Clustering and Cluster Marker Identification

Sadiksha Adhikari

06.10.2022

Nemhesys single cell RNA sequencing workshop

Recap?

• Scrna-seq workflow

Selection of informative genes

Selection of informative genes

Dimensionality reduction & Clustering Annotation

Dimensionality reduction explore gene expression

• PCA

- > Preparation for clustering and visualization
- ➤ Separation of cell type visible also using just PCA, but highly affected by outliers, only works if first two PCA explains most of the data.

Clustering and visualization

- Many possible methods for clustering: hierarchical clustering, K-means clustering, Graph based clustering
- For visualization, methods that use graph based, non linear clustering is popular in scRNA-seq analysis (UMAP and tSNE)
- These methods embed cells in a graph structure eg.K-nearest neighbor (KNN) graph
- Run on top of PCA in Seurat workflow

(Takahashi et al. 2009)

Clustering

Seurat uses modularity optimization techniques are used such as Louvain algorithm for clustering

Source unknown

Preparation for for clustering

- Choose significant principal components: elbow plot, PCA heatmap
 - -Repeat analysis with different number of PCAs
 - -Choose higher cutoff instead of lower
- Set a resolution parameter (higher resolution = more clusters)

Visualization

- t-SNE and UMAP
- Principles are same: Create a graph to represent the data in a high-dimensional space, and then attempt to recreate the graph as accurately as possible in a lower-dimensional environment.
- Similar steps: (1) calculate the "distance" between a cell and a controlled number of neighbors in the high dimensional space, (2) make sure that these "distances" are similar when data is moved to a lower dimensional space.
- Difference lies in mathematics: The graph is moved point-to-point from a high- to a lowdimensional space using t-SNE. UMAP compresses the graph into a lower dimension while maintaining its fuzziness and topological similarity.
- Similar problem: The cells might be all connected or isolated unless the distance is constrained (Curse of Dimensionality). The constraint is put on the number of neighbors that a cell can pick. UMAP: number of neighbour, t-SNE: perplexity

Visualization

T-sne: t-Stochastic Neighbourhood Embedding (Van der Maaten and Hinton, 2008)

- The higher dimensional dataset is transformed into a lower dimension using the "T-distribution." In essence, it determines how likely a cell is to be drawn toward a neighboring cell (similarity measure), and then it repeats the process for each cell. Cells are reconfigured in the low dimension space in accordance with these criteria.
- Focus on distance between similar points
- Preserves the local structure, but not global structure
 -distance within the cluster is meaningful but that between clusters are not meaningful

Visualization

- UMAP: Uniform Manifold Approximation and Projection (McInnes et al., 2018)
- Based on topological structures in multidimensional space:
- It first develops a fuzzy graph that reproduces the topology (shape) of the real high-dimensional graph, determines the weights assigned to its edges, and then constructs a low-dimensional graph that closely resembles the fuzzy graph.
- Preserve global structure better than t-SNE
- Faster (In case of large datasets)

Cluster biomarker identification

- Difference between clusters
- Marker genes are the genes that are differentially expressed (DE) between the cluster
- Eg CD14 is a marker gene for classical monocytes, MPO for neutrophils, CD3E CD3D CD3G for T cells, CD8A for CD8 T cells, GNLY NKG7 for NK cells.

(Markers genes can not always be useful for annotation)

 ScRNA seq DE is challenging compared to bulk RNA-seq due to noise such as dropouts, amplification biases (low mRNA) and also uneven sequencing depth

Dropouts in scRNA-seq

A dropout event is when a transcript is expressed in a cell but is entirely undetected in its mRNA profile

(Kharchenko et al., 2014)

DE analysis for marker identification

- MAST: works good for large number of samples (note that samples = cells in scRNA-seq analysis)
- Wilcox rank sum test (non-parametric test): Affected by dropouts (zeros) but works fine.
- Bulk RNA-seq method such as DESeq2
 - No prior gene filtering
 - DE between two cluster at a time, slow
- Multiple testing correction of p-values (bonferroni correction) to avoid false positives: raw p-value * number of genes tested, bonferroni is more strict -> make it less strict by testing less number of genes
- Limit testing to genes which show minimum of X% fold difference, also speeds up the analysis.

Links

References:

- van der Maaten, Laurens & Hinton, Geoffrey. (2008). Viualizing data using t-SNE. Journal of Machine Learning Research. 9. 2579-2605.
- McInnes, Leland & Healy, John & Saul, Nathaniel & Grossberger, Lukas. (2018). UMAP: Uniform Manifold Approximation and Projection. Journal of Open Source Software. 3. 861. 10.21105/joss.00861.
- Kharchenko, Peter & Silberstein, Lev & Scadden, David. (2014). Bayesian approach to single-cell differential expression analysis. Nature methods. 11. 10.1038/nmeth.2967.
- Codes are mostly from here: https://satijalab.org/seurat/articles/pbmc3k_tutorial.html

Other reading (from the symposium):

Sini Junttila, Johannes Smolander, Laura L Elo, Benchmarking methods for detecting differential states between conditions from multi-subject single-cell RNA-seq data, *Briefings in Bioinformatics*, Volume 23, Issue 5, September 2022, bbac286, https://doi.org/10.1093/bib/bbac286

Let's go through the codes now!