Plan

- 2 Images
 - L'image en informatique
 - Bitmap vs vectoriel
 - Les principaux modèles d'images bitmap
 - Formats de stockage
 - Exemples de procédés de compression
 - Primitives graphiques

Exemple de codage - codage par similitude

Exemple de codage - codage par similitude

Information à coder :

Exemple de codage - codage par similitude

Information à coder :

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 1:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 1:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 1:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 1:

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

ightarrow codage :

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 1:

```
ightarrow codage : oxed{11} (longueur de la suite )
```

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 1:

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

```
→ codage : 11 20 50 3 100 10 35 7 24 6 8 14
```

(longueur de la suite valeurs de la suite)

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 2:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 2:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 2:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 2:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 2:

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68
```

 \rightarrow codage :

Exemple de codage - codage par similitude

Information à coder :

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6
```

Etape 2:

Exemple de codage - codage par similitude

Information à coder :

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6
```

Etape 2:

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

\rightarrow codage: 133 9

(longueur de la suite + 128 offset de la suite similaire)
```

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 3:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 3:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 3:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 3:

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68
```

 \rightarrow codage :

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 3:

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

```
→ codage : 3 (longueur de la suite
```

- 4 ロ ト 4 昼 ト 4 昼 ト - 夏 - 夕 9 0 0

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 3:

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68
```

```
\rightarrow codage : \boxed{3 \ 0 \ 68 \ 2} (longueur de la suite valeurs de la suite)
```

◆ロ → ◆母 → ◆ き → ◆ き ・ か へ ○

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 4:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 4:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68

Etape 4:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 4:

Exemple de codage - codage par similitude

Information à coder :

20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6

Etape 4:

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68
```

 \rightarrow codage :

Exemple de codage - codage par similitude

Information à coder :

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6
```

Etape 4:

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68  \rightarrow \text{codage}: \boxed{134}  (longueur de la suite + 128
```

Exemple de codage - codage par similitude

Information à coder :

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 6
```

Etape 4:

```
20 50 3 100 10 35 7 24 6 8 14 3 100 10 35 7 0 68 2 100 10 35 7 0 68 \rightarrow codage : 134 7 (longueur de la suite + 128 offset de la suite similaire)
```

Exemple de codage - codage par similitude

Exemple de codage - codage par similitude

Codage complet (20 octets) : 11 20 50 3 100 10 35 7 24 6 8 14 133 9 3 0 68 2 134 7

Exemple de codage - codage par similitude

Codage complet (20 octets) : 11 20 50 3 100 10 35 7 24 6 8 14 133 9 3 0 68 2 134 7

Passage d'une information non codée de taille 25 (octets) à une information codée de taille 20 (octets).

Exemple de codage - codage par similitude

Codage complet (20 octets) : 11 20 50 3 100 10 35 7 24 6 8 14 133 9 3 0 68 2 134 7

Passage d'une information non codée de taille 25 (octets) à une information codée de taille 20 (octets).

efficacité d'un code ou taux de compression :

taille information non codée

taille information codée

Exemple de codage - codage par similitude

Codage complet (20 octets) : 11 20 50 3 100 10 35 7 24 6 8 14 133 9 3 0 68 2 134 7

Passage d'une information non codée de taille 25 (octets) à une information codée de taille 20 (octets).

efficacité d'un code ou taux de compression :

taille information non codée

taille information codée

Taux de compression de l'exemple : $\frac{25}{20} = 1,25$

Principe de la compression JPEG

Principe de la compression JPEG

Utilisation de **transformée en Cosinus** : outil mathématique similaire à la **transformée de Fourier** utilisée en analyse/traitement du signal (onde, son, image, ...)

Principe de la compression JPEG

Défintion de la transformée en Cosinus :

Principe de la compression JPEG

Défintion de la transformée en Cosinus :

Image en niveaux de gris = tableau p: p(i,j) avec $1 \le i \le H$ et $1 \le i \le L$

Principe de la compression JPEG

Défintion de la transformée en Cosinus :

```
Image en niveaux de gris = tableau p: p(i,j) avec 1 \le i \le H et 1 \le i \le L \rightarrow transformée en cosinus de p = tableau t: t(k,l) avec 1 \le l \le H et 1 \le l \le L
```

Principe de la compression JPEG

Défintion de la transformée en Cosinus :

Image en niveaux de gris = tableau
$$p$$
:
$$p(i,j) \text{ avec } 1 \leq i \leq H \text{ et } 1 \leq i \leq L$$

$$\rightarrow \text{transformée en cosinus de } p = \text{tableau } t :$$

$$t(k,l) \text{ avec } 1 \leq l \leq H \text{ et } 1 \leq l \leq L$$

$$t(k,l) = \frac{2}{\sqrt{HL}} c_k c_l \times L$$

$$\sum_{i=1}^{H} \sum_{j=1}^{L} p(i,j) \cos \left(\frac{(2i-1)(k-1)\pi}{2H} \right) \cos \left(\frac{(2j-1)(l-1)\pi}{2L} \right)$$

avec $c_1 = \sqrt{1/2}$ et $c_n = 1$ pour n > 1

4 D > 4 A > 4 B > 4 B > B 90 0

Principe de la compression JPEG

Défintion de la transformée en Cosinus :

Image en niveaux de gris = tableau
$$p$$
: $p(i,j)$ avec $1 \le i \le H$ et $1 \le i \le L$ \rightarrow transformée en cosinus de p = tableau t : $t(k,l)$ avec $1 \le l \le H$ et $1 \le l \le L$
$$t(k,l) = \frac{2}{\sqrt{HL}} c_k c_l \times \sum_{i=1}^{L} \sum_{j=1}^{L} p(i,j) \cos \left(\frac{(2i-1)(k-1)\pi}{2H} \right) \cos \left(\frac{(2j-1)(l-1)\pi}{2L} \right)$$

avec
$$c_1=\sqrt{1/2}$$
 et $c_n=1$ pour $n>1$

Notation : t = DCT(p)

Principe de la compression JPEG

Défintion de la transformée en Cosinus :

```
Image en niveaux de gris = tableau p:
p(i, j) avec 1 < i < H et 1 < i < L
\rightarrowtransformée en cosinus de p = tableau t :
t(k, l) avec 1 < l < H et 1 < l < L
                                 t(k,l) = \frac{2}{\sqrt{HI}} c_k c_l \times
       \sum_{i=1}^{H} \sum_{j=1}^{L} p(i,j) \cos \left( \frac{(2i-1)(k-1)\pi}{2H} \right) \cos \left( \frac{(2j-1)(l-1)\pi}{2L} \right)
avec c_1 = \sqrt{1/2} et c_n = 1 pour n > 1
Notation : t = DCT(p)
t spectre de p
```

▲□▶ ▲□▶ ▲□▶ ▲□▶ ● めの○

67 / 89

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

Opération réversible (bijective) : calcul de p à partir de t

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

Opération réversible (bijective) : calcul de p à partir de t *Transformée en cosinus inverse* :

$$p(i,j) = \frac{2}{\sqrt{HL}} \times$$

$$\sum_{k=1}^{H} \sum_{l=1}^{L} c_k \ c_l \ t(k,l) \cos \left(\frac{(2i-1)(k-1)\pi}{2H} \right) \cos \left(\frac{(2j-1)(l-1)\pi}{2L} \right)$$

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

Opération réversible (bijective) : calcul de p à partir de t *Transformée en cosinus inverse* :

$$p(i,j) = \frac{2}{\sqrt{HL}} \times$$

$$\sum_{k=1}^{H} \sum_{l=1}^{L} c_k \ c_l \ t(k,l) \cos \left(\frac{(2i-1)(k-1)\pi}{2H} \right) \cos \left(\frac{(2j-1)(l-1)\pi}{2L} \right)$$

Notation : p = IDCT(t)

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

$$\left\{ \begin{array}{l} t1 = DCT(p1) \\ t2 = DCT(p2) \\ \alpha \text{ r\'eel} \end{array} \right\}$$

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

$$\left\{\begin{array}{l} t1 = DCT(p1) \\ t2 = DCT(p2) \\ \alpha \text{ réel} \end{array}\right\}$$

$$\Rightarrow \left\{ \begin{array}{c} t1 + t2 = DCT(p1 + p2) \\ \alpha \ t1 = DCT(\alpha \ p1) \end{array} \right\}$$

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

$$\left\{ \begin{array}{l} t1 = DCT(p1) \\ t2 = DCT(p2) \\ \alpha \text{ réel} \end{array} \right\}$$

$$\Rightarrow \left\{ \begin{array}{c} t1 + t2 = DCT(p1 + p2) \\ \alpha \ t1 = DCT(\alpha \ p1) \end{array} \right\} \ \text{et} \ \left\{ \begin{array}{c} p1 + p2 = IDCT(t1 + t2) \\ \alpha \ p1 = IDCT(\alpha \ t1) \end{array} \right\}$$

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

Opération linéaire :

$$\left\{ \begin{array}{l} t1 = DCT(p1) \\ t2 = DCT(p2) \\ \alpha \text{ réel} \end{array} \right\}$$

$$\Rightarrow \left\{ \begin{array}{c} t1 + t2 = DCT(p1 + p2) \\ \alpha \ t1 = DCT(\alpha \ p1) \end{array} \right\} \ \text{et} \ \left\{ \begin{array}{c} p1 + p2 = IDCT(t1 + t2) \\ \alpha \ p1 = IDCT(\alpha \ t1) \end{array} \right\}$$

petite (resp. grande) modification d'une image p

▲□▶ ▲□▶ ▲□▶ ▲□▶ ● めの○

Principe de la compression JPEG

Propriétés de la transformée en Cosinus :

Opération linéaire :

$$\left\{\begin{array}{l} t1 = DCT(p1) \\ t2 = DCT(p2) \\ \alpha \text{ réel} \end{array}\right\}$$

$$\Rightarrow \left\{ \begin{array}{c} t1 + t2 = DCT(p1 + p2) \\ \alpha \ t1 = DCT(\alpha \ p1) \end{array} \right\} \ \ \text{et} \ \left\{ \begin{array}{c} p1 + p2 = IDCT(t1 + t2) \\ \alpha \ p1 = IDCT(\alpha \ t1) \end{array} \right\}$$

petite (resp. grande) modification d'une image p

petite (resp. grande) modification sur la transformée t

Principe de la compression JPEG

Principe de la compression JPEG

Image p en 256 niveaux de gris de dimensions 8×8

Principe de la compression JPEG

96	104	112	120	128	136	144	152
104	0	0	0	0	0	255	160
112	120	128	0	255	152	160	168
120	128	136	0	255	160	168	176
128	136	144	0	255	168	176	184
136	144	152	0	255	176	184	192
144	152	160	0	255	184	192	200
152	160	168	176	184	192	200	208

Image p en 256 niveaux de gris de dimensions 8×8

Principe de la compression JPEG

1113.25	-217.33	106.91	108.52	-34.50	-146.79	-4.50	236.23
-206.35	-24.04	47.01	-25.62	19.67	88.87	-37.90	-23.01
-19.71	11.19	10.96	-75.18	17.22	135.77	-21.86	-122.49
-9.68	5.64	0.28	6.01	-13.27	-20.85	13.57	5.39
78.25	37.48	-74.90	-26.72	10.00	-2.97	17.76	-66.08
77.13	28.36	-68.80	30.22	-12.98	-104.84	39.17	27.14
92.86	35.93	-85.61	2.21	3.68	-59.46	28.28	-20.78
47.13	16.06	-41.60	17.12	-5.34	-59.38	21.10	15.37

Tableau t, transformée de p

Principe de la compression JPEG

06	101	110	100	100	126	1 / /	150
96	104	112	120	128	136	144	152
104	0	0	0	0	0	255	160
112	120	128	0	255	152	160	168
120	128	136	0	255	160	168	176
128	136	144	0	255	168	176	184
136	144	152	0	255	176	184	192
144	152	160	0	255	184	192	200
152	160	168	176	184	192	200	208

Transformée inverse de t: image p

Principe de la compression JPEG

Transformée inverse de t: image p

Principe de la compression JPEG

Modifier en simplifiant le tableau t afin de le stocker en utilisant un procédé de compression réversible.

Principe de la compression JPEG

Principe de la compression JPEG

Image p en 256 niveaux de gris de dimensions 8×8

Principe de la compression JPEG

96	104	112	120	128	136	144	152
104	0	0	0	0	0	255	160
112	120	128	0	255	152	160	168
120	128	136	0	255	160	168	176
128	136	144	0	255	168	176	184
136	144	152	0	255	176	184	192
144	152	160	0	255	184	192	200
152	160	168	176	184	192	200	208

Image p en 256 niveaux de gris de dimensions 8×8

Principe de la compression JPEG

1113.25	-217.33	106.91	108.52	-34.50	-146.79	-4.50	236.23
-206.35	-24.04	47.01	-25.62	19.67	88.87	-37.90	-23.01
-19.71	11.19	10.96	-75.18	17.22	135.77	-21.86	-122.49
-9.68	5.64	0.28	6.01	-13.27	-20.85	13.57	5.39
78.25	37.48	-74.90	-26.72	10.00	-2.97	17.76	-66.08
77.13	28.36	-68.80	30.22	-12.98	-104.84	39.17	27.14
92.86	35.93	-85.61	2.21	3.68	-59.46	28.28	-20.78
47.13	16.06	-41.60	17.12	-5.34	-59.38	21.10	15.37

Tableau t, transformée de p

Principe de la compression JPEG

139	-27	13	14	-4	-18	-1	30
-26	-3	6	-3	2	11	-5	-3
-2	1	1	-9	2	17	-3	-15
-1	1	0	1	-2	-3	2	1
10	5	-9	-3	1	0	2	-8
10	4	-9	4	-2	-13	5	3
12	4	-11	0	0	-7	4	-3
6	2	-5	2	-1	-7	3	2

Tableau tr avec $tr(i,j) = \operatorname{arrondi}(t(i,j)/8)$

Principe de la compression JPEG

Stockage des valeurs de tr

Principe de la compression JPEG

Ī	1112	-216	104	112	-32	-144	-8	240
	-208	-24	48	-24	16	88	-40	-24
	-16	8	8	-72	16	136	-24	-120
	-8	8	0	8	-16	-24	16	8
	80	40	-72	-24	8	0	16	-64
	80	32	-72	32	-16	-104	40	24
	96	32	-88	0	0	-56	32	-24
	48	16	-40	16	-8	-56	24	16

Tableau t' avec $t'(i,j) = 8 \times tr(i,j)$

<ロ > ← □

Principe de la compression JPEG

97	106	114	119	131	140	149	147
103	0	0	0	4	0	254	159
109	117	128	4	251	153	161	168
122	130	133	1	255	157	167	172
132	135	145	0	254	164	176	183
134	142	153	1	255	177	182	192
146	152	160	1	255	183	191	197
153	156	167	178	187	190	205	208

Transformée inverse de t': image p'

Principe de la compression JPEG

Transformée inverse de t': image p'

Principe de la compression JPEG

Comparatif entre p et p'

Principe de la compression JPEG

Transformation t o tr o t' non réversible à cause de l'opération d'arrondi

Principe de la compression JPEG

Transformation t o tr o t' non réversible à cause de l'opération d'arrondi

Simplifier encore plus *tr* en prenant un arrondi plus "fort"

Principe de la compression JPEG

Image p en 256 niveaux de gris de dimensions 8×8

Principe de la compression JPEG

96	104	112	120	128	136	144	152
104	0	0	0	0	0	255	160
112	120	128	0	255	152	160	168
120	128	136	0	255	160	168	176
128	136	144	0	255	168	176	184
136	144	152	0	255	176	184	192
144	152	160	0	255	184	192	200
152	160	168	176	184	192	200	208

Image p en 256 niveaux de gris de dimensions 8×8

Principe de la compression JPEG

1113.25	-217.33	106.91	108.52	-34.50	-146.79	-4.50	236.23
-206.35	-24.04	47.01	-25.62	19.67	88.87	-37.90	-23.01
-19.71	11.19	10.96	-75.18	17.22	135.77	-21.86	-122.49
-9.68	5.64	0.28	6.01	-13.27	-20.85	13.57	5.39
78.25	37.48	-74.90	-26.72	10.00	-2.97	17.76	-66.08
77.13	28.36	-68.80	30.22	-12.98	-104.84	39.17	27.14
92.86	35.93	-85.61	2.21	3.68	-59.46	28.28	-20.78
47.13	16.06	-41.60	17.12	-5.34	-59.38	21.10	15.37

Tableau t, transformée de p

Principe de la compression JPEG

Tableau tr avec $tr(i,j) = \operatorname{arrondi}(t(i,j)/32)$

1120	-224	96	96	-32	-160	0	224
-192	-32	32	-32	32	96	-32	-32
-32	0	0	-64	32	128	-32	-128
0	0	0	0	0	-32	0	0
64	32	-64	-32	0	0	32	-64
64	32	-64	32	0	-96	32	32
96	32	-96	0	0	-64	32	-32
32	32	-32	32	0	-64	32	0

Tableau
$$t'$$
 avec $t'(i,j) = 32 \times tr(i,j)$

Principe de la compression JPEG

84	97	98	136	136	139	132	165
96	3	6	17	16	8	255	169
114	120	131	11	251	166	146	164
116	121	155	0	247	154	178	181
131	146	152	0	241	176	165	192
122	160	157	13	255	178	189	205
151	155	143	0	255	171	184	195
138	158	166	162	179	199	194	204

Transformée inverse de t': image p'

Transformée inverse de t': image p'

Comparatif entre p et p'

Principe de la compression JPEG

Image p en 256 niveaux de gris de dimensions 8×8

Principe de la compression JPEG

96	104	112	120	128	136	144	152
104	0	0	0	0	0	255	160
112	120	128	0	255	152	160	168
120	128	136	0	255	160	168	176
128	136	144	0	255	168	176	184
136	144	152	0	255	176	184	192
144	152	160	0	255	184	192	200
152	160	168	176	184	192	200	208

Image p en 256 niveaux de gris de dimensions 8×8

Principe de la compression JPEG

1113.25	-217.33	106.91	108.52	-34.50	-146.79	-4.50	236.23
-206.35	-24.04	47.01	-25.62	19.67	88.87	-37.90	-23.01
-19.71	11.19	10.96	-75.18	17.22	135.77	-21.86	-122.49
-9.68	5.64	0.28	6.01	-13.27	-20.85	13.57	5.39
78.25	37.48	-74.90	-26.72	10.00	-2.97	17.76	-66.08
77.13	28.36	-68.80	30.22	-12.98	-104.84	39.17	27.14
92.86	35.93	-85.61	2.21	3.68	-59.46	28.28	-20.78
47.13	16.06	-41.60	17.12	-5.34	-59.38	21.10	15.37

Tableau t, transformée de p

Principe de la compression JPEG

9	-2	1	1	0	-1	0	2
-2	0	0	0	0	1	0	0
0	0	0	-1	0	1	0	-1
0	0	0	0	0	0	0	0
1	0	-1	0	0	0	0	-1
1	0	-1	0	0	-1	0	0
1	0	-1	0	0	0	0	0
0	0	0	0	0	0	0	0

Tableau tr avec $tr(i,j) = \operatorname{arrondi}(t(i,j)/128)$

Principe de la compression JPEG

1152 -256 128 128 0 -128 0 256 -256 0 0 0 0 128 0 0 0 0 0 -128 0 -128 0 -128 0 0 0 0 0 0 0 0 128 0 -128 0 0 -128 0 0 128 0 -128 0 0 0 0 0								
0 0 0 -128 0 128 0 -128 0 0 0 0 0 0 0 0 0 128 0 -128 0 0 0 0 -128 128 0 -128 0 0 -128 0 0	1152	-256	128	128	0	-128	0	256
0 0 0 0 0 0 0 0 0 128 0 -128 0 0 0 -128 128 0 -128 0 0 -128 0 0	-256	0	0	0	0	128	0	0
128 0 -128 0 0 0 0 -128 128 0 -128 0 0 -128 0 0	0	0	0	-128	0	128	0	-128
128 0 -128 0 0 -128 0 0	0	0	0	0	0	0	0	0
	128	0	-128	0	0	0	0	-128
128 0 -128 0 0 0 0	128	0	-128	0	0	-128	0	0
	128	0	-128	0	0	0	0	0
0 0 0 0 0 0 0	0	0	0	0	0	0	0	0

Tableau t' avec $t'(i,j) = 128 \times tr(i,j)$

Principe de la compression JPEG

69	73	128	183	146	168	178	149
147	0	27	0	0	0	205	144
124	66	127	0	246	122	198	150
117	150	120	25	255	214	161	179
169	111	87	0	221	166	202	186
164	135	159	4	255	163	221	215
144	180	148	1	253	153	187	255
150	177	173	192	199	224	228	255

Transformée inverse de t': image p'

Principe de la compression JPEG

Transformée inverse de t': image p'

Comparatif entre p et p'

Image initiale

Image compressée (arrondi à 8)

Image compressée (arrondi à 32)

Image compressée (arrondi à 128)

Principe de la compression JPEG

Traitement d'une image de dimensions quelconque

Principe de la compression JPEG

Traitement d'une image de dimensions quelconque

Pour une image couleur, utilisation du format YUV puis traitement séparé des 3 composantes