BIRKBECK

(University of London)

MSc EXAMINATION FOR INTERNAL STUDENTS

Department of Economics, Mathematics and Statistics

ECONOMETRICS/ ECONOMETRICS for PG Certificate

${\bf EMEC026S7/BUEM007H7}$

Friday, 03 June 2016, 10.00 am - 12.10 pm (includes 10 minutes reading time)

Answer **ANY THREE** questions. All questions carry the same weight; the relative weight of sub-questions is indicated in square brackets.

1. Consider the linear regression model

$$y_t = \mathbf{x}_t' \beta + u_t, \qquad t = 1, 2, \dots, n,$$

where \mathbf{x}_t is a $k \times 1$ vector of stochastic explanatory variables, β is a $k \times 1$ vector of unknown coefficients, and $\{u_t\}$ are unobservable random disturbances with zero mean. Suppose that some of the explanatory variables are endogenous so that $\mathsf{E}(\mathbf{x}_t u_t) \neq \mathbf{0}$. Assume that there exists an $m \times 1$ vector of instruments \mathbf{w}_t such that $\mathsf{E}(\mathbf{w}_t u_t) = \mathbf{0}$.

- (a) Explain how to estimate β by the generalised method of moments (GMM). Make sure to distinguish between the exactly identified (or just-identified) case and the over-identified case. [30%]
- (b) Show that, in the exactly identified case, the GMM estimator of β is the same as the instrumental variables estimator

$$\widehat{\beta}_{\text{IV}} = \left(\sum_{t=1}^{n} \mathbf{w}_{t} \mathbf{x}_{t}'\right)^{-1} \left(\sum_{t=1}^{n} \mathbf{w}_{t} y_{t}\right).$$

[15%]

- (c) Outline a method for obtaining an asymptotically efficient GMM estimate of β in the over-identified case. [30%]
- (d) Explain how a test for the validity of the instruments \mathbf{w}_t may be carried out. Give the formula for the appropriate test statistic and state its null distribution. [25%]

2. Consider the linear simultaneous equations model

$$y_{1t} = \beta_{12}y_{2t} + \gamma_{11}x_{1t} + u_{1t},$$

$$y_{2t} = \beta_{21}y_{1t} + \gamma_{22}x_{2t} + \gamma_{23}x_{3t} + u_{2t},$$

where (y_{1t}, y_{2t}) are endogenous variables, (x_{1t}, x_{2t}, x_{3t}) are exogenous variables, and (u_{1t}, u_{2t}) are homoskedastic and serially uncorrelated random disturbances with zero mean.

- (a) Discuss the identifiability of each equation of the system in terms of the order and rank conditions for identification. [30%]
- (b) Explain why the ordinary least squares estimator of $(\beta_{12}, \gamma_{11})$ is inconsistent. [20%]
- (c) Describe, step by step, how to estimate the coefficients in the two equations using two-stage least squares. Explain how the two-stage least squares estimator is related to an appropriately constructed instrumental variables estimator. [30%]
- (d) Would you estimate the coefficients in the two equations by indirect least squares? Explain. [20%]

3. Consider the vector autoregressive (VAR) model

$$\mathbf{y}_t = \mathbf{A}_1 \mathbf{y}_{t-1} + \mathbf{A}_2 \mathbf{y}_{t-2} + \varepsilon_t,$$

where \mathbf{y}_t is an $m \times 1$ random vector, \mathbf{A}_1 and \mathbf{A}_2 are $m \times m$ coefficient matrices, and $\{\varepsilon_t\}$ is an m-dimensional white noise process with zero mean and bounded, positive definite variance—covariance matrix Σ . Let \mathbf{I}_m denote the $m \times m$ identity matrix.

- (a) State condition(s) under which $\{y_t\}$ is covariance stationary. [10%]
- (b) Show that the first three coefficient matrices in the moving average representation $\mathbf{y}_t = \sum_{k=0}^{\infty} \mathbf{\Psi}_k \varepsilon_{t-k}$ of the VAR are $\mathbf{\Psi}_0 = \mathbf{I}_m$, $\mathbf{\Psi}_1 = \mathbf{A}_1$ and $\mathbf{\Psi}_2 = \mathbf{A}_1^2 + \mathbf{A}_2$. Is your answer to (a) relevant for this calculation? Explain what the elements of $\mathbf{\Psi}_1$ and $\mathbf{\Psi}_2$ represent. [40%]
- (c) Explain what the 'orthogonalised impulse responses' of the VAR are. Explain how to compute the orthogonalised impulse responses and why orthogonalisation is important. [40%]
- (d) Suppose $\mathbf{A}_1 + \mathbf{A}_2 = \mathbf{I}_m$. What does this imply about the integration properties of $\{\mathbf{y}_t\}$? Explain. [10%]

4. Consider the linear regression model

$$y_t = \beta x_t + \varepsilon_t, \qquad t = 1, 2, \dots, n,$$

where x_t is a non-stochastic explanatory variable. The disturbances $\{\varepsilon_t\}$ satisfy

$$\varepsilon_t = z_t \sqrt{\alpha_0 + \alpha_1 \varepsilon_{t-1}^2},$$

where $\alpha_0 > 0$, $\alpha_1 \ge 0$, and $\{z_t\}$ are independent and identically distributed random variables having the standard normal distribution (z_t) is independent of ε_{t-i} for $i \ge 1$.

- (a) Show that $\mathsf{E}(\varepsilon_t) = 0$, $\mathrm{Var}(\varepsilon_t) = \frac{\alpha_0}{1-\alpha_1}$, and $\mathrm{Cov}(\varepsilon_t, \varepsilon_{t-k}) = 0$ for all $k \geqslant 1$. What assumption(s) do you need to make to ensure that $\{\varepsilon_t\}$ is covariance stationary? [30%]
- (b) What statistical properties does the ordinary least squares estimator of β have? Explain how to obtain an asymptotically efficient estimate of $(\beta, \alpha_0, \alpha_1)$. [25%]
- (c) Explain how to test the null hypothesis that $\alpha_1 = 0$ using the Lagrange multiplier principle. [20%]
- (d) Explain why the autocorrelation function and partial autocorrelation function of $\{\varepsilon_t^2\}$ may be useful in assessing the validity of the first-order ARCH assumption about $\{\varepsilon_t\}$. [25%]

5. Consider a univariate time series $\{y_t\}$ satisfying

$$y_t = \mu_t + \varepsilon_t, \qquad t = 1, 2, \dots, n,$$

$$\mu_t = \mu_{t-1} + u_t,$$

where $\{\varepsilon_t\}$ and $\{u_t\}$ are independent and identically distributed random variables with $\mathsf{E}(\varepsilon_t) = \mathsf{E}(u_t) = 0$, $\mathrm{Var}(\varepsilon_t) = \sigma_\varepsilon^2$ and $\mathrm{Var}(u_t) = \sigma_u^2$. The disturbances $\{\varepsilon_t\}$ and $\{u_t\}$ are mutually independent as well as independent of the initial value μ_0 . The trend component μ_t of the series and the disturbances (ε_t, u_t) are unobservable but y_t is observed.

- (a) Show that, when $\sigma_{\varepsilon}^2 > 0$, y_t satisfies an ARIMA(0,1,1) model. What is the ARIMA representation of y_t under the restriction $\sigma_{\varepsilon}^2 = 0$? [45%]
- (b) What does the restriction $\sigma_u^2 = 0$ imply about the behaviour of the trend μ_t ? Explain. [15%]
- (c) Let $Y_{t-1} = \{y_1, \dots, y_{t-1}\}$ be the information set available at time t-1. Assume that the conditional distribution of y_t given Y_{t-1} is normal with mean $\hat{\mu}_{t|t-1}$ and variance f_t , where $\hat{\mu}_{t|t-1}$ is the forecast of μ_t based on Y_{t-1} and f_t is the variance of the forecast error $\nu_t = y_t \hat{\mu}_{t|t-1}$ computed by the Kalman filter. Explain how you may estimate the parameters $(\sigma_{\varepsilon}^2, \sigma_u^2)$. (Note that you are not required to describe how $\hat{\mu}_{t|t-1}$ and f_t are computed.) [40%]