

Geometría

Congruencia de triángulos y aplicaciones

Intensivo UNI 2024 - III

- 1. En un triángulo ABC se traza la altura \overline{BH} y la ceviana \overline{CM} , tal que m $\ll MCA = 15^{\circ}$ v m $\ll BAH = 60^{\circ}$. Si BC=MC, calcule $m \not\prec HBC$.
- Si \overline{AE} es bisectriz interior, CE = (BE)K y K toma su menor valor entero, halle m < BAE.

Si AB = BC y AD = 4(BE), halle θ .

D)
$$\frac{53^{\circ}}{2}$$

5. En el gráfico mostrado, halle α .

- A) 82°
- B) 76°
- C) 75°

D) 74°

- E) 68°
- 3. En el gráfico mostrado, AC=6. Calcule BL.

- A) 9 D) 5
- B) 4
- C) 8
- E) 6

- A) 10°
- B) 20°
- C) 30°

D) 40°

- E) 50°
- **6.** En un $\triangle ABC$ (AB=BC) se ubica en su interior el punto P de manera que AP = BC, $m < PAC = \alpha \land m < PAB = 60^{\circ} - 2\alpha$ Halle m∢*PCA*.
 - A) 25°
- B) 30°
- C) 35°

D) 40°

E) 45°

Según el gráfico, P v O son puntos medios de \overline{AM} v \overline{BC} , respectivamente, además, AB=MC. Calcule x

- A) 8°
- B) 12°
- C) 15°

D) 30°

- E) 18°
- En un triángulo ABC se trazan las cevianas interiores \overline{AM} y \overline{BN} , de modo que ABN y AMC son isósceles de bases \overline{AN} y \overline{AC} . Si NC = BM, calcule m∢*NCB*.
 - A) 45°
- B) 53°
- C) 48°

D) 30°

- E) 60°
- 9. En la base \overline{AC} de un triángulo isósceles ABC, se ubican los puntos $P \vee Q \ (P \in \overline{AQ})$, de modo que $m \triangleleft PBQ = m \triangleleft ABP + m \triangleleft QBC$. Si $AP = \sqrt{2}$, PQ = 4v $QC = \sqrt{14}$, calcule m∢BCA.
 - A) 30°
- B) 45°
- C) 37°

D) 40°

- E) 60°
- 10. Dado un cuadrilátero ABCD, m∢ABD=70°, $m \angle CBD = 55^{\circ}$, $m \angle CDB = 25^{\circ}$ y CA = CD, calcule m∢*BDA*.
 - A) 40°
- B) 45°
- C) 20°

D) 30°

- E) 35°
- 11. En un triángulo acutángulo ABC, AB=20 y BC = 13. Si m $\angle BAC = 39^\circ$, calcule m $\angle BCA$.
 - A) 86° D) 75°
- B) 72°
- C) 76°
- E) 82°

- **12.** Enuncuadrilátero*ABCD*, m∢*BAC*=m∢*CAD*=20°, $m \angle ABD = 30^{\circ} \text{ y } BC = BD$. Calcule $m \angle ACD$.
 - A) 10°

- B) 20°
- C) 15°

D) 18°

- E) 8°
- 13. Si \mathcal{L} es mediatriz de \overline{AC} , MN=MB=BL, AN=a v CM=b, halle CL.

- C) 2a-b

D) 2b-a

- E) 2(b-a)
- **14.** Si $AB = a \vee BC = b$, halle AD.

- A) a+b
- B) a+2b
- C) 2a + b

D) 2(a+b)

- F) $\sqrt{a^2 + b^2}$
- **15.** En un cuadrilátero ABCD, AD=AB=BC, $m \angle ABC = 90^{\circ} \text{ y } m \angle BDC = 75^{\circ}$. Calcule $m \angle DAC$.
 - A) 10°
- B) 15°
- C) 30°

D) 18°

E) 12°

16. Según el gráfico, AC=CD=DF. Si EB mide igual que el perímetro de ABC, calcule x.

- A) 120°
- B) 100°
- C) 115°

D) 135°

- E) 150°
- 17. En un triángulo rectángulo ABC, recto en B, se traza la ceviana AD, de modo que DC = 2(AB) y $m \not\subset DAC = 2(m \not\subset BAD)$. Calcule $m \not\subset BAD$.
 - A) 26.5°
- B) 18°
- C) 22.5°
- D) 30° E) 18.5°
- 18. Desde un punto P en la región interior de un triángulo ABC se traza \overline{PH} , \overline{PT} y \overline{PQ} , perpendiculares a los lados \overline{AB} , \overline{AC} y \overline{BC} , respectivamente. Si $m \angle ABC = m \angle BCA = 53^\circ$, PO = 3(PH) v PT = 2(PH), calcule $\frac{HB}{OC}$.
 - A) $\frac{21}{22}$

 - D) $\frac{24}{25}$
- 19. Dado un triángulo ABC, en la ceviana \overline{BM} se ubica el punto N, de modo que m∢NAM=m∢BCA y m∢ANM=m∢NBC. Si AB=NC, calcule $m \not \prec BCA$.
 - A) 30°
- B) 60°
- C) 53°

D) 37°

E) 45°

20. Si AB + 4(CD) = 16, halle MN.

A) 1

- B) 2
- C) 4 E) 16

- D) 8
- 21. En un triángulo ABC, se traza BM, mediana de dicho triángulo.

Si $m \triangleleft MBC = m \triangleleft BAC = 2m \triangleleft MCB$. calcule m∢BCM.

- A) 13°
- B) 14°
- C) 15° E) 9°

- D) 10°
- 22. En triángulo ADB, $m \ll ABD = 50^{\circ}$, un m∢BDA=100°; además, se ubica el punto C en **la región exterio**r y relativa a \overline{BD} de modo que $m \not\sim DBC = 80^{\circ} \text{ v } m \not\sim BDC = 30^{\circ}$. Calcule $m \not\sim ACD$.
 - A) 37°
- B) 20°
- C) 15°

- E) 30°
- 23. En un triángulo ABC, AD y CE son bisectrices interiores, las cuales se intersecan en I, además, \overline{EM} y \overline{DN} son bisectrices interiores de los triángulos AEI y CDI, respectivamente. Si $m \not< ABC = 60^\circ$, $EM = a \lor DN = b$, halle MN.

 - A) a+b B) $\sqrt{3}(a+b)$ C) $\frac{a+b}{2}$

D) $\sqrt{a^2 + b^2}$

- E) \sqrt{ab}
- 24. En un triángulo ABC, las bisectrices de los ángulos BAC y ACB se intersecan en I, de modo que $m \not\subset BCA = 2(m \not\subset BAC)$ y BC = AI. Halle m∢*ABC*.
 - A) 40°
- B) 45°
- C) 50°

D) 60°

E) 70°