Motivation Model and Tests Simulation results Empirical results Conclusion and remarks

Testing the Power and the Size of the Andrews and Ploberger-test by using Simulation on Generated Data

Youssouf Camara

Panorisk, July 12, 2017

Motivation

- In econometrics, a structural break is an unexpected shift in a time series.
- Causes :
 - Global shifts in capital and labor, changes in resource availability or a change in political system.
- Examples:
 - Crisis: subprime mortgage crisis (2008), great depression (1929), oil crisis (1973, 1979); wars; trade or financial openness.
- Structural change is possible because of the dynamic nature of the economic system.
- Consequences:
 - Huge forecasting errors and unreliability of the model in general

Motivation

- Several studies which have been conducted by organizations (FED, IMF, NBER,...) show that the series are stationary on the sub-periods, but unstable over the whole sample.
- ② AP (1994) revolutionizes the detection of a structural break at an "unknown" period of stationary series.
 - While Chow (1960), Cusum (Evans, Brown, Durbin 1975), it was assumed "known".
- Bai and Perron (1998) offering a broader method namely the detection of several breaks in one optimization algorithm.
- Bruce E. Hansen (2003) proposes a method asymptotically robust to heteroskedasticity from bootstrap simulation.
 - He gives a new p-value for SupF initially submitted by AP.

Model

For computing this simulation (monte-carlo), we use a stationary first-order autoregression AR(1) because the test can be applied only to stationary series :

$$Y_t = c + \rho Y_{t-1} + \varepsilon_t \tag{1}$$

$$egin{aligned} |
ho| &< 1 \ arepsilon_t \sim \textit{iid}(E(arepsilon_t) = 0, V(arepsilon_t) = \sigma^2) \ E(Y_t) &= \mu = rac{c}{1-
ho} \end{aligned}$$

Andrews and Ploberger-test

AP used a model like this:

$$Y = \begin{cases} X \cdot \beta + \varepsilon & \text{under } H_0 \\ X \cdot \beta + X \cdot \theta_t + \varepsilon & \text{under } H_1 \end{cases}$$
 (2)

Under H_0 we find up the unconditional variance :

$$\sigma^2 = \frac{\sum_{i=1}^T e_i^2}{T - m} \tag{3}$$

For any fixed t, this regression under H_1 can be estimated by OLS yielding estimates $(\widehat{\beta}, \widehat{\theta_t})$ and giving conditional variance :

$$\sigma_t^2 = \frac{\sum_{i=1}^T e_{ti}^2}{T - 2m} \tag{4}$$

Andrews and Ploberger-test

Therefore, with conditional and unconditional variance, we will estimate the test statistic of AP like that *ExpF*, *AveF*, *MeanF*, *SupF*. However, for the simulation, we will use *SupF* given by Hansen:

$$F_{t} = \frac{(T-m)\hat{\sigma}^{2} - (T-2m)\hat{\sigma}_{t}^{2}}{\hat{\sigma}_{t}^{2}}$$
 (5)

$$SupF = max(F_t) \tag{6}$$

Design

- Step 1. Generate Y_t as specified in equation (1) for t = 1,...,T;
- Step 2. Estimate the model with OLS to obtain $\widehat{\beta}$ and compute SupF, as in equation (3);
- Step 4. Compute the percentage of SupF rejections when compared to the asymptotic critical values to Hansen (1997) (for 1% is 16.4, 5% is 12.9, 10% is 11.2);
- Step 3. Repeat steps 1 to 3, Routine= 5000 times for many sample sizes (100, 250, 500 and 1000 observations);
- Step5. The resulting percentage is the empirical test size.

Results of simulation analysis of test size

For example
$$Y_t = 0.8 Y_{t-1} + \varepsilon_t$$
 (7)

Table 1:Size of the test for ho=0.8 when H_0 is true

Nominal Size	1%	5%	10%
T=100	0.16	0.70	1.72
T=250	0.10	0.62	1.48
T=500	0.12	0.72	1.40
T=1000	0.10	0.56	1.20

Design

• For $\{Y_t\}_{t=1}^T$ where Y_t is real value such as :

$$Y_{t} = \begin{cases} \rho_{1} Y_{t-1} + \varepsilon_{t} & \text{if } t \leq t_{0} \\ \rho_{2} Y_{t-1} + \varepsilon_{t} & \text{otherwise} \end{cases}$$
 (8)

where t_0 represent the breakpoint date

For data generating, we use a loop and suppose that ho_1 and ho_2 are known $(
ho_1
eq
ho_2)$ and also $arepsilon_t \sim \mathcal{N}(0,1)$

- As the Type I error, we will repeat the same steps 1 to 5;
- However, we will constantly change the breakpoint date t_0 (like 25%T, 50%T and 75%T).

$$\rho^{a} = \begin{cases} \rho_{1} = 0.8 & \text{if } t \leq t_{0} \\ \rho_{2} = 0.2 & \text{else} \end{cases}$$
 (9)

Table 2: Power of the test for T=100 and ρ^a when H_0 is false

Nominal Size	1%	5%	10%
$t_0 = 0.25 * T$	1.86	0.42	0.08
$t_0=0.50*T$	21.88	8.64	4.64
$t_0 = 0.75 * T$	72.38	53.32	41.38

Table 3: Power of the test for T=1000 and ρ^a when H_0 is false

Nominal Size	1%	5%	10%
$t_0 = 0.25 * T$	0.00	0.00	0.00
$t_0=0.50*T$	0.00	0.00	0.00
$t_0=0.75*T$	0.00	0.00	0.00

$$\rho^d = \begin{cases}
\rho_1 = 0.6 & \text{if } t \le t_0 \\
\rho_2 = 0.8 & \text{otherwise}
\end{cases}$$
(10)

Table 13: Power of the test for T=100 and ρ^d when H_0 is false

Nominal Size	1%	5%	10%
$t_0 = 0.25 * T$	78.48	67	59.6
$t_0=0.50*T$	88.64	80.9	75.78
$t_0 = 0.75 * T$	96	92.18	89.54

Table 4: Power of the test for T=1000 and ρ^d when H_0 is false

Nominal Size	1%	5%	10%
$t_0 = 0.25 * T$	0.00	0.00	0.00
$t_0=0.50*T$	0.52	0.12	0.1
$t_0=0.75*T$	11.76	10.52	7.28

US inflation rate and DE GDP

US inflation rate and DE GDP

US inflation rate:

- The series is highly volatile (it looks like the missing)
- Presumption of non- stationary
- We make it stationary by differentiating it
- No break, SupF=2.8507

Germany GDP:

- The serie seems stationary but we all see breakpoint in 2009
- The AP-test detect the break because Sup is more than 25,6755

Conclusion and remarks

For the type I error, all value are closed to 0 so we can say that the test has a good size,

When T →, the % of rejections are relatively the same

For the type II error, the test is most powerful for the break on the begining of the series than the others parts,

- More power in the middle than in the end
- ullet When T>250, all values are closed to 0 for all breakpoints

Conclusion and remarks

- whatever the direction of ρ , AP-test totally shows his power when $T \longrightarrow \infty$,
- when ρ is high in the first sub-period and becomes small after the breakpoint, the test is less powerful than the inverse,
- AP-test is less powerful when the shock on the parameter is very weak,
- With an intercept into the model and if there is a break on this
 one whatever the importance of the shock and the size of the
 sample (even if T=100), the test finds his real power.

References I

- Andrews, W.K., (1993), Tests for Parameter Instability and Structural Change With Unknown Change Point, Econometrica, 61, 821-856
- Andrews, W.K., Ploberger W., (1994), Optimal Tests when a Nuisance Parameter is Present only Under the Alternative, Econometrica, 62, 1383-1414.
- Andrews, W.K., Lee, I., Ploberger, W., (1996), Optimal change point tests for normal linear regression, Journal of Econometrics, 70, 9-38.
- Bai, J., Perron P., (2003), Computation and Analysis of Multiple Structural Change Models, Journal of Applied Econometrics, 18, 1-22.

References II

.

THANK YOU FOR YOUR ATTENTION