Sommario

Analisi di Reti Sequenziali Sincrone

Sintesi di Reti Sequenziali Sincrone

Analisi di Reti Sequenziali Sincrone

- ▶ Data una rete sequenziale sincrona, vogliamo darne una descrizione esauriente tramite:
 - Equazioni booleane,
 - Tabelle di verità.
 - Diagrammi di Stato.
- Sappiamo che ad ogni uscita di una rete combinatoria corrisponde un'espressione booleana.
- ▶ Dato un circuito sequenziale sincrono, potremo prima di tutto costruire le equazioni di ingresso ai flip flop:
 - Associamo un nome ad ogni flip-flop incluso nella rete.
 - Associamo una variabile booleana ad ogni ingresso e ad ogni uscita di ogni flip-flop incluso nella rete (per esempio, J_A, K_A, D_A, etc.).
 - ► Ad ogni ingresso di ogni flip-flop, potremo costruire un'equazione V = E dove V è la variabile associata all'ingresso ed E è l'espressione relativa a V costruita a partire dalla rete combinatoria.
- In modo analogo, possiamo costruire equazioni di uscita per ogni uscita della rete sequenziale.

Tabelle di Stato

- A partire dalle equazioni di ingresso relative ad un circuito sequenziale, è possibile costruire una tabella, detta tabella di stato, che metta in relazione ingressi, uscite e stato.
- Ogni tabella di stato è formata da quattro sezioni.
- Nella sezione Stato presente sono elencati tutti i possibili stati per i flip-flop del circuito.
- Nella sezione Ingressi sono riportati i valori degli ingressi per ogni possibile stato presente.
- Nella sezione Stato futuro sono elencati i valori dello stato futuro per ogni combinazione dei valori dello stato presente e degli ingressi.
- Nella sezione Uscite sono elencati i valori delle uscite per ogni possibile combinazione dei valori dello stato presente e degli ingressi.
- È possibile costruire la tabella di stato monodimensionalmente o bidimensionalmente.

Circuiti di Mealy e di Moore

- I circuiti sequenziali (sincroni) si possono classificare in base alla relazione intercorrente tra uscite, ingressi e stato.
- Se le uscite dipendono sia dagli ingressi, sia dallo stato, allora il circuito si dirà di tipo Mealy.

➤ Se le uscite dipendono soltanto dallo stato allora il circuito si dirà di tipo Moore.

Un circuito di tipo Moore può sempre essere ricondotto ad un circuito di tipo Mealy.

Diagramma di Stato

- Le informazioni presenti nella tabella di stato possono poi essere rappresentate graficamente nel cosiddetto diagramma di stato.
- Nel diagramma di stato:
 - Ogni possibile valore dello stato interno è rappresentato da un cerchio
 - Se in corrispondenza di uno stato interno S (e di un valore V per gli ingressi) lo stato futuro è T, allora esisterà una freccia (etichettata con V) che collega S a T.
- Nei circuiti di tipo Mealy le uscite dipendono sia dallo stato che dagli ingressi. Di conseguenza, occorrerà specificare il loro valore sulle frecce
- Nei circuiti di tipo Moore, invece, le uscite dipendono solo dallo stato. Di conseguenza, basterà specificare il loro valore sugli stati

Equazioni di Ingresso ai Flip-Flop e Equazioni di Uscita

$$D_E = \overline{A}$$

$$D_F = E(A+B)F$$

$$C = E$$

Tabella di Stato

Stato presente		Ingressi		Stato futuro		Uscite
E	F	Α	В	D _E	D_F	С
0	0	0	0	1	0	0
0	0	0	1	1	0	0
0	0	1	0	0	0	0
0	0	1	1	0	0	0
0	1	0	0	1	0	0
0	1	0	1	1	0	0
0	1	1	0	0	0	0
0	1	1	1	0	0	0
1	0	0	0	1	0	1
1	0	0	1	1	0	1
1	0	1	0	0	0	1
1	0	1	1	0	0	1
1	1	0	0	1	0	1
1	1	0	1	1	1	1
1	1	1	0	0	1	1
1	1	1	1	0	1	1

Sintesi di Reti Sequenziali Sincrone

- Il problema di sintetizzare una rete sequenziale sincrona a partire da una sua descrizione verbale può essere risolto come segue:
- 1. Prima di tutto si ricavano il diagramma di stato o la tabella di stato a partire dalla descrizione verbale.
- 2. Se è disponibile solo il diagramma di stato, si ricava la tabella di stato.
- 3. Si assegnano codici binari agli stati.
- 4. Si derivano le equazioni d'ingresso ai flip-flop a partire dalla tabella di stato.
- 5. Si derivano le equazioni di uscita a partire dalla tabella di stato.
- 6. Si semplificano le equazioni d'ingresso ai flip-flop e le equazioni di uscita.
- 7. Si costruisce la rete sequenziale a partire dalle espressioni ottenute al punto precedente.

- ▶ Vogliamo costruire una rete sequenziale che riconosca la presenza di una certa sequenza di bit fissata, anche se inclusa in una sequenza più lunga.
- ▶ La sequenza di bit che vogliamo riconoscere è 1001.
- ► La rete dovrà avere un ingresso A e un'uscita B e dovrà riconoscere la sequenza di bit 1001 applicata all'ingresso A.
- ▶ Più precisamente, l'uscita dovrà valere 1 se e solo se:
 - In corrispondenza ai 3 tre precedenti fronti di salita del clock, i valori letti in A erano, rispettivamente, 1, 0 e 0.
 - ▶ Il valore attuale dell'ingresso A è 1.

Tabella di Stato Implicita

Stato	Ingressi	Stato	Uscite	
presente	Α	futuro	В	
X	0	X	0	
X	1	Y	0	
Y	0	W	0	
Y	1	Y	0	
W	0	Ζ	0	
W	1	Y	0	
Z	0	Χ	0	
Ζ	1	Y	1	

- Per catturare quattro stati diversi abbiamo bisogno di sequenze di bit lunghe 2.
- ► Introduciamo le due variabili booleane E e F. Facciamo corrispondere gli stati agli assegnamenti di verità alle due variabili E e F come segue:

Stato	Ε	F
X	0	0
Y	0	1
W	1	0
Ζ	1	1

► Abbiamo bisogno, quindi, di due flip-flop, che chiameremo E e F.

Tabella di Stato Esplicita

Stato presente		Ingressi	Stato futuro		Uscite
Ε	F	Α	D_E	D_F	В
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

$$B = E\overline{F}A$$

$$D_{E} = \overline{E}F\overline{A} + E\overline{F}\overline{A} =$$

$$= (\overline{E}F + E\overline{F})\overline{A}$$

$$= (E \oplus F)\overline{A}$$

$$D_{F} = \overline{E}\overline{F}A + \overline{E}FA + E\overline{F}\overline{A} + E\overline{F}A + EFA$$

$$= \overline{E}\overline{F}A + \overline{E}FA + E\overline{F}A + EFA + E\overline{F}\overline{A}$$

$$= (\overline{E}\overline{F} + \overline{E}F + E\overline{F} + EF)A + E\overline{F}\overline{A}$$

$$= A + E\overline{F}\overline{A}$$

$$= (A + E\overline{F})(A + \overline{A})$$

$$= A + E\overline{F}$$

