1 Sir Isaac Newton described light as:
OA Tiny particles
OB Waves
○C Wave-particles
OD Thermal waves
OE Gravitational waves

2 The particle theory of light can explain the following phenomena:
OA Dispersion
OB Reflection
OC Refraction
OD All of the above
OE None of the above

3 A light beam changes its direction when it strikes a boundary between air and water. Which of the following is responsible for this phenomenon?
OA Diffraction
○ B Interference
OC Reflection
OD Refraction
○E Polarization

4 When light crosses a boundary between air and water, the following quantity of light remains the same:
○ A Wavelength
○B Speed
OC Frequency
OD None of the above
○ E All of the above

5 A beam of light has a wavelength of 600 nm in air. What is the frequency of the light (c=3x10⁸ m/s)?

- A 5x10¹⁴ Hz
- B 2x10¹⁴ Hz
- C 3x10¹⁴ Hz
- \bigcirc D 6x10¹⁴ Hz
- E 8x10¹⁴ Hz

- 6 A light beam traveling in air with a wavelength of 500.0 nm falls on a glass block. What is the wavelength of the light beam in glass $(n_{glass} = 1.500)$?
 - A 500.0 nm
 - ○B 400.0 nm
 - C 666.7 nm
 - OD 333.3 nm
 - E 900.0 nm

- 7 A light beam traveling in air with a wavelength of 650 nm falls on a glass block. What is the speed of the light beam in glass ($c = 3.0x10^8$ m/s, $n_{glass} = 1.5$)?
 - OA 3.0x108 m/s
 - OB 2.0x108 m/s
 - OC 1.5x108 m/s
 - OD 1.0x108 m/s
 - \bigcirc E 0.50x108 m/s

- 8 A light beam traveling in air with a wavelength of 600.0 nm falls on a glass block. What is the frequency of the light beam in glass ($c = 3x10^8$ m/s, $n_{glass} = 1.5$)?
 - \bigcirc A 5.0x10¹⁴ Hz
 - B 2.5x10¹⁴ Hz
 - \bigcirc C 3.0x10¹⁴ Hz
 - OD 6.0x10¹⁴ Hz
 - \bigcirc E 2.0x10¹⁴ Hz

9 Light travels fastest in:
O A Glass
○B Diamond
OC Air
○ D Vacuum
○E Water

1	0 Sun rays fall on a glass prism. refracted the least?	Which of the following rays will be
	OA Blue	
	OB Violet	
	OC Green	
	OD Yellow	
	○E Red	

11	Which of the following theories can explain the bending of light
	behind obstacles forming a bright spot inside the shadow?

- A Particle theory of light
- OB Wave theory of light
- OC Kinetic theory
- OD Special theory of relativity
- E Classical mechanics

12 The wave theory of light is associated wit	12	The wave theory	y of light is	associated with
---	----	-----------------	---------------	-----------------

- O A Isaac Newton
- OB Albert Einstein
- OC Max Planck
- OD Christiaan Huygens
- E Robert Millikan

13 In Young's double-slit experiment, a series of bright and dark lines was observed. Which of the following principles is responsible for this phenomenon?
OA Polarization
○ B Reflection
OC Dispersion
OD Interference
○ E Refraction

- 14 A blue beam of light falls on two narrow slits producing an interference pattern on a screen. If instead of blue light, a red beam of light was used in the same experiment, which changes to the interference pattern can be observed?
 - A Interference fringes move closer to the central maximum.
 - OB Interference fringes move further away from the central maximum.
 - OC No change in interference.
 - D Bright fringes are replaced with dark fringes.
 - E The number of fringes increases.

15	In a Young's double-slit experiment, an interference pattern is
	observed on a screen. The apparatus is then submerged into
	water. What is the change in the interference pattern?

- A No change in interference.
- OB The number of fringes increases.
- OC The fringes move closer to the central maximum.
- O D The fringes move further away from the central maximum.
- E Bright fringes are replaced with dark fringes.

16 Two coherent light waves approaching a certain point on a screen produce a constructive interference pattern. The optical extra distance traveled by one of the waves is:

 \bigcirc A $\lambda/2$

 \bigcirc B $\lambda/3$

 \bigcirc C $3\lambda/2$

 $\bigcirc D \lambda$

 \bigcirc E 5 λ /2

17 In a Young's double-slit experiment the distance between the slits increases. What happens to the separation between the fringes?
OA Increases.
○B Decreases.
○ C Stays the same.
 D Increases for the bright fringes and decreases for the dark fringes.
○ E Increases for the dark fringes and decreases for the bright fringes.

18 In a double-slit experiment, the distance between the slits is doubled. What happens to the separation between the two adjacent maxima?
OA Doubles.
○B Quadruples.
○ C Is cut in half.
○D Is cut to a quarter.
○ E Stays the same.

19	A diffraction	grating	can b	oe u	sed	to:
----	---------------	---------	-------	------	-----	-----

- A Analyze the intensity of a light beam.
- B Identify an element by its optical spectra.
- OC Identify an element by its intensity.
- O D Determine the speed of light.
- OE All of the above.

20 A light beam spreads out when it travels through a narrow slit. Which of the following can explain this phenomenon?
OA Polarization
OB Reflection
OC Dispersion
OD Diffraction
○ E Refraction

21	In a single-slit experiment, as a result of the interference of a laser
	beam, a student observes a set of red and dark concentric circles.
	When he increases the width of the slit, what happens to the
	interference pattern?

- A The separation between the circles increases.
- B The separation between the circles decreases.
- OC No change in interference pattern.
- O D The separation between the circles increases and then decreases.
- E The separation between the circles decreases and then increases.

22	Colors in a soap	bubble or	in an o	il slick o	n the road	are caused
	by:					

- A Diffraction
- OB Polarization
- C Thin Film Interference
- OD Light intensity change

23	Maxwell's Equations describe the integration of which to	WO
	fundamental forces?	

- A Electricity and Magnetism
- OB Electricity and the Weak Nuclear force
- OC Magnetism and the Weak Nuclear force
- O D Magnetism and Gravity
- E Electricity and the Strong Nuclear force

24 Allowing only the Electric Field component vibrating in one, specific plane of an electromagnetic wave through a special filter is called:
OA Diffraction
○B Polarization
○ C Interference
OD Refraction
○ E Reflection

25 Which of the following is the correct order of electromagnetic radiation with increasing frequency?

- A Radio Waves, Visible Light, IR Radiation, UV Radiation, X-Rays, γ –Rays
- OB γ –Rays, Visible Light, IR Radiation, UV Radiation, X-Rays, Radio Waves
- C Radio Waves, UV Radiation, Visible Light, IR Radiation, X-Rays, γ –Rays
- D Radio Waves, Visible Light, X-Rays, IR Radiation, UV Radiation, γ –Rays
- E Radio Waves, IR Radiation, Visible Light, UV Radiation, X-Rays, γ –Rays