

FLU VACCINE PREDICTION USING MACHINE LEARNING

OVERVIEW

- Predict H1N1 and Seasonal flu vaccine uptake
- Analyze individual factors influencing vaccination decisions
- Build and evaluate predictive models for actionable insights

BUSINESS UNDERSTANDING

- Vaccine hesitancy contributes to preventable disease spread
- Governments need data-driven tools to improve vaccine campaigns
- Identify population segments to target with awareness efforts

DATA UNDERSTANDING

- Dataset: H1N1 Flu Vaccine Prediction
- Size: 26,707 rows, 32 features
- Features: Demographics, health behaviors, opinions
- Targets: H1N1 vaccine, Seasonal flu vaccine (binary)

opinion_h1	oninion h1		opinion_seas		opinion_seas_sic				
ective	n1_risk	m_vacc	_vacc_crrecti	_risk	k_from_vacc	age_group	education	race	sex
3	1	2	2	1	2	55 - 64 Years	< 12 Years	White	Female
5	4	4	4	2		35 - 44 Years		White	Male
3	1	1	4	1	2	18 - 34 Years	College Graduate	White	Male

Sample of the training dataset

H1N1 AND SEASONAL FLU VACCINE UPTAKE DISTRIBUTION (0 = NOT VACCINATED, 1 = VACCINATED)

H1N1 AND SEASONAL FLU VACCINE UPTAKE DISTRIBUTION BY AGE GROUP

MODELLING

- Models Used:
 - Logistic Regression
 - Decision Trees

EVALUATION

METRIC: ROC AUC Score

Logistic Regression

H1N1: 0.826 Seasonal: 0.852

True Positives (bottom-right): Correctly predicted vaccinated individuals.

True Negatives (top-left): Correctly predicted non-vaccinated individuals.

False Positives (top-right): Predicted vaccinated but actually not.

False Negatives (bottom-left): Predicted not vaccinated but actually are.

Decision Tree

H1N1: 0.818

Seasonal: 0.828

Comparison Between the Two Models

Logistic Regression slightly outperformed Decision Tree.

ROC – H1N1 VACCINE

ROC – SEASONAL VACCINE

KEY INSIGHTS

- O H1N1 Predictors:
 - Doctor recommendation
 - Belief in vaccine effectiveness
 - Perceived personal risk

- Seasonal Predictors:
 - Risk perception
 - Trust in doctors
 - Age group (65+)

CONCLUSION

- Logistic Regression is effective for this task
- Behavior, trust in doctors, and risk perception drive vaccine decisions
- Predictive models can support public health targeting

- Train health workers to promote vaccine benefits
- Tailor messages for specific age groups
- Integrate models into health planning systems to forecast uptake

RECOMMENDATIONS

Made based on the predictions made by the model.

THANK YOU!

- Questions?
- Contact Info: doreen.murugi@student.mo ringaschool