GROUP ASSIGNMENT 05

Simultaneous Random Variables, Data Sampling, Transformation, Multivariate and CLT

I. <u>Simultaneous Random Variables</u>

Two discrete random variables X and Y have a joint pmf $f_{XY}(x,y)$ as given in the following table:

$Y \setminus X$	10	20	30	40
-100	0.04		0.08	0.14
0	0.06	0.06		0.08
100	0.18	0.00	0.08	

It is furthermore known, that Pr(Y=0) = 0.28 and Pr(Y=-100|X=20) = 0.50.

- 1. Fill in the empty places in the joint pmf-table.
- 2. Calculate and sketch the marginals $f_X(x)$ and $f_Y(y)$.
- 3. Calculate the means and variances EX, EY, Var(X), Var(Y) and E[XY].
- 4. Calculate the correlation corr(X,Y), covariance cov(X,Y) and correlation coefficient ρ_{XY} .
- 5. Are the random variables X and Y independent?

II. <u>Data Sampling</u>

You need testdata (virtuel measurements) for test or simulation of a flight simulator. The testdata should simulate the altitude of a plane and are supposed to be Rayleigh distributed:

$$f_X(x) = \frac{x}{\sigma^2} e^{-\frac{x^2}{2\sigma^2}}; \quad x > 0$$

- 1. Find the cdf for the Rayleigh distribution $F_X(x)$.
- 2. Find the inverse of the Rayleigh cdf (ie. x as a function of $y = F_X(x)$).
- 3. Make a Matlab programme that makes 10000 random Rayleigh distributed testdata with σ =7.
- 4. Make a scatter-plot of the testdata.
- 5. Make a histogram of the data. Does it look like a Rayleigh distribution?
- 6. Extra: Repeat 1.–5. for exponential distributed data: $f_X(x) = \lambda e^{-\lambda x}$; $x \ge 0$, with $\lambda = \frac{1}{8}$.

III. <u>Transformation of Random Variable</u>

A stochastic variable Y are given by: $Y = -3 \cdot X + 4$, where $X \sim \mathcal{U}(-1,2)$.

- 1. Determine the pdf $f_Y(y)$, and make a draw of it together with $f_X(x)$.
- 2. Calculate EX, EY, Var(X) and Var(Y).
- 3. Make a Matlab programme that:
 - a. simulates 10 samples of one realization of X and Y by use of the *rand* function;
 - b. plot the samples of the realizations of X and Y;
 - c. plot the samples of Y against the samples of X.

IV. <u>Multivariate Random Variables</u>

A resistor R in an analog filter is made of two resistors in series: $R_1 = 2.4k\Omega$ and $R_2 = 100\Omega$. Both resistors are uniform distributed ±5%.

- 1. Determine and draw the pdf $f_R(r)$ for the sum of the two resistors $R = R_1 + R_2$.
- 2. Find the mean and standard deviation of $R = R_1 + R_2$.
- 3. What would the mean and standard deviation be if we instead used one uniform distributed 5%-resistor $R_0 = 2.5k\Omega$?
- 4. If you could chose any two uniform distributed 5%-resistors to build a 2.5 $k\Omega$ resistor, which resistor-values will you chose to get the most accurate total resistor? What will the standard deviation be? Determine and draw the pdf $f_R(r)$ for the sum of the two resistors.
- 5. Make a simulation of 1. 4. in Matlab.

V. The Central Limit Theorem (CLT)

Make a Matlab simulation to illustrate the Central Limit Theorem (CLT):

Make 9 random variables $Y_1,...,Y_9$ as the average of 1-9 i.i.d. random variables X_n (ie. $Y_1=X_1$, $Y_2=\frac{1}{2}(X_1+X_2)$ etc.) and make a plot of the 9 random variables Y_i .

Does the random variables approach a normal distribution when more terms are included?

Make the simulations for:

- 1. $X_n \sim \mathcal{U}(0,1)$
- 2. $X_n \sim Rayleigh distributed with \sigma = 1$