Motivation:

- Analyze, model and **predict** data that is observed in a sequential order
- Data is no longer independent, and so standard inferential procedures don't work anymore/are invalid
- Decompose dependent data into independent components
- We care less about finding relationships between a response variable and covariates. We typically want to forecast a response using just its past values.

Regression Example.R and ConsIndex.txt

Definitions

An **observed time series** $\{x_t: t \in T\}$ is a collection of observations of a variable of interest over time.

A **time series** is a stochastic process indexed by time. Specifically, we have a sequence of random variables $\{X_t: t \in T\}$, where T is an index of time points.

- if T is a discrete set, i.e. $T = \{1, 2, 3, \ldots\}$, then $\{X_t\}$ is a discrete time series.
- if T is a continuous interval, i.e. $T = \{t > 0\}$, then $\{X_t\}$ is a continuous time series.

A time series model is the specification of the joint distribution of the random variables $\{X_t : t \in N\}$: $P(X_1 \le x_1, X_2 \le x_2, \dots, X_n \le x_n)$ for $-\infty < x_1, x_2, \dots, x_n < \infty$ and $n \in N$. But, in general, we can't hope to estimate all of the parameters in such a model with the data we've observed.

But, most of the information about a distribution is contained in the first two moments:

- First Moments: $E[X_t]$, $t = 1, 2, \ldots > means$
- Second Moments: $E[X_t X_{t+h}], t = 1, 2, ...$ and h = 0, 1, 2, ... > variances/covariances

Main take-away: we don't need the whole joint distribution. Our modeling will be based on **second-order properties**.

$$\{x_t\}$$
 —observed from—> $\{X_t\}$

Zero Mean Models

IID Noise

If $\{X_1, X_2, \ldots, X_k\}$ are iid random variables with $E[X_t] = 0$, $t = 1, 2, \ldots, k$, then $P(X_1 \leq x_1, X_2 \leq x_2, \ldots, X_n \leq x_n) = independence = \prod_{t=1}^k P(X_t \leq x_t) = identically distributed = \prod_{t=1}^k F(x_t)$. In this special case, the joint distribution is defined by one marginal distribution with zero mean.

White noise

A white noise process is a sequence of **uncorrelated** (not necessarily independent!) random variables $\{X_t\}$ each with mean 0, and finite variance σ^2 .

We denote this by $\{X_t\} \sim WN(0, \sigma^2)$.

- $E[X_t] = 0$
- $Var(X_t) = \sigma^2$ finite

• $Cov(X_i, X_i) = 0$ for $i \neq j$

(note: IID noise is a subset of White noise)

Classical Time Series Decomposition

 $X_t = m_t + s_t + \epsilon_t$

- m_t : trend term (average change in X_t over time)
- s_t : seasonal term (regular periodic fluctuations)
- ϵ_t : error (unexplained variation in X_t 's)

Lecture 1.pptx

Example

Consider average seasonal temperature over many years where we wish to fit a model of the form X_t $m_t + s_t + \epsilon_t$.

Here, we assume m_t is a polynomial in t, and s_t can be represented with indicator/dummy variables:

•
$$W_1 = \begin{cases} 1 & \text{if spring} \\ 0 & \text{otherwise} \end{cases}$$

•
$$W_2 = \begin{cases} 1 & \text{if fall} \\ 0 & \text{otherwise} \end{cases}$$

•
$$W_1 = \begin{cases} 1 & \text{if spring} \\ 0 & \text{otherwise} \end{cases}$$
• $W_2 = \begin{cases} 1 & \text{if fall} \\ 0 & \text{otherwise} \end{cases}$
• $W_3 = \begin{cases} 1 & \text{if winter} \\ 0 & \text{otherwise} \end{cases}$

$$X_t = \sum_{i=0}^p \beta_i t^i + \sum_{j=1}^3 \alpha_j W_j + \epsilon_t, \, \epsilon_t \sim N(0, \sigma^2)$$
 (iid)

- We typically estimate α 's and β 's using OLD, which implies that we are making OLS assumptions (which still may not be valid).
- If the assumptions are invalid, then we use the **Box-Jenkins** class of models (i.e. AR, MA, ARMA, SARIMA)

AirPassengers Analysis.R

10/25/16

Recap

- Time series -> $\{X_t: t \in N\}$ <- a time series model puts constraints on the first and second moments of these random variables.
- Observed time series $-> \{x_t : t \in N\}.$

Stationarity

Strict stationarity

A time series $\{X_t\}$ is said to be **strictly stationary** if the joint distribution of $X_{t_1}, X_{t_2}, \dots, X_{t_n}$ is the same as that of $X_{t_1+h}, X_{t_2+h}, \dots, X_{t_n+h}$ for all $n, h, t_1, t_2, \dots, t_n \in N$.

i.e., a strictly stationary time series preserves all statistical properties over time shift.

Problems:

- We often can't specify the joint distribution of these random variables and so this assumption is usually
 impossible to check.
- Also, this assumption tends to be too strict and is not often met.

This motivates the need for a weaker version of stationarity.

But first...

Let $\{X_t\}$ be a time series.

- The mean function of $\{X_t\}$ is $\mu_X(t) = E(X_t)$,
- The covariance function of $\{X_t\}$ is $\gamma_X(r,s) = Cov(X_r,X_s) = E(X_rX_s) \mu_X(r)\mu_X(s)$.

Weak stationarity

A time series $\{X_t\}$ is weakly stationary if $E(X_t^2) < \infty$ and:

- $\{X_t\}$ is $\mu_X(t) = E(X_t)$ is independent of t,
- $\gamma_X(t, t+h) = Cov(X_t, X_{t+h})$ is independent of t for all h.
 - covariance depends on h but not t

Remarks:

- Strict stationarity ==> weak stationarity
- From now on, "stationarity" means weak stationarity
- For a stationary time series $\{X_t\}$:

$$- E(X_t) = \mu_X - Cov(X_t, X_{t+h}) = \gamma_X(t, t+h) = \gamma_X(0, h) = \gamma_X(h)$$

Definitions

Let $\{X_t\}$ be a stationary time series.

- The autocovariance function (ACVF) of $\{X_t\}$ at lag h is $\gamma_X(h)$.
- The autocorrelation function (ACF) of $\{X_t\}$ at lag h is $\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = Corr(X_t, X_{t+h})$.
- $\gamma_X(h) = \gamma_X(-h)$.

Examples

First Order Autoregression: AR(1)

Assume $\{X_t\}$ is a stationary time series satisfying the equations

$$X_t = \Phi X_{t-1} + Z_t$$

for $t \in Z$, $|\Phi| < 1$ and $Z_t \sim WN(0, \sigma^2)$. Also assume Z_t and X_s are uncorrelated for all s < t. Calculate the ACVF and ACF of $\{X_t\}$.

- $E(X_t) = \Phi E(X_{t-1}) + E(Z_t) \to E(X_t) = \Phi E(X_{t-1}) \to E(X_t) = 0$ since $\{X_t\}$ is stationary.
- $\gamma_X(h) = Cov(X_t, X_{t-h}) = E(X_t X_{t-h}) = E(\Phi X_{t-1} X_{t-h} + Z_t X_{t-h}) = \Phi E(X_{t-1} X_{t-h}) + E(Z_t X_{t-h}) = \Phi E(X_{t-1} X_{t-h}) = \Phi \gamma_X(h-1) = \Phi^h \gamma_X(0)$ (assume h > 0).

By stationarity, $\gamma_X(h) = \gamma_X(-h)$ so $\gamma_X(h) = \Phi^{|h|}\gamma_X(0)$

- $\gamma_X(0) = Cov(X_t, X_t) = E(X_t^2) = E(\Phi^2 X_{t-1}^2 + 2\Phi X_{t-1} Z_t + Z_t^2) = \Phi^2 E(X_{t-1}^2) + 2\Phi E(X_{t-1} Z_t) + 2\Phi E(X_t Z_t) + 2\Phi E(X_$ $E(Z_t^2) = \Phi^2 \gamma_X(0) + \sigma^2 \Rightarrow \gamma_X(0) = \frac{\sigma^2}{1 - \sigma^2}$
- $\therefore \gamma_X(h) = \frac{\Phi^{|h|} \sigma^2}{1 \Phi^2} \text{ for } h \in Z$

$$\therefore \rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \Phi^{|h|} \text{ for } h \in Z$$

ACF signature for AR(1) is exponential decay.

First Order Moving Average: MA(1)

Consider process $X_t = Z_t + \theta Z_{t-1}$ where $t \in N$ and $\{Z_t\} \sim WN(0, \sigma^2)$ and $\theta \in R$. Show $\{X_t\}$ is stationary and derive its ACF.

- $\mu_X = E(X_t) = E(Z_t) + \theta E(Z_{t-1}) = 0$ for all t.
- $\theta Cov(Z_{t-1}, Z_{t+h}) + \theta^2 Cov(Z_{t-1}, Z_{t+h-1})$

$$\gamma_X(h) = \begin{cases} \sigma^2(1+\theta^2) & \text{if } h = 0\\ \theta \sigma^2 & \text{if } h = \pm 1\\ o & \text{oterwise} \end{cases} \leftarrow \text{independent of t.}$$

(Reminder: Cov(X + Y, W + Z) = Cov(X, W) + Cov(X, Z) + Cov(Y, W) + Cov(Y, Z))

- $\therefore \{X_t\}$ is stationary.
 - $\gamma_X(0) = \sigma^2(1 + \theta^2)$

and $\rho_X(h) = \frac{\gamma_X(h)}{\gamma_X(0)} = \{1 \text{ if } h = 0, \frac{\theta}{1+\theta^2} \text{ if } h \pm 1, 0 \text{ otherwise.} \}$

ACF signature of MA(1) is a spike for h = 0, 1 and then nothing for h > 1.

We've seen that the ACF can provide information regarding which model may be appropriate for an observed time series. To do this in practice, we need a sample estimate of the ACF.

Definitions

Let x_1, x_2, \ldots, x_n be our observed time series.

- the sample mean is $\hat{\mu}_x = \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i$, the sample autocovariance is $\hat{\gamma}_x(h) = \frac{1}{n} \sum_{t=1}^{n-h} (x_{t+h} \bar{x})(x_t \bar{x})$,

• the sample autocorrelation is $\hat{\rho}_x(h) = \frac{\hat{\gamma}_x(h)}{\hat{\gamma}_x(0)}$

Note:

- θ , a Greek letter, denotes a paramters (unknown number),
- $\hat{\theta}$, is a sample estimate of θ (known number),
- $\tilde{\theta}$, is an estimator, a random variable.

The sample ACF can be used to investigate the "uncorrelatedness" in a time series. For example, we might use this to evaluate the uncorrelated assumption in residuals.

(Reminder: independence \Rightarrow uncorrelated; uncorrelated \neq independence)

For stationary time series, $\tilde{\rho}(h) \sim N(0, \frac{1}{n})$ (n = number of data points).

Consequently, an approximate 95% confidence interval for $\rho_x(h)$ is $\pm \frac{1.96}{\sqrt{n}}$.

If $\tilde{\rho}(h)$ falls outside these limits, for any h, we judge this to be significant.

 $SACF\ Examples.R$

10/27/16

Recap

- Autocovariance function (ACVF): $\gamma_X(h) = Cov(X_t, X_{t-h})$ for all $h \in Z$
- <u>Autocorrelation function</u> (ACF): $\rho_X(h) = Corr(X_t, X_{t-h}) = \frac{\gamma_X(h)}{\gamma_X(0)}$
 - Properties of ACVF:
 - * $\gamma_X(0) = Var(X_t)$ * $\gamma_X(-h) = \gamma_X(h)$ * $|\rho_X(h)| \le 1$

Why is stationarity important?

In order to build a model that forecasts with any accuracy, we require an assumptions that something doesn't vary with time. After accounting for deterministic trend and/or seasonality, we hope that the remaining randomness can be described as stationary.

In the Box-Jenkins class of models, we can use AR (autoregressive), MA (moving average), and ARMA models to model stationary time series.

First, notation:

Backshift operator: B, where $BX_t = X_{t-1}$ i.e. $B^2X_t = X_{t-2}$.

Generally, $B^n X_t = X_{t-n}$ and $B^0 = I$

MA(q) Process

A process/time series $\{X_t\}$ is called a moving average process of order q if

$$X_t = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \ldots + \theta_q \epsilon_{t-q}$$

where $\{\epsilon_t\} \sim WN(0, \sigma^2)$ and $\theta_1, \theta_2, \dots, \theta_q$ are constants.

Remarks:

- MA(q) processes are stationary (exercise: prove this!)
- An MA(q) process is **q-correlated** (i.e., $\rho_X(h) = Corr(X_t, X_{t-h}) = 0$ for h > q and not necessarily 0 for $h \le q$)

Thus, the ACF signature of an MA(q) process is non-zero spikes for h = 0, 1, 2, ..., q and then no spikes for ever after.

- An MA(q) process can be denoted as: $X_t = \epsilon_t + \theta_1 B^1 \epsilon_t + \ldots + \theta_q B^q \epsilon_t = (1 + \sum_{s=1}^q \theta_s B^s) \epsilon_t = \theta^q(B) \epsilon_t$ where $\theta^q(z) = 1 + \sum_{s=1}^q \theta_s z^s$ is the **generating function**.
 - An MA(q) is **invertible** if the complex roots of $\theta^q(z)$ lie outside the unit circle. i.e. For all z such that $\theta^q(z) = 0$, then |z| > 1.

Example

$$X_t = \epsilon_t + 0.2\epsilon_{t-1} + 0.7\epsilon_{t-2}$$

$$\theta(z) = 1 + 0.2z + 0.7z$$

The roots of
$$\theta(z)$$
 are $z = \frac{-0.2 \pm \sqrt{0.2^2 - 4(0.7)(1)}}{2(0.7)} = \frac{-0.2 \pm \sqrt{2.76}i}{1.4} \Rightarrow z = -0.14 \pm 1.19i$

$$|z| = \sqrt{(-0.14)^2 + (1.19)^2} = 1.198 > 1$$

So $\{X_t\}$ is invertible.

Reminders:

- The zeros of a quadratic of the form $ax^2 + bx + c$ are $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- $c = a + ib \Rightarrow |c| = \sqrt{a^2 + b^2}$

AR(p) Process

The process $\{X_t\}$ is called an autoregressive process of order p if

$$X_t = \Phi_1 X_{t-1} + \Phi_2 X_{t-2} + \ldots + \Phi_n X_{t-n} + \epsilon_t$$

where $\epsilon_t \sim WN(0, \sigma^2)$ and $\Phi_1, \Phi_2, \dots, \Phi_p$ are constants.

• An AR(p) process can be denoted as:

$$X_t - \Phi_1 X_{t-1} - \Phi_2 X_{t-2} - \dots - \Phi_p X_{t-p} = \epsilon_t$$

$$\Leftrightarrow X_t - \Phi_1 B^1 X_t - \Phi_2 B^2 X_t - \ldots - \Phi_p B^p X_t = \epsilon_t$$

$$\Leftrightarrow (1 - \sum_{r=1}^{p} \Phi_r B^r) X_t = \epsilon_t$$

$$\Leftrightarrow \Phi^p(B)X_t = \epsilon_t$$

where $\Phi^p(z) = 1 - \sum_{r=1}^p \Phi_r z^r$ is the **generating function**.

• An AR(p) process is **stationary** is the complex roots of $\Phi^p(z)$ lie outside the unit circle. i.e. For all z such that $\Phi(z) = 0$, we require |z| > 1.

Example

$$X_t = \Phi X_{t-1} + \epsilon_t \Rightarrow (1 - \Phi B) X_t = \epsilon_t$$

$$\Phi(z) = 1 - \Phi z \Rightarrow \Phi(z) = 0 \text{ if } z = \frac{1}{\Phi}$$

For stationarity, we need $|z| > 1 \Rightarrow |\frac{1}{\Phi}| > 1 \Rightarrow |\Phi| > 1$.

Partial Autocorrelation Function(PACF)

For a stationary process, the ACF of lag h measures the correlation between X_t and X_{t+h} . This correlation could be due to a direct connection between X_t and X_{t+h} , but it may also be influenced by observations at intermediate lags: $X_{t+1}, X_{t+2}, \ldots, X_{t+h-1}$.

The PACF of lag h measures the correlation between X_t and X_{t+h} once the influence of the intermediate lags has been removed/accounted/controlled for.

We remove this effect using linear predictors:

$$\hat{X}_{t} = Pred(X_{t}|X_{t+1}, X_{t+2}, \dots, X_{t+h-1})$$

$$\hat{X}_{t+h} = Pred(X_{t+h}|X_{t+1}, X_{t+2}, \dots, X_{t+h-1})$$

where this prediction is commonly based on a linear regression.

Thus, for a stationary time series $\{X_t\}$, the partial autocorrelation function of lag h is: $\alpha_X(h) =$

$$\begin{cases} Corr(X_t, X_t) = 1, & \text{if } h = 0 \\ Corr(X_t, X_{t+1}) = \rho_X(1), & \text{if } h = 1 \\ Corr(X_t, X_{t+h}) = Corr(X_t - \hat{X}_t, X_{t+h} - \hat{X}_{t+h}) & \text{if } h > 1 \end{cases}$$

(assume without loss of generality that $h \geq 0$)

Example

Derive the PACF of an AR(1) process $X_t = \Phi X_{t-1} + \epsilon_t$.

$$\alpha_X(h) = \begin{cases} 1 & \text{if } h = 0\\ \rho(1) = \Phi & \text{if } h = 1 \end{cases}$$

If h = 2:

•
$$\alpha(2) = Corr[X_t - \hat{X}_t, X_{t+2} - \hat{X}_{t+2}] = Corr[X_t - f(X_{t+1}), X_{t+2} - \Phi X_{t+1}] = Corr[X_t - f(X_{t+1}), \epsilon_{t+2}] = Corr[X_t, \epsilon_{t+2}] - Corr[f(X_{t+1}), \epsilon_{t+2}] = 0 - 0 = 0$$

We can see that $\alpha(h) = 0$ for any $h \geq 2$.

So PACF for an AR(1) has non-zero spikes for h = 0, 1 and is zero for all $h \ge 2$.

Remarks:

- If $\{X_t\} \sim AR(p)$, then the PACF satisfies $\alpha(h) = 0$ for all h > p and $\alpha(h) \neq 0$ necessarily for $h \leq p$.
- Whereas an ACF can be used to determine the order of an MA process, a PACF can be used to determine the order of an AR process.

ARMA(p,q) Process

 $\{X_t\}$ is an autoregressive moving average process of orders p and q if

$$X_t - \Phi_1 X_{t-1} - \Phi_2 X_{t-2} - \dots - \Phi_p X_{t-p} = \epsilon_t + \theta_1 \epsilon_{t-1} + \theta_2 \epsilon_{t-2} + \dots + \theta_q \epsilon_{t-q}$$
$$\Phi^p(B) X_t = \theta^q(B) \epsilon_t$$

where $\{\epsilon_t\} \sim WN(0, \sigma^2)$ and $\Phi^p(z)$ and $\theta^q(z)$ are the AR and MA generating functions, and we require them to have distinct roots.

Remark:

- ARMA(p, 0) = AR(p)
- ARMA(0, q) = MA(q)

Example: ARMA(1,2)

$$\Phi^{1}(B)X_{t} = \theta^{2}(B)\epsilon_{t} \Rightarrow (1 - \Phi B)X_{t} = (1 + \theta_{1}B + \theta_{2}B^{2})\epsilon_{t} \Rightarrow X_{t} - \Phi X_{t-1} = \epsilon_{t} + \theta_{1}\epsilon_{t-1} + \theta_{2}\epsilon_{t-2}$$
We require
$$\begin{cases} \Phi^{1}(z) = 1 - \Phi z \\ \theta^{2}(z) = 1 + \theta_{1}z + \theta_{2}z^{2} \end{cases}$$

	\mathbf{ACF}	PACF
$\overline{\mathrm{MA}(\mathrm{q})}$	Spike for $h \leq q$ and negligibly small spikes for $h > q$	Exponential decay
$\overline{\rm AR(p)}$	Exponential decay	Spikes for $h \leq p$ and "nothing" for $h > p$
$\overline{\text{ARMA}(p,q)}$	q spikes then decay	p spikes then decay

11/01/16

ARMA Stationarity and Invertibility Conditions

ARMA(p,q):
$$\Phi(B)X_t = \theta(B)\epsilon_t$$
, $\{\epsilon_t\} \sim WN(o, \sigma^2)$

where
$$\Phi(z) = 1 - \Phi_1 z - \Phi_2 z^2 - \dots - \Phi_p z^p$$

and
$$\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \ldots + \theta_q z^q$$
.

 $\{X_t\} \sim ARMA(p,q)$ is stationary if

• $\Phi(z) = 1 - \Phi_1 z - \Phi_2 z^2 - \dots - \Phi_p z^p \neq 0$ for all z such that $|z| \leq 1$ i.e., the modulus of all roots/zeros are > 1 (the complex roots of this generating function lie outside the unit circle in the complex plane).

A causal ARMA process is stationary.

 $\{X_t\} \sim ARMA(p,q)$ is invertible if

• $\theta(z) = 1 + \theta_1 z + \theta_2 z^2 + \ldots + \theta_q z^q \neq 0$ for all z such that $|z| \leq 1$ i.e., the modulus of all roots/zeros are > 1 (the complex roots of this generating function lie outside the unit circle in the complex plane).

This criterion is equivalent to requiring that ϵ_t can be written as an infinite weighted sum of the X_t 's.

Note: we require an MA(q) process, or the MA component of an ARMA(p,q) process to be invertible so that

• (i) we can estimate the θ 's in the model

• (ii) we can forecast with the model

For the sake of usefulness, we'll restrict attention to ARMA(p,q) models that are stationary/causal and invertible.

Example (quiz question)

ARMA(2,1)

$$\Phi^2(B)X_t = \theta^1(B)\epsilon_t$$

• Represent this in "expanded notation"

$$(1 - \Phi_1 B - \Phi_2 B^2) X_t = (1 + \theta B) \epsilon_t$$

$$X_t - \Phi_1 X_{t-1} - \Phi_2 X_{t-2} = \epsilon_t + \theta \epsilon_{t-1}$$

Let
$$\Phi_1 = 0.75$$
, $\Phi_2 = -0.5625$, $\theta = 1.25$

• Is $\{X_t\}$ stationary?

$$\Phi^2(z) = 1 - 0.75z + 0.5625z^2$$

$$\Rightarrow \Phi^2(z) = 0 \Leftrightarrow z = \tfrac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \tfrac{0.75 \pm \sqrt{0.75^2 - 4(0.5625)(1)}}{2(0.5625)} = 2(\tfrac{1 \pm \sqrt{-3}}{3}) = \tfrac{2 \pm 2i\sqrt{3}}{3}$$

$$\Rightarrow z_1 = \frac{2}{3} - \frac{2\sqrt{3}}{3}i, z_2 = \frac{2}{3} + \frac{2\sqrt{3}}{3}i$$

$$\Rightarrow |z_1| = |z_2| = \sqrt{(2/3)^2 + (2\sqrt{3}/3)^2} = \frac{4}{3}$$

So
$$|z_1| = |z_2| > 1$$
.

 \therefore this ARMA(2,1) process is stationary.

• Is $\{X_t\}$ invertible?

$$\theta(z) = 1 + 1.25z$$

$$\Rightarrow \theta(z) = 0 \Leftrightarrow 1 + 1.25z = 0 \Leftrightarrow z = -0.8$$

$$\Rightarrow |z| = 0.8 < 1.$$

 \therefore this ARMA(2,1) process is **not** invertible.

Note: also, the roots of the polynomials are **distinct**, so the process is in fact an ARMA(2,1) process, and not a simpler one.

In practice, with an observed time series, we decide whether it is stationary and/or invertible with "unit root tests".

"Box-Jenkins Approach"

- **Identification**: identify the orders of the model \leftarrow use ACF/PACF plot
- Estimation: estimate the parameters of the model identified in step 1
- Verification: ensure that the model is appropriate \leftarrow residual diagnostics

Estimating ARMA(p,q) Models

Goal: estimate $\Phi_1, \Phi_2, \dots, \Phi_p, \theta_1, \theta_2, \dots, \theta_q, \sigma^2$ in a stationary and invertible ARMA(p,q) process: $\Phi^p(B)X_t = \theta^q(B)\epsilon_t$.

• we assume that $\{X_t\}$ has zero mean, or has been "mean-corrected"

These parameters are estimated using the observed time series $\{x_1, x_2, \dots, x_n\}$.

Many methods (cf. Chap. 5) exist for doing this, but we'll just focus, at a high level, on Maximum Likelihood and Least Squares.

Maximum Likelihood method for ARMA(p,q)

- We have to make distributional assumptions, which may not be valid
- We typically assume $\{X_t\}$ is a "Gaussian" time series i.e., $\vec{X} = (X_1, X_2, \dots, X_n)^T \sim MVN$
 - This seems limiting, but in practice it's not bad

 $L(\Phi_1, \Phi_2, \dots, \Phi_p, \theta_1, \theta_2, \dots, \theta_q, \sigma^2 | \vec{x}) = \frac{1}{(2\pi)^{n/2} |\Gamma_n|^{1/2}} \exp\left\{-\frac{1}{2} \vec{x}^T \Gamma_n^{-1} \vec{x}\right\}$ where $\vec{x} = (x_1, x_2, \dots, x_n)^T$ and $\Gamma_n = Cov(\vec{X}, \vec{X}^T)$ (this is the matrix with $\gamma_X(0)$ in the diagonal, $\gamma_X(1)$ in the 1-subdiagonals, ..., $\gamma_X(n-1)$ in the two corners)

We want to find the values of the parameters that maximize this function in light of the observed data. We typically numerically maximize $l(\cdot)$, the log-likelihood function to find $(\hat{\Phi}_1, \hat{\Phi}_2, \dots, \hat{\Phi}_n, \hat{\theta}_1, \hat{\theta}_2, \dots, \hat{\theta}_q, \hat{\sigma}^2)$.

The usual asymptotic properties of MLE exist here as well. This is the basis for CI calculations.

Least Squares method for ARMA(p,q)

The goal is to minimize $S(\Phi, \theta) = S(\Phi_1, \Phi_2, \dots, \Phi_p, \theta_1, \theta_2, \dots, \theta_q)$ rather than maximize $L(\cdot)$, where

$$S(\Phi, \theta) = \sum_{j=1}^{n} \frac{(X_j - \hat{X}_j)^2}{r_{j-1}}$$

where $E[(X_j - \hat{X}_j)^2] = \sigma^2 r_{j-1} \to \text{LSE of } \sigma^2 \text{ is } \hat{\sigma}^2 = \frac{S(\hat{\Phi}, \hat{\theta})}{n-p-q}$ $(r_{j-1} = Var(X_j - \hat{X}_j))$

LSE is good because no distributional assumptions need to be made.

11/03/16

Order Selection

- Choose p and q "optimally".
- Use "goodness of fit" methods to compare different models.
 - $-l(\hat{\theta}, \hat{\Phi}) = \text{maximized log-likelihood.} \leftarrow \text{we want this to be big}$
 - $-\hat{\sigma}^2$ = estimate of the error variance σ^2 . \leftarrow we want this to be small
 - $-AIC = -2l(\hat{\theta}, \hat{\Phi}) + 2(p+q+1)$. \leftarrow we want this to be small
- It's sensible to consider all 3 of these, but an "optimal" model for one may not be the "optimal" model according to another.

• A disadvantage to LSE is that we don't have a likelihood function and so $l(\hat{\theta}, \hat{\Phi})$ and AIC are not available goodness of fit metrics in this case.

$ARMA\ Fitting\ Example.R$

We can compare the fit of two models using a likelihood ratio test (LRT).

 $\begin{cases} H_0: & \text{null and alternative models fit equally well} \\ H_a: & \text{alternative model fits better than the null} \end{cases}$

Note: the null model is simples (has fewer parameters) relative to the alternative.

$$D = -2\log\left(\frac{L(null\ model)}{L(alt.\ model)}\right) \sim \mathbf{X}_{(m_A - m_0)}^2$$

null model has m_o parameters, alt.model has m_A parameters, $m_A > m_0$.

$$D = -2(l(null\ model) - l(alt.\ model))$$

Larger values of D lead to rejection of H_0 . p-value = $P(W \ge D) = 1 - P(W < D)$ where $W \sim X_{m_A - m_0}^2$

Verification (Residual Diagnostics)

Suppose $\{X_t\}$ is a time series and we believe an ARMA(p,q) model can model it. We'll call the **fitted value** at time t \hat{X}_t . We define the residuals as

$$\hat{e}_t = X_t - \hat{X}_t$$
 for $t = 1, 2, \dots, n$

If assumptions are met, the residual time series $\{\hat{e}_t\}$ should behave like the white nois sequence that generated the ARMA(p,q) process. In particular, we should find that $\{\hat{e}_t\}$

- i. have approximately zero mean
- ii. have a constant variance
- iii. are uncorrelated (/ independent iff $\{\epsilon_t\} \sim IID(0, \sigma^2)$)
- iv. are normally distributed (if $\{\epsilon_t\} \sim N(0, \sigma^2)$) \leftarrow only if you are not using MLE

We can either work with the residuals, \hat{e}_t , or the **standardized residuals**, $\hat{r}_t = \frac{\hat{e}_t}{\hat{\sigma}}$ (expect the variance to be 1).

Informal Diagnostics (plots)

- Plot \hat{e}_t vs. t (or \hat{r}_t vs. t)
 - change of variability with time? i.e. heteroskedasticity
 - * this checks ii.
 - check whether points are scattered symmetrically around 0
 - * this checks i.
 - systematic trends in the residuals can suggest correlation
 - * this checks iii.
 - check for outliers (using \hat{r}_t is sensible)

- ACF of \hat{e}_t (or \hat{r}_t)
 - use this to check whether residuals seem to be correlated
 - * this checks iii.
 - should see no significant spikes for h > 0
- QQ-plot or histogram
 - use this to check whether the residuals seem normally distributed
 - * this checks iv.

Formal Disgnostics (hypothesis tests)

- To check $E[\epsilon_t]$, do a one-sample t-test of the residuals
- To check heteroskedasticity, we can use Bartlett's Test or Levene's Test
 - these tests require us to partition the data set (the residuals) into k groups. The goal is to look for homogeneity of variance among these groups

$$-\begin{cases} H_0: \sigma_1^2 = \sigma_2^2 = \dots = \sigma_k^2 \\ H_a: \sigma_i^2 \neq \sigma_j^2 \end{cases} \quad \text{for some } i \neq j$$

- Bartlett's test is sensitive to non-normality, but Levene's test isn't. But if the data are normally distributed, Bartlett's test is more powerful
- To check uncorrelatedness, we're interested in testing

$$-\begin{cases} H_0: \rho(1) = \rho(2) = \dots = \rho(H) = 0 \\ H_a: \rho(h) \neq 0 \end{cases}$$
 for some $h = 1, 2, \dots, H$

- we prefer this test as opposed to using an ACF because it avoids the **multiple hypothesis** testing problem
- we use "Portmanteau" tests in this case. We consider the **Ljung-Box** test
- To check for normality, use the Shapiro-Wilk test where

$$-\begin{cases} H_0: \{\hat{e}_t\} \sim N(0, \sigma^2) \\ H_a: \{\hat{e}_t\} \nsim N(0, \sigma^2) \end{cases}$$