## République Algérienne démocratique et populaire

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique École nationale supérieure d'informatique (ESI ex. INI)



# **BDA PROJECT #2**

2nd Cycle Software Engineering (2CS, SIL) 2024-2025

# Technical Report on Oracle Machine Learning (OML) with PL/SQL

# Prepared by

- Mahdia Toubal
- Dina Keddour
- LOUNI IMENE
- Guitoun Djihen

**Group SIL2** 

# **Table of content**

| 1. Introduction                                   | 2 |
|---------------------------------------------------|---|
| 2. Environment Setup                              | 2 |
| 3. Data Preparation                               | 2 |
| a. Creating the Diabetes Dataset Table            | 2 |
| b. Inserting Sample Data                          | 3 |
| c. Splitting Data into Training and Test Sets     | 3 |
| 4. Model Creation                                 | 3 |
| 1. Dropping Previous Models and Settings (PL/SQL) | 3 |
| 2. Specifying Model Parameters                    | 4 |
| 3. Training the Model with PL/SQL                 | 4 |
| 5. Model Evaluation                               | 5 |
| 1. Generating Predictions with SQL                | 5 |
| 2. Accuracy Calculation (SQL)                     | 6 |
| 6. Conclusion                                     | 7 |
| 7. AI Tools Utilization                           | 7 |

#### 1. Introduction

Oracle Machine Learning (OML) enables data scientists and developers to build and deploy machine learning models directly within the Oracle Database. This approach offers significant advantages by eliminating data movement, reducing latency, and leveraging the database's computational power. In this project, we demonstrate how to build a diabetes prediction model using PL/SQL and OML capabilities.

## 2. Environment Setup

#### **Oracle Cloud Infrastructure**

To begin our project, we set up the following environment:

#### 1. Oracle Cloud Account:

Created an oracle cloud free tier account which provides access to Oracle Autonomous Database services with Oracle Machine Learning (OML) capabilities (<u>cloud.oracle.com</u>).

#### 2. Autonomous Database Provisioning

- selected "Autonomous Data Warehouse" for our analytical workload.
- Configured with 2 OCPU and 1TB storage.
- Enabled Oracle Machine Learning services during provisioning.

#### 3. Accessing Development Environment

- Navigated to OML Notebooks interface.
- Created a new notebook for PL/SQL development.

# 3. Data Preparation

#### a. Creating the Diabetes Dataset Table

We started by creating a table to store our diabetes dataset with relevant medical features:

```
%script
DROP TABLE diabetes_data PURGE;

CREATE TABLE diabetes_data (
    Pregnancies NUMBER,
    Glucose NUMBER,
    BloodPressure NUMBER,
    SkinThickness NUMBER,
    Insulin NUMBER,
    BMI NUMBER,
    DiabetesPedigreeFunction NUMBER,
    Age NUMBER,
    Outcome NUMBER
```

#### b. Inserting Sample Data

We populated the table with sample records representing patient data and diabetes outcomes (1 = diabetic, 0 = non-diabetic):

```
Sscript
INSERT ALL

INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (6, 148, 72, 35, 0, 33.6, 0.627, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (1, 85, 66, 29, 0, 26.6, 0.351, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (8, 183, 64, 0, 0, 23.3, 0.672, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (8, 187, 40, 53, 186, 43.1, 2.167, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (8, 137, 40, 53, 186, 43.1, 2.167, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (5, 116, 74, 0, 0, 25.6, 0.201, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (1, 115, 0, 0, 0, 35.3, 0.131, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (2, 197, 70, 45, 543, 30.5, 0.151, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (2, 197, 70, 45, 543, 30.5, 0.151, INTO diabetes_data (Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome) VALUES (8, 125, 96, 0, 0, 0, 232, 54, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100, 1100
```

#### c. Splitting Data into Training and Test Sets

For proper model evaluation, we splitted the dataset into training data (80%) and test data (20%):

```
%script
ALTER TABLE diabetes_data ADD (data_set VARCHAR2(10));

UPDATE diabetes_data
SET data_set = CASE WHEN DBMS_RANDOM.VALUE < 0.8 THEN 'TRAIN' ELSE 'TEST' END;

SELECT data_set, COUNT(*) FROM diabetes_data GROUP BY data_set;</pre>
```

#### 4. Model Creation

With the training and test datasets prepared in the diabetes\_data table, we proceeded to build a machine learning classification model using PL/SQL and Oracle's in-database mining capabilities. The process includes:

#### 1. Dropping Previous Models and Settings (PL/SQL)

To ensure a clean setup, we first dropped any existing model name 'DIABETES\_MODEL' and the associated settings table using PL/SQL anonymous blocks:

```
%script
BEGIN
| DBMS_DATA_MINING.DROP_MODEL('DIABETES_MODEL');
EXCEPTION
| WHEN OTHERS THEN NULL;
END;
/

BEGIN
| EXECUTE IMMEDIATE 'DROP TABLE diabetes_settings';
EXCEPTION
| WHEN OTHERS THEN NULL;
END;
/
```

#### 2. Specifying Model Parameters

We defined model settings in a dedicated table using standard SQL. The key parameter was the algorithm:

```
CREATE TABLE diabetes_settings (
| setting_name VARCHAR2(30),
| setting_value VARCHAR2(30)
);

INSERT INTO diabetes_settings (setting_name, setting_value) VALUES
('ALGO_NAME', 'ALGO_DECISION_TREE');
```

Here we use the ALGO\_DECISION\_TREE, a built-in Oracle algorithm well-suited for classification tasks.

#### 3. Training the Model with PL/SQL

Using the DBMS\_DATA\_MINING.CREATE\_MODEL procedure, we built the model directly in PL/SQL:

This step creates a model stored within the Oracle database, no external tools required.

#### 5. Model Evaluation

Once the model was trained, we evaluated its predictive performance on the test dataset using PL/SQL and SQL queries.

#### 1. Generating Predictions with SQL

Using the PREDICTION SQL function, we compared predicted vs actual outcomes:

```
%script
SELECT
Pregnancies, Glucose, BloodPressure, SkinThickness, Insulin, BMI, DiabetesPedigreeFunction, Age, Outcome AS actual,
PREDICTION(DIABETES_MODEL USING
Pregnancies AS Pregnancies,
Glucose AS Glucose,
BloodPressure AS BloodPressure,
SkinThickness AS SkinThickness,
Insulin AS Insulin,
BMI AS BMI,
DiabetesPedigreeFunction AS DiabetesPedigreeFunction,
Age AS Age
) AS predicted
FROM diabetes_data
WHERE data_set = 'TEST';
```

This in-database scoring process eliminates the need to move data outside the Oracle DB for prediction.

#### **Results:**

| suits.     |                |                  |               |         |             |                               |             |          |           |
|------------|----------------|------------------|---------------|---------|-------------|-------------------------------|-------------|----------|-----------|
| REGNANCIES | GLUCOSE        | BLOODPRESSURE    | SKINTHICKNESS | INSULIN | BMI         | DIABETESPEDIGREEFUNCTION      | AGE         | ACTUAL   | PREDICTED |
| 2          | 197            | 70               | 45            | 543     | 30.5        | 0.158                         | 53          | 1        |           |
| 4          | 110            | 92               | 0             | 0       | 37.6        | 0.191                         | 30          | 0        |           |
| 7          | 100            |                  |               | 0       | 30          | 0.484                         |             | 1        |           |
| 9          |                |                  | 37            | 0       | 32.9        | 0.665                         |             | 1        |           |
| 7          |                | 64               | 0             | 0       |             | 0.294                         |             | 0        |           |
| 0          | 146            | 82               | 0             | 0       | 40.5        | 1.781                         | 44          | 0        |           |
| 7          | 114            | 66               | 0             | 0       | 32.8        | 0.258                         |             | 1        |           |
| 0          | 109            | 88               | 30            | 0       | 32.5        | 0.855                         | 38          | 1        |           |
| 13         | 126            | 90               | 0             | 0       | 43.4        | 0.583                         | 42          | 1        |           |
| 4          | 129            | 86               | 20            | 270     | 35.1        | 0.231                         | 23          | 0        |           |
| 7          | 83             | 78               | 26            | 71      | 29.3        | 0.767                         | 36          | 0        |           |
| 8          |                |                  | 0             | 0       | 23.6        | 0.84                          | 58          | 0        |           |
| 5          | 77             | 82               | 41            | 42      | 35.8        | 0.156                         | 35          | 0        |           |
| 7          | 114            | 64               | 0             | 0       | 27.4        | 0.732                         | 34          | 1        |           |
| REGNANCIES | GLUCOSE<br>167 | BLOODPRESSURE 74 | SKINTHICKNESS | INSULIN | BMI<br>23.4 | DIABETESPEDIGREEFUNCTION 0.44 | AGE<br>7 33 | ACTUAL 1 | PREDICTE  |
| 10         |                |                  |               |         |             |                               |             | _        |           |
| 6          |                |                  |               |         |             |                               |             | _        |           |
| 1          |                |                  |               |         |             |                               |             | _        |           |
| 10         |                |                  |               |         |             |                               |             |          |           |
| 3          |                |                  |               |         |             |                               |             |          |           |
| ē          |                |                  |               |         |             |                               |             |          |           |
| 10         |                |                  |               |         |             |                               |             | _        |           |
| 1          |                |                  |               |         |             |                               |             |          |           |
| 6          |                |                  |               |         |             |                               |             |          |           |
| 2          |                |                  | -             | _       |             |                               |             |          |           |
| -          |                |                  |               |         |             |                               |             |          |           |
| 2          |                |                  |               |         |             |                               |             |          |           |
|            |                |                  |               |         |             |                               |             | _        |           |
| 7          |                |                  |               |         |             |                               |             | _        |           |

| PREGNANCIES | GLUCOSE | BLOODPRESSURE | SKINTHICKNESS | INSULIN | BMI  | DIABETESPEDIGREEFUNCTION | AGE  | ACTUAL | PREDICTED |
|-------------|---------|---------------|---------------|---------|------|--------------------------|------|--------|-----------|
| 4           | 127     | 88            | 11            | 155     | 34.5 | 0.598                    | 28   | 0      | 0         |
| 4           | 83      | 86            | 19            | 0       | 29.3 | 0.317                    | 34   | . 0    | 0         |
| 1           | 106     | 76            | 0             | 0       | 37.5 | 0.197                    | 26   | 0      | 0         |
| 3           | 180     | 64            | 35            | 70      | 34   | 0.271                    | 26   | 0      | 1         |
| 1           | 103     | 80            | 11            | 82      | 19.4 | 0.491                    | . 22 | 0      | 0         |
| 5           | 99      | 74            | 27            | 0       | 29   | 0.203                    | 32   | 0      | 0         |
| 1           | 128     | 48            | 34            | 194     | 40.5 | 0.613                    | 24   | . 1    | 0         |
| 9           | 112     | 82            | 24            | 0       | 28.2 | 1.282                    | 50   | 1      | 0         |
| 10          | 129     | 62            | 36            | 0       | 41.2 | 0.441                    | 38   | 1      | 0         |
| 0           | 104     | 64            | 23            | 116     | 27.8 | 0.454                    | 23   | 0      | 0         |
| 0           | 146     | 70            | 0             | 0       | 37.9 | 0.334                    | 28   | 1      | 1         |
| 7           | 161     | 86            | 0             | 0       | 30.4 | 0.165                    | 47   | 1      | 1         |
| 2           | 108     | 80            | 0             | 0       | 27   | 0.259                    | 52   | . 1    | 0         |
| 11          | 138     | 74            | 26            | 144     | 36.1 | 0.557                    | 50   | 1      | 0         |
|             |         |               |               |         |      |                          |      |        |           |
|             |         |               |               |         |      |                          |      | _      | -         |
|             |         |               |               |         |      |                          |      |        |           |
| PREGNANCIES | GLUCOSE | BLOODPRESSURE | SKINTHICKNESS | INSULIN | BMI  |                          |      |        | PREDICTED |
| 0           |         |               | 0             | 0       | 32.4 | 0.141                    | 24   | 1      | 0         |
| 2           |         |               | 0             | 0       | 30.8 | 0.158                    | 21   | 0      | 0         |
| 7           | 97      |               |               | 91      | 40.9 | 0.871                    | 32   | 1      | 0         |
| 4           |         |               |               | 0       | 39.4 | 0.236                    | 38   | 0      | 0         |
| 2           |         |               |               | 120     | 44.5 | 0.646                    | 24   | 1      | 1         |
| 11          | 120     | 80            | 37            | 150     | 42.3 | 0.785                    | 48   | 1      | 0         |
|             |         |               |               |         |      |                          |      |        |           |

### 2. Accuracy Calculation (SQL)

We measured accuracy directly in SQL:

```
%script
SELECT
   COUNT(*) AS total,
    SUM(CASE WHEN Outcome = PREDICTION(DIABETES_MODEL USING
       Pregnancies AS Pregnancies,
       Glucose AS Glucose,
       BloodPressure AS BloodPressure,
       SkinThickness AS SkinThickness,
       Insulin AS Insulin,
       BMI AS BMI,
       DiabetesPedigreeFunction AS DiabetesPedigreeFunction,
       Age AS Age
    ) THEN 1 ELSE 0 END) AS correct,
    ROUND(100 * SUM(CASE WHEN Outcome = PREDICTION(DIABETES MODEL USING
        Pregnancies AS Pregnancies,
        Glucose AS Glucose,
       BloodPressure AS BloodPressure,
        SkinThickness AS SkinThickness,
        Insulin AS Insulin,
        BMI AS BMI,
        DiabetesPedigreeFunction AS DiabetesPedigreeFunction,
        Age AS Age
    ) THEN 1 ELSE 0 END) / COUNT(*), 2) AS accuracy_percent
FROM diabetes_data
WHERE data_set = 'TEST';
```

```
TOTAL CORRECT ACCURACY_PERCENT
48 28 58.33
```

This provides a clear measure of model effectiveness based solely on SQL logic.

#### 6. Conclusion

This project demonstrates that PL/SQL, when used with Oracle Machine Learning (OML), is fully capable of handling real-world machine learning workflows:

- Data preprocessing
- Model training
- Evaluation
- Prediction

All operations are executed in-database, which optimizes performance, minimizes data leakage risk, and integrates naturally with existing Oracle-based applications. PL/SQL proves itself as a viable, modern tool even in the era of cloud AI services and microservices.

#### 7. AI Tools Utilization

AI tools were used throughout the project to support different tasks:

- Understanding Concepts: Helped understand key ideas related to Oracle Machine Learning (OML) and how to use PL/SQL for in-database machine learning.
- Code Writing: Assisted in generating and improving PL/SQL code for data preparation, model creation, and evaluation.
- Error Handling: Helped interpret Oracle error messages and suggested fixes during development.
- Report Writing: Supported the structuring of this report and corrected language.