\infty} \left(\frac{4 - 4\cos(\pi \cdot (2m-1))}{\pi^2 (2m-1)^2} \cos(2\pi (2m-1)1000t) \right)$$

Segue a Figura 2 para mostrar $v_0(t)$

t

Figura 2: Fourier de $v_0(t)$

Em seguida, vamos calcular a resposta do sistema para os harmônicos de frequências 1, 3, 5, 7, 9, 11, 13, 15, 17 e 19 kHz.

Fazendo divisor de tensão, obtemos que $v_1=-\frac{j}{\omega 10^{-7}}\cdot(\frac{1}{1000}+j\omega 10^{-7})$ e para cada frequência é calculado o valor que está na Tabela 2.

Agora experimentalmente são medidas as mesmas respostas, que seguem nos Gráficos 2 a 11.

Gráfico 2: Resposta para Frequência 1kHz

Gráfico 3: Resposta para Frequência 3kHz

Gráfico 4: Resposta para Frequência 5kHz

Gráfico 5: Resposta para Frequência 7kHz

Gráfico 6: Resposta para Frequência 9kHz

Gráfico 7: Resposta para Frequência 11kHz

Gráfico 8: Resposta para Frequência 13kHz

Gráfico 9: Resposta para Frequência 15kHz

Gráfico 10: Resposta para Frequência 17kHz

Gráfico 11: Resposta para Frequência 19kHz

Desses gráficos são extraídas as informações da Tabela 2.

Frequência (kHz)	Grandeza	Valor nominal	Valor medido	Erro (%)
1	$ v_0 $	1	1.04	4.00
1	$ v_1 $	0.995	0.895	10.05
1	Fase de v_1 em relação a v_0	-5.71°	-31.68°	454.81
3	$ v_0 $	1	0.994	0.60
3	$ v_1 $	0.958	0.504	47.39
3	Fase de v_1 em relação a v_0	-16.70°	-62.21°	272.51
5	$ v_0 $	1	0.994	0.60
5	$ v_1 $	0.894	0.374	58,17
5	Fase de v_1 em relação a v_0	-26.57°	-70.56°	165.56
7	$ v_0 $	1	0.994	0.60
7	$ v_1 $	0.819	0.244	70.21
7	Fase de v_1 em relação a v_0	-34.99°	-77.62°	121.83
9	$ v_0 $	1	0.994	0.60
9	$ v_1 $	0.743	0.201	72.95
9	Fase de v_1 em relação a v_0	-41.99°	-77.76°	85.19
11	$ v_0 $	1	0.994	0.60
11	$ v_1 $	0.673	0.201	70.13
11	Fase de v_1 em relação a v_0	-47.73°	-91.87°	92.48
13	$ v_0 $	1	0.994	0.60
13	$ v_1 $	0.610	0.158	74.10
13	Fase de v_1 em relação a v_0	-52.43°	-76.75°	46.39
15	$ v_0 $	1	0.994	0.60
15	$ v_1 $	0.555	0.158	71.53
15	Fase de v_1 em relação a v_0	-56.31°	-83.16°	47.68
17	$ v_0 $	1	0.994	0.60
17	$ v_1 $	0.507	0.158	68.84
17	Fase de v_1 em relação a v_0	-59.53°	-80.78°	35.69
19	$ v_0 $	1	0.994	0.60
19	$ v_1 $	0.466	0.071	84.76
19	Fase de v_1 em relação a v_0	-62.24°	-75.24°	20.89

Tabela 2: Valores referentes ao circuito 1

Agora, com esses valores e o A_m , será calculado $\hat{v_1}(t)$ com os valores teóricos e medidos, considerando que

$$\hat{v}_1(t) = \sum_{m=1}^{10} A_m |V_1((2m-1)f_0|\cos(2\pi(2m-1)f_0t + \phi(V_1((2m-1)f_0))))$$

com $f_0=1kHz, |V_1(f)|$ a amplitude de v_1 na frequência f e $\phi(V_1(f))$ a fase de v_1 em relação a v_0 nesse mesmo caso.

Assim,

$$\hat{v_1}(t) = \sum_{m=1}^{10} \frac{4 - 4cos(\pi \cdot (2m-1))}{\pi^2 (2m-1)^2} |V_1((2m-1)1000| cos(2\pi (2m-1)1000t + \phi(V_1((2m-1)1000))))|$$

Seguem o Gráfico 12 e o Gráfico 13 para $\hat{v_1}$ com os valores calculados e medidos.

t

Gráfico 12: $\hat{v_1}$ com os valores calculados

t

Gráfico 13: $\hat{v_1}$ com os valores medidos

4 Conclusão

O estudo da Série de Fourier em circuitos elétricos permitiu a compreensão da decomposição de sinais periódicos em componentes senoidais e sua influência na resposta do sistema. A análise experimental demonstrou a importância dos harmônicos na forma do sinal e no comportamento do circuito, destacando a relevância desse método para a análise de sistemas no domínio da frequência. Os resultados obtidos confirmam a aplicabilidade da Série de Fourier na modelagem e previsão do desempenho de circuitos elétricos diante de sinais complexos.

5 Bibliografia

• HALLIDAY, D.; RESNICK, R.; WALKER, J. Fundamentos de Física. 10. ed. v. 3. Rio de Janeiro: LTC, 2016.