In [1]:

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt

In [2]:

df = pd.read_csv('C:/Users/User/Desktop/Data Science Notes/Data Science Capstone/Project_Healthcare PGP/Healthcare - Diabetes/hea

In [3]:

df.head()

Out[3]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

Descriptive Analysis

In [4]:

df.dtypes

Out[4]:

Pregnancies int64 Glucose int64 BloodPressure int64 SkinThickness int64 Insulin int64 float64 ${\tt DiabetesPedigreeFunction}$ float64 int64 Age Outcome int64 dtype: object

In [5]:

df.dtypes.value_counts()

Out[5]:

int64 7 float64 2 dtype: int64

In [6]:

df.describe()

Out[6]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240885	0.348958
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000000	0.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Missing Values Treatment

```
In [8]:
df.isna().any()
Out[8]:
Pregnancies
                            False
Glucose
                            False
BloodPressure
                            False
SkinThickness
                            False
Insulin
                            False
BMI
                            False
DiabetesPedigreeFunction
                            False
                            False
Age
Outcome
                            False
dtype: bool
In [9]:
df.isna().sum()
Out[9]:
Pregnancies
                            0
Glucose
                            0
BloodPressure
                            a
SkinThickness
                            0
Insulin
BMI
                            0
DiabetesPedigreeFunction
                            0
Age
                            0
Outcome
                            0
dtype: int64
In [10]:
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
#
    Column
                               Non-Null Count Dtype
0
    Pregnancies
                               768 non-null
                                                int64
1
     Glucose
                               768 non-null
                                                int64
     BloodPressure
                                768 non-null
                                                int64
     SkinThickness
                                768 non-null
                                                int64
                               768 non-null
    Insulin
                                                int64
5
                                                float64
     BMT
                               768 non-null
 6
    {\tt DiabetesPedigreeFunction}
                               768 non-null
                                                float64
                                768 non-null
                                                int64
    Age
8
    Outcome
                                768 non-null
                                                int64
dtypes: float64(2), int64(7)
memory usage: 54.1 KB
In [11]:
cols_null_as_zero = ['Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI']
df[cols_null_as_zero] = df[cols_null_as_zero].replace(0, np.NaN)
```

```
In [12]:
```

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
                              Non-Null Count Dtype
# Column
0
    Pregnancies
                              768 non-null
                                              int64
    Glucose
                              763 non-null
                                              float64
    BloodPressure
                              733 non-null
                                              float64
2
    SkinThickness
                              541 non-null
                                              float64
3
4
                              394 non-null
                                              float64
    Insulin
5
    BMI
                              757 non-null
                                              float64
    DiabetesPedigreeFunction 768 non-null
                                              float64
 7
                              768 non-null
                                              int64
    Age
8
    Outcome
                              768 non-null
                                              int64
dtypes: float64(6), int64(3)
```

In [13]:

df.isna().sum()

memory usage: 54.1 KB

Out[13]:

Pregnancies 0 Glucose 5 BloodPressure 35 SkinThickness 227 374 Insulin BMI 11 DiabetesPedigreeFunction 0 0 Age 0 Outcome dtype: int64

In [14]:

df.describe()

Out[14]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
count	768.000000	763.000000	733.000000	541.000000	394.000000	757.000000	768.000000	768.000000	768.000000
mean	3.845052	121.686763	72.405184	29.153420	155.548223	32.457464	0.471876	33.240885	0.348958
std	3.369578	30.535641	12.382158	10.476982	118.775855	6.924988	0.331329	11.760232	0.476951
min	0.000000	44.000000	24.000000	7.000000	14.000000	18.200000	0.078000	21.000000	0.000000
25%	1.000000	99.000000	64.000000	22.000000	76.250000	27.500000	0.243750	24.000000	0.000000
50%	3.000000	117.000000	72.000000	29.000000	125.000000	32.300000	0.372500	29.000000	0.000000
75%	6.000000	141.000000	80.000000	36.000000	190.000000	36.600000	0.626250	41.000000	1.000000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000000	1.000000

Histogram

In [15]:

sns.histplot(data=df['Glucose'])

Out[15]:

<AxesSubplot:xlabel='Glucose', ylabel='Count'>

In [16]:

sns.histplot(data=df['BloodPressure'])

Out[16]:

<AxesSubplot:xlabel='BloodPressure', ylabel='Count'>

In [17]:

sns.histplot(data=df['SkinThickness'])

Out[17]:

<AxesSubplot:xlabel='SkinThickness', ylabel='Count'>

In [18]:

sns.histplot(data=df['Insulin'])

Out[18]:

<AxesSubplot:xlabel='Insulin', ylabel='Count'>


```
In [19]:
```

```
Out[19]:
```

```
<AxesSubplot:xlabel='BMI', ylabel='Count'>
```

sns.histplot(data=df['BMI'])

In [20]:

```
# Median Imputation for 'Insulin'
df['Insulin'] = df['Insulin'].fillna(df['Insulin'].median())
```

In [21]:

```
# Mean Imputation
cols_mean_for_null = ['Glucose', 'BloodPressure', 'SkinThickness', 'BMI']
df[cols_mean_for_null] = df[cols_mean_for_null].fillna(df[cols_mean_for_null].mean())
```

In [22]:

```
df.info()
```

```
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):
#
    Column
                               Non-Null Count Dtype
0
     Pregnancies
                               768 non-null
                                               int64
                               768 non-null
                                               float64
1
     Glucose
                               768 non-null
     BloodPressure
                                               float64
 3
     SkinThickness
                               768 non-null
```

<class 'pandas.core.frame.DataFrame'>

float64 Insulin 768 non-null float64 BMI 768 non-null float64 DiabetesPedigreeFunction 768 non-null float64 6 768 non-null 7 Age int64 Outcome 768 non-null int64

dtypes: float64(6), int64(3)
memory usage: 54.1 KB

Frequency Plot

In [23]: df.dtypes.value_counts().plot(kind='bar') Out[23]: <AxesSubplot:> 6 5 3 2 -In [24]: sns.countplot(x=df['BloodPressure'].value_counts())

Out[24]:

<AxesSubplot:xlabel='BloodPressure', ylabel='count'>

Data Exploration

Checking the Balance of Data

```
In [25]:
```

```
df['Outcome'].value_counts().plot(kind='bar')
df['Outcome'].value_counts()
```

Out[25]:

0 500 1 268

Name: Outcome, dtype: int64

SMOTE to Balance the Imbalanced Data

```
In [26]:
```

```
df_x = df.drop('Outcome', axis=1)
df_y = df['Outcome']
print(df_x.shape, df_y.shape)
```

(768, 8) (768,)

In [27]:

from imblearn.over_sampling import SMOTE

In [28]:

```
df_x_res, df_y_res = SMOTE(random_state=108).fit_resample(df_x, df_y)
print(df_x_res.shape, df_y_res.shape)
```

(1000, 8) (1000,)

```
In [29]:
```

```
df_y_res.value_counts().plot(kind='bar')
df_y_res.value_counts()
```

Out[29]:

1 500 0 500

Name: Outcome, dtype: int64

Scatter Plots between the pair of variables to understand the relationships

In [30]:

df_res = pd.concat([df_x_res, df_y_res], axis=1)
df_res

Out[30]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFunction	Age	Outcome
0	6	148.000000	72.000000	35.000000	125.000000	33.600000	0.627000	50	1
1	1	85.000000	66.000000	29.000000	125.000000	26.600000	0.351000	31	0
2	8	183.000000	64.000000	29.153420	125.000000	23.300000	0.672000	32	1
3	1	89.000000	66.000000	23.000000	94.000000	28.100000	0.167000	21	0
4	0	137.000000	40.000000	35.000000	168.000000	43.100000	2.288000	33	1
995	3	164.686765	74.249021	29.153420	125.000000	42.767110	0.726091	29	1
996	0	138.913540	69.022720	27.713033	127.283849	39.177649	0.703702	24	1
997	10	131.497740	66.331574	33.149837	125.000000	45.820819	0.498032	38	1
998	0	105.571347	83.238205	29.153420	125.000000	27.728596	0.649204	60	1
999	0	127.727025	108.908879	44.468195	129.545366	65.808840	0.308998	26	1

1000 rows × 9 columns

In [31]:

sns.scatterplot(x='Pregnancies', y='Glucose', data=df_res, hue='Outcome')

Out[31]:

<AxesSubplot:xlabel='Pregnancies', ylabel='Glucose'>

In [32]:

sns.pairplot(data=df_res, hue='Outcome')

Out[32]:

<seaborn.axisgrid.PairGrid at 0x761521adc0>

Perform correlation analysis. Visually explore it using a heat map

In [33]:

df_res.corr()

Out[33]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigreeFunction	Age	Outco
Pregnancies	1.000000	0.079953	0.205232	0.082752	0.009365	0.021006	-0.040210	0.532660	0.1934
Glucose	0.079953	1.000000	0.200717	0.189776	0.418830	0.242501	0.138945	0.235522	0.5000
BloodPressure	0.205232	0.200717	1.000000	0.176496	0.034861	0.277565	-0.005850	0.332015	0.162
SkinThickness	0.082752	0.189776	0.176496	1.000000	0.170719	0.538207	0.120799	0.117644	0.2300
Insulin	0.009365	0.418830	0.034861	0.170719	1.000000	0.168702	0.115187	0.096940	0.200
ВМІ	0.021006	0.242501	0.277565	0.538207	0.168702	1.000000	0.177915	0.017529	0.334
DiabetesPedigreeFunction	-0.040210	0.138945	-0.005850	0.120799	0.115187	0.177915	1.000000	0.010532	0.187!
Age	0.532660	0.235522	0.332015	0.117644	0.096940	0.017529	0.010532	1.000000	0.2340
Outcome	0.193421	0.500321	0.162788	0.230017	0.200911	0.334196	0.187519	0.234059	1.0000
4									

Data Modeling

In [35]:

Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.

```
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neighbors import KNeighborsClassifier
In [36]:
df_x_res = df.drop('Outcome', axis=1)
df_y_res = df['Outcome']
print(df_x_res.shape, df_y_res.shape)
(768, 8) (768,)
In [37]:
x_train, x_test, y_train, y_test = train_test_split(df_x_res,df_y_res,test_size=0.30,random_state=12345)
print(x_train.shape, x_test.shape)
logreg = LogisticRegression()
logreg.fit(x_train, y_train)
(537, 8) (231, 8)
C:\Users\User\anaconda3\lib\site-packages\sklearn\linear_model\_logistic.py:814: ConvergenceWarning: lbfgs failed t
o converge (status=1):
STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
Increase the number of iterations (max_iter) or scale the data as shown in:
    https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/stable/modules/preprocessi
Please also refer to the documentation for alternative solver options:
   https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (https://scikit-learn.org/stable/
modules/linear_model.html#logistic-regression)
  n_iter_i = _check_optimize_result(
Out[371:
LogisticRegression()
In [38]:
y_pred = logreg.predict(x_test)
```

```
In [39]:
y_pred
Out[39]:
array([0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
       0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
       1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
       0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1,
                                                        0, 0,
       0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0,
       0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0,
       0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
      0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1,
       0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0,
       1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0,
       1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1], dtype=int64)
In [40]:
logreg.score(x_train, y_train)
Out[40]:
0.770949720670391
In [41]:
logreg.score(x_test, y_test)
Out[41]:
0.8225108225108225
```

Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc.

```
In [47]:
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score, roc_curve
```

```
In [48]:

prob = logreg.predict_proba(x_test)
prob = prob[:,1]
auc_lr = roc_auc_score(y_test, prob)
print('AUC : %.3f' %auc_lr)
fpr, tpr, thresholds = roc_curve(y_test, prob)
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(fpr, tpr, marker='.')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
```

```
AUC : 0.859
Out[48]:
Text(0.5, 1.0, 'ROC Curve')
```


In [58]:

Classification Report with Logistic Regression
print(classification_report(y_test, y_pred))

	precision	recall	f1-score	support
0	0.82	0.95	0.88	158
1	0.83	0.55	0.66	73
accuracy			0.82	231
macro avg	0.83	0.75	0.77	231
weighted avg	0.82	0.82	0.81	231

Compare various models with the results from KNN algorithm.

In [59]:

```
neigh = KNeighborsClassifier(n_neighbors=3)
neigh.fit(x_train, y_train)
```

Out[59]:

KNeighborsClassifier(n_neighbors=3)

In [60]:

```
y_k_pred = neigh.predict(x_test)
```

C:\Users\User\anaconda3\lib\site-packages\sklearn\neighbors_classification.py:228: FutureWarning: Unlike other red uction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts alo ng. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to T rue or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

In [61]:

```
neigh.score(x_train, y_train)
```

C:\Users\User\anaconda3\lib\site-packages\sklearn\neighbors_classification.py:228: FutureWarning: Unlike other red uction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts alo ng. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to T rue or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

Out[61]:

0.8324022346368715

In [62]:

```
neigh.score(x_test, y_test)
```

C:\Users\User\anaconda3\lib\site-packages\sklearn\neighbors_classification.py:228: FutureWarning: Unlike other red uction functions (e.g. `skew`, `kurtosis`), the default behavior of `mode` typically preserves the axis it acts alo ng. In SciPy 1.11.0, this behavior will change: the default value of `keepdims` will become False, the `axis` over which the statistic is taken will be eliminated, and the value None will no longer be accepted. Set `keepdims` to T rue or False to avoid this warning.

mode, _ = stats.mode(_y[neigh_ind, k], axis=1)

Out[62]:

0.7316017316017316

In [63]:

```
# Classification Report with KNN Algorithm
print(classification_report(y_test, y_k_pred))
```

	precision	recall	f1-score	support
0	0.80	0.81	0.81	158
1	0.58	0.56	0.57	73
accuracy			0.73	231
macro avg	0.69	0.69	0.69	231
weighted avg	0.73	0.73	0.73	231

In [65]:

```
k_prob = neigh.predict_proba(x_test)
k_prob = k_prob[:,1]
auc_n = roc_auc_score(y_test, k_prob)
print('AUC : %.3f' %auc_n)
fpr, tpr, thresholds = roc_curve(y_test, k_prob)
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(fpr, tpr, marker='.')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('ROC Curve')
```

AUC : 0.740

Out[65]:

Text(0.5, 1.0, 'ROC Curve')

In []: