MECH7610: Advanced Dynamics: Homework #1

Due on January 14, 2020

Matthew Boler

Determine the number of degrees of freedom of a uniform rod with length L and mass m fixed in the vertical plane by a pin through one end.

Solution

The system can be fully defined by the angle the rod makes with the horizonal, so the system has one degree of freedom.

Write expressions for:

- 1. Kinetic energy of the system
- 2. Potential energy of the system

Solution

Part One

The kinetic energy of the system consists of a purely rotational component defined by:

$$T = \frac{1}{2} I_y \omega_y^2$$

The potential energy of the system is limited to the energy due to gravity, equal to:

$$U = mg\frac{L}{2}(1 - \cos(\theta))$$

where z is the height of the center of mass above the center of mass of the earth.

Draw the free body diagram for the system. $\,$

Solution

Formulate the equations of motion using Newton's Second Law. Solution Our equation of motion is:

$$I_y \ddot{\theta} = \Sigma \tau_y = -mg \frac{L}{2} \cos(\theta)$$

Formulate the equations of motion using Lagrange's Equations.

Solution We form our Lagrangian:

$$L = \frac{1}{2}I_y\dot{\theta}^2 - V(\theta)$$
$$= \frac{1}{2}I_y\dot{\theta}^2 - mg\frac{L}{2}(1-\cos\theta)$$

Taking our Euler-Langrange derivative and setting the sides equal to each other, we get:

$$I_y \ddot{\theta} = -\nabla V$$
$$= -mg \frac{L}{2} (1 - \cos(\theta))$$

$$\begin{split} \frac{\partial L}{\partial \dot{\theta}} &= I_y \dot{\theta} \\ \frac{d}{dt} (\frac{\partial L}{\partial \theta}) &= -mg \frac{L}{2} \sin(\theta) \end{split}$$

$$\frac{\partial L}{\partial \dot{\theta}} - \frac{d}{dt} \left(\frac{\partial L}{\partial \theta} \right) = I_y \ddot{\theta} + mg \frac{L}{2} \sin(\theta) = 0$$