Fun with Diagram Algebras

Madeline Nurcombe

The University of Queensland

September 17, 2021

The Temperley-Lieb algebra:

 Introduced by Temperley & Lieb (1971) where it arose in lattice models in statistical mechanics

- Introduced by Temperley & Lieb (1971) where it arose in lattice models in statistical mechanics
- Rediscovered and popularised by Jones (1983), who applied it to knot theory

- Introduced by Temperley & Lieb (1971) where it arose in lattice models in statistical mechanics
- Rediscovered and popularised by Jones (1983), who applied it to knot theory
- Representation theory well-understood

- Introduced by Temperley & Lieb (1971) where it arose in lattice models in statistical mechanics
- Rediscovered and popularised by Jones (1983), who applied it to knot theory
- Representation theory well-understood
- Original work on the representation theory: Martin (1991), Westbury (1995)

- Introduced by Temperley & Lieb (1971) where it arose in lattice models in statistical mechanics
- Rediscovered and popularised by Jones (1983), who applied it to knot theory
- Representation theory well-understood
- Original work on the representation theory: Martin (1991), Westbury (1995)
- Review paper by Ridout & Saint-Aubin (2014) discusses the representation theory very thoroughly

One-boundary Temperley-Lieb algebra:

• Now accounts for a boundary on one side

One-boundary Temperley-Lieb algebra:

- Now accounts for a boundary on one side
- I'll use the definition from Pearce, Rasmussen & Tipunin (2014), which depends on three complex parameters β , β_1 , β_2

One-boundary Temperley-Lieb algebra:

- Now accounts for a boundary on one side
- I'll use the definition from Pearce, Rasmussen & Tipunin (2014), which depends on three complex parameters β , β_1 , β_2
- Related blob algebra has been studied by Martin & Saleur (1994),
 Martin & Woodcock (2000), but only has two parameters

One-boundary Temperley-Lieb algebra:

- Now accounts for a boundary on one side
- I'll use the definition from Pearce, Rasmussen & Tipunin (2014), which depends on three complex parameters β , β_1 , β_2
- Related blob algebra has been studied by Martin & Saleur (1994),
 Martin & Woodcock (2000), but only has two parameters

My task:

• Adapt the Ridout & Saint-Aubin paper to study the three-parameter one-boundary Temperley-Lieb algebra $1BTL_n(\beta; \beta_1, \beta_2)$

We now introduce *n*-diagrams.

• Two vertical lines

- Two vertical lines
- n nodes on each line (here n = 6)

- Two vertical lines
- n nodes on each line (here n = 6)
- Dotted boundary line at top

- Two vertical lines
- n nodes on each line (here n = 6)
- Dotted boundary line at top
- Strings may connect pairs of nodes

- Two vertical lines
- n nodes on each line (here n = 6)
- Dotted boundary line at top
- Strings may connect pairs of nodes
- Or nodes to boundary

- Two vertical lines
- n nodes on each line (here n = 6)
- Dotted boundary line at top
- Strings may connect pairs of nodes
- Or nodes to boundary
- One string connected to each node

- Two vertical lines
- n nodes on each line (here n = 6)
- Dotted boundary line at top
- Strings may connect pairs of nodes
- Or nodes to boundary
- One string connected to each node
- Strings may not cross!

We now introduce *n*-diagrams.

- Two vertical lines
- n nodes on each line (here n = 6)
- Dotted boundary line at top
- Strings may connect pairs of nodes
- Or nodes to boundary
- One string connected to each node
- Strings may not cross!

Introduce $1\mathrm{BTL}_n$ as the complex vector space with the set of all n-diagrams as basis.

We now want to multiply *n*-diagrams.

Draw the diagrams next to each other

- Draw the diagrams next to each other
- Replace each loop with a factor of β

- Draw the diagrams next to each other
- Replace each loop with a factor of β

- Draw the diagrams next to each other
- Replace each loop with a factor of β
- Replace each boundary arc with odd (even) left connection by a factor of β_1 (β_2)

- Draw the diagrams next to each other
- Replace each loop with a factor of β
- Replace each boundary arc with odd (even) left connection by a factor of β_1 (β_2)

- Draw the diagrams next to each other
- ullet Replace each loop with a factor of eta
- Replace each boundary arc with odd (even) left connection by a factor of β_1 (β_2)
- Remove the middle line and tighten the strings

- Draw the diagrams next to each other
- Replace each loop with a factor of β
- Replace each boundary arc with odd (even) left connection by a factor of β_1 (β_2)
- Remove the middle line and tighten the strings
- Extend this bilinearly to all of $1BTL_n(\beta; \beta_1, \beta_2)$

We now want to construct a representation of $1BTL_n(\beta; \beta_1, \beta_2)$.

Introducing standard modules $V_{n,d}$

We now want to construct a representation of $1BTL_n(\beta; \beta_1, \beta_2)$.

• Each *n*-diagram can be cut in half vertically to make *half-diagrams*, e.g.:

We now want to construct a representation of $1BTL_n(\beta; \beta_1, \beta_2)$.

• Each *n*-diagram can be cut in half vertically to make *half-diagrams*, e.g.:

- Each node in a half-diagram can have
 - a link, connecting it to another node,
 - a boundary link, connected to the boundary, or
 - a defect, sticking straight out to the right.

We now want to construct a representation of $1BTL_n(\beta; \beta_1, \beta_2)$.

• Each *n*-diagram can be cut in half vertically to make *half-diagrams*, e.g.:

- Each node in a half-diagram can have
 - a link, connecting it to another node,
 - a boundary link, connected to the boundary, or
 - a defect, sticking straight out to the right.
- No crossing of strings! Also, links and boundary links cannot pass over defects.

Introducing standard modules $V_{n,d}$

Let $V_{n,d}$ be the complex vector space with the set of all *n*-half-diagrams with precisely d defects as its basis.

Let $V_{n,d}$ be the complex vector space with the set of all *n*-half-diagrams with precisely d defects as its basis.

We now want to define the action of $1BTL_n(\beta; \beta_1, \beta_2)$ on $\mathcal{V}_{n,d}$ to make it a (left) $1BTL_n(\beta; \beta_1, \beta_2)$ -module.

Let $V_{n,d}$ be the complex vector space with the set of all *n*-half-diagrams with precisely d defects as its basis.

We now want to define the action of $1BTL_n(\beta; \beta_1, \beta_2)$ on $\mathcal{V}_{n,d}$ to make it a (left) $1BTL_n(\beta; \beta_1, \beta_2)$ -module.

• Define for diagrams and half-diagrams and extend bilinearly

Let $V_{n,d}$ be the complex vector space with the set of all *n*-half-diagrams with precisely d defects as its basis.

We now want to define the action of $1BTL_n(\beta; \beta_1, \beta_2)$ on $\mathcal{V}_{n,d}$ to make it a (left) $1BTL_n(\beta; \beta_1, \beta_2)$ -module.

- · Define for diagrams and half-diagrams and extend bilinearly
- Draw side-by-side, replace loops and boundary arcs with factors of β , β_1 , β_2 as before, then tighten the strings

Let $V_{n,d}$ be the complex vector space with the set of all *n*-half-diagrams with precisely d defects as its basis.

We now want to define the action of $1BTL_n(\beta; \beta_1, \beta_2)$ on $\mathcal{V}_{n,d}$ to make it a (left) $1BTL_n(\beta; \beta_1, \beta_2)$ -module.

- · Define for diagrams and half-diagrams and extend bilinearly
- Draw side-by-side, replace loops and boundary arcs with factors of β , β_1 , β_2 as before, then tighten the strings
- Must preserve number of defects d; if not, set the result to 0

Diagram operations: action on standard modules $\mathcal{V}_{n,d}$

Examples

In $\mathcal{V}_{5,2}$, we have

while in $\mathcal{V}_{5,1}$ we have

Diagram operations: outer product

From a pair of n-half-diagrams with the same number of defects d, we can construct an n-diagram.

Diagram operations: outer product

From a pair of n-half-diagrams with the same number of defects d, we can construct an n-diagram.

Example

In $\mathcal{V}_{6,2}$, we can take

 $\in 1BTL_6$.

Diagram operations: outer product

From a pair of n-half-diagrams with the same number of defects d, we can construct an n-diagram.

Example

In $\mathcal{V}_{6,2}$, we can take

This can be extended bilinearly to a map $|\cdot| \cdot \cdot| : \mathcal{V}_{n,d} \times \mathcal{V}_{n,d} \to 1 \mathrm{BTL}_n$.

What if we put two (n, d)-half-diagrams back-to-back instead?

What if we put two (n, d)-half-diagrams back-to-back instead?

What if we put two (n, d)-half-diagrams back-to-back instead?

Extending this bilinearly to $V_{n,d} \times V_{n,d}$ would give a *bilinear form*:

• Like an inner product, except without some restrictions like $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \Rightarrow x = 0$

What if we put two (n, d)-half-diagrams back-to-back instead?

Extending this bilinearly to $V_{n,d} \times V_{n,d}$ would give a *bilinear form*:

- Like an inner product, except without some restrictions like $\langle x, x \rangle \geq 0$ and $\langle x, x \rangle = 0 \Rightarrow x = 0$
- Bilinear NOT sesquilinear

For the bilinear form to be useful, we would like to have

$$|x \ y| z = x \langle y, z \rangle$$

for all $x, y, z \in \mathcal{V}_{n,d}$, e.g.:

For the bilinear form to be useful, we would like to have

$$|x \ y| z = x \langle y, z \rangle$$

for all $x, y, z \in \mathcal{V}_{n,d}$, e.g.:

Observing that $|x| y | z \propto x$ for all $x, y, z \in \mathcal{V}_{n,d}$, this is possible, and uniquely defines a bilinear form $\langle \cdot, \cdot \rangle : \mathcal{V}_{n,d} \times \mathcal{V}_{n,d} \to \mathbb{C}$.

Examples

In $\mathcal{V}_{6,2}$, we have

Examples

In $\mathcal{V}_{6,2}$, we have

$$\left\langle \begin{array}{c} \\ \\ \\ \end{array} \right\rangle = \begin{array}{c} \\ \\ \\ \end{array} = \beta \beta_1,$$

while in $\mathcal{V}_{5,0}$ we have

$$\left\langle \left| \right\rangle \right\rangle = \left| \right\rangle \right\rangle = \beta_2^2,$$

Each of these bilinear forms has an associated Gram matrix.

Each of these bilinear forms has an associated Gram matrix.

Example

$$G_{3,1} = \begin{pmatrix} \beta_1 \beta_2 & \beta_1 & 0 \\ \beta_1 & \beta & 1 \\ 0 & 1 & \beta \end{pmatrix}$$

Each of these bilinear forms has an associated Gram matrix.

Example

Note that $det(G_{n,d})$ must be a polynomial in β , β_1 , β_2 .

Each of these bilinear forms has an associated Gram matrix.

Example

Note that $det(G_{n,d})$ must be a polynomial in β , β_1 , β_2 .

Keep this in mind! Very important later.

Structure of $V_{n,d}$

We now have the tools to determine some structural properties of $\mathcal{V}_{n,d}$.

Structure of $V_{n,d}$

We now have the tools to determine some structural properties of $\mathcal{V}_{n,d}$.

Key questions

Structure of $\mathcal{V}_{n,d}$

We now have the tools to determine some structural properties of $\mathcal{V}_{n,d}$.

Key questions

• If you start with a vector $v \in \mathcal{V}_{n,d}$, which other elements of $\mathcal{V}_{n,d}$ can you get to by acting on v with elements of the algebra $1\mathrm{BTL}_n(\beta; \beta_1, \beta_2)$?

Structure of $\mathcal{V}_{n,d}$

We now have the tools to determine some structural properties of $\mathcal{V}_{n,d}$.

Key questions

- If you start with a vector $v \in \mathcal{V}_{n,d}$, which other elements of $\mathcal{V}_{n,d}$ can you get to by acting on v with elements of the algebra $1\mathrm{BTL}_n(\beta; \beta_1, \beta_2)$?
- Are there any subspaces you can get stuck in?

Structure of $V_{n,d}$

Definition

A submodule of an A-module V, for an algebra A, is a subspace W of V such that

$$\forall a \in A, \ \forall w \in W, \quad aw \in W.$$

Structure of $\mathcal{V}_{n,d}$

Definition

A submodule of an A-module V, for an algebra A, is a subspace W of V such that

$$\forall a \in A, \ \forall w \in W, \quad aw \in W.$$

Informally, a submodule is "a subspace you can get stuck in".

Structure of $V_{n,d}$

Definition

A submodule of an A-module V, for an algebra A, is a subspace W of V such that

$$\forall a \in A, \ \forall w \in W, \quad aw \in W.$$

Informally, a submodule is "a subspace you can get stuck in".

Definition

An A-module V is called *irreducible* if it has no submodules other than $\{0\}$ and V itself.

Structure of $V_{n,d}$

Question: Is $V_{n,d}$ irreducible?

Structure of $\mathcal{V}_{n,d}$

Question: Is $V_{n,d}$ irreducible?

• If $G_{n.d} \neq 0$, then the property $|x \ y| \ z = x \ \langle y,z \rangle$ actually implies

 $\mathcal{V}_{n,d}$ is irreducible \Leftrightarrow $\det(G_{n,d}) \neq 0$.

Structure of $V_{n,d}$

Question: Is $V_{n,d}$ irreducible?

• If $G_{n,d} \neq 0$, then the property $|x \ y| \ z = x \langle y, z \rangle$ actually implies

$$\mathcal{V}_{n,d}$$
 is irreducible \Leftrightarrow $\det(G_{n,d}) \neq 0$.

Hence the technical goals of my thesis were:

- Find $det(G_{n,d})$,
- Find when $det(G_{n,d}) = 0$.

Determinant of the Gram matrix

Theorem

For any $\beta, \beta_1, \beta_2 \in \mathbb{C}$, the determinant of the Gram matrix $G_{n,d}$ is given by $\det(G_{n,d}) =$

$$\begin{cases} (-\beta_1)^{\left(\frac{n-d}{2}-1\right)} \prod_{j=1}^{\frac{n-d}{2}} \left(\beta_1 U_{d+j-1} \left(\frac{\beta}{2}\right) - \beta_2 U_{d+j} \left(\frac{\beta}{2}\right)\right)^{\left(\frac{n}{2}-j\right)} \\ \times \prod_{k=1}^{\frac{n-d}{2}-1} \left(\beta_2 U_{k-1} \left(\frac{\beta}{2}\right) - \beta_1 U_k \left(\frac{\beta}{2}\right)\right)^{\left(\frac{n-d}{2}-k-1\right)}, \qquad d \equiv n \mod 2, \end{cases}$$

$$\beta_{2}^{\left(\frac{n}{n-d-1}\right)} \prod_{j=1}^{\frac{n-d-1}{2}} \left(\beta_{2} U_{d+j-1} \left(\frac{\beta}{2}\right) - \beta_{1} U_{d+j} \left(\frac{\beta}{2}\right)\right)^{\left(\frac{n-d-1}{2}-j\right)} \times \prod_{j=1}^{\frac{n-d-1}{2}} \left(\beta_{1} U_{k-1} \left(\frac{\beta}{2}\right) - \beta_{2} U_{k} \left(\frac{\beta}{2}\right)\right)^{\left(\frac{n-d-1}{2}-k\right)},$$

 $d \not\equiv n \mod 2$,

where U_m is the mth Chebyshev polynomial of the second kind.

When $det(G_{n,d}) = 0$

Theorem

We have $det(G_{n,d}) = 0$ if and only if d < n, and

- $\beta_{n,d} = 0$; or
- $\beta_{n,d} \neq 0$, $q \neq \pm 1$, and $\beta'_{n,d} \notin \left\{q\beta_{n,d}, q^{-1}\beta_{n,d}\right\}$, and
 - $\xi_{n,d}-(d+j+1)\lambda\in\pi\mathbb{Z}$ for some $j\in\mathbb{Z}$ with $1\leq j\leq \left\lfloor \frac{n-d}{2}\right\rfloor$, or
 - $\xi_{n,d} + k\lambda \in \pi\mathbb{Z}$ for some $k \in \mathbb{Z}$ with $1 \le k \le \lfloor \frac{n-d-1}{2} \rfloor$; or
- $\beta_{n,d} \neq 0$, $q = \pm 1$, and
 - $\beta'_{n,d} = \frac{d+j}{d+j+1} q^{-1} \beta_{n,d}$ for some $j \in \mathbb{Z}$ with $1 \le j \le \lfloor \frac{n-d}{2} \rfloor$, or
 - $\beta'_{n,d} = \frac{k+1}{k} q \beta_{n,d}$ for some $k \in \mathbb{Z}$ with $1 \le k \le \lfloor \frac{n-d-1}{2} \rfloor$,

where $\beta = q + q^{-1}$, $q = e^{i\lambda}$, and $\xi_{n,d}$ comes from the parametrisation

$$\beta'_{n,d} = \frac{q - q^{-1} e^{2i\xi_{n,d}}}{1 - e^{2i\xi_{n,d}}} \beta_{n,d},$$

where $\beta_{n,d} = \beta_1$ and $\beta'_{n,d} = \beta_2$ if $d \equiv n \mod 2$, or vice versa if $d \not\equiv n \mod 2$.

Results from this:

• For generic β , β_1 and β_2 , $\mathcal{V}_{n,d}$ is irreducible.

- For generic β , β_1 and β_2 , $\mathcal{V}_{n,d}$ is irreducible.
- Checked the $G_{n,d}=0$ cases, so found precisely when each $\mathcal{V}_{n,d}$ is irreducible

- For generic β , β_1 and β_2 , $\mathcal{V}_{n,d}$ is irreducible.
- Checked the $G_{n,d}=0$ cases, so found precisely when each $\mathcal{V}_{n,d}$ is irreducible
- Can deduce from this (and further arguments from Graham & Lehrer (1996)) the values of β , β_1 , β_2 for which $1\mathrm{BTL}_n(\beta;\beta_1,\beta_2)$ is semisimple, meaning any finite-dimensional $1\mathrm{BTL}_n(\beta;\beta_1,\beta_2)$ -module is isomorphic to a direct sum of irreducible modules

- For generic β , β_1 and β_2 , $\mathcal{V}_{n,d}$ is irreducible.
- Checked the $G_{n,d}=0$ cases, so found precisely when each $\mathcal{V}_{n,d}$ is irreducible
- Can deduce from this (and further arguments from Graham & Lehrer (1996)) the values of β , β_1 , β_2 for which $1\mathrm{BTL}_n(\beta;\beta_1,\beta_2)$ is semisimple, meaning any finite-dimensional $1\mathrm{BTL}_n(\beta;\beta_1,\beta_2)$ -module is isomorphic to a direct sum of irreducible modules
 - Found that $1BTL_n(\beta; \beta_1, \beta_2)$ is semisimple for generic parameter values, but not all parameter values

- For generic β , β_1 and β_2 , $\mathcal{V}_{n,d}$ is irreducible.
- Checked the $G_{n,d}=0$ cases, so found precisely when each $\mathcal{V}_{n,d}$ is irreducible
- Can deduce from this (and further arguments from Graham & Lehrer (1996)) the values of β , β_1 , β_2 for which $1\mathrm{BTL}_n(\beta;\beta_1,\beta_2)$ is semisimple, meaning any finite-dimensional $1\mathrm{BTL}_n(\beta;\beta_1,\beta_2)$ -module is isomorphic to a direct sum of irreducible modules
 - Found that $1BTL_n(\beta; \beta_1, \beta_2)$ is semisimple for generic parameter values, but not all parameter values
 - $1BTL_n(\beta; \beta_1, \beta_2)$ is semisimple if and only if $det(G_{n,d}) \neq 0$ for all $0 \leq d \leq n$.

Where to from here?

• Consider *indecomposable* $1BTL_n(\beta; \beta_1, \beta_2)$ -modules, i.e. those which cannot be expressed as a direct sum of two nonzero submodules

Where to from here?

- Consider *indecomposable* $1BTL_n(\beta; \beta_1, \beta_2)$ -modules, i.e. those which cannot be expressed as a direct sum of two nonzero submodules
- Apply similar procedures to other algebras e.g. two-boundary and periodic Temperley-Lieb algebras, BMW algebra (crossing of strings allowed)

Where to from here?

- Consider *indecomposable* $1BTL_n(\beta; \beta_1, \beta_2)$ -modules, i.e. those which cannot be expressed as a direct sum of two nonzero submodules
- Apply similar procedures to other algebras e.g. two-boundary and periodic Temperley-Lieb algebras, BMW algebra (crossing of strings allowed)
- Connect back to physics look at the Hamiltonians for the corresponding lattice models, and their energy eigenvalues

Determinant bloopers: Sierpinski triangle

