PONTIFICIA UNIVERSIDAD CATÓLICA MADRE Y MAESTRA FACULTAD DE CIENCIAS E INGENIERÍA ESCUELA DE INGENIERÍA COMPUTACIÓN Y TELECOMUNICACIONES

ICC-371-T Metodología de la Investigación

CSTI-1890-4341

Tarea 2: resumen cap.4

Profesora:

Freddy Peña

Estudiante:

Jean Pérez ID: 10148917

1 de junio de 2025

Ley de Amdahl

Sea un programa con un tiempo de ejecución secuencial de 120 unidades de

tiempo, y se sabe que el 85% de su código es paralelizable.

1. Calcula el tiempo de ejecución paralelo Tp(n), el speedup S(n) la eficiencia E(n) cuando se ejecuta n=1,3,6,9,12 procesadores.

Ts: es el tiempo secuencial (120),

f: es la fracción paralelizable (0.85),

n: es el número de procesadores.

Fórmulas:

- Tp(n) = Tiempo de ejecución con n procesadores $T_p(n) = T_s \cdot \left((1-f) + rac{f}{n}
 ight)$
- S(n) = Speedup $S(n) = rac{T_s}{T_p(n)}$
- **E(n)** = Eficiencia $E(n) = \frac{S(n)}{n}$

Procesador	Tp(n)	S(n)	E(n)
1	120	1	1
3	52	2.30769231	0.76923077
6	35	3.42857143	0.57142857
9	29.3333333	4.09090909	0.45454545
12	26.5	4.52830189	0.37735849

2. Completa La Siguiente Tabla:

Procesador	Tp(n)	S(n)	E(n)
1	120	1	1
2	69	1.73913043	0.86956522
4	43.5	2.75862069	0.68965517
8	30.75	3.90243902	0.48780488
16	24.375	4.92307692	0.30769231

Parte 2: Programación

Implementación de Algoritmos Paralelos:

Usando Java 21 o superior realiza las siguientes tareas.

Algoritmo a paralelizar: Suma de un arreglo de 1,000,000 números enteros random comprendido entre 1 y 10,000.

- 1. Genera un archivo con 1,000,000 de registros comprendido entre 1 y 10,000, el cual deberá usar como base para los demás cálculos.
- 2. Escribe un programa secuencial que sume los elementos de un arreglo de un millón de enteros.
- 3. Modifica tu programa para que use múltiples hilos o procesos para realizar la suma en paralelo. Divide el arreglo en partes iguales para cada hilo/proceso.
- 4. Mide y compara el tiempo de ejecución del programa secuencial y del programa paralelo con 2, 4 y 8 hilos/procesos.
- 5. Completa la siguiente tabla con los tiempos medidos:

Fórmulas:

- Tp(n) = Tiempo de ejecución con n procesadores $T_p(n) = T_s \cdot \left((1-f) + rac{f}{n}
 ight)$
- S(n) = Speedup $S(n) = rac{T_s}{T_p(n)}$
- **E(n)** = Eficiencia $E(n) = rac{S(n)}{n}$

Número de Hilos/Proc esos	Tiempo de Ejecución Secuencia l (s)	Ejecución	Speedup	Eficiencia
1	0.00390063	0.00390063	1	1
2	0.00390063	0.00895013	0.43581794	0.21790897
4	0.00390063	0.01405946	0.27743779	0.06935945
8	0.00390063	0.02282242	0.170912	0.021364
16	0.00390063	0.02350946	0.16591726	0.01036983
32	0.00390063	0.02443121	0.15965748	0.0049893

Repositorio Github:

https://github.com/jeanc24/Paralela.git