```
In [1]: 1 # Plotly import
2 import plotly.graph_objs as go
3 from plotly.offline import init_notebook_mode,iplot
4 init_notebook_mode(connected=True)
```

Import pandas and read the csv file: 2014_World_Power_Consumption

Out[2]:

	Country	Power Consumption KWH	Text
0	China	5.523000e+12	China 5,523,000,000,000
1	United States	3.832000e+12	United 3,832,000,000,000
2	European	2.771000e+12	European 2,771,000,000,000
3	Russia	1.065000e+12	Russia 1,065,000,000,000
4	Japan	9.210000e+11	Japan 921,000,000,000

In [3]: 1 df.info()

Creating a Choropleth Plot of the Power Consumption for Countries using the data and layout dictionary.

```
In [4]:
          1
             #data
             data = dict(type = 'choropleth',
          2
                        locations = df['Country'],
          3
                        locationmode='country names',
          4
          5
                        z = df['Power Consumption KWH'],
          6
                        text = df['Country'],
                        colorbar = {'title': 'Power Consumption KWH'}
          7
          8
                        )
```

```
In [6]: 1 choromap = go.Figure(data = [data],layout = layout)
2 iplot(choromap,validate=False)
```

2014 Power Consumption

Export to plot.ly »

1	USA Choropleth			
---	----------------	--	--	--

Out[8]:

	Year	ICPSR State Code	Alphanumeric State Code	State	VEP Total Ballots Counted	VEP Highest Office	VAP Highest Office	Total Ballots Counted	Highest Office	Poj
0	2012	41	1	Alabama	NaN	58.6%	56.0%	NaN	2,074,338	3,
1	2012	81	2	Alaska	58.9%	58.7%	55.3%	301,694	300,495	
2	2012	61	3	Arizona	53.0%	52.6%	46.5%	2,323,579	2,306,559	4,
3	2012	42	4	Arkansas	51.1%	50.7%	47.7%	1,078,548	1,069,468	2,
4	2012	71	5	California	55.7%	55.1%	45.1%	13,202,158	13,038,547	23,

In [9]: 1 df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 51 entries, 0 to 50
Data columns (total 17 columns):
                                     51 non-null int64
Year
ICPSR State Code
                                     51 non-null int64
Alphanumeric State Code
                                     51 non-null int64
State
                                     51 non-null object
                                     41 non-null object
VEP Total Ballots Counted
VEP Highest Office
                                     51 non-null object
VAP Highest Office
                                     51 non-null object
Total Ballots Counted
                                     41 non-null object
Highest Office
                                     51 non-null object
Voting-Eligible Population (VEP)
                                     51 non-null object
Voting-Age Population (VAP)
                                     51 non-null float64
% Non-citizen
                                     51 non-null object
                                     51 non-null object
Prison
Probation
                                     51 non-null object
Parole
                                     51 non-null object
                                     51 non-null object
Total Ineligible Felon
State Abv
                                     51 non-null object
dtypes: float64(1), int64(3), object(13)
memory usage: 6.9+ KB
```

^{1 **} Creating a plot that displays the Voting-Age Population (VAP) per state.

² Note: VAP has already been transformed to a float **

```
In [11]:
           1
           2
              data = dict(type = 'choropleth',
           3
                          locations = df['State Abv'],
                          colorscale = 'Viridis',
           4
           5
                          reversescale = True,
           6
                          z = df['Voting-Age Population (VAP)'],
           7
                          locationmode = 'USA-states',
                          text = df['State'],
           8
           9
                          marker = dict(line = dict(color = 'rgb(255, 255, 255)',
                                                     width = 2)),
          10
                         colorbar = {'title': 'Voting-Age Popultaion'})
          11
          12
          13
              layout = dict(title = '2012 Election Data',
          14
                           geo = dict(scope = 'usa',
          15
                                      showlakes = True,
          16
                                      lakecolor = 'rgb(85, 173, 240)')
          17
                            )
```

2012 Election Data

Export to plot.ly »