Problem A. 词典

Time limit 1000 ms **Mem limit** 524288 kB

题目描述

小 S 的词典里有 n 个两两不同的、长度均为 m 的单词 w_1, w_2, \cdots, w_n 。每个单词都是一个小写字母构成的字符串。

小 S 可以做以下操作任意多次 (可以不做):选择词典中的任意一个单词,交换其中任意两个字符。

对于每个 $1\leq i\leq n$,小 S 想知道,是否可以通过以上操作得到新的 n 个单词 w_1',w_2',\cdots,w_n' ,使得对于每个 $j\neq i$, w_i' 的字典序比 w_j' 都要小。**对于** n=1 **的情况,我们约定:上述性质是自然成立的。**

对于两个同样长度的字符串 $s=s_1s_2\cdots s_L$ 和 $t=t_1t_2\cdots t_L$,称字符串 s 字典序小于字符串 t,当且仅当以下条件成立:存在位置 i,在第 i 个字符之前 s 和 t 都相同,而且 $s_i < t_i$,即小写字母 s_i 在英文字母顺序中先于 t_i 。

输入格式

从文件 dict.in 中读入数据。

输入的第一行包含两个正整数 n 和 m,分别表示单词个数和单词长度。

接下来 n 行,每行包含一个长度为 m 的小写字母字符串 w_i ,表示一个单词。

输出格式

输出到文件 dict.out 中。

输出一行,其中包含一个长度为 n 的 01 字符串 a ; 对于 $1 \le i \le n$,如果题目描述中的性质成立,则 $a_i=1$,否则 $a_i=0$ 。

样例1

Input	Output
4 7 abandon bananaa baannaa notnotn	1110

- 不做任何操作,第一个单词字典序最小,因此输出第一个字符为`1`; - 交换`bananaa`的前两个字符以及`abandon`的第三个和第六个字符,得到`abondan`,`abnanaa`,`baannaa`,`notnotn`,此时第二个单词字典序最小,因此输出第二个字符为`1`; - 交换`baannaa`的第一个和最后一个字符得到`aaannab`,其余字符串不变,此时第三个单词字典序最小,因此输出第三个字符为`1`; - 无论如何操作,第四个单词不会小于第二个单词,因此输出第四个字符为`0`。

样例2

见附加文件中的 [dict2.in](file:dict2.in) 和 [dict2.ans](file:dict2.ans)。

该组样例满足测试点4的限制。

样例3

见附加文件中的 [dict3.in](file:dict3.in) 和 [dict3.ans](file:dict3.ans)。

该组样例满足测试点7的限制。

样例4

见附加文件中的 [dict4.in](file:dict4.in) 和 [dict4.ans](file:dict4.ans)。

该组样例满足测试点 10 的限制。

数据范围与提示

对于所有测试数据,保证: $1 \leq n \leq 3~000$, $1 \leq m \leq 3~000$, w_i 为长度为 m 的小写字母字符串且两两不同。

测试点编号	$n \leq$	$m \leq$
1	1	1
$2\sim 4$	26	1

测试点编 号	$n \le$	$m \leq$
$5\sim7$	15	2
8	300	300
9	10^{3}	10^3
10	3 000	3 000

Problem B. 三值逻辑

Time limit 1000 ms **Mem limit** 524288 kB

题目描述

小 L 今天学习了 Kleene 三值逻辑。

在三值逻辑中,一个变量的值可能为:真(True,简写作 T)、假(False,简写作 F)或未确定(Unknown,简写作 U)。

在三值逻辑上也可以定义逻辑运算。由于小 L 学习进度很慢,只掌握了逻辑非运算 ¬,其运算法则为:

$$\neg T = F, \neg F = T, \neg U = U.$$

现在小 L 有 n 个三值逻辑变量 x_1, \dots, x_n 。小 L 想进行一些有趣的尝试,于是他写下了 m 条语句。语句有以下三种类型,其中 \leftarrow 表示赋值:

- 1. $x_i \leftarrow v$, 其中 v 为 T, F, U的一种;
- 2. $x_i \leftarrow x_j$;
- $3. x_i \leftarrow \neg x_j$.

一开始,小L会给这些变量赋初值,然后按顺序运行这m条语句。

小 L 希望执行了所有语句后,所有变量的最终值与初值都相等。在此前提下,小 L 希望初值中 Unknown 的变量尽可能少。

在本题中,你需要帮助小 L 找到 Unknown 变量个数最少的赋初值方案,使得执行了所有语句后所有变量的最终值和初始值相等。小 L 保证,至少对于本题的所有测试用例,这样的赋初值方案都必然是存在的。

输入格式

从文件 tribool.in 中读入数据。

本题的测试点包含有多组测试数据。

输入的第一行包含两个整数 c 和 t,分别表示测试点编号和测试数据组数。对于样例,c 表示该样例与测试点 c 拥有相同的限制条件。

接下来,对于每组测试数据:

- 输入的第一行包含两个整数 n 和 m, 分别表示变量个数和语句条数。
- 接下来 m 行,按运行顺序给出每条语句。
 - 输入的第一个字符 v 描述这条语句的类型。保证 v 为 TFU+- 的其中一种。
 - 。 若 v 为 TFU 的某一种时,接下来给出一个整数 i , 表示该语句为 $x_i \leftarrow v$;
 - 。 若 v 为 $\cfrac{+}{}$,接下来给出两个整数 i,j,表示该语句为 $x_i \leftarrow x_j$;
 - 。 若 v 为 ,接下来给出两个整数 i,j , 表示该语句为 $x_i \leftarrow \neg x_j$ 。

输出格式

输出到文件 tribool.out 中。

对于每组测试数据输出一行一个整数,表示所有符合条件的赋初值方案中,Unknown 变量个数的最小值。

样例1

Input	Output
1 3 3 3 - 2 1 - 3 2 + 1 3 3 3 - 2 1 - 3 2 - 1 3 2 2 T 2 U 2	0 3 1

第一组测试数据中, m 行语句依次为

- $x_2 \leftarrow \neg x_1$;
- $x_3 \leftarrow \neg x_2$;
- $x_1 \leftarrow x_3$.

一组合法的赋初值方案为 $x_1=T, x_2=F, x_3=T$,共有 $0 \land Unknown$ 变量。因为不存在赋初值方案中有小于 $0 \land Unknown$ 变量,故输出为 0。

第二组测试数据中, m 行语句依次为

- $x_2 \leftarrow \neg x_1$;
- $x_3 \leftarrow \neg x_2$;
- $x_1 \leftarrow \neg x_3$.

唯一的赋初值方案为 $x_1=x_2=x_3=U$, 共有 $3 \cap Unknown$ 变量,故输出为 3。

第三组测试数据中, m 行语句依次为

- $x_2 \leftarrow T$;
- $x_2 \leftarrow U$;

一个最小化 Unknown 变量个数的赋初值方案为 $x_1=T, x_2=U$ 。 $x_1=x_2=U$ 也是一个合法的方案,但它没有最小化 Unknown 变量的个数。

样例2

见附加文件中的 [tribool2.in](file:tribool2.in) 和 [tribool2.ans](file:tribool2.ans)。 该组样例满足测试点 2 的限制。

样例3

见附加文件中的 [tribool3.in](file:tribool3.in) 和 [tribool3.ans](file:tribool3.ans)。 该组样例满足测试点 5 的限制。

样例4

见附加文件中的 [tribool4.in](file:tribool4.in) 和 [tribool4.ans](file:tribool4.ans)。 该组样例满足测试点 8 的限制。

数据范围与提示

对于所有测试数据,保证:

- $1 \leq t \leq 6$, $1 \leq n, m \leq 10^5$;
- 对于每个操作,v 为 TFU+- 中的某个字符, $1 \leq i,j \leq n$ 。

测试点编号	$n,m \leq$	v 可能的取值	
1,2	10	TFU+-	
3	10^3	TFU	

测试点编号	$n,m \leq$	v 可能的取值
4	10^5	TFU
5	10^3	U+
6	10^5	U+
7	10^3	+-
8	10^5	+-
9	10^3	TFU+-
10	10^5	TFU+-

Problem C. 双序列拓展

Time limit 1000 ms **Mem limit** 524288 kB

题目描述

称某个序列 $B=\{b_1,b_2,\cdots,b_n\}$ 是另一个序列 $A=\{a_1,a_2,\cdots,a_m\}$ 的**拓展**当且仅当存在**正整数** 序列 $L=\{l_1,l_2,\cdots,l_m\}$,将 a_i 替换为 l_i 个 a_i 后得到序列 B。例如,

- $\{1,3,3,3,2,2,2\}$ $\not\in$ $\{1,3,3,2\}$ 的拓展,取 $L=\{1,1,2,3\}$ 或 $\{1,2,1,3\}$;
- $m \{1,3,3,2\}$ 不是 $\{1,3,3,3,2\}$ 的拓展, $\{1,2,3\}$ 不是 $\{1,3,2\}$ 的拓展。

小 R 给了你两个序列 X 和 Y,他希望你找到 X 的一个长度为 $l_0=10^{100}$ 的拓展 $F=\{f_i\}$ 以及 Y 的一个长度为 l_0 的拓展 $G=\{g_i\}$,使得任意 $1\leq i,j\leq l_0$ 都有 $(f_i-g_i)(f_j-g_j)>0$ 。由于序列 太长,你只需要告诉小 R 是否存在这样的两个序列即可。

为了避免你扔硬币蒙混过关,小 R 还给了 q 次额外询问,每次额外询问中小 R 会修改 X 和 Y 中若干元素的值。你需要对每次得到的新的 X 和 Y 都进行上述的判断。

询问之间是独立的,每次询问中涉及的修改均在原始序列上完成。

输入格式

从文件 expand.in 中读入数据。

输入的第一行包含四个整数 c,n,m,q,分别表示测试点编号、序列 X 的长度、序列 Y 的长度和额外询问的个数。对于样例,c 表示该样例与测试点 c 拥有相同的限制条件。

输入的第二行包含 n 个整数 x_1, x_2, \dots, x_n , 描述序列 X。

输入的第三行包含 m 个整数 y_1, y_2, \dots, y_m , 描述序列 Y 。

接下来依次描述 q 组额外询问。对于每组额外询问:

- 输入的第一行包含两个整数 k_x 和 k_y , 分别表示对序列 X 和 Y 产生的修改个数。
- 接下来 k_x 行每行包含两个整数 p_x, v_x , 表示将 x_{p_x} 修改为 v_x 。
- 接下来 k_y 行每行包含两个整数 p_y, v_y , 表示将 y_{p_y} 修改为 v_y 。

输出格式

输出到文件 expand.out 中。

输出一行,其中包含一个长度为 (q+1) 的 01 序列,序列的第一个元素表示初始询问的答案,之后 q 个元素依次表示每组额外询问的答案。对于每个询问,如果存在满足题目条件的序列 F 和 G,输出 1 ,否则输出 0 。

样例1

Input	Output
3 3 3 3 8 6 9 1 7 4 1 0 3 0 0 2 1 8 3 5 1 1 2 8 1 7	1001

由于 F 和 G 太长,用省略号表示重复最后一个元素直到序列长度为 l_0 。如 $\{1,2,3,3,\cdots\}$ 表示序列 从第三个元素之后都是 3。

以下依次描述四次询问,其中第一次询问为初始询问,之后的三次为额外询问:

1.
$$A = \{8,6,9\}$$
 , $B = \{1,7,4\}$, 取 $F = \{8,8,6,9,\cdots\}, G = \{1,7,4,4,\cdots\}$;

2.
$$A=\{8,6,0\}$$
, $B=\{1,7,4\}$,可以证明不存在满足要求的方案;

3.
$$A = \{8, 6, 9\}$$
 , $B = \{8, 7, 5\}$, 可以证明不存在满足要求的方案 ;

4.
$$A = \{8, 8, 9\}$$
 , $B = \{7, 7, 4\}$, 取 $F = \{8, 8, 9, \cdots\}, G = \{7, 7, 4, \cdots\}$ 。

样例 2

见附加文件中的[expand2.in](file:expand2.in)和[expand2.ans](file:expand2.ans)。 该组样例满足测试点 4 的限制。

样例3

见附加文件中的 [expand3.in](file:expand3.in) 和 [expand3.ans](file:expand3.ans)。 该组样例满足测试点 7 的限制。

样例4

见附加文件中的 [expand4.in](file:expand4.in) 和 [expand4.ans](file:expand4.ans)。 该组样例满足测试点 9 的限制。

样例 5

见附加文件中的 [expand5.in](file:expand5.in) 和 [expand5.ans](file:expand5.ans)。 该组样例满足测试点 18 的限制。

数据范围与提示

对于所有测试数据,保证:

- $1 \leq n, m \leq 5 \times 10^5$;
- $0 \le q \le 60$;
- $0 \le x_i, y_i < 10^9$;
- $0 \leq k_x, k_y \leq 5 imes 10^5$,且所有额外询问的 $(k_x + k_y)$ 的和不超过 $5 imes 10^5$;
- $1 \leq p_x \leq n$, $1 \leq p_y \leq m$, $0 \leq v_x, v_y < 10^9$;
- 对于每组额外询问, p_x 两两不同, p_y 两两不同。

测试点编号	$n,m \leq$	特殊性质
1	1	否
2	2	否
3,4	6	否
5	200	否
6,7	2000	否
8,9	$4 imes10^4$	是
10, 11	$1.5 imes10^5$	是
$12\sim14$	$5 imes10^5$	是
15, 16	$4 imes 10^4$	否
17, 18	$1.5 imes10^5$	否

测试点编号	$n,m \leq$	特殊性质
19,20	$5 imes10^5$	否

特殊性质:对于每组询问(包括初始询问和额外询问),保证 $x_1 < y_1$,且 x_n 是序列 X 唯一的一个最小值, y_m 是序列 Y 唯一的一个最大值。

Problem D. 天天爱打卡

Time limit 2000 ms Mem limit 524288 kB

题目描述

小 T 同学非常热衷于跑步。为了让跑步更加有趣,他决定制作一款叫做《天天爱打卡》的软件,使得用户每天都可以进行跑步打卡。

开发完成后,小T 同学计划进行试运行,他找了大Y 同学来帮忙。试运行共n 天,编号为从1 到n。

对大Y同学来说,如果某天他选择跑步打卡,那么他的能量值会减少d。初始时,他的能量值是0,并且试运行期间他的**能量值可以是负数**。

而且大 Y 不会**连续**跑步打卡**超过** k 天;即不能存在 $1 \le x \le n-k$,使得他在第 x 到第 x+k 天均进行了跑步打卡。

小 T 同学在软件中设计了 m 个挑战,第 i $(1 \le i \le m)$ 个挑战可以用三个正整数 (x_i,y_i,v_i) 描述,表示如果在第 x_i 天时,用户已经连续跑步打卡至少 y_i 天(即第 x_i-y_i+1 到第 x_i 天均完成了跑步打卡),那么小 T 同学就会请用户吃饭,从而使用户的能量值提高 v_i 。

现在大Y想知道,在软件试运行的n天结束后,他的能量值**最高**可以达到多少?

输入格式

从文件 run.in 中读入数据。

本题的测试点包含有多组测试数据。

输入的第一行包含两个整数 c 和 t ,分别表示测试点编号和测试数据组数。对于样例,c 表示该样例与测试点 c 拥有相同的限制条件。

接下来,对于每组测试数据:

- 输入的第一行包含四个正整数 n, m, k, d,分别表示试运行的天数、挑战的个数、大 Y 单次跑步打卡的连续天数限制以及大 Y 跑步打卡减少的能量值。
- 接下来 m 行,每行包含三个正整数 x_i, y_i, v_i ,表示一次挑战。

输出格式

输出到文件 run.out 中。

输出一行一个整数表示对应的答案。

样例1

Input	Output
1 1 3 2 2 1 2 2 4 3 2 3	2

在第 1,2 天跑步打卡,第 3 天不跑步打卡,最终会获得 (-1)+(-1)+4=2 的能量值。

样例2

见附加文件中的[run2.in](file:run2.in)和[run2.ans](file:run2.ans)。 该组样例满足测试点 3 的限制。

样例3

见附加文件中的 [run3.in](file:run3.in) 和 [run3.ans](file:run3.ans)。 该组样例满足测试点 5 的限制。

样例4

见附加文件中的 [run4.in](file:run4.in) 和 [run4.ans](file:run4.ans)。 该组样例满足测试点 15 的限制。

样例 5

见附加文件中的 [run5.in](file:run5.in) 和 [run5.ans](file:run5.ans)。 该组样例满足测试点 17 的限制。

样例 6

见附加文件中的[run6.in](file:run6.in)和[run6.ans](file:run6.ans)。

该组样例满足测试点 19 的限制。

数据范围与提示

记
$$l_i = x_i - y_i + 1$$
 , $r_i = x_i$;

对于所有测试数据,保证: $1\leq t\leq 10$, $1\leq k\leq n\leq 10^9$, $1\leq m\leq 10^5$, $1\leq l_i\leq r_i\leq n$, $1\leq d,v_i\leq 10^9$ 。

测试点编号	$n \le$	$m \leq$	特殊性质
1,2	18	10^2	无
3,4	10^2	10^2	无
$5\sim7$	10^{3}	10^3	无
8,9	10^3	10^5	无
10, 11	10^5	10^3	无
$12\sim14$	10^5	10^5	无
15, 16	10^{9}	10^5	A
17, 18	10^{9}	10^5	В
$19\sim21$	10^{9}	10^5	С
$22\sim25$	10^9	10^5	无

特殊性质 A : $k \leq 10^2$;

特殊性质 B: $orall 1 \leq i < m$, $r_i < l_{i+1}$;

特殊性质 $\mathtt{C} : orall 1 \leq i < j \leq m$, $l_i < l_j$, $r_i < r_j$.