Homework 8 -Indecidibilità e riducibilità

Gabriel Rovesti

- 1. Considera il seguente problema: data una TM M a nastro semi-infinito, determinare se esiste un input w su cui M sposta la testina a sinistra partendo dalla cella numero 2023 (ossia se in qualche momento durante la computazione la testina si muove dalla cella 2023 alla cella 2022).
 - (a) Formula questo problema come un linguaggio 2023_{TM} .
 - (b) Dimostra che il linguaggio 2023_{TM} è indecidibile.
- 2. Considera il problema di determinare se un PDA accetta qualche stringa nella forma $\{ww \mid w \in \{0,1\}^*\}$. Dimostra che questo problema è indecidibile.
- 3. Una variabile A in una CFG G necessaria se appare in tutte le derivazioni di qualche stringa $w \in G$. Sia $NECESSARY_{CFG} = \{\langle G, A \rangle \mid A$ è una variabile necessaria in G.
 - (a) Si mostri $NECESSARY_{CFG}$ è Turing-riconoscibile
 - (b) Si mostri che $NECESSARY_{CFG}$ è indecidibile
- 4. Una CFG è minimale se nessuna delle regole può essere rimossa senza cambiare il linguaggio generato. Sia $MIN_{CFG} = \{\langle G, A \rangle \mid A \text{ è una variabile necessaria in } G\}$.
 - (a) Si mostri MIN_{CFG} è Turing-riconoscibile
 - (b) Si mostri che MIN_{CFG} è indecidibile
- 5. Considera il linguaggio $FORTY-TWO=\{\langle M,w\mid M \text{ termina la computazione su }w\text{ avendo solo }42\text{ sul nastro }\}$. Dimostra che FORTY-TWO è indecidibile.

- 6. Una Turing Machine moltiplica correttamente se, dati in input due numeri binari separati da #, termina la computazione con la loro moltiplicazione (in binario) sul nastro. (Non importa cosa fa sugli altri input.)
 - (a) Formula questo problema come un linguaggio MUL_{TM} .
 - (b) Dimostra che il linguaggio MUL_{TM} è indecidibile.