Learning with Small Samples Including zero-shot learning

Nour Karessli DSR 2018

Structure

- Introduction & motivation
- Zero-shot learning
 - Definition
 - Side information
 - Zero-shot learning models
 - Exercise
- Low-shot learning
 - Definition
 - Low-shot learning models
- Tips & tricks
- Exercises

Low-shot Learning

Structure

- Introduction & motivation
- Zero-shot learning
 - Definition
 - Side information
 - Zero-shot learning models
 - Exercise
- Low-shot learning
 - Definition
 - Low-shot learning models
- Tips & tricks
- Exercises

Go back to tail distribution...

https://www.cars.com/

http://www.foxnews.com/lifestyle/2017/11/09/how-to-keep-cat-from-scratching-your-sofa-to-shreds.html

https://www.livescience.com/55223-capybara-facts.html

https://www.indiamart.com/proddetail/hand-wrench-13045857897.html

Low-shot learning

- Ability to generalize only with a few examples
- Exploits prior learning on other classes

Structure

- Introduction & motivation
- Zero-shot learning
 - Definition
 - Side information
 - Zero-shot learning models
 - Exercise
- Low-shot learning
 - Definition
 - Low-shot learning models
- Tips & tricks
- Exercises

Low-shot learning approaches

We will overview three recent works on the problem of low-shot image classification

- Learning to learn
- Matching nets
- Shrinking and Hallucinating Features

Carnegie Mellon University

Google Deepmind

Facebook Al

Loss function

$$L\left(\boldsymbol{\Theta}\right) = \sum_{j=1}^{J} \left\{ \frac{1}{2} \left\| \mathbf{w}_{j}^{*} - T\left(\mathbf{w}_{j}^{0}, \boldsymbol{\Theta}\right) \right\|_{2}^{2} + \lambda \sum_{i=1}^{M+N} \left[1 - y_{i}^{j} \left(T\left(\mathbf{w}_{j}^{0}, \boldsymbol{\Theta}\right)^{T} \mathbf{x}_{i}^{j} \right) \right]_{+} \right\}$$
 Model regression term Euclidean distance Data fitting term Hinge loss

Novel categories:

- **Initialization**learn model from small set of K (image,label) pairs
- Transformation
 perform the learned transformation T
- **Refinement** retrain SVM using the transformed model as regularizer

$$R\left(\mathbf{w}\right) = \frac{1}{2} \left\| \mathbf{w} - T\left(\mathbf{w}^{0}, \Theta\right) \right\|_{2}^{2} + \eta \sum_{i=1}^{K} \left[1 - y_{i} \left(\mathbf{w}^{T} \mathbf{x}_{i}\right) \right]_{+}$$

Given a support set
$$S = \{(x_i, y_i)\}_{i=1}^k$$
 learns the mapping $S \to C_S(x)$

The classifier defines the probability distribution, P is parameterized by a neural network:

$$C(x^{test}) = P(y^{test}|x^{test}, S)$$

Prediction:

$$argmax_y P(y|x^{test}, S)$$

[Vinyals, et al. NIPS2016]

Prediction

$$y^{test} = \sum_{i=1}^{k} a(x^{test}, x_i) y_i$$

- Attention mechanism
- Linear combination of support set labels

[Vinyals, et al. NIPS2016]

[Vinyals, et al. NIPS2016]

Training strategy

- 1. Sample task **T** (5 labels, up to 5 examples per label)
- 2. Sample a label set **L** from T e.g. {cats, dogs}
- 3. Sample a support set **S** examples from L
- 4. Sample batch **B** examples from L
- 5. Evaluate loss on **B** using **S**

$$\theta = \underset{\theta}{argmax} E_{L \sim T}[E_{S \sim L, B \sim L}[\sum_{(x,y) \in B} log P_{\theta}(y|x, S)]]$$

18

Introduces Squared Gradient Magnitude loss

- Minimise the loss of low-shot during representation learning
- → better representation for low-shot learning

Train feature extractor and classifier on D (all data) has the objective

$$\min_{W, \boldsymbol{\phi}} L_D(\boldsymbol{\phi}, W) = \min_{W, \boldsymbol{\phi}} \frac{1}{|D|} \sum_{(x,y) \in D} L_{cls}(W, \boldsymbol{\phi}(x), y)$$

For small set S, the objective

$$\min_{V} L_S(\boldsymbol{\phi}, V) = \min_{V} \frac{1}{|S|} \sum_{(x,y) \in S} L_{cls}(V, \boldsymbol{\phi}(x), y)$$

Minimise

$$\tilde{L}_S(\boldsymbol{\phi}, W) = \|\nabla_V L_S(\boldsymbol{\phi}, V)|_{V=W}\|^2$$

$$\tilde{L}_{S}(\phi, W) = \sum_{k=1}^{K} (p_{k}(W, \phi(x)) - \delta_{yk})^{2} \|\phi(x)\|^{2}
= \alpha(W, \phi(x), y) \|\phi(x)\|^{2}.$$

 $lpha(W,oldsymbol{\phi}(x),y)$ Per example weight that is higher for misclassified data points

Final SGM loss

$$L_D^{SGM}(\phi, W) = \frac{1}{|D|} \sum_{(x,y) \in D} \alpha(W, \phi(x), y) \|\phi(x)\|^2$$

Train feature representation by minimizing a linear combination of the SGM loss and the original classification objective

$$\min_{W, \boldsymbol{\phi}} L_D(\boldsymbol{\phi}, W) + \lambda L_D^{SGM}(\boldsymbol{\phi}, W)$$

Hallucinate samples

perched bird with green background

Assumption

Any two examples z1 and z2 belonging to the same category represent a plausible transformation.

 \rightarrow Given a novel category example x, apply to x the transformation that sent z1 to z2.

Fully supervised regression using MLP of 3 fully connected layers

1. Cluster feature vectors in each category into 100 clusters.

- 1. Cluster feature vectors in each category into 100 clusters.
- 2. Form quadruple of centroids (2 centroids from 2 classes)

- 1. Cluster feature vectors in each category into 100 clusters.
- 2. Form quadruple of centroids (2 centroids from 2 classes).
- 3. Feed 3 centroids and predict the forth.

- 1. Cluster feature vectors in each category into 100 clusters.
- 2. Form quadruple of centroids (2 centroids from 2 classes).
- 3. Feed 3 centroids and predict the forth.
- 4. Minimize the weighted sum of two losses:

- 1. Cluster feature vectors in each category into 100 clusters.
- 2. Form quadruple of centroids (2 centroids from 2 classes).
- 3. Feed 3 centroids and predict the forth.
- 4. Minimize the weighted sum of two losses:
 - Classification loss
 - Mean squared error

Results

Representation	Lowshot phase	n=1	2	5	10	20
ResNet-10						
Baseline	Classifier	14.1	33.3	56.2	66.2	71.5
Baseline	Generation* + Classifier	29.7	42.2	56.1	64.5	70.0
SGM*	Classifier	23.1	42.4	61.7	69.6	73.8
SGM*	Generation* + Classifier	32.8	46.4	61.7	69.7	73.8
L2*	Classifier	29.1	47.4	62.3	68.0	70.6
Baseline	Model Regression [47]	20.7	39.4	59.6	68.5	73.5
Baseline	Matching Network [46]	41.3	51.3	62.1	67.8	71.8

Top-5 accuracy on Imagenet1K for novel classes only

Results

Representation	Lowshot phase	n=1	2	5	10	20
ResNet-10						
Baseline	Classifier	43.0	54.3	67.2	72.8	75.9
Baseline	Generation* + Classifier	52.4	59.4	67.5	72.6	76.9
SGM*	Classifier	49.4	60.5	71.3	75.8	78.1
SGM*	Generation* + Classifier	54.3	62.1	71.3	75.8	78.1
L2*	Classifier	52.7	63.0	71.5	74.8	76.4
Baseline	Model Regression [47]	46.4	56.7	66.8	70.4	72.0
Baseline	Matching Network [46]	55.0	61.5	69.3	73.4	76.2

Top-5 accuracy on Imagenet1K for all classes

Results

Q&A