EmotionKD: A Cross-Modal Knowledge Distillation Framework for Emotion Recognition Based on Physiological Signals

Fusion

Interactivity

Feature

Yucheng Liu, Ziyu Jia, and Haichao Wang

Institute of Automation, Chinese Academy of Sciences, Beijing, China Tsinghua-Berkeley Shenzhen Institute, Shenzhen, Guangdong, China

Heterogeneity

Heterogeneity

Heterogeneity

Introduction

■Emotion: Recognition

- ✓ It is an essential aspect of affective computing that allows machines to understand human emotions;
- ✓ Physiological signals are highly reliable indicators of emotion changes within the human body.

■ Application of EEG:

- ✓ Unimodal EEG model: Tsception, AP-CapsNet.
- ✓ Multimodal model using EEG: MFFNN, MSMDFN.

■ Difficulty of Application:

- ✓ Causing the uncomfortable feelings;
- ✓ Subjects' psychological responses may be affected;
- ✓ Harsh data acquisition environment;
- ✓ Cost of facilities is extremely expensive;

Method

Challenges

■C1: How can capture both two types of feature in multimodal model?

There are two kinds of important features in the multi-modal emotion recognition:

- ✓ Heterogeneity: Distinct features within signals of different modalities.
- ✓ Interactivity: correlation between different modalities of human physiological signals.
- ■C2: How to transfer the knowledge flexibly to student model?
 - ✓ In most knowledge distillation methods, the teacher network is fixed.
 - ✓ Teacher model cannot adjust the output feature according to the different training stage of the student.

S1: Multimodal EmotionNet-Teacher.

- ✓ CNN filters for each modality.
- ✓ Dual-stream transformer structure for Heterogeneity;
- ✓ IMF Module for interactivity extraction from feature of transformer

S2: IMF Module and Interactivity Extractor for interactivity extraction.

Results

- ✓ We evaluate the performance of EmotionKD on DEAP and HCI-Tagging datasets with SOTA baselines.
- ✓ As shown in the table, EmotionKD achieves the best overall performance compared with other baseline methods.

Comparison with the unimodal model baselines

	Methods	Arousal		Valence	
		Acc	F1-score	Acc	F1-score
	DeepConvNet[27]	53.70	50.95	66.45	61.15
	CNN+RNN[33]	53.17	36.37	67.97	64.17
	CGAN[42]	53.43	46.82	55.17	35.66
	CRD[37]	50.86	50.74	61.78	56.10
	Visual-to-EEG KD[44]	54.90	52.59	68.66	67.36
	EmotionNet-Student	55.06	53.50	69.18	68.33

Comparison with the multimodal model baselines

Methods	Arousal		Valence	
	Acc	F1-score	Acc	F1-score
Concatenate	55.53	49.59	62.67	59.26
BDAE[41]	56.53	40.29	56.43	44.43
CNN-SVM[6]	56.85	42.03	62.09	58.00
EmotionNet-Teacher	62.88	60.23	66.61	66.54

Conclusion

- ✓ We propose a novel multi-modal EmotionNet-Teacher based on a dual-stream transformer structure with an Interactivity-based Modal Fusion (IMF) module;
- ✓ We design an adaptive feedback mechanism for cross-modal knowledge distillation;
- ✓ The proposed EmotionKD method is the first application of cross-modal knowledge distillation in the field of physiological signal-based emotion recognition to transfer fused EEG and GSR features to the unimodal GSR model.

