Computer Programming II (TA C252, Lect 11)

Murali P

Today's Agenda

- Efficiency & Complexity
 - Issues
 - Order of Complexity

What is Efficiency?

- Efficiency Design & Implementation issue.
- Resources
 - CPU Time
 - Storage
- Resource Usage
 - Measured proportional to (input) size

Design Level Measurement

- Machine-independent measurement needed
 - Often referred to as "algorithmic complexity"
 - Individual statement considered as "unit" time
 - Not applicable for function calls and loops
 - Individual variable considered as "unit" storage
 - Not applicable for arrays (or other collections)

Complexity Example [1]

Example 1 (Y and Z are input)

```
X = 3 * Z;

X = Y + X;
```

// 2 units of time and 1 unit of storage

Complexity Example [2]

Example 2 (a and N are input) i = 0;while (j < N) do a[i] = a[i] * a[i];b[i] = a[i] + i;i = i + 1;endwhile; // 3N + 1 units of time and N+1 units of storage

Order of complexity [1]

Example 1 (Y and Z are input)

```
X = 3 * Z;

X = Y + X;

// Constant Unit of time and Constant Unit of storage
```

Order of complexity [2]

Example 2 (a and N are input) i = 0;while (j < N) do a[i] = a[i] * a[i];b[i] = a[i] + j;j = j + 1;endwhile; // time units prop. to N and storage prop. to N

Order of complexity [3]

Example 2 (a and N are input)

```
i = 0;
while (j < N) do
   k = 0;
   while (k < N) do
       a[k] = a[j] + a[k];
      k = k + 1;
   endwhile;
   b[j] = a[j] + j;
  j = j + 1;
endwhile;
// time prop. to N<sup>2</sup> and storage prop. to N
```

Order Notation

- Purpose
 - Capture proportionality
 - Machine independent measurement
 - Asymptotic growth (I.e. large values of input size N)

log ₂ N	N	N ²	N ₃	2 ^N
1	2	4	8	4
3.3	10	10 ²	10 ³	>103
6.6	100	104	106	>10 ²⁵
9.9	1000	106	109	>10 ²⁵⁰
13.2	10000	108	1012	>10 ²⁵⁰⁰

Examples

- $100 * \log_2 N < N$ for N > 1000
- $70 * N + 3000 < N^2$ for N > 100
- $10^5 * N^2 + 10^6 * N < 2^N$ for N > 26

log ₂ N/10	N/10	N ² /10	N ³ /10	2 ^N /10
0.1	0.2	0.4	0.8	0.4
0.33	1	10	10 ²	>102
0.66	10	10 ³	105	>10 ²⁴
0.99	100	10 ⁵	108	>10 ²⁴⁹
1.32	1000	10 ⁷	1011	>10 ²⁴⁹⁹

Speed factor of 10

log ₂ N/10 ⁴	N/10 ⁴	N ² /10 ⁴	N ³ /10 ⁴	2 ^N /10 ⁴
0.0001	0.0002	0.0004	0.0008	0.0004
0.00033	0.001	0.01	0.1	>0.1
0.00066	0.01	1	10 ²	>10 ²¹
0.00099	0.1	10 ²	105	>10 ²⁴⁶
0.00132	1	104	108	>10 ²⁴⁹⁶

Speed factor of 10⁴

Order Notation

Asymptotic Complexity
 g(n) is O(f(n)) if there is a constant c
 such that
 g(n) <= c(f(n))
 i.e. lim_{n→∞} (g(n) / f(n)) = c and c<>0

Order Notation

Examples

```
17*N + 5 is
                     O(N)
5*N^3 + 10*N^2 + 3 is
                               O(N_3)
C1*N^k + C2*N^{k-1} + ... + Ck*N + C is O(N^k)
2^{N} + 4*N^{3} + 16 is O(2^{N})
5*N*log(N) + 3*N is O(N*log(N))
1789 is O(1)
```

```
function search(X, A, N)
j = 0;
while (i < N)
    if (A[i] == X) return i;
    j++;
endwhile;
return "Not found";
```

- Time Complexity:
 - "if" statement introduces possibilties
 - □ Best-case: O(1)
 - Worst case: O(N)
 - □ Average case: ???

Average case

- Assume elements in A are randomly distributed.
- Then for N different cases,
 - 1, 2, 3, ... N
 - are equally possible values of number of iterations.
- So expected value: (1 + 2 + ... + N) / N

Average case

$$(\Sigma_{i=0 \text{ to } N} I)/N = (N(N+1)/2)/N = (N+1)/2$$

is O(N)

Space Complexity

O(1) i.e. constant space.

Binary Search Algorithm

```
low = 1; high = N;
while (low <= high) do
  mid = (low + high) /2;
 if (A[mid] = = x) return x;
 else if (A[mid] < x) low = mid +1;
  else high = mid - 1;
endwhile;
 return Not Found;
```

- Often not interested in best case.
- Worst case:
 - Loop executes until low <= high</p>
 - Size halved in each iteration
 - □ N, N/2, N/4, ... 1
 - How many steps ?

- Worst case:
 - □ K steps such that $2^{K} = N$ i.e. $log_{2}N$ steps is O(log(N))

Average case:

- 1st iteration: 1 possible value
- 2nd iteration: 2 possible values (left or right half)
- 3rd iteration: 4 possible values (left of left, right of left, right of left)
- □ ith iteration: 2ⁱ⁻¹ possible values

Average Case:

```
1 + 2 + 2 + 3 + 3 + 3 + 3 + \dots (upto logN steps)

Sigma(i*2<sup>i-1</sup>) for i = 1 to logN

Evaluates to O(logN)

1 element can be found with 1 comparison

2 elements \rightarrow 2

4 elements \rightarrow 3

Above Sum =sum over all possibilities
```

Space Complexity is O(1)

xy - Complexity

- Assume $y = 2^k$
 - k steps in the iteration.
 - Complexity is O(k)
- General case Sigma($log_2 2^k$) for k = 1 to $log_2 y$ $log (Product(2^k))$ for k = 1 to $log_2 y$ log(y)

```
#include<stdio.h>
#include<math.h>
int pow2(int,int);
int main()
   // Solve X^Y where Y = 2^k
   int i,X,k,result,Y next,Power;
   printf("Enter the X and Y values\n");
   scanf("%d %d",&X,&Y);
    Y next = Y;
   Power = 1; result=1;
   while (Y \text{ next} > 0)
     if (Y next \% 2 == 1)
       result = result * pow2(X, Power);
     Power = 2 * Power;
     Y \text{ next} = Y \text{ next} / 2;
   printf("Result: %d\n",result);
   return 0;
```

```
int pow2(int X, int Y)
     int i, result, k;
     k=ceil((log(Y))/(log(2)));
     result = X; // the atomic solution is X
     for(i=0; i<k; i++)
         result = result * result ;
     return result;
gcc XpowY3.c –lm
./a.out
Enter the X and Y values
28
Result: 256
```