

tmax 60.0

tmax_tomorrow 52.0

Initialize Parameters

Calculate Prediction $\hat{y} = wx + b$

Estimate Error $J(w, b) = (\hat{y} - y_{actual})^2$

Update Parameters

$$w = w - \frac{\partial J}{\partial w} \qquad b = b - \frac{\partial J}{\partial b_1}$$

New_Label

Initialize Parameters

Calculate Prediction
$$\hat{y} = \sigma(wx + b)$$

Estimate Error

$$J(w,b) = CrossEntropy(\hat{y}, y_{actual})$$

$$w = w - \frac{\partial J}{\partial w}$$
 $b = b - \frac{\partial J}{\partial b}$

Weight

New_Label

150

1

Initialize Parameters

Calculate Prediction $\hat{y} = \sigma(wx + b)$

Estimate Error J(w,b) = $CrossEntropy(\hat{y}, y_{actual})$

$$w = w - \frac{\partial J}{\partial w_0}$$
 $b = b - \frac{\partial J}{\partial b_1}$

Weight

New_Label

150

1

Initialize Parameters

Calculate Prediction $\hat{y} = \sigma(wx + b)$

Estimate Error J(w,b) = $CrossEntropy(\hat{y}, y_{actual})$

Update Parameters $w = w - \frac{\partial J}{\partial w_0} \qquad b = b - \frac{\partial J}{\partial b_1}$

$$\sigma(wx + b)$$

- 1. There is a weight w
 - 2. There is a bias b
- 3. There can be an activation, which is Sigmoid in this case

A	В	Y
0	0	0
0	1	0
1	0	0
1	1	1

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

A	В	\mathbf{Y}
0	0	0
0	1	1
1	0	1
1	1	0

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

$$ReLU(0*1 + 0*1 + -1) = 0$$

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

ReLU(0*1 + 1*1 + -1) = 0

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

ReLU

ReLU(1*1 + 0*-2 + 0) = 1

ReLU(1*1 + 0*1 + -1) = 0

A	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

ReLU(1*1 + 1*1 + -1) = 1

1			
	tmax	tmin	rain
	60.0	35.0	0.0
	52.0	39.0	0.0
	52.0	35.0	0.0
	53.0	36.0	0.0
	52.0	35.0	0.0

tmax_tom	norrow
	52.0
	52.0
	53.0
	52.0
	50.0

$$\hat{y} = \left[\sum_{i=1}^{3} w_i x_i + b \right]$$

$$= w_1 x_1 + w_2 x_2 + w_3 x_3 + b$$

$$= \left[w_1 \quad w_2 \quad w_3 \right] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + b$$

$$\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\boldsymbol{w} = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \end{bmatrix} \quad \boldsymbol{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

$$\hat{y} = \mathbf{w}^T \mathbf{x} + b$$

	tmax	tmin	rain	tmax_tomorrow
	60.0	35.0	0.00	52.0
	52.0	39.0	0.00	52.0
	52.0	35.0	0.00	53.0
	53.0	36.0	0.00	52.0
V	52.0	35.0	0.00	50.0
	50.0	38.0	0.00	52.0
	52.0	43.0	0.00	56.0
	56.0	49.0	0.24	54.0
	54.0	50.0	0.40	57.0
	57.0	50.0	0.00	57.0
	57.0	50.0	0.31	58.0
/-	58.0	52.0	0.05	59.0
2	59.0	54.0	0.25	58.0
	58.0	53.0	1.94	56.0
	56.0	51.0	0.63	61.0
\	61.0	56.0	0.62	59.0
١	59.0	54.0	0.00	58.0
	58.0	53.0	0.00	60.0
	60.0	53.0	0.14	60.0
	60.0	53.0	1.21	61.0
Ų.				

13509

Dataset length, m = 13509

$$\hat{y} = \boldsymbol{w}^T \boldsymbol{x} + b$$

tmax	tmin	rain	tmax_tomorrow
60.0	35.0	0.00	52.0
52.0	39.0	0.00	52.0
52.0	35.0	0.00	53.0
53.0	36.0	0.00	52.0
52.0	35.0	0.00	50.0
50.0	38.0	0.00	52.0
52.0	43.0	0.00	56.0
56.0	49.0	0.24	54.0
54.0	50.0	0.40	57.0
57.0	50.0	0.00	57.0
57.0	50.0	0.31	58.0
58.0	52.0	0.05	59.0
59.0	54.0	0.25	58.0
58.0	53.0	1.94	56.0
56.0	51.0	0.63	61.0
61.0	56.0	0.62	59.0
59.0	54.0	0.00	58.0
58.0	53.0	0.00	60.0
60.0	53.0	0.14	60.0
60.0	53.0	1.21	61.0

Step 1:

Batch_size

60.0	35.0	0.00	52.0
52.0	39.0	0.00	52.0
52.0	35.0	0.00	53.0
53.0	36.0	0.00	52.0
52.0	35.0	0.00	50.0

print(len(df))

13509

Dataset length, m = 13509

Calculate Prediction $\hat{y} = \mathbf{w}^T \mathbf{x} + b$

Estimate Error $J(w,b) = (\hat{y} - y_{actual})^2$

$$w = w - \frac{\partial J}{\partial w}$$
 $b = b - \frac{\partial J}{\partial b}$

tmax	tmin	rain	tmax_tomorrow
50.0	38.0	0.00	52.0
52.0	43.0	0.00	56.0
56.0	49.0	0.24	54.0
54.0	50.0	0.40	57.0
57.0	50.0	0.00	57.0
57.0	50.0	0.31	58.0
58.0	52.0	0.05	59.0
59.0	54.0	0.25	58.0
58.0	53.0	1.94	56.0
56.0	51.0	0.63	61.0
61.0	56.0	0.62	59.0
59.0	54.0	0.00	58.0
58.0	53.0	0.00	60.0
60.0	53.0	0.14	60.0
60.0	53.0	1.21	61.0

Step 2:

Batch_size

50.0	38.0	0.00	52.0
52.0	43.0	0.00	56.0
56.0	49.0	0.24	54.0
54.0	50.0	0.40	57.0
57.0	50.0	0.00	57.0

print(len**(df)**)

13509

Dataset length, m = 13509

Calculate Prediction $\hat{y} = \mathbf{w}^T \mathbf{x} + b$

Estimate Error $J(w, b) = (\hat{y} - y_{actual})^2$

$$w = w - \frac{\partial J}{\partial w}$$
 $b = b - \frac{\partial J}{\partial b}$

Epoch 1 Completed!

Step n (n=2702):

Calculate Prediction $\hat{y} = \mathbf{w}^T \mathbf{x} + b$

Estimate Error $J(w,b) = (\hat{y} - y_{actual})^2$

Update Parameters

$$w = w - \frac{\partial J}{\partial w}$$
 $b = b - \frac{\partial J}{\partial b}$

print(len(df))
13509

Dataset length, m = 13509

tmax	tmin	rain	tmax_tomorrow
60.0	35.0	0.00	52.0
52.0	39.0	0.00	52.0
52.0	35.0	0.00	53.0
53.0	36.0	0.00	52.0
52.0	35.0	0.00	50.0
50.0	38.0	0.00	52.0
52.0	43.0	0.00	56.0
56.0	49.0	0.24	54.0
54.0	50.0	0.40	57.0
57.0	50.0	0.00	57.0
57.0	50.0	0.31	58.0
58.0	52.0	0.05	59.0
59.0	54.0	0.25	58.0
58.0	53.0	1.94	56.0
56.0	51.0	0.63	61.0
61.0	56.0	0.62	59.0
59.0	54.0	0.00	58.0
58.0	53.0	0.00	60.0
60.0	53.0	0.14	60.0
60.0	53.0	1.21	61.0

Epoch 2, Step 1:

Batch_size

60.0	35.0	0.00	52.0
52.0	39.0	0.00	52.0
52.0	35.0	0.00	53.0
53.0	36.0	0.00	52.0
52.0	35.0	0.00	50.0

print(len(df))

13509

Dataset length, m = 13509

Calculate Prediction $\hat{y} = \mathbf{w}^T \mathbf{x} + b$

Estimate Error $J(w,b) = (\hat{y} - y_{actual})^2$

$$w = w - \frac{\partial J}{\partial w}$$
 $b = b - \frac{\partial J}{\partial b}$

Types of Gradient Descent

- Batch Gradient Descent (batch size = dataset length)
- Mini-batch Gradient Descent (batch size < dataset length)
- Stochastic Gradient Descent (batch size = 1)

Batch Gradient Descent

Mini-Batch Gradient Descent

Stochastic Gradient Descent

$$K = 3$$

Frequency	Spending
1.86	464.60
9.10	1437.92
8.21	914.85
13.13	910.83
8.69	203.74

$$K = 3$$

Spending
464.60
1437.92
914.85
910.83
203.74

$$K = 3$$

Frequency	Spending
1.86	464.60
9.10	1437.92
8.21	914.85
13.13	910.83
8.69	203.74

$$K = 3$$

Frequency	Spending
1.86	464.60
9.10	1437.92
8.21	914.85
13.13	910.83
8.69	203.74

$$K = 3$$

Frequency	Spending
1.86	464.60
9.10	1437.92
8.21	914.85
13.13	910.83
8.69	203.74

- 1. Form initial K centroids
- 2. For each points:
 - 1. Calculate distance from each centroids
 - 2. Assign the closest centroid to the point
- 3. Calculate the mean of the points assigned to each centroid and reassign each centroids
- 4. Go to step 2

K = 4

- 1. Assign a cluster to each datapoints
- 2. For each data point:
 - 1. Calculate the closest data point
 - 2. Merge their clusters
- 3. Repeat 2

Hierarchical Clustering

Frequ	iency	Spending
	1.86	464.60
	9.10	1437.92
	8.21	914.85
	13.13	910.83
	8.69	203.74

