Zadanie 1.

Proces szkód w pewnym ubezpieczeniu jest złożonym procesem Poissona, z oczekiwaną liczbą szkód w ciągu roku równą λ i rozkładem wartości szkody o dystrybuancie $F_{\scriptscriptstyle Y}$.

Ubezpieczony realizuje następującą strategię zgłaszania szkód w ciągu roku:

- nie zgłasza szkód, dopóki wartość którejś z nich nie przekroczy kwoty x_0 ,
- jeśli wartość którejś szkody przekroczy kwotę x_0 , to jest ona zgłaszana, a następne ewentualne szkody w tym samym roku są zgłaszane już bez względu na ich wartość.

Przyjmijmy następujące oznaczenia:

- F skrótowe oznaczenie dla $F_{Y}(x_0)$
- N liczba szkód zaszłych w ciągu roku
- *M* liczba szkód zgłoszonych
- *K* liczba szkód nie zgłoszonych

Oczywiście zachodzi N = M + K.

Oczekiwana liczba szkód nie zgłoszonych E(K) wyraża się wzorem:

(A)
$$\lambda F$$

(B)
$$\lambda - \frac{F}{1 - F} \left(\exp(\lambda (1 - F)) - 1 \right)$$

(C)
$$\lambda - \frac{F}{1 - F} (1 - \exp(-\lambda(1 - F)))$$

(D)
$$\frac{F}{1-F} \left(\exp(\lambda (1-F)) - 1 \right)$$

(E)
$$\frac{F}{1-F} \left(1 - \exp(-\lambda (1-F)) \right)$$

Wskazówka: wykorzystaj wzór E(K) = E(E(K|N))

Zadanie 2.

Nadwyżka ubezpieczyciela w wyniku rocznej działalności wynosi:

$$\bullet \quad U_1 = (c+u)(1+i) - W ,$$

gdzie:

- W oznacza łączną wartość szkód wypłacanych na koniec roku
- c to zagregowana składka za portfel ryzyk W, pobierana na początku roku
- u to kapitał początkowy, zabezpieczający ryzyko portfela W
- *i* to stopa zwrotu z bezryzykownych papierów wartościowych, w które zainwestowany jest przez okres roku kapitał zabezpieczający *u* i składka *c*

Załóżmy, że W ma rozkład ciągły, dany dystrybuantą F_w .

Ubezpieczyciel podejmuje decyzję łączną o wysokości potrzebnego kapitału początkowego u oraz składki c, kierując się następującymi przesłankami:

$$\bullet \quad \mathbf{E}(U_1) = (1+r)u$$

•
$$\Pr\left(U_1 < \frac{1}{2}u\right) = \varepsilon$$

gdzie:

- r > i, tzn. oczekiwana stopa zwrotu jest większa od stopy zwrotu bez ryzyka,
- prawdopodobieństwo ε utraty połowy wyłożonego kapitału u jest małe.

W rezultacie składka c dana jest następującym wzorem:

(A)
$$c = \frac{1}{1+i} \left(E(W) + \frac{r-i}{\frac{1}{2}+r} \left(F_W^{-1} (1-\varepsilon) - E(W) \right) \right)$$

(B)
$$c = \frac{1}{1+i} \left(E(W) + \frac{\frac{1}{2} + r - i}{1+r} \left(F_W^{-1} (1 - \varepsilon) - E(W) \right) \right)$$

(C)
$$c = \frac{1}{1+i} \left(E(W) + \frac{r-i}{\frac{1}{2}+r} F_W^{-1} (1-\varepsilon) \right)$$

(D)
$$c = \frac{1}{1+i} \left(E(W) + \frac{\frac{1}{2} + r - i}{1+r} F_W^{-1} (1 - \varepsilon) \right)$$

(E)
$$c = \frac{1}{1+i} \left(E(W) + \frac{r-i}{1+r} \left(F_W^{-1} \left(1 - \varepsilon \right) - E(W) \right) \right)$$

Zadanie 3.

Ubezpieczyciel prowadzi dwa portfele ubezpieczeń. W każdym z portfeli pojedyncze ryzyko generuje szkody z godnie ze złożonym procesem Poissona z taką samą intensywnością λ . Portfele różnią się rozkładem wartości pojedynczej szkody i liczbą ryzyk w portfelu (n_1 i n_2 odpowiednio). Stosunkowy narzut na składkę netto dla ryzyk w obu portfelach jest ten sam i wynosi θ . W rezultacie parametry modelu są następujące:

• 1 portfel:

intensywność łączna $n_1\lambda$, rozkład wartości pojedynczej szkody o gęstości

$$f(y) = 2 \exp(-2y)$$
, składka za jedno ryzyko $(1+\theta)\frac{\lambda}{2}$;

• 2 portfel

intensywność łączna $n_2\lambda$, rozkład wartości pojedynczej szkody o gęstości

$$f(y) = 5 \exp(-5y)$$
, składka za jedno ryzyko $(1+\theta)\frac{\lambda}{5}$.

Jeśli wiemy, że funkcja prawdopodobieństwa ruiny ubezpieczyciela jest postaci:

$$\Psi(u) = \frac{2}{3} \exp(-u) + \frac{1}{12} \exp(-\frac{5}{2}u),$$

to wartości parametrów modelu $\left(\theta, \quad \frac{n_1}{n_1+n_2}\right)$ wynoszą:

(A)
$$\left(\frac{1}{3}, \frac{1}{7}\right)$$

(B)
$$\left(\frac{1}{3}, \frac{2}{21}\right)$$

(C)
$$\left(\frac{1}{3}, \frac{1}{21}\right)$$

(D)
$$\left(\frac{2}{3}, \frac{2}{21}\right)$$

(E)
$$\left(\frac{2}{3}, \frac{1}{7}\right)$$

Zadanie 4.

Proces nadwyżki jest złożonym procesem Poissona, w którym θ to stosunkowy narzut bezpieczeństwa na składkę netto, zaś Y to zmienna losowa wyrażająca wartość pojedynczej szkody. Niech L_1 będzie wartością, o którą nadwyżka spada po raz pierwszy poniżej poziomu wyjściowego (o ile do takiego spadku dochodzi), zaś L niech oznacza maksymalną całkowitą stratę (nadwyżka początkowa minus najniższy punkt trajektorii procesu).

Jeśli Y ma rozkład jednostajny na przedziale (0, 10), to warunkowa wartość oczekiwana E(L|L>0) zmiennej L pod warunkiem, że dojdzie w którymś momencie czasu do spadku nadwyżki poniżej poziomu wyjściowego jest dla $\theta>0$ skończona i wyraża się następującym wzorem:

(A)
$$5\frac{1+\theta}{3\theta}$$

(B)
$$10\frac{1+\theta}{3\theta}$$

(C)
$$5\frac{1+\theta}{\theta}$$

(D)
$$20\frac{1+\theta}{3\theta}$$

(E)
$$25\frac{1+\theta}{3\theta}$$

Zadanie 5.

W pewnym ubezpieczeniu liczba szkód N_T , które w ciągu T lat wygeneruje ubezpieczony charakteryzujący się wartością q parametru ryzyka Q ma rozkład:

•
$$\Pr(N_T = k | Q = q) = {T \choose k} q^k (1 - q)^{T-k}, \text{ dla } k \in (0, 1, ..., T)$$

Rozkład wartości parametru ryzyka Q w populacji ubezpieczonych dany jest na odcinku (0,1) gęstością:

•
$$f_Q(q) = 72q(1-q)^7$$

Warunkowa wartość oczekiwana $E(Q|N_2>0)$ parametru ryzyka Q charakteryzującego ubezpieczonego, którego wybraliśmy losowo z tej populacji, pod warunkiem że w ciągu dwóch lat wygenerował co najmniej jedną szkodę, wynosi:

- (A) $\frac{5}{19}$
- (B) $\frac{1}{4}$
- (C) $\frac{5}{22}$
- (D) $\frac{5}{24}$
- (E) $\frac{1}{5}$

Zadanie 6.

Szkoda Y może przyjmować wartości ze skończonego zbioru liczb $\{y_1, y_2, \dots, y_n\}$ takich, że $\min\{y_1, y_2, \dots, y_n\} \ge 3$. Łączna wartość szkód w portfelu W równa się:

$$W = \sum_{i=1}^{n} N_i y_i ,$$

gdzie N_i to liczba szkód o wartości y_i .

Załóżmy, że N_1,\ldots,N_n to nawzajem niezależne zmienne losowe o rozkładach Poissona z wartościami oczekiwanymi odpowiednio $\lambda_1,\ldots,\lambda_n$. Wiemy, że:

- E(W) = 600,
- VAR(W) = 6000,
- $\bullet \qquad \lambda = \sum_{i=1}^{n} \lambda_i = 100 .$

Jeżeli do każdej szkody zastosujemy udział własny ubezpieczonego w wysokości d=2, to wariancja łącznej wartości szkód pozostałej na udziale ubezpieczyciela wyniesie:

- (A) 4000
- (B) 3600
- (C) 3200
- (D) 2800
- (E) 2400

Zadanie 7.

Załóżmy, że momenty pojawiania się szkód $T_1 < T_2 < ... < T_n < ...$ tworzą proces Poissona na przedziale $(0,\infty)$, o intensywności λ . Innymi słowy,

$$T_1$$
, $T_2 - T_1$, $T_3 - T_2$, $T_4 - T_3$,...

są niezależnymi zmiennymi losowymi o jednakowym rozkładzie wykładniczym o wartości oczekiwanej $1/\lambda$. Przyjmujemy, że każda szkoda, niezależnie od pozostałych, jest likwidowana po upływie pewnego losowego okresu czasu. Mówiąc dokładniej, momenty likwidacji są zmiennymi losowymi postaci:

$$\widetilde{T}_1 = T_1 + D_1$$
, $\widetilde{T}_2 = T_2 + D_2$,..., $\widetilde{T}_n = T_n + D_n$,...

przy czym "czasy opóźnienia" D_i są niezależne nawzajem oraz od $T_1,T_2,T_3,...$ i mają jednakową dystrybuantę F .

Niech $\widetilde{N}(t)$ oznacza liczbę punktów \widetilde{T}_i w przedziale (0,t], a więc liczbę szkód zaszłych i zlikwidowanych.

Wartość oczekiwana $E(\widetilde{N}(t))$ tej liczby dana jest wzorem:

(A)
$$\lambda t (1 - F(t))$$

(B)
$$\lambda \int_{0}^{t} F(x) dx$$

(C)
$$\lambda \int_{0}^{t} [1 - F(x)] dx$$

(D)
$$\lambda \int_{t}^{\infty} [1 - F(x)] dx$$

(E)
$$\lambda t F(t)$$

Wskazówka:
$$E[\widetilde{N}(t)] = \sum_{i=1}^{\infty} \Pr(\widetilde{T}_i \leq t)$$

Zadanie 8.

Ubezpieczyciel pokrywa ryzyka, za które za okres roku pobiera składkę *P*, i które w tym okresie generują łączną wartość szkód:

$$W = Y_1 + \ldots + Y_N,$$

• o złożonym rozkładzie Poissona, gdzie rozkład wartości pojedynczej szkody Y na udziale ubezpieczyciela dany jest dystrybuantą F taką, że F(0) = 0.

Nadzór wymaga, aby ubezpieczyciel ograniczał odpowiedzialność za pojedynczą szkodę do wysokości *M*, a więc aby:

$$\bullet \quad \min\{m: F(m)=1\} \le M,$$

oraz ustala, że limit odpowiedzialności *M* nie może przekroczyć zadanej części rocznej składki, a więc że musi zachodzić:

•
$$M \leq c \cdot P$$
,

gdzie c jest zadanym przez nadzór parametrem kontrolnym o wartości dodatniej.

Jeśli przyjąć za pewnik, że ubezpieczyciel pobiera składkę nie mniejszą niż oczekiwana wartość odszkodowań, a więc iż:

•
$$P \ge E(W)$$

to dobierając odpowiednio wartość parametru kontrolnego *c* nadzór może być pewien, że zachodzić będzie nierówność:

$$\bullet \quad \frac{\sqrt{VAR(W)}}{P} \le \frac{1}{10}$$

Znajdź największą wartość c^* parametru kontrolnego c, która (przy przyjętych założeniach) gwarantuje zachodzenie powyższej nierówności.

(A)
$$c^* = \frac{1}{100\sqrt{10}}$$

(B)
$$c^* = \frac{1}{100}$$

(C)
$$c^* = \frac{1}{10\sqrt{10}}$$

(D)
$$c^* = \frac{1}{10}$$

(E)
$$c^* = \frac{1}{\sqrt{10}}$$

Zadanie 9.

Mamy trzy zmienne losowe dotyczące szkody, do której doszło w ciągu danego roku:

- T czas zajścia szkody w ciągu tego roku kalendarzowego, o rozkładzie jednostajnym na odcinku (0,1),
- *D* czas, jaki upływa od momentu zajścia szkody do momentu jej likwidacji, o rozkładzie danym na odcinku (0, 2) gęstością:

$$f_T(t) = 1 - 0.5t$$
,

• *Y* – wartość szkody.

Jednostką pomiaru czasu (tak dla zmiennej T, jak i dla zmiennej D) jest 1 rok.

- Zmienne T oraz D są nawzajem niezależne.
- Wartość szkody nie zależy od tego, kiedy do niej dojdzie, natomiast występuje tendencja do szybkiej likwidacji małych szkód i dłużej trwającej likwidacji dużych szkód, co wyraża następujące założenie:

$$E(Y|D,T) = E(Y|D) = 10 + 2D$$

Warunkowa oczekiwana wartość szkody pod warunkiem, że szkoda ta została zlikwidowana w roku zajścia, a więc:

$$E(Y|T+D\leq 1)$$

wynosi:

- (A) 10.2
- (B) 10.4
- (C) 10.6
- (D) 10.8
- (E) 11.0

Zadanie 10.

Liczba szkód *N* ma rozkład o niezerowych prawdopodobieństwach na zbiorze liczb naturalnych z zerem, spełniających zależność rekurencyjną:

$$\frac{\Pr(N=k)}{\Pr(N=k-1)} = \frac{1}{5} \cdot \left(1 + \frac{2}{k}\right), \qquad k = 1, 2, 3, ...$$

Oczekiwana liczba szkód E(N) wynosi:

- $(A) \qquad \frac{2}{3}$
- (B) $\frac{3}{5}$
- (C) $\frac{3}{4}$
- (D) $\frac{4}{5}$
- (E) $\frac{5}{6}$

Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka ubezpieczeń majątkowych

Arkusz odpowiedzi*

Imię i nazwisko	K L U C Z	ODPOWIEDZI	
<u>Pecel</u>			

Zadanie nr	Odpowiedź	Punktacja⁴
1	Е	
2	A	
3	С	
4	В	
5	A	
6	A	
7	В	
8	В	
9	С	
10	С	

^{*} Oceniane są wyłącznie odpowiedzi umieszczone w Arkuszu odpowiedzi.

^{*} Wypełnia Komisja Egzaminacyjna.