Predicting Presidency impact on work Visa

Content

Problem Statement		
About the Dataset		
Data Pre-processing		
Algorithm used		
Prediction		
Analysis		
Result		

Problem Statement

How Work Visa approval and denial Rates has been affected by Presidency in US from 2016 to 2017.

Dataset

The dataset we selected is from kaggle website:

- a) Source: Office of Foreign Labor Certification, U.S. Department of Labor Employment and Training Administration
- b) List Link: https://www.foreignlaborcert.doleta.gov/performancedata.cfm
- c) Dataset Type: Record Transaction Data
- d) Number of Attributes: 27
- e) Number of Instances: 528,147

Data Preprocessing Dividing the dataset into 2016 and 2017 timeline.

- 2. Dealing with missing values.
 - a. Omitting Missing values.
 - b. Replacing by Mode for factors.
 - c. Replacing by mean for continuous variable.
- 3. Dealing with unbalanced dataset.
 - a. The dataset was not a balanced dataset the output with output as certified are 95% whereas the one with denied are 5%.
 - b. The observation for visa approved were far more than the denied.
 - Hence in order for our models to work better we used smote package which deals with undersampling and oversampling and use cross validation

Algorithm used

The Algorithm used are:

- 1. Random Forest(RF)
- 2. Neural Network(ANN)
- 3. Naive Bayes
- 4. CART
- 5. KNN

Random Forest

Random forest builds multiple decision trees and merges them together to get a more accurate and stable prediction

Importance Of Each Variable

10110	1	0	MeanDecreaseAccuracy	MeanDecreaseGini
CASE_SUBMITTED_YEAR	0.000000000	0.000000000	0.0000000000	0.000000000
EMPLOYER_STATE	101.682688350	61.466047696	139.3701075759	345.063850854
SOC_NAME	176.784211990	219.513640146	214.0354529357	1978.917264588
TOTAL_WORKERS	103.063054979	53.977464504	113.4593084437	188.544636908
FULL_TIME_POSITION	36.613051254	19.784395288	43.4624610702	44.637525307
H.1B_DEPENDENT	110.602395546	14.026250776	113.1747941365	101.652785207
WILLFUL_VIOLATOR	-2.593359899	7.344280639	0.6781753902	7.613557566
WORKSITE_STATE	63.513364026	50.271317573	97.2443149240	309.945961751
WAGE_YEARLY	122.655565722	86.430740161	157.6903176558	1175.855069420

Random Forest Advantages and Disadvantages

Output

Advantages

Variable importance

Converts weak classifiers into a good one.

Disadvantages

Can not handle factor with more than 53 levels

H1B_2016 Confusion Matrix

```
Prediction actual 1 0 1 22855 13 0 726 55 > error_rate [1] 0.03124868 >
```

```
H1B_2017 Confusion Matrix
```

```
Prediction actual 1 0 1 22012 284 0 1815 652 > error_rate [1] 0.08476356 >
```

Dealing with Unbalanced dataset

We have used Synthetic Minority Over-sampling Technique to overcome this unbalance and the result were better as compared to previous ones

H1B_2017 Confusion Matrix

Neural Net(ANN)

H1B_2016

Advantages

• Great for complex/abstract problems like image recognition.

Disadvantages

- Requires a shit load of training and cases
- Black box that not much can be gleaned from

Naive Bayes Algorithm

Advantages

- Fast
- Can make probabilistic predictions

Disadvantages

Initialization is a bit time consuming

Dataset Result of year 2016

```
> #Calculating Error rate
> table(nb_all=category_2016,Class=H1B_2016$CASE_STATUS)
           class
nb_all CERTIFIED DENIED
 CERTIFIED
                67792 3785
  DENIED 13679 14905
> NB_wrong_16<-sum(category_2016!=H1B_2016$CASE_STATUS)</p>
> NB_error_rate_16<-NB_wrong_16/length(category_2016)</p>
> NB_error_rate_16
[1] 0.1743592816
> accuracy_16 <- (1-NB_error_rate_16)*100</pre>
> accuracy_16
[1] 82.56407184
```

Dataset Result of year 2017

```
> table(nb_all=category_2017,Class=H1B_2017$CASE_STATUS)
           class
nb_all
          CERTIFIED DENIED
                88505
  CERTIFIED
                       4307
                 6178
                       1171
  DENIED
> NB_wrong_17<-sum(category_2017!=H1B_2017$CASE_STATUS)</p>
> NB_error_rate_17<-NB_wrong_17/length(category_2017)
> NB_error_rate_17
[1] 0.1046814628
> accuracy_17 <- (1-NB_error_rate_17)*100
> accuracy_17
[1] 89.53185372
```

CART

Advantages

- 1. Automatically performs variable selection
- 2. Uses any combination of continuous/discrete variable.

Disadvantages

Instability of model structure

Dataset Result of year 2017

```
> CART_error_rate_1
[1] 0.03897097977
> accuracy<-(1-CART_error_rate_1)*100
> accuracy
[1] 96.10290202
>
```

Dataset Result of year 2016

```
> CART_error_rate_1
[1] 0.04689164004
> accuracy<-(1-CART_error_rate_1)*100
> accuracy
[1] 95.310836
```

K-NN

 K-NN uses distance function to calculate the distance between points from the center

$$d_{\text{Euclidean}}(\mathbf{x}, \mathbf{y}) = \sqrt{\sum_{i} (x_i - y_i)^2}$$
 where $\mathbf{x} = x_1, x_2, ..., x_m$, and $\mathbf{y} = y_1, y_2, ..., y_m$ represent the m attributes

Analysis

- The comparisons used to classify are as follows:
 - Case Status Vs. Region (Employer State)
 - Case Status Vs. Department (Soc Name)
 - Case Status Vs. Wage (Yearly)

KNN Advantages and Disadvantages

Advantages

- Cost of learning process is zero
- Effective if training data is large

Disadvantages

- KNN algorithm is lazy learner
- Need to determine value of parameter K

KNN Algorithm

Accuracy of KNN using various K

H1B_2016 Confusion Matrix

Actual
Prediction 1 2
1 24967 698
2 63 56

H1B_2017 Confusion Matrix

Actual
Prediction 1 2
1 24960 684
2 66 74

Analysis Using KNN

Comparing Algorithm Used

Dataset Results

The Visa Denial rate have increase according to our analysis and the same have indicated by the USCIS

	2016	2017
RECEIPTS	399,349	404,087
APPROVALS	348,162	298,445
DENIALS	51,187	105,642

References

- 1. https://www.kaggle.com/trivedicharmi/h1b-disclosure-dataset
- 2. https://visualstudiomagazine.com/articles/2013/07/01/neural-network-data-normalization-and-encoding.aspx
- 3. https://home.deib.polimi.it/matteucc/Clustering/tutorial_html/kme ans.html
- 4. https://www.analyticsvidhya.com/blog/2014/06/introduction-rand-om-forest-simplified/
- 5. https://www.geeksforgeeks.org/naive-bayes-classifiers/