AMENDMENTS TO THE CLAIMS

2

1(currently amended). An optically active rare earth complex represented by a general formula (1):

$$\begin{array}{c}
Y_1 \\
Y_2 \\
\vdots \\
Y_n
\end{array}$$

$$\begin{array}{c}
Y_1 \\
\vdots \\
Y_n
\end{array}$$

$$\begin{array}{c}
Y_2 \\
\vdots \\
Y_n
\end{array}$$

$$\begin{array}{c}
Y_1 \\
\vdots \\
Y_n
\end{array}$$

- (in the formula (1), X_1 and X_2 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or alkoxy group having 1 to 4 carbon atoms; Y_1 , Y_2 , Y_3 , and Y_4 , each independently represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms; R_1 represents an alkyl group having 1 to 8 carbon atoms, a fluorine-substituted alkyl group having 1 to 8 carbon atoms, or a phenyl group; and R_2 is a group selected from the group consisting of;
- (a) a cyclopentadienyl group (one CH_2 group existing in the cyclopentadienyl group may be replaced by -O- or-S-),
- (b) a phenyl group (one or two CH groups existing in the phenyl group may be replaced by N), and
- (c) a naphthyl group (one or two CH groups existing in the naphthyl group may be replaced by N), and

the groups included in (a), (b), and (c) may be substituted with an alkyl group or a halogen atom; and Ln represents a rare earth metal atom).

2 (original). The optically active rare earth complex according to claim 1, wherein X_1 and X_2 in the general formula (1) are hydrogen atoms.

3 (original). The optically active rare earth complex according to claim 1, wherein Y_1 , Y_2 , Y_3 , and Y_4 in the general formula (1) are hydrogen atoms.

4 (original). The optically active rare earth complex according to claim 1, wherein Ln in the general formula (1) is one of Eu and Yb.

5 (original). The optically active rare earth complex according to claim 1, wherein R_1 in the general formula (1) is a trifluoromethyl group.

6 (canceled).

7 (original). The optically active rare earth complex according to claim 1, wherein an optical purity of the compound represented by the general formula (1) is 70%ee or more.

8 (original). The optically active rare earth complex according to claim 1, wherein an optical purity of the compound represented by the general formula (1) is 90%ee or more.

9 (new). An optically active rare earth complex represented by a general formula (1):

(in the formula (1), X_1 and X_2 each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or alkoxy group having 1 to 4 carbon atoms; Y_1 , Y_2 , Y_3 , and Y_4 , each independently represents a hydrogen atom, a halogen atom, or an alkyl group Application No. 10/567,443 4 Docket No.: 80658(47762)
Amendment dated October 28, 2009

Amendment dated October 28, 2009 Reply to Office Action of August 7, 2009

having 1 to 4 carbon atoms; R_1 represents an alkyl group having 1 to 8 carbon atoms, a fluorinesubstituted alkyl group having 1 to 8 carbon atoms, or a phenyl group; and R_2 is a group selected from the group consisting of;

- (a) a cyclopentadienyl group (one CH₂ group existing in the cyclopentadienyl group may be replaced by -O- or -S-),
- (b) a phenyl group (one or two CH groups existing in the phenyl group may be replaced by N), and
- (c) a naphthyl group (one or two CH groups existing in the naphthyl group may be replaced by N), and

the groups included in (a), (b), and (c) may be substituted with an alkyl group or a halogen atom; and Ln represents Yb).