EKN-812 Lecture 3

Intertemporal Choice; Demand for Durable Goods

Jesse Naidoo

University of Pretoria

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- consider the case of a price increase
- $EV = e(p_0, u_1) e(p_0, u_0)$
 - old prices; new level of utility (equivalent variation)
- $CV = e(p_1, u_0) e(p_0, u_0)$
 - new prices, old level of utility (compensating variation)
- remember:
 - $y = e(p_0, u_0) = e(p_1, u_1)$
 - these points lie on the Marshallian demand curve too
- ullet write the differences in e(p,u) as an integral under a Hicksian demand curve

- first, suppose that u(x) is homogeneous of degree 1
 - this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg \max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x'''(p, ty_0) = x_1^* = \arg\max u(x)$ s.t. $px \le ty_0$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀*
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y=y_0$ (check this
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - then x_0^* was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - · this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x'''(p, ty_0) = x_1^* = \arg\max u(x)$ s.t. $px \le ty_0$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y=y_0$ (check this
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - then x_0^* was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^{M}(p, y_{0}) = x_{0}^{*} = \arg\max u(x) \text{ s.t. } px \leq y_{0}$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x'''(p, ty_0) = x_1^* = \arg\max u(x)$ s.t. $px \le ty_0$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y=y_0$ (check this
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - ullet then x_0^* was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^{M}(p, ty_{0}) = x_{1}^{*} = \arg \max u(x) \text{ s.t. } px \leq ty_{0}$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y=y_0$ (check this
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - ullet then x_0^* was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^M(p, ty_0) = x_1^* = \arg\max u(x)$ s.t. $px \le ty_0$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y=y_0$ (check this)
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - then x_0^- was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^{M}(p, ty_{0}) = x_{1}^{*} = \arg \max u(x) \text{ s.t. } px \leq ty_{0}$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀^{*}
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y=y_0$ (check this)
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - ullet then x_0^* was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^{M}(p, ty_{0}) = x_{1}^{*} = \arg \max u(x)$ s.t. $px \leq ty_{0}$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀*
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y=y_0$ (check this)
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - then x_0^- was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^{M}(p, ty_{0}) = x_{1}^{*} = \arg \max u(x) \text{ s.t. } px \leq ty_{0}$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀*
- ullet suppose the inequality is strict, so $v(p,ty_0)=u(x_1^*)>tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y=y_0$ (check this)
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - then x_0^- was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - · this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^{M}(p, ty_{0}) = x_{1}^{*} = \arg \max u(x) \text{ s.t. } px \leq ty_{0}$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀*
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y = y_0$ (check this
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - then x_0^* was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - · this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^{M}(p, ty_{0}) = x_{1}^{*} = \arg \max u(x) \text{ s.t. } px \leq ty_{0}$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀*
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y = y_0$ (check this)
 - ullet and $u(t^{-1}x_1^*)>v(p,y_0)=u(x_0^*)$ by assumption
 - then x_0^* was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^{M}(p, ty_{0}) = x_{1}^{*} = \arg \max u(x) \text{ s.t. } px \leq ty_{0}$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀*
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y = y_0$ (check this)
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - then x_0^* was not optimal to begin with a contradiction

- first, suppose that u(x) is homogeneous of degree 1
 - · this is stronger than we need: recall utility is ordinal
 - so we only need that there is some increasing f such that f(u(x)) is h.d. 1
- suppose $x^M(p, y_0) = x_0^* = \arg\max u(x)$ s.t. $px \le y_0$
 - let t > 0 be given (say t = 2 for concreteness)
 - and let $x^M(p, ty_0) = x_1^* = \arg \max u(x)$ s.t. $px \le ty_0$
- we know $v(p, ty_0) \ge tv(p, y_0)$ by feasibility
 - could always choose tx₀*
- suppose the inequality is strict, so $v(p, ty_0) = u(x_1^*) > tu(x_0^*)$
 - then $t^{-1}x_1^*$ is feasible when $y = y_0$ (check this)
 - and $u(t^{-1}x_1^*) > v(p, y_0) = u(x_0^*)$ by assumption
 - then x_0^* was not optimal to begin with a contradiction

- interpretation: with *u* homogeneous,
 - if you can do better when rich (x_1^*) than just a scaled-up version of what you did when you were poor (x_0^*)
 - then, you should have chosen a scaled-down version of your choices when rich in the first place
- thus, we have shown that for all t and all y_0 ,

$$x^M(p,ty_0) \equiv x^M(p,y_0)$$

- interpretation: with *u* homogeneous,
 - if you can do better when rich (x_1^*) than just a scaled-up version of what you did when you were poor (x_0^*)
 - then, you should have chosen a scaled-down version of your choices when rich in the first place
- thus, we have shown that for all t and all y_0 ,

$$x^{M}(p,ty_{0}) \equiv x^{M}(p,y_{0})$$

- interpretation: with *u* homogeneous,
 - if you can do better when rich (x_1^*) than just a scaled-up version of what you did when you were poor (x_0^*)
 - then, you should have chosen a scaled-down version of your choices when rich in the first place
- thus, we have shown that for all t and all y_0 ,

$$x^M(p,ty_0) \equiv x^M(p,y_0)$$

- interpretation: with *u* homogeneous,
 - if you can do better when rich (x_1^*) than just a scaled-up version of what you did when you were poor (x_0^*)
 - then, you should have chosen a scaled-down version of your choices when rich in the first place
- thus, we have shown that for all t and all y_0 ,

$$x^M(p,ty_0) \equiv x^M(p,y_0)$$

- interpretation: with *u* homogeneous,
 - if you can do better when rich (x_1^*) than just a scaled-up version of what you did when you were poor (x_0^*)
 - then, you should have chosen a scaled-down version of your choices when rich in the first place
- thus, we have shown that for all t and all y_0 ,

$$x^M(p,ty_0) \equiv x^M(p,y_0)$$

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_V changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x,v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^{H}(p_{y}, p_{z}, v)$ and similarly for z^{H}
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_V changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x,v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_v, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_{y} changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_y, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_y changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, y) = x + \log(y)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_v, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_y changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^{H}(p_{y}, p_{z}, v)$ and similarly for z^{H}
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_{y} changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(v,z) = \min\{v,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_y, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_{y} changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_v, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_v changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_v, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_{y} changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_v, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_v changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_v, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_v changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^H(p_y, p_z, v)$ and similarly for z^H
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_v changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^{H}(p_{y}, p_{z}, v)$ and similarly for z^{H}
- what is the objective for the cost-minimization problem over (x, v)?

- say we have u = u(x, v(y, z))
 - (y, z) are weakly separable from x
- suppose p_v changes
 - conditional on v, there is a within-group substitution effect
 - the cost of v changes, inducing a substitution effect between (x, v)
 - this in turn gives us an income effect on v and thus on y and z
- example: suppose
 - $u(x, v) = x + \log(v)$
 - $v(y,z) = \min\{y,z\}$
 - normalize the price of x to unity
- first, compute the Hicksian demands
 - $y^{H}(p_{y}, p_{z}, v)$ and similarly for z^{H}
- what is the objective for the cost-minimization problem over (x, v)?

• compute ε_{yz}^H directly:

$$\varepsilon_{yz}^{H} = -\frac{p_z}{(p_y + p_z)}$$

- is this what we would have expected?
- what about across-group substitution, say ε_{xy}^H ?
 - would expect ε_{xy}^H to be proportional to

$$\varepsilon_{xy}^{H} \propto \frac{\partial \log c_{v}}{\partial \log p_{y}}$$

- notice the latter is the cost share of y in v
- this is not specific to these preferences (use the envelope theorem!)

• compute ε_{vz}^H directly:

$$\varepsilon_{yz}^{H} = -\frac{p_z}{(p_y + p_z)}$$

- is this what we would have expected?
- what about across-group substitution, say ε_{xy}^H ?
 - would expect ε_{xy}^n to be proportional to

$$\varepsilon_{xy}^H \propto \frac{\partial \log c_v}{\partial \log p_y}$$

- notice the latter is the cost share of y in v
- this is not specific to these preferences (use the envelope theorem!)

• compute ε_{vz}^H directly:

$$\varepsilon_{yz}^{H} = -\frac{p_z}{(p_y + p_z)}$$

- is this what we would have expected?
- what about across-group substitution, say ε_{xy}^H ?
 - would expect ε_{xy}^H to be proportional to

$$\varepsilon_{xy}^H \propto \frac{\partial \log c_v}{\partial \log p_y}$$

- notice the latter is the cost share of y in v
- this is not specific to these preferences (use the envelope theorem!)

• compute ε_{yz}^H directly:

$$\varepsilon_{yz}^{H} = -\frac{p_z}{(p_y + p_z)}$$

- is this what we would have expected?
- what about across-group substitution, say ε_{xy}^H ?
 - would expect ε_{xy}^H to be proportional to

$$\varepsilon_{xy}^H \propto \frac{\partial \log c_v}{\partial \log p_y}$$

- notice the latter is the cost share of y in v
- this is not specific to these preferences (use the envelope theorem!)

• compute ε_{yz}^H directly:

$$arepsilon_{yz}^{H}=-rac{p_{z}}{(p_{y}+p_{z})}$$

- is this what we would have expected?
- what about across-group substitution, say ε_{xy}^H ?
 - would expect ε_{xy}^H to be proportional to

$$\varepsilon_{xy}^H \propto \frac{\partial \log c_v}{\partial \log p_y}$$

- notice the latter is the cost share of y in v
- this is not specific to these preferences (use the envelope theorem!)

• compute ε_{vz}^H directly:

$$arepsilon_{yz}^{H}=-rac{p_{z}}{\left(p_{y}+p_{z}
ight)}$$

- is this what we would have expected?
- what about across-group substitution, say ε_{xy}^H ?
 - would expect ε_{xy}^H to be proportional to

$$\varepsilon_{xy}^H \propto \frac{\partial \log c_v}{\partial \log p_y}$$

- notice the latter is the cost share of y in v
- this is not specific to these preferences (use the envelope theorem!)

- suppose y = cars and z = fuel
 - would a tax on fuel and a subsidy to cars result in more or less traffic?
 - would people benefit from such a policy?
 - will spending on transport rise or fall?
- notice that this structure allows us to define and measure the "cost of driving"
 - does not depend on the consumption of other goods
 - other examples of price subindices?

- suppose y = cars and z = fuel
 - would a tax on fuel and a subsidy to cars result in more or less traffic?
 - would people benefit from such a policy?
 - will spending on transport rise or fall?
- notice that this structure allows us to define and measure the "cost of driving"
 - does not depend on the consumption of other good.
 - other examples of price subindices?

- suppose y =cars and z =fuel
 - would a tax on fuel and a subsidy to cars result in more or less traffic?
 - would people benefit from such a policy?
 - will spending on transport rise or fall?
- notice that this structure allows us to define and measure the "cost of driving"
 - does not depend on the consumption of other goods
 - other examples of price subindices?

- suppose y =cars and z =fuel
 - would a tax on fuel and a subsidy to cars result in more or less traffic?
 - would people benefit from such a policy?
 - will spending on transport rise or fall?
- notice that this structure allows us to define and measure the "cost of driving"
 - does not depend on the consumption of other goods
 - other examples of price subindices?

- suppose y =cars and z =fuel
 - would a tax on fuel and a subsidy to cars result in more or less traffic?
 - would people benefit from such a policy?
 - will spending on transport rise or fall?
- notice that this structure allows us to define and measure the "cost of driving"
 - does not depend on the consumption of other goods
 - other examples of price subindices

- suppose y =cars and z =fuel
 - would a tax on fuel and a subsidy to cars result in more or less traffic?
 - would people benefit from such a policy?
 - will spending on transport rise or fall?
- notice that this structure allows us to define and measure the "cost of driving"
 - does not depend on the consumption of other goods
 - other examples of price subindices?

- suppose y =cars and z =fuel
 - would a tax on fuel and a subsidy to cars result in more or less traffic?
 - would people benefit from such a policy?
 - will spending on transport rise or fall?
- notice that this structure allows us to define and measure the "cost of driving"
 - does not depend on the consumption of other goods
 - other examples of price subindices?

suppose we have a two-period model

- income in each period t = 0, 1 is y
- consumption in each period is c_i
- there is a capital market offering gross returns of (1+r)
- saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - if an increase in y₀ causes an increase in c₀, is this evidence of "credit constraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - if an increase in y₀ causes an increase in c₀, is this evidence of "credit constraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - If an increase in y_0 causes an increase in c_0 , is this evidence of "crediting constraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - ullet consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - If an increase in y_0 causes an increase in c_0 , is this evidence of "crediting constraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - ullet consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - If an increase in y_0 causes an increase in c_0 , is this evidence of "crediting constraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - ullet consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - If an increase in y_0 causes an increase in c_0 , is this evidence of "credifficonstraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - ullet consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - If an increase in y_0 causes an increase in c_0 , is this evidence of "creditting constraints"?
 - are "credit constraints" the same as poverty in

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - if an increase in y_0 causes an increase in c_0 , is this evidence of "credit constraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - ullet consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - if an increase in y_0 causes an increase in c_0 , is this evidence of "credit constraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - consumption in each period is c_t
 - ullet there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - if an increase in y₀ causes an increase in c₀, is this evidence of "credit constraints"?
 - are "credit constraints" the same as poverty

- suppose we have a two-period model
 - income in each period t = 0, 1 is y_t
 - consumption in each period is c_t
 - there is a capital market offering gross returns of (1+r)
 - saving (possibly negative) is s_0
- what are the constraints?
 - what if there were a limit to borrowing?
- when does the borrowing constraint bind?
 - implications for consumption?
 - if an increase in y₀ causes an increase in c₀, is this evidence of "credit constraints"?
 - are "credit constraints" the same as poverty?

- let $p = (1+r)^{-1}$ be the "market discount factor" (relative price of c_1)
- notice that, by the envelope theorem,

$$\frac{\partial u^*}{\partial p} = \lambda^* \cdot (y_1 - c_1^*)$$

- net borrowers are worse off when interest rates rise
 - conversely, borrowers benefit from lower interest rates
- net savers are better off when interest rates rise

- let $p = (1 + r)^{-1}$ be the "market discount factor" (relative price of c_1)
- notice that, by the envelope theorem,

$$\frac{\partial u^*}{\partial p} = \lambda^* \cdot (y_1 - c_1^*)$$

- net borrowers are worse off when interest rates rise
 - conversely, borrowers benefit from lower interest rates
- net savers are better off when interest rates rise

- let $p = (1+r)^{-1}$ be the "market discount factor" (relative price of c_1)
- notice that, by the envelope theorem,

$$\frac{\partial u^*}{\partial p} = \lambda^* \cdot (y_1 - c_1^*)$$

- net borrowers are worse off when interest rates rise
 - conversely, borrowers benefit from lower interest rates
- net savers are better off when interest rates rise

- let $p = (1 + r)^{-1}$ be the "market discount factor" (relative price of c_1)
- notice that, by the envelope theorem,

$$rac{\partial u^*}{\partial p} = \lambda^* \cdot (y_1 - c_1^*)$$

- net borrowers are worse off when interest rates rise
 - · conversely, borrowers benefit from lower interest rates
- net savers are better off when interest rates rise

- let $p = (1 + r)^{-1}$ be the "market discount factor" (relative price of c_1)
- notice that, by the envelope theorem,

$$rac{\partial u^*}{\partial p} = \lambda^* \cdot (y_1 - c_1^*)$$

- net borrowers are worse off when interest rates rise
 - · conversely, borrowers benefit from lower interest rates
- net savers are better off when interest rates rise

suppose we have time-separable CRRA utility:

$$v(c_t)=rac{c_t^{1-\gamma^{-1}}}{1-\gamma^{-1}}$$

- what is the MRS = MRT condition?
 - this is often called the "Euler equation"
- what can we say about the effect of interest rates on consumption over time?
 - ullet here, γ is called the "elasticity of intertemporal substitution"
- what happens when (1+r) rises?
 - ullet higher interest rate \longrightarrow present consumption more expensive relative to future
 - substitution effect: save more

suppose we have time-separable CRRA utility:

$$v(c_t)=rac{c_t^{1-\gamma^{-1}}}{1-\gamma^{-1}}$$

- what is the MRS = MRT condition?
 - this is often called the "Euler equation"
- what can we say about the effect of interest rates on consumption over time?
 - ullet here, γ is called the "elasticity of intertemporal substitution"
- what happens when (1+r) rises?
 - ullet higher interest rate \longrightarrow present consumption more expensive relative to future
 - substitution effect: save more

$$v(c_t)=rac{c_t^{1-\gamma^{-1}}}{1-\gamma^{-1}}$$

- what is the MRS = MRT condition?
 - this is often called the "Euler equation"
- what can we say about the effect of interest rates on consumption over time?
 here, γ is called the "elasticity of intertemporal substitution"
- what happens when (1+r) rises?
 - higher interest rate → present consumption more expensive relative to future
 - substitution effect: save more

$$v(c_t) = \frac{c_t^{1-\gamma^{-1}}}{1-\gamma^{-1}}$$

- what is the MRS = MRT condition?
 - this is often called the "Euler equation"
- what can we say about the effect of interest rates on consumption over time?
 - ullet here, γ is called the "elasticity of intertemporal substitution"
- what happens when (1+r) rises?

$$v(c_t) = \frac{c_t^{1-\gamma^{-1}}}{1-\gamma^{-1}}$$

- what is the MRS = MRT condition?
 - this is often called the "Euler equation"
- what can we say about the effect of interest rates on consumption over time?
 - \bullet here, γ is called the "elasticity of intertemporal substitution"
- what happens when (1+r) rises?
 - higher interest rate → present consumption more expensive relative to future
 substitution effect: save more

$$v(c_t) = \frac{c_t^{1-\gamma^{-1}}}{1-\gamma^{-1}}$$

- what is the MRS = MRT condition?
 - this is often called the "Euler equation"
- what can we say about the effect of interest rates on consumption over time?
 - \bullet here, γ is called the "elasticity of intertemporal substitution"
- what happens when (1+r) rises?

 - substitution effect: save more

$$v(c_t)=rac{c_t^{1-\gamma^{-1}}}{1-\gamma^{-1}}$$

- what is the MRS = MRT condition?
 - this is often called the "Euler equation"
- what can we say about the effect of interest rates on consumption over time?
 - \bullet here, γ is called the "elasticity of intertemporal substitution"
- what happens when (1+r) rises?
 - higher interest rate \longrightarrow present consumption more expensive relative to future
 - substitution effect: save more

$$v(c_t) = \frac{c_t^{1-\gamma^{-1}}}{1-\gamma^{-1}}$$

- what is the MRS = MRT condition?
 - this is often called the "Euler equation"
- what can we say about the effect of interest rates on consumption over time?
 - \bullet here, γ is called the "elasticity of intertemporal substitution"
- what happens when (1+r) rises?
 - higher interest rate \longrightarrow present consumption more expensive relative to future
 - · substitution effect: save more

• find the Marshallian demands:

- for convenience, assume $\beta(1+r)=1$
- can show that

$$\frac{\partial \log c_0}{\partial \log p} = \frac{py_1}{y_0 + py_1} - (\gamma - 1)\frac{p}{1 + p}$$

- what if y₁ is large relative to y₀?
- notice also that

$$\frac{\partial \log c_0}{\partial \log y_0} = \frac{y_0}{y_0 + py_1} < 1$$

- this is a version of the "permanent income hypothesis"
 - temporary increases in income have small effects on current consumption
 - increases in permanent income have much larger effects.

- find the Marshallian demands:
 - for convenience, assume $\beta(1+r)=1$
 - can show that

$$\frac{\partial \log c_0}{\partial \log p} = \frac{py_1}{y_0 + py_1} - (\gamma - 1)\frac{p}{1 + p}$$

- what if y_1 is large relative to y_0 ?
- notice also that

$$\frac{\partial \log c_0}{\partial \log y_0} = \frac{y_0}{y_0 + py_1} < 1$$

- this is a version of the "permanent income hypothesis"
 - temporary increases in income have small effects on current consumption
 - increases in permanent income have much larger effects

- find the Marshallian demands:
 - for convenience, assume $\beta(1+r)=1$
 - can show that

$$\frac{\partial \log c_0}{\partial \log p} = \frac{py_1}{y_0 + py_1} - (\gamma - 1)\frac{p}{1 + p}$$

- what if y_1 is large relative to y_0 ?
- notice also that

$$\frac{\partial \log c_0}{\partial \log y_0} = \frac{y_0}{y_0 + py_1} < 1$$

- this is a version of the "permanent income hypothesis"
 - temporary increases in income have small effects on current consumption
 - increases in permanent income have much larger effects

- find the Marshallian demands:
 - for convenience, assume $\beta(1+r)=1$
 - can show that

$$\frac{\partial \log c_0}{\partial \log p} = \frac{py_1}{y_0 + py_1} - (\gamma - 1)\frac{p}{1 + p}$$

- what if y_1 is large relative to y_0 ?
- notice also that

$$\frac{\partial \log c_0}{\partial \log y_0} = \frac{y_0}{y_0 + py_1} < 1$$

- this is a version of the "permanent income hypothesis"
 - temporary increases in income have small effects on current consumption
 - increases in permanent income have much larger effects

- find the Marshallian demands:
 - for convenience, assume $\beta(1+r)=1$
 - can show that

$$\frac{\partial \log c_0}{\partial \log p} = \frac{py_1}{y_0 + py_1} - (\gamma - 1)\frac{p}{1 + p}$$

- what if y_1 is large relative to y_0 ?
- notice also that

$$\frac{\partial \log c_0}{\partial \log y_0} = \frac{y_0}{y_0 + py_1} < 1$$

- this is a version of the "permanent income hypothesis"
 - temporary increases in income have small effects on current consumption
 - increases in permanent income have much larger effects

- find the Marshallian demands:
 - for convenience, assume $\beta(1+r)=1$
 - can show that

$$\frac{\partial \log c_0}{\partial \log p} = \frac{py_1}{y_0 + py_1} - (\gamma - 1)\frac{p}{1 + p}$$

- what if y_1 is large relative to y_0 ?
- notice also that

$$\frac{\partial \log c_0}{\partial \log y_0} = \frac{y_0}{y_0 + py_1} < 1$$

- this is a version of the "permanent income hypothesis"
 - temporary increases in income have small effects on current consumption
 - increases in permanent income have much larger effects

- find the Marshallian demands:
 - for convenience, assume $\beta(1+r)=1$
 - can show that

$$\frac{\partial \log c_0}{\partial \log p} = \frac{py_1}{y_0 + py_1} - (\gamma - 1)\frac{p}{1 + p}$$

- what if y_1 is large relative to y_0 ?
- notice also that

$$\frac{\partial \log c_0}{\partial \log y_0} = \frac{y_0}{y_0 + py_1} < 1$$

- this is a version of the "permanent income hypothesis"
 - temporary increases in income have small effects on current consumption
 - increases in permanent income have much larger effects

- find the Marshallian demands:
 - for convenience, assume $\beta(1+r)=1$
 - can show that

$$\frac{\partial \log c_0}{\partial \log p} = \frac{py_1}{y_0 + py_1} - (\gamma - 1)\frac{p}{1 + p}$$

- what if y_1 is large relative to y_0 ?
- notice also that

$$\frac{\partial \log c_0}{\partial \log y_0} = \frac{y_0}{y_0 + py_1} < 1$$

- this is a version of the "permanent income hypothesis"
 - temporary increases in income have small effects on current consumption
 - increases in *permanent* income have much larger effects

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - If you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- from the first-order conditions
 - ullet elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - ullet γ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - If you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- from the first-order conditions
 - ullet elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - γ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - if you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- from the first-order conditions
 - ullet elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - ullet γ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - if you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- from the first-order conditions
 - ullet elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the Frisch elasticity of labor supply
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - ullet γ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - if you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- from the first-order conditions
 - ullet elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply"
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - ullet γ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - ullet if you can borrow and save freely at gross rate 1+r, what is the budget constraint?
- from the first-order conditions
 - elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply"
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - γ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - if you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- · from the first-order conditions
 - elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply"
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - ullet γ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - if you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- from the first-order conditions
 - elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply"
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effect
 - $oldsymbol{\gamma}$ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - if you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- from the first-order conditions
 - elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply"
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - $oldsymbol{\gamma}$ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - if you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- · from the first-order conditions
 - elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply"
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - \bullet $\,\gamma$ governs the strength of substitution effects
 - see Keane (2011)

$$u(c_t, h_t) = \frac{c_t^{1-\eta}}{1-\eta} - \alpha \frac{h_t^{1+\gamma}}{1+\gamma}$$

- here $\alpha > 0$ is some known constant
- suppose you live for T periods and face a given sequence of wages w_0, w_1, \ldots
 - if you can borrow and save freely at gross rate 1 + r, what is the budget constraint?
- from the first-order conditions
 - elasticity of substitution for labor supply in different periods is $1/\gamma$
 - people often call this the "Frisch elasticity of labor supply"
- these preferences are useful for studying "dynamic" or life-cycle labor supply
 - $\eta \geq 0$ governs the strength of income effects
 - \bullet $\,\gamma$ governs the strength of substitution effects
 - see Keane (2011)

- consider some different policies:
 - tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible • a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - · tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - If T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible • a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - · a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - ullet estimates of $1/\gamma$ are very close to zero, at least for prime-age men who workk full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - · tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - \bullet estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - · tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - · a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - · tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- consider some different policies:
 - · tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

Life-Cycle Labor Supply

- consider some different policies:
 - · tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - · a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

Life-Cycle Labor Supply

- consider some different policies:
 - tax labor earnings and use the revenue to pay for unconditional transfers
 - tax labor earnings and use the revenue to pay for public goods (or a war)
 - a temporary "tax holiday" that expires after a year
- Frisch elasticity is useful for predicting the effects of a small increase in w_{t+1}/w_t
 - if T is large, and $w_{t+1} + w_t$ is constant, income effects will be negligible
 - a small, temporary demand shock
- you can show that the Frisch elasticity is an upper bound for the Hicksian and Marshallian elasticities
 - estimates of $1/\gamma$ are very close to zero, at least for prime-age men who work full-time
 - taking this at face value, what are the implications?
- macroeconomists tend to believe $1/\gamma$ is large, say 2-4
 - this is because aggregate wages don't fluctuate much at business cycle frequencies
 - however, aggregate hours do move a lot over the business cycle

- ullet suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1 + r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - ullet this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(\frac{1-\delta}{1+r} \right)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
- useful for e.g. construction of price indices

- ullet suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1 + t
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(rac{1-\delta}{1+r}
ight)$$

- this is called the user cost of durables: the implied rental rate
 - b exactly analogous to nondurables
- useful for e.g. construction of price indices

- ullet suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1 + r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - ullet this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(\frac{1-\delta}{1+r} \right)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
- useful for e.g. construction of price indices

- ullet suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1+r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - ullet this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(\frac{1-\delta}{1+r} \right)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
- It is seful for e.g. construction of price indices

- ullet suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1+r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- ullet suppose we have two periods and impose that $A_2=0$
 - ullet this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(\frac{1-\delta}{1+r} \right)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
- useful for e.g. construction of price indices

- suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1+r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - ullet this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?

notice that

$$v_t^* = v_t - v_{t+1} \left(rac{1-\delta}{1+r}
ight)$$

this is called the user cost of durables: the implied rental rate

* useful for e.g. construction of reice indices

- ullet suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1+r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - this can be justified by $A_2 \ge 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(\frac{1-\delta}{1+r} \right)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
 - useful for e.g. construction of price indices

- ullet suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1+r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(rac{1-\delta}{1+r}
ight)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
 - useful for e.g. construction of price indices

- suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1 + r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - this can be justified by $A_2 \ge 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(rac{1-\delta}{1+r}
ight)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
 - useful for e.g. construction of price indices

- ullet suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1+r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - ullet this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(rac{1-\delta}{1+r}
ight)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
 - useful for e.g. construction of price indices

- suppose we have some durable good S_t and a nondurable c_t
 - durables depreciate at rate δ and sell for v_t
 - and, some financial asset A_t with gross returns 1 + r
- what is the one-period ahead budget constraint ("law of motion" for wealth)?
- suppose we have two periods and impose that $A_2 = 0$
 - ullet this can be justified by $A_2 \geq 0$ (a no-Ponzi condition) + optimality
- what is the present-value form of the intertemporal budget constraint?
 - notice that

$$v_t^* = v_t - v_{t+1} \left(rac{1-\delta}{1+r}
ight)$$

- this is called the user cost of durables: the implied rental rate
 - exactly analogous to nondurables
 - useful for e.g. construction of price indices

- so far we have just described the budget constraint
- now, suppose preferences are

$$u = \sum_{t=0}^{T} \beta^t v(c_t, S_t)$$

- assumption is that the service flow is proportional to stock of durables
- how would we introduce borrowing constraints into this model?
- what about a "wedge" between the buying and selling price?

- so far we have just described the budget constraint
- now, suppose preferences are

$$u = \sum_{t=0}^{T} \beta^t v(c_t, S_t)$$

- assumption is that the service flow is proportional to stock of durables
- how would we introduce borrowing constraints into this model?
- what about a "wedge" between the buying and selling price?

- so far we have just described the budget constraint
- now, suppose preferences are

$$u = \sum_{t=0}^{T} \beta^{t} v(c_{t}, S_{t})$$

- assumption is that the service flow is proportional to stock of durables
- how would we introduce borrowing constraints into this model?
- what about a "wedge" between the buying and selling price?

- so far we have just described the budget constraint
- now, suppose preferences are

$$u = \sum_{t=0}^{T} \beta^{t} v(c_{t}, S_{t})$$

- assumption is that the service flow is proportional to stock of durables
- how would we introduce borrowing constraints into this model?
- what about a "wedge" between the buying and selling price?

- so far we have just described the budget constraint
- now, suppose preferences are

$$u = \sum_{t=0}^{T} \beta^{t} v(c_{t}, S_{t})$$

- assumption is that the service flow is proportional to stock of durables
- how would we introduce borrowing constraints into this model?
- what about a "wedge" between the buying and selling price?

References

Keane, Michael P. 2011. "Labor Supply and Taxes: A Survey." *Journal of Economic Literature* 49 (4): 961–1075.

https://doi.org/10.1257/jel.49.4.961.

Table of Contents

Loose Ends

Price Subindices

Life-Cycle Consumption

Durable Goods