<u>Multiple Variable Prediction Using Linear Regression and Gradient Descent Understanding:</u>

Size (sqft)	Number of Bedrooms	Number of floors	Age of Home	Price (1000s dollars)
2104	5	1	45	460
1416	3	2	40	232
852	2	1	35	178

```
X_train = np.array([[2104, 5, 1, 45], [1416, 3, 2, 40], [852, 2, 1, 35]])
y_train = np.array([460, 232, 178])
```

Testing and Predicted Output

```
b_init = 785.1811367994083
w_init = np.array([ 0.39133535, 18.75376741, -53.36032453, -26.42131618])
print(f"w_init shape: {w_init.shape}, b_init type: {type(b_init)}")
```

Output:

w_init shape: (4,), b_init type: <class 'float'>

Model Prediction With Multiple Variables

$$f_{\mathbf{w},b}(\mathbf{x}) = w_0x_0 + w_1x_1 + \ldots + w_{n-1}x_{n-1} + b$$
 $f_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$

Single Prediction Element by Element:

Testing and Predicted Output

```
# get a row from our training data
x_vec = X_train[0,:]
print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")

# make a prediction
f_wb = predict_single_loop(x_vec, w_init, b_init)
print(f"f_wb shape {f_wb.shape}, prediction: {f_wb}")

x_vec shape (4,), x_vec value: [2104 5 1 45]
f_wb shape (), prediction: 459.9999976194083
```

Single Prediction, Vector

```
def predict(x, w, b):
    single predict using linear regression
Args:
        x (ndarray): Shape (n,) example with multiple features
        w (ndarray): Shape (n,) model parameters
        b (scalar): model parameter
Returns:
    p (scalar): prediction
"""
p = np.dot(x, w) + b
return p
```

Testing and Predicted Output

```
# get a row from our training data
x_vec = X_train[0,:]
print(f"x_vec shape {x_vec.shape}, x_vec value: {x_vec}")

# make a prediction
f_wb = predict(x_vec,w_init, b_init)
print(f"f_wb shape {f_wb.shape}, prediction: {f_wb}")

x_vec shape (4,), x_vec value: [2104 5 1 45]
```

The equation for the cost function with multiple variables $J(\mathbf{w}, b)$ is:

f_wb shape (), prediction: 459.99999761940825

$$J(\mathbf{w},b) = rac{1}{2m} \sum_{i=0}^{m-1} (f_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})^2$$

where:

$$f_{\mathbf{w},b}(\mathbf{x}^{(i)}) = \mathbf{w} \cdot \mathbf{x}^{(i)} + b$$

```
def compute_cost(X, y, w, b):
    compute cost
    Args:
     X (ndarray (m,n)): Data, m examples with n features
      y (ndarray (m,)) : target values
      w (ndarray (n,)) : model parameters
      b (scalar) : model parameter
    Returns:
     cost (scalar): cost
    m = X.shape[0]
    cost = 0.0
    for i in range(m):
        f_{wb_i} = np.dot(X[i], w) + b #(n,)(n,) = scalar (see np.dot)

cost = cost + (f_{wb_i} - y[i])**2 #scalar
        cost = cost + (f_wb_i - y[i])**2
    cost = cost / (2 * m)
                                                 #scalar
    return cost
```

Testing and Predicted Output

```
# Compute and display cost using our pre-chosen optimal parameters.
cost = compute_cost(X_train, y_train, w_init, b_init)
print(f'Cost at optimal w : {cost}')
```

Cost at optimal w : 1.5578904880036537e-12

Expected Result: Cost at optimal w : 1.5578904045996674e-12

5 Gradient Descent With Multiple Variables

Gradient descent for multiple variables:

repeat until convergence: {
$$w_j = w_j - \alpha \frac{\partial J(\mathbf{w},b)}{\partial w_j} \qquad \text{for j} = 0..\text{n-1}$$

$$b = b - \alpha \frac{\partial J(\mathbf{w},b)}{\partial b}$$
 }

where, n is the number of features, parameters w_i , b, are updated simultaneously and where

$$\frac{\partial J(\mathbf{w}, b)}{\partial w_j} = \frac{1}{m} \sum_{i=0}^{m-1} (f_{\mathbf{w}, b}(\mathbf{x}^{(i)}) - y^{(i)}) x_j^{(i)}$$
$$\frac{\partial J(\mathbf{w}, b)}{\partial b} = \frac{1}{m} \sum_{i=0}^{m-1} (f_{\mathbf{w}, b}(\mathbf{x}^{(i)}) - y^{(i)})$$

- m is the number of training examples in the data set
- ullet $f_{\mathbf{w},b}(\mathbf{x}^{(i)})$ is the model's prediction, while $y^{(i)}$ is the target value

5.1 Compute Gradient with Multiple Variables

An implementation for calculating the equations (6) and (7) is below. There are many ways to implement this. In this version, there is an

- outer loop over all m examples.
 - lacksquare $rac{\partial J(\mathbf{w},b)}{\partial b}$ for the example can be computed directly and accumulated
 - in a second loop over all n features:
 - $\circ \frac{\partial J(\mathbf{w},b)}{\partial w_i}$ is computed for each w_j .

```
def compute_gradient(X, y, w, b):
   Computes the gradient for linear regression
   Args:
     X (ndarray (m,n)): Data, m examples with n features
     y (ndarray (m,)) : target values
     w (ndarray (n,)) : model parameters
      b (scalar)
                     : model parameter
   Returns:
     dj_dw (ndarray (n,)): The gradient of the cost w.r.t. the parameters w.
     dj_db (scalar):
                           The gradient of the cost w.r.t. the parameter b.
   m,n = X.shape
                           #(number of examples, number of features)
   dj_dw = np.zeros((n,))
   dj_db = 0.
for i in range(m):
    err = (np.dot(X[i], w) + b) - y[i]
    for j in range(n):
        dj_dw[j] = dj_dw[j] + err * X[i, j]
    dj_db = dj_db + err
```

Testing and Predicted Output

 $dj_dw = dj_dw / m$ $dj_db = dj_db / m$

return dj_db, dj_dw

```
#Compute and display gradient
tmp_dj_db, tmp_dj_dw = compute_gradient(X_train, y_train, w_init, b_init)
print(f'dj_db at initial w,b: {tmp_dj_db}')
print(f'dj_dw at initial w,b: \n {tmp_dj_dw}')

dj_db at initial w,b: -1.673925169143331e-06
dj_dw at initial w,b:
[-2.73e-03 -6.27e-06 -2.22e-06 -6.92e-05]
```

Gradient Descent with Multiple Variables

```
def gradient_descent(X, y, w in, b in, cost_function, gradient_function, alpha, num_iters):
   Performs batch gradient descent to learn theta. Updates theta by taking
   num iters gradient steps with learning rate alpha
   Args:
     X (ndarray (m,n)) : Data, m examples with n features
     y (ndarray (m,))
                       : target values
     w_in (ndarray (n,)) : initial model parameters
     b_in (scalar) : initial model parameter
cost_function : function to compute cost
     gradient_function : function to compute the gradient
     alpha (float) : Learning rate
num_iters (int) : number of iterations to run gradient descent
   Returns:
     w (ndarray (n,)) : Updated values of parameters
      b (scalar)
                    : Updated value of parameter
 # An array to store cost J and w's at each iteration primarily for graphing later
 J history = []
w = copy.deepcopy(w_in) #avoid modifying global w within function
 b = b in
for i in range(num_iters):
     # Calculate the gradient and update the parameters
     dj_db,dj_dw = gradient_function(X, y, w, b)
     # Update Parameters using w, b, alpha and gradient
     W = W - alpha * dj dw
                                           ##None
     b = b - alpha * dj_db
                                           ##None
     # Save cost J at each iteration
     if i<100000: # prevent resource exhaustion
         J_history.append( cost_function(X, y, w, b))
     # Print cost every at intervals 10 times or as many iterations if < 10
     if i% math.ceil(num_iters / 10) == 0:
         print(f"Iteration {i:4d}: Cost {J_history[-1]:8.2f} ")
```

return w, b, J history #return final w,b and J history for graphing

Testing and Predicted Output

```
# initialize parameters
 initial_w = np.zeros_like(w_init)
 initial_b = 0.
 # some gradient descent settings
 iterations = 1000
 alpha = 5.0e-7
 # run gradient descent
 w_final, b_final, J_hist = gradient_descent(X_train, y_train, initial_w, initial_b,
                                             compute_cost, compute_gradient,
                                             alpha, iterations)
 print(f"b,w found by gradient descent: {b_final:0.2f},{w_final} ")
 m,_ = X_train.shape
 for i in range(m):
    print(f"prediction: {np.dot(X_train[i], w_final) + b_final:0.2f}, target value: {y_train[i]}")
Iteration 0: Cost 2529.46
Iteration 100: Cost 695.99
Iteration 200: Cost 694.92
Iteration 300: Cost 693.86
Iteration 400: Cost 692.81
Iteration 500: Cost 691.77
Iteration 600: Cost 690.73
Iteration 700: Cost 689.71
Iteration 800: Cost 688.70
Iteration 900: Cost 687.69
prediction: 426.19, target value: 460
prediction: 286.17, target value: 232
prediction: 171.47, target value: 178
```