Section 12.4a

November 22, 2019

Motivating example:

Definition: $f(x) = ke^{-kx}(k > 0)$ for $x \ge 0$ is called an **exponential density function**, if X is a random variable with an exponential density function, it is called an **exponential random variable**, cdf of X will be $F(x) = \int_0^x f(t)dt = \int_0^x ke^{-kt}dt = (-e^{-kt})\Big|_0^x = (-e^{-kx}) - (-1) = 1 - e^{-kx}$, using integration by parts $E(X) = \frac{1}{k}$, and $Var(X) = \frac{1}{k^2}$. We say $X \sim Exp(k)$ meaning X is a random variable satisfying exponential distribution with parameter

We say $X \sim Exp(k)$ meaning X is a random variable satisfying exponential distribution with parameter k

Problems:

1: Find the expected value and variance of the exponential random variable with the pdf given by $1.7e^{-1.7x}$

$$X \sim \text{Exp}(1.7), E(X) = \frac{1}{1.7}, Var(X) = \frac{1}{1.7^2}$$

2: Suppose that in a large factory there is an average of two accidents per day and the time between accidents has an exponential density function with expected value of $\frac{1}{2}$ day. Find the probability that the time between two accidents will be more than $\frac{1}{2}$ day and less than 1 day

the time between two accidents will be more than
$$\frac{1}{2}$$
 day and less than 1 day

Let X denote the time between accidents, then $X \sim \text{Exp}(k)$ for some k ,

since $\frac{1}{2} = F(X) = \frac{1}{k}$, $k = 2$, $Pr(\frac{1}{2} \le X \le 1) = F(1) - F(\frac{1}{2}) = (1 - e^{-2 \cdot \frac{1}{2}})$
 $= e^{-1} - e^{-2}$

3: The amount of time required to serve a customer at a fast food restaurant has an exponential density function with mean 5 minutes. Find the probability that a customer is served in less than 3 minutes

1

Let
$$\times$$
 denote the serving time, then $\times \sim \text{Exp}(k)$ for some k since $5 = E(x) = \frac{1}{k}$, $k = \frac{1}{5}$, $P_r(x \le 3) = F(3) = 1 - e^{-\frac{1}{5} \cdot 3} = 1 - e^{-\frac{3}{5}}$

4: The amount of time required to serve a customer at a bank has an exponential density function with mean 4 minutes. Find the probability that a customer is served in more than 13 minutes

Let X denote the serving time, then
$$X \sim Exp(k)$$
 for some k ,
Since $4 = E(X) = \frac{1}{k}$, $k = \frac{1}{4}$, $P_r(X \ge 13) = |-P_r(X \le 13)| = |-(1 - e^{-\frac{1}{4} \cdot 13})| = e^{-\frac{13}{4}}$

5: During a certain part of the day, the time between arrivals of automobiles at the tollgate on a turnpike is an exponential random variable with expected value 10 seconds. Find the probability that the time between successive arrivals is more than 20 seconds

Let X observe the time between arrivals, then
$$X \sim \text{Exp}(k)$$
 for some k,
Since $|0 = E(X) = \frac{1}{k}$, $k = \frac$

- **6:** Suppose that the average life span of an electronic component is 84 months and that the life spans are exponentially distributed
- (a) Find the probability that a component lasts for more than 72 months
- (b) The reliability function r(t) gives the probability that a component will last for more than t months. Compute r(t) in this case

Let
$$X$$
 denote the life span, then $X \sim \text{Exp}(k)$ for some k ,
Since $84 = E(X) = \frac{1}{k} \implies k = \frac{1}{84}$,
(a) $P_r(X \ge 7^2) = 1 - P_r(X \le 7^2) = 1 - (1 - e^{-\frac{1}{84} \cdot 7^2}) = e^{-\frac{7^2}{84}} = e^{-\frac{6}{7}}$

(b)
$$r(t) = \Pr(X \ge t) = |-\Pr(X \le t)| = |-F(t)| = |-(|-e^{-\frac{t}{84} \cdot t})| = e^{-\frac{t}{84}}$$