

Πανεπιστήμιο Πατρών Τμήμα Μηχανικών Η/Υ και Πληροφορικής

Εξόρυξη Δεδομένων και Αλγόριθμοι Μάθησης Υλοποιητικό Project 2025

Table of Contents

Δομή Προγράμματος	3
Ερώτημα 1	4
Περιγραφή Υλοποίησης	4
Πληροφορίες Στηλών	4
Συγκεντρωτικά Στατιστικά Μεγέθη	6
Γραφικές Αναπαραστάσεις	7
	8
Συσχετίσεις	11
Ερώτημα 2	14
Μείωση Συνόλου Δεδομένων	14
Δειγματοληψία	15
Ερώτημα 3	17
Περιγραφή Υλοποίησης	17
Αξιολόγηση	18
Sampled Data, Binary Classification, MLP	18
Sampled Data, Binary Classification, SVM	18
Sampled Data, Multiclass Classification, MLP	19
Sampled Data, Multiclass Classification, SVM	19
K-means Data, Binary Classification, MLP	20
K-means Data, Binary Classification, SVM	20
K-means Data, Multiclass Classification, MLP	21
K-means Data, Multiclass Classification, SVM	21
Birch Data, Binary Classification, MLP	22
Birch Data, Binary Classification, SVM	22
Birch Data, Multiclass Classification, MLP	23
Birch Data, Multiclass Classification, SVM	23
Σχολιασμός Αποτελεσμάτων	24

Δομή Προγράμματος

Ο κώδικας για την υλοποίηση των ερωτημάτων γράφτηκε σε Python στο περιβάλλον ανάπτυξης Visual Studio Code. Οι βιβλιοθήκες που χρησιμοποιήθηκαν ήταν οι: pandas, matplotlib, io, pathlib, time, sklearn και numpy.

Η εγκατάστασή τους γίνεται πληκτρολογώντας στο terminal, στο κατάλληλο folder:

```
pip install pandas
pip install numpy
pip install matplotlib
pip install scikit-learn
```

Για να τρέξει το πρόγραμμα απαιτείται το αρχείο δεδομένων να ονομάζεται "data.csv" και να βρίσκεται σε folder με όνομα "data", ο οποίος πρέπει να βρίσκεται στον ίδιο folder πατέρα με τον folder των αρχείων κώδικα. Τα αρχεία κώδικα πρέπει να βρίσκονται στον folder "src". Τέλος ο folder "documentation" περιέχει την pdf αναφορά. Όλα τα αρχεία και folders έχουν σταλεί σε αυτή τη δομή στο zip, με εξαίρεση το dataset. Η δομή του αρχείου είναι η ακόλουθη.

Ερώτημα 1

Περιγραφή Υλοποίησης

Πληροφορίες Στηλών

Στο παρόν ερώτημα έχει χρησιμοποιηθεί για τα υποερωτήματα, κατά κύριο λόγο η βιβλιοθήκη pandas. Το πρώτο ζητούμενο που αφορά την εύρεση πληροφοριών σχετικά με τις στήλες του dataset υλοποιείται μέσω της συνάρτησης info() της προαναφερθείσας βιβλιοθήκης. Το πρόγραμμα κάνει export ως csv τα αποτελέσματα στον folder "data" στο αρχείο "info.csv". Το περιεχόμενο του αρχείου φαίνεται παρακάτω.

Info

<class

'pandas.core.frame.DataFrame'> RangeIndex: 8656767 entries, 0 to 8656766

Data columns (total 86 columns):

Bata colamno (total co	oolallilo).
# Column	Dtype
0 Flow ID	object
1 Src IP	object
2 Src Port	float64
3 Dst IP	object
4 Dst Port	int64
5 Protocol	float64
6 Timestamp	object
7 Flow Duration	float64
8 Total Fwd Packet	float64
9 Total Bwd packets	float64
10 Total Length of Fv float64	vd Packet
11 Total Length of By float64	vd Packet
12 Fwd Packet Len float64	gth Max
13 Fwd Packet Len	ath Min
float64	igar iviii
14 Fwd Packet Leng float64	gth Mean
15 Fwd Packet Ler float64	gth Std
16 Bwd Packet Len float64	gth Max
17 Bwd Packet Len float64	gth Min

18 Bwd Packet Lengt	h Mean
float64 19 Bwd Packet Leng float64	th Std
20 Flow Bytes/s 21 Flow Packets/s	float64 float64
22 Flow IAT Mean	float64
23 Flow IAT Std	float64
24 Flow IAT Max	float64
25 Flow IAT Min	float64
26 Fwd IAT Total	float64
27 Fwd IAT Mean	float64
28 Fwd IAT Std	float64
29 Fwd IAT Max	float64
30 Fwd IAT Min	float64
31 Bwd IAT Total	float64
32 Bwd IAT Mean	float64
33 Bwd IAT Std	float64
34 Bwd IAT Max	float64
35 Bwd IAT Min	float64
36 Fwd PSH Flags	float64
37 Bwd PSH Flags	float64
38 Fwd URG Flags	float64
39 Bwd URG Flags	float64
40 Fwd Header Le	ngth
float64	
41 Bwd Header Le float64	ngın
42 Fwd Packets/s	float64
43 Bwd Packets/s	float64
44 Packet Length Min	float64
_	
45 Packet Length Max 46 Packet Length M	/lean
float64	
47 Packet Length Std	float64
48 Packet Length Va float64	riance
49 FIN Flag Count	float64
50 SYN Flag Count	float64
51 RST Flag Count	float64
52 PSH Flag Count	float64
53 ACK Flag Count	float64
54 URG Flag Count	float64
55 CWR Flag Count	float64
56 ECE Flag Count	float64
57 Down/Up Ratio	float64
	110at04
58 Average Packet	
float64	Size
	Size

60 Bwd Segment S float64	Size Avg
61 Fwd Bytes/Bulk Avg 62 Fwd Packet/Bo float64	
63 Fwd Bulk Rate Avg	float64
64 Bwd Bytes/Bulk Avg	float64
65 Bwd Packet/B float64	ulk Avg
66 Bwd Bulk Rate Avg	
67 Subflow Fwd F float64	Packets
68 Subflow Fwd Bytes	float64
69 Subflow Bwd F	Packets
float64	
70 Subflow Bwd Bytes	float64
71 FWD Init Win Bytes	float64
72 Bwd Init Win Bytes	float64
73 Fwd Act Data Pkts	float64
74 Fwd Seg Size Min	float64
75 Active Mean	float64
76 Active Std	float64
77 Active Max	float64
78 Active Min	float64
79 Idle Mean	float64
80 Idle Std	float64
81 Idle Max	float64
82 Idle Min	float64
83 Label	object
84 Traffic Type	object
85 Traffic Subtype	object
dtypes: float64(78),	int64(1),
object(7)	5 00
memory usage: 5.	5+ GB

Όπως φαίνεται, συνολικά υπάρχουν 86 στήλες τύπων int64, float64 και object. Υπάρχουν επίσης, 8656767 δείγματα και η χρήση της μνήμης είναι στα 5.5+ GB.

Συγκεντρωτικά Στατιστικά Μεγέθη

Τα συγκεντρωτικά στατιστικά μεγέθη υπολογίζονται μέσω της συνάρτησης describe() της pandas και αποθηκεύονται στον folder "data" ως statistics.csv. Απόσπασμα του περιεχομένου του αρχείου φαίνεται παρακάτω.

	Flow ID	Src IP	Src Port	Dst IP	Dst Port	Protocol
count	8656767	8656767	8656767	8656767	8656767	8656767
unique	951935	13		15		

	192.168.1.59-192.168.1.177-2323-			
top	65055-6	192.168.1.70	192.168.1.90	
freq	904	8540951	8540909	
mean		25633.13	4050.301	6.426944
std		20059.25	12685.83	2.12567
min		0	0	0
25%		6366	0	6
50%		22240	0	6
75%		42342	0	6
max		65535	65535	17

Στο αρχείο φαίνεται το πλήθος των στοιχείων των στηλών, το πλήθος των μοναδικών τιμών, η πιο συχνά εμφανιζόμενη τιμή και η συχνότητά της, η ενδιάμεση τιμή, η τυπική απόκλιση, η ελάχιστη και η μέγιστη τιμή, όπως και τα τεταρτημόρια.

Γραφικές Αναπαραστάσεις

Οι γραφικές παραστάσεις που δημιουργούνται εξαρτώνται από το είδος των δεδομένων της κάθε στήλης. Πιο συγκεκριμένα, για τις κατηγορικές στήλες, δημιουργούνται Bar Plots που απεικονίζουν τις πιο συχνές τιμές (εάν αυτές είναι πάνω από 100 σε πλήθος, τότε απεικονίζονται μόνο οι 20 πιο συχνές για εξοικονόμηση μνήμης). Για τις αριθμητικές στήλες, δημιουργούνται Histograms που απεικονίζουν την κατανομή των τιμών τους, αλλά και Boxplots που δείχνουν την κατανομή και διασπορά της κάθε αριθμητικής στήλης. Τα διαγράμματα αυτά δεν μπορούν όλα να περιληφθούν στην αναφορά λόγο του πλήθους του (υπάρχουν 10 Bar plots, 76 Histograms και 76 Boxplots), οπότε θα παρουσιαστούν συνοπτικά τα συμπεράσματα που προκύπτουν από αυτά.

• Στα bar plots φαίνεται ότι υπάρχει πολύ άνιση κατανομή των κατηγορικών δεδομένων. Για παράδειγμα, η στήλη Label περιέχει περίπου δέκα εκατομμύρια εγγραφές του τύπου Malicious και μόνο 100 του τύπου Bening.

Παρόμοιες κατανομές παρατηρούνται και στις στήλες Dst_IP, Dst_Port και σε άλλες στήλες ακόμα.

• Τα boxplots στην συνέχεια είναι λίγο πιο δύσκολο στην κατανόηση τους. Η πλειοψηφία των boxplots έχει την εξής μορφή:

Λόγο του μεγάλου πλήθος των εγγραφών, δεν μπορεί εύκολα να αναπαρασταθεί ολόκληρη η πληροφορία. Αυτό που κατανοούμε είναι πως οι περισσότερες τιμές τις κάθε αριθμητικής στήλης είναι κοντά μεταξύ τους, αλλά υπάρχουν και συγκεκριμένες τιμές που απέχουν αρκετά από την μέση τιμή. Εξαίρεση αποτελούν οι στήλες Bwd_PSH_Flags και Bwd_URG_Flags που παρουσιάζουν μηδενική απόκλιση από την επικρατούσα τιμή.

• Τέλος, τα histograms παρουσιάζουν την ίδια κατανομή με στην περίπτωση των bar plots.

Που δείχνουν ότι οι πλειοψηφία των τιμών των αριθμητικών στηλών πέφτουν σε ένα συγκεκριμένο εύρος, και τα outliers είναι λίγα.

Από τις παραπάνω γραφικές παραστάσεις και από τα συγκεντρωτικά στατιστικά μεγέθη, γίνεται αντιληπτό πως το csv δεν πρόκειται για ένα ομοιόμορφο αρχείο όπου κάθε στήλη έχει παρόμοιο πλήθος εμφανίσεων της κάθε τιμής, αλλά πρόκειται για ένα αρχείο όπου σε αρκετές στήλες οι τιμές που επικρατούν είναι λίγες.

Συσχετίσεις

Οι συσχετίσεις υπολογίζονται μέσω της συνάρτησης corr() της pandas σε δύο διαφορετικές περιστάσεις. Αρχικά πάνω σε ολόκληρο το dataset "data.csv" και έπειτα πάνω στα στατιστικά "statistics.csv". Από αυτά προκύπτει το μητρώο συσχέτισης και στη συνέχεια κάθε ζεύγος στήλης-γραμμής του μητρώου διατάσσεται ως προς φθίνουσα συσχέτιση. Τα δύο αρχεία που προκύπτουν, αποθηκεύονται στον folder "data" και λέγονται "column_correlation_matrix.xlsx" και "statistics_correlation_matrix.xlsx". Απόσπασμα του μητρώου του πρώτου αρχείου είναι το παρακάτω.

	Flow	Total	Total	Total	Total	Fwd	Fwd	Fwd	Fwd
	Duration	Fwd	Bwd	Length	Length	Packet	Packet	Packet	Packet
		Packet	packets	of Fwd	of Bwd	Length	Length	Length	Length
				Packet	Packet	Max	Min	Mean	Std
Flow Duration	1	0.014302	0.00662	0.022835	0.006789	0.28237	0.199538	0.235432	0.317529
Total Fwd Packet	0.014302	1	0.334657	0.061667	0.028327	-0.0013	-0.00174	-0.00166	0.000684
Total Bwd packets	0.00662	0.334657	1	0.002402	0.217519	-0.00102	-0.00248	-0.00244	0.00104
Total Length of									
Fwd Packet	0.022835	0.061667	0.002402	1	0.001303	0.02968	0.028722	0.029312	0.004577
Total Length of									
Bwd Packet	0.006789	0.028327	0.217519	0.001303	1	-0.00172	-0.00407	-0.00401	0.002377
Fwd Packet Length									
Max	0.28237	-0.0013	-0.00102	0.02968	-0.00172	1	0.962844	0.984035	0.198755
Fwd Packet Length									
Min	0.199538	-0.00174	-0.00248	0.028722	-0.00407	0.962844	1	0.99451	-0.0644
Fwd Packet Length									
Mean	0.235432	-0.00166	-0.00244	0.029312	-0.00401	0.984035	0.99451	1	0.035167
Fwd Packet Length									
Std	0.317529	0.000684	0.00104	0.004577	0.002377	0.198755	-0.0644	0.035167	1

Απόσπασμα των ταξινομημένων ως προς τη συσχέτιση ζευγών είναι το παρακάτω.

Variable 1	Variable 2	Correlation	Absolute Correlation
Bwd Packet Length	•		
Mean	Bwd Segment Size Avg	1	1
Flow Duration	Flow Duration	1	1
Flow Packets/s	Fwd Packets/s	0.999946	0.999946
Fwd Packet Length			
Max	Packet Length Max	0.997144	0.997144
Fwd Packet Length	Fwd Packet Length		
Min	Mean	0.99451	0.99451
Flow IAT Max	Idle Max	0.994274	0.994274

Αντίστοιχα το αρχείο "statistics_correlation_matrix.xlsx" στην πρώτη σελίδα περιέχει το μητρώο:

	mean	std	min	25%	50%	75%	max
mean	1	0.970329	-0.10697	0.548586	0.828101	0.991255	-0.01246
std	0.970329	1	-0.16904	0.53175	0.775734	0.953271	0.196126
min	-0.10697	-0.16904	1	-0.31562	0.024171	-0.05892	0.004024
25%	0.548586	0.53175	-0.31562	1	0.579526	0.508659	-0.00706
50%	0.828101	0.775734	0.024171	0.579526	1	0.803441	-0.0089
75%	0.991255	0.953271	-0.05892	0.508659	0.803441	1	-0.0118
max	-0.01246	0.196126	0.004024	-0.00706	-0.0089	-0.0118	1

Στη δεύτερη σελίδα είναι τα ζεύγη ταξινομημένα.

Variable	Variable	Correlation	Absolute
1	2		Correlation
mean	75%	0.991255	0.991255
mean	std	0.970329	0.970329
std	75%	0.953271	0.953271
mean	50%	0.828101	0.828101
50%	75%	0.803441	0.803441
std	50%	0.775734	0.775734
25%	50%	0.579526	0.579526
mean	25%	0.548586	0.548586
std	25%	0.53175	0.53175
25%	75%	0.508659	0.508659
min	25%	-0.31562	0.315624
std	max	0.196126	0.196126
std	min	-0.16904	0.16904
mean	min	-0.10697	0.106973
min	75%	-0.05892	0.058924
min	50%	0.024171	0.024171
mean	max	-0.01246	0.012463
75%	max	-0.0118	0.011796
50%	max	-0.0089	0.008901
25%	max	-0.00706	0.007058
min	max	0.004024	0.004024

 Από τις ταξινομημένες συσχετίσεις του αρχικού dataset φαίνεται να έχουν μεγάλη συσχέτιση, πάνω από 99% οι στήλες:

Bwd Packet Length Mean Bwd Segment Size Avg

Flow Duration
Flow Packets/s
Fwd Packet Length Max
Fwd Packet Length Min
Flow Duration
Fwd Packets/s
Fwd Packet Length Max
Fwd Packet Length Mean

Flow IAT Max Idle Max

Packet Length Mean Average Packet Size
Bwd Bytes/Bulk Avg Bwd Packet/Bulk Avg

• Στο αρχείο των στατιστικών, από την άλλη φαίνεται να έχουν μεγάλη συσχέτιση τα στατιστικά:

mean 75%

mean std

std 75%

Ερώτημα 2

Μείωση Συνόλου Δεδομένων

Το πρώτο βήμα για την μείωση της διάστασης του αρχείου, είναι να εξετάσουμε ποιες από τις αριθμητικές στήλες εμφανίζουν υψηλή συσχέτιση. Ανατρέχοντας στην δεύτερη σελίδα του "column_correlation_matrix.xlsx", μπορούμε να δούμε τις συσχετίσεις των στηλών με φθίνουσα κατάταξη. Όπως φαίνεται στο κάτω μέρος της σελίδας 10, αυτές είναι οι πρώτες στήλες του αρχείου:

Variable 1	Variable 2	Correlation	Absolute Correlation
Bwd Packet Length		1	
Mean	Bwd Segment Size Avg	1	1
Flow Duration	Flow Duration	1	1
Flow Packets/s	Fwd Packets/s	0.999946	0.999946
Fwd Packet Length			
Max	Packet Length Max	0.997144	0.997144
Fwd Packet Length	Fwd Packet Length		
Min	Mean	0.99451	0.99451
Flow IAT Max	Idle Max	0.994274	0.994274

Από τις στήλες που εμφανίζουν υψηλή συσχέτιση (μεγαλύτερη του 90%), διατηρούμε μόνο την μία ενώ κάνουμε drop την άλλη. Για παράδειγμα, από τις στήλες Flow Packets/s και Fwd Packets/s, κάνουμε drop την Fwd Packets/s και διατηρούμε μόνο την Flow Packets/s. Την διαδικασία αυτή την επαναλαμβάνουμε για όλες της στήλες με correlation μεγαλύτερη του 90%. Επίσης κάνουμε drop μερικές στήλες με μικρή σημασία, όπως είναι για παράδειγμα η Timestamp. Τελικά, οι στήλες που γίνονται drop είναι οι παρακάτω:

```
# Columns to drop
columns_to_drop = [
    'Timestamp', 'Bwd Segment Size Avg', 'Fwd Packets/s', 'Packet Length Max',
    'Fwd Packet Length Mean', 'Flow IAT Max', 'Packet Length Mean',
    'Bwd Packet/Bulk Avg', 'Active Min', 'ACK Flag Count', 'Active Max',
    'Idle Min', 'Bwd IAT Total', 'Fwd Act Data Pkts', 'Fwd IAT Max',
    'Average Packet Size', 'Fwd Packet Length Min', 'Subflow Bwd Packets',
    'Bwd Packet Length Std', 'Bwd IAT Max', 'Fwd IAT Mean', 'Idle Mean',
    'Packet Length Variance'
]
```

Δειγματοληψία

Το επόμενο βήμα στην μείωση της διάστασης του αρχείου είναι η μείωση του πλήθους των εγγραφών. Για να το επιτύχουμε αυτό, εφαρμόζουμε 3 τεχνικές:

- 1. Stratified Δειγματοληψία.
- 2. Clustering με kmeans.
- 3. Clustering με birch.

Η δειγματοληψία γίνεται εύκολα με την εξής εντολή:

```
df_stratified = df.groupby(['Label', 'Traffic Type'],
group_keys=False).sample(frac=sample_frac, random_state=42)
```

To group by γίνεται με βάση τις στήλες Label και Traffic Type γιατί αυτές μας ενδιαφέρουν για το τρίτο ερώτημα που αφορά την εκπαίδευση. Το csv που προκύπτει από την δειγματοληψία είναι το "data_stratified.csv".

Στην συνέχεια εφαρμόζουμε scaling των στηλών για το clustering που ακολουθεί.

Ο Kmeans δημιουργεί clusters από τις εγγραφές του αρχικού αρχείου και έπειτα παίρνει 2 τοις εκατό των εγγραφών από το κάθε cluster ώστε να δημιουργηθεί ένα μικρότερο αρχείο csv, με τίτλο "data_kmeans_custom.csv". Ωστόσο, εδώ αντιμετωπίσαμε ένα σημαντικό πρόβλημα. Η στήλη Label έχει περίπου 100 εγγραφές από την κλάση Bening και περίπου 10 εκατομμύρια από την κλάση Malicious. Άρα το δύο τοις εκατό από το cluster με Label Bening, επιστρέφει δύο μόνο εγγραφές το οποίο δεν είναι αρκετό για την εκπαίδευση του μοντέλου στο ερώτημα 3. Κατά τον πειραματισμό με το clustering, παρατηρήθηκε ότι το cluster στο οποίο καταλήγουν οι εγγραφές με Label Bening ήταν το cluster 1. Για αυτό τον λόγο, κατά την δειγματοληψία των clusters, παίρνουμε περισσότερες εγγραφές από το cluster 1 που είναι το μικρότερο και θέλουμε περισσότερες εγγραφές από αυτό και λιγότερες από τα υπόλοιπα.

```
for cluster_id, group in df.groupby('Cluster'):
    if cluster_id == 1:
        samples.append(group.sample(frac=0.5, random_state=42)) # take half
of cluster 1
    else:
        samples.append(group.sample(frac=sample_frac, random_state=42)) # 2%
from others
```

Συγκεκριμένα, παίρνουμε το μισό από το cluster με id = 1 και 2 % από τα υπόλοιπα.

Για το δεύτερο clustering χρησιμοποιήθηκε ο birch, αλλά όχι στο αρχικό dataset αλλά σε αυτό που προέκυψε κατά την δειγματοληψία. Αυτό έγινε όχι από ανάγκης ram (το υπολογιστικό σύστημα που έτρεχε ο κώδικας είχε 32 gb ram), αλλά επειδή έπαιρνε πολύ ώρα να τερματίσει ο birch, όπως και άλλοι clustering αλγόριθμοι που δοκιμάστηκαν, εξαιτίας του μεγάλου αρχικού dataset. Στον birch, πάλι παίρνουμε το 50 % από το cluster με id 2 που είναι το cluster όπου το Label είναι benign και είναι μικρό σε μέγεθος, ενώ 2 % από τα υπόλοιπα clusters, ώστε να επιτύχουμε καλύτερο training στην συνέχεια.

Ερώτημα 3

Περιγραφή Υλοποίησης

Για την υλοποίηση του ερωτήματος χρησιμοποιήθηκαν δύο μοντέλα της sklearn, το SVC και το MLP που υλοποιούν το κλασικό Support Vector Machine και Multilayer Perceptron αντίστοιχα. Για την ταξινόμηση χρησιμοποιούνται δύο στήλες του dataset. Η "Label" που έχει δύο μόνο τιμές (Benign και Malicious) και κατά συνέπεια καθιστά το πρόβλημα binary classification και η "Traffic Type" που έχει περισσότερες των δύο τιμές και καθιστά το πρόβλημα multiclass classification. Κατά το τρέξιμο το πρόγραμμα ζητά από το χρήστη, αρχικά να διαλέξει ένα από τα τρία αρχεία που προέκυψαν από το ερώτημα 2 (data_stratified.csv, data_kmeans_custom.csv, data_birch_custom.csv). Στη συνέχεια ζητά τη στήλη που θα αποτελέσει την ετικέτα κλάσεων (binary vs multiclass classification) και τέλος, ζητά τον ταξινομητή, δηλαδή MLP ή SVM.

Αφού ο χρήστης εισαγάγει τιμές, η στήλη που στο εκάστοτε τρέξιμο αποτελεί την ετικέτα κλάσης περνάει μέσα από label encoder για να μετατραπούν οι τιμές της σε αριθμητικές, καθώς τα μοντέλα που πρόκειται να χρησιμοποιηθούν διαχειρίζονται μόνο αριθμητικά δεδομένα. Στη συνέχεια, τα features χωρίζονται σε αριθμητικά και κατηγορικά. Τα κατηγορικά περνούν μέσα από feature hasher (MurmurHash-based για ταχύτητα και καλή διαχείριση μνήμης) που τα κωδικοποιεί ως αριθμητικές τιμές, ενώ τα αριθμητικά περνούν μέσα από standard scaler για να κανονικοποιηθούν και να είναι αποδοτικότερη η ταξινόμηση.

Αφού τελειώσει το στάδιο της προεπεξεργασίας, ακολουθεί η εκπαίδευση των μοντέλων. Για μεγαλύτερη ταχύτητα, λόγω πολλών δεδομένων αλλά και πολλών διαφορετικών τρεξιμάτων λόγω tests διαφορετικών μοντέλων/αρχείων/κλάσεων, δε χρησιμοποιούνται χρονοβόρες μέθοδοι όπως leave one out ή k-fold cross validation, αλλά ένα απλό train-test split με αναλογία 80-20. Οι παράμετροι που χρησιμοποιούνται κατά την αρχικοποίηση των μοντέλων εστιάζουν κυρίως στην ταχύτητα, προφανώς σε βάρος της απόδοσής τους.

Τέλος, για την αξιολόγηση χρησιμοποιούνται οι συναρτήσεις predict() και classification_report(). Η τελευταία εμφανίζει αναλυτικά τα αποτελέσματα της αξιολόγησης για το κάθε τρέξιμο. Τα αποτελέσματα παρατίθενται παρακάτω.

Αξιολόγηση

Sampled Data, Binary Classification, MLP

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.17	0.29	6
1	1.00	1.00	1.00	34621
accuracy			1.00	34627
macro avg	1.00	0.58	0.64	34627
weighted avg	1.00	1.00	1.00	34627

Sampled Data, Binary Classification, SVM

	precision	recall	f1-score	support
0	0.14	0.17	0.15	6
1	1.00	1.00	1.00	34621
accuracy			1.00	34627
macro avg	0.57	0.58	0.58	34627
weighted avg	1.00	1.00	1.00	34627

Sampled Data, Multiclass Classification, MLP

Classification Report:

	precision	recall	f1-score	support
0	1.00	1.00	1.00	1
2	0.98	0.98	0.98	155
3	1.00	1.00	1.00	29894
4	1.00	1.00	1.00	4192
5	0.99	0.77	0.86	380
7	0.00	0.00	0.00	5
accuracy			1.00	34627
macro avg	0.83	0.79	0.81	34627
weighted avg	1.00	1.00	1.00	34627

Sampled Data, Multiclass Classification, SVM

support	f1-score	recall	precision	
1	0.00	0.00	0.00	0
155	0.55	0.43	0.79	2
29894	0.96	0.94	0.98	3
4192	0.63	0.47	0.96	4
380	0.06	0.32	0.03	5
0	0.00	0.00	0.00	6
5	0.44	0.40	0.50	7
34627	0.87			accuracy
34627	0.38	0.36	0.46	macro avg
34627	0.90	0.87	0.96	weighted avg

K-means Data, Binary Classification, MLP

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.89	0.94	19
1	1.00	1.00	1.00	34621
accuracy			1.00	34640
macro avg	1.00	0.95	0.97	34640
weighted avg	1.00	1.00	1.00	34640

K-means Data, Binary Classification, SVM

support	f1-score	recall	precision	
19	0.47	0.89	0.32	0
34621	1.00	1.00	1.00	1
34640	1.00			accuracy
34640	0.74	0.95	0.66	macro avg
34640	1.00	1.00	1.00	weighted avg

K-means Data, Multiclass Classification, MLP

Classification Report:

	precision	recall	f1-score	support
0	1.00	0.90	0.95	10
1	0.96	0.98	0.97	131
2	1.00	1.00	1.00	30008
3	1.00	1.00	1.00	4117
4	0.96	0.94	0.95	365
5	1.00	0.50	0.67	2
6	1.00	1.00	1.00	7
accuracy			1.00	34640
macro avg	0.99	0.90	0.93	34640
weighted avg	1.00	1.00	1.00	34640

K-means Data, Multiclass Classification, SVM

	precision	recall	f1-score	support
0	1.00	1.00	1.00	10
1	0.42	0.40	0.41	131
2	0.99	0.93	0.96	30008
3	0.98	0.58	0.73	4117
4	0.02	0.16	0.03	365
5	1.00	0.50	0.67	2
6	0.88	1.00	0.93	7
accuracy			0.88	34640
macro avg	0.75	0.65	0.67	34640
weighted avg	0.97	0.88	0.92	34640

Birch Data, Binary Classification, MLP

Classification Report:

support	f1-score	recall	precision	
2	0.40	0.50	0.33	0
17312	1.00	1.00	1.00	1
17314	1.00			accuracy
17314	0.70	0.75	0.67	macro avg
17314	1.00	1.00	1.00	weighted avg

Birch Data, Binary Classification, SVM

	precision	recall	f1-score	support
0	0.25	0.50	0.33	2
1	1.00	1.00	1.00	17312
accuracy			1.00	17314
macro avg	0.62	0.75	0.67	17314
weighted avg	1.00	1.00	1.00	17314

Birch Data, Multiclass Classification, MLP

Classification Report:

	precision	recall	f1-score	support
1	0.98	0.98	0.98	86
2	1.00	1.00	1.00	14961
3	1.00	1.00	1.00	2086
4	0.89	0.75	0.81	179
5	1.00	1.00	1.00	1
6	0.00	0.00	0.00	1
accuracy			1.00	17314
macro avg	0.81	0.79	0.80	17314
weighted avg	1.00	1.00	1.00	17314

Birch Data, Multiclass Classification, SVM

support	f1-score	recall	precision	
0	0.00	0.00	0.00	0
86	0.61	0.55	0.69	1
14961	0.96	0.92	1.00	2
2086	0.90	0.83	0.99	3
179	0.15	0.80	0.08	4
1	1.00	1.00	1.00	5
1	0.00	0.00	0.00	6
17314	0.90			accuracy
17314	0.52	0.59	0.54	macro avg
17314	0.94	0.90	0.99	weighted avg

Σχολιασμός Αποτελεσμάτων

Από τα παραπάνω τρεξίματα προκύπτουν οι εξής παρατηρήσεις:

- Τα SVMs τρέχουν πιο αργά από τα MLPs (με ένα ή δύο layers).
- Τα MLPs (με ένα ή δύο layers) κάνουν καλύτερο classification στο dataset από τα SVMs, χωρίς όμως μεγάλη διαφορά.
- Το binary classification, με εξαίρεση την περίπτωση των δεδομένων του K-means, ταξινομούσε καλά την μεγάλη κλάση, αλλά όχι τη μικρή. Αυτό οφείλεται στην κατανομή των δεδομένων. Υπήρχαν πολύ περισσότερα δείγματα στη μεγάλη κλάση και τα μοντέλα μάθαιναν καλύτερα να τα αναγνωρίζουν.
- Το multiclass classification ταξινομούσε καλύτερα τις μεγάλες και μεσαίες κλάσεις.
- Καλύτερα αποτελέσματα έχει το αρχείο K-means data.
- Καλύτερος συνδυασμός φαίνεται να είναι ο K-means data με MLP.