Projeto de Circuitos Integrados Implementação de um Multiplicador por Somas Sucessivas e um Extrator de Raiz Quadrada

Cristina Kulczynski

Universidade de Santa Cruz do Sul (UNISC) Santa Cruz do Sul – RS – Brasil

kulczynski@mx2.unisc

Sumário

1.	INTRODUÇÃO2	2
2.	ESTRUTURA GERAL2	
2.1.	Máquina de estados MSS e parte operacional	
2.2.	Máquina de estados SQRT	
3.	DETALHAMENTO DOS MÓDULOS E RTL	
3.1.	TOP LEVEL6	í
3.1.1	SIMULAÇÃO TEST BENCH8	;
3.2.	MSS	3
3.2.1	OPERATIVA9	,
3.2.2	CONTROLE)
3.2.3	SIMULAÇÃO TEST BENCH9	,
3.3.	SQRT)
3.3.1	OPERATIVA11	
3.3.2	CONTROLE11	l
3.3.3	SIMULAÇÃO TEST BENCH	
4.	RESULTADOS DE SÍNTESE	
4.1	Uso de Células	2
4.2	Relatório de utilização do dispositivo	
4.3	Relatório de temporização	
4.4	Post Place and Route	
5	CONCLUSÃO	₹

1. INTRODUÇÃO

O propósito deste relatório é fornecer as especificações detalhadas e os resultados obtidos no Trabalho 2, que consiste em um projeto prático realizado no âmbito da disciplina de Projeto de Circuitos Integrados. Tendo como objetivo do projeto a implementação de uma calculadora com suporte às operações de MSS (Multiplicação por Somas Sucessivas) e ERQ (Extração de Raiz Quadrada), utilizando a linguagem de descrição de hardware VHDL. Os componentes que compõem esta calculadora incluem as partes de controle e operativa da MSS e ERQ, cada uma com seus respectivos arquivos de encapsulamento, além do módulo que integra os dois encapsulamentos em um único conjunto. Ademais, realizamos testes e simulações complementares de cada módulo, os resultados encontram-se documentados com as suas respectivas imagens ilustrativas e outros elementos complementares. Uma observação importante é que o extrator de raiz quadrada não é capaz de extrair de todos os números, isso o deixa limitado.

2. ESTRUTURA GERAL

Neste tópico, exploraremos a lógica, a máquina de estados, buscando uma explicação e compreensão mais eficazes do projeto. Para facilitar essa compreensão, optamos por dividir o projeto em pequenos tópicos e subtópicos que serão abordados ao longo deste relatório, oferecendo uma visão mais detalhada e organizada.

2.1. Máquina de estados MSS e parte operacional

Na figura 1 podemos observar o funcionamento da máquina de estados do módulo de multiplicação por somas sucessivas. O processo é acionado pela borda de subida do sinal de clock. FIGURA 1

O funcionamento ocorre da seguinte forma:

- Se o sinal de reset for igual a 1, o sistema passa para o próximo estado, que é o Idle. Indicando que está em um estado de repouso ou reinicialização.
- No estado Idle a variável de saída calcula recebe o valor 0 e depois passa para próximo estado Calculating. O sinal de calcula será enviado para a parte operativa e ela irá inicializar todos os registradores e variáveis em zero.
- No estado Calculating a variável calcula recebe o valor 1, indicando para a parte operativa que é o momento de realizar o cálculo, e passa para o próximo estado Pronto.
- No estado Pronto, o sistema verifica constantemente o valor da variável "termina". Essa variável é proveniente da parte operativa do sistema e indica se o cálculo foi finalizado ou não. Se o valor de "termina" for 0, significa que o cálculo ainda está em andamento e o sistema volta para o estado Calculating para continuar o processo de cálculo. Caso contrário, se o valor de "termina" for diferente de 0, o próximo estado será o estado Idle, indicando que o cálculo foi concluído e o sistema está novamente em um estado de repouso.

A figura 2 é uma representação em formato de diagrama da parte operacional do MSS, apesar não ser totalmente fiel ao código, pois não foram mostrados alguns componentes tais como os sinais clk, reset, a entrada calcula e uma variável intermediária.

Podemos descrever o funcionamento da seguinte maneira:

- Registrador r0 recebe valor 1.
- Registrador r1 recebe valor da entrada A que é definida no Test Bench.
- Registrador r2 recebe valor da entrada B que também é definida no Test Bench.
- Registrador r3 recebe valor 0.
- Se r1 ou r2 forem iguais a 0, result recebe o valor de r3 a variável termina recebe 1 e acaba o cálculo.
- Se r1 e r2 forem diferentes de 0, a variável termina recebe 0 e continua calculando.
- Soma r1 e r3 e guarda no registrador r3.
- Diminui r0 de r2 e guarda em r2.
- O processo volta ao início e só irá parar quando r2 for igual a 0.

2.2. Máquina de estados SQRT

O diagrama de estados apresentado na Figura 3 revela um comportamento significativamente diferente do diagrama anterior. Neste caso, é perceptível que a parte de controle exerce total domínio sobre a parte operativa.

FIGURA 3

A seguir, apresenta-se de forma sucinta a explicação sobre o funcionamento do diagrama representado na Figura 3.

- Se start for igual a 0 continua no estado Idle, caso contrário passa para S0
- O sistema passará pelos estados S0, S1 e S2, e quando chegar ao estado S3, verificará se t é igual a 1. Se for o caso, retornará ao estado S1 e permanecerá em loop até que t seja igual a 0. Caso contrário, o sistema avançará para o estado "done" e, em seguida, para o estado "Idle".
- Se o valor de Load (ldraiz, ldr, lds ou ldd) for igual a 1, ocorrerá o carregamento de um novo valor, caso contrário ocorrerá o carregamento do valor atual.
- Ca e cb são responsáveis por controlar os multiplexadores.
- Os sinais de reset (resetr, resetd, resets) são utilizados para reiniciar os registradores com valores pré-definidos, conforme o algoritmo de extração de raízes.

A Figura 4 ilustra a parte operativa, que inclui as entradas, cargas, resets, registradores, multiplexadores e um somador. Além disso, é apresentada a lógica responsável por verificar se o cálculo foi concluído.

radicando

t=1

radicando

t=1

raiz

d | Idd=1

Ca | Mux1

Mux2

Sim

Lida=1

Ca | Mux1

Mux2

Somador

Para descrever o funcionamento do diagrama, serão utilizadas as nomenclaturas presentes no código original. No entanto, é importante ressaltar que as variáveis resetr, resetd e resets não são representadas no diagrama. Essas variáveis determinam o estado dos registradores r, d e s, atribuindo-lhes os valores 1, 2 e 4 quando estão ativadas, respectivamente.

Os registradores r, d e s são inicializados com os valores 1, 2 e 4, respectivamente. O valor do radicando é fornecido no Test Bench e, neste caso, é 9. Neste ponto, o loop é iniciado.

o
$$r = 1, d = 2, s = 4, radicando = 9$$

- No início, Ca é definido como 0, fazendo com que o valor de r seja processado.
- Em seguida, Cb é definido como 01, permitindo que o valor 1 seja processado.
- O Somador adiciona 1 a r e armazena o resultado em r se ldr for igual a 1.

o
$$r = r + 1 (r = 2)$$

- Depois disso, Ca é definido como 1, permitindo que o valor de d seja processado.
- Cb recebe 00, o que faz com que o valor 2 passe.
- O Somador adiciona 2 a d e armazena o resultado novamente em d. o d = d + 2 (d = 4)
- Agora, Cb recebe 1 e, em seguida, recebe 11 e, finalmente, 01.
- Assim o somador soma s, d e 1 e armazena em s. o s = s + d + 1 (s = 4 + 4 + 1 = 9)
- É verificado se s é menor ou igual à raiz quadrada, se for, t é definido como 0; caso contrário, t é definido como 1.
- Se t for igual a 0, o loop é interrompido e o resultado de r é obtido.

3. DETALHAMENTO DOS MÓDULOS E RTL

Neste tópico e subtópicos será mostrado o esquemático em nível de transferência de registros, podemos ver se a lógica do circuito está correta, se os sinais estão sendo transferidos.

TOP LEVEL 3.1.

Na figura 5 podemos observar a estrutura externa da calculadora de MSS e SQRT, sendo essa a interface principal do projeto.

TopLevel_MultiplyAndSqr raiz(7:0) B(31:0) radicando(7:0) clk reset result(31:0) start TopLevel_MultiplyAndSqrt

FIGURA 5

A figura 6 apresenta a parte interna do TopLevel_MultiplyAndSqrt, podemos observar seus componentes e a interconexão entre eles.

Abaixo temos a pinagem:

Nome do pino	Descrição detalhada	Tipo
reset	Restaurar o circuito.	Entrada
start	Inicia os estados do extrator de raiz quadrada.	Entrada
clk	Controla o tempo para cada ação ocorrer.	Entrada
radicando(7:0)	Valor do radicando para o cálculo da raiz.	Entrada
A(31:0)	Valor de A que irá somar com ele mesmo.	Entrada
B(31:0)	Valor de B que irá diminuir até 0.	Entrada

raiz	Resultado da raiz.	Saída
result	Resultado da multiplicação por somas sucessivas.	Saída

3.1.1. SIMULAÇÃO TEST BENCH

Figura 7

3.2. MSS Este módulo TopLevel_Multiply serve para encapsular a parte operativa da parte controle com o intuito de ligar os sinais

Parte interna:

O controle e a parte operacional se conectam pelas portas calcula e termina.

3.2.1. OPERATIVA

O componente possui várias portas de entrada e saída, incluindo clk (sinal de clock), reset (sinal de reinicialização), termina (sinal de finalização), calcula (sinal de controle de cálculo), A (primeiro número de entrada), B (segundo número de entrada) e result (resultado da multiplicação). Resumindo, o módulo é um componente que realiza a multiplicação de dois números inteiros sem sinal de 32 bits quando um sinal de controle é ativado. Ele acompanha o estado do cálculo e sinaliza quando a multiplicação é concluída.

3.2.2. CONTROLE

O funcionamento desse módulo se resume em circuito de multiplicação controlado por estados. O estado Idle indica que a multiplicação não está ocorrendo. O estado Calculating ativa a multiplicação. O estado Pronto permite a transição de volta ao estado Idle se o sinal termina for ativado, caso contrário, volta para Calculating. O sinal calcula controla o cálculo da multiplicação. O sinal de relógio clk atualiza os estados. O sinal de reset redefine o estado para Idle. Clk, reset e termina são sinais de entrada enquanto calcula é um sinal de saída.

3.2.3. SIMULAÇÃO TEST BENCH

FIGURA

10

3.3. SQRT

O TopLevel_Sqrt tem a função de ser um encapsulamento para a parte operativa e controle do circuito, unindo as duas.

Na figura 12 vemos a parte interna.

3.3.1. OPERATIVA

A entidade "Sqrt_PO" possui vários sinais de entrada e saída, incluindo sinais para controlar o clock, reset, o número cuja raiz quadrada será calculada, sinais de controle para carregar valores nos registradores, sinais de controle para selecionar entradas dos multiplexadores e sinais de saída para o resultado da raiz quadrada.

3.3.2. CONTROLE

O módulo "Sqrt_PC" é um controlador de estado que gera sinais de controle para um circuito de cálculo da raiz quadrada de um número. Ele possui sinais de entrada e saída para controlar o clock, reset e início do cálculo, com o sinal "t" sendo uma entrada adicional. Os sinais de saída incluem vários controles (resetr, resetd, resets, ldraiz, ldr, lds, ldd, ca e cb). Em resumo, o código implementa um controlador que utiliza diferentes estados para controlar os sinais de saída com base nas transições de estado e nas condições de entrada, garantindo o controle adequado do circuito durante o cálculo da raiz quadrada.

3.3.3. SIMULAÇÃO TEST BENCH

FIGURA

4. RESULTADOS DE SÍNTESE

O objetivo deste tópico é apresentar e comparar os resultados da síntese realizada por meio da ferramenta Synthesize XST e FPGA Editor para a calculadora e seus módulos. Serão analisados os seguintes aspectos: o uso de células, relatório de utilização do dispositivo, relatório de temporização e a visão geral de posicionamento e roteamento.

4.1. Uso de Células

Utilizando a ferramenta Design Summary/Reports (Summary) e acessando o Synthesis Report → Cell Usage, foram obtidas informações sobre a quantidade e tipos de células utilizadas na síntese do projeto da calculadora e seus módulos. Na tabela abaixo podemos observar o uso delas e a diferença que apresentam.

A figura 14 mostra o uso das células da Calculadora, é esperado que ela utilize mais componentes, pois ela integra os dois módulos MSS e SQRT.

FIGURA 14 - CALCULADORA

C	ell Usage :		
#	BELS	:	344
#	GND	:	1
#	INV	:	2
#	LUT2	:	106
#	LUT3	:	44
#	LUT4	:	25
#	MUXCY	:	93
#	VCC	:	1
#	XORCY	:	72
#	FlipFlops/Latches	:	177
#	FDC	:	5
#	FDCE	:	159
#	FDE	:	6
#	FDP	:	1
#	FDPE	:	3
#	FDR	:	2
#	LD_1	:	1
#	Clock Buffers	:	1
#	BUFGP	:	1
#	IO Buffers	:	114
#	IBUF	:	74
#	OBUF	:	40

Na figura 15. é visível que o circuito utiliza uma grande quantidade de células em relação ao Sqrt Figura

15 - MSS

Cel	l Usage :		
# B	ELS	:	292
#	GND	:	1
#	INV	:	1
#	LUT2	:	95
#	LUT3	:	35
#	LUT4	:	17
#	MUXCY	:	78
#	VCC	:	1
#	XORCY	:	64
# F	lipFlops/Latches	:	133
#	FDCE	:	130
#	FDR	:	2
#	LD_1	:	1
# C	lock Buffers	:	1
#	BUFGP	:	1
# I	O Buffers	:	97
#	IBUF	:	65
#	OBUF	:	32

Na figura 16 por exemplo podemos observar que o número total de blocos elementares lógicos representa apenas 16 % em relação aos utilizados pela Calculadora

	Figura 16 - Sqr	Τ	
C	ell Usage :		
#	BELS	:	54
#	GND	:	1
#	INV	:	1
#	LUT2	:	11
#	LUT3	:	9
#	LUT4	:	8
#	MUXCY	:	15
#	VCC	:	1
#	XORCY	:	8
#	FlipFlops/Latches	:	44
#	FDC	:	5
#	FDCE	:	29
#	FDE	:	6
#	FDP	:	1
#	FDPE	:	3
#	Clock Buffers	:	1
#	BUFGP	:	1
#	IO Buffers	:	18
#	IBUF	:	10
#	OBUF	:	8

4.2. Relatório de utilização do dispositivo

Este relatório apresenta um resumo da utilização geral do dispositivo de destino. Ele fornece informações sobre a quantidade de recursos (como LUTs, flip-flops, memória etc.) utilizados pelo projeto. Isso permite verificar se o design está dentro dos limites do dispositivo escolhido.

Veremos no gráfico abaixo as nuances entre os circuitos e o que elas significam.

☐ Calculadora:

FIGURA 17

11301	u I I /				
Device utilization summary:					
Selected Device : 3s200ft256-4					
Number of Slices:	128	out	of	1920	6%
Number of Slice Flip Flops:	177	out	of	3840	4%
Number of 4 input LUTs:	177	out	of	3840	4%
Number of IOs:	115				
Number of bonded IOBs:	115	out	of	173	66%
Number of GCLKs:	1	out	of	8	12%

☐ SQRT:

FIGURA 18

Device utilization summary:

Selected Device : 3s200ft256-4

Number	of	Slices:	29	out	of	1920	1%
Number	of	Slice Flip Flops:	44	out	of	3840	1%
Number	of	4 input LUTs:	29	out	of	3840	0%
Number	of	IOs:	19				
Number	of	bonded IOBs:	19	out	of	173	10%
Number	of	GCLKs:	1	out	of	8	12%

☐ MSS:

FIGURA 19

Device utilization summary:

Selected Device: 3s200ft256-4

Number of Slices:	99	out	of	1920	5%
Number of Slice Flip Flops:	133	out	of	3840	3%
Number of 4 input LUTs:	148	out	of	3840	3%
Number of IOs:	98				
Number of bonded IOBs:	98	out	of	173	56%
Number of GCLKs:	1	out	of	8	12%

Após a análise do gráfico e figuras 17, 18 e 19 vimos que os Blocos de Entrada/Saída foram demasiadamente utilizados o que pode comprometer o sistema se não for bem gerenciado.

4.3. Relatório de temporização

Este tópico fornece informações sobre o desempenho do circuito em relação aos requisitos de temporização. Ele inclui detalhes como o período mínimo necessário para a operação correta do circuito e a frequência máxima alcançada. Isso ajuda a garantir que o projeto atenda aos requisitos de velocidade do sistema.

Calculadora:

FIGURA 20

MSS:

FIGURA 21

Minimum period: 7.782ns (Maximum Frequency: 128.500MHz)
Minimum input arrival time before clock: 6.039ns
Maximum output required time after clock: 7.165ns
Maximum combinational path delay: No path found

SQRT:

FIGURA 22

4.4. Post Place and Route

Abaixo veremos a representação visual do posicionamento dos componentes do circuito e as conexões entre eles.

Calculadora:

MSS:

5. CONCLUSÃO

A implementação da calculadora com suporte às operações de MSS e ERQ utilizando VHDL foi bem-sucedida de acordo com as simulações. A especificação, projeto, implementação, e avaliação dos circuitos integrados foram realizados com o uso de teorias e materiais disponibilizados em aula, também foram utilizadas práticas e ferramentas apropriadas. Os níveis de abstração e descrição foram considerados para proporcionar uma visão abrangente e detalhada do projeto. A separação de conceitos entre hardware e software, aplicação e arquitetura, e processamento e comunicação também foi abordada. Cabe ainda salientar que, durante o projeto, foram empregadas técnicas de verificação funcional, incluindo a elaboração e geração de testbenches, assim como a análise de diagramas de formas de onda. Essas práticas garantiram o funcionamento correto dos circuitos integrados implementados.