Sisteme și algoritmi distribuiți Curs 1 FMI – UNIBUC 2024 - 2025

Organizare

Curs 2h/saptamana: A. P.

Laborator 2h/saptamana: Marius Mihailescu

Evaluare:

- 1. Examen scris (50%)
- 2. Teme laborator (50%)

Promovare: nota 5 examen + nota 5 laborator.

Materiale și comunicare: platforma Teams.

Adresa e-mail: andrei.patrascu@fmi.unibuc.ro

Plan materie

- 1. Introducere. Modele și arhitecturi SD.
- 2. Comunicație în SD. Ceasuri logice.
- 3. Sisteme sincrone
 - 3.1 Algoritmi OSD: alegere lider, consens, sincronizare
 - 3.2 Defecte
 - 3.3 Consens și alte probleme numerice: medie, evaluare funcții, sisteme liniare
 - 3.4 Toleranță la defecte

4. Sisteme asincrone

- 4.1 Organizarea SDa: teorema imposibilitate, consens relaxat
- 4.2 Medie și sisteme liniare în context asincron
- 4.3 Toleranță la defecte

5. Algoritmi distribuiți aleatori:

- 5.1 Paradigma gossip
- 5.2 Consens și alte probleme
- 5.3 Toleranță la defecte

Client-Server

• Un nod/proces are calitatea de client sau server

• **Server** = entitate care ofera un serviciu

• Client = entitate care apeleaza un serviciu

Client-Server

Sistem multiprocesor structurat

- Fiecare nod are aceleași capacități
- Comunicație sigură între procese
- Identificator unic per proces
- Folosită în "cluster (parallel) computing"

Sisteme nestructurate (peer-to-peer)

Exemplu: Cloud Computing, Sisteme de stocare

- Specifice modelelor generale de "sisteme distribuite"
- Nodurile nu au un identificator unic global
- Comunicatia intre doua noduri se realizeaza prin muchiile disponibile
- Topologia potential variabila in timp
- Posibile defecte pe legaturi sau noduri

Sistem distribuit

Sistem distribuit = o colecție de procese autonome care comunică peste o rețea (topologie) cu următoarele proprietăți:

- **Fiecare nod are o "vedere" locală asupra sistemului.** Un nod al sistemului cunoaște și comunică cu propria vecinătate, neavând acces la informații globale. În general, există o separare geografică a nodurilor.
- Nu există un ceas fizic comun. Acestui aspect se datorează caracterul "distribuit" al sistemului și este cel care cauzează lipsa sincronizării între noduri.
- **Nu există memorie partajată.** Proprietate care aduce necesitatea comunicației prin mesaje (în absența unui ceas global).
- Autonomia și eterogenitatea nodurilor. Noduri sunt "slab cuplate", au viteze diferite de execuție, au sisteme de operare diferite.

Sistem distribuit vs. Sistem paralel

Sistem MIMD cu memorie distribuită

- Fiecare procesor are memorie proprie (arhitectura locală cu RISC şi memorie ierarhică, de obicei)
- Comunicaţia se face printr-o reţea de comunicaţie, prin mesaje explicite
- Operaţii favorizate: paralele, la nivel de bloc
- Comunicaţia prin mesaje necesită algoritmi dedicaţi

MIMD cu memorie distribuită

Inel P_0 P_1 \cdots P_{p-1}

Grila/Tor

Hipercub

Frontier

Rank	System	Cores	Rmax (PFlop/s)	Rpeak (PFlop/s)	Power (kW)
1	Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE DOE/SC/Oak Ridge National Laboratory United States	8,699,904	1,206.00	1,714.81	22,786
2	Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max, Slingshot-11, Intel DOE/SC/Argonne National Laboratory United States	9,264,128	1,012.00	1,980.01	38,698
3	Eagle - Microsoft NDv5, Xeon Platinum 8480C 48C 2GHz, NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure Microsoft Azure United States	2,073,600	561.20	846.84	
4	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442.01	537.21	29,899
5	LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE EuroHPC/CSC Finland	2,752,704	379.70	531.51	7,107

Frontier cluster

- > 9.472 CPU AMD Epyc 7713 (64 cores)
 - ➤ 606.208 core-uri
- > 74 rack-cabinets
- ➤ 1 rack-cabinet are 64 server-blades
- ➤ 1 server-blade are 2 noduri
- ➤ Nodurile sunt structurate pe grupuri; grupurile sunt conectate intr-o topologie "dragonfly"

Sistem paralel (Cluster computing)

- ➤ Informații globale disponibile: număr de noduri ale rețelei, topologia rețelei, distribuția datelor în rețea, indexarea globală a nodurilor
 - > Control asupra distribuției datelor
 - > Control asupra execuției locale per nod
 - > Control asupra implicării nodurilor în rețea
- ➤ **Timp de comunicație** inter-noduri neglijabil/mărginit (apropiere geografică)
 - > Sincronizare: ceas fizic comun
- > Topologie statică
- > Probabilitatea scăzută a defectelor
- ➤ Complexitatea timp vs. complexitatea mesaj

Exemple (clasificare software)

Motoare de căutare

- Alg. PageRank
- Combină paradigmele anterioare

Exemple (clasificare software)

Sistem bancare

- Sistem informațional
- Nod = replică baze de date
- Probleme de consistență etc.

Exemple (clasificare software)

- Distributed Computing Systems
 - Folosite pentru calcul de înaltă performanță
 - Sisteme Cluster Cloud

- Distributed Information Systems
 - Integrare funcții de business
 - Procesare tranzacții

Model SD

- \triangleright Noduri: P_0, P_1, \dots, P_{n-1}
- \triangleright Rețea de comunicație G = (V, E)
 - $V = \{P_0, P_1, \dots, P_{n-1}\}$
 - $(i,j) \in E$ dacă există muchie între nodurile P_i și P_j
- \triangleright Starea nodului P_i se exprima $x_i : \mathbb{N} \to \mathcal{D}$
- \triangleright Stare nod P_i la momentul de timp $t: x_i(t)$
 - > Temperatură
 - ➤ Locație-Viteză
 - ➤ Vot-Opinie

Model Proces

- Un proces primește informație la intrare (mesaje de la vecini), stocată în I_i
- Calculează noua stare pe baza info de input; în plus, depune în O_i mesaje pentru transmitere
- Transmite mesajele din O_i către vecinii de ieșire
- Reprezentăm transferul de mesaje ca evenimente separate reușite/eșuate

Model Proces

Mai formal:

- $I_i(t), O_i(t), x_i(t)$ buffer-ele de intrare și ieșire, și starea la momentul t
- Nodul *i* primește mesajul *m* la intrare: $I_i(t+1) = I_i(t)/\{m\}$
- Calculează noua stare pe baza intrării: $f_i(x_i(t), m) \rightarrow (x_i(t+1), \{m_1, ..., m_k\})$
- Transmite mesajele de ieșire: $O(t+1) = O_i(t) \cup \{m_1, ..., m_k\}$
- Considerăm I/O evenimente separate în rețele supuse la defecte

Modelul principal în SD sincron

Evenimente posibile:

- Operații locale pe baza $I_i(t)$ și $x_i(t)$: e.g. calcule numerice
- Evenimente de livrare de mesaje

Modelul principal în SD sincron

Starea globală a sistemului la momentul t :

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \\ x_5(t) \\ x_6(t) \end{bmatrix}$$

Starea inițială a sistemului:

$$x(0) = \begin{bmatrix} 0 \\ a \\ 1,5 \\ NULL \\ NULL \\ NULL \end{bmatrix} \Rightarrow x(1) = \begin{bmatrix} 1 \\ ab \\ 3 \\ NULL \\ NULL \\ NULL \\ NULL \end{bmatrix}$$

Modelul principal in SD sincron

Modelul principal in SD sincron

Diagrama spatiu-timp:

- Fiecare proces are propria vedere locală asupra evenimentelor
- Exprimă precedența cauzală între evenimente

Executie - traiectorie

Rețele supuse la defecte: posibile pierderi pe comunicația de mesaje (packets loss) sau defecte pe noduri (crash-faults). Procesele pornesc din starea inițială x(0).

• O traiectorie/execuție: un șir (in)finit $x(0), e(1), x(1), e(2), x(2), \dots$

Rețele sigure: nu se iau în calcul pierderi de pachete sau defecte

• O traiectorie/execuție: un șir (in)finit

$$x(0), x(1), x(2), \dots$$

Model in SD asincron

In contextual asincron, P_i are propriul ceas local, cu increment independent față de celelalte noduri.

Modelul principal în SD sincron

Starea globală a sistemului la momentul t :

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \\ x_5(t) \\ x_6(t) \end{bmatrix}$$

Starea inițială a sistemului:

$$x(0) = \begin{bmatrix} 0 \\ a \\ 1,5 \\ NULL \\ NULL \\ NULL \end{bmatrix} \Rightarrow x(1) = \begin{bmatrix} 1 \\ ab \\ 3 \\ NULL \\ NULL \\ NULL \end{bmatrix}$$

Modelul principal în SD sincron

