

ENGINEERING MATHEMATICS III (AAS0301A) UNIT-I

SESSION: 2022-23

Branch: CSE/IT/CS

Sem: III

Assignment Given Date: 14/09/22
Assignment Submission Date: 23/09/22

Weightage in University Exam: 30 Marks
Faculty Name: Mr. Raman Chauhan

Faculty Mail Id: ramanchauhan.m@niet.co.in

Note: Write solution of each question in clear handwriting.

Q.N.	Question Statement	Pts	СО	BLOOM'S KNOWLEDGE LEVEL
1	Show that the function $f(z) = \frac{x^3y^5(x+iy)}{x^6+y^{10}}$, $z \neq 0$, $f(0) = 0$ is not analytic at the origin even though it satisfies C.R. equation at origin.	10	1	K ₅
2	Show that if $f(z)$ is analytic and $Ref(z) = constant$ then $f(z)$ is constant.	2	1	K ₅
3	Find the value of a , b and c such that the function $f(z) = -x^2 + xy + y^2 + i(ax^2 + bxy + cy^2)$ is analytic. Express $f(z)$ in terms of z .	5	1	K ₆
4	Show that $v(x,y) = e^{-x}(x\cos y + y\sin y)$ is harmonic. Find its harmonic conjugate.	6	1	K ₅
5	Find analytic function $f(z)$ in terms of z whose real part is $\frac{\sin 2x}{\cosh 2y + \cos 2x}$	6	1	K ₆
6	If $f(z) = u + iv$ is an analytic function of z and $u - v = \frac{\cos x + \sin x - e^{-y}}{2\cos x - 2\cos hy}.$ Prove that $f(z) = \frac{1}{2}(1 - \cot z)$ when $f\left(\frac{\pi}{2}\right) = 0$.	10	1	K ₅
7	If $f(z)$ is a regular function of z , prove that $\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) f(z) ^2 = 4 f'(z) ^2$	10	1	K ₅
8	Find an analytic function $f(z)$ such that $Re[f'(z)] = 3x^2 - 4y - 3y^2$ and $f(1+i) = 0 & f'(0) = 0$.	6	1	K4, K6

9	Find the image of $ z - 3i = 3$ under the transformation $w = \frac{1}{z}$.	6	1	K ₆
10	Find the bilinear transformation which maps the points $z = 0,1,\infty$ into the points $w = i, 1, -i$ respectively.	2	1	K ₆
11	Find the image of the real axis of the z-plane on the w-plane by the transformation $w = \frac{1}{z+i}$	6	1	K ₆
12	Show that the transformation maps a circle $w = \frac{2z+3}{z-4}$ maps the circle $x^2 + y^2 - 4x = 0$ onto the straight line $4u + 3 = 0$.	6	1	K4, K6

Solution:

- 1. Prove
- 2. Prove

3.
$$a = \frac{1}{2}$$
, $b = -2$, $c = \frac{1}{2}$, $f(z) = -\frac{1}{2}(2+i)z^2$

$$4. \quad u = e^{-x}(xsiny - ycosy) + c$$

5.
$$f(z) = tanz + c$$

- 6. Prove
- 7. Prove

8.
$$f(z) = z^3 + 2iz^2 + 6 - 2i$$

9.
$$6v + 1 = 0$$

$$10. w = \frac{z+i}{1+zi}$$

$$11. u^2 + v^2 + v = 0$$

12. Prove