Summary

Strong C++/Python coding. Drove end-to-end academic processor implementation yielding functional silicon. Experience in computer architecture, digital ASIC/physical design automation, edge machine learning projects.

Experience

Intel Austin, Texas

Silicon Architecture Engineer (SoC Performance)

2017-present

Awarded for accelerating performance projections delivery to customers and improving modeling methodologies. Analyze impact of architectural/fabrication process changes on server SoC performance at power/thermal budget using regressions analysis. Perform pre-silicon performance tuning and validation of interconnect fabric and I/O. Modeled features into simulator, developed tools and dashboards for data analysis, multi-simulator integration.

Design Automation Software Engineer (ASIC Physical Design)

Jan 2016-2017

 $Developed\ physical\ design\ flows\ and\ supported\ team\ members\ on\ yielding\ a\ successful\ CPU\ design\ tape-in.$

Qualcomm Research San Diego, California

Research Intern Summer 2013

Performed mixed-signal circuit design verification, post-silicon measurements, and FPGA prototyping.

Skills

Programming	Machine Learning/Tools	Processor Implementation
Strong in $\overline{C++}$, Python, Tcl	Strong in Pandas. PyTorch, SKlearn.	SystemVerilog/Verilog, SystemC
Basic Java, Javascript, Clojure, Perl	Git, Docker, Dashboards, D3	Platform Architect, Simics
Unix shell, HTML, SQLite, Node.js	XGBoost, Regressions, Efficient ML	Place-Route, DFT, Timing, DRC/LVS

Select Publications/Awards

A Logic-on-logic 3D-stacked Heterogeneous Multi-core Processor. IEEE ICCD 2017. Physical Design of a 3D-stacked Heterogeneous Multi-core Processor. IEEE 3D-IC 2016. Ranked 34th in USA, IEEExtreme 24-hour Programming Competition, 2014. Team of 2. Best FPGA Implementation at International LSI Design Contest, Japan 2009. Xilinx Award. Team of 3.

Education

North Carolina State University

Raleigh, North Carolina

Ph.D. in Computer Engineering

3.98/4.0. Fall 2010 - Spring 2016

Dissertation: Three-Dimensional Integration of Heterogeneous Multi-Core Processors.

Research team built a functional 3D-IC processor chip. Developed automation for 3D-IC physical design flow. Performed architecture adaptations, verification, and entire back-end flow up to deliverable layout (3 chips). **Research Assistant** ('11-'15). **Teaching Assistant**: Design of Digital Systems, Computer Design & Technology.

Software Engineering Advanced Microarchitecture ASIC Design Electronic Sys. Level Design Computer Networks Parallel Computer Arch. **ASIC Verification** Physical Design Memory Systems VLSI Systems Design Computer Design & Tech. IC Technology & Fabrication Embedded Systems Design VLSI System Testing (Duke U.) Digital Electronics Modern Comp. Algebra-AU

Duke University

Durham, North Carolina

Visiting Scholar: coursework, research collaboration

Spring 2013

Bandung Institute of Technology

Indonesia

B.S. in Electrical Engineering

Fall 2004 - Spring 2009

Thesis: C implementation of a neural network and Kohonen SOM: training/inference, floating/fixed point, on a multi-core Parallax microcontroller. Teaching Assistant: Digital Systems, Microprocessor Lab.

Oita University Japan

Exchange Student: Research (Shibata Lab), Engineering/Cultural CourseworkFall 2007 - Spring 2008

Implemented face following feature on a panning camera using a feed-forward neural network (coded in C).

Project Experience

Machine Learning

Implemented quantized LeNet model with feedback alignment training (open-source libraries) in PyTorch. Experiments on developing new training algorithms for binarized neural networks in PyTorch.

Benchmarking of deep learning models in quantized/non-quantized forms (OpenVINO, Tensorflow Lite).

End-to-end Silicon Implementation / Tape-outs

Successful academic tape-out (functional fabricated 3D-IC processor chip) of a heterogeneous multi-core processor system with thread migration features at NCSU. Developed fully automated back-end flow within a single Makefile. Developed visualization tools which includes chip pin-out diagram in TikZ, rendering 3D-IC interconnect pins in D3.js. Performed final physical verification (DRC/LVS) and layout fixes (e.g. antenna rules violation) for signoff. Silicon implementation has two stacked dies of 5.25 mm x 5.25 mm on a 130 nm process.

RTL Design (Verilog), FPGA Prototyping, bare-metal programming (C/asm)

Implemented "Sokoban" (moving box puzzle game) on FPGA: coded the game in MIPS assembly by hand (prototyped in C). Wrote MIPS processor Verilog RTL, features include pipelining, data forwarding, Kogge-Stone adder (team effort, yielded 1 GHz clock in a commercial 180 nm process). Wrote Verilog code for debouncing FPGA buttons and rendering graphics through VGA interface. Created game sprites.

Memory Systems

Performed modelling and performance comparison between ideal and non-ideal block placement policy for multicore systems. Cache block placement policy: requestor core cache vs remote core cache. Analyzed experiment results from running SPEC2K benchmarks in SIMICS.

ESL & Physical Design (SystemC, HLS)

Performed TLM & ESL modelling of an SoC design that consists of an ARM Cortex core, DRAM model, and AMBA bus. Performed physical design optimizations, signal integrity analysis, power analysis, timing analysis. Tools: SystemC, Mentor Graphics Vista, Catapult, Python, C++, UML, Encounter, PrimeTime.

Parallel Computer Architecture

Implemented a cache coherence protocol (MSI, MESI, MOESI) simulator in C++.

Explored enhancements to cache coherence protocols to reduce off-chip memory accesses.

Computer Design and Technology (C++)

Implemented cache, branch target buffer, and Tomasulo superscalar processsor simulators.

Implemented a checkpoint recovery mechanism for large fetch window processor within SimpleScalar simulator.

Advanced Microarchitecture (C++)

Implemented and compared thread migration (across cores) strategies within SimpleScalar simulator framework.

ASIC Verification (SystemVerilog)

Verified an out-of-order superscalar core (FabScalar) for tape-out, found design bugs in load-store unit and issue queue. Created a reusable SystemVerilog testbench executed in QuestaSim.

Digital Electronics (CMOS circuit design)

Designed a low power Hybrid Latch Flip-flop in academic 45 nm tech library. Operating clock frequency 4GHz, power consumption 19.9 uW, setup time 13.5ps, hold time 86ps, t_{DQ} of 63.64 ps.

Designed a voltage-mode and current-mode differential transmitter circuit. Tools: HSPICE.

VLSI Systems Design (logic design, physical layout)

Designed a full-custom 3x3 arbiter-crossbar CMOS unit, 2nd best performance and energy*delay-squared metric out of 27 teams. Customized power delivery network and clock tree design. Created custom standard cell library and top-level integration. Achieved 5.5 GHz clock frequency, 0.19 nW power, with FreePDK45 technology library. Tools: Cadence Virtuoso, HSPICE, Calibre DRC-LFD.

ASIC Design (Verilog)

Implemented a Viterbi Decoder in RTL Verilog. Optimized throughput and delay per unit area metric by designing a fast floating point unit, using dual port memory, and pipelining.

Online Courses

Machine Learning, Startup Engineering, Analysis of Algorithms (Coursera). Fast.ai. Scalable ML/Spark (edX).