Downloaded from Stanmorephysics.com

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

GRADE/GRAAD 12

MATHEMATICS P2/WISKUNDE V2

NOVEMBER 2019

MARKING GUIDELINES/NASIENRIGLYNE

MARKS/PUNTE: 150

These marking guidelines consist of 26pages. *Hierdie nasienriglyne bestaan uit 26 bladsye.*

NOTE:

- If a candidate answers a question TWICE, only mark the FIRST attempt.
- If a candidate has crossed out an attempt of a question and not redone the question, mark the crossed out version.
- Consistent accuracy applies in ALL aspects of the marking memorandum. Stop marking at the second calculation error.
- Assuming answers/values in order to solve a problem is NOT acceptable.

NOTA:

- As 'n kandidaat 'n vraag TWEE KEER beantwoord, sien slegs die EERSTE poging na.
- As 'n kandidaat 'n antwoord van 'n vraag doodtrek en nie oordoen nie, sien die doodgetrekte poging na.
- Volgehoue akkuraatheid word in ALLE aspekte van die nasienriglyne toegepas. Hou op nasien by die tweede berekeningsfout.
- Om antwoorde/waardes te aanvaar om 'n probleem op te los, word NIE toegelaat NIE.

	GEOMETRY • MEETKUNDE			
S	A mark for a correct statement (A statement mark is independent of a reason)			
	'n Punt vir 'n korrekte bewering ('n Punt vir 'n bewering is onafhanklik van die rede)			
R	A mark for the correct reason (A reason mark may only be awarded if the statement is correct)			
	'n Punt vir 'n korrekte rede ('n Punt word slegs vir die rede toegeken as die bewering korrek is)			
S/R	Award a mark if statement AND reason are both correct			
	Ken 'n punt toe as die bewering EN rede beide korrek is			

Monthly income (in rands) Maandelikse inkomste (in rand)	9 000	13 500	15 000	16 500	17 000	20 000
Monthly repayment (in rands) Maandelikse paaiement (in rand)	2 000	3 000	3 500	5 200	5 500	6 000

1.1	a = -1946,875 = -1946,88	$\checkmark a = -1946,88$	
	b = 0.41	$\checkmark b = 0.41$	
	$\hat{y} = -1946,88 + 0,41x$ Answer only: Full marks	✓ equation	
		1	(3)
1.2	Monthly repayment $\approx R3727,16$ (calculator)	✓✓ answer	
	Maandelikse paaiement ≈ R3 727,16		(2)
	OR		
	$\hat{y} = -1946,88 + 0,41(14000)$	✓ substitution	
	≈ R3 793,12	✓ answer	
			(2)
1.3	$r = 0.946 \dots \approx 0.95$	✓ answer	
			(1)
1.4	Not to spend R9 000 per month because the point (18 000; 9 000)		
	lies very far from the least squares regression line. OR D	✓✓ answer	
	Spandeer nie R9 000 per maand nie, want die punt (18 000 ;9 000)		(2)
	lê baie ver van die kleinste-kwadrate regressielyn. OF D		
			[8]

2.1	Number people paid R200 or less = 19	✓ answer
	Aantal mense wat $R200$ of minder betaal het = 19	(1)
2.2	7+12+a+35+b+6=100	$\checkmark \sum x = 100$
	a = 40 - b	$\sqrt{a} = 40-b$
		u = 40 - b
	$309 = \frac{(50 \times 7) + (150 \times 12) + (250 \times a) + (350 \times 35) + (450 \times b) + (550 \times 6)}{(450 \times b) + (550 \times 6)}$	$\checkmark \sum fX$
	100	_
	$309 = \frac{(50 \times 7) + (150 \times 12) + (250 \times (40 - b)) + (350 \times 35) + (450 \times b) + (550 \times 6)}{(450 \times 12) + (250 \times (40 - b)) + (350 \times 35) + (450 \times b) + (550 \times 6)}$	$\checkmark \sum \frac{fX}{n} = 309$
	100	— n
	350 + 1800 + 10000 - 250b + 12250 + 450b + 3300 = 30900	
	200b = 3200	$\checkmark 200b = 3200$
	b = 16	2000 – 3200
	a = 24	(5)
	ODIOE	
	OR/OF	
	7+12+a+35+b+6=100	$\checkmark \sum x = 100$
	b = 40 - a	$\checkmark b = 40 - a$
		v = 40 u
	$309 = \frac{(50 \times 7) + (150 \times 12) + (250 \times a) + (350 \times 35) + (450 \times b) + (550 \times 6)}{(450 \times b) + (550 \times 6)}$	$\checkmark \sum fX$
	309 =	_
	$309 = \frac{(50 \times 7) + (150 \times 12) + (250 \times a) + (350 \times 35) + (450 \times (40 - a)) + (550 \times 6)}{(450 \times 12) + (250 \times a) + (350 \times 35) + (450 \times (40 - a)) + (550 \times 6)}$	$\checkmark \sum \frac{fX}{n} = 309$
	309 = 100	— n
	350 + 1800 + 250a + 12250 + 1800 - 450a = 30900	
	200a = 4800	$\checkmark 200a = 4800$
	a = 24	200a – 4 000
	b = 16	(5)
2.3	Modal class/modale klas: $300 < x \le 400$	✓ answer
		(1)

NSC/NSS – Marking Guidelines/Nasienriglyne

3.1	Equation of PR: $y = 5$	✓ answer
		(1)
3.2.1	$m_{\text{RS}} = \frac{y_2 - y_1}{x_2 - x_1}$ $m_{\text{RS}} = \frac{5 - (-7)}{3 - (-3)} = \frac{12}{6}$ Answer only: Full marks $= 2$	✓ substitution of R & S into gradient formula ✓ answer (2)
3.2.2	$m_{\rm RS} = m_{\rm PT} \ [PT \parallel RS]$	$\checkmark m_{\rm RS} = m_{\rm PT}$
	$\tan \theta = 2$	$\checkmark \tan \theta = 2$
	$\theta = 63,43^{\circ}$	✓ θ = 63,43°
		(3)
3.2.3	Equation of RS: y-5=2(x-3) or $y-(-7)=2(x-(-3))$ or $5=2(3)+cy-5=2x-6$ $y+7=2x+6$ $c=-1y=2x-1$ $y=2x-1$ $y=2x-1\therefore D(0;-1)$	✓ substitution ✓ equation of RS ✓ coordinates of D (3)
	OR/OF $m_{RS} = m_{RD} = m_{DS}$ $2 = \frac{5 - y}{3 - 0} = \frac{y + 7}{0 - (-3)}$ $\therefore y = -1$ $\therefore D(0; -1)$ Answer only: Full marks	 ✓ equating gradients ✓ value of y ✓ coordinates of D (3)

3.3	$ST = 2\sqrt{5} = \sqrt{[-5 - (-5)]}$	$[-3)]^2 + (k - (-7))^2$	✓ substitute S and T into distance formula	
	$20 = 4 + (k+7)^2$		distance formula	
	$(k+7)^2 = 16$		✓ isolate square	
	$k+7=\pm 4$		✓ square root both sides	
	k = -11 or k = -3		√ answer	
	$\therefore k = -3$		✓ answer	(4)
	OR			(+)
	OK			
	$ST = 2\sqrt{5} = \sqrt{[-5 - (-5)]}$	$\frac{1}{(-3)!^2 + (k - (-7))^2}$		
	$\begin{vmatrix} 31 - 2\sqrt{3} - \sqrt{1} & 3 \\ 20 = 4 + k^2 + 14k + 4 \end{vmatrix}$		✓ substitute S and T into distance formula	
	20 = 4 + k + 14k + 4 $k^2 + 14k + 33 = 0$	9	✓ standard form	
	(k+11)(k+3) = 0		✓ factors	
	k = -11 or $k = -3$			
	$\therefore k = -3$		✓ answer	440
3.4	Method: translation			(4)
3.4	$T \rightarrow S$:			
	1 75.		✓ method	
	$(x; y) \rightarrow (x+2; y-4)$	4)		
	\therefore by symmetry: D \rightarrow	N:	1: 4	
	$D(0;-1) \rightarrow N(0+2)$; -1 - 4)	✓ x-coordinate ✓ y-coordinate	
	$\therefore N(2;-5)$	Answer only: Full marks	y coordinate	(3)
	OR	12110 11 021 021 021 021 021 021 021 021		` /
	Midpoint of $TN = M$	±	✓ method:	
	$\frac{x+(-5)}{} = \frac{-3+0}{}$ a	nd $\frac{y+(-3)}{2} = -\frac{-7+(-1)}{2}$	midpoint of diagonals	
		2 2	\checkmark x-coordinate	
	x = 2 and $y = -5$	Answer only: Full marks	✓ y-coordinate	
	$\therefore N(2;-5)$			(3)

 β is the inclination of RS $\therefore \beta = 63,434...^{\circ}$

$$\hat{OFD} = 63,434...^{\circ}$$
 [vert opp $\angle s$]

$$\hat{ODF} = 90^{\circ} - 63,434...^{\circ} = 26,565...^{\circ}$$

$$\hat{RDR} = 2(26,565...^{\circ}) = 53,13^{\circ}$$

OR

PEFR is a ||m [both pairs of opp sides ||]

$$\therefore \hat{\mathbf{R}} = \theta = 63,434...^{\circ} \qquad [\text{opp } \angle \text{s of } || \mathbf{m}]$$

$$R\hat{R}^TD = 63,434...^\circ$$
 [$\angle s \text{ opp} = \text{sides:}RD = R^TD$]

$$\hat{RDR} = 180^{\circ} - (63,43^{\circ} + 63,43^{\circ}) \text{ [sum of } \angle \text{s in } \Delta \text{]}$$

$$\hat{RDR} = 53.13^{\circ}$$

OR

$$\tan O\hat{D}F = \frac{3}{6}$$

$$\hat{RDR} = 2(26,565...^{\circ}) = 53,13^{\circ}$$

OR

R'(-3;5) [reflection of R(3;5) about the y-axis]

$$RD = \sqrt{(3-0)^2 + (5-(-1)^2)^2}$$

$$RD = \sqrt{45} = R'/D$$
 or $3\sqrt{5}$ or 6,71

$$(RR^{/})^2 = (\sqrt{45})^2 + (\sqrt{45})^2 - 2(\sqrt{45})(\sqrt{45})(\cos R\hat{D}R^{/})$$

$$6^2 = 45 + 45 - 2(45)(\cos R\hat{D}R^{\prime})$$

$$\cos R\hat{D}R^{/} = \frac{45 + 45 - 36}{2(45)}$$

$$\cos R\hat{D}R^{/} = \frac{3}{5}$$

•
$$\hat{RDR}' = 53.13^{\circ}$$

$$\checkmark \beta = 63,43^{\circ}$$

$$\checkmark$$
 ODF = 26.57°

✓ answer

$$\checkmark \hat{R} = 63.43^{\circ}$$

$$\checkmark R\hat{R}^{/}D = 63.43^{\circ}$$

✓ answer

✓ trig ratio

 $\checkmark \text{ ODF} = 26.565..^{\circ}$

✓ answer

(3)

(3)

(3)

$$\sqrt{R'}(-3;5)$$
 OR

$$RD = \sqrt{45} = R'/D$$

✓ substitution into cosine rule

✓ answer

[19]

4.1	$M(-1;1)$ $(x+1)^2 + (y-1)^2 = 1$ Answer only: Full marks	✓ M(-1;1) ✓LHS ✓ RHS	
			(3)
4.2	Midpoint of CB, N: (-0,5; 1,5)		
	$\therefore \frac{x_{\rm C} + 0}{2} = -\frac{1}{2} \text{ and } \frac{y_{\rm C} + 1}{2} = \frac{3}{2}$ Answer only: Full marks	$\checkmark x$ value $\checkmark y$ value	
	$\therefore C(-1;2)$	x value y value	(2)
	OR		
	$B\rightarrow N$:		
	$(x; y) \rightarrow (x - 0.5; y + 0.5)$		
	N→C:		
	$(x; y) \rightarrow (x-0.5; y+0.5)$ Answer only: Full marks		
	\therefore C(-0,5-0,5; 1,5+0,5)		
	∴ C(-1; 2)	$\checkmark x$ value $\checkmark y$ value	
			(2)

- 1.0			1	
4.3	$m_{\text{radius}} = \frac{2-1}{-1-0} \text{ OR } \frac{2-(-\frac{1}{2})}{-1-\frac{3}{2}} \text{ OR}$	$OR \frac{0 - (-\frac{1}{2})}{1 - \frac{3}{2}}$	$\checkmark m_{\text{radius}}$ $\checkmark m_{\text{tangent}}$	
	=-1	2	tangent	
	$\therefore m_{\text{tangent}} = 1$ $y = mx + c$			
	y = x + c		\checkmark substitute $(-1; 2)$)
	2 = 1(-1) + c		and m	
	c = 3		✓ simplification	(4)
	$\therefore y = x + 3$			(4)
	y-x=3			
	OR		./ ,,,,	
	$m_{\text{radius}} = \frac{2-1}{-1-0}$		$\sqrt{m_{\rm radius}}$	
	$m_{\text{radius}} = -1 - 0$			
	=-1		$\checkmark m_{\rm tangent}$	
	$\therefore m_{\text{tangent}} = 1$			
	$y - y_1 = m(x - x_1)$			
	$y - y_1 = 1(x - x_1)$		\checkmark substitute (-1; 2)	,
	y-2=1(x-(-1))		and m	
	y-2=x+1		✓ simplification	
	$\therefore y = x + 3$			(4)
	y-x=3			
4.4	Tangents to circle: $y = x + 3$ and	y = x + 1	$\checkmark y = x + 1$	
	$\therefore t > 3$ or $t < 1$	Answers only: Full marks	$\checkmark t > 3 \checkmark t < 1$	(3)
4.5	Draw rectangle CNED:			
		C(-1; 2)		
	Midpt of DN $\left(-\frac{7}{4}; \frac{3}{4}\right)$	N(1.3)	✓ midpt of DN	
	, ,	$N\left(-\frac{1}{2};\frac{3}{2}\right)$		
	$\therefore E(-\frac{5}{2}; -\frac{1}{2})$			
	2 2		$\checkmark x$ value $\checkmark y$ value	
	_			(3)
	D(-3;0)			
		E		
	OR/OF	_		
	D(-3;0)		✓ coordinates of D	
	C→N:			
	$(x; y) \rightarrow (x+0.5; y-0.5)$			
	D→E:	A new on law Evil and also		
	$D(x; y) \to E(x+0.5; y-0.5)$	Answer only: Full marks	$\checkmark x$ value $\checkmark y$ value	(2)
	$\therefore E(-3+0.5; 0-0.5)$			(3)
	$\therefore E(-2.5; -0.5)$			
1				

4.6

area of trapezium AOBC = $\frac{1}{2}(1+2)(1)$

$$= 1\frac{1}{2}$$
 square units

area of $\triangle ACD = \frac{1}{2}(2)(2)$

= 2 square units

area of quadrilateral OBCD = $3\frac{1}{2}$ square units

$$\therefore 2a^2 = \frac{7}{2}$$
$$a^2 = \frac{7}{4}$$

$$a = \frac{\sqrt{7}}{2}$$

✓ substitution into area of trapezium form

 \checkmark area of trapezium

✓ area of triangle

✓ area of OBCD

✓ equating area OBCD to $2a^2$

(5)

OR

BM produced cuts the tangent at F.

area of
$$\triangle CFB = \frac{1}{2}(2)(1)$$

= 1 square unit

area of trapezium BFDO = $\frac{1}{2}(2+3)(1)$

 $=2\frac{1}{2}$ square units

area of quadrilateral OBCD = $3\frac{1}{2}$ square units

$$\therefore 2a^2 = \frac{7}{2}$$

$$a^2 = \frac{7}{4}$$

$$a = \frac{\sqrt{7}}{2}$$

✓ area of triangle

✓ substitution into area of trapezium

✓ area of trapezium

✓ area of OBCD

✓ equating area OBCD to $2a^2$

(5)

OR

Join DB

area of
$$\triangle ODB = \frac{1}{2}(3)(1)$$

= $\frac{3}{2}$ square unit

area of $\triangle DCB = \frac{1}{2} (2\sqrt{2})(\sqrt{2})$ = 2 square unit

∴ area of OBCD = $\frac{3}{2}$ + 2 = square units

$$2a^2 = \frac{7}{2}$$
$$a^2 = \frac{7}{4}$$

$$a = \frac{\sqrt{7}}{2}$$

OR

- \checkmark area of Δ
- ✓ subst into area of Δ
- \checkmark area of Δ
- ✓ area of OBCD
- ✓ equating area OBCD to $2a^2$

(5)

Let E be the point of intersection of DC with the positive *y*-axis.

area of
$$\triangle DEO = \frac{1}{2}(3)(3)$$

= $\frac{9}{2}$ square unit

area of
$$\triangle ECB = \frac{1}{2}(2)(1)$$
 or $\frac{1}{2}(\sqrt{2})(\sqrt{2})$
= 1 square unit

area of quadrilateral OBCD = $\frac{9}{2} - 1 = 3\frac{1}{2}$ square units

$$a^2 = \frac{7}{4}$$

$$a = \frac{\sqrt{7}}{2}$$

✓ area of Δ

✓ subst into area of Δ

 \checkmark area of Δ

✓ area of OBCD

✓ equating area OBCD to $2a^2$

[20]

(5)

5.1	$\frac{\sin x}{\cos x \cdot \tan x} + \sin(180^\circ + x)\cos(90^\circ - x)$	
	$= \frac{\sin x}{\cos x \cdot \frac{\sin x}{\cos x}} + (-\sin x)\sin x$	$\sqrt{-\sin x} \sin x$
		$\sqrt{\tan x} = \frac{\sin x}{1}$
	$\cos x$	$\cos x$
	$=1-\sin^2 x$	$\sqrt{1-\sin^2 x}$
	$=\cos^2 x$	$\int \cos^2 x \tag{5}$
5.2	$\sin^2 35^\circ - \cos^2 35^\circ$	(5)
	$\frac{\sin 2\theta \cos \theta}{4\sin 10^{\circ}\cos 10^{\circ}}$	
	$=\frac{-(\cos^2 35^\circ - \sin^2 35^\circ)}{(\cos^2 35^\circ - \sin^2 35^\circ)}$	(
	$= \frac{(\cos^{3} 35 - \sin^{3} 35)}{2(2\sin 10^{\circ}\cos 10^{\circ})}$	$\begin{array}{c} \checkmark -\left(\cos^2 35^\circ - \sin^2 35^\circ\right) \\ \checkmark -\cos 70^\circ \end{array}$
	$-\cos 70^{\circ}$	$\sqrt{-\cos 70^\circ}$ $\sqrt{2\sin 20^\circ}$
	$= {2\sin 20^{\circ}}$	25M 20
	$= \frac{-\cos 70^{\circ}}{2\cos 70^{\circ}} \mathbf{OR} = \frac{-\sin 20^{\circ}}{2\sin 20^{\circ}} = -\frac{1}{2}$	
	$2\cos 70^{\circ}$ $2\sin 20^{\circ}$ 2	✓ answer (4)
5.3	$2\sin^2 77^\circ = 2[\sin(90^\circ - 13^\circ)]^2$	✓ using co-ratio
	$=2\cos^2 13^{\circ}$	✓ reduction
	$= 2\cos^2 13^\circ - 1 + 1$	2
	$= \cos 26^{\circ} + 1$	$\checkmark 2\cos^2 13^\circ - 1 = \cos 26^\circ$ $\checkmark \text{answer}$
	= m+1	(4)
	OR	
	$1 - 2\sin^2 77^\circ = \cos 154^\circ$	$\checkmark 1 - 2\sin^2 77^\circ = \cos 154^\circ$
	$2\sin^2 77^\circ = 1 - \cos 154^\circ$	$\checkmark 2\sin^2 77^\circ = 1 - \cos 154^\circ$
	$=1-(-\cos 26^{\circ})$	✓ reduction ✓ answer
	=1+m	(4)
5.4.1	$\sin(x+25^\circ)\cos 15^\circ - \cos(x+25^\circ)\sin 15^\circ = \tan 165^\circ$	
	$\sin(x+25^{\circ}-15^{\circ}) = -0.2679OR - 2 + \sqrt{3}$	\checkmark $\sin(x+10^\circ)$
	$\sin(x+10^{\circ}) = -0.2679OR - 2 + \sqrt{3}$	√ −0,2679
	$x + 10^{\circ} = 195,54^{\circ} + k.360^{\circ}$ or $x + 10^{\circ} = 344,46^{\circ} + k.360^{\circ}$	✓ 195,54° & 344,46°
	$x = 185,54^{\circ} + k.360^{\circ}; k \in \mathbb{Z} \text{ or } x = 334,46^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	\checkmark 185,54° & 334,46° \checkmark + k.360°; k ∈ Z
	OR/OF	(6)

NSC/NSS – Marking Guidelines/Nasienriglyne	NSC/NSS -	Marking	Guidelines	/Nasien	riglyne
--	-----------	---------	------------	---------	---------

	$\sin(x+25^{\circ})\sin 75^{\circ} - \cos(x+25^{\circ})\cos 75^{\circ} = \tan 165^{\circ}$		
	$-(\cos(x+25^\circ)\cos 75^\circ - \sin(x+25^\circ)\sin 75^\circ) = -0.2679$	$\sqrt{\cos(x+100^\circ)}$	
	$\cos(x+100^{\circ}) = 0.2679$	√-0,2679	
	ref. ∠ = 74.4577°	✓ 74,46° & 285,54°	
	$x+100^{\circ} = 74,46^{\circ} + k.360^{\circ}$ or $x+100^{\circ} = 285,54^{\circ} + k.360^{\circ}$	✓ -25,54° & 185,54°	
	$x = -25,54^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z} \text{ or } x = 185,54^{\circ} + k.360^{\circ}; \ k \in \mathbb{Z}$	$\checkmark + k.360^{\circ}; \ k \in \mathbb{Z}$	(6)
5.4.2	$f(x) = \sin(x+10^{\circ})$ Answers only: Full marks	$f(x) = \sin(x+10^\circ)$	
	For minimum value of $\sin x$: $x = 270^{\circ}$	✓ 270°	
	For minimum value of $sin(x+10^\circ)$: $x = 260^\circ$	✓ answer	(3)
			[22]

6.1	Range of $f: y \in [-2; 0]$ OR $-2 \le y \le 0$	✓ critical values
		✓ notation
		(2
6.2	$x \in (90^{\circ}; 270^{\circ}) \text{ OR } x \in [90^{\circ}; 270^{\circ}]$	✓ critical values
		✓ notation
		(2
6.3	$PQ = \cos 2x - (\sin x - 1)$	$\checkmark PQ = \cos 2x - (\sin x - 1)$
	$=1-2\sin^2 x-\sin x+1$	$\checkmark \cos 2x = 1 - 2\sin^2 x$
	$= -2\sin^2 x - \sin x + 2$	
	$\sin x = -\frac{b}{2a}$	✓ substitution into formula
	$=\frac{-(-1)}{2(-2)}$	
	$\sin x = -\frac{1}{4}$	$\checkmark \sin x = -\frac{1}{4}$
	$\therefore x = 194,48^{\circ} \text{ or } x = 345,52^{\circ}$	✓ 194,48° ✓ 345,52°
	1 $\lambda = 174,40$ 01 $\lambda = 343,32$	(6
		[10

	1	
7.1	$\sin 60^{\circ} = \frac{AK}{\cos \theta}$	✓ trig ratio
	x	v trig ratio
	AK= $x \sin 60^{\circ} \text{ or } \frac{\sqrt{3}}{2} x \text{ or } 0.866 x$	✓ answer
7.2	KĈF= 120°	(2) ✓ answer
7.2		(1)
7.3	$KF^2 = CF^2 + CK^2 - 2CF.CK\cos K\hat{C}F$	✓ correct use of cosine rule
	$= x^2 + \left(\frac{x}{2}\right)^2 - 2x\left(\frac{x}{2}\right)\cos 120^\circ$	✓substitution
	$= x^2 + \frac{x^2}{4} - x^2 \left(-\frac{1}{2} \right)$	$\checkmark \cos 120^\circ = -\frac{1}{2}$
	$=\frac{7x^2}{4}$	
	$KF = \frac{\sqrt{7}x}{2}$	$\checkmark \text{ KF} = \frac{\sqrt{7}x}{2}$
	$A\hat{K}F = y$	
	Area $\triangle AKF = \frac{1}{2} \cdot AK \cdot KF \sin A\hat{K}F$	✓ correct use of area rule
	$=\frac{1}{2}\cdot\frac{\sqrt{3}x}{2}\cdot\frac{\sqrt{7}x}{2}\sin y$	✓substitution
	$=\frac{x^2\sqrt{21}\sin y}{8}$	✓ answer in terms of x and y (7)
	1	[10]

8.1.1	$\hat{R} = 80^{\circ}$ [co-int $\angle s/ko$ -binne $\angle e$; QW RK]	√S √R	
			(2)
8.1.2	$\hat{P} = 100^{\circ}$ [opp \angle s of cyclic quad/teenoorst \angle e v koordevh]	✓S ✓R	(2)
8.1.3	$\hat{Q}_2 = 36^{\circ}$ [ext \angle of cyclic quad/buite \angle v koordevh] $\hat{Q}_2 = 36^{\circ}$	✓S ✓R ✓S	(3)
	OR	✓S ✓R	
	$P\hat{Q}W + 100^{\circ} = 136^{\circ}$ $P\hat{Q}W = 36^{\circ}$	✓S	(3)
	OR $\hat{\mathbf{U}}_3 = 180^{\circ} - 136^{\circ} = 44^{\circ} [\text{co-int } \angle \text{s/ko-binne } \angle e; \text{ QW } \parallel \text{ RK}]$	✓S ✓R	
	$\hat{\mathbf{U}}_1 = \hat{\mathbf{U}}_3 = 44^\circ$ [vert opp \angle s/regoorstaande \angle e] $P\hat{\mathbf{Q}}\mathbf{W} = 180^\circ - (100 + 44^\circ) [\text{sum of } \angle \text{s in } \Delta/\text{som } \angle \text{e van } \Delta]$ $P\hat{\mathbf{Q}}\mathbf{W} = 36^\circ$	√S	(3)

20 NSC/NSS – Marking Guidelines/Nasienriglyne

8.1.4	$\hat{\mathbf{U}}_2 = \hat{\mathbf{S}}_2 = 136^{\circ}$	[alt \angle s/verwiss \angle e; QW RK]	✓S ✓R	(2)
	OR			
	$\hat{U}_2 = 100^\circ + 36^\circ$ = 136°	[ext ∠s of/buite ∠ van ΔQPU]	√s √r	(2)
	OR			
	$\hat{\mathbf{U}}_2 = \hat{\mathbf{P}\mathbf{U}}\mathbf{W} = 136^{\circ}$	[vert opp ∠s/regoorstaande ∠e]	✓S ✓R	(2)
	OR			(2)
	$ \hat{\mathbf{U}}_{2} = 180^{\circ} - \hat{\mathbf{U}}_{3} \\ = 180^{\circ} - 44^{\circ} \\ = 136^{\circ} $	$[\angle s \text{ on a str line}/\angle e \text{ op reguitlyn}]$	✓S ✓R	(2)

8.2

0.2.1	In $\triangle EFI$ and $\triangle DCI$:		
	$\frac{EF}{E} = \frac{9}{100} = \frac{1}{100}$		
	$\frac{1}{18}$ $\frac{1}{2}$	$\checkmark \checkmark$ all 3 ratios = $\frac{1}{2}$	
	$\frac{FT}{TC} = \frac{5}{10} = \frac{1}{2}$	2	
	TC 10 2		
	$\frac{\text{ET}}{1} = \frac{7}{1} = \frac{1}{1}$		
	TD 14 2		
	$\therefore \Delta \text{EFT} \parallel \Delta \text{DCT}$ [Sides of Δ in prop/sye van Δ in α	dieselfde verh] ✓ ΔΕΓΤ ΔDCT ✓ R	
	∴ EFD = EĈD		
		(4)	
	OR		
	In ΔFET: In ΔTDC:		
	$49 = 25 + 81 - 2(5)(9)\cos\hat{F} \qquad 196 = 100 + 256 - 2$	$2(10)(18)\cos\hat{C}$	
	, , , ,	\checkmark $\hat{F} = 50.7^{\circ}$	
	$\cos \hat{\mathbf{F}} = \frac{19}{30} \qquad \qquad \cos \hat{\mathbf{C}} = \frac{19}{30}$		
	$\hat{F} = 50.7^{\circ}$ $\hat{C} = 50.7^{\circ}$	$\checkmark \checkmark \hat{F} = 50,7^{\circ}$ $\checkmark \checkmark \hat{C} = 50,7^{\circ}$	
	$\Gamma = 50, I \qquad C = 50, I$	(4)	

22 NSC/*NSS* – Marking Guidelines/*Nasienriglyne*

8.2.2	$\hat{EFD} = \hat{ECD}$ [proved in 8.2.1]	
	E, F, C and D are concyclic	
	EFCD is a cyclic quad [converse \(\sigma \) in the same segment/ omgekeerde \(\sigma \) in dies segment]	✓S ✓R
	$\therefore \hat{DFC} = \hat{DEC} [\angle s \text{ in the same segment}/\angle e \text{ in dies segment}]$	✓ R (3)
		[16]

$\hat{O}_2 = 360^\circ - x$ [\(\angle \text{s round a pt}/\(\angle e \text{ om 'n punt}\)]	$\checkmark \hat{O}_2 = 360^{\circ} - x$
$\therefore \hat{\mathbf{M}} = 180^{\circ} - \frac{1}{2}x [\angle \text{ at centre} = 2 \times \angle \text{ at circumference/}]$	$\checkmark \hat{M} = 180^{\circ} - \frac{1}{2}x \checkmark R$
$middelpunts \angle = 2 \times omtreks \angle]$	_
$\therefore \hat{T}_2 + \hat{P}_1 = \frac{1}{2}x \qquad [\text{sum of } \angle \text{s in } \Delta / \text{som } \angle e van \Delta]$	$\checkmark \hat{T}_2 + \hat{P}_1 = \frac{1}{2}x$
$\therefore \hat{T}_2 = \hat{P}_1 = \frac{1}{4}x \qquad [\angle s \text{ opp equal sides}/\angle e \text{ teenoor gelyke sye}]$	$\checkmark \hat{P}_1 = \frac{1}{4} x \checkmark R$
$\therefore \hat{STM} = \hat{P}_1 = \frac{1}{4}x [tan chord theorem/raaklyn koordstelling]$	✓R (7)
OR/OF	
$\hat{O}_2 = 360^\circ - x$ [\(\angle \text{s round a pt/}\angle e \text{om 'n punt}\)]	$\checkmark \hat{O}_2 = 360^{\circ} - x$ $\checkmark S \checkmark R$
$\therefore \hat{M} = \frac{1}{2} \hat{O}_2 \qquad [\angle \text{ at centre} = 2 \times \angle \text{ at circumference}]$	
$\therefore \hat{T}_2 + \hat{P}_1 = 180^{\circ} - \hat{M} \qquad [\text{sum of } \angle \text{s in } \Delta / \text{som } \angle e van \Delta]$	✓S
$\therefore \hat{T}_2 = \hat{P}_1 \qquad [\angle s \text{ opp equal sides}/\angle e \text{ teenoor gelyke sye}]$	√R
$= \frac{180^{\circ} - \hat{M}}{2} = \frac{180^{\circ} - \frac{1}{2}\hat{O}_{2}}{2} = \frac{180^{\circ} - \frac{1}{2}(360^{\circ} - x)}{2} = \frac{1}{4}x$	
$=\frac{2}{2}=\frac{2}{2}=\frac{2}{2}=\frac{2}{4}x$	✓ S
$\therefore \hat{STM} = \frac{1}{4}x [tan chord theorem/raaklyn koordstelling]$	✓R (7)

10.1

10.1 Constr: Draw h_1 from E \perp AD and h_2 from D \perp AE

Konstr: Trek h_1 vanaf $E \perp AD$ en h_2 vanaf $D \perp AE$

Proof/Bewys:

$$\frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{BDE}} = \frac{\frac{1}{2} \text{AD} \times h_1}{\frac{1}{2} \text{DB} \times h_1} = \frac{\text{AD}}{\text{DB}}$$

$$\frac{\text{area } \Delta \text{ADE}}{\text{area } \Delta \text{DEC}} = \frac{\frac{1}{2} \text{AE} \times h_2}{\frac{1}{2} \text{EC} \times h_2} = \frac{\text{AE}}{\text{EC}}$$

But area $\triangle BDE = area \ \triangle DEC$ [same base & height or DE || BC/ dies basis & hoogte; of DE || BC]

$$\therefore \frac{\text{area } \Delta ADE}{\text{area } \Delta BDE} = \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC}$$

$$\therefore \frac{AD}{DB} = \frac{AE}{EC}$$

✓ constr/konstr OR reason: common vertex or

$$\checkmark \frac{\text{area } \Delta ADE}{\text{area } \Delta BDE} = \frac{\frac{1}{2} AD \times h_1}{\frac{1}{2} DB \times h_1}$$

same height

$$\checkmark \frac{\text{area } \Delta ADE}{\text{area } \Delta DEC} = \frac{AE}{EC}$$

$$\checkmark S$$

(6)

10.2

10.2.1	$\hat{V}_3 = x$ [Tans from same point/raaklyne vanaf dieselfde pt]	\checkmark S \checkmark R
	$\hat{R} = x$ [tan chord theorem/raaklyn koordstelling]	✓ S ✓ R
	$\hat{\mathbf{W}}_3 = x \text{ [corresp } \angle \text{s/ooreenkomstige } \angle e; \text{WT } \text{RV}]$	✓ S ✓ R
		(6)
10.2.2(a)	$\hat{\mathbf{V}}_3 = \hat{\mathbf{W}}_3 = x \qquad [proved in 10.2.1]$	✓ S
	W, S, T and V are concyclic/is konsiklies	
	WSTV is a cyclic quad [converse ∠s in the same segment/	✓ R
	Omgekeerde ∠e in dieselfde segment]	(0)
		(2)
10.2.2(b)		✓ S ✓R
	$\hat{\mathbf{V}}_1 = \hat{\mathbf{W}}_2 = x$ [alt $\angle s/verwiss \angle e$; WT RV]	✓ S/ R
	But $\hat{\mathbf{R}} = x$ [proved in 10.2.1]	
	$\therefore \hat{\mathbf{R}} = \hat{\mathbf{V}}_1 = x$	✓ S
	∴ WR = WV [sides opp equal \angle s/sye teenoor gelyke \angle e]	V 3
	ΔWRV is isosceles/is gelykbenig	
		(4)
	OR/OF	

$\hat{S}_2 = \hat{W}_2 = x$ [\(\angle \text{s in the same segment }\)]	✓ S ✓R
$\hat{\mathbf{W}}_2 = \hat{\mathbf{W}}_3 = x$	
$\hat{\mathbf{W}}_2 + \hat{\mathbf{W}}_3 = \hat{\mathbf{R}} + \hat{\mathbf{V}}_1 [\text{ext} \angle \text{ of } \Delta]$	✓ S/ R
$\therefore \hat{V}_1 = x = \hat{R}$	✓ S
$\therefore WR = WV [sides opp equal \angle s/sye teenoor gelyke \angle e]$	(4)
ΔWRV is isosceles/is gelykbenig 10.2.2(c) In ΔWRV and/en ΔTSV	(4)
10.2.2(c) In \triangle WRV and/ en \triangle TSV $\hat{R} = \hat{S}_2 = x$ [proved OR tan chord theorem]	✓ S
$\hat{\mathbf{V}}_1 = \hat{\mathbf{V}}_3 = x $ [proved]	/ 5
	✓ S ✓ R
	(2)
OR/OF	(3)
In Δ WRV and/en Δ TSV	
$\hat{\mathbf{R}} = \hat{\mathbf{S}}_2 = x$ [proved OR tan chord theorem]	✓ S
$\hat{\mathbf{V}}_1 = \hat{\mathbf{V}}_3 = x$ [proved]	✓ S
$\hat{\mathbf{W}}_1 = \hat{\mathbf{STV}} = x \qquad [\text{sum of } \angle \mathbf{s} \text{ in } \Delta / \angle e van \Delta]$	✓ S
∴ ∆WRV ∆TSV	(3)
10.2.2(d) RV WR	
$\frac{1}{SV} = \frac{1}{TS} \qquad [\Delta WRV \Delta ISV]$	✓ correct ratios
$\therefore WR \times SV = RV \times TS$	
$\frac{WR}{SR} = \frac{KV}{SV}$ [prop theorem/eweredighst; WT RV]	$\checkmark \frac{WR}{SR} = \frac{KV}{SV} \checkmark R$
$\therefore WR \times SV = KV \times SR$	SR SV
$\therefore RV \times TS = KV \times SR$	✓ equating WR ×SV
$\therefore \frac{RV}{SR} = \frac{KV}{TS}$	
	(4)
OR/OF	
In Δ RVS and/ en Δ VKT	✓ identifying correct
$\hat{SVR} = \hat{K}_4 \qquad [alt \angle s, WT \parallel RV]$	Δs
$\hat{SRV} = \hat{V}_3 \qquad [proven]$	✓ proving
$\begin{array}{c c} \Delta RVS \parallel \Delta VKT \ [\angle, \angle, \angle] \\ RV KV \end{array}$	
$\therefore \frac{RV}{SR} = \frac{KV}{VT}$	✓ correct ratio
but VT = ST [tans from same point]	✓ S
$\therefore \frac{RV}{SR} = \frac{KV}{TS}$	(4)
	[25]

TOTAL/TOTAAL: 150