Práctico 11: Autovalores y autovectores de una transformación lineal. Diagonalización.

- 1. Para cada una de las siguientes transformaciones lineales $T: \mathbb{R}^n \to \mathbb{R}^n$, hallar sus autovalores, y para cada autovalor, dar una base de autovectores del espacio propio asociado. Decidir en cada caso si la transformación lineal es o no diagonalizable.
 - (a) T(x,y) = (y,0).
 - (b) T(x, y, z) = (x y + 4z, 3x + 2y z, 2x + y z).
 - (c) T(x, y, z, u) = (-5x 5y 9z + 7u, 8x + 9y + 18z 9u, -2x 3y 7z + 4u, 2u)
 - (d) T(x, y, z, w) = (2x y, x + 4y, z + 3w, z w).
 - (e) T(x, y, z, u, v) = (3x + 2y + 4z, 2x + 2z, 4x + 2y + 3z, 3u + v, 2u + 2v).
- ✓ 2. Probar que existe una única transformación lineal $T: \mathbb{R}^3 \to \mathbb{R}^3$ tal que (1,1,1) y (-1,1,0) son autovectores de autovalor 2 y (0,-2,1) es autovector de autovalor 1. Para tal T, calcular det T y dar la matriz de T en la base canónica.
 - 3. Sean V un \mathbb{k} -espacio vectorial y $T \in \text{Hom}(V, V)$.
 - (a) Supongamos que T es un isomorfismo, y sea $\lambda \in \mathbb{k}$ no nulo. Probar que λ es un autovalor de T si y sólo si λ^{-1} es un autovalor de T^{-1}
 - (b) Probar que si T es un múltiplo de Id_V , entonces todos los elementos de V son autovectores de T.
 - (c) Supongamos que $\mathbb{k} = \mathbb{C}$ y que dim V = 2. Probar que toda $T \in \text{Hom}(V, V)$ es triangularizable. Es decir, existe una base de V tal que la matríz de T en esa base es triangular superior.
 - (d) Decidir si el enunciado anterior es verdadero o falso cuando $\mathbb{k} = \mathbb{R}$.
- 4. Hallar los autovalores, autovectores y autoespacios de las siguientes matrices A, y decidir si son diagonalizables. En caso que lo sean, dar una matriz C tal que $D = C^{-1}AC$ es diagonal. Considerarlas primero como matrices en \mathbb{R} y luego en \mathbb{C} :

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 2 & 3 \\ -1 & 1 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \qquad \begin{pmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{pmatrix}, \qquad \begin{pmatrix} 6 & -3 & -2 \\ 4 & -1 & -2 \\ 10 & -5 & -3 \end{pmatrix}.$$

- $\sqrt{5}$. Hallar una matriz $A \in \mathbb{C}^{3\times 3}$ tal que $A^3 A^2 + A Id_3 = 0$. Decidir si A es diagonalizable.
 - 6. Sean \mathbb{k} un cuerpo y matrices $A \in M_{m \times n}(\mathbb{k}), B \in M_{n \times m}(\mathbb{k})$
 - (a) Demostrar que las matrices $\begin{pmatrix} AB & 0 \\ B & 0 \end{pmatrix}$ y $\begin{pmatrix} 0 & 0 \\ B & BA \end{pmatrix}$ en $M_{(m+n)\times(m+n)}(\Bbbk)$ son semejantes.
 - (b) Asumir ahora que m=n. Utilizar el resultado anterior para concluir que los polinomios característicos de AB y de BA coinciden. Deducir que AB y BA tienen los mismos autovalores.
- √ 7. Sea T:V → V una transformación lineal, donde dim V es finita, con autovalores distintos $λ_1, ..., λ_k$. Demostrar que T es diagonalizable si y sólo si

$$V = V_{\lambda_1} \oplus \cdots \oplus V_{\lambda_k}$$
.

Ejercicios Adicionales

8. Sean $a, b, c, d \in \mathbb{R}$ todos positivos. Sea

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

(a) Demostrar que A posee dos autovalores reales.

- (b) Demostrar que A posee al menos un autovector con sus coordenadas mayores o iguales a cero.
- 9. Sea $A \in M_n(\mathbb{C})$. Demostrar que si c_1, \ldots, c_n son los autovalores de A en \mathbb{C} , (posiblemente repetidos), entonces $\det(A) = c_1 \cdots c_n$ y $\operatorname{Tr}(A) = c_1 + \cdots + c_n$.
- 10. Sean V un \Bbbk -espacio vectorial de dimensión finita y $T:V\to V$ una transformación lineal.
 - (a) Supongamos que T conmuta con toda $S \in \text{Hom}(V, V)$. Probar que T es un múltiplo de Id_V .
 - (b) Supongamos que dim $\operatorname{Im} T = k$. Probar que T tiene a lo sumo k+1 autovalores distintos.
 - (c) Sean $\lambda_1, \dots, \lambda_h$ los autovalores (distintos) no nulos de T. Sea $d_j = \dim \operatorname{Nu}(T \lambda_j I d_V)$. Probar que $d_1 + \dots + d_h \leq \dim \operatorname{Im} T$.

Ayuda para el (6): Conjugar por $\begin{pmatrix} I_m & -A \\ 0 & I_n \end{pmatrix}$