Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа: <u>R3137</u> Студент: <u>Нестеров И.А,</u>	К работе допущен <u>:</u> Работа выполнена <u>:</u>			
Рабочий протокол и отчет по лабораторной работе № 1.01. «Исследование распределения случайной				
величины».				

1. Цель работы:

- 1) Провести многократные измерения определенного интервала времени.
- 2) Построить гистограмму распределения результатов измерения.
- 3) Вычислить среднее значение и дисперсию полученной выборки.
- 4) Сравнить гистограмму с графиком функции Гаусса с такими же, как и у экспериментального распределения средним значением и дисперсией
- 2. Задачи, решаемые при выполнении работы:

Исследование закономерности в распределении случайных величин, что является основой теории и практики физического и инженерного эксперимента

- 3. Объект исследования изучение статических закономерностей.
- 4. Методы экспериментального исследования.
- 1. Анализ
- 2. Лабораторный эксперимент
- 5. Рабочие формулы и исходные данные.

$$\Delta t = t_{\alpha,N} \cdot \sigma_{\langle t \rangle}, \qquad \qquad \sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle_N)^2}$$

$$\begin{array}{ll} \left[\langle t \rangle_{N} - \sigma_{N}, \langle t \rangle_{N} + \sigma_{N} \right], & t \in \left[\langle t \rangle - \sigma, \langle t \rangle + \sigma \right], & P_{\sigma} \approxeq 0,683 \\ \left[\langle t \rangle_{N} - 2\sigma_{N}, \langle t \rangle_{N} + 2\sigma_{N} \right], & t \in \left[\langle t \rangle - 2\sigma, \langle t \rangle + 2\sigma \right], & P_{2\sigma} \approxeq 0,954 \\ \left[\langle t \rangle_{N} - 3\sigma_{N}, \langle t \rangle_{N} + 3\sigma_{N} \right], & t \in \left[\langle t \rangle - 3\sigma, \langle t \rangle + 3\sigma \right], & P_{3\sigma} \approxeq 0,997 \\ \end{array}$$

$$P(t_1 < t < t_2) = \int_{t_1}^{t_2} \rho(t) dt \approx \frac{N_{12}}{N}$$
 $\rho_{\text{max}} = \frac{1}{\sigma \sqrt{2\pi}}$

$$\sigma_{N} = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (t_{i} - \langle t \rangle_{N})^{2}}. \qquad \langle t \rangle_{N} = \frac{1}{N} (t_{1} + t_{2} + \dots + t_{N}) = \frac{1}{N} \sum_{i=1}^{N} t_{i},$$

$$\rho\left(t\right) = \frac{1}{\sigma\sqrt{2\pi}}\exp\left(-\frac{\left(t-\left\langle t\right\rangle\right)^{2}}{2\sigma^{2}}\right) \hspace{0.5cm} \rho\left(t\right) = \lim_{\substack{N\to\infty\\ \Delta t\to 0}}\frac{\Delta N}{N\Delta t} = \frac{1}{N}\frac{dN}{dt}.$$

6. Измерительные приборы.

№,	Наименование	Тип прибора	Используемый	Погрешность
Π/Π			диапозон	прибора
1	Секундомер	Измеритель времени	0-60 с	0,005 c
2	Часы	Измеритель времени	0-60 с	0,5 с

7. Схема установки (перечень схем, которые составляют Приложение 1).

8. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Таблица 1. Результаты прямых измерений.

No	t_i, c	t_i - $(t)_N$, c	$(t_i - (t)_N)^2$, c^2
1	5,22	0,14	0,0196
2	5,34	0,02	0,0004
3	5,90	-0,54	0,2916
4	5,45	-0,09	0,0081
5	5,37	-0,01	0,0001
6	5,38	-0,02	0,0004
7	5,44	-0,08	0,0064
8	5,29	0,07	0,0049
9	5,41	-0,05	0,0025

10	5,43	-0,07	0,0049
11	5,55	-0,19	0,0361
12	5,36	0,00	0,0000
13	5,38	-0,02	0,0004
14	5,34	0,02	0,0004
15	5,43	-0,07	0,0049
16	5,41	-0,05	0,0025
17	5,56	-0,20	0,0400
18	5,39	-0,03	0,0009
19	5,21	0,15	0,0225
20	5,37	-0,01	0,0001
21	5,38	-0,02	0,0004
22	5,43	-0,07	0,0049
23	5,30	0,06	0,0036
24	5,30	0,06	0,0036
25	5,44	-0,08	0,0064
26	5,43	-0,07	0,0049
27	5,34	0,02	0,0004
28	5,34	0,02	0,0004
29	5,15	0,21	0,0441
30	5,42	-0,06	0,0036
31	5,30	0,06	0,0036
32	5,41	-0,05	0,0025
33	5,34	0,02	0,0004
34	5,42	-0,06	0,0036
35	5,26	0,1	0,0100
36	5,42	-0,06	0,0036
37	5,45	-0,09	0,0081
38	5,49	-0,13	0,0169
39	5,45	-0,09	0,0081
40	5,41	-0,05	0,0025
41	5,23	0,13	0,0169
42	5,46	-0,1	0,0100
43	5,40	-0,04	0,0016
44	5,43	-0,07	0,0049
45	5,48	-0,12	0,0144
46	5,37	-0,01	0,0001
47	5,44	-0,08	0,0064
48	5,33	0,03	0,0009
49	5,34	0,02	0,0004
50	5,34	0,02	0,0004
51	5,57	-0,21	0,0441
52	5,39	-0,03	0,0009
53	5,27	0,09	0,0081
54	5,42	-0,06	0,0036
55	5,43	-0,07	0,0049
56	5,38	-0,02	0,0004
57	5,18	0,18	0,0324
58	5,43	-0,07	0,0049
59	5,4	-0,04	0,0016
60	5,07	0,29	0,0841
61	5,39	-0,03	0,0009
62	5,45	-0,09	0,0081
63	5,31	0,05	0,0025
64	5,36	0,00	0,0000

65	5,46	-0,1	0,0100
66	5,34	0,02	0,0004
67	5,44	-0,08	0,0064
68	5,45	-0,09	0,0081
69	5,36	0,00	0,0000
70	5,41	-0,05	0,0025
71	5,44	-0,08	0,0064
72	5,31	0,05	0,0025
73	5,31	0,05	0,0025
74	5,42	-0,06	0,0036
75	5,42	-0,06	0,0036
76	5,24	0,12	0,0144
77	5,17	0,19	0,0361
78	5,39	-0,03	0,0009
79	5,60	-0,24	0,0576
80	5,28	0,08	0,0064
81	5,38	-0,02	0,0004
82	5,38	-0,02	0,0004
83	5,09	0,27	0,0729
84	5,46	-0,10	0,0100
85	5,15	0,21	0,0441
86	5,11	0,25	0,0625
87	5,48	-0,12	0,0144
88	5,33	0,03	0,0009
89	5,47	-0,11	0,0121
90	5,01	0,35	0,1225
91	5,16	0,20	0,0400
92	5,43	-0,07	0,0049
93	5,48	-0,12	0,0144
94	5,41	-0,05	0,0025
95	5,29	0,07	0,0049
96	5,01	0,35	0,1225
97	5,41	-0,05	0,0025
98	5,44	-0,08	0,0064
99	5,38	-0,02	0,0004
100	5,27	0,09	0,0081
	$\langle t \rangle_N = 5,36 \text{ c}$	$\sum_{i=1}^{N} (t_i - (t)_N)^2 = 1,539 \text{ c}$	$\sigma_N = 0.12 \text{ c}$
		_	$\rho_{max} = 3,32 \text{ c}^{-1}$

9. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

Таблица 2. Данные для построения гистограммы

	ΔN	$\frac{\Delta N}{N\Delta t}$, c ⁻¹	t, c	P, c ⁻¹
5,01	4	0,4	5,0545	0,13
5,099				
5,099	6	0,7	5,1435	0,65
5,188				
5,188	7	0,8	5,2325	1,89
5,277				
5,277	22	2,5	5,3215	3,16
5,366				
5,366	48	5	5,4105	3,04
5,455				
5,455	8	0,9	5,4995	1,69
5,544				

5,544	4	0,4	5,5885	0,54
5,633				
5,633	0	0	5,6775	0,10
5,722				
5,722	0	0	5,7665	0,01
5,811				
5,811	1	0,1	5,8555	0,00
5,9				

t – среднее значение границ интервалов (пример: $\frac{5,01+5,099}{2}$)

Р рассчитано по формуле (2) из методического пособия к лабораторной работе.

Таблица 3. Стандартные доверительные интервалы

	Интервал, с		ΔN	ΔN	P
	ОТ	до		\overline{N}	
$\langle t \rangle_N \pm \sigma_N$	5,24	5,48	81	0,81	0,683
$\langle t \rangle_N \pm 2\sigma_N$	5,12	5,60	94	0,94	0,954
$\langle t \rangle_N \pm 3\sigma_N$	5,00	5,72	99	0,99	0,997

Р – указанная в методическом пособии теоретическая величина, которую не нужно высчитывать самостоятельно.

10. Расчет погрешностей измерений (для прямых и косвенных измерений).

$$\sigma_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i_1}^{N} (t_i - \langle t \rangle_N)^2} = 0,00016$$
 с – среднеквадратичное отклонение среднего значения

 $t_{\alpha,N} = 2$ (табличное значение для $\alpha = 0.95$)

 $\Delta t = t_{lpha\,,N} \cdot \sigma_{\langle t \rangle} = 0{,}00032~c$ – доверительный интервал для измеряемого в работе промежутка

11. Графики (см. приложение №2)

12. Окончательные результаты:

$$\alpha = P\left(t \in \left[\langle t \rangle - \Delta t; \langle t \rangle + \Delta t\right]\right)$$

 $\alpha = P(t \in 5.35968; 5.360321)$

13. Выводы и анализ результата работы.

В ходе работы было сделано 100 измерений одного и того же отрезка времени. Казалось бы, точное значение времени, измеряемое в сотых долях секунды, будет случайным, так как оно зависит от множества неконтролируемых причин. Эта теория подтвердилась. Однако, благодаря указанным в методическом посо бии формулам, было доказано, что при проведении большого количества измерений, эти случайные величины можно описать статистическими закономерностями. В частности, было найдено среднее значение и дисперсия данной выборки. Кроме того, для описания упомянутых статистических закономерностей были построены гистограмма и кривая Гаусса.

14. Замечания преподавателя (исправления, вызванные замечаниями преподавателя, также помещают в этот пункт).

Приложение №1.

Приложение №2.