2 Talstelsels - Oplossingen

2.1 Omzettingen

2.1.1 Vul onderstaande tabel verder aan.

Decimaal	Binair	Hexadecimaal	Octaal
27	0001 1011	1B	33
49	0011 0001	31	61
127	0111 1111	7F	177
128	1000 0000	80	200
237	1110 1101	ED	355
259	0001 0000 0011	103	403
329	0001 0100 1001	149	511
498	0001 1111 0010	1F2	762
3764	1110 1011 0100	EB4	7264
13845	0011 0110 0001 0101	3615	33025
216-1	1111 1111 1111 1111	FFFF	177 777

Voor een detailuitwerking zie onderaan deze oplossingen.

2.1.2 Dec naar hex

Vorm het decimale getal 8496 om naar zijn hexadecimale weergave. Doe dit om twee manieren (gebruik makend van een rekenmachine).

- a. Rechtstreeks naar hexadecimaal door deling door 16
- b. Onrechtstreeks via het binaire stelsel door deling door 2

```
1) deling /16
                                                 2) 8496 = binair
                                                                                         2130_{(h)} = 2*16^3 + 1*16^2 + 3*16 + 0*1
                                                  8496 | /2
8496 | /16
                                                                                              = 2*4096 + 1*256 +3*16
                                                  4248 | 0 → 8496 = (2*2248) + 0
                                                                                              = 8192 + 256 + 48
                                                  2124 | 0 -> 4248 = (2*2124) + 0
 531 | 0 → 8496 = (16*531) + 0
                                                  1062 | 0 → 2124 = (2*1062) + 0
  33 | 3 → 531 = (16*33) + 3
                                                   531 | 0 → 1062 = (2*531) + 0
                                                                                         0010 0001 0011 0000 (2)
                                                   265 | 1 → 531 = (2*265) + 1
    2 | 1 → 33 = (16*2) + 1
                                                                                        = 2_{14} + 2^9 + 2^6 + 2^5
                                                   132 | 1 → 265 = (2*132) + 1
    0 | 2 → 2 = (16*0) + 2
                                                                                        = 8192 + 256 + 32 +16
                                                    66 | 0 → 132 =(2*66) + 0
                                                                                         = 8496
                                                    33 | 0 → 66 = (2*33) + 0
=> 2130
                                                    16 | 1 → 33 =(16*8) + 1
                                                     8 | 0 → 16 = (2*8)
                                                     4 | 0 →
                                                              8= (2*4)
                                                                         + 0
                                                              4= (2*2)
                                                     2 | 0 →
                                                                         + 0
                                                     1 0 → 2= (2*1)
                                                                         + 0
                                                     0 | 1 → 1= (2*0)
                                                 ==> 10 0001 0011 0000
                                                 binair 0010 0001 0011 00000 naar hex:
                                                   => 2 1 3 0 <sub>(h)</sub>
```

2.1.3 octal getal 8

Geef de decimale waarde van het octale getal 8 ?

Octaal heeft grondtal (basis) 'acht'.

Dit betekent acht symbolen om een getal weer te geven: 01234567

→De symbolen 8 & 9 'doen nier meer mee...' .

2.1.4 Binaire toepassingen

IPv4 adres

Vorm de volgende binaire getallen om naar de juiste decimale of hexadecimale notatie. a. Een 32-bit IP-adres wordt opgesplitst in bytes (octetten) en weergegeven in *dotted decimal notation*, waarbij de decimale getallen worden gescheiden door een punt (dot). Schrijf het volgende binaire getal in dotted decimal notation:

11000000 10101000 00000001 01010101

11000000 10101000 00000001 01010101

192.168.1.85

```
1100 0000 = 128+64 = 192
1010 1000 = 128 + 32 + 8 = 168
0000 0001 = 1
0101 0101 = 64+16 +4+1 = 85
```

Subnetmask

Geef van volgende subnetmask de binaire notatie:

MAC adres

00:50:56:C0:3F:A1

```
0000 0000 = 0 0
0101 0000 = 5 0
0101 0110 = 5 6
1100 0000 = C 0
0011 1111 = 3 F
1010 0001 = A 1
```

Flag register

- Hoeveel flags kan je gebruiken in één byte?
- Een flagregister van 1byte bevat de waarde 58. Wat is de waarde van de datasync_OK flag
 als je weet dat bit 3 staat voor datasync_OK.

(m.a.w Zet het getal om naar binair. Wat is de waarde van bit3?)

Bit	7	6	5	4	3	2	1	0
value								

58 = Binair 00111010 \rightarrow Bit 3 heeft de waarde 1. m.a.w de toestand van datasync_OK is true.

Opmerking: de waarde van een dergelijk flag register wordt meestal weergegeven in een hex notatie. Zo is de toestand van elke bit sneller duidelijk. In dit voorbeeld 3A.

Even of oneven?

Welk van onderstaande binaire getallen zijn even? Is er een eenvoudige manier om dit te zien?

Voor een even getal mag de LSB (least significant bit = laatste bit) nooit één zijn. Indien de LSB 'hoog is', wordt er steeds '1' bij de waarde getelt en wordt het getal oneven.

2.1.5 Bewerking

Geef de decimale uitkomst van de volgende bewerking:

 $111_{(2)} + 111_{(8)} + 111_{(10)} + 111_{(16)} =$

2.1.6 Bereik van binaire getallen

Geef het bereik van ongetekende getallen voor ("hoeveel combinaties kan je maken"):

```
a. 8-bit getallen = 2^8 b. 16-bit getallen= 2^{16}
```

c. 32-bit getallen= 2³²

2.1.7 32 bit vs 64 bit

De Intel 80x86 familie maakt gebruik van een bitlengte van 8 bits (byte), 16 bits (word), 32 bits (doubleword) en 64 bits (quadword). De besturingssystemen hebben eenzelfde evolutie gekend. Verklaar waarom een 32-bit besturingssysteem slechts 4 GiB geheugen kan adresseren.

2.1.8 Binaire optelling

Tel de twee decimale getallen binair op en controleer je resultaat.

- Zet de getallen om naar binair
- Tel de 2 binaire getallen op

19+15

```
11111

19 = 0 0 0 1 0 0 1 1

15 = 0 0 0 0 1 1 1 1

+--- 34 = 0 0 1 0 0 0 1 0
```

• 85+31

```
11111
85 = 01010101
31 = 00011111
+--- 116 = 01110100
```

2.1.9 Extra

Herhaal de vorige optellingen maar doe ze nu vanuit het hexadecimale stelsel.

2.1.10 EXTRA: Anding van een IPv4 adres

Vul aan:

Ip adres:	192.168. 10.2	192.168.10.100	192.168.200.1
Subnetmask:	255.255.255.0	255.255.0.0	255.255.0.0
Anding:	192.168.10.0	192.168.0.0	192.168.0.0

Extra: welke ip adressen bevinden zich in hetzelfde netwerk? (m.a.w welke adressen zijn gelijk na de anding.) B+C

```
A: 192. 168. 10. 2
255. 255. 255. 0
192. 168. 10. 0
B: 192. 168. 10. 100
255. 255. 0. 0
192. 168. 0. 0
C: 192. 168. 200. 1
255. 255. 0. 0
```

Device B en C hebben hetzelfde netwerkadres!

Bewerkingen oefening 'tabel'

```
27<sub>(10)</sub> = Hex<sub>(16)</sub> ?
                                                                                                                                                         27 (10) = octaal (8) ?
                                                                                 1B
27 (10) = Binair(2) ?
                                                                                                                                                         33
                                                                                OPTIE1: <u>Vanuit binair:</u>
0001 1011 => 0001=1 & 1011 11=B
00011011
                                                                                                                                                         Vanuit binair:
                                                                                                                                                         → 00 011 011 => 00=0 & 011=3 & 011 =3 =>
27 Naar binair => 16 + 8 + 2 + 1 ==> 0001 1011
                                                                                OPTIE 2 <u>Vanuit decimaal:</u> 27<sub>(10)</sub> = 16 + 11 => 1*16 + 11 = 1B <sub>(16)</sub>
                                                                                                                                                         Via decimaal:
Via staartdeling:
                                                                                                                                                         27 | /8
  27 /2
   13 | 1 -→ 27 = (2*13) + 1
                                                                                                                                                         3 | 3 -→ 27 = (8*3) + 3
                                                                                 6 | 1 -→ 13 = (2*6) + 1
                                                                                                                                                         0 | 3 -> 3 = (8*0) + 3
   3 \mid 0 \rightarrow 6 = (2*3) + 0

1 \mid 1 \rightarrow 3 = (2*1) + 1
                                                                                                                                                         → 33
                                                                                controle:
1B<sub>(h)</sub> = 1*16 + 11 = 27
   0 | 1 -→ 1= (2*0) + 1
                                                                                                                                                         controle:
   ==> 27 = 11011 → 8bit = 0001 1011
                                                                                                                                                        33 (8) = 3*8 + 3 = 27
                                                                                0011 0001 (2) = HEX (h) ?
 0011 0001 (2) = Decimaal (10) ?
                                                                                                                                                        0011 0001 (2) = Octaal (8) ? (Noteer in 2 karakters.)
 49
                                                                                31
                                                                                                                                                         61

ightarrow 0011 0001 = 0011 0001 _{(2)} 
ightarrow 0011 _{(2)} = 3 _{(h)} & 0001 _{(2)} = 1 _{(h)}
                                                                                                                                                         \rightarrow 0011 0001 = 00 110 001 \rightarrow 00<sub>(2)</sub>=0<sub>(h)</sub> & 110<sub>(2)</sub>=6<sub>(h)</sub> & 001<sub>(2)</sub>=1<sub>(h)</sub>
 = 0*128 + 0*64 + 1*32 +1*16 + 0*8 + 0*4 + 0*2 + 1
 = 32 + 16 + 1
 = 49
                                                                                                                                                         7F<sub>(h)</sub> = octaal<sub>(8)</sub> ?
7F (h) = decimaal (10) ?
                                                                                7F<sub>(h)</sub> = Binair<sub>(10)</sub> ?
                                                                                                                                                         177
                                                                                01111111
127
                                                                                                                                                         7F naar octaal
                                                                                7F naar binair => 7_{(h)}=0111<sub>(2)</sub> & F_{(h)}=1111<sub>(2)</sub>
                                                                                                                                                         => VIA BINAIR ...
                                                                                7 F (h)
= 0111 1111 (2)
= 7*16 + 15*1
= 112 + 15 = 127
                                                                                                                                                         \rightarrow \ 01\ 111\ 111\ _{(2)} \ => \ 01\ _{(8)} \ ^{2}\ ^{2}\ _{(8)} \ ^{2}\ ^{2}\ ^{2}\ _{(8)} \ ^{2}\ ^{2}\ ^{2}\ _{(8)}
                                                                                                                                                         = 1 7 7 <sub>(h)</sub>
Opmerking:
                                                                                                                                                         177 _{(8)} naar decimaal => 1* 8<sup>2</sup> + 7*8<sup>1</sup> + 7*8<sup>0</sup>
F<sub>(h)</sub> = 15<sub>(10)</sub>
                                                                                                                                                                                    = 1*64 + 7*8 + 7*1
E<sub>(h)</sub> = 14 (10)
                                                                                                                                                                                     = 64 + 56 + 7
= 127<sub>(10)</sub>
D<sub>(h)</sub> = 13<sub>(10)</sub>
C_{(h)} = 12_{(10)}
B<sub>(h) =</sub> 11<sub>(10)</sub>
A<sub>(h)</sub> = 10<sub>(10)</sub>
                                                                                200<sub>(8)</sub> = Binair<sub>(2)</sub> ?
                                                                                                                                                         200<sub>(8)</sub> = Hexadecimaal<sub>(16)</sub> ?
 200<sub>(8)</sub> = Decimaal<sub>(10)</sub> ?
                                                                                10000000
                                                                                                                                                         80
 128
                                                                                                                                                         200<sub>(8)</sub> naar hexadecimaal: → via binair!
                                                                                200<sub>(8)</sub> naar binair:
                                                                                => 2<sub>(8)</sub>= 010<sub>(2)</sub> & 0<sub>(8)</sub>=000<sub>(2)</sub> & 0<sub>(8)</sub>=000<sub>(2)</sub>
                                                                                                                                                         1000 0000 (2)
 200<sub>(8)</sub> naar Decimaal:
                                                                                                                                                         = 8 0 (h)
  => 2*8^2 + 0*8^1 + 0*8^0
                                                                                => 2 0 0 (8)
  = 2*64 + 0*8 + 0*1
                                                                                = 010 000 000 (2)
   = 2*64
                                                                                                                                                         controle:
  = 128
                                                                                                                                                         80<sub>(h)</sub> = decimaal: 8*16 + 0*1 = 128<sub>(10)</sub>
                                                                                                                                                         200(8) = 2*56 = 128 (10)
                                                                                1000 0000 (2) = 1*128 = 128(10)
                                                                                200(8) = 2*56 = 128(10)
```

```
237 (10) = hexadecimaal (16)?
                                                                                                                                                     237 (10) = octaal (8) ?
237 (10) = binair(2) ?
                                                                                                                                                     355
                                                                               ED
                                                                                                                                                     1) via binair: 11 101 101 => 011_{(2)}=3_{(8)} & 101_{(2)}=5_{(8)} & 101_{(2)}=5_{(8)} => 355_{(8)}
 11101101
                                                                               237<sub>no</sub> = hexadecimaal:
                                                                                                                                                       29 | 5 → 237= (8*29) + 5

3 | 5 → 29 = (8*3) + 5

0 | 3 → 3 = (8*0) + 3

==> 355 (8)
237 (10) = binair:
                                                                                1) via binair: 1110 1101 <sub>(2)</sub> => 1110<sub>(2)</sub>=E<sub>(h)</sub> & 1101<sub>(2)</sub>=D<sub>(h)</sub>
                                                                                          = E D (h)
 1) 237<sub>(10)</sub> = 128 + 64 + 32 + 8 + 4 + 1
                 = 1110 1101 (2)
                                                                                                                                                     controle;
355 <sub>(8)</sub> = 3*64 + 5*8 + 5
= 192 + 40 + 5
= 237<sub>(10)</sub>
                                                                               2) via staartdeling:
 2) via staartdeling:
                                                                               237 | /16
 237 | /2
                                                                                14 | 13 (D) controle \rightarrow 237 = (16*14) + 13
0 | 14 (E) controle \rightarrow 14 = (16*0) + 14
 118 | 1
                                                                                ==> ED (h)
  29 | 1 controle \rightarrow 59 = (2*29) +1
                                                                               Controle:
  14 | 1 controle \rightarrow 29 = (14*2) +1
7 | 0 controle \rightarrow 14 = (2*7) +0
                                                                               ED (h) = 14*16 + 13 = 224 + 13 = 237
  3 \mid 1 controle \rightarrow 7 = (2*3) +1

1 \mid 1 controle \rightarrow 3 = (2*1) +1

0 \mid 1 controle \rightarrow 1 = (2*0) +1
                                                                               Opmerking:
                                                                               E_{(h)} = 14_{(h)}
                                                                               D<sub>(h)</sub> = 13<sub>(h)</sub>
==> 1110 1101
                                                                              1 0000 0011 (2) = Hexadecimaal(16) ?
                                                                                                                                                     1 0000 0011 (2) = Octaal (8) ?
1 0000 0011 (2) = Decimaal (10) ?
                                                                                103
                                                                                                                                                      403
  259
                                                                                                                                                      -→ 100 <sub>(2)</sub> = 4<sub>(8)</sub>
                                                                              - → 0001<sub>(2)</sub> =1<sub>(h)</sub>
                                                                                                                                                     - \rightarrow 000_{(2)} = 0_{(8)}

- \rightarrow 011_{(2)} = 3_{(8)}
                                                                              -→ 0000<sub>(2)</sub> =0<sub>(h)</sub>
= 1* 2<sup>8</sup> + 1* 2<sup>1</sup> + 1*2<sup>0</sup>
                                                                               -→ 0011<sub>(2)</sub> = 3<sub>(h)</sub>
= 2^8 + 2^1 + 2^0
                                                                                                                                                     DUS
                                                                              DUS:
                                                                                                                                                     100 000 011 (2) =
= 256 + 2 + 1
                                                                              1 0000 0011 (2) =
                                                                                                                                                      4 0 3 (8)
= 259 (10)
                                                                              1 0 3 <sub>(h)</sub>
                                                                                                                                                     controle:
                                                                                                                                                     403<sub>(8)</sub> = 4*8<sup>2</sup> + 3
                                                                              controle:
                                                                                                                                                             = 4*64 + 3
                                                                               103<sub>(8)</sub> = 4*8<sup>2</sup> + 3
                                                                                                                                                            = 256+3
                                                                                    = 4*64 +3
                                                                                                                                                            = 259
                                                                                      = 256+3
                                                                                     = 259 (10)
                                                                                                                                                     149<sub>(h)</sub> = octaal<sub>(8)</sub>?
                                                                               149<sub>(h)</sub> = binair<sub>(2)</sub> ?
149<sub>(h)</sub> = Decimaal<sub>(10)</sub> ?
                                                                                                                                                      511
                                                                                000101001001
 329
                                                                                                                                                      HEX naar OCT => Via binair!
                                                                               149<sub>(h)</sub>
149 <sub>(h)</sub>
= 1*16^2 + 4*16^1 + 9*16^0
                                                                                                                                                      0001 0100 1001 = 101 001 001 (2)
                                                                               1 4 9 <sub>(h)</sub>=
                                                                                                                                                        = 5 1 1 (8)
= 1*256 + 4*16 + 9*1
                                                                               0001 0100 1001 (2)
= 256 + 64 + 9
                                                                                                                                                      =>149<sub>(h)</sub> = 511<sub>(8)</sub>
= 329
                                                                               => 149<sub>(h)</sub> = 0001 0100 1001 <sub>(2)</sub>
                                                                                                                                                    . 762<sub>(8)</sub> = hex <sub>(16)</sub> ?
 762<sub>(8)</sub> = decimaal<sub>(10)</sub> ?
                                                                              762<sub>(8)</sub> = binair<sub>(2)</sub>?
                                                                                                                                                      1F2
                                                                               111110010
  498
                                                                                                                                                      762<sub>(h)</sub> → via binair: 0001 1110 1010
                                                                               762<sub>(8)</sub> =>
 762_{(8)} =
                                                                                                                                                       -→ 0001<sub>(2)</sub> =1<sub>(h)</sub>
 = 7*8^2 + 6*8^1 + 2*8^0
                                                                              - \rightarrow 7_{(10)} = 111_{(2)}
                                                                                                                                                       -→ 1111<sub>(2)</sub> =F<sub>(h)</sub>
                                                                               -→ 6<sub>(10)</sub>= 110<sub>(2)</sub>
                                                                                                                                                      -→ 0010<sub>(2)</sub> =2<sub>(h)</sub>
 = 7*64 + 6*8 + 2
                                                                              - \rightarrow 2_{(10)} = 010_{(2)}
 = 448 + 48 + 2
                                                                                                                                                      DUS
 = 498
                                                                                                                                                       => 762<sub>(8)</sub> = 1F2<sub>(h)</sub>
                                                                                 7 6 2 (8) =
                                                                                 111 110 010 (2)
```

```
3764 (10) = octaal(8)
3764<sub>(10)</sub> = binair<sub>(2)</sub>?
                                                                             3764 (10) = hexadecimaal (16)
                                                                                                                                                   7264
111010110100
                                                                             EB4
                                                                                                                                                  1) staartdeling:
3764 | /8
                                                                             1) staartdeling:
1) staartdeling:
                                                                                                                                                   470 | 4 → 3764= (8*470) + 4
58 | 6 → 470 = (8*58) + 6
7 | 2 → 58 = (8*7) + 2
0 | 7 → 7 = (8*0) + 7
=> 7264(8)
                                                                              3764 | /16
 3764 | /2
                                                                              235 | 4 \rightarrow 3764 = (16*235) + 4
14 | 11 \rightarrow 235 = (16*14) + 11
0 | 14 \rightarrow 14 = (16*0) + 14
=>> EB4
 1882 | 0
  941 0
   470 | 1
   235 | 0
  117 | 1
58 | 1
                                                                                                                                                  111 010 110 100 _{(2)} \rightarrow 111 _{(2)} = 7_{(8)} & 010 _{(2)} = 2_{(h)} 110 _{(2)} = 6_{(h)} & 100 _{(2)} = 4_{(h)} => 7 2 6 4 _{(8)}
                                                                             1110 1011 0100 _{(2)} \rightarrow 1110_{(2)} = E_{(h)} & 1011_{(2)} = B & 0100_{(2)} = 4_{(h)}
    29 0
    14 | 1
     7 | 0
     0 | 1
 => 1110 1011 0100
2) "opsplitsen in binaire gewichten":
3764 - 2048 = 1716
 → 1716 - 1024 = 692
 → 180 - 128 = 52
 \rightarrow 52 - 32 = 20

\rightarrow 20 - 16 = 4

\rightarrow 4 - 4 = 0
 => 1110 1011 0100
0011 0110 0001 0101 (2) = Decimaal (10)
                                                                             0011 0110 0001 0101 (2) = hexadecimaal (16)
                                                                                                                                                   0011 0110 0001 0101 = octaal (8)
13845
                                                                              3615
                                                                                                                                                     33025
0011 0110 0001 0101 (2) =
                                                                             0011 0110 0001 0101 (2) =
=> 8192 + 4096 + 1024 + 512 +16 + 4 + 1 = 13 845
                                                                                                                                                   → 011 011 000 010 101 <sub>(2)</sub>
                                                                              3 6 1 5 (16)
                                                                                                                                                   = 3 3 0 2 5 (8)
FFFF<sub>(16)</sub> = decimaal<sub>(10)</sub>
                                                                                                                                                   FFFF(16) = octaal (8)
                                                                              FFFF<sub>(16)</sub> = Binair<sub>(2)</sub>
 65535
                                                                                                                                                     177777
                                                                               11111111111111111
→ FFFF<sub>(16)</sub> =
= 10000<sub>(16)</sub> -1
= (1*16<sup>4</sup>) -1
                                                                                                                                                   vanuit binair:
                                                                              FFFF<sub>(16)</sub>
                                                                                                                                                   001 111 111 111 111 111 (2)=
                                                                              1111 1111 1111 1111 (2)
 = 16<sup>4</sup> -1
                                                                                                                                                     1 7 7 7 7 7 7 (8)
 = 65 536 -1
 = 65 535
                                                                              Opmerking
                                                                              F_{(16)} = 1111_{(2)}
```