ECON 4360: Empirical Finance

The Discount Factor (Existence)

Sherry Forbes

University of Virginia

Theory Lecture #09

What are we doing today?

The Discount Factor

• We're going to show the bare minimum of what's necessary for a discount factor to exist and be unique.

- We're going to show the bare minimum of what's necessary for a discount factor to exist and be unique.
 - We're going to look at p = E[mx] to figure out if we can always find such a discount factor, m.

- We're going to show the bare minimum of what's necessary for a discount factor to exist and be unique.
 - We're going to look at p = E[mx] to figure out if we can always find such a discount factor, m.
- We can describe aspects of the payoff space through restrictions on the discount factor.

- We're going to show the bare minimum of what's necessary for a discount factor to exist and be unique.
 - We're going to look at p = E[mx] to figure out if we can always find such a discount factor, m.
- We can describe aspects of the payoff space through restrictions on the discount factor.
 - All we need is the law of one price and the absence of arbitrage opportunities

- We're going to show the bare minimum of what's necessary for a discount factor to exist and be unique.
 - We're going to look at p = E[mx] to figure out if we can always find such a discount factor, m.
- We can describe aspects of the payoff space through restrictions on the discount factor.
 - All we need is the law of one price and the absence of arbitrage opportunities
 - We don't need all the structure of utility functions and complete markets to be able to use the representation p = E[mx].

- We're going to show the bare minimum of what's necessary for a discount factor to exist and be unique.
 - We're going to look at p = E[mx] to figure out if we can always find such a discount factor, m.
- We can describe aspects of the payoff space through restrictions on the discount factor.
 - All we need is the law of one price and the absence of arbitrage opportunities
 - We don't need all the structure of utility functions and complete markets to be able to use the representation p = E[mx].
- Why might this be useful?

- We're going to show the bare minimum of what's necessary for a discount factor to exist and be unique.
 - We're going to look at p = E[mx] to figure out if we can always find such a discount factor, m.
- We can describe aspects of the payoff space through restrictions on the discount factor.
 - All we need is the law of one price and the absence of arbitrage opportunities
 - We don't need all the structure of utility functions and complete markets to be able to use the representation p = E[mx].
- Why might this be useful?
 - We can check restrictions on the discount factor (instead of the corresponding restrictions on all possible portfolios).

Complete Markets

If markets are complete, then a discount factor exists and is unique. Why?

• In real markets, we have more states (S) than securities (N)

- In real markets, we have more states (S) than securities (N)
 - When this is the case, we say that markets are incomplete.

- In real markets, we have more states (S) than securities (N)
 - When this is the case, we say that markets are incomplete.
- For example, we might have three states, S=3, but only two securities, N=2 with payoff matrix

	$1 (\pi = 1/3)$	$2 (\pi = 1/3)$	$3 (\pi = 1/3)$
$A (P_A = 2.3)$	0	2	5
$B (P_B = 2.0)$	1	3	2

- ullet In real markets, we have more states (S) than securities (N)
 - When this is the case, we say that markets are incomplete.
- For example, we might have three states, S=3, but only two securities, N=2 with payoff matrix

	$1 (\pi = 1/3)$	$2 (\pi = 1/3)$	$3 (\pi = 1/3)$
$A (P_A = 2.3)$	0	2	5
$B (P_B = 2.0)$	1	3	2

• What are the $S \times 1$ payoff vectors for each asset?

States?

- How is the concept of "states of nature" useful?
 - We can think of the states as things like "good", "average", and "bad"
 - But we can also think about the states as returns observed in January,
 February, and March
- This is how models are implemented...
 - We assume that a different state is revealed by nature once per month (etc.), and we will use time series of gross (monthly) returns to test our asset pricing models.

ullet The payoff space, \underline{X} , is the space of all possible security and portfolio payoffs that an investor can form

- The payoff space, \underline{X} , is the space of all possible security and portfolio payoffs that an investor can form
 - If markets are complete, $\underline{X} = R^S$

- The payoff space, \underline{X} , is the space of all possible security and portfolio payoffs that an investor can form
 - If markets are complete, $\underline{X} = R^S$
 - If markets are incomplete, \underline{X} is a proper subset of R^S

- The payoff space, \underline{X} , is the space of all possible security and portfolio payoffs that an investor can form
 - If markets are complete, $\underline{X} = R^S$
 - If markets are incomplete, X is a proper subset of R^S
- Assumption A1: Portfolio Formation

- The payoff space, \underline{X} , is the space of all possible security and portfolio payoffs that an investor can form
 - If markets are complete, $\underline{X} = R^S$
 - If markets are incomplete, X is a proper subset of \mathbb{R}^S
- Assumption A1: Portfolio Formation
 - Investors can form portfolios of any assets that are traded

- The payoff space, \underline{X} , is the space of all possible security and portfolio payoffs that an investor can form
 - If markets are complete, $\underline{X} = R^S$
 - If markets are incomplete, \underline{X} is a proper subset of R^S
- Assumption A1: Portfolio Formation
 - Investors can form portfolios of any assets that are traded
- Mathematically: $x_A, x_B \in \underline{X} \Rightarrow ax_A + bx_B \in \underline{X}$ for any real a, b.

- The payoff space, \underline{X} , is the space of all possible security and portfolio payoffs that an investor can form
 - If markets are complete, $\underline{X} = R^S$
 - If markets are incomplete, X is a proper subset of \mathbb{R}^S
- Assumption A1: Portfolio Formation
 - Investors can form portfolios of any assets that are traded
- Mathematically: $x_A, x_B \in X \Rightarrow ax_A + bx_B \in X$ for any real a, b.
 - For example, if you buy 5 units of asset A and 2 units of asset B, the payoff vector representing the portfolio's payoff would be

$$5\begin{bmatrix}0&2&5\end{bmatrix}+2\begin{bmatrix}1&3&2\end{bmatrix}=\begin{bmatrix}2&16&29\end{bmatrix}$$

• We can, of course, use matrix notation as follows:

$$x = \left[\begin{array}{c} x_A \\ x_B \end{array} \right] = \left[\begin{array}{ccc} 0 & 2 & 5 \\ 1 & 3 & 2 \end{array} \right]$$

- So that x is an $N \times S$ matrix of asset payoffs, where each row represents a security and each column represents a state.
- Represent the price vector and the vector of portfolio weights, respectively, as

$$p=\left[egin{array}{c} 2.3 \ 2.0 \end{array}
ight]$$
 , $c=\left[egin{array}{c} 5 \ 2 \end{array}
ight]$

• Then the payoff of any portfolio is x'c, which gives you a Sx1 payoff vector

Law of One Price

- The Law of One Price (LOP) states that if two securities have exactly the same payoff, then they must have the same price.
 - What does this imply graphically, in terms of the state-space geometry we did last time?
- Assumption A2: LOP
 - Mathematically: $p(ax_A + bx_B) = ap(x_A) + bp(x_B)$
 - What this implies is that investors can't make instant profits simply by re-packaging portfolios.
 - Note: This is an equilibrium condition. What does that mean? It means that if there are any violations, traders will act quickly to eliminate them.

The Theorem

- Theorem (Easy direction): The existence of a discount factor implies the law of one price.
 - The proof is fairly obvious. Say there is some payoff, x=y+z, then

$$p\left(x\right)=E\left[mx\right]=E\left[m\left(y+z\right)\right]=E\left[my\right]+E\left[mz\right]=p\left(y\right)+p\left(z\right)$$

- Theorem (Hard(er) direction): The law of one price implies the existence of a discount factor.
 - The proof is in the book, but we will demonstrate what it means with an example.

The Theorem (LOP -> DF)

- Let's use the same securities and states as our previous example, so that the payoff space is a plane in R^3 .
- Start with p = E[mx]
- If markets are incomplete, there are an infinite number of m's that will work. Do you see why?
 - We basically have a system of two equations in three unknowns:

2.3 =
$$(1/3)(0) m_1 + (1/3)(2) m_2 + (1/3)(5) m_3$$

2.0 = $(1/3)(1) m_1 + (1/3)(1) m_2 + (1/3)(2) m_3$

The Theorem (LOP -> DF)

- However, there is a special m that is a linear combination of the payoffs of the securities that we have (i.e., a portfolio in X) that is unique.
 - Let's call this special portfolio x^* .
- We already know (as seen previously) that any portfolio payoff can be represented by a linear combination of the x's according to x'c.
 - Let's represent this special portfolio as $x^* = x'c$.
 - Here, we need the LOP that forces the price of a portfolio payoff to be equal to the price of its constituents. Let's see if we can figure out what the c is to make our special portfolio...

The Theorem (LOP -> DF)

• Our special portfolio m is $x^* = x'c$. Now, use p = E[mx] to write

$$p = E[xx^*]$$

$$p = E[xx'c]$$

$$p = E[xx']c$$

$$E[xx']^{-1}p = E[xx']^{-1}E[xx']c$$

$$E[xx']^{-1}p = c$$

Now, we can substitute to find

$$x^* = x'c = x'E[xx']^{-1}p = p'E[xx']^{-1}x$$

• What is x^* ? A vector perpendicular to all the iso-price planes. This special discount factor is known as the *mimicking portfolio* for m.

Example

• Using the current example securities and states, let's find x^* .

$$xx' = \begin{bmatrix} 0 & 2 & 5 \\ 1 & 3 & 2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} 29 & 16 \\ 16 & 14 \end{bmatrix}$$

• And since E[xx'] = (1/3)[xx'],

$$x^{*} = x'E [xx']^{-1} p$$

$$x^{*} = 3 \begin{bmatrix} 0 & 1 \\ 2 & 3 \\ 5 & 2 \end{bmatrix} \begin{bmatrix} 0.0933 & -0.1066 \\ -0.1066 & 0.1933 \end{bmatrix} \begin{bmatrix} 2.3 \\ 2.0 \end{bmatrix}$$

$$x^{*} = \begin{bmatrix} 0.4240 \\ 1.2800 \\ 0.8680 \end{bmatrix}$$

Example

• Let's check and see if x^* prices our securities correctly. For x_A :

$$p = E[mx]$$
= $E[xx^*]$
= $(1/3)(0)(0.4240) + (1/3)(2)(1.2800) + (1/3)(5)(0.8680)$
= 2.3

• And for x_B :

$$p = E[mx]$$
= $E[xx^*]$
= $(1/3)(1)(0.4240) + (1/3)(3)(1.2800) + (1/3)(2)(0.8680)$
= 2.0

Mimicking Portfolio for m

- What's the use of x^* ?
 - Now, we can price any payoff in X. Note that we have not made any assumptions about utility functions, payoff distributions, market completeness, etc.
- Can we price the payoff of $x_C = \begin{bmatrix} 3 & 13 & 16 \end{bmatrix}$?
 - Sure, it's just

$$\rho_D = (1/3)(3)(0.4240) + (1/3)(13)(1.2800) + (1/3)(16)(0.8680)$$

$$= 10.6$$

Mimicking Portfolio for m

- Note that the theorem does not say that x* is unique.
 - Unless markets are complete, there are an infinite number of random variables that satisfy p = E[mx]
- How can we see this?
 - Take some ε that is orthogonal to x (Meaning that $E[\varepsilon x] = 0$)...
 - Then $m + \varepsilon$ will also price the payoffs:

$$p = E[(m+\varepsilon)x] = E[mx] + E[\varepsilon x] = E[mx]$$

- This representation, in fact, generates all possible discount factors.
- Any discount factor m can be represented by $m=x^*+\varepsilon$, as long as $E\left[\varepsilon x\right]=0$.
- If markets are complete, there is "no where to go" orthogonal to the payoff space, so x^* would be the only discount factor.

Mimicking Portfolio for m

- Again, for completeness, it is important to keep in mind that x^* lies in the payoff space.
- If we have incomplete markets, e.g., S=3 but N=2, then
 - The payoff space is a plane (R^2) in R^3 and x^* lies in the R^2 plane.
 - If ε is perpendicular to that plane (e.g., coming out of the page), then a valid discount factor can be represented by $m = x^* + \varepsilon$.
- ullet If markets are complete, e.g., S=3 and N=3, then
 - There is nowhere to go that is orthogonal to the payoff space.
- Note: x^* is the projection of any SDF m on the space of payoffs, \underline{X} .

(Re-Cap)

- So what have we done?
 - We've basically used only one key assumption that the law of one price holds - to show that a discount factor exists.
- What we're going to do now is to show that if we add to what we've already done an assumption of no arbitrage, we get not only the existence of a discount factor, but the existence of a positive discount factor.

Arbitrage

- Absence of arbitrage means, generally speaking, you cannot get for free a portfolio that might payoff something but not cost you anything.
 - Note the difference between this definition and the colloquial version that basically only implies the violation of the LOP
 - Mathematically: If there is some payoff x that is greater than or equal to zero in all states, and strictly greater than zero in at least one state, then its price must be strictly positive.
 - E.g., if we had a payoff that looked like

$$x_1 = \begin{bmatrix} 0 & 0 & 0.01 \end{bmatrix}'$$

• Could the price of x_1 be zero, given the absence of arbitrage?

Theorem (Easy Direction)

- Theorem: p = E[mx] and m > 0 imply no arbitrage.
- Proof: We know that m > 0 in all states since it is the IMRS and that u'(c(s)) > 0 since consumers always prefer more to less.
 - Then if m > 0 in all states and $x \ge 0$ in all states and x > 0 in at least one state, then p = E[mx] > 0.

Theorem (Hard/Interesting Direction)

- Theorem: No arbitrage and the LOP imply m exists and that m > 0.
- The proof is in the book, but we'll illustrate the idea for the case of complete markets.
 - No arbitrage means that the price of any payoff in the positive orthant must be greater than zero.
 - The price = 0 line divides the region of negative prices from positive prices.
 - The price = 0 lines must lie only in the NW or SE regions it cannot cross into the NE or SW resions.
 - Since m is perpendicular to the price = 0 line, the vector m must lie strictly in the positive orthant.

End of Today's Lecture.

• That's all for today. Today's material corresponds roughly to Chapter 4 in Cochrane (2005).