1

EE5609 Matrix Theory

Kranthi Kumar P

Download the latex-file codes from

https://github.com/kranthiakssy/ AI20RESCH14002_PhD_IITH/tree/master/ EE5609_Matrix_Theory/Assignment-11

Assignment-11

Problem:

Linear Transformations:

Let $\mathbb V$ be a vector space and $\mathbf T$ a linear transformation from $\mathbb V$ into $\mathbb V$. Prove that the following two statements about $\mathbf T$ are equivalent.

- (a) The intersection of the range of T and null space of T is the zero subspace of V.
- (b) If $\mathbf{T}(\mathbf{T}\alpha) = 0$, then $\mathbf{T}\alpha = 0$.

Solution:

Given	$\mathbf{T}:\mathbb{V} o\mathbb{V}$
To prove	a) $range(\mathbf{T}) \cap nullspace(\mathbf{T}) = \{0\}$
	b) If $\mathbf{T}(\mathbf{T}\alpha) = 0$, then $\mathbf{T}\alpha = 0$.

Proof(a)	Let $\mathbf{x} \in \mathbb{V}$ and $\mathbf{x} \in range(\mathbf{T}) \cap nullspace(\mathbf{T})$ then, $\mathbf{x} \in range(\mathbf{T})$ $\mathbf{x} \in nullspace(\mathbf{T})$
	Consider $\mathbf{y} \in \mathbb{V}$ whose linear transformation into \mathbb{V} is \mathbf{x} . $\Longrightarrow \mathbf{T}(\mathbf{y}) = \mathbf{x}$
	since $\mathbf{x} \in \text{null space}(\mathbf{T})$ and the sub space is linearly independent $\mathbf{T}(\mathbf{x}) = 0$ from above equations $\mathbf{T}(\mathbf{T}(y)) = 0$
	from the definition of linear transformation of independent vector space $ \mathbf{T}(y) = 0 $ $ \Rightarrow \mathbf{x} = 0 $ $ \Rightarrow \{0\} \subseteq range(\mathbf{T}) \cap nullspace(\mathbf{T}) $ $ \therefore range(\mathbf{T}) \cap nullspace(\mathbf{T}) = \{0\} $ Hence Proved.
Proof(b)	If $\mathbf{T}(\mathbf{T}\alpha) = 0$ then, from the definition of linear transformation, $\mathbf{T}\alpha$ will be in the null space of linear transformation \mathbf{T} and is linearly independent $\therefore \mathbf{T}\alpha = 0$

Eg:

Let $\alpha \in \mathbb{V}$ and

$$\alpha = \begin{pmatrix} 1 & 7 & -1 & -1 \\ -1 & 1 & 2 & 1 \\ 4 & -2 & 0 & -4 \\ 2 & 3 & 4 & -2 \end{pmatrix}$$

linear transformation of α into \mathbb{V} $\mathbf{T}(\alpha) = c\alpha$

then row reduced echelon form of T is

$$rref(\mathbf{T}) = \begin{pmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\implies rank(\mathbf{T}) = 3,$$

 $nullity(\mathbf{T}) = 1$

$$\implies range(\mathbf{T}) = \begin{pmatrix} 1 & 7 & -1 \\ -1 & 1 & 2 \\ 4 & -2 & 0 \\ 2 & 3 & 4 \end{pmatrix},$$

$$nullspace(\mathbf{T}) = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

 $\therefore range(\mathbf{T}) \cap nullspace(\mathbf{T}) = \{0\}$

Hence proved that the intersection of the range of T and null space of T is the zero subspace of V.