PSY9511: Seminar 4

Model selection, validation and testing

Esten H. Leonardsen 23.09.24

Outline

- 1. Assignment 3
- 2. Loss functions and performance metrics
- 3. Strategies for model evaluation
 - · Training and validation split
 - · (Stratification)
 - · (Leave-one-out cross-validation)
 - · Cross-validation
 - · Bootstrap
 - · Model comparison
- 4. Strategies for model selection and evaluation
 - · Train/validation/test split
 - · Nested cross-validation

Assigment 3

Assignment 3: Performance

Training

Х	
0.0	
0.2	
0.4	
0.6	
0.8	
1.0	

Validation

х
1.0
1.2
1.4
1.6
1.8
2.0

Training

	-
Х	
0.0	
0.2	
0.4	
0.6	
0.8	
1.0	
7 0	_

$$\bar{x} = 0.5$$

Validation

Х		
1.0		
1.2		
1.4		
1.6		
1.8		
2.0		

$$\bar{x} = 1.5$$

Tra	П	n	П	nσ
110				''5

	Х
	0.0
	0.2
	0.4
	0.6
	8.0
	1.0
Ξ	

$$\bar{x} = 0.5$$

Validation

Х		
1.0		
1.2		
1.4		
1.6		
1.8		
2.0		

 $\bar{x} = 1.5$

In a real-life scenario we don't have a validation set, only individual observations

Training

ſ	Х	
	0.0	
	0.2	
	0.4	
	0.6	
	0.8	
	1.0	
_	_	

 $\bar{x} = 0.5$

Validation

Х		
1.0		
1.2		
1.4		
1.6		
1.8		
2.0		

 $\bar{x} = 1.5$

Training

Х	
0.0	
0.2	

0.4

0.6 0.8

1.0

-0.5 -0.3

-0.1

0.1 0.3

0.5

Validation

Χ 1.0

1.2

1.4 1.6

1.8

2.0

Х

-0.5 -0.3

-0.1

0.1

0.3

0.5

The mortal sins of machine learning in neuroscience

- Reporting inflated modelling performance due to insufficient testing procedures
- 2. Using accuracy as a model performance measure when it is not appropriate

The mortal sins of machine learning in neuroscience

- Reporting inflated modelling performance due to insufficient testing procedures
- 2. Using accuracy as a model performance measure when it is not appropriate

We believe that we know things that we actually don't (e.g. what brain regions are involved in a mental disorder)

Commonalities

- · Allows us to evaluate the performance of a model
- Typically on the form $f(y, \hat{y})$

Loss functions

Tailored specifically for mathematical optimization of models

Performance metrics

 Tailored specifically for interpretation of model performance by humans

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$
$$= 23.94$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mae(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} |y_i - \hat{y}_i|$$

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$mae(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} |y_i - \hat{y}_i|$$

Loss functions

- Different loss functions measures different properties of the model fit
- Optimizing for them gives different parameter estimates

Tolerance-based accuracy:

A prediction is considered correct if it is within a predefined margin of error from the true value

accuracy*
$$(y, \hat{y}) = \begin{cases} 0 & \text{if } |y - \hat{y}| < \text{tol} \\ 1 & \text{else} \end{cases}$$

mpg	horsepower
22	72

mpg	horsepower
22	72

mpg	horsepower
22	72

$$\hat{y} = \beta_0 + \beta_1 \times \text{horsepower}$$

mpg	horsepower
22	72

$$\hat{y} = \beta_0 + \beta_1 \times \text{horsepower}$$

Loss functions

- Different loss functions measures different properties of the model fit
- Optimizing for them gives different parameter estimates
- Must be differentiable to allow for mathematical optimization

$$mse(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

$$OR$$

$$mae(y, \hat{y}) = \frac{1}{n} \sum_{i=0}^{n} |y_i - \hat{y}_i|$$

$$\frac{1}{n} \sum_{i=0}^{n} (y_i - \hat{y}_i)^2$$

Mean squared error (MSE)

- + Can be used as a loss function
- + Widely used
- + Intuitive
- + Penalizes large errors
- ? Interpretation
- Depends on scale

$$\sqrt{\frac{1}{n}\sum_{i=0}^{n}(y_i-\hat{y}_i)^2}$$

Root mean squared error (RMSE)

- + Can be used as a loss function
- + Intuitive
- + Penalizes large errors
- + More interpretable than MSE, total loss ≈ individual loss
- Depends on scale

$$\frac{1}{n}\sum_{i=0}^{n}|y_i-\hat{y}_i|$$

Mean absolute error (MAE)

- + Can be used as a loss function
- + More interpretable than MSE/RMSE, total loss = average error
- Feels a bit off
- Depends on scale

$$\frac{\sum_{i=1}^{n} (y_i - \bar{y})(\hat{y}_i - \hat{\bar{y}})}{\sqrt{\sum_{i=1}^{n} (y_i - \bar{y})^2 \sum_{i=1}^{n} (\hat{y}_i - \hat{\bar{y}})^2}}$$

Pearson correlation coefficient (r)

- + Scale independent
- ? Captures linear correlation
- Should not be used as a loss function
- Does not care about whether the predictions are close to the true values

Performance metrics: Regression

$$1 - \frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i - \bar{y}_i)^2}$$

Proportion of variance explained (r^2)

- + Scale independent
- + Interpretable
- ? Captures linear correlation
- Should not be used as a loss function
- Does not care about whether the predictions are close to the true values

 $y \in \{Patients, Controls\}$

 $y \in \{Patients, Controls\}$ $\hat{y} \in \{Patients, Controls\}$

$$y \in \{0, 1\}$$

 $\hat{y} \in [0, 1]$

Confusion matrix:

Binary classification metrics:

- Many metrics rely on thresholding the predictions to obtain binary predictions.
- Although not a metric per se, the confusion matrix is a very useful tool to understand model behaviour, and should always be looked at (and preferably reported).

$$-(y \log(\hat{y}) + (1-y) \log(1-\hat{y}))$$

Logloss

- + Does not rely on thresholding
- + Can be used as a loss function (and very often is)
- Not very interpretable

$$\frac{TP+TN}{TP+TN+FP+FN}$$

Accuracy

- + Interpretable
- Does not account for imbalanced classes
- Does not account for different costs of misclassification

$$\frac{TP}{TP+FN}$$

True positive rate (sensitivity)

- + Interpretable, calculates the proportion of cases that are detected
- + Useful when the cost of false negatives is high (Population-wide screening for severe disease)

$$\frac{TN}{TN+FP}$$

True negative rate (specificity)

- + Interpretable, calculates the proportion of controls that are detected
- Useful when the cost of false positives is high (Intrusive treatment of rare and mild conditions)

$$\frac{TP}{TP+FP}$$

Positive predictive value (PPV, precision)

- + Interpretable, calculates the proportion of predicted cases that are actually cases
- Useful when the cost of false positives is high (Selection of participants for expensive clinical trials)

$$\frac{\frac{TP}{TP+FN} + \frac{TN}{TN+FP}}{2}$$

Balanced accuracy

- + Interpretable, behaves similarly to regular accuracy.
- + Takes into account imbalanced classes

threshold	TPR	FPR

threshold	TPR	FPR
0	1	1
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

threshold	TPR	FPR
0	1	1
0.15	0.95	0.5
0.25	0.5	0.2
0.35	0.2	0.0
1	0	0

Area under the receiver operating characteristic curve (AUC/AUROC)

- A performance metric that does not rely on a correct classification threshold
- Measures whether the predictions are ranked correctly (e.g. patients have a higher prediction than controls)
- Handles class imbalance (relatively well) and is commonly reported in the literature

Loss functions and performance metrics: Summary

Performance metrics and loss functions measure the performance of a predictive model

- There is a range of alternatives that can be used, each capturing a different aspect of a model's performance
- · It is good practice to report more than one metric
- · For regression:
 - MSE is a common loss function with nice mathematical properties.
 - · MAE is an intuitive performance metric
- For classification:
 - Log-loss is the most common loss function for probabilistic classifiers
 - AUC is a widely used metric that is easy to interpret, handles class imbalance (to some degree), and is not reliant on the choice of classification threshold

Loss functions and performance metrics: Summary

http://localhost:8889/notebooks/notebooks%2FClassification%20metrics.ipynb

Strategies for model evaluation

Model evaluation: Rationale

Statistical inference:

Goal: In-sample quantification

Predictive modelling:

Goal: Out-of-sample generalization

Model evaluation: Rationale

How can we test how good our model is on **unseen data** and **be** certain that performance holds if we present even more new data

In the validation set approach we split the dataset into two subsets (commonly $\sim 80\%/20\%$), use the first for training the model and the second to test its performance.

- + Accurate estimate of out-of-sample error
- + Simple
- Variable results depending on the exact split
- Only uses a subset of data for training models
- Gives a point estimate of the error, without confidence intervals

Stratification:

Ensuring all folds of the dataset are similar with respect to some given characteristics.

Dataset

```
In[1]: df = ...
```



```
In[1]: df = ...
```



```
In[1]: df = ...
    train = df.iloc[:int(len(df) * 0.8)]
    validation = df.iloc[int(len(df) * 0.8):]
```



```
In[1]:     df = ...
     df = df.sort_values(['sex', 'age'])
```


Stratification:

Ensuring all folds of the dataset are similar with respect to some given characteristics.

- Helps alleviate the risk of training performance >> validation performance
- · Always stratify on target variable first
- Also good idea to stratify on other core characteristics, e.g. sex and age

```
In[1]: from sklearn.model_selection import train_test_split
```

```
library(splitstackshape)
stratified(data, columns, split)
```


Fits *n* models for *n* datapoints, each time leaving a single datapoint out for testing.

- + Uses all data to train models
- + Not dependent on arbitrary data splits
- + Unbiased (with regards to the full dataset)
- Computationally expensive
- Effectively gives a point estimate of the error
- All models are going to be trained on > 99% overlapping data
 - → highly correlated

Fits k (usually $k \in \{5, 10\}$) models for n > k datapoints, each leaving n/k datapoints for out-of-sample testing.

- + Uses all data to train models
- + Yields multiple estimates of out-of-sample error
- Different choices of k (and exact splits) yields different results
- No longer a single model from which information (e.g. parameter estimates and p-values) can be derived

Fits b models with m datapoints (typically m < n), sampled from the original dataset with replacement.

- + Uses all data to train models
- + Provides a dense distribution of model performances
- Versatile: Can be used for other things, e.g. getting a confidence interval for model parameters
- Different choices of b (and exact splits) yields different results

Why do we want to evaluate our model?

- 1. We want to show that our model is better than random guessing
- 2. We want to show that our model is better than another model

http://localhost:8890/notebooks/notebooks%2FModel%20variability.ipynb

There is going to be variability in our model's performance (and possibly the baseline).

Is our model significantly better?

Approach 1:

Is the mean of the distribution of performances from our model (with regards to variability that is **unrelated** to efficacy) significantly higher than the point-estimate baseline?

Approach 1:

Is the mean of the distribution of performances from our model (with regards to variability that is **unrelated** to efficacy) significantly higher than the point-estimate baseline?

Approach 1:

Is the mean of the distribution of performances from our model (with regards to variability that is **unrelated** to efficacy) significantly higher than the point-estimate baseline?

Approach 2:

Is the point-estimate performance of our model significantly higher than the mean of the baseline distribution?

Approach 2:

Is the point-estimate performance of our model significantly higher than the mean of the baseline distribution?

Age	Sex	Feature	Outcome	
25	Male	0.53	1	
38	Female	-0.76	1	
45	Male	0.89	1	
33	Female	-0.21	1	Modelling
29	Male	0.12	1	
41	Female	-0.68	0	' pipeline ¦
56	Male	0.45	0	
52	Female	-0.32	0	
31	Male	0.91	0	
48	Female	-0.15	0	

Age	Sex	Feature	Outcome	
25	Male	0.53	1	
38	Female	-0.76	1	
45	Male	0.89	1	
33	Female	-0.21	1	Modelling
29	Male	0.12	1	
41	Female	-0.68	0	' pipeline ¦
56	Male	0.45	0	
52	Female	-0.32	0	
31	Male	0.91	0	
48	Female	-0.15	0	

Age	Sex	Feature	Outcome	
25	Male	0.53	1	
38	Female	-0.76	0	
45	Male	0.89	1	
33	Female	-0.21	0	Mode
29	Male	0.12	1	pipe
41	Female	-0.68	0	
56	Male	0.45	1	
52	Female	-0.32	0	
31	Male	0.91	1	
48	Female	-0.15	0	

Age	Sex	Feature	Outcome	
25	Male	0.53	0	
38	Female	-0.76	0	
45	Male	0.89	0	
33	Female	-0.21	0	Modelling 0.5
29	Male	0.12	0	\longrightarrow
41	Female	-0.68	1	pipeline 0.4
56	Male	0.45	1	
52	Female	-0.32	1	
31	Male	0.91	1	
48	Female	-0.15	1	

Age	Sex	Feature	Outcome	
25	Male	0.53	0	
38	Female	-0.76	1	
45	Male	0.89	0	
33	Female	-0.21	0	Modelling
29	Male	0.12	1	pipeline ;
41	Female	-0.68	1	
56	Male	0.45	0	
52	Female	-0.32	0	
31	Male	0.91	1	
48	Female	-0.15	1	

Approach 2:

Is the point-estimate performance of our model significantly higher than the mean of the baseline distribution?

Approach 2:

Is the point-estimate performance of our model significantly higher than the mean of the baseline distribution?

Model evaluation: Comparison

Approach 3:

Is the mean of the distribution of performances from our model significantly higher than the mean of the distribution of baseline performances?

Model evaluation: Comparison

Fold	Ours	Baseline
1	0.75	0.71
2	0.62	0.55
3	0.58	0.57
4	0.87	0.81
5	0.65	0.63
6	0.98	0.97
7	0.55	0.52
8	0.69	0.52
9	0.91	0.85
10	0.88	0.81

The small gain of our model will disappear in the noise between the folds using a non-paired statistical test. Use a paired test, e.g.

Wilcoxon signed-rank test

Model evaluation: Summary

- · Model evaluation should always happen out-of-sample
- If n is big (≥ 10000), a single train/validation split is often sufficient
- For smaller samples, k-fold cross-validation with 5 \leq k \leq 10 is a good trade-off between bias and variance
- The bootstrap is an effective way of getting confidence intervals for model performance and parameters
- Cross-validation (or bootstrapping) will produce a distribution of model performances (although caution the correlation)
- Permutation testing will produce a distribution of baseline performances
- Compare models across folds using Wilcoxon signed-rank test (ensure the folds are the same!)

Model selection and evaluation

Model selection and evaluation: Rationale

- Model evaluation via cross-validation is sufficient if we want to estimate the out-of-sample error of a known model.
- Very often we want to know whether a set of predictors are informative for an outcome given the best possible model.
- In that case, we have to both **choose the best model**, and **estimate its performance**.
- If we choose the model based on regular cross-validation, the performance estimate will (likely) be inflated

Model selection and evaluation: Rationale

- Model evaluation via cross-validation is sufficient if we want to estimate the out-of-sample error of a known model.
- Very often we want to know whether a set of predictors are informative for an outcome given the best possible model.
- In that case, we have to both **choose the best model**, and **estimate its performance**.
- If we choose the model based on regular cross-validation, the performance estimate will (likely) be inflated
- ightarrow We need a more advanced strategy

Performs k outer cross-validations, each performing k/k-1 inner cross validations, and uses the best models from the inner loop to predict in the outer loop.

- + Uses all data to train models
- + Unbiased estimate of out-of-sample error
- Very computationally expensive
- We now have either k, or k² models that might behave in different ways

Model selection and evaluation: Summary

- Whenever a modelling choice is made on the basis of performance in a dataset, we have to assume the performance achieved by the chosen model is inflated
- If n is big (≥ 10000), a single train/validation/test split is often sufficient
- When possible, use nested cross-validation to select the best model and estimate the out-of-sample error

Model selection and evaluation: Summary

11111

- Whenever a modelling choice is made on the basis of performance in a dataset, we have to assume the performance achieved by the chosen model is inflated
- If n is big (≥ 10000), a single train/validation/test split is often sufficient
- When possible, use nested cross-validation to select the best model and estimate the out-of-sample error

