

Graph Theory

内容提要

- 1. 图的基本概念
- 2. 图的连通性
- 3. 图的矩阵表示
- 4. 欧拉图与哈密顿图
- 5. 无向树与根树
- 6. 平面图

内容提要

- 1. 图的基本概念
- 2. 图的连通性
- 3. 图的矩阵表示
- 4. 欧拉图与哈密顿图
- 5. 无向树与根树
- 6. 平面图

4、欧拉图与哈密顿图

概念:

欧拉通路、欧拉回路、欧拉图、半欧拉图及其判别法哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图

哈密顿图的定义

历史背景:哈密顿周游世界问题与哈密顿图

定义

- (1)哈密顿通路——经过图(无向图或有向图)中所有顶点一次仅一次的通路。
- (2) 哈密顿回路——经过图中所有顶点一次仅一次的回路。
- (3) 哈密顿图——具有哈密顿回路的图。
- (4) 半哈密顿图——具有哈密顿通路且无哈密顿回路的图。

- 注: (1) 约定: 平凡图是哈密顿图。
 - (2) 哈密顿通路是初级通路,哈密顿回路是初级回路。

例

在上图中,

- (1),(2) 是哈密顿图;
- (3)是半哈密顿图;
- (4) 既不是哈密顿图,也不是半哈密顿图,为什么?

哈密顿图的必要条件

定理 设无向图 $G=\langle V, E \rangle$ 是哈密顿图,对于任意 $V_1 \subset V \supseteq V_1 \neq \emptyset$,均有 $p(G-V_1) \leq |V_1|$

推论 设无向图G=<V,E>是半哈密顿图,对于任意的 $V_1\subset V$ 且 $V_1\neq\emptyset$ 均有 $p(G-V_1)\leq |V_1|+1$

哈密顿图的必要条件

定理 设无向图 $G=\langle V, E \rangle$ 是哈密顿图,对于任意 $V_1 \subset V \supseteq V_1 \neq \emptyset$,均有 $p(G-V_1) \leq |V_1|$

证明:

假设 C 是 G 的哈密顿回路。

考虑 $p(C-V_1)$,

当 V_1 中的顶点在 C 上均不相邻时,达到最大值 $|V_1|$ 。因而有

$$p(C - V_1) \le |V_1|$$

又因为 C 是 G 的生成子图,有

$$p(G-V_1) \le p(C-V_1) \le |V_1|$$

哈密顿图的充分条件

哈密顿图的充分条件

定理 设G是n阶无向简单图,若对于任意不相邻的顶点 v_i, v_j ,均有 $d(v_i) + d(v_j) \ge n-1 \tag{*}$

则 6 中存在哈密顿通路.

推论 设G为n ($n \ge 3$) 阶无向简单图,若对于G中任意两个不相邻的顶点 v_i, v_j ,均有

$$d(v_i) + d(v_i) \ge n \tag{**}$$

则G中存在哈密顿回路,从而G为哈密顿图。

哈密顿图的充分条件

定理 设G是n阶无向简单图,若对于任意不相《 $d(v_i) + d(v_i) \ge n-1$

则 G 中存在哈密顿通路.

证明: 1)可证 G 为连通图(留作练习);2

- 任取顶点 ,构造一条 极大路径 ,如下图。 $\mathop{\natural_{V_{ij}}}$

- 构造含有 v_1 至 v_1 的圈。因为 G 连通,可由
- 通过不断重复这一过程, 最终得到哈密顿通路路。
- 下面说明如何构造含有 v_1 至 v_1 的圈。

哈密顿图的充分条件 证明(2)

- 若 v₁ 与 v₁相邻,则容易得到圈,如下图。

- 若 v₁与 v₁不相邻,则有两点性质:
 - > v₁与 {v₂,..., v_{I-1} } 中至少 2 个顶点相邻。
 否则 d(v₁)+d(v_I) ≤ (1)+(I-2)=I-1 < n-1 与前提矛盾。</p>
 - > v_l 与 v_1 之某一相邻顶点的左侧邻接顶点 相邻,分别设为 v_m 与 v_{m-1} 。 否则 $d(v_l) \le l-2-(d(v_1)-1)$,从而 $d(v_1)+d(v_l) \le d(v_1)+l-2-(d(v_1)-1)=l-1 <$

n-1,与前提矛盾。

- 因而有如下示意图。 从而得到所需圈。

例:

注意:上述条件为充分条件非必要条件。

哈密顿图的鉴别方法

判断某图是否为哈密顿图方法

- (1) 判断某图是否为哈密顿图至今还是一个难题(未知高效算法/刻画定理)
- (2) 判断某图是否哈密顿图的方法:
 - 观察法
 - 充分条件
 - 必要条件

1. 观察出哈密顿回路(周游世界问题)

abcdefghijklmnpqrsta

2. 充分条件

例(??):

完全图 K_n ($n \ge 3$) 为哈密顿图。因为任何两个顶点u, v,均有 $d(u) + d(v) = 2(n-1) \ge n$ ($n \ge 3$)

3. 利用必要条件 判断不是哈密顿图

