Linguagens Formais e Autômatos

Prof: Maurilio Martins Campano Júnior

Formas Normais

- Suponha uma GLC = (V, T, P, S), onde P é formada de acordo com as seguintes regras (suponha que A, B, C são variáveis de V e a é terminal de T):
 - Forma Normal de Chomsky
 - $A \rightarrow BC$
 - $A \rightarrow a$
 - Forma Normal de Greibach
 - $A \rightarrow a\alpha$

- Uma GLC = (V, T, P, S), é dita estar na Forma normal de Chomsky se todas as suas produções são da forma (suponha que A, B, C são variáveis de V e a é terminal de T):
 - $A \rightarrow BC$
 - ou
 - $A \rightarrow a$

• Portanto, a palavra vazia não pertence à linguagem gerada por uma gramática na FNC

- O algoritmo para transformar uma GLC qualquer (que não possua a palavra vazia na linguagem), em uma gramática na FNC é dividido em três etapas:
 - Etapa 1: simplificação da gramática
 - Etapa 2: transformação do lado direito das produções de comprimento maior ou igual a dois
 - Etapa 3: transformação do lado direito das produções de comprimento maior ou igual a três, em produções com exatamente duas variáveis

- O algoritmo para transformar uma GLC qualquer (que não possua a palavra vazia na linguagem), em uma gramática na FNC é dividido em três etapas:
 - Etapa 1: simplificação da gramática
 - Simplifica a gramática, excluindo as produções vazias (como a linguagem não possui a palavra vazia, todas as produções da forma A → λ podem ser excluídas, produções da forma A → B (se o lado direito de alguma produção tiver somente um símbolo, este será terminal) e, opcionalmente, os símbolos inúteis

- O algoritmo para transformar uma GLC qualquer (que não possua a palavra vazia na linguagem), em uma gramática na FNC é dividido em três etapas:
 - **Etapa 2**: transformação do lado direito das produções de comprimento maior ou igual a dois
 - Garante que o lado direito das produções de comprimento maior ou igual a dois é composto exclusivamente por variáveis. A exclusão de um terminal a pode ser realizada, substituindo-se este por uma variável intermediária C_a e incluindo a produção $C_a \rightarrow a$

- O algoritmo para transformar uma GLC qualquer (que não possua a palavra vazia na linguagem), em uma gramática na FNC é dividido em três etapas:
 - **Etapa 3**: transformação do lado direito das produções de comprimento maior ou igual a três, em produções com exatamente duas variáveis
 - Garante que o lado direito das produções de comprimento maior do que um é composto exatamente por duas variáveis. Após a execução da etapa acima, o lado direito das produções da forma A→ B₁B₂...B_n (n ≥ 2) é composto exclusivamente por variáveis. Portanto, para concluir a transformação, é suficiente garantir que o lado direito é composto por exatamente duas variáveis. Isto é possível, gerando-se B₁B₂...B_n em diversas etapas, e usando-se variáveis intermediárias

- Seja G = (V, T, P, S) uma GLC, tal que λ ∉ Linguagem(G). O algoritmo para transformar na FNC é como segue:
 - Etapa 1: Simplificação da gramática.
 - **Etapa 2:** transformação do lado direito das produções de comprimento maior ou igual a dois
 - **Etapa 3:** transformação do lado direito das produções de comprimento maior ou igual a três, em produções com exatamente duas variáveis

- Etapa 1: Simplificação da gramática. As seguintes simplificações:
 - Produções vazias
 - Produções que substituem variáveis
 - Símbolos inúteis (opcional)

devem ser realizadas usando os algoritmos de simplificação descritos anteriormente, resultando na gramática:

•
$$G_1 = (V_1, T_1, P_1, S)$$

- Etapa 2: transformação do lado direito das produções de comprimento maior ou igual a dois
 - A gramática resultante desta etapa é:
 - $G_2 = (V_2, T_1, P_2, S)$ na qual V_2 e P_2 são construídos conforme o algoritmo

apresentado abaixo (para cada variável a, suponha $C_a \notin V_2$)

```
\begin{split} &V_2 = V_1 \\ &P_2 = P_1 \\ &\text{para} \quad \text{toda } A \to X_1 X_2 X_n \in P_2 \text{ tal que } n \geq 2 \\ &\text{faça} \quad \text{se} \quad \text{para } r \in \{1,...,n\}, \, X_r \text{ \'e um s\'mbolo terminal} \\ &\quad \text{ent\~ao} \text{ (suponha } X_r = a) \\ &\quad V_2 = V_2 \text{ U } \{C_a\} \\ &\quad \text{substitui a por } C_a \text{ em } A \to X_1 X_2 ... X_n \in P_2 \\ &\quad P_2 = P_2 \text{ U } \{C_a \to a\} \end{split}
```

- **Etapa 3:** transformação do lado direito das produções de comprimento maior ou igual a três, em produções com exatamente duas variáveis
 - A gramática resultante desta etapa é:
 - G₃ = (V₃, T₁, P₃, S)
 na qual V₃ e P₃ são construídos conforme o algoritmo apresentado abaixo (a cada ciclo, suponha D₁ ∉ V₃,...,D_{n-2} ∉ V₃)

```
\begin{array}{lll} V_3 = V_2 \\ P_3 = P_2 \\ para & toda \ A \to B_1 B_2 \dots B_n \in P_3 \ tal \ que \ n \geq 3 \\ faça & P_3 = P_3 - \{A \to B_1 B_2 \dots B_n\} \\ & V_3 = V_3 \ U \ \{D_1, \dots D_{n-2}\} \\ & P_3 = P_3 \ U \ \{A \to B_1 D_1, \ D_1 \to B_2 D_2, \dots, \ D_{n-3} \to B_{n-2} D_{n-2}, \ D_{n-2} \to B_{n-1} B_n\} \end{array}
```

- Considere a seguinte GLC = (V, T, P, E), na qual:
 - $V = \{E\}$
 - $T = \{+, *, [,], x\}$
 - $P = \{E \rightarrow E + E \mid E * E \mid [E] \mid x\}$

- Considere a seguinte GLC = (V, T, P, E), na qual:
 - $V = \{E\}$
 - $T = \{+, *, [,], x\}$
 - $P = \{E \rightarrow E + E \mid E * E \mid [E] \mid x\}$
- Etapa 1: a gramática já se encontra simplificada

- Considere a seguinte GLC = (V, T, P, E), na qual:
 - $V = \{E\}$
 - $T = \{+, *, [,], x\}$
 - $P = \{E \rightarrow E + E \mid E * E \mid [E] \mid x\}$
- Etapa 2: excetuando-se a produção $E \rightarrow x$, as demais devem ser substituídas como segue:
 - $E \rightarrow EC_{+}E \mid EC_{*}E \mid C_{\lceil}EC_{\rceil}$
 - $C_+ \rightarrow +$
 - $C_* \rightarrow *$
 - $C_{\Gamma} \rightarrow [$
 - $C_1 \rightarrow]$

- Considere a seguinte GLC = (V, T, P, E), na qual:
 - $V = \{E\}$
 - $T = \{+, *, [,], x\}$
 - $P = \{E \rightarrow E + E \mid E * E \mid [E] \mid x\}$
- Etapa 3: as produções:
 - $E \rightarrow EC_{+}E \mid EC_{*}E \mid C_{[}EC_{]}$ devem ser substituídas como segue
 - $E \rightarrow ED_1 \mid ED_2 \mid C_{\lceil}D_3$
 - $D_1 \rightarrow C_+E$
 - $D_2 \rightarrow C_*E$
 - $D_3 \rightarrow EC_1$

- Considere a seguinte GLC = (V, T, P, E), na qual:
 - $V = \{E\}$
 - $T = \{+, *, [,], x\}$
 - $P = \{E \rightarrow E + E \mid E * E \mid [E] \mid x\}$
- A gramática resultante, na FNC, é a seguinte:
 - GFNC = ({E, C+, C*, C[, C], D1, D2, D3}, {+, *, [,], x}, P_{FNC} , E), onde:

```
 \begin{array}{ll} \bullet & P_{FNC} = \{E \rightarrow ED_1 \mid ED_2 \mid C_{[}D_3 \mid x \\ & D_1 \rightarrow C_{+}E \\ & D_2 \rightarrow C_{*}E \\ & D_3 \rightarrow EC_{]} \\ & C_{+} \rightarrow + \\ & C_{*} \rightarrow * \\ & C_{[} \rightarrow [ \\ & C_{]} \rightarrow ] \\ & \} \end{array}
```

Forma Normal de Chomsky - Exercícios

- Simplifique as seguintes GLC e coloque na FNC
- a) Seja uma GLC, $G = (\{L, S, E\}, \{a, (,)\}, R, L)$, onde R: $L \rightarrow (S)$ $S \rightarrow SE \mid \lambda$ $E \rightarrow a \mid L$

$$L \rightarrow AX \mid AB$$

$$S \rightarrow SE \mid a \mid AX \mid AB$$

$$E \rightarrow a \mid AX \mid AB$$

$$X \rightarrow SB$$

$$A \rightarrow ($$

$$B \rightarrow)$$

Forma Normal de Chomsky - Exercícios

b)
$$P \rightarrow ABa \mid b$$

 $A \rightarrow aA \mid B$
 $B \rightarrow bA \mid \lambda$

$$P \rightarrow AZ \mid BX \mid AX \mid a \mid b$$

 $A \rightarrow XA \mid YA \mid a$
 $B \rightarrow YA$
 $Z \rightarrow BX$
 $X \rightarrow a$
 $Y \rightarrow b$

a)
$$S \rightarrow AB \mid SCB$$

$$A \rightarrow aA \mid C$$

$$B \rightarrow bB \mid b$$

$$C \rightarrow cC \mid \lambda$$

b)
$$S \rightarrow aAd \mid A$$

$$A \rightarrow Bc \mid \lambda$$

$$B \rightarrow Ac \mid a$$

c)
$$S \rightarrow A \mid B \mid ABS$$

 $A \rightarrow aA \mid \lambda$
 $B \rightarrow aBAb \mid \lambda$

d)
$$S \rightarrow AB \mid CSB$$

 $A \rightarrow aB \mid C$
 $B \rightarrow bbB \mid b$

e)
$$S \rightarrow A \mid ABa \mid AbA$$

 $A \rightarrow Aa \mid \lambda$
 $B \rightarrow Bb \mid BC$
 $C \rightarrow CB \mid CA \mid bB$

f)
$$S \rightarrow AB \mid BCS$$

 $A \rightarrow aA \mid C$
 $B \rightarrow bbB \mid b$
 $C \rightarrow cC \mid \lambda$

g)
$$S \rightarrow aAd \mid A \mid \lambda$$

 $A \rightarrow Bc \mid c$
 $B \rightarrow Ac$