Лекция 6

Реконструкция типов в просто типизированном лямбда-исчислении, комбинаторы

Алгоритм вывода типов

Пусть есть: ?|-A:?, хотим найти пару \langle контекст, тип \rangle Алгоритм:

1. Рекурсия по структуре формулы

Построить по формуле A пару $\langle E, \tau \rangle$, где

E-набор уравнений, au-тип A

2. Решение уравнения, получения подстановки S и из решения E и $S(\tau)$ получения ответа

Т.е. необохимо свести вывод типа к алгоритму унификации.

Пункт 1

Рассмотрим 3 случая

- 1. $A \equiv x \implies \langle \{\}, \alpha_A \rangle$, где $\{\}$ -пустой конекст, α_A -новая переменная нигде не встречавшаяся до этого в формуле
- 2. $A \equiv P Q \implies \langle E_P \cup E_Q \cup \{\tau_P = \tau_Q \to \alpha_A\}, \alpha_A \rangle$, где α_A -новая переменная
- 3. $A \equiv \lambda x.P \implies \langle E_P, \alpha_x \to \tau_P \rangle$

Пункт 2 Алгоритм унификации

Рассмотрим E—набор уравнений, запишем все уравнения в алгебраическом виде т.е. $\alpha \to \beta \Leftrightarrow \to \alpha\beta$, затем применяем алгоритм унификации.

Лемма: Рассмотрим терм M и пару $\langle E_M, \tau_M \rangle$, Если $\Gamma | -M : \rho$, то существует

1. S—решение E_M тогда $\Gamma = \{S(\alpha_x) \mid x \in FV(M)\}$, FV—множество свободных переменных в терме M, α_x — переменная полученная при разборе терма M

$$\rho = S(\tau_M)$$

2. Если S- решение E_M , то $\Gamma |-M: \rho$,Доказательство-индукция по структуре терма M

 $\langle \Gamma, \rho \rangle$ —основная пара для терма M, если

- 1. $\Gamma | -M : \tau$
- 2. Если $\Gamma'|-M:\tau',$ то сущесвтует $S:\,S(\Gamma)\subset\Gamma'$

Пример алгоритма: $\lambda f \lambda x. f(f(x))$

- 1. f(x)
- 2. f(f(x))
- 3. $\lambda x.(f(f(x)))$
- 1. $\langle E_1 = \{ \alpha_f = \alpha_x \to \alpha_1 \}, \alpha_1 \rangle$