```
::=
                                        terms
                                      variable
      \lambda x : T. t
                                  abstraction
                                  application
                               configurations
      t[s]
                                       values
                                      closure
                                        types
                            type of functions
                                     contexts
                              empty context
                       term variable binding
                        explicit substitutions
                          empty substitution
      (x,v):s
                        variable substitution
```

Figure 1: Syntax of the simply typed lambda-calculus with explicit substitution.

Lemma 1 (Inversion of term typing).

- 1. If $\Gamma \vdash x : R$, then $x : R \in \Gamma$
- 2. If $\Gamma \vdash \lambda x : T_1$. $t_2 : R$, then $R = T_1 \rightarrow R_2$ for some R_2 , with $\Gamma, x : T_1 \vdash t_2 : R_2$.
- 3. If $\Gamma \vdash t_1 \ t_2 : R$, then there is some type T_{11} such that $\Gamma \vdash t_1 : T_{11} \to R$ and $\Gamma \vdash t_2 : T_{11}$.

Proof. Immediate from the definition of the typing relation. \Box

Lemma 2 (Inversion of configuration typing).

- 1. If $\vdash_c x[s] : R$, then $(x, v) \in s$, for some v, and $\vdash_c v : R$.
- 2. If $\vdash_c (\lambda x: T_1.\ t_2)[s]: R$, then $R = T_1 \rightarrow R_2$ for some R_2 , with $\Gamma(s), x: T_1 \vdash t_2: R_2$.
- 3. If $\vdash_c (t_1 \ t_2)[s] : R$, then $\vdash_c t_1[s] \ t_2[s] : R$.
- 4. If $\vdash_c c_1 c_2 : R$, then there is some type T_{11} such that $\vdash_c c_1 : T_{11} \to R$ and $\vdash_c c_2 : T_{11}$.

Proof. Immediate from the definition of the typing relation. \Box

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \qquad (TVar)$$

$$\frac{x:T\in\Gamma}{\Gamma\vdash x:T} \qquad (TVar)$$

$$\frac{\Gamma,x:T_1\vdash t_2:T_2}{\Gamma\vdash \lambda x:T_1.\ t_2:T_1\to T_2} \qquad (TAbs)$$

$$\frac{\Gamma\vdash t_1:T_{11}\to T_{12}\quad\Gamma\vdash t_2:T_{11}}{\Gamma\vdash t_1\ t_2:T_{12}} \qquad (TApp)$$

$$\frac{\Gamma\vdash t_1:T_{11}\to T_{12}\quad\Gamma\vdash t_2:T_{11}}{\Gamma\vdash c\ t_1\ t_2:T_{12}} \qquad (TCApp)$$

$$\frac{\Gamma\vdash t_1:T_{11}\to T_{12}\quad\Gamma\vdash t_2:T_{11}}{\Gamma\vdash c\ t_1\ t_2:T_{12}} \qquad (TCApp)$$

$$\frac{\Gamma\vdash t_1:T_{11}\to T_{12}\quad\Gamma\vdash t_2:T_{11}}{\Gamma\vdash c\ t_1\ t_2:T_{12}} \qquad (TCApp)$$

$$\frac{\Gamma\vdash t_1:T_{11}\to T_{12}\quad\Gamma\vdash t_2:T_{11}}{\Gamma\vdash c\ t_1\ t_2:T_{12}} \qquad (TCApp)$$

Figure 2: Term and configuration typing rules.

Figure 3: Configuration reduction rules.

Lemma 3 (Canonical Forms).

1. If v is a value of type $T_1 \to T_2$, then $v = (\lambda x : T_1, t_2)[s]$.

Proof. Straightforward.

Definition 1 $(\Gamma(s))$. The typing context built from a substitution s, writing $\Gamma(s)$, it is defined as follows:

П

$$\Gamma(s) = \begin{cases} \varnothing & s = \bullet \\ \Gamma(s'), x : T & s = (x, v) : s' \land \vdash_c v : T \end{cases}$$

Theorem 4 (Progress). Suppose c is a well-typed configuration (that is, $\vdash_c c$: T for some T). Then either c is a value or else there is some c' such that $c \longrightarrow c'$.

Proof. By induction on a derivation of $\vdash_c c : T$.

Case (TCVar). Then c=x[s], with $(x,v)\in s$, for some v, and $\vdash_c v:T$. Since $x\in dom(s)$, if the substitution s=(x,v):s', then rule VarOk, applies, otherwise, rule VarNext applies.

Case (TCAbs). Then $c = (\lambda x : T_1. t_2)[s]$. This case is immediate, since closures are values.

Case (TCApp). Then $c = (t_1 \ t_2)[s]$, so rule AppSub applies to c.

Case (TCCApp). Then $c = c_1$ c_2 , with $\vdash_c c_1 : T_{11} \to T$, for some T_{11} and $\vdash_c c_2 : T_{11}$, by the Lemma 2. Then, by the induction hypothesis, either c_1 is a value or else it can take a step of evaluation, and likewise c_2 . If c_1 can take a step, then rule App1 applies to c. If c_1 is a value and c_2 can take a step, then rule App2 applies. Finally, if both c_1 and c_2 are values, then the Lemma 3 tells us that c_1 has the form $(\lambda x : T_{11}.t_{12})[s]$, and so rule App applies to c.

Definition 2 (Well typed substitution). A substitution s is said well typed with a typing context Γ , writing $\Gamma \vdash s$, if $dom(s) = dom(\Gamma)$ and for every $(x, v) \in s$ and $\vdash_c v : T$, where $x : T \in \Gamma$.

Lemma 5 (Permutation). *If* $\Gamma \vdash t : T$ *and* Δ *is a permutation of* Γ *, then* $\Delta \vdash t : T$.

Proof. By induction on typing derivations. \Box

Lemma 6. If $\Gamma \vdash s$ then Γ is a permutation of $\Gamma(s)$.

Proof. By the definition of well typed substitution. \Box

Lemma 7. If $\Gamma \vdash s$ and $\vdash_c v : T$, then $\Gamma, x : T \vdash (x, v) : s$.

Proof. By the definition of well typed substitution. \Box

Lemma 8. If $\Gamma \vdash s$ then $\vdash_c t[s] : T$ if and only if $\Gamma \vdash t : T$.

Proof. By induction on typing derivations, using Lemma 5 and Lemma 6.

Theorem 9 (Preservation). If $\vdash_c c: T$ and $c \longrightarrow c'$, then $\vdash_c c': T$.

Proof. By induction on a derivation of $\vdash_c c : T$.

Case (TCVar). Then c = x[s], with $\vdash_c (x, v) \in s$, for some v, and $\vdash_c v : T$. We find that there are two rule by which $c \longrightarrow c'$ can be derived: VarOk and VarNext. We consider each case separately.

- Subcase (VarOk). Then s = (x, v) : s' and c' = v. Since $(x, v) \in s$ and $\vdash_c v : T$, then $\vdash_c c' : T$.
- Subcase (VarNext). Then $s = (y, v) : s', x \neq y$ and c' = x[s']. Since $(x, v) \in s'$ too, and $\vdash_c v : T$ then $\vdash_c x[s'] : T$, that is $\vdash_c c' : T$.

Case (TAbs). Then $c = (\lambda x : T_1. t_2)[s]$. It cannot be the case that $c \longrightarrow c'$, because c is a value, then the requirements of the theorem are vacuously satisfied.

Case (TCApp). Then $c = (t_1 \ t_2)[s]$ and $\vdash_c t_1[s] \ t_2[s] : T$. We find that there are only one rule by which $c \longrightarrow c'$ can be derived: AppSub. With this rule $c' = t_1[s] \ t_2[s]$, then we can conclude that $\vdash_c c' : T$.

Case (TCCApp). Then $c = c_1 \ c_2, \vdash_c \ c_1 : T_2 \to T$ and $\vdash_c c_2 : T_2$. We find that there are three rules by which $c \longrightarrow c'$ can be derived: App1, App2 and App. We consider each case separately.

- Subcase (App1). Then $c_1 \longrightarrow c'_1$, $c' = c'_1$ c_2 . By the induction hypothesis, $\vdash_c c'_1 : T_2 \to T$, then we can apply rule TCCApp, to conclude that $\vdash_c c'_1 c_2 : T$, that is $\vdash_c c' : T$.
- Subcase (App2). Then $c_2 \longrightarrow c_2'$, $c' = c_1 \ c_2'$. By the induction hypothesis, $\vdash_c c_2' : T_2$, then we can apply rule TCCApp, to conclude that $\vdash_c c_1 \ c_2' : T$, that is $\vdash_c c' : T$.
- Subcase (App): Then $c_1 = (\lambda x : T_1.t_{12})[s]$, $c_2 = v$, $c' = t_{12}[(x,v) : s]$ and $\Gamma(s), x : T_1 \vdash t_{12} : T$ by the Lemma 2. Since we know that $\Gamma(s), x : T_1 \vdash (x,v) : s$ by the Lemma 7, the resulting configuration $\vdash_c t_{12}[(x,v) : s] : T$, by the Lemma 8, that is $\vdash c' : T$.