

Remote Sensing Chapter 1: Basics

Prof. Dr.-Ing. Uwe Sörgel soergel@ifp.uni-stuttgart.de

Contents

- Electric and magnetic fields
- Oscillations and waves
- Radiation budget
- Interaction of waves with matter

Important quantities of fields and matter

- Fields
 - electric field
 - magnetic field
 - magnetic field strength
- charge density
- current density

$$\begin{bmatrix} \vec{E} \end{bmatrix} = V/m$$

$$\begin{bmatrix} \vec{H} \end{bmatrix} = A/m$$

$$\begin{bmatrix} \vec{B} \end{bmatrix} = Vs/m^2 = Testo$$

$$\rho = As/m^3$$

- Matter
 - Permittivity 介电常数 / 电容率
 - Permeability 磁导率
 - ε_0, μ_0 electric und magnetic constants $\varepsilon = \varepsilon_0 \cdot \varepsilon_r$

$$\varepsilon = \varepsilon_0 \cdot \varepsilon_r$$

•
$$\varepsilon_r, \mu_r$$
 depend on matter, dimensionless $\mu = \mu_0 \cdot \mu_r$

$$[\varepsilon] = \frac{As}{Vm}$$

$$[\mu] = \frac{V_S}{Am}$$

■ifp

The electric field

- •The electric field *E* (here: static case)
 - surrounding an electric charge
 - exerts a force on other electrically charged objects
 - direction: from positive to negative charge

positive point charge ("Monopole")

negative point charge

$$[E] = \frac{V}{W}$$

Voltage U [V]: causes current in conductors

$$U_{AB} = \int_{A}^{B} \vec{E} \cdot d\vec{s}$$

Electrostatic force between electric charges

Attraction and repulsion of charges

like charges repel each opposite charges attract each other other (dipole)

Coulomb's law

$$F = \frac{q_1 q_2}{4\pi \varepsilon r^2}$$
Permittivity

Permittivity:

- $-\varepsilon = \varepsilon_0 \cdot \varepsilon_r$
- ε_0 is the electric constant
- ε_r is *complex*: magnitude varies (e.g., f (λ)) \rightarrow remote sensing
 - ≈ 1 for vacuum, air;
 - > 1 else
 (Water at MW ≈ 81)

→ Electrical effects play an important role in RS!

Electric polarization (dielectric material) 介电材料

External E-fields cause electric dipole moments in dielectric material

Atom

Molecule

Water

The dipole behavior of liquid water is an important feature of microwave remote sensing:

- Soil moisture
- Microwave oven dipoles vibration

The magnetic field

Static magnetic fields are caused by:

- permanent magnet
- direct current

magn. field H:
$$[H] = \frac{A}{m}$$

mag. field strength B: $[B] = \frac{Vs}{m^2} = Tesla$

$$\vec{B} = \mu_r \cdot \mu_0 \cdot \vec{H}$$
Permeability magn. constant

Permeability varies little for the most important types of matter

→ Magnetic effects can be neglected in RS

■ifp

Oscillations and waves

Oscillations

Periodical transform of energy inside the system into two forms

Undamped harmonic oscillator

$$\frac{\partial^2 x}{\partial t^2} + \omega^2 x = 0$$

One possible solution

$$x = x_0 \cdot \sin(\omega t)$$

electrical circuit

$$\frac{\partial^2 q}{\partial t^2} + \frac{1}{LC} q = 0$$

q: charge of capacitor 感应器感应系数 L: inductance of inductor 电容 C: capacitance

spring pendulum

$$\frac{\partial^2 x}{\partial t^2} + \frac{k}{m}x = 0$$

k: spring constant m: mass

■ifp

Notation as complex number: Phasor

The differential equation of the undamped harmonic oscillator

$$\frac{\partial^2 E}{\partial t^2} + \omega^2 E = 0$$

has the solution:

$$E = c_1 \cdot \cos(\omega t) + c_2 \cdot \sin(\omega t)$$

with coefficients $c_{1,2}$ depending on the start values. We can think of this two terms to be projections of a phasor rotating in complex plane onto the Cartesian axes (i.e., real and imaginary part)

Rotating phasor

+ E₀

E_X

E_y

3π₂

2π ωt

Advantage of complex notation:

- Differential equations turn to simple algebraic operations
- · Euler notation: more compact

 $E(t) = E_0 \cdot (\cos(\omega t) + j\sin(\omega t))$ $= E_0 \cdot e^{j(\omega t)}$

Waves

- Waves depend on location and time
- Waves transport energy

Examples for waves

■ifp

Wave equation for EM-wave in vacuum I

The equation of a harmonic oscillator and one solution:

$$\frac{\partial^2 x}{\partial t^2} + \omega^2 x = 0$$

$$x(t) = x_0 \cdot \sin(\omega t)$$

Wave shall propagate → we need a spatial component:

$$\frac{\partial^2 \vec{E}}{\partial x^2} + \frac{\partial^2 \vec{E}}{\partial y^2} + \frac{\partial^2 \vec{E}}{\partial z^2} - \frac{1}{c^2} \frac{\partial^2 \vec{E}}{\partial t^2} = 0$$

One solution for wave moving in z-direction:

$$\vec{E}(t,z) = E_0 \cdot \sin(\omega t - kz) = 2\pi$$

 $k = \frac{2\pi}{3}$

Angular frequency Wave number

Wave equation for EM-wave in vacuum II

The solution is valid

$$\vec{E}(t,z) = E_0 \cdot \sin(\omega t - kz)$$

- for periodic
- and plane waves (propagation in one direction only)
- → Are usually met in remote sensing (far field condition)

Again the complex notation is advantageous (note: only real part is of physically of interest):

$$\vec{E}(t,z) = E_0 \cdot \left(\cos(\omega t - kz) + j\sin(\omega t - kz)\right)$$

$$= E_0 \cdot e^{j(\omega t - kz)}$$

$$= E_0 \cdot e^{j(\omega t - kz)}$$
wave number $k = \frac{2\pi}{\lambda}$

ifp

Properties of periodic and plane EM waves

- \vec{E} , \vec{B} and propagation direction \vec{r} follow right-hand rule
- · Wave moves with velocity of light (material dependent)
- Wave transports energy (radiation: e.g., sunlight)
- E-field and B-field are in phase 协调
- · Plane of E-field oscillation defines polarization plane
 - For example, given by transmitting dipole orientation set TV antenna in parallel to the radio wave

Relation between wavelength and frequency

Frequency v or f

 $\lambda * f = c$

Velocity of light depends on refraction index

→ cause of refraction at surfaces

For visible and IR spectra wavelength is usually used to describe a system, whereas in MW frequency is preferred

Radiation budget

Universität Stuttgart

■ifp

Radiometry

- Radiometry is the science dealing with the measurement of electromagnetic radiance
- Every kind of matter emits radiance depending on its temperature
- An idealized object model is the so-called Black Body
- Additionally, any matter reflects, absorbs, or transmits radiation of external sources

■ifp

Black-body radiation

Most important: Sun $(\lambda_{max} = 500 \text{ nm}, \text{looks yellow-white in visible domain})$

Planck's law describes the spectral radiance from a black body as a function of temperature *T* and frequency v:

$$\rho(\nu, T)d\nu = \frac{8\pi h\nu^3}{c^3} \frac{1}{e^{h\nu/kT}} d\nu$$

Wien's displacement law: The frequency of maximal radiance is proportional to temperature

$$v_{\text{max}} = 5,88 \cdot 10^{10} \,\text{Hz} \,\text{K}^{-1} \cdot T \,\text{bzw.} \, \lambda_{\text{max}} = \frac{2897,8 \,\mu\text{m}}{T/\text{K}}$$

Stephan-Boltzmann law: The total amount of thermal radiation emitted is directly proportional to the fourth power of its absolute temperature

$$R_{tot} = 5.67 \cdot 10^{10} \ T^4$$

Wien's displacement law: examples

$$\lambda_{\text{max}} = \frac{2897,8 \mu\text{m}}{T/\text{K}}$$

Temp ^O C	Represents	w∕on ⁻²	λ _{m (μm)}	W _{λm} (w _{cm} ⁻² m ⁻¹)
-50	Earth	0.014	12.8	0.0007
-25	Earth	0.023	11.7	0.0012
0	Earth	0.032	10.5	0.0020
+25	Earth	0.045	9.6	0.0031
+50	Earth	0.062	8.9	0.0045
600	Flame	3.2	3.3	0.66
5500	Sun	5900	0.5	8000

Table 6.1 Radiant Emittance at Various Temperatures

Radiant flux Φ

- The fundamental unit to measure electromagnetic radiation is radiant flux Φ, measured in Watts.
- Φ is defined as the amount of energy per unit time (i.e., power).
- The incident (incoming) flux arriving an object is either reflected, absorbed, or transmitted.

■ifp

Radiation Budget Equation

$$\Phi_{i\lambda} = \Phi_{r\lambda} + \Phi_{a\lambda} + \Phi_{t\lambda}$$

- $\Phi_{_{r\lambda}}$ amount of power reflected from the object
- $\Phi_{a\lambda}$ amount of power absorbed by the object
- $\Phi_{t\lambda}$ amount of power transmitted through the object

Hemispherical reflectivity, absorptance, transmittance

■ifp

• The signal can be reflected or transmitted in any direction of a hemisphere

$$\rho_{\lambda} = \frac{\Phi_{r\lambda}}{\Phi_{i\lambda}}$$

reflectivity (also reflectance)

$$\begin{split} \alpha_{\lambda} &= \frac{\Phi_{a\lambda}}{\Phi_{i\lambda}} & \text{absorptance} \\ \tau_{\lambda} &= \frac{\Phi_{t\lambda}}{\Phi_{i\lambda}} & \text{transmittance} \end{split}$$

$$au_{\lambda} = \frac{\Phi_{t\lambda}}{\Phi_{i\lambda}}$$

Emission

ullet Emission: Self-radiation $oldsymbol{arPhi}_{
m e}$ of an object compared to black body $oldsymbol{arPhi}_{
m bb}$ at the same temperature:

$$\varepsilon_{\lambda} = \frac{\Phi_{e\lambda}}{\Phi_{bb\lambda}}$$

Kirchhoff's law: $\varepsilon = \alpha$

=> temperature doesn't change

$$\rho_{\lambda} = \frac{\Phi_{r\lambda}}{\Phi_{i\lambda}}$$

reflectivity (also reflectance)

$$\alpha_{\lambda} = \frac{\Phi_{a\lambda}}{\Phi_{i\lambda}}$$

absorptance

$$\tau_{\lambda} = \frac{\Phi_{t\lambda}}{\Phi_{:\lambda}}$$

transmittance

$$\rho_{\lambda} + \alpha_{\lambda} + \tau_{\lambda} = 1$$

Interaction of waves with matter

Overview of important processes

- General remarks
- Diffraction
 - Fan out of wave behind obstacles
- Absorption
 - Energy transfer from wave to matter
- Scattering
 - Change of EM direction at particles in atmosphere (Molecules, water droplets)
- Reflection
 - at surface boundaries

Reflection

Interaction of EM wave with molecules

The energy of the EM wave is proportional to frequency $(E = h \cdot f)$

→ long wave MW have far less energy than visible light

Interaction of EM wave with molecules

■ifp

Interaction of EM wave with molecules

Optical domain/infrared (VIS, NIR-FIR)

- Certain wavelengths cause resonance of molecule structure, which leads to absorption of energy of this wavelength
 - → In particular sensitive to chemical object structure

Thermal radiance (TIR)

- Measure of surface temperature
 - → Localize natural and anthropogenic heat sources

Microwave Domain (MW)

- Absorption und reflection mainly governed by physical object features.
 - → Sensitive to conductivity, roughness, morphology 导电性 形态学

Diffraction

■ifp

Diffraction

Fan out of wave behind obstacles into shadow region

Huygens's principle:

- Every point on the wave front is source of new elementary wave
- Wave front propagates by coherent superposition (interference)

Diffraction at small slit:

- Elementary waves are generated inside slit only
- → fan out of wave

Diffraction

- · The narrower the slit, the more the wave will fan out
- Ratio of wavelength
 λ to slit width d important:
 - Long wave signal fills space behind obstacle (MW RS, mobile phone)
 - Small obstacles (e.g. leafs) cause no shadows for λ in the order of some centimeters

Water waves

Small slit

Large slit

Example for port

Diffraction limits resolution of imaging sensors

Point-like objects cause images of some extent

Diffraction at circular Aperture: Distance d of 1. order minima

Rayleigh criterion for resolution limit: maximum of first object coincides with minimum (due to interference) of second one

$$d = 2,44 \cdot r \cdot \frac{\lambda}{D} \leftarrow \text{Optical aperture/}$$
Antenna size

angular resolution $\rightarrow \Delta\theta = 1.22 \, \lambda/D$

■ifp

Absorption (and Emission)

Additive color

- Sun radiance contains all spectral colors, we observe white light.
- Displays: computer screen, beamer etc.
 - The red, green, and blue (primary colors) pixel can't be resolved by human eye. Instead we observe the mixture of those three colors.

Color		Byte binary (red, green blue)	Hexadecimal (red, green blue)
White		255, 255, 255	FF, FF, FF
Gray		127, 127, 127	99, 99, 99
Black		0, 0, 0	0, 0, 0
Red		255, 0, 0,	FF, 0, 0
Green		0, 255, 0	0, FF, 0
Blue		0, 0, 255	0, 0, FF
Yellow		255, 255, 0	FF, FF, 0
Cyan		0, 255, 255	0, FF, FF
Magenta		255, 0, 255	FF, 0, FF
Orange		255, 153, 0	FF, 99, 0
Pink		255, 170, 170	FF, AA, AA
Purple		170, 0, 170	AA, 0, AA
Teal		0, 170, 153	0, AA, 99
Brown		153, 102, 51	99, 66, 33
Tan		255, 204, 102	FF, CC, 66

Subtractive color by absorption

- Print: color pigments are filters due to absorption
- No color pigment, no filtering → white paper
- Three primary colors: cyan, magenta and yellow in principle would fully absorb sunlight → black
- However, usually extra black ink cartridge
- Remote Sensing: the colors we observe are due to partial absorption of the almost white sunlight

Human observer: both systems relevant

- 1.Sun radiance contains all spectral colors, we observe white light
- 2.An object looks red if the blue and green become *absorbed*, while the red part is reflected

Absorption inside Atmosphere Solar radiance at top of atmosphere Spektrale Einstrahlung [W/m²/µm] 3.0 Absorption by atmosphere 2.0 1.0 Solar radiance on ground 0.4 0.8 1.2 1.6 2.0 2.8 Wavelength [μm] Copyright © 1998-2002 Institut für Geographie an der LMU München ifp Universität Stuttgart

Scattering

- Change of EM direction at particles in atmosphere at molecules, water droplets etc.
- The radiance becomes absorbed and is immediately emitted again
- Energy and wavelength remain the same, direction may change

■ifp

Absorption and emission of a photon

Absorption occurs, if photon energy matches ΔE required to lift electron \rightarrow depends on material (different ΔE)

spontaneous emission of photon in arbitrary direction $\,\,$

■ifp

Rayleigh-Scattering

Scattering at objects, whose size is small compared to wavelength:

- Molecules in visible domain
- Raindrops in microwave domain

Strongly dependent on wavelength:

- The scattered intensity drops with the fourth power of λ :
- Blue sky → shorter blue wavelength scatters more

0.08 angular dependency Streuwinkel [Grad]

Mie-Scattering • Scattering at objects, whose size is in the order of wavelength: Aerosols in visible domain (milky appearance of fog and clouds) Birds in microwave domain • Slight dependency on wavelength due to resonance effects Intensität des Streulichtes [rel. Einh.] 0.7 0.6angular dependency - wavelength - object size 0.5 0.4 - refraction index 0.3 0.2 -0.1- $2\pi r/\lambda$ 0.0 $\sigma \sim r^2 \pi$ In visible domain Streuwinkel [Grad] ■ifp Universität Stuttgart

Reflection (and Refraction)

Polarization filter

- Effect of filter depending upon rotation
- Polarizing filter have a rotation direction:
 - 2 linear polarizing filter with 90° difference in direction → no light goes through
- 2 linear polarizing filters with any other difference in rotation → intensity reduced
- In photogrammetry used for separation of stereo images

Universität Stuttgart

Velocity of light depends on matter

The velocity of light (phase v.)
$$v_{ph}$$
 depends on ε and μ :
$$v_{ph_mat} = \frac{1}{\sqrt{\mu\varepsilon}} = \frac{c_0}{n_{mat}} \longrightarrow \text{refraction index} > 1$$

The frequency remains, the wavelength becomes smaller

The refraction index is a function of wavelength, too

Dispersion → Prism 散布

Reflection and refraction

Propagation direction changes at surfaces

- frequency is preserved
- Reflection: incidence angle α = reflected angle α'
- Snell's law of refraction:

$$n_1 \cdot \sin(\alpha) = n_2 \cdot \sin(\beta)$$

■ifp

Cause of refraction

- 1. Wave front hits surface oblique
- 2. Dipoles inside matter are forced to oscillate
- 3. The change of velocity of light causes change of direction
 - → refraction

Reflection: Fresnel's formulas

- The Fresnel formulas relate amplitudes of incident vs. reflected and transmitted waves, respectively (details not treated here)
- Curve of indices ($\rho \rightarrow$ reflection, $\tau \rightarrow$ transmission) depend on:
 - matter
 - wavelength

p-polarized: parallel to paper (screen) s-polarized: normal to paper plane

Brewster's angle

- In remote sensing important at horizontal planes like water surface
 - Reflection of vertical polarization vanishes at Brewster's angle
 - Photography / sun glasses (Polaroid):
 - Polarization filter sorts out disturbing dominant horizontal signal
 - · Diffuse signal remains

vertical parts of signal

■ifp

Reflectance of objects: BRDF

• Radiation $L_{\lambda r}(\theta, \varphi)$ in direction (θ, φ) is defined by

$$L_{\lambda r}(\vartheta,\varphi) = \int R_{\lambda}(\Theta,\phi,\vartheta,\varphi) \cdot L_{\lambda i}(\Theta,\phi) \cdot \cos\Theta \cdot d\Omega_{i}$$

- $L_{\lambda i}(\Theta, \Phi)$ incoming radiation from direction (Θ, Φ)
- BRDF (Bidirectional Reflectivity Distribution Function): $R(\Theta, \Phi, \theta, \varphi)$
- $d\Omega$ infinitesimal solid angle

Influence of surface roughness

- Smooth surface → specular reflection
- Rough surface (with respect to wavelength):
- Diffuse Reflection (Lambertian)
- Rayleigh criterion of roughness:
 - Standard deviation of height σ_h
 - Incidence angle θ (between radiance and plane normal)
- Often we observe directed diffuse reflection.

reflection

at very rough surface

 $\sigma_h > \frac{\lambda}{8 \cdot \cos(\theta)}$

Various kinds of resolution

■ifp

Resolution in remote sensing

- Four kinds of resolution are relevant in remote sensing:
 - Spatial resolution
 - Spectral resolution
 - Temporal resolution
 - Radiometric resolution

Quantization

- Since we deal with digital data, the two steps of digitization play a crucial role:
 - Sampling
 - Quantization

Spatial or geometric resolution

- Spatial dimension
- Determines level of detail visible in the image
 - The minimal size of objects which can be recognized
 - Minimum distance to separate two objects

LANDSAT (30 m)

IKONOS (1m)

© MicroImages, Inc., 2001–2012

Spectral coverage and resolution

- Coverage: portion of spectrum in which sensor operates
- Resolution: number and width of so-called spectral bands

RapidEye image taken in March 2014, southeast of Poland ()

Stuff you should know:

•Which kind of signal do we exploit in RS?

Electromagnetic Wave

- •What are the characteristics of such radiation?

 electric, magnetic, polarization, oscillation propagation, constant velocity, Black-body radiation (sun), e=h*f, diffraction, absorption, reflection, scattering
- •What is the difference between oscillation and wave?

wave is oscillation that propagates in space

Relevant terms of radiation budget?

black body radiation; radiant flux absorptance, reflectivity, transmittance; emission

■ifp

Stuff you should know:

•Which physical effect determines the angular (spatial) resolution of imaging sensors?

dTheta = 1.22*Lambda/D

- Difference between scattering and reflection?
 absorption==>emission vs reflection
- •How does reflection depend on surface roughness?

specular VS diffuse VS Lambertian Sigma < Lambda/(4*cos(theta))

•Different kinds of resolutions?

spatial, spectral, temporal, radiometric

