

HUMAN ACTIVITY RECOGNITION

Team: Giannelli Alessio, Imbonati Lorenzo, Valoti Davide

PROJECT GOAL

The goal of the project is to develop a classification algorithm that exploits the main deep learning techniques in order to predict and recognize the simplest human actions.

DATASET

The selected dataset is named 'HMDB - Human Emotion DB'. Each observation corresponds to one video, for a total of 6849. Each video has associated one of 51 possible classes, each of which identifies a specific human behavior.

Due to computational problems we have chosen only 19 classes on which to train the human activity recognition algorithm.

INPUT & PREPROCESSING

SIZE CONSTANTS

Image Height = 64 Image Width = 96 N° Frames per video = 20 N° of classes = 19 Frames_Extraction()

Resized Frame
[64 x 96]
Normalized Frame

Create_Dataset()

Features, i.e. normalized frames Labels, i.e. tags of category

Features Train (2278, 20, 96,64,3) Features Test (760, 20, 96, 64, 3)

Labels Train (2278, 19) Labels Test (760, 19)

Parameters: - stratify;

- shuffle;

- size = 0.25

train_test_split()

np.array() +
to_categorical()

Features shape (3038, 20, 96, 64, 3) Labels' Matrix (3038, 19) - [one hot encode]

LRCN APPROACH

Def LRCN: a class of architectures which combines Convolutional layers and Long Short-Term Memory (LSTM).

IMPLEMENTED MODELS

BASIC LRCN

Basic Structure:

- I. Convolutional2D Layer
- 2. LSTM Layer
- Dense Layer [fully connected]

ADVANCED LRCN

Basic Structure:

- Three Convolutional 2D Layers
- 2. LSTM Layer
- 3. Dense Layer [fully connected]

RESULTS

BASIC LRCN

loss: 0.7570 - accuracy: 0.7673 - val_loss: 2.7401 - val_accuracy: 0.3447

ADVANCED LRCN

loss: 0.1658 - accuracy: 0.9701 - val_loss: 4.2734 - val_accuracy: 0.4118

MOVENET APPROACH

INPUT

Set of prediction heads: Four prediction heads attached to the feature extractor

BDLSTM ARCHITECTURE

Def DBLSTM: The idea of BDLSTMs comes from bidirectional RNN, which processes sequence data in both forward and backward directions with two separate hidden layers. BDLSTMs connect the two hidden layers to the same output layer.

RESULTS

CONCLUSIONS

To sum up, we have seen that the best approach for human activity recognition videos is the last one, where Movenet's output is used as input for a BiDirectional LSTM. This method allow us to reach a good level of validation accuracy, over 70%.

CRITICALITIES

- Low quantity and quality of video used as input
- Computational power
- Underperformance of CNNs models

FUTURE DEVELOPMENTS

- Development of a MoveNet model able to handle cropped human bodies
- Train of the best model to other categories of activities, like the ones with objects

REFERENCES

- [1] Deep Learning Models for Human Activity Recognition

 https://machinelearningmastery.com/deep-learning-models-for-human-activity-recognition/
- [2] Long-term Recurrent Convolutional Networks for Visual Recognition and Description https://arxiv.org/abs/1411.4389?source=post_page1
- [3] Long-term Recurrent Convolutional Network for Video Regression

 https://towardsdatascience.com/long-term-recurrent-convolutional-network-for-video-regression-12138f8b4713
- [4] Long-term Recurrent Convolutional Networks https://jeffdonahue.com/lrcn/
- [5] Next-Generation Pose Detection with MoveNet https://blog.tensorflow.org/2021/05/next-generation-pose-detection-with-movenet-and-tensorflow].html

THANK YOU FOR YOUR ATTENTION