EE230 Homework 1 NGSPICE simulation of RC and RLC circuits

Rohan Rajesh Kalbag, 20D170033

January 12, 2022

1 Overview of the experiment

1.1 Aim of the experiment

To simulate RC Integrator, RC Differentiator, RC lowpass, RC highpass, RC bandpass and RLC bandpass circuits using NGSPICE and realise the circuit diagrams using XCircuit.

1.2 Method

Netlists were made for simulating the circuits in NGSPICE. Xcircuit was used to make the circuit diagrams.

2 Design

2.1 Circuit Diagrams

 $RC\ Differentiator\ Circuit$

 $RC\ Lowpass\ Filter\ Circuit$

RC Highpass Filter Circuit

 $RC\ Bandpass\ Filter\ Circuit$

 $RLC\ Bandpass\ Filter\ Circuit$

3 Code Snippets

3.1 B1 - RC Integrator

3.1.1 $T = 10\tau$

RC Integrator

* Components

r
1 $1\ 2\ 10k$

 $c1\ 2\ 0\ 0.1u$

V1 1 0 pulse(0 5 0 0 0 0.01 0.02)

* Analysis Command

.tran $0.01 \text{m} \ 0.06$

.control

run

plot v(1) v(2)

 $.\\ end c$

 $.\\ end$

3.1.2 $T = 5\tau$

RC Integrator $* \ Components \\ r1\ 1\ 2\ 10k \\ c1\ 2\ 0\ 0.1u \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.005\ 0.01) \\ * \ Analysis\ Command \\ .tran\ 0.01m\ 0.03 \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

3.1.3 $T = \tau$

RC Integrator $* \text{ Components} \\ \text{r1 1 2 10k} \\ \text{c1 2 0 0.1u} \\ \text{V1 1 0 pulse} (0 5 0 0 0 0.001 0.002) \\ * \text{ Analysis Command} \\ . \text{tran 0.001m 0.006} \\ . \text{control} \\ \text{run} \\ \text{plot v(1) v(2)} \\ . \text{endc} \\ . \text{end}$

3.1.4 $T = 0.5\tau$

RC Integrator $* Components \\ r1 1 2 10k \\ c1 2 0 0.1u \\ V1 1 0 pulse (0 5 0 0 0 0.0005 0.001) \\ * Analysis Command \\ .tran 0.001m 0.003 \\ .control \\ run \\ plot v(1) v(2) \\ .endc \\ .end$

3.1.5 $T = 0.1\tau$

RC Integrator $* \ Components \\ r1\ 1\ 2\ 10k \\ c1\ 2\ 0\ 0.1u \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.0001\ 0.0002) \\ * \ Analysis\ Command \\ .tran\ 0.0001m\ 0.0006 \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

3.1.6 $T = 0.05\tau$

RC Integrator $* \ Components \\ r1\ 1\ 2\ 10k \\ c1\ 2\ 0\ 0.1u \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.05m\ 0.1m) \\ * \ Analysis\ Command \\ .tran\ 0.01u\ 0.3m \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

3.2 B2 - RC Differentiator

3.2.1 $T = 10\tau$

RC Differentiator $* \ Components \\ c1\ 1\ 2\ 0.1u \\ r1\ 2\ 0\ 10k \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 10m\ 20m) \\ * \ Analysis\ Command \\ .tran\ 0.02m\ 60m \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

3.2.2 $T = 5\tau$

RC Differentiator $* \ Components \\ c1\ 1\ 2\ 0.1u \\ r1\ 2\ 0\ 10k \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.005\ 0.01) \\ * \ Analysis\ Command \\ .tran\ 0.002m\ 0.03 \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

3.2.3 $T = \tau$

RC Differentiator $* \ Components \\ c1\ 1\ 2\ 0.1u \\ r1\ 2\ 0\ 10k \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.001\ 0.002) \\ * \ Analysis\ Command \\ .tran\ 0.002m\ 0.006 \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

3.2.4 $T = 0.5\tau$

RC Differentiator $* \ Components \\ c1\ 1\ 2\ 0.1u \\ r1\ 2\ 0\ 10k \\ V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.5m\ 1m) \\ * \ Analysis\ Command \\ .tran\ 0.002m\ 3m \\ .control \\ run \\ plot\ v(1)\ v(2) \\ .endc \\ .end$

3.2.5 $T = 0.1\tau$

RC Differentiator * Components $c1\ 1\ 2\ 0.1u$ $r1\ 2\ 0\ 10k$ $V1\ 1\ 0\ pulse(0\ 5\ 0\ 0\ 0\ 0.1m\ 0.2m)$ * Analysis Command .tran $0.002m\ 0.6m$.control run plot $v(1)\ v(2)$.endc .end

3.2.6 $T = 0.05\tau$

RC Differentiator $* Components \\ c1 1 2 0.1u \\ r1 2 0 10k \\ V1 1 0 pulse(0 5 0 0 0 0.05m 0.1m) \\ * Analysis Command \\ .tran 0.0001m 0.3m \\ .control \\ run \\ plot v(1) v(2) \\ .endc \\ .end$

3.3 B3 - RC Lowpass Filter

RC lowpass filter
*Components
r1 1 2 10k
c1 2 0 0.1u
V1 1 0 dc 0 ac 1 \$ac analysis
*Analysis Command
.ac dec 10 1m 100k
.control
run
plot vdb(2)
.endc
.end

3.4 B4 - RC Highpass Filter

```
RC highpass filter
*Components
c1 1 2 0.1u
r1 2 0 10k
V1 1 0 dc 0 ac 1 $ac analysis
*Analysis Command
.ac dec 10 1m 100k
.control
run
plot vdb(2)
.endc
.end
```

3.5 B5 - RC Bandpass Filter

```
RC bandpass filter
*Components
r1 1 2 10k
c1 2 3 0.1u
r2 3 0 10k
c2 3 0 0.1u
V1 1 0 dc 0 ac 1 $ac analysis
*Analysis Command
.ac dec 500 1m 10Meg
.control
run
plot vdb(3)
print vdb(3)
.endc
.end
```

3.6 B5 - RLC Bandpass Filter

RLC bandpass filter
*Components
11 1 2 10m
c1 2 3 0.1u
r2 3 0 1k
V1 1 0 dc 0 ac 1 \$ac analysis
*Analysis Command
.ac dec 500 10m 1000Meg
.control
run
plot vdb(3)
print vdb(3)
.endc
.end

3.7 Simulation Plots

 $\begin{array}{ll} RC\ Integrator\ for\ T=10\tau \\ V(1):\ Vin,\ V(2):\ Vout \end{array}$

RC Integrator for $T = 5\tau$ V(1): Vin, V(2): Vout

RC Integrator for $T = \tau$ V(1): Vin, V(2): Vout

RC Integrator for $T=0.5\tau$ V(1): Vin, V(2): Vout

RC Integrator for $T = 0.1\tau$ V(1): Vin, V(2): Vout

RC Integrator for $T = 0.01\tau$ V(1): Vin, V(2): Vout

RC Differentiator for $T = 10\tau$ V(1): Vin, V(2): Vout

RC Differentiator for $T = 5\tau$ V(1): Vin, V(2): Vout

RC Differentiator for $T = \tau$ V(1): Vin, V(2): Vout

 $\begin{array}{ll} RC \ Differentiator \ for \ T=0.5\tau \\ V(1): \ Vin, \ V(2): \ Vout \end{array}$

 $\begin{array}{ll} RC \ \textit{Differentiator for} \ T = 0.1\tau \\ V(1) \colon \ \textit{Vin}, \ V(2) \colon \ \textit{Vout} \end{array}$

RC Differentiator for $T = 0.01\tau$ V(1): Vin, V(2): Vout

Amplitude Bode Plot for RC Lowpass Filter vdb(2): $20log_{10}(|V_{out}|)$

Amplitude Bode Plot for RC Highpass Filter vdb(2): $20log_{10}(|V_{out}|)$

Amplitude Bode Plot for RC Bandpass Filter vdb(3): $20log_{10}(|V_{out}|)$

Amplitude Bode Plot for RLC Bandpass Filter vdb(3): $20log_{10}(|V_{out}|)$

Experimental Results 4

4.1 Parameters obtained for RC and RLC Bandpass filters experimentally

RC Bandpass 4.1.1

Peak Amplitude: -9.542 dB

 f_{center} : 159.22 Hz $f_{lower}: 48.30 \text{ Hz}$ $f_{upper}: 524.81 \text{ Hz}$

4.1.2RLC Bandpass

Peak Amplitude : $-2.97 \times 10^{-7} \text{ dB} \approx 0 \text{ dB}$

 $f_{center}: 5035.01 \text{ Hz}$ $f_{lower}: 1465.54 \text{ Hz}$ $f_{upper}: 17298.16 \text{ Hz}$

Parameters obtained for RC and RLC Bandpass filters 4.2 theoretically

4.2.1RC Bandpass

Peak Amplitude: $-20log_{10}(3) = -9.54 \text{ dB}$

feat Amphedee. 2010910 (8) f_{center} : $\frac{1}{2\pi RC} = 159.15 \text{ Hz}$ f_{lower} : $\frac{(\sqrt{13}-3)}{4\pi RC} = 48.189 \text{ Hz}$ f_{upper} : $\frac{(\sqrt{13}+3)}{4\pi RC} = 525.65 \text{ Hz}$

4.2.2**RLC Bandpass**

Peak Amplitude: $20log_{10}(1) = 0$ dB f_{center} : $\frac{1}{2\pi\sqrt{LC}} = \frac{10^{4.5}}{2\pi} = 5032.93$ Hz

 f_{lower} : $(\sqrt{\frac{R^2}{4L^2} + \frac{1}{LC}} - \frac{R}{2L}) \cdot \frac{1}{2\pi} = 1457.99 \text{ Hz}$

 f_{upper} : $(\sqrt{\frac{R^2}{4L^2} + \frac{1}{LC}} + \frac{R}{2L}) \cdot \frac{1}{2\pi} = 17373.51 \text{ Hz}$