HW7 Solutions

Dante Wu

2023-03-04

```
pr = read.table("/Users/wugaoyu/Desktop/PhD/TA/Winter 2023/Places_Rated.txt")
pr = pr[-10]
colnames(pr) = c("Climate and Terrain", "Housing", "Health Care & the Environment", "Crime", "Transportati
head(pr)
##
     Climate and Terrain Housing Health Care & the Environment Crime
## 1
                             6200
                      521
                                                             237
## 2
                      575
                                                            1656
                                                                    886
                             8138
## 3
                      468
                             7339
                                                             618
                                                                    970
## 4
                      476
                             7908
                                                            1431
                                                                    610
## 5
                      659
                             8393
                                                            1853
                                                                  1483
## 6
                      520
                             5819
                                                             640
                                                                   727
     Transportation Education The Arts Recreation Economics
##
## 1
               4031
                          2757
                                    996
                                               1405
                                                         7633
## 2
               4883
                          2438
                                   5564
                                               2632
                                                         4350
## 3
               2531
                          2560
                                    237
                                               859
                                                         5250
## 4
                          3399
               6883
                                   4655
                                               1617
                                                         5864
## 5
               6558
                          3026
                                   4496
                                              2612
                                                         5727
## 6
               2444
                          2972
                                    334
                                               1018
                                                         5254
Scale raw data
pr_scaled = scale(pr)
head(pr scaled)
                                 Housing Health Care & the Environment
##
        Climate and Terrain
                                                                               Crime
## [1,]
                 -0.1467824 -0.89992576
                                                             -0.9458990 -0.10654981
## [2,]
                  0.3002069 -0.08743661
                                                              0.4688539 -0.21014653
## [3,]
                 -0.5854941 -0.42241020
                                                             -0.5660393 0.02504601
## [4,]
                 -0.5192735 -0.18386205
                                                              0.2445273 -0.98292201
                  0.9955236 0.01946986
## [5,]
                                                              0.6652643 1.46140045
## [6,]
                 -0.1550600 -1.05965660
                                                             -0.5441052 -0.65533240
        Transportation Education
                                     The Arts Recreation Economics
## [1,]
            -0.1234045 -0.1804514 -0.4641863 -0.5458150
                                                           1.9434730
## [2,]
             0.4637042 -1.1748623  0.5198122  0.9729596 -1.0838164
## [3,]
            -1.1570466 -0.7945547 -0.6276834 -1.2216511 -0.2539168
                                                           0.3122592
## [4,]
             1.8418937 1.8208394 0.3240034 -0.2834024
## [5,]
             1.6179379 0.6580957 0.2897530 0.9482037
                                                           0.1859300
## [6,]
            -1.2169979   0.4897628   -0.6067885   -1.0248417   -0.2502283
Analyze scaled data Apply R function from package psych
library(psych)
pca.scaled = prcomp(pr_scaled, scale = F, center = F)
```

```
If you didn't scale the data in advance, you can also do this within prcomp:
```

```
pca.scaled = prcomp(pr_scaled, scale = T)
```

See proportion and cumulative proportion of total variance explained by different PCs.

```
summary.pca = summary(pca.scaled)
summary.pca$importance
##
                               PC1
                                        PC2
                                                PC3
                                                           PC4
                                                                     PC5
                          1.846156 1.101806 1.06840 0.9596446 0.8679199 0.7940793
## Standard deviation
## Proportion of Variance 0.378700 0.134890 0.12683 0.1023200 0.0837000 0.0700600
## Cumulative Proportion 0.378700 0.513590 0.64042 0.7427400 0.8264400 0.8965000
##
                                PC7
                                         PC8
                                                  PC9
                          0.7021736 0.563949 0.34699
## Standard deviation
## Proportion of Variance 0.0547800 0.035340 0.01338
## Cumulative Proportion 0.9512800 0.986620 1.00000
pov = summary.pca$importance[2,]
cpov = summary.pca$importance[3,]
```

You can also get eigenvalues and eigenvectors from prcomp object:

```
evals.scaled = pca.scaled$sdev^2
evals.scaled
```

```
## [1] 3.4082918 1.2139762 1.1414791 0.9209178 0.7532849 0.6305619 0.4930477 ## [8] 0.3180385 0.1204021
```

```
evecs.scaled = pca.scaled$rotation
evecs.scaled
```

```
PC1
                                       PC2
                                                  PC3
                                                           PC4
##
## Climate and Terrain
                          0.2064140 0.2178353 -0.689955982
                                                      0.13732125
                          0.3565216  0.2506240  -0.208172230
## Housing
                                                      0.51182871
## Health Care & the Environment 0.4602146 -0.2994653 -0.007324926
                                                      0.01470183
## Crime
                          ## Transportation
                          0.3511508 -0.1796045
                                           0.146376283 -0.30290371
## Education
                          0.2752926 -0.4833821 0.229702548
                                                      0.33541103
## The Arts
                          0.4630545 -0.1947899 -0.026484298 -0.10108039
## Recreation
                          ## Economics
                          ##
                               PC5
                                         PC6
                                                  PC7
                                                            PC8
## Climate and Terrain
                          ## Housing
                           0.2334878 -0.14163983 -0.23063862 0.61385513
## Health Care & the Environment -0.1032405 -0.37384804 0.01386761 -0.18567612
## Crime
                          -0.5239397 0.08092329 0.01860646 0.43002477
## Transportation
                           ## Education
                          -0.2088191 0.50216981 0.42618186 0.18866756
## The Arts
                          -0.1050976 -0.46188072 -0.02152515 -0.20398969
## Recreation
                           -0.1596201 0.03260813 -0.14974066 -0.40480926
## Economics
##
                                  PC9
## Climate and Terrain
                           0.0013913515
## Housing
                           0.0136003402
## Health Care & the Environment -0.7163548935
## Crime
                          -0.0586084614
## Transportation
                           0.0036294527
```

```
## Education
                              0.1108401911
## The Arts
                              0.6857582127
                             -0.0255062915
## Recreation
## Economics
                              0.0004377942
pov.scaled = evals.scaled/sum(evals.scaled)
pov.scaled
## [1] 0.37869909 0.13488624 0.12683102 0.10232420 0.08369832 0.07006243 0.05478308
## [8] 0.03533761 0.01337801
cpov.scaled = cumsum(pov.scaled)
cpov.scaled
## [1] 0.3786991 0.5135853 0.6404163 0.7427405 0.8264389 0.8965013 0.9512844
## [8] 0.9866220 1.0000000
The third way is to find eigenvalues and eigenvectors manually.
S = cov(pr scaled)
eigen(S)
## eigen() decomposition
## $values
## [1] 3.4082918 1.2139762 1.1414791 0.9209178 0.7532849 0.6305619 0.4930477
## [8] 0.3180385 0.1204021
##
## $vectors
##
             [,1]
                       [,2]
                                  [,3]
                                             [,4]
                                                       [,5]
                                                                 [,6]
  [1,] -0.2064140 0.2178353 0.689955982 0.13732125 0.3691499 -0.37460469
[3,] -0.4602146 -0.2994653 0.007324926 0.01470183
                                                  0.1032405 0.37384804
## [5,] -0.3511508 -0.1796045 -0.146376283 -0.30290371 -0.4043485 -0.46759180
## [6,] -0.2752926 -0.4833821 -0.229702548 0.33541103 0.2088191 -0.50216981
## [7,] -0.4630545 -0.1947899 0.026484298 -0.10108039 0.1050976 0.46188072
## [9,] -0.1354123  0.4712833 -0.607314475  0.42176994  0.1596201 -0.03260813
##
              [,7]
                         [,8]
                                     [,9]
## [1,] 0.08470577 0.36230833 -0.0013913515
## [2,] 0.23063862 -0.61385513 -0.0136003402
## [3,] -0.01386761 0.18567612 0.7163548935
## [4,] -0.01860646 -0.43002477 0.0586084614
## [5,] 0.58339097 0.09359866 -0.0036294527
## [6,] -0.42618186 -0.18866756 -0.1108401911
## [7,] 0.02152515 0.20398969 -0.6857582127
   [8,] -0.62787789 0.15059597 0.0255062915
## [9,] 0.14974066 0.40480926 -0.0004377942
evals = eigen(S)$values
pov.scaled = evals / sum(evals)
pov.scaled
## [1] 0.37869909 0.13488624 0.12683102 0.10232420 0.08369832 0.07006243 0.05478308
## [8] 0.03533761 0.01337801
cpov.scaled = cumsum(pov.scaled)
cpov.scaled
```

```
## [1] 0.3786991 0.5135853 0.6404163 0.7427405 0.8264389 0.8965013 0.9512844 ## [8] 0.9866220 1.0000000
```

Draw scree plot and cumulative plot for PCA of scaled data

```
#par(mfrow=c(1,2))
plot(pov, pch = 20, type = "b", ylab = "Variance explained", xlab = "Principal component", main = "Scal
```

Scaled-data

plot(cpov, pch = 20, type = "b", ylab = "Cumulative proportion of variance explained",xlab = "Principal

Repeat the same procedure for raw data

```
pca.raw= prcomp(pr, scale = F)
summary_pca.raw = summary(pca.raw)
pov.raw = summary_pca.raw$importance[2,]
cpov.raw = summary_pca.raw$importance[3,]
#par(mfrow=c(1,2))
plot(pov.raw, pch = 20, type = "b", ylab = "Variance explained",xlab = "Principal component",main = "Ra"
```

Raw-data

lot(cpov.raw, pch = 20, type = "b", ylab = "Cumulative proportion of variance explained", xlab = "Prince

Also, remember to include eigenvalues and eigenvectors in your homework.

Determine the number of principal components

Make the Cumulative proportion of variance explained larger than certain threshold, e.g. 0.75, 0.8, 0.9, etc.

For example:

```
k = which.max(cpov.scaled >= 0.8)
k
```

[1] 5

So we choose the first 5 principle components.

Do projection

Get projection results from prcomp object

```
pcs = pca.scaled$x
plot(x = pcs[,1], y = pcs[,2], cex = 0.5, pch = 20, ylab = "PC2", xlab = "PC1")
```


You can also use autoplot:

```
library(ggfortify)
```

```
## Loading required package: ggplot2
## Warning in register(): Can't find generic `scale_type` in package ggplot2 to
## register S3 method.
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
##  %+%, alpha
plot_0 = autoplot(pca.scaled, data = pr, color = 'black')
plot_0+ theme_grey(base_size = 22)
```


Compute projection manually; Loading vectors are estimated by eigenvector

```
Vec_1 = eigen(cov(pr_scaled))$vectors[,1]
Vec_2 = eigen(cov(pr_scaled))$vectors[,2]

PC1 = as.numeric(pr_scaled %*% Vec_1)
PC2 = as.numeric(pr_scaled %*% Vec_2)
plot(x = PC1, y = PC2, cex = 0.5, pch = 20, ylab = "PC2", xlab = "PC1")
```

