Royaume du Maroc Ministère de l'Éducation nationale, du Préscolaire et des Sports année scolaire 2021-2022 Professeur : Zakaria Haouzan Établissement : Lycée SKHOR qualifiant

Devoir surveillé N°2 1Bac Sciences Expérimentales Durée 2h00

Fiche Pédagogique _____

I Introduction

Le programme d'études de la matière physique chimie vise à croître un ensemble de compétences visant à développer la personnalité de l'apprenant. Ces compétences peuvent être classées en Compétences transversales communes et Compétences qualitatives associées aux différentes parties du programme.

II cadre de référence

L'épreuve a été réalisée en adoptant des modes proches à des situations d'apprentissages et des situations problèmes, qui permettent de compléter les connaissances et les compétences contenues dans les instructions pédagogiques et dans le programme de la matière physique chimie et aussi dans le cadre de référence de l'examen national.

Tout en respectant les rapports d'importance précisés dans les tableaux suivants :

Restitution des Connaissances	Application des Connaissances	Situation Problème
60%	20%	20%

III tableau de spécification

niveau d'habileté	Restitution des Connaissances	Application des Connaissances	Situation Problème	la somme
Travail et énergie cinétique	30% 6pts 36min	10% 2pts 12min	10% 2pts 12min	50% 10pts 60min
Les grandeurs physiques	30%	10%	10%	50%
liées à la	6pts	2pts	2pts	10pts
quantité de matière	36min	12min	12min	60min
	60%	20%	20%	100%
	12pts	4pts	4pts	20pts
	72min	24min	24min	120min

Devoir surveillé $N^{\circ}\mathbf{2}$ Semestre I

Chimie (10pts		
Partie 1 : La quantité de matière d'un échantillon (10pts)		
N° Question	Réponse	
1.a	la quantité de matière contenue dans cette masse de Soufre $n(S) = \frac{m}{M} = 0.25 mol$	1pt
1.b	$N = n.N_A = 1505.10^{23}$	1pt
2.a	$n = \frac{m}{M} = \frac{\rho \cdot V}{M} = \frac{d \cdot \rho_{eau} \cdot V}{M} = 1.17 mol$	1pt
2.b	m = M.n = 79g	1pt
3.a	$d = \frac{M}{29} = 1.1$	1pt
3. <i>b</i>	PV = nRT $n = 0.1 mol$	1pt
3.c	$n = \frac{V}{V_m}$ $V_m = 24L/mol$	1pt
3. <i>d</i>	P'V' = nRT' P' = 3045hPa	1pt
4	$n = \frac{m}{M} = \frac{\rho \cdot V}{M} = 4.24 mol$	2pt

	Physique (10pts)
Partie 1 : force motrice constante et énergie Cinétique (6pt		
N° Question	Réponse	Note
1.	l'énoncé du théorème de l'énergie cinétique : $\Delta E_c = \sum W(\vec{f})$	0.5pt
2.	En appliquant le théorème de l'énergie cinétique sur le corps S entre E et B qui est soumis à l'action des forces P et R $V_B = \sqrt{2gcos\alpha_0} = 5.09m/s$	1.5pt
3.	En appliquant le théorème de l'énergie cinétique sur le corps S entre A et B qui sera soumis à l'action des forces P et R et F: $F = \frac{m.V_B^2}{2.AB} = 4g.m.cos\alpha_0 = 364.4N$	1.5pt
4	En appliquant le théorème de l'énergie cinétique sur le corps S entre D et E qui est soumis à l'action des forces P et R $V_D = \sqrt{2.g.r(cos\alpha_0 - cos\alpha)} = 3.31m/s$	1.5pt
5 Dontio 2 . To	En appliquant le théorème de l'énergie cinétique sur le corps S entre D et E qui est soumis à l'action des forces $V_B = \sqrt{2.g.r} = 5.4m/s \text{ donc } F = \frac{m.v_B^2}{2.AB} = 400N$	1pt (4pts)
1.	$\Delta E_c = -\frac{1}{2} J_\Delta \omega_i^2 = -277J$	1pt
2.	$\mathcal{M}(\vec{f}) = f.r = 120N.m$	1pt
3.	$n = \frac{\Delta E_c}{\mathcal{M}(\bar{f}).2\pi} = 0.36$	2pt