Business Problem

```
In [1]: import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
```

Load Dataset

```
In [2]: df = pd.read_csv(r'D:\Samson - All Data\Naresh IT Institute\New folder\student_info.csv')
```

In [3]: **df**

Out[3]:		study_hours	student_marks
	0	6.83	78.50
	1	6.56	76.74
	2	NaN	78.68
	3	5.67	71.82
	4	8.67	84.19
	•••		
	195	7.53	81.67
	196	8.56	84.68
	197	8.94	86.75
	198	6.60	78.05
	199	8.35	83.50

200 rows × 2 columns

In [4]: df.head()

Out[4]:		study_hours	student_marks
	0	6.83	78.50
	1	6.56	76.74
	2	NaN	78.68
	3	5.67	71.82
	4	8.67	84.19

In [6]: df.shape

83.50

```
Out[6]: (200, 2)
In [10]: df.tail()
Out[10]:
               study_hours student_marks
          195
                      7.53
                                     81.67
          196
                      8.56
                                     84.68
          197
                       8.94
                                     86.75
          198
                       6.60
                                     78.05
```

Discover and visualize the data to gain insights

Descriptive statistics

```
In [11]: df.describe()
```

199

8.35

Out[11]:		study_hours	student_marks
	count	195.000000	200.00000
	mean	6.995949	77.93375
	std	1.253060	4.92570
	min	5.010000	68.57000
	25%	5.775000	73.38500
	50%	7.120000	77.71000
	75 %	8.085000	82.32000
	max	8.990000	86.99000

```
In [13]: plt.scatter(x = df.study_hours, y = df.student_marks)
    plt.xlabel("Students Study Hours")
    plt.ylabel("Students marks")
    plt.title("Scatter Plot of Students Study Hours vs Students marks")
    plt.show()
```


Prepare the data for Machine Learning algorithms

In [14]: # Data Cleaning
In [15]: df

Out[15]:		study_hours	student_marks
	0	6.83	78.50
	1	6.56	76.74
	2	NaN	78.68
	3	5.67	71.82
	4	8.67	84.19
	•••		
	195	7.53	81.67
	196	8.56	84.68
	197	8.94	86.75
	198	6.60	78.05
	199	8.35	83.50

200 rows × 2 columns

```
Out[22]: study hours
                          0
         student marks
                          0
         dtype: int64
In [23]: df.head()
Out[23]:
            study_hours student_marks
                   6.83
                                78.50
         0
         1
                   6.56
                                76.74
                                78.68
         2
                   NaN
         3
                   5.67
                                71.82
         4
                   8.67
                                84.19
In [24]: df2.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 2 columns):
             Column
                           Non-Null Count Dtype
            study hours
                            200 non-null
                                           float64
            student marks 200 non-null
                                           float64
        dtypes: float64(2)
        memory usage: 3.3 KB
In [25]: df.info()
        <class 'pandas.core.frame.DataFrame'>
        RangeIndex: 200 entries, 0 to 199
        Data columns (total 2 columns):
                           Non-Null Count Dtype
             Column
                            -----
            study hours
                           195 non-null
                                           float64
            student_marks 200 non-null
                                           float64
        dtypes: float64(2)
        memory usage: 3.3 KB
```

```
In [26]: # split dataset
In [27]: x = df2.drop("student_marks", axis = "columns")
         y = df2.drop("study_hours", axis = "columns")
         print("shape of x = ", x.shape)
         print("shape of y = ", y.shape)
        shape of x = (200, 1)
        shape of y = (200, 1)
In [28]: x
Out[28]:
              study_hours
                 6.830000
            0
                 6.560000
            1
            2
                 6.995949
            3
                 5.670000
                 8.670000
            4
         195
                 7.530000
                 8.560000
         196
         197
                 8.940000
         198
                 6.600000
         199
                 8.350000
         200 rows × 1 columns
In [29]: y
```

Out[29]:		student_marks
	0	78.50
	1	76.74
	2	78.68
	3	71.82
	4	84.19
	•••	•••
	195	81.67
	196	84.68
	197	86.75
	198	78.05
	199	83.50

200 rows × 1 columns

```
In [31]: from sklearn.model_selection import train_test_split
    x_train, x_test,y_train,y_test = train_test_split(x,y, test_size = 0.2,random_state=0)

print("shape of x_train = ", x_train.shape)
    print("shape of y_train = ", y_train.shape)
    print("shape of x_test = ", x_test.shape)
    print("shape of y_test = ", y_test.shape)

shape of x_train = (160, 1)
    shape of y_train = (160, 1)
    shape of x_test = (40, 1)
    shape of y_test = (40, 1)
In [32]: x_train
```

Out[32]:		study_hours
	134	6.51
	66	7.86
	26	6.51
	113	7.95
	168	7.95
	•••	
	67	8.26
	192	8.71
	117	8.83
	47	5.01
	172	7.35

160 rows × 1 columns

In [35]: x_test.shape

Out[35]: (40, 1)

In [33]: y_train

Out[33]:		student_marks
	134	78.39
	66	81.25
	26	74.75
	113	80.86
	168	82.68
	•••	
	67	81.70
	192	84.03
	117	85.04
	47	70.11
	172	77.78

160 rows × 1 columns

In [36]: y_train.shape

Out[36]: (160, 1)

In [37]: y_test

Out[37]:		student_marks
	18	82.50
	170	71.18
	107	73.25
	98	83.64
	177	73.64
	182	86.99
	5	81.18
	146	82.75
	12	79.50
	152	81.70
	61	79.41
	125	85.95
	180	77.19
	154	78.45
	80	84.00
	7	85.46
	33	84.35
	130	73.19
	37	78.21
	74	77.59
	183	83.87
	145	85.15

	student_marks
45	72.96
159	80.72
60	73.61
123	79.53
179	78.17
185	79.63
122	76.83
44	82.38
16	76.04
55	85.48
150	71.87
111	75.04
22	70.67
189	79.87
129	74.49
4	84.19
83	75.36
106	72.10

In [38]: x_test

Out[38]:		study_hours
	18	8.410000
	170	5.190000
	107	5.720000
	98	8.880000
	177	5.790000
	182	8.660000
	5	7.550000
	146	7.990000
	12	7.750000
	152	8.080000
	61	7.260000
	125	8.750000
	180	6.970000
	154	6.930000
	80	8.340000
	7	8.990000
	33	8.780000
	130	5.640000
	37	7.190000
	74	7.310000
	183	8.610000
	145	8.950000

study_hours
6.180000
7.860000
5.490000
7.620000
7.260000
8.050000
6.995949
8.090000
6.360000
8.690000
5.390000
6.370000
5.050000
7.260000
6.330000
8.670000
6.010000
5.340000

Select a model and train it

```
In [40]: # y = m * x + c
from sklearn.linear_model import LinearRegression
```

In a Jupyter environment, please return this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render please try loading this page with nbviewer.org. LinearRegression LinearRegression()

• In a Jupyter environment, please return this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render please try loading this page with nbviewer.org. LinearRegression LinearRegression()

```
Out[50]: array([[83.50507271],
                 [70.84927186],
                 [72.93236952],
                 [85.35234799],
                 [73.20749562],
                 [84.48766595],
                 [80.12495199],
                 [81.85431608],
                 [80.91102657],
                 [82.20804964],
                 [78.98514384],
                 [84.84139951],
                 [77.84533568],
                 [77.68812077],
                 [83.22994661],
                 [85.78468901],
                 [84.9593107],
                 [72.61793968],
                 [78.71001773],
                 [79.18166248],
                 [84.2911473],
                 [85.6274741],
                 [74.74034107],
                 [81.3433676],
                 [72.02838374],
                 [80.40007809],
                 [78.98514384],
                 [82.09013845],
                 [77.94732382],
                 [82.24735337],
                 [75.44780819],
                 [84.60557713],
                 [71.63534645],
                 [75.48711192],
                 [70.29901965],
                 [78.98514384],
                 [75.32989701],
                 [84.52696967],
                 [74.07217767],
                 [71.4388278 ]])
```

In [51]: pd.DataFrame(np.c_[x_test, y_test, y_pred], columns = ["study_hours", "student_marks_original", "student_marks_predicted"])

Out[51]:		study_hours	student_marks_original	student_marks_predicted
	0	8.410000	82.50	83.505073
	1	5.190000	71.18	70.849272
	2	5.720000	73.25	72.932370
	3	8.880000	83.64	85.352348
	4	5.790000	73.64	73.207496
	5	8.660000	86.99	84.487666
	6	7.550000	81.18	80.124952
	7	7.990000	82.75	81.854316
	8	7.750000	79.50	80.911027
	9	8.080000	81.70	82.208050
	10	7.260000	79.41	78.985144
	11	8.750000	85.95	84.841400
	12	6.970000	77.19	77.845336
	13	6.930000	78.45	77.688121
	14	8.340000	84.00	83.229947
	15	8.990000	85.46	85.784689
	16	8.780000	84.35	84.959311
	17	5.640000	73.19	72.617940
	18	7.190000	78.21	78.710018
	19	7.310000	77.59	79.181662
	20	8.610000	83.87	84.291147
	21	8.950000	85.15	85.627474

	study_hours	student_marks_original	student_marks_predicted
22	6.180000	72.96	74.740341
23	7.860000	80.72	81.343368
24	5.490000	73.61	72.028384
25	7.620000	79.53	80.400078
26	7.260000	78.17	78.985144
27	8.050000	79.63	82.090138
28	6.995949	76.83	77.947324
29	8.090000	82.38	82.247353
30	6.360000	76.04	75.447808
31	8.690000	85.48	84.605577
32	5.390000	71.87	71.635346
33	6.370000	75.04	75.487112
34	5.050000	70.67	70.299020
35	7.260000	79.87	78.985144
36	6.330000	74.49	75.329897
37	8.670000	84.19	84.526970
38	6.010000	75.36	74.072178
39	5.340000	72.10	71.438828

Fine-tune your model

In [52]: lr.score(x_test,y_test)

```
Out[52]: 0.9521841793508594
```

```
In [53]: plt.scatter(x_train,y_train)
```

Out[53]: <matplotlib.collections.PathCollection at 0x18b02583390>

plt.scatter(x_test, y_test) plt.plot(x_train, lr.predict(x_train), color = "r")

Present your solution

```
In [56]: import joblib
joblib.dump(lr, "student_mark_predictor.pkl")
```

Launch, monitor, and maintain your system

```
In [61]: __name__
Out[61]: '__main__'
In []:
```

7/20/25, 10:51 PM