Note: These course notes are to be used strictly as part of the ECE 528 class at George Mason University.

ECE 528 – Introduction to Random Processes in ECE Lecture 9 Annex: Random Number Generators

Bijan Jabbari, PhD
Dept. of Electrical and Computer Eng.
George Mason University
Fairfax, VA 22030-4444, USA
bjabbari@gmu.edu
http://cnl.gmu.edu/bjabbari

November 4, 2019

OUTLINE

- Introduction
- Exponential Random Number Generation
- Bernoulli
- Binomial
- Normal
- Lognormal

Exponential Generator

$$X \sim EXP(\mu)$$
 pdf: $f(x \mid \mu) = \mu e^{-\mu x}$, $0 \le x \le \infty$, $\mu > 0$

mean: $E[X]=1/\mu$

Variance: $Var(X) = \frac{1}{\mu^2}$

$$X\sim Uniform (0,1)$$

$$-1/\mu ln(X)$$

$$Exp (\mu)$$

Bernoulli Generator

Bernoulli(p)

Uniform Generator

pmf
$$P(X = x \mid p) = p^x (1-p)^x$$
; $x = 0,1$; $0 \le p \le 1$
mean $E(X) = p$
variance $Var(X) = p(1-p)$.

Bernoulli (p)

Binomial Generator

Binomial(n,p)

pmf
$$P(X = x \mid n, p) = \binom{n}{x} p^x (1-p)^{n-x}; \quad x = 0,1,2,...,n; \quad 0 \le p \le 1$$

mean
$$E(X) = np$$

variance
$$Var(X) = np(1-p)$$

Bernoulli (p)

$$\sum_{i=1}^{n} X_{i}$$

$$n = 1$$

Binomial (n,p)

Normal Distribution

$$N(\mu, \sigma^2) \xrightarrow{\text{def}} f_X(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

• Approach: For U_1 and U_2 uniform random variables in the range (0,1)

$$Z_1 \xrightarrow{def} \left(-2\ln U_1\right)^{1/2} \cos\left(2\pi \cdot U_2\right)$$

$$Z_2 \xrightarrow{def} \left(-2\ln U_2\right)^{1/2} \sin\left(2\pi \cdot U_1\right)$$

 The two numbers Z₁ and Z₂ follow a normal random distribution with zero mean and variance 1 (i.e., N(0,1))

LogNormal Distribution

• The following illustrates the method that can be used to generate LogNormal random variables:

Log-Normal Distribution

log-normal distribution

$$f_L(x) = \frac{1/\ln 2}{x\sqrt{2\pi\sigma^2}} \exp\left[-\frac{1}{2\sigma^2} (\log_2(x) - \mu)^2\right], \quad x > 0$$

Cumulative distribution of a lognormal random variable

$$P(x < \tau) = 1 - Q \left(\frac{\ln \tau - \mu}{\sigma} \right)$$

Lognormal Distribution Relation to Normal Distribution

• The parameters (μ, σ) of lognormal (In) distribution can be obtained as

$$\mu = \ln \frac{m}{\sqrt{1 + s^2 / m^2}}$$

$$\sigma^2 = \ln \left(1 + \frac{s^2}{m^2} \right)$$

Normal and Log-normal Random Variables

PDF of Log-normal RV:

$$f_X(x;\mu,\sigma) = \frac{1}{\sqrt{2\pi}\sigma x} e^{-\frac{(\ln(x)-\mu)}{\sigma^2}} \qquad \text{Log-N}(\mu,\sigma^2)$$

$$m = E\{X\}$$
$$s^2 = var(X)$$

- Few points:
 - If $X^N(\mu,\sigma^2)$, then $\exp(X)^L\log N(\mu,\sigma^2)$.
 - Equivalently, if $X^{\sim}Log-N(\mu,\sigma^2)$, then $ln(X) \sim N(\mu,\sigma^2)$

Cont'd

- The PDF of a Log-normal RV is completely characterized either by (μ, σ^2) (The parameters of the corresponding Normal RV) or by its mean and variance (m,s^2) .
- (m,s^2) and (μ,σ^2) are related as following:

$$\begin{cases} m = e^{\mu + \frac{\sigma^2}{2}} \\ s^2 = e^{2\mu} (e^{2\sigma^2} - e^{\sigma^2}) \end{cases}$$

$$\begin{cases} m = e^{\mu + \frac{\sigma^2}{2}} \\ s^2 = e^{2\mu} (e^{2\sigma^2} - e^{\sigma^2}) \end{cases} \qquad \begin{cases} \mu = \ln\left(\sqrt{\frac{m^4}{s^2 + m^2}}\right) \\ \sigma^2 = 2\ln\left(\sqrt{1 + \frac{s^2}{m^2}}\right) \end{cases}$$

©2019 ECE528