CS1231

(11) Let T be a full 40-ary tree. How many among the numbers 121, 202, 313, 434, can be the number of vertices of T? (Your answer ranges from 0 to 4.)

(12) How many edges are there in a forest of t trees containing a total of n vertices?

tree with nuertices

n-t.

(ii) Find the value(s) of n if a full and balanced n-ary tree has 81 leaves and height 4.

n = 3

3

(14) Find the weight of a minimum spanning tree in the following graph.

(15) Let G be the following graph. Using the alphabetical ordering, find a spanning tree by depth first search. Draw the tree below.

Graph G

DFS

BFS

Question B [5 marks]. Prove by using mathematical induction that for any integer $n \geq 1$,

$$1 + \frac{1}{4} + \frac{1}{9} + \ldots + \frac{1}{n^2} \le 2 - \frac{1}{n}.$$

Let P(n) be $1+\frac{1}{4}+\frac{1}{9}+\cdots+\frac{1}{n^2} \le 2-\frac{1}{n}$

Basis Step. P(1) is " $1 \le 2 - \frac{1}{1}$ " which is true.

Industive Step Suppose P(1) P(k) all true, where P(k) is

$$1 + \frac{1}{4} + \frac{1}{9} + \cdots + \frac{1}{K^2} \le 2 - \frac{1}{K}$$

Now we check P(k+1). $|+\frac{1}{4} + \frac{1}{9} + \dots + \frac{1}{k^2} + \frac{1}{(k+1)^2}| \le 2 - \frac{1}{k} + \frac{1}{(k+1)^2}| \le 2 - \frac{(k+1)^2 + k}{k(k+1)^2}| \le 2 - \frac{k^2 + k + 1}{k(k+1)^2}| \le 2 - \frac{1}{k+1} \left[\frac{k^2 + k + 1}{k(k+1)} \right] \le 2 - \frac{1}{k+1} \left[\frac{k^2 + k + 1}{k^2 + k} \right] \le 2 - \frac{1}{k+1} \left[1 + \frac{1}{k^2 + k} \right]$

 $\leq 2 - \frac{1}{k+1}$

i. P(k+1) is true.

Question C [5 marks]. Prove that for any positive integer n,

$$\sum_{r=0}^{n} \binom{n}{r}^2 = \binom{2n}{n}.$$

Consider the set A with n elements A = {a, a2 -- an} the set B with another n elements

AUB = fa, az --- an, b, bz --- bn't has in elements

Consider the number of subsets of AUB of size n.

Because AUB has 2n elements, choosing subsets of size n Method 1 has $\binom{2n}{n}$ ways.

From A choose r elements and from B choose n-r elements. We have $\binom{n}{r}\binom{n}{n-r} = \binom{n}{r}^2$ ways Method 2

From the following that $\frac{\partial \cos \theta}{\partial x} = 0$ we have $\binom{n}{0}^2$ ways $\frac{\partial \cos \theta}{\partial x} = 1$ we have $\binom{n}{1}^2$ ways

r=n we have $\binom{n}{n}^2$ ways.

From Method 1, the numeber of subsets of AUB of sizen

$$is \binom{2n}{n}$$

From Method 2, the number of subsets of AUB of Size n is $\sum_{r=0}^{n} {n \choose r}^2$

the same

Question D [5 marks]. Suppose that T_1 and T_2 are spanning trees of a simple graph G with at least 3 vertices. Moreover, suppose that e_1 is an edge in T_1 that is not in T_2 . Show that there is an edge e_2 in T_2 that is not in T_1 such that T_1 remains a spanning tree if e_1 is removed from it and e_2 is added to it, and T_2 remains a spanning tree if e_2 is removed from it and e_1 is added to it.

Suppose e, = {u, v \ is as specified.

Then Tz Ule, 1 contains a simple circuit C containing e. .
The graph T-{e,1 has two connected components:

the endpoints of e, are in different components.

Travel C from u in the direction opposite to e, until you come to the first vertex in the same component as v. The edge just crossed is ez.

Clearly, Tz V le, 1 - fez i is a tree, because ez is on C.

Also, $T_1 - \{e_1 | U \{e_2\} \text{ is a tree because } e_2 \text{ reunited the two components.}$