Lesson 7: Outgroup f3-statistics

Friday July 21, 2018: 9:00 – 11:30 am

Up to Now

- Specific hypothesis testing D-statistics
- Survey tool PCA
- An f-statistic based survey tool outgroup f3statistics
 - Originated as a test of admixture, which you will learn next lesson.
 - Here, we are considering specifically:

f3(X, Y; Outgroup)

F-statistics

F2(A,B) – Thinking of allele frequency change. In phylogenetics, the expectation is that $f_A = f_B$. This is because f_N , while it will randomly shift, under neutrality, it is expected that ON AVERAGE, it will stay the same.

F3(Outgroup; A, B)>F3(Outgroup; A, C)

qp3Pop

qp3Pop

- Make a pop file.
- Make a par file.
- Run qp3Pop –p [parfilename] > [logfilename]

 How should we find those populations that share the most genetic similarity to Karelia?

 How should we find those populations that share the most genetic similarity to Karelia?

```
qp3Pop: parameter file: outf3_haakdat_Karelia_HG_oMbuti.par
```

THE INPUT PARAMETERS ##PARAMETER NAME: VALUE

genotypename: /public/adna/student/data/data.eigen.geno

snpname: /public/adna/student/data/data.eigen.snp indivname: /public/adna/student/data/data.eigen.ind

popfilename: /public/adna/student/2018class/yang_mel/outf3_haakdat_Karelia_HG_oMbuti.pop

qp3Pop version: 412

er of blocks for block jackknife: 710

number of bloc	ks for block jackknife:	: 710					
snps: 354212							
	Source 1	Source 2	Target	f_3	std. err	Z	SNPs
result:	Karelia_HG	Khomani	Mbuti	0.066954	0.001303	51.379	303111
result:	Karelia_HG	Yukagir	Mbuti	0.231754	0.002363	98.067	281190
result:	Karelia_HG	Chukchi	Mbuti	0.234754	0.002449	95.859	277210
result:	Karelia_HG	Eskimo	Mbuti	0.236566	0.002457	96.290	276679
result:	Karelia_HG	Nganasan	Mbuti	0.229843	0.002471	93.033	275042
result:	Karelia_HG	Ulchi	Mbuti	0.223154	0.002427	91.963	279561
result:	Karelia_HG	Tubalar	Mbuti	0.237297	0.002358	100.619	281774
result:	Karelia_HG	Even	Mbuti	0.233237	0.002343	99.540	279453
result:	Karelia_HG	Koryak	Mbuti	0.232818	0.002500	93.144	274381
result:	Karelia_HG	Itelmen	Mbuti	0.234485	0.002497	93.924	272604
result:	Karelia_HG	Tlingit	Mbuti	0.243599	0.002462	98.946	274166
result:	Karelia_HG	Brahui	Mbuti	0.227888	0.002234	102.020	284665
result:	Karelia_HG	Balochi	Mbuti	0.228243	0.002206	103.461	284441
result:	Karelia_HG	Hazara	Mbuti	0.229507	0.002249	102.026	282456
result:	Karelia_HG	Makrani	Mbuti	0.224828	0.002183	102.998	285893
result:	Karelia_HG	Sindhi	Mbuti	0.229756	0.002231	102.976	283939
result:	Karelia_HG	Pathan	Mbuti	0.233052	0.002239	104.103	283847
result:	Karelia_HG	Kalash	Mbuti	0.235931	0.002281	103.453	280733
result:	Karelia_HG	Burusho	Mbuti	0.231690	0.002225	104.140	284332
result:	Karelia_HG	Biaka	Mbuti	0.049467	0.001151	42.976	296354
result:	Karelia_HG	French	Mbuti	0.243402	0.002265	107.475	284527
result:	Karelia_HG	Papuan	Mbuti	0.203594	0.002472	82.360	273420

- How should we find those populations that share the most genetic similarity to Karelia?
 - Transfer file to computer
 - Convert to excel
 - Sort
 - Examine

 How should we find those populations that share the most genetic similarity to Karelia?

S1 S	S 2	Target	▼ f3	* !	SE 💌	Z	#SNPs
Karelia_HG S	Samara_HG	Mbuti	0	.284309	0.00343	82.892	155635
Karelia_HG N	Motala_HG	Mbuti	0	.277805	0.002633	105.493	266876
Karelia_HG S	SwedenSkoglund_NHG	Mbuti	0	.268495	0.00306	87.749	242030
Karelia_HG A	AG2	Mbuti	0	.263744	0.0063	41.867	20737
Karelia_HG N	MA1	Mbuti	0	.263336	0.003268	80.592	187735
Karelia_HG F	HungaryGamba_HG	Mbuti	0	.262807	0.003212	81.825	180338
Karelia_HG L	Loschbour	Mbuti	0	.261087	0.002914	89.594	262149
Karelia_HG S	SwedenSkoglund_NHG_lessThan20K	Mbuti	0	.260432	0.006517	39.96	18928
Karelia_HG Y	⁄amnaya	Mbuti	0	.259911	0.002405	108.069	271238
Karelia_HG L	_aBrana1	Mbuti	0	.257686	0.002991	86.14	247934
Karelia_HG C	Corded_Ware_LN	Mbuti	0	.257311	0.002555	100.698	266637
Karelia_HG S	SwedenSkoglund_MHG	Mbuti	0	.256896	0.00606	42.395	23754
Karelia_HG A	Alberstedt_LN	Mbuti	0	.253114	0.002988	84.696	260481
Karelia_HG L	Jnetice_EBA	Mbuti	0	.252559	0.002467	102.38	268917
Karelia_HG B	BenzigerodeHeimburg_LN	Mbuti	0	.252552	0.002758	91.581	232906
Karelia_HG K	Karsdorf_LN	Mbuti	0	.252187	0.00484	52.104	45321
Karelia_HG L	Jnetice_EBA_relative_of_I0117	Mbuti	0	.252039	0.003243	77.729	164815
Karelia_HG L	Lithuanian	Mbuti	0	.251157	0.002345	107.095	280205
Karelia_HG S	Saami_WGA	Mbuti	0	.250851	0.002938	85.396	262547
Karelia_HG F	Halberstadt_LBA	Mbuti	0	.250648	0.002988	83.872	254042

Comparing f3 and D

- D (or f4) is essentially equivalent to comparing two f3-statistics.
 - If F3(Karelia, X1; Mbuti)>F3(Karelia, X2; Mbuti), how do we determine is this difference is meaningful?
 - Use D-statistics!
 - Outgroup f3 is a good survey tool, but D-statistic does the actual hypothesis testing.

Making the pop file

- I've provided a python script make_out
 f3pop.py, that takes as arguments the working directory, population to put in S1, and outgroup, and this outputs a POP file.
- For each person, take one of the Haak et al. sets and get the outgroup f3-statistics for that set.
- The run should take about seven minutes.

Ancient sets

- EHG: Karelia, Samara
- SHG: Motala
- EN: LBK, LBKT, Starcevo, Spain_EN
- MN/CA: Yamnaya, Esperstedt, Baalberge,
 Spain_MN
- LN: <u>Alberstedt, BenzigerodeHeimburg, Bell</u>
 <u>Beaker, Karsdorf, Corded Ware</u>
- BA/IA: Halberstadt, Unetice

Conclusions from outgroup f3 analysis

Groups – Exercise 7.3

- 1. HungaryGamba_EN (8)
- 2. Unetice_EBA (7)
- 3. BenzigerodeHeimburg_LN (3)
- 4. Bell_Beaker_LN (6)
- 5. Corded_Ware_LN (4)
- 6. Yamnaya (9)
- 7. Baalberge_MN (3)
- 8. LBK EN (12)
- 9. Motala_HG (7)
- 10. Spain_MN (4)
- 11. Spain_EN (4)
- 12. Sweden_Skoglund_NHG (3)

Summarizing all the information

 How does the Haak et al. (2015) paper summarize the outgroup f3 results?

Costenki14

MA1

LBKT EN

Stattgart

Gamba EN

Spain MN

Spain EN

F3-statistics

- Outgroup f3-statistics were not original purpose of an f3-statistic testing for admixture was.
- The admixture test explored admixture into the the test population, which holds if F3(S1, S2; Test)<0.
 - No information on whether there was admixture if positive.
 - High population specific drift in Test can mask signal (p. 1068)
 - Negative result MUST mean Test is admixed, though whether the best sources are S1 and S2 is unknown.

Negative f3-statistics – the admixture case, some theory

F3(A, B; C) - We need to consider all paths for admixture.

Negative f3-statistics – the admixture case, some theory

F3(A, B; C) - We need to consider all paths for admixture. 1. Only overlap matters! β^2 (c+e) α^2 (c+d) $\alpha\beta(c)$ $\beta\alpha(c-g-f)$ $F_3(C;A,B) = c + \alpha^2 d + \beta^2 e - \alpha \beta (g+f)$

2. Some algebra...

Negative f3-statistics – the admixture case, some theory

F3(A, B; C) - We need to consider all paths for admixture.

This term decides if F3 is negative! If α or β is 0, then F3>0, while otherwise, F3 MIGHT be negative.

Mini-Projects

Presentation Date: Monday August 6, 2018 9:00-11:30 am

Location: Rm 702

Objective: In groups of 2-3, develop and enact a small research project using population genetic

analyses and communicate your findings in a short oral presentation.

Taking a prepared dataset (previously published or other sources), develop a question and use a combination of f-statistics and PCA to try to answer the question. You can take a previously published paper (preferably more recent than the Haak et al. 2015 study) to recreate several of their analyses to show how they answered their questions, develop a new question, or some combination thereof. The main requirement is to familiarize yourself with the dataset and gain practice running the needed software and interpreting results. You are required to meet with your instructor at least twice.

The final presentation will be a 15 minute oral presentation in English, requiring at minimum the following sections:

- Background/Introduction to project,
- Description of dataset,
- Planned analyses,
- Results,
- Conclusions,
- Difficulties/learnings from mini-project.

Timeline

Tuesday Jul 24
Tuesday Jul 31
Monday Aug 6

Introduction to Mini-Project and choose group.

Meet with instructor to present project idea and get feedback.

Meet with instructor to discuss how project is going.

Present 15 minute oral presentation.

- 2:00 pm Group
- 2:30 pm Group
- 3:00 pm Group
- 3:30 pm Group
- 4:00 pm Group

- Before Tuesday, explore some more recent papers, and see if there's a region or dataset you're interested in learning.
- Highly recommend you use a dataset similar to the Haak dataset, as that way you don't have to worry about file formats!
 - https://reich.hms.harvard.edu/datasets
- Come with ideas, so I can help you develop them further!

Questions?