Chapter 7. Advanced Frequent Pattern Mining

Meng Jiang

CS412 Summer 2017:

Introduction to Data Mining

Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining

Mining Diverse Patterns

- Mining Multiple-Level Associations
- Mining Multi-Dimensional Associations
- Mining Quantitative Associations
- Mining Negative Correlations
- Mining Compressed and Redundancy-Aware Patterns

Mining Multiple-Level Frequent Patterns

- Items often form hierarchies
 - Ex.: Dairyland 2% milk; Wonder wheat bread
- How to set min-support thresholds?
 - Uniform min-support across multiple levels (reasonable?)
 - Level-reduced min-support: Items at the lower level are expected to have lower support
- Efficient mining: Shared multi-level mining
 - Use the lowest min-support to pass down the set of candidates

Redundancy Filtering at Mining Multi-Level Associations

- Multi-level association mining may generate many redundant rules
- Redundancy filtering: Some rules may be redundant due to "ancestor" relationships between items

(Suppose the 2% milk sold is about ¼ of milk sold in gallons)

- milk \Rightarrow wheat bread [support = 8%, confidence = 70%] (1)
- 2% milk \Rightarrow wheat bread [support = 2%, confidence = 72%] (2)
- A rule is redundant if its support is close to the "expected" value, according to its "ancestor" rule, and it has a similar confidence as its "ancestor"
 - Rule (1) is an ancestor of rule (2), which one to prune?

Customized Min-Supports for Different Kinds of Items

- We have used the same min-support threshold for all the items or item sets to be mined in each association mining
- In reality, some items (e.g., diamond, watch, ...) are valuable but less frequent
- It is necessary to have customized min-support settings for different kinds of items
- One Method: Use group-based "individualized" min-support
 - E.g., {diamond, watch}: 0.05%; {bread, milk}: 5%; ...
 - How to mine such rules efficiently?
 - Existing scalable mining algorithms can be easily extended to cover such cases

Mining Multi-Dimensional Associations

- Single-dimensional rules (e.g., items are all in "product" dimension)
 - buys(X, "milk") \Rightarrow buys(X, "bread")
- Multi-dimensional rules (i.e., items in ≥ 2 dimensions or predicates)
 - Inter-dimension association rules (no repeated predicates)
 - age(X, "18-25") ∧ occupation(X, "student") ⇒ buys(X, "coke")
 - Hybrid-dimension association rules (repeated predicates)
 - age(X, "18-25") \land buys(X, "popcorn") \Rightarrow buys(X, "coke")
- Attributes can be categorical or numerical
 - Categorical Attributes (e.g., profession, product: no ordering among values): Data cube for inter-dimension association
 - Quantitative Attributes: Numeric, implicit ordering among values—discretization, clustering, and gradient approaches

Mining Quantitative Associations

- Mining associations with numerical attributes
 - Ex.: Numerical attributes: age and salary
- Methods
 - Static discretization based on predefined concept hierarchies
 - Data cube-based aggregation
 - Dynamic discretization based on data distribution
 - Clustering: Distance-based association
 - First one-dimensional clustering, then association
 - Deviation analysis:
 - Gender = female ⇒ Wage: mean=\$7/hr (overall mean = \$9)

Mining Extraordinary Phenomena in Quantitative Association Mining

- Mining extraordinary (i.e., interesting) phenomena
 - Ex.: Gender = female \Rightarrow Wage: mean=\$7/hr (overall mean = \$9)
 - LHS: a subset of the population
 - RHS: an extraordinary behavior of this subset
- The rule is accepted only if a statistical test (e.g., Z-test) confirms the inference with high confidence
- Subrule: Highlights the extraordinary behavior of a subset of the population of the super rule
 - Ex.: (Gender = female) $^{\land}$ (South = yes) \Rightarrow mean wage = \$6.3/hr
- Rule condition can be categorical or numerical (quantitative rules)
 - Ex.: Education in [14-18] (yrs) \Rightarrow mean wage = \$11.64/hr
- Efficient methods have been developed for mining such extraordinary rules (e.g., Aumann and Lindell@KDD'99)

Rare Patterns vs. Negative Patterns

- Rare patterns
 - Very low support but interesting (e.g., buying Rolex watches)
 - How to mine them? Setting individualized, group-based minsupport thresholds for different groups of items
- Negative patterns
 - Negatively correlated: Unlikely to happen together
 - Ex.: Since it is unlikely that the same customer buys both a
 Ford Expedition (an SUV car) and a Ford Fusion (a hybrid car),
 buying a Ford Expedition and buying a Ford Fusion are likely
 negatively correlated patterns
 - How to define negative patterns?

Defining Negative Correlated Patterns

- A support-based definition
 - If itemsets A and B are both frequent but rarely occur together,
 i.e., sup(A U B) << sup(A) × sup(B)
 - Then A and B are negatively correlated
- the definition of *lift*?
- Is this a good definition for large transaction datasets?
- Ex.: Suppose a store sold two needle packages A and B 100 times each, but only one transaction contained both A and B
 - When there are in total 200 transactions, we have
 - $s(A \cup B) = 0.005$, $s(A) \times s(B) = 0.25$, $s(A \cup B) << s(A) \times s(B)$
 - But when there are 10⁵ transactions, we have
 - $s(A \cup B) = 1/10^5$, $s(A) \times s(B) = 1/10^3 \times 1/10^3$, $s(A \cup B) > s(A) \times s(B)$
 - What is the problem? Null transactions: The support-based definition is not null-invariant!

Defining Negative Correlation: Need Null-Invariance in Definition

- A good definition on negative correlation should take care of the null-invariance problem
 - Whether two itemsets A and B are negatively correlated should not be influenced by the number of nulltransactions
- A Kulczynski measure-based definition
 - If itemsets A and B are frequent but $(P(A|B) + P(B|A))/2 < \epsilon$, where ϵ is a negative pattern threshold, then A and B are negatively correlated
- For the same needle package problem:
 - No matter there are in total 200 or 105 transactions
 - If ϵ = 0.01, we have $(P(A|B) + P(B|A))/2 = (0.01 + 0.01)/2 < \epsilon$

Mining Compressed Patterns

- Why mining compressed patterns?
 - Too many scattered patterns but not so meaningful
- Pattern distance measure

$$Dist(P_1, P_2) = 1 - \frac{|T(P_1) \cap T(P_2)|}{|T(P_1) \cup T(P_2)|}$$

- δ -clustering: For each pattern P, find all $\frac{P}{\Gamma}$ patterns which can be expressed by P and whose distance to P is within δ (δ -cover)
- All patterns in the cluster can be represented by P
- Method for efficient, direct mining of compressed frequent patterns (e.g., D. Xin, J. Han, X. Yan, H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60:5-29, 2007)

Pat-ID	Item-Sets	Support	
P1	{38,16,18,12}	205227	
P ₂	{38,16,18,12,17}	205211	
P ₃	{39,38,16,18,12,17}	101758	
P ₄	{39,16,18,12,17}	161563	
P ₅	{39,16,18,12}	161576	

- Closed patterns
 - P1, P2, P3, P4, P5
 - Emphasizes too much on support
 - ☐ There is no compression
- Max-patterns
 - □ P3: information loss
- Desired output (a good balance):
 - □ P2, P3, P4

Redundancy-Aware Top-k Patterns

Desired patterns: high significance & low redundancy

- Method: Use MMS (Maximal Marginal Significance) for measuring the combined significance of a pattern set
- Xin et al., Extracting Redundancy-Aware Top-K Patterns, KDD'o6

Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining

Why Constraint-Based Mining?

- Finding all the patterns in a dataset autonomously? unrealistic!
 - Too many patterns but not necessarily user-interested!
- Pattern mining should be an interactive process
 - User directs what to be mined using a data mining query language (or a graphical user interface)
- Constraint-based mining
 - User flexibility: provides constraints on what to be mined
 - Optimization: explores such constraints for efficient mining
 - Constraint-based mining: Constraint-pushing, similar to push selection first in DB query processing

Constraints in General Data Mining

A data mining query can be in the form of a metarule or with the following language primitives.

- Knowledge type constraint:
 - Ex.: classification, association, clustering, outlier finding,
- Data constraint using SQL-like queries
 - Ex.: find products sold together in NY stores this year
- Dimension/level constraint
 - Ex.: in relevance to region, price, brand, customer category
- Rule (or pattern) constraint
 - Ex.: small sales (price < \$10) triggers big sales (sum > \$200)
- Interestingness constraint
 - Ex.: strong rules: min_sup ≥ 0.02, min_conf ≥ 0.6, min_correlation ≥ 0.7

Meta-Rule Guided Mining

- A meta-rule can contain partially instantiated predicates & constants
 - $-P_1(X,Y) \wedge P_2(X,W) \Rightarrow buys(X, "iPad")$
- The resulting mined rule can be
 - age(X, "15-25") $^{\circ}$ profession(X, "student") \Rightarrow buys(X, "iPad")
- In general, (meta) rules can be in the form of
 - $-P_1 \wedge P_2 \wedge ... \wedge P_1 \Rightarrow Q_1 \wedge Q_2 \wedge ... \wedge Q_r$
- Method to find meta-rules
 - Find frequent (I + r) predicates (based on min-support)
 - Push constants deeply when possible into the mining process
 - Using constraint-push techniques introduced in this lecture
 - Also, push min_conf, min_correlation, and other measures as early as possible (measures acting as constraints)

Different Kinds of Constraints Lead to Different Pruning Strategies

- Constraints can be categorized as
 - Pattern space pruning constraints vs. data space pruning constraints
- Pattern space pruning constraints
 - Anti-monotonic: If constraint c is violated, its further mining can be terminated
 - Monotonic: If c is satisfied, no need to check c again
 - Succinct: if the constraint c can be enforced by directly manipulating the data
 - Convertible: c can be converted to monotonic or antimonotonic if items can be properly ordered in processing
- Data space pruning constraints
 - Data succinct: Data space can be pruned at the initial pattern mining process
 - Data anti-monotonic: If a transaction t does not satisfy c, then t can be pruned to reduce data processing effort

Pattern Space Pruning with Pattern Anti-Monotonicity

- Constraint c is anti-monotone
 - If an itemset S violates constraint c, so does any of its superset
 - That is, mining on itemset S can be terminated
- Ex. 1: c1: sum(S.price) ≤ v is antimonotone
- Ex. 2: c2: range(S.profit) ≤ 15 is antimonotone
 - Itemset ab violates c2 (range(ab) = 40)
 - So does every superset of ab
- Ex. 3. c3: sum(S.Price) ≥ v is not antimonotone
- Ex. 4. Is c4: support(S) ≥ σ antimonotone?
 - Yes! Apriori pruning is essentially pruning with an anti-monotonic constraint!

TID	Transaction	
10	a, b, c, d, f, h	
20	b, c, d, f, g, h	
30	b, c, d, f, g	
40	a, c, e, f, g	
min_sup = 2		
price(item)>o		

ltem	Profit
a	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	5

Pattern Monotonicity and Its Roles

- A constraint c is monotone: if an itemset S satisfies the constraint c, so does any of its superset
 - That is, we do not need to check c in subsequent mining
- Ex. 1: c1: sum(S.Price) ≥ v is monotone
- Ex. 2: c2: min(S.Price) ≤ v is monotone
- Ex. 3: c3: range(S.profit) ≥ 15 is monotone
 - Itemset ab satisfies c3
 - So does every superset of ab

TID	Transaction		
10	a, b, c, d, f, h		
20	b, c, d, f, g, h		
30	b, c, d, f, g		
40	a, c, e, f, g		
min_sup = 2			
price(item)>o			

Item	Profit
a	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	5

Data Space Pruning with Data Anti-Monotonicity

- A constraint c is data anti-monotone: In the mining process, if a data entry t cannot satisfy a pattern p under c, t cannot satisfy p's superset either
 - Data space pruning: Data entry t can be pruned
- Ex. 1: c_1 : $sum(S.Profit) \ge v$ is data antimonotone
 - Let constraint c_1 be: sum{S.Profit} ≥ 25
 - T₃₀: {b, c, d, f, g} can be removed since none of their combinations can make an S whose sum of the profit is ≥ 25
- Ex. 2: c_2 : $min(S.Price) \le v$ is data antimonotone
 - Consider v = 5 but every item in transaction T_{50} has a price higher than 10
- Ex. 3: c₃: range(S.Profit) ≥ 25 is data antimonotone

TID	Transaction	
10	a, b, c, d, f, h	
20	b, c, d, f, g, h	
30	b, c, d, f, g	
40	a, c, e, f, g	
min_sup = 2		
price(item)>o		

ltem	Profit
a	40
b	0
С	-20
d	-15
е	-30
f	-10
g	20
h	5

Data Space Pruning Should Be Explored Recursively

TID Transaction

Recursive
Data
Pruning

b's FP-tree

single branch: cdfg: 2

 Note: c₃ prunes T₁₀ effectively only after "a" is pruned (by min-sup) in b's projected DB Only a single branch "cdfg: 2"

to be mined in b's projected DB

Succinctness: Pruning Both Data and Pattern Spaces

- Succinctness: if the constraint c can be enforced by directly manipulating the data
- Ex. 1: To find those patterns without item i
 - Remove i from DB and then mine (pattern space pruning)
- Ex. 2: To find those patterns containing item i
 - Mine only i-projected DB (data space pruning)
- Ex. 3: c_3 : min(S.Price) $\leq v$ is succinct
 - Start with only items whose price ≤ v (pattern space pruning) and remove transactions with high-price items only (data space pruning)
- Ex. 4: c_4 : sum(S.Price) $\geq v$ is not succinct
 - It cannot be determined beforehand since sum of the price of itemset S keeps increasing

Convertible Constraints: Ordering Data in Transactions

- Convert tough constraints into (anti-)monotone by proper ordering of items in transactions
- Examine c1: avg(S.profit) > 20
 - Order items in value-descending order
 - <a, g, f, h, b, d, c, e>
 - An itemset ab violates c1 (avg(ab) = 20)
 - So does ab* (i.e., ab-projected DB)
 - C1: anti-monotone if patterns grow in the right order!
- Can item-reordering work for Apriori?
 - Does not work for level-wise candidate generation!
 - avg(agf) = 23.3 > 20, but avg(gf) = 15 < 20

		ltem	Profit
		a	40
		b	0
		С	-20
		d	-15
		е	-30
		f	10
min _.	_sup = 2	g	20
price(item)>o		h	5
TID	Transac	tion	

a, b, c, d, f, h

b, c, d, f, g, h

b, c, d, f, g

a, c, e, f, g

26

10

20

30

40

How to Handle Multiple Constraints?

- It is beneficial to use multiple constraints in pattern mining
- But different constraints may require potentially conflicting item-ordering
 - If there exists an order R making both c1 and c2 convertible, try to sort items in the order that benefits pruning most
 - If there exists conflict ordering between c1 and c2
 - Try to sort data and enforce one constraint first (which one?)
 - Then enforce the other when mining the projected databases
- Ex. c_1 : avg(S.profit) > 20, and c_2 : avg(S.price) < 50
 - Sorted in profit descending order and use c1 first (assuming c_1 has more pruning power)
 - For each project DB, sort trans. in price ascending order and use c₂ at mining

Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining

Mining Long Patterns: Challenges

- Mining long patterns is needed in bioinformatics, social network analysis, software engineering, ...
 - But the methods introduced so far mine only short patterns (e.g., length < 10)
- Challenges of mining long patterns
 - The curse of "downward closure" property of frequent patterns
 - Any sub-pattern of a frequent pattern is frequent
 - If $\{a_1, a_2, ..., a_{100}\}$ is frequent, then $\{a_1\}, \{a_2\}, ..., \{a_{100}\}, \{a_1, a_2\}, \{a_1, a_3\}, ..., \{a_{100}\}, \{a_1, a_2, a_3\}, ...$ are all frequent! There are about 2^{100} such frequent itemsets!
 - No matter searching in breadth-first (e.g., Apriori) or depth-first (e.g., FPgrowth), if we still adopt the "small to large" step-by-step growing paradigm, we have to examine so many patterns, which leads to combinatorial explosion!

Colossal Patterns: A Motivating Example

- Let min-support σ = 20 • # of closed/maximal patterns of size 20: about $\binom{40}{20}$
- But there is only one pattern with size close to 40 (i.e., long or colossal)
 - $-\alpha = \{41, 42, ..., 79\}$ of size 39
- Q: How to find it without generating an exponential number of size-20 patterns?

```
T<sub>1</sub> = 2 3 4 ..... 39 40
T<sub>2</sub> = 1 3 4 ..... 39 40
: . .
```

142= 41 42 43 79 : . . T₆₀= 41 42 43 ... 79 The existing fastest mining algorithms (e.g., FPClose, LCM) fail to complete running

A new algorithm, *Pattern-Fusion*, outputs this colossal pattern in seconds

What Is Pattern-Fusion?

- Not strive for completeness (why?)
- Jump out of the swamp of the mid-sized intermediate "results"
- Strive for mining almost complete and representative colossal patterns: identify "short-cuts" and take "leaps"
- Key observation
 - The larger the pattern or the more distinct the pattern, the greater chance it will be generated from small ones
- Philosophy: Collection of small patterns hints at the larger patterns
- Pattern fusion strategy ("not crawl but jump"): Fuse small patterns together in one step to generate new pattern candidates of significant sizes

Observation: Colossal Patterns and Core Patterns

- Suppose dataset D contains 4 colossal patterns (below) plus many small patterns
 - $\{a_1, a_2, ..., a_{50}\}$: 40, $\{a_3, a_6, ..., a_{99}\}$: 60, $\{a_5, a_{10}, ..., a_{95}\}$: 80, $\{a_{10}, a_{20}, ..., a_{100}\}$: 100
- If you check the pattern pool of size-3, you may likely find
 - $\{a_2, a_4, a_{45}\}$: ~40; $\{a_3, a_{34}, a_{39}\}$: ~40; ..., $\{a_5, a_{15}, a_{85}\}$: ~80, ..., $\{a_{20}, a_{40}, a_{85}\}$: ~80, ...
- If you merge the patterns with similar support, you may obtain candidates of much bigger size and easily validate whether they are true patterns
- Core patterns of a colossal pattern α : A set of subpatterns of α that cluster around α by sharing a similar support
- A colossal pattern has far more core patterns than a small-sized pattern
- A random draw from a complete set of pattern of size c would be more likely to pick a core pattern (or its descendant) of a colossal pattern
- A colossal pattern can be generated by merging a set of core patterns

Robustness of Colossal Patterns

• Core Patterns: For a frequent pattern α , a subpattern β is a τ -core pattern of α if β shares a similar support set with α , i.e.,

 $\frac{|D_{\alpha}|}{|D_{\beta}|} \ge \tau$ $0 < \tau \le 1$ where τ is called the core ratio

- (d, τ)-robustness: A pattern α is (d, τ)-robust if d is the maximum number of items that can be removed from α for the resulting pattern to remain a τ -core pattern of α
- For a (d, τ)-robust pattern α , it has $\Omega(2^d)$ core patterns
- Robustness of Colossal Patterns: A colossal pattern tends to have much more core patterns than small patterns
- Such core patterns can be clustered together to form "dense balls" based on pattern distance defined by

A random draw in the pattern space will hit somewhere in the ball with high probability

$$Dist(\alpha, \beta) = 1 - \frac{\left| D_{\alpha} \cap D_{\beta} \right|}{\left| D_{\alpha} \cup D_{\beta} \right|}$$

The Pattern-Fusion Algorithm

- Initialization (Creating initial pool): Use an existing algorithm to mine all frequent patterns up to a small size, e.g., 3
- Iteration (Iterative Pattern Fusion):
 - At each iteration, K seed patterns are randomly picked from the current pattern pool
 - For each seed pattern thus picked, we find all the patterns within a bounding ball centered at the seed pattern
 - All these patterns found are fused together to generate a set of super-patterns
 - All the super-patterns thus generated form a new pool for the next iteration
- Termination: when the current pool contains no more than K patterns at the beginning of an iteration

Experimental Results on Data Set: ALL

- ALL: A popular gene expression clinical data set on ALL-AML leukemia, with 38 transactions, each with 866 columns. There are 1,736 items in total.
 - When minimum support is high (e.g., 30), Pattern-Fusion gets all the largest colossal patterns with size greater than 85

Pattern Size	110	107	102	91	86	84	83
The complete set	1	1	1	1	1	2	6
Pattern-Fusion	1	1	1	1	1	1	4
Pattern Size	82	77	76	75	74	73	71
The complete set	1	2	1	1	1	2	1
Pattern-Fusion	0	2	0	1	1	1	1

Mining colossal patterns on a Leukemia dataset

Algorithm runtime comparison on another dataset

Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining

Sequence Databases and Sequential Patterns

- Sequential pattern mining has broad applications
 - Customer shopping sequences
 - Purchase a laptop first, then a digital camera, and then a smartphone, within 6 months
 - Medical treatments, natural disasters (e.g., earthquakes),
 science & engineering processes, stocks and markets, ...
 - Weblog click streams, calling patterns, ...
 - Software engineering: Program execution sequences, ...
 - Biological sequences: DNA, protein, ...
- Transaction DB, sequence DB vs. time-series DB
- Gapped vs. non-gapped sequential patterns
 - Shopping sequences, clicking streams vs. biological sequences

Sequential Pattern and Sequential Pattern Mining

 Sequential pattern mining: Given a set of sequences, find the complete set of frequent subsequences (i.e., satisfying the min_sup threshold)

A sequence database	SID	Sequence
A <u>sequence database</u>	10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
	20	<(ad)c(bc)(ae)>
	30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
A <u>sequence:</u> < (ef) (ab) (df) c ,b >	40	<eg(af)cbc></eg(af)cbc>

- An element may contain a set of items (also called events)
- Items within an element are unordered and we list them alphabetically <a(bc)dc> is a <u>subsequence</u> of <<u>a(bc)d(cf)></u>
- Given support threshold min_sup = 2, <(ab)c> is a sequential pattern

Sequential Pattern Mining Algorithms

- Algorithm requirement: Efficient, scalable, finding complete set, incorporating various kinds of user-specific constraints
- The Apriori property still holds: If a subsequence s_1 is infrequent, none of s_1 's super-sequences can be frequent
- Representative algorithms
 - GSP (Generalized Sequential Patterns): Srikant & Agrawal @
 EDBT'96)
 - Vertical format-based mining: SPADE (Zaki@Machine Leanining'00)
 - Pattern-growth methods: PrefixSpan (Pei, et al. @TKDE'04)
- Mining closed sequential patterns: CloSpan (Yan, et al. @SDM'o3)
- Constraint-based sequential pattern mining

GSP: Apriori-Based Sequential Pattern

Mining

- Initial candidates: All singleton sequences
 - <a>, , <c>, <d>, <e>, <f>, <g>, <h>
- Scan DB once, count support for each candidate
- Generate length-2 candidate sequences

SID	Sequence
10	<(bd)cb(ac)>
20	<(bf)(ce)b(fg)>
30	<(ah)(bf)abf>
40	<(be)(ce)d>
50	<a(bd)bcb(ade)></a(bd)bcb(ade)>

min_sup = 2			
Cand.	sup		
<a>	3		
	5		
<c></c>	4		
<d></d>	3		
<e></e>	3		
<f></f>	2		
<g></g>	1		
<h></h>	1		

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>	<aa></aa>	<ab></ab>	<ac></ac>	<ad></ad>	<ae></ae>	<af></af>
	<ba></ba>	<bb></bb>	<bc></bc>	<bd></bd>	<be></be>	<bf></bf>
<c></c>	<ca></ca>	<cb></cb>	<cc></cc>	<cd></cd>	<ce></ce>	<cf></cf>
<d></d>	<da></da>	<db></db>	<dc></dc>	<dd></dd>	<de></de>	<df></df>
<e></e>	<ea></ea>	<eb></eb>	<ec></ec>	<ed></ed>	<ee></ee>	<ef></ef>
<f></f>	<fa></fa>	<fb></fb>	<fc></fc>	<fd></fd>	<fe></fe>	<ff></ff>

	<a>		<c></c>	<d></d>	<e></e>	<f></f>
<a>		<(ab)>	<(ac)>	<(ad)>	<(ae)>	<(af)>
			<(bc)>	<(bd)>	<(be)>	<(bf)>
<c></c>				<(cd)>	<(ce)>	<(cf)>
<d></d>					<(de)>	<(df)>
<e></e>						<(ef)>
√ f√						

Length-2 candidates: 36 + 15= 51 Without Apriori pruning: 8*8+8*7/2=9 2 candidates

GSP (Gene

(Generalized Sequential Patterns): Srikant & Agrawal @ EDBT'96)

40

GSP Mining and Pruning

- Repeat (for each level (i.e., length-k))
 - Scan DB to find length-k frequent sequences
 - Generate length-(k+1) candidate sequences from length-k
 frequent sequences using Apriori
 - set k = k+1
- Until no frequent sequence or no candidate can be found

Sequential Pattern Mining in Vertical Data Format: The SPADE Algorithm

A sequence database is mapped to: <SID, EID>

Grow the subsequences (patterns) one item at a time by Apriori candidate

generation

SID	Sequence
1	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
2	<(ad)c(bc)(ae)>
3	<(ef)(<u>ab</u>)(df) <u>c</u> b>
4	<eg(af)cbc></eg(af)cbc>

 $min_sup = 2$

Ref: SPADE (<u>S</u>equential <u>PA</u>ttern <u>D</u>iscovery using <u>E</u>quivalent Class)
[M. Zaki 2001]

SID	EID	Items
1	1	a
1	2	abc
1	3	ac
1	4	d
1	5	cf
2	1	ad
2 2	2	\mathbf{c}
2	3	bc
2	4	ae
3	1	ef
3	2	ab
3	3	df
3	4	\mathbf{c}
3	5	b
4	1	e
4	2	g
4	3	af
4	4	\mathbf{c}
4	5	b
4	6	\mathbf{c}

	\mathbf{a}	1	0	
SID	EID	SID	EID	
1	1	1	2	
1	2	2	3	
1	3	3	2	
2	1	3	5	
2	4	4	5	
3	2			
4	3			
	ah		ha	

	ab			ba		
SID	EID (a)	EID(b)	SID	EID (b)	EID(a)	
1	1	2	1	2	3	
2	1	3	2	3	4	
3	2	5				
4	3	5				

	ŧ	aba		
SID	EID (a)	EID(b)	EID(a)	
1	1	2	3	
2	1	3	4	

PrefixSpan: A Pattern-Growth Approach

- Prefix and suffix
 - Given <a(abc)(ac)d(cf)>
 - Prefixes: <a>, <aa>, <a(ab)>, <a(abc)>, ...
 - Suffix: Prefixes-based projection
- PrefixSpan Mining: Prefix Projections
 - Step 1: Find length-1 sequential patterns
 - <a>, , <c>, <d>, <e>, <f>
 - Step 2: Divide search space and mine each projected DB
 - <a>-projected DB,
 - -projected DB,
 - ...
 - <f>-projected DB, ...

SID	Sequence
10	<a(<u>abc)(a<u>c</u>)d(cf)></a(<u>
20	<(ad)c(bc)(ae)>
30	<(ef)(<u>ab</u>)(df) <u>c</u> b>
40	<eg(af)cbc></eg(af)cbc>

Prefix	Suffix (Projection)
<a>	<(abc)(ac)d(cf)>
<aa></aa>	<(_bc)(ac)d(cf)>
<ab></ab>	<(_c)(ac)d(cf)>

PrefixSpan (Prefix-projected Sequential pattern mining) Pei, et al. @TKDE'04

CloSpan: Mining Closed Sequential Patterns

- A closed sequential pattern s: There exists no superpattern s' such that s' > s, and s' and s have the same support
- Which ones are closed? <abc>: 20,
 <abcd>: 20,
 <abcd>: 15
- Why directly mine closed sequential patterns?
 - Reduce # of (redundant) patterns
 - Attain the same expressive power
- Property P_1 : If $s \supset s_1$, s is closed iff two project DBs have the same size
- Explore Backward Subpattern and Backward Superpattern pruning to prune redundant search space
- Greatly enhances efficiency (Yan, et al., SDM'o₃)

Backward subpattern pruning

Backward superpattern pruning

Constraint-Based Sequential-Pattern Mining

- Share many similarities with constraint-based itemset mining
- Anti-monotonic: If S violates c, the super-sequences of S also violate c
 - sum(S.price) < 150; min(S.value) > 10
- Monotonic: If S satisfies c, the super-sequences of S also do so
 - element_count(S) > 5; $S \supseteq \{PC, digital_camera\}$
- Data anti-monotonic: If a sequence s_1 with respect to S violates c_3 , s_1 can be removed
 - $-c_3$: sum(S.price) ≥ v
- Succinct: Enforce constraint c by explicitly manipulating data
 - $S ⊇ {i-phone, MacAir}$
- Convertible: Projection based on the sorted value not sequence order
 - value_avg(S) < 25; profit_sum(S) > 160
 - $\max(S)/avg(S) < 2; median(S) \min(S) > 5$

Timing-Based Constraints in Seq.-Pattern Mining

- Order constraint: Some items must happen before the other
 - {algebra, geometry} → {calculus} (where "→" indicates ordering)
 - Anti-monotonic: Constraint-violating sub-patterns pruned
- Min-gap/max-gap constraint: Confines two elements in a pattern
 - E.g., mingap = 1, maxgap = 4
 - Succinct: Enforced directly during pattern growth
- Max-span constraint: Maximum allowed time difference between the 1st and the last elements in the pattern
 - E.g., maxspan (S) = 60 (days)
 - Succinct: Enforced directly when the 1st element is determined
- Window size constraint: Events in an element do not have to occur at the same time: Enforce max allowed time difference
 - E.g., window-size = 2: Various ways to merge events into elements

Episodes and Episode Pattern Mining

- Episodes and regular expressions: Alternative to seq. patterns
 - Serial episodes: A → B
 - Parallel episodes: A | B | Indicating partial order relationships
 - Regular expressions: (A|B)C*(D \rightarrow E)
- Methods for episode pattern mining
 - Variations of Apriori/GSP-like algorithms
 - Projection-based pattern growth
 - Q₁: Can you work out the details?
 - Ω_2 : What are the differences between mining episodes and constraint-based pattern mining?

Advanced Frequent Pattern Mining

- Mining Diverse Patterns
- Constraint-Based Frequent Pattern Mining
- Mining High-Dimensional Data and Colossal Patterns
- Sequential Pattern Mining
- Graph Pattern Mining

Frequent (Sub) Graph Patterns

- Given a labeled graph dataset D = {G₁, G₂, ..., G_n), the supporting graph set of a subgraph g is D_q = {G_i | $g \subseteq G_i$, G_i \in D}.
 - support(g) = $|D_q|/|D|$
- A (sub)graph g is **frequent** if $support(g) \ge min_sup$ Ex.: Chemical structures
- Alternative:
 - Mining frequent subgraph patterns from a single large graph or network

 $min_sup = 2$

Frequent Graph Patterns

Applications of Graph Pattern Mining

- Bioinformatics
 - Gene networks, protein interactions, metabolic pathways
- Chem-informatics: Mining chemical compound structures
- Social networks, web communities, tweets, ...
- Cell phone networks, computer networks, ...
- Web graphs, XML structures, semantic Web, information networks
- Software engineering: program execution flow analysis
- Building blocks for graph classification, clustering, compression, comparison, and correlation analysis
- Graph indexing and graph similarity search

Graph Pattern Mining Algorithms: Different Methodologies

- Generation of candidate subgraphs
 - Apriori vs. pattern growth (e.g., FSG vs. gSpan)
- Search order
 - Breadth vs. depth
- Elimination of duplicate subgraphs
 - Passive vs. active (e.g., gSpan (Yan&Han'o2))
- Support calculation
 - Store embeddings (e.g., GASTON (Nijssen&Kok'o4, FFSM (Huan, et al.'o3), MoFa (Borgelt and Berthold ICDM'o2))
- Order of pattern discovery
 - Path → tree → graph (e.g., GASTON (Nijssen&Kok'o4)

Apriori-Based Approach

- The Apriori property (antimonotonicity): A size-k subgraph is frequent if and only if all of its subgraphs are frequent
- A candidate size-(k+1) edge/vertex subgraph is generated if its corresponding two k-edge/vertex subgraphs are frequent
- Iterative mining process:
 - Candidate-generation →
 candidate pruning → support
 counting → candidate elimination

Candidate Generation: Vertex Growing vs. Edge Growing

- Methodology: breadth-search, Apriori joining two size-k graphs
 - Many possibilities at generating size-(k+1) candidate graphs

- Generating new graphs with one more vertex
 - AGM (Inokuchi, et al., PKDD'oo)
- Generating new graphs with one more edge
 - FSG (Kuramochi and Karypis, ICDM'01)
- Performance shows via edge growing is more efficient

Pattern-Growth Approach

k-edge

 Depth-first growth of subgraphs from k-edge to (k+1)-edge, then (k+2)-edge subgraphs

- Major challenge
 - Generating many duplicate subgraphs
- Major idea to solve the problem
 - Define an order to generate subgraphs
 - DFS spanning tree: Flatten a graph into a sequence using depth-first search
 - gSpan (Yan & Han: ICDM'02)

gSPAN: Graph Pattern Growth in Order

- Right-most path extension in subgraph pattern growth
 - Right-most path: The path from root to the right-most leaf (choose the vertex w. the smallest index at each step)
 - Reduce generation of duplicate subgraphs
- Completeness: The Enumeration of graphs using right-most path extension is <u>complete</u>
- DFS Code: Flatten a graph into a sequence using depth-first search

Why Mining Closed Graph Patterns?

- Challenge: An **n**-edge frequent graph may have 2ⁿ subgraphs
- Motivation: Explore *closed frequent subgraphs* to handle graph pattern explosion problem
- A frequent graph G is *closed* if there exists no supergraph of G that carries the same support as G

If this subgraph is *closed* in the graph dataset, it implies that none of its frequent super-graphs carries the same support

- Lossless compression: Does not contain non-closed graphs, but still ensures that the mining result is complete
- Algorithm CloseGraph: Mines closed graph patterns directly

CloseGraph: Directly Mining Closed Graph Patterns

- CloseGraph: Mining closed graph patterns by extending gSpan
- Suppose G and G₁ are frequent, and G is a subgraph of G₁
- If in any part of the graph in the dataset where G occurs, G₁ also occurs, then we need not grow G (except some special, subtle cases), since none of G's children will be closed except those of G₁

Experiment and Performance Comparison

- The AIDS antiviral screen compound dataset from NCI/NIH
- The dataset contains 43,905 chemical compounds
- Discovered Patterns: The smaller minimum support, the bigger and more interesting subgraph patterns discovered

References: Mining Diverse Patterns

- R. Srikant and R. Agrawal, "Mining generalized association rules", VLDB'95
- Y. Aumann and Y. Lindell, "A Statistical Theory for Quantitative Association Rules", KDD'99
- K. Wang, Y. He, J. Han, "Pushing Support Constraints Into Association Rules Mining", IEEE Trans. Knowledge and Data Eng. 15(3): 642-658, 2003
- D. Xin, J. Han, X. Yan and H. Cheng, "On Compressing Frequent Patterns", Knowledge and Data Engineering, 60(1): 5-29, 2007
- D. Xin, H. Cheng, X. Yan, and J. Han, "Extracting Redundancy-Aware Top-K Patterns", KDD'o6
- J. Han, H. Cheng, D. Xin, and X. Yan, "Frequent Pattern Mining: Current Status and Future Directions", Data Mining and Knowledge Discovery, 15(1): 55-86, 2007
- F. Zhu, X. Yan, J. Han, P. S. Yu, and H. Cheng, "Mining Colossal Frequent Patterns by Core Pattern Fusion", ICDE'07

References: Constraint-Based Frequent Pattern Mining

- R. Srikant, Q. Vu, and R. Agrawal, "Mining association rules with item constraints", KDD'97
- R. Ng, L.V.S. Lakshmanan, J. Han & A. Pang, "Exploratory mining and pruning optimizations of constrained association rules", SIGMOD'98
- G. Grahne, L. Lakshmanan, and X. Wang, "Efficient mining of constrained correlated sets", ICDE'oo
- J. Pei, J. Han, and L. V. S. Lakshmanan, "Mining Frequent Itemsets with Convertible Constraints", ICDE'01
- J. Pei, J. Han, and W. Wang, "Mining Sequential Patterns with Constraints in Large Databases", CIKM'02
- F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi, "ExAnte: Anticipated Data Reduction in Constrained Pattern Mining", PKDD'03
- F. Zhu, X. Yan, J. Han, and P. S. Yu, "gPrune: A Constraint Pushing Framework for Graph Pattern Mining", PAKDD'07

References: Sequential Pattern Mining

- R. Srikant and R. Agrawal, "Mining sequential patterns: Generalizations and performance improvements", EDBT'96
- M. Zaki, "SPADE: An Efficient Algorithm for Mining Frequent Sequences", Machine Learning, 2001
- J. Pei, J. Han, B. Mortazavi-Asl, J. Wang, H. Pinto, Q. Chen,
 U. Dayal, and M.-C. Hsu, "Mining Sequential Patterns by Pattern-Growth: The PrefixSpan Approach", IEEE TKDE, 16(10), 2004
- X. Yan, J. Han, and R. Afshar, "CloSpan: Mining Closed Sequential Patterns in Large Datasets", SDM'03
- J. Pei, J. Han, and W. Wang, "Constraint-based sequential pattern mining: the pattern-growth methods", J. Int. Inf. Sys., 28(2), 2007
- M. N. Garofalakis, R. Rastogi, K. Shim: Mining Sequential Patterns with Regular Expression Constraints. IEEE Trans. Knowl. Data Eng. 14(3), 2002
- H. Mannila, H. Toivonen, and A. I. Verkamo, "Discovery of frequent episodes in event sequences", Data Mining and Knowledge Discovery, 1997

61

References: Graph Pattern Mining

- C. Borgelt and M. R. Berthold, Mining molecular fragments: Finding relevant substructures of molecules, ICDM'02
- J. Huan, W. Wang, and J. Prins. Efficient mining of frequent subgraph in the presence of isomorphism, ICDM'03
- A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data, PKDD'oo
- M. Kuramochi and G. Karypis. Frequent subgraph discovery, ICDM'01
- S. Nijssen and J. Kok. A Quickstart in Frequent Structure Mining can Make a Difference. KDD'04
- N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from semistructured data, ICDM'02
- X. Yan and J. Han, gSpan: Graph-Based Substructure Pattern Mining, ICDM'02
- X. Yan and J. Han, CloseGraph: Mining Closed Frequent Graph Patterns, KDD'03
- X. Yan, P. S. Yu, J. Han, Graph Indexing: A Frequent Structure-based Approach, SIGMOD'04
- X. Yan, P. S. Yu, and J. Han, Substructure Similarity Search in Graph Databases, SIGMOD'05