强化学习

主讲: 王亚星、刘夏雷、郭春乐 南开大学计算机学院 https://mmcheng.net/xliu/

致谢:本课件主要内容来自浙江大学吴飞教授、 南开大学程明明教授

提纲

- •一、强化学习问题定义
- •二、基于价值的强化学习
- •三、基于策略的强化学习(了解)
- •四、深度强化学习的应用(了解)

劳动创造了人----恩格斯

解读:劳动这样一种人与所处环境之间相互作用的实践活动促进了人的智能发育

强化学习: 在与环境交互之中进行学习

生活中常见的学习过程

• 人通过动作对环境产生影响

环境向人反馈状态的变化

· 人估计动作得到的收益

更新做出动作的策略

(向前走一步)

(撞到了树上)

(疼痛)

(下次避免向有树这一障碍的方向前进)

强化学习: 在与环境交互之中进行学习

强化学习模仿了这个过程, 在智能主体与环境的交互中, 学习能最大化收益的模式

强化学习中的概念

·智能主体(agent)

•按照某种策略(policy),根据当前的状态 (state)选择合适的动作(action)

• 状态指的是智能主体对环境的一种解释

·动作反映了智能主体对环境主观能动的 影响,动作带来的收益称为奖励(reward)

智能主体可能知道也可能不知道环境变化的规律

强化学习中的概念

- ·智能主体(agent)
- 环境(environment)
 - 系统中智能主体以外的部分
 - 向智能主体反馈状态和奖励
 - •按照一定的规律发生变化

机器学习的不同类型

有监督学习

从数据X和标签y中学习映射 $f:X \mapsto y$

X: 图像、文本、音频、视频等

y: 连续或离散的标量、结构数据

无监督学习

寻找数据X中存在的结构和模式

强化学习的特点

•基于评估:

•强化学习利用环境评估当前策略,以此为依据进行优化

• 交互性:

• 强化学习的数据在与环境的交互中产生

•序列决策过程:

智能体在与环境的交互中需要作出一系列的决策,这些决策往 往是前后关联的

注:现实中常见的强化学习问题往往还具有奖励滞后, 基于采样的评估等特点

强化学习的特点

• 根据以下特点直观定位强化学习

- 有/无可靠的反馈信息
- 基于评估/基于监督信息
- 序列决策/单步决策
- 基于采样/基于穷举

有限 状态 强化 学习 序列决策 基于采样 基于评估 有反馈信息

	有监督学习	无监督学习	强化学习
学习依据	基于监督信息	基于对数据结构的假设	基于评价(evaluative)
数据来源	一次性给定	一次性给定	在交互中产生
决策过程	单步(one-shot)	无	序列(sequential)
学习目标	样本到语义标签的 映射	同一类数据的分布模式	选择能够获取最大收益 的状态到动作的映射

强化学习示例

• 序列优化问题:

- 在下图网格中, 假设有一个机器人位于s₁, 其每一步只能向上或向右移动一格, 跃出方格会被惩罚(且游戏停止)
- ·如何使用强化学习找到一种策略,使机器人从s1到达s9?

刻画解该问题的因素

* **					
智能主体	迷宫机器人				
环境	3×3方格				
状态	机器人当前时刻所处方格				
动作	每次移动一个方格				
奖励	到达s ₉ 时给予奖励,越界时给予惩罚				

s ₇	s ₈	Ş 9
s ₄	9 ₅ ?	s ₆
s ₁	s_2	s_3

离散马尔可夫过程(Discrete Markov Process)

•一个随机过程实际上是一列随时间变化的随机变量

•其中当时间是离散量时,一个随机过程可以表示为 $\{X_t\}_{t=0,1,2,...}$,其中每个 X_t 都是一个随机变量,这被称为离散随机过程

离散马尔可夫过程(Discrete Markov Process)

•生活中的马尔科夫链

摩尔定律

集成电路元器件数目(今天|1年半前)

离散马尔可夫过程: 机器人移动问题

马尔可夫随机过程: 引入奖励

•为了在序列决策中对目标进行优化,加入奖励机制:

马尔可夫随机过程: 引入奖励

•为了在序列决策中对目标进行优化,加入奖励机制:

问题: 给定两个因状态转移产生的奖励序列(1,1,0,0)和(0,0,1,1),哪个序列决策更好?

马尔可夫奖励过程(Markov Reward Process)

•为了比较不同的奖励序列,定义反馈,用来反映累加奖励:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

马尔可夫奖励过程(Markov Reward Process)

• 使用离散马尔可夫过程描述机器人移动问题

s ₇	s ₈	S 9
s ₄	S ₅	s ₆
s ₁	s_2	s_3

马尔可夫决策过程: 引入动作

马尔可夫决策过程(Markov Decision Process)

- 使用离散马尔可夫过程描述机器人移动问题
 - 随机变量序列 $\{S_t\}_{t=0,1,2,\cdots}$: S_t 表示机器人第t步所在位置(状态),每个随机变量 S_t 的取值范围为 $S=\{s_1,s_2,\cdots,s_9,s_d\}$
 - •动作集合: A = {上, 右}
 - 状态转移概率 $Pr(S_{t+1}|S_t,a_t)$: 满足马尔可夫性,其中 $a_t \in A$ 。
 - 奖励函数: R(S_t, a_t, S_{t+1})
 - · 衰退系数: γ ∈ [0, 1]

可通过 $MDP = \{S, A, Pr, R, \gamma\}$ 来刻画马尔科夫决策过程

马尔可夫决策过程(Markov Decision Process)

・马尔可夫决策过程 $MDP = \{S,A,Pr,R,\gamma\}$ 是刻画强化学习中环境的标准形式

马尔可夫决策过程(Markov Decision Process)

· 在机器人移动问题中: 状态、行为、衰退系数、起始/终止状态、反馈、状态转移 概率矩阵的定义如下

$$S = \{s_1, s_2, \dots, s_9, s_d\}$$
 起始状态: $S_0 = s_1$ $R(S_t, a_t, S_{t+1}) = \begin{cases} 1, 如果S_{t+1} = s_9 \\ -1, 如果S_{t+1} = s_d \end{cases}$ 终止状态: $S_T \in \{s_9, s_d\}$ $Pr(S_{t+1}|S_t, a_t = \bot)$

马尔可夫决策过程中的策略学习

强化学习问题定义

·如何进行策略学习:一个好的策略是在当前状态下采取了一个行动后,该行动能够在未来收到最大化的反馈:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

强化学习问题定义

智能体选择动作的模型:

策略函数 $\pi: S \times A \mapsto [0, 1], \pi(s, a)$ 表示智能体在状态s下采取动作a的概率。

最大化每一时刻的回报值:

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots$$

强化学习问题定义

• 定义: 给定一个马尔可夫决策过程 $MDP = \{S, A, Pr, R, \gamma\}$, 学习一个最优策略 π^* , 对任意s使得 $V_{\pi^*}(s)$ 值最大。

贝尔曼方程(Bellman Equation)也被称作动态规划方程(Dynamic Programming Equation),由理查德·贝尔曼(Richard Bellman)提出。

- 价值函数(Value Function) $V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$
- · 动作-价值函数(Action-Value Function)

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s, A_t = a]$$

贝尔曼方程(Bellman Equation)也被称作动态规划方程(Dynamic Programming Equation),由理查德·贝尔曼(Richard Bellman)提出。

- 价值函数(Value Function) $V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$
- · 动作-价值函数(Action-Value Function)

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s, A_t = a]$$

贝尔曼方程(Bellman Equation)也被称作动态规划方程(Dynamic Programming Equation),由理查德·贝尔曼(Richard Bellman)提出。

- 价值函数(Value Function) $V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$
- · 动作-价值函数(Action-Value Function)

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s, A_t = a]$$

$$V_{\pi}(s) = \sum_{a \in A} \pi(s, a) \sum_{s' \in S} P(s'|s, a) [R(s, a, s') + \gamma V_{\pi}(s')]$$

= $\mathbb{E}_{a \sim \pi(s, \cdot)} \mathbb{E}_{s' \sim P(\cdot|s, a)} [R(s, a, s') + \gamma V_{\pi}(s')]$

价值函数取值与时间没有关系,只与策略π、在策略π下从某个状态转移到其后 续状态所取得的回报以及在后续所得回报有关。

贝尔曼方程(Bellman Equation)也被称作动态规划方程(Dynamic Programming Equation),由理查德·贝尔曼(Richard Bellman)提出。

- 价值函数(Value Function) $V_{\pi}(s) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s]$
- · 动作-价值函数(Action-Value Function)

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \cdots | S_t = s, A_t = a]$$

$$q_{\pi}(s, a) = \sum_{s' \in S} P(s'|s, a) \left[R(s, a, s') + \gamma \sum_{a' \in A} \pi(s', a') q_{\pi}(s', a') \right]$$

= $\mathbb{E}_{s' \sim P(\cdot|s, a)} [R(s, a, s') + \gamma \mathbb{E}_{a' \sim \pi(s', \cdot)} [q_{\pi}(s', a')] \right]$

动作-价值函数取值同样与时间没有关系,而是与瞬时奖励和下一步的状态和动作 有关。

价值函数与动作-价值函数的关系:动作-价值函数的贝尔曼方程

价值函数的贝尔曼方程

$$V_{\pi}(s) = \mathbb{E}_{a \sim \pi(s,\cdot)} \mathbb{E}_{s' \sim P(\cdot|s,a)} [R(s,a,s') + \gamma V_{\pi}(s')]$$

动作-价值函数的贝尔曼方程

$$q_{\pi}(s,a) = \mathbb{E}_{s'\sim P(\cdot|s,a)}[R(s,a,s') + \gamma \mathbb{E}_{a'\sim \pi(s',\cdot)}[q_{\pi}(s',a')]]$$

贝尔曼方程描述了价值函数或动作-价值函数的递推关系,是研究强化学习问题的重要手段。 其中价值函数的贝尔曼方程描述了当前状态价值函数和其后续状态价值函数之间的关系,即 当前状态价值函数等于瞬时奖励的期望加上后续状态的(折扣)价值函数的期望。而动作-价值 函数的贝尔曼方程描述了当前动作-价值函数和其后续动作-价值函数之间的关系,即当前状态下的动作-价值函数等于瞬时奖励的期望加上后续状态的(折扣)动作-价值函数的期望。

价值函数与动作-价值函数的关系:动作-价值函数的贝尔曼方程

价值函数的贝尔曼方程

$$V_{\pi}(s) = \mathbb{E}_{a \sim \pi(s,\cdot)} \mathbb{E}_{s' \sim P(\cdot|s,a)} [R(s,a,s') + \gamma V_{\pi}(s')]$$

动作-价值函数的贝尔曼方程

$$q_{\pi}(s, a) = \mathbb{E}_{s' \sim P(\cdot|s, a)}[R(s, a, s') + \gamma \mathbb{E}_{a' \sim \pi(s', \cdot)}[q_{\pi}(s', a')]]$$

在实际中,需要计算得到最优策略以指导智能体在当前状态如何选择一个可获得最大回报的动作。求解最优策略的一种方法就是去求解最优的价值函数或最优的动作-价值函数(即基于价值方法, value-based approach)。一旦找到了最优的价值函数或动作-价值函数,自然而然也就是找到最优策略。当然,在强化学习中还有基于策略(policy-based)和基于模型(model-based)等不同方法。

价值函数与动作-价值函数的关系:以状态s1的计算为例

$$V_{\pi}(s) = \sum_{a \in A} \pi(s, a) q_{\pi}(s, a)$$

提纲

- •一、强化学习问题定义
- •二、基于价值的强化学习
- •三、基于策略的强化学习
- •四、深度强化学习的应用

强化学习的问题与求解

- ・强化学习的问题定义: 给定马尔可夫决策过程 $MDP = \{S, A, Pr, R, \gamma\}$
- •强化学习会寻找一个最优策略 π^* ,在策略 π^* 作用下使得任意状态 $s \in S$ 对应的价值函数 $V_{\pi^*}(s)$ 取值最大。

强化学习中的策略优化

- ・策略优化定理:
- ・对于确定的策略 π 和 π' , 如果对于任意状态 $s \in S$

$$q_{\pi}(s, \pi'(s)) \ge q_{\pi}(s, \pi(s))$$

・那么对于任意状态 $s \in S$,有

$$V_{\pi'}(s) \geq V_{\pi}(s)$$

即策略π′不比π差

注意,不等式左侧的含义是指在当前这一步将动作修改为π′(s),未来的动作仍然按照π的指导进行

强化学习中的策略优化

• 给定当前策略 π 、价值函数 V_{π} 和行动-价值函数 q_{π} 时,可如下构造新的策略 π' 、只要 π' 满足如下条件:

$$\pi'(s) = \operatorname{argmax}_{a} q_{\pi}(s, a)$$
 (对于任意 $s \in S$)

• π' 便是对 π 的一个改进。于是对于任意 $s \in S$,有

$$q_{\pi}(s, \pi'(s)) = q_{\pi}(s, \operatorname{argmax}_{a} q_{\pi}(s, a)) = \max_{a} q_{\pi}(s, a) \ge q_{\pi}(s, \pi(s))$$

强化学习中的策略优化:机器人寻路问题为例子

假设当前价值函数在右图中给出,策略用箭头表示,对状态 s_1 而言: $R(S_t, a_t, S_{t+1}) = \begin{cases} 1, \text{ 如果} S_{t+1} = s_0 \\ -1, \text{ 如果} S_{t+1} = s_d \\ 0, \text{ 其他情况} \end{cases}$

が状态
$$S_1$$
而言:
$$R(S_t, a_t, S_{t+1}) = \begin{cases} 1, \text{如果}S_{t+1} = s_0 \\ -1, \text{如果}S_{t+1} = s_d \\ 0, \text{其他情况} \end{cases}$$

$$y = 0.99$$

$$q_{\pi}(s, a) = \sum_{s' \in S} Pr(s'|s, a) [R(s, a, s') + \gamma V_{\pi}(s')]$$

强化学习中的策略评估方法

假定当前策略为π,策略评估指的是根据策略π来计算相应的价值函数

 V_{π} 或动作-价值函数 q_{π} 。

•基于动态规划的价值函数更新:使用迭代的方法求解贝尔曼方程组

强化学习中的策略评估: 蒙特卡洛采样

• 基于蒙特卡洛采样的价值函数更新

选择不同的起始状态,按照当前策略 π 采样若干轨迹,记它们的集合为D枚举 $s \in S$

计算D中s每次出现时对应的反馈 G_1, G_2, \dots, G_k

$$V_{\pi}(s) \leftarrow \frac{1}{k} \sum_{i=1}^{k} G_{i}$$

- 基于蒙特卡洛采样的价值函数更新
- 按照这样的思路可使用蒙特卡洛方法来进行策略评估:给定状态s,从该状态出发不断采样后续状态,得到不同的采样序列。通过这些采样序列来分别计算状态s的回报值,对这些回报值取均值,作为对状态s价值函数的估计,从而避免对状态转移概率的依赖。

强化学习中的策略评估: 时序差分

- 基于时序差分(Temporal Difference)的价值函数更新
- 时序差分法可以看作**蒙特卡罗方法和动态规划方法的有机结合**。时序差分算法与蒙特卡洛方法相似之处在于,时序差分方法从<mark>实际经验中获取信息</mark>,无需提前获知环境模型的全部信息。时序差分算法与动态规划方法的相似之处在于,时序差分方法能够利用前序已知信息来进行在线实时学习,无需等到整个片段结束(终止状态抵达)再进行价值函数的更新。

· 动态规划法根据贝尔曼方程迭代更新价值函数,要求算法事先知道状态之间的转移概率,这往往是不现实的。为了解决这个问题,时序差分法借鉴蒙特卡洛法思想,通过采样a和s'来估计计算 $V_{\pi}(s)$

- · 动态规划法根据贝尔曼方程迭代更新价值函数,要求算法事先知道状态之间的转移概率,这往往是不现实的。为了解决这个问题,时序差分法借鉴蒙特卡洛法思想,通过采样a和s'来估计计算 $V_{\pi}(s)$
- 由于通过采样进行计算,所得结果可能不准确,因此时序差分法并没有将这个估计值照单全收,而是以 α 作为权重来接受新的估计值,即把价值函数更新为 $(1-\alpha)V_{\pi}(s)+\alpha[R+\gamma V_{\pi}(s')]$,对这个式子稍加整 理就能得到算法7.2.3中第7行形式: $V_{\pi}(s)\leftarrow V_{\pi}(s)+\alpha[R+\gamma V_{\pi}(s')-V_{\pi}(s)]$ 。这里 $R+\gamma V_{\pi}(s')$ 为时序差分目标, $R+\gamma V_{\pi}(s')-V_{\pi}(s)$ 为时序差分偏差。

・ 更新 $V_{\pi}(s)$ 的值: $V_{\pi}(s) \leftarrow (1-a)V_{\pi}(s) + \alpha[R(s,a,s') + \gamma V_{\pi}(s')]$ 过去的 学习得到的 价值函数值

・基于时序差分(Temporal Difference)的价值函数更新

基于时序差分(Temporal Difference)的价值函数更新 初始化
$$V_{\pi}$$
函数 循环 初始化 s 为初始状态 循环 $a \sim \pi(s,\cdot)$ 执行动作 a ,观察奖励 R 和下一个状态 s' 更新 $V_{\pi}(s) \leftarrow V_{\pi}(s) + \alpha[R(s,a,s') + \gamma V_{\pi}(s') - V_{\pi}(s)]$ $s \leftarrow s'$ 有到 s 是终止状态

直到s是终止状态

直到Vn收敛

・基于时序差分(Temporal Difference)的价值函数更新

$$V_{\pi}(s) \leftarrow V_{\pi}(s) + \alpha[R(s, a, s') + \gamma V_{\pi}(s') - V_{\pi}(s)]$$

假设 $\alpha = 0.5$,更新 $V_{\pi}(s_1)$ 的值: 从 $\pi(s_1, \cdot)$ 中采样得到动作 $a = \bot$ 从 $Pr(\cdot | s_1, \bot)$ 中采样得到下一步状态 $s' = s_4$

$$V_{\pi}(s_1) \leftarrow V_{\pi}(s_1) + \alpha[R(s_1, \perp, s_4) + \gamma V_{\pi}(s_4) - V_{\pi}(s_1)]$$

= 0.1 + 0.5 × [0 + 0.99 × 0.3 - 0.1] = 0.199

在对片段进行采样的同时,不断以上述方法更新当前状态的价值函数,不断迭代直到价值函数,收敛为止。

・基于时序差分的方法 - Q学习(Q-Learning)[Q: quality]

```
初始化qπ函数
循环
      初始化s为初始状态
                                                                        策略优化: \pi'(s) = \operatorname{argmax}_a q_{\pi}(s, a)
      循环
            a \sim \pi(s, \cdot) a = \operatorname{argmax}_{a'} q_{\pi}(s, a')
             执行动作a,观察奖励B和下一个状态s'
            更新V_{\pi}(s) \leftarrow V_{\pi}(s) + \alpha[R + \gamma V_{\pi}(s') - V_{\pi}(s)]
            更新q_{\pi}(s, a) \leftarrow q_{\pi}(s, a) + \alpha \left[ R + \gamma \max_{a'} q_{\pi}(s', a') - q_{\pi}(s, a) \right]
            s \leftarrow s'
                                                                                 q_{\pi}(s, a) \leftarrow (1 - \alpha)q_{\pi}(s, a) + \alpha \left[R + \gamma \max_{s'} q_{\pi}(s', a')\right]
      直到s是终止状态
直到qπ收敛
```

・基于时序差分的方法 - Q学习(Q-Learning)[Q: quality]

```
初始化qπ函数
循环
      初始化s为初始状态
                                                                          策略优化: \pi'(s) = \operatorname{argmax}_a q_{\pi}(s, a)
      循环
             a \sim \pi(s, \cdot) a = \operatorname{argmax}_{a'} q_{\pi}(s, a')
             执行动作a,观察奖励B和下一个状态s'
             更新V_{\pi}(s) \leftarrow V_{\pi}(s) + \alpha[R + \gamma V_{\pi}(s') - V_{\pi}(s)]
            更新q_{\pi}(s, a) \leftarrow q_{\pi}(s, a) + \alpha \left[ R + \gamma \max_{a'} q_{\pi}(s', a') - q_{\pi}(s, a) \right]
             s \leftarrow s'
                                                                                  q_{\pi}(s, a) \leftarrow (1 - \alpha)q_{\pi}(s, a) + \alpha \left[R + \gamma \max_{s'} q_{\pi}(s', a')\right]
      直到s是终止状态
```

直到qπ收敛

- 基于价值的方法不直接对策略建模,因此策略优化在采样和更新两步中之max操作上得以间接体现
- 在同一次循环中策略评估和策略优化交替进行
- 由于策略优化要求计算动作-价值函数q,因此Q学习直接利用q函数的贝尔曼方程进行更新

策略优化,根据 q_{π} 优化 π 价值 Q π 策略


```
初始化q_{\pi}函数
循环
a = \operatorname{argmax}_{a'} q_{\pi}(s, a')
执行动作a, 观察奖励R和下一个状态s'
更新q_{\pi}(s, a) \leftarrow q_{\pi}(s, a) + a\left[R + \gamma \max_{a'} q_{\pi}(s', a') - q_{\pi}(s, a)\right]
s \leftarrow s'
直到s是终止状态
直到q_{\pi}收敛
```

0/0	0.2/0	0.2/0	0/0
	0.2/0	0.2/0	0.2/0
	0.2/0	0.2/0	0.2/0

初始化qπ函数 循环 初始化s为初始状态 循环 $a = \operatorname{argmax}_{a'} q_{\pi}(s, a')$ 执行动作a,观察奖励B和下一个状态s'更新 $q_{\pi}(s, a) \leftarrow q_{\pi}(s, a) + \alpha \left[R + \gamma \max_{a} q_{\pi}(s', a') - q_{\pi}(s, a) \right]$ $s \leftarrow s'$ 直到s是终止状态

初始化qπ函数

在右图中, a_{h} 表示 $q_{\pi}(s, L) = a, q_{\pi}(s, L) = b$

0.2/0

0.2/0 0/0

所有终止状态的q函数值设为 $^0/_{\Omega}$,其余状态可随机初始化,此处设: $^{0.2}/_{\Omega}$

直到qπ收敛

0.2/0 0.2/0 0.2/0

初始化s,s的值在右图中用黑框框出

|0.2_{/0}| 0.2/0 0.2_{10}

0/0	0.2/0	0.2/0	0/0
	0.2/0	0.2/0	0.2/0
	0.2/0	0.2/0	0.2/0

直到qπ收敛

$$a = \operatorname{argmax}_{a'} q_{\pi}(s_1, a') = \bot$$

$$R = 0$$
, $s' = s_4$

$$q_{\pi}(s_1, \pm) \leftarrow 0.2 + 0.5 \times [0 + 0.99 \times \max\{0, 0.2\} - 0.2] = 0.199$$

 $s \leftarrow s_4$

0/0

 $a = \operatorname{argmax}_{a'} q_{\pi}(s_4, a') = \bot$

R = 0, $s' = s_7$

 $q_{\pi}(s_4, \perp) \leftarrow 0.2 + 0.5 \times [0 + 0.99 \times \max\{0, 0.2\} - 0.2] = 0.199$

直到qπ收敛

0.2/0	0.2/0	0/0
0.199/0	0.2/0	0.2/0
0.199/0	0.2/0	0.2/0

 $s \leftarrow s_7$

0/0	0.2/0	0.2/0	0/0
	0.2/0	0.2/0	0.2/0
	0.2/0	0.2/0	0.2/0

```
初始化q_{\pi}函数
循环
初始化s为初始状态
循环
a = \operatorname{argmax}_{a'} q_{\pi}(s, a')
执行动作a, 观察奖励R和下一个状态s'
更新q_{\pi}(s, a) \leftarrow q_{\pi}(s, a) + \alpha \left[ R + \gamma \max_{a'} q_{\pi}(s', a') - q_{\pi}(s, a) \right]
s \leftarrow s'
直到s是终止状态
```

0/0

直到qπ收敛

$$a = \operatorname{argmax}_{a'} q_{\pi}(s_7, a') = \bot$$
 $R = -1, s' = s_d$
 $q_{\pi}(s_7, \bot) \leftarrow 0.2 + 0.5 \times [-1 + 0.99 \times \max\{0,0\} - 0.2] = -0.4$
 $s \leftarrow s_d$

因为s_d是终止状态,因此一个片段(episode)结束

-0.4/0	0.2/0	0/0
0.199/0	0.2/0	0.2/0
0.199/0	0.2/0	0.2/0

q函数

-0.4 _{/0}	0.2/0	0/0
0.199/0	0.2/0	0.2/0
0.199/0	0.2/0	0.2/0

-0.4 _{/0.099}	-0.4 _{/0}	0/0
0.100/0	0.2/0	0.2/0
0.198/0	0.2/0	0.2/0

策略

第一个片段后

第二个片段后

第三个片段后

行百里者半于九十

q函数

1/_2	1/_2	0/0
1/_2	1/_2	1/_2
1/_2	1/_2	1/_2

•	如果q函数的初始化为 $^{1}/_{-2}$,	在模型收敛后,	策略仍无法使得智能主体
	找到目标状态		

这种情况并非个例,例如状态s7往上走的期望反馈保持0.2、往右走的 期望反馈保持0的条件下,将s7往上走的惩罚值适当减少(在先前例子中, 该惩罚值为-1),会得到类似的效果。

这种情况出现的原因为何?

策略

策略学习中探索(exploration)与利用(exploitation)的平衡

·问题:为何Q学习收敛到非最优策略?

观察每个片段的轨迹

- (s_1, s_4, s_7, s_d)
- (s₁, s₄, s₇, s_d)
- •
- (s_1, s_4, s_7, s_d)

智能主体的策略(即按照动作-价值函数选择反馈最大的行为)始终不变,因此与环境交互的轨迹是固定的,过程中没有得到任何有关目标s₉的信息

- 外力: 缺乏推动智能主体改变策略的外在因素
- 内因:智能主体缺乏从内部改变策略的动力

智能主体的"创新精神":

- · 根据目前已知的最优策略来选择动作,被称为利用(exploitation)
- · 不根据当前策略而去尝试未知的动作被称为探索(exploration)

策略学习中探索(exploration)与利用(exploitation)的平衡

- ·问题:为何Q学习收敛到非最优策略?
- · 回答: 算法中只有利用没有探索

探索与利用之间如何取得平衡

- 只利用而不探索 🔀
- 只探索而不利用(则训练过程完全没有意义)
- 大体上利用,偶尔探索 🔀

ε贪心(ε-greedy)策略

$$\epsilon - greedy_{\pi}(s) =
\begin{cases}
 \text{argmax}_{a}q_{\pi}(s, a), & \text{以}1 - \epsilon \text{的概率} \\
 & \text{随机的}a \in A, & \text{以}\epsilon \text{的概率}
\end{cases}$$

 ϵ -greedy_{π}策略是非确定的策略,严格来说应该写成概率形式,此处用了其简化表达

€贪心策略的解释:大体上遵循最优策略的决定,偶尔(以€的小概率)进行探索

策略学习中探索(exploration)与利用(exploitation)的平衡

- · 将动作采样从"确定地选取最优动作"改为"按照 ϵ 贪心策略选取动作"
- 更新时仍保持用max操作选取最佳策略。像这样更新时的目标策略与采样策略不同的方法, 叫做离策略(off-policy)方法

强化学习中的策略评估:使用*6*贪心策略的Q学习

q函数

1/_2	1/_2	0/0
1/_2	1/_2	1/_2
1/_2	1/_2	1/_2

-0.99 _{/0.7}	-1.00 _{/1}	0/0
0.12/0.98	0.99/0.80	1/_2
0.97/0.24	0.98/_2	1/_2

 $\phi \epsilon = 0.1$,采用探索策略的Q学习,执行了100个片段

后

学习得到的策略能够将智能主体导向目标s。

仍有部分状态是没有被探索过的(s₃)

探索与利用 相互平衡策略

第100个片段后

用神经网络拟合(行动)价值函数:Deep Q-learning

使用e贪心策略的Q学习

- 状态数量太多时,有些状态可能始终无法采样到,因此对这些状态的q函数进行估计是很困难的
- · 状态数量无限时,不可能用一张表(数组)来记录q函数的值

```
初始化q_{\pi}函数
循环
初始化s为初始状态
循环
采样a \sim \epsilon - greedy_{\pi}(s)
执行动作a, 观察奖励R和下一个状态s'
更新q_{\pi}(s,a) \leftarrow q_{\pi}(s,a) + a\left[R + \gamma \max_{a'} q_{\pi}(s',a') - q_{\pi}(s,a)\right]
s \leftarrow s'
直到s是终止状态
<u>直到q_{\pi}收敛</u>
```

思路:将q函数参数化(parametrize),用一个非线性回归模型来拟合q函数,例如(深度)神经网络

- 能够用有限的参数刻画无限的状态
- 由于回归函数的连续性, 没有探索过的状态也可通过周围的状态来估计

用神经网络拟合(行动)价值函数:Deep Q-learning

·用深度神经网络拟合q函数

```
初始化q_{\pi}函数的参数\theta
循环
     初始化s为初始状态
     循环
           采样 a \sim \epsilon-greedy<sub>π</sub>(s; \theta)
           执行动作a,观察奖励R和下一个状态s'
           损失函数L(\theta) = \frac{1}{2} [R + \gamma \max_{a'} q_{\pi}(s', a'; \theta) - q_{\pi}(s, a; \theta)]<sup>2</sup>
           根据梯度\partial L(\theta)/\partial \theta更新参数\theta
           s \leftarrow s'
     直到s是终止状态
```

直到qπ收敛

- 损失函数刻画了q的估计值 $R + \gamma \max_{a'} q_{\pi}(s', a'; \theta)$ 与当前值的平方误差
- 利用梯度下降法优化参数θ
- 如果用深度神经网络来拟合q函数,则算法称为深度Q学习或者深度强化学习

经验重现(Experience Replay)

相邻的样本来自同一条轨迹,样本之间相关性太强,集中优化相关性强的样本可能导致神经网络在其他样本上效果下降。

将过去的经验存储下来,每次将新的样本加入到存储中去,并从存储中采样一批样 本进行优化

- ・解决了样本相关性强的问题
- 重用经验, 提高了信息利用的效率

目标网络(Target Network)

在损失函数中,q函数的值既用来估计目标值,又用来计算当前值。现在这两处的q函数通过θ有所关联,可能导致优化时不稳定

目标网络
$$\frac{1}{2} \left[R + \gamma \max_{a'} q_{\pi}(s', a'; \theta^{-}) - q_{\pi}(s, a; \theta) \right]^{2}$$

损失函数的两个q函数使用不同的参数计算

- · 用于计算估计值的q使用参数 θ -计算,这个网络叫做目标网络
- · 用于计算当前值的q使用参数θ计算
- 保持 θ^- 的值相对稳定,例如 θ 每更新多次后才同步两者的值

提纲

- •一、强化学习问题定义
- •二、基于价值的强化学习
- •三、基于策略的强化学习
- •四、深度强化学习的应用

基于策略的强化学习

- •基于价值的强化学习:以对价值函数或动作-价值函数的建模为核心。
- ·基于策略的强化学习:直接参数化策略函数,求解参数化的策略函数的梯度。
- ·策略函数的参数化可以表示为 Φ(sq, 其中θ)一组参数, 函数取值表示在状态 s下选择动作 d的概率。和Q学习的 c贪心策略相比, 这种参数化的一个显著好处是: 选择一个动作的概率是随着参数的改变而光滑变化的, 实际上这种光滑性对算法收敛有更好的保证。

提纲

- •一、强化学习问题定义
- •二、基于价值的强化学习
- •三、基于策略的强化学习
- •四、深度强化学习的应用

深度Q学习的应用实例: 围棋博弈

• 围棋游戏一个片段的轨迹

深度Q学习的应用实例: 围棋博弈

·AlphaGo算法的三个重要组成部分

蒙特卡洛树搜索

根据策略和价值函数搜 索并决定动作,支持从 浩渺样本空间中采样

深度Q学习的应用实例: 雅达利游戏

·用于游戏的DQN动作-价值函数模型

Mnih, Volodymyr, et al, Human-level control through deep reinforcement learning, Nature 518.7540 (2015)

博弈对抗的算法例子(https://www.bilibili.com/video/BV1Eb411T77Z/)

· DOTA2 (状态空间极其庞大下完全信息下博弈)

谢谢!